Apresentação e desfechos de pacientes com doença renal crônica com COVID-19
Presentation and outcomes of chronic kidney disease patients with COVID-19

Resumo

Introdução: COVID-19 é atualmente um problema de saúde global e uma causa importante de mortalidade. Doença renal crônica (DRC) é um dos fatores de risco para infecção, morbidade e mortalidade por SARS-CoV-2. Neste estudo, objetivamos avaliar a apresentação clínica e os desfechos de doentes com DRC com COVID-19, bem como identificar preditores de mortalidade. Métodos: Estudo retrospectivo de doentes com DRC internados num hospital terciário português entre Março e Agosto de 2020. As variáveis foram submetidas a análise univariada e multivariada para determinar fatores preditivos de mortalidade hospitalar. Resultados: Analisámos 130 pacientes com DRC (média de idades 73,9 anos; 60,0% homens). Hipertensão (81,5%), doença cardiovascular (36,2%) e diabetes (54,6%) foram comorbilidades frequentes. Tosse, dispneia, febre e insuficiência respiratória também foram comuns. Quase 60% apresentavam anemia, 50% hipoalbuminemia e 13,8% hiperlactacidemia, 17% acidemia. A ferritina sérica média foi 1531 μg/L, PCR média 8,3 mg/dL, LDH médio 336,9 U/L. A maioria foi tratada com lopinavir/ritonavir, hidroclooroquina ou corticosteroides e apenas 2 com remdesivir. Oitenta por cento tiveram internamento na unidade de cuidados intensivos. Os 34 pacientes que faleceram eram mais velhos e mais propensos a ter insuficiência cardíaca. Estes apresentaram razão neutrófilos/linfócitos e níveis de ferritina, lactato e LDH mais elevados. A análise multivariada identificou uma associação entre idade avançada [OR 1,1 (IC 1,0-1,24), p=0,027], níveis de ferritina [OR 1,0 (IC 1,00-1,00), p=0,009] e LDH mais elevados [OR 1,0 (IC 1,00-1,01), p=0,014] e mortalidade.

Conclusão: Na nossa coorte de doentes com DRC com COVID-19, a idade avançada e níveis mais elevados de ferritina e LDH foram fatores de risco independentes para mortalidade.

Descritores: COVID-19; Mortalidade; Insuficiência Renal Crônica; SARS-CoV-2.

Abstract

Introduction: COVID-19 is currently a global health issue and an important cause of mortality. Chronic kidney disease (CKD) is one of the risk factors for infection, morbidity and mortality by SARS-CoV-2. In our study, we aimed to evaluate the clinical presentation and outcomes of CKD patients with COVID-19, as well as identify predictors of mortality. Methods: This was a retrospective study of CKD patients admitted in a tertiary-care Portuguese hospital between March and August of 2020. Variables were submitted to univariate and multivariate analysis to determine factors predictive of in-hospital mortality. Results: 130 CKD patients were analyzed (median age 73.9 years, male 60.0%). Hypertension (81.5%), cardiovascular disease (36.2%), and diabetes (54.6%) were frequent conditions. Cough, dyspnea, fever and respiratory failure were also common. Almost 60% had anemia, 50% hypoalbuminemia, 13.8% hyperlactacidemia and 17% acidemia. Mean serum ferritin was 1531 μg/L, mean CRP 8.3 mg/dL and mean LDH 336.9 U/L. Most patients were treated with lopinavir/ritonavir, hydroxychloroquine or corticosteroids and only 2 with remdesivir. Eighty percent had acute kidney injury and 16.2% required intensive care unit admission. The 34 patients who died were older and more likely to have heart failure. They had higher neutrophils/lymphocytes ratio, ferritin, lactate, and LDH levels. Multivariate analysis identified an association between older age [OR 1.1 (CI 1.01-1.24), p=0.027], higher ferritin [OR 1.0 (CI 1.00-1.00), p=0.009] and higher LDH levels [OR 1.0 (CI 1.00-1.01), p=0.014] and mortality. Conclusion: In our cohort of CKD patients with COVID-19, older age, higher ferritin, and higher LDH levels were independent risk factors for mortality.

Keywords: COVID-19; Mortality; Renal Insufficiency, Chronic; SARS-CoV-2.
INTRODUÇÃO

A doença provocada pelo SARS-CoV-2 (COVID-19) foi descoberta pela primeira vez em Wuhan, na província de Hubei, China, em Dezembro de 2019 e declarada uma pandemia global a 11 de março de 2020, com 88.828.328 casos confirmados globalmente em 11 de Janeiro de 2021. A gravidade da doença muito variável, desde sintomatologia leve ou assintomática (80%), até doença grave com necessidade de suporte ventilatório (3-5%). De acordo com a literatura, comorbilidades como doença cardiovascular, hipertensão, obesidade, diabetes mellitus, câncer e doença pulmonar crônica são fatores de risco para doença grave.

O papel da doença renal crônica (DRC) na COVID-19 não era claro numa fase inicial. Por um lado, a imunossupressão associada a esta condição poderia atenuar o estado hiperinflamatório descrito na COVID-19. Em contrapartida, a disfunção imunológica e a alta prevalência de comorbilidades (incluindo doenças cardiovasculares e diabetes mellitus) poderiam contribuir para uma pior evolução clínica. Estudos recentes têm associado a DRC com a COVID-19 grave, maior risco de hospitalização e maior mortalidade.

Em resumo, dado o contato frequente de doentes com DRC com os cuidados médicos, que os expõe a maior risco de infeção por SARS-CoV-2, e maior gravidade da doença, procurámos avaliar a apresentação clínica e os outcomes de doentes com DRC com COVID-19, bem como identificar preditores de mortalidade.

MATERIAIS E MÉTODOS

Este estudo é uma análise retrospectiva de pacientes internados entre Março e Agosto de 2020 numa unidade dedicada a doentes com COVID-19 no Centro Hospitalar Universitário Lisboa Norte (CHULN) em Lisboa, Portugal, denominada Unidade de Internamento de Contingência de Infeção Viral Emergente (UICIVE). O Comitê de Ética aprovou o estudo, de acordo com as diretrizes institucionais. O consentimento informado foi dispensado, dada a natureza retrospectiva e não intervencionista do estudo.

PARTICIPANTES

Foram elegíveis todos os pacientes adultos (≥18 anos de idade), com doença renal crónica (DRC) e um teste de reação em cadeia da polimerase em tempo real, da amostra de exsudato nasofaríngeo, positivo para SARS-CoV-2, admitidos na UICIVE de 1 de Março a 31 de Agosto de 2020. Para pacientes que tiveram várias admissões hospitalares elegíveis, apenas a primeira hospitalização foi considerada. Foram excluídos do estudo os doentes que tiveram menos de 2 determinações de creatinina sérica (CrS) (a) e pacientes que tiveram alta ou faleceram menos de dois dias após a admissão (b).

VARIÁVEIS E DESFECHOS

Os dados foram obtidos a partir de registos clínicos eletrónicos individuais. As seguintes variáveis foram recolhidas: características demográficas (idade, sexo); apresentação clínica (tosse, febre, dispneia e insuficiência respiratória); comorbilidades [DRC (e necessidade de terapia renal substitutiva prévia (TRS)), diabetes mellitus, hipertensão, doença cardiovascular (DCV), insuficiência cardíaca, doença pulmonar obstrutiva crônica (DPOC), cirrose e/ou neoplasia ativa]; tratamento atual com inibidores da enzima de conversão da angiotensina ou bloqueadores dos receptores da angiotensina (inibidores do SRAA); gravidade da doença de acordo com a Escala de Gravidade Respiratória de Brescia-COVID (BCRSS, do inglês Brescia-COVID Respiratory Severity Scale) à admissão; valores laboratoriais à admissão [hemoglobina sérica, hematocrito, contagem de neutrófilos e linfócitos e sua razão (razão N/L), albumina sérica, proteína C reativa (PCR), lactato desidrogenase (LDH), sódio sérico, cloro sérico, tempo de protrombina (TP), tempo de tromboplastina parcial ativada (TTPa), gasometria arterial e pH, e lactato sérico]; exposição a nefrotoxinas durante a primeira semana de internamento [anti-inflamatórios não esteroides (AINEs), contrastes endovenosos, vancomicina, aminoglicosídeos]; necessidade de internamento em unidade de cuidados intensivos (UCI), ventilação mecânica e vasopressores; desenvolvimento de lesão renal aguda (LRA) durante a hospitalização; necessidade de TRS; tratamento dirigido à COVID-19 (hidroxicloroquina, lopinavir/ritonavir, corticosteróides, tocilizumab); tempo de internamento (TDI) e mortalidade hospitalar.

DEFINIÇÕES

O diagnóstico de COVID-19 foi estabelecido de acordo com as diretrizes provisórias da Organização Mundial da Saúde.
A CrS basal foi definida como um valor de CrS nos três meses anteriores à admissão. A taxa de filtração glomerular estimada (TFGe) de pacientes sem necessidade de diálise foi calculada utilizando a equação de creatinina da *Chronic Kidney Disease Epidemiology Collaboration* (CKD-EPI)\(^{16}\). A presença de DRC foi definida como uma TFGe inferior a 60 mL/min/1,73m\(^2\). A LRA foi definida e estratificada usando os critérios de CrS da classificação do *Kidney Disease Improving Global Outcomes* (KDIGO)\(^{17}\).

A diabetes mellitus foi definida em conformidade com as Diretrizes da Associação Americana de Diabetes\(^{18}\). A hipertensão arterial foi diagnosticada de acordo com as Diretrizes da Sociedade Europeia de Cardiologia e da Sociedade Europeia de Hipertensão\(^{19}\). Na DPOC inclui-se enfisema e bronquite crônica. Caso fosse documentada história de doença cerebrovascular, doença cardíaca isquémica e/ou doença arterial periférica, assumia-se DCV. A acidemia foi definida por um pH abaixo de 7,35.

MÉTODOS ESTATÍSTICOS

As variáveis categóricas foram descritas como frequência absoluta e relativa de cada categoria, enquanto as variáveis contínuas foram descritas como média ± desvio padrão. As variáveis contínuas foram comparadas utilizando o teste t de Student e as variáveis categóricas foram comparadas através do teste Qui-quadrado.

Todas as variáveis foram submetidas a análise univariada para encontrar preditores de mortalidade intrahospitalar. Posteriormente, variáveis com uma associação significativa foram submetidas a análise multivariada usando o método de regressão logística de Cox. Os dados foram reportados como odds ratio (OR) com intervalos de confiança (IC) de 95%. A significância estatística foi estabelecida como um valor de P inferior a 0,05. Foi utilizado o software estatístico SPSS para Windows (versão 21.0) para análise dos dados.

RESULTADOS

No total, 130 pacientes com DRC foram admitidos na UICIVE com um diagnóstico de COVID-19.

CARACTERÍSTICAS BÁSICAS

As características básicas desta coorte são descritas na Tabela 1. A média de idade foi de 73,9 ±12,2 anos e a maioria dos pacientes era do sexo masculino (60,0%). Houve uma elevada prevalência de doentes hipertensos (81,5%), com DCV (54,6%), com insuficiência cardíaca (51,5%) e diabéticos (36,2%). Vinte e quatro pacientes (18,5%) estavam em hemodiálise e três (2,3%) eram transplantados renais. Quarenta e cinco porcento dos pacientes estava a tomar inibidores do SRAA. A creatinina sérica média basal (CrS) foi de 1,7±0,9 mg/dL a TFGe média basal foi de 42,5±15,6 mL/min/1,73m\(^2\).

APRESENTAÇÃO CLÍNICA E ACHADOS LABORATORIAIS NA ADMISSÃO

A principal apresentação clínica foi tosse e dispneia em 46,2% dos pacientes respectivamente, insuficiência respiratória em 43,8% e febre em 37,7% dos pacientes. Treze porcento dos pacientes apresentaram uma pontuação superior a 2 no BCRSS.

Na admissão, a CrS média foi de 3,3±3,52 mg/dL, a hemoglobina média foi de 11,7±2,3 g/dL com quase 60% dos pacientes anêmicos, a razão N/L média foi de 7,2±6,1, a albumina sérica média foi de 3,3±0,5g/dL com mais da metade dos pacientes com hipoalbuminemia. A ferritina sérica média foi de 1531,9±2580,5 μg/L e a PCR média foi de 8,3±8,9 mg/dL. O nível médio de lactato foi de 13,8±8,6 mg/dL com hiperlactatemia em 13,8% (n=18) dos pacientes e acidemia em 16,9% (n=22). O nível médio de LDH foi 336,9±225 U/L, sódio sérico médio 137,7±7,9 mmol/L, e cloro médio 106,6±7,9 mmol/L. O tempo de protrombina (TP) médio foi de 15,6±9,8 s e o tempo de tromboplastina parcial ativada (TPPa) médio foi de 30,6±6,4 s.

Em relação ao tratamento, a maioria dos doentes foi medicada com lopinavir/ritonavir (27,7%), hidroxicloroquina (20,8%) e corticosteroides (17,7%). Apenas 2 pacientes foram tratados com remdesivir.

Cento e cinco pacientes (80,8%) desenvolveram LRA durante o internamento e 28 necessitaram de diálise, embora apenas doze porcento dos pacientes tenham sido expostos a nefrotoxicas durante o internamento.

Dezesseis por cento dos pacientes (n=21) necessitaram internamento na UCI, 8,5% de (n=11) ventilação mecânica e 3,8% (n=5) de uso de vasopressores.

MORTALIDADE HOSPITALAR

O TDI foi de 35,0±45,9 dias e 26,2% dos pacientes faleceram no hospital (n=34). As características dos
Tabela 1: Características Básicas dos Pacientes e Mortalidade Hospitalar

Característica	Total (n=130)	Mortalidade (n=34)	Sobrevida (n=96)	Valor de p
Idade (anos)	73,9 ± 12,2	83,1 ± 10,3	70,6 ± 18,1	0,000
Sexo (Masculino) – n (%)	78 (60,0)	23 (67,6)	55 (57,3)	0,290
Comorbilidades – n (%)				
Hipertensão	106 (81,5)	27 (79,4)	79 (82,3)	0,710
Diabetes	47 (36,2)	13 (38,2)	34 (35,4)	0,769
DCV	71 (54,6)	20 (58,8)	51 (53,1)	0,566
Insuficiência cardíaca	67 (51,5)	24 (70,6)	43 (44,8)	0,010
DSPO	19 (14,6)	6 (17,6)	13 (13,5)	0,578
Cirrose	8 (6,2)	1 (2,9)	7 (7,3)	0,680
Neoplasia	21 (16,2)	9 (26,5)	12 (12,5)	0,057
DRC em TRS – n (%)	27 (20,8)	5 (14,7)	22 (22,9)	0,443
Hemodiálise	24 (18,5)	5 (14,7)	19 (52,8)	
Transplante renal	3 (2,3)	0 (0,0)	3 (3,1)	
Inibidores do SRAA – n (%)	58 (44,6)	12 (35,3)	46 (47,9)	0,305
Agente nefrotóxico – n (%)	16 (12,3)	3 (8,8)	13 (15,5)	0,760
CrS Basal (mg/dL)	1,7 ± 0,9	1,7 ± 1,0	1,7 ± 0,9	0,831
TFGe Basal (mL/min/1,73m2)	42,5 ± 15,6	41,1 ± 16,9	43,0 ± 15,2	0,561
Escala de Brescia >2 – n (%)	17 (13,1)	10 (29,4)	7 (7,3)	0,000
Apresentação clínica – n (%)				
Tosse	60 (46,2)	15 (44,1)	38 (39,6)	0,644
Febre	49 (37,7)	12 (35,3)	37 (38,5)	0,737
Dispneia	60 (46,2)	23 (67,6)	37 (38,5)	0,003
Insuficiência respiratória	57 (43,8)	21 (61,8)	36 (37,5)	0,016
Laboratório				
CrS na admissão (mg/dL)	3,3 ± 3,5	3,2 ± 3,9	3,4 ± 3,3	0,758
Hemoglobina (g/dL)	11,7 ± 2,3	11,2 ± 2,6	11,9 ± 2,2	0,136
Anemia – n (%)	74 (56,9)	24 (70,6)	50 (52,1)	0,061
Hematócrito	35,9 ± 6,7	34,3 ± 7,7	36,6 ± 6,2	0,098
Razão NL	72 ± 6,1	9,4 ± 5,7	6,4 ± 6,0	0,012
Albumina sérica (g/dL)	3,3 ± 0,5	4,0 ± 0,0	3,3 ± 0,5	0,170
Hipoalbuminemia – n (%)	66 (50,8)	18 (52,9)	48 (50,0)	0,973
Ferritina sérica (ug/dL)	1531,9 ± 2580,5	3183,9 ± 4248,3	958,7 ± 1303,6	0,038
PCR (mg/dL)	8,3 ± 8,9	9,8 ± 9,5	7,8 ± 8,7	0,261
Acidemia – n (%)	22 (16,9)	7 (20,6)	15 (15,6)	0,528
Nível de lactato (mg/dL)	13,8 ± 8,6	16,5 ± 10,2	12,8 ± 78	0,038
Hiperlactacidemia – n (%)	18 (13,8)	8 (23,5)	10 (10,4)	0,106
Nível de LDH (mg/dL)	336,9 ± 225,1	453,2 ± 362,2	295,7 ± 129,2	0,000
Sódio sérico (mmol/L)	1377 ± 7,7	1382 ± 6,4	1375 ± 8,1	0,624
Cloro sérico (mmol/L)	106,6 ± 7,9	107,0 ± 7,4	106,4 ± 8,2	0,718
TP	15,6 ± 9,8	16,1 ± 5,9	15,4 ± 10,7	0,764
TTPa	30,6 ± 6,4	30,8 ± 6,3	30,6 ± 6,5	0,911
Admissão na UCI – n (%)	21 (16,2)	8 (23,5)	13 (13,5)	0,174
Ventilação mecânica – n (%)	11 (8,5)	4 (11,8)	7 (7,3)	0,729
Uso de Vasopressor – n (%)	5 (3,8)	2 (5,9)	3 (3,1)	0,626
Tratamento COVID-19				
Hidroxicloroquina – n (%)	27 (20,8)	12 (35,3)	15 (15,6)	0,012
Lopinavir/ritonavir – n (%)	36 (27,7)	10 (29,4)	26 (27,1)	0,794
Corticosteroides – n (%)	23 (17,7)	5 (14,7)	18 (18,8)	0,641
Remdesivir – n (%)	2 (1,5)	0 (0,0)	2 (2,1)	0,552
LRA – n (%)	105 (80,8)	29 (85,3)	76 (79,2)	0,436
TRS – n (%)	28 (21,5)	8 (23,5)	20 (20,8)	0,954
TDI no hospital (dias)	35,0 ± 45,9	31,1 ± 49,5	36,4 ± 44,9	0,567
pacientes de acordo com a mortalidade hospitalar são descritas na Tabela 1.

Os pacientes que faleceram eram significativamente mais velhos [83,1±10,3 vs 70,6±18,1, p=0,000; OR não ajustada (uOR, por sua sigla em inglês) 1,1 (IC 1,03-1,10), p=0,001] e eram mais propensos a ter insuficiência cardíaca pré-existente [70,6% vs 44,8%, p=0,010; uOR 2,9 (IC 1,28-6,85), p=0,011] do que aqueles que sobreviveram.

Na admissão, estes pacientes também apresentavam razões N/L mais elevadas [9,4±5,7 vs 6,4±6,0, p=0,012; uOR 1,1 (IC 1,01-1,15), p=0,017], níveis mais elevados de ferritina [3183,9±4248,3 vs 958,7±1303,6, p=0,038; uOR 1,0 (IC 1,00-1,01), p=0,021], lactato [16,5±10,2 vs 12,8±7,8, p=0,038; uOR 1,1 (IC 1,00-1,09), p=0,048] e LDH [453,2±362,2 vs 295,7±129,2, p=0,000; uOR 1,0 (IC 1,00-1,01), p=0,005].

Na análise multivariada, a idade [OR ajustada (ORA) 1,1 (IC 1,01-1,24), p=0,027], o nível de ferritina à admissão [ORA 1,0 (IC 1,00-1,00), p=0,009], e o níveis de LDH [ORA 1,0 (IC 1,00-1,01), p=0,014] foram preditores independentes da mortalidade hospitalar em pacientes com DRC (Tabela 2).

Tabela 2: Análise Univariada e Multivariada de Fatores Preditivos de Mortalidade em Pacientes com Doença Renal Crônica com Covid-19

Característica	Mortalidade			
	OR não ajustada (IC 95%)	Valor de p	OR ajustada (IC 95%)	Valor de p
Idade (anos)	1,1 (1,03 – 1,10)	0,001	1,1 (1,01 – 1,24)	0,027
Sexo (Masculino – n (%))	1,6 (0,68 – 3,56)	0,291		
Comorbilidades – n (%)				
Hipertensão	0,8 (0,31 – 2,22)	0,710		
Diabetes	1,2 (0,50 – 2,53)	0,769		
DCV	1,3 (0,57 – 2,78)	0,567		
Insuficiência cardíaca	2,9 (1,28 – 6,85)	0,011	2,0 (0,36 – 10,93)	0,426
DPOC	1,4 (0,48 – 3,94)	0,561		
Cirrose	0,4 (0,05 – 3,25)	0,381		
Neoplasia	2,5 (0,95 – 6,67)	0,063		
Inibidores do SRAA – n (%)	0,7 (0,29 – 1,48)	0,307		
Agente nefrotóxico – n (%)	0,6 (0,17 – 2,39)	0,506		
CrS Basal (mg/dL)	1,0 (0,69 – 1,59)	0,829		
Laboratório				
CrS na admissão (mg/dL)	0,9 (0,87 – 1,11)	0,756		
Hemoglobina (g/dL)	0,9 (0,74 – 1,04)	0,137		
Hematócrito (%)	0,9 (0,89 – 1,01)	0,099		
Razão NL	1,1 (1,01 – 1,15)	0,017	1,1 (0,95 – 1,24)	0,213
Ferritina sérica (μ g/dL)	1,0 (1,00 – 1,01)	0,021	1,0 (1,00 – 1,00)	0,009
PCR (mg/dL)	1,0 (0,98 – 1,07)	0,262		
Nível de lactato (mg/dL)	1,1 (1,00 – 1,09)	0,048	1,0 (0,93 – 1,11)	0,710
Nível de LDH (mg/dL)	1,0 (1,00 – 1,01)	0,005	1,0 (1,00 – 1,01)	0,014
Admissão na UCI – n (%)	1,9 (0,73 – 5,26)	0,179		
Ventilação mecânica – n (%)	1,4 (0,38 – 5,19)	0,607		
Uso de Vasopressor – n (%)	1,7 (0,27 – 10,57)	0,581		
LRA – n (%)	1,5 (0,52 – 4,45)	0,438		
TRS – n (%)	1,0 (0,39 – 2,69)	0,954		
DISCUSSÃO

Após mais de um ano desde o primeiro caso relatado de COVID-19, o nosso conhecimento sobre as características da doença na população em geral cresceu substancialmente. No entanto, a apresentação clínica da infeção por SARS-CoV-2 em pacientes com DRC não se encontra tão bem estabelecida na literatura, embora pareça haver uma associação desta comorbilidade com mortalidade e apresentação grave^{11,12}.

No nosso estudo, a tosse, a dispneia e a febre foram sintomas frequentes, o que está de acordo com o que foi relatado anteriormente em pacientes com DRC (tosse em 35-69%, dispneia em 6,25-57% e febre em 43-71%)^{13,20-24}, com exceção da série ERACODA que documentou incidências consideravelmente mais baixas (tosse em 9,55%, dispneia em 6,65% e febre em 11%). Isto pode ser explicado pela inclusão de pacientes com DRC acompanhados e tratados em ambulatório e, portanto, com maior probabilidade de serem assintomáticos. Os nossos achados também se encontram de acordo com o descrito para a população em geral^{25-28}.

Em relação aos achados laboratoriais na admissão hospitalar, verificámos que mais da metade de nossos pacientes apresentava anemia, embora com uma hemoglobina média mais elevada do que a relatada em coortes anteriores^{3,21,24,29}. Como estes coortes incluíram principalmente pacientes em hemodiálise, a produção endógena insuficiente de eritropoetina e o estado inflamatório crônico, assim como a exposição à heparina durante o tratamento, podem explicar a discrepância observada^{21}. A hipoalbuminemia foi comum na nossa coorte, mas com valores médios mais baixos do que os descritos anteriormente (3,4-3,7 g/dL)^{3,9,22,24}. Isto pode indicar um pior estado nutricional de nossos doentes. Como esperado, os marcadores de inflamação (ferritina e PCR) e LDH estavam elevados^{3,4,9,20,22-24,26,29}.

Durante a primeira metade do nosso período de investigação, as diretrizes nacionais recomendaram o tratamento de pacientes da COVID-19 com pneumonia e/ou insuficiência respiratória por hidroxicloroquina e/ou lopinavir/ritonavir (ou remdesivir no ambiente de UCI)^{30}. Isto, juntamente com os potenciais riscos associados à administração de remdesivir em pacientes com uma TFGe inferior a 30 mL/min, explica as frequências de tratamento descritas na nossa coorte^{3}.

Os estudos prévios reportam uma ampla gama de incidência de LRA na COVID-19 na população em geral (0,5-46%)^{31}. A DRC é um fator de risco para LRA, o que explica a sua frequência nos nossos doentes^{31}. A percentagem elevada de uso de lopinavir/ritonavir e as apresentações graves também podem ter contribuído para este facto^{32}. Como esta coorte incluiu pacientes com DRC já sob TRS, o efeito da necessidade de TRS de novo na mortalidade pode ter sido subestimado.

Há uma ampla gama de taxas de admissão em UCI (12-39,4%)^{4,9,23} e de ventilação mecânica (4-31,5%)^{4,9,13,22-24,29} na literatura, dependendo da série e da percentagem relativa de pacientes com DRC em TRS. Na nossa coorte, 16% dos pacientes com DRC foram admitidos na UCI, 8,5% foram ventilados mecanicamente e 3,8% necessitaram de vasopressores. Estas percentagens relativamente baixas podem ser explicadas pela idade mais avançada de nossos pacientes e a carga mais elevada de comorbidades e fragilidade clínica, bem como pela inclusão de pacientes com DRC que já estavam em TRS na admissão, possivelmente subestimando o efeito da ventilação mecânica sobre a mortalidade.

Vinte e seis porcento dos nossos pacientes faleceram, o que é semelhante ao documentado em pacientes internados (11,1-42,0%)^{3,6,9,13,22–24,29,33-35}. A idade avançada, sexo masculino, ausência de documentação, obesidade, índice de comorbilidade mais elevado, fragilidade, tempo de diálise mais longo, sintomas e sinais como dispneia, tosse, temperatura corporal mais elevada, maior frequência respiratória/cardíaca e menor saturação de oxigênio, apresentação grave, necessidade de ventilação mecânica, alterações laboratoriais como anemia, níveis mais elevados de contagem de leucócitos, linfopenia, enzimas hepáticas, LDH, PCR, ferritina e interleucina-6, função renal anormal e albumina mais baixa, e uso de prednisona têm sido associados à mortalidade na população com DRC^{3,5,13,22,24,29,33,35,36}.

Verificámos que os indivíduos que faleceram eram significativamente mais velhos, apresentavam razões NL e níveis de ferritina, lactato e LDH mais elevados. Também se identificou uma associação entre mortalidade e insuficiência cardíaca. Contudo, após a análise multivariada, apenas a idade mais avançada, ferritina e níveis de LDH mais elevados foram fatores de risco independentes para mortalidade. A idade avançada é um fator de risco bem documentado para...
infeção, morbidade e mortalidade por SARS-CoV-2, uma vez que afeta negativamente a capacidade respiratória e a resposta imunológica. A infeção por SARS-CoV-2 induz um estado pró-inflamatório, que pode conduzir à chamada "tempestade de citocinas" e, subsequentemente, a danos tecidulares secundários e pior prognóstico. Como a ferritina atua como uma proteína de fase aguda e a LDH como um marcador de dano tecidual, sugerimos que possa existir uma associação entre a sua elevação e a resposta hiperinflamatória na COVID-19.

Chawki et al. (2020) também verificou uma redução da mortalidade em pacientes com DRC tratados com inibidores do SRAA. Este é um tópico controverso na literatura, com descrição de possível suprarregulação do receptor da enzima conversora da angiotensina 2, bem como do seu bloqueio. A maioria dos estudos na população em geral não conseguiu identificar uma associação entre inibidores do SRAA e mortalidade, e as sociedades profissionais continuam a recomendar o seu uso. Na nossa coorte não foi identificada nenhuma associação.

No nosso estudo, existem várias potenciais limitações a ter em conta. Em primeiro lugar, este foi um estudo retrospetivo de centro único, o que limita a generalização dos resultados. O tamanho limitado da nossa coorte e a falta de alguns resultados laboratoriais podem ter comprometido, pelo menos em parte, nossas conclusões. Além disso, não foram avaliadas as causas de DRC. Independentemente desses potenciais vieses, há alguns pontos fortes que merecem ser salientados. Nomeadamente, o facto da população do estudo, ter incluído todos os estádios da DRC, não apenas a doença renal em estádio terminal, como na maioria das séries publicadas. Além disso, este é o maior estudo, de que tenhamos conhecimento, sobre a COVID-19 em doentes com DRC em Portugal.

Concluindo, nesta coorte de pacientes com DRC com COVID-19, a idade avançada e níveis mais elevados de ferritina e LDH à admissão foram fatores de risco independentes para mortalidade, sugerindo o seu uso potencial como previsores de pior prognóstico.

CONTRIBUIÇÃO DOS AUTORES

CB redigiou o artigo. ID e JG fizeram contribuições substanciais para o conceito e desenho do estudo, análise e interpretação dos dados, e estiveram envolvidos na redação do manuscrito e na revisão crítica do mesmo. CCO, FM, JO, JB, JNF e CCA participaram da aquisição de dados. SB e JAL reviram o artigo e aprovaram a versão final a ser submetida para publicação.

CONFLITO DE INTERESSES

Os autores declararam não ter conflitos de interesse relacionados com a publicação deste manuscrito.

REFERÊNCIAS

1. Farouk SS, Fiaccadori E, Cravedi P, Campbell KN. COVID-19 and the kidney: what we think we know so far and what we don’t. J Nephrol. 2020 Jul;33:1213-8. DOI: https://doi.org/10.1007/s40620-020-00789-y
2. World Health Organization (WHO). Weekly operational update on COVID-19 – 16 October 2020 [Internet]. Geneva: WHO; 2020. Disponível em: https://www.who.int/publications/m/item/weekly-update-on-covid-19---16-october-2020
3. Goicoechea M, Cámara LAS, Macías N, Morales AM, Rojas AG, Bascuñana A, et al. COVID-19: clinical course and outcomes of 36 hemodialysis patients in Spain. Kidney Int [Internet]. 2020 Jul; 98(1):27-34. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7211728/
4. Hillbrands LB, Duivenvoorden R, Varrt P, Fransen CFM, Hemmelder MH, Jager KJ, et al. COVID-19-related mortality in kidney transplant and dialysis patients: Results of the ERACODA collaboration. Nephrol Dial Transplant. 2020 Nov;35(11):1973-83. DOI: https://doi.org/10.1093/ndt/gfaa261
5. Shah AD, Calabro-Kailukaitis N. COVID-19 and ESKD, a rapid review. R I Med J [Internet]. 2020 Sep;103(8):29-33. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/32980009
6. Zhou S, Xu J, Xue C, Yang B, Mao Z, Ong ACM. Coronavirus-associated kidney outcomes in COVID-19, SARS, and MERS: a meta-analysis and systematic review. Renal Fail. 2020 Nov;43(1):1-15. DOI: https://doi.org/10.1080/0886022X.2020.1847724
7. Gasparini M, Khan S, Patel JM, Parekh D, Bangash MN, Stümple R, et al. Renal impairment and its impact on clinical outcomes in patients who are critically ill with COVID-19: a multicentre observational study. Anaesthesia. 2020 Oct;76(3):320-6. DOI: https://doi.org/10.1111/anae.15293
8. Li H, Burm SW, Hong SH, Ghayda RA, Kronbichler A, Smith L, et al. A comprehensive review of coronavirus disease 2019: epidemiology, transmission, risk factors, and international responses. Yonsei Med J. 2021 Jan;62(1):1-11. DOI: https://doi.org/10.3349/ymj.2021.62.1.1
9. Ozturk S, Turgutalp K, Arici M, Odabas AR, Altriparmak MR, Aydin Z, et al. Mortality analysis of COVID-19 infection in chronic kidney disease, haemodialysis and renal transplant patients compared with patients without kidney disease: a nationwide analysis from Turkey. Nephrol Dial Transplant. 2020 Dec;35(12):2083-95. DOI: https://doi.org/10.1093/ndt/gfaa271
10. Rashedi J, Poor BM, Asgharzadeh V, Pourostadi M, Kafil HS, Vagari A, et al. Risk factors for covid-19. Infez Med. 2020 Dec;28(4):469-74.
11. Portolés J, Marques M, López-Sánchez P, Valdenebro M, Muñez E, Serrano ML, et al. Chronic kidney disease and acute kidney injury in the COVID-19 Spanish outbreak. Nephrol Dial Transplant. 2020 Aug;35(8):1353-61. DOI: https://doi.org/10.1093/ndt/gfaa189
12. Henry BM, Lippi G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int Urol Nephrol. 2020 Mar;52(6):1193-4. DOI: https://doi.org/10.1007/s11253-020-02451-9
COVID-19 em pacientes com doença renal crônica

13. Valeri AM, Robbins-Juarez SY, Stevens JS, Ahn W, Rao MK, Radhakrishnan J, et al. Presentation and outcomes of patients with ESKD and COVID-19. J Am Soc Nephrol. 2020 Jul;31(7):1409-15. DOI: https://doi.org/10.1681/ASN.2020040470

14. Duca A, Piva S, Focià E, Latronico N, Rizzi M. Calculated decisions: brescia-COVID respiratory severity scale (BCRS5) algorithm. Emerg Med Pract [Internet]. 2020 Apr; 22(5 Suppl):CD1-CD2. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32297727/

15. World Health Organization (WHO). Diagnostic testing for SARS-CoV-2 [Internet]. Geneva: WHO; 2020. Disponível em: https://www.who.int/publications/i/item/diagnostic-testing-for-sars-cov-2

16. Levey AS, Stevens L, Schmid CH, Zhang Y, Castro AF, Feldman HE, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med [Internet]. 2009 May; 150(9):604-12. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763564/

17. Kidney Disease Improving Global Outcomes (KDIGO). KDIGO clinical practice guideline for acute kidney injury. Kidney Int [Internet]. 2012 Mar; 2(1):19-22. Disponível em: https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf

18. American Diabetes Association (ADA). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020. Diabetes Care. 2020 Jan;43(Suppl 1):S14-S31. DOI: https://doi.org/10.2337/ed20-5002

19. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier MK, Radhakrishnan J, et al. Presentation and outcomes of hospitalized with COVID-19. Kidney Int. 2020 Dec;98(6):1530-9. DOI: https://doi.org/10.1016/j.kint.2020.07.030

20. Ministério da Saúde (PT). Direção Geral de Saúde. COVID-19: fase de mitigação. Abordagem do doente com suspeita ou infecção por SARS-CoV-2 [Internet]. Lisboa: Ministério da Saúde; 2020. Disponível em: https://www.omd.pt/content/uploads/2020/03/2020323-covid19-dgs-norma-0042020-mitigacao.pdf

21. Kant S, Menez SP, Hanounch M, Fine DM, Crews DC, Brennan DC, et al. The COVID-19 nephrology compendium: AKI, CKD, ESKD and transplantation. BMC Nephrol. 2020 Oct;21(1):449. DOI: https://doi.org/10.1186/s12882-020-02112-0

22. Binois Y, Hachad H, Salem JE, Charpentier J, Lebrun-Vignes B, Pène F, et al. Acute kidney injury associated with lopinavir/ritonavir combination therapy in patients with COVID-19. Kidney Int Rep. 2020 Oct;5(10):1787-90. DOI: https://doi.org/10.1016/j.ekir.2020.07.035

23. Chawki S, Buchard A, Sakhi H, Dardim K, El Sakhwai K, Chawki M, et al. Treatment impact on COVID-19 evolution in hemodialysis patients. Kidney Int. 2020 Oct;98(4):1053-4. DOI: https://doi.org/10.1016/j.kint.2020.07.010

24. Farouk SS, Fiaccadori E, Cravedi P, Campbell KN. COVID-19 and the kidney: what we think we know so far and what we don’t. J Nephrol. 2020 Jul;33:1213-8. DOI: https://doi.org/10.1007/s40620-020-00789-y

25. Jager KJ, Kramer A, Chesnay CG, Coupchoud C, Sánchez-Álvarez JE, Garneat L, et al. Results from the ERA-EDTA Registry indicate a high mortality due to COVID-19 in dialysis patients and kidney transplant recipients across Europe. Kidney Int. 2020 Dec;98(6):1540-8. DOI: https://doi.org/10.1016/j.kint.2020.09.006

26. Weiss S, Bhat F, Fernandez MDP, Bhat JG, Coristisid GN. COVID-19 infection in ESKD: findings from a prospective disease surveillance program at dialysis facilities in New York City and Long Island. J Am Soc Nephrol. 2020 Nov;31(11):2517-21. DOI: https://doi.org/10.1681/ASN.2020070932

27. Canedo-Marroquin G, Saavedra F, Andrade CA, Berrios RV, Rodríguez-Guilarte L, Opazo MC, et al. SARS-CoV-2: immune response elicited by infection and development of vaccines and treatments. Front Immunol. 2020 Dec;11:569760. DOI: https://doi.org/10.3389/fimmu.2020.569760

28. Rath L, Yin Z, Hu Y, Mei H. Controlling cytokine storm is vital in COVID-19. Front Immunol. 2020 Nov;11:570993. DOI: https://doi.org/10.3389/fimmu.2020.570993

29. Tavares J, Dias BF, Oliveira JP, Sala I, Silva F, Castro A, et al. SARS-CoV-2 infection in hemodialysis patients: Preliminary data from a Portuguese hospital center. Port J Nephrol Hypert. 2020 Sep;35(3):142-6. DOI: https://doi.org/10.32932/pjnhy.2020.10.083

30. D’Apolito B, Tomé M, Melo SH, Carvalho RV, Ramalheiro A. COVID-19 patients on hemodialysis: a hospital experience. Port J Nephrol Hypert. 2021 Jan;34(4):217-20.