Application of Extreme Value of Nonlinear Regression Function Based on RSI Expert System

Shaohe Zhang 1, Hui Liu 2, Zongna Xiao 3,* and Pin Wang 1

1 School of Economics, Guangzhou College of Commerce, Guangzhou 511363, China
2 Nanfang College of Sun Yat-Sen University Business School, Guangzhou 510970, China
3 Department of Arts and Sciences, Guangxi Open University, Nanning 530022, China

*Corresponding author e-mail: xiaonayyy@qq.com

Abstract. This paper defines the waveform function and its corresponding concepts and axioms. The extreme value of stock price function is obtained from 24 known regression functions by using the method of seeking the extreme value, which is proven by the Shanghai stock index rising by 458.43%, 487.83% and 133.30% respectively in three different periods. This paper optimizes the expert RSI trading system with the method of mathematical extreme value, and writes the source code of the optimization formula, which provides a graphical and intuitive tool for investors. The average annual return, average winning rate and average net interest rate of waveform increasing function samples are 67.52%, 96.88% and 84.40%, respectively. The average annual return, average winning rate and average net interest rate of waveform decreasing function samples are 22.27%, 83.33% and 26.03%, respectively.

Keywords: Derivable time sequence function; Waveform function; Extreme value of function; RSI expert system.

1. Introduction
The extreme value of function is an important part of differential theory in mathematical analysis. In the fields of industrial and agricultural production, engineering technology and scientific experiments, we often encounter such problems: under certain conditions, how to make "the most products", with "the most economical materials", at "the lowest cost" and with "the highest efficiency", etc. in mathematics, this kind of problems can be summed up as the problem of finding the maximum or minimum value of a function, such as the problem of optimal batch size of inventory. In order to complete certain production tasks, enterprises must ensure the materials needed for normal production. However, under the condition of a certain total demand, the larger the quantity of the order and the less the ordering times, the less the cost of the order, and the storage cost will increase correspondingly; on the contrary, the more the order cost, the less the storage cost. Therefore, there is a problem of how to determine the order quantity to minimize the total cost.

Yao Xiaokui (2020) [1] Use Function to Conduct Marginal Analysis, So as to Provide Quantitative Basis for Enterprise Managers to Make Scientific Decisions.
Chen Yu (2016) [2] Use Engel Function to Solve the Problem of Maximum Demand and Cost Function to Solve the Problem of Maximum Profit.

Shan Mengdan (2019) [3] The Proposed Method of Solving Extreme Value of Univariate Function and Multivariate Function, and Solved the Problem of Optimal Inventory Management.

Qi Song (2012) [4] Use the Derivative and Function Extremum to Solve the Problems Such as the Best Batch Size of Inventory, the Optimal Time of Replacing the Old with the New, and the Production Volume with the Lowest Cost.

In this paper, 24 regression functions of 192 months in Shenzhen stock market are used to find all the extreme value (if there are extreme value) by using the mathematical waveform function and taking the winning rate, annual return rate and net profit rate as the management objectives. To find the maximum return of investment target, and then optimize the expert RSI trading system. Write the source code of optimization formula to provide investors with a graphical and intuitive tool.

2. Definition, Theorem, Calculation and Explanation

2.1. Basic Concept

Definition 1: If f(x) and g(x) is continuous, exists everywhere, the correlation coefficient of f(x) and g(x) is \(r \) (F test significant). If, then the image of the function f(x) and g(x) is highly similar, also known as the function f(x) and g(x) is highly similar.

Definition 2: If is called time sequence section

Definition 3: If is a nonlinear continuous function defined on a time sequence interval and the first derivative exists everywhere, then it is called a nonlinear differentiable time sequence function.

Definition 4: Suppose is nonlinear derivable time sequence function,
If, is waveform increasing function, (See Figure 1)
If, is waveform decreasing function, (See Figure 2)

2.2. Basic Theorem

Axiom 1: There are only three ways to change the price of financial trading products: rising (increasing the function value), decreasing (decreasing the function value), and horizontal price movement (the function value remains unchanged).

Axiom 2: The closing price line of financial trading products must be a nonlinear derivative time sequence function.

Explanation: From the global closing price lines of oil, gold, securities and futures, since the prices are fluctuating, they are obviously nonlinear or wavy, and because the independent variable is time, axiom 2 is established.

Axiom 3: The closing price line of bull (or bear) shares must be waveform increasing function (or waveform decreasing function).
2.3. Calculation and Market Interpretation

From the quarterly closing line of Shenzhen Stock Index (see Figure 3), we can know that the quarterly closing line of Shenzhen composite index is a waveform increasing function [5]. The following two types of wave increasing function (bull market) and waveform decreasing function (bear market) are used to analyze the market connotation of mathematical results.
Figure 3. Quarterly Closing Line of Shenzhen Composite Index

Table 1. System detection settings.

Time	Function	LL extreme value point
1996.03~2001.06	$y = 96.92 - 0.205x - 0.005x^2 + 0.0000731x^3$	60.94/ Minimum point
	$y = -4.932 + 0.379x + 0.006x^2 - 0.0001x^3$	51.78/ Maximum point
2001.06	$y = -25.467 + 1.955x + 0.029x^2 - 0.001x^3$	52.65/ Maximum point
	$y = -269.983 + 24.091x - 0.38x^2 + 0.002x^3$	/ Monotone increasing function
2001.07~2005.06	$y = 57.359 - 2.053x + 0.025x^2 - 0.0000435x^3$	41.51/ Minimum point
	$y = 0.823 - 0.262x + 0.003x^2$	43.67/ Minimum point
	$y = 2.952 - 1.011x + 0.011x^2$	45.95/ Minimum point
	$y = -27.526 + 10.364x - 0.11x^2$	47.11/ Maximum point
2005.07~2007.09	$y = 77.562 + 1.543x - 0.038x^2 + 0.001x^3$	22.25/ Maximum point
	$y = 1007.015 - 115.642x + 3.816x^2 - 0.033x^3$	56.36/ Maximum point
	$y = -24.044 - 30.593x + 1.915x^2 - 0.019x^3$	57.92/ Maximum point
	$y = -1797.012 + 115.605x - 1.508x^2 + 0.007x^3$	Monotone increasing function
2007.09	$y = 48.148 - 1.627x + 0.022x^2$	36.98/ Minimum point
	$y = 16.93 - 1.425x + 0.014x^2$	50.89/ Minimum point
	$y = 19.752 - 1.663x + 0.017x^2$	48.91/ Minimum point
	$y = -532.309 + 53.477x - 0.536x^2$	49.89/ Minimum point
	$y = 45.676 + 1.148x - 0.01x^2$	57.4/ Maximum point
2009.01~2010.12	$y = -26.751 + 0.248x + 0.061x^2 - 0.001x^3$	42.6/ Maximum point
	$y = -185.848 + 10.344x - 0.099x^2$	52.24/ Maximum point
	$y = -1162.641 + 76.493x - 0.643x^2$	59.48/ Maximum point
	$y = 73.089 - 2.362x - 0.026x^2$	45.42/ Minimum point
2011.01~2012.09	$y = 15.936 - 1.205x + 0.012x^4$	50.21/ Minimum point
	$y = 26.57 - 2.009x + 0.02x^2$	50.23/ Minimum point
	$y = -564.248 + 71.325x - 0.734x^2$	48.59/ Maximum point

Table 2. Mathematical Results of Waveform Increasing Function (Bull Market)

Time	Market growth (%)	Maximum winning point	Maximum annual rate of return	Maximum point of net profit rate	Maximum value point of annual transaction times
1996.03~2001.06	458.43	60.94 (Minimum point)	51.78	52.65	Monotone increasing function
2005.07~2007.09	487.83	22.25	56.36	57.92	Monotone increasing function
2009.01~2010.12	133.30	57.40	42.60	52.24	59.48
It can be seen from the results mentioned above that in the bull market, the average value of the maximum value of the winning rate is: 31.30; the average value of the maximum value of the annual return rate is: 50.00; the average value of the maximum value of the net profit rate is: 51.23; the average value of the maximum value of the annual transaction times is: 57.14 or the function of the annual transaction times is a monotonic increasing function. The market implication is that when the RSI is above 31.30, the winning rate of buying stock shares is the highest (the loss is the least); when the RSI is above 50.00, the annual return rate of buying stock shares is the largest (making the most money); when the RSI rises over 51.23, the annual net profit rate of buying stock shares is the largest (making the fastest money). When the RSI exceeds 57.14 or the value of RSI increases higher and higher, the success rate of the transaction increases. At this time, the stock market is a strong market, and the value of RSI is always in the high range.

Table 3. Mathematical Results of Waveform Decreasing Function (Bear Market)

Time	Market growth (%)	Maximum winning point	Maximum annual rate of return	Maximum point of net profit rate	Maximum value point of annual transaction times
2001.07~2005.06	-60.39	41.51 (Minimum point)	43.67 (Minimum point)	45.95 (Minimum point)	47.11
2007.10~2008.12	-63.90	36.98 (Minimum point)	50.89 (Minimum point)	48.91 (Minimum point)	49.89
2011.01~2012.09	-33.86	45.42 (Minimum point)	50.21 (Minimum point)	50.23 (Minimum point)	48.59

Judging from the results mentioned above, we can see that in the bear market, the winning rate, annual return rate and net profit rate have no maximum point, only a minimum point. The average value of the minimum winning rate point is 40.20; the average value of the minimum point of the annual return rate is 46.69; the average value of the minimum point of the net profit rate is 47.78; the average value of the maximum point of the annual transaction times is 45.79.

Taking 2007.10 - 2008.12 as an example, the regression function images of winning rate, annual return rate, net profit rate and annual transaction times are listed as follows (Figure 4, figure 5, Figure 6, Figure 7).

Figure 4. The regression function of winning rate
It can be seen from Figure 4 that when the winning rate is a decreasing function of RSI, and its market connotation is that the larger the value of RSI, the less the times of investment profits; when , the winning rate is the increasing function of RSI, and its market meaning is that the greater the value of RSI, the more times of investment profits.
It can be seen from Figure 5 and Figure 6 that when, the annual return rate and net profit rate are the decreasing function of RSI and are negative numbers. The market connotation is that the larger the value of RSI is, the smaller the annual return rate and net profit rate of investment are, the greater the loss is. When the annual rate of return and net profit rate are the increasing functions of RSI, and they are also negative numbers. The market connotation is that the larger the value of RSI, the greater the annual return and net profit rate of investment, the smaller the loss is but still belongs to the loss.

It can be seen from Figure 7 that the maximum number of transactions per year is 46.24, which means that the number of successful transactions is the highest. When the number of transactions per year is a decreasing function of RSI, and its market connotation is that the larger the value of RSI, the less times of successful transactions are.

In conclusion, from the perspective of investment profit, RSI expert system can not guide investors to make profits in bear market.

2.4. Visualization results of RSI expert system
If priority is given to winning rate, optimize source code:

\[
\begin{align*}
N: & \quad 2.00 \ 50.00 \ 14.00 \ 3.00 \\
LL: & \quad 0.00 \ 70.00 \ 30.00 \ 5.00 \\
LH: & \quad 65.00 \ 100.00 \ 80.00 \ 5.00 \\
LC:=& \text{REF(CLOSE,1)}; \\
WRSI:=& \text{SMA(MAX(CLOSE-LC,0),N,1)/SMA(ABS(CLOSE-LC),N,1)*100}; \\
ENTERLONG:=& \text{CROSS(WRSI,LL)}; \\
EXITLONG:=& \text{CROSS(LH,WRSI)};
\end{align*}
\]

If priority is given to annual return rate and net profit rat, optimize source code:

\[
\begin{align*}
N: & \quad 2.00 \ 50.00 \ 14.00 \ 3.00 \\
LL: & \quad 0.00 \ 70.00 \ 30.00 \ 5.00 \\
LH: & \quad 65.00 \ 100.00 \ 80.00 \ 5.00 \\
LC:=& \text{REF(CLOSE,1)}; \\
WRSI:=& \text{SMA(MAX(CLOSE-LC,0),N,1)/SMA(ABS(CLOSE-LC),N,1)*100}; \\
ENTERLONG:=& \text{CROSS(WRSI,LL)}; \\
EXITLONG:=& \text{CROSS(LH,WRSI)};
\end{align*}
\]

The following Figures 8 and 9 show the images of RSI indicators before and after the same stock optimization, and the profit results of Figure 9 are obviously better than those of Figure 8.
Figure 8. RSI indicator before optimization

Figure 9. RSI indicator after optimization
Table 4: Sample Data of Waveform Increasing Functioned Scheme comparing.

Stock code	Buying conditions	Selling conditions	Annual return	Winning rate	Net profit rate	Transaction times	Yield in the observation period
002353	RSI rises over 55	RSI drops below 65	64.62%	87.50%	80.78%	6.40	64.60%
600111	RSI rises over 30	RSI drops below 72	44.11%	100.00%	55.14%	1.60	128.3%
002176	RSI rises over 50	RSI drops below 70	66.86%	100.00%	83.57%	3.20	136%
600160	RSI rises over 50	RSI drops below 70	94.50%	100.00%	118.12%	3.20	211.6%

Table 5: Sample data of waveform subtraction function

Stock code	Buying conditions	Selling conditions	Annual return	Winning rate	Net profit rate	Transaction times	Yield in the observation period
002351	RSI rises over 30	RSI drops below 64	30.90%	75.00%	38.63%	3.20	-33.19%
002362	RSI rises over 25	RSI drops below 57	31.86%	75.00%	39.82%	3.20	-70.62%
002379	RSI rises over 20	RSI drops below 60	33.76%	100.00%	42.19%	2.40	-46.11%
002387	RSI rises over 50	RSI drops below 60	7.21%	66.67%	9.01%	2.40	-18.92%

Table 6: Sample data of waveform function

Waveform function	Average annual return	Average winning rate	Average net profit rate
Waveform increasing function	67.52%	96.88%	84.40%
Waveform decreasing function	22.27%	83.33%	26.03%

The results mentioned above indicate that: for individual stock, whether it’s the waveform increasing function or waveform decreasing function, the RSI indicator can outperform the market with minimal risk.

3. Conclusion

The paper defines the waveform function and its corresponding concepts and axioms. The method of mathematical function theory is used to find the extreme value of stock price function for 24 known regression functions. In three different periods, we get that the Shanghai stock index has increased by 458.43%, 487.83% and 133.30% respectively. The method of mathematical extreme value is applied to optimize the expert RSI trading system, and the source code of the optimization formula is written to provide a graphical and intuitive tool for investors. The average annual return, average winning rate and average net profit rate of waveform increasing function samples are 67.52%, 96.88% and 84.40%, respectively. The average annual return, average winning rate and average net profit rate of waveform decreasing function samples are 22.27%, 83.33% and 26.03%, respectively. The optimization system provides an intuitive and quick tool for investors.
Acknowledgements
This research work was supported by Guangdong Higher Education Teaching Revolution Project: Experiencing Teaching and Mode Design of Cultivation of Internet Finance Talents under the Background of Financial Science Technology, project number: 2018SJJXGG01; Guangzhou College of Commerce Higher Education Teaching Revolution Project: Teaching Reform and Practice of Securities Investment under the Cultivation Method of Applied Talents, project number: 2018XJJXGG01. Foundation projects: Guangdong Undergraduate Higher Education Teaching Quality Engineering project: “Guangzhou College of Commerce -Applied Training Base of Mobile Commerce and E-commerce Logistics, project number: SJJD201501”; Guangdong College Characteristic Innovative Project (humanities and social sciences category): “Virtual Reality Experimental Teaching Center of Guangzhou College of Commerce”, project number: 2015WTSCX114.

References
[1] Yao Xiaogui, The economic significance of derivative and its application in profit maximization. Journal of Jiamusi Vocational Institute. 206 (2020) 45-47W. Strunk Jr., E.B. White, The Elements of Style, third ed., Macmillan, New York, 1979.
[2] Chen Yu, The method of finding the extreme value of function and its application in economic management. Education Teaching Forum. 27 (2016) 199-200.
[3] Shan Mengdan On the application of function extreme value in economy. The Farmers Consultant. 242 (2019) 227-228.
[4] Qi Song. Several business models in extreme value application, Business Information 201 (2012) 184-184.
[5] P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6,231,666. (2001).
[6] Pin Wang, Investment Decision of RSI Based on Stock Market of Small Amplitude. Journal of Quantitative Economics. Vol.29 No.1 (2012) 25-29.