WELL-POSEDNESS AND SCATTERING FOR FOURTH ORDER NONLINEAR SCHRODINGER TYPE EQUATIONS AT THE SCALING CRITICAL REGULARITY

HIROYUKI HIRAYAMA
Graduate School of Mathematics, Nagoya University
Chikusa-ku, Nagoya, 464-8602, Japan

MAMORU OKAMOTO
Department of Mathematics, Institute of Engineering, Academic Assembly,
Shinshu University, 4-17-1 Wakasato, Nagano City 380-8553, Japan

(Communicated by Daoyuan Fang)

Abstract. In the present paper, we consider the Cauchy problem of fourth order nonlinear Schrödinger type equations with derivative nonlinearity. In one dimensional case, the small data global well-posedness and scattering for the fourth order nonlinear Schrödinger equation with the nonlinear term \(\partial_x u^4 \) are shown in the scaling invariant space \(\dot{H}^{-1/2} \). Furthermore, we show that the same result holds for the \(d \geq 2 \) and derivative polynomial type nonlinearity, for example \(|\nabla|^m u \) with \((m-1)d \geq 4 \), where \(d \) denotes the space dimension.

1. Introduction. We consider the Cauchy problem of the fourth order nonlinear Schrödinger type equations:

\[
\begin{align*}
(i\partial_t + \Delta)^2 u &= \partial P_m(u, \overline{u}), \quad (t, x) \in (0, \infty) \times \mathbb{R}^d, \\
 u(0, x) &= u_0(x), \quad x \in \mathbb{R}^d,
\end{align*}
\]

where \(m \in \mathbb{N}, m \geq 2 \), \(P_m \) is a polynomial which is written by

\[
P_m(f, g) = \sum_{\alpha, \beta \in \mathbb{Z}_{\geq 0} \atop \alpha + \beta = m} f^\alpha g^\beta,
\]

\(\partial \) is a first order derivative with respect to the spatial variable, for example a linear combination of \(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_d} \) or \(|\nabla| = F^{-1}(|\xi|F) \) and the unknown function \(u \) is \(\mathbb{C} \)-valued. The fourth order Schrödinger equation with \(P_m(u, \overline{u}) = |u|^{m-1}u \) appears in the study of deep water wave dynamics [2], solitary waves [14, 15], vortex filaments [3], and so on. The equation (1) is invariant under the following scaling transformation: for all \(\lambda \in \mathbb{R}\setminus\{0\} \),

\[
u_\lambda(t, x) = \lambda^{-3/(m-1)} u(\lambda^{-4} t, \lambda^{-1} x),
\]

2000 Mathematics Subject Classification. Primary: 35Q55; Secondary: 35B65.

Key words and phrases. Fourth order Schrödinger equation, well-posedness, Cauchy problem, scaling critical, bounded \(p \)-variation.

The work of the second author was supported by JSPS KAKENHI Grant number 26887017.
and the scaling critical regularity is $s_c = d/2 - 3/(m - 1)$. The aim of this paper is to prove the well-posedness and the scattering for the solution of (1) in the scaling critical Sobolev space.

There are many results for the fourth order nonlinear Schrödinger equation with derivative nonlinearity (see [6, 7, 8, 9, 11, 12, 13, 17, 18, 19, 20], and references cited therein). Especially, the one dimensional case is well studied. Wang ([20]) considered (1) for the case $d = 1$, $m = 2l + 1$, $l \geq 2$, $P_{2l+1}(u, \overline{u}) = |u|^2u$ and proved the small data global in time well-posedness for $s = s_c$ by using the Kato type smoothing effect. But he did not treat the cubic case. Actually, a technical difficulty appears in this case (see Theorem 1.4 below).

Hayashi and Naumkin ([8]) considered (1) for $d = 1$ with the power type nonlinearity $\partial \partial_x(|u|^\rho - 1)u$ ($\rho > 4$) and proved the global existence of the solution and the scattering in the weighted Sobolev space. Moreover, they ([9]) also proved that the large time asymptotics is determined by the self similar solution when $\rho = 4$ and the non zero mass condition, namely $\int_R u_0 dx \neq 0$, is satisfied. Therefore, derivative quartic nonlinearity in the one spatial dimension is critical in the sense of the asymptotic behavior of the solution.

We firstly focus on the quartic nonlinearity $\partial \partial_x(\overline{\pi}^4)$ in one space dimension. To prove the well-posedness, we will use the duality argument (see Theorem 2.3). Since

$$\left| \int_{-\infty}^{\infty} (\partial \partial_x(\overline{\pi}^4), v)_{L^2(R)} dt \right| = c \left| \int_{\sum_{j=0}^{\infty} \tau_j = 0} \sum_{\sum_{j=0}^{\infty} \xi_j = 0} \xi_0 F[v](\tau_0, \xi_0) \prod_{j=1}^{4} F[u](\tau_j, \xi_j) \right|$$

by Plancherel’s theorem, we can apply the modulation estimate Lemma 3.1 below. Especially, we emphasize that the modulation $\xi_0^4 + \xi_1^4 + \xi_2^4 + \xi_3^4 + \xi_4^4$ is far from zero. Thanks to such good structure, we can recover derivatives enough to obtain the small data global well-posedness and the scattering in the scaling critical Sobolev space.

Our argument does not apply to (1) with $P(u, \overline{u}) = |u|^3u$ because we rely on the Fourier restriction norm method. Now, we give the first results in this paper. For a Banach space H and $r > 0$, we define $B_r(H) := \{ f \in H \mid \| f \|_H \leq r \}$.

Theorem 1.1. Let $d = 1$, $m = 4$ and $P_4(u, \overline{u}) = \overline{\pi}^4$. Then the equation (1) is globally well-posed for small data in $H^{-1/2}$. More precisely, there exists $r > 0$ such that for any $T > 0$ and all initial data $u_0 \in B_r(H^{-1/2})$, there exists a solution

$$u \in \dot{Z}_r^{-1/2}((0, T)) \subset C([0, T]; \dot{H}^{-1/2})$$

of (1) on $(0, T)$. Such solution is unique in $\dot{Z}_r^{-1/2}((0, T))$ which is a closed subset of $\dot{Z}^{-1/2}((0, T))$ (see Definition 2.5 and (14)). Moreover, the flow map

$$S^+_T : B_r(\dot{H}^{-1/2}) \ni u_0 \mapsto u \in \dot{Z}^{-1/2}((0, T))$$

is Lipschitz continuous.

Remark 1. We note that $s = -1/2$ is the scaling critical exponent of (1) for $d = 1$, $m = 4$.

Corollary 1. Let $r > 0$ be as in Theorem 1.1. For all $u_0 \in B_r(\dot{H}^{-1/2})$, there exists a solution $u \in C([0, \infty); \dot{H}^{s_c})$ of (1) on $(0, \infty)$ and the solution scatters in $\dot{H}^{-1/2}$. More precisely, there exists $u^+ \in \dot{H}^{-1/2}$ such that

$$u(t) - e^{it\Delta} u^+ \to 0 \text{ in } \dot{H}^{-1/2} \text{ as } t \to +\infty.$$
Moreover, we obtain the large data local in time well-posedness in the scaling critical Sobolev space. To state the result, we put
\[B_{δ,R}(H^s) := \{ u_0 \in H^s | u_0 = v_0 + w_0, \|v_0\|_{H^{s-1/2}} < δ, \|w_0\|_{L^2} < R \} \]
for \(s < 0 \).

Theorem 1.2. Let \(d = 1, m = 4 \) and \(P_4(u, \overline{u}) = \overline{u}^4 \). Then the equation (1) is locally in time well-posed in \(H^{-1/2} \). More precisely, there exists \(δ > 0 \) such that for all \(R ≥ δ \) and \(u_0 \in B_{δ,R}(H^{-1/2}) \) there exists a solution
\[u \in Z^{-1/2}([0, T]) ⊂ C([0, T]; H^{-1/2}) \]
for \(T = δ^8 R^{-8} \) of (1).

Furthermore, the same statement remains valid if we replace \(H^{-1/2} \) by \(\dot{H}^{-1/2} \) as well as \(Z^{-1/2}([0, T]) \) by \(\dot{Z}^{-1/2}([0, T]) \).

Remark 2. For \(s > -1/2 \), the local in time well-posedness in \(H^s \) follows from the usual Fourier restriction norm method, which covers for all initial data in \(H^s \). However, this part is not of very much interest. On the other hand, since we focus on the scaling critical cases, which is the negative regularity, we have to impose that the \(H^{-1/2} \) part of initial data is small. But, Theorem 1.2 is a large data result because the \(L^2 \) part is not restricted.

The main tools of the proof are the \(U^p \) space and \(V^p \) space, which are applied to prove the well-posedness and the scattering for the KP-II equation at the scaling critical regularity by Hadac, Herr, and Koch ([4, 5]).

We also consider the one dimensional cubic case and the high dimensional cases. The second result in this paper is as follows.

Theorem 1.3. (i) Let \(d = 1 \) and \(m = 3 \). Then the equation (1) is locally well-posed in \(H^s \) for \(s ≥ 0 \).

(ii) Let \(d ≥ 2 \) and \((m-1)d ≥ 4\). Then the equation (1) is globally well-posed for small data in \(\dot{H}^s \) (or \(H^s \) for \(s ≥ s_c \)) and the solution scatters in \(\dot{H}^s \) (or \(H^s \) for \(s ≥ s_c \)).

The smoothing effect of the linear part recovers derivative in higher dimensional cases. Therefore, we do not use the \(U^p \) and \(V^p \) type spaces. More precisely, to establish Theorem 1.3, we only use the Strichartz estimates and get the solution in \(C([0, T]; H^{s_c}) \cap L^p_m([0, T]; W^{q_m,s_c+1/(m-1)}) \) with \(p_m = 2(m-1), q_m = 2(m-1)/(m-1)d/\{(m-1)d-2\} \). Accordingly, the scattering follows from a standard argument. Since the condition \((m-1)d ≥ 4\) is equivalent to \(s_c + 1/(m-1) ≥ 0 \), the solution space \(L^p_m([0, T]; W^{q_m,s_c+1/(m-1)}) \) has nonnegative regularity even if the initial data belongs to \(H^{s_c} \) with \(-1/(m-1) ≤ s_c < 0\). Our proof of Theorem 1.3 (ii) can not be applied for \(d = 1 \) because the pair \((a,b)\) in (18) is not Schrödinger admissible.

Remark 3. For the case \(d = 1, m = 4 \) and \(P_4(u, \overline{u}) \neq \overline{u}^4 \), we can obtain the local in time well-posedness of (1) in \(H^s \) for \(s ≥ 0 \) by the same way of the proof of Theorem 1.3. Actually, we can get the solution in \(C([0, T]; H^s) \cap L^4([0, T]; W^{s+1/2,∞}) \) for \(s ≥ 0 \) by using the iteration argument since the fractional Leibnitz rule (see [1]) and the Hölder inequality imply
\[
\left\| \nabla^{s+\frac{1}{2}} \prod_{j=1}^{4} u_j \right\|_{L^4_t L^4_x([0, T]; L^2_x)} \lesssim T^{1/4} \left\| \nabla^{s+\frac{1}{2}} u_1 \right\|_{L^6_t L^6_x} \left\| u_2 \right\|_{L^6_t L^6_x} \left\| u_3 \right\|_{L^6_t L^6_x} \left\| u_4 \right\|_{L^6_t L^6_x}.
\]
We give a remark on our problem, which shows that the standard iteration argument does not work.

Theorem 1.4. (i) Let \(d = 1, m = 3, s < 0 \) and \(P_3(u, \overline{u}) = |u|^2u \). Then the flow map of (1) from \(H^s \) to \(C(\mathbb{R}; H^s) \) is not smooth.

(ii) Let \(m \geq 2, s < s_c \) and \(\delta = |\nabla| \) or \(\frac{\partial}{\partial x_k} \) for some \(1 \leq k \leq d \). Then the flow map of (1) from \(H^s \) to \(C(\mathbb{R}; H^s) \) is not smooth.

More precisely, we prove that the flow map is not \(C^3 \) if \(d = 1, m = 3, s < 0 \) and \(P_3(u, \overline{u}) = |u|^2u \) or \(C^m \) if \(d \geq 1, m \geq 2, \) and \(s < s_c \). It leads that the standard iteration argument fails, because the flow map is smooth if it works. Of course, there is a gap between ill-posedness and absence of a smooth flow map.

Since the resonance appears in the case \(d = 1, m = 3 \) and \(P_3(u, \overline{u}) = |u|^2u \), there exists an irregular flow map even for the subcritical Sobolev regularity.

Notation. We denote the spatial Fourier transform by \(\hat{\cdot} \) or \(\mathcal{F}_x \), the Fourier transform in time by \(\mathcal{F}_t \), and the Fourier transform in all variables by \(\hat{\cdot} \) or \(\mathcal{F}_{xt} \).

The free evolution \(S(t) := e^{it\Delta^2} \) is given as a Fourier multiplier

\[
\mathcal{F}_x[S(t)f](\xi) = e^{-it|\xi|^4} \hat{f}(\xi).
\]

We will use \(A \lesssim B \) to denote an estimate of the form \(A \leq CB \) for some constant \(C \) and write \(A \sim B \) to mean \(A \lesssim B \) and \(B \lesssim A \). We will use the convention that capital letters denote dyadic numbers, e.g. \(N = 2^n \) for \(n \in \mathbb{Z} \) and for a dyadic summation we write \(\sum_N a_N := \sum_{n \in \mathbb{Z}} a_{2^n} \) and \(\sum_{N \geq M} a_N := \sum_{n \in \mathbb{Z}, 2^n \geq M} a_{2^n} \) for brevity. Let \(\chi \in C^0(\mathbb{R}) \) be an even, non-negative function such that \(\chi(t) = 1 \) for \(|t| \leq 1 \).

We define \(\psi(t) := \chi(t) - \chi(2t) \) and \(\psi_N(t) := \psi(2^{-N}t) \). Then, \(\sum_N \psi_N(t) = 1 \) whenever \(t \neq 0 \). We define frequency and modulation projections

\[
\hat{F}_N u(\xi) := \psi_N(\xi)\hat{u}(\xi), \quad \hat{Q}^S_M u(\tau, \xi) := \psi_M(\tau - |\xi|^4)\hat{u}(\tau, \xi).
\]

Furthermore, we define \(Q^S_M := \sum_{N \geq M} Q^S_N \) and \(Q^S_M := 1d - Q^S_M \).

The rest of this paper is planned as follows. In Section 2, we will give the definitions and properties of the \(U^p \) space and \(V^p \) space. In Section 3, we will give the multilinear estimates which are main estimates to prove Theorems 1.1 and 1.2. In Section 4, we will give the proof of the well-posedness and the scattering (Theorem 1.1, Corollary 1, and Theorem 1.2). In Section 5, we will give the proof of Theorem 1.3. In Section 6, we will give the proof of Theorem 1.4.

2. The \(U^p \), \(V^p \) spaces and their properties

In this section, we define the \(U^p \) space and the \(V^p \) space, and introduce the properties of these spaces which are proved by Hadac, Herr, and Koch ([4, 5]).

We define the set of finite partitions \(\mathcal{Z} \) as

\[
\mathcal{Z} := \left\{ \{t_k\}_{k=0}^K | K \in \mathbb{N}, -\infty < t_0 < t_1 < \cdots < t_K \leq \infty \right\}
\]

and we put \(v(\infty) := 0 \) for all functions \(v : \mathbb{R} \to L^2 \).

Definition 2.1. Let \(1 \leq p < \infty \). For \(\{t_k\}_{k=0}^K \in \mathcal{Z} \) and \(\{\phi_k\}_{k=0}^{K-1} \subset L^2 \) with \(\sum_{k=0}^{K-1} \|\phi_k\|_{L^2}^p = 1 \), we call the function \(a : \mathbb{R} \to L^2 \) given by

\[
a(t) = \sum_{k=1}^K 1_{[t_{k-1}, t_k]}(t)\phi_{k-1}
\]
a “U^p-atom”. Furthermore, we define the atomic space

$$U^p := \left\{ u = \sum_{j=1}^{\infty} \lambda_j a_j \mid a_j : U^p - \text{atom}, \; \lambda_j \in \mathbb{C} \text{ such that } \sum_{j=1}^{\infty} |\lambda_j| < \infty \right\}$$

with the norm

$$\|u\|_{U^p} := \inf \left\{ \sum_{j=1}^{\infty} |\lambda_j| \mid u = \sum_{j=1}^{\infty} \lambda_j a_j, \; a_j : U^p - \text{atom}, \; \lambda_j \in \mathbb{C} \right\}.$$

Definition 2.2. Let $1 \leq p < \infty$. We define the space of the bounded p-variation

$$V^p := \{ v : \mathbb{R} \to L^2 \mid \|v\|_{V^p} < \infty \}$$

with the norm

$$\|v\|_{V^p} := \sup_{\{t_k\} \in \mathbb{Z}} \left(\sum_{k=1}^{K} \|v(t_k) - v(t_{k-1})\|_{L^2}^p \right)^{1/p}.$$

Likewise, let V^p_{-rc} denote the closed subspace of all right-continuous functions $v \in V^p$ with $\lim_{t \to -\infty} v(t) = 0$, endowed with the same norm $\|\cdot\|_{V^p}$.

Proposition 1 ([4] Proposition 2.2, 2.4, Corollary 2.6). Let $1 \leq p < q < \infty$.

(i) U^p, V^p, and V^p_{-rc} are Banach spaces.

(ii) For every $v \in V^p$, $\lim_{t \to -\infty} v(t)$ and $\lim_{t \to \infty} v(t)$ exist in L^2.

(iii) The embeddings $U^p \hookrightarrow V^p_{-rc} \hookrightarrow U^q \hookrightarrow L^\infty_{\text{loc}}(\mathbb{R}; \ell^2_2(\mathbb{R}^d))$ are continuous.

Theorem 2.3 ([4] Proposition 2.10, Remark 2.12). Let $1 < p < \infty$ and $1/p + 1/p' = 1$. If $u \in V^1_{-rc}$ is absolutely continuous on every compact intervals, then

$$\|u\|_{U^p} = \sup_{v \in V^p, \|v\|_{V^p} = 1} \left| \int_{-\infty}^{\infty} (u'(t), v(t))_{L^2(\mathbb{R}^d)} dt \right|.$$

Definition 2.4. Let $1 \leq p < \infty$. We define

$$U^p_{g} := \{ u : \mathbb{R} \to L^2 \mid S(-\cdot)u \in U^p \}$$

with the norm $\|u\|_{U^p_{g}} := \|S(-\cdot)u\|_{U^p}$,

$$V^p_{g} := \{ v : \mathbb{R} \to L^2 \mid S(-\cdot)v \in V^p_{-rc} \}$$

with the norm $\|v\|_{V^p_{g}} := \|S(-\cdot)v\|_{V^p}$.

Remark 4. The embeddings $U^p_{g} \hookrightarrow V^p_{g} \hookrightarrow U^q_{g} \hookrightarrow L^\infty(\mathbb{R}; \ell^2_2)$ hold for $1 \leq p < q < \infty$ by Proposition 1.

Proposition 2 ([4] Corollary 2.18). Let $1 < p < \infty$. We have

$$\|Q^S_{\geq M} u\|_{L^2_{\text{loc}}} \lesssim M^{-1/2} \|u\|_{V^p_{g}},$$

$$\|Q^S_{\leq M} u\|_{V^p_{g}} \lesssim \|u\|_{V^p_{g}}, \quad \|Q^S_{\neq M} u\|_{V^p_{g}} \lesssim \|u\|_{V^p_{g}}.$$

Proposition 3 ([4] Proposition 2.19). Let

$$T_0 : L^2(\mathbb{R}^d) \times \cdots \times L^2(\mathbb{R}^d) \to L^1_{\text{loc}}(\mathbb{R}^d)$$

be a m-linear operator. Assume that for some $1 \leq p,q < \infty$

$$\|T_0(S(\cdot)\phi_1, \ldots, S(\cdot)\phi_m)\|_{L^p(\mathbb{R}; L^q(\mathbb{R}^d)))} \lesssim \prod_{i=1}^{m} \|\phi_i\|_{L^2(\mathbb{R}^d)}.$$
Then, there exists $T : U^p_S \times \cdots \times U^p_S \to L^p_t(\mathbb{R}; L^q_x(\mathbb{R}^d))$ satisfying
\[
\|T(u_1, \ldots, u_m)\|_{L^p_t(\mathbb{R}; L^q_x(\mathbb{R}^d))} \lesssim \prod_{i=1}^m \|u_i\|_{U^p_S}
\]
such that $T(u_1, \ldots, u_m)(t)(x) = T_0(u_1(t), \ldots, u_m(t))(x)$ a.e.

Now we refer the Strichartz estimate for the fourth order Schrödinger equation proved by Pausader. We say that a pair (p, q) is admissible if $2 \leq p, q \leq \infty$, $(p, q, d) \neq (2, \infty, 2)$, and
\[
\frac{2}{p} + \frac{d}{q} = \frac{d}{2}.
\]

Proposition 4 ([16] Proposition 3.1). Let (p, q) and (a, b) be admissible pairs. Then, we have
\[
\|S(\cdot)\phi\|_{L^p_t L^q_x} \lesssim \|\nabla\|^{-2/p} \phi\|_{L^2_x},
\]
\[
\left\| \int_0^t S(t-t')F(t')dt' \phi \right\|_{L^p_t L^q_x} \lesssim \|\nabla\|^{-2/p-2/a} F\|_{L^a_t L^{b'}_x},
\]
where a' and b' are conjugate exponents of a and b respectively.

Propositions 3 and 4 imply the following.

Corollary 2. Let (p, q) be an admissible pair. Then we obtain
\[
\|u\|_{L^p_t L^q_x} \lesssim \|\nabla\|^{-2/p} u\|_{U^p_S}, \quad u \in U^p_S.
\]

Next, we define the function spaces which will be used to construct the solution. We define the projections $P_{>1}$ and $P_{<1}$ as
\[
P_{>1} := \sum_{N \geq 1} P_N, \quad P_{<1} := Id - P_{>1}.
\]

Definition 2.5. Let $s \leq 0$.
(i) We define $Z^s := \{u \in C(\mathbb{R}; \dot{H}^s(\mathbb{R}^d)) \cap U^\infty_S \mid \|u\|_{Z^s} < \infty\}$ with the norm
\[
\|u\|_{Z^s} := \left(\sum_N N^{2s} \|P_N u\|_{U^\infty_S}^2 \right)^{1/2}.
\]
(ii) We define $Z^s := \{u \in C(\mathbb{R}; \dot{H}^s(\mathbb{R}^d)) \mid \|u\|_{Z^s} < \infty\}$ with the norm
\[
\|u\|_{Z^s} := \|P_{<1} u\|_{Z^s} + \|P_{>1} u\|_{Z^s}.
\]
(iii) We define $Y^s := \{u \in C(\mathbb{R}; \dot{H}^s(\mathbb{R}^d)) \cap V^2_S \mid \|u\|_{Y^s} < \infty\}$ with the norm
\[
\|u\|_{Y^s} := \left(\sum_N N^{2s} \|P_N u\|_{Y^s}^2 \right)^{1/2}.
\]
(iv) We define $Y^s := \{u \in C(\mathbb{R}; \dot{H}^s(\mathbb{R}^d)) \mid \|u\|_{Y^s} < \infty\}$ with the norm
\[
\|u\|_{Y^s} := \|P_{<1} u\|_{Y^s} + \|P_{>1} u\|_{Y^s}.
3. **Multilinear estimate for** $P_4(u, \bar{u}) = \bar{u}^4$ in 1d. In this section, we prove multilinear estimates for the nonlinearity $\partial_x(\bar{u}^4)$ in 1d, which plays a crucial role in the proof of Theorem 1.1.

Lemma 3.1. We assume that $(\tau_0, \xi_0), (\tau_1, \xi_1), \ldots, (\tau_4, \xi_4) \in \mathbb{R} \times \mathbb{R}^d$ satisfy $\sum_{j=0}^4 \tau_j = 0$ and $\sum_{j=0}^4 \xi_j = 0$. Then, we have

$$\max_{0 \leq j \leq 4} |\tau_j| - |\xi_j|^4 \geq \frac{1}{5} \max_{0 \leq j \leq 4} |\xi_j|^4. \quad (5)$$

Proof. By the triangle inequality, we obtain (5). \hfill \Box

3.1. **The homogeneous case.**

Proposition 5. Let $d = 1$ and $0 < T \leq \infty$. For a dyadic number $N_1 \in 2\mathbb{Z}$, we define the set $A_1(N_1)$ as

$$A_1(N_1) := \{(N_2, N_3, N_4) \in (2\mathbb{Z})^3 | N_1 \gg N_2 \geq N_3 \geq N_4\}.$$

If $N_0 \sim N_1$, then we have

$$\left| \sum_{A_1(N_1)} \int_0^T \int_{\mathbb{R}} \left(N_0 \prod_{j=0}^4 P_{N_j} u_j \right) dx dt \right| \lesssim \|P_{N_0} u_0\|_{L^2_x} \|P_{N_1} u_1\|_{V^{2}_{\frac{1}{2}}} \prod_{j=2}^4 \|u_j\|_{Y^{\frac{1}{2}}_{-1}}. \quad (6)$$

Proof. We define $u_{j,N_j,T} := 1_{[0,T]} P_{N_j} u_j$ (j = 1, \ldots, 4) and put $M := N_0^4/5$. We decompose $Id = Q_{<M}^S + Q_{\geq M}^S$. We divide the integrals on the left-hand side of (6) into 10 pieces of the form

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \left(N_0 \prod_{j=0}^4 Q_{j,N_j,T}^S u_j \right) dx dt \quad (7)$$

with $Q_j^S \in \{Q_{<M}^S, Q_{\geq M}^S\}$ (j = 0, \ldots, 4). By Plancherel’s theorem, we have

$$(7) = c \int_{\sum_{j=0}^4 \tau_j = 0} \int_{\sum_{j=0}^4 \xi_j = 0} N_0 \prod_{j=0}^4 F[Q_j^S u_j, N_j, T](\tau_j, \xi_j),$$

where c is a constant. Therefore, Lemma 3.1 implies that

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \left(N_0 \prod_{j=0}^4 Q_{<M}^S u_j, N_j, T \right) dx dt = 0.$$

So, let us now consider the case that $Q_j^S = Q_{\geq M}^S$ for some $0 \leq j \leq 4$.

First, we consider the case $Q_0^S = Q_{\geq M}^S$. By the Cauchy-Schwartz inequality, we have

$$\left| \sum_{A_1(N_1)} \int_{\mathbb{R}} \int_{\mathbb{R}} \left(N_0 Q_{\geq M}^S u_{0,N_0,T} \prod_{j=1}^4 Q_j^S u_{j,N_j,T} \right) dx dt \right|$$

$$\leq N_0 \|Q_{\geq M}^S u_{0,N_0,T}\|_{L^4_x} \|Q_1^S u_{1,N_1,T}\|_{L^4_x} \prod_{j=2}^4 \left\| \sum_{N_j \leq N_i} Q_j^S u_{j,N_j,T} \right\|_{L^4_x}.$$

Furthermore, by (2) and $M \sim N_0^4$, we have

$$\|Q_{\geq M}^S u_{0,N_0,T}\|_{L^4_x} \lesssim N_0^{-2} \|u_{0,N_0,T}\|_{V^{2}}.$$
and by (4) and $V_{3}^{2} \hookrightarrow U_{3}^{4}$, we have

$$
\|Q_{1}^{S}u_{1,N_{i},T}\|_{L_{t}^{4}L_{x}^{\infty}} \lesssim N_{1}^{-1/2}\|Q_{1}^{S}u_{1,N_{i},T}\|_{V_{3}^{2}} \lesssim N_{1}^{-1/2}\|Q_{1}^{S}u_{1,N_{i},T}\|_{V_{3}^{2}}.
$$

While by the Sobolev inequality, (4), $V_{3}^{2} \hookrightarrow U_{3}^{12}$, and the Cauchy-Schwartz inequality for the dyadic sum, we have

$$
\left\| \sum_{N_{j} \lesssim N_{i}} Q_{j}^{S}u_{j,N_{j},T} \right\|_{L_{t}^{12}L_{x}^{6}} \lesssim \left\| \nabla^{1/6} \sum_{N_{j} \lesssim N_{i}} Q_{j}^{S}u_{j,N_{j},T} \right\|_{L_{t}^{12}L_{x}^{3}} \lesssim \left\| \sum_{N_{j} \lesssim N_{i}} Q_{j}^{S}u_{j,N_{j},T} \right\|_{V_{3}^{2}}^{1/2} \lesssim N_{1}^{1/2}\left\| \sum_{N_{j} \lesssim N_{i}} N_{j}^{-1}\|u_{j,N_{j},T}\|_{V_{3}^{2}}^{2} \right\|_{V_{3}^{2}}^{1/2} \lesssim N_{1}^{1/2}\|1_{[0,T]}u_{j}\|_{V_{3}^{2}}^{1/2}
$$

for $2 \leq j \leq 4$. Therefore, we obtain

$$
\left\| \sum_{A_{i}(N_{i})} \int_{R} \int_{R} \left(N_{0}Q_{\geq M}^{S}u_{0,N_{0},T} \prod_{0 \leq j \leq 4} Q_{j}^{S}u_{j,N_{j},T} \right) dxdt \right\|_{L_{t}^{12}L_{x}^{6}} \lesssim \left\| P_{N_{0}}u_{0}\right\|_{V_{3}^{2}} \|P_{N_{1}}u_{1}\|_{V_{3}^{2}} \prod_{j=2}^{4} \|u_{j}\|_{V_{3}^{2}}
$$

by (3) since $\|1_{[0,T]}u\|_{V_{3}^{2}} \lesssim \|u\|_{V_{3}^{2}}$ for any $T \in (0, \infty)$. For the case $Q_{1}^{S} = Q_{\geq M}^{S}$ is proved in same way.

Next, we consider the case $Q_{i}^{S} = Q_{\geq M}^{S}$ for some $2 \leq i \leq 4$. By the Hölder inequality, we have

$$
\left\| \sum_{A_{i}(N_{i})} \int_{R} \int_{R} \left(N_{0}Q_{\geq M}^{S}u_{i,N_{i},T} \prod_{0 \leq j \leq 4} Q_{j}^{S}u_{j,N_{j},T} \right) dxdt \right\|_{L_{t}^{12}L_{x}^{6}} \lesssim N_{0}\|Q_{0}^{S}u_{0,N_{0},T}\|_{L_{t}^{12}L_{x}^{6}} \|Q_{1}^{S}u_{1,N_{1},T}\|_{L_{t}^{4}L_{x}^{\infty}}
$$

$$
\times \left\| \sum_{N_{j} \lesssim N_{i}} Q_{\geq M}^{S}u_{i,N_{i},T} \right\|_{L_{t}^{12}L_{x}^{6}} \prod_{j=2}^{4} \left\| \sum_{N_{j} \lesssim N_{i}} Q_{j}^{S}u_{j,N_{j},T} \right\|_{L_{t}^{12}L_{x}^{6}}.
$$

By L^{2} orthogonality and (2), we have

$$
\left\| \sum_{N_{j} \lesssim N_{i}} Q_{\geq M}^{S}u_{i,N_{i},T} \right\|_{L_{t}^{2}L_{x}^{6}} \lesssim \left(\sum_{N_{i}} \|Q_{\geq M}^{S}u_{i,N_{i},T}\|_{L_{t}^{2}L_{x}^{6}}^{2} \right)^{1/2} \lesssim N_{1}^{-3/2}\|1_{[0,T]}u_{i}\|_{V_{3}^{2}}
$$

(9) since $M \sim N_{0}^{4}$. While, by the calculation way as the case $Q_{0}^{S} = Q_{\geq M}^{S}$, we have

$$
\|Q_{0}^{S}u_{0,N_{0},T}\|_{L_{t}^{12}L_{x}^{6}} \lesssim \|Q_{0}^{S}u_{0,N_{0},T}\|_{V_{3}^{2}},
$$

$$
\|Q_{1}^{S}u_{1,N_{1},T}\|_{L_{t}^{4}L_{x}^{\infty}} \lesssim N_{1}^{-1/2}\|Q_{1}^{S}u_{1,N_{1},T}\|_{V_{3}^{2}},
$$
and
\[
\left\| \sum_{N_j \leq N_1} Q_j^S u_j, N_j, T \right\|_{L^2_t L^2_x} \lesssim N_1^{1/2} \left\| \mathbf{1}_{[0,T]} u_j \right\|_{\dot{Y}^{-1/2}}.
\]
Therefore, we obtain
\[
\left\| \sum_{A_1(N_1)} \int_{\mathbb{R}} \int_{\mathbb{R}} \left(N_0 Q_j^S u_j, N_j, T \prod_{0 \leq j \leq 4, j \neq i} Q_j^S u_j, N_j, T \right) dx dt \right| \lesssim \| P_{N_0} u_0 \|_{V^2_2} \| P_{N_1} u_1 \|_{V^2_2} \prod_{j=2}^{4} \| u_j \|_{\dot{Y}^{-1/2}}
\]
by (3) since \(\| \mathbf{1}_{[0,T]} u_j \|_{V^2_2} \lesssim \| u \|_{V^2_2} \) for any \(T \in (0, \infty] \).
\[\square\]

Proposition 6. Let \(d = 1 \) and \(0 < T \leq \infty \). For a dyadic number \(N_2 \in 2^\mathbb{Z} \), we define the set \(A_2(N_2) \) as
\[
A_2(N_2) := \{(N_3, N_4) \in (2^\mathbb{Z})^4 | N_2 \geq N_3 \geq N_4 \).
\]
If \(N_0 \lesssim N_1 \sim N_2 \), then we have
\[
\left\| \sum_{A_2(N_2)} \int_{0}^{T} \int_{\mathbb{R}} \left(N_0 \prod_{j=0}^{4} P_{N_j} u_j \right) dx dt \right| \lesssim \frac{N_0}{N_1} \| P_{N_0} u_0 \|_{V^2_2} \| P_{N_1} u_1 \|_{V^2_2} N_2^{-1/2} \| P_{N_2} u_2 \|_{V^2_2} \| u_3 \|_{\dot{Y}^{-1/2}} \| u_4 \|_{\dot{Y}^{-1/2}}.
\]

The proof of Proposition 6 is quite similar as the proof of Proposition 5.

3.2. The inhomogeneous case.

Proposition 7. Let \(d = 1 \) and \(0 < T \leq 1 \). For a dyadic number \(N_1 \in 2^\mathbb{Z} \), we define the set \(A_1'(N_1) \) as
\[
A_1'(N_1) := \{(N_2, N_3, N_4) \in (2^\mathbb{Z})^3 | N_1 \gg N_2 \geq N_3 \geq N_4, N_4 \leq 1 \}.
\]
If \(N_0 \sim N_1 \), then we have
\[
\left\| \sum_{A_1'(N_1)} \int_{0}^{T} \int_{\mathbb{R}} \left(N_0 \prod_{j=0}^{4} P_{N_j} u_j \right) dx dt \right| \lesssim T^\frac{3}{2} \| P_{N_0} u_0 \|_{V^2_2} \| P_{N_1} u_1 \|_{V^2_2} \prod_{j=2}^{4} \| u_j \|_{\dot{Y}^{-1/2}}.
\]

Proof. We further divide \(A_1'(N_1) \) into three pieces:
\[
A_1'(N_1) = \bigcup_{j=1}^{3} A_{1,j}'(N_1),
\]
\[
A_{1,1}'(N_1) := \{(N_2, N_3, N_4) \in A_1'(N_1) : N_3 \geq 1 \},
\]
\[
A_{1,2}'(N_2) := \{(N_2, N_3, N_4) \in A_1'(N_1) : N_2 \geq 1 \geq N_3 \},
\]
\[
A_{1,3}'(N_2) := \{(N_2, N_3, N_4) \in A_1'(N_1) : 1 \geq N_2 \}.
\]
We define \(u_{j,N} := P_{N_j}u_j \), \(u_{j,T} := 1_{[0,T]}u_j \) and \(u_{j,N,T} := 1_{[0,T]}P_{N_j}u_j \) \((j = 1, \cdots, 4)\). We firstly consider the case \(A_{1,1}^i(N_1) \). In the case \(T \leq N_0^{-3} \), the Hölder inequality implies

\[
\left| \sum_{A_{1,1}^i(N_1)} \int_0^T \int_{\mathbb{R}} \left(N_0 \prod_{j=0}^4 P_{N_j}u_j \right) \ dx \, dt \right| \leq N_0 \|1_{[0,T]}\|_{L^2_t}\|u_{0,N_0}\|_{L^4_t L^\infty_x} \|u_{1,N_1}\|_{L^4_t L^\infty_x} \prod_{j=2}^3 \sum_{1 \leq N_j \leq N_1} u_{j,N_j} \|P_{<1}u_4\|_{L^\infty_t L^\infty_x}.
\]

Furthermore, by (4) and \(V^2_S \to U^2_S \), we have

\[
\|u_{0,N_0}\|_{L^4_t L^\infty_x} \|u_{1,N_1}\|_{L^4_t L^\infty_x} \leq N_0^{-1/2} \|u_{0,N_0}\|_{U^2_S} \|P_{1}u_4\|_{V^2_S} \leq N_0^{-1} \|u_{0,N_0}\|_{V^2} \|u_{1,N_1}\|_{V^2}.
\]

and by the Sobolev inequality, \(V^2_S \to L^4_t L^2_x \), and the Cauchy-Schwartz inequality, we have

\[
\|P_{<1}u_4\|_{L^\infty_t L^\infty_x} \leq \left(\sum_{N \leq 2} \|P_{N}P_{<1}u_4\|_{V^2_S}^2 \right)^{1/2} \leq \|P_{<1}u_4\|_{V^0}.
\]

By the \(L^2 \) orthogonality and \(V^2_S \to L^\infty_t L^2_x \), we have

\[
\left(\sum_{1 \leq N_j \leq N_1} \left\| u_{j,N_j} \right\|_{L^\infty_t L^2_x} \right)^{1/2} \leq \left(\sum_{1 \leq N_j \leq N_1} \left\| u_{j,N_j} \right\|_{V^2}^2 \right)^{1/2} \leq N_0^{1/2} \|P_{>1}u_j\|_{V^{-1/2}}.
\]

Therefore, we obtain

\[
\left| \sum_{A_{1,1}^i(N_1)} \int_0^T \int_{\mathbb{R}} \left(N_0 \prod_{j=0}^4 P_{N_j}u_j \right) \ dx \, dt \right| \lesssim T^{1/2} N_0 \|u_{0,N_0}\|_{V^2} \|u_{1,N_1}\|_{V^2} \prod_{j=2}^3 \|P_{>1}u_j\|_{V^{-1/2}} \|P_{<1}u_4\|_{V^0}
\]

and note that \(T^{1/2} N_0 \leq T/6 \).

In the case \(T \geq N_0^{-3} \), we divide the integrals on the left-hand side of (6) into 10 pieces of the form (7) in the proof of Proposition 5. Thanks to Lemma 3.1, let us consider the case that \(Q^S_1 = Q^S_{2M} \) for some \(0 \leq j \leq 4 \). First, we consider the case \(Q^S_0 = Q^S_{2M} \). By the same way as in the proof of Proposition 5 and using

\[
\|Q^S_4 P_{<1}u_{4,T}\|_{L^4_t L^2_x} \lesssim \|Q^S_4 P_{<1}u_{4,T}\|_{V^2} \lesssim \|P_{<1}u_{4,T}\|_{V^0}
\]
instead of (8), we obtain
\[
\begin{equation}
\left| \sum_{A_{1,1}'} \int \int N_0 Q_{\geq M}^S u_{0,N_0,T} \prod_{j=1}^{4} Q_j^S u_j, N_j, T \right| dt \leq N_0 \|Q_{\geq M}^S u_{0,N_0,T}\|_{L^2_t L^\infty_x} \|Q_j^S u_j, N_j, T\|_{L^4_t L^6_x} \prod_{j=2}^{3} \sum_{1 \leq N_j \leq N_1} \|Q_j^S P_{<1} u_{j,T}\|_{L^4_t L^6_x} \quad \|P_{<1} u_{0}\|_{Y_o}
\end{equation}
\]
and note that \(N_0^{-1/2} \leq T^{1/6}\). Since the cases \(Q_j^S = Q_{\geq M}^S (j = 1, 2, 3)\) are similarly handled, we omit the details here.

We focus on the case \(Q_j^S = Q_{\geq M}^S\). By the same way as in the proof of Proposition 5 and using
\[
\|Q_{\geq M}^S P_{<1} u_{4,T}\|_{L^2_x} \lesssim N_0^{-1/2} \|P_{<1} u_{4,T}\|_{V^\delta_2} \lesssim N_0^{-1/2} \|P_{<1} u_{4,T}\|_{Y_o}
\]
instead of (9) with \(j = 4\), we obtain
\[
\begin{equation}
\left| \sum_{A_{1,1}'} \int \int N_0 Q_{\geq M}^S u_{4,N_0,T} \prod_{j=0}^{3} Q_j^S u_j, N_j, T \right| dt \leq N_0 \|u_{0,N_0,T}\|_{L^2_t L^\infty_x} \|Q_1^S u_{1,N_1,T}\|_{L^4_t L^6_x} \prod_{j=2}^{3} \sum_{1 \leq N_j \leq N_1} \|Q_j^S u_j, N_j, T\|_{L^4_t L^6_x} \quad \|P_{<1} u_{j,T}\|_{Y_{-1/2}} \|P_{<1} u_{4}\|_{Y_o}
\end{equation}
\]
and note that \(N_0^{-1/2} \leq T^{1/6}\).

We secondly consider the case \(A_{1,2}'(N_1)\). In the case \(T \leq N_0^{-3}\), the Hölder inequality implies
\[
\left| \sum_{A_{1,2}'} \int \int N_0 \prod_{j=0}^{4} P_{N_j} u_{j} \right| dt \leq N_0 \|1_{[0,T]}\|_{L^2_t} \|u_{0,N_0}\|_{L^4_t L^\infty_x} \|u_{1,N_1}\|_{L^4_t L^\infty_x} \prod_{1 \leq N_2 \leq N_1} \|u_{2,N_2}\|_{L^\infty_t L^2_x} \prod_{j=3}^{4} \|P_{<1} u_{j}\|_{L^\infty_t L^2_x}.
\]

By the same estimates as in the proof for the case \(A_{1,1}'(N_1)\) and
\[
\|P_{<1} u_{j}\|_{L^\infty_t L^4_x} \lesssim \|P_{<1} u_{j}\|_{L^\infty_t L^2_x} \lesssim \left(\sum_{N \leq 2} \|P_{N} P_{<1} u_{j}\|_{V^\delta_2}^2 \right)^{1/2} \leq \|P_{<1} u_{j}\|_{Y_o}
\]
for \(j = 3, 4 \), we obtain

\[
\left| \sum_{A_{1,2}(N_1)} \int_{\mathbb{R}} \int_{0}^{T} N_0 \prod_{j=0}^{4} P_{N_j} u_j \right| dx dt
\]

\[
\lesssim T^{1/2} N_0^{1/2} \| u_{0,N_0} \|_{V^2} \| u_{1,N_1} \|_{V^2} \| P_{>1} u_2 \|_{Y^{-1/2}} \prod_{j=3}^{4} \| P_{<1} u_j \|_{Y^0}
\]

and note that \(T^{1/2} N_0^{1/2} \leq T^{1/3} \).

In the case \(T \geq N_0^{-3} \), we divide the integrals on the left-hand side of (6) into 10 pieces of the form (7) in the proof of Proposition 5. Thanks to Lemma 3.1, let us consider the case that \(Q_j^S = Q_{j,M}^S \) for some \(0 \leq j \leq 4 \). By the same argument as in the proof for the case \(A_{1,1}(N_1) \), we obtain

\[
\left| \sum_{A'_{1,2}(N_1)} \int_{\mathbb{R}} \int_{0}^{T} \left(N_0 Q_{S,M}^S u_{0,N_0,T} \prod_{j=1}^{4} Q_j^S u_{j,N_j,T} \right) \right| dx dt
\]

\[
\lesssim N_0 \| Q_{S,M}^S u_{0,N_0,T} \|_{L^2_{t,x}} \| Q_1^S u_{1,N_1,T} \|_{L^4_x L^\infty_t} \sum_{1 \leq N_2 \leq N_1} Q_2^S u_{2,N_2,T} \left\| \prod_{j=3}^{4} Q_j^S u_{j,N_j,T} \right\|_{L^1_x L^6_t}
\]

\[
\times \prod_{j=3}^{4} \| Q_j^S P_{<1} u_{j,T} \|_{L^4_x L_x^6}
\]

\[
\lesssim N_0^{-1} \| P_{N_0} u_0 \|_{V^2} \| P_{N_1} u_1 \|_{V^2} \| P_{>1} u_2 \|_{Y^{-1/2}} \prod_{j=3}^{4} \| P_{<1} u_j \|_{Y^0}
\]

if \(Q_0 = Q_{S,M}^S \) and

\[
\left| \sum_{A'_{1,2}(N_1)} \int_{\mathbb{R}} \int_{0}^{T} \left(N_4 Q_{S,M}^S u_{4,N_4,T} \prod_{j=0}^{3} Q_j^S u_{j,N_j,T} \right) \right| dx dt
\]

\[
\lesssim N_0 \| u_{0,N_0,T} \|_{L^2_x L^6_t} \| Q_1^S u_{1,N_1,T} \|_{L^4_x L^\infty_t} \sum_{1 \leq N_2 \leq N_1} Q_2^S u_{2,N_2,T} \left\| \prod_{j=3}^{4} Q_j^S u_{j,N_j,T} \right\|_{L^1_x L^6_t}
\]

\[
\times \| Q_3^S P_{<1} u_{3,T} \|_{L^4_x L_x^6} \| Q_{S,M}^S P_{<1} u_{4,T} \|_{L^2_x}
\]

\[
\lesssim N_0^{-1} \| P_{N_0} u_0 \|_{V^2} \| P_{N_1} u_1 \|_{V^2} \| P_{>1} u_2 \|_{Y^{1/2}} \prod_{j=3}^{4} \| P_{<1} u_j \|_{Y^0}
\]

if \(Q_4 = Q_{S,M}^S \). Note that \(N_0^{-1} \leq T^{1/3} \). The remaining cases follow from the same argument as above.
We thirdly consider the case $A_{1,3}^1(N_1)$. In the case $T \leq N_0^{-3}$, the Hölder inequality implies
\[
\left| \sum_{A_{1,3}^1(N_1)} \int_T^0 \int_{\mathbb{R}} \left(N_0 \prod_{j=0}^4 P_{N_j} u_j \right) dt dx \right| \leq N_0 \| \mathbf{1}_{[0,T]} \|_{L^2_x} \| u_{0,N_0} \|_{L^4_x L^\infty_t} \| u_{1,N_1} \|_{L^4_x L^\infty_t} \prod_{j=2}^4 \| P_{\leq 1} u_2 \|_{L^\infty_x L^2_x}.
\]
By the same estimates as in the proof for the case $A_{1,1}^1(N_1)$ and
\[
\| P_{< 1} u_j \|_{L^\infty_x L^2_x} \lesssim \| P_{< 1} u_j \|_{L^\infty_x L^2_x} \lesssim \left(\sum_{N \leq 2} \| P_N P_{< 1} u_j \|_{V^2_{3/2}} \right)^{1/2} \leq \| P_{< 1} u_j \|_{Y^0}
\]
for $j = 2, 3, 4$, we obtain
\[
\left| \sum_{A_{1,3}^1(N_1)} \int_T^0 \int_{\mathbb{R}} \left(N_0 \prod_{j=0}^4 P_{N_j} u_j \right) dt dx \right| \lesssim T^{1/2} \| u_{0,N_0} \|_{V^2_{3/2}} \| u_{1,N_1} \|_{V^2_{3/2}} \prod_{j=2}^4 \| P_{< 1} u_j \|_{Y^0}.
\]
In the case $T \geq N_0^{-3}$, we divide the integrals on the left-hand side of (6) into 10 pieces of the form (7) in the proof of Proposition 5. Thanks to Lemma 3.1, let us consider the case that $Q_j^S = Q_{\geq M}^S$ for some $0 \leq j \leq 4$. By the same argument as in the proof for the case $A_{1,1}^1(N_1)$, we obtain
\[
\left| \sum_{A_{1,3}^1(N_1)} \int_{\mathbb{R}} \left(N_0 Q_{\geq M}^S u_{0,N_0,T} \prod_{j=1}^4 Q_j^S u_{j,N_j,T} \right) dt dx \right| \lesssim N_0 \| Q_{\geq M}^S u_{0,N_0,T} \|_{L^2_x} \| Q_j^S u_{1,N_1,T} \|_{L^4_x L^\infty_t} \prod_{j=2}^4 \| Q_j^S P_{< 1} u_j, T \|_{L^1_x L^2_x} \lesssim N_0^{-3/2} \| P_{N_0} u_0 \|_{V^2_x} \| P_{N_1} u_1 \|_{V^2_x} \| P_{< 1} u_2 \|_{Y^0} \prod_{j=3}^4 \| P_{< 1} u_j \|_{Y^0}
\]
if $Q_0 = Q_{\geq M}^S$ and
\[
\left| \sum_{A_{1,3}^1(N_1)} \int_{\mathbb{R}} \left(N_4 Q_{\geq M}^S u_{4,N_4,T} \prod_{j=0}^3 Q_j^S u_{j,N_j,T} \right) dt dx \right| \lesssim N_0 \| u_{0,N_0,T} \|_{L^1_x L^2_x} \| Q_j^S u_{1,N_1,T} \|_{L^4_x L^\infty_t} \prod_{j=2}^3 \| Q_j^S P_{< 1} u_j, T \|_{L^1_x L^2_x} \| Q_{\geq M}^S P_{< 1} u_4, T \|_{L^2_x} \lesssim N_0^{-3/2} \| P_{N_0} u_0 \|_{V^2_x} \| P_{N_1} u_1 \|_{V^2_x} \prod_{j=2}^4 \| P_{< 1} u_j \|_{Y^0}
\]
if $Q_4 = Q_{\geq M}^S$. Note that $N_0^{-3/2} \leq T^{1/2}$. The cases $Q_j^S = Q_{\geq M}^S$ ($j = 1, 2, 3$) are the same argument as above.

Furthermore, we obtain the following estimate.
Proposition 8. Let \(d = 1 \) and \(0 < T \leq 1 \). For a dyadic number \(N_2 \in 2^\mathbb{Z} \), we define the set \(A'_2(N_2) \) as
\[
A'_2(N_2) := \{(N_3, N_4) \in (2^\mathbb{Z})^4 | N_2 \geq N_3 \geq N_4, N_4 \leq 1\}.
\]
If \(N_0 \lesssim N_1 \sim N_2 \), then we have
\[
\left| \sum_{A'_2(N_2)} \int_0^T \int_{\mathbb{R}} \left(N_0 \prod_{j=0}^4 P_{N_j}u_j \right) dx dt \right| \lesssim T^{\frac{1}{6}} \frac{N_0}{N_1} \|P_{N_0}u_0\|_{\dot{V}^{\frac{3}{2}}} \|P_{N_1}u_1\|_{\dot{V}^{\frac{3}{2}}} \|N_2^{-1/2}P_{N_2}u_2\|_{\dot{V}^{\frac{3}{2}}} \|u_3\|_{\dot{Y}^{-1/2}} \|u_4\|_{\dot{Y}^{-1/2}}.
\]

(12)

Because the proof is similar as above, we skip the proof.

4. Proof of well-posedness.

4.1. The small data case. In this section, we prove Theorem 1.1 and Corollary 1. We define the map \(\Phi_{T,\phi} \) as
\[
\Phi_{T,\phi}(u)(t) := S(t)\phi - iI_T(u, \cdots, u)(t),
\]
where
\[
I_T(u_1, \cdots, u_4)(t) := \int_0^t 1_{[0, T]}(t')S(t-t')\partial_x \left(\prod_{j=1}^4 \frac{u_j(t')}{u_j(t')} \right) dt'.
\]
To prove the well-posedness of (1) in \(\dot{H}^{-1/2} \), we prove that \(\Phi_{T,\phi} \) is a contraction map on a closed subset of \(\dot{Z}^{-1/2}((0, T)) \). Key estimate is the following:

Proposition 9. Let \(d = 1 \). For any \(0 < T < \infty \), we have
\[
\|I_T(u_1, \cdots, u_4)\|_{\dot{Z}^{-1/2}} \lesssim \prod_{j=1}^4 \|u_j\|_{\dot{Y}^{-1/2}}.
\]

(13)

Proof. We decompose
\[
I_T(u_1, \cdots, u_m) = \sum_{N_1, \cdots, N_4} I_T(P_{N_1}u_1, \cdots, P_{N_4}u_4).
\]
By symmetry, it is enough to consider the summation for \(N_1 \geq N_2 \geq N_3 \geq N_4 \). We put
\[
S_1 := \{(N_1, \cdots, N_m) \in (2^\mathbb{Z})^m | N_1 \gg N_2 \geq N_3 \geq N_4\},
\]
\[
S_2 := \{(N_1, \cdots, N_m) \in (2^\mathbb{Z})^m | N_1 \sim N_2 \geq N_3 \geq N_4\},
\]
and
\[
J_k := \left\| \sum_{S_k} I_T(P_{N_1}u_1, \cdots, P_{N_4}u_4) \right\|_{\dot{Z}^{-1/2}} (k = 1, 2).
\]
First, we prove the estimate for J_1. By Theorem 2.3 and Plancherel’s theorem, we have

$$J_1 \lesssim \left\{ \sum_{N_0} N_0^{-1} \left\| S(-\cdot)P_{N_0} \sum_{S_1} I_T(P_{N_1} u_1, \cdots P_{N_4} u_4) \right\|_{U/2}^2 \right\}^{1/2}$$

$$\lesssim \left\{ \sum_{N_0} N_0^{-1} \sum_{N_1 \sim N_0} \left(\sup_{\|u_0\|_{V^2_0} = 1} \left\| \sum_{A_1(N_1)} \int_0^T \int_\mathbb{R} \left(N_0 \prod_{j=0}^4 P_{N_j} u_j \right) dx dt \right\| \right) \right\}^{1/2},$$

where $A_1(N_1)$ is defined in Proposition 5. Therefore by Proposition 5, we have

$$J_1 \lesssim \left\{ \sum_{N_0} N_0^{-1} \sum_{N_1 \sim N_0} \left(\sup_{\|u_0\|_{V^2_0} = 1} \|P_{N_0} u_0\|_{V^2_0} \|P_{N_1} u_1\|_{V^2_0} \prod_{j=2}^4 \|u_j\|_{Y^\perp -1/2} \right) \right\}^{1/2}$$

$$\lesssim \left(\sum_{N_1} N_1^{-1} \|P_{N_1} u_1\|_{V^2_0}^2 \right)^{1/2} \prod_{j=2}^4 \|u_j\|_{Y^\perp -1/2}$$

$$= \prod_{j=1}^4 \|u_j\|_{Y^\perp -1/2}.$$

Next, we prove the estimate for J_2. By Theorem 2.3 and Plancherel’s theorem, we have

$$J_2 \lesssim \sum_{N_1} \sum_{N_2 \sim N_1} \left(\sum_{N_0} N_0^{-1} \left\| S(-\cdot)P_{N_0} \sum_{A_2(N_2)} I_T(P_{N_1} u_1, \cdots P_{N_4} u_4) \right\|_{U/2}^2 \right)^{1/2}$$

$$= \sum_{N_1} \sum_{N_2 \sim N_1} \left(\sum_{N_0 \leq N_1} N_0^{-1} \left(\sup_{\|u_0\|_{V^2_0} = 1} \left\| \sum_{A_2(N_2)} \int_0^T \int_\mathbb{R} \left(N_0 \prod_{j=0}^4 P_{N_j} u_j \right) dx dt \right\| \right) \right)^{1/2},$$

where $A_2(N_2)$ is defined in Proposition 6. Therefore by Proposition 6 and the Cauchy-Schwartz inequality for the dyadic sum, we have

$$J_2 \lesssim \sum_{N_1} \sum_{N_2 \sim N_1} \left(\sum_{N_0 \leq N_1} N_0^{-1} \left(\frac{N_0}{N_1} \|P_{N_1} u_1\|_{V^2_0} N_2^{-1/2} \right. \right.$$

$$\left. \|P_{N_2} u_2\|_{V^2_0} \|u_3\|_{Y^\perp -1/2} \|u_4\|_{Y^\perp -1/2} \right)^{1/2}$$

$$\lesssim \left(\sum_{N_1} N_1^{-1} \|P_{N_1} u_1\|_{V^2_0}^2 \right)^{1/2} \left(\sum_{N_2} N_2^{-1} \|P_{N_2} u_2\|_{V^2_0}^2 \right)^{1/2} \|u_3\|_{Y^\perp -1/2} \|u_4\|_{Y^\perp -1/2}$$

$$= \prod_{j=1}^4 \|u_j\|_{Y^\perp \epsilon},$$

\Box
Proof of Theorem 1.1. For $r > 0$, we define
\[\dot{Z}^r(I) := \left\{ u \in \dot{Z}^*(I) \mid ||u||_{\dot{Z}^*(I)} \leq 2r \right\}, \]
which is a closed subset of $\dot{Z}^*(I)$. Let $T > 0$ and $u_0 \in B_r(\dot{H}^{-1/2})$ be given. For $u \in \dot{Z}_r^{-1/2}((0, T))$, we have
\[\|\Phi_{T,u_0}(u)\|_{\dot{Z}^{-1/2}(0,T)} \leq \|u_0\|_{\dot{H}^{-1/2}} + C\|u\|_{\dot{Z}^{-1/2}(0,T)}^4 \leq r(1 + 16Cr^3) \]
and
\[\|\Phi_{T,u_0}(u) - \Phi_{T,u_0}(v)\|_{\dot{Z}^{-1/2}(0,T)} \leq C(\|u\|_{\dot{Z}^{-1/2}(0,T)} + \|v\|_{\dot{Z}^{-1/2}(0,T)})^3 \|u - v\|_{\dot{Z}^{-1/2}(0,T)} \leq 64Cr^3 \|u - v\|_{\dot{Z}^{-1/2}(0,T)} \]
by Proposition 9 and
\[\|S(\cdot)u_0\|_{\dot{Z}^{-1/2}(0,T)} \leq \|1_{(0,T)}S(\cdot)u_0\|_{\dot{Z}^{-1/2}} \leq \|u_0\|_{\dot{H}^{-1/2}}, \]
where C is an implicit constant in (13). Therefore if we choose r satisfying
\[r < (64C)^{-1/3}, \]
then Φ_{T,u_0} is a contraction map on $\dot{Z}_r^{-1/2}((0, T))$. This implies the existence of the solution of (1) and the uniqueness in the ball $\dot{Z}_r^{-1/2}((0, T))$. The Lipschitz continuity of the flow map is also proved by similar argument.

Corollary 1 is obtained by the same way as the proof of Corollary 1.2 in [10].

4.2. The large data case. In this subsection, we prove Theorem 1.2. The following is the key estimate.

Proposition 10. Let $d = 1$. We have
\[\|I_1(u_1, \cdots u_4)\|_{\dot{Z}^{-1/2}} \lesssim \prod_{j=1}^4 \|u_j\|_{Y^{-1/2}}. \]

Proof. We decompose $u_j = v_j + w_j$ with $v_j = P_{\geq 1}u_j \in \dot{Y}^{-1/2}$ and $w_j = P_{<1}u_j \in \dot{Y}^0$. From Propositions 7, 8, and the same way as in the proof of Proposition 9, it remains to prove that
\[\|I_1(w_1, w_2, w_3, w_4)\|_{\dot{Z}^{-1/2}} \lesssim \prod_{j=1}^4 \|u_j\|_{\dot{Y}^0}. \]

By Theorem 2.3, the Cauchy-Schwartz inequality, the Hölder inequality, and the Sobolev inequality, we have
\[\|I_1(w_1, w_2, w_3, w_4)\|_{\dot{Z}^{-1/2}} \lesssim \left\| \prod_{j=1}^4 w_j \right\|_{L^1([0,1];L^2)} \lesssim \prod_{j=1}^4 \|w_j\|_{L^\infty L^2} \lesssim \prod_{j=1}^4 \|u_j\|_{\dot{Y}^0}, \]
which completes the proof.

Proof of Theorem 1.2. Let $u_0 \in B_{3R}(H^{-1/2})$ with $u_0 = v_0 + w_0$, $v_0 \in \dot{H}^{-1/2}$, $w_0 \in L^2$. A direct calculation yields
\[\|S(t)u_0\|_{\dot{Z}^{-1/2}(0,1)} \leq \delta + R. \]
We start with the case \(R = \delta = (4C + 4)^{-4} \), where \(C \) is the implicit constant in (15). Proposition 10 implies that for \(u \in Z_{-1}^{1/2}([0, 1]) \) with \(r = 1/(4C + 4) \)
\[
\|\Phi_{1,u_0}(u)\|_{Z_{-1}^{1/2}(0,1)} \leq \|S(t)u_0\|_{Z_{-1}^{1/2}(0,1)} + C\|u\|_{L_{x,t}^{1/2}(0,1)}^4 \leq 2r^4 + 16Cr^4 = r^4(16C + 2) \leq r
\]
and
\[
\|\Phi_{1,u_0}(u) - \Phi_{1,u_0}(v)\|_{Z_{-1}^{1/2}(0,1)} \\
\leq C(\|u\|_{Z_{-1}^{1/2}(0,1)} + \|v\|_{Z_{-1}^{1/2}(0,1)})^3 \|u - v\|_{Z_{-1}^{1/2}(0,1)} \\
\leq 64Cr^3 \|u - v\|_{Z_{-1}^{1/2}(0,1)} < \|u - v\|_{Z_{-1}^{1/2}(0,1)}
\]
if we choose \(C \) large enough (namely, \(r \) is small enough). Accordingly, \(\Phi_{1,u_0} \) is a contraction map on \(Z_{-1}^{1/2}(0,1) \).

We note that all of the above remains valid if we exchange \(Z^{1/2}(0, 1) \) by the smaller space \(Z_{-1}^{1/2}(0, 1) \) since \(Z_{-1}^{1/2}(0, 1) \hookrightarrow Z_{1}^{1/2}(0, 1) \) and the left hand side of (15) is the homogeneous norm.

We now assume that \(u_0 \in B_{3,\delta}(\dot{H}^{-1/2}) \) for \(R \geq \delta = (4C + 4)^{-4} \). We define \(u_{0,\lambda}(x) = \lambda^{-1}u_0(\lambda^{-1}x) \). For \(\lambda = \delta^{-2}2^2 \), we observe that \(u_{0,\lambda} \in B_{3,\delta}(\dot{H}^{-1/2}) \). We therefore find a solution \(u_{1,\lambda} \in Z_{-1}^{1/2}(0, 1) \) with \(u_{\lambda}(0, x) = u_{0,\lambda}(x) \). By the scaling, we find a solution \(u \in Z_{-1}^{1/2}(0, \delta^8R^{-8}) \).

Thanks to Propositions 7 and 8, the uniqueness follows from the same argument as in [5].

5. Proof of Theorem 1.3. In this section, we prove Theorem 1.3. We only prove for the homogeneous case since the proof for the inhomogeneous case is similar. We define the map \(\Phi_{T,\varphi}^m \) as
\[
\Phi_{T,\varphi}^m(u)(t) := S(t)\varphi - iI_T^m(u, \ldots, u)(t),
\]
where
\[
I_T^m(u_1, \ldots, u_m)(t) := \int_0^t 1_{[0, T]}(t')S(t-t')\partial \left(\prod_{j=1}^m u_j(t') \right) \, dt'.
\]
and the solution space \(\dot{X}^s \) as
\[
\dot{X}^s := C(\mathbb{R}; \dot{H}^s) \cap L^{p_m}(\mathbb{R}; W^{s+1/(m-1), q_m}),
\]
where \(p_m = 2(m - 1), q_m = 2(m - 1)d/\{(m - 1)d - 2\} \) for \(d \geq 2 \) and \(p_3 = 4, q_3 = \infty \) for \(d = 1 \). To prove the well-posedness of (1) in \(L^2(\mathbb{R}) \) or \(H^s(\mathbb{R}^d) \), we prove that \(\Phi_{T,\varphi}^m \) is a contraction map on a closed subset of \(\dot{X}^s \). The key estimate is the following:

Proposition 11. (i) Let \(d = 1 \) and \(m = 3 \). For any \(0 < T < \infty \), we have
\[
\|I_T^3(u_1, u_2, u_3)\|_{\dot{X}^{s_0}_0} \lesssim T^{1/2} \prod_{j=1}^3 \|u_j\|_{\dot{X}^{s_0}_0}.
\]
(ii) Let \(d \geq 2, (m-1)d \geq 4 \) and \(s_c = d/2 - 3/(m-1) \). For any \(0 < T \leq \infty \), we have
\[
\|I_T^m(u_1, \ldots, u_m)\|_{\dot{X}^{s_c}} \lesssim \prod_{j=1}^m \|u_j\|_{\dot{X}^{s_c}}.
\]
Proof. (i) By Proposition 4 with \((a, b) = (4, \infty)\), we get
\[
\|I_T^3(u_1, u_2, u_3)\|_{L^\infty_t L^2_x} \lesssim \left\| 1_{[0, T]} |\nabla|^{-1/2} \partial \left(\prod_{j=1}^3 u_j \right) \right\|_{L^{4/3}_t L^{1}_x}
\]
and
\[
\| |\nabla|^{1/2} I_T^3(u_1, u_2, u_3)\|_{L^4_t L^\infty_x} \lesssim \left\| 1_{[0, T]} |\nabla|^{1/2-1/2-1/2} \partial \left(\prod_{j=1}^3 u_j \right) \right\|_{L^{4/3}_t L^{1}_x}.
\]
Therefore, thanks to the fractional Leibniz rule (see [1]), we have
\[
\|I_T^3(u_1, \cdots, u_3)\|_{\tilde{X}^0} \lesssim \left\| 1_{[0, T]} |\nabla|^{1/2} \prod_{j=1}^3 u_j \right\|_{L^{4/3}_t L^{1}_x}
\]
\[
\lesssim \left\| 1_{[0, T]} \| |\nabla|^{1/2} u_i \|_{L^4_t L^\infty_x} \prod_{1 \leq j \leq 3} \| u_j \|_{L^\infty_t L^2_x} \right\|
\]
\[
\lesssim T^{1/2} \prod_{j=1}^3 \| u_j \|_{\tilde{X}^0}
\]
by the Hölder inequality.

(ii) By Proposition 4 with
\[
(a, b) = \left(\frac{2(m-1)}{m-2}, \frac{2(m-1)d}{(m-1)d - 2(m-2)} \right),
\]
we get
\[
\| |\nabla|^{s_c} I_T^m(u_1, \cdots, u_m)\|_{L^\infty_t L^2_x} \lesssim \left\| |\nabla|^{s_c-2/a} \partial \left(\prod_{j=1}^m u_j \right) \right\|_{L^{q_m}_t L^{b'_m}_x}
\]
and
\[
\| |\nabla|^{s_c+1/(m-1)} I_T^m(u_1, \cdots, u_m)\|_{L^{p_m}_t L^{q_m}_x} \lesssim \left\| |\nabla|^{s_c+1/(m-1)-2/p_m-2/a} \partial \left(\prod_{j=1}^m u_j \right) \right\|_{L^{q_m}_t L^{b'_m}_x}.
\]
Therefore, thanks to the fractional Leibniz rule (see [1]), we have
\[
\| I_T^m(u_1, \cdots, u_m)\|_{X^{s_c}} \lesssim \left\| |\nabla|^{s_c+1/(m-1)} \prod_{j=1}^m u_j \right\|_{L^{q_m}_t L^{b'_m}_x}
\]
\[
\lesssim \sum_{i=1}^m \| |\nabla|^{s_c+1/(m-1)} u_i \|_{L^{p_m}_t L^{q_m}_x} \prod_{1 \leq j \leq m} \| u_j \|_{L^{p_m}_t L^{(m-1)d}_x}
\]
\[
\lesssim \sum_{i=1}^m \| |\nabla|^{s_c+1/(m-1)} u_i \|_{L^{p_m}_t L^{q_m}_x} \prod_{1 \leq j \leq m} \| |\nabla|^{s_c+1/(m-1)} u_j \|_{L^{p_m}_t L^{q_m}_x}
\]
\[
\lesssim \prod_{j=1}^m \| u_j \|_{X^{s_c}}
\]
by the Hölder inequality and the Sobolev inequality, where we used the condition
\((m-1)d \geq 4\) which is equivalent to \(s_c + 1/(m-1) \geq 0\).

The well-posedness can be proved by the same way as the proof of Theorem 1.1
and the scattering follows from that the Strichartz estimate because the \(X^{s_c}\) norm
of the nonlinear part is bounded by the norm of the \(L^{p_m}L^{q_m}\) space (see for example
[16, Section 9]).

6. Proof of Theorem 1.4. In this section we prove the flow of (1) is not smooth.
Let \(u^{(m)}[u_0]\) be the \(m\)-th iteration of (1) with initial data \(u_0\):

\[
u^{(m)}[u_0](t, x) := -i \int_0^t e^{i(t-t')\Delta^2} \partial P_m(S(t')u_0, S(-t')\overline{u_0})dt'.
\]

Firstly, we consider the case \(d = 1, m = 3, P_3(u, \overline{u}) = |u|^2u\). For \(N \gg 1\), we put

\[f_N = N^{-s+1/2}F^{-1}[1_{[N^{-N-1}, N+N-1]}].\]

Let \(u_N^{(3)}\) be the third iteration of (1) for the data \(f_N\). Namely,

\[u_N^{(3)}(t, x) = u^{(3)}[f_N](t, x) = -i \int_0^t e^{i(t-t')\partial_x^4} \left(e^{i(t-t')\partial_x^4}f_N \right)(x)dt'.\]

Note that \(\|f_N\|_{H^s} \sim 1\). Theorem 1.4 is implied by the following propositions.

Proposition 12. If \(s < 0\), then we have

\[\|u_N^{(3)}\|_{L^\infty([0,1]; H^s)} \to \infty \]

as \(N \to \infty\).

Proof. A direct calculation implies

\[
u_N^{(3)}(t, \xi) = e^{it \xi^4} \int_{\xi_1 - \xi_2 + \xi_3 = \xi} e^{it(-\xi^4 + \xi_1^4 - \xi_2^4 + \xi_3^4)} dt' \int_{\xi_1} f_N(\xi_1) f_N(\xi_2) f_N(\xi_3)
\]

and

\[- (\xi_1 - \xi_2 + \xi_3)^4 + \xi_1^4 - \xi_2^4 + \xi_3^4
= 2(\xi_1 - \xi_2)(\xi_2 - \xi_3)(2\xi_1^2 + \xi_2^2 + 2\xi_3^2 - \xi_1\xi_2 - \xi_2\xi_3 + 3\xi_3\xi_1).
\]

From \(\xi_j \in [N^{-N-1}, N+N-1]\) for \(j = 1, 2, 3\), we get

\[\left| -(\xi_1 - \xi_2 + \xi_3)^4 + \xi_1^4 - \xi_2^4 + \xi_3^4 \right| < 1.
\]

We therefore obtain for sufficiently small \(t > 0\)

\[\left|\nu_N^{(3)}(t, \xi)\right| \geq tN^{-3s+5/2} \int_{\xi_1 - \xi_2 + \xi_3 = \xi} 1_{[N^{-N-1}, N+N-1]}(\xi_1)\]

\[1_{[N^{-N-1}, N+N-1]}(\xi_2)1_{[N^{-N-1}, N+N-1]}(\xi_3)
\]

\[\geq tN^{-3s+1/2} 1_{[N^{-N-1}, N+N-1]}(\xi).
\]

Hence,

\[\|u_N^{(3)}\|_{L^\infty([0,1]; H^s)} \geq N^{-2s}.
\]

This lower bound goes to infinity as \(N\) tends to infinity if \(s < 0\), which concludes the proof. \(\square\)
Secondly, we show that absence of a smooth flow map for \(d \geq 1 \) and \(m \geq 2 \). Putting
\[
g_N := N^{-s-d/2} F^{-1}[1_{[-N,N]}],
\]
we set \(u_N^{(m)} := u^{(m)}[g_N] \). Note that \(\|g_N\|_{H^s} \sim 1 \). As above, we show the following.

Proposition 13. If \(s < s_c := d/2 - 3/(m-1) \) and \(\partial = |\nabla| \) or \(\partial \|\frac{\partial}{\partial x_k}\| \) for some \(1 \leq k \leq d \), then we have
\[
\|u_N^{(m)}\|_{L^\infty([0,1];H^s)} \to \infty
\]
as \(N \to \infty \).

Proof. We only prove for the case \(\partial = |\nabla| \) since the proof for the case \(\partial \|\frac{\partial}{\partial x_k}\| \) is the same. Let
\[
A := \{(\pm, \ldots, \pm) : \pm \in \{+, -\} \ (j = 1, \ldots, m)\}.
\]
Since \(A \) consists of \(2^m \) elements, we write
\[
A = \bigcup_{\alpha=1}^{2^m} \{\pm^{(\alpha)}\},
\]
where \(\pm^{(\alpha)} \) is a \(m \)-ple of signs \(+ \) and \(- \). We denote by \(\pm_j^{(\alpha)} \) the \(j \)-th component of \(\pm^{(\alpha)} \). A simple calculation shows that
\[
\widehat{u}_N^{(m)}(t, \xi) = |\xi| \sum_{\alpha=1}^{2^m} e^{it|\xi|^4} \int_{\xi = \sum_{j=1}^{m} \pm_j^{(\alpha)} \xi_j} \int_0^t e^{it(-|\xi|^4 + \sum_{j=1}^{m} \pm_j^{(\alpha)} |\xi_j|^4)} dt' \prod_{j=1}^{m} \widehat{g}_N(\xi_j).
\]
From
\[
|\xi|^4 + \sum_{j=1}^{m} \pm_j^{(\alpha)} |\xi_j|^4 \lesssim N^4
\]
for \(|\xi_j| \leq N \ (j = 1, \ldots, m) \), we have
\[
|\widehat{u}_N^{(m)}(t, \xi)| \gtrsim |\xi| N^{-4} N^{-m(s+d/2)} N^{(m-1)d} \|1_{[-N,N]}\|_{L^1}\(\xi\)
\]
provided that \(t \sim N^{-4} \). Accordingly, we obtain
\[
\|u_N^{(m)}(N^{-d})\|_{H^s} \gtrsim N^{-3} N^{-m(s+d/2)} N^{(m-1)d} N^{s+d/2} \sim N^{-(m-1)s+(m-1)d/2-3},
\]
which conclude that \(\limsup_{t \to 0} \|u_N^{(m)}(t)\|_{H^s} = \infty \) if \(s < s_c \).

REFERENCES

[1] F. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, *J. Funct. Anal.*, 100 (1991), 87–109.

[2] K. Dysthe, Note on a modification to the nonlinear Schrödinger equation for application to deep water waves, *Proc. R. Soc. Lond. Ser. A*, 369 (1979), 105–114.

[3] Y. Fukumoto, Motion of a curved vortex filament: higher-order asymptotics, in *Proc. IUTAM Symp. Geom. Stat. Turbul.*, 2001, 211–216.

[4] M. Hadac, S. Herr, and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, *Ann. Inst. H. Poincaré Anal. Non linéaire.*, 26 (2009), 917–941.

[5] M. Hadac, S. Herr, and H. Koch, Erratum to “Well-posedness and scattering for the KP-II equation in a critical space” [Ann. Inst. H. Poincaré–AN26 (3) (2009) 917–941], *Ann. Inst. H. Poincaré Anal. Non linéaire.*, 27 (2010), 971–972.

[6] C. Hao, L. Hsiao, and B. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, *J. Math. Anal. Appl.*, 320 (2006), 246–265.
C. Hao, L. Hsiao, and B. Wang, Well-posedness of Cauchy problem for the fourth order nonlinear Schrödinger equations in multi dimensional spaces, *J. Math. Anal. Appl.*, 328 (2007), 58–83.

N. Hayashi and P. I. Naumkin, Large time asymptotics for the fourth-order nonlinear Schrödinger equation, *J. Differential Equations*, 258 (2015), 880–905.

N. Hayashi and P. I. Naumkin, Global existence and asymptotic behavior of solutions to the fourth-order nonlinear Schrödinger equation in the critical case, *Nonlinear Anal.*, 116 (2015), 112–131.

H. Hirayama, Well-posedness and scattering for nonlinear Schrödinger equations with a derivative nonlinearity at the scaling critical regularity, *Funkcialaj Ekvacioj*, arXiv:1311.3119.

Z. Huo and Y. Jia, The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament, *J. Differential Equations*, 214 (2005), 1–35.

Z. Huo and Y. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, *Comm. Partial Differential Equations*, 32 (2007), 1493–1510.

Z. Huo and Y. Jia, Well-posedness for the fourth-order nonlinear derivative Schrödinger equation in higher dimension, *J. Math. Pures Appl.*, 96 (2011), 190–206.

V. Karpman, Stabilization of soliton instabilities by higher order dispersion: fourth-order nonlinear Schrödinger-type equations, *Phys. Rev. E*, 53 (1996), 1336–1339.

V. Karpman and A. Shagalov, Stability of soliton described by nonlinear Schrödinger-type equations with higher-order dispersion, *Physica D*, 144 (2000), 194–210.

B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, *Dynamics of PDE*, 4 (2007), 197–225.

J. Segata, Well-posedness for the fourth order nonlinear Schrödinger type equation related to the vortex filament, *Diff. and Integral Eqs.*, 16 (2003), 841–864.

J. Segata, Remark on well-posedness for the fourth order nonlinear Schrödinger type equation, *Proc. Amer. Math. Soc.*, 132 (2004), 3559–3568.

J. Segata, Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation, *Discrete Contin. Dyn. Syst.*, 27 (2010), 1093–1105.

Y. Wang, Global well-posedness for the generalized fourth-order Schrödinger equation, *Bull. Aust. Math. Soc.*, 85 (2012), 371–379.

Received May 2015; revised December 2015.

Current address, H. Hirayama: Organization for Promotion of Tenure Track, University of Miyazaki, 1-1, Gakuenkibanadai-nishi, Miyazaki, 889-2192 Japan

E-mail address: h.hirayama@cc.miyazaki-u.ac.jp

E-mail address: m_okamoto@shinshu-u.ac.jp