Supplementary Text: Kinetic Modelling of β-cell metabolism reveals control points in the insulin-regulating pyruvate cycling pathways.

Rahul Rahul1, Adam R Stinchcombe2, Jamie W Joseph3, Brian Ingalls1

1. Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
2. Department of Mathematics, University of Toronto, Toronto, Canada
3. School of Pharmacy, University of Waterloo, Waterloo, Canada

Table of Contents

1 Kinetic Mechanism Details 2
 1.1 Abbreviations ... 2
 1.2 Model Reactions ... 4
 1.3 Model Fixed Values ... 5
 1.4 Rate Expressions and Model Organization 5
 1.5 Differential Equations .. 9
 1.6 Initial Conditions .. 11

2 Computational Settings 11
 2.1 Steady State Calculation ... 11
 2.2 Parameter Optimization .. 11
 2.3 Global Sensitivity Analysis Settings 11
 2.4 Model Codes ... 12

3 Parameters 12

4 Supplementary Results 16
 4.1 Correlation Between States .. 16
 4.2 Supplementary Sensitivity Figures .. 17
 4.2.1 Cytosolic Pyruvate Sensitivity Rankings 18
 4.2.2 Mitochondrial Pyruvate Sensitivity Rankings 19
 4.2.3 Pyruvate Carboxylase Flux Sensitivity Rankings 20
 4.2.4 Cytosolic Isocitrate Dehydrogenase Flux Sensitivity Rankings 21

References 22
1 Kinetic Mechanism Details

1.1 Abbreviations

Subscripts c, m, and s denote cytoplasmic, mitochondrial, and transport enzymes respectively. Species without subscripts are not separated into compartments.

Table 1: Abbreviations for Metabolites/Enzymes

Glycolysis Metabolites/Enzymes	Compound/EC number
Abbreviation	Substance name
GT_s	Glucose Transporter
GK_c	Glucokinase
PFK_c	6-phosphofructokinase
FBA_c	Fructose-bisphosphate Aldolase
GAPD_c	Glyceraldehyde 3-phosphate Dehydrogenase
PGP_c	Bisphosphoglycerate Phosphatase
PK_c	Pyruvate Kinase
GLC_c	Glucose
F6P_c	Fructose-6-phosphate
FBP_c	Fructose-1,6-bisphosphate
GAP_c	Glyceraldehyde 3-phosphate
DPG_c	1,3-bisphospho-D-glycerate
PEP_c	Phosphoenol Pyruvate

Cytosolic Metabolites/Enzymes	Compound/EC number
Abbreviation	Substance name
LDH_c	Lactate Dehydrogenase
ME_c	Malic Enzyme Cytoplolic
ICD_c	Isocitrate Dehydrogenase (NADP+) Cytoplolic
MDH_c	Malate Dehydrogenase
CITL_c	Citrate Lyase
LAC_c	Lactate
PYR_c	Pyruvate
MAL_c	Malate
CIT_c	Citrate
ICIT_c	Isocitrate
AKG_c	α-keto-Glutarate
OAA_c	Oxaloacetate

TCA cycle mitochondrial: Metabolites/Enzymes	Compound/EC number
Abbreviation	Substance name
PC_m	Pyruvate Carboxylase
PDH_m	Pyruvate Dehydrogenase Complex

Abbreviation	Substance name	
PC_m	Pyruvate Carboxylase	
PDH_m	Pyruvate Dehydrogenase Complex	
Abbreviation	Substance name	Compound/EC number
--------------	-------------------------------------	--------------------
CS_m	Citrate Synthase	EC 4.1.3.7
ACO_m	Aconitase	EC 4.2.1.3
ICD_m	Isocitrate Dehydrogenase Mitochondrial	EC 1.1.1.41
AKD_m	α-Ketoglutarate Dehydrogenase	EC 1.2.4.2 etc.
SCS_m	Succinyl-CoA synthetase	EC 6.2.1.4
SDH_m	Succinate Dehydrogenase	EC 1.3.5.1
FM_m	Fumarase	EC 4.2.1.2
MDH_m	Malate Dehydrogenase	EC 1.1.1.37
ME_m	Malic Enzyme Mitochondrial	EC 1.1.1.39
PYR_m	Pyruvate	C00022
ACOA_m	Acetyl-CoA	C00024
CIT_m	Citrate	C00158
ICIT_m	Isocitrate	C00311
AKG_m	α-keto-Glutaraate	C00026
SCOA_m	Succinyl-CoA	C00091
SUC_m	Succinate	C00042
FUM_m	Fumarate	C00122
MAL_m	Malate	C00149
OAA_m	Oxaloacetate	C000036

Transporter Enzymes

Abbreviation	Substance name	Compound/EC number
CIC_s	Citrate Carrier	
DIC_s	Dicarboxylate Carrier	
PYC_s	Pyruvate Carrier	
OGC_s	Oxoglutarate Carrier	

Co-Factors

Abbreviation	Substance name	Compound/EC number
NADPH_c	Nicotinamide Adenine Dinucleotide Phosphate	C00005
NADP_c	Nicotinamide Adenine Dinucleotide Phosphate (Oxidized)	C00006
Pi	Phosphate	C00009
Q	Ubiquinone	C00399
QH2	Ubiquinol	C00390
CO2	Carbon Dioxide	C00011
ATP	Adenosine Triphosphate	C00002
ADP	Adenosine Diphosphate	C00008
NAD*	Nicotinamide Adenine Dinucleotides (Oxidized)	C00003
NADH	Nicotinamide Adenine Dinucleotides	C00004
CoA	Coenzyme A	C00010
1.2 Model Reactions

Table 2: Model Reactions

Glycolysis Reactions

Flux	Enzyme	Reaction
J0entry_s	GT	InputGlucose ⇄ GLC_c
J1gk_c	GK	GLC_c + ATP → F6P_c + ADP
J2pfk_c	PFK	F6P + ATP → FBP + ADP
J3fba_c	FBA	FBP ⇄ 2GAP
J4gapd_c	GAPD	GAP + NAD → DPG + NADH
J5pgp_c	PGP	DPG + ADP ⇄ PEP + ATP
J6pk_c	PK	PEP + ADP → PYR + ATP

Transporter Reactions

Flux	Enzyme	Reaction
J9pyr_s	PYC	PYR_c + H_m ⇄ PYR_m + H_c
J10cit_s	CIC	CIT_c + MAL_m ⇄ CIT_m + MAL_c
J11icit_s	CIC	ICIT_c + MAL_m ⇄ ICIT_m + MAL_c
J12akg_s	OGC	AKG_c + MAL_m ⇄ AKG_m + MAL_c
akgflow_c		AKG_c → φ
J13malh_s	DIC	MAL_c + Pi_m ⇄ MAL_m + Pi_c

Cytosolic Reactions

Flux	Enzyme	Reaction
J7ldh_c	LDH	PYR_c ⇄ LAC_c
lacsink_c		LAC_c → φ
J14nad_c		NADPH_c → φ
J15citl_c	CITL	CIT_c → OXA_c
J16mdh_c	MDHc	MAL_c + NAD ⇄ OXA_c + NADH
J17acon_c	ACOc	CIT_c ⇄ ICIT_c
J18isod_c	ICDc	ICIT_c + NADP ⇄ AKG_c + NADPH
J19me_c	MEc	MAL_c + NADP ⇄ PYR_c + NADPH

Mitochondrial Reactions

Flux	Enzyme	Reaction
J20pdh_m	PDH	PYR_m + NAD + CoA → ACO_m + NADH + CO2
J21pc_m	PC	PYR_m + ATP_m + CO₂ ⇄ OXA + ADP + Pi
J22cs_m	CS	OXA_m + ACOA_m → CIT_m + CoA
J23ac_m	ACOm	CIT_m ⇄ ICIT_m
J24icd_m	ICDm	ICIT_m + NAD → AKG_m + NADH
J25akg_m	AKD	AKG_m + NAD + CoA → SCOA_m + NADH + CO2
1.3 Fixed Species Concentrations and Biophysical Parameters

ATP and ADP Cellular ATP and ADP concentrations are assumed to be directly dependent on the glucose concentration. This dependence is assumed to be piece-wise linear [1, 2, 3]. The ATP concentration is taken to increase linearly between 3mM and 7mM as glucose increases from 1mM to 10mM, with saturation at [ATP]= 7mM [2]. Similarly, the ADP concentration is taken to decrease linearly between 1.2mM and 0.6mM as glucose increases from 1mM to 10mM, with saturation at [ADP]= 0.6mM [2]. Finally, glucose serves as an input to the model and the input value is decided based on the simulation objective.

Species	Constant value	Reference
COA_m	3.0 × 10^{-3} M	[22]
Q_m	9.5 × 10^{-4} M	[22]
QH2_m	4.1 × 10−4 M	[22]
CO2	3.0 × 10^{-6} M	[22]
pH	8.0	[11]
Pi_c	1.0 × 10^{-3} M	[17]
Pi_m	1.0 × 10^{-3} M	[22]
NADPtot	5.0 × 10^{-4} M	[11]
inglc (Input Glucose Range.)	0.001 ≤ inglc ≤ 0.016 M	[11]

1.4 Rate Expressions and Model Organization

The model kinetics and differential equations are provided below. Here we provide an overview of the model structure, which is divided in two parts:

- glycolysis
- the TCA cycle, including the pyruvate cycling pathways

Glucose entry into the glycolytic pathway is modelled as per Sweet and Matschinsky using second order Michaelis-Menten Kinetics [17]. Details are provided in Table 4.
Glycolysis is described by a six-step pathway based on the work of Jiang et.al. [6]. We simplified the description by removing feedback regulation and fixing the concentration of co-factors. The reaction kinetics and parameters are taken from SABIO-RK [20]. (Glycolysis is treated as an influx model; the associated kinetics parameters are not investigated in our sensitivity analysis.)

The ATP concentration is described by a piece-wise linear function of glucose influx, as described above. NADP is described through conservation.

Glycolysis-produced pyruvate enters the pyruvate cycling pathways (our main subject of study) through pyruvate dehydrogenase and pyruvate carboxylase. Pyruvate is transported between the cytosol and mitochondria by the pyruvate transporter (PYC). The three main pyruvate cycle pathways are the pyruvate-malate, pyruvate-citrate, and pyruvate-isocitrate pathways.

The pyruvate-malate cycle is described by the conversion of mitochondrial oxaloacetate (OAAm) to malate via mitochondrial malate dehydrogenase (MDHm). Mitochondrial malate takes two routes: either (i) transported to the cytosol via the dicarboxylate carrier (DIC) and then converted back to pyruvate via cytosolic malic enzyme, or (ii) converted to pyruvate via mitochondrial malic enzyme.

The pyruvate-citrate cycle involves oxaloacetate combining with acetyl-coA to form citrate via citrate synthase. Citrate is then converted to isocitrate by mitochondrial aconitase or transported to the cytosol via the citrate isocitrate carrier (CIC). Isocitrate is converted to citrate by cytosolic aconitase (ACOc). Acetyl-CoA is produced when citrate lyase (CLc) converts citrate to oxaloacetate. Cytosolic malate dehydrogenase (MDHe) converts cytoplasmic oxaloacetate (OAAc) to malate. Malic enzyme completes the cycle by converting malate to pyruvate.

The pyruvate-isocitrate cycle shares common steps with the pyruvate-citrate cycle up to conversion of citrate to isocitrate. Isocitrate is transferred to the cytosol by the citrate isocitrate carrier (CIC) or converted to α-ketoglutarate, which is then transported to the cytosol via the oxoglutarate carrier (OGC). In the cytosol, isocitrate is converted to α-ketoglutarate by cytosolic NADP+-dependent-isocitrate dehydrogenase (ICDc).

Reaction kinetics for the enzymes in the TCA cycle model and the pyruvate cycling enzymes are reported in Table 4. The model structure is based primarily on that of Yugi and Tomita [23]. The cytosolic citrate lyase rate is described by reversible Michaelis-Menten kinetics [19]. The outflow models for lactate and α-ketoglutarate are likewise adapted from Westermark et.al. [19], with parameters estimated by fitting to the experimental data of Ronnebaum et. al. [11] as described in Section 2.2. We lumped NADPH consumption into a single reaction with a rate described by irreversible Michaelis-Menten kinetics [17, 19], with fitted parameter values (Section 2.2). Lactate dehydrogenase kinetics are adapted from Hoefnagel et.al. [5]. We adapted the rapid equilibrium random bi-bi mechanism kinetics of cytosolic malic enzyme from Westermark et.al. [19] to incorporate NADPH as a dynamic variable. Similarly, we modified the kinetics of mitochondrial malic enzyme (from Jiang et.al. [6]) to reversible Michaelis-Menten kinetics. The pyruvate dehydrogenase complex is subject to regulatory patterns involving Ca²⁺, NADH/NAD, acetyl-coA, and phosphorylation-dephosphorylation [19]. It was not feasible to incorporate all of these interactions. Instead, we simplified the kinetics from [19] to incorporate product inhibition by acetyl-CoA. All the parameters for these modified kinetics are taken from the BRENDA and SABIO-RK databases [20, 13]. Finally, for cytosolic isocitrate dehydrogenase, we set the parameters from the BRENDA database [13] without modifying the kinetics.

To simplify the model description, we held the concentrations of ions and some cofactors constant (Table 1.3). Rate expressions that involve these factors were simplified by defining effective rate constants.
incorporating the fixed concentrations. Such simplifications were applied to the rate equations for the pyruvate transporter \((\text{J9pyr}_s)\), the DIC carrier \((\text{J13malh}_s)\), succinyl-coA synthetase \((\text{J26sco}_m)\), and succinate dehydrogenase \((\text{J27sdh}_m)\).

Table 4: Kinetic Expressions

Glycolysis kinetics

Reaction	Flux expression	Reference
\(\text{J0entry}_s\)	\(v_0 \cdot 1 + v_0 \cdot 1 + (\text{GLC}_c \cdot \text{GLC}_c) + v_0 \cdot 2 + (\text{GLC}_c \cdot \text{GLC}_c)\)	Sweet and Matschinsky [17]
\(\text{J1gk}_c\)	\(v_1 \cdot 1 + (\text{GLC}_c \cdot \text{GLC}_c) + v_1 \cdot 2 + (\text{GLC}_c \cdot \text{GLC}_c)\)	SABIO-RK [20, 21]
\(\text{J2pfk}_c\)	\(v_2 \cdot 1 + (\text{F6P}_c \cdot \text{F6P}_c) + v_2 \cdot 2 + (\text{F6P}_c \cdot \text{F6P}_c)\)	SABIO-RK [20, 21]
\(\text{J3fba}_c\)	\(v_3 \cdot 1 + (\text{F6P}_c \cdot \text{F6P}_c) + v_3 \cdot 2 + (\text{F6P}_c \cdot \text{F6P}_c)\)	SABIO-RK [20, 21]
\(\text{J4gapd}_c\)	\(v_4 \cdot 1 + (\text{GAP}_c \cdot \text{GAP}_c) + v_4 \cdot 2 + (\text{GAP}_c \cdot \text{GAP}_c)\)	SABIO-RK [20, 21]
\(\text{J5pgp}_c\)	\(v_5 \cdot 1 + (\text{DPG}_c \cdot \text{DPG}_c) + v_5 \cdot 2 + (\text{DPG}_c \cdot \text{DPG}_c)\)	SABIO-RK [20, 21]
\(\text{J6pk}_c\)	\(v_6 \cdot 1 + (\text{PEP}_c \cdot \text{PEP}_c) + v_6 \cdot 2 + (\text{PEP}_c \cdot \text{PEP}_c)\)	SABIO-RK [20, 21]

Transporter kinetics

Reaction	Flux expression	Reference
\(\text{J9pyr}_s\)	\(v_9 \cdot 1 + (\text{PYR}_m \cdot \text{PYR}_m) + v_9 \cdot 2 + (\text{PYR}_c \cdot \text{PYR}_c)\)	Yugi and Tomita [23]
\(\text{J10cit}_s\)	\(\text{CIT}_c \cdot \text{MAL}_m \cdot v_{10} \cdot 3 + \text{MAL}_c \cdot \text{CIT}_m \cdot v_{10} \cdot 2\)	Yugi and Tomita [23]

\[\text{denom} = 1 + \text{CIT}_c \cdot v_{10} \cdot 3 + \text{MAL}_m \cdot v_{10} \cdot 4 + \text{MAL}_c \cdot v_{10} \cdot 5 + \text{CIT}_m \cdot v_{10} \cdot 6 \]

\[\text{denom} + \text{CIT}_c \cdot \text{MAL}_m \cdot v_{10} \cdot 4 + \text{MAL}_c \cdot \text{CIT}_m \cdot v_{10} \cdot 5 + \text{CIT}_m \cdot \text{MAL}_c \cdot v_{10} \cdot 6\]
Reaction	Flux expression	Reference																
J11icit_s	\[\text{denom} = 1 + \frac{	\text{ICIT}_c	}{v_{10.3}} + \frac{	\text{MAL}_m	}{v_{10.4}} + \frac{	\text{ICIT}_m	}{v_{10.5}} + \frac{	\text{ICIT}_m	}{v_{10.6}} + \frac{	\text{MAL}_c	}{v_{10.3}v_{10.4}} + \frac{	\text{ICIT}_m	}{v_{10.5}v_{10.6}} + \frac{	\text{MAL}_m	}{v_{10.4}v_{10.6}} + \frac{	\text{ICIT}_m	}{v_{10.5}v_{10.6}} \]	Yugi and Tomita [23]
J12akg_s	\[\text{denom} = 1 + \frac{	\text{AKG}_m	}{v_{12.3}} + \frac{	\text{MAL}_c	}{v_{12.4}} + \frac{	\text{MAL}_m	}{v_{12.5}} + \frac{	\text{AKG}_c	}{v_{12.6}} + \frac{	\text{MAL}_m	}{v_{12.3}v_{12.4}} + \frac{	\text{AKG}_c	}{v_{12.5}v_{12.6}} + \frac{	\text{MAL}_m	}{v_{12.4}v_{12.6}} + \frac{	\text{AKG}_c	}{v_{12.3}v_{12.5}} \]	Yugi and Tomita [23]
J13malh_s	\[v_{13.1}	\text{MAL}_m	- v_{13.2}	\text{MAL}_m	= v_{13.3}	\text{MAL}_m	=v_{13.4}	\text{MAL}_m	\]	Yugi and Tomita [23]								

Cytosolic Fluxes

Reaction	Flux expression	Reference														
J71dh_c	\[v_{7.1}(\text{PYR}_m	- \frac{	\text{LAC}_c	}{v_{7.1}}) \]	Reversible Michaelis Menten Kinetics. Parameters from Hoefnagel et al. [5]										
lacsink_c	sink \cdot \text{LAC}_c	Westermark et al. [19]														
J14nad_c	\[v_{14.1}	\text{NADPH}_c	\] \quad v_{14.2}+	\text{NADPH}_c	\]	Lumped process										
J15citl_c	\[v_{15.1}(\text{CIT}_c	- v_{15.2}	\text{OAA}_c) \]	Westermark et al. [19]										
J16mdh_c	\[v_{16.1}	\text{MAL}_c	- v_{16.2}	\text{OAA}_c	\]	Yugi and Tomita [23]										
J17acon_c	\[v_{17.1}(\text{CIT}_c	- v_{17.2}	\text{CIT}_c) \]	Yugi and Tomita [23]										
J18isod_c	\[v_{18.1} - v_{18.2} \] \quad v_{18.1}(\text{ICIT}_c	-	\text{NADP}_c) \] + \frac{v_{18.4}	\text{NADP}_c	- v_{18.5}	\text{ICIT}_c	}{v_{18.6}	\text{AKG}_c	+ v_{18.7}	\text{NADPH}_c	+ v_{18.8}	\text{AKG}_c	} + 1	Yugi and Tomita [23]
akgflow_c	flow \cdot \text{AKG}_c	Westermark et al. [19]														
J19me_c	\[\text{denom} = 1 + \frac{	\text{MAL}_m	}{v_{19.2}v_{19.3}} + \frac{	\text{NADP}_c	}{v_{19.4}v_{19.5}} + \frac{	\text{PYR}_c	}{v_{19.2}v_{19.4}} + \frac{	\text{PYR}_c	}{v_{19.2}v_{19.4}} \]	Rapid Equilibrium Random Bi Bi. All parameters from Brenda [13].						

Mitochondrial Kinetics
Reaction	Flux expression	Reference
J20pdh_m	$\frac{v_{20}}{v_{20} \cdot 1} \cdot \frac{[\text{PYR} _m]}{[\text{ADP} \cdot [\text{OAA} _m]]} + [\text{PYR} _m]$	Irreversible Michaelis-Menten with product inhibition. All parameters from BRENDA[13]
J21pc_m	$v_{21} \cdot 1 \cdot (\text{ATP} \cdot [\text{PYR} _m]) - v_{21} \cdot 2 \cdot \text{ADP} \cdot [\text{OAA} _m] + [\text{PYR} _m]$	Yugi and Tomita [23]
J22cs_m	$v_{22} \cdot 1 \cdot [\text{ACO} _m] \cdot [\text{OAA} _m] + v_{22} \cdot 2 \cdot [\text{ACO} _m] + v_{22} \cdot 3 \cdot [\text{OAA} _m] + v_{22} \cdot 4 \cdot [\text{ACO} _m] + 1$	Yugi and Tomita [23]
J23ac_m	$v_{23} \cdot 1 \cdot [\text{CIT} _m] - v_{23} \cdot 2 \cdot [\text{CIT} _m] + v_{23} \cdot 3 \cdot [\text{CIT} _m] + v_{23} \cdot 4 \cdot [\text{CIT} _m] + 1$	Yugi and Tomita [23]
J24icd_m	$v_{24} \cdot 1 \cdot (\text{ICIT} _m)^{2} + v_{24} \cdot 2 \cdot [\text{ICIT} _m]$	Yugi and Tomita [23]
J25akg_m	$v_{25} \cdot 1 \cdot [\text{AKG} _m] + v_{25} \cdot 2 \cdot [\text{SCOA} _m] + v_{25} \cdot 3 \cdot [\text{SCOA} _m] + v_{25} \cdot 4 \cdot [\text{SCOA} _m] + v_{25} \cdot 5 \cdot [\text{SCOA} _m]$	Yugi and Tomita [23]
J26sco_m	$v_{26} \cdot 1 \cdot [\text{SCOA} _m] \cdot [\text{SUC} _m] + [\text{SCOA} _m] + v_{26} \cdot 2 \cdot [\text{SCOA} _m] \cdot [\text{SUC} _m] + v_{26} \cdot 3 \cdot [\text{SCOA} _m] \cdot [\text{SUC} _m]$	Yugi and Tomita [23]
J27sdh_m	$v_{27} \cdot 1 \cdot [\text{SUC} _m] - [\text{FUM} _m] + v_{27} \cdot 2$	Yugi and Tomita [23]
J28fum_m	$v_{28} \cdot 1 \cdot [\text{FUM} _m] - v_{28} \cdot 2 \cdot [\text{MAL} _m] + v_{28} \cdot 3 \cdot [\text{MAL} _m] + v_{28} \cdot 4 \cdot [\text{FUM} _m] + 1$	Yugi and Tomita [23]
J29mdh_m	$v_{29} \cdot 1 \cdot [\text{MAL} _m] - v_{29} \cdot 2 \cdot [\text{OAA} _m] + v_{29} \cdot 3 \cdot [\text{MAL} _m] + v_{29} \cdot 4 \cdot [\text{OAA} _m] + v_{29} \cdot 5 \cdot [\text{OAA} _m] + v_{29} \cdot 6 \cdot [\text{MAL} _m] + v_{29} \cdot 7 \cdot [\text{OAA} _m] + v_{29} \cdot 8 \cdot [\text{MAL} _m]$	Yugi and Tomita [23]
J30me_m	$v_{30} \cdot 1 \cdot (\text{MAL} _m)^{-1} \cdot [\text{PYR} _m] + v_{30} \cdot 2 \cdot [\text{MAL} _m] + v_{30} \cdot 3 \cdot [\text{PYR} _m]$	Reversible Michaelis-Menten. All parameters from BRENDA[13]

1.5 Differential Equations

The model is described by the following equations. Rate equations from 1.1-6 describe the glycolytic influx model, which serves as the glucose entry point into the TCA cycle. Rate equations from 1.7-26 describes the pyruvate cycling pathways, including the TCA cycle. The concentration of NADP_c is determined through
conservation. ATP and ADP are described as a piecewise linear function of glucose abundance [1, 2, 3].

\[\frac{d[\text{glc}_c]}{dt} = J_{0\text{entry}_c} - J_{1\text{gk}_c} \] (1.1)
\[\frac{d[\text{F6P}_c]}{dt} = J_{1\text{gk}_c} - J_{2\text{pfk}_c} \] (1.2)
\[\frac{d[\text{FBP}_c]}{dt} = J_{2\text{pfk}_c} - J_{3\text{fba}_c} \] (1.3)
\[\frac{d[\text{GAP}_c]}{dt} = 2 \cdot J_{3\text{fba}_c} - J_{4\text{gapd}_c} \] (1.4)
\[\frac{d[\text{DPG}_c]}{dt} = J_{4\text{gapd}_c} - J_{5\text{pgp}_c} \] (1.5)
\[\frac{d[\text{PEP}_c]}{dt} = J_{5\text{pgp}_c} - J_{6\text{pk}_c} \] (1.6)
\[\frac{d[\text{LAC}_c]}{dt} = J_{7\text{ldh}_c} - \text{lac}_{\text{sink}}_c \] (1.7)
\[\frac{d[\text{PYR}_c]}{dt} = J_{6\text{pk}_c} - J_{7\text{ldh}_c} + V_r \cdot J_{9\text{pyr}_s} + J_{19\text{me}_c} \] (1.8)
\[\frac{d[\text{MAL}_c]}{dt} = -J_{16\text{mdh}_c} + V_r \cdot (J_{13\text{malh}_s} + J_{10\text{cit}_s} - J_{12\text{akhmal}_s} + J_{11\text{icit}_s}) \] (1.9)
\[- J_{19\text{me}_c} \] (1.10)
\[\frac{d[\text{CIT}_c]}{dt} = -J_{17\text{acon}_c} - J_{15\text{citl}_c} - V_r \cdot J_{10\text{cit}_s} \] (1.11)
\[\frac{d[\text{ICIT}_c]}{dt} = -J_{18\text{isosd}_c} + J_{17\text{acon}_c} - V_r \cdot J_{11\text{icit}_s} \] (1.12)
\[\frac{d[\text{AKG}_c]}{dt} = J_{18\text{isosd}_c} + V_r \cdot J_{12\text{akhmal}_s} - \text{akg}_{\text{flow}}_c \] (1.13)
\[\frac{d[\text{OAA}_c]}{dt} = J_{15\text{citl}_c} + J_{16\text{mdh}_c} \] (1.14)
\[\frac{d[\text{NADPH}_c]}{dt} = J_{18\text{isosd}_c} + J_{19\text{me}_c} - J_{14\text{nadph}_c} \] (1.15)
\[\frac{d[\text{PYR}_m]}{dt} = -J_{21\text{pc}_m} + J_{30\text{me}_m} - J_{9\text{pyr}_s} - J_{20\text{pdh}_m} \] (1.16)
\[\frac{d[\text{ACO}_m]}{dt} = J_{20\text{pdh}_m} - J_{22\text{cs}_m} \] (1.17)
\[\frac{d[\text{CIT}_m]}{dt} = J_{22\text{cs}_m} - J_{23\text{ac}_m} + J_{10\text{cit}_s} \] (1.18)
\[\frac{d[\text{ICIT}_m]}{dt} = J_{23\text{ac}_m} - J_{24\text{icd}_m} + J_{11\text{icit}_s} \] (1.19)
\[\frac{d[\text{AKG}_m]}{dt} = J_{24\text{icd}_m} - J_{25\text{akg}_m} - J_{12\text{akhmal}_s} \] (1.20)
\[\frac{d[\text{SCO}_m]}{dt} = J_{25\text{akg}_m} - J_{26\text{co}_m} \] (1.21)
\[\frac{d[\text{SUC}_m]}{dt} = J_{26\text{co}_m} - J_{27\text{sdh}_m} \] (1.22)
\[\frac{d[\text{FUM}_m]}{dt} = J_{27\text{sdh}_m} - J_{28\text{fum}_m} \] (1.23)
\[\frac{d[\text{MAL}_m]}{dt} = -J_{29\text{mdh}_m} + J_{28\text{fum}_m} - J_{10\text{cit}_s} - J_{11\text{icit}_s} - J_{13\text{malh}_s} + J_{12\text{akhmal}_s} - J_{30\text{me}_m} \] (1.24)
\[
\frac{d[\text{OAA}_m]}{dt} = -J_{22\text{cs}_m} + J_{29\text{mdh}_m} + J_{21\text{pc}_m}
\]

\[
\text{NADP}_c = \text{NADP}_{\text{tot}} - \text{NADPH}_c
\]

\[
\text{ATP} = \begin{cases}
0.44 \ast (\text{inglc} - 0.001) + 0.003 & 0.001 \leq \text{inglc} < 0.01 \\
0.007 & \text{inglc} \geq 0.01
\end{cases}
\]

\[
\text{ADP} = \begin{cases}
-0.067 \ast (\text{inglc} - 0.001) + 0.0012 & 0.001 \leq \text{inglc} < 0.01 \\
0.0006 & \text{inglc} \geq 0.01
\end{cases}
\]

1.6 Initial Conditions

The initial conditions for all simulations were obtained by integrating the system from the zero states for 4hrs (14400s) under appropriate glucose conditions.

2 Computational Settings for Solvers

2.1 Steady State Calculation

To calculate the steady state we used the ode15s and fsolve functions of MATLAB®. The system of differential equations was first integrated up to 10^7 seconds. The resulting state was then passed to fsolve to confirm the steady state conditions had been achieved. In order to increase the stability and robustness of solvers, we generated a symbolic Jacobian using SBTOOLBOX2 [16, 15]. Since only 18% of the Jacobian coefficients were non-zero, we utilized the sparse storage mechanism as described in the ode15s and fsolve manual in order to increase the efficiency of solvers. We fixed the relative tolerance of ode15s at 10^{-3} and the absolute tolerance at 10^{-6}, except for the states [F6P] and [G6P] for which we set the absolute tolerance at 10^{-12}. For fsolve we used the default values of TolX and TolF (10^{-6}).

2.2 Parameter Optimization

The least-squares objective for parameter optimization is

\[
f(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\sigma_i} \left(\frac{x_{\text{obs}}(x)_i - x_{\text{sim}}(x)_i}{x_{\text{obs}}(x)_i} \right)^2,
\]

in which N is the number of experimental time-points, $x_{\text{obs}}(x)_i$ is the observed value of i^{th} state, $x_{\text{sim}}(x)_i$ is the corresponding i^{th} simulated state and σ_i is the standard error of the mean (SEM) of the i^{th} state. When the error was unknown, it was assumed to be 10%. All the state values are log scaled during optimization. The parameters were optimized in the range $0.01p_{\text{nom}} \leq p_{\text{nom}} \leq 100p_{\text{nom}}$, where p_{nom} is the nominal parameter value pulled from literature and databases. The optimization was carried out by a combination of the downhill simplex method in multiple dimensions and simulated annealing, implemented in the system biology toolbox [16].

2.3 Global Sensitivity Analysis Settings

We used the variance-based Global Sensitivity Analysis (GSA, extended Fourier amplitude sensitivity test (eFAST) and the partial rank correlation method (PRCC) implemented in SBTOOLBOX2 [16, 15]. The the
analysis excluded the glycolysis influx mode but treated all other model parameters. The relative parameter range variation was selected to be 100%. For the total sensitivity analysis, the objective function was defined as the sum of the squared errors between the observed and perturbed system output values:

\[f_{\text{obj}} = \sum_{i=1}^{n} (x_{\text{nom}}^i - x_{\text{pert}}^i)^2, \]

in which \(x_{\text{nom}} \) is the steady state nominal model output, \(x_{\text{pert}} \) is the steady state perturbed model output and \(n \) is the number of state variables. In addition, we calculated the sensitivities of individual state variables as a squared error:

\[f_{\text{ind}}^i = (x_{\text{nom}}^i - x_{\text{pert}}^i)^2 \quad \text{for } i = 1, \ldots, n. \]

The pyruvate cycling rate is defined as the ratio of PC flux to the sum of the TCA cycle fluxes [8]

\[f_{\text{pr}} = \left(\frac{J_{\text{pc,nom}}}{J_{\text{tca,nom}}} - \frac{J_{\text{pc,pert}}}{J_{\text{tca,pert}}} \right)^2. \]

Here, \(f_{\text{pr}} \) denotes the perturbation in the pyruvate cycling rate, \(J_{\text{pc}} \) is a flux through the pyruvate carboxylase enzyme, and \(J_{\text{tca}} \) is a sum of all TCA cycle fluxes; nom and pert denote the nominal and perturbed values respectively.

The total number of model simulations was selected to be \(10^5 \), based on the suggestion of Saltelli [12] (\(2 \times 512 \times \) total number of parameters).

Integration Settings for Global Optimization

For simulating the model for global sensitivity analysis we used the SUNDIALS [4] package (MATLAB® interface) in order to reduce the simulation time [16]. The final state was checked for steady-state as described previously using fsolve. The system was integrated using a relative tolerance of \(10^{-4} \) and an absolute tolerance of \(10^{-14} \) for all species concentrations. With these settings, the output agreed with the MATLAB® ode15s solver.

2.4 Model Codes

The model is built in the MATLAB® environment. The model codes are available at https://github.com/r2rahul/pyruvatecycle. The model is developed using SBToolbox2 [16, 15]. The code repository contains detailed instructions on executing the model and reproducing the figures. In addition, the model is available in the system biology markup language (SBML) format to support model interchange [? , 18, 10, 9, 7].

3 Parameters

The model incorporates 129 parameters. Of these, 125 parameter values were sourced from the literature, beginning with values reported in the models of Yugi and Tomita, and Westermark et al. [23, 19]. Other estimates were drawn from the BRENDA and SABIO-RK databases [21, 21, 14]. For the cases where multiple sources provided conflicting values, we gave preference to estimates from sources most closely resembling INS-1 cell lines.

In the table below, parameter values pulled from the literature are labelled as ‘Lit.’ Those that were fit in this study are labelled ’Fit’, along with the source of the nominal values used as an initial estimate in the
Table 5: Model parameters.

Parameter	Name (c:cytosol, m:mitochondria)	Value	Units	Fit or Lit. [References]
v0_1	Vmax(GLCc)	2.7271·10^{-6}	s^{-1}	Fit [17]
v0_2	Km(GLCc)	101.0544	M^{-1}	Fit [17]
v1_1	Vmax(GKc)	1.3424·10^{-4}	M·s^{-1}	Lit. [20, 21]
v1_2	n(GKc)	1.34		Lit. [20, 21]
v1_3	Km(GKc)	3.0118·10^{-4}	M	Lit. [20, 21]
v2_1	Vmax(PFKc)	3.16667·10^{-5}	M·s^{-1}	Lit. [20, 21]
v2_2	n(PFKc)	0.9		Lit. [20, 21]
v2_3	Km(PFKc)	0.0089	M	Lit. [20, 21]
v3_1	Vmax(FBAc)	7.9783·10^{-5}	M·s^{-1}	Lit. [20, 21]
v3_2	Km(FBAc)	4 · 10^{-6}	M	Lit. [20, 21]
v4_1	Vmax(GAPc)	0.001		Lit. [20, 21]
v4_2	n(GAPc)	1.5		Lit. [20, 21]
v4_3	Km(GAPc)	3.2 · 10^{-4}	M	Lit. [20, 21]
v5_1	Vmax(DPGc)	3.33 · 10^{-5}	M·s^{-1}	Lit. [20, 21]
v5_2	Km(DPGc)	8 · 10^{-6}	M	Lit. [20, 21]
v6_1	Vmax(PKc)	5.33 · 10^{-5}	M·s^{-1}	Lit. [20, 21]
v6_2	n(PKc)	2.9		Lit. [20, 21]
v6_3	Km(PKc)	1.5 · 10^{-4}	M	Lit. [20, 21]
v7_1	Vmax(LDHc)	29.0969	s^{-1}	Fit [5]
v7_eq	Keq(LDHc)	21.121		Lit. [5]
v7_2	Km1(LDHc)	448491.0	M^{-1}	Fit [5]
v7_3	Km2(LDHc)	449.0936	M^{-1}	Fit [5]
sink	Lactate Sink	8.89·10^{-8}	M·s^{-1}	Fit
v9_1	Vmax(PYC, forward)	3.7674·10^{-8}	s^{-1}	Lit. [23]
v9_2	Vmax(PYC, reverse)	0.004	s^{-1}	Fit [23]
v9_3	Km1(PYC)	49.2637	M^{-1}	Lit. [23]
v9_4	Km2(PYC)	187.3789	M^{-1}	Lit. [23]
v10_1	Vmax(CIC, forward)	32514.0	M^{-1} · s^{-1}	Lit. [23]
v10_2	Vmax(CIC, reverse)	84267.0	M^{-1} · s^{-1}	Lit. [23]
v10_3	Km1(CIC)	1.3 · 10^{-4}	M	Lit. [23]
v10_4	Km2(CIC)	4.4 · 10^{-4}	M	Lit. [23]
v10_5	Km3(CIC)	3.3 · 10^{-4}	M	Lit. [23]
v10_6	Km4(CIC)	4.18 · 10^{-5}	M	Lit. [23]
v12_1	Vmax(OGC, forward)	5811.9	M^{-1} · s^{-1}	Lit. [23]
v12_2	Vmax(OGC, reverse)	6739.9	M^{-1} · s^{-1}	Lit. [23]
v12_3	Km1(OGC)	$3 \cdot 10^{-4}$	M	Lit. [23]
v12_4	Km2(OGC)	$7 \cdot 10^{-4}$	M	Lit. [23]
v12_5	Km3(OGC)	0.0014	M	Lit. [23]
v12_6	Km4(OGC)	$1.7 \cdot 10^{-4}$	M	Lit. [23]
v13_1	Vmax(DIC, forward)	0.8512	s$^{-1}$	Fit [23]
v13_2	Vmax(DIC, reverse)	0.2721	s$^{-1}$	Fit [23]
v13_3	Km1(DIC)	1388.9	M$^{-1}$	Lit. [23]
v13_4	Vmax(DIC)	1111.1	M$^{-1}$	Lit. [23]
v14_1	Vmax(NADPH, sink)	0.0025598	M\cdots$^{-1}$	Fit
v14_2	Km(NADPH, sink)	0.98653	M	Fit
v15_1	Vmax(CITLc, forward)	$4.0008 \cdot 10^{-7}$	s$^{-1}$	Fit [19]
v15_2	Vmax(CITLc, reverse)	$1.2 \cdot 10^{-4}$	M$^{-1}$	Lit. [19]
v15_3	Km1(CITLc)	$1.2 \cdot 10^{-4}$	M$^{-1}$	Lit. [19]
v15_4	Km2(CITLc)	$1.2 \cdot 10^{-4}$	M$^{-1}$	Lit. [19]
v16_1	Vmax(MDHc, forward)	0.0036	s$^{-1}$	Lit. [23]
v16_2	Vmax(MDHc, reverse)	5000	s$^{-1}$	Lit. [23]
v16_3	Km1(MDHc)	$8 \cdot 10^{-6}$	M$^{-1}$	Lit. [23]
v16_4	Km2(MDHc)	16667	M$^{-1}$	Lit. [23]
v17_1	Vmax(ACONc, forward)	0.0518	s$^{-1}$	Lit. [23]
v17_2	Vmax(ACONc, forward)	0.1104	s$^{-1}$	Fit [23]
v17_3	Km2(ACONc)	9090	M$^{-1}$	Lit. [23]
v17_4	Km2(ACONc)	2000	M$^{-1}$	Lit. [23]
v18_1	Vmax(ISODc, forward)	1152100	M$^{-1}\cdot$s$^{-1}$	Lit. [13]
v18_2	Vmax(ISODc, reverse)	5482500	M$^{-1}\cdot$s$^{-1}$	Lit. [13]
v18_3	Km1(ISODc)	$2.3042 \cdot 10^{10}$	M$^{-1}$	Lit. [13]
v18_4	Km2(ISODc)	142857.1	M$^{-1}$	Fit [13]
v18_5	Km3(ISODc)	161290.3	M$^{-1}$	Lit. [13]
v18_6	Km4(ISODc)	$1.0965 \cdot 10^{11}$	M$^{-1}$	Lit. [13]
v18_7	Km5(ISODc)	416666.7	M$^{-1}$	Lit. [13]
v18_8	Km6(ISODc)	263157.9	M$^{-1}$	Lit. [13]
flow	AKGc Sink	$1.46 \cdot 10^{-9}$	M\cdots$^{-1}$	Fit
v19_1	Vmax(MEc)	913070	M$^{-1}\cdot$s$^{-1}$	Lit. [13]
v19_eq	Keq(MEc)	1000		Lit. [19]
v19_2	Km1(MEc)	$1.2 \cdot 10^{-4}$	M	Lit. [13]
v19_3	Km2(MEc)	$1.39 \cdot 10^{-6}$	M	Lit. [13]
v19_4	Km3(MEc)	0.0048	M	Lit. [13]
v19_5	Km4(MEc)	$5.3 \cdot 10^{-6}$	M	Lit. [13]
v20_1	Vmax(PDHm)	$1.417 \cdot 10^{-7}$	M\cdots$^{-1}$	Fit [13]
v20_2	Km(PDHm)	$3.5 \cdot 10^{-5}$	M	Lit. [13]
v20_3	Ki(PDHm)	$2 \cdot 10^{-5}$	M	Lit. [13]
v21_1	Vmax(PCm)	0.1057	M$^{-1} \cdot s^{-1}$	Fit [23]
v21_2	Keq(PCm)	0.54		Lit. [23]
v21_3	Km1(PCm)	4424100.0	M$^{-1}$	Lit. [23]
v21_4	Km2(PCm)	$4.8528 \cdot 10^7$	M$^{-1}$	Lit. [23]
v21_5	Km3(PCm)	0.1057	M$^{-1}$	Fit [23]
v21_6	Km4(PCm)	0.54	M$^{-1}$	Lit. [23]
v21_7	Km5(PCm)	4424100.0	M$^{-2}$	Lit. [23]
v21_8	Km6(PCm)	$4.8528 \cdot 10^7$	M$^{-2}$	Lit. [23]
v21_9	Km7(PCm)	0.1057	M$^{-2}$	Fit [23]
v21_10	Km8(PCm)	0.54	M$^{-2}$	Lit. [23]
v22_1	Vmax(CSm)	50.85	M$^{-1} \cdot s^{-1}$	Fit [23]
v22_2	Km1(CSm)	$2.5 \cdot 10^{10}$	M$^{-2}$	Fit [23]
v22_3	Km2(CSm)	295000.0	M$^{-1}$	Lit. [23]
v22_4	Km3(CSm)	120000.0	M$^{-1}$	Lit. [23]
v23_1	Vmax(ACOm, forward)	0.0518	s$^{-1}$	Lit. [23]
v23_2	Vmax(ACOm, reverse)	0.1104	s$^{-1}$	Lit. [23]
v23_3	Km1(ACOm)	9090.9	M$^{-1}$	Lit. [23]
v23_4	Km2(ACOm)	2000.0	M$^{-1}$	Lit. [23]
v24_1	Vmax1(ICDm)	0.1126	M$^{-1} \cdot s^{-1}$	Fit [23]
v24_2	Vmax2(ICDm)	0.0148	M	Lit. [23]
v24_3	Km1(ICDm)	2777.5	M$^{-2}$	Lit. [23]
v24_4	Km2(ICDm)	0.63969	M$^{-1}$	Lit. [23]
v24_5	Km3(ICDm)	0.1126	M$^{-2}$	Fit [23]
v24_6	Km4(ICDm)	0.0148	M$^{-2}$	Lit. [23]
v25_1	Vmax(AKGm)	0.0311	s$^{-1}$	Fit [23]
v25_2	Km1(AKGm)	$1.456 \cdot 10^9$	M$^{-1}$	Lit. [23]
v25_3	Km2(AKGm)	$1.4546 \cdot 10^9$	M$^{-1}$	Fit [23]
v25_4	Km3(AKGm)	24691.0	M$^{-2}$	Lit. [23]
v26_1	Vmax(SCOdm)	$3.32 \cdot 10^{-5}$	s$^{-1}$	Lit. [23]
v26_2	Keq1(SCOdm)	6.4		Lit. [23]
v26_3	Ki(SCOdm)	4.1876	M$^{-1}$	Lit. [23]
v26_4	Km1(SCOdm)	37.5348	M$^{-1}$	Lit. [23]
v26_5	Km2(SCOdm)	1478.2	M$^{-1}$	Lit. [23]
v26_6	Km3(SCOdm)	9509.6	M$^{-2}$	Lit. [23]
v26_7	Km4(SCOdm)	236.7114	M$^{-2}$	Lit. [23]
v27_1	Vmax(SDHm, forward)	2.941	s$^{-1}$	Lit. [23]
v27_2	Vmax(SDHm, reverse)	11.5344		Lit. [23]
v27_3	Km1(SDHm)	449.6613	M$^{-1}$	Lit. [23]
4 Supplementary Results

4.1 Correlation Between States

To analyse the correlation between metabolite concentrations and the pyruvate cycling ratio, and between the metabolite concentrations and the NADPH level, we sampled the parameter space using Latin hypercube sampling (LHS), recorded the output states and pyruvate cycling ratio, and calculated the correlations.

v27_4	Km2(SDHm)	199130.0	M$^{-1}$	Lit. [23]
v27_5	Km3(SDHm)	1.7921 \cdot 10^8	M$^{-2}$	Lit. [23]
v28_1	Vmax(FUMm, forward)	13.9024	s$^{-1}$	Fit [23]
v28_2	Vmax(FUMm, reverse)	13.9024	s$^{-1}$	Lit. [23]
v28_3	Km1(FUMm)	4000000	M$^{-1}$	Lit. [23]
v28_4	Km2(FUMm)	880000	M$^{-1}$	Lit. [23]
v29_1	Vmax(MDHm, forward)	0.0016	s$^{-1}$	Lit. [23]
v29_2	Vmax(MDHm, reverse)	2.5563 \cdot 10^{-10}	s$^{-1}$	Lit. [23]
v29_3	Km1(MDHm)	33263.0	M$^{-1}$	Fit [23]
v29_4	Km2(MDHm)	14.0754	M$^{-1}$	Lit. [23]
v29_5	Km3(MDHm)	2742900	M$^{-2}$	Lit. [23]
v30_1	Vmax(MEm)	157.8125	s$^{-1}$	Fit [13]
v30_eq	Keq(MEm)	1000		Lit. [19]
v30_2	Km1(MEm)	500	M$^{-1}$	Fit [13]
v30_3	Km2(MEm)	227.2727	M$^{-1}$	Lit. [13]
Vr	Volume Ratio	20		Lit. [19]

Figure 1: a. Correlation between metabolite concentrations and the NADPH. b. Correlation between metabolite concentrations and the pyruvate cycling ratio.
4.2 Supplementary Sensitivity Figures

This section presents additional sensitivity rankings of the key metabolites cytosolic and mitochondrial Pyruvate. Finally, we show the pyruvate carboxylase flux, and cytosolic isocitrate dehydrogenase flux sensitivity rankings across different methods.
Figure 2: Global and one-at-a-time sensitivity rankings of cytosolic pyruvate concentration across different methods. Panel A one-at-a-time sensitivity, Panel B eFAST total effect, Panel C eFAST first order, and Panel D PRCC.

4.2.1 Cytosolic Pyruvate Sensitivity Rankings
Figure 3: Global and one-at-a-time sensitivity rankings of mitochondrial pyruvate concentration across different methods. Panel A one-at-a-time sensitivity, Panel B eFAST total effect, Panel C eFAST first order, and Panel D PRCC.

4.2.2 Mitochondrial Pyruvate Sensitivity Rankings
4.2.3 Pyruvate Carboxylase Flux Sensitivity Rankings

Figure 4: Global and one-at-a-time sensitivity rankings of pyruvate carboxylase flux across different methods. Panel A one-at-a-time sensitivity, Panel B eFAST total effect, Panel C eFAST first order, and Panel D PRCC.
4.2.4 Cytosolic Isocitrate Dehydrogenase Flux Sensitivity Rankings

Figure 5: Global and one-at-a-time sensitivity rankings of cytosolic isocitrate dehydrogenase flux across different methods. Panel A one-at-a-time sensitivity, Panel B eFAST total effect, Panel C eFAST first order, and Panel D PRCC.
References

[1] P Detimary, J C Jonas, and J C Henquin. Possible links between glucose-induced changes in the energy state of pancreatic b cells and insulin release. unmasking by decreasing a stable pool of adenine nucleotides in mouse islets. *The Journal of Clinical Investigation*, 96(4):1738–1745, 10 1995.

[2] Philippe Detimary, Sandra Dejonghe, Zhidong Ling, Daniel Pipeleers, Frans Schuit, and Jean-Claude Henquin. The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in β cells but not in α cells and are also observed in human islets. *Journal of Biological Chemistry*, 273(51):33905–33908, 1998.

[3] Philippe Detimary, Georges Van den Berghe, and Jean-Claude Henquin. Concentration dependence and time course of the effects of glucose on adenine and guanine nucleotides in mouse pancreatic islets. *Journal of Biological Chemistry*, 271(34):20559–20565, 1996.

[4] Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. Lee, Radu Serban, Dan E. Shumaker, and Carol S. Woodward. Sundials: Suite of nonlinear and differential/algebraic equation solvers. *ACM Trans. Math. Softw.*, 31(3):363–396, September 2005.

[5] Marcel H N Hoefnagel, Marjo J C Starrenburg, Dirk E Martens, Jeroen Hugenholtz, Michiel Kleerebezem, Iris I Van Swam, Roger Bongers, Hans V Westerhoff, and Jacky L Snoep. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. *Microbiology (Reading, England)*, 148(Pt 4):1003–13, April 2002.

[6] Nan Jiang, Roger Cox, and John Hancock. A kinetic core model of the glucose-stimulated insulin secretion network of pancreatic β-cells. *Mammalian Genome*, 18:508–520, 2007. 10.1007/s00335-007-9011-y.

[7] Sarah M Keating, Dagmar Waltemath, Matthias König, Fengkai Zhang, Andreas Dräger, Claudine Chaouiya, Frank T Bergmann, Andrew Finney, Colin S Gillespie, Tomáš Helíkar, Stefan Hoops, Ralphman S Malik-Sheriff, Stuart L Moodie, Ion I Moraru, Chris J Myers, Aurélien Naldi, Brett G Olivier, Sven Sahle, James C Schaff, Lucian P Smith, Maciej J Swat, Denis Thieffry, Leandro Watanabe, Darren J Wilkinson, Michael L Blinov, Kimberly Begley, James R Faeder, Harold F Gómez, Thomas M Hamm, Yuichiro Inagaki, Wolfram Liebermeister, Allyson L Lister, Daniel Lucio, Eric Mjolsness, Carole J Proctor, Karthik Raman, Nicolas Rodriguez, Clifford A Shaffer, Bruce E Shapiro, Joerg Stelling, Neil Swainston, Naoki Tanimura, John Wagner, Martin Meier-Schellersheim, Herbert M Sauro, Bernhard Palsson, Hamid Bolouri, Hiroaki Kitano, Akira Funahashi, Henning Hermjakob, John C Doyle, Michael Hucka, Richard R Adams, Nicholas A Allen, Roberto Angermann, Marco Antoniotti, Gary D Bader, Jan Červený, Mélanie Courtot, Chris D Cox, Piero Dalle Pezze, Emek Demir, William S Denney, Harish Dharuri, Julien Dorier, Dirk Drasdo, Ali Ebrahimi, Johannes Eichner, Johan Elf, Lukas Endler, Chris T Evelo, Christoph Flamm, Ronan MT Fleming, Martina Fröhlich, Mihai Glent, Emanuel Gonçalves, Martin Golebiewski, Havakam Grabski, Alex Gutteridge, Damon Hachmeister, Leonard A Harris, Benjamin D Heavner, Ron Henkel, William S Hlavacek, Bin Hu, Daniel R Hyduke, Hidde de Jong, Nick Juty, Peter D Karp, Jonathan R Karr, Douglas B Kell, Roland Keller, Ilya Kiselev, Steffen Klamt, Edda Klipp, Christian Knüpfer, Fedor Kolpakov, Falko Krause, Martina Kutmon, Camille Laibe, Conor Lawless, Lu Li, Leslie M Loew, Rainer Machine, Yukiko Matsuoka, Pedro Mendes, Huaiyu Mi, Florian Mittag, Pedro T Monteiro, Kedar Nath
Natarajan, Poul MF Nielsen, Tramy Nguyen, Alida Palmisano, Jean-Baptiste Pettit, Thomas Pfau, Robert D Phair, Tomas Radivoyevitch, Johann M Rohwer, Oliver A Ruebenacker, Julio Saez-Rodriguez, Martin Scharm, Henning Schmidt, Falk Schreiber, Michael Schubert, Roman Schulte, Stuart C Sealfon, Kieran Smallbone, Sylvain Soliman, Melanie I Stefan, Devin P Sullivan, Koichi Takahashi, Bas Teusink, David Tolnay, Ibrahim Vazirabad, Axel von Kamp, Ulrike Wittig, Clemens Wrzodek, Finja Wrzodek, Ioannis Xenarios, Anna Zhukova, and Jeremy Zucker. Sbml level 3: an extensible format for the exchange and reuse of biological models. Molecular systems biology, 16, 8 2020.

[8] Danhong Lu, Hindrik Mulder, Piyu Zhao, Shawn C Burgess, Mette V Jensen, Svetlana Kamzolova, Christopher B Newgard, and a Dean Sherry. 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proceedings of the National Academy of Sciences of the United States of America, 99(5):2708–13, March 2002.

[9] William Stafford Noble. A quick guide to organizing computational biology projects. PLoS computational biology, 5(7):e1000424, jul 2009.

[10] Roger D Peng. Reproducible Research in Computational Science. 1226(2011), 2014.

[11] Sarah M Ronnebaum, Olga Ilkayeva, Shawn C Burgess, Jamie W Joseph, Danhong Lu, Robert D Stevens, Thomas C Becker, A Dean Sherry, Christopher B Newgard, and Mette V Jensen. A Pyruvate Cycling Pathway Involving Cytosolic NADP-dependent Isocitrate Dehydrogenase Regulates Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 281(41):30593–30602, 2006.

[12] Andrea Saltelli. Global Sensitivity Analysis: The Primer. John Wiley, March 2008.

[13] Maurice Scheer, Andreas Grote, Antje Chang, Ida Schomburg, Cornelia Munaretto, Michael Rother, Carola Söhngen, Michael Stelzer, Juliane Thiele, and Dietmar Schomburg. Brenda, the enzyme information system in 2011. Nucleic Acids Research, 39(suppl 1):D670–D676, 2011.

[14] Maurice Scheer, Andreas Grote, Antje Chang, Ida Schomburg, Cornelia Munaretto, Michael Rother, Carola Söhngen, Michael Stelzer, Juliane Thiele, and Dietmar Schomburg. BRENDA, the enzyme information system in 2011. Nucleic acids research, 39(Database issue):D670–676, January 2011. PMID: 21062828.

[15] Henning Schmidt. https://iqmtools.intiquan.com/, 2021.

[16] Henning Schmidt and Mats Jirstrand. Systems biology toolbox for MATLAB®: a computational platform for research in systems biology. Bioinformatics, 22(4):514–515, February 2006. http://www.sbtoolbox2.org.

[17] I. R. Sweet and F. M. Matschinsky. Mathematical model of beta-cell glucose metabolism and insulin release. I. Glucokinase as glucosensor hypothesis. Am J Physiol Endocrinol Metab, 268(4):E775–788, 1995.

[18] Krishna Tiwari, Sarubini Kananathan, Matthew G Roberts, Johannes P Meyer, Mohammad Umer Sharif Shohan, Ashley Xavier, Matthieu Maire, Ahmad Zyoud, Jinghao Men, Szeyi Ng, Tung V N Nguyen,
Mihai Glont, Henning Hermjakob, and Rahuman S Malik-Sheriff. Reproducibility in systems biology modelling. *Molecular systems biology*, 17, 2 2021.

[19] Pal O. Westermark, Jeanette Hellgren Kotaleski, Anneli Bjorklund, Valdemar Grill, and Anders Lansner. A mathematical model of the mitochondrial NADH shuttles and anaplerosis in the pancreatic beta-cell. *Am J Physiol Endocrinol Metab*, 292(2):E373–393, 2007.

[20] Ulrike Wittig, Martin Golebiewski, Renate Kania, Olga Krebs, Saqib Mir, Andreas Weidemann, Stefanie Anstein, Jasmin Saric, and Isabel Rojas. Sabio-rk: Integration and curation of reaction kinetics data. In Ulf Leser, Felix Naumann, and Barbara Eckman, editors, *Data Integration in the Life Sciences*, volume 4075 of *Lecture Notes in Computer Science*, pages 94–103. Springer Berlin Heidelberg, 2006.

[21] Ulrike Wittig, Renate Kania, Martin Golebiewski, Maja Rey, Lei Shi, Lenneke Jong, Enkhjargal Algaa, Andreas Weidemann, Heidrun Sauer-Danzwith, Saqib Mir, Olga Krebs, Meik Bittkowski, Elina Wetsch, Isabel Rojas, and Wolfgang Müller. Sabio-rk-database for biochemical reaction kinetics. *Nucleic Acids Research*, 40(D1):D790–D796, 2012.

[22] Fan Wu, Feng Yang, Kalyan C Vinnakota, and Daniel a Beard. Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology. *The Journal of biological chemistry*, 282(34):24525–37, 2007.

[23] Katsuyuki Yugi and Masaru Tomita. A general computational model of mitochondrial metabolism in a whole organelle scale. *Bioinformatics*, 20(11):1795–1796, 2004.