Supplementary Data

- Tri - all heavy: 2
- Tri - h1: 4
- Tri - h2: 6
- Tri - h3: 8
- Tetra - all heavy: 10
- Tetra - h1: 12
- Tetra - h2: 14
- Tetra - h3: 16
- Tetra - hAla: 18
- Tetra - h1h2: 20
- Tetra - h3Ala: 22
- Additional monomer hybrids: 24
- Tri-Tri - labeled: 25
- Tri-Tri - unlabeled: 27
- Tri-Tri - Donor all light: 29
- Tetra-Tri - labeled: 31
- Tetra-Tri - unlabeled: 33
- Tetra-Tri - Donor all light: 35
- Tri-Tetra - labeled: 37
- Tri-Tetra - unlabeled: 39
- Tri-Tetra - Donor all light: 41
- Tetra-Tetra - labeled: 43
- Tetra-Tetra - unlabeled: 45
- Tetra-Tetra - Donor all light: 47
Monomers

Supplementary Data 1.1: Tandem mass spectrometry analysis of the labeled disaccharide-tripeptide. The observed m/z_{obs} and calculated m/z_{calc} values of the parental ion, $[M+H]^+$, as determined in the absence of fragmentation (MS1), are indicated. The m/z_{calc} value was used to select the ion for fragmentation. The difference between the m/z_{obs} and m/z_{calc} values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcNRed), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum. In the mass spectrum, peaks differing by the loss of H\textsubscript{2}O are connected by a dashed line. The tables only contain the m/z values for the fragments containing H\textsubscript{2}O.

An interactive report of the MS2 analysis is available in Supplementary File F1.1.

Precursor ion (MS1)	m/z_{obs}	m/z_{calc}	ppm
GlcN(-Ac)-GlcNRed(-Ac)-Lac-Ala-Glu-DAP	911.475	911.475	0.3

Product ion	m/z_{obs}	m/z_{calc}	ppm	Intensity (a.u.)	Isotopologue
GlcNRed(-Ac)-Lac-Ala-Glu-DAP	699.371	699.371	0.7	7650	all heavy
GlcNRed(-Ac)-Lac-Ala-Glu	500.257	500.259	2.7	570	all heavy
Lac-Ala-Glu-DAP	485.254	485.253	-2.7	720	all heavy
Ala-Glu-DAP	410.220	410.221	3.7	3226	all heavy
GlcNRed(-Ac)-Lac-Ala	365.201	365.202	2.5	4356	all heavy
Glu-DAP	335.177	335.177	0.3	9504	all heavy
GlcNRed(-Ac)-Lac	290.158	290.158	-1.0	1835	all heavy
GlcNRed(-Ac)	215.127	215.127	0.5	229	all heavy
GlcN(-Ac)	213.110	213.111	3.7	108	all heavy
DAP	200.122	200.121	-4.1	3273	all heavy
Supplementary Data 1.2: Tandem mass spectrometry analysis of the h1-type hybrid of the disaccharide-tripeptide. The molecule is fully unlabeled except for one of the two glucosamine moieties present in GlcNAc or MurNAc leading to the presence of two isotopomers. The observed \(m/z \) \(\text{obs} \) and calculated \(m/z \) \(\text{calc} \) values of the parental ion, \([M+H]^+\), as determined in the absence of fragmentation (MS\(^1\)), are indicated. The \(m/z \) \(\text{calc} \) value was used to select the ion for fragmentation. The difference between the \(m/z \) \(\text{obs} \) and \(m/z \) \(\text{calc} \) values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN\(^\text{Red}\)), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The fragmentation led to two series of fragments specific of the isotopomers containing the unlabeled glucosamine moiety in the GlcNAc (h1G) or MurNAc\(^\text{Red}\) (h1M) residues, respectively (discriminatory fragments). The fragments specific of h1G and of h1M are highlighted by orange and green dots in the mass spectrum. The other fragments are common to the fragmentation patterns of h1G and of h1M. The corresponding peaks are highlighted by blue dots in the mass spectrum. The mass spectrum indicates the presence of both isotopomers as expected from the recycling and synthesis pathways since UDP-MurNAc exclusively derives from UDP-GlcNAc. In the mass spectrum, peaks differing by the loss of \(\text{H}_2\text{O} \) are connected by a dashed line. The tables only contain the \(m/z \) values for the fragments containing \(\text{H}_2\text{O} \). An interactive report of the MS\(^2\) analysis is available in Supplementary File F1.2.

Precursor Ion (MS\(^1\))	\(m/z \) \(\text{obs} \)	\(m/z \) \(\text{calc} \)	ppm	Intensity (a.u.)	Isotopomer
GlcN\(^\text{Ac}\)GlcN\(^\text{Red}\)(-Ac)-Lac-Ala-Glu-DAP	878.392	878.396	-4.0		
GlcN\(^\text{Ac}\)GlcN\(^\text{Red}\)(-Ac)-Lac-Ala-Glu-DAP	878.392	878.396	-4.0		
Discriminatory product ion	\(m/z \) \(\text{obs} \)	\(m/z \) \(\text{calc} \)	ppm	Intensity (a.u.)	Isotopomer
GlcN\(^\text{Red}\)-(Ac)-Lac-Ala-Glu-DAP	675.318	675.316	-2.3	10553	h1M
GlcN\(^\text{Red}\)-(Ac)-Lac-Ala-Glu-DAP	668.299	668.299	0.6	8694	h1G
GlcN\(^\text{Red}\)-(Ac)-Lac	485.221	485.221	0.3	952	h1M
GlcN\(^\text{Red}\)-(Ac)-Lac-Ala-Glu	478.202	478.204	3.4	662	h1G
GlcN\(^\text{Red}\)-(Ac)-Lac-Ala	356.177	356.178	3.6	7236	h1M
GlcN\(^\text{Red}\)-(Ac)-Lac-Ala-Glu	349.161	349.161	1.1	6203	h1G
GlcN\(^\text{Red}\)-(Ac)-Lac-Ala	285.140	285.141	4.9	3223	h1M
GlcN\(^\text{Red}\)-(Ac)-Lac-Ala-Glu	278.123	278.124	4.0	3059	h1G
GlcN\(^\text{Red}\)-(Ac)	213.118	213.120	8.2	247	h1M
GlcN\(^\text{Red}\)-(Ac)	211.106	211.104	-6.8	238	h1G
GlcN\(^\text{Red}\)-(Ac)	206.103	206.103	-0.5	148	h1G
GlcN\(^\text{Red}\)-(Ac)DAP	204.084	204.087	15.1	419	h1M
Common product ion	\(m/z \) \(\text{obs} \)	\(m/z \) \(\text{calc} \)	ppm	Intensity (a.u.)	
GlcN\(^\text{Red}\)-(Ac)-GlcN\(^\text{Red}\)(-Ac)-Lac-Ala-Glu-DAP	878.397	878.396	-2.1	178	
GlcN\(^\text{Red}\)-(Ac)-GlcN\(^\text{Red}\)(-Ac)-Lac-Ala-Glu	559.257	559.258	0.8	112	
Lac-Ala-Glu-DAP	463.203	463.204	1.8	613	
Ala-Glu-DAP	391.182	391.183	2.0	9574	
Glu-DAP	320.146	320.146	0.3	26374	
Ala-Glu	201.085	201.086	13.5	227	
DAP	191.103	191.103	0.6	6654	
Lac-Ala	144.068	144.066	-10.4	154	
Supplementary Data 1.3: Tandem mass spectrometry analysis of the h2-type hybrid of the disaccharide-tripeptide. The observed m/z_{obs} and calculated m/z_{calc} values of the parental ion, $[\text{M+H}]^+$, as determined in the absence of fragmentation (MS1), are indicated. The m/z_{calc} value was used to select the ion for fragmentation. The difference between the m/z_{obs} and m/z_{calc} values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcNRed), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum. In the mass spectrum, peaks differing by the loss of H_2O are connected by a dashed line. The tables only contain the m/z values for the fragments containing H_2O.

An interactive report of the MS2 analysis is available in Supplementary File F1.3.

Precursor ion (MS1)	m/z_{obs}	m/z_{calc}	ppm
GlcN(-Ac)-GlcNRed(-Ac)-Lac-Ala-Glu-DAP	890.412	890.417	-5.7

Product ion	m/z_{obs}	m/z_{calc}	ppm	Intensity (a.u.)	Isotopologue
GlcNRed(-Ac)-Lac-Ala-Glu-DAP	687.336	687.338	2.2	7465	h2
GlcNRed(-Ac)-Lac-Ala-Glu	488.223	488.225	3.1	404	h2
Lac-Ala-Glu-DAP	482.239	482.242	7.1	296	h2
Ala-Glu-DAP	410.219	410.221	5.5	3431	h2
GlcNRed(-Ac)-Lac-Ala	353.167	353.168	4.7	4771	h2
Glu-DAP	335.178	335.177	-2.4	9561	h2
GlcNRed(-Ac)-Lac	278.123	278.124	2.9	1727	h2
GlcN(-Ac)	204.086	204.087	5.9	190	h2
DAP	200.120	200.121	4.2	2800	h2
Supplementary Data 1.4: Tandem mass spectrometry analysis of the h3-type hybrid of the disaccharide-tripeptide. The observed \(m/z_{\text{obs}} \) and calculated \(m/z_{\text{calc}} \) values of the parental ion, [M+H]⁺, as determined in the absence of fragmentation (MS1), are indicated. The \(m/z_{\text{calc}} \) value was used to select the ion for fragmentation. The difference between the \(m/z_{\text{obs}} \) and \(m/z_{\text{calc}} \) values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN\text{Red}), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum.

In the mass spectrum, peaks differing by the loss of H₂O are connected by a dashed line. The tables only contain the \(m/z \) values for the fragments containing H₂O. The presence of the h3 isotopomer is expected since cells of *E. coli* contain the main PG precursor, UDP-MurNAc-pentapeptide in considerable amounts (about 2% compared to the total amount of dissaccharide peptides in the cell wall). An interactive report of the MS² analysis is available in Supplementary File F1.4.

Precursor ion (MS1)	\(m/z_{\text{obs}} \)	\(m/z_{\text{calc}} \)	ppm	Intensity (a.u.)	Isotopomer
GlcN(-Ac)-GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP	902.447	902.451	-3.8		

Product ion	\(m/z_{\text{obs}} \)	\(m/z_{\text{calc}} \)	ppm	Intensity (a.u.)	Isotopomer
GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP	699.372	699.371	-0.5	4005	h3
GlcN\text{Red}(-Ac)-Lac-Ala-Glu	500.259	500.259	-0.8	329	h3
Lac-Ala-Glu-DAP	485.251	485.253	3.1	308	h3
Ala-Glu-DAP	410.219	410.221	5.1	1961	h3
GlcN\text{Red}(-Ac)-Lac	365.199	365.202	8.5	2535	h3
Glu-DAP	335.178	335.177	-2.9	5470	h3
GlcN\text{Red}(-Ac)-Lac	290.158	290.158	0.2	1047	h3
GlcN(-Ac)	204.088	204.087	-2.6	132	h3
DAP	200.120	200.121	3.8	1331	h3
Supplementary Data 2.1: Supplementary Data D2.1. Tandem mass spectrometry analysis of the labeled disaccharide-tetrapeptide.

The observed \(m/z_{\text{obs}} \) and calculated \(m/z_{\text{calc}} \) values of the parental ion, \([\text{M+H}]^+\), as determined in the absence of fragmentation (MS1), are indicated. The \(m/z_{\text{calc}} \) value was used to select the ion for fragmentation. The difference between the \(m/z_{\text{obs}} \) and \(m/z_{\text{calc}} \) values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN\text{Red}), the acetyl group (Ac), and the \(\delta \)-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum. In the mass spectrum, peaks differing by the loss of \(\text{H}_2\text{O} \) are connected by a dashed line. The tables only contain the \(m/z \) values for the fragments containing \(\text{H}_2\text{O} \).

An interactive report of the MS2 analysis is available in Supplementary File F2.1.

Precursor ion (MS1)	\(m/z_{\text{obs}} \)	\(m/z_{\text{calc}} \)	ppm	Intensity (a.u.)	Isotopologue
GlcN(-Ac)-GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP-Ala	986.516	986.519	-3.1		

Product ion	\(m/z_{\text{obs}} \)	\(m/z_{\text{calc}} \)	ppm	Intensity (a.u.)	Isotopologue
GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP-Ala	774.423	774.416	-9.3	5487	all heavy
GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP	681.364	681.361	-5.1	494	all heavy
Lac-Ala-Glu-DAP-Ala	560.296	560.297	0.9	119	all heavy
GlcN\text{Red}(-Ac)-Lac-Ala-Glu	500.259	500.259	0.0	194	all heavy
Ala-Glu-DAP-Ala	485.269	485.266	-6.8	1147	all heavy
Glu-DAP-Ala	410.223	410.221	-3.9	3963	all heavy
Ala-Glu-DAP	392.213	392.211	-5.6	1512	all heavy
GlcN\text{Red}(-Ac)-Lac-Ala	365.204	365.202	-5.1	2434	all heavy
Glu-DAP	317.169	317.167	-8.5	3861	all heavy
GlcN\text{Red}(-Ac)-Lac	290.160	290.158	-7.3	414	all heavy
DAP-Ala	275.167	275.165	-6.2	3667	all heavy
DAP	182.112	182.110	-8.1	611	all heavy
Supplementary Data 2.2: Tandem mass spectrometry analysis of the h1-type hybrid of the disaccharide-tetrapeptide. The molecule is fully unlabeled except for one of the two glucosamine moieties present in GlcNAc or MurNac leading to the presence of two isotopomers. The observed m/z values and calculated m/z values of the parental ion, [M+H]+, as determined in the absence of fragmentation (MS1), are indicated. The m/z value was used to select the ion for fragmentation. The difference between the m/z values and m/z values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNac residue is indicated in three moieties, reduced glucosamine (GlcNRed), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The fragmentation led to two series of fragments specific of the isotopomers containing the unlabeled glucosamine moiety in the GlcNAc (h1G) or MurNacRed (h1M) residues, respectively (discriminatory fragments). The fragments specific of h1G and of h1M are highlighted by orange and green dots in the mass spectrum. The other fragments are common to the fragmentation patterns of h1G and of h1M. The corresponding peaks are highlighted by blue dots in the mass spectrum. The mass spectrum indicates the presence of both isotopomers as expected from the recycling and synthesis pathways since UDP-MurNAc exclusively derives from UDP-GlcNAc. In the mass spectrum, peaks differing by the loss of H2O are connected by a dashed line. The tables only contain the m/z values for the fragments containing H2O. An interactive report of the MS2 analysis is available in Supplementary File F2.2.

Precursor ion (MS1)	m/zobs	m/zcalc	ppm	Intensity (a.u.)	Isotopologue
GlcN(-Ac)-GlcNRed(-Ac)-Lac-Ala-Glu-DAP-Ala	949.429	949.433	-4.0	5188	h1M
GlcN(-Ac)-GlcNRed(-Ac)-Lac-Ala-Glu-DAP-Ala	949.429	949.433	-4.0	5188	h1M
Discriminatory product ions	m/zobs	m/zcalc	ppm	Intensity (a.u.)	Isotopologue
GlcNRed(-Ac)-Lac-Ala-Glu-DAP-Ala	746.351	746.353	3.3	5188	h1M
GlcNRed(-Ac)-Lac-Ala-Glu-DAP-Ala	739.333	739.336	4.7	3690	h1G
GlcNRed(-Ac)-Lac-Ala-Glu-DAP	657.302	657.306	5.2	477	h1M
GlcNRed(-Ac)-Lac-Ala-Glu-DAP	650.287	650.288	2.7	427	h1G
GlcNRed(-Ac)-Lac-Ala-Glu	485.216	485.221	10.3	417	h1M
GlcNRed(-Ac)-Lac-Ala-Glu	478.202	478.204	3.3	210	h1G
GlcNRed(-Ac)-Lac	356.177	356.178	3.6	1850	h1M
GlcNRed(-Ac)-Lac	349.158	349.161	8.1	2036	h1G
GlcNRed(-Ac)-Lac-Ala	285.140	285.141	4.9	586	h1M
GlcNRed(-Ac)-Lac	278.123	278.124	4.0	622	h1G
GlcN(-Ac)	204.086	204.087	7.2	137	h1M
Common product ion	m/zobs	m/zcalc	ppm	Intensity (a.u.)	
GlcN(-Ac)-GlcNRed(-Ac)-Lac-Ala-Glu-DAP-Ala	949.433	949.433	0.1	241	
GlcN(-Ac)-GlcNRed(-Ac)-Lac-Ala-Glu-DAP-Ala	462.217	462.220	6.1	1977	
Ala-Glu-DAP-Ala	391.180	391.183	6.2	7517	
Ala-Glu-DAP	373.172	373.172	1.7	2756	
DAP-Ala	302.135	302.135	0.9	7122	
Glu-DAP	262.138	262.140	9.0	5564	
DAP	173.093	173.093	0.3	796	
Supplementary Data 2.3: Tandem mass spectrometry analysis of the h2-type hybrid of the disaccharide-tetrapeptide. The observed m/z_{obs} and calculated m/z_{calc} values of the parental ion, [M+H]$^+$, as determined in the absence of fragmentation (MS1), are indicated. The m/z_{calc} value was used to select the ion for fragmentation. The difference between the m/z_{obs} and m/z_{calc} values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN$^{\text{Red}}$), the acetyl group (Ac), and the d-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum. In the mass spectrum, peaks differing by the loss of H$_2$O are connected by a dashed line. The tables only contain the m/z values for the fragments containing H$_2$O.

An interactive report of the MS2 analysis is available in Supplementary File F2.3.

Precursor ion (MS1)	m/z_{obs}	m/z_{calc}	ppm	Intensity (a.u.)	Isotopologue
GlcN(-Ac)-GlcN$^{\text{Red}}$(-Ac)-Lac-Ala-Glu-DAP-Ala	961.451	961.454	-2.7	250	h2
GlcN$^{\text{Red}}$(-Ac)-Lac-Ala-Glu-DAP-Ala	758.374	758.375	1.0	15348	h2
GlcN$^{\text{Red}}$(-Ac)-Lac-Ala-Glu-DAP	669.327	669.327	-0.8	1466	h2
GlcN(-Ac)-GlcN$^{\text{Red}}$(-Ac)-Lac-Ala	556.244	556.248	7.1	191	h2
Lac-Ala-Glu-DAP-Ala	553.280	553.280	-0.4	302	h2
GlcN$^{\text{Red}}$(-Ac)-Lac-Ala-Glu	488.224	488.225	1.8	1041	h2
Ala-Glu-DAP-Ala	481.259	481.258	-1.0	3833	h2
Lac-Ala-Glu-DAP	464.235	464.232	-6.3	133	h2
Glu-DAP-Ala	406.212	406.214	6.4	13380	h2
Ala-Glu-DAP	392.208	392.211	6.8	4340	h2
GlcN$^{\text{Red}}$(-Ac)-Lac-Ala	353.167	353.168	3.4	6673	h2
Glu-DAP	317.165	317.167	3.8	12830	h2
GlcN$^{\text{Red}}$(-Ac)-Lac	278.122	278.124	7.6	1991	h2
DAP-Ala	271.156	271.158	7.2	10798	h2
GlcN$^{\text{Red}}$(-Ac)	206.103	206.103	2.8	163	h2
GlcN(-Ac)	204.085	204.087	12.7	229	h2
DAP	182.108	182.110	9.5	1297	h2
Supplementary Data 2.4: Tandem mass spectrometry analysis of the h3-type hybrid of the disaccharide-tetrapeptide. The observed m/z_{obs} and calculated m/z_{calc} values of the parental ion, [M+H]$,^+$, as determined in the absence of fragmentation (MS1), are indicated. The m/z_{calc} value was used to select the ion for fragmentation. The difference between the m/z_{obs} and m/z_{calc} values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN$^{\text{Red}}$), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum. In the mass spectrum, peaks differing by the loss of H_2O are connected by a dashed line. The tables only contain the m/z values for the fragments containing H_2O. The presence of the h3 isotopomer is expected since cells of *E. coli* contain the main PG precursor, UDP-MurNAc-pentapeptide in considerable amounts (about 2% compared to the total amount of disaccharide peptides in the cell wall). An interactive report of the MS2 analysis is available in Supplementary File F2.4.

Precursor ion (MS1)	m/z_{obs}	m/z_{calc}	ppm	Intensity (a.u.)	Isotopologue
GlcN(-Ac)-GlcN$^{\text{Red}}$(-Ac)-Lac-Ala-Glu-DAP-Ala	977.490	977.490	-5.0		

Product ion	m/z_{obs}	m/z_{calc}	ppm	Intensity (a.u.)	Isotopologue
GlcN$^{\text{Red}}$(-Ac)-Lac-Ala-Glu-DAP-Ala	774.413	774.416	3.0	3734	h3
GlcN$^{\text{Red}}$(-Ac)-Lac-Ala-Glu-DAP	681.368	681.361	-9.8	306	h3
GlcN$^{\text{Red}}$(-Ac)-Lac-Ala-Glu	500.260	500.259	-2.0	259	h3
Ala-Glu-DAP-Ala	485.265	485.266	1.6	834	h3
Glu-DAP-Ala	410.220	410.221	3.9	2916	h3
Ala-Glu-DAP	392.208	392.211	6.4	1481	h3
GlcN$^{\text{Red}}$(-Ac)-Lac-Ala	365.199	365.202	7.3	1567	h3
Glu-DAP	317.165	317.167	3.4	3046	h3
GlcN$^{\text{Red}}$(-Ac)-Lac	290.156	290.158	7.5	508	h3
DAP-Ala	275.163	275.165	6.7	2174	h3
DAP	182.110	182.110	0.1	354	h3
Additional Monomer hybrids

Supplementary Data 2.5: Tandem mass spectrometry analysis of the hAla-type hybrid of the disaccharide-tetrapeptide. The observed m/z_{obs} and calculated m/z_{calc} values of the parental ion, $[\text{M+H}]^+$, as determined in the absence of fragmentation (MS1), are indicated. The m/z_{calc} value was used to select the ion for fragmentation. The difference between the m/z_{obs} and m/z_{calc} values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN$^{\text{Red}}$), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum. In the mass spectrum, peaks differing by the loss of H$_2$O are connected by a dashed line. The tables only contain the m/z values for the fragments containing H$_2$O.

An interactive report of the MS2 analysis is available in Supplementary File F2.5.

Parent (MS1)	m/z_{obs}	m/z_{calc}	ppm	m/z	Intensity (a.u.)	Isotopologue
GlcN-(Ac)-GlcN$^{\text{Red}}$-(Ac)-Lac-Ala-Glu-DAP-Ala	946.420	946.423	-2.9	hAla4		

Fragment	m/z_{obs}	m/z_{calc}	ppm	Intensity (a.u.)	Isotopologue
GlcN-(Ac)-GlcN$^{\text{Red}}$-(Ac)-Lac-Ala-Glu-DAP-Ala	946.414	946.423	8.8	227	hAla4
GlcN$^{\text{Red}}$-(Ac)-Lac-Ala-Glu-DAP-Ala	743.340	743.343	4.3	1657	hAla4
Ala-Glu-DAP-Ala	466.232	466.227	-9.5	194	hAla4
Glu-DAP-Ala	395.191	395.190	-3.2	616	hAla4
Ala-Glu-DAP	373.172	373.172	0.3	84	hAla4
GlcN$^{\text{Red}}$-(Ac)-Lac-Ala	349.162	349.161	-2.2	131	hAla4
Glu-DAP	302.133	302.135	7.2	279	hAla4
GlcN$^{\text{Red}}$-(Ac)-Lac	278.125	278.124	-2.5	60	hAla4
DAP-Ala	266.146	266.147	4.3	73	hAla4
DAP	173.091	173.093	10.9	150	hAla4
Supplementary Data 2.6: Tandem mass spectrometry analysis of the h1h2-type hybrid of the disaccharide-tetrapeptide. The molecule is fully unlabeled except for one of the two glucosamine moieties present in GlcNAc or MurNAc leading to the presence of two isotopomers.

The observed \(m/z_{\text{obs}} \) and calculated \(m/z_{\text{calc}} \) values of the parental ion, \([M+H]^+\), as determined in the absence of fragmentation (MS\(^1\)), are indicated. The \(m/z_{\text{cal}} \) value was used to select the ion for fragmentation. The difference between the \(m/z_{\text{obs}} \) and \(m/z_{\text{cal}} \) values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN\text{Red})

Precursor ion (MS1)	\(m/z_{\text{obs}} \)	\(m/z_{\text{calc}} \)	ppm	Intensity (a.u.)	Isotopologue
GlcN(-Ac)-GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP-Ala	968.471	968.471	0.2	469	h1Mh2
GlcN(-Ac)-GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP-Ala	968.471	968.471	0.2	309	h1Gh2

Discriminatory product ions	\(m/z_{\text{obs}} \)	\(m/z_{\text{calc}} \)	ppm	Intensity (a.u.)
GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP-Ala	765.390	765.392	2.2	469
GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP-Ala	758.370	758.375	6.2	309

Common product ions	\(m/z_{\text{obs}} \)	\(m/z_{\text{calc}} \)	ppm	Intensity (a.u.)
Glu-DAP-Ala	406.212	406.214	5.8	151
Glu-DAP	317.163	317.167	12.6	121
DAP	182.108	182.110	11.6	60

An interactive report of the MS2 analysis is available in Supplementary File F2.6.
Supplementary Data 2.7: Tandem mass spectrometry analysis of the h3Ala-type hybrid of the disaccharide-tetrapeptide. The observed \(m/z_{\text{obs}} \) and calculated \(m/z_{\text{calc}} \) values of the parent ion, [M+H]\(^+\), as determined in the absence of fragmentation (MS1), are indicated. The \(m/z_{\text{calc}} \) value was used to select the ion for fragmentation. The difference between the \(m/z_{\text{obs}} \) and \(m/z_{\text{calc}} \) values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN\(^{\text{Red}}\)), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum. In the mass spectrum, peaks differing by the loss of H\(_2\)O are connected by a dashed line. The tables only contain the \(m/z \) values for the fragments containing H\(_2\)O.

An interactive report of the MS2 analysis is available in Supplementary File F2.7.

Precursor Ion (MS1)	\(m/z_{\text{obs}} \)	\(m/z_{\text{calc}} \)	ppm	Intensity (a.u.)
GlcN(-Ac)-GlcN\(^{\text{Red}}\)(-Ac)-Lac-Ala-Glu-DAP-Ala	973.484	973.488	-3.9	
Product ion	\(m/z_{\text{obs}} \)	\(m/z_{\text{calc}} \)	ppm	Intensity (a.u.)
GlcN(-Ac)-GlcN\(^{\text{Red}}\)(-Ac)-Lac-Ala-Glu-DAP-Ala	973.492	973.488	-3.7	161
GlcN\(^{\text{Red}}\)(-Ac)-Lac-Ala-Glu-DAP-Ala	770.407	770.409	2.1	2018
GlcN\(^{\text{Red}}\)(-Ac)-Lac-Ala-Glu-DAP	681.362	681.361	-1.4	91
GlcN\(^{\text{Red}}\)(-Ac)-Lac-Ala-Glu	500.260	500.259	-3.4	65
Ala-Glu-DAP-Ala	481.254	481.258	9.6	113
Glu-DAP-Ala	406.215	406.214	-2.1	544
Ala-Glu-DAP	392.207	392.211	10.6	138
GlcN\(^{\text{Red}}\)(-Ac)-Lac-Ala	365.201	365.202	2.0	332
Glu-DAP	317.167	317.167	-1.6	259
GlcN\(^{\text{Red}}\)(-Ac)-Lac	290.158	290.158	-0.3	62
DAP-Ala	271.155	271.158	11.1	111
DAP	182.108	182.110	12.8	20
Supplementary Data 2.8: Timecourses and structures of additional monomer hybrids. (A) Structure and timecourse of the h1h2 hybrid of the disaccharide tripeptide monomer combining a recycled tripeptide stem (h2) with a recycled glucosamine moiety (h1). (B) Additional hybrids of the disaccharide tetrapeptide comprise hAla (labeled C-terminal D-Ala\(^4\)), h1h2 (see (A)) and h3Ala (neo-synthesized GlcNAc and C-terminal D-Ala\(^4\)). Since disaccharide tripeptides are issued from disaccharide tetrapeptides by removal of the C-terminal D-Ala\(^4\), hAla and h3Ala are not detected for the tripeptide as these are converted into the uniformly unlabeled and h3 hybrid of the tripeptide, respectively. For structural characterization of the hAla, h1h2, and h3Ala hybrids see Supplementary Data above.
Supplementary Data 3.1: Tandem mass spectrometry analysis of the uniformly labeled Tri(3→3)Tri dimer. The observed \(m/z\) \(_{\text{obs}}\) and calculated \(m/z\) \(_{\text{calc}}\) values of the parental ion, [M+2H]\(^{2+}\), as determined in the absence of fragmentation (MS1), are indicated. The \(m/z\) \(_{\text{calc}}\) value was used to select the ion for fragmentation. The difference between the \(m/z\) \(_{\text{obs}}\) and \(m/z\) \(_{\text{calc}}\) values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN\(^{\text{Red}}\)), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum. In the mass spectrum, peaks differing by the loss of \(\text{H}_2\text{O}\) are connected by a dashed line. The tables only contain the \(m/z\) values for the fragments containing \(\text{H}_2\text{O}\). The arrows indicate the position of the 3→3 and 4→3 crosslinks. Residues in the acceptor are underlined.

An interactive report of the MS2 analysis is available in Supplementary File F3.1.

Precursor ion (MS1)	\(m/z_{\text{obs}}\) [M+2H]\(^{2+}\)	\(m/z_{\text{calc}}\) [M+2H]\(^{2+}\)	ppm	Intensity (a.u.)
GlcN(Ac)-GlcN\(^{\text{Red}}\)(Ac)-Lac-Ala-Glu-DAP\(\rightarrow\)DAP-Glu-Ala-Lac-GlcN\(^{\text{Red}}\)(Ac)-GlcN(Ac)	902.464	902.469	-5.9	52
GlcN\(^{\text{Red}}\)(Ac)-Lac-Ala-Glu-DAP\(\rightarrow\)DAP-Glu-Ala-Lac-GlcN\(^{\text{Red}}\)(Ac)	1591.833	1591.828	-3.4	709
GlcN\(^{\text{Red}}\)(Ac)-Lac-Ala-Glu-DAP\(\rightarrow\)DAP-Glu-Ala	1379.721	1379.724	2.3	53
GlcN\(^{\text{Red}}\)(Ac)-Lac-Ala-Glu-DAP\(\rightarrow\)DAP-Glu	1090.570	1090.574	3.7	133
DAP-Glu-Ala-Lac-GlcN\(^{\text{Red}}\)(Ac)	699.371	699.371	1.1	71
GlcN\(^{\text{Red}}\)(Ac)-Lac-Ala-Glu-DAP	681.356	681.361	6.9	286
GlcN\(^{\text{Red}}\)(Ac)-Lac-Ala	365.200	365.202	5.6	77
GlcN(Ac)	213.109	213.111	7.8	860
Supplementary Data 3.2: Tandem mass spectrometry analysis of the uniformly unlabeled Tri(3→3)Tri dimer. The observed \(m/z_{\text{obs}} \) and calculated \(m/z_{\text{calc}} \) values of the parental ion, \([\text{M}+2\text{H}]^{2+}\), as determined in the absence of fragmentation (MS1), are indicated. The \(m/z_{\text{calc}} \) value was used to select the ion for fragmentation. The difference between the \(m/z_{\text{obs}} \) and \(m/z_{\text{calc}} \) values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN\text{Red}), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum.

In the mass spectrum, peaks differing by the loss of H\(_2\)O are connected by a dashed line. The tables only contain the \(m/z \) values for the fragments containing H\(_2\)O.

The arrows indicate the position of the 3→3 and 4→3 crosslinks. Residues in the acceptor are underlined.

An interactive report of the MS2 analysis is available in Supplementary File F3.2.

Precursor ion (MS1)	\(m/z_{\text{obs}} \) \([\text{M}+2\text{H}]^{2+}\)	\(m/z_{\text{calc}} \) \([\text{M}+2\text{H}]^{2+}\)	ppm	Intensity (a.u.)
GlcN\text{Ac})-GlcN\text{Ac})-Lac-Ala-Glu-DAP	862.373	862.373	0.0	1

Product ion	\(m/z_{\text{obs}} \) \([\text{M}+\text{H}]^{+}\)	\(m/z_{\text{cal}} \) \([\text{M}+\text{H}]^{+}\)	ppm	Intensity (a.u.)
GlcN\text{Ac})-GlcN\text{Ac})-Lac-Ala-Glu-DAP	1520.658	1520.659	0.9	528
GlcN\text{Ac})-Lac-Ala-Glu-DAP	1317.581	1317.580	-1.3	14608
GlcN\text{Ac})-Lac-Ala-Glu-DAP	1172.522	1172.506	-1.7	195
GlcN\text{Ac})-Lac-Ala-Glu-DAP	1112.491	1112.485	-1.3	340
GlcN\text{Ac})-Lac-Ala-Glu-DAP	1040.466	1040.464	-2.0	2012
GlcN\text{Ac})-Lac-Ala-Glu-DAP	969.428	969.426	-1.3	10207
Lac-Ala-Glu-DAP	907.403	907.390	-1.4	267
Lac-Ala-Glu-DAP	840.384	840.384	-0.5	4637
Lac-Ala-Glu-DAP	835.377	835.369	-1.0	208
Lac-Ala-Glu-DAP	764.336	764.331	-0.5	517
GlcN\text{Ac})-Lac-Ala-Glu-DAP	763.357	763.347	-1.3	114
GlcN\text{Ac})-Lac-Ala-Glu-DAP	692.315	692.310	-0.6	860
GlcN\text{Ac})-Lac-Ala-Glu-DAP	668.298	668.299	1.6	6970
GlcN\text{Ac})-Lac-Ala-Glu-DAP	650.291	650.288	-0.4	6495
Lac-Ala-Glu-DAP	635.289	635.289	-0.5	324
Glu-DAP	621.278	621.273	-0.7	1912
Glu-DAP	565.264	565.268	0.8	800
Glu-DAP	492.233	492.231	-0.4	3051
Glu-DAP	478.208	478.204	-0.9	449
GlcN\text{Ac})-Lac-Ala-Glu-DAP	463.205	463.204	-2.7	521
DAP-Glu-Ala	391.185	391.183	-0.5	608
DAP-Glu	373.173	373.172	-0.8	1284
DAP-Glu	363.190	363.188	-0.4	1374
DAP-Glu	349.162	349.161	-0.1	2576
DAP-Glu	320.146	320.146	-0.4	1973
DAP-Glu	302.136	302.135	-1.6	3703
DAP-Glu	278.126	278.124	-0.6	576
Supplementary Data 3.3: Tandem mass spectrometry analysis of the Tri→Tri dimer containing a uniformly labeled disaccharide-tripeptide cross-linked to a uniformly unlabeled disaccharide-tripeptide (3→3 cross-link). The observed \(m/z_{\text{obs}} \) and calculated \(m/z_{\text{calc}} \) values of the parental ion, \([M+2H]^2+\), as determined in the absence of fragmentation (MS1), are indicated. The \(m/z_{\text{calc}} \) value was used to select the ion for fragmentation. The difference between the \(m/z_{\text{obs}} \) and \(m/z_{\text{calc}} \) values is indicated in ppm. The GlcN residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcNRed), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively.

The fragmentation potentially leads to two series of fragments (discriminatory fragments) specific of the isotopomers containing the fully labeled disaccharide subunit in the donor (all light-all heavy) or acceptor position (all light-all heavy). These fragments are highlighted by green and orange dots in the mass spectrum, respectively. The other fragments are common to the fragmentation of the two isotopomers (highlighted by blue dots in the mass spectrum). The mass spectrum indicates the presence of the all light-all heavy isotopomers (orange dots). The peak at \(m/z_{\text{obs}} \) 681.358 (green dot) can also be accounted for by the loss of \(\text{H}_2\text{O} \) from the peak at 699.367 indicating that all peaks may be accounted for by the presence of the all light-all heavy isotopomer.

In the mass spectrum, peaks differing by the loss of \(\text{H}_2\text{O} \) are connected by a dashed line. The arrows indicate the position of the 3→3 and 4→3 crosslinks. Residues in the acceptor are underlined.

An interactive report of the MS2 analysis is available in Supplementary File F3[3].
Supplementary Data 4.1: Tandem mass spectrometry analysis of the uniformly labeled Tetra(4→3)Tri dimer. The observed \(m/z_{obs} \) and calculated \(m/z_{calc} \) values of the parental ion, \([M+2H]^2+\), as determined in the absence of fragmentation (MS1), are indicated. The \(m/z_{calc} \) value was used to select the ion for fragmentation. The difference between the \(m/z_{obs} \) and \(m/z_{calc} \) values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN\text{Red}), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum.

In the mass spectrum, peaks differing by the loss of \(\text{H}_2\text{O} \) are connected by a dashed line. The tables only contain the \(m/z \) values for the fragments containing \(\text{H}_2\text{O} \). The arrows indicate the position of the 3→3 and 4→3 crosslinks. Residues in the acceptor are underlined.

An interactive report of the MS2 analysis is available in Supplementary File F4.1.

Precursor ion (MS1)	\(m/z_{obs} \) [M+2H]^2+	\(m/z_{calc} \) [M+2H]^2+	ppm	Intensity (a.u.)
GlcN(-Ac)-GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP-Ala ➔ DAP-Glu-Ala-Lac-GlcN\text{Red}(-Ac)-GlcN(-Ac)	939.992	939.992	0.1	

Product ion	\(m/z_{obs} \) [M+H]^+	\(m/z_{calc} \) [M+H]^+	ppm	Intensity (a.u.)
GlcN(-Ac)-GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP-Ala ➔ DAP-Glu-Ala-Lac-GlcN\text{Red}(-Ac)	1666.880	1666.872	-4.9	113
GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP-Ala ➔ DAP-Glu-Ala-Lac-GlcN\text{Red}(-Ac)	1454.780	1454.769	-7.6	462
GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP-Ala ➔ DAP-Glu	1165.627	1165.619	-6.9	103
GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP-Ala ➔ DAP-Glu	1090.570	1090.574	3.6	240
Ala-Glu-DAP-Ala ➔ DAP-Glu	955.520	955.518	-2.5	170
Ala ➔ DAP-Glu-Ala-Lac-GlcN\text{Red}(-Ac)	801.426	801.424	-2.3	43
GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP-Ala ➔ Ala	774.416	774.416	-0.7	342
GlcN\text{Red}(-Ac)-Lac-Ala-DAP-Ala ➔ Ala	756.413	756.405	-11.1	181
Glu-DAP-Ala ➔ DAP-Glu	726.390	726.380	-13.5	50
DAP-Glu-Ala-Lac-GlcN\text{Red}(-Ac)	699.369	699.371	2.9	166
GlcN\text{Red}(-Ac)-Lac-Ala-Glu-DAP	681.366	681.361	-6.8	54
Ala-Glu-DAP	392.216	392.211	-12.7	44
GlcN(-Ac)	213.112	213.111	-5.5	1238
Supplementary Data 4.2: Tandem mass spectrometry analysis of the uniformly unlabeled Tri(4→3)Tri dimer. The observed \(m/z_{\text{obs}} \) and calculated \(m/z_{\text{calc}} \) values of the parental ion, \([M+2H]^2+\), as determined in the absence of fragmentation (MS1), are indicated. The \(m/z_{\text{calc}} \) value was used to select the ion for fragmentation. The difference between the \(m/z_{\text{obs}} \) and \(m/z_{\text{calc}} \) values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN\text{Red}), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum.

In the mass spectrum, peaks differing by the loss of H\(_2\)O are connected by a dashed line. The tables only contain the \(m/z \) values for the fragments containing H\(_2\)O.

The arrows indicate the position of the 3→3 and 4→3 crosslinks. Residues in the acceptor are underlined.

An interactive report of the MS2 analysis is available in Supplementary File F4.2.

Precursor ion (MS1)	\(m/z_{\text{obs}} \) [M+2H]^2+	\(m/z_{\text{calc}} \) [M+2H]^2+	ppm	Intensity (a.u.)
GlcN(\text{Ac})-GlcN\text{Red}(\text{Ac})-Lac-Ala-Glu-DAP-Ala	1551.693	1591.696	1.9	144
GlcN\text{Red}(\text{Ac})-Lac-Ala-Glu-DAP-Ala	1388.622	1388.617	-0.3	1802
GlcN\text{Red}(\text{Ac})-Lac-Ala-Glu-DAP-Ala	1111.500	1111.501	0.4	395
GlcN\text{Red}(\text{Ac})-Lac-Ala-Glu-DAP-Ala	1040.474	1040.464	-0.3	1464
GlcN\text{Red}(\text{Ac})-Lac-Ala-Glu-DAP-Ala	911.426	911.421	-5.6	677
Ala-Glu-DAP-Ala	763.357	763.347	-1.1	209
Ala-Glu-DAP-Ala	721.325	721.326	0.5	1560
Glu-DAP-Ala	692.308	692.310	3.2	291
Glu-DAP-Ala	668.297	668.299	2.4	618
GlcN(\text{Ac})-Lac-Ala-Glu-DAP	650.288	650.288	1.3	370
Ala-Glu-DAP-Ala	634.304	634.305	1.7	218
Glu-DAP-Ala	563.267	563.268	1.2	409
Ala-Glu-DAP-Ala	462.221	462.220	-1.1	137
Ala-Glu-DAP-Ala	434.225	434.225	-0.1	298
Ala-Glu-DAP-Ala	391.183	391.183	0.3	451
Ala-Glu-DAP-Ala	373.173	373.172	-0.3	355
GlcN\text{Red}(\text{Ac})-Lac-Ala	349.161	349.161	-1.1	557
Glu-DAP-Ala	320.146	320.146	-1.6	252
Glu-DAP-Ala	302.135	302.135	-0.7	366
GlcN\text{Red}(\text{Ac})-Lac	278.125	278.124	-5.0	107
Supplementary Data 4.3: Tandem mass spectrometry analysis of the Tetra→Tri dimer containing a uniformly labeled disaccharide-tetrapeptide cross-linked to a uniformly unlabeled disaccharide-tripeptide (4→3 cross-link). The observed \(m/z_{\text{obs}} \) and calculated \(m/z_{\text{calc}} \) values of the parental ion, \([M+2H]^{2+}\), as determined in the absence of fragmentation (MS1), are indicated. The \(m/z_{\text{calc}} \) value was used to select the ion for fragmentation. The difference between the \(m/z_{\text{obs}} \) and \(m/z_{\text{calc}} \) values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcNRed), the acetyl group (Ac), and the \(\delta \)-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively.

In the mass spectrum, peaks differing by the loss of \(H_2O \) are connected by a dashed line. The arrows indicate the position of the 3→3 and 4→3 crosslinks. Residues in the acceptor are underlined.

An interactive report of the MS2 analysis is available in Supplementary File F4.3.
Supplementary Data 5.1: Tandem mass spectrometry analysis of the uniformly labeled Tri(4→3)Tetra dimer. The observed \(m/z \) \(_{\text{obs}} \) and calculated \(m/z \) \(_{\text{calc}} \) values of the parental ion, \([M+2H]^{2+}\), as determined in the absence of fragmentation (MS1), are indicated. The \(m/z \) \(_{\text{calc}} \) value was used to select the ion for fragmentation. The difference between the \(m/z \) \(_{\text{obs}} \) and \(m/z \) \(_{\text{calc}} \) values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN\(^{\text{Red}}\)), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum. In the mass spectrum, peaks differing by the loss of \(\text{H}_2\text{O} \) are connected by a dashed line. The tables only contain the \(m/z \) values for the fragments containing \(\text{H}_2\text{O} \). The arrows indicate the position of the 3→3 and 4→3 crosslinks. Residues in the acceptor are underlined. An interactive report of the MS2 analysis is available in Supplementary File F5.1.

Precursor ion (MS1)	\(m/z \) \(_{\text{obs}} \) \([M+2H]^{2+}\)	\(m/z \) \(_{\text{calc}} \) \([M+2H]^{2+}\)	ppm	Intensity (a.u.)
GlcN(−Ac)−GlcN\(^{\text{Red}}\)(−Ac)−Lac−Ala−Glu−DAP→DAP(−Ala)−Glu−Ala−GlcN\(^{\text{Red}}\)(−Ac)−GlcN(−Ac)	939.988	939.992	-3.3	
Product ion	\(m/z \) \(_{\text{obs}} \) \([M+H]^+\)	\(m/z \) \(_{\text{calc}} \) \([M+H]^+\)	ppm	Intensity (a.u.)
---------------------	---------------------------------	---------------------------------	-----	-----------------
GlcN\(^{\text{Red}}\)(−Ac)−Lac−Ala−Glu−DAP→DAP(−Ala)−Glu−Ala−GlcN\(^{\text{Red}}\)(−Ac)−GlcN(−Ac)	1454.757	1454.769	8.0	376
GlcN\(^{\text{Red}}\)(−Ac)−Lac−Ala−Glu−DAP→DAP(−Ala)−Glu−Ala	1165.632	1165.619	-11.3	41
GlcN\(^{\text{Red}}\)(−Ac)−Lac−Ala−Glu−DAP→DAP(−Ala)−Glu	1090.586	1090.574	-10.9	238
GlcN\(^{\text{Red}}\)(−Ac)−Lac−Ala−Glu−DAP→DAP−Glu−Ala	1072.561	1072.564	2.6	158
GlcN\(^{\text{Red}}\)(−Ac)−Lac−Ala−Glu−DAP→DAP−Glu	997.520	997.520	0.5	97
GlcN\(^{\text{Red}}\)(−Ac)−Lac−Ala−Glu−DAP→DAP−(−Ac)	955.528	955.518	-10.1	135
DAP(−Ala)−Glu−Ala−Lac−GlcN\(^{\text{Red}}\)(−Ac)−GlcN(−Ac)	774.414	774.416	2.5	184
Glu−DAP→DAP(−Ac)	591.320	591.324	6.3	44
GlcN\(^{\text{Red}}\)(−Ac)−Lac−Ala	365.201	365.202	1.9	135
Glu−DAP	317.166	317.167	3.2	123
Supplementary Data 5.2: Tandem mass spectrometry analysis of the uniformly unlabeled Tri(3→3)Tetra dimer. The observed \(m/z_{\text{obs}} \) and calculated \(m/z_{\text{calc}} \) values of the parental ion, \([M+2H]^{2+}\), as determined in the absence of fragmentation (MS1), are indicated. The \(m/z_{\text{calc}} \) value was used to select the ion for fragmentation. The difference between the \(m/z_{\text{obs}} \) and \(m/z_{\text{calc}} \) values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN\text{Red}), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum. In the mass spectrum, peaks differing by the loss of H\text{2}O are connected by a dashed line. The tables only contain the \(m/z \) values for the fragments containing H\text{2}O. The arrows indicate the position of the 3→3 and 4→3 crosslinks. Residues in the acceptor are underlined.

An interactive report of the MS2 analysis is available in Supplementary File F5.[2]

Precursor ion (MS1)	\(m/z_{\text{obs}} \) [M+H]	\(m/z_{\text{obs}} \) [M+2H]	Intensity (a.u.)	
GlcN\text{(Ac)}-GlcN\text{Red}(Ac)-Lac-Ala-Glu-DAP > DAP\text{(Ala)}-Glu-Ala-Lac-GlcN\text{Red}(Ac)-GlcN\text{(Ac)}	897.891	897.892	-0.9	
GlcN\text{(Ac)}-Lac-Ala-Glu-DAP	1591.703	1591.696	4.5	290
GlcN\text{Red}(Ac)-Lac-Ala-Glu-DAP > DAP\text{(Ala)}-Glu-Ala-Lac-GlcN\text{Red}(Ac)-GlcN\text{(Ac)}	1388.618	1388.617	-0.8	2966
GlcN\text{Red}(Ac)-Lac-Ala-Glu-DAP > DAP\text{(Ala)}-Glu-Ala-Lac-GlcN\text{Red}(Ac)-GlcN\text{(Ac)}	1299.575	1299.569	-4.2	311
GlcN\text{Red}(Ac)-Lac-Ala-Glu-DAP	1183.529	1183.522	-5.7	139
GlcN\text{Red}(Ac)-Lac-Ala-Glu-DAP	1111.500	1111.501	0.4	614
GlcN\text{Red}(Ac)-Lac-Ala-Glu-DAP	1094.502	1094.474	-25.7	132
GlcN\text{Red}(Ac)-Lac-Ala-Glu-DAP	1040.465	1040.464	-1.8	1697
GlcN\text{Red}(Ac)-Lac-Ala-Glu-DAP	1022.450	1022.453	2.8	687
GlcN\text{Red}(Ac)-Lac-Ala-Glu-DAP	951.412	951.416	4.5	820
GlcN\text{Red}(Ac)-Lac-Ala-Glu-DAP > DAP\text{(Ala)}	911.422	911.421	-0.9	805
Lac-Ala-Glu-DAP > DAP\text{(Ala)}-Glu-Ala	906.399	906.406	7.8	112
GlcN\text{Red}(Ac)-Lac-Ala-Glu-DAP > DAP\text{(Ala)}-Glu-Ala	822.372	822.373	1.4	141
DAP\text{(Ala)}-Glu-Ala-Lac-GlcN\text{Red}(Ac)	763.350	763.347	-3.4	207
Glu-DAP > DAP\text{(Ala)}-Glu	739.335	739.336	0.9	1449
Glu-DAP > DAP\text{(Ala)}-Glu	692.308	692.310	3.2	351
Glu-DAP > DAP\text{(Ala)}	674.295	674.300	6.8	209
GlcN\text{Red}(Ac)-Lac-Ala-Glu-DAP	650.291	650.288	-3.1	639
Ala-Glu-DAP > DAP\text{(Ala)}-Glu	634.304	634.305	1.8	231
Glu-DAP > DAP\text{(Ala)}-Glu	602.267	602.263	-6.7	231
Glu-DAP > DAP\text{(Ala)}	563.270	563.268	-4.0	605
Ala-Glu-DAP > DAP\text{(Ala)}	545.260	545.257	-4.6	275
GlcN\text{Red}(Ac)-Lac-Ala-Glu	478.201	478.204	5.9	120
Glu-DAP > DAP\text{(Ala)}	474.220	474.220	-1.0	198
Glu-DAP > DAP\text{(Ala)}-Glu	434.225	434.225	-0.2	182
DAP\text{(Ala)}-Glu	391.180	391.183	7.9	360
Ala-Glu-DAP	373.173	373.172	-2.4	360
GlcN\text{Red}(Ac)-Lac-Ala	349.160	349.161	3.2	653
Glu-DAP	302.135	302.135	-0.7	1087
GlcN\text{Red}(Ac)-Lac	278.124	278.124	0.3	167
Supplementary Data 5.3: Tandem mass spectrometry analysis of the Tri→Tetra dimer containing a uniformly labeled disaccharide-tetrapeptide cross-linked to a uniformly unlabeled disaccharide-tripeptide (3→3 cross-link). The observed m/z_{obs} and calculated m/z_{cal} values of the parental ion, [M+2H]$^{2+}$, as determined in the absence of fragmentation (MS1), are indicated. The m/z_{cal} value was used to select the ion for fragmentation. The difference between the m/z_{obs} and m/z_{cal} values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN$^{\text{Red}}$), the acetyl group (Ac), and the d-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively.

In the mass spectrum, peaks differing by the loss of H_2O are connected by a dashed line. The arrows indicate the position of the 3→3 and 4→3 crosslinks. Residues in the acceptor are underlined.

An interactive report of the MS2 analysis is available in Supplementary File F5.3.
Tetra-Tetra

Supplementary Data 6.1: Tandem mass spectrometry analysis of the uniformly labeled Tetra(4→3)Tetra dimer. The observed m/z_{obs} and calculated m/z_{calc} values of the parental ion, $[M+2H]^2+$, as determined in the absence of fragmentation (MS1), are indicated. The m/z_{calc} value was used to select the ion for fragmentation. The difference between the m/z_{obs} and m/z_{calc} values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN^{Red}), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum. In the mass spectrum, peaks differing by the loss of H₂O are connected by a dashed line. The tables only contain the m/z values for the fragments containing H₂O. The arrows indicate the position of the 3→3 and 4→3 crosslinks. Residues in the acceptor are underlined. An interactive report of the MS2 analysis is available in Supplementary File F6.[I]
Supplementary Data 6.2: Tandem mass spectrometry analysis of the uniformly unlabeled Tetra(4→3)Tetra dimer. The observed \(m/z\) values and calculated \(m/z\) values of the parent ion, \([M+2H]^2+\), as determined in the absence of fragmentation (MS1), are indicated. The \(m/z\) value was used to select the ion for fragmentation. The difference between the \(m/z\) values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN\text{Red}), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The peaks corresponding to the list of fragments appearing in the table are highlighted by orange dots in the mass spectrum. In the mass spectrum, peaks differing by the loss of H\(_2\)O are connected by a dashed line. The tables only contain the \(m/z\) values for the fragments containing H\(_2\)O. The arrows indicate the position of the 3→3 and 4→3 crosslinks. Residues in the acceptor are underlined.

An interactive report of the MS2 analysis is available in Supplementary File F6[2].
Supplementary Data 6.3: Tandem mass spectrometry analysis of the Tetra→Tetra dimer containing a uniformly labeled disaccharide-tripeptide cross-linked to a uniformly unlabeled disaccharide-tripeptide (4→3 cross-link). The observed m/z_{obs} and calculated m/z_{calc} values of the parental ion, [M+2H]$^{2+}$, as determined in the absence of fragmentation (MS1), are indicated. The m/z_{calc} value was used to select the ion for fragmentation. The difference between the m/z_{obs} and m/z_{calc} values is indicated in ppm. The GlcNAc residue is indicated in two moieties, glucosamine (GlcN) and the acetyl group (Ac), since these moieties are potentially differentially labeled. For the same reason, the reduced (Red) MurNAc residue is indicated in three moieties, reduced glucosamine (GlcN$^{\text{Red}}$), the acetyl group (Ac), and the D-lactoyl group. Labeled and unlabeled moieties are represented in red and purple, respectively. The fragmentation potentially leads to two series of fragments (discriminatory fragments) specific of the isotopomers containing the fully labeled disaccharide subunit in the donor (all heavy-all light) or acceptor position (all light-all heavy). These fragments are highlighted by green and orange dots in the mass spectrum, respectively. The other fragments are common to the fragmentation of the two isotopomers (highlighted by blue dots in the mass spectrum). The mass spectrum indicates the presence of the all light-all heavy isotopomers (orange dots). The peak at m/z_{obs} 1128.568 (green dot) can also be accounted for by the loss of H$_2$O from the peak at 1142.567 indicating that all peaks may be accounted for by the presence of the all light-all heavy isotopomer.

In the mass spectrum, peaks differing by the loss of H$_2$O are connected by a dashed line. The arrows indicate the position of the 3→3 and 4→3 crosslinks. Residues in the acceptor are underlined.

An interactive report of the MS2 analysis is available in Supplementary File F6.3.
Precursor ion (MS1)	m/z_{obs} [M+2H]^2+	m/z_{calc} [M+2H]^2+	ppm	Intensity (a.u.)	Isotopologue
GlcN(-Ac)-GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	955.459	955.462	-2.6	all heavy—all light	
GlcN(-Ac)-GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	955.459	955.462	-2.6	all heavy—all light	

Discriminatory product ion	m/z_{obs} [M+H]^+	m/z_{calc} [M+H]^+	ppm	Intensity (a.u.)	
GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	1128.568	1128.570	1.6	215	all heavy—all light
GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	1053.516	1053.525	9.2	97	all light—all heavy
Ala26s	845.449	845.453	4.3	304	all light—all heavy
Ala26s	774.410	774.416	7.5	459	all light—all heavy
Ala26s	752.394	752.398	5.1	307	all light—all heavy
Ala26s	721.322	721.326	4.4	186	all light—all heavy
GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	689.334	689.331	3.8	139	all light—all heavy
GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	410.225	410.221	-9.5	158	all light—all heavy
GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	388.202	388.204	4.3	128	all light—all heavy
GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	346.197	346.202	14.6	106	all light—all heavy

Common product ion	m/z_{obs} [M+H]^1+	m/z_{calc} [M+H]^1+	ppm	Intensity (a.u.)	
GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	1494.729	1494.733	2.8	1109	
GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	1205.576	1205.583	6.2	113	
GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	1146.576	1146.580	3.8	295	
GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	1130.533	1130.539	5.7	219	
GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	1017.530	1017.538	7.3	126	
GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	995.475	995.483	7.4	176	
GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	647.322	647.329	11.3	149	
GlcN26s(-Ac)-Lac-Ala-Glu-DAP-Ala	302.130	302.135	15.7	19	
GlcN(-Ac)	204.089	204.087	-9.0	2307	
GlcN(-Ac)	182.108	182.110	12.0	134	
