Medicinal plants for gingivitis: a review of clinical trials

Hannaneh Safiaghdam 1, 2, Vahideh Oveisii 3, Roodabeh Bahramsoltani 4, Mohammad Hosein Farzaei 5, 6, Roja Rahimi 4*

1 Student Research Committee, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
3 Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
4 Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
5 Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
6 Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

ABSTRACT

Objective(s): Periodontal diseases are among prevalent oral health problems which may ultimately lead to severe complications in oral cavity. Herbal products can be designed as single or multicomponent preparations for better oral health. This study aims to review current clinical trials on the effectiveness of herbal products in gingivitis.

Materials and Methods: Electronic databases, including PubMed, Scopus, ScienceDirect and Cochrane library were searched with the keywords “gingivitis” in the title/abstract and “plant/extract/herb” in the whole text for clinical trials on herbal treatments for gingivitis. Data were collected from 2000 until January 2018. Only papers with English full-texts were included in our study.

Results: Herbal medicines in the form of dentifrice, mouth rinse, gel, and gum were assessed in gingivitis via specific indices including plaque index, bleeding index, microbial count, and biomarkers of inflammation. Pomegranate, aloe, green tea, and miswak have a large body of evidence supporting their effectiveness in gingivitis. They could act via several mechanisms such as decrease in gingival inflammation and bleeding, inhibition of dental plaque formation, and improvement in different indices of oral hygiene. Some polyherbal formulations such as triphala were also significantly effective in managing gingivitis complications.

Conclusion: Our study supports the efficacy and safety of several medicinal plants for gingivitis; however, some plants do not have enough evidence due to the few number of clinical trials. Thus, future studies are mandatory for further confirmation of the efficacy of these medicinal plants.

Introduction

Periodontal diseases, including gingivitis and periodontitis, are amongst the prevalent oral health problems which may ultimately lead to severe conditions in oral cavity (1). Gingivitis is the inflammation of gingiva without apical migration of junctional epithelium which, unless treated, will lead to periodontitis in susceptible patients (1, 2). Gingivitis has a high prevalence among societies. In an epidemiological study in American adults, nearly 55.7% of subjects had a GI index (Löe-Silness Gingivitis Index) higher than 1 (3). Various etiological factors have been introduced regarding periodontal diseases since it is considered a multifactorial disease (4). Biofilm accumulation and pathogens are the key contributors; however, other risk factors can be categorized as modifiable factors such as smoking, obesity, stress, diabetes mellitus, osteoporosis, and Vitamin D and calcium deficiency, as well as non-modifiable factors like genetic polymorphisms (5). It has been shown that there is a negative correlation between gingivitis and oral-health related quality of life (6).

Mechanical removal of plaque via tooth brush and use of dental floss has been considered as an effective method in controlling gingivitis (7). Nevertheless, adequate time of brushing, efficient cleaning of all tooth surfaces and regular oral hygiene is hard to achieve in every individual due to variations in oral health practices which accounts for high prevalence of gingivitis (8). Therefore, additional approaches such as dentifrices and mouthwashes containing chemical or herbal agents are suggested (9). American Dental Association has approved chlorhexidine (CHX) and essential oils (EO) as antiseptics in mouthwashes (10); though, there have been reports of hypersensitivity, stain formation on teeth surface, oral mucosa irritation, and altered taste with chlorhexidine (10, 11).

Phytotherapy in oral health has received attention lately and a plethora of clinical trials have been conducted in this area (12-16). Herbs are known to have anti-inflammatory, antimicrobial and antioxidative effects (17). Herbal products in the forms of dentifrices and mouth rinses can be based on a single natural component, or a mixture of several medicinal plants (18). The aim of this study is to comprehensively review literature and provide an overview upon effectiveness, safety and availability of herbal products for gingivitis.

*Corresponding author: Roja Rahimi. Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Tel: +98-21-88990835; Email: rojarahimi@gmail.com
Materials and Methods

Electronic databases, including PubMed, Scopus, ScienceDirect and Cochrane library were searched for clinical trials on herbal treatments for gingivitis. The following keywords were used: Gingivitis (title/abstract) AND plant/extract/herb (all fields). We searched for articles in English from 2000 until January 2018 and checked their reference list for additional relevant studies. A total of 1998 articles were collected. Total of 883 duplicate results were excluded. Abstracts and titles were screened and 898 articles were excluded as they were in vitro studies or investigating oral diseases other than gingivitis. Studies on mixtures of chemical and herbal components were also excluded because the pharmacological activity could not be completely attributed to the herbal component. The number of 34 articles were excluded because they were reviews. Nine articles were excluded since the full-texts were not in English. A total of 60 relevant articles were published before 2000 which were excluded as we intend to focus on recent trends. Full-texts for the remainder were obtained. Ten articles were excluded as they were about non-herbal materials (animal and fungal origin).

The included studies were screened for scientific names of herbal agents, their concentrations and types of preparation, duration of study, tests and indices used to evaluate the outcome and characteristics of subjects. Jadad score was used to compare the methodology of the included articles (19). Outcomes were compared between the herbal component and positive/placebo controls. In case of before-and-after studies, baseline and final records were compared. The arrows (↑ and ↓) show increase and decrease in the specified parameter, respectively.

Results

Single herbal preparations

Aloe vera (Aloe)

Aloe vera (L.) Burm. f. (synonym: Aloe barbadensis) or Aloe from the family Asphodelaceae (Liliaceae) (20) is a perennial plant which originates from South Africa, but has also been cultivated in dry subtropical and tropical regions, such as the southern USA (21, 22).

Potentially active compounds of the leaves include water- and fat-soluble vitamins, simple/complex polysaccharides, minerals, organic acids, and phenolic compounds (22).

In a double-blind, randomized clinical study on 45 subjects, daily rinse with 15 ml of aloe solution significantly decreased Gingival index (GI) and Sulcus bleeding index (SBI) after three months. GI describes the severity of gingivitis (23); while SBI is an index of gingival inflammation in which bleeding is measured from four gingival units (24). The reduction was more pronounced when scaling and root planning was added to this treatment (25). Another study also demonstrated that aloe can be used as an adjunct to scaling to improve clinical parameters such as PI, GI and bleeding on probing (BOP) (26). Plaque index (PI), developed by Silness and Loe in 1964, assesses the thickness of the plaque in the margin of the tooth closest to gums (23). BOP is the earliest clinical symptom of gingivitis and a predictor of periodontal stability described by Lang et al (27). In another study on 120 subjects, aloe 100% solution consumed for 7 days was effective in reducing PI, bleeding index (BI), and modified gingival index (MGI), a score introduced by Lobene in 1985 to assess the severity of gingivitis by non-invasive approaches (28); however, the effectiveness was less than chlorhexidine 2% (CHX) (29). In a clinical trial on 30 subjects, aloe dentifrice showed an efficacy similar to chlorhexidine 2% for 30 days (30). Same results were obtained in a study on 345 subjects who were advised to rinse with aloe and CHX for 30 days (31). In another controlled study, aloe dentifrice was proved equally effective as a control commercial product (Sensodyne) in improving GI and PI indices (32). By contrast, the effect of aloe mouth rinse on PI and GI was compared with CHX and chlorhexidine in a study for 15 days in which aloe had a significantly lower efficacy (33). The obtained result may be due to the shorter treatment period in comparison to previous studies. Other parameters such as Quigley-Hein plaque index (QHI) a modification of PI that evaluates the plaque revealed on the buccal and lingual non-restored surfaces of the teeth (34) and microbial count was significantly reduced in a study on 90 subjects with both aloe and a triclosan containing fluoride dentifrice compared to placebo (35).

Azadirachta indica (Neem)

Azadirachta indica A. Juss or Neem from the family Meliaceae is a tree which is mainly cultivated in the Indian subcontinent (36). The main active components of the plant with important antibacterial activity are nimbin, nimbinin, and azadirachtin (37).

In a randomized clinical trial on 30 subjects, neem mouthwash was compared to Camellia sinensis (tea) and CHX mouthwash. Both herbal extracts improved GI, PI, OHIS (a simplified version of the OHI which combines the Debris Index and the Calculus Index on 6 tooth surfaces) (38) and pH level better than CHX; however, green tea outperformed neem in PI index (39). In another study, rinsing with neem and CHX mouthwash reduced PI, SBI and GI indices after 4 weeks with no significant difference between the two agents (40). Sharma et al. compared neem mouthwash with mango and CHX. Neem and CHX had similar results in reducing PI and GI but CHX had a more sustained effect after one month (41). Another parameter used to evaluate the effect of neem was interleukin-2 (IL-2) and interferon-γ (IFN-γ) levels. Results showed that the reduction of PI, GI, and IL-2 and IFN-γ level with CHX, essential oil, and povidone iodine is statistically more significant than neem (42).

Calendula officinalis (Marigold)

Calendula officinalis L. or marigold from the family Asteraceae (Compositae) is a plant native to Central and Southern Europe, Western Asia and the US, but it is widely cultivated as an ornamental plant in other parts of the world. Whole plant contains terpenoids, quinones, flavonoids, coumarine, volatile oil, and carotenoids (43, 44).

A study involving 240 subjects showed that marigold mouthwash can significantly improve GI, PI, SBI and OHIS indices after 3 months of treatment (45). In
another clinical trial without a control group, marigold dentifrice reduced GI, PI and BOP in 40 patients with stabilized gingivitis (46).

Camellia sinensis (Green tea)

Camellia sinensis (L.) Kuntze or tea from the family Theaceae is an evergreen plant originating from China which later spread to other parts of the world. The major chemical components of tea are polyphenols like catechins and flavonoids, as well as methylxanthine alkaloids including caffeine, theobromine, and theophylline. Based on the process, several types of tea are produced amongst which the most popular ones are green tea, as the unfermented type which mostly contains catechin derivatives, and black tea, with the highest degree of fermentation in which the major polyphenols are theaflavins (47).

In a clinical study, green tea improved GI, PI, OHIS and pH level better than CHX or neem (39). PI was equally improved using either green tea or CHX mouthwash in a clinical trial on 30 subjects (40). PI and GI indices were decreased in 110 subjects after using green tea mouthwash for a month (49). Hydroxypropylcellulose strips were used as a sustained release delivery system in a clinical trial on 6 subjects with advanced periodontitis. Combination of green tea and scaling could reduce pocket probing depth (PPD, the distance from the free gingival margin to the bottom of the pocket or gingival sulcus) (50) and peptidase activity after 8 weeks. Green tea also showed in vitro bactericidal activity against Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, and black-pigmented Gram-negative anaerobic rods (51). However, in a study on subjects with chronic gingivitis, green tea had no significant effect on PI, GI and papillary bleeding index (PBI, a score based on sweeping a probe in the sulcus from the line angle to the interproximal contact (52)) (53). Chew candies containing green tea were also effective in reducing SBI and approximal plaque index (API, another periodontal measure defined to further encourage oral hygiene among patients (54)) compared to placebo (55). Green tea gel also improved periodontal health in 49 patients with chronic gingivitis according to GI and PBI parameters compared to placebo control. GI reduction was more pronounced in CHX while PBI was more reduced with green tea; however, plaque scoring system (PSS, modified form of PI) was not improved by the herbal gel (56). Green tea mouthwash performed equally well compared to CHX according to QHI and GI indices as well tooth and tongue stain parameters. Test treatment improved GBI more than CHX (57).

Curcuma longa (Turmeric)

Curcuma longa L. or turmeric from the family Zingiberaceae is a plant native to tropical and subtropical climates, widely cultivated in Asian countries including China and India (58). The main components present in the rhizome are curcuminoids (curcumin, methoxycurcumin, and bisdemethoxycurcumin), as well as the essential oil compounds including turmerones (59, 60).

In a clinical trial, curcumin gel was compared to CHX and a combination of CHX and metronidazole gels. Curcumin was more efficient in reducing PI, MGI, BOP, PPD and IL-1β and CCL28 levels in gingival crevicular fluid (61). In another study, curcumin mouthwash reduced GI and total microbial count to the same level as CHX, and QHI less than CHX (62). Also, in 10 subjects with severe gingivitis, curcumin gel reduced PBI and GI after 3 weeks (63). A combination of turmeric and eugenol resulted in same PI, GI and BAPNA (a method to analyze trypsin like activity of “red” complex microorganisms) values as CHX mouthwash (64).

Lippia sidoides (pepper-rosmarin)

Lippia sidoides Cham. or pepper-rosmarin from the family Verbenaceae is a plant which is distributed mostly in Brazil. The leaves contain essential oil with limonene, β-caryophyllene, p-cymene, camphor, linalool, α-pinene and thymol as major components (65).

In a double-blind, placebo-controlled clinical study in 22 subjects, pepper-rosmarin gel failed to reduce GBI or PI in comparison to control; however, GI was significantly improved (66). In another study, PI and GBI scores were improved after rinsing with either pepper-rosmarin or CHX gel (15). Effect of pepper-rosmarin mouthwash on PI, GI and GBI indices were assessed in a study involving 55 subjects which showed a similar efficacy to CHX. Salivary *Streptococcus mutans* count was also reduced with both treatments (67, 68).

Magnolia officinalis (Magnolia)

Magnolia officinalis L. or magnolia is an endangered deciduous tree from the family Magnoliaceae. Due to the medicinal importance, the tree has been over-harvested to obtain its valuable bark. Magnolol and honokiol with lignan structure are the major phenolic constituents of *M. officinalis* bark (69, 70).

In a study on 94 subjects, magnolia mouthwash significantly reduced QHI and GI compared to placebo (16). Magnolia and xylitol chewing gum also improved plaque pH, BOP and reduced salivary *Streptococcus mutans* count after 30 days of treatment (71).

Matricaria chamomilla (Chamomile)

Matricaria chamomilla L. from the family Asteraceae is an annual plant native to eastern and southern parts of Europe; but is also cultivated in several other parts of the world. Numerous phytochemical constituents have been identified in chamomile flower amongst which the most important ones are apigenin, α-bisabolol and cyclic ethers, umbelliferone, and chamazulene (72).

A mouthwash prepared with chamomile extract was as efficient as CHX in reducing visible plaque index (VPI, an index for plaque accumulation and oral hygiene (73)) and GBI (74). Also, in another trial, chamomile mouthwash was compared to pomegranate and miswak mouthwashes in which all herbal treatments could significantly reduce PI and BOP (75).

Ocimum spp. (Basil)

Ocimum spp. or basil belongs to plant family Lamiaceae (Labiatae). The genus *Ocimum* has around 30 species native to Africa, Asia, and tropical parts of South America (Brazil). The volatile oil of the leaves contains eugenol and methyl eugenol, carvacrol and a sesquiterpene hydrocarbon, carophyllene. Fresh leaves and stem extract yield some phenolic compounds such
as circimaritin, cirsimaritin, isothymusin, rosmarinic acid and apigenin which represented antioxidant activity (76, 77).

Ocimum grattissimum reduced GBI and PI to same levels as CHX after 3 months in 30 subjects with gingivitis (78). *Ocimum sanctum* also reduced GI and PI to same levels as CHX after one month of treatment in 108 subjects (79).

Punica granatum (Pomegranate)

Punica granatum L. or pomegranate from the family Lythraceae, is a tree native to Iran, but is now cultivated in some other countries. Both fruit peel and root cortex are used as medicinal parts which contain ellagic acid, ellagitannins (including punicalagins), punicic acid, flavonoids, anthocyanidins, anthocyanins, and estrogenic flavonols and flavonoids as well as alkaid like pelletierine (80-82).

In a short-term study, pomegranate mouthwash enhanced GI index after 4 days better than CHX (83). The effect of pomegranate mouthwash on gingivitis was assessed in a clinical study considering total saliva protein (which correlates with amount of plaque forming bacteria), activity level of aspartate aminotransferase (an indicator of cell injury), α-glucosidase activity (a sucrose degrading enzyme), activity level of the antioxidant enzyme ceruloplasmin, and radical scavenging capacity. All the aforementioned parameters were significantly improved after 4 weeks of treatment (84).

In another study, pomegranate mouthwash decreased the streptococci count of saliva, but failed to reduce PI and GBI (though to a lesser extent than CHX) (85). In a trial by Salgado et al., pomegranate gel showed no significant effect on GBI and PI, either (86). By contrast, pomegranate rinse in patients with diabetes mellitus and gingivitis could reduce GBI, PPD, PI and MGI with an efficacy equal to CHX (87). In addition, pomegranate gel accompanied by mechanical debridement reduced PI, GI, PBI and gram-negative bacilli and cocci count (88). Also, pomegranate mouthwash showed similar efficacy to Persica mouthwash (with *Salvadora persica* as the main ingredient) or Matrica (containing chamomile as the chief active component) regarding PI and BOP indices (75).

Salvadora persica (Miswak)

Salvadora persica L. or Miswak from the family Salvadoreaceae is a medicinal plant with a wide geographic distribution is Asia and Africa. The plant is traditionally used as a natural toothbrush to improve oral health in the native areas. The major components from the essential oil of the tree stem are 1,8-cineole (eucalyptol), β-pinene, α-caryophyllene, 9-epi-(E)-caryophyllene, and β-sitosterol (89, 90).

In a clinical trial, miswak chewing gum reduced GI and SBI compared to placebo; however, it had no effect on PI. It should be mentioned that several patients complained about the unpleasant taste of the preparation (91). Khalessi et al. (2004) also failed to detect a significant improvement in PI by miswak mouthwash; though, GBI and salivary concentrations of *S. mutans* were successfully reduced (92). A dentifrice containing miswak showed effectiveness similar to a commercial product (Parodontax) in reducing SBI and API (93). In another study, colony forming units of plaque samples were similar after using either Persica (a mouthwash containing miswak extract) or Listerine, but the efficacy was less than CHX (94). In another study QHI and GI indices were applied to compare the use of miswak to regular toothbrush. Best results were obtained when both miswak and toothbrush were used (95). Inactivated (boiled) miswak sticks were compared to active sticks in a clinical trial which obtained same results for both preparations with regard to API, GI and sub-gingival microbiota (96).

Polyherbal preparations

Triphala

Triphala is a traditional multi-component herbal preparation containing three main ingredients, *Terminalia bellirica* (Gaertn.) Roxb., *Terminalia chebula* (Gaertn.) Retz., and *Phyllanthus emblica* L. (Synonym: *Embleica officinalis*). Triphala mouthwash showed an effectiveness similar to CHX according to PI, GI and *Streptococcus* count reduction rate; however, triphala had a more pronounced effect on *Lactobacillus* count (97). Triphala was also compared with CHX in another study on 120 hospitalized periodontal disease subjects and was equally effective in reducing PI and GI (98). Same results were obtained in another study where triphala and CHX were compared in reducing QHI and GI (99). In addition, *T. chebula* which is an ingredient of triphala was individually evaluated in two trials (Table 1). In a clinical trial, *T. chebula* mouthwash was able to neutralize salivary pH. It also decreased QHI and GI indices similarly to CHX without any taste alteration and discoloration (100). In another study in 60 subjects, *T. chebula* mouthwash reduced PI and GI and the effectiveness was equal to CHX (101).

| Table 1. Clinical trials on the use of single medicinal plants for the treatment of gingivitis |
|------------------|------------------|------------------|------------------|------------------|
| Plant scientific name | Type of preparation | Study design | Jadad score | Duration of study (day) | Outcomes | Reference |
| *Aloe arborescens* | Dentifrice | Randomized, double-blind, crossover controlled trial in 60 subjects with gingivitis-compared to regular toothpaste | 3 | 28 | ↓GI, QHI, BOP; better with test | 102 |
| *Aloe vera* | Dentifrice | Randomized clinical trial in 45 subjects-group 1 (scaling) / group 2 (scaling + A. vera) / group 3 (A. vera) | 3 | 42 | ↓PI, GI, PPD, PPI in all groups with best effect in group 2 compared with CHX & placebo | 26 |
| *Aloe vera* | Dentifrice | Randomized, placebo & positively controlled clinical trial in 90 subjects with chronic generalized gingivitis-compared with dentifrice containing fluoride + triclosan | 5 | 168 | ↓GI, QHI, microbial count same in both groups | 103 |
| *Aloe vera* | Mouthwash | Single-center, single-blind, controlled trial in 85 subjects - compared to CHX or chlorine dioxide | 3 | 15 | ↓PI, GI with better effect by CHX and chlorhexidine | 33 |
| *Aloe vera* 100% | Mouthwash | Randomized, double-blind, controlled study in 120 healthy subjects with experimental gingivitis-compared with CHX | 2 | 22 | ↓BOP, MGI, PI in both groups & better effect in PI & PI & CHX & placebo | 29 |
| *Aloe vera* 50% | Mouthwash | Controlled clinical trial in 45 subjects with plaque-induced gingivitis in comparison to scaling only | 2 | 90 | ↓BOP, better results with A. vera mouthwash + scaling & ↓BOP | 25 |
| *Aloe vera* 5% | Dentifrice | Randomized, double-blind, intra-individual & controlled clinical study in 15 subjects with gingivitis-compared with control dentifrice | 4 | 1.5 year | ↓GI, PI, same in both groups | 32 |

Safsighdam et al.

Iran J Basic Med Sci, Vol. 21, No. 10, Oct 2018
Continued Table 1

| Medicinal plants for gingivitis |
|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Aloe vera 50% | Dentifrice | Randomized, double-blind, parallel, clinical trial in 30 subjects - compared with fluoridated dentifrice as placebo | 4 | BI | Same in both groups | 20 | IPI | GI | Same in both groups |
| Aloe vera 99% | Mouthwash | Randomized, triple-blind, controlled trial in 345 subjects - compared with CHX | 5 | PI | GI same in both groups | 30 | IPI | GI | Same in both groups |
| Anadractha indica 0.1% Essential oil 0.01% | Mouthwash | Double-blind clinical trial in 80 subjects with gingivitis - compared with CHX and pseudoine indole | 5 | PI | GI same in both groups | 14 | IPI | IL-2 & IFN-y in all groups except A. indica | 12B, Q, BOP | Same in both groups |
| Anadractha indica 0.19% | Mouthwash | Randomized, double-blind, controlled trial in 45 subjects with plaque induced gingivitis - compared with CHX | 2 | PI | GI same in both groups | 28 | IPI | GI | Same in both groups |
| Anadractha indica 50% OR | Mouthwash | Clinical trial in 97 subjects with gingivitis - compared with CHX | 5 | 100% | Same in both groups | 21 | IPI | GI | Same in both groups |
| Mangifera indica 50% | | | | | | | | | |
| Berberis vulgaris 1% | Gel | Double-blind clinical trial in 45 subjects - compared with Colgate anti-plaque dentifrice | 1 | IPI | GI same in both groups | 21 | IPI | GI | Same in both groups |
| Benneillia serrata 0.1% & 0.2% | Gum | Randomized, double-blind, placebo-controlled trial in 75 subjects with moderate plaque induced gingivitis | 3 | PI | GI same in both groups | 14 | IPI | GI | Same in both groups |
| Calendula officinalis (1:3 concentration of tincture in water) | Mouthwash | Placebo-controlled, clinical trial in 240 subjects with gingivitis | 3 | 100% | Same in both groups | 180 | IPI | GI | Same in both groups |
| Calendula officinalis 2% | Dentifrice | Double-blind, clinical trial in 40 subjects with established gingivitis-compared with placebo | 4 | 28 | IPI, GI & BOP | 21 | IPI | GI | Same in both groups |
| Camellia sinensis 2% Sugar-free drapul | Mouthwash | Placebo-controlled, double-blind clinical trial in 47 subjects with plaque induced gingivitis | 3 | 28 | IPI, GI & BOP | 21 | IPI | GI | Same in both groups |
| Camellia sinensis 5% | Mouthwash | Clinical trial in 30 subjects - compared with CHX | 2 | 30 | IPI, GI, BOP, BI with no significant difference between extract A powder | 15 | IPI | GI | Same in both groups |
| Camellia sinensis (catechins) 0.25% | Mouthwash | Single-blind crossover clinical trial in 30 subjects - compared with CHX | 3 | 15 | IPI, GI, BOP, BI with no significant difference between extract A powder | 15 | IPI | GI | Same in both groups |
| Camellia sinensis (Green tea catechins) | Mouthwash | Hydroxy-propyl cellulose strips with advanced periodontitis - group 1 (scaling + tea) / group 2 (scaling + placebo) / group 3 (tea only) / group 4 (placebo) | 1 | 56 | IPI, GI, BOP, BI with no significant difference between extract A powder | 56 | IPI | GI | Same in both groups |
| Curcuma longa 0.5% OR Anadractha indica 2% | Mouthwash | Randomized, double-blind, clinical trial in 30 healthy subjects - compared with CHX | 5 | 21 | GI, GI, BOP, BI with no significant difference between extract A powder | 21 | IPI | GI | Same in both groups |
| Curcuma sinensis 2% | Mouthwash | Randomized, placebo-controlled clinical trial in 110 subjects with chronic generalized plaque-induced gingivitis - compared with CHX | 5 | 28 | GI, GI, BOP, BI with no significant difference between extract A powder | 28 | IPI | GI | Same in both groups |
| Cinnaunmum acylacnum 20% | Mouthwash | Single-blind, placebo-controlled, clinical trial in 50 subjects with chronic generalized plaque-induced gingivitis - compared with CHX | 1 | 35 | GI, GI, BOP, BI with no significant difference between extract A powder | 35 | IPI | GI | Same in both groups |
| Gaminez cere sp. 10% | Gel | Randomized placebo-controlled clinical trial in 23 subjects with experimental gingivitis | 5 | 21 | GI, GI, BOP, BI with no significant difference between extract A powder | 21 | IPI | GI | Same in both groups |
| Curcuma longa 10 mg/100 ml water | Mouthwash | Clinical trial in 100 subjects - compared with CHX | 3 | 21 | GI, GI, BOP, BI with no significant difference between extract A powder | 21 | IPI | GI | Same in both groups |
| Curcuma longa extract 1% | Gel | Uncontrolled pilot clinical trial in 10 subjects with severe gingivitis | 1 | 21 | GI, GI, BOP, BI with no significant difference between extract A powder | 21 | IPI | GI | Same in both groups |
| Curcuma sp. 0.1% + eugenol 0.01% | Mouthwash | Clinical trial in 60 subjects with mild to moderate gingivitis - compared with CHX | 0 | 21 | GI, GI, BOP, BI with no significant difference between extract A powder | 21 | IPI | GI | Same in both groups |
| Curcumin (from Curcuma longa) 10 mg/g | Gel | Randomized, double-blind clinical trial in 60 subjects - compared to CHX 10 mg & CHX-MTZ 10 mg | 5 | 60 | GI, GI, BOP, BI with no significant difference between extract A powder | 60 | IPI | GI | Same in both groups |
| Curcumin (from Curcuma longa) 1% | Gel | Randomized clinical trial in 30 subject with severe gingivitis - compared with curcumin + SRP treatment | 2 | 21 | GI, GI, BOP, BI with no significant difference between extract A powder | 21 | IPI | GI | Same in both groups |
| Curcumin (from Curcuma longa) 2% | Gel | Randomized clinical trial in 30 subject with severe gingivitis - compared with curcumin + SRP treatment | 2 | 21 | GI, GI, BOP, BI with no significant difference between extract A powder | 21 | IPI | GI | Same in both groups |
| Curcumin (from Curcuma longa) 0.25% | Gel | Randomized clinical trial in 30 subject with severe gingivitis - compared with curcumin + SRP treatment | 2 | 21 | GI, GI, BOP, BI with no significant difference between extract A powder | 21 | IPI | GI | Same in both groups |
Medicinal plants for gingivitis
Ixora coccinea
Eucalyptus globulus 0.6% & 0.8%
Eugenia uniflora 3%
Garcinia mangostana
Glycyrrhiza glabra 20%
Ilex verticillo 0.6%
Ilex crenata 2%
Lactuca sativa 200 mg nitrate
Lippia sidoides 1%
Lippia sidoides 1%
Lippia sidoides 10%
Macaya cordata 0.005% & *Prunella vulgaris* 0.5%
Magnolia officinalis (magnolol 0.10% + honokiol 0.07%)
Magnolia officinalis 0.3%
Mentha suaveolens 1%
Menthol 10 mg
S. alamosana 4%
S. alamosana 4%
Polyanthes insignis 1 mg/ml
Punica granatum
Punica granatum
Punica granatum 6.25%
Punica granatum 0.5%
Punica granatum 30%
Punica granatum 50-75 mg/ml

continued table
Continued Table 1

Preparations	Type of Study	Subject Characteristics	Duration	Inclusion Criteria	Exclusion Criteria	Efficacy Parameters	Conclusion
Salvadora persica 0.6%	Gum	Randomized, placebo-controlled clinical trial in 60 subjects with plaque induced moderate gingivitis	4 weeks	Either combined with BOP treatments or solely	No significant difference between groups	No significant difference in PI	(91)
Salvadora persica 15 drops in 15 ml of water	Mouthwash	Randomized, placebo-controlled clinical trial in 32 subjects with gingivitis-compared with CHX	5 days	No in vitro antibacterial effects	No significant change in PI	GI	(94)
Salvadora persica 15 drops into 15 ml of water	Mouthwash	Double-blind, placebo-controlled, crossover trial in 28 subjects	7 days	No significant change in PI	No significant change in PI	GI	(92)
Salvadora persica OB	Dentifrice	Controlled clinical trial in 66 non-smoking subjects compared with Collgate total	6 weeks	(SAH) Gutierrez et al. 2013	No significant difference in all groups	GI	(93)
Salvadora persica (490 mg) + Aloe vera	Mouthwash	Randomized, double-blind controlled clinical trial in 76 patients under mechanical ventilation in ICU ward-compared with CHX	14 days	GI	Better in test	GI	(15)
Satureja hortensis 0.3125%	Mouthwash	Randomized, controlled, triple blind, phase II clinical trial in 27 subjects with plaque induced gingivitis-compared with CHX	7 days	LGBH (Amount of biofilm) only in CHX	LGBH same in both groups	GI	(10)
Satureja hortensis 0.5%	Dentifrice	Randomized, double-blind clinical trial in 40 subjects with experimental gingivitis-compared with fluoride toothpaste	7 days	GI	Same in both groups	GI	(131)
Syringus super 80 mg/ml	Mouthwash	Single blind, crossover clinical study in 30 subjects-compared with distilled water	14 days	No significant difference in PI, Streptococcus mutans count in plaque & salivary total saliva	No significant difference in PI, Streptococcus mutans count in plaque & salivary total saliva	GI	(132)
Terminalia chebula 10%	Mouthwash	Randomized, double-blind, controlled study in 78 subjects with gingivitis-compared with CHX	7 days	No significant change in PI, Streptococcus mutans count in plaque & salivary total saliva	No significant change in PI, Streptococcus mutans count in plaque & salivary total saliva	GI	(133)
Vaccinium myrtillus (250 g (2) or 500 g (2))	Daily oral consumption	Placebo-controlled clinical trial in 24 subjects with gingivitis-compared with standard care (dabbling)	14 days	Same in both groups	Same in both groups	LGBH in gingival crevicular fluid only in group 2	(134)

Gl: Lee & Silness gingival index; **SBI:** Muhlemann & Son’s Sukus bleeding index; **PI:** plaque index; **PBI:** papillary bleeding index; **PHPI:** Patient Hygiene Performance Index; **CPITN:** community periodontal index of treatment needs; **BOP:** Bleeding on probing; **GBI:** Gingival Bleeding Index; **VF%:** biofilm vitality; **API:** approximate plaque index; **OHIS:** simplified Greene & Vermillion’s Oral Hygiene Index; **BAPNA:** The N-benzoyl-l-arginine-p-nitroanilide (BAPNA) assay used to analyze trypsin like activity of “red” complex microorganisms; **CHX:** chlorhexidine; **QHI:** Quigley & Hein plaque index; **MGI:** modified gingival index; **PFD:** probing pocket depth; **MMP-8:** matrix metalloproteinase-8; **BA:** biofilm accumulation; **SAh:** anaerobic (SAh) & aerobic (SAh) bacterial counts; **NPI:** Navy Plaque Index; **PPI:** planimetric plaque index; **VFPI:** visible plaque index; **PFBI:** the periodontal probe bleeding index of Ainamo & Bay; **PSS:** plaque staining score; **SBI:** sulcus bleeding index; **PSS:** plaque staining score; **LB:** Lobene index; **Parodontax:** chamomile, echinacea, sage, rhatany, myrrh & peppermint oil; **SRP:** Scaling and Root Planing; **PHP:** patient hygiene performance; **PMA:** Proximal Marginal and attached gingival index; **SNL:** Salivary Nitrate Level; **MTZ:** metronidazole; **IFN:** interferon; **IL:** interleukin; **VEGF:** vascular endothelial growth factor.

Miscellaneous polyherbal preparations

A transmucosal herbal periodontal patch containing a mixture of herbs including *Centella asiatica* (gotu kola), *Echinacea purpurea*, and *Sambucus nigra* (elderberry) was clinically effective in reducing GI and gingival crevicular fluid β-glucuronidase (BG) enzymatic activity (135). The GCF BG level reflects the quantity of polymorphonuclear leukocytes found in the sulcus and may be a more accurate assessment of inflammation found in the periodontal sulcus than subjective clinical signs of inflammation (136). HM-302 is a mixture of the same herbs used to treat gingivitis in a study (Table 2). Its effect was compared to Listerine, cetylpyridinium chloride or water. PI, GI and BOP deteriorated in all groups except HM-302 (137).

A Sri-Lanka polyherbal preparation containing *Acacia chundra*, *Adhatoda vasica*, *Mimusops elengi*, *Piper longum*, *Pongamia pinnata*, *Quercus infectoria*, and *Zingiber officinale* significantly improved QHI, PPD, BOP indices, as well as the salivary aerobic and non-aerobic bacterial counts (138). In another study in 60 subjects, same preparation reduced GI, BOP and salivary aerobic and non-aerobic bacterial counts (139).

Another polyherbal preparation containing hydroalcoholic extracts of *Zingiber officinale*, *Rosmarinus officinalis*, and *Calendula officinalis* was evaluated in 60 subjects. MGI, GBI and QHI indices were improved to the same levels as CHX (9).
Medicinal plants for gingivitis

Safiaghdam et al.

Table 2. Clinical trials on the effectiveness of polyherbal formulations for the treatment of gingivitis

Table 2. Clinical trials on the effectiveness of polyherbal formulations for the treatment of gingivitis
Arimedone oil
Essential oil mixture (thymol, eugenol and eucalyptus) lysterine
Parodontax
Polyherbal preparation
Polyherbal preparation
Polyherbal preparation
Polyherbal preparation
Polyherbal preparation
Polyherbal preparation
Polyherbal preparation
Polyherbal preparation
Triphala (P. emblica, T. belerica, and T. chebula) 10 g in 10 ml water
Triphala 0.6% (P. emblica, T. belerica, and T. chebula)
Triphala 10% (P. emblica, T. belerica, and T. chebula)

GI: Loe & Silness gingival index; **SBI:** Muhlemann & Son’s Sulcus bleeding index; **PI:** plaque index; **PBI:** papillary bleeding index; **CHX:** chlorhexidine; **QHI:** Quigley & Hein plaque index; **PPD:** probing pocket depth; **SANB:** anaerobic bacterial count; **CFU:** colony forming unit

Table 2: Medicinal plants for gingivitis

| Medicinal plants for gingivitis | Safiaghdam et al. |
|---|
| *Althaea officinalis* |
| *Salix alba* |
| *Malva sylvestris* |
| *Curcuma longa* |
| *Triphala* |
| *Menthol* |
| *Curcumin* |

Phytochemicals

Menthol

Menthol is a monoterpene which is found in different types of mint, as well as several other plants of the Lamiaceae family. The compound is widely used in food industries as a natural flavoring agent, and is also a main part of several oral health products like dentifrices, chewing gums, and mouthwashes (151). A solution of menthol showed less effectiveness in reducing PI, GI and GBI as compared to CHX in 30 subjects in a clinical trial (124).

Curcumin

Curcumin is a secondary metabolite with diarylheptanoid structure which is mainly extracted from the rhizome of turmeric (*Curcuma longa*) and has shown significant biological activities like antioxidant, anti-inflammatory, and cytoprotective effects (152). Curcumin massaged on gingiva in addition to SRP treatments significantly reduced GI, PI and SBI indices compared to baseline (111).
Discussion

Herbal elements are gaining attention as both preventive plaque control approaches and as adjunctive treatments. Among single herbal preparations, many studies have focused on Aloe vera (aloe), Punica granatum (pomegranate), Salvadora persica (miswak) and Camellia sinensis (tea). Polyherbal mixtures have also been studied regarding their effect on the reduction of microbial count and plaque index and other measures. Triphala, for instance is a mouth rinse composed of T. bellirica, T. chebula, and P. emblica which showed positive effects similar to that of CHX (97-99).

Plant secondary metabolites including menthol from mint species and curcumin from turmeric also showed considerable therapeutic activity for the management of gingivitis-induced inflammation, bleeding, and plaque formation (61, 111, 124).

There were a wide diversity of dosage forms and formulations in different studies (Figure 1). Mouthwashes and dentifrices were the most popular forms of administration (Table 1). Green tea has been administered as various dosage forms such as mouth rinse, candies and slow release local delivery systems (39, 51, 55). Some plants like eucalyptus (63), turmeric (64) and barberry (105) were formulated as gels which, considering the safety of the plant used, can be applied to the damaged areas and would be of great interest in children who might have poor degree of cooperation in using mouthwashes or dentifrices.

The main mechanisms by which herbal elements improve the condition of periodontium are described in Figure 1. Immediate bleeding is a result of inflammation in gummy tissues. A combination of host susceptibility and microbial accumulation in form of plaque culminates in inflammation. One of the main mechanisms of medicinal plant to control gingivitis is their anti-inflammatory activity. Some medicinal plants such as pomegranate, tea, and chamomile are rich sources of flavonoids and tannins which are potent anti-inflammatory and astringent phytochemicals and thus, can control both bleeding and inflammation. Aside from different bleeding and inflammation indices reduced during the studies (Table 1), some trials have measured the crevicular level of inflammation biomarkers which strongly support the anti-inflammatory activity of herbal drugs (61).

Another important effect is to control the microflora of oral cavity. Several studies have demonstrated the positive role of herbal extracts to reduce the bacterial count of oral pathogens and plaque formation (Table 1). Rinsing with herbal mouth washes or applying herbal dentifrices, as well as all other sorts of application, can show bactericidal effect and counteract bacterial metabolism (153, 154).

Also, some studies assessed the effect of a combination of herbal treatments along with conventional mechanical dental practices such as scaling (50) which showed a synergistic effect; suggesting that herbal products can be used as a complementary therapy to improve the effectiveness of conventional therapies (25).

Conclusion

Taken together, this paper supports the efficacy of several medicinal plants for the management of gingivitis based on the current clinical evidence; however available clinical data has several limitations such as short course of study, Small sample size, and lack of blinding which remains the effectiveness of some preparations to be unclear. Thus, future well-designed clinical studies are essential in case of several medicinal plants for their efficacy to be confirmed in gingivitis.

Conflicts of Interest

The authors declare that no conflict of interest exists.

References

1. Al-Mubarak S, Ciancio S, Baskaradoss JK. Epidemiology and diagnosis of periodontal diseases: recent advances and emerging trends. Int J Dentistry 2014; 2014: 953646.
2. Khalili J. Periodontal disease: an overview for medical practitioners. Lik Sprava 2008;(3-4): 10-21.
3. Li Y, Lee S, Hujool P, Su M, Zhang W, Kim J, et al. Prevalence and severity of gingivitis in American adults. Am J Dent 2010;23: 9-13.
4. Al Jehani YA. Risk factors of periodontal disease: review of the literature. Int J Dent 2014;(2014): 182513.
5. Genco RJ, Borgnakke WS. Risk factors for periodontal disease. Periodontol 2000 2013; 62: 59-94.
6. de Souza Barbosa T, Caviao MB, Mialhe FL. Gingivitis and oral health-related quality of life: a literature review. Braz DentSci 2015; 18: 7-16.
7. Sovinski J, Petrone DM, Wachs GN, Chaknis P, Kemp J, Sprosta AA, et al. Efficacy of three toothbrushes on established gingivitis and plaque. Am J Dent 2008;21: 339-345.
8. Zhu L, Petersen PE, Wang HY, BIAN JY, Zhang BX. Oral health knowledge, attitudes and behaviour of adults in China. Int Dent J 2005;55: 231-241.
9. Mahyari S, Mahyari B, Emami SA, Malaekheh-Nikouei B,
Medicinal plants for gingivitis

Safiaghdam et al.

Iran J Basic Med Sci, Vol. 21, No. 10, Oct 2018

987

Jahanbakhsh SP, Sahebkar A, Mohammadpour AH. Evaluation of the efficacy of a polyherbal mouthwash containing Zingiber officinale, Rosmarinus officinalis and Calendula officinalis extracts in patients with gingivitis: a randomized double-blind placebo-controlled trial. Complement Ther Clin Pract 2016;22: 93-98.

10. Metushaj A. Epidemiology of Periodontal Diseases. Anglisticum. 2015; 3:36-140.

11. Abdollahi M, Rahimi R, Radfar M. Current opinion on drug-induced oral reactions: a comprehensive review. J Contemp Dent Pract 2008;3:1-15

12. Vaziri S, Mojarrab M, Farzaei MH, Najafi F, Ghobadi A. Evaluation of anti-apthous activity of decoction of Nicotiana tabacum leaves as a mouthwash: a placebo-controlled clinical study. J Trad Chin Med 2016; 36:160-164.

13. Pereira SLS, Praxedes YCM, Bastos TC, Alencar PNB, da Costa FN. Clinical effect of a gel containing Lippia sidoides on plaque and gingivitis control. Eur J Dent 2013; 7:28-34.

14. Dhingra K. Aloe vera herbal dentifrices for plaque and gingivitis control: a systematic review. Oral Dis 2014; 20:254-267.

15. Freirea IDA, Alves LA, Ferreira GLS, Jovito VDC, Castro RDD, Cavalcanti AL. A randomized clinical trial of Schinus terebinthifolius mouthwash to treat biofilm-induced gingivitis. Evid Based Complement Alternat Med 2013; 837-907.

16. Hellspröm MK, Ramberg P. The effect of a dentifrice containing magnolia extract on established plaque and gingivitis in man: a six-month clinical study. Int J Dent Hygiene 2014;12: 96-102.

17. Heydarpoor F, Abasabadi M, Shahpiri Z, Vaziri S, Nazari HA, Najafi F, et al. Medicinal plant and their bioactive phytochemicals in the treatment of recurrent aphthous ulcers: a review of clinical trials. Pharmacog Mag 2018;12: 27-39.

18. Chen Y, Wong RWK, McGrath C, Hagg U, Seneviratne DJ. Natural compounds containing mouthrinses in the management of dental plaque and gingivitis: a systematic review. Clin Oral Investig 2014;18: 1-16.

19. Jadad AR, Enkin M, Jadad AR. Randomized controlled trials: questions, answers, and musings. Wiley Online Library. 2007.

20. López a, de Tangil MS, Vega-Orellana O, Ramírez AS, Rico M. Phenolic constituents, antioxidant and preliminary antimycoplasmatic activities of leaf skin and flowers of Aloe vera (L.) bürm. f (syn. a. barbadensis Mill.) from the Canary Islands (spain). Molecules 2013;18: 4942-4954.

21. Wynn RL. Aloe vera gel: Update for dentistry. Gen Dent 2005; 3: 6-9.

22. Radha MH, Laxmipriya NP. Evaluation of biological properties and clinical effectiveness of Aloe vera: a systematic review. J Trad Complement Med 2015;5: 21-26.

23. Löe H. The gingival index, the plaque index and the retention index systems. J Periodont 1967; 38:Supp:610-616.

24. Mühlemann H, Son S. Gingival sulcus bleeding—a leading symptom in initial gingivitis. Helv Odontol Acta 1971;15: 107-113.

25. Ajmera N, Chatterjee A, Goyal V. Aloe vera: it's effect on gingivitis. Indian Soc Periodontol 2013;17: 435-438.

26. Kripal K, Kumar RKV, Rajan RSS, Rakesh MP, Jayant I, Prabhj SS. Clinical effects of commercially available dentifrice containing Aloe vera versus Aloe vera with scaling and scaling alone: a randomized controlled clinical trial. Res J Pharm Biol Chem Sci 2014;5: 508-516.

27. Lang NP, Adler J, Joss A, Nyaman S. Absence of bleeding on probing an indicator of periodontal stability. J Clin Periodontol 1990;17: 714-721.

28. Lobene R, Weatherford T, Ross N, Lamm R, Menaker L. A modified gingival index for use in clinical trials. Clin Prev Dent 1985; 8:3-6.

29. Chandrabas H, Jayakumar A, Naveen A, Butchbabu K, Reddy PK, Muralikrishna T.A randomized, doubleblind clinical study to assess the antiplaque and anti-gingivitis efficacy of Aloe vera mouth rinse. J Indian Soc Periodontol 2012;16: 543-548.

30. de Oliveira SM, Torres TC, Pereira SL, Mota OM, Carlos MX. Effect of a dentifrice containing Aloe vera on plaque and gingivitis control. a double-blind clinical study in humans. J Appl Oral Sci 2008;16: 293-298.

31. Karim B, Bhasar DJ, Agali C, Gupta D, Gupta RK, Jain A, et al. Effect of Aloe vera mouthwash on periodontal health: triple blind randomized control trial. Oral Health Dent Manag 2014;13: 14-19.

32. Namiranian H, Serino G. The effect of a toothpaste containing Aloe vera on established gingivitis. Swed Dent J 2012;36: 179-185.

33. Yeturu SK, Acharya S, Urala AS, Pentapati KC. Effect of Aloe vera, chlorine dioxide, and chlorhexidine mouth rinses on plaque and gingivitis: a randomized controlled trial. J Oral Biol Craniofac Res 2016;6: 55-59.

34. Quigley GA, Hein JW. Comparative cleansing efficiency of manual and power brushing. J Am Dent Assoc 1962;65: 26-29.

35. Kartik AR, Agarwal Y, Naik SB. Clinical and microbiologic effects of commercially available dentifrice containing Aloe vera: A randomized controlled clinical trial. J Periodontol 2012;83: 797-804.

36. Kumar VS, Navarathnam V. Neem (Azadirachta indica): Prehistory to contemporary medicinal uses to humankind. Asian Pac J Trop Biomed 2013;3: 505-514.

37. Lakshmi T, Krishnan V, Rajendran V, Madhusudhanan N. Azadirachta indica: a herbal panacea in dentistry - an update. Pharmacogn Rev 2015;9: 41-44.

38. Greene JG, Vermillion JR. The simplified oral hygiene index. J Am Dent Assoc 1964;68: 7-13.

39. Balapannavar AV, Sardana V, Singh M. Comparison of the effectiveness of 0.5% tea, 0.2% neem and 0.2% chlorhexidine mouthwashes on oral health: a randomized control trial. Indian J Dent Res. 2013;24: 26-34.

40. Chatterjee A, Saluja M, Singh N, Kandwal A. To evaluate the antigingivitis and antipalque effect of an Azadirachta indica (neem) mouthrinse on plaque induced gingivitis: a double-blind, randomized, controlled trial. J Indian Soc Periodontol. 2011;15: 398-401.

41. Sharma R, Hebball M, Ankola AV, Murugabopothy V, Shetty SJ. Effect of two herbal mouthwashes on gingival health of school children. J Tradit Complement Med 2014;4: 272-278.

42. Sharma S, Sainbhi CS, Koirala B, Shukla R. Effect of various mouthwashes on the levels of interleukin-2 and interferon-γ in chronic gingivitis. J Clin Pediatr Dent 2007;32: 111-114.

43. Muley B, Khadabadi S, Banarase N. Phytochemical constituents and pharmacological activities of calendula officinalis linn (asteraceae): a review. Trop J Pharmaceut Res 2009;8: 455-465.

44. Yoshikawa M, Murakami T, Kishi A, Kageura T, Matsuda MX. Effect of a dentifrice containing Aloe vera and Azadirachta indica (neem) toothpaste on gingivitis: a double-blind, randomized controlled trial. J Trad Chin Med 2010;4: 132-140.

45. Sharangi A. Medicinal and therapeutic potentialities of tea
Safiaghdam et al. Medicinal plants for gingivitis

65. M. Pascual, K. Slowing, E. Carretero, D.S. Mata, A. Villar. Preliminary clinical evidence of the anti-plaque, antigingivitis efficacy of a mouthwash containing 2% green tea - a randomised clinical trial. Oral Health Prev Dent 2015;13: 197-203.

60. Song W, Qiao X, Liang WF, Ji S, Yang L, Wang Y, Montenegro D, Gapski R, et al. Effect of a novel essential oil mouthrinse without alcohol on gingivitis: a double-blinded randomized controlled trial. J Appl Oral Sci 2007;15:175-180.

56. Soukoulis S, Hirsch R. The effects of a tea tree oil-containing mouthwash and 0.2% chlorhexidine gluconate mouthwash in prevention of plaque formation and gingivitis: a clinical and microbiological study. Oral Health Prev Dent 2005;12: 258-263.

51. Hirasawa M, Takada K, Makimura M, Otaka S. Improvement of periodontal status by green tea catechin using a local delivery system: a clinical pilot study. J Periodontal Res 2002;37: 433-438.

52. Barnett M, Gancio S, Mather M. The modified papillary bleeding index-comparison with gingival index during the resolution of gingivitis. J Prev Dent 1980; 6: 135-138.

39. Priya BM, Anitha V, Shanmugam M, Ashwath B, Sylva SD, Vigneshwari SK. Efficacy of chlorhexidine and green tea mouthwash and 0.1% turmeric mouthwash with 0.2% chlorhexidine gluconate in prevention of plaque and gingivitis: a clinical and microbiological study. J Indian Soc Periodontol 2012;16: 386-391.

63. Farjana HN, Chandrasekaran SC, Gita B. Effect of oral curcuma gel in gingivitis management - a pilot study. J Clin Diagn Res 2014;8: Zc08-10.

64. Behal R, Gilda SS, Mali AM. Comparative evaluation of 0.1% turmeric mouthwash with 0.2% chlorhexidine gluconate in prevention of plaque and gingivitis: a clinical and microbiological study. J Indian Soc Periodontol 2012;16: 386-391.
84. DiSilvestro RA, DiSilvestro DJ, DiSilvestro DJ. Pomegranate extract mouth rinsing effects on saliva measures relevant to gingivitis risk. Phytother Res 2009;23:1123-1277.

85. Nóbrega RM, Santos RL, Coelho Soares RS, Muniz Alves P, Medeiros ACD, Pereira JV. A randomized, controlled clinical trial on the clinical and microbiological efficacy of Punica granatum Linn. mouthwash. Pesquis Bras Odontopediatr Clin Integr 2015;15:301-308.

86. Salgado AD, Maia JL, Pereira SDL, De Lemos TLG, Mota OMDL. Anitplaque and antigingivitis effects of a gel containing punica granatum linn extract. a double-blind clinical study in humans. J Appl Oral Sci 2006;14:162-166.

87. Sedigh-Rahimabadi M, Fani M, Rostami-Chijan M, Shams MM. A traditional mouthwash (Punica granatum var pleniflora) for controlling gingivitis of diabetic patients: a double-blind randomized controlled clinical trial. J Evid Based Complementary Altern Med. 2017;22:59-67.

88. Somu CA, Ravindra S, Ajith S, Ahamed MG. Efficacy of a herbal extract gel in the treatment of gingivitis: a clinical study. Complementary Altern Med. 2017;22:59-67.

89. Akhtar J, Siddique KM, Bi S, Mujeeb M. A review on Salvadora persica herbal extract gel in the treatment of gingivitis: a clinical study. J Ayurveda Integr Med. 2012;3:85-90.

90. Halawany HS. A review on miswak (Salvadora persica) and its effect on various aspects of oral health. Saudi Dent J 2012;24:63-69.

91. Amoian B, Moghadamnia AA, Barzi S, Sheykholeslami S, Rangiani A. Khalessi AM, Pack AR, Thomson WM, Tompkins GR. gingival health: improvement of gingival and probe-bleeding and its effect on various aspects of oral health. Saudi Dent J 2012;24:63-69.

92. Khaleesi AM, Pad AR, Thomson WM, Tompkins GR. An in vivo study of the plaque control efficacy of Persica: a commercially available herbal mouthwash containing extracts of salvadora persica. Int Dent J 2004;54:279-283.

93. Azaripour A, Mahmodi B, Habibi E, Willershausen I, Schmidtmann I, Willershausen B. Effectiveness of a miswak extract-containing toothpaste on gingival inflammation: a randomized clinical trial. Int J Dent Hyg 2017;15:195-202.

94. Haerian-Ardakani A, Rezaei M, Talebi-Ardakani M, Keshavarz Valian N, Amid R, Meimandi M, et al. Comparison of antimicrobial effects of three different mouthwashes. Iran J Public Health 2015;44:997-1003.

95. Patil PV, Shrusti S, Kumar S. Clinical effect of miswak as an adjunct to tooth brushing on gingivitis. J Indian Soc Periodontol 2012;16:84-88.

96. A. Sofrata, F. Brito, M. Al-Otaibi, A. Gustafsson. Short term in vivo study of the plaque control efficacy of Punica granatum: a double blind randomized controlled trial. J Periodontol 2012;79:1378-1385.

97. Rajan J, Brijesh SP, Santosh B, Gupta S, Bhat P, Das S. Comparative evaluation of turmeric and chlorhexidine mouthwash on oral health: A randomized controlled trial. J Periodontol 2011;82:1130-1134.

98. Naiktari RS, Gaonkar P, Gurav AN, Khiste SV. A randomized, controlled clinical trial. Oral Health Prev Dent 2014;12:221-224.

99. Roopa D, Singh S, Gupta S, Pandey Y, Goswami A, Johari S. Curcumin: a herbal approach in the management of gingivitis. Rama Univ J Dent Sci 2016;3:1-5

100. Gupta D, Bhaskar DJ, Gupta RK, Karim B, Gupta V, Punia H, et al. Effect of Terminalia chebula extract and chlorhexidine on salivary pH and periodontal health: 2 weeks randomized control trial. Phytother Res. 2014;28:92-99.
0.6% cortex ilicis rotundae toothpaste: a randomized, double-masked clinical trial. J Periodontol 2010; 81: 677-683.
119. May A, T. Moe Wint O, Tinn Hutton, Aye T, Their N, Mya Thein L. Anti-inflammation and anti-plaque activity of ponna yelk (Ixora coccinea Linn.) leaves extract used as a mouthwash on chronic gingivitis patients. Myanmar Health Sci Res J 2009;21: 26-31.
120. Jockel-Schneider Y, Gossner SK, Petersen N, Stolzel P, Hagle F, Schweiggert RM, et al. Stimulation of the nitrate-nitrite to-nitric oxide metabolism by repeated lettuce juice consumption decreases gingival inflammation in periodontal recall patients: a randomized, double-blinded, placebo-controlled clinical trial. J Clin Periodontol 2016; 43: 603-608.
121. Adámková H, Vicar J, Palasová J, Ulrichová J, Simánek V, Maclaya cordata and Prunella vulgaris in oral hygiene products - their efficacy in the control of gingivitis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2004; 148: 103-105.
122. Campus G, Cagetti MG, Cocco F, Sale S, Sacco G, Strohmenger L. Effect of a sugar-free chewing gum containing Prunella vulgaris leaf on chronic gingivitis patients. Int J Dent Hyg 2014; 12: 96-102.
123. Pereira SL, de Oliveira JW, Angelo KK, da Costa AM, Pereira MG. Clinical effect of a mouth rinse containing Ocimum gratissimum on plaque and gingivitis control. J Contemp Dent Pract 2011; 12: 350-355.
124. Gonzalez Begne M, Ysals N, Reyes E, Quiroz V, Santana J. J. Jimenez G. Clinical effect of a Mexican sauguaria extract (polygonum aviculare l.) on gingivitis. J Ethnopharmacol 2001; 74: 45-51.
125. Pannuti CM, Mattos JP, Ranoya PN, Jesus AM, Lotufo RF, Bras 2003; 17: 314-318.
126. Somu C A, Ravindra S, Ajith S, Ahamed MG. Efficacy of a herbal toothpaste on gingival bleeding, clinical, microbiological and oral hygiene parameters Ceylon Med J 2011; 56: 36-44.
127. Salgado AD, Maia JL, Pereira SL, de Lemos TL, Mota OM. Antiplaque and antigingivitis effects of a gel containing Punica granatum Linn. extract: a double-blind clinical study in humans. J Appl Oral Sci 2006; 14: 162-166.
128. Soum C A, Ravindra S, Ajith S, Ahamed MG. Efficacy of a herbal gel in the treatment of gingivitis: A clinical study. J Ayurveda Integr Med 2012; 3: 85-90.
129. Chen S, Liu J, Zhang H. Efficacy of Raddosia rubescent in the treatment of gingivitis. J Huazhong Univ Sci Technolog Med Sci 2009; 29: 659-663.
130. Rezaei S, Rezaei K, Mahboubi M, Jrahazdeh MH, Momeni E, Bagherinasab M, et al. Comparison the efficacy of herbal mouthwash with chlorhexidine on gingival index of intubated patients in intensive care unit. J Indian Soc Periodontol 2016; 20: 404-408.
131. Arweiler NB, Pergola G, Kuenz J, Hellwig E, Bagherinasab M. Efficacy of subgingival irrigation using herbal extracts on experimental gingivitis. Clin Oral Invest 2011; 15: 909-913.
132. Taweechaisupapong S, Wongham S, Rattanathongkom A, Singhara S. Effect of mouthrinse containing Steblus asper leaf extract on gingivitis. J Dent Assoc Thai 2002; 52: 383-391.
133. Gupta D, Bhaskar DJ, Gupta RK, Karim B, Gupta V, Punia H, et al. Effect of Terminalia chebula extract and chlorhexidine on salivary pH and periodontal health: 2 weeks randomized control trial. Phytother Res 2014; 28: 992-998.
134. Widen C, Coleman M, Critten S, Karlgen-Andersson P, Revvert S, Persson GR. Consumption of bilberries controls gingival inflammation. Int J Mol Sci 2015; 16: 10665-10673.
135. Gubic J, Wexler I, Celenti R, Altman J, Saffer A. A phase II trial of a transmucosal herbal patch for the treatment of gingivitis. J Am Dent Assoc. 2011; 142: 1168-1175.
136. Lamster IB, Holmes LG, Williams Gross KB, Oshrain RL, Cohen DW, Rose LF, et al. The relationship of β-glucuronidase activity in crevicular fluid to probing attachment loss in patients with adult periodontitis. J Clin Periodontol 1995; 52: 36-44.
137. Samuel N, Gubic JT, Saffer AJ, Wexler ID, Williams RC. Effect of an herbal mouth rinse in preventing periodontal inflammation in an experimental gingivitis model: a pilot study. Compend Contin Educ Dent 2012; 33: 204-206, 209-211.
138. Hoshijan S, Perera K, Samita S, Rajapakse PS. The effects of an ayurvedic medicinal toothpaste on clinical, microbiological and oral hygiene parameters in patients with chronic gingivitis: a double-blind, randomised, placebo-controlled, parallel allocation clinical trial. Ceylon Med J 2015;60: 126-132.
139. Jayashankar S, Panagoda GJ, Amarutunga EA, Perera K, Rajapakse PS. A randomised double-blind placebo-controlled study on the effects of a herbal toothpaste on gingival bleeding, oral hygiene and microbial variables Ceylon Med J 2011;56: 5-9.
140. Mali GV, Dodamani A, Karihassappa G, Vishwakarma P, Jain V. Comparative evaluation of Arimedioli oil with 0.2% chlorhexidine gluconate in prevention of plaque and gingivitis: A randomized clinical trial. J Diagn Res 2016; 10: ZC31-ZC34.
141. Kraivaphan P, Amornchat C. Effect of a common oil-containing dentifrice on established plaque and gingivitis. Southeast Asian J Trop Med Public Health 2012; 43: 243-248.
142. Pannuti CM, Mattos JP, Ranoya PN, Jesus AM, Lotufo RF, Romito GA. Clinical effect of a herbal dentifrice on the control of plaque and gingivitis: a double-blind clinical study. Pesqui Odontol Bras 2003; 17: 314-318.
143. Pradeep AR, Agarwal E, Bajaj P, Naik SB, Shanbhag N, Uma SR. Clinical and microbiologic effects of commercially available gel and powder containing Acacia arabica on gingivitis. Aust Dent J 2012; 57: 312-318.
144. Lauten JD, Boyd L, Hanson MB, Lillie D, Gullion C, Madden H. Clinical and microbiologic effects of commercially available gel and powder containing Acacia arabica on gingivitis. Aust Dent J 2012; 57: 312-318.
145. Radvar M, Moeintaghavi A, Tafaghodi M, Ghanbari H, Fatemi K, Mokhtari MR, et al. Clinical efficacy of an herbal mouthwash composed of Salix alba, Malva sylvestris and Altheaea officinalis in chronic periodontitis patients. J Herb Med 2016; 6: 24-27.
146. A. Pistorius, B. Willershausen, E.M. Steinmeier, M. Kreisler, Efficacy of subgingival irrigation using herbal extracts on gingival inflammation. J Periodontol 2003; 74: 616-622.
147. Chainani SH, Siddana S, Reddy C, Manjunathappha TH, Manjunath M, Rudraswamy S. Antiplaque and antigingivitis efficacy of triphala and chlorhexidine mouthrinse among schoolchildren - a cross-over, double-blind, randomised controlled trial. Oral Health Prev Dent 2014; 12: 209-217.
148. Pistorius A, Willershhausen B, Steinmeier EM, Kreisler M. Efficacy of subgingival irrigation using herbal extracts on gingival inflammation. J Periodontol 2003; 74: 616-622.
149. Jin-Young L, Seung Chul S, Geum Sun L. In vivo study on the subside effect of gingivitis by use of dentifrice with centella and magnolia components. Int J Clin Prev Dent 2016; 12: 169-175.
150. Massler M. The PMA index for the assessment of gingivitis. J Periodontol 1967; 38: Suppl:592-601.
151. Kamatou GP, Vermaak I, Viljoen AM, Lawrence BM.
Menthol: a simple monoterpen with remarkable biological properties. Phytochemistry 2013;96: 15-25.
152. Alok A, Singh ID, Singh S, Kishore M, Jha PC. Curcumin-pharmacological actions and its role in oral submucous fibrosis: a review. J Clin Diagn Res 2015;9: Ze01-3.
153. Anand G, Ravinanthan M, Basaviah R, Shetty AV. In vitro antimicrobial and cytotoxic effects of Anacardium occidentale and Mangifera indica in oral care. J Pharm Bioallied Sci 2015;7: 69-74.
154. El-Sherbini GT, Shoukry NM. In vitro effect of pomegranate peel extract on Trichomonas tenax. Life Sci J 2012;9: 791-797.