ON A POWERED BOHR INEQUALITY

ILGIZ R KAYUMOV, AND SAMINATHAN PONNUSAMY

Abstract. The object of this paper is to study the powered Bohr radius ρ_p, $p \in (1, 2)$, of analytic functions $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and such that $|f(z)| < 1$ defined on the unit disk $|z| < 1$. More precisely, if $M_p^f(r) = \sum_{k=0}^{\infty} |a_k|^p r^k$, then we show that $M_p^f(r) \leq 1$ for $r \leq r_p$ where r_p is the powered Bohr radius for conformal automorphisms of the unit disk. This answers the open problem posed by Djakov and Ramanujan in 2000. A couple of other consequences of our approach is also stated, including an asymptotically sharp form of one of the results of Djakov and Ramanujan. In addition, we consider a similar problem for sense-preserving harmonic mappings in $|z| < 1$. Finally, we conclude by stating the Bohr radius for the class of Bieberbach-Eilenberg functions.

1. Preliminaries and Main Results

Let B denote the class of analytic functions f defined on the unit disk $D := \{z \in \mathbb{C} : |z| < 1\}$, with the power series expansion $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and such that $|f(z)| < 1$ for $z \in D$. Then the classical Bohr’s inequality states that there is a constant ρ such that

$$M^f(r) := \sum_{k=0}^{\infty} |a_k| r^k \leq 1 \quad \text{for all } r = |z| \leq \rho$$

and the value $\rho = 1/3$ is optimal. The number $\rho = 1/3$, known as Bohr’s radius, was originally obtained in 1914 by H. Bohr [6] with $\rho = 1/6$, but subsequently later, Wiener, Riesz and Schur, independently established the sharp inequality for $r = |z| \leq 1/3$. This little article of Bohr generates intensive research activities even after a century of its appearance. We refer to the recent survey article on this topic [4] and the references therein. Multidimensional generalizations of this result were obtained by Boas and Khavinson [5] by establishing upper and lower bounds for the Bohr radius of the unit polydisk D^n. Aizenberg [2,3] extended the concept of Bohr radius in several different directions for further studies in this topic. In 2000, Djakov and Ramanujan [10] investigated the same phenomenon from different point of view. For $f \in B$ and a fixed $p > 0$, we consider the powered Bohr sum $M_p^f(r)$ defined by

$$M_p^f(r) = \sum_{k=0}^{\infty} |a_k|^p r^k.$$
Observe that for $p = 1$, $M^f_p(r)$ reduces to the classical Bohr sum defined as above by $M^f(r)$. The best possible constant ρ_p for which

$$M^f_p(r) \leq 1$$

is called the (powered) Bohr radius for the family \mathcal{B}.

We now introduce

$$M_p(r) := \sup_{f \in \mathcal{B}} M^f_p(r)$$

and

$$r_p := \sup \left\{ r : a^p + \frac{r(1 - a^2)^p}{1 - ra^p} \leq 1, \ 0 \leq a < 1 \right\} = \inf_{a \in [0,1)} \frac{1 - a^p}{a^p(1 - a^p) + (1 - a^2)^p}.$$

Let us first proceed to recall the following results.

Theorem A. ([10, Theorem 3]) For each $p \in (1,2)$ and $f(z) = \sum_{k=0}^{\infty} a_k z^k$ belongs to \mathcal{B}, we have $M^f_p(r) \leq 1$ for $r \leq T_p$, where

$$m_p \leq T_p \leq r_p.$$

Here r_p is as above and

$$m_p := \frac{p}{(2^{1/(2-p)} + p^{1/(2-p)})^{2-p}}.$$

Theorem B. ([10, Theorem 2]) For each $p \in (0,2)$

$$M_p(r) \asymp \left(\frac{1}{1 - r} \right)^{1-p/2}.$$

Our first aim is to investigate the problem posed by Djakov and Ramanujan [10] about the Bohr radius for $M^f_p(r)$. Their question is the following.

Problem 1. [10, Question 1, p. 71] What is the exact value of the (powered) Bohr radius ρ_p, $p \in (1,2)$? Is it true that $\rho_p = r_p$?

Using the method of proofs of our recent approach from [12][13], we solve this problem affirmatively in the following form.

Theorem 1. If $f(z) = \sum_{k=0}^{\infty} a_k z^k$ belongs to \mathcal{B} and $0 < p \leq 2$, then

$$M_p(r) = \max_{a \in [0,1]} \left[a^p + \frac{r(1 - a^2)^p}{1 - ra^p} \right], \quad 0 \leq r \leq 2^{p/2-1},$$

and

$$M_p(r) < \left(\frac{1}{1 - r^{2/(2-p)}} \right)^{1-p/2}, \quad 2^{p/2-1} < r < 1.$$
Proofs of Theorem 1 and a couple of its corollaries will be given in Section 2. Let us remark that $M_p(r) = 1$ for $p \geq 2$ and $r \leq 1$. So, the interesting case is to consider the problem only for $p \in (1, 2)$.

One may ask about the second inequality of Theorem 1: how close it to be sharp? To get an answer to this question we will use a Bombieri-Bourgain estimate [8] which reads as follows: for a given $\varepsilon > 0$, there exists a positive constant $C(\varepsilon) > 0$, such that

$$M_1(\rho) \geq \frac{1}{\sqrt{1 - \rho^2}} - C(\varepsilon) \left(\log \frac{1}{1 - \rho} \right)^{(3/2) + \varepsilon}, \quad \rho \geq 1/\sqrt{2}. $$

The Hölder inequality implies that

$$M_1(f, r^{1/(2-p)}) = \sum_{k=0}^{\infty} |a_k| |r^{k/p} r^{(2k(p-1))/(p(2-p))}|
\leq \left(\sum_{k=0}^{\infty} |a_k|^p r^k \right)^{1/p} \left(\sum_{k=0}^{\infty} r^{2k/(2-p)} \right)^{1-1/p}
= \left(M_p^1(r) \right)^{1/p} \frac{1}{(1 - r^{2/(2-p)})(p-1)/p}
$$

so that

$$M_p^1(r) \geq \left(\frac{1}{\sqrt{1 - r^{2/(2-p)}}} - C(\varepsilon) \left(\log \frac{1}{1 - r^{1/(2-p)}} \right)^{3/2 + \varepsilon} \right)^p (1 - r^{2/(2-p)})^{p-1}, \quad 2^{p-1} < r < 1,$$

or equivalently

$$M_p^1(r) \geq \left(\frac{1}{1 - r^{2/(2-p)}} \right)^{1-p/2} - C_1(\varepsilon)(1 - r^{2/(2-p)})^{(p-1)/2} \left(\log \frac{1}{1 - r^{1/(2-p)}} \right)^{3/2 + \varepsilon}.$$

This estimate together with the second estimate of Theorem 1 implies that

$$M_p(r) - \left(\frac{1}{1 - r^{2/(2-p)}} \right)^{1-p/2} \rightarrow 0 \quad \text{as} \quad r \rightarrow 1^-$$

for $1 < p < 2$ while we do not know whether this fact is true for $p = 1$. Also the last estimate can be considered as an asymptotically sharp form of Theorem B in the case $p > 1$.

Corollary 1. Let $p \in (1, 2)$. Then $M_p(r) = 1$ for $r \leq r_p$.

In [16] Corollary 2.8, Paulsen et al. showed that if $f \in \mathcal{B}$, then for $r \in [0, 1)$,

$$M_1^f(r) \leq m(r) = \inf \{ M(r), 1/\sqrt{1 - r^2} \}
$$

where

$$M(r) = \sup \left\{ t + (1 - t^2) \frac{r}{1 - r} : 0 \leq t \leq 1 \right\} = \begin{cases}
\frac{1}{4r^2 + (1 - r)^2} & \text{for } 0 \leq r \leq 1/3 \\
\frac{4r^2 + (1 - r)^2}{4r(1 - r)} & \text{for } 1/3 < r < 1.
\end{cases}$$

In 2002, Paulsen et al. [16] raised a question whether the inequality (11) is sharp for any r with $1/3 < r < 1$. However, in 1962 this has been answered by Bombieri [7] who
determined the exact value of this constant for r in the range $1/3 \leq r \leq 1/\sqrt{2}$. This constant is

$$m(r) = \frac{3 - \sqrt{8(1 - r^2)}}{r}.$$

Further results on this and related topics can be found in [13]. On the other hand, it is worth mentioning that the answer to the above question is indeed a consequence of Theorem 1 and so, we state it as a corollary.

Corollary 2. We have the following sharp estimate:

$$M_1(r) = \frac{1}{r}(3 - \sqrt{8(1 - r^2)}) \text{ for } r \in \left[\frac{1}{3}, \frac{1}{\sqrt{2}}\right].$$

Finally, we recall the following corollary which was proved in [13] and so we omit the proof.

Corollary 3. Let $p \in \mathbb{N}$ and $0 \leq m \leq p$, $f(z) = \sum_{k=0}^{\infty} a_{pk+m}z^{pk+m}$ be analytic in \mathbb{D} and $|f(z)| < 1$ in \mathbb{D}. Then

$$\sum_{k=0}^{\infty} |a_{pk+m}|r^{pk+m} \leq 1 \text{ for } r \leq r_{p,m},$$

where $r_{p,m}$ is the maximal positive root of the equation

$$-6r^{p-m} + r^{2(p-m)} + 8r^{2p} + 1 = 0.$$

The extremal function has the form $z^m(z^p - a)/(1 - az^p)$, where

$$a = \left(1 - \frac{\sqrt{1 - r_{p,m}^{2p}}}{\sqrt{2}}\right) \frac{1}{r_{p,m}^{p+1}}.$$

Our next result concerns sense-preserving harmonic mappings defined on the unit disk \mathbb{D}. Recall that the family \mathcal{H} of complex-valued harmonic functions $f = h + \overline{g}$ defined on \mathbb{D} and its univalent subfamilies are investigated in details. Here h and g are analytic on \mathbb{D} with the form

$$h(z) = \sum_{k=0}^{\infty} a_k z^k \text{ and } g(z) = \sum_{k=1}^{\infty} b_k z^k$$

so that the Jacobian of f is given by $J_f = |f_z|^2 - |f_\bar{z}|^2 = |h'|^2 - |g'|^2$. We say that the harmonic mapping f is sense-preserving if $J_f(z) > 0$ in \mathbb{D}. We call $\omega(z) = g'(z)/h'(z)$ the complex dilatation of $f = h + \overline{g}$. Lewy’s theorem implies that every harmonic function f on \mathbb{D} is locally one-to-one and sense-preserving on \mathbb{D} if and only if $|\omega(z)| < 1$ for $z \in \mathbb{D}$. See [9,11] for detailed discussion on the class of univalent harmonic mappings and its geometric subclasses.

Theorem 2. Suppose that $f(z) = h(z) + \overline{g(z)} = \sum_{k=0}^{\infty} a_k z^k + \sum_{k=1}^{\infty} b_k z^k$ is a harmonic mapping of the disk \mathbb{D}, where h is a bounded function in \mathbb{D} and $|g'(z)| \leq |h'(z)|$ for $z \in \mathbb{D}$ (the later condition obviously holds if f is sense-preserving). If $p \in [0,2]$ then the following sharp inequality holds

$$|a_0|^p + \sum_{k=1}^{\infty} (|a_k|^p + |b_k|^p)r^k \leq ||h||_{\infty} \max_{a \in [0,1]} \left\{ a^p + \frac{2r(1 - a^2)^p}{1 - ra^p} \right\}$$

where $r = |z| < 1$.

for \(r \leq (2^{1/(p-2)} + 1)^{p/2-1} \). In the case \(p > 2 \) we have

\[
|a_0|^p + \sum_{k=1}^\infty (|a_k|^p + |b_k|^p)r^k \leq \|h\|_\infty \max\{1, 2r\}.
\]

Corollary 4. Suppose that \(f(z) = h(z) + g(z) = \sum_{k=0}^\infty a_k z^k + \sum_{k=1}^\infty b_k z^k \) is a sense-preserving harmonic mapping of the disk \(\mathbb{D} \), where \(h \) is a bounded function in \(\mathbb{D} \). Then the following sharp inequalities holds:

\[
|a_0| + \sum_{k=1}^\infty (|a_k| + |b_k|)r^k \leq \frac{\|h\|_\infty}{r} (5 - 2\sqrt{6\sqrt{1-r^2}}) \quad \text{for} \quad \frac{1}{5} \leq r \leq \sqrt{\frac{2}{3}},
\]

and

\[
|a_0| + \sum_{k=1}^\infty (|a_k| + |b_k|)r^k \leq \|h\|_\infty \quad \text{for} \quad r \leq \frac{1}{5}.
\]

Proofs of Theorem 2 and Corollary 4 will be given in Section 2. In Section 3 we discuss Bohr radius for the class of Bieberbach-Eilenberg functions.

2. **Proofs of Theorems 1 and 2 and their corollaries**

The proofs of the theorems rely on a couple of lemmas established by the present authors in [12] (see also [13]).

Lemma 1. [12] Let \(|a| < 1 \) and \(0 < R \leq 1 \). If \(g(z) = \sum_{k=0}^\infty b_k z^k \) belongs to \(\mathcal{B} \), then the following sharp inequality holds:

\[
\sum_{k=1}^\infty |b_k|^2 R^k \leq R \frac{(1 - |b_0|^2)^2}{1 - |b_0|^2 R}.
\]

Lemma 2. For all \(p \in (0, 2) \), we have \(r_p < (1/2)^{1-p/2} \).

Proof. Let \(r = r_p \) and set \(a = (1/2)^{1-p/2} \). Then we conclude that

\[
a^p + r \frac{(1 - a^2)^p}{1 - ra^p} = 2 \left(\frac{1}{2} \right)^{p/2} > 1
\]

which contradicts to the definition of \(r_p \). \(\square \)
Proof of Theorem 1. Let \(|a_0| = a > 0 \) and \(r \leq 2^{p/2 - 1} \). At first we suppose that \(a > r^{1/(2-p)} \). In this case we have

\[
M_p^f(r) = a^p + \sum_{k=1}^{\infty} \rho^k |a_k|^p \left(\frac{r}{\rho} \right)^k
\]

\[
\leq a^p + \left(\sum_{k=1}^{\infty} (\rho^k |a_k|^p)^{2/p} \right)^{p/2} \left(\sum_{k=1}^{\infty} \left(\frac{r}{\rho} \right)^{2k/(2-p)} \right)^{1-p/2}
\]

\[
= a^p + \left(\sum_{k=1}^{\infty} (\rho^{2/p} |a_k|^2)^{2/p} \right)^{p/2} \left(\sum_{k=1}^{\infty} \left(\frac{r}{\rho} \right)^{2k/(2-p)} \right)^{1-p/2}
\]

\[
\leq a^p + \left(\frac{\rho^{2/p}(1 - a^2)^2}{1 - a^2 \rho^{2/p}} \right)^{p/2} \left(\frac{(r/\rho)^{2/(2-p)}}{1 - (r/\rho)^{2/(2-p)}} \right)^{(2-p)/2}
\]

(by Lemma 1).

\[
= a^p + r \left(\frac{1 - a^2}{1 - a^2 \rho^{2/p}} \right)^{p/2} \left(\frac{1}{1 - (r/\rho)^{2/(2-p)}} \right)^{(2-p)/2}.
\]

Setting \(\rho = r^{p/2}a^{(p-2)/p^2} \) we obtain the inequality

\[
M_p^f(r) \leq a^p + r \frac{(1 - a^2)^p}{1 - ra^p},
\]

which proves the theorem in the case \(a > r^{1/(2-p)} \).

In the case \(a \leq r^{1/(2-p)} \), we set \(\rho = 1 \) and obtain

\[
M_p^f(r) = \sum_{k=0}^{\infty} |a_k|^p r^k \leq a^p + r \frac{(1 - a^2)^{p/2}}{(1 - r^{2/(2-p)})^{1-p/2}}.
\]

Let us remark that the inequality \(M_p^f(r) \leq 1 \) is valid in the cases \(a = 0 \) and \(a = r^{1/(2-p)} \).

This fact can be established as a limiting case of the previous case. Finally, we let \(t = a^2 \).

We have then to maximize the expression

\[
A(t) = t^{p/2} + r \frac{(1 - t)^{p/2}}{(1 - r^{2/(2-p)})^{1-p/2}}, \quad t \leq r^{2/(2-p)}.
\]

Using differentiation we obtain the stationary point

\[
t = 1 - r^{2/(2-p)}
\]

which must satisfy under the restriction \(t \leq r^{2/(2-p)} \) which is impossible because \(r \leq 2^{p/2 - 1} \).

However, in the case \(r > 2^{p/2 - 1} \) the critical point \(t \) is admissible so that

\[
A(t) = t^{p/2} + r \frac{(1 - t)^{p/2}}{(1 - r^{2/(2-p)})^{1-p/2}} = \left(\frac{1}{1 - r^{2/(2-p)}} \right)^{1-p/2}.
\]

This observation shows that

\[
M_p^f(r) \leq \left(\frac{1}{1 - r^{2/(2-p)}} \right)^{1-p/2}, \quad 2^{p/2 - 1} < r < 1.
\]
Now let us show that this inequality cannot be sharp. To do this we will use the method presented by Bombieri and Bourgain [8].

Suppose that the estimate sharp in this case. Then by analyzing Hölder’s inequality we immediately conclude that

$$|a_k| = \sqrt{1 - r^{2/(2-p)} k^{(2-p)}} \quad k \geq 0.$$

Also it is easy to show that the extremal function must be a Blashke’s product with a finite degree \(d \geq 1 \). Computing the area, one obtains that

$$\pi d = \text{Area } f(\mathbb{D}) = \pi \sum_{k=1}^{\infty} k|a_k|^2 = \pi \frac{\lambda^2}{1 - \lambda^2}, \quad \lambda = r^{1/(2-p)}.$$

From here we easily deduce that \(d = \lambda^2/(1 - \lambda^2) \) and thus, \(\lambda = \sqrt{d/(d + 1)} \), which gives

$$\sqrt{\frac{d}{d + 1}} = r^{1/(2-p)}, \quad \text{i.e.} \quad r = \left(\frac{d}{d + 1} \right)^{1-(p/2)}.$$

Therefore our inequality could be sharp for these values only. Now let us show that this is possible for \(d = 1 \) only. Using the same reasoning as in [8] (in fact we apply their considerations in which \(r \) is replaced by \(r^{1/(2-p)} \)) we arrive at the identity

$$\sqrt{1 - r^{2/(2-p)}} = r^{d/(2-p)}$$

which together with (2) implies that

$$\sqrt{1 - \frac{d}{d + 1}} = \left(\frac{d}{d + 1} \right)^{d/2}.$$

From here we easily deduce that \(d = 1 \) and this completes the proof of Theorem 1. \(\square \)

Proof of Corollary 1. Easily follows from Theorem 1 and Lemma 2. \(\square \)

Proof of Corollary 2. Theorem 1 for \(p = 1 \) gives that

$$M_p(r) = \max_{a \in [0,1]} \left\{ a + \frac{r(1 - a^2)}{1 - ra} \right\}.$$

By using differentiation it is easy to show that in the case \(1/3 \leq r \leq 1/\sqrt{2} \) the maximum of the last expression is achieved at the point

$$a = \left(1 - \frac{\sqrt{1 - r^2}}{\sqrt{2}} \right) \frac{1}{r}$$

and consequently, we obtain that

$$M_1(r) = \frac{1}{r} (3 - 2\sqrt{2}\sqrt{1 - r^2}).$$

The proof is complete. \(\square \)
Proof of Theorem \[\Box\] Without lost of generality we may assume that \(\|h\|_\infty = 1\). As in \[14\], the condition \(|g'(z)| \leq |h'(z)|\) gives that for each \(r \in [0, 1)\),

\[
\sum_{k=0}^{\infty} |a_k|^r \leq \sum_{k=0}^{\infty} |a_k|^r.
\]

Let \(|a_0| = a > 0\). Then, by using the same method as in the previous theorem in the case \(a > \frac{1}{2-p}\), we obtain

\[
|a_0|^p + \sum_{k=1}^{\infty} (|a_k|^p + |b_k|^p) r^k \leq a^p + 2r \frac{(1-a^2)^p}{1-ra^p}.
\]

In the case \(a \leq \frac{1}{2-p}\), we let \(\rho = 1\) and obtain

\[
\sum_{k=0}^{\infty} |a_k|^r \leq a^p + 2r - \frac{(1-a^2)^p/2}{(1-r^{2/(2-p)})^{1-p/2}}.
\]

We set \(t = a^2\). We have to maximize the expression

\[
B(t) = t^{p/2} + 2r \frac{(1-t)^{p/2}}{(1-r^{2/(2-p)})^{1-p/2}}, \quad t \leq r^{2/(2-p)}.
\]

Using differentiation we see that the function \(B(t)\) is increasing on the interval

\[
0 \leq t \leq \frac{1 - r^{2/(2-p)}}{1 + (2r)^{2/(2-p)} - r^{2/(2-p)}}.
\]

The upper bound of this interval is greater than or equal to \(2^{p-1}\) in the case \(r \leq (2^{1/(p-2)} + 1)^{p/2-1}\). It means that the function \(B(t)\) has maximum at the point \(t = r^{2/(2-p)}\) which corresponds to the case \(a = \frac{1}{2-p}\) so that we can apply our previous case. This completes the proof Theorem \[\Box\]

Let \(p = 1\) and then we apply the previous theorem. As a result, we obtain the inequality

\[
|a_0| + \sum_{k=1}^{\infty} (|a_k| + |b_k|) r^k \leq \max_{a \in [0,1]} \left\{ a + 2r(1-a^2) \frac{1-ra}{1-ra} \right\} \text{ for } r \leq \sqrt{2/3}.
\]

Straightforward calculations confirm the proof of Corollary \[\Box\] In Section \[3\] we present the Bohr radius for the class of Bieberbach-Eilenberg functions.

3. CONCLUDING REMARKS

Let \(\mathcal{BE}\) denote the class of all functions \(f(z) = \sum_{k=1}^{\infty} a_k z^k\) analytic in \(D\) such that \(f(z_1)f(z_2) \neq 1\) for all pairs of points \(z_1, z_2\) in \(D\). Each \(f \in \mathcal{BE}\) is called a Bieberbach-Eilenberg function. Clearly, \(\mathcal{BE}\) contains the class \(\mathcal{B}_0\), where \(\mathcal{B}_0 = \{ f \in \mathcal{B} : f(0) = 0 \}\). In 1970, Aharonov \[1\] and Nehari \[15\] independently showed that

\[
\sum_{k=1}^{\infty} |a_k|^2 \leq 1 \text{ and } |f(z)| \leq \frac{|z|}{\sqrt{1-|z|^2}}.
\]
hold for every $f \in \mathcal{BE}$. Equality holds only for the functions
\[f(z) = \frac{\eta z}{R \pm (\sqrt{R^2 - 1})i\eta z}, \quad R > 1, \quad |\eta| = 1. \]
Since $\mathcal{B}_0 \subset \mathcal{BE}$, it is natural to ask for the Bohr radius for the family \mathcal{BE}. Indeed, we see below that the Bohr radius for \mathcal{BE} and the class \mathcal{B}_0 remains the same.

Theorem 3. Assume that $f(z) = \sum_{k=1}^{\infty} a_k z^k$ belongs to \mathcal{BE}. Then
\[\sum_{k=1}^{\infty} |a_k|r^k \leq 1 \quad \text{for} \quad |z| = r \leq 1/\sqrt{2}. \]

The number $1/\sqrt{2}$ is sharp.

Proof. Because $f \in \mathcal{BE}$ satisfies the coefficient inequality (4), it follows that
\[
\sum_{k=1}^{\infty} |a_k|r^k \leq \sqrt{\sum_{k=1}^{\infty} |a_k|^2} \sqrt{\sum_{k=1}^{\infty} r^{2k}} \leq \frac{r}{\sqrt{1 - r^2}}
\]
which is less than or equal to 1 if $0 \leq r \leq 1/\sqrt{2}$. The number $1/\sqrt{2}$ is sharp as the function $f(z) = z(a - z)/(1 - az)$ shows, where $a = 1/\sqrt{2}$. The proof is complete. \(\square\)

Theorem 4. Suppose that $f(z) = h(z) + g(z) = \sum_{k=1}^{\infty} a_k z^k + \sum_{k=1}^{\infty} b_k z^k$ is a harmonic mapping of the disk \mathbb{D}, where $h \in \mathcal{BE}$ and $|g'(z)| \leq |h'(z)|$ for $z \in \mathbb{D}$. Then for any $p \geq 1$ and $r < 1$, the following inequality holds:
\[\sum_{k=1}^{\infty} (|a_k|^p + |b_k|^p)^{1/p} r^k \leq \max\{2^{(1/p)-1/2}, 1\} \frac{\sqrt{2}r}{\sqrt{1 - r^2}}. \]

Proof. By hypothesis, (3) holds and thus, letting r approach 1, we get
\[\sum_{k=1}^{\infty} |b_k|^2 \leq \sum_{k=1}^{\infty} |a_k|^2 \leq 1. \]
Consequently, we obtain
\[
\sum_{k=1}^{\infty} (|a_k|^p + |b_k|^p)^{1/p} r^k \leq \sqrt{\sum_{k=1}^{\infty} (|a_k|^p + |b_k|^p)^{2/p} \sum_{k=1}^{\infty} r^{2k}} \leq \sqrt{\max\{2^{(2/p)-1}, 1\} \sum_{k=1}^{\infty} (|a_k|^2 + |b_k|^2) \frac{r}{\sqrt{1 - r^2}}} \leq \max\{2^{(1/p)-1/2}, 1\} \frac{\sqrt{2}r}{\sqrt{1 - r^2}}
\]
and the proof is complete. \(\square\)
Theorem 4 for \(p = 1 \) shows that for \(r \leq 1/\sqrt{5} \),
\[
\sum_{k=1}^{\infty} (|a_k| + |b_k|) r^k \leq 1.
\]

Similarly, for \(p = 2 \), we see that for \(r \leq 1/\sqrt{3} \),
\[
\sum_{k=1}^{\infty} (|a_k|^2 + |b_k|^2)^{1/2} r^k \leq 1.
\]

Acknowledgements. The research of the first author was supported by Russian foundation for basic research, Proj. 17-01-00282. The work of the second author is supported in part by Mathematical Research Impact Centric Support (MATRICS) grant, FIle No.: MTR/2017/000367, by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India.

References

1. D. Aharonov, On Bieberbach–Eilenberg functions, Bull. Amer. Math. Soc., 76(1) (1970), 101–104.
2. L. Aizenberg, Multidimensional analogues of Bohr’s theorem on power series, Proc. Amer. Math. Soc. 128(4) (2000), 1147–1155.
3. L. Aizenberg, Generalization of Carathéodory’s inequality and the Bohr radius for multidimensional power series, in Selected topics in complex analysis, 87–94, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005.
4. R. M. Ali, Y. Abu-Muhanna and S. Ponnusamy, On the Bohr inequality, In “Progress in Approximation Theory and Applicable Complex Analysis” (Edited by N.K. Govil et al.), Springer Optimization and Its Applications 117 (2016), 265–295.
5. H. P. Boas and D. Khavinson, Bohr’s power series theorem in several variables, Proc. Amer. Math. Soc. 125(10) (1997), 2975–2979.
6. H. Bohr, A theorem concerning power series, Proc. London Math. Soc. 13(2) (1914), 1–5.
7. E. Bombieri, Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze, Boll. Unione Mat. Ital. 17 (1962), 276–282.
8. E. Bombieri and J. Bourgain, A remark on Bohr’s inequality, IMRN International Mathematics Research Notices, 80(2004), 4307–4330.
9. J. G. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I. 9 (1984), 3–25.
10. P. B. Djakov and M. S. Ramanujan, A remark on Bohr’s theorems and its generalizations, J. Analysis 8 (2000), 65–77.
11. P.L. Duren, Harmonic mappings in the plane, Cambridge Univ. Press, 2004.
12. I. R. Kayumov and S. Ponnusamy, Bohr inequality for odd analytic functions, Comput. Methods Funct. Theory, 17(2017), 679–688.
13. I. R. Kayumov and S. Ponnusamy, Bohr’s inequalities for the analytic functions with lacunary series and harmonic functions, J. Math. Anal. and Appl., 465(2018), 857–871.
14. I. R. Kayumov, S. Ponnusamy, N. Shakirov, Bohr radius for locally univalent harmonic mappings, Math. Nachr. 291(2018), 1757–1768.
15. Z. Nehari, On the coefficients of Bieberbach–Eilenberg functions, J. Anal. Math., 23 (1970), 297–303.
16. V. I. Paulsen, G. Popescu and D. Singh, On Bohr’s inequality, Proc. London Math. Soc. 85(2) (2002), 493–512.

I. R Kayumov, Kazan Federal University, Kremlevskaya 18, 420 008 Kazan, Russia
E-mail address: ikayumov@kpfu.ru
S. Ponnusamy, Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India.

E-mail address: samy@isichennai.res.in, samy@iitm.ac.in