Herpesvirus

- I virus Herpes sono ubiquitari e le loro infezioni molto diffuse
| Viruses of Humans | Common Name | Subfamily |
|---------------------------------|----------------------------------|-----------|
| Human herpesvirus 1 | Herpes simplex type 1 | alpha |
| Human herpesvirus 2 | Herpes simplex type 2 | alpha |
| Human herpesvirus 3 | Varicella-zoster | alpha |
| Human herpesvirus 4 | Epstein-Barr | gamma |
| Human herpesvirus 5 | Cytomegalovirus | beta |
| Human herpesvirus 6/7 | exanthum subitum roseola infantum| beta |
| Human herpesvirus 8 | Kaposi’s Sarcoma-assoc. | gamma |
Herpes Simplex Virus 1
- encephalitis
- conjunctivitis
- gingivostomatitis tonsilitis labialis
- pharyngitis esophagitis
- herpes gladiatorum
- tracheobronchitis
- genital herpes
- herpes whitlow

Herpes Simplex Virus 2
- meningitis
- gingivostomatitis tonsilitis labialis
- pharyngitis
- perianal herpes
- genital herpes
- herpes whitlow
Herpesvirus

Caratteri generali:

- **Virus a DNA bicanalino lineare con 2 regioni Ul e Us legate da ponti disolfuro**
- Diametro di 180-200 nm
- Simmetria icosaedrica
- N° dei capsomeri: **162**
- Presenta un mantello
- E’ inattivato dall’etere e dal cloroformio
- La replica è nucleare
- Inclusioni intranucleari.
- PM 100x10⁶
PECULIARITÀ DEGLI HERPESVIRUS:

• Il genoma codifica per molte proteine che regolano la sintesi di DNA e di mRNA e la sintesi proteica
• Codifica per enzimi come la DNA pol per la replica virale (ed è il target dei farmaci antivirali).
• La replica è nucleare, il virus gemma dalla membrana nucleare e viene liberato per esocitosi
• Gli HSV causano infezioni litiche, persistenti, latenti e, per l’EBV, immortalizzanti.
• Sono ubiquitari, la immunità cellulare mediata è richiesta per la risoluzione
Infezioni che si possono stabilire tra virus e cellula ospite

- Infezioni persistenti (infezioni croniche non litiche, produttive)
- Infezioni latenti (sintesi di molecole virali ma senza produzione di virus)
- Infezioni litiche (lisi della cellula ospite)
- Infezione immortalizzante (infezione che provoca una replicazione cellulare incontrollata)
L’INFEZIONE PUO’ESSERE:

- **Infezione produttiva**
 Infezione di una cellula permissiva da parte di un virione completo che porta alla produzione di virioni di progenie in numero variabile a seconda del tipo di virus o di cellula.
Il periodo che intercorre tra la penetrazione del virus nelle cellule e la maturazione della progenie virale viene definito **periodo di eclissi**, non essendo il virus più reperibile come entità morfologica nella cellula.
• Il montaggio dei nucleocapsidi avviene nel nucleo e da qui passano gemmando attraverso la membrana nucleare nel citoplasma dove gemmando anche attraverso il reticolo o attraverso la membrana cellulare esterna.
Replicazione degli Herpesvirus:

- **a)** **Attacco** (cellule epiteliali e fibroblasti) della gp virale all’eparansolfato presente sulla cellula bersaglio.

- **b)** **Penetrazione** per fusione del mantello con la membrana citoplasmatica

- **c)** Il nucleocapside raggiunge la **membrana nucleare**: rilascio del genoma nel nucleo il DNA si circolarizza

- **d)** **Trascrizione** del genoma e sintesi delle proteine virali (3 fasi)
e) **Sintesi delle proteine precoci (alfa)** in grado di legarsi al DNA e importanti per la **regolazione** della trascrizione genica.

- Trascritti associati alla latenza (**LAT**).

f) **Sintesi delle proteine precoci (beta)** che sono fattori trascrizionali compresa la DNAPol-DNAdip.

Il genoma virale viene trascritto da una **RNApol-DNAdip cellulare**, sotto il controllo di fattori nucleari cellulari e fattori virali.
g) **Proteine tardive (gamma)** che sono proteine strutturali

I) **Assemblaggio nel nucleo**

m) **Acquisizione del mantello** dal foglietto interno della membrana nucleare.

n) **Liberazione** per esocitosi o per lisi cellulare.
Virus a DNA

Per la replica del genoma occorre DNA polimerasi - DNA dipendente

La replica del DNA virale avviene analogamente alla replica del DNA cellulare

- i virus piccoli utilizzano la polimerasi cellulare
- i virus grandi codificano per una polimerasi virale (adenovirus, herpesvirus)

La trascrizione avviene nel nucleo

Per la sintesi dei mRNA viene usata RNA polimerasi II - DNA dipendente cellulare
Herpesvirus

HSV-1

Recettore: eparansolfato

Il genoma codifica per 80 proteine

- Alcune hanno funzione enzimatica come: DNApol-DNAdip, DNAsi, Timidina chinasi, proteasi.

- Molti di questi enzimi sono bersagli degli antivirali.

- HSV: codifica per 11 gp che hanno funzioni di attacco (gB, gC, gD, gH), proteine di fusione (gB), proteine strutturali, proteine che evadono la risposta immune (gC, gE, gI).
Le **proteine precoci** sono costituite da enzimi come:

- la DNApol-DNA dip
- La replica del genoma inizia non appena viene **sintetizzata** la polimerasi. Nelle prime fasi il genoma assume forme circolari.
• La replicazione del genoma porta alla trascrizione dei geni tardivi che codificano per le proteine strutturali.
• Le proteine del capsid vengono trasportate nel nucleo dove vengono assemblate in procapsidi vuoti all’interno dei quali viene inserito il DNA.
• I capsidi contenenti il DNA gemmano da porzioni della membrana nucleare.
• Il virus viene rilasciato per esocitosi o per lisi cellulare.
Durante un’infezione latente, viene trascritta una regione specifica da cui originano i trascritti associati alla latenza (LAT), ma tali RNA non vengono tradotti in proteine.

Il ciclo replicativo non procede ulteriormente.
Herpesvirus

Patogenesi ed Immunità

- Gli **Anticorpi** neutralizzano il virus extracellulare limitandone la diffusione.
- Un ruolo importante nella risposta immune agli HSV è svolta dalla **CMI** (CTL, NK, IFN). La risposta CMI è essenziale per controllare e risolvere l’infezione da HSV.
- In assenza di essa l’infezione può disseminarsi ad organi vitali ed al cervello.
- L’infezione latente si verifica nei neuroni. La riattivazione si deve a vari stimoli come stress, traumi, febbre, esposizione alla luce solare.
- In questo caso il virus migra a ritroso, lungo il nervo, causando lesioni a livello cutaneo o mucoso, sempre nello stesso sito.
• Il virus si riproduce nelle cellule alla base della lesione ed infetta i neuroni innervanti, raggiungendo per trasporto retrogrado il ganglio (ganglio del trigemino per l’HSV-1, e i gangli sacrali per l’HSV-2).

• Latenza

• **Riattivazione** causata da stress, traumi, febbre, esposizione alla luce solare.

• In tale caso il virus per via centrifuga migra a ritroso lungo il nervo, causando lesioni nello stesso sito.
Herpesvirus

HSV-1 Latency

productive infection
sensory neuron

infection by retrograde transport

viral genome in latent state (episomal)
nucleus

reactivation by anterograde transport

epithelial cells

sensory ganglion
Epidemiologia di HSV-1 e HSV-2

- l’HSV è labile, inattivato dall’ambiente secco, detergenti,
- E’ trasmesso dai fluidi delle vescicole, saliva, secrezioni vaginali.
- Causa infezioni orali e genitali.
- HSV-1 è trasmesso per contatto orale, baci, bicchieri, spazzole, saliva, dita, bocca, cute attraverso break cutanei. Le autoinoculazioni possono causare infezioni agli occhi.
- HSV-2 è trasmesso per contatto sessuale, autoinoculazione, da madre a feto. Escrezione del virus dalla cervice durante le perdite vaginali.
Clinica delle infezioni da HSV-1

- **Infezioni primarie**, vescicole con base eritematosa, lesioni pustolose, ulcer e croste.
- L’infezione avviene d solio tra il 6 mese e i primi 3 anni di vita ed è asintomatica o si manifesta una **Gengivostomatite primaria**, lesioni, ulcer, bocca, palato, faringe, gengive, mucosa buccale, lingua (dura 2-3 settimane).
- **Cheratocongiuntivite** (ulcer cornee)
- **Latenza nel ganglio del trigemino**.
Herpes simplex tipo 2:

- Nei maschi sul glande, nelle femmine, vulva, vagina, cervice, area perianale, perdite vaginali.
- Febbre, mal di testa, malessere, adeniti inguinali.
- Latenti nei gangli sacrali: Negli omosessuali: proctiti.
- Meningiti da HSV-2 dopo 10 gg dall’infezione primaria, rigidità nucale, mal di testa, fotofobia, nausea.
Herpes Simplex Virus 1
- encephalitis
- conjunctivitis
- gingivostomatitis tonsilitis labialis
- pharyngitis esophagitis
- herpes gladiatorum
- tracheobronchitis
- genital herpes
- herpes whitlow

Herpes Simplex Virus 2
- meningitis
- gingivostomatitis tonsilitis labialis
- pharyngitis
- perianal herpes
- genital herpes
- herpes whitlow
Persone a rischio di contrarre le infezioni da HSV

• Bambini e persone attive sessualmente a rischio rispettivamente di HSV-1 e HSV-2

• Medici, infermieri, dentisti, ginecologi persone a contatto con secrezioni orali e genitali (patereccio erpetico).
Diagnosi delle infezioni da Herpesvirus

Campioni biologici

- Raschiamenti di lesioni,
- Esame colturale in cellule diploidi umane
- Presenza di cellule giganti polinucleate (cellule di Tzanck)
- Immunoistochimica
- PCR, Ibridizzazione del DNA virale in campioni biologici
- Ricerca di Ab
- Ricerca degli antigeni virali
I farmaci sono:
• Aciclovir
• Vidarabina
• Idossiuridina
• Trifluoridina
• Famciclovir
• Valaciclovir.

Gli enzimi bersaglio sono: la timidina chinasi e la DNA polimerasi virale.

• Evitare il contatto con le lesioni
• Uso di guanti, Uso di preservativi, Parto cesareo
• No vaccini.
Virus della Varicella-Zoster (VZV)
Caratteri generali

- Diametro di 150-200 nn
- Simmetria icosaedrica
- 75 proteine
- Il mantello è sensibile all’ambiente secco e ai detergenti.
- Recettore: insulin degrading enzyme (IDE)
Patogenesi:

- Trasmissione attraverso le vie respiratorie.
- L’infezione primaria inizia con l’infezione della mucosa respiratoria, poi linfatici, prima viremia.
- Dopo 11-13 gg si ha la seconda viremia, poi cute dove causa un rash con evoluzione: macula, papula, vescicola, pustola, crosta. Le manifestazioni sono asincrone.
- Febbre e sintomi sistemici si hanno con il rash.
- Latenza nelle radici dei gangli dorsali e dei nervi cranici.
- Riattivazione, migrazione dai gangli alla cute herpes zoster.
Gli Ab limitano l’infezione
La CMI è importante per limitare, la progressione e la risoluzione della malattia.
In assenza di CMI, il virus causa maggiori disseminazioni (polmoni, fegato, cervello).
Virus della Varicella zoster

- L’infezione primaria è la Varicella
- Latenza nelle radici dorsali e gangli dei nervi craniali
- La riattivazione è l’herpes zoster (*Fuoco di S. Antonio*) nei dermatomeri innervati.
- La CMI è protettiva.
Epidemiologia:

- Il virus è molto contagioso, il 90% circa delle persone suscettibili hanno contratto l’infezione in casa.
- La trasmissione della malattia avviene per via respiratoria.
- **I pazienti sono contagiosi prima e durante i sintomi.**
- Il 10-20% delle persone infettate dal VZV sviluppa lo **zoster**, l’incidenza è parallela con l’età. Lo **zoster** può essere una sorgente d’infezione di varicella in persone non immuni come i bambini.
Varicella

Clinica:

- Colpisce i bambini, può essere sintomatica ed asintomatica.
- Febbre, rash maculo-papulare dopo una incubazione di 14 gg
- Macule, papule, vescicole, pustole, croste. Le lesioni durano 3-5 gg.
- Il rash è generalizzato oppure localizzato a tronco, estremità, testa.
- Negli adulti è più grave e si ha una polmonite interstiziale nel 20-30 % di pazienti adulti.
Diagnosi

- Raschiamenti dalle vescicole
- IF diretta
- **Strisci di cellule di Tzanck (cellule giganti)**
- Esame colturale su fibroblasti umani
- Inclusi nucleari, sincizi
- Biopsie per ricercare gli Ag mediante FAMA (fluorescent antibodies to membranes antigens)
- Test sierologici
Non è prevista nessuna terapia per i bambini con Varicella.

- Negli adulti o a pazienti immunodepressi è prevista terapia con con Aciclovir, Famciclovir, Valaciclovir.
- Uso di VZIG (varicella-zoster immune globulin).
- Uso di Vaccino Oka a virus Vivo ed Attenuato.
Virus di Epstein-Barr (EBV)

EBV causa:
- Mononucleosi infettiva (malattia del bacio)
- Linfoma di Burkitt
- Carcinoma nasofaringeo
Linfoma di Burkitt

- È un tumore dei bambini dell’Africa sub-sahariana in cui c’è deficit delle cellule T
- I linfociti B proliferanti infettati da EBV
Carcinoma faringeo

- Comune tra le popolazioni del sud est asiatico in particolare nel sud della Cina
Epstein Barr

- Diametro 180-200 nm

2 classi di EBV:
- **EBV-A** presente nelle persone immunocompetenti
- **EBV-B** è isolato in persone immunocompromesse
• EBV codifica per 70 proteine differenti, alcune delle quali sono espresse nei differenti stadi d’infezioni.

Le proteine virali prodotte durante una infezione produttiva sono rilevabili sierologicamente e sono:

• **antigene precoce (EA)**
• **antigene del capside virale (VCA)**
• **antigene di membrana (MA)**
• EBV Si lega ai linfociti B mediante le proteine del envelope e si lega al CD21 e attivazione policlonale dei linfociti
• Tale proliferazione si accompagna ad una produzione di Ab IgM (Ab eterofili) evidenziati con la reazione di Paul Bunnel. L’ingrossamento della milza, fegato tipico della mononucleosi è dovuto alla proliferazione dei linfociti B e T attivate.
• Si osserva linfocitosi
EBV

• Gli anticorpi hanno un ruolo limitato.
• La risposta delle cellule T (linfocitosi) contribuisce ai sintomi della Mononucleosi infettiva.
• Il virus è associato a linfoma e leucemia in persone con deficit delle cellule T e in bambini africani (Linfoma di Burkitt) e con Carcinoma nasofaringeo in Cina.
cellule epiteliali: moltiplicazione virale e rilascio di virioni

linfociti B: infezione latente senza replicazione e rilascio di virioni

quando EBV infetta i linfociti B, il suo genoma lineare si circolarizza e forma un episoma nel nucleo della cellula. Lo stato di latenza è mantenuto dalla proteina EBNA-1
EBV

L’infezione da EBV ha possibili evoluzioni:

a) Il virus si può replicare in cellule epiteliali permissive e la successiva infezione dei linfociti B e la induzione di attività policlonale

b) può causare infezioni latenti nelle cellule B

c) può stimolare e immortalizzare le cellule B.
Patogenesi e Immunità

La malattia da EBV risulta:

- da una risposta immunitaria iperattiva (mononucleosi infettiva ad anticorpi eterofili)
- dalla mancanza di una risposta immunitaria efficace (linfoma di Burkitt, carcinoma nasofaringeo,
Marker dell’infezione da EBV

• EBV nuclear antigen (EBNA): Ag nucleare, marker precoce, gli Ab indotti si sviluppano tardivamente.

• Ag precoce (EA):
 EA-R (citoplasmatico), marker del ciclo litico, gli Ab Anti-EA-R sono presenti nel Linfoma di Burkitt.
 EA-D (citoplasmatico e nucleare). Gli Ab sono presenti in soggetti con Mononucleosi infettiva.

• Ag capsidico virale (VCA), citoplasmatico. Ag tardivo, presente nelle cellule produttive;

• Ab IgM anti-VCA sono transitori (indicano inf recente), Ab Anti-VCA IgG sono persistenti.
Marker dell’infezione di EBV

- **ANTICORPI ETEROFILICI.** Si rivelano con la reazione di Paul-Bunnel (su globuli rossi di pecora, cavallo o bovino agglutinazione) La proliferazione delle cellule B indotte da EBV promuove la produzione di Ab eterofili.
Marker precoce in >50% dei pazienti
Marker dell’infezione di EBV

Condition	Anti-VCA	Anti-EA	Anti-EBNA	Heterophile (IgM)	
	IgM	IgG	IgA	Diffuse EA	Restricted EA
Uninfected	–	–	–	–	–
Infectious mononucleosis	+	++	±	+	–
Convalescent	–	+	–	–	±
Past infection	–	+	–	–	–
Chronic active infection	–	+++	±	–	±
Post-transplant	–	++	±	–	±
Lymphoproliferative disease	–	++	±	–	±
Burkitt lymphoma	–	+++	–	±	++
Nasopharyngeal carcinoma	–	+++	+	++	±

* Adapted from Okano and colleagues (1?), with permission. The symbols denote the absence (–), variable presence (±), or usual presence in relatively low (+), moderate (++), or high (+++) titers of the indicated antibodies. Anti-VCA = antibody to the Epstein-Barr viral capsid antigen; Anti-EA = antibody to the Epstein-Barr virus early antigen; Anti-EBNA = antibody to Epstein-Barr virus nuclear antigen.
Diagnosi

- Linfocitosi (60-70%)
- 30% dei linfociti sono atipici
- No esame colturale
- Ab eterofili, IgM rivelabili con la reazione Paul Bunnel.

SIEROLOGIA

Infezione recente:

1. IgM contro VCA
2. assenza di anticorpi anti-EBNA

Infezione pregressa:

presenza contemporanea di

1. anticorpi anti-VCA a titolo elevato
2. anticorpi anti-EBNA
Mononucleosi infettiva anticorpi eterofili-positiva
Bambini, adolescenti, adulti.
Sintomi:
• febbre
• malessere
• faringiti
• linfoadenopatia
• epatosplenomegalia
• affaticamento
• disordini neurologici
• ostruzione laringea
• rotatura della milza
Epidemiologia dell’EBV

- **Mononucleosi infettiva anticorpi eterofili-positiva**: trasmissione attraverso la saliva, contatti stretti (malattia del bacio) o tramite spazzolini, bicchieri contaminati.

- **Linfoma di Burkitt**: cofattori (*malaria*), predisposizione genetica.

- **Carcinoma nasofaringegeo**: solo in alcune aree geografiche (*Cina*), predisposizione genetica e alimentazione.
Complicazioni neurologiche:

sindrome di Guillian Barrè

Paralisi progressiva agli arti con andamento distoprossimale. Può causare complicanze, in particolare con interessamento dei muscoli respiratori

La sua causa è tuttora ignota, ma è probabilmente autoimmune
Prevenzione e Controllo

• Nessun trattamento è efficace, nessun vaccino è disponibile.
• Immunità duratura dopo l’infezione.
• La mononucleosi è benigna nei bambini.
Patogenesi dell’EBV

a) EBV nella saliva --> cellule epiteliali dell’orofaringe
 --> escrezione del virus dalla saliva --> faringiti.

b) EBV nella saliva --> cellule epiteliali dell’orofaringe --> proliferazione delle cellule B --> anticorpi eterofili.

c) EBV nella saliva --> cellule epiteliali dell’orofaringe --> proliferazione delle cellule B --> Attivazione delle cellule T (fegato, linfonodi, milza) --> Risoluzione --> Linfociti T atipici (Cellule di Downey).
The graph illustrates the antibody titers over time after clinical onset for various antibodies associated with infectious mononucleosis. The antibodies include Heterophile antibody, IgG-VCA, IgM-VCA (>4 years), IgM-VCA (<4 years), and Nuclear antigen. The x-axis represents time after clinical onset in weeks, months, and years, while the y-axis represents antibody titer.
Cytomegalovirus (CMV)

- Appartiene alle Betaherpesvirinae
- È linfotropico
- È un virus patogeno per l’uomo che infetta lo 0,5-2,5% di tutti i neonati e circa il 50% degli adulti.
- Il CMV è la causa più comune di difetti congeniti.
- È un patogeno importante per gli immunodepressi.
- Si replica solo in cellule umane, stabilisce infezioni latenti nei macrofagi, linfociti T, nelle cellule stromali del midollo spinale ed in altri tipi cellulari.
• CMV: Betaherpesvirinae, virus linfotropico. Si replica solo in cellule umane.
• infetta l’ 0,5-2,5% di tutti i neonati e circa il 50% degli adulti.
• Il CMV è la causa più comune di difetti congeniti. Patogeno opportunista negli immunodepressi.
• I fibroblasti, le cellule epiteliali, macrofagi ed altre cellule sono permissive per la replica del CMV.
• Stabilisce infezioni latenti nei macrofagi, linfociti T, nelle cellule stromali del midollo spinale ed in altri tipi cellulari.
Patogenesi ed immunità

- Il virus stabilisce infezioni latenti e persistenti, senza causare sintomi definiti nei leucociti mononucleati ed in organi quali il rene ed il cuore. Il virus può essere riattivato dall’immunosoppressione e forse dalla risposta a cellule trapiantate o trasfuse. La CMI è essenziale per il controllo e la risoluzione dell’infezione da CMV.

- In molti casi il virus si replica ed è eliminato senza sintomi clinici. La replica di CMV nelle cellule epiteliali dei dotti promuove l’escrezione del virus dei liquidi corporei. Il CMV è associato alle cellule infette, compresi linfociti e leucociti.
Patogenesi ed immunità:

- Il virus è acquisito dal sangue, tessuti, secrezioni del corpo.
- Il CMV causa infezione produttiva delle cellule epiteliali ed altre cellule.
- Il CMV stabilisce latenza nelle cellule T, macrofagi ed altre cellule.
- La CMI è richiesta per la risoluzione e contribuisce ai sintomi.
- Il ruolo degli Ab è limitato. La soppressione della CMI permette riattivazioni e aggrava la malattia.
- Il CMV stabilisce infezioni subcliniche.
Epidemiologia:

- E’ trasmesso per via congenita, orale, sessuale, per trasfusione e trapianti d’organo.

- Il CMV può essere isolato dalle urine, sangue, gargarizzato, saliva, lacrime, feci, liquido seminale, liquido amniotico, secrezioni vaginali e cervicali, tessuti utilizzati per trapianti.
Sorgenti d’infezione del CMV

- **Neonati**: trasmissione transplacentare, infezioni intrauterina, secrezioni cervicali.

- **Bambini**: secretezioni corporee, latte materno, saliva, lacrime, urine.

- **Adulti**: trasmissione sessuale (sperma) trasfusioni di sangue, trapianto d’organi.
• **Infezioni perinatali:** In USA il 20% delle donne gravide ha il CMV nella cervice al termine della gravidanza e può avere riattivazione durante la gravidanza.

• La metà dei neonati nati per via naturale in presenza di cervice infetta acquisisce l’infezione ed elimina il virus nella 3-4a settimana di vita.

• Modalità d’infezione attraverso il latte materno, trasfusioni di sangue.
• **Trasmissione attraverso trasfusioni e trapianti: Sintomi mononucleosici:** febbre, splenomegalia, linfocitosi atipica dopo 3-5 settimane da una trasfusione.

• **Infezione in pazienti immunocompromessi:** Interessa il polmone, occhio, tratto GI. Sono di solito recidive di una infezione primaria.
Clinica

- **Infezione congenita:** Il CMV è la causa più frequente di malattia virale congenita.

- Lo 0,2-2% di tutti i neonati sono infettati alla nascita da CMV, un’altra % si infetta entro il primo mese di vita.

- Circa il 10% mostra segni clinici di malattia come: **microcefalia, calcificazione intracerebrale, epatosplenomegalia, rash, sordità, ritardo mentale.**

- Il feto si può infettare attraverso il latte materno (infezione primaria) o durante il parto dal virus presente nella cervice (dopo ricorrenza).
Diagnosi di laboratorio:

- Esame istologico: tipica è la cellula citomegalica (cellula ingrandita 25-35 μ) che contiene una inclusione intranucleare, densa, basofila a occhio di gufo. Queste cellule sono presenti nelle urine e nei tessuti. Le cellule sono rivelabili con Ematossilina/Eosina e Papanicolau.
- Uso di sonde di DNA
- ELISA.
- Esame colturale su fibroblasti diploidi e rilevazione con anticorpi monoclonali contro gli Ag di CMV (immediate-early antigen IEA p72) (CPE dopo 4-6 settimane).
- Test sierologici: sieroconversione.

Trattamento Prevenzione e Controllo:

- Il Ganciclovir ed il Foscarnet sono i farmaci elettivi per il CMV sia in soggetti IC e ID.
- Uso di preservativi
- Screening dei donatori di organi e di sangue
- Screening di madri sieropositive
- Nessun vaccino è disponibile.
Durante una infezione non permissiva delle cellule B, vengono espressi selettivamente i geni precocissimi che comprendono:

- Ag nucleari di Epstein-Barr (EBNA) 1, 2, 3A, 3B, 3C
- Proteine latenti (LP)
- Proteine latenti di membrana (LMP) 1, 2
- 2 piccoli RNA detti EBER 1 e 2
- EBNA e LP sono proteine che si legano al DNA e sono essenziali per lo stabilirsi dell’infezione (EBNA-1) e per l’immortalizzazione (EBNA-2)
- Le LMP sono proteine di membrana ad attività oncogeno-simile.
- Queste proteine stimolano la crescita ed immortalizzano le cellule B.
- EBV stabilisce una latenza nelle cellule B memory, nelle quali sono espresse solo EBNA-1 e LMP-2
