Prevalence of Spirometrically-defined Restrictive Ventilatory Defect in Korea: The Fourth-2, 3, and Fifth Korean National Health and Nutrition Examination Survey, 2008-2012

Jung Yeon Lee,1 Yong Il Hwang,2 Yong Bum Park,3 Jae Yong Park,4 Ki Uk Kim,2 Yeon-Mok Oh,6 Hyoung Kyu Yoon,4 Ho Il Yoon,4 Sueng Su Sheen,4 Sang Yeub Lee,4 Chang-Hoon Lee,11 Heung Bum Lee,12 Sung Chul Lim,13 Sung Soo Jung,14 Kyungwon Oh,15 Yuna Kim,16 Chaemin Chun,16 and Kwang Ha Yoo16

Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Konkuk University Medical Center, Chungju Hospital, Chungju;2 College of Medicine, Hallym University Medical Center, Anyang; College of Medicine, Hallym University Medical Center, Seoul;3 Kyungpook National University School of Medicine, Chilgok;4 Pusan National University School of Medicine, Busan;6 University of Ulsan College of Medicine, Asan Medical Center, Seoul; Yeouido St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul; Seoul National University Bundang Hospital, Seongnam; Aju University School of Medicine, Suwon; Korea University Anam Hospital, Korea University College of Medicine, Seoul; National University Hospital, Seoul National University College of Medicine, Seoul;12 Chonbuk National University Hospital-Chonbuk National University, Jeonju;13 Chonnam National University, Gwangju;14 Chungnam National University School of Medicine, Daejeon; Division of Health and Nutrition Survey, Korea Centers for Disease Control and Prevention, Cheongwon;15 Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea

Received: 27 September 2014
Accepted: 3 February 2015

Address for Correspondence:
Kwang Ha Yoo, MD
Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 143-729, Korea
Tel: +82-2-2030-7173, Fax: +82-2-2030-5009
E-mail: khyoo@kuh.ac.kr

The aim of the study was to evaluate the prevalence of restrictive ventilatory defect and to determine the risk factors in subjects with spirometrically-defined restrictive ventilatory defect. We used the population-based, fourth-2, 3 (2008, 2009) and fifth (2010-2012) Korea National Health and Nutrition Examination Survey (KNHANES) to analyze 15,073 subjects, aged ≥ 40 yr who underwent spirometry. Chest radiographs were also analyzed to identify restrictive lung disease. Spirometrically-defined restrictive ventilatory defect (FEV1/FVC ≥ 70% and FVC < 80% of mean predicted value) was detected in 11.3% (n = 1,709) of subjects aged ≥ 40 yr. The prevalence increased to 12.3% on using the lower limit of normal (LLN) criteria. Approximately 99.4% of subjects were classified as mild restrictive. Among these, 11.3% had inactive tuberculosis (TB) lesion, 2.2% cardiac disease, 2.0% previous operation scar or radiation injury and/or mediastinal disease, and 7.4% other pulmonary disease suggestive of restrictive lung diseases on chest radiograph. Evidence of previous TB history was independently associated with restrictive ventilatory defect (odds ratios [OR], 1.78; 95% confidence interval, 1.45-2.18) after adjustment for gender, age, smoking, area for residence and body mass index. The prevalence of restrictive ventilatory defect among the nationwide population in Korea was 11.3% with fixed ratio criterion and 12.3% with LLN criterion. Most cases were of the mild restrictive category and previous TB history is the independent risk factor for restrictive ventilatory defect.

Keywords: Epidemiology; Lung Diseases, Interstitial; Respiratory Function Tests; Tuberculosis; X-Rays

INTRODUCTION

Recent evidence suggests that a restrictive spirometric pattern is relatively common and related to increased morbidity and mortality due to impaired lung function (1, 2). Epidemiological studies have shown that approximately 7 to 13% of adults have spirometrically-defined restrictive ventilatory defect (1, 2). However, there are few population-based studies on these topics.

Spirometry is a useful method to detect the pattern of airflow limitation. Total lung capacity measurement is essential to rule out or diagnose restrictive lung diseases. However, it is time consuming and not available for the screening of large populations (3). A low Forced Vital Capacity (FVC) together with a normal or high forced expiratory volume in one second (FEV1)/FVC ratio (fixed ratio), has traditionally been classified as a restrictive abnormality (3). Fixed ratio clearly has an important role in detecting and grading airway obstruction in chronic obstructive pulmonary disease (COPD), however a role for screening of the restrictive ventilatory defect has rarely been examined (4-6). One study showed that contrary to popular opinion, a restrictive pattern on spirometry did not accurately predict true restrictive disease. Patients with a classic spirometric restrictive pattern have a < 60% probability of true restrictive disease (5). However, studies on spirometry data and a recent study in Spain showed that 12.7% had restrictive ventilator defect (7). The US National Health and Nutrition Examination Survey
(NHANES) III 2007-2010 study showed that 5.7% of the general population had restrictive spirometry results (8). There is a rising incidence of restrictive lung disease and studies have identified its association with morbidity and heart disease, such as COPD (9, 10). We determined the prevalence of restrictive lung disease from nationwide stratified random sampling data in Korea.

MATERIALS AND METHODS

Study design
KNHANES IV-2, 3 and V was a cross-sectional, nationwide survey performed by the Division of Health and Nutrition Survey, Korea Centers for Disease Control and Prevention (KCDC), between 2008 and 2012. The survey had a stratified, multistage, clustered probability sampling design and was composed of a health examination, health interview survey, and nutrition survey. Direct standardized physical examinations and a health interview survey were conducted in mobile examination centers, and trained interviewers visited subject houses for the nutrition survey (11). Subjects aged ≥ 40 yr from KNHANES IV-3, and V were selected for spirometric testing.

Sampling strategy in the KNHANES IV and V
The sampling plan followed a multi-stage clustered probability design and systemic sampling method (11). Two hundred from the 2008 survey and 192 from the 2009-2012 survey primary sampling units (PSUs) were drawn from approximately 200,000 geographically defined PSUs of the entire country. Twenty-three target households from the KNHANES IV-2, 3 (2008, 2009) and 20 households from KNHANES V (2010-2012) were sampled for each PSU, which consisted of 60-80 households. Individuals aged ≥ 1 yr were targeted in selected households. The samples were weighted to adjust for over-sampling, non-responders and post-stratification.

Spirometry
Participants were provided a detailed explanation of the spirometry procedure. The procedure was conducted by 4 technicians, each of whom underwent 2 education sessions on pulmonary function test (PFT) and quality control. Spirometry was performed using dry rolling seal spirometers (Model 2130; SensorMedics, Yorba Linda, CA, USA); the American Thoracic Society (ATS)/European Respiratory Society (ERS) repeatability criteria for assessing the prevalence of the LLN-defined restrictive ventilatory defect (15). A patient with an FVC < the LLN criterion of prevalence, to resolve the concerns of over-diagnosis of restrictive ventilatory defect according to age. A prediction equation previously reported by Hwang et al. was used for assessing the prevalence of the LLN-defined restrictive ventilatory defect (15). A patient with an FVC < the LLN, and an FEV₁/FVC ratio > the LLN was categorized as having restrictive ventilatory defect. The severity of spirometrically- and LLN-defined restrictive ventilatory defect were assessed by the measured FVC %, as reported in the ATS/ERS guidelines (14).

Definitions for variables; smoking status, place of residence, income, and education level
A current smoker was defined as one who had smoked ≥ 100 cigarettes during his or her lifetime and reported current smok-
ing. A former smoker was defined as one who had smoked < 100 cigarettes during his or her lifetime, but reported having stopped smoking. A never smoker was defined as one who had not smoked during his or her lifetime.

Place of residence was classified as urban and rural. The place of residence was defined as rural if a subject’s address was located in a Eup or Myeon, and urban if it was in a Dong. The smallest administrative districts in Korea are the urban Dong, and rural Eup and Myeon.

Income was categorized by ranking according to gender and age group in 5-yr intervals. Each subject’s income calculated by dividing the total household income by the square root of the number of members in the household, was categorized as low, low-middle, middle-high and high (16). Educational level was divided into elementary school, middle school, high school, and college or higher according to the Korean educational course curriculum.

Radiologic examination results
Screening chest radiography performed at age ≥ 15 yr since KNHANCES IV-3 (2008) was used to investigate the prevalence of TB; hence we analyzed KNHNES IV-2, 3 and V data (2008 to 2012). The results of chest radiography had the possibility of error, therefore qualified pulmonologists and radiologists independently interpreted the presence of lung disease, including previous TB sequele. Individual readings were compared weekly and finally, 6 radiology specialists re-analyzed and confirmed the results. Spirometry was measured in 15,073 survey participants (6,526 males and 8,547 females) aged ≥ 40 yr, and 13,602 (90.2%) subjects had identifying reading results on the chest radiography.

Statistical analyses
The results for each variable were shown as the mean with standard deviation, in the case of continuous variables; and the number of cases per category and frequency of responses in the case of categorical variables. The prevalence of restrictive ventilatory defect and its 95% confidence interval (CI) were calculated. Comparisons between variables were tested using the chi-square test or Student’s t-test. We performed a logistic regression model with restrictive ventilatory defect as the dependent variable, and age, gender, smoking history, BMI, place of residence, education level and previous TB history as independent variables. A forward selection method was used to exclude multi-collinearity of each variable. Odds ratio (OR) were calculated with SPSS 21.0 (SPSS Inc., Chicago, IL, USA).

Ethics statement
The study was approved by the Institutional Review Board of the KCDC (approval number, 2008-01EXP-01-C, 2009-01CON-03-2C, 2010-02CON-21-C, 2011-02CON-06-C, 2012-01EXP-01-2C). All participants in the survey provided written informed consent.

RESULTS
Baseline characteristics and overall prevalence of restrictive ventilatory defect according to the fixed ratio and LLN criterion
A total of 45,811 subjects participated in the survey during the 5 yr of screening. Of these, 23,612 subjects were aged ≥ 40 yr and 21,573 (91.3%) had spirometry with at least one acceptable curve. There were no statistical demographic differences, except age, between those who performed spirometry and those who did not. Thus the subjects who performed spirometry and were included for analysis were representative of the total population. Chest radiologic examinees (≥ 40 yr old) excluding subjects with an indeterminate pattern of spirometry (normal, obstructive, restrictive), included 15,073 subjects, aged ≥ 40 yr (mean age 56.9 ± 10.9 yr) who satisfied the criteria for acceptability and reproducibility. Of the included subjects, 11.3% (n = 1,709) had restrictive ventilatory defect with fixed ratio (Fig. 1); and 99% (n = 1,831) of these were included in the mild restrictive cate-

Fig. 1. Selection of subjects for the analysis of prevalence of restrictive ventilatory defect.
Table 1. Baseline characteristics of participants: normal control and those with a restrictive ventilatory defect

| Parameters                  | Total n = 15,073 | Restrictive pattern (Men) n = 800 | Restrictive pattern (Women) n = 993 |
|-----------------------------|------------------|-----------------------------------|-------------------------------------|
| Age, mean ± standard deviation (SD) | 56.9 ± 10.9 | 59.4 ± 10.9 | 60.8 ± 10.6 |
| 40-49                       | 4,482 (23.7) | 175 (21.9) | 150 (16.5) |
| 50-59                       | 4,538 (30.1) | 218 (27.3) | 243 (26.7) |
| 60-69                       | 3,697 (24.5) | 243 (30.4) | 296 (32.6) |
| ≥ 70                        | 2,356 (15.6) | 164 (20.3) | 220 (24.2) |
| BMI (kg/m²), mean ± SD      | 24.3 ± 3.0 | 25.4 ± 3.1 | 25.4 ± 3.7 |
| < 18.5                      | 4,842 (32.2) | 9 (1.2) | 11 (1.3) |
| 18.5-22.9                   | 205 (1.4) | 134 (17.4) | 211 (24.3) |
| 23-24.9                     | 3,958 (27.1) | 190 (25.3) | 198 (22.8) |
| 25-29.9                     | 5,050 (34.6) | 382 (49.7) | 356 (40.9) |
| 30-34.9                     | 477 (3.3) | 39 (5.1) | 70 (0.1) |
| ≥ 35                        | 49 (0.3) | 5 (0.7) | 15 (1.7) |
| Place of residence          |                 |                     |                                      |
| Rural                       | 3,836 (25.4) | 209 (26.1) | 242 (26.6) |
| Urban                       | 11,237 (74.6) | 591 (73.9) | 667 (73.4) |
| Education                   |                 |                     |                                      |
| Elementary school or lower  | 5,029 (33.8) | 178 (22.5) | 478 (53.2) |
| Middle school               | 2,401 (16.1) | 159 (20.1) | 136 (15.1) |
| High school                 | 4,509 (30.3) | 244 (30.3) | 207 (23.1) |
| College or higher           | 2,958 (19.9) | 211 (26.6) | 77 (8.6) |
| Income                      |                 |                     |                                      |
| Low                         | 3,427 (23.1) | 180 (22.8) | 217 (24.4) |
| Low-middle                  | 3,658 (24.8) | 187 (23.7) | 227 (25.5) |
| Middle-high                 | 3,811 (25.7) | 203 (25.7) | 210 (23.6) |
| High                        | 3,922 (26.4) | 219 (27.8) | 236 (26.5) |
| Smoking                     |                 |                     |                                      |
| Current                     | 5,876 (39.3) | 628 (79.0) | 69 (7.6) |
| Former                      | 256 (1.7) | 23 (2.9) | 9 (1.0) |
| Never                       | 8,761 (58.5) | 144 (18.1) | 824 (91.4) |
| Restrictive severity        | Prevalence*     |                     |                                      |
| n = 1,709                   |                 |                     |                                      |
| Mild                        | 1,455 (99.4) | 692 (99.3) | 763 (99.5) |
| Moderate                    | 9 (0.6) | 5 (0.7) | 4 (0.5) |

*Missing values of prevalence for restrictive ventilatory defect were 245 due to lack of chest radiography information or unable to classify the severity of the restrictive ventilatory defect. BMI, body mass index.

Risk factors for spirometrically-defined restrictive ventilatory defect

Univariate analysis for risk factors of the spirometrically-defined restrictive ventilatory defect showed that older age (in 50-59 yr; OR, 1.54; 95% CI, 1.33-1.79, in 60-69 yr; OR, 2.72; 95% CI, 2.35-3.15, in ≥ 70 yr; OR, 3.62; 95% CI, 3.25-4.48), underweight (BMI < 18.5 kg/m²; OR, 0.398; 95% CI, 0.26-0.62), overweight (BMI 23-24.9 kg/m²; OR, 0.58; 95% CI, 0.37-0.89, BMI ≥ 35 kg/m²; OR, 3.03; 95% CI, 1.49-6.2), and previous TB history (OR, 1.86; 95% CI, 1.54-2.24) were associated with restrictive ventilator defect (Table 2). The male gender, rural residence compared to urban residence, low education level, and current smokers were also independently associated with restrictive ventilator defect (Table 2). Multivariate analysis showed that older age (in 50-59 yr; OR, 1.59; 95% CI, 1.35-1.86, in 60-69 yr; OR, 2.91; 95% CI, 2.44-3.42, in ≥ 70 yr; OR, 4.49; 95% CI, 3.68-5.40), underweight (BMI < 18.5 kg/m²; OR, 0.46; 95% CI, 0.29-0.73), overweight (BMI 23-24.9 kg/m²; OR, 0.65; 95% CI, 0.41-1.04, BMI 25-29.9 kg/m²; OR, 0.98; 95% CI, 0.62-1.55, BMI 30-34.9 kg/m²; OR, 2.22; 95% CI, 1.28-3.52, BMI ≥ 35 kg/m²; OR, 4.91; 95% CI, 2.34-10.33), male gender (OR, 1.57; 95% CI, 1.31-1.87), and previous tuberculosis history (OR, 1.78; 95% CI, 1.45-2.18) were statistically significant variables (P < 0.05) (Table 2).

Radiologic diagnosis matching in subjects with spirometrically-defined restrictive ventilatory defect

Seventy-seven % of subjects with restrictive ventilatory defect had no active lung lesion according to the chest radiograph reading; 11.3 percent had inactive TB; 7.4% had other pulmonary diseases; 2.2% had cardiac disease and 2.0% had previous operation scar or radiation injury and/or mediastinal disease. These were significantly different compared to the subjects with normal pulmonary function. Those with “other pulmonary disease” (Table 3) included active lung disease other than TB and inactive TB, which meant past lung disease other than TB.

DISCUSSION

This was the first, general population-based study, to the best of our knowledge that provided a prevalence of the restrictive ventilatory defect accompanied with radiologic verification. The KNHANES study cohort had 11.3 percent had inactive TB; 7.4% had other pulmonary diseases; 2.2% had cardiac disease and 2.0% had previous operation scar or radiation injury and/or mediastinal disease. These were significantly different compared to the subjects with normal pulmonary function. Those with “other pulmonary disease” (Table 3) included active lung disease other than TB and inactive TB, which meant past lung disease other than TB.
Table 2. Risk factors for a restrictive ventilatory defect: univariate and multiple logistic regression analyses

| No. (%)          | Univariate analysis | Multivariate analysis |
|------------------|---------------------|-----------------------|
|                  | Odds ratio | P value | 95% CI | Odds ratio | P value | 95% CI |
| Age (yr)         |            |         |       |            |         |       |
| 40-49            | 4,323 (33.1) | Reference | - | - | Reference | - | - |
| 50-59            | 4,135 (31.7) | 1.34 | < 0.01 | 1.30-1.79 | 1.59 | < 0.01 | 1.35-1.86 |
| 60-69            | 2,976 (22.8) | 2.72 | < 0.01 | 2.35-3.15 | 2.91 | < 0.01 | 2.44-3.42 |
| ≥ 70             | 1,622 (12.4) | 3.82 | < 0.01 | 3.25-4.48 | 4.49 | < 0.01 | 3.68-5.40 |
| Body mass index  |            |         |       |            |         |       |
| 18.5-22.9        | 140 (1.1) | Reference | - | - | Reference | - | - |
| < 18.5           | 4,061 (32.1) | 0.40 | < 0.01 | 0.26-0.62 | 0.46 | < 0.01 | 0.29-0.73 |
| 23-24.9          | 3,425 (27.1) | 0.58 | 0.01 | 0.37-0.89 | 0.65 | < 0.01 | 0.41-1.04 |
| 25-29.9          | 4,513 (35.7) | 0.86 | 0.49 | 0.56-1.32 | 0.98 | 0.00 | 0.62-1.55 |
| 30-34.9          | 447 (3.5) | 1.57 | 0.06 | 0.98-2.53 | 2.22 | < 0.01 | 1.28-3.52 |
| ≥ 35             | 49 (0.4) | 3.03 | 0.00 | 1.49-6.16 | 4.91 | < 0.01 | 2.34-10.33 |
| Gender           |            |         |       |            |         |       |
| Female           | 7,982 (61.1) | Reference | - | - | Reference | - | - |
| Male             | 5,074 (38.9) | 1.46 | < 0.01 | 1.32-1.61 | 1.57 | < 0.01 | 1.31-1.87 |
| Previous TB history |         |         |       |            |         |       |
| No               | 12,206 (94.5) | Reference | - | - | Reference | - | - |
| Yes              | 717 (5.5) | 1.86 | < 0.01 | 1.54-2.24 | 1.78 | < 0.01 | 1.46-2.18 |
| Place of residence |         |         |       |            |         |       |
| Urban            | 9,862 (75.5) | Reference | - | - | Reference | - | - |
| Rural            | 3,194 (24.5) | 1.13 | 0.05 | 1.00-1.26 | 0.96 | 0.54 | 0.85-1.09 |
| Education level  |            |         |       |            |         |       |
| College or higher | 2,699 (20.9) | Reference | - | - | Reference | - | - |
| Elementary school | 4,107 (31.8) | 1.59 | < 0.01 | 1.37-1.85 | 0.99 | 0.37 | 0.82-1.20 |
| Middle school    | 2,053 (15.9) | 1.41 | 0.016 | 1.18-1.67 | 1.12 | 0.18 | 0.93-1.36 |
| High school      | 4,942 (31.5) | 1.05 | 0.00 | 0.90-1.23 | 1.05 | 0.86 | 0.89-1.24 |
| Smoking          |            |         |       |            |         |       |
| Never            | 8,147 (63.2) | Reference | - | - | Reference | - | - |
| Former           | 239 (1.9) | 0.95 | 0.31 | 0.63-1.42 | 0.86 | 0.36 | 0.55-1.32 |
| Current          | 4,512 (34.9) | 1.36 | 0.03 | 1.22-1.51 | 1.09 | 0.20 | 0.91-1.29 |

CI, confidence interval; TB, tuberculosis.

Table 3. Pattern of radiologic assessment in participants with spirometrically-defined normal and restrictive ventilatory defect

| Restrictive pattern No. (%) | Normal PFT No. (%) | P value |
|-----------------------------|---------------------|---------|
| No active lung lesion       | 1,143 (77)          | 9,378 (90.7) | < 0.01 |
| Active tuberculosis         | 2 (0.1)             | 5 (0.0) |
| Inactive tuberculosis       | 167 (11.3)          | 548 (5.3) |
| Cardiac disease             | 32 (2.2)            | 47 (0.5) |
| Other pulmonary disease     | 110 (7.4)           | 266 (2.5) |
| Pneumonia                   | 0 (0)               | 1 (0.0) |
| Emphysema                   | 1 (0.1)             | 4 (0.0) |
| Previous operation scar or radiation injury and/or mediastinal disease | 29 (2.0) | 93 (0.9) |
| Total                       | 1,484 (100)         | 10,342 (100) |

PFT, pulmonary function test.

defect prevalence might be comparable to the extent of obstructive lung disease. However, studies for restrictive ventilator defect have rarely been conducted worldwide.

Disorders causing restrictive ventilatory defect may be categorized into intrinsic lung diseases that cause inflammation or scarring of the lung tissue i.e. interstitial lung disease, or fill the airspaces with exudates or debris i.e. acute pneumonitis; extrinsic disorders such as chest wall or pleural disease (e.g. pleural effusion, obesity, pneumonectomy); and neuromuscular disorders (e.g. muscular dystrophy, kyphosis, scoliosis, ankylosing spondylitis). The history, physical examination and, chest radiograph are often helpful in distinguishing these disorders. Spirometry can also be used to detect these disorders (6, 18). However, low FVC by spirometry may be found in a proportion of subjects with obstructive lung diseases, such as asthma and COPD. Most subjects, in our study, with restrictive ventilatory defect showed normal chest radiography; only 11.3% had previous TB sequele and 7.4% had other pulmonary disease, 2.2% had cardiac disease, and 2.0% had lung cancer and/or mediastinal disease which were suspected for restrictive lung disease. Aging related over-diagnosis of obstructive lung disease has been reported using the fixed ratio, and differences could be meaningful in some reports (15, 19). The use of fixed ratio alone could be more problematic in restrictive ventilatory defect (7). For this reason, we additionally used LLN-defined prevalence of restrictive lung disease in our analyses.

The results were similar to those obtained from fixed ratio (12.3% vs. 11.3%). Spirometry results were convincing and stringently quality-controlled (17). These results suggested that despite the likelihood of a high false positive rate in the restrictive spirometry.
try results of the large population screening studies, the spirometry results from our study of KNHANES possibly reflected a real restrictive ventilatory defect including physiologic restrictive lung disease. Furthermore, we could verify the results by chest radiography.

Our study showed that aging and BMI might have an additive role in increasing the prevalence of restrictive ventilatory defect, reflecting a physiologic phenomenon rather than false positives. Despite being significantly associated with restrictive ventilatory defect in multivariate analysis, aging and BMI presumably caused physiologic changes leading to reduced FVC. A recent study showed associations between body weight and various respiratory diseases supportive of our results, except in very severe obesity where restrictive patterns emerged due to the impact of fat on respiratory function (20-24). Our study also showed a strong correlation of restrictive ventilatory defect with severe obesity (BMI ≥ 35 kg/m²; OR, 10.68; 95% CI, 5.87-19.45). It is difficult to generalize due to the small number of subjects (n = 47 [0.4%]). However other mild to moderate obesity and underweight factors also increased the risk of restrictive ventilatory defect in multivariate analysis, which suggested the possible association between body weight, even mild to moderate obesity, causing restrictive ventilatory defect. Further study would be needed to confirm these results.

FEV1 and FVC decline with age, but the decline in FEV1 is greater. Thus, the FEV1/FVC ratio also declines with age (25). Some older patients may not experience these symptoms even in the presence of lung disease because they instinctively limit their activities to avoid exertion that might lead to occurrence of symptoms. Additionally, a study conducted to assess the accuracy of spirometry showed that classical spirometric pattern of restriction could be misleading, since it represents a true restrictive defect in < 60% of cases (8). Especially in this large population study, it was reasonable to compare with LLN criterion and to have radiologic support for the interpretation of spirometry results, in older adults and obese subjects.

Cautious interpretation of restrictive pattern in a study of general population is necessary. Heart failure is another largely unknown factor that is causally linked to spirometric restriction (26). Data on heart failure were not available in our study, but hypertension and increased total cholesterol level at enrollment were 41% and 21.5% respectively, in the restrictive group, a minority of whom presumably suffered from heart failure. A comparative, dynamic spirometry study on obstructive and normal lung function showed that the restrictive pattern had a high risk of serious co-morbidities (9). Restrictive ventilatory defect is also known for its association with increased cardiovascular mortality, and increased prevalence of diabetes and hypertension (1, 10). Further study would be needed for the association of restrictive ventilator defect with these variables.

Determination of the association of TB with restrictive respi-
DISCLOSURE

The authors have no conflicts of interest to declare.

AUTHOR CONTRIBUTION

Study concept, design, data collection: all authors. Writing, revision: Lee JY, Park JY, Kim KJ, Lee HB, Lim SC, Oh YM. Review, revision: Yoo KH, Hwang YI, Park YB. Accept final version of the manuscript: all authors.

REFERENCES

1. Mannino DM, Thorn D, Swensen A, Holguin F. Prevalence and outcomes of diabetes, hypertension and cardiovascular disease in COPD. Eur Respir J 2008; 32: 962-9.
2. Mannino DM, Doherty DE, Sonia Buist A. Global Initiative on Obstructive Lung Disease (GOLD) classification of lung disease and mortality: findings from the Atherosclerosis Risk in Communities (ARIC) study. Respir Med 2006; 100: 115-22.
3. Crapo RO. Pulmonary-function testing. N Engl J Med 1994; 331: 25-30.
4. Venkateshiah SB, Ioachimescu OC, McCarthy K, Stoller JK. The utility of spirometry in diagnosing pulmonary restriction. Lung 2008; 186: 19-25.
5. MacIntyre NR, Selecky PA. Is there a role for screening spirometry? Respir Care 2010; 55: 35-42.
6. Aaron SD, Dales RE, Cardinal P. How accurate is spirometry at predicting restrictive pulmonary impairment? Chest 1999; 115: 869-73.
7. Soriano JB, Miravitlles M, García-Río F, Muñoz L, Sánchez G, Sobradillo V, Durán E, Guerrero D, Ancochea I. Spirometrically-defined restrictive ventilatory defect: population variability and individual determinants. Prim Care Respir J 2012; 21: 187-93.
8. Ford ES, Wheaton AG, Mannino DM, Presley-Cantrell L, Li C, Croft JB. Elevated cardiovascular risk among adults with obstructive and restrictive airway functioning in the United States: a cross-sectional study of the National Health and Nutrition Examination Survey from 2007-2010. Respir Res 2012; 13: 115.
9. Lindberg A, Larsson LG, Rönmark E, Lundbäck B. Co-morbidity in mild-to-moderate COPD: comparison to normal and restrictive lung function. COPD 2011; 8: 421-8.
10. Guerra S, Sherrill DL, Venker C, Ceccato CM, Halonen M, Martinez FD. Morbidity and mortality associated with the restrictive spirometric pattern: a longitudinal study. Thorax 2010; 65: 499-504.
11. Kweon S, Kim Y, Jung MI, Kim Y, Kim K, Choi S, Chun C, Khang YH, Oh K. Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol 2014; 43: 69-77.
12. Miller MR, Hankinson J, Brunosso V, Burgos F, Casaburi R, Coates A, Croppo R, Enright P, van der Grinten CP, Gustafsson P, et al. Standardisation of spirometry. Eur Respir J 2005; 26: 319-38.
13. Choi JK, Paek D, Lee JO. Normal predictive values of spirometry in Korean population. Tuberc Respir Dis 2005; 58: 230-42.
14. Aggarwal AN, Agarwal R. The new ATS/ERS guidelines for assessing the spirometric severity of restrictive lung disease differ from previous standards. Respirology 2007; 12: 759-62.
15. Hwang YI, Kim CH, Kang HR, Shin T, Park SM, Jang SH, Park YB, Kim CH, Kim DG, Lee MG, et al. Comparison of the prevalence of chronic obstructive pulmonary disease diagnosed by lower limit of normal and fixed ratio criteria. J Korean Med Sci 2009; 24: 621-6.
16. Organisation for Economic Co-operation and Development. What are equivalent scales?, 2010. Available at http://www.oecd.org [accessed on 19 November 2010].
17. Yoo KH, Kim YS, Sheen SS, Park JH, Hwang YI, Kim SH, Yoon HI, Lim SC, Park JY, Park SJ, et al. Prevalence of chronic obstructive pulmonary disease in Korea: the fourth Korean National Health and Nutrition Examination Survey, 2008. Respiri 2011; 16: 659-65.
18. Guyton AC, Hall JE. Textbook of medical physiology. New Delhi: Reed Elsevier IPL, 2006, p525-526.
19. Guder G, Brenner S, Angermann CE, Erdt G, Held M, Sachs AP, Lammers JW, Zanen P, Hoes AW, Stork S, et al. “GOLD or lower limit of normal definition? A comparison with expert-based diagnosis of chronic obstructive pulmonary disease in a prospective cohort-study”. Respirol 2012; 13: 13.
20. Reilly KH, Gu D, Duan X, Wu X, Chen CS, Huang J, Kelly TN, Chen J, Liu X, Yu L, et al. Risk factors for chronic obstructive pulmonary disease mortality in Chinese adults. Am J Epidemiol 2008; 167: 998-1004.
21. Poulain M, Doucet M, Major GC, Drapeau V, Sériès F, Boulet LP, Tremblay A, Maltais F. The effect of obesity on chronic respiratory diseases: pathophysiology and therapeutic strategies. CMAJ 2006; 174: 1293-9.
22. Jordan JG Jr, Mann JR. Obesity and mortality in persons with obstructive lung disease using data from the NHANES III. South Med J 2010; 103: 323-30.
23. Bowen RE, Scaduto AA, Banuelos S. Decreased body mass index and restrictive lung disease in congenital thoracic scoliosis. J Pediatr Orthop
28. Lee EJ, Lee SY, In KH, Yoo SH, Choi EJ, Oh YW, Park S. Routine pulmonary function test can estimate the extent of tuberculous destroyed lung. ScientificWorldJournal 2012; 2012: 835031: doi: 10.1100/2012/835031.
29. Lam KB, Jiang CQ, Jordan RE, Miller MR, Zhang WS, Cheng KK, Lam TH, Adab P. Prior TB, smoking, and airflow obstruction: a cross-sectional analysis of the Guangzhou Biobank Cohort Study. Chest 2010; 137: 593-600.
30. Rhee CK, Yoo KH, Lee JH, Park MJ, Kim WI, Park YB, Hwang YI, Kim YS, Jung JY, Moon JY, et al. Clinical characteristics of patients with tuberculosis-destroyed lung. Int J Tuberc Lung Dis 2013; 17: 67-75.