In situ large-scale construction of sulfur-functionalized metal–organic framework and its efficient removal of Hg(II) from water†

Linfeng Liang,a,b,d Qihui Chen,a,c Feilong Jiang,a Daqiang Yuan,a,c Jinjie Qian,a Guangxun Lv,a Hui Xue,a,c Luyao Liu,a Hai-Long Jiangbd and Maochun Honga,c,d

A new strategy that uses sulfur-functionalized metal organic frameworks (MOFs) for removal of Hg(II) from water has been developed. This strategy is based around a novel sulfur-functionalized MOF FJI-H12, which is composed of octahedral M6L4 cages and free NCS⁻ groups. At the same time, large-scale synthesis of FJI-H12 microcrystals has also been carried out under very mild conditions. The resulting material can remove Hg(II) completely and selectively from water with high saturation, adsorption (439.8 mg g⁻¹) and distribution coefficient (1.85 × 10⁶ mL g⁻¹) relative to other MOFs. More interestingly, a continuous and fast removal of Hg(II) from water has also been carried out using a column loaded with FJI-H12 microcrystals.

Introduction

Mercury (Hg) pollution, which can cause birth defects, brain damage, and various other diseases in humans and animals, has become a serious threat to public health and the environment. Hence, the development of methods for its removal from waste water is highly urgent.⁶ A variety of adsorbents, such as activated carbons, zeolites and clays, have already been used for this purpose; however, such materials usually face challenges such as low surface area, low capacity, and moderate affinity for Hg(II).⁴ Metal–organic frameworks (MOFs), based on organic bridging ligands and metal ions or metal ion clusters, are a promising class of highly ordered, porous materials that have potential applications in gas storage, catalysis, and drug delivery, due to their unique properties such as permanent porosity and high crystallinity.³ Readily accessible external and internal surfaces and evenly distributed active sites through purposeful design make adsorption of heavy metal ions by MOFs possible.⁴ Methylthio groups were first introduced into MOFs to adsorb Hg(II) by Xu and coworkers.⁵ Many other functional groups have since been introduced to capture Hg(II) based on Hg–S interactions or Hg–N interactions. Sulfur-functionalized MOFs based on strong Hg–S interaction have proved particularly useful as sorbents for Hg(II).⁶

The synthesis of sulfur-functionalized MOFs using preconstructed sulfur-functionalized ligands is illustrated in Scheme 1a. While this can be a powerful strategy for Hg(II) removal, it usually requires expensive reagents or harsh reaction conditions.⁷ In situ introduction of sulfur-containing groups into MOFs based on coordination bonding might be an effective approach to overcome such challenges. The NCS⁻ group is an ideal candidate for this route; it could be introduced into the framework during MOFs construction by coordination of the chemically hard N atom to a hard metal ion, while the chemically soft S atom remains available for the capture of heavy metal ions such as Hg(II) (Scheme 1b). Although NCS⁻ has been

![Scheme 1](https://example.com/scheme1.png)

Scheme 1 (a) The construction of sulfur-functionalized MOFs based on predesigned sulfur-functionalized ligands. (b) In situ introduction of sulfur-containing groups into MOFs based on coordination bonds.

† Electronic supplementary information (ESI) available. CCDC 1474064. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6ta04927c
used to construct discrete metalallocages or MOFs,\(^*_6\) as far as we know, use of such material to capture \(\text{Hg}(\text{n})\) has not been reported. Herein, a novel sulfur-functionalized MOF \(\text{FJI-H12}\) was constructed using \(\text{NCS}^–\), \(\text{Co}(\text{n})\) and 2,4,6-tri(1-imidazolyl)-1,3,5-triazine (Timt). The components were arranged in infinite octahedral \(\text{M}_4\text{L}_4\) cages containing free \(\text{NCS}^–\) groups. As we expected, N atoms of \(\text{NCS}^–\) are coordinated to \(\text{Co}\) atoms, while the S atoms are free-standing. Moreover, large-scale synthesis of \(\text{FJI-H12}\) microcrystals has also been realized under very mild conditions. Further researches demonstrate that such a material can remove \(\text{Hg}(\text{n})\) from water completely and selectively. More interestingly, a continuous and fast removal of \(\text{Hg}(\text{n})\) from water has been realized using a column loaded with \(\text{FJI-H12}\) microcrystals.

Results and discussion

Syntheses and structures of \(\text{FJI-H12}\)

Layering an ethanol solution of Timt onto a water solution of \(\text{K}_2\text{Co(NCS)}_4\) at room temperature for three days leads to the formation of light pink octahedral single crystals (denoted as \(\text{FJI-H12}\)), formulated as \([\text{Co}_3(\text{Timt})_4(\text{SCN})_6(\text{H}_2\text{O})_{14}(\text{EtOH})]_n\) (for details, please refer to ESI S1†). Single crystal X-ray analysis reveals that \(\text{FJI-H12}\) has a two-fold penetration structure and each fold comprises an infinite array of octahedral \(\text{M}_4\text{L}_4\) cages, which are constructed by six \(\text{Co}(\text{n})\) vertexes and four Timt panels (Fig. 1a and b). Apart from four imidazole rings, each \(\text{Co}(\text{n})\) vertex of the \(\text{M}_4\text{L}_4\) cage also bonds to two \(\text{NCS}^–\) groups.

Metal ions selective adsorption test of \(\text{FJI-H12}\)

Although there is a two-fold penetration, \(\text{FJI-H12}\) is still highly porous and this can be confirmed by single component low-pressure gas adsorption test. \(\text{N}_2\) adsorption isotherms at 77.4 K revealed its microporous nature (Fig. S1†). The pore size distribution ranges from 6.8 Å to 14.9 Å (Fig. S2†), which is far larger than the \(\text{Hg}(\text{n})\) ion radius and obviously can guarantee the accessibility of free-standing S atoms for \(\text{Hg}(\text{n})\) adsorption. Before metal adsorption testing, the chemical stability in various reagents and the thermal stability of \(\text{FJI-H12}\) were investigated. We ultimately found that \(\text{FJI-H12}\) is stable in water and various organic solvents, such as acetone, methanol, isopropanol, cyclohexane and ethanol (Fig. S3†), and it is thermally stable up to 200 °C (Fig. S4†).

The metal selectivity tests were firstly performed on \(\text{FJI-H12}\) in a 50 mL \(\text{Hg}(\text{n})\) solution containing \(\text{Mn}(\text{n})\), \(\text{Ba}(\text{n})\), \(\text{Ni}(\text{n})\), and \(\text{Cd}(\text{n})\) background ions in high concentrations. Not only did \(\text{FJI-H12}\) completely remove \(\text{Hg}(\text{n})\) from the test sample, after which \(\text{Hg}(\text{n})\) was not detected by ICP, but it also absorbed another highly toxic heavy metal ion, \(\text{Cd}(\text{n})\). In contrast, other background metal ions, \(\text{Mn}(\text{n})\), \(\text{Ba}(\text{n})\) and \(\text{Ni}(\text{n})\), were not adsorbed by \(\text{FJI-H12}\) in a significant quantity (Table 1). The high selectivity of \(\text{FJI-H12}\) for \(\text{Hg}(\text{n})\) relative to the other metal ions such as \(\text{Cd}(\text{n})\), \(\text{Mn}(\text{n})\), \(\text{Ba}(\text{n})\), and \(\text{Ni}(\text{n})\) observed for \(\text{FJI-H12}\) may result from the strong Hg–S interactions, which have been demonstrated by FT-IR studies. As shown in Fig. 2, the typical stretch mode of \(\text{SCN}^–\)

![Image](image1.png)

Fig. 1 (a) The topological structure of \(\text{FJI-H12}\) with a two-fold penetration. (b) Stick model of one-fold network composed of \(\text{M}_4\text{L}_4\) cages (C = grey, N = light blue, S = yellow, Co = cyan and H was omitted for clarity). (c) Schematic of one \(\text{M}_4\text{L}_4\) cage with coordinated \(\text{NCS}^–\) groups.

shows a large shift from 2072 cm\(^{-1}\) to 2125 cm\(^{-1}\) in \(\text{FJI-H12–Hg}\) (the \(\text{FJI-H12}\) sample after Hg adsorption), indicating the strong binding interactions between Hg(n) and SCN\(^–\).

Hg(n) saturation adsorption amount of \(\text{FJI-H12}\)

To assess the mercury adsorption capacity of \(\text{FJI-H12}\), which is also an important aspect of a sorbent’s performance, an

Table 1	Concentrations (ppm) of metal ions before and after treatment of \(\text{FJI-H12}\)				
Metal ion	Before treatment	After treatmenta			
	\(\text{Hg}\)	\(\text{Cd}\)	\(\text{Ni}\)	\(\text{Ba}\)	\(\text{Mn}\)
Mn	20.45	84.82	128.89	107.71	126.68
Ba	-	58.53	128.82	106.77	126.24

* Treatment conditions: excess \(\text{FJI-H12}\) (200 mg) was added to 50 mL water solution of metal ions and stirred at room temperature for 12 hours. The concentration of each metal is determined before and after treatment by Inductively Coupled Plasma (ICP).b The real value is less than the limit of detection of ICP instrument (0.02 ppb).
activated sample of FJI-H12 (100 mg) and 50 mL aqueous HgCl₂ solution (397 mg HgCl₂, 4 equivalents) were stirred together at room temperature for 12 h. The solid was then isolated by centrifugation and further washed with ethanol/H₂O to remove residual HgCl₂ on the exterior of the FJI-H12 powder sample. The solid sample thus obtained was subjected to regular inductively coupled plasma (ICP) analysis. Testing determined the Hg/Co ratio to be 1.20/1, corresponding to a maximum metallic mercury adsorption capacity of 1.85 mg g⁻¹ (2.19 mmol g⁻¹), a value which is very high relative to other MOF materials (Table 2). Further researches over the pH range of 3.0 to 6.0 demonstrate that FJI-H12 shows its highest adsorption capacity at pH = 7; when the pH is increased from 3.0 to 6.0, the removal efficiency capacity is basically unchanged (Fig. S5†).

Hg(II) adsorption kinetics

Given the high Hg(II) saturation level of this material, another test that focuses on its kinetic character has been carried out as follows: an activated FJI-H12 sample (10 mg) was placed in a dilute aqueous solution (50 mL) of HgCl₂ (10 ppm). The residual Hg(II) concentration in the solution was determined at different intervals. Fig. 3a shows the fitting results of the experimental data for mercury adsorption on FJI-H12 by the pseudo-second-order kinetic model using the following equation:

\[
\frac{t}{q_t} = \frac{1}{k_2q_e^2} + \frac{t}{q_e}
\]

where \(q_t\) (mg g⁻¹) and \(q_e\) (mg g⁻¹) are the Hg(II) adsorption amounts at time \(t\) (min) and at equilibrium, respectively, and \(k_2\) (g mg⁻¹ min⁻¹) is the rate constant of pseudo-second order adsorption. An extremely high correlation coefficient (>0.9999) was obtained (Fig. 3b and the inset), suggesting that the pseudo-second-order model is suitable for describing the adsorption kinetics of this system. Furthermore, the calculated \(q_e\) value from the pseudo-second-order model is in good agreement with the experimental value, \(q_{e,exp}\) (Table S2†). Consequently, it is believed that mechanisms of both physiosorption and chemisorption are involved in the current Hg(II) adsorption process, although to different degrees. Specifically, the SCN⁻ groups in the pores hold the potential to coordinate with Hg(II) ions, and act as strong sites for Hg(II) chemisorptions.

The distribution coefficient \(K_d\) is always used to characterize a sorbent’s affinity for a target metal ion, which is defined as follows:

\[
K_d = \frac{(C_i - C_f)}{C_f} \times \frac{V}{m}
\]

where \(C_i\) and \(C_f\) are the initial metal ion concentration and the final equilibrium metal ion concentration, respectively, \(V\) (mL) is the volume of the treated solution and \(m\) (g) is the mass of sorbent used. \(K_d\) values of \(1.0 \times 10^5\) mL g⁻¹ are usually considered excellent;\(^7\) the \(K_d\) of FJI-H12 for Hg(II) is an exceptional \(1.85 \times 10^6\) mL g⁻¹. As far as we know, this value is among

Table 2 Comparison of maximum mercury adsorption capacity \(q_{max}\) (ppm) and \(K_d\) value (mL g⁻¹) of FJI-H12 with other MOFs materials

MOF	\(q_{max}\) mg g⁻¹	\(K_d\) mL g⁻¹	Ref.
Pb-TMBD	361.3\(^a\)	—	5
Zr-DMBD	198.2	9.99 \times 10^5	6e
Zn-bip	278	1.11 \times 10^6	6d
PCN-100	364.7\(^b\)	—	6a
PCN-101	103.9\(^b\)	—	6a
Zn₃O(L)₃	102.8\(^c\)	3.16 \times 10^5	6b
FJI-H12	439.8	1.86 \times 10^6	This work

\(a\) The adsorption of Hg(II) from benzene. \(^b\) The adsorption of Hg(II) from DMF. \(^c\) The adsorption of Hg(II) from ethanol and the rest were processed in water.
the highest for MOF materials for Hg(II) adsorption reported thus far (Table 2). This exceptional K_D value can be ascribed to the large pore size of FJI-H12, which facilitates the diffusion of Hg(II) ions, and its high surface area that is densely populated with SCN$^-$ groups, which have strong interactions with Hg(II) ions.

Regeneration of FJI-H12

Whether an adsorbent can be regenerated is also an important aspect of its usefulness. To this point, a KSCN solution was used to regenerate a FJI-H12–Hg sample. By immersing FJI-H12–Hg in the KSCN solution (10 equivalents) at ambient temperature for 1 day, over 86% of the Hg(II) ions could be removed from FJI-H12–Hg powder (ICP analysis determined the Hg/Co ratio drops from 1.20/1 to 0.17/1 during this process), while the framework of FJI-H12 remains stable (Fig. S6†). Reuse of the regenerated FJI-H12 sample under the same conditions resulted in the corresponding Hg/Co ratio being reduced to 0.86/1, indicating that the efficiency of FJI-H12 is highly reduced after regeneration.

Large-scale synthesis of FJI-H12 and continuous removal of Hg

Several excellent sorbents based on strong Hg–S interactions have been developed; however, large-scale preparation and application of such materials are still highly challenging. After many attempts, a protocol for large-scale preparation of FJI-H12 has been established as follows: a high concentration water solution (1 mol L$^{-1}$, 0.3 mL) of K$_2$Co(SCN)$_4$ was added to a vigorously stirred ethanol solution (0.02 mol L$^{-1}$, 20 mL) of Tint, immediately leading to the formation of a uniform microcrystalline powder of FJI-H12. Its purity has been confirmed by powder X-ray diffraction (PXRD) analysis (Fig. 4a). The median microcrystal grain size was determined by laser diffraction analysis to be $X_{50} = 2.1$ μm (Fig. S7†). Scanning electron microscopy measurements also confirmed the formation of relatively uniform octahedral crystallites on the scale of about 2 μm (Fig. S8†). Moreover, the observed crystalline morphology is in accordance with the large single crystal obtained by the solution diffusion method (Fig. 4b and the inset). Further researches indicated that up to 10 g FJI-H12 could be prepared by this method (Fig. S6f).

Since large-scale synthesis of FJI-H12 has been realized under very mild conditions, this makes possible the removal of Hg(II) from water on a large scale. A column for removal of Hg(II) from water was prepared by loading 2 g of FJI-H12 microcrystal powder into a 10 mL syringe equipped with a 0.22 μm Millipore filter (schematic in Fig. 4c). A 20 ppm Hg solution in 50 mL water could be completely purified by this column at a flow rate of 2 mL min$^{-1}$. This represents the first continuous and fast removal of Hg(II) from water based on sulfur-functionalized MOF. It also implies the practicality of such materials for the waste-water treatment in industry.

Conclusions

In conclusion, a novel sulfur-functionalized metal-organic framework FJI-H12 has been synthesized for the capture of Hg(II) from water. Moreover, its microcrystalline powder can be synthesized up to 10 g scale within several minutes under very mild condition. Such material can remove Hg(II) completely and selectively from water with high saturation (439.8 mg g$^{-1}$) and distribution coefficient (1.85 × 106 mL g$^{-1}$) as compared to other MOF materials. More interestingly, a continuous and fast removal of Hg(II) from water has also been carried out using a column loaded with FJI-H12 microcrystalline powder. Thus, in situ construction of sulfur-functionalized MOF based on the SCN$^-$ group provides a new perspective for decontaminating Hg(II) from aqueous media and makes both large-scale synthesis and application of sulfur-functionalized MOF for Hg(II) capture more practical.

Acknowledgements

We are thankful for financial support from the 973 Program (2014CB932101, 2013CB933200), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA09030102, XDA07070200), and the National Natural Science Foundation of China (21471148, 21131006).

Notes and references

1 (a) N. Lubick and D. Malakoff, *Science*, 2013, 341, 1443–1445; (b) M. McNutt, *Science*, 2013, 341, 1430; (c) C. Wang, S. Tao, W. Wei, C. Meng, F. Liu and M. Han, *J. Mater. Chem.*, 2010, 20, 4635–4641.

2 (a) U. Wingenfelder, C. Hansen, G. Furrer and R. Schulin, *Environ. Sci. Technol.*, 2005, 39, 4606–4613; (b)
3 (a) B. Li, M. Chrzanowski, Y. Zhang and S. Ma, Coord. Chem. Rev., 2016, 307, 106–129, part 2; (b) L. Ma, C. Abney and W. Lin, Chem. Soc. Rev., 2009, 38, 1248–1256; (c) J.-P. Zhang, Y.-B. Zhang, J.-B. Lin and X.-M. Chen, Chem. Rev., 2012, 112, 1001–1033; (d) Y. Cui, Y. Yue, G. Qian and B. Chen, Chem. Rev., 2012, 112, 1126–1162; (e) D. Zhao, D. J. Timmons, D. Yuan and H.-C. Zhou, Acc. Chem. Res., 2011, 44, 123–133; (f) P. Silva, S. M. F. Vilela, J. P. C. Tome and F. A. Almeida Paz, Chem. Soc. Rev., 2015, 44, 6774–6803; (g) Q. Yang, D. Liu, C. Zhong and J.-R. Li, Chem. Rev., 2013, 113, 8261–8323; (h) S. M. Cohen, Chem. Rev., 2012, 112, 970–1000; (i) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450–1459; (j) P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Fèrey, R. E. Morris and C. Serre, Chem. Rev., 2012, 112, 1232–1268; (k) R. C. Huxford, J. Della Rocca and W. Lin, Curr. Opin. Chem. Biol., 2010, 14, 262–268; (l) M. Eddaoudi, D. F. Sava, J. F. Eubank, K. Adil and V. Guillerm, Chem. Soc. Rev., 2015, 44, 228–249; (m) J. J. I. V. Perry, J. A. Perman and M. J. Zaworotko, Chem. Soc. Rev., 2009, 38, 1400–1417; (n) M. O’Keeffe and O. M. Yaghi, Chem. Rev., 2012, 112, 675–702; (o) M. P. Suh, H. J. Park, T. K. Prasad and D.-W. Lim, Chem. Rev., 2012, 112, 782–835; (p) H. Wu, Q. Gong, D. H. Olson and J. Li, Chem. Rev., 2012, 112, 836–866; (q) T. Uemura, N. Yanai and S. Kitagawa, Chem. Soc. Rev., 2009, 38, 1228–1233; (r) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev., 2012, 112, 724–781; (s) A. Dhakshinamoorthy, A. M. Asiri and H. Garcia, Chem. Soc. Rev., 2015, 44, 1922–1947; (t) Y. Yan, S. Yang, A. J. Blake and M. Schroeder, Acc. Chem. Res., 2014, 47, 296–307; (u) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev., 2012, 112, 724–781; (v) S. S. Han, J. L. Mendoza-Cortes and W. A. Goddard III, Chem. Soc. Rev., 2009, 38, 1460–1476.

4 (a) M. Carboni, C. W. Abney, S. Liu and W. Lin, Chem. Sci., 2013, 4, 2396–2402; (b) J. Cui, Y. L. Wong, M. Zeller, A. D. Hunter and Z. Xu, Angew. Chem., Int. Ed., 2014, 53, 14438–14442; (c) J. He, M. Zha, J. Cui, M. Zeller, A. D. Hunter, S.-M. Yiu, S.-T. Lee and Z. Xu, J. Am. Chem. Soc., 2013, 135, 7807–7810; (d) M. Zha, J. Liu, Y.-L. Wong and Z. Xu, J. Mater. Chem. A, 2015, 3, 3928–3934; (e) Y. Wang, G. Ye, H. Chen, X. Hu, Z. Niu and S. Ma, J. Mater. Chem. A, 2015, 3, 15292–15298; (f) Y. Wang, Z. Liu, Y. Li, Z. Bai, W. Liu, Y. Wang, X. Xu, C. Xiao, D. Sheng, J. Diwu, J. Su, Z. Chai, T. E. Albrecht-Schmitt and S. Wang, J. Am. Chem. Soc., 2015, 137, 6144–6147; (g) X. Meng, R.-L. Zhong, X.-Z. Song, S.-Y. Song, Z.-M. Hao, M. Zhu, S.-N. Zhao and H.-J. Zhang, Chem. Commun., 2014, 50, 6406–6408; (h) H. Xue, Q. Chen, F. Jiang, D. Yuan, G. Lv, L. Liang, L. Liu and M. Hong, Chem. Sci., 2016, 7, 5983–5988.

5 X. P. Zhou, Z. Xu, M. Zeller and A. D. Hunter, Chem. Commun., 2009, 5439–5441.

6 (a) R. F. Gang, D. Q. Yuan, J. Sculley, J. R. Li, Z. B. Han and H. C. Zhou, Inorg. Chem., 2010, 49, 11637–11642; (b) J. He, K.-K. Yee, Z. Xu, M. Zeller, A. D. Hunter, S. S.-Y. Chui and C.-M. Che, Chem. Mater., 2011, 23, 2940–2947; (c) T. Liu, J. X. Che, Y. Z. Hu, X. W. Dong, X. Y. Liu and C. M. Che, Chem.–Eur. J., 2014, 20, 14090–14095; (d) F. Luo, J. L. Chen, L. L. Dang, W. N. Zhou, H. L. Lin, J. Q. Li, S. J. Liu and M. B. Luo, J. Mater. Chem. A, 2015, 3, 9616–9620; (e) K. K. Yee, N. Reimer, J. Liu, S. Y. Cheng, S. M. Yiu, J. Weber, N. Stock and Z. Xu, J. Am. Chem. Soc., 2013, 135, 7795–7798.

7 S. V. Ley and A. W. Thomas, Angew. Chem., Int. Ed., 2003, 42, 5400–5449; (b) T. Kondo and T.-A. Mitsudo, Chem. Rev., 2000, 100, 3205–3220; (c) L. Vial, R. F. Ludlow, J. Leclaire, R. Pérez-Fernández and S. Otto, J. Am. Chem. Soc., 2006, 128, 10253–10257.

8 (a) M. B. Duriska, S. M. Neville, J. Lu, S. S. Iremonger, J. F. Boas, C. J. Kepert and S. R. Batten, Angew. Chem., Int. Ed., 2009, 48, 8919–8922; (b) S. M. Neville, B. Moubaraki, K. S. Murray and C. J. Kepert, Angew. Chem., Int. Ed., 2007, 46, 2059–2062; (c) Y. Inokuma, T. Arai and M. Fujita, Nat. Chem., 2010, 2, 780–783.

9 Y. Shin, G. E. Fryxell, W. Um, K. Parker, S. V. Mattigod and R. Skaggs, Adv. Funct. Mater., 2007, 17, 2897–2901.

10 S.-Y. Ding, M. Dong, Y.-W. Wang, Y.-T. Chen, H.-Z. Wang, C.-Y. Su and W. Wang, J. Am. Chem. Soc., 2016, 138, 3031–3037; (b) B. Li, Y. Zhang, D. Ma, Z. Shi and S. Ma, Chem. Commun., 2014, 5, 5537.