Do We Need Word Order Information for Cross-lingual Sequence Labeling

Zihan Liu, Pascale Fung
Center for Artificial Intelligence Research (CAiRE)
Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
zliucr@connect.ust.hk, pascale@ece.ust.hk

Abstract

Most of the recent work in cross-lingual adaptation does not consider the word order variances in different languages. We hypothesize that cross-lingual models that fit into the source language word order might fail to handle target languages whose word orders are different. To test our conjecture, we build an order-agnostic model for cross-lingual sequence labeling tasks. Our model does not encode the word order information of the input sequences, and the predictions for each token are based on the attention on the whole sequence. Experimental results on dialogue natural language understanding, part-of-speech tagging, and named entity recognition tasks show that getting rid of word order information is able to achieve better zero-shot cross-lingual performance than baseline models.

1 Introduction

Recently, neural-based supervised approaches have achieved remarkable performance in sequence labeling tasks (e.g., named entity recognition). Nevertheless, these methods are not applicable to low-resource languages where extensive training data is absent. Lately, numerous cross-lingual adaptation methods are applied to this data-scarcity scenario where zero or very few target language training samples are utilized (Wisniewski et al., 2014; Schuster et al., 2019b; Artetxe and Schwenk, 2019; Liu et al., 2019a).

However, most of the cross-lingual research work ignores the word order differences across languages and utilizes sequence encoders that are based on LSTM (Hochreiter and Schmidhuber, 1997) or Transformer (Vaswani et al., 2017) which inevitably models the word order information in the source language (Xie et al., 2018; Liu et al., 2019b). Since different languages are likely to have different word orders, models that fit into the source language word order could impede the performance in the target languages due to the word order differences. Therefore, in this paper, we investigate whether taking away source language word order information can improve the adaptation performance in target languages.

To cope with word order variances across languages, Ahmad et al. (2018) proposed to utilize relative positional encoder. However, their model still contains partial word order information in the source language. In this paper, instead, we try to get rid of all the possible source language word order information and conduct experiments on zero-shot cross-lingual sequence labeling tasks. We build our sequence encoding model based on the encoder of Transformer (Vaswani et al., 2017) and remove the positional encoding to make the model order-agnostic. In addition, in sequence labeling, conditional random field (CRF) which models the conditional probability of label sequences could also implicitly model the source language word order in the training. Hence, we study whether removing the CRF layer helps improve cross-lingual performance. Moreover, we propose to enhance Transformer’s cross-lingual ability by replacing multi-head attention with single head attention.

We conduct experiments based on cross-lingual word embeddings RCSLS (Joulin et al., 2018) and multilingual BERT (Devlin et al., 2019). Results show that getting rid of word order information is able to outperform the models that contain or partially contain word order information for zero-shot cross-lingual sequence labeling tasks.

2 Related Work

Coping with the scenario where zero or very few training samples are available is always an interesting and challenging research topic (Gu et al.,...
2018; Lee et al., 2019; Liu et al., 2019c). Recently, cross-lingual sequence labeling approaches that circumvent the need for extensive training data in target languages have achieved remarkable performance (Kim et al., 2017; Ni et al., 2017; Liu et al., 2019a). Cross-lingual language models pre-trained based on large amounts of monolingual or bilingual resources achieve state-of-the-art performance in many cross-lingual adaptation tasks (Pires et al., 2019; Lample and Conneau, 2019; Conneau et al., 2019).

Word order differences across languages have been considered in cross-lingual dependency parsing (Tiedemann and Agic, 2016; Zhang et al., 2019) by using Treebank translation. For the same task, on the other hand, Ahmad et al. (2018) leverage relative positional self-attention encoder (Shaw et al., 2018) to reduce the word order differences. Compared to previous approaches, our work studies getting rid of all the possible word order information for cross-lingual sequence labeling tasks, and our model does not require any external library like Treebank.

3 Methodology

This section can be separated into three parts. First, we introduce how we remove word order information based on the Transformer encoder (Vaswani et al., 2017). Second, we discuss the conditional random field (CRF). Third, we propose to replace multi-head attention in Transformer with single head attention to enhance the cross-lingual ability.

3.1 Removing Positional Encoding

For the encoder of Transformer, positional encoding is the only module to model the word order for the input sequences. Hence, we remove the positional encoding of the Transformer encoder to create an order-agnostic model. In the training phase, each token learns to attend to other related tokens in the input sequence so that the predictions do not depend on the order information, which makes the cross-lingual adaptation more robust.

3.2 Removing CRF Layer

Combining sequence encoder such as BiLSTM (Hochreiter and Schmidhuber, 1997) with conditional random field (CRF) has become a commonly used architecture for monolingual (Lample et al., 2016; Winata et al., 2019) as well as cross-lingual sequence labeling tasks (Xie et al., 2018; Schuster et al., 2019a; Liu et al., 2019b). Since different languages have different word order patterns, the pattern for label sequences might be different as well. However, the CRF layer models the conditional probability of label sequences, which implicitly contains the word order information. Therefore, we try to remove the CRF layer, and the word-level predictions are obtained by a linear layer with softmax.

3.3 Single Head Attention

As illustrated in Vaswani et al. (2017), Transformer with multi-head attention outperforms single head attention in the machine translation task. This is because multi-head jointly attends to information from different representation subspaces, hence it works better than single head attention for a sophisticated task like machine translation. However, the feature space for sequence labeling tasks is not as large as the machine translation task, and conducting multi-head attention needs to split the representations, which might break the alignment of cross-lingual embeddings. Therefore, we propose to revise multi-head attention in Transformer encoder to single head attention to enhance the cross-lingual ability of Transformer.

4 Experiments

4.1 Experimental Settings

We test our methods on three sequence labeling tasks in the zero-shot cross-lingual setting, namely dialogue natural language understanding (NLU), part-of-speech tagging (POS), and named entity recognition (NER). For evaluating the NLU task, we use the multilingual NLU dataset proposed by Schuster et al. (2019a), which contains English, Spanish and Thai across weather, alarm and reminder domains. For the POS task, we utilize Universal Dependencies 2.0 (Nivre et al., 2017) and choose English, French, Spanish, Portuguese, Greek and Russian to evaluate our approaches. And we evaluate the NER task on CoNLL 2002 and CoNLL 2003 datasets (Tjong Kim Sang, 2002; Sang and De Meulder, 2003), which contain English, German, Spanish and Dutch.

For all the tasks, we use English as the source language and other languages as target languages. For the zero-shot scenario, we do not use any data sample in target languages, and we select our fi-
Table 1: Zero-shot cross-lingual accuracies on the POS tagging task (results are averaged over three runs).

Model / Embeddings	es	fr	pt	ru	el	AVG
RCSLS Cross-lingual Embeddings						
Ahmad et al. (2018)	39.87	38.39	23.61	39.37	28.76	34.00
BiLSTM+CRF	33.94	26.50	17.91	31.73	22.30	26.48
TRS+Linear	39.38	37.33	24.52	33.41	30.58	33.04
TRS+CRF	38.41	37.31	23.34	32.61	27.63	31.86
OATRS+Linear	41.56	40.99	28.41	37.56	32.50	36.20
OATRS+CRF	39.39	38.22	27.13	33.44	32.03	34.07
SHTRS+Linear	39.38	37.33	24.52	33.41	30.58	33.04
SHTRS+CRF	37.43	37.25	23.41	31.92	27.15	31.43
SHOA+Linear	39.64	40.22	32.13	40.20	35.40	37.52
SHOA+CRF	45.33	46.06	34.22	45.47	35.42	41.30
mBERT Cross-lingual Embeddings (Freeze mBERT)						
Ahmad et al. (2018)	71.85	80.54	32.57	77.52	74.43	67.38
BiLSTM+Linear	70.22	77.74	29.28	77.36	72.64	65.45
TRS+Linear	72.08	79.03	32.65	78.06	72.75	66.91
OATRS+Linear	72.70	80.16	33.05	78.64	75.01	67.91
SHTRS+Linear	72.21	78.43	32.81	77.82	75.48	67.35
SHOA+Linear	72.65	80.99	35.84	76.70	75.69	68.37
mBERT+Linear (Fine-tune mBERT)						
w/ word order	84.31	80.54	54.30	84.19	84.35	79.24
w/o word order	84.73	89.18	54.56	86.17	85.66	80.06

4.2 Results

Zero-shot cross-lingual performances for the POS, NER and NLU tasks are illustrated in Table 1, Table 2 and Table 3, respectively. We denote Transformer encoder as *TRS*, order-agnostic Transformer encoder as *OATRS*, single head Transformer encoder as *SHTRS*, single head order-agnostic Transformer encoder as *SHOA+TR*. The number of heads for the *TRS* and *OATRS* is eight.

We use {model}+CRF to represent the model followed by the CRF layer and {model}+Linear to represent the model followed by a linear layer with softmax (i.e., CRF layer is removed). Furthermore, we compare with Transformer with relative positional encoding proposed in Ahmad et al. (2018) \(^1\). All the models have the same or similar model size for the fair comparison.

4.2.1 Does Removing Positional Encoding Help?

In general, order-agnostic models (i.e., Transformer based models without positional encoding) outperform their corresponding vanilla Transformer, Transformer with relative positional encoding (Ahmad et al., 2018) and commonly used BiLSTM+CRF structure (Lample et al., 2016; Schuster et al., 2019a).

As illustrated in Table 1, Table 2 and Table 3, removing positional encoding consistently improves the zero-shot cross-lingual performance. For example, in the POS task, in terms of the average performance over all languages (AVG), with RCSLS cross-lingual embeddings, OATRS+CRF outperforms TRS+CRF by 4.34% accuracy, and SHOA+CRF outperforms SHTRS+CRF by

\(^1\) Originally, the idea is for cross-lingual dependency parsing. In this paper, we combine the Relative Positional Encoding Transformer with CRF for sequence labeling tasks.
around 10% accuracy, and with mBERT cross-lingual embeddings, around 1% accuracy improvements are observed by removing positional encoding. Also, our order-agnostic Transformer outperforms relative positional encoding models that still contain partial word order information. For example, in the NER task with RCSLS cross-lingual embeddings, OA TRS+CRF surpasses Ahmad et al. (2018) by around 4% F1-score. Additionally, for fine-tuning mBERT, we observe that adding positional encoding for the sequence embeddings from mBERT (w/ word order) makes the performance worse.

4.2.2 Does Removing CRF Layer Help?

As shown in Table 1, Table 2 and Table 3, removing the CRF layer cannot improve the performance, and instead, it makes the performance worse. For example, in the NER task with RCSLS cross-lingual embeddings, OA TRS+CRF surpasses Ahmad et al. (2018) by around 4% F1-score. Additionally, for fine-tuning mBERT, we observe that adding positional encoding for the sequence embeddings from mBERT (w/ word order) makes the performance worse.

4.2.3 Does Single Head Attention Help?

We can see from Table 1, Table 2 and Table 3, Transformer based models with single head attention slightly better the corresponding models with multi-head attention. For example, in the NLU task with refined RCSLS embeddings, SHOA TRS+CRF outperforms OA TRS+CRF in Thai by 1.88% accuracy in intent detection and 0.85% F1-score. Additionally, in the POS task with mBERT embeddings, SHOA TRS+Linear outperforms OA TRS+Linear by 0.46% F1-score.
4.2.4 How Order Information Influences the Performance?

Interestingly, getting rid of the positional encoding in Transformer shows improvements in all languages compared to the original Transformer as well as relative positional encoding Transformer, including Spanish and French that have a close language distance to English, and Greek and Thai which are lexically and syntactically different from English. This is because word order differences naturally exist in different languages, and the baseline models contain or partially contain the source language order information. Order-agnostic models are able to learn the task in the source language well enough due to the extensive training data and have a better adaptation ability to target languages since the models do not overfit to the source language word order.

In addition, we observe that TRS+CRF generally achieves better results than BiLSTM+CRF. We conjecture that it is because BiLSTM contains more order information than Transformer since BiLSTM has a memory cell to remember the previous tokens and Transformer only leverage positional encoding for modeling word orders. Hence, BiLSTM might have a more serious overfitting problem to the source language word order.

5 Conclusion and future work

Word order differences naturally exist among different languages. To explore this intuition, in this paper, we first hypothesize that getting rid of all the word order information is able to achieve better performance. We conduct experiments by removing the positional encoding of Transformer and the CRF layer for zero-shot cross-lingual sequence labeling tasks. Experimental results show that removing positional encoding helps improve performance while removing the CRF layer makes the performance worse. In the future, we plan to conduct a more comprehensive analysis of why removing positional encoding can work and explore better order-agnostic models.

References

Wasi Uddin Ahmad, Zhisong Zhang, Xuezhe Ma, Eduard Hovy, Kai-Wei Chang, and Nanyun Peng. 2018. On difficulties of cross-lingual transfer with order differences: A case study on dependency parsing. arXiv preprint arXiv:1811.00570.

Mikel Artetxe and Holger Schwenk. 2019. Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond. Transactions of the Association for Computational Linguistics, 7:597–610.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Victor O.K. Li. 2018. Universal neural machine translation for extremely low resource languages. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 344–354.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation, 9(8):1735–1780.

Armand Joulin, Piotr Bojanowski, Tomas Mikolov, Hervé Jégou, and Edouard Grave. 2018. Loss in translation: Learning bilingual word mapping with a retrieval criterion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.

Joo-Kyung Kim, Young-Bum Kim, Ruhi Sarikaya, and Eric Fosler-Lussier. 2017. Cross-lingual transfer learning for pos tagging without cross-lingual resources. In Proceedings of the 2017 conference on empirical methods in natural language processing, pages 2832–2838.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural architectures for named entity recognition. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 260–270.

Guillaume Lample and Alexis Conneau. 2019. Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291.

Nayeon Lee, Zihan Liu, and Pascale Fung. 2019. Team yeon-zi at semeval-2019 task 4: Hyperpartisan news detection by de-noising weakly-labeled data. In Proceedings of the 13th International Workshop on Semantic Evaluation, pages 1052–1056.
Zihan Liu, Jamin Shin, Yan Xu, Genta Indra Winata, Peng Xu, Andrea Madotto, and Pascale Fung. 2019a. Zero-shot cross-lingual dialogue systems with transferable latent variables. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 1297–1303.

Zihan Liu, Genta Indra Winata, Zhaojiang Lin, Peng Xu, and Pascale Fung. 2019b. Attention-informed mixed-language training for zero-shot cross-lingual task-oriented dialogue systems. *arXiv preprint arXiv:1911.09273*.

Zihan Liu, Yan Xu, Genta Indra Winata, and Pascale Fung. 2019c. Incorporating word and subword units in unsupervised machine translation using language model rescoring. *arXiv preprint arXiv:1908.05925*.

Jian Ni, Georgiana Dinu, and Radu Florian. 2017. Weakly supervised cross-lingual named entity recognition via effective annotation and representation projection. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1470–1480.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al. 2017. Universal dependencies 2.0. lindat/clarin digital library at the institute of formal and applied linguistics, charles university, prague.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How multilingual is multilingual bert? In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 4996–5001.

Erik Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the conll-2003 shared task: Language-independent named entity recognition. In *Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003*, pages 142–147.

Sebastian Schuster, Sonal Gupta, Rushin Shah, and Mike Lewis. 2019a. Cross-lingual transfer learning for multilingual task oriented dialog. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 3795–3805.

Tal Schuster, Ori Ram, Regina Barzilay, and Amir Globerson. 2019b. Cross-lingual alignment of contextual word embeddings, with applications to zero-shot dependency parsing. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 1599–1613.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with relative position representations. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)*, pages 464–468.

Jörg Tiedemann and Željko Agić. 2016. Synthetic tree-banking for cross-lingual dependency parsing. *Journal of Artificial Intelligence Research*, 55(1):209–248.

Erik F Tjong Kim Sang. 2002. Introduction to the conll-2002 shared task: language-independent named entity recognition. In *Proceedings of the 6th conference on Natural language learning-Volume 20*, pages 1–4.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In *Advances in neural information processing systems*, pages 5998–6008.

Genta Indra Winata, Zhaojiang Lin, Jamin Shin, Zihan Liu, and Pascale Fung. 2019. Hierarchical meta-embeddings for code-switching named entity recognition. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 3532–3538.

Guillaume Wisniewski, Nicolas Péchex, Souhir Gahbiche-Braham, and François Yvon. 2014. Cross-lingual part-of-speech tagging through ambiguous learning. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 1779–1785.

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A Smith, and Jaime G Carbonell. 2018. Neural cross-lingual named entity recognition with minimal resources. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 369–379.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2019. Cross-lingual dependency parsing using code-mixed treebank. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 996–1005.