Chapter 7

On $gs\Lambda$-Homeomorphism in topological spaces

Introduction

In chapter 7 the author studies with the important concept $gs\Lambda$-homeomorphisms by using $gs\Lambda$-open sets. It is weaker than homeomorphisms. The notion of homeomorphisms plays a dominant role in topology and so many authors introduced varies types of homeomorphisms in topological spaces. In 1995, Maki, Devi and Balachandran introduced the concepts of semi-generalized homeomorphisms and generalized semi-homeomorphisms and studied some semi topological properties. Devi and Balachandran introduced a generalization of α-homeomorphism in 2001. $gs\Lambda^*$-homeomorphism in topological spaces is also introduced and the group structure of the set of all $gs\Lambda^*$-homeomorphisms are also investigated the group structure of the set of all $gs\Lambda^*$-homeomorphisms.
7.1 Properties of $gs\Lambda$-Homeomorphism

Some of the important properties are listed below:

Definition 7.1.1 A bijection $f:(X,\tau) \rightarrow (Y,\sigma)$ is called $gs\Lambda$-homeomorphism if f is both $gs\Lambda$ open and $gs\Lambda$-continuous.

In other words a bijection $f:(X,\tau) \rightarrow (Y,\sigma)$ is called $gs\Lambda$-homeomorphism if both f and f^{-1} are $gs\Lambda$-continuous functions. We denote the family of all $gs\Lambda$-homeomorphisms of a topological space (X,τ) onto itself by $gs\Lambda H(X,\tau)$.

Theorem 7.1.2 Every homeomorphism is $gs\Lambda$-homeomorphism.

Proof: Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a homeomorphism. Then f is bijective, open and continuous. Let U be a open set in (X,τ). Since f is open, $f(U)$ is open in (Y,σ). As every open set is $gs\Lambda$-open set by (Theorem 2.3.5) U is $gs\Lambda$-open in (Y,σ). Thus f is a $gs\Lambda$-open map. Let G be a open set in (Y,σ). Since f is continuous, $f^{-1}(U)$ is open in (X,τ). As every open set is $gs\Lambda$-open set by Theorem 2.3.5 U is $gs\Lambda$-open in (X,τ). Thus f is a $gs\Lambda$-continuous map. Thus f is $gs\Lambda$-homeomorphism.

Remark 44 Converse of the above Theorem 7.1.2 need not be true as seen from the following example.

Example 51 Let $X = Y = \{a,b,c,d,e\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, \{c,d,e\}, \{a,b,c,d\}, \{a,c,d,e\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{d\}, \{a,d\}, \{c,d,e\}, \{a,c,d,e\}\}$. The identity function $f:(X,\tau) \rightarrow (Y,\sigma)$ is a $gs\Lambda$-homeomorphism but not homeomorphism. Since $A = \{a,d\}$ is open in (Y,σ) but $f^{-1}(A) = \{a,d\}$ is not open in (X,τ). Thus f is not continuous. Since $B = \{b\}$ is open in (X,τ) but $f(B) = \{b\}$ is not open in (Y,σ). Thus f is not open. Hence f is not homeomorphism.
Theorem 7.1.3 Every g.homeomorphism is gsΛ-homeomorphism if both Domain and Co-Domain are partition space.

Proof: Let \(f: (X, \tau) \longrightarrow (Y, \sigma) \) is g.homeomorphism where \((X, \tau)\) and \((Y, \sigma)\) are partition spaces. Thus \(f \) is bijective, g.open map and g.continuous. Since \((X, \tau)\) and \((Y, \sigma)\) are partition spaces, it is easy to observe that \(f \) is gs\(\Lambda \)-open and gs\(\Lambda \)-continuous function. Hence the proof follows.

Theorem 7.1.4 If a bijective function \(f \) is both M.gs\(\Lambda \)-open and continuous then \(f \) is a gs\(\Lambda \)-homeomorphism.

Proof: Since every M.gs\(\Lambda \)-open map is gs\(\Lambda \)-open map, and every continuous function is gs\(\Lambda \)-continuous function, the proof follows.

Remark 45 Converse of the above Theorem 7.1.4 need not be true, as seen from the following example.

Example 52 Let \(X = Y = \{a,b,c,d,e\} \) and \(\tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, \{c,d,e\}, \{a,b,c,d\}, \{a,c,d,e\}\} \) and \(\sigma = \{\emptyset, Y, \{a\}, \{d\}, \{a,d\}, \{c,d\}, \{d,e\}, \{c,d,e\}, \{a,c,d\}, \{a,d,e\}, \{a,c,d,e\}\} \). The identity function \(f: (X, \tau) \longrightarrow (Y, \sigma) \) is a gs\(\Lambda \)-homeomorphism, but neither M.gs\(\Lambda \)-open nor continuous. Since \(A = \{a,d\} \) is open in \((Y, \sigma)\) but \(f^{-1}(A) = \{a,d\} \) is not open in \((X, \tau)\). Thus \(f \) is not continuous. Since \(B = \{a,e\} \) is a gs\(\Lambda \)-open set in \((X, \tau)\) but \(f(B) = \{a,e\} \) is not gs\(\Lambda \)-open in \((Y, \sigma)\). Thus \(f \) is not M.gs\(\Lambda \)-open.

Theorem 7.1.5 If a bijection \(f \) is both contra open and Contra continuous then \(f \) is a gs\(\Lambda \)-homeomorphism.

Proof: Every contra open map is gs\(\Lambda \)-open map by Theorem 3.4.3, and every contra continuous function is gs\(\Lambda \)-continuous function by Theorem 4.1.7. Hence the proof follows.
Remark 46 Converse of the above Theorem 7.1.5 need not be true, as seen from the following example.

Example 53 Let $X = Y = \{a,b,c,d,e\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, \{a,b,c,d\}, \{a,c,d,e\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{d\}, \{a,d\}, \{c,d\}, \{c,d,e\}, \{a,c,d\}, \{a,d,e\}, \{a,c,d,e\}\}$. The identity function $f:(X,\tau)\rightarrow(Y,\sigma)$ is a $gs\Lambda$-homeomorphism, but neither contra open nor Contra continuous. Since $A=\{a,d\}$ is open in (Y,σ) but $f^{-1}(A)=\{a,d\}$ is not closed in (X,τ). Thus f is not contra continuous. Since $B=\{a,c,d\}$ is open in (X,τ) but $f(B) = \{a,c,d\}$ is not closed in (Y,σ). Thus f is not contra open.

Theorem 7.1.6 If a bijective function f is both open (contra open) and $gs\Lambda$-irresolute function then f is a $gs\Lambda$-homeomorphism.

Proof: Every open(contra open) map is $gs\Lambda$-open map by Theorem 2.3.4, and every $gs\Lambda$-irresolute function is $gs\Lambda$-continuous function by Theorem 6.1.5, hence the proof follows.

Remark 47 Converse of the above Theorem 7.1.6 need not be true, as seen from the following example.

Example 54 Let $X = Y = \{a,b,c,d,e\}$ and $\tau = \{\emptyset, X, \{a\}, \{d\}, \{a,d\}, \{c,d\}, \{d,e\}, \{c,d,e\}, \{a,c,d\}, \{a,c,d,e\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, \{c,d,e\}, \{a,b,c,d\}, \{a,c,d,e\}, \{b,c,d,e\}\}$. The identity function $f:(X,\tau)\rightarrow(Y,\sigma)$ is a $gs\Lambda$-homeomorphism, but neither open(contra open) nor $gs\Lambda$-irresolute. Since $A=\{d,e\}$ is open in (X,τ) but $f(A) = \{d,e\}$ is not open(closed) in (Y,σ). Thus f is not open(contra open). Since $B=\{b,d\}$ is $gs\Lambda$-open in (Y,σ) but $f(B) = \{b,d\}$ is not $gs\Lambda$-open in (X,τ). Thus f is not (X,τ) irresolute.

Theorem 7.1.7 If a bijective function f is λ-open and λ-continuous then f is $gs\Lambda$-homeomorphism.
Proof: Let a bijective function \(f:(X,\tau) \longrightarrow (Y,\sigma) \) be \(\lambda \)-open and \(\lambda \)-continuous function. Let \(U \) be a open set in \((Y,\sigma) \). Since \(f \) is \(\lambda \)-continuous map \(f^{-1}(U) \) is \(\lambda \)-open in \((X,\tau) \). As every \(\lambda \)-open set is \(gs\Lambda \)-open set by(Theorem 2.3.5) \(U \) is \(gs\Lambda \)-open in \((X,\tau) \). Thus \(f \) is a \(gs\Lambda \)-continuous map. Let \(G \) be a open set in \((X,\tau) \). Since \(f \) is \(\lambda \)-open, \(f(G) \) is \(\lambda \)-open in \((Y,\sigma) \). By Theorem 2.3.5 \(f(G) \) is a \(gs\Lambda \)-open set in \(Y \). Thus \(f \) is a \(gs\Lambda \)-open map. Hence \(f \) is \(gs\Lambda \)-homeomorphism.

Remark 48 Converse of the above Theorem 7.1.7 need not be true as seen from the following example.

Example 55 Let \(X = Y = \{a,b,c,d,e\} \), \(\tau = \{\emptyset,X,\{a\}, \{b\}, \{a,b\}, \{c\}, \{a,c\}, \{b,c\}, \{c,d\}, \{a,b,c\}, \{a,c,d\}, \{b,c,d\}, \{c,d,e\} \) and \(\sigma = (Y,\sigma) = \{\emptyset, Y, \{a\}, \{d\}, \{a,d\}, \{c,d\}, \{d,e\}, \{c,d,e\}, \{a,c,d\}, \{a,d,e\}, \{a,c,d,e\}\} \).

The identity function \(f:(X,\tau) \longrightarrow (Y,\sigma) \) is a \(gs\Lambda \)-homeomorphism, but neither \(\lambda \)-open nor \(\lambda \)-continuous. Since \(A=\{d\} \) is open in \((Y,\sigma) \) but \(f^{-1}(A) = \{d\} \) is not \(\lambda \)-open in \((X,\tau) \). Thus \(f \) is not \(\lambda \)-continuous. Since \(B=\{e\} \) is \(\lambda \)-open in \((X,\tau) \) but \(f(B) = \{e\} \) is not \(\lambda \)-open in \((Y,\sigma) \). Thus \(f \) is not \(\lambda \)-open.

Theorem 7.1.8 If a bijective function \(f \) is \(\lambda \)-open and \(\lambda \)-irresolute then \(f \) is a \(gs\Lambda \)-homeomorphism.

Proof: The proof follows as every \(\lambda \)-open map is \(gs\Lambda \)-open map, and every \(\lambda \)-irresolute function is \(gs\Lambda \)-continuous function.

Example 56 In example 55, the identity function \(f:(X,\tau) \longrightarrow (Y,\sigma) \) is a \(gs\Lambda \)-homeomorphism but but neither \(\lambda \)-open nor \(\lambda \)-irresolute. Since \(A=\{a,e\} \) is \(\lambda \)-open in \((Y,\sigma) \) but \(f^{-1}(A) = \{a,e\} \) is not \(\lambda \)-open in \((X,\tau) \). Thus \(f \) is not \(\lambda \)-irresolute. Since \(B=\{a,d\} \) is \(\lambda \)-open in \((X,\tau) \) but \(f(B) = \{b,d\} \) is not \(\lambda \)-open in \((Y,\sigma) \). Thus \(f \) is not \(\lambda \)-open.
Theorem 7.1.9 Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a bijective function. If \(f \) and \(f^{-1} \) are \(gs\Lambda \)-irresolute then \(f \) is \(gs\Lambda \)-homeomorphism.

Proof: Let a bijective function \(f: (X, \tau) \rightarrow (Y, \sigma) \) be such that \(f \) and \(f^{-1} \) are \(gs\Lambda \)-irresolute. Let \(U \) be a open set in \((X, \tau) \). As every open set is \(gs\Lambda \)-open set by (Theorem 2.3.5) \(U \) is \(gs\Lambda \)-open in \((X, \tau) \). Since \(f^{-1} \) is \(gs\Lambda \)-irresolute \(f^{-1}(U) \) is \(gs\Lambda \)-open in \((Y, \sigma) \). Thus \(f^{-1} \) is a \(gs\Lambda \)-continuous map. Let \(G \) be a open set in \((Y, \sigma) \), by Theorem 2.3.5 \(G \) is a \(gs\Lambda \)-open set in \(Y \). Since \(f \) is \(gs\Lambda \)-irresolute, \(f^{-1}(U) \) is \(gs\Lambda \)-open in \((X, \tau) \). Thus \(f \) is a \(gs\Lambda \)-continuous map. Hence we get \(f \) is a \(gs\Lambda \)-homeomorphism.

Remark 49 Converse of the above Theorem 7.1.9 need not be true as seen from the following example.

Example 57 Let \(X=Y=\{a,b,c,d,e\} \), \(\tau=\{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,b,e\}, \{a,b,d,e\}, \{a,b,c,e\}\} \) and \((Y, \sigma)=\{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{b,c\}, \{a,b,c,d\}, \{b,c,d\}, \{b,c,d,e\}\} \). The identity function \(f: (X, \tau) \rightarrow (Y, \sigma) \) is a \(gs\Lambda \)-homeomorphism, but neither \(f \) nor \(f^{-1} \) are \(gs\Lambda \)-irresolute. Since \(A=\{b,e\} \) is \(gs\Lambda \)-open in \((X, \tau) \) but \(f(A)=\{b,e\} \) is not \(gs\Lambda \)-open in \((Y, \sigma) \). Thus \(f^{-1} \) is not \(gs\Lambda \)-irresolute. Since \(B=\{a,b,c\} \) is \(gs\Lambda \)-open in \((Y, \sigma) \) but \(f^{-1}(B)=\{b,d\} \) is not \(gs\Lambda \)-open in \((X, \tau) \). Thus \(f \) is not \(gs\Lambda \)-irresolute.

Theorem 7.1.10 Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a bijective function. If \(f \) and \(f^{-1} \) are contra \(gs\Lambda \)-irresolute then \(f \) is \(gs\Lambda \)-homeomorphism.

Proof: Let a bijective function \(f: (X, \tau) \rightarrow (Y, \sigma) \) be such that \(f \) and \(f^{-1} \) are contra \(gs\Lambda \)-irresolute. Let \(U \) be a open set in \((X, \tau) \). As every open set is \(gs\Lambda \)-closed set, \(U \) is \(gs\Lambda \)-closed in \(X \). Since \(f^{-1} \) is contra \(gs\Lambda \)-irresolute, we get \((f^{-1})^{-1}(U)=f(U) \), which is \(gs\Lambda \)-open in \((Y, \sigma) \). Thus \(f^{-1} \) is a \(gs\Lambda \)-continuous map. Let \(G \) be a open set in \((Y, \sigma) \), by Theorem 2.3.4, \(G \) is a \(gs\Lambda \)-closed set in \(Y \). Since \(f \) is contra \(gs\Lambda \)-irresolute, \(f^{-1}(U) \) is \(gs\Lambda \)-open in \((X, \tau) \). Thus \(f \) is a \(gs\Lambda \)-continuous map. Hence, \(f \) is \(gs\Lambda \)-homeomorphism.
Remark 50 Converse of the above Theorem 7.1.10 need not be true as seen from the following example.

Example 58 Let \(X = Y = \{a,b,c,d,e\} \) and \(\tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,b,e\}, \{a,b,d,e\}, \{a,b,c,e\}\} \) and \(\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, \{b,c,d\}, \{a,b,c,d\}, \{b,c,d,e\}, \{b,c,d,e\}\} \). The identity function \(f : (X, \tau) \longrightarrow (Y, \sigma) \) is a \(gs\Lambda \)-homeomorphism, but neither \(f \) nor \(f^{-1} \) are \(gs\Lambda \)- irresolute. Since \(A = \{b,e\} \) is \(gs\Lambda \)-open in \((X, \tau) \) but \(f(A) = \{b,e\} \) is not \(gs\Lambda \)- open in \((Y, \sigma) \). Thus \(f^{-1} \) is not \(gs\Lambda \)- irresolute. Since \(B = \{a,b,c\} \) is \(gs\Lambda \)- open in \((Y, \sigma) \) but \(f^{-1}(B) = \{b,d\} \) is not \(gs\Lambda \)- open in \((X, \tau) \). Thus \(f \) is not \(gs\Lambda \)- irresolute.

Theorem 7.1.11 The composition of homeomorphisms is \(gs\Lambda \)-homeomorphism.

Proof: Let the functions \(f : (X, \tau) \longrightarrow (Y, \sigma) \) and \(g : (Y, \sigma) \longrightarrow (Z, \psi) \) be homeomorphisms. Let \(U \) be a open set in \((Z, \psi) \). Since \(g \) is homeomorphism, \(g \) is continuous and so \(g^{-1}(U) \) is open in \((Y, \sigma) \). Since \(f \) is a homeomorphism, \(f \) is continuous, and we get \(f^{-1}(g^{-1}(U)) = (gof)^{-1}(U) \) is open which is by Theorem 2.3.5 \(gs\Lambda \)-open in \((X, \tau) \). This implies that \(gof \) is \(gs\Lambda \)-continuous. Again, let \(G \) be open in \((X, \tau) \). Since \(f \) is a homeomorphism, \(f \) is open. Hence we get \(f(G) \) is open in \((Y, \sigma) \). Since \(g \) is homeomorphism, \(g \) is open and hence we have \(g(f(G)) = (gof)(G) \) is open in \((Z, \psi) \), which is \(gs\Lambda \)-open in \((Z, \psi) \) by Theorem 2.3.5. This implies that \(gof \) is \(gs\Lambda \)-open. Since \(f \) and \(g \) are bijective, \(gof \) is also bijective. This completes the proof.
Theorem 7.1.12 If \(f:(X, \tau) \longrightarrow (Y, \sigma) \) and \(g:(Y, \sigma) \longrightarrow (Z, \psi) \) are bijective functions such that \(f \) is open, \(gs\Lambda \)-continuous and \(g \) is a homeomorphism then \(gof \) is a \(gs\Lambda \)-homeomorphism.

Proof: Let the bijections \(f:(X, \tau) \longrightarrow (Y, \sigma) \) and \(g : (Y, \sigma) \longrightarrow (Z, \psi) \) be such that \(f \) is open, \(gs\Lambda \)-continuous and \(g \) is a homeomorphism. Let \(U \) be a open set in \((Z, \psi)\). Since \(g \) is homeomorphism, \(g \) is continuous and so \(g^{-1}(U) \) is open in \((Y, \sigma)\). Since \(f \) is \(gs\Lambda \)-continuous, \(f^{-1}(g^{-1}(U)) = (gof)^{-1}(U) \) is \(gs\Lambda \)-open in \((X, \tau)\). This implies that \(gof \) is \(gs\Lambda \)-continuous. Again, let \(G \) be open in \((X, \tau)\). Since \(f \) is open, \(f(G) \) is open in \((Y, \sigma)\). Since \(g \) is homeomorphism, \(g \) is open and hence we have \(g(f(G)) = (gof)(G) \) is open in \((Z, \psi)\), which is \(gs\Lambda \)-open in \((Z, \psi)\) by Theorem 2.3.5. This implies that \(gof \) is \(gs\Lambda \)-open. Since \(f \) and \(g \) are bijective, \(gof \) is also bijective. This completes the proof.

Theorem 7.1.13 If \(f:(X, \tau) \longrightarrow (Y, \sigma) \) and \(g:(Y, \sigma) \longrightarrow (Z, \psi) \) are such that \(f \) is open and \(gs\Lambda \)-irresolute, \(g \) is a \(gs\Lambda \)-homeomorphism then \(gof \) is a \(gs\Lambda \)-homeomorphism.

Proof: Let the bijective functions \(f:(X, \tau) \longrightarrow (Y, \sigma) \) and \(g : (Y, \sigma) \longrightarrow (Z, \psi) \) are such that \(f \) is open and \(gs\Lambda \)-irresolute, \(g \) is a \(gs\Lambda \)-homeomorphism. Let \(U \) be a open set in \((Z, \psi)\). Since \(g \) is \(gs\Lambda \)-homeomorphism, \(g \) is \(gs\Lambda \)-continuous and so \(g^{-1}(U) \) is \(gs\Lambda \)-open in \((Y, \sigma)\). Since \(f \) is \(gs\Lambda \)-irresolute, \(f^{-1}(g^{-1}(U)) = (gof)^{-1}(U) \) is \(gs\Lambda \)-open in \((X, \tau)\). This implies that \(gof \) is \(gs\Lambda \)-continuous. Again, let \(G \) be open in \((X, \tau)\). Since \(f \) is open, \(f(G) \) is open in \((Y, \sigma)\). Since \(g \) is \(gs\Lambda \)-homeomorphism, \(g \) is \(gs\Lambda \)-open and hence we have \(g(f(G)) = (gof)(G) \) is \(gs\Lambda \)-open in \((Z, \psi)\). This implies that \(gof \) is \(gs\Lambda \)-open. Since \(f \) and \(g \) are bijective, \(gof \) is also bijective. This completes the proof.

Theorem 7.1.14 If \(f:(X, \tau) \longrightarrow (Y, \sigma) \) and \(g:(Y, \sigma) \longrightarrow (Z, \psi) \) are such that \(f \) is \(gs\Lambda \)-homeomorphism, \(g \) is continuous and \(M. \) \(gs\Lambda \)-open then \(gof \) is a \(gs\Lambda \)-homeomorphism.
Proof: Let \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \psi) \) are such that \(f \) is gs\(\Lambda \)-homeomorphism, \(g \) is continuous and \(M \). gs\(\Lambda \)- open. Let \(U \) be a open set in \((Z, \psi)\). Since \(g \) is continuous, \(g^{-1}(U) \) is open in \((Y, \sigma)\). Since \(f \) is gs\(\Lambda \)-continuous, \(f^{-1}(g^{-1}(U)) = (gof)^{-1}(U) \) is gs\(\Lambda \)-open in \((X, \tau)\). This implies that \(gof \) is gs\(\Lambda \)-continuous. Again, let \(G \) be open in \((X, \tau)\). Since \(f \) is gs\(\Lambda \)- open, \(f(G) \) is gs\(\Lambda \)- open in \((Y, \sigma)\). Since \(g \) is \(M \), \(g(f(G)) = (gof)(G) \) is gs\(\Lambda \)- open in \((Z, \psi)\). This implies that \(gof \) is gs\(\Lambda \)- open. Since \(f \) and \(g \) are bijective, \(gof \) is also bijective. This completes the proof.

Similarly we can prove that

Theorem 7.1.15 If \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \psi) \) are such that \(f \) is a homeomorphism, \(g \) is continuous and gs\(\Lambda \)- open then \(gof \) is a gs\(\Lambda \)-homeomorphism.

Theorem 7.1.16 Let \(f : (X, \tau) \to (Y, \sigma) \) be bijective gs\(\Lambda \)-continuous map. Then the following are equivalent.

1. \(f \) is gs\(\Lambda \)- open map.
2. \(f \) is gs\(\Lambda \)- homeomorphism
3. \(f \) is gs\(\Lambda \)-closed map.

Proof: Proofs are clear from definitions.

Theorem 7.1.17 Let \(f : (X, \tau) \to (Y, \sigma) \) be a gs\(\Lambda \)- homeomorphism. Let \(A \) be a open and gs\(\Lambda \)-closed subset of \(X \) and \(B \) be a closed subset of \(Y \) such that \(f(A) = B \). Assume \((X, \tau) \) to be a gs\(\Lambda \)- space. Then the restriction \(f_A : (A, \tau_A) \to (B, \sigma) \) gs\(\Lambda \)-homeomorphism.

Proof: We have to show that \(f_A \) is a bijection, gs\(\Lambda \)- open map and gs\(\Lambda \)-continuous map.
1. Since \(f \) is one-one \(f_A \) is also one-one. Also since \(f(A)=B \) we have \(f_A(A)=B \), hence we have \(f_A \) is also onto. Thus \(f_A \) is bijective.

2. Let \(U \) be a open set of \((A,\tau_A)\). Then \(U = A \cap H \), for some open set \(H \) in \((X,\tau)\). Since \(f \) is one-one \(f(U)=f(A \cap H) = f(A) \cap f(H)= B \cap f(H) \). Since \(f \) is \(gs\Lambda \)- open and \(H \) is an open set in \(X \), we have \(f(H) \) is \(gs\Lambda \)- open set in \(Y \). Since \(B \) is also \(gs\Lambda \)- open in \(Y \), \(f(U) \) is \(gs\Lambda \)- open in \(B \).

 Hence \(f_A \) is a \(gs\Lambda \)- open map.

3. Let \(V \) be a closed set of \((B,\sigma)\). Then \(V = K \cap B \), for some closed subset \(K \) of \(Y \). Since \(B \) is a closed set of \((Y,\sigma)\), \(V \) is also a closed set of \((Y,\sigma)\).

 By hypothesis and assumption \(f^{-1}(V) \cap A = H_1 \) (say) is a closed subset in \(X \). Since \(f_A^{-1}(V)= H_1 \), it is sufficient to show that \(H_1 \) is a \(gs\Lambda \)-closed subset in \((A,\tau_A)\). Let \(G \) be a semi open set in \((A,\tau_A)\), such that \(H_1 \subseteq G \).

 Then by hypothesis \(G \) is semi open in \(X \). Since \(H_1 \) is \(gs\Lambda \)-closed in \(X \), we have \(Cl_{\lambda}(H_1) \subseteq G \). Since \(A \) is open in \(X \), \(Cl_{\lambda}(H_1) \cap A \subseteq G \cap A \subseteq G \). Hence \(H_1 = f_A^{-1}(V) \) is \(gs\Lambda \)-closed set in \((A,\tau_A)\). Therefore \(f_A^{-1} \) is a \(gs\Lambda \)-continuous map. Therefore \(f_A^{-1} \) is a homeomorphism.

7.2 Properties of \(gs\Lambda^* \)-Homeomorphism

In this section, we introduce the concepts \(gs\Lambda^* \)-homeomorphisms into topological spaces and we investigate the group structure of the set of all \(gs\Lambda^* \)-homeomorphism.

Definition 7.2.1 A bijection \(f:(X,\tau)\rightarrow(Y,\sigma) \) is called \(gs\Lambda^* \)-homeomorphism if \(f \) is both \(M.gsl \)-open and \(gs\Lambda \)- irresolute functions.

That is if \(f \) and \(f^{-1} \) preserve \(gs\Lambda \)- open sets (\(gs\Lambda \)-closed sets). In other words a bijection \(f:(X,\tau) \rightarrow(Y,\sigma) \) is said to be
gsΛ*-homeomorphism if both f and f⁻¹ are gsΛ-irresolute. We say that spaces (X,τ) and (Y,σ) are gsΛ*-homeomorphic if there exists a gsΛ*-homeomorphism from (X,τ) onto (Y,σ). We denote the family of all gsΛ*-homeomorphisms of a topological space (X,τ) onto itself by gsΛ*H(X,τ).

Theorem 7.2.2 Every gsΛ*-homeomorphism is a gsΛ-homeomorphism.

Proof: Let f:(X,τ) → (Y,σ) be a gsΛ*-homeomorphism. Then f is bijective, gsΛ-irresolute and f⁻¹ is gsΛ-irresolute. Since every gsΛ-irresolute function is gsΛ-continuous, f and f⁻¹ are gsΛ-continuous and hence by definition f is a gsΛ-homeomorphism.

Example 59 Let X = Y = {a,b,c,d,e}, τ = {∅, X, {a}, {b}, {a,b}, {a,b,e}, {a,b,d,e}, {a,b,c,e}} and σ = {∅, Y, {a}, {b}, {a,b}, {a,b,c}, {b,c,d}, {a,b,c,d}, {b,c,d,e}, {b,c,d,e}}. The identity function f:(X,τ) → (Y,σ) is a gsΛ-homeomorphism, but not gsΛ*-homeomorphism. Here A={b,e} is gsΛ open in (X,τ) but f(A) = {b,e} is not gsΛ-open in (Y,σ). Thus f⁻¹ is not gsΛ-irresolute. Since B={a,b,c} is gsΛ-open in (Y,σ) but f⁻¹(B) = {b,d} is not gsΛ-open in (X,τ). Thus f is not gsΛ-irresolute.

Remark 51 The concepts gsΛ*-homeomorphism and homeomorphism are in general independent.

Theorem 7.2.3 If f:(X,τ) → (Y,σ) is a gsΛ*-homeomorphism, then

gsΛCl(f⁻¹(B)) = f⁻¹(gsΛCl(B)) for every subset B of Y.

Proof: Let f:(X,τ) → (Y,σ) is a gsΛ*-homeomorphism. Then by definition, both f and f⁻¹ are gsΛ-irresolute and f is bijective. Let B ⊆ Y. Since gsΛCl(B) is a gsΛ-closed set in (Y,σ), and since f is gsΛ-irresolute, we have f⁻¹(gsΛCl(B)) is gsΛ-closed in (X,τ). But gsΛCl(f⁻¹(B)) is the smallest gsΛ-closed set containing f⁻¹(B). Therefore gsΛCl(f⁻¹(B)) ⊆ f⁻¹(gsΛCl(B)). Also, gsΛCl(f⁻¹(B)) is gsΛ-closed in (X,τ). Since f⁻¹ is gsΛ-irresolute,
\(f(\Lambda Cl(f^{-1}(B))) \) is \(\Lambda \)-closed in \((Y, \sigma) \). Now, \(B = f(f^{-1}(B)) \subseteq f(\Lambda Cl(f^{-1}(B))) \).

Since \(f(\Lambda Cl(f^{-1}(B))) \) is \(\Lambda \)-closed and \(\Lambda Cl(B) \) is the smallest \(\Lambda \)-closed set containing \(B \), \(\Lambda Cl(B) \subseteq f(\Lambda Cl(f^{-1}(B))) \) implies that \(f^{-1}(\Lambda Cl(B)) \subseteq f^{-1}(f(\Lambda Cl(f^{-1}(B)))) = \Lambda Cl(f^{-1}(B)) \). That is, \(f^{-1}(\Lambda Cl(B)) \subseteq \Lambda Cl(f^{-1}(B)) \). Thus we get \(\Lambda Cl(f^{-1}(B)) = f^{-1}(\Lambda Cl(B)) \).

Theorem 7.2.4 If \(f:(X, \tau) \rightarrow (Y, \sigma) \) is a \(\Lambda \)-homeomorphism, then \(\Lambda Cl(f(B)) = f(\Lambda Cl(B)) \) for every \(B \subseteq X \).

Proof: Let \(f:(X, \tau) \rightarrow (Y, \sigma) \) be a \(\Lambda \)-homeomorphism. Since \(f \) is \(\Lambda \)-homeomorphism, \(f^{-1} \) is also a \(\Lambda \)-homeomorphism. Therefore by Theorem 7.2.3, it follows that \(\Lambda Cl(f(B)) = f(\Lambda Cl(B)) \) for every \(B \subseteq X \).

Theorem 7.2.5 If \(f:(X, \tau) \rightarrow (Y, \sigma) \) is a \(\Lambda \)-homeomorphism, then \(f(\Lambda \text{-int}(B)) = \Lambda \text{-int}(f(B)) \) for every \(B \subseteq X \).

Proof: Let \(f:(X, \tau) \rightarrow (Y, \sigma) \) be a \(\Lambda \)-homeomorphism. For any set \(B \subseteq X \), \(\Lambda \text{-int}(B) = (\Lambda Cl(B^c))^c \). \(f(\Lambda \text{-int}(B)) = f((\Lambda Cl(B^c))^c) = (f(\Lambda Cl(B^c)))^c \). Then using Theorem, we see that \(f(\Lambda \text{-int}(B)) = (\Lambda Cl(f(B^c)))^c = \Lambda \text{-int}(f(B)) \).

Theorem 7.2.6 If \(f:(X, \tau) \rightarrow (Y, \sigma) \) is a \(\Lambda \)-homeomorphism, then for every \(B \subseteq Y \), \(f^{-1}(\Lambda \text{-int}(B)) = \Lambda \text{-int}(f^{-1}(B)) \).

Proof: Let \(f:(X, \tau) \rightarrow (Y, \sigma) \) be a \(\Lambda \)-homeomorphism. Since \(f \) is \(\Lambda \)-homeomorphism, \(f^{-1} \) is also a \(\Lambda \)-homeomorphism. Therefore by Theorem 7.2.4, \(f^{-1}(\Lambda \text{-int}(B)) = \Lambda \text{-int}(f^{-1}(B)) \) for every \(B \subseteq Y \).

Theorem 7.2.7 If \(f:(X, \tau) \rightarrow (Y, \sigma) \) and \(g:(Y, \sigma) \rightarrow (Z, \psi) \) are \(\Lambda \)-homeomorphisms, then the composition \(g \circ f:(X, \tau) \rightarrow (Z, \psi) \) is also \(\Lambda \)-homeomorphism.

Proof: Let \(U \) be a \(\Lambda \)-open set in \((Z, \psi) \). Since \(g \) is \(\Lambda \)-homeomorphism,
g is $g\Lambda$-irresolute and so $g^{-1}(U)$ is $g\Lambda$-open in (Y,σ). Since f is $g\Lambda^*$-homeomorphism, f is $g\Lambda$-irresolute and so $f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)$ is $g\Lambda$-open in (X,τ). This implies that gof is $g\Lambda$-irresolute. Again, let G be $g\Lambda$-open in (X,τ). Since f is $g\Lambda^*$-homeomorphism, f^{-1} is $g\Lambda$-irresolute and so $(f^{-1})^{-1}(G) = f(G)$ is $g\Lambda$-open in (Y,σ). Since g is $g\Lambda^*$-homeomorphism, g^{-1} is $g\Lambda$-irresolute and so $(g)^{-1}(f(G)) = gof(G)) = (gof)(G) = ((gof)^{-1})^{-1}(G)$ is $g\Lambda$-open in (Z,ψ). This implies that $(gof)^{-1}$ is $g\Lambda$-irresolute. Since f and g are $g\Lambda^*$-homeomorphism, f and g are bijective and so gof is bijective. This completes the proof.

Theorem 7.2.8 The set $g\Lambda^*H(X,\tau)$ is a group under composition of functions.

Proof: Define a binary operation $\Gamma: g\Lambda^*H(X,\tau) \times g\Lambda^*H(X,\tau) \rightarrow g\Lambda^*H(X,\tau)$, by $\Gamma(f,g) = gof$ for all $f,g \in g\Lambda^*H(X,\tau)$. Let $f, g \in g\Lambda^*H(X,\tau)$. Then $fog \in g\Lambda^*H(X,\tau)$ by Theorem 4.9. We know that the composition of maps are associative and the identity map $I: (X,\tau) \rightarrow (X,\tau)$ serves as identity element. Since f is bijective, $f^{-1} \in g\Lambda^*H(X,\tau)$ whenever $f \in g\Lambda^*H(X,\tau)$ such that $fof^{-1} = f^{-1}of = I$ and so unique inverse element exists for each element of $g\Lambda^*H(X,\tau)$. This completes the proof.

Theorem 7.2.9 If $f: (X,\tau) \rightarrow (Y,\sigma)$ is a $g\Lambda^*$-homeomorphism, then f induces an isomorphism from the group $g\Lambda^*H(X,\tau)$ onto the group $g\Lambda^*H(Y,\sigma)$.

Proof: Let $f: (X,\tau) \rightarrow (Y,\sigma)$ is a $g\Lambda^*$-homeomorphism. Then define a map $\Psi_f : g\Lambda^*H(X,\tau) \rightarrow g\Lambda^*H(Y,\sigma)$ by $\Psi_f(h) = fohof^{-1}$ for every $h \in g\Lambda^*H(X,\tau)$. Let $h_1, h_2 \in g\Lambda^*H(X,\tau)$. Then $\Psi_f(h_1oh_2) = foh_1oh_2of^{-1} = fo(h_1of^{-1})ofoh_2of^{-1} = ((foh_1of^{-1})ofh_2of^{-1}) = \Psi_f(h_1)o\Psi_f(h_2)$. This proves that Ψ_f is $g\Lambda^*$-homomorphism. Next let us prove that Ψ_f is bijective. Since $\Psi_f(f^{-1}ohof) = h$, Ψ_f is onto. Now, $\Psi_f(h) = I$ implies $fohof^{-1} = I$. That implies $h = I$. This proves that Ψ_f is one-one. This shows that Ψ_f is an
isomorphism.

Definition 7.2.10 Let us define a function \(\Psi_f : g\Lambda^*H(X, \tau) \rightarrow g\Lambda^*H(Y, \sigma) \) by \(\Psi_f(h) = foh \circ f^{-1} \) for every \(h \in g\Lambda^*H(X, \tau) \). Let \(\Psi_f \) be a homomorphism. Let \(K = \{ h / h \in g\Lambda^*H(X, \tau); \Psi_f(h) = I_y \} \) where \(I_y \) is an identity element of \(g\Lambda^*H(Y, \sigma) \). Then \(K \) is called the kernel of \(\Psi_f \) and is denoted by \(\text{Ker}l \Psi_f \)

Theorem 7.2.11 Let \(\Psi_f \) be a homomorphism. Then \(\Psi_f \) is one-one if and only if \(\text{Ker}l \Psi_f = \{ I_x \} \).

Proof: Suppose \(\Psi_f \) is one-one. Then clearly kernel of \(\Psi_f = \{ I_x \} \). Conversely suppose \(\text{Ker}l \Psi_f = \{ I_x \} \). Let \(\Psi_f(h_1) = \Psi_f(h_2) \), implies \(foh_1 \circ f^{-1} = foh_2 \circ f^{-1} \) implies \(foh_1 \circ f^{-1} \circ (foh_2 \circ f^{-1})^{-1} = I_y \). That is \(foh_1 \circ f^{-1} \circ f^{-1} \circ (oh_2 \circ f^{-1})^{-1} = I_y \). Hence we get \(foh_1 \circ h_2^{-1} \circ f^{-1} = I_y \). Thus we have \(h_1 \circ h_2^{-1} \in \text{Ker}l \Psi_f = \{ I_x \} \) and so \(h_1 = h_2 \). Therefore \(\text{Ker}l \Psi_f \) is one-one.

Theorem 7.2.12 Let \(\Psi_f : g\Lambda^*H(X, \tau) \rightarrow g\Lambda^*H(Y, \sigma) \) be homomorphism. Then \(\text{Ker}l \Psi_f \) is a normal subgroup of \(g\Lambda^*H(X, \tau) \).

Proof: Since \(\Psi_f(I_x) = I_y, I_x \in \text{Ker}l \Psi_f \) and hence \(\text{Ker}l \Psi_f \neq \emptyset \). Now let \(h_1, h_2 \in \text{Ker}l \Psi_f \), then \(\Psi_f(h_1) = \Psi_f(h_2) = I_y \). Therefore \(\Psi_f(h_1 \circ h_2^{-1}) = \Psi_f(h_1) \circ \Psi_f(h_2^{-1}) = I_y \). Thus \(h_1 \circ h_2^{-1} \in \text{Ker}l \Psi_f \) and hence \(\text{Ker}l \Psi_f \) is a subgroup of \(g\Lambda^*H(X, \tau) \). Now let \(h_1 \in \text{Ker}l \Psi_f \) and \(g \in g\Lambda^*H(X, \tau) \), then \(\Psi_f(goh_1 \circ g^{-1}) = go \circ (goh_1 \circ g^{-1}) \circ g^{-1} = go \circ goh_1 \circ g^{-1} = goh_1 \circ g^{-1} = \Psi_f(h_1) = I_y \) and so \(goh_1 \circ g^{-1} \in \text{Ker}l \Psi_f \). Therefore \(\text{Ker}l \Psi_f \) is a normal subgroup of \(g\Lambda^*H(X, \tau) \).

Theorem 7.2.13 (Fundamental Theorem of homomorphism)

Let \(\Psi_f : g\Lambda^*H(X, \tau) \rightarrow g\Lambda^*H(Y, \sigma) \) be an epimorphism. Let \(K = \text{Ker}l \Psi_f \). Then \(g\Lambda^*H(X, \tau) / K \cong g\Lambda^*H(Y, \sigma) \).

Proof: Let us define \(\eta : g\Lambda^*H(X, \tau) / K \rightarrow g\Lambda^*H(Y, \sigma) \) by \(\eta(Kx) = \)
\[\Psi_f(x). \text{ Clearly } \eta \text{ is a well defined bijection. Now since } \Psi_f \text{ is a homomorphism we get, } \eta(Kx Ky) = \eta(Kxy) = \Psi_f(xy) = \Psi_f(x)\Psi_f(y) = \eta(Kx)\eta(Ky). \]

Therefore \(\eta \) is a homomorphism. Thus \(\Psi_f \) induces an isomorphism \(\eta \) from \(gs\Lambda^*H(X,\tau) \) onto \(gs\Lambda^*H(Y,\sigma) \). Hence we get \(gs\Lambda^*H(X,\tau)/K \cong gs\Lambda^*H(Y,\sigma) \).

Theorem 7.2.14 Let \((X,\tau)\) be a topological space. If \(f:X\rightarrow Y \) is \(gs\Lambda\)-irresolute injection and \(Y \) is \(gs\Lambda\)-Hausdroff space, then \(X \) is \(gs\Lambda\)-Hausdroff space.

Proof: Since \(f \) is injective, for any pair of distinct points \(x,y \in X \), \(f(x) \neq f(y) \). Let \(y_1 = f(x) \) and \(y_2 = f(y) \), implies \(x = f^{-1}(y_1) \) and \(y = f^{-1}(y_2) \). As \(Y \) is a \(gs\Lambda\)-Hausdroff space there exists \(U \in \text{gsL}_\text{O}(Y,y_1) \) and \(V \in \text{gsL}_\text{O}(Y,y_2) \) such that \(U \cap V = \emptyset \). Since \(f \) is \(gs\Lambda \) irresolute, by definition we have \(f^{-1}(U) \) and \(f^{-1}(V) \) are \(gs\Lambda \)-open sets in \(X \), with \(f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = f^{-1}(\emptyset) = \emptyset \) and \(f^{-1}(y_1) \in f^{-1}(U) \), \(f^{-1}(y_2) \in f^{-1}(V) \). Thus it is shown that for every distinct points \(x,y \in X \) there exist distinct \(gs\Lambda \)-open subsets \(f^{-1}(U) \) and \(f^{-1}(V) \) of \(X \) containing \(x \) and \(y \) such that respectively, such that \(f^{-1}(U) \cap f^{-1}(V) = \emptyset \). Hence we proved that \(X \) is a \(gs\Lambda\)-Hausdroff space.

Theorem 7.2.15 A bijective \(gs\Lambda \) irresolute map \(f: (X,\tau) \rightarrow (Y,\sigma) \) of a \(gs\Lambda \)-compact space \(X \) onto a \(gs\Lambda \)-Hausdroff space \(Y \) is a \(gs\Lambda^* \) homeomorphism.

Proof: Let \((X,\tau) \) be a \(gs\Lambda \)-compact space and \((Y,\sigma) \) be a \(gs\Lambda \)-Hausdroff space. Let \(f:(X,\tau) \rightarrow (Y,\sigma) \) be a bijective \(gs\Lambda \) irresolute map. It is enough to prove that \(f^{-1} \) is \(gs\Lambda \)-irresolute map. Let \(F \) be \(gs\Lambda \)-closed subset of \((X,\tau) \). Since \((X,\tau) \) is a \(gs\Lambda \)-compact space \(F \) is a \(gs\Lambda \)-compact subset of \(X \). Since \(f \) is \(gs\Lambda \)-irresolute map \(f(F) \) is \(gs\Lambda \)-compact subset of \(Y \). Since \(Y \) is a \(gs\Lambda \)-Hausdroff space, \(f(F) \) is \(gs\Lambda \)-closed subset of \(Y \). Thus we proved \(f^{-1} \) is a \(gs\Lambda \)-irresolute map. Hence \(f \) is a \(gs\Lambda^* \) homeomorphism.