KOROBCHENKO Anhelina,
Doctor of Sciences (History), Professor, Chair of Pedagogy and Pedagogical skills Department,
Bohdan Khmelnytsky State Pedagogical University at Melitopol

HOLOVKOVA Marina,
Ph.D., Associate Professor of Pedagogy and Pedagogical skills Department,
Bohdan Khmelnytsky State Pedagogical University at Melitopol

SCIENTIFIC RESEARCH ACTIVITY AS A MEANS OF FORMING THE FUTURE TEACHER’S PROFESSIONALISM

Abstract. Scientific research activity is one of the most important activities of teaching personnel and degree-seeking students in higher education. The modern practice of higher education is not sufficiently focused on the effective use of conditions encouraging future teachers’ interest in science. The problem of activating scientific research activities is not the lack of will of undergraduates and teachers to be engaged in scientific work, but the absence of the system for managing scientific research work and clearly defined pedagogical conditions for the development of scientific research activities in higher education institutions.

The purpose of the article is to reveal the peculiarities of organization and management of scientific research activities of degree-seeking students.

The methods of analysis, synthesis of scientific, educational and methodical, instructive and methodical literature, regulatory documents to determine the characteristics of the organization and management of research activities of applicants for higher education.

Results. On the basis of the analysis of scientific and pedagogical sources it is proved that the scientific research activity of future teachers is an integral part of the system of higher education, an important component of the educational process and a means of forming their professionalism. The article highlights the peculiarities of organization and managing the scientific research activities of undergraduates in higher education. The factors influencing the development of scientific research positively and negatively are determined. The perspective directions of students’ scientific research activity development are marked out. It is proved that the management of students’ scientific research activities is a complex, dynamic process focused on the personality development and personal creative fulfillment.

Conclusion. In modern institutions of higher education there is a significant potential for the development of scientific research activities, the fulfillment of which presupposes the presence of the system for identification and selection the students having the potential for scientific research; systems of intramural communication in the scientific sphere; diagnostic systems of factors’ state influencing the development of scientific research activities; inter-university system of scientific and methodological achievement exchange in the field of scientific research activity management. As practice shows, in order to intensify the students’ scientific research activities it is necessary to focus attention on the practical implications of student works and encourage students to publish research results in leading home and foreign scientific editions.

Having scientific research activity management of future teachers allows creating a centralized system of selection and training talented students, organizing their scientific research activities under the scientific supervision of a teacher for implementation of research projects of a higher education institution and ensuring the new entrants into the higher school personnel potential.

Keywords: scientific research activity; professionalism; future teacher; higher education institution; management of scientific research activities.

Одобрено редакцией 17.10.2019
Прийнято до публікації 21.01.2019

DOI 10.31651/2524-2660-2019-1-108-112
ORCID 0000-0001-8984-7803

ПАВЛОВА Наталия Христова,
dоктор педагогических наук, профессор,
Шумский университет имени Епископа Константина Преславского, Болгария
e-mail: n.pavlova@shu.bg

ОРГАНИЗАЦИЯ ПОДГОТОВКИ БУДУЩИХ УЧИТЕЛЕЙ МАТЕМАТИКИ В БОЛГARИИ

В статье показана организация подготовки будущих учителей в Болгарии, согласно последним изменениям в законодательстве. Дана общая обязательная структура организации учебного плана. Показаны идеи реализации данной схемы и конкретные примеры дисциплин из плана специальности «Информационные технологии, информатика и математика» Шумского университета.

Ключевые слова: обучение; квалификация; учитель; учебный план; практика; теория.

Математическое образование в Болгарии имеет почти 130 летнюю историю. Согласно [8], систематическая подготовка учителей математики и естественных наук в Болгарии началась на год позже создания первого высшего учебного заведения. В 2015 году, именно в связи с годовщиной математического образования будущих педагогов, был представлен плановый доклад в рамках сорок четвертой весенней конференции Союза математиков Болгарии на тему «125 лет подготовки учителей математики в Болгарии». Авторами статьи являются преподаватели ведущих университетов в области подготовки учителей – проф. Иван Тонов из Софийского университета имени Святого Климента Охридского, проф. Коста Гьров из Пловдивского университета имени Панисия Хилендарского, проф. Маргарита Върбанова и проф. Дарника Гъльбова из Велико Търновского университета имени Св. Кирила и Мефодия, проф. Наталия Павлова из Шу-
менского университета имени Епископа Константина Преславского и проф. Илия Годженов из Югозападного университета имени Неофита Рильского. Статья дає об’єдную картину розвитку подготування учителів в Болгарії, а також специфіку педагогічної, математичної і методичної подготування в кожному з представлених університетів.

Целью даної статті являється показати об’єдную рамку подготування будучих учителів в Болгарії, система професійними змінами і показати конкретні приклади в організації навчального плану Шуменського університету.

В Болгарії існує незалежна академічність вищих навчальних закладів. Співпраця з ними визначена академічною комісією. Вона викривається в інтелектуальному світі академічної комісії та відноситься до природо-урожаєвих відносин, що характеризує поняття вищих навчальних закладів.

Свобода організації навчального процесу визначена в чл. 4 – чл. 21(1) визначає, які вищі навчальні заклади мають право „самостійно створювати та виконувати навчальні плани“.

Слідочі сторони, подготування будучих учителящ існує в достатково спеціфічному плані, та в тому числі дисциплін формування навчальних закладів, необхідна об’єдна психоло-педагогічна подготування. У першому, особливо тяжкість має практична підготовка будучих педагогів в тесні з цими вимогами в Болгарії виконує Указ о державних обов’язках для проведення професійної кваліфікації “учитель” [2]. Співпраця з цим указу, система корекції, в якій була в 2016 році, в рамках навчального плану будучих учителів має бути залучений прийнятий і навчання дисципліни:

1. Педагогіка: 60 годин.
2. Психологія: 60 годин.
3. Методика навчання по ... : 90 годин.
4. Прибільшуюче навчання: 15 годин.
5. Інформаційні і комунікаційні технології в навчанні і роботі в діагностичній среді: 30 годин.

Po рішеню вищих навчальних завдань, визначений мінімум можливо увійти. Практика показує, що це часто зустрічається в рамках методичних дисциплін так, як 90 годин не хватати, особливо в випадках, коли спеціальність направлення на міжнародні предмети.

Так, наприклад, у рамках спеціальності “Інформаційні технології, інформатика і математика” в Шуменському університеті, де з обов’язкових методичних курсів викладені: Шкільний курс алгебри (85), Шкільний курс геометрії (85), Шкільний курс інформатики і інформаційних технологій (60), Обхід методика навчання математики (65), Специфічна і часткова методика навчання математики (50), Методика навчання інформатике і інформаційним технологіям (55). Отже, є варіація навчальних дисциплін методичної характеристики. Із вказаного граїріємо, що для організації полної методичної подготування необхідно значно превести мінімум, залежний в увазі.

Крім цього, у рамках плану обов’язкової інтеграції дітей з етнічних меншин [5] зазначено “Включення в навчальні плани та програми вищих навчальних завдань, які обов’язкові для педагогічних спеціалістів, можливість переглянути компетентності організаторсько ефективну свою роботу в мультікультурній і мультікультурній обов’язковій сфері.” По своїм суттю, дисципліна “Прибільшуюче навчання”, визначена на рішення виконання специфічної обов’язкової інтеграції. Не залежно від цього, Міністерство навчання направило письмово о віртуальних університетах, з ухваленням предметів в навчальних планах інші дисципліни, пов’язані з роботою в мультікультурній і мультікультурній обов’язковій сфері.

Співпраця з цим указом, в Шуменському університеті для навчання будучих учителів математики, інформатики і інформаційних технологій сьогодення дисципліна “Дидактичні технологии для навчання математико-інформатике і інформаційним технологіям в мультікультурній среді". Подробне описання цих суджень та завдань інші дисципліни представлені в [3].

Організація практичної подготування будучих учителів установлена Указом №12 о статусе і професійному розвитку учителів, директорів і інших педагогічних спеціалістів [1]. Далее показано технології проведення практичних занять будучих учителей математики в Шуменському університеті.

1. Хоспітальне обслуговування: 30 годин. В рам-
ках этих занятий, будущие учителя математики наблюдают уроки в школе, а после окончания уроков проводят дискуссию, анализируя деятельность учителя и школьников, подбор учебного содержания, методы, средства, технологии и т.д.
2. Текущая педагогическая практика: 60 часов. В рамках этой практики, студенты впервые преподают в школе. Они заранее готовят урок, содержание и методы, которого обсуждают заранее с преподавателем методики и своими коллегами. Во время занятия, в классе присутствует и группа студентов. После окончания урока все студенты, учитель-наставник и руководитель практики проводят дискуссию, подобную хоститированию.
3. Практика стажировки: 90 часов. В рамках этой практики, студенты проводят учебные занятия в школе в рамках одного месяца. В зависимости от возможности школы, они проводят между 15 и 22 уроков, консультируясь с учителем-наставником. Кроме того они наблюдают занятия своих коллег. Студенты ведут дневник, в котором указана информация об организации практики; программа занятий; темы уроков и мнение учителя-наставника. На рис. 1 показана форма такого дневника.

Дневник за стажёрскую практику

Студенты скачивают дневник с сайта факультета Математики и информатики и самостоятельно его заполняют и собирают подписи учителя-наставника. По окончании практики студент должен сдать дневник, вместе со всеми план-конспектами по указанным в дневнике темам. Во время этой практики за контролем следует не только учителя-наставник, но и преподаватель методики, который руководит практикой.
Форму дневника определяют высшее учебное заведение. При этом возможны вариации в оформлении для разных специальностей, но обязательно должны присутствовать пункты, которые даны в Указе №12, а именно „конкретные деятельность, проведенные уроки, уроки, которые студент наблюдал во время стажировки; темы; практические задачи, использованные средства, методы и подходы, полученные компетентности, возникшие проблемы, предложения и ука-зания“. Так как, пунктов в указе достаточно много, с целью облегчить работу студента, дневник для будущих учителей математики, информатики и информационных технологий достаточно упрощен, но есть требование сдать план-конспект, в которых подробно указаны все необходимые пункты и есть возможность вписать мнение учителя-наставника. Подробно форма описания план-конспектов указана в [4].
Для удобства организации стажировки будущих учителей математики и информатики в Шумянском университете есть и web-платформа с помощью, которой можно разрабатывать, обменивать и сохранять план-конспекты уроков. Подробное описание этой платформы дано в [8].
Следуя указу о государственных требованиях для получения профессиональной квалификации «учитель» и традициям в подготовки будущих учителей математики ведущих университетов, можно иллюстрировать общую схему организации учебного плана для получения квалификации "учителя" следующим образом – Рис. 2.
В обязательные дисциплины входит подготовка по основному предмету, в случае с подготовкой учителей математики – дисциплины из разных областей высшей математики, дисциплины из школьного курса математики, методические дисциплины, а также законодательно определенные – «Спорт», «Психология», «Педагогика», «Приобщение образование» и «Информационные и коммуникационные технологии в обучении и работе в дигитальной среде». 
Свое обuchenня, будущі учителья закінчують, полагаю, громадянські екзамени. Для студентів Шуменського університету, спеціальність «Інформаційні технології, інформатика і математика» – це письменний екзамен по конспекту або захист дипломної роботи і два практичних екзамена – один по математиці, а другий по інформатиці і інформаційним технологіям.

Данна схема, слідить наступним законовими змінами, наступивших в 2016 році. Подробне описання предсідниць структури спеціальності «Математика і інформатика» Шуменського університета показана в [6]. Нове назву еї спеціальності «Інформаційні технології, інформатика і математика» було прийнято в 2018 році, слідить ожиданий характер утворення нової учебного плана в апраці 2019 року.

Для підвищення качества педагогічного образования особую важність має підвищення інтереса молодіжі до вчителської професії. В Болгарії є суворо навчається, як встановлювання педагогічних спеціальностей в рад захищених спеціальностей. Обумовлених основне і безплатно обіцянові будущих учителів, особливо в областях естественных наук и математики. Министерство предлагает стипендии будущим педагогам – в 2019 году это 11 стипендий по 6000 левов (около 3000€). Будем надеяться, что все эти изменения помогут привлечь новые кадры в математичное образование.

Благодарности: Данная статья осуществляется по проекту фонда Научных исследований ШУ «Епископа К. Преславского» – РД -08-117 / 04.02.19 г.

Список библиографических ссылок
1. Наредба № 12 от 1 сентябрь 2016 г. За статута и профессионального развитие на учителей, директоре и другие педагогические специалисты, в силу от 27.09.2016 г., издадена от Министерства образования и науки
2. Наредба за державні ізискивання за придбани на профессионалів кваліфікації «учитель», Обн. - ДВ, бр. 89 з 11.11.2016 г., в силу от учебника 2017/2018года, Приєм та ПМС № 289 от 07.11.2016 г
3. Павлова Н., Обучението по математика и информационні технологии в контексті національного плана в рамках ініціативи, тим XIX C, 2018, с. 101-115.
4. Павлова Н., Харизанов, Кр., Технологии за опи- сание на урок в обучении по математика, информа- ційника і информационні технології, УН «Епископ Константин Преславски»; Шумен, 2019
5. План за действие по изпълнение на национал- ната стратегия за образователна интеграция на деца и ученици от етническите меньшинства (2015-2020г.), URL: http://mon.bg/upload/6533/action_plan_obrazovatelna_integracija_2015.pdf
6. Славов С., Станков Д., Специальность «Математика и информатика» в контексте государственного стандарта, Дидактика математики: підборки і досягнення, Донець, 2004. Вип. 22.
7. Тонов И., Гъров К., Върбанова М., Гъльбова Д., Павлова Н., Гюденов, И., 125 години подготовка на учителя по математика в България. Математика и математическое образование. София, 2015. С. 101-118.
8. Harizanov Kr.V. Interactive approaches for education through web-based methodological platform. Науковий часопис Національного педагогічного університету імені М.П. Драгоманова. Серія 3: Фізика і математика у навч. і середній школі, 2017. Вип. 18. С. 210-216. URL: http://nbuv.gov.ua/UJRN/Nchnpu_3_2017_18_35.
THE STRUCTURE OF FUTURE MATHEMATICS TEACHERS’ TRAINING IN BULGARIA

Abstract. Introduction. The article is aimed at educational policy makers and at teachers involved in the creation of educational documentation. Data and examples can be used to create new curricula, as well as for comparative analysis in the process of accreditation of higher educational establishments.

Purpose. The main purpose of this article is to show the general framework of future Mathematics teachers’ training in Bulgaria according to the latest legal changes. At the same time, the article shows specific examples of the organization of the curriculum of Shumen University.

Methods. Document analysis at the national and at the university level.

Results. The article shows the structural organization of future Mathematics teachers’ training in Bulgaria, according to the latest changes in legislation. The overall mandatory structure of the organization of the curriculum is offered in the paper. The ideas of the implementation of this scheme and specific examples of disciplines from the plan of the specialty ‘Information Technology, Computer Science and Mathematics’ of Shumen University are given.

Originality. The article provides an original example of the organizational structure of the curriculum. This paper shows examples of selected disciplines. One of them is a discipline for integration of children from ethnic minorities, through Mathematics lessons. The design of "The Practice Diary" has been proposed in the paper. The opportunity to use web platform in the organization of educational practice is shown.

Conclusion. Mathematics, which is studied at school, is quite a conservative science. On the other hand, the development of information-and-communication technologies, specific features and modern students’ requirements, require the use of new methods and approaches in teaching Mathematics. It is important that the basic structure of future Mathematics teachers’ curriculum should be set at least at the national level. This structure should combine the foundation of Mathematical training, the ability to use modern technologies and rich methodological training. Along with this, Universities should have the freedom to offer exclusive elective disciplines that included the requirements of regional characteristics and the teaching staff’s research interests. The minimum amount of future teachers’ practical training should be laid at the national level. Mathematics teachers’ training and the subsequent qualification is an important task of national and European importance.

Keywords: training; qualification; teacher; curriculum; practice; theory.

DOI 10.31651/2524-2660-2019-1-112-120
ORCID 0000-0001-6263-4744

ВІДТІМКИ ЮРІЙ ВОЛОДИМИРОВИЧ, кандидат психологічних наук, доцент кафедри теоретичної та практичної психології,
Національний університет «Львівська політехніка»,
e-mail: yurvin@ukr.net

УДК 378.018.4.011.3-051:159.9:005.336.2

СИСТЕМА РОБОТИ ВНЗ ІЗ ФОРМУВАННЯ ПРОФЕСІЙНОЇ КОМПЕТЕНТНОСТІ МАЙБУТНІХ ПСИХОЛОГІВ

У статті розглянута система роботи ВНЗ із формування професійної компетентності майбутніх психологів у сучасних умовах. Здійснений огляд наукових публікацій за темою дослідження; встановлені основні компоненти системи роботи ВНЗ із підготовкою фахівців. З’ясовані головні засади влаштування системи освітнього закладу щодо формування професійної компетентності майбутніх фахівців. Розглянуті особливості функціонування системи ВНЗ стосовно формування професійної компетентності майбутніх фахівців психологів. Зроблені висновки з проведеної роботи і намічені перспективи подальших досліджень у даному напрямку.

Ключові слова: система роботи ВНЗ; формування професійної компетентності; власнування і функціонування системи ВНЗ; підготовка майбутніх фахівців психологів.

Постановка проблеми. Підготовка фахівців у ВНЗ в сучасних умовах вимагає створення та налагодження функціонування відповідної структури, що відповідає світовим педагогічним вимогам. Враховуючи завдання, які стоять сьогодні перед вітчизняною системою освіти, з огляду на необхідність її реорганізації, заслуговує детального розгляду низка питань власнування та функціонування системи роботи ВНЗ із формування професійної компетентності майбутніх фахівців, практичних психологів зокрема. Доцільність цього зумовлена тим, що лише при можливості забезпечення певних показників діяльності системи можна досягнути належної ефективності підго-