On the Classification of Homogeneous Hypersurfaces in Complex Space

A. V. Isaev

We discuss a family M_n^t, with $n \geq 2$, $t > 1$, of real hypersurfaces in a complex affine n-dimensional quadric arising in connection with the classification of homogeneous compact simply-connected real-analytic hypersurfaces in \mathbb{C}^n due to Morimoto and Nagano. To finalize their classification, one needs to resolve the problem of the embeddability of M_n^t in \mathbb{C}^n for $n = 3, 7$. We show that M_7^t is not embeddable in \mathbb{C}^7 for every t and that M_3^t is embeddable in \mathbb{C}^3 for all $1 < t < 1 + 10^{-6}$. As a consequence of our analysis of a map constructed by Ahern and Rudin, we also conjecture that the embeddability of M_3^t takes place for all $1 < t < \sqrt{(2 + \sqrt{2})/3}$.

1 Introduction

For $n \geq 2$, consider the n-dimensional affine quadric in \mathbb{C}^{n+1}:

$$Q^n := \{(z_1, \ldots, z_{n+1}) \in \mathbb{C}^{n+1} : z_1^2 + \ldots + z_{n+1}^2 = 1\}. \quad (1.1)$$

The group $\text{SO}(n+1, \mathbb{R})$ acts on Q^n, and the orbits of this action are the sphere $S^n = Q^n \cap \mathbb{R}^{n+1}$ as well as the compact strongly pseudoconvex hypersurfaces

$$M_n^t := \{(z_1, \ldots, z_{n+1}) \in \mathbb{C}^{n+1} : |z_1|^2 + \ldots + |z_{n+1}|^2 = t\} \cap Q^n, \; t > 1. \quad (1.2)$$

These hypersurfaces play an important role in the classical paper [MN], where the authors set out to determine all compact simply-connected real-analytic hypersurfaces in \mathbb{C}^n homogeneous under an action of a Lie group by CR-transformations. They showed that every such hypersurface is CR-equivalent to either the sphere S^{2n-1} or, for $n = 3, 7$, to the manifold M_t^n for some t. However, the question of the existence of a real-analytic CR-embedding of M_t^n in \mathbb{C}^n for $n = 3, 7$ was not clarified, thus the classification in these two dimensions was not fully completed.

In this paper, we first discuss the family M_t^n for all $n \geq 2$, $t > 1$ (see Section 2). We observe that a necessary condition for the existence of a real-analytic CR-embedding of M_t^n in \mathbb{C}^n is the embeddability of the sphere

Mathematics Subject Classification: 32C09, 32V40

Keywords and phrases: global embeddability of CR-manifolds in complex space
S^n in \mathbb{C}^n as a totally real submanifold (see Corollary 2.3). The problem of the existence of a totally real embedding of S^n in \mathbb{C}^n was considered by Gromov (see [Gr1] and p. 193 in [Gr2]), Stout-Zame (see [SZ]), Ahern-Rudin (see [AR]), Forstnerič (see [F1]–[F3]). In particular, it has turned out that S^n admits a totally real embedding in \mathbb{C}^n only for $n = 3$, hence Corollary 2.3 implies that M^n_t cannot be real-analytically CR-embedded in \mathbb{C}^n for all t if $n \neq 3$. For $n \neq 3, 7$ the non-embeddability of M^n_t was established in [MN] by a different method, whereas for $n = 7$ it appears to be a new result (see Corollary 2.4). Furthermore, since S^3 is a totally real submanifold of Q^3, any real-analytic totally real embedding of S^3 into \mathbb{C}^3 extends to a biholomorphic map defined in a neighborhood of S^3 in Q^3. Owing to the fact that M^3_t accumulate to S^3 as $t \to 1$, this observation implies that M^3_t admits a real-analytic CR-embedding in \mathbb{C}^3 for all t sufficiently close to 1. Thus, the classification of homogeneous compact simply-connected real-analytic hypersurfaces in complex dimension 3 is special as it includes manifolds other than the sphere S^5.

Next, in [AR] an explicit polynomial totally real embedding f of S^3 into \mathbb{C}^3 was constructed, and in Section 3 we study the holomorphic continuation $F : \mathbb{C}^4 \to \mathbb{C}^3$ of f in order to determine the interval of parameter values $1 < t < t_0$ for which the extended map yields an embedding of M^3_t into \mathbb{C}^3. It turns out that the interval is rather small, namely $t_0 \leq \sqrt{(2 + \sqrt{2})/3} \approx 1.07$ (see Proposition 3.1). A lower bound for t_0 is given in Theorem 3.2, where we show that $t_0 \geq 1 + 10^{-6}$. Further, our discussion of the fibers of the map F leads to the conjecture asserting that one can in fact take $t_0 = \sqrt{(2 + \sqrt{2})/3}$ (see Conjecture 3.4). For all other values of t the problem of the embeddability of M^3_t remains completely open.

Acknowledgement. We would like to thank F. Forstnerič, X. Huang, A. Huckleberry and S. Nemirovskii for useful discussions. This work is supported by the Australian Research Council.

2 The family M^n_t

We start by discussing the family M^n_t for all $n \geq 2$, $t > 1$. First of all, we note that the hypersurfaces in the family are all pairwise CR-nonequivalent (see Example 13.9 in [KZ]). Next, computing the isotropy subgroups of the $\text{SO}(n + 1, \mathbb{R})$-action on M^n_t, one observes that M^n_t is diffeomorphic to $\text{SO}(n + 1, \mathbb{R})/\text{SO}(n - 1, \mathbb{R})$. On the other hand, from (1.1), (1.2) we see that

\[M^n_t = \left\{ x + iy \in \mathbb{C}^{n+1} : ||x|| = \sqrt{\frac{t+1}{2}}, ||y|| = \sqrt{\frac{t-1}{2}}, (x,y) = 0 \right\},\]
where \(x, y \in \mathbb{R}^{n+1}\), hence \(M^t_i\) is diffeomorphic to the tangent sphere bundle over \(S^n\). It then follows that \(\pi_1(M^t_i) = 0\) if \(n \geq 3\), \(\pi_1(M^2_t) \simeq \mathbb{Z}_2\), and that \(M^n_t\) accumulate to \(S^n\) as \(t \to 1\). Note also that \(M^2_t\) is a double cover of the following well-known homogeneous hypersurface in \(\mathbb{C}P^2\) discovered by É. Cartan (see [C]):

\[
\left\{ (\zeta_1 : \zeta_2 : \zeta_3) \in \mathbb{C}P^2 : |\zeta_1|^2 + |\zeta_2|^2 + |\zeta_3|^2 = t|\zeta_1^2 + \zeta_2^2 + \zeta_3^2| \right\}.
\]

For our arguments below we will utilize the strongly pseudoconvex Stein domains in \(Q^n\) bounded by \(M^n_t\):

\[
D^n_t := \{ (z_1, \ldots, z_{n+1}) \in \mathbb{C}^{n+1} : |z_1|^2 + \cdots + |z_{n+1}|^2 < t \} \cap Q^n, \ t > 1.
\]

The sphere \(S^n\) lies in \(D^n_t\) for all \(t\) and is a strong deformation retract of \(D^n_t\). Indeed, the following map from \(D^n_t \times [0, 1]\) to \(D^n_t\) is a strong deformation retraction of \(D^n_t\) to \(S^n\):

\[
(x + iy, s) \mapsto \frac{\sqrt{1 + s^2||y||^2}}{||x||}x + isy, \quad 0 \leq s \leq 1.
\]

In particular, \(D^n_t\) is simply-connected but not contractible.

Remark 2.1 The domains \(D^n_t\) illustrate the relationship between the fundamental group of a smoothly bounded Stein domain and that of its (connected) boundary, which is important, for example, for the uniformization problem. Namely, if \(D\) is a smoothly bounded Stein domain, the fundamental groups \(\pi_1(D)\) and \(\pi_1(\partial D)\) are isomorphic in complex dimensions \(\geq 3\), whereas in dimension 2 there exists a surjective homomorphism \(\pi_1(\partial D) \to \pi_1(D)\) and the fundamental group of \(\partial D\) can be larger than that of \(D\) (see [NS] for a detailed discussion of these facts). Indeed, as we observed above, \(\pi_1(D^n_t) = 0\) for \(n \geq 2\), \(\pi_1(M^n_t) = 0\) for \(n \geq 3\), but \(\pi_1(M^2_t) \simeq \mathbb{Z}_2\). Examples of simply connected (in fact contractible) domains with non-simply connected boundaries exist even in the class of strongly pseudoconvex domains in \(\mathbb{C}^2\) although they are much harder to construct (see [Go]).

We will now turn to the problem of the CR-embeddability of \(M^n_t\) in \(\mathbb{C}^n\) and prove the following proposition.

Proposition 2.2 Any real-analytic CR-embedding of \(M^n_t\) into \(\mathbb{C}^n\) extends to a biholomorphic mapping of \(D^n_t\) onto a domain in \(\mathbb{C}^n\).

Proof: Let \(\varphi : M^n_t \to \mathbb{C}^n\) be a real-analytic CR-embedding. Then \(\varphi\) extends to a biholomorphic map between a neighborhood of \(M^n_t\) in \(Q^n\) and a neighborhood of the real-analytic strongly pseudoconvex hypersurface \(M := \varphi(M^n_t)\) in \(\mathbb{C}^n\). Further, \(\varphi\) extends to a holomorphic map from \(D^n_t\) to \(\mathbb{C}^n\) (which
follows, for instance, from results of [KR]), and we denote the extension of \(\varphi \) to a neighborhood of \(\overline{D^n_t} \) also by \(\varphi \).

Next, let \(D \) be the strongly pseudoconvex domain in \(\mathbb{C}^n \) bounded by \(M \) and \(\psi : M \to M^n_t \) the inverse of \(\varphi \) on \(M^n_t \). As before, the map \(\psi \) extends to a biholomorphic map between a neighborhood of \(M \) in \(\mathbb{C}^n \) and a neighborhood of \(M^n_t \) in \(Q^n \). Furthermore, \(\psi \) extends to a holomorphic map from \(D \) to \(\mathbb{C}^{n+1} \). We denote the resulting extension of \(\psi \) to a neighborhood of \(\overline{D} \) also by \(\psi \). Clearly, the range of \(\psi \) lies in \(Q^n \).

It now follows that \(\varphi(D^n_t) = D, \, \psi(D) = D^n_t \) and \(\varphi, \, \psi \) are the inverses of each other. In particular, \(\varphi \) maps \(D^n_t \) biholomorphically onto \(D \), which completes the proof. \(\square \)

As an immediate consequence of Proposition 2.2 we obtain the following result.

Corollary 2.3 If for some \(t > 1 \) the manifold \(M^n_t \) is real-analytically CR-embeddable in \(\mathbb{C}^n \), then \(S^n \) admits a real-analytic totally real embedding in \(\mathbb{C}^n \).

It is not hard to see that for \(n \neq 3, 7 \) the sphere \(S^n \) does not admit a smooth totally real embedding in \(\mathbb{C}^n \) (see [Gr2], [SZ]). Indeed, multiplication by \(i \) establishes an isomorphism between the tangent and the normal bundles of any smooth totally real \(n \)-dimensional submanifold of \(\mathbb{C}^n \). On the other hand, the normal bundle to \(S^n \) induced by any smooth embedding in \(\mathbb{R}^{2n} \) is trivial (see Theorem 8.2 in [K]). Therefore, if \(S^n \) admits a smooth totally real embedding in \(\mathbb{C}^n \), it is parallelizable, which is impossible unless \(n = 3 \) or \(n = 7 \). Corollary 2.3 then yields that \(M^n_t \) cannot be real-analytically CR-embedded in \(\mathbb{C}^n \) for \(n \neq 3, 7 \). This last statement was obtained in [MN] by utilizing the facts that \(M^n_t \) is diffeomorphic to the sphere bundle over \(S^n \) and that a real-analytic embedding of \(M^n_t \) into \(\mathbb{C}^n \) induces a smooth embedding of the tangent bundle of \(S^n \) into \(\mathbb{R}^{2n} \), which again leads to the parallelizability of \(S^n \) (at least for \(n \geq 3 \)).

Further, the non-existence of a smooth totally real embedding of \(S^7 \) in \(\mathbb{C}^7 \) was first obtained in [SZ] by an argument relying on a result of [S], which states that any two smooth embeddings of \(S^n \) in \(\mathbb{R}^{2n} \) are regularly homotopic. Corollary 2.3 then yields:

Corollary 2.4 No manifold in the family \(M^n_t \) admits a real-analytic CR-embedding in \(\mathbb{C}^7 \), hence every homogeneous compact simply-connected real-analytic hypersurface in \(\mathbb{C}^7 \) is CR-equivalent to \(S^{13} \).

In contrast, it turns out that \(S^3 \) can be embedded into \(\mathbb{C}^3 \) by a real-analytic CR-map. The first proof of this fact was given in [AR], where an explicit example of an embedding was constructed. Since \(S^3 \) is a totally
real submanifold of Q^3, any real-analytic totally real embedding of S^3 into \mathbb{C}^3 extends to a biholomorphic map defined in a neighborhood of S^3 in Q^3. The manifolds M^3_t accumulate to S^3 as $t \to 1$, hence M^3_t admits a real-analytic CR-embedding in \mathbb{C}^3 for all t sufficiently close to 1. This shows that, interestingly, the classification of homogeneous compact simply-connected real-analytic hypersurfaces in \mathbb{C}^3 includes manifolds other than S^5. The embedding found in [AR] is a polynomial map on $\mathbb{R}^4 \subset \mathbb{C}^4$, hence it has a (unique) holomorphic continuation to all of \mathbb{C}^4. We will study this extended map in the next section.

Remark 2.5 Observe that every hypersurface M^a_t is non-spherical. Indeed, otherwise by results of [NS] the universal cover of the domain D^a_t would be biholomorphic to the unit ball $B^n \subset \mathbb{C}^n$. Since D^a_t is simply-connected, this would imply that D^a_t is biholomorphic to B^n, which is impossible since D^a_t is not contractible. Now, the non-sphericity and homogeneity of the hypersurface M^a_t yield that it has no umbilic points. Therefore, every manifold M^3_t embeddable in \mathbb{C}^3 provides an example of a compact strongly pseudo-convex simply-connected hypersurface in \mathbb{C}^3 without umbilic points. Such hypersurfaces have been known before, but the arguments required to obtain non-umbilicity for them are much more involved than the one given above. For example, the proof in [W] of the fact that every generic ellipsoid in \mathbb{C}^n for $n \geq 3$ has no umbilic points relies on the Chern-Moser theory (note for comparison that every ellipsoid in \mathbb{C}^2 has at least four umbilic points – see [HJ]).

3 The holomorphic continuation of the Ahern-Rudin map

In this section we study the holomorphic continuation of the totally real embedding of S^3 into \mathbb{C}^3 constructed in [AR]. Let (z, w) be coordinates in \mathbb{C}^2 and let S^3 be realized in the standard way as the subset of \mathbb{C}^2 given by

$$S^3 = \{(z, w) \in \mathbb{C}^2 : |z|^2 + |w|^2 = 1\}.$$

The Ahern-Rudin map is defined on all of \mathbb{C}^2 as follows:

$$f : \mathbb{C}^2 \to \mathbb{C}^3, \quad f(z, w) := (z, w, w\overline{z^2w} + iz\overline{z^2w}). \quad (3.1)$$

Now, consider \mathbb{C}^4 with coordinates z_1, z_2, z_3, z_4 and embed \mathbb{C}^2 into \mathbb{C}^4 as the totally real subspace \mathbb{R}^4:

$$(z, w) \mapsto (\text{Re } z, \text{Im } z, \text{Re } w, \text{Im } w).$$
Clearly, the push-forward of the polynomial map \(f \) extends from \(\mathbb{R}^4 \) to a holomorphic map \(F : \mathbb{C}^4 \to \mathbb{C}^3 \) by the formula

\[
F(z_1, z_2, z_3, z_4) := \left(z_1 + iz_2, z_3 + iz_4, (z_3 + iz_4)(z_1 - iz_2)(z_3 - iz_4)^2 + i(z_1 + iz_2)(z_1 - iz_2)^2(z_3 - iz_4) \right).
\]

It will be convenient for us to argue in the coordinates

\[
w_1 := z_1 + iz_2, \quad w_2 := z_1 - iz_2, \quad w_3 := z_3 + iz_4, \quad w_4 := z_3 - iz_4.
\]

(3.2)

In these coordinates the quadric \(Q^3 \) takes the form

\[
\{ (w_1, w_2, w_3, w_4) \in \mathbb{C}^4 : w_1w_2 + w_3w_4 = 1 \},
\]

(3.3)

the sphere \(S^3 \subset Q^3 \) the form

\[
\{ (w_1, w_2, w_3, w_4) \in \mathbb{C}^4 : w_2 = \bar{w}_1, \ w_4 = \bar{w}_3 \} \cap Q^3,
\]

(3.4)

the hypersurface \(M^3_t \subset Q^3 \) the form

\[
\{ (w_1, w_2, w_3, w_4) \in \mathbb{C}^4 : |w_1|^2 + |w_2|^2 + |w_3|^2 + |w_4|^2 = 2t \} \cap Q^3,
\]

(3.5)

and the map \(F \) the form

\[
(w_1, w_2, w_3, w_4) \mapsto (w_1, w_3, w_2w_3w_4^2 + iw_1w_2^2w_4).
\]

(3.6)

We will study the map \(F \) in order to obtain some evidence regarding the values of \(t \) for which the manifold \(M^3_t \) is embeddable in \(\mathbb{C}^3 \). Clearly, \(F \) defines an embedding of \(M^3_t \) if its restriction \(\tilde{F} := F|_{Q^3} \) is non-degenerate and injective on \(M^3_t \), therefore it is important to investigate the non-degeneracy and injectivity properties of \(\tilde{F} \). First of all, observe that \(F \) has maximal rank at every point of \(Q^3 \) since its Jacobian matrix is

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
iw_2^2w_4 & w_3w_4^2 + 2iw_1w_2w_4 & w_2w_4^2 & 2w_3w_4w_4 + iw_1w_2^2 \\
\end{pmatrix},
\]

and the entries \(w_3w_4^2 + 2iw_1w_2w_4, 2w_3w_4w_4 + iw_1w_2^2 \) cannot simultaneously vanish on \(Q^3 \). However, as the following proposition shows, most manifolds \(M^3_t \) contain points at which the restricted map \(\tilde{F} \) degenerates.

Proposition 3.1 The map \(\tilde{F} \) degenerates at some point of \(M^3_t \) if and only if

\[
t \geq \sqrt{(2 + \sqrt{2})/3}.
\]
Proof: Observe that \(|w_1| + |w_3| > 0\) on \(Q^3\). For \(w_1 \neq 0\) we choose \(w_1, w_3, w_4\) as local coordinates on \(Q^3\) and write the third component of \(\tilde{F}\) as

\[
\varphi := \frac{1 - w_3 w_4}{w_1} (i w_4 + (1 - i) w_3 w_4^2)
\]

(see (3.3), (3.6)). Then the Jacobian \(J_{\tilde{F}}\) of \(\tilde{F}\) is equal to

\[
\frac{\partial \varphi}{\partial w_4} = \frac{(3i - 3w_3^2 w_4^2 + (2 - 4i) w_3 w_4 + i w_1)}{w_1},
\]

(3.7)

hence it vanishes if and only if

\[
w_3 w_4 = \frac{3 \pm \sqrt{2} - i}{6}.
\]

At such points we have

\[
|w_1|^2 + |w_2|^2 + |w_3|^2 + |w_4|^2 = |w_1|^2 + \frac{2 \pm \sqrt{2}}{6|w_1|^2} + |w_3|^2 + \frac{2 \pm \sqrt{2}}{6|w_3|^2}.
\]

(3.8)

Analogously, if \(w_3 \neq 0\), we choose \(w_1, w_2, w_3\) as local coordinates on \(Q^3\) and write the third component of \(\tilde{F}\) as

\[
\psi := \frac{1 - w_1 w_2}{w_3} (w_2 + (i - 1) w_1 w_2^2)
\]

(see (3.3), (3.6)). Then

\[
J_{\tilde{F}} = -\frac{\partial \psi}{\partial w_2} = \frac{-(3 - 3i)w_1^2 w_2^2 + (2i - 4) w_1 w_2 + 1}{w_3},
\]

which vanishes if and only if

\[
w_1 w_2 = \frac{3 \pm \sqrt{2} + i}{6}.
\]

Hence for all points of degeneracy of \(\tilde{F}\) we have \(w_1 \neq 0, w_3 \neq 0\), and therefore such points are described as the zeroes of \(\partial \varphi / \partial w_4\) or, equivalently, as the zeroes of \(\partial \psi / \partial w_2\).

Now, investigating the behavior of the function

\[
x + \frac{2 + \sqrt{2}}{6x} + y + \frac{2 - \sqrt{2}}{6y}
\]

for \(x, y > 0\), one can deduce from (3.8) that \(J_{\tilde{F}}\) vanishes at a point of \(M^3_t\) if and only if \(t \geq \sqrt{(2 + \sqrt{2})/3}\) as claimed. \(\Box\)

As we noted above, any real-analytic totally real embedding of \(S^3\) in \(C^3\) yields an embedding of \(M^3_t\) for all \(t\) sufficiently close to 1. Define

\[
t_0 := \sup\{t : \tilde{F}|_{M^3_s} \text{ is an embedding for all } 1 < s \leq t\}.
\]

Proposition 3.1 implies \(t_0 \leq \sqrt{(2 + \sqrt{2})/3}\). We will now give a lower bound for \(t_0\).
THEOREM 3.2 One has $t_0 \geq 1 + 10^{-6}$.

Proof: For $0 < \varepsilon < 1$ define

$$U_\varepsilon := \{(w_1, w_2, w_3, w_4) \in \mathbb{C}^4 : |w_2 - \overline{w}_1| < \varepsilon, |w_4 - \overline{w}_3| < \varepsilon\} \cap Q^3.$$

Clearly, U_ε is a neighborhood of S^3 in Q^3 (see (3.4)). We will find ε such that \overline{F} is biholomorphic on U_ε. Writing any point in Q^3 as

$$W = (w_1, \overline{w}_1 + \mu, w_3, \overline{w}_3 + \eta),$$

from (3.3) we observe

$$|w_1|^2 + |w_3|^2 + \mu w_1 + \eta w_3 = 1,$$

which implies

$$|w_1|^2 + |\overline{w}_1 + \mu|^2 + |w_3|^3 + |\overline{w}_3 + \eta|^2 = 2 + |\mu|^2 + |\eta|^2. \quad (3.10)$$

Clearly, W lies in U_ε if and only if $|\mu| < \varepsilon, |\eta| < \varepsilon$. It then follows from (3.5), (3.10) that $M^3_1 \subset U_\varepsilon$ for all $1 < t < 1 + \varepsilon^2/2$. Below we will see that one can take $\varepsilon = \sqrt{2} \cdot 10^{-3}$, which will then imply the theorem.

In order to choose ε, we study the fibers of the map \overline{F}. Let two points $W = (w_1, w_2, w_3, w_4)$ and $\overline{W} = (\overline{w}_1, \overline{w}_2, \overline{w}_3, \overline{w}_4)$ lie in Q^3 and assume that $\overline{F}(W) = \overline{F}(\overline{W})$. Then from (3.6) one immediately has $\hat{w}_1 = w_1, \hat{w}_3 = w_3$ and

$$\hat{w}_2 w_3 \overline{w}_4^2 + i w_1 \overline{w}_2^2 \overline{w}_4 = w_2 w_3 w_4^2 + i w_1 w_2^2 w_4. \quad (3.11)$$

If $w_1 = 0$ or $w_3 = 0$, then (3.11) implies $\hat{W} = W$, so we suppose from now on that $w_1 \neq 0$ and $w_3 \neq 0$. Then, using (3.3) we substitute

$$w_2 = \frac{1 - w_3 w_4}{w_1}, \quad \hat{w}_2 = \frac{1 - w_3 \hat{w}_4}{w_1} \quad (3.12)$$

into (3.11) and simplifying the resulting expression obtain

$$(\hat{w}_4 - w_4) \left[(i - 1)w_3^2 \hat{w}_4^2 + ((1 - 2i)w_3 + (i - 1)w_3^2 w_4) \hat{w}_4 + \right.$$

$$\left. (i + (1 - 2i)w_3 w_4 + (i - 1)w_3^2 w_4^2) \right] = 0. \quad (3.13)$$

We treat identity (3.13) as an equation with respect to \hat{w}_4. The solution $\hat{w}_4 = w_4$ leads to the point W (see (3.12)). Further, the quadratic equation

$$(i - 1)w_3^2 \hat{w}_4^2 + ((1 - 2i)w_3 + (i - 1)w_3^2 w_4) \hat{w}_4 +$$

$$\left(i + (1 - 2i)w_3 w_4 + (i - 1)w_3^2 w_4^2 \right) = 0. \quad (3.14)$$
has the following solutions:

\[
\hat{w}_4 = \frac{2i - 1 + (1 - i)w_3w_4 + \sqrt{6iw_3^2w_4^2 - (2 + 6i)w_3w_4 + 1}}{(2i - 2)w_3}. \tag{3.15}
\]

Our goal now is to choose \(\varepsilon\) so that for \(W \in U_\varepsilon\) neither of the points \(\hat{W}\) defined by solutions (3.15) lies in \(U_\varepsilon\). We write \(w_2 = \bar{w}_1 + \mu, w_4 = \bar{w}_3 + \eta, \hat{w}_4 = \bar{w}_3 + \hat{\eta}\) and show that \(\varepsilon\) can be taken so that if \(|\mu| < \varepsilon, |\eta| < \varepsilon\), then \(|\hat{\eta}| \geq \varepsilon\).

Formula (3.15) implies

\[
-8|w_3|^2 + 4 + i(24|w_3|^4 - 24|w_3|^2 + 4) + \\
\left[24i\eta|w_3|^2w_3 + 8i\eta^2w_3^2 - (4 + 12i)\eta w_3\right] = \\
-24i\hat{\eta}|w_3|^2w_3 - 8i(\hat{\eta}^2 + \eta\hat{\eta})w_3^2 + (4 + 12i)\hat{\eta}w_3. \tag{3.16}
\]

Observe that for any \(w_3\) one has

\[
\left|-8|w_3|^2 + 4 + i(24|w_3|^4 - 24|w_3|^2 + 4)\right| \geq \frac{4}{3}. \tag{3.17}
\]

Next, since \(\varepsilon < 1\), formula (3.9) yields

\[
|\bar{w}_1 + \frac{\mu}{2}|^2 + |\bar{w}_3 + \frac{\eta}{2}|^2 = 1 + \frac{|\mu|^2}{4} + \frac{|\eta|^2}{4} < 1 + \frac{\varepsilon^2}{2} < \frac{3}{2},
\]

which implies

\[
|w_3| < 2. \tag{3.18}
\]

Using (3.18), one can estimate the terms in square brackets in the left-hand side of (3.16) as follows:

\[
\left|24i\eta|w_3|^2w_3 + 8i\eta^2w_3^2 - (4 + 12i)\eta w_3\right| < 32\varepsilon^2 + 224\varepsilon. \tag{3.19}
\]

Similarly, using (3.18) for the right-hand side of (3.16) we have

\[
\left|-24i\hat{\eta}|w_3|^2w_3 - 8i(\hat{\eta}^2 + \eta\hat{\eta})w_3^2 + (4 + 12i)\hat{\eta}w_3\right| < 32|\hat{\eta}|^2 + 256|\hat{\eta}|. \tag{3.20}
\]

It follows from formulas (3.16), (3.17), (3.19), (3.20) that

\[
32|\hat{\eta}|^2 + 256|\hat{\eta}| > \frac{4}{3} - (32\varepsilon^2 + 224\varepsilon). \tag{3.21}
\]

Thus, in order to finalize the proof of the theorem, we need to choose \(\varepsilon\) so that inequality (3.21) implies \(|\hat{\eta}| \geq \varepsilon\). For example, let \(\varepsilon\) be such that

\[
32\varepsilon^2 + 224\varepsilon < \frac{1}{3}
\]
For instance, $\varepsilon = \sqrt{2} \cdot 10^{-3}$ satisfies this condition. Then from (3.21) one has

$$32|\hat{\eta}|^2 + 256|\eta| > 1,$$

which implies $|\hat{\eta}| > 0.003 > \varepsilon$ as required. The proof of the theorem is complete. □

Remark 3.3 By experimenting with inequality (3.21) one can slightly improve the value of ε. However, the improved value is still of order 10^{-3}, thus the lower bound for $t_0 - 1$ it leads to is still of order 10^{-6}.

We finish the paper by making several observations regarding solutions (3.15) of equation (3.14) concentrating on the case when $W \in M^3_t$ for some $t < \sqrt{(2 + \sqrt{2})/3}$.

(i) It follows from (3.7) that w_4 is a solution of (3.14) if and only if $J_{\hat{F}}$ vanishes at the point W. Therefore, by Proposition 3.1, neither of the values in the right-hand side of (3.15) is equal to w_4 if $W \in M^3_t$ with $t < \sqrt{(2 + \sqrt{2})/3}$.

(ii) Arguing as in the proof of Proposition 3.1, one can see that the polynomial $6iw^2_3w^2_4 - (2 + 6i)w_3w_4 + 1$ vanishes at some point of M^3_t if and only if $t \geq 2/\sqrt{3}$. Since $2/\sqrt{3} > \sqrt{(2 + \sqrt{2})/3}$, it follows that the right-hand side of (3.15) defines two distinct points \hat{W}_1, \hat{W}_2 if $W \in M^3_t$ with $t < \sqrt{(2 + \sqrt{2})/3}$. Combining this fact with (i), we see that for such W the fiber of \hat{F} over $\hat{F}(W)$ consists of exactly three points.

(iii) Using formula (3.15) one can determine, in principle, all values $t < \sqrt{(2 + \sqrt{2})/3}$ such that neither of \hat{W}_1, \hat{W}_2 lies in M^3_t provided $W \in M^3_t$, which is equivalent to the injectivity of the map \hat{F} on M^3_t. However, the computations required for this analysis are rather complicated, and we did not carry them out in full generality. These computations significantly simplify if, for instance, $w_4 = 0$. In this case formula (3.15) yields the solutions

$$\hat{w}_4 = \frac{1}{w_3}, \quad \hat{w}_4 = \frac{1 - i}{2w_3}.$$

Also, we have

$$|w_1|^2 + \frac{1}{|w_1|^2} + |w_3|^2 = 2t,$$

which implies $|w_3| < |w_1|$ since otherwise $t \geq \sqrt{2} > \sqrt{(2 + \sqrt{2})/3}$. Therefore, for each of the two points \hat{W}_1, \hat{W}_2 given by (3.22) one has

$$|w_1|^2 + |\hat{w}_2|^2 + |w_3|^2 + |\hat{w}_4|^2 > 2t,$$
hence neither of these points lies in M^3_t. We also arrived at the same conclusion when analyzing several other special cases. Thus, our calculations lead to the following conjecture.

Conjecture 3.4 The restriction of \tilde{F} to M^3_t is an embedding for all parameter values $1 < t < \sqrt{(2 + \sqrt{2})/3}$.

(iv) We note that the non-injectivity of \tilde{F} on M^3_t is easy to see, for example, if $t \geq \sqrt{2}$. Indeed, let $u \neq 0$ be a real number satisfying

$$2u^2 + \frac{1}{u^2} = 2t,$$

and consider the following three distinct points in Q^3:

$$W_u := \left(u, \frac{1}{u}, u, 0\right), \quad W_u' := \left(u, 0, \frac{1}{u}\right), \quad W_u'' := \left(u, \frac{1+i}{2u}, u, \frac{1-i}{2u}\right). \quad (3.23)$$

Then $W_u, W_u', W_u'' \in M^3_t$ and $\tilde{F}(W_u) = \tilde{F}(W_u') = \tilde{F}(W_u'') = (u, u, 0)$. Since every fiber of \tilde{F} contains at most three points, W_u, W_u', W_u'' form the complete fiber of \tilde{F} over the point $(u, u, 0)$.

(v) In [AR] the authors in fact introduced not just the map f (see (3.1)) but a class of maps of the form

$$g : \mathbb{C}^2 \to \mathbb{C}^3, \quad g(z,w) := (z, w, P(z, \bar{z}, w, \bar{w})).$$

Here P is a harmonic polynomial given by

$$P = \left(\bar{z} \frac{\partial}{\partial w} - \bar{w} \frac{\partial}{\partial z}\right) \left(\sum_{j=1}^{m} \frac{1}{p_j(q_j + 1)} Q_j\right),$$

where Q_j is a homogeneous harmonic complex-valued polynomial on \mathbb{C}^2 of total degree $p_j \geq 1$ in z, w and total degree q_j in \bar{z}, \bar{w}, such that the sum $Q := Q_1 + \ldots + Q_m$ does not vanish on S^3. Observe that although the third component of the map f is not harmonic, it is obtained (up to a multiple) from the harmonic polynomial $w\bar{z}\bar{w} - zz^2\bar{w} + iz\bar{w}$ by replacing the term $iz\bar{w}$ with $i\bar{z}\bar{w}(|z|^2 + |w|^2)$ (these two expressions coincide on S^3). It is convenient to take Q to be a polynomial in $|z|^2, |w|^2$ (as was done in [AR]), but in this case P is divisible by $\bar{z}\bar{w}$, which implies that the holomorphic extension G of the push-forward of g to \mathbb{R}^4 is not injective on M^3_t with $t \geq \sqrt{2}$. Indeed, writing G in the coordinates w_j defined in (3.2), for the points W_u, W_u' introduced in (3.23) one has $G(W_u) = G(W_u') = (u, u, 0)$. Thus, one cannot obtain the embeddability of M^3_t in \mathbb{C}^3 for $t \geq \sqrt{2}$ by utilizing any of the maps introduced in [AR] with Q being a function of $|z|^2, |w|^2$ alone.
References

[AR] Ahern, P. and Rudin, W., Totally real embeddings of S^3 in \mathbb{C}^3, *Proc. Amer. Math. Soc.* **94** (1985), 460–462.

[C] Cartan, É., Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, I and II, *Ann. Math. Pura Appl.* **11** (1933), 17–90, and *Ann. Scuola Norm. Sup. Pisa* **1** (1933), 333–354.

[F1] Forstnerič, F., Some totally real embeddings of three-manifolds, *Manuscripta Math.* **55** (1986), 1–7.

[F2] Forstnerič, F., On totally real embeddings into \mathbb{C}^n, *Exposition. Math.* **4** (1986), 243–255.

[F3] Forstnerič, F., A totally real three-sphere in \mathbb{C}^3 bounding a family of analytic disks, *Proc. Amer. Math. Soc.* **108** (1990), 887–892.

[Go] Gompf, R. E., Smooth embeddings with Stein surface images, preprint, available from http://arxiv.org/abs/1110.1865

[Gr1] Gromov, M., Convex integration of differential relations, *Math. USSR Izv.* **7** (1973), 329–343.

[Gr2] Gromov, M., *Partial Differential Relations*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) **9**, Springer-Verlag, Berlin, 1986.

[HJ] Huang, X. and Ji, S., Every real ellipsoid in \mathbb{C}^2 admits CR umbilical points, *Trans. Amer. Math. Soc.* **359** (2007), 1191–1204.

[KZ] Kaup, W. and Zaitsev, D., On the CR-structure of compact group orbits associated with bounded symmetric domains, *Invent. Math.* **53** (2003), 45–104.

[K] Kervaire, M. A., An interpretation of G. Whitehead’s generalization of H. Hopf’s invariant, *Ann. of Math. (2)* **69** (1959), 345–365.

[KR] Kohn, J. J. and Rossi, H., On the extension of holomorphic functions from the boundary of a complex manifold, *Ann. of Math. (2)* **81** (1965), 451–472.

[MN] Morimoto, A. and Nagano, T., On pseudo-conformal transformations of hypersurfaces, *J. Math. Soc. Japan* **15** (1963), 289–300.

[NS] Nemirovskii, S. and Shafikov, R., Uniformization of strictly pseudo-convex domains. I, *Izv. Math.* **69** (2005), 1189–1202.

[S] Smale, S., The classification of immersions of spheres in Euclidean spaces, *Ann. of Math. (2)* **69** (1959), 327–344.

[SZ] Stout, E. L. and Zame, W. R., A Stein manifold topologically but not holomorphically equivalent to a domain in \mathbb{C}^n, *Adv. Math.* **60** (1986), 154–160.

[W] Webster, S. M., Holomorphic differential invariants for an ellipsoidal
real hypersurface, *Duke Math. J.* 104 (2000), 463–475.

Department of Mathematics
The Australian National University
Canberra, ACT 0200
Australia
e-mail: alexander.isaev@anu.edu.au