Serum Leukocyte Cell-derived Chemotaxin 2 (LECT2) Level is Associated with Osteoporosis

Qiang Wang
The Affiliated Hospital of Medical School of Ningbo University

Feng Xu
The Affiliated Hospital of Medical School of Ningbo University

Wen-Ming M. He (hewenming5@163.com)
The Affiliated Hospital of Medical School of Ningbo University

Jiong Chen
Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University

Yan-Qing Xie
The Affiliated Hospital of Medical School of Ningbo University

Su-Lin Xu
The Affiliated Hospital of Medical School of Ningbo University

Research Article

Keywords: leukocyte cell-derived chemotaxin 2, osteoporosis, bone mineral density, total cholesterol, creatinine

Posted Date: October 27th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-985343/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Previous studies have shown that leukocyte cell-derived chemotaxin 2 (LECT2), a hepatokine, is associated with obesity and non-alcoholic fatty liver disease (NAFLD). It is well known that hepatokines play important roles in mediating interactions among bone, adipose tissue, and liver. We sought to examine serum LECT2 levels in subjects with osteoporosis (OP) to confirm its association with OP.

Methods

From March 2019 to March 2020, a total of 96 adult subjects (52 OP patients and 44 controls) visiting the 2nd Spine Department of the Affiliated Hospital of School of Medicine of Ningbo University were recruited. The bone mineral density (BMD) of all subjects were assessed by dual-energy X-ray (DXA). Blood samples were collected for measurements of high-sensitivity C-reactive protein (hs-CRP), plasma glucose (PG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglycerides (TG), creatinine and uric acid. Serum LECT2 levels of total 96 participants were measured by enzyme linked immunesorbent assay (ELISA). The relationships between serum LECT2 levels and biomedical parameters were analyzed using the Spearman correlation coefficient.

Results

Serum LECT2 levels in OP patients were significantly higher than that of healthy controls (29.57 ng/mL VS 19.82 ng/mL, \(P < 0.01 \)). To confirm the role LECT2 played in OP, we found a significantly negative correlation in all subjects between serum levels of LECT2 and lumbar BMD, as well as femoral neck BMD. A significantly positive correlation in all was observed between serum levels of LECT2 and TC, whereas there was a significantly negative correlation between serum levels of LECT2 and creatinine. Meanwhile, serum LECT2 levels were measured to diagnose OP patient by plotting receiver-operating characteristic (ROC) curve, the area under the ROC curve was 0.729\((P < 0.01) \). The optimal cutoff point for LECT2 concentration to diagnose OP patient was 16.44 ng/mL.

Conclusions

We showed that serum LECT2 levels were significantly up-regulated in OP patients, and LECT2 levels were significant positively associated with total cholesterol and negatively associated with creatinine. It could be a potential biomarker for OP diagnosis.

Background

Osteoporosis (OP) is a highly prevalent systemic bone metabolic disease, which caused by bone microstructure destruction \([1, 2]\). It is characterized by bone mass reduction, leading to increased bone fragility and fracture risk. OP negatively affects the quality of life and leads to fracture and even death. It has become a global problem affecting the health of aging population \([3, 4]\). OP occurs when the balance
between bone resorption and formation broken. Previous studies have showed that immune system played a pivotal role in bone homeostasis [5]. For example, inflammatory cytokines, interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor (TNF) and macrophage colony-stimulating factor (M-CSF), tightly regulate osteoclastogenesis and bone resorption [6–9], and their imbalance could lead to OP.

Leukocyte cell-derived chemotaxin 2 (LECT2), a 16 kDa chemotactic protein with multiple physiological functions, is mainly expressed in human hepatocytes and secreted into the blood [10]. Early studies have reported that LECT2 acts as a regulator of immune and inflammatory response and plays a major role in various pathophysiological processes, such as sepsis [11], hepatitis [12], arthritis [13], and hepatocarcinoma [14]. LECT2 also implicated in metabolic disorder diseases, including obesity [15], diabetes [16], and non-alcoholic fatty liver disease (NAFLD) [17].

Recently, studies showed that hepatokines were involved in the complex interactions among bone, adipose tissue, and liver [18–22]. Additionally, it has been reported that LECT2 modulates TNF expression via the CD209a receptor, which is on the surface of osteoclasts and macrophages [23]. As a multifunctional protein mainly secreted by hepatocytes and closely associated with obesity and NAFLD, we hypothesize that LECT2 might be also involved in the process of OP, while the clinical significance of serum LECT2 in OP patients is unavailable. In the present study, we evaluated the levels of serum LECT2, high-sensitivity C-reactive protein (hs-CRP), plasma glucose (PG), creatinine, uric acid, alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglycerides (TG) in 52 OP patients and 44 healthy subjects. The relationships among LECT2, osteoporosis, and metabolic parameters were investigated.

Material And Methods

Subjects

From March 2019 to March 2020, a total of 96 adult subjects visiting the 2nd Spine Department of the Affiliated Hospital of School of Medicine of Ningbo University were recruited. Subjects with malignant tumor, renal, liver, and respiratory dysfunction, liver cirrhosis, infection, inflammatory rheumatism, and in use of steroids or other drugs that could cause osteoporosis were excluded.

Patients affected by OP (lumbar spine and/or femoral neck T score ≤ -2.5) and patients with either osteopenia or normal controls were recruited consecutively. The bone mineral density (BMD) of all subjects were assessed by dual-energy X-ray (DXA, Discovery Wii, Hologic) at the spine (L1-L4) and at the hip (femoral neck). After admission, blood samples were collected after an overnight fasting for measurements of hs-CRP, PG, ALT, AST, TC, TG, creatinine and uric acid. All clinical and metabolic data collected from both osteoporosis group and control group are shown in Table 1.
Table 1
Clinical and metabolic data of osteoporosis patients and healthy controls.

	Osteoporosis(n=52)	Control(n=44)	P
Age(year)	66.65±7.92	64.32±8.50	0.167
Female(n)	40	20	
Lumbar BMD (T-score) *	-3.09±0.94	-0.38±1.36	0.000
Femoralneck BMD (T-score) *	-2.12±0.98	-0.63±0.94	0.000
Hs-CRP (mg/L)	1.54±0.18	1.84±0.28	0.139
ALT (U/L)	18.32±14.50	23.20±19.91	0.169
AST (U/L)	21.75±6.66	23.45±10.82	0.347
PG (mmol/L)	5.50±0.93	5.64±1.26	0.527
TC (mmol/L)	4.48±1.03	4.57±0.98	0.634
TG (mmol/L) *	1.19±0.55	1.56±0.71	0.005
Creatinine (µmol/L) *	58.11±15.13	68.19±13.49	0.001
Uric acid (µmol/L) *	292.53±88.43	341.02±101.65	0.014

Abbreviation: BMD: bone mineral density; hs-CRP: High-sensitivity C-reactive protein; ALT: alanine aminotransferase; AST: aspartate amino transferase; PG: plasma glucose; TC: total cholesterol; TG: triglycerides.

Blood samples were collected and stored at -80°C immediately for both in OP patients and healthy controls at admission. Subsequently, serum LECT2 levels were measured by a commercially available human LECT2 ELISA kit (R&D system, Minneapolis, USA) according to the manufacture's protocol.

Written informed consents were obtained from all participants and all experiments were approved by the institutional review board of the Affiliated Hospital of School of Medicine of Ningbo University.

Statistical analysis

All statistical analyses were performed using the IBM SPSS Statistics Version 22.0 (IBM, New York, USA). The Student’s t-test was used to analyze continuous variables. A two-tailed unpaired student’s t-test was used to compare the serum LECT2 levels between OP and control subjects. The relationships between serum LECT2 levels and biomedical parameters were analyzed using the Spearman correlation coefficient. Receiver-operating characteristic (ROC) curve was used to evaluate the accuracy of LECT2 to diagnose OP. P value less than 0.05 was considered statistically significant.

Results
Serum LECT2 levels were significantly increased in OP patients than that of controls (29.57 ± 15.88 ng/mL VS 19.82 ± 10.75 ng/mL, \(P < 0.01 \); Fig. 1), whereas creatinine, uric acid serum levels were significantly lower in OP patients than that of controls.

There was a significantly negative correlation in all subjects between serum levels of LECT2 and lumbar BMD \((r=-0.347, P=0.001; \text{Fig. 2})\), as well as between serum levels of LECT2 and femoral neck BMD \((r=-0.219, P=0.033; \text{Fig. 3})\). A significantly positive correlation in all was observed between serum levels of LECT2 and TC \((r=0.269, P=0.008; \text{Fig. 4})\), whereas there was a significantly negative correlation between serum levels of LECT2 and creatinine \((r=-0.205, P=0.045; \text{Fig. 5})\).

As revealed by the ROC curve analysis, serum LECT2 levels were performed to detect OP patients, the area under the ROC curve was 0.729\((P < 0.001)\). The optimal cutoff point of LECT2 concentration to diagnose OP patient was 16.44 ng/mL. By this cutoff value, diagnostic efficiency for OP reached the highest value with sensitivity and specificity of 98.1% and 47.7%, respectively (Fig. 6).

Discussion

LECT2 is a hepatokine mainly expressed in hepatocytes and endothelial cells [24]. It has been reported as an immune modulatory factor in inflammatory arthritis [25], bacterial sepsis, renal amyloidosis [11, 26, 27], hepatitis, and hepatic carcinogenesis. Yoo et al. [17] reported an increase in plasma LECT2 of NAFLD group compared with control subjects (31.2 ng/mL VS 24.5 ng/mL). Tanisawa et al. [28] showed that participants with dyslipidemia had higher levels of plasma LECT2 than those without dyslipidemia, which consistent with the different LECT2 levels between participants with or without metabolic syndrome.

Some metabolic syndromes, such as obesity and NAFLD, were described to be associated with osteoporosis via hepatokines. However, not all hepatokines involved in bone resorption and osteoporosis. In the present study, we found that the level of serum LECT2 were higher in OP patients than control subjects. These data suggest that serum LECT2 level was closely related to OP, which was consistent with previously reported results of other diseases including obesity, fatty liver, diabesity [15], insulin resistance [29], atherosclerotic [30], and osteoarthritis [31]. We also found that the levels of serum LECT2 were significant negatively associated with lumbar and femoral neck BMD. Our clinical results suggest that LECT2 participates in bone resorption and osteoporosis development, although the direct effect of LECT2 on osteoclast function is not clear.

TC, creatinine, and other metabolic parameters can reflect the physiological state of human liver and kidney. Okumura et al. [15] demonstrated that LECT2 levels correlated with total cholesterol in obesity patients positively. Similarly, in this study we found that LECT2 levels were significant positively associated with TC. Bo et al. [32] reported that higher serum TC levels were associated with greater risk of osteoporosis. Higher lipid levels were associated with higher oxidative stress levels, which could inhibit osteoblast differentiation [33]. Additionally, we found that LECT2 levels were significant negatively associated with creatinine, and lower serum creatinine levels were detected in OP subjects. Similarly, Cui et al. [34] demonstrated that serum creatinine levels were decreased in OP subjects than normal. Huh et
al. [35] also found that serum creatinine was positively associated with BMD in 8648 participants with normal kidney function, and subjects with low serum creatinine got a higher risk for low BMD. The possible explanation was serum creatinine served as a marker of muscle mass, and low skeletal muscle mass was associated with deterioration of BMD. The cause of relationship between LECT2 and creatinine needs to be further explored.

To our knowledge, few specialized clinical markers are available to measure the severity of osteoporosis. The ROC curve analysis showed that serum LECT2 level could be a potential biomarker for male OP patients. The optimal cutoff value for serum LECT2 level for the OP diagnosis was 16.44 ng/mL, suggesting that serum LECT2 levels have clinical significance. Because of the significantly negative correlation between serum levels of LECT2 and BMD in our study, serum LECT2 concentration could be a potential clinical biomarker for the severity of osteoporosis.

In conclusion, to the best of our knowledge, we are the first to describe an increased serum LECT2 level in OP patients. We also found that LECT2 levels were significant positively associated with total cholesterol and negatively associated with creatinine. Additionally, we found that serum LECT2 level could be a potential biomarker for OP patients. However, due to the limited patient number of this study, further large-scaled perspective study and the pathological role of LECT2 in the development of OP need to be investigated.

Abbreviations

LECT2: leukocyte cell-derived chemotaxin 2; NAFLD: non-alcoholic fatty liver disease; OP: osteoporosis; ELISA: enzyme linked immunosorbent assay; BMD: bone mineral density; ROC: receiver-operating characteristic; IL-1: interleukin-1; IL-6: interleukin-6; TNF: tumor necrosis factor; M-CSF: macrophage colony-stimulating factor; hs-CRP: high-sensitivity C-reactive protein; PG: plasma glucose; ALT: alanine aminotransferase; AST: aspartate amino transferase; TC: total cholesterol, TG: triglycerides.

Declarations

Ethics approval and consent to participate

Written informed consents were obtained from all participants. The study was approved by the Ethics Committee of the Affiliated Hospital of School of Medicine of Ningbo University (Ethics approval code: KY20200202), all methods were performed in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable.
Availability of data and materials

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This project was supported by the Program for the Natural Science Foundation of China (31972821), the Natural Science Foundation of Zhejiang Province (LY18H110003, LY20H020002), the Medical Health Science and Technology Project of Zhejiang Provincial Health Commission (2020KY870), the Natural Science Foundation of Ningbo (202003N4231), and the Youth Talent Cultivation Program sponsored by the Affiliated Hospital of School of Medicine, Ningbo University (FYQM-KY-202005).

Author contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Wen-Ming He, Jiong Chen, Yan-Qing Xie, and Su-Lin Xu. Laboratory experiment and manuscript was finished by Qiang Wang and Feng Xu. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. Ensrud KE, Crandall CJ. Osteoporosis. Annals of internal medicine. 2017;167(3):ITC17-32.
2. Wang Y, Tao Y, Hyman ME, Li J, Chen Y. Osteoporosis in china. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2009;20(10):1651–62.
3. Sanders S, Geraci SA. Osteoporosis in postmenopausal women: considerations in prevention and treatment: (women's health series). Southern medical journal. 2013;106(12):698–706.
4. Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in
collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Archives of osteoporosis. 2013;8(1):136.

5. Ginaldi L, De Martinis M. Osteoimmunology and Beyond. Current medicinal chemistry. 2016;23(33):3754–74.

6. Souza PP, Lerner UH. The role of cytokines in inflammatory bone loss. Immunological investigations. 2013;42(7):555–622.

7. Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nature reviews Rheumatology. 2009;5(12):667–76.

8. Zhang Q, Guo R, Schwarz EM, Boyce BF, Xing L. TNF inhibits production of stromal cell-derived factor 1 by bone stromal cells and increases osteoclast precursor mobilization from bone marrow to peripheral blood. Arthritis research & therapy. 2008;10(2):R37.

9. Brincat SD, Borg M, Camilleri G, Calleja-Agius J. The role of cytokines in postmenopausal osteoporosis. Minerva ginecologica. 2014;66(4):391–407.

10. Yamagoe S, Yamakawa Y, Matsuo Y, Minowada J, Mizuno S, Suzuki K. Purification and primary amino acid sequence of a novel neutrophil chemotactic factor LECT2. Immunology letters. 1996;52(1):9–13.

11. Lu XJ, Chen J, Yu CH, Shi YH, He YQ, Zhang RC, et al. LECT2 protects mice against bacterial sepsis by activating macrophages via the CD209a receptor. Journal of Experimental Medicine. 2013;210(1):5–13.

12. Saito T, Okumura A, Watanabe H, Asano M, Ishida-Okawara A, Sakagami J, et al. Increase in hepatic NKT cells in leukocyte cell-derived chemotaxin 2-deficient mice contributes to severe concanavalin A-induced hepatitis. Journal of immunology. 2004;173(1):579–85.

13. Graessler J, Verlohren M, Graessler A, Zeissig A, Kuhlisch E, Kopprasch S, et al. Association of chondromodulin-II Val58Ile polymorphism with radiographic joint destruction in rheumatoid arthritis. The Journal of rheumatology. 2005;32(9):1654–61.

14. Okabe H, Delgado E, Lee JM, Yang J, Kinoshita H, Hayashi H, et al. Role of leukocyte cell-derived chemotaxin 2 as a biomarker in hepatocellular carcinoma. PloS one. 2014;9(6):e98817.

15. Okumura A, Unoki-Kubota H, Matsushita Y, Shiga T, Moriyoishi Y, Yamagoe S, et al. Increased serum leukocyte cell-derived chemotaxin 2 (LECT2) levels in obesity and fatty liver. Bioscience trends. 2013;7(6):276–83.

16. Zhang Z, Zeng H, Lin J, Hu Y, Yang R, Sun J, et al. Circulating LECT2 levels in newly diagnosed type 2 diabetes mellitus and their association with metabolic parameters: An observational study. Medicine. 2018;97(15):e0354.

17. Yoo HJ, Hwang SY, Choi JH, Lee HJ, Chung HS, Seo JA, et al. Association of leukocyte cell-derived chemotaxin 2 (LECT2) with NAFLD, metabolic syndrome, and atherosclerosis. PloS one. 2017;12(4):e0174717.

18. Guanabens N, Pares A. Osteoporosis in chronic liver disease. Liver international: official journal of the International Association for the Study of the Liver. 2018;38(5):776–85.
19. Handzlik-Orlik G, Holecki M, Wilczynski K, Dulawa J. Osteoporosis in liver disease: pathogenesis and management. Therapeutic advances in endocrinology and metabolism. 2016;7(3):128–35.

20. Filip R, Radzki RP, Bienko M. Novel insights into the relationship between nonalcoholic fatty liver disease and osteoporosis. Clinical interventions in aging. 2018;13:1879–91.

21. Pirgon O, Bilgin H, Tolu I, Odabas D. Correlation of insulin sensitivity with bone mineral status in obese adolescents with nonalcoholic fatty liver disease. Clinical endocrinology. 2011;75(2):189–95.

22. Musso G, Paschetta E, Gambino R, Cassader M, Molinaro F. Interactions among bone, liver, and adipose tissue predisposing to diabesity and fatty liver. Trends in molecular medicine. 2013;19(9):522–35.

23. Lu XJ, Chen Q, Rong YJ, Yang GJ, Li CH, Xu NY, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nature communications. 2016;7:12719.

24. Xu M, Xu HH, Lin Y, Sun X, Wang LJ, et al. LECT2, a ligand for Tie1, plays a crucial role in liver fibrogenesis. Cell. 2019;178(6):1478-92.e20.

25. Okumura A, Saito T, Otani I, Kojima K, Yamada Y, Ishida-Okawara A, et al. Suppressive role of leukocyte cell-derived chemotaxin 2 in mouse anti-type II collagen antibody-induced arthritis. Arthritis and rheumatism. 2008;58(2):413–21.

26. Li DY, Liu D, Wang SX, Yu XJ, Cui Z, Zhou FD, et al. Renal leukocyte chemotactic factor 2 (ALECT2)-associated amyloidosis in Chinese patients. Amyloid: the international journal of experimental and clinical investigation: the official journal of the International Society of Amyloidosis. 2020;27(2):134–41.

27. Mejia-Vilet JM, Cardenas-Mastrascusa LR, Palacios-Cebrieros EJ, Reyes-Macedo M, Portilla-Jimenez A, Morales-Buenrostro LE, et al. LECT2 Amyloidosis in Kidney Transplantation: A Report of 5 Cases. American journal of kidney diseases: the official journal of the National Kidney Foundation. 2019;74(4):563–6.

28. Tanisawa K, Taniguchi H, Sun X, Ito T, Kawakami R, Sakamoto S, et al. Visceral fat area is a strong predictor of leukocyte cell-derived chemotaxin 2, a potential biomarker of dyslipidemia. PloS one. 2017;12(3):e0173310.

29. Lan F, Misu H, Chikamoto K, Takayama H, Kikuchi A, Mohri K, et al. LECT2 functions as a hepatokine that links obesity to skeletal muscle insulin resistance. Diabetes. 2014;63(5):1649–64.

30. Hwang HJ, Jung TW, Hong HC, Seo JA, Kim SG, Kim NH, et al. LECT2 induces atherosclerotic inflammatory reaction via CD209 receptor-mediated JNK phosphorylation in human endothelial cells. Metabolism: clinical and experimental. 2015;64(9):1175–82.

31. Ikeda D, Ageta H, Tsuchida K, Yamada H. iTRAQ-based proteomics reveals novel biomarkers of osteoarthritis. Biomarkers: biochemical indicators of exposure, response, and susceptibility to chemicals. 2013;18(7):565–72.

32. Kan B, Zhao Q, Wang L, Yue S, Cai H, Yang S. Association between lipid biomarkers and osteoporosis: a cross-sectional study. BMC Musculoskeletal disorders. 2021;22(1):759.
33. Yamaguchi T, Sugimoto T, Yano S, Yamauchi M, Sowa H. Plasma lipids and osteoporosis in postmenopausal women. Endocrine journal. 2002;49(2):211–7.

34. Cui R, Zhou L, Li Z, Li Q, Qi Z. Assessment risk of osteoporosis in Chinese people: relationship among body mass index, serum lipid profiles, blood glucose, and bone mineral density. Clinical interventions in aging. 2016;11:887–95.

35. Huh JH, Choi SI, Lim JS, Chung CH, Shin JY, Lee MY. Lower serum creatinine is associated with low bone mineral density in subjects without overt nephropathy. PloS One. 2015;10(7):e0133062.

Figures

Figure 1
Concentration of serum LECT2 in control (n = 44) and osteoporosis patients (n = 52). Serum LECT2 levels were significantly increased in osteoporosis patients than that of controls (29.57 ± 15.88 ng/mL VS 19.82 ± 10.75 ng/mL, **P < 0.01).

Figure 2

Correlation between serum levels of LECT2 and lumbar BMD in all subjects (r=0.347, P=0.001).
Figure 3

Correlation between serum levels of LECT2 and femoral neck BMD in all subjects ($r=0.219$, $P=0.033$).
Figure 4

Correlation between serum levels of LECT2 and total cholesterol in all subjects (r=0.269, P=0.008).
Figure 5

Correlation between serum levels of LECT2 and creatinine in all subjects ($r=-0.205, P=0.045$).
Figure 6

Receiver-operating characteristic (ROC) curve showed the performance of serum LECT2 level in detecting OP patients. The optimal cutoff point was 16.44 ng/mL. The area under the ROC curve was 0.729, P < 0.01. The diagnostic efficiency for OP patients reached the highest value with sensitivity and specificity of 98.1% and 47.7%, respectively.