DEL PEZZO SURFACES OF DEGREE 2 AND JACOBIANS WITHOUT COMPLEX MULTIPLICATION

YU. G. ZARHIN

To my friend Sergei Vostokov

1. Notations and Statements

In a series of his articles [10, 12, 13, 15] the author constructed explicitly m-dimensional abelian varieties without non-trivial endomorphisms for every m > 1. This construction may be described as follows. Let K_a be an algebraic closure of a perfect field K with char(K) $\neq 2$. Let $n = 2m + 1$ or $2m + 2$. Let us choose an n-element set $R \in K_a$ that constitutes a Galois orbit over K and assume, in addition, that the Galois group of $K(R)$ over K is “big” say, coincides with full symmetric group S_n or the alternating group A_n. Let $f(x) \in K[x]$ be the irreducible polynomial of degree n, whose set of roots coincides with R. Let us consider the hyperelliptic curve C_f: $y^2 = f(x)$ over K_a and let $J(C_f)$ be its jacobian which is the m-dimensional abelian variety. Then the ring $\text{End}(J(C_f))$ of all K_a-endomorphisms of $J(C_f)$ coincides with \mathbb{Z} if either $n > 6$ or char(K) $\neq 3$.

The aim of this paper is to construct abelian threefolds without complex multiplication, using jacobians of non-hyperelliptic curves of genus 3. It is well-known that these curves are smooth plane quartics and closely related to Del Pezzo surfaces of degree 2. (We refer to [8, 6, 7, 2, 3, 4, 9] for geometric and arithmetic properties of Del Pezzo surfaces. In particular, relations between the degree 2 case and plane quartics are discussed in detail in [2, 3, 4]). On the other hand, Del Pezzo surfaces of degree 2 could be obtained by blowing up seven points on the projective plane \mathbb{P}^2 when these points are in general position, i.e., no three points lie on a one line, no six on a one conic ([6, §3], [2, Th. 1 on p. 27]).

In order to describe our construction, let us start with the projective plane \mathbb{P}^2 with homogeneous coordinates $(x : y : z)$. Let us consider a 7-element set $B \subset \mathbb{P}^2(K_a)$ of points in general position and assume that the absolute Galois group $\text{Gal}(K)$ of K permutes elements of B in such a way that B constitutes a Galois orbit. We write Q_B for the 6-dimensional \mathbb{F}_2-vector space of maps $\varphi : B \to \mathbb{F}_2$ with $\sum_{b \in B} \varphi(b) = 0$. The action of $\text{Gal}(K)$ on B provides Q_B with the natural structure of $\text{Gal}(K)$-module. Let G_B be the image of $\text{Gal}(K)$ in the group $\text{Perm}(B) \cong S_7$ of all permutations of B. Clearly, Q_B carries a natural structure of faithful $\text{Perm}(B)$-module and the structure homomorphism $\text{Gal}(K) \to \text{Aut}(Q_B)$ coincides with the composition of $\text{Gal}(K) \to G_B$ and $G_B \subset \text{Perm}(B) \to \text{Aut}(Q_B)$.

Let H_B be the K_a-vector space of homogeneous cubic forms in x, y, z that vanish on B. It follows from proposition 4.3 and corollary 4.4(i) in Ch. 5, §4 of [5] that H_B is 3-dimensional and B coincides with the set of common zeros of elements of H_B. Since B is $\text{Gal}(K)$-invariant, H_B is defined over K, i.e., it has a K_a-basis u, v, w such that the forms u, v, w have coefficients in K.
We write $V(B)$ for the Del Pezzo surface of degree 2 obtained by blowing up B. Then $V(B)$ is a smooth projective surface that is defined over K (see Remark 19.5 on pp. 89–90 of [8]). We write
definition

$$g_B : V(B) \to \mathbb{P}^2$$

for the corresponding birational map defined over K. Recall that for each $b \in B$ its preimage E_b is a a smooth projective rational curve with self-intersection number -1. By definition, g_B establishes a K-biregular isomorphism between $V(B) \setminus \bigcup_{b \in B} E_b$ and $\mathbb{P}^2 \setminus B$. Clearly,

$$\sigma(E_b) = E_{\sigma(b)} \quad \forall \ b \in B, \sigma \in \text{Gal}(K).$$

Let $\Omega_{V(B)}$ be the canonical (invertible) sheaf on $V(B)$. Let us consider the line $L : z = 0$ as a divisor in \mathbb{P}^2. Clearly, B does not meet the K-line L; otherwise, the whole $\text{Gal}(K)$-orbit B lies in L which is not true, since no 3 points of B lie on a one line. It is known [8, Sect. 25.1 and 25.1.2 on pp. 126–127] that

$$K_{V(B)} := -3g_B^*(L) + \sum_{b \in B} E_b = -g_B^*(3L) + \sum_{b \in B} E_b$$

is a canonical divisor on $V(B)$. Clearly, for each form $q \in H_B$ the rational function $\frac{1}{z} \text{ div}(\frac{a}{z}) + 3L \geq 0$, i.e., $\frac{a}{z} \in \Gamma(\mathbb{P}^2, 3L)$. Also $\frac{1}{z}$ is defined and vanishes at every point of B. It follows easily that $\frac{a}{z}$ (viewed as rational function on $V(B)$) lies in $\Gamma(V(B), 3g_B^*(L) - \sum_{b \in B} E_b) = \Gamma(V(B), -K_{V(B)})$. Since $\Gamma(V(B), -K_{V(B)})$ is 3-dimensional [8, theorem 24.5 on p. 121],

$$\Gamma(V(B), -K_{V(B)}) = K_a \cdot \frac{u}{z^3} \oplus K_a \cdot \frac{v}{z^3} \oplus K_a \cdot \frac{w}{z^3}.$$

Using proposition 4.3 in [5, Ch. 5, §4], one may easily get a well-known fact that the sections of $\Gamma(V(B), -K_{V(B)})$ have no common zeros on $V(B)$. This gives us a regular anticanonical map

$$\pi : V(B) \xrightarrow{g_B} \mathbb{P}^2 \xrightarrow{(u:v:w)} \mathbb{P}^2$$

which is obviously defined over K. It is known that π is a regular double cover map, whose ramification curve is a smooth quartic

$$C_B \subset \mathbb{P}^2$$

(see [2, pp. 67–68], [3, Ch. 9]). Clearly, C_B is a genus 3 curve defined over K. Let $J(B)$ be the jacobian of C_B; clearly, it is a three-dimensional abelian variety defined over K. We write $\text{End}(J(B))$ for the ring of K_a-endomorphisms of $J(B)$.

The following assertion is based on Lemmas 1-2 on pp. 161–162 of [3].

Lemma 1.1. Let $J(B)_2$ be the kernel of multiplication by 2 in $J(B)(K_a)$. Then the Galois modules $J(B)_2$ and Q_B are canonically isomorphic.

Using Lemma [1,1] and results of [10,15], one may obtain the following statement.

Theorem 1.2. Let $B \subset \mathbb{P}^2(K_a)$ be a 7-element set of points in general position. Assume that $\text{Gal}(K)$ permutes elements of B and the image of $\text{Gal}(K)$ in $\text{Perm}(B) \cong S_7$ coincides either with the full symmetric group S_7 or with the alternating group A_7. Then $\text{End}(J(B)) = Z$.

This leads to a question: how to construct such B in general position? The next lemma provides us with desired construction.
Lemma 1.3. Let $f(t) \in K[t]$ be a separable irreducible degree 7 polynomial, whose
Galois group $\text{Gal}(f)$ is either S_7 or A_7. Let $\mathfrak{A}_f \subset K_a$ be the 7-element set of roots
of f. Then the 7-element set
\[B_f = \{ (\alpha^3 : \alpha : 1) \mid \alpha \in \mathfrak{A}_f \} \subset \mathbb{P}^2(K_a) \]
is in general position.

Clearly, $\text{Gal}(K)$ permutes transitively elements of B_f and the image of $\text{Gal}(K)$
in $\text{Perm}(B)$ coincides either with S_7 or with A_7; in particular, B_f constitutes a
Galois orbit. This implies the following statement.

Corollary 1.4. Let $f(t) \in K[t]$ be a separable irreducible degree 7 polynomial,
whose Galois group $\text{Gal}(f)$ is either S_7 or A_7. Then $\text{End}(J(B_f)) = \mathbb{Z}$.

2. Proofs

Proof of Lemma 1.3. Let $\text{Pic}(V(B))$ be the Picard group of $V(B)$ over K_a. It is
known [3 Sect. 25.1 and 25.1.2 on pp. 126–127] that $\text{Pic}(V(B))$ is a free commutative group of rank 8 provided with the natural structure of Galois module. More
precisely, it has canonical generators $l_0 = \text{the class of } g_B(L)$ and $\{l_b\}_{b \in B}$ where l_b
is the class of the exceptional curve E_b. Clearly, l_0 is Galois invariant and
\[\sigma(l_b) = l_{\sigma(b)} \quad \forall b \in B, \sigma \in \text{Gal}(K). \]
Clearly, the class of $K_{V(B)}$ equals $-3l_0 + \sum_{b \in B} l_b$ and obviously is Galois-invariant.
There is a non-degenerate Galois invariant symmetric intersection form
\[(,) : \text{Pic}(V(B)) \times \text{Pic}(V(B)) \to \mathbb{Z}. \]
In addition (ibid),
\[(l_0, l_0) = 1, (l_b, l_0) = 0, (l_b, l_b) = -1, (l_b, l_{b'}) = 0 \quad \forall b \neq b'. \]
Clearly, the orthogonal complement $\text{Pic}(V(B))_0$ of $K_{V(B)}$ in $\text{Pic}(V(B))$ coincides with
\[\{ a_0l_0 + \sum_{b \in B} a_bl_b \mid a_0, a_b \in \mathbb{Z}, -3a_0 + \sum_{b \in B} a_b = 0 \}; \]
it is a Galois-invariant pure free commutative subgroup of rank 7.

Notice that one may view C_B as a K-curve on $V(B)$ [3 p. 160]. Then the
inclusion map $C_B \subset V(B)$ induced the homomorphism of Galois modules
\[r : \text{Pic}(V(B)) \to \text{Pic}(C_B) \]
where $\text{Pic}(C_B)$ is the Picard group of C_B over K_a. Recall that $J(B)(K_a)$ is a Galois
submodule of $\text{Pic}(C_B)$ that consists of divisor classes of degree zero. In particular,
$J(B)_2$ coincides with the kernel $\text{Pic}(C_B)_2$ of multiplication by 2 in $\text{Pic}(C_B)$. It is
known (Lemma 1 on p. 161 of [3]) that
\[r(\text{Pic}(V(B))_0) \subset \text{Pic}(C_B)_2 = J(B)_2. \]
This gives rise to the homomorphism
\[\tilde{r} : \text{Pic}(C_B)_0/2\text{Pic}(C_B)_0 \to J(B)_2, \quad D + 2\text{Pic}(C_B)_0 \mapsto r(D) \]
of Galois modules. By Lemma 2 on pp. 161-162 of [3], the kernel of \(\tilde{r} \) is as follows. The intersection form on Pic(\(V(B) \)) defines by reduction modulo 2 a symmetric bilinear form

\[
\psi : \text{Pic}(V(B))/2\text{Pic}(V(B)) \times \text{Pic}(V(B))/2\text{Pic}(V(B)) \to \mathbb{Z}/2\mathbb{Z} = \mathbb{F}_2,
\]

\[
D + 2\text{Pic}(V(B)), D' + 2\text{Pic}(V(B)) \mapsto (D, D') + 2\mathbb{Z}
\]

and we write

\[
\psi_0 : \text{Pic}(V(B))_0/2\text{Pic}(V(B))_0 \times \text{Pic}(V(B))_0/2\text{Pic}(V(B))_0 \to \mathbb{F}_2
\]

for the restriction of \(\psi \) to Pic(\(V(B) \))_0. Then the kernel (radical) of \(\psi_0 \) coincides with ker(\(\tilde{r} \)). (The same Lemma also asserts that \(\tilde{r} \) is surjective.)

Let us describe explicitly the kernel of \(\psi_0 \). Since Pic(\(V(B) \))_0 is a pure subgroup of Pic(\(V(B) \)), we may view Pic(\(V(B) \))_0/2Pic(\(V(B) \))_0 as a 7-dimensional \(\mathbb{F}_2 \)-vector subspace (even Galois submodule) in Pic(\(V(B) \))/2Pic(\(V(B) \)). Let \(\tilde{l}_0 \) (resp. \(\tilde{l}_b \)) be the image of \(l_0 \) (resp. \(l_b \)) in Pic(\(V(B) \))/2Pic(\(V(B) \)). Then \(\{ \tilde{l}_0, \{ \tilde{l}_b \}_{b \in B} \} \) constitute an orthonormal (with respect to \(\psi \)) basis of the \(\mathbb{F}_2 \)-vector space Pic(\(V(B) \))/2Pic(\(V(B) \)). Clearly, \(\psi_0 \) is non-degenerate. It is also clear that

\[
\text{Pic}(V(B))_0/2\text{Pic}(V(B))_0 = \{ a_0\tilde{l}_0 + \sum_{b \in B} a_b\tilde{l}_b \mid a_0, a_b \in \mathbb{F}_2, a_0 + \sum a_b = 0 \}
\]

is the orthogonal complement of isotropic

\[
\tilde{v}_0 = \tilde{l}_0 + \sum_{b \in B} \tilde{l}_b
\]

in Pic(\(V(B) \))/2Pic(\(V(B) \)) with respect to \(\psi \). Notice that \(\tilde{v}_0 \) is Galois-invariant. The non-degeneracy of \(\psi \) implies that the kernel of \(\psi_0 \) is the Galois-invariant one-dimensional \(\mathbb{F}_2 \)-subspace generated by \(\tilde{v}_0 \).

This gives us the injective homomorphism

\[
(\text{Pic}(V(B))_0/2\text{Pic}(V(B))_0)/\mathbb{F}_2\tilde{v}_0 \hookrightarrow J(B)_2
\]

of Galois modules; dimension arguments imply that it is an isomorphism. So, in order to finish the proof, it suffices to construct a surjective homomorphism Pic(\(V(B) \))_0/2Pic(\(V(B) \))_0 \to Q_B of Galois modules, whose kernel coincides with \(\mathbb{F}_2\tilde{v}_0 \). In order to do that, let us consider the homomorphism

\[
\kappa : \text{Pic}(V(B))_0/2\text{Pic}(V(B))_0 \to Q_B
\]

that sends \(z = a_0\tilde{l}_0 + \sum_{b \in B} a_b\tilde{l}_b \) to the function \(\kappa(z) : b \mapsto a_b + a_0 \). Since

\[
a_0 + \sum_{b \in B} a_b = 0 \quad \text{and} \quad \#(B)a_0 = 7a_0 = a_0 \in \mathbb{F}_2,
\]

indeed we have \(\kappa(z) \in Q_B \). It is also clear that \(\kappa(z) \) is identically zero if and only if \(a_0 = a_b \forall b \), i.e. \(z = 0 \) or \(\tilde{v}_0 \). Clearly, \(\kappa \) is a surjective homomorphism of Galois modules and ker(\(\kappa \)) = \(\mathbb{F}_2\tilde{v}_0 \).

\(\square \)

Proof of Lemma 1.3: We will use a notation \((x : y : z) \) for homogeneous coordinates on \(\mathbb{P}^2 \). Suppose that here are three points of \(B_f \) that lie on a line \(ax + by + cz = 0 \). This means that there are distinct roots \(\alpha_1, \alpha_2, \alpha_3 \) of \(f \) and elements \(a, b, c \in K_a \) such that all \(a\alpha_i^2 + b\alpha_i + c = 0 \) and, at least, one of \(a, b, c \) does not vanish. It follows
that the polynomial \(at^3 + bt + c \in K_a[t] \) is not identically zero and has three distinct roots \(\alpha_1, \alpha_2, \alpha_3 \). This implies that \(a \neq 0 \) and
\[
 at^3 + bt + c = a(t - \alpha_1)(t - \alpha_2)(t - \alpha_3).
\]
It follows that \(\alpha_1 + \alpha_2 + \alpha_3 = 0 \). Let us denote the remaining roots of \(f \) by \(\alpha_4, \alpha_5, \alpha_6, \alpha_7 \). Clearly, \(\text{Gal}(K) \) acts 3-transitively on \(\mathfrak{R}_f \). This implies that there exists \(\sigma \in \text{Gal}(K) \) such that
\[
\sigma(\alpha_1) = \alpha_4, \sigma(\alpha_2) = \alpha_5, \sigma(\alpha_3) = \alpha_6
\]
and therefore \(\alpha_2 + \alpha_3 + \alpha_4 = \sigma(\alpha_2 + \alpha_3 + \alpha_1) = 0 \) and therefore \(\alpha_1 = \alpha_4 \) which is not the case. The obtained contradiction proves that no three points of \(B_f \) lie on a one line.

Suppose that six points of \(B_f \) lie on a one conic. Let
\[
 a_0 z^2 + a_1 yz + a_2 y^2 + a_3 xz + a_4 xy + a_6 x^2 = 0
\]
be an equation of the conic. Then not all \(a_i \) do vanish and there are six distinct roots \(\alpha_1, \cdots, \alpha_6 \) of \(f \) such that all \(a_6 \alpha_i^6 + \sum_{i=0}^{4} a_i \alpha_i^4 = 0 \). This implies that the polynomial \(a_6 t^6 + \sum_{i=0}^{4} a_i t^i \) is not identically zero and has 6 distinct roots \(\alpha_1, \cdots, \alpha_6 \).

It follows that \(a_6 \neq 0 \) and
\[
 a_6 t^6 + \sum_{i=0}^{4} a_i t^i = a_6 \prod_{i=1}^{6} (t - \alpha_i).
\]
This implies that \(\sum_{i=1}^{6} \alpha_i = 0 \). Since the sum of all roots of \(f \) lies in \(K \), the remaining seventh root of \(f \) lies in \(K \). This contradicts to the irreducibility of \(f \). The obtained contradiction proves that no six points of \(B_f \) lie on a one conic. \(\square \)

Lemma 2.1. Let \(B \subset \mathbb{P}^2(K_a) \) be a 7-element set of points in general position. Assume that \(\text{Gal}(K) \) permutes elements of \(B \) and the image of \(\text{Gal}(K) \) in \(\text{Perm}(B) \cong S_7 \) coincides either with the full symmetric group \(S_7 \) or with the alternating group \(A_7 \); in particular, \(B \) constitutes a Galois orbit. Then either \(\text{End}(J(B)) = \mathbb{Z} \) or \(\text{char}(K) > 0 \) and \(J(B) \) is a supersingular abelian variety.

Proof of Lemma 2.1. Recall that \(G_B \) is the image of \(\text{Gal}(K) \) in \(\text{Perm}(B) \). By assumption, \(G_B = S_7 \) or \(A_7 \). It is known [11, Ex. 7.2] that the \(G_B \)-module \(Q_B \) is very simple in the sense of [11, 14, 13]. In particular,
\[
\text{End}_{G_B}(Q_B) = \mathbb{F}_2.
\]
The surjectivity of \(\text{Gal}(K) \rightarrow G_B \) implies that the \(\text{Gal}((K)) \)-module \(Q_B \) is also very simple. Applying Lemma 1.1, we conclude that the \(\text{Gal}((K)) \)-module \(J(B)_{\mathbb{Q}} \) is also very simple. Now the assertion follows from lemma 2.3 of [11]. \(\square \)

Proof of Theorem 1.2. In light of Lemma 2.1 we may and will assume that \(\text{char}(K) > 0 \) and \(J(B) \) is a supersingular abelian variety. We need to arrive to a contradiction. Replacing if necessary \(K \) by its suitable quadratic extension we may and will assume that \(G_B = A_7 \). Adjoining to \(K \) all 2-power roots of unity, we may and will assume that \(K \) contains all 2-power roots of unity and still \(G_B = A_7 \). It follows from Lemma 1.1 that \(A_7 \) is isomorphic to the image of \(\text{Gal}(K) \rightarrow \text{Aut}_{\mathbb{Q}_2}(J(B)_{\mathbb{Q}}) \) and the \(A_7 \)-module \(J(B)_{\mathbb{Q}} \) is very simple; in particular, \(\text{End}_{A_7}(J(B)_{\mathbb{Q}}) = \mathbb{F}_2 \). Applying Theorem 3.3 of [13], we conclude that there exists a central extension \(G_1 \rightarrow A_7 \) such that \(G_1 \) is perfect, \(\text{ker}(G_1 \rightarrow A_7) \) is a central cyclic subgroup of order 1 or 2.
and there exists a symplectic absolutely irreducible 6-dimensional representation of G_1 in characteristic zero. This implies (in notations of [1]) that either $G_1 \cong A_7$ or $G_1 \cong 2A_7$. However, the table of characters on p. 10 of [1] tells us that neither A_7 nor $2A_7$ admits a symplectic absolutely irreducible 6-dimensional representation in characteristic zero. The obtained contradiction proves the Theorem. □

3. EXPLICIT FORMULAS

In this section we describe explicitly H_B when $B = B_f$. We have

$$f(t) = \sum_{i=0}^{7} c_i t^i \in K[t], \ c_7 \neq 0.$$

We are going to describe explicitly cubic forms that vanish on B_f. Clearly, $u := xz^2 - y^3$ and $v := c_7x^2y + c_6x^2z + c_5xy^2 + c_4xyz + c_3xz^2 + c_2y^2z + c_1yz^2 + c_0z^3$ vanish on B_f. In order to find a third vanishing cubic form, let us define a polynomial $h(t) \in K[t]$ as a (non-zero) remainder with respect to division by $f(t)$:

$$t^9 - h(t) \in f(t)K[t], \ \deg(h) < \deg(f) = 7.$$

We have

$$h(t) = \sum_{i=0}^{6} d_i t^i \in K[t].$$

For all roots α of f we have

$$0 = 9\alpha - h(\alpha) = 9\alpha - \sum_{i=0}^{6} d_i \alpha^i.$$

This implies that the cubic form $w = x^3 - d_6x^2z - d_5xyz - d_4x^2z - d_3xz^2 - d_2y^2z - d_1yz^2 - d_0z^3$ vanishes on B_f. Since u, v, w have x-degree 1, 2, 3 respectively, they are linearly independent over K_a and therefore constitute a basis of 3-dimensional H_{B_f}.

Now assume (till the end of this Section) that char$(K) \neq 3$. Since C_{B_f} is the ramification curve for π, it follows that

$$g_B(C_{B_f}) = \left\{ (x : y : z), \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} = 0 \right\} \subset \mathbb{P}^2$$

is a singular sextic which is K-birationally isomorphic to C_{B_f}. (See also [3] proposition 2 on p. 167.)

4. ANOTHER PROOF

The aim of this Section is to give a more elementary proof of Theorem[12] that formally does not refer to Lemma 2 of [3] Lemma 2 on pp. 161–162] (and therefore does not make use of the Smith theory. However, our arguments are based on ideas of [3] Ch. IX].) In order to do that, we just need to prove Lemma[13] under an additional assumption that the image of Gal(K) in Perm(B) is “very big”.

Lemma 4.1. Let $J(B)_2$ be the kernel of multiplication by 2 in $J(B)(K_a)$. Suppose that G_B coincides either with Perm(B) or with A_7. Then the Galois modules $J(B)_2$ and Q_B are isomorphic.

¹This condition was inadvertently omitted in the Russian version [10].
Proof. Let \(g_0 : V(B) \to V(B) \) be the Geiser involution [2, p. 66–67], i.e., the biregular covering transformation of \(\pi \). Clearly, \(g_0 \) is defined over \(K \). This implies that if \(E \) is an irreducible \(K_a \)-curve on \(V(B) \) then \(E \) and \(g_0(E) \) have the same stabilizers in \(\text{Gal}(K) \). Clearly, different points \(b_1 \) and \(b_2 \) of \(B \) have different stabilizers in \(\text{Gal}(K) \). This implies that \(g_0(E_{b_1}) \neq E_{b_2} \), since the stabilizers of \(g_0(E_{b_1}) \) and \(E_{b_2} \) coincide with the stabilizers of \(b_1 \) and \(b_2 \) respectively. This implies that the lines

\[
\pi(E_{b_1}), \pi(E_{b_2}) \subset \mathbb{P}^2,
\]

which are bitangents to \(C_B \) [2, p. 68], do not coincide.

For each \(b \in B \) we write \(D_b \) for the effective degree 2 divisor on the plane quartic \(C_B \) such that \(2D_b \) coincides with the intersection of \(C_B \) and \(\pi(E_b) \); it is well known that (the linear equivalence class of) \(D_b \) is a theta characteristic on \(C_B \). It is also clear that

\[
\sigma(D_b) = D_{\sigma(b)} \quad \forall \sigma \in \text{Gal}(K), \ b \in B.
\]

Clearly, if \(b_1 \neq b_2 \) then \(D_{b_1} \neq D_{b_2} \) and the divisors \(2D_{b_1} \) and \(2D_{b_2} \) are linearly equivalent. On the other hand, \(D_{b_1} \) and \(D_{b_2} \) are not linearly equivalent. Indeed, if \(D_{b_1} - D_{b_2} \) is the divisor of a rational function \(s \) then \(s \) is a non-constant rational function on \(C_B \) with, at most, two poles. This implies that either \(C_B \) is either a rational (if \(s \) has exactly one pole) or hyperelliptic (if \(s \) has exactly two poles). Since a smooth plane quartic is neither rational nor hyperelliptic, \(D_{b_1} - D_{b_2} \) is not a principal divisor.

Let \((\mathbb{Z}^B)^0\) be the free commutative group of all functions \(\phi : B \to \mathbb{Z} \) with \(\sum_{b \in B} \phi(b) = 0 \). Clearly, \((\mathbb{Z}^B)^0\) is provided with the natural structure of \(\text{Gal}(K) \)-module and there is a natural isomorphism of \(\text{Gal}(K) \)-modules

\[
(\mathbb{Z}^B)^0 / 2(\mathbb{Z}^B)^0 \cong Q_B.
\]

Let us consider the homomorphism of commutative groups \(r : (\mathbb{Z}^B)^0 \to \text{Pic}(C_B) \) that sends a function \(\phi \) to the linear equivalence class of \(\sum_{b \in B} \phi(b)D_b \). Clearly,

\[
 r((\mathbb{Z}^B)^0) \subset J(B)_2 \subset \text{Pic}(B)
\]

and therefore \(r \) kills \(2 \cdot (\mathbb{Z}^B)^0 \). On the other hand, the image of \(r \) contains the (non-zero) linear equivalence class of \(D_{b_1} - D_{b_2} \). This implies that \(r \) is not identically zero and we get a non-zero homomorphism of \(\text{Gal}(K) \)-modules

\[
\bar{r} : Q_B \cong (\mathbb{Z}^B)^0 / 2(\mathbb{Z}^B)^0 \to J(B)_2.
\]

It is well-known that our assumptions on \(G_B \) imply that the \(G_B \)-module \(Q_B \) is (absolutely) simple and therefore \(Q_B \), viewed as Galois module, is also simple. This implies that \(\bar{r} \) is injective. Since the \(\mathbb{F}_2 \)-dimensions of both \(Q_B \) and \(J(B)_2 \) equal to 6 and therefore coincide, we conclude that \(\bar{r} \) is an isomorphism. \(\square \)

5. Added in translation

The following assertion is a natural generalization of Lemma 1.3:

Proposition 5.1. Suppose that \(E \subset \mathbb{P}^2 \) is an absolutely irreducible cubic curve that is defined over \(K \). Suppose that \(B \subset E(K_a) \) is a 7-element set that is a \(\text{Gal}(K) \)-orbit. Let us assume that the image \(G_B \) of \(\text{Gal}(K) \) in the group \(\text{Perm}(B) \) of all permutations of \(B \) coincides either with \(\text{Perm}(B) \cong S_7 \) or with the alternating group \(A_7 \). Then \(B \) is in general position.
Proof. Clearly, Gal(K) acts 3-transitively on B.

Step 1. Suppose that D is a line in \mathbb{P}^2 that contains three points of B say,
$$\{P_1, P_2, P_3\} \subset \{P_1, P_2, P_3, P_4, P_5, P_6, P_7\} = B.$$
Clearly, $D \cap E = \{P_1, P_2, P_3\}$. There exists $\sigma \in \text{Gal}(K)$ such that $\sigma(\{P_1, P_2, P_3\}) = \{P_1, P_2, P_4\}$. It follows that the line $\sigma(D)$ contains $\{P_1, P_2, P_4\}$ and therefore $\sigma(D) \cap E = \{P_1, P_2, P_4\}$. In particular, $\sigma(D) \neq D$. However, the distinct lines D and $\sigma(D)$ meet each other at two distinct points P_1 and P_2. Contradiction.

Step 2. Suppose that Y is a conic in \mathbb{P}^2 such that Y contains six points of B say,
$$\{P_1, P_2, P_3, P_4, P_5, P_6\} = B \setminus \{P_7\}.$$
Clearly, $Y \cap E = B \setminus \{P_7\}$. If Y is reducible, i.e., is a union of two lines D_1 and D_2 then either D_1 or D_2 contains (at least) three points of B, which is not the case, thanks to Step 1. Therefore Y is irreducible.

There exists $\sigma \in \text{Gal}(K)$ such that $\sigma(P_1) = P_7$. Then $\sigma(P_2) = P_i$ for some positive integer $i \leq 6$. This implies that $\sigma(B \setminus \{P_2\}) = B \setminus \{P_i\}$ and the irreducible conic $\sigma(Y)$ contains $B \setminus \{P_i\}$. Clearly, $\sigma(Y) \cap E = B \setminus \{P_i\}$ contains P_7. In particular, $\sigma(Y) \neq Y$. However, both conics contain the 5-element set $B \setminus \{P_1, P_7\}$. Contradiction. □

References

[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Clarendon Press, Oxford, 1985.
[2] M. Demazure, Surfaces de Del Pezzo II, III, IV, V. Springer Lecture Notes in Math. 777 (1980), 23–69.
[3] I. Dolgachev, D. Orlandi, Point sets in projective spaces and theta functions, Astérisque 165 (1986).
[4] I. Dolgachev, Classical Algebraic geometry. A modern view. Cambridge University Press, 2012. (Section 8.7)
[5] R. Hartshorne, Algebraic Geometry, GTM 52, Springer-Verlag, 1977.
[6] V. A. Iskovskikh, Minimal models of rational surfaces over arbitrary fields. Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 19–43; Math. USSR-Izv. 14 (1980), 17–39.
[7] V. A. Iskovskikh, I.R. Shafarevich, Algebraic surfaces. Algebraic geometry, II, 127–262, Encyclopaedia Math. Sci., 35, Springer, Berlin, 1996.
[8] Yu. I. Manin, Cubic forms, second edition, North Holland, 1986.
[9] Yu. I. Manin, M. A. Tsfasman, Rational varieties: algebra, geometry, arithmetic. Uspekhi Mat. Nauk 41 (1986), no. 2(248), 43–94; Russian Math. Surveys 41 (1986), no. 2, 51–116.
[10] Yu. G. Zarhin, Hyperelliptic jacobians without complex multiplication. Math. Res. Letters 7 (2000), 123–132.
[11] Yu. G. Zarhin, Hyperelliptic jacobians and modular representations. In: Moduli of abelian varieties (eds. C. Faber, G. van der Geer and F. Oort). Progress in Math., vol. 195 (Birkhäuser, 2001), pp. 473–490.
[12] Yu. G. Zarhin, Hyperelliptic jacobians without complex multiplication in positive characteristic. Math. Res. Letters 8 (2001), 429–435.
[13] Yu. G. Zarhin, Very simple 2-adic representations and hyperelliptic jacobians. Moscow Math. J. 2 (2002), issue 2, 403–431.
[14] Yu. G. Zarhin, Very simple representations: variations on a theme of Clifford. In: Progress in Galois Theory (H. Völklein, T. Shaska eds.), Springer Verlag, 2005, pp. 151–168.
[15] Yu. G. Zarhin, Non-supersingular hyperelliptic jacobians. Bull. Soc. Math. France 132 (2004), 617–634.
[16] Yu. G. Zarhin, Del Pezzo surfaces of degree 2 and jacobians without complex multiplication (Russian). Trudy St. Petersburg Mat. Obsch. 11 (2005), 81–91.

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

This reference was updated.
