Measurement of the $W\gamma$ Production Cross Section in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV and Constraints on Effective Field Theory Coefficients

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 3 February 2021; revised 12 April 2021; accepted 11 May 2021; published 25 June 2021)

A fiducial cross section for $W\gamma$ production in proton-proton collisions is measured at a center-of-mass energy of 13 TeV in 137 fb$^{-1}$ of data collected using the CMS detector at the LHC. The $W \rightarrow e\nu$ and $\mu\nu$ decay modes are used in a maximum-likelihood fit to the lepton-photon invariant mass distribution to extract the combined cross section. The measured cross section is compared with theoretical expectations at next-to-leading order in quantum chromodynamics. In addition, 95% confidence level intervals are reported for anomalous triple-gauge couplings within the framework of effective field theory.

DOI: 10.1103/PhysRevLett.126.252002

The associated production of a $W$ boson and a photon in proton-proton ($pp$) collisions corresponds to a fundamental process that has bearing on the basic ingredients of the standard model (SM). A precise measurement of the $pp \rightarrow W\gamma$ cross section probes the $WW\gamma$ triple-gauge coupling (TGC) and higher-order corrections to it. The structure and strength of the $WW\gamma$ TGC are closely related to the SU(2)$\times$U(1) gauge symmetry of the SM and the mechanism for its breaking, which can be altered through the presence of new physics with alternative symmetries or symmetry-breaking mechanisms, such as composite $W$ models [1]. Physics at a high energy scale can be described in a generic way in the framework of effective field theory (EFT), and the $pp \rightarrow W\gamma$ production cross section has direct implications for the lowest-dimension operators in the EFT expansion, including $O_{WWW} = \text{Tr}\{W_{\mu\nu} W_{\rho\sigma} W^{\mu\nu\rho\sigma}\}$, which directly affects the $WW\gamma$ TGC [2]. Previous measurements of $W\gamma$ production from the LHC use the data collected in 2011 at a center-of-mass energy of 7 TeV [3,4]. Here, we report the first measurement of the $pp \rightarrow W\gamma$ cross section at 13 TeV based on data collected by the CMS experiment in 2016–2018, corresponding to an integrated luminosity of 137 fb$^{-1}$.

At leading order in quantum chromodynamics (QCD), $e^+\nu_e\gamma$ and $e^-\bar{\nu}_e\gamma$ (where $\ell = e/\mu$) production in $pp$ collisions with an $s$-channel $W$ boson can proceed through initial-state radiation (ISR) from one of the incoming quarks, final-state radiation (FSR) from the outgoing charged lepton, or the $WW\gamma$ TGC vertex shown in Fig. 1. At higher orders in QCD, additional quarks can appear in the final state, and the photon can arise by FSR from an outgoing quark or lepton.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two end sections, are located within the magnetic field of the solenoid. Forward calorimeters extend the pseudorapidity ($\eta$) coverage provided by the barrel and end detectors. Muons are measured using gas-ionization chambers, including drift tubes, cathode strip chambers, and resistive plate chambers, embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, as well as the definition of the coordinate system and the relevant kinematic variables, is reported in Ref. [5].

Electrons and photons are measured in the range $|\eta| < 2.5$ defined by the tracker acceptance. The energy of electrons is a combination of three measurements: the electron

![Diagram](https://example.com/diagram.png)
momentum at the primary interaction vertex as determined by the tracker [6], the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track. The photon momentum is determined solely using the energy measurement in the ECAL. The photon’s ECAL cluster is required to be inconsistent with a charged-particle track reconstructed in the tracker [7]. Muons are measured in the pseudorapidity range $|\eta| < 2.4$ and their momenta are determined using a global fit of muon measurements in the gas-ionization chambers and matched tracks in the silicon tracker [8].

The transverse momentum vector $\vec{p}_T^{miss}$ is computed as the negative vector $p_T$ sum of all measured particles in an event, reconstructed with the particle flow algorithm [9], and its magnitude is denoted by $p_T^{miss}$ [10]. The $p_T^{miss}$ of an event is intended to represent the neutrinos associated with a single $pp$ interaction within a bunch crossing. The contribution to $p_T^{miss}$ due to particles from additional $pp$ interactions within the same bunch crossing (pileup) is mitigated through the pileup-per-particle identification algorithm [11,12]. The $p_T^{miss}$ is also modified to include corrections to the energy scale and resolution of the reconstructed jets in the event.

The $W_T$ production cross section has been calculated with next-to-leading-order (NLO) QCD corrections at fixed order matched to a parton shower [13,14], with NLO electroweak corrections at fixed order [15], and with next-to-next-to-leading-order (NNLO) QCD corrections at fixed order [16–18]. For an inclusive cross section, the NLO QCD corrections are large and positive, more than 100% compared to the LO prediction, whereas the NLO electroweak corrections are negligible compared to experimental precision. The NNLO QCD corrections are positive and 20%–30% relative to the NLO QCD prediction.

The signal processes $pp \to \ell^- \nu\ell$ and $pp \to \ell^- \nu\ell$ are simulated at NLO in QCD using MadGraph5_@NLO version 5.2.6 [13] with up to one jet in the matrix element calculation, merged with jets from the parton showering using the FxFx merging scheme [19]. These two processes are also simulated with POWHEG version 2.0 using the C-NLO scheme [14,20–22], in which a QCD NLO accurate calculation is performed for up to one jet, and subsequently, up to one additional jet or photon is emitted according to their respective Sudakov form factors. For both MadGraph5_@NLO and POWHEG, the parton showering and hadronization are performed using PYTHIAS version 8.226 [23], and the detector simulation is performed using GEANT4 [24]. To match data-taking conditions, we generate three sets of events corresponding to 2016, 2017, and 2018. The PYTHIAS CUETP8M1 [25] tune with the NNPDF30_nlo_nf_5_pdfas [26] parton distribution functions (PDFs) are used for the 2016 simulation, and the PYTHIAS CP5 [27] tune with the NNPDF31_nnlo_hessian_pdfas [28] PDFs are used for the 2017 and 2018 simulations. The simulations include $W \to \nu\ell$, decays, which are considered part of the signal when a $\tau$ decays with an emission of an electron or a muon. No electroweak or NNLO QCD corrections are applied.

We select $W^+\gamma \to \ell^+\nu\ell\gamma$ and $W^-\gamma \to \ell^-\bar{\nu}_\ell\gamma$ events from the set of events that pass a level-one [29] and a high-level [30] trigger that require a single muon or electron that is isolated from other detector activity and, therefore, is likely to be promptly produced as opposed to produced during the hadronization of a jet. The $p_T$ threshold of the high-level trigger lepton varies between 24 and 34 GeV, depending on the year of data taking and the lepton flavor. We require the presence of a single high-quality [31] reconstructed photon, $p_T^{miss}$ exceeding 40 GeV, and that the isolated electron or muon satisfies additional quality criteria [8,32]. Off-line kinematical requirements on the selected objects, based on the detector acceptance and the trigger thresholds, are photon $p_T > 25$ GeV, photon $|\eta| < 2.5$, electron (muon) $|\eta| < 2.5$ (2.4), electron (muon) $p_T > 30$ (26) or $> 35$ (30) GeV, depending on the year of data taking. To reduce the background from $Z\gamma$ events, we reject events that contain an additional muon or electron with $p_T > 20$ GeV that satisfies minimal quality criteria. Finally, $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, where $\Delta \phi$ and $\Delta \eta$ are the spatial separations in azimuthal angle $\phi$ (in radians) and $\eta$ between the lepton and photon, is required to exceed 0.5.

The signal is defined as the $W_T$ process originating from a fiducial region defined with isolated prompt photons and isolated prompt dressed (as defined below) leptons. A lepton or photon is considered isolated if the $p_T$ sum of all stable particles within $\Delta R = 0.4$, divided by the $p_T$ of the lepton or photon, is less than 0.5. A lepton is considered prompt if it originates from the hard process; a photon is considered prompt if it originates from the hard process or an FSR or ISR process involving a particle that originates from the hard process. A lepton is dressed by adding to its four-momentum the four-momenta of all photons within $\Delta R = 0.1$; this procedure is intended to restore the lepton to its pre-FSR state. The fiducial region requirements are photon and lepton $|\eta| < 2.5$ and $p_T > 25$ GeV, and $\Delta R$(lepton, photon) > 0.5.

Background processes containing a prompt lepton and a prompt photon, including $Z\gamma$ production, $t\bar{t}_\gamma$ production, and $VV\gamma$ (where $V = W/Z$) production are simulated using MadGraph5_@NLO and PYTHIAS, in a manner similar to that for the signal samples. The background due to photon conversions in the detector material that lead to reconstructed electrons is estimated with a simulated sample of $\gamma\gamma$ events made with SHERPA version 2.2.5 [33]. The background due to events containing nonprompt leptons and photons, including those from instrumental mismeasurements and genuine leptons or photons within jets, is estimated from data. The ratio of well-isolated, high-quality leptons to less-well-isolated, lower-quality leptons is measured in a dijet control region in data as a function of the lepton $|\eta|$ and $p_T$, and corrected for prompt leptons and
prompt photon conversions based on simulated samples. A similar procedure is applied for photons based on a \( W + \text{jets} \) control region that excludes the signal region. In the nonprompt photon case, a fit to the width of the photon ECAL shower is used to determine the nonprompt photon fraction in the well-isolated, high-quality category, as described in Ref. [34]. The two procedures are combined in a way that avoids double counting to estimate the contribution from events containing both a nonprompt lepton and a nonprompt photon. The background contribution from events that contain a prompt lepton from the primary interaction and a prompt photon from a pileup interaction, mainly \( W + \text{jets} \) primary interaction events with \( \gamma + \text{jets} \) pileup interaction events, is estimated using simulated samples. Finally, the background from electron-induced photons, occurring when an electron track is misreconstructed in the tracker or not properly matched to the corresponding ECAL cluster, is estimated using a fit to the \( m_{e\gamma} \) distribution in data, which is sharply peaked because of the \( Z \) resonance, with a template constructed from simulation.

The observed distributions of \( m_{e\gamma} \) are compared with the expected distributions based on the MadGraph5_aMC@NLO simulation in Fig. 2. The experimental data agrees with the prediction within uncertainties. The expected and observed numbers of events are listed in Table I.

The signal strength is extracted from a binned maximum likelihood fit to the \( m_{e\gamma} \) distribution, where the likelihood function is the product of a Poisson probability density function for each bin. A simultaneous fit of the electron and muon channels is used for our main results; in addition, muon-channel-only and electron-channel-only fits are performed as a consistency check. In order to efficiently maximize the likelihood function with the large number of parameters that we consider, we use a TENSORFLOW-based minimizer [35,36]. The fit is performed in the range 10 to 250 GeV with 2 GeV bins. In the electron-channel-only fit and the simultaneous fit, the normalization of the electron-induced photon template is a free parameter in addition to the \( W\gamma \) normalization, whereas in the muon-channel-only fit, the normalization of the electron-induced photon template is constrained by a 100% log-normal uncertainty around its nominal value and the \( W\gamma \) signal normalization is the only free parameter.

A variety of sources of systematic uncertainty are considered as nuisance parameters in the fit subject to log-normal constraints. Experimental sources of systematic uncertainty include: the jet energy scale and resolution (which affect the \( \vec{p}_T^{\text{miss}} \)), the lepton and photon identification efficiencies, the pileup modeling, the integrated luminosity measurement, the statistical power of our simulated samples and data control regions, and the nonprompt photon and nonprompt background estimation methods. Theoretical sources of systematic uncertainty include: the renormalization and factorization QCD scales, and PDFs. The renormalization and factorization QCD scales are varied by factors of 2 and 1/2, excluding the (2, 1/2) and (1/2, 2) cases, and the envelope of these variations is taken as the uncertainty. The systematic uncertainty due to the PDFs is calculated using the 32
TABLE I. Expected and observed numbers of events. The signal and background yields correspond to the estimates made before the fit, except that normalization of the electron-induced photon yield (one of the free parameters) is scaled by 1.8 from its prefit value. The uncertainty is the quadratic sum of the systematic uncertainties. The $W\gamma$ label refers to the Madgraph5_aMC@NLO simulation of $W\gamma$. The $W\gamma$ signal and $W\gamma$ nonfiducial are the contributions to the signal region from within and outside the fiducial region, respectively.

| Process             | $e\gamma$ | $\mu\gamma$ |
|---------------------|-----------|-------------|
| $W\gamma$ signal    | 95953 ± 6753 | 164438 ± 8773 |
| $W\gamma$ nonfiducial | 1530 ± 241    | 2863 ± 337   |
| $Z\gamma$           | 22164 ± 6173 | 45227 ± 11349 |
| Top/VV              | 16501 ± 879 | 25517 ± 952  |
| Nonprompt photon    | 46984 ± 2249 | 95838 ± 4567 |
| Nonprompt lepton    | 27099 ± 8169 | 23008 ± 6915 |
| Double nonprompt    | 16264 ± 4885 | 14050 ± 4219 |
| $e$-induced photon  | 157209 ± 42269 | 14231 ± 798  |
| Pileup              | 4892 ± 494  | 11085 ± 782  |
| Photon conversion   | 8318 ± 494  | 0 ± 0        |
| Total               | 396913 ± 54686 | 396257 ± 22837 |
| Observation         | 385224      | 395818       |

The operators that are relevant to $W\gamma$ production are

\[ \mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_i \frac{c_i}{\Lambda^2} \mathcal{O}_i. \]

The operators $\mathcal{O}_i$ are added to the SM [2] and

\[ \mathcal{O}_{WWW} = \text{Tr}[W_{\mu\rho} W^{\mu\rho} W_{\nu\nu}], \]
\[ \mathcal{O}_D = (D_{\mu} \Phi)\dagger B_{\mu\nu} (D_{\nu} \Phi), \]
\[ \mathcal{O}_{WW} = \text{Tr}[W_{\mu\nu} W_{\rho\sigma} W_{\mu\rho} W_{\nu\sigma}], \]
\[ \mathcal{O}_{W} = (D_{\mu} \Phi)\dagger W_{\mu\nu} (D_{\nu} \Phi), \]

where $W_{\mu\nu}$ and $B_{\mu\nu}$ are the $SU(2) \times U(1)$ field strength tensors, $\Phi$ is the Higgs field, and $O_{WW}$ is defined as $e^{\mu\nu\rho\sigma} W_{\mu\rho} W_{\nu\sigma}/2$ ($e^{\mu\nu\rho\sigma}$ is totally antisymmetric with $e^{0123} = 1$). The lowest dimension $CP$-even operator that directly alters the $WW\gamma$ TGC is $O_{WWW}$. The photon $p_T$ distribution shown in Fig. 3 is used for the extraction of limits on the coefficients of these four operators. The NLO QCD reweighting feature of MadGraph5_aMC@NLO [40] is used to determine the yield of the $W\gamma$ signal as a function of each operator coefficient.

We compute expected and observed 95% confidence level limits on each operator coefficient based on the profile likelihood ratio test statistic [41]. Each operator coefficient is scanned independently with all other operator coefficients set to zero. In addition to the sources of systematic uncertainty considered in the cross section fit, the 45% difference between the MadGraph5_aMC@NLO and POWHEG fiducial cross sections is assigned as an uncertainty in the normalization of the SM component of the model. The observed and expected limits are listed in Table II. The observed limits on $c_{WWW}/\Lambda^2$ are decreased by a factor of

\[ C_{WWW}/\Lambda^2 = 2 \text{TeV}^2. \]

FIG. 3. The photon $p_T$ distribution used for the extraction of limits on dimension-six EFT operators. The expected yields correspond to the estimates made before the fit. The uncertainty in the prediction (the hatched band) is the quadratic sum of the systematic uncertainties. The uncertainty in the data is statistical. The last bin includes the overflow.
TABLE II. Expected and observed 95% confidence level limits on four dimension-six operator coefficients. The units of the limits are TeV$^{-2}$.

| Coefficient | Exp. lower | Exp. upper | Obs. lower | Obs. upper |
|-------------|------------|------------|------------|------------|
| $c_{WWW}/\Lambda^2$ | $-0.85$ | $0.87$ | $-0.90$ | $0.91$ |
| $c_B/\Lambda^2$ | $-46$ | $45$ | $-40$ | $41$ |
| $c_{WWW}/\Lambda^2$ | $-0.43$ | $0.43$ | $-0.45$ | $0.45$ |
| $c_W/\Lambda^2$ | $-23$ | $22$ | $-20$ | $20$ |

\begin{align*}
\approx 1.75 \text{ relative to the previous best result [42]. These limits can be converted through a linear relationship to limits on the parameters } \lambda_7, \tilde{\lambda}_7, \text{ and } \tilde{\kappa}_7 \text{ in the Lagrangian approach to anomalous couplings, also known as the LEP parametrization, described in Ref. [2]. The expected limits on these parameters are } -0.0033 < \lambda_7 < 0.0033, -0.074 < \tilde{\lambda}_7 < 0.072, \text{ and } -0.0016 < \tilde{\lambda}_7 < 0.0016, \text{ while the corresponding observed limits are } -0.0035 < \lambda_7 < 0.0035, -0.066 < \tilde{\kappa}_7 < 0.065, \text{ and } -0.0017 < \tilde{\lambda}_7 < 0.0017. \end{align*}

In summary, the cross section for $pp \to W\gamma$ production has been measured at a center-of-mass energy of 13 TeV for the first time. The measured cross section in a defined fiducial region is $\sigma = 15.58 \pm 0.05 \text{(stat)} \pm 0.73 \text{(syst)} \pm 0.15 \text{(theo)} \, \text{pb} = 15.58 \pm 0.75 \, \text{pb}$, consistent with the MadGraph5_\text{aMC@NLO} next-to-leading-order (NLO) quantum chromodynamics (QCD) prediction of $\sigma = 15.4 \pm 1.2 \text{(scale)} \pm 0.1 \text{(PDF)} \, \text{pb}$, and less than the POWHEG NLO QCD prediction of $\sigma = 22.4 \pm 3.2 \text{(scale)} \pm 0.1 \text{(PDF)} \, \text{pb}$. The cross sections in the electron and muon channels are consistent with each other. The high tail of the photon transverse momentum distribution is used to set 95% confidence level limits on dimension-six effective field theory parameters, including the most stringent limit to date on the coefficient of $O_{WWW}$, the lowest dimension $CP$-even operator that directly alters the $W\gamma\gamma$ TGC.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for so effectively delivering the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] Y. Cui, T. Gherghetta, and J. D. Wells, Emergent electroweak symmetry breaking with composite W, Z bosons, J. High Energy Phys. 11 (2009) 080.

[2] C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane, T. Stelzer, S. Willenbrock, and C. Zhang, Effective field theory: A modern approach to anomalous couplings, Annals Phys. 335, 21 (2013).

[3] CMS Collaboration, Measurement of the $W\gamma$ and $Z\gamma$ inclusive cross sections in $pp$ collisions at $\sqrt{s} = 7$ TeV and limits on anomalous triple gauge boson couplings, Phys. Rev. D 89, 092005 (2014).

[4] ATLAS Collaboration, Measurements of $W\gamma$ and $Z\gamma$ production in $pp$ collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector at the LHC, Phys. Rev. D 87, 112003 (2013).

[5] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).

[6] CMS Collaboration, Measurement of electroweak WZ boson production and search for new physics in $WZ + 2\text{ jets}$ events in $pp$ collisions at $\sqrt{s} = 13$ TeV, Phys. Lett. B 795, 281 (2019).

[7] CMS Collaboration, Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC, arXiv:2012.06888 [J. Instrum. (to be published)].

[8] CMS Collaboration, Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s} = 13$ TeV, J. Instrum. 13, P06015 (2018).

[9] CMS Collaboration, Particle-flow reconstruction and global event description with the CMS detector, J. Instrum. 12, P10003 (2017).

[10] CMS Collaboration, Performance of missing transverse momentum reconstruction in proton-proton collisions at $\sqrt{s} = 13$ TeV using the CMS detector, J. Instrum. 14, P07004 (2019).

[11] D. Bertolini, P. Harris, M. Low, and N. Tran, Pileup per particle identification, J. High Energy Phys. 10 (2014) 059.

[12] CMS Collaboration, Pileup mitigation at CMS in 13 TeV data, J. Instrum. 15, P09018 (2020).

[13] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to...
parton shower simulations, J. High Energy Phys. 07 (2014) 079.

[14] L. Barzè, M. Chiesa, G. Montagna, P. Nason, O. Nicrosini, F. Piccinini, and V. Prosperi, $W$ production in hadronic collisions using the POWHEG + MiNLO method, J. High Energy Phys. 12 (2014) 039.

[15] A. Denner, S. Dittmaier, M. Hecht, and C. Pasold, NLO QCD and electroweak corrections to $W + \gamma$ production with leptonic $W$-boson decays, J. High Energy Phys. 04 (2015) 018.

[16] M. Grazzini, S. Kallweit, and M. Wiesemann, Fully differential NNLO computations with MATRIX, Eur. Phys. J. C 78, 537 (2018).

[17] M. Grazzini, S. Kallweit, and D. Ratheley, $W\gamma$ and $Z\gamma$ production at the LHC in NNLO QCD, J. High Energy Phys. 07 (2015) 085.

[18] E. Accomando, A. Denner, and S. Pozzorini, Electroweak correction effects in gauge-boson pair production at the CERN LHC, Phys. Rev. D 65, 073003 (2002).

[19] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, J. High Energy Phys. 12 (2012) 061.

[20] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, J. High Energy Phys. 11 (2004) 040.

[21] S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD computations with parton shower simulations: The POWHEG method, J. High Energy Phys. 11 (2007) 070.

[22] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: The POWHEG BOX, J. High Energy Phys. 06 (2010) 043.

[23] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and F. Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159 (2015).

[24] S. Agostinelli et al. (GEANT4 Collaboration), GEANT4—a simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[25] CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76, 155 (2016).

[26] Parton distributions for the LHC run II, J. High Energy Phys. 04 04 (2015) 040.

[27] CMS Collaboration, Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements, Eur. Phys. J. C 80, 4 (2020).

[28] R. D. Ball, V. Bertone, S. Carrazza, L. D. Debbio, S. Forte, P. Groth-Merrild, A. Guflanti, N. P. Hartland, Z. Kassabov, J. I. Latorre, E. R. Nocera, J. Rojo, L. Rottoli, E. Slade, and M. Ubiali (NNPDF Collaboration), Parton distributions from high-precision collider data, Eur. Phys. J. C 77, 663 (2017).

[29] CMS Collaboration, Performance of the CMS Level-1 trigger in proton-proton collisions at $\sqrt{s} = 13$ TeV, J. Instrum. 15, P10017 (2020).

[30] CMS Collaboration, The CMS trigger system, J. Instrum. 12, P01020 (2017).

[31] CMS Collaboration, Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV, J. Instrum. 10, P08010 (2015).

[32] CMS Collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV, J. Instrum. 10, P06005 (2015).

[33] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, and J. Winter, Event generation with SHERPA 1.1, J. High Energy Phys. 02 (2009) 007.

[34] CMS Collaboration, Measurement of the cross section for electroweak production of a $Z$ boson, a photon and two jets in proton-proton collisions at $\sqrt{s} = 13$ TeV and constraints on anomalous quartic couplings, J. High Energy Phys. 06 (2020) 076.

[35] M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow.org.

[36] CMS Collaboration, Measurement of the W boson rapidity, helicity, and differential cross sections in $pp$ collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. D 102, 092012 (2020).

[37] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43, 023001 (2016).

[38] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75, 204 (2015).

[39] S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, and C.-P. Yuan, New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93, 033006 (2016).

[40] O. Mattelaer, On the maximal use of Monte Carlo samples: Re-weighting events at NLO accuracy, Eur. Phys. J. C 76, 674 (2016).

[41] ATLAS and CMS Collaborations, and the LHC Higgs Combination Group, Procedure for the LHC Higgs boson search combination in Summer 2011, Technical Report No. CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011, http://cds.cern.ch/record/1379837.

[42] CMS Collaboration, Search for anomalous triple gauge couplings in WW and WZ production in lepton + jet events in proton-proton collisions at $\sqrt{s} = 13$ TeV, J. High Energy Phys. 12 (2019) 062.
A. Melo, H. Ni, K. Padkeken, F. Romeo, P. Sheldon, S. Tu, J. Velkovska, M. W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, A. Li, C. Neu, B. Tannenwald, E. Wolfe, P. E. Karchin, N. Poudyal, P. Thapa, K. Black, T. Bose, J. Buchanan, C. Caillol, S. Dasu, I. De Bruyn, P. Everaerts, F. Fienga, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, A. Mohammadi, D. Pinna, A. Savin, V. Shang, V. Sharma, W. H. Smith, D. Teague, S. Trembath-reichert, and W. Vetens (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik, Wien, Austria
3Institute for Nuclear Problems, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
10Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
11Instituto de Física, Universidade Federal do ABC, Santo André, São Paulo, Brazil
12Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
13University of Sofia, Sofia, Bulgaria
14Beihang University, Beijing, China
15Department of Physics, Tsinghua University, Beijing, China
16Institute of High Energy Physics, Beijing, China
17State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
18Sun Yat-Sen University, Guangzhou, China
19Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE)—Fudan University, Shanghai, China
20Zhejiang University, Hangzhou, China
21Universidad de Los Andes, Bogota, Colombia
22Universidad de Antioquia, Medellín, Colombia
23University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
24University of Split, Faculty of Science, Split, Croatia
25Institute Rudjer Boskovic, Zagreb, Croatia
26University of Cyprus, Nicosia, Cyprus
27Charles University, Prague, Czech Republic
28Escuela Politecnica Nacional, Quito, Ecuador
29Universidad San Francisco de Quito, Quito, Ecuador
30Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
31Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
32National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
33Department of Physics, University of Helsinki, Helsinki, Finland
34Helsinki Institute of Physics, Helsinki, Finland
35Lappeenranta University of Technology, Lappeenranta, Finland
36IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
37Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
38Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
39Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
40Georgian Technical University, Tbilisi, Georgia
41RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
42RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
43RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
44Deutsches Elektronen-Synchrotron, Hamburg, Germany
45University of Hamburg, Hamburg, Germany
| Institution                                                                 | Country                  |
|----------------------------------------------------------------------------|--------------------------|
| Chonnam National University, Institute for Universe and Elementary Particles | Korea                    |
| Hanyang University, Seoul, Korea                                            | Korea                    |
| Korea University, Seoul, Korea                                              | Korea                    |
| Kyung Hee University, Department of Physics, Seoul, Republic of Korea       | Korea                    |
| Sejong University, Seoul, Korea                                             | Korea                    |
| Seoul National University, Seoul, Korea                                     | Korea                    |
| University of Seoul, Seoul, Korea                                           | Korea                    |
| Yonsei University, Department of Physics, Seoul, Korea                      | Korea                    |
| Sungkyunkwan University, Suwon, Korea                                      | Korea                    |
| College of Engineering and Technology, American University of the Middle    | Kuwait                   |
| East (AUM), Dasman                                                       |                          |
| Riga Technical University, Riga, Latvia                                     | Latvia                   |
| Vilnius University, Vilnius, Lithuania                                      | Lithuania                |
| National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur,     | Malaysia                 |
| Universidad de Sonora (UNISON), Hermosillo, Mexico                        |                          |
| Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City,      | Mexico                   |
| Universidad Iberoamericana, Mexico City, Mexico                            |                          |
| Benemerita Universidad Autonoma de Puebla, Puebla, Mexico                  |                          |
| University of Montenegro, Podgorica, Montenegro                            |                          |
| University of Auckland, Auckland, New Zealand                             |                          |
| University of Canterbury, Christchurch, New Zealand                        |                          |
| National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan | Pakistan                 |
| AGH University of Science and Technology Faculty of Computer Science,      | Poland                   |
| Electronics and Telecommunications, Krakow, Poland                         |                          |
| National Centre for Nuclear Research, Swierk, Poland                      | Poland                   |
| Institute of Experimental Physics, Faculty of Physics, University of       | Poland                   |
| Warsaw, Warsaw, Poland                                                    |                          |
| Laboratório de Instrumentação e Física Experimental de Partículas, Lisbon, | Portugal                 |
| Joint Institute for Nuclear Research, Dubna, Russia                        | Russia                   |
| Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia    | Russia                   |
| Institute for Nuclear Research, Moscow, Russia                            | Moscow, Russia           |
| Institute for Theoretical and Experimental Physics named by A.I. Alikhanov | Russia                   |
| Moscow Institute of Physics and Technology, Moscow, Russia                  | Moscow, Russia           |
| National Research Nuclear University 'Moscow Engineering Physics Institute'  | Russia                   |
| (MEPhI), Moscow, Russia                                                    |                          |
| P.N. Lebedev Physical Institute, Moscow, Russia                            | Moscow, Russia           |
| Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University | Moscow, Russia           |
| Novosibirsk State University (NSU), Novosibirsk, Russia                    | Novosibirsk, Russia      |
| Institute for High Energy Physics National Research Centre 'Kurchatov       | Russia                   |
| Institute', Protvino                                                       |                          |
| National Research Tomsk Polytechnic University, Tomsk, Russia               | Tomsk, Russia            |
| Tomsk State University, Tomsk, Russia                                      | Tomsk, Russia            |
| University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear   | Serbia                   |
| Sciences, Belgrade                                                        |                          |
| Centro de Investigaciones Energéticas Medioambientales y Tecnológicas      | Spain                    |
| (CIEMAT), Madrid, Spain                                                    |                          |
| Universidad Autónoma de Madrid, Madrid, Spain                             | Madrid, Spain            |
| Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías   | Spain                    |
| Espaciales de Asturias (ICTEA), Oviedo, Spain                             | Oviedo, Spain            |
| Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria,    | Spain                    |
| Santander, Spain                                                          |                          |
| University of Colombo, Colombo, Sri Lanka                                  | Colombo, Sri Lanka       |
| University of Ruhuna, Department of Physics, Matara, Sri Lanka             | Matara, Sri Lanka        |
| CERN, European Organization for Nuclear Research, Geneva, Switzerland       | Switzerland              |
| Paul Scherrer Institut, Villigen, Switzerland                             | Switzerland              |
| ETH Zurich—Institute for Particle Physics and Astrophysics (IPA), Zurich,  | Switzerland              |
| Switzerland                                                              |                          |
| Universität Zürich, Zurich, Switzerland                                    | Zurich, Switzerland      |
| National Central University, Chung-Li, Taiwan                             | Taiwan                   |
| National Taiwan University (NTU), Taipei, Taiwan                           | Taipei, Taiwan           |
| Chulalongkorn University, Faculty of Science, Department of Physics,       | Thailand                 |
| Bangkok, Thailand                                                         |                          |
| Çukurova University, Physics Department, Science and Art Faculty, Adana,   | Turkey                   |
| Middle East Technical University, Physics Department, Ankara, Turkey       | Turkey                   |
| Bogazici University, Istanbul, Turkey                                      | Istanbul, Turkey          |
| Istanbul Technical University, Istanbul, Turkey                            | Istanbul, Turkey          |
| Istanbul University, Istanbul, Turkey                                      | Istanbul, Turkey          |
| Institute for Scintillation Materials of National Academy of Science of    | Ukraine                  |
| Ukraine, Kharkov, Ukraine                                                  |                          |
| National Scientific Center, Kharkov Institute of Physics and Technology,   | Ukraine                  |
| Kharkov, Ukraine                                                          |                          |
| University of Bristol, Bristol, United Kingdom                            | United Kingdom           |
| Rutherford Appleton Laboratory, Didcot, United Kingdom                     | United Kingdom           |

252002-15
Imperial College, London, United Kingdom
Brunel University, Uxbridge, United Kingdom
Baylor University, Waco, Texas, USA
Catholic University of America, Washington, D.C., USA
The University of Alabama, Tuscaloosa, Alabama, USA
Boston University, Boston, Massachusetts, USA
Brown University, Providence, Rhode Island, USA
University of California, Davis, Davis, California, USA
University of California, Los Angeles, California, USA
University of California, Riverside, Riverside, California, USA
University of California, San Diego, La Jolla, California, USA
University of California, Santa Barbara—Department of Physics, Santa Barbara, California, USA
California Institute of Technology, Pasadena, California, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
University of Colorado Boulder, Boulder, Colorado, USA
Cornell University, Ithaca, New York, USA
Fermi National Accelerator Laboratory, Batavia, Illinois, USA
University of Florida, Gainesville, Florida, USA
Florida State University, Tallahassee, Florida, USA
Florida Institute of Technology, Melbourne, Florida, USA
University of Illinois at Chicago (UIC), Chicago, Illinois, USA
The University of Iowa, Iowa City, Iowa, USA
Johns Hopkins University, Baltimore, Maryland, USA
The University of Kansas, Lawrence, Kansas, USA
Kansas State University, Manhattan, Kansas, USA
Lawrence Livermore National Laboratory, Livermore, California, USA
University of Maryland, College Park, Maryland, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Minnesota, Minneapolis, Minnesota, USA
University of Mississippi, Oxford, Mississippi, USA
University of Nebraska-Lincoln, Lincoln, Nebraska, USA
State University of New York at Buffalo, Buffalo, New York, USA
Northeastern University, Boston, Massachusetts, USA
Northwestern University, Evanston, Illinois, USA
University of Notre Dame, Notre Dame, Indiana, USA
The Ohio State University, Columbus, Ohio, USA
Princeton University, Princeton, New Jersey, USA
University of Puerto Rico, Mayaguez, Puerto Rico, USA
Purdue University, West Lafayette, Indiana, USA
Purdue University Northwest, Hammond, Indiana, USA
Rice University, Houston, Texas, USA
University of Rochester, Rochester, New York, USA
Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
University of Tennessee, Knoxville, Tennessee, USA
Texas A&M University, College Station, Texas, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin—Madison, Madison, WI, Wisconsin, USA

aDeceased.
bAlso at Vienna University of Technology, Vienna, Austria.
cAlso at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
dAlso at Université Libre de Bruxelles, Bruxelles, Belgium.
eAlso at Universidade Estadual de Campinas, Campinas, Brazil.
fAlso at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
gAlso at University of Chinese Academy of Sciences.
hAlso at Department of Physics, Tsinghua University, Beijing, China.
Also at Universidade Federal de Mato Grosso do Sul, Mato Grosso, Brazil.
Also at The University of Iowa, Iowa City, Iowa, USA.
Also at Nanjing Normal University Department of Physics, Nanjing, China.
Also at University of Chinese Academy of Sciences, Beijing, China.
Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia.
Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at Ain Shams University, Cairo, Egypt.
Also at Zewail City of Science and Technology, Zewail, Egypt.
Also at British University in Egypt, Cairo, Egypt.
Also at Purdue University, West Lafayette, Indiana, USA.
Also at Université de Haute Alsace, Mulhouse, France.
Also at Erzincan Binali Yildirim University, Erzincan, Turkey.
Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
Also at University of Hamburg, Hamburg, Germany.
Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran.
Also at Brandenburg University of Technology, Cottbus, Germany.
Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
Also at Physics Department, Faculty of Science, Assiut University.
Also at Eszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary.
Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
Also at Institute for Nuclear Research ATOMKI, Debrecen, Hungary.
Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
Also at Wigner Research Centre for Physics, Budapest, Hungary.
Also at IIT Bhubaneswar, Bhubaneswar, India.
Also at Institute of Physics, Bhubaneswar, India.
Also at G.H.G. Khalsa College, Punjab, India.
Also at Shoolini University, Solan, India.
Also at University of Hyderabad, Hyderabad, India.
Also at University of Visva-Bharati, Santiniketan, India.
Also at Indian Institute of Technology (IIT), Mumbai, India.
Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany.
Also at Sharif University of Technology, Tehran, Iran.
Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran.
Also at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy.
Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development.
Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia.
Also at Università di Napoli ‘Federico II’, Naples, Italy.
Also at Riga Technical University, Riga, Latvia.
Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
Also at University of Florida, Gainesville, Florida, USA.
Also at Imperial College, London, United Kingdom.
Also at P.N. Lebedev Physical Institute, Moscow, Russia.
Also at California Institute of Technology, Pasadena, California, USA.
Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
Also at Trincomele Campus, Eastern University, Sri Lanka.
Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy.
Also at National and Kapodistrian University of Athens, Athens, Greece.
Also at Universität Zürich, Zurich, Switzerland.
Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland.
Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria.
Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France.
Also at Gaziosmanpasa University, Tokat, Turkey.
Also at Şıırnak University, Şıırnak, Turkey.
Also at Istanbul University—Cerraphasa, Faculty of Engineering.
Also at Mersin University, Mersin, Turkey.
Also at Piri Reis University, Istanbul, Turkey.
Also at Adiyaman University, Adiyaman, Turkey.
Also at Tarsus University, Tarsus, Turkey.
Also at Ozyegin University, Istanbul, Turkey.
Also at Izmir Institute of Technology, Izmir, Turkey.
Also at Necmettin Erbakan University, Konya, Turkey.
Also at Bozok Universitesi Rektörlüğü, Yozgat, Turkey.
Also at Marmara University, Istanbul, Turkey.
Also at Milli Savunma University.
Also at Kafkas University, Kars, Turkey.
Also at Istanbul Bilgi University, Istanbul, Turkey.
Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey.
Also at Hacettepe University, Ankara, Turkey.
Also at Vrije Universiteit Brussel, Brussel, Belgium.
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
Also at Institute for Particle Physics Phenomenology, Durham University, Durham, United Kingdom.
Also at Monash University, Faculty of Science, Clayton, Australia.
Also at Bethel University, St. Paul, Minneapolis, USA.
Also at Karamanoğlu Mehmetbey University, Karaman, Turkey.
Also at Bingol University, Bingol, Turkey.
Also at Georgian Technical University, Tbilisi, Georgia.
Also at Sinop University, Sinop, Turkey.
Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
Also at Erciyes University, Kayseri, Turkey.
Also at Texas A&M University at Qatar, Doha, Qatar.
Also at Kyungpook National University, Daegu, Korea.