Crystal structure and molecular docking study of diethyl 2,2′-[[[(1E,1′E)-(hydrazine-1,2-diyldiene)-bis(methanylylidene)]bis(4,1-phenylene)]bis(oxy)]-diacetate

Said Daoui, a* Sevgi Kansiz, b* Feyzi Alkim Aktas, c Necmi Dege, d Eiad Saif, e,f* Noureddine Benchata and Khalid Karrouchig

aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohammed I University, 60000 Oujda, Morocco, bSamsun University, Faculty of Engineering, Department of Fundamental Sciences, 55420, Samsun, Turkey, cSamsun University, Faculty of Engineering, Biomedical Engineering, Samsun, 55420, Turkey, dOndokuz Mayis University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, eDepartment of Computer and Electronic Engineering Technology, Sanaz Community College, Sanaz, Yemen, fDepartment of Electrical and Electronic Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139, Samsun, Turkey, and gLaboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.

*Correspondence e-mail: saiddaouilabo2017@gmail.com, sevgi.kansiz@samsun.edu.tr, eiad.saif@scc.edu.ye

The title Schiff base, C22H24N2O6, adopts an E configuration. The molecule is planar, the mean planes of the phenyl ring system (r.m.s deviation = 0.0059 Å) forms a dihedral angle of 0.96 (4)° with the mean plane of the phenyl ring moiety (r.m.s deviation = 0.0076 Å). In the crystal, molecules are linked by weak intermolecular C—H···O and C—H···N hydrogen bonds into chains extending along the c-axis and b-axis directions, respectively. A molecular docking study between the title molecule and 5-HT2C, which is a G protein receptor and ligand-gated ion channels found in nervous systems (PDB ID: 6BQH) was executed. The experiment shows that it is a good potential agent because of its affinity and ability to stick to the active sites of the receptor.

1. Chemical context

Compounds with an azomethine group (–C=N–) are known as Schiff bases, which are usually synthesized from the condensation of active carbonyl groups and primary amines (Yang et al., 2001). Furthermore, these derivatives represent an important class of organic compounds, especially in the medicinal and pharmaceutical fields (Murtaza et al., 2014). It is well known from the literature that Schiff bases display excellent biological properties, such as antioxidant and analgesic (Karrouchi et al., 2016), antibacterial and cytotoxic (Maaref et al., 2020), antidiabetic (Karrouchi et al., 2022) and anti-inflammatory activities (Rana et al., 2012). These derivatives are also used as corrosion inhibitors, which relies on their ability to spontaneously form a monolayer on the surface being protected (El Arrouji et al., 2020). In this study, the title compound, diethyl 2,2′-[[[(1E,1′E)-(hydrazine-1,2-diyldiene)-bis(methanylylidene)]bis(4,1-phenylene)]bis(oxy)]-diacetate, was characterized by single crystal X-ray and studied by Hirshfeld surface analysis.
2. Structural commentary

The molecular structure of the title compound is illustrated in Fig. 1. The asymmetric unit contains one independent molecule, which is planar, the mean plane of the C5–C10 phenyl ring (r.m.s deviation = 0.006 Å) forms a dihedral angle of 0.96° with the mean plane of the C16–C20 phenyl ring (r.m.s deviation = 0.008 Å). The C3—O1 and C14—O4 bond lengths in the molecule are 1.213 (8) and 1.212 (8) Å, respectively, while the C11—N1 and C22—N2 bond lengths are 1.274 (7) and 1.275 (7) Å, respectively (Table 1). These results suggest a double-bond character for the C=C bond, is slightly longer than observed for the title compound C10—C11 bond distance of 1.516 (2) Å in WIHDEY, corresponding to a single bond, is slightly longer than observed for the title compound [C3—C4 = 1.493 (10) Å]. This bond length is also longer than in XEWZIJ [C18–C19 = 1.498 (3) Å; Baolin et al., 2013] and 6BQH with a value of 4.38 (8)°. The C10—C11 bond distance of 1.516 (2) Å in WIHDEY, corresponding to a single bond, is slightly longer than observed for the title compound [C3—C4 = 1.498 (10) Å]. This bond length is also longer than in XEWZIJ [C18–C19 = 1.493 (3) Å; Baolin et al., 2007]).

3. Supramolecular features

In the crystal, there are two intermolecular hydrogen bonds. The C6—H6⋅⋅⋅O4′ hydrogen bond links the molecules to each other along the c-axis direction while the C4—H4B⋅⋅⋅N1ii hydrogen bond links the molecules to each other along the b-axis direction (symmetry codes as in Table 1). A view of the crystal packing is shown in Fig. 2.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of May 2021; Groom et al., 2016) for the ethyl 2-(p-tolyloxy)acetate skeleton revealed seven similar compounds, viz: ethyl [4-[(4-bromophenyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-4-ylaminomethyl]phenoxyacetate (EKEYEY; Thamotharan et al., 2003), di[3-fluoro-6-methoxy-4-(ethoxycarbonylmethoxy)benzyl] ether (HIGLEP; Wallner et al., 2007), ethyl (2-fluoro-4-hydroxymethyl-5-methoxy-phenoxy)acetate (HIGLIT; Wallner et al., 2007), diethyl 3,3-bis[3-[4-(2-ethoxy-2-oxoethoxy)-3-methoxyphenyl]acryloyl]-pentanediol (JUMJEI; Xu et al., 2015), ethyl (4-[3-[2,4-bis[2-ethoxy-2-oxoethoxy]phenyl]-3-oxoprop-1-en-1-yl]phenoxy)acetate (PIXWAW; Liu, 2014), ethyl [2-oxo-2H-chromen-7-yl]oxacylate (WIHDEY; Fun et al., 2013) and ethyl [4-{[(E)-2-(3,4,5-trimethoxyphenyl)vinyl]phenoxy}acetate (XEWZIJ; Baolin et al., 2007). In EKEYEY, the ethoxycarbonyl group is oriented at an angle of 29.42 (15)° with respect to the mean plane of the benzene ring. The mean plane of the 2H-chromene ring system (O1/C1–C9, r.m.s deviation = 0.026 Å) forms a dihedral angle of 81.71 (6)° with the mean plane of ethyl 2-hydroxyacetate moiety (O1/N3/C9/C10, r.m.s deviation = 0.026 Å) in WIHDEY. This dihedral angle for the title compound is smaller than in both EKEYEY and WIHDEY with a value of 4.38 (8)°. The C10—C11 bond distance of 1.516 (2) Å in WIHDEY, corresponding to a single bond, is slightly longer than observed for the title compound [C3—C4 = 1.498 (10) Å]. This bond length is also longer than in XEWZIJ [C18–C19 = 1.493 (3) Å; Baolin et al., 2007]).

5. Molecular docking study

Molecular docking is a substantial process for finding the interactions between small molecules and macromolecules. Intermolecular bonds that occur between ligand and receptor are indicated by molecular docking. In this study, AutoDockVina (Trott & Olson, 2010) was used for predictive binding sites between the title molecule and the 5-HT2C receptor (Peng et al., 2018). 6BQH is a serotonin receptor, which can be efficient for designing drugs to treat ailments.
such as anxiety, aggression, sleep disorders, and other psychological diseases. The three-dimensional structure of 6BQH was taken from the Protein Data Bank (PDB). Before the docking calculations, the receptor must be prepared for efficient insertion. For this reason, all water and ligand molecules were cleared on receptor active sites. According to these active sites, grid box dimensions were defined as $100 \times 80 \times 110 \, \AA$. In addition, x, y, z centres were adjusted to be $-40.569, 33.142, 45.392$, respectively, and then the 5-HT2C receptor was saved in PDBQT format for the calculations. In the next step, rotatable angles for the coupling structure were determined and recorded in PDBQT format. Discovery Studio Visualizer (Biovia, 2017) was used for observations and preparations. All docking calculations were calculated with AutoDockVina. Twenty variable links were decided by AutoDockVina for the ligands connected to the receptor of the protein. The best affinity energy was observed in the first calculation, which is $-6.2 \text{ kcal mol}^{-1}$. The bonding type of interaction is represented in Fig. 3. The 2D and 3D visuals of the intermolecular interactions for the best binding pose of the title compound docked into macromolecule 6BQH can be seen in Fig. 4. In addition, docking conformation can be seen in Fig. 5. Consequently, the title compound could be a possible molecule for drug design to treat psychological disorders, because its ability is suitable to stick to active sites of the receptor.

6. Synthesis and crystallization

Hydrazine hydrate (0.013 g, 0.24 mmol) was added dropwise to a solution of ethyl 2-(4-formylphenoxy)acetate (0.5 g, 0.48 mmol) in ethanol (20 ml), and the mixture was refluxed for 4 h. After cooling, the solvent was removed under reduced pressure, and the residue was purified by recrystallization from ethanol to afford single crystals (yield 80%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically and refined using a riding model with C−H = 0.93–0.97 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms, and $U_{iso}(H) = 1.2U_{eq}(C)$ for all other H atoms. The crystal studied was refined as a two-component inversion twin, but the absolute structure was indeterminate.

Acknowledgements

Author contributions are as follows. Conceptualization, SD, SK, and KK; synthesis, SD and KK; writing (review and editing of the manuscript) SD, SK, FAA and KK; formal analysis, SD, KK and NB; crystal-structure determination, KK, SK and ND; validation, KK, ES and NB; project administration, KK, SD, ES and SK; molecular docking, FAA.
Table 2
Experimental details.

Crystal data	Chemical formula	C_{22}H_{24}N_{2}O_{6}
M, (g/mol)	412.43	
Crystal system, space group	Orthorhombic, P2_2_2;	
Temperature (K)	296	
a, b, c (Å)	8.1864 (4), 9.2061 (5), 27.7903 (18)	
V (Å³)	2094.4 (2)	
No. of measured, independent and observed [I > 2σ(I)] reflections	0.945, 0.979	
No. of parameters	254	
No. of reflections	4091	2453
R_{int}	0.037	
(sin θ/λ)_{max} (Å\(^{-1}\))	0.617	
R[F^2 > 2σ(F^2)], wR(F^2), S	0.073, 0.246, 1.01	
No. of reflections	4091	
No. of parameters	254	
H-atom treatment	H-atom parameters constrained	
Δρ_{max}, Δρ_{min} (e Å\(^{-3}\))	0.50, −0.67	
Absolute structure	Refined as an inversion twin, but the absolute structure was indeterminate	

Absolute structure parameter −1 (4)

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), SHELXT2016/1 (Sheldrick, 2016a), SHELXL2017/1 (Sheldrick, 2016b), PLATON (Spek, 2020) and WinGX (Farrugia, 2012).

Funding information

Funding for this research was provided by Ondokuz Mayıs University under Project No. PYO-FEN.1906.19.001.

References

Baolin, L., Jian, G., Xiquan, Z., Yitian, L. & Huaiming, H. (2007). Z. Naturforsch. B: Chem. Sci. 62, 244–248.

Biovia (2017). Discovery Studio Visualizer. Vol. 936. Biovia, San Diego, CA, USA.

El Arrouji, S., Karrouchi, K., Berisha, A., Alaoui, K. I., Warad, L., Rais, Z., Radi, S., Taleb, M., Ansar, M. & Zarrouk, A. (2020). Colloids Surf. A Physicochem. Eng. Asp. 604, 125325.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Fun, H.-K., Quah, C. K., Aich, K., Das, S. & Goswami, S. (2013). Acta Cryst. E69, o502.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

Kansiz, S., Tatilid, D., Dege, N., Aktas, F. A., Al-Asbahy, S. O. M. & Alaman Agar, A. (2021). Acta Cryst. E77, 658–662.

Karrouchi, K., Chemlal, L., Tioufik, J., Cherrah, Y., Radi, S., El Abbès Faouzi, M. & Ansar, M. (2016). Annales Pharmaceutiques Françaises, 74, 431–438.

Karrouchi, K., Fettach, S., Tamir, O., Avci, D., Başoğlu, A., Atalay, Y., Ayaz, Z., Radi, S., Ghabbour, H. A., Makbhot, Y. N., Faouzi, M. E. A. & Ansar, M. (2022). J. Mol. Struct. 1248, 131506.

Liu, X. (2014). Acta Cryst. E70, o51.

Maaref, H., Sheikhlosseini, E., Foroughi, M. M., Akhgar, M. R. & Jahani, S. (2020). Appl. Organomet. Chem. 34, e5557.

Manawar, R. B., Mantora, M. J., Shah, M. K., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E76, 53–61.

Murtaza, G., Muntaz, A., Khan, F. A., Ahmad, S., Azhar, S., Khan, S. A., Najam-ul-Haq, M., Atif, M., Khan, S. A., Maalik, A., Azhar, S. & Murtaza, G. (2014). Acta Pol. Pharm. 71, 531–535.

Peng, Y., McCorvy, J. D., Harpsøe, K., Lønssen, K., Yuan, S., Popov, P., Qu, L., Pu, M., Che, T., Nikolajsen, L. F., Huang, X.-P., Wu, Y., Shen, L., Bjarne-Yoshimoto, W. E., Ding, K., Wacker, D., Han, G. W., Cheng, J., Katrič, V., Jensen, A. A., Hanson, M. A., Zhao, S., Gloriam, D. E., Roth, B. L., Stevens, R. C. & Liu, Z.-J. (2018). Cell, 172, 719–730.

Rana, K., Pandurangan, A., Singh, N. & Tiwari, A. K. (2012). Int. J. Curr. Pharm. Res. 4, 5–11.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Spek, A. L. (2020). Acta Cryst. E76, 1–11.

Stoe & Cie GmbH, Darmstadt, Germany.

Thamothanar, S., Parthasarathi, V., Sunagar, V., Badami, B. & Schenk, K. J. (2003). Acta Cryst. E59, o1272–o1274.

Trott, O. & Olson, A. J. (2010). J. Comput. Chem. 31, 455–461.

Wallner, F. K., Spjut, S., Bostro¨ m, D. & Elofsson, M. (2007). Org. Biomol. Chem. 5, 2464–2471.

Xu, G., Wang, J., Si, G., Wang, M., Wu, B. & Zhou, S. (2015). Dyes Pigments, 123, 267–273.

Yang, Z. H., Wang, L. X., Zhou, Z. H., Zhou, Q. L. & Tang, C. C. (2001). Tetrahedron Asymmetry, 12, 1579–1582.
Crystal structure and molecular docking study of diethyl 2,2'-([(1E,1' E)-(hydrazine-1,2-diylidene)bis(methanylylidene)]bis(4,1-phenylene))bis(oxy))diacetate

Said Daoui, Sevgi Kansiz, Feyzi Alkim Aktas, Necmi Dege, Eiad Saif, Noureddine Benchat and Khalid Karrouchi

Computing details

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

Diethyl 2,2'-([(1E,1' E)-(hydrazine-1,2-diylidene)bis(methanylylidene)]bis(4,1-phenylene))bis(oxy))diacetate

Crystal data

C22H24N2O6
Mr = 412.43
Orthorhombic, P212121
a = 8.1864 (4) Å
b = 9.2061 (5) Å
c = 27.7903 (18) Å
V = 2094.4 (2) Å³
Z = 4
F(000) = 872

Dₐ = 1.308 Mg m⁻³
Mo Ka radiation, λ = 0.71073 Å
Cell parameters from 9754 reflections
θ = 2.2°-27.8°
µ = 0.10 mm⁻¹
T = 296 K
Prism, colorless
0.68 x 0.44 x 0.22 mm

Data collection

Stoe IPDS 2
diffractometer
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-focus
Detector resolution: 6.67 pixels mm⁻¹
rotation method scans
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
Tmin = 0.945, Tmax = 0.979
11156 measured reflections
4091 independent reflections
2453 reflections with I > 2σ(I)
Rint = 0.037
θmax = 26.0°, θmin = 2.3°
h = −8→10
k = −11→11
l = −27→34

Refinement

Refinement on F²
Least-squares matrix: full
R[F² > 2σ(F²)] = 0.073
wR(F²) = 0.246
S = 1.00
4091 reflections
254 parameters
2 restraints
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

\[w = \frac{1}{\sigma^2(F_o^2) + (0.1576P)^2} \]

where \(P = (F_o^2 + 2F_c^2)/3 \)

\((\Delta\sigma)_{\text{max}} < 0.001 \)

\[\Delta \rho_{\text{max}} = 0.50 \text{ e Å}^{-3} \]

\[\Delta \rho_{\text{min}} = -0.67 \text{ e Å}^{-3} \]

Absolute structure: Refined as an inversion twin

Absolute structure parameter: \(-1 (4)\)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso #/Ueq		
O6	0.4659 (6)	−0.4221 (5)	−0.88303 (18)	0.0861 (14)		
O3	−0.9934 (5)	−0.3444 (5)	−0.61477 (18)	0.0815 (13)		
N2	−0.1980 (6)	−0.3968 (4)	−0.76468 (19)	0.0658 (12)		
O2	−1.2412 (6)	−0.2842 (6)	−0.5611 (2)	0.0968 (15)		
N1	−0.3161 (6)	−0.3494 (5)	−0.73078 (19)	0.0671 (13)		
O4	0.7008 (8)	−0.4943 (6)	−0.9435 (2)	0.122 (2)		
O5	0.8443 (9)	−0.2982 (8)	−0.9259 (3)	0.145 (2)		
O1	−1.3702 (7)	−0.4910 (7)	−0.5761 (2)	0.123 (2)		
C19	0.0707 (7)	−0.3464 (5)	−0.61495 (2)	0.0587 (13)		
C8	−0.5825 (7)	−0.4041 (5)	−0.7005 (2)	0.0590 (13)		
C3	−1.2583 (9)	−0.4068 (9)	−0.5824 (3)	0.090 (2)		
C5	−0.8617 (7)	−0.3742 (6)	−0.6434 (2)	0.0659 (15)		
C16	0.3406 (8)	−0.3906 (6)	−0.8529 (2)	0.0656 (15)		
C11	−0.4446 (7)	−0.4275 (5)	−0.7311 (2)	0.0618 (14)		
H11	−0.448969	−0.504718	−0.752671	0.074*		
C9	−0.7122 (7)	−0.5040 (6)	−0.7029 (2)	0.0689 (15)		
H9	−0.705537	−0.581369	−0.724270	0.083*		
C18	0.2009 (7)	−0.2516 (5)	−0.7937 (2)	0.0665 (15)		
H18	0.198036	−0.172160	−0.773028	0.079*		
C17	0.3358 (7)	−0.2717 (6)	−0.8230 (2)	0.0677 (15)		
H17	0.421932	−0.205814	−0.822424	0.081*		
C10	−0.8487 (7)	−0.4902 (6)	−0.6743 (2)	0.0677 (15)		
H10	−0.931717	−0.558927	−0.675966	0.081*		
C22	−0.0682 (7)	−0.3205 (5)	−0.7625 (2)	0.0617 (14)		
H22	−0.061751	−0.246143	−0.739922	0.074*		
C20	0.0776 (9)	−0.4663 (5)	−0.8255 (2)	0.0710 (16)		
H20	−0.009621	−0.530867	−0.827039	0.085*		
C6	−0.7324 (8)	−0.2740 (6)	−0.6404 (2)	0.0764 (17)		
H6	−0.739197	−0.196246	−0.619141	0.092*		
C21	0.2131 (8)	−0.4884 (6)	−0.8537 (2)	0.0756 (17)		
H21	0.218970	−0.569887	−0.873361	0.091*		
C4	−1.1264 (9)	−0.4449 (8)	−0.6175 (3)	0.0857 (19)		
H4A	−1.086821	−0.542135	−0.610821	0.103*		
H4B	−1.171001	−0.444297	−0.649865	0.103*		
Atom	X	Y	Z	U11	U22	U33
------	----------	----------	----------	---------	---------	---------
C7	-0.5976	-0.2901	-0.6684	0.0711		
H7	-0.5133	-0.2227	-0.6659	0.085*		
C14	0.7176	-0.3829	-0.9207	0.0848		
C15	0.6016	-0.3258	-0.8849	0.0785		
H15A	0.6535	-0.3200	-0.8535	0.094*		
H15B	0.5658	-0.2924	-0.8940	0.094*		
C12	0.9676	-0.3616	-0.9585	0.145		
H12A	1.0240	-0.4405	-0.9424	0.175*		
H12B	0.9145	-0.4001	-0.9869	0.175*		
C13	1.0808	-0.2527	-0.9718	0.145		
H13A	1.1612	-0.2935	-0.9930	0.218*		
H13B	1.0244	-0.1752	-0.9879	0.218*		
H13C	1.1336	-0.2156	-0.9435	0.218*		
C2	-1.3727	-0.2480	-0.5256	0.139		
H2A	-1.3819	-0.3237	-0.5014	0.167*		
H2B	-1.4771	-0.2374	-0.5416	0.167*		
C1	-1.3215	-0.1070	-0.5029	0.139		
H1A	-1.4015	-0.0779	-0.4795	0.209*		
H1B	-1.2177	-0.1193	-0.4873	0.209*		
H1C	-1.3123	-0.0337	-0.5273	0.209*		

Atomic displacement parameters (Å²)

Atom	U11	U22	U33	U12	U13	U23
O6	0.080	0.089	0.089	0.000	0.019	-0.013
O3	0.069	0.093	0.082	-0.014	0.010	-0.004
N2	0.066	0.055	0.076	0.001	-0.002	-0.001
O2	0.077	0.097	0.117	0.014	0.032	0.019
N1	0.063	0.063	0.076	0.001	0.005	0.000
O4	0.132	0.109	0.124	0.004	0.050	-0.017
O5	0.118	0.160	0.159	-0.008	0.057	-0.021
O1	0.091	0.144	0.133	-0.035	0.027	0.004
C19	0.060	0.051	0.065	0.004	-0.002	0.002
C8	0.059	0.054	0.064	0.003	-0.005	0.004
C3	0.071	0.096	0.102	-0.003	-0.002	0.034
C5	0.056	0.071	0.071	0.003	0.004	0.008
C16	0.068	0.063	0.066	0.002	0.002	-0.001
C11	0.066	0.052	0.067	0.005	-0.010	0.004
C9	0.064	0.064	0.079	-0.005	-0.006	-0.008
C18	0.062	0.056	0.078	0.006	0.001	-0.005
C17	0.064	0.063	0.077	-0.002	-0.004	-0.003
C10	0.061	0.064	0.078	-0.016	-0.001	-0.007
C22	0.062	0.047	0.076	-0.002	-0.002	-0.003
C20	0.075	0.056	0.082	-0.006	-0.001	-0.001
C6	0.075	0.069	0.085	-0.003	0.002	-0.018
C21	0.082	0.062	0.083	-0.006	0.009	-0.015
C4	0.079	0.099	0.079	-0.018	0.004	0.007
C7	0.064	0.060	0.089	-0.007	-0.007	-0.004
Geometric parameters (Å, °)

Bond	Distance	Angle	
O6—C16	1.355 (7)	C18—H18	0.9300
O6—C15	1.422 (8)	C17—H17	0.9300
O3—C5	1.367 (7)	C10—H10	0.9300
O3—C4	1.432 (8)	C22—H22	0.9300
N2—C22	1.275 (7)	C20—C21	1.372 (9)
N2—N1	1.419 (7)	C20—H20	0.9300
O2—C3	1.282 (9)	C6—C7	1.359 (9)
O2—C2	1.497 (10)	C6—H6	0.9300
N1—C11	1.274 (7)	C21—H21	0.9300
O4—C14	1.212 (8)	C4—H4A	0.9700
O5—C14	1.306 (9)	C4—H4B	0.9700
O5—C12	1.477 (10)	C7—H7	0.9300
O1—C3	1.213 (8)	C14—C15	1.474 (9)
C19—C18	1.378 (7)	C15—H15A	0.9700
C19—C20	1.403 (8)	C15—H15B	0.9700
C19—C22	1.463 (8)	C12—C13	1.415 (10)
C8—C7	1.382 (8)	C12—H12A	0.9700
C8—C9	1.406 (8)	C12—H12B	0.9700
C8—C11	1.431 (8)	C13—H13A	0.9600
C3—C4	1.498 (10)	C13—H13B	0.9600
C5—C10	1.375 (8)	C13—H13C	0.9600
C5—C6	1.407 (8)	C2—C1	1.502 (10)
C16—C17	1.375 (8)	C2—H2A	0.9700
C16—C21	1.379 (8)	C2—H2B	0.9700
C11—H11	0.9300	C1—H1A	0.9600
C9—C10	1.376 (8)	C1—H1B	0.9600
C9—H9	0.9300	C1—H1C	0.9600
C18—C17	1.385 (8)		

Bond	Distance	Angle	
C16—O6—C15	118.7 (5)	C20—C21—C16	120.4 (5)
C5—O3—C4	116.0 (5)	C20—C21—H21	119.8
C22—N2—N1	111.5 (5)	C16—C21—H21	119.8
C3—O2—C2	114.9 (6)	O3—C4—C3	111.2 (6)
C11—N1—N2	112.6 (4)	O3—C4—H4A	109.4
C14—O5—C12	112.0 (7)	C3—C4—H4A	109.4
C18—C19—C20	118.5 (5)	O3—C4—H4B	109.4
C18—C19—C22	119.3 (5)	C3—C4—H4B	109.4
C20—C19—C22	122.2 (5)	H4A—C4—H4B	108.0
C7—C8—C9	117.4 (6)	C6—C7—C8	121.6 (6)
Bond	Length (Å)	Bond	Length (Å)
--------------------------	------------	--------------------------	------------
C7—C8—C11	1.246 (5)	C6—C7—H7	1.192
C9—C8—C11	1.280 (5)	C8—C7—H7	1.192
O1—C3—O2	1.025 (8)	O4—C14—O5	1.122 (6)
O1—C3—C4	1.202 (8)	O4—C14—C15	1.125 (7)
O2—C3—C4	1.154 (6)	O5—C14—C15	0.1119 (6)
O3—C5—C10	1.255 (5)	O6—C15—C14	1.078 (6)
O3—C5—C6	1.153 (5)	O6—C15—H15A	1.101
C10—C5—C6	1.192 (6)	C14—C15—H15A	1.101
O6—C16—C17	1.244 (6)	O6—C15—H15B	1.101
O6—C16—C21	1.195 (5)	C14—C15—H15B	1.101
C17—C16—C21	1.200 (6)	H15A—C15—H15B	1.085
N1—C11—C8	1.242 (5)	C13—C12—O5	1.1092 (8)
N1—C11—H11	1.179	C13—C12—H12A	1.098
C8—C11—H11	1.179	O5—C12—H12A	1.098
C10—C9—C8	1.217 (5)	C13—C12—H12B	1.098
C10—C9—H9	1.191	O5—C12—H12B	1.098
C8—C9—H9	1.191	H12A—C12—H12B	1.083
C19—C18—C17	1.216 (5)	C12+C13—H13A	1.095
C19—C18—H18	1.192	C12+C13—H13B	1.095
C17—C18—H18	1.192	H13A—C13—H13B	1.095
C16—C17—C18	1.190 (6)	C12+C13—H13C	1.095
C16—C17—H17	1.205	H13A—C13—H13C	1.095
C18—C17—H17	1.205	H13B—C13—H13C	1.095
C5—C10—C9	1.197 (5)	O2—C2—C1	1.055 (8)
C5—C10—H10	1.202	O2—C2—H2A	1.106
C9—C10—H10	1.202	C1—C2—H2A	1.106
N2—C22—C19	1.220 (5)	O2—C2—H2B	1.106
N2—C22—H22	1.190	C1—C2—H2B	1.106
C19—C22—H22	1.190	H2A—C2—H2B	1.088
C21—C20—C19	1.200 (6)	C2—C1—H1A	1.095
C21—C20—H20	1.200	C2—C1—H1B	1.095
C19—C20—H20	1.200	H1A—C1—H1B	1.095
C7—C6—C5	1.204 (5)	C2—C1—H1C	1.095
C7—C6—H6	1.198	H1A—C1—H1C	1.095
C5—C6—H6	1.198	H1B—C1—H1C	1.095

C22—N2—N1—C11 -1.177.6 (5) **C20—C19—C22—N2** -0.075 (8)

C2—O2—C3—O1 0.7 (11) **C18—C19—C20—C21** 1.1 (8)

C2—O2—C3—C4 -1.179.3 (7) **C22—C19—C20—C21** -1.177.9 (6)

C4—O3—C5—C10 0.8 (9) **O3—C5—C6—C7** -1.177.8 (6)

C4—O3—C5—C6 1.179.7 (5) **C10—C5—C6—C7** 1.12 (9)

C15—O6—C16—C17 -1.0 (9) **C19—C20—C21—C16** -2.3 (9)

C15—O6—C16—C21 1.179.3 (5) **O6—C16—C21—C20** -1.178.5 (6)

N2—N1—C11—C8 1.179.8 (5) **C17—C16—C21—C20** 1.18 (9)

C7—C8—C11—N1 3.4 (9) **C5—O3—C4—C3** 1.176.2 (5)

C9—C8—C11—N1 -1.176.4 (5) **O1—C3—C4—O3** -1.171.2 (6)

C7—C8—C9—C10 -0.4 (8) **O2—C3—C4—O3** 8.8 (9)

C11—C8—C9—C10 1.179.4 (5) **C5—C6—C7—C8** 0.0 (10)
C20—C19—C18—C17 0.6 (8) C9—C8—C7—C6 −0.4 (9)
C22—C19—C18—C17 179.6 (5) C11—C8—C7—C6 179.8 (5)
O6—C16—C17—C18 −179.8 (5) C12—O5—C14—O4 −5.3 (13)
C21—C16—C17—C18 −0.1 (9) C12—O5—C14—C15 174.9 (8)
C19—C18—C17—C16 −1.1 (9) C16—O6—C15—C14 −178.8 (5)
O3—C5—C10—C9 176.9 (6) O4—C14—C15—O6 −1.8 (11)
C6—C5—C10—C9 −2.0 (9) O5—C14—C15—O6 178.0 (6)
C8—C9—C10—C5 1.6 (9) C14—O5—C12—C13 165.9 (10)
N1—N2—C22—C19 −178.9 (5) C3—O2—C2—C1 176.1 (8)
C18—C19—C22—N2 173.6 (5)

Hydrogen-bond geometry (Å, º)

D—H···A	D—H	H···A	D···A	D—H···A
C6—H6···O4'	0.93	2.57	3.483 (9)	169
C4—H4B···N1'	0.97	2.69	3.618 (10)	161

Symmetry codes: (i) −x, y+1/2, −z−3/2; (ii) x−1, y, z.