solid organ malignancies. The purpose of this study was to describe the spectrum of infections in patients with melanoma, renal cell carcinoma or non-small cell lung cancer receiving ICI.

Methods. Retrospective review of City of Hope patients with melanoma, renal cell carcinoma or non-small cell lung cancer on nivolumab, pembrolizumab, and/or ipilimumab from January to November 2017 and received two or more doses of ICI. Pt characteristics assessed: age, sex, prior chemotherapy, steroid use, and type of immuno-suppression for IRAE. Microbiology records were used to identify infections.

Results. Thirty-nine infectious episodes (35 bacterial, four viral) were identified among 111 patients. Four bacteremia (two S. aureus, coagulase-negative staphylococci, 1. S. aureus, 13 urinary tract (10 Gram-negative rods, 2 Gram-positive cocci), one intra-abdominal, eight skin and soft tissue infections (one S. aureus, one Actinomyces rading, one E. faecalis, and one E. cloacae). There were two probable viral pneumonias (two rhinovirus, two enteroviruses) and no fungal infections. Fourteen (12.6%) infections were defined as serious (requiring intravenous antimicrobials and/or hospitalization). There was no association between the specific malignancy or ICI used and risk of infection. Steroid use was significantly associated with serious infections: 12/14 (85.7%) vs. 27/95 (28.4%); P = 0.0003), and no patients had received infliximab or other immunosuppressant.

Conclusion. Bacterial infections were most common, and the only risk factor associated with serious infections in our study was steroid use. Type of ICI did not impact the rate of infection.

Disclosures. S. Dadwal, Ansun Biopharma: Investigator, Research grant.
Session: 151. Viruses and Bacteria in Immunocompromised Patients
Friday, October 5, 2018: 12:30 PM

Background. Non-meningococcal and nongonococcal Neisseria spp. are usually commensals of the oropharynx and urogenital tract and are not skin flora, the source of disease was usually commensal Neisseria spp. Healthcare professionals are encouraged to treat all Neisseria spp. isolated from sterile sites as pathogenic, and not as contaminants, in patients receiving chemotherapy.

Methods. The FDA Adverse Event Reporting System (FAERS) database and the medical literature were searched for cases of disease by any nongonococcal and nongonoccal Neisseria spp. in patients receiving chemotherapy. Included cases had a diagnosis of disease by any atypical Neisseria spp. with onset on or before January 31, 2018 and ≥1 dose of ceftazidim in the 3 months prior to disease.

Results. The search identified seven FAERS cases, including one case also reported in the literature. Patient ages ranged from 4 to 38 years. Five patients had positive blood cultures, of which three had an indwelling catheter for vascular access (n = 2, N. sicca/subflava) or hemodialysis (n = 1, N. cinerea). Two patients with bacterial meningitis had N. meningitidis septic shock with possible cholecystitis, and N. mucosa sepsis with concurrent Streptococcus bacteria after gastroenteritis. The remaining two cases in the series included one with N. sicca bacterial peritonitis associated with a peritoneal dialysis catheter (negative blood cultures, other cultures not specified), and one with a diagnosis of N. flavescens sepsis while neutropenic (specimen source not specified). All seven patients were hospitalized and three had sepsis or septic shock. All cases resolved with antibiotics and supportive care.

Conclusion. We identified seven cases of serious disease caused by atypical Neisseria spp. among chemotherapy recipients. Since these organisms are typical inhabitants of the oropharynx and urogenital tract and are not skin flora, the source of disease was usually commensal Neisseria spp. Our data suggest that ceftazidim may confer increased risk of disease, usually commensal Neisseria spp. Healthcare professionals are encouraged to treat all Neisseria spp. isolated from sterile sites as pathogenic, and not as contaminants, in patients receiving chemotherapy.

Disclosures. All authors: No reported disclosures.

1559. Hematopoietic Cell Transplantation with Post-transplant Cyclophosphamide: Impact of Donor Type on Pre-engraftment Blood-Stream Infections
Chiara Oltolini, MD; Raffaella Greco, MD; Laura Galli, MD; Francesca Lorenzino, MD; Elisabetta Zucchi, MD; Maria Teresa Lupi Stanghellini, MD; Daniela Clerici, MD; Fabio Giglio, MD; Jacopo Pegoratori, MD; Massimo Bernardi, MD; Consuelo Corti, MD; Paolo Scarpellini, MD; Antonella Castagna, Prof; and Fabio Ciceri, Prof; 2 Clinic of Infectious Diseases, IRCCS San Raffaele, Milan, Italy; 3 Hematology, IRCCS San Raffaele, Milan, Italy

Session: 151. Viruses and Bacteria in Immunocompromised Patients
Friday, October 5, 2018: 12:30 PM

Background. The aim of the study was to estimate the cumulative incidence of pre-engraftment blood stream infections (PE-BSI) and their predictors after hematopoietic cell transplantation (HCT) from any donor type, with post-transplant cyclophosphamide (PT-Cy).

Methods. Retrospective cohort study on 235 adults who underwent peripheral blood HCT from every donor type with PT-Cy platform, from 2013 to 2017 at San Raffaele Scientific Institute. The Poisson regression was used to estimate the crude incidence rate (IR) of PE-BSI. The Fine-Gray competing risk model was applied to estimate the cumulative incidence function (CIF) of the first PE-BSI and its predictive factors of IRM.

Results. Patients’ characteristics are reported in Table 1. During 5,316 person-days of follow-up (PDFU), 77 PE-BSI episodes occurred in 72 patients: IR = 1.45 (95% CI: 1.09–2.07). The estimated CIF at 28 days was 32% (95% CI: 26–39%). No differences in CIF according to donor type (30% vs. 34% vs. 32% for match-related, match-unrelated and haploidentical, respectively; Gray’s test: P = 0.106).

Conclusion. HCT with PT-Cy platform showed a 32% of cumulative incidence of PE-BSI at 28 days and donor type did not affect its occurrence, which was conversely increased by prolonged and severe neutropenia and MDR GNB rectal carriage before HCT. Haplotype setting did not retain a higher IRM at 30 days than match-related and match-unrelated donors.

Disclosures. All authors: No reported disclosures.

1560. Clinical Presentation of BK Virus-Associated Hemorrhagic Cystitis (HC) After Hematopoietic Cell Transplantation (HCT)
Hannah Imlay, MD; Hu Xie, MSc; Wendy Leisenring, ScD; Louise Kimball, PhD; Steven Fergam, MPH, FIDSA1; Ayit Limaye, MD, FIDSA1 and Michael Boechk, MD, PhD, FIDSA2; 1 Infectious Disease, University of Washington, Seattle, Washington; 2 Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington

Session: 151. Viruses and Bacteria in Immunocompromised Patients
Friday, October 5, 2018: 12:30 PM

Background. BK polyoma virus (BKV) has been associated with hemorrhagic cystitis (HC) after HCT. Prior studies have examined risk factors for BKPyV-associated HC, but the characteristics of disease, including duration, common presentations, and the spectrum of clinical outcomes, have not been well described. Precise estimates of major clinical endpoints are critical to design clinical trials of novel prevention and treatment agents.

Table 1: Characteristics of patients with BK Virus-Associated Hemorrhagic Cystitis after Hematopoietic Cell Transplantation

Characteristic	Match-Related (n=51)	Match-Unrelated (n=20)	Haploidentical (n=30)	p-value
Age	54 (25–77)	53 (22–83)	56 (23–85)	0.823
Gender	40 (78%)	10 (50%)	23 (77%)	0.086
Year of HCT	2015 (19%)	2015 (20%)	2015 (83%)	0.003
CMV 500 for > 30 days before HCT	4 (8%)	1 (5%)	0 (0%)	0.008
MDX Graft versus Host	1 (2%)	1 (5%)	0 (0%)	0.671
Kaplan-Meier Survival (5 years)	1 (5%)	1 (5%)	2 (7%)	0.215
Type of donor	Match-related	Match-unrelated	Haploidentical	
	51	20	30	
	1 (100%)	1 (50%)	3 (100%)	
	1 (100%)	2 (100%)	3 (100%)	
	1 (100%)	1 (50%)	3 (100%)	
	1 (100%)	1 (50%)	3 (100%)	
	1 (100%)	1 (50%)	3 (100%)	
	1 (100%)	1 (50%)	3 (100%)	
	1 (100%)	1 (50%)	3 (100%)	
	1 (100%)	1 (50%)	3 (100%)	
	1 (100%)	1 (50%)	3 (100%)	
	1 (100%)	1 (50%)	3 (100%)	
	1 (100%)	1 (50%)	3 (100%)	
	1 (100%)	1 (50%)	3 (100%)	
	1 (100%)	1 (50%)	3 (100%)	
	1 (100%)	1 (50%)	3 (100%)	
	1 (100%)	1 (50%)	3 (100%)	

Disclosures. All authors: No reported disclosures.

References:
1. Neisseria sicca, Neisseria subflava, Neisseria meningitidis, Neisseria flavescens, Neisseria cinerea, Neisseria mucosa, Neisseria sicca. Healthcare professionals are encouraged to treat all Neisseria spp. isolated from sterile sites as pathogenic, and not as contaminants, in patients receiving chemotherapy.

The incidence of BKV-associated HC has been estimated in patients receiving HCT from any donor type with PT-Cy platform, from 2013 to 2017 at San Raffaele Scientific Institute. The Poisson regression was used to estimate the crude incidence rate (IR) of PE-BSI. The Fine-Gray competing risk model was applied to estimate the cumulative incidence function (CIF) of the first PE-BSI and its predictive factors of IRM.