Ascospore Infection and *Colletotrichum* Species Causing Glomerella Leaf Spot of Apple in Uruguay

Sandra Alaniz, Vanessa Cuozzo, Valentina Martínez, Marciel J. Stadnik, and Pedro Mondino

1Department of Plant Protection, Faculty of Agronomy, University of the Republic, Avenue Garzón 780, Montevideo 12900, Uruguay
2Laboratory of Plant Pathology, Agricultural Science Center, Federal University of Santa Catarina, Road Admar Gonzaga 1346, Florianopolis-SC 88034-001, Brazil

(Received on July 31, 2018; Revised on December 5, 2018; Accepted on December 17, 2018)

Glomerella leaf spot (GLS) caused by *Colletotrichum* spp. is a destructive disease of apple restricted to a few regions worldwide. The distribution and evolution of GLS symptoms were observed for two years in Uruguay. The recurrent ascopore production on leaves and the widespread randomized distribution of symptoms throughout trees and orchard, suggest that ascospores play an important role in the disease dispersion. The ability of ascospores to produce typical GLS symptom was demonstrated by artificial inoculation. *Colletotrichum* strains causing GLS did not result in rot development, despite remaining alive in fruit lesions. Based on phylogenetic analysis of actin, β-tubulin and glyceraldehyde-3-phosphate dehydrogenase gene regions of 46 isolates, 25 from fruits and 21 from leaves, *C. karstii* was identified for the first time causing GLS in Uruguay and *C. fructicola* was found to be the most frequent (89%) and aggressive species. The higher aggressiveness of *C. fructicola* and its ability on to produce abundant fertile perithecia could help to explain the predominance of this species in the field.

Keywords: *Colletotrichum fructicola*, *Colletotrichum karstii*, *Malus*

Glomerella leaf spot (GLS) caused by *Colletotrichum* spp. is a destructive disease of apple restricted to a few regions worldwide. GLS was reported for the first time in the Southwest of USA in 1970 (Taylor, 1971) but only at the end of the 90s became more important when a severe outbreak was reported (Gonzalez and Sutton, 1999). In 1983, GLS appeared in Southern Brazil, and since then it has been considered one of the major diseases of apple (Sutton and Sanhueza, 1998). In 2012, it was reported in Eastern China as a new destructive disease of apple (Wang et al., 2012). Later on, in 2016 it was noticed in Uruguay causing severe defoliation in a commercial apple orchard located in the Southern part of the country (Casanova et al., 2017).

The symptoms of GLS appear during the summer on leaves and fruits of apple. On leaves they consist in brown to ochre necrotic spot lesions that grow quickly taking an irregular shape and causing generalized chlorosis. Under warm and hot conditions, severe defoliation of the affected tree can be observed. On fruits, circular, slightly sunken and corky lesions of 0.5 to 3 mm in diameter and 0.5 to 2 mm in deep appear; these lesions are usually surrounded by a red border (Casanova et al., 2017; Gonzalez and Sutton, 1999, 2004; Wang et al., 2012). Cultivars as Golden Delicious and their descendants such as cv. Galaxy or Cripps pink are highly susceptible, but others like Red Delicious and Fuji are highly resistant (Liu et al., 2016; Velho et al., 2015; Wang et al., 2015b). In Uruguay, commercial apple production is concentrated in the South where 22% of orchard trees belong to cvs. Galaxy and Cripps pink (MGAP-DIEA, 2016).

*Corresponding author.
Phone) +598-23551108, FAX) +598-23563096
E-mail) salaniz@fagro.edu.uy
ORCID
Sandra Alaniz
http://orcid.org/0000-0002-6530-7279

© This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Articles can be freely viewed online at www.ppjonline.org.
Phenotypic analyses initially identified *Glomerella cingulata*, *Colletotrichum gloeosporioides* and *C. acutatum* as the causal agents of GLS in Brazil and USA (González and Sutton, 1999, 2004; Sutton and Sanhueza, 1998) and to *G. cingulata* in China (Wang et al., 2012). Later, using multilocus genetic markers the species associated to GLS in Brazil were reidentified as *C. fructicola* (Velho et al., 2015) and *C. karstii* (Velho et al., 2014) and *C. fructicola* and *C. aegnima* in China (Wang et al., 2015b).

GLS has gradually spread to new apple production regions, increasing its economic impact worldwide. However, partially due to its recent emergence, only a few studies have been carried out so far, particularly those focusing on epidemiology and control. Acervuli and perithecia containing conidia and ascospores are produced in lesions of infected leaves (Casanova et al., 2017; Valdebenito-Sanhueza et al., 2002), but the role of both types of spores in the development of the disease, is poorly understood. Pathogenicity tests with leaves and fruits by means of artificial inoculation with conidial suspensions of *Colletotrichum* spp. have been successfully conducted (Casanova et al., 2017; Velho et al., 2014, 2015; Wang et al., 2015b). In contrast, the ability of ascospores in producing symptoms of GLS on both leaves and fruits has not been demonstrated.

In order to better understand the disease occurrence in Uruguay, the objectives of our study were i) monitor the distribution and evolution of GLS symptoms on commercial apple orchards ii) identify *Colletotrichum* species involved with GLS symptoms in fruit and leaves, and iii) test the ability of ascospores in causing GLS symptoms on apple leaves and fruits.

Materials and Methods

GLS field symptoms and fungal isolates. In summer 2015 and 2016, the presence of symptoms and their distribution were observed in trees of the GLS-diseased-orchards composed of cv. Cripps pink with cv. Galaxy as pollinator in Kiyu, San José Department (34º 38′*S* 56º 45′*W*), Uruguay. Leaves and fruits with typical GLS symptoms were collected from trees randomly selected; a maximum of three samples per tree including fruits and leaves were taken.

To isolate the fungus from the lesions, the fruits were first disinfected with 70% ethanol. After drying, fruit peel was removed from the affected area with a sterile scalpel leaving the internal lesion exposed. Small portions of the corky lesion were plated in potato dextrose agar (PDA) (Oxoid Ltd., Hampshire, England) and incubated at 25°C in the dark for 5 days. Hyphae growing out from fruit tissues were subcultured onto PDA media.

Monoascospore and monoconidial isolates were obtained directly from leaf lesions under magnifying glass. For this, a single perithecium or acervulus was transferred from leaf lesions to a tube containing 300 µl of sterile distilled water (SDW) (one per leaf) and vigorously stirred using a vortex. Immediately, 100 µl of ascospores or conidial suspension was placed onto PDA supplemented with 0.4 g/l of streptomycin sulphate (Sigma-Aldrich, China). After 24 h of incubation at 25°C in the dark, a germinated ascospore or conidium was transferred to PDA medium and incubated to the same conditions.

The *Colletotrichum* spp. isolates were stored at -20°C in colonized sterile paper filters dried with silica-gel (Peever et al., 1999). Isolates were deposited in the culture collection of the Department of Plant Protection, Faculty of Agronomy, University of the Republic Uruguay.

Morphological characterization. All *Colletotrichum* isolates were grown on PDA medium for two to four weeks at 25°C and 12 h photoperiod under near ultraviolet light. Macroscopic characteristics, such as colony colour and presence of reproductive structures as perithecia, acervuli, ascospores and conidia were recorded.

PCR amplification, sequencing and phylogenetic analysis. Mycelium and reproductive structures from all isolates grown on PDA for one week at 25°C in the dark were scraped off with a spatula and placed in 2.0 ml microtubes. Total DNA was extracted using a protocol described by Paolocci et al. (1999).

The partial actin (ACT), β-tubulin (BTUB2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene regions were amplified and sequenced for all *Colletotrichum* sp. isolates. The primer pairs used were ACT-512F/ACT-783R (Carbone and Kohn, 1999), BT2F/BT4R (Woudenberg et al., 2009) and GDF1/GDR1 (Guerber et al., 2003) respectively.

Each PCR reaction contained 1x PCR buffer, 2.5 mM MgCl₂, 400 µM of each dNTP, 0.4 µM of each primer, 1 U of DNA polymerase (Tiangen, China) and 1 µl of template DNA. The PCR reaction mix was adjusted to a final volume of 40 µl with MQ water. The amplifications were performed on a MultiGene™ Mini (Labnet International, Inc., USA). The program run was as follows: an initial step of 94°C for 5 min followed by 34 cycles of denaturation at 94°C for 45 s, annealing at 52°C (57°C for ITS) for 30 s, and elongation at 72°C for 45 s. A final extension was performed at 72°C for 10 min. The PCR products were analyzed in 1.5% agarose gels stained with GelRed™ and
visualized under UV light. A gene ruler 100-bp DNA ladder plus was used as a molecular weight marker (Thermo, Lithuania).

The PCR products were purified and sequenced in Macrogen Inc., Seoul, Korea. The DNA sequences were edited using DNAman 8.0 program (Lynnon Corporation). The sequences were aligned using ClustalW program (Larkin et al., 2007), available within MEGA 7.0.26 program (Kumar et al., 2016). The sequences derived from this study were deposited in the GenBank (Table 1). In the alignments,

Specie Isolate	GenBank accession no.	Table 1. Isolates of Colletotrichum, host and cultivar, isolation organ, origin and GenBank accession no. of isolates of apple generated in this study and obtained from GenBank
C. acutatum CBS 112996	Carica papaya	Australia JQ005839 JQ005860 JQ948677
C. aenigma C1253.4	Persea americana	Israel JX009443 JX010389 JX010044
C. aenigma C1253.6	Pyrus pyriforma	Japan JX009519 JX010390 JX009913
C. annellatum CBS 129826	Hevea indica	leaf Colombia JQ005570 JQ005656 JQ005309
C. alienum C824	Malus domestica	New Zealand JX009572 JX010411 JX010028
C. alienum C1194.22	Persea americana	New Zealand JX009552 JX010386 JX009959
C. fructicola C1275.7	Ficus edulis	Germany JX009495 JX010400 JX009923
C1276.4	Dioscorea alata	Nigeria JX009436 JX010401 JX010041
L48*	Malus domestica, Galaxy	leaf Uruguay MG491754 MG491713 MG491672
L49*	Malus domestica, Galaxy	leaf Uruguay MG491755 MG491714 MG491673
L52*	Malus domestica, Galaxy	leaf Uruguay MG491756 MG491715 MG491674
L53*	Malus domestica, Galaxy	leaf Uruguay MG491757 MG491716 MG491675
L54*	Malus domestica, Galaxy	leaf Uruguay MG491758 MG491717 MG491676
L56*	Malus domestica, Galaxy	leaf Uruguay MG491759 MG491718 MG491677
L57*	Malus domestica, Galaxy	leaf Uruguay MG491760 MG491719 MG491678
L58*	Malus domestica, Galaxy	leaf Uruguay MG491761 MG491720 MG491679
L60*	Malus domestica, Galaxy	leaf Uruguay MG491762 MG491721 MG491680
L61*	Malus domestica, Cripss pink	leaf Uruguay MG491763 MG491722 MG491681
L63*	Malus domestica, Cripss pink	leaf Uruguay MG491764 MG491723 MG491682
L64*	Malus domestica, Cripss pink	leaf Uruguay MG491765 MG491724 MG491683
L66*	Malus domestica, Galaxy	leaf Uruguay MG491766 MG491725 MG491684
L67*	Malus domestica, Galaxy	leaf Uruguay MG491767 MG491726 MG491685
L68*	Malus domestica, Galaxy	leaf Uruguay MG491768 MG491727 MG491686
L69*	Malus domestica, Galaxy	leaf Uruguay MG491769 MG491728 MG491687
F70*	Malus domestica, Galaxy	fruit Uruguay MG491770 MG491729 MG491688
F71*	Malus domestica, Galaxy	fruit Uruguay MG491771 MG491730 MG491689
F72*	Malus domestica, Galaxy	fruit Uruguay MG491772 MG491731 MG491690
F73*	Malus domestica, Galaxy	fruit Uruguay MG491773 MG491732 MG491691
F74*	Malus domestica, Galaxy	fruit Uruguay MG491774 MG491733 MG491692
F75*	Malus domestica, Galaxy	fruit Uruguay MG491775 MG491734 MG491693
F76*	Malus domestica, Galaxy	fruit Uruguay MG491776 MG491735 MG491694
F78*	Malus domestica, Galaxy	fruit Uruguay MG491777 MG491736 MG491695
F79*	Malus domestica, Galaxy	fruit Uruguay MG491778 MG491737 MG491696
F80*	Malus domestica, Galaxy	fruit Uruguay MG491779 MG491738 MG491697
F81*	Malus domestica, Galaxy	fruit Uruguay MG491780 MG491739 MG491698
F82*	Malus domestica, Galaxy	fruit Uruguay MG491781 MG491740 MG491699
F83*	Malus domestica, Galaxy	fruit Uruguay MG491782 MG491741 MG491700
F84*	Malus domestica, Galaxy	fruit Uruguay MG491783 MG491742 MG491701
F85*	Malus domestica, Galaxy	fruit Uruguay MG491784 MG491743 MG491702
related sequences and sequences of the phylogenetically closest species (including ex-type) of *C. boninense* and *C. gloeosporioides* species complexes obtained from the GenBank, were incorporated (Damm et al., 2012; Weir et al., 2012). The ex-type of *C. acutatum* CBS 112996 was used as the out-group. The sequence alignment was deposited in TreeBASE (www.treebase.org) under the accession number S21955.

Phylogenetic analyses were performed for each gene region separately as well as for the multi-locus alignment using MEGA 7.0.26 program for maximum likelihood (ML) and maximum parsimony (MP) analysis. To confirm that the three sequence datasets were congruent and combinable, highly supported clades among the trees generated from the different data sets for MP and ML analysis were compared to detect conflicts. High support typically refers to bootstrap support values ≥ 70% (Hillis and Bull, 1993).

ML analysis was based on the Tamura-Nei model and the tree was drawn to scale, with branch lengths measured in the number of substitutions per site. MP analysis was performed using the subtree pruning regrafting (SPR) algorithm with search level 1, in which the initial trees were obtained with random additions of sequences (10 replicates). All characters were unordered and of equal weight. Gaps were treated as missing data. The tree length (TL), consistency index (CI), and retention index (RI) were recorded. The robustness of the the ML and MP trees was assessed by bootstrap analysis with 1,000 replicates (Hillis and Bull, 1993).

Pathogenicity tests. The pathogenicity of the isolate F51 of *C. karstii* was tested with conidia suspension, whereas the perithecial isolates L49, L53, L64, F71 and F84 of *C. fructicola* were used to verify the ability of ascospores in causing GLS symptoms. The six strains were randomly selected and tested against both apple fruits and leaves.

Isolates were grown on PDA at 25ºC for three weeks with a 12 h photoperiod under near ultra violet light to induce sporulation. To prepare ascospore suspensions, perithecia were removed with sterile fine forceps from

Table 1. Continued

Specie	Isolate	Host, cultivar	Organ	Country	GenBank accession no.		
					Actin	BTUB2	GAPDH
F86	Malus domestica, Cripss pink	fruit	Uruguay	MG491785	MG491744	MG491703	
F87	Malus domestica, Cripss pink	fruit	Uruguay	MG491786	MG491745	MG491704	
F88	Malus domestica, Cripss pink	fruit	Uruguay	MG491787	MG491746	MG491705	
F89	Malus domestica, Cripss pink	fruit	Uruguay	MG491788	MG491747	MG491706	
F90	Malus domestica, Cripss pink	fruit	Uruguay	MG491789	MG491748	MG491707	
F91	Malus domestica, Cripss pink	fruit	Uruguay	MG491790	MG491749	MG491708	
F92	Malus domestica, Cripss pink	fruit	Uruguay	MG491791	MG491750	MG491709	
F93	Malus domestica, Cripss pink	fruit	Uruguay	MG491792	MG491751	MG491710	
F94	Malus domestica, Cripss pink	fruit	Uruguay	MG491793	MG491752	MG491711	
F95	Malus domestica, Cripss pink	fruit	Uruguay	MG491794	MG491753	MG491712	
C. karstii	CORCG6	Vanda sp.		China	HM581995	HM585428	HMS85391
	CBS 112982	Protea cynaroides		Zimbabwe	JQ005531	JQ005617	JQ005270
	BRI P28443a	Magnifera indica		Australia	JQ005551	JQ005637	JQ005290
L51	Malus domestica, Galaxy	leaf	Uruguay	MG491805	MG491800	MG491795	
L55	Malus domestica, Galaxy	leaf	Uruguay	MG491806	MG491801	MG491796	
L59	Malus domestica, Galaxy	leaf	Uruguay	MG491807	MG491802	MG491797	
L62	Malus domestica, Cripss pink	fruit	Uruguay	MG491808	MG491803	MG491798	
L65	Malus domestica, Galaxy	leaf	Uruguay	MG491809	MG491804	MG491799	
C. mparicola	C1275.24	Nupharlutea		USA	JX009486	JX010397	JX009936
	C1275.25	Nupharlutea		USA	JX009437	JX010398	JX009972
	C1275.26	Nymphaeae ordorata		USA	JX009582	JX010399	JX010031
C. petchi	CBS 3 78.94	Dracaena marginata	leaf	Italy	JQ005571	JQ005657	JQ005310
	CBS 118193	Dracaena sanderana	leaf	China	JQ005575	JQ005661	JQ005314
C. phyllanthi	CBS175.67	Phyllanthus acidus		India	JQ005569	JQ005655	JQ005308

Ex-types isolates are indicated as bold bold

*Indicate isolates generated in this study
Fig. 1. Symptoms of Glomerella leaf spot (GLS) on apple. (A) Initial brown to ochre necrotic leaf lesions and (B) advanced, irregular and necrotic leaf lesions associated to chlorosis. (C) Fruit lesions surrounded by a red border. (D) Random distribution of leaf lesions in the tree. (E) Random distribution of symptoms in the orchards and severe defoliation in cv. Galaxy and (F) cv. Cripps pink. (G) Reproductive structures of *Colletotrichum* spp. over leaf lesion (black arrow). Structures present on leaves with typical symptoms of Glomerella leaf spot disease, collected from apple orchards. Detail of (H) acervuli and (I) perithecia. Microscopic detail of crushed (J) acervulus showing conidiphore and conida and (K) peritecium showing asci and ascospores.
the colonies of *C. fructicola* growing on PDA, placed into sterile tube of 2 ml with SDW and shortly vortexed during one minute. To prepare the conidial suspension, colony of *C. karstii* growing on PDA was flooded with 10 ml of SDW and then scraped with a sterile spatule. In both cases, the resulting suspension was filtered through two layers of cheese cloth and adjusted with a counting chamber to 1×10^5 ascospores or conidia/ml.

Young terminal twigs of cv. Galaxy were collected from a disease-free commercial apple orchard. For the first assay, fully developed young leaves were selected and placed individually in Petri dishes containing moistened sterile paper filter. To avoid the dehydration, the petiole of each leaf was wrapped with wet cotton. The detached leaves were inoculated by spraying (three leaves per isolate) and then incubated at 25°C. Control leaves were spraying with SDW.

For the second assay, another set of young terminal twigs with 5-6 leaves were planted individually in glass flasks containing wet sand. The twigs were inoculated by spraying the spore suspension (five twigs per isolate). They were immediately covered with a moistened plastic bag and incubated at 25°C. Control twigs were spraying with SDW.

Asymptomatic apple fruits of the cv. Cripps pink at the beginning of colour change were harvested from a disease-free commercial orchard. All fruits were surface-disinfested with 70% ethanol. After that, fruits were inoculated by spraying (five per treatment) and incubated in moistened plastic bags at 25°C. Control fruits were spraying with SDW.

All assays were monitored daily; the initial symptoms and their evolution as well the presence of reproductive structures of *Colletotrichum* were recorded. *C. karstii* was reisolated from leaves and fruits to complete Koch’s postulates.

Results

GLS field symptoms and fungal isolates. Typical GLS symptoms (Casanova et al., 2017) were observed on leaves and fruits in both years and on both apple cvs., Cripps pink and Galaxy. The first GLS disease symptoms were observed during January, primarily occurring in leaves (Fig. 1A). The leaf lesions rapidly evolved into chlorosis (Fig. 1B) and, approximately one month later, a severe defoliation (approximately 50% of fallen leaves) was observed (Fig. 1E and 1F). The fruit lesions did not evolve into rot remaining as small corky lesions (Fig. 1C).

The spatial distribution of symptoms was widespread randomized within orchards as well as individual trees. In each apple tree, infected leaves and fruits were observed at different heights, even in the lower inner tree canopy and terminal twigs (Fig. 1D). Presence of acervuli (Fig. 1H) and perithecia (Fig. 1I) containing conidia and ascospores, respectively, were consistently observed in leaf lesions (Fig. 1G), but never in fruit lesions.

Typical colonies of the *Colletotrichum* fungus, *i.e.* showing white to orange or white to gray mycelium colour, presence of orange-salmon gelatinous masses composed of hyaline, fusiform to obtuse conidia, successfully grew from

Fig. 2. Colony morphology of *Colletotrichum fructicola* isolate F71 (right) with abundant black perithecia and of *C. karstii* isolate L51 (left) after three weeks growing on PDA.
Fig. 3. Maximum likelihood phylogenetic tree generated from concatenated actin, β-tubulin and glyceraldehyde-3-phosphate dehydrogenase sequences alignment of 46 Uruguayan isolates obtained from leaf (indicated with L) and fruit (indicated with F) of apple with GLS (Glomerella Leaf Spot) symptoms. Sequences of the representative species of Colletotrichum boninense and C. gloeosporioides species complexes extracted from GenBank (ex-type are indicated as bold) were included. C. acutatum CBS 112996 was used as the outgroup. Bootstrap support values of maximum likelihood and maximum parsimony are shown at the nodes before and after the bar, respectively.
fruit and leaf infected tissues. Forty-six isolates of *Colletotrichum* were obtained, 21 originated from leaves and 25 from fruits (Table 1).

Morphological characterization. Initially the colony color of all the isolates on PDA was predominately white, but a few days later, they gradually changed to pale-gray to gray.

Reproductive structures were observed in all colonies. For the strains phylogenetically identified as *C. fructicola*, the predominating structures were perithecia containing asci with ascospores, while for those of *C. karstii* only conidia were found (Fig. 2).

PCR amplification, sequencing and phylogenetic analysis. Amplicons of approximately 260, 500 and 250 bases were amplified for the ACT, BTUB2 and GAPDH genes regions, respectively, in all isolates (Table 1).

The three sequence data sets of species belonging *C. boninense* and *C. gloeosporioides* species complex, did not show major conflicts in tree topology, indicating that the three genes could be combined. The multi-gene analysis consisted of 905 characters (including alignment gaps), of which 216 characters were parsimony-informative. MP analysis resulted in three most parsimonious trees (TL = 369 step, CI = 0.94, RI = 0.99).

Two main clades are recognized in the phylogenetic tree drawn from the multi-gene analysis. One clade is composed of species included in the *C. gloeosporioides* species complex and most of the Uruguayan isolates resolved as *C. fructicola* (41 isolates). The other main clade is composed of species included in the *C. boninense* species complex and five Uruguayan isolates identified as *C. karstii*. The main clades and sub-clades bootstrap support, robustly resolved all *Colletotrichum* species for both methods of analysis (Fig. 3). The isolates identified as *C. fructicola* belong to the same haplotype, except L48 that differs in one nucleotide in the BTUB2 region. With regard to *C. karstii* three haplotypes were found, L55 and L62, L59 and L65 with two different nucleotides in the GAPDH region and L51 with one different nucleotide in the BTUB2 region.

Pathogenicity tests. Both conidia of *C. karstii* and ascospores of *C. fructicola*, caused typical GLS symptoms in apple leaves and fruits (Table 2). No symptoms were observed in control treatments (Fig. 4A).

The first symptoms consisted in purple to ochre necrotic spot-like lesions on leaves and were already visible three and seven days after inoculation with *C. fructicola* (Fig. 4B and C). Lesions in leaves inoculated with *C. fructicola* evolved rapidly to larger, irregular shape and necrotic lesions at seven days from inoculation

Table 2. Result of pathogenicity test of *Colletotrichum fructicola* and *C. karstii* isolates on apple leaves cv. Galaxy and apple fruits cv. Cripps pink

Specie	Isolate	Spore type	Tissue inoculated	Initial symptoms (days from inoculation)	Defoliation (10 days after inoculation)	Presence of acervuli on leaves
C. fructicola	L49	ascospores	detached leaves	3	severe	yes
			detached branches fruit	3		
			detached leaves	3		
			detached branches fruit	21		
	L53	ascospores	detached branches fruit	3	severe	yes
			detached leaves	3		
			detached branches fruit	21		
	L64	ascospores	detached branches fruit	3	severe	yes
			detached leaves	3		
			detached branches fruit	21		
	F71	ascospores	detached branches fruit	3	severe	yes
			detached leaves	3		
			detached branches fruit	21		
	F84	ascospores	detached branches fruit	3	severe	yes
			detached leaves	3		
			detached branches fruit	21		
C. karstii	L51	conidia	detached leaves	7	slight	no
			detached branches fruit	21		
Fig. 4. Pathogenicity tests on twigs and leaves of apple cv. Galaxy and fruits cv. Cripps pink. (A) Twigs used as control ten days after inoculation with sterl destiled wather. (B) Initial symptom on leaves three days after inoculation with the isolate L49 of Colletotrichum fructicola. (C) Detail of initial symptoms on leaves. (D) Necrotic lesions on leaves and presence abundant acervuli on leaf seven days after inoculation with the isolate F71 of C. fructicola. (E) Necrotic lesions on destached leaves seven days after inoculathing with the isolate L53 of C. fructicola (above) and leaves used as control (below). (F) Mild defoliation ten days after inoculation with the isolate L51 of C. karstii. (G) Severe defoliation ten days after inoculation with the isolate L49 of C. fructicola. (H) Lesions fruit (black arrows) 21 days after inoculation with the the isolate L53 of C. fructicola. (I) Detail of lesions fruit (J) Ascospore germinated of isolate L49 of C. fructicola after 12 hours of inoculation on apple leaf; (a) ascospore, (gt) germination tube and (ap) appressoria.
Glomerella Leaf Spot of Apple

(Fig. 4D and E) and to severe defoliation three days later (Fig. 4F). When inoculated with _C. karstii_ the defoliation was mild at ten days from the inoculation (Fig. 4G). Abundant acervuli were present in leaf lesions caused by isolates of _C. fructicola_ (Fig. 4D), but never were observed in leaf lesions caused by _C. karstii_.

On fruits, symptoms similarly appeared 21 days after inoculation when inoculated with _C. fructicola_ or _C. karstii_ isolates. The symptoms consist in small corky lesions that did not evolve to rot (Fig. 4H and I). No reproductive structures were observed on these lesions.

Cultural and conidial characteristics of isolates obtained from inoculated leaves and fruits with _C. karstii_, were confirmed on PDA as previously described fulfilling Koch’s postulates.

Discussion

In Uruguay, GLS was recently reported by Casanova et al. (2017) occurring in a small producing area and, to the best of our knowledge, it still remains restricted to the same locality. The reasons why GLS has not yet spread further are unknown. Microclimatic conditions in this locality seem particularly conductive to GLS development and may indeed have helped to create this situation. It is known that GLS requires warm temperatures and high humidity (Casanova et al., 2017; González and Sutton, 1999; Velho et al., 2015; Wang et al., 2015a). The GLS-infected apple orchards were established in a low area surrounded by windbreaks, hindering ventilation and possibly resulting in better environmental conditions to the pathogen. Furthermore, the affected area is slightly distant from other commercial apple orchards; being the nearest seven kilometers away.

The widespread randomized distribution of symptoms observed throughout trees and orchards where GLS is present, suggests that ascospores may play a pivotal role in the dispersion of this disease. In this work, ascospores were proofed for the first time to be pathogenic to leaves and fruits confirming its potential to cause infections. The frequent presence of acervuli and perithecia containing conidia and ascospores, respectively, in leaf lesions indicates that both types of spores are regularly produced by most strains of _Colletotrichum_ causing GLS. In contrast to asexual spores of _Colletotrichum_ which are rain-splash-dispersed (Perfect et al., 1999; Sutton and Shane, 1983), those sexually formed are wind-dispersed (Sutton and Shane, 1983). Conidia are released by rain splash and carried by water droplets to short distances generating a disease spatial gradient in focus pattern within the orchard. On the other hand, ascospores are ejected up to a small distance and, usually, dispersed by air currents reaching longer distances and leading to a randomized disease distribution throughout the orchard. The occurrence of symptoms in leaves on the top of the apple tree canopy, strongly suggests that infection has happened with ascospores carried by wind.

In this work it was confirmed that _Colletotrichum_ remains alive in the small fruit corky lesions. Cheon et al. (2016) also were able to isolate _C. gloeosporioides_ from symptoms in apple fruits comparable to those of GLS. Furthermore, this fungus did not result in rot development, probably because it could not grow out from small cork-like lesions to surrounding healthy tissues of fruits. Interestingly, in this confined situation it did not build any reproductive structure. It seems that apple fruits can active some resistance mechanisms able to avoid fungus growth from this lesion. Although most GLS-isolates do not have the ability to produce fruit rot, there are a few able to do this (Velho et al., 2015). Thus, investigating the reasons why GLS-isolates are in general not able to cause fruit rot would be an exciting topic for future research.

Based on phylogenetic analysis of GAPDH, BTUB and ACT genomic regions and pathogenicity test, _C. karstii_ was found as a new species causing GLS in Uruguay. _C. fructicola_ had already been reported associated with this disease by Casanova et al. (2017), but in this work appears as the dominant species (89%). _C. fructicola_ and _C. karstii_ were identified in Brazil as the causal agent of GLS (Velho et al., 2014, 2015) and _C. fructicola_ as one of the two species associated to GLS in China (Wang et al., 2015b). The results of this and other studies (Rockenbach et al., 2016; Velho et al., 2015) indicate that _C. fructicola_ have an extremely aggressive behavior; within three days it causes visible symptoms on leaves inoculated with conidia or ascospores and a few days later severe defoliation. Moreover, under favorable conditions, warm temperatures and high relative humidity, abundant reproductive structures are formed on leaf lesions. In contrast, _C. karstii_ develops much more slowly and reproductive structures seldom appear. Likewise, all isolates of _C. fructicola_ grown in laboratory produced conidia and perithecia containing ascospores, but not _C. karstii_.

The species of _Colletotrichum_ found in Uruguay causing GLS are similar to those reported in Southern Brazil. This suggests that apple plants imported from Brazil could have introduced the disease in Uruguay. Another hypothesis is that isolates of _C. fructicola_ and _C. karstii_ from Uruguay responsible for GLS have arisen from isolates capable of causing bitter rot. However, _C. karstii_ has not been associated with bitter rot disease in Uruguay (Alaniz et al., 2015). Moreover, Uruguayan populations of _C. fructicola_ causing
bitter rot disease were found to be genetically distinct from
Brazilian isolates obtained from GLS and bitter rot diseases
(Rockenbach et al., 2016). Therefore, new population stud-
ies are needed to compare genetic structure of C. fructicola
populations causing GLS and bitter rot in Uruguay and
Brazil. This might help to elucidate the origin of the GLS
in Uruguay.

In summary, the consistency and aggressiveness of the
symptoms observed in this and other studies (Gonzalez
and Sutton, 1999; Sutton and Sanhueza, 1998; Wang et al.,
2015b), indicate the high impact potential of GLS in caus-
ing severe losses on susceptible cultivars if GLS spreads
out to further apple producing areas in Uruguay. Develop-
ing new strategies for GLS management is extremely nec-
essary because control methods have been currently based
on regular applications of fungicides during the summer.

Probably, the simultaneously production of ascospores and
conidia might be, however, difficult due to their distinct
and complementary roles in the development of disease
epidemics.

References

Alaniz, S., Hernández, L. and Mondino, P. 2015. Colletotrichum
fructicola is the dominant and one of the most aggressive
species causing bitter rot of apple in Uruguay. Trop. Plant
Pathol. 40:265-274.

Carbone, I. and Kohn, L. M. 1999. A method for designing
primer sets for speciation studies in filamentous ascomycetes.
Mycologia 91:553-556.

Casanova, L., Hernández, L., Martinez, E., Velho, A. C., Rocken-
bach, M. F., Stadnik, M. J., Alaniz, S. and Mondino, P. 2017.
First report of glomerella leaf spot of apple caused by Colle-
rotichum fructicola in Uruguay. Plant Dis. 101:834.

Cheon, W., Lee, S. G. and Jeon, Y. 2016. First report on fruit spot
caused by Colletotrichum gloeosporioides in Apple (Malus
pumila Mill.) in Korea. Plant Dis. 100:210.

Damm, U., Cannon, P. F., Woudenberg, J. H. C., Johnston, P. R.,
Weir, B. S., Tan, Y. P., Shivas, R. G. and Crous, P. W. 2012.
The Colletotrichum boninense species complex. Stud. Mycol.
73:1-36.

González, E. and Sutton, T. B. 1999. First report of glomerella
leaf spot (Glomerella cingulata) of apple in the United States.
Plant Dis. 83:1074.2

González, E. and Sutton, T. B. 2004. Population diversity within
isolates of Colletotrichum spp. causing glomerella leaf spot
and bitter rot of apples in three orchards in North Carolina.
Plant Dis. 88:1335-1340.

Guerber, J. C., Liu, B., Correll, J. C. and Johnston, P. R. 2003.
Characterization of diversity in Colletotrichum acutatum sen-
su lato by sequence analysis of two gene introns, mtDNA and
intron RFLPs, and mating compatibility. Mycologia 95:872-
895.

Hillis, D. and Bull, J. 1993. An empirical test of bootstrapping as
a method for assessing confidence in phylogenetic analysis.
Syst. Biol. 42:182-192.

Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular
evolutionary genetics analysis version 7.0 for bigger datasets.
Mol. Biol. Evol. 33:1870-1874.

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., Mc-
gettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M.,
Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Hig-
gins, D. G. 2007. Clustal W and Clustal X version 2.0. Bioin-
formatics 23:2947-2948.

Liu, Y., Li, B., Wang, C., Liu, C., Kong, X., Zhu, J. and Dai, H.
2016. Genetics and molecular marker identification of a re-
sistance to glomerella leaf spot in apple. Hort. Plant J. 2:121-
125.

MGAP-DIEA. 2016. Agricultural Statistical Yearbook 2016.
URL: https://descargas.mgap.gub.uy/DIEA/Documentos
compartidos/Anuario2016/DIEA-Anuario2016cd.pdf [12
March 2019].

Paolacci, F., Rubini, A., Granetti, B. and Arcioni, S. 1999. Rapid
molecular approach for reliable identification of Tuber spp.
ectomycorrhizae. FEMS Microbiol. Ecol. 28:23-30.

Peever, T. L., Canihos, Y., Olsen, L., Ibañez, A., Liu, Y. C. and
Timmer, L. W. 1999. Population genetic structure and host
specificity of Alternaria spp. causing brown spot of Minneola
tangelo and rough lemon in Florida. Phytopathology 89:851-
860.

Perfect, S. E., Hughes, H. B., O’Connell, R. J. and Green, J. R.
1999. Colletotrichum: model genus for studies on pathology
and fungal-plant interactions. Fungal Genet. Biol. 27:186-
198.

Rockenbach, M. F., Velho, A. C., Gonalves, A. E., Mondino, P.
E., Alaniz, S. M. and Stadnik, M. J. 2016. Genetic structure
of Colletotrichum fructicola associated to apple bitter rot and
glomerella leaf spot in southern Brazil and Uruguay. Phyto-
pathology 106:774-781.

Sutton, T. B. and Shane, W. W. 1983. Epidemiology of the perfect
stage of Glomerella cingulata on apples. Phytopathology 73:1179-1183.

Sutton, T. B. and Sanhueza, R. M. V. 1998. Necrotic leaf blotch
of golden delicious - Glomerella leaf spot: A resolution of
common names. Plant Dis. 82:267-268.

Taylor, J. 1971. A necrotic leaf blotch and fruit rot of apple caused
by a strain of Glomerella cingulata. Phytopathology 61:221-
224.

Velho, A. C., Stadnik, M. J., Casanova, L., Mondino, P. and
Alaniz, S. 2014. First report of Colletotrichum karstii causing
glomerella leaf spot on apple in Santa Catarina State, Brazil.
Plant Dis. 98:157.

Velho, A. C., Alaniz, S., Casanova, L., Mondino, P. and Stadnik,
M. J. 2015. New insights into the characterization of Colle-
rotichum species associated with apple diseases in southern
Brazil and Uruguay. Fungal Biol. 119:229-244.
Wang, B., Li, B. H., Dong, X. L., Wang, C. X. and Zhang, Z. F. 2015a. Effects of temperature, wetness duration, and moisture on the conidial germination, infection, and disease incubation period of *Glomerella cingulata*. *Plant Dis.* 99:249-256.

Wang, C. X., Zhang, Z. F., Li, B. H., Wang, H. Y. and Dong, X. L. 2012. First report of glomerella leaf spot of apple caused by *Glomerella cingulata* in China. *Plant Dis.* 96:912.

Wang, W., Fu, D. D., Zhang, R. and Sun, G. Y. 2015b. Etiology of apple leaf spot caused by *Colletotrichum* spp. *Mycosistema* 34:13-25 (in Chinese).

Weir, B. S., Johnston, P. R. and Damm, U. 2012. The *Colletotrichum gloeosporioides* species complex. *Stud. Mycol.* 73:115-180.

Woudenberg, J. H., Aveskamp, M. M., de Gruyter, J., Spiers, A. G. and Crous, P. W. 2009. Multiple *Didymella* teleomorphs are linked to the *Phoma clematidina* morphotype. *Persoonia* 22:56-62.