1. INTRODUCTION

Large surveys play an increasingly central role in astronomy. The Sloan Digital Sky Survey (SDSS; Margon 1999) pioneered this trend, obtaining multicolor images covering more than a quarter of the sky, with a final data set of 230M celestial objects in an area of 8400 deg2, during its eight years of operation. The new generation of surveys is even more ambitious, and will generate astonishing data volumes. The Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) in Hawaii (Kaiser et al. 2002), composed of four individual optical systems of 1.8 m diameter each, will be able to survey 6000 deg2 per night. It will catalog 99% of the stars in the northern hemisphere and make an ultradeep survey of 12000 deg2 to $g = 27$. The Dark Energy Survey (DES; Abbott et al. 2005) will study the acceleration of the expanding universe by surveying 5000 deg2 of the southern sky in five bands, and expects to detect more than 300 million galaxies. The Javalambre-PAU Astrophysical Survey (J-PAS) project (Benítez et al. 2009a) will survey 8000 deg2 in 40 different bands, starting in 2013, measuring photometric redshifts with $dz/(1 + z) \sim 0.003$ and $dz/(1 + z) \sim 0.01$ for, respectively, 100M and 300M galaxies. The Large Synoptic Survey Telescope (LSST; Ivezić et al. 2008) will start to cover an area of 30,000 deg2 in 2015 with six optical filters and expects to find a number of galaxies, 10 billion, dwarfing all other projects. To model and exploit such huge data sets, it is therefore necessary to develop techniques which are automated, objective, and efficient.

Modeling of the light distribution of galaxies is a crucial step for a wide array of problems in Galaxy Evolution and Observational Cosmology, which require accurate galaxy profiles and flux measurements. The use of analytical galaxy profiles is the approach with the longest tradition, employed, e.g., by GIM2D (Simard1998). This IRAF package analyzes galaxy images with a bulge/disk decomposition consisting of a Sérsic profile (Sérsic 1968) plus an exponential, and optimization of the parameters is performed by the Metropolis algorithm. The same decomposition using a generalized Sérsic function and an exponential disk was implemented by de Souza et al. (2004) in BUDDA, software which later underwent several improvements, such as the possibility of also fitting bars and a central source of light (Gadotti 2008). Other works try to adjust galaxy profiles as a sum of elliptical Gaussians, as can be observed in Kuijken (1999) or in an im2shape method (Bridle et al. 2002), and apply a maximum likelihood method to fit them. Lensing work has also contributed to develop new techniques, as Irwing & Shmakova (2005) or Irwing et al. (2007), where a Gaussian times a polynomial profile is used as a model function. The idea of doing the model fitting in Fourier space has been also tried, for example, in Miller et al. (2007), being based on a de Vaucouleurs profile. The most widely used implementation of this approach is perhaps GALFIT (Peng et al. 2002, 2010), which combines analytical profiles for the radial profile and trigonometric functions for the angular distribution. It works extremely well with objects with smooth features, as elliptical galaxies, and thanks to its recently introduced angular components it displays considerable flexibility. However, as most analytical approaches, it requires considerable interactivity from the user in order to model complex galaxy profiles, especially at a high signal-to-noise ratio (S/N), since the number, type, and initial values of the components have to be adjusted manually. Due to the large number of degrees of freedom, and the nonlinearity of the fitting functions, which may require long convergence times or may not converge at all, it will be difficult to implement GALFIT, or any other analytical profile-based approaches, as a high-precision tool to handle the hundreds of millions of galaxies coming from the future large imaging surveys.

A different approach, much better adapted to blind, automated fitting, is the use of orthonormal bases. The widely known wavelet bases have been profusely applied to a great variety of science fields, including astrophysics (Mallat 1999). They form a complete and orthonormal system across scales, capable of a multiscale decomposition of galaxies (Starck & Murtagh 2002). They have inspired...
other bases, for example, beamlets (Donoho & Huo 2002) or curvelets (Starck et al. 2003), used to efficiently represent certain features present in astronomical images.

The most successful orthonormal basis methods in astronomy are the so-called shapelets (Massey & Refregier 2005; Refregier & Bacon 2003). Built using Hermite polynomials and Gaussians, these bases are extremely flexible, capable of decomposing irregular objects and galaxies displaying small features. They are also fast and lineal. However, they feature an exponentially squared cutoff on the radial basis functions, which makes them fall significantly faster than most galaxy profiles. Because of this, they require a very large number of coefficients to model objects with extended wings, which leads to oscillations in the radial shape (Melchior et al. 2010). This limitation seriously hampers their usefulness as automatic estimators of shapes and fluxes for large galaxy surveys, although they have been used for many astrophysical applications (Kuijken 1999, 2008; Refregier & Bacon 2003; Massey et al. 2004, 2007; Kelly & McKay 2004, 2005; Goldberg & Bacon 2005; Heymans et al. 2006). An interesting attempt to tackle this issue is sersiclets (Ngan et al. 2009), a polar basis based on Sérsic profiles. However, Sérsic functions are poorly suited to form a two-dimensional orthogonal basis, due to the absence of orthogonality in parameterized Sérsic profiles and the necessity of using gamma functions to achieve it, which introduces serious numerical instability. Therefore, this basis cannot fit arbitrary, especially highly complex galaxy profiles in an efficient manner.

Given the obvious advantages of orthonormal bases, it seems highly desirable to develop one with the morphological flexibility and processing speed of the shapelets, but which is able to accurately and compactly represent realistic galaxy profiles up to very large radii. Here we introduce such a basis, which we have called CHEF functions or “CHEFs,” built using Chebyshev polynomials (Boyd 1987), which, as it is well known, display remarkable properties of efficiency when fitting functions in the $[-1, 1]$ interval as their minimax property states (Mason & Handscomb 2003). The CHEF functions are separately built in polar coordinates by expanding the radial component using Chebyshev rational functions (the composition of a Chebyshev polynomial and an algebraical mapping) and developing the azimuthal coordinate by means of sines and cosines. The result is a complete and orthonormal set of basis functions very well suited to fit astronomical objects able to fully model the whole flux of a galaxy to very large radii using a small number of coefficients. To explore the reliability and performance of this new technique, we have tested it on a wide sample of both simulated and real data, comparing the results with those obtained by the most popular publicly available techniques, GALFIT and IDL Shapelets software.

This paper is organized as follows. In Section 2, we present the mathematical definition of the CHEF basis, demonstrate the fast decay rate of the coefficients, which ensures the compactness of the basis, and derive the main galaxy parameters from the decomposition coefficients. Section 3 focuses on the practical implementation of the algorithm, describing how to discretize the basis and choose the free parameters of the fit, namely the scale size, the center, and the decomposition order, and describes our functioning pipeline, which is being used to process data from different surveys. Section 4 shows the application of the method to different data sets, both real and simulated, and discusses its performance compared with that of shapelets. Section 5 states the main conclusions of the paper.

2. MATHEMATICAL DEFINITIONS AND RESULTS

We present an orthonormal basis set for image analysis based on polar basis functions that are constructed from rational Chebyshev functions, defined on the semi-infinite interval $[0, +\infty)$, to expand the radial coordinate, and from sine and cosine waves to represent the azimuthal component. We call this basis “CHEF” functions (from q, the initial letter of Chebyshev, which is pronounced as “Che” in Russian and F, the first letter of Fourier’s family name) or, more compactly, “CHEFs.”

The **Chebyshev polynomial** of degree n is defined by the relation

$$T_n(z) = \cos(n \theta), \quad \text{where } z = \cos \theta. \quad (1)$$

Chebyshev polynomials constitute a basis of the L^2-space of squared-integrable functions defined on the finite interval $[-1, 1]$. Using an algebraic coordinate transformation, this domain can be mapped onto the semi-infinite interval $[0, +\infty)$ and the **rational Chebyshev functions** can be obtained (Boyd 1987):

$$TL_n(r) = T_n \left(\frac{r - L}{r + L} \right) = \cos \left(n \cdot \arccos \left(\frac{r - L}{r + L} \right) \right). \quad (2)$$

The constant L appearing in this expression will be called the *scale parameter* from now on and is related to the “width” of the functions, and it does not affect their shape, as can be seen in Figure 1. This scale is a free parameter of the decomposition and has to be determined when applying the method to real data. Luckily, as we see below, the quality of the fit is not very sensitive to its exact value.

These rational Chebyshev functions are orthogonal with respect to the weight function $f(r) = \frac{1}{r L} \sqrt{L/\pi}$, that is,

$$\int_0^\infty TL_i(r; L) TL_j(r; L) \frac{1}{r + L} \sqrt{L/\pi} \frac{dr}{r} = \begin{cases} \pi, & \text{if } i = 0 \\ 0, & \text{if } i \neq j \\ \pi/2, & \text{if } j > 0 \end{cases}. \quad (3)$$

They tend monotonously to 1 after their last minimum, more and more slowly as the order grows. Because of this property, and unlike shapelets, which fall off like a Gaussian, they can fit extended galaxy wings very compactly. At small radii, they quickly oscillate, and are thus capable of accurately describing the very fast change of flux with radius displayed by most galaxies. The frontier
Figure 1. Chebyshev rational function of order $n = 5$ with different scale sizes.

Figure 2. Chebyshev approximations to both a de Vaucouleurs (top panel) and a Sérsic profile (lower panel; with index $n_s = 0.75$), using Chebyshev rational functions of different order n. Order $n \lesssim 10$ is enough to provide high accuracy over the scales sampled by typical astronomical images.

(A color version of this figure is available in the online journal.)

between both regimes is roughly set by the scale parameter L. Their efficiency in modeling galaxy profiles is illustrated by Figure 2, which shows the rational Chebyshev approximations to both a de Vaucouleur and a Sérsic profile (with index $n_s = 0.75$), using different Chebyshev rational function orders. It can be observed how they accurately match both profiles over 3 orders of magnitude with less than 10 coefficients. In comparison, shapelets fail to model a de Vaucouleurs profile over 2 orders of magnitude even going to an order of 16 (see Figure 2 from Bosch 2010). It can also be proved that Chebyshev rational functions constitute a family of eigenfunctions of a Sturm–Liouville equation (see Appendix B), so they inherit all the properties of these families of functions.

The polar CHEF functions are separable in r and θ, and built by expanding the radial component with normalized rational Chebyshev functions, whereas the angular coordinate is represented by a combination of sines and cosines:

$$\{\phi_{nm}(r, \theta; L)\}_{nm} = \left\{ \frac{C}{\pi} T_L(r) W_m(\theta) \right\},$$

where $C = \left\{ \begin{array}{ll} 1, & \text{if } n = 0 \\ 2, & \text{if } n > 0 \end{array} \right.$, and $W_m(\theta)$ is a general expression to represent both $\sin(m\theta)$ and $\cos(m\theta)$.

CHEFs with scale size $L = 1$ and coefficient indices ranging from $0 \leq n \leq 6$ and $-4 \leq m \leq 4$ are displayed in Figure 3. This set forms an orthonormal basis of the space of the finite-energy functions $L^2([0, +\infty) \times [-\pi, \pi], \langle \cdot, \cdot \rangle)$, which constitutes a Hilbert
Figure 3. Cosine and sine components of the first CHEF basis functions with scale size \(L = 1 \).

space with the inner product defined by

\[
\langle f, g \rangle = \int_{0}^{+\infty} \int_{-\pi}^{\pi} f(r, \theta) g(r, \theta) \frac{1}{r + L} \sqrt{L} \frac{d\theta}{dr} dr.
\]

(5)

In this way, a smooth enough function \(f \) in polar coordinates can be decomposed into

\[
f(r, \theta) = C \frac{2\pi}{2\pi} L \sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty} \left[f_{cm} T L_n(r) \cos(m\theta) + f_{sm} T L_n(r) \sin(m\theta) \right]
\]

(6)

and the coefficients \(f_{nm} \) are calculated by

\[
f_{cm} = C \frac{2\pi}{2\pi} L \int_{-\pi}^{\pi} f(z, \phi) T L_n(z) \frac{1}{\sqrt{\pi}} \sqrt{L} \frac{d\phi}{dz} d\phi
\]

\[
f_{sn} = C \frac{2\pi}{2\pi} L \int_{-\pi}^{\pi} f(z, \phi) T L_n(z) \frac{1}{\sqrt{\pi}} \sqrt{L} \frac{d\phi}{dz} d\phi.
\]

(7)

These coefficients are finite; therefore the series in Equation (6) is \(L^2 \)-convergent to the function \(f \) that is representing, which implies the expression in Equation (6) is well defined.
2.1. Coefficients Decay

CHEF coefficients are uniformly bounded by the norm of the function
\[
|f_{nm}| = \frac{C}{2\pi^2} |\langle f, \phi_{nm} \rangle| \leq \frac{C}{2\pi^2} \|f\| \cdot \|TL_n(r)W_m(\theta)\| = \|f\|
\]
(8)
and their sum is also bounded
\[
\sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty} |f_{nm}|^2 \leq \frac{C}{2\pi^2} \|f\|^2,
\]
(9)
so the coefficients must tend to vanish as \(n\) and \(m\) increase. It can be proved (see Appendix A) that the decay rate of these CHEF coefficients is
\[
|f_{nm}| \leq A \left| \frac{n}{m} \right|^{p+1}, \quad \forall n, m \in \mathbb{N},
\]
whenever the function \(f\) is smooth enough, and \(p\) is related to this smoothness (see Proposition A.3 in Appendix A for details); this ensures the quick convergence of the fits and therefore its compactness.

2.2. Shape Parameters and Fluxes

The fact that CHEFs are radially symmetric simplifies the calculation of certain shape parameters as the total flux, the centroid, and the rms radius. As we will see, only the \(m \in \{-2, -1, 0, 1, 2\}\) coefficients of this decomposition are included in the computation of these parameters.

First of all, we define the integral
\[
I^n_q = \int_0^R TL_n(r) r^q \, dr,
\]
with \(q \geq 1\) and \(R \in \mathbb{R}\). It can be proved that
\[
I^n_q = 2 \sum_{j=0}^{n} \binom{n}{j} (-1)^j L^{j+3/2} \frac{R^{q+j+2}}{2q+j+2} \Re \left(e^{i\pi/2} i^{n+j} {}_2F_1 \left(n, q+j+2, 2q+j+3; -\frac{i}{\sqrt{L}} \right) \right),
\]
in the case \(n > 0\), \({}_2F_1 \) being the hypergeometric function. If \(n = 0\), then simply
\[
I^0_q = \frac{R^{q+1}}{q+1}.
\]
Using this result, the flux inside a circular aperture of radius \(R\) can be easily calculated from the CHEF cosine coefficients with \(m = 0\):
\[
F(R) = \int_0^\pi \int_{-\pi}^{\pi} f(r, \theta) r \, d\theta \, dr = 2\pi \sum_{n=0}^{+\infty} f^c_{n,0} I^n_1.
\]
In a similar way, the unweighted centroid \((x_c, y_c)\) is
\[
x_c + iy_c = \frac{1}{F} \int_0^\pi \int_{-\pi}^{\pi} f(r, \theta) r^2 (\cos \theta + i \sin \theta) \, d\theta \, dr = \frac{2\pi}{F} \sum_{n=0}^{+\infty} \left[(f^c_{n,1} + f^s_{n,1}) + i \left(f^s_{n,1} - f^c_{n,1} \right) \right] I^n_2.
\]
Finally, the expression for the quadrupole moments, \(F_{ij} = \iint f(x_i, x_j) x_i x_j \, dx_i \, dx_j\), yields this formula for the rms radius
\[
r_{\text{rms}} = \frac{F_{11} + F_{22}}{F} = \frac{2\pi}{F} \sum_{n=0}^{+\infty} f^c_{n,0} I^n_3,
\]
and the ellipticity
\[
e = \frac{F_{11} - F_{22} + 2i F_{12}}{F_{11} + F_{22}} = \frac{\sum_{n=0}^{+\infty} \left(f^c_{n,2} + f^s_{n,2} \right) I^n_3}{\sum_{n=0}^{+\infty} f^c_{n,0} I^n_3}.
\]
Another definition of the ellipticity, more useful as a shear estimator, can be also obtained from the CHEF coefficients using the quadrupole moments (Melchior et al. 2010):

$$
\epsilon = \frac{F_{11} - F_{22} + 2i F_{12}}{F_{11} + F_{22} + 2 F_{12} F_{11}^{-1/2}} = -\frac{\sum_{n=0}^{\infty} \left(f_{n,2}^c + f_{n,2}^i \right) I_n^2}{2 \sum_{n=0}^{\infty} f_{n,0}^0 I_n^2 + \sqrt{\sum_{l_1,l_2=0}^{\infty} \left(\sum_{n=0}^{\infty} \left(f_{l_1,0}^c + \frac{1}{2} \left(f_{l_1,-2}^c + f_{l_1,2}^c \right) \right) \left(f_{l_2,0}^c - \frac{1}{2} \left(f_{l_2,-2}^c + f_{l_2,2}^c \right) \right) \right) - \frac{1}{4} \left(f_{l_1,2}^c - f_{l_1,-2}^c \right) \left(f_{l_2,2}^c - f_{l_2,-2}^c \right) \left(f_{l_1,2}^i - f_{l_1,-2}^i \right) \left(f_{l_2,2}^i - f_{l_2,-2}^i \right) \right)}.
$$

(11)

Using a different approach, the behavior of the CHEF coefficients under linear transformations described in Appendix C, the asymmetry parameter described by Conselice (2003) can be calculated using the CHEF coefficients:

$$
\epsilon_{\text{Sersic}} = -k \ln \left(\frac{r_e}{r_e} \right) / \ln \left(\frac{C \pi e^{-\frac{1}{4} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \left[f_{nm}^c \cos(m \theta) + f_{nm}^i \sin(m \theta) \right] T L_n(r)} \right),
$$

where r_e is the effective radius of the galaxy, Σ_e is the surface brightness at r_e, and k is a constant coupled to n such that half of the total flux is within r_e.

3. PRACTICAL IMPLEMENTATION

In this section, we also show how to deal with the free parameters of the decomposition, namely the scale parameter L, the center (x_c, y_c), and the total number of coefficients N and M, something necessary for any practical application (please note that n and m are used to represent the indices of the basis functions, whereas the capital letters N and M will mean the total number of basis functions used for the decomposition of an image).

3.1. Discrete Basis Functions

Astronomical images are formed by pixels, and therefore, any analytical basis must be discretized to model real data, going from the space of continuous functions defined on \mathbb{R}^2 to the space of matrices with size $p_1 \times p_2$, that is, the size of the image being fit. This is achieved by integrating the CHEF basis within each pixel (Berry et al. 2004):

$$
\phi_{nm}(r_j, \theta_k, L) = \frac{C}{\pi} T L_n(r_j) W_m(\theta_k),
$$

(12)

where (r_j, θ_k) are the coordinates of the nodes of a polar grid of size $p_1 \times p_2$.

It is obvious that this step will not produce a complete, let alone orthonormal, basis on the pixel space. In principle, one could sample the basis at the pixel centers and fit the galaxies using an optimization scheme. The basis is so well suited to fit galaxy profiles up to the larger orders tested. Using the new basis ϕ_{nm} we have that the image light distribution f can be decomposed as

$$
f(r_j, \theta_k) = \sum_{nm} f_{nm} \phi_{nm}(r_j, \theta_k).
$$

(13)

The values of the decomposition coefficients are fast and accurately calculated by means of the usual inner product in the matrix space, that is,

$$
f_{nm} = \sum_{j,k} f(r_j, \theta_k) \phi_{nm}(r_j, \theta_k),
$$

(14)

where the sum $\sum_{j,k}$ goes over all the pixels in the image.
The orthonormalization method needs to be applied only once, for a given scale and image size. Given that the CHEF reconstruction is relatively robust to the scale L and image size, it is possible to produce a grid of basis functions, with different scales and sizes and precalculate the orthonormalization in advance. This significantly improves the efficiency of the method when applied to large data volumes.

3.2. Number of Coefficients, Center, and Scale Size

As in the case of any similar method, the decomposition has several free parameters: the scale L, the total number of coefficients $(N + 1) \cdot (2M + 1)$, and the origin (x_c, y_c). It is obvious that if we grossly err in the choice of one of them, the algorithm will not work properly. Conveniently, quasi-optimal choices for all these parameters, except N and M, can be obtained directly from the output of SExtractor (Bertin & Arnouts 1996).

The center of the reconstruction is a sensitive parameter, since the basis functions have an extreme at its position: it should match the maximum of the light distribution of the object, since a wrongly determined center would require an unnecessarily high number of coefficients for an accurate fit. Luckily the centroid calculated by SExtractor provides a suitable center in practically all cases.

The scale parameter L is not related to the shape of the CHEF basis, but to their width (the scale has an “accordion” effect over the basis functions). The larger the scale is, the slower the basis functions reach their last extreme, as can be seen in Figure 1. A scale size which is too small would smooth over the galaxies, incapable of fitting the central peak and the tiny features. In principle one could perform the fits iteratively, looking for the best scale L. However, we have verified that the quality of the fit is robust with respect to the value of L and using the SExtractor half-light radius estimate as a proxy for its value yields extremely accurate results. It is therefore not necessary to optimize this parameter.

The remaining parameters, the orders of the decomposition N and M, needs to be carefully selected. We must choose a sufficiently large number of coefficients to accurately model the image, but without overfitting the noise. The number of coefficients is thus optimized until the reconstruction residual approaches 1:

$$
\chi^2 = \frac{1}{n_{\text{pixel}} - n_{\text{coeff}}} \sum_{j,k} (f(r_j, \theta_k) - \sum_{nm} f_{nm} \phi(r_j, \theta_k, L))^2 \delta^2(r_j, \theta_k),
$$

(15)

where f is the observed image, f_{nm} are its CHEF coefficients, δ^2 is referred to the pixel noise map, n_{pixel} is the number of pixels in f (that is, $n_{\text{pixel}} = p_1 \cdot p_2$), and n_{coeff} represents the number of CHEF coefficients used to decompose f (i.e., $n_{\text{coeff}} = (N + 1)(2M + 1)$). At the point where $\chi^2 = 1$, the residual between the observed data and the model is consistent with the noise level.

3.3. The CHEF Pipeline

The process to decompose real image data using the CHEF basis has been implemented in a Python software package, which is being applied to the ALHAMBRA survey data (Moles et al. 2008; Benítez et al. 2009b). In the process outlined below we do not deal separately with the point-spread functions (PSFs), fitting the objects directly without attempting any deconvolution. That will be the subject of a separate paper, although a brief description of the systematics introduced by this effect is included in Section 4.1.

1. **Image analysis with SExtractor and source filtering.** We run SExtractor on the image to select galaxies and estimate the parameters we need for the fit, namely the centroid and the half-light radius, which will be used to determine the origin and the scale size of the CHEFs, respectively.

2. **Choice of the reconstruction size and the maximum number of coefficients.** We have found that a good choice for the size of the reconstruction is to set $L_{\max} = 4 \times r_{hl}$, where r_{hl} is the half-light radius of the galaxy, as measured by SExtractor. In practically all cases, this fully includes the galaxy flux.

As a general rule, the larger the number of pixels in the image to be fit, the larger the required number of coefficients. For instance, for two images of the same galaxy, the one with a smaller pixel scale will require more coefficients (assuming of course that the S/N is similar in both cases). We set N_{\max} and M_{\max} and choose this value according to the image size. For instance, for a regular image of 60×60 pixels the usual choice is $N_{\max} = M_{\max} = 7$, whereas for more extended sources of about 120×120 pixels we set $N_{\max} = M_{\max} = 10$.

Once the image size is determined, we mask out all the pixels belonging to other objects present within the frame, using the SExtractor segmentation map.

3. **Evaluation of the basis.** The CHEF basis corresponding to N_{\max} and M_{\max} is evaluated and orthonormalized using the modified Gram–Schmidt algorithm (see Section 3.1). Thanks to the robustness of the CHEF decomposition, it is possible to precalculate this step, for a grid of different scale parameters L, so that the software just has to look for the closest value stored in the database, making it computationally much faster. For large data volumes, this results in a speed up of more than a factor of three.

4. **Determination of the optimal number of coefficients.** As explained in Section 3.2, the optimal number of coefficients N and M are determined automatically by the program, by means of an iterative minimization algorithm which chooses the values yielding $\chi^2 \approx 1$. This algorithm increases the order until the χ^2 of the resulting model reaches 1 or stabilizes at a higher value. The corresponding basis functions, up to the required order, are extracted from the whole orthonormalized set previously computed in step 3.

5. **Evaluation of CHEF coefficients and calculation of the model.** The $n_{\text{coeff}} = (N + 1) \times (2M + 1)$ coefficients of the CHEF expansion and the resulting model are calculated by simple scalar products, as described in Equations (13) and (14).
6. Iteration of the algorithm for overlapping objects. For those objects whose flux may be affected by nearby objects we repeat steps 2–5, but instead of masking out the objects, we subtract their profiles already calculated in the previous steps.

Figures 4, 5, and 6 show some examples of Hubble Ultra Deep Field (Beckwith 2006; Coe et al. 2006) galaxies. The large amount of detail revealed in those images makes them a useful benchmark for galaxy decomposition methods. These objects, while typical, are not trivial to fit due to the complicated structure revealed by the high S/N observations. The first is a spiral galaxy, displayed in Figure 4. The image frame has 121 × 121 pixels, and the algorithm establishes that the best fit is obtained with \(N = 10 \) and \(M = 10 \), i.e., using \(n_{\text{coeff}} = (10 + 1)(10 \times 2 + 1) = 231 \) coefficients. The very low level of the residuals shows that the CHEF basis can easily fit both the central bulge and large structures like spiral arms. We apply the same procedure to other two galaxies, an edge-on galaxy with very high observed ellipticity (Figure 5) and a highly irregular galaxy (Figure 6). The fits are also excellent, which illustrates the flexibility of the CHEF basis, able to handle most galaxy morphologies. Original images have been normalized so the residuals represent the per-unit error of the model, whereas the models are displayed in the same stretch than the original data, that is, the interval \([0, 1]\).

In addition to these examples, CHEFs have also been tested on a larger and well-resolved galaxy in order to prove their reliability on fitting images with very high spatial resolution. The object selected for this purpose was NGC 1097, concretely the 3.6 \(\mu \text{m} \) data from Spitzer, due to the huge amount of structural details of the image and the presence of companion objects. Results from this analysis can be observed in Figure 7.
4. COMPARISON WITH OTHER METHODS

We compare the CHEF decomposition with two of the most widely available techniques for galaxy modeling, GALFIT (Peng et al. 2002) and the IDL Shapelets software. GALFIT (Peng et al. 2002) uses several two-dimensional analytic models to fit the galaxy images, such as the Sérsic profile, the exponential disk, the Nuker law, or the Gaussian and Moffat/Lorentzian functions. It is possible to use an arbitrary number of components. The shapelets software (Massey & Refregier 2005) is based on an orthonormal basis built from Hermite polynomials and Gaussians. Figure 8 shows the results of fitting 12 randomly chosen galaxies from UDF with GALFIT, IDL Shapelets, and our CHEF pipeline.

The GALFIT results show that radially symmetrical multicomponent models fail to adequately represent the wide variety of shapes displayed by galaxies observed at high S/N, and that it is essential to include angular components, as indeed the new version of GALFIT does. However, an essential problem of GALFIT, and in general of any similar approach, is that by using a combination of several analytical profiles, GALFIT is mathematically equivalent to a decomposition into a set of functions which not only do not form an orthogonal basis, but are highly degenerate among themselves. Therefore, as soon as the number of components increases, the fits must be performed interactively, in order to provide the right initial parameters, the number and type of the components, etc. This makes very difficult its use to obtain automatic, highly accurate fits of large numbers of galaxies.

The advantage of GALFIT is that its models are astronomically motivated and, therefore, the output of the simplest model fits, which comprises parameters as the bulge effective radius or the disk scale length, has a direct interpretation. For CHEFs, this structural information is also stored in the models, but it is not so straightforward to extract it. We are currently developing robust methods to separate the bulge and disk components in CHEFs, using the points of maximum Gaussian curvature of the analytical models, something to be presented in a future paper.

We have run the IDL shapelets software allowing \(n_{\text{max}} = 20 \) as the maximum order, equivalent to \(n_{\text{coeff}} = 400 \) coefficients. For comparison, we use \(N_{\text{max}} = M_{\text{max}} = 10 \), equivalent to \(n_{\text{coeff}} = 231 \) coefficients, for the CHEF decomposition, which also runs faster, even taking into account the orthonormalization process. Despite using more coefficients, we see the shapelet reconstruction often fails to adequately fit all galaxy shapes and tends to produce ring-like artifacts, probably as a consequence of the instability of the radial profile fits (Bosch 2010).

The CHEF decomposition manages to keep the residuals to a very low level, fitting very complicated galaxy shapes, producing very few artifacts. In addition, as we will see below, it obtains highly accurate estimates of galaxy total fluxes and shapes.

4.1. Magnitudes and Ellipticities

As stated above, the main motivation for developing the CHEF basis is having a tool to automatically measure accurate fluxes and shapes in the context of large galaxy surveys.

Here we test the performance of CHEFs using an ensemble of 350 mock galaxy profiles, simulated using Sérsic profiles with indices ranging from 0.5 to 4, and sheared by different amounts, ranging from ellipticity 0 to 0.5, by applying to the Cartesian coordinates the following transformation:

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix}
 1 - \gamma_1 & -\gamma_2 \\
 -\gamma_2 & 1 + \gamma_1
\end{pmatrix} \begin{pmatrix}
 x \\
 y
\end{pmatrix},
\]

where \(\gamma_1 \) represents the ellipticity in the \(x \)-axis direction and \(\gamma_2 \) the ellipticity along the \(y = x \) line. We then fit the galaxy shapes using the IDL shapelet software and our CHEF pipeline (see Section 2.2). The radius \(R \) used to calculate the ellipticities is half the image size. We can see in Figure 9 that, as expected, shapelets fail to adequately model objects with high ellipticities, especially for Sérsic indices \(n \approx 1.2 \), where the absolute error in the measurement of the ellipticity reaches 0.1 (in units of the true ellipticity parameter \(\gamma \)). Although we are using circular shapelets here, it seems that elliptical shapelets are also affected by this problem (Bosch 2010).

Using formula (11), we estimate the ellipticities of our CHEF fits. Our error is \(\lesssim 0.005 \) for all the explored combinations of profiles and shears. This shows that CHEFs are very promising as a tool for weak lensing measurements, an issue which will be explored elsewhere.

Although the problem of the PSF deconvolution will be the subject of a separate paper, we have quantified the effects of the PSF in ellipticity measurements by performing a simple deconvolution in the CHEF space. Let us call \(f_{\text{obs}} \) the observed data, convolved with a certain PSF, and \(f \) the original image. Then, the linearity of both the CHEF bases and the convolution operator makes the PSF
deconvolution a simple task, at least formally, involving the reconstruction of the image with the basis without convolving (of course we are disregarding at this stage very important issues affecting the deconvolution, such as the Shannon theorem (Shannon 1949), or the presence of artifacts due to the bandlimited detectors; these will be treated in the future):

$$f_{\text{obs}} = f \times \text{PSF} = \left(\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f_{nm} \phi_{nm} \right) \times \text{PSF} = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f_{nm} \left(\phi_{nm} \times \text{PSF} \right).$$

That is, the CHEF coefficients of the image convolved with the PSF coincide with the coefficients of the data without convolving, so it is enough to construct the model using these coefficients and the original basis (without convolution) to recover the deconvolved original data.

Figure 8. Reconstructions and obtained residuals obtained after applying the three methods to an ensemble of galaxies randomly extracted from UDF: images on the top correspond to the original galaxies, the first row below it represents the reconstructions obtained by shapelets, GALFIT, and CHEF software (from left to right), and the second row shows the resulting residuals, in linear scale.
We have applied this deconvolution method to the mock galaxies to analyze their associated error. The simulated objects have been convolved with Moffat profiles with different FWHM values, equal to $1/2$, 1, and 2 times the FWHM of the original mock galaxies, respectively. The resulting images have been deconvolved using the CHEF coefficients of their decomposition and their ellipticities have been then measured according to the method described above. Figure 10 shows the results of this test being trivially the last PSF the one which yields worst results, with absolute errors $\lesssim 0.04$. As happens with the non-convolved test the method is shown to be less precise with profiles of low Sérsic index, up to $n \approx 1.2$, while performing really well in the other cases. These results are an upper limit, since no attempt to empirically correct the measured ellipticities by the PSF, as is usually done in weak lensing studies.

Finally, to verify the performance of the CHEFs for photometric purposes, we added Gaussian noise to the original mock galaxies above, and applied both the shapelets and CHEF algorithms to the data. The results are presented in Figure 11. Again we see that
Figure 9. Ellipticity absolute error obtained by applying shapelet and CHEF algorithms to a sample of simulated galaxies with different Sérsic profiles and ellipticity parameters.

Figure 10. Ellipticity absolute error obtained by applying shapelet and CHEF algorithms to a sample of simulated galaxies with different Sérsic profiles and ellipticity parameters, previously convolved with Moffat PSFs with different FWHMs: (from top to bottom) 1/2, 1, and 2 times the FWHM of the original images.
CHEFs provide highly accurate measurements of the total flux for almost all combinations of profile steepness and ellipticity, with a typical error of only \(\approx 0.4\% \). Shapelets, on the other hand, introduce up to 4\% errors in these very high S/N simulated images.

5. CONCLUSIONS

Motivated by the need to perform accurate galaxy photometry and shape measurements in large surveys like the upcoming J-PAS (Benítez et al. 2009a), we have developed a new orthonormal basis formed by a combination of rational Chebyshev and trigonometric functions for, respectively, the radial and angular components, and that we have called CHEF functions, or CHEFs.

The new basis displays remarkable flexibility, being able to accurately fit all kinds of galaxy shapes, including irregulars, spirals, ellipticals, highly compact, and highly sheared galaxies. It does this while using fewer components that similar methods, as shapelets, and without producing artifacts, due to the efficiency of the rational Chebyshev polynomials to fit quickly decaying functions like galaxy profiles. The method is linear as well as very stable and robust, and is therefore able to work very fast and to automatically process large numbers of galaxies.

Due to the high quality of the fits in the central parts of the galaxies, and the ability of the CHEF basis to compactly model galaxy profiles up to very large distances, the method provides highly accurate estimates of total galaxy fluxes and ellipticities.

Future work will explore in more detail the application of the method to problems like multiband photometry, weak shear measurements, deconvolution, morphological classification, etc.

The authors thank Renato Álvarez for reading an early draft and making useful comments. We also had interesting and useful conversations with Sarah Bridle, Peter Melchior, and Joel Bergè. We acknowledge the support and help received during visits to Jet Propulsion Laboratory, University College of London, and Space Telescope Science Institute. This work was made possible by the financial support of the Consejo Superior de Investigaciones Científicas and its I3P grants program, the ALHAMBRA grant AYA2006-14056, and the government project AYA2010-22111-C03-00.

APPENDIX A

COEFFICIENTS DECAY

Let us calculate the decay rate of the CHEF coefficients using the fact that a Chebyshev series is a Fourier series with a change of variable in such a way that the Chebyshev coefficients of a univariate function \(g \) are proportional to the Fourier coefficients of the composition \(g \circ \cos \):

\[
g_n = 2 \hat{G}[n], \quad \forall n \in \mathbb{N}, \quad \text{with} \quad G(t) = g(\cos(t)). \quad (A1)
\]

Proposition A.1. Let \(f \) be a function of the space \(L^1([-\pi, \pi]) \). Let us define the function \(F \) in the following way:

\[
F : \quad [\!\!-\pi, \pi] \rightarrow \mathbb{R}, \quad t \mapsto f(\cos t). \quad (A2)
\]

Then, the Fourier coefficients of \(F \) are proportional to the Chebyshev coefficients of \(f \), that is,

\[
\hat{F}[n] = \frac{1}{k} f_n, \quad \forall n \in \mathbb{N} \quad (A3)
\]

where \(f_n \) is the \(n \)th coefficient in the Chebyshev series of \(f \) and \(k = \begin{cases} 1, & \text{if } n = 0 \\ 2, & \text{if } n > 0 \end{cases} \).
Proof: The function F is a 2π-periodic function, so its Fourier series can be calculated:

$$
\hat{F}[n]=\frac{1}{2\pi} \int_{-\pi}^{\pi} F(t) e^{-int} dt = \frac{1}{2\pi} \int_{-\pi}^{0} F(t) e^{-int} dt + \frac{1}{2\pi} \int_{0}^{\pi} F(t) e^{-int} dt
$$

$$
= \frac{1}{2\pi} \int_{0}^{\pi} F(t) [e^{int} + e^{-int}] dt = \frac{1}{\pi} \int_{0}^{\pi} F(t) \cos(nt) dt
$$

$$
= \frac{1}{\pi} \int_{-1}^{1} f(x) \cos(n \cdot \arccos x) (1-x^2)^{-1/2} dx = \frac{1}{\pi} \int_{-1}^{1} f(x) T_n(x) (1-x^2)^{-1/2} dx = \frac{1}{k} f_n.
$$

This result is extremely useful since it allows us to transfer the Fourier series properties to the CHEF one. In addition to this, it is well known that the Fourier coefficients of a smooth enough function f are bounded, as the following theorem states.

Theorem A.2. (Čížek 1986) Let f be a periodic function with an interval of periodicity $[0, P]$, continuous with its derivatives up to order $p - 1$, $p \geq 1$, that is, $f \in C^{p-1}$. Let its derivative of order p be piecewise continuous in the interval. Then, there exists a constant $A > 0$ such that, for Fourier coefficients of the function f, we have

$$
|\hat{f}[k]| \leq \frac{A}{|k|^{p+1}}, \quad \forall k \in \mathbb{N}.
$$

(A4)

Therefore, using Equations (A3) and (A4) it is easy to reach the decay rate of the CHEF coefficients, as shown in the following proposition.

Proposition A.3. Let f be a function of the space $L^2([0, +\infty) \times [-\pi, \pi])$ defined in polar coordinates. Let us assume that f is continuous in the angular coordinate with its partial derivatives up to order $p - 2$, $p \geq 2$, and that its partial derivative of order $p - 1$ is piecewise continuous in the interval $[-\pi, \pi]$. Let f be also piecewise continuous in the azimuthal coordinate (the interval $[0, +\infty)$). Then, there exists a constant $C > 0$ such that for the CHEF coefficients of f it has the following boundary:

$$
|f_{nm}| \leq \frac{C}{|n| |m|^{p+1}}, \quad \forall n, m \in \mathbb{N}.
$$

(A5)

Proof: Let us define the function g as

$$
g : [-\pi, \pi] \rightarrow \mathbb{R}, \quad \theta \mapsto \int_{0}^{\infty} f(r, \theta) TL_n(r) \frac{1}{r+L} \sqrt{L} \, dr.
$$

This function can be extended in a periodic way if it fulfills that it is continuous with its derivatives up to order $p - 1$, as well as that the pth derivative is piecewise continuous in the periodicity interval $[-\pi, \pi]$. Then, using Theorem A.2, there exists a non-negative constant A such that

$$
|\hat{g}[l]| \leq \frac{A}{|l|^{p+1}}, \quad \forall l \in \mathbb{N}.
$$

Moreover, there exists a relationship between the CHEF coefficients of f and these Fourier coefficients of g:

$$
f_{nm} = \int_{0}^{\infty} \int_{-\pi}^{\pi} f(r, \theta) TL_n(r) e^{-im\theta} \frac{1}{r+L} \sqrt{L} \, dr \, d\theta = \int_{-\pi}^{\pi} g(\theta) e^{-im\theta} d\theta = 2\pi \hat{g}[m].
$$

Therefore,

$$
|f_{nm}| \leq \frac{A}{|m|^{p+1}}.
$$

(A6)

On another front, let us define a function h as

$$
h : [-\pi, \pi] \rightarrow \mathbb{R}, \quad t \mapsto \int_{-\pi}^{\pi} f \left(\frac{\pi}{L} L, \theta \right) e^{-im\theta} d\theta.
$$

Let us consider the function $\tilde{h} = h \circ \cos$. This function can be extended in a periodic way to \mathbb{R} and is continuous within its interval of periodicity. Its derivative is piecewise continuous in this interval, so we are under the assumption of Theorem A.2 and it can be stated that there exists a constant $B > 0$ such that

$$
|\tilde{h}[l]| \leq \frac{B}{l^2}, \quad \forall l \in \mathbb{N}.
$$
Working in a similar way, we reach the following relation:

\[
fnm = \frac{1}{\pi} \int_{-\pi}^{\pi} f \left(\frac{1+z}{1-z} L, \theta \right) e^{-im\theta} d\theta \left[T_n(z)(1-z^2)^{-1/2}dz \right] = h_n.
\]

Using Proposition A.1, we have that \(\widehat{\hat{h}}[n] = \frac{1}{k} h_n \), then

\[
\left| fnm \right| \leq B n^2.
\]

Finally, using Equations (A6) and (A7), it is obtained:

\[
\left| fnm \right|^2 \leq AB \frac{|m|^{p+1} n^2}{n^2}.
\]

APPENDIX B

STURM–LIOUVILLE EQUATIONS

The so-called Sturm–Liouville differential equations fit the following expression:

\[
[r(x) y']' + [q(x) + \lambda p(x)] y = 0.
\]

The solutions \(y(x) \) of this ordinary differential equation are called eigenfunctions, while the valid values \(\lambda \) associated with them receive the name of eigenvalues. It can be proved that if the functions \(p, q, \) and \(r \) are real and continuous over an interval \([a, b]\) being \(p(x) > 0 \) (or \(p(x) < 0 \)) \(\forall x \in [a, b] \), then all the eigenvalues \(\lambda \) are real and the eigenfunctions \(y \) are orthogonal in \([a, b]\) with the weight function \(p \).

It is easy to see that the rational Chebyshev functions constitute a family of eigenfunctions of a Sturm–Liouville equation, specifically the \(\{TL_n(x)\}_n \) functions form the solutions set of the following EDO

\[
\left((x + L) \sqrt{\frac{x}{L}} y'(x) \right)' + \frac{n^2}{x + L} \sqrt{\frac{x}{L}} y(x) = 0,
\]

displaying, therefore, all the properties of the Sturm–Liouville eigenfunctions.

APPENDIX C

LINEAR TRANSFORMATIONS

It is important to know how the coefficients behave under some linear transformations in the original galaxy image, such as rotations, dilation or contraction, or an increasing of the flux. Due to the linearity of the CHEF functions, calculating the translation of these transformations into CHEF domain is straightforward.

1. **Rotation.** Given \(f_{\text{rot}}(r, \theta) := f(r, \theta + \rho) \) with \(\rho \in [-\pi, \pi] \) any angle, it can be proved that

\[
f_{nm} = f_{nm} e^{im\rho},
\]

that is, a rotation of \(\rho \) radians in real space is equivalent to a rotation of \(m\rho \) radians in CHEF space.

2. **Dilation or contraction.** Given \(\alpha \in \mathbb{R} \) and defining \(f_{\text{dil}}(r, \theta) := f(\alpha r, \theta) \), it yields

\[
f_{nm;L} = f_{nm;\alpha L},
\]

which indicates that a dilation or contraction by a factor \(\alpha \) in real space is equivalent to a dilation or contraction by the same factor in the parameter scale \(L \) in CHEF space.

3. **Flux increasing.** Given \(k \in \mathbb{R} \) and \(f_{\text{inc}}(r, \theta) := k \cdot f(r, \theta) \), it is obtained:

\[
f_{nm} = k \cdot f_{nm}.
\]

This means that an increasing in the flux by a factor \(k \) is equivalent to an increasing in the CHEF coefficients by the same factor.
REFERENCES

Abbott, T., Aldering, G., Annis, J., et al. 2005, arXiv:astro-ph/0510346
Beckwith, S. V. W., Stiavelli, M., Koekemoer, A. M., et al. 2006, AJ, 132, 1729
Benítez, N., Gaztañaga, E., Miquel, R., et al. 2009a, ApJ, 691, 241
Benítez, N., Moles, M., Aguerrí, J. A. L., et al. 2009b, ApJ, 692, L5
Berry, R. H., Hobson, M. P., & Withington, S. 2004, MNRAS, 354, 199
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Bosch, J. 2010, AJ, 140, 870
Boyd, J. P. 1987, J. Comput. Phys., 70, 63
Bridle, S., Kneib, J. P., Bardeau, S., & Gull, S. 2002, in Proc. Yale Cosmology Workshop, The Shapes of the Galaxies and Their Dark Matter Halos (New Haven, CT: World Scientific Publishing), 38
Čižek, V. 1986, Discrete Fourier Transforms and its Applications (Bristol: Hilger)
Coe, D., Benítez, N., Sánchez, S. F., et al. 2006, AJ, 132, 926
Conselice, C. J. 2003, ApJS, 147, 1
de Souza, R. E., Gadotti, D. A., & dos Anjos, S. 2004, ApJS, 153, 411
Donoho, D. L., & Huo, X. 2002, in Multiscale and Multiresolution Methods, ed. T. J. Barth, T. Chan, & R. Haimes (Springer Lectures in Computational Science and Engineering, Vol. 20; Berlin: Springer-Verlag), 149
Gadotti, D. A. 2008, MNRAS, 384, 420
Goldberg, D. M., & Bacon, D. J. 2005, ApJ, 619, 741
Golub, G. H., & Van Loan, C. F. 1996, Matrix Computations (Baltimore, MD: Johns Hopkins Univ. Press)
Heymans, C., Van Waerbeke, L., Bacon, D., et al. 2006, MNRAS, 368, 1323
Irving, J., & Shmakova, M. 2005, New Astron. Rev., 49, 83
Irving, J., Shmakova, M., & Anderson, J. 2007, ApJ, 671, 1182
Ivezic, Z., Tyson, J. A., Acosta, E., et al. 2008, arXiv:0805.2366
Kaiser, N., Aussel, H., Burke, B. E., et al. 2002, Proc. SPIE, 4836, 154
Kelly, B. C., & McKay, T. A. 2004, AJ, 127, 625
Kelly, B. C., & McKay, T. A. 2005, AJ, 129, 1287
Kuijken, K. 1999, A&A, 352, 355
Kuijken, K. 2008, A&A, 482, 1053
Mallat, S. G. 1999, A Wavelet Tour of Signal Processing (San Diego, CA: Academic)
Margon, B. 1999, R. Soc. Lond. Phil. Trans. A, 357, 93
Mason, J. C., & Handscomb, D. C. 2003, Chebyshev Polynomials (Boca Raton, FL: Chapman and Hall)
Massey, R., & Refregier, A. 2005, MNRAS, 363, 197
Massey, R., Refregier, A., Conselice, C. J., & Bacon, D. J. 2004, MNRAS, 348, 214
Massey, R., Rowe, B., Refregier, A., Bacon, D. J., & Bergé, J. 2007, MNRAS, 380, 229
Melchior, P., Böhmert, A., Lombardi, M., & Bartelmann, M. 2010, A&A, 510, A75
Miller, L., Kitching, T., Heymans, A. F., & Van Waerbeke, L. 2007, MNRAS, 382, 315
Moles, M., Benítez, N., Aguerrí, J. A. L., et al. 2008, AJ, 136, 1325
Ngan, W., Van Waerbeke, L., Mahdavi, A., Heymans, C., & Hoekstra, H. 2009, MNRAS, 396, 1211
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H. W. 2002, AJ, 124, 266
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H. W. 2010, AJ, 139, 2097
Refregier, A., & Bacon, D. J. 2003, MNRAS, 338, 48
Sérsic, J. L. 1968, Atlas de Galaxias Australes (Cordoba: Observatorio Astronómico)
Shannon, C. E. 1949, Proc. Inst. Radio Eng., 37, 1
Simard, L. 1998, in ASP Conf. Ser. 145, Astronomical Data Analysis Software and Systems VII, ed. R. Albrecht, R. N. Hook, & H. A. Bushouse (San Francisco, CA: ASP), 108
Starck, J. L., Donoho, D. L., & Candès, E. J. 2003, A&A, 398, 785
Starck, J. L., & Murtagh, F. 2002, Astronomical Image and Data Analysis (Berlin: Springer)