A UNIFYING FRAMEWORK FOR INTERPOLATORY \mathcal{L}_2-OPTIMAL REDUCED-ORDER MODELING*

TECHNICAL REPORT

Petar Mlinarić† Serkan Gugercin‡

September 26, 2023

ABSTRACT

We develop a unifying framework for interpolatory \mathcal{L}_2-optimal reduced-order modeling for a wide classes of problems ranging from stationary models to parametric dynamical systems. We first show that the framework naturally covers the well-known interpolatory necessary conditions for \mathcal{H}_2-optimal model order reduction and leads to the interpolatory conditions for $\mathcal{H}_2 \otimes \mathcal{L}_2$-optimal model order reduction of multi-input/multi-output parametric dynamical systems. Moreover, we derive novel interpolatory optimality conditions for rational discrete least-squares minimization and for \mathcal{L}_2-optimal model order reduction of a class of parametric stationary models. We show that bitangential Hermite interpolation appears as the main tool for optimality across different domains. The theoretical results are illustrated on two numerical examples.

Keywords: reduced-order modeling · parametric stationary problems · linear time-invariant systems · optimization · \mathcal{L}_2 norm · interpolation

1 Introduction

Interpolatory methods have been one of the most commonly used model order reduction (MOR) techniques, see, e.g., [ABG20, BOCW17, BG17a]. For \mathcal{H}_2-optimal MOR of linear time-invariant (LTI) dynamical systems, the necessary optimality conditions are known and appear in the form of (bitangential) Hermite interpolation of the underlying transfer function [ML67, GAB06, GAB08, ABG10]. These interpolatory optimality conditions have formed the foundation of various algorithms and have been extended to different settings; see, e.g., [GPvdS12, GSW13, FBG13, ABGA13, FG15, BBG15, BGG18, BB12]. But in various other important settings, such as in the optimal approximation of stationary problems and discrete least-squares (LS) rational fitting, it is not yet established whether the optimality requires interpolation (as in the \mathcal{H}_2-case) and if so, what those interpolation conditions are. For instance, reduced basis methods use a greedy selection of sampling (interpolation) points to match the solution at these points [HRS16, QMN16]. Is there an underlying framework for interpolatory optimality conditions?

The authors recently developed a data-driven framework for \mathcal{L}_2-optimal reduced-order modeling of parametric systems [MG22]. In this paper, we show how [MG22] provides a unifying framework for interpolatory optimal approximation both for dynamical systems and stationary problems. We prove that bitangential Hermite interpolation is the necessary condition for optimality not only for approximation of LTI systems in the \mathcal{H}_2 norm, but also in many other prominent cases, thus extending the optimal interpolation theory to a broader class of problems.

*This work was partially funded by the U.S. National Science Foundation under grant DMS-1923221. Parts of this material are based upon work supported by the National Science Foundation under Grant No. DMS-1929284 while the authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Spring 2020 Reunion Event for Model and Dimension Reduction in Uncertain and Dynamic Systems program.

†Department of Mathematics, Virginia Tech, Blacksburg, VA 24061 (mlinaric@vt.edu).
‡Department of Mathematics and Division of Computational Modeling and Data Analytics, Academy of Data Science, Virginia Tech, Blacksburg, VA 24061 (gugercin@vt.edu).
First we recall the \(L_2\)-optimal reduced-order modeling problem discussed in [MG22]: Consider a parameter-to-output mapping
\[
y: \mathcal{P} \rightarrow \mathbb{C}^{n_u \times n_y}
\]
where \(\mathcal{P} \subseteq \mathbb{C}^{n_p}\) and \(n_u, n_y, n_p\) are positive integers. Assume that evaluating \(y(p)\) is expensive. Thus the goal is to construct a high-fidelity reduced-order mapping (approximation) \(\hat{y}: \mathcal{P} \rightarrow \mathbb{C}^{n_u \times n_y}\), which is much cheaper to evaluate than \(y\). Inspired by the structures arising in projection-based (parametric) MOR, [MG22] constructs a structured reduced-order model (ROM)
\[
\hat{A}(p)\hat{x}(p) = \hat{B}(p), \quad \hat{y}(p) = \hat{C}(p)\hat{x}(p),
\]
with a parameter-separable form
\[
\hat{A}(p) = \sum_{i=1}^{q_A} \hat{A}_i(p)\hat{A}_i, \quad \hat{B}(p) = \sum_{j=1}^{q_B} \hat{B}_j(p)\hat{B}_j, \quad \hat{C}(p) = \sum_{k=1}^{q_C} \hat{C}_k(p)\hat{C}_k,
\]
where \(\hat{x}(p) \in \mathbb{C}^r\) is the reduced state, \(\hat{y}(p) \in \mathbb{C}^{n_u \times n_y}\) is the approximate output, \(\hat{A}(p) \in \mathbb{C}^{r \times r}, \hat{B}(p) \in \mathbb{C}^{r \times n_u}, \hat{C}(p) \in \mathbb{C}^{n_u \times r}, \hat{A}_i, \hat{B}_j, \hat{C}_k: \mathcal{P} \rightarrow \mathbb{R}, \hat{A}_i \in \mathbb{R}^{r \times r}, \hat{B}_j \in \mathbb{R}^{r \times n_u}, \text{ and } \hat{C}_k \in \mathbb{R}^{n_u \times r}.\) Note that when the reduced-order dimension \(r\) is small, evaluating the structured ROM, i.e., evaluating \(\hat{y}(p)\), is cheap. In [MG22], we showed that the structure of the ROM in (1.2)–(1.3) covers a wide range of problems including (parametric) LTI systems and models arising from discretization of stationary parametric partial differential equations. We revisit some concrete choices of \(\hat{A}_i, \hat{B}_j, \hat{C}_k\) later in the paper. In [MG22], we developed numerical algorithms to construct the ROM (1.2) in a purely data-driven fashion and called it a data-driven ROM. In this paper, we simply call it a structured reduced-order model (StrROM).

In order to judge the quality of a ROM, one needs an error measure. In [MG22], we constructed the StrROM to minimize the squared \(L_2\) error
\[
J(\hat{A}_i, \hat{B}_j, \hat{C}_k) = \|y - \hat{y}\|^2_{L_2(\mathcal{P}, \mu)} = \int_{\mathcal{P}} \|y(p) - \hat{y}(p)\|^2 d\mu(p)
\]
and derived the gradients of \(J\) with respect to the StrROM matrices \(\hat{A}_i, \hat{B}_j, \hat{C}_k\). These gradient formulae, which we also recall in Section 2, were then used in developing an optimization-based reduced-order modeling algorithm.

Starting with the formulation of [MG22], our goals here are to develop a unifying framework for interpolatory \(L_2\)-optimal reduced-order modeling that covers both stationary and dynamical problems and to prove that bitangential Hermite interpolation is the necessary conditions for optimality in a much broader classes of problems than previously studied. More specifically, our main contributions are as follows:

1. We show that the existing interpolatory optimality conditions for approximating LTI systems is a special case of our formulation and directly follows from it (Section 3.1).
2. We derive interpolatory optimality conditions for approximating parametric LTI systems (Section 3.2).
3. We derive interpolatory optimality conditions for rational discrete LS measure (Section 4).
4. We derive interpolatory optimality conditions for approximation of parametric stationary problems (Section 5).

The rest of paper is organized as follows. In Section 2, we recall some of the main results from [MG22] and give the necessary optimality conditions, which we use repeatedly throughout the paper. In Section 3, we show applications to LTI systems, both parametric and non-parametric, using the continuous, Lebesgue measure. We consider the discrete LS measure in Section 4, where we derive interpolatory conditions for the LS problem. In Section 5, we consider a class of stationary parametric systems and derive interpolatory conditions for the \(L_2\)-optimal ROMs. Conclusions are given in Section 6.

2 Mathematical Preliminaries

Here we recall one of the main results of [MG22], namely the gradients of \(J\) (1.4) with respect to the StrROM matrices, and then present the necessary optimality conditions that immediately follow from this result.

2. We derive interpolatory optimality conditions for approximating parametric LTI systems (Section 3.2).
3. We derive interpolatory optimality conditions for rational discrete LS measure (Section 4).
4. We derive interpolatory optimality conditions for approximation of parametric stationary problems (Section 5).

The rest of paper is organized as follows. In Section 2, we recall some of the main results from [MG22] and give the necessary optimality conditions, which we use repeatedly throughout the paper. In Section 3, we show applications to LTI systems, both parametric and non-parametric, using the continuous, Lebesgue measure. We consider the discrete LS measure in Section 4, where we derive interpolatory conditions for the LS problem. In Section 5, we consider a class of stationary parametric systems and derive interpolatory conditions for the \(L_2\)-optimal ROMs. Conclusions are given in Section 6.

2 Mathematical Preliminaries

Here we recall one of the main results of [MG22], namely the gradients of \(J\) (1.4) with respect to the StrROM matrices, and then present the necessary optimality conditions that immediately follow from this result.
2.1 Gradients of the Squared \mathcal{L}_2 Error

We begin with the necessary assumptions.

Assumption 2.1. For the problem setup in (1.1)–(1.4), let the following hold:

1. The set $\mathcal{P} \subseteq \mathbb{C}^n$ is closed under conjugation ($p \in \mathcal{P}$ for all $p \in \mathcal{P}$).
2. The measure μ over \mathcal{P} is closed under conjugation (for any measurable set S, \overline{S} is measurable and $\mu(\overline{S}) = \mu(S)$).
3. The function $y: \mathcal{P} \to \mathbb{C}^{n \times n}$ is measurable, closed under conjugation ($\overline{y(p)} = y(\overline{p})$ for all $p \in \mathcal{P}$), and square-integrable ($\|y\|_{\mathcal{L}_2(\mathcal{P}, \mu)} < \infty$).
4. The scalar functions $\beta_i: \mathbb{R} \to \mathbb{R}$ for $i = 1, 2, \ldots, q_{\hat{A}}$ are such that $\beta_i(\overline{p}) = \beta_i(p)$ for all $p \in \mathcal{P}$, and $\beta_i(p)$ are measurable, closed under conjugation, and

$$\int_{\mathcal{P}} \left(\sum_{j=1}^{q_{\hat{A}}} |\beta_j(p)| \sum_{k=1}^{q_{\hat{C}}} |\gamma_k(p)| \right)^2 \mu(p) < \infty. \quad (2.1)$$

5. The matrices $\hat{A}_1, \hat{A}_2, \ldots, \hat{A}_{q_{\hat{A}}}$ are such that

$$\text{ess sup}_{p \in \mathcal{P}} \|\hat{A}_i(p)\hat{A}_i(p)^{-1}\|_F < \infty, \quad i = 1, 2, \ldots, q_{\hat{A}},$$

where \hat{A} is as in (1.3).

These assumptions trivially hold in many cases, see [MG22]. Note that item 5 requires $\hat{A}(p)$ be invertible for μ-almost all p in \mathcal{P}.

Theorem 2.2 (Theorem 3.7 in [MG22]). Let \mathcal{P}, μ, y, β_i, β_j, γ_k, and \hat{A}_i satisfy Assumption 2.1. Then, the gradients of \mathcal{J} with respect to the \hat{S}-ROM matrices are

\begin{align*}
\nabla_{\hat{A}_i} \mathcal{J} &= 2 \int_{\mathcal{P}} \beta_i(p) \overline{x}_d(p)[y(p) - \overline{y}(p)]x(p)^* \mu(p), \quad i = 1, 2, \ldots, q_{\hat{A}}, \quad \text{(2.2a)} \\
\nabla_{\hat{B}_j} \mathcal{J} &= 2 \int_{\mathcal{P}} \beta_j(p) \overline{x}_d(p)[\overline{y}(p) - y(p)] \mu(p), \quad j = 1, 2, \ldots, q_{\hat{B}}, \quad \text{(2.2b)} \\
\nabla_{\hat{C}_k} \mathcal{J} &= 2 \int_{\mathcal{P}} \gamma_k(p)[\overline{y}(p) - y(p)]x(p)^* \mu(p), \quad k = 1, 2, \ldots, q_{\hat{C}}, \quad \text{(2.2c)}
\end{align*}

\[\text{where } \hat{A}(p)^* \overline{x}_d(p) = \hat{C}(p)^* \text{ is the reduced dual state equation, } \overline{x}_d(p) \in \mathbb{C}^{r \times n} \text{ is the reduced dual state, and } (\cdot)^* \text{ denotes the conjugate transpose.}\]

Based on these gradients, in [MG22] we developed an \mathcal{L}_2-optimal reduced-order modeling algorithm and demonstrated it on various examples, both stationary parametric problems and LTI systems. In this paper, we are more interested in the theoretical implications of Theorem 2.2 than the algorithmic ones and show how it provides a unifying framework for interpolatory optimal approximation.

2.2 Necessary Conditions for \mathcal{L}_2-optimality

An important consequence of Theorem 2.2 is that, by setting the gradients to zero, it yields the necessary optimality conditions for \mathcal{L}_2-optimal reduced-order modeling using parameter-separable forms.

Corollary 2.3. Let \mathcal{P}, μ, y, β_i, β_j, γ_k, and \hat{A}_i satisfy Assumption 2.1. Furthermore, let $(\hat{A}_i, \hat{B}_j, \hat{C}_k)$ be an \mathcal{L}_2-optimal \hat{S}-ROM. Then

\begin{align*}
\int_{\mathcal{P}} \gamma_k(p)y(p)\overline{x}(p)^* \mu(p) &= \int_{\mathcal{P}} \gamma_k(p)\overline{y}(p)x(p)^* \mu(p), \quad k = 1, 2, \ldots, q_{\hat{C}}, \quad \text{(2.3a)} \\
\int_{\mathcal{P}} \beta_j(p)\overline{x}_d(p)y(p) \mu(p) &= \int_{\mathcal{P}} \beta_j(p)\overline{x}_d(p)y(p) \mu(p), \quad j = 1, 2, \ldots, q_{\hat{B}}, \quad \text{(2.3b)} \\
\int_{\mathcal{P}} \beta_i(p)\overline{x}_d(p)y(p) \mu(p) &= \int_{\mathcal{P}} \beta_i(p)\overline{x}_d(p)y(p) \mu(p), \quad i = 1, 2, \ldots, q_{\hat{A}}, \quad \text{(2.3c)}
\end{align*}
The optimality conditions in Corollary 2.3 are interpolatory in the sense that the quantities (integrals) in the left-hand sides of (2.3a)–(2.3c) involving the full-order model (FOM) output \(y(p) \) need to be interpolated by the same integrals involving the \(\text{StROM} \) output \(\tilde{y}(p) \). This result highlights that any \(L_2 \)-optimal \(\text{StROM} \) with the parameter-separable form (1.3) is interpolatory in the sense of Corollary 2.3. By carefully selecting, in (2.3), the scalar functions \(\tilde{\alpha}_i, \tilde{\beta}_j, \tilde{\gamma}_k \), the parameter space \(\mathcal{P} \), and the measure \(\mu \) over \(\mathcal{P} \), we derive concrete interpolatory optimality conditions (in the form of bitangential Hermite interpolation) for important classes of ROMs, including non-parametric and parametric LTI systems, stationary models, and for discrete LS problems, thus providing a unifying framework for interpolatory \(L_2 \)-optimal approximation across different domains.

3 Linear Time-invariant Systems: Continuous Measure

Our goal in this section is to illustrate (i) how Theorem 2.2 and Corollary 2.3 cover a wide range of settings arising in optimal MOR of dynamical systems and (ii) to develop new conditions for optimality. Furthermore, this analysis sets the stage for the interpolatory conditions we derive in Section 4 for discrete LS minimization and in Section 5 for stationary problems.

3.1 \(\mathcal{H}_2 \)-optimal Model Order Reduction

Interpolatory necessary optimality conditions are known for \(\mathcal{H}_2 \)-optimal MOR of LTI systems, both for the continuous-time case [ML67, GAB08, ABG10] and the discrete-time case [BGKVW10, GAB08]. In the following, we show that these conditions are a special case of the conditions in Corollary 2.3.

A continuous-time, finite-dimensional LTI system is given by

\[
\begin{align*}
E \dot{x}(t) & = Ax(t) + Bu(t), \quad x(0) = 0, \\
y(t) & = Cx(t),
\end{align*}
\]

where \(x(t) \in \mathbb{R}^n \) is the state, \(u(t) \in \mathbb{R}^m \) is the input, \(y(t) \in \mathbb{R}^o \) is the output, \(E, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, \) and \(C \in \mathbb{R}^{o \times n} \). We assume that \(E \) is invertible and all eigenvalues of \(E^{-1}A \) have negative real parts. The rational function

\[
H(s) = C(sE - A)^{-1}B
\]

is the transfer function of (3.1) and satisfies \(Y(s) = H(s)U(s) \) assuming \(Y \) and \(U \), the Laplace transforms of \(y \) and \(u \), exist; see, e.g., [Son98], for the conditions for the existence of the Laplace transform. Based on the assumptions above, \(H \) belongs to the \(\mathcal{H}_{2,n \times m}^{∞}(\mathbb{C}_+) \) Hardy space (where \(\mathbb{C}_+ \) is the open left half-plane), which is the set of holomorphic functions \(F: \mathbb{C}_+ \rightarrow \mathbb{C}^{o \times n} \) such that \(\sup_{\eta > 0} \int_{-\infty}^{\infty} \| F(\eta + i\omega) \|_F^2 \) \(d\omega < \infty \). It is known that \(F \) can be extended to \(\mathbb{C}_+ \) and the \(\mathcal{H}_2 \) norm can be defined as

\[
\| F \|_{\mathcal{H}_2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \| F(i\omega) \|_F^2 \, d\omega \right)^{1/2}.
\]

The analysis applies to any \(H \in \mathcal{H}_{2,n \times m}^{∞}(\mathbb{C}_+) \) as a FOM, including infinite-dimensional systems, and not just the finite-dimensional systems as in (3.1).

The goal of \(\mathcal{H}_2 \)-optimal MOR is to find a ROM

\[
\begin{align*}
\tilde{E} \dot{\tilde{x}}(t) & = \tilde{A} \tilde{x}(t) + \tilde{B} u(t), \quad \tilde{x}(0) = 0, \\
\tilde{y}(t) & = \tilde{C} \tilde{x}(t),
\end{align*}
\]

with the reduced state \(\tilde{x}(t) \in \mathbb{R}^r \), the approximate output \(\tilde{y}(t) \in \mathbb{R}^\gamma \), and the reduced quantities \(\tilde{E}, \tilde{A} \in \mathbb{R}^{r \times r}, \tilde{B} \in \mathbb{R}^{r \times m}, \) and \(\tilde{C} \in \mathbb{R}^{\gamma \times r} \) such that its transfer function \(\tilde{H}(s) = \tilde{C}(s\tilde{E} - \tilde{A})^{-1}\tilde{B} \) minimizes the \(\mathcal{H}_2 \) error \(\| H - \tilde{H} \|_{\mathcal{H}_2} \). The assumptions on the ROM are that \(\tilde{E} \) be invertible and all eigenvalues of \(\tilde{E}^{-1}\tilde{A} \) have negative real parts.

To state the \(\mathcal{H}_2 \)-optimal interpolatory conditions, let \(\tilde{H}(s) = \tilde{C}(s\tilde{E} - \tilde{A})^{-1}\tilde{B} \) have \(r \) distinct poles. Let \(\tilde{T}, \tilde{S} \in \mathbb{C}^{r \times r} \) be invertible matrices such that \(\tilde{S}^*\tilde{E}\tilde{T} = I \) and \(\tilde{S}^*\tilde{A}\tilde{T} = \Lambda \) with \(\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_r) \). Then, we can write \(\tilde{H}(s) \) as

\[
\tilde{H}(s) = \tilde{C}\tilde{T}(sI - \Lambda)^{-1}\tilde{S}^*\tilde{B} = \sum_{j=1}^{r} \frac{\tilde{C}\tilde{T}c_j e_j^T \tilde{S}^*\tilde{B}}{s - \lambda_j} = \sum_{j=1}^{r} \frac{c_j b_j^*}{s - \lambda_j},
\]

\(4 \)
where \(c_j = \hat{C}T e_j \in \mathbb{C}^n \), \(b_j = \hat{B}S e_j \in \mathbb{C}^n \), and \(e_j \) denotes the \(j \)th unit vector (of appropriate size). The formulation of \(\hat{H} \) in (3.4) is called the \textit{pole-residue form} where \(\lambda_j \) are the poles and \(c_j b_j^* \) are the (rank-1) residues. If \(\hat{H} \) is an \(\mathcal{H}_2 \)-optimal ROM of \(H \), then it satisfies the interpolation conditions

\[
H\left(-\overline{\lambda_k} b_k\right) = \hat{H}\left(-\overline{\lambda_k}\right) b_k, \quad (3.5a)
\]

\[
c_k^* H\left(-\overline{\lambda_k}\right) = c_k^* \hat{H}\left(-\overline{\lambda_k}\right), \quad (3.5b)
\]

\[
c_k^* H'\left(-\overline{\lambda_k}\right) b_k = c_k^* \hat{H}'\left(-\overline{\lambda_k}\right) b_k, \quad (3.5c)
\]

for \(k = 1, 2, \ldots, r \), where \(H' \) and \(\hat{H}' \) denote the derivatives with respect to \(s \); see [GAB08, ABG20]. More specifically, (3.5a) is called the right-tangential interpolation condition, (3.5b) the left-tangential interpolation condition, and (3.5c) the bitangential Hermite interpolation condition. We refer to all three conditions together as the bitangential Hermite interpolation conditions for \(\mathcal{H}_2 \)-optimality. They state that the optimal reduced-order transfer function \(\hat{H} \) tangentially interpolates \(H \) and \(\hat{H}' \) interpolates \(H' \) at the mirror images of its own poles, i.e., at \(-\overline{\lambda_k} \), along the tangent directions \(c_k \) and \(b_k \) determined by its own rank-1 residues \(c_k^* b_k^* \). These optimal interpolation conditions have led to effective numerical methods for optimal MOR and has been extended to various setting; for details we refer the reader to [GAB08, BG17a, ABG20] and the references therein. We also refer the reader to [DSZ14, DS11, FAB17, FB19, FB21] and the references therein for greedy-based selections of interpolation points in projection-based MOR of LTI systems.

Now we show how these optimal interpolatory conditions can be recovered from Corollary 2.3 as a special case. First we note that by setting \(\mathcal{P} = i\mathbb{R}, p = \omega, \mu = \frac{1}{2\pi} \lambda_i \mathbb{E} \) (where \(\lambda_i \mathbb{E} \) is the Lebesgue measure over \(i\mathbb{R} \)), \(y = \hat{H} \), and \(\hat{y} = \hat{H} \), we find \(\|y\|_{\mathcal{L}_2(\mathbb{R}, \mu)} = \|H\|_{\mathcal{H}_2} \) and thus \(\|y - \hat{y}\|_{\mathcal{L}_2(\mathbb{R}, \mu)} = \|H - \hat{H}\|_{\mathcal{H}_2} \). Furthermore, the reduced transfer function \(\hat{H}(s) = \hat{C}(sE - \hat{A})^{-1}\hat{B} \) can be viewed as a Str ROM as in (1.2) by rewriting it as

\[
\begin{align*}
(sE - \hat{A})\hat{X}(s) &= \hat{B}, \\
\hat{H}(s) &= \hat{C}\hat{X}(s),
\end{align*}
\]

and by selecting \(\hat{x} = \hat{X}, \hat{y} = \hat{H}, q_3 = 2, \hat{\alpha}_1(p) = p, \hat{\alpha}_2(p) = -1, q_\beta = 1, \hat{\beta}_1(p) = 1, q_\gamma = 1, \) and \(\hat{\gamma}_1(p) = 1 \) in (1.3). To obtain the optimality conditions (3.5) from Corollary 2.3, postmultiply the left-hand side of (2.3a) by \(\hat{T}^{*-} e_k \) to get

\[
\int_{\mathcal{P}} \hat{\gamma}_1(p) y(p) \hat{X}(p)^* d\mu(p) \hat{T}^{*-} e_k = \frac{1}{2\pi} \int_{\mathcal{P}} H(\omega) \hat{B}^T (\omega \hat{E} - \hat{A})^{*-} e_k d\omega = \frac{1}{2\pi} \int_{\mathcal{P}} H(\omega) b_k d\omega.
\]

Switching to a contour integral with \(s = i\omega \) and \(ds = i d\omega \), we find

\[
\int_{\mathcal{P}} \hat{\gamma}_1(p) y(p) \hat{X}(p)^* d\mu(p) \hat{T}^{*-} e_k = -\frac{1}{2\pi i} \int_{\mathcal{R}} H(s) b_k \frac{d s}{s - \lambda_k} = \frac{1}{2\pi i} \int_{\mathcal{R}} H(s) b_k \frac{d s}{s - \lambda_k}.
\]

where \(\Gamma_R = [-\pi, \pi] \cup \{ Re^{\omega} : \omega \in [-\frac{\pi}{2}, \frac{\pi}{2}] \} \) is the clockwise contour of a semidisk as in [ABG10, Lemma 1.1]. Applying the same manipulations to the right-hand side of (2.3a) yields \(\hat{H}(\lambda_k) b_k \). Thus the first optimality conditions (2.3a) in Corollary 2.3 yield the right-tangential interpolation conditions (3.5a) for \(\mathcal{H}_2 \)-optimality as a special case.

Similarly, premultiplying the left-hand side of (2.3b) by \(e_k^T \hat{S}^{-1} \), we obtain

\[
e_k^T \hat{S}^{-1} \int_{\mathcal{P}} \hat{\gamma}_1(p) \hat{x}_d(p) y(p) d\mu(p) = c_k^* H(-\lambda_k).
\]

Thus, (2.3b) yields the left-tangential interpolation condition (3.5b) for \(\mathcal{H}_2 \)-optimality (after applying the same manipulations to the right-hand side of (2.3b)). Finally, taking the left-hand side of (2.3c) in Corollary 2.3 related to \(\hat{A} \)}
with \(\hat{\alpha}_2(p) = -1 \), premultiplying it by \(e_k^T \hat{S}^{-1} \), and postmultiplying it by \(\hat{T}^{-1} - e_k \) gives

\[
e_k^T \hat{S}^{-1} \int_p \hat{\alpha}_2(p) \hat{\varphi}(p) y(p) \hat{\varphi}(p)^* d\mu(p) \hat{T}^{-1} - e_k = - \frac{1}{2\pi} \int_{-\infty}^{\infty} c_k^* H(i\omega) b_k d\omega
\]

\[
= - \frac{1}{2\pi} \int_{\mathbb{R}} c_k^* H(s) b_k \left(\frac{s}{s - \lambda_k} \right) ds = c_k^* H'(-\lambda_k) b_k,
\]

obtaining the final Hermite interpolation condition (3.5e). Thus, we recover the interpolatory \(H_2 \)-optimality conditions (3.5) as a special case of the more general \(L_2 \)-optimality conditions (2.3) in Corollary 2.3.

Remark 3.1. The case of discrete-time LTI systems follows similarly. Discrete-time systems are obtained by replacing the derivative term \(\dot{x}(t) \) in (3.1) with the time shift \(x(t+1) \) and restricting the time \(t \) to integers. Transfer function \(H \) of a discrete-time LTI system has exactly the same form as (3.2), but we now assume that \(E^{-1} A \) has eigenvalues in the open unit disk. The corresponding Hardy space is \(H_{2_{\mathbb{C}^n \times \mathbb{C}^n}}(\mathbb{D}_c) \) \((\mathbb{D}_c = \text{the open unit disk and } \mathbb{D}^c = \text{the complement of the closed unit disk}) \) containing functions \(F \) such that \(\sup_{r>1} \int_0^{2\pi} \| F(e^{i\omega}) \|_2^2 d\omega < \infty \) and the \(h_2 \) norm is given by

\[
\| F \|_{h_2} = \left(\frac{1}{2\pi} \int_0^{2\pi} \| F(e^{i\omega}) \|_2^2 d\omega \right)^{1/2}.
\]

Then, we recover the interpolatory necessary optimality conditions from [BGKV10, GAB08] analogously to the continuous-time case, in this case by setting \(P = \partial \mathbb{D}, \; p = e^{i\omega}, \; \mu = \frac{1}{2\pi} \lambda_{\partial \mathbb{D}} \) (where \(\lambda_{\partial \mathbb{D}} \) is the Lebesgue measure over \(\partial \mathbb{D} \)), and taking the contour integral over the unit circle. In particular, if \(\hat{H}(s) = \sum_{j=1}^r c_j b_j \) is an \(h_2 \)-optimal ROM for \(H \), then

\[
H \left(\frac{1}{\lambda_k} \right) b_k = \hat{H} \left(\frac{1}{\lambda_k} \right) b_k, \; c_k^* H \left(\frac{1}{\lambda_k} \right) b_k = c_k^* \hat{H} \left(\frac{1}{\lambda_k} \right) b_k, \; c_k^* H' \left(\frac{1}{\lambda_k} \right) b_k = c_k^* \hat{H}' \left(\frac{1}{\lambda_k} \right) b_k,
\]

for \(k = 1, \ldots, r \). As in the continuous-time case, bitangential Hermite interpolation forms the necessary conditions for \(h_2 \)-optimality where the interpolation points depend on the reduced-order poles and the tangent directions on the reduced-order residues. The difference is that the mirroring of the reduced-order poles to the interpolation points is now done with respect to the unit circle.

3.2 \(H_2 \otimes L_2 \)-optimal Parametric Model Order Reduction

In Section 3.1, we considered non-parametric LTI systems as in (3.1) and showed how Corollary 2.3 recovers the well-known \(H_2 \)-optimality conditions. In this section, we focus on parametric LTI systems where the underlying dynamics depend on a set of parameters and thus consider jointly optimal approximation in the frequency and parameter space. We show how our \(L_2 \)-optimal modeling framework naturally covers this problem as well and extends the existing interpolatory necessary optimality conditions to a more general setting.

We consider FOMs of the form

\[
E(\xi) \dot{x}(t, \xi) = A(\xi) x(t, \xi) + B(\xi) u(t), \quad x(0, \xi) = 0, \quad \text{(3.7a)}
\]

\[
y(t, \xi) = C(\xi) x(t, \xi), \quad \text{(3.7b)}
\]

where \(\xi \in \Xi \subset \mathbb{C} \) is the parameter, \(\Xi \) is the parameter space, \(x(t, \xi) \in \mathbb{R}^n \) is the state, \(u(t) \in \mathbb{R} \) is the input, \(y(t, \xi) \in \mathbb{R}^m \) is the output, \(E(\xi), A(\xi) \in \mathbb{R}^{n \times n}, B(\xi) \in \mathbb{R}^{n \times m}, C(\xi) \in \mathbb{R}^{m \times n} \). In practical applications, the variable \(\xi \) can correspond to, e.g., geometry, material properties (such as thickness), boundary conditions etc. We assume that \(E, A, B, C \) are holomorphic, \(E(\xi) \) is invertible for all \(\xi \in \Xi \), and \(E^{-1}(\xi) A(\xi) \) has eigenvalues in the open left half-plane for all \(\xi \in \Xi \). Then the corresponding parametric transfer function of (3.7) is \(H(s, \xi) = C(\xi) (sE(\xi) - A(\xi))^{-1} B(\xi) \). Note that unlike the non-parametric LTI case, transfer function now depends on both the frequency variable \(s \) and the parameter \(\xi \). Thus a reduced-order transfer-function approximation \(\hat{H}(s, \xi) = \hat{C}(\xi) (s\hat{E}(\xi) - \hat{A}(\xi))^{-1} \hat{B}(\xi) \) to \(H(s, \xi) \) should have high fidelity both in \(s \) and \(\xi \). How should one choose the space in which to approximate \(H(s, \xi) \)?

Grimm [Gri18] focused on a simplified problem and considered the single-input and single-output parametric LTI system, i.e., \(n_u = n_o = 1 \) in (3.7), and as the approximation space considered the Hardy space in two variables \(H_2(\mathbb{C} \times \mathbb{D}) \), which is the space of holomorphic functions \(F : \mathbb{C} \times \mathbb{D} \to \mathbb{C} \) such that

\[
\sup_{\eta > 0, \; 0 < r < 1} \int_{-\infty}^{\infty} \int_0^{2\pi} |F(\eta + i\omega, re^{i\xi})|^2 d\omega d\xi < \infty.
\]
The corresponding $\mathcal{H}_2(\mathbb{C}_+ \times \mathbb{D})$ norm, refereed to as the $\mathcal{H}_2 \otimes \mathcal{L}_2$ norm, is given by

$$\|F\|_{\mathcal{H}_2 \otimes \mathcal{L}_2} = \left(\frac{1}{4\pi^2} \int_0^{2\pi} \int_{-\infty}^{\infty} |F(i\omega, e^{i\omega\xi})|^2 \, d\omega \, d\xi \right)^{1/2}.$$

The $\mathcal{H}_2 \otimes \mathcal{L}_2$ used in [Gri18] is a special case of the more general $\mathcal{H}_2 \otimes \mathcal{L}_2$ norm definition introduced in [BBBG11]. Unlike the non-parametric LTI case considered in Section 3.1, the optimal interpolatory conditions for MOR in the $\mathcal{H}_2 \otimes \mathcal{L}_2$ norm are not known in general except for some special cases. For example, [BBBG11] shows that if the parametric dependency ξ only appears in $\bar{B}(\xi)$ and $\bar{C}(\xi)$ in (3.7), and \bar{A} and \bar{E} are non-parametric, then one can convert the resulting problem into an equivalent \mathcal{H}_2-optimal approximation problem and obtain interpolatory optimality conditions. However, this is restrictive since in most parametric problems, \bar{A} and \bar{E} vary with a parameter.

Grimm [Gri18], instead, considers a simplification in the form of the ROM. Recall that the pole-residue form (3.4) has proved vital in deriving the \mathcal{H}_2-optimality conditions. Inspired by (3.4), [Gri18] considered ROMs with the form

$$\hat{H}(s, \xi) = \sum_{i=1}^{r} \sum_{j=1}^{r_s} \frac{\phi_{ij}}{(s - \lambda_i)(\xi - \pi_j)},$$

(3.8)

where $\phi_{ij} \in \mathbb{C}$, $\lambda_i \in \mathbb{C}_-$, and $\pi_j \in \mathbb{D}^\tau$. In (3.8), one may view λ_i‘s as the frequency poles (in the s variable) and π_j‘s as the parameter poles (in the ξ variable). Then [Gri18, Thm 3.3.4] shows that the interpolatory necessary conditions for \hat{H} in (3.8) to be an $\mathcal{H}_2 \otimes \mathcal{L}_2$-optimal ROM are

$$H(\lambda, 1) = \hat{H}(\lambda, 1),$$

(3.9a)

$$\sum_{j=1}^{r_s} \phi_{kj} \frac{\partial H}{\partial s}(\lambda, 1) = \sum_{j=1}^{r_s} \phi_{kj} \frac{\partial \hat{H}}{\partial s}(\lambda, 1),$$

(3.9b)

$$\sum_{i=1}^{r} \phi_{il} \frac{\partial H}{\partial \xi}(\lambda, 1) = \sum_{i=1}^{r} \phi_{il} \frac{\partial \hat{H}}{\partial \xi}(\lambda, 1),$$

(3.9c)

for $k = 1, 2, \ldots, r$ and $\ell = 1, 2, \ldots, r_\xi$. In the rest of this section, we show that the interpolation conditions in Corollary 2.3 cover the $\mathcal{H}_2 \otimes \mathcal{L}_2$ framework of [Gri18] and at the same time extend the analysis to $\mathcal{H}_2 \otimes \mathcal{L}_2$ approximation of multiple-input/multiple-output parametric LTI systems. Therefore, in (3.7) we do not need to assume $n_i = n_o = 1$ as done in [Gri18].

For matrix-valued transfer functions H and \hat{H}, the squared $\mathcal{H}_2 \otimes \mathcal{L}_2$ error is defined as

$$\left\|H - \hat{H}\right\|^2_{\mathcal{H}_2 \otimes \mathcal{L}_2} = \frac{1}{4\pi^2} \int_0^{2\pi} \int_{-\infty}^{\infty} \left\|H(i\omega, e^{i\omega\xi}) - \hat{H}(i\omega, e^{i\omega\xi})\right\|^2_F \, d\omega \, d\xi.$$

(3.10)

Observe that the ROM (3.8) (for the single-input/single-output case) can be written as a StROM in (1.2) using the representation

$$[(sI_r - \Lambda) \otimes (\xi I_{r_\xi} - \Pi)] \bar{X}(s, \xi) = \mathbf{1},$$

$$\hat{H}(s, \xi) = \phi^T \bar{X}(s, \xi),$$

$$H(s, \xi) = \bar{H}(s, \xi),$$

where $\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_r)$, $\Pi = \text{diag}(\pi_1, \pi_2, \ldots, \pi_{r_\xi})$, $\mathbf{1} = [1, \ldots, 1]^T$, and $\phi = [\phi_{1,1}, \ldots, \phi_{r,r_\xi}]^T$. To extend this formulation to multiple-input/multiple-output problems, we then consider

$$\left[(s\bar{E} - \hat{\bar{A}}) \otimes (\xi \bar{E}_{\xi} - \hat{\bar{A}}_{\xi}) \right] \bar{X}(s, \xi) = \bar{B},$$

(3.11a)

$$\hat{H}(s, \xi) = \hat{\bar{C}} \bar{X}(s, \xi),$$

(3.11b)

where $\bar{E}, \hat{\bar{A}} \in \mathbb{R}^{r \times r}$, $\bar{E}_{\xi}, \hat{\bar{A}}_{\xi} \in \mathbb{R}^{r_\xi \times r_\xi}$, $\bar{B} \in \mathbb{R}^{r \times n_o}$, and $\hat{\bar{C}} \in \mathbb{R}^{n \times r r_\xi}$. Note that (3.11) is a StROM as in (1.2) with $p = (s, \xi)$ and $\bar{A}(p) = (s\bar{E} - \hat{\bar{A}}) \otimes (\xi \bar{E}_{\xi} - \hat{\bar{A}}_{\xi})$. By expanding $\hat{\bar{A}}(p)$, we find that the form (3.11) corresponds to $q = 4$ and

$$\hat{\bar{A}}_1(s, \xi) = s\bar{E} - \hat{\bar{A}}, \quad \hat{\bar{A}}_2(s, \xi) = -s, \quad \hat{\bar{A}}_3(s, \xi) = -\xi, \quad \hat{\bar{A}}_4(s, \xi) = 1,$$

(3.12a)

$$\hat{\bar{A}}_1 = \bar{E} \otimes \hat{\bar{E}}_{\xi}, \quad \hat{\bar{A}}_2 = \hat{\bar{E}} \otimes \hat{\bar{A}}_{\xi}, \quad \hat{\bar{A}}_3 = \hat{\bar{A}} \otimes \hat{\bar{E}}_{\xi}, \quad \hat{\bar{A}}_4 = \hat{\bar{A}} \otimes \hat{\bar{A}}_{\xi}.$$

(3.12b)

Therefore, the ROM (3.11) is a StROM (1.2) fitting into our \mathcal{L}_2-optimal modeling framework where the StROM matrices have an additional Kronecker structure. The following lemma will help us in computing the gradients of the cost function with respect to $\hat{\bar{A}}$ and $\hat{\bar{A}}_{\xi}$ having this specific Kronecker structure.
Lemma 3.2. Let \(F: \mathbb{R}^{nm \times mn} \to \mathbb{R} \) be a differentiable function at \(X = A \otimes B \) where \(A \in \mathbb{R}^{n \times n} \) and \(B \in \mathbb{R}^{m \times m} \) are nonzero matrices. Let \(G: \mathbb{R}^{n \times n} \to \mathbb{R} \) be defined as \(G(A_1) = F(A_1 \otimes B) \). Then \(G \) is differentiable at \(A \) and
\[
\nabla G(A) = \sum_{j=1}^{m} (I_n \otimes e_j^T B_{kj}^T) \nabla F(X)(I_n \otimes B_{kj}^e e_j),
\]
for any \(B_L, B_R \in \mathbb{C}^{n \times n} \) such that \(B = B_L B_R \). Similarly, let \(H: \mathbb{R}^{m \times m} \to \mathbb{R} \) be defined as \(H(B_1) = F(A \otimes B_1) \). Then \(H \) is differentiable at \(B \) and
\[
\nabla H(B) = \sum_{i=1}^{n} (e_i^T A_{li} \otimes I_m) \nabla F(X)(A_{li}^e e_i \otimes I_m),
\]
for any \(A_L, A_R \in \mathbb{C}^{n \times n} \) such that \(A = A_L A_R \).

Proof. See Appendix A. \(\square \)

Before stating the next theorem, we need to derive a pole-residue form of (3.11). Let \(\hat{T}, \hat{S} \in \mathbb{C}^{r \times r} \) and \(\hat{T}_\xi, \hat{S}_\xi \in \mathbb{C}^{r_\xi \times r_\xi} \) be invertible matrices such that \(\hat{S}^* \hat{E} \hat{T} = I_r, \hat{S}^* \hat{A} \hat{T} = \Lambda, \hat{S}_\xi^* \hat{E}_\xi \hat{T}_\xi = I_{r_\xi}, \) and \(\hat{S}_\xi^* \hat{A}_\xi \hat{T}_\xi = \Pi \). Then
\[
\hat{H}(s, \xi) = \hat{C}(\hat{T} \otimes \hat{T}_\xi) \left[(sI_r - \Lambda) \otimes (\xi I_{r_\xi} - \Pi)\right]^{-1} \left(\hat{S}^* \otimes \hat{S}_\xi^*\right) \hat{B}
\]
(3.13)
where \(c_{ij} = \hat{C}(\hat{T} \otimes \hat{T}_\xi)(e_i \otimes e_j) \) and \(b_{ij} = \hat{B}^T(\hat{S} \otimes \hat{S}_\xi)(e_i \otimes e_j) \).

Theorem 3.3. Let \(\hat{H} \) be a STROM as in (3.11) with the pole-residue form (3.13) where \(\lambda_i \in \mathbb{C}_{-} \) and \(\pi_j \in \mathbb{D}^\circ \) are pairwise distinct. If \(\hat{H} \) is an \(H_2 \otimes L_2 \)-optimal approximation to \(H \in \mathcal{H}_2^{n \times n}(\mathbb{C}_+ \times \mathbb{D}) \), then
\[
H\left(-\lambda_k, \frac{1}{\pi^2}\right) b_{k\ell} = \hat{H}\left(-\lambda_k, \frac{1}{\pi^2}\right) b_{k\ell}, \tag{3.14a}
\]
\[
c_{\ell k}^* H\left(-\lambda_k, \frac{1}{\pi^2}\right) = c_{\ell k}^* \hat{H}\left(-\lambda_k, \frac{1}{\pi^2}\right), \tag{3.14b}
\]
\[
\sum_{j=1}^{r_\xi} c_{\ell j} \frac{\partial H}{\partial s}\left(-\lambda_k, \frac{1}{\pi^2}\right) b_{kj} = \sum_{j=1}^{r_\xi} c_{\ell j} \frac{\partial \hat{H}}{\partial s}\left(-\lambda_k, \frac{1}{\pi^2}\right) b_{kj}, \tag{3.14c}
\]
\[
\sum_{\ell=1}^{r} c_{i\ell} \frac{\partial H}{\partial \xi}\left(-\lambda_k, \frac{1}{\pi^2}\right) b_{i\ell} = \sum_{\ell=1}^{r} c_{i\ell} \frac{\partial \hat{H}}{\partial \xi}\left(-\lambda_k, \frac{1}{\pi^2}\right) b_{i\ell}, \tag{3.14d}
\]
for \(k = 1, 2, \ldots, r \) and \(\ell = 1, 2, \ldots, r_\xi \).

Proof. First observe that we recover the \(H_2 \otimes L_2 \) norm by setting \(P = \mathbb{R} \times \partial \mathbb{D}, p = (\omega, e^{\omega \xi}), \mu = \frac{1}{4\pi^2} \lambda_1 \mathbb{R} \times \lambda_2 \partial \mathbb{D}, \) and \(y(p) = H(s, \xi) \) in the definition of the \(L_2(P, \mu) \) norm. Also we have already shown that \(\hat{H} \) in (3.11) is a STROM as in (1.2) with \(\hat{X}(p) = \hat{X}(s, \xi), \hat{y}(p) = \hat{H}(s, \xi), \) and the Kronecker structure (3.12). We start by postmultiplying the left-hand side of the first condition (2.3a) in Corollary 2.3 by \((\hat{T} \otimes \hat{T}_\xi)^{-1}(e_{k\ell} \otimes e_{\ell}) \) to obtain
\[
\int_P y(p) \hat{x}(p)^* \, d\mu(p) \left(\hat{T} \otimes \hat{T}_\xi\right)^{-1}(e_{k\ell} \otimes e_{\ell}) = \frac{1}{4\pi^2} \int_0^{2\pi} \int_{-\infty}^{\infty} H(\omega, e^{\omega \xi}) b_{k\ell} \, d\omega \, d\omega. \xi.
\]
Substituting \(s = \omega, ds = d\omega, \xi = e^{\omega \xi}, \) and \(d\xi = d\xi d\omega \xi, \) we find
\[
\int_P y(p) \hat{x}(p)^* \, d\mu(p) \left(\hat{T} \otimes \hat{T}_\xi\right)^{-1}(e_{k\ell} \otimes e_{\ell}) = \frac{1}{4\pi^2} \int_{\partial \mathbb{D}} \int_{\mathbb{R}} \frac{1}{4\pi^2} \frac{H(s, \xi) b_{k\ell}}{(s - (-\lambda_k))(\xi - \frac{1}{\pi})} \, ds \, d\xi
\]
\[
= \frac{1}{4\pi^2} \int_{\partial \mathbb{D}} \int_{\mathbb{R}} \frac{H(s, \xi) b_{k\ell}}{(s - (-\lambda_k))(\xi - \frac{1}{\pi})} \, ds \, d\xi = -\frac{1}{\pi} H\left(-\lambda_k, \frac{1}{\pi^2}\right) b_{k\ell},
\]
by using the Cauchy integral formula twice in the last equality. Performing similar operations to the right-hand side of (2.3a), we obtain the condition (3.14a). Similarly, premultiplying the left-hand side of (2.3b) by \((e_k \otimes e_\ell)^T(\hat{S} \otimes \hat{S}_\xi)^{-1}\), we obtain
\[
(e_k \otimes e_\ell)^T(\hat{S} \otimes \hat{S}_\xi)^{-1} \int_p \hat{\omega}_d(p)y(p) \, d\mu(p) = -\frac{1}{\pi \eta} c_k^e H\left(-\lambda_k, \frac{1}{\pi \eta}\right).
\]
Doing the same for the right-hand side of (2.3b), we obtain the condition (3.14b).

Similar to recovering the bitangential Hermite condition for \(H_2\)-optimality (3.5c) where we used the gradient of the squared \(H_2\) error with respect to \(\hat{A}\), in this setting, we need to differentiate the squared \(H_2 \otimes L_2\) error (3.10) with respect to \(\hat{A}\) and \(\hat{A}_\xi\). We start by computing the gradient with respect to \(\hat{A}\). Using Lemma 3.2 with \(\hat{E}_\xi = \hat{S}_\xi^* \hat{T}_\xi^{-1}\) and \(\hat{A}_\xi = (\hat{S}_\xi^* \hat{T}_\xi^{-1})\), we see that
\[
\frac{1}{2} \nabla \hat{A}\left\|H - \hat{H}\right\|^2_{H_2 \otimes L_2} = \sum_{j=1}^{r_\xi} \left(I_r \otimes e_j^T \hat{S}_\xi^{-1} \right) \int_p \hat{\omega}_d(p)[y(p) - \hat{y}(p)] \hat{x}(p)^* \, d\mu(p) \left(I_r \otimes \hat{T}_\xi^{-*} e_j\right)
\]
\[
+ \sum_{j=1}^{r_\xi} \left(I_r \otimes e_j^T \Pi \hat{S}_\xi^{-1} \right) \int_p \hat{\omega}_d(p)[y(p) - \hat{y}(p)] \hat{x}(p)^* \, d\mu(p) \left(I_r \otimes \hat{T}_\xi^{-*} e_j\right)
\]
\[
- \sum_{j=1}^{r_\xi} \int_p (\hat{\xi} - \pi_j) \left(I_r \otimes e_j^T \hat{S}_\xi^{-1} \right) \hat{x}_d(p)[y(p) - \hat{y}(p)] \hat{x}(p)^* \left(I_r \otimes \hat{T}_\xi^{-*} e_j\right) \, d\mu(p).
\]
Then,
\[
\frac{1}{2} \left(e_k^T \hat{S}_\xi^{-1} \otimes I_{r_\xi}\right) \nabla \hat{A}\left\|H - \hat{H}\right\|^2_{H_2 \otimes L_2} \left(\hat{T}_\xi^{-*} e_k \otimes I_{r_\xi}\right)
\]
\[
= -\frac{1}{4\pi^2} \sum_{j=1}^{r_\xi} \int_0^{2\pi} \int_{-\infty}^{\infty} \left(e^{-i\omega \xi} - \pi_j \right) c_{kj} \left(H(\omega, e^{i\omega \xi}) - \hat{H}(\omega, e^{i\omega \xi}) \right) b_{kj} \, d\omega \, d\xi
\]
\[
= 1/4\pi^2 \sum_{j=1}^{r_\xi} \int_0^{2\pi} \int_{-\infty}^{\infty} \left(e^{-i\omega \xi} - \pi_j \right) c_{kj} \left(H(\omega, e^{i\omega \xi}) - \hat{H}(\omega, e^{i\omega \xi}) \right) b_{kj} \, d\omega \, d\xi
\]
\[
= \frac{1}{4\pi^2} \sum_{j=1}^{r_\xi} \frac{1}{\pi_j} \oint_{\partial D} \int_{-\infty}^{\infty} \left(e^{-i\omega \xi} - \pi_j \right) \left(H(s, \xi) - \hat{H}(s, \xi) \right) b_{kj} \, ds \, d\xi
\]
\[
= -\sum_{j=1}^{r_\xi} \frac{1}{\pi_j} c_{kj} \left(\frac{\partial H}{\partial s}(\hat{\lambda}_k - \frac{1}{\pi_j}) - \frac{\partial \hat{H}}{\partial s}(\frac{1}{\pi_j}) \right) b_{kj},
\]
where we used the Cauchy integral formula twice in the last equality. Setting this equation equal to zero gives the condition (3.14c).

Lastly, computing the gradient with respect to \(\hat{A}_\xi\) using Lemma 3.2 with \(\hat{E}_\xi = \hat{S}_\xi^* \hat{T}_\xi^{-1}\) and \(\hat{A} = (\hat{S}_\xi^* \Lambda) \hat{T}_\xi^{-1}\), we obtain (similar to the gradient with respect to \(\hat{A}\))
\[
\frac{1}{2} \nabla \hat{A}_\xi\left\|H - \hat{H}\right\|^2_{H_2 \otimes L_2}
\]
\[
= -\sum_{i=1}^{r_\xi} \int_p (\hat{\xi} - \pi_i) \left(e_i^T \hat{S}_\xi^{-1} \otimes I_{r_\xi}\right) \hat{x}_d(p)[y(p) - \hat{y}(p)] \hat{x}(p)^* \left(\hat{T}_\xi^{-*} e_i \otimes I_{r_\xi}\right) \, d\mu(p)
\]
and

\[
\frac{1}{2} \left(I_r \otimes e_{\xi}^T \hat{S}_{\xi}^{-1} \right) \nabla_{\lambda_i} \| H - \tilde{H} \|^2_{H_2 \otimes L_2} (I_r \otimes \hat{T}_{\xi}^{-1} e_{\xi}) \\
= - \frac{1}{4\pi^2} \sum_{i=1}^{r} \int_0^{2\pi} \int_{-\infty}^{\infty} c_{i\ell} \left(\frac{H(\xi, e^{i\omega}) - \tilde{H}(\xi, e^{i\omega})}{\pi I_r} \right) \frac{b_{i\ell}}{b_{i\ell}} \, d\omega \, d\xi \\
= \frac{1}{4\pi^2} \sum_{i=1}^{r} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \xi \frac{c_{i\ell}}{b_{i\ell}} \left(\frac{H(s, \xi) - \tilde{H}(s, \xi)}{s - (-\lambda_i)} \right) \frac{b_{i\ell}}{b_{i\ell}} \, ds \, d\xi \\
= - \frac{1}{\pi} \sum_{i=1}^{r} \frac{1}{\pi} \int_{-\infty}^{\infty} \left(\frac{\partial H}{\partial \xi}(\xi, e^{i\omega}) - \frac{\partial \tilde{H}}{\partial \xi}(\xi, e^{i\omega}) \right) b_{i\ell},
\]

which gives the final condition (3.14d).

Therefore, using Corollary 2.3 we are not only able to recover the optimality conditions (3.9) for single-input single-output systems, but also generalize them to systems with multiple inputs and outputs. One can see parallels to the LTI case considered in Section 3.1. The first two conditions (3.14a) and (3.14b) are analogous to the left- and right-tangential (Lagrange) interpolation conditions of (3.5a) and (3.5b), respectively. Furthermore, (3.14c) and (3.14d) resemble the bitangential Hermite conditions in (3.5c). However, since we have a multivariate function \(H \) in the \(H_2 \otimes L_2 \) case, ordinary derivatives with respect to \(s \) are now replaced by partial derivatives respect to \(s \) and \(\xi \). And a bigger distinction is that in the Hermite conditions (3.14c) and (3.14d), interpolated function is not simply a derivative of \(H \). Rather a weighted sum of partial derivatives are interpolated. Optimal interpolation points still result from mirroring of the poles. While the mirroring of \(s \)-poles is done with respect to the imaginary axis, the mirroring of \(\xi \)-poles is with respect to the unit circle. This is not surprising since we used \(P = i\mathbb{R} \times \partial \mathbb{D} \). Therefore, the mirroring of \(s \)-poles resembles the continuous-time \(H_2 \) conditions (3.5) and the mirroring of \(\xi \)-poles resembles the discrete-time \(h_2 \) conditions (3.6).

4 Linear Time-invariant Systems: Discrete Measure

In Section 3.1, we focused on \(L_2 \)-optimal modeling of LTI systems using a continuous \(L_2 \) measure in the frequency domain leading to various systems-theoretic norms such as the \(H_2 \) norm. In this section, we change our focus to a discrete measure and investigate the resulting discrete LS problem.

4.1 Necessary Conditions for Discrete LS Problem

Let \(H \) be the transfer function of a continuous-time LTI system (e.g., as in (3.2)). Assume we only have access to the samples of \(H \) at the sampling frequencies \(\{ \omega_i \}_{i=1}^{N} \) where \(\omega_i \in \mathbb{R} \). Let \(H_i = H(\omega_i) \in \mathbb{C}^{n_u \times n_y} \), for \(i = 1, 2, \ldots, N \), denote the corresponding frequency response data. We assume that the sampling frequencies are closed under conjugation; i.e., if \(\omega_k \) is a sampling point, then so is \(-\omega_k\). In most cases, as in (3.2), \(H \) has a real state-space realization, thus leading to \(H(-\omega_k) = \bar{H}(\omega_k) \). Therefore, the frequency response data \(\{(\omega_i, H_i)\}_{i=1}^{N} \) is closed under conjugation.

Given the sampling data \(\{(\omega_i, H_i)\}_{i=1}^{N} \), the goal is to find a ROM (3.3) with transfer function \(\hat{H}(s) = \bar{C}(s\hat{E} - \hat{A})^{-1}\bar{B} \) that minimizes the LS error

\[
J(\hat{H}) = \sum_{i=1}^{N} \rho_i \| H_i - \hat{H}(\omega_i) \|_{\rho}^2, \tag{4.1}
\]

where \(\rho_i > 0 \) are the weights (equal for complex conjugate pairs of sampling frequencies). We note that the LS error in (4.1) is a special case of the \(L_2 \) error (1.4) with the choices of \(\chi = \{ \omega_i \}_{i=1}^{N}, y(\omega_i) = H_i, \bar{y} = \hat{H}, \) and \(\mu = \sum_{i=1}^{N} \rho_i \delta_{\omega_i} \), where \(\delta_{\omega_i} \) is the Dirac measure at \(\omega_i \). Thus, the rational LS minimization problem (4.1) directly fits under our \(L_2 \)-optimal reduced-order modeling framework.

In [MG22], we have already considered this problem, i.e., the problem of approximating LTI systems from their frequency-domain data using the discrete LS measure. We have devised a gradient-based optimization algorithm to minimize the LS cost (4.1). Our goal here is not algorithmic. Here, using Corollary 2.3, we derive new interpolatory
necessary conditions for LS reduced-order modeling, the first such conditions to the best of our knowledge, for the rational LS minimization problem.

Rational LS fitting problem, i.e., minimizing the LS cost using a rational function, is an important and widely studied problem and there are various approaches to tackling it, see, e.g., [GS99, DGB15a, DGB15b, HM20, NST18, BG17b], and the references therein. What we show here is that regardless of the underlying numerical algorithm, a solution of the nonlinear rational LS minimization problem is interpolatory and satisfies specific bitangential Hermite interpolation conditions.

Theorem 4.1. Given the sampling data \(\{(\omega_i, H_i)\}_{i=1}^N \), let the SROM \(\hat{H}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B} \) having the pole-residue form \(\hat{H}(s) = \sum_{j=1}^r \frac{c_j b_j s}{s - \lambda_j} \) with pairwise distinct poles be a local minimum of \(J(4.1) \). Then

\[
\sum_{i=1}^N \rho_i \frac{H_i b_k}{s^2 - \omega_i^2 - \lambda_k} = \sum_{i=1}^N \rho_i \frac{\hat{H}(\omega_i)b_k}{s^2 - \omega_i^2 - \lambda_k},
\]

for \(k = 1, 2, \ldots, r \).

Proof. Let \(\hat{H}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B} \) and \(\hat{T}, \hat{S} \in \mathbb{C}^{r \times r} \) be invertible matrices, with \(c_j = \hat{C}\hat{S}^{-1}e_j \) and \(b_j = \hat{B}^T\hat{T}^{-*}e_j \), as in Section 3.1, yielding the pole-residue form of \(\hat{H} \). Then, using \(\mathcal{P} = \{\omega_i\}_{i=1}^N, y(\omega_i) = H_i, \hat{y} = \hat{H}, \hat{x} = \hat{X}, \) and \(\mu = \sum_{i=1}^N \rho_i \delta_{\omega_i} \) in the left-hand side term in the \(L_2 \)-optimality condition (2.3a) gives

\[
\int_{\mathcal{P}} y(p)\hat{x}(p)^* \, dp \mu(p) \hat{T}^{-*}e_k = \sum_{i=1}^N \rho_i H_i \hat{B}^T \left(\omega_i \hat{E} - \hat{A} \right)^{-*} \hat{T}^{-*}e_k = \sum_{i=1}^N \rho_i \frac{H_i b_k}{s^2 - \omega_i^2 - \lambda_k},
\]

Similarly, using the left-hand side term in (2.3b), we obtain

\[
e_k^T \hat{S}^{-1} \int_{\mathcal{P}} \hat{x}_d(p)y(p) \, dp \mu(p) \hat{T}^{-*}e_k = \sum_{i=1}^N \rho_i e_k^T \hat{S}^{-1} \left(\omega_i \hat{E} - \hat{A} \right)^{-*} \hat{C}^T H_i = \sum_{i=1}^N \rho_i \frac{c_k^* H_i}{s^2 - \omega_i^2 - \lambda_k},
\]

Lastly, the left-hand side term in (2.3c) corresponding to \(\hat{A} \) shows

\[
-\bar{e}_k^T \hat{S}^{-1} \int_{\mathcal{P}} \bar{x}_d(p)\bar{x}(p)^* \, dp \mu(p) \hat{T}^{-*}e_k = \sum_{i=1}^N \rho_i \bar{e}_k^T \hat{S}^{-1} \left(\omega_i \hat{E} - \hat{A} \right)^{-*} \hat{C}^T H_i \hat{B}^T \left(\omega_i \hat{E} - \hat{A} \right)^{-*} \hat{T}^{-*}e_k = \sum_{i=1}^N \rho_i \frac{c_k H_i b_k}{(s^2 - \omega_i^2 - \lambda_k)^2}.
\]

Analogous calculations for the right-hand sides directly gives the conditions (4.2).

We can rewrite the conditions (4.2) to give a more immediate interpolatory interpretation.

Corollary 4.2. Given the sampling data \(\{(\omega_i, H_i)\}_{i=1}^N \), let \(\hat{H}(s) = \sum_{j=1}^r \frac{c_j b_j s}{s - \lambda_j} \) have pairwise distinct poles and be a local minimizer of the LS error (4.1). Furthermore, define the transfer functions

\[
G(s) = \sum_{i=1}^N \rho_i \frac{H_i}{s - \omega_i} \quad \text{and} \quad \hat{G}(s) = \sum_{i=1}^N \rho_i \frac{\hat{H}(\omega_i)}{s - \omega_i}.
\]

Then

\[
G(-\lambda_k)b_k = \hat{G}(-\lambda_k)b_k,
\]

\[
c_k^* G(-\lambda_k) = c_k^* \hat{G}(-\lambda_k),
\]

\[
c_k^* G'(-\lambda_k)b_k = c_k^* \hat{G}'(-\lambda_k)b_k,
\]

for \(k = 1, 2, \ldots, r \).
A Unifying Framework for Interpolatory L_2-optimal Modeling

The conditions (4.4a) and (4.4b) follow from (4.2a) and (4.2b), respectively, based on the definitions of G and \hat{G} in (4.3). The condition (4.2c) yields (4.4c) after observing $G'(s) = -\sum_{i=1}^{N} \rho_i \frac{H_i(s - \omega_i)}{(s - \omega_i)^r}$ and $\hat{G}'(s) = -\sum_{i=1}^{N} \rho_i \frac{\hat{H}_i(s - \omega_i)}{(s - \omega_i)^r}$.

The conditions (4.4) illustrate that bitangential Hermite interpolation is the necessary condition for the discrete L_2 cost function as well; the interpolatory L_2-optimal modeling framework equally applies. The optimal approximant is still a bitangential Hermite interpolant, but what is interpolated is different. Here, two order-N rational functions G and \hat{G} interpolate each other where G depends on the evaluation of H and \hat{G} on the evaluations of \hat{H}. Yet, the interpolation points and directions are still determined by the poles and residues of the optimal rational approximant \hat{H}. Mirror images of the reduced-order poles still appear as the interpolation points.

Remark 4.3. Alternatively, we can view the optimality conditions (4.2) as discretized H_2-optimality conditions (3.5). In particular, note that the interpolatory conditions (3.5) are equivalent to (using the Cauchy integral formula)

$$
\int_{-\infty}^{\infty} \frac{H_i(\omega) b_k}{\omega - \lambda_k} d\omega = \int_{-\infty}^{\infty} \frac{\hat{H}_i(\omega) b_k}{\omega - \lambda_k} d\omega,
$$

$$
\int_{-\infty}^{\infty} \frac{c_i^k H_i(\omega)}{\omega - \lambda_k} d\omega = \int_{-\infty}^{\infty} \frac{c_i^k \hat{H}_i(\omega)}{\omega - \lambda_k} d\omega,
$$

$$
\int_{-\infty}^{\infty} \frac{c_i^k H_i(\omega) b_k}{(\omega - \lambda_k)^2} d\omega = \int_{-\infty}^{\infty} \frac{c_i^k \hat{H}_i(\omega) b_k}{(\omega - \lambda_k)^2} d\omega,
$$

for $k = 1, 2, \ldots, r$. Approximating these integrals (representing the H_2-optimality conditions) using a numerical quadrature with nodes ω_i and weights ρ_i leads to the new optimality conditions (4.2) for the cost function (4.1).

4.2 Numerical Example

To demonstrate the new interpolatory conditions from Corollary 4.2 for the rational discrete LS minimization problem, we use the Penzl’s FOM model from the Niconet benchmark collection [CV02]. The model is an LTI system of order $n = 1006$ with $n_i = 1$ input and $n_o = 1$ output. We chose $r = 2$ as the reduced order to make the illustration clear. Clearly a high-fidelity approximation requires a higher order; but our goal is here to illustrate the theory of Corollary 4.2. For the data, we take 50 logarithmically-spaced frequencies between 10^0 and 10^4 on the imaginary axis, including the endpoints. With the inclusion of complex conjugate points, we obtain $N = 100$ data points in the LS problem (4.1). We use the gradient-based optimization algorithm L_2-Opt-PSF in [MG22] (initialized with the ROM from iterative rational Krylov algorithm [GAB08]) and obtain a ROM of order $r = 2$ with poles at $\lambda_1 \approx -4.7984$ and $\lambda_2 \approx -491.00$.

Figure 1 shows the transfer functions G and \hat{G}, defined in Corollary 4.2, when evaluated over the positive real axis. Even though in the left plot, we see overlap around $-\lambda_1$ and $-\lambda_2$, it is not clear whether Hermite interpolation is achieved. (Since H is a single-input/single-output LTI system, tangential interpolation boils down to scalar interpolation, i.e., (4.4a) and (4.4b) coincide.) To make the illustration clearer, the right plot shows the difference between G and \hat{G}, and here we see (from the shape and curvature of the error plot) that \hat{G} is indeed a Hermite interpolant of G at $-\lambda_1$ and $-\lambda_2$ as the theory predicts. We note that there is another interpolation point around $s \approx 15$. However the derivative is not matched at this point; thus no Hermite interpolation occurs at this point.

The Python code used to compute the presented results can be obtained from [Mii22].

5 Stationary Parametric Problems

In Sections 3 and 4, we have focused on approximating LTI systems. Now we turn our attention to stationary models and prove that bitangential Hermite interpolation forms the necessary conditions for L_2-optimal MOR in this case as well. Even though what is interpolated and the optimal interpolation points differ from the LTI system case, the optimality still requires bitangential Hermite interpolation.
5.1 Necessary Conditions for Stationary Models

Let us consider the stationary FOM (resulting from, e.g., discretization of a stationary parametric partial differential equation)

\[
\begin{align*}
(A_1 + p A_2)x(p) &= B, \\
y(p) &= Cx(p),
\end{align*}
\]

(5.1a)

where \(x(p) \in \mathbb{R}^n \) is the state, \(y(p) \in \mathbb{R}^{n_o} \) is the output, \(A_1, A_2 \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times n_o}, C \in \mathbb{R}^{n_o \times n} \), and \(p = [a, b] \subset \mathbb{R} \) for some \(a < b \). Next, let

\[
\begin{align*}
\left(\begin{array}{c}
\tilde{A}_1 \\
\tilde{A}_2
\end{array} \right) \tilde{x}(p) &= \tilde{B}, \\
\tilde{y}(p) &= \tilde{C} \tilde{x}(p),
\end{align*}
\]

(5.2a)

be a StROM of order \(r \); in particular, \(\tilde{x}(p) \in \mathbb{R}^r \) is the reduced state, \(\tilde{y}(p) \in \mathbb{R}^{n_o \times n} \) is the approximate output, \(\tilde{A}_1, \tilde{A}_2 \in \mathbb{R}^{r \times r}, \tilde{B} \in \mathbb{R}^{r \times n_o}, \) and \(\tilde{C} \in \mathbb{R}^{n_o \times r} \). Our goal in this section is to show that the \(\mathcal{L}_2 \)-optimal StROM (5.2) satisfies special interpolation conditions. More specially, we show that a modified reduced-order output \(\hat{y} \) interpolates a modified full-order output \(y \) at special parameter points \(\lambda_k \).

Note that both \(y \) and \(\hat{y} \) are rational functions of the parameter \(p \). Motivated by the interpolation-based optimality conditions from Section 3.1 and those for frequency-limited \(\mathcal{H}_2 \)-optimal MOR [VPVA14], we develop the interpolatory conditions for the \(\mathcal{L}_2 \)-optimal approximation of FOMs of the form (5.1) using the pole-residue forms of \(y \) and \(\hat{y} \).

The pole-residue form of \(\hat{y} \) (5.2) can be obtained similarly as done for LTI system. Let \(A_2 \) be invertible and \(\tilde{A}_1^{-1} \tilde{A}_1 \) have \(r \) distinct real eigenvalues. Then, proceeding as in Section 3.1, let \(\tilde{T}, \tilde{S} \in \mathbb{R}^{r \times r} \) be invertible matrices such that

\[
\tilde{S}^T \tilde{A}_1 \tilde{T} = -\Lambda = \text{diag}(\lambda_1, -\lambda_2, \ldots, -\lambda_r) \quad \text{and} \quad \tilde{S}^T \tilde{A}_2 \tilde{T} = I.
\]

Then we obtain that \(\hat{y}(p) = \sum_{j=1}^r c_j \frac{e_j}{p - \lambda_j} \), where \(c_j = \tilde{C} \tilde{T} e_j \in \mathbb{R}^{n_o} \), and \(b_j = \tilde{B}^T \tilde{S} e_j \in \mathbb{R}^{n_o} \) for \(j = 1, 2, \ldots, r \).

Inspired by the structure of \(\hat{y}(p) \) in the numerical example in Section 5.2, we allow a slightly more general pole-residue form for \(y \), namely \(y(p) = \Phi_0 + \sum_{i=1}^n \frac{\Phi_i}{p - \nu_i} \), where \(\Phi_0 \) is a constant term, \(\nu_i \) are the poles and \(\Phi_i \) the corresponding residues for \(i = 1, 2, \ldots, n \). The constant term \(\Phi_0 \) results from allowing \(A_2 \) to be a singular matrix (as in the case of the numerical example in Section 5.2). The details of the derivation of this pole-residue form are given in Appendix B.

Theorem 5.1. Let \(\hat{y}(p) = \sum_{j=1}^r c_j \frac{e_j^T}{p - \lambda_j} \) be the output of the StROM (5.2) with pairwise distinct \(\lambda_j \in \mathbb{R} \setminus [a, b] \). Furthermore, let \(y(p) = \Phi_0 + \sum_{i=1}^n \frac{\Phi_i}{p - \nu_i} \) be the output of the FOM (5.1), also with pairwise distinct \(\nu_i \in \mathbb{R} \setminus [a, b] \).
For any $\sigma \in \mathbb{R} \setminus \{a, b\}$, define the function $f_\sigma : \mathbb{R} \setminus \{a, b\} \to \mathbb{R}$ as

$$f_\sigma(p) = \begin{cases} \left(\ln \frac{p-a}{p-b} - \ln \frac{\sigma-a}{\sigma-b} \right) \frac{1}{p-\sigma}, & \text{if } p \neq \sigma, \\ \frac{1}{\sigma-a} & \text{if } p = \sigma. \end{cases}$$

Furthermore, define the modified output functions $Y, \hat{Y} : \mathbb{R} \setminus \{a, b\} \to \mathbb{R}$ as

$$Y(p) = \ln \frac{p-b}{p-a} \Phi_0 + \sum_{i=1}^n f_{\nu_i}(p) \Phi_i \quad \text{and} \quad \hat{Y}(p) = \sum_{j=1}^r f_{\lambda_j}(p) c_j b_j^T.$$ \hspace{1cm} (5.3)

Let \hat{y} be an L_2-optimal structured approximation of y. Then,

$$Y(\lambda_k)b_k = \hat{Y}(\lambda_k)b_k,$$ \hspace{1cm} (5.4a)

$$c_k^T Y(\lambda_k) = c_k^T \hat{Y}(\lambda_k),$$ \hspace{1cm} (5.4b)

$$c_k^T Y'(\lambda_k) = c_k^T \hat{Y}'(\lambda_k),$$ \hspace{1cm} (5.4c)

for $k = 1, 2, \ldots, r$.

Remark 5.2. Some remarks are in order before we prove Theorem 5.1. The optimality conditions (5.4) show that bitangential Hermite interpolation forms the necessary conditions for L_2-optimal approximation over an interval $[a, b]$; thus extending the theory from LTI systems to stationary problems. However, what is to be interpolated is no longer the original function y itself, instead the modified output Y in (5.3) needs to be interpolated. Another major difference here is that the interpolation occurs at the reduced system poles, as opposed to at the mirror images of the poles in the LTI system case. (Both modified outputs Y and \hat{Y} are well defined at the reduced poles as shown in the proof below.)

Proof. First note that f_σ is continuously differentiable and its derivative is

$$f_\sigma'(p) = \begin{cases} \left(\frac{(b-a)(p-\sigma)}{(p-a)(p-b)} - \ln \frac{p-a}{p-b} + \ln \frac{\sigma-a}{\sigma-b} \right) \frac{1}{(p-\sigma)^2}, & \text{if } p \neq \sigma, \\ \frac{1}{(\sigma-a)^2}(\sigma-b)^2 & \text{if } p = \sigma. \end{cases}$$

Since f_σ is continuously differentiable, so are Y and \hat{Y}.

Next, compare the simple StROM (5.2) to the general case (1.3) to observe that we have $q_\lambda = 2$ with $\tilde{\alpha}_1(p) = 1$ and $\tilde{\alpha}_2(p) = p$, $q_\hat{y} = 1$ with $\tilde{\beta}_1(p) = 1$, and $q_{\hat{y}} = 1$ with $\tilde{\gamma}_1(p) = 1$. It follows from the left-hand side of (2.3a) in Corollary 2.3 that

$$\int_a^b y(p)\hat{x}(p)^T \, dp = \int_a^b \left(\Phi_0 + \sum_{i=1}^n \frac{\Phi_i}{p-\nu_i} \right) \hat{B}^T \left(\hat{A}_1 + p\hat{A}_2 \right)^{-T} \, dp.$$ \hspace{1cm} \text{(5.5a)}

Then, for $k = 1, 2, \ldots, r$, we have

$$\int_a^b y(p)\hat{x}(p)^T \, dp \hat{T}^{-T} e_k = \int_a^b \left(\Phi_0 + \sum_{i=1}^n \frac{\Phi_i}{p-\nu_i} \right) \hat{B}^T \hat{S}(-\Lambda + pI)^{-T} e_k \, dp$$

$$= \int_a^b \frac{\Phi_0 b_k}{p-\lambda_k} \, dp + \sum_{i=1}^n \int_a^b \frac{\Phi_i b_k}{(p-\nu_i)(p-\lambda_k)} \, dp.$$ \hspace{1cm} \text{(5.5b)}

If $\nu_i = \lambda_k$, then

$$\int_a^b \frac{\Phi_i b_k}{(p-\nu_i)(p-\lambda_k)} \, dp = \int_a^b \frac{\Phi_i b_k}{(p-\nu_i)^2} \, dp = \frac{(b-a)\Phi_i b_k}{(\nu_i-a)(\nu_i-b)} = f_{\nu_i}(\lambda_k)\Phi_i b_k.$$ \hspace{1cm} \text{(5.5c)}

Otherwise,

$$\int_a^b \frac{\Phi_i b_k}{(p-\nu_i)(p-\lambda_k)} \, dp = \frac{1}{\lambda_k-\nu_i} \int_a^b \left(\frac{1}{p-\lambda_k} - \frac{1}{p-\nu_i} \right) \, dp \Phi_i b_k$$

$$= \left(\ln \frac{\lambda_k-b}{\lambda_k-a} - \ln \frac{\nu_i-b}{\nu_i-a} \right) \frac{\Phi_i}{\lambda_k-\nu_i} b_k = f_{\nu_i}(\lambda_k)\Phi_i b_k.$$ \hspace{1cm} \text{(5.5d)}
Therefore, we obtain
\[
\int_a^b y(p)\hat{x}(p)^T dp \hat{T}^{-1}e_k = \ln \left| \frac{\lambda_k - b}{\lambda_k - a} \right| \phi_0 b_k + \sum_{i=1}^n f_{\nu_i}(\lambda_k)\Phi_i b_k = Y(\lambda_k)b_k.
\]
From the right-hand side of (2.3a), we similarly find
\[
\int_a^b y(p)\hat{x}(p)^T dp \hat{T}^{-1}e_k
= \sum_{j=1}^r \left(\ln \left| \frac{\lambda_k - b}{\lambda_k - a} \right| - \ln \left| \frac{\lambda_j - b}{\lambda_j - a} \right| \right) \frac{c_j b_k^T}{\lambda_k - \lambda_j} b_k + \frac{(b-a)c_k b_k^T}{(\lambda_k - a)(\lambda_k - b)} b_k = \tilde{Y}(\lambda_k)b_k.
\]
Therefore, we get the right-tangential interpolation conditions (5.4a).

Using (2.3b), we similarly find
\[
e_k^T \hat{S}^{-1} \int_a^b \hat{x}_d(p)y(p) dp = e_k^TY(\lambda_k)
\text{ and }
e_k^T \hat{S}^{-1} \int_a^b \hat{x}_d(p)\hat{y}(p) dp = e_k^T \tilde{Y}(\lambda_k),
\]
which yield the left-tangential interpolation conditions (5.4b).

Using (2.3c) corresponding to \(\hat{A}_1 \), we find
\[
e_k^T \hat{S}^{-1} \int_a^b \hat{x}_d(p)y(p)\hat{x}(p)^T dp \hat{T}^{-1}e_k = \int_a^b \frac{e_k^T \phi_0 b_k}{(p - \lambda_k)^2} dp + \sum_{i=1}^n \int_a^b \frac{c_k^T \Phi_i b_k}{(p - \nu_i)(p - \lambda_k)^2} dp.
\]
If \(\nu_i = \lambda_k \), then
\[
\int_a^b \frac{c_k^T \Phi_i b_k}{(p - \nu_i)(p - \lambda_k)^2} dp = \int_a^b \frac{c_k^T \Phi_i b_k}{(p - \nu_i)^2} dp = \frac{(b-a)(a+b-2\nu_i)c_k^T \Phi_i b_k}{2(\nu_i - a)^2(\nu_i - b)^2} = f_{\nu_i}'(\lambda_k)c_k^T \Phi_i b_k.
\]
Otherwise,
\[
\int_a^b \frac{c_k^T \Phi_i b_k}{(p - \nu_i)(p - \lambda_k)^2} dp = \frac{1}{(\lambda_k - \nu_i)^2} \int_a^b \left\{ \frac{1}{p - \nu_i} - \frac{1}{p - \lambda_k} + \frac{\lambda_k - \nu_i}{p - \lambda_k} \right\} dp c_k^T \Phi_i b_k
= \left(\ln \frac{\nu_i - b}{\nu_i - a} - \ln \frac{\lambda_k - b}{\lambda_k - a} \right) \frac{\lambda_k - \nu_i}{(\lambda_k - a)(\lambda_k - b)} \frac{c_k^T \Phi_i b_k}{(\lambda_k - \nu_i)^2}
= f_{\nu_i}'(\lambda_k)c_k^T \Phi_i b_k.
\]
Therefore,
\[
e_k^T \hat{S}^{-1} \int_a^b \hat{x}_d(p)y(p)\hat{x}(p)^T dp \hat{T}^{-1}e_k
= \left(\frac{1}{\lambda_k - b} - \frac{1}{\lambda_k - a} \right) c_k^T \phi_0 b_k + \sum_{i=1}^n f_{\nu_i}'(\lambda_k)c_k^T \Phi_i b_k = c_k^T \tilde{Y}'(\lambda_k)b_k
\]
Similarly, we find that
\[
e_k^T \hat{S}^{-1} \int_a^b \hat{x}_d(p)\hat{y}(p)\hat{x}(p)^T dp \hat{T}^{-1}e_k = c_k^T \hat{Y}'(\lambda_k)b_k,
\]
which proves the final bitangential Hermite interpolation conditions (5.4c).

Theorem 5.1 has shown that bitangential Hermite interpolation, which is at the core of \(\mathcal{H}_2 \)-optimal approximation of LTI systems, also naturally appears in the approximation of parametric stationary problems. In the LTI system setting, these interpolatory conditions have been at the core of many algorithmic developments and extended to various different settings; see, e.g., [GAB06, GAB08, BBG10, BBBG11, GPBvdS12, GSW13, FBG13, ABGA13, BB14, FG15, BBG15, RGB18, BGW21b, BGW21a], and the references therein. Similar potential extensions and algorithmic developments for the stationary parametric case will be a topic of future research.
5.2 Numerical Example

As we did for Corollary 4.2 in Section 4.2, we demonstrate the new interpolatory results of Theorem 5.1 using a numerical example. Following [MG22], we consider the Poisson equation over the unit square \(\Omega = (0, 1)^2 \) with homogeneous Dirichlet boundary conditions:

\[
-\nabla \cdot (d(z, p) \nabla x(z, p)) = 1, \quad z \in \Omega,
\]

\[
x(z, p) = 0, \quad z \in \partial \Omega,
\]

where \(d(z, p) = z_1 + p(1 - z_1) \) and \(\mathcal{P} = [0.1, 10] \). After a finite element discretization, we obtain the FOM of the form (5.1) with \(n = 1089 \) and \(n_1 = 1 \), and the choice of \(C = B^T \) (and \(n_0 = 1 \)). We use the gradient-based optimization algorithm \(L_2\text{-Opt-PSF} \) in [MG22] (initialized with the StROM resulting from applying a reduced-basis approach [BGTQ+20]) and obtain a StROM of order \(r = 2 \) with poles at \(\lambda_1 \approx -3.2777 \) and \(\lambda_2 \approx -0.30509 \).

To numerically verify the interpolatory conditions, we need the pole-residue forms of \(y \) and \(\hat{y} \) as stated in Theorem 5.1. Note that these computations are not needed by the \(L_2\text{-Opt-PSF} \) algorithm and are done here just to illustrate the interpolation theory. Since \(\hat{A}_2 \) is invertible, the pole-residue form of \(\hat{y} \) directly follows as explained above, right before Theorem 5.1. The situation is more involved for \(y \) since \(A_2 \) in (5.1) is rank-deficient; it has numerical rank \(n_2 = 961 \). We use the procedure explained in Appendix B to compute the pole-residue form of \(y \). With the pole-residue forms of \(y \) and \(\hat{y} \), we can now numerically evaluate the modified outputs \(Y \) and \(\hat{Y} \) defined in (5.3) and illustrate the interpolation result.

The left plot in Figure 2 shows that \(Y \) and \(\hat{Y} \) almost overlap, making it unclear whether Hermite interpolation is achieved. To illustrate the results better, the right plot in Figure 2 depicts the difference \(Y - \hat{Y} \) around the location of the poles of the StROM, clearly demonstrating (based on the shape and curvature of the error plot) that the StROM satisfies the Hermite interpolation conditions (5.4) of Theorem 5.1.

It is interesting to note that the interpolation points \(\lambda_1 \) and \(\lambda_2 \) are outside the parameter space \(\mathcal{P} = [a, b] \). This is in agreement with the \(H_2 \)-optimality conditions (3.5), where interpolation is enforced away from the imaginary axis, in particular, in the open right half-plane. In contrast to the reduced-basis methods that choose the greedy sampling points in the parameter interval of interest, \(L_2 \)-optimal reduced-order modeling necessitates interpolation of a modified output \(Y \) outside the domain of interest.

The Python code used to compute the presented results can be obtained from [Mli22].
\textbf{6 Conclusion}

We developed a unifying framework for L_2-optimal interpolatory reduced-order modeling. In particular, we showed that the L_2-optimality conditions resulting from this framework naturally cover known interpolatory conditions for \mathcal{H}_2-optimal MOR of LTI systems, both for continuous-time and discrete-time cases. Furthermore, they lead to interpolatory conditions for $\mathcal{H}_2 \otimes L_2$-optimal MOR of multi-input/multi-output parametric LTI systems. We also derived novel bitangential Hermite interpolation conditions for rational LS problems and for a class of stationary parametric problems. These results illustrate that bitangential Hermite interpolation appears as the main tool for L_2-optimality across different domains.

Interpolatory conditions for \mathcal{H}_2-optimal MOR lead to various numerical algorithms for MOR, such as the iterative rational Krylov algorithm. Algorithmic implications of the new interpolatory conditions for the discrete LS measure and the stationary problems are interesting avenues to investigate.

\textbf{A Proof of Lemma 3.2}

We have that for any $\Delta A \in \mathbb{R}^{n \times n}$,

\[G(A + \Delta A) = F((A + \Delta A) \otimes B) = F(A \otimes B + \Delta A \otimes B) = G(A) + \langle \nabla F(A \otimes B), \Delta A \otimes B \rangle_F + o(\|\Delta A\|_F). \]

Let $P_A : \mathbb{R}^{nm \times nm} \rightarrow \mathbb{R}^{n \times n}$ be defined as

\[P_A(Y) = \arg \min_{A_1 \in \mathbb{R}^{n \times n}} \|Y - A_1 \otimes B\|_F^2. \]

Using the orthogonality property of the least squares approximation, it follows that \((Y - P_A(Y) \otimes B, A_1 \otimes B)_F = 0\) for all $A_1 \in \mathbb{R}^{n \times n}$. Then,

\[
\langle \nabla F(A \otimes B), \Delta A \otimes B \rangle_F = \langle P_A(\nabla F(A \otimes B)) \otimes B, \Delta A \otimes B \rangle_F \\
= \text{tr}((P_A(\nabla F(A \otimes B)) \otimes B)^T \Delta A \otimes B) = \text{tr}(P_A(\nabla F(A \otimes B))^T \Delta A \otimes B^T B) \\
= \text{tr}(P_A(\nabla F(A \otimes B))^T \Delta A) \text{tr}(B^T B) = \langle P_A(\nabla F(A \otimes B)), \Delta A \rangle_F \|B\|_F^2 \\
= \langle \|B\|_F^2 P_A(\nabla F(A \otimes B)), \Delta A \rangle_F.
\]

Therefore, it follows that G is differentiable at A and

\[\nabla G(A) = \|B\|_F^2 P_A(\nabla F(A \otimes B)). \] (A.1)

To find $P_A(Y)$, define $V_A = \{A_1 \otimes B : A_1 \in \mathbb{R}^{n \times n}\}$. Note that V_A is a subspace of $\mathbb{R}^{nm \times nm}$. We see that \(\{\frac{1}{\|B\|_F} e_k e^T_k \otimes B : k, \ell \in \{1, 2, \ldots, n\}\}\) is an orthonormal basis for V_A. Therefore

\[
P_A(Y) \otimes B = \sum_{k, \ell=1}^{n} \left(Y, \frac{1}{\|B\|_F} e_k e^T_k \otimes B \right)_F \left(\frac{1}{\|B\|_F} e_k e^T_k \otimes B \right) \\
= \frac{1}{\|B\|_F^2} \sum_{k, \ell=1}^{n} \text{tr}\left((e_k e^T_k \otimes B)^T Y\right)(e_k e^T_k \otimes B).
\]

Note that

\[
\text{tr}\left((e_k e^T_k \otimes B)^T Y\right) = \text{tr}\left((e_k e^T_k \otimes B^T)Y\right) = \text{tr}(e_k e^T_k \otimes B^T e^T_k Y) \\
= \text{tr}\left((e_k e^T_k \otimes B^T_L)e_{\ell}\right) = \sum_{j=1}^{m} e^T_k (e^T_k \otimes B^T_{L,j}) e_{\ell} \\
= \sum_{j=1}^{m} (e^T_k e_j B^T_{L,j}) e_{\ell} = \sum_{j=1}^{m} e^T_k (I_n \otimes e^T_j B^T_{L,j}) e_{\ell} \\
= \left[\sum_{j=1}^{m} (I_n \otimes e^T_j B^T_{L,j}) e_{\ell} \right]_{k \ell}.
\]
Now,
\[P_A(Y) \otimes B = \frac{1}{\|B\|_F^2} \left(\sum_{k,l=1}^{n} \left[\sum_{j=1}^{m} (I_n \otimes e_j^T B_L^*) Y(I_n \otimes B_R^* e_j) \right] e_k e_l^T \right) \otimes B \]
\[= \left(\frac{1}{\|B\|_F^2} \sum_{j=1}^{m} (I_n \otimes e_j^T B_L^*) Y(I_n \otimes B_R^* e_j) \right) \otimes B. \]

Using that \(B \) is nonzero, we obtain

\[P_A(Y) = \frac{1}{\|B\|_F^2} \sum_{j=1}^{m} (I_n \otimes e_j^T B_L^*) Y(I_n \otimes B_R^* e_j), \]

and the expression for \(\nabla G(A) \) follows using (A.1). The expression for \(\nabla H(B) \) can be found analogously.

B Pole-residue Form with a Constant Term

To convert the form in (5.1) to the pole-residue form in Theorem 5.1, write \(A_2 = UV^T \) for some \(U, V \in \mathbb{R}^{n \times n_2} \) of full column rank. Then, using the Sherman-Morrison-Woodbury formula [GV13], we obtain

\[y(p) = C(A_1 + pUV^T)^{-1} B \]
\[= C(A_1^{-1} - pA_1^{-1}U(I_{n_2} + pV^T A_1^{-1}U)^{-1}V^T A_1^{-1})B \]
\[= CA_1^{-1}B - pCA_1^{-1}U(I_{n_2} + pV^T A_1^{-1}U)^{-1}V^T A_1^{-1}B. \]

Next, let \(T \in \mathbb{C}^{n_2 \times n_2} \) be an invertible matrix such that \(V^T A_1^{-1}U = TDT^{-1} \) for \(D = \text{diag}(d_1, d_2, \ldots, d_{n_2}) \). Furthermore, define \(C_U = CA_1^{-1}U \) and \(B_V = VT A_1^{-1}B \). Continuing the above derivation, we obtain

\[y(p) = CA_1^{-1}B - pC_U(I_{n_2} + pTDT^{-1})^{-1}B_V \]
\[= CA_1^{-1}B - pC_UT(I_{n_2} + pD)^{-1}T^{-1}B_V \]
\[= CA_1^{-1}B - \sum_{i=1}^{n_2} \frac{pC_UTe_i e_i^T T^{-1}B_V}{1 + pd_i}. \]

Using \(\frac{p}{1+pd_i} = \frac{1}{d_i} - \frac{d_i}{p+pd_i} \), \(\sum_{i=1}^{n_2} \frac{1}{d_i} e_i e_i^T = D^{-1} \), and \(TD^{-1}T^{-1} = (V^T A_1^{-1}U)^{-1} \) yields

\[y(p) = CA_1^{-1}B - C_U(V^T A_1^{-1}U)^{-1}B_V + \sum_{i=1}^{n_2} \frac{1}{d_i^2} C_U T e_i e_i^T T^{-1}B_V. \]

Therefore, in the pole-residue form Theorem 5.1, we have

\[\Phi_0 = CA_1^{-1}B - CA_1^{-1}U(V^T A_1^{-1}U)^{-1}V^T A_1^{-1}B, \]
\[\Phi_i = CA_1^{-1}UTE_i e_i^T T^{-1}V^T A_1^{-1}B/d_i^2, \]
\[\nu_i = -1/d_i, \]

for \(i = 1, 2, \ldots, n_2 \).

References

[ABG10] A. C. Antoulas, C. A. Beattie, and S. Gugercin. Interpolatory model reduction of large-scale dynamical systems. In J. Mohammadpour and K. M. Grigoriadis, editors, Efficient Modeling and Control of Large-Scale Systems, pages 3–58. Springer US, Boston, MA, 2010. doi:10.1007/978-1-4419-5757-3_1.

[ABG20] A. C. Antoulas, C. A. Beattie, and S. Gügercin. Interpolatory methods for model reduction. Computational Science and Engineering 21. SIAM, Philadelphia, PA, 2020. doi:10.1137/1.9781611976083.
A Unifying Framework for Interpolatory L_2-optimal Modeling

TECHNICAL REPORT

[ABGA13] B. Anić, C. Beattie, S. Gugercin, and A. C. Antoulas. Interpolatory weighted-H_2 model reduction. *Automatica*, 49(5):1275–1280, 2013. doi:10.1016/j.automatica.2013.01.040.

[BB12] P. Benner and T. Breiten. Interpolation-based H_2-model reduction of bilinear control systems. *SIAM J. Matrix Anal. Appl.*, 33:885–885, 2012. doi:10.1137/110836742.

[BB14] C. A. Beattie and P. Benner. H_2-optimality conditions for structured dynamical systems. Preprint MPIMD/14-18, Max Planck Institute Magdeburg, 2014. URL: https://csc.mpi-magdeburg.mpg.de/preprints/2014/18/.

[BBBG11] U. Baur, C. A. Beattie, P. Benner, and S. Gugercin. Interpolatory projection methods for parameterized model reduction. *SIAM J. Sci. Comput.*, 33(5):2489–2518, 2011. doi:10.1137/090776925.

[BBG15] T. Breiten, C. Beattie, and S. Gugercin. Near-optimal frequency-weighted interpolatory model reduction. *Systems Control Lett.*, 78:8–18, 2015. doi:10.1016/j.sysconle.2015.01.005.

[BG09] C. Beattie and S. Gugercin. Interpolatory projection methods for structure-preserving model reduction. *Systems Control Lett.*, 58(3):225–232, 2009. doi:10.1016/j.sysconle.2008.10.016.

[BG17a] C. Beattie and S. Gugercin. Chapter 7: Model Reduction by Rational Interpolation, pages 297–334. SIAM, 2017. doi:10.1137/1.9781611974829.ch7.

[BG17b] Mario Berljafa and Stefan Güttel. The RKFIT algorithm for nonlinear rational approximation. *SIAM J. Sci. Comput.*, 39(5):A2049–A2071, 2017. doi:10.1137/15M1025426.

[BGG18] P. Benner, P. Goyal, and S. Gugercin. H_2-quasi-optimal model order reduction for quadratic-bilinear control systems. *SIAM J. Matrix Anal. Appl.*, 39(2):983–1032, 2018. doi:10.1137/16M1098280.

[BGKVW10] A. Bunse-Gerstner, D. Kubalinska, G. Vossen, and D. Wilczek. h_2-norm optimal model reduction for large scale discrete dynamical MIMO systems. *J. Comput. Appl. Math.*, 233(5):1202–1216, 2010. doi:10.1016/j.cam.2008.12.029.

[BGTQ+20] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira, editors. *Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms*. De Gruyter, Berlin, Boston, 2020. doi:10.1515/9783110671490.

[BGW21a] P. Benner, S. Gugercin, and S. W. R. Werner. Structure-preserving interpolation for model reduction of parametric bilinear systems. *Automatica*, 132(109799):1–9, 2021. doi:10.1016/j.automatica.2021.109799.

[BGW21b] P. Benner, S. Gugercin, and S. W. R. Werner. Structure-preserving interpolation of bilinear control systems. *Adv. Comput. Math.*, 47(43):1–38, May 2021. doi:10.1007/s10444-021-09863-w.

[BGW21c] P. Benner, S. Gugercin, and S. W. R. Werner. Structure-preserving interpolation of bilinear control systems. *ESAIM: Math. Model. Numer. Anal.*, 55(2):561–594, 2021. doi:10.1051/m2an/2021001.

[DGB15a] Z. Drmač, S. Gugercin, and C. Beattie. Quadrature-based vector fitting for discretized H_2 approximation. *SIAM J. Sci. Comput.*, 37(2):A2346–A2379, 2015. doi:10.1137/15M1010774.

[DGB15b] Z. Drmač, S. Gugercin, and C. Beattie. Vector fitting for matrix-valued rational approximation. *SIAM J. Sci. Comput.*, 37(5):A2346–A2379, 2015. doi:10.1137/15M1010774.

[DS11] V. Druskin and V. Simoncini. Adaptive rational Krylov subspaces for large-scale dynamical systems. *Systems Control Lett.*, 60(8):546–560, 2011. doi:10.1016/j.sysconle.2011.04.013.

[DSZ14] V. Druskin, V. Simoncini, and M. Zaslavsky. Adaptive tangential interpolation in rational Krylov subspaces for MIMO dynamical systems. *SIAM J. Matrix Anal. Appl.*, 35(2):476–498, 2014. doi:10.1137/120898784.

[FAB17] L. Feng, A. C. Antoulas, and P. Benner. Some a posteriori error bounds for reduced order modelling of (non-)parametrized linear systems. *ESAIM: Math. Model. Numer. Anal.*, 51(6):2127–2158, 2017. doi:10.1051/m2an/2017014.

[FB19] L. Feng and P. Benner. A new error estimator for reduced-order modeling of linear parametric systems. *IEEE Trans. Microw. Theory Techn.*, 67(12):4848–4859, 2019. doi:10.1109/TMTT.2019.2948858.

[FB21] L. Feng and P. Benner. On error estimation for reduced-order modeling of linear non-parametric and parametric systems. *ESAIM: Math. Model. Numer. Anal.*, 55(2):561–594, 2021. doi:10.1051/m2an/2021001.
A Unifying Framework for Interpolatory \mathcal{L}_2-optimal Modeling

Technical Report

[FBG13] G. Flagg, C. A. Beattie, and S. Gugercin. Interpolatory H_{∞} model reduction. *Systems Control Lett.*, 62(7):567–574, 2013. doi:10.1016/j.sysconle.2013.03.006.

[FG15] G. Flagg and S. Gugercin. Multipoint Volterra series interpolation and H_2 optimal model reduction of bilinear systems. *SIAM J. Matrix Anal. Appl.*, 36(2):549–579, 2015. doi:10.1137/130947830.

[GAB06] S. Gugercin, A. C. Antoulas, and C. A. Beattie. A rational Krylov iteration for optimal H_2 model reduction. In *Proc. of the 17th International Symposium on Mathematical Theory of Networks and Systems*, pages 1665–1667, 2006.

[GAB08] S. Gugercin, A. C. Antoulas, and C. Beattie. H_2 model reduction for large-scale linear dynamical systems. *SIAM J. Matrix Anal. Appl.*, 30(2):609–638, 2008. doi:10.1137/060666123.

[GPBvdS12] S. Gugercin, R. V. Polyuga, C. Beattie, and A. van der Schaft. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. *Automatica*, 48(9):1963–1974, 2012. doi:10.1016/j.automatica.2012.05.052.

[Gri18] A. R. Grimm. *Parametric Dynamical Systems: Transient Analysis and Data Driven Modeling*. PhD thesis, Virginia Polytechnic Institute and State University, 2018. URL: http://hdl.handle.net/10919/83840.

[GS99] B. Gustavsen and A. Semlyen. Rational approximation of frequency domain responses by vector fitting. *IEEE Trans. Power Del.*, 14(3):1052–1061, 1999. doi:10.1109/61.772353.

[GSW13] S. Gugercin, T. Stykel, and S. Wyatt. Model reduction of descriptor systems by interpolatory projection methods. *SIAM J. Sci. Comput.*, 35(5):B1010–B1033, 2013. doi:10.1137/130906635.

[GV13] G. H. Golub and C. F. Van Loan. *Matrix Computations*. The Johns Hopkins University Press, fourth edition, 2013.

[HM20] J. M. Hokanson and C. C. Magruder. H_2-optimal model reduction using projected nonlinear least squares. *SIAM J. Sci. Comput.*, 42(6):A4017–A4045, 2020. doi:10.1137/19M11247863.

[HRS16] J. S. Hesthaven, G. Rozza, and B. Stamm. *Certified reduced basis methods for parametrized partial differential equations*. Springer Briefs in Mathematics. Springer, Switzerland, 2016. doi:10.1007/978-3-319-15431-2.

[MG22] P. Mlinarić and S. Gugercin. \mathcal{L}_2-optimal reduced-order modeling using parameter-separable forms. arXiv preprint 2206.02929, 2022. doi:10.48550/arXiv.2206.02929.

[ML67] L. Meier and D. Luenberger. Approximation of linear constant systems. *IEEE Trans. Autom. Control*, 12(5):585–588, 1967. doi:10.1109/TAC.1967.1098680.

[Mli22] P. Mlinarić. \mathcal{L}_2-optimal interpolation experiments, August 2022. URL: https://github.com/pmli/l2-opt-interp-ex/tree/v1.

[NST18] Y. Nakatsukasa, O. Sète, and L. N. Trefethen. The AAA algorithm for rational approximation. *SIAM J. Sci. Comput.*, 40(3):A1494–A1522, 2018. doi:10.1137/16M1106122.

[QMN16] A. Quarteroni, A. Manzoni, and F. Negri. *Reduced basis methods for partial differential equations*. UNITEXT. Springer Cham, Switzerland, 2016. doi:10.1007/978-3-319-15431-2.

[RGB18] A. Carracedo Rodriguez, S. Gugercin, and J. Borggaard. Interpolatory model reduction of parameterized bilinear dynamical systems. *Adv. Comput. Math.*, 44(6):1887–1916, December 2018. doi:10.1007/s10444-018-9611-y.

[Son98] Eduardo D. Sontag. *Mathematical Control Theory*. Springer New York, 1998. doi:10.1007/978-1-4612-0577-7.

[VPVA14] P. Vuillemin, C. Poussot-Vassal, and D. Alazard. Poles residues descent algorithm for optimal frequency-limited H_2 model approximation. In *European Control Conference (ECC)*, pages 1080–1085, 2014. doi:10.1109/ECC.2014.6862152.