FOLIAR APPLICATIONS OF ZINC, IRON AND MANGANESE INFLUENCE THE PLANT GROWTH AND FRUIT QUALITY OF PAPAYA CV. RED LADY

Gurjot Singh Pelia, A K Baswal*

Department of Horticulture, School of Agriculture, Lovely Professional University, Jalandhar-144411, India

Received – August 19, 2020; Revision – September 21, 2020; Accepted – October 19, 2020
Available Online – October 25, 2020

DOI: http://dx.doi.org/10.18006/2020.8(5).551.557

ABSTRACT

Prevalence of heavy soil is a major problem for fruit cultivation under Punjab conditions consequently leading to deficiency of several micro-nutrients including zinc (Zn), iron (Fe), and manganese (Mn) which adversely affects the growth and productivity. In this view, a study was planned to investigate the effect of foliar applications of zinc sulphate (ZnSO₄), iron sulphate (FeSO₄), and manganese sulphate (MnSO₄) on vegetative growth, reproductive growth and fruit quality of papaya cv. Red lady. Plants sprayed with ZnSO₄ (0.4 %) exhibited significantly highest plant height, plant girth, number of leaves, petiole length; initiated an earliest flowering and fruiting; and improved fruit quality viz., fruit weight, fruit length, titratable acidity, soluble solids concentrations, ascorbic acid content, total phenols content, and total carotenoids content as compared with the control and all other treatments. In conclusion, foliar application ZnSO₄ (0.4 %) significantly improved plant growth and fruit quality in papaya cv. Red lady.

* Corresponding author
E-mail: baswal.arvind0@gmail.com (A K Baswal)

KEYWORDS
Micro-nutrients
Foliar application
Fruit quality
Papaya

* Corresponding author
E-mail: baswal.arvind0@gmail.com (A K Baswal)

Peer review under responsibility of Journal of Experimental Biology and Agricultural Sciences.
1 Introduction

Papaya (Carica papaya L.) is one of the popular fruit crops of the tropics due to its higher productivity and ability to produce high quality of fruits year around. Besides this, fruits of papaya have higher nutritious and therapeutic values and rich in carotenoids, ascorbic acid and minerals such Ca, P & Fe. Sandy loam soils with pH between 6.5-7.0 and with adequate drainage facilities are considered as good for papaya cultivation (Anonymous, 2019). In Punjab, around 0.06 m ha of arable land is salt-affected. Such soils are highly alkaline in reaction and having exchangeable sodium percentage (ESP) more than 50 percent thereby leads to the deficiency of one or more micro-nutrient (Sharma et al., 1982). Micro-nutrients are the key elements involved in various growth and development processes such as cell wall development, chlorophyll formation, hormonal regulation, nitrogen fixation, and reduction (Singh et al., 2019).

Zinc (Zn) is an essential trace element that maintains the integrity of cellular membranes, involves in carbohydrate metabolism, synthesizes protein and regulates the synthesis of auxin in higher plants. Deficiency of Zn leads to abnormalities in plants such as smaller leaves, chlorosis, and stunted plant growth. Besides this, its deficiency may also hamper the quality of harvested produce (Hafeez et al., 2013).

Manganese (Mn) is one of the heavy metal micro-nutrients involved in photosynthesis and membrane function as well as serves as an activator of miscellaneous enzymes in the cell. Younger leaves develop the initial symptoms of Mn deficiency. The most visible symptoms of Mn deficiency are pale mottled leaves and interveinal chlorosis (Alejandro et al., 2020).

Iron (Fe) is involved in the biosynthesis of chlorophyll and its deficiency leads to a reduction in the net photosynthesis (Singh et al., 2019). Intervernal chlorosis of nodes and stunning root growth are the visual symptoms of iron deficiency in higher plants (Rout & Sahoo, 2015).

Limited usages of farmyard manures and application of fertilizers containing lower micro-elements leading to deficiencies of micro-nutrients viz., Zn, Mn, Fe, Ca and B in the soil. Improper fruit growth, reduction in the yield, the vulnerability of plant to insect pests, and production of the inferior quality of fruits are subjected to these nutritional deficiencies (Ioannis et al., 2004). Existing literature revealed that foliar application of micro-nutrients improved fruit quality in aonla (Mishra et al., 2017), strawberry (Kazemi, 2014), pomegranate (Hasani et al., 2012), and peaches (Muradi & Godara, 2020). Earlier, the foliar application of several micro-nutrients in a combination or without combination significantly improved plant growth and fruit quality in papaya cv. Red lady (Manjunatha et al., 2014; Yadaw, 2017). However, standardization of micro-nutrients is yet to be done to evaluate their effect on plant growth and fruit quality. Keeping this view an investigation was carried out to examine the effect of foliar application of ZnSO₄, MnSO₄, and FeSO₄ with varied concentration on plant growth and fruit quality of papaya cv. Red lady.

2 Materials and methods

2.1 Plant material

For this experiment one-month-old healthy seedlings of papaya cv. red lady were collected from Punjab Agricultural University of Ludhiana and planted with the spacing of 1.8 m (row to row) x 1.8 m (plant to plant) at the fruit research farm of Lovely Professional University, Jalandhar (31°15′N; 75°42′E). Experimented plants were subjected to different intercultural operations i.e. irrigation, removal of weeds, and management of pest and disease. Foliar application of ZnSO₄ (0.2 and 0.4 %), MnSO₄ (0.2 and 0.4 %) and FeSO₄ (0.2 and 0.4 %) and 0.01 % Tween-20 (as surfactant) were sprayed by using hand-held sprayer after transplanting. The experiment was laid in the randomized block design (RBD) included three replication and three plants per replication for each treatment.

2.2 Vegetative and reproductive growth

The tree vegetative growth (plant height, plant girth, the number of leaves and petiole length) and reproductive growth (days have taken to first flowering and days taken to first fruit set) were determined following the conventional methods previously used by Yadaw (2017).

2.3 Fruit quality

Fruit harvested from the experimental plants were used to determine fruit weight, fruit length, fruit width, and fruit volume following the methods earlier detailed by Yadaw (2017). A digital hand refractometer (Atago Co., Tokyo, Japan) was used to determine the SSC of the fruit pulp and expressed in percentage after making the temperature correction at 20 °C. The TA was estimated following the standard procedure previously outlined by AOAC (2005) and expressed in percentage. Sugars were estimated from the fruit pulp following the method previously detailed by Hortwitz (1960) with moderate modifications earlier detailed by Yadaw (2017) and expressed in percentage. To determine ascorbic acid content fresh fruit pulp was used by following the methods recently detailed by Baswal et al. (2020) and expressed in mg 100⁻¹ g pulp. Total phenol content and total carotenoids content were estimated following methods recently detailed by Baswal (2019) with slight modifications.

2.4 Statistical design

All the field and lab experimental data were subjected to ANOVA using Statistical Analysis System 9.3 (S.A.S. Institute Inc., Cary, NC, USA) and means were separated by Duncan’s multiple range test. Differences at $P \leq 0.05$ were considered as significant.
3 Results and Discussion

3.1 Effect of foliar application of micronutrients on vegetative, reproductive growth and fruit quality

3.1.1 Plant height, plant girth, number of leaves per plant and petiole length

Foliar application of micro-nutrients significantly influenced plant growth. At 90 and 180 days after transplanting (DAT) foliar application of ZnSO₄ (0.4 %) recorded significantly highest mean plant height, plant girth, number of leaves and petiole length followed by MnSO₄ (0.4 %) as compared with the control and all other treatments (Table 1). An increase in plant growth possibly due to a stimulatory effect of Zn on the physiological and metabolic process of plants. Zn acts as a co-factor for several enzymes influences numerous processes including photosynthesis, nucleic acid metabolism, and protein synthesis thereby increases tissue growth and development (Yadaw, 2017). Previously, the foliar application of ZnSO₄ + borax + FeSO₄ resulted significantly highest plant height, plant girth, number of leaves and petiole length in papaya cv. Red lady (Yadaw, 2017; Manjunatha et al., 2014). However, in contrast to our results, Razzaq et al. (2013) reported that foliar application of ZnSO₄ did not influence the number of leaves in ‘Kinnow’ mandarin. It is speculated that the response of micro-nutrients varies in different fruit crops or may be due to environmental conditions (El-Khawaga, 2007; Hasani et al., 2012).

3.2 Effect of foliar application of micro-nutrient on reproductive growth

Plant sprayed with foliar application micro-nutrients exhibited a significant influence on flower and fruit initiation. Foliar application of ZnSO₄ (0.4 percent) recorded an earliest flowering and fruit initiation with 138.67 days and 155 days respectively followed by MnSO₄ (0.4 percent) and these two are significantly different than control and all the other treatments. (Table 1). An initiation in earliest flowering and fruiting by foliar application of Zn might be due to its role in various metabolic processes such as synthesis of auxin and absorption of macro-molecules from the soil which regulates cell division and cell enlargement (Yadaw, 2017). Similarly, foliar application of Urea + ZnSO₄ also resulted in an earliest initiation of flowering and fruit in papaya cv. Red lady (Yadaw, 2017).

3.3 Effect of foliar application of micro-nutrients on fruit quality

3.3.1 Fruit weight, fruit length, fruit width and fruit volume

Foliar application of micro-nutrients significantly influenced fruit weight, fruit length, fruit width and fruit volume. Amongst all, foliar application of ZnSO₄ (0.4 percent) exhibited significantly
The results of the current study, “tryptophan” a precursor for the synthesis of IAA influence the rate of assimilates from leaves to fruit thus results in an increase in SSC as 12.20 percent followed by MnSO₄ (0.4 %) with 11.88 percent as compared with the control where it was recorded as lowest with 8.65 percent (Table 3). Foliar application of micro-nutrients increases vegetative growth and influence the rate of photosynthesis consequently increase the transportation of photo-assimilates from leaves to fruit thus results in an increase in SSC (Obaid & Al-Hadeethi, 2013). Previously, Yadaw (2017) reported that the foliar application of Urea + ZnSO₄ resulted significantly highest SSC in papaya cv. Red lady. Similarly, foliar application of Zn significantly increased TA in ‘Kinnow’ mandarin and ‘Balady’ mandarin (Dawood et al., 2001; Razzaq et al., 2013).

3.3.2 Titratable acidity

Fruit harvested from the experimental plants showed a significant difference for TA (Table 2). Foliar application of ZnSO₄ (0.4 percent) recorded significantly lowest mean titratable acidity with 0.14 percent followed by MnSO₄ (0.4 %) with 0.16 percent as compared with the control where it was registered as maximum with 0.24 percent (Table 2). Foliar application of ZnSO₄ decreased TA may be due to its effect on various enzymes involved in the formation of acid, protein and sugars (Srivastava & Gupta, 1996). Previously, foliar application of Urea + ZnSO₄ resulted significantly reduced TA in papaya cv. Red lady (Yadaw, 2017). Likewise, the foliar application of micro-nutrients recorded significantly reduced TA in aonla cv. NA-7 and ‘Khasi’ mandarin (Babu & Yadav, 2005; Chandra & Singh, 2017). However, contrarily, in case of pomegranate, the foliar application of Zn increased TA may be due to the response of micro-nutrients that can be different for different fruit crops or may due to environmental conditions (El-Khawaga, 2007; Hasani et al., 2012). Similarly, the foliar application of Zn significantly increased TA in ‘Kinnow’ mandarin and ‘Balady’ mandarin (Dawood et al., 2001; Razzaq et al., 2013).

3.3.3 Soluble solids concentration

The fruits collected from the plants sprayed with different micro-nutrients showed a significant difference for SSC. Foliar application of ZnSO₄ (0.4 %) exhibited significantly highest mean SSC as 12.20 percent followed by MnSO₄ (0.4 %) with 11.88 percent as compared with the control where it was recorded as lowest with 8.65 percent (Table 3). Foliar application of micro-nutrients increases vegetative growth and influence the rate of photosynthesis consequently increase the transportation of photo-assimilates from leaves to fruit thus results in an increase in SSC (Obaid & Al-Hadeethi, 2013). Previously, Yadaw (2017) reported that the foliar application of Urea + ZnSO₄ resulted significantly highest SSC in papaya cv. Red lady. Similarly, foliar application of micro-nutrients recorded significantly highest SSC in aonla cv. NA-7 and ber (El-Rhman & Shadia, 2012; Chandra & Singh, 2017). However, in contrast to the results of the current study, Sahota & Arora (1981) reported that SSC was not influenced by foliar application micro-nutrients in sweet orange cv. Hamlin this might be because of the response of micro-nutrients can be different for different fruit crops or may due to environmental conditions (El-Khawaga, 2007; Hasani et al., 2012).

3.3.4 Total sugars & reducing sugars

Fruits harvested from the treated plants showed a significant influence on total sugars and reducing sugars. Amongst all, foliar application of ZnSO₄ (0.4 %) recorded the maximum mean total sugars and reducing sugars as 9.23 and 7.96 percent respectively.
this was followed by MnSO₄ (0.4 %) and these two are significantly different from the control where it was recorded as lowest with 6.00 and 5.06 percent, respectively (Table 3). An increase in the levels of sugars by foliar application of ZnSO₄ is ascribed to its influence on aldolase activity which is responsible for the formation of sugars in fruits (Alloway, 2008). Earlier, the foliar application of Urea + ZnSO₄ resulted in significantly highest sugars level in papaya cv. Red lady (Yadaw, 2017). Similar results were also reported in ‘Kinnow’ mandarin and ‘Khasi’ mandarin (Babu & Yadav, 2005; Razzaq et al., 2013).

3.3.5 Ascorbic acid

Plants sprayed with foliar application of micro-nutrients showed a significant influence on ascorbic acid content. Foliar application of ZnSO₄ (0.4 %) resulted in the maximum mean ascorbic acid content as 66.44 mg 100 g⁻¹ pulp, followed by MnSO₄ (0.4 %) with 61.58 mg 100 g⁻¹ pulp, whereas it was registered as lowest in control with 48.04 mg 100 g⁻¹ pulp (Table 3). Exhibition of higher ascorbic acid content by foliar application of Zn may be due to its role in the synthesis of auxin which helps in the accumulation of higher ascorbic acid content (Nawaz et al., 2008). Previously, the foliar application of Urea + ZnSO₄ significantly increased the synthesis of auxin consequently resulted in higher ascorbic acid content in papaya cv. Red lady (Yadaw, 2017). Similarly, the foliar application of Zn also resulted in significantly higher ascorbic acid content in ‘Kinnow’ mandarin and ‘Balady’ mandarin (El-Menshawi et al., 1997; Razzaq et al., 2013).

3.3.6 Total phenols

The foliar application of micro-nutrients significantly influenced the total phenols. Amongst all, foliar spray with ZnSO₄ (0.4 %) recorded the maximum mean total phenols as 187.28 mg 100 g⁻¹ pulp followed by MnSO₄ (0.4 %) with 178.65 mg 100 g⁻¹ pulp as compared with the control where it was recorded as lowest with 52.16 mg 100 g⁻¹ pulp (Table 3). Previously, Razzaq et al. (2013) also reported that foliar spray of ZnSO₄ recorded significantly higher contents of total phenols in ‘Kinnow’ mandarin. However, there is no clear evidence as how foliar applications of micro-nutrients influence the phenolic compounds in fruit crops thus requires further investigations.

3.3.7 Total carotenoids

Plants sprayed with foliar application micro-nutrients exhibited a significant influence on total carotenoids content. Amongst all the treatments, foliar application of ZnSO₄ (0.4 %) exhibited significantly highest mean total carotenoids content as 1.27 mg 100 g⁻¹ pulp, followed by MnSO₄ 0.4 percent with 1.25 mg 100 g⁻¹ pulp (Table 3). These results are in agreement with the findings of Singh et al. (2010), those who reported, higher total carotenoids in papaya cv. Ranchi on the foliar application of ZnSO₄ + borax. However, the exact mechanism of how micro-nutrients influenced the total carotenoids content is still unknown and therefore needs further investigations.

In conclusion foliar application of ZnSO₄ (0.4 %) significantly influenced plant growth and fruit quality of papaya cv. Red lady.

Acknowledgement

We are thankful to Head, Department of Fruit Science, College of Horticulture, Punjab Agricultural University, Ludhiana for providing planting material to conduct this experiment.

Conflict of interests

We declare that there is no conflict of interest between us.
References

Alejandro S, Holler S, Meler B, Pelter E (2020) Manganese in plants: From acquisition to subcellular allocation. Frontiers in Plant Science 11: 300.

Alloway BJ (2008) Zinc in Soils and Crop Nutrition. Brussels: The International Zinc Association.

Anonymous (2019) Area and production of fruits, Directorate of Horticulture, Government of Punjab, Chandigarh.

AOAC (2005) Official methods of analysis, 18th edn. Association of Official Analytical Chemists, Washington DC.

Babu KD, Yadav DS (2005) Foliar spray of micronutrients for yield and quality improvement in Khasi mandarin (Citrus reticulate Blanco.). Indian Horticulture Journal 62: 280-281.

Baswal AK (2019) Effect of postharvest treatments and packaging on storage life and quality of Kinnow fruit. Ph.D. thesis submitted to the Punjab Agricultural University, Ludhiana, India.

Baswal AK, Dhalwal HS, Singh Z, Mahajan BVC, Kalia A, Gill KS (2020) Influence of carboxy methylcellulose, chitosan and beeswax coatings on cold storage life and quality of Kinnow mandarin fruit. Scientia Horticulturae 260: 108887.

Cakmak I, Marschner H, Bangerth F (1989) Effect of zinc nutrition status on growth, protein metabolism and level of indole-3 acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). Journal of Experimental Botany 40: 405-415.

Chandra R, Singh KK (2015) Foliar application zinc sulphate, magnesium sulphate and copper sulphate on the yield and quality of aonla (Emblica officinalis Gaertn) cv. “NA-7” under Garhwal Himalaya. Journal of Medicinal Plants Studies 3: 42-45.

Dawood SA, Meligy MS, El-Hamady MM (2001). Influence of zinc sulphate application on tree leaf and fruit characters of three young citrus varieties grown on slightly alkaline soil. Annals of Agriculture Science Moshtohor 39: 433-447.

El-Khawaga AS (2007) Reduction in fruit cracking in ‘Manfaalty’ pomegranate following a foliar application with paclotrazol and zinc sulphate. Journal of Applied Science Research 3: 837-840.

El-Menshawi EA, Sinble HM, Ismail HA (1997) Effect of different zinc, manganese and forms on yield and fruit quality of Balady mandarin tree. Journal of Agriculture Science Mansoura University 22: 2333-2340.

El-Rhman AIE, Shadia AA (2012) Effect of foliar sprays of urea and zinc on yield and physio-chemical composition on jujube (Ziziphus mauritiana). Middle East Journal of Agricultural Research 1: 52-57.

Hafeez B, Khanif YM, Saleem M (2013) Role of Zn in Plant nutrition—a review. African Journal of Experimental Agriculture 3:374-391.

Hasani M., Zamani Z, Savaghebi G, Fatahi R (2012) Effects of zinc and manganese as foliar spray on pomegranate yield, fruit quality and leaf minerals. Journal of Soil Science and Plant Nutrition 12: 471-480.

Hortwitz W (1960) Official and Tentative Methods of Analysis. Ed. 9. Association of official Agricultural Chemists, Washington, D.C, pp. 314-320.

Ioannis EP, Protopapadakis E, Dimassi KN, Therios IN (2004) Nutritional status, yield, and fruit quality of “Encore” Mandarin trees grown in two sites of an orchard with different soil properties. Journal of Plant Nutrition 27: 1505-1515.

Kazemi M (2014) Influence of foliar application of iron, calcium and zinc sulphate on vegetative growth and reproductive characteristics of strawberry cv. Pajaro. Turkish Journal of Sciences 1: 21-26.

Manjunatha S, Swamy GSK, Prakash NB, Jagadeesha RC, Chavan M, Shankarappa KS (2014) Effects of micronutrients and silicon on growth and yield of papaya cv. Red lady. Journal of Agricultural Research & Technology 39: 15-20.

Mishra SM, Ram D, Pandey A, Meena AK (2017) Effect of foliar feeding of micro-nutrients on physico-chemical attributes of aonla (Emblica officinalis Gaertn) cv. NA-7 under high density planting. International Journal of Current Microbiology & Applied Science 6: 1-7.

Muradi B, Godara AK (2020). Effect of foliar application of boron, zinc and iron on fruit quality and leaf nutrients content of peach cv. Shan-e-Punjab. Current Journal of Applied Science & Technology 39: 43-51.

Nawaz, MA, Ahmad W, Ahmad S, Khan MM (2008) Role of growth regulators on pre-harvest fruit drop, yield and quality in ‘Kinnow’ mandarin. Pakistan Journal of Botany 40: 1971-1981.

Obaid EA, Al-Hadethi MEA (2013) Effect of foliar application with manganese and zinc on pomegranate growth, yield and fruit quality. Journal of Horticultural Science & Ornamental Plants 5: 41-45.

Razzaq K., Khan AS, Malik AU, Shahid M, Ullah, S (2013) Foliar application of Zn influences the leaf mineral status, vegetative and reproductive growth, yield and fruit quality of ‘Kinnow’ mandarin. Journal of Plant Nutrition 36: 1479-1495.
Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Reviews in Agricultural Science 3:1-24.

Sahota GS, Arora JS (1981) Effect of N and Zn on ‘Hamlin’ Sweet orange. Journal of Japanese Society of Horticultural Science 50: 281-286.

Sharma BD, Takkar PN, Sadana US (1982) Evaluation of levels and methods of zinc application to rice in sodic soils. Fertilizer Research 3: 161-167.

Singh A, Bakshi M, Brar AS, Singh SK (2019) Effect of micro-nutrients in Kinnow mandarin production: A review. International Journal of Chemical Studies 7: 5161-5164

Singh DK, Ghosh SK, Paul PK, Suresh CP (2010) Effect of different micronutrients of growth, yield and quality of papaya (Carica papaya L.) cv. Ranchi. Proceeding of 11th IS on Papaya. Acta Hort.

Srivastava PC, Gupta UC (1996) Trace Elements in Crop Production. Lebanon, NH: Science Publishers.

Yadaw B (2017) Effect of foliar application of urea and micronutrients on growth, yield and quality of papaya (Carica papaya L.) cv. Red lady. M.Sc. dissertation submitted Indira Gandhi Krishi Vishwavidyalaya, Raipur, India.