RIEMANN INTEGRABILITY VERSUS WEAK CONTINUITY

GONZALO MARTÍNEZ-CERVANTES

Abstract. In this paper we focus on the relation between Riemann integrability and weak continuity. A Banach space X is said to have the weak Lebesgue property if every Riemann integrable function from $[0,1]$ into X is weakly continuous almost everywhere. We prove that the weak Lebesgue property is stable under ℓ_1-sums and obtain new examples of Banach spaces with and without this property. Furthermore, we characterize Dunford-Pettis operators in terms of Riemann integrability and provide a quantitative result about the size of the set of τ-continuous non Riemann integrable functions, with τ a locally convex topology weaker than the norm topology.

1. Introduction

The study of the relation between Riemann integrability and continuity on Banach spaces started on 1927, when Graves showed in [13] the existence of a vector-valued Riemann integrable function not continuous almost everywhere (a.e. for short). Thus, the following problem arises:

Given a Banach space X, determine necessary and sufficient conditions for the Riemann integrability of a function $f : [0,1] \to X$.

A Banach space X for which every Riemann integrable function $f : [0,1] \to X$ is continuous a.e. is said to have the Lebesgue property (LP for short). All classical infinite-dimensional Banach spaces except ℓ_1 do not have the LP. For more details on this topic, we refer the reader to [12], [6], [24], [14] and [19].

Regarding weak continuity, Alexiewicz and Orlicz constructed in 1951 a Riemann integrable function which is not weakly continuous a.e. [2]. A Banach space X is said to have the weak Lebesgue property (WLP for short) if every Riemann integrable function $f : [0,1] \to X$ is weakly continuous a.e. This property was introduced in [27]. Every Banach space with separable dual has the WLP and the example of [2] shows that $C([0,1])$ does not have the WLP. Other spaces with the WLP, such as $L^1([0,1])$, can be found in [5] and [28]. In this paper we focus on the relation between Riemann integrability and weak continuity. In Section 2 we present new results on the WLP. In particular, we prove that the James tree space JT does not have the WLP (Theorem 2.3) and we study when $\ell_p(\Gamma)$ and $c_0(\Gamma)$ have the WLP in the nonseparable case (Theorem 2.8). Moreover, we prove that the WLP is stable

2010 Mathematics Subject Classification. 46G10, 28B05, 03E10.

Key words and phrases. Riemann integral, Lebesgue property, weak Lebesgue property, Banach space.

This work was supported by the research project 19275/PI/14 funded by Fundación Séneca - Agencia de Ciencia y Tecnología de la Región de Murcia within the framework of PCTIRM 2011-2014. This work was also supported by Ministerio de Economía y Competitividad and FEDER (project MTM2014-54182-P).
under \(\ell_1 \)-sums (Theorem 2.13) and we apply this result to obtain that \(C(K)^* \) has the WLP for every compact space \(K \) in the class \(MS \) (Corollary 2.10).

Alexiewicz and Orlicz also provided in their paper an example of a weakly continuous non Riemann integrable function. V. Kadets proved in [13] that a Banach space \(X \) has the Schur property if and only if every weakly continuous function \(f : [0, 1] \to X \) is Riemann integrable. Wang and Yang extended this result in [29] to arbitrary locally convex topologies weaker than the norm topology. In the last section of this paper we give an operator theoretic form of these results that, in particular, provides a positive answer to a question posed by Sofi in [20].

Terminology and Preliminaries. All Banach spaces are assumed to be real. In what follows, \(X^* \) denotes the dual of a Banach space \(X \). The weak and weak* topologies of \(X \) and \(X^* \) will be denoted by \(\omega \) and \(\omega^* \) respectively. By an operator we mean a linear continuous mapping between Banach spaces. The Lebesgue measure in \(\mathbb{R} \) is denoted by \(\mu \). The interior of an interval \(I \) will be denoted by \(Int(I) \). The density character \(\text{dens}(T) \) of a topological space \(T \) is the minimal cardinality of a dense subset.

A partition of the interval \([a, b] \subset \mathbb{R} \) is a finite collection of non-overlapping closed subintervals covering \([a, b] \). A tagged partition of the interval \([a, b] \) is a partition \(\{[t_{i-1}, t_i] : 1 \leq i \leq N \} \) of \([a, b] \) together with a set of points \(\{s_i : 1 \leq i \leq N \} \) that satisfy \(s_i \in (t_{i-1}, t_i) \) for each \(i \). Let \(\mathcal{P} = \{(s_i, [t_{i-1}, t_i]) : 1 \leq i \leq N \} \) be a tagged partition of \([a, b] \). For every function \(f : [a, b] \to X \), we denote by \(f(\mathcal{P}) \) the Riemann sum \(\sum_{i=1}^{N} (t_i - t_{i-1}) f(s_i) \). The norm of \(\mathcal{P} \) is \(\|\mathcal{P}\| := \max\{t_i - t_{i-1} : 1 \leq i \leq N \} \). We say that a function \(f : [a, b] \to X \) is Riemann integrable, with integral \(x \in X \), if for every \(\varepsilon > 0 \) there is \(\delta > 0 \) such that \(\|f(\mathcal{P}) - x\| < \varepsilon \) for all tagged partitions \(\mathcal{P} \) of \([a, b] \) with norm less than \(\delta \). In this case, we write \(x = \int_a^b f(t) \, dt \).

The following criterion will be used for proving the existence of the Riemann integral of certain functions:

Theorem 1.1 ([12]). Let \(f : [0, 1] \to X \). The following statements are equivalent:

1. The function \(f \) is Riemann integrable.
2. For each \(\varepsilon > 0 \) there exists a partition \(\mathcal{P}_\varepsilon \) of \([0, 1] \) with \(\|f(\mathcal{P}_1) - f(\mathcal{P}_2)\| < \varepsilon \) for all tagged partitions \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \) of \([0, 1] \) that have the same intervals as \(\mathcal{P}_\varepsilon \).
3. There is \(x \in X \) such that for every \(\varepsilon > 0 \) there exists a partition \(\mathcal{P}_\varepsilon \) of \([0, 1] \) such that \(\|f(\mathcal{P}) - x\| < \varepsilon \) whenever \(\mathcal{P} \) is a tagged partition of \([0, 1] \) with the same intervals as \(\mathcal{P}_\varepsilon \).

We will also be concerned about cardinality. Throughout this paper, \(\kappa \) denotes the cardinality of the continuum and \(\text{cov}(\mathcal{M}) \) denotes the smallest cardinal such that there exist \(\text{cov}(\mathcal{M}) \) nowhere dense sets in \([0, 1] \) whose union is the interval \([0, 1] \). This cardinal coincides with the smallest cardinal such that there exist \(\text{cov}(\mathcal{M}) \) closed sets in \([0, 1] \) with Lebesgue measure zero whose union does not have Lebesgue measure zero (see [4] Theorem 2.6.14).

A set \(A \subset \mathbb{R} \) is said to be **strongly null** if for every sequence of positive reals \((\varepsilon_n)_{n=1}^{\infty} \) there exists a sequence of intervals \((I_n)_{n=1}^{\infty} \) such that \(\mu(I_n) < \varepsilon_n \) for every \(n \in \mathbb{N} \) and \(A \subset \bigcup_{n \in \mathbb{N}} I_n \). We will be interested in the following result:
Theorem 1.2 ([22]). A set $A \subset \mathbb{R}$ is strongly null if and only if for every closed set F with Lebesgue measure zero, the set $A + F = \{a + z : a \in A \text{ and } z \in F\}$ has Lebesgue measure zero.

We will denote by $\text{non}(\mathcal{S}\mathcal{N})$ the smallest cardinal of a non strongly null set. We have that $\aleph_1 \leq \text{cov}(\mathcal{M}) \leq \text{non}(\mathcal{S}\mathcal{N}) \leq \mathfrak{c}$ and, under Martin’s axiom, and therefore under the Continuum Hypothesis, $\text{non}(\mathcal{S}\mathcal{N}) = \text{cov}(\mathcal{M}) = \mathfrak{c}$. Furthermore, if $\mathfrak{b} = \mathfrak{c}$ then $\text{non}(\mathcal{S}\mathcal{N}) = \text{cov}(\mathcal{M})$. However, there exist models of ZFC satisfying $\text{cov}(\mathcal{M}) < \text{non}(\mathcal{S}\mathcal{N})$. For further references and results on this subject we refer the reader to [3].

2. The weak Lebesgue property

It is known that every Banach space with separable dual has the WLP [28]. Next theorem gives a generalization in terms of $\text{cov}(\mathcal{M})$.

Theorem 2.1. Every Banach space X such that $\text{dens}(X^*) < \text{cov}(\mathcal{M})$ has the WLP.

Proof. Let $D = \{x_i^*\}_{i \in I}$ be a dense subset in X^* with $|I| < \text{cov}(\mathcal{M})$ and take $f : [0, 1] \to X$ a Riemann integrable function. Then every function x_i^*f is Riemann integrable. Let E_i be the set of points of discontinuity of x_i^*f for every $i \in I$. Each E_i is a countable union of closed sets with measure zero, so $E = \bigcup_{i \in I} E_i$ has measure zero since $|I| < \text{cov}(\mathcal{M})$. We claim that f is weakly continuous at every point of E^c. Let $x^* \in X^*$ and let M be an upper bound for $\{\|f(t)\| : t \in [0, 1]\}$. Fix $\varepsilon > 0$ and $t \in E^c$. Then, there exists $x_i^* \in D$ such that $\|x_i^* - x^*\| < \frac{\varepsilon}{3M}$. Since $t \notin E_i$, there exists a neighbourhood U of t such that $|x_i^*f(t) - x_i^*f(t')| < \frac{\varepsilon}{3}$ for every $t' \in U$. Thus,

$|x^*f(t) - x^*f(t')| \leq |x^*f(t) - x_i^*f(t)| + |x_i^*f(t) - x_i^*f(t')| + |x_i^*f(t') - x^*f(t')| < \varepsilon$

for every $t' \in U$. \hfill \□

Corollary 2.2. Every Banach space with separable dual has the WLP.

The space ℓ_1 has the WLP because it has the LP. Since every asymptotic ℓ_1 space has the LP [19], the space A_T defined by Odell in [21] is a separable Banach space with nonseparable dual such that it does not contain an isomorphic copy of ℓ_1 but it has the WLP (it is asymptotic ℓ_1). On the other hand, the James tree space JT (see [1] Section 13.4]) is a separable Banach space with nonseparable dual such that it does not contain an isomorphic copy of ℓ_1 and it does not have the WLP:

Theorem 2.3. The James tree space does not have the WLP.

Proof. We represent the dyadic tree by

$T = \{(n, k) : n = 0, 1, 2, \ldots \text{ and } k = 1, 2, \ldots, 2^n\}$.

A node $(n, k) \in T$ has two immediate successors $(n + 1, 2k - 1)$ and $(n + 1, 2k)$. Then, a segment of T is a finite sequence $\{p_i, \ldots, p_m\}$ such that p_{j+1} is an immediate successor of p_j for every $j = 1, 2, \ldots, m - 1$. The James tree space JT is the completion of $c_{00}(T)$ with the norm

$\|x\| = \sup_{j=1}^t \left(\sum_{(n, k) \in S_j} x(n, k) \right)^2 < \infty,$
where the supremum is taken over all \(l \in \mathbb{N} \) and all sets of pairwise disjoint segments \(S_1, S_2, \ldots, S_t \). Let \(\{e_{(n,k)}\}_{(n,k) \in T} \) be the canonical basis of \(JT \), i.e. \(e_{(n,k)} \) is the characteristic function of \((n,k) \in T\). Define \(f : [0,1] \to JT \) as follows:

\[
f(t) = \begin{cases}
 e_{(n-1,k)} & \text{if } t = \frac{2k-1}{2^n} \text{ with } n \in \mathbb{N} \text{ and } k = 1,2,\ldots,2^n-1 \\
 0 & \text{in any other case.}
\end{cases}
\]

We claim that \(f \) is Riemann integrable. Fix \(N \in \mathbb{N} \) and let \(\{I_1, I_2, \ldots, I_{2^N-1}\} \) be a family of closed disjoint intervals of \([0,1]\) with

\[
\sum_{1 \leq n \leq 2^N-1} \mu(I_n) \leq \frac{1}{2^n} \quad \text{and} \quad \frac{n}{2^N} \in Int(I_n) \quad \text{for each } 1 \leq n \leq 2^N - 1.
\]

Let \(J_1, J_2, \ldots, J_{2^N} \) be the closed disjoint intervals of \([0,1]\) determined by

\[
[0,1] \setminus \bigcup_{1 \leq n \leq 2^N-1} \text{Int}(I_n).
\]

Then, \(\mu(J_n) \leq \frac{1}{2^n} \) and \(\|\sum_{n=1}^{2^N} a_n f(t_n)\| \leq \sqrt{\sum_{n=1}^{2^N} a_n^2} \) for every \(a_n \in \mathbb{R} \) and every \(t_n \in J_n \) due to the definition of the norm in \(JT \). Thus, any tagged partition \(P_N \) with intervals \(J_1, J_2, \ldots, J_{2^N-1}, J_{2^N} \) and points \(t_1, t'_1, t_2, \ldots, t'_{2^N-1}, t_{2^N} \) satisfies

\[
\|f(P_N)\| \leq \left|\sum_{n=1}^{2^N} \mu(J_n) f(t_{2n-1})\right| + \sum_{n=1}^{2^N-1} \mu(I_n) \leq \sqrt{\sum_{n=1}^{2^N} \mu(J_n)^2} + \frac{1}{2^n} \leq \sum_{n=1}^{2^N} \frac{1}{2^n} + \frac{1}{2^n} \leq \frac{2}{\sqrt{2^N}}.
\]

Hence, \(\|f(P_N)\| \xrightarrow{N \to \infty} 0 \) and \(f \) is Riemann integrable with integral zero.

We show that \(f \) is not weakly continuous at any irrational point \(t \in [0,1] \). Fix an irrational point \(t \in [0,1] \). There exists a sequence of dyadic points \(\left(\frac{2k-1}{2^n}\right)_{j=1}^{\infty} \) converging to \(t \) with \((n_j - 1, k_j)_{j=1}^{\infty} \) a sequence in \(T \) such that \((n_{j+1} - 1, k_{j+1})\) is an immediate successor of \((n_j - 1, k_j)\) for every \(j \in \mathbb{N} \). Then, \(\sum_{j=1}^{\infty} e^*_{(n_j - 1, k_j)} \) is a functional in \(JT^* \), so the sequence \(f\left(\frac{2k-1}{2^n}\right) = e_{(n_j - 1, k_j)} \) is not weakly null and \(f \) is not weakly continuous at \(t \).

\[\square \]

Corollary 2.4 (\textbf{2}). \(C([0,1]) \) does not have the WLP.

Proof. Since every subspace of a Banach space with the WLP has the WLP and every separable Banach space is isometrically isomorphic to a subspace of \(C([0,1]) \), it follows from the previous theorem and the separability of \(JT \) that \(C([0,1]) \) does not have the WLP. \(\square \)

Corollary 2.5. Let \(K \) be a compact Hausdorff space.

1. If \(K \) is metrizable, then \(C(K) \) has the WLP if and only if \(K \) is countable.
2. If \(C(K) \) has the WLP then \(K \) is scattered. The converse is not true since \(c_0(\kappa) \) does not have the WLP (Theorem 2.8) and it is isomorphic to a \(C(K) \) space with \(K \) scattered.
Proof. If K is a countable compact metric space, then $C(K)^*$ is separable [10] Theorem 14.24, so $C(K)$ has the WLP (Theorem 2.1). If K is an uncountable compact metric space, then $C(K)$ is isomorphic to $C([0, 1])$ [11] Theorem 4.4.8, so $C(K)$ does not have the WLP (Corollary 2.3). Finally, if K is not scattered, then $C(K)$ has a subspace isomorphic to $C([0, 1])$ (see the proof of [10] Theorem 14.26), so $C(K)$ does not have the WLP. □

Remark 2.6. Let $\{X_i\}_{i \in I}$ be a family of Banach spaces. Define $X := (\bigoplus_{i \in I} X_i)_{\ell_p}$ with $1 < p < \infty$ or $X := (\bigoplus_{i \in I} X_i)_{\ell_0}$. If $f : [0, 1] \to X$ is a bounded function, then its set of points of weak discontinuity is $E = \bigcup_{i \in I} E_i$, where each E_i is the set of points of weak discontinuity of f_i and f_i is the i'th coordinate of f. Thus, the countable ℓ_p-sum or ℓ_0-sum of Banach spaces with the WLP has the WLP. We cannot extend this result to uncountable ℓ_p-sums or ℓ_0-sums even when $X_i = \mathbb{R}$ for every $i \in I$ (Theorem 2.6).

Now, we study the WLP for the spaces of the form $c_0(\kappa)$ and $\ell_p(\kappa)$ with κ a cardinal.

Theorem 2.7. For any cardinal κ and any $1 < p < \infty$, $c_0(\kappa)$ has the WLP if and only if $\ell_p(\kappa)$ has the WLP.

Proof. If $\ell_p(\kappa)$ does not have the WLP, then there exists a Riemann integrable function $f : [0, 1] \to \ell_p(\kappa)$ which is not weakly continuous a.e. If $I : \ell_p(\kappa) \to c_0(\kappa)$ is the canonical inclusion, then the function $I \circ f$ is weakly continuous at a point $t \in [0, 1]$ if and only if f is weakly continuous at t by Remark 2.6. Therefore, $I \circ f$ is not weakly continuous a.e. Since f is an operator, $I \circ f$ is also Riemann integrable. Thus, $c_0(\kappa)$ does not have the WLP.

To prove the other implication, suppose $c_0(\kappa)$ does not have the WLP. Then, there exists a Riemann integrable function $f : [0, 1] \to c_0(\kappa)$ which is not weakly continuous a.e. Let f_α be the α'th coordinate of f for every $\alpha \in \kappa$ and E_α be the set of points where f_α has oscillation strictly bigger than $\frac{1}{n}$ for every $n \in \mathbb{N}$. Note that each E_α has Lebesgue measure zero. Since f is not weakly continuous a.e., $\bigcup_{\alpha \in \kappa} \left(\bigcup_{n \in \mathbb{N}} E^n_\alpha\right)$ has not Lebesgue measure zero, so there exists $n \in \mathbb{N}$ such that $\bigcup_{\alpha \in \kappa} E^n_\alpha$ has not Lebesgue measure zero.

Set $F_0 := E^n_0$ and $F_\alpha := E^n_\alpha \setminus \left(\bigcup_{\beta < \alpha} E^n_\beta\right)$ for every $\alpha \in \kappa \setminus \{0\}$. The sets F_α are pairwise disjoint. Let $\chi_{F_\alpha} : [0, 1] \to \{0, 1\}$ be the characteristic function of F_α for every $\alpha < \kappa$ and $g : [0, 1] \to c_0(\kappa)$ the function defined by the formula $g(t) = \sum_{\alpha < \kappa} \chi_{F_\alpha}(t)e_\alpha$ for every $t \in [0, 1]$, where $\{e_\alpha\}_{\alpha < \kappa}$ is the canonical basis of X.

Notice that g is not weakly continuous a.e. since each χ_{F_α} is not continuous at any point of F_α (because $\mu(F_\alpha) = 0$) and $\bigcup_{\alpha < \kappa} F_\alpha = \bigcup_{\alpha < \kappa} E^n_\alpha$ is not Lebesgue null. We claim that g is Riemann integrable. Let $\varepsilon > 0$. Since f is Riemann integrable, there exists a partition P_ε of $[0, 1]$ such that $\|f(P_1) - f(P_2)\| < \frac{\varepsilon}{n}$ for all tagged partitions P_1 and P_2 of $[0, 1]$ that have the same intervals as P_ε. For every $\alpha < \kappa$ and any tagged partitions P_1 and P_2 of $[0, 1]$ that have the same intervals as P_ε,

$$|\chi_{F_\alpha}(P_1) - \chi_{F_\alpha}(P_2)| \leq \sum_{i=1}^{N} \mu(I_i) \leq n|f_\alpha(P_1) - f_\alpha(P_2)| \leq n\|f(P_1) - f(P_2)\| < \varepsilon$$
for suitable tagged partitions \mathcal{P}_1^* and \mathcal{P}_2^* of $[0, 1]$ with the same intervals as \mathcal{P}_x, where I_1, I_2, \ldots, I_N are the intervals of \mathcal{P}_x whose interior has non-empty intersection with E.

Therefore, q is Riemann integrable. Let $h: [0, 1] \to \ell_p(\kappa)$ be the function given by the formula $h(t) = \sum_{\alpha<\kappa} \chi_{F_\alpha}(t) e_\alpha$. Since the sets F_α are pairwise disjoint, the function h is well-defined. Moreover, h is not weakly continuous a.e. because F is not continuous at E. Without loss of generality, we may assume that E, F be the characteristic function of F null set.

Thus, for any tagged partition $\mathcal{P} = \{(s_i, I_i)\}_{i=1}^{M}$ the following inequalities hold:

\[
\|h(\mathcal{P})\| = \left\| \sum_{s_i \in F} \mu(I_i) e_{\phi(s_i)} \right\| = \left\| \sum_{\alpha<\kappa} \mu \left(\bigcup_{\phi(s_i) = \alpha} I_i \right) e_\alpha \right\| = \left(\sum_{\alpha<\kappa} \mu \left(\bigcup_{\phi(s_i) = \alpha} I_i \right) \right)^{\frac{1}{p}} \leq \left(\sum_{\alpha<\kappa} \mu \left(I_i \right) \right)^{\frac{1}{p}} \leq \varepsilon \left(\sum_{\alpha<\kappa} \mu \left(I_i \right) \right)^{\frac{1}{p}} \leq \varepsilon \mu(I).
\]

Therefore, h is Riemann integrable with Riemann integral zero. \hfill \Box

The LP is separably determined \cite{24}. Nevertheless, it follows from the following theorem that the WLP is not separably determined, since every separable infinite-dimensional subspace of $\ell_2(\kappa)$ is isomorphic to ℓ_2 (which has separable dual).

Theorem 2.8. Let κ be a cardinal and $X = c_0(\kappa)$ or $X = \ell_p(\kappa)$ with $1 < p < \infty$.

1. If $\kappa < \text{cov}(\mathcal{M})$ then X has the WLP.
2. If $\kappa \geq \text{non}(\mathcal{S}\mathcal{N})$ then X does not have the WLP.

Proof. It is enough to prove the result when $X = c_0(\kappa)$ due to Theorem 2.7. Since $c_0(\kappa)^* = \ell_1(\kappa)$ has density character κ, it follows from Theorem 2.7 that $c_0(\kappa)$ has the WLP if $\kappa < \text{cov}(\mathcal{M})$.

Suppose $\text{non}(\mathcal{S}\mathcal{N}) \leq \kappa \leq \ell$. Due to Theorem 1.2, there exist a closed Lebesgue null set F and a set $E = \{x_\alpha\}_{\alpha<\kappa}$ in \mathbb{R} such that $E + F$ does not have Lebesgue measure zero. Without loss of generality, we may assume that $E, F \subset [0, 1]$ and $(E + F) \cap [0, 1]$ does not have Lebesgue measure zero. Set $F_0 := (x_0 + F) \cap [0, 1]$ and $F_\alpha := (x_\alpha + F) \cap [0, 1] \setminus \left(\bigcup_{\beta<\alpha} F_\beta \right)$ for every $0 < \alpha < \kappa$. Let $\chi_{F_\alpha} : [0, 1] \to \{0, 1\}$ be the characteristic function of F_α for every $\alpha < \kappa$ and $f : [0, 1] \to X$ the function defined by the formula $f(t) = \sum_{\alpha<\kappa} \chi_{F_\alpha}(t) e_\alpha$ for every $t \in [0, 1]$, where $\{e_\alpha\}_{\alpha<\kappa}$ is the canonical basis of $c_0(\kappa)$.

Since the sets F_α are pairwise disjoint, the function f is well-defined. Each χ_{F_α} is not continuous at F_α, since F_α cannot contain an interval of $[0, 1]$. Therefore, f is not weakly continuous a.e. because $\bigcup_{\alpha<\kappa} F_\alpha = (E + F) \cap [0, 1]$ does not have Lebesgue measure zero.
We claim that \(f \) is Riemann integrable. For every \(\alpha < \kappa \) and every tagged partition \(\mathcal{P} = \{(s_i, I_i)\}_{i=1}^N \) we have

\[
\chi_{F_\alpha}(\mathcal{P}) = \sum_{i=1}^N \mu(I_i)\chi_{F_\alpha}(s_i) \leq \sum_{i=1}^N \mu(I_i - x_\alpha)\chi_F(s_i - x_\alpha) = \chi_F(\mathcal{P}')
\]

for a suitable tagged partition \(\mathcal{P}' \) with \(\|\mathcal{P}\| = \|\mathcal{P}'\| \). Since \(F \subset [0,1] \) is a closed Lebesgue measure zero set, the characteristic function \(\chi_F \) is Riemann integrable due to Lebesgue’s Theorem. Then, for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(\chi_F(\mathcal{P}) < \varepsilon \) for every tagged partition \(\mathcal{P} \) with \(\|\mathcal{P}\| < \delta \). Therefore, for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(\chi_{F_\alpha}(\mathcal{P}) < \varepsilon \) for all tagged partitions \(\mathcal{P} \) with \(\|\mathcal{P}\| < \delta \) and for every \(\alpha < \kappa \). Thus, \(f \) is Riemann integrable since \(\|f(\mathcal{P})\| = \sup_{\alpha < \kappa} \chi_{F_\alpha}(\mathcal{P}) < \varepsilon \) for every tagged partition \(\mathcal{P} \) of \([0,1] \) with \(\|\mathcal{P}\| < \delta \). \(\square \)

The facts that the countable \(\ell_1 \)-sum of spaces with the WLP has the WLP (Theorem 2.11) and that \(L^1(\lambda) \) has the WLP if \(\text{dens}(L^1(\lambda)) < \text{cov}(\mathcal{M}) \) (Theorem 2.12) will be a consequence of the following lemma.

Lemma 2.9. Let \((\Omega, \Sigma, \lambda)\) be a probability space and \(\mathfrak{A} = \{P_A : A \in \Sigma\} \) a family of operators on a Banach space \(X \) such that

1. \(P_A + P_{\Omega \setminus A} = P_\Omega = \text{id}_X \) for every \(A \in \Sigma \);
2. \(\|P_A(x)\| \leq \|x\| \) for every \(x \in X \) and every \(A \in \Sigma \);
3. \(\|P_A(x)\| + \|P_B(x')\| \leq \max\{\|x+x'\|, \|x-x'\|\} \) for every \(x, x' \in X \) whenever \(A \cap B = \emptyset \);
4. \(\lim_{\lambda(A) \to 0} \|P_A(x)\| = 0 \) for every \(x \in X \).

Let \(f : [0,1] \to X \) be a Riemann integrable function. Then there is a measurable set \(E \subseteq [0,1] \) with \(\mu(E) = 1 \) such that, for every sequence \((t_n)_{n=1}^\infty \) in \([0,1] \) converging to some \(t \in E \), the set \(\{f(t_n) : n \in \mathbb{N}\} \) is \(\mathfrak{A} \)-uniformly integrable, in the sense that

\[
\lim_{\lambda(A) \to 0} \sup_{n \in \mathbb{N}} \|P_A(f(t_n))\| = 0.
\]

Proof. The proof is similar to that of [3] Lemma 2.3 and [28] Lemma 3. Fix \(\beta > 0 \) and denote by \(E_\beta \) the set of points \(t \in [0,1] \) such that for every \(\delta > 0 \) there exist \(t' \in [0,1] \) with \(|t' - t| < \delta \) and a set \(A \in \Sigma \) with \(\lambda(A) < \delta \) such that

\[
\|P_A(f(t) - f(t'))\| > \beta.
\]

Let \(\mu^* \) be the Lebesgue outer measure in \([0,1] \). We show that \(\mu^*(E_\beta) = 0 \) with a proof by contradiction. Suppose \(\mu^*(E_\beta) > 0 \). Since \(f \) is Riemann integrable, we can choose a partition \(\mathcal{P} = \{J_1, \ldots, J_m\} \) of \([0,1] \) such that

\[
\left\| \sum_{j=1}^m \mu(J_j)(f(\xi_j) - f(\xi'_j)) \right\| < \beta \mu^*(E_\beta)
\]

for all choices \(\xi_j, \xi'_j \in J_j, 1 \leq j \leq m \). Let \(S = \{j \in \{1, \ldots, m\} : I_j \cap E_\beta \neq \emptyset\} \), where \(I_j = \text{Int}(J_j) \) for each \(j = 1, \ldots, m \). Thus,

\[
\sum_{j \in S} \mu^*(I_j \cap E_\beta) = \mu^*(E_\beta).
\]

It is not restrictive to suppose \(S = \{1, \ldots, n\} \) for some \(1 \leq n \leq m \).
Because of the definition of E_β and I_1, there exist points $t_1 \in I_1 \cap E_\beta$ and $t_1' \in I_1$ such that $\|f(t_1) - f(t_1')\| \geq \|P_A(f(t_1) - f(t_1'))\| > \beta$ for some $A \in \Sigma$, hence $\|\mu(I_1)(f(t_1) - f(t_1'))\| > \beta \mu(I_1)$.

Fix $1 \leq k < n$ and assume that we have already chosen points $t_j, t_j' \in I_j$ for all $1 \leq j \leq k$ with the property that

$$\left\| \sum_{j=1}^{k} \mu(I_j)(f(t_j) - f(t_j')) \right\| > \beta \left(\sum_{j=1}^{k} \mu(I_j) \right).$$

Define $x := \sum_{j=1}^{k} \mu(I_j)(f(t_j) - f(t_j')) \in \mathcal{X}$ and

$$\alpha := \|x\| - \beta \left(\sum_{j=1}^{k} \mu(I_j) \right) > 0.$$

Due to (4), we can choose $\delta > 0$ such that $\|P_A(x)\| < \alpha$ whenever $A \in \Sigma$ satisfies $\lambda(A) < \delta$. Take $t_{k+1}, t_{k+1}' \in I_{k+1}$ and a set $A \in \Sigma$ with $\lambda(A) < \delta$ such that $\|P_A(f(t_{k+1}) - f(t_{k+1}'))\| > \beta$, so $y := \mu(I_{k+1})(f(t_{k+1}) - f(t_{k+1}'))$ satisfies $\|P_A(y)\| > \beta \mu(I_{k+1})$.

By the choice of A, (1) and (3), we also have (interchanging the role of t_{k+1} and t_{k+1}' if necessary)

$$\left\| \sum_{j=1}^{k+1} \mu(I_j)(f(t_j) - f(t_j')) \right\| \geq \|P_A(y)\| + \|P_A(X)\| \geq \|P_A(y)\| + \|x\| - \|P_A(x)\| >$$

$$> \beta \mu(I_{k+1}) + \alpha + \beta \sum_{j=1}^{k} \mu(I_j) - \|P_A(x)\| > \beta \sum_{j=1}^{k+1} \mu(I_j).$$

Thus, there exist $t_j, t_j' \in I_j$ for all $1 \leq j \leq n$ such that

$$\left\| \sum_{j=1}^{n} \mu(I_j)(f(t_j) - f(t_j')) \right\| > \beta \left(\sum_{j=1}^{n} \mu(I_j) \right) \geq \beta \mu^*(E_\beta),$$

which contradicts the inequality (2). So we can conclude that $\mu^*(E_\beta) = 0$.

Therefore, $E := [0,1] \setminus \bigcup_{m \in \mathbb{N}} E_{\frac{1}{m}}$ is measurable with $\mu(E) = 1$. Fix $t \in E$ and $m \in \mathbb{N}$. Since $t \not\in E_{\frac{1}{m}}$, there exists $\delta_m > 0$ such that for every $t' \in [0,1]$ with $|t' - t| < \delta_m$ and every set $A \in \Sigma$ with $\lambda(A) < \delta_m$,

$$\|P_A(f(t) - f(t'))\| \leq \frac{1}{m}.$$

Thus, for every $m \in \mathbb{N}$, every sequence $(t_n)_{n=1}^\infty$ converging to t and every $A \in \Sigma$ with $\lambda(A) < \delta_m$,

$$\|P_A(f(t_n))\| \leq \|P_A(f(t))\| + \frac{1}{m}$$

for n big enough depending only on m.

Now the conclusion follows from (4). \square

Let $\{X_j\}_{j \in \Gamma}$ be a family of Banach spaces. We denote by $\pi_j : (\bigoplus_{i \in \Gamma} X_i) \to X_j$ the canonical projection onto X_j for each $j \in \Gamma$.

We will need the following property of ℓ_1-sums and the space $L_1(\lambda)$ for Theorems 2.11 and 2.12.
Lemma 2.10. Let \((\Omega, \Sigma, \lambda)\) be a probability space and \(\{X_i\}_{i \in \Gamma}\) a family of Banach spaces. Then:

1. \(\max\{\|x + y\|, \|x - y\|\} \geq \sum_{i \in A} \|\pi_i(x)\| + \sum_{i \in B} \|\pi_i(y)\|\) for every vectors \(x, y \in (\bigoplus_{i \in \Gamma} X_i)_{\ell_1}\) and any disjoint sets \(A, B \subset \Gamma\).
2. \(\max\{\|f + g\|, \|f - g\|\} \geq \int_A |f|d\lambda + \int_B |g|d\lambda\) for every \(f, g \in L_1(\lambda)\) and any disjoint sets \(A, B \subset \Sigma\).

Proof. The second part is essentially Lemma 2 of [28]. The proof of the first part is analogous and we include it for the sake of completeness. Let \(A = \{a_n : n \in \mathbb{N}\}\) and \(B = \{b_n : n \in \mathbb{N}\}\) are countable subsets. Consider the functionals \(x^*, y^* \in (\bigoplus_{i \in \Gamma} X_i)_{\ell_1}\) defined by \(x^*(u) = \sum_{i \in A} x_i^*(\pi_i(u))\) and \(y^*(u) = \sum_{i \in B} y_i^*(\pi_i(u))\) for every \(u \in (\bigoplus_{i \in \Gamma} X_i)_{\ell_1}\), where each \(x_i^*, y_i^* \in X_i^*\) satisfies \(\pi_i = \pi_i\) and \(x_i^*(\pi_i(x)) = \|\pi_i(x)\|\) if \(i = a_n\) and \(y_i^*(\pi_i(y)) = \|\pi_i(y)\|\) if \(i = b_n\). Then, since \(A, B\) are disjoint, \(\|x^* + y^*\| \leq \|x^* - y^*\| = 1\). Therefore,

\[
\|x + y\| + \|x - y\| \geq (\|x + x^* + y^*\| + \|x - y^*\|) = 2(\|x^*\| + \|y^*\|) = 2\left(\sum_{i \in A} \pi_i(x)\right) + 2\left(\sum_{i \in B} \pi_i(y)\right),
\]

so \(\max\{\|x + y\|, \|x - y\|\} \geq \sum_{i \in A} \|\pi_i(x)\| + \sum_{i \in B} \|\pi_i(y)\|\).

\(\square\)

Theorem 2.11. Let \(\{X_i\}_{i \in \mathbb{N}}\) be Banach spaces with the WLP. Then the space \(X := (\bigoplus_{i \in \mathbb{N}} X_i)_{\ell_1}\) has the WLP.

Proof. We are going to apply Lemma 2.9. Take \(\Omega := \mathbb{N}, \Sigma := \mathcal{P}(\mathbb{N})\) the power set of \(\mathbb{N}\), \(\lambda(A) := \sum_{n \in A} 2^{-n}\) and \(\Psi = \{P_A : A \in \Sigma\}\) with

\[
\pi_i(P_A(x)) = \begin{cases}
\pi_i(x) & \text{if } i \in A \\
0 & \text{if } i \notin A
\end{cases}
\]

for every \(A \in \Sigma\) and every \(x \in X\). Property (3) of Lemma 2.9 is Lemma 2.10 and property (4) holds because if \(\lambda(A) < \frac{1}{k}\), then \(A \subset \{n, n + 1, \ldots\}\), so

\[
\|P_A(x)\| = \sum_{i \in A} \|\pi_i(x)\| \leq \sum_{i \geq n} \|\pi_i(x)\|
\]

for every \(x \in X\). Therefore, we can apply Lemma 2.9 so there exists a measurable set \(E \subset [0, 1]\) with \(\mu(E) = 1\) such that for every sequence \(\{t_n\}_{n=1}^{\infty}\) in \([0, 1]\) converging to some \(t \in E\) the set \(\{f(t_n) : n \in \mathbb{N}\}\) is \(\Psi\)-uniformly integrable. We can assume that, for each \(i \in \mathbb{N}\), the map \(t \mapsto \pi_i(f(t))\) is weakly continuous at each point of \(E\) because each \(X_i\) has the WLP.

It is a well known fact that a sequence \(\{x_n\}_{n=1}^{\infty}\) in \(X\) converges weakly to \(x \in X\) if and only if it satisfies the following two conditions:

1. \(\pi_i(x_n) \to \pi_i(x)\) weakly in \(X_i\) for every \(i \in \mathbb{N}\);
2. for every \(\varepsilon > 0\) there is a finite set \(J \subseteq \mathbb{N}\) such that \(\sup_{n \in \mathbb{N}} \|P_{\mathbb{N}\setminus J}(x_n)\| \leq \varepsilon\).

Since \(\Psi\)-uniform integrability is equivalent to (ii), it follows that \(f\) is weakly continuous at each point of \(E\).

A similar idea to that of Theorem 2.11 let us prove the following theorem, which improves [28] Theorem 5 and [5] Proposition 2.10.

Theorem 2.12. Let \((\Omega, \Sigma, \lambda)\) be a probability space.
Let $\mu \in \mathcal{M}$. If $\mu = \frac{1}{2} \mathbb{N}$ then $\ell^1(\mathbb{N})$ has the WLP.

If μ is any other measure then μ is isomorphic to a countable ℓ^1.

Proof. Fix a Riemann integrable function $f : [0, 1] \to L^1(\mu)$. Take $P_A(x) := x\chi_A$ for every $A \in \Sigma$ and every $x \in L^1(\mu)$. The family of operators $\{P_A : A \in \Sigma\}$ fulfills the requirements of Lemma 2.11 (bear in mind Lemma 2.10). Then \mathfrak{P}-uniform integrability is the usual uniform integrability and therefore a set is bounded and \mathfrak{P}-uniformly integrable if and only if it is relatively weakly compact due to Dunford’s Theorem (see [1] Theorem 5.2.9). Lemma 2.9 ensures that there exist measurable $E \subset [0, 1]$ with $\mu(E) = 1$ such that for every sequence $(t_n)_{n=1}^{\infty}$ in $[0, 1]$ converging to some $t \in E$, the set $\{f(t_n) : n \in \mathbb{N}\}$ is relatively weakly compact.

Let $C \subset \Sigma$ be a dense family of λ-measurable sets, i.e. such that

$$\inf_{C \in \mathcal{C}} \lambda(A \triangle C) = 0$$

for every $A \in \Sigma$.

Let $(h_n)_{n=1}^{\infty}$ be a relatively weakly compact sequence in $L^1(\lambda)$ and $h \in L^1(\lambda)$. Since C is a dense family of λ-measurable sets, if $\int_{C_n} h_n \, d\mu \to \int_{C_n} h \, d\mu$ for every $C_n \in C$, then $h = \omega-lim n h_n$.

Suppose $\mu(\{l_n\}) = 0$. Then \mathcal{C} can be taken such that $|\mathcal{C}| < \mu(\mathcal{C})$. Therefore, we can assume that, for each $C \in \mathcal{C}$, the Riemann integrable map $t \mapsto \int_{C_n} f(t) \, d\lambda$ is continuous at each point of E. Then, for every sequence $(t_n)_{n=1}^{\infty}$ in $[0, 1]$ converging to a point $t \in E$, we have $f(t) = \omega-lim f(t_n)$.

Now suppose $\upsilon = \mu(\{l_n\}) > 0$. Due to Maharam’s Theorem (see [16] p. 127, Theorem 9), $L^1(\lambda)$ contains an isometric copy of $L^1(\mu)$, where μ is the usual product probability measure on $[0, 1]^\nu$. Since $L^1(\mu)$ contains an isomorphic copy of $\ell_2(\nu)$ (see [16] p. 128, Theorem 12) and $\ell_2(\nu)$ does not have the WLP (Theorem 2.8), we conclude that $L^1(\lambda)$ does not have the WLP.

Theorem 2.11 can be extended to arbitrary ℓ_1-sums:

Theorem 2.13. The arbitrary ℓ_1-sum of a family of Banach spaces with the WLP has the WLP.

Proof. The proof uses some ideas of [18]. Let $f : [0, 1] \to X := (\bigoplus_{i \in \Gamma} X_i)_{\ell_1}$ be a Riemann integrable function, where X_i is a family of Banach spaces with the WLP. For each $J \subset \Gamma$, we denote by $P_J : X \to X$ the function defined by $P_J(x) = x_i$ for every $x \in X$. Then, for every sequence $(r_n)_{n=1}^{\infty}$ in $[0, 1]$ converging to a point $t \in E$, we have $f(t) = \omega-lim f(r_n)$.

Therefore, we can assume that $\int_0^1 f(t) \, dt = 0$ and that f is null over a dense set. Let

$$A_n^J := \{t \in [0, 1] : \|P_J(f(t))\| < \frac{1}{n}\}$$

for each $n \in \mathbb{N}$ and each subset $J \subset \Gamma$. If $J_1 \subset J_2 \subset \Gamma$, then $A_n^{J_2} \subset A_n^{J_1}$.

Claim: For every $n \in \mathbb{N}$ there exists a countable set $J \subset \Gamma$ with $\mu(A_n^J) = 0$.

Suppose this is not the case. Then, there exist $n \in \mathbb{N}$ and $\delta > 0$ with $\mu(A_n^J) > \delta$
for every countable subset \(J \subset \Gamma \) (if for every \(m \in \mathbb{N} \) we can take a countable set \(J_m \subset \Gamma \) with \(\mu \left(\overline{A^m_n} \right) < \frac{1}{m} \), then \(J = \bigcup_{m \in \mathbb{N}} J_m \) verifies \(\mu \left(\overline{A^m_n} \right) = 0 \). Let \(\mathcal{P} = \{ I_1, I_2, \ldots, I_N \} \) be a partition of \([0, 1]\) such that

\[
\left\| \sum_{j=1}^{N} \mu(I_j)(f(\xi_j) - f(\xi'_j)) \right\| < \frac{\delta}{n} \quad \text{for all choices } \xi_j, \xi'_j \in I_j, 1 \leq j \leq N.
\]

Let \(J \subset \Gamma \) be a countable subset. Since \(\sum_{j=1}^{N} \mu \left(I_j \cap \overline{A^m_n} \right) = \mu \left(\overline{A^m_n} \right) > \delta \) and \(f \) is null over a dense set, we can suppose that there exist \(\xi_1 \in \text{Int}(I_1) \cap A^m_n \) and \(\xi'_1 \in I_1 \) such that \(\| \mu(I_1)(f(\xi_1) - f(\xi'_1)) \| \geq \frac{1}{n} \mu(I_1) \). Let \(J_1 = \text{supp}(f(\xi_1) \cup \text{supp}(f(\xi'_1))) \). By (4) we have \(\mu(I_1) < \delta < \sum_{j=1}^{N} \mu \left(I_j \cap \overline{A^m_n} \right) \) and so it is not restrictive to suppose \(\text{Int}(I_2) \cap \overline{A^m_n} \neq \emptyset \). Thus, due to Lemma 2.10 we can choose \(\xi_2, \xi'_2 \in I_2 \) such that

\[
\| \mu(I_1)(f(\xi_1) - f(\xi'_1)) + \mu(I_2)(f(\xi_2) - f(\xi'_2)) \| \geq \frac{1}{n} \mu(I_1) + \mu(I_2).
\]

Fix \(1 \leq k < N \) and assume that we have already chosen points \(\xi_j, \xi'_j \in I_j \) for all \(1 \leq j \leq k \) with the property that

\[
\left\| \sum_{j=1}^{k} \mu(I_j)(f(\xi_j) - f(\xi'_j)) \right\| \geq \frac{1}{n} \left(\sum_{j=1}^{k} \mu(I_j) \right).
\]

Set \(J_k := \bigcup_{j=1}^{k} \text{supp}(f(\xi_j) \cup \text{supp}(f(\xi'_j))) \), which is countable. By (4) we have \(\sum_{j=1}^{k} \mu(I_j) < \delta < \sum_{j=1}^{N} \mu \left(I_j \cap \overline{A^m_n} \right) \), hence it is not restrictive to suppose that \(\text{Int}(I_{k+1}) \cap \overline{A^m_n} \neq \emptyset \) and therefore that there exist points \(\xi_{k+1}, \xi'_{k+1} \in I_{k+1} \) such that

\[
\left\| \sum_{j=1}^{k+1} \mu(I_j)(f(\xi_j) - f(\xi'_j)) \right\| \geq \frac{1}{n} \left(\sum_{j=1}^{k+1} \mu(I_j) \right).
\]

Since \(\sum_{j=1}^{N} \mu(I_j) = 1 > \delta \), it follows that there exist \(\xi_j, \xi'_j \in I_j \) for every \(1 \leq j \leq N \) such that

\[
\left\| \sum_{j=1}^{N} \mu(I_j)(f(\xi_j) - f(\xi'_j)) \right\| \geq \frac{\delta}{n}.
\]

But this is a contradiction with (4). Therefore, the Claim is proved.

Thus, for every \(n \in \mathbb{N} \) there exists a countable set \(J_n \) such that \(\mu \left(\overline{A^m_n} \right) = 0 \). Fix \(J := \bigcup_{n \in \mathbb{N}} J_n \). Theorem 2.11 guarantees the existence of a set \(F \subset [0, 1] \) of measure one such that \(P_f(f) \) is weakly continuous at every point of \(F \). Let \(E = F \setminus \bigcup_{n \in \mathbb{N}} \overline{A^m_n} \).

Then, \(\mu(E) = 1 \), \(f = P_{f}(f) + P_f(f) \), \(P_f(f) \) is weakly continuous at each point of \(E \) and \(P_{f_r}(f) \) is norm continuous at each point of \(E \) (if \(t_n \to t \in E \), then, for every \(m \in \mathbb{N} \), \(t_n \notin A^m_n \) for \(n \) big enough so \(\| P_{f_r}(f)(t_n) \| < \frac{1}{m} \)).

\[\square\]

Corollary 2.14 (24 [20]). \(\ell_1(\kappa) \) has the LP for any cardinal \(\kappa \).

Proof. Since \(\ell_1(\kappa) \) has the Schur property, \(\ell_1(\kappa) \) has the LP if and only it has the WLP. Therefore, the conclusion follows from Theorem 2.13. \[\square\]
As an application of Corollary 2.13, we also obtain the following result:

Corollary 2.15. Let K be a compact Hausdorff space. Then, $C(K)^*$ has the WLP if $\text{dens}(L^1(\lambda)) < \text{cov}(\mathcal{M})$ for every regular Borel probability λ on K.

Proof. For every compact Hausdorff space K, the Banach space $C(K)^*$ is isometric to a ℓ_1-sum of $L^1(\lambda)$ spaces, where each λ is a regular Borel probability measure on K (see the proof of [11, Proposition 4.3.8]). Thus, $C(K)^*$ has the WLP if each space $L^1(\lambda)$ has the WLP, due to Theorem 2.13. Hence, the result follows from Theorem 2.12. \square

Corollary 2.16. If K is a compact Hausdorff space in the class MS (i.e., $L^1(\lambda)$ is separable for every regular Borel probability on K), then $C(K)^*$ has the WLP.

Some classes of compact spaces in the class MS are metric compacta, Eberlein compacta, Radon-Nikodym compacta, Rosenthal compacta and scattered compacta. For more details on this class, we refer the reader to [8], [17], and [25].

The LP is a three-space property, i.e., if X is a Banach space and Y is a subspace of X such that Y and X/Y have the LP, then X has the LP [24, Proposition 1.19]. This result follows from Michael’s Selection Theorem. However, as far as we are concerned, it is not known whether the WLP is a three-space property. We have a positive result in the following case:

Theorem 2.17. Let X be a Banach space and Y a subspace of X. If Y is reflexive, $\text{dens}(Y) < \text{cov}(\mathcal{M})$ and X/Y has the WLP, then X has the WLP.

Proof. Let $Q : X \to X/Y$ be the quotient operator and $\phi : X/Y \to X$ be a norm-norm continuous map such that $Q\phi = 1_{X/Y}$ given by Michael’s Selection Theorem (see [10, Section 7.6]). Let $f : [0, 1] \to X$ be a Riemann integrable function. Then, since Qf is Riemann integrable and X/Y has the WLP, there exists a set $E \subset [0, 1]$ with $\mu(E) = 1$ such that Qf is weakly continuous at every point of E. Set

\[(5) \quad C = \{x \in X : \exists (t_n)_{n=1}^{\infty} \text{ converging to some } t \in E \text{ with } x = \omega\text{-lim } f(t_n)\}.
\]

First we are going to see that $\text{dens}(C) < \text{cov}(\mathcal{M})$. Let $x \in C$ and $(t_n)_{n=1}^{\infty}$ as in (5). Then $Qx = \omega\text{-lim } Qf(t_n) = Qf(t)$. Therefore, $x = \phi(Qx) + (x - \phi(Qx))$ with $\phi(Qx) \in \phi(Qf(E))$ and $x - \phi(Qx) \in Y$. Notice that $\phi(Qf(E))$ is separable because of the ω-separability of $Qf(E)$ and Mazur’s Lemma. Thus, $C \subset \phi(Qf(E)) + Y$ satisfies $\text{dens}(C) < \text{cov}(\mathcal{M})$.

Let $\{x^*_\alpha\}_{\alpha \in \Gamma} \subset X^*$ be a set separating points of C with $|\Gamma| < \text{cov}(\mathcal{M})$. Set $E_0 \subset E$ with $\mu(E_0) = 1$ such that $x^*_\alpha \circ f$ is continuous at every point of E_0 for every $\alpha \in \Gamma$. Notice that this can be done because the set of discontinuity points of each $x^*_\alpha \circ f$ is an F_σ Lebesgue null set and $|\Gamma| < \text{cov}(\mathcal{M})$. We claim that f is weakly continuous at each point of E_0. Let $t \in E_0$ and $(t_n)_{n=1}^{\infty}$ be a sequence converging to t. Since $Qf(t) = \omega\text{-lim } Qf(t_n)$, the set $\{Qf(t_n) : n \in \mathbb{N}\}$ is relatively weakly compact in X/Y. From the reflexivity of Y, it follows that Q is a Tauberian operator, so $\{f(t_n) : n \in \mathbb{N}\}$ is relatively weakly compact in X (see [11, Theorem 2.1.5 and Corollary 2.2.5]). Therefore, it is enough to prove the uniqueness of the limit of the subsequences of $(f(t_n))_{n=1}^{\infty}$. Let $x = \omega\text{-lim } \lim_{k} f(t_{n_k})$. Then, $x, f(t) \in C$ and $x^*_\alpha(x) = \lim_{k} x^*_\alpha(f(t_{n_k})) = x^*_\alpha(f(t))$ for every $\alpha \in \Gamma$, so $x = f(t)$. \square
3. Weak continuity does not imply integrability

It is not true that every weakly continuous function is Riemann integrable [2]. In fact, V. Kadets proved the following theorem:

Theorem 3.1 ([14]). If X is a Banach space without the Schur property, then there is a weakly continuous function $f : [0, 1] \to X$ which is not Riemann integrable.

The proof of the previous theorem together with Josefson-Nissenzweig Theorem (see [2] Chapter XII) gives the following corollary:

Corollary 3.2. Given an infinite-dimensional Banach space X, there always exists a weak* continuous function $f : [0, 1] \to X^*$ which is not Riemann integrable.

In [29], Wang and Yang extend the previous result to a general locally convex topology weaker than the norm topology. In this section, we generalize these results in Theorem 3.4.

Following the terminology used in [9], we say that a subset M of a Banach space is spaceable if $M \cup \{0\}$ contains a closed infinite-dimensional subspace.

We start with the definitions of τ-Dunford-Pettis operator and the τ-Schur property, that coincide with the classical definitions of Dunford-Pettis or completely continuous operator and the Schur property when τ is the weak topology.

Definition 3.3. Let X and Y be Banach spaces and τ a locally convex topology on X weaker than the norm topology. An operator $T : X \to Y$ is said to be τ-Dunford-Pettis (τ-DP for short) if it carries bounded τ-null sequences to norm null sequences. A Banach space X is said to have the τ-Schur property if the identity operator $I : X \to X$ is τ-DP.

Theorem 3.4. Let X and Y be Banach spaces and τ be a locally convex topology on X weaker than the norm topology. If $T : X \to Y$ is an operator which is not τ-DP, then the family of all bounded τ-continuous functions $f : [0, 1] \to X$ such that Tf is not Riemann integrable is spaceable in $\ell_\infty([0, 1], X)$, the space of all bounded functions from $[0, 1]$ to X with the supremum norm.

Proof. The proof uses ideas from [14]. Since T is not τ-DP, we can take a bounded sequence $(x_n)_{n=1}^\infty$ that is τ-convergent to zero such that $\|Tx_n\| = 1$ for all $n \in \mathbb{N}$.

Let $K \subset [0, 1]$ be a copy of the Cantor set constructed by removing from $[0, 1]$ an open interval I_1 in the middle of $[0, 1]$ and removing open intervals $I_1^n, I_2^n, \ldots I_{2^n}$ from the middles of the remaining intervals in each step. Suppose that the removed intervals are so small that $\mu(K) > \frac{1}{2}$. Let $C_a([0, 1])$ be the closed subspace of $C([0, 1])$ consisting of all continuous functions $g : [0, 1] \to \mathbb{R}$ antisymmetric with respect to the axe $x = \frac{1}{2}$ and with $g(0) = g(1) = 0$. For every $g \in C_a([0, 1])$ and every open interval $I = (a, b)$ in $[0, 1]$, we define the functions $g_I : [0, 1] \to \mathbb{R}$ and $f_g : [0, 1] \to X$ as follows

$$g_I(t) = \begin{cases} 0 & \text{if } t \notin (a, b), \\ g(\frac{t-a}{b-a}) & \text{if } t \in [a, b]. \end{cases}$$

$$f_g(t) = \begin{cases} 0 & \text{if } t \in K, \\ g_I(t)x_n & \text{if } t \in I_{2^n}. \end{cases}$$

The function $\phi : C_a([0, 1]) \to \ell_\infty([0, 1], X)$ given by the formula $\phi(g) := f_g$ for every $g \in C_a([0, 1])$ is a linear map and satisfies $\|\phi(g)\| = (\sup_n \|x_n\|)\|g\|$ for every
g ∈ C_a([0, 1]). Therefore, φ is a multiple of an isometry. Thus, V := φ(C_a([0, 1]) is an infinite-dimensional closed subspace of L_∞([0, 1], X).

We are going to check that each function f_g ≠ 0 is τ-continuous but T f_g is not Riemann integrable. Since g is continuous, g(0) = g(1) = 0 and x_n \to 0, f_g is τ-continuous. Suppose T f_g is Riemann integrable. Then,

\[y^* \left(\int_0^1 T f_g(t) dt \right) = \int_0^1 y^* T f_g(t) dt = \sum_{k,m} y^*(T x_n) \int_{I_k^m} g f_g(t) dt = 0 \]

for each y^* ∈ Y^*. The only possible value for the Riemann integral of T f_g is 0 due to the above equality. Choose a partition P = \{A_j \} of [0, 1]. Let A = \{j : 1 \leq j \leq N, \text{ Int } J_j \cap K \neq \emptyset \}. We can take m ∈ N such that if j ∈ A then J_j contains some interval I_k^m. Hence, if j ∈ A, there is t_j ∈ J_j such that f_g(t_j) = ||g||x_m. If j /∈ A, then we pick any t_j ∈ Int J_j. From the inequality \(\sum_{j \in A} \mu(J_j) \geq \mu(K) > \frac{3}{4} \), we deduce

\[\left\| \sum_{j=1}^N \mu(J_j) T f_g(t_j) \right\| = \left\| \sum_{j \in A} \mu(J_j) T f_g(t_j) + \sum_{j \notin A} \mu(J_j) T f_g(t_j) \right\| \geq \]

\[\left\| \sum_{j \in A} \mu(J_j) T f_g(t_j) \right\| - \left\| \sum_{j \notin A} \mu(J_j) T f_g(t_j) \right\| > \frac{2}{3} ||g|| - \frac{1}{3} \sup_{t \in [0,1]} \|T f_g(t)\| = \frac{1}{3} ||g||. \]

Then, T f_g is Riemann integrable if and only if g = 0 if and only if f_g = 0. □

The next corollary gives an affirmative answer to a question posed by Sofi in [26].

Corollary 3.5. Given an infinite-dimensional Banach space X, the set of all weak* continuous functions f : [0, 1] → X* which are not Riemann integrable is spaceable in L_∞([0, 1], X*).

Proof. X* is not ω*-Schur for any infinite-dimensional Banach space X due to the Josefson-Nissenzweig Theorem. Thus, the conclusion follows from Theorem 3.4. □

Given a Banach space X, a function f : [0, 1] → X is said to be scalarly Riemann integrable if every composition x^* f with x^* ∈ X* is Riemann integrable.

We can also characterize Dunford-Pettis operators thanks to Theorem 3.4. The equivalence (1) ⇔ (3) in the following corollary was mentioned without proof in [23].

Corollary 3.6. Let X and Y be Banach spaces and T : X → Y be an operator. The following statements are equivalent:

1. T is Dunford-Pettis.
2. T f is Riemann integrable for every ω-continuous function f : [0, 1] → X.
3. T f is Riemann integrable for every scalarly Riemann integrable function f : [0, 1] → X.

Proof. (2) ⇒ (1) is a consequence of Theorem 3.4. Since every ω-continuous function f : [0, 1] → X is scalarly Riemann integrable, (3) implies (2). Therefore, it remains to prove (1) ⇒ (3). Suppose T is Dunford-Pettis and fix (P_n)_{n=1}^∞ a sequence of tagged partitions of [0, 1] with \(\|P_n\| \to 0 \). Let f : [0, 1] → X be a scalarly Riemann integrable function. Then, x^* f(P_n) \to \int_0^1 x^* f(t) dt for every
Thus, \(f(\mathcal{P}_n) \) is a \(\omega \)-Cauchy sequence in \(X \), so \(T f(\mathcal{P}_n) \) is norm convergent to some \(y \in Y \). The limit \(y \) does not depend on the sequence of tagged partitions, since if \((\mathcal{P}'_n)_{n=1}^\infty \) is any other sequence of tagged partitions with \(\|\mathcal{P}'_n\| \xrightarrow{n \to \infty} 0 \), then \(f(\mathcal{P}_n) - f(\mathcal{P}'_n) \) is weakly null and this in turn implies that \(\|T f(\mathcal{P}_n) - T f(\mathcal{P}'_n)\| \xrightarrow{n \to \infty} 0 \). Thus, \(T f \) is Riemann integrable.

Acknowledgements

I would like to thank Antonio Avilés and José Rodríguez the useful suggestions and the help provided in some proofs of this paper.

References

[1] F. Albiac and N. J. Kalton. *Topics in Banach Space Theory*. Graduate texts in Mathematics. Springer, New York, London, 2006.
[2] A. Alexiewicz and W. Orlicz. Remarks on Riemann-integration of vector-valued functions. *Studia Math.*, 12:125–132, 1951.
[3] T. Bartoszynski and H. Judah. *Set Theory: On the Structure of the Real Line*. Ak Peters Series. Taylor & Francis, 1995.
[4] T. Bartoszynski and S. Shelah. Closed measure zero sets. *Ann. Pure Appl. Logic*, 58(2):93–110, 1992.
[5] J. M. Calabuig, J. Rodríguez, and E. A. Sánchez-Pérez. Weak continuity of Riemann integrable functions in Lebesgue-Bochner spaces. *Acta Math. Sin. (Engl. Ser.*), 26(2):241–248, 2010.
[6] G. C. da Rocha Filho. *Integral de Riemann Vetoral e Geometria de Espaços de Banach*. PhD thesis, Universidade de São Paulo, 1979.
[7] J. Diestel. *Sequences and series in Banach spaces*. Graduate texts in mathematics. Springer-Verlag, 1984.
[8] M. Džamonja and K. Kunen. Properties of the class of measure separable compact spaces. *Fundam. Math.*, 147(3):261–277, 1995.
[9] P. Enflo, V. I. Gurariy, and J. B. Seoane-Sepúlveda. Some results and open questions on spaceability in function spaces. *Trans. Am. Math. Soc.*, 366(2):611–625, 2014.
[10] M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler. *Banach Space Theory: The Basis for Linear and Nonlinear Analysis*. CMS Books in Mathematics. Springer New York, 2011.
[11] M. González and A. Martínez-Abejón. *Tauberian Operators*. Operator Theory: Advances and Applications. Birkhäuser Basel, 2010.
[12] R. Gordon. Riemann Integration in Banach Spaces. *Rocky Mountain J. Math.*, 21(3):923–949, 1991.
[13] L. M. Graves. Riemann integration and Taylor’s theorem in general analysis. *Trans. Amer. Math. Soc.*, 29(1):163–177, 1927.
[14] R. Haydon. Darboux integrability and separability of types in stable Banach spaces. Sémin. analyse fonctionnelle, Paris 1983-84, Publ. Math. Univ. Paris VII 20, 95–115, 1984.
[15] V. M. Kadets. On the Riemann integrability of weakly continuous functions. *Quaest. Math.*, 17(1):33–35, 1994.
[16] H. E. Lacey. *The Isometric Theory of Classical Banach Spaces*. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2012.
[17] W. Marciszewski and G. Plebanek. On measures on Rosenthal compacta. *J. Math. Anal. Appl.*, 385(1):185–193, 2012.
[18] F. Miraglia and G. C. da Rocha Filho. The measurability of Riemann integrable functions with values in Banach spaces and applications. *São Paulo Ime/usp*, 1984.
[19] K. M. Naralenkov. Asymptotic Structure of Banach Spaces and Riemann Integration. *Real Anal. Exchange*, 33(1):113–126, 2007.
[20] A. S. Nemirovski, M. Ju. Ochan, and R. Redjouani. Conditions for the Riemann integrability of functions with values in a Banach space. *Mosc. Univ. Math. Bull.*, 27(3-4):124–126, 1973.
[21] E. Odell. A nonseparable Banach space not containing a subsymmetric basic sequence. *Israel J. Math.*, 52(1-2):97–109, 1985.
[22] J. Pawlikowski. A characterization of strong measure zero sets. *Israel J. Math.*, 93(1):171–183, 1996.

[23] A. Pelczynski and G. C. da Rocha Filho. Operadores de Darboux. Seminario Brasileiro de Analise, 12, Sao Jose dos Campos, 1980. Trabalhos Apresentados. Rio de Janeiro, SBM, 1980.

[24] M. Pizzotti. *Darboux-integrabilidade e mensurabilidade de funções Riemann-integráveis definidas em compactos*. PhD thesis, Universidade de São Paulo, 1989.

[25] G. Plebanek and D. Sobota. Countable tightness in the spaces of regular probability measures. *Fundam. Math.*, 229(2):159–169, 2015.

[26] M. A. Sofi. Weaker forms of continuity and vector-valued Riemann integration. *Colloq. Math.*, 129(1):1–6, 2012.

[27] C. Wang. On the weak property of Lebesgue of Banach spaces. *Journal of Nanjing University Mathematical Biquarterly (English Series)*, 13(2):150–155, 1996.

[28] C. Wang and K. Wan. On the Weak Property of Lebesgue of $L^1(\Omega,\Sigma,\mu)$. *Rocky Mountain J. Math.*, 31(2):697–703, 2001.

[29] C. Wang and Z. Yang. Some Topological Properties of Banach Spaces and Riemann Integration. *Rocky Mountain J. Math.*, 30(1):393–400, 2000.