Introduction

Caudal epidural is an accepted and popular method of providing intra and postoperative analgesia for abdominal,
perineal, and lower limb surgeries in children.[1] Bupivacaine is the most commonly used local anesthetic for this purpose.[2] A major disadvantage of bupivacaine is the relatively short duration of postoperative analgesia for which opioids have traditionally been added to increase the duration of analgesia but have been associated with unacceptable side-effects.[3-5] Clonidine, an alpha 2 agonist has extensively been used in neuraxial blocks and peripheral nerve blocks to prolong the action of bupivacaine.[6-9] It is one of the most commonly used additives with bupivacaine for caudal analgesia in children.[10] Midazolam is a water-soluble benzodiazepine that interacts with specific gamma-aminobutyric acid (GABA) receptors in the spinal cord and brain to modulate nociceptive responses.[10] Based on earlier human studies, it is hypothesized that caudal midazolam would produce more postoperative analgesic effect with bupivacaine with minimal side-effects.[11-13]

In view of paucity of studies comparing the efficacy of caudal clonidine and caudal midazolam in prolonging the duration of analgesia when added as adjuvants to bupivacaine\textsuperscript{[2] and due to the highly variable duration of analgesia produced by caudal midazolam bupivacaine mixtures in various studies,[11-13] we attempted to compare the effect of midazolam with the previously established and commonly used adjunct clonidine on duration of postoperative analgesia when administered by caudal epidural route for infra-umbilical surgeries in children. Another primary objective was to assess the requirement of postoperative rescue analgesics. Secondary objectives to be assessed included: Intraoperative hemodynamic changes; postoperative sedation scores and any side-effects or complications.

Material and Methods

After obtaining Institutional Ethical Committee approval and written informed consent from the parents, this prospective, randomized, controlled, double-blinded, single-center study was conducted in 75 patients, American Society of Anesthesiologists physical status I-II, age 1-7 years, undergoing sub-umbilical surgeries under general anesthesia. Children with local infection of the caudal area, history of allergic reactions to local anesthetics, bleeding diathesis, preexisting neurological or spinal diseases, mental retardation, and neuromuscular disorders were excluded from the study.

The patients were randomly allocated into three groups: Group B (control group), Group BC (clonidine study group) and group BM (midazolam study group). Randomization was done by picking random lots from a sealed bag. Twenty minutes before shifting them to the operating theater, oral midazolam 0.5 mg/kg was administered as premedication to all the children. The patients were then shifted to the operating theater and connected to monitors; electrocardiogram, noninvasive blood pressure and pulse oximeter and baseline values were recorded. Anesthesia was induced with 50% nitrous oxide, 50% oxygen and 8% sevoflurane. Intravenous access was secured and lactated Ringer’s solution was administered as per the calculated fluid requirements. Airway management was left to the discretion of the attending anesthesiologist and the children were managed with face mask, laryngeal mask airway or endotracheal tube, with or without muscle relaxants. Anesthesia was maintained with 1-2% sevoflurane in oxygen–nitrous oxide (1:3) mixture. After induction, patients were placed in the lateral decubitus position and a single shot caudal epidural was performed, with aseptic precautions, using a 23 G hypodermic needle, by an anesthesiologist who was blinded to the drug that was to be administered in the caudal epidural space. The drug was loaded by an anesthesiologist who did not participate in the study. Group B patients received 1 ml/kg of 0.25% bupivacaine in normal saline, Group BC patients received 1 ml/kg of 0.25% bupivacaine with 1 µg/kg of clonidine in normal saline, and Group BM patients received 1 ml/kg of 0.25% bupivacaine with 30 µg/kg of midazolam in normal saline. The patients were extubated at the end of the procedure and the duration of anesthesia was noted in all the groups.

During intraoperative period, adequacy of analgesia was gauged by hemodynamic stability. Absence of rise of heart rate (HR) or mean arterial pressure (MAP) of more than 15% compared with baseline values recorded just before surgical incision was considered as adequate analgesia. An increase in HR or MAP (>15%), 15 min after administration of caudal anesthesia was defined as failure of analgesia. If HR, MAP increased 45 min after surgical incision it was considered as inadequate analgesia. Patients with failure of caudal analgesia or inadequate analgesia were given fentanyl 2 µg/kg intravenously. Patients, in whom caudal anesthesia failed or inadequate analgesia was present, were excluded from study.

The patients were continuously observed for 24 h postoperatively. Postoperative assessment was done by another anesthesiologist in the postanesthesia care unit (PACU) who was not aware of the drug administered and by a nurse in the ward who was also blinded. Pain score was assessed using the FLACC (F — face, L — leg, A — activity, C — cry, C — consolability) scale [Table 1].[14] Assessment of pain by FLACC scale was done at 0, 1, 2, 6, 12 and 24 h postoperatively. The time from caudal placement of drug to the first recording of a FLACC score ≥4 was taken as the duration of analgesia.
In the PACU, the necessity for rescue medicine was decided by the pain score. Rescue medication was administered when patients had score of ≥4 on at least 2 occasions or showed obvious signs of pain. Paracetamol suppository was used as rescue medicine with a loading dose of 40 mg/kg followed by 20 mg/kg every 6 h.

The number of doses of rescue medication required and the time to first administration of rescue medication were also noted. The HR and blood pressure were measured at 5, 10, 15, 30, 45, 60, 90, and 120 min postoperatively. Sedation scores were recorded at 0, 1, 2, 4, 8, and 12 h after surgery using a 4 point sedation score [Table 2].

In the postoperative period, patients were also monitored for adverse effects, including respiratory depression, vomiting, hypotension and bradycardia. Respiratory depression was defined as a decrease in oxygen saturation <93%, requiring oxygen by face mask. Hypotension was defined as systolic blood pressure (SBP) <70 mm Hg and bradycardia was defined as a HR <80 beats/min.

Based on clinical experience and review of the literature, it was expected that a 60-min difference of mean duration of analgesia between any two groups would be statistically significant. Within group standard deviation was assumed to be 60. Using this data and assuming a study power of 90% and probability of type I error of 5%, a sample size of 25 patients per group was necessary for detecting clinically significant difference. Normally distributed continuous variables were compared using ANOVA. If the F value was significant and variance was homogeneous, Tukey multiple comparison test was used to assess the differences between the individual groups; otherwise Tamhane’s T2 test was used. The Kruskal–Wallis test was used for those variables that were not normally distributed and further comparisons were done using Mann–Whitney U-test. Categorical variables were analyzed using the Chi-square test. For all statistical tests, a P < 0.05 was taken to indicate a significant difference.

Results

The study groups were comparable with respect to mean age, weight, gender, duration, and type of surgery [Tables 3 and 4].

The SBP and HR at induction, intraoperatively and postoperatively, when compared between the three groups using student t-test, yielded P > 0.05, which were not significant. Both SBP and HR decreased during anesthesia followed by an increase in postop period in all the groups, but the changes were not significant (P > 0.05) [Table 5].

Surgical analgesia in all the groups was found to be adequate. No patient in any group required intraoperative rescue analgesia. The pain score was assessed using the FLACC scale and the three groups were compared using Pearson’s Chi-square test. The FLACC pain score never reached ≥4 during the first 3 h in any of the groups. However, the number of patients with FLACC pain score ≥4 were significantly more in Group B at the end of 4th (46%), 8th (56%) and 12th (72%) h compared to the other two groups. Furthermore at the end of 12th h,

Table 1: FLACC pain scale

Parameter	0	1	2
Face	No expression	Occasional grimace	Frequent to constant quivering chin
Legs	Normal position or relaxed	Uneasy, restless, tense	Kicking or legs drawn up
Activity	Lying quiet	Squirming, shifting back and forth, tense	Arched, rigid or jerking
Cry	No cry	Moans or whimpers	Crying steadily
Consolability	Content, relaxed	Reassurance, hugging	Difficult to console

Score: 0, no pain; 1-3, mild pain; 4-7, moderate pain; 8-10, severe pain; FLACC: Face, legs, activity, cry, consolability

Table 2: Four (4) point sedation score

Sedation score	Description
1	Asleep, not arousable by verbal contact
2	Asleep, arousable by verbal contact
3	Drowsy not sleeping
4	Alert/awake

Table 3: Demographic and clinical data

Variables	Group B (n = 25)	Group BC (n = 25)	Group BM (n = 25)	P
Age (years)	6.64±1.29	6.28±1.21	6.16±1.11	0.346 (NS)
Weight (kg)	16.28±3.06	15.48±3.34	14.96±2.88	0.322 (NS)
Gender: Male:female ratio	22:3	23:2	20:5	0.446 (NS)
Duration of anesthesia (min)	101.72±6.70	103.22±5.46	100.58±3.57	0.485 (NS)
Baseline: HR (beats/min)	103.56±5.52	102.92±8.67	105.48±7.92	0.458 (NS)
Baseline: SBP (mmHg)	100.64±6.29	98.84±6.20	101.52±5.17	0.269 (NS)

Data shown as mean ± SD. NS differences were noted between the groups. SD = Standard deviation, NS = No significant, HR = Heart rate, SBP = Systolic blood pressure
the number of patients with FLACC pain score ≥4 were significantly more in Group BM (40%) compared to Group BC (8%). More children in Group B had moderate to severe pain at 4 h, 8 h and 12 h postoperatively, compared to children in Group BC and Group BM [Figure 1].

The duration of analgesia between the three groups was compared using Mann–Whitney test. The duration of analgesia was significantly prolonged with the addition of clonidine or midazolam to caudal bupivacaine (mean [95% confidence interval (CI)]: 725 [700-750] and 605 [580-630] min, respectively) compared to bupivacaine alone (mean [95% CI]: 295 [270-320] min) with \(P = 0.001 \) [Figure 2]. The requirement of rescue medications was compared between the three groups using Pearson’s Chi-square test and it was found to be significant with Group BC receiving less number of analgesics, followed by Group BM and Group B. One child in Group BC received three rescue medications compared to Group BM, in which 7 (28%) children received three rescue medications, followed by Group B where 15 (60%) children received three rescue medications [Figure 3].

The complications/side-effects seen in the three groups are shown in Table 6. The difference between the complications was statistically insignificant with the \(P \) value of >0.05. Mean sedation score in the immediate postoperative period was higher in Group B (2.84 ± 0.2688) compared to Group BC (1.88 ± 0.2112) and BM (1.76 ± 0.3648) with \(P = 0.001 \). Thereafter, there was a gradual rise in mean sedation score in all three groups. There was prolonged sedation in Group BC in comparison to Group BM with mean sedation scores of 3.72 ± 0.4032 and 3.96 ± 0.0768, respectively at 12 h postoperatively with \(P = 0.001 \) [Table 7].

Discussion

Caudal epidural anesthesia is a simple, frequently used technique, which provides very effective analgesia intra and postoperatively in pediatric patients undergoing infra-umbilical

Table 4: Type of infra-umbilical surgeries performed

Type of surgery	Group B	Group BC	Group BM
Herniotomy	14	12	13
Circumcision	5	8	8
Orchidopexy	2	2	3
Urethroplasty	2	1	0
Dermoid excision	1	0	0
Fistula excision	0	2	0
PUV excision	0	0	1
Polyp excision	1	0	0

Values are in number of patients. PUV = Posterior urethral valves

Figure 1: The FLACC pain scores in the three groups. Patients with FLACC scores ≥4 were significantly more in Group B compared to Group BC and BM

Figure 2: Duration of analgesia in the three groups. Group B received 1 ml/kg of 0.25% plain bupivacaine, Group BC received 1 ml/kg of 0.25% bupivacaine with 1 µg/kg clonidine and Group BM received 1 ml/kg of 0.25% bupivacaine with 30 µg/kg midazolam. The mean duration of analgesia was 295 min in Group B, 724.8 min in Group BC and 605.4 min in Group BM

Figure 3: Trends in postoperative requirement of rescue analgesic. Values are in percentage of patients requiring 1, 2 or 3 doses of rescue analgesics. More patients in Group B (plain bupivacaine) needed three doses of rescue analgesics compared to patients in Group BC (clonidine with bupivacaine) and Group BM (midazolam with bupivacaine)
surgeries. The search for the ideal combination of drugs for caudal anesthesia in pediatric patients is on. Our study indicates that addition of both clonidine and midazolam are safe and efficacious in prolonging the duration of postoperative analgesia when administered as adjuvants via the caudal route in children undergoing lower abdominal surgeries; however, clonidine is more efficacious as it provides a longer duration of analgesia. Furthermore, postoperative rescue analgesic requirements are significantly less with the use of clonidine. Both the adjuvants are associated with minimal side-effects. Our findings are consistent with those reported by several other studies.[15-21]

In children, a mixture of 0.25% bupivacaine with 1-2 µg/kg clonidine has been seen to improve the duration and quality of analgesia provided by caudal analgesia. Although results differ widely, the duration of analgesia provided ranged from 6.3 h[20] to 16.4 h[15] for 1 µg/kg to 5.8[19] and 9.8 h[16] for 2 µg/kg. One study has shown a mean duration of analgesia of 20.9 ± 7.4 h in children receiving caudal clonidine with bupivacaine, but a and quality of analgesia has been noted with caudal midazolam but with wide variations in results.[11-13,22] The wide variation in the duration of action of clonidine or midazolam in the various studies could be due to many reasons: Dose of clonidine used, differences in premedication and volatile anesthetic used, type of surgery, indications for rescue analgesia, assessment of pain, and statistical analysis. In our study, the duration of analgesia in Group BC was 12 h, in Group BM it was 10 h and in Group B it was 5 h, which was similar to other studies. Although many studies have supported the analgesic benefits of caudal clonidine as an additive, there are some studies that have shown that there is no such benefit.[23-25]

Several mechanisms have been suggested for the clonidine-induced prolongation of caudal analgesia with bupivacaine. The anti-nociceptive action is due to the direct suppression of spinal cord nociceptive neurons by epidural clonidine. Clonidine also suppresses neurotransmission in peripheral sensory Aδ and C nerve fibers.[26] Caudal midazolam exerts its analgesic effect through the GABA-benzodiazepine system in the spinal cord. Benzodiazepine binding sites have been demonstrated in the spinal cord, particularly within lamina II of the dorsal horn, and appear to be linked to the GABA-A receptor complex. Furthermore, endogenous benzodiazepine-like substances have been isolated from human cerebrospinal fluid.[27,28]

Table 5: Intraoperative vitals

Intraoperative vitals	Group B	Group BC	Group BM	P
HR before induction (beats/min)	103.56±5.52	102.92±8.67	105.48±7.92	0.458 (NS)
Intra-operative HR	92.60±6.19	97.36±6.50	99.60±8.15	0.598 (NS)
Postoperative HR	97.92±6.36	98.68±6.87	100.20±7.62	0.380 (NS)
SBP before induction (mmHg)	100.64±6.29	98.84±6.20	101.52±5.17	0.269 (NS)
Intra-operative SBP	95.92±6.01	94.96±6.01	95.20±7.39	0.831 (NS)
Postoperative SBP	97.20±7.39	96.40±3.42	99.76±6.31	0.359 (NS)

Data shown as mean±SD. NS differences were noted between the groups. SD = Standard deviation, NS = No significant, HR = Heart rate, SBP = Systolic blood pressure

Table 6: Complications/side-effects

Complication/side-effects	Group B (%)	Group BC (%)	Group BM (%)	P
Nausea/vomiting	0 (0)	0 (0)	1 (4)	0.807 (NS)
Respiratory depression	0 (0)	1 (4)	1 (4)	0.764 (NS)
Bradycardia	0 (0)	1 (4)	0 (0)	0.363 (NS)
Hypotension	0 (0)	0 (0)	1 (4)	0.598 (NS)

Values are in n (%) of patients. NS differences were noted between the groups. NS=No significant

Table 7: Postoperative mean sedation score

Postoperative time (h)	Mean sedation score	P				
	Group B	Group BC	Group BM	B and BC	B and BM	BC and BM
0	2.84±0.2688	1.88±0.2112	1.76±0.3648	0.001	0.001	0.161
1	3.44±0.4928	2.24±0.3648	2.36±0.4608	0.001	0.001	0.312
2	3.56±0.4928	2.6±0.48	2.72±0.4032	0.001	0.001	0.343
4	3.8±0.32	3.08±0.2208	3.16±0.2688	0.001	0.005	0.256
8	4±0.0	3.12±0.2816	3.56±0.4928	0.002	0.006	0.001
12	4±0.0	3.72±0.4032	3.96±0.0768	0.006	0.012	0.001

Data shown as mean±SD. SD=Standard deviation
The dose of clonidine for epidural administration is 1-5 µg/kg.[13,19,21] We chose a dose of 1 µg/kg of clonidine in our study as there were studies showing that increasing the dose from 1 to 2 µg/kg did not enhance the analgesic efficacy of clonidine,[29] but the incidence of adverse effects such as respiratory depression, bradycardia and hypotension increased with increasing dose.[30] The dose of caudal midazolam used in most of the previous studies as mentioned above is 50 µg/kg.[11,13] Although most studies suggest that this dose is associated with a prolonged postoperative analgesia with minimum sedation and vomiting but some studies mention otherwise.[12,31] Hence, we decided to administer caudal midazolam in a dose of 30 µg/kg. The reason that we had chosen a standard dose of 1 mL/kg of 0.25% bupivacaine as the final volume in all the groups was based on the speculation that smaller volumes of bupivacaine may not be enough to deliver the adjuvants up to the spinal cord.[25]

The use of both caudal clonidine and midazolam has been associated with clinically insignificant respiratory or hemodynamic effects.[11-13,32] Although hemodynamic side-effects appear to be less pronounced in children than in adults, they may be dose-dependent, as reported by Motsch et al.[21] One case of life-threatening apnea following inguinal herniorrhaphy and orchidopexy, in a 2 weeks old term neonate with the use of clonidine has been reported.[30] Although 1 patient of Group BC and 1 patient of Group BM developed bradycardia and hypotension, respectively, but it was statistically insignificant.

A sedative effect has been observed after epidural clonidine and midazolam in adults[33,34] and to a lesser degree in children.[11,15,16] Many previous studies have, however, not reported respiratory depression after caudal administration of midazolam or clonidine.[15,16,35] One study found that the duration of sedation was very similar to the respective duration of caudal analgesia with clonidine.[16] The sedation score in our study also correlated well with the duration of analgesia in Group BC and BM with no incidence of respiratory depression. The longer duration of sedation in Group BC compared to BM resulted partly from the sedative effect of clonidine and partly from the longer duration of analgesia provided by clonidine.

One patient out of 25 had vomiting in the Group BM, but no patient of Group B or BC had vomiting in the postoperative period. Both clonidine and midazolam have been shown to possess anti-emetic properties when administered intravenously.[36,37] We chose the FLACC scale to evaluate pain postoperatively as it is easy to use, is validated and gives us an objective evaluation.[14] One limitation of our study was that we did not assess the mean time of arousal from anesthesia in any of the groups.

We conclude that both clonidine in a dose of 1 µg/kg and midazolam in a dose of 30 µg/kg added to 0.25% bupivacaine for caudal analgesia and administered as a 1 mL/kg mixture in children, for sub-umbilical surgery, significantly prolongs the duration of postoperative analgesia when compared to 1 mL/kg of 0.25% bupivacaine alone, without any side-effects.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References

1. de Beer DA, Thomas ML. Caudal additives in children — Solutions or problems? Br J Anaesth 2003;90:487-98.
2. Wolf AR, Valley RD, Fear DW, Roy WL, Lerman J. Bupivacaine for caudal analgesia in infants and children: The optimal effective concentration. Anesthesiology 1988;69:102-6.
3. Rockemann MG, Seeling W, Brinkmann A, Goertz AW, Hauer N, Junge J, et al. Analgesic and hemodynamic effects of epidural clonidine, clonidine/morphine, and morphine after pancreatic surgery — A double-blind study. Anesth Analg 1995;80:869-74.
4. Gedney JA, Liu EH. Side-effects of epidural infusions of opioid bupivacaine mixtures. Anesthesia 1998;53:1148-55.
5. Krane EJ. Delayed respiratory depression in a child after caudal epidural morphine. Anesth Analg 1988;67:79-82.
6. Ansermino M, Basu R, Vandebeek C, Montgomery C. Nonopioid additives to local anesthetics for caudal blockade in children: A systematic review. Paediatr Anaesth 2003;13:561-73.
7. Kumar P, Rudra A, Pan AK, Acharya A. Caudal additives in pediatrics: A comparison among midazolam, ketamine, and neostigmine coadministered with bupivacaine. Anesth Analg 2005;101:69-73.
8. Lönnqvist PA. Adjuncts to caudal block in children — Quo vadis? Br J Anaesth 2005;95:431-3.
9. Tsui BC, Berde CB. Caudal analgesia and anesthesia techniques in children. Curr Opin Anaesthesiol 2005;18:283-8.
10. Menzies R, Congreve K, Heroes V, Berg S, Mason DG. A survey of pediatric caudal extradural anesthesia practice. Paediatr Anaesth 2009;19:829-36.
11. Güleç S, Büyükkidan B, Oral N, Ozcan N, Tanriverdi B. Comparison of caudal bupivacaine, bupivacaine-morphine and bupivacaine-midazolam mixtures for post-operative analgesia in children. Eur J Anaesthesiol 1998;15:161-5.
12. Bano F, Haider S, Sultan ST. Comparison of caudal bupivacaine and bupivacaine-midazolam for peri and postoperative analgesia in children. J Coll Physicians Surg Pak 2004;14:65-8.
13. Mahajan R, Batra YK, Grover VK, Kajal J. A comparative study of caudal bupivacaine and midazolam-bupivacaine mixture for post-operative analgesia in children undergoing genitourinary surgery. Int J Clin Pharmacol Ther 2001;39:116-20.
14. Merkel SI, Voepel-Lewis T, Shayevitz JR, Malviya S. The FLACC: A behavioral scale for scoring postoperative pain in young children. Pediatr Nurs 1997;23:293-7.
15. Jamali S, Monin S, Begon C, Dubouset AM, Ecoffey C. Clonidine in pediatric caudal anesthesia. Anesth Analg 1994;78:663-6.
16. Lee JJ, Rubin AP. Comparison of a bupivacaine-clonidine mixture with plain bupivacaine for caudal analgesia in children. Br J Anaesth 1994;72:258-62.
17. Tripi PA, Palmer JS, Thomas S, Elder JS. Clonidine increases duration of bupivacaine caudal analgesia for ureteroneocystostomy: A double-blind prospective trial. J Urol 2005;174:1081-3.
18. Yildiz TS, Korkmaz F, Solak M, Toker K. Clonidine addition prolongs the duration of caudal analgesia. Acta Anaesthesiol Scand 2006;50:501-4.
19. Cook B, Grubb DJ, Aldridge LA, Doyle E. Comparison of the effects of adrenaline, clonidine and ketamine on the duration of caudal analgesia produced by bupivacaine in children. Br J Anaesth 1995;75:698-701.
20. Luz G, Innerhofer P, Oswald E, Salner E, Hager J, Sparr H. Comparison of clonidine 1 microgram kg⁻¹ with morphine 30 micrograms kg⁻¹ for post-operative caudal analgesia in children. Eur J Anaesthesiol 1999;16:42-6.
21. Motsch J, Böttiger BW, Bach A, Böhrer H, Skoberne T, Martin E. Caudal clonidine and bupivacaine for combined epidural and general anaesthesia in children. Acta Anaesthesiol Scand 1997;41:877-83.
22. Ali I, Islam A, Morshed G, Islam N, Ali A, Shahera Khatun UH. Caudal bupivacaine - midazolam for post operative analgesia in children. Journal of the Bangladesh Society of Anaesthesiologists 2014;23:8-13.
23. Joshi W, Connelly NR, Freeman K, Reuben SS. Analgesic effect of clonidine added to bupivacaine 0.125% in paediatric caudal blockade. Paediatr Anaesth 2004;14:483-6.
24. Wheeler M, Patel A, Suresh S, Roth AG, Birmingham PK, Heffner CL, et al. The addition of clonidine 2 microg.kg⁻¹ does not enhance the postoperative analgesia of a caudal block using 0.125% bupivacaine and epinephrine 1:200,000 in children: A prospective, double-blind, randomized study. Paediatr Anaesth 2005;15:476-83.
25. Sharpe R, Klein JR, Thompson JP, Rushman SC, Sherwin J, Wandless JG, et al. Analgesia for circumcision in a paediatric population: Comparison of caudal bupivacaine alone with bupivacaine plus two doses of clonidine. Paediatr Anaesth 2001;11:695-700.
26. Nishina K, Mikawa K. Clonidine in paediatric anaesthesia. Curr Opin Anaesthesiol 2002;15:309-16.
27. Bousofara M, Carles M, Raoucoules-Aimé M, Sellam MR, Horn JL. Effects of intrathecal midazolam on postoperative analgesia when added to a bupivacaine-clonidine mixture. Reg Anesth Pain Med 2006;31:501-5.
28. Ho KM, Ismail H. Use of intrathecal midazolam to improve perioperative analgesia: A meta-analysis. Anaesth Intensive Care 2008;36:365-73.
29. Klimscha W, Chiari A, Michalek-Sauberer A, Wildling E, Lerche A, Lorber C, et al. The efficacy and safety of a clonidine/bupivacaine combination in caudal blockade for pediatric hernia repair. Anaesth Analg 1998;86:54-61.
30. Breschan C, Krumpholz R, Likar R, Kraschl R, Schalk HV. Can a dose of 2microg.kg(-1) caudal clonidine cause respiratory depression in neonates? Paediatr Anaesth 1999;9:81-3.
31. Ghai B, Makkar JK, Chari P, Rao KL. Addition of midazolam to continuous postoperative epidural bupivacaine infusion reduces requirement for rescue analgesia in children undergoing upper abdominal and flank surgery. J Clin Anesth 2009;21:113-9.
32. Koul A, Pant D, Sood J. Caudal clonidine in day-care paediatric surgery. Indian J Anaesth 2009;53:450-4.
33. Penon C, Ecoffey C, Cohen SE. Ventilatory response to carbon dioxide after epidural clonidine injection. Anesth Analg 1991;72:761-4.
34. Nishiyama T, Matsukawa T, Hanaoka K. Effects of adding midazolam on the postoperative epidural analgesia with two different doses of bupivacaine. J Clin Anesth 2002;14:92-7.
35. Naguib M, el Gammal M, Elhattab YS, Seraj M. Midazolam for caudal analgesia in children: Comparison with caudal bupivacaine. Can J Anaesth 1995;42:758-64.
36. Sümpelmann R, Büsing H, Schröder D, Rekersbrink M, Krohn S, Strauss JM. Patient-controlled analgesia with clonidine and piratramide. Anaesthesist 1996;45:88-94.
37. Jung JS, Park JS, Kim SO, Lim DG, Park SS, Kwak KH, et al. Prophylactic antiemetic effect of midazolam after middle ear surgery. Otolaryngol Head Neck Surg 2007;137:753-6.