A Structure Theorem for Leibniz Homology

Jerry M. Lodder

Mathematical Sciences, Dept. 3MB
Box 30001
New Mexico State University
Las Cruces NM, 88003, U.S.A.
e-mail: jlodder@nmsu.edu

Abstract. Presented is a structure theorem for the Leibniz homology, HL_*, of an Abelian extension of a simple real Lie algebra g. As applications, results are stated for affine extensions of the classical Lie algebras $\mathfrak{sl}_n(\mathbb{R})$, $\mathfrak{so}_n(\mathbb{R})$, and $\mathfrak{sp}_n(\mathbb{R})$. Furthermore, $HL_*(\mathfrak{h})$ is calculated when \mathfrak{h} is the Lie algebra of the Poincaré group as well as the Lie algebra of the affine Lorentz group. The general theorem identifies all of these in terms of g-invariants.

Mathematics Subject Classifications (2000): 17A32, 17B56

Key Words: Leibniz Homology, Extensions of Lie Algebras, Invariant Theory.

1 Introduction

For a (semi-)simple Lie algebra g over \mathbb{R}, the Milnor-Moore theorem identifies the Lie algebra homology, $H^\text{Lie}_*(g; \mathbb{R})$, as a graded exterior algebra on the primitive elements of $H^\text{Lie}_*(g; \mathbb{R})$, i.e.,

$$H^\text{Lie}_*(g) \simeq \Lambda^*(\text{Prim}(H_*(g))),$$

where the coefficients are understood to be in the field \mathbb{R}. The algebra structure on $H^\text{Lie}_*(g)$ can be deduced from the exterior product of g-invariant cycles on the chain level, and agrees with the corresponding Pontrajagin
product induced from the Lie group \([4]\). For Leibniz homology, however, we have \(HL_n(g) = 0, n \geq 1\), for \(g\) simple with \(R\) coefficients \([8]\). Now, let \(g\) be a simple real Lie algebra, \(h\) an extension of \(g\) by an Abelian ideal \(I\):

\[
0 \longrightarrow I \longrightarrow h \longrightarrow g \longrightarrow 0
\]

Then \(g\) acts on \(I\), and this extends to a \(g\) action on \(\Lambda^*(I)\) by derivations. For any \(g\)-module \(M\), let

\[
M^g = \{m \in M \mid [g, m] = 0 \quad \forall g \in g\}
\]

denote the submodule of \(g\)-invariants. Under a mild hypothesis, we prove that

\[
HL_*(h) \simeq [\Lambda^*(I)]^g \otimes T(K_*)
\]

where

\[
K_* = \text{Ker}(H^{Lie}_*(I; h)^g \to H^{Lie}_{*+1}(h))
\]

and \(T(K_*) = \sum_{n \geq 0} K_*^{\otimes n}\) is the tensor algebra over \(R\). Above, \(H^{Lie}_*(I; h)\) denotes the Lie algebra homology of \(I\) with coefficients in \(h\), and the map \(H^{Lie}_*(I; h) \to H^{Lie}_{*+1}(h)\) is the composition

\[
H^{Lie}_*(I; h) \xrightarrow{j_*} H^{Lie}_*(h; h) \xrightarrow{\pi_*} H^{Lie}_{*+1}(h),
\]

where \(j_*\) is induced by the inclusion of Lie algebras \(j : I \hookrightarrow h\), and \(\pi_*\) is induced by the projection of chain complexes

\[
\pi : h \otimes h^{\wedge n} \to h^{\wedge (n+1)}
\]

\[
\pi(h_0 \otimes h_1 \wedge h_1 \wedge \ldots \wedge h_n) = h_0 \wedge h_1 \wedge h_1 \wedge \ldots \wedge h_n.
\]

Of course, \(K_*\) is computed from the module of \(g\)-invariants, beginning with \(H^{Lie}_*(I; h)^g\) as indicated above.

The main theorem is easily applied when \(g\) is a classical Lie algebra and \(h\) is an affine extension of \(g\). In the final section we state the results for \(g\) being \(\mathfrak{sl}_n(R)\), \(\mathfrak{so}_n(R)\), \(n\) odd or even, and \(I = R^n\), whereby \(g\) acts on \(I\) via matrix multiplication on vectors, which is often called the standard representation. For the (special) orthogonal Lie algebra, \(\mathfrak{so}_n(R)\), the general theorem agrees with calculations of Biyogmam \([1]\). When \(g = \mathfrak{sp}_n(R)\) and \(I = R^{2n}\), we recover the author's previous result \([2]\). Additionally, \(HL_*(h)\) is computed when \(h\) is the Lie algebra of the Poincaré group and the Lie algebra of the affine Lorentz group.
2 Preliminaries on Lie Algebra Homology

For any Lie algebra \(g \) over a ring \(k \), the Lie algebra homology of \(g \), written \(H^\text{Lie}_*(g; k) \), is the homology of the chain complex \(\Lambda^*(g) \), namely

\[
egin{array}{ccccccc}
0 & \leftarrow & g & \leftarrow & g \wedge 2 & \leftarrow & \cdots & \leftarrow & g \wedge (n-1) & \leftarrow & g \wedge n & \leftarrow & \cdots,
\end{array}
\]

where

\[
d(g_1 \wedge g_2 \wedge \cdots \wedge g_n) = \sum_{1 \leq i<j \leq n} (-1)^j (g_1 \wedge \cdots \wedge g_{i-1} \wedge [g_i; g_j] \wedge g_{i+1} \wedge \cdots \wedge g_n).
\]

In this paper \(H^\text{Lie}_*(g) \) denotes homology with real coefficients, where \(k = \mathbb{R} \). Lie algebra homology with coefficients in the adjoint representation, \(H^\text{Lie}_*(g; g) \), is the homology of the chain complex \(g \otimes \Lambda^*(g) \), i.e.,

\[
egin{array}{ccccccc}
g & \leftarrow & g \otimes g & \leftarrow & g \otimes g \wedge 2 & \leftarrow & \cdots & \leftarrow & g \otimes g \wedge (n-1) & \leftarrow & g \otimes g \wedge n & \leftarrow & \cdots,
\end{array}
\]

where

\[
d(g_1 \otimes g_2 \wedge g_3 \wedge \cdots \wedge g_{n+1}) = \sum_{i=2}^{n+1} (-1)^i ([g_1, g_i] \otimes g_2 \wedge \cdots \wedge \hat{g}_i \wedge \cdots \wedge g_{n+1}) + \sum_{2 \leq i<j \leq n+1} (-1)^j (g_1 \otimes g_2 \wedge \cdots \wedge g_i \wedge g_{i+1} \wedge g_j \wedge \cdots \wedge g_{n+1} \wedge \cdots \wedge g_{n+1}).
\]

The canonical projection \(\pi : g \otimes \Lambda^*(g) \to \Lambda^{*+1}(g) \) given by \(g \otimes g \wedge n \to g \wedge (n+1) \) is a map of chain complexes, and induces a \(k \)-linear map on homology

\[
\pi_* : H^\text{Lie}_n(g; g) \to H^\text{Lie}_{n+1}(g; k).
\]

Let \(HR_n(g) \) denote the homology of the complex

\[
CR_n(g) = (\text{Ker } \pi)_n[1] = \text{Ker } [g \otimes g \wedge (n+1) \to g \wedge (n+2)], \quad n \geq 0.
\]

There is a resulting long exact sequence

\[
\cdots \xrightarrow{\delta^\text{Lie}_{n+1}} HR_{n-1}(g) \xrightarrow{\delta^\text{Lie}_n} H^\text{Lie}_n(g; g) \xrightarrow{\delta^\text{Lie}_{n+1}} H^\text{Lie}_{n+1}(g) \xrightarrow{\delta^\text{Lie}_n} \cdots
\]

\[
\cdots \xrightarrow{\delta^\text{Lie}_0} HR_0(g) \xrightarrow{\delta^\text{Lie}_1} H^\text{Lie}_1(g; g) \xrightarrow{\delta^\text{Lie}_2} H^\text{Lie}_2(g) \xrightarrow{\delta^\text{Lie}_1} \cdots
\]

\[
0 \xrightarrow{\delta^\text{Lie}_0} H^\text{Lie}_0(g; g) \xrightarrow{\delta^\text{Lie}_1} H^\text{Lie}_1(g) \xrightarrow{\delta^\text{Lie}_2} 0.
\]
Now let \(g \) be a simple real Lie algebra and \(h \) an extension of \(g \) by an Abelian ideal \(I \). There is a short exact sequence of real Lie algebras

\[
0 \longrightarrow I \xrightarrow{j} h \xrightarrow{\rho} g \longrightarrow 0,
\]

where \(j : I \to h \) is an inclusion of Lie algebras, and \(\rho : h \to h/I \cong g \) is a projection of Lie algebras. For \(g \in g \) and \(a \in I \), the action of \(g \) on \(I \) can be described as

\[
[g, a] = j^{-1}([h, j(a))],
\]

where \(h \in h \) is any element with \(\rho(h) = g \). The action is well-defined.

Conversely, given any representation \(I \) of \(g \), such as the standard representation of a classical real Lie algebra, then \(h \) can be constructed as the linear span of all elements in \(g \) with all elements in \(I \). Here \(I \) is considered as an Abelian Lie algebra with \([a, b] = 0 \) for all \(a, b \in I \). Thus, in \(h \), we have

\[
[g_1 + a, g_2 + b] = [g_1, g_2] + [g_1, b] - [g_2, a]
\]

for \(g_1, g_2 \in g \).

Lemma 2.1. Let \(g \) be a simple Lie algebra over \(\mathbb{R} \), and let

\[
0 \longrightarrow I \xrightarrow{j} h \xrightarrow{\rho} g \longrightarrow 0,
\]

be an Abelian extension of \(g \). There are natural vector space isomorphisms

\[
H_*^{Lie}(h) \cong [\Lambda^*(I)]^h \otimes H_*^{Lie}(g) \quad (2.1)
\]

\[
H_*^{Lie}(h; h) \cong [H_*^{Lie}(I; h)]^h \otimes H_*^{Lie}(g). \quad (2.2)
\]

Proof. Apply the homological version of the Hochschild-Serre spectral sequence to the subalgebra \(g \) of \(h \) \([7]\). Then

\[
H_*^{Lie}(h) \cong H_*^{Lie}(I)^h \otimes H_*^{Lie}(g).
\]

Since \(I \) is Abelian, \(H_*^{Lie}(I)^h = [\Lambda^*(I)]^h \), and isomorphism (2.1) follows. The spectral sequence yields isomorphism (2.2) directly. Note that, since \(I \) acts trivially on \(H_*^{Lie}(I; h) \), we have

\[
H_*^{Lie}(I; h)^h = H_*^{Lie}(I; h)^h
\]

as well, yielding

\[
H_*^{Lie}(h; h) \cong [H_*^{Lie}(I; h)]^h \otimes H_*^{Lie}(g).
\]

Compare with Hochschild and Serre \([3]\). \(\square \)
The natural inclusion \(\mathfrak{g} \hookrightarrow \mathfrak{h} \) of Lie algebras leads to a map of long exact sequences

\[
\delta^{\text{Lie}} : H^r_n(\mathfrak{g}) \rightarrow H^r_{n-1}(\mathfrak{g}; \mathfrak{g}) \rightarrow H^r_n(\mathfrak{g})
\]

where \(\delta^{\text{Lie}} \) is the connecting homomorphism. For \(\mathfrak{g} \) simple, \(H^1_{n-1}(\mathfrak{g}; \mathfrak{g}) = 0 \), \(n \geq 1 \) [2], and

\[
\delta^{\text{Lie}} : H^r_n(\mathfrak{g}) \rightarrow H^{r-1}_{n-3}(\mathfrak{g})
\]

is an isomorphism for \(n \geq 3 \). Note that \(H^1_{n-1}(\mathfrak{g}; \mathfrak{g}) \simeq 0 \) and \(H^2_{n-1}(\mathfrak{g}) \simeq 0 \). The inclusion \(j : I \hookrightarrow \mathfrak{h} \) is \(\mathfrak{g} \)-equivariant and induces an endomorphism

\[
H^r_n(I; \mathfrak{h})^g \xrightarrow{j_*} H^r_n(\mathfrak{h}; \mathfrak{h})^g = H^r_n(\mathfrak{h}; \mathfrak{h}).
\]

Recall that every element of \(H^r_n(\mathfrak{h}; \mathfrak{h}) \) can in fact be represented by a \(\mathfrak{g} \)-invariant cycle at the chain level. Additionally, all elements of \(H^r_n(I; \mathfrak{h})^g \) can be be represented by \(\mathfrak{g} \)-invariant cycles, although in general \(H^r_n(I; \mathfrak{h})^g \) is not isomorphic to \(H^r_n(I; \mathfrak{h}) \). Let \(K_n \) be the kernel of the composition

\[
\pi_* \circ j_* : H^r_n(I; \mathfrak{h})^g \xrightarrow{j_*} H^r_n(\mathfrak{h}; \mathfrak{h}) \xrightarrow{\pi_*} H^r_{n+1}(\mathfrak{h}),
\]

\[
K_n = \text{Ker} [H^r_n(I; \mathfrak{h})^g \rightarrow H^r_{n+1}(\mathfrak{h})], \quad n \geq 0.
\]

Theorem 2.2. With \(I, \mathfrak{h} \) and \(\mathfrak{g} \) as in Lemma (2.1), we have

\[
HR^n(\mathfrak{h}) \simeq \delta^{\text{Lie}}[H^r_{n+3}(\mathfrak{g})] \oplus \sum_{i=0}^{n+1} K_{n+1-i} \otimes H^r_{i}(\mathfrak{g}), \quad n \geq 0.
\]

Proof. The proof follows from the long exact sequence relating \(HR^r(\mathfrak{h}) \), \(H^r_{n+1}(\mathfrak{h}; \mathfrak{h}) \) and \(H^r_{n+2}(\mathfrak{h}) \) together with a specific knowledge of the generators of the latter two homology groups gleaned from Lemma (2.1).

Note that \(H^r_n(I; \mathfrak{h})^g \) contains \(\Lambda^{n+1}(I)^g \) as a direct summand, induced by a \(\mathfrak{g} \)-equivariant chain map

\[
\zeta : \Lambda^{n+1}(I) \rightarrow \mathfrak{h} \otimes I^{\wedge n}
\]

\[
\zeta(a_0 \wedge a_1 \wedge \ldots \wedge a_n) = \frac{1}{n+1} \sum_{i=0}^{n} (-1)^i a_i \otimes a_0 \wedge a_1 \wedge \ldots \hat{a}_i \ldots \wedge a_n.
\]
where \(a_i \in I \). Then

\[
\zeta_* : H_{n+1}^{\text{Lie}}(I)^\theta = \Lambda^{n+1}(I)^\theta \to H_n^{\text{Lie}}(I; h)^\theta
\]

is an inclusion, since the composition

\[
\pi \circ \zeta : \Lambda^{n+1}(I) \to h \otimes I^{\wedge n} \to h^{\wedge(n+1)}
\]

is the identity on \(\Lambda^{n+1}(I) \). Let \(\bar{\Lambda}^*(I)^\theta = \sum_{k \geq 1} \Lambda^k(I)^\theta \). Thus, the morphism

\[
\pi_* : H_*^{\text{Lie}}(h; h) \to H_{*+1}^{\text{Lie}}(h)
\]

induces a surjection

\[
H_*^{\text{Lie}}(h; h) \to \bar{\Lambda}^*(I)^\theta \otimes H_*^{\text{Lie}}(g)
\]

with kernel

\[
\sum_{n \geq 0} \sum_{i=0}^{n+1} K_{n+1-i} \otimes H_i^{\text{Lie}}(g).
\]

There is also an inclusion \(i_* : H_n^{\text{Lie}}(g) \to H_n^{\text{Lie}}(h) \), and it follows that \(H_{n+3}^{\text{Lie}}(g) \) maps isomorphically to \(i_* \circ \delta^{\text{Lie}}[H_{n+3}^{\text{Lie}}(g)] \) in the commutative square

\[
\begin{array}{ccc}
H_{n+3}^{\text{Lie}}(g) & \xrightarrow{\delta^{\text{Lie}}} & H_{n}^{\text{Lie}}(g) \\
\downarrow i_* & & \downarrow i_* \\
H_{n+3}^{\text{Lie}}(h) & \xrightarrow{\delta^{\text{Lie}}} & H_{n}^{\text{Lie}}(h)
\end{array}
\]

Recall that \(H_*^{\text{Lie}}(g; g) = 0, * \geq 0 \), for \(g \) simple.

\[\square\]

3 Leibniz Homology

Returning to the general setting of any Lie algebra \(g \) over a ring \(k \), we recall that the Leibniz homology \([5] \) of \(g \), written \(HL_*(g; k) \), is the homology of the chain complex \(T(g) : \)

\[
k \leftarrow^0 g \leftarrow^1 g \otimes g \leftarrow^2 \ldots \leftarrow^d g \otimes (n-1) \leftarrow \ldots,
\]
where
\[
d(g_1, g_2, \ldots, g_n) = \sum_{1 \leq i < j \leq n} (-1)^j (g_1, g_2, \ldots, g_{i-1}, [g_i; g_j], g_{i+1}, \ldots, g_n),
\]
and \((g_1, g_2, \ldots, g_n)\) denotes the element \(g_1 \otimes g_2 \otimes \cdots \otimes g_n \in g^\otimes n\).

The canonical projection \(\pi' : g^\otimes n \to g^\wedge n, n \geq 0\), is a map of chain complexes, \(T(g) \to \Lambda^*(g)\), and induces a \(k\)-linear map on homology
\[
HL_*(g; k) \to H^\text{Lie}_*(g; k).
\]

Letting
\[
(Ker \pi')_n[2] = \text{Ker}\ [g^\otimes(n+2) \to g^\wedge(n+2)], \quad n \geq 0,
\]
Pirashvili \[9\] defines the relative theory \(H^\text{rel}(g)\) as the homology of the complex
\[
C^\text{rel}_n(g) = (\text{Ker} \pi')_n[2],
\]
and studies the resulting long exact sequence relating Lie and Leibniz homology:
\[
\begin{align*}
\cdots & \longrightarrow H^\text{rel}_{n-2}(g) \longrightarrow HL_n(g) \longrightarrow H^\text{Lie}_n(g) \longrightarrow H^\text{rel}_{n-1}(g) \longrightarrow \\
\cdots & \longrightarrow H^\text{rel}_0(g) \longrightarrow HL_2(g) \longrightarrow H^\text{Lie}_2(g) \longrightarrow 0 \\
0 & \longrightarrow HL_1(g) \longrightarrow H^\text{Lie}_1(g) \longrightarrow 0 \\
0 & \longrightarrow HL_0(g) \longrightarrow H^\text{Lie}_0(g) \longrightarrow 0.
\end{align*}
\]

The projection \(\pi' : g^\otimes(n+1) \to g^\wedge(n+1)\) can be factored as the composition of projections
\[
g^\otimes(n+1) \longrightarrow g \otimes g^\wedge n \longrightarrow g^\wedge(n+1),
\]
which leads to a natural map between exact sequences
\[
\begin{align*}
H^\text{rel}_{n-1}(g) & \longrightarrow HL_{n+1}(g) \longrightarrow H^\text{Lie}_{n+1}(g) \stackrel{\delta}{\longrightarrow} H^\text{rel}_{n-2}(g) \\
HR_{n-1}(g) & \longrightarrow H^\text{Lie}_n(g; g) \longrightarrow H^\text{Lie}_{n+1}(g) \stackrel{\delta\text{Lie}}{\longrightarrow} HR_{n-2}(g)
\end{align*}
\]
A key technique in the calculation of Leibniz homology is the Pirashvili spectral sequence [9], which converges to the relative groups H^rel_*. Consider the filtration of

$$C^\text{rel}_n(g) = \text{Ker}(g^{\otimes(n+2)} \to g^{\wedge(n+2)}), \quad n \geq 0,$$

given by

$$F^k_m(g) = g^{\otimes k} \otimes \text{Ker}(g^{\otimes(m+2)} \to g^{\wedge(m+2)}), \quad m \geq 0, \quad k \geq 0.$$

Then F^*_m is a subcomplex of F^*_m, and

$$E^0_{m,k} = F^k_m / F^k_{m-1} \approx g^k \otimes \text{Ker}(g \otimes g^{\wedge(m+1)} \to g^{\wedge(m+2)}) = g^k \otimes CR_m(g).$$

From [9], we have

$$E^2_{m,k} \approx H L_k(g) \otimes H R_m(g), \quad m \geq 0, \quad k \geq 0.$$

Lemma 3.1. Let $0 \to I \to h \to g \to 0$ be an Abelian extension of a simple real Lie algebra g. Then there is a natural injection

$$\epsilon_* : H^\text{Lie}_*(I; h)^g \to H L_{*+1}(h)$$

induced by a g-equivariant chain map

$$\epsilon_n : h \otimes \Lambda^n(I) \to h^{\otimes(n+1)}, \quad n \geq 0.$$

Proof. For $b \in h$, $a_i \in I$, $i = 1, 2, \ldots n$, define

$$\epsilon_n(b \otimes a_1 \wedge a_2 \wedge \ldots \wedge a_n) = \frac{1}{n!} \sum_{\sigma \in S_n} \text{sgn}(\sigma) b \otimes a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(n)}.$$

Since $[a_i, a_j] = 0$ for $a_i, a_j \in I$, it follows that

$$d_{\text{Lieb}} \circ \epsilon_n = \epsilon_{n-1} \circ d_{\text{Lie}}.$$

Also, ϵ_n is g-equivariant, since g acts by derivations on both $h \otimes \Lambda^n(I)$ and $h^{\otimes(n+1)}$. Thus, there is an induced map

$$\epsilon_* : H^\text{Lie}_*(I; h)^g \to H L_{*+1}(h)^g = H L_{*+1}(h).$$

8
The composition
\[\pi' \circ \epsilon_n : \mathfrak{h} \otimes \Lambda^n(I) \to \mathfrak{h}^{\otimes (n+1)} \to \mathfrak{h} \otimes \mathfrak{h}^\wedge n \]
is the identity on \(\mathfrak{h} \otimes \Lambda^n(I) \). Since \(H^\text{Lie}_* (\mathfrak{h}; \mathfrak{h}) \) contains \(H^\text{Lie}_* (I; \mathfrak{h})^g \) as a direct summand via \(H^\text{Lie}_* (I; \mathfrak{h})^g \otimes H^\text{Lie}_0 (\mathfrak{g}) \) (see Lemma (2.1)), it follows that \((\pi' \circ \epsilon)_* \) and \(\epsilon_* \) are injective.

Lemma 3.2. With \(I, \mathfrak{h}, \mathfrak{g} \) as in Lemma (3.1), there is a vector space splitting (that is a splitting of trivial \(\mathfrak{g} \)-modules)
\[H^\text{Lie}_n (I; \mathfrak{h})^g \simeq [\Lambda^{n+1}(I)]^g \oplus K_n, \]
where
\[K_n = \text{Ker}[H^\text{Lie}_n (I; \mathfrak{h})^g \to H^\text{Lie}_{n+1} (\mathfrak{h})]. \]

Proof. The proof begins with the \(\mathfrak{g} \)-equivariant chain map
\[\zeta : \Lambda^{n+1}(I) \to \mathfrak{h} \otimes I^\wedge n \]
constructed in Theorem (2.2). Recall that \(K_n \) is defined as the kernel of the composition
\[H^\text{Lie}_n (I; \mathfrak{h})^g \to H^\text{Lie}_n (\mathfrak{h}; \mathfrak{h}) \to H^\text{Lie}_{n+1} (\mathfrak{h}). \]
Note that \(H^\text{Lie}_n (\mathfrak{h}; \mathfrak{h}) \) contains \(H^\text{Lie}_n (I; \mathfrak{h})^g \) as a summand from Lemma (2.1). \(\square \)

To begin the calculation of the differentials in the Pirashvili spectral sequence converging to \(H^\text{rel}_* (\mathfrak{h}) \), first consider the spectral sequence converging to \(H^\text{rel}_* (\mathfrak{g}) \), where \(\mathfrak{g} \) is simple. We have \(H^\text{Lie}_n (\mathfrak{g}; \mathfrak{g}) = 0 \) for \(n \geq 0 \) from [2] and \(H\mathcal{L}_n (\mathfrak{g}) = 0 \) for \(n \geq 1 \) from [3]. It follows that \(\delta^\text{Lie} : H^\text{Lie}_{n+3} (\mathfrak{g}) \to H^\text{rel}_n (\mathfrak{g}) \) and \(\delta : H^\text{Lie}_{n+3} (\mathfrak{g}) \to H^\text{rel}_n (\mathfrak{g}), n \geq 0, \) are isomorphisms in the square
\[\begin{array}{ccc}
H^\text{Lie}_{n+3} (\mathfrak{g}) & \xrightarrow{\delta} & H^\text{rel}_n (\mathfrak{g}) \\
\downarrow 1 & & \downarrow 1 \\
H^\text{Lie}_{n+3} (\mathfrak{g}) & \xrightarrow{\delta^\text{Lie}} & H^\text{rel}_n (\mathfrak{g})
\end{array} \]

Lemma 3.3. In the Pirashvili spectral sequence converging to \(H^\text{rel}_* (\mathfrak{g}) \) for a simple real Lie algebra \(\mathfrak{g} \), all higher differentials
\[d^r : E^r_{m,k} \to E^r_{m-r,k+r-1}, \quad r \geq 2, \]
are zero.
Proof. Since \(E^2_{m,k} \simeq \text{HL}_k(\mathfrak{g}) \otimes \text{HR}_m(\mathfrak{g}) \), and \(\text{HL}_k(\mathfrak{g}) = 0 \) for \(k \geq 1 \), it is enough to consider

\[E^2_{m,0} \simeq \mathbf{R} \otimes \text{HR}_m(\mathfrak{g}) \simeq \delta^\text{Lie}[\text{HL}^\text{Lie}_{m+3}(\mathfrak{g})], \]

for which \(d^r[E^r_{m,0}] = 0, \ r \geq 2. \)

By naturality of the Pirashvili spectral sequence,

\[\mathcal{F}^*_m(\mathfrak{g}) \hookrightarrow \mathcal{F}^*_m(\mathfrak{h}). \]

Thus, in the spectral sequence converging to \(H^\text{rel}_*(\mathfrak{h}) \), we also have

\[d^r[\delta^\text{Lie}[\text{HL}^\text{Lie}_{m+3}(\mathfrak{g})]] = 0, \ r \geq 2. \]

Due to the recursive nature of \(H^\text{rel}_*(\mathfrak{h}) \) with \(E^2_{m,k} \simeq \text{HL}_k(\mathfrak{h}) \otimes \text{HR}_m(\mathfrak{h}) \), we calculate \(\text{HL}_n(\mathfrak{h}) \) by induction on \(n \). We have immediately

\[\text{HL}_0(\mathfrak{h}) \simeq \mathbf{R} \]
\[\text{HL}_1(\mathfrak{h}) \simeq \text{HL}^\text{Lie}_1(\mathfrak{h}) \simeq I^\mathfrak{g} \simeq \text{HL}_0(I; \mathfrak{h})^\mathfrak{h} \]
\[\text{HL}_2(\mathfrak{h}) \simeq \text{HL}^\text{Lie}_1(I; \mathfrak{h}) \simeq \text{HL}^\text{Lie}_1(I; \mathfrak{h})^\mathfrak{h}. \]

Elements in

\[\text{HL}_1(\mathfrak{h}) \otimes \text{HR}_0(\mathfrak{h}) + \text{HL}_0(\mathfrak{h}) \otimes \text{HR}_1(\mathfrak{h}) \]

determine \(\text{HL}_1^\text{rel}(\mathfrak{h}) \), which then maps to \(\text{HL}_3(\mathfrak{h}) \), etc. We now construct the differentials in the Pirashvili spectral sequence.

Lemma 3.4. In the Pirashvili spectral sequence converging to \(H^\text{rel}_*(\mathfrak{h}) \), the differential

\[d^r[E^0_{m,0}] = d^r[\text{HL}_0(\mathfrak{h}) \otimes \text{HR}_m(\mathfrak{h})] = d^r[\mathbf{R} \otimes \text{HR}_m(\mathfrak{h})] \]

is given by

\[d^r[\delta^\text{Lie}(\text{HL}^\text{Lie}_{m+3}(\mathfrak{g}))] = 0, \ r \geq 2, \]
\[d^r[K_{m+1}] = 0, \ r \geq 2, \]
\[d^{m+3-p} : K_{m+1-p} \otimes \text{HL}^\text{Lie}_p(\mathfrak{h}) \to K_{m+1-p} \otimes \delta^\text{Lie}[\text{HL}^\text{Lie}_p(\mathfrak{g})], \text{ where} \]
\[K_{m+1-p} \otimes \delta^\text{Lie}[\text{HL}^\text{Lie}_p(\mathfrak{g})] \subseteq \text{HL}_{m+2-p}(\mathfrak{h}) \otimes \text{HR}_{p-3}(\mathfrak{h}) \subseteq E^2_{p-3,m+2-p}, \]
\[d^{m+3-p}(\omega_1 \otimes \omega_2) = \omega_1 \otimes \delta(\omega_2). \]
Proof. Since elements in K_{m+1} are represented by cycles in $H^\text{Lie}_{m+1}(h; I)^g$ that map via ϵ_* to cycles in $HL_{m+2}(h)$, it follows $d^r[K_{m+1}] = 0$, $r \geq 2$.

Let $[\omega_2] \in H^\text{Lie}_p(g)$. Consider

$$\omega_2 = \sum_{i_1, i_2, \ldots, i_p} g_{i_1} \wedge g_{i_2} \wedge \ldots \wedge g_{i_p} \in g^\otimes p.$$

Now, using the homological algebra of the long exact sequence relating Leibniz and Lie-algebra homology,

$$\tilde{\omega}_2 = \sum_{i_1, i_2, \ldots, i_p} g_{i_1} \otimes g_{i_2} \otimes \ldots \otimes g_{i_p} \in g^\otimes p$$

is a chain with $\pi'(\tilde{\omega}_2) = \omega_2$ and $d(\tilde{\omega}_2) \neq 0$ in the Leibniz complex. Moreover,

$$d(\tilde{\omega}_2) \in \text{Ker}(g^\otimes (p-1) \to g^\wedge (p-1))$$

and $d(\tilde{\omega}_2)$ represents the class $\delta(\omega_2)$ in $H^\text{rel}_{p-3}(g) \simeq HR_{p-3}(g)$. Since $w_1 \in K_{m+1-p}$ is g-invariant, $[\omega_1, g] = 0$ $\forall g \in g$. Also, $\epsilon(\omega_1)$ is a g-invariant cycle representing ω_1 in $T(g)$. Thus,

$$d^{m+3-p}(\omega_1 \otimes \omega_2) = \omega_1 \otimes d(\tilde{\omega}_2) = \omega_1 \otimes \delta(\omega_2).$$

By a similar argument to that in Lemma (3.4), we have that

$$d^r[\Lambda^*(I)^g \otimes \delta^\text{Lie}(H^{\text{Lie}}_{s+3}(g))] = 0, \quad r \geq 2,$$

where

$$\Lambda^k(I)^g \otimes \delta^\text{Lie}(H^{\text{Lie}}_{m+3}(g)) \subseteq HL_k(h) \otimes HR_m(h) \subseteq E^2_{m,k}.$$

Thus, the elements in $M = \Lambda^*(I)^g \otimes \delta^\text{Lie}(H^{\text{Lie}}_{s+3}(g))$ represent absolute cycles in $H^\text{rel}_s(h)$. We claim that

$$M \subseteq \text{Ker}(H^\text{rel}_s(h) \to HL_{s+2}(h)),$$

which follows from:

Lemma 3.5. The boundary map

$$\delta : H^\text{Lie}_{s+3}(h) \to H^\text{rel}_s(h)$$

satisfies

$$\delta[\Lambda^k(I)^g \otimes H^{\text{Lie}}_{m+3}(g)] = \Lambda^k(I)^g \otimes \delta^\text{Lie}[H^{\text{Lie}}_{m+3}(g)],$$

for $k \geq 0$, $m \geq 0$.

11
Proof. The proof follows from the long exact sequence relating Lie and Leibniz homology by choosing representatives for the Lie classes \(\Lambda^k(I)^g \otimes H_{m+3}^{\text{Lie}}(g) \) at the chain level. Also, note that for \(g \) simple, \(H^1_{\text{Lie}}(g) = 0 \) and \(H^2_{\text{Lie}}(g) = 0 \).

Now let

\[
\omega_1 \otimes (\omega_2 \otimes \omega_3) \in \Lambda^k(I)^g \otimes (K_{m+1-p} \otimes H_p^{\text{Lie}}(g)) \subseteq E^2_{m,k}.
\]

Then, using the \(g \)-invariance of elements in \(\Lambda^* (I)^g \) and \(K_* \), as well as the \(h \)-invariance of \(\Lambda^* (I)^g \), we have

\[
d^{m+3-p} (\omega_1 \otimes \omega_2 \otimes \omega_3) = (\omega_1 \otimes \omega_2) \otimes \delta(\omega_3) \in
(\Lambda^k(I)^g \otimes K_{m+1-p}) \otimes \delta^{\text{Lie}}[H_p^{\text{Lie}}(g)]
\subseteq HL_{k+m+2-p}(h) \otimes HR_{p-3}(g) \subseteq E^2_{p-3,k+m+2-p}.
\]

For the remainder of this section, we suppose:

Hypothesis A: Every element of \(K_n \) has a \(h \)-invariant representative in \(HL_{n+1}(h) \) at the chain level.

Since \(I \) acts trivially on \(H^1_{\text{Lie}}(I; h) \), we have \(H^1_{\text{Lie}}(I; h)^g = H^1_{\text{Lie}}(I; h)^h \), and Hypothesis A is reasonable. The end of this section offers a canonical construction of \(h \)-invariants.

Theorem 3.6. Let \(0 \to I \to h \to g \to 0 \) be an Abelian extension of a simple real Lie algebra \(g \). Then, under Hypothesis A, we have

\[
HL_* (h) \simeq \Lambda^* (I)^g \otimes T(K_*),
\]

where \(T(K_*) = \sum_{n \geq 0} K_*^{\otimes n} \) denotes the tensor algebra, and

\[
K_n = \text{Ker}[H^1_{\text{Lie}}(I; h)^g \to H^1_{\text{Lie}}(g)].
\]

Proof. It follows by induction on \(\ell \) that for certain \(r \)

\[
d^r [K_*^{\otimes \ell} \otimes H^1_{\text{Lie}}(g)] \to K_*^{\otimes \ell} \otimes \delta^{\text{Lie}}[H^1_{\text{Lie}}(g)]
\]

is given by

\[
d^r (\omega_1 \otimes \omega_2 \otimes \ldots \otimes \omega_\ell \otimes v) = \omega_1 \otimes \omega_2 \otimes \ldots \otimes \omega_\ell \otimes \delta(v),
\]

12
where $\omega_i \in K_*$ and $v \in H_*^{\text{Lie}}(g)$. By a similar induction argument, we have

$$d''[\Lambda^*(I^g) \otimes K_*^{\otimes \ell} \otimes H_*^{\text{Lie}}(g)] \to \Lambda^*(I^g) \otimes K_*^{\otimes \ell} \otimes \delta^{\text{Lie}}[H_*^{\text{Lie}}(g)]$$

is given by

$$d''(u \otimes \omega_1 \otimes \omega_2 \otimes \ldots \otimes \omega_\ell \otimes v) = u \otimes \omega_1 \otimes \ldots \otimes \omega_\ell \otimes \delta(v),$$

where $u \in \Lambda^*(I^g)$, $\omega_i \in K_*$ and $v \in H_*^{\text{Lie}}(g)$. The only absolute cycles in the Pirashvili spectral sequence are elements of

$$\Lambda^*(I^g) \otimes K_*^{\otimes \ell},$$

which are not in $\text{Im}\, \delta : H_{*+3}^{\text{Lie}}(h) \to H_*^{\text{rel}}(h)$. By induction on ℓ,

$$H_{\ell}^{\text{rel}}(h) \simeq \Lambda^*(I^g) \otimes T(K_*).$$

We now study elements in K_n and outline certain canonical constructions to produce h-invariants. Recall that $H_*^{\text{Lie}}(I; h)^g$ is the homology of

$$h^g \leftarrow (h \otimes I)^g \leftarrow (h \otimes I^2)^g \leftarrow \ldots \leftarrow (h \otimes I^n)^g \leftarrow (h \otimes I^{n+1})^g.$$

Note that as g-modules, $h \simeq g \oplus I$ and

$$h \otimes I^{\otimes n} \simeq (g \otimes I^{\otimes n}) \oplus (I \otimes I^{\otimes n}).$$

Thus, $(h \otimes I^{\otimes n})^g \simeq (g \otimes I^{\otimes n})^g \oplus (I \otimes I^{\otimes n})^g$. Any element in K_n having a representative in $(I \otimes I^{\otimes n})^g$ is necessarily an h-invariant at the chain level, since I acts trivially on $(I \otimes I^{\otimes n})^g$. Of course, all elements of $(I \otimes I^{\otimes n})^g$ are cycles.

Lemma 3.7. Any non-zero element in K_n having a representative in

$$(g \otimes I^{\otimes n})^g$$

is determined by an injective map of g-modules, $\alpha : g \to I^{\otimes n}$, where g acts on itself via the adjoint action.
Proof. Let $B : \mathfrak{g} \xrightarrow{\simeq} \mathfrak{g}^* = \text{Hom}_\mathbb{R}(\mathfrak{g}, \mathbb{R})$ be the isomorphism from a simple Lie algebra to its dual induced by the Killing form. Then the composition
\[
\begin{array}{c}
g \otimes I^{\wedge n} \xrightarrow{B \otimes 1} \mathfrak{g}^* \otimes I^{\wedge n} \xrightarrow{\simeq} \text{Hom}_\mathbb{R}(\mathfrak{g}, I^{\wedge n})
\end{array}
\]
is \mathfrak{g}-equivariant, and induces an isomorphism
\[
(g \otimes I^{\wedge n})^\mathfrak{g} \xrightarrow{\simeq} \text{Hom}_\mathfrak{g}(\mathfrak{g}, I^{\wedge n}).
\]
Since \mathfrak{g} is simple, a non-zero map of \mathfrak{g}-modules $\alpha : \mathfrak{g} \to I^{\wedge n}$ has no kernel, and $\mathfrak{g} \simeq \text{Im}(\alpha)$.

Consider the special case where $I \simeq \mathfrak{g}$ as \mathfrak{g}-modules, although I remains an Abelian Lie algebra. Let $\alpha : \mathfrak{g} \to I$ be a \mathfrak{g}-module isomorphism and let $B^{-1} : \mathfrak{g}^* \to \mathfrak{g}$ be the inverse of $B : \mathfrak{g} \to \mathfrak{g}^*$ in the proof of Lemma (3.7). For a vector space basis $\{b_i\}_{i=1}^n$ of \mathfrak{g}, let $\{b_i^*\}_{i=1}^n$ denote the dual basis.

Lemma 3.8. With $\alpha : \mathfrak{g} \simeq I$ as above, the balanced tensor
\[
\omega = \sum_{i=1}^n B^{-1}(b_i^*) \otimes \alpha(b_i) + \alpha(B^{-1}(b_i^*)) \otimes b_i \in \mathfrak{h} \otimes \mathfrak{h}
\]
is \mathfrak{h}-invariant.

Proof. By construction,
\[
\sum_{i=1}^n B^{-1}(b_i^*) \otimes \alpha(b_i) \in g \otimes I \hookrightarrow \mathfrak{h} \otimes \mathfrak{h}
\]
is \mathfrak{g}-invariant. Since α is an isomorphism of \mathfrak{g}-modules, it follows that
\[
\sum_{i=1}^n \alpha(B^{-1}(b_i^*)) \otimes b_i \in I \otimes \mathfrak{g} \hookrightarrow \mathfrak{h} \otimes \mathfrak{h}
\]
is also a \mathfrak{g}-invariant. Now, let $a \in I$. There is some $g_0 \in \mathfrak{g}$ with $\alpha(g_0) = a$.

14
Thus,
\[
[\omega, a] = [\omega, \alpha(g_0)] \\
= \sum_{i=1}^{n} [B^{-1}(b_i^*) \otimes \alpha(b_i), \alpha(g_0)] + [\alpha(B^{-1}(b_i^*)) \otimes b_i, \alpha(g_0)] \\
= \sum_{i=1}^{n} \alpha([B^{-1}(b_i^*), g_0]) \otimes \alpha(b_i) + \alpha(B^{-1}(b_i^*)) \otimes \alpha([b_i, g_0]) \\
= \sum_{i=1}^{n} (\alpha \otimes \alpha) ([B^{-1}(b_i^*) \otimes b_i, g_0]) = 0.
\]

Since \(\alpha : g \to I\) is an isomorphism of \(g\)-modules, it follows that if
\[
\sum_{i=1}^{n} B(b_i^*) \otimes \alpha(b_i) \in g \otimes I
\]
is a \(g\)-invariant, then \(\sum_{i=1}^{n} B(b_i^*) \otimes b_i \in g \otimes g\) is also a \(g\)-invariant. \(\square\)

4 Applications

We compute the Leibniz homology for extensions of the classical Lie algebras \(\mathfrak{sl}_n(\mathbb{R})\), \(\mathfrak{so}_n(\mathbb{R})\), and \(\mathfrak{sp}_n(\mathbb{R})\). Additionally, \(HL_*\) is calculated for the Lie algebra of the Poincaré group \(\mathbb{R}^4 \rtimes SL_2(\mathbb{C})\) and the Lie algebra of the affine Lorentz group \(\mathbb{R}^4 \rtimes SO(3,1)\). To describe a common setting for these examples, let \(g\) be a (semi-)simple real Lie algebra, and consider \(g \subseteq \mathfrak{gl}_n(\mathbb{R})\). Then \(g\) acts on \(I = \mathbb{R}^n\) via matrix multiplication on vectors in \(\mathbb{R}^n\), which is often called the standard representation. Consider
\[
\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}, \ldots, \frac{\partial}{\partial x^n}
\]
as a vector space basis for \(\mathbb{R}^n\). Then the elementary matrix with 1 in row \(i\), column \(j\), and 0s everywhere else becomes \(x_i \frac{\partial}{\partial x^j}\). In the sequel, \(h\) denotes the real Lie algebra formed via the extension
\[
0 \longrightarrow I \longrightarrow h \longrightarrow g \longrightarrow 0.
\]
Also, the element
\[
\frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \wedge \ldots \wedge \frac{\partial}{\partial x^n} \in I^\wedge n
\]
is the volume form, and often occurs as a \(g\)-invariant.
Corollary 4.1. Let \(g \) be a simple Lie algebra and \(I \) an Abelian Lie algebra, both over \(\mathbb{R} \). If \(h \simeq g \oplus I \) as Lie algebras, i.e., \(h \) is reductive, then
\[
HL_*(h) \simeq \Lambda^*(I) \otimes T(K_*),
\]
\[
K_* = \text{Ker}(I \otimes \Lambda^*(I) \to \Lambda^{*+1}(I))
\]

Proof. Since \(g \) acts trivially on \(I \), it follow that
\[
[\Lambda^*(I)]^g = \Lambda^*(I),
\]
\[
H^\text{Lie}_*(h) \simeq H^\text{Lie}_*(g) \otimes \Lambda^*(I),
\]
\[
H^\text{Lie}_*(I; h)^g \simeq I \otimes \Lambda^*(I).
\]
Thus, \(K_n = \text{Ker}(I \otimes \Lambda^n(I) \to \Lambda^{n+1}(I)) \).

By way of comparison, from [6], under the hypotheses of Corollary (4.1), we have
\[
HL_*(h) \simeq HL_*(g) \simeq HL_*(I) \simeq T(I).
\]
Thus, as vector spaces, \(\Lambda^*(I) \otimes T(K_*) \simeq T(I) \). For tensors of degree two, the above isomorphism becomes
\[
\Lambda^2(I) \oplus S^2(I) \simeq I^\otimes 2,
\]
where \(S^2(I) \) denotes the second symmetric power of \(I \).

Corollary 4.2. For \(g = \mathfrak{sl}_n(\mathbb{R}) \) and \(I = \mathbb{R}^n \) the standard representation of \(\mathfrak{sl}_n(\mathbb{R}) \), we have
\[
HL_*(h) \simeq [\Lambda^*(I)]^{\mathfrak{sl}_n(\mathbb{R})} = \langle \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \wedge \ldots \wedge \frac{\partial}{\partial x^n} \rangle.
\]

Proof. In this case there are no non-trivial \(\mathfrak{sl}_n(\mathbb{R}) \)-module maps from \(\mathfrak{sl}_n(\mathbb{R}) \) to \(I^\otimes k \). Using Lemma (3.7), we have
\[
H^\text{Lie}_*(I; h)^{\mathfrak{sl}_n(\mathbb{R})} \simeq H^\text{Lie}_*(I; I)^{\mathfrak{sl}_n(\mathbb{R})} \simeq [I \otimes \Lambda^*(I)]^{\mathfrak{sl}_n(\mathbb{R})}
\]
\[
= \langle \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \wedge \ldots \wedge \frac{\partial}{\partial x^n} \rangle.
\]
Also,
\[
H^\text{Lie}_*(h) \simeq H^\text{Lie}_*(\mathfrak{sl}_n(\mathbb{R})) \otimes [\Lambda^*(I)]^{\mathfrak{sl}_n(\mathbb{R})}
\]
\[
\simeq H^\text{Lie}_*(\mathfrak{sl}_n(\mathbb{R})) \otimes \langle \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \wedge \ldots \wedge \frac{\partial}{\partial x^n} \rangle.
\]
Thus, \(T(K_*) = \sum_{m \geq 0} K_*^{\otimes m} = \mathbb{R} \), and the corollary follows from Theorem (3.6). \qed
Corollary 4.3. Consider $g = \mathfrak{sl}_2(\mathbb{C})$ as a real Lie algebra with real vector space basis:

\[
\begin{align*}
v_1 &= x_1 \frac{\partial}{\partial x^1} + x_2 \frac{\partial}{\partial x^2} - x_3 \frac{\partial}{\partial x^3} - x_4 \frac{\partial}{\partial x^4}, \\
v_2 &= x_1 \frac{\partial}{\partial x^2} - x_2 \frac{\partial}{\partial x^1} - x_3 \frac{\partial}{\partial x^4} + x_4 \frac{\partial}{\partial x^3}, \\
v_3 &= x_1 \frac{\partial}{\partial x^3} + x_2 \frac{\partial}{\partial x^4}, \\
v_4 &= x_1 \frac{\partial}{\partial x^4} - x_2 \frac{\partial}{\partial x^3}, \\
v_5 &= x_3 \frac{\partial}{\partial x^1} + x_4 \frac{\partial}{\partial x^2}, \\
v_6 &= x_3 \frac{\partial}{\partial x^2} - x_4 \frac{\partial}{\partial x^1}.
\end{align*}
\]

For $I = \mathbb{R}^4$ the standard representation of $\mathfrak{sl}_2(\mathbb{C}) \subseteq \mathfrak{sl}_4(\mathbb{R})$, we have

\[HL_*(\mathfrak{h}) \simeq [\Lambda^* (I)]^{\mathfrak{sl}_2(\mathbb{C})}\]

Proof. Again, there are no non-trivial $\mathfrak{sl}_2(\mathbb{C})$-module maps from $\mathfrak{sl}_2(\mathbb{C})$ to $I^\wedge k$. Thus, $T(K_*) = \mathbb{R}$ in this case as well. The reader may check that $[\Lambda^2 (I)]^{\mathfrak{sl}_2(\mathbb{C})}$ has a real vector space basis given by the two elements:

\[
\frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^3} - \frac{\partial}{\partial x^2} \wedge \frac{\partial}{\partial x^4}, \quad \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^4} + \frac{\partial}{\partial x^2} \wedge \frac{\partial}{\partial x^3}.
\]

Furthermore, $[\Lambda^4 (I)]^{\mathfrak{sl}_2(\mathbb{C})}$ is a one-dimensional (real) vector space on the volume element

\[
\frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \wedge \frac{\partial}{\partial x^3} \wedge \frac{\partial}{\partial x^4}.
\]

For $k = 1, 3$, we have $[\Lambda^k (I)]^{\mathfrak{sl}_2(\mathbb{C})} = 0$. \(\square \)

Corollary 4.4. \[1\] Let $g = \mathfrak{so}_n(\mathbb{R})$, $n \geq 3$, and

\[
\alpha_{ij} = x_i \frac{\partial}{\partial x^j} - x_j \frac{\partial}{\partial x^i} \in \mathfrak{so}_n(\mathbb{R}), \quad 1 \leq i < j \leq n.
\]

For $I = \mathbb{R}^n$ the standard representation of $\mathfrak{so}_n(\mathbb{R})$, we have

\[HL_*(\mathfrak{h}) \simeq [\Lambda^* (I)]^{\mathfrak{so}_n(\mathbb{R})} \otimes T(W),\]

17
where W is the one-dimensional vector space with \mathfrak{h}-invariant basis element

$$\omega = \sum_{\sigma \in \text{Sh}_{2, n-2}} \text{sgn}(\sigma) \alpha_{\sigma(1)} \alpha_{\sigma(2)} \otimes \epsilon \left(\frac{\partial}{\partial x^{\sigma(3)}} \wedge \frac{\partial}{\partial x^{\sigma(4)}} \wedge \ldots \wedge \frac{\partial}{\partial x^{\sigma(n)}} \right)$$

$$+ (-1)^{n+1} \sum_{\sigma \in \text{Sh}_{n-2, 2}} \text{sgn}(\sigma) \epsilon \left(\frac{\partial}{\partial x^{\sigma(1)}} \wedge \frac{\partial}{\partial x^{\sigma(2)}} \wedge \ldots \wedge \frac{\partial}{\partial x^{\sigma(n-2)}} \right) \otimes \alpha_{\sigma(n-1)} \alpha_{\sigma(n)},$$

and $\epsilon : I^{\wedge(n-2)} \to I^{\otimes(n-2)} \hookrightarrow \mathfrak{h}^{\otimes(n-2)}$ is the skew-symmetrization map. Above, $\text{Sh}_{p, q}$ denotes the set of p, q shuffles in the symmetric group S_{p+q}.

Proof. There are two non-trivial $\mathfrak{so}_n(\mathbb{R})$-module maps $\mathfrak{so}_n(\mathbb{R}) \to I^{\wedge k}$ to consider

$$\rho_1 : \mathfrak{so}_n(\mathbb{R}) \to I^{\wedge 2}, \quad \rho_2 : \mathfrak{so}_n(\mathbb{R}) \to I^{\wedge(n-2)},$$

given by

$$\rho_1(\alpha_{ij}) = \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j},$$

$$\rho_2(\alpha_{ij}) = \text{sgn}(\tau) \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \wedge \ldots \wedge \frac{\partial}{\partial x^j} \ldots \wedge \frac{\partial}{\partial x^n},$$

where τ is the permutation sending

$$1, 2, \ldots, i, \ldots, j, \ldots, n \quad \text{to} \quad i, j, 1, 2, \ldots, n.$$

Now, $\sum_{i<j} \alpha_{ij} \otimes \epsilon \left(\frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j} \right)$ is not a cycle in the Leibniz complex, while

$$\lambda = \sum_{\sigma \in \text{Sh}_{2, n-2}} \text{sgn}(\sigma) \alpha_{\sigma(1)} \alpha_{\sigma(2)} \otimes \epsilon \left(\frac{\partial}{\partial x^{\sigma(3)}} \wedge \frac{\partial}{\partial x^{\sigma(4)}} \wedge \ldots \wedge \frac{\partial}{\partial x^{\sigma(n)}} \right)$$

is a cycle in $\mathfrak{h}^{\otimes(n-1)}$, and ω above is a homologous \mathfrak{h}-invariant cycle. For $\sigma \in S_n$, let

$$a(\sigma) = \sum_{i=1}^{n-2} \alpha_{\sigma(i)} \alpha_{\sigma(n-1)} \otimes \alpha_{\sigma(i)} \alpha_{\sigma(n)},$$

$$\gamma = \sum_{\sigma \in \text{Sh}_{n-2, 2}} \text{sgn}(\sigma) \epsilon \left(\frac{\partial}{\partial x^{\sigma(1)}} \wedge \frac{\partial}{\partial x^{\sigma(2)}} \wedge \ldots \wedge \frac{\partial}{\partial x^{\sigma(n-2)}} \right) \otimes a(\sigma).$$
Then in the Leibniz complex,
\[d(\gamma) = (n - 2)\beta, \]
\[\beta = (-1)^{n+1} \sum_{\sigma \in \text{Sh}_{n-2,2}} \text{sgn}(\sigma) \epsilon \left(\frac{\partial}{\partial x^{\sigma(1)}} \wedge \frac{\partial}{\partial x^{\sigma(2)}} \wedge \ldots \wedge \frac{\partial}{\partial x^{\sigma(n-2)}} \right) \otimes \alpha_{\sigma(n-1)\sigma(n)}. \]

Thus, \(\omega \) and \(\lambda \) are homologous in \(HL_* \). From [1],
\[[\Lambda^*(I)]^{so_4(R)} = \langle \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \wedge \ldots \wedge \frac{\partial}{\partial x^n} \rangle. \]

Corollary 4.5. Let \(g = so(3, 1) \) and
\[\alpha_{ij} = x_i \frac{\partial}{\partial x^j} - x_j \frac{\partial}{\partial x^i} \in so(3, 1), \quad 1 \leq i < j \leq 3, \]
\[\beta_{ij} = x_i \frac{\partial}{\partial x^j} + x_j \frac{\partial}{\partial x^i} \in so(3, 1), \quad i = 1, 2, 3, j = 4. \]

For \(I = R^4 \) the standard representation of \(so(3, 1) \), we have
\[HL_*(h) \simeq [\Lambda^*(I)]^{so(3, 1)} \otimes T(W), \]
where \(W \) is the one-dimensional vector space with \(h \)-invariant basis element
\[\omega = \alpha_{12} \otimes \left(\frac{\partial}{\partial x^3} \wedge \frac{\partial}{\partial x^4} \right) + \alpha_{13} \otimes \left(\frac{\partial}{\partial x^2} \wedge \frac{\partial}{\partial x^4} \right) + \alpha_{23} \otimes \left(\frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^4} \right) \]
\[+ \beta_{14} \otimes \left(\frac{\partial}{\partial x^2} \wedge \frac{\partial}{\partial x^3} \right) - \beta_{24} \otimes \left(\frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^3} \right) + \beta_{34} \otimes \left(\frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \right) \]
\[- \left(\frac{\partial}{\partial x^3} \wedge \frac{\partial}{\partial x^4} \right) \otimes \alpha_{12} + \left(\frac{\partial}{\partial x^2} \wedge \frac{\partial}{\partial x^4} \right) \otimes \alpha_{13} - \left(\frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^4} \right) \otimes \alpha_{23} \]
\[- \left(\frac{\partial}{\partial x^2} \wedge \frac{\partial}{\partial x^3} \right) \otimes \beta_{14} + \left(\frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^3} \right) \otimes \beta_{24} - \left(\frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \right) \otimes \beta_{34}. \]

Proof. The proof follows from identifying \(so(3, 1) \) module maps \(\rho : so(3, 1) \rightarrow I^k \) and constructing \(h \)-invariants via balanced tensors. Note that the Killing form to establish \(g \simeq g^* \) is different for \(so_4(R) \) and \(so(3, 1) \). \(\square \)

Corollary 4.6. Let \(g = sp_n(R) \) be the real symplectic Lie algebra with vector space basis given by the families:
\(x_k \frac{\partial}{\partial y}, \quad k = 1, 2, 3, \ldots, n, \)

\(y_k \frac{\partial}{\partial x}, \quad k = 1, 2, 3, \ldots, n, \)

\(x_i \frac{\partial}{\partial y} + x_j \frac{\partial}{\partial y}, \quad 1 \leq i < j \leq n, \)

\(y_i \frac{\partial}{\partial x} + y_j \frac{\partial}{\partial x}, \quad 1 \leq i < j \leq n, \)

\(y_j \frac{\partial}{\partial y} - x_i \frac{\partial}{\partial y}, \quad i = 1, 2, 3, \ldots, n, \quad j = 1, 2, 3, \ldots, n. \)

Let \(I = \mathbb{R}^{2n} \) have basis

\[
\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}, \ldots, \frac{\partial}{\partial x^n}, \frac{\partial}{\partial y^1}, \frac{\partial}{\partial y^2}, \ldots, \frac{\partial}{\partial y^n}.
\]

Then

\[
HL_*(\mathfrak{h}) \cong [\Lambda^*(I)]^{sp_n} = \Lambda^*(\omega_n),
\]

where \(\omega_n = \sum_{i=1}^{n} \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial y^i}. \)

Proof. Since there are no non-trivial \(sp_n(\mathbb{R}) \)-module maps \(sp_n(\mathbb{R}) \to I^\wedge k \), we have \(T(K_*) = \mathbb{R} \). The algebra of symplectic invariants \([\Lambda^*(I)]^{sp_n} \) is identified in another paper [7]. \(\square \)

References

[1] Biyogmam, G. R., “On the Leibniz (Co)homology of the Lie Algebra of the Euclidean Group,” *Journal of Pure and Applied Algebra*, **215** (2011), 1889–1901.

[2] Hilton, P.J., Stammbach, U., *A Course in Homological Algebra*, Springer Verlag, New York, 1971.

[3] Hochschild, G., Serre, J-P., “Cohomology of Lie Algebras,” *Annals of Math.*, **57**, 3 (1953), 591–603.

[4] Koszul, J.-L. “Homologie et cohomologie des algèbres de Lie,” *Bulletin de la Société de France*, **78** (1950), 65–127.

[5] Loday, J.-L., Pirashvili, T., “Universal enveloping algebras of Leibniz algebras and (co)-homology,” *Math. Annalen*, **296**, 1 (1993), 139–158.
[6] Loday, J-L., “Künneth-style Formula for the Homology of Leibniz Algebras,” *Math. Zeitschrift*, 221 (1996), 41–47.

[7] Lodder, J., “Lie Algebras of Hamiltonian Vector Fields and Symplectic Manifolds,” *Journal of Lie Theory*, 18 (2008) 897–914.

[8] Ntolo, P., “Homologie de Leibniz d’algèbres de Lie semi-simple,” *Comptes rendus de l’Académie des sciences* Paris, Série I, 318 (1994), 707–710.

[9] Pirashvili, T., “On Leibniz Homology,” *Annales de l’Institut Fourier*, Grenoble 44, 2 (1994), 401–411.