AN EXTENSION OF PYTHAGORAS THEOREM

MIRCEA GOTEA∗

Abstract. This article proves a Pythagoras-type formula for the sides and diagonals of a polygon inscribed in a semicircle having one of the sides of the polygon as diameter.

Keywords and phrases: cyclic polygon, Pythagoras theorem
MSC 2010: 51N20

This paper presents a Pythagoras type theorem regarding a cyclic polygon having one of the sides as a diameter of the circumscribed circle.

Let us first observe that Pythagoras theorem [1–5] and its reciprocal can be stated differently.

Theorem 1. If a triangle is inscribed in a semicircle with radius R, such that its longest side is the diameter of the semicircle, then the following relation exists between its sides:

\[a^2 = b^2 + c^2, \]

which can also be expressed as

\[4R^2 = b^2 + c^2. \]

Its reciprocal can be states as follows: if the relation $a^2 = b^2 + c^2$ exists between the sides of a triangle, then that triangle can be inscribed in a semicircle such that the longest side is also the diameter of the semicircle.

We can state and prove a similar theorem for quadrilaterals. Let $ABCD$ be a quadrilateral with vertices B and C located on the semicircle that has the longest side AD as diameter.

∗ Retired teacher of Mathematics, Gurghiu, Mureș County, Romania.
E-mail: mircea@gotea.ro
Theorem 2. If a quadrilateral $ABCD$ with its longest side $AD = d$ can be inscribed in a semicircle with the diameter AD, then its sides satisfy the following relation:

\[d^2 = a^2 + b^2 + c^2 + \frac{2abc}{d}. \]

Proof. We can successively deduce the following:

\[
AD^2 = AB^2 + BD^2 \\
= AB^2 + BC^2 + CD^2 - 2BC \cdot CD \cdot \cos(C) \\
= AB^2 + BC^2 + CD^2 + 2BC \cdot CD \cdot \cos(A) \\
= AB^2 + BC^2 + CD^2 + 2BC \cdot CD \cdot \frac{AB}{AD}.
\]

\[\blacksquare \]

Particular case. If B coincides with A, then $a = 0$, the quadrilateral becomes triangle ACD, and relation (3) becomes $d^2 = b^2 + c^2$, which represents Pythagoras theorem for this right triangle.

The reciprocal of Theorem 2 does not hold true: if the sides of a quadrilateral $ABCD$ satisfy relation (3), the quadrilateral does not have to be inscribed in a semicircle having the longest side as diameter. For example, a quadrilateral with sides $AD = 4\sqrt{2}$, $AB = \sqrt{2}$, $BC = 3 + \sqrt{5}$, $CD = 3 - \sqrt{5}$ and $m(\angle A) = 90^\circ$ does satisfy relation (3), has AD as its longest side, but cannot be inscribed in a semicircle with diameter AD.

However, the following statement is true:

Lemma. Let four segments have the lengths a, b, c, and d. If they satisfy relation (3), then there is at least one quadrilateral with these sides that can be inscribed in a semicircle having the longest side as diameter.
Proof. On a circle with diameter $AD = d = 2R$, we set a point B such that $AB = a$, and a point C such that $BC = b$. We can prove that $CD = c$ when the sides satisfy relation (3). We have successively:

$$
CD = AD \cos(D) = -AD \cos(B) = -AD \cdot \frac{AB^2 + BC^2 - AC^2}{2 \cdot AB \cdot BC} = -AD \cdot \frac{AB^2 + BC^2 - (AD^2 - CD^2)}{2 \cdot AB \cdot BC}
$$

$$
= -d \cdot \frac{a^2 + b^2 + c^2 - d^2}{2ab} = c.
$$

We thus found a quadrilateral with sides of lengths a, b, c, d.

Let us also observe that if a, b, c are distinct, there are three incongruent quadrilaterals that satisfy this requirement, depending on which of the three sides, a, b, or c, is selected as the opposite side to d. □

Theorem 3. If a pentagon $ABCDE$ with sides $AB = a$, $BC = b$, $CD = c$, $DE = d$, $AE = 2R$ is inscribed in a circle with radius R, then its sides satisfy the following relation:

$$
4R^2 = a^2 + b^2 + c^2 + \frac{aby + xcd}{R},
$$

where $x = AC$ and $y = CE$.
Proof. In the quadrilateral $ABCE$ we can apply relation (3):

\[4R^2 = a^2 + b^2 + y^2 + \frac{aby}{R}. \]

Using the Law of Cosines we have

\[y^2 = c^2 + d^2 - 2cd \cos(D) = c^2 + d^2 + 2cd \cos(\angle CAE) = c^2 + d^2 + 2cd \frac{x}{2R}. \]

Replacing y^2 from this relation in (5), we obtain relation (4).

For a hexagon, we can similarly prove the following:

Theorem 4. If we inscribe a hexagon in a semicircle such that the longest side is also the diameter, then the following relation is true:

\[4R^2 = a^2 + b^2 + c^2 + d^2 + e^2 + \frac{abz + ycx + ude}{R}. \]

We can restate the theorem in the case of a polygon with n sides.

Theorem 5. If a polygon $A_1A_2A_3 \ldots A_{n-1}A_n$ can be inscribed in a semicircle with diameter A_1A_n, then the following relation is true:

\[(A_1A_n)^2 = \sum_{k=1}^{n-1} (A_kA_{k+1})^2 + 2 \sum_{k=1}^{n-3} \frac{(A_1A_{k+1})(A_{k+1}A_{k+2})(A_{k+2}A_n)}{A_1A_n}. \]

Observation. The points $A_1, A_{k+1}, A_{k+2},$ and A_n, for $1 \leq k \leq n - 3$, involved in the sum from the right side of formula (7), are the vertices of a cyclic quadrilateral inscribed in a semicircle.
Proof. By using the mathematical induction technique, we have already demonstrated the particular cases for \(n = 3 \) and \(n = 4 \).

Let us assume that the property is true for any polygon with \(n \) sides and let us consider the case of a polygon \(A_1 A_2 A_3 \ldots A_n A_{n+1} \), for \(n \geq 4 \), inscribed in a circle with diameter \(A_1 A_{n+1} \). Following the induction hypothesis, in an \(n \)-sided polygon \(A_1 A_2 A_3 \ldots A_{n-1} A_{n+1} \) the following relation is true:

\[
(A_1 A_{n+1})^2 = \sum_{k=1}^{n-2} (A_k A_{k+1})^2 + (A_{n-1} A_{n+1})^2 + 2 \sum_{k=1}^{n-3} \frac{(A_1 A_{k+1}) (A_{k+1} A_{k+2}) (A_{k+2} A_{n+1})}{A_1 A_{n+1}}.
\]

Applying the Law of Cosines in triangle \(A_{n-1} A_n A_{n+1} \), and using the facts that:

\[
m(\angle A_{n-1} A_n A_{n+1}) + m(\angle A_{n-1} A_1 A_{n+1}) = 180^\circ
\]

and

\[
m(\angle A_1 A_{n-1} A_{n+1}) = 90^\circ,
\]

we obtain:

\[
(A_{n-1} A_{n+1})^2 = (A_{n-1} A_n)^2 + (A_n A_{n+1})^2 - 2 (A_{n-1} A_n) (A_n A_{n+1}) \cos (A_n)
\]

\[
= (A_{n-1} A_n)^2 + (A_n A_{n+1})^2 + 2 (A_{n-1} A_n) (A_n A_{n+1}) \cos (\angle A_{n-1} A_1 A_{n+1})
\]

\[
= (A_{n-1} A_n)^2 + (A_n A_{n+1})^2 + 2 (A_{n-1} A_n) (A_n A_{n+1}) \cdot \frac{A_1 A_{n-1}}{A_1 A_{n+1}}.
\]

Substituting \((A_{n-1} A_{n+1})^2\) into relation (8), we obtain:

\[
(A_1 A_{n+1})^2 = \sum_{k=1}^{n-2} (A_k A_{k+1})^2 + (A_{n-1} A_n)^2 + (A_n A_{n+1})^2 + 2 (A_{n-1} A_n) (A_n A_{n+1}) \cdot \frac{A_1 A_{n-1}}{A_1 A_{n+1}}
\]

\[
+ 2 \sum_{k=1}^{n-3} \frac{(A_1 A_{k+1}) (A_{k+1} A_{k+2}) (A_{k+2} A_{n+1})}{A_1 A_{n+1}}.
\]

The proof is now complete. \(\square\)
We can also note the validity of a reciprocal of this theorem: Let $A_1A_2, A_2A_3, \ldots, A_{n-1}A_n, A_nA_1$ be n segments with lengths $A_1A_2 = a_1, A_2A_3 = a_2, \ldots, A_{n-1}A_n = a_{n-1}, A_nA_1 = a_n$. If these segments satisfy relation (7), then there is at least one polygon with these segments as sides that can be inscribed in the semicircle with diameter A_1A_n. The proof can be developed in the same manner as for the case of $n = 4$.

Acknowledgments: I would like to thank Professor Aurel I. Stan, Department of Mathematics, The Ohio State University, U.S.A., for his kind advice and encouragements.

Note: This article was originally published in Romanian here [6].

References

[1] E. Rusu. *De la Tales la Einstein*. Editura Albatros, 1971.
[2] D.B. Wagner. *A Proof of the Pythagorean Theorem by Liu Hui (Third Century A.D.).* In: Historia Mathematica 12 (1985), pp. 71–73.
[3] J. Hadamard. *Lessons in geometry. I. Plane geometry*. Trans. by M. Saul. American Mathematical Society, 2008.
[4] O. Bottema. *Topics in elementary geometry*. Springer-Verlag, New York, 2008.
[5] M.P. Saikia. *The Pythagoras Theorem*. In: Asia Pacific Mathematics Newsletter 5 (2) (2015), pp. 5–8.
[6] M. Gotea. *O extindere a teoremei lui Pitagora*. In: Gazeta Matematică – B 122 (4) (2017), pp. 174–178.