Systemic venous atrium stimulation in transvenous pacing after mustard procedure

Calogero Puntrello, Fabiana Lucà, Gaspare Rubino, Carmelo Massimiliano Rao, Sandro Gelsomino

Abstract
We present the case of a young woman corrected with a Mustard procedure undergoing successful transvenous double chamber pacemaker implantation with the atrial lead placed in the systemic venous channel. The case presented demonstrates that, when the systemic venous atrium is separate from the left atrial appendage, the lead can be easily and safely placed in the systemic venous left atrium gaining satisfactory sensing and pacing thresholds despite consisting partially of pericardial tissue.

Key words: Cardiac pacing; Mustard procedure; Transposition of great arteries

INTRODUCTION
The mustard operation (MO) was a well-established method to correct the transposition of the great arteries before being superseded, in the recent years, by anatomic repair, the so called arterial switch operation. The procedure employs a pericardial baffle to change the direction of the blood flow from the systemic venous return to the left ventricle and pulmonary venous return to the right ventricle. Disturbances of rhythm and conduction in patients undergoing MO have been the focus of many studies. Occasionally a permanent pacemaker is needed especially for patients with symptomatic sick sinus syndrome.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
pericardial tissue and whether the electrode remains in the correct position.

We present the case of a young woman corrected with a Mustard procedure undergoing successful transvenous double chamber pacemaker implantation with the atrial lead placed in the systemic venous channel.

CASE REPORT

A 32-year-old female was born with a transposition of the great arteries (TGA), a large defect of the ventricular septum and a persistent ductus. At six months old she had a MO which involved closure of the defect of the ventricular septum and ductus arteriosus.

After the operation, she showed no symptoms at regular outpatient clinics. Nonetheless, 31 years after the MO she experienced dizziness, progressive tiredness, and shortness of breath. Echocardiography revealed a good left and right ventricular function (Figure 1).

With Holter monitoring we observed periods of atrioventricular junctional escape rhythm, high degree of atrioventricular block and pauses of up to 5.4 s. Indication was given for a pacemaker implantation. Due to the dizzy spells caused by sinus node dysfunction in addition to atrioventricular conduction disturbances, the patient was subjected to a transvenous double chamber pacemaker implantation. Through the left cephalic vein an active-fixation electrode was introduced and placed in the apex of the anatomic left (subpulmonary) ventricle. Satisfactory values of sensing (8 mV) and pacing thresholds (0.5 mV) were gained without diaphragmatic stimulation.

In this patient the left atrial appendage was kept outside of venous tissue therefore the atrial lead was inserted and screwed into the systemic venous channel and a loop was created.

DISCUSSION

TGA accounts for 5% to 7% of all congenital heart
anomalies[7][7][7]. The surgical repairs for TGA were first introduced by Senning in 1959; Mustard modified this technique in 1964[4]. At the moment an anatomical correction is the most extensively used procedure; and the arterial switch has largely taken the place of the atrial switch procedure. Nonetheless late development of both atrial arrhythmias are well recognized late complications of atrial baffle surgery[4-11][15]. (Table 1).

Intra-atrial re-entrant tachycardia is the most common arrhythmia found among these patients, which has been associated with development of heart failure and death[3,9]. In particular, causes of arrhythmias after the Mustard repair include[4,12,13]: (1) damage during surgery to the sinus node or sinus node artery; (2) break of intra-atrial conduction by interruption of internodal pathways; and (3) intraoperative damage to atrioventricular (AV) node conduction tissue.

Pacemaker implantation is indicated for patients after MO who have a HR < 30 beats/min, Stokes-Adams episodes, patients requiring pharmacological therapy for tachyarrhythmias, or those with a poor systemic ventricular function and bradycardia[4,14,15]. In addition, some MO patients require pacemaker implantation for sinus node dysfunction, AV block, in order to permit medical therapy of tachyarrhythmias or as an anti-tachycardia therapy[15]. Pacemaker implantation in this setting can be technically challenging because of the complex anatomy[8,7] and the possibility of complications such as systemic venous baffle obstruction or left innominate vein, right/left subclavian vein obstruction[10]. Therefore, the determination of the exact vascular anatomy is mandatory to decide the most suitable position for placing the leads.

In this regard echocardiography, venography or intravenous digital subtraction angiography before implantation may be of great help in studying the anatomy structural variations before pacemaker implantation.

However, usually one electrode is placed in the apex of the anatomic left (subpulmonary) ventricle and the atrial lead is fixed to the left atrial appendage[5]. Berul et al[16] suggests, in the postoperative Mustard procedure, that the superior aspect of the systemic venous-left atrium is the most optimal location.

Nonetheless, when left atrial appendage is not in place or it is not included into the systemic venous atrium, it is impossible to screw the atrial lead into the left atrial appendage. The electrode may be positioned in the systemic venous atrium but, as it consists partially of pericardial tissue, there are concerns associated with obtaining sub-optimal sensing and pacing thresholds and, despite this, there are no studies addressing the feasibility and efficacy of transvenous leads implanted into the pericardial baffle.

We present the case of a 32-year-old female undergoing a Mustard operation at six months of age who had transvenous double chamber pacemaker implantation because of high-degree atrioventricular block.

The ventricular electrode was placed in its usual position in the apex of the anatomic left (subpulmonary) ventricle avoiding creating a loop in this location which can be a substrate for ventricular ectopic beats[4]. In contrast, since the left atrial appendage was outside the systemic venous atrium, it was impossible to place the lead into the left auricular appendix. Therefore, the atrial lead was positioned in the systemic venous channel and a passive fixation pacing was chosen to avoid pericardial baffle damage. Nonetheless, the use of passive-fixation pacing may lead to electrode dislodgement and this risk is raised by the absence of trabecular structures in the systemic venous channel differently from the left atrial appendage. Therefore, to prevent lead dislodgement, we created an electrode loop in the tube-like systemic venous channel.

At the end of the procedure sensing and pacing thresholds were adequate and, after 5 years, leads were still in the correct position with unchanged sensing and pacing thresholds.

In conclusion, the case of our patient demonstrates that in patients after Mustard repair, when the left atrial appendage in not reachable for surgical or anatomical reasons, the lead can be easily and safely placed in the systemic venous left atrium gaining satisfactory sensing and pacing thresholds and with no risk of lead dislodgement.

ACKNOWLEDGMENTS

We gratefully acknowledge Professor James Douglas for the English revision of the paper.

COMMENTS

Case characteristics

A 32-year-old female born with a transposition of the great arteries (TGA), a large ventricular septal defect and a patent ductus arteriosus who underwent a mustand operation (MO) at six months of age.

Clinical diagnosis

Progressive fatigue and dizziness and shortness of breath 31 years after her operation.

Differential diagnosis

Mobitz II second-degree atrioventricular (AV) block from Mobitz II second-degree AV block, as well as Mobitz II second-degree AV block from third-degree AV block.
Puntrello C et al. Transvenous pacing in Mustard procedure

Imaging diagnosis
Echocardiography, venography or intravenous digital subtraction angiography prior to implantation may be of great help in studying the anatomy structural variations before pacemaker implantation.

Pathological diagnosis
Holter monitoring showed episodes of atrioventricular junctional escape rhythm and high degree atrioventricular block.

Treatment
Indication was given for a pacemaker implantation.

Related reports
Some MO patients require pacemaker implantation for sinus node dysfunction, AV block, to permit medical therapy of tachyarrhythmias or as anti tachycardia therapy.

Term explanation
Mustard Operation is surgical treatment of TGA nowadays an anatomical correction is more preferred and this arterial switch procedure has largely replaced MO.

Experiences and lessons
The case presented demonstrates that, when the left atrial appendage is not included into the systemic venous atrium, the lead can be easily and safely placed in the systemic venous left atrium gaining satisfactory sensing and pacing thresholds despite it consists partially of pericardial tissue.

Peer review
A well-written case report merits consideration for publication as it describes a novel idea for permanent pacing in a patient with Mustard procedure.

REFERENCES
1 Mustard WT. Successful two-stage correction of transposition of the great vessels. Surgery 1964; 55: 469-472 [PMID: 14133108]
2 Junge C, Westhoff-Bleck M, Schoof S, Danne F, Buchhorn R, Seabrook JA, Geyer S, Ziemer G, Wessel A, Norozi K. Comparison of late results of arterial switch versus atrial switch (pacemaker procedure) operation for transposition of the great arteries. Am J Cardiol 2013; 111: 1505-1509 [PMID: 23428074]
3 Oechslin E, Jenni R. 40 years after the first atrial switch procedure in patients with transposition of the great arteries: long-term results in Toronto and Zurich. Thorac Cardiovasc Surg 2000; 48: 233-237 [PMID: 11005599 DOI: 10.1055/s-2000-6901]
4 Hayes CJ, Gersony WM. Arrhythmias after the Mustard operation for transposition of the great arteries: a long-term study. J Am Coll Cardiol 1986; 7: 133-137 [PMID: 3941200 DOI: 10.1016/S0735-1097(86)80270-4]
5 Frankel DS, Shah MJ, Aziz PF, Hutchinson MD. Catheter ablation of atrial fibrillation in transposition of the great arteries treated with mustard atrial baffle. Circ Arrhythm Electrophysiol 2012; 5: e41-e43 [PMID: 22511665]
6 Gelatt M, Hamilton RM, McCrindle BW, Connelly M, Davis A, Harris L, Gow RM, Williams WG, Trusler GA, Freedom RM. Arrhythmia and mortality after the Mustard procedure: a 30-year single-center experience. J Am Coll Cardiol 1997; 29: 194-201 [PMID: 8996314]
7 Konings TC, Dekkers LR, Groenink M, Bouna BJ, Mulder BJ. Transvenous pacing after the Mustard procedure: considering the complications. Neth Heart J 2007; 15: 387-389 [PMID: 18176641 DOI: 10.1007/BF03086020]
8 Gatzoulis MA, Walters J, McLaughlin PR, Merchant N, Webb GD, Liu P: Late arrhythmia in adults with the Mustard procedure for transposition of great arteries: a surrogate marker for right ventricular dysfunction? Heart 2000; 84: 409-415 [PMID: 10995411 DOI: 10.1136/heart.84.4.409]
9 Kammeraad JA, van Deuren CH, Sreeram N, Bink-Boelkens MT, Ottenkamp J, Helbing WA, Lam J, Sobotka-Plojar MA, Daniels O, Balaji S. Predictors of sudden cardiac death after Mustard or Senning repair for transposition of the great arteries. J Am Coll Cardiol 2004; 44: 1095-1102 [PMID: 15337224 DOI: 10.1016/j.jacc.2004.05.073]
10 Tobler D, Williams WG, Jegatheeswaran A, Van Arsdell GS, McCrindle BW, Greutmann M, Oechslin EN, Silversides CK. Cardiac outcomes in young adult survivors of the arterial switch operation for transposition of the great arteries. J Am Coll Cardiol 2010; 56: 58-64 [PMID: 20620718 DOI: 10.1016/j.jacc.2010.03.031]
11 Duster MC, Bink-Boelkens MT, Wampler D, Gillette PC, McNamara DG, Cooley DA, McNamara DG. Electrophysiological abnormalities after Mustard’s operation for transposition of the great arteries. Br Heart J 1997; 36: 186-191 [PMID: 8408151 DOI: 10.1136/hrt.36.2.186]
12 Isaason R, Titus JL, Merideth J, Feldt RH, McGoon DC. Apparent interruption of atrial conduction pathways after surgical repair of transposition of great arteries. Am J Cardiol 1972; 30: 533-535 [PMID: 5073665 DOI: 10.1016/0002-9416(72)90446-7]
13 Hornung TS, Derrick GP, Deanfield JE, Redington AN. Transposition complexes in the adult: a changing perspective. Cardiol Clin 2002; 20: 405-420 [PMID: 12371009 DOI: 10.1016/S0733-8651(02)00012-7]
14 Amikam S, Lemer J, Kishon Y, Riss E, Neufeld HN. Complete heart block in an adult with corrected transposition of the great arteries treated with permanent pacemaker. Thorax 1979; 34: 547-549 [PMID: 505354 DOI: 10.1136/thx.34.4.547]
15 Gewillig M, Cullen S, Mertens B, Lessafre E, Deanfield JE. Risk factors for arrhythmia and death after Mustard operation for simple transposition of the great arteries. Circulation 1991; 84: II117-II119 [PMID: 1934468]
16 el-Said G, Rosenberg HS, Mullins CE, Hallman GL, Cooley DA, McNamara DG. Dysrhythmias after Mustard’s operation for transposition of the great arteries. Am J Cardiol 1972; 30: 526-532 [PMID: 5073664 DOI: 10.1016/0002-9416(72)90043-4]
17 Patel S, Shah D, Chintala K, Karpawich PP. Atrial baffle problems following the Mustard operation in children and young adults with dextro-transposition of the great arteries: the need for improved clinical detection in the current era. Congenit Heart Dis 2011; 6: 466-474 [PMID: 21696550 DOI: 10.1111/j.1747-0803.2011.00532.x]
18 Berul CI, Cecchin F. Indications and techniques of pediatric cardiac pacing. Expert Rev Cardiovasc Ther 2003; 1: 165-176 [PMID: 1500227 DOI: 10.1586/14797072.1.2.165]

P- Reviewer: Letskas K, Petix NR, Raja SG S- Editor: Wen LL L- Editor: A E- Editor: Liu SQ
