Supporting Information for

Human Heuristics for AI-Generated Language Are Flawed

Maurice Jakescha,b, Jeffrey T Hancockc, Mor Naamana,b,

a Cornell University, Ithaca, NY 14850, United States
b Cornell Tech, New York, NY 10044, United States
c Stanford University, Stanford, CA 94305, United States

* Maurice Jakesch

Email: mj32@cornell.edu

This PDF file includes:

- Supporting text
- Tables S1 to S6
- Figure S1 to S2
Supporting Text

Below we provide additional information on several aspects of our experiments. Table S1 summarizes the treatment, stimuli, and recruitment methods used across the six studies and three labeling tasks. Table S2 shows a sample of self-presentations for each study and treatment group.

Table S3 shows the results of an auxiliary analysis testing whether certain groups are better at detecting AI-generated language than others. Older participants were slightly more likely to detect AI-generated self-presentations, with participants older than 50 achieving an accuracy of 53% (compared to 51% for younger participants). No gender or ethnic group performed better than others. Participants with a university degree performed about 1% worse than those without, and self-reported technical knowledge was not correlated with more accurate ratings. Neither the time taken for the judgment nor the length of profiles predicted higher judgment accuracy. Across contexts, groups, and treatments, participants could not detect AI-generated self-presentations.

Table S4 and S5 provide further detail on the qualitative analysis of participants’ explanations of why they thought certain self-presentations were AI-generated or human-written. Two researchers independently coded a sample of responses into themes to provide an overview of participants’ self-reported heuristics. Table S4 presents an overview of recurring themes. Participants most commonly referred to the content of a self-presentation (blue-shaded regions in Table S4 representing 40% of responses). The participants reported associating specific content related to family and life experiences with language written by humans and generic or nonsensical content with AI-generated language. Participants also reported basing their decisions on grammatical cues (gray, 28%), where first-person pronouns and the mastery of grammar were mentioned as indicative of human-generated language. Some participants saw grammatical errors as associated with a subpar AI, but others claimed they associated them with fallible human authors. Another category of cues mentioned by participants was the tone (green, 24%). Participants reported associating warm and genuine language with humanity and impersonal, monotonous style with AI-generated language. The codebook, theme frequencies, and sample responses are shown in Table S5. Table S6 provides a complete overview of the developed language features and statistical summaries.

Prior research suggests that asking participants to explain their responses could have changed their subsequent evaluations or degraded performance (1,2). We thus conducted an analysis testing whether participants’ performance had changed after being asked to explain their judgment. The results are shown in Figure S1. There was no evidence for such change in our data as participants’ accuracy before and after the open-ended response did not change across any of the three contexts. Note that open-ended responses were only solicited for the three main experiments. The validation experiments did not include open-ended responses, showing similar outcomes and providing further evidence that participants’ ratings (and our findings) were not affected by the explanations.

Figure S2 shows how crowdworkers evaluated human-written and AI-generated self-presentations in a separate labeling task when asked whether the text was nonsensical, seemed repetitive, or had grammatical issues. Crowdworkers were significantly more likely to rate AI-generated self-presentations as nonsensical (13.6% vs. 9.6%, p<0.0001). This was the case in the hospitality context, in particular, where we had used the older GPT-2 model to generate self-presentations. Crowdworkers also rated generated self-presentations as more repetitive (12.7% vs. 7.11%, p<0.0001), particularly in the professional context. Finally, crowdworkers labeled generated self-presentations as having fewer grammatical issues than human-written text (14.8% vs. 19.6%, p<0.0001). This difference was most
pronounced in the dating and professional contexts where we had used the more advanced GPT-3 model to generate self-presentation.

SI References

1. T. D. Wilson, J. W. Schooler, *Thinking too much: introspection can reduce the quality of preferences and decisions*. J. Pers. Soc. Psychol. 60, 181 (1991).
2. T. D. Wilson, D. S. Dunn, D. Kraft, D. J. Lisle, "Introspection, attitude change, and attitude-behavior consistency: The disruptive effects of explaining why we feel the way we do" in *Advances in Experimental Social Psychology*, (Elsevier, 1989), pp. 287–343.

Table S1: Overview of experiments

Context	Stimuli	Treatment	Recruitment
Main study 1:	1,500 self-presentations from Airbnb and 1,500 generated by GPT-2; 30-60 words each; 16 per subject	Within-subject variation of self-presentation type	N = 2,000 US-representative sample via Lucid
Hospitality			
Main study 2:	1,000 self-presentations from OkCupid and 1,000 generated by GPT-3; 60-90 words; 12 per subject	Within-subject variation of self-presentation type and between-subject bonus payments for correct ratings	N = 1,000 gender-balanced sample via Prolific
Dating			
Main study 3:	1,000 self-presentations from Guru and 1,000 generated by GPT-3; 60-90 words each; 12 per subject	Within-subject variation of self-presentation type and between-subject feedback on answers	N = 1,000 gender-balanced sample via Prolific
Professional			
Validation study 1:	100 self-presentations from Airbnb, 100 generated by GPT-2, and 100 optimized using the language model classifier; 16 per subject	Within-subject variation of self-presentation type	N = 250 US-representative sample via Lucid
Hospitality			
Validation study 2:	100 self-presentations from OkCupid, 100 generated by GPT-3, and 100 optimized by the regression classifier; 16 per subject	Within-subject variation of self-presentation type	N = 200 gender-balanced sample via Prolific
Dating			
Validation study 3:	100 self-presentations from Guru, 100 generated by GPT-3, and 100 optimized using an ensemble classifier; 16 per subject	Within-subject variation of self-presentation type	N = 200 gender-balanced sample via Prolific
Professional			
Labeling task 1:	1,500 self-presentations from Airbnb and 1,500 generated by GPT-2; 30-60 words each; 12-16 per crowdworker	None	N = 600 US-representative sample via Lucid
Hospitality			
Labeling task 2: Dating	1,000 self-presentations from OkCupid and 1,000 generated by GPT-3; 60-90 words; 12 per crowdworker	None	N = 350 gender-balanced sample via Prolific
-------------------------	---	------	---
Labeling task 3: Professional	1,000 self-presentations from Guru and 1,000 generated by GPT-3; 60-90 words each; 12 per crowdworker	None	N = 350 gender-balanced sample via Prolific

Table S2: Self-presentation examples

Context	Source	Example
Hospitality	Human	My family has lived in DC for the past several years. Some of our favorite things about living on Capitol Hill are running through the neighborhood, exploring all the museums and exhibits that are walking distance from our home, and having a variety of great food offerings only steps away.
Hospitality	Generated (GPT-2)	A teacher and young entrepreneur, I love to ski and travel. My wife & I have lived in Vermont for the past 10 years and love the beauty and the snow that we get to ski during the summer.
Hospitality	Generated (GPT-2) & optimized (regression)	My husband and I have lived in Denver for 20 years. A few summers ago we visited my two brothers who live elsewhere so we decided to make our home available for others to enjoy as well. We love traveling in Europe, South America and anywhere new! Welcome to your home away from home.
Dating	Human	i'm an elementary school social worker and find my job both fulfilling and frustrating. an la native, i've also lived in the midwest and new england. i've been in sf for about 6 years now and love the people, politics, and food here. but, i do miss having seasons and look forward to my annual vacations back in the midwest, which generally involve lounging on a lake and drinking bell's beer. i enjoy being fit, active, and healthy, though i do eat ice cream for dinner on occasion.
Dating	Generated (GPT-3)	i just moved to the city last august and really don't know many people here yet. i'm interested in hanging out and maybe even finding someone special. i would love to be able to spend time together without any drama and want to get to know each other better. i'd love to find someone that i can share all of these exciting things in life with like art galleries, theatre, dinner, etc...
Dating	Generated (GPT-3) & optimized (GPT-2)	hey i moved to sf about 2 years ago, it's such a great city..i like to explore the city, always trying to find new hangouts and food... i've travelled a lot around the world and would love to travel more. i'm easy going and down to earth, i know what i want in life and am working towards my goals. message me if you want to know more :)
Professional	Human	I have 19 years of journalism experience. My work has appeared in daily and weekly newspapers, international trade magazines and textbooks. I also have worked in broadcast news, and my reporting has been picked up by the Associated Press. For six years, my...
interviews focused on C-level execs at Fortune 500 power companies, tech startups and government. In 2015, I became managing editor of a publication in the petroleum and fluid handling equipment industry.

My name is Gary Stauch and I have been in the computer and electronics business for over 30 years. I have a A.S. in electronics, a B.S. in computer science and I am a registered professional engineer in Texas. In addition to my own company, I have worked for several others in the design and deployment of large scale network infrastructure in the data center and enterprise server market. I have designed and developed server platforms, workstations, servers, switches, routers and other devices that are part of large scale networks.

I am a mother of three and a grandmother of two. I live in beautiful Iowa and have been here all my life. I enjoy doing different things but I am a master at none. I love to tell stories and make people smile with laughter. I am very well at reading people and knowing what to do to get the job done. I am very good at multi-tasking. I am very organized and very well at using my time.

Table S3: Regression coefficients predicting the accuracy of a judgment based on treatment, social context, and participant demographics. No group performed much above chance level.

Dependent variable:	Likelihood of accurate assessment OR (95% CIs)
Context: Dating profiles	0.974 (0.882, 1.065)
Context: Professional profiles	0.926 (0.845, 1.007)
Treatment: Feedback	1.038 (0.966, 1.110)
Treatment: Incentives	1.022 (0.944, 1.100)
Age	**1.002** (1.001, 1.003)
Gender: Female	1.002 (0.967, 1.036)
Gender: Non-binary	1.010 (0.834, 1.186)
Race: African American	0.959 (0.895, 1.022)
Race: Asian	1.055 (0.976, 1.134)
Race: Hispanic	1.005 (0.940, 1.069)
Race: Other	0.973 (0.887, 1.059)
Level of education	**0.986** (0.976, 0.996)
Technical knowledge	1.006 (0.982, 1.030)
Rating: Time taken	1.000 (1.000, 1.001)
Profile: Word count	1.000 (0.998, 1.002)
Table S4. Themes in participants’ explanations of why they thought a self-presentation was human or generated language. N = 800, tile areas correspond to theme prevalence reported in brackets. Heuristics are classified by whether they refer to the content (blue), tone (green), grammar (gray), or form (red) of a self-presentation. Lighter tiles show cue that were associated with generated language.

Table S5: Examples themes and codes in participants’ explanations of judgments

Category	Code	Freq.	Example
Content cues for AI	Nonsensical content	7%	“travel here from around the world' in third sentence doesn't make sense”
Content cues for AI	Generic content	6%	“seems just a bit to generic and a bit random”
Content cues for AI	Unlikely content	4%	“A full time manager at a nuclear plant doesn't travel frequently enough to care about hotel amenities.”
Content cues for Humanity	Specific content	14%	“How detailed descriptions were”
Content cues for Humanity	Family and biography	6%	I determine this is a person because he says him and his wife and son travel and go places on there free time”
Feature Name for Humanity	Consistent	3%	“Based primarily on the content, and whether each part of the statement made sense logically and thematically with the rest.”
---------------------------	------------	----	---
Form cues for AI	Repetitive	2%	“the repetition of the sentences make the whole thing sound lifeless and robotic.”
Form cues for AI	Template-like	2%	“I looked for a stock template response for AI, or for signs of a disjointed copy and paste from real user statements.”
Grammar cues for AI	Errors	7%	“If things are worded incorrectly.”
Grammar cues for AI	Unusual punctuation	7%	“There should be a comma after ‘I’m Kellie’”
Grammar cues for Humanity	Errors	5%	“Believe there was a grammar error where it should have been knowledgeable”
Grammar cues for Humanity	1st person speech	4%	“Using I, me, we language”
Grammar cues for Humanity	Good grammar	3%	“The English is good, but not great. It possibly is written by someone who is ESL.”
Grammar cues for Humanity	Rare words	3%	“Certain words that were unusual.”
Tone cues for AI	Strange and unpersonal	6%	“The personal touch is very unnatural sounding.”
Tone cues for AI	Monotonous	3%	“most people either put in little or more thought and AI just feels like a perfect monotone read”
Tone cues for Humanity	Genuinely personal	10%	“one can have a few replies per question and then have the AI Place together; but this isn’t random.. it is Genuine”
Tone cues for Humanity	Warm and welcoming	6%	“Its how the phrase comes across, An AI Having Emotion…”

Table S7: Overview of language features and their correlations with participants’ judgments.

Feature Name (manual labels)	Mean	SD.	Min	Max	Cor. with ratings	Cor. with source	
Nonsensical	0.117	0.233	0	1	0.086	0.114	
Category	Value1	Value2	Count1	Value3	Value4	Value5	
-------------------------	--------	--------	--------	--------	--------	--------	
Repetitive (manual labels)	0.099	0.222	0	1	0.127	0.057	
Grammatical issues (manual)	0.172	0.281	0	1	-0.086	0.057	
LIWC Achieve	2.325	2.535	0	17.72	0.037	-0.009	
LIWC Acquire	0.492	0.941	0	9.72	-0.012	0.01	
LIWC Adjective	6.968	3.797	0	30.95	0.029	-0.007	
LIWC Adverb	3.898	3.038	0	22.22	-0.094	0.023	
LIWC Affect	7.368	4.983	0	34.48	0.028	0.024	
LIWC Affiliation	3.15	4.238	0	25.81	0.033	0.032	
LIWC Allnone	0.854	1.374	0	12.9	0.017	0.001	
LIWC Allpunc	17.037	8.73	0	257.14	-0.009	-0.046	
LIWC Allure	9.614	4.967	0	32.35	-0.056	0.09	
LIWC Analytic	56.357	27.358	1	99	0.098	-0.051	
LIWC Apostro	1.75	2.249	0	21.67	-0.109	0.03	
LIWC Article	5.938	3.066	0	20.45	0.013	0.088	
LIWC Assent	0.035	0.259	0	8.82	-0.047	-0.013	
LIWC Attention	0.615	1.259	0	10.64	0.003	0.019	
LIWC Auditory	0.336	0.976	0	11.54	-0.011	-0.036	
LIWC	Total	Mean	N	Mean	Lower	Upper	
--------	-------	------	---	------	-------	-------	
Authentic	72.388	30.232	1	99	-0.197	0.031	
Auxverb	7.599	3.585	0	25	-0.077	0.112	
Bigwords	20.104	8.673	0	68.42	0.123	-0.128	
Cause	0.94	1.367	0	9.52	0.033	-0.014	
Certitude	0.35	0.89	0	9.3	-0.038	-0.01	
Clout	33.423	35.196	1	99	0.162	0.01	
Cognition	8.361	5.307	0	36.67	-0.012	-0.011	
Cogproc	7.457	5.005	0	36.67	-0.017	-0.01	
Comm	1.236	1.758	0	17.65	-0.035	-0.011	
Comma	5.566	4.722	0	42.11	0.024	-0.075	
Conflict	0.033	0.248	0	5	-0.02	-0.019	
Conj	8.083	3.071	0	25.3	-0.033	0.055	
Conversation	0.24	0.801	0	21.05	-0.089	-0.026	
Culture	0.988	1.961	0	19.05	0.06	-0.02	
Curiosity	0.983	1.601	0	12.5	-0.007	0.022	
Death	0.02	0.19	0	3.61	-0.007	-0.012	
Det	11.627	4.017	0	27.66	-0.021	0.06	
LIWC							
-------	---	---	---	---	---		
LIWC Dic	88.99	6.611	36.84	100	-0.092		
LIWC Differ	2.054	2.199	0	14.71	-0.04		
LIWC Discrep	1.208	1.687	0	12.2	-0.005		
LIWC Drives	6.244	4.802	0	29.41	0.069		
LIWC Emo Anger	0.026	0.233	0	5.88	-0.022		
LIWC Emo Anx	0.033	0.277	0	8.22	-0.015		
LIWC Emo Neg	0.132	0.56	0	9.09	-0.032		
LIWC Emo Pos	2.502	2.662	0	17.65	-0.012		
LIWC Emo Sad	0.016	0.173	0	5.08	0.023		
LIWC Emotion	2.679	2.747	0	20.59	-0.018		
LIWC Ethnicity	0.122	0.675	0	16.39	0.002		
LIWC Exclam	0.76	1.68	0	26.58	-0.007		
LIWC Family	0.602	1.465	0	12.9	-0.083		
LIWC Fatigue	0.014	0.164	0	4	-0.022		
LIWC Feeling	0.267	0.738	0	6.67	0.018		
LIWC Female	0.426	1.197	0	19.35	-0.008		
LIWC Filler	0.005	0.098	0	4.11	-0.015		
LIWC Focusfuture	0.919	1.624	0	16.67	0.022	-0.001	
LIWC Focuspast	2.345	2.636	0	15.38	-0.111	0.008	
LIWC Focuspresent	5.2	2.984	0	24.14	0.003	0.072	
LIWC Food	0.737	1.657	0	19.05	-0.01	0.009	
LIWC Friend	0.466	1.053	0	14.29	0.025	0.039	
LIWC Fulfill	0.153	0.527	0	5.56	0.036	-0.017	
LIWC Function	51.71	8.185	1.32	79.41	-0.129	0.162	
LIWC Health	0.31	1.037	0	17.86	-0.006	-0.01	
LIWC Home	0.721	1.531	0	22.86	0.021	-0.007	
LIWC I me	7.962	4.525	0	24.39	-0.212	0.031	
LIWC Illness	0.024	0.249	0	6.25	0.019	-0.026	
LIWC Insight	1.674	1.994	0	15	0.022	-0.029	
LIWC Ipron	2.301	2.483	0	22.06	-0.005	0.029	
LIWC Lack	0.051	0.381	0	6.9	-0.003	-0.021	
LIWC Leisure	1.975	2.788	0	19.35	-0.043	-0.004	
LIWC Lifestyle	8.156	5.838	0	40	0.025	-0.013	
LIWC Linguistic	66.286	9.102	6.58	91.18	-0.122	0.156	
LIWC Category	Value1	Value2	Value3	Value4	Value5		
-----------------	--------	--------	--------	--------	--------		
LIWC Male	0.572	1.223	0	15.69	-0.004	0.009	
LIWC Memory	0.031	0.259	0	4.76	0.02	-0.021	
LIWC Mental	0.022	0.246	0	8	-0.022	0.011	
LIWC Money	1.089	2.075	0	20.51	0.065	-0.012	
LIWC Moral	0.204	0.69	0	8.11	-0.016	-0.04	
LIWC Motion	2.131	2.293	0	16.13	-0.032	0.018	
LIWC Need	0.282	0.86	0	8.86	0.022	-0.009	
LIWC Negate	0.521	1.082	0	12.5	-0.057	-0.019	
LIWC Netspeak	0.184	0.686	0	21.05	-0.082	-0.028	
LIWC Nonflu	0.022	0.196	0	4.35	-0.022	0.003	
LIWC Number	1.364	1.965	0	27.27	-0.031	-0.026	
LIWC Otherp	1.901	3.802	0	163.77	0.014	-0.043	
LIWC Perception	11.3	5.608	0	43.24	-0.021	0.016	
LIWC Period	7.001	4.89	0	245.71	0.003	0.019	
LIWC Physical	1.785	2.432	0	23.81	-0.022	-0.006	
LIWC Polite	0.38	0.995	0	10	0.043	-0.044	
LIWC Politic	0.185	0.802	0	13.64	0.031	-0.005	
LIWC	Mean	Std Dev	Min	Median	Max	Skew	Kurtosis
------------	------	---------	-----	--------	-----	------	----------
LIWC Power	0.855	1.535	0	15.66	0.073	-0.054	
LIWC Ppron	11.167	4.369	0	27.91	-0.133	0.064	
LIWC Prep	13.841	4.042	0	29.51	-0.013	0.035	
LIWC Pronoun	13.468	5.147	0	32.65	-0.115	0.068	
LIWC Prosocial	0.887	1.507	0	13.33	0.089	-0.019	
LIWC Qmark	0.061	0.431	0	13.24	-0.016	-0.002	
LIWC Quantity	3.614	2.857	0	18.82	-0.067	-0.018	
LIWC Relig	0.085	0.561	0	17.65	-0.001	-0.029	
LIWC Reward	0.228	0.682	0	6.67	0.043	-0.012	
LIWC Risk	0.094	0.432	0	7.69	0.028	-0.045	
LIWC Sexual	0.026	0.246	0	7.81	-0.032	-0.041	
LIWC Shehe	0.131	0.767	0	13.89	0.08	-0.005	
LIWC Socbehav	4.371	3.262	0	23.33	0.032	-0.019	
LIWC Social	11.563	6.541	0	48.72	0.074	0.028	
LIWC Socrefs	6.542	5.332	0	36.17	0.07	0.045	
LIWC Space	7.688	4.578	0	30.3	-0.016	0.02	
LIWC Substances	0.084	0.465	0	10.2	0.019	0.018	
LIWC	Value1	Value2	Value3	Value4	Value5	Value6	
--------------	--------	--------	--------	--------	--------	--------	
LIWC Swear	0.025	0.213	0	4.23	-0.058	-0.02	
LIWC Tech	0.682	1.653	0	19.05	0.055	-0.007	
LIWC Tentat	1.583	2.181	0	15.79	-0.041	0.009	
LIWC They	0.283	0.863	0	10	0.035	0.024	
LIWC Time	3.959	2.977	0	24.39	-0.088	-0.01	
LIWC Tone	79.83	26.516	1	99	0	0.03	
LIWC Tone Neg	0.318	0.921	0	9.38	-0.043	-0.045	
LIWC Tone Pos	6.986	4.917	0	31.03	0.039	0.034	
LIWC Verb	15.177	5.054	0	36	-0.09	0.119	
LIWC Visual	0.775	1.351	0	10.81	0.009	0.001	
LIWC Want	0.321	0.829	0	8.99	-0.001	-0.007	
LIWC Wordcount	60.942	17.212	28	97	-0.087	-0.006	
LIWC We	1.479	3.23	0	22.58	0.04	0.029	
LIWC Wellness	0.117	0.584	0	9.09	-0.001	-0.018	
LIWC Work	4.9	5.389	0	40	0.039	-0.006	
LIWC Words per sentence	15.624	6.985	3.47	97	0.014	-0.059	
LIWC You	0.987	1.863	0	16.67	0.082	0.009	
Part Of Speech CC	3.646	1.772	0	21	-0.042	0.056	
-------------------	--------	--------	----	------	---------	------	
Part Of Speech CD	0.668	0.998	0	16	-0.041	-0.039	
Part Of Speech DT	4.359	2.361	0	17	-0.036	0.06	
Part Of Speech EX	0.038	0.201	0	2	0.007	0.016	
Part Of Speech FW	0.019	0.167	0	7	-0.012	-0.03	
Part Of Speech IN	6.393	3.068	0	22	-0.074	-0.001	
Part Of Speech JJ	6.444	3.134	0	23	-0.021	-0.059	
Part Of Speech LS	0	0.012	0	1	-0.007	-0.012	
Part Of Speech MD	0.523	0.833	0	7	-0.011	0.021	
Part Of Speech NN	18.628	6.965	3	51	-0.024	-0.076	
Part Of Speech PD	0.048	0.229	0	2	0.001	0.031	
Part Of Speech PO	0.092	0.339	0	6	-0.007	-0.002	
Part Of Speech PR	3.171	2.373	0	20	-0.014	0.022	
Part Of Speech RB	3.026	2.459	0	20	-0.124	-0.01	
Part Of Speech RP	0.254	0.538	0	4	-0.066	0.006	
Part Of Speech SY	0.003	0.053	0	2	0.01	-0.005	
Part Of Speech TO	1.992	1.508	0	13	-0.013	0.056	
	Value1	Value2	Value3	Value4	Value5	Value6	
------------------------------	--------	--------	--------	--------	--------	--------	
Part Of Speech UH	0.011	0.11	0	3	-0.019	0	
Part Of Speech VB	11.998	4.558	0	29	-0.135	0.068	
Part Of Speech WD	0.194	0.474	0	6	0.018	0.038	
Part Of Speech WP	0.286	0.599	0	5	-0.018	0.016	
Part Of Speech WR	0.218	0.503	0	4	-0.025	0.018	
Contains List	2.25	2.125	0	26	0.024	-0.093	
Number Negations	0.165	0.449	0	5	-0.055	-0.013	
Number Of Addresses	0.003	0.053	0	1	0.005	0.021	
Number Of Names	0	0.012	0	1	0.024	0.012	
Number Of Numbers	0.783	1.559	0	30	-0.006	-0.034	
Number Of Punctuation	8.255	5.18	0	174	-0.019	-0.043	
Number Of Question Marks	0.04	0.277	0	9	-0.026	-0.005	
Number Of Symbols	0.108	1.48	0	107	0.005	-0.005	
URL Count	0.004	0.083	0	4	0.001	-0.021	
Flesch Kincaid Grade Level	7.363	3.386	0	32.9	0.088	-0.113	
Flesch Reading Ease Level	69.988	16.841	-23.45	111.78	-0.119	0.129	
Sentiment AFINN	8.642	6.309	-16	44	0.014	0.047	
Sentiment	NRC 1	NRC 2	0	0.22	-0.018	-0.032	
--------------------	--------	-------	----	------	--------	--------	
NRC Anger	0.009	0.019	0	0.22	-0.018	-0.032	
NRC Anticipation	0.077	0.054	0	0.316	-0.005	0.01	
NRC Disgust	0.007	0.017	0	0.22	0.002	-0.023	
NRC Fear	0.012	0.023	0	0.22	0.007	-0.049	
NRC Joy	0.107	0.076	0	0.5	-0.016	0.049	
NRC Negative	0.021	0.03	0	0.304	-0.012	-0.055	
NRC Positive	0.195	0.085	0	0.571	0.06	0.036	
NRC Sadness	0.017	0.026	0	0.222	-0.016	-0.014	
NRC Surprise	0.025	0.032	0	0.286	0.004	-0.012	
NRC Trust	0.093	0.062	0	0.429	0.061	-0.001	
Polarity	0.262	0.161	-0.443	1	0.025	0.018	
Subjectivity	0.51	0.148	0	1	-0.003	0.005	
Vader	0.812	0.265	-0.895	0.998	-0.021	0.015	
Lexical Diversity	0.755	0.079	0.167	1	-0.016	-0.202	
Character Count	341.203	107.151	126	705	-0.025	-0.058	
Contractions Count	1.021	1.439	0	12	-0.152	0.02	
Line Break Count	0.986	1.76	0	26	0.05	0.041	
	1.973	1.249	1	45	0.071	0.126	
--------------------------------	-------	-------	-------	-------	-------	-------	
Longest Repetition Length	16	7.546	3.737	89	0.01	-0.066	
Mean Sentence Length							
Mean Word Length	4.565	0.559	3.265	7.933	0.142	-0.157	
Number Of Exclamation Marks	0.39	0.843	0	21	-0.033	-0.03	
Number Of Unique Words	46.039	11.648	15	77	-0.113	-0.089	
Percentage Common 2-grams	0.048	0.055	0	0.385	-0.046	0.106	
Percentage Common 3-grams	0.029	0.046	0	0.375	-0.025	0.113	
Percentage Common 4-grams	0.011	0.043	0	1	-0.039	0.092	
Percentage Common Words	0.156	0.096	0	0.688	-0.04	0.12	
Percentage Rare 2-grams	0.691	0.153	0	1	0.082	-0.207	
Percentage Rare Words	0.065	0.066	0	0.529	0.069	-0.223	
Percentage Stop Words	0.476	0.075	0	0.733	-0.127	0.181	
Word Density	0.183	0.018	0.112	0.241	-0.159	0.151	
LDA Topic Vectors	Various techniques incl. structural topic models were explored but not used due to robustness and interpretability issues.						
Figure S1. Participants’ performance in identifying generated self-presentations did not change throughout the experiment. Error bars represent 95% confidence intervals for 6,000–16,000 judgments of 2,000–3,000 self-presentations per bar.

Figure S2. Participants in a separate labeling task rated AI-generated self-presentations as nonsensical and repetitive more often than human-written self-presentations. Error bars represent 95% confidence intervals for 1,898–4,704 judgments of 1,000–1,500 self-presentations per bar.