Abstract. Mediator complex subunit 12 (MED12) is a subunit of Mediator, a large multi-subunit protein complex that acts as an important regulator of transcription. Specifically, MED12 is an integral part of the kinase module of Mediator along with MED13, CyclinC (CycC) and CDK8. Structural studies have indicated that MED12 makes a direct connection to CycC through a specific interface and thereby functions to create a link between MED13 and Cyc-C-CDK8. Disruption of the MED12-CycC interface often leads to dysregulated CDK8 kinase activity, which has important physiological implications. For example, a number of studies have indicated that mutations within MED12 can lead to the formation of benign or malignant tumors, either as a result of MED12-CycC disruption or through distinct independent mechanisms. Furthermore, recent studies have indicated that the N-terminal portion of MED12 forms a direct connection to CDK8. Mutations within MED12 do not appear to disrupt the physical connection to CDK8, but rather abrogate CDK8 kinase activity. Thus, mutations in MED12 can cause disruption of CDK8 kinase activity through two separate mechanisms. The aim of the present review article was to discuss the MED12 mutational landscape in a variety of benign and malignant tumors, as well as the mechanistic basis behind tumorigenesis. Furthermore, the link between MED12 and drug resistance has also been discussed, as well as potential cancer therapeutics related to MED12-altered tumors.

Contents

1. Introduction
2. MED12 mutations and tumorigenesis
3. Therapeutics
4. Conclusions

1. Introduction

Med12 is an X-linked gene that provides instructions for making a protein called Mediator complex subunit 12 (MED12). Mediator is a large multi-subunit complex that is critical for gene regulation. MED12 plays an important role in Mediator function by activating and repressing transcription through regulation of RNA polymerase II (Fig. 1A) (1,2). The structure of Mediator includes a dissociable kinase module, comprised of four subunits: MED13, MED12, CyclinC (CycC) and CDK8. Association or dissociation of the kinase module is an important indicator of transcriptional regulation with activation or repression occurring in a context-dependent manner (3,4). The exact reasons behind context-dependent activation vs. repression are currently unclear, but appear to involve induced conformational changes within core Mediator that ultimately affect the ability of Mediator to interact with Polymerase II (5-9). Earlier studies have indicated that MED12 mutations as a link between MED13 and Cyc-C-CDK8, with MED12 making a direct connection to CycC (8,10) (Fig. 1A). Furthermore, it has been shown that the exact configuration of the kinase module has important implications for CDK8 kinase activity as CDK8 has been reported to only be fully activated when it is bound to CycC and MED12 (8,10,11). Specifically, CycC contains a specified surface groove that acts as the docking site for MED12 (12). Mutagenic disruption of the MED12-CycC interface uncouples Cyc-C-CDK8 from Mediator, which in turn greatly diminishes CDK8 kinase activity; thus indicating that the MED12-CycC interface plays a critical role in regulating CDK8 kinase activity (8) (Fig. 1B). However, these studies have been complicated as recent findings determined that the N-terminal domain of MED12 directly binds to CDK8 thereby positioning an activation helix close to the T-loop in CDK8 (12,13) (Fig. 1A). Furthermore, these studies reported that MED12 mutations do not disrupt the MED12-CDK8 interaction, but rather alter the positioning of the activation helix thereby diminishing CDK8 kinase activity (12,13) (Fig. 1B). Importantly, in contrast to previous studies, it has been shown that disruption of the MED12-CycC interface has no effect on MED12-dependent CDK8 activation (12).
Rather, upon MED12 mutation, the entire kinase module becomes destabilized, which ultimately leads to diminished CDK8 kinase activity (12). Nonetheless, all of these studies demonstrate that mutations within MED12 cause conformational changes in the Mediator kinase module that ultimately disrupt CDK8 kinase activity. Consequently, altered CDK8 kinase activity, due to site-specific mutations within MED12, has important implications in gene regulation (3,4,14). Importantly, a number of the genes that show altered expression upon MED12 mutations are associated with several different types of human cancers, thus showing a link between MED12 and tumor formation (15). Therefore, the present review aimed to discuss tumorigenesis as a result of somatic mutations in MED12. Furthermore, the review also discussed drug resistance mechanisms and potential treatment options for MED12-related disorders.

2. MED12 mutations and tumorigenesis

Uterine leiomyomas. Uterine leiomyomas, also commonly known as fibroids, are a classification of muscle tumors that are benign. Extensive research has pointed out that most uterine leiomyoma-associated MED12 mutations are located within exon 2, with only some exceptions occurring within exon 1 (15‑35) (Table I). Based on the current literature there are two plausible mechanisms behind MED12 mutant‑uterine leiomyoma tumorigenesis. First, it is postulated that this mutation disrupts the interaction between MED12 and CyclinC‑CDK8 in the kinase module of Mediator (36) (Fig. 1B). Extensive studies have shown that complete CDK8 activation depends on the interaction between CycC and MED12, with this interaction specifically occurring within the first two exons of MED12 (8,22,24,37‑39). Therefore, mutations occurring within MED12 exon 1 or exon 2 often lead to disruption of the interaction between CycC and MED12, which subsequently leads to reduced CDK8 kinase activity (Fig. 1B). Secondly, recent studies have now postulated that MED12 mutations found in patients with uterine leiomyoma do not affect the MED12‑CycC interaction, but rather abolish CDK8 kinase activity through displacement of a MED12‑mediated activation loop on CDK8 (12,13) (Fig. 1B). Nonetheless, one common theme among these studies is that reduced CDK8 kinase activity, as a result of MED12 mutations, causes cell cycle dysregulation thereby resulting in abnormal cell growth and ultimately tumor formation (40‑42). Further studies will need to be completed to gain a full understanding of the mechanistic basis behind tumorigenesis in uterine leiomyomas as a result of MED12 mutations.

Phyllodes tumors. Phyllodes tumors are fibroepithelial tumors found in the breast, which can include benign, borderline and malignant tumors with ~1 in every 4 tumors being malignant. MED12 mutations have been identified in up to 80% of phyllodes tumors with little variance of frequency amongst malignant (77%), benign (83%) and borderline (80%) tumors (15,39) (Table I). These findings indicate that MED12 mutations play an important role in the development of phyllodes tumors, but do not appear to be involved in the progression from benign grade to malignant grade tumors. Of note, in another study, patients with MED12‑mutant phyllodes tumors showed improved disease‑free survival when compared with patients with phyllodes tumors lacking MED12 mutations (43). The reason for this is still unknown, but it may provide insight into the role of MED12 mutations in phyllodes tumor formation and progression. The majority of MED12 mutations found in phyllodes tumors reside within exon 2, which would lead to impairment of CDK8 kinase activity as seen in uterine leiomyomas. However, further studies are required to investigate the mechanistic basis behind MED12 mutant phyllodes tumorigenesis.

Fibroadenomas. Fibroadenomas are a benign breast fibroepithelial tumor commonly found in women <30 years old, which occur more frequently than phyllodes tumors. The MED12 mutation patterns of both phyllodes tumors and fibroadenomas are very similar, with missense and deletion‑insertion mutations occurring mainly in exon 2 (and a small number in exon 1), with codon 44 being the most commonly mutated (86%) (15,38,44) (Table I). Codons 36 and 43 are also affected, but at a much less frequent rate (16). Similar to uterine leiomyomas and phyllodes tumors, exon 2 mutations disrupt CDK8 kinase activity (44). In addition to MED12 mutations, MED12 suppression in fibroadenomas, as shown by RNA interference, enhances the activation of transforming growth factor‑b (TGF‑b) signaling, which causes activation of mitogen‑activated protein kinase/extracellular signal‑regulated kinase, ultimately causing resistance to cancer drugs that target this specific pathway (45). These observations thus provide insight into drug resistance mechanisms involving tumors containing MED12 alterations.

Chronic lymphatic leukemia. Chronic lymphatic leukemia (CLL) is a hematological disease that results from the accumulation of mature B lymphocytes in peripheral blood, bone marrow and lymph nodes. The extent of this disease observed in patients varies from being highly indolent, which may never require therapy, to very aggressive and requiring extensive treatment (46). It has been found that ~5‑9% of the mutations found in patients with lymphatic leukemia correspond to mutations in the N‑terminus of MED12, specifically within exon 1 and exon 2 (37,46‑48) (Table I). CLL‑associated MED12 mutations have been found to affect NOTCH signaling through disruption of the MED12‑CycC interface (46). NOTCH signaling can act in an oncogenic or tumor suppressive manner depending on cellular context (49‑52). CLL‑associated MED12 mutations have been shown to increase NOTCH as a direct result of MED12‑CycC dissociation and subsequent loss of CDK8 kinase activity (8,17,37,53). Consequently, enhanced NOTCH signaling in these patients increases apoptotic resistance to ultimately promote tumor formation (46,53).

Prostate cancer. Prostate cancer is a hormone‑driven cancer regulated through interactions of circulating androgens to the androgen receptor (54). Of note, a link has been established between MED12 overexpression and TGF‑β signaling in castration‑resistant prostate cancer (CRPC), a highly advanced and aggressive type of prostate cancer that is unresponsive to hormone treatment (55). Specifically,
MED12 overexpression, as assayed by immunohistochemistry on tissue microarrays, was observed in 70 distance metastatic and 90 local recurrent CRPC samples (55). MED12 overexpression in these samples was significantly correlated to activated TGF-β signaling (55). In addition to MED12 overexpression, MED12 is also mutated in ~5% of prostate cancers (56-58) (Table I). Unlike the previously discussed tumors, MED12 mutations in prostate cancer do not reside within the N-terminus, with the most common mutation found in exon 26 (57). Further studies will need to be performed to determine the mechanistic basis behind prostate cancer-associated MED12 mutations. Of note, however, most prostate cancer-associated MED12 mutations are in close proximity to MED12 mutations found in the X-linked intellectual disability (XLID) disorders, FG, Lujan and Ohdo syndromes (33,59-61). XLID-associated MED12 mutations have previously been shown to impair recruitment of CycC-CDK8 into Mediator, which ultimately promotes hyperactivated Sonic Hedgehog signaling (62-64). It is thus plausible that MED12 mutations in prostate cancer may promote tumorigenesis through a similar mechanism.

Breast and ovarian cancer. Breast and ovarian cancer are two additional examples of cancer subtypes that are primarily driven by hormones; with breast cancer being driven by estrogen and progesterone, and ovarian cancer by estrogen. Recently, MED12 mutations have been found in breast (up to 33.3%) and ovarian (~3%) cancer, however insight into the mechanistic basis behind these mutations is still lacking (65-68) (Table I). One noteworthy finding in ovarian cancer is that MED12 mutations correlate with high tumor mutational burden (TMB-H) as mutations were exclusively found in tumors classified as TMB-H (68). Of note, TMB-H has been linked to the generation of neoantigens and clinical response to immunotherapies in various cancer subtypes (68). Thus, MED12 mutations could serve as a potential biomarker for immunotherapy in ovarian cancer. In breast cancer, MED12 expression levels have been correlated to the regulation of angiotensin converting enzyme 2 (ACE2) levels and subsequent severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection (69). The details of this study will be further discussed in the therapeutics section of the current review.

Figure 1. Structure of core Mediator and the kinase module. (A) Mediator is composed of core mediator (head region, middle region, and tail region), and the kinase module. The tail region of core Mediator interacts with POL II and the head region interacts with activator proteins to regulate transcription. The kinase module is made up of CDK8, CycC, MED12, and MED13. (B) Mutations within MED12 (MED12 Mut) disrupt the MED12-CycC interface thereby leading to dissociation of the CycC-CDK8 complex and subsequent inactivation of CDK8 kinase activity (grey CDK8). Alternatively, mutations within MED12 do not disrupt association of MED12 to CycC, but rather promote dissociation of the activation loop to lead to inactivation of CDK8 kinase activity. MED12, Mediator complex subunit 12; POL II, RNA polymerase II; GTFs, general transcription factors; CycC, Cyclin C.
3. Therapeutics

Drug resistance. Several studies have found that loss of genomic and non-genomic functions of MED12 are associated with the development of resistance to chemotherapeutics. A specific example of this is seen in non-small cell lung cancer, where loss of MED12, as assayed by RNA interference, causes drug resistance, by increasing the level of TGF-β receptor II (R2) (45,70). MED12 physically interacts with TGF-βR2 in the cytoplasm, which results in a reduction of TGF-β signaling (45). Consequently, reduced MED12 expression promotes TGF-β signaling that has been linked directly to drug resistance, including resistance to MEK and BRAF inhibitors, downstream effectors in the TGF-β signaling pathway (45) (Fig. 2). Furthermore, reduced MED12 expression is also associated with an epithelial-to-mesenchymal-like phenotype that has been correlated to chemotherapy resistance in colon cancer and gefitinib resistance in lung cancer (45) (Fig. 2).

Since MED12 mutations abrogate CDK8 kinase activity, either due to a disruption of MED12-CycC or a displacement of the activation loop of CDK8, it can be argued that loss of MED12 expression mimics a MED12 mutant setting. Thus, these results indicate that inhibition of TGF-β signaling in cancers with either reduced MED12 expression or MED12 mutations could prove to be a beneficial therapeutic strategy.

In another study, MED12 overexpression was correlated with improved disease prognosis in human breast cancer (71). Specifically, this was shown to involve the interaction of MED12 with coactivator-associated arginine methyltransferase 1 (CARM 1) for which MED12 is known to be a substrate (71). CARM1 and MED12 expression show a positive correlation, and high expression of both predicts improved prognosis in patients with breast cancer after chemotherapy (71). CARM1 methylates MED12 at residues R1862 and R1912, and mutations within these sites promote MED12 downregulation, which results in resistance to chemotherapy drugs (71,72).

Table I. Summary of MED12 mutations.

Type of tumorigenesis	Prevalence of mutation (%)	Affected exon(s)	Mode of mechanism
Uterine leiomyomas	37-86	Exon 1, Exon 2	Loss of CDK8 kinase activity
Phyllodes tumors	43-80	Exon 2	Loss of CDK8 kinase activity
Fibroadenomas	59-62	Exon 1, Exon 2	Loss of CDK8 kinase activity
Chronic lymphatic leukemia	5-9	Exon 1, Exon 2	Increased Notch signaling
Prostate cancer	2-5	Exon 26	Possible hyperactivated Sonic Hedgehog signaling
Breast cancer	3-33	Multiple	Unknown
Ovarian cancer	50	Exon 14	Unknown

Figure 2. Overview of the role of MED12 in drug resistance. Reduced MED12 expression can lead to upregulation of TGF-β signaling or promote the EMT which subsequently leads to resistance to MEK/BRAF inhibitors or chemotherapy/gefitinib, respectively. Reduced MED12 expression also inhibits EGFR signaling leading to resistance to tyrosine kinase inhibitors. Inhibition of CARM1-mediated MED12 methylation promotes downregulation of MED12 and a subsequent upregulation of P21/WAF1 expression to drive chemotherapy resistance. MED12, Mediator complex subunit 12; EMT, epithelial to mesenchymal transition; EGFR, epidermal growth factor receptor; TGF-β, transforming growth factor-β; CARM1, coactivator-associated arginine methyltransferase 1.
tumor relapse may be prevented by inhibiting the conversion of
in cancer therapeutics as several studies have suggested that
enough to cause tumor dormancy by causing the cell cycle to
Specifically, in ovarian cancer cells, depletion of MED12 was
directly related to MED12 knockdown, causing decreased
proliferation (77). MED12 and EGFR expression levels are
through Mediator‐polymerase II complex to stimulate
cancers, resulting in the activation of several oncogenic
1/exon 2 MED12 mutations are restricted primarily, with
loss of CDK8 kinase activity varies between the different tumor
resulting mechanistic basis behind tumorigenesis as a result of
activation loop on CDK8 (12,13,16‑32, 34,35,39,44,46‑48). The
is due to disruption of MED12‑CycC or a displacement of the
kinase activity; though it is currently unclear if this reduction
within exon 1 or exon 2, which leads to a reduction of CDK8
commonly seen in several different cancers and benign tumors,
One theme that is noteworthy is the fact that the exon
DNA sequencing is key in modern cancer
therapeutics as it allows for the generation of personalized
treatment options. In one study, researchers investigated the
efficacy of genetic sequencing on patients with non‑small cell
lung cancer who developed resistance to EGFR tyrosine kinase
inhibitors (Fig. 2) (79). Of note, a direct correlation was found
between reduced MED12 expression and drug resistance in
these patients (79). The researchers found that deep sequencing
analysis of tumors was efficient in identifying drug response
and resistance biomarkers as well as clonal and subclonal
genetic populations (79). The identification of biomarkers
allows for serial biomarker analysis of samples gathered from
each patient to guide the initial and subsequent treatments to
prevent or overcome drug resistance. It is important that this
genotyping is enriched with additional biomarkers to predict
signaling pathways that crosstalk and are involved in adaptive
resistance to treatment. Targeting these signaling pathways,
and adapting the treatment based on serial genetic analysis,
might be a more effective alternative to EGFR tyrosine kinase
inhibitor monotherapy (79). This study thus provides important
insight into the efficacy and use of genotyping in cancer
therapeutics as well as the role of MED12 in potential drug
resistance.

4. Conclusions

MED12 functions in regulating cell growth signals, early
development and differentiation. As a result of these important
physiological functions, mutations within MED12 are
commonly seen in several different cancers and benign tumors,
including uterine leiomyomas, phyllodes tumors, breast fibroadenomas, lymphatic leukemia, prostate, breast and ovarian
cancer. One theme that is common to most of these tumors,
with the exception of prostate cancer, is that the mutations occur
within exon 1 or exon 2, which leads to a reduction of CDK8
kinase activity; though it is currently unclear if this reduction
is due to disruption of MED12‑CycC or a displacement of the
activation loop on CDK8 (12,13,16‑32,34,35,39,44,46‑48). The
resulting mechanistic basis behind tumorigenesis as a result of
loss of CDK8 kinase activity varies between the different tumor
subtypes. At least one study has shown that loss of CDK8 kinase
activity leads to dysregulated NOTCH signaling to promote
lymphatic leukemia (46). It is of importance to note that other
studies have investigated the relationship between CDK8
kinase activity and tumorigenesis in a MED12‑independent
cell context in a variety of different cancers (80,81). Nonetheless,
further studies are required to study the mechanisms behind
MED12‑mediated loss of CDK8 kinase activity and subsequent
tumorigenesis.

One theme that is noteworthy is the fact that the exon
1/exon 2 MED12 mutations are restricted primarily, with
the exception of lymphatic leukemia, to hormone‑driven
tumors with mesenchymal stem cell origins. The reasons
underlying this finding are currently unclear, but they
do suggest that MED12 plays an important role in the development and/or differentiation of this progenitor lineage. Of note, the only tumor subtype that has provided clues as to the mechanistic basis behind exon1/exon2 MED12-mutation driven tumorigenesis stems from studies in lymphatic leukemia, the only non-hormone-driven tumor. Future studies are warranted to determine whether the mechanism underlying hormone-driven tumorigenesis is similar or distinct to that observed in lymphatic leukemia. Furthermore, the relationship between exon1/exon2 mutations and the exon 26 mutations found in prostate cancer is currently unclear. Prostate cancer and exon1/exon2-mutant tumors are both hormone-driven, so it is unclear as to why mutations in these tumors are found in very distinct regions of MED12.

Although information regarding the mechanistic basis behind MED12-mutant tumorigenesis is still lacking, there are several studies that have begun to investigate the role of MED12 in potential cancer therapeutics. One important finding is that reduced MED12 expression can lead to drug resistance, including resistance to MEK, BRAF and tyrosine kinase inhibitors; thereby, providing important insight into drug treatment for patients who displayed reduced MED12 expression (45,79). Congruently, potential has been demonstrated in the importance of genetic testing, specifically in determining the mutant or expression landscape of MED12. Not only will this provide clues as to potential drug resistance mechanisms, but it will also provide insight into potential treatment strategies. Ultimately, future studies will need to be performed to determine whether MED12 itself, the MED-CycC interface or the MED12-CDK8 connection can serve as potential therapeutic targets for cancer treatment.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

Not applicable.

Author contributions

SA and CGG wrote the manuscript. MB provided guidance and performed all editing and formatting. Data authentication is not applicable. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Allen BL and Taatjes DJ: The mediator complex: A central integrator of transcription. Nat Rev Mol Cell Biol 16: 155-166, 2015.
2. Kornberg RD: Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30: 235-239, 2005.
3. Mo X, Kowenz-Leutz E, Xu H and Leutz A: Ras induces mediator complex exchange on C/EBP beta. Mol Cell 13: 241-250, 2004.
4. Pavri R, Lewis B, Kim TK, Dibworth DJ, Erdjument-Bromage H, Tempst P, de Murcia G, Evans R, Chambon P and Reubinoff B: PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol Cell 18: 83-96, 2005.
5. Bernecky C, Grob P, Ebemeier CC, Nogales E and Taatjes DJ: Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly. PLoS Biol 9: e1000603, 2011.
6. Elmbridge H, Baraznenok V, Lindahl M, Samuelsen CO, Koeck PJ, Holmberg S, Hebert H and Gustafsson CM: The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc Natl Acad Sci USA 103: 15788-15793, 2006.
7. Knuesel MT, Meyer KD, Bernecky C and Taatjes DJ: The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev 23: 439-451, 2009.
8. Turunen M, Spaeth JM, Keskitalo S, Park MJ, Kivioja T, Clark AD, Mäkinen N, Gao P, Palin K, Nurkkala H, et al: Uterine leiomyoma-linked MED12 mutations disrupt mediator-associated CDK activity. Cell Rep 7: 654-660, 2014.
9. Wang X, Sun Q, Ding Z, Ji J, Wang J, Kong X, Yang J and Cai G: Redefining the modular organization of the core Mediator complex. Cell Res 24: 796-808, 2014.
10. Knuesel MT, Meyer KD, Donner AJ, Espinosa JM and Taatjes DJ: The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol 29: 650-661, 2009.
11. Xu W and Ji JY: Dysregulation of CDK8 and Cyclin C in tumorigenesis. J Genetics 38: 439-452, 2011.
12. Klatt F, Leitner A, Kim JY, Ho-Xuan H, Schneider VE, Langhammer F, Weinmann R, Müller MR, Huber R, Meister G and Kuhn CD: A precisely positioned MED12 activation helix stimulates CDK8 kinase activity. Proc Natl Acad Sci USA 117: 2894-2905, 2020.
13. Li YC, Chao TC, Kim HJ, Cholko T, Chen SF, Li G, Snyder L, Nakanishi K, Chang CE, Murakami K, et al: Structure and noncanonical CdK8 activation mechanism within an Argonaute-containing Mediator kinase module. Sci Adv 7: eabd4484, 2021.
14. Holstege FC, Jennings EG, Wyrick JJ, Lee TJ, Hengartner CJ, Green MR, Golub TR, Young RA: Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717-729, 1998.
15. Clark AD, Oldenbroek M and Boyer TG: Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 50: 393-426, 2015.
16. Ajabnoor GMA, Mohammed NA, Banaganapalli B, Abdullah LS, Bondagii ON, Mansouri N, Sahly NN, Vaidyanathan V, Bondagii N, Elango R and Shaik NA: Expanded somatic mutation spectrum of MED12 gene in uterine leiomyomas of Saudi Arabian Women. Front Genet 9: 552, 2018.
17. Banaganapalli B, Mohammed K, Khan IA, Al-Aama JY, Elango R and Shaik NA: A Computational protein phenotype prediction approach to analyze the deleterious mutations of human MED12 gene. J Cell Biochem 117: 2023-2035, 2016.
18. Croce S and Chibon F: MED12 and uterine smooth muscle oncogenesis: State of the art and perspectives. Eur J Cancer 51: 1603-1610, 2015.
19. de Graaff MA, Cleton-Jansen AM, Szuhibai K and Bouvé JE: Mediator complex subunit 12 exon 2 mutation analysis in different subtypes of smooth muscle tumors confirms genetic heterogeneity. Hum Pathol 44: 1597-1604, 2013.
20. Heinonen HR, Sarvilinna NS, Sjöberg J, Kämpjärvi K, Pitkänen E, Vaheristo P, Mäkinen N and Aaltonen LA: MED12 mutation frequency in unselected sporadic uterine leiomyomas. Fertil Steril 102: 1137-1142, 2014.
Presence of MED12 exon 2 in uterine leiomyomas and other common tumors. Int J Cancer 131: E1044-E1047, 2012.

17. Nakamura K, Nakamura N, Kiyohara C, Fujihara K, Asakawa S, Matsubara A, et al: Somatic MED12 mutations in uterine leiomyosarcoma and colorectal cancer. Br J Cancer 107: 1761-1765, 2012.

18. Li N, Fassl A, Chick J, Inuzuka H, Li X, Mansour MR, Liu L, Wang H, King B, Shaik S, et al: Cyclin C is a haploinsufficient protein in uterine leiomyomas. Mod Pathol 26: 743-749, 2013.

19. Mäkinen N, Heinonen HR, Moore S, Tomlinson IP, van der Spuy ZM and Aaltonen LA: MED12 exon 2 mutations are common in uterine leiomyomas from South African patients. Oncotarget 2: 966-969, 2011.

20. Mäkinen N, Mäkinen K, Kaasinen E, Li Y, Lioto M, Portman E, Miettinen M, Raut CP and K-effect of cyclin C in leiomyoma cell proliferation. Histol Histopathol 26: 381-389, 2011.

21. Matthews CM, Toivanen J, Kaasinen E, Li Y, Lehtonen HJ, Gentile M, Yan J, Enge M, Taipale M, et al: The mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science 334: 252-255, 2011.

22. Mäkinen N, Vaheristo P, Kämpärvi K, Arola S, Büttner J, Nilsson BM, et al: MED12 mutations in uterine leiomyomas: a refined paradigm in prostate cancer. Cancer Cell 10: 13799-13804, 2012.
64. Zhou H, Spaeth JM, Kim NH, Xu X, Friez MJ, Schwartz CE and Boyer TG: MED12 mutations link intellectual disability syndromes with dysregulated GLI3-dependent Sonic Hedgehog signaling. Proc Natl Acad Sci USA 109: 19763-19768, 2012.

65. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, Sougnez C, and Boyer TG: MED12 mutations link intellectual disability syndromes with dysregulated GLI3-dependent Sonic Hedgehog signaling. Proc Natl Acad Sci USA 109: 19763-19768, 2012.

66. Chao X, Tan W, Tsang JY, Tse GM, Ju J, Li P, Hou J, Li M, He J and Sun P: Clinicopathologic and genetic features of metastatic breast cancer with osseous differentiation: A series of 6 cases. Breast Cancer 28: 1100-1111, 2021.

67. Shah SP, Roth A, Voya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, et al: The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486: 395-399, 2012.

68. Zhang Y, Shi X, Zhang J, Chen X, Zhang P, Liu A and Zhu T: A comprehensive analysis of somatic alterations in Chinese ovarian cancer patients. Sci Rep 11: 387, 2021.

69. Zhang S, Liu F, Halfmann P, Behrens RT, Liu P, McIlwain SJ, Ong IM, Donahue K, Wang ZR, Shen HF, Xiao RQ, Gao WW, et al: A hypermethylation strategy utilized by enhancer-bound CARM1 to promote estrogen receptor α-dependent transcriptional activation and breast carcinogenesis. Thrombos J 12: 939-948, 2020.

70. Wang L, Zeng H, Wang Q, Zhao Z, Boyer TG, Bian X and Xu W: MED12 methylation by CARM1 sensitizes human breast cancer cells to chemotherapy drugs. Sci Adv 1: e1500463, 2015.

71. Peng BL, Li WJ, Ding J, He YH, Tan T, Xie BL, Wang ZR, Shen HF, Xiao RQ, Gao WW, et al: A hypermethylation strategy utilized by enhancer-bound CARM1 to promote estrogen receptor α-dependent transcriptional activation and breast carcinogenesis. Thrombos J 12: 939-948, 2020.

72. Schleicher EM, Dhoonmoon A, Jackson LM, Clements KE, Stump CL, Nicola CM and Moldovan GL: Dual genome-wide CRISPR knockout and CRISPR activation screens identify mechanisms that regulate the resistance to multiple ATR inhibitors. PLoS Genet 16: e1009176, 2020.

73. Reaper PM, Griffiths MR, Long JM, Charlot J, Maccormick S, Charlton PA, Golec JM and Pollard JR: Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 7: 428-430, 2011.

74. Reinhart HC, Aslanian AS, Loes JA and Yaffe MB: p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11: 175-189, 2007.

75. Vendetti FP, Lau A, Schamus S, Conrads TP, O’Connor MJ and Bakkenist CJ: The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget 6: 44289-44305, 2015.

76. Luo XL, Deng CC, Su XD, Wang F, Chen Z, Wu XP, Liang SB, Liu JH and Fu LW: Loss of MED12 induces tumor dormancy in human epithelial ovarian cancer via downregulation of EGFR. Cancer Res 78: 3532-3543, 2018.

77. Srivastava S and Kulkshreshtha R: Insights into the regulatory role and clinical relevance of mediator subunit, MED12, in human diseases. J Cell Physiol 236: 3163-3177, 2021.

78. Broude EV, Gyorffy B, Chumanovich AA, Chen M, McDermott MS, Shuitman M, Catroppa JF and Roninson IB: Expression of CDK8 and CDK8-interacting Genes as potential biomarkers in breast cancer. Curr Cancer Drug Targets 15: 739-749, 2015.

79. Ma D, Chen X, Shen XB, Sheng LQ and Liu XY: Binding patterns and structure-activity relationship of CDK8 inhibitors. Bioorg Chem 96: 105624, 2020.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.