How the artificial intelligence tool iSNO-PseAAC is working in predicting the cysteine S-nitrosylation sites in proteins

Kuo-Chen Chou*

Gordon Life Science Institute, Boston, Massachusetts 02478, United States of America

In 2013 a very powerful AI (artificial intelligence) tool has been established for identifying cysteine S-nitrosylation sites in proteins, which is one of the important post modifications in proteins [1].

To see how the web-server is working, please do the following.

Step 1. Open the web server at http://app.aporc.org/iSNO-PseAAC/ and you will see the top page of the predictor on your computer screen, as shown in Figure 1. Click on the Read Me button to see a brief introduction about iSNO-PseAAC predictor and the caveat when using it.

Step 2. Either type or copy/paste the query protein sequences into the input box shown at the center of Figure 1. The input sequence should be in the FASTA format. A sequence in FASTA format consists of a single initial line beginning with a greater-than symbol (“>”) in the first column, followed by lines of sequence data. The words right after the “>” symbol in the single initial line are optional and only used for the purpose of identification and description. All lines should be no longer than 120 characters and usually do not exceed 80 characters. The sequence ends if another line starting with a “>” appears; this indicates the start of another sequence. Example sequences in FASTA format can be seen by clicking on the Example button right above the input box.

Step 3. Click on the Submit button to see the predicted result. For example, if you use the query protein sequences in the Example window as the input, after clicking the Submit button, you will see on your screen the predicted SNO site positions and the corresponding sequences segments as formulated by Equation 1. All these results are fully consistent with the experimentally verified results. It takes about a few seconds for the above computation before the predicted results appear on the computer screen; the more number of query proteins and longer of each sequence, the more time it is usually needed.

Step 4. Click on the Citation button to find the relevant papers that document the detailed development and algorithm of iSNO-PseAAC.

Step 5. Click on the Data button to download the benchmark datasets used to train and test the iSNO-PseAAC predictor.

It is instructive to point out that the web-server predictor has been developed by strictly observing the guidelines of “Chou’s 5-steps rule” and hence have the following notable merits (see, e.g., [2-29] and three comprehensive review papers [30-32]): (1) crystal clear in logic development, (2) completely transparent in operation, (3) easily to repeat the reported results by other investigators, (4) with high potential in stimulating other sequence-analyzing methods, and (5) very convenient to be used by the majority of experimental scientists.

Moreover, it has not escaped our notice that during the development of iSNO-PseAAC web-server, the approach of general pseudo amino acid components [33] or PseAAC [34] had been utilized and hence its accuracy would be much higher than its counterparts, as concurred by many investigators [1-6,11,13,18,26,30,32-300].

It is anticipated that iSNO-PseAAC may become a very useful high throughput tool for conducting proteome analysis as well as drug development.

For the remarkable and awesome roles of the “5-steps rule” in driving proteome, genome analyses and drug development, see a series of recent papers [31,32,291,301-309] where the rule and its wide applications have been very impressively presented from various aspects or at different angles. References
41. M. Wang, J. Yang, G.P. Liu, Z.J. Xu, K.C. Chou, Weighted-support vector machines for predicting membrane protein types based on pseudo amino acid composition. Protein Engineering, Design, and Selection 17 (2004) 509-516.

42. Y.D. Cai, K.C. Chou, Predicting enzyme subclass by functional domain composition and pseudo amino acid composition. Journal of Proteome Research 4 (2005) 967-971.

43. Y.D. Cai, G.P. Zhou, K.C. Chou, Predicting enzyme family classes by hybridizing gene product composition and pseudo amino acid composition. Journal of Theoretical Biology 234 (2005) 145-149.

44. Y. Gao, S.H. Shao, X. Xiao, Y.S. Ding, Y.S. Huang, Z.D. Huang, K.C. Chou, Using pseudo amino acid composition to predict protein subcellular location: approached with Lyapunov index, Bessel function, and Chebyshev filter. Amino Acids 28 (2005) 373-376.

45. H. Liu, J. Yang, M. Wang, L. Xue, K.C. Chou, Using Fourier spectrum analysis and pseudo amino acid composition for prediction of membrane protein types. The Protein Journal 24 (2005) 385-389.

46. H.B. Shen, K.C. Chou, Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo amino acid composition to predict protein types. Biomedical & Biophysical Research Communications (BBRC) 334 (2005) 288-292.

47. H.B. Shen, K.C. Chou, Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition. Biochem Biophys Res Comm (BBRC) 337 (2005) 752-756.

48. Y.D. Cai, K.C. Chou, Predicting membrane protein type by functional domain composition and pseudo amino acid composition. Journal of Theoretical Biology 238 (2006) 385-400.

49. C. Chen, Y.X. Tian, Y.X. You, P.X. Cai, J.Y. Mo, Using pseudo amino acid composition and support vector machine to predict protein structural class. J Theor Biol 243 (2006) 444-8.

50. C. Chen, X. Zhou, Y. Tian, X. Zou, P. Cai, Predicting protein structural class with pseudo amino acid composition and support vector machine fusion network. Analytical Biochemistry 357 (2006) 116-21.

51. P. Du, Y. Li, Prediction of protein subnichtodria locations by hybridizing pseudo amino acid composition with various physicochemical features of segmented sequence. BMC Bioinformatics 7 (2006) 518.

52. S. Mondal, R. Bhavna, R. Mohan Babu, S. Ramakumar, Pseudo amino acid composition and multi-class support vector machines approach for conotoxin superfamily classification. J Theor Biol 243 (2006) 252-60.

53. H.B. Shen, J. Yang, K.C. Chou, Fuzzy KNN for predicting membrane protein types from pseudo amino acid composition. Journal of Theoretical Biology 240 (2006) 8-13.

54. S.Q. Wang, J. Yang, K.C. Chou, Using stacked generalization to predict membrane protein types based on pseudo amino acid composition. Journal of Theoretical Biology 242 (2006) 941-946.

55. X. Xiao, S.H. Shao, Y.S. Ding, Z.D. Huang, K.C. Chou, Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 30 (2006) 49-54.

56. X. Xiao, S.H. Shao, Z.D. Huang, K.C. Chou, Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor. Journal of Computational Chemistry 27 (2006) 478-482.

57. S.W. Zhang, Q. Pan, H.C. Zhang, Z.C. Shao, J.Y. Shi, Prediction protein homologomer types by pseudo amino acid composition: Approached with an improved feature extraction and naïve Bayes feature fusion. Amino Acids 30 (2006) 461-468.

58. G.P. Zhou, Y.D. Cai, Predicting protease types by hybridizing gene ontology and pseudo amino acid composition. PROTEINS: Structure, Function, and Bioinformatics 63 (2006) 681-684.

59. Y.L. Chen, Q.Z. Li, Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo amino acid composition. Journal of Theoretical Biology 248 (2007) 377-381.

60. Y.S. Ding, T.L. Zhang, K.C. Chou, Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network. Protein & Peptide Letters 14 (2007) 811-815.

61. H. Lin, Q.Z. Li, Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Malahanobis discriminant. Biochem Biophys Res Commun 354 (2007) 548-51.

62. H. Lin, Q.Z. Li, Using Pseudo Amino Acid Composition to Predict Protein Structural Class: Approached by Incorporating 400 Dipeptide Components. Journal of Computational Chemistry 28 (2007) 1463-1466.

63. P. Mundra, M. Kumar, K.K. Kumar, V.K. Jayaraman, B.D. Kalkarni, Using pseudo amino acid composition to predict protein subnuclear localization: Approached with PSSM. Pattern Recognition Letters 28 (2007) 1610-1615.

64. J.Y. Shi, S.W. Zhang, Q. Pan, Y.-M. Cheng, J. Xue, Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition. Amino Acids 33 (2007) 69-74.

65. T.L. Zhang, Y.S. Ding, Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes. Amino Acids 33 (2007) 623-629.

66. X.B. Zhou, C. Chen, Z.C. Li, X.Y. Zou, Using Chou’s amphiphilic pseudo amino acid composition and support vector machine for prediction of enzyme subfamily classes. Journal of Theoretical Biology 248 (2007) 546-551.

67. Y. Diao, D. Ma, Z. Wen, J. Yin, J. Xiang, M. Li, Using pseudo amino acid composition to predict transmembrane regions in protein: cellular automata and Lempel-Ziv complexity. Amino Acids 34 (2008) 111-117.

68. Y.S. Ding, T.L. Zhang, Using Chou’s pseudo amino acid composition to predict subcellular localization of apoptosis proteins: an approach with immune genetic algorithm-based ensemble classifier. Pattern Recognition Letters 29 (2008) 1887-1892.

69. Y. Fang, Y. Guo, Y. Feng, M. Li, Predicting DNA-binding proteins: approached from Chou’s pseudo amino acid composition and other specific sequence features. Amino Acids 34 (2008) 103-109.

70. Q. Gu, Y. Ding, T. Zhang, Prediction of G-protein-coupled receptor classes with pseudo amino acid composition. IEEE Xplore (iCBBE, Shanghai, China) (2008).

71. X. Jiang, R. Wei, T.L. Zhang, Q. Gu, Using the concept of Chou’s pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy. Protein & Peptide Letters 15 (2008) 392-396.

72. X. Jiang, R. Wei, Y. Zhao, T. Zhang, Using Chou’s pseudo amino acid composition based on approximate entropy and an ensemble of AdaBoost classifiers to predict protein subnuclear location. Amino Acids 34 (2008) 669-675.

73. F.M. Li, Q.Z. Li, Using pseudo amino acid composition to predict protein subnuclear location with improved hybrid approach. Amino Acids 34 (2008) 119-125.

74. F.M. Li, Q.Z. Li, Predicting protein subcellular location using Chou’s pseudo amino acid composition and improved hybrid approach. Protein & Peptide Letters 15 (2008) 612-616.

75. H. Lin, The modified Malahanobis discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition. Journal of Theoretical Biology 252 (2008) 350-356.

76. H. Lin, H. Ding, F.B. Feng-Biao Guo, A.Y. Zhang, J. Huang, Predicting subcellular localization of mycobacterial proteins by using Chou’s pseudo amino acid composition. Protein & Peptide Letters 15 (2008) 739-744.

77. L. Nanni, A. Lumin, Genetic programming for creating Chou’s pseudo amino acid based features for subnichodoria localization. Amino Acids 34 (2008) 653-660.

78. H.B. Shen, K.C. Chou, PseAAC: a flexible web-server for generating various kinds of protein pseudo amino acid composition. Analytical Biochemistry 373 (2008) 386-388.

79. J.Y. Shi, S.W. Zhang, Q. Pan, G.P. Zhou, Using Pseudo Amino Acid Composition to Predict Protein Subcellular Location: Approached with Amino Acid Composition Distribution. Amino Acids 35 (2008) 321-327.

80. X. Xiao, W.Z. Lin, K.C. Chou, Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes. Journal of Computational Chemistry 29 (2008) 2018-2024.

81. X. Xiao, P. Wang, K.C. Chou, Predicting protein structural classes with pseudo amino acid composition: an approach using geometric moments of cellular automation image. Journal of Theoretical Biology 254 (2008) 691-696.

82. G.Y. Zhang, B.S. Fang, Predicting the cofactors of oxidoreductases based on amino acid composition distribution and Chou’s amphiphilic pseudo amino acid composition. Journal of Theoretical Biology 253 (2008) 310-315.

83. G.Y. Zhang, H.C. Li, J.Q. Gao, B.S. Fang, Predicting lipase types by improved Chou’s pseudo amino acid composition. Protein & Peptide Letters 15 (2008) 1132-1137.

84. S.W. Zhang, W. Chen, F. Yang, Q. Pan, Using Chou’s pseudo amino acid composition to predict protein quaternary structure: a sequence-segmented PseAAC approach. Amino Acids 35 (2008) 591-598.

85. S.W. Zhang, Y.L. Zhang, H.F. Yang, C.H. Zhao, Q. Pan, Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies. Amino Acids 34 (2008) 565-572.
Kuo-Chen C (2019) How the artificial intelligence tool iSNO-PseAAC is working in predicting the cysteine S-nitrosylation sites in proteins.
Kuo-Chen C (2019) How the artificial intelligence tool iSNO-PseAAC is working in predicting the cysteine S-nitrosylation sites in proteins

213. B. Liu, J. Chen, X. Wang, Protein remote homology detection by combining Chou's distance-pair pseudo amino acid composition and principal component analysis. Mol Genet Genomics 290 (2015) 1919-31.

214. B. Liu, J. Xu, S. Fan, R. Xu, J. Jyuan Zhou, X. Wang, PseDNA-Pse: DNA-binding protein identification by combining Chou's PseAAC and physicochemical distance transformation. Molecular Informatics 34 (2015) 8-17.

215. M. Mandal, A. Mukhopadhyay, U. Maulik, Prediction of protein subcellular localization by incorporating multiobjective P_so-based feature subset selection into the general form of Chou's PseAAC. Med Biol Eng Comput 53 (2015) 331-44.

216. V. Sanchez, A.M. Peinado, J.L. Perez-Cordoba, A.M. Gomez, A new signal characterization and signal-based Chou's PseAAC representation of protein sequences. J Bioinform Comput Biol 13 (2015) 1550024.

217. R. Sharma, A. Dehzangi, J. Lyoms, K. Paliwal, T. Tismoda, A. Sharma, Predict Gram-Positive and Gram-Negative Subcellular Localization via Incorporating Evolutionary Information and Physicochemical Features Into Chou's General PseAAC. IEEE Trans Nanobioscience 14 (2015) 915-26.

218. X. Wang, W. Zhang, Q. Zhang, G.Z. Li, MultiP-SCHio: multi-label protein subchelatolocalization prediction with Chou's pseudo amino acid composition and a novel multi-label classifier. Bioinformatics 31 (2015) 2639-45.

219. R. Xu, J. Zhou, B. Liu, Y.A. He, Q. Zou, X. Wang, K.C. Chou, Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach. Journal of Biomolecular Structure & Dynamics (JBSD) 33 (2015) 1720-1730.

220. M. Zhang, B. Zhao, X. Liu, Predicting industrial polymer melt index via incorporating chaotic characters into Chou's general PseAAC. Chemometrics and Intelligent Laboratory Systems (CHEMOLAB) 146 (2015) 232-240.

221. S.L. Zhang, Accurate prediction of protein structural classes by incorporating PSSS and PSSM into Chou's general PseAAC. Chemometrics and Intelligent Laboratory Systems (CHEMOLAB) 142 (2015) 28-35.

222. P.P. Zhu, W.C. Li, Z.I. Zhong, E.Z. Deng, H. Ding, W. Chen, H. Lin, Predicting the subcellular localization of mycobacterial proteins by incorporating the optimal tripeptides into the general form of pseudo amino acid composition. Mol BiolSys 61 (2015) 558-63.

223. K. Ahmad, M. Waris, M. Hayat, Prediction of Protein Submitochondrial Locations by Incorporating Dipetide Composition into Chou's General Pseudo Amino Acid Composition. J Membr Biol 249 (2016) 293-304.

224. M. Behbahani, H. Mohabatkar, M. Nosrati, Analysis and comparison of lignin characterization and signal-based Chou's PseAAC representation of protein sequences. J Bioinform Comput Biol 13 (2015) 1-5.

225. G.L. Fan, Y.L. Liu, H. Wang, Identification of thermophytic proteins by incorporating evolutionary and acid dissociation information into Chou's general pseudo amino acid composition. J Theor Biol 411 (2016) 1-19.

226. J. Jia, J. Liu, X. Xiao, B. Liu, K.C. Chou, Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition (IPPBS-PseAAC). J Biomat Sci D (JBSD) 34 (2016) 1946-1961.

227. J. Jia, Z. Liu, X. Xiao, B. Liu, K.C. Chou, pSucc-Lys: Predict lysine succinylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics 32 (2016) 3133-3141.

228. Y.S. Jiao, P.F. Du, Prediction of Golgi-resident protein types using general form of Chou's pseudo amino acid compositions: Approaches with minimal redundancy and maximal relevance feature selection. J Theor Biol 402 (2016) 38-44.

229. Z. Ju, J.Z. Cao, H. Gu, Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou's general PseAAC. J Theor Biol 397 (2016) 145-150.

230. M. Kabir, M. Hayat, iSpot-DAEmC: identifying recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples. Molecular Genetics and Genomics 291 (2016) 285-96.

231. W.R. Qin, B.Q. Sun, X. Xiao, Z.C. Xu, K.C. Chou, Hyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget 7 (2016) 44310-44321.

232. M. Tahir, M. Hayat, iNC-SCNC: a sequence-based predictor for identification of nucleosome positioning in genomes by extending the concept of SAAC and Chou's PseAAC. Mol Biosyst 12 (2016) 2587-93.

233. H. Tang, W. Chen, H. Lin, Identification of immunoglobulins using Chou's pseudo amino acid composition with feature selection technique. Mol Biosyst 12 (2016) 1269-1275.

234. A.K. Tiswari, Prediction of G-protein coupled receptors and their subfamilies by incorporating various sequence features into Chou's general PseAAC. Comput Methods Programs Biomed 134 (2016) 197-213.

235. X. Xu, D. Sun, S. Liu, Y. Zhang, Protein Sequence Analysis by Incorporating Modified Chaos Protein Game and Physicochemical Properties Into Chou's General Pseudo Amino Acid Composition. J Theor Biol 406 (2016) 105-115.

236. H.L. Zou, X. Xiao, Predicting the Functional Types of Singleplex and Multiplex Eukaryotic Membrane Proteins via Different Models of Chou's Pseudo Amino Acid Compositions. J Membr Biol 249 (2016) 23-9.

237. H.L. Zou, X. Xiao, Classifying Multifunctional Enzymes by Incorporating Three Different Models into Chou's General Pseudo Amino Acid Composition (doi:10.1007/s00232-016-9904-3). J Membr Biol 249 (2016) 561-7.

238. X. Cheng, X. Xiao, K.C. Chou, ploc-mPlant: predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC. Molecular BioSystems 13 (2017) 1722-1727.

239. X. Cheng, X. Xiao, K.C. Chou, ploc-mnIVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene (Erratum: ibid., 2018, Vol.644, 156-156) 628 (2017) 315-321.

240. Z. Ju, J.J. He, Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC. J Mol Graph Model 76 (2017) 356-363.

241. Z. Ju, J.J. He, Prediction of lysine crosnoylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC. J Mol Graph Model 77 (2017) 200-204.

242. M. Khan, M. Hayat, S.A. Khan, N. Iqbal, Uth-DPC: Identify mycobacterial membrane protein types by incorporating un-biased dipetide composition into Chou's general PseAAC. J Theor Biol 415 (2017) 13-19.

243. Y. Liang, S. Zhang, Predict protein structural class by incorporating two different modes of evolutionary information into Chou's general pseudo amino acid composition. J Mol Graph Model 78 (2017) 110-117.

244. L.M. Liu, Y. Xu, K.C. Chou, iPGK-PseAAC: identify lysine phosphorylglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC. Med Chem 13 (2017) 552-559.

245. P.K. Mehro, T.K. Sahu, V. Saini, A.R. Rao, Predicting antimicrobial peptides with improved accuracy by incorporating the compositionational, physico-chemical and structural features into Chou's general PseAAC. Sci Rep 7 (2017) 20044.

246. W.R. Qin, B.Q. Sun, X. Xiao, D. Xu, K.C. Chou, iPhos-PseEvo: Identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory. Molecular Informatics 36 (2017) 1600010.

247. W.R. Qin, Q.S. Zheng, B.Q. Sun, X. Xiao, Multi-iPPseEvo: A Multi-label Classifier for Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information into Chou's General PseAAC via Grey System Theory. Mol Inform 36 (2017) 1600085.

248. M. Rahimi, M.R. Bakhtiarzadeh, A. Mohammadz-Sangcheshmezeh, OGenesis_Pred: A sequence-based method for predicting ogogenesis proteins by six different modes of Chou's pseudo amino acid composition. J Theor Biol 414 (2017) 128-136.

249. P. Tripathi, P.N. Pandey, A novel alignment-free method to classify protein folding types by combining spectral graph clustering with Chou's pseudo amino acid composition. J Theor Biol 424 (2017) 49-54.

250. X. Xiao, X. Cheng, S. Su, Q. Hao, K.C. Chou, pLoc-mGpOs: Incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins. Natural Science 9 (2017) 331-349.

251. C. Xu, L. Ge, Y. Zhang, M. Dehmer, I. Gutmans, Prediction of therapeutic peptides by incorporating q-Wiener index into Chou's general PseAAC. J Biomol Inform doi:10.1016/j.jbi.2017.09.011 (2017).
Kuo-Chen C (2019) How the artificial intelligence tool iSNO-PseAAC is working in predicting the cysteine S-nitrosylation sites in proteins.
Kuo-Chen C (2019) How the artificial intelligence tool iSNO-PseAAC is working in predicting the cysteine S-nitrosylation sites in proteins

297. M. Tahir, M. Hayat, S.A. Khan, iNuc-ext-PseTNC: an efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou’s PseAAC to pseudo-tri-nucleotide composition. Mol Genet Genomics 294 (2019) 199-210.

298. L. Wang, R. Zhang, Y. Mu, Fu-SulfPred: Identification of Protein S-sulfenylation Sites by Fusing Forests via Chou’s General PseAAC. J Theor Biol 461 (2019) 51-58.

299. X. Xiao, X. Cheng, G. Chen, Q. Mao, K.C. Chou, pLoc_bal-mVirus: Predict Subcellular Localization of Multi-Label Virus Proteins by Chou’s General PseAAC and IHTS Treatment to Balance Training Dataset. Med Chen 15 (2019) 496-509.

300. Y.D. Khan, N. Amin, W. Hussain, N. Rasool, S.A. Khan, K.C. Chou, iProtease-PseAAC(2L): A two-layer predictor for identifying proteases and their types using Chou’s 5-step-rule and general PseAAC. Anal Biochem 588 (2020) 113477.

301. K.C. Chou, Two kinds of metrics for computational biology. Genomics https://www.sciencedirect.com/science/article/pii/S0888754319304604?via%3Dihub (2019).

302. K.C. Chou, An insightful recollection for predicting protein subcellular locations in multi-label systems. Genomics http://doi.org/10.1016/j.ygeno.2019.08.008 or https://www.sciencedirect.com/science/article/pii/S0888754319304604?via%3Dihub (2019).

303. K.C. Chou, Progresses in predicting post-translational modification. International Journal of Peptide Research and Therapeutics (IJPRT) https://doi.org/10.1007%2Fs10989-019-09893-5 or https://link.springer.com/article/10.1007%2Fs10989-019-09893-5 (2019).

304. K.C. Chou, Recent Progresses in Predicting Protein Subcellular Localization with Artificial Intelligence (AI) Tools Developed Via the 5-Steps Rule. Japanese Journal of Gastroenterology and Hepatology https://doi.org/https://www.jjgastrohepto.org or https://www.jjgastrohepto.org/ (2019).

305. K.C. Chou, An insightful recollection since the distorted key theory was born about 23 years ago. Genomics https://doi.org/10.1016/j.ygeno.2019.09.001 or https://www.sciencedirect.com/science/article/pii/S0888754319305543?via%3Dihub (2019).

306. K.C. Chou, Artificial intelligence (AI) tools constructed via the 5-steps rule for predicting post-translational modifications. Trends in Artificial Inttelengence (TIA) 3 (2019) 60-74.

307. K.C. Chou, Distorted Key Theory and Its Implication for Drug Development. Current Genomics http://www.eurekaselect.com/175823/article or http://www.eurekaselect.com/175823/article (2020).

308. K.C. Chou, An insightful recollection since the birth of Gordon Life Science Institute about 17 years ago. Advancement in Scientific and Engineering Research 4 (2019) 31-36.

309. K.C. Chou, Gordon Life Science Institute: Its philosophy, achievements, and perspective. Annals of Cancer Therapy and Pharmacology 2 (2019) 001-26.

Copyright: ©2019 Kuo-Chen C. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.