Hsp70 has been implicated in nuclear localization signal (NLS)-directed nuclear transport. Saccharomyces cerevisiae contains distinct SSA and SSB gene families of cytosolic Hsp70s. The nucleocytoplasmic localization of Ssa1p and Ssb1p was investigated using green fluorescent protein (GFP) fusions. Whereas GFP-Ssa1p localized both to the nucleus and cytoplasm, GFP-Ssb1p appeared only in the cytosol. The C-terminal domain of Ssb1p contains a leucine-rich nuclear export signal (NES) that is necessary and sufficient to direct nuclear export. The accumulation of GFP-Ssb1p in the nuclei of xpo1-1 cells suggests that Ssb1p shuttles across the nuclear envelope. Elevated levels of SSA1 but not SSB1 suppressed the NLS-GFP nuclear localization defects of nup188Δ cells. Studies with Ssa1p/Ssb1p chimeras revealed that the Ssb1p NES is sufficient and necessary to inhibit the function of Ssa- or Ssb-type Hsp70s in nuclear transport. Thus, NES-less Ssb1p stimulates nuclear transport in nup188Δ cells and NES-containing Ssa1p does not. We conclude that the differential function of Ssa1p and Ssb1p in nuclear transport is due to the NES-directed export of the Ssb1p and not to functional differences in their ATPase or peptide binding domains.

The import of proteins into nuclei is mediated by soluble nuclear localization signal (NLS) receptors. SV40 large T-antigen-like NLSs are bound in the cytoplasm by karyopherin α (Kap α), which serves as an adapter to link NLS-cargo to karyopherin β (Kap β). Kap β mediates docking at the cytoplasmic face of the nuclear pore complex (1). Saccharomyces cerevisiae contains a single Kap α gene encoded by SRP1. Translocation of the NLS-cargo-Kap αβ ternary complex occurs through the central channel of the nuclear pore complex. Once in the nucleus, the NLS-cargo dissociates and Kap α and β are recycled to the cytoplasm (1, 2). Only a portion of the cellular import traffic is mediated by Kap αβ heterodimers. Other classes of NLS-cargo, for example shuttling pre-mRNA binding proteins that display M9-type import signals (3), are transported by Kap β-like factors that bind directly to cognate NLS-cargo without the aid of Kap α adapters (1, 4).

Hsp70/Hsc70s (collectively referred to here as Hsp70s) are conserved molecular chaperones that participate in a variety of cellular functions, including protein folding and transport and the repair of stress-induced damage (5–7). Hsp70s are composed of a 44-kDa N-terminal ATPase domain, an 18-kDa peptide binding domain, and a C-terminal 10-kDa variable domain of unknown function (8, 9). S. cerevisiae contains two families of cytosolic Hsp70 genes, SSA1-4 and SSB1-2 (10, 11). The yeast Ssa-type Hsp70s are similar to the cytosolic Hsp70s found in other organisms including bacteria. To date, Ssb-type Hsp70s have been identified only in fungi. In S. cerevisiae, Ssb1 and Ssb2 are associated with translating ribosomes and can be cross-linked to nascent polypeptides (12, 13).

Hsp70s have been proposed to function in NLS-directed nuclear transport by promoting the formation and stability of NLS-cargo-Kap α complexes (reviewed in Refs. 1, 14, and 15). Thus, the ectopic expression of human Hsp70 in mouse cells rescued the import of a protein carrying a mutant NLS (16). Conversely, the elevated expression of SSA1 in yeast suppressed a transport defect in srp1–31 cells (17). Microinjected antibodies against Hsc70 inhibited NLS-directed import (17), and the depletion of Hsp70 from cytosolic extracts inhibited import in cell-free assays (18–20). Finally, the finding that the nuclear localization of Hsp70 is itself dependent on the co-import of NLS-cargo (19) suggests that Hsp70 is imported in association with the NLS-cargo-Kap αβ ternary complex.

In the present study we delineate a functional nuclear export signal (NES) in the C-terminal domain of Ssb1p and show that it is responsible both for the different subcellular localizations of Ssa1p and Ssb1p and for their differential function in NLS-directed nuclear transport.

MATERIALS AND METHODS

Strains, Plasmids, and Culture Conditions—Except where noted, all yeast strains used in this study were based in a W303 (strain WHY12) genetic background (MATa ade2-1 leu2-3, 112 his3-11, and 15 trp1-1 ura3-1 can1-100). Construction of strains containing nup188Δ (21) and xpo1-1 alleles (22) and L40 cells (23) were previously described. DNA manipulations were performed using standard protocols (24). The construction of pGAD-NSGFP and pGFP-URA3 (25), Ycpgal1-SSA1, and YPCGA1-SSB1, which contain the SSA1 and SSB1 genes under the control of the GAL1 inducible promoter (6), and the SSA1/SSB1 chimeric plasmids (26) were previously described. Chimeras that divided the ATPase domain into two halves according to crystal structure (8) were constructed using an Eaq1 site introduced by polymerase chain reaction at the gene sequence corresponding to amino acid 177 in Ssa1p and amino acid 181 in Ssb1p. A BamHI site introduced by polymerase chain reaction at the N terminus of Ssa1 and Ssb1 was used to clone the chimera into pUCG2, placing them under GAL1 control. PCUG2 was constructed by inserting a 690-base pair EcoRI/BamHI fragment containing the GAL1/GAL10 promoter into the pRS316 (27), pGFP-N-FUS plasmid (28), containing the MET25 promoter and GFP, was used to express GFP-Ssa1p/Ssb1p fusions for localization studies. In pGFP-pA-Cu/Cb plasmids, protein A synthetic analog, the so-called Z-domain
The subcellular localization of Ssa1p and Ssb1p was determined using GFP fusions. GFP-Ssa1p and GFP-Ssb1p fusion proteins were expressed from a MET5-inducible promoter in WHY12 cells and localized by confocal microscopy. As expected, both Hsp70s were localized in the cytoplasm, but only GFP-Ssa1p accumulated to any significant degree in the nuclei (Fig. 1). Both fusions were excluded from vacuoles. The localization of GFP-Ssa1p in both the cytoplasm and nucleus is consistent with the distribution of Ssa-type Hsp70s in other eukaryotes (31, 32). In contrast, the exclusive cytoplasmic localization of GFP-Ssb1p is unique among known cytosolic Hsp70s.

A feature of the stress response in many eukaryotes is the migration of cytoplasmic Ssa-type Hsp70s from the cytoplasm into the nucleus where they accumulate to high levels (32, 33). To determine whether this phenomenon occurs in *S. cerevisiae*, the localization of GFP-Ssa1p and GFP-Ssb1p was observed following heat shock treatment. After a 60-min heat shock treatment, nuclear GFP-Ssa1p levels increased, relative to cytoplasmic levels, but not to a great extent (Fig. 1). Heat shock treatment, nuclear GFP-Ssa1p levels increased, relative to cytoplasmic levels, but not to a great extent (Fig. 1). Heat shock treatment, nuclear GFP-Ssa1p levels increased, relative to cytoplasmic levels, but not to a great extent (Fig. 1).

The *C* Terminus of Ssb1p Directs Cytoplasmic Localization—Hsp70s, including Ssa1p and Ssb1p, can be divided into three functional domains, the ATPase, peptide binding, and C-terminal domains. Thus, Ssa1p is designated AAA. In some constructs the ATPase domain was divided in half such that Ssa1p would be indicated by (AA)AA. B, GFP-Ssa1p/Ssb1p chimeras, their masses, and their cellular localizations: N = C, obvious nuclear accumulation; C, fluorescent images of selected GFP-Ssa1p/Ssb1p fusions and nuclei in the same group of cells positioned by Hoechst staining (column H). Arrows indicate the positions of nuclei in matched cells.

A mixture of Ssa and Ssb structural domains, most of which are designated by a three-letter code (Ref. 26 and this study). For example, “ABA” contains the Ssa ATPase domain, the Ssb peptide binding domain, and the Ssa C-terminal domain. Chimeras that contain subdivided ATPase domains are designated, for example, “(AB)AA” or “(BA)AA.” Chimeras that lack particular domains are designated “-AA,” which, in this example, lacks an ATPase domain. For the purpose of localization studies, each chimera was expressed as a GFP fusion protein. GFP was not fused to the Hsp70 constructs for the purpose of functional studies (see below).

Localization of the various GFP-Ssa1p/Ssb1p chimeras was...
determined by conventional and confocal fluorescence microscopy, and the fluorescence in cells was scored as being either equally distributed between nucleus and cytoplasm (N = C), or approximately equilibrated (C ≈ N). Alignment of putative SSB-type proteins from *Saccharomyces cerevisiae* (S.C), *Candida albicans* (C.A), *Schizosaccharomyces pombe* (S.P), and *Kluyveromyces marxianus* (K.M.) shows identical (asterisks) and similar (dots) residues. Residues that correspond to the consensus NES motif are indicated in bold.

To determine whether the Ssb1p C-terminal domain can function autonomously to prevent nuclear accumulation, Ssa1p (“Ca”) and Ssb1p (“Cb”) C-terminal domains were fused to the C terminus of a GFP-protein A (GFP-pA) reporter protein (Fig. 3A) and localized in cells by confocal microscopy (Fig. 3B). Whereas GFP-pA-Ca (53 kDa) localized both to the nucleus and the cytoplasm, GFP-pA-Cb (51 kDa) did not stain the nuclei (Fig. 3B). Immunoblot analysis demonstrated that these fusions were stable in vivo (not shown). We conclude that the C terminus of Ssb1p can function autonomously to prevent nuclear localization. The Ssb1p C terminus could function either as a cytoplasmatic retention sequence to exclude Ssb1p from the nucleus or as a NES to direct the export of any Ssb1p that enters the nucleus.

The minimal Ssb1p C-terminal sequence necessary to prevent nuclear localization was delineated by truncation and deletion analysis of a GFP-Ssb1p reporter protein (Fig. 3C). These results point to a short sequence that contains a match to the consensus sequence for leucine-rich NESs (35, 36). Ssb1p homologs from other fungi also contain this NES motif (Fig. 3C).

Ssb1p Contains a Functional NES—An *in vivo* assay for NES function based on the approach of Fritz and Green (37) was developed in the Wente laboratory (Washington University, St. Louis, MO) and was generously provided to us prior to publication. In this assay, *HIS3* is transcribed only when a plasmid-borne transcriptional activator, composed of the LexA DNA binding domain and the pseudorabies activation domain, is expressed in the nucleus. Cells that express this activator grow on medium lacking histidine (Fig. 4). When HIV-1 Rev or Gle1p NESs were inserted between the LexA and pseudorabies DNA binding domain, the cells failed to grow on selective medium (Fig. 4), presumably because the activator was exported before it could activate *HIS3* transcription. Cells expressing an activator with a mutant Rev NES grew well on selective medium (Fig. 4), indicating that the activator was not exported from the nucleus (presumably because the activator was not stable in the nucleus). Interestingly, cells expressing activators containing the entire C-terminal domain of Ssb1p (amino acids 546–613), or just the putative NES (amino acids 574–587), failed to grow on selective medium (Fig. 4). These data support the hypothesis that Ssb1p residues 574–587 function as a NES.

The export of leucine-rich NES-cargo is mediated by a Kap β-like protein called exportin, encoded in yeast by *XPO1CRM1* (21). *xpo1-1* cells exhibit reduced NES-directed export at non-permissive temperatures. For example, a protein kinase inhibitor NES-GFP-NLS fusion protein, which is normally efficiently exported from nuclei, becomes almost exclusively nuclear in *xpo1-1* cells shifted to 37 °C (22). Fig. 5 shows the...
localization of GFP-Ssb1p in XPO1 and xpo1-1 cells following a shift from 30°C to 40 °C. GFP-Ssb1p was exclusively cytoplasmic in XPO1 cells after 60 min at 40 °C. In contrast, GFP-Ssb1p fluorescence appeared in the nuclei of xpo1-1 cells within 20 min at 40 °C and became equilibrated across the nuclear envelope within 60 min (Fig. 5). As expected, the GFP-Ssb1p was exclusively cytoplasmic in xpo1-1 cells carrying XPO1 on a plasmid (Fig. 5). We conclude that Ssb1p is exported from nuclei in a Xpo1p-dependent fashion. The accumulation of GFP-Ssb1p in the nuclei of xpo1-1 cells at a nonpermissive temperature (Fig. 5, panels F and I) indicates that Ssb1p normally shuttles between the nucleus and the cytoplasm.

NLS-GFP Nuclear Localization Defect of nup188-D Cells Is Suppressed by Heat Shock and SSA1 Induction—NLS-GFP is a small nuclear reporter protein that can be used to monitor nuclear transport kinetics in wild-type and mutant yeast cells using method proposed before (15). nup188-D cells, which are morphologically normal and double at wild-type rates (not shown), accumulate abnormally high cytoplasmic levels of NLS-GFP (Fig. 6, panel B). We previously showed that the NLS-GFP import defect of srp1-31 cells was suppressed either by heat shock or the induction of GAL1-SSA1. As shown in Fig. 6A, panel D, the induction of GAL1-SSA1 expression also suppressed the steady state NLS-GFP localization defect of nup188-D cells. In contrast, induction of GAL1-SSB1 did not suppress the steady state nup188-D defect (Fig. 6A, panel F). The level of Hsp70 gene expression under these conditions was determined by immunoblot using specific polyclonal antibodies (26) and revealed that the concentration of Hsp70s increased 3–4-fold following GAL1 induction (data not shown). The SSA1 induction upon heat shock was comparable with GAL1-SSA1 induction (data not shown).

The effects of heat shock and GAL1-SSA1 expression on NLS-GFP re-import kinetics in nup188-D cells grown at 30 °C and assayed at 37 °C are shown in Fig. 6B. NLS-GFP import in NUP188 cells proceeded rapidly and to virtual completion.
within 5 min. In contrast, NLS-GFP import in nup188-Δ cells proceeded with biphasic kinetics, beginning with a "burst" phase, during which 20–40% of the cells rapidly accumulated NLS-GFP, followed by a slower quasi-plateau phase (see Fig. 6C). The duration of the slow phase roughly corresponds to the rate at which Hsp70 accumulates in cells during heat shock. When assayed at 30 °C, which is not a heat shock temperature contain high levels of Ssa-type Hsp70s (17). For this reason we extended the 37 °C NLS-GFP import time course to allow for the full development of a heat shock response. An extended 37 °C time course revealed that after the initial burst phase NLS-GFP nuclear accumulation continued slowly until virtually all of the cells in the culture showed good nuclear localization (Fig. 6C). The duration of the slow phase roughly corresponds to the rate at which Hsp70 accumulates in cells during heat shock. When assayed at 30 °C, which is not a heat shock temperature, the kinetics of NLS-GFP import began with a burst but quickly reached a plateau of between 20–40% nuclear cells that was stable for at least 3 h (not shown). These results suggest that the slow increase in NLS-GFP nuclear localization at 37 °C is the result of the heat shock induction of Ssa-type Hsp70 gene expression. We conclude that elevated levels of Ssa1p are sufficient to suppress both the steady state and kinetic NLS-GFP localization defects of nup188-Δ cells.

Nuclear Localization of Ssa1p/Ssb1p Chimeras Correlates with Their Ability to Suppress the nup188-Δ Nuclear Transport Defect—The efficient NES-directed export of Ssb1p could provide a basis for the inability of Ssb1p to suppress the NLS-GFP nuclear localization defect in nup188-Δ cells. To test this hypothesis we assayed NLS-GFP import kinetics in nup188-Δ cells expressing various Ssa1p/Ssb1p chimeras and plotted the “% nuclear cells” after a 15-min re-import (Fig. 7). The Ssa1p/Ssb1p chimeras for this functional analysis were not fused to GFP. As shown in Fig. 7, the expression of chimeras containing the C terminus of Ssb1p (BBB, ABB, and AAB) failed to suppress the NLS-GFP localization defect. In contrast, chimeras containing the C terminus of Ssa1p (AAA, BAA, and BBA), and truncations of Ssa1p and Ssb1p lacking either C-terminal domain (AA- and BB-), suppressed the nup188-Δ NLS-GFP import defect. We conclude that the C-terminal domain of Ssb1p, which contains a functional NES, is a dominant inhibitor of Hsp70 function in NLS-directed nuclear transport. Together with the GFP-Ssa1p/Ssb1p localization data shown in Fig. 2B, these experiments demonstrate a strong positive correlation between the steady state nuclear localization of Hsp70 and its functions in NLS-directed nuclear transport.

FIG. 7. Effect of Ssa1p/Ssb1p chimeras on NLS-GFP import in nup188-Δ cells. Various SSA/SSB chimeras, indicated by three-letter codes (see “Results”), were cloned into pCUG2 and expressed in NLS-GFP expressing nup188-Δ cells. NLS-GFP import assays were performed at 37 °C as described under “Materials and Methods.” The percentages of nuclear cells were scored at T = 15 min.

The aim of this study was to investigate the role of Hsp70 in NLS-directed nuclear transport and, more specifically, to elucidate the molecular basis for the differential function of Ssa- and Ssb-type Hsp70s. We conclude that an NES in the divergent 8 kDa C-terminal domain of Ssb1p is necessary and sufficient for the low nuclear levels of Ssb1p and for its inability to stimulate NLS-directed nuclear transport. Therefore, the differential function of Ssa1p and Ssb1p in nuclear transport is due to the NES-directed export of the Ssb1p and not to functional differences in their ATPase or peptide binding domains. Previous work showed that certain Ssa1p/Ssb1p chimeras, containing either the ATPase or peptide binding domains of Ssa1p, could rescue phenotypes associated with the double deletion of SSB1 and SSB2 (26). Thus, Ssa1p domains can function in Ssb1p-mediated processes. Here, we show that the peptide binding and ATPase domains of Ssb1p can function in a Ssa1p-mediated process. This is not to say that Ssa1p can replace Ssb1p function in vivo or vice versa. There are no known examples in which one class of Hsp70 can completely replace the function of a second class. Although a truncated Ssb1p that lacks its NES still functions in nuclear transport, it could not rescue the depletion of all four SSA gene products. In this regard, yeast mitochondrial Hsp70, loaded into reconstituted endoplasmic reticulum vesicles, could not replace endoplasmic reticulum Hsp70 in an in vitro protein secretion assay (39). The inability of mitochondrial Hsp70 to function in BiP-mediated secretion was attributed to the inability of mitochondrial Hsp70 to associate productively with See63p, a BiP-specific DnaJ co-chaperone (39). The possible role of Hsp70 co-chaperones in nuclear transport has not been explored.

The very existence of the Ssb1p NES, and the accumulation of GFP-Ssb1p in the nuclei of xpo1-1 cells, suggests that Ssb1p normally shuttles between the nucleus and cytoplasm. Although Ssa-type Hsp70s have previously been shown to shuttle between the nucleus and the cytoplasm in Xenopus oocytes (40), Ssb-type Hsp70s have been assumed to function exclusively in the cytoplasm (12, 13). These new results suggest that Ssb1p may function in the nucleus as well as in the cytoplasm.

Elevated Levels of Ssa1p but Not Ssb1p Stimulate NLS-directed Nuclear Transport—A 2–3-fold increase in cellular Ssa1p levels suppressed the kinetic and steady state NLS-GFP nuclear localization defects of nup188-Δ cells. The severity of the nup188-Δ defect, and its complete suppression, provided a clean, specific in vivo assay for Hsp70 function in nuclear transport. The NLS-GFP nuclear transport defects of strains containing temperature-conditional mutations in other transport factors, specifically srp1-31 and nup82-3 cells (15), were also suppressed by GAL1-SSA1 induction, but these defects are less severe and are not, therefore, ideally suited to quantification. The present analysis is restricted to the role of Hsp70 in the import of SV40-type NLSs and does not address the potential involvement, or lack thereof, of Hsp70 in the transport of other classes of import or export cargo (4).
under non-stress conditions is normally limiting for nuclear transport and that GAL1-SSA1 or stress induction generates an incipient pool of Hsp70 that is available to interact with the nuclear transport apparatus. Under stress conditions in higher eukaryotes, cytosolic pools of Hsp70 are recruited into the nucleus (31, 33). Therefore, in addition to an increase of Hsp70 levels as a result of new synthesis, there is an additive increase in nuclear levels because of compartment redistribution. In yeast, we observed a minor but reproducible increase in relative nuclear GFP-Ssa1p fluorescence following heat shock. Although this result is consistent with a minor redistribution of Hsp70 in yeast, it is possible that under heat shock conditions nuclear levels remained constant and only appeared to increase because cytoplasmic levels decreased through turnover.

It is not known whether Hsp70 is absolutely required for the import of NLS-cargo or, alternatively, whether it functions as an enhancer of nuclear transport efficiency. Although the literature is undecided on this issue, a strict requirement for Hsp70 in the nuclear transport of selected NLS-cargo was demonstrated using isolated nuclei and permeabilized cell assays, under which circumstances endogenous Hsp70 levels can be more or less completely depleted (17–20).

GFP-Ssa1p Is Localized Both in the Nucleus and the Cytoplasm, Whereas GFP-Ssb1p Is Cytoplasmic—The localization of GFP-Ssa1p to both the nucleus and the cytoplasm is consistent with a large body of evidence on the localization of Ssa-type Hsp70s in a variety of organisms and cells. The exclusive cytoplasmic localization of GFP-Ssb1p is unique for non-organellar Hsp70s. A technical weakness in this analysis of Hsp70 localization is its reliance on the use of GFP fusions, which could produce localization artifacts. The validity of the GFP fusion localization results reported here, however, have been corroborated by two lines of evidence. First, the ability of various Ssa1p/Ssb1p chimeras and truncations to suppress the nup188Δ-NLS-GFP nuclear localization defect is correlated perfectly with the localization of the GFP-Ssa1/Ssb1 chimeras. Those chimeras that localized to nuclei suppressed the transport defect, whereas the chimeras that failed to suppress the transport defect also failed to accumulate in nuclei. It is essential to note that the functional assays were performed with Ssa1p/Ssb1p chimeras that were not fused to GFP. Second, the key finding of the GFP-based localization studies was the existence of the Ssb1p leucin-rich NES, which in other experiments was shown to function as an NES out of the context of a GFP fusion protein.

Both genetic and biochemical evidence suggest that Ssb1p and Ssb2p are functionally interchangeable and have primary roles in protein synthesis (13, 41). A large fraction of Ssb1p co-sediments with translating ribosomes, and Δssbl Δssb2 cells are cold- and bygromycin B-sensitive (12). Why then does Ssb1p contain an NES? The presence of an NES in a cytoplasmic protein suggests that the protein shuttles between the nucleus and the cytoplasm and, more interestingly, has a nuclear function. The Ssb1p NES is not required for any known Ssb1p function. An Ssa1p/Ssb1p chimera containing the ATPase and peptide binding domains of Ssb1p and the Ssa1p C-terminal domain, and hence lacking the NES, rescued both Δssbl Δssb2 phenotypes (26). This experiment did not, however, prevent access of Ssb1p to the nucleus.

Ssb1p could serve any number of functions in the nucleus, a few of which are mentioned here. Because Ssb1p associates with ribosomes (12) and Ssa-type Hsp70s have been observed to localize in the nucleus preferentially to the nucleolus, it is possible that Ssb1p functions in some aspect of ribosome biogenesis. SSBI was identified in a high copy number screen for suppressors of a mutation in a proteasome subunit (42, 43). Thus, Ssb1p may participate in proteasome-mediated protein degradation. The proteasome complex is localized both in the cytoplasm and the nucleus (44), so it is possible that Ssb1p interacts transiently with a nuclear proteasome pool. In mammalian cells, a link between the heat shock response and proteasome activity has been noted. Specifically, the expression of a transcriptional regulator of the heat shock response, HSF2, is activated in response to proteasome inhibitors (38). Hsp70 has also been implicated in the autoregulation of the heat shock response in mammalian cells. Both Hsp70 and the co-chaperone Hdj1p bind Hsf1p and together repress heat shock gene transcription (45). By analogy, Ssb1p could function in the nucleus as a regulator of gene expression.

With the discovery of the Ssb1p NES, it is apparent now that both Ssa1p and Ssb1p shuttle across the nuclear envelope. Like Kap α and β, Hsp70 would be expected to shuttle during its role in NLS-directed nuclear transport. Thus, it is unclear why the Ssb1p NES would inhibit its function in transport. The induction of GAL1-SSBI expression did stimulate a small but reproducible increase in NLS-GFP import in nup188Δ-Δ cells (Fig. 6B). It is possible that Ssb1p might promote the targeting and translocation of NLS-cargo during its shuttling cycle, but upon entering the nucleus, most of the Ssb1p-associated NLS-cargo complex might be exported before the NLS-cargo could be released to the nucleoplasm. Also, it is possible that a significant steady state concentration of nuclear Hsp70 is required for its function in nuclear transport. For example, Hsp70 may be involved in the recycling of transport factors such as Kap α and Kap β back to the cytoplasm. Normal nuclear levels of Ssb1p may be too low, or simply unavailable, to facilitate factor recycling.

Role of the Hsp70 Chaperone System in NLS-directed Nuclear Transport—Molecular genetic evidence supports the notion that Hsp70 facilitates the formation and stability of the NLS-Kap a complex (15, 16). Cell biological evidence indicates that Hsp70 is co-imported with the NLS-cargo-Kap aΔ ternary complex (19, 46). Furthermore, Hsp70s bind with high affinity to bona fide NLS peptides (47, 48) and NLS-like peptides (49, 50). Standard models of Hsp70 chaperone action predict that cycles of NLS peptide binding and release could function to minimize nonspecific intermolecular interactions between the NLS and cellular constituents. The chaperone cycle could, in effect, increase the concentration of free NLS-cargo available for Kap a binding. Hsp70s normally work in conjunction with co-chaperones that facilitate and regulate peptide binding/release and ATPase activity, and it will be interesting to investigate the potential role of co-chaperones in nuclear transport.

Acknowledgments—We are grateful to Susan Wente for providing unpublished data and providing the in vivo NES functional assay system and to Karsten Weis for providing the XPO1 and xpo1Δ strains.

REFERENCES
1. Mattaj, I. W., and Englemeyer, L. (1998) *Annu. Rev. Biochem.* 67, 265–306
2. Gorlich, D. (1997) *Curr. Opin. Cell Biol.* 9, 412–419
3. Pollard, V. W., Michael, W. M., Nakielny, S., Siomi, M. C., Wang, F., and Dreyfuss, G. (1996) *Cell* 86, 985–994
4. Wozniak, R. W., Rout, M. P., and Aitchison J. D. (1998) *Trends Cell Biol.* 8, 184–188
5. Morimoto, R. I., Tissieres, A., and Georgopoulos, C. (1994) in *The Biology of Heat Shock Proteins and Molecular Chaperones* (Morimoto, R. Tissieres, A., and Georgopoulos, C., eds) pp. 1–30, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
6. Stone, D. E., and Craig, E. A. (1990) *Mol. Cell. Biol.* 10, 1622–1632
7. Halliday, J., and Craig, E. (1995) *Mol. Cell. Biol.* 15, 4890–4897
8. Flaherty, K. M., DeLuca-Flaherty, C., and McKay, D. B. (1990) *Nature* 346, 623–628
9. Zhu, X., Zhao, X., Burkholler, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E., and Hendrickson, W. A. (1996) *Science* 272, 1606–1614
10. Craig, E. A., and Jacobsen, K. (1985) *Mol. Cell. Biol.* 5, 3517–3524
11. Craig, E. A., Ziegelhofer, T., Nelson, J., Laloray, S., and Halliday, J. (1995) *Cold Spring Harbor Symp. Quant. Biol.* 60, 441–449
12. Nelson, R. J., Ziegelhofer, T., Niedel, C., Werner-Washburne, M., and Craig, E. (1992) *Cell* 71, 97–105
13. Pfund, C., Lopez-Hoyo, N., Ziegelhoffer, T., Schilke, B. A., Lopez-Buesa, P., Walter, W. A., Wiedmann, M., and Craig, E. A. (1998) *EMBO J.* **17**, 3981–3989
14. Melchior, F., and Gerace, L. (1995) *Curr. Opin. Cell Biol.* **7**, 310–318
15. Shulga, N., Roberts, P., Gu, Z., Spitz, L., Tabb, M., Nomura, M., and Goldfarb, D. S. (1996) *J. Cell Biol.* **135**, 329–339
16. Jessung, D.-I., Chen, S., Windsor, J., and Pollack, R. K. (1991) *Genes Dev.* **5**, 2235–2244
17. Imamoto, N., Matsuoka, Y., Kurishara, T., Khono, K., Miyagi, M., Sakiyama, F., Okada, Y., Tounazawa, S., and Yoneda, Y. (1992) *J. Cell Biol.* **119**, 1047–1061
18. Shi, Y., and Thomas, J. O. (1992) *Mol. Cell. Biol.* **12**, 2235–2244
19. Okuno, Y., Imamoto, N., and Yoneda, Y. (1993) *Exp. Cell Res.* **206**, 134–142
20. Yang, J., and DeFranco, D. (1994) *Mol. Cell. Biol.* **14**, 5088–5098
21. Nehrbass, U., Rout, M. P., Maguire, S., Blobel, G., and Wozniak, R. (1996) *J. Cell Biol.* **133**, 1153–1162
22. Stade, K., Ford, C. S., Guthrie, C., and Weis, K. (1997) *Cell* **90**, 1041–1050
23. Vojtek, A. B., and Hollenberg, S. M. (1995) *Methods Enzymol.* **255**, 331–342
24. Sambrook, J., Fritch, E. F., and Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
25. Roberts, P. M., and Goldfarb, D. S. (1998) *Methods Cell Biol.* **53**, 545–557
26. James, P., Pfund, C., and Craig, E. A. (1997) *Science* **275**, 387–389
27. Sikorski, R. S., and Hieter, P. (1989) *Genetics* **122**, 19–27
28. Niedenthal, R. K., Rihs, L., Johnston, M., and Hegemann, J. H. (1996) *Yeast* **12**, 773–786
29. Nilsson, B., Moks, T., Jansson, B., Abrahamson, L., Elmqvist, A., Holmgren, E., Henriksson, C., Jones, T. A., and Uhlen, M. (1987) *Protein Eng.* **1**, 107–113
30. Sherman, F. (1991) *Methods Enzymol.* **194**, 3–21
31. Velazquez, J. M., and Lindquist, S. (1984) *Cell* **36**, 655–662
32. Milarski, K. L., and Morimoto, R. I. (1989) *J. Cell Biol.* **109**, 1947–1962
33. Pelham, H. R. (1984) *EMBO J.* **3**, 3095–3100
34. Mandell R. B., Feldherr, C. M. (1990) *Exp. Cell Res.* **198**, 164–169
35. Bogerd, H. P., Fridell, R. A., Benson, R. E., Hua, J., and Cullen, B. R. (1996) *Mol. Cell. Biol.* **16**, 4207–4214
36. Zhang, M. J., and Dayton, A. I. (1998) *Biochem. Biophys. Res. Commun.* **243**, 113–116
37. Fritz, C. C., and Green, M. R. (1996) *Curr. Biol.* **6**, 848–854
38. Mathew, A., Mathur, S. K., and Morimoto, R. I. (1998) *Mol. Cell. Biol.* **18**, 5091–5098
39. Brodsky, J. L., Baeuerle, M., Horst, M., and McClellan, A. J. (1998) *FEBS Lett.* **435**, 181–186
40. Mandell, R. B., and Feldherr, C. M. (1990) *J. Cell Biol.* **111**, 1775–1784
41. Craig, E. A., Baxter, B. K., Becker, J., Halladay, J., and Ziegelhoffer, T. (1994) in *The Biology of Heat Shock Proteins and Molecular Chaperones* (Morimoto, R., Tissieres, A., and Georgopoulos, C., eds) pp. 31–52, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
42. Ohba, M. (1994) *FEBS Lett.* **351**, 263–266
43. Ohba, M. (1997) *FEBS Lett.* **409**, 357–361
44. Rivett, A. J. (1998) *Curr. Opin. Immunol.* **10**, 110–114
45. Shi, Y., Masser, D. D., and Morimoto, R. I. (1998) *Genes Dev.* **12**, 654–666
46. Lamian, V., Small, G. M., and Feldherr, C. M. (1996) *Exp. Cell Res.* **228**, 84–91
47. Imamoto-Si-nohe, N., Matsuoka, Y., Semba, T., Okada, Y., Uchida, T., and Yoneda, Y. (1990) *J. Biol. Chem.* **265**, 16504–16508
48. Yoneda, Y. (1997) *J. Biochem. (Tokyo)* **121**, 811–817
49. Hightower, L. E., Sadis, S. E., and Takenaka, I. M. (1994) in *The Biology of Heat Shock Proteins and Molecular Chaperones* (Morimoto, R., Tissieres, A., and Georgopoulos, C., eds) pp. 179–207, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
50. Takenaka, I. M., Leung, S.-M., McAndrew, S. J., Brown, J. P., and Hightower, L. E. (1990) *J. Biol. Chem.* **265**, 19839–19844