Effects of icariin on the proliferation and osteogenic differentiation of human amniotic mesenchymal stem cells

Fang Wang
affiliated stomatological hospital of zunyi medical university

Zhiyong Yang
First Hospital of Changsha

He Wei
affiliated stomatological hospital of zunyi medical university

Qinggao Gao (✉️ 814641639@qq.com)
affiliated stomatological hospital of zunyi medical university

Kun Wang
affiliated stomatological hospital of zunyi medical university

Yali Zhou
affiliated stomatological hospital of zunyi medical university

Research article

Keywords: Human amniotic mesenchymal stem cell, Icariin, Proliferation, Osteogenic differentiation

Posted Date: October 13th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-67547/v2

License: ☺️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on December 2nd, 2020. See the published version at https://doi.org/10.1186/s13018-020-02076-9.
Abstract

Background: Tissue engineering technology has been applied extensively for clinical research and human amnion mesenchymal stem cells (hAMSCs) could cause mesenchymal stem cells to differentiate into the bone tissue. However, it is necessary to develop and identify the safer appropriate amount of osteogenic inducer. The objective of this study is to investigate the effect of icariin (ICA) on the proliferation and osteogenic differentiation of hAMSCs.

Methods: The morphology and phenotype of hAMSCs were discovered by flow cytometry and immunocytochemical staining. The osteogenic differentiation of hAMSCs under the influence of different concentrations of ICA were assessed by Alkaline phosphatase (ALP) activity substrate assay and Alizarin red Staining.

Results: MTT assay revealed that the hAMSCs pretreated with ICA exhibited increased proliferation when compared with the control group, and the most optimum concentration of ICA was 1×10^{-6} mol/L. The combined analysis of ALP activity and ARS staining showed that ICA could significantly promote the osteogenic differentiation of hAMSCs, and the effect was most significant when the concentration of ICA was 1×10^{-6} mol/L.

Conclusion: All above results implied that ICA could significantly increase proliferation and enhanced the osteogenic differentiation of hAMSCs, especially when the concentration of ICA was 1×10^{-6} mol/L.

Keywords: Human amniotic mesenchymal stem cell, Icariin, Proliferation, Osteogenic differentiation

Background

Bone defects/losses is a serious problem in orthopedics due to low healing rate using traditional treatment, and increases patients' pain and heavily families burdening [1-2]. Over the last two decades, tissue engineering technology has been applied extensively for clinical research. For example, stem cell-based tissue regeneration showed certain curative effects as a novel curative therapy for bone diseases. However, methods for collection, isolation, and maintenance of stem cells in vitro is still a challenge of stem cell-based clinical healing for bone disorder, which is also disadvantageous to reduce operation time [3]. Moreover, it is still worry whether stem cell would differentiate into bone-forming osteoblasts. Although the osteogenic inducers such as bone morphogenetic proteins (BMP) and vascular endothelial growth factor (VEGF) are important factors for healing of bone defects/losses, there are still some disadvantages for low differentiation efficiency, complicated formulas and high cost [4]. Therefore, the key point is to identify safe and effective osteogenic inducers to improve stem cell-based therapy for bone regeneration.

Previous findings showed that some drugs include statins [5], isoflavone derivatives [6-7] and TAK-778 [8] could regulate the balance in bone formation between osteoblastic bone formation and osteoclastic bone resorption [9]. Recently, many traditional Chinese medicines were used to fractured bone healing, and
some natural small molecule compounds isolated from them were confirmed as effective osteogenic inducers. Icarrin (ICA), as the main active compound of *Epimedium pubescens*, was reportedly used to cure bone diseases in ancient China [10]. And it could promote agent in cartilage tissue engineering [11] and repair of articular cartilage defects in rabbit knees [12]. It has been found the beneficial effects of ICA is to exert inducing function on the osteogenic differentiation [13] and stimulates the bone marrow-derived mesenchymal stem cells (BMSCs) proliferation in stem cell therapy [14]. Therefore, ICA is expected to be a safe and effective osteoinductive active factor for clinical bone regeneration.

Human amniotic mesenchymal stem cells (hAMSCs), derived from ditched amniotic membrane (AM) [15-16], are a center of attention in mesenchymal stem cells (MSCs) for bone stem cell-based tissue engineering and regenerative medicine (TE&R) use owing to their superior properties [17]. HAMSCs has unique advantages for bone regeneration in a noninvasive way, immunomodulatory properties with characteristics of possess weak anti-inflammatory, high differentiation and without ethical controversy [18]. In addition, previous studies found that hAMSCs have been successfully differentiated into osteoblasts using the classic tri-component osteogenic medium and promote bone regeneration in *vivo* and in *vitro* [19]. In this study, we aim at make clear effects of icariin on the proliferation and osteogenic differentiation of human amniotic mesenchymal stem cells.

Materials And Methods

Cell Isolation, cultivation and identification of hAMSCs

The placental amniotic tissue was collected from normal pregnant women undergoing full-term cesarean section after gaining the informed consent of the pregnant women or her relatives. This project was approved by the medical ethics committee of Zunyi Medical University (Approval No. 2018. 246). After removing residual blood under sterile conditions, the amniotic tissue was cut into small pieces of 1–2 cm² and then separated and repeatedly rinsed using phosphate-buffered saline (PBS) containing 100 μg/ml streptomycin and 100 U/ml penicillin (Beyotime, China). Amnion fragments were collected in a 50 mL centrifuge tube and digested for 35 minutes at 37°C in a double volume of digestion solution I (0.05 % trypsin containing 0.02% EDTA-2Na). After centrifugation at 180 rpm for 2 hours at 37°C, the remaining amnion in the centrifuge tube was filtered through a filter screen and digested by a double volume of digestion solution II (0.75 mg/mL collagenase II containing 0.075 mg/mL DNase I) to acquire hAMSCs. The sample was shaken at a speed of 180r/min and digested for approximately 2 hours at 37°C. After filter and centrifuge, the resultant hAMSCs were transferred to low-glucose (LG)-DMEM complete medium, supplemented with 10 percent heat-inactivated fetal bovine serum (FBS) to rest the cell suspension in a humid atmosphere of 5% CO₂ for 5 minutes at 37°C to precipitate hAMSC (passage 0, P0).

The resultant hAMSCs (passage 0, P0) were collected in a 50 mL centrifuge tube and digested for 3 minutes at 37°C in a double volume of digestion solution I (0.05 % trypsin containing 0.02% EDTA-2Na). When the cells reached 80% confluence, they were digested and subcultured into flasks. Cells from passage 3 (P3) were used for further analysis in this study. The cell morphology was constantly observed
under a light microscope (Olympus, Tokyo, Japan). In addition, these hAMSCs were analyzed using the immunocytochemical staining method according to the protocols as described in a previous study [20].

For the phenotypic characterization of hAMSCs, P3 hAMSCs were trypsinized and subsequently washed with D-PBS containing 0.1% BSA, adjusted to a density of 1.5×10⁶ cells/mL, and then incubated with and HLA-DR for 25 minutes in the dark. After washing again with D-PBS containing 0.1% BSA, the cell suspension was centrifuged at 1000 rpm for 5 minutes and the supernatant was discarded. Finally, the labeled cells were analyzed using the flow cytometry system (FACS Calibur, Becton Dickinson, USA) and CellQuest software (BD, NJ, USA) after fixation with 1% paraformaldehyde.

Cell proliferation assay

This experiment was divided into three groups: blank group (no cells and no ICA), control group (with cells but no ICA) and ICA group (with cells and ICA). The P3 hAMSCs were seeded at a density of 1×10⁴ cells/ml in 96-well plates. After incubation for 24 hours, the medium was changed to ICA-containing media at a concentration of 0 (blank and control), 1×10⁻⁴ (ICA-1), 1×10⁻⁵ (ICA-2), 1×10⁻⁶ (ICA-3), 1×10⁻⁷ (ICA-4) and 1×10⁻⁸ (ICA-5) mol/L accordingly. Cells were incubated at 37°C in a 5% CO₂ incubator for 72 hours, and 20 μL 5 mg/mL MTT was then added to each well, followed by incubation at 37°C in a 5% CO₂ incubator for 4 hours. Later, the medium was discarded, and 150 μL of dimethylsulfoxide (DMSO) was added to each well. After incubate at 37°C for 15 minutes, the OD value of each well was determined at a wavelength of 490 nm by a microplate reader (MultiskanTM GO, ThermoFisher, Waltham, MA, USA).

Osteogenic differentiation of hAMSCs in vitro

The P3 hAMSCs were seeded at a density of 1×10⁵ cells/ml in 96-well plates in LG-DMEM culture medium under sterile conditions. After 24 hours of incubation, the medium was replaced with LG-DMEM culture medium with 10% FBS. The experiment was divided into 5 groups according to the different substances added to the medium, namely the classic group (100nmol/L dexamethasone (Sigma, SL, USA), 50 mg/L vitamin C (Solarbio, Beijing, China), and 10mmol/L β-glycerophosphate (Solarbio, Beijing, China)), the blank group (without additives), ICA-1 group (1×10⁻⁴ mol/L ICA), ICA-2 group (1×10⁻⁵ mol/L ICA), ICA-3 group (1×10⁻⁶ mol/L ICA). Cells were incubated at 37°C in a 5% CO₂ incubator for 72 hours, and 20 μL 5 mg/mL MTT was then added to each well, followed by incubation at 37°C in a 5% CO₂ incubator for 4 hours. The culture medium was changed every 3 days, and the intervention was continuously induced for 21 days. Meanwhile, during the induction period, the cell morphology of the five periods of 1 d, 3 d, 7 d, 14 d, 21 d were photographed for morphological observation, and samples were preserved. ALP (alkaline phosphatase) was extracted and detected with the ALP assay kit (AnaSpec, San Jose, CA) as directed by the manufacturer. The cells on the 21st day were stained with Alizarin red staining (ARS), and statistical analysis was performed based on the number of stained calcium nodules.

Statistical analysis
Experimental data were expressed as mean±standard deviation (SD) and analyzed using SPSS 19.0 statistical software. One-way analysis of variance was used for comparison between groups, and the rate comparison was performed by χ² test. P < 0.05 was considered as statistically significant.

Results

Morphology and phenotype of hAMSCs

The microscopic examination of P0 hAMSCs cultured in vitro revealed a typical adherent growth state (Fig. 1A). After 48 hours of primary culture, the majority of the adherent cells stretched and became spindle or short-rod shaped. With the increase of passage number, small quantities of epithelial cells and dead cells disappeared rapidly. When the hAMSCs were sub-cultured to the 3rd passage, they displayed a fibroblast-like morphology in radial or whirlpool patterns (Fig. 1A).

Flow cytometry revealed that hAMSCs highly expressed MSC surface markers CD29, CD44, CD73 and CD166 (Fig. 1B). On the other hand, very low expressions of cell surface markers belonging to CD34 and CD45 were showed (Fig. 1B). ICC staining indicated that hAMSCs also highly expressed mesenchymal cell marker vimentin, which proved that hAMSCs were of human origin and a member of the MSC family (Fig. 1C).

Effect of different concentrations of ICA on the proliferation of hAMSCs

The stimulation effect of ICA on the proliferation of hAMSCs during 3 days of culture was evaluated at various concentrations (1×10⁻⁴ mol/L, 1×10⁻⁵ mol/L, 1×10⁻⁶ mol/L, 1×10⁻⁷ mol/L, 1×10⁻⁸ mol/L). OD absorbance values of samples cultured for different times are measured to evaluate the proliferation kinetics of osteoblast-like cells. MTT assay revealed that the hAMSCs pretreated with ICA exhibited increased proliferation when compared with the control group. Meanwhile, in the presence of ICA, the proliferation fold of hAMSCs increases first and then decreases with the increase of ICA concentration. For example, ICA increased the proliferation from 0.524 ± 0.033-fold in the control group to 0.728 ± 0.048- (p < 0.05), 0.719 ± 0.044- (p < 0.05), 0.688 ± 0.057- (p < 0.05) and 0.659 ± 0.041-fold (p < 0.05) at 1×10⁻⁴, 1×10⁻⁵, 1×10⁻⁷ and 1×10⁻⁸ mol/L, respectively. It is noteworthy that ICA at the optimum concentration of 1×10⁻⁶ mol/L could increase the proliferation of hAMSCs from 0.524 ± 0.033-fold to 0.807 ± 0.080-fold (p < 0.05) compared with the control group (Fig. 2).

Effect of different concentrations of ICA on the osteogenic differentiation in hAMSCs

To determine the effect of different concentrations of ICA during hAMSC osteogenic differentiation, the cell morphology at different stages of 1 d, 7 d and 21 d were photographed for morphological observation. As shown in Fig. 3, the cells in each group basically showed a long spindle shape on day 1. Following a 7-day induction period, the morphology of hAMSCs in classic and ICA groups changed from long spindle to polygonal and triangular (Fig. 3). 21 days post-osteoinduction, hAMSCs in both the classic group and ICA group indiciated morphological changes: the cells transitioned from the typical
long-spindle morphology to short-spindle, triangle, or polygonal shapes with clear boundaries between the
cells (Fig. 3).

The marker of bone differentiation is that the osteogenic differentiation of MSC leads to mineralization or
the formation of osteoblast nodules. Thus, on day 21 of the osteogenic induction experiment, the
formation of mineralized nodules in hAMSCs was evaluated by Alizarin Red Staining (ARS) and the
amount of mineralization was quantified by eluting ARS staining from differentiated osteoblasts. As
shown in Fig. 4, the treatment in blank group had no nodules formed to minimal ARS staining, indicating
that the cells in the blank group did not show mineralization. The cells in the classic group exhibited
characteristic osteoblast nodules (Fig. 4). In addition, numerous rose-red calcified nodules in ARS
staining were observed in the ICA-1, ICA-2 and ICA-3 groups compared with the blank group, and the most
ARS staining was found in ICA-3 group (Fig. 4). This was confirmed by quantitative analysis of ARS, as
shown in Table S1.

Effect of different concentrations of ICA on ALP activity of hAMSCs

ALP activity usually reflects the early osteogenic differentiation of hAMSCs. The investigation of ALP
activity was done after hAMSCs had been cultured for 1, 3, 7, 14, and 21 days. The ALP activity was not
significantly different compare with the blank group, and the cells did not show obvious differentiation on
the 1 d and 3 d of induction (Fig. 5). From 7 to 21 days of cultivation, the activity of ALP rose and
presented a significantly higher level in the classic group and ICA group than in the blank group. After 7
days of cultivation, compared to the blank group (5.614 ± 0.377), the ALP activity of hAMSCs in ICA-1,
ICA-2, ICA-3 and classic group reached 17.491 ± 0.509 (P< 0.01), 43.073 ± 0.422 (P< 0.01), 45.534 ±
1.072 (P< 0.05) and 38.598 ± 0.6444 (P< 0.01). ALP activity in the ICA-1, ICA-2, ICA-3 group (41.656 ±
0.375, 92.222 ± 0.661, 88.195 ± 1.908) and the classic group (63.583 ± 0.615) were significantly higher
than that in the blank group (7.457 ± 0.377) on the 14th day. Following a 21-day culture period, the ALP
activity of hAMSCs in ICA-1, ICA-2, ICA-3 and classic group reached 92.819 ± 0.509 (P< 0.01), 139.955 ±
1.428 (P< 0.01), 145.102 ± 2.384 (P< 0.01) and 122.056 ± 1.676 (P< 0.01) compared to the blank group
(11.175 ± 0.799) (Fig. 5).

Discussion

Osteogenic inducers are very important for effective stem cell-based treatment of bone defects/losses.
Recently, many researches showed that traditional Chinese medicines could induce directional MSC
differentiation into osteoblasts [21-25]. These traditional Chinese medicines such as *Salvia miltiorrhiza
Bunge*, *Angelica sinensis*, *Astragalus membranaceus Bunge*, *Puerarin radix*, and *Epimedium spp.* may be
used to promote osteogenesis and inhibit bone resorption, showing that they had a positive effect on the
 treatment of bone defects/losses [9, 26]. Icariin (ICA) is the natural main active product of *Epimedium
pubescens* what is widely used in traditional Chinese medicine (TCM), and could promote bone
formation by stimulating osteogenic differentiation of MSC recently [9, 10, 27-33]. ICA could activate the
Wnt/β-catenin signaling pathway to promote chondrogenic differentiation [27]. In addition, activating ERK
and p38 MAPK signaling achieved rat BMSCs proliferation and increased the phosphorylation level of GSK-3β and cyclinD1 protein [28-29]. Some researches showed that Icariside II (ICA II) is a kind of metabolite of ICA (loss of the glycosyl moiety at the C-7 position of ICA) and increased ALP activity and calcium deposition to enhance the osteogenic differentiation of BMSCs via enhanced expression of osteogenesis proteins/genes (Runx2, collagen I), increased the PI3K/AKT/mTOR/S6K1 signaling pathways and downregulated PPARγ, Fabp4, and adipsingene expression [30-33]. Based on above researches, we further explore optimum concentrations of ICA on proliferation and osteogenic differentiation of hAMSCs and our results verified that the potent osteogenic effect on hAMSCs was induced by icarin. Therefore, ICA will be hotspot for bone regenerative medicine due to the extremely low-cost compound and its high abundance.

Although ICA occupied multiple advantages on the proliferation and osteogenic differentiation for bone disease, they might be unexpectedly cytotoxic against stem cells due to a dose-response relationship. In this study, the stimulation effect of ICA on the proliferation of hAMSCs during 3 days of culture was evaluated at various concentrations with 1×10^-4 mol/L, 1×10^-5 mol/L, 1×10^-6 mol/L, 1×10^-7 mol/L and 1×10^-8 mol/L. MTT assay indicated that the hAMSCs pretreated with ICA exhibited increased proliferation comparing with the control group, and the proliferation fold of hAMSCs decreases with the increase of ICA concentration (Fig. 4). Previous studies showed that 0.1–10 μM icariin stimulated the proliferation of rat bone marrow stromal cells (rMSCs), increased the alkaline phosphatase activity, osteocalcin secretion and calcium deposition level of rMSCs during osteogenic induction [34]. Wang et al (2016) investigated the concentration of 5×10^-6 mol/L for ICA on chondrogenic differentiation of bone marrow stromal cells by Wnt/β-catenin signaling pathway [27]. Song et al (2013) estimated the effect of ICA on osteoblast proliferation and found that compare with control group, various doses of Icariin (0.1-100 nM) could significant increase cell number and 10 nM concentration dramatically increased osteoblast differentiation and mineralization [35]. In this study, ICA at the optimum concentration of 1×10^-6 mol/L could increase the proliferation of hAMSCs via MTT array. In addition, ARS staining, the formation of mineralized nodules and ALP activity all together showed concentration of 1×10^-6 mol/L of ICA could induce osteoblast differentiation. Therefore, 1×10^-6 mol/L ICA showed the highest cell viability and osteogenic activity on hAMSCs in the present study, indicating that osteogenic hAMSC induction is sensitive to ICA.

Alkaline phosphatase (ALP) is one of the biochemical markers for osteoblast activity. It is an enzyme in which osteoblasts secrete into the extracellular matrix [36]. ALP can catalyze the hydrolysis of the phosphate esters in an alkaline environment, resulting in the formation of an inorganic phosphate that plays an important role in bone mineralization [37]. Besides, at the processes of the extracellular matrix through the osteoblast, calcium is one of the components and the investigation of calcium deposition becomes remarkable as an indicator of in vitro activities of the osteoblast [38]. Alizarin red staining (ARS), as a marker of calcium deposition in this processes, has been used many related studies to assessing mineralized matrix deposition for osteoblast [9, 38, 39]. In this study, the activity of ALP rose and presented a significantly higher level of activity in the classic group and ICA groups with different
concentrations of ICA than in the blank group from 7 to 21 days of hAMSCs cultivation (Fig. 7). At the same time, numerous rose-red calcified nodules in ARS staining were observed in the classic group and ICA groups (Fig. 4). Our study confirmed that ICA would promote hAMSCs differentiation into osteoblast by ALP activity and ARS staining together.

Conclusions

Bone defects/losses is a serious problem in orthopedics and osteogenic inducers play central roles in effective stem cell-based treatment during the processes. In this study, we have demonstrated that icariin is a safe, effective, and novel natural osteogenic inducer for hAMSCs. When the concentration of ICA was 1×10^{-6} mol/L, it is most significant to increase proliferation and promote the osteogenic differentiation of hAMSCs. Therefore, an appropriate amount of icariin might be used as a potential candidate compound for stem cell-based therapy of bone disease.

Declarations

Acknowledgements

All authors would like to thank to the key laboratory of basic pharmacology of ministry of education and the joint international research laboratory of ethnomedicine of ministry of education.

Funding

This research was supported by the project of Guizhou science and technology department, grant No. QKHJZ-LKZ[2013]29.g

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions

FW and ZYY designed the study, analyzed the experiments, and wrote the paper. GSQ, WH, KW and YLZ carried out the data collection and data analysis and revised the paper. All authors read and approved the final version of the manuscript.

Ethics approval and consent to participate

This project was approved by the medical ethics committee of Zunyi Medical University (Approval No. 2018. 246).

Consent for publication
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Abbreviations

ALP: Alkaline phosphatase; ARS: Alizarin red staining; DMEM: Dulbecco’s modified eagle medium; DMSO: Dimethyl sulfoxide; FBS: Fetal bovine serum; hAMSCs: human amnion-derived mesenchymal stem cells; ICA: Icariin; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; BMP: Bone morphogenetic proteins; VEGF: Vascular endothelial growth factor; BMSCs: Bone marrow-derived mesenchymal stem cells; MSCs: Mesenchymal stem cells; TE&RM: Tissue engineering and regenerative medicine; AM: Amniotic membrane; PBS: Phosphate-buffered saline; rMSCs: Rat bone marrow stromal cells

References

1. Jakoi AM, Iorio J, Cahill PJ. Autologous bone graft harvesting: a review of grafts and surgical techniques. Musculoskeletal Surgery. 2015;99(3):171-178.

2. Kargozar S, Mozafari M, Hamzehlou S, Milan PB, Kim H, Baino F. Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. Applied Sciences. 2019;9(1):174.

3. De Girolamo L, Lucarelli E, Alessandri G, Avanzini MA, Bernardo ME, Biagi E, et al. Mesenchymal Stem/Stromal Cells: A New “Cells as Drugs” Paradigm. Efficacy and Critical Aspects in Cell Therapy. Current Pharmaceutical Design. 2013;19(13):2459-2473.

4. Wang Y, Zhu G, Li N, Song J, Wang L, Shi X. Small molecules and their controlled release that induce the osteogenic/chondrogenic commitment of stem cells. Biotechnology Advances. 2015;33(8):1626-1640.

5. Mundy GR, Garrett R, Harris SE, Chan J, Chen D, Rossini G, et al. Stimulation of Bone Formation in Vitro and in Rodents by Statins. Science. 1999;286(5446):1946-1959.

6. Civitelli R. In vitro and in vivo effects of ipriflavone on bone formation and bone biomechanics. Calcified Tissue International. 1996;61(1):317.

7. Notoya K, Yoshida K, Tsukuda R, Taketomi S. Effect of ipriflavone on expression of markers characteristic of the osteoblast phenotype in rat bone marrow stromal cell culture. Journal of Bone and Mineral Research. 2009;9(3):395-400.

8. Notoya K, Nagai H, Oda T, Gotoh M, Hoshino T, Muranishi H, et al. Enhancement of Osteogenesis In Vitro and In Vivo by a Novel Osteoblast Differentiation Promoting Compound, TAK-778. Journal of Pharmacology and Experimental Therapeutics. 1999;290(3):1054-1064.

9. Wang Y, Wang N, Luo Y, Yu C, Xiao J. Ganoderal A effectively induces osteogenic differentiation of human amniotic mesenchymal stem cells via cross-talk between Wnt/β-catenin and BMP/SMAD
signaling pathways. Biomedicine & Pharmacotherapy. 2020;123:109807.

10. Zhao J, Ohba S, Shinkai M, Chung U, Nagamune T. Icariin induces osteogenic differentiation in vitro in a BMP- and Runx2-dependent manner. Biochem Biophys Res Commun. 2008;369(2):444-458.

11. Li D, Yuan T, Zhang XD, Xiao Y, Wang R, Fan Y. Icariin: a potential promoting compound for cartilage tissue engineering. Osteoarthritis and Cartilage. 2012;20(12):1647-1656.

12. Zhang J, Zhang D, Wu C, Liu A, Zhang C, Jiao J, et al. Icariin-conditioned serum engineered with hyaluronic acid promote repair of articular cartilage defects in rabbit knees. BMC Complementary and Alternative Medicine. 2019;19(1):155.

13. Li D, Yuan T, Zhang XD, Xiao Y, Wang R, Fan Y. Icariin: a potential promoting compound for cartilage tissue engineering. Osteoarthritis and Cartilage. 2012;20(12):1647-1656.

14. Zhang J, Zhang D, Wu C, Liu A, Zhang C, Jiao J, et al. Icariin-conditioned serum engineered with hyaluronic acid promote repair of articular cartilage defects in rabbit knees. BMC Complementary and Alternative Medicine. 2019;19(1):155.

15. Li D, Yuan T, Zhang XD, Xiao Y, Wang R, Fan Y. Icariin: a potential promoting compound for cartilage tissue engineering. Osteoarthritis and Cartilage. 2012;20(12):1647-1656.

16. Bourne GL. The microscopic anatomy of the human amnion and chorion. American Journal of Obstetrics and Gynecology. 1960;79(6):1070-1073.

17. Kmiecik G, Spoldi V, Silini A, Parolini O. Current View on Osteogenic Differentiation Potential of Mesenchymal Stromal Cells Derived from Placental Tissues. Stem Cell Reviews and Reports. 2015;11(4):570-585.

18. Silini A, Magatti M, Cargnoni A, Parolini O. Is Immune Modulation the Mechanism Underlying the Beneficial Effects of Amniotic Cells and Their Derivatives in Regenerative Medicine. Cell Transplantation. 2017;26(4):531-539.

19. Jiang F, Zhang W, Zhou M, Zhou Z, Shen M, Chen N, et al. Human amniotic mesenchymal stromal cells promote bone regeneration via activating endogenous regeneration. Theranostics. 2020;10(14):6216-6230.

20. Liu R, Sun R, Zhang L, Zhang Q, Chen D, Zhong J, et al. Hyaluronic acid enhances proliferation of human amniotic mesenchymal stem cells through activation of Wnt/β-catenin signaling pathway. Experimental Cell Research. 2016;345(2):218-229.

21. Bian Q, Liu S, Huang J, Yang Z, Tang D, Zhou Q, et al. Oleanolic acid exerts an osteoprotective effect in ovariectomy-induced osteoporotic rats and stimulates the osteoblastic differentiation of bone mesenchymal stem cells in vitro. Menopause. 2012;19(2):225-233.

22. Fitri AR, Pavasant P, Chamni S, Sumrejkanchanakij P. Asiaticoside induces osteogenic differentiation of human periodontal ligament cells through the Wnt pathway. Journal of Periodontology. 2018;89(5):596-605.

23. Gong YS, Chen J, Zhang Q, Zhang J. Effect of 17β-oestradiol and ginsenoside on osteoporosis in ovariectomised rats. Journal of Asian Natural Products Research. 2006;8(7):649-656.
24. Gu Y, Zhou J, Wang Q, Fan W, Yin G. Ginsenoside Rg1 promotes osteogenic differentiation of rBMSCs and healing of rat tibial fractures through regulation of GR-dependent BMP-2/SMAD signaling. Scientific Reports. 2016;6(1):25282.

25. Li X, Wang J, Chang B, Chen B, Guo C, Hou G, et al. Panax notoginseng saponins promotes proliferation and osteogenic differentiation of rat bone marrow stromal cells. Journal of Ethnopharmacology. 2011;134(2):268-274.

26. Yang Y, Chin A, Zhang L, Lu J, Wong RWK. The Role of Traditional Chinese Medicines in Osteogenesis and Angiogenesis. Phytotherapy Research. 2014;28(1):1-8.

27. Wang JY, Yin CC, Wu CC, Geng SG, Yin M. [Icaritin promotes chondrogenic differentiation of BMSCs by Wnt/β-catenin signaling pathway]. China Journal of Chinese Matera Medica. 2016;41(4):694.

28. Qin S, Zhou W, Liu S, Chen P, Wu H. Icariin stimulates the proliferation of rat bone mesenchymal stem cells via ERK and p38 MAPK signaling. International Journal of Clinical and Experimental Medicine. 2015;8(5):7125-7133.

29. Shuping F, Li Y, Hao H, Ronghua Z. [Wnt/β-catenin signaling is involved in the Icariin induced proliferation of bone marrow mesenchymal stem cells]. Journal of Traditional Chinese Medicine. 2016;36(3):360-368.

30. Hu C, Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. Journal of Cellular and Molecular Medicine. 2018;22(3):1428-1442.

31. Huang J, Bao Y, Xiang W, Jing X, Guo J, Yao X, et al. Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway. Evidence-based Complementary and Alternative Medicine. 2017;2017(2017):8085325.

32. Luo G, Gu F, Zhang Y, Liu T, Guo P, Huang Y. Icariside II promotes osteogenic differentiation of bone marrow stromal cells in beagle canine. International Journal of Clinical and Experimental Pathology. 2015;8(5):4367-4377.

33. Luo G, Xu B, Huang Y. Icariside II promotes the osteogenic differentiation of canine bone marrow mesenchymal stem cells via the PI3K/AKT/mTOR/S6K1 signaling pathways. American Journal of Translational Research. 2017;9(5):2077.

34. Chen KM, Ge BF, Ma HP, Liu XY, Bai MH, Wang Y. Icariin, a flavonoid from the herb Epimedium enhances the osteogenic differentiation of rat primary bone marrow stromal cells. Die Pharmazie. 2005;60(12):939-942.

35. Song L, Zhao J, Zhang X, Li H, Zhou Y. Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation. European Journal of Pharmacology, 2013, 714(1):15-22.

36. Sierra RI, Specker BL, Jiménez F, Cruz C, Pedraza-Chaverrí J. Biochemical bone markers, bone mineral content, and bone mineral density in rats with experimental nephrotic syndrome. Renal failure. 1997;19(3):409-424.

37. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proceedings of the National
38. Laowanitwattana T, Aungsuchawan S, Narakornsak S, Markmee R, Tancharoen W, Keawdee J, et al. Osteoblastic differentiation potential of human amniotic fluid-derived mesenchymal stem cells in different culture conditions. Acta Histochemica. 2018;120(8):701-712.

39. Wang Y, Du Y, Yuan H, Pan Y, Wu J, Du X, et al. Human amnion-derived mesenchymal stem cells enhance the osteogenic differentiation of human adipose-derived stem cells by promoting adiponectin excretion via the APPL1-ERK1/2 signaling pathway. IUBMB life. 2020;72(2):296-304.

Figures

Figure 1

Morphology and phenotype of hAMSCs. (A) Morphology of P0 and P3 hAMSCs. (B) Expression of hAMSC surface markers. (C) Expression of skelemin proteins of hAMSCs.
Figure 2

Exogenous ICA promotes the proliferation of hAMSCs in vitro. Compared with control group, *P < 0.05; compared with blank group, #P < 0.05; compared with ICA-1, ICA-2, ICA-4 and ICA-5 group, △P < 0.05
Figure 3

Morphological changes of hAMSCs under the effect of ICA on the 7th, 14th and 21th day

100x

Figure 4
ALP expression as assessed by ARS staining on days 21

Figure 5

ALP activity of hAMSCs after ICA treatment on days 1, 3, 7, 14 and 21. Compared with blank group, **P < 0.01; compared with ICA-1 group, ##P < 0.01; compared with ICA-2 group, ΔΔP < 0.01, ΔP < 0.05; compared with ICA-3 group, ▲▲P < 0.01
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- TableS1.docx