Local Flow Partitioning for Faster Edge Connectivity

Monika Henzinger, Satish Rao, Di Wang

University of Vienna, UC Berkeley, UC Berkeley
Edge Connectivity

- **Edge-connectivity λ:** least number of edges whose removal disconnects the graph.
- **Minimum cut:** set of edges of minimum size whose removal disconnects the graph.
 - $\lambda = 2$

 λ = size of minimum cut in **unweighted** graphs
Prior Work

Deterministic algorithm

		unweighted (multi-)graph
Gabow’91	$O(\lambda m \log n)$	
Kawarabayashi & Thorup’15	$O(m \log^{12} n)$	simple graph
Henzinger, Rao, W’17	$O(m \log^{12} n \log \log^{12} n)$	simple graph

Randomized algorithm

		weighted graph
Karger’00	$O(m \log^{13} n)$	

n nodes, m edges, min cut = λ

Simple graph: undirected, unweighted, no parallel edges

Multi-graph: can have parallel edges.
Theorem

G: simple, min degree $\delta \quad O(m)$

Multi-graph \mathcal{G} with

$\min \deg \leq \lambda \leq \delta$

$m \downarrow \mathcal{G} = O(m/\delta)$ edges

Non-trivial min cut in \mathcal{G}

Min cut in \mathcal{G}

- **Trivial cut**: only 1 node on one side of the cut.
- The min degree δ bounds the edge connectivity λ

$\lambda \leq \delta$
Kawarabayashi-Thorup (KT)

- Theorem
 \[G: \text{simple, min degree } \delta \quad \mathcal{O}(m) \quad \text{Multi-graph } \mathcal{G} \text{ with } \quad m \downarrow G = \mathcal{O}(m/\delta) \text{ edges} \]

 \[\begin{align*}
 \text{Non-trivial min cut in } \mathcal{G} & \iff \text{Min cut in } \mathcal{G} \\
 \end{align*} \]

- Gabow’s algorithm on \(G \)
 \[\mathcal{O}(\lambda m \downarrow G \log m) = \mathcal{O}(\lambda m / \delta) = \mathcal{O}(m) \]

- Assume \(\delta = \Omega(\log n) \quad \lambda \leq \delta \)
Low Conductance Cut

Conductance: $\phi(A) = \frac{|E(A,A)|}{\min\{vol(A), vol(A)\}}$

$vol(A) = \sum_{v \in A} \deg(v)$

Non-trivial cut of size $\leq \delta$ has low conductance!

2 nodes: $\geq 2\delta$ total degree
$\leq \delta$ edges across the cut
≥ 2 nodes $\Rightarrow \Omega(\delta)$ nodes
Low Conductance Cut

Conductance: \(\phi(A) = \frac{|E(A,A)|}{\min\{vol(A), vol(A')\}} \)

\(vol(A) = \sum_{v \in A} \deg(v) \)

Non-trivial cut of size \(\leq \delta \) has low conductance!

2 nodes: \(\geq 2\delta \) total degree
\(\leq \delta \) edges across the cut
\(\geq 2 \) nodes \(\Rightarrow \Omega(\delta) \) nodes

volume is \(\Omega(\delta^{1/2}) \)
\(\Rightarrow \) conductance \(O(1/\delta) \)
Local Graph Partitioning

Central tool in [KT’15], improved by us

Given G with m edges, find cut (A,A)

- Low conductance: $\phi(A) = O(1/\log m)$
- Local running time: $O(vol(A)\log \uparrow c m)$
 - Cannot afford $O(m)$ in recursive decomposition
PageRank/Diffusion [ACL’06]

Input: 1 unit of mass at a vertex v, rate of decay α

Maintains 2 vectors in n-dimensional space:

- $p =$ “settled mass” and $r =$ “unsettled mass”
- **Initially:** $p = 0$, $r = 1$ at v and 0 everywhere else
- **Repeat:**
 - for every vertex u:
 - $p'(u) = p(u) + \alpha r(u)$ \text{mass settles}
 - $r'(u) = (1 - \alpha) r(u)/2$
 - For each neighbor v of u:
 - $r'(v) = r(v) + (1 - \alpha)r(u)/(2\text{deg}(u))$ \text{mass pushed to neighbors}
 - $p = p'$, $r = r'$
PageRank/Diffusion [ACL’06]

- Input: starting distr., rate of decay α
- Settle fraction α of residual mass per round
- Spread half of the remaining evenly to neighbors
- ε-approx. of limiting distribution in time $O(1/(\alpha \varepsilon))$
PageRank/Diffusion [ACL’06]

Input: starting distr., rate of decay α

- Typical local partitioning result:

 \exists conductance $O(\phi^{12}/\log m)$ cut

 Find conductance ϕ cutA in time $O(\text{vol}(A)/\phi^{12})$

- Quadratic loss in cut quality and running time
PageRank/Diffusion [ACL’06]

Input: starting distr., rate of decay α

- Settle fraction α of residual mass per round
- Spread half of the remaining evenly to neighbors
- ε-approx. of limiting distribution in time $O(1/(\alpha\varepsilon))$
- Typical local partitioning result:
 $$\exists \text{ conductance } O(\phi^2 / \log m) \text{ cut}$$

Find conductance ϕ cut A in time $O(\text{vol}(A)/\phi^2)$

- Quadratic loss in cut quality and running time
Flow-based Method

- Polylog loss in cut quality
- Difficult to make the running time local
Flow-based Method

- Polylog loss in cut quality
- Difficult to make the running time local

Two-level structure [HRW’17]

- *Unit-Flow*
 - Try to find **low conductance cut**
 - Running time "global" ~ size of instance

- *Excess Scaling*
 - Get running time local
 - Control instance size for Unit-Flow via value of unit.
Unit-Flow\((G, \Delta, \phi)\)

Called repeatedly on “partial” flow problems

Input:
- Graph \(G\)
- Source supply \(\Delta\): \(\forall v \Delta(v) \leq 2\ \text{deg}(v)\) units
- Parameters: target conductance \(\phi\)

Flow Problem:
- Each \(v\) has sink capacity \(\text{deg}(v)\) units.
- Edge capacities \(=1/\phi\) units.

![Diagram showing flow from source to sink](image)
Unit-Flow(G, Δ, ϕ)

Variant of preflow push-relabel

Preflow $f: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$

- Antisymmetry: $f(u,v) = -f(v,u)$
- Non-deficient flows: $\forall v$, $\sum_{u \leftarrow v} f(v,u) \leq \Delta(v)$
- Respects edge capacities

 $f(v) = \sum_{u \leftarrow v} f(u,v) + \Delta(v)$
Unit-Flow(G, Δ, ϕ)

Variant of preflow push-relabel

Preflow $f: V \times V \to \mathbb{R}$
Antisymmetry: $f(u,v) = -f(v,u)$
Non-deficient flows: $\forall v, \sum u \uparrow \bar{u} f(v,u) \leq \Delta(v)$
Respects edge capacities
$f(v) = \sum u \uparrow \bar{u} f(u,v) + \Delta(v)$

Push-relabel algorithm:
Each vertex has a height, starting at 0.
Repeatedly pick any v with excess (i.e. $f(v) > \deg(v)$)

Push: send excess to lower neighbor along edges with residual capacity.
Relabel: if not possible, raise height of v by 1.
Unit-Flow(G, Δ, ϕ)

Key adaptations

- Upper-bound height by $h = \log m / \phi$
- Flow solution not guaranteed: Might not push all flow to sources
Unit-Flow\((G, \Delta, \phi)\)

Key adaptations

- Upper-bound height by \(h = \log m / \phi\),
- Flow solution not guaranteed
- But then \(\exists\) conductance \(O(\phi)\) “level cut”

Region growing argument
\((1 + \phi)^h m\)
Unit-Flow\((G, \Delta, \phi) \)

Key adaptations

- Upper-bound height by \(h = \log m \)
- Flow solution not guaranteed
- \(\exists \) conductance \(O(\phi) \) “level cut”

\[(1+\phi)^h \gg m \]

- Upper-bound excess on vertex
 - Maintain \(f(v) \leq 2\deg(v) \), assumed at start
 \[\Rightarrow \text{Total excess } \leq \text{vol}(A) \text{ at the end} \]
Unit-Flow(G, Δ, ϕ)

\[f(\nu) = \# \text{ units of supply on } \nu \text{ at the end} \]

- **Either** routes all source supply to sinks

\[\forall \nu: f(\nu) \leq \deg(\nu) \]

- **Or** finds conductance $O(\phi)$ cut (A,A),

and total excess bounded by $vol(A)$

\[
\text{total excess} = \sum_{\nu} \max(0, f(\nu) - \deg(\nu)) \\
\leq \text{vol}(A)
\]

- **Explored subgraph volume** $\approx \sum \Delta(\nu) = \text{total units of flow}$
Unit-Flow(G, Δ, ϕ)

\[f(\nu) = \# \text{ units of supply on } \nu \text{ at the end} \]

- **Either** routes all source supply to sinks
 \[\forall \nu : f(\nu) \leq \text{deg}(\nu) \]
- **Or** finds conductance $O(\phi)$ cut (A,A),
 and total excess $\leq \text{vol}(A)$

Running time: $O(|\Delta|/\log m / \phi)$, $|\Delta| = \sum \nu \uparrow \Delta(\nu)$, proportional to volume of explored subgraph
Running time: \(O(|\Delta|/\log m / \phi) \), \(|\Delta| = \sum v \Delta(v) \)

But when cut \((A, A)\) is returned we need time \(O(vol(A) / \phi) \)

Idea:

- Repeatedly run Unit-Flow for doubling values of \(|\Delta|\) until Unit-Flow returns a cut \((A, A)\) with excess \(\geq \Omega(|\Delta|/\log n) \)
 - \(vol(A) \geq \Omega(|\Delta|/\log n) \)

- Can bound running time of all preceding calls to Unit-Flow by \(O(vol(A) \log \Omega n/\phi) \)

- Done by Excess Scaling
Idea:

- Repeatedly run Unit-Flow for doubling values of $|\Delta|$ until Unit-Flow returns a cut (A,A) with $vol(A) \geq \Omega(|\Delta|/\log n)$
- Can bound running time of all preceding calls to Unit-Flow by $O(vol(A) \log \log n / \phi)$
- If never a “large enough” cut is returned then $\sum_{j} vol(A \downarrow j)$ is “small” and the (weighted) sum of the flows returned by all the Unit-Flow routes “almost all” flow
Excess Scaling

Input:
- Graph G
- Source supply Δ, $|\Delta| = \sum v \uparrow \Delta(v) = 2m$

Flow problem:
- Each v sink of capacity $\text{deg}(v)$
- Sufficient edge capacity for all calls to Unit-Flow
Excess Scaling

Source supply Δ, $|\Delta| = \sum \Delta(v) = 2m$

Each v sink of capacity $\text{deg}(v)$

Divide into “growing” phases for Unit-Flow

- Start with large enough unit value $\mu = \max_v \Delta(v)/2 \text{deg}(v)$

 $\Delta \downarrow 0 = \Delta/\mu \rightarrow \Delta \downarrow 0 (v) \leq 2\text{deg}(v)$,

Problem size: $2\text{deg}(v)$
Excess Scaling

Source supply Δ, $|\Delta| = \sum_{v} \Delta(v) = 2m$

Each v sink of capacity $\text{deg}(v)$

Divide into “growing” phases for Unit-Flow

- Start with large enough unit value $\mu = \max_v \Delta(v)/2 \text{deg}(v)$

 $\Delta \downarrow 0 = \Delta/\mu \rightarrow \Delta \downarrow 0 (v) \leq 2\text{deg}(v)$,

- Either returns low conductance cut or

 $\forall v: f(v) \leq \text{deg}(v)$

Problem size: $2\text{deg}(v)$
Excess Scaling

Source supply Δ, $|\Delta| = \sum_{v \uparrow} \Delta(v) = 2m$

Each v sink of capacity $\text{deg}(v)$

Divide into “growing” phases for Unit-Flow

- Start with large enough unit value $\mu = \max_{v} \Delta(v)/2 \text{deg}(v)$

 $\Delta \downarrow 0 = \Delta/\mu \rightarrow \Delta \downarrow 0 (v) \leq 2\text{deg}(v)$,

- Either returns low conductance cut: STOP

 or $\forall v: f(v) \leq \text{deg}(v)$: RESCALE and CALL Unit-Flow again
Excess Scaling

Source supply \(\Delta, |\Delta| = \sum_{v \uparrow} \Delta(v) = 2m \)

Each \(v \) sink of capacity \(\text{deg}(v) \)

- Start with large enough unit value \(\mu \) such that
 \(\forall v: \Delta \downarrow 0(v) = \Delta(v)/\mu \leq 2\text{deg}(v) \)
- Iteratively call Unit-Flow until low conductance cut with “large” volume is returned:
 - If Unit-Flow does not find such a cut, then \(\forall v: f(v) \leq \text{deg}(v) : \text{Set } \Delta \downarrow j+1 \approx 2f \downarrow j \), i.e. \(|\Delta| \) roughly doubles
 - Volume of explored subgraph, roughly doubles

Explored subgraph volume:

\[2\text{deg}(v) \rightarrow 4\text{deg}(v) \rightarrow 8\text{deg}(v) \rightarrow 16\text{deg}(v) \ldots \]
Excess Scaling

Low conductance cut in *local time*

- Terminate when encounter “good cut” = Low conductance + large volume
 - j-th Unit-Flow: running time $O(|\Delta \downarrow j| \log m / \phi)$
 - Running time of all previous Unit-flow: $O(|\Delta \downarrow j| \log m / \phi)$
Excess Scaling

Low conductance cut in **local time**

- Terminate when encounter “good cut” = Low conductance + large volume
 - j-th Unit-Flow: running time $O(|\Delta j|/\log m / \phi)$
 - Running time of all previous Unit-flow: $O(|\Delta j|/\log m / \phi)$
- Cut $A\downarrow j$ returned by last Unit-Flow
 - Low conductance: $O(\phi)$
 - Large volume: $\text{vol}(A) = \Omega(|\Delta j|/\log m)$
- Conductance ϕ cut A in time $O(\text{vol}(A) \log^2 m / \phi)$
Excess Scaling

Low conductance cut in local time

- Terminate when encounter “good bottleneck”
 - j-th Unit-Flow: running time $O(|Δ↓j|/\log m/\phi)$
 - Running time of all previous Unit-flow: $O(|Δ↓j|/\log m/\phi)$
- Cut $A↓j$ returned by last Unit-Flow
 - Low conductance: $O(\phi)$
 - Large volume: $\text{vol}(A)=\Omega(|Δ↓j|/\log m)$
- Conductance ϕ cut A in time $O(\text{vol}(A)\log^2 m/\phi)$
- Otherwise flow spread over G, almost all supply routed to sinks
| Excess Scaling + Unit-Flow | vs. | PageRank |
|---------------------------|-----|----------|
| Spread “stuff” to find bottleneck | Flow routing | Probability diffusion |
| Fail when no good enough “bottleneck”, so “stuff” spreads over entire graph |
Excess Scaling + Unit-Flow vs. PageRank

Spread “stuff” to find bottleneck	Fail when no good enough “bottleneck”, so “stuff” spreads over entire graph
Flow routing	Probability diffusion
Quality of cut vs. How easy to spread “stuff”	

\[
U = O\left(\frac{1}{\phi}\right) \quad \alpha = O(\phi \uparrow 2)
\]
Excess Scaling + Unit-Flow	vs.	PageRank
Spread “stuff” to find bottleneck	Flow routing	Probability diffusion
Fail when no good enough “bottleneck”, so “stuff” spreads over entire graph		
Quality of cut vs. How easy to spread “stuff”		
$U = O(1/\phi)$	$\alpha = O(\phi^{1/2})$	
Quality of cut vs. Running time		
$O(\text{vol}(A)/\phi)$	$O(\text{vol}(A)/\phi^{1/2})$	
Wrap-up

Flow-based local low conductance method

- polylog loss versus quadratic loss of PageRank

Framework developed in [KT’15]

Appropriate interface

Deterministic $O(m \log \log m \log m)$ algorithm for min cut in simple unweighted graphs
Open questions

Min cut in more general graphs:

- Determ. $o(mn)$ alg. for multi- or weighted graphs
- Directed graphs

Experimental evaluation

Further applications of flow-based local method:

- Local clustering (ICML‘17)