3-D Coupled Analysis of Deformation of the Strip and Rolls in Flat Rolling by FEM – Part I: Approach

H. J. Park, S. M. Hwang
(Received June 8, 2017 / Revised July 11, 2017 / Accepted July 17, 2017)

Abstract

In flat rolling mills, demands for precise process set-up and control are increasing than ever before. Consequently, it is imperative to establish a novel approach, which would provide valuable information regarding the detailed aspects of deformation behavior of the strip, and rolls during rolling. In this paper, we present a finite element (FE) approach for 3-D coupled analysis of the elastic-plastic deformation of the strip and the elastic deformation of rolls in the roll-stack of a mill stand.

Key Words: Flat Rolling, Finite Element Method, Elastic-plastic Deformation, Coupled Analysis, Contact Problem

1. 서 론

열연 혹은 냉연 등 평판압연에서 롤과 판의 형상은 예측하는 일은 고품질의 상품을 생산하기 위한 필수조건이다. 이것은 생산성의 향상에도 도움이 된다.

압연은 판과 롤이 연계되어(coupled) 있는 매우 복잡한 문제이며 롤 또한 다른 롤에 영향을 받는다. 파거 유한 요소 해석은 판의 변형에만 초점을 맞추거나 롤의 변형에만 초점을 맞추었으며[6~10] 연계 해석을 하더라도 롤은 간략화 시켜 해석을 진행하였다.

판 크라운의 온라인 모델 예측치가 불과 마이크로미터 단위의 오차를 발생시키며 오차를 발생시키는 현상이므로 조금 더 진보된 유한 요소 해석 접근 방법이 필요하다.

이 논문에서는 독자적으로 개발한 3차원 탄성 롤 탄소성 판의 연계 유한요소 시뮬레이션의 새로운 접근 방법을 제시하며 유한요소법 수식화, 수렴 과정 및 계산 과정을 자세히 설명한다. 이를 다양한 실제 공정에 적용하며 예측 정확도는 실험을 통해 얻어진 설계와 비교하도록 한다.

2. 유한요소 수식화

시간 \(t = t_{l-1}\) 에서 변형되는 물체의 형상, 응력, 변형률 분포가 주어지다고 가정하자. 시간 \(t = t_{l} = t_{l-1} + \Delta t\) 에서의 정형 방정식(force equilibrium equation)은 다음과 같다. 이때 \(\Delta t\) 는 시간 증분량이다.

\[
T_{u,i} + \rho_{e,i}f_i = 0 \quad \text{in} \quad \Omega_{l-1}
\]
유한요소법을 활용한 평판압연에서의 몰 판 연계 해석 - Part I: 접근법

\[\Omega_{i+1} \text{와 } R_{i+1} \text{는 각각 시간 } t = t_{i+1} \text{에서의 변형되는 물체와 멀도이며, } T_{ij} \text{는 음력 (first Piola-Kirchhoff stress), } f_i \text{는 중력가속도 벡터의 성분이다. 경계 조건은 다음과 같다.} \]

\[\Gamma_{i+1} \text{와 } \Gamma_i \text{는 각각 표면력 (traction)과 변위 (displacement)가 주어진 표면이며, } T_{ij} \text{와 } \bar{u}_i \text{는 시간 } t = t_i \text{에서의 변형되는 물체와 밀도이며, } \]

\[\text{第一 Piola-Kirchhoff stress, } i \text{는 중력가속도 벡터의 성분이다. 경계 조건은 다음과 같다.} \]

\[1 \text{ij} T_{ij} - G_{i+1} = 0 \]

\[1 \text{ij} T_{ij} - G_i = 0 \]

\[\text{위의 경계값 문제를 변분 방정식 (variational equation)으로 나타내면} \]

\[\int_{\Omega_{i+1}} \Delta T_{ij} \omega_{j,i} d\Omega + \int_{\Omega_i} T_{ij} \omega_{j,i} d\Omega - \int_{\Gamma_{i+1}} \rho_{i+1} f_{ij} \omega_j d\Omega - \sum_{\alpha=1}^3 \int_{\Gamma_{i+1}} T_{ij} \omega_{j,\alpha} d\Gamma = 0 \]

\[\text{여기서 } \omega_j \text{는 표면 } \Gamma_{i+1} \text{에서 제거되는 임의함수 (arbitrary function)이고, } \Delta T_{ij} \text{는 음력 증분 } T_{ij} - T_{ij-1} \text{을 의미하고 간략화하면} \]

\[\Delta T_{ij} = \Delta t - \Delta e_{im} \cdot e_{mj} - \Delta e_{im} - \Delta e_{mj} + \Delta t \Delta u_{j,m} \]

\[\text{이고 } \Delta t \text{와 } \Delta t \text{는 각각 키르히호프 음력과 그것의 Jaumann derivative 이다. } \Delta t \text{는 변위 증분, } \Delta e_{ij} \text{는 변형률 증분으로 정의에 따라} \]

\[\Delta e_{ij} = \frac{1}{2} \left((\Delta u_{i,j} + \Delta u_{j,i}) \right) \]

\[\text{로 나타낼 수 있다. 또한 음력 - 변형률 관계에 의해} \]

\[\Delta t = 2\mu \Delta e_{ij} + k \Delta e_{ik} \delta_{ij} \]

\[\text{으로 표현되고, } \mu \text{와 } k \text{는 각각 전단 탄성 계수와 체적 탄성 계수이고, } \Delta e_{ij} \text{와 } \Delta e_{ik} \text{는 변형률의 편향 성분, 체적 탄성 변형률 성분 이다.} \]

\[\Delta e_{ij} = \Delta e_{ij} - \Delta e_{ij} - \frac{1}{2} \Delta e_{ij} \delta_{ij} \]

\[\Delta e_{ij} \text{는 전체 변형률 중분, } \Delta e_{ij} \text{는 소성 변형률 중분, } \Delta e_{ij} \text{는 상변형과 열팽창으로 인한 체적 변형률 중분 이다. 소성 변형률 중분은 아래의 radial return algorithm을 이용하여 계산 할 수 있다[11].} \]

\[\Delta e_{ij} = R^T - \frac{2}{3} \cdot \frac{\sigma_i}{\mu} + R^T, \text{if } R^T > \frac{2}{3} \sigma_i \]

\[\text{여기서 } \sigma_i \text{는 시간 } t = t_i \text{에서의 유동응력 이고} \]

\[\tau_{ij}^R = \tau_{ij}^{i-1} + 2\mu \Delta e_{ij} \]

\[\tau^R = \sqrt{\tau_{ij}^{i-1} + \tau_{ij}^R} \]

\[\text{또한 음력 } T_{ij} \text{외 } \delta_{ij} \text{와 변형률 } \Delta t \text{가 주어진 표면이며, } T_{ij} \text{와 } \Delta u_j \text{는 각각 표면력 (traction)과 변위 (displacement)가 주어진 표면이며, } \]

\[T_{ij} = T_{ij} - G_{i+1} = 0 \]

\[T_{ij} = T_{ij} - G_i = 3 \]

\[\text{변위 } \Delta u_j \text{와 임의 함수 } \omega_j \text{는 다음과 같이 간략화 할 수 있다.} \]

\[\Delta u_j = N_{il} \Delta U_L \]

\[\omega_j = N_{il} \omega_L \]

\[\text{여기서 } \Delta U_L \text{은 유한 요소의 기저함수 행렬이고, } \Delta U_L \text{과 } W_L \text{은 } \Delta t \text{와 } \omega \text{의 절점 벡터를 의미 한다. 식 (12)와 (13)을 (4)식에 대입하면 비선형 (non-linear) 행동 방정식을 얻을 수 있고 이것은 다음 장에 설명하도 록 하겠다.} \]

\[\tau_{ij}^R = \tau_{ij}^{i-1} + \tau_{ij}^R \Delta t \]

\[x_{ij}^R = x_{ij}^{i-1} + \Delta u_i \]

\[3. \text{ 행동 방정식} \]

압연은 마찰 구동 (friction driven) 과정이며 따라서 롤과 판의 경계면에서 일어나는 마찰 구동을 적절히 반영하는 것이 중요하다. 롤과 판의 구동을 계산하기 위한 (4)식에 나타나는 표면력 함이 롤과 판 또는 롤과 판 경계면에서 나타난다.

\[\int_{F_L} T_{ij} \omega_j d\Gamma = W_L F_L = W_L \left(F^T_L + F_L^T \right) \]
\[
F_L^n = \int_{\Gamma_v} \sigma_n n_k N_{kl} d\Gamma \\
F'_L = \int_{\Gamma_v} \sigma_n t_k N_{kl} d\Gamma = \int_{\Gamma_v} \mu \sigma_n g(\Delta u) n_k N_{kl} d\Gamma
\]
(17) (18)

\(\Gamma_v\)는 경계면을 나타내고 \(n_k\)는 꼭의 점에서의 바깥쪽 단위 법선 벡터, \(\Delta u\)는 물에 대한 점의 변화 벡터, \(t_k\)는 \(\Delta u\)와 평행한 단위 접선 벡터의 성분을 나타낸다. \(\mu\)는 쿨롱 마찰 계수, \(\sigma_n\)와 \(\sigma_t\)는 표면력 벡터의 법선 및 접선 성분이다. \(g(\Delta u)\)는 고착 구간에서 \(\sigma_t\)를 결정하기 위해 제안된 것으로 다음과 같이 구할 수 있다.
\[
g(\Delta u) = \frac{2}{\pi} \tan^{-1}\left(\frac{\Delta u}{10^{-2}V^R M}\right)
\]
(19)

경계에 있는 요소(element) 표면이 아니라 법선방향으로 이동하는 것을 방지하는 경계에서의 절점을 고려하면 \(n_s\)의 분포는 절점이 존재하는 무한히 작은 영역에 한정된다고 가정할 수 있다.

가 된다. 여기에서 \(F_n\)은 점에 작용하는 힘 벡터의 법선 변량 성분이고 \(n_k\), \(t_k\),\(\Delta u\)는 각각의 점에 서 \(n_k\), \(t_k\),\(\Delta u\) 값이다.

\(\Phi_L = \phi_L - F_n T_L = 0\) (22)

여기에서
\[
T_L = n_L + \mu g(\Delta u) n_L
\]
(23)

식(22)에 \(n_k\)를 꼽하면
\[
F_n = n_M \phi_M
\]
(24)

가 되고 식(24)을 (22)에 대입하면
\[
\Phi_L = S_{LM} \phi_M = 0
\]
(25)

가 되며 여기에서
\[
S_{LM} = \delta_{LM} - T_L n_M
\]
(26)

\(\phi_M\) 역시 다음과 같이 표현된다.
\[
\phi_M = K_{MJ} A U_J - F_M
\]
(27)

식 (25)와 (27)로부터
\[
\Phi_L = P_{LJ} A U_J - S_{LM} F_M = 0
\]
(28)

\(P_{LJ} = S_{LM} K_{MJ}\) (29)

\(\phi_M\)도 (25)와 (27)에 의해 나타난다. \(\phi_M\)는 각각의 점에서 경계조건 \(\Delta U_s = 0\)를 부여하기 위해서는 국부 좌표계(local coordinate)를 사용해야 하기 때문에 새로운 방정식으로 다루어야 한다.

\[
\Phi_{ul} = A_{ul} L \Phi_L = 0
\]
(30)

여기에서 \(\alpha\), \(L\)은 각각 국부 좌표계와 전체 좌표계(global coordinate)의 측이며 이며 \(A_{ul}\)은 국부 좌표계의 방향 코사인 행렬이다.

뉴턴-랩슨 방법(Newton-Raphson method)을 적용하기 위해 행렬 방정식은 다음과 같이 주어진다.

\[
\frac{\partial \Phi_{ul}}{\partial \Delta U_{\beta}} - \frac{\partial \Delta U_{\beta}}{\partial \Delta U_{\alpha}} = -A_{ul} L \Phi_L
\]
(31)

\[
\frac{\partial \Phi_{ul}}{\partial \Delta U_{\beta}} = A_{ul} A_{\beta K} \frac{\partial \Phi_L}{\partial \Delta U_K}
\]
(32)

식 (22)~(32)로부터
\[
\frac{\partial \Phi_L}{\partial \Delta U_K} = \frac{\partial T_L}{\partial \Delta U_K} n_M \{F_M - K_{MJ} \Delta U_J\} + S_{LM} \left\{\frac{\partial K_{MJ}}{\partial \Delta U_K} \Delta U_J + K_{MK} - \frac{\partial F_M}{\partial \Delta U_K}\right\}
\]
(33)

식을 얻을 수 있고 여기에서
\[
\frac{\partial T_L}{\partial \Delta U_K} = \mu \frac{\partial g(\Delta u)}{\partial \Delta U_K} t_L + \mu g(\Delta u) \frac{\partial t_L}{\partial \Delta U_K}
\]
(34)

이다.

4. 접촉하고 있는 두 객체의 접근법

객체 A와 B가 서로 접촉하고 있다고 가정해 보자. 만약 객체 A가 객체 B를 강체(rigid body)로 여긴다면 객체 B는 객체 A에게 법선 변위 경계 조건(normal-
유한요소법을 활용한 평판압연에서의 롤 판 연계 해석 - Part I: 접근법

![A rigid wall]

Fig. 1 A cluster of elastic objects under loading

5. 탄성 객체의 다중 접촉 문제 접근법

4단 압연기(four-high mill)에서는 워크롤(Work roll)과 백업롤(Back up roll)사이의 접촉이 발생한다. 6단 압연기(six-high mill)에서 중간롤(intermediate roll)은 워크롤과 백업롤 둘 다 함께 접촉하고 있다. 씽지미 어(sendzimir) 압연기와 같은 경우에는 하나의 롤이 다른 여러 개의 롤과 접촉을 하고 있다. 일반적인 탄성 객체군(a cluster of elastic objects)의 다중 접촉 문제 접근법은 모듈 접근방법(modular approach)을 사용한다. 이것은 각각의 객체를 행렬 솔버(matrix solver)에 순차적으로 대입하는 것을 의미하며 이 과정은 관련된 모든 객체가 수렴할 때까지 반복된다.

경계값 문제(boundary value problem)가 물리적으로 의미 있는 해답을 얻기 위해서는 그 문제의 경계조건과 표면력 경계조건(traction prescribed boundaries)과 변위 경계조건(displacement prescribed boundaries)의 훈합의 형태를 강화해야 한다. 경계값 문제가 변위 경계조건 하나로만 구성되어 있는 경우, 변위 경계조건이 0이 아닌 것이 존재한다면 그것은 유효하다.

여러 개의 객체가 함께 있는 경우 경계조건이 유 효한 모드를 나타내는 객체는 거의 없다. 그러나 일부 이러한 객체를 작업을 시작하면 작업 결과로 얻어지는 수학적 해답이 그 객체와 근접해 있는 다른 객체의 유효한 모드로 바뀔 것이다. 유효한 모드로 바뀐 객체는 또 다른 객체의 표면력을 유효한 모드로 바꾸게 된다. 이것은 마치 연쇄 반응(chain reaction)과 같다. 따라서 계산 순서(sequence of computation) 혹은 계산 계층 구조(computational hierarchy)는 연쇄 반응에 따라 결정되어야 한다. Fig. 1은 예로 들어 보자.

연산을 시작하기 전에 오직 객체 C만 유효한 모드를 나타낸다. 객체 C는 1개의 표면력 경계조건과 4개의 변위 경계조건을 가지고 있다(객체 A와 객체 E는 객체 C의 유형 1 객체 이다.). 그러므로 객체 C는 가장 높은 순위가 되고 제일 먼저 행렬 솔버에 입력된다.

객체 A는 객체 C로부터 복구되는(recover) 표면력 경계조건 하나와 3개의 변위 경계조건을 가지고 있으므로(객체 B와 객체 F를 유형 1로 보고 얻을 수 있는 변위 경계조건 포함) 두번째 순서로 행렬 솔버에 입력된다. 객체 E 역시 객체 C로부터 복구되는 하나의 표면력 경계조건과 2개의 변위 경계조건(객체 F를 유형 1로 보고 얻을 수 있는 변위 경계조건 포함)을 가지고 있으므로 역시 두번째로 순차로 행렬 솔버에 입력된다.

이로써 예로 든 Fig. 1은 4단계의 계산 계층 구조가 있음을 알 수 있다.

\[C \rightarrow A \Rightarrow E \rightarrow B = F \rightarrow D. \]
Fig. 2 A possible sequence of transfer of the traction data from an object to another. The number represents the rank of the object in this hierarchy.

Fig. 2에서는 해당 객체의 유형2 객체로부터 표면력 경계조건을 어떤 순서로 전달 받는지를 나타내고 있다. 여기에서 주목할 점은 현재 객체와 접촉하는 객체들 중에서 상위에 있는 객체를 유형2 객체로 취급하고 나머지는 유형1의 객체로 취급하는 아주 간단한 원리를 사용한다는 것이다.

만약 이 원리를 사용하지 않는다면 다른 계산층구조가 나올 수도 있다.

6. 반복 전략(Iteration Strategy)

다중 탄성 객체군의 모든 객체에 대한 계산이 완료되면 새로운 반복(iteration)이 시작되어야 하고 이러한 반복 과정은 해답이 수렴(convergence) 될 때까지 진행되어야 한다.

해당 객체는 유형1과 유형2의 객체로부터 새로운 경계조건이 부여되어야 하며 이는 일반적으로 이전의 경계조건과는 다르다. 그러므로 이전에 예측된 객체의 변형과 새로이 예측된 객체의 변형은 매우 다른 차이를 보이게 된다.

결과적으로 이전의 해답과 현재의 해답의 차이가 적절하게 완화되지 않으면 수렴성을 보장할 수 없음을 의미한다. 이와 관련해서 취할 수 있는 전략은 다음과 같이 객체의 변형된 모양을 업데이트 하는 것이다.

$$X^\text{type}_L(n) = \alpha X^\text{type}_L(\text{new}) + (1-\alpha)X^\text{type}_L(n-1) \tag{37}$$

여기에서 X^type_L는 유형1 객체의 점절 좌표 벡터를 의미하며 $(n-1)$은 $(n-1)$ 번째 반복에서 적용한 입력값을 (new)는 $(n-1)$ 번째 반복에서 얻어지는 값을 (n)은 (n) 번째 반복에서 적용할 입력값을 의미한다. 여기에서 α는 상수이며 자재적으로 수차례의 시험 시뮬레이션을 통해 도출하였으며 그 값은 $\alpha = 0.2 \sim 0.5$ 이다. α 값이 너무 크게 되면 해가 발산하게 되고 너무 줄이면 계산 시간이 증가하게 된다.

7. 시간 단계 해석(Time Stepping)

단일 객체의 탄성 변형을 분석하는 것은 시간 단계(time stepping)없이 수행 할 수 있다. 그러나 객체가 다른 객체와 접촉하고 있을 때, 시간 단계는 해당 객체와 그것의 유형1 객체와의 접촉 영역을 결정하는 수단으로 사용할 수 있으며 이는 처음부터 알려져 있지 않다.

현재의 연구에서는 외부로부터 작용되거나 해당 객체의 유형2 객체로부터 전달되는 표면력을 때 단계(step)마다 점진적으로 증가시키며 마지막 단계에서 전체 하중이 전달되는 방법을 사용하고 있다. 각 단계가 시작 될 때 일부 점설이 선택(select)되고 마지막 단계에서 유형1 객체의 표면에 해당 객체가 닿을 수 있도록 적절한 변위 경계조건이 부여된다. 일반적으로 이 선택은 추측(guesswork)이며 보통 이전 단계에서 선택한 점들에 다시 선택하도록 한다. 이 전 단계에서 선택되지 않은 점들 중 일부는 유형1 객체에 침투(infiltrate)했을 가능성이 있는데 이러한 점들이 존재 한다면 추가로 선택되고 각 단계의 마지막에 유형1 객체의 표면에 밀어내도록 다시 한 번 적절한 위치 경계조건이 설정된다.

각 단계의 끝에서 다시 한 번 현재 선택된 점들의 유용성을 판단 하고 업데이트 한다. 각 점들의 힘 벡터의 변형 성분이 정량(tensile)이라면 그 점들은 선택에서 제외시키며 이러한 방식으로 선택에서 제외할 점들이 더 이상 없을 때까지 이 과정을 반복한다.

각 단계에서 전달되는 힘을 감소시키기 위해 총 단계(total step) 횟수를 늘린다면 접촉 영역 예측 정확도가 상승한다. 이상적인 총 단계 횟수는 총 단계
8. 결론
본 논문에서는 3차원 탄성롤과 탄소성 판의 연계 해석을 위한 방법이 상세하게 기술되었다. 유한요소 수식화, 객체군의 다중의 접촉 문제에 대한 접근법을 소개하였으며 반복적인 계산 과정에서 구해지는 해를 업데이트 하는 방법과 단계적으로 하중을 적용시키는 방법 또한 제시하였다.
(1) 연계 해석을 위한 유한요소 수식화를 진행하였다.
(2) 두 객체의 접촉 문제에서 조건에 따라 유형1과 유형 2 객체로 정의 한다.
(3) 객체군의 다중 접촉 문제에서는 유 효한 객체를 선택 후 연쇄반응에 근거하여 순서를 결정 후 하나씩 차례대로 행렬 솔버에 대입하여 계산을 진행 한다.
(4) 시뮬레이션의 반복 해석에서 수렴성을 확보하기 위해 이전의 결과와 현재의 결과를 함께 이용하는 방법을 사용한다.
(5) 접촉 표면의 경계 조건 타당성 확보를 위해 작용하는 힘을 단계적으로 작용하는 시간 단계 해석을 사용한다.
이 접근방법의 타당성은 다양한 실제 압연 공정에 적용하여 측정된 실제치와 비교하여 검증될 것이며 이를 Part II에 기술하였다.

후기
이 논문은 2012년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2012R1A5A1048294).

REFERENCES
[1] G. J. Li, S. Kobayashi, 1982, Rigid-plastic Finite-Element Analysis of Plane Strain Rolling, ASME Trans., J. Eng. Ind., Vol.104, p. 55.
[2] S. M. Hwang, S. Kobayashi, 1984, Preform Design in Plane Strain Rolling by the Finite Element Method, Int. J. Machine Tool Des. Res., Vol.24, pp.253–266.
[3] T. Hirakawa, F. Fujita, M. Kamata, Y. Yamada, 1984, Analysis of Strip Rolling by the Finite Element Method, Adv. Technol. Plast., Vol. 2, pp.1132–1137.
[4] T. H. Kim, W.H. Lee, S. M. Hwang, 2003, An Integrated FE Process Model for the Prediction of Strip Profile in Flat Rolling, ISIJ Int., Vol.43, No. 12, pp.1947–1956.
[5] J. S. Lee, T. J. Shin, S. J. Yoon, S. M. Hwang, 2016, Prediction of Steady-state Strip Profile in Flat Rolling, Steel Res. Int., Vol.87, No. 7, pp. 930–940.
[6] R. M. Guo, 1997, Prediction of Strip Profile in Rolling Process using Influence Coefficients and Boussinesq’s Equation, J. Manuf. Sci. Eng., Vol.119, pp. 220–226.
[7] A. Hacquin, P. Montmitonnet, J. P. Guillerault, 1998, A 3D Semi-analytical Model of Rolling Stand Deformation with Finite Element Validation, Eur. J. Mech. A: Solids, Vol.17, No. 1, pp. 79–106.
[8] K. H. Yun, T. J. Shin, S. M. Hwang, 2007, A Finite Element-based On-line Model for the Prediction of Deformed Roll Profile in Flat Rolling, ISIJ Int., Vol.47, No. 9, pp. 1300–1308.
[9] A. S. Malik, R. V. Grandhi, 2008, A Computational Method to Predict Strip Profile in Rolling Mills, J. Mater. Process. Technol., Vol.206, pp. 263–274.
[10] K. Linghu, Z. Jiang, J. Zhao, F. Li, D. Wei, J. Xu, X. Zhang, X. Zhao, 2014, 3D FEM Analysis of Strip Shape during Multi-pass Rolling in a 6-high CVC Cold Rolling Mill, Int. J. Adv. Manuf. Technol., Vol.74, No. 9-12, pp. 1733–1745.
[11] R. D. Krieg, D. B. Krieg, 1977, Accuracies of Numerical Solution Methods for the Elastic-Perfectly Plastic Model, J. Pressure Vessel Tech., ASME, Vol. 99, pp. 510–515.