L. Alvarez-Ruso, S.K. Singh and M.J. Vicente Vacas

Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC,
46100 Burjassot, Valencia, Spain
(March 31, 2022)

Abstract

The reaction $\nu d \rightarrow \mu^- \Delta^{++} n$ is studied in the region of low $q^2$ to investigate the effect of deuteron structure and width of the $\Delta$ resonance on the differential cross section. The results are used to extract the axial vector $N - \Delta$ coupling $C^A_5$ from the experimental data on this reaction. The possibility to determine this coupling from electroweak interaction experiments with high intensity electron accelerators is discussed.

25.30.Pt, 25.75.Dw, 14.20.Gk
I. INTRODUCTION

The study of electromagnetic and weak couplings in the $N - \Delta$ transition amplitude can provide valuable information about the hadron structure. For example, the electromagnetic couplings in the magnetic dipole ($M_1$) and electric quadrupole ($E_2$) transition amplitudes, determined from the experiments on photo and electroproduction of the $\Delta$ resonance are found to be about 30% larger than those computed in many theoretical models of hadron structure [1]. To explain this discrepancy is a challenging task for these models. A similar comparison between theoretical and experimental values of the various couplings in the weak transition amplitude has not been made, even though there exists considerable literature on the study of weak $N - \Delta$ transitions [2]. However, in a recent paper, Hemmert, Holstein and Mukhopadhyay (HHM) [3], using the low $q^2$ data from the Argonne National Laboratory (ANL) experiment of Barish et al. [4] and the Brookhaven National Laboratory (BNL) experiment of Kitagaki et al. [5] on the reaction $\nu d \rightarrow \mu^- \Delta^{++} n$, have determined the value of the axial vector $N - \Delta$ coupling $C_5^A$. They find that, in the weak sector too, the experimental value of $C_5^A$ is about 30% larger than the theoretical estimates obtained in most of the quark models. This value is, however, consistent with the value obtained in a calculation that uses the hypothesis of partial conservation of axial current (PCAC), when the experimental value is used for the $g_{\Delta N \pi}$ coupling. The underestimation of the electromagnetic and weak couplings in the $N - \Delta$ transitions may be a manifestation of the large violations of $SU(6)$ symmetry, while maintaining the chiral symmetry of the Lagrangian, and needs further investigation. On the experimental side, a better determination of these couplings might become available in near future, when the electromagnetic and weak interaction reactions planned to be studied at high intensity electron accelerators are performed [6].

In this paper, we undertake the determination of $C_5^A$ using the data from the BNL experiment of Kitagaki et al. [5] on the ratio of the differential cross sections for the inelastic $\nu d \rightarrow \mu^- \Delta^{++} n$ and the quasielastic $\nu d \rightarrow \mu^- pp$ reactions. We also analyze the experimental results from the ANL experiment of Radecky et al. [7], which has about three times more events than the experiment of Barish et al. [4]. In the inelastic reaction, all the experimental analyses [4,5,7] exclude the region of very low $|q^2|$ i.e. $|q^2| \leq 0.1 \text{ GeV}^2$. In this region, the nuclear corrections due to the deuteron target have not been calculated. We take into account the effect of deuteron structure in the present work. We also study the effect of the width of the $\Delta$ resonance on the differential cross section, and its influence on the determination of $C_5^A$ using an energy dependent P-wave width for the $\Delta$. In the earlier analyses of this reaction [4,5,7], an energy dependent S-wave width was used. These effects were not included in the analysis of HHM [3], which could influence the determination of $C_5^A$, specially when the low $q^2$ data is used for the ratio of the differential cross section of the inelastic reaction $\nu d \rightarrow \mu^- \Delta^{++} n$ and the quasielastic reaction $\nu d \rightarrow \mu^- pp$. The analysis presented here brings out in detail the various uncertainties involved in the extraction of $C_5^A$ from the data, when extrapolated to $q^2 = 0$.

In Sec. II, we calculate the effects of deuteron structure and width of the $\Delta$ resonance on the differential cross sections. We determine the value of $C_5^A$ in Sec. III, where the possibility of extracting it from electron scattering experiments is also discussed. The Sec. IV provides a summary of the results presented in this paper.
II. DIFFERENTIAL CROSS SECTION

A. Differential Cross Section for $\nu p \rightarrow \mu^- \Delta^{++}$

The weak $N - \Delta$ transition is described in terms of eight form factors $C_{i}^{V,A}(i = 3 - 6)$, where superscripts $V$ and $A$ refer to the vector and axial vector form factors respectively. In the standard notation [8–10], the amplitude $M$ is written as

$$M = \frac{G}{\sqrt{2}} \cos \theta \, l_{\alpha} J_{\alpha},$$

(1)

with

$$l_{\alpha} = \bar{u}(k') \gamma_{\alpha} (1 - \gamma_{5}) u(k),$$

(2)

and

$$J_{\alpha} = \sqrt{3} \bar{\psi}_{\mu}(p') \left\{ \frac{C_{3}^{V}}{M} (g^{\mu\alpha} q - q^\mu \gamma_{\alpha}) + \frac{C_{4}^{V}}{M^2} (g^{\mu\alpha} q \cdot p' - q^\mu p'^{\alpha}) + \frac{C_{5}^{V}}{M^2} (g^{\mu\alpha} q \cdot p - q^\mu p^{\alpha}) \right\} + \frac{C_{6}^{A}}{M^2} q^\mu \gamma_{\alpha} \right. \bar{u}(p),$$

(3)

where $M$ is the nucleon mass; $\psi_{\mu}(p')$ and $u(p)$ are the Rarita Schwinger and Dirac spinors for $\Delta$ and nucleon of momentum $p'$ and $p$; $q = p' - p = k - k'$ is the momentum transfer. The weak form factors $C_{i}^{V}(i = 3 - 6)$ are obtained using the conserved vector current (CVC) hypothesis, which requires $C_{6}^{V} = 0$ and relates the remaining three form factors to the various amplitudes in the photo and electroproduction of the $\Delta$ resonance. From the experimental data on these processes, the following values of the vector form factors are obtained, which are used in the analysis of the neutrino scattering experiments [4,5,7,10]:

$$C_{5}^{V} = 0, \quad C_{4}^{V} = -\frac{M}{M'} C_{3}^{V},$$

(4)

with

$$C_{5}^{V}(q^2) = \frac{2.05}{(1 - q^2/0.54\text{GeV}^2)^2}.$$

(5)

Here $M'$ is the mass of $\Delta$ resonance. The weak axial form factors $C_{i}^{A}(i = 3 - 5)$ are determined by fitting the available data on the differential cross section $d\sigma/dq^2$ in neutrino scattering, mainly from the deuteron target, in order to minimize the nuclear corrections. However, these values of the form factors are also compatible with the data on neutrino scattering from nuclear targets [11]. It is to be noted that $C_{6}^{A}$ is not determined from these experiments as it is proportional to the lepton mass, which is neglected in these analyses. Instead, this form factor is determined in terms of $C_{5}^{A}$ using the hypothesis of PCAC. The values of the axial form factors most often used in the analysis of the neutrino experiments are [4,5,7,11].
\[ C_{i=3,4,5}^A(q^2) = C_i^A(0) \left[ 1 - \frac{a_i q^2}{b_i - q^2} \right] \left( 1 - \frac{q^2}{M_A^2} \right)^{-2}, \] (6)

and

\[ C_6^A(q^2) = C_5^A \frac{M^2}{m_\pi^2 - q^2}, \] (7)

with \( C_3^A(0) = 0, \) \( C_4^A(0) = -0.3, \) \( C_5^A(0) = 1.2, \) \( a_4 = a_5 = -1.21, \) \( b_4 = b_5 = 2 \text{ GeV}^2 \) and \( M_A \) is treated as a free parameter. For our present purpose, we take \( M_A = 1.28 \text{ GeV} \) [5]. Using the matrix element of Eqs. (1-3), the differential cross section is written as

\[ \frac{d^2 \sigma}{dq^2 dk_0^2} = \frac{1}{128 \pi^2} \frac{M^2}{M'(s - M^2)^2} \frac{G^2 \cos^2 \theta_c L_{\alpha\beta} J^\alpha J^\beta}{(W - M')^2 + \Gamma^2(W)/4}, \] (8)

with

\[ L_{\alpha\beta} = k_\alpha k'_\beta + k'_\alpha k_\beta - g_{\alpha\beta} k.k' + i \epsilon_{\alpha\beta\gamma\delta} k^\gamma k'^\delta, \] (9)

and

\[ J_{\alpha\beta} = \bar{J} J_\alpha J_\beta, \] (10)

where the summation is performed over the hadronic spins, using a spin 3/2 projection operator \( P_{\mu\nu} \) given by

\[ P_{\mu\nu} = -\frac{p_0 + M'}{2M'} \left( g_{\mu\nu} - \frac{2 p_\mu p'_\nu}{3 M'^2} + \frac{1}{3} \frac{p'_\mu \gamma_\nu - p'_\nu \gamma_\mu}{M'} - \frac{1}{3} \gamma_\mu \gamma_\nu \right). \] (11)

In Eq. (8), \( s = (p + k)^2, \) \( W \) is the \( \Delta \) invariant mass \( W^2 = p'^2 \) and \( \Gamma(W) \) its decay width given by [12]

\[ \Gamma = \Gamma_0 \frac{M'}{W} \frac{q^3_{cm}(W)}{q^3_{cm}(M')}, \] (12)

with \( \Gamma_0 = 120 \text{ MeV} \) [13] and \( q_{cm}(W) \) the modulus of the pion momentum in the rest frame of a \( \Delta \) with invariant mass \( W; \) \( k'_0 \) is the muon energy in the laboratory frame.

**B. Effect of Deuteron Structure**

When the reaction takes place in deuteron, i.e. \( \nu(k) + d(p) \rightarrow \mu^-(k') + \Delta^{++}(p'_1) + n(p'_2), \) the differential cross section in the impulse approximation is calculated to be

\[ \frac{d^2 \sigma}{dq^2 dp_0^2} = \frac{1}{128 \pi^2} \frac{M_d^2}{M'(s - M_d^2)^2} \frac{G^2 \cos^2 \theta_c L_{\alpha\beta} J^\alpha J^\beta}{(2\pi)^3 p_0^0 (W - M')^2 + \Gamma^2(W)/4} \phi^2(|p_2'|), \] (13)

where \( M_d \) is the deuteron mass and \( \phi(|p_2'|) \) is the Fourier transform of the deuteron radial wave function. This expression is derived assuming the neutron to be spectator, and
neglecting meson exchange currents and final state interactions. The contribution of these effects on the differential cross section $d\sigma/dq^2$ has been studied earlier for the case of the quasielastic reaction \cite{14} and found to be small in the kinematical region considered here. Using Eq. (13), we calculate the differential cross section for the reaction $\nu d \rightarrow \mu^- \Delta^{++} n$ for various deuteron wave functions corresponding to Hulthen \cite{15}, Paris \cite{17} and Bonn \cite{16} potentials, and compare them with the differential cross section results for the free case, calculated from Eq. (8).

The results for $d\sigma/dq^2$ as a function of $Q^2 = -q^2$ for the incident neutrino energy $E_\nu = 1.6$ GeV are shown in Fig. 1. We see that the deuteron effects are small, not exceeding 8% even at low $Q^2$ i.e. $Q^2 < 0.1$ GeV$^2$. This is the region where they give a large reduction in the quasielastic reaction $\nu d \rightarrow \mu^- pp$ \cite{14}. The different behaviour of deuteron effects in these two reactions is due to the nature of the vector current contribution. In the inelastic reaction, the vector contribution vanishes for proton as well as for deuteron targets in the limit of $Q^2 \rightarrow 0$, and the only contribution is from the axial vector piece, which is only slightly affected by the deuteron structure. On the other hand, in the quasielastic reaction, while both vector and axial vector currents contribute for the nucleon case, the vector contribution is completely suppressed in the deuteron. The only contribution left in the case of deuteron is from the axial vector current with an effective strength, which is strongly reduced due to symmetry considerations of the two nucleons in the final state \cite{14}. In the range of $Q^2 > 0.1$ GeV$^2$ the deuteron effects are found to be quite small on the differential cross section $d\sigma/dq^2$ for the inelastic reaction. The situation is then similar to the case of quasielastic reaction \cite{14}, where the deuteron effects are almost negligible in this region.

We compare the deuteron structure effects in both reactions by computing the ratio $R(Q^2)$ defined as

$$R(Q^2) = \frac{d\sigma}{dq^2} (\nu d \rightarrow \mu^- \Delta^{++} n)}{d\sigma}{dq^2} (\nu d \rightarrow \mu^- pp), \quad (14)$$

and plotting it as a function of $Q^2$. In calculating $R(Q^2)$, we use the deuteron wave function obtained from Paris potential. The differential cross sections for the quasielastic reaction is taken from Singh and Arenhoevel \cite{14} for the case where meson exchange currents and final state interaction effects are neglected, in order to be consistent with our present calculation for the inelastic reaction. In Fig. 2, we show $R(Q^2)$ for the range of low $Q^2$, where deuteron effects are known to be important in the case of quasielastic reactions. We also show in this figure the ratio for the equivalent reactions on the free nucleon. We see that the ratio of the two differential cross sections on the free nucleon target remains approximately constant for a large range of $Q^2$ considered here. In the case of the deuteron target also the ratio $R(Q^2)$ is fairly constant for the values of $Q^2 > 0.05$ GeV$^2$. Note that in the region of $0.05 < Q^2 < 0.10$ GeV$^2$, the deuteron effects are always less than 7%. For values of $Q^2 < 0.05$ GeV$^2$, the ratio $R(Q^2)$ increases. This is mainly due to the decrease in the cross sections of the quasielastic reaction.

In the region of very low $Q^2$, the nonzero muon mass may play a role. In order to see its effect, we have evaluated the differential cross section $d\sigma/dq^2$ from Eq. (13), keeping the muon mass term and the induced pseudoscalar form factor $C_6^A(Q^2)$, determined from the PCAC condition and given by Eq. (7). We show our results in Fig. 3 for the case of Paris wave function. The effect of the nonzero muon mass is important in the region of very low
\( Q^2 \) and is to be noticed in a fast decrease of the differential cross section as \( Q^2 \) decreases and reaches a value \( Q^2_{\text{min}} \), below which the reaction is kinematically not allowed. In fact, in an earlier analysis of the Brookhaven experiment [18], this trend is clearly visible (See Fig. 11 of Ref. [18]) but, as no cross sections are quoted in this experiment, a direct comparison with our present theoretical results can not be made.

Finally, to conclude this section on the effect of deuteron structure in the reaction \( \nu d \rightarrow \mu^- \Delta^{++} n \), we would like to elaborate and extend the comments made by Kitagaki et al. [5] about these effects and state that, at \( E_\nu = 1.6 \) GeV:

- The effects of deuteron structure are small for all \( Q^2 \), even for \( Q^2 < 0.1 \) GeV\(^2\), not exceeding 10%.

- There is an additional reduction in the cross sections in the region of \( Q^2 \sim 0.05 \) GeV\(^2\) due to the nonzero muon mass, which is about 5%, and could be larger as \( Q^2 \) decreases further.

C. Effect of the width of \( \Delta \) resonance

The analysis of Schreiner and von Hippel [10] uses an S-wave width for the \( \Delta \) resonance, which has also been used in the ANL and BNL experiments [4,5,7]. The recent paper of HHM [3], dealing with the \( N - \Delta \) couplings and the extraction of \( C^A_5 \), uses an expression for the differential cross section at \( Q^2 = 0 \), which neglects the width of the \( \Delta \) resonance. In this situation, it seems worthwhile to examine the effect of the width of the \( \Delta \) resonance. Therefore, we study the sensitivity of the differential cross section for the process \( \nu p \rightarrow \mu^- \Delta^{++} \) to the width of the \( \Delta \) resonance and its energy dependence. In order to do this, we evaluate the differential cross section given in Eq. (8) with

- P-wave \( \Delta \) resonance width given in Eq. (12)
- S-wave \( \Delta \) resonance width given by [10]

\[
\Gamma = \frac{q_{\text{cm}}(W)}{q_{\text{cm}}(M')} \Gamma_0,
\]

(15)

- narrow resonance limit i.e. \( \Gamma \rightarrow 0 \), in which the differential cross section is analytically given by

\[
\frac{d\sigma}{dq^2} = \frac{1}{64\pi} \frac{1}{(s - M^2)^2} G^2 \cos^2 \theta c L_{\alpha\beta} J^{\alpha\beta}.
\]

(16)

In Fig. 4, we present the results of \( R(Q^2) \) with free nucleon target for the three cases discussed above. We see here that the inclusion of the width gives a considerable reduction of the cross section, but the detailed form of its energy dependence is not very important when an invariant mass of \( W \leq W_{\text{cut}} = 1.4 \) GeV is used. We have also found that the uncertainties in the width at the resonance energy of about \( 10 - 15 \) MeV [13] do not lead to any substantial change in the cross section.
III. AXIAL VECTOR N − Δ COUPLINGS

A. Neutrino Scattering Experiments

In this section, we evaluate the value of $C_5^A$ using the data of Kitagaki et al. [5] on $R(Q^2)$, and use it to describe the data of Radecky et al. [7] for the differential cross section $dσ/dq^2$. For this purpose, the momentum dependence of the vector and axial vector form factors, as given in Eqs. (4-7) has been used.

Based on the theoretical discussion presented in Sec. II on the ratio $R(Q^2)$, we recall that this ratio remains approximately constant in the absence of deuteron effects. Even when the deuteron effects are included, this ratio remains more or less constant for $Q^2 > 0.05$ GeV$^2$. In this region of $Q^2$, where the experimental results are available, this seems to be the case [3-5]. We, therefore, assume that if the deuteron effects are taken out from the quasielastic as well as from the inelastic reactions, this ratio remains same even at $Q^2 = 0$. Of course, this limit is reachable only when the muon mass is neglected. Then, the cross sections for the quasielastic and inelastic reactions are given by [19,20]

$$
\frac{dσ}{dq^2}(q^2 = 0) = (F_A^2 + F_V^2) \frac{1}{2π} G^2 \cos^2 θ_c
$$

(17)

and

$$
\frac{dσ}{dq^2}(q^2 = 0) = (C_5^A)^2 \frac{1}{24π^2} G^2 \cos^2 θ_c \frac{\sqrt{s}(M + M′)^2(s - M'^2)^2}{(s - M^2)M'^3} \int_{k_{min}^0}^{k_{max}^0} dk^0 \frac{\Gamma(W)}{(W - M')^2 + \Gamma^2(W)/4}
$$

(18)

respectively; $k_{min}^0$ and $k_{max}^0$ are given by

$$
k_{min}^0 = \max \left( \frac{s - W_{cut}^2}{2\sqrt{s}}, 0 \right), \quad k_{max}^0 = \frac{s - (M + m_π)^2}{2\sqrt{s}}.
$$

(19)

Equating the ratio of these two cross sections given in Eqs. (17) and (18) i.e. $R(Q^2 = 0)$ to the extrapolated experimental value of $0.55 \pm 0.05$ [21], we obtain

$$
C_5^A = 1.22 \pm 0.06
$$

(20)

Using this value of $C_5^A$ and other form factors as given in Eqs. (4-7), we calculate the flux averaged differential cross section for the neutrino energy spectrum of the Argonne experiment of Radecky et al. [7] and show this in Fig. 5. We see that the inclusion of deuteron and mass effects lead to a better description of the data. It is to be emphasized that a small reduction in the differential cross section due to these effects is quite important in bringing out a good agreement with the experimental data, specially in the low $q^2$ region.

In Table 1, we compare the values of these coupling constants with the theoretical values obtained in various models. With the exception of the quark model treatment of Liu et al [2], all the quark models underestimate the value of $C_5^A$ when compared to the central values quoted from experimental analyses. On the other hand, it is in good agreement with
the prediction of PCAC, which gives $C_5^A = 1.15 \pm 0.01$, when the experimental value of $g_{\Delta N\pi} = 28.6 \pm 0.3$ is used. It is expected that the various extensions of the quark models currently proposed to explain the quadrupole moment of $\Delta$, and the E2/M1 ratio in the photo and electroproduction of the $\Delta$ resonance will be applied to the problem of explaining $C_5^A$ and other $N - \Delta$ couplings in these models.

B. Electron Scattering Experiments

It is possible to get information about the axial vector coupling $C_5^A$ from the observation of the parity violating asymmetry in the polarized electron scattering experiments performed in the $\Delta$ region. The feasibility of doing such experiments was discussed in past by many authors [26], but it seems now possible to do these experiments at the high intensity electron accelerators [6,27]. In the neutral current reaction $e^- + p \rightarrow e^- + \Delta^+ + \nu$ with polarized electron the asymmetry $A(Q^2)$ is defined as

$$A(Q^2) = \frac{d\sigma}{dq^2}(+1) - \frac{d\sigma}{dq^2}(-1) - \frac{d\sigma}{dq^2}(+1) + \frac{d\sigma}{dq^2}(-1),$$

(21)

where $d\sigma(\lambda)/dq^2$ is the differential cross section for an electron with helicity $\lambda$. It has been calculated to be [27]

$$A(Q^2) = -\frac{G}{2\sqrt{2}\pi\alpha} |Q^2| \left[ (1 - 2 \sin^2 \theta_W) \right.$$  

$$+ (1 - 4 \sin^2 \theta_W) \frac{C_5^A}{C_3} \left( 1 + \frac{M^2 + Q^2 - M^2 C_4^A}{2M^2 C_5^A} \right) P(Q^2, s) \left. \right]$$

(22)

$$+ \text{nonresonant contribution},$$

where $\alpha$ is the fine structure constant and $P(Q^2, s)$ a purely kinematical factor.

In principle, one can determine the value of $C_5^A/C_3$ from the asymmetry measurements by selecting the kinematics where nonresonant contributions are negligible. However, as we see from Eq. (22), the hadronic axial vector current contribution containing $C_5^A$ is multiplied by a factor $(1 - 4 \sin^2 \theta_W)$, which reduces the sensitivity of this term to the asymmetry $A(Q^2)$. This makes the extraction of $C_5^A$ from a measurement of the asymmetry very difficult. Even in the favourable kinematical region of $0.5 < E_e < 1$ GeV and $Q^2 < 1.0$ GeV$^2$, this term contributes only $(10 - 20)\%$, as emphasized by Mukhopadhyay et al. [27]. This requires very precise measurements of $A(Q^2)$ for a determination of $C_5^A$ from parity violating asymmetry measurements.

However, there is a possibility of observing the charged current reaction $e^- + p \rightarrow \Delta^0 + \nu$ with unpolarized electrons through the detection of the protons and pions from the decay of the $\Delta$ resonance [28]. At the incident electron energy of 4 GeV, the differential cross section $d\sigma/dq^2$ in the forward direction near $Q^2 = 0$ is estimated to be $2.10^{-39}$ cm$^2$/GeV$^2$. For an incident intensity of about $2.10^{38}$ cm$^2$/sec [27] and $Q^2$ bin of 0.05 GeV$^2$, one would expect 72 events per hour for the production of $\Delta^0$, assuming 100% efficiency of the detector. One third of these $\Delta$'s will produce negatively charged pions and protons, which can be
easily observed. Since in the region of $Q^2 \sim 0$, $C_5^A$ gives the dominant contribution, its determination from the weak charged current experiment of $\Delta$ production seems feasible.

C. Photo and Electro-pion production Experiments

It is well known that, in the threshold region of photo and electro pion production from the nucleon, the matrix element of these processes in the soft pion limit is related with the nucleonic matrix element of the axial vector current using the methods of current algebra and the PCAC. This relation has been exploited to obtain information about the axial vector form factor of the nucleon \[29\]. In a similar way, threshold pion production in the processes $e^- + p \rightarrow e^- + \Delta^+ + \pi^0$ and $\gamma + p \rightarrow \Delta^{++} + \pi^-$ is related, in the soft pion limit, with the $N - \Delta$ transition matrix element of the axial vector current. The axial vector transition form factors can, in principle, be determined from these processes in the limit of soft pions. Such attempts have been made in past and they yield $C_5^A = 1.1 \pm 0.2$ \[30\].

However, in this case, the treatment of higher resonances and their effective couplings used for evaluating the matrix elements of the time ordered product of the vector and axial vector current operators occurring in the LSZ reduction involve many approximations, which need further justification. Recently, there has been some progress in calculating the contribution of higher resonances to the production of two pions in the photo and electroproduction processes using effective Lagrangians \[31\]. It should be possible to isolate the dominant contributions from higher order resonances, which are relevant for the $\Delta\pi$ production in the soft pion limit. This will help to reduce the theoretical uncertainties in the application of the methods of PCAC and current algebra to the processes where a $\Delta$ resonance is produced. In addition, when dealing with the $\Delta$ resonance, its width has to be properly taken into account as remarked by Bartl et al. \[30\], and also shown by us in the weak charged current production of the $\Delta$ resonance. The analysis of Bartl et al. \[30\] uses the older data which suffers from poor statistics. When the results of a recent experiment proposed at TJNAF \[32\] become available in near future, it will be possible to get precise information about the axial vector coupling $C_5^A$ and its momentum dependence.

IV. SUMMARY AND OUTLOOK

We have calculated the effect of deuteron structure and width of the $\Delta$ resonance in the differential cross section for the reaction $\nu d \rightarrow \mu^- \Delta^{++}n$ and find that these effects are small, but important in order to explain the experimental results at low $q^2$, where they were initially expected to be important. Furthermore, in the region of very low $q^2$, the muon mass, which is usually neglected in the calculations, also reduces the cross section.

The effect of the width of the $\Delta$ resonance on the cross section is important and plays a crucial role in bringing out good agreement with the experimental data. The detailed shape and 10-15% uncertainty in the width of the resonance does not affect the cross sections very much.

The axial vector $N - \Delta$ coupling $C_5^A$ is extracted from the BNL data on $\nu d \rightarrow \mu^- \Delta^{++}n$, incorporating the effect of the deuteron structure and the width of $\Delta$ resonance. This value
of $C_5^A$ is found to be larger than the values predicted in most of the quark models and is consistent with the prediction of PCAC and Adler’s model.

Finally, we have discussed the possibility of determining this coupling from electron scattering experiments, and find that electroproduction and weak charged current of $\Delta$ resonance are more suitable than asymmetry measurements in the polarized electroproduction of $\Delta$.

ACKNOWLEDGMENTS

This work has been partially supported by DGYCIT contract No. PB 96-0753. One of us (L.A.R.) acknowledges financial support from the Generalitat Valenciana. S.K.S. has the pleasure of thanking Prof. Oset for his hospitality at the University of Valencia, and acknowledges financial support from the Ministerio de Educación y Cultura of Spain in his sabbatical stay.
REFERENCES

* Permanent Address: Physics Department, Aligarh Muslim University, Aligarh, India 202002.

[1] R. M. Davidson, N. C. Mukhopadhyay and R. S. Wittman, Phys. Rev. D43, 71 (1991); Phys. Rev. Lett. 56, 804 (1986); R. M. Davidson and N. C. Mukhopadhyay, Phys. Rev. D42, 20 (1990); S. Capstick and G. Karl, Phys. Rev. D41, 2767 (1990); T. D. Cohen and W. Bronioski, Phys. Rev D34, 3472 (1986); G. Kalberman and J. M. Eisenberg Phys. Rev. D28, 71 (1983); N. Isgur, G. Karl and R. Koniuk, Phys. Rev. D25, 2394 (1982) and references therein.

[2] For a recent overview, see J. Liu, N. C. Mukhopadhyay and L. Zhang, Phys. Rev. C52, 1630 (1995).

[3] T. R. Hemmert, B. R. Holstein and N. C. Mukhopadhyay, Phys. Rev. D51, 158 (1995).

[4] S. J. Barish et al., Phys. Rev. D19, 2521 (1979).

[5] T. Kitagaki et al., Phys. Rev. D42, 1331 (1990).

[6] V. D. Burkert, in Perspectives in the Structure of Hadronic Systems, edited by M. N. Harakeh et al. (Plenum Press, New York, 1994), p. 101; F. E. Maas et al., in Proceedings of the Erice Summer School on the Spin structure of the Nucleon (Erice, Sicily, 1996); M. J. Musolf et al., Phys. Rep. 239, 1 (1994); Proceedings of the Workshop on Parity Violation in electron scattering, edited by E. J. Beise and R. Mckeown (World Scientific, Singapore, 1991).

[7] G. M. Radecky et al., Phys. Rev. D25, 1161 (1982).

[8] C. H. Llewellyn Smith, Phys. Rep. 3, 261 (1971) and references therein.

[9] S. K. Singh, M. J. Vicente Vacas and E. Oset, Phys. Lett. B416, 23 (1998); G. L. Fogli and G. Nardulli, Nucl. Phys. B160, 116 (1979); S. L. Adler, Phys. Rev. D12, 2644 (1975); S. L. Adler, Ann. Phys. (N.Y.) 50, 189 (1968).

[10] P. A. Schreiner and F. von Hippel, Nucl. Phys. B58, 333 (1973).

[11] P. Allen et al., Nucl. Phys. B176, 269 (1980); J. Bell et al., Phys. Rev. Lett. 41, 1008 (1978); 41, 1012 (1978); P. Zucker, Phys. Rev. D4, 3350 (1971); J. Bijtebier, Nucl. Phys B21, 158 (1970).

[12] E. Oset, H. Toki and W. Weise, Phys. Rep. 83, 281 (1982).

[13] R. H. Barnett et al., Phys. Rev. D54, 1 (1996).

[14] S. K. Singh and H. Arenhoevel, Z. Phys. A324, 347 (1986); S. L. Mintz, Phys. Rev. D13, 637 (1976); R. Tarrach and P. Pascual, Nuovo Cimento 18A, 760 (1973); J. Bernabeu and P. Pascual, Nuovo Cimento 10A, 61 (1972); S. K. Singh, Nucl. Phys. B36 419 (1971).

[15] L. Hulthen and M. Sugawara, Handbuch der Physik (Springer Verlag, Berlin, 1957), vol. 39.

[16] M. Lacombe et al., Phys. Lett. 101B, 139 (1981).

[17] R. Machleidt, K. Holinde and C. Elster, Phys. Rep. 149, 1 (1987).

[18] T. Kitagaki et al., Phys. Rev. D34, 2554 (1986).

[19] Our expression in Eq. (18), when taken in the zero width limit, is at variance with the results of [3], but is in agreement with the result of Barish et al. [4]. This expression also agrees with the results of Albright and Liu [20] (see Eq. (3.15)), when the Eq. (2.12) is used along with the conversion table of the various definitions for the transition form factors given by Llewellyn Smith [8].
[20] C. H. Albright and L. S. Liu, Phys. Rev. 140, B78 (1965).
[21] Here we use the value quoted by Kitagaki et al., with error estimated from their data on $R(Q^2)$.
[22] F. Ravndal, Nuovo Cimento A18, 385 (1973).
[23] J. G. Korner, T. Kobayashi, and C. Avilez, Phys. Rev. D18, 3178 (1972).
[24] A. Le Yaouanc et al., Phys. Rev. D15, 2447 (1977).
[25] M. Beyer Habilitation Dissertation (University of Rostock, Germany, 1997), p. 60.
[26] L. M. Nath, K. Schilcher and M. Kretzschmar, Phys. Rev. D25, 2300 (1982); D. R. T. Jones and S. T. Petcov, Phys. Lett. 91B, 137 (1981).
[27] N. C. Mukhopadhyay et al., nucl-th/9801023; H. W. Hammer and D. Drechsel, Z. Phys. A353, 321 (1995).
[28] L. Alvarez-Ruso, S. K. Singh and M. Vicente-Vacas, Phys.Rev. C, in print.
[29] E. Amaldi, S. Fubini and G. Furlan, Pion electroproduction, Springer Tracts in Modern Physics (Springer, Berlin, 1977), vol. 83.
[30] A. Bartl, K. Wittman, N. Paver and C. Verzegnassi, Nuovo Cimento 45A, 457 (1978); A. Bartl, N. Paver, C. Verzegnassi and S. Petrarca, Lett. Nuovo Cimento 18, 588 (1977).
[31] J. C. Nacher and E. Oset, nucl-th/9804006; J. A. Gomez Tejedor and E. Oset, Nucl. Phys. A571, 400 (1994).
[32] L. Elouadrhiri et al., CEBAF Experiment E-94-005.
FIGURES

FIG. 1. Differential cross section for weak charged current neutrino production of $\Delta$ on deuteron. In the short-dashed line, deuteron effects are neglected while dotted, long-dashed and solid lines include these effect using Hulthen, Bonn and Paris deuteron wave functions respectively.

FIG. 2. Ratio of $\Delta$ production and quasielastic reactions differential cross sections with (solid line) and without (dashed line) deuteron effects.

FIG. 3. Effect of the muon mass on the differential cross section for the $\nu d \rightarrow \mu^- \Delta^{++} n$ reaction. In the upper line muon mass is neglected while it is considered in the lower one. Both curves include deuteron effects using the Paris parametrization of deuteron wave function.

FIG. 4. Effect of $\Delta$ width in $R(Q^2)$: the solid line corresponds to a P-wave width, the dash-dotted line, to an S-wave width and the dashed line, to the case of zero width resonance. Deuteron effects have been neglected in all curves.

FIG. 5. Differential cross section for weak charged current neutrino production of $\Delta$ on deuteron, averaged over the spectrum of ANL experiment, compared to the experimental results given in Ref. [7]. The solid curve includes both nonzero muon mass and deuteron effects. Upper dashed curve neglects muon mass and deuteron effects. Lower dashed curve neglects only deuteron effects.
TABLE I. The numerical values of axial $N - \Delta$ coupling $C_A^5$ in various quark model and empirical approaches. The earlier, prior to 1973, evaluations of these couplings in these approaches have been summarized by Schreiner and von Hippel \cite{10} and Llewellyn Smith \cite{8}.

|                        | Quark Model approaches | Empirical approaches   |
|------------------------|------------------------|------------------------|
|                        | 0.97 \cite{22,23}, 0.83 \cite{24}, 1.17 \cite{2}, 1.06 \cite{25}, 0.87 \cite{3} | 1.15±0.23 \cite{4}, 1.39±0.14 \cite{3}, 1.1±0.2 \cite{30}, 1.22±0.06$^a$ |

$^a$Present result.
\[ \nu_{\mu} + d \rightarrow \Delta^{++} + \mu^{-} + n \]

\[ E_{\nu} = 1.6 \text{ GeV} \]

\[ m_{\mu} = 0 \]
Fig. 2

$E_\nu = 1.6$ GeV

$m_\mu = 0$
\[ \nu_\mu + d \rightarrow \Delta^{++} + \mu^- + n \]

\[ E_\nu = 1.6 \text{ GeV} \]
Fig. 4

$E_{\nu} = 1.6 \text{ GeV}$

$m_{\mu} = 0$
\[ \nu_{\mu} + d \rightarrow \Delta^{++} + \mu^- + n \]

\[ 0.5 \leq E_\nu \leq 6.0 \text{ GeV} \]

- Radecky et al. (1982)