An epigenetic aging analysis of randomized metformin and weight loss interventions in overweight postmenopausal breast cancer survivors

Jamaji Nwanaji-Enwerem, Emory University
Felicia Fei-L Chung, International Agency for Research on Cancer
Lars Van der Laan, University of California Berkeley
Alexei Novoloaca, International Agency for Research on Cancer
Cyrille Cuenin, International Agency for Research on Cancer
Harriet Johansson, IEO European Institute of Oncology IRCCS
Bernardo Bonanni, IEO European Institute of Oncology IRCCS
Alan E Hubbard, University of California Berkeley
Martyn T Smith, University of California Berkeley
SheriJ Hartman, University of California San Diego

Only first 10 authors above; see publication for full author list.

Journal Title: CLINICAL EPIGENETICS
Volume: Volume 13, Number 1
Publisher: BMC | 2021-12-01, Pages 224-224
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1186/s13148-021-01218-y
Permanent URL: https://pid.emory.edu/ark:/25593/vtwg4

Final published version: http://dx.doi.org/10.1186/s13148-021-01218-y

Copyright information:
© The Author(s) 2021
This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/rdf).

Accessed September 13, 2024 12:26 AM EDT
An epigenetic aging analysis of randomized metformin and weight loss interventions in overweight postmenopausal breast cancer survivors

Jamaji C. Nwanaji-Enwerem1,2*, Felicia Fei-Lei Chung3,4†, Lars Van der Laan2, Alexei Novoloaca3, Cyrille Cuenin3, Harriet Johansson5,6, Bernardo Bonanni5,6, Alan E. Hubbard2, Martyn T. Smith2†, Sheri J. Hartman7,8†, Andres Cardenas2†, Dorothy D. Sears8,9,6† and Zdenko Herceg3†

Abstract

Metformin and weight loss relationships with epigenetic age measures—biological aging biomarkers—remain understudied. We performed a post-hoc analysis of a randomized controlled trial among overweight/obese breast cancer survivors (N = 192) assigned to metformin, placebo, weight loss with metformin, or weight loss with placebo interventions for 6 months. Epigenetic age was correlated with chronological age (r = 0.20–0.86; P < 0.005). However, no significant epigenetic aging associations were observed by intervention arms. Consistent with published reports in non-cancer patients, 6 months of metformin therapy may be inadequate to observe expected epigenetic age deceleration. Longer duration studies are needed to better characterize these relationships.

Trial Registration: Registry Name: ClinicalTrials.Gov.
Registration Number: NCT01302379.
Date of Registration: February 2011.
URL: https://clinicaltrials.gov/ct2/show/NCT01302379
Keywords: RCT, DNA methylation age, Biomarkers, GrimAge, PhenoAge

Introduction

Existing evidence suggests that metformin and weight loss interventions may be useful strategies for promoting anti-aging processes including improvements in overall health and lifespan [1]. Still, the relationships of these therapeutic interventions with epigenetic aging (EA) measures—DNA methylation-based biomarkers of biological aging—remain understudied. Along with predicting chronological age, long-term health status, and mortality, EA biomarkers may be helpful in tracking the effectiveness of health interventions such as metformin and weight loss therapy [2, 3]. Nevertheless, randomized...
trials including EA outcomes in this therapeutic context—and others—remain sparse.

We performed a post-hoc analysis of a randomized controlled trial with a 2×2 factorial design (NCT01302379) among overweight/obese postmenopausal breast cancer survivors to examine relationships of metformin and weight loss therapy with nine EA measures [4]. These markers were selected based on their strong associations with health/lifespan and/or their novelty. They also reflect different domains of human biological aging including estimates of mortality, mitosis, and telomere length [5–7]. Hannum, Horvath, and Skin-BloodClock epigenetic age are primarily viewed as DNA methylation predictors of chronological age; nonetheless, studies have linked these biomarkers to health status. PhenoAge is a leading biomarker of healthspan, while GrimAge is a biomarker of lifespan. DNAm TL is a DNA methylation-based estimator of telomere length, while mitotic age (MiAge) and epigenetic time to cancer 1/2 (EpiTOC/EpiTOC2) are DNA methylation-based biomarkers of mitotic cell divisions. We hypothesized that metformin and weight loss, in combination or independently, would decelerate epigenetic aging thus reflecting decreased aging-associated disease risk. By performing a comprehensive analysis of EA measures that provide different information on biological aging, we hoped to achieve a more nuanced understanding of metformin and weight loss EA relationships.

Methods

Study participants ($N=333$) were randomly assigned to daily metformin, placebo, a weight loss intervention with metformin, or weight loss with placebo for 6 months. Fasting blood samples were collected at baseline and the final 6-month visit. Additional information about the study population, design, and approvals have been previously published [1, 4].

DNA was isolated fromuffy coat samples using the Gentra Puregene Blood Kit (Qiagen), and quantified using the Quant-iTPicoGreen™ dsDNA Assay Kit (Invitrogen) as per the manufacturers’ protocols. DNA from samples that passed all preliminary quality control steps were processed for bisulfite conversion using 500 ng of each sample with the EZ DNA Methylation Kit (Zymo Research) in accordance with the manufacturer’s instructions.

Given resource constraints, we were only able to perform methylation analyses on 192 of the trial participants. DNA methylation analyses were performed on randomly sampled blood from 192 participants using the Illumina Infinium MethylationEPIC BeadChip. Constrained randomization was conducted to assign one matched pair from each of the four treatment arms to each BeadChip, for a total of 8 samples per chip. The relative positions of the samples were randomized within each BeadChip while keeping matched pairs adjacent to each other. Raw data files were pre-processed, and normalized by functional normalization as implemented in the “minfi” Bioconductor package. Cross-reactive probes [8], probes for which the detection p-value exceeded the threshold of 0.01, and probes for which data was missing in >5% of the samples were excluded, leaving a final data set of 818,493 probes for the samples. Quality control assessments were conducted using the “minfi” Bioconductor package. Raw signal intensities in both green and red channels were consistent across all samples (Additional file 1: Figure S1A and B), and all samples clustered with high signal intensity on both green and red channels (Additional file 1: Figure S1C). Multidimensional scaling (MDS) was applied to evaluate the effect of sample plate, sentrix position, and sentrix ID (Additional file 1: Figure S1D–F) on sample variation, where no clear batch effects were observed. Processed and normalized beta values were then used to calculate measures of EA. EpiTOC/EpiTOC2 and MiAge were calculated using R code from https://doi.org/10.5281/zenodo.2632938 and http://www.columbia.edu/~sw2206/softwares.htm, respectively. The remaining EA measures were calculated using a publicly available calculator (http://dnamage.genetics.ucla.edu).

We first used unadjusted linear mixed effects regression models to examine baseline to end of study differences in each of the nine age-adjusted EA acceleration biomarkers when comparing the intervention arms (weight loss, metformin only, and weight loss plus metformin) to placebo. Models included a random intercept for participants to account for repeated measures. We repeated this analysis using models adjusted for days from randomization to end of study and DNA methylation estimates of leukocyte composition. Finally, we performed unadjusted and adjusted sensitivity analyses comparing high adherence weight loss (≥5% weight loss), high adherence metformin (≥80% pill adherence), and high adherence weight loss plus high adherence metformin to placebo. All statistical analyses were performed using R Version 3.6.3 (R Core Team, Vienna, Austria).

Results

Participant characteristics have been described in previously published work [4]. On average, participants were approximately 63 years of age. In the present analysis, all EA measurements had statistically significant Pearson correlations with chronological age, but the strength of the correlations varied (Fig. 1). The epigenetic mitotic clocks shared the weakest positive correlations with chronological age. Specifically, the MiAge correlation was the weakest ($r=0.20$, $P=0.005$). The
DNAm SkinBloodClock ($r = 0.86, P < 0.001$) followed by DNAm GrimAge ($r = 0.83, P < 0.001$) demonstrated the strongest positive chronological age correlations. DNAmTL, as anticipated, was the only measure that was negatively correlated with chronological age ($r = -0.58, P < 0.001$).

In unadjusted intent-to-treat models, when compared to placebo, no treatment arm demonstrated any statistically significant differences or notable trends for any EA marker (Table 1). The results remained null even when intent-to-treat models included adjustments for leukocyte composition and number of days from...
Aging biomarker models	Weight loss only (N = 48)	Metformin (N = 48)	Weight loss plus metformin (N = 48)			
	difference in DNA methylation biomarker (95% CI)	P	Difference in DNA methylation biomarker (95% CI)	P	difference in DNA methylation biomarker (95% CI)	P
EAA Hannum units: years						
Unadjusted Intent to Treat	1.13 (−0.46, 2.73)	0.16	0.25 (−1.35, 1.84)	0.76	1.05 (−0.55, 2.64)	0.20
Adjusted Intent to Treat	0.98 (−0.48, 2.44)	0.19	0.47 (−0.98, 1.91)	0.53	0.45 (−1.04, 1.95)	0.55
Unadjusted High Adherence*	1.03 (−0.95, 3.02)	0.30	0.43 (−1.29, 2.16)	0.62	1.35 (−0.58, 3.28)	0.17
Adjusted High Adherence*	−0.04 (−1.89, 1.81)	0.97	0.60 (−0.98, 2.19)	0.45	0.61 (−1.20, 2.43)	0.51
EAA Horvath units: years						
Unadjusted Intent to Treat	0.96 (−0.76, 2.68)	0.27	−0.20 (−1.93, 1.52)	0.81	−0.25 (−1.97, 1.48)	0.78
Adjusted Intent to Treat	0.74 (−1.06, 2.53)	0.42	−0.34 (−2.11, 1.43)	0.70	−0.59 (−2.43, 1.25)	0.53
Unadjusted High Adherence*	−0.26 (−2.48, 1.97)	0.82	−0.21 (−2.15, 1.72)	0.83	0.38 (−1.78, 2.55)	0.73
Adjusted High Adherence*	−0.11 (−2.49, 2.26)	0.93	−0.26 (−2.28, 1.77)	0.80	0.04 (−2.29, 2.37)	0.97
EAA SkinBloodClock units: years						
Unadjusted Intent to Treat	0.81 (−0.54, 2.15)	0.24	−0.68 (−2.03, 0.66)	0.32	0.26 (−1.08, 1.61)	0.70
Adjusted Intent to Treat	0.86 (−0.48, 2.19)	0.21	−0.69 (−2.01, 0.63)	0.30	0.40 (−0.96, 1.77)	0.56
Unadjusted High Adherence*	1.01 (−0.67, 2.68)	0.24	−0.99 (−2.45, 0.46)	0.18	0.52 (−1.10, 2.15)	0.53
Adjusted High Adherence*	0.77 (−0.90, 2.43)	0.37	−1.09 (−2.52, 0.34)	0.13	0.52 (−1.12, 2.16)	0.53
Extrinsic EAA (EEAA) units: years						
Unadjusted Intent to Treat	0.74 (−0.96, 2.44)	0.39	−0.22 (−1.91, 1.48)	0.80	−0.36 (−2.06, 1.34)	0.68
Adjusted Intent to Treat	0.74 (−1.05, 2.33)	0.42	−0.40 (−2.17, 1.37)	0.66	−0.63 (−2.47, 1.20)	0.50
Unadjusted High Adherence*	−0.38 (−2.58, 1.82)	0.73	−0.16 (−2.08, 1.75)	0.87	0.12 (−2.02, 2.26)	0.91
Adjusted High Adherence*	−0.06 (−2.45, 2.32)	0.96	−0.33 (−2.36, 1.70)	0.75	0.02 (−2.32, 2.35)	0.99
EAA PhenAge (EEAA) units: years						
Unadjusted Intent to Treat	1.39 (−0.66, 3.44)	0.18	0.13 (−1.92, 2.19)	0.90	1.56 (−0.49, 3.62)	0.13
Adjusted Intent to Treat	1.05 (−0.55, 2.66)	0.20	0.60 (−0.99, 2.18)	0.46	0.56 (−1.08, 2.20)	0.50
Unadjusted High Adherence*	1.57 (−0.94, 4.08)	0.22	0.42 (−1.77, 2.60)	0.71	1.79 (−0.66, 4.23)	0.15
Adjusted High Adherence*	−0.12 (−2.15, 1.90)	0.90	0.78 (−0.95, 2.51)	0.38	0.70 (−1.29, 2.68)	0.49
EAA GrimAge units: years						
Unadjusted Intent to Treat	1.92 (−0.30, 4.14)	0.09	0.79 (−1.43, 3.01)	0.48	0.40 (−1.82, 2.63)	0.72
Adjusted Intent to Treat	2.02 (0.02, 4.03)	0.05	0.82 (−1.16, 2.80)	0.41	−0.12 (−2.17, 1.93)	0.91
Unadjusted High Adherence*	3.32 (0.56, 6.08)	0.02	1.03 (−1.37, 3.43)	0.40	0.58 (−2.11, 3.27)	0.67
Adjusted High Adherence*	2.75 (0.18, 5.32)	0.04	0.98 (−1.22, 3.17)	0.38	0.48 (−2.04, 3.00)	0.70
DNAm TL Age Adjusted units: kb						
Unadjusted Intent to Treat	0.76 (−0.61, 2.12)	0.28	−0.89 (−2.26, 0.48)	0.20	0.26 (−1.10, 1.63)	0.70
Adjusted Intent to Treat	0.76 (−0.58, 2.10)	0.27	−0.91 (−2.24, 0.41)	0.18	−0.39 (−1.76, 0.98)	0.58
Unadjusted High Adherence*	1.61 (−0.10, 3.33)	0.07	−0.65 (−2.14, 0.85)	0.39	0.45 (−1.22, 2.12)	0.59
Adjusted High Adherence*	1.38 (−0.33, 3.10)	0.11	−0.74 (−2.21, 0.73)	0.32	−0.05 (−1.73, 1.63)	0.95
DNAm EpitheCIR units: DNAm						
Unadjusted Intent to Treat	−0.07 (−0.14, 0.01)	0.09	−0.03 (−0.10, 0.05)	0.52	−0.02 (−0.09, 0.06)	0.67
Adjusted Intent to Treat	−0.04 (−0.11, 0.02)	0.20	−0.03 (−0.10, 0.04)	0.41	0.01 (−0.06, 0.08)	0.68
Unadjusted High Adherence*	−0.10 (−0.20, −0.95e−4)	0.05	2.2e−4 (−0.09, 0.08)	0.99	−0.03 (−0.13, 0.07)	0.53
Adjusted High Adherence*	−0.06 (−0.14, 0.03)	0.21	−0.01 (−0.08, 0.07)	0.80	0.01 (−0.08, 0.09)	0.86

Table 1: Estimated difference in epigenetic age biomarkers after 6 months of metformin and weight loss program interventions compared to placebo (N = 192)
randomization to the end of the study. Unadjusted and adjusted sensitivity analyses that focused on examining differences between high intervention adherence women and those in the placebo group also did not demonstrate any notable trends for any EA marker. Although weight loss—compared to placebo—was associated with EA in high adherence models, the association was in the opposite direction as expected and would not persist after multiple testing adjustment.

Discussion
Correlations of chronological age with EA demonstrate good to excellent performance of these markers in post-menopausal breast cancer survivors; however, we observe no compelling evidence that leukocyte EA is impacted by 6 months of metformin and/or a weight loss intervention. Still, the reasons for this lack of a statistically significant relationship may be multi-faceted and highly informative for future randomized trials including EA.

It is possible that 6 months is not an adequate amount of time to observe metformin and/or weight loss related leukocyte EA changes. Although the initial trial reported significant changes in blood levels of molecules like insulin and estradiol [4], it is possible that these molecules do not mediate EA changes or that it simply takes longer for these changes to be detectable. This latter assertion is supported by the one existing trial of similarly dosed metformin therapy in combination with growth hormone and dehydroepiandrosterone where significant EA deceleration is only observed after 6 months [9]. Additionally, some EA markers have demonstrated tissue specificity for certain processes. For instance, previous observational studies of obesity were able to identify significant EA acceleration in hepatocytes but not leukocytes from the same subjects [10]. Lastly, the median error of these clocks are larger than one year—a challenge for testing short-term interventions—and our analysis may have been underpowered for this specific EA analysis.

Contrary to our hypothesis, we observed that weight loss—compared to placebo—was associated with accelerated EA in high adherence models. Even if these findings would not persist after multiple testing adjustment, it is worth speculating on the converse nature of this relationship. Although, weight loss is primarily thought to have a beneficial effect on aging and health by improving cardiometabolic and other physiological profiles, there have been reports of the contrary [11, 12]. One important consideration is the coexistence of sarcopenia in older overweight/obese cancer patients [13]. Having diminished lean mass compared to fat mass already places these individuals at risk for frailty/disability [14]. Interventions that focus on weight loss irrespective of the type could potentially lead to further decreases in muscle mass. The exacerbation of this muscle-fat imbalance could be a source of increased morbidity as evidenced by increased biological aging. Still, the phone-based program in this trial had a calorie goal component as well as a moderate-intensity physical activity goal of 300 min/week [1]. Thus, the etiology of this converse relationship in this trial merits further investigation.

In conclusion, randomized trials including EA remain critical for defining the clinical utility of these
biomarkers. Intervention duration, characterizing muscle versus fat specific impacts of diet/weight loss interventions, and best matching tissues of EA measurement to biological processes of interest—when possible—remain important considerations in designing future EA randomized trials.

Abbreviations
DNAmethTL: DNA methylation telomere length; EA: Epigenetic aging; EpiTOC: Epigenetic time to cancer; EpiTOC2: Epigenetic time to cancer 2; MiAge: Mitotic age.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13148-021-01218-y.

Acknowledgements
The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/World Health Organization.

Authors’ contributions
JCN led the data analyses and wrote the manuscript. FFC, MTS, SJH, AC, DDS, and ZH designed the study and secured the funding. LVL and AEH contributed to the data analysis. AN, CC, HJ, and BB contributed to obtaining clinical information. All authors contributed to the writing of the manuscript. All authors read and approved the final manuscript.

Funding
JCN and AC were supported by the National Institutes of Health grants R01AG067064 and R01ES031259. Reach for Health was supported by the National Institutes of Health (US4 CA155435). DNA methylation profiling was supported by grants from Institut National du Cancer (INCa, France), the European Commission (EC) Seventh Framework Programme (FP7) Translational Cancer Research (TRANS-SCAN, MetBreCS grant) Framework, and the Fondation ARC pour la Recherche sur le Cancer (France).

Availability of data and materials
The datasets used and/or analyzed during the current study are not publicly available but inquiries can be made to the senior authors.

Declarations
Ethics approval and consent to participate
The University of California San Diego institutional review board approved study procedures and all participants provided written informed consent.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Emergency Medicine, Gangarosa Department of Environmental Health, Emory University School of Medicine, Emory Rollins School of Public Health, 1518 Clifton Rd. NE, Atlanta, GA 30322, USA. 2Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA. 3Epi2omics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France. 4Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia. 5Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, Via Ripamonti, 435 - 20141 Milan, Italy. 6College of Health Solutions, Arizona State University, Phoenix, AZ, USA. 7Herbert Wertheim School of Public Health, University of California, San Diego, CA, USA. 8Moores Cancer Center, University of California, San Diego, CA, USA. 9Department Medicine, University of California, San Diego, CA, USA.

Received: 30 June 2021 Accepted: 13 December 2021
Published online: 17 December 2021

References
1. Patterson RE, Marinac CR, Natarajan L, Hartman SJ, Cadmus-Bertram L, Flatt SW, et al. Recruitment strategies, design, and participant characteristics in a trial of weight-loss and metformin in breast cancer survivors. Contemp Clin Trials. 2016;47:64–71.
2. Hägg S, Jylhävä J. Should we invest in biological age predictors to treat colorectal cancer in older adults? Eur J Surg Oncol. 2020;46(3):316–20.
3. AmbatiPudi S, Horvath S, Perrier F, Cuenin C, Hernandez-Vargas H, Le Calvez-Kelm F, et al. DNA methylation analysis identifies accelerated epigenetic aging associated with postmenopausal breast cancer susceptibility. Eur J Cancer. 2017;75:299–307.
4. Patterson RE, Marinac CR, Sears DD, Kerr J, Hartman SJ, Cadmus-Bertram L, et al. The effects of metformin and weight loss on biomarkers associated with breast cancer outcomes. J Natl Cancer Inst. 2018;111(11):1239–47.
5. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation GrmAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–27.
6. Tischendorff AE. A comparison of epigenetic mitotic-like clocks for cancer risk prediction. Genome Med. 2020;12(1):56.
7. Lu AT, Seeboth A, Tsai P-C, Sun D, Quach A, Reiner AP, et al. DNA methylation-based estimator of telomere length. Aging (Albany NY). 2019;11(16):5895–923.
8. Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016;17(1):208.
9. Fahy GM, Brooke RT, Watson JP, Good Z, Vasanawala SS, Maecker H, et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell. 2019;18(6):e13028.
10. Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schönfels W, Ahrens M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA. 2014;111(43):15538–43.
11. Chapman IM. Obesity paradox during aging. Interdiscip Top Gerontol. 2010;37:20–36.
12. Miller SL, Wolfe RR. The danger of weight loss in the elderly. J Nutr Health Aging. 2008;12(7):487–91.
13. Baracos VE, Arrbas L. Sarcopenic obesity: hidden muscle wasting and its impact for survival and complications of cancer therapy. Ann Oncol. 2018;29:i1–9.
14. Bhurchandi S, Kumar S, Agrawal S, Acharaya S, Jain S, Talwar D, et al. Correlation of sarcopenia with modified frailty index as a predictor of outcome in critically ill elderly patients: a cross-sectional study. Cureus. 2021;13(10):e19065.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.