Abstract

The importance of sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) in inflammation has been extensively demonstrated. As an intracellular second messenger, S1P plays an important role in calcium signaling and mobilization, and cell proliferation and survival. Activation of various plasma membrane receptors, such as the formyl methionyl leucyl phenylalanine receptor, C5a receptor, and tumor necrosis factor \(\alpha \) receptor, leads to a rapid increase in intracellular S1P level via SphK stimulation. SphK and S1P are implicated in various chronic autoimmune conditions such as rheumatoid arthritis, primary Sjögren's syndrome, and inflammatory bowel disease. Recent studies have demonstrated the important role of SphK and S1P in the development of arthritis by regulating the pro-inflammatory responses. These novel pathways represent exciting potential therapeutic targets.

© 2010 Baishideng. All rights reserved.

Key words: Cytokines; Inflammation; Rheumatoid arthritis; Sphingosine kinase; Sphingosine-1-phosphate
Bioactive lysophospholipid, S1P, is a unique signaling molecule that has the ability to act as an intracellular second messenger, as well as an extracellular stimulus through specific G-protein coupled receptors\(^5\)\(^6\)\(^7\). To date, five S1P receptors, S1PR\(_1\)\(^8\)-\(^13\), which belong to the endothelial-differentiating gene family, have been discovered. Binding of S1P to these receptors triggers a wide range of cellular responses including proliferation, enhanced extracellular matrix assembly, stimulation of adherent junctions, formation of actin stress fibers, and inhibition of apoptosis\(^11\)-\(^15\). These receptors mediate their diverse cellular functions through differential coupling to various heterotrimeric G-proteins and through heterogeneity in their expression patterns\(^5\). S1P has also been proposed to play an intracellular role as a second messenger after observations that stimulation of various plasma membrane receptors, such as the platelet-derived growth factor receptor\(^17\)-\(^21\), FcγR I and FcεR I antigen receptors\(^19\)-\(^21\), the formyl methionyl leucyl phenylalanine receptor\(^22\), the C5a receptor\(^23\)-\(^24\), and tumor necrosis factor receptor\(_\text{TNF-}\alpha\) receptor\(^25\) trigger rapid production of S1P through SphK activation. Moreover, inhibition of SphK strongly reduced cellular events triggered by these receptors, such as receptor-triggered DNA synthesis, calcium mobilization and vesicular trafficking\(^17\)-\(^21\).

RHEUMATOID ARTHRITIS

Rheumatoid arthritis (RA) is a chronic and symmetric polyarthritis with a prevalence of 1% in the industrialized world. RA is characterized by chronic inflammatory infiltration of the synovial membrane, which is associated with the destruction of cartilage and underlying bone. In particular, within inflamed RA synovial membrane, the levels of pro-inflammatory cytokines (TNF-α, interleukin (IL)-1β, IL-6, IL-15 and IL-17) exceed those of anti-inflammatory agents, and this probably contributes directly to cartilage and bone erosion through promoting matrix metalloproteinase (MMP) production and dysregulated chondrocyte/osteoclast function\(^26\)-\(^28\).

SphK/S1P SIGNALING AND CHEMOTAXIS IN RA

S1P plays a crucial role in homing of immune cells to lymphoid organs, and in controlling their egress into the blood and lymph. An important factor that drives such egression is the S1P gradient that exists between the tissues (which have low S1P levels) and the blood/lymph (which have high S1P levels). One of the five S1P receptors, S1P\(_1\), has been shown to be involved in the egression of B and T cells from the peripheral lymphoid organs\(^29\), and for the exit of mature T cells from the thymus\(^30\). Furthermore, it has been shown that S1P plays a central role in leukocyte chemotaxis in purified human peripheral blood neutrophils, eosinophils, monocytes and macrophages\(^32\)-\(^36\). We have found that the concentration of S1P in synovial fluids from patients with RA is significantly higher than that from those with osteoarthritis, a degenerative joint disease. This increase in S1P level due to the chronic inflammation in RA could be responsible for the recruitment and retention of the immune infiltrates in the synovium\(^31\). Indeed, in a murine collagen-induced arthritis (CIA) model, we demonstrated that, by inhibiting SphK activity using a pharmacological inhibitor, N, N-dimethylsphingosine (DMS), adjacent cartilage and bone erosion, synovial hyperplasia, and inflammatory infiltration into the joint compartment, were clearly markedly suppressed as compared to the control group that received PBS. A similar result was observed using the siRNA approach to knockdown SphK1 isoform, whereby serum S1P level is lowered and joint pathologies reduced\(^31\).

SphK/S1P AND AUTOIMMUNE B CELLS

Mature plasma cells that secrete autoantibodies\(^32\) are a prominent cellular component of rheumatoid synovium. The classical autoantibody associated with RA is rheumatoid factor (RF), which is an antibody directed against the Fc portion of IgG. However, RF can be detected in other rheumatic diseases, infectious diseases, and even in 3%-5% of apparently healthy individuals. The current diagnostic marker used in the clinics now is the anti-ccp antibody correlates with a more erosive disease\(^34\). In addition to the classical role of autoantibody production, it is now clear that B cells play a pivotal role in activation of synovial T cells in the synovial tissue\(^35\). The importance of B cells in RA is supported by the moderate success of targeting CD20+ B cells with the chimeric monoclonal anti-CD20 antibody, rituximab\(^36\). It is of interest that B-cell lines derived from RA patients are uniquely resistant to Fas-mediated apoptosis, in part, due to overactivity of SphK1, and overproduction of S1P, which can inhibit apoptosis and regulate lymphoid migratory pathways\(^37\). A follow-up study by the same group has shown that the Fas death signaling aberration in RA lymphoblastoid B-cell lines is caused by extracellular S1P, which triggers phosphoinositide-3-kinase-dependent SphK overactivity through a GI protein-coupled receptor-mediated signaling cascade\(^38\). In addition, FTY720-phosphate, which binds to S1P receptors, causes rapid disappearance of peritoneal B cells by inhibiting their emigration from parathymic lymph nodes, and reduced peritoneal B-cell-derived intestinal secretory IgA production\(^39\). In our study using the CIA model, we also have found that the production of anti-collagen IgG2a is lower in the serum of mice administered DMS and SphK1 siRNA\(^31\). Together, this suggests that S1P plays an important role in regulating B-cell survival, trafficking and antibody production.

SphK/S1P AND SYNOVIAL FIBROBLASTS

The high proliferative rate and erosive activity of RA fibroblast-like synoviocytes (FLSs) implicate FLSs as im-

Lai WQ et al. SphK/S1P in rheumatoid arthritis
portant contributors to chronic RA inflammation. In inflammatory arthritis, the FLSs become hyperplastic and they closely interact with invading immune cells to form the aggressive pannus tissue that invades and degrades the cartilage and bone. Activated T lymphocytes in the synovium drive FLS activation via production of soluble mediators or direct cell-cell contact. These activated FLSs then become potent producers of various effector molecules that act on a variety of cells (lymphocytes, monocytes, mesenchymal cells) to modulate joint inflammation and promote matrix degradation.

Elevated SphK1, S1P and S1P levels have been detected in RA synovium, and S1P signaling via S1P receptors has been found to promote synoviocyte proliferation, inflammatory cytokine-induced cyclooxygenase-2 expression and prostaglandin E2 production. In human RA, FLSs have been shown to express S1P1, S1P2 and S1P3 receptors. Moreover, exogenously applied S1P induces FLS migration, secretion of inflammatory cytokines/chemokines, and protection from apoptosis. Signaling via S1P1 has been shown to be essential for survival, whereas signaling via S1P3 stimulates FLS migration, and activation of S1P1/S1P3 enhances IL-6 and IL-8 secretion. The effects of S1P on FLSs are further amplified by addition of TNF-α, which suggests that the cytokine-rich environment of the inflamed synovium synergizes with S1P signaling to exacerbate the clinical manifestations of RA. More recently, SphK2 has been shown to be strongly expressed in rheumatoid synovial fibroblasts. In contrast to SphK1, which is normally found in the cytosol, SphK2 expression is found in and around the nuclei. Furthermore, SphK2 is responsible for FTY720-mediated apoptosis in the synovial fibroblasts, which suggests that it regulates autonomous proliferation of synovial fibroblasts.

SphK/S1P AND OSTEOCLASTS

S1P has also been shown to induce chemotaxis and regulate migration of osteoclast precursors in culture and in vivo. Cells with the properties of osteoclast precursors express functional S1P1 receptors and exhibit positive chemotaxis along an S1P gradient in vitro. Osteoclast/monocyte lineage-specific conditional S1P1 knockout mice show osteoporotic changes due to increased osteoclast attachment to the bone surface, because these osteoclast precursors are unable to recirculate from bone tissues to systemic blood flow. Treatment with FTY720 ameliorates bone loss in a murine model of postmenopausal osteoporosis by promoting the recirculation of osteoclast precursor monocytes from the bone surface. Furthermore, SphK activity and S1P signaling can drive the production pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6, which stimulate osteoclastogenesis and drive bone resorption.

INTERACTIONS OF S1P AND TH17 CELLS

Th17 recently has been designated as a unique subset of CD4 T cells that are characterized by production of IL-17. IL-17 has been suggested to be an important cytokine in the pathogenesis of inflammatory and autoimmune disease in animals and humans. It has been shown that the key to Th17 differentiation in mice is the combination of transforming growth factor (TGF)-β and IL-6, and expands up to full potential in the presence of IL-23. In contrast, IL-17 is the most effective inducer of IL-17 expression in human naive T cells. IL-6 and IL-23 induce a small amount of IL-17 alone and greatly enhance Th17 differentiation in the presence of IL-17.

It has been reported recently in the murine model that S1P has the same potential as IL-23 in vitro to increase proliferation and IL-17-secreting activity of T-cell receptor-activated CD4+ T cells grown in the presence of IL-1β, IL-6 and TGF-β. The differentiation into Th17 cells that is induced by S1P occurs with corresponding suppression of Th1 and Th2 cytokine production, interferon (IFN)-γ or IL-4, respectively. Furthermore, the introduction of FTY720 into cultures of Th17 cells that develop under the influence of S1P substantially suppresses generation of IL-17.

ROLE SphK/S1P IN CELL-CONTACT-MEDIATED PRO-INFLAMMATORY CYTOKINE PRODUCTION

Studies pioneered by Dayer and colleagues, as well as work from several other laboratories, have demonstrated that direct contact with stimulated T lymphocytes is a potent pro-inflammatory mechanism that triggers massive upregulation of cytokines such as TNF-α, IL-1β, IL-6, as well as, metalloproteinases from human macrophages. In chronic inflammatory diseases such as RA, the synovium is very cellular and several different cell types, including T lymphocytes and macrophages lie in close proximity to one another, which allows reciprocal cellular crosstalk. McKinnis et al. have demonstrated that freshly isolated, paraformaldehyde-fixed T lymphocytes from the synovial fluid might induce TNF-α production directly by blood or synovial macrophages, via direct cell-to-cell contact without additional exogenous stimulation. This effect is enhanced when the T cells are activated with cytokines such as IL-15. In another study by Brennan et al., cytokine-stimulated T-cells or T cells isolated from RA synovial tissue displayed the ability to induced TNF-α production in normal blood monocytes via the nuclear factor-kB pathways.

In our in vitro study, we found that cell-contact induced production of inflammatory cytokines, such as TNF-α, IL-1β, IL-6 and proteinase MPP-9, is dependent on SphK activity. Jurkat T cells activated with phytohemagglutinin/phorbol myristate acetate induce substantial production of TNF-α, IL-1β, IL-6, and MCP-1 by U937 monocyctic cells, and such cytokine synthesis is markedly reduced when the cells are treated with DMS. To validate the results obtained using human cell lines, peripheral blood mononuclear cells from RA patients have been used in identical cell contact experiments. Likewise, activated peripheral T lymphocytes from RA patients induced sub-
stantial production of TNF-α, IL-1β, IL-6, and monocyte chemotactic protein-1 by autologous peripheral mononuclear cells, and DMS treatment significantly suppressed production of these cytokines\[31\]. Overproduction of MMP-9 has been observed in the synovial fluid of RA patients. MMP-9 from macrophages and neutrophils is thought to play a key role in migration of these cells during inflammation in RA\[40\] and erosion of the cartilage matrix. We found that MMP-9 production by monocytes is also induced by T cell contact, and that this production is significantly suppressed when SphK activity is inhibited\[80\]. These results demonstrate the importance of SphK/S1P signaling in cell-contact-induced inflammatory mediators, which is relevant to RA pathogenesis.

THE DISTINCT ROLES OF SphK1 VS SphK2 IN INFLAMMATORY ARTHRITIS

To date, two mammalian SphKs have been cloned, sequenced and characterized. These kinases are encoded by two genes, SphK1\[4,69,70\], and SphK2\[4,69,70\]. Human SphK1 localizes to chromosome 17 (17q25.2), whereas SphK2 maps to chromosome 19 (19q13.2). Although the two mammalian isoforms possess five evolutionarily conserved domains that are found in all SphKs and are highly similar in amino acid sequence, they differ in kinetic properties and in temporal and spatial distribution, which implies that they have distinct physiological functions.

Using the CIA model, we found that knocking down SphK1 via the siRNA approach resulted in significantly reduced joint pathology and subsequent pro-inflammatory responses\[26,28\]. This suggests that SphK modulation possess inhibitory action on inflammatory cell infiltration into the joints, and subsequent synovium hyperplasia and erosion. Moreover, mice that receive SphK1 siRNA have significantly reduced serum levels of pro-inflammatory IL-6, TNF-α, and IFN-γ, as well as in vitro production of these pro-inflammatory cytokines in response to collagen. In contrast, downregulation of SphK2 results in increased disease activity and pro-inflammatory responses. SphK2 siRNA-treated mice exhibit increased joint pathology as compared to control and SphK1 siRNA treatment groups. These mice are also associated with higher serum levels of pro-inflammatory IL-6, TNF-α and IFN-γ, and higher production of such cytokines in response to collagen in vitro. In addition, we have found that at day 27 prior to development of arthritis, SphK2 siRNA treatment can potentially polarize in vitro T-cell anti-collagen responses in a pro-inflammatory manner, and is unlikely to be associated with changes in the concentration of serum S1P[84]. Furthermore, a recent study has shown that SphK2 is highly expressed in rheumatoid synovial fibroblasts and is responsible for FTY720-mediated apoptosis in these cells\[83\].

THERAPEUTIC IMPLICATIONS

Despite many years of intensive research, neither the initiating events nor the perpetuating factors in the pathogenesis of RA are clearly understood. Most of the current knowledge about the inflammatory process and cellular infiltration in the rheumatoid joint comes from the study of synovium in established, rather than early, disease. To date, the gold standard for treating RA is the disease-modifying anti-rheumatic drugs, with methotrexate being the most widely used\[72\], although the clinical success of anti-TNF-α therapy suggests that targeting the cytokine network can be of immense benefit. The cytokine network is vast and complicated, with each cytokine linked to another in distinct and/or overlapping manners\[26-28\]. Hence, targeting one specific cytokine might not be enough to efficiently control, much less ameliorate the disease in the long term.

SphKs and S1P signaling appears to play an important role in modulating RA pathogenesis. The SphK1 pathway is activated and appears to play a similar pro-inflammatory role in a mouse model of inflammatory arthritis. More fascinating is the fact that blockade of SphK1 activity simultaneously reduces several antigen-specific inflammatory responses such as pro-inflammatory cytokines and anti-collagen antibody production, and inflammatory infiltration into the synovium, yet does not compromise global immunity. On the contrary, SphK2 plays a protective role in inflammatory arthritis. Therefore, selective targeting and/or dual-targeting of the two SphK isoforms might be required to modulate effectively the sphingolipid metabolic pathway in such a way that it becomes therapeutic in chronic inflammatory arthritis.

REFERENCES

1. Merrill AH Jr, Schmelz EM, Dillehay DL, Spiegel S, Shayman JA, Schroeder JJ, Riley RT, Voss KA, Wang E. Sphingolipid metabolites-the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 1997; 142: 208-225
2. Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 1994; 269: 3125-3128
3. Melendez AJ. Sphingosine kinase signalling in immune cells: potential as novel therapeutic targets. Biochem Biophys Acta 2008; 1784: 66-75
4. K honda T, Oliveira A, Edsal L, Nagiec MM, Dickson R, Spiegel S. Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem 1998; 273: 23722-23728
5. Pyne S, Pyne NJ. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 2000; 349: 385-402
6. Spiegel S, Milstien S. Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 2002; 277: 25851-25854
7. Van Broecklyn JR, Lee MJ, Menzeleeve R, Oliveira A, Edsal L, Cuvillier O, Thomas DM, Coopman PJ, Thiagada S, Liu CH, Hla T, Spiegel S. Dual actions of sphingosine-1-phosphate extracellularly through the G(i)-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol 1998; 142: 229-240
8. Goetzl EJ. An S. Diversity of cellular receptors and functions for the lysosphospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J 1998; 12: 1589-1598
9. Hla T, Lee MJ, Ancollin N, Paik JH, Kluk MJ. Lysosphospholipid-receptor activations. Science 2001; 294: 1875-1878
10. Kon J, Sato K, Watanabe T, Tomura H, Kuwabara A, Kimura T, Tamama K, Ishizuka T, Murata N, Kanda T, Kobayashi I, Ohta H, Ui M, Okajima F. Comparison of intrinsic activities of the putative sphingosine 1-phosphate receptor subject to...
types to regulate several signaling pathways in their cDNA-transfected Chinese hamster ovary cells. J Biol Chem 1999; 274: 25940-25947

11 Van Brocklyn JR, Behbhani A, Lee NH. Homodimerization and heterodimerization of S1P/EDG sphingosine-1-phosphate receptors. Biochim Biophys Acta 2002; 1582: 89-93

12 Cuviillier O, Piriéanov G, Kleuser B, Vaneck PG, Coso OA, Gutkind S, Spiegel S. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 1996; 381: 800-803

13 Lee MJ, Thangada S, Caffeey KP, Ancelin N, Liu CH, Kluk M, Völpi M, Shafi RI, Hla T. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 1999; 99: 301-312

14 Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzelev R, Spiegel S, Hla T. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 1998; 279: 1552-1555

15 Zhang Q, Peyruchaud O, French KJ, Magnusson MK, Mosher DF. Sphingosine-1-phosphate stimulates fibroblast matrix assembly through a Rho-dependent signal pathway. Blood 1999; 93: 2984-2990

16 Sanchez T, Hla T. Structural and functional characteristics of S1P receptors. J Cell Biochem 2004; 92: 913-922

17 Bornfeldt KE, Graves LM, Raines EW, Igarashi Y, Wayman G, Yamamura S, Yatomi Y, Sidhu JS, Krebs EG, Hakomori S. Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction. J Cell Biol 1995; 130: 193-206

18 Olivera A, Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 1995; 365: 557-560

19 Choi OH, Kim JH, Kinet JP. Calcium mobilization via sphingosine kinase in signaling by the Fc epsilon RI antigen receptor. Nature 1996; 380: 654-658

20 Melendez A, Flore RA, Gillooly DJ, Hamett MM, Allen JM. FcgammaRI coupling to phospholipase D initiates sphingosine kinase-mediated calcium mobilization and vesicular trafficking. J Biol Chem 1998; 273: 9393-9402

21 Melendez AJ, Khaw AK. Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J Biol Chem 2002; 277: 17255-17262

22 Alemayehu R, Meyer zu Heringdorf D, van Koppen CJ, Jakobs KH. Formyl peptide receptor signaling in HL-60 cells may involve sphingosine kinase. J Biol Chem 1999; 274: 3944-3949

23 Ibrahim BF, Pang SJ, Melendez AJ. Anaphylatoxin signaling in human neutrophils. A key role for sphingosine kinase. J Biol Chem 2004; 279: 44802-44811

24 Melendez AJ, Ibrahim BF. Antisense knockdown of sphingosine kinase 1 in human macrophages inhibits C5a receptor-dependent signal transduction, Ca2+ signals, enzyme release, cytokine production, and chemotaxis. J Immunol 2004; 173: 1596-1603

25 Zhi L, Leung BP, Melendez AJ. Sphingosine kinase 1 regulates pro-inflammatory responses triggered by TNFalpha in primary human monocytes. J Cell Physiol 2006; 208: 109-115

26 Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Ann Rev Immunol 1996; 14: 397-440

27 McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 2007; 7: 429-442

28 Brennan FM, McInnes IB. Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest 2008; 118: 3537-3545

29 Mattiloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004; 427: 355-360

30 Allende ML, Dreier JL, Mandala S, Proia RL. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J Biol Chem 2004; 279: 15396-15401

31 Lai WQ, Irwan AW, Goh HH, Howe HS, Yu DT, Valle-Otate R, McInnes IB, Melendez AJ, Leung BP. Anti-inflammatory effects of sphingosine kinase modulation in inflammatory arthritis. J Immunol 2008; 181: 8010-8017

32 Steiner G, Smolen J. Autoantibodies in rheumatoid arthritis and their clinical significance. Arthritis Res 2002; 4 Suppl 2: S1-S5

33 Rantapää-Dahlqvist S, de Jong BA, Berglin E, Hallmans G, Wedell G, Stenlund H, Sundin U, van Venrooij WJ. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 2003; 48: 2741-2749

34 Meyer O, Labarre C, Dougados M, Goupille P, Cantagrel A, Dubois A, Nicoise-Roland P, Sibilia J, Combe B. Anticitrullinated protein/peptide antibody assays in early rheumatoid arthritis for predicting five year radiographic damage. Ann Rheum Dis 2003; 62: 120-126

35 Takeamura S, Klimiuk PA, Braun A, Goronzky JJ, Weyand CM. T cell activation in rheumatoid synovium is B cell dependent. J Immunol 2001; 167: 4710-4718

36 Tsokos GC, B cells, be gone—B-cell deletion in the treatment of rheumatoid arthritis. N Engl J Med 2004; 350: 2546-2548

37 Pi X, Tan SY, Hayes M, Xiao L, Shayman JA, Ling S, Holośliz J. Sphingosine kinase 1-mediated inhibition of Fas death signaling in rheumatoid arthritis B lymphoblastoid cells. Arthritis Rheum 2006; 54: 754-764

38 Tan SY, Xiao L, Holośliz J. Aberrant GI protein coupled receptor-mediated cell survival signaling in rheumatoid arthritis B cell lines. Front Biosci 2007; 12: 1651-1660

39 Kunisawa J, Kurashima Y, Gohda M, Higuchi M, Ishikawa I, Miura F, Oghara I, Kiyoyno H. Sphingosine 1-phosphate regulates peritoneal B-cell trafficking for subsequent intestinal IgA production. Blood 2007; 109: 3749-3756

40 Lai WQ, Irwan AW, Goh HH, Melendez AJ, Leung BP. Distinct roles of sphingosine kinase 1 and 2 in murine collagen-induced arthritis. J Immunol 2009; 183: 2107-2113

41 Qu Z, Garcia CH, O’Rourke LM, Planck SR, Kohli M, Rosenbaum JT. Local proliferation of fibroblast-like synoviocytes contributes to synovial hyperplasia. Results of proliferating cell nuclear antigen/cyclin, c-myc, and nuclear organizer region staining. Arthritis Rheum 1994; 37: 212-220

42 McInnes IB, Leung BP, Liew FY. Cell-cell interactions in synovitis. Interactions between T lymphocytes and synovial cells. Arthritis Res 2000; 2: 374-378

43 Miranda-Carús ME, Balsa A, Benito-Miguel M, Pérez de Ayala C, Martín-Mola E. IL-15 and the initiation of cell contact-dependent synovial fibroblast-T lymphocyte cross-talk in rheumatoid arthritis: effect of metrotexate. J Immunol 2004; 173: 1463-1476

44 Rithchin C. Fibroblast biology. Effector signals released by the synovial fibroblast in arthritis. Arthritis Res 2000; 2: 356-360

45 Kitano M, Hla T, Sekiguchi M, Kawaihto Y, Yoshimura R, Miyazawa K, Iwasaki T, Sanó H, Sada JB, Tam YY. Sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 signaling in rheumatoid synovium: regulation of synovial proliferation and inflammatory gene expression. Arthritis Rheum 2006; 54: 742-753

46 Zhao C, Fernandez MJ, Toronec M, Tanncrede S, Di Battista J, Poubelle PE, Bourgoin SG. Specific and overlapping sphingosine-1-phosphate receptor functions in human synoviocytes: impact of TNF-alpha. J Lipid Res 2008; 49: 2323-2337

47 Kamada K, Arita N, Tsuchi T, Takubo N, Fujino T, Soga Y, Miyazaki T, Yamamoto H, Nose M. Expression of sphingosine kinase 2 in synovial fibroblasts of rheumatoid arthritis contributing to apoptosis by a sphingosine analogue, FTY720. Pdothol Int 2009; 59: 382-389

48 Ishii M, Egen JG, Klauschen F, Meier-Schellersheim M, Saeki Y, Vacher J, Proia RL, Germain RN. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 2009; 459: 524-528
Lai WQ et al. SphK/S1P in rheumatoid arthritis

49 Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6: 1123-1132

50 Park H, Li Z, Yang XQ, Chang SH, Nurieva R, Wang YH, Wang Y, Hou L, Zhu Z, Tian Q, Dong C. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6: 1133-1141

51 Awasthi A, Murugaiyan G, Kuchroo VK. Interplay between effector Th17 and regulatory T cells. J Clin Immunol 2008; 28: 660-670

52 Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441: 231-234

53 Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT. Transforming growth factor-beta induces development of the Th17 lineage. Nature 2006; 441: 179-189

54 Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24: 179-189

55 Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006; 24: 677-688

56 McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23/IL-17 immune pathway. Trends Immunol 2006; 27: 17-23

57 Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Salustro F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8: 942-949

58 Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, Leconon JC, Kastelein RA, Cua DJ, McClanahan TK, Bowman EP, de Waal Malefyt R. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007; 8: 950-957

59 Huang MC, Watson SR, Liao JJ, Goetzl EJ. Th17 augmentation in OTII TCR plus T cell-selective type 1 sphingosine 1-phosphate receptor double transgenic mice. J Immunol 2007; 178: 6806-6813

60 Liao JJ, Huang MC, Goetzl EJ. Cutting edge: Alternative signaling of Th17 cells by sphingosine 1-phosphate. J Immunol 2007; 178: 5425-5428

61 Burger D, Molnarfi N, Gruaz L, Dayer JM. Differential induction of IL-1beta and TNF by CD40 ligand or cellular contact with stimulated T cells depends on the maturation stage of human monocytes. J Immunol 2004; 173: 1292-1297

62 Jungo F, Dayer JM, Modoux C, Hyka N, Burger D. IFN-beta inhibits the ability of T lymphocytes to induce TNF-alpha and IL-1beta production in monocytes upon direct cell-cell contact. Cytokine 2001; 14: 272-282

63 Li JM, Isler P, Dayer JM, Burger D. Contact-dependent stimulation of monocytes and neutrophils by stimulated human T-cell clones. Immunology 1995; 84: 571-576

64 Vey E, Zhang JH, Dayer JM. IFN-gamma and 1,25(OH)2D3 induce on THP-1 cells distinct patterns of cell surface antigen expression, cytokine production, and responsiveness to contact with activated T cells. J Immunol 1992; 149: 2040-2046

65 Lazzar S, Isler P, Vey E, Wolgus HG, Dayer JM. Direct contact between T lymphocytes and monocytes is a major pathway for induction of metalloproteinase expression. J Biol Chem 1994; 269: 22027-22033

66 McNenes IB, Leung BP, Sturrock RD, Field M, Liew FY. Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-alpha production in rheumatoid arthritis. Nat Med 1997; 3: 189-195

67 Brennan FM, Hayes AL, Ciesielski CJ, Green P, Foxwell BM, Feldmann M. Evidence that rheumatoid arthritis synovial T cells are similar to cytokine-activated T cells: involvement of phosphatidylinositol 3-kinase and nuclear factor kappaB pathways in tumor necrosis factor alpha production in rheumatoid arthritis. Arthritis Rheum 2002; 46: 31-41

68 Jovanovic DV, Marlet-Pelletier J, Di Battista JA, Mineau F, Jolicoeur FC, Bendoridour M, Pelletier JP. Stimulation of 92-kd gelatinase (matrix metalloproteinase 9) production by interleukin-17 in human monocyte/macrophages: a possible role in rheumatoid arthritis. Arthritis Rheum 2000; 43: 1134-1144

69 Melendez AJ, Carlos-Dias E, Gosink M, Allen JM, Takacs L. Human sphingosine kinase: molecular cloning, functional characterization and tissue distribution. Gene 2000; 251: 19-26

70 Pittson SM, D’andrea RJ, Vandeleur L, Moretti PA, Xia P, Gamble JR, Vadas MA, Wattenberg BW. Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes. Biochem J 2000; 350 Pt 2: 429-441

71 Liu H, Sugiiura M, Nava VE, Edsall LC, Kono K, Poulton S, Milstien S, Kohama T, Spiegel S. Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 2000; 275: 19513-19520

72 Katchamart W, Trudeau J, Phumethum V, Bombardier C. Efficacy and toxicity of methotrexate (MTX) monotherapy versus MTX combination therapy with non-biological disease-modifying antirheumatic drugs in rheumatoid arthritis: a systematic review and meta-analysis. Ann Rheum Dis 2009; 68: 1105-1112

S-Editor Cheng JX L-Editor Kerr C E-Editor Zheng XM