Nitro-fatty acid inhibition of triple-negative breast cancer cell viability, migration, invasion, and tumor growth

Received for publication, August 30, 2017, and in revised form, November 5, 2017. Published, Papers in Press, November 20, 2017, DOI 10.1074/jbc.M117.813468

Chen-Shan Chen Woodcock1,3, Yi Huang2,51, Steven R. Woodcock1, Sonia R. Salvatore6, Bhupinder Singh7, Franca Golin-Bisello8, Nancy E. Davidson9, Carola A. Neumann15, Bruce A. Freeman15, and Stacy G. Wendell13

From the 1Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, the 2Women’s Cancer Research Center of the UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232, and the 3Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington, Seattle, Washington 98109

Edited by Alex Toker

Triple-negative breast cancer (TNBC) comprises ~20% of all breast cancers and is the most aggressive mammary cancer subtype. Devoid of the estrogen and progesterone receptors, along with the receptor tyrosine kinase ERB2 (HER2), that define most mammary cancers, there are no targeted therapies for patients with TNBC. This, combined with a high metastatic rate and a lower 5-year survival rate than for other breast cancer phenotypes, means there is significant unmet need for new therapeutic strategies. Herein, the anti-neoplastic effects of the electrophilic fatty acid nitroalkene derivative, 10-nitro-octadec-9-enoic acid (nitro-oleic acid, NO\textsubscript{2}-OA), were investigated in multiple pre-clinical models of TNBC. NO\textsubscript{2}-OA reduced TNBC cell growth and viability in vitro, attenuated TNFα-induced TNBC cell migration and invasion, and inhibited the tumor growth of MDA-MB-231 TNBC cell xenografts in the mammary fat pads of female nude mice. The up-regulation of these aggressive tumor cell growth, migration, and invasion phenotypes is mediated in part by the constitutive activation of pro-inflammatory nuclear factor \(\kappa\)B (NF-\(\kappa\)B) signaling in TNBC. NO\textsubscript{2}-OA inhibited TNFα-induced NF-\(\kappa\)B transcriptional activity in human TNBC cells and suppressed downstream NF-\(\kappa\)B target gene expression, including the metastasis-related proteins intercellular adhesion molecule-1 and urokinase-type plasminogen activator. The mechanisms accounting for NF-\(\kappa\)B signaling inhibition by NO\textsubscript{2}-OA in TNBC cells were multifaced, as NO\textsubscript{2}-OA (a) inhibited the inhibitor of NF-\(\kappa\)B subunit kinase \(\beta\) phosphorylation and downstream inhibitor of NF-\(\kappa\)B degrada-\(\text{tion}, (b) alkylated the NF-\(\kappa\)B RelA protein to prevent DNA binding, and (c) promoted RelA polyubiquitination and proteasomal degradation. Comparisons with non-tumorigenic human breast epithelial MCF-10A and MCF7 cells revealed that NO\textsubscript{2}-OA more selectively inhibited TNBC function. This was attributed to more facile mechanisms for maintaining redox homeostasis in normal breast epithelium, including a more favorable thiol/disulfide balance, greater extents of multidrug resistance protein-1 (MRP1) expression, and greater MRP1-mediated efflux of NO\textsubscript{2}-OA–glutathione conjugates. These observations reveal that electrophilic fatty acid nitroalkenes react with more alkyla\textsuperscript{tion-sensitive targets in TNBC cells to inhibit growth and viability.

Triple-negative breast cancer (TNBC)4 is characterized by an absence of estrogen receptor (ER), progesterone receptor, and human epidermal growth factor receptor-2 (HER2) expression2,3. TNBC accounts for up to 20% of breast cancer incidence and is the subtype with the worst prognosis4. The majority of TNBC tumors are “basal-like,” with 5-year survival rates lower than for all other breast cancer phenotypes (~77% versus ~93%, respectively)3. TNBC patients are also at greater risk for relapse during the first 5 years post-chemotherapy. The recurrent tumors are more aggressive and invasive5,6, resulting in a life expectancy of 3–22 months after reappearance7,8. Consequently, there is an urgent unmet need for new therapeutic strategies for TNBC, beyond the limited options of standard chemotherapy, ionizing radiation, and surgery.

Activation of nuclear factor-\(\kappa\)B (NF-\(\kappa\)B) is strongly linked with TNBC development and progression9–11, with NF-\(\kappa\)B signaling constitutively activated in ER-negative breast cancer cell lines and primary tumors10–13. The inhibition of NF-\(\kappa\)B activation, induced by overexpression of the non-degradable inhibitor of NF-\(\kappa\)B (I\(\kappa\)B\alpha) superrepressor (Ser-32/36 mutants of I\(\kappa\)B\alpha), significantly inhibits the growth of several TNBC cell lines13. The pro-inflammatory cytokine TNFα also contributes significantly to this complex inflammatory microenvironment that promotes tumor progression. TNFα is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This article contains supporting Methods and Figs. S1–S10.

1 Both authors contributed equally to this work.

2 To whom correspondence may be addressed. E-mail: freerad@pitt.edu.

3 To whom correspondence may be addressed. E-mail: gstacy@pitt.edu.

This is an Open Access article under the CC BY license.

4 The abbreviations used are: TNBC, triple-negative breast cancer; ER, estrogen receptor; NO\textsubscript{2}-FA, electrophilic fatty acid nitroalkene derivatives; PTM, post-translational modification; IKK\(\beta\), inhibitor of NF-\(\kappa\)B subunit kinase \(\beta\); ICAM-1, intercellular adhesion molecule 1; uPA, urokinase-type plasminogen activator; OA, oleic acid; NO\textsubscript{2}-OA, 10-nitro-octadec-9-enoic acid; NO\textsubscript{2}-SA, nitro-stearate; CDDO, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid; FBS, fetal bovine serum; DMEM, Dulbecco’s modified Eagle’s medium; TNF, tumor necrosis factor; NF-\(\kappa\)B, nuclear factor-\(\kappa\)B; Bt, biotinylated; RLU, relative light units; NEM, N-ethylmaleimide; MRM, multiple-reaction monitoring; DP, declustering potential; CE, collision energy; qPCR, quantitative PCR.
activates tumor metastasis and invasion through NF-κB-mediated up-regulation of extracellular matrix degradation enzymes and adhesion molecule expression (14). Notably, a meta-analysis revealed that TNBC patients with elevated TNFα expression have an increased risk of tumor metastasis to distant organs (15). Thus, NF-κB activation and the downstream signaling actions of its pro-inflammatory mediators play a critical role in TNBC malignancy. This motivates the development of novel NF-κB inhibition strategies as a chemotherapeutic approach for countering metastatic TNBC.

Electrophilic fatty acid nitroalkene derivatives (NO2-FA) are endogenously formed by the acidic conditions of digestion and the complex redox milieu that is up-regulated during inflammation. These environments facilitate the reaction of the nitric oxide (NO) and nitrite (NO2−)-derived nitrating species nitrogen dioxide (NO2) (16) with biological targets, such as unsaturated fatty acids. Basal plasma and urinary NO2-FA concentrations in healthy humans range from 2 to 20 nM, with additional pools of NO2-FA present as (a) Michael addition products with the abundant biological nucleophiles present in tissues and fluids and (b) esterified species in complex neutral and polar lipids (17, 18). Tissue NO2-FA levels are affected by both dietary lipid and nitrogen oxide concentrations and during metabolic stress can rise to concentrations as high as 1 μM (19, 20).

The unique electrophilic character of fatty acid nitroalkene substituents promotes kinetically rapid and reversible Michael addition with nucleophilic Cys and, to a lesser extent, His residues of proteins (21, 22). This reversible protein adduction by fatty acid nitroalkenes decreases the potential for toxicity stemming from the accumulation of Schiff’s base and Michael addition products characteristic of other lipid electrophiles, such as α,β-unsaturated o xo (or keto) and cyclopentanone derivatives (21, 23, 24). Through transient post-translational modification (PTM) reactions with hyperreactive protein thiols, NO2-FA modulate signaling pathways involved in cell proliferation and inflammatory responses. This occurs as a result of the alkylation of functionally significant Cys residues in transcriptional regulatory proteins, including the Kelch-like ECH-associated protein-1 (Keap1) regulator of nuclear factor (erythroid-derived-2)-like 2 (Nrf2) signaling, the nuclear lipid receptor peroxisome proliferator–activated receptor (PPARγ), and NF-κB (25–27). Of relevance to the present study, NO2-FA inhibit NF-κB–mediated signaling in diverse cell and murine models of metabolic and inflammatory stress to cardiovascular, pulmonary, and renal systems (27–29).

NO2-FA specifically alkylate Cys-38 of the RelA subunit of NF-κB, a functionally significant, lipid electrophile-reactive thiol located in the DNA-binding domain of RelA. Redox-dependent PTMs of RelA Cys-38 inhibit DNA binding and downstream pro-inflammatory mediator gene expression (27). Current data indicate that other electrophilic species, such as the isothiocyanate derivative sulforaphane, mediate therapeutic actions in preclinical models of breast cancer (30, 31), thus motivating the present studies. Moreover, the pleiotropic signaling actions of NO2-FA include the activation of angiogenesis via up-regulation of HIF-1α signaling during hypoxia (32). Because these effects may potentially modulate cancer cell and tumor properties, it was important to test the impact of an electrophilic NO2-FA in both in vitro and in vivo models of an aggressive cancer phenotype, TNBC.

This study reports the inhibition of TNBC (MDA-MB-231 and MDA-MB-468) cell proliferation, invasion, and metastasis by a synthetic homolog of an endogenous electrophilic NO2-FA found in species ranging from plants to humans (10-nitro-octadec-9-enoic acid, termed nitro-oleic acid and NO2-OA). NO2-OA displayed lower cytotoxic and anti-proliferative effects on non-tumorigenic breast ductal epithelium (MCF-10A and MCF7) versus triple-negative human breast ductal epithelial cells, due to the more stable mechanisms for maintaining redox homeostasis in MCF-10A and MCF7 cells. NO2-OA also attenuated TNFα-induced TNBC cell migration and invasion via inhibition of NF-κB signaling. Two newly discovered mechanisms also accounted for NO2-OA inhibition of TNBC NF-κB transcriptional activity. First, NO2-OA alkylated the inhibitor of NF-κB subunit kinase β (IKKβ), leading to inhibition of its kinase activity and downstream IκBα phosphorylation. Second, NO2-OA alkylated NF-κB RelA protein, a reaction that not only inhibited DNA binding, but also promoted proteasomal RelA degradation. As a consequence, NO2-OA inhibited the expression of two NF-κB–regulated, TNFα-induced genes that are central to tumor metastasis, intercellular adhesion molecule-1 (ICAM-1) and urokinase-type plasminogen activator (uPA). Finally, in a nude mouse xenograft model, NO2-OA reduced the growth of established MDA-MB-231 tumors. In aggregate, these findings reveal that electrophilic NO2-FA can mediate chemotherapeutic actions in treating TNBC and possibly other inflammation-related cancers.

Results

NO2-OA inhibits TNBC cell growth and viability

The endogenously occurring lipid electrophile NO2-OA and its non-electrophilic control fatty acids (NO2-SA and OA) were evaluated for their impact on normal and cancerous breast ductal epithelial cell growth and signaling responses (Fig. 1A). To examine whether NO2-OA preferentially inhibited TNBC cell growth, Hoechst 33258 was used for counting non-tumorigenic breast epithelial cells (MCF-10A), an ER− breast cancer cell line (MCF7), and two TNBC cell lines (MDA-MB-231 and MDA-MB-468). Each cell line was treated with a range of NO2-OA concentrations (0–15 μM) for 48 h. NO2-OA significantly inhibited the growth of both TNBC cell lines but not ER+ or MCF-10A cells (Fig. 1, B, C, and D). The IC50 for NO2-OA was significantly greater for non-cancerous MCF-10A cells (7.7 ± 1.93 μM) and MCF7 (11.61 ± 3.59 μM), as opposed to TNBC MDA-MB-231 (2.7 ± 0.11 μM) and MDA-MB-468 (1.6 ± 0.11 μM) cells (Fig. 1E). In addition to preferential TNBC cell growth inhibition, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) detection of intact cell electron transfer mechanisms revealed that NO2-OA also significantly reduced the viability of both MDA-MB-231 and MDA-MB-468 cells, but not MCF7 or MCF-10A cells (Fig. S1, A–C). No cytotoxicity was detectable in any cell line for up to 24 h at the 5 μM NO2-OA concentrations typically used for subsequent cell signaling and functional studies that had durations ranging from 1 to 8 h. Non-electrophilic NO2-SA, structurally
related to NO₂-OA (Fig. 1A), did not affect TNBC cell growth (Fig. S2), affirming that NO₂-OA–mediated TNBC cell growth inhibition is attributable to the electrophilic nitroalkene moiety.

NO₂-OA reduces MDA-MB-231 xenograft tumor growth

Given that TNBC cell growth and viability are inhibited by NO₂-OA, the efficacy of NO₂-OA on tumor growth was examined in a murine xenograft model of TNBC. MDA-MB-231 cells were injected into the fourth inguinal mammary fat pad of 6-week-old female athymic nude mice. Oral gavage with NO₂-OA (7.5 mg/kg/day), NO₂-SA (7.5 mg/kg/day), or sesame oil (vehicle control) was initiated and continued for 4 weeks after the average tumor sizes reached between 50 and 100 mm³. There was significantly reduced tumor growth in the mice treated with NO₂-OA versus vehicle controls and NO₂-SA–treated mice at 27 days post-treatment (Fig. 1F). During the course of treatment, there was no weight loss in NO₂-OA-treated or control mice (Fig. S3). These results indicate that NO₂-OA mediates in vivo growth suppression of MDA-MB-231 cells with no overt toxic effects.

NO₂-OA induces cell cycle arrest and apoptotic cell death in TNBC cells

To determine whether the decreased cell numbers were due to NO₂-OA–induced cell cycle alterations, FACS analysis was performed. NO₂-OA significantly increased the percentage of cells at G₂/M phase and decreased the percentage of cells in G₀/G₁ upon 24-h treatment in MDA-MB-231 and MDA-MB-468 cells (Fig. 2, A and B). Notably, all cell cycle phase populations (G₀/G₁, S, and G₂/M) of MCF-10A cells were not affected by NO₂-OA (Fig. 2C). The cell cycle inhibition by NO₂-OA was
accompanied by an increase in p21 and a decrease in cyclin D1 protein expression in both MDA-MB-231 and MDA-MB-468 cells, but not MCF-10A cells (Fig. 2D). Consistent with the lack of an effect on cell growth and viability (Fig. S2), NO2-SA did not affect cell cycle populations or the expression of cell cycle–regulatory proteins in MCF-10A, MDA-MB-231, and MDA-MB-468 cells (Fig. 2D). The gene expression of cyclin D1 and p21 was also determined by quantitative RT-PCR. NO2-OA down-regulated cyclin D1 and up-regulated p21 gene expression after 24 h treatment of MDA-MB-231 and MDA-MB-468 cells treated with OA (7.5 μM), NO2-SA (7.5 μM), or NO2-OA (5 μM) for 24 h. E, immunoblot analysis of PARP-1 cleavage in MCF-10A, MDA-MB-231, and MDA-MB-468 cells treated with OA (7.5 μM), NO2-SA (7.5 μM), or NO2-OA (5 μM) for 24 h. F, immunoblot analysis of caspase-8 and caspase-9 cleavage in MDA-MB-231 and MDA-MB-468 cells treated with or without NO2-OA (5 μM) for 24 h. β-actin was used as loading control. Data in D–F are representative of three independent experiments.

NP2-OA treatment increased cleavage of caspase-8 and caspase-9 in both MDA-MB-231 and MDA-MB-468 cells, suggesting that NO2-OA induced apoptosis through both intrinsic (mitochondria-dependent) and extrinsic (death receptor-dependent) apoptotic signaling mechanisms in TNBC cells (Fig. 2F). In aggregate, these results confirm that NO2-OA selectively modulates cell cycle arrest and apoptosis in TNBC cells versus MCF-10A cells.

Extracellular NO2-OA–glutathione adduct efflux is linked with multidrug resistance protein-1 (MRP1) expression

In the intracellular compartment, GSH and its reactive Cys moiety is more abundant than protein thiols; thus, GSH and other low-molecular weight thiols are the primary targets for oxidation and alkylation by free radicals, oxidants, and electrophiles (33). In the case of NO2-OA, which readily diffuses and gains access to the intracellular compartment and subcellular organelle protein targets (26, 34), GSH conjugates (NO2-OA-SG) are formed that can be actively transported from cells by the GSH-conjugate efflux pump MRP1 (1). This phenomenon was further investigated by measuring concentrations of extracellular NO2-OA-SG in the media of MCF-10A, MDA-MB-231, and MDA-MB-468 cells after a 1-h treatment with 5 μM NO2-OA. There were significantly lower levels of NO2-OA-SG being exported into the media of both MDA-MB-231 and MDA-MB-468 cells, as opposed to that released by MCF-10A cells (Fig. 3A). This 4–5-fold difference in extracellular NO2-OA-SG levels produced by MCF-10A and TNBC cells prompted comparison of the relative extents of expression of MRP1 protein and the GSH and GSSG content of TNBC and
non-cancerous cell lines. Western blot analysis detected MRP1 protein expression in MCF-10A cells, but MRP1 was undetectable in both TNBC cell lines (Fig. 3B). MRP4 mRNA was detected at low levels in all three cell types, but protein expression was not evident by Western blotting (not shown).

MRP1 influences NO2-OA bioactivity in MCF-10A cells

Two strategies, use of the organic anion transport inhibitor probenecid, often used as an MRP inhibitor, and siRNA knockdown of MRP1, facilitated investigation of the role of MRP1 in...
are presented as mean

NO\textsubscript{2}-**OA inhibits breast cancer cell function**

Inflammatory stimuli, such as TNF\textalpha, induce responses in the tumor microenvironment that promote TNBC tumor metastasis and invasion (14). Because electrophilic NO**2**-FAs mediate anti-inflammatory signaling actions (27, 28), the impact of NO**2**-OA on TNF\textalpha-induced TNBC cell migration was evaluated. Boyden chamber migration analyses indicated that TNF\textalpha augmented migration of both MDA-MB-231 and MDA-MB-468 cells (Fig. 5A, images 3 and 8), compared with basal conditions (Fig. 5A, images 2 and 7). NO**2**-OA significantly inhibited both MDA-MB-231 and MDA-MB-468 cell migration induced by TNF\alpha (Fig. 5, A (images 4 and 9), B, and C). NO**2**-OA modestly inhibited the basal, non-stimulated migration of MDA-MB-231 and MDA-MB-468 cells (Fig. 5, B and C). Next, cells were placed in Transwell permeable supports coated with Matrigel for invasion assays to assess the potential effect of NO**2**-OA on the invasive phenotype of TNBC cells. TNF\textalpha-induced invasion was significantly inhibited by NO**2**-OA treatment of MDA-MB-468 cells, whereas the non-electrophilic control fatty acid (NO**2**-SA) displayed no significant effect on tumor cell invasion (Fig. 5D). The inhibitory actions of NO**2**-OA on MDA-MB-468 invasion were compared with cell responses to the NF-κB inhibitor JSH-23, which inhibits nuclear translocation of the RelA subunit (36). Similar to JSH-23, NO**2**-OA inhibited TNF\textalpha-induced invasion in MDA-MB-468 cells (Fig. 5D).

NO\textsubscript{2}-**OA inhibits TNFα-induced NF-κB transcriptional activity in TNBC cells**

The inhibition of MDA-MB-468 cell invasion by JSH-23 (Fig. 5D) suggests that NO**2**-OA may also inhibit TNF\textalpha-induced breast cancer cell mobility due to a capacity to inhibit NF-κB signaling. To test this concept, the effect of NO**2**-OA on TNF\textalpha-activated NF-κB transcriptional activity in TNBC cells was examined. MDA-MB-231 and MDA-MB-468 cells were transiently transfected with an NF-κB luciferase reporter plasmid and treated with 5 μM NO**2**-OA for 2 h, followed by activation with 20 ng/ml TNF\textalpha for 4 h. In addition to NO**2**-OA, the non-electrophilic lipid controls NO**2**-SA (5 μM) and OA (5 μM) were also examined. NO**2**-OA significantly inhibited NF-κB–dependent transcription of luciferase in both TNBC cell lines, compared with TNF\alpha alone, whereas NO**2**-SA and OA had no effect. Moreover, the extent of inhibition of NF-κB–dependent luciferase expression by NO**2**-OA was similar to that induced by the NF-κB inhibitor JSH-23 (20 μM; Fig. 6, A and B). These data indicate that the electrophilic reactivity of NO**2**-OA accounts for the inhibition of TNF\textalpha-induced NF-κB transcriptional activity in TNBC cells.

GSH and GSSG responses to NO\textsubscript{2}-**OA in MCF-10A cells versus TNBC cells**

LC-MS quantitation of GSH and GSSG from 0 to 12 h after treatment with 5 μM NO**2**-OA revealed that basal GSH levels in MCF-10A cells (19.3 ± 1.9 nmol/10⁶ cells) were 2-fold that of MDA-MB-231 (8.3 ± 0.8 nmol/10⁶ cells) and ~1.5-fold greater than MDA-MB-468 cells (12.9 ± 0.5 nmol/10⁶ cells) (Fig. 4A). GSSG levels (Fig. 4B) at time 0 were greater in MCF-10A cells, resulting in an initial GSH/GSSG ratio of 82 ± 16 compared with 653 ± 68 for MDA-MB-231 cells and 203 ± 163 in MDA-MB-468 cells. MCF-10A cells maintained the GSH/GSSG ratio over the first 6 h after NO**2**-OA treatment, whereas the GSH/GSSG ratio rapidly decreased in MDA-MB-231 and MDA-MB-468 cells due to decreased GSH concentrations. In aggregate, the data in Figs. 3 and 4 indicate that there will be a more extensive reaction expected between NO**2**-OA and cellular protein targets in TNBC cells because of the more favorable pharmacokinetics (greater intracellular concentration and longer t\textsubscript{1/2}) lent by the lower GSH concentrations and the suppression of NO**2**-OA-SG export by the MRP1-deficient TNBC cell phenotype. In MCF-10A cells, NO**2**-OA will be more readily glutathionylated and exported, thus limiting reactions with signaling pathway proteins.
NO2-OA inhibits breast cancer cell function

Figure 5. NO2-OA inhibits TNFα-induced TNBC cell migration and invasion. A, experimental schemes and representative images of crystal violet-stained migrating MDA-MB-231 or MDA-MB-468 cells. Cells (1 × 10^5) were placed in the upper chamber with serum-free medium under the indicated treatment conditions. Migrating cells were photographed using a light microscope at X100. B and C, quantitation of migrated cells from Fig. 4A was performed by solubilization of crystal violet and spectrophotometric analysis at A570 nm. The percentage of migrating cells in each treatment group was compared with numbers of migrating cells in the absence of TNFα stimulation (Serum Ctrl). *, p < 0.05 versus the absence of TNFα stimulation; **, p < 0.05 versus TNFα alone. D, to test the impact of NO2-OA on TNBC cell invasion, MDA-MB-468 cells were incubated in serum-free medium containing 20 ng/ml TNFα combined with NO2-OA (5 μM), NO2-SA (5 μM), or JSH-23 (10 μM), and then invasion was determined by the extent of cell migration through the Matrigel matrix toward a 5% FBS chemoattractant for 24 h. The percentage of invading cells in each treatment was relative to the number of migrating cells in the absence of TNFα stimulation. *, p < 0.05 versus TNFα alone n.s., not significant. Significance was determined by one-way analysis of variance followed by Tukey post hoc test. All data are mean ± S.D. (error bars).

NO2-OA inhibits NF-κB-regulated gene expression linked with TNBC tumor metastasis

Inhibition of NF-κB transcriptional activity by NO2-OA suggested that the expression of metastasis-related downstream target genes may be decreased. To investigate this, key NF-κB target genes were evaluated via RT² profiler PCR array analysis of MDA-MB-468 cells treated with NO2-OA (5 μM) for 24 h. The expression levels of NF-κB target genes that were regulated by NO2-OA were compared with untreated MDA-MB-468 cells as a control. Data revealed that treatment with NO2-OA decreased the mRNA expression of multiple NF-κB target genes, including ICAM-1 and uPA, two critical mediators of tumor progression and metastasis (Fig. 6C). TNFα induces the expression of both ICAM-1 and uPA in MDA-MB-231 cells (37, 38). To more directly examine whether NO2-OA suppressed TNFα-induced expression of ICAM-1 and uPA in TNBC cells, MDA-MD-231 or MDA-MD-468 cells were treated with 5 μM NO2-OA and 20 ng/ml TNFα. Simultaneous treatment with either NO2-OA or RelA siRNA led to suppression of TNFα-induced expression of ICAM-1 and uPA genes in TNBC cells (Fig. 6, D, E, G, and H). The impact of NO2-OA and RelA siRNA on RelA-dependent target gene expression was further evaluated by real-time qPCR (Fig. 6, F and I). RelA mRNA levels were suppressed by RelA siRNA treatment, but not NO2-OA. Both NO2-OA and RelA siRNA inhibited gene expression of TNFα-induced ICAM-1 and uPA gene expression via NF-κB-dependent mechanisms. To determine whether NO2-OA suppressed TNFα-induced pro-metastatic ICAM-1 and uPA gene expression during cell migration, transcript levels of ICAM-1 and uPA genes were evaluated in MDA-MB-468 cells being studied in Boyden chamber migration assays (Fig. 5C). Under these conditions, NO2-OA significantly inhibited TNFα-induced expression of ICAM-1 and uPA in migrating tumor cells (Fig. 56, A and B), again indicating that
NO$_2$-OA inhibited expression of NF-κB-regulated genes involved in metastasis.

NO$_2$-OA suppresses TNFα-induced IKKβ/IκBα signaling in TNBC

To better define mechanisms accounting for NO$_2$-OA inhibition of TNFα-activated NF-κB signaling, MDA-MB-231 or MDA-MB-468 cells were pretreated with NO$_2$-OA (5 μM) or the IKK inhibitor BAY11-7082 (10 μM) for 2 h before TNFα stimulation (20 ng/ml, 5 min). TNFα-induced IKKβ phosphorylation was diminished by both NO$_2$-OA and BAY11-7082 (Fig. 7A). Both NO$_2$-OA and BAY11-7082 also inhibited the degradation of IκBα following TNFα stimulation (20 ng/ml, 10 min; Fig. 7B). Moreover, decreased IκBα phosphorylation occurred in cells pretreated with NO$_2$-OA or BAY11-7082 and the proteasome inhibitor MG-132 (10 μM; Fig. 7C). This indicates that NO$_2$-OA suppresses TNFα-induced IKKβ phosphorylation and IκBα degradation, with these actions in turn inhibiting downstream NF-κB signaling in TNBC cells.

NO$_2$-OA alkylates IKKβ and RelA proteins

Cys-179, located in the activation loop of IKKβ, is a target for oxidation and electrophile alkylation reactions (39, 40). Because NO$_2$-OA suppresses TNFα-induced phosphorylation of IKKβ and IκBα in TNBC cells (Fig. 7A and C), the potential for NO$_2$-OA to alkylate IKKβ was investigated. Biotinylated
lipids (Bt-NO2-OA, Bt-NO2-SA, and Bt-OA) were synthesized (Fig. S7) to facilitate affinity capture–mediated measurement of NO2-OA and control fatty acid adduction of IKKβ/H9252. MDA-MB-231 or MDA-MB-468 cells were treated with 5 μM Bt-NO2-OA, Bt-NO2-SA, or Bt-OA for 2 h, and then all alkylated proteins were pulled down from whole-cell lysates using streptavidin-conjugated beads. Western blotting revealed that IKKβ was pulled down by Bt-NO2-OA, but not by non-electrophilic control fatty acids (Fig. 7D). Similarly, Bt-NO2-OA (but not control fatty acids) promoted the pull-down of RelA Cys-105 (Fig. 8A).

NO2-OA inhibits breast cancer cell function

NO2-OA inhibits LPS-induced NF-κB transcriptional activity, in part a consequence of the alkylation of RelA Cys-38 and inhibition of RelA DNA binding (27). LC-MS/MS proteomic analysis showed that RelA Cys-105 was also alkylated by NO2-OA (Fig. S8), with the functional significance of the NO2-OA alkylation of RelA Cys-105 undefined. In aggregate, Bt-NO2-OA promotes the pulldown of IKKβ and RelA, and direct proteomic analysis revealed the NO2-OA alkylation of RelA. These observations underscore that NO2-OA mediates PTMs that inhibit multiple facets of pro-inflammatory NF-κB signaling.

NO2-OA stimulates RelA protein proteasomal degradation

Proteolytic degradation of NF-κB contributes to the termination of its signaling. Thiol-alkylating and nitrosating agents induce the degradation of NF-κB subunit p50 via the PTM of Cys-62 in both HT29 and HCT116 tumor cell lines (41). Because NO2-OA covalently adducts RelA in both MDA-MB-
231 and MDA-MB-468 cells (Fig. 8A), the impact of NO2-OA PTMs on RelA protein stability was investigated. To validate this putative mechanism, we first examined whether endogenous RelA protein expression responded to NO2-OA. MDA-MB-231, MDA-MB-468, and MCF-10A cells were treated with 5 μM NO2-OA or control lipids (NO2-SA and OA) for 24 h. After cell lysis, biotinylated NO2-FAs with adducts were affinity-purified (AP) using streptavidin-agarose beads. Pulled-down RelA protein was then detected by immunoblotting (IB). RelA and control β-actin immunoblots from the same input lysates used for affinity purification are shown below the panel. B, endogenous RelA protein levels were detected by immunoblotting probed with anti-RelA antibody using β-actin as a loading control. The relative total RelA levels (normalized by total β-actin) compared with untreated controls were quantified. *, p < 0.05 versus untreated control. Significance was determined by one-way analysis of variance followed by Tukey post test. C, MDA-MB-231 or MDA-MB-468 cells were treated with vehicle (methanol), NO2-OA (5 μM), or NO2-SA (5 μM) for 6 h, and then cell lysates were harvested and immunoprecipitated (IP) by anti-RelA antibody followed by immunoblotting. Pulldown level of immunoprecipitated RelA proteins is shown below the panel.

Figure 8. NO2-OA alkylates and destabilizes NF-κB RelA protein in TNBC cells. A, MDA-MB-231 or MDA-MB-468 cells were treated with 5 μM Bt-NO2-OA, Bt-NO2-SA, or Bt-OA for 2 h. After cell lysis, biotinylated NO2-FAs with adducts were affinity-purified (AP) using streptavidin-agarose beads. Pulled-down RelA protein was then detected by immunoblotting (IB). RelA and control β-actin immunoblots from the same input lysates used for affinity purification are shown below the panel. B, endogenous RelA protein levels were detected by immunoblotting probed with anti-RelA antibody using β-actin as a loading control. The relative total RelA levels (normalized by total β-actin) compared with untreated controls were quantified. *, p < 0.05 versus untreated control. Significance was determined by one-way analysis of variance followed by Tukey post test. C, MDA-MB-231 or MDA-MB-468 cells were treated with vehicle (methanol), NO2-OA (5 μM), or NO2-SA (5 μM) for 6 h, and then cell lysates were harvested and immunoprecipitated (IP) by anti-RelA antibody followed by immunoblotting. Pulldown level of immunoprecipitated RelA proteins is shown below the panel.
NO$_2$-OA inhibits breast cancer cell function

not altered by NO$_2$-OA (Fig. S9). These data indicate that NO$_2$-OA impacts RelA protein stability via alkylation of RelA in TNBC cells. RelA is regulated by ubiquitin- and proteasome-dependent degradation signals that govern NF-κB activation (42–44). To determine whether RelA modification by NO$_2$-OA induced ubiquitination of endogenous RelA in TNBC cells, MDA-MB-231 or MDA-MB-468 cells were treated with 5 μm NO$_2$-OA or NO$_2$-SA for 5 h. RelA protein was immunoprecipitated, and its polyubiquitination was detected by anti-ubiquitin. NO$_2$-OA, but not NO$_2$-SA, promoted polyubiquitination of RelA in both TNBC cell lines (Fig. 8C). This indicates that NO$_2$-OA interacts with RelA and destabilizes RelA protein by promoting ubiquitination and proteasomal degradation in TNBC cells.

Discussion

Compared with other breast cancer phenotypes, TNBC is an aggressive subtype with a poor prognosis (3). Patients are 4 times more likely to show visceral metastases to the lung, liver, and brain within 5 years after diagnosis (45). Because TNBC does not respond to endocrine therapy or other more targeted chemotherapeutic agents, DNA damage–inducing strategies, such as ionizing radiation, cisplatin, and doxorubicin, remain mainstay treatments. Adverse systemic responses to DNA-damaged chemotherapeutic agents, including cardiac and renal toxicity, limit chemotherapy options because of cytotoxic effects on non-cancerous cells (46–48). Herein, NO$_2$-OA inhibited cultured TNBC cell viability, motility, and tumor cell proliferation–related signaling reactions to an extent where in vivo tumor growth in MDA-MB-231 xenografted mice was attenuated by oral administration of NO$_2$-OA. This initial observation motivates more detailed dose-timing, dose-response, and structure-function studies of nitroalkene-based drug candidates, with respect to effects on tumor growth and metastasis of multiple breast cancer phenotypes, both in vitro and in preclinical animal models.

At lower concentrations, there was selective cytotoxicity of NO$_2$-OA toward TNBC cells, compared with non-tumorigenic MCF-10A breast ductal epithelial cells. One significant explanation for this selectivity of action stemmed from the analysis of both basal GSH levels and the formation and fate of NO$_2$-OA-SG adducts in control and TNBC cells. Because of the abundance and reactivity of the GSH thiolate, GSH is a primary intracellular reaction target of endogenously generated and exogenously administered oxidants and electrophilic species (49). The rate of MRP1-mediated efflux of GSH-adducted electrophiles from cells is important, as it contributes to defining the net intracellular concentration, half-life, alternative reactions with target proteins, and thus the net cellular and tissue responses to lipid electrophiles (1, 50, 51). MRP1 was highly expressed in MCF-10A cells compared with TNBC cells, motivating the LC-MS/MS determination of extracellular NO$_2$-OA-SG levels in the media of NO$_2$-OA–treated MCF-10A versus MDA-MB-231 and MDA-MB-468 cells. Consistent with the relative extents of MRP1 expression, MCF-10A cells formed and exported 4–5-fold greater amounts of NO$_2$-OA-SG adducts into the extracellular compartment compared with TNBC cells (Fig. 3A). This more extensive export of NO$_2$-OA-SG by MCF-10A cells, relative to MDA-MB-231 and MDA-MB-468 cells, was also notable because basal GSH concentrations and the GSH/GSSG ratio of MCF-10A cells were more stable after treatment with NO$_2$-OA. In contrast, the GSH concentrations and GSH/GSSG ratio in MDA-MB-231 and MDA-MB-468 cells quickly decreased after treatment with NO$_2$-OA (Fig. 4). These results indicate that MRP1 export of NO$_2$-OA-SG and the more sufficient antioxidant capacity of the MCF10A cell line, as opposed to TNBC cells (52), plays a role in defining the vulnerability of TNBC cells to NO$_2$-OA signaling actions. Another electrophile, 2-cyano-3,12-di-oxooleana-1,9-dien-28-oic acid (CDDO), displays antitumor activity by inducing apoptosis in a variety of cancers. CDDO rapidly decreases mitochondrial GSH and induces increased generation of reactive species in pancreatic cancer cells (53, 54). In contrast, NO$_2$-OA did not significantly impact cellular rates of H$_2$O$_2$ production after both short-term and extended (6-h) treatment of TNBC cells, indicating that NO$_2$-OA inhibition of TNBC cell growth and viability are not due to induction of oxidative stress (Fig. S10).

When the MRP1 transport activity of MCF-10A cells was inhibited by the organic acid probenecid (55), a more TNBC-like phenotype was conferred in the context of sensitivity to NO$_2$-OA. For example, the impact of NO$_2$-OA on cell growth arrest and killing (Fig. 3, C and D), cell cycle arrest (cyclin D1, p21), and apoptosis-regulating mediators (PARP-1, caspase-3) all supported the concept that NO$_2$-OA signaling actions are enhanced in MRP1-depleted cells because of more favorable pharmacokinetics in the intracellular compartment. This affirms that the cellular concentrations of GSH, the reaction of GSH with NO$_2$-OA, and the subsequent MRP1 export of NO$_2$-OA-SG all influence downstream responses to NO$_2$-OA. It is possible that other mechanisms, yet to be described, are also responsible for this differentiation of breast epithelial cell responses.

Anti-proliferative actions of NO$_2$-OA on macrophages, vascular smooth muscle cells, and fibroblasts are observed in models of chronic vascular and pulmonary disease (56–61), but the impact of fatty acid nitroalkenes on cancer cell proliferation had not been considered. This motivated experimental consideration, because there are a limited number of reports suggesting that the up-regulation of Nrf2 signaling may result in intrinsic or acquired chemoresistance (62). In contrast, we observed the in vitro and in vivo inhibition of TNBC growth by NO$_2$-OA (Fig. 1, B–E). This growth inhibition of TNBC cells was the result of alterations in signaling responses that were specific to TNBC cells and not non-transformed MCF-10A cells. Increased p21 and decreased cyclin D1 expression (Fig. 2D) were observed, along with an increase in the sub-G$_1$ population of TNBC cells (Fig. 2, A–C). Two distinct pathways of apoptotic signaling were engaged by NO$_2$-OA in TNBC cells, initiated by both mitochondria-regulated (caspase-9 activation) and death receptor–regulated (caspase-8 activation; Fig. 2F) mechanisms. In aggregate, these data reveal that NO$_2$-OA displays pleiotropic anti-cancer properties via the inhibition of cell proliferation and induction of apoptosis in TNBC. At this point, more detailed mechanisms of NO$_2$-OA–induced apoptotic cell death remain to be defined; however, the electrophilic thiocyanate
sulforaphane also decreases Bcl-2 expression, activates cytochrome c release from the mitochondria, and increases FasL expression in TNBC cells (30). These actions imply that electrophilic fatty acid nitroalkene derivatives might mediate similar actions in the regulation of apoptosis.

The inhibition of NF-κB signaling by NO2-OA also limits TNBC cell migration and invasion. Pro-inflammatory cytokines, such as TNFα, enhance the metastatic potential of TNBC, with the up-regulation of TNFα expression and activity in TNBC patients strongly linked with tumor metastasis phenotype (63). TNFα stimulates the expression of the epithelial–mesenchymal transition and chemokine genes via the activation of AP-1 and NF-κB signaling in TNBC cells (14). Herein, NO2-OA significantly inhibited TNFα-induced TNBC cell migration and invasion (Fig. 5). Decreased expression of the pro-metastasis genes uPA and ICAM-1, via a decrease in NF-κB transcriptional activity, was also induced by NO2-OA (Fig. 6 (D and E) and Fig. S6 (A and B)). Consistent with this, electrophilic 15-deoxy-Δ12,14-prostaglandin J2, dithiolethione, and dimethyl fumarate also inhibit breast cancer cell migration (38, 64, 65). NO2-OA also limited the migration of MDA-MB-231 cells in the absence of TNFα induction (Fig. 5B). It is likely that NO2-OA inhibits cell mobility upon reaction with molecular targets in addition to NF-κB, because the electrophilic cyclopentenone 15-deoxy-Δ12,14-prostaglandin J2 also interferes with mammary cancer cell migration via inhibition of F-actin reorganization and focal adhesion disassembly (64). Additional studies are in progress to identify other metastasis-related protein targets and signaling pathways that could be impacted by NO2-OA-mediated alkylation reactions.

The proteolytic degradation of NF-κB subunits contribute to the termination of NF-κB activation. RelA protein is regulated by ubiquitin- and proteasome-dependent degradation signals that terminate NF-κB activation (42–44, 66). Thiol-alkylating and S-nitrosating agents also promote the degradation of the NF-κB subunit p50 via post-translational modification of Cys-62 in HT29 and HCT116 tumor cell lines (41). Thus, the NO2-OA alkylation of NF-κB RelA induces functional responses similar to other alkylation agents (41). Notably, the alkylation of RelA by NO2-OA induced an increase in RelA ubiquitination in TNBC cells, an effect not observed for non-electrophilic NO2-SA (Fig. 7D). PPARγ acts as an E3 ubiquitin ligase, inducing RelA protein ubiquitination and degradation via physically interacting with RelA protein. The PPARγ ligands troglitazone and pioglitazone increase PPARγ E3 ligase activity by promoting its interaction with RelA protein, in turn, decreasing RelA half-life (67). Because NO2-OA is a partial agonist of PPARγ (26), one can speculate that NO2-OA also activates PPARγ E3 ligase activity, thus further destabilizing RelA protein in TNBC.

The inhibition of NF-κB signaling represents a viable anti-cancer strategy, especially because the aberrant activation of NF-κB is closely linked with the development of diverse human cancers (68, 69). The immunomodulatory electrophilic dimethyl fumarate, approved by the Food and Drug Administration as an oral drug for treating multiple sclerosis, also inhibits NF-κB activity in breast cancer cells and inhibits TNBC cell proliferation (65). The present results, in which NO2-OA inhibited multiple TNBC cell functions (proliferation, survival, mobility, and invasion), imply that electrophilic lipid nitroalkene species may display promising utility as pleiotropic chemotherapeutic agents.

In summary, we report that the lipid electrophile NO2-OA impacts NF-κB signaling in TNBC at multiple levels, including the suppression of IKKβ phosphorylation, inhibition of IκBα degradation, and enhanced ubiquitination and proteasomal degradation of RelA. These actions in turn contribute to the inhibition of TNBC cell migration and invasion in vitro. TNBC cells are in part more sensitive to NO2-OA due to lower GSH concentrations and suppression of NO2-OA export as the NO2-OA-SG adduct, a consequence of lower MRP1 expression. This GSH insufficiency-induced redox vulnerability of TNBC cells (70) in turn promotes more extensive protein thiol alkylation and oxidation reactions and instigates chemotherapeutic signaling responses at lower electrophile concentrations. The concentrations of endogenous free NO2-FAAs, which are not protein-adducted or esterified to complex lipids, in healthy human plasma and urine are typically 1–5 nm (16, 18, 19). The oral administration of NO2-OA increased murine tumor NO2-OA levels to an extent sufficient to induce pharmacological responses, as evidenced by inhibition of MDA-MB-231 xenograft tumor growth. These results motivate more detailed future investigation of dose-response relationships and the impact of other lipid electrophiles on tumor growth and metastasis. At present, NO2-OA has cleared preclinical toxicology and pharmacokinetics testing in human Phase 1 safety trials of both oral and IV formulations (IV IND 122583; oral IND 124524) and is entering Phase 2 trials for treating chronic renal and pulmonary diseases. This present preclinical study provides the biochemical foundations for evaluating whether electrophilic NO2-FAAs represent a useful new therapeutic candidate for treating breast cancer patients and possibly providing selectivity for treating TNBC, a cancer that currently lacks effective treatment options.

Experimental procedures

Cell culture and reagents

Cell lines were purchased from ATCC. MDA-MB-231 and MCF7 cells were cultured in Dulbecco’s modified Eagle’s medium, and MDA-MD-468 cells were cultured in improved minimum essential medium (Gibco), each supplemented with 5% fetal bovine serum (Hyclone, Logan, UT). MCF-10A cells were cultured in growth medium consisting of Dulbecco’s modified Eagle’s medium, and MDA-MB-468 cells were cultured in improved minimum essential medium consisting of Dulbecco’s modified Eagle’s medium/F-12 (1:1) in 5% horse serum (Hyclone), and supplemented with 0.5 μg/ml hydrocortisone, 0.1 μg/ml cholaer toxin, 20 ng/ml EGF, and 10 μg/ml insulin (Sigma-Aldrich). Cells were incubated at 37°C in a 5% CO2 atmosphere. siRNAs directed against human RelA (L-003533-00-0005), human MRP1/ABCC1 siRNA (L-007308-00-0005), and non-targeting control siRNA (D-001810-10-05) were purchased from Dharmacon RNAi Technologies. Lipofectamine 2000 or 2000 (Life Technologies) was used for cell transfection. The MRP1 inhibitor Probenecid (4-[(dipropylamino)sulfonfyl]benzoic acid) was purchased from Enzo Life Sciences and dissolved in 1 M sodium hydroxide. The NF-κB inhibitor JSH-23...
NO$_2$-OA inhibits breast cancer cell function

(4-methyl-N1-(3-phenyl-propyl)-benzene-1,2-diamine) and proteasome inhibitor MG-132 (benzyloxy carbonyl-1-Leu-(α)-Leu-γ-Leu-α-Leu) were purchased from Sigma-Aldrich. The IKKβ inhibitor BAY11-7082 (3-[(4-methylphenyl)sulfonyl]-(2E)-propenenitrile) was purchased from Calbiochem, and TNFα was from BD Biosciences.

Cell treatment for IKKβ phosphorylation, IkBα phosphorylation, and IkBα degradation

All studies used two TNBC cell lines, MDA-MB-231 and MDA-MB-468. To determine the effect of NO$_2$-OA on IKKβ phosphorylation induced by TNFα in TNBC cells, cells were pretreated with NO$_2$-OA (5 μM), NO$_2$-SA (5 μM), or BAY11-7082 (10 μM) in serum-free medium (DMEM containing 0.1% fatty acid-free BSA) for 2 h before TNFα (20 ng/ml) stimulation for 5 min. For IkBα degradation, cells were treated as described above and stimulated for 10 min with 20 ng/ml TNFα. IkBα phosphorylation was measured in cells pretreated with MG-132 (10 μM) in combination with NO$_2$-OA (5 μM), NO$_2$-SA (5 μM), or BAY11-7082 (10 μM) in serum-free medium for 2 h before TNFα (20 ng/ml) stimulation for 10 min.

NO$_2$-FA synthesis and use

OA was purchased from Nu-Chek Prep (Elysian, MN). Nitrostearic acid (NO$_2$-SA; 10-nitro-octadecanoic acid) was obtained by the reduction of 10-nitro-oic acid. Specifically, NO$_2$-OA was dissolved in tetrahydrofuran/methanol and cooled, and then sodium borohydride was added. The flask was stirred, and aliquots were monitored by UV analysis until there was full loss of the nitroalkene, and then the reactions were quenched with acetic acid. NO$_2$-SA was purified by first adducting any remaining NO$_2$-OA with added cysteine, and then NO$_2$-SA was chromatographically fractionated on silica gel, using an ethyl acetate/hexane gradient. OA, NO$_2$-OA, and NO$_2$-SA were dissolved in absolute methanol and diluted in culture medium immediately before use in all experiments, at a maximum methanol concentration of 0.1% (v/v). Biotinylated NO$_2$-FAs (Bt-NO$_2$-OA, Bt-NO$_2$-SA, and Bt-OA) were synthesized from corresponding free fatty acids and biotin-(polyethylene glycol)-amine (see Ref. 27 and Supporting Methods).

Cell growth assay

Cells were plated at a cell density of 5000 cells/well in 96-well plates. After attachment overnight, the medium was replaced, and cells were treated with 0–15 μM NO$_2$-OA, NO$_2$-SA, or 0.1% methanol (vehicle) for 48 h. In an MRP inhibition study, MCF-10A cells were pretreated with 0.25 mM probenecid for 1 h, followed by 0–25 μM NO$_2$-OA for 48 h. Cells were counted using the FluoroReporter dsDNA quantitation kit (Molecular Probes) according to the manufacturer’s instructions. Fluorescence was measured using a SpectraMax M2 plate reader (Molecular Devices). The half-maximal inhibitory concentration (IC$_{50}$) of NO$_2$-OA was determined by using CalcuSyn software from Biosoft. Three individual experiments were done ($n = 5$ each), and statistical comparison between two cell lines across doses was determined by two-way analysis of variance followed by Tukey post-test.

FACS

MCF-10A, MDA-MB-231, and MDA-MB-468 cells were plated at a cell density of 2.5 \times 105 cells in 6-well plates for 24 h before treatment with 0.1% methanol (vehicle), 5 μM NO$_2$-OA, NO$_2$-SA, or OA for 24 h. Adherent and nonadherent cells were collected, centrifuged at 2000 rpm for 10 min, washed with ice-cold phosphate-buffered saline, fixed with cold 70% ethanol at 4 °C for 30 min, and stained with 50 μg/ml propidium iodide (Sigma-Aldrich). FACS analysis was performed at the University of Pittsburgh Department of Immunology Unified Flow Core Facility. Three individual experiments were done, and statistical comparisons among phases (G$_0$/G$_1$, S, and G$_2$/M) were determined by one-way analysis of variance followed by Tukey post-test.

Cell migration analysis

MCF-10A, MDA-MB-231, and MDA-MB-468 cells were subjected to cell migration analysis in Boyden chambers. The bottom of a 12-well membrane filter (BD Biosciences) was coated with 10 μg/ml fibronectin for 12 h before each experiment. Cells were pretreated with 5 μM NO$_2$-OA or NO$_2$-SA for 1 h and then in the absence or presence of TNFα (20 ng/ml) for an additional 2 h in culture medium containing 1% FBS. Cells were trypsinized and washed with migration medium (DMEM containing 0.1% fatty acid-free BSA) to remove serum. Cells at a density of 105/well were then placed in the upper chamber with migration medium containing the same pretreatment conditions. The cells were allowed to migrate toward the 5% FBS chemoattractant for 5 h. Non-migrated cells from the top surface were removed with cotton swabs. Migrated cells were fixed with 4% paraformaldehyde (Electron Microscopy Sciences) and then stained with 0.5% crystal violet (Sigma-Aldrich) for 15 min. Migrated cell density on the filters was observed by microscopy. The crystal violet on migrated cells was destained with 10% acetic acid, and the absorbance in individual filters was determined at A$_{570}$ nm. Images are representative of three individual experiments, and statistical comparison among treatments was determined by one-way analysis of variance followed by Tukey post-test.

Cell invasion assay

MDA-MB-468 cells were pretreated with NO$_2$-OA (5 μM), NO$_2$-SA (5 μM), or NF-κB inhibitor JSH-23 (10 μM) for 1 h and then in the absence or presence of TNFα (20 ng/ml) for an additional 2 h in culture medium containing 1% FBS. Cells were then suspended in migration medium and placed in the top well of invasion chambers (EMD Millipore). Chemoattractant (5% FBS) was placed in the lower chamber for 24 h at 37 °C to attract invasive cells. Cells were then harvested, and invasion rates were determined according to the manufacturer’s protocol. Three individual experiments were done, and statistical comparison among treatments was determined by one-way analysis of variance followed by Tukey post-test.

Luciferase analysis of NF-κB activity

Luciferase chemiluminescence–based analysis of NF-κB transcriptional activity was performed as described previously
were treated with 0.1% methanol (vehicle), NO2-OA (5 mM), HEPES (1 mM), EDTA (1 mM), and supplemented in TNBC cells, MDA-MB-231 or MDA-MB-468 cells were transfected with a NF-κB–luciferase reporter plasmid (Stratagene, La Jolla, CA) with Lipofectamine 3000. After transfection (24 h), cells were pretreated with NO2-OA (5 μM), NO2-SA (5 μM), OA (5 μM), or JSH-23 (20 μM) for 2 h, followed by 20 ng/ml TNFα for an additional 4 h. Each transfection was performed in triplicate. Luciferase activity was measured using the Dual-Luciferase assay kit (Promega). Relative light units (RLU) were measured using a 96-well plate luminometer, according to the manufacturer’s instructions (Victor II, PerkinElmer Life Sciences). Protein concentration was determined using the BCA assay (Thermo Fisher Scientific). Data represent the ratio of treated samples to controls in the context of mean RLU/protein content ± S.D. Three individual experiments were done, and statistical significance was determined by Kruskal–Wallis test followed by Dunn’s post-test with Bonferroni corrections for multiple comparisons.

NO2-FA protein alkylation reactions

To determine whether NO2-FA binds to RelA (p65) or IKKβ in TNBC cells, MDA-MB-231 or MDA-MB-468 cells were treated with 5 μM Bt-NO2-OA, Bt-NO2-SA, or Bt-OA in DMEM containing 5% FBS. After 2 h, cells were harvested in lysis buffer containing 1% Triton X, 10% glycerol, 150 mM NaCl, 10 mM HEPES, 1 mM EDTA, 1 mM EGTA and supplemented with a mixture of protease and phosphatase inhibitors (Roche Applied Science) (26). Total cell lysates (0.5–1 mg) were mixed and incubated with streptavidin-agarose beads (Sigma-Aldrich) at 4 °C overnight. Beads were washed three times using lysis buffer. After SDS-PAGE, immunoblotting was performed using anti-RelA mouse monoclonal antibody (Santa Cruz Biotechnology) or anti-IKKβ rabbit polyclonal antibody (Cell Signaling). Proteomics analysis for the alkylation of RelA by NO2-OA was also conducted using recombinant RelA protein and LC-MS/MS analysis. See supporting Methods for more detail.

Immunoprecipitation and NO2-OA–induced RelA protein polyubiquitination

To determine the induction level of RelA protein polyubiquitination by NO2-FA, MDA-MB-231 and MDA-MB-468 cells were treated with 0.1% methanol (vehicle), NO2-OA (5 μM), or NO2-SA (5 μM) for 6 h, and then cell lysates were harvested in lysis buffer supplemented with a mixture of protease and phosphatase inhibitors. Lysates were clarified by centrifugation at 14,000 × g for 10 min. Protein lysates (1 mg) were incubated with anti-RelA antibody and Protein G/A-conjugated agarose beads (EMD Millipore, Bedford, MA) at 4 °C overnight. Immunoprecipitation fractions were obtained by centrifugation at 14,000 × g for 1 min at room temperature and washed with lysis buffer three times. The immunoprecipitated RelA was resolved by an 8% SDS-polyacrylamide gel and transferred to nitrocellulose membrane (Bio-Rad) for immunoblotting probed with an anti-ubiquitin antibody (Santa Cruz Biotechnology). The blot was then stripped and probed with an anti-RelA antibody to assess amounts of RelA protein pulldown.

Western blotting

Western blotting was performed as described previously (26). 20 – 60 μg of total lysates per lane were loaded on 7, 10, or 12% SDS-PAGE and transferred onto nitrocellulose or polyvinylidene difluoride membranes (Bio-Rad). The membranes were probed with primary antibodies against caspase-3, MRPI, PARP-1, ubiquitin, or RelA; cyclin D1, p21, caspase-9, MRP4, IKKβ, pIKKβ, pIkBa, or pIkBa (Cell Signaling); and caspase-8 (R&D Systems). Samples were normalized to β-actin (Sigma-Aldrich) or GAPDH (Trevigen). Protein bands were visualized, and digitized images were quantified using ImageLab software (Bio-Rad). Immunoblots are representative of at least three individual experiments. Quantitative results are an average of at least three individual experiments, and statistical significance was determined by one-way analysis of variance followed by Tukey post-test.

RNA extraction, quantitative PCR, and RT2 profiler PCR array

To determine the effect of NO2-OA on expression of NF-κB target genes in TNFα-induced MDA-MB-231 and MDA-MB-468 cells, cells were pretreated with NO2-OA (5 μM) for 2 h and then stimulated with TNFα (20 ng/ml) for 6 h. Total RNA samples of tissues or cells were extracted using TRIzol reagents according to the manufacturer’s instructions (Invitrogen). Total RNA (1 μg) was reverse transcribed using the iScript cDNA kit (Bio-Rad) according to the manufacturer’s instructions. cDNA (25 ng) was used for each subsequent real-time qPCR. All real-time qPCR was performed on the StepOne PLUS PCR system (Thermo Fisher Scientific) using TaqMan gene expression assays. -Fold change was calculated using the ΔΔCt method with 18S ribosomal RNA or human β-actin RNA serving as the internal control. Three individual experiments were done, and statistical significance was determined by one-way analysis of variance followed by Tukey post-test. For the RT2 profiler PCR array, MDA-MB-468 cells were treated or untreated with NO2-OA (5 μM) for 24 h. The expression of 84 human NF-κB target genes was analyzed with a 96-well plate format as instructed in the manufacturer’s handbook (Qiagen). PCR amplification was conducted by the StepOne PLUS PCR system, and -fold change of gene expression was calculated according to the manufacturer’s instructions.

Analysis of NO2-OA-SG and NO2-OA in cell medium

MCF-10A, MDA-MB-231, or MDA-MB-468 cells were cultured in 6-well plates (1 × 106 cells/well) for 24 h. Before treatments, cell medium was replaced with DMEM containing 5% FBS, NO2-OA (5 μM) was added to the medium, and cells were incubated at 37 °C for 60 min before the cell culture medium was collected. For MRPI inhibition studies, MCF-10A cells were pretreated with 1 mM probenecid for 1 h and then co-treated with 5 μM NO2-OA for an additional 1 h. For MRPI siRNA knockdown studies, MCF-10A cells were transiently transfected with non-target siRNA (scrambled) or MRPI siRNA for 48 h before treatment with 5 μM NO2-OA for 1 h. Cells were washed with PBS and then gently scraped off of the plate in 1 ml of PBS. 100 μl of cell suspensions was lysed by sonication and used for protein concentration measurements via a BCA protein assay. The remaining 0.9 ml of cell suspen-
NO₂-OA inhibits breast cancer cell function

Determination of intracellular NO₂-OA levels

GSH and GSSG extraction and analysis

MCF-10A, MDA-MB-231, and MDA-MB-468 cells were seeded in 24-well plates at a density of 3 × 10⁵ cells/well. Cells were cultured overnight before treatment with 5 μM NO₂-OA for the indicated times. At each time point, cell medium was aspirated and washed twice with sterile PBS. Cells were then incubated with PBS containing 25 mM N-ethylmaleimide (NEM) for 15 min at 37 °C. Derivatization solution (50 μL of 15% MeOH, 40 μM HEPES, 50 mM NaCl, 1 mM EDTA, 2 μM [¹³C₂ ¹⁵N]GSH, 2 μM [¹³C₄ ¹⁵N₂]GSSG, and 25 μM NEM) was added to each well and incubated for 15 min at room temperature. Next, 50 μL of 10% (w/v) sulfosalicylic acid solution was immediately added to each well to stabilize GSH and GSSG. Supernatant was collected by centrifugation at 15,000 rpm for 10 min at 4 °C. Samples were diluted 1:5 in 5% sulfosalicylic acid, and 20 μL was injected for HPLC-MS/MS analysis. Cell numbers at time 0 were quantitated by a Hoechst 33258 DNA stain assay and used to normalize GSH or GSSG levels expressed as nmol/cells (× 10⁶).

LC-MS/MS

NO₂-OA, NO₂-OA-SG, GSH, and GSSG were analyzed by high-performance LC-MS/MS using a Shimadzu/CTC PAL HPLC coupled to a Sciex 5000 triple quadrupole mass spectrometer (Sciex, San Jose, CA). NO₂-OA, NO₂-OA-SG gradient solvent systems consisted of water + 0.1% acetic acid (solvent A) and acetonitrile + 0.1% acetic acid (solvent B). NO₂-OA and its metabolites were resolved using a Luna C18 reversed phase column (2 mm × 100 mm, Phenomenex, Torrence, CA) at a flow rate of 0.65 ml/min. Samples were applied to the column at 30% B and eluted with a linear increase in solvent B (30–100% in 9.7 min). The column was washed at 100% B for 3 min before returning to initial conditions for equilibration (2 min). NO₂-OA-SG conjugates were resolved using a Luna C18 reversed phase column (2 mm × 150 mm; Phenomenex) at a 0.25 ml/min flow rate. Calibration curves were generated using known GSH and GSSG standards and isotopic internal standards and showed linearity over 5 orders of magnitude, and the limit of quantification (71) for both GS-NG and GSSG was 1 nm. Calibration curves were generated using known GSH and GSSG standards and isotopic internal standards and showed linearity over 5 orders of magnitude, and the limit of quantification (71) for both GS-NG and GSSG was 1 nm. Sample [GSH] and [GSSG] were determined from analyte/internal standard area ratios, and intracellular GSH and GSSG were normalized to cell number (10⁶), with results expressed as nmol of GSH or GSSG per 10⁶ cells.

Statistical analysis

Data analyses were conducted using Prism version 6 software (GraphPad Software). Results are presented as mean ± S.D. tumor volumes except in Fig. 1E, where results are presented as mean ± S.E. Statistical analysis was performed using Student’s t test, one-way or two-way analysis of variance as appropriate. Statistical significance was achieved with p < 0.05.
NO$_3$-OA inhibits breast cancer cell function

involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Science 100, 1668–1674 CrossRef Medline

14. Qiao, Y., He, H., Jonsson, P., Sinha, I., Zhao, C., and Dahlman-Wright, K. (2016) AP-1 is a key regulator of proinflammatory cytokine TNFα-mediated triple-negative breast cancer progression. J. Biol. Chem. 291, 5068–5079 CrossRef Medline

15. Li, H.-H., Zhu, H., Liu, L.-S., Huang, Y., Guo, J., Li, J., Sun, X.-P., Chang, C.-X., Wang, Z.-H., and Zhai, K. (2015) Tumour necrosis factor-α gene polymorphism is associated with metastasis in patients with triple negative breast cancer. Sci. Rep. 5, 10244 CrossRef Medline

16. Bonacci, G., Baker, P. R. S., Salvatore, S. R., Shores, D., Khoo, N. K. H., Koentzer, J. R., Vitturi, D. A., Woodcock, S. R., Golín-Bisello, F., Cole, M. P., Watkins, S., St Croix, C., Bathyphan, C. I., Freeman, B. A., and Schopfer, F. J. (2012) Conjugated linoleic acid is a preferential substrate for fatty acid nitration. J. Biol. Chem. 287, 44071–44082 CrossRef Medline

17. Fazzari, M., Kho, N. K., Woodcock, S. R., Jorkasky, D. K., Li, L., Schopfer, F. J., and Freeman, B. A. (2017) Nitro-fatty acid pharmacokinetics in the adipose tissue compartment. J. Lipid Res. 58, 375–385 Medline CrossRef Medline

18. Salvatore, S. R., Vitturi, D. A., Baker, P. R. S., Bonacci, G., Koentzer, J. R., Woodcock, S. R., Freeman, B. A., and Schopfer, F. J. (2013) Characterisation and quantification of endogenous fatty acid nitroalkane metabolites in human urine. J. Lipid Res. 54, 1998–2009 CrossRef Medline

19. Delmastro-Greenwood, M., Hughan, K. S., Vitturi, D. A., Salvatore, S. R., Grimes, G., Potti, G., Shiva, S., Schopfer, F. J., Gladwin, M. T., Freeman, B. A., and Gelhaus Wendell, S. (2015) Nitrite and nitrate-dependent generation of anti-inflammatory fatty acid nitroalkanes. Free Radic. Biol. Med. 89, 333–341 CrossRef Medline

20. Hughan, K. S., Wendell, S. G., Delmastro-Greenwood, M., Helbling, N., Corey, C., Bellavia, L., Potti, G., Grimes, G., Goodepster, B., Kim-Shapiro, D. B., Shiva, S., Freeman, B. A., and Gladwin, M. T. (2017) Conjugated linoleic acid modulates clinical responses to oral nitrite and nitrate. Hypertension 70, 634–644 CrossRef Medline

21. Schopfer, F. J., Cipollina, C., and Freeman, B. A. (2011) Formation and signaling actions of electrophilic lipids. Chem. Rev. 111, 5997–6021 CrossRef Medline

22. Baker, L. M. S., Baker, P. R. S., Golín-Bisello, F., Schopfer, F. J., Fink, M., Woodcock, S. R., Branchaud, B. P., Radi, R., and Freeman, B. A. (2007) Nitro-fatty acid reaction with glutathione and cysteine: kinetic analysis of thiol alkylation by a Michael addition reaction. J. Biol. Chem. 282, 31085–31093 CrossRef Medline

23. Codreanu, S. G., Ullery, I. C., Zhu, J., Tallman, K. A., Beavers, W. N., Porter, N. A., Marnett, L. J., Zhang, B., and Li, L. (2014) Alkylation damage by lipid electrophiles targets functional protein systems. Mol. Cell. Proteomics 13, 849–859 CrossRef Medline

24. Levonen, A. L., Hill, B. G., Kansanen, E., Zhang, J., and Darley-Usmar, V. M. (2014) Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophilic therapeutics. Free Radic. Biol. Med. 71, 196–207 CrossRef Medline

25. Kansanen, E., Bonacci, G., Schopfer, F. J., Kuosmanen, S. M., Tong, K. I., Kansanen, S. M., and Darley-Usmar, V. M. (2010) Covalent peroxisome proliferator-activated receptor γ activation by a KEAP1 cysteine 151-independent mechanism. J. Biol. Chem. 286, 14019–14027 CrossRef Medline

26. Schopfer, F. J., Cole, M. P., Groeger, A. L., Chen, C.-S., Shiva, S., Schopfer, F. J., Freeman, B. A., and Chen, Y. E. (2013) Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J. Biol. Chem. 288, 14019–14027 CrossRef Medline

27. Cui, T., Schopfer, F. J., Zhang, J., Chen, K., Ichikawa, T., Baker, P. R. S., Batthyany, C., Chacko, B. K., Feng, X., Patel, R. P., Agarwal, A., Freeman, B. A., and Chen, Y. E. (2006) Nitrated fatty acids: selective ligand activity and anti-diabetic signaling actions. J. Biol. Chem. 281, 12321–12333 CrossRef Medline

28. Villacorta, L., Chang, L., Salvatore, S. R., Ichikawa, T., Zhang, J., Petrovic-Djergovic, D., Jia, L., Carlsten, H., Schopfer, F. J., Freeman, B. A., and Chen, Y. E. (2013) Electrophilic nitro-fatty acids inhibit vascular inflammation
NO2-OA inhibits breast cancer cell function

by disrupting LPS-dependent TLR4 signalling in lipid rafts. Cardiovasc. Res. 98, 116–124 CrossRef Medline

29. Snyder, N. W., Golin-Bisello, F., Gao, Y., Blair, I. A., Freeman, B. A., and Wendell, S. G. (2015) 15-Oxooctadecatetraenoic acid is a 15-hydroxyprostaglandin dehydrogenase-derived electrophilic mediator of inflammatory signaling pathways. Chem. Biol. Interact. 234, 144–153 CrossRef Medline

30. Pledgie-Tracy, A., Sobolewski, M. D., and Davidson, N. E. (2007) Sulforaphane induces cell type–specific apoptosis in human breast cancer cell lines. Mol. Cancer Ther. 6, 1013–1021 CrossRef Medline

31. Rudnicki, M., Faine, L. A., Dehne, N., Namgaladze, D., Ferederbar, S., Weinrich, R., Amarante-Mendes, G. P., Yan, C. Y., Krieger, J. E., Brune, B., and Abdalla, D. S. (2011) Hypoxia inducible factor-dependent regulation of angiogenesis by nitro-fatty acids. Arterioscler. Thromb. Vasc. Biol. 31, 1360–1367 CrossRef Medline

32. Koentzer, J. R., Bonacci, G., Woodcock, S. R., Chen, C. S., Cantu-Medel, N., Kelley, E. E., and Schopfer, F. J. (2016) Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II. Redox Biol. 8, 1–10 CrossRef Medline

33. Shin, H.-M., Kim, M.-H., Kim, B. H., Jung, S.-H., Kim, Y. S., Park, H. I., Hong, J. T., Min, K. R., and Kim, Y. (2004) Inhibitory action of novel aromatic diamine compound on lipopolysaccharide-induced nuclear translocation of NF-κB without affecting IκB degradation. FEBS Lett. 577, 50–54 CrossRef Medline

34. Switzer, C. H., Cheng, R. Y.-S., Ridnour, L. A., Murray, M. C., Tazzari, V., Sparatore, A., Del Soldato, P., Hines, H. B., Glynn, S. A., Ambis, S., and Wink, D. A. (2012) Dithiolethiones inhibit NF-κB activity via covalent modification in human estrogen receptor-negative breast cancer. Cancer Res. 72, 2394–2404 CrossRef Medline

35. Rossi, A., Kapahi, P., Natoli, G., Takahashi, T., Chen, Y., Karin, M., and Santoro, M. G. (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature 403, 103–108 CrossRef Medline

36. Ahmad, R., Raina, D., Meyer, C., Kharbanda, S., and Kufe, D. (2006) Triterprenoid CDDO-Me blocks the NF-κB pathway by direct inhibition of IKKβ on Cys-179. J. Biol. Chem. 281, 35764–35769 CrossRef Medline

37. Paranjpe, A., and Srivenguppal, K. S. (2013) Degradation of NF-κB p53 and other regulatory redox-sensitive proteins by thiol-conjugating and -nitrrosylating drugs in human tumor cells. Carcinogenesis 34, 990–1000 CrossRef Medline

38. Natoli, G., and Chiozza, S. (2008) Nuclear ubiquitin ligases, NF-κB degradation, and the control of inflammation. Sci. Signal. 1, pe1 Medline

39. Tanaka, T., Grusby, M. J., and Kaisho, T. (2007) PDLIM2-mediated termination of transcription factor NF-κB activation by intranuclear sequestration and degradation of the p65 subunit. Nat. Immunol. 8, 584–591 CrossRef Medline

40. Ryo, A., Suzia, F., Yoshiya, Y., Perrem, K., Liou, Y.-C., Wolff, G., Rottapel, R., Yamaoka, S., and Lu, K. P. (2003) Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin–mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 CrossRef Medline

41. Dent, R., Hanna, W. M., Trudeau, M., Rawlinson, E., Sun, P., and Narod, S. A. (2009) Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res. Treat. 115, 423–428 CrossRef Medline

42. Wang, W., Li, C., and Yang, T. (2015) Protection of nitro-fatty acid against kidney diseases. Am. J. Physiol. Renal Physiol. 310, F697–F704 CrossRef Medline

43. Wang, H., Jia, Z., Sun, I., Xu, L., Zhao, B., Yu, K., Yang, M., Yang, T., and Wang, R. (2015) Nitrooleic acid protects against cisplatin nephropathy: role of COX-2/mPGES-1/PGE2 cascade. Mediators Inflamm. 2015, 294374 CrossRef Medline

44. Liu, S., Jia, Z., Zhou, L., Liu, Y., Ling, H., Zhou, S. F., Zhang, A., Du, Y., Guan, G., and Yang, T. (2013) Nitro-oleic acid protects against adriamycin-induced nephropathy in mice. Am. J. Physiol. Renal Physiol. 305, F1533–F1541 CrossRef Medline

45. Battagly, C., Schopfer, F. J., Baker, P. R., Duran, R., Baker, L. M., Huang, Y., Cervenansky, C., Branchaud, B. P., and Freeman, B. A. (2006) Reversible post-translational modification of proteins by nitrated fatty acids in vivo. J. Biol. Chem. 281, 20450–20463 CrossRef Medline

46. Wang, Y.-Y., Zhe, H., and Zhao, R. (2014) Preclinical evidences toward the use of triterpenoid CDDO-Me for solid cancer prevention and treatment. Mol. Cancer 13, 30 CrossRef Medline

47. Hagos, F. T., Daoed, M. J., Ocu, J. A., Nolin, T. D., Bayir, H., Poloyac, S. M., Kochanek, P. M., Clark, R. S., and Empey, P. E. (2017) Probenecid, an organic anion transporter 1 and 3 inhibitor, increases plasma and brain exposure of N-acetylcysteine. Xenobiotica 47, 346–353 Medline

48. Cole, M. P., Rudolph, T. K., Kho, N. K. H., Mortany, U. N., Golin-Bisello, F., Wertz, J. W., Schopfer, F. J., Rudolph, V., Woodcock, S. R., Bolisetty, S., Ali, M. S., Zhang, J., Chen, Y. E., Agarwal, A., Freeman, B. A., and Bauer, P. M. (2009) Nitro-fatty acid inhibition of neointima formation after endoluminal vessel injury. Circulation Res. 105, 965–972 CrossRef Medline

49. Klinke, A., Möller, A., Pekarova, M., Ravekes, T., Friedrichs, K., Mollenhauer, M., and Abdalla, D. S. (2011) Hypoxia inducible factor-dependent regulation of angiogenesis by nitro-fatty acids. Arterioscler. Thromb. Vasc. Biol. 31, 1360–1367 CrossRef Medline

50. Ambrozova, G., Martiskova, H., Koudelka, A., Ravekes, T., Rudolph, V., and Abdalla, D. S. (2011) Hypoxia inducible factor-dependent regulation of angiogenesis by nitro-fatty acids. Arterioscler. Thromb. Vasc. Biol. 31, 1360–1367 CrossRef Medline

51. Santoro, M. G. (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature 403, 103–108 CrossRef Medline

52. Ahmad, R., Raina, D., Meyer, C., Kharbanda, S., and Kufe, D. (2006) Triterpenoid CDDO-Me blocks the NF-κB pathway by direct inhibition of IKKβ on Cys-179. J. Biol. Chem. 281, 35764–35769 CrossRef Medline

53. Paranjpe, A., and Srivenguppal, K. S. (2013) Degradation of NF-κB p53 and other regulatory redox-sensitive proteins by thiol-conjugating and -nitrrosylating drugs in human tumor cells. Carcinogenesis 34, 990–1000 CrossRef Medline

54. Natoli, G., and Chiozza, S. (2008) Nuclear ubiquitin ligases, NF-κB degradation, and the control of inflammation. Sci. Signal. 1, pe1 Medline

55. Tanaka, T., Grusby, M. J., and Kaisho, T. (2007) PDLIM2-mediated termination of transcription factor NF-κB activation by intranuclear sequestration and degradation of the p65 subunit. Nat. Immunol. 8, 584–591 CrossRef Medline

56. Ryo, A., Suzia, F., Yoshiya, Y., Perrem, K., Liou, Y.-C., Wolff, G., Rottapel, R., Yamaoka, S., and Lu, K. P. (2003) Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin–mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 CrossRef Medline
fibrotic remodelling and atrial fibrillation. *Cardiovasc. Res.* **109**, 174–184 CrossRef Medline

61. Verescakova, H., Ambrozova, G., Kubala, L., Perecko, T., Koudelka, A., Vasicek, O., Rudolph, T. K., Klinke, A., Woodcock, S. R., Freeman, B. A., and Pekarova, M. (2017) Nitro-oleic acid regulates growth factor-induced differentiation of bone marrow-derived macrophages. *Free Radic. Biol. Med.* **104**, 10–19 CrossRef Medline

62. Jaramillo, M. C., and Zhang, D. D. (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. *Genes Dev.* **27**, 2179–2191 CrossRef Medline

63. Kalimutho, M., Parsons, K., Mittal, D., López, J. A., Srirahi, S., and Khanna, K. K. (2015) Targeted therapies for triple-negative breast cancer: Combating a stubborn disease. *Trends Pharmacol. Sci.* **36**, 822–846 CrossRef Medline

64. Diers, A. R., Dranka, B. P., Ricart, K. C., Oh, J. Y., Johnson, M. S., Zhou, F., Pallero, M. A., Bodenstine, T. M., Murphy-Ullrich, J. E., Welch, D. R., and Landar, A. (2010) Modulation of mammary cancer cell migration by 15-deoxy-Δ12,14-prostaglandin J2: implications for anti-metastatic therapy. *Biochem. J.* **430**, 69–78 CrossRef Medline

65. Kastrati, I., Siklos, M. I., Calderon-Gierszal, E. L., El-Shennawy, L., Georgieva, G., Thayer, E. N., Thatcher, G. R. J., and Frasor, J. (2016) Dimethyl fumarate inhibits the nuclear factor κB pathway in breast cancer cells by covalent modification of p65. *J. Biol. Chem.* **291**, 3639–3647 CrossRef Medline

66. Maine, G. N., Mao, X., Komarck, C. M., and Burststein, E. (2007) COMMD1 promotes the ubiquitination of NF-κB subunits through a cullin-containing ubiquitin ligase. *EMBO J.* **26**, 436–447 CrossRef Medline

67. Hou, Y., Moreau, F., and Chadee, K. (2012) PPARγ is an E3 ligase that induces the degradation of NF-κB/p65. *Nat. Commun.* **3**, 1300 CrossRef Medline

68. Rayet, B., and Gélinas, C. (1999) Aberrant rel/nfk b genes and activity in human cancer. *Oncogene* **18**, 6938–6947 CrossRef Medline

69. Karin, M., Cao, Y., Greten, F. R., and Li, Z.-W. (2002) NF-κB in cancer: from innocent bystander to major culprit. *Nat. Rev. Cancer* **2**, 301–310 CrossRef Medline

70. Lien, E. C., Lyssiotis, C. A., Juvekar, A., Hu, H., Asara, J. M., Cantley, L. C., and Toker, A. (2016) Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer. *Nat. Cell Biol.* **18**, 572–578 CrossRef Medline

71. Zalba, G., Fortuño, A., Orbe, J., San José, G., Moreno, M. U., Belzunce, M., Rodríguez, J. A., Beloqui, O., Páramo, J. A., and Díez, J. (2007) Phagocytic NADPH oxidase-dependent superoxide production stimulates matrix metalloproteinase-9: implications for human atherosclerosis. *Arterioscler. Thromb. Vasc. Biol.* **27**, 587–593 CrossRef Medline