Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

Jørgen Petersen, Adelina Rogowska-Wrzesinska and Ole N. Jensen*

Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark

INTRODUCTION

Barley (Hordeum vulgare) is one of the earliest domesticated cereals and it is the fourth most important crop world-wide in terms of total dry production, only exceeded by maize, rice, and wheat. Barley is mainly used in the brewing industry and as animal feed, but in certain areas of the world it is an important food source for humans (Schulte et al., 2009). The increasing demand for food due to the growing world population has propelled the implementation of plant breeding programs and biomolecular plant research to improve sustainable crop production. Prioritized areas include research in plant resistance to abiotic stress such as soil salinity, temperature, drought, nutrient uptake (Saeed et al., 2012), and biotic stress caused by other living organisms and pathogens (Dörcher and Callis, 2007). Barley is by nature diploid, has a low chromosome number (2n = 14) and a large genome size (5.1 Gb), is easy to cross-breed and is able to grow under various climatic conditions. These abilities and the fact that barley is an extremely important crop makes it desirable to identify genes responsible for specific beneficial traits in order to improve crop production and sustainability (Saito and Takeda, 2011). The recently completed whole-genome sequencing of barley revealed approximately 26,100 open reading frames, which provides a foundation for detailed molecular studies of barley by functional genomics and proteomics approaches. Such studies will provide further insights into the mechanisms of, for example, drought and stress tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics strategies and discuss their applications in characterization of the barley chloroplast as well as future perspectives for functional proteomics in barley research.

Keywords: barley, Hordeum vulgare, proteomics, chloroplast, mass spectrometry, 2D gel electrophoresis

The chloroplast is one of the specialized plastids in the plant cell and it conducts important processes such as photosynthesis and biosynthesis of amino acids, starch, and vitamins. The chloroplast contains its own genome, but most of the estimated 2000–3000 chloroplast proteins are encoded by the nuclear genome. Targeting of proteins to the chloroplast often requires N-terminal pre-sequences called chloroplast transit peptides (cTPs), which to some extent can be predicted from the genome by using computational methods such as chloroP, targetP, WoLF PSORT, iPSORT, predotar, or Protein Prowler (Emanuelsson et al., 1999; Batma et al., 2002; Small et al., 2004; Boden and Hawkins, 2005; Horton et al., 2007).

Functional proteomics is a rapidly evolving scientific discipline that is driven by advancements in a series of bioanalytical and computational technologies to enable increasingly detailed studies of complex protein mixtures derived from cells, tissues, and organisms (Arberadó and Mann, 2003; Crauvatt et al., 2007; Bensimon et al., 2012). The main methods used in proteomics are: (1) protein and peptide separation techniques; (2) mass spectrometry; (3) biological sequence databases and computational query tools (summarized in Boxes 1 and 2).

Proteomics technologies are now extensively used in plant biology, particularly in studies of the model plants and the most important food crops (Turn et al., 2007). Proteomics, i.e., the systematic study and characterization of proteins in a cell type, tissue, or a whole organism, encompasses the mapping of protein composition and abundance, protein interactions and protein localization, as well as dynamic events in protein regulatory networks, including signaling mechanisms, metabolism, and transcription (de Hoog and Mann, 2004). A majority of such studies in plants were carried out in Arabidopsis and rice where completely sequenced genomes are available (Kaul et al., 2000; Goff et al., 2002). Proteome analysis of plant organelles, including...
Several factors affect the outcome of a proteomics experiment, and need to be included in the experimental planning phase, like for example proteome complexity and protein concentration (summarized in Box 3). This section covers two classical proteomics strategies and highlights things to consider before starting a chloroplast-targeted proteomics experiment.

Purification: The first step toward success in organelle or subproteome experimentation is the quality and purity of the sample. Contaminating proteins or unwanted cellular debris can obscure the results with respect to assignment of organelle specific proteins and their quantification (Agrawal et al., 2011). Highly purified chloroplasts or mitochondria can be obtained using a Percoll gradient centrifugation step (Neuburger et al., 1982; Aronsson and Jarvius, 2002; van Wijk, 2004; Millar et al., 2005). Endomembrane organelles such as Golgi apparatus, endoplasmic reticulum, vacuoles, and vesicles are more difficult to purify without out cross-contamination from other organelles. Gentle rupture of the intact chloroplasts enables further purification of four subcompartments (1) the inner and outer envelope membranes, (2) the stroma, (3) the thylakoid membrane, (4) the thylakoid lumen (Kieselbach et al., 1998, 2000; Peltier et al., 2000, 2006; Schubert et al., 2002, Ferro et al., 2003). The above mentioned extractions of various biotic and abiotic stresses on chloroplasts proteins.

The recently completed sequencing of the barley genome now provides a foundation for more detailed functional proteomics studies of barley biology. We therefore foresee an increased effort in barley proteomics research for the characterization and quantification of complex protein mixtures.

GENERAL CONSIDERATIONS AND PROTEOMICS STRATEGIES

Several factors affect the outcome of a proteomics experiment, and need to be included in the experimental planning phase, like for example proteome complexity and protein concentration (summarized in Box 3). This section covers two classical proteomics strategies and highlights things to consider before starting a chloroplast-targeted proteomics experiment.

Purification: The first step toward success in organelle or subproteome experimentation is the quality and purity of the sample. Contaminating proteins or unwanted cellular debris can obscure the results with respect to assignment of organelle specific proteins and their quantification (Agrawal et al., 2011). Highly purified chloroplasts or mitochondria can be obtained using a Percoll gradient centrifugation step (Neuburger et al., 1982; Aronsson and Jarvius, 2002; van Wijk, 2004; Millar et al., 2005). Endomembrane organelles such as Golgi apparatus, endoplasmic reticulum, vacuoles, and vesicles are more difficult to purify without out cross-contamination from other organelles. Gentle rupture of the intact chloroplasts enables further purification of four subcompartments (1) the inner and outer envelope membranes, (2) the stroma, (3) the thylakoid membrane, (4) the thylakoid lumen (Kieselbach et al., 1998, 2000; Peltier et al., 2000, 2006; Schubert et al., 2002, Ferro et al., 2003). The above mentioned extractions of various biotic and abiotic stresses on chloroplasts proteins.

Purification: The first step toward success in organelle or subproteome experimentation is the quality and purity of the sample. Contaminating proteins or unwanted cellular debris can obscure the results with respect to assignment of organelle specific proteins and their quantification (Agrawal et al., 2011). Highly purified chloroplasts or mitochondria can be obtained using a Percoll gradient centrifugation step (Neuburger et al., 1982; Aronsson and Jarvius, 2002; van Wijk, 2004; Millar et al., 2005). Endomembrane organelles such as Golgi apparatus, endoplasmic reticulum, vacuoles, and vesicles are more difficult to purify without out cross-contamination from other organelles. Gentle rupture of the intact chloroplasts enables further purification of four subcompartments (1) the inner and outer envelope membranes, (2) the stroma, (3) the thylakoid membrane, (4) the thylakoid lumen (Kieselbach et al., 1998, 2000; Peltier et al., 2000, 2006; Schubert et al., 2002, Ferro et al., 2003). The above mentioned extractions of various biotic and abiotic stresses on chloroplasts proteins.

GENERAL CONSIDERATIONS AND PROTEOMICS STRATEGIES

Several factors affect the outcome of a proteomics experiment, and need to be included in the experimental planning phase, like for example proteome complexity and protein concentration (summarized in Box 3). This section covers two classical proteomics strategies and highlights things to consider before starting a chloroplast-targeted proteomics experiment.

Purification: The first step toward success in organelle or subproteome experimentation is the quality and purity of the sample. Contaminating proteins or unwanted cellular debris can obscure the results with respect to assignment of organelle specific proteins and their quantification (Agrawal et al., 2011). Highly purified chloroplasts or mitochondria can be obtained using a Percoll gradient centrifugation step (Neuburger et al., 1982; Aronsson and Jarvius, 2002; van Wijk, 2004; Millar et al., 2005). Endomembrane organelles such as Golgi apparatus, endoplasmic reticulum, vacuoles, and vesicles are more difficult to purify without out cross-contamination from other organelles. Gentle rupture of the intact chloroplasts enables further purification of four subcompartments (1) the inner and outer envelope membranes, (2) the stroma, (3) the thylakoid membrane, (4) the thylakoid lumen (Kieselbach et al., 1998, 2000; Peltier et al., 2000, 2006; Schubert et al., 2002, Ferro et al., 2003). The above mentioned extractions of various biotic and abiotic stresses on chloroplasts proteins.

Purification: The first step toward success in organelle or subproteome experimentation is the quality and purity of the sample. Contaminating proteins or unwanted cellular debris can obscure the results with respect to assignment of organelle specific proteins and their quantification (Agrawal et al., 2011). Highly purified chloroplasts or mitochondria can be obtained using a Percoll gradient centrifugation step (Neuburger et al., 1982; Aronsson and Jarvius, 2002; van Wijk, 2004; Millar et al., 2005). Endomembrane organelles such as Golgi apparatus, endoplasmic reticulum, vacuoles, and vesicles are more difficult to purify without out cross-contamination from other organelles. Gentle rupture of the intact chloroplasts enables further purification of four subcompartments (1) the inner and outer envelope membranes, (2) the stroma, (3) the thylakoid membrane, (4) the thylakoid lumen (Kieselbach et al., 1998, 2000; Peltier et al., 2000, 2006; Schubert et al., 2002, Ferro et al., 2003). The above mentioned extractions of various biotic and abiotic stresses on chloroplasts proteins.
a desired proteome. As an example, from 100 g of soil grown A. thaliana plants it is possible to extract approximately 1000 mg leaf protein, 100 mg thylakoid proteins, and only 0.4 mg envelope membrane protein (Frohlich et al., 2003).

What buffers should I use? There is no universal buffer composition to be used in proteomics experiments. Depending on the targeted tissue or sub-cellular compartment different protein extraction and sample preparation buffers are used (Filo et al., 2004; Manzo et al., 2008). However, there are few universal rules that should be taken into consideration. Always add protease inhibitors, but be aware of the lifetime of the inhibitors, it might be short under certain conditions, or use strong denaturants such as sodium deoxycholate (SDC) that, in contrast to SDS (Patterson and Aebersold, 2003; Bindschedler and Cramer, 2011) by reducing protein complexity by sub-proteome fractionation it is possible to identify low abundant proteins in the proteome of an organism.

Proteome complexity and protein concentrations.

Due to the high complexity and wide concentration range of proteins within proteomes, large scale proteome analysis is often executed at the sub-proteome level (James, 1997; Kurtz and Roulstone, 2003) where specific cellular or tissue fractions are isolated and analyzed. For example, enrichment strategies can be used to isolate sub-proteomes consisting of, e.g., kinases, or proteins containing specific modifications (e.g., phosphorylation or glycosylation), body or tissue fluids (e.g., sap) or organelles such as cell nuclei, mitochondria, Golgi apparatus, or chloroplasts. The need for fractionation into sub-proteomes becomes obvious when considering that the potential number of different proteins from a single genome coding for 20,000–30,000 genes, might be as high as 200,000–2 million when considering genomic recombination, splice variants, differential initiation/termination of transcripts and protein processing and covalent modifications (Yi and Van der Veken, 1996; Lander et al., 2001). In addition, the concentration ranges of proteins in eukaryotic cells typically span five–six orders of magnitude and in some sub-proteomes as high as 10 orders of magnitude. In some plants it has been estimated that Rubisco makes up 40% of the total protein content, making the stroma in the chloroplast a very challenging protein matrix to analyze (Patterson and Aebersold, 2003; Bindschedler and Cramer, 2011). By reducing protein complexity by sub-proteome fractionation it is possible to identify low abundant proteins in the proteome of an organism.

By reducing protein complexity by sub-proteome fractionation it is possible to identify low abundant proteins in the proteome of an organism. Such highly abundant protein will hamper both gel and non-gel based proteome analysis because this highly abundant protein will obscure other proteins and suppress their detection. In gel based studies it will dominate the gel pattern eclipsing low abundant proteins with similar physico-chemical properties. In non-gel based peptides generated from this abundant protein will saturate high performance liquid chromatography (HPLC) columns and suppress the signal from lower abundant proteins. This problem can be partially solved by removing the highly abundant protein by fractionation, antibody based spin columns, or using the relative newly developed ProteoMiner beads (Boschetti and Righetti, 2008; Frohlich et al., 2012). Removal of highly abundant proteins can also result in removal of the associated low abundant proteins (Cellar et al., 2008; Krishnan and Natarajan, 2009). Another way to reduce the complexity and the dynamics of protein sample is to perform organelle or sub-organelle fractionation. Isolation of mitochondria or a thylakoid preparation from chloroplast will exclude the majority of Rubisco protein from the analysis.

How to proceed after proteome extraction? Proteins, both for gel and non-gel based strategies (see below) need to be digested into peptides prior to mass spectrometry analysis. The aim is to generate ionizable peptides in the mass range 700–2500 Da, which is the optimal range for most biological mass spectrometers. Disulfide bridges (Cys-Cys) in proteins are typical reduced and alkylated using dithiothreitol (DTT) and iodoacetamide (IAA) prior to digestion. Denaturation of the proteins improves digestion efficiency, thus contributing to the overall protein identification rate. Proteins separated by SDS-PAGE are inherently denatured and are typically cut out of the gel, reduced, S-alkylated and digested by trypsin. This is a well-established “in-gel digestion” technique routinely used by most proteomics laboratories (Shevchenko et al., 1996, 2006). In solution based digestion is a more delicate procedure. Keeping the proteins in solution, denatured and available for trypsin digestion can be facilitated by buffers containing the commercially available surfactant RapidGest, urea buffers or detergents such as sodium deoxycholate (SDC) that, in contrast to SDS can relatively easy be removed from the sample prior to the mass spectrometry analysis (Speers and Wu, 2007; Norrgran et al., 2009; Lin et al., 2012). In-solution digestion protocols where the digestion is performed within a spin filter device has become popular and is highly recommended for the digestion of protein amounts exceeding 100 μg. The filter enables washing of the sample and retention of large unwanted structures on the filter (Manza et al., 2005; Winiecki et al., 2009).

How do I evaluate the quality of the experiment? Proteomics experiments often aim to detect differential regulated proteins between groups. This can be accomplished using a statistical test based on hypotheses about characteristics of both the biological samples that represent the population, and the variability of the technical measurements (Podewski et al., 2012).

If possible, evaluate the protein extract by electrophoresis; this gives an overall picture of the extract. Non-gel based approaches can benefit using an internal spike-in protein standard. The protein standard is digested together with the extract, and by comparing sequence coverage and peptide intensities of the spiked-in
standard among samples, the digest efficiency can be evaluated. This can be archived using selected reaction monitoring (SRM) or other label-free quantification methods. Absolute quantification can be archived using spiked-in peptides that act as internal standards (Gerber et al., 2003; Silva et al., 2006).

PROTEOMICS STRATEGIES

The choice of proteomic strategy depends on several factors such as the overall aim of the proteomics experiment, protein sample complexity and protein amount, number of samples to analyze, mass spectrometry instrument considerations, sequence database availability and whether protein quantification is necessary (Figure 1).

2D gel electrophoresis is a separation technique that is based on isoelectric focusing of the proteins followed by separation of the proteins according to their molecular mass. It has been used in proteomics for more than 30 years. Although a number of its limitations have been recognized (reviewed in Issaq and Veenstra, 2008; Chevalier, 2010) it is an effective strategy for the separation and quantitation of intact protein mixtures, including protein isoforms and modified proteins. A variation of the classical denaturing 2D PAGE is blue native (BN) 2D PAGE (Reisinger and Eichacker, 2007). This technique has been used in several membrane proteins studies (Krause, 2006), and is also one of the preferred ways for characterization of protein complexes. Protein separated by electrophoresis are visualized by staining, isotope or fluorescent labeling (Patton, 2002). Often only the differential regulated proteins are selected for spot picking, protein digestion, and protein identification (Berth et al., 2007). The advantage using the 2D gel strategy is the one spot – one protein premise, which allows for relatively easy de novo annotation of peptide fragment spectra and homolog search.

The combination of SDS-PAGE and LC-MS is very efficient for proteome profiling. The combination is often called GelLC-MS/MS, and is excellent for proteome profiling due to the unbiased solubilization of all protein groups including membrane proteins. For quantitative measurements it can be used with metabolically incorporated stable isotopes, isobaric tags for relative and absolute quantitation (iTRAQ) and semi quantitative approaches such as spectral counting (Sacchett et al., 2006; Wienkoop et al., 2006).

Recently, 2D LC-MS/MS strategies have become more widespread and robust. The orthogonality between the two LC separation dimensions is often obtained by using strong cation exchange chromatography (SCX) in the first dimension and reverse phase (RP) chromatography in the second dimension, separating the peptides according to charge and then according to hydrophobicity (Washburn et al., 2001). Other types of resin, e.g., hydrophilic interaction liquid chromatography (HILIC) and size-exclusion chromatography (SEC) have also been used in proteomic studies (Ciliar et al., 2005a). More recently, RP-RP HPLC systems using high pH and low pH mobile phases in the first and second separation dimensions, respectively, have proved to be excellent and robust for proteomics work (Ciliar et al., 2005b). This set up can be fully automated and is suitable for proteomics work where several biological replicates are needed. It can be combined with both label based and label-free quantification methods. It is also possible to achieve absolute quantification of the identified peptides.
proteins by spiking in known amounts of digested protein standards (Silva et al., 2006). Separation using only one dimension is also possible, but for complex samples or samples with high dynamic range, the number of protein identifications will be limited due to lower peak capacity compared to 2D LC strategies where two orthogonally retention mechanisms are used.

Mass spectrometry data contains peptide information at the MS and at the MS/MS level. For protein identification the MS and MS/MS data can be searched using commercial or publicly available search engines such as Sequest, Mascot, OMSSA, or X!tandem (Cottrell, 2011). Software designed for handling large proteomics datasets integrates multiple features such as identification, quantification, visualization, statistics, and reporting. These include packages such as Phenyx, Trans-Proteomic Pipeline (TPP) MaxQuant, and Peaks (Lemeer et al., 2012).

CURRENT STATUS OF BARLEY PROTEOMICS

The areas where barley proteomics has been used can be divided into (a) industry driven biotechnology, including seed germination and maturation, beer proteomes, and malting proteomes and (b) biology driven proteomics covering plant adaptation to abiotic and biotic stress and organelle function including the chloroplast that is the focus of this review.

Biotechnology driven proteomics: Understanding the mechanisms involved in seed germination and maturation processes are important aspects in the malting industry where, e.g., enzyme amount such as amylase in different cultivars influences the conversion of starch into fermentable sugars. The work with proteome analysis of different barley seed cultivars and proteomes from different developmental stages of germinating barley started in year 2002 (Finnie et al., 2002; Ostergaard et al., 2002). 2D gels were used as quality control step in the brewing industry and as a tool to detect and identify beer type specific proteins or protein isoforms that might represent taste, flavor, or texture. In the long term this will potentially enable manipulation of, e.g., flavor proteins (Tasoli et al., 2010; limmite et al., 2010). The industrial induced protein modification called Maillard reactions has also been monitored and characterized and is important for color, taste, and flavor and include thermal stability of proteins and the non-enzymatic glycation of proteins (Perrocheau et al., 2005; Okada et al., 2008; Petry-Podgorska et al., 2010).

Biological driven proteomics: 2D gel electrophoresis was the preferred method to study the proteome of barley plants exposed to salinity stress and adaptation (Fatehi et al., 2012). Barley plants, a tolerant and a salt-sensitive genotype, were exposed to 0 (control) or 300 mM NaCl. More than 500 reproducible protein spots were detected of which 44 appeared to be regulated. The regulated proteins were involved in several biological processes such as reactive oxygen species scavenging, signal transduction, and protein processing. The advantage of this 2D gel strategy for studying a non-sequenced organism was pointed out – only the regulated proteins needed to be analyzed and identified by mass spectrometry. A similar procedure was used in a nitrogen use efficiency study of barley, where proteomes from barley shoots and roots were analyzed using 2D gels. Comparative proteome analysis of plants grown with a nitrogen source and plants grown under nitrogen deficiency revealed 67 and 49 differentially regulated protein spots in roots and shoots, respectively (Moller et al., 2011a). Proteins associated with drought have also been analyzed using 2D gel proteomics (Wendtlooo Nelson and Morris, 2012). In a comparative study of barley, extracted leaf and root proteomes from boron tolerant and boron intolerant barley plants were studied using an iTRAQ based method and peptide fractionation by 2D-UC prior to mass spectrometry analysis. A total of 138 proteins were identified from leaf tissue and 341 were identified from root tissues. Only 11 out of 1608 peptides from the root tissue were regulated in the boron tolerant barley plant. Interestingly seven of these peptides identified three proteins involved in iron deficiency response (Patterson et al., 2007).

Protein modifications such as acetylation, glycosylation, and phosphorylation are important regulators of a wide range of biological processes in plants (Ytterberg and Jensen, 2010). In barley only a handful of proteomics studies deal with protein modifications. Those include protein characterization in seeds during maturation using 2D gels (Finnie et al., 2006; Laugesen et al., 2007), where spot “trains” of the same proteins appeared during maturation as a consequence of small amino acids sequence differences, processing, and differences in the degree of protein glycosylation. Phosphoprotein studies in tonoplasts revealed a total of 65 phosphopeptides, and provide a first view into the regulation of several metabolic pathways in tonoplast (Endler et al., 2009). Phosphoproteomics in plants were recently reviewed (Kline-Jonakim et al., 2011).

THE BARLEY CHLOROPLAST PROTEOME

Only a few studies concerning the barley chloroplast proteome have been published, and a comprehensive list of barley chloroplast proteins is yet to be reported. In contrast, global proteomics in Arabidopsis has been a reality for more than 20 years due to

www.frontiernlin.org
the complete sequencing of the *A. thaliana* genome at the beginning of this millennium. (Kaul et al., 2000; Wortman et al., 2003). Chloroplast proteome work in barley, wheat, and *A. thaliana* will be discussed below. Figure 2 compares the number of proteins identified in the chloroplast sub-compartments from these three species.

The **envelope membrane**: The envelope membrane of the chloroplast is the site of several important functions such as biosynthesis of glycerolipids, fatty acid export, metabolite transport, and protein import. In *A. thaliana*, Ferro et al. (2010) reported 644 proteins to be associated with the membrane envelope using both in-gel and in-solution digestion of proteins. Earlier studies of the envelope membrane using both gelLC-MS/MS and 2D LC-MS/MS produced fewer identifications (Ferro et al., 2003; Froehlich et al., 2003).

The **thylakoid membrane**: The thylakoid membrane contains the photosynthetic machinery, but also proteins involved in regulation and maintenance of this machinery. In thylakoid preparations from *A. thaliana* the number of identified proteins sums up to 242 using gelLC-MS/MS and LC-MS/MS and 154 proteins using 2D gels (Friso et al., 2004; Peltier et al., 2004). A total of 198 thylakoid luminal proteins have been identified combing data from several studies (Peltier et al., 2002; Giacomelli et al., 2006). Some of these are believed to be up to 10,000-fold less abundant than photosynthetic proteins, and can only be identified by sub-proteome isolation. Other studies on luminal proteins report less proteins (Schubert et al., 2002), which might reflect differences in purification and proteomics strategies.

The thylakoid membrane of barley was investigated by the use of BN 2D PAGE, with the aim to compare the photosynthetic machinery of barley with that of other higher plants (Ciambella et al., 2005). The number of barley thylakoid proteins identified was 45, of these 17 proteins from photosystem II (PSII), 16 from PSI, 7 proteins from cytochrome B6, and 5 from the ATP synthase. The same number of barley thylakoid proteins was reached in another study (Granvogl et al., 2006). One recent study from 2011 (Ploscher et al., 2011) compares protein complexes from etioplast and chloroplast. This is at the moment the most comprehensive chloroplast proteome study in barley. Etioplasts develop in the absence of light but can mature into chloroplasts by illumination. By using 2D BN/SDS-PAGE to separate the protein membrane complexes from etioplast and chloroplast, they found eight etioplast/chloroplast shared protein complexes, among those with high number of subunit representation were the ATPase, cytochrome b6, and the NAD(P)H dehydrogenase complex, whereas the PSI and PSII complexes were only present in the chloroplast. The use of BN gels made it possible to quantify and distinguish between monomeric, dimeric, and multimeric forms of the photosynthetic protein machinery, and to distinguish between the different subunits present in the protein complexes, making assumptions of assembly and maturation of protein complexes possible. Both automated and manually inspected fragment spectra were generated from the mass spectrometry based analysis where both online protein identification of tryptic digested proteins and off-line identification of intact small proteins extraction from gel were identified. In an earlier study by the same group (Ploscher et al., 2009), intact low molecular weight proteins from PSII were identified using off-line ESI MS.

The **stroma**: The stroma contains the genetic material and important metabolic enzymes including those involved in the Calvin cycle. Using the gelLC-MS/MS approach a total of 590 *A. thaliana* proteins were identified (Zybailov et al., 2008). Less protein identifications were obtained in an attempt to identify paralogs using 2D native gels (Peltier et al., 2006). For barley no stromal proteome studies have appeared to date, but four proteins from the above mentioned preparations (Ciambella et al., 2005; Ploscher et al., 2011) are supposedly targeted to the stroma.

![Diagram of chloroplast sub-compartments](image-url)
In a recent chloroplast proteomic study in wheat, which shares sequence similarity with barley, the gelLC-MS/MS strategy was used, and a total of 607 chloroplast proteins were identified. Of these, 145 were from stroma, 342 were from the thylakoid membrane, 163 from the lumen, and 166 proteins were integral membrane proteins (Kamal et al., 2012).

Armbruster et al. (2011) summarizes all proteomics work on plants to date being hampered by the lack of complete genomic sequence. But by the complete sequencing of the barley genome the goal to identify all of the predicted protein is within reach. The shift in analytical methods in proteomics from 2D gels toward 2D LC-MS/MS based strategies, due to completely sequenced genomes, improved nano-LC systems and faster and more sensitive tandem mass spectrometers has over the years increased the output of proteomics data. We foresee that new robust in-solution digestion protocol coupled with fast online 2D LC-MS/MS systems will enable the next major step in barley proteomics by decreasing workflow and increasing the throughput, identification rate and accuracy of quantification of the proteomics technologies.

In the near future we expect to see more quantitative proteomics studies of barley, e.g., for molecular analysis of abiotic stress, where sensitive vs non-sensitive barley genotypes are compared, with the aim of identifying protein biomarkers involved in a certain genotypic trait. Ultimately this would couple proteomics and other technologies into the multidisciplinary systems biology platform in the pursuit of sustainable crop production.

ACKNOWLEDGMENT
This work was funded by The Danish Council for Strategic Research grant number 10-093498 for the research project “NutriEfficient”.
isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome. Plant Sci. 170, 808–821.

Finnie, C., Mohdiz, S., Koo, J., and Svensson, B. (2002). Protein analysis of grain filling and seed maturation in barley. Plant Physiol. 129, 1308–1319.

Fino, G., Giacomelli, L., Rudella, A., van Gerber, S. A., Rush, J., Stemman, O., Froehlich, J. E., Wilkerson, C. G., Ray, Friso, G., Giacomelli, L., Ytterberg, A. Finnie, C., Melchior, S., Roepstorff, P., Frontiers in Plant Science Petersen et al. Functional proteomics of barley and barley chloroplasts (2006). High light W. K., McAndrew, R. S., Ostery.
of separation in two-dimensional liq-
Gebler, J. C. (2005a). Orthogonality dimensional separation of peptides and Gebler, J. C. (2005b). Two-
comparative proteomics study. ards in proteomics.
ods in proteomics. (2000). Protein identification meth-
6945.
694–1709.
Hall, M., Methfessel, Y. and Schuler, W. P. (2011). “Preparation of stroma, thylakoid membranes, and thylakoid fractions from Arabidopsis thaliana chloroplasts for proteomic analysis,” in Chloroplastic Research in Arabidopsis, ed. R. Paul Jarvis (New York: Humana Press), 207–222.
Horton, P., Park, K., O. Ohtsuki, T., Fujita, N., Harada, H., Adams- Cullot, C. J., et al. (2007). WolFP STORT: protein localization predic-
tor. Nucl. Acid. Res. 35, W583– W587.
Hirsh, R., Svensson, B., Jensen, O. N., Barkholt, V., and Finnie, C. (2000). The plasma membrane proteome of germinating barley embryos. Proteomics 6, 5707–3794.
Izume, T., Nishikawa, N., Hinota, N., Zhou, T., Usui, T., Hioki, T., Kihara, M., and Finnie, C. (2010). Construction of a novel barley proteome database and its use in gene discovery. J. Plant Biol. 53, 360–365.
Issaq, H., and Veenstra, T. (2008). Two-
dimensional polyacrylamide gel elec-
7, 2947–2962.
7, 2959–2973.
4, 79–90.
12, 478–486.
12, 279–331.
8, 361–369.
4, 79–90.
8, 361–369.
10, 124–125.
10, 2947–2966.
10, 124–125.
12, 478–486.
3, 141, 685–701.
6, 4155–4165.
44, 36–43.
10, 436–442.
12, 478–486.
10, 124–125.
10, 124–125.
12, 478–486.
10, 124–125.
10, 124–125.
12, 478–486.
10, 124–125.
10, 124–125.
12, 478–486.
10, 124–125.
10, 124–125.
12, 478–486.
10, 124–125.
10, 124–125.
12, 478–486.
10, 124–125.
12, 478–486.
10, 124–125.
12, 478–486.
10, 124–125.
10, 124–125.
12, 478–486.
10, 124–125.
12, 478–486.
10, 124–125.
12, 478–486.
10, 124–125.
12, 478–486.
10, 124–125.
12, 478–486.
10, 124–125.
12, 478–486.
10, 124–125.
12, 478–486.
10, 124–125.
12, 478–486.
10, 124–125.
12, 478–486.
Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives.

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 10 January 2013; paper pending publication: 30 January 2013; accepted: 26 February 2013; published online: 18 March 2013.

Citation: Petersen J, Rogowska-Wrzesinska A and Jensen ON (2013) Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives. Front. Plant Sci. 4:52. doi: 10.3389/fpls.2013.00052

This article was submitted to Frontiers in Plant Proteomics, a specialty of Frontiers in Plant Science.

Copyright © 2013 Petersen, Rogowska-Wrzesinska and Jensen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.