Research Article

VBOC1(\(\alpha\)) Generalized Multidimensional Geolocation Modulation Waveforms

Ilir F. Progri

1Giftet Inc., 5 Euclid Ave. #3, Worcester, MA 01610, USA

Correspondence should be addressed to Ilir Progri; iprogri@giftet.com

Received December 8, 2013; Revised December 19, 21, 2013-January 7, 2014, March 12, 17, 2014, May 31-August 29, 2014
Presented December 4, 2014, Accepted August 21, 2015; Published November 1, 2015.

Scientific Editor-in-Chief/Editor: Ilir F. Progri

Copyright © 2015 Giftet Inc. All rights reserved. This work may not be translated or copied in whole or in part without written permission to the publisher (Giftet Inc., 5 Euclid Ave. #3, Worcester, MA 01610, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of the publication of trade names, trademarks, service marks, or similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

This paper presents the complete original definition of first generation Variable Binary Offset Carrier VBOC1(\(\alpha\)) generalized multidimensional geolocation modulation waveforms, to improve the standardization of the United States DoD GPS, European Galileo, Russian GLONASS, Chinese Compass, Indian IRNSS in the L-band (1-2 GHz), and the United Nations International Telecommunications Union (ITU) GNSS or geolocation waveforms in the S-band (2-4 GHz) and C-band (4-8 GHz).

In the paper it is argued that the selection of BOC(1,1) on the GPS L1 civil data code and BOC(10,5) (or the military code or M-Code) on both GPS L1 and L2 frequencies is entirely arbitrary because BOC modulation is a special case of VBOC1(\(\alpha\)) for \(\alpha = 0\) or \(\alpha = 1\); hence, all the current state-of-the-art GNSS waveforms exhibit sub-optimal signal design performance even at the end-user when generalized global objective functions are applied. VBOC1(\(\alpha\)) pure signal design or broad definition of generalized autocorrelation function (ACF) and power spectral density (PSD) offers a unique signal design methodology and provides the necessary framework for VBOC1(\(\alpha\)) ACF pure signal optimization to fill in substantial signal design gaps; hence, improving the GNSS signal design and standardization.

Index Terms—Pulse generation, pulse amplitude modulation, pulse width modulation, multidimensional sequences, signal design, signal analysis, generalized functions, time-frequency analysis, minimization methods, optimization methods.

1 Introduction

The main objective of this paper is to introduce the first generation VBOC1(\(\alpha\)) generalized multidimensional geolocation modulation waveforms so as to fill in substantial signal design [1]-[37] methodology gaps created over the years...
as a result of incomplete signal design methodologies.

In the past, signal design methodology was mainly motivated on performance metrics, such as sharper ACFs and user equipment performance measured by the signal ability to mitigate multipath, mitigate interference, jamming and product’s ability to produce a working system to mitigate multipath, mitigate interference, jamming and equipment performance measured by the signal ability to produce a working system. Therefore, for which (+1) signal amplitude voltage occurs is equal to the time (or duration) for which (−1) signal amplitude voltage occurs.

The achieved level of success is based mostly on user segment performance metrics and very little on improvements from the signal design methodology. Hence, from the system, design, user equipment engineering point of view we have achieved substantial outstanding milestones; one would argue that from the rigorous signal design methodology (asymmetric NRZ or As-NRZ) point of view we have achieved reasonably good intermediate steps; hence, the main objective of this paper.

The main issue here is not why S-NRZ BOC (or BOC) is better than BPSK due to inclusion of a sub-carrier frequency of the BOC waveform [11]-[23]. The issue, however, is: Are As-NRZ BOC (or VBOC) waveforms better than the BOC waveform regardless of the sub-carrier frequency [1]-[3]? and if there are: (1) Which VBOC waveforms are there [1]-[3]? and (2) What are the criteria to determine which VBOC waveform is the best [1]-[3]?

For example VBOC1(α), which is a type of As-NRZ BOC for 0 ≤ α ≤ 1, generalizes the transition from the BPSK waveform BPSK(t) = VBOC1(m,n,α=1)(t) to the current S-NRZ BOC modulation, used extensively in GPS L1 and L2 frequencies, because BOC(m,n)(t) = VBOC1(m,n,α=0)(t) ; however, in the current GNSS standard the choice α = 0 in the context of VBOC1(m,n,α)(t) is made entirely arbitrary [11]-[23]. Because in the interval from zero to one there are an infinite number of αs one cannot arbitrary select α = 0 as the best waveform and make BOC(m,n)(t) the standard for all GPS III, IV and other GNSS users without a single explanation whatsoever regardless of integer values of m and n; i.e., the sub-carrier frequency [11]-[23].

Initially, the signal design approach for pseudolite applications [7], [30], [31]-[37] was primarily driven by the mentality of achieving user performance metrics; however, it was not until very recently that various signal waveforms articulate new objectives of various signal design teams in the 21st century in Indoor Geolocation Systems—Theory and Applications [5], and Geolocation of RF Signals—Principles and Simulations [37].

Why is the above discussion so important? First, signal design and optimization parameter, α, exploits a particular asymmetry of the As-NRZ signal coding modulation in order to improve VBOC1(α) signal design and optimization. Second, the derivation of generalized ACFs and PSDs as a function of α and p provides for the first time the opportunity to understand the properties of all individual VBOC1(α) such as for all positive integer values of p without having to analyze all individual VBOC1(α) separately. Third, for the first time ever, optimization theorems show the consistency between the sum and mean-square criteria [1].

VBOC1(α) pure signal design or broad definition of generalized ACF and PSD offers a unique signal design methodology and provides the necessary framework for VBOC1(α) ACF pure signal optimization [1].

This paper is organized as follows: in Section II VBOCk(α1, α2, ..., αk) General Discussion. VBOC1(α) pure signal design is discussed in Section III. Section IV contains numerical results; Conclusion is provided in Section V along with a list of references.

2 \textit{VBOCk(α1, α2, ..., αk)} General Discussion

Generalized multidimensional geolocation modulation waveforms include: (a) first generation VBOC1(α) , VBOC2(α, 1 − α); (b) second generation VBOC2(α1, α2); and (c) kth generation VBOCk(α1, α2, ..., αk).

First Generation VBOC1(α). VBOC2(α, 1 − α) : In an effort to overcome major signal design shortcomings of the current BOC modulation waveforms and offer an opportunity to our readers to understand signal design “secrets” I invented the variable binary offset carrier modulation also known as VBOC; found in Chap. 7 of [5].

Because VBOC modulation is a generalized waveform it includes BOC modulation [11]-[14] as a special case. Moreover, there are two types of VBOC modulations: (1) VBOC1(α) and (2) VBOC2(α, 1 − α) [2] where α is known as the single dimensional signal design and optimization parameter [3]. We are briefly going to introduce these modulations here.

Second Generation 2(α1, α2) : The second generation VBOC2(α1, α2) is a generalized modulation of the first generation VBOC1(α) and VBOC2(α, 1 − α) or the first
3 \(VBOC1(\alpha) \) Pure Signal Design

Detailed discussion on \(VBOC1(\alpha) \) pure signal design includes: (1) \(VBOC1(\alpha) \) signal definition and discussion; and (2) \(VBOC1(\alpha) \) generalized ACF definition and discussion; and (3) \(VBOC1(\alpha) \) generalized PSD definition and discussion.

3.1 \(VBOC1(\alpha) \) Signal Definition and Discussion

Definition 1: \(VBOC1(m,n,\alpha)(t) \) waveform is a generalized, periodic function of the \(BOC(m,n)(t) \) waveform with period \(2T_s \), known as the subcarrier period, for all values of \(t \rightarrow -\infty < t \rightarrow \infty \).

\[
VBOC1_{(m,n,\alpha)}(t) = VBOC1_{(m,n,\alpha)}(t \pm 2T_s), \quad (1)
\]

and the relation of integers \(m, n \) is given by

\[
2mT_s = nT_c, \quad (2)
\]

where \(T_c \) is the defined as the chipping period.

Definition 2: One sub-carrier period of \(VBOC1_{(m,n,\alpha)}(t) \) is the superposition of two pulses: a rising pulse and a falling pulse with amplitude/pulse widths, \(+1/w_r\) and \(-1/w_f\) respectively, or a falling pulse and a rising pulse amplitude/pulse widths \(-1/w_f\) and \(+1/w_r\) respectively that satisfy the following

\[
w_r = T_s (1 \pm \alpha) = \frac{nT_c (1 \pm \alpha)}{2m} = \frac{T_c (1 \pm \alpha)}{2p}. \quad (3a)
\]

\[
w_f = T_s (1 \mp \alpha) = \frac{nT_c (1 \mp \alpha)}{2m} = \frac{T_c (1 \mp \alpha)}{2p}, \quad (3b)
\]

\[
VBOC1_{(m,n,\alpha)}(t) = \sum_{q=-\infty}^{\infty} \left[p_{w_r}(t_1, w_r) - p_{w_f}(t_2, w_f)\right] \quad (4)
\]

where

\[
t_1 = t - 0.5w_r - qT_s, \quad (5a)
\]

\[
t_2 = t - 0.5w_f - w_r - qT_s, \quad (5b)
\]

and \(p_{w_r}(t - t_0, w) \) is a unit rectangular pulse function with width \(w \) centered at \(t_0 \) with amplitude \(+1\).

Although, definitions 1 and 2 completely define the waveform \(VBOC1_{(m,n,\alpha)}(t) \); however, the acceptable range of values of \(\alpha \) can be derived from the following theorem.

Theorem 1: Prove that \(\alpha \) cannot be smaller than zero and greater than one; i.e., based on Definitions 1 and 2, the only acceptable range of \(\alpha \) is given by

\[
0 \leq \alpha \leq 1, \quad (6)
\]

The proof of theorem 1 is straightforward. Since, based on definitions 1 and 2 the following holds

\[
w_r + w_f = 2T_s = \frac{nT_c}{m} = \frac{T_c}{p}. \quad (7a)
\]

\[
w_f = T_s (1 + \alpha) = \frac{T_c (1 + \alpha)}{2p}. \quad (7b)
\]

Hence, we can prove that \(\alpha \) cannot be smaller than zero or greater than one in two different ways as follows

\[
0 \leq w_r \leq T_s \quad \text{or} \quad T_s \leq w_f \leq 2T_s \quad (8)
\]

Either solution of (8) leads to the desired range of acceptable values of \(\alpha \) (6).

Corollary 1: \(BOC_{(m,n)}(t) \) is simply \(VBOC1_{(m,n,\alpha)}(t) \) for \(\alpha = 0 \).

Corollary 2: \(BPSK_\theta(t) \) (or \(BOC_{(1,1/2)}(t) \): the basic or baseline waveform) is simply \(VBOC1_{(m,n,\alpha)}(t) \) or \(\alpha = 1 \).

Even though we have defined the \(VBOC1_{(m,n,\alpha)}(t) \) signal waveform we want to understand the properties of the signal with itself for values of \(0 \leq \tau \leq T \) with \(T \) being the observation interval. One means of achieving this by correlating the \(VBOC1_{(m,n,\alpha)}(t) \) signal waveform with itself; hence, the definition of ACF, \(R_{VBOC1_{(m,n,\alpha)}(t)} \).

This concludes \(VBOC1(\alpha) \) signal definition and discussion; next we continue with \(VBOC1(\alpha) \) generalized ACF definition and discussion.

\[\text{Footnote:} \quad \text{For ease of analysis we assume + for } w_r \text{ and – for } w_f.\]
3.2 VBOC1(α) Generalized ACF Definition and Discussion

Definition 3: The ACF of $VBOC_{(m,n,α)}(t)$ or $R_{VBOC_{(m,n,α)}}(τ,T)$ with the variable coefficient $0 ≤ α ≤ 1$ for all values of $τ$; $t_0 - T ≤ τ ≤ t_0 + T$, t_0 any arbitrary reference time, is given by

$$R_{VBOC_{(m,n,α)}}(τ,T,t_0) = \frac{v(τ)v(t_0)}{τ}, \quad (9)$$

or in integral form

$$R_{VBOC_{(m,n,α)}}(τ,T,t_0) = \frac{\int_{t_0}^{t_0+T} v(τ)v(τ+τ)dτ}{T}, \quad (10)$$

$$v(τ) = VBOC_{(m,n,α)}(τ). \quad (11)$$

There are a couple of things that we should understand about the ACF, $R_{VBOC_{(m,n,α)}}(τ,T,t_0)$, with respect to $τ = 0$ and $T = ∞$. Hence, the following theorem holds.

Theorem 2: Show that $R_{VBOC_{(m,n,α)}}(τ,T,t_0)$ has the maximum value for $(τ = 0, T < ∞)$; and the minimum value for $(τ = ∞, T < ∞)$ or $(τ = ∞, T → ∞)$; i.e.,

$$R_{VBOC_{(m,n,α)}}(τ = 0, T < ∞, t_0 < ∞) = \max, \quad (12)$$

$$R_{VBOC_{(m,n,α)}}(τ → ∞, T < ∞, t_0 < ∞) = 0, \quad (13)$$

$$R_{VBOC_{(m,n,α)}}(τ < ∞, T → ∞, t_0 < ∞) = 0, \quad (14)$$

$$R_{VBOC_{(m,n,α)}}(τ → ∞, T → ∞, t_0 < ∞) = 0. \quad (15)$$

The proof of theorem 2 is straightforward. First, based on the following inequality

$$\int_{t_0}^{t_0+T} v(τ)v(τ+τ)dτ ≤ \int_{t_0}^{t_0+T} |v(τ)|^2 dt. \quad (16)$$

we obtain (12). The proof of (13), (14), and (15) are pretty straightforward also. When $T < ∞$ we have $R_{VBOC_{(m,n,α)}}(τ,T,t_0) = 0$ for $|τ| ≥ T$ hence (13). Moreover, when $T → ∞$ then (14) and (15) hold; i.e., $R_{VBOC_{(m,n,α)}}(τ < ∞, T → ∞, t_0) → 0$ and $R_{VBOC_{(m,n,α)}}(τ → ∞, T → ∞, t_0) → 0$ just because $\frac{1}{T} → 0$.

The reader can recognize the two most important values of the ACF: (a) max according to (12); (b) and zero according to (13), (14), and (15).

Theorem 3: Show that $R_{VBOC_{(m,n,α)}}(τ,T,t_0)$ is in general not periodic function of t_0 for any values of $(τ, T)$

$$R_{VBOC_{(m,n,α)}}(τ,T,t_0) ≠ R_{VBOC_{(m,n,α)}}(τ,T,t_0 + T). \quad (17)$$

$$T ≠ nT_c = 2mT_c, \quad m, n \text{ integers.} \quad (17a)$$

It is; however, periodic function of $(τ, T)$ only when

$$R_{VBOC_{(m,n,α)}}(τ,T,t_0) = R_{VBOC_{(m,n,α)}}(τ,T,t_0 + T), \quad (18)$$

$$T = nT_c = 2mT_c, \quad m, n \text{ integers.} \quad (18a)$$

moreover, show that when $T = nT_c = 2mT_c$ is only a special case of the definition of the ACF, $R_{VBOC_{(m,n,α)}}(τ,T,t_0)$ corresponding to the observation interval $t_0 ≤ τ ≤ t_0 + nT_c$.

The proof of theorem 3 is straightforward. Based on definitions 3 we can express T as follows

$$T = 2mT_c + T_ε, \quad 0 ≤ T_ε < nT_c \quad (18b)$$

Based on (18b) and (17), (10) can be written as

$$R_{VBOC_{(m,n,α)}}(τ,T,t_0) = \frac{\int_{t_0}^{t_0+2mT_c} v(τ)v(τ+τ)dτ}{2mT_c}. \quad (19)$$

Since, $v(τ)$ is in general not periodic for values of $0 ≤ τ < 2mT_c$; hence, $R_{VBOC_{(m,n,α)}}(τ,T,t_0)$ is in general not periodic if $T_ε > 0$; or $R_{VBOC_{(m,n,α)}}(τ,T,t_0)$ is periodic only when $T = nT_c$.

Corollary 3: $R_{VBOC_{(m,n,α)}}(τ,T,t_0)$ is periodic with period $nT_c = 2mT_c$ corresponding to the observation interval $t_0 ≤ τ ≤ t_0 + T_ε$ and in fact $R_{VBOC_{(m,n,α)}}(τ)$ is only one period of $ACF \ R_{VBOC_{(m,n,α)}}(τ,T,t_0)$ when

$$R_{VBOC_{(m,n,α)}}(τ) = \frac{nT_c}{nT_c} v(τ)v(τ+τ)dτ. \quad (20a)$$

which is the definition of the ACF whose shape we are most familiar with and it has the largest autocorrelation peak.

Corollary 4: The ACF of $VBOC_{(m,n,α)}(t)$ or $R_{VBOC_{(m,n,α)}}(t,T,t_0)$ is in general an even function with respect to $τ$ with the variable coefficient $0 ≤ α ≤ 1$ for all values of $τ; -∞ < τ < ∞$; i.e.,

$$R_{VBOC_{(m,n,α)}}(τ = -τ) = R_{VBOC_{(m,n,α)}}(τ). \quad (20b)$$

The closed from expression of the generalized ACF,

$$R_{VBOC_{(m=nn,n,n)}}(t, T, t_0), \quad \text{with respect to p}, \text{ is subject to theorem 4.}$$

Theorem 4: Show that, for values of $p = (1,2,3,4), R_{VBOC_{(m=nn,n,n)}}(t)$ is the generalized ACF with respect to p; i.e.,

(1) $R_{VBOC_{(m,n,α)}}(τ) = R_{VBOC_{(m=nn,n,n)}}(τ); \quad p = 1$; \quad (2)

$R_{VBOC_{(2n,n,n)}}(τ) = R_{VBOC_{(m=nn,n,n)}}(τ); \quad p = 2$; \quad (3)

$R_{VBOC_{(3n,n,n)}}(τ) = R_{VBOC_{(m=nn,n,n)}}(τ); \quad p = 3$; \quad (4)

$R_{VBOC_{(4n,n,n)}}(τ) = R_{VBOC_{(m=nn,n,n)}}(τ); \quad p = 4$; assuming that

$$τ_1(α) = \frac{τ_1(α - 1)}{2p}; \quad τ_2(α) = \frac{τ_2(α + 1)}{2p}; \quad τ_3 = \frac{τ_3}{2p}; \quad (21a)$$

$$τ_4(α) = \frac{τ_4(α - 1)}{2p}; \quad τ_5(α) = \frac{τ_5(α + 1)}{2p}; \quad τ_6 = \frac{2τ_6}{p}; \quad (21b)$$

$$τ_7(α) = \frac{τ_7(α - 1)}{2p}; \quad τ_8(α) = \frac{τ_8(α + 1)}{2p}; \quad τ_9 = \frac{3τ_9}{p}; \quad (21c)$$

$$τ_10(α) = \frac{τ_10(α - 1)}{2p}; \quad τ_11(α) = \frac{τ_11(α + 1)}{2p}; \quad τ_12 = \frac{4τ_12}{p}; \quad (21d)$$

$R_1(τ) = R_{VBOC_{(m=nn,n,n)}}(τ)$ is given by the expression below:
\[R_1(\tau) = \begin{cases} 1 - \frac{(4p-1)|\tau|}{T_c}, & |\tau| \leq \tau_{1(a)} \\ \frac{-1}{5} + \frac{1}{5} |\tau|, & \tau_{1(a)} \leq |\tau| \leq \tau_{2(a)} \\ \frac{-4p-3}{p} + \frac{4p-3}{p \cdot \tau_c}, & |\tau|, \tau_{2(a)} \leq |\tau| \leq \tau_3 \\ \frac{4p-20}{p} - \frac{4p-9}{p \cdot \tau_c}, & |\tau|, \tau_3 \leq |\tau| \leq \tau_{4(a)} \\ \frac{3p-6}{p} + \frac{3p-5}{p \cdot \tau_c}, & |\tau|, \tau_{4(a)} \leq |\tau| \leq \tau_{5(a)} \\ 0, & |\tau| \geq T_c \end{cases} \]

Equation (23), for \(p = 1 \), is the same as in Chap. 7 [5] and (78) in [6].

Second, we recognize that substituting \(p = 2 \) in (22) we get

\[R_1(\tau) = \begin{cases} 1 - \frac{(4p-1)|\tau|}{T_c}, & |\tau| \leq \tau_{1(a)} \\ \frac{-1}{5} + \frac{1}{5} |\tau|, & \tau_{1(a)} \leq |\tau| \leq \tau_{2(a)} \\ \frac{-4p-3}{p} + \frac{4p-3}{p \cdot \tau_c}, & |\tau|, \tau_{2(a)} \leq |\tau| \leq \tau_3 \\ \frac{4p-20}{p} - \frac{4p-9}{p \cdot \tau_c}, & |\tau|, \tau_3 \leq |\tau| \leq \tau_{4(a)} \\ \frac{3p-6}{p} + \frac{3p-5}{p \cdot \tau_c}, & |\tau|, \tau_{4(a)} \leq |\tau| \leq \tau_{5(a)} \\ 0, & |\tau| \geq T_c \end{cases} \]

Equation (24), for \(p = 2 \), is the same as in Chap. 7 [5] and (81) in [6].

Third, we recognize that that for up to values \(p = 3 \) in (22) we get

\[R_1(\tau) = \begin{cases} 1 - \frac{(4p-1)|\tau|}{T_c}, & |\tau| \leq \tau_{1(a)} \\ \frac{-1}{5} + \frac{1}{5} |\tau|, & \tau_{1(a)} \leq |\tau| \leq \tau_{2(a)} \\ \frac{-4p-3}{p} + \frac{4p-3}{p \cdot \tau_c}, & |\tau|, \tau_{2(a)} \leq |\tau| \leq \tau_3 \\ \frac{4p-20}{p} - \frac{4p-9}{p \cdot \tau_c}, & |\tau|, \tau_3 \leq |\tau| \leq \tau_{4(a)} \\ \frac{3p-6}{p} + \frac{3p-5}{p \cdot \tau_c}, & |\tau|, \tau_{4(a)} \leq |\tau| \leq \tau_{5(a)} \\ 0, & |\tau| \geq T_c \end{cases} \]

Equation (25), for \(p = 3 \), is the same as in Chap. 7 [5].

Equation (22), for \(p = 4 \), is the same as in Chap. 7 [5]. This completed the proof of theorem 4.

Corollary 5: From corollary 1 \(VBOC_{1,(m,n,\alpha=0)}(\tau) = BOC_{(m,n)}(\tau) \) and from theorem 4, the ACF \(R_{VBOC_{1,(m,n,\alpha=0)}}(\tau) = R_{BOC_{(m,n)}}(\tau) \) hence, prove that the generalized ACF with respect to \(p \); i.e., is: (1) \(R_{BOC_{(m,n)}}(\tau) = R_{VBOC_{1,(m,n,\alpha=0)}}(\tau) \); \(p = 1 \); (2) \(R_{BOC_{(2m,n)}}(\tau) = R_{VBOC_{1,(m,n,\alpha=0)}}(\tau) \); \(p = 2 \); (3) \(R_{BOC_{(3m,n)}}(\tau) = R_{VBOC_{1,(m,n,\alpha=0)}}(\tau) \); \(p = 3 \); (4) \(R_{BOC_{(4m,n)}}(\tau) = R_{VBOC_{1,(m,n,\alpha=0)}}(\tau) \); \(p = 4 \).
5: The equation (27), for $R_{V_{0}}^n$ is the same as in Chap. 7 [5] and (82) in [6].

Third, we recognize that substituting $p = 3$ in (26) we get

$$R_{BOC_{p_{1}n_{1}}}(r) = \left\{ \begin{array}{ll}
1 - \frac{(4p-1)|r|}{r_c} & |r| \leq \frac{T_c}{2p} = T_s \\
-\frac{3p-2}{r_c} + \frac{(4p-3)|r|}{r_c} & \frac{T_c}{2p} \leq |r| \leq \frac{T_c}{p} \\
-\frac{5p-6}{r_c} + \frac{(4p-5)|r|}{r_c} & \frac{T_c}{p} \leq |r| \leq \frac{3T_c}{2p} \\
-\frac{7p-12}{r_c} + \frac{(4p-7)|r|}{r_c} & \frac{3T_c}{2p} \leq |r| \leq \frac{2T_c}{p} \\
0 & |r| \geq T_c
\end{array} \right.$$ (28)

Equation (28), for $p = 2$, is the same as in Chap. 7 [5] and (82) in [6].

Proof of corollary 5: The proof of corollary 5 is straightforward.

First, we recognize that substituting $p = 1$ in (26) we get

$$R_{BOC_{p_{1}n_{1}}}(r) = \left\{ \begin{array}{ll}
1 - \frac{(4p-1)|r|}{r_c} & |r| \leq \frac{T_c}{2p} = T_s \\
-\frac{3p-2}{r_c} + \frac{(4p-3)|r|}{r_c} & \frac{T_c}{2p} \leq |r| \leq \frac{T_c}{p} \\
-\frac{5p-6}{r_c} + \frac{(4p-5)|r|}{r_c} & \frac{T_c}{p} \leq |r| \leq \frac{3T_c}{2p} \\
-\frac{7p-12}{r_c} + \frac{(4p-7)|r|}{r_c} & \frac{3T_c}{2p} \leq |r| \leq \frac{2T_c}{p} \\
0 & |r| \geq T_c
\end{array} \right.$$ (27)

Equation (27), for $p = 1$, is the same as in Chap. 7 [5] and (43) and (79) in [6].

Second, we recognize that substituting $p = 2$ in (26) we get

$$R_{BOC_{p_{1}n_{1}}}(r) = \left\{ \begin{array}{ll}
1 - \frac{(4p-1)|r|}{r_c} & |r| \leq \frac{T_c}{2p} = T_s \\
-\frac{3p-2}{r_c} + \frac{(4p-3)|r|}{r_c} & \frac{T_c}{2p} \leq |r| \leq \frac{T_c}{p} \\
-\frac{5p-6}{r_c} + \frac{(4p-5)|r|}{r_c} & \frac{T_c}{p} \leq |r| \leq \frac{3T_c}{2p} \\
-\frac{7p-12}{r_c} + \frac{(4p-7)|r|}{r_c} & \frac{3T_c}{2p} \leq |r| \leq \frac{2T_c}{p} \\
0 & |r| \geq T_c
\end{array} \right.$$ (28)

Equation (28), for $p = 2$, is the same as in Chap. 7 [5] and (82) in [6].

Third, we recognize that substituting $p = 3$ in (26) we get

$$R_{BOC_{p_{1}n_{1}}}(r) = \left\{ \begin{array}{ll}
1 - \frac{(4p-1)|r|}{r_c} & |r| \leq \frac{T_c}{2p} = T_s \\
-\frac{3p-2}{r_c} + \frac{(4p-3)|r|}{r_c} & \frac{T_c}{2p} \leq |r| \leq \frac{T_c}{p} \\
-\frac{5p-6}{r_c} + \frac{(4p-5)|r|}{r_c} & \frac{T_c}{p} \leq |r| \leq \frac{3T_c}{2p} \\
-\frac{7p-12}{r_c} + \frac{(4p-7)|r|}{r_c} & \frac{3T_c}{2p} \leq |r| \leq \frac{2T_c}{p} \\
0 & |r| \geq T_c
\end{array} \right.$$ (29)

Equation (29), for $p = 3$, is the same as in Chap. 7 [5].

Equation (26), for $p = 4$, is the same as in Chap. 7 [5]. This completed the proof of corollary 5.

Corollary 6: From corollary 2 $VBOC_{1(n,n,a_1)}(t) = BPSK_0(t)$ and from theorem 4, the ACF $R_{VBOC_{1(n,n,a_1)}(t)} = R_{BPSK_0}(t)$ hence, prove that the generalized ACF with respect to p; i.e., is

\(1\) $R_{BPSK_0}(t) = R_{VBOC_{1(n,n,a_1)}(t)}; p = 1$;

\(2\) $R_{BPSK_0}(t) = R_{VBOC_{1(n,n,a_1)}(t)}; p = 2$;

\(3\) $R_{BPSK_0}(t) = R_{VBOC_{1(n,n,a_1)}(t)}; p = 3$;

\(4\) $R_{BPSK_0}(t) = R_{VBOC_{1(n,n,a_1)}(t)}; p = 4$.
3.3 \textit{VBOC1(\(\alpha\))} Generalized PSD Definition and Discussion

\textbf{Definition 4:} The PSD of \(VBOC_{1(m,n,\alpha)}(t)\) or \(G_{VBOC_{1(m,n,\alpha)}}(f)\) with the variable coefficient \(0 \leq \alpha \leq 1\) for all values of \(f; \ -\infty < f < \infty\) is given by

\[G_{VBOC_{1(m,n,\alpha)}}(f, T) = \mathcal{F}\left\{ R_{VBOC_{1(m,n,\alpha)}}(\tau, T, t_0) \right\}, \quad \mathcal{F}\left\{ \frac{v(t)}{T} \right\} = \frac{v^2(\frac{t}{T})}{T} , \quad (31) \]

where \(\mathcal{F}(v(t))\) denotes the Fourier Transform (FT) of \(v(t)\); i.e.,

\[V(f) = \mathcal{F}\left\{ VBOC_{1(m,n,\alpha)}(t) \right\} = \mathcal{F}\left\{ v(t) \right\}. \quad (32) \]

Now that we have defined the PSD of \(VBOC_{1(m,n,\alpha)}(t)\) we formulate theorem 5 in the same manner as theorem 2.

\textbf{Theorem 5:} Show that \(G_{VBOC_{1(m,n,\alpha)}}(f, T)\) has the maximum value for \((f = \pm f_0 < \infty, T < \infty)\); and the minimum value for \((\tau = \infty, T < \infty)\) or \((\tau = \infty, T \rightarrow \infty)\); i.e.,

\[G_{VBOC_{1(m,n,\alpha)}}(f = \pm f_0 < \infty, T < \infty, f_0 < \infty) = \max, \quad (33) \]
\[G_{VBOC_{1(m,n,\alpha)}}(f \rightarrow \infty, T < \infty, f_0 < \infty) = 0, \quad (34) \]
\[G_{VBOC_{1(m,n,\alpha)}}(f \rightarrow \infty, T \rightarrow \infty, f_0 = 0) = 0, \quad (35) \]
\[G_{VBOC_{1(m,n,\alpha)}}(f \rightarrow \infty, T \rightarrow \infty, f_0 < \infty) = 0. \quad (36) \]

The proof of theorem 5 is straightforward and is very similar to the proof of theorem 2 so we leave it as an exercise to the reader.

\textbf{Corollary 7:} The PSD of \(VBOC_{1(m,n,\alpha)}(t)\); i.e., \(G_{VBOC_{1(m,n,\alpha)}}(f, T)\) is in general NOT periodic simply because \(V(f)\) is in general not periodic even if \(v(t)\) is periodic.

\textbf{Corollary 8:} The PSD of \(VBOC_{1(m,n,\alpha)}(t)\); i.e., \(G_{VBOC_{1(m,n,\alpha)}}(f, T)\) is always an even function of \(-\infty < f < \infty\); i.e., from (34) the following holds

\[G_{VBOC_{1(m,n,\alpha)}}(-f, T) = G_{VBOC_{1(m,n,\alpha)}}(f, T). \quad (37) \]

\textbf{Theorem 6:} Show that, for values of \(p = 1, 2, 3, 4\) \(G_{VBOC_{1(m,n,\alpha)}}(f)\) is the generalized ACF with respect to \(p\); i.e., (1) \(G_{VBOC_{1(m,n,\alpha)}}(f) = G_{VBOC_{1(m,n,\alpha)}}(f)\); \(p = 1\) \(; (2)\)
\(G_{VBOC_{1(m,n,\alpha)}}(f) = G_{VBOC_{1(m,n,\alpha)}}(f)\); \(p = 2\) \(; (3)\)
\(G_{VBOC_{1(m,n,\alpha)}}(f) = G_{VBOC_{1(m,n,\alpha)}}(f)\); \(p = 3\) \(; (4)\)
\(G_{VBOC_{1(m,n,\alpha)}}(f) = G_{VBOC_{1(m,n,\alpha)}}(f)\); \(p = 4\).

Find the generalized PSD of \(G_{VBOC_{1(m,n,\alpha)}}(f)\) given by

\[G_{VBOC_{1(m,n,\alpha)}}(f) = \left\{ \mathcal{F}\left\{ R_{VBOC_{1(m,n,\alpha)}}(\tau) \right\} \right\} = \frac{v(f)}{T} = \frac{v^2(f)}{T} , \quad (38) \]

or

\[G_{VBOC_{1(m,n,\alpha)}}(\omega) = 2 \int_{0}^{\infty} R_{VBOC_{1(m,n,\alpha)}}(\tau) \cos(\omega \tau)d\tau, \quad (39) \]

where \(R_{VBOC_{1(m,n,\alpha)}}(\tau)\) is given by (22), \(T = nT_c = 2mT_s\), \(m, n\) integers and \(\omega = 2\pi f\).

\textbf{Proof of theorem 6:} The proof of theorem 6 is straightforward and is very similar to the proof of theorem 4.

Hence, we compute the generalized PSD of \(VBOC_{1(m,n,\alpha)}(\omega)\), or \(G_{VBOC_{1(m,n,\alpha)}}(\omega)\), as a FT of the ACF such as

\[G_{VBOC_{1(m,n,\alpha)}}(\omega) = 2 \int_{0}^{\infty} R_{VBOC_{1(m,n,\alpha)}}(\tau) \cos(\omega \tau)d\tau, \quad (40) \]

where \(t_i\) and \(r_{i,1}(\omega)\) are given below in the recall of \(R_{VBOC_{1(m,n,\alpha)}}(\tau)\) given by (22).

As we can see from (40) and (22) that the computation of \(G_{VBOC_{1(m,n,\alpha)}}(\omega)\) is in general a laborious process because it involves the computation of twelve integrals to obtain the generalized expression of \(G_{VBOC_{1(m,n,\alpha)}}(\omega)\).

Let us provide the details for obtaining the twelve integrals that lead to the generalized expression of \(G_{VBOC_{1(m,n,\alpha)}}(\omega)\) given by (40) by considering the following integral:

\[g_{i,1}(\omega) = \int_{t_{i-1}}^{t_{i}} r_{i,1}(\tau) \cos(\omega \tau)d\tau, \quad (41) \]

where \(r_{i,1}(\omega)\) is given by

\[r_{i,1}(\omega) = a_i(\omega) + b_i(\omega) \quad \tau \quad \text{given in (22).} \]

Substituting (42) into (41) the following is obtained:

\[g_{i,1}(\omega) = \int_{t_{i-1}}^{t_{i}} \cos(\omega \tau)d\tau + \frac{\sin(\omega t_i) - \sin(\omega t_{i-1})}{\omega} \quad \omega \quad \text{or} \quad (43) \]

In order to compute (43) we compute two integrals \(q_{a}(\tau, t_{i-1}, \omega)\) as a direct integral as follows:

\[q_{a}(\tau, t_{i-1}, \omega) = \int_{t_{i-1}}^{t_{i}} \cos(\omega \tau)d\tau = \frac{\sin(\omega t_i) - \sin(\omega t_{i-1})}{\omega} \quad \omega \quad \text{or} \quad (44) \]

and \(q_{b}(\tau, t_{i-1}, \omega)\) can be computed using integration by parts

\[q_{b}(\tau, t_{i-1}, \omega) = \int_{t_{i-1}}^{t_{i}} \cos(\omega \tau)d\tau = \frac{\cos(\omega t_i) - \cos(\omega t_{i-1})}{\omega^2} \quad \omega \quad \text{or} \quad (45) \]

Substituting (45) and (44) into (43) we obtain the detailed expression of \(g_{i,1}(\omega)\) as follows:

\[g_{i,1}(\omega) = \int_{t_{i-1}}^{t_{i}} \frac{\cos(\omega \tau)}{\omega^2} + \frac{\sin(\omega t_i) - \sin(\omega t_{i-1})}{\omega} \quad \omega \quad \text{or} \quad (46) \]

or
Finally, substituting (47) into (40) we obtain the final expression for generalized PSD of $VBOC_{1(p,m,n,a)}$ or $G_{VBOC_{1(p,m,n,a)}}(\omega)$ as follows

$$
G_{VBOC_{1(p,m,n,a)}}(\omega) = 2\left(\sum_{i=1}^{2} G_{i_{1}(p,m,n,a)}(\omega) + \sum_{i=4}^{9} G_{i_{2}(p,m,n,a)}(\omega) + \sum_{i=10}^{12} G_{i_{3}(p,m,n,a)}(\omega) \right) \tag{48}
$$

The final expression of the generalized PSD of $G_{VBOC_{1(m=p,n,a)}}(f)$ as

$$
G_{VBOC_{1(p,m,n,a)}}(\omega) = 2(G_s + G_C), \tag{49}
$$

where

$$
G_s = \sum_{i=1}^{4} G_{i_{s}} \quad \text{and} \quad G_C = \sum_{i=1}^{4} G_{i_{c}}, \tag{50}
$$

and

$$
G_s = \frac{(p-1)\sin(\omega T_c)}{p} = 0, \tag{51}
$$

and (53).

First, for $p = 1$ from (52) and (53) we obtain

$$
G_{VBOC_{1(n,a)}}(\omega) = \frac{-2[\cos(\omega T_c(1-a)/2) + \cos(\omega T_c(1+a)/2)]}{\omega^2 T_c} + \frac{3}{2} \tag{54}
$$

Equation (54) is identical in Appendix A of Chap. 7 of [5].

Second, for $p = 2$ from (52) and (53) we obtain

$$
G_{VBOC_{1(2n,a)}}(\omega) = \frac{-6[\cos(\omega T_c(1-a)/2) + \cos(\omega T_c(1+a)/2)]}{\omega^2 T_c} + \frac{7}{4} \tag{55}
$$

Equation (55) is identical in Appendix A of Chap. 7 of [5].

Third, for $p = 3$ from (52) and (53) we obtain

$$
G_{VBOC_{1(3n,a)}}(\omega) = \frac{-10[\cos(\omega T_c(1-a)/2) + \cos(\omega T_c(1+a)/2)]}{\omega^2 T_c} + \frac{15}{8} \tag{56}
$$

Equation (56) is identical in Appendix A of Chap. 7 of [5].

Fourth and finally, for $p = 4$ from (52) and (53) we obtain

$$
G_{VBOC_{1(4n,a)}}(\omega) = \frac{-14[\cos(\omega T_c(1-a)/2) + \cos(\omega T_c(1+a)/2)]}{\omega^2 T_c} + \frac{23}{16} \tag{57}
$$

Equation (57) is identical in Appendix A of Chap. 7 of [5].

Equations (40) through (57) complete the proof of theorem 6.

Definition 4, theorems 5 and 6 and corollaries 7 and 8 are the most important definition, theorem and corollaries of $VBOC_{1(\alpha)}$ PSDs in general. This concludes $VBOC_{1(\alpha)}$ generalized PSD definition and discussion; next, we continue with $VBOC_{1(\alpha)}$ numerical results or examples.

4 Numerical, Theoretical Results

We discuss two examples: $VBOC_{1(1,1,a)}(t)$ and $VBOC_{1(2,1,a)}(t)$ because $VBOC_{1(1,1,a)}(t)$ is the generalized $BOC_{1(1,1)}(t) = VBOC_{1(1,1,a=0)}(t)$ on GPS L1C data signal [5]-[16] and $VBOC_{1(2,1,a)}(t)$ is the generalized $BOC_{1(2,1)}(t) = BOC_{1(0,5)}(t) = VBOC_{1(2,1,a=0)}(t)$ or the GPS military M-code [5]-[16] on both GPS L1 and L2 frequencies perhaps the two most important waveforms in the GNSS community at the
4.1 VBOC1(α) Examples

Corollary 9: From definition 1, \(VBOC_{1(1,α)}(t) \) is simply \(VBOC_{1(m=1,n=1,α)}(t) = VBOC_{1(m=1,n=1,α)}(t ± 2T_s) \), (58) and the relation between \(T_s \) and \(T_c \) is given by

\[
2T_s = T_c,
\]

hence,

\[
VBOC_{1(m=1,n=1,α)}(t) = VBOC_{1(m=1,n=1,α)}(t ± T_c), \quad (60)
\]

Corollary 10: From definition 2, \(VBOC_{1(1,α)}(t) \) is simply

\[
w_r = \frac{T_c(1-α)}{2}, \quad w_f = \frac{T_c(1+α)}{2},
\]

where

\[
t_1 = t - 0.5w_f - 2pT_e, \quad t = 0.5w_f - pT_e, \quad (64)
\]

\[
t_2 = t - 0.5w_f - w_r - 2pT_e, \quad t - 0.5w_f - w_r - pT_e, \quad (65)
\]

If we consider only one chipping period of \(VBOC_{1(1,α)}(t) \), i.e., for \(p = 0 \) we get

\[
VBOC_{1(1,α)}(t) = p_{w_r}(t_1, w_r) + p_{w_f}(t_2, w_f), \quad (66)
\]

\[
t_1 = t - 0.5w_f - 2T_s, \quad t = 0.5w_f - T_s, \quad (67)
\]

\[
t_2 = t - 0.5w_f - w_r - 2T_s, \quad t - 0.5w_f - w_r - T_s, \quad (68)
\]

Based on definition 3 we find the ACF for \(VBOC_{1(1,α)}(t) \), or \(R_{VBOC_{1(1,α)}}(τ) \) given by

\[
R_{VBOC_{1(1,α)}}(τ) = \begin{cases}
1 - \frac{3|τ|}{T_c}, & |τ| ≤ \frac{T_c}{2} \\
1 - \frac{|τ|}{T_c}, \quad \frac{T_c(1-α)}{2} ≤ |τ| ≤ \frac{T_c(1+α)}{2}, & (69) \\
1 - \frac{|τ|}{T_c}, \quad \frac{T_c(1+α)}{2} ≤ |τ| ≤ T_c \\
0, & |τ| ≥ T_c
\end{cases}
\]

Because \(R_{VBOC_{1(1,α)}}(τ) \) is a special case of \(R_{VBOC_{1(n,n,α)}}(τ) \) it is easy to see that it satisfied all conditions of theorems 5 and 6.

Corollary 11: Prove that the ACF of \(VBOC_{1(1,α)}(t) \) given by (69) will result in the \(BOC_{1(1)}(t) \) for \(α = 0 \) as indicated in definition 1 and \(BOC_{1(1/2)}(t) \) for \(α = 1 \) as indicated in definition 2.

Proof of corollary 11: The proof of corollary 11 is straightforward. First, we substitute values of \(α = 0 \) in (69) and we get \(R_{VBOC_{1(n,n,α=0)}}(τ) = R_{BOC_{1(n,n)}}(τ) \) as indicated in corollary 1 (definition 1 of \(VBOC_{1(1,α)}(t) \) in Appendix A of Chap. 7 of [5]) as shown in Fig. 1 and Figs. 41 and 89 in [6].
Second, we substitute values of $\alpha = 1$ in (72) and we get $R_{VBOC(2n,n,\alpha=1)}(\tau) = R_{BOC(2n,n)}(\tau) = R_{BPSS}(\tau)$ as indicated in corollary 2 (definition 2 of $VBOC(2,1,\alpha)$ in Appendix A of Chap. 7 of [5]) as follows,

$$R_{VBOC(2n,n,\alpha=1)}(\tau) = \begin{cases} 1 - \frac{|\tau|}{T_c} , & 0 \leq |\tau| \leq T_c \\ 0 , & |\tau| \geq T_c \end{cases}.$$ (74)

Equations (73) and (74) complete the proof of corollary 12.

Corollary 13: From theorem 6 (54) the PSD of $VBOC(1,1,\alpha)(t)$ or $G_{VBOC(1,1,\alpha)}(\omega)$ is given by

$$G_{VBOC(1,1,\alpha)}(\omega) = \frac{4}{\omega^2T_c} \tan^2\left(\frac{\omega T_c}{2}\right).$$ (75)

Proof of corollary 13: The proof of corollary 13 is straightforward. After some simplifications of (75) and $\alpha = 0$ if we substitute $\omega = 2\pi f$ it can be shown that

$$G_{VBOC(1,1,\alpha=0)}(f) = \frac{T_s \sin^2(fT_c) \tan^2\left(\frac{\pi T_c}{2}\right)}{T_s} = G_{BOC(1,1)}(f).$$ (76)

as indicated in (corollary 1) as depicted in Fig. 2 and Figs. 42 and 90 of [6], also after some simplifications of (75) and $\alpha = 1$ we obtain

$$G_{VBOC(1,1,\alpha=1)}(f) = T_s \sin^2(fT_c) = G_{BPSS}(f).$$ (77)

as indicated in (corollary 2) as depicted in Figs. 6, 24, and 30 of [6].

From theorem 6 (55) the PSD of $VBOC(2,1,\alpha)(t)$ or $G_{VBOC(2,1,\alpha)}(\omega)$ is given by

$$G_{VBOC(2,1,\alpha)}(\omega) = \frac{16 - 8 \cos(\omega T_c) - 4 \cos(2\omega T_c) + 2 \cos(\omega T_c)}{\omega^2 T_c}.$$ (78)

After some simplifications of (78) and $\alpha = 0$ it can be shown that

$$G_{VBOC(2,1,\alpha=0)}(\omega) = \frac{4 \tan^2\left(\frac{\omega T_c}{2}\right) \sin^2\left(\frac{\omega T_c}{2}\right)}{\omega^2 T_c}.$$ (79)

as indicated in (corollary 1) as depicted in Fig. 2 and Figs. 42 and 90 of [6], also after some simplifications of (79) and $\alpha = 1$ we obtain

$$G_{VBOC(2,1,\alpha=1)}(f) = T_s \sin^2(fT_c) = G_{BPSS}(f).$$ (80)

as indicated in (corollary 2) and if we substitute $\omega = 2\pi f$ as depicted in Figs. 6, 24, and 30 of [6].

Equations (76) through (80) complete the proof of corollary 13.

In Fig. 1 the ACF of $VBOC(1,1,\alpha=0.5)(t)$ or $r_{VBOC(1,1,\alpha=0.5)}(\tau)$ is shown with solid green has lower peaks than the ACF of $BOC(1,1)(t)$ or $r_{BOC(1,1)}(\tau)$ in dotted red; hence, $VBOC(1,1,\alpha=0.5)(t)$ should offer better interference protection than $BOC(1,1)(t)$ or the current GPS L1 data-code. In Fig. 1 also the ACF of $VBOC(2,1,\alpha=0.5)(t)$ or $r_{VBOC(2,1,\alpha=0.5)}(\tau)$ is illustrated with solid green has lower peaks than the ACF of $BOC(2,1)(t)$ or $r_{BOC(2,1)}(\tau)$ in dotted red; hence, $VBOC(2,1,\alpha=0.5)(t)$ should offer better interference protection than $BOC(2,1)(t)$ or GPS M-code.

Similarly, in Fig. 2 the PSD of $VBOC(1,1,\alpha=0.5)(t)$ or $G_{VBOC(1,1,\alpha=0.5)}(f)$ is depicted with solid green is quasi-flatter and wider than the PSD of $BOC(1,1)(t)$ or $G_{BOC(1,1)}(f)$ in dotted red; hence, $VBOC(1,1,\alpha=0.5)(t)$ should offer better interference protection than $BOC(1,1)(t)$ or the current GPS III L1 data-code. In Fig. 2 also the PSD of $VBOC(2,1,\alpha=0.5)(t)$ or $G_{VBOC(2,1,\alpha=0.5)}(f)$ is displayed with solid green is quasi-flatter and wider than the PSD of $BOC(2,1)(t)$ or $G_{BOC(2,1)}(f)$ in dotted red; hence, $VBOC(2,1,\alpha=0.5)(t)$ should offer better interference protection than $BOC(2,1)(t)$ or GPS M-code.

Interference with the current GPS L1 BPSK is avoided by having PSD of $VBOC(1,2,\alpha=0.5)(t)$ orthogonal with the
PSD of GPS L1 BPSK signal [5].

This completes the detailed discussion on VBOC1(α) generalized ACFs and PSDs which contains four definitions, six theorems, and thirteen corollaries.

5 Conclusions

This paper is the first complete discussion on pure signal design for the first generation VBOC1(α) generalized multidimensional geolocation modulation waveforms.

Contrast the results of this paper with previous signal design methodologies, this paper offers for the first time a complete signal design methodology subject to both signal design and optimization parameter α and generalized signal design and optimization parameter p.

Signal parameters α and p not only define the waveform VBOC1(α) and generalized ACFs and PSDs but they also play a very important role in the optimization of VBOC1(α) generalized ACFs and PSDs. The computational technique offers a unique and original description of the generalized ACFs and PSDs of VBOC1(α) as functions of both α and p.

In the paper it is argued that the selection of BOC(1,1) on the GPS L1 civil data code and BOC(10,5) (or the military code or M-Code) on both GPS L1 and L2 frequencies is entirely arbitrary because BOC modulation is a special case of VBOC1(α) for α = 0 or α = 1; hence, all the current state-of-the-art GNSS waveforms exhibit sub-optimal signal design performance even at the end-user when generalized global objective functions are applied.

The above is based on a discussion of VBOC1(α) pure signal optimization in [1]: (1) the criteria for validating the closed form expression of the generalized ACF of VBOC1(α) known as a set of continuity theorems; and (2) the criteria for selecting the optimum 0 ≤ α ≤ 1 based on a set of criteria known as optimization theorems regardless of generalized parameter p (or subcarrier frequency).

6 Acknowledgement

This work was supported by Giflet Inc. executive office.

7 References

[1] I. Progri, “VBOC1(α) ACF pure signal optimization,” J. Geoloc. GeoInf. GeoInt., vol. 2015, pp. 32-43, Nov. 2015, DOI: 10.18610/JG3.2015.082102.
[2] I. Progri, “VBOC2(α,1−α) generalized multidimensional geolocation modulation waveforms,” J. Geoloc. GeoInf. GeoInt., vol. 2015, pp. 44-56, Nov. 2015, DOI: 10.18610/JG3.2015.082103.
[3] I. Progri, “VBOC2(α,1−α) ACF pure signal optimization,” J. Geoloc. GeoInf. GeoInt., vol. 2015, pp. 56-69, Nov. 2015, DOI: 10.18610/JG3.2015.082104.
[4] I. Progri, “VBOC1(α) and VBOC2(α,1−α) generalized multidimensional geolocation modulation waveforms—technical report,” J. Geoloc. GeoInf. GeoInt., vol. 2015, pp. 70-82, Nov. 2015, DOI: 10.18610/JG3.2015.082105.
[5] I. Progri, Indoor Geolocation Systems—Theory and Applications. Vol. I, 1st ed., New York, NY: Springer Science & Business Media (SBM), LLC, ~800 pp., ~2015 (not yet available in print).
[6] I. Progri, “On generalized multi-dimensional geolocation modulation waveforms,” in Proc. IEEE/ION-PLANS 2012, Myrtle Beach, SC, pp. 919-951, Apr. 2012.
[7] I. Progri, M.C. Bromberg, W.R. Michalson, and J. Wang, “A theoretical survey of the spreading modulation of the new GPS signals (L1C, L2C, and L5),” in Proc. ION-NTM 2007, San Diego, CA, pp. 561-569, Jan. 2007.
[8] S.N. Kirillov, V.M. Berdnikov, “Multi-criteria synthesis of signals from satellite navigation systems,” Herald Ryazan State Radio Engineering University (RSREU), vol. 30, no. 4, 6 pp., 2009.
[9] M.K. Yarlykov, “Correlation functions of single symbols of meander signals in new-generation satellite radio navigation systems,” J. Commun. Tech. Elect., vol. 54, no. 8, pp. 912-924, Aug. 2009.
[10] V.M. Berdnikov and S.N. Kirillov, “The Analysis of the opportunity of definition of the kind and parameters modulations of navigation signals on the basis of the autocorrelation function,” Herald Ryazan State Radio Engineering University (RSREU), New Information Technologies in Scientific Researches and Information, XV All-RUSSIA scientific and Technical Conference of Students, Young Scientists and Experts, Ryazan, pp. 130-132, 2010. (in Russian)
[11] J.W. Betz, “Binary offset carrier modulation for radionavigation,” *Navigation*, vol. 48, no. 4, pp. 227-246, winter 2001-2002.

[12] J. Betz, C.R. Cahn, P.A. Dafesh, C.J. Hegarty, K.W. Hudnut, A.J. Jones, R. Keegan, K. Kovach, L.S. Lenahan, H.H. Ma, J.J. Rushanan, T.A. Stansell, C.C. Wang, and S.K. Yi, “L1C signal design options,” in *Proc. 2006 Nat. Tech. Mtg. ION*, Monterey, CA, pp. 685-697, Jan. 2006.

[13] G.W. Hein, J.-A. Avila-Rodriguez, S. Wallner, A.R. Pratt, J. Owen, J.-L. Issler, J.W. Betz, C.J. Hegarty, S. Lenahan, J.J. Rushanan, A.L. Kraay, T.A. Stansell, “MBOC: the new optimized spreading modulation recommended for GALILEO L1 OS and GPS L1C,” in *Proc. IEEE/ION PLANS 2006*, San Diego, CA, pp. 883-892, Apr. 2006.

[14] J. Betz, M.A. Blanco, C.R. Cahn, P.A. Dafesh, C.J. Hegarty, K.W. Hudnut, V. Kasemset, R. Keegan, K. Kovach, L.S. Lenahan, H.H. Ma, J.J. Rushanan, D. Sklar, T.A. Stansell, C.C. Wang, and S.K. Yi, “Description of the L1C signal,” in *Proc. 19th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2006)*, Fort Worth, TX, pp. 2080-2091, Sep. 2006.

[15] T. Stansell, K.W. Hudnut, and R.G. Keegan, “GPS L1C: enhanced performance, receiver design suggestions, and key contributions,” in *Proc. 23rd Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2010)*, Portland, OR, pp. 2860-2873, Sep. 2010.

[16] J.-A. Avila-Rodriguez, S. Wallner, G.W. Hein, B. Eissfeller, M. Insigler, and J.-L. Issler, “A vision on new frequencies, signals and concepts for future GNSS systems,” in *Proc. 20th Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2007)*, Fort Worth, TX, pp. 517-534, Sept. 2007.

[17] Anon., “GLONASS Navigational radio-signal in bands L1, L2,” Russian Institute of Space Device Engineering, Moscow, Russia, 2008.

[18] J.A. Avila-Rodriguez, “On generalized signal waveforms for satellite navigation,” Ph.D. Dissertation, University FAF Munich, Neubiberg, Germany, 408 pp., June 2008.

[19] S. Revnivykh, “GLONASS status and progress,” in *Proc. 23rd Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2010)*, Portland, OR, pp. 609-633, Sep. 2010.

[20] J.-A. Avila-Rodriguez, G.W. Hein, S. Wallner, J.-L. Issler, L. Ries, L. Lestarquit, A. de Latour, J. Godet, F. Bastide, T. Pratt, and J. Owen, “The MBOC modulation: the final touch to the Galileo frequency and signal plan,” *Navigation*, vol. 55, no. 1, pp. 14-28, spring 2008.

[21] T. Pratt, “Frequency diversity or no frequency diversity,” *Proc. 23rd Int. Tech. Mtg. Sat. Div. ION (ION GNSS 2010)*, Portland, OR, pp. 3021-3040, Sep. 2010.

[22] J.-A. Avila-Rodriguez, S. Wallner, J.-H. Won, B. Eissfeller, A. Schmitz-Peiffer, J.-J. Floch, E. Colzi, and J.-L. Gerner, “Study on a Galileo signal and service plan for C-band,” in *Proc. 21st Inter. Tech. Mtg. Sat. Div. ION (ION GNSS 2008)*, Savannah, GA, pp. 2515-2529, Sep. 2008.

[23] F.M.G. Sousa, F.D. Nunes “New expressions for the autocorrelation function of BOC GNSS signals,” *Navigation*, vol. 60, no. 1, pp. 1-9, spring 2013.

[24] S.M. Aji, R.J. McEliece, “The generalized distributive law,” *IEEE Trans. Infor. Theory*, vol. 46, no. 2, pp. 325-343, Mar. 2000.

[25] I. Progri, “GPS L5 signal acquisition and tracking under unintentional interference or jamming,” in *Proc. ION-NTM 2006*, Monterey, CA, pp. 112-121 Jan. 2006.

[26] M.C. Bromberg, I. Progri, “An anti-jam GPS receiver, using Markov Chain, Monte Carlo integration,” in *Proc. IEEE/ION PLANS 2006*, Coronado, CA, pp. 957-962, Apr. 2006.

[27] M.C. Bromberg, I. Progri, “Bayesian parameter estimation for time and frequency synchronization,” in *Proc. WTS 2005*, Pomona, CA, pp. 127-130, Apr. 2005.

[28] I. Progri, M.C. Bromberg, W.R. Michelson, “Maximum likelihood GPS parameter estimation,” *Navigation*, vol. 52, no. 4, pp. 229-238, winter 2005-2006.

[29] I. Progri, M.C. Bromberg, J. Wang, “Markov Chain, Monte Carlo global search and integration for Bayesian, GPS, parameter estimation,” *Navigation*, vol. 56, no. 3, pp. 195-204, fall 2009.

[30] W.R. Michelson, I. Progri, “Reconfigurable geolocation system,” US Patent 7,079,025, July 2006.

[31] I.F. Progri, “An assessment of indoor geolocation systems,” Ph.D. Dissertation, Worcester Polytechnic Institute, May 2003.

[32] I. Progri, J.M. Hill, W.R. Michelson, “An investigation of the pseudolite’s signal structure for indoor applications,” in *Proc. ION-AM 2001*, Albuquerque, NM, pp. 453-462, June 2001.

[33] I. Progri, W.R. Michelson, “The impact of proposed pseudolite’s signal structure on the receiver's phase and...
code error,” in Proc. ION-AM 2001, Albuquerque, NM, pp. 414-422, June 2001.

[34] I. Progri, W.R. Michalson, “An alternative approach to multipath and near-far problem for indoor geolocation systems,” in Proc. 14th Inter. Tech. Mtg. Sat. Div. ION (ION GPS 2001), Salt Lake City, UT, pp. 1434-1443, Sep. 2001.

[35] I. Progri, W.R. Michalson, J. Wang, M.C. Bromberg, R.J. Duckworth, “Requirements of a C-CDMA pseudolite indoor geolocation system,” in Proc. ION-AM 2007, Cambridge, MA, pp. 654-658, Apr. 2007.

[36] I. Progri, W.R. Michalson, J. Wang, M.C. Bromberg, “Indoor geolocation using FCDMA pseudolites: signal structure and performance analysis,” Navigation, vol. 54, no. 3, pp. 242-256, fall 2007.

[37] I. Progri, Geolocation of RF Signals—Principles and Simulations. 1st ed., New York, NY: Springer SBM, LLC, 330 pp., Jan. 2011, DOI: http://doi.org/10.1007/978-1-4419-7952-0.

\[^1\] The definition given here avoids that two possible signals are defined : one where the \(+1/w_r\) part is longer than the \(-1/w_f\) and one where the \(-1/w_f\) part is longer than the positive \(+1/w_r\); hence, avoiding allowing the parameter \(\alpha\) to take on values in the range \(-1 \leq \alpha \leq 1\); hence, reducing the complexity of continuity and optimization theorems by a factor of two.

\[^{ii}\] In general there are an infinite number of shapes of ACFs because \(T\) can be any arbitrary number; however, only one of them has the largest ACF peak the one for which \(T = nT_c\).