Autoimmune Hepatitis: Clinical Review with Insights into the Purinergic Mechanism of Disease

Nikhil Kapila1, Jennifer T. Higa2, Maria Serena Longhi2,3 and Simon C. Robson2

1Department of Medicine, University of Connecticut, Farmington, CT, USA; 2Gastroenterology Division and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; 3Institute of Liver Studies, King’s College London School of Medicine at King’s College Hospital, Denmark Hill, London, UK

Abstract

Autoimmune hepatitis (AIH) is an important disorder that predominantly results in inflammatory liver disease in genetically predisposed women. The clinicopathological picture is characterized by symptoms associated with both systemic inflammation and hepatic dysfunction, and with increased serum aminotransferases, elevated IgG, autoantibodies, and interface hepatitis on liver biopsy. AIH usually results in liver injury as a consequence of chronic hepatitis and cirrhosis. However, rarely, patients may present with fulminant liver failure. Early diagnosis is important in all instances because the disease can be highly responsive to immunosuppressive therapeutic options. Left untreated, the disease is associated with high morbidity and mortality. Here we provide an overview of the current state of knowledge on AIH and summarize the treatment options for this serious condition in adults. We also discuss the pathogenesis of the disease as a possible consequence of autoimmunity and the breakdown of hepatic tolerance. We focus on regulatory T cell impairments as a consequence of changes in CD39 ectonucleotidase expression and altered purinergic signaling. Further understanding of hepatic tolerance may aid in the development of specific and well-tolerated therapies for AIH.

Keywords: Autoimmune hepatitis; Pathogenesis; Immunology; Purinergic; CD39; Therapeutic overview

Introduction

In 1950, Jan Waldenstrom described the first case of autoimmune hepatitis (AIH) in a woman with hepatic dysfunction and hypergamma-globulinemia.1,2 Since then, AIH has become a well-established clinical entity, albeit uncommon, with an estimated annual incidence of 1.9 per 100,000, and a prevalence of 10–20/100,000.3 Early diagnosis is important, as AIH usually responds to immunosuppressive treatment. However, if left untreated, AIH can progress to liver failure, cirrhosis, and death.

In this updated review, we explore the pathogenesis of AIH, consider the immunological basis for the pathogenesis of liver-directed immune injury, and present new concepts in the understanding of immune tolerance that seem to be perturbed in AIH. We also comment on various developments in innovative treatment modalities.

Clinical presentation

AIH may present with a variety of clinical manifestations, ranging from asymptomatic disease to fulminant liver failure. Although up to 25% of patients may be asymptomatic at diagnosis,4 the condition most commonly presents in an insidious manner with non-specific complaints in young or middle-aged women.5 Approximately 30% of patients may have evidence of advanced liver disease and cirrhosis at the time of diagnosis.6 Extrahepatic manifestations of AIH may include inflammatory bowel disease, thyroiditis, type-1 diabetes mellitus, and celiac disease.7,8

There are no pathognomonic features of AIH. Therefore, the diagnosis depends on a set of clinicopathological, histological, biochemical, and immunological criteria. Interface hepatitis is the histological hallmark of AIH (see Fig. 1) and is present in 84–98% of cases.8 Biopsy findings of cirrhosis and/or bridging necrosis carry a poorer prognosis than those lacking these features.5,8,9

Multiple biochemical derangements can be found in AIH. Most commonly, elevated aminotransferases with or without elevated bilirubin and alkaline phosphatase are frequently seen. Serum immunoglobulins, notably IgG, are elevated in approximately 85% of cases.8

Several scoring systems are available to aid in making an objective diagnosis and prognostication of AIH. In 1992, the International Autoimmune Hepatitis Group (IAIHG) published the first scoring system for AIH, with a revision released in 1999.10 A simplified scoring system was published in 2008, which was subsequently vetted and shown to have high specificity.11,12
Serologic markers of disease

Autoantibodies are important in making the diagnosis of AIH, and aside from confirming the diagnosis, serologic markers may assist in subtyping the disease and determining the prognosis.\(^{11}\)

Diagnostic markers

Conventional markers for AIH include anti-smooth muscle antibody (SMA) and anti-nuclear antibody (ANA), both of which characterize the classic type 1 AIH. SMA positivity appears to be more specific for AIH than ANA, which is associated with multiple sero-reactants to centromere, histones, double-stranded DNA, chromatin, and ribonucleoprotein complex components, and thus has yet to yield a specific antigenic target.\(^{13-17}\) The specific antigen of SMA is also not clear, although multiple studies suggest that these autoantibodies react with actin components.\(^ {18,19}\)

It has also been reported that anti-nuclear and other autoantibodies are frequently noted in patients with non-alcoholic steatohepatitis. These observations may represent either nonspecific antibody responses associated with liver injury, or an autoimmune diathesis that may be linked pathogenetically to chronic inflammation, as in steatohepatitis.\(^ {20-22}\)

Antibodies to liver-kidney microsome type 1 (anti-LKM1) and liver cytosol type 1 (anti-LC1) characterize type 2 AIH. This subtype was described in the 1980s after the discovery of antibodies to liver-kidney microsomes.\(^ {23-25}\) Typically, patients are young women with more severe disease. The antigenic target of anti-LKM1 was identified as the cytochrome P450 liver enzyme CYP2D6.\(^ {26,27}\)

Adjuvative markers

Anti-soluble liver antigen (SLA) and liver pancreas (LP) reactivity are specific to and positive in 58% of adult patients with type 1 AIH.\(^ {1,28,29}\) The antigens for SLA/LP include ribonucleoprotein complex and O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS).\(^ {30}\) Anti-SLA is often associated with severe disease.\(^ {31}\)

Liver cytosol antibody (LC1) was described in the 1980s,\(^ {32}\) and is useful as an adjunct in the diagnosis of AIH type 2. The LC1 antigen is the liver-expressed enzyme formiminotransferase cycloleaminase (FTCD), and appears to be associated with early onset of disease, concurrent autoimmunity, and rapid progression to cirrhosis.\(^ {31}\) LC-1 titers fluctuate with disease activity.\(^ {33,34}\) Rarely, anti-neutrophil cytoplasmic antibodies (ANCA) are associated with primary sclerosing cholangitis (PSC) overlap syndrome, and high rates of cirrhosis.\(^ {35-38}\)

Pathogenesis

The following pathogenetic model has been proposed: in a genetically predisposed host, defined environmental agent(s) catalyze(s) and trigger a series of T cell-mediated immune events directed at hepatic cellular antigens, resulting in unfettered inflammation, which ultimately culminates in fibrotic transformation of the liver, aberrant regeneration, and cirrhosis.\(^ {5,29,39}\)

Genetic predisposition

The genetic predisposition to AIH has been attributed, at least in part, to specific allelic variations in the major histocompatibility complex (MHC), located on chromosome 6 in the human leukocyte antigen (HLA) region.\(^ {31,40}\) Among Caucasian populations, associations between AIH type 1 and DRB1 alleles (DRB1*0301, DRB1*0401), as well as between AIH type 2 and allele DRB1*0701 have been described. Patients with DRB1*0301 tend to be younger, more likely to require liver transplant, and experience higher rates of acute liver failure and steroid treatment failure.\(^ {34,41}\) HLA allelic associations vary globally.\(^ {37}\)

Molecular mimicry

Discovery and understanding of the target antigens for the autoantibodies in AIH may be important for developing specific treatments and understanding the mechanisms of
the disease. Molecular mimicry describes natural genetic homologies between autoantigens and common viral genomes (hepatitis C virus, herpes simplex virus 1, cytomegalovirus (CMV)) that spawn autoantibodies. This genetic interplay is feasible because of incomplete specificity at CD4+ T-cell antigen receptors.

Cellular immunoregulation

Immune system homeostasis is accomplished through regulation of effector CD8+ and CD4+ T cells by CD4+CD25+CD39+FoxP3+ regulatory T cells (Tregs). A major contributor to AIH pathogenesis is the failure of immunoregulation as a result of diminished function and sheer number of Tregs, with consequent massive recruitment of inflammatory effector cells, which inflict hepatic injury. It is increasingly accepted that TPMT testing may account for this observation. TPMT testing for the standardized management of AIH are based on American Association for the Study of Liver Diseases (AASLD) and British Society of Gastroenterology consensus guidelines for the management of AIH are based on suboptimal studies, and there remain clear uncertainties as to the management of refractory or resistant cases.

Prednisone/azathioprine

The standard treatment for AIH comprises corticosteroid, and prednisone at an initial dose of 40–60 mg daily followed by combinations of prednisone in tapering doses to the lowest levels required to maintain remission with the anti-metabolite immune suppressant azathioprine (AZA) added to the therapeutic regimen. In the USA, the daily dose of AZA is generally 50 mg, whereas in Europe, a higher dose of 1–2 mg/kg is usually preferred.15 Several clinical trials in the 1970’s demonstrated the safety and efficacy of this regimen, with remission rates of 65–80%. However, many of the American Association for the Study of Liver Diseases (AASLD) and British Society of Gastroenterology consensus guidelines for the standardized management of AIH are based on suboptimal studies, and there remain clear uncertainties as to the management of refractory or resistant cases.

Prolonged therapy may potentially result in a variety of adverse events that may lead to non-compliance and early cessation of therapy in a minority of patients.

Approximately 13% of patients discontinue conventional therapy because of intolerable prednisone-related side effects, with nearly half of these patients discontinuing therapy because of intolerable cosmetic issues. Similarly, long-term AZA use is associated with a constellation of potential side effects. Approximately 5% of patients treated with AZA cannot tolerate the side effects, and require early discontinuation of therapy. The most notable side effect is pancytopenia. Risk factors for this complication include malnutrition, cirrhosis, and absent (1:300) or low-level expression (10%) of thiopurine methyltransferase (TMPT). It is increasingly accepted that TPMT testing should be performed prior to starting thiopurine drugs.

Other potential side effects of AZA include pancreatitis, cholestatic liver injury, vascular sinusoidal injury with nodular regenerative hyperplasia, and development of opportunistic infection.

In 2010, the updated guidelines for the management of AIH redefined remission as sustained normalization of liver enzymes, including a goal of normalized IgG/gamma globulins. Historical remission lags behind biochemical remission by 3–8 months. Although remission is achieved in the majority of patients with conventional management, 50%
Fig. 2. Pathogenesis of liver attack in AIH: the role of CD39. In health, immunotolerance to liver autoantigens is maintained by effective control of CD4+CD25+FOXP3+Tregs over CD4+ and CD8+ autoreactive T lymphocytes. The machinery enabling Tregs to modulate effector immune responses relies on the expression of CD39, an ectonucleotidase ultimately leading to the generation of immunomodulatory adenosine. In AIH, Tregs are numerically defective and express low levels of CD39. This results in poor generation of adenosine and ineffective control over autoreactive lymphocytes, with consequent perpetuation of hepatocyte damage. Details of Treg adenosinergic suppression are depicted in the box. Adenosine is generated from ATP through the action of CD39 and CD73 ectonucleotidases in tandem, expressed by Tregs. Adenosine mediates immunomodulation by binding to A2A adenosine receptors on autoreactive T lymphocytes.
of patients relapse within 6 months of cessation of immuno-suppressive therapy, and nearly 70% within 3 years. Achieving histological remission reduces the frequency of relapse to approximately 28%, while evidence of even mild portal hepatitis or inflammation increases the frequency to greater than 50%.

Budesonide

Budesonide is a synthetic, orally administered corticosteroid with a rate of hepatic first-pass metabolism of 80–90%. The drug is metabolized in the liver to by-products that have negligible glucocorticoid activity, but a marked affinity for glucocorticoid receptors. In 1994, Danielsson and Prytz studied the use of budesonide with or without AZA (see Table 1). Since then multiple small studies have preceded the first prospective, clinical trial studying the use of budesonide in AIH by Manns et al. in 2010.

There is increasing evidence supporting budesonide as an alternative to prednisone. As demonstrated in published accounts, budesonide appears to be similar in efficacy to but more tolerable than prednisone. Although the Mayo Clinic series did not find any benefit with this alternative use of budesonide, other studies have demonstrated its efficacy and favorable side effect profile.

Because the drug is metabolized almost exclusively in the liver, it may be intolerable to patients with cirrhosis. Additionally, patients exposed to prednisone may experience significant corticoid-related side effects when transitioning to budesonide. Further follow-up regarding sustained remission with budesonide is required.

Mycophenolate mofetil

Mycophenolate mofetil (MMF) is the prodrug of mycophenolic acid, which is a potent, irreversible inhibitor of inosine monophosphate dehydrogenase, and has prominent cytostatic effects on lymphocytes. Richardson and colleagues published the first case series investigating usage of MMF in patients resistant to or intolerant of AZA. Multiple subsequent case series and retrospective reviews noted achievement of biochemical remission in the majority of refractory cases of AIH, with a significant steroid-sparing effect. However, Czaja and Carpenter studied the use of MMF in eight patients, and found that none of the patients who previously failed conventional therapy responded to MMF as salvage therapy.

In 2010, another group studied the role of MMF in treatment-naive patients. At the end of the study there were no non-responders, while 59.3% of patients achieved a complete response, and 28.8% of patients had a complete response initially, followed by a relapse.

MMF appears to be an effective agent in treatment-naive disease. However, there is no clear consensus on the use of MMF as a second line agent in those patients who fail conventional management. It appears that MMF has a role to play in patients who were previously intolerant to conventional therapy. The role of MMF as a definitive second line

Author	Year	No. of Patients	Budesonide Dose	Study End Points	Results
Danielsson	1994	13	6–8 mg daily	Decrease in ALT, AST, IgG	Complete response: 100%
Zandieh	2008	9	3 mg every other day to 9 mg daily	Complete response: Normal ALT, AST	Complete response: 78%
Wiegand	2005	12	Day 1: 6 mg daily Day 2: 9 mg daily Upon remission: 6 mg daily	Complete remission: AST and ALT drop ≤ two times the upper limit of normal Partial response: ALT or AST ≤ two times the upper limit of normal or AST/ALT improvement > 80% from baseline	Complete response: 58% Partial response: 25%
Csepregi	2006	11	9 mg daily	Remission: Absence of symptoms Normal ALT, ALP, IgG	Treatment-naive: 57% Treatment-experienced: 100%
Manns	2010	203 (100 received Budesonide and 103 received prednisone)	6 mg daily or 9 mg daily	Complete response: Normal ALT Normal AST Absence of steroid-related side effects	Budesonide group: 47% Prednisone group: 18.4%
Czaja	2000	10	9 mg daily	Remission: Asymptomatic Normal or near normal AST Normal bilirubin Normal γ-globulin Failure: Clinical/biochemical deterioration	Remission: 30% Treatment failure: 40%
salvage agent requires further studies in the form of prospective controlled trials. The most common adverse reactions with MMF are gastrointestinal side effects, and significant thrombocytopenia, leukopenia, and rarely CMV infection. Considering that the treatment duration is often measured in years, the adverse effects associated with prolonged use of MMF in this population are yet to be determined. Additionally, judicious use of MMF must be employed given its greater cost compared to conventional treatment.89

Cyclosporin

Cyclosporin is a calcineurin inhibitor that acts by binding to cyclophilin, thus creating a complex.93 Mistilis and colleagues first reported the use of cyclosporin in the management of AIH in 1985.95 Since then, several isolated case reports and case series have described the successful use of cyclosporin in adults intolerant or non-responsive to conventional management.96–100 Malekzadeh and colleagues in 2001 published the largest case series reporting the use of cyclosporin as an alternative to steroid-based treatment in AIH.101 Although cyclosporin appears to have a promising role in the treatment of AIH, the potential long-term adverse effects and nephrotoxicity of the drug have yet to be studied in this particular patient population.

Tacrolimus

Tacrolimus is a macrolide with a similar mechanism of action to cyclosporin but with greater immunosuppressive potency. Tacrolimus binds to the FK506 binding protein, thus inhibiting phosphatase activity, which is required for cytokine gene transcription and T-cell activation. The net result of tacrolimus activity is inhibition of both T and B cells.102 Treatment of AIH with tacrolimus was first proposed in 1995.103 In an open label study, 15 of 21 patients demonstrated biochemical improvement. Multiple follow-up single-center studies on patients who were either steroid-refractory or steroid-intolerant demonstrated similar results.104,105 A review of the literature suggests that tacrolimus has a role to play in the management of patients intolerant and/or refractory to conventional therapy, and may be effective as a second line therapy in AIH. Adverse effects include nephrotoxicity, hypertension, bone marrow toxicity, diabetes, neurotoxicity, and opportunistic infections.106,107

Alternative therapies

Several isolated case reports have investigated other agents as potential alternatives to conventional management, including ursodeoxycholic acid, infliximab, etanercept, methotrexate, rapamycin and rituximab; however, rigorous supportive data is lacking.

Transplantation

Orthotopic liver transplantation (OLT) is reserved for those patients who have failed medical therapy or who present with acute fulminant hepatisis that is too advanced for medical management. AIH is the indication for OLT in approximately 4–6% of adult transplants occurring in the USA and Europe.108 Outcomes are excellent in patients who undergo OLT for treatment of AIH, with 5-year and 10-year survival rates close to 75%. Recent studies indicate that the rate of recurrence of AIH post-OLT is approximately 23%.109 In these patients, modification of the immunosuppressive regimen and close follow-up is mandatory.9

Conclusions

AIH remains clinically challenging despite decades of awareness of this complex disease. Although standard therapy with prednisone and AZA frequently results in an excellent treatment response, the need for novel and steroid-sparing treatments remains. The goal is to optimize care for the wide spectrum of patients afflicted with this condition. Further exploration of the underlying immunologic processes in AIH, particularly those which, at least in part, involve purinergic signaling, should be undertaken. This will lead to a deeper understanding of how the usual mechanisms of hepatic tolerance are rendered incompetent in this dangerous and yet fascinating liver disease.

Conflict of interest

None

Author contributions

Reviewing literature, conceiving concepts and developing the review (NY, JTH, MSL, SCR)

Acknowledgments

We thank Dr Alberto Quaglia for kindly providing the histological image used in this publication.

References

1. Heneghan MA, Yeoman AD, Verma S, Smith AD, Longhi MS. Autoimmune hepatitis. Lancet 2013.
2. WJ L. Blutproteine und Nahrungseiweib. Dtsch Z Verdau Stoffwechselk 1950;15:113–119.el
3. Boberg KM, Aadland E, Jahnsen J, Raknerud N, Stiris M, Bell H. Incidence and prevalence of primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis in a Norwegian population. Scand J Gastroenterol 1998;33:99–103.
4. Feld J, Dinh H, Arenovich T, Marcus VA, Wanless IR, Heathcote EJ. Autoimmune hepatitis: effect of symptoms and cirrhosis on natural history and outcome. Hepatology 2005;42:53–62.
5. Krawitt EL. Autoimmune hepatitis. N Engl J Med 2006;354:54–66.
6. Werner M, Prytz H, Ohlsson B, et al. Epidemiology and the initial presentation of autoimmune hepatitis in Sweden: a nationwide study. Scand J Gastroenterol 2008;43:1232–1240.
7. Kaukinen K, Halme L, Collin P, et al. Celiac disease in patients with severe liver disease: gluten-free diet may reverse hepatic failure. Gastroenterology 2002;122:881–888.
8. Gleeson D, Heneghan MA. British Society of Gastroenterology (BSG) guidelines for management of autoimmune hepatitis. Gut 2011;60:1611–1629.
9. Manns MP, Czaja AJ, Gorham JD, et al. Diagnosis and management of autoimmune hepatitis. Hepatology 2010;51:2193–2213.
10. Alvarez F, Berg PA, Bianchi PB, et al. International Autoimmune Hepatitis Group Report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol 1999;31:929–938.
11. Hennes EM, Zeniya M, Czaja AJ, et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 2008;48:169–176.
12. Miyake Y, Iwasaki Y, Kobashi H, et al. Clinical features of autoimmune hepatitis diagnosed based on simplified criteria of the International Autoimmune Hepatitis Group. Dig Liver Dis 2010;42:210–215.
Autoimmune hepatitis management pathogenesis purinergic review

Hargraves MM, Richmond H, Morton R. Presentation of two bone marrow elements; the t cell and the L.E. cell. Proc Staff Meet Mayo Clin 1948;23: 25–28.

Mackay IR, Weiden S, Hasker J. Autoimmune hepatitis. Ann N Y Acad Sci 1965;124:767–780.

Cowing DC, Mackay IR, Taft LJ. Lupoid hepatitis. Lancet 1956;271:1322–1326.

Parveen S, Morshed SA, Arima K, et al. Antibodies to Ro/La, Cenp-B, and snRNPs antigens in autoimmune hepatitis of North America versus Asia: patterns of immunofluorescence, ELISA reactivities, and HLA association. Dig Dis Sci 1998;43:1322–1331.

Bottazzo GF, Florin-Christensen A, Fairfax A, Swana G, Doniach D. Types of 'reticulin' antibodies detected in human sera by immunofluorescence. J Clin Pathol 1976;29:403–410.

Biganelli R, Ryan GB, Lampl JP, et al. Human smooth muscle autoantibody. Its identification as antiactin antibody and a study of its binding to "nonmuscular" cells. Am J Pathol 1973;72:473–488.

Collett SJ, Van Dyke DC, Rizzetto M, Doniach D. Overlap between type 2 hepatitis. Hepatology 1987;7:245–251.

Czaja AJ, Manns MP. Advances in the diagnosis, pathogenesis, and management of autoimmune hepatitis. Gastroenterology 2010;139:58–72 e54.

Dennert G, Aswad F. The role of NKT cells in animal models of autoimmune disease. Autoimmunity 2012;45:384–390.

Eckmann L, Groeschel-Stewart U. Classification of smooth muscle autoantibodies detected by immunofluorescence. J Clin Pathol 1976;29:403–410.

Friedman DJ, Kunzli BM, Y1 AR, et al. Cytoplasmic p-ANCA and control of cellular immune responses. Purinergic Signal 2007;3:171–180.

Groeschel-Stewart U. Classification of smooth muscle autoantibodies detected by immunofluorescence. J Clin Pathol 1976;29:403–410.

Hargraves MM, Richmond H, Morton R. Presentation of two bone marrow elements; the t cell and the L.E. cell. Proc Staff Meet Mayo Clin 1948;23: 25–28.

Mackay IR, Weiden S, Hasker J. Autoimmune hepatitis. Ann N Y Acad Sci 1965;124:767–780.

Cowing DC, Mackay IR, Taft LJ. Lupoid hepatitis. Lancet 1956;271:1322–1326.

Parveen S, Morshed SA, Arima K, et al. Antibodies to Ro/La, Cenp-B, and snRNPs antigens in autoimmune hepatitis of North America versus Asia: patterns of immunofluorescence, ELISA reactivities, and HLA association. Dig Dis Sci 1998;43:1322–1331.

Bottazzo GF, Florin-Christensen A, Fairfax A, Swana G, Doniach D. Types of 'reticulin' antibodies detected in human sera by immunofluorescence. J Clin Pathol 1976;29:403–410.

Biganelli R, Ryan GB, Lampl JP, et al. Human smooth muscle autoantibody. Its identification as antiactin antibody and a study of its binding to "nonmuscular" cells. Am J Pathol 1973;72:473–488.

Collett SJ, Van Dyke DC, Rizzetto M, Doniach D. Overlap between type 2 hepatitis. Hepatology 1987;7:245–251.

Czaja AJ, Manns MP. Advances in the diagnosis, pathogenesis, and management of autoimmune hepatitis. Gastroenterology 2010;139:58–72 e54.

Dennert G, Aswad F. The role of NKT cells in animal models of autoimmune disease. Autoimmunity 2012;45:384–390.

Eckmann L, Groeschel-Stewart U. Classification of smooth muscle autoantibodies detected by immunofluorescence. J Clin Pathol 1976;29:403–410.

Hargraves MM, Richmond H, Morton R. Presentation of two bone marrow elements; the t cell and the L.E. cell. Proc Staff Meet Mayo Clin 1948;23: 25–28.
et al. The role of mycophenolate mofetil in the management of autoimmune hepatitis and overlap syndromes. Aliment Pharmacol Ther 2011;34:335–343.

[98] Sharzehi K, Huang MA, Schreibman IR, Brown KA. Mycophenolate mofetil for the treatment of autoimmune hepatitis in patients refractory to or intolerant to conventional therapy. Can J Gastroenterol 2010;24:588–592.

[99] Inductivo-Yu I, Adams A, Gish RG, et al. Mycophenolate mofetil in autoimmune hepatitis patients not responsive or intolerant to standard immunosuppressive therapy. Clin Gastroenterol Hepatol 2007;5:799–802.

[100] Devlin SM, Swain MG, Urbanski SJ, Burak WK. Mycophenolate mofetil for the treatment of autoimmune hepatitis in patients refractory to standard therapy. Can J Gastroenterol 2004;18:321–326.

[101] Hlivo JT, Shiffman ML, Stravitz RT, et al. A single center review of the use of mycophenolate mofetil in the treatment of autoimmune hepatitis. Clin Gastroenterol Hepatol 2008;6:1036–1040.

[102] Czaja AJ, Carpenter HA. Empiric therapy of autoimmune hepatitis with mycophenolate mofetil: comparison with conventional treatment for refractory disease. J Clin Gastroenterol 2005;39:819–825.

[103] Zachou K, Gatselis N, Papadouli G, Rigopoulou EI, Dalekos GN. Mycophenolate for the treatment of autoimmune hepatitis: prospective assessment of its efficacy and safety for induction and maintenance of remission in a large cohort of treatment-naive patients. J Hepatol 2011;55:636–646.

[104] Heneghan MA, Al-Chalabi T, McFarlane IG. Cost-effectiveness of pharmacotherapy for autoimmune hepatitis. Expert Opin Pharmacother 2006;7:145–156.

[105] Matsuoda S, Koyasu S. Mechanisms of action of cyclosporin. Immunopharmacology 2000;47:119–125.

[106] Jackson LD, Song E. Cyclosporin in the treatment of corticosteroid resistant autoimmune chronic active hepatitis. Gut 1995;36:459–461.

[107] Hyams JS, Ballow M, Leichtner AM. Cyclosporin treatment of autoimmune chronic active hepatitis. Gastroenterology 1987;93:890–893.

[108] Person JL, McHutchison JG, Fong TL, Redeker AG. A case of cyclosporin-sensitive, steroid-resistant, autoimmune chronic active hepatitis. J Clin Gastroenterol 1993;17:317–320.

[109] Sherman KE, Narkewicz M, Pinto PC. Cyclosporin in the management of corticosteroid-resistant type I autoimmune chronic active hepatitis. J Hepatol 1994;21:1040–1047.

[110] Fernandes NF, Redeker AG, Vierling JM, Villamli FG, Fong TL. Cyclosporin therapy in patients with steroid resistant autoimmune hepatitis. Am J Gastroenterol 1999;94:241–248.

[111] Maleksazeh R, Nasser-Moghaddam S, Kaviani MJ, Taheri H, Kamalian N, Sotoudeh M. Cyclosporin A is a promising alternative to corticosteroids in autoimmune hepatitis. Dig Dis Sci 2001;46:1321–1327.

[112] Aqel BA, Machicao V, Rossor B, Satyanarayana R, Harnois DM, Dickson RC. Efficacy of tacrolimus in the treatment of steroid refractory autoimmune chronic active hepatitis. J Hepatol 1993;17:317–320.

[113] Van Thiel DH, Wright H, Carroll P, Satyanarayana R, Harnois DM, Dickson RC. Cyclosporin in the management of corticosteroid-resistant type I autoimmune chronic active hepatitis. J Gastroenterol Hepatol 1995;10:771–776.

[114] Hyams JS, Ballow M, Leichtner AM. Cyclosporin treatment of autoimmune chronic active hepatitis. J Hepatol 1993;17:317–320.

[115] Kyriakos M, Athanasopoulos N, Vierling JM, Harnois DM, Dickson RC. Cyclosporin treatment of autoimmune chronic active hepatitis. Am J Gastroenterol 2004;99:145–156.

[116] Van Thiel DH, Wright H, Carroll P, et al. Tacrolimus: a potential new treatment for autoimmune chronic active hepatitis: results of a open-label preliminary trial. Am J Gastroenterol 1995;90:771–776.

[117] Hlivko JT, Shiffman ML, Stravitz RT, et al. Tacrolimus ameliorates liver inflammation and fibrosis in steroid refractory autoimmune hepatitis. World J Gastroenterol 2007;13:3232–3236.

[118] Tannous MM, Cheng J, Muniyappa K, et al. Use of tacrolimus in the treatment of autoimmune hepatitis: a single centre experience. Aliment Pharmacol Ther 2011;34:405–407.

[119] Czaja AJ. Advances in the current treatment of autoimmune hepatitis. Dig Dis Sci 2012;57:1996–2010.

[120] Jothimani D, Cramp ME, Mitchell JD, Cross TJ. Treatment of autoimmune hepatitis: a review of current and evolving therapies. J Gastroenterol Hepatol 2011;26:619–627.

[121] Ilyas JA, O'Mahony CA, Vierling JM. Liver transplantation in autoimmune liver diseases. Best Pract Res Clin Gastroenterol 2011;25:765–782.

[122] Gautam M, Cheruvattath R, Balan V. Recurrence of autoimmune liver disease after liver transplantation: a systematic review. Liver Transpl 2006;12:1813–1824.