was confirmed by selective perturbation of the hepatic sensory afferents to the left nodose ganglion not the dorsal root ganglion. Accordingly, left but not right vagal stimulation was essential for maintaining intestinal Treg cells and aldehyde dehydrogenase activity in APCs.

Genetic ablation of mACHR signalling by the parasympathetic neurotransmitter acetylcholine, but not abrogation of signalling by the sympathetic neurotransmitter noradrenaline, in intestinal APCs also reduced Treg cells in the colon. Accordingly, treatment with a mACHR agonist restored aldehyde dehydrogenase expression by APCs and colonic Treg cell frequency in HVx mice, which suggests that the liver–brain–gut reflex, independent of the sympathetic system, creates the intestinal Treg cell niche.

Finally, although HVx did not cause notable changes in gut microbiome diversity or composition, tonic microbial signals were required for function of the liver–brain–gut neural arc, as antibiotic-treated mice and Myd88-knockout mice did not develop worse colitis after HVx.

In summary, the liver–brain–gut neural arc — connecting the hepatic vagal afferents, the brainstem, vagal efferents and enteric neurons to mACHRRγ-APCs — serves as a feedback loop to protect the intestine from excessive inflammation.

Lucy Bird

To confirm these findings in vivo, the authors used various FMF knock-in mice. Mice lack the B30.2 domain of human pyrin that contains the FMF mutations (including MEFV_p.M680I). Therefore, the authors compared systemic Y. pestis infection in MEFV_B30.2/B30.2 and MEFV_M680I/M680I knock-in mice — they found that the latter showed significantly increased survival. By contrast, IL-1 receptor-deficient MEFV_M680I/M680I mice were highly susceptible to Y. pestis infection. This indicates that FMF-associated mutant pyrin provides a survival advantage during Y. pestis infection that is mediated by the IL-1β signalling pathway.

Of note, the two major plague pandemics of 541 CE and 1347 CE were rooted in the Middle East and Mediterranean basin, which may explain why FMF-associated pyrin variants are so common among these populations.

Yvonne Bordon

COVID-19

COVID-19 and influenza: preparing for the storm

The basis of the varied immune responses seen to SARS-CoV-2 and other respiratory infections remains unclear. This preprint by Mudd et al. used single-cell RNA sequencing of PBMCs from patients with COVID-19 or influenza to ascertain disease-specific signatures. The authors identified two select cytokine modules (namely, IL-1RA and IL-6) that correlated with COVID-19 disease severity and were predictive of poor outcomes. By contrast, patients with influenza exhibited higher generalised inflammation. Compared with patients with influenza, patients with COVID-19 had reduced monocyte subsets, as well as lymphopenia, and exhibited a suppressed type I interferon response across multiple immune cell types. Interestingly, these cells, and especially the monocytes, showed enriched glucocorticoid and metabolic stress signalling. These data provide key insights that may guide the design of disease-specific therapies before the start of a new flu season.

ORIGINAL ARTICLE Mudd, F.A. et al. Targeted immunosuppression distinguishes COVID-19 from influenza in moderate and severe disease. Preprint at medRxiv https://doi.org/10.1101/2020.05.28.20115667 (2020)

SARS-CoV-2-specific T cells without antibodies

In this preprint, Gallais et al. investigated humoral and cellular immune responses to SARS-CoV-2 in 9 index and 8 contact patients from 7 households. All index patients developed SARS-CoV-2-specific antibodies and T cells, with the responses directed against multiple structural and accessory proteins. However, none of the contact patients had detectable antibodies to SARS-CoV-2. Despite the lack of seroconversion, SARS-CoV-2-specific T cells were detected in 6 contact patients at similar frequencies to in index patients. This suggests that testing for SARS-CoV-2-specific T cells may be better than serological tests for assessing prior infection and immunity to SARS-CoV-2. However, further study is warranted to rule out cross-reactivity with prior coronavirus infections.

ORIGINAL ARTICLE Gallais, F. et al. Intrafamilial exposure to SARS-CoV-2 induces cellular immune response without seroconversion. Preprint at medRxiv https://doi.org/10.1101/2020.06.21.2013449 (2020)

Dexamethasone to the rescue

In this preprint study of the RECOVERY clinical trial involving 6,425 hospitalized patients with COVID-19, Horby et al. report that patients receiving a 6 mg daily dose of the corticosteroid dexamethasone had a reduced 28-day mortality compared with those receiving standard of care. Importantly, dexamethasone reduced death by one-third in patients receiving invasive mechanical ventilation and by one-fifth in patients requiring oxygen only but showed no benefit in patients who did not require respiratory support. Overall, the results of this study suggest that dexamethasone, an inexpensive and widely available anti-inflammatory drug, is a valuable treatment for severe cases of COVID-19.

ORIGINAL ARTICLE Horby, P. et al. Effect of dexamethasone in hospitalized patients with COVID-19: preliminary report. Preprint at medRxiv https://doi.org/10.1101/2020.06.22.20137273 (2020)

Matthew D. Park, Cansu Cimen Bokkus and Chang Moon Sinal Immunology Review Project, Ichan School of Medicine at Mount Sinai, New York, NY, USA e-mail: sinal.immunology@gmail.com

The authors declare no competing interests.