INTEGRABILITY IN DIFFERENTIAL COVERINGS

JOSEPH KRASIL’SHCHIK

Abstract. Let $\tau: \tilde{E} \to E$ be a differential covering of a PDE \tilde{E} over E. We prove that if E possesses infinite number of symmetries and/or conservation laws then \tilde{E} has similar properties.

Introduction

The notion of a covering (or, better, differential covering) was introduced by A. Vinogradov in [10] and elaborated in detail later in [7] and [8]. Coverings, explicitly or implicitly, provide an adequate background to deal with nonlocal aspects in the geometry of PDEs (nonlocal symmetries and conservation laws, Wahlquist-Estabrook prolongation structures, Lax pairs, zero-curvature representations, etc.). Coverings of a special type (the so-called tangent and cotangent one) are efficient in analysis and construction of Hamiltonian structures and recursion operators, see [6]. A very interesting development in the theory of coverings can also be found in [2].

In this paper, we solve the following naturally arising problem: let a covering $\tau: \tilde{E} \to E$ be given and the equation E is known to possess infinite number of symmetries and/or conservation laws. Is \tilde{E} endowed with similar properties? The answer, under reasonable assumptions, is positive.

In Section 1, we present a short introduction to the theory of coverings based mainly on [8] and formulate and prove necessary auxiliary facts. Section 2 contains the proof of the main result for the case of Abelian coverings. Finally, the non-Abelian case is discussed in Section 3.

1. Basic notions

For a detailed exposition of the geometrical approach to PDEs we refer the reader to the books [5] and [1]. Coverings are discussed in [8].

Equations. Let $\pi: E \to M$, $\dim M = n$, $\dim E = m+n$, be a locally trivial vector bundle and $E \subset J^\infty(\pi)$ be an infinitely prolonged differential equation embedded to the space of infinite jets. One has the surjection $\pi_\infty: E \to M$. The main geometric structure on E is the Cartan connection $C: Z \mapsto \mathcal{C}_Z$ that takes vector fields on M to those on E. Vector fields of the form \mathcal{C}_Z are called Cartan fields. The connection is flat, i.e., $C[Z,Y] = [C_Z,C_Y]$ for any vector fields on M. The corresponding horizontal distribution (the Cartan distribution) on E is integrable and its maximal integral manifolds

2010 Mathematics Subject Classification. 37K05, 37K10, 37K35.

Key words and phrases. Geometry of differential equations, integrability, symmetries, conservation laws, differential coverings.

I am grateful to the Mathematical Institute of the Silesian University in Opava for support and comfortable working condition.
are solutions of \mathcal{E}. We always assume \mathcal{E} to be differentially connected which means that for any set of linearly independent vector fields Z_1, \ldots, Z_n on M the system

$$\mathcal{C}_{Z_i}(h) = 0, \quad i = 1, \ldots, n,$$

has constant solutions only.

If x^1, \ldots, x^n are local coordinates on M then the Cartan connection takes the partial derivatives $\partial/\partial x^i$ to the total derivatives D_{x^i} on \mathcal{E}. Flatness of \mathcal{C} amounts to the fact that the total derivatives pair-wise commute,

$$[D_{x^i}, D_{x^j}] = 0.$$

A π_∞-vertical vector field S is a symmetry of \mathcal{E} if it commutes with all Cartan fields, i.e., $[S, \mathcal{C}_Z] = 0$ for all X. The set of symmetries is a Lie algebra over \mathbb{R} denoted by $\text{sym}\, \mathcal{E}$.

A differential q-form ω on \mathcal{E}, $q = 0, 1, \ldots, n$, is horizontal if $i_V \omega = 0$ for any π_∞-vertical field V. The space of these forms is denoted by $\Lambda^q_h(\mathcal{E})$. Locally, horizontal forms are

$$\omega = \sum a_{i_1, \ldots, i_q} \, dx^{i_1} \wedge \cdots \wedge dx^{i_q}, \quad a_{i_1, \ldots, i_q} \in \mathcal{F}(\mathcal{E}).$$

The horizontal de Rham differential $d_h: \Lambda^q_h(\mathcal{E}) \to \Lambda^{q+1}_h(\mathcal{E})$ is defined, whose action locally is presented by

$$d_h(a_{i_1, \ldots, i_q} \, dx^{i_1} \wedge \cdots \wedge dx^{i_q}) = \sum_{i=1}^n D_{x^i}(a_{i_1, \ldots, i_q}) \, dx^i \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_q}.$$

A closed horizontal $(n - 1)$-form is called a conservation law of \mathcal{E}. Thus, conservation laws are defined by $d_h\omega = 0$, $\omega \in \Lambda^{n-1}_h(\mathcal{E})$. A conservation law is trivial if $\omega = d_h\rho$ for some $\rho \in \Lambda^{n-2}_h(\mathcal{E})$. The quotient space of all conservation laws modulo trivial ones is denoted by $\text{cl}\, \mathcal{E}$.

If $S \in \text{sym}\, \mathcal{E}$ and ω is a conservation law then the Lie derivative $L_S \omega$ is a conservation law as well and trivial conservation laws are taken to trivial ones. Thus we have a well-defined action $L_S: \text{cl}\, \mathcal{E} \to \text{cl}\, \mathcal{E}$.

Coverings. Let us now give the main definition. Consider a locally trivial vector bundle $\tau: \tilde{\mathcal{E}} \to \mathcal{E}$ of rank r and denote by $\mathcal{F}(\mathcal{E})$ and $\mathcal{F}(\tilde{\mathcal{E}})$ the algebras of smooth functions on \mathcal{E} and $\tilde{\mathcal{E}}$, respectively. We have the embedding $\tau^*: \mathcal{F}(\mathcal{E}) \hookrightarrow \mathcal{F}(\tilde{\mathcal{E}})$.

Definition 1. We say that τ carries a covering structure (or is a differential covering) over \mathcal{E} if: (a) there exists a flat connection $\tilde{\mathcal{C}}$ in the bundle $\pi_\infty \circ \tau: \tilde{\mathcal{E}} \to M$ and (b) this connection enjoys the equation

$$\tilde{\mathcal{C}}_Z|_{\mathcal{F}(\mathcal{E})} = \mathcal{C}_Z$$

for all vector fields Z on M.

In local coordinates, any covering is determined by a system of vector fields

$$\tilde{D}_{x^i} = D_{x^i} + X_i, \quad i = 1, \ldots, n,$$

on $\tilde{\mathcal{E}}$, where X_i are τ-vertical fields that satisfy the relations

$$D_{x^i}(X_j) - D_{x^j}(X_i) + [X_i, X_j] = 0, \quad 1 \leq i < j \leq n.$$
Let w^1, \ldots, w^r be local coordinates in the fiber of τ (the nonlocal variables in τ) and $X_i = X^1_i \partial/\partial w^1 + \cdots + X^r_i \partial/\partial w^r$. Then \tilde{E}, endowed with \tilde{C}, is equivalent to the overdetermined system of PDEs

$$\frac{\partial w^\alpha}{\partial x^i} = X^\alpha_i, \quad i = 1, \ldots, n, \quad \alpha = 1, \ldots, r,$$

compatible by virtue of E.

Two coverings $\tau_i: \tilde{E}_i \to E$, $i = 1, 2$, are equivalent if there exists a diffeomorphism $f: \tilde{E}_1 \to \tilde{E}_2$ such that the diagram

$$\begin{array}{ccc}
\tilde{E}_1 & \xrightarrow{f} & \tilde{E}_2 \\
\downarrow{\tau_1} & & \downarrow{\tau_2} \\
\tau & & \\
\end{array}$$

is commutative and $f_* \circ \tilde{C}_2 = \tilde{C}_2$ for all fields Z on M, where \tilde{C}_i is the Cartan connection on \tilde{E}_i and f_* is the differential of f.

Again, having two coverings τ_1 and τ_2, consider the Whitney product of fiber bundles

$$\begin{array}{ccc}
\tilde{E}_1 \times_F \tilde{E}_2 & \xrightarrow{\tau_1 \times_F \tau_2} & \tilde{E}_1 \times E \tilde{E}_2 \\
\downarrow{\tau_1} & & \downarrow{\tau_2} \\
\tau & & \\
\end{array}$$

Since the tangent plane to $\tilde{E}_1 \times_F \tilde{E}_2$ at any point splits naturally into direct sum of tangent planes to \tilde{E}_1 and \tilde{E}_2, we can define a connection in the bundle $\tau_1 \times_F \tau_2$ by setting

$$\tilde{C}_{12}^\phi(\varphi_1, \varphi_2) = \tilde{C}_2^\phi(\varphi_1) \cdot \varphi_2 + \varphi_1 \cdot \tilde{C}_2^\phi(\varphi_2), \quad \varphi_1 \in F(\tilde{E}_1), \quad \varphi_2 \in F(\tilde{E}_2).$$

This is a covering structure in $\tau_1 \times_F \tau_2$ which is called the Whitney product of τ_1 and τ_2. Note that the maps $\tau_1^\phi(\tau_2)$ and $\tau_2^\phi(\tau_1)$ are coverings as well (they are called pull-backs).

Assume that in local coordinates the coverings τ_1 and τ_2 are given by the vector fields

$$\tilde{D}_x^k = D_x^1 + \sum_{a=1}^{\dim \tau_k} X^{k,a}_{x} \frac{\partial}{\partial w^a_k}, \quad k = 1, 2.$$

Then the vector fields defining the Whitney product are of the form

$$\tilde{D}_x^{1,2} = D_x^1 + \sum_{a=1}^{\dim \tau_1} X^{1,a}_x \frac{\partial}{\partial w^a_1} + \sum_{a=1}^{\dim \tau_2} X^{2,a}_x \frac{\partial}{\partial w^a_2}.$$

Remark 1. From now on we shall assume all the coverings under consideration to be finite-dimensional. It is known that, see [3, 9], in the multidimensional case (i.e., $n > 2$) non-overdetermined equations do not possess finite-dimensional coverings. So, we restrict ourselves to the case $n = 2$.
Definition 2. A covering $\tau: \tilde{E} \to E$ is called irreducible if the covering equation \tilde{E} is differentially connected, i.e., if for any set Z_1, \ldots, Z_n of independent vector fields on M the system
\[
\tilde{C}_{Z_i}(h) = 0, \quad i = 1, \ldots, n,
\] (4)
possesses constant solutions only. Otherwise we say that τ is reducible.

Equivalently, one can study the equations
\[
\tilde{D}_{x_i}(h) = 0, \quad i = 1, \ldots, n,
\]
instead of System (4).

Reducibility can be ‘measured’ by the maximal number of functionally independent integrals of Equation (4), which cannot exceed $r = \dim \tau$. Maximally reducible coverings are called trivial. Triviality of a covering means that it is locally equivalent to the one with $\tilde{D}_{x_i} = D_{x_i}$ for all $i = 1, \ldots, n$.

Also, directly from the definition one has

Proposition 1. Any finite-dimensional covering τ, in a neighborhood of a generic point, splits into the Whitney product $\tau = \tau_{\text{triv}} \times \tau_{\text{irr}}$, where τ_{triv} is trivial and τ_{irr} is irreducible.

Abelian coverings. Let us introduce an important class of coverings.

Definition 3. A covering τ is called Abelian if for any vector field X on M one has $\tilde{C}_X(f) \in \mathcal{F}(E)$ for any fiber-wise linear function $f \in \mathcal{F}(\tilde{E})$. Coverings locally equivalent to such ones are also called Abelian.

Locally this means that coordinates in the fibers of τ may be chosen in such a way that coefficient of the vertical fields X_i in Equations (1) are independent of the nonlocal variables w^α. Consider such a choice and recall that we are in the two-dimensional situation (see Remark 1). Set $x^1 = x$, $x^2 = y$ and $X_1 = X$, $X_2 = Y$. Then, by Equations (2), one has
\[
D_x(Y) - D_y(X) + [X, Y] = \sum_{\alpha=1}^r \left(D_x(Y^\alpha) - D_y(X^\alpha) \right) \frac{\partial}{\partial w^\alpha},
\]
since $[X, Y] = 0$. Thus, $D_x(Y^\alpha) - D_y(X^\alpha) = 0$ for all α and all the forms
\[
\omega^\alpha = X^\alpha \, dx + Y^\alpha \, dy, \quad \alpha = 1, \ldots, r,
\] (5)
are conservation laws of E.

Using the result of this simple computation, let us give a complete description of finite-dimensional Abelian coverings:

Theorem 1. There locally exists a one-to-one correspondence between equivalence classes of r-dimensional irreducible Abelian coverings over E and r-dimensional vector \mathbb{R}-subspaces in $\text{cl} E$.

Let τ be an Abelian covering of finite dimension r. Then we can construct conservation laws $\{\omega^\alpha\}$ like in Equation (5) and consider the space $\mathcal{L}_\tau \subset \text{cl} E$ that spans the set $\{[\omega^\alpha]\}$ of their equivalence classes. Vice versa, let $\mathcal{L} \subset \text{cl} E$ be an r-dimensional subspace. Take its basis e^1, \ldots, e^r and choose a
representative $\omega^\alpha = X^\alpha dx + Y^\alpha dy$ in each class e^α. Consider $E \times \mathbb{R}^r$ and set

$$\tilde{D}_x = D_x + \sum_{\alpha} X^\alpha \frac{\partial}{\partial \bar{w}^\alpha}, \quad \tilde{D}_y = D_y + \sum_{\alpha} Y^\alpha \frac{\partial}{\partial \bar{w}^\alpha}.$$

This obviously defines a covering structure and we denote it by τ_L. We are to prove that

1. if τ is irreducible of rank r then $\dim L_\tau = r$;
2. τ_L is irreducible of rank r;
3. if τ and $\bar{\tau}$ are equivalent then $L_\tau = L_{\bar{\tau}}$;
4. equivalence class of τ_L is independent of a basis choice in L.

Proof of Theorem

Let us do it.

1. Take the forms (5) and assume that $\lambda_1[\omega]_1 + \cdots + \lambda_r[\omega]_r = 0$ for some nontrivial set of $\lambda_\alpha \in \mathbb{R}$. This means that

$$\lambda_1 \omega^1 + \cdots + \lambda_r \omega^r = dh, \quad P \in \mathcal{F}(E),$$

or

$$\sum_{\alpha} \lambda_\alpha X^\alpha = D_x P, \quad \sum_{\alpha} \lambda_\alpha Y^\alpha = D_y P.$$

Hence, the function

$$h = \lambda_1 w^1 + \cdots + \lambda_r w^r - P$$

is a nontrivial integral for the fields \tilde{D}_x, \tilde{D}_y and the covering is reducible. Contradiction.

2. Consider the system

$$\tilde{D}_x(h) = D_x(h) + \sum_{\alpha} X^\alpha \frac{\partial h}{\partial \bar{w}^\alpha} = 0, \quad \tilde{D}_y(h) = D_y(h) + \sum_{\alpha} Y^\alpha \frac{\partial h}{\partial \bar{w}^\alpha} = 0.$$

Note that when the partial derivatives $\partial h/\partial w^\alpha$ vanish everywhere, the function h is constant, since E is differentially connected.

On the other hand, assume that there exists a point $\theta \in \tilde{E}$ such that at least one derivative, say $\partial h/\partial w^1|_{\theta} \neq 0$. Hence, in a neighbor of θ we can choose a new fiber coordinate $\bar{w}^1 = h$ and immediately make sure that the conservation law ω^1 is trivial.

3. Let τ and $\bar{\tau}$ be two equivalent irreducible Abelian coverings and

$$\bar{w}^\alpha = f^\alpha(\theta, w^1, \ldots, w^r), \quad \theta \in E, \quad \alpha = 1, \ldots, r,$$

be their equivalence. Then

$$\bar{X}^\alpha = \tilde{D}_x(f^\alpha), \quad \bar{Y}^\alpha = \tilde{D}_y(f^\alpha), \quad \alpha = 1, \ldots, r,$$

from where it follows that

$$\tilde{D}_x \left(\frac{\partial f^\alpha}{\partial \bar{w}^\beta} \right) = 0, \quad \tilde{D}_y \left(\frac{\partial f^\alpha}{\partial \bar{w}^\beta} \right) = 0$$

for all $\alpha, \beta = 1, \ldots, r$. But the coverings are irreducible and consequently

$$f^\alpha = \sum_{\beta} a^\alpha_\beta \bar{w}^\beta + a^\alpha, \quad a^\alpha_\beta \in \mathbb{R}, \quad a^\alpha \in \mathcal{F}(E),$$

(6)
where \(\det a^\alpha_\beta \neq 0 \). Thus
\[
\bar{X}^\alpha = \sum_\beta a^\alpha_\beta X^\beta + a^\alpha,
\]
which means that \(\mathcal{L}(\tau) = \mathcal{L}(\bar{\tau}) \).

(4) Let \(\{[\omega^\alpha]\} \) and \(\{[\bar{\omega}^\beta]\} \) be two bases in \(\mathcal{L} \). Then
\[
\bar{\omega}^\alpha = \sum_\beta a^\alpha_\beta \omega^\beta + d h a^\alpha,
\]
and (4) is the needed equivalence.

\[\square \]

2. THE MAIN RESULT (ABELIAN CASE)

Using the above results, we study here some relations between symmetries and conservation laws of the equations \(\mathcal{E} \) and \(\hat{\mathcal{E}} \) in an irreducible Abelian covering \(\tau : \hat{\mathcal{E}} \to \mathcal{E} \).

Lifting conservation laws. Consider a nontrivial conservation law \(\omega \) of \(\mathcal{E} \). Then the pull-back \(\tau^* \omega \) is a conservation law of \(\hat{\mathcal{E}} \).

Proposition 2. The form \(\tau^* \omega \) is a trivial conservation law of the equation \(\hat{\mathcal{E}} \) if and only if \([\omega] \in \mathcal{L}_\tau \).

Proof. Consider the covering \(\tau \times \tau_\omega \), where \(\tau_\omega \) is the one-dimensional covering associated with the conservation law \(\omega \). Obviously, triviality of \(\tau^* \omega \) amounts to reducibility of \(\tau \times \tau_\omega \). But by Theorem [1] the covering \(\tau \times \tau_\omega \) is irreducible if and only if \([\omega] \notin \mathcal{L}_\tau \). \[\square \]

Corollary 1. Let \(\tau : \hat{\mathcal{E}} \to \mathcal{E} \) be a finite-dimensional Abelian covering and assume that \(\dim \mathcal{R} \) cl \(\mathcal{E} = \infty \). Then \(\dim \mathcal{R} \) cl \(\hat{\mathcal{E}} = \infty \) as well.

Example 1. Consider the Korteweg-de Vries equation
\[
\frac{du}{dt} = uu_x + u_{xxx}
\]
and its first conservation law \(\omega^1 = u \, dx + \left(\frac{u^2}{2} + u_{xx} \right) \, dt \). In the corresponding covering \(\tau : \hat{\mathcal{E}} \to \mathcal{E} \), the covering equation \(\hat{\mathcal{E}} \) is the potential KdV
\[
\frac{du}{dt} = \frac{1}{2} u_x^2 + u_{xxx}.
\]
All conservation laws of the KdV survive in pKdV except for \(\omega^1 \).

Lifting symmetries. Let \(\tau : \hat{\mathcal{E}} \to \mathcal{E} \) be an arbitrary covering and \(S \in \text{sym} \mathcal{E} \) be a symmetry of the equation \(\mathcal{E} \). We say that \(S \) lifts to \(\hat{\mathcal{E}} \) if there exists a symmetry \(\bar{S} \in \text{sym} \hat{\mathcal{E}} \) such that \(\bar{S} \big|_{\mathcal{F}(\mathcal{E}) \subset \mathcal{F}(\hat{\mathcal{E}})} = S \).

For any conservation law \(\omega \) of \(\mathcal{E} \), the Lie derivative \(L_S(\omega) \) is a conservation law as well and if two conservation laws are equivalent then their Lie derivatives are also equivalent. So, the action
\[
L_S : \text{cl} \mathcal{E} \to \text{cl} \mathcal{E}
\]
is well defined.

Proposition 3. Action (7) is \(\mathbb{R} \)-linear.
Proof. Choose a basis in \(\text{cl} \mathcal{E} \) and let \(\omega^\alpha = X^\alpha \, dx + Y^\alpha \, dy \), \(\alpha = 1, 2, \ldots \), be the corresponding conservation laws. Then, by \([3]\), we have nonlocal variables defined by the equations

\[
\frac{\partial w^\alpha}{\partial x} = X^\alpha, \quad \frac{\partial w^\alpha}{\partial y} = Y^\alpha
\]

for all possible values of \(\alpha \). Consequently,

\[
S(X^\alpha) = \tilde{D}_x(\tilde{S}(w^\alpha)), \quad S(Y^\alpha) = \tilde{D}_y(\tilde{S}(w^\alpha)),
\]

where

\[
\tilde{D}_x = D_x + \sum_\alpha X^\alpha \frac{\partial}{\partial w^\alpha}, \quad \tilde{D}_y = D_x + \sum_\alpha Y^\alpha \frac{\partial}{\partial w^\alpha},
\]

The right-hand sides in \((8)\) are independent of \(w^\beta \) while

\[
[\frac{\partial}{\partial w^\beta}, \tilde{D}_x] = [\frac{\partial}{\partial w^\beta}, \tilde{D}_y] = 0
\]

for all \(\beta \). Hence,

\[
\tilde{D}_x \left(\frac{\partial \tilde{S}(w^\alpha)}{\partial w^\beta} \right) = 0, \quad \tilde{D}_y \left(\frac{\partial \tilde{S}(w^\alpha)}{\partial w^\beta} \right) = 0,
\]

from where it follows (Theorem \([4]\)) that

\[
\frac{\partial \tilde{S}(w^\alpha)}{\partial w^\beta} = a^\alpha_\beta \in \mathbb{R},
\]

or

\[
\tilde{S}(w^\alpha) = \sum_\beta a^\alpha_\beta w^\beta + a^\alpha, \quad a^\alpha \in \mathcal{F}(\mathcal{E}) \quad (9)
\]

(the sum above is taken over finite number of \(\beta \)'s).

Remark 2. Equations \((9)\) mean that \(L_S \omega^\alpha = \sum_\beta a^\alpha_\beta \omega^\beta + d_h a^\alpha \).

An immediate consequence of this result is

Proposition 4. Let \(\mathcal{L} \subset \text{cl} \mathcal{E} \) be an \(r \)-dimensional subspace and \(\tau_\mathcal{L} \) be the corresponding irreducible Abelian covering. Then a symmetry \(S \) lifts to \(\tau_\mathcal{L} \) if and only if \(L_S(\mathcal{L}) \subset \mathcal{L} \).

Assume now that \(\mathcal{E} \) admits an infinite-dimensional symmetry algebra \(S = \text{sym} \mathcal{E} \). Consider a finite-dimensional irreducible Abelian covering \(\tau: \bar{\mathcal{E}} \to \mathcal{E} \) associated to conservation laws \(\omega^1, \ldots, \omega^r \) and the subspace \(\mathcal{L}_\tau \subset \text{cl} \mathcal{E} \). Then, by Proposition\([4]\) \(S \) lifts to the covering \(S \tau \) associated to the space \(L_S \mathcal{L}_\tau \) that spans all the the conservation laws

\[
\omega^0_0 = \omega^\alpha, \quad \omega^0_1 = L_S \omega^\alpha, \quad \omega^0_2 = L_S \omega^1, \ldots, \quad S \in \mathcal{S}, \alpha = 1, \ldots, r. \quad (10)
\]

If the space \(L_S \mathcal{L}_\tau \) is finite-dimensional a stronger result is valid which is based on the following

Proposition 5. Let

1. \(\mathcal{E} \) possess an infinite dimensional symmetry algebra \(S \);
2. \(\tau \) be a finite-dimensional irreducible Abelian covering over \(\mathcal{E} \);
3. \(\bar{\tau} \) be another finite-dimensional Abelian covering over the equation \(\mathcal{E} \) such that \(\tau \times \bar{\tau} \) is irreducible and any \(S \in \mathcal{S} \) lifts to \(\tau \times \bar{\tau} \).
Then the exist infinite number of symmetries in \(S \) that lift to \(\tau \).

Proof. Due to Proposition 3 this is a fact from linear algebra. Choose bases \(w^1, \ldots, w^r \) and \(\tilde{w}^1, \ldots, \tilde{w}^\tilde{r} \) in \(\mathcal{L}_\tau \) and \(\mathcal{L}_{\tilde{\tau}} \), respectively. Then

\[
S_k(w^\alpha) = \sum_{\beta=1}^{r} \lambda_{k,\beta}^\alpha w^\beta + \sum_{\tilde{\beta}=1}^{\tilde{r}} \tilde{\lambda}_{k,\tilde{\beta}}^\alpha \tilde{w}^{\tilde{\beta}},
\]

for all \(\alpha = 1, \ldots, r \) and \(k \geq 1 \). Thus, the action of \(S_k \) on \(\mathcal{L}_\tau \) is determined by two matrices

\[
\Lambda_k = (\lambda_{k,\beta}^\alpha)_{\alpha=1,\ldots,r, \beta=1,\ldots,r}, \quad \tilde{\Lambda}_k = (\tilde{\lambda}_{k,\tilde{\beta}}^\alpha)_{\alpha=1,\ldots,r, \tilde{\beta}=1,\ldots,\tilde{r}}.
\]

Then the space that spans the matrices \(\tilde{\Lambda}_k \) is of dimension \(d \leq r \cdot \tilde{r} \) at most. Choose its basis \(\tilde{\Lambda}_{k_1}, \ldots, \tilde{\Lambda}_{k_d} \). Then

\[
\tilde{\Lambda}_k = \mu_{k_1}^{1} \tilde{\Lambda}_{k_1} + \cdots + \mu_{k_d}^{d} \tilde{\Lambda}_{k_d}, \quad k \geq 1,
\]

and consequently the space \(\mathcal{L}_\tau \) is invariant with respect to all symmetries of the form \(\tilde{S}_k = \tilde{S}_k - \sum_{i=1}^{d} \mu_{k}^{i} \tilde{S}_{k_i} \).

Denote by \(S_\tau \) the space of all conservation laws generated from \(\mathcal{L}_\tau \) by the iterated action of \(S \), see Equations (10).

Corollary 2. Let \(S_\tau \) be finite-dimensional. Then there exists infinite number of independent symmetries in \(S \) that lift to \(\tau \).

Remark 3. Actually the proof of Proposition 3 shows that the symmetries \(\tilde{S}_k \) may be chosen in such a way that they will act on all nonlocal variables trivially.

Example 2. Consider the Burgers equation

\[
u_t = u \nu_x + u_{xx}.
\]

It possesses only one conservation law \(\omega^1 = u \, dx + \left(\frac{1}{2} \nu^2 + u_x \right) \, dt \) which has to be invariant with respect to all symmetries. Consequently, all these symmetries lift to the covering equation, which is the heat equation.

The main result. Gathering the results obtained above, we obtain the following

Theorem 2. Let \(\mathcal{E} \) be a differentially connected equation and \(\tau: \tilde{\mathcal{E}} \rightarrow \mathcal{E} \) be an irreducible finite-dimensional Abelian covering. Then:

1. if \(\mathcal{E} \) possesses infinite number of conservation laws the same is valid for \(\tilde{\mathcal{E}} \);
2. if \(\mathcal{E} \) possesses infinite number of symmetries then \(\tilde{\mathcal{E}} \) either has the same property or admits infinite number of conservation laws or both.

Proof. Statement (1) is Corollary 1 exactly.

To prove Statement (2), consider the space generated from \(\text{cl} \mathcal{E} \) by \(\text{sym} \mathcal{E} \). There are two options: (a) the space is finite-dimensional and we find ourselves in the situation of Corollary 2; (b) otherwise we come back to Corollary 1.
3. Non-Abelian case

The non-Abelian case is more complicated, and the first thing to be done is to narrow the universum of non-Abelian coverings.

Definition 4. A finite-dimensional covering \(\tau: \tilde{E} \to E \) is called **strictly non-Abelian** if it is not equivalent to a composition of coverings \(\tilde{E} \xrightarrow{\tau_1} E' \xrightarrow{\tau_2} E \), where \(\tau_2 \) is Abelian.

Proposition 6. Let \(\tau: \tilde{E} \to E \) be a finite-dimensional strictly non-Abelian covering and \(\omega \) be a nontrivial conservation law of the equation \(E \). Then the conservation law \(\tau^*(\omega) \in \text{cl}(\tilde{E}) \) is nontrivial as well.

Proof. Let \(\omega = X \, dx + Y \, dy \), where \(X \) and \(Y \) are functions on \(E \). Assume that \(\tau^*(\omega) \) is trivial. Then there exists a function \(f \) on \(\tilde{E} \) such that \(X = \tilde{D}_x(f) \), \(Y = \tilde{D}_y(f) \), where \(\tilde{D}_x \), \(\tilde{D}_y \) are the total derivatives on \(\tilde{E} \). Since \(\omega \) is nontrivial, at least one of the partial derivatives \(\partial f/\partial w_i \), say \(\partial f/\partial w_1 \), does not vanish, where \(w_1, \ldots, w_r \) are nonlocal variables in \(\tau \). Then, by choosing new coordinates \(\bar{w}_1 = f, \bar{w}_2 = w_2, \ldots, \bar{w}_r = w_r \) in the fiber, we see that \(\tau \) is not strictly non-Abelian. \(\square \)

Corollary 3. One has \(\dim_{\mathbb{R}} \ker \tau^* < \infty \) for any finite-dimensional covering \(\tau \).

Proof. The result follows from the proof of Proposition 6. \(\square \)

Corollary 4. If \(\tau: \tilde{E} \to E \) is a strictly non-Abelian covering then the map \(\tau^*: \text{cl}(E) \to \text{cl}(\tilde{E}) \) is an embedding. In particular, if \(\dim \text{cl}(E) = \infty \) the same holds for \(\text{cl}(\tilde{E}) \).

Consider now a symmetry \(S \in \text{sym} E \). Let try to formulate an analogue of Proposition 4 in the non-Abelian case. First of all, recall an old result from [8]:

Proposition 7. Let \(\tau: \tilde{E} \to E \) be a finite-dimensional covering and \(S \in \text{sym} E \) be a symmetry that possesses a one-parameter group \(A_\lambda \) of transformations (e.g., a contact symmetry). Then:

- either \(S \) can be lifted to a symmetry \(\tilde{S} \in \text{sym} \tilde{E} \) that is projectible to \(S \) by \(\tau_* \),
- or the action of the group \(A_\lambda \) gives rise to a one-parameter family of coverings \(\tau_\lambda: \tilde{E} \to E, \tau_0 = \tau \), with a nonremovable parameter \(\lambda \in \mathbb{R} \).

To formulate a counterpart to Proposition 7 in the case when \(A_\lambda \) does not exist, let us recall the basic constructions from [9]. Let \(E \subset J^\infty(\pi) \) be an equation with a set of internal coordinates \(\text{int}(E) \). The **structural element** of \(E \) is the vector-valued differential one-form

\[
U_E = \sum_{u^j_{\sigma} \in \text{int}(E)} \omega^j_{\sigma} \otimes \frac{\partial}{\partial u^j_{\sigma}}, \tag{11}
\]
where \(\omega^j = u^j - \sum_i u_{\sigma i} dx^i \) are the Cartan forms corresponding to \(u^j \).

Denote by \(D^\nu(\Lambda^*(\mathcal{E})) = \bigoplus_i D^\nu(\Lambda^i(\mathcal{E})) \) differential forms on \(\mathcal{E} \) with values in \(\pi_\infty \)-vertical vector fields (or, in other words, vertical form-valued derivations of the function algebra \(\mathcal{F}(\mathcal{E}) \)). Then \(D^\nu(\Lambda^*(\mathcal{E})) \) is a super Lie algebra with respect to the Nijenhuis bracket
\[
[\cdot, \cdot] : D^\nu(\Lambda^i(\mathcal{E})) \times D^\nu(\Lambda^j(\mathcal{E})) \to D^\nu(\Lambda^{i+j}(\mathcal{E})).
\]

The element \(U_\mathcal{E} \) from (11) can be understood as a derivation \(U_\mathcal{E} \in D^1_{\nu}(\Lambda^1(\mathcal{E})) \).

Then \(\partial C = [U_\mathcal{E}, \cdot] \). Its cohomology is called the \(C \)-cohomology of \(\mathcal{E} \) and is denoted by \(H^i_C(\mathcal{E}) \).

Theorem 3 (see [4]). Let \(\mathcal{E} \subset J^\infty(\pi) \) be an equation. Then:

1. \(H^0_C(\mathcal{E}) = \text{sym} \mathcal{E} \),
2. \(H^1_C(\mathcal{E}) \) consists of equivalence classes of infinitesimal deformations of the equation structure modulo trivial ones,
3. \(H^2_C(\mathcal{E}) \) contains obstructions to continuation of infinitesimal deformations to formal ones.

Let \(\tau : \tilde{\mathcal{E}} \to \mathcal{E} \) be a covering with local coordinates \(w^\alpha \) in its fibers. The structural element of \(\tilde{\mathcal{E}} \) is
\[
U_{\tilde{\mathcal{E}}} = U_\mathcal{E} + \sum \theta^\alpha \otimes \frac{\partial}{\partial w^\alpha},
\]
where
\[
\theta^\alpha = dw^\alpha - \sum_i X_i^\alpha dx^i
\]
and the functions \(X_i^\alpha \) are from Equation (3).

Denote the second summand in (13) by \(U_\tau \). Then the covering structure in \(\tau \) is governed by the Maurer-Cartan type equations
\[
\partial C(U_\tau) + \frac{1}{2}[U_\tau, U_\tau] = 0.
\]

Consider complex (12) for the covering equation \(\tilde{\mathcal{E}} \) and its subcomplex
\[
0 \to D^\nu(\tilde{\mathcal{E}}) \xrightarrow{\partial_C} D^\nu(\Lambda^1(\tilde{\mathcal{E}})) \xrightarrow{\partial_C} \cdots \to D^\nu(\Lambda^i(\tilde{\mathcal{E}})) \xrightarrow{\partial_C} \cdots,
\]
where
\[
D^\nu(\Lambda^i(\mathcal{E})) = \{ Z \in D^\nu(\Lambda^i(\mathcal{E})) | Z|_{\mathcal{E}} = 0 \}
\]
(recall that the algebra \(\mathcal{F}(\mathcal{E}) \) is embedded into \(\mathcal{F}(\tilde{\mathcal{E}}) \) by \(\tau^* \)). Denote the corresponding cohomology groups by \(H^i_g(\tau) \). Then we have the following analogue of Theorem 3:

Theorem 4. Let \(\tau : \tilde{\mathcal{E}} \to \mathcal{E} \) be a covering. Then:

1. \(H^0_g(\tau) \) consists of gauge symmetries (infinitesimal equivalences) of \(\tau \),
2. \(H^1_g(\tau) \) consists of equivalence classes of the covering structure infinitesimal deformations modulo trivial ones,
(3) \(H_g^2(\tau) \) is the set of obstructions to continuation of infinitesimal deformations to formal ones.

To formulate the last result of this paper, let us give the following

Definition 5. Let \(\mathcal{E} \) be an equation and \(\tau: \tilde{\mathcal{E}} \to \mathcal{E} \) be a trivial vector bundle. We say that \(\tau \) carries a formal covering structure \(\tau_\varepsilon \), where \(\varepsilon \) is a formal parameter, if there exist formal \(\tau \)-vertical vector fields \(X_i = \sum_{i=0}^{\infty} \varepsilon^i X_{i\varepsilon} \) such that the equalities

\[
D_{x_i}(X_j) - D_{x_j}(X_i) + [X_i, X_j] = 0
\]

hold formally for all \(i, j = 1, \ldots, n \).

Let now \(S \) be a symmetry of \(\mathcal{E} \). Then (locally) \(S \) can be lifted to a vector field \(\tilde{S} \) on \(\tilde{\mathcal{E}} \). Two options are possible: (1) \(\tilde{S} \) is a symmetry of \(\tilde{\mathcal{E}} \); (2) \(\tilde{S} \) is not a symmetry. In the latter case, consider the element \(L_{\tilde{S}}(U_{\tilde{\mathcal{E}}}) = [\tilde{S}, U_{\tilde{\mathcal{E}}}] \).

One has

Proposition 8. The element \(L_{\tilde{S}}(U_{\tilde{\mathcal{E}}}) \) is a 1-cocycle in \((12) \).

Proof. The result immediately follows from the two facts:

1. For any elements \(\Omega \in D^v(\mathcal{E}) \) and a vertical vector field \(Z \) one has

\[
(L_Z(\Omega))(\varphi) = [Z, \Omega](\varphi) = L_Z(\Omega(\varphi)) - (-1)^i \Omega(Z(\varphi)),
\]

where \(\varphi \) is an arbitrary smooth function on \(\tilde{\mathcal{E}} \).

2. \(L_{\tilde{S}}(U_{\tilde{\mathcal{E}}}) = [\tilde{S}, U_{\tilde{\mathcal{E}}}] = [S, U_{\tau}] + [S_g, U_{\mathcal{E}} + U_{\tau}] \), where \(S_g \in D^g(\tilde{\mathcal{E}}) \) is locally defined by \(S_g = \tilde{S} - S \).

Hence,

\[
\tilde{U}_\tau = U_{\tau} + \varepsilon : L_{\tilde{S}}(U_{\tilde{\mathcal{E}}})
\]

is an infinitesimal deformation of the covering structure in \(\tau \). This deformation is trivial if and only if the lift \(\tilde{S} \) is a symmetry of \(\tilde{\mathcal{E}} \).

Theorem 5. Let \(\tau: \tilde{\mathcal{E}} \to \mathcal{E} \) be a covering such that \(H_g^2(\tau) = 0 \) and \(S \in \text{sym} \mathcal{E} \). Then there exists a formal covering structure \(\tau_\varepsilon \) in \(\tau \) such that \(\tau_0 = \tau \).

Proof. The result immediately follows from Theorem 3. \(\square \)

Remark 4. This result is a weaker analogue of Proposition 7. It may have stronger consequences with additional assumptions. For example, if we assume that the vector fields \(X_i \) depend on the nonlocal variables polynomially then, expanding these variables in formal series with respect to the deformation parameter \(\varepsilon \), we shall obtain an infinite-dimensional covering (genuine, not formal) over \(\mathcal{E} \).

Moreover, if the covering equation \(\tilde{\mathcal{E}}_\varepsilon \) is in the divergent form there is a hope to construct infinite number of conservation laws for \(\mathcal{E} \), similar to the classical construction applied to the Korteweg-de Vries equation using the Miura transform.

Acknowledgments

I am grateful to Artur Sergyeyev who asked the question which is, hopefully, answered in this paper. My thanks are also due to Alik Verbovetsky for criticism and fruitful discussions.
References

[1] A.V. Bocharov et al., Symmetries of Differential Equations in Mathematical Physics and Natural Sciences, edited by A.M. Vinogradov and I.S. Krasil’shchik). Factorial Publ. House, 1997 (in Russian). English translation: Amer. Math. Soc., 1999.

[2] S. Igonin, Coverings and fundamental algebras for partial differential equations, J. Geom. Phys., 56 (2006), 939–998.

[3] S. Igonin, Horizontal cohomology with coefficients and nonlinear zero-curvature representations, UMN, 58 (349) (2003) 1, 185–186 (in Russian).

[4] I.S. Krasil’shchik, Some new cohomological invariants of nonlinear differential equations, Differential Geometry and Its Appl., 2 (1992) no. 4.

[5] I.S. Krasil’shchik, V.V. Lychagin, A.M. Vinogradov, Geometry of Jet Spaces and Nonlinear Differential Equations, Advanced Studies in Contemporary Mathematics, 1 (1986), Gordon and Breach, New York, London. xx+441 pp.

[6] I.S. Krasil’shchik, A.M. Verbovetsky, Geometry of jet spaces and integrable systems, J. Geom. Phys., 61 (2011), 1633–1674.

[7] I. S. Krasil’shchik, A. M. Vinogradov, Nonlocal symmetries and the theory of coverings, an addendum to A. M. Vinogradov’s Local symmetries and conservation laws, Acta Appl. Math., 2 (1984) 1, 79–96.

[8] I.S. Krasil’shchik, A.M. Vinogradov, Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations, Acta Appl. Math., 15 (1989) 1-2, 161–209.

[9] M. Marvan, On zero curvature representations of partial differential equations, in: Differential Geometry and Its Applications, Proc. Conf. Opava, Czechoslovakia, Aug. 24–28, 1992, Math. Publ. 1 (Silesian University, Opava, 1993) 103–122.

[10] A.M. Vinogradov, Category of partial differential equations, Lecture Notes in Math., 1108 (1984), Springer-Verlag, Berlin, 77–102.

E-mail address: JOSEPHKRA@GMAIL.COM

SLEZSKÁ UNIVERZITA V OPAVĚ, MATEMATICKÝ ÚSTAV V OPAVĚ, NA RYBNÍČKU 626/1, 746 01 OPAVA, CZECH REPUBLIC

INDEPENDENT UNIVERSITY OF MOSCOW, 119002, B. VLASYEVSKIY PER. 11, MOSCOW, RUSSIA