THE LMA MSW SOLUTION OF THE SOLAR NEUTRINO PROBLEM, INVERTED NEUTRINO MASS HIERARCHY AND REACTOR NEUTRINO EXPERIMENTS

S.T. Petcov and M. Piai

Abstract. In the context of three-neutrino oscillations, we study the possibility of using antineutrinos from nuclear reactors to explore the $10^{-4} \, \text{eV}^2 < \Delta m^2_\odot \lesssim 8 \times 10^{-4} \, \text{eV}^2$ region of the LMA MSW solution of the solar neutrino problem and measure Δm^2_\odot with high precision. The KamLAND experiment is not expected to determine Δm^2_\odot if the latter happens to lie in the indicated region. By analysing both the total event rate suppression and the energy spectrum distortion caused by $\bar{\nu}_e$ oscillations in vacuum, we show that the optimal baseline of such an experiment is $L \sim (20 - 25) \, \text{km}$. Furthermore, for $10^{-4} \, \text{eV}^2 < \Delta m^2_\odot \lesssim 5 \times 10^{-4} \, \text{eV}^2$, the same experiment might be used to try to distinguish between the two possible types of neutrino mass spectrum - with normal or with inverted hierarchy, by exploring the effect of interference between the atmospheric- and solar- Δm^2 driven oscillations; for larger values of Δm^2_\odot not exceeding $8.0 \times 10^{-4} \, \text{eV}^2$, a shorter baseline, $L \simeq 10 \, \text{km}$, would be needed for the purpose. The indicated interference effect modifies in a characteristic way the energy spectrum of detected events. Distinguishing between the two types of neutrino mass spectrum requires, however, a high precision determination of the atmospheric Δm^2, a sufficiently large $\sin^2 \theta$ and a non-maximal $\sin^2 \theta_\odot$, where θ and θ_\odot are the mixing angles respectively limited by the CHOOZ and Palo Verde data and characterizing the solar neutrino oscillations. It also requires a relatively high precision measurement of the positron spectrum in the reaction $\bar{\nu}_e + p \rightarrow e^+ + n$.

PACS: 14.60.Pq 13.15.+g

1SISSA/INFN, Via Beirut 2-4, I-34014 Trieste, Italy.
2Also at: Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria.
1 Introduction

In recent years the experiments with solar and atmospheric neutrinos collected strong evidences in favor of the existence of oscillations between the flavour neutrinos, ν_e, ν_μ and ν_τ. Further progress in our understanding of the neutrino mixing and oscillations requires, in particular, precise measurements of the parameters entering into the oscillation probabilities - the neutrino mass-squared differences and mixing angles, and the reconstruction of the neutrino mass spectrum.

The atmospheric neutrino data can be explained by dominant $\nu_\mu \to \nu_e$ and $\bar{\nu}_\mu \to \bar{\nu}_\tau$ oscillations, characterized by large, possibly maximal, mixing, and a mass squared difference, Δm^2_{atm}, having a value in the range $[1]$ (99% C.L.):

$$ 1.3 \times 10^{-3} \text{eV}^2 \lesssim |\Delta m^2_{atm}| \lesssim 5 \times 10^{-3} \text{eV}^2. $$

(1)

The first results from the Sudbury Neutrino Observatory (SNO) [2], combined with the mean event rate data from the Super-Kamiokande (SK) experiment [3], provide a very strong evidence for oscillations of the solar neutrinos [4] - [10]. Global analyses of the solar neutrino data, including the SNO results and the SK data on the e^--spectrum and day-night asymmetry, show that the data favor the large mixing angle (LMA) MSW solution of the solar neutrino problem, with the corresponding neutrino mixing parameter $\sin^2 2\theta_\odot$ and mass-squared difference Δm^2_\odot lying in the regions (99.73% C.L.):

$$ 2 \times 10^{-5} \text{eV}^2 \lesssim \Delta m^2_\odot \lesssim 8 \times 10^{-4} \text{eV}^2 $$

(2)

$$ 0.6 \leq \sin^2 2\theta_\odot \leq 1. $$

(3)

The best fit value of Δm^2_\odot found in the independent analyses [5, 6, 7, 9] is spread in the interval $(4.3 - 6.3) \times 10^{-5} \text{eV}^2$. The results obtained in [5, 6, 7, 9] show that values of $\Delta m^2_\odot > 10^{-4} \text{eV}^2$ are allowed already at 90% C.L. Values of $\cos 2\theta_\odot < 0$ (for $\Delta m^2_\odot > 0$) are disfavored by the data.

Important constraints on the oscillations of electron (anti-)neutrinos, which play a significant role in our current understanding of the possible patterns of oscillations of the three flavour neutrinos and anti-neutrinos, were obtained in the CHOOZ and Palo Verde disappearance experiments with reactor $\bar{\nu}_e$ [11, 12]. The CHOOZ and Palo Verde experiments were sensitive to values of neutrino mass squared difference $\Delta m^2 \gtrsim 10^{-3} \text{eV}^2$, which includes the corresponding atmospheric neutrino region, eq. (1).

No disappearance of the reactor $\bar{\nu}_e$ was observed. Performing a two-neutrino oscillation analysis, the following rather stringent upper bound on the value of the corresponding mixing angle, θ, was obtained by the CHOOZ collaboration [11, 12] at 95% C.L. for $\Delta m^2 \geq 1.5 \times 10^{-3} \text{eV}^2$:

$$ \sin^2 \theta < 0.09. $$

(4)

The precise upper limit in eq. (3) is Δm^2-dependent: it is a decreasing function of Δm^2 as Δm^2 increases up to $\Delta m^2 \simeq 6 \cdot 10^{-3} \text{eV}^2$ with a minimum value $\sin^2 \theta \simeq 10^{-2}$. The upper limit becomes an increasing function of Δm^2 when the latter increases further up to $\Delta m^2 \simeq 8 \cdot 10^{-3} \text{eV}^2$, where $\sin^2 \theta < 2 \cdot 10^{-2}$. Somewhat weaker constraints on $\sin^2 \theta$ have been obtained by the Palo Verde collaboration [12]. In the future, $\sin^2 \theta$ might be further constrained or determined, e.g., in long baseline neutrino oscillation experiments [13, 14].

The long baseline experiment with reactor $\bar{\nu}_e$, KamLAND [14] has been designed to test the LMA MSW solution of the solar neutrino problem. This experiment is planned to provide a rather precise measurement of Δm^2_\odot and $\sin^2 2\theta_\odot$. Due to the long baseline of the experiment, $L \sim 180$ km, however, Δm^2_\odot can be determined with a relatively good precision only if $\Delta m^2_\odot \lesssim 10^{-4} \text{eV}^2$.

\footnote{The possibility of large $\sin^2 \theta > 0.9$ which is admitted by the CHOOZ data alone is incompatible with the neutrino oscillation interpretation of the solar neutrino deficit (see, e.g., [13, 14]).}
The explanation of both the atmospheric and solar neutrino data in terms of neutrino oscillations requires, as is well-known, the existence of 3-neutrino mixing in the weak charged lepton current:

\[\nu_{lL} = \sum_{j=1}^{3} U_{lj} \nu_{jL}, \]

where \(\nu_{lL}, l = e, \mu, \tau, \) are the three left-handed flavour neutrino fields, \(\nu_{jL} \) is the left-handed field of the neutrino \(\nu_j \) having a mass \(m_j > 0 \) and \(U \) is a \(3 \times 3 \) unitary mixing matrix - the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix [17, 18]. The three neutrino masses \(m_{1,2,3} \) can obey the so-called normal hierarchy (NH) relation \(m_1 < m_2 < m_3 \), or that of the inverted hierarchy (IH) type, \(m_3 < m_1 < m_2 \). Thus, in order to reconstruct the neutrino mass spectrum in the case of 3-neutrino mixing, it is necessary to establish, in particular, which of the two possible types of neutrino mass spectrum is actually realized. This information is particularly important for the studies of a number of fundamental issues related to lepton mixing, as like the possible Majorana nature of massive neutrinos, which can manifest itself in the existence of neutrino-less double \(\beta \)-decay (see, e.g., [19, 20]). It would also constitute a critical test for theoretical models of fermionic mass matrices and flavor physics in general.

It would be possible to determine whether the neutrino mass spectrum is with normal or inverted hierarchy in terrestrial neutrino oscillation experiments with a sufficiently long baseline, so that the neutrino oscillations take place in the Earth and the Earth matter effects in the oscillations are non-negligible [21, 22, 23]. The ambiguity regarding the type of the neutrino mass spectrum might be resolved by the MINOS experiment [13], although on the baseline of this experiment the matter effects are relatively small [21]. This might be done in an experiment with atmospheric neutrinos, utilizing a detector with a sufficiently good muon charge discrimination [24]. The experiments at neutrino factories would be particularly suitable for the indicated purpose [22, 23].

In this paper, in the context of three-neutrino oscillations, we study the possibility of using anti-neutrinos from nuclear reactors to explore the \(\Delta m^2 > 10^{-4} \) eV\(^2\) region of the LMA MSW solution. Such an experiment might be of considerable interest if, in particular, the results of the KamLAND experiment will confirm the validity of the LMA-MSW solution of the solar neutrino problem, but will allow to obtain only a lower bound on \(\Delta m^2 \) due to the fact that \(\Delta m^2 > 10^{-4} \) eV\(^2\) [25, 26, 27]. We determine the optimal baseline of the possible experiment with reactor \(\bar{\nu}_e \), which would provide a precise measurement of \(\Delta m^2 \) in the region \(10^{-4} \) eV\(^2\) \(< \Delta m^2 \lesssim 8 \times 10^{-4} \) eV\(^2\). Furthermore, the same experiment might be used to try to distinguish between the two types of neutrino mass spectrum - with normal or with inverted hierarchy. This might be done by exploring the effect of interference between the amplitudes of neutrino oscillations, driven by the solar and atmospheric \(\Delta m^2 \), i.e., by \(\Delta m^2_\odot \) and \(\Delta m^2_{\text{atm}} \). For the optimal baseline found earlier, \(L \approx (20 - 25) \) km, the indicated effect could be relevant for \(10^{-4} \) eV\(^2\) \(< \Delta m^2_\odot \lesssim 5 \times 10^{-4} \) eV\(^2\). For larger values of \(\Delta m^2_\odot \) within the interval [3], the effect could be relevant at \(L \approx 10 \) km. Distinguishing between the two possible types of neutrino mass spectrum requires a relatively high precision measurement of the positron spectrum in the reaction \(\bar{\nu}_e + p \rightarrow e^+ + n \) (i.e., a high statistics experiment with sufficiently good energy resolution), a measurement of \(\Delta m^2_{\text{atm}} \) with very high precision, \(\sin^2 2\theta_{\odot} \neq 1.0 \), e.g., \(\sin^2 2\theta_{\odot} \lesssim 0.9 \), and a sufficiently large value of the angle \(\theta \), which for \(\Delta m^2_\odot \approx \Delta m^2_{\text{atm}} \) controls, e.g., the oscillations of the atmospheric \(\nu_e \) and \(\bar{\nu}_e \) and is constrained by the CHOOZ and Palo Verde data.

2 The \(\bar{\nu}_e \) Survival Probability

We shall assume in what follows that the 3-neutrino mixing described by eq. (5) takes place. We shall number (without loss of generality) the neutrinos with definite mass in vacuum \(\nu_j, j = 1, 2, 3 \), in such a way that their masses obey \(m_1 < m_2 < m_3 \). Then the cases of NH and IH neutrino mass
The expression for the and \(\Delta m^2_{21} \) of measurable quantities for the two types of neutrino mass spectrum. In the case of normal hierarchy the mixing angles \(E \) where
\[
\theta_{12} \approx 180^\circ
\]
\(\Delta m^2_{21} \) is the neutrino energy and we have made use of eqs. (6), (7) and (8).

The mixing matrix element constrained by the CHOOZ and Palo Verde data is now considerably shorter than the baseline\(t \)ions will not be affected by Earth matter effects when the \(\nu_e \) travel between the source (reactor) and the detector. If 3-neutrino mixing takes place, eq. (5), the \(\nu_e \) would take part in 3-neutrino oscillations in vacuum on the way to the detector.

We shall obtain next the expressions for the reactor \(\nu_e \) survival probability of interest in terms of measurable quantities for the two types of neutrino mass spectrum. In the case of normal hierarchy between the neutrino masses we have:

\[
\Delta m^2_{13} = \Delta m^2_{21},
\]

and
\[
|U_{e1}| = \cos \theta_{12} \sqrt{1 - |U_{e3}|^2}, \quad |U_{e2}| = \sin \theta_{12} \sqrt{1 - |U_{e3}|^2},
\]

where
\[
\theta_{12} = \theta_{13}, \quad |U_{e3}|^2 = \sin^2 \theta_2 \equiv \sin^2 \theta_{13},
\]
\(\theta_{12} \) and \(\theta_{13} \) being two of the three mixing angles in the standard parameterization of the PMNS matrix (see, e.g., [16]). Note that \(|U_{e3}|^2 \) is constrained by the CHOOZ and Palo Verde results. It is not difficult to derive the expression for the \(\nu_e \) survival probability in the case under discussion:

\[
P_{NH}(\nu_e \to \nu_e)
= 1 - 2 \sin^2 \theta \cos^2 \theta \left(1 - \cos \frac{\Delta m^2_{31} L}{2 E_\nu} \right)
- \frac{1}{2} \cos^4 \theta \sin^2 2 \theta_{12} \left(1 - \cos \frac{\Delta m^2_{13} L}{2 E_\nu} \right)
+ 2 \sin^2 \theta \cos^2 \theta \sin^2 \theta_{12} \left(\cos \left(\frac{\Delta m^2_{31} L}{2 E_\nu} - \frac{\Delta m^2_{13} L}{2 E_\nu} \right) - \cos \frac{\Delta m^2_{31} L}{2 E_\nu} \right),
\]

where \(E_\nu \) is the neutrino energy and we have made use of eqs. (6), (7) and (8).

If the neutrino mass spectrum is with inverted hierarchy one has (see, e.g., [28, 20, 16]):

\[
\Delta m^2_{13} = \Delta m^2_{32},
\]

and
\[
|U_{e1}| = \cos \theta_{12} \sqrt{1 - |U_{e3}|^2}, \quad |U_{e2}| = \sin \theta_{12} \sqrt{1 - |U_{e1}|^2}.
\]

The mixing matrix element constrained by the CHOOZ and Palo Verde data is now \(|U_{e1}|^2 \):

\[
|U_{e1}|^2 = \sin^2 \theta.
\]

The expression for the \(\nu_e \) survival probability can be written in the form [29]:

\[
P_{IH}(\nu_e \to \nu_e)
= 1 - 2 \sin^2 \theta \cos^2 \theta \left(1 - \cos \frac{\Delta m^2_{31} L}{2 E_\nu} \right)
- \frac{1}{2} \cos^4 \theta \sin^2 2 \theta_{12} \left(1 - \cos \frac{\Delta m^2_{13} L}{2 E_\nu} \right)
+ 2 \sin^2 \theta \cos^2 \theta \cos^2 \theta_{12} \left(\cos \left(\frac{\Delta m^2_{31} L}{2 E_\nu} - \frac{\Delta m^2_{13} L}{2 E_\nu} \right) - \cos \frac{\Delta m^2_{31} L}{2 E_\nu} \right).
\]
Several comments concerning the expressions for the ν_e survival probability, eqs. (9) and (13), follow. In the first lines in the right-hand side of eqs. (9) and (13), the oscillations of the electron (anti-)neutrino driven by the “atmospheric” Δm^2_{31} are accounted for. The CHOOZ and Palo Verde experiments are primarily sensitive to this term and their results limit $\sin^2 \theta$. The second lines in the expressions in eqs. (9) and (13) contain the solar neutrino oscillation parameters. This is the term KamLAND should be most sensitive to. For $\Delta m^2_\odot \ll \Delta m^2_{31} = \Delta m^2_{atm}$, $\Delta m^2_\odot \lesssim 10^{-4}$ eV2, only one of the indicated two terms leads to an oscillatory dependence of the ν_e survival probability for the ranges of L/E_{ν} characterizing the CHOOZ and Palo Verde, and the KamLAND experiments: on the source-detector distance L of the CHOOZ and Palo Verde experiments the oscillations due to Δm^2_\odot cannot develop, while on the distance(s) traveled by the ν_e in the KamLAND experiment Δm^2_{atm} causes fast oscillations which average out and are not predicted to lead, e.g., to specific spectrum distortions of the KamLAND event rate.

The terms in the third lines in eqs. (9) and (13) are not present in any two-neutrino oscillation analysis. They represent interference terms between the amplitudes of neutrino oscillations, driven by the solar and atmospheric neutrino mass squared differences. The term in eq. (9) is proportional to $\sin^2 \theta_\odot$, while the corresponding term in eq. (13) is proportional to $\cos^2 \theta_\odot$ [29]. This is the only difference between $P_{NH}(\bar{\nu}_e \rightarrow \nu_e)$ and $P_{I}(\bar{\nu}_e \rightarrow \nu_e)$, that can be used to distinguish between the two cases of neutrino mass spectrum in an experiment with reactor ν_e. Obviously, if $\cos 2\theta_\odot = 0$, we have $P_{NH}(\bar{\nu}_e \rightarrow \nu_e) = P_{I}(\bar{\nu}_e \rightarrow \nu_e)$ and the two types of spectrum would be indistinguishable in the experiments under discussion. For vanishing $\sin^2 \theta$, only the terms in the second line of eqs. (9) and (13) survive, and the two-neutrino mixing formula for solar neutrino oscillations in vacuum is exactly reproduced.

Let us discuss next the ranges of values the different oscillation parameters, which enter into the expressions for the probabilities of interest $P_{NH}(\bar{\nu}_e \rightarrow \nu_e)$ and $P_{I}(\bar{\nu}_e \rightarrow \nu_e)$, can take. The allowed region of values of Δm^2_{31}, Δm^2_\odot, $\sin^2 \theta_\odot$ and θ should be determined in a global 3-neutrino oscillation analysis of the solar, atmospheric and reactor neutrino oscillation data, in which, in particular, Δm^2_\odot should be allowed to take values in the LMA solution region, including the interval $\Delta m^2_\odot \sim (1.0 - 6.0) \times 10^{-4}$ eV2. Such an analysis is lacking in the literature. However, as was shown in [30], a global analysis of the indicated type would not change essentially the results for the LMA MSW solution we have quoted in eqs. (2) and (3) as long as $\Delta m^2_{31} \gtrsim 1.5 \times 10^{-3}$ eV2. The reason is that for $\Delta m^2_{31} \gtrsim 1.5 \times 10^{-3}$ eV2 and $\Delta m^2_\odot \approx 6.0 \times 10^{-4}$ eV2, the solar ν_e survival probability, which determines the level of suppression of the solar neutrino flux and plays a major role in the analyses of the solar neutrino data, depends very weakly on (i.e., is practically independent of) Δm^2_{31}. Thus, Δm^2_\odot and θ_\odot are uniquely determined by the solar neutrino and CHOOZ and Palo Verde data, independently of the atmospheric neutrino data and of the type of the neutrino mass spectrum. The CHOOZ and Palo Verde data lead to an upper limit on Δm^2_{31} in the LMA MSW solution region (see, e.g., [3, 31]): $\Delta m^2_{31} \lesssim 7.5 \times 10^{-4}$ eV2. For $\Delta m^2_{31} \approx 1.0 \times 10^{-4}$ eV2, the CHOOZ and solar neutrino data imply the upper limit on $\sin^2 \theta$ given in eq. (4). For $\Delta m^2_\odot \sim (2.0 - 6.0) \times 10^{-4}$ eV2 of interest, the upper limit on $\sin^2 \theta$ as a function of $\Delta m^2_{31} \gtrsim 10^{-3}$ eV2 for given Δm^2_\odot and $\sin^2 2\theta_\odot$ is somewhat more stringent [29].

Would a global 3-neutrino oscillation analysis of the solar, atmospheric and reactor neutrino oscillation data lead to drastically different results for Δm^2_{31} in the two cases of normal and inverted neutrino mass hierarchy? Our preliminary analysis shows that given the existing atmospheric neutrino data from the Super-Kamiokande experiment, such an analysis i) would not be able to discriminate between the two cases of neutrino mass spectrum, and ii) would give essentially the same allowed region for Δm^2_{31} in the two cases of neutrino mass spectrum. We expect the regions of allowed values

Let us note that the LMA MSW solution values of Δm^2_\odot and θ_\odot we quote in eqs. (2) and (3) were obtained by taking into account the CHOOZ and Palo Verde limits as well.
of the mixing angle θ_{atm}, which controls the dominant atmospheric $\nu_\mu \rightarrow \nu_\tau$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_\tau$ oscillations, to differ somewhat in the two cases. Note, however, that this mixing angle does not enter the expression for the $\bar{\nu}_e$ survival probability we are interested in.

For $\Delta m^2_{31} \lesssim 1.0 \times 10^{-4} \text{eV}^2$ and sufficiently small values of $\sin^2 \theta$, Δm^2_{31} coincides effectively with Δm^2_{atm} of the two-neutrino ν_μ and $\bar{\nu}_\mu$ oscillation analyses of the SK atmospheric neutrino data. If $\sin^2 \theta > 0.01$, a three-neutrino oscillation analysis of the atmospheric neutrino and CHOOZ data, performed under the assumption of $\Delta m^2_{\text{atm}} \lesssim 1.0 \times 10^{-4} \text{eV}^2$ [83], gives regions of allowed values of $\Delta m^2_{\text{atm}} = \Delta m^2_{31}$, which are correlated with the value of $\sin^2 \theta$. The latter must satisfy the CHOOZ and Palo Verde constraints.

At present, as we have already indicated, a complete three-neutrino oscillation analysis of the atmospheric neutrino and CHOOZ data with Δm^2_{31} allowed to take values up to $\sim (6.0 - 7.0) \times 10^{-4} \text{eV}^2$, i.e., in the region where deviations from the two-neutrino approximation could be non-negligible, is lacking in the literature. Therefore in what follows we will use representative values of Δm^2_{31} which lie in the region given by eq. (1).

3 The Difference between $P_{NH}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$ and $P_{IH}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$

Let us discuss next in greater detail the difference between the $\bar{\nu}_e$ surviving probabilities in the two cases of neutrino mass spectrum of interest, $P_{NH}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$ and $P_{IH}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$. While the terms in the first two lines in eqs. (9) and (13) describe oscillations in L/E_ν, with frequencies $\Delta m^2_{31}/4\pi$ and $\Delta m^2_{31}/4\pi$, respectively, the third term has the shape of beats, being produced by the interference of two waves, with the same amplitude but slightly different frequencies:

$$\cos \left(\frac{\Delta m^2_{31}}{2E_\nu} L - \frac{\Delta m^2_{31}}{2E_\nu} L \right) - \cos \frac{\Delta m^2_{31}}{2E_\nu} L = 2 \sin \frac{\Delta m^2_{31}}{4E_\nu} L \sin \left(\frac{\Delta m^2_{31}}{2E_\nu} L - \frac{\Delta m^2_{31}}{4E_\nu} L \right) \approx 2 \sin \frac{\Delta m^2_{31}}{4E_\nu} L \sin \left(\frac{\Delta m^2_{31}}{2E_\nu} L \right)$$

This is a modulated oscillation with approximately the same frequency of the first term in eqs. (9) and (13) ($\Delta m^2_{31}/4\pi$) and amplitude oscillating between 0 and $2\sin^2 \theta_\odot$ of the amplitude of the first term itself. The beat frequency is equal to the frequency of the dominant oscillation ($\Delta m^2_{31}/4\pi$). The modulation is exactly in phase with the Δm^2_{31}-driven dominant oscillation of interest, so that the maximum of the oscillation amplitude of the interference term (third lines in the expressions for $P_{NH}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$ and $P_{IH}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$) is reached in coincidence with the points of maximal decreasing of the $\bar{\nu}_e$ survival probability, where $\Delta m^2_{31}/4E_\nu = \pi/2$, and vice versa - this amplitude vanishes at the local maxima of the survival probability. At the minima of the $\bar{\nu}_e$ survival probability, for instance at $\Delta m^2_{31}/4E_\nu = \pi/2$, $P^{\text{NH}(IH)}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$ takes the value:

$$P^{\text{NH}(IH)}(\bar{\nu}_e \rightarrow \bar{\nu}_e) \bigg|_{\Delta m^2_{31}/4E_\nu = 1} = 1 - 2\sin^2 \theta \cos^2 \theta - \cos^4 \theta \sin^2 2\theta_\odot \quad \left(\cos 2\theta_\odot \sin^2 \theta \cos^2 \theta \cos \frac{\Delta m^2_{31}}{2m^2_{\odot}} \right).$$

From eqs. (9), (13) and (15), one deduces that:

- for maximal mixing, $\cos 2\theta_\odot = 0$, the last term cancels, and $P^{\text{NH}} = P^{\text{IH}}$;
- for very small mixing angles, $\cos 2\theta_\odot \approx 1$, the terms describing the oscillations driven by Δm^2_{31} in the NH and IH cases have opposite signs: the two waves are exactly out of phase.
• for intermediate values of $\cos 2\theta_\odot$ from the LMA MSW solution region, $\cos 2\theta_\odot \approx (0.3 - 0.6)$, the Δm^2_{31}-driven contributions in the cases of normal and inverted hierarchy have still opposite signs and the magnitude of the effect is proportional to $2 \cos 2\theta_\odot \sin^2 \theta$.

The net result of these properties is that in the region of the minima of the $\bar{\nu}_e$ survival probability due to Δm^2_\odot, where $\Delta m^2_\odot L/(2E) = \pi(2k + 1), k = 0, 1, \ldots$, the difference between $P_{NIH}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$ and $P_{IH}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$ is maximal. In contrast, at the maxima of $P_{NIH}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$ and $P_{IH}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$ determined by $\Delta m^2_\odot L/(2E) = 2\pi k$, we have, for any $\sin^2 \theta_\odot$, $P_{NIH}(\bar{\nu}_e \rightarrow \bar{\nu}_e) = P_{IH}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$.

The two-neutrino oscillation approximation used in the analysis of the CHOOZ and Palo Verde data is rather accurate as long as Δm^2_\odot is sufficiently small [29]: for $\Delta m^2_\odot \lesssim 10^{-4}$ eV2, the L/E_ν values characterizing these experiments, chosen to ensure maximal sensitivity to $\Delta m^2_{31} \gtrsim 10^{-3}$ eV2, are much smaller than the value at which the first minimum of $P_{NIH(IH)}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$ due to the Δm^2_\odot-dependent oscillating term occurs. Correspondingly, the effect of the interference term is strongly suppressed by the beats. For $\Delta m^2_\odot \gtrsim 2 \times 10^{-4}$ eV2 this is no longer valid and the interference term under discussion has to be taken into account in the analyses of the CHOOZ and Palo Verde data [29].

4 Measuring Large Δm^2_\odot at Reactor Facilities

As is well-known, nuclear reactors are intense sources of low energy $\bar{\nu}_e$ ($E_\nu \lesssim 8$ MeV), emitted isotropically in the β-decays of fission products with high neutron density [32]. Anti-neutrinos can then be detected through the positrons produced by inverse β-decay on nucleons. The reactor $\bar{\nu}_e$ energy spectrum has been accurately measured and is theoretically well understood [1, 33]: it essentially consists of a bell-shaped distribution in energy centered around $E_\nu \sim 4$ MeV, having a width of approximately 3 MeV. CHOOZ, Palo Verde and KamLAND are examples of experiments with reactor $\bar{\nu}_e$, the main difference being the distance between the source and the detector explored ($L \sim 1$ km for CHOOZ and Palo Verde, and $L \sim 180$ km for KamLAND).

The best sensitivity to a given value of Δm^2_\odot of the experiment of interest is at L at which the maximum reduction of the survival probability is realized. As can be seen from eqs. (10) - (13), this happens for L around $L^* \equiv 2\pi E_\nu/\Delta m^2_\odot$. This implies that for $E_\nu = 4$ MeV, the optimal length to test neutrino oscillations with reactor experiments is:

$$L^* \approx 5 \times 10^{-3} \left(\frac{\Delta m^2_\odot}{\text{eV}^2}\right) \text{ km}$$

The best sensitivity of KamLAND, for instance, is in the range of $2\div 3 \times 10^{-5}$ eV2. We will discuss in greater detail the distances L which could be used to probe the LMA MSW solution region at $\Delta m^2_\odot > 10^{-4}$ eV2, in order to extract Δm^2_\odot from these oscillation experiments.

4.1 Total Event Rate Analysis

One of the signatures of the $\bar{\nu}_e$-oscillations would be a substantial reduction of the measured total event rate due to the reactor $\bar{\nu}_e$ in comparison with the predicted one in the absence of oscillations. In order to compute the expected total event rate one has to integrate the $\bar{\nu}_e$ survival probability multiplied by the $\bar{\nu}_e$ energy spectrum over E_ν. In Fig. 1 we show this averaged survival probability for different values of L as a function of Δm^2_\odot, using the “best fit” values [1, 2, 3, 6] for Δm^2_{31} and $\sin^2 2\theta_\odot$. When averaging over the $\bar{\nu}_e$ energy spectrum, oscillatory effects with too short a period are washed out, and

3By reactor $\bar{\nu}_e$ energy spectrum we mean here and in what follows the product of the $\bar{\nu}_e$ production spectrum and the inverse β-decay cross-section, which gives the “detected” neutrino spectrum in the no oscillation case. The $\bar{\nu}_e$ production spectrum is known with larger uncertainties at $\bar{\nu}_e$ energies $E_\nu \lesssim 2$ MeV, but this range is not of interest due to the threshold energy $E_0^{\beta} \approx 1.8$ MeV of the inverse β-decay reaction. Certain known time dependence at the level of a few percent is also present up to 3.5 MeV [35] and should possibly be taken into account in the analysis of the experimental data.
The reactor $\bar{\nu}_e$ survival probability, averaged over the $\bar{\nu}_e$ energy spectrum, for $\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_\odot = 0.8$, $\sin^2 \theta = 0.05$, as a function of Δm_{21}^2. The curves correspond to $L = 180\text{ km}$ (long dashed), $L = 50\text{ km}$ (dashed), $L = 20\text{ km}$ (thick) and $L = 10\text{ km}$ (dotted), respectively.

Figure 1: The reactor $\bar{\nu}_e$ survival probability, averaged over the $\bar{\nu}_e$ energy spectrum, for $\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_\odot = 0.8$, $\sin^2 \theta = 0.05$, as a function of Δm_{21}^2. The curves correspond to $L = 180\text{ km}$ (long dashed), $L = 50\text{ km}$ (dashed), $L = 20\text{ km}$ (thick) and $L = 10\text{ km}$ (dotted), respectively.

the experiment is sensitive only to the average amplitude. This happens when the width δE_ν of the energy spectrum is such that the integration runs over more than one period, i.e., approximately for:

$$\delta E_\nu \gtrsim \frac{4\pi E_\nu^2}{\Delta m^2 L} \approx \frac{4 \times 10^4 \text{ eV}^3}{\Delta m^2 (L/Km)}.$$ \hfill (17)

Since $\delta E_\nu \sim 3\text{ MeV}$, at KamLAND this happens approximately for $\Delta m_{21}^2 \gtrsim 7 \times 10^{-5} \text{ eV}^2$. The corresponding curve in Fig. 1 indicates that the actual sensitivity extends to somewhat larger values of Δm_{21}^2 than what is expected on the basis on the above estimate, but the total event rate becomes flat for $\Delta m_{21}^2 \gtrsim 10^{-4} \text{ eV}^2$. This means that KamLAND will be able, through the measurement of the total even rate, to test all the region of the LMA MSW solution and determine whether the latter is the correct solution of the solar neutrino problem, but will provide a precise measurement of Δm_{21}^2 only if $\Delta m_{21}^2 \lesssim 10^{-4} \text{ eV}^2$. If $\Delta m_{21}^2 \gtrsim 2 \times 10^{-4} \text{ eV}^2$, it would be possible to obtain only a lower bound on Δm_{21}^2 and a new experiment might be required to determine Δm_{21}^2.

Fig. 1 shows that as L decreases, the sensitivity region moves to larger Δm_{21}^2. These results imply that a reactor $\bar{\nu}_e$ experiment with $L \cong (20 - 25)\text{ km}$ can probe the range $0.8 \times 10^{-4} \text{ eV}^2 < \Delta m_{21}^2 \lesssim 6 \times 10^{-4} \text{ eV}^2$. One finds that for $\Delta m_{21}^2 \cong 2 \times 10^{-4} \text{ eV}^2$ and $\Delta m_{31}^2 \cong 2.5 \times 10^{-3} \text{ eV}^2$, the best sensitivity is at $L \cong 20\text{ km}$. Moreover, with $L \cong (20 - 25)\text{ km}$, the predicted total event rate deviates from being flat (in Δm_{21}^2) actually for Δm_{21}^2 as large as $\sim (5 - 6) \times 10^{-4} \text{ eV}^2$. In order to have a precise determination of Δm_{21}^2 with $L \cong (20 - 25)\text{ km}$ for the largest values given in eq. (18), $\Delta m_{21}^2 \cong (7/8) \times 10^{-4} \text{ eV}^2$, one should use the information about the e^+-spectrum distortion due to the $\bar{\nu}_e-$oscillations. By measuring the e^+-spectrum with a sufficient precision it would be possible to cover the whole interval

$$1.0 \times 10^{-4} \text{ eV}^2 \lesssim \Delta m_{21}^2 \lesssim 8.0 \times 10^{-4} \text{ eV}^2,$$ \hfill (18)

i.e., to determine Δm_{21}^2 if it lies in this interval, by performing an experiment at $L \cong (20 - 25)\text{ km}$ from the reactor(s) \footnote{The fact that if $\Delta m_{21}^2 \cong 3.2 \times 10^{-4} \text{ eV}^2$ a reactor $\bar{\nu}_e$ experiment with $L \cong 20\text{ km}$ would allow to measure Δm_{21}^2 with a high precision was also noticed recently in [1].} (see the next sub-section).
Figure 2: The reactor $\bar{\nu}_e$ energy spectrum at distance $L = 20$ km from the source, in the absence of $\bar{\nu}_e$ oscillations (double-thick solid line) and in the case of $\bar{\nu}_e$ oscillations characterized by $\Delta m_{31}^2 = 2.5 \times 10^{-3}$ eV2, $\sin^2 2\theta = 0.8$ and $\sin^2 \theta = 0.05$. The thick lines are obtained for $\Delta m_{32}^2 = 2 \times 10^{-4}$ eV2 and correspond to NH (light grey) and IH (dark grey) neutrino mass spectrum. Shown is also the spectrum for $\Delta m_{32}^2 = 6 \times 10^{-4}$ eV2 in the NH (dotted) and IH (dashed) cases.

Applying eq. (17) with $\Delta m^2 = \Delta m_{31}^2$, one sees that for the ranges of L which allow to probe $\Delta m_{3\odot}^2$ from the LMA MSW solution region, the total event rate is not sensitive to the oscillations driven by $\Delta m_{31}^2 \gtrsim 1.5 \times 10^{-3}$ eV2. Thus, the total event rate analysis would determine $\Delta m_{3\odot}^2$ which would be the same for both the normal and inverted hierarchy neutrino mass spectrum.

4.2 Energy Spectrum Distortions

An unambiguous evidence of neutrino oscillations would be the characteristic distortion of the $\bar{\nu}_e$ energy spectrum. This is caused by the fact that, at fixed L, neutrinos with different energies reach the detector in a different oscillation phase, so that some parts of the spectrum would be suppressed more strongly by the oscillations than other parts. The search for distortions of the $\bar{\nu}_e$ energy spectrum is essentially a direct test of the $\bar{\nu}_e$ oscillations. It is more effective than the total rate analysis since it is not affected, e.g., by the overall normalization of the reactor $\bar{\nu}_e$ flux. However, such a test requires a sufficiently high statistics and sufficiently good energy resolution of the detector used.

Energy spectrum distortions can be studied, in principle, in an experiment with $L \approx (20 - 25)$ km. In Fig. 2 we show the comparison between the $\bar{\nu}_e$ spectrum expected for $\Delta m_{3\odot}^2 = 2 \times 10^{-4}$ eV2 and $\Delta m_{3\odot}^2 = 6 \times 10^{-4}$ eV2 and the spectrum in the absence of $\bar{\nu}_e$ oscillations. No averaging has been performed and the possible detector resolution is not taken into account. The curves show the product of the probabilities given by eqs. (9) and (13) and the predicted reactor $\bar{\nu}_e$ spectrum [36]. As Fig. 2 illustrates, the $\bar{\nu}_e$ spectrum in the case of oscillation is well distinguishable from that in the absence of oscillations. Moreover, for $\Delta m_{3\odot}^2$ lying in the interval 10^{-4} eV$^2 < \Delta m_{3\odot}^2 \lesssim 8.0 \times 10^{-4}$ eV2, the shape of the spectrum exhibits a very strong dependence on the value of $\Delta m_{3\odot}^2$. A likelihood analysis of the data would be able to determine the value of $\Delta m_{3\odot}^2$ from the indicated interval with a rather good precision. This would require a precision in the measurement of the $e^+ - $spectrum, which should be just not worse than the precision achieved in the CHOOZ experiment and that planned to be reached in
the KamLAND experiment. If the energy bins used in the measurement of the spectrum are sufficiently large, the value of Δm_{31}^2 thus determined should coincide with value obtained from the analysis of the total event rate and should be independent of Δm_{31}^2.

5 Normal vs. Inverted Hierarchy

In Fig. 2 we show the deformation of the reactor $\bar{\nu}_e$ spectrum both for the normal and inverted hierarchy neutrino mass spectrum: as long as no integration over the energy is performed, the deformations in the two cases of neutrino mass spectrum can be considerable, and the sub-leading oscillatory effects driven by the atmospheric mass squared difference (see the first and the third line of eqs. (9) - (13)) can, in principle, be observed. They could be used to distinguish between the two hierarchical patterns, provided the solar mixing is not maximal $\sin^2 \theta$ is not too small and Δm_{31}^2 is known with high precision. It should be clear that the possibility we will be discussing next poses remarkable challenges.

The experiment under discussion could be in principle an alternative to the measurement of the sign of Δm_{31}^2 in long (very long) baseline neutrino oscillation experiments $^{[21, 22, 23]}$ or in the experiments with atmospheric neutrinos (see, e.g., $^{[24]}$).

The magnitude of the effect of interest depends, in particular, on three factors, as we have already pointed out:

- the value of the solar mixing angle θ: the different behavior of the two survival probabilities is due to the difference between $\sin^2 \theta$ and $\cos^2 \theta$; correspondingly, the effect vanishes for maximal mixing; thus, the more the mixing deviates from the maximal the larger the effect;
- the value of $\sin^2 \theta$, which controls the magnitude of the sub-leading effects due to Δm_{31}^2 on the Δm_{31}^2-driven oscillations: the effect of interest vanishes in the decoupling limit of $\sin^2 \theta \rightarrow 0$;
- the value of Δm_{31}^2 (see Fig. 1): for given L and Δm_{31}^2 the difference between the spectrum in the cases of normal and inverted hierarchy is maximal at the minima of the survival probability, and vanishes at the maxima.

A rough estimate of the possible difference between the predictions of the event rate spectrum for the two hierarchical patterns, is provided by the ratio between the difference and the sum of the two corresponding probabilities at $\Delta m_{31}^2 L = 2\pi E_{\nu}$:

$$\frac{P_{NH} - P_{IH}}{P_{NH} + P_{IH}} = \frac{2 \cos 2\theta \sin^2 \theta \cos^2 \theta}{1 - 2\sin^2 \theta \cos^2 \theta - \cos^4 \theta \sin^2 2\theta} \cos \frac{\pi}{\Delta m_{31}^2} \frac{\Delta m_{31}^2}{\Delta m_{31}^2}.$$ (19)

The ratio could be rather large: the factor in front of the $\cos \pi \Delta m_{31}^2 / \Delta m_{31}^2$ is about 25% for $\sin^2 2\theta = 0.8$ and $\sin^2 \theta = 0.05$.

The actual feasibility of the study under discussion depends crucially on the integration over (i.e., the binning in) the energy: for the effect not to be strongly suppressed, the energy resolution of the detector ΔE_{ν} must satisfy:

$$\Delta E_{\nu} \lesssim \frac{4\pi E_{\nu}^2}{\Delta m_{31}^2 L} \simeq \frac{2 \pm 6 \times 10^4 eV^3}{\Delta m_{31}^2 (L/km)}.$$ (20)

\footnote{It would be impossible to distinguish between the normal and inverted hierarchy neutrino mass spectrum if for given $\Delta m_{31}^2 > 10^{-4} eV^2$ and $\sin^2 2\theta \neq 1$, the LMA solution region is symmetric with respect to the change $\theta \rightarrow \pi/2 - \theta$ (cos $2\theta \rightarrow - \cos 2\theta$). While the value of $\sin^2 2\theta$ is expected to be measured with a relatively high precision by the KamLAND experiment, the sign of $\cos 2\theta$ will not be fixed by this experiment. However, the $\theta \rightarrow (\pi/2 - \theta)$ ambiguity can be resolved by the solar neutrino data. Note also that the current solar neutrino data disfavor values of $\cos 2\theta < 0$ in the LMA solution region (see, e.g., $^{[4, 8, 10]}$).}
For $L \sim 1$ km this condition could be satisfied for $\delta E_\nu \simeq \Delta E_\nu$, but at $L \approx (15 - 20)$ Km, for $\Delta m^2_{31} = 2.5 \times 10^{-3}$ eV2 and E_ν in the interval $(3 - 5)$ MeV, one should have $\Delta E_\nu \lesssim 0.5$ MeV.

Our discussion so far was performed for simplicity in terms of the reactor $\bar{\nu}_e$ energy spectrum, while in the experiments of interest one measures the energy of the positron emitted in the inverse β-decay, E_e. The relation between E_e and E_ν is well known (see for instance [36]), and, up to corrections of at most few per cent, consists just in a shift due to the threshold energy of the process: $E_\nu \approx E_e + (E_{\nu}^{th} - m_e)$. The maximal ΔE_ν allowed in order to make the effect observable can be then directly compared to the experimental positron energy resolution ΔE_e.

For $\Delta m^2_{31} \lesssim 10^{-4}$ eV2, the first (most significant) minimum of the survival probability can be explored if $L \sim 180$ km. In this case, due to the bigger distance L, the energy resolution required would be by a factor of ten smaller. This means that for $\Delta m^2_{31} \ll \Delta m^2_{32}$, it is practically impossible to realize the condition of maximization of the difference between the survival probabilities in the two cases of neutrino mass hierarchy without strongly suppressing the magnitude of the difference by the binning of the energy spectrum.

In order to illustrate what are the concrete possibilities in the case of the experiment under discussion, we have divided the energy interval 2.7 MeV $< E_\nu < 7.2$ MeV into 15 bins, with $\Delta E_\nu = 0.3$ MeV, and calculated the value of the product of the survival probability and the energy spectrum in each of the bins. The results are shown in Fig. 3.

![Figure 3: Comparison between the predicted event rate spectrum at $L = 20$ km, measured in energy bins having a width of $\Delta E_\nu = 0.3$ MeV in the cases of normal (light grey) and inverted (dark grey) neutrino mass hierarchy. The two upper and the lower left figures are for $\Delta m^2_{32} = 2 \times 10^{-4}$ eV2, $\sin^2 2\theta_\odot = 0.8$, $\sin^2 \theta = 0.05$, and $\Delta m^2_{31} = 1.3; 2.5; 3.5 \times 10^{-3}$ eV2, respectively. The lower right figure was obtained for $\Delta m^2_{32} = 6 \times 10^{-4}$ eV2 and $\Delta m^2_{31} = 2.5 \times 10^{-3}$ eV2.](image)

$E_e + (E_{\nu}^{th} - m_e)$. The maximal ΔE_ν allowed in order to make the effect observable can be then directly compared to the experimental positron energy resolution ΔE_e.

In the CHOOZ experiment, for instance, the binning in E_e was $\Delta E_e \simeq 0.40$ MeV [11]. KamLAND is expected to have a resolution better than $\Delta E_e/E_e = 10%/\sqrt{E_e}$, where E_e is in MeV [37].
As our results show and Fig. 3 indicates, for $\Delta m_{31}^2 \cong (1.5 - 3.0) \times 10^{-3}$ eV2,

$$\Delta m_{\odot}^2 \cong (2.0 - 5.0) \times 10^{-4} \text{ eV}^2,$$

(21)

$\sin^2 2\theta_\odot \cong 0.8$ and $\sin^2 \theta \cong (0.02 - 0.05)$, it might be possible to distinguish the two cases of neutrino mass spectrum by a high precision measurement of the positron energy spectrum in an experiment with reactor $\bar{\nu}_e$ with a baseline of $L \cong (20 - 25)$ km. This should be a high statistics experiment (not less than about 2000 $\bar{\nu}_e$-induced events per year) with a sufficiently good energy resolution $\|$ For larger values of Δm_{\odot}^2 not exceeding 8.0×10^{-4} eV2, and $\Delta m_{31}^2 \cong (1.5 - 3.0) \times 10^{-5}$ eV2, the experiment should be done with a smaller baseline, $L \cong 10$ km. If, however, $\sin^2 \theta \lesssim 0.01$, and/or $\sin^2 2\theta_\odot \lesssim 0.9$, and/or $\sin^2 2\theta_\odot \lesssim 0.9$ but the LMA solution admits equally positive and negative values of $\cos 2\theta_\odot$, the difference between the spectra in the two cases becomes hardly observable. Further, in obtaining Fig. 3 we have implicitly assumed that Δm_{31}^2 is known with negligible uncertainty. Actually, for the difference between the spectra under discussion to be observable, Δm_{31}^2 has to be determined, according to our estimates, with a precision of $\sim 10\%$ or better $\|$ given the values of Δm_{\odot}^2, $\sin^2 2\theta_\odot$ and $\sin^2 \theta$, a spectrum in the NH case corresponding to a given Δm_{31}^2 can be rather close in shape to the spectrum in the IH case for a different value of Δm_{31}^2. There is no similar effect when varying Δm_{\odot}^2.

6 Conclusions

Reactor experiments have the possibility to test the LMA MSW solution of the solar neutrino problem. While the KamLAND experiment should be able to test this solution, a new experiment with a shorter baseline might be required to determine Δm_{\odot}^2 with high precision if the results of the KamLAND experiment show that $\Delta m_{\odot}^2 > 10^{-4}$ eV2. Performing a three-neutrino oscillation analysis of both the total event rate suppression and the e^+-energy spectrum distortion caused by the $\bar{\nu}_e$-oscillations in vacuum, we show that a value of Δm_{\odot}^2 from the interval 10^{-4} eV$^2 < \Delta m_{\odot}^2 \lesssim 8.0 \times 10^{-4}$ eV2 could be determined with a high precision in experiments with $L \cong (20 - 25)$ km if the e^+-energy spectrum is measured with a sufficiently good accuracy. Furthermore, if $\Delta m_{\odot}^2 \cong (1.0 - 5.0) \times 10^{-4}$ eV2, such an experiment with $L \cong (20 - 25)$ km might also be able to distinguish between the cases of neutrino mass spectrum with normal and inverted hierarchy; for larger values of Δm_{\odot}^2 not exceeding 8.0×10^{-4} eV2, a shorter baseline, $L \cong 10$ km, should be used for the purpose. The indicated possibility poses remarkable challenges and might be realized for a limited range of values of the relevant parameters. The corresponding detector must have a good energy resolution (allowing a binning in the positron energy with $\Delta E_e \lesssim 0.40$ MeV) and the observed event rate due to the reactor $\bar{\nu}_e$ must be sufficiently high to permit a high precision measurement of the e^+-spectrum. Further, the mixing angle constrained by the CHOOZ and Palo Verde data θ must be sufficiently large ($\sin^2 \theta \sim 0.03 - 0.05$), and the “solar” mixing angle θ_\odot should not be maximal ($\sin^2 2\theta_\odot \lesssim 0.9$). In addition, the value of Δm_{31}^2, which is responsible for the dominant $\nu_\mu \rightarrow \nu_\tau$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_\tau$ oscillations of the atmospheric neutrinos, should be known with a high precision. However, as it is well known, “only those who wager can win” $\|$.

Acknowledgements S.T.P. would like to thank S.M. Bilenkly and D. Nicoio for very useful discussions, and S. Schoenert for discussions and for bringing to his attention the reference [26]. S.T.P. acknowledges with gratefulness the hospitality and support of the SLAC Theoretical Physics Group, where part of the work on the present study was done. This work was supported in part by the EEC grant ERBFMRXCT960090 and by the RTN European Program HPRN-CT-2000-00148.

7Preliminary estimates show that a detector of the type of KamLAND and a system of nuclear reactors with a total power of approximately 5 - 6 GW might produce the required statistics and precision in the measurement of the positron spectrum.

8The analysis, e.g. of the MINOS potential for a high precision determination of Δm_{31}^2, in the case of $\Delta m_{\odot}^2 \lesssim 10^{-4}$ eV2 yields very encouraging results (see, e.g., [38]). For $\Delta m_{\odot}^2 \cong (2.0 - 8.0) \times 10^{-4}$ eV2, such analysis is lacking in the literature.
References

[1] Super-Kamiokande Collaboration, Y. Fukuda et al., Phys. Rev. Lett. 81 (1998) 1562.
[2] Q. R. Ahmad et al. [SNO Collaboration], Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015].
[3] S. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 86 (2001) 5651 [hep-ex/0103032].
[4] V. Barger, D. Marfatia and K. Whisnant, hep-ph/0106207.
[5] G. L. Fogli et al., hep-ph/0106247.
[6] J. N. Bahcall, M. C. Gonzalez-Garcia and C. Pena-Garay, JHEP 0108 (2001) 014 [hep-ph/0106258], and hep-ph/0111150.
[7] A. Bandyopadhyay et al., Phys. Lett. B519 (2001) 83 [hep-ph/0106264].
[8] P. Creminelli, G. Signorelli and A. Strumia, hep-ph/0102234, version 2 from 10 July, 2001.
[9] M.V. Garzelli and C. Giunti, hep-ph/0108191.
[10] P. I. Krastev and A. Y. Smirnov, hep-ph/0108177.
[11] M. Apollonio et al. [CHOOZ Collaboration], Phys. Lett. B466 (1999) 415 [hep-ex/9907037].
[12] F. Boehm et al., Phys. Rev. Lett. 84 (2000) 3764, Phys. Rev. D62 (2000) 072002 and Phys. Rev. D64 (2001) 112001.
[13] MINOS Collaboration, P. Adamson et al., NuMI-L-476 (March 1999); Web page: http://www.hep.anl.gov/ndk/hypertext/numi.html
[14] A. Piepke [KamLAND Collaboration], Nucl. Phys. Proc. Suppl. 91 (2001) 99.
[15] S.M. Bilenky et al., Phys. Lett. B 356 (1995) 273 and Phys. Rev. D 54 (1996) 1881.
[16] S. M. Bilenky, C. Giunti and W. Grimus, Prog. Part. Nucl. Phys. 43 (1999) 1 [hep-ph/9812366].
[17] B. Pontecorvo, Zh. Eksp. Teor. Fiz. 33 (1957) 549, and 34 (1958) 247.
[18] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28 (1962) 870.
[19] S.M. Bilenky and S.T. Petcov, Rev. Mod. Phys. 59 (1987) 671.
[20] S. M. Bilenky, S. Pascoli and S. T. Petcov, Phys. Rev. D 64 (2001) 053010 [hep-ph/0102265].
[21] P. Lipari, Phys. Rev. D61, 113004 (2000).
[22] V. Barger et al., Phys. Rev. D62 (2000) 013004.
[23] M. Freund et al., Nucl. Phys. B578 (2000) 27.
[24] M.C. Banuls, G. Barenboim and J. Bernabeu, Phys. Lett. B531 (2001) 391; J. Bernabeu et al., hep-ph/0110077.
[25] R. Barbieri and A. Strumia, hep-ph/0011307.
[26] S. Schoenert, Talk given at the TAUP2001 International Workshop, September 8 - 12, 2001, Laboratori Nazionali del Gran Sasso, Italy.
[27] A. Strumia and F. Vissani, hep-ph/0109172.
[28] S.M. Bilenky et al., Phys. Rev. D 54 (1996) 4432 [hep-ph/9604364].
[29] S. M. Bilenky, D. Nicoletti and S. T. Petcov, hep-ph/0112216.
[30] G. L. Fogli, E. Lisi and A. Palazzo, hep-ph/0105080.
[31] M. C. Gonzalez-Garcia et al., Phys. Rev. D 63 (2001) 033005 [hep-ph/0009350].
[32] B. Pontecorvo, Chalk River Lab. Report PD-205 (1946).
[33] For reviews see: G. Gratta, Nucl. Phys. Proc. Suppl. 85, 72 (2000) [hep-ex/9905011], and C. Bemporad, G. Gratta and P. Vogel, [hep-ph/0107277].

[34] V. I. Kopeikin, [hep-ph/0110030].

[35] V. I. Kopeikin, L. A. Mikaelyan and V. V. Sinev, Phys. Atom. Nucl. 64, 849 (2001) [Yad. Fiz. 64, 914 (2001)] [hep-ph/0110290].

[36] See, e.g., C. Bemporad, G. Gratta and P. Vogel in [33].

[37] M. C. Gonzalez-Garcia and C. Pena-Garay, [hep-ph/0111432], and references therein.

[38] V. Barger et al., [hep-ph/0110393].

[39] W. Pauli, Letter to Participants of a Physics Meeting in Tubingen (H. Geiger, L. Meitner, etc.), Germany, December 4, 1930.