Retinoic acid regulates the expression of photoreceptor transcription factor NRL

Hemant Khanna¹, Masayuki Akimoto¹,², Sandrine Siffroi-Fernandez³, James S. Friedman¹, David Hicks³, and Anand Swaroop¹,⁴,*

Departments of ¹Ophthalmology and Visual Sciences and ⁴Human Genetics, University of Michigan, Ann Arbor, MI 48105; ²Translational Research Center, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan; ³Laboratory of Neurobiological Rhythms, UMR CNRS 7518, Centre de Neurochimie, Strasbourg, France.

SUMMARY
NRL (neural retina leucine zipper) is a key basic motif-leucine zipper (bZIP) transcription factor, which orchestrates rod photoreceptor differentiation by activating the expression of rod-specific genes. The deletion of Nrl in mice results in functional cones that are derived from rod precursors. However, signaling pathways modulating the expression or activity of NRL have not been elucidated. Here, we show that retinoic acid (RA), a diffusible factor implicated in rod development, activates the expression of NRL in serum-deprived Y79 human retinoblastoma cells and in primary cultures of rat and porcine photoreceptors. The effect of RA is mimicked by TTNPB, a RA receptor agonist, and requires new protein synthesis. DNaseI footprinting and electrophoretic mobility shift assays (EMSA) using bovine retinal nuclear extract demonstrate that RA response elements (RAREs) identified within the Nrl promoter bind to RA receptors. Furthermore, in transiently-transfected Y79 and HEK293 cells the activity of Nrl-promoter driving a luciferase reporter gene is induced by RA, and this activation is mediated by RAREs. Our data suggest that signaling by RA via RA receptors regulates the expression of NRL, providing a framework for delineating early steps in photoreceptor cell fate determination.

INTRODUCTION
The vertebrate retina is a convenient and relatively less complex model to investigate gene regulatory networks during development of the central nervous system. It consists of seven major cell types (six neurons and one glia) that are generated in a conserved histogenic order from common pool(s) of retinal progenitors (1). Given the multipotency of retinal progenitors, one can predict that differentiation of distinct cell types depends upon precisely timed expression of cell-type specific genes under the coordinated and combinatorial influence of signaling molecules and transcription factors (1-4). Similar regulatory networks are also responsible for maintaining appropriate expression levels of phototransduction proteins in adult retina (5).

Photoreceptors (rods and cones) account for over 70% of all cells in the mammalian retina, and in many species rods greatly outnumber cones (6). A number of transcription regulatory factors are implicated during photoreceptor development; these include the homeodomain transcription factors CRX (7-9) and OTX2 (10), the retinoblastoma
protein RB (11), thyroid hormone receptor TRβ2 (12,13), and rod-specific orphan nuclear receptor NR2E3 (14-18). Consistent with their roles in photoreceptor gene regulation, mutations in human CRX and NR2E3 result in retinopathies (19-21).

NRL is a bZIP transcription factor of Maf-subfamily (22). NRL is conserved in vertebrates and is specifically expressed in photoreceptors and pineal gland (23-26). Loss of Nrl in mice results in functional S-cones that are derived from post-mitotic precursors normally fated to be rods (25,27). Mutations in NRL are associated with retinal degenerative diseases in humans (28,29). NRL acts synergistically (or antagonistically) with CRX, NR2E3, FIZ1 and other transcription factors to regulate the expression of rhodopsin, cGMP-phosphodiesterase-α and β, and many other rod genes (15,30-36). Hence, NRL is a crucial intrinsic regulator of photoreceptor development and function.

Extrinsic factors are thought to influence the timing, ratio, and functioning of different cell types during retinal differentiation (1-3). Soluble factors in the local microenvironment are expected to modify the competence of retinal progenitor cells to generate cone or rod photoreceptors (4,37-39). The vitamin A derivative, retinoic acid (RA), is an important morphogen that acts through its receptors (RAR and RXR), which are members of steroid-thyroid hormone nuclear receptor subfamily (2,40). RA is involved in the development of eye as well as other tissues; its deficiency causes microphthalmia and other defects (41,42). RA promotes rod differentiation both in vitro and in vivo (2,41,43,44). RA also modulates the expression of several photoreceptor-specific genes, including arrestin and CRX (45-47).

Given the complex networks of gene regulation during photoreceptor differentiation, the mechanism(s) by which extrinsic factors influence cell-type specific gene networks are not completely understood. In this report, we have used the regulation of NRL expression as a paradigm to gain insights into signaling pathways that control photoreceptor development. Using serum-deprived Y79 human retinoblastoma cells and cultured rat and porcine photoreceptors, we show that expression of NRL is induced by serum as well as RA. We demonstrate that RA acts on the RAREs identified within the NRL promoter to induce its expression. Our studies reveal a possible regulatory mechanism by which RA influences photoreceptor differentiation and rod-specific gene expression.

EXPERIMENTAL PROCEDURES

Reagents

Tissue culture media and serum were obtained from Invitrogen (Carlsbad, CA). Retinoic acids, growth factors and other reagents were procured from Sigma (St. Louis, MO). Stock solutions of RA and growth factors were prepared in 1% ethanol and/or DMSO (Dimethyl sulfoxide).

Cell Culture

Y79 human retinoblastoma cells (ATCC HTB 18) and HEK 293 (ATCC CRL-1573) were maintained in RPMI-1640 and DMEM, respectively, under standard conditions with 15% (v/v) fetal bovine serum (FBS), penicillin G (100 U/ml), and streptomycin (100 µg/ml) at 37°C and 5% CO₂. For serum starvation and RA treatment experiments, Y79 cells (5x10⁴) were cultured in the presence or absence of the serum (same batch of serum was used in all the experiments), atRA, 9-cis-RA, cycloheximide (CHX), and 4(E-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl) benzoic acid (TTNPB) at indicated concentrations. DMSO or ethanol was added to Y79 cells in lieu of the soluble factors as negative controls.

For protein synthesis inhibition experiments, Y79 cells were serum-starved for 24 h, and then simultaneously treated with RA and CHX for 8 or 24 h. NRL expression was analyzed by immunoblotting. In another set of experiments, serum-starved Y79 cells were first incubated with RA alone for 8 or 24 h and then CHX was added. Cell extracts were then
RA activates NRL expression

Primary cultures of new-born rat retinal cells and enriched adult porcine photoreceptors were prepared according to published procedures (48). For newborn rat retinal cultures, rat pups were anaesthetized and decapitated, the retinas dissected into CO₂-independent Dulbecco’s Modified Eagles Medium (DMEM) and chopped into small fragments. The fragments were washed twice in Ca/Mg-free PBS and then digested in PBS containing 0.1% papain for 25 min at 37°C. Tissue was dissociated by repeated passage through flame polished Pasteur pipettes, then seeded into tissue culture plates pre-coated with laminin, in Neurobasal A medium (Invitrogen) containing 2% FBS. After 48 h, medium was changed to a chemically defined formula (Neurobasal A supplemented with B27) for a further 48 h, and then treated according to the different experiments (below).

For adult pig photoreceptor cultures, eyes were obtained from freshly slaughtered adult pigs, the retinas removed and dissected under sterile conditions. Tissue was minced, digested with papain, and dissociated by mild mechanical trituration. Cells obtained from the first two supernatants were pooled, and seeded at 5x10⁵/cm² into 6 x 35 well tissue culture plates as above. Cells were cultured as outlined above (48 h Neurobasal A/2% FBS, then 48 h Neurobasal A with B27).

Experimental treatments and immunochemistry

After the 4 day culture period, both primary cell models were treated as follows. RA was added to test wells (1, 5, 10, 20 and 40 µM, stock solution prepared in DMSO, 10 µl/well). Negative control wells received DMSO alone, and positive control wells were treated with Neurobasal containing 2% FBS. For immunoblotting, the medium was removed after 24 h; cells were rinsed in PBS and processed as indicated.

For immunocytochemical studies, medium was removed after 24 h and cells were fixed in 4% paraformaldehyde in phosphate buffered saline (PBS) for 15 min. Cells were permeabilized for 5 min using 0.1% Triton X-100, then pre-incubated in blocking buffer (PBS containing 0.1% BSA, 0.1% Tween 20 and 0.1% sodium azide) for 30 min. Cells were incubated overnight in affinity purified anti-NRL antiserum (1:1000 dilution), and monoclonal anti-rhodopsin antibody rho-4D2 (45), rinsed thoroughly and incubated with secondary antibodies (anti-rabbit IgG-Alexa594 and anti-mouse IgG-Alexa488) combined with 4,6-di-aminophenyl-indolamine (DAPI) (all from Molecular Probes Inc., Eugene, OR) for 2 h. Cells were washed, mounted in PBS/glycerol, and examined under a Nikon Optiphot 2 fluorescence microscope. All images were captured using a CCD camera and transferred to a dedicated PC. The same capture parameters were used for each stain, and final panels were made using untreated images for direct comparison of staining intensities.

Protein expression analysis

Y79 and newborn rat retinal cells were sonicated in PBS and clarified supernatant was used for further analysis. Protein concentration was determined using BioRad Protein Assay reagent (BioRad, Hercules, CA). Equal amounts of proteins were analyzed by SDS-PAGE followed by immunoblotting. Proteins were detected using anti-NRL polyclonal antibody as described (15,23). Immunoblots from three independent experiments for rat and pig retinal cultures were analyzed by densitometric scanning, and normalized to serum-supplemented control levels in each case. Statistical analysis of data was performed using the one-tailed student t test, with p<0.05 accepted as level of significance.

Plasmid constructs

DNA fragments of 2.5 kb (Nl), 1.2 kb (Nm) and 200 bp (Ns) from the 5’ flanking region of the mouse Nrl promoter (GenBank: AY526079; (25) were amplified and cloned into pGL3-basic vector (Madison, WI) in-frame with the luciferase reporter gene. The following site-directed mutants of the Nrl
promoter were generated from pGL3-Nl using QuickChange site-directed mutagenesis kit (Stratagene, La Jolla, CA) and sequence-verified: pGL3-Nl-mutIII-1, pGL3-Nl-mutIII-2, and pGL3-Nl-mutII-1, containing deletion of the putative RAREs at positions -781 to -767, -709 to -700, and -453 to -443, respectively.

DNaseI footprinting and Electrophoretic Mobility Shift Assays (EMSA)

Bovine retinal nuclear extract (RNE) was prepared as described (49). Solid-phase DNaseI footprinting was performed as described (50), using 100 µg RNE, and various fragments from the upstream conserved regions of the mouse Nrl promoter were used as template. For EMSA, oligonucleotides containing the wild-type mouse Nrl promoter sequence(oligo III-2 nucleotides -726 to -686: 5’<ACGGGGAAAAGGTGAGGAGGAAGC>3’, oligo II-1 nucleotides -469 to -427: 5’<GCAG-GGCGTGAATGTGAGGA>A3’) or deletion of the putative RAREs (mt-Oligo III-2: 5’<CTGAGACACCCGACACGAG — GAGGAAGGCTGAGGGC>3’; and mt-Oligo II-1: 5’<GGTGAAGGTAGGGA — TGAGGATGCTTGAAGAA>A3’) were end-labeled using [γ-32P]ATP (Amersham Biosciences) and incubated in binding buffer (20 mM HEPES pH 7.5, 60 mM KCl, 0.5 mM DTT, 1 mM MgCl2, 12% glycerol) with RNE (20 µg) and poly(dI-dC) (50 µg/ml) for 30 min at room temperature. In competition experiments, a non-radiolabeled oligonucleotide was used in molar excess of the labeled oligonucleotide. In some gel-shift experiments, antibodies were added after the incubation of 32P-labeled oligonucleotides with RNE. Samples were loaded on 7.5% non-denaturing polyacrylamide gel. After electrophoresis, the gels were dried and exposed to X-ray film.

Transient transfection and luciferase assay

Transient transfection of Y79 cells was performed using FuGene 6 reagent (Roche, Indianapolis, IN). Prior to transfection, cells were serum-starved 24 h in Opti-MEM (Invitrogen), diluted to 1.5x10^5 cells in 250 µl and seeded into 24-well plates. Transfection was performed with 0.5 µg of promoter-luciferase construct and 1.5 µl of Fugene 6. One hour after transfection, 10 µM RA or 1% ethanol was added to each well. Transfected cells were cultured for additional 24 h and harvested. Luciferase activity was measured using the Luciferase Assay System (Promega, Madison, WI). Experiments were repeated at least three times, and the luciferase activity was calculated as a fold change from the base line luciferase activity obtained in the presence of vector only.

Transient transfection of HEK 293 (ATCC CRL-1573) cells was performed using Lipofectamine (Invitrogen) according to manufacturer’s instructions. The wild type and mutant Nrl promoter-luciferase constructs and pCMV-β-gal were added to the cells at a concentration of 0.1 µg and 0.05 µg respectively. After 3 h, 100 µl of DMEM with 0 or 500 nM of atRA was added to each well. Cells were harvested after 24 h in 100 µl of Glo lysis buffer (Promega) and luciferase activity was measured.

RESULTS

Serum-deprivation of Y79 cells

We had shown earlier that NRL is expressed in Y79 cells but not in other tested cell lines (22). To generate an efficient *in vitro* model system to study regulation of NRL expression, we carried out serum-deprivation of Y79 cells. Northern blot analysis and RT-PCR failed to detect Nrl transcripts within 24 h after serum deprivation (data not shown). Immunoblot analysis showed that NRL expression in Y79 cells decreased 8 h after serum depletion and was undetectable by 24 h (Fig. 1A). No cell death was detected due to serum-deprivation within the time-span of the experiments (data not shown). When serum was supplied to these cells, NRL expression was detectable in 2 h and completely restored within 8 h (Fig. 1B). Multiple immunoreactive bands in 29-35 kDa range represent different phosphorylated isoforms of NRL that are detected by affinity-purified anti-NRL antibody (23). Additional bands
observed in immunoblots may represent unrelated cross-reactive proteins, and their levels did not change after serum-deprivation.

RA effect on NRL expression

In order to identify some of the possible activators in serum, we tested the effect of a number of soluble factors on NRL expression. We detected a dose-dependent increase in NRL expression following incubation with allRA and its isomer, 9-cis RA (Fig. 2A). The effect of RA was mimicked by a RAR-specific agonist, TTNPB (Fig. 2B). Northern blot analysis of RNA from the treated cells also showed RA induction of NRL transcripts (data not shown).

We then evaluated the time course of NRL induction by RA. An increase in NRL protein was observed in serum-starved Y79 cells after 8 h of incubation with allRA (Fig. 2C). A similar effect was observed with 9-cis RA (data not shown). Treatment of cells with allRA and CHX (20 µg/ml), an inhibitor of protein synthesis (51), blocked NRL induction when both were added simultaneously (Fig. 2D). This suggests that intermediate protein synthesis is necessary for RA-mediated induction of NRL expression. However, when cells were pretreated with RA for 8 or 24 h, CHX had no detectable effect on NRL expression (Fig. 2D). These results suggest that synthesis of intermediary factors necessary for NRL induction occurs within 8 h of RA treatment.

RA stimulation of NRL expression in rat and porcine photoreceptors

To investigate the effect of RA on the expression of NRL in photoreceptors in vitro, we utilized two different culture models. Immunoblotting of proteins isolated from monolayer cultures of newborn rat retina revealed that maintenance of cells in chemically-defined conditions for 24 h led to moderate but reproducible decreases in NRL expression levels, and that either re-addition of serum or increasing doses of RA increased the NRL band intensity (Fig. 3A). Only a single NRL-immunoreactive band was visible using the new-born rat retinal cells (Fig. 3A).

Similar induction in NRL expression was observed using highly enriched photoreceptor cultures prepared from adult pig retina, which however showed two NRL-immunoreactive bands (Fig. 3B). In both rat and pig cultures, maximal effects were observed with 5-20 µM RA, and higher doses led to some toxicity especially in cells from new-born rat retina. Immunocytochemical studies of pig photoreceptor cultures revealed that NRL was confined to rod nuclei in all cases, and that signal was relatively strong in serum- or RA-supplemented conditions. The serum-free photoreceptor culture displayed a modest but reproducible decrease in NRL-specific signal in the nuclei, as seen in immunoblots (Fig. 3C). Expression levels in new-born rat retinal cultures were too low to be detected by immunocytochemistry (data not shown).

Role of RA receptors

We next examined whether RA acts directly on the Nrl promoter. DNaseI footprinting analysis of conserved sequences upstream of the transcription start site of the mouse Nrl gene identified putative RAREs (regions III-1, III-2, and II-1), in addition to other transcription factor binding elements (Fig. 4A and B; data not shown). Oligonucleotides encompassing these protected sequences were radiolabeled and used for EMSA analysis (Fig. 4C). We observed mobility shift of the radiolabeled oligonucleotides in the presence of bovine retinal nuclear extracts (Fig. 4D). The intensity of the shifted bands was reduced or eliminated by molar excess of the same non-radiolabeled oligonucleotide, but not by a mutant oligonucleotide carrying a deletion of the putative RAREs. The shifted bands were also diminished when anti-RARα, anti-RXRα, or anti- RXRγ but not RARβ, RARγ, or RXRβ specific antibodies were added (Fig. 4D).

To investigate the functional relevance of the binding of RA receptors to the Nrl promoter, we performed transient transfection experiments in serum-deprived Y79 cells using Nrl promoter-luciferase constructs containing the 2.5 kb fragment (pGL3-Nl) as well as deletion variants...
encompassing the footprinted regions III and II (pGL3-Nm and pGL3-Ns) (Fig. 5A). Addition of atRA showed over a 2-fold increase in luciferase activity with pGL3-Nl and pGL3-Nm constructs, which included the putative RAREs (Fig. 5B). The pGL3-Ns construct did not show a detectable increase in the reporter activity in the presence of RA. All three constructs induced luciferase reporter activity when transiently transfected into Y79 cells in the presence of serum (data not shown).

To further ascertain the involvement of putative RAREs in RA-mediated upregulation of Nrl promoter activity, we performed site-directed mutagenesis and deleted the putative RAREs from the pGL3-Nl promoter-luciferase construct. As predicted, the pGL3-Nl construct showed a dose-dependent response to RA treatment in HEK293 cells with maximum effect in the presence of 500 nM atRA (Fig. 5C). However, deletions encompassing the region III-1 (pGL3-Nl-mutIII-1 and pGL3-Nl-mutIII-2) resulted in ~10 fold reduction in luciferase activity in the presence of 500 nM atRA (Fig. 5C). Although we observed binding of RXRa and RXRγ on Nrl promoter, deletion of the putative RXR binding site (pGL3-Nl-mutII-1) did not have any appreciable effect on the luciferase activity. This might reflect heterodimerization between RARs and RXRs at other sites (potentially footprint III-2) on the promoter compensates for the lack of binding of RXRs to footprint II-1.

DISCUSSION

A coordinated interplay of intrinsic factors and extrinsic cues dictates the generation of retinal neurons. Extracellular signaling molecules modulate the synergistic (or antagonistic) action of a limited number of transcription factors that guide the expression of cell-type specific genes (52). NRL is the key transcriptional regulatory protein, essential for rod photoreceptor differentiation (27). NRL expression in cone photoreceptor precursors transforms their fate to functional rods, suggesting that NRL initiates the cascade of molecular events required for rod differentiation [Edwin Oh and A.S., unpublished data]. It is however unclear as to how NRL expression is initiated in specific neuroepithelial progenitors when they are exiting cell cycle. In this study, we provide evidence in support of RA being one of the signaling molecules that can induce NRL expression. RA has previously been implicated as a mediator of rod differentiation (37). Our data comes from studies in Y79 cells and dissociated rod photoreceptors of new-born rat and adult porcine retina. We also show that the effect of RA is mediated by RA receptors and cis-sequence elements present within the Nrl promoter.

The lack or reduction of NRL transcripts and protein expression in the absence of serum suggests that one or more soluble factors regulate its expression at the level of transcription. Serum contains a complex mixture of growth factors, cytokines and other signaling molecules that stimulate the expression of several genes including c-fos, c-myc, cyclin D1, and VEGF, in cultured cells (53). While we have identified RA as one of the molecules, it is likely that additional pathways exist. Although NRL levels are decreased in normal rod photoreceptor in vitro upon withdrawal of serum, they remain detectable. Additionally, NRL contains a number of consensus phosphorylation sites; hence, it is possible that growth factors signaling through the extracellular signal-related kinase (ERK) pathway play an important role in modulating NRL activity and/or stability. Induction of NRL expression occurs within 2 h of treatment with serum, whereas a gradual increase in NRL expression was observed when cells were treated with RA. This suggests that RA-mediated effect requires de novo protein synthesis, a phenomenon observed previously for the expression of human cone-arrestin gene (45). Treatment of Y79 cells with RA is reported to cause an increase in the levels of RARs and RXRs (45). Therefore, we propose that RA stimulates the expression of its own receptors, which in turn act on the Nrl promoter, leading to a time-delay in inducing NRL expression.
The amount and activity of transcription factors is critical for regulation of their downstream targets (54). Vertebrate rod photoreceptors are highly metabolically active post-mitotic neurons; approximately 9 billion opsin molecules are synthesized every second in each human retina and transported to the outer segments, the site where phototransduction occurs (55). The expression of opsin and other phototransduction proteins must be stringently controlled since over- or under-expression of rhodopsin leads to photoreceptor degeneration (56,57). The expression of NRL has to be continuously maintained at transcriptional and/or post-transcriptional levels; missense mutations that affect the activity of NRL lead to photoreceptor degeneration (28,29). It is therefore expected that amount and activity of NRL are critical determinants of normal rod photoreceptor function. Our serum-depletion data suggest that NRL has a relatively short half-life. In this respect, RA could be a critical signaling molecule in upregulating NRL expression.

RA mediated signal transduction occurs through its interaction with two classes of nuclear receptors: retinoic acid receptor (RARα, RARβ, and RARγ) and retinoid X receptor (RXRα, RXRβ, and RXRγ). 9-cis RA is a ligand for RXRs, whereas the RAR subtype binds both all-trans RA and 9-cis RA (44). Given that RARα, RXRα and RXRγ are expressed in the outer nuclear layer of the developing mouse retina (58,59), our results suggest that RA receptors play a significant role in activating NRL expression during retinal development. Since RXRs forms heterodimers with RARs we cannot rule out the possibility of the binding of such heterodimers on Nrl promoter.

We observe high induction of endogenous levels of NRL by RA; however, transient transfection experiments using a 2.5 kb fragment of Nrl promoter show a relatively weaker (2-2.5 fold) effect of RA. These data indicate that whereas RAREs are important in mediating RA-dependent upregulation of the Nrl promoter, the 2.5 kb promoter fragment is not in the right context of chromatin in Y79 cells and therefore, may not be able to bind to or recruit other transcription factors necessary for NRL expression. Furthermore, RA may not be the only soluble factor that can affect NRL expression. A number of other factors have been shown to influence rod photoreceptor differentiation; these include taurine and FGF (60,61). We have observed an increase in NRL expression in the presence of FGF (manuscript in preparation), whereas taurine had no detectable effect in the same experiment (data not shown). These results reveal that either a combination of some of these factors is required for optimal activity, or their effect on rod differentiation is mediated by a pathway distinct from the one studied here.

Although our studies have been performed using cell culture models to demonstrate RA-mediated regulation of NRL expression, the data obtained using Y79 retinoblastoma cells and cultured photoreceptors can be extrapolated to the in vivo situation. Y79 cells are childhood intraocular tumors of photoreceptor origin and express a number of photoreceptor-specific genes, including NRL, all RA receptors, and can be maintained under standard conditions with serum (22,62). Our studies offer convenient in vitro model systems of using serum-deprived cells to study the role of soluble factors in photoreceptor development and maintenance.

In summary, we demonstrate a previously undescribed functional link between an environmental factor involved in rod development (RA) and a key transcriptional regulator (NRL). Given that retinal progenitors express RA receptors throughout retinal development (59), we hypothesize that RA directs these cells towards photoreceptor cell fate and influences rod differentiation by upregulating NRL. A detailed analysis of NRL expression in RA-receptor knockout mice (63) may facilitate understanding of the role of RA receptors in rod photoreceptor development.
ACKNOWLEDGMENTS

We acknowledge Monte DelMonte, Prabodh K. Swain and Ingrid Apel for assistance with some of the early observations, members of the Swaroop lab for discussions, and Sharyn Ferrara for administrative support. This research was supported by grants from the National Institutes of Health (EY011115, EY007003), The Foundation Fighting Blindness (FFB), and Research to Prevent Blindness (RPB). J.S.F. is a recipient of FFB-Canada post-doctoral fellowship. A.S. is Harold F. Falls Collegiate Professor and a recipient of RPB Senior Scientific Investigator award.
FIGURE LEGENDS

Figure 1: Serum induces NRL expression in Y79 cells.

Y79 cells were grown in RPMI media without (A) or with (B) FBS (15%) for indicated time intervals and protein extracts were analyzed by immunoblotting using anti-NRL antibody. Multiple isoforms of NRL are indicated by a bracket. Lanes are as indicated. Lower panel in A shows that the same blot was probed with anti-β-tubulin antibody, which served as a loading control. Molecular weights of markers are shown in kDa. The positive control (+ve) represents Y79 cells grown in 15% FBS.

Figure 2: RA stimulates expression of NRL protein in Y79 cells.

Serum-starved Y79 cells were incubated with indicated concentrations of 9-cis, atRA, 15% FBS (A) or TTNPB (B) for 24 h. Cell extracts were analyzed by SDS-PAGE and immunoblotting using anti-NRL antibody. Negative controls included 1% ethanol or DMSO in lieu of the soluble factors. A bracket indicates multiple phosphorylated NRL isoforms. Lanes as indicated. Molecular weight markers are indicated on the left. Additional bands in the higher molecular weight range may represent cross-reacting proteins (23). C: Time-dependent effect of RA: Serum-deprived Y79 cells were incubated with medium containing 10µM RA for indicated time-intervals. At the end of incubation, cells extract was analyzed by SDS-PAGE and immunoblotting using anti-NRL antibody. Lanes as indicated. D: Effect of protein synthesis inhibitor cycloheximide (CHX) on RA-mediated NRL induction was studied by incubating serum-starved Y79 cells with media containing atRA (10 µM) and CHX (20 µg/ml) (left panel; RA-treated simultaneously). In a similar experiment, cells were pretreated with RA for 24 h followed by addition of CHX (right panel). Cell extracts were analyzed by SDS-PAGE and immunoblotting using the anti-NRL antibody.

Figure 3: RA increases NRL protein levels in cultured rat and porcine photoreceptors.

Analyses of rat (A) and porcine (B) retinal cultures after incubation with indicated concentrations of RA or FBS. New-born rat retinal cells and adult pig photoreceptors were cultured in vitro, as described in Experimental Procedures. Cell extracts were analyzed by SDS-PAGE and immunoblotting using anti-NRL antibody. In both panels, the intensity of the NRL immunoreactive band was reduced in serum-free culture compared to +FBS, and was partially restored by increasing doses of RA. This reduction was significantly different (p<0.05) compared to serum-supplemented controls (*). For rat cultures, this reduction was also significantly different from 20 µM RA, but not for other values. 40 µM RA was toxic for cell survival in newborn rat retina. For pig cultures, the decrease was significantly different compared to all RA concentrations, except 20 µM. The arrow in panel B indicates the major NRL immunoreactive band used for scanning. Histograms show densitometric scan of representative blots for each culture model. Experiments were performed three times on independent cultures with similar results. C: Adult pig photoreceptor cultures were prepared and immunostained as described in Experimental Procedures. Nomarski differential contrast images of cells are depicted in panels a, e and i; DAPI staining (blue) of the nuclei in the same fields is shown in panels b, f and j; NRL immunolabeling (red) of the same fields is shown in.
panels c, g and k; and anti-rhodopsin immunolabeling (green) of the same fields is shown in panels d, h and l. Positive control cultures, maintained in chemically defined medium to which serum-supplemented medium was added for 24 h, revealed strong nuclear NRL immunoreactivity (c), as did cells treated with RA (10 µM) for 24 h (k); however cells maintained in chemically defined medium demonstrated less intense nuclear staining (g). In all cases, rhodopsin staining was not detectably different. Scale bar in panel l = 4 µm for all panels. Experiments were repeated using three independent cultures with similar results.

Figure 4: Putative RAREs within the Nrl promoter are protected by retinal nuclear proteins.

A: Schematic representation of the Nrl promoter showing regions of homology (I, II, III, and IV) between human (h) and mouse (m) Nrl. E1 denotes exon 1 of the Nrl gene. B: DNaseI footprinting using bovine RNE was performed as described in Experimental Procedures. Footprints corresponding to regions II and III are shown. Vertical lines indicate footprinted regions. (-) denotes footprint in the absence of RNE whereas (+) indicates the experiment in the presence of RNE. Footprints containing the putative RAREs are indicated by III-1, III-2, and II-1. C: Sequence of the putative RAREs in the footprints (II and III) of both mouse and human Nrl promoter region. Regions III-1 and III-2 contain putative ROR (orphan receptor) and RAR response elements whereas region II-1 contains a putative RXR binding element. D: EMSA: Oligonucleotides corresponding to the regions III-2 (Oligo III-2) and II-1 (Oligo II-1) were radiolabeled using γ-32P-dATP and incubated with bovine retinal nuclear extract followed by analysis using non-denaturing PAGE, as described in Experimental Procedures. Competition experiments were performed with unlabeled oligonucleotides to validate the specificity of the band shift. Experiments in the presence of antibody against various receptor ligands showed the presence or absence of the specific proteins. Arrow indicates a non-specific band shift. * indicates radio-labeled oligo used in the experiment; mt-Oligo represents mutant oligonucleotide from which the putative RAREs have been deleted. Lanes are as indicated. Brackets indicate specific gel shifted bands.

Figure 5: RA receptors bind to and activate Nrl promoter.

A: Schematic representation of the mouse Nrl promoter-luciferase constructs used to study the response to RA. The deletion fragments were cloned into pGL3-basic plasmid in-frame with the luciferase reporter gene. RAR and RXR response elements in regions III and II, respectively are depicted. These constructs were used in a separate assay to check for intrinsic promoter activity (data not shown). B: The Nrl promoter-luciferase constructs were transfected into Y79 cells as described in Experimental procedures. Promoterless vector, pGL3 vector was used as negative control and the value of luciferase activity was set to 1. Results are expressed as a ratio of luciferase values obtained in the presence or absence of RA and represent an average of three independent experiments. C: Site-directed mutants of the pGL3-Nl construct (pGL3-Nl-mut III-1, III-2, or II-1), containing deletions of the putative RAREs, were used to transfect HEK293 cells in the presence of indicated concentrations of αtRA. The value of the control (transfected with the wild-type pGL3-Nl with no αtRA) was set at 100% luciferase activity. Results are expressed as percent luciferase activity as compared to the control.
References

1. Livesey, F. J., and Cepko, C. L. (2001) *Nat. Rev. Neurosci.* 2(2), 109-118
2. Levine, E. M., Fuhrmann, S., and Reh, T. A. (2000) *Cell. Mol. Life. Sci.* 57(2), 224-234
3. Cayouette, M., Barres, B. A., and Raff, M. (2003) *Neuron* 40(5), 897-904
4. Roberts, M. R., Srinivas, M., Forrest, D., Morreale de Escobar, G., and Reh, T. A. (2006) *Proc. Natl. Acad. Sci. U S A* 103(16), 6218-6223
5. Chen, Y., Ma, J. X., and Crouch, R. K. (2003) *Mol. Vis.* 9, 345-354
6. Curcio, C. A., Sloan, K. R., Kalina, R. E., and Hendrickson, A. E. (1990) *J. Comp. Neurol.* 292(4), 497-523
7. Chau, K. Y., Chen, S., Zack, D. J., and Ono, S. J. (2000) *J. Biol. Chem.* 275(47), 37264-37270
8. Furukawa, T., Morrow, E. M., Li, T., Davis, F. C., and Cepko, C. L. (1999) *Nat. Genet.* 23(4), 466-470
9. Chen, S., Wang, Q. L., Nie, Z., Sun, H., Lennon, G., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., and Zack, D. J. (1997) *Neuron* 19(5), 1017-1030
10. Nishida, A., Furukawa, A., Koike, C., Tano, Y., Aizawa, S., Matsuo, I., and Furukawa, T. (2003) *Nat. Neurosci.* 6(12), 1255-1263
11. Zhang, J., Gray, J., Wu, L., Leone, G., Rowan, S., Cepko, C. L., Zhu, X., Craft, C. M., and Dyer, M. A. (2004) *Nat. Genet.* 36(4), 351-360
12. Ng, L., Hurley, J. B., Dierks, B., Srinivas, M., Salto, C., Vennstrom, B., Reh, T. A., and Forrest, D. (2001) *Nat. Genet.* 27(1), 94-98
13. Forrest, D., Reh, T. A., and Rusch, A. (2002) *Curr. Opin. Neurobiol.* 12(1), 49-56
14. Akhmedov, N. B., Piriev, N. I., Chang, B., Rapoport, A. L., Hawes, N. L., Nishina, P. M., Nusinowitz, S., Heckenlively, J. R., Roderick, T. H., Kozak, C. A., Danciger, M., Davison, M. T., and Farber, D. B. (2000) *Proc. Natl. Acad. Sci. U S A* 97(10), 5551-5556
15. Cheng, H., Khanna, H., Oh, E. C., Hicks, D., Mitton, K. P., and Swaroop, A. (2004) *Hum. Mol. Genet.* 13(15), 1563-1575
16. Peng, G. H., Ahmad, O., Ahmad, F., Liu, J., and Chen, S. (2005) *Hum. Mol. Genet.* 14(6), 747-764
17. Chen, J., Rattner, A., and Nathans, J. (2005) *J. Neurosci.* 25(1), 118-129
18. Haider, N. B., Nagger, J. K., and Nishina, P. M. (2001) *Hum. Mol. Genet.* 10(16), 1619-1626
19. Swaroop, A., Wang, Q. L., Wu, W., Cook, J., Coats, C., Xu, S., Chen, S., Zack, D. J., and Sieving, P. A. (1999) *Hum. Mol. Genet.* 8(2), 299-305
20. Swain, P. K., Chen, S., Wang, Q. L., Affatigato, L. M., Coats, C. L., Brady, K. D., Fishman, G. A., Jacobson, S. G., Swaroop, A., Stone, E., Sieving, P. A., and Zack, D. J. (1997) *Neuron* 19(6), 1329-1336
21. Haider, N. B., Jacobson, S. G., Cideciyan, A. V., Swiderski, R., Streb, L. M., Searby, C., Beck, G., Hockey, R., Hanna, D. B., Gorman, S., Duhl, D., Carmi, R., Bennett, J., Weleber, R. G., Fishman, G. A., Wright, A. F., Stone, E. M., and Sheffield, V. C. (2000) *Nat. Genet.* 24(2), 127-131
22. Swaroop, A., Xu, J. Z., Pawar, H., Jackson, A., Skolnick, C., and Agarwal, N. (1992) *Proc. Natl. Acad. Sci. U S A* 89(1), 266-270
RA activates NRL expression

23. Swain, P. K., Hicks, D., Mears, A. J., Apel, I. J., Smith, J. E., John, S. K., Hendrickson, A., Milam, A. H., and Swaroop, A. (2001) J. Biol. Chem. 276(39), 36824-36830

24. Coolen, M., Si-Felice, K., Bronchain, O., Mazabraud, A., Bourrat, F., Retaux, S., Felder-Schmittbuhl, M. P., Mazan, S., and Plouhinec, J. L. (2005) Dev. Genes. Evol. 215(7), 327-339

25. Akimoto, M., Cheng, H., Zhu, D., Brzezinski, J. A., Khanna, R., Filippova, E., Oh, E. C., Jing, Y., Linares, J. L., Brooks, M., Zareparsi, S., Mears, A. J., Hero, A., Glaser, T., and Swaroop, A. (2006) Proc. Natl. Acad. Sci. U S A 103(10), 3890-3895

26. Whitaker, S. L., and Knox, B. E. (2004) J. Biol. Chem. 279(47), 49010-49018

27. Mears, A. J., Kondo, M., Swain, P. K., Takada, Y., Bush, R. A., Saunders, T. L., Sieving, P. A., and Swaroop, A. (2001) Nat. Genet. 29(4), 447-452

28. Bessant, D. A., Payne, A. M., Mitton, K. P., Wang, Q. L., Swain, P. K., Plant, C., Bird, A. C., Zack, D. J., Swaroop, A., and Bhattacharya, S. S. (1999) Nat. Genet. 21(4), 355-356

29. Nishiguchi, K. M., Friedman, J. S., Sandberg, M. A., Swaroop, A., Berson, E. L., and Dryja, T. P. (2004) Proc. Natl. Acad. Sci. U S A 101(51), 17819-17824

30. Rehemtulla, A., Warwar, R., Kumar, R., Ji, X., Zack, D. J., and Swaroop, A. (1996) Proc. Natl. Acad. Sci. U S A 93(1), 191-195

31. Kumar, R., Chen, S., Scheurer, D., Wang, Q. L., Duh, E., Sung, C. H., Rehemtulla, A., Swaroop, A., Adler, R., and Zack, D. J. (1996) J. Biol. Chem. 271(47), 29612-29618

32. Mitton, K. P., Swain, P. K., Chen, S., Xu, S., Zack, D. J., and Swaroop, A. (2000) J. Biol. Chem. 275(38), 29794-29799

33. Lerner, L. E., Gribanova, Y. E., Whitaker, L., Knox, B. E., and Farber, D. B. (2002) J. Biol. Chem. 277(29), 25877-25883

34. Mitton, K. P., Swain, P. K., Khanna, H., Dowd, M., Apel, I. J., and Swaroop, A. (2003) Hum. Mol. Genet. 12(4), 365-373

35. Pittler, S. J., Zhang, Y., Chen, S., Mears, A. J., Zack, D. J., Ren, Z., Swain, P. K., Yao, S., Swaroop, A., and White, J. B. (2004) J. Biol. Chem. 279(19), 19800-19807

36. Lerner, L. E., Gribanova, Y. E., Ji, M., Knox, B. E., and Farber, D. B. (2001) J. Biol. Chem. 276(37), 34999-35007

37. Kelley, M. W., Turner, J. K., and Reh, T. A. (1994) Development 120(8), 2091-2102

38. Young, T. L., and Cepko, C. L. (2004) Neuron 41(6), 867-879

39. Roberts, M. R., Hendrickson, A., McGuire, C. R., and Reh, T. A. (2005) Invest. Ophthalmol. Vis. Sci. 46(8), 2897-2904

40. Evans, R. M. (1988) Science 240(4854), 889-895

41. Hyatt, G. A., Schmitt, E. A., Fadool, J. M., and Dowling, J. E. (1996) Proc. Natl. Acad. Sci. U S A 93(23), 13298-13303

42. Kalter, H., and Warkany, J. (1959) Physiol. Rev. 39(1), 69-115

43. De Leeuw, A. M., Gaur, V. P., Saari, J. C., and Milam, A. H. (1990) J. Neurocytol. 19(2), 253-264
44. Kastner, P., Mark, M., Ghyselinck, N., Krezel, W., Dupe, V., Grondona, J. M., and Chambon, P. (1997) Development 124(2), 313-326
45. Li, A., Zhu, X., and Craft, C. M. (2002) Invest. Ophthalmol. Vis. Sci. 43(5), 1375-1383
46. Li, A., Zhu, X., Brown, B., and Craft, C. M. (2003) Invest. Ophthalmol. Vis. Sci. 44(3), 996-1007
47. Boatright, J. H., Stodulkova, E., Do, V. T., Padove, S. A., Nguyen, H. T., Borst, D. E., and Nickerson, J. M. (2002) Vision. Res. 42(8), 933-938
48. Traverso, V., Kinkl, N., Grimm, L., Sahel, J., and Hicks, D. (2003) Invest. Ophthalmol. Vis. Sci. 44(10), 4550-4558
49. Lahiri, D. K., and Ge, Y. (2000) Brain Res. Brain Res. Protoc. 5(3), 257-265
50. Sandaltzopoulos, R., and Becker, P. B. (1994) Nucleic. Acids. Res. 22(8), 1511-1512
51. Vazquez, D. (1979) Mol. Biol. Biochem. Biophys. 30, i-x, 1-312
52. Brivanlou, A. H., and Darnell, J. E., Jr. (2002) Science 295(5556), 813-818
53. Harris, V. K., Kagan, B. L., Ray, R., Cotichea, C. M., Liaudet-Coopman, E. D., Wellstein, A., and Tate Riegel, A. (2001) Oncogene 20(14), 1730-1738
54. Kim, T. K., and Maniatis, T. (1996) Science 273(5282), 1717-1719
55. Williams, D. S. (2002) Vision Res. 42(4), 455-462
56. Rattner, A., Sun, H., and Nathans, J. (1999) Annu. Rev. Genet. 33, 89-131
57. Tan, E., Wang, Q., Quiambao, A. B., Xu, X., Qtaishat, N. M., Peachey, N. S., Lem, J., Fliesler, S. J., Pepperberg, D. R., Naash, M. I., and Al-Ubaidi, M. R. (2001) Invest. Ophthalmol. Vis. Sci. 42(3), 589-600
58. Janssen, J. J., Kuhlmann, E. D., van Vugt, A. H., Winkens, H. J., Janssen, B. P., Deutman, A. F., and Driessen, C. A. (1999) Curr. Eye. Res. 19(4), 338-347
59. Mori, M., Ghyselinck, N. B., Chambon, P., and Mark, M. (2001) Invest. Ophthalmol. Vis. Sci. 42(6), 1312-1318
60. Altshuler, D., Lo Turco, J. J., Rush, J., and Cepko, C. (1993) Development 119(4), 1317-1328
61. Hicks, D., and Courtois, Y. (1992). J. Neurosci. 12(6), 2022-2033
62. Di Polo, A., and Farber, D. B. (1995) Proc. Natl. Acad. Sci. U S A 92(9), 4016-4020
63. Grondona, J. M., Kastner, P., Ganssmuller, A., Decimo, D., Chambon, P., and Mark, M. (1996) Development 122(7), 2173-2188
Figure 1
Figure 3: Graphs showing relative density of FBS (10%) and RA (µM) treatments. The graphs display the effects of different concentrations of RA on the density of FBS. The images below the graphs show fluorescence microscopy images of the treated cells.
Retinoic acid regulates the expression of photoreceptor transcription factor NRL
Hemant Khanna, Masayuki Akimoto, Sandrine Siffroi-Fernandez, James S. Friedman,
David Hicks and Anand Swaroop

J. Biol. Chem. published online July 19, 2006

Access the most updated version of this article at doi: 10.1074/jbc.M605500200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts