Original Research Article

Effect of Sowing dates on Yield and Yield Attributes of Safflower Genotypes

Ashok Kumar Barla, G. M. Kote and D. D. Deshmukh*

Department of Agronomy, College of Agriculture, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani – 431402 (M.S) India

*Corresponding author

A B S T R A C T

In order to investigate the “effect of Sowing Date on Yield and Yield Attributes of Safflower Genotypes”, an experiment was conducted on a split plot design with 4 replications during the year 2015-16 at AICRP on Safflower, VNMKV, Parbhani (M.S.). The experiment consisted of 9 treatment combinations comprising 3 sowing dates (15th October, 30th October and 15th November) as main plots and 3 cultivars (Annigiri-1, NARI-6 and NARI-57) as subplots. The result showed that sowing of safflower on 15th October recorded significantly higher Yield and Yield attributing characters viz.; weight of capitula (74.85 g plant^{-1}), number of seeds capitula^{-1} (27.55), seed index (3.71 g), seed yield (1042 kg ha^{-1}), straw yield (3210 kg ha^{-1}) and biological yield (4252 kg ha^{-1}) as compared to 30th October and 15th November sowing date respectively. Among the cultivars of safflower, Annigiri-1 noted higher yield and yield attributing characters viz., weight of capitula (74.55 g plant^{-1}), number of seeds capitula^{-1} (27.14), seed index (4.27 g), seed yield (1019 kg ha^{-1}), straw yield (3426 kg ha^{-1}) and biological yield (4445 kg ha^{-1}) over NARI-57 and NARI-6. From the study it can be concluded that combination of cultivar Annigiri-1 sown on 15th October performed best among all other treatment combinations.

Keywords
Safflower, Sowing date, Genotype, Yield & Yield Attributes

Article Info
Accepted: 15 December 2019
Available Online: 20 January 2020

Introduction

Safflower (Carthamus tinctorius (L.) is an important rabi oilseed crop of Maharashtra apart from its superior adaptability to scanty moisture conditions, it produces oil rich in poly unsaturated fatty acids (linoleic acid 78%) which plays an important role in reducing the blood cholesterol level. It has been under cultivation in India either for its colored florets and much valued oil. Generally it is known as Kusum or Kardi. As safflower is a salt tolerant crop, hence suitable for command areas of Jayakwadi and Purna. It has wider range of elasticity both in rainfed as well as irrigated conditions due to its deep root system, xerophytic characters, thorniness and waxy coating of leaves, thus reducing the
moisture use as compared to other rabi crops. The cost of cultivation of safflower crop is low with highest B:C ratio with minimum irrigations. This will result into increase in productivity of safflower there by sustaining the production in irrigated command areas. Safflower is a member of the family Compositae and originally grown for the flowers that were used in making red and yellow dyes.

Safflower has a promising future as a salinity and drought resistant crop that has both spring and autumn types. Sowing date is very important in agricultural production management decisions, especially at region having environmental restrictions such as sooner or later coldness or serves (Emami et al., 2011). Cultivar selection is also a key management component in any cropping system even more critical in sowing date for crop production (Soleymani et al., 2011). All the varieties may not be suitable for timely as well as late sowing. The differences in production of timely sown and late sown crops may be attributed to the unfavourable temperature prevailing at different growth stages, such as low temperature at the time of germination which may delay crop emergence. Low temperature may also slow down the growth and development of the crop, resulting in the accumulation of insufficient biomass and shortening of crop duration (Sooraj Chandra et al., 2015). The field and quality properties of safflower are largely determined by ecological factors and cultivation techniques. It was reported that the sowing date and cultivars of safflower vary depending on ecological conditions (Daltalab et al., 2013). Therefore, in order to obtain safflower with high yield and quality, it is essential to determine the suitable growth conditions and cultivation techniques. So the aim of this study was to evaluate the “Effect of sowing dates on yield and yield attributes of safflower genotypes”.

Materials and Methods
To evaluate the “Effect of sowing dates on yield and yield attributes of safflower genotypes”, an experiment was conducted during the year 2015-16 at All India Coordinated Research Project on safflower, at VNMKV, College of Agriculture, Parbhani (M.S.). A set of 9 treatment combinations comprising 3 dates of sowing (15th October, 30th October and 15th November) as main plots and 3 cultivars (Annigiri-1, NARI-6 and NARI-57) as subplots laid out in split plot design with 4 replications. The soil of experimental field was a typical medium black soil (vertisol), soil pH (7.79), EC (0.24 dsm⁻¹), low in organic carbon (0.41 %), medium in available nitrogen (201.57 kg ha⁻¹) and available phosphorus (10.72 kg ha⁻¹) but high in available potash (717.38 kg ha⁻¹). For ensuring good germination, healthy and good quality seeds were used with 20 kg ha⁻¹ with planting geometry of 45 x 20 cm. The recommended dose of fertilizer (60 N + 40 P₂O₅ kg/ha) was applied in safflower. Full dose of P₂O₅ and half dose of N were applied at the time of sowing in the furrow below the seed. Remaining half dose of N was applied at stage of crop at 30-35 DAS. Soil moisture was not sufficient for crop growth so one uniform irrigation was given to the crop at 50 DAS. The data was analyzed by the method of “Analysis of Variance” as described by Panse and Sukhatme (1985).

Results and Discussion
Number of capitula plant⁻¹
Number of capitula per plant is important yield contributing character to judge the seed yield of safflower crop. Data presented in Table 1, revealed that sowing date showed a significant variation on number of capitulaplain⁻¹. The maximum capitula plant⁻¹ (35.33) was recorded with 15th October sown
crop, which was significantly superior over 30th October and 15th November sown crop. Similar result was found by Emami et al., (2011).

The maximum capitula plant\(^{-1}\) (35.31) was recorded by cultivar Annigiri-1 followed by NARI-57 (34.69) and minimum capitula was recorded by cultivar NARI-6 (30.62). These findings confirm those of Anonymous 2012. The data revealed that combinations of sowing dates and safflower cultivar did not differ significantly for number of capitula plant\(^{-1}\) (Table 1).

Weight of capitula (g plant\(^{-1}\))

The data in Table 1, showed that the maximum weight of capitula plant\(^{-1}\) (74.85g) was observed on 15th October sown crop and minimum weight of capitula (71.84 g) was found at 15th November crop. Odivi et al., (2013) reported that delay in sowing resulted generally decrease in the yield attributes.

Increase in different yield attributing characters on 15th October sowing might be due to more availability of favorable environmental condition at the vegetative and reproductive phase of the crop and might be due to better uptake of nutrients and translocation of photosynthates during the reproductive phase of the crop, thus increasing the size and weight of seeds.

A perusal of data indicated that the maximum weight of capitula (74.55 g) was recorded with Annigiri-1, whereas, minimum weight of capitula (71.71 g plant\(^{-1}\)) was found with safflower cultivar NARI-6. The interaction effect was not evident.

Number of seeds capitula\(^{-1}\)

As per Table 1, the highest number of seeds capitula\(^{-1}\) (27.55) was obtained by the 15th October sown crop. It was significantly superior over other sowing dates followed by 30th October sowing. Among the cultivars of safflower, the highest number of seeds per capitula (27.14) was obtained under Annigiri-1, which was significantly superior over NARI-57 and NARI-6. The variation in these yield attributing parameters of the cultivars might be related to inherent differences and high vigour in these cultivars.

The mean pertaining to number of seeds capitula\(^{-1}\) in different treatment combinations were subjected to statistically analyzed, which revealed that there was no significant difference between combination of sowing dates and safflower cultivar (Table 1). These findings confirm those of Daltalab et al., (2013).

Seed Index (g)

The data (Table 1), showed that seed index was not influenced by sowing date. The cultivar Annigiri-1 registered the highest seed index (4.27g) which was significantly superior over cultivar NARI-6 and NARI-57. The interaction effect was not found significant (Table 1). Similar results were reported by Ali Reza Badri et al., (2011).

Seed yield (kg ha\(^{-1}\))

Seed yield is the most economical character for evaluating the superiority of the treatment over the other. The data presented in Table 2, indicated that dates of sowing brought about significant variation in seed yield. The highest seed yield (1042 kg ha\(^{-1}\)) was obtained under 15th October own crop, which was significantly superior over 30th October and 15th November sown crop. This increase in yield might be due to more yield attributes viz.; number of capitula plant\(^{-1}\), weight of capitula plant\(^{-1}\) (g), number of seeds capitula\(^{-1}\) and seed index.
Table.1 Mean comparison for experimental characteristic

Treatments	No of capitula/plant	Weight of capitula/plant (g)	No of seed/capitula	Seed Index (g)
D_1: 15th October	35.33	74.85	27.55	3.71
D_2: 30th October	34.76	73.63	26.64	3.60
D_3: 15th November	30.53	71.84	23.28	3.60
S.E. ±	0.27	0.34	0.21	1.17
C.D. at 5%	0.80	1.34	0.63	NS

Varieties				
V_1: Annigiri-1	35.31	74.55	27.14	4.27
V_2: NARI-6	30.62	71.71	24.47	3.01
V_3: NARI-57	34.69	74.07	25.87	3.63
S.E. ±	0.35	0.68	0.48	0.06
C.D. at 5%	1.05	2.02	1.43	0.20

Interaction				
S.E. ±	0.61	1.18	0.83	0.12
C.D. at 5%	NS	NS	NS	NS
G.M.	33.54	73.44	25.82	3.64

Table.2 Mean comparison for experimental characteristic

Treatments	Seed yield (Kg ha^{-1})	Straw yield (Kg ha^{-1})	Biological yield (Kg ha^{-1})
D_1: 15th October	1042	3210	4252
D_2: 30th October	972	2938	3910
D_3: 15th November	818	2439	3257
S.E. ±	23.17	78.56	101.23
C.D. at 5%	81.74	233.24	300.31

Varieties			
V_1: Annigiri-1	1019	3426	4445
V_2: NARI-6	857	2613	3470
V_3: NARI-57	956	2547	3503
S.E. ±	29.12	91.46	120.37
C.D. at 5%	87.19	268.76	357.10

Interaction			
S.E. ±	40.13	158.02	208.49
C.D. at 5%	NS	NS	NS
G.M.	944	2863.3	3806
The results are in close association with findings of Emami et al., (2011). Among the cultivars, maximum seed yield (1019 kg ha\(^{-1}\)) was recorded with Annigiri-1 which was significantly higher over NARI-6 and NARI-6 also recorded significantly higher seed yield as compared to NARI-57 cultivar. (Table 2). Similar results were reported by Muralidharudu et al., (1989) and Hulihalli et al., (1997).

Among interaction of dates of sowing and cultivars of safflower, the data was not found evident. All the cultivars performed significantly poorer seed yield. The findings are in close confirmity with Sheykhlou et al., (012).

Straw yield (kg ha\(^{-1}\))

The data showed in Table 2, indicated that the highest straw yield (3210 kg ha\(^{-1}\)) was obtained under 15\(^{th}\) October own crop which was superior over 30\(^{th}\) October and 15\(^{th}\) November sown crop. In case of straw yield the cultivar Annigiri-1 was found superior over other cultivars due to taller plant. The positive effect of date of sowing on straw yield may be due to the pronounced growth during early stages of crop. It resulted that higher plant height and dry matter accumulation and ultimately tended in realization of higher straw yields.

Interaction of sowing dates and cultivars of safflower was not found significant in case of straw yield. This may due to taller plant. Similar result was found by Sheykhlou et al., (2012).

Biological yield (kg ha\(^{-1}\))

Table 2, indicated that the highest biological yield (4252 kg ha\(^{-1}\)) was obtained under 15\(^{th}\) October own crop which was superior over 30\(^{th}\) October and 30\(^{th}\) November sown crop also gave significantly highest biological yield over 15\(^{th}\) November sown crop. Heidari Zadeh (2004) reported that postponing the sowing date in addition to temperature increase in developmental stages of germination to flowering which shortening this period cause to yield component production period encounter with high temperature and reduced the total plant dry weight although number of heads per plant, seeds index and seed yield more affected by it in comparison to biomass yield. The cultivar Annigiri-1 registered significantly higher biological yield (4445 kg ha\(^{-1}\)) over NARI-57 and NARI-57 also gave significantly highest biological yield over NARI-6 during the investigation.

Among interaction of dates of sowing and cultivars of safflower, the data presented in Table-2 had not significant effect on biological yield. The findings are in close confirmity with Sheykhlou et al., (2012).

References

Ali, Reza Badri, Amir Hossein Shirani Rad, Saeed Seif Zadeh and Zahra Bitarafan 2011. Sowing Date Effect on Spring Safflower Cultivars. *International J. Science and Advanced Technology*. 1(9):139.

Anonymous, 2012. Annual research report, Nimbkar AgriculturalResearch Institute, Phaltan (Maharashtra). p. 6.

Daltalab, B., Kazemi- Arbat, H. and Khalilvand-Behrouzayar, E. 2013. The Effect of Sowing Date on Yield, Yield Components and Oil Content of Three Spring Safflower Cultivars under Full Irrigation in Tabriz (*Carthamus tinctorius* L.). *International J.Farming and Allied Sciences*. 2(3):66-69.

Emami, T., Naseri, R., Falahi, H. and Kazemi, E. 2011. Response of yield, yield component and oil content of safflower (cv. Sina) to planting date and plant.
spacing on row in rainfed conditions of Western Iran. American-Eurasian J. Agric. and Environment Sci. 10(6):947-953.

Heidari Zade, P. 2004. The effect of temperature and day length on safflower generative and reproductive growth (Kuseh cultivar). M.Sc. Thesis., Industrial University of Isfahan.

Odivi Askar Ghanbari, Hadi Hashemzade, Bahare Bahrampour and Mohsen Saeidi 2013. Effect of sowing date on yield and its components, oil and protein concentration and some agronomical traits of safflower (Carthamus tinctorius L.). Technical J. Engineering and Applied Sciences. 3(14): 1405-1410.

Panse, V. G. and Sukhatme, P. V. 1985. Statistical methods for Agricultural workers. (3rd Edition). ICAR, New Delhi.

Sheykhlou Nafiseh, Seyed Alireza Valadabadi., Jahanfar Daneshian and Majid Khiavi 2012. Study of new dry land safflower cultivars. yield under different planting seasons in Zanjan area. International J. Agric. and Crop Sci. (IJACS). 4(20): 1546-1550.

Soleymani, A., Emami, S. A., Shahrajabian, M. H. and Naranjani, L. 2011. Evaluation of suitable planting dates and autumn safflower cultivars under climatic condition of Isfahan. Iran. Res. Crops. 12(1):155-162.

Sooraj Chandra Pankaj, Pawan Kumar Sharma, Chouksey, H. D. and Singh, S. K. 2015. Growth and development pattern of barley varieties as influenced by date of sowing and nitrogen levels. The Bioscan. 10(3): 1299-1302.

How to cite this article:

Ashok Kumar Barla, G. M. Kote and Deshmukh, D. D. 2020. Effect of Sowing dates on Yield and Yield Attributes of Safflower Genotypes. Int. J. Curr. Microbiol. App. Sci. 9(01): 361-366. doi: https://doi.org/10.20546/ijcmas.2020.901.040