Dysgenesis of Enteronecocrine Cells in Aristaless-Related Homeobox Polyalanine Expansion Mutations

Natalie A. Terry, Randall A. Lee, Erik R. Walp, Klaus H. Kaestner, and Catherine Lee May

ABSTRACT

Objectives: Severe congenital diarrhea occurs in approximately half of patients with Aristaless-Related Homeobox (ARX) null mutations. The cause of this diarrhea is unknown. In a mouse model of intestinal Arx deficiency, the prevalence of a subset of enteronecocrine cells is altered, leading to diarrhea. Because polyalanine expansions within the ARX protein are the most common mutations found in ARX-related disorders, we sought to characterize the enteronecocrine population in human tissue of an ARX(GCG)7 null model, but is not able to further the study of the differential effects of the ARX(GCG)7 protein on its transcriptional targets in the intestine.

Key Words: Arx, enteronecocrine dysgenesis, polyalanine

L

Copyright 2015 by European Society for Pediatric Gastroenterology, Hepatology, and Nutrition and North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License, where it is permissible to download and share the work, provided it is properly cited. The work cannot be changed in any way or used commercially.

Received March 5, 2014; accepted August 21, 2014.

From the *Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, the Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, and the Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA.

Address correspondence and reprint requests to Natalie A. Terry, The Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Blvd, Suite 902, Philadelphia, PA 19104 (e-mail: terry@chop.edu).

Supplemental digital content is available for this article. Direct URL citations appear in the printed text, and links to the digital files are provided in the HTML text of this article on the journal’s Web site (www.jpgn.org).

N.A.T was supported by NIH K12-HD043245, Children’s Hospital of Philadelphia Foerderer Grant; K.H.K. by NIH R37-DK053839; C.L.M. by NIH-DK078606, NIH-DK019525, and JDRF2-2007-730.

The authors report no conflicts of interest.

Copyright © 2015 by European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. NonCommercial-NoDerivatives 4.0 License. DOI: 10.1097/MPG.0000000000000542

L

Copyright 2015 by ESPGHAN and NASPGHAN. Unauthorized reproduction of this article is prohibited.

JPGN Volume 60, Number 2, February 2015
from patients with ARX loss-of-function mutations has not been examined.

ARX-related neurologic disorders comprise a spectrum of phenotypes of X-linked lissencephaly with abnormal genitalia (XLAG; OMIM 3000215; (20,21)), X-linked infantile spasms (ISSX; OMIM 308350; (22)), and X-linked intellectual disability (XLID; (23,24)). The loss of function, missense, and protein truncation mutations have been identified. Interestingly, approximately half of the identified disease-causing mutations are expansions of the polyalanine tract within the ARX protein, of which ARX/Arx has 4 (25,26). Polyalanine expansions have become increasingly recognized as disease-causing mutations in a variety of diseases (reviewed in (27)). For example, a small expansion of a polyalanine tract in PHOX2B can cause central hypoventilation syndrome with Hirschsprung disease (28).

Here, we report a case of enteroendocrine dysgenesis in a patient with an ARX polyalanine expansion. The chromogranin A population was unchanged. Duodenal biopsies, however, revealed a reduction in CCK, SST, and GLP-1 cell number. In the mouse model with the corresponding polyalanine insertion, the enteroendocrine changes mimicked those of the intestinal loss-of-function model that is, loss of CCK and GLP-1 cells, but an increase in the SST-expressing population. Thus, ARX/Arx is required for the enteroendocrine development in mice and humans.

METHODS

Mice and Tissue Preparation

The mice used for these experiments were a kind gift from Kunio Kitamura (29). Seven (GCG) triplets were placed into the first polyalanine tract at residue 330, resulting in ARX(GCG)7 mice. Hemizygous mice (Arx(GCG)7/Y) were obtained by crossing heterozygous females (Arx(GCG)7/−) with C57BL/6J wild-type males. All mice were cared and handled according to The Children’s Hospital of Philadelphia’s institutional animal care and use committee-approvals.

All dissections were performed in cold 1× phosphate-buffered saline, and tail snips were used for determining genotypes. Genotyping primers were as follows: 5′-AAAGGCAGAAAAAGCAG-GAGGAAAGG-3′ and 5′-TGTTCAATGGCCGATCCCAT-3′ were used to amplify the additional polyalanine tract within the ARX gene (25,26). Polyalanine expansions have become one of the more common in the ARX gene (25). The primary antibodies used were as follows: anti-SST (1:200; Santa Cruz sc-7819), anti–5-hydroxytryptamine (5-HT/Serotonin; 1:3000; Santa Cruz sc-7819), anti-ghrelin (1:200; Santa Cruz sc-10368), anti–5-hydroxytryptophan (5-HT/Serotonin; 1:30,000; Immunostar 20080 [Hudson, WI]); anti-chromogranin A (1:3,000; DiaSorin 20085 [Stillwater, MN]), anti-GLP-1 (1:500; Abcam ab26278 [Cambridge, UK]), and anti–CCK (1:100; Santa Cruz sc-21617). Rabbit anti-ARX polyclonal antibody (1:500) was a gift from Dr Kanako Miyabayashi (Kyushu University, (21)). Sections were stained with hematoxylin and eosin (H&E) or Oil-Red-O according to standard protocols. Oil-Red-O staining was performed with the VECTASTAIN ABC kit (Vector Laboratories, Burlingame, CA) and diaminobenzidine tetrahydrochloride as the substrate. For immunofluorescence, secondary antibodies were directly conjugated to Cy3 or Cy2 and incubated for 4 hours at room temperature.

The primary antibodies used were as follows: anti-SST (1:3000; Santa Cruz sc-7819), anti-ghrelin (1:200; Santa Cruz sc-10368), anti–5-hydroxytryptamine (5-HT/Serotonin; 1:30,000; Immunostar 20080 [Hudson, WI]); anti-chromogranin A (1:3,000; DiaSorin 20085 [Stillwater, MN]), anti-GLP-1 (1:500; Abcam ab26278 [Cambridge, UK]), and anti–CCK (1:100; Santa Cruz sc-21617). Rabbit anti-ARX polyclonal antibody (1:500) was a gift from Dr Kanako Miyabayashi (Kyushu University, (21)). Sections were stained with hematoxylin and eosin (H&E) or Oil-Red-O according to standard protocols. Oil-Red-O staining was performed using frozen sections. Hormone-positive cells from different regions of the intestine were counted and normalized to the respective epithelial area of the same or adjacent sections yielding cell numbers per square millimeter tissue area. Epithelial area was measured with an Aperio Image Analysis System (Leica, Germany). At least 3 control and 3 mutant animals were used for each hormone analysis in the intestine. P-values were obtained using a Student t test.

RESULTS

ARX Polyalanine Expansion Related to Pseudo-Obstruction

To determine the intestinal consequence of an ARX polyalanine expansion, we identified a patient with a 335-336ins(GGC)7 mutation in ARX who presented with infantile spasms, hypotonia, and severe intellectual disability, and was also diagnosed with chronic intestinal pseudo-obstruction. This expansion in the first polyalanine tract is one of the more common in the ARX gene (25). For most of his life, this patient had feeding intolerance manifesting as abdominal pain and vomiting. He had multiple abdominal surgeries to place feeding tubes and had a Nissen fundoplication that was repeated 3 times. At the age of 8, his inability to tolerate enteral feeds and weight loss became so severe that he required total parenteral nutrition, which has been his maintenance nutrition for

Real-Time PCR Analysis

Total RNA was extracted with TRIzol (Invitrogen, Grand Island, NY) using the RNeasy kit (Qiagen, Valencia, CA); Oligo-dT, SuperScript, and other reagents were used to synthesize complementary DNA. Brilliant SYBR Green PCR Master Mix (Sigma, St Louis, MO) was used to set up PCR reactions in the Stratagene MX3005P (La Jolla, CA) real-time PCR machine. Primer sequences are available upon request. All reactions were performed in triplicate with reference dye normalization. Each primer set was normalized to a housekeeping gene, either glyceraldehyde-3-phosphate dehydrogenase or hypoxanthine-guanine phosphoribosyltransferase. Polyclonal reactivity to the (GGC)7 insertion was calculated and then plotted on a bar graph. The P-values were obtained using Student t test.

Immunohistochemistry and Histology

Slides were subjected to microwave antigen retrieval in 10 mmol/L sodium citrate buffer (pH 6.0). Endogenous peroxidase activity was quenched with 3% H2O2 in phosphate-buffered saline for 15 minutes. Sections were then blocked with avidin block, biotin block, and CAS Block reagent (Invitrogen). The sections were incubated with primary antibodies overnight at 4°C and biotinylated secondary antibodies for 40 minutes at 37°C. Immunohistochemical detection was performed with the VECTASTAIN ABC kit (Vector Laboratories, Burlingame, CA) and diaminobenzidine tetrahydrochloride as the substrate. For immunofluorescence, secondary antibodies were directly conjugated to Cy3 or Cy2 and incubated for 4 hours at room temperature.

The primary antibodies used were as follows: anti-SST (1:3000; Santa Cruz sc-7819), anti-ghrelin (1:200; Santa Cruz sc-10368), and anti–CCK (1:100; Santa Cruz sc-21617). Rabbit anti-ARX polyclonal antibody (1:500) was a gift from Dr Kanako Miyabayashi (Kyushu University, (21)). Sections were stained with hematoxylin and eosin (H&E) or Oil-Red-O according to standard protocols. Oil-Red-O staining was performed using frozen sections. Hormone-positive cells from different regions of the intestine were counted and normalized to the respective epithelial area of the same or adjacent sections yielding cell numbers per square millimeter tissue area. Epithelial area was measured with an Aperio Image Analysis System (Leica, Germany). At least 3 control and 3 mutant animals were used for each hormone analysis in the intestine. P-values were obtained using a Student t test.

www.ipgn.org
Arx regulates enteroendocrine development in mice. Mutants had significantly reduced volume and were small at birth compared with male littermate controls. Starting at postnatal day 5, the mutant Arx mice are significantly smaller than their control littermates (5). Because fat malabsorption has been described in mice lacking enteroendocrine cells as a result of Neurog3 mutations (5), we analyzed stool and tissue by Oil-Red-O. Before weaning, when the neonatal mice are on a high-fat diet while nursing, there was excess fat in the stool smear by qualitative analysis (Fig. 2C,G) correlating with poor weight gain. Furthermore, when investigating tissue morphology, we found a large amount of Oil-Red-O staining in the ileum and colon of mutant Arx mice, whereas the control littersmates had minimal lipid present in those areas (Fig. 2D–F, H–J). Once mice were weaned onto a standard low-fat diet, the stool smears were comparable between control and mutant Arx littermates (Fig. 2K,L).

Arx Polyalanine Tract Expansion Impairs Enteroendocrine Development

Arx is expressed specifically in subpopulations of enteroendocrine cells (30,31). To determine the changes in enteroendocrine populations as a consequence of the Arx polyalanine expansion, we determined the messenger RNA (mRNA) and protein expression of the intestinal endocrine subpopulations at several time points: postnatal days 0–1 (P0), postnatal day 14 (P14), and adult (5–7 weeks of age).

At birth, the Arx mutants had significantly reduced numbers of CCK and GLP-1 containing cells in the duodenum (Fig. 3A–H). This change corresponded to reduced mRNA expression of CCK and preproglucagon, the precursor to GLP-1. SST expression was significantly increased by mRNA and the number of hormone-positive cells (Fig. 3Q–T). Both chromogranin A and serotonin (5-HT) cell number and mRNA levels were unchanged (Fig. 3A–H).

In the P14 duodenum (supplemental Fig. 2), we found a large amount of Oil-Red-O staining in the ileum and colon of mutant Arx mice, whereas the control littersmates had minimal lipid present in those areas (Fig. 2D–F, H–J). Once mice were weaned onto a standard low-fat diet, the stool smears were comparable between control and mutant Arx littermates (Fig. 2K,L).

Arx Polyalanine Expansion Mice Have Failure to Thrive and Fat Malabsorption

First, we determined the growth characteristics of the male Arx mice compared with male littermate controls. Starting at postnatal day 5, the mutant Arx mice are significantly smaller than their littermate controls (Fig. 2A). This difference persists into adulthood (Fig. 2B). The adult animals have a seizure disorder as previously described, and die between 2 and 3 months of age (29). Eric Marsh, personal communication). The tissue histology is normal by H&E staining (supplemental Fig. 1, http://links.lww.com/MPG/A370).

Because fat malabsorption has been described in mice lacking enteroendocrine cells as a result of Neurog3 mutations (5), we analyzed stool and tissue by Oil-Red-O. Before weaning, when the neonatal mice are on a high-fat diet while nursing, there was excess fat in the stool smear by qualitative analysis (Fig. 2C,G) correlating with poor weight gain. Furthermore, when investigating tissue morphology, we found a large amount of Oil-Red-O staining in the ileum and colon of mutant Arx mice, whereas the control littersmates had minimal lipid present in those areas (Fig. 2D–F, H–J). Once mice were weaned onto a standard low-fat diet, the stool smears were comparable between control and mutant Arx littermates (Fig. 2K,L).

![FIGURE 1. Enteroendocrine dysgenesis in a patient with an ARX mutation. Control human tissue is represented in A–D and patient tissue (ARX) in E–H. Hormones stained were CgA in A and F; CCK in B and G; GLP-1 in C and H; and SST in D and I. The cell counts are listed below each panel, with the P value for each hormone. ARX = aristaless-related homebox; CCK = cholecystokinin; CgA = chromogranin A; GLP = glucagon-like peptide; SST = somatostatin.](http://links.lww.com/MPG/A370)
continued depletion of CCK and GLP-1–producing cells (Fig. S2I–P). SST was significantly upregulated (Fig. S2Q–T). Although chromogranin A expression was unchanged (Fig. S2A–D), there was a significant, though mild, increase in 5-HT-expressing cells (Fig. S2E–H).

These hormone changes were also present in the ileum, with increased SST and decreased GLP-1 at P0 and P14 by cell counts and qRT-PCR (supplemental Fig. 3, http://links.lww.com/MPG/A370). We also assayed mRNA expression in the duodenum of older animals (5–7 weeks) to find the same downregulation of preproglucagon and CCK and upregulation of SST mRNAs without a change in chromogranin A (Fig. 4).

Arx Protein is Lost in Polyalanine Expansion Mouse Mutants

The hormone changes in the polyalanine expansion mouse mutants phenocopy the Arx loss of function in the intestine (16,17). To determine whether the similarity is because of changes in expression of Arx, we first tested whether Arx was transcribed in the polyalanine expansion mutants (Fig. 5A). At P0 and P14, the mRNA levels were the same as control littermates. In adult mutant Arx(GCG)7 animals, Arx mRNA was, however, significantly downregulated. Next, we tested protein expression in control and mutant littermates. The Arx antibody used recognizes both wild-type and Arx(GCG)7 protein, as previously reported (29,32). We did not detect any Arx-positive cells in the P0 or adult duodenum of Arx(GCG)7 mutants (Fig. 5B–G), suggesting that the Arx(GCG)7 mouse model approaches an intestinal null situation. To determine whether this loss of ARX protein was also found in human tissue, we stained the patient slides. In the human ARX(GGC)7 tissue, ARX protein was present at the same levels as in control tissue, despite the polyalanine expansion (Fig. 5H, I).

DISCUSSION

With recognition of the neurologic phenotype of ARX-related disorders, it was also noted that approximately 50% of patients with XLAG with ARX loss-of-function mutations have a severe congenital enteropathy that is fatal in some cases (15). The case highlighted here demonstrates changes in the enteroendocrine population with a polyalanine expansion of the ARX protein, the more common type of mutation (25,26). In the presence of the ARX(GGC)7 protein, the CCK, SST, and GLP-1 lineages are not specified, although the chromogranin A population is present at normal density. The role of ARX was previously tested in human intestinal organoids derived from embryonic stem cells, using small hairpin RNA-mediated intestinal loss of function (16). With 60% to 80% knockdown of ARX, the preproglucagon and CCK populations were lost and the SST population was unchanged. Thus, the influence of ARX on the SST population appears to differ in human tissue compared with the Arx loss-of-function mouse model, wherein the SST population is increased (16,17).

Arx protein acts as both a transcriptional activator and transcriptional repressor (33). In the mouse brain, complete loss

![Figure 2](http://links.lww.com/MPG/A370)
FIGURE 3. Enteroendocrine population changes in the P0 duodenum of ArxGCG7 mice. Hormone staining is pictured for ChrA (A, B), 5-HT (E, F), CCK (I, J), GLP-1 (M, N), and SST (Q, R). Control tissue is in the left panel (A, E, I, M, Q) and ArxGCG7 tissue in the left-middle panel (B, F, J, N, R). Expression for mRNA was quantified by RT-PCR for the right-middle panels (C, G, K, O, S) and cell counts for protein expression on the far right panel (D, H, L, P, T) for each respective hormone: ChrA (C, D), 5-HT/Tph1 (G, H), CCK (K, L), GLP-1/preproglucagon (O, P), and SST (S, T). The dark bars designate controls, whereas the open bars designate ArxGCG7. *** Designated P value is <0.05. ARX = aristaless-related homeobox; CCK = cholecystokinin; ChrA = chromogranin A; GLP = glucagon-like peptide; mRNA = messenger RNA; RT-PCR = real-time polymerase chain reaction; SST = somatostatin.
of Arx results in impaired tangential and radial migration of GABAergic interneurons. Only tangential migration is, however, impaired in the Arx\(^{(GCG)7}\) mouse model, which could explain the less severe phenotype (29). Several downstream targets have been identified that are differentially affected by the Arx\(^{(GCG)7}\) protein as opposed to an Arx null in the mouse brain (34). In the pancreas, Arx activates the \(\alpha\) cell program while repressing the \(\beta\) cell program (35,36). In the Arx\(^{(GCG)7}\) mouse model, all \(\alpha\) cells are still lost, but without any increase in \(\beta\) cells, suggesting that the Arx\(^{(GCG)7}\) protein in early development is still capable of repression of \(\beta\) cells, but not activation of the \(\alpha\) cell program (35).

Unfortunately, the mouse model of the corresponding Arx first tract polyalanine expansion does not fully recapitulate the human disease because the Arx\(^{(GCG)7}\) protein is degraded in the mouse intestine. In contrast, the ARX\(^{(GGC)7}\) protein is still present in human tissue, although it is not fully functional. The hormone changes in the Arx\(^{(GCG)7}\) mouse model are similar to those found in the Arx intestinal null model, consistent with the fact that all Arx\(^{(GCG)7}\) protein is lost (16,17). The reduced levels of the Arx\(^{(GCG)7}\) protein have also been described in the brain of the mouse model (29,32), although some Arx\(^{(GCG)7}\) protein is still present.

The patient described here demonstrates a unique phenotype of pseudo-obstruction without congenital diarrhea, compared with patients with ARX loss-of-function mutations. At this time, we are not able to determine whether the enteroendocrine population changes are directly responsible for the motility disorder. The role of various enteroendocrine subpopulations in gut motility is, however, well-recognized through exogenous agonist and antagonist studies (37). Many of the intestinal hormones inhibit gastric or small bowel motility. The relation is, however, often complex and dynamic. For example, in pediatric patients, exogenous octreotide (an SST analogue) inhibits gastric motility and promotes small intestine migrating motility complexes (38).

Motility studies on mouse models with alterations in the enteroendocrine cells are necessary to further understand the contribution of these cells in regulation of how the bowel moves in fasting and fed states. Although expression of Arx by cross-sectional analysis in the bowel is limited to the enteroendocrine cells (16,17), it is possible that a small subset of enteric nervous system cells expresses ARX/Arx and contributes to the phenotype, or, alternatively, exerts direct or indirect effects in the muscular layers of the bowel. Another confounding variable for this case is the history of abdominal surgeries; it is difficult to determine whether his bowel disorder led to the multiple surgeries or what dysfunction was attributable to multiple surgeries. Finally, his long-standing seizure disorder and medications could also contribute to the phenotype.

Enteroendocrine dysgenesis is becoming increasingly recognized for its role in congenital diarrhea, irritable bowel syndrome,
and inflammatory bowel disease (39). With \textit{NEUROG3} mutations (1) or \textit{AIRE} mutations associated with APECED (6,7) almost all enteroendocrine cells are lost, leading to congenital diarrhea. Unique to \textit{Arx} loss of function in the mouse intestine (16,17) and \textit{PC1/3} mutations in humans, loss of only a subset of hormone producing cells can lead to congenital diarrhea (9) despite normal chromogranin A and serotonin/5-HT staining. The determination of which enteroendocrine subsets are responsible for the malabsorptive or motility phenotype in enteroendocrine dysgenesis will provide an excellent step forward in identifying therapeutic targets.

FIGURE 5. Expression of ARX/Arx mRNA and protein. mRNA expression is depicted in (A), with the dark bars for control samples and the open bars for ArxGCG7 mouse model. Staining for Arx protein in the control mouse duodenal tissue (B–D) and ArxGCG7 mouse model (E–G) at E15.5 (B, E), P0 (C, F), and P42 (D, G). Staining for Arx protein in control human duodenal tissue (H) and patient ArxGCG7 tissue (I). \(**\) Designated \(P\) value is <0.05. ARX = aristless-related homeobox; mRNA = messenger RNA.

\(\text{ARX} = \text{aristaless-related homeobox; mRNA = messenger RNA.}\)
Acknowledgments: The authors thank members of the Molecular Pathology and Imaging Core in the Center for Molecular Studies in Digestive and Liver Disease (P30-DK050306) for their assistance and providing reagents. The authors also thank members of The Children’s Hospital of Philadelphia Pathology Core Laboratories for their assistance in slide processing, especially Dr Tricia R. Bhatti. They also thank Dr Eric D. Marsh for interesting discussions, sharing reagents, referring the patient, and review of this manuscript, and Almedia McCoy for assistance with mouse breeding and handling.

REFERENCES

1. Wang J, Cortina G, Wua SV, et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. *N Engl J Med* 2006;355:270–80.

2. May CL, Kaestner KH. Gut endocrine cell development. *Mol Cell Endocrinol* 2010;323:70–5.

3. Lee CS, Perneault N, Brestelli JE, et al. Neurogenin 3 is essential for the proper specification of gastric endocrine cells and the maintenance of gastric epithelial cell identity. *Genes Dev* 2002;16:1488–97.

4. Jenny M, Ull C, Roche C, et al. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. *EMBO J* 2002;21:6338–47.

5. Melleritz G, Beucher A, Lobstein V, et al. Loss of enteroendocrine cells in mice alters lipid absorption and glucose homeostasis and impairs postnatal survival. *J Clin Invest* 2010;120:1708–21.

6. Hogenauer C, Meyer RL, Netto GJ, et al. Malabsorption due to cholecystokinin deficiency in a patient with autoimmune polyglandular syndrome type 1. *N Engl J Med* 2001;344:270–4.

7. Posovsky C, Lahr G, von Schnurbein J, et al. Loss of enteroendocrine cells in autoimmune-panendocrine-candidiasis-ectodermal-dystrophy (APECED) syndrome with gastrointestinal dysfunction. *J Clin Endocrinol Metab* 2012;97:E292–300.

8. Scopsi L, Gullo M, Rilke F, et al. Proprotein convertases (PC1/PC3 and PC2) in normal and neoplastic human tissues: their use as markers of prohormone convertase 1/3 deficiency: age-dependent clinical, pathological, and endocrine endocrineopathies. *J Clin Endocrinol Metab* 1995;80:294–301.

9. Bandsma RH, Sokollik C, Chamari R, et al. From diarrhea to obesity in prohormone convertase 1/3 deficiency: age-dependent clinical, pathological, and endocrine endocrineopathies characteristics. *J Clin Gastroenterol* 2013;47:834–43.

10. Jackson RS, Creemers JW, Farooqi IS, et al. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. *J Clin Invest* 2003;112:1550–60.

11. Martin MG, Lindberg I, Solorzano-Vargas RS, et al. Congenital proprotein convertase 1/3 deficiency causes malabsorptive diarrhea and other endocrinopathies in a pediatric cohort. *Gastroenterology* 2013;145:136–48.

12. Ohsee S, Gerny G, Guif D, et al. A paucity of colonic enteroendocrine and/or enterochromaffin cells characterizes a subset of patients with chronic unexplained diarrhea/malabsorption. *Hum Pathol* 2009;40:1006–14.

13. Marsh ED, Golden JA. Developing models of aristless-related homebox mutations. In: Noebels JL, Avoli MA, Rogawski RW, eds. *Jasper’s Basic Mechanisms of the Epilepsies*, 1st Ed. *Jasper’s Basic Mechanisms of the Epilepsies*. Bethesda, MD: National Center for Biotechnological Information; 2012.

14. Collombat P, Mansouri A, Hecksher-Sorensen J, et al. Opposing actions of Arx and Pax4 control enteroendocrine subtype specification in mice. *PLoS One* 2012;7:e36449.

15. Kato M, Dobyns WB. X-linked lissencephaly with abnormal genitalia as a tangential migration disorder causing intractable epilepsy: proposal for a new term, “interneuronopathy.” *J Child Neurol* 2005;20:392–7.

16. Du A, McCracken KW, Walp ER, et al. Arx is required for normal enteroendocrine cell development in mice and humans. *Dev Biol* 2012;365:175–86.

17. Beucher A, Gjermes E, Collin C, et al. The homeodomain-containing transcription factors Arx and Pax4 control enteroendocrine subtype specification in mice. *PLoS One* 2012;7:e36449.

18. Zha X, Zhou A, Dey A, et al. Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. *Proc Natl Acad Sci U S A* 2002;99:10293–8.

19. Gradwohl G, Dierich A, LeMeur M, et al. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. *Proc Natl Acad Sci U S A* 2000;97:1607–11.

20. Dobyns WB, Berry-Kravis E, Havnerick NJ, et al. X-linked lissencephaly with absent corpus callosum and ambiguous genitalia. *Am J Med Genet* 1999;86:331–7.

21. Kitamura K, Yanazawa M, Sugiyama N, et al. Mutation of ARX causes abnormal development of foerebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. *Nat Genet* 2002;32:359–69.

22. Stromme P, Mangelsdorf ME, Scheffer IE, et al. Infantile spasms, dysotonia, and other X-linked phenotypes caused by mutations in Aristless related homeobox gene, ARX, *Brain Dev* 2002;24:266–8.

23. Bonneau D, Toutain L, Lauqueeir M, et al. X-linked lissencephaly with absent corpus callosum and ambiguous genitalia (XLAG): clinical, magnetic resonance imaging, and neuropathological findings. *Ann Neurol* 2002;51:340–9.

24. Bienvenu T, Poitier K, Fricourt G, et al. ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. *Hum Mol Genet* 2002;11:981–91.

25. Shoubridge C, Fullerton T, Gecc J. ARX spectrum disorders: making inroads into the molecular pathology. *Hum Mutat* 2010;31:899–900.

26. Gecc J, Cloosterman D, Partington ARX: a gene for all seasons. *Curr Opin Genet Dev* 2006;16:308–16.

27. Hughes JN, Thomas FQ. Molecular pathology of polyalamineline expansion disorders: new perspectives from mouse models. *Methods Mol Biol* 2013;1017:135–51.

28. Amiel J, Laudier B, Attie-Bitach T, et al. Polyalamineline expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. *Nat Genet* 2003;33:459–66.

29. Kitamura K, Itou Y, Yanazawa M, et al. Three human ARX mutations cause the lissencephaly-like and mental retardation with epilepsy-like pleiotropic phenotypes in mice. *Hum Mol Genet* 2009;18:3708–24.

30. Du A, McCracken KW, Walp ER, et al. Arx is required for normal enteroendocrine cell development in mice and humans. *Dev Biol* 2012;365:175–88.

31. Beucher A, Gjermes E, Collin C, et al. The homeodomain-containing transcription factors Arx and Pax4 control enteroendocrine subtype specification in mice. *PLoS One* 2012;7:e36449.

32. Lee CS, Perreault N, Brestelli JE, et al. Neurogenin 3 is essential for the proper specification of gastric endocrine cells and the maintenance of gastric epithelial cell identity. *Genes Dev* 2002;16:1488–97.

33. Fulp CT, Cho G, Marsh ED, et al. Identification of Arx transcriptional targets in the developing basal forebrain. *PNAS* 2006;103:9939–44.

34. Nasrallah MP, Cho G, Simonet JC, et al. Differential effects of a polyalanine-expanded Arxl mutant protein in developing mouse subpallium alters Lmo1 transcriptional regulation. *Genes Dev* 2006;20:3440–53.

35. Moran GW, Leslie FC, Levison SE, et al. Enteroendocrine cells: neglected players in gastrointestinal disorders? *Therap Adv Gastroenterol* 2008;1:51–60.