Interacting Rényi holographic dark energy with parametrization on the interaction term

Umesh Kumar Sharma¹, Vipin Chandra Dubey²

¹,²Department of Mathematics, Institute of Applied Sciences and Humanities, GLA University Mathura-281 406, Uttar Pradesh, India

¹E-mail: sharma.umesh@glau.ac.in.
²E-mail: vipin.dubey@glau.ac.in

Abstract

In the present work we study the Rényi holographic dark energy model (RHDE) in a flat FRW Universe where infrared cut-off is taken care by the Hubble horizon and also by taking three different parametrizations of the interaction term between the dark matter and the dark energy. Analysing graphically, the behaviour of some cosmological parameters in particular deceleration parameter, squared speed of sound and equation of state (EoS) parameter, in the process of the cosmic evolution, is found to be leading towards the late time accelerated expansion of RHDE model.

PACS: 98.80.Es, 95.36.+x, 98.80.Ck

1 Introduction

Our Universe is undergoing accelerated expansion which is marked by various cosmological observations like type-Ia supernova [1–4], the large-scale structure [5–8], cosmic microwave background (CMB) anisotropies [9–11]. For explaining this accelerated expansion of the cosmos the concept of dark energy (DE) was incorporated which is an extraordinary component with negative pressure [12, 13]. The late time acceleration of the Universe can be explained by two methods. First one is dynamical dark energy models in which we change the matter part of the Einstein field equation. Amongst a lot of theories and models the cosmological constant model is the simplest model, initially proposed by Einstein [14–18], which suggests that the equation of the state parameter (EoS) \(\omega = -1 \) and the cosmological constant are the most basic applicant for dark energy, and it is consistent with observations, besides the fine-tuning and coincidence problem [15, 19, 20]. To get relief from such problems, many dynamical DE models are given as an alternatives like k-essence [21], quintessence [22, 23], Chaplygin gas [24], phantom [25], tachyon [26], holographic dark energy (HDE) [27] and new agegraphic dark energy (NADE) [28]. One way to get feasible solution of the cosmic coincidence problem can be found by taking the interaction between the dark matter and the dark energy [29] and other methods are by \(f(R) \) theory [30], \(f(T) \) theory [31], Hořava-Lifshitz gravity [32, 33], Brans-Dicke theory [36], Gauss-Bonnet theory [37] and \(f(R, T) \) theory [38], which are obtained by changing the geometric part
of Einstein field equation.

The HDE has number of considerable features of the quantum gravity and has the traits of holographic principle \([39, 40]\), which states that degrees of freedom is dependent on bounding area instead of volume. The reason for flat FRW Universe was not known when HDE was considered in terms of Benkenstein entropy using infrared cut-off with the Hubble horizon \([41, 43]\). Physicists have taken various entropies with different cut-off scales like interaction between cold dark matter and dark energy or combination of the mentioned approaches \([44, 45]\).

In the literature \([27, 46–48]\), HDE model has been considered widely and examined as \(\rho_D \propto \Lambda^4\), while relation between the IR cutoff \(L\), UV cutoff \(\Lambda\) and the entropy \(S\) is \(\Lambda^3 L^3 \leq (S)^{\frac{3}{4}}\). So, the combination of the IR cut-offs with the entropy gives energy density of HDE model. The standard HDE model depends on Bekenstein-Hawking entropy \(S = \frac{A}{4G}\), where \(A = 4\pi L^2\), thus the density is \(\rho_D = \frac{3c^2}{8\pi G} L^{-2}\), where \(c\) is numerical constant. The focus must be on this declaration of \(\rho_D\) is achieve by consolidating the dimensional analysis and the holographic principle, rather than including a dark energy expression into the Lagrangian. Because of this extraordinary characteristic, HDE amazingly contrasts from some other theory of dark energy. The vacuum energy is associated with the UV cut-off and Ricci scalar, particle horizon, Hubble horizon, event horizon, etc. i.e. large scale structure of the Universe, is associated with the infrared (IR) cut-off. The HDE model endures the decision of IR cut-off problem. Numerous investigations of different (IR) cut-off’s has been done in Refs. \([43, 49–54]\).

Various entropies are used for the investigation the cosmological and gravitational incidence. The Tsallis HDE \([55]\), RényiHDE \([56]\) and Sharma-Mittal HDE \([57]\) are in demand and are extensively studied in literature. Differing from usual HDE model with Bekenstein entropy, such models give late time accelerated Universe. Rényi HDE depicts better stability as its own, in a non-interacting Universe \([56]\). It is stable and Tsallis HDE \([58]\) is never stable, if Sharma-Mittal HDE become dominant in the Universe. So the inferences shows that Rényi and Tsallis entropies can be obtained by Sharma-Mittal entropy \([59, 61]\). By considering the Hubble horizon as the IR cutoff, Tsallis HDE in Brans-Dicke cosmology have been studied \([62]\), which demonstrate that both non-interacting and interacting cases are classically unstable. Recently Tsallis agegraphic dark energy model along with pressure-less dust was examined by Zadeh et al. \([63]\) and they observed that these models are classically unstable and shows late time acceleration in non-interacting case. Investigation of Sharma-Mittal, Rényi and Tsallis HDE, models has been done in \([64]\) by taking Loop Quantum Cosmology in consideration. HDE models generate late time acceleration using infrared cut-off with the Hubble horizon when there is some interaction between dark energy and dark matter \([27, 65–68]\). It can give late time acceleration with matter dominated decelerated expansion in the past. This work comprises of the reconstruction of Rényi HDE from three different parametrizations of the the interaction term \(Q\) \([69]\). The interaction function \(Q\) is supposed to be proportional to \(H\rho_D\), where \(H\) is the Hubble parameter and \(\rho_D\) is the Rényi HDE density. The strength of the interaction depends on the proportionality parameter \(\alpha\). Praseetha and Mathew checked at the apparent and event horizon in interacting holographic models whether the second law of thermodynamics is valid \([70]\).

These works are behind our motivation for investigating the cosmological consequence of Rényi HDE model by using infrared cut-off with the Hubble horizon and also by taking three
different parametrizations of the interaction function Q, in the context of interacting flat FRW Universe. The organization of the paper is as follows: In sect. 2, we discuss field equations in flat FRW Universe. In sects. 3 we study RHDE Model. In sects. 4 we have calculated some cosmological parameters in the interacting RHDE model and in sect. 5, we have given the observational data used in the analysis of RHDE model. In sects. 6, 7 and 8, we analysed the Cosmological behaviour of the interacting RHDE For model 1, model 2 and model 3. Finally in the last section we concluded outcomes.

2 Field equations in flat FRW Universe

The metric for an isotropic and homogeneous spatial flat FRW Universe is given by:

$$ds^2 = -dt^2 + a^2(t)\left(dr^2 + r^2 d\Omega^2\right),$$

where $a(t)$ is known as the scale factor. The Hubble parameter is determined as, $H = \frac{\dot{a}}{a}$, where dot represents derivative with respect to cosmic time. The Friedmann equations, in the form of Hubble parameter are given as,

$$H^2 = \frac{1}{3}(8\pi G) \left(\rho_D + \rho_M\right),$$

where $\Omega_D = \frac{1}{3}M_p^{-2}\rho_D H^{-2}$ and $\Omega_m = \frac{1}{3}M_p^{-2}\rho_m H^{-2}$ are the energy density parameter of RHDE and pressure less matter, respectively, expressed as fractions of critical density $\rho_c = 3M_p^2H^2$. Also, ρ_m and ρ_D denote the energy density of matter and RHDE, respectively, and $\rho_m/\rho_D = r$ represents the energy density ratio of two dark components [71,72]. Now Eq. (2) can be written as:

$$1 = \Omega_D + \Omega_m,$$

The conservation law to interacting RHDE and matter are found as:

$$\dot{\rho}_m + 3H\rho_m = Q,$$

$$\dot{\rho}_D + 3H(\rho_D + p_D) = -Q,$$

Here Q denotes the interaction function and $\omega_D = p_D/\rho_D$ gives the equation of state. Equations (Eq. [4] and (Eq.[5])) become decoupled for $Q = 0$ permitting the autonomous conservation of dark matter and dark energy. In this study, we have taken three different parametrizations of the interaction function Q. The common form of the interaction function is taken to be $Q = 3\alpha(z) H \rho_D$, where α represents the coupling term which is non other than a function of redshift z. Now the coincidence parameter (r) is defined as $r = \rho_m/\rho_D$, which is constant in case of HDE in a spatially flat Universe with Hubble horizon as the IR cut-off [73]. From Eq. [3] we get Hubble parameter $H \propto (z + 1)^{\frac{3}{2}(1-\omega)}$ for a constant α. In this case the model does not let the transition to go to accelerated phase from decelerated one. Hence for the successful change to accelerated phase from decelerated one we need $\alpha(z)$ which is a time-varying coupling parameter. In this study to reconstruct the interaction function Q, we have taken three different
ansatzes which is given in [69] as:

Model (I)

\[\alpha(z) = \alpha_1 + \alpha_2(1 + z), \]
(6)

Model (II)

\[\alpha(z) = \alpha_1 + \alpha_2 \left(\frac{z}{1 + z} \right), \]
(7)

Model (III)

\[\alpha(z) = \alpha_1 + \alpha_2 \left(\frac{1}{1 + z} \right), \]
(8)

Where \(\alpha_1 \) and \(\alpha_2 \) are constant parameters. Model I, II and III has a linear, mixed and inverse dependence on \(z \). So, aforementioned three models lead us to a pure CDM model after reduction, if \(\alpha_1 \) and \(\alpha_2 \) are taken as zero. Here we find two parameters \(\beta_1 = \frac{\alpha_1}{r} \) and \(\beta_2 = \frac{\alpha_2}{r} \), since for these three models \(r \) is constant. We also scale the Hubble constant (\(H_0 \)) by \(100 km/sec^{-1} Mpc^{-1} \) for demonstrating it by \(h_0 \) which is a dimensionless way. The signature of the parameters \(\alpha_1 \) and \(\alpha_2 \) decides the path for the energy flow between the dark matter and the dark energy since the interaction function \(Q \) depends on the parameters \(\alpha_1 \) and \(\alpha_2 \). A negative \(Q \) shows the flow of energy from the dark matter to the dark energy and a positive \(Q \) shows the reverse.

3 Rényi Holographic Dark Energy Model

The form of the Bekenstein entropy of a system is \(S = \frac{A}{4} \), where \(A = 4\pi L^2 \) and \(L \) is the IR cut-off. Another modified form of the Rényi entropy [56] is given as:

\[S = \frac{1}{\delta} \log \left(\frac{\delta}{4} A + 1 \right) = S = \frac{1}{\delta} \log \left(\pi \delta L^2 + 1 \right), \]
(9)

Rényi HDE density, by considering the assumption \(\rho_d \, dV \propto T dS \), takes the following form:

\[\rho_D = \frac{3c^2}{8\pi L^2} \left(\pi \delta L^2 + 1 \right)^{-1}, \]
(10)

By taking Hubble horizon as an IR cut-off \(L = \frac{1}{H} \), we obtained:

\[\rho_D = \frac{3c^2 H^2}{8\pi \left(\frac{\delta}{H^2} + 1 \right)^2}, \]
(11)

where \(c^2 \) is a numerical constant as usual.
4 Evolution of cosmological parameters in the interacting RHDE model

Combined with the definition of r, we obtain:

$$r = \frac{1}{\Omega_D} - 1,$$ \hspace{1cm} (12)

Now, inserting the time derivative of Eq. (2) in Eq. (5), and combining the result with Eq. (3) and Eq. (4), we obtain

$$\frac{\dot{H}}{H^2} = -\frac{3}{2}\Omega_D (\omega_D + r + 1),$$ \hspace{1cm} (13)

Now using Eq. (13) we get deceleration parameter q

$$q = \frac{3}{2}\Omega_D (\omega_D + r + 1) - 1,$$ \hspace{1cm} (14)

Combining the time derivative of Eq. (11) with Eq. (13), we get

$$\rho_D = -3H\rho_D \Omega_D \left(\frac{\pi\delta}{\pi\delta + H^2} + 1\right) (\omega_D + r + 1),$$ \hspace{1cm} (15)

Now substituting Eq. (19) in Eq.(5) and combining with Eq. (13). We get

$$\omega_D = \frac{H^2 (-r + 1)\Omega_D + \alpha(z) + 1 + \pi\delta (-2(r + 1)\Omega_D + \alpha(z) + 1)}{\pi\delta (2\Omega_D - 1) + H^2 (\Omega_D - 1)},$$ \hspace{1cm} (16)

Finally, we explore the stability of the RHDE model as:

$$v_s^2 = \frac{dp_D}{d\rho_D} = \frac{\rho_D}{\dot{\rho}_D} \dot{\omega}_D + \omega_D$$ \hspace{1cm} (17)

$$v_s^2 = \left(\frac{1}{3(\pi\delta + H^2)(2\pi\delta + H^2)((\alpha + 1)\Omega_D - 1)(\pi\delta (2\Omega_D - 1) + H^2 (\Omega_D - 1))}\right)$$

$$\times (\pi\delta H^6 (2(z + 1)\alpha' (\Omega_D - 1) (3\Omega_D - 2 - 3\alpha (c^2 - 7\Omega_D + 5)) ((\alpha + 1)\Omega_D - 1)) + \pi^2 \delta^2 H^4 ((z + 1)\alpha' ((13\Omega_D - 18) \Omega_D + 6) - 3 ((\alpha + 1)\Omega_D - 1) (3\alpha (c^2 - 5\Omega_D + 3) - c^2 + 3\Omega_D - 2))$$

$$+ \pi^3 \delta^3 H^2 (2(z + 1)\alpha' ((6\Omega_D - 7) \Omega_D + 2) - 3 ((\alpha + 1)\Omega_D - 1) (\alpha (2c^2 - 13\Omega_D + 7) - 2c^2 + 7\Omega_D - 4))$$

$$+ H^8 (\Omega_D - 1) (3\alpha ((\alpha + 1)\Omega_D - 1) + (z + 1)\alpha' (\Omega_D - 1)) + \pi^4 \delta^4 2\Omega_D - 1 (6(\alpha - 1) ((\alpha + 1)\Omega_D - 1))$$

$$+ (z + 1)\alpha' (2\Omega_D - 1))$$ \hspace{1cm} (18)

5 Observational Data

The present section deals with the observational data which was used to analyse the RHDE model with Hubble horizon cut-off. In the present analysis, the distance modulus measurements of type Ia supernova from the Joint Light-curve Analysis (JLA) \cite{74} and the observational measurements of Hubble parameter (OHD) have been used. Cosmic Chronometer method \cite{75}, measurements from galaxy distribution \cite{76} and from Lyman $-\alpha$ forest distribution \cite{77}.
Table 1: The parameters used in the models with JLA+OHD

Model	h_0 (±0.01)	β_1 (±0.005)	β_2 (±0.004)
Model I	0.696 ±0.007	0.942 ±0.066	−0.304 ±0.035
Model II	0.700 ±0.008	0.737 ±0.042	−0.906 ±0.102
Model III	0.700 ±0.008	−0.170 ±0.004	0.907 ±0.103

Figure 1: The evolution of deceleration parameter (q) in RHDE model (I) versus red shift z for different values of model parameter δ in flat Universe where $\alpha_1 = 0.41919$, $\alpha_2 = -0.135828$, $r = 0.445$, $H_0 = 69.6$.

methods are used to measure the OHD. Table 1 which represents the values of the parameters used with OHD+JLA in the analysis. The values of the model parameters β_1 and β_2 are scaled by r which is the value of the coincident parameter. According to the Planck measurement of Ω_Λ, the value of is r is $0.445±0.010$. HDE in addition to Hubble scale cut-off in a spatially flat FRW Universe which possibly addresses the problem related to the coincidence problem of the standard model of cosmology.

6 Cosmological behaviour of the interacting RHDE For model 1

The deceleration parameter takes the form

$$q = \frac{3(\Omega_D (\alpha_1 + \alpha_2(z + 1) + 1) - 1) \left(\pi \delta + H_0^2 e^{-\frac{3\alpha_2 z}{r}} (z + 1)^{3(1-\alpha_1)}\right)}{2\pi \delta (2\Omega_D - 1) + 2H_0^2 (\Omega_D - 1) e^{-\frac{3\alpha_2 z}{r}} (z + 1)^{3(1-\alpha_1)}} - 1$$

(19)
Figure 2: The evolution of EOS parameter ω_D in RHDE model (I) versus red shift z for different values of model parameter δ in flat Universe where $\alpha_1 = 0.41919$, $\alpha_2 = -0.135828$, $r = 0.445$, $H_0 = 69.6$.

Figure 3: The evolution of energy density parameter Ω_D in RHDE model (I) versus red shift z for different values of model parameter δ in flat Universe where $\alpha_1 = 0.41919$, $\alpha_2 = -0.135828$, $r = 0.445$, $H_0 = 69.6$.
The EOS parameter takes the form

$$\omega_D = \frac{(\alpha_1 + \alpha_2(z + 1)) \left(\pi \delta + H_0^2 e^{\frac{3\alpha_2 z}{r}} \frac{(z + 1)^3(1 - \frac{\Omega_D}{3})}{(\pi \delta e^{\frac{3\alpha_2 z}{r}} (z + 1)^3(1 - \frac{\Omega_D}{3}))} \right)}{\pi \delta (2\Omega_D - 1) + H_0^2 (\Omega_D - 1) e^{-\frac{3\alpha_2 z}{r}} (z + 1)^3(1 - \frac{\Omega_D}{3})}$$

(20)

The dark energy density parameter takes the form

$$\Omega_D = \frac{0.7 \left(\frac{\pi \delta}{H_0^2} + 1 \right)}{\pi \delta e^{\frac{3\alpha_2 z}{r}} (z + 1)^3(1 - \frac{\Omega_D}{3})} + 1$$

(21)

$$v_s^2 = \left(\frac{3(\pi \delta + H^2)[2\pi \delta + H^2]^{\frac{1}{2}}(\pi \delta (2\Omega_D - 1) + H^2 (\Omega_D - 1))^2(\Omega_D (\alpha_1 + \alpha_2 (z + 1) + 1))}{H^2} \right)$$

$$\times (\pi^4 \delta^4 (2\Omega_D - 1) (\alpha_2 (z + 1)) (2\Omega_D - 1) + 6 (\alpha_1 + \alpha_2 (z + 1)) (\Omega_D (\alpha_1 + \alpha_2 (z + 1) + 1) - 1))$$

$$+ \delta H^8 (\Omega_D - 1) (\alpha_2 (z + 1)) (\Omega_D - 1) + 3 (\alpha_1 + \alpha_2 (z + 1)) (\Omega_D (\alpha_1 + \alpha_2 (z + 1) + 1) - 1))$$

$$+ \pi \delta H^6 (2\alpha_2 (z + 1)) (\Omega_D - 1) (3\Omega_D - 2) - 3 (\alpha_1 + \alpha_2 (z + 1)) (c^2 - 7\Omega_D + 5)$$

$$\times \Omega_D (\alpha_1 + \alpha_2 (z + 1) + 1) - 1 + \pi^3 \delta^3 H^2 (-3 (-2c^2 + (\alpha_1 + \alpha_2 (z + 1)) - 4$$

$$\times (2c^2 - 13\Omega_D + 7) + 7\Omega_D) \Omega_D (\alpha_1 + \alpha_2 (z + 1) + 1) - 1 + 2\alpha_2 (z + 1) (\Omega_D (6\Omega_D - 7) + 2)$$

$$+ \pi^2 \delta^2 H^4 (-3 (3 (\alpha_1 + \alpha_2 (z + 1)) (c^2 - 5\Omega_D + 3) - c^2 + 3\Omega_D - 2)$$

$$\times (\Omega_D (\alpha_1 + \alpha_2 (z + 1) + 1) - 1) + \alpha_2 (z + 1) (\Omega_D (13\Omega_D - 18) + 6))$$

(22)

For analysis of RHDE models, model parameter δ have been taken three different values. fig. 1. depicts the behaviour of the deceleration parameter q versus redshift z. It shows that q changes it’s sign from positive to negative. Hence model 1 shows a transition from early
decelerated phase to present accelerating phase of the Universe. Fig. 2 shows the evaluation of the EoS parameter ω versus redshift z for model I. Which depicts that EoS parameter ω varies from the quintessence era $\omega > -1$ to the phantom era $\omega < -1$ as time increases. Finally converges to quintessence era $\omega > -1$ at late time. Fig. 3 describe the behaviour of dark energy density parameter Ω_D with redshift z. We observe that Ω_D approaches to 1 at late time. Hence our model I predicts that for sufficiently large time the anistropy will vanish and Universe will become isotropic. So at late time the Universe will become flat. The squared speed of the sound v_s^2 of model I has been given by equation 22. It is plotted in fig. 4 versus redshift z, which depicts that the Rényi HDE model I with Hubble cutoff is classically stable initially for all model parameter δ. Model I become unstable $v_s^2 < 0$ at different redshifts but sharply recoverse and presently it is stable $v_s^2 > 0$ for all model parameter δ. It is also be noted that model I becomes unstable early for lower values of model parameter δ.

7 Cosmological behaviour of the interacting RHDE For model 2

Similarly we obtain for model 2:

$$q = \frac{3 \left(\Omega_D \left(\alpha_1 + \frac{\alpha_2}{z+1} + 1 \right) - 1 \right) \left(\pi \delta + H_0^2 e^{\frac{3\alpha_2}{\alpha_1+1}} (z+1)^3 \left(\frac{-\alpha_1 - \alpha_2}{\alpha_1 + \alpha_2} + 1 \right) \right)}{2 \pi \delta (2 \Omega_D - 1) + 2 H_0^2 (\Omega_D - 1) e^{\frac{3\alpha_2}{\alpha_1+1}} (z+1)^3 \left(\frac{-\alpha_1 - \alpha_2}{\alpha_1 + \alpha_2} + 1 \right)} - 1$$

(23)

$$\omega_D = \frac{\left(\alpha_1 + \frac{\alpha_2}{z+1} \right) \left(\pi \delta + H_0^2 e^{\frac{3\alpha_2}{\alpha_1+1}} (z+1)^3 \left(\frac{-\alpha_1 - \alpha_2}{\alpha_1 + \alpha_2} + 1 \right) \right) - \pi \delta}{\pi \delta (2 \Omega_D - 1) + H_0^2 (\Omega_D - 1) e^{\frac{3\alpha_2}{\alpha_1+1}} (z+1)^3 \left(\frac{-\alpha_1 - \alpha_2}{\alpha_1 + \alpha_2} + 1 \right)}$$

(24)
Figure 6: The evolution of EOS parameter ω_D in RHDE model (II) versus red shift z for different values of model parameter δ in flat Universe where $\alpha_1 = 0.327965$, $\alpha_2 = -0.40317$, $r = 0.445$, $H_0 = 70$.

Figure 7: The evolution of energy density parameter Ω_D in RHDE model (II) versus red shift z for different values of model parameter δ in flat Universe where $\alpha_1 = 0.327965$, $\alpha_2 = -0.40317$, $r = 0.445$, $H_0 = 70$.
Figure 8: The evolution of square of the sound speed parameter v_s^2 in RHDE model (II) versus red shift z for different values of model parameter δ in flat FRW Universe where $\alpha_1 = 0.327965$, $\alpha_2 = -0.40317$, $r = 0.445$, $H_0 = 70$.

\[\Omega_D = \frac{0.7 \left(\frac{\pi \delta}{H_0} + 1 \right)}{\frac{\pi \delta}{H_0} e^{-\frac{3\alpha_2}{z}(z+1)+3\left(-\frac{\alpha_1}{z} - \frac{\alpha_2}{z+1} + 1\right)}} + 1 \]

\[v_s^2 = \frac{\left(\frac{\pi \delta}{H_0} + 1 \right)}{\frac{3(\pi \delta + H^2)(2\pi \delta + H^2)(\pi \delta (\Omega_D - 1) + H^2(\Omega_D - 1))^2}{H_0^2} (\Omega_D (\alpha_1 + \frac{\alpha_2}{z+1} + 1) - 1)} \times \left(\pi^4 \delta^4 (2\Omega_D - 1) (z + 1) (2\Omega_D - 1) \left(\frac{\alpha_2}{z+1} - \frac{\alpha_2}{(z+1)^2} \right) + 6 \left(\alpha_1 + \frac{\alpha_2}{z+1} - 1 \right) \Omega_D \left(\alpha_1 + \frac{\alpha_2}{z+1} + 1 \right) - 1 \right) \right) \]

\[+ H^8 \left(\Omega_D - 1 \right) (z + 1) (\Omega_D - 1) \left(\frac{\alpha_2}{z+1} - \frac{\alpha_2}{(z+1)^2} \right) + 3 \left(\alpha_1 + \frac{\alpha_2}{z+1} \right) \Omega_D \left(\alpha_1 + \frac{\alpha_2}{z+1} + 1 \right) - 1 \right) \]

\[+ \pi \delta H^6 \left(2(z + 1) (\Omega_D - 1) (3\Omega_D - 2) \left(\frac{\alpha_2}{z+1} - \frac{\alpha_2}{(z+1)^2} \right) - 3 \left(\alpha_1 + \frac{\alpha_2}{z+1} \right) (c^2 - 7\Omega_D + 5) \right) \times \left(\Omega_D \left(\alpha_1 + \frac{\alpha_2}{z+1} + 1 \right) - 1 \right) + 2(z + 1) (\Omega_D (6\Omega_D - 7) + 2) \left(\frac{\alpha_2}{z+1} - \frac{\alpha_2}{(z+1)^2} \right) \]

\[+ \pi^2 \delta^2 H^4 \left(-3 \left(\alpha_1 + \frac{\alpha_2}{z+1} \right) (c^2 - 5\Omega_D + 3) - c^2 + 3\Omega_D - 2 \right) \]

\[\times \left(\Omega_D \left(\alpha_1 + \frac{\alpha_2}{z+1} + 1 \right) - 1 \right) + (z + 1) (\Omega_D (13\Omega_D - 18) + 6) \left(\frac{\alpha_2}{z+1} - \frac{\alpha_2}{(z+1)^2} \right) \right) \]

In model II, q the deceleration parameter is plotted as function z in fig. 5 by considering three different values of model parameter δ. It also shows that q goes towards south from from positive to negative region which depicts the transition of the Universe from early decelerated phase to present accelerating phase. Presently model II is more inflating in comparison to model I. Fig. 6 shows the evaluation of of the EoS parameter ω versus redshift z for model II. Which
\(q = \frac{3 (\Omega_D (\alpha_1 + \frac{\alpha_2}{z+1} + 1) - 1) \left(\pi \delta + H_0^2 e^{-\frac{3\alpha_2}{r(z+1)}} (z+1)^3(1-\frac{\alpha_1}{r}) \right)}{2\pi \delta (2\Omega_D - 1) + 2H_0^2 (\Omega_D - 1) e^{-\frac{3\alpha_2}{r(z+1)}} (z+1)^3(1-\frac{\alpha_1}{r})} - 1 \) \hspace{1cm} (27)

\(\omega_D = \frac{(\alpha_1 + \frac{\alpha_2}{z+1}) \left(\pi \delta + H_0^2 e^{-\frac{3\alpha_2}{r(z+1)}} (z+1)^3(1-\frac{\alpha_1}{r}) \right) - \pi \delta}{\pi \delta (2\Omega_D - 1) + H_0^2 (\Omega_D - 1) e^{-\frac{3\alpha_2}{r(z+1)}} (z+1)^3(1-\frac{\alpha_1}{r})} \) \hspace{1cm} (28)

\(\Omega_D = \frac{0.7 \left(\frac{\pi \delta}{H_0^2} + 1 \right)}{\pi \delta e^{-\frac{3\alpha_2}{r(z+1)}} (z+1)^3(1-\frac{\alpha_1}{r}) H_0^2} + 1 \) \hspace{1cm} (29)

Figure 9: The evolution of deceleration parameter \((q) \) in RHDE model (III) versus red shift \(z \) for different values of model parameter \(\delta \) in flat Universe where \(\alpha_1 = -0.07565, \alpha_2 = 0.403615, r = 0.445, H_0 = 70 \).

depicts that EoS parameter \(\omega \) varies from the quintessence era \(\omega > -1 \) to the phantom era \(\omega < -1 \) as time increases. Model II always lies in phantom era \(\omega < -1 \) once it crosses the phantom divided line \(\omega = -1 \). From fig. 7 and fig. 8, we observe that behaviour of square of the sound speed parameter \(v_s^2 \) in RHDE model (II) versus red shift \(z \) and energy density parameter \(\Omega_D \) in RHDE model (II) versus red shift \(z \) for different values of model parameter \(\delta \) in flat FRW Universe for \(\alpha_1 = -0.327965, \alpha_2 = -0.40317, r = 0.445 \) and \(H_0 = 70 \) is same as of model I.

8 Cosmological behaviour of the interacting RHDE For model 3

We obtain for model 3:

\(q = \frac{3 (\Omega_D (\alpha_1 + \frac{\alpha_2}{z+1} + 1) - 1) \left(\pi \delta + H_0^2 e^{-\frac{3\alpha_2}{r(z+1)}} (z+1)^3(1-\frac{\alpha_1}{r}) \right)}{2\pi \delta (2\Omega_D - 1) + 2H_0^2 (\Omega_D - 1) e^{-\frac{3\alpha_2}{r(z+1)}} (z+1)^3(1-\frac{\alpha_1}{r})} - 1 \) \hspace{1cm} (27)

\(\omega_D = \frac{(\alpha_1 + \frac{\alpha_2}{z+1}) \left(\pi \delta + H_0^2 e^{-\frac{3\alpha_2}{r(z+1)}} (z+1)^3(1-\frac{\alpha_1}{r}) \right) - \pi \delta}{\pi \delta (2\Omega_D - 1) + H_0^2 (\Omega_D - 1) e^{-\frac{3\alpha_2}{r(z+1)}} (z+1)^3(1-\frac{\alpha_1}{r})} \) \hspace{1cm} (28)

\(\Omega_D = \frac{0.7 \left(\frac{\pi \delta}{H_0^2} + 1 \right)}{\pi \delta e^{-\frac{3\alpha_2}{r(z+1)}} (z+1)^3(1-\frac{\alpha_1}{r}) H_0^2} + 1 \) \hspace{1cm} (29)
Figure 10: The evolution of EOS parameter ω_D in RHDE model (III) versus red shift z for different values of model parameter δ in flat Universe where $\alpha_1 = -0.07565$, $\alpha_2 = 0.403615$, $r = 0.445$, $H_0 = 70$.

Figure 11: The evolution of energy density parameter Ω_D in RHDE model (III) versus red shift z for different values of model parameter δ in flat Universe where $\alpha_1 = -0.07565$, $\alpha_2 = 0.403615$, $r = 0.445$, $H_0 = 70$.

\[v_s^2 = \left(\frac{3(\pi \delta + H^2)(2\pi \delta + H^2)(\pi \delta(2\Omega_D - 1) + H^2(\Omega_D - 1))^2(\Omega_D(\alpha_1 + \frac{\alpha_2}{z+1} + 1) - 1)}{\Omega^6} \right) \]
\[\times \left(4^4 \delta^4 (2\Omega_D - 1) \left[6 \left(\alpha_1 + \frac{\alpha_2}{z+1} + 1 \right) \left(\Omega_D(\alpha_1 + \frac{\alpha_2}{z+1} + 1) - 1 \right) - \frac{\alpha_2(2\Omega_D - 1)}{\left(\frac{\alpha_2}{z+1} - 1 \right)} \right] \right) \]
\[+ H^8 \left(\Omega_D - 1 \right) \left[3 \left(\alpha_1 + \frac{\alpha_2}{z+1} \right) \Omega_D \left(\alpha_1 + \frac{\alpha_2}{z+1} + 1 \right) - 1 - \frac{\alpha_2(\Omega_D - 1)}{\left(\frac{\alpha_2}{z+1} - 1 \right)} \right] \]
\[+ \pi \delta H^6 \left(-3 \left(\alpha_1 + \frac{\alpha_2}{z+1} \right) \left(e^2 - 7\Omega_D + 5 \right) - \frac{2\alpha_2(\Omega_D - 1)(3\Omega_D - 2)}{\left(\frac{\alpha_2}{z+1} - 1 \right)} \right) \]
\[\times \Omega_D \left(\alpha_1 + \frac{\alpha_2}{z+1} + 1 \right) \left(2e^2 - 13\Omega_D + 7 \right) - 2e^2 + 7\Omega_D - 4 \]
\[\times \left(\Omega_D \left(\alpha_1 + \frac{\alpha_2}{z+1} + 1 \right) - 1 - \frac{2\alpha_2(\Omega_D(6\Omega_D - 7))}{\left(\frac{\alpha_2}{z+1} + 1 \right)} \right) + \pi^2 \delta^6 H^4 \left(-3 \left(e^2 - 3 \left(\alpha_1 + \frac{\alpha_2}{z+1} \right) \right) - 2 \right) \]
\[\times \left(e^2 - 5\Omega_D + 3 \right) + 3\Omega_D \right) \Omega_D \left(\alpha_1 + \frac{\alpha_2}{z+1} + 1 \right) - 1 - \frac{\alpha_2(\Omega_D(13\Omega_D - 18) + 6)}{\left(\frac{\alpha_2}{z+1} + 1 \right)} \right) \]

\[(30) \]

Figure 12: The evolution of square of the sound speed parameter \(v_s^2 \) in RHDE model (III) versus red shift \(z \) for different values of model parameter \(\delta \) in flat Universe where \(\alpha_1 = -0.07565 \), \(\alpha_2 = 0.403615 \), \(r = 0.445 \), \(H_0 = 70 \).

\[\delta = -1000 \]
\[\delta = -1200 \]
\[\delta = -1400 \]

\[\text{z vs } v_s^2 \]

9 Conclusion

This work comprises of the study of the RHDE model where Hubble horizon is taken as the infrared cut-off by taking three different parametrizations of the interaction term in the context of flat FRW Universe. Three different values of the model parameter \(\delta \) are taken for non-linear interaction of dark matter and dark energy models. Following are results which we obtained on the basis of the graphical analysis:

* The sign of deceleration parameter \(q \) indicates whether the model inflates or not. The deceleration parameter \(q \) of all three models decreases from positive to negative region. Which
shows a transition from early decelerated phase to present accelerating phase of the Universe. Presently model II and model III are more inflating in comparison to model I.

* The trajectories of the EOS parameter Ω_D for RHDE model I behave like quintessence for all model parameter δ, while model II and model III shows an aggressive phantom regime for Hubble horizon as IR cutoff at late time.

* We observe that dark energy density parameter Ω_D approaches to 1 at late time for all the three model I, II and III.

* The graphical behaviour of the squared speed of sound are used to analyse the stability of the RHDE models. We have noticed that the Rényi HDE models I, II and III with Hubble horizon as IR cutoff are classically stable initially for all model parameter δ. These becomes unstable $v_s^2 < 0$ at different redshifts but sharply recovers and presently all models are stable $v_s^2 > 0$ for all model parameter δ.

Acknowledgments

The authors are thankful to Prof. M. Shami, Centre for Theoretical Physics, JMI, India and Prof. A. Pradhan, GLA University, India for his helpful discussions.

References

[1] A. G. Riess et al. [Supernova Search Team], “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116 (1998) 1009. doi:10.1086/300499.

[2] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], “Measurements of Ω and Λ from 42 high redshift supernovae,” Astrophys. J. 517 (1999) 565. doi:10.1086/307221 [astro-ph/9812133].

[3] P. de Bernardis et al. [Boomerang Collaboration], “A Flat universe from high resolution maps of the cosmic microwave background radiation,” Nature 404 (2000) 955 doi:10.1038/35010035

[4] R. A. Knop et al. [Supernova Cosmology Project Collaboration], “New constraints on Omega(M), Omega(lambda), and w from an independent set of eleven high-redshift supernovae observed with HST,” Astrophys. J. 598 (2003) 102 doi:10.1086/378560

[5] M. Colless et al. [2DFGRS Collaboration], “The 2dF Galaxy Redshift Survey: Spectra and redshifts,” Mon. Not. Roy. Astron. Soc. 328 (2001) 1039 doi:10.1046/j.1365-8711.2001.04902.x

[6] M. Tegmark et al. [SDSS Collaboration], “Cosmological parameters from SDSS and WMAP,” Phys. Rev. D 69 (2004) 103501 doi:10.1103/PhysRevD.69.103501
[7] S. Cole et al. [2dFGRS Collaboration], “The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications,” Mon. Not. Roy. Astron. Soc. 362 (2005) 505 doi:10.1111/j.1365-2966.2005.09318.x

[8] V. Springel, C. S. Frenk and S. D. M. White, “The large-scale structure of the Universe,” Nature 440 (2006) 1137 doi:10.1038/nature04805

[9] S. Hanany et al., “MAXIMA-1: A Measurement of the cosmic microwave background anisotropy on angular scales of 10 arcminutes to 5 degrees,” Astrophys. J. 545 (2000) L5 doi:10.1086/317322

[10] C. B. Netterfield et al. [Boomerang Collaboration], “A measurement by Boomerang of multiple peaks in the angular power spectrum of the cosmic microwave background,” Astrophys. J. 571 (2002) 604 doi:10.1086/340118

[11] D. N. Spergel et al. [WMAP Collaboration], “First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters,” Astrophys. J. Suppl. 148 (2003) 175 doi:10.1086/377226

[12] S. Nojiri and S. D. Odintsov, “The New form of the equation of state for dark energy fluid and accelerating universe,” Phys. Lett. B 639 (2006) 144 doi:10.1016/j.physletb.2006.06.065

[13] K. Bamba, S. Capozziello, S. Nojiri and S. D. Odintsov, “Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests,” Astrophys. Space Sci. 342 (2012) 155 doi:10.1007/s10509-012-1181-8

[14] V. Sahni, A. Starobinsky, ”The case for a positive cosmological A-term,” Int. J. Mod. Phys. D 9(04) (2000) 373-443.

[15] P. J. E. Peebles and B. Ratra, “The Cosmological constant and dark energy,” Rev. Mod. Phys. 75 (2003) 559. doi:10.1103/RevModPhys.75.559

[16] T. Padmanabhan, “Dark energy and gravity,” Gen. Rel. Grav. 40 (2008) 529. doi:10.1007/s10714-007-0555-7

[17] W. Chen and Y. S. Wu, “Implications of a cosmological constant varying as R**(-2),” Phys. Rev. D 41 (1990) 695. Erratum: [Phys. Rev. D 45, 4728 doi:10.1103/PhysRevD.41.695]

[18] S. M. Carroll, “The Cosmological constant,” Living Rev. Rel. 4 (2001) 1. doi:10.12942/lrr-2001-1

[19] E. J. Copeland and M. Sami et al., “Dynamics of dark energy,” Int. J. Mod. Phys. D 15 (2006) 1753. doi:10.1142/S021827180600942X

[20] S. Weinberg, “The Cosmological Constant Problem,” Rev. Mod. Phys. 61 (1989) 1. doi:10.1103/RevModPhys.61.1

[21] T. Chiba, “Tracking K-essence,” Phys. Rev. D 66 (2002) 063514. doi:10.1103/PhysRevD.66.063514
[22] P. J. E. Peebles and B. Ratra, “Cosmology with a time-variable cosmological constant,” Int. J. Mod. Phys. A 325 (1988) L17-L20.

[23] M. S. Turner, “Making sense of the new cosmology”. Int. J. Mod. Phys. A, 17 (2002) 180.

[24] A. Y. Kamenshchik, U. Moschella et al., “An Alternative to quintessence,” Phys. Lett. B 511 (2001) 265. doi:10.1016/S0370-2693(01)00571-8

[25] R. R. Caldwell and M. Kamionkowski et al., “Phantom energy and cosmic doomsday,” Phys. Rev. Lett. 91 (2003) 071301. doi:10.1103/PhysRevLett.91.071301

[26] A. Sen, “Universality of the tachyon potential,” J. High Energy Phys. 1999(12) (2000) 027.

[27] M. Li, “A Model of holographic dark energy,” Phys. Lett. B 603 (2004) 1 doi:10.1016/j.physletb.2004.10.014

[28] H. Wei and R. G. Cai, “A New Model of Agegraphic Dark Energy,” Phys. Lett. B 660 (2008) 113 doi:10.1016/j.physletb.2007.12.030

[29] M. R. Setare, “The Holographic dark energy in non-flat Brans-Dicke cosmology,” Phys. Lett. B 644 (2007) 99 doi:10.1016/j.physletb.2006.11.033

[30] A. De Felice and S. Tsujikawa, “f(R) theories,” Living Rev. Rel. 13 (2010) 3 doi:10.12942/lrr-2010-3

[31] R. Ferraro and F. Fiorini, “Non trivial frames for f(T) theories of gravity and beyond,” Phys. Lett. B 702 (2011) 75 doi:10.1016/j.physletb.2011.06.049

[32] P. Horava, “Quantum Gravity at a Lifshitz Point,” Phys. Rev. D 79 (2009) 084008 doi:10.1103/PhysRevD.79.084008

[33] P. Horava, “Membranes at Quantum Criticality,” JHEP 0903 (2009) 020 doi:10.1088/1126-6708/2009/03/020

[34] P. Horava, “Spectral Dimension of the Universe in Quantum Gravity at a Lifshitz Point,” Phys. Rev. Lett. 102 (2009) 161301 doi:10.1103/PhysRevLett.102.161301

[35] S. Maity and P. Rudra, (2018). Gravitational Baryogenesis in Hořava-Lifshitz gravity. arXiv preprint arXiv:1802.00313

[36] C.H. Brans and R.H. Dicke, “Mach’s principle and a relativistic theory of gravitation,” Phys. Rev. D 124(3) (1961) 925.

[37] G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov and S. Zerbini, “Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem,” Phys. Rev. D 73 (2006) 084007 doi:10.1103/PhysRevD.73.084007

[38] T. Harko, F. S. N. Lobo, S. Nojiri and S. D. Odintsov, “f(R, T) gravity,” Phys. Rev. D 84 (2011) 024020 doi:10.1103/PhysRevD.84.024020

[39] S. Nojiri and S. D. Odintsov, “Unifying phantom inflation with late-time acceleration: Scalar phantom-non-phantom transition model and generalized holographic dark energy,” Gen. Rel. Grav. 38 (2006) 1285 doi:10.1007/s10714-006-0301-6
[40] L. Susskind, “The World as a hologram,” J. Math. Phys. 36 (1995) 6377 doi:10.1063/1.531249

[41] P. Horava and D. Minic, “Probable values of the cosmological constant in a holographic theory,” Phys. Rev. Lett. 85 (2000) 1610 doi:10.1103/PhysRevLett.85.1610

[42] S. D. Thomas, “Holography stabilizes the vacuum energy,” Phys. Rev. Lett. 89 (2002) 081301. doi:10.1103/PhysRevLett.89.081301

[43] S. D. H. Hsu, “Entropy bounds and dark energy,” Phys. Lett. B 594 (2004) 13 doi:10.1016/j.physletb.2004.05.020

[44] B. Wang, E. Abdalla, F. Atrio-Barandela and D. Pavon, “Dark Matter and Dark Energy Interactions: Theoretical Challenges, Cosmological Implications and Observational Signatures,” Rept. Prog. Phys. 79 (2016) no.9, 096901 doi:10.1088/0034-4885/79/9/096901

[45] S. Wang, Y. Wang and M. Li, “Holographic Dark Energy,” Phys. Rept. 696 (2017) 1 doi:10.1016/j.physrep.2017.06.003

[46] A. Sheykhi, “Holographic Scalar Fields Models of Dark Energy,” Phys. Rev. D 84 (2011) 107302 doi:10.1103/PhysRevD.84.107302

[47] B. Hu and Y. Ling, “Interacting dark energy, holographic principle and coincidence problem,” Phys. Rev. D 73 (2006) 123510 doi:10.1103/PhysRevD.73.123510

[48] Y. Z. Ma, Y. Gong and X. Chen, “Features of holographic dark energy under the combined cosmological constraints,” Eur. Phys. J. C 60 (2009) 303 doi:10.1140/epjc/s10052-009-0876-7

[49] H. Wei and S. N. Zhang, “Age Problem in the Holographic Dark Energy Model,” Phys. Rev. D 76 (2007) 063003. doi:10.1103/PhysRevD.76.063003

[50] C. Gao and F. Wu et al., “A Holographic Dark Energy Model from Ricci Scalar Curvature,” Phys. Rev. D 79 (2009) 043511. doi:10.1103/PhysRevD.79.043511

[51] L. N. Granda and A. Oliveros, “Infrared cut-off proposal for the Holographic density,” Phys. Lett. B 669 (2008) 275. doi:10.1016/j.physletb.2008.10.017

[52] L. N. Granda and A. Oliveros, “New infrared cut-off for the holographic scalar fields models of dark energy,” Phys. Lett. B 671 (2009) 199. doi:10.1016/j.physletb.2008.12.025

[53] K. Karami and J. Fehri, “New holographic scalar field models of dark energy in non-flat universe,” Phys. Lett. B 684 (2010) 61. doi:10.1016/j.physletb.2009.12.060

[54] S. Wang and Y. Wang et al., “Holographic Dark Energy,” Phys. Rept. 696 (2017) 1. doi:10.1016/j.physrep.2017.06.003

[55] M. Tavayef, A. Sheykhi, K. Bamba and H. Moradpour, “Tsallis Holographic Dark Energy,” Phys. Lett. B 781 (2018) 195 doi:10.1016/j.physletb.2018.04.001

[56] H. Moradpour, S. A. Moosavi, I. P. Lobo, J. P. Morais Graa, A. Jawad and I. G. Salako, “Thermodynamic approach to holographic dark energy and the Renyi entropy,” Eur. Phys. J. C 78 (2018) no.10, 829 doi:10.1140/epjc/s10052-018-6309-8
[57] A. Sayahian Jahromi, S. A. Moosavi, H. Moradpour, J. P. Morais Graa, I. P. Lobo, I. G. Salako and A. Jawad, “Generalized entropy formalism and a new holographic dark energy model,” Phys. Lett. B 780 (2018) 21 doi:10.1016/j.physletb.2018.02.052

[58] C. Tsallis and L. J. L. Cirto, “Black hole thermodynamical entropy,” Eur. Phys. J. C 73 (2013) 2487 doi:10.1140/epjc/s10052-013-2487-6

[59] C. Tsallis, “Possible Generalization of Boltzmann-Gibbs Statistics,” J. Statist. Phys. 52 (1988) 479. doi:10.1007/BF01016429

[60] A. Rényi, in Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability (University California Press, Berkeley, CA, 1961) pp. 547561.

[61] B.D. Sharma and D.P. Mittal, “New non-additive measures of entropy for discrete probability distributions,” J. Math. Sci. 10 (1975) 28-40

[62] S. Ghaffari, H. Moradpour, I. P. Lobo, J. P. Morais Graa and V. B. Bezerra, “Tsallis holographic dark energy in the Brans-Dicke cosmology,” Eur. Phys. J. C 78 (2018) no.9, 706 doi:10.1140/epjc/s10052-018-6198-x

[63] M. Abdollahi Zadeh, A. Sheykhi and H. Moradpour, “Tsallis Agegraphic Dark Energy Model,” Mod. Phys. Lett. A 34 (2019) no.11, 1950086 doi:10.1142/S021773231950086X

[64] A. Jawad, K. Bamba, M. Younas, S. Qummer and S. Rani, “Tsallis, Rényi and Sharma-Mittal Holographic Dark Energy Models in Loop Quantum Cosmology,” Symmetry 10 (2018) no.11, 635. doi:10.3390/sym10110635

[65] W. Fischler and L. Susskind, arXiv: hep-th/9806039.

[66] M. Cataldo, N. Cruz, S. del Campo and S. Lepe, “Holographic principle and the dominant energy condition for Kasner type metrics,” Phys. Lett. B 509 (2001) 138 doi:10.1016/S0370-2693(01)00490-7

[67] B. Guberina, R. Horvat and H. Nikolic, “Generalized holographic dark energy and the IR cutoff problem,” Phys. Rev. D 72 (2005) 125011 doi:10.1103/PhysRevD.72.125011

[68] D. Pavon and W. Zimdahl, “Holographic dark energy and cosmic coincidence,” Phys. Lett. B 628 (2005) 206 doi:10.1016/j.physletb.2005.08.134

[69] P. Mukherjee, A. Mukherjee, H. K. Jassal, A. Dasgupta and N. Banerjee, “Holographic dark energy: constraints on the interaction from diverse observational data sets,” Eur. Phys. J. Plus 134 (2019) no.4, 147 doi:10.1140/epjp/i2019-12504-7 [arXiv:1710.02417 [astro-ph.CO]].

[70] P. Praseetha and T. K. Mathew, “Evolution of holographic dark energy with interaction term $Q \propto H\rho_{\text{de}}$ and generalized second law,” Pramana 86 (2016) no.3, 701. doi:10.1007/s12043-015-1029-1

[71] B. Wang, E. Abdalla, F. Atrio-Barandela and D. Pavon, “Dark Matter and Dark Energy Interactions: Theoretical Challenges, Cosmological Implications and Observational Signatures,” Rept. Prog. Phys. 79 (2016) no.9, 096901 doi:10.1088/0034-4885/79/9/096901
[72] M. Abdollahi Zadeh, A. Sheykhi and H. Moradpour, “Thermal stability of Tsallis holographic dark energy in nonflat universe,” Gen. Rel. Grav. 51 (2019) no.1, 12. doi:10.1007/s10714-018-2497-7

[73] A. A. Sen and D. Pavon, “Reconstructing the interaction rate in holographic models of dark energy,” Phys. Lett. B 664 (2008) 7 doi:10.1016/j.physletb.2008.04.055

[74] M. Betoule et al. [SDSS Collaboration], “Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples,” Astron. Astrophys. 568 (2014) A22 doi:10.1051/0004-6361/201423413

[75] C. Zhang, H. Zhang, S. Yuan, T. J. Zhang and Y. C. Sun, “Four new observational $H(z)$ data from luminous red galaxies in the Sloan Digital Sky Survey data release seven,” Res. Astron. Astrophys. 14 (2014) no.10, 1221 doi:10.1088/1674-4527/14/10/002; J. Simon, L. Verde and R. Jimenez, “Constraints on the redshift dependence of the dark energy potential,” Phys. Rev. D 71 (2005) 123001 doi:10.1103/PhysRevD.71.123001; M. Moresco, L. Verde, L. Pozzetti, R. Jimenez and A. Cimatti, “New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to $z \sim 1.75$,” JCAP 1207 (2012) 053 doi:10.1088/1475-7516/2012/07/053; M. Moresco et al., “A 6% measurement of the Hubble parameter at $z \sim 0.45$: direct evidence of the epoch of cosmic re-acceleration,” JCAP 1605 (2016) 014 doi:10.1088/1475-7516/2016/05/014; A. L. Rat-simbazafy, S. I. Loubser, S. M. Crawford, C. M. Cress, B. A. Bassett, R. C. Nichol and P. Visnen, “Age-dating Luminous Red Galaxies observed with the Southern African Large Telescope,” Mon. Not. Roy. Astron. Soc. 467 (2017) no.3, 3239 doi:10.1093/mnras/stx301; M. Moresco, “Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at $z \sim 2$,” Mon. Not. Roy. Astron. Soc. 450 (2015) no.1, L16 doi:10.1093/mnrasl/slv037.

[76] S. Alam et al. [BOSS Collaboration], “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,” Mon. Not. Roy. Astron. Soc. 470 (2017) no.3, 2617 doi:10.1093/mnras/stx721

[77] A. Font-Ribera et al. [BOSS Collaboration], “Quasar-Lyman α Forest Cross-Correlation from BOSS DR11 : Baryon Acoustic Oscillations,” JCAP 1405 (2014) 027 doi:10.1088/1475-7516/2014/05/027

[78] A. A. Sen and D. Pavon, “Reconstructing the interaction rate in holographic models of dark energy,” Phys. Lett. B 664 (2008) 7 doi:10.1016/j.physletb.2008.04.055