Thresholds and bistability in HIV infection models with oxidative stress✩

Shaoli Wanga,∗, Fei Xub, Xinyu Songc

aSchool of Mathematics and Statistics, Henan University, Kaifeng 475001, Henan, PR China
bDepartment of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
cCollege of Mathematics and Information Science, Xinyang Normal University, Xinyang, 464000, Henan, PR China

Abstract

Oxidative stress, a reaction caused by the imbalance between the reactive oxygen species of human organism and its ability to detoxify reactive intermediates and to repair the resulting damage plays an important role in HIV-infections. On one hand, HIV infection is responsible for the chronic oxidative stress of the patients. On the other hand, the oxidative stress contributions to the HIV disease pathogenesis. In this paper, we integrate oxidative stress into an HIV infection model to investigate its effects on the virus dynamics. Through mathematical analysis, we obtain the basic reproduction number R_0 of the model which describes the persistence of viruses. In particular, we show that for $R_0 > 1$, the model has a bistable interval with virus rebound threshold and elite control threshold. Numerical simulations and bifurcation analysis are presented to illustrate the viral dynamics under oxidative stress. Our investigation reveals the interplay between viruses and the reaction of human organism including immune response and oxidative stress, and their effects on the health of human being.

Keywords: Oxidative stress; Immune impairment; Post-treatment immune control; Elite control; Saddle-node bifurcation

2010 MSC: 34D20, 92D30

✩This work is supported by NSFC (Nos. 11671346 and U1604180), NSF of Henan Province (No. 162300410031) and Nan Hu Scholar Development Program of XYNU.

∗Corresponding author.

Email addresses: wslhed@163.com (Shaoli Wang), fxu.feixu@gmail.com (Fei Xu), xysong88@163.com (Xinyu Song)
1. Introduction

Combination antiretroviral therapy gives patients long-term suppression of HIV with undetectable viral levels. Recent investigations show that for patients with undetectable viral levels, there exists a reservoir in which viruses remain alive in a long-lived latent state. With the termination of receiving combination antiretroviral therapy, after an average time period of 18 days, plasma viremia rebounds to detectable level. In the literature, medical cases of HIV rebound were reported. Medical examinations for the ‘Mississippi baby’ at the age of nearly 4 years old displayed a rebounded HIV level in blood (16,750 copies/ml) [1]. The ‘Mississippi baby’ case implies that there exists a time delay for the viral rebound [1, 2]. Researches had been carried to explain such phenomena [2, 3].

Conway and Perelson [3] developed a mathematical system to model to study the dynamics of HIV infection. Their investigation captures the interplay between viral dynamics and the response of the host and brings insight into the evolution of the disease infection process. By evaluating the designed model, the authors predicted that the strength of immune response and the initial size of the latent reservoir could affect the dynamics. Their results on post-treatment control provide guidance for future studies. Investigations implies that after HIV infection, patients who receive antiretroviral therapy early have a higher chance of getting post-treatment control, a situation where the amount of plasma virus remains undetectable after the termination of the medical treatment. However, clinically, only a small proportion of such patients that receive early treatment attain post-treatment control. Further investigations are to be carried out to reveal the mechanism behind the post-treatment control.

As a highly reactive oxygen species (ROS), oxidants are continuously produced during normal biochemical reactions in the human body. Most cells are able to detoxify physiologic levels of ROS in the human body using antioxidants such as enzymes. The processes of producing oxidants and detoxication may reach an equilibrium state. When the balance between the two processes disturbed, a condition called oxidative stress occurs [4]. Antioxidants play an important role in regulating the reactions that release free radicals. Cells need to reach certain level of antioxidant defenses to counteract the detrimental effects caused by an excessive production of ROS to protect the immune system [5]. Investigations suggest the existence of interactions between HIV-infection and oxidative stress. On one hand, the HIV-infection process contributes to the disturbance of the balance between the generation of free radicals and antioxidant defenses. On the other hand, oxidative stress is beneficial to HIV disease pathogenesis by promoting the replication of viruses, decreasing the proliferation of
immune cells, and increasing the sensitivity to drug toxicities etc [6].

After HIV infection, the initial reaction of the host is rapid and nonspecific by activating natural killer cells, macrophage cells, etc. The host develops delayed and specific reactions by activating CTLs and antibody cells. During most viral infections, CTLs attack infected cells and antibody cells attack viruses. These attacks against the viruses act as an antiviral defense for the host. Dynamics of viral infection with CTL response have been investigated in the literature. [7] introduced a mathematical system to model the interplay between activated CD4\(^+\) T cells, infected CD4\(^+\) T cells, viruses and immune cells. [8] and [9] performed investigation on the HIV infection and concluded that the turnover of free virus is much faster than that of infected cells. Based on these results, they proposed the quasi-steady state assumption, i.e., the load of free virus is proportional to the amount of infected cells. Thus we can estimate the viral load by evaluating the number of infected cells.

Investigations demonstrated that HIV mutates into new forms that escape from specific immune responses or immune exhaustion during virus evolution [10–17]. HIV infection may modulate dendritic cells, which are responsible for the viral evasion from immunity [18]. During the first stage of HIV infection, the viruses moderately decrease the amount of CD4\(^+\) T cells within the host. Then, the level of CD4\(^+\) T cell remains almost constant for several years due to the inhibition provided by the immune response. [19] modeled the interrelationship among timing, efficiency and success of antiviral drug therapy. [18] performed investigations on a variety of HIV models with immune impairment. The authors show that when the impairment rate of HIV overwhelms the threshold value, immune system of the host may collapse. [20, 21] constructed mathematical models to study the infection of HIV and carried out analysis to obtain a ‘risky threshold’ and an ‘immunodeficiency threshold’ for the impairment rate. Their investigations implies that when the impairment rate is greater than a threshold value, the immune system of the host always collapses.

During the early stage of an HIV infection, latent HIV reservoirs will be formed in the host. Latent reservoirs survive the antiretroviral therapy (ART) and remain alive even when the level of HIV in the blood is undetectable. Thus, the existence of such reservoir is a barrier to the elimination of HIV. HIV infection dynamics with latent reservoirs have been investigated in the literature[22–25]. [25] investigated the HIV infection with latent reservoirs by constructing a stochastic model. The authors showed that the latent reservoir has relatively stable size and cells can be activated to produce virions. [22] investigated influence of ongoing viral replication on the evolution of latent reservoirs and revealed the influences of a variety of viral and host factors on the dynamics of the latent reservoirs. [24] established a
mathematical model to investigate the activation of latently infected cells and revealed the mechanism behind the replenishment of the latent reservoirs.

In this article, we integrate oxidative stress into HIV infection model to consider the interplay between viruses and corresponding oxidative stress, and their combined effects on the host. The within host model is given by

\[
\begin{align*}
\frac{dx(t)}{dt} &= s - dx(t) - (1 - \epsilon)x(t)y(t), \\
\frac{dL(t)}{dt} &= \alpha_L(1 - \epsilon)x(t)y(t) + (\rho - a - d_L)L(t), \\
\frac{dy(t)}{dt} &= (1 - \alpha_L)(1 - \epsilon)x(t)y(t) + aL(t) - \delta y(t) - py(t)z(t), \\
\frac{dz(t)}{dt} &= cy(t)z(t)\frac{1}{1 + \eta y(t)} K(y) - bz(t),
\end{align*}
\]

where \(x\) denotes activated CD4\(^+\) T cells, \(L\) viral latent reservoir, \(y\) infected CD4\(^+\) T cells and \(z\) immune cells. Since HIV dynamics are known to be more rapid than infected cell dynamics, we make the quasi-steady assumption. Thus, the HIV cells are in proportion to the infected cells. Here we use the overall treatment effectiveness, denoted by \(\epsilon\), for \(0 \leq \epsilon \leq 1\), to describe their combined treatment effectiveness. In particular, when \(\epsilon = 1\), the therapy is 100\% effective. On the other hand, if the treatment is terminated, \(\epsilon = 0\) [3, 23].

The relationship between the ROS and antioxidant can be evaluated using the method proposed in [26]. [27–29] investigated the role of ROS in HIV infection. In this article, we are particularly interested in the effects of the oxidative stress on the process of viral infection. Since oxidative stress slows down the activation of the immune system, we hereby introduce the expression \(K(y) = \frac{1 + h}{\beta y}\) to model the influence of the oxidative stress. Since reactive oxygen species (ROS) are responsible for the oxidative stress, here use \(\rho(y) = k_0 + \frac{k_1}{y + y_0}\) to model oxidative stress in the HIV infection model. Here, \(k_0, k_1\) and \(y_0\) are constants. We notice that \(\rho(y)\) is a saturating, increasing function of \(y\). In order to simplify the analysis, we linearize the expression of \(\rho(y)\) to obtain \(\rho(y) = k_0 + \frac{k_1}{y_0}\). Letting \(k_0 = k\) and \(\frac{k_1}{y_0} = r\), we obtain \(\rho(y) = k + ry\). It thus follows that

\[K(y) = \frac{1 + h}{k + ry}.\]

ROS damage, the immune term is modeled using the expression \(\frac{cy}{1 + \eta y} K(y) - bz\). We notice that such immune term is different from the widely used immune and immune impairment function \(\frac{cy}{1 + \eta y} - bz - myz\) [19, 30–32] (\(m\) is the rate of immune impairment). Here constant \(h\) represents the influence of antioxidant on the immune response, \(k\) is the influence of naturally
produced oxidant, and \(r \) is the influence of oxidant produced by infected CD4\(^+\) T cells or HIV viral load \(y \).

The rest of this article is organized as follows. In, Section 2, we present some preliminary results on the structure of the equilibria of the model. We then, in Section 3, perform stability analysis on the equilibria. In Section 4, based on our stability analysis, we present sensitive analysis and numerical simulations. Finally, in Section 5, we conclude the paper with discussions and a summary.

2. Preparation

2.1. Positiveness and boundedness

In the following, we show that system (1.1) is well-posed.

Theorem 2.1. System (1.1) has a unique and nonnegative solution with the initial condition \((x(0), L(0), y(0), z(0)) \in \mathbb{R}_{+}^4\), where \(\mathbb{R}_{+}^4 = \{(x_1, x_2, x_3, x_4) | x_j \geq 0, j = 1, 2, 3, 4\} \). Furthermore, the solution is bounded.

Proof. By the fundamental theory of ordinary differential equations, system (1.1), with nonnegative initial conditions, has a unique solution. For any nonnegative initial data, let \(t_1 > 0 \) be the first time that \(x(t_1) = 0 \). The first equation of (1.1) implies that \(\dot{x}(t_1) = s > 0 \). That is to say, \(x(t) < 0 \) for \(t \in (t_1 - \epsilon_1, t_1) \), where \(\epsilon_1 \) is an arbitrarily small positive constant.

The above discussion leads to a contradiction. It thus follows that \(x(t) \) is always positive. Because \(z = 0 \) is a constant solution of the last equation of (1.1), it follows from the fundamental existence and uniqueness theorem that \(z > 0 \) for all \(t > 0 \).

Suppose that at time \(t_2 > 0 \), \(y(t_2)z(t_2) \) reaches 0 for the first time. Thus, we have

(i) \(L(t_2) = 0, y(t) \geq 0 \) for \(t \in [0, t_2] \), or
(ii) \(y(t_2) = 0, L(t) \geq 0 \) for \(t \in [0, t_2] \).

For case (i), because \(x(t) \) is positive, it follows from the variation of constants formula that

\[
L(t_2) = L(0) + e^{-\int_0^{t_2} (a + d_L - \rho) d\xi} \int_0^{t_2} \alpha L(1 - \epsilon) \beta x(\xi) y(\xi) d\xi > 0,
\]

which is in contradiction with \(L(t_2) = 0 \).

For case (ii), the third equation of system (1.1) implies that

\[
y(t_2) = y(0) + e^{\int_0^{t_2} (1 - \alpha L)(1 - \epsilon) \beta x(\xi) d\xi} \int_0^{t_2} a L(\xi) d\xi > 0,
\]

which contradicts \(y(t_2) = 0 \).

Thus, \(L(t) \) and \(y(t) \) are always positive.

Next, we expatiate upon the boundedness of the solutions to (1.1). Let

\[
M(t) = \sigma x(t) + a L(t) + (a + d_L - \rho) y(t) + \frac{pk(a + d_L - \rho)z(t)}{c(1 + h)}
\]
where \(\sigma = a \alpha_L + (1 - \alpha_L)(a + d_L - \rho) \). Since all solutions of (1.1) are positive, we have

\[
\frac{dM}{dt} = \sigma \left[s - dx - (1 - \epsilon)\beta xy + a \left[\alpha_L (1 - \epsilon) \beta xy + \rho(a + d_L - \rho)L \right] \right] + (a + d_L - \rho) \left[(1 - \alpha_L)(1 - \epsilon)\beta xy + \rho(a + d_L - \rho)L - \delta y - pyz \right] + \frac{pk(a + d_L - \rho)\xi}{\epsilon(1 + h)} \leq \sigma s - \sigma dx - (a + d_L - \rho)y - \frac{b pk(a + d_L - \rho)\xi}{\epsilon(1 + h)} < \sigma s - \nu M.
\]

Here \(\nu = \min\{d, \delta, b\} \). Let \(\varphi \) be the solution of

\[
\begin{align*}
\frac{d\varphi}{dt} &= \sigma s - \nu \varphi, \\
\varphi_0 &= \sigma x_0 + a L_0 + (a + d_L - \rho)y_0 + \frac{pk(a + d_L - \rho)z_0}{\epsilon(1 + h)},
\end{align*}
\]

where \(x_0, y_0 \) and \(z_0 \) are initial values of system (1.1) and \(\varphi_0 = M_0 > 0 \). We then evaluate \(\lim_{t \to +\infty} \sup \varphi(t) = \frac{\alpha_L}{\nu} \). It follows from the comparison theorem \([33]\) that \(M(t) < \varphi(t) \). Thus, \(x(t), L(t), y(t) \) and \(z(t) \) are bounded.

2.2. Thresholds

In the following, we consider the threshold values of the model. Such threshold characterises the viral dynamics of model (1.1).

Let

\[
R_0 = (1 - \epsilon)\beta \left(1 - \alpha_L \right) + \frac{\alpha_L}{a + d_L - \rho} \frac{1}{\delta} \sigma \left(\frac{1}{\sigma} \right)
\]

\[
= \frac{\beta(1 - \epsilon) \left(1 - \alpha_L \right) + \frac{\alpha_L}{a + d_L - \rho}}{d \sigma}. \tag{2.2.1}
\]

Because \((1 - \epsilon)\beta \frac{1}{\sigma} \left(\frac{1}{\sigma} \right) \) is the basic reproductive number of the model without viral latent reservoir, \(R_0 \) gives the basic reproductive number of model (1.1), which describes the average number of newly infected cells generated from an infected cell at the beginning of the infectious process.

Let

\[
R^*_\pm = \frac{\beta(1 - \epsilon) \left(1 - \alpha_L \right) + \frac{\alpha_L}{a + d_L - \rho}}{d \sigma} \frac{1}{\beta(1 - \epsilon) \left(1 - \alpha_L \right) + \frac{\alpha_L}{a + d_L - \rho}} \frac{1}{\beta(1 - \epsilon) \left(1 - \alpha_L \right) + \frac{\alpha_L}{a + d_L - \rho}}
\]

\[
= \frac{2 B \eta \epsilon \beta(1 - \epsilon) \left(1 - \alpha_L \right) + \frac{\alpha_L}{a + d_L - \rho}}{\delta(a + d_L - \rho) \left(2 B \eta \epsilon \beta(1 - \epsilon) \left(1 - \alpha_L \right) - B \eta \epsilon \beta(1 - \epsilon) \left(1 - \alpha_L \right) \right)}
\]

where

\[
B = c + ch - br - b \eta.
\]
Because \(\frac{\beta(1-\epsilon)}{\eta(d+\eta(1-\epsilon))} \) is the basic immune reproductive number of the model with the bilinear immune incidence \((cyz)\) and without viral latent reservoir, \(R_0^*\) represent the two thresholds in addition to the basic reproductive ratio.

We also define the following thresholds

\[
h_1 = \frac{br + b\eta k}{c} - 2b\sqrt{\eta r k} - 1
\]

and

\[
h^* = \frac{br + b\eta k}{c} + \frac{2b\eta r y_1}{c} - 1.
\]

The post-treatment immune control threshold is then obtained as

\[
h_2 = \frac{br + b\eta k}{c} + \frac{2b\sqrt{\eta r k}}{c} - 1,
\]

and the elite control threshold is given by

\[
h^{**} = \frac{br + b\eta k}{c} + \frac{bk\beta(1-\epsilon)}{cd(R_0 - 1)} + \frac{bd\eta r (R_0 - 1)}{c\beta(1-\epsilon)} - 1.
\]

Denote \(R_c = 1 + \frac{\beta(1-\epsilon)\sqrt{\eta r k}}{d\eta}\), we have the following results.

Lemma 2.1. \(R_0 > R_c \Leftrightarrow h^* > h^{**}\).

Lemma 2.2. (i) If \(1 < R_0 < R_c\), then \(R_1^* < 1, h^* < h_2\) and \(R_0^* > 1 \Leftrightarrow h > h^{**}\).

(ii) If \(R_0 > R_c\), then \(h^* > h_2, R_1^* > 1 \Leftrightarrow h > h_2\) and \(R_0^* > 1 \Leftrightarrow h_2 < h < h^*\). □

2.3. Equilibria

In the following, we consider the existing conditions of equilibria of system (1.1).

System (1.1) always admits an uninfected equilibrium \(E_0 = (x_0, 0, 0, 0)\), where \(x_0 = \frac{\delta}{\beta}\).

(i) If \(R_0 > 1\), system (1.1) also has an immune-free equilibrium \(E_1 = (x_1, L_1, y_1, 0)\), where

\[
x_1 = \frac{\delta(a+\alpha \gamma)}{\beta(1-\epsilon)[a\alpha + (1-\alpha)(a+\alpha \gamma)]},
\]

\[
L_1 = \frac{\alpha \gamma \beta(1-\epsilon) x_1 y_1}{a+\alpha \gamma},
\]

\[
y_1 = \frac{\delta(R_0 - 1)}{\beta \gamma(1-\epsilon)}.
\]

(ii) If \(R_0^* > 1\) and \(0 < h < h_1\) or \(h > h_2\), equation \(\frac{cyz}{1+ry} - \frac{1+h}{k+ry} - bz = 0\) has two positive roots.
If $R^* > 1$ and $h > h_2$, system (1.1) has an immune equilibrium $E^*_\pm = (x^*_\pm, L^*_\pm, y^*_\pm, z^*_\pm)$. If $R^*_+ > 1$ and $h > h_2$, system (1.1) also has an immune equilibrium $E^*_+ = (x^*_+, L^*_+, y^*_+, z^*_+)$. Here

\[
\begin{align*}
 x^*_\pm &= \frac{s}{a+\beta(1-\epsilon)x^*_\pm}, \\
 L^*_\pm &= \frac{\alpha L(1-\epsilon)x^*_\pm y^*_\pm}{a+d_l-p}, \\
 y^*_\pm &= \frac{R^\pm \sqrt{b^2-4bk\eta}}{2bk\eta}, \\
 z^*_\pm &= \frac{\delta(R^\pm-1)}{\rho}.
\end{align*}
\]

From Lemmas 2.1 and 2.2, summing up the above analysis yields the existing results of equilibria of system (1.1)

Theorem 2.2. (i) System (1.1) always admits an uninfected equilibrium E_0.
(ii) If $R_0 > 1$, system (1.1) also has an immune-free equilibrium E_1.
(iii) If $1 < R_0 < R_c$ and $h > h^{**}$, system (1.1) has only one positive equilibrium E^*_+. If $R_0 > R_c$ and $h_2 < h < h^*$, system (1.1) has two positive equilibria E^*_- and E^*_+. When $R_0 > R_c$ and $h > h^*$, system (1.1) has only one positive equilibrium E^*_+. (iv) If $R_0 > R_c$ and $h = h_2$, system (1.1) has only one positive equilibrium E^*_+. □

The existence results for positive equilibria are summarized in Tables 2.1 and 2.2.

	$h_2 < h < h^{**}$	$h > h^{**}$
E^*_+	—	exist
E^*_-	—	—

Table 2.1: The existence of the positive equilibria when $1 < R_0 < R_c$.

	$h_2 < h < h^*$	$h > h^*$
E^*_+	exist	exist
E^*_-	exist	—

Table 2.2: The existence of the positive equilibria when $R_0 > R_c$.

3. Stability analysis

In this section, we consider the stabilities of equilibria for system (1.1).
Let \(\tilde{E} \) be any arbitrary equilibrium of system (1.1). Denote

\[
\mathcal{J} = \begin{bmatrix}
-d - \beta(1 - \epsilon)\tilde{y} & 0 & -\beta(1 - \epsilon)\tilde{x} & 0 \\
\alpha_L\beta(1 - \epsilon)\tilde{y} & \rho - a - d_L & \alpha_L(1 - \epsilon)\tilde{x} & 0 \\
(1 - \alpha_L)\beta(1 - \epsilon)\tilde{y} & a & (1 - \alpha_L)\beta(1 - \epsilon)\tilde{x} - \delta - p\tilde{z} & -p\tilde{y} \\
0 & 0 & \frac{c(1 + h)(k - \eta\tilde{y})}{(1 + \eta\tilde{y})(k + \eta\tilde{y})} & -b \\
\end{bmatrix}.
\]

The characteristic equation of the linearized system of (1.1) at \(\tilde{E} \) is then obtained as

\[
|\lambda I - \mathcal{J}| = 0. \quad (3.1)
\]

3.1 Stability analysis of Equilibrium \(E_0 \)

Theorem 3.1. If \(R_0 < 1 \), then the uninfected equilibrium \(E_0 \) of system (1.1) is locally asymptotically stable. If \(R_0 > 1 \), \(E_0 \) is unstable.

Proof. The characteristic equation (3.1) with respect to equilibrium \(E_0(x_0, 0, 0, 0) \) is

\[
\begin{vmatrix}
-d - \lambda & 0 & -\beta(1 - \epsilon)x_0 & 0 \\
0 & \rho - a - d_L - \lambda & \alpha_L(1 - \epsilon)x_0 & 0 \\
0 & a & (1 - \alpha_L)(1 - \epsilon)x_0 - \delta - \lambda & 0 \\
0 & 0 & 0 & -b - \lambda \\
\end{vmatrix} = 0. \quad (3.2)
\]

It is clear that equation (3.2) has two negative roots \(-d\) and \(-b\). The other two eigenvalues are solutions of

\[
\lambda^2 + a_1\lambda + a_2 = 0, \quad (3.3)
\]

where

\[
a_1 = a + d_L - \rho + \delta[1 - \frac{(1 - \alpha_L)(1 - \epsilon)x_0}{\delta}],
\]

\[
a_2 = (a + d_L - \rho) - a\beta(1 - \epsilon)[\delta - (1 - \alpha_L)(1 - \epsilon)x_0] - \frac{as\beta\alpha_L(1 - \epsilon)}{d}.
\]

It is easy to see that \(a_1 > 0 \) and \(a_2 > 0 \) for \(R_0 < 1 \). When \(R_0 < 1 \), equation (3.3) has two negative roots indicating that \(E_0 \) is locally stable. On the other hand, when \(R_0 > 1 \), then \(a_2 < 0 \), and \(E_0 \) is a saddle with \(\dim W^s(E_0) = 2 \) and \(\dim W^u(E_0) = 1 \), and hence unstable. This completes the proof of Theorem 3.1.

Theorem 3.2. If \(R_0 < 1 \), then the uninfected equilibrium \(E_0 \) of system (1.1) is global asymptotically stable.
\textbf{Proof.} Define a function
\[V = \frac{1}{2}(x - x_0)^2 + AL + By + \frac{pB}{c(1 + h)}z, \]
where \(A\) and \(B\) are positive coefficients to be undetermined. It is easy to see that \(V\) is a positive Lyapunov function. Evaluating the time derivative of \(V\) along the solution of system (1.1) yields
\[
\dot{V}_{|_{(1.1)}} = (x - x_0)\left[s - dx - (1 - \epsilon)\beta xy + A[\alpha L(1 - \epsilon)\beta xy - (a + dL - \rho)L] + B\left[(1 - \alpha L)(1 - \epsilon)\beta xy + aL - \delta y - pB\right] + \frac{pB}{c(1 + h)}\left(\frac{cyz}{1 + \eta y k + ry} - bz\right)\right]
\]
\[
= (x - x_0)\left[dx_0 - dx - (1 - \epsilon)\beta xy + (1 - \epsilon)\beta x_0 y - (1 - \epsilon)\beta x_0 y + A\alpha L(1 - \epsilon)\beta xy - A(a + dL - \rho)L + B(1 - \alpha L)(1 - \epsilon)\beta xy + BaL - B\delta y - BpB + \frac{pB}{c(1 + h)}\left(\frac{cyz}{1 + \eta y k + ry} - bz\right)\right]
\]
\[
\leq -\left(d + (1 - \epsilon)\beta y\right)(x - x_0)^2 - \left[x_0 - A\alpha L - B(1 - \alpha L)\right](1 - \epsilon)\beta xy - \left[B\delta - (1 - \epsilon)\beta x_0^2\right]y - \left[A(a + dL - \rho) - Ba\right]L - \frac{pB}{c(1 + h)}bz.
\]
Choosing
\[
A = \frac{x_0}{(1 - \alpha L)\left[\frac{a + dL - \rho}{a} + \frac{\alpha L}{1 - \alpha L}\right]},
\]
\[
B = \frac{A(a + dL - \rho)}{a},
\]
we get
\[
x_0 - A\alpha L - B(1 - \alpha L) \geq 0,
\]
\[
B\delta - (1 - \epsilon)\beta x_0^2 \geq 0,
\]
\[
A(a + dL - \rho) - Ba \geq 0.
\]
Thus, if \(R_0 \leq 1\), we have \(\dot{V}_{|_{(1.1)}} \leq 0\). Since \(x, L, y, z\) are positive, we get \(V = 0\) if and only if \((x, L, y, z) = (x_0, 0, 0)\). It thus follows from the classical Krasovskii-LaSalle principle \([34, 35]\) that \(E_0\) is globally asymptotically stable. \(\square\)

The global asymptotic stability of the uninfected equilibrium \(E_0\) of system (1.1) biologically implies that the virus will die out in the host. Generally, with treatment strong enough, we have \(R_0 < 1\) which guarantees the elimination of the virus.
3.2. Stability analysis of Equilibrium E_1

Theorem 3.3. Assume $R_0 > 1$, if $h < h_1$, $h_1 < h < h_2$ or $h_2 < h < h^{*}$, then the immune free equilibrium E_1 of system (1.1) is locally asymptotically stable. If $h > h^{*}$, E_1 is unstable.

Proof. The characteristic equation of the linearized system of (1.1) at E_1 is given by

$$
\lambda^3 + b_1\lambda^2 + b_2\lambda + b_3 = 0,
$$

where

\begin{align*}
 b_1 &= d + (1 - \epsilon)\beta y_1 + a + d_L - \rho + \frac{a\alpha_L(1 - \epsilon)\beta x_1}{a + d_L - \rho} \\
 b_2 &= d(a + d_L - \rho + \frac{a\alpha_L}{y_1}) + (1 - \epsilon)\beta aL_1 + (1 - \epsilon)\beta y_1(a + d_L - \rho) \\
 &+ (1 - \epsilon)\beta x_1(1 - \alpha_L)(1 - \epsilon)\beta y_1 \\
 b_3 &= a\alpha_L(1 - \epsilon)\beta x_1(1 - \epsilon)\beta y_1 + (a + d_L - \rho)(1 - \epsilon)\beta x_1(1 - a_L)(1 - \epsilon)\beta y_1.
\end{align*}

It is easy to see that

\[
(1) \times (4) + (2) \times (3) - b_3 = 0.
\]

Thus, $b_1b_2 - b_3 > 0$ holds true. Now, we discuss the sign of the eigenvalue

\[
\lambda_4 = \frac{c(1 + h)y_1}{(1 + \eta y_1)(k + ry_1)} - b
\]

\[
= \frac{-br\eta y_1^2 + (c + ch - br - bk\eta)y_1 - bk}{(1 + \eta y_1)(k + ry_1)},
\]

which is determined by

$$
\Delta = (c + ch - br - bk\eta)^2 - 4b^2kr\eta.
$$

(i) If $\Delta = 0$, then $h = h_1$ or $h = h_2$, which is a critical situation.

(ii) If $\Delta < 0$, then $h_1 < h < h_2$, we have $\lambda_4 < 0$.

(iii) If $\Delta > 0$, we have $h < h_1$ or $h > h_2$. To get $\lambda_4 < 0$, we need to ensure that $h < \frac{br+bnk \beta(1-\epsilon)}{c} - 1$, $R_0 < 1 + R_1$ or $R_0 > 1 + R_2$, from which we can obtain that $h < h^{*}$. Here $R_{1,2} = \frac{br+bnk \beta(1-\epsilon)}{2br\eta}$. Notice $h_2 < h^{*}$. It thus follows that if $h < \frac{br+bnk \beta(1-\epsilon)}{c} - 1$ or $h_2 < h < h^{*}$, then the eigenvalue $\lambda_4 < 0$. If $h > h^{*}$, we have $\lambda_4 > 0$.

In summary, if $h < h_2$ or $h_2 < h < h^{*}$, then $\lambda_4 < 0$. From the Routh-Hurwitz criterion [36, 37], with the assumption $R_0 > 1$, if $h < h_2$ or $h_2 < h < h^{*}$, the equilibrium E_1 of system (1.1) is locally asymptotically stable. On the other hand, when $h > h^{*}$, E_1 is unstable. □
Remark 3.1. (i) h_1, h_2 and h^* are critical values.
(ii) If $R_0 > 1$ and $h > h^*$, then the equilibrium E_1 of system (1.1) is unstable.

Here, the elite control threshold h^* determines whether a system is under elite control [3]. Biologically, if the proliferation rate of CTLs is greater than the critical value h^*, the virus may remain at high levels with no control.

3.3. Stability analysis of positive equilibria

We denote by $E^* = (x^*, L^*, y^*, z^*)$ an arbitrary positive equilibrium of system (1.1).

Theorem 3.4. (i) Assume (A) $A_3(A_1A_2 - A_3) - A_4^2 > 0$. If

\[A.1\] 1 < $R_0 < R_c$ and $h > h^*$, or

\[A.2\] $R_0 > R_c$ and $h > h_2$,

system (1.1) has an immune equilibrium E^*, which is a stable node.

(ii) If $R_0 > R_c$ and $h_2 < h < h^*$, system (1.1) also has an immune equilibrium E^*, which is an unstable saddle point.

Proof. The characteristic equation of the linearized system of (1.1) at the arbitrary positive equilibrium E^* is obtained as

$$\lambda^4 + A_1\lambda^3 + A_2\lambda^2 + A_3\lambda + A_4 = 0,$$

where

\[
A_1 = a + d_L - \rho + d + \beta(1 - \epsilon)y^* + \frac{\alpha L^*}{y^*},
\]

\[
A_2 = (a + d_L - \rho)[d + \beta(1 - \epsilon)y^*] + \frac{\alpha L^*}{y^*}[d + \beta(1 - \epsilon)y^*]
+ py^*\frac{\epsilon(1 + \beta y^*)^2}{(1 + g y^*)^2} + (1 - \alpha_L)(1 - \epsilon)\beta x^*(1 - \epsilon)\beta y^*,
\]

\[
A_3 = \frac{\alpha L^*}{y^*}(a + d_L - \rho)(1 - \epsilon)\beta y^* + py^*\frac{\epsilon(1 + \beta y^*)^2}{(1 + g y^*)^2}[a + d_L - \rho + d + \beta(1 - \epsilon)y^*]
+ (1 - \alpha_L)(1 - \epsilon)\beta x^*(1 - \epsilon)\beta y^*(a + d_L - \rho),
\]

\[
A_4 = py^*\frac{\epsilon(1 + \beta y^*)^2}{(1 + g y^*)^2}(a + d_L - \rho)[d + \beta(1 - \epsilon)y^*].
\]

Then we have

\[
A_1A_2 - A_3 = \frac{\alpha L^*}{y^*}d(a + d_L - \rho) + \frac{(\alpha L^*)^2}{y^*}[d + \beta(1 - \epsilon)y^*]
+ \frac{\alpha L^*}{y^*}py^*\frac{\epsilon(1 + \beta y^*)^2}{(1 + g y^*)^2} + \frac{\alpha L^*}{y^*}(1 - \alpha_L)(1 - \epsilon)\beta x^*(1 - \epsilon)\beta y^*
+ [a + d_L - \rho + d + \beta(1 - \epsilon)y^*][a + d_L - \rho][d + \beta(1 - \epsilon)y^*]
+ \frac{\alpha L^*}{y^*}[d + \beta(1 - \epsilon)y^*][a + d_L - \rho + d + \beta(1 - \epsilon)y^*]
+ (1 - \alpha_L)(1 - \epsilon)\beta x^*(1 - \epsilon)\beta y^*[a + d_L - \rho + d + \beta(1 - \epsilon)y^*],
\]

\[
A_2^2 - 4A_1A_3 = \frac{(\alpha L^*)^2}{y^*}[d + \beta(1 - \epsilon)y^*][a + d_L - \rho + d + \beta(1 - \epsilon)y^*]
+ \frac{\alpha L^*}{y^*}(1 - \alpha_L)(1 - \epsilon)\beta x^*(1 - \epsilon)\beta y^*[a + d_L - \rho + d + \beta(1 - \epsilon)y^*],
\]

\[
A_4^2 - 4A_1A_3 = \frac{(\alpha L^*)^2}{y^*}[d + \beta(1 - \epsilon)y^*][a + d_L - \rho + d + \beta(1 - \epsilon)y^*]
+ \frac{\alpha L^*}{y^*}(1 - \alpha_L)(1 - \epsilon)\beta x^*(1 - \epsilon)\beta y^*[a + d_L - \rho + d + \beta(1 - \epsilon)y^*].
\]
(i) For equilibrium E^*_+, we have

$$k - \eta r y^*_2 < 0 \iff h > h_2.$$

If $h > h_2$, then $A_4 < 0$. Clearly, $A_i > 0$, $i = 1, 2, 3$ and $A_1 A_2 - A_3 > 0$. If $A_3 (A_1 A_2 - A_3) - A_1^2 A_4 > 0$, from the Routh-Hurwitz criterion [36, 37], we know that the positive equilibrium E^*_+ is a stable node.

(ii) For equilibrium E^*_-, we have

$$k - \eta r y^*_2 > 0 \iff B - 2b \sqrt{r \eta} < \sqrt{B^2 - 4b^2 r \eta}. \quad (3.4)$$

For any positive h, (3.4) holds true. Thus, equilibrium E^*_- is unstable. □

By Theorems 3.3 and 3.4, we have the following result.

Theorem 3.5. If $R_0 > R_c$ and $h = h_2$, the immune equilibrium E^*_- and E^*_+ coincide with each other and a saddle-node bifurcation occurs when h passes through h_2. □

The stabilities of the equilibria and the behaviors of system (1.1) are summarized in Tables 3 and 4.

Table 3.3: The stabilities of the equilibria and the behaviors of system (1.1). Here, h^{**} is a critical value and we assume $A_3 (A_1 A_2 - A_3) - A_1^2 A_4 > 0$.

R_0	E_0	E_1	E^*_+	E^*_-	System (1.1)
< 1	GAS	—	—	—	Tends to E_0
$1 < R_0 < R_c$, $0 < h < h^{**}$	US	LAS	—	—	Tends to E_1
$1 < R_0 < R_c$, $h^{**} < h$	US	US	LAS	—	Tends to E^*_+

4. Sensitive analysis and numerical simulations

4.1. Sensitive analysis

Sensitive analysis has been widely performed to investigate the basic reproductive number R_0 in epidemic models [38]. In the following, we carry out sensitive analysis with the aim of revealing the relationship between the basic infection reproductive number R_0 and the basic immune reproductive number R^*_c, and system parameters in our model. Here, we use latin hypercube sampling (LHS) and partial rank correlation coefficients (PRCCs) [39, 40] to test the dependence of the basic infection reproduction number R_0 and the basic immune
Table 3.4: The stabilities of the equilibria and the behaviors of system (1.1). Here, h_2, h^* and h^{**} are critical values, h_2 is a saddle-node bifurcation point and we assume $A_3(A_1A_2 - A_3) - A_1^2A_4 > 0$.

| $R_0 < 1$ | E_0 | E_1 | $E^*_+ | E^*_-$ | System (1.1) |
|-----------|-------|-------|-------------|-------------|
| $R_0 > 1, 0 < h < h_2,$ | US | LAS | — | — | Tends to E_0 |
| $R_0 > R_c, h_2 < h < h^{**}$ | US | LAS | LAS | US | Bistable |
| $R_0 > R_c, h^{**} < h < h^*$ | US | US | LAS | US | Tends to E^*_+ |
| $R_0 > R_c, h > h^*$ | US | US | LAS | — | Tends to E^*_+ |

reproduction number R^*_-. As a statistical sampling method, LHS provides an efficient analysis of parameter variations across simultaneous uncertainty ranges in each parameter [39]. PRCC, on the other hand, shows the level of significance for each parameter. The PRCC is obtained using the rank transformed LHS matrix and output matrix [40]. We performed 4000 simulations per run and used a uniform distribution function to test for the significance of PRCCs for all parameters with wide ranges.

PRCC results Figs. 1 and 2 illustrate the dependence of R_0 and R^*_-. When $|PRCC| > 0.4$, there is significant correlation between input parameters and output variables. For $|PRCC| \in (0.2, 0.4]$, the correlations are moderate. When $|PRCC| \in [0, 0.2]$, we have weak correlations. We notice that the proliferation rate of CD4$^+$ T cells s, the decay rate of CD4$^+$ T cells d, the infection rate of CD4$^+$ T cells β, the drug efficacy ϵ and the latently infected cell death rate d_L have significant influences on the infection reproduction number R_0 and the immune reproduction number R^*_-.

4.2. Numerical simulations

In the following, we perform some numerical simulations to verify our analysis results. The default parameter values are listed in Table 5.5.

Using these default parameters, we obtain the values of thresholds $R_0 \approx 3.0030$, $R_c \approx 1.4243$, $h_2 \approx 0.7325$, $h^* \approx 1.4353$ and $h^{**} \approx 0.9174$. The bistable interval is $(0.7325, 0.9174)$. Fig.3 indicates that there is no positive equilibrium for $h < 0.7325$, and a saddle-node bifurcation appears when h passes through 0.7325.

We are also interested in the influences of system parameters on the virus rebound threshold h_2 and the elite control threshold h^{**}. From PRCCs. Fig.5, we can see that the decay rate
of CTLs b, the effector cell production Hill function scaling η, the natural oxidant content k significantly positively correlated to the virus rebound threshold h_2. The proliferation rate of CTLs c significantly negatively correlated to the virus rebound threshold h_2.

Fig. 6 indicates that the activation rate of viral latent reservoir a is significantly positively correlated to the elite control threshold h^{**}. The proliferation rate of latently infected cells ρ is significantly negatively correlated to the elite control threshold h^{**}.

Biologically, the increased decay rate of CTLs, the effector cell production Hill function scaling and the natural oxidant content make it difficult to treat the disease. While the increased proliferation rate of CTLs are beneficial to the disease treatment.

5. Discussion

The bistability phenomenon can also appear in other HIV infection model with oxidative stress. For example, we investigate the HIV infection model (5.2) with logistic proliferation rate of latently infected cells, which can reveal the effects of proliferation rate of latently infected cells on HIV infection model. Instead of using similar method as analyzing system (1.1), we carry out simulations to show the existence of bistability. Fig. 7 shows that system (5.2) has bistable behaviors for different initial values when $L_{max} = 50$ (the values of other parameters are listed in Table 2).

\[
\begin{align*}
\frac{dx(t)}{dt} &= s - dx(t) - (1 - \epsilon)\beta x(t)y(t), \\
\frac{dL(t)}{dt} &= \alpha_L(1 - \epsilon)\beta x(t)y(t) - (a + d_L)L(t) + \rho L(t)(1 - \frac{L(t)}{L_{max}}), \\
\frac{dy(t)}{dt} &= (1 - \alpha_L)(1 - \epsilon)\beta x(t)y(t) + aL(t) - \delta y(t) - py(t)z(t), \\
\frac{dz(t)}{dt} &= \frac{cy(t)z(t)}{1 + \eta y(t)k + ry(t)} - bz(t).
\end{align*}
\]

(5.2)

In fact, the function $\frac{cy}{1 + \eta y} \frac{1 + h}{k + ry}$ is a Monod-Haldane function [42] about y. We show the predator-prey system with Monod-Haldane function or simplified Monod-Haldane function also has bistability appear [43]. In viral infection systems, the models with nonmonotonic immune responses has bistability appear. However, the model with monotonic immune responses has no bistability appear [44]. The bistability phenomenon also be discovered in a NK-tumor-immune system [45].

In this paper, we design a simplified within host model to investigate the post-treatment immune control and elite control of a disease. We obtain the model’s post-treatment immune
control threshold and the elite control threshold, and show that the model displays rich dynamical behaviors. By performing sensitive analysis and numerical simulations, we find that decreasing the immune impairment rate is beneficial for the host to obtain post-treatment immune control and the elite control. A therapeutic strategy that decreases the immune impairment rate of virus, decay rate of CTLs and effector cell production Hill function scaling is helpful for the host to obtain elite control efficiently. The results have potential applications in designing optimal treatment plan for corresponding diseases.

References

[1] NIH News, Mississippi baby now has detectable HIV, researchers find. National Institutes of Health News, (July 10, 2014) Available at www.niaid.nih.gov/news/newsreleases/2014/pages/mississippibabyhiv.aspx.

[2] D. Persaud, H. Gay, C. Ziemniak, et al., Absence of detectable HIV-1 viremia after treatment cessation in an infant, N. Engl. J. Med. 369 (2013) 1828–1835.

[3] J. M. Conway, A.S. Perelson, Post-treatment control of HIV infection, Proc. Natl. Acad. Sci. USA 112 (2015) 5467–5472.

[4] AM. Tang, E. Smit. Oxidative stress in HIV-1-infected injection drug users. J. Acquir. Immune Defic. Syndr. 25 (2000) S12–S18.

[5] M. A. Puertollano, E. Puertollano, G. A. de Cienfuegos, M. A. de Pablo, Dietary antioxidants: immunity and host defense, Current Topics in Medicinal Chemistry, 14 (2011) 1752–1766.

[6] G. W. Pace, C. D. Leaf, The role of oxidative stress in HIV disease, Free Radic. Biol. Med. 19 (1995) 523–528.

[7] M. A. Nowak, C. R. M. Bangham, Population dynamics of immune response to persistent viruses, Science 272 (1996) 74–79.

[8] C. Bartholdy, J. P. Christensen, D. Wodarz, A. R. Thomsen, Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infection with lymphocytic choriomeningitis virus, J. Virol. 74 (2000) 1034–10311.

[9] D. Wodarz, J. P. Christensen, A.R. Thomsen, The importance of lytic and nonlytic immune response in viral infections, Trends Immunol. 23 (2002) 194–200.
[10] M. A. Nowak, R. M. May, R. E. Phillips, S. Roeland-Jones, D.F. Nixon, et al., Antigenic oscillations and shifting immunodominance in HIV-1 infections, Nature 375 (1995) 606–611.

[11] P. Brrow, H. Lewicki, X. Wei, et al., Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus, Nat. Med. 3 (1997) 205–211.

[12] P. J. R. Goulder, R. E. Phillips, R. A. Colbert, et al., Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS, Nat. Med. 3 (1997) 212–217.

[13] D. A. Price, P. J. R. Goulder, P. Kleenerman, et al., Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection, Proc. Natl. Acad. Sci. USA 94 (1997) 1890–1895.

[14] R. E. Phillips, S. Rowland-Jones, D.F. Nixon, et al., Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition, Nature 354 (2005) 453–459.

[15] D. E. Kaufmann, B. D. Walker, PD-1 and CTLA-4 inhibitory co-signaling pathways in HIV infection and the potential for therapeutic intervention, J Immunol. 182 (2009) 5891–5897.

[16] A. Khaitan, D. Unutmaz, Revisiting immune exhaustion during HIV infection, Curr HIV/AIDS Rep. 8 (2011) 4–11.

[17] P. L. F. Johnson, B. F. Kochin, M. S. McAfee et al., Vaccination alters the balance between protective immunity, exhaustion, escape, and death in chronic infections, J. Virol. 11 (2011) 5565–5570.

[18] R. R. Regoes, D. Wodarz, M. A. Nowak, Virus dynamics: the effect of target cell limitation and immune responses on virus evolution, J. Theor. Biol. 191 (1998) 451–462.

[19] N. L. Komarova, E. Barnes, P. Klenerman, D. Wodarz, Boosting immunity by antiviral drag therapy: a simple relationship among timing, efficacy, and success, Proc. Natl Acad. Sci. USA 100 (2003) 1855–1860.

[20] S. Iwami, T. Miura, S. Nakaoka, Y. Takeuchi, Immune impairment in HIV infection: Existence of risky and immunodeficiency thresholds, J. Theor. Biol. 260 (2009) 490–501.
[21] S. Iwami, S. Nakaoka, Y. Takeuchi, T. Miura, Immune impairment thresholds in HIV infection, Immunol. Lett. 123 (2009) 149–154.

[22] H. Kim, A. S. Perelson, Viral and Latent Reservoir Persistence in HIV-1Infected Patients on Therapy, PLoS Comput. Biol. 2 (2006) e135.

[23] L. Rong, A. S. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, J. Theor. Biol. 260 (2009) 308–331.

[24] L. Rong, A. S. Perelson, Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Math. Biosci. 217 (2009) 77–87.

[25] S. Wang, L. Rong, Stochastic population switch may explain the latent reservoir stability and intermittent viral blips in HIV patients on suppressive therapy, J. Theor. Biol. 360 (2014) 137–148.

[26] R. D. van Gaalen and L. M. Wahl, Reconciling conflicting clinical studies of antioxidant supplementation as HIV therapy: A mathematical approach, BMC Public Health, 9 (2009), 1–18.

[27] W. Zhang, L.M. Wahl, P. Yu, Conditions for transient viremia in deterministic in-host models: Viral blips need no exogenous trigger, Siam J. Appl. Math. 2 (2013) 853–881.

[28] W. Zhang, L.M. Wahl, P. Yu, Modeling and Analysis of Recurrent Autoimmune Disease, Siam J. Appl. Math. 6 (2014) 1998–2025.

[29] W. Zhang, L.M. Wahl, P. Yu, Viral blips may not need a trigger: How transient viremia can arise in deterministic in-host models, Siam Review 1 (2014) 127–155.

[30] R. J. De Boer, A. S. Perelson, Target cell limited and immune control models of HIV infection: A comparison, J. Theor. Biol. 190 (1998) 201–214.

[31] Z. Wang, X. Liu, A chronic viral infection model with immune impairment, J. Theor. Biol. 249 (2007) 532–542.

[32] A. Pugliese, A. Gandolfi, A simple model of pathogen-immunedynamics including specific and non-specific immunity, Math. Biosci. 214 (2008) 73–80.

[33] Z. Rubinstein, A course in ordinary and partial differential equations, Academic Press, New York, 1969.
[34] N. N. Krasovskii, Problems of the theory of stability of motion, (Russian), (1959). English translation: Stanford University Press, Stanford, CA, 1963.

[35] J. P. LaSalle, Some extensions of Liapunov’s second method, IRE transactions on circuit theory, CT-7, (1960) 520–527.

[36] E. J. Routh, A treatise on the stability of a given state of motion: particularly steady motion. Macmillan, 1877.

[37] A. Hurwitz, Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt. Math. Ann. 46(2) (1895) 273–284. (English translation “On the conditions under which an equation has only roots with negative real parts” by H. G. Bergmann in selected papers on mathematical trends in control theory, R. Bellman and R. Kalaba Eds. New York: Dover, (1964) 70–82.)

[38] Y. Xiao, S. Tang, Y. Zhou, et al., Predicting the HIV/AIDS epidemic and measuring the effect of mobility in mainland China, J. Theor. Biol. 317 (2013) 271–285.

[39] S. M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 2 (1994) 229–243.

[40] S. Marino, B. Ian, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol. 254 (2008) 178–196.

[41] S. Bonhoeffer, M. Rembiszewski, G.M. Ortiz, and D.F. Nixon, Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection, AIDS, 14 (2000), 2313-2322.

[42] J.F. Andrews. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng. 10(1968) 707–723.

[43] S.L. Wang, H.X. Li, F. Xu, Thresholds and bistability in a predator-prey system with nonmonotonic functional response, finished.

[44] S.L. Wang, H.X. Li, L.B. Rong, F. Xu, Monotonic and nonmonotonic immune responses in viral infection systems, finished.

[45] S.L. Wang, H.X. Li, L.B. Rong, F. Xu, Thresholds and bistability in a NK-tumor-immune system, finished.
Table 5.5: Parameters for model (1.1).

Symbol	Description	Value	Reference
s	Proliferation rate of CD4$^+$ T cells	10 cells /µL/ day	[41]
d	Decay rate of CD4$^+$ T cells	0.01 day$^{-1}$	[41]
β	Infection rate of CD4$^+$ T cells	0.015 µL / day	–
ϵ	Drug efficacy	0.8	–
α_L	Fraction of newly infected cells that become latently infected	0.001	–
ρ	Proliferation rate of latently infected cells	0.0045 day$^{-1}$	[3]
a	Activation rate	0.004 day$^{-1}$	[3]
d_L	Latently infected cell death rate	0.004 day$^{-1}$	[3]
δ	Infected cell death rate	1 day$^{-1}$	[3]
p	Killing rate of infected CD4$^+$ T cells	0.1 day$^{-1}$	–
c	Proliferation rate of CTLs	0.1 day$^{-1}$	–
η	Effector cell production Hill function scaling	1 cells/µL	–
b	Decay rate of CTLs	0.1 day$^{-1}$	–
h	Antioxidant parameter	0.8 day$^{-1}$	–
k	The natural oxidant content	1 cells /µL	–
r	Oxidant content produced by HIV viral load	0.1 cells /µL	–

Figure 1: Partial rank correlation coefficients illustrating the dependence of R_0 for the model (1.1) on each parameter and the frequency distribution of R_0.
Figure 2: Partial rank correlation coefficients illustrating the dependence of R^*_b for the model (1.1) on each parameter.

Figure 3: Bistability and saddle-node bifurcation diagram of system (1.1). The bistable interval is $(0.7325, 0.9174)$. When $h < 0.7325$, the model has a high viral load steady state, which corresponds to viral rebound. When $h > 0.9174$, the model shows a low viral load steady state, which means that patients are under elite control. When h is between the two values, the model shows bistability depending on the initial conditions (population size of infected cells or immune cells at the time of treatment cessation). The parameter values are shown in Table 5.
Figure 4: The bistability of system (1.1). The initial values are $x(0) = 600$, $L(0) = 80$, $y(0) = 20$, $z(0) = 1$ (blue) and $x(0) = 600$, $L(0) = 80$, $y(0) = 20$, $z(0) = 20$ (red). The parameter values are listed in Table 5.

Figure 5: Partial rank correlation coefficients illustrating the dependence of h_2 on each parameter.
Figure 6: Partial rank correlation coefficients illustrating the dependence of h^{**} on each parameter.

Figure 7: The bistability of system (1.1). Here, $L_{\text{max}} = 50$. The initial values are $x(0) = 600, L(0) = 20, y(0) = 20, z(0) = 1$ (blue) and $x(0) = 600, L(0) = 80, y(0) = 20, z(0) = 20$ (red). The parameter values are listed in Table 5.