Utilization of the Batch Training Method for Predicting Natural Disasters and Their Impacts

N L W S R Ginantra1, M A Hanafiah2, A Wanto3, R Winanjaya3 and H Okprana3
1STMIK STIKOM Indonesia, Denpasar, Bali, Indonesia
2Politeknik Bisnis Indonesia, Pematangsiantar, Indonesia
3STIKOM Tunas Bangsa, Medan, Indonesia

E-mail: anjarwanto@amiktunasbangsa.ac.id

Abstract. Indonesia is one of the countries that often experiences natural disasters, including earthquakes, floods, tsunamis, etc. All of this causes losses, both casualties, Broken, and Anguishing for the population. Based on this, this paper is proposed, which aims to predict natural disasters in the coming years in Indonesia, casualties, Broken, and their consequences. This paper is an extension of previous research, which is still an architectural model to predict Indonesia's natural disasters and their impacts. Model 4-10-1 is the best in this study, which produces 91% accuracy. Based on this architectural model, this paper will predict natural disasters that occur and their impacts for the years to come in Indonesia. The research dataset and algorithms used remain the same, namely the natural disaster dataset for 2008-2019. Resourced from its National Emergency Management Department and the Batch Training algorithm. Specifically, the results of this proposed paper are in the form of a prediction of natural disasters that will occur, dead and disappear, injured, Anguishing and displaced, houses severely Broken, moderately Broken, lightly Broken to submerged, and Broken to facilities and infrastructure such as health facilities, facilities. worship and educational facilities.

1. Introduction
The occurrence of natural disasters is usually triggered by a condition or series of natural events such as floods, tsunamis, earthquakes, volcanic eruptions, landslides, hurricanes, drought and others. In general, natural disasters arise due to changes in nature, both gradual and extreme. But there are also natural disasters that arise because of human activity, such as logging that can cause landslides. Many researchers and scientists to date have tried various ways so that natural disasters can be detected. However, in reality, natural disasters are always a mystery because identification and detection are quite difficult. Almost every natural disaster that occurs is bound to cause loss, damage to casualties. In addition, natural disasters can influence subjective perceptions about the seriousness of potential disasters and their prevalence [1]. The impact of natural disasters also has implications for people's lives, especially in the social sector [2]. Experts and analysts also argue that the occurrence of natural disasters has a very negative effect on state policy [3]. Some of the world's natural disasters have caused significant harm to the social building and economic growth, including the 2004 Indonesian tsunami and the 2008 Wenchuan earthquake [4], Southern China's freezing rain disaster in 2008, Japan's earthquake disaster in 2011, India's flood disaster in 2013 and Jiangsu hail in Yancheng in
2016. Continues to hit Heavy rains in July 2016 in North China, along with major floods that hit South China [5].

According to the National Emergency Management Department of Republic Indonesia, natural disasters in 2008-2018 in the last decade have increased quite a bit, but in 2019 this number decreased as recorded from 3,406 to 1,999 alone. Based on statistics from the National Emergency Management Department, natural disasters in 2018 were the biggest disasters compared to previous years, due to the large number of natural disasters, depression and loss of homes, dead and missing victims, and broken moderate houses [6].

Table 1. Natural Disasters Data in Indonesia

Times	Total	Dead & Disappear	Injuries	Anguish & Evacuate	Broken Severe	Broken Moderate	Broken Lightly	Submerged	Facility Medical	Facility Worship	Facility Educational	
2010	1.947	1.907	35.730	1.663	103	20.084	3.709	35.708	686.523	367	628	1.557
2011	1.622	428	692	475.529	13.549	3.358	56.736	194.785	106	457	566	
2012	1.781	320	1198	954.241	10.686	8.018	35.356	187.601	89	219	473	
2013	1.666	512	3.410	3.892.986	17.727	12.590	59.401	470.756	321	684	1.902	
2014	1.963	604	2.104	2.814.265	20.079	6.067	29.350	525.434	63	355	766	
2015	1.694	276	370	1.277.929	5.217	3.871	16.444	180.319	33	159	309	
2016	2.308	578	2.675	3.162.491	9.029	9.979	28.790	334.606	232	601	1.484	
2017	2.868	378	1.042	3.674.369	10.452	10.648	28.631	376.373	117	715	1.326	
2018	3.406	2.046	12.96010	354.764	117.655	70.303	182.195	313.653	287	1.176	2.984	
2019	1.999	367	1.431	651.095	4.047	4.181	16.857	153.025	102	281	452	

Because disaster information is so important as an Early Warning step for the people of Indonesia, it is necessary to predict the number of disasters in the following year as well as an estimate of casualties (Death and Missing, Injured, Anguish and Displaced), Houses / Units (Severely Broken, Moderately Broken), slightly Broken and submerged) and Broken / unit (health facilities, worship facilities and educational facilities). One of the good algorithms used to make predictions is the batch training algorithm. This algorithm is one of the Algorithms of the ANN. Artificial Neural Networks are widely used for solving problems related to estimation (prediction), pattern recognition, data analysis, control and grouping [7]–[12].

This research was conducted as a development of previous research conducted by Ginantra, et al (2020). As it should be noted that the results of this study are still in the form of a network architecture model to predict natural disasters and their impact using Batch training, not yet at the stage of the resulting predictive value [13]. Therefore in this paper, a calculation process will be carried out to obtain a prediction result in the form of the number of disasters, casualties (Death and Disappear, Injuries, Anguishing, and Evacuate), Houses/Units (Broken Severe, Broken Moderate, Broken lightly and submerged) or Broken/unit (Facility Medical, Facility Worship, and Facility Educational). The next research was conducted by Wanto, et al. (2019) to analyze the Batch Training method's accuracy in seeing the development of Indonesian aquaculture companies. The result is that the accuracy of this method reaches 75%, which means it is good enough to use [14].

Based on this background, a study was conducted to predict natural disasters and their impacts using a batch training algorithm. This study's results are expected to be input and reference for the government to determine policies or make appropriate strategic steps to respond to disasters that will occur in Indonesia for the coming years to minimize casualties and Broken.
2. Methodology

2.1. Techniques and Methods
Collecting data uses quantitative techniques. While the method used is batch training (trainb). This approach will render data-based predictions (times series). The weighting and bias processes in accordance with the learning function with this method will be modified.

2.2. Techniques and Methods
The stages carried out in this study can be seen in Figure 1.

![Figure 1. Research Stages](image)

2.3. Variables
The twelve variables of this analysis are the time of catastrophe, the total of disasters, dead and Disappear, Injuries, Anguishing and Evacuate, seriously Broken houses, lightly Broken houses, Submerged, Broken facility medical, Broken facility worship, and Broken facility educational.

3. Results and Discussion

3.1. Normalization
Based on the data in Table 1, first normalization will be carried out using equations (1) berikut: [15]–[18].

\[x' = \frac{0.8(x - a)}{b - a} + 0.1 \]

(1)

Years	Total	Dead & Disappear	Toll (Soul)	Input	Testing	Training (Change update weight)	Selecting Learning Algorithms	Determining the Network Structure	Data Separation for Training and Testing	Implementation of Artificial Neural Networks	Data collection
2010	0.10015	0.10014	0.10276	0.22836	0.10155	0.10028	0.10275	0.15299	0.10003	0.10005	0.10012
2011	0.10002	0.10003	0.10005	0.13670	0.10104	0.10026	0.10438	0.11503	0.10001	0.10003	0.10004
2012	0.10013	0.10002	0.10099	0.17365	0.10082	0.10062	0.10273	0.11448	0.10000	0.10001	0.10003
2013	0.10013	0.10004	0.10026	0.40048	0.10137	0.10097	0.10458	0.13633	0.10002	0.10005	0.10014
2014	0.10015	0.10004	0.10016	0.31722	0.10155	0.10047	0.10226	0.14055	0.10000	0.10002	0.10006
2015	0.10013	0.10002	0.10003	0.19477	0.10040	0.10030	0.10127	0.11392	0.10000	0.10001	0.10002
2016	0.10018	0.10004	0.10020	0.34409	0.10069	0.10077	0.10222	0.12582	0.10002	0.10004	0.10011
2017	0.10022	0.10003	0.10008	0.38360	0.10080	0.10082	0.10221	0.12905	0.10001	0.10005	0.10010

Table 2. Normalization Results
3.2. Results of Training and Testing

Based on previous research [13], there are 3 architectural models used: 4-5-1, 4-10-1, and 4-15-1. Model 4-10-1 is the best because of its 91% accuracy rate (higher than other architectural models). The parameters used are also the same as the study. The analysis process uses Matlab and Microsoft Excel tools. The training and testing results of the three models used can be seen in Table 3, Table 4, Table 5, Table 6, Table 7, and Table 8.

Table 3. Training with Model 4-5-1
P
P1 0.10015
P2 0.10004
P3 0.10016
P4 0.31722
P5 0.10155
P6 0.10047
P7 0.10226
P8 0.14055
P9 0.10000
P10 0.10002
P11 0.10006

MSE 0.209719782

Table 4. Testing with Model 4-5-1
P
P1 0.10015
P2 0.10003
P3 0.10011
P4 0.15025
P5 0.10031
P6 0.10032
P7 0.10130
P8 0.11181
P9 0.10001
P10 0.10002
P11 0.10003

MSE 0.7094428217

Table 5. Training with Model 4-10-1
P
P1 0.10015
P2 0.10004
P3 0.10016
P4 0.31722
P5 0.10155
P6 0.10047
P7 0.10226
P8 0.14055
P9 0.10000
P10 0.10002
P11 0.10006

MSE 0.2700862337

Table 6. Testing with Model 4-10-1
P
P1 0.10015
P2 0.10003
P3 0.10011
P4 0.15025
P5 0.10031
P6 0.10032
P7 0.10130
P8 0.11181
P9 0.10000
P10 0.10002
P11 0.10003

MSE 0.6371929496

Table 7. Training with Model 4-15-1
P
P1 0.10015
P2 0.10004
P3 0.10016
P4 0.31722

Table 8. Testing with Model 4-15-1
P
P1 0.10015
P2 0.10003
P3 0.10011
P4 0.15025
Based on the data in Table 3, Table 4, Table 5, Table 6, Table 7, and Table 8, the results show that Model 4-10-1 is the best model chosen.

Table 7. Training with Model 4-15-1

P	T	O	E	SSE
P5	0.10155	0.10990	0.00835	0.0000687685
P6	0.10047	0.10710	0.00663	0.0000440135
P7	0.10226	0.13160	0.02934	0.000860697
P8	0.14055	0.11230	-0.02825	0.0007982313
P9	0.10000	0.10470	0.09470	0.0000220682
P10	0.10002	0.10470	0.00468	0.0000218570
P11	0.10006	0.10470	0.00464	0.0000215614
			0.0195090286	
MSE	0.0017735481			

Table 8. Testing with Model 4-15-1

P	T	O	E	SSE	Results
P5	0.10031	0.10680	0.00649	0.0000421224	1
P6	0.10032	0.10850	0.00818	0.0000669097	1
P7	0.10130	0.11600	0.01470	0.0002161324	1
P8	0.11181	0.22650	0.11469	0.0131541031	0
P9	0.10001	0.10480	0.00479	0.0000229889	1
P10	0.10002	0.10490	0.00488	0.0000238228	1
P11	0.10003	0.10530	0.00527	0.0000277482	1
			0.0542400885		82%

Explanation: P = Pattern, T = Target, O = Output, E = Error

3.3. Prediction results

Then the prediction will be made using the 4-10-1 model using the formula to return the value:

\[
x_n = \frac{(x - \bar{b}) \times (b - a)}{a} + a
\]

Explanation:

- \(x_n\) = Prediction Results
- \(x\) = Predicted Target
- \(a\) = The smallest data from the dataset
- \(b\) = The largest data set from the dataset

For the prediction results in 2020 can be seen in Table 9.
Table 9. Results of Prediction of Natural Disasters in Indonesia (2020)

Years	Total	Dead & Lost	Anguish & Evacuate	Severely Broken	Moderately Broken	Broken Lightly	Submerged	Medical Facility	Worship Facility	Educational Facilities	
2016	2.308	578	2.675	3.162.491	9.029	9.979	28.790	334.606	232	601	1.484
2017	2.868	378	1.042	3.674.369	10.452	10.648	28.631	376.375	117	715	1.326
2018	3.406	2046	19.610	10.364.764	117.655	70.303	182.195	313.653	287	1.176	2.984
2019	1.999	367	1.431	651.095	4.047	4.181	16.857	153.025	102	281	452
2020	223	138	232	176.860	1.361	481	1.943	331.102	104	122	148

4. Conclusion

The 4-10-1 architectural model with the Batch training method can be used to predict natural disasters in Indonesia with an accuracy rate of 91%. The architectural model and parameters used have an effect on the resulting level of accuracy. Based on the comparison between the Preliminary Data and the Prediction data (2020), the number of disasters and their consequences decreased quite significantly. However, in reality, until the end of 2020, natural disasters and their consequences has indeed decreased, but not significantly compared to the predicted data. Thus the results of this study need to be reviewed to obtain accurate results (even better).

References

[1] P. Brown, A. J. Daigneault, E. Tjernström, and W. Zou, “Natural disasters, social protection, and risk perceptions,” World Development, vol. 104, pp. 310–325, 2018.
[2] D. Eckhardt, A. Leiras, and A. M. T. Thomé, “Systematic literature review of methodologies for assessing the costs of disasters,” International Journal of Disaster Risk Reduction, vol. 33, pp. 398–416, 2019.
[3] J. Gallego, “Natural Disasters and Clientelism: The Case of Floods and Landslides in Colombia,” Electoral Studies, vol. 18, pp. 1–50, 2018.
[4] X. Wu, Z. Wang, G. Gao, J. Guo, and P. Xue, “Disaster probability, optimal government expenditure for disaster prevention and mitigation, and expected economic growth,” Science of the Total Environment, vol. 709, p. 135888, 2020.
[5] P. Li et al., “Prediction of heavy precipitation in the eastern China flooding events of 2016: Added value of convection-permitting simulations,” Quarterly Journal of the Royal Meteorological Society, vol. 145, no. 724, pp. 3300–3319, 2019.
[6] Badan Nasional Penanggulangan Bencana, “Bencana Alam di Indonesia Menurut Waktu Tahun 2010 s/d 2019,” Badan Nasional Penanggulangan Bencana, 2019. [Online]. Available: http://bnpb.cloud/dibi/Table3a.
[7] P. Parulian et al., “Analysis of Sequential Order Incremental Methods in Predicting the Number of Tolls Affected by Disasters,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
[8] A. Wanto, M. Zarlis, Sawaluddin, and D. Hartama, “Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves in the Predicting Process,” Journal of Physics: Conference Series, vol. 930, no. 1, pp. 1–7, 2017.
[9] M. K. Z. Sormin, P. Sihombing, A. Amalia, A. Wanto, D. Hartama, and D. M. Chan, “Predictions of World Population Life Expectancy Using Cyclical Order Weight / Bias,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
[10] T. Afriliansyah et al., “Implementation of Bayesian Regulation Algorithm for Estimation of Production Index Level Micro and Small Industry,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
[11] G. W. Bhawika et al., “Implementation of ANN for Predicting the Percentage of Illiteracy in Indonesia by Age Group,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
[12] I. S. Purba et al., “Accuracy Level of Backpropagation Algorithm to Predict Livestock Population of Simalungun Regency in Indonesia,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

[13] N. L. S. R. Ginantra et al., “Architectural Models for Predicting the Total of Natural Disasters and their Effects Using Batch Training,” Journal of Physics: Conference Series, vol. 1566, no. 1, p. 012032, 2020.

[14] A. Wanto et al., “Analysis of the Accuracy Batch Training Method in Viewing Indonesian Fisheries Cultivation Company Development,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

[15] B. Febriad, Z. Zamzami, Y. Yunefri, and A. Wanto, “Bipolar function in backpropagation algorithm in predicting Indonesia’s coal exports by major destination countries,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 012087, pp. 1–9, 2018.

[16] N. Nasution, A. Zamsuri, L. Lisnawita, and A. Wanto, “Polak-Ribiere updates analysis with binary and linear function in determining coffee exports in Indonesia,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 012089, pp. 1–9, 2018.

[17] A. Wanto and J. T. Hardinata, “Estimations of Indonesian poor people as poverty reduction efforts facing industrial revolution 4.0,” IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, pp. 1–8, 2020.

[18] A. Wanto et al., “Model of Artificial Neural Networks in Predictions of Corn Productivity in an Effort to Overcome Imports in Indonesia,” Journal of Physics: Conference Series, vol. 1339, no. 1, pp. 1–6, 2019.