Cancer/Testis genes in relation to sperm biology and function

Kehinde Adebayo Babatunde 1, Ali Najafi 2, Pouya Salehipour 2, Mohammad Hossein Modarressi 2,3, Maryam Beigom Mobasheri 2,3*

1Clinical Anatomy/Immunology Division, Department of Medicine, University of Fribourg, Fribourg, Switzerland
2Medical Genetics Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
3Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran

ARTICLE INFO

Article type: Mini-Review

Article history:
Received: Oct 17, 2016
Accepted: May 25, 2017

Keywords:
Cancer testis genes
Carcinogenesis
Spermatogenesis
Sperm biology
Sperm genes functions
Testis genes

ABSTRACT

Cancer testis antigens (CTAs), a large family of tumor-associated and immunogenic antigens expressed in human tumors of various histological origins, are highly restricted to the testis and trophoblast. CTAs have been identified as potent targets for tumor-specific immunotherapeutic advances and have immensely lead to the development of different clinical trials of CTA-based vaccine therapy because of their resilient in vivo immunogenicity and tumor-restricted expression pattern. Bladder cancer, non-small cell lung carcinoma, and melanoma are grouped as high CT gene expressors. Prostate and breast cancer as moderate, and colon and renal cancers are considered as low CT gene expressors. Large percentages of these identified CT genes are expressed during spermatogenesis but their function is still vaguely unknown. Researchers have taken a keen interest in CT genes as pertaining to their role in tumor growth and spermatogenesis. Testis has many similarities with cancerous tissues like cell division, immigration, and immortalization. The aim is to give a concise in-depth review on the role of some specific CT genes in spermatogenesis.

Introduction

Cancer/Testis (CT) genes are a diverse group of testis specific genes, atypically expressed in about 40% of different types of cancers (1). Blood-testis barrier creates an immune privileged site for the germ cell antigens. Restricted expression profile of CTAs in normal testis, makes them not accessible to cytotoxic lymphocytes, so it does not express the major histocompatibility complex molecule (1). A subfamily of the CT genes encode immunogenic antigens and stimulate immune responses in cancer patients (2).

Testis has many similarities with cancerous tissues like cell division, immigration, and immortalization. Various CT genes have similar action with different types of cancers and oocyte maturation; example been WWP2 N-terminal-like, a testis-specific signaling protein, induces meiotic resumption and oocyte activation events, and is also expressed in actively dividing cancerous cell lines (3). The CT genes, OIP5, TAF7L (4), and AURKC (5) have been demonstrated as promising and potent candidates for therapeutic cancer vaccines and biomarkers for breast cancer.

However, the immunohistochemical analysis of MAGE-1 in lung neoplasms has suggested that mRNA expression of a CT antigen in a tumor doesn’t mean it could be used as an immunotherapeutic target because homogenous protein expression in the target tissues is essential (6) (Figure 1). CT genes are not only expressed in solid tumors but have also been implicated in hematopoietic neoplasms like acute lymphoblastic leukemia (7).

Figure 1. CTAs expression in normal and tumor tissues; A: Immunohistochemical staining displays the expression of MAGE4 by testicular germ cells B: Squamous cell carcinoma. An area of MA454 reactivity next to an immunonegative tumor area (heterogeneous expression of the CTA) C: Expression of NY-ESO-1 in urinary bladder carcinoma. The brown staining shows antibody binding. This Figure was reproduced from references (2, 6)

*Corresponding author: Maryam Beigom Mobasheri, Medical Genetics Department and Cancer Research Center, Tehran University of Medical Sciences, Keshavarz Boulevard, Tehran Iran. Tel: +98-21-66581638; email: mobashed@tums.ac.ir
The nomenclature of CT genes depends on any gene that demonstrates an mRNA expression profile limited to the testis and neoplastic cells. Several characteristic features and definitions of CTAs have emerged in different researches varying from genes exhibited solely in adult testis germ cells and tumors (8), to dominant testicular expression (9) and also possibly expressed in placenta and ovary, regulated by epigenetic mechanisms (10) and mapping to the X chromosome (11) (Table 1). The CT database has listed more than 250 RefSeq nucleotide identifiers belonging to about 150 gene families (www.cta.lncc.br). The human X chromosome houses about 10% of CT genes (12).

Classification of cancer/testis genes

A classification system of CTAs suggests differential expression profiles of CTAs as (i) testis restricted CTAs, (ii) testis-brain restricted CTAs that express in the testis and central nervous system, or (iii) testis selective, expressed in the testis and at lower levels in 1 to 2 additional tissues, when compared to the testes (13). Out of the 153 CT genes, 39 had transcripts presented solely in the adult testis (placenta is also classified as testis-restricted) while 14 CT genes had additional expression in the brain, though classified as testis-brain restricted and 85 genes had their main expression in testis and classified as testis-selective (13). Strangely, X chromosome is the location for almost half of the explained CT genes and these are known as CT-X genes. CT-X genes characteristically exhibit a testis-restricted expression profile and they possess more antigenic properties than non-CT-X CTAs that are located all over the autosomes. Many CT-X genes are sub-family members of larger families like the MAGEs, which are made up of genes like MAGEA1–12, MAGEB1–18, and MAGEC1–7 (14). MAGE proteins from all families and subfamilies have shown to be highly conserved in all living species (14, 201). MAGE proteins from all families and subfamilies exhibit more antigenic properties than non-CT-X CTAs that are located all over the autosomes. Many CT-X genes are sub-family members of larger families like the MAGEs, which are made up of genes like MAGEA1–12, MAGEB1–18, and MAGEC1–7 (14). MAGE proteins from all families and subfamilies have shown to be highly conserved in all living species (14, 201).
restricted to the testis and to tumors. Classes D to I and NECDIN are within the Group II and they are expressed in a broad range of tissues (14). There are other notable families of CT-X genes like GAGE, PAGE, XAGE, SPANX, SSX, NY-ESO-1, PIWIL2, and CT47A (15).

It seems that expression of CTAs like MAGE, BAGE, and GAGE gene families in cancer cells are not randomly distributed among different individuals and family members of these genes tend to be clustered in a different subset of tumors, signifying a common mechanism for transcriptional activation (e.g. methylation) (16). Several researchers have carried out numerous studies to investigate the frequency of expression of CTAs in tumors though most of it has been truncated by sample size. However, with large and wide-ranging data sets like that from The Cancer Genome Atlas (TCGA), an extensive analysis of CT genes expression level, state of mutation, and copy number throughout many diverse tumor types is accomplishable. The number of occurrence of reactivation of specific CTAs and the degree of activation of the whole group of CTAs can be investigated via this distinct type of analysis. In addition, any prognostic implication of CTA expression can be investigated and determined via the analysis of the reactivation patterns (17).

Roles of cancer/testis genes in gamete formation

The roles of CT genes in gamete formation remain comparatively unclear; however, the knowledge of gene expression and knockout studies has thrown more light on the multi-functions of CT genes. CT genes are responsible for some processes during the initial stages of spermatogenesis and their expression (CTAs, such as MAGEA1 and NY-ESO-1) is evident in the early stages of spermatogenesis (6). The association of MAGE-A1 and NY-ESO-1 with highly proliferating germ cells and a more general function for GAGE proteins in germ cells is suggested after studying the expression of these CTAs in fetal gonads by immunohistochemistry (18). Several research studies have reported that a subset of CTAs plays essential roles in male fertility, as mice deficient of single CTAs commonly demonstrate decreased fertility (Table 2). CTAs also could provide important roles to a various set of processes in their local setting, suggesting that they can be efficient in providing various tumorigenic features. Normal and healthy development of the majority of knockout animals for CT genes suggests that they are not involved in processes of somatic tissues (19, 20). The primary functions of more than 140 identified members of the CT antigens still remains unknown (21, 22). However the roles of CT genes have been implicated during the process of spermatogenesis and some specific CT genes have been identified via their relationship with spermatogonia, spermatocytes, spermatids, and spermatoozoa.

Primordial germ cells (PGCs) are the common origins of the germine (Figure 2). PGCs migrate via the dorsal mesentery of the embryo and finally enter the region of developing fetal gonad in the genital ridge around the 10th thoracic level. Within the genital ridge, if the cells are carrying a Y chromosome, the PGCs become enclosed by the Sertoli cells and ultimately differentiate into spermatogonia type A, which proliferate and differentiate mitotically and get arrested at G1 phase until birth. However, proliferation is resumed at puberty, which in-turn initiates the process of spermatogenesis. There are two types of spermatogonia A germine, namely spermatogonia A pale and dark. Spermatogonia A dark serve as the pluripotent stem cells that can renew themselves to maintain the pool of stem cells while spermatogonia A pale can undergo differentiation and proliferation to produce more spermatoozoa via two meiotic divisions. Firstly, meiosis I involving the reduction of the tetraploid primary spermatocytes to diploid secondary spermatocytes and secondly, equatorial meiotic II division to form haploid spermatids which through the process of spermiation form mature spermatoozoa (Figure 2).
Most CT-X antigens like MAGE and NY-ESO-1 are implicated in the process of spermatogenesis, while CT-X antigens like SCPI, associated with meiosis, have been expressed in spermatocytes. Furthermore, CT-X antigens like OY-TES-1/ACRBP (acrosin-binding protein), are expressed by spermatids (23, 24).

Table 2. Cancer/Testis genes roles in reproduction

CT Family	CT genes	Ch-Location	Status	Male phenotype	Female phenotype	References		
RNARegulation	CT80.2	PWL2	8p21.3	testis-selective	viable, infertile; microchida, meiotic prophase arrest	infertile	(25, 26)	
	CT41.1	TDRD1	10q25.3	testis-selective	viable, infertile; microchida, meiotic prophase arrest	infertile	(27, 28)	
	CT41.2	TDRD6	6p12.3	testis-selective	viable, infertile; microchida, meiotic prophase arrest	none	(20)	
	CT128	MAEL	1q24.1	testis-selective	viable, infertile; microchida, meiotic prophase arrest	NA	(29)	
	CT9	CALR3	19p13.11	testis-selective	viable, infertile; sperm unable to penetrate zona pellucida	none	(30)	
	CT92	PLAC1	Xq26	testis-selective	intrauterine growth retardation viable, infertile; fibrous sheath defect	same as male	(31)	
	CT99	AKAP4	Xp11.2	testis-restricted	viable, reduced fertility; defects in the principal piece	NA	(33, 34)	
	CT91	ROPN1	3q21.1	testis-selective	viable, reduced fertility; defects in migration, adhesion to zona pellucida, sperm-egg fusion	none	(35)	
	CT15	ADAM2	8p11.2	testis-selective	viable, impaired fertility; defects in zona pellucida penetration	none	(36)	
	CT34	DKK1	19q13.33	testis-restricted	viable, infertile; microchida due to defects in homologous recombination	infertile	(37)	
	CTB	SYCP1	1p13-p12	testis-selective	viable, infertile; microchida due to chromosome synapse failure	none	(38)	
		CT42	TEX15	8p12	testis-selective	viable, infertile; microchida due to chromosome synapse failure	none	(39)
		CT76	SYCE1	10q26.3	testis-selective	viable, infertile; microchida due to chromosome synapse failure	infertile	(40)
		CT35	SOPI1	20q13.2-q13.3	testis-selective	viable, infertile; microchida due to chromosome synapse failure	infertile	(41)
		CT46	HORMAD1	1q21.2	testis/testis-restricted	viable, infertile; microchida due to meiotic arrest at pachytene stage	infertile	(42)
Transcription	CT33	MORC1	3q13	testis-selective	viable, infertile; microchida due to meiotic arrest at zygote/leptotene stage	none	(43)	
	CT27	CTCFL	20q13.31	testis-selective	viable, infertile; microchida due to meiotic arrest at zygote/leptotene stage	none	(44)	
	CT9	BRDT	1p22.1	testis-selective	oligoasthenoteratozoospermia	none	(45)	
	CT41.3	TDRD4	13q12.12	testis-selective	viable, infertile; sperm arrest at round spermatid stage	none	(46)	
	CT 121	ARX	Xp21	not mentioned	nonviable; small oöcyte, small testes	NA	(47)	
Other	CT56	THEG	19pter-p13	not mentioned	viable, fertile; deletion of c-terminal domain leading to small testes	none	(48)	
	CT1202	TMEFF2	2q32.3	testis-selective	viable, growth retardation; die after weaning	same as male	(49)	
	CT39	NFX2	Xq22.1	testis-selective	viable, subfertile; meiotic arrest	none	(50)	
	CT32	LDHC	11p15.5-p15.3	testis-selective	viable, infertile; Low ATP; diminished hyperactive motility	none	(51)	
	CT134	OFD2	9q34.11	testis-selective	Not viable; Preimplantation defect	not viable	(52)	
	CT40	TAF7L	Xq22.1	testis-selective	Viable, Fertile but produce small litters; Folded/Anapulted sperm tails	none	(53)	

NA: Not Available
Synaptonemal complex protein 1 (SCP-1)
SCP-1, also called SYCP1, HOM-TES-14, and CT8, is selectively expressed during meiotic division I (reduction division) of spermatocytes/prophase specifically from zygotene to diplotene in the human testes because it’s responsible for the formation of the synaptonemal complexes (24). SCP-1 is involved in pairing and recombination of homologous chromosomes during meiotic division I (24). Most CT antigens are located on chromosome X, but the SCP-1 is localized on chromosome 1 (15). The restricted expression of this CTA in pre-meiotic spermatocytes for chromosomal pairing demonstrates its importance in meiosis (Table 2).

ACRBP
ACRBP, also known as OY-TES-1, SP32, and CT23, is an acrosin binding protein located on chromosome 12 (51). OY-TES-1 is the human homolog of pro-acrosin binding protein sp32 precursor first described in pig and mouse testes (51). It is only and highly expressed in the testis and localized at the acrosomal region of mature spermatozoa but not on any somatic cells. Interestingly, in a recent study it was found that while in human there is only one mRNA of the gene, in mice, the alternative splicing of the pre-mRNA of this gene is responsible for regulating the biogenesis of sperm acrosome (52).

Piwi2
P-element induced wimpy testis (Piwi) is a class of genes involved in processes like maintaining differentiation and self-renewal in stem cells and also RNA silencing (53, 54), which was first identified in Drosophila (55). Miwi, a murine homolog of the Piwi, is specifically expressed in spermatocytes and spermatids and encodes a cytoplasmic protein essential for spermatogenesis (56). In addition, a stem-cell protein Piwil2 (Piwi-like 2) (Table 2) has been reported to be precisely expressed in the testes of humans and mice, restricted to spermatogonia and early spermatocytes (57). It has critical roles in early prophase of meiosis and germline stem cell self-renewal in testis (25, 58). It also binds to piRNAs and miRNAs and in this way is implicated in translational regulation of many genes during early spermatogenesis (59, 60). Epigenetic studies in infertile men have shown that this disorder is associated with promoter hypermethylation associated silencing of PIWIL2 and another CTA named TDRD1 (61).

Role of cancer/testis genes in sperm metabolism
Several CT genes are involved in the regulation of energy production in sperm. COX6B2, a sperm-specific factor of complex IV of the electron transport chain, is a promoter of efficient oxidative phosphorylation by stimulating complex IV dimerization (62). The CT gene, SPATA19, was isolated and identified as a mitochondrial adhesion protein that efficiently stimulates the packing of mitochondria into the neck region of the sperm (63). Conclusively the two above-mentioned CT genes could be critical in sperm to satisfy the increased energy needs for motility. Furthermore, the inter-conversion between lactate and pyruvate is catalyzed by the first testis-specific isozyme discovered, lactate dehydrogenase C (LDHC) (63). While LDHA and LDHB are also found in the sperm, more than 80% of the LDH activity in the spermatozoa is related to LDHC (63). The ldhc null mice are infertile with impaired motility of the sperm and inability to fertilize oocytes (63). Odet et al. found inability of the sperm to consume glucose, rapid decreases in the progressive motility and ATP levels in the sperm of these knockout mice and also disruption of homeostasis (48, 64).

RNA regulation
Several research studies have investigated the role of CTAs in sustaining and regulating mRNA expression in sperm cells. The mouse orthologues of the CTAs PIWIL2 and TDRD1, in association with piwi-interacting RNAs (piRNAs), may be responsible for silencing transposons during spermatogenesis. Deletion of either PIWIL2 or TDRD1 results in prophase stage arrest of spermatogenesis thus increasing transposon LINE-1 expression (27, 65). Interestingly, the chromatoid body, which houses miRNAs and RNA-binding proteins, promotes regulation of gene expression during spermiogenesis during inactive transcription (66) and houses numerous CT genes. Furthermore, several CT genes like TDRD6, TDRD1, MAEL, and MILI have also been identified within the chromatoid body and research studies have reported that mice lacking CT genes like TDRD6 and MAEL have arrested spermatogenesis at the round spermatid stage, thereby leading to infertility in male mice (19, 20, 67). It should be noted that mice lacking MAEL, MILI, TDRD6, and TDRD1 have been reported viable and healthy, suggesting that theses CT genes are non-essential for somatic cells (19, 20).

Ct genes functions in relation to sperm motility
Sperm motility is mediated by the flagellum via its undulatory movement which moves the sperm forward. The sperm flagellum is made of the axoneme, the outer dense fibers, and the fibrous sheath. The axoneme is in turn made up of dynein-and-tubulin radial-spoke structure that specifically mediates its movement. The axoneme has an outer protective fibrous sheath covering it that regulates its structure. The structure of the flagella is made up of at least 13 known proteins and 50% of the flagella structure is made up of a CT gene called AKAP4. It should be noted that the CTAs; AKAP3, CBYR, SPA17, ROPN1, and...
TSGA10 also constitute the fibrous sheath (68-70). Double knockout mice for ROPN and ROPN1L have infertility due to defects in flagellum structure and immotile sperm (33). The molecular mechanisms that coordinate and regulate the movement of the flagellum are still not lucid; however CT genes like AKAP4, rhophilin-1, and ropporin have been demonstrated to be present in flagella structures thereby suggesting active signaling cascades in sperm.

To study genes behavior during mouse spermatogenesis, the in vitro derived germ cells could be a credible model (71). In this way, the expression pattern of TSGA10 as a known Cancer/Testis gene (72, 73), is similar during in vitro and in vivo germ cell generation (71). TSGA10 has a critical function during spermatogenesis (74).

Conclusion

Most of the physiological functions for some of the CT antigens during spermatogenesis still remain unknown, however, some of these CT antigens have been investigated and identified as proteins closely related to: (a) Spermatogonial stem cells via mitosis like Piwi1, (b) Transcription regulation like SS18-SSX proteins, (c) SCP-1 functions in the crossing over process in spermatocytes during prophase 1 meiotic division I, (d) Germ cell apoptosis like MAGE proteins and Piwi1L, and the function of OY-TES-1 and SP-17 in spermiogenesis and sperm motility, respectively. Conclusively Figure 2 gives a summarized illustration about CT antigens involved in the various phases of cellular events related to spermatogenesis.

Acknowledgment

We acknowledge the deputy of research, Tehran University of Medical Sciences, Tehran, Iran and the Swiss government scholarship committee for the funding.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. Scanlan MJ, Simpson AJ, Old LJ. The cancer/testes genes: review, standardization, and commentary. Cancer Immun 2004; 4:1-15.
2. Simpson AJ, Caballero OL, Junghluth A, Chen YT, Old LJ. Cancer/testes antigens, gametogenesis and cancer. Nat Rev Cancer 2005; 5:615-625.
3. Nourashrafeddin S, Dianatpour M, Aarabi M, Mobasheri MB, Kazemi-Oula G, Modarressi MH. Elevated Expression of the Testis-specific Gene WBP2NL in Breast Cancer. Biomark Cancer 2015; 7:19-24.
4. Mobasheri MB, Shirkoohi R, Modarressi MH. Cancer/testis OIP5 and TAF7L genes are Up-regulated in breast cancer. Asian Pac J Cancer Prev 2015; 16:4623-4628.
5. Mobasheri MB, Shirkoohi R, Zendehdel K, Jahanzad I, Talebi S, Asharpad M, Modarressi MH. Transcriptome analysis of the cancer/testis genes, DA21, AURKC, and TEX101, in breast tumors and six breast cancer cell lines. Tumour Biol 2015; 36:8201-8206.
6. Junghluth AA, Stockert E, Chen YT, Kolb D, Iversen K, Coplan K, et al. Monoclonal antibody MA454 reveals a heterogeneous expression pattern of MAGE-1 antigen in formalin-fixed paraffin embedded lung tumours. Br J Cancer 2000; 83:493-497.
7. Mobasher MB, Modarressi MH, Shahabi M, Asgarian H, Sharifian RA, Vossough P, Shokri F. Expression of the testis-specific gene, TSGA10, in Iranian patients with acute lymphoblastic leukemia (ALL). Leuk Res 2006; 30:883-889.
8. Scanlan MJ, Gordon CM, Williamson B, Lee SY, Chen YT, Stockert E, et al. Identification of cancer/testis genes by database mining and mRNA expression analysis. Int J Cancer 2002; 98:485-492.
9. Zendman AJ, Ruitter DJ, Van Muijen GN. Cancer/testis-associated genes: identification, expression profile, and putative function. J Cell Physiol 2003; 194:272-288.
10. Costa FF, Le Blanc K, Brodin B. Concise review: cancer/testis antigens, stem cells, and cancer. Stem Cells 2007; 25:707-711.
11. Kalejs M, Erenpreisa J. Cancer/testis antigens and gametogenesis: a review and "brain-storming" session. Cancer Cell Int 2005; 5:4.
12. Ross MT, Graftham DV, Coffey AJ, Scherer S, McLay K, Muzny D, et al. The DNA sequence of the human X chromosome. Nature 2005; 434:225-337.
13. Hofmann O, Caballero OL, Stevenson BJ, Chen YT, Cohen T, Chua R, et al. Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci U S A 2008; 105:20422-20427.
14. Doyle JM, Gao J, Wang J, Yang M, Potts PR. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol Cell 2010; 39:963-974.
15. Cheng YH, Wong EW, Cheng CY. Cancer/testis (CT) antigens, carcinogenesis and spermatogenesis. Spermatogenesis 2011; 1:209-220.
16. Dalerba P, Frascella E, Macino B, Mandruzzato S, Zambon A, Rosolen A, et al. MAGE, BAGE and GAGE gene expression in human rhabdomyosarcomas. Int J Cancer 2001; 93:85-90.
17. von Boehmer L, Keller L, Provenzano M, Sais G, Hermann H, et al. MAGE-C2/CT10 protein expression is an independent predictor of recurrence in prostate cancer. PlanSOne 2011; 6:e21366.
18. Gjerstorff MF, Kock K, Nielsen O, Ditzel HJ. MAGE, BAGE and NY-ESO-1 cancer/testis antigen expression during human gonadal development. Hum Reprod 2007; 22:953-960.
19. Takebe M, Onohara Y, Yokota S. Expression of MAEL in nuage and non-nuage compartments of rat spermatogenic cells and colocalization with DDX4, DDX25 and MIWI. Histochem Cell Biol 2013; 140:169-181.
20. Vasileva A, Tiedau D, Firooznia A, Muller-Reichert T, Jeesberger R. Tdrd6 is required for spermiogenesis, chromatin body architecture, and regulation of mRNA expression. Curr Biol 2009; 19:630-639.
21. Fratta E, Coral S, Covre A, Parisi G, Colizzi F, Danielli R, Nicolay HJ, Sigalotti L, Maio M. The biology of cancer testis associated genes: identification, expression profile, and putative function. J Cell Physiol 2003; 194:272-288.
22. Babatunde S, Ibitoye A, Alabi OA, Adewunmi E, Oula G, Modarressi MH. Elevated Expression of OIP5 and TAF7L genes in Breast Cancer. Biomark Cancer 2013; 5:288.
23. Shen Y, Xu J, Yang X, Liu Y, Ma Y, Yang D, et al. Evidence for the involvement of the proximal copy of the MAGEA9 gene in Qx28-linked CNV67 specific to spermatogenic failure. Biol Reprod 2017; 96:610-616.

24. Meuwissen RL, Offenberg HH, Dietrich AJ, Riesewijk A, van Iersel M, Heyting C. A coiled-coil protein specific for synapsed regions of meiotic prophase chromosomes. EMBO J 1992; 11:5091-5100.

25. Karamori-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y, et al. MI, a mammalian member of the piwi family gene, is essential for spermatogenesis. Development 2004; 131:839-849.

26. Lim AK, Knowles BB. Controlling endogenous retroviruses and their chimeric transcripts during normal reprogramming in the Oocyte. J Infect Dis 2015; 212:S47-51.

27. Reuter M, Chuma S, Tanaka T, Franz T, Stark A, Pillai RS. Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat Struct Mol Biol 2009; 16:639-646.

28. Fereydouni B, Salinas-Riesteg, Heistermann M, Dressel R, Lewerich L, Drummer C, et al. Long-term oocyte-like cell development in cultures derived from neonatal mammal monkey ovary. Stem Cells Int 2016; 2016:2480298.

29. Soper SF, van der Heijden GW, Hardiman TC, Goodheart M, Martin SL, de Boer P, et al. Maelstrom, a component of synaptonemal complex assembly, meiotic recombination, and chromosomal segregation in mammalian meiosis. PLoS Genet 2010; 6:e1001190.

30. Iwasa K, Tamura T, Wada I, Nagami T, Kusaka M, et al. Evidence for synapsed regions of meiotic prophase chromosomes. Cytoskeleton (Hoboken) 2012; 69:277.

31. Jackman SM, Hongball D, Kooner JS, Briant RM, Rowelli CE, et al. Identification of proacrosin binding protein sp32 precursor as a human cancer/testis antigen. Proc Natl Acad Sci U S A 2001; 98:3282-3287.

32. Kanemori Y, Koga Y, Sudo M, Kan A, Kusaka M, et al. Expression of Acrbp in the mouse. Identification of proacrosin binding protein sp32 precursor as a human cancer/testis antigen. Proc Natl Acad Sci U S A 2001; 98:3282-3287.

33. Timms SC, Kuzovkina T, Li H, Friesen PL, Philip C, et al. Impaired sperm aggregation in Adam2 and Adam3 null mice. Fertil Steril 2010; 93:2754-2756.

34. Kohn M, Szeinj M, Yagi R, DePamphilis ML, Kano KJ. The acrosomal protein Dickkopf-like 1 (DKK1L1) facilitates sperm penetration of the zona pellucida. Fertil Steril 2010; 93:1533-1537.

35. de Vries FA, de Boer E, van der Bosch M, Baarends WM, Ooms M, Yuan L, et al. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev 2003; 17:1376-1389.

36. Yang F, Eckardt S, Lea NA, McLaughlin KJ, Wang PJ. Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis. J Cell Biol 2008; 180:673-679.

37. Bolcum-Filas E, Hall E, Speed R, Taggart M, Grey C, de Massy B, et al. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair. PLoS Genet 2009; 5:e1000393.

38. Romanenko PJ, Cramer-Otero RD. The mouse Spot1 gene is required for meiotic chromosome synapsis. Mol Cell 2000; 6:975-987.

39. Shin YH, Choi Y, Erdin SU, Yatsenko SA, Kloc M, Yang F, et al. Horrnad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis. PLoS Genet 2010; 6:e1001190.

40. Suzuki T, Kosaka-Suzuki N, Park S, Shin DM, Yoon J, Abdullaev Z, et al. Expression of a testis-specific form of Gal3st1 (CST), a gene essential for spermatogenesis, is regulated by the CTCF paralogous gene BORIS. Mol Cell Biol 2010; 30:2473-2484.

41. Shang E, Nickerson HD, Wen D, Wang X, Wolgemuth DJ. The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation. Development 2007; 134:3507-3515.

42. Pan J, Goodheart M, Chuma N, Nakatsuji N, Page DC, Wang PJ. RNF17, a component of the mammalian germ cell nuage, is essential for spermiogenesis. Development 2005; 132:40-40.39.

43. Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 2002; 32:359-369.

44. Chen TR, Wang P, Carroll LK, Zhang YJ, Han BX, Wang F, Qi G. Generation and characterization of Tmeff2 mutant mice. Biochem Biophys Res Commun 2012; 425:189-194.

45. Pan J, Eckardt S, Lea NA, Buffone MG, Zhou J, Gerton GL, et al. Inactivation of Ntx2 causes defects in male meiosis and age-dependent depletion of spermatogonia. Dev Biol 2009; 330:167-174.

46. Odet F, Duan C, Willis WD, Goulding EH, Kung A, Eddy EM, Goldberg E. Expression of the gene for mouse lactate dehydrogenase C (Ldhc) is required for male fertility. Biol Reprod 2008; 79:26-34.

47. Salmon NA, Rejio Pera RA, Xu Y. A gene trap knockout of the abundant sperm tail protein, outer dense fiber 2, results in preimplantation lethality. Genesis 2006; 44:515-519.

48. Cheng Y, Buffone MG, Koudiou M, Goodheart M, Page DC, Gerton GL, et al. Abnormal sperm in mice lacking the Taf7l gene. Mol Cell Biol 2007; 27:2582-2589.

49. Ono T, Kurashige T, Harada N, Noguchi Y, Saiya T, Niikawa N, et al. Identification of proacrosin binding protein sp32 precursor as a human cancer/testis antigen. Proc Natl Acad Sci U S A 2001; 98:3282-3287.

50. Kanemori Y, Koga Y, Sudo M, Kang W, Kashiwabara S, Iwasa K, et al. Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse. Proc Natl Acad Sci U S A 2016; 113:E3696-3705.

51. Katahira J, Yoneda Y. Nucleocytoplasmic transport of microRNAs and related small RNAs. Traffic 2011; 12:1468-1474.
56. Deng W, Lin H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2002; 2:819-830.

57. Lee JH, Schutte D, Wulf G, Fuzesi L, Radzun HJ, Schweyer S, et al. Stem-cell protein Pwii2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bd-XL pathway. Hum Mol Genet 2006; 15:201-211.

58. Unhavaithaya Y, Hao Y, Beyret E, Yin H, Kuramochi-Miyagawa S, Nakano T, et al. MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation. J Biol Chem 2009; 284:6507-6519.

59. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 2006; 442:203-207.

60. Heyn H, Ferreira HJ, Bassas L, Bonache S, Sayols S, Sandoval J, et al. Epigenetic disruption of the PIWI pathway in human spermatogenic disorders. PLoS One 2012; 7:e47892.

61. Huttemann M, Jaradat S, Grossman LL. Cytochrome c oxidase of mammals contains a testes-specific isofrom of subunit VIb -- the counterpart to testes-specific cytochrome c? Mol Reprod Dev 2003; 66:8-16.

62. Suzuki-Toyota F, Ito C, Toyama Y, Maelawa M, Yao R, Noda T, et al. Factors maintaining normal sperm tail structure during epididymal maturation studied in Gopc-/mice. Biol Reprod 2007; 77:71-82.

63. Goldberg E, Eddy EM, Duan C, Odet F. LDHC: the ultimate testis-specific gene. J Androl 2010; 31:86-94.

64. Odet F, Gabel SA, Williams J, London RE, Goldberg E, Eddy EM. Lactate dehydrogenase C and energy metabolism in mouse sperm. Biol Reprod 2011; 85:556-564.

65. Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 2007; 316:744-747.

66. Meikar O, Da Ros M, Korhonen H, Kotaja N. Chromatoid body and small RNAs in male germ cells. Reproduction 2011; 142:195-209.

67. Wang J, Saxe JP, Tanaka T, Chuma S, Lin H. MILI interacts with tudor domain-containing protein 1 in regulating spermatogenesis. Curr Biol 2009; 19:640-644.

68. Modarressi MH, Behnam B, Cheng M, Taylor KE, Wolfe J, van der Hoorn F. Tsga10 encodes a 65-kilodalton protein that is processed to the 27-kilodalton fibrous sheath protein. Biol Reprod 2004; 70:608-615.

69. Chiriva-Internati M, Cobos E, Da Silva DM, Kast WM. Sperm fibrous sheath proteins: a potential new class of target antigens for use in human therapeutic cancer vaccines. Cancer Immun 2008; 8:8.

70. Fiedler SE, Bajpai M, Carr DW. Identification and characterization of RH0A-interacting proteins in bovine spermatozoa. Biol Reprod 2008; 78:184-192.

71. Miryounesi M, Nayernia K, Mobasher MB, Dianatpour M, Oko R, Savad S, et al. Evaluation of in vitro spermatogenesis system effectiveness to study genes behavior: monitoring the expression of the testis specific 10 (Tsga10) gene as a model. Arch Iran Med 2014; 17:692-7.

72. Dianatpour M, Mehdipour P, Nayernia K, Mobasher MB, Ghaffouri-Fard S, Savad S, et al. Expression of Testis Specific Genes TSGA10, TEX101 and ODF3 in Breast Cancer. Iran Red Crescent Med J 2012; 14:722-726.

73. Salehipour P, Nematzadeh M, Mobasher MB, Afsharpad M, Mansouri K, Modarressi MH. Identification of new TSGA10 transcript variants in human testis with conserved regulatory RNA elements in 5’untranslated region and distinct expression in breast cancer. Biochim Biophys Acta. 2017; 973-982.

74. Rahmani Rad F, Mobasher M, Modarressi MH. TSGA10, as a Cancer/Testis gene. Tehran Univ Med J TUMS Pub 2015; 73:231-242.