Autonomization of monoidal categories

Antonin Delpeuch

March 28, 2019
SYCO 3
Outline

1. Pregroup grammars and compositional semantics

2. Free yourselves from the strings of tensors!

3. Examples of applications
Outline

1. Pregroup grammars and compositional semantics

2. Free yourselves from the strings of tensors!

3. Examples of applications
Context

Pregroup grammars (Lambek, 1993, Lambek, 1999)

the film that Emily directed

$np \cdot n^l$ n $n^r \cdot n \cdot np^{ll} \cdot s^l$ np $np^r \cdot s \cdot np^l$
Pregroup grammars (Lambek, 1993, Lambek, 1999)

```
the · film · that · Emily · directed
```

```
np · n^l
n
n^r · n · np^ll · s^l

np

np^r · s · np^l
```
Pregroup grammars (Lambek, 1993, Lambek, 1999)

```
the film that Emily directed
np · n^l  n  n^r · n · np^ll · s^l  np  np^r · s · np^l
```

Context
Pregroup grammars (Lambek, 1993, Lambek, 1999)

the film that Emily directed

\[np \cdot n^l \quad n \quad n^r \cdot n \cdot np^{ll} \cdot s^l \quad np \quad np^r \cdot s \cdot np^l \]
Autonomous (or rigid) categories

- **Objects (= types)**
 - are closed under \(_ \otimes _ \) (product of types), \(_^l \) and \(_^r \) (adjoints).
 - contain basic types, and \(I \), neutral for \(\otimes \).
- **Arrows (= type reductions) between two objects**
 - can be composed with \(\circ \) (sequential composition) and \(\otimes \) (parallel composition);
 - contain \(1_A : A \rightarrow A \) (identity of \(A \)) and

\[
\begin{align*}
\epsilon^l &: A^l \otimes A \rightarrow I \\
\eta^l &: I \rightarrow A \otimes A^l \\
\epsilon^r &: A \otimes A^r \rightarrow I \\
\eta^r &: I \rightarrow A^r \otimes A
\end{align*}
\]

and such that some equations hold.
Representation

\[f \circ g = \begin{array}{c} A \\ \downarrow f \\ B \\ \downarrow \end{array} = \begin{array}{c} A \\ \downarrow g \\ B \\ \downarrow f \\ C \\ \downarrow \end{array} \]

\[f \otimes g = \begin{array}{c} A \otimes C \\ \downarrow f \otimes g \\ B \otimes D \\ \downarrow \end{array} = \begin{array}{c} A \\ \downarrow \end{array} \otimes \begin{array}{c} C \\ \downarrow \end{array} = \begin{array}{c} f \\ \downarrow \end{array} \otimes \begin{array}{c} g \\ \downarrow \end{array} \]

\[f \circ (\mathbf{I}) = \begin{array}{c} A \\ \downarrow f \\ B \\ \downarrow \end{array} = \begin{array}{c} I \\ \downarrow f \\ I \\ \downarrow \end{array} \]
\(\epsilon \) and \(\eta \)

\[
\begin{align*}
\epsilon^r &= \begin{array}{c}
A \\
\otimes \\
I
\end{array} \begin{array}{c}
A^r
\end{array} \\
\epsilon^l &= \begin{array}{c}
A^l \\
\otimes \\
I
\end{array} \begin{array}{c}
A
\end{array} \\
\eta^r &= \begin{array}{c}
I
\end{array} \begin{array}{c}
A^r \\
\otimes
\end{array} \begin{array}{c}
A
\end{array} \\
\eta^l &= \begin{array}{c}
I
\end{array} \begin{array}{c}
A \\
\otimes
\end{array} \begin{array}{c}
A^l
\end{array} \\
I_A &= \begin{array}{c}
A
\end{array} \begin{array}{c}
A
\end{array}
\end{align*}
\]
Some equalities
Pregroup reductions as arrows

Clouzot directed an Italian movie

\[n \quad n^r \quad s \quad n^l \quad d \quad d^r \quad d \quad d^r \quad n \]
Clouzot directed an Italian movie

\[n \quad n^r \quad s \quad n^l \quad d \quad d^r \quad d \quad d^r \quad n \]
Pregroup reductions as arrows

Clouzot directed an Italian movie

\[
n \quad n^r \quad s \quad n^l \quad d \quad d^r \quad d \quad d^r \quad n
\]
Compositional semantics

Word semantics

Type reduction

Motto: Type reduction ∘ Word meanings = Sentence meaning
DisCoCat (Coecke, Sadrzadeh, and Clark, 2011): use \((\text{Vect}, \otimes, I)\), finite dimensional vector spaces over \(\mathbb{R}\) and linear maps between them.

\[
\begin{array}{c}
I_n = \begin{pmatrix}
0.73 \\
-2.3 \\
0.1 \\
1.4
\end{pmatrix} \\
I_{n n^r} = \begin{pmatrix}
-0.3 & 3.9 & -2.1 & 0.4 \\
-2.3 & 2.2 & 1.5 & -1.6 \\
0.1 & 0.3 & -3.8 & 1.2 \\
1.4 & 3.4 & 0.1 & 3.2
\end{pmatrix}
\end{array}
\]
DisCoCat (Coecke, Sadrzadeh, and Clark, 2011) : use \((\text{Vect}, \otimes, I)\), finite dimensional vector spaces over \(\mathbb{R}\) and linear maps between them.

\[
I_n = \begin{pmatrix}
0.73 \\
-2.3 \\
0.1 \\
1.4 \\
\end{pmatrix}
\]

\[
I_{n n^r} = \begin{pmatrix}
-0.3 & 3.9 & -2.1 & 0.4 \\
-2.3 & 2.2 & 1.5 & -1.6 \\
0.1 & 0.3 & -3.8 & 1.2 \\
1.4 & 3.4 & 0.1 & 3.2 \\
\end{pmatrix}
\]

The dimension of a word representation is \textbf{exponential} in the length of the grammatical type.
Why should we use the tensor product?

The direct sum \oplus is cartesian, so it cannot have cups and caps:
Why should we use the tensor product?

The direct sum \oplus is cartesian, so it cannot have cups and caps:

$$
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{=}
\end{array}
\end{array}
\end{array}
\end{array}
$$

General belief in the community: “sticking with the categorical framework [...] forces us to stay within the world of linear maps” (Wijnholds and Sadrzadeh, 2018).
Outline

1. Pregroup grammars and compositional semantics

2. Free yourselves from the strings of tensors!

3. Examples of applications
Just cheat and be free!

Our semantic category does not need to have caps and cups: we can freely add them.

Trick: caps and cups can be eliminated in any sentence representation.
Constructing free autonomous categories

- Preller and Lambek (2007) construct the free autonomous category generated by a category.
- We need to start from a monoidal category instead. We factorize their construction:
Outline

1. Pregroup grammars and compositional semantics
2. Free yourselves from the strings of tensors!
3. Examples of applications
Examples of applications

Additive models

Observation by Mikolov et al. (2013):

\[\text{queen} + \text{king} + \text{man} \rightarrow \text{man} \rightarrow \text{queen} \rightarrow \text{woman} \]

So, it tempting to define royal\((x) = x + \text{queen} - \text{woman} \).
Examples of applications

Additive models

Observation by Mikolov et al. (2013):

So, it tempting to define royal(x) = $x + \text{queen} - \text{woman}$.
That is forbidden in (Vect, \otimes, I)!
Convolutional neural networks

Socher et al. (2013) combine vectors following a Chomskyian tree:

Lewis (2019) translates this approach to the categorical model, in \((\text{Vect}, \otimes, I)\).
Examples of applications

A man who ate a cake

\[a \] \[b \] \[c \] \[d \]

\[d \] \[d^r n_s \] \[n^r s n^l \] \[n^r s n^l \] \[d \] \[d^r n_s \]

= \[a \] \[d \] \[c \] \[b \]