DISK EVOLUTION SINCE $z \sim 1$ IN A CDM UNIVERSE

CHRIS B. BROOK,1 DAISUKE KAWATA,2,3 HUGO MARTEL,1 BRAD K. GIBSON,3,4,5 AND JEREMY BAILIN3

Received 2005 June 30; accepted 2005 October 20

ABSTRACT

Increasingly large populations of disk galaxies are now being observed at increasingly high redshifts, providing new constraints on our knowledge of how such galaxies evolve. Are these observations consistent with a cosmology in which structures form hierarchically? To probe this question, we employ SPH/N-body galaxy-scale simulations of late-type galaxies. We examine the evolution of these simulated disk galaxies from redshift 1 to 0, looking at the mass-size and luminosity-size relations, and the thickness parameter, defined as the ratio of scale height to scale length. The structural parameters of our simulated disks settle down quickly, and after redshift $z = 1$ the galaxies evolve to become only slightly flatter. Our simulated present-day galaxies are larger, more massive, less bright, and redder than at $z = 1$. The inside-out nature of the growth of our simulated galaxies reduces, and perhaps eliminates, expectations of evolution in the size-mass relation.

Subject headings: galaxies: evolution — galaxies: formation — galaxies: structure — methods: numerical

1. INTRODUCTION

Galaxies are major structural components of our universe, yet their formation and evolution remain an outstanding mystery of contemporary astrophysics. The latest generation of telescopes, including Keck, Subaru, the Very Large Telescope, Gemini, and the Hubble Space Telescope, provide snapshots of galaxies at various redshifts. The properties of disk galaxies out to $z = 1$ have been the subject of several recent studies. These properties include the Tully-Fisher relation (e.g., Vogt et al. 1996; Bizyaev & Mitronova 2002; Böhm et al. 2004), the luminosity-size, magnitude-size, and mass-size relations (e.g., Lilly et al. 1998; Simard et al. 1999; Bouwens & Silk 2002; Barden et al. 2005), the size distribution (e.g., Shen et al. 2003; Ravindranath et al. 2004; Ferguson et al. 2004), and the disk “thickness” (Reshetnikov et al. 2003, hereafter R03; Elmegreen et al. 2005).

The evolution of the luminosity-size and mass-size relations of disk galaxies remains a controversial issue. In particular, the interpretation of such evolution depends acutely on the selection biases of the surveys. Several studies have found an increase in the B-band surface brightness of ~ 1 mag arcsec$^{-2}$, out to redshift 1 (e.g., Schade et al. 1996; Roche et al. 1998; Lilly et al. 1998). Taking into account selection effects, Simard et al. (1999) found minimal evolution with redshift, work that was supported by Ravindranath et al. (2004), who found that disks at redshift $z \sim 1$ are smaller, in absolute value, than present-day disk galaxies, and have a thickness ratio, h_z/h_1, larger by a factor of ~ 1.5. Support for such a thickening of disk galaxies at high redshifts also comes from Elmegreen et al. (2005), who inferred from their study of galaxies in the Hubble Ultra Deep Field that high-redshift disk galaxies are thicker than local spiral galaxies by a factor of ~ 2.

Studies such as these are clearly increasing our knowledge of the evolutionary stages of populations of disk galaxies, yet the path taken for galaxies to evolve between these stages remains unclear and reliant on modeling. The general scenario of galaxy formation within the cosmological context, as envisioned by White & Rees (1978), involves extended dark halos of galaxies forming hierarchically by gravitational clustering of nondissipative dark matter. The luminous components form by a combination of gravitational clustering and dissipative collapse. A general framework for the formation of disk galaxies was outlined in Fall & Efstathiou (1980). In their model, a uniformly rotating, homogeneous protogalactic cloud of gas begins to collapse as it decouples from the Hubble flow. This protogalaxy is endowed with angular momentum from tidal forces driven by surrounding structure (Peebles 1969). It is assumed that the baryons destined to form the disk receive the same tidal forces as the dark matter before much dissipation occurs. If the collapse is smooth, then specific angular momentum is conserved and the gas forms a thin, rapidly rotating disk (e.g., Dalcanton et al. 1997; Mo et al. 1998).

Detailed direct modeling has highlighted that the above disk formation scenario is far from simple within a cold dark matter (CDM) universe. Complex baryonic processes involving multiple gas phases and energy feedback, for example from quasars, supernovae (SNe), and stellar winds, have proven difficult to model, yet these processes appear to be crucial in the formation and evolution of disk galaxies within the context of hierarchical structure assembly. Early simulations employed thermal feedback, following...
Katz & Gunn (1991), augmented somewhat in Navarro & White (1993), who added a variable fraction of SN energy as kinetic energy. This type of feedback has been popular up until recent times (e.g., Steinmetz & Navarro 2002; Abadi et al. 2003), even though it was known to be highly inefficient, with thermal energy radiating away over timescales shorter than the dynamical timescales (Katz 1992). The effect of this inefficient feedback, in light of the overcooling problem (White & Rees 1978), was the rapid formation of stars in the early collapsing halos. Subsequent mergers of these halos resulted in loss of angular momentum to the dark halo, resulting in disk galaxies dominated by stellar halo components and significantly deficient in angular momentum. Weil et al. (1998) showed that the suppression of early radiative cooling in numerical simulations can result in more realistically sized disks. The problem was tackled in Thacker & Couchman (2000) by turning off cooling for a fixed time in gas within the smoothed particle hydrodynamics (SPH) smoothing kernel of an SN event. Although lacking detailed insights into the multiphase gas processes involved in galaxy formation, these models succeeded in regulating star formation in small halos, and resulted in increased angular momentum in the simulated disk galaxy. In Brook et al. (2004a), we simulated galaxies using identical initial conditions with these two different feedback methods. The thermal feedback following Katz & Gunn (1991) resulted in galaxies that are dominated by a high-mass, high-metallicity spheroidal stellar component, with a low-mass disk component. By regulating star formation in low-mass building blocks, the adiabatic feedback model, which follows Thacker & Couchman (2000), forms galaxies with a dominant disk component, and a low-mass, low-metallicity stellar halo. Sommer-Larsen and collaborators have examined other implementations of feedback, and have also shown the importance of regulating cooling at early epochs (Sommer-Larsen et al. 1999, 2003; Sommer-Larsen & Dolgov 2001). Meanwhile, Governato et al. (2004) highlight the importance of resolution in simulating disk galaxies. Implementing these findings has allowed models such as those of Robertson et al. (2004), Okamoto et al. (2005), and Governato et al. (2005) to make progress in reproducing disk galaxies with properties approaching those of observed disks.

Our chemo-dynamical models for simulating disk galaxies (which we refer to as sGALs to avoid confusion with real galaxies) have been successful in forming disk galaxies with a dominant young, metal-rich disk component, a metal-poor, old stellar halo, and an old, intermediate-metallicity thick-disk component. The sGALs have many features observed in the Milky Way and local disk galaxies, including metallicities, abundances, ages, and color gradients of the stellar populations of the thin and thick disks, metallicities and abundances of the stellar halo, and the relation between luminosity and metallicity of the stellar halo (Brook et al. 2004a; Brook et al. 2004b, hereafter B04; Brook et al. 2005, hereafter B05; Renda et al. 2005). Here we report on the evolution of the disk component of such sGALs, specifically after \(z \sim 1 \). We deliberately follow the evolution of our sGALs at times after which they have settled into a disk morphology, and trace their luminosity, scale length, scale height, and central surface brightness. We hope to provide insight into how the disk component of late-type galaxies evolves in their relatively "quiescent phase," during which mergers are only minor and star formation occurs almost exclusively in the disk regions.

In this paper, we concentrate on the evolution of the size-mass and size–central surface brightness relations and the "thickness" of four sGALs, and what these tell us about interpreting observations. We also examine the evolution of the magnitude and color of our simulated galaxies. Our study does not allow direct comparison with the observational studies that compare distant galaxy populations to "like" local galaxy populations; it is not clear which galaxies are likely progenitors of today's galaxies. Yet, by providing evolutionary paths that disk galaxies can be expected to follow, our study provides insights into the interpretation of such observations, in particular how to interpolate between the two populations.

2. THE CODE AND MODELS

The four sGALs studied here are the same as those studied in B05. They are formed using our galactic chemo-dynamical evolution code, GCD+, which self-consistently models the effects of gravity, gas dynamics, radiative cooling, and star formation. Full details of GCD+ can be found in Kawata & Gibson (2003). All galaxies are formed with the adiabatic feedback model (AFM) from Brook et al. (2004a). In this model, gas within the SPH smoothing kernel of SNe II explosions is prevented from cooling. This adiabatic phase is assumed to last for the lifetime of the lowest mass star that ends as a SN II, i.e., the lifetime of an 8 \(M_{\odot} \) star (100 Myr). In the AFM, the energy released by SNe Ia, which do not trace starburst regions, is fed back as thermal energy.

We employ a semicosmological version of GCD+, where the initial conditions consist of an isolated sphere of dark matter and gas (Katz & Gunn 1991). This top-hat overdensity has an amplitude, \(\delta_c \), at initial redshift \(z_i \), which is approximately related to the collapse redshift, \(z_c \), by \(z_c = 0.36\delta_c(1 + z_i)^{-1} \) (e.g., Padmanabhan 1993). Small-scale density fluctuations are superimposed on each sphere, parameterized by \(\sigma_8 \), seeding local collapse and subsequent star formation. Longer wavelength fluctuations are incorporated by imparting a solid-body rotation corresponding to a spin parameter, \(\lambda = J/\kappa_{12} \), to the initial sphere, where \(J \) is the total angular momentum, \(\kappa_0 \) the total energy, and \(M_{\text{tot}} \) is the total mass of the sphere. This simplified model allows us to run a suite of simulations at high resolution, while retaining the most important features of full cosmological simulations. The choice of large values of \(\lambda \) and initial conditions in which no major merger occurs in late epochs (\(z < 1 \)), ensures that disk sGALs are formed. We use an Einstein–de Sitter CDM model; parameters relevant to all sGALs include \(\Omega_m = 1 \), baryon fraction, \(\Omega_b = 0.1 \), \(H_0 = 50 \) km s\(^{-1}\) Mpc\(^{-1}\), star formation efficiency, \(c_s = 0.05 \), and \(\sigma_8 = 0.5 \). This choice was made merely for convenience. As we showed in B05, the consequences of using this cosmology with the initial conditions of this study, rather than the now standard \(\Lambda \)CDM cosmology, are negligible. Essentially, prior to the redshift of collapse \(z_c, \sim 2 \), a \(\Lambda \)CDM universe is almost identical to a Einstein–de Sitter universe, while after that redshift, the system is so dense that the background cosmology becomes irrelevant. For a detailed proof, we refer the reader to B05. Other parameters varied slightly between the four models, but all were chosen to result in Milky Way-type sGALs. Table 1, reproduced from B05, shows the values of total mass, \(z_c \), and \(z_i \) for the four simulations. Along with these variations in parameters, different random seeds are incorporated in the initial conditions of the sGALs, creating evolutionary diversity in our sample. We employed 38,911 dark matter and 38,911 gas/star particles for each model.

3. RESULTS

Our model results in the formation of late-type sGALs that have a dominant disk component, with a low-mass, metal-poor...
halo component (B04). Figure 1 shows the rest-frame B-band surface brightness profile of sGAL1, both edge-on (top panels) and face-on (bottom panels), at three epochs: $z = 0.7$ (corresponding to a look-back time of 7.3 Gyr), $z = 0.5$ (5.7 Gyr), and $z = 0$. Figures 2, 3, and 4 show corresponding plots for sGAL2, sGAL3, and sGAL4, shown at $z = 1$ (corresponding to a look-back time of 8.5 Gyr), $z = 0.5$ ($z = 0.4$ for sGAL2, look-back time 4.8 Gyr), and $z = 0$. These epochs are chosen to be (1) after the thick disk formation epoch, when the old thin disk has begun to form; (2) at an intermediate time; and (3) the present, respectively. The different time chosen for the early epoch of sGAL1 ($z = 0.7$) was taken because that simulated galaxy is undergoing a significant merger at $z = 1$, and we need our sGALs to have a settled disk structure for a fair comparison with distant galaxies that have been selected for their disk features. Similarly, a satellite is being accreted to sGAL2 at the intermediate epoch, $z \sim 0.5$, so we chose a later intermediate time, $z = 0.4$, for this sGAL. The surface brightness is calculated by assuming that each star particle is a single stellar population (SSP), and using the SSPs of Kodama & Arimoto (1997) with a simple Salpeter initial mass function (IMF) parameterized by a power-law slope of 1.35 and lower and upper mass of 0.1 and $60 M_\odot$, respectively.

The photometric properties of sGALs discussed here are all intrinsic values, where we avoid discussing the effect of the dust absorption.

Galaxy	z_e	M_{tot} (M_\odot)	λ
sGAL1	1.8	5×10^{11}	0.0675
sGAL2	1.9	5×10^{11}	0.0675
sGAL3	2.0	1×10^{12}	0.0600
sGAL4	2.2	5×10^{11}	0.0675

Fig. 1.—Rest-frame B-band luminosity plots for sGAL1, plotted edge-on (top panels) and face-on (bottom panels) at redshifts $z = 0.7$ (left panels), $z = 0.5$ (middle panels), and $z = 0$ (right panels).
Total B-band magnitudes of the sGALs are found by integrating the luminosity densities displayed in these images. The results are shown in column (3) of Table 2. We see that the galaxies have an average $M_B \approx -21.1$ at the earliest epoch (which we refer to as $z \approx 1$), an average of -20.6 at the intermediate epoch ($z \approx 0.5$), and -19.7 at $z = 0$. The higher luminosity at earlier times is largely due to the enhanced star formation at the epoch during which the thick disk forms (see B04), the epoch which precedes the “early epoch” ($z \approx 1$) analyzed in this study.

The rate of star formation is lower during the more quiescent later epochs, resulting in evolution toward fainter magnitudes at the present.

We repeat the above process in both the rest-frame V and I bands, and derive $B - I$ and $V - I$ colors. The $B - I$ and $V - I$ colors are shown in columns (5) and (6) of Table 2, respectively. The galaxies become redder during the relatively quiescent late epochs studied, from an average $B - I$ ($V - I$) of 1.1 (0.7) at $z \approx 1$, to 1.5 (0.9) at $z \approx 0.5$, and 1.7 (1.0) at $z = 0$. These redder colors are due to the effects of a decreasing star formation rate, aging stellar populations, and more metal-rich stellar populations being born in the disk region. The redder colors are not sufficient to overcome the decrease in B-band luminosity; the sGALs also become fainter in the redder bands.

The B-band surface brightness profiles for the four sGALs are plotted against radius in Figure 5, at the three epochs shown in Figures 1, 2, 3, and 4. We use open stars for the early phase of evolution ($z \approx 1$), open squares for the intermediate phase ($z \approx 0.5$), and filled triangles for $z = 0$ in this and all ensuing plots in order to allow evolution of the properties of the disk sGALs to be easily followed. Outside the central bulge regions, the disk components can be approximated reasonably by exponential fits. This allows us to derive disk scale lengths for each sGAL at each epoch. This is done in two stages. An approximate scale length h_l is derived by fitting between 4 and 20 kpc. This allows us to then make fits between 1.5h_l (to exclude the bulge) and 4h_l. Numerous tests verified that this technique gives robust results, which are shown in column (9) of Table 2. Scale lengths increase from an average of 2.9 at $z \approx 1$ to an average of 3.5 at $z \approx 0.5$, and to 4.1 by $z = 0$. The implication is that the galaxies grow from the “inside out.”

We plot the surface brightness profiles of the four sGALs perpendicular to the disk in Figure 6. We exclude the bulge region when calculating how the surface brightness varies with distance from the disk plane. Again, the profiles are well fitted with exponentials, and we fit between 0 and 2.5 scale heights (essentially out to 1.5 kpc in Fig. 6) using techniques similar to those employed to derive scale lengths. The derived scale heights are shown in column (8) of Table 2. Scale heights remain close to constant, with an average of 0.63 at $z \approx 1$, an average of 0.62 at $z \approx 0.5$, and an average of 0.65 at $z = 0$. We derive the
thickness of the disks, defined as the ratio of scale height to scale length, h_z/h_l, and show the results in column (10) of Table 2. On average, the galaxies are “thicker” at the earlier epochs, by a factor of 1.4 at $z \sim 1$. This is due to the lack of evolution of the scale height and the increasing scale length with decreasing redshift. Our simulation does show little evolution of the scale height, because the thick disk forms first, followed by the thin disk formation, as discussed in B04. If the thick disk comes from heating of the thin disk, we should expect an increasing scale height with decreasing redshift, and a slower evolution of the disk thickness. Further observations of the thickness evolution will help constrain thick disk formation scenarios. The evolution of the thickness in our sGALs (in the sense that the galaxies become thinner) is driven by the inside-out thin disk formation. At the intermediate epoch, the sGALs show a marginal increase in thickness, by a factor of 1.1 at $z \sim 0.5$; galaxies settle rapidly to disk morphologies after their last “significant” merger (i.e., a merger likely to alter the morphology of the galaxy).

Numerical heating is an issue when considering vertical structure in numerical simulations, but we have reason to believe that our results are not affected significantly. Previous studies at similar resolution to ours have shown numerical vertical heating to be relatively low (Font et al. 2001; Mayer 2004). Figure 2 of B05 shows the vertical velocity dispersion versus age for four sGALs in this study, which demonstrates relatively little vertical heating during the disks’ quiescent period: on the order of 20% over the last \sim8 Gyr. Even if this were totally attributed to numerical heating (unlikely, as processes such as spiral structure and substructure heating also contribute), our results would not be greatly affected, because the vertical scale height is proportional to the square root of the velocity dispersion, i.e., $h_z \propto \sigma_z^{1/2}$ (e.g., Bottema 1993). Our measured scale height at $z = 0$ would be, in the worst case, overestimated by \sim10%. As far as relevance to our study, the important point that we note is that any artificial heating would not affect our results qualitatively. In the absence of such effects, our conclusion that our simulated disk galaxies become flatter (h_z/h_l decreases) holds. Our quantitative estimates would then be underestimating this effect. Having said this, higher resolution studies would increase the reliability of the quantitative estimates.

The way that the structural parameters, scale length, and scale height evolve relative to one another can be ascertained from Figure 7. Observations of local disk galaxies from Schwarzkopf & Dettmar (2000) are also plotted, as crosses. Observations of 34 edge-on disk galaxies at $z \sim 1$, taken from R03, are plotted as open circles. The $z \sim 1$ disk galaxies of R03 are found to be smaller and thicker than local galaxies, as determined by previous studies, such as those of Schwarzkopf & Dettmar (2000), de Grijs (1998), Kregel et al. (2002), and Bizyaev & Mitronova (2002). Our sGALs evolve in this plot primarily by increasing in

![Fig. 3.—Rest-frame B-band luminosity plots for sGAL3, plotted edge-on (top panels) and face-on (bottom panels) at redshifts $z = 1$ (left panels), $z = 0.5$ (middle panels), and $z = 0$ (right panels).](image-url)
Fig. 4.—Rest-frame B-band luminosity plots for sGAL4, plotted edge-on (top panels) and face-on (bottom panels) at redshifts $z = 1$ (left panels), $z = 0.5$ (middle panels), and $z = 0$ (right panels).

sGAL	Redshift (2)	B (mag)	M_* (M_\odot)	$B - I$	$V - I$	μ_B (mag arcsec$^{-2}$)	h_B (kpc)	h_l (kpc)	h_B/h_l
sGAL1	0	-19.5	2.9×10^{10}	1.7	1.0	23.3	0.70	4.5	0.16
sGAL2	0	-19.6	3.0×10^{10}	1.7	1.0	22.1	0.59	3.7	0.16
sGAL3	0	-20.2	6.6×10^{10}	1.8	1.1	21.4	0.60	3.5	0.17
sGAL4	0	-19.6	3.6×10^{10}	1.7	1.0	23.9	0.70	4.6	0.15
Mean	0.5	-19.7	4.0×10^{10}	1.7	1.0	22.7	0.65	4.1	0.16
sGAL1	0.5	-20.3	2.4×10^{10}	1.5	0.9	22.2	0.64	3.8	0.17
sGAL2	0.4	-20.6	2.4×10^{10}	1.3	0.8	21.0	0.60	2.7	0.22
sGAL3	0.5	-21.0	5.9×10^{10}	1.5	0.9	20.6	0.56	3.2	0.18
sGAL4	0.5	-20.3	3.2×10^{10}	1.5	0.9	23.2	0.67	4.2	0.16
Mean	0.5	-20.6	3.5×10^{10}	1.5	0.9	21.8	0.62	3.5	0.18
sGAL1	0.7	-20.9	2.1×10^{10}	1.1	0.7	21.8	0.69	3.2	0.22
sGAL2	1	-20.9	1.4×10^{10}	0.9	0.6	20.7	0.51	2.2	0.23
sGAL3	1	-21.6	5.0×10^{10}	1.3	0.8	20.2	0.75	3.0	0.25
sGAL4	1	-21.1	2.7×10^{10}	1.2	0.8	21.6	0.58	3.1	0.22
Mean	0.9	-21.1	2.8×10^{10}	1.1	0.7	21.0	0.63	2.9	0.23

Notes.—Derived parameters of our four sGALs at present ($z = 0$), intermediate ($z \sim 0.5$), and early ($z \sim 1$) epochs. Col. (1): Model. Col. (2): Redshift. Col. (3): B-band magnitude. Col. (4): Stellar mass. Col. (5): $B - I$ color. Col. (6): $V - I$ color. Col. (7): B-band central surface brightness. Col. (8): Scale height. Col. (9): Scale length. Col. (10): Thickness parameter.
scale length, with less evolution in scale height, resulting in galaxies evolving across this diagram, from left to right.

Central surface brightness, again in the rest frame in the B band, is derived by extrapolating the exponential fits from Figure 5 to $r = 0$. Results are shown in column (7) of Table 2. We find that our sGALs are brighter at earlier epochs, with an average $\mu_B = 21.0$ at $z \sim 1$, compared with $\mu_B = 21.8$ at $z \sim 0.5$, and $\mu_B = 22.7$ at $z = 0$. This is related to the higher star formation rates at the earlier epochs in our sGALs, as shown in Figure 5 of B05. This is consistent with observations, which point to star formation rates being higher at earlier epochs (e.g., Madau et al. 1996; Hammer et al. 1997; Flores et al. 1999; Juneau et al. 2005). We plot the B-band central surface brightness against the flatness parameter h_l/h_z (the inverse of the thickness parameter) in Figure 8. The sGALs have higher surface brightness and are thicker at earlier times, closer to the merging epochs when the thick disks formed. As the thin disk grows larger in the more quiescent later stages of their evolution, the sGALs become less bright, and also thinner. At each epoch, it is also apparent that brighter sGALs are thicker, although this trend is not as strong as the trend with time, because the sGALs we have studied are all relatively quiescent throughout the epoch during which evolution is followed in this study. This supports the conclusions of R03, who plotted the relation between h_l/h_z and

![Graph](image-url)
central surface brightness of $z \sim 1$ galaxies (their Fig. 7), and found that the brightest objects have the thickest disk. They speculated that enhanced star formation and enhanced thickness are the results of ongoing interactions and mergers.

We derive the stellar mass M_* of each sGAL at each epoch using the friends-of-friends algorithm, and confirm that sensitivity to our choice of linking length is insignificant. Results are displayed in column (4) of Table 2. The inside-out nature of the growth of the thin disk in our sGALs is apparent in the relationship between the stellar mass and scale length, shown in Figure 9. The mass and size of the sGALs grow together. Although we do not want to overemphasize the quantitative nature of our results, using just four relatively homogeneous L_* sGALs, we note that the ratio M_*/h_l does not evolve, with the average at each epoch staying remarkably close to $10^{10} M_\odot \text{kpc}^{-1}$. Qualitatively, it is clear that the thin disks of our sGALs increase in size as they grow in mass, and the disk evolves along the mass–scale-length relation.

4. SUMMARY AND CONCLUSION

The evolution of individual galaxies cannot be observed directly, but look-back studies are providing increasing information on properties of populations of “like” galaxies out to redshift 1 and beyond. These studies remain difficult, in large part because it is unclear how to select which galaxies should be compared at each epoch. In addition, there are large uncertainties.

Fig. 6.—Rest-frame B-band luminosity (log scale) vs. height above the disk plane for our four sGALs, plotted at the same epochs, using the same symbols, as Fig. 5. The profiles are well fitted by exponentials.
involved in correcting for dust and cosmological dimming, especially in the case of edge-on disk galaxies.

Several recent studies have compared the observed evolution of disk galaxy properties with semianalytic and infall type models. For example, Barden et al. (2005) and Trujillo et al. (2006) show that one of the most basic assumptions of the semianalytic approach, in which disk size scales in proportion to the virial radius of the dark halo (Mo et al. 1998), is at odds with observations; the observed size evolution is weaker than the predicted $R/H(z) \approx C_0^{2/3}$, where $H(z)$ is the Hubble parameter as a function of redshift. The infall model of Bouwens & Silk (2002) assumes a star formation rate at each radius and time, according to the local density (Schmidt 1959) and the infall of metal-free gas. This model is able to match observations of the size evolution, at given luminosity, out to $z \approx 0.7$ (Trujillo et al. 2006). In order to explain the evolution of disk galaxies, the necessity of accounting for effects such as mass buildup, star formation, energy feedback, and gas infall self-consistently within a CDM hierarchical framework motivates us to compare observations with direct numerical simulations.

We examine four simulated disk galaxies (sGALs), and do so in an idealized manner, free from the difficulties posed in observation. Our sGALs form thick disks at high redshift ($z \approx 5$) during a period of mergers of gas-rich “building blocks” (B04), and rapidly settle into a disk galaxy morphology by $z \approx 1$. We examine their subsequent evolution to the present, comparing various properties of the galaxies at high (~ 1), intermediate (~ 0.5), and zero redshift, where we find clear trends. Our main results are:

1. Scale heights of disk galaxies show no evolution after $z \approx 1$. Scale lengths increase slowly, resulting in flatter disks at later times. This is consistent with the observations of R03, who find that disk galaxies at $z \approx 1$ are smaller than present-day galaxies, and have a thickness ratio, h_z/h_l, larger by a factor of ~ 1.5.

![Fig. 7.—log(scale length) vs. log(scale height) for our four sGALs, with symbols responding to the three epochs as defined in Figs. 1, 2, 3, and 4. Individual sGALs are joined by lines. Also plotted are observations of local disk galaxies from Schwarzkopf & Dettmar (2000) (crosses) and observations of edge-on disk galaxies at $z \approx 1$ from R03 (open circles). Our sGALs evolve primarily by increasing scale length, with little evolution in scale height; disk growth is inside out.](image1)

![Fig. 8.—Thickness of the sGALs, as defined by the ratio of scale height to scale length, plotted against the B-band rest-frame central surface brightness. We show the early (open stars), intermediate (open squares), and present (solid triangles) epochs, as defined in Figs. 1, 2, 3, and 4. Individual sGALs are joined by lines. The sGALs have higher surface brightness and are thicker at earlier epochs. At each epoch, it also is apparent that higher surface brightness sGALs are thicker, although this trend is not as strong as the trend with time.](image2)

![Fig. 9.—log of the stellar mass of the sGALs vs. log scale length, with symbols representing the epochs as shown in previous diagrams. Individual sGALs are joined by lines. As the sGALs become more massive, they also become larger, growing from the inside out.](image3)
2. The “inside-out” growth of disks is reflected in the scale length increasing roughly proportional to the stellar mass, resulting in little to no evolution of the mass-size relation. This is consistent with the interpretations of Trujillo & Aguerri (2004), Barden et al. (2005), and Trujillo et al. (2006). Previously, few direct numerical studies have probed these issues. In a study of sGALS of various morphologies in a fully self-consistent ΛCDM simulation, Sommer-Larsen et al. (2003) examined two disk galaxies, and found that while one clearly evolved inside out, the other evolved outside in. Samland & Gerhard (2003) examined the buildup of disk galaxies through a spherical gas infall model, perhaps an idealization of the quiescent period of disk galaxy formation, and found that disks form inside out.

3. Disk sGALS become more massive, less bright, and redder between redshifts $z \sim 1$ and 0. The evolution of the luminosity of disk galaxies remains observationally controversial, with selection effects largely determining interpretations (for a discussion see Barden et al. 2005). The mass buildup in this epoch is relatively quiescent, with aging stellar populations and high-metallicity stars born in the disk accounting for the galaxy reddening.

4. Rapid periods of star formation due to mergers and interactions can result in both thickening of the disk and galaxy brightening (see Fig. 8). This is consistent with the results of R03, as well as local observations that show that interacting galaxies are thicker (Reshetnikov & Combes 1997) and that a correlation exists between central surface brightness and “thickness,” in the sense that higher surface brightness galaxies are thicker (Bizyaev & Mitronova 2002; Bizyaev & Kajsin 2004).

The quantitative results of our study are summarized in Table 2. These results are subject to uncertainties inherent in our models, such as star formation and feedback prescriptions. Also, our simulations do not cover the range of galaxy masses, sizes, morphologies, and histories of the large observed populations. We therefore feel that more modeling of a greater population of high- and low-redshift sGALS within a fully cosmological simulation is required in order to make more meaningful quantitative predictions. Having said this, clear trends have emerged in this study of the evolution of the properties of disk sGALS formed in a hierarchical CDM universe.

We thank Agostino Renda for his help. Simulations were performed on the Swinburne University supercomputer, the Australian Partnership for Advanced Computing’s supercomputers, and “Purplehaze,” the supercomputer facility at Université Laval. C. B. and H. M. thank the Canada Research Chair program and NSERC for support. B. K. G., D. K., and J. B. acknowledge the financial support of the Australian Research Council through its Discovery Project program. D. K. acknowledges the financial support of the Japan Society for the Promotion of Science through a postdoctoral fellowship for research abroad.

REFERENCES

Abadi, M. G., Navarro, J. F., Steinmetz, M., & Eke, V. R. 2003, ApJ, 591, 499
Barden, M., et al. 2005, ApJ, 635, 959
Barden, M., et al. 2004, ApJ, 613, 886
Böhm, A., et al. 2004, A&A, 420, 97
Bottema, R. 1993, A&A, 275, 16
Bouwens, R., & Silk, J. 2002, ApJ, 568, 522
Brook, C. B., Gibson, B. K., Martel, H., & Kawata D. 2005, ApJ, 630, 298 (B05)
Brook, C. B., Kawata, D., Gibson, B. K., & Flynn C. 2004a, MNRAS, 349, 52
Brook, C. B., Kawata, D., Gibson, B. K., & Freeman, K. 2004b, ApJ, 612, 894 (B04)
Dalcanton, J. J., Spergel, D. N., & Summers, F. J. 1997, ApJ, 482, 659
de Grijs, R. 1998, MNRAS, 299, 595
Elmegreen, D. M., Elmegreen, B. G., Rubin, D. S., & Schaller, M. A. 2005, ApJ, 631, 85
Fall, S. M., & Efstathiou, G. 1980, MNRAS, 193, 189
Ferguson, H. C., et al. 2004, ApJ, 600, L107
Flores, H., et al. 1999, ApJ, 517, 148
Font, A. S., Navarro, J. F., Stadel, J., & Quinn, T. R. 2001, ApJ, 563, L1
Governato, F., et al. 2004, ApJ, 607, 688
———. 2005, in Proc. 5th Marseille International Cosmology Conference, The Fabulous Destiny of Galaxies, ed. S. Arnouts et al. (Marseille: Laboratoire d’Astrophysique de Marseille), http://www.oamp.fr/marseille2005/governato.pdf
Hammer, F., et al. 1997, ApJ, 481, 49
Juneau, S., et al. 2005, ApJ, 619, L135
Katz, N. 1992, ApJ, 391, 502
Katz, N., & Gunn, J. E. 1991, ApJ, 377, 365
Kawata, D., & Gibson, B. K. 2003, MNRAS, 340, 908
Kodama, T., & Arimoto, N. 1997, A&A, 320, 41
Kregel, M., van den Kruit, P. C., & de Grijs, R. 2002, MNRAS, 334, 646
Lilly, S., et al. 1998, ApJ, 500, 75
Madau, P., Ferguson, H. C., Dickinson, M. E., Giavalisco, M., Steidel, C. C., & Fletcher, A. 1996, MNRAS, 283, 1388
Mayer, L. 2004, in Proc. Bayons in Dark Matter Haloes, ed. R. Dettmar, U. Klein, & P. Salucci (Trieste: SISSA), 37.1, http://pos.sissa.it/archive/conferences/014/037/BDMH2004_037.pdf
Mo, H. J., Mao, S., & White, S. D. M. 1998, MNRAS, 295, 319
Navarro, J. F., & White, S. D. M. 1993, MNRAS, 265, 271
Okamoto, T., Eke, V. R., Frenc, C. S., & Jenkins, A. 2005, MNRAS, 363, 1299
Padmanabhan, T. 1993, Structure Formation in the Universe (Cambridge: Cambridge Univ. Press)
Peel, J. E. 1969, ApJ, 155, 393
Ravindranath, S., et al. 2004, ApJ, 604, L9
Renda, A., Gibson, B. K., Mouhcine, M., Ibata, R. A., Kawata, D., Flynn, C., & Brook, C. B. 2005, MNRAS, 363, L16
Reshetnikov, V. P., & Combes, F. 1997, A&A, 324, 80
Reshetnikov, V. P., Dettmar, R.-J., & Combes, F. 2003, A&A, 399, 879 (R03)
Robertson, B., Yoshida, N., Springel, V., & Hernquist, L. 2004, ApJ, 606, 32
Roche, N., Ranatunga, K., Griffiths, R. E., Im, M., & Naim, A. 1998, MNRAS, 293, 157
Samland, M., & Gerhard, O. E. 2003, A&A, 399, 961
Schade, D., Lilly, S. J., Le Fèvre, O., Hammer, F., & Crampton, D. 1996, ApJ, 464, 79
Schmidt, M. 1959, ApJ, 129, 243
Schwarzkopf, U., & Dettmar, R.-J. 2000, A&AS, 144, 85
Shen, S., Mo, H. J., White, S. D. M., Blanton, M. R., Kauffmann, G., Voges, W., Brinkmann, J., & Casibai, I. 2003, MNRAS, 343, 978
Simard, L., et al. 1999, ApJ, 519, 563
Sommer-Larsen, J., & Dolgov, A. 2001, ApJ, 551, 608
Sommer-Larsen, J., Gelato, S., & Velde, H. 1999, ApJ, 519, 501
Sommer-Larsen, J., Götz, M., & Portinari, L. 2003, ApJ, 596, 47
Steinmetz, M., & Navarro, J. F. 2002, NewA, 7, 155
Thacker, R. J., & Couchman, H. M. P. 2000, ApJ, 545, 728
Trujillo, I., & Aguerri, J. A. L. 2004, MNRAS, 355, 82
Trujillo, I., et al. 2006, ApJ, submitted (astro-ph/0504225)
Vogt, N. P., Forbes, D. A., Phillips, A. C., Gronwall, C., Faber, S. M., Illingworth, G. D., & Koo, D. C. 1996, ApJ, 465, L15
Weil, M. L., Eke, V. R., & Efstathiou, G. 1998, MNRAS, 300, 773
White, S. D. M., & Rees, M. 1. 1978, MNRAS, 183, 341