Caffeine Therapy for Apnea of Prematurity: Role of the Circadian CLOCK Gene Polymorphism

Hong-Li Guo1,†, Jia-Yi Long1,2,††, Ya-Hui Hu1, Yun Liu3, Xin He1, Ling Li1,2,†, Ying Xia1, Xuan-Sheng Ding2, Feng Chen1,*, Jing Xu1,*, Rui Cheng3,∗

1Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, China
2School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, China
3Neonatal Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, China

†These authors contributed equally to this work.
††Visiting graduate student from China Pharmaceutical University.
∗Corresponding authors at Children’s Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China.

E-mail addresses: cy.chen508@gmail.com (F. Chen), njxujing@163.com (J. Xu), chengrui350@163.com (R. Cheng).

----Supplemental information----
Table 1 Genotyping information for 88 selected single nucleotide polymorphisms (SNPs)

Gene	SNP-ID	1st-PCRP	2nd-PCRP	Amplification length (bp)	UEP_SEQ	
AHR	rs10249788	ACGTTGGATGTCCTGCGCCCATCTGGATT	ACGTTGGATGCTTTACGTCTCATGCTCAG	101	GGCCCTCAGAGAAGA	
AHR	rs10250822	ACGTTGGATGTCCTTCTTACTACCTTCTG	ACGTTGGATGACAAATGCACTACAGCAG	98	GTCTACTGATACATTTAAAGTCT	
AHR	rs1476080	ACGTTGGATGCACACTATCGTCGTATCCTC	ACGTTGGATGCACACACACACAGTAC	104	ggacGCAAGACCCCTACCTGGTGTATC	
AHR	rs2066853	ACGTTGGATGCTCTGAGATGATTGTGGAG	ACGTTGGATGCTTTATGACCTACAGT	105	ggcAAATCTTTCTCACTGTGACATG	
AHR	rs2158041	ACGTTGGATGCTCCTTACTTACCTTCTC	ACGTTGGATGCTTTCTTAAACACCGTT	106	GTGTCGGACATGACATCTT	
AHR	rs6960165	ACGTTGGATGGAAAGTGTAAGATGAGG	ACGTTGGATGGACATCTGCTCTTACCAC	107	CAAACCCTAAAAGATGCTGTTG	
AHR	rs7811989	ACGTTGGATGCAAGTCACCTGAGAGA	ACGTTGGATGCTTTATGACCTACAGT	82	GAGGAGGTCAGTGTGTCAGG	
AHR	rs2292596	ACGTTGGATGCGTTTCTGAGACTACAG	ACGTTGGATGCACTCTGAGAGGCTAG	100	AGGTGCTGATGATGTCAGG	
ARNT	rs2228099	ACGTTGGATGCTTTATGACCTACAGT	ACGTTGGATGCTTTATGACCTACAGT	98	GCAGGGGCTGTATG	
BMAL1	rs1102275	ACGTTGGATGCTTTATGACCTACAGT	ACGTTGGATGCACTCTGAGAGGCTAG	101	TCTCCTCAAACCTCAC	
BMAL1	rs1122780	ACGTTGGATGCTTTATGACCTACAGT	ACGTTGGATGCTTTATGACCTACAGT	115	TCTCCTCAAACCTCAC	
BMAL1	rs1481892	ACGTTGGATGCTTTATGACCTACAGT	ACGTTGGATGCTTTATGACCTACAGT	107	CAATCTTTCTATGCTGACT	
BMAL1	rs1868049	ACGTTGGATGCTTTATGACCTACAGT	ACGTTGGATGCTTTATGACCTACAGT	100	TCCATAGCAGACAGACTACTT	
BMAL1	rs2278749	ACGTTGGATGCTTTATGACCTACAGT	ACGTTGGATGCTTTATGACCTACAGT	100	GGAAGCGACTGACACTGACC	
BMAL1	rs2279287	ACGTTGGATGCTTTATGACCTACAGT	ACGTTGGATGCTTTATGACCTACAGT	101	CCCCCGCGCCGGGCTGTGACTC	
BMAL1	rs2290035	ACGTTGGATGCTTTATGACCTACAGT	ACGTTGGATGCTTTATGACCTACAGT	97	gttgTACTTTCTCAACTCTCCT	
BMAL1	rs3816358	ACGTTGGATGCTTTATGACCTACAGT	ACGTTGGATGCTTTATGACCTACAGT	119	CCTCCATGCTGCACT	
BMAL1	rs3816360	ACGTTGGATGCTTTATGACCTACAGT	ACGTTGGATGCTTTATGACCTACAGT	109	CCTCAAGACTTGGGCTTCAGG	
BMAL1	rs4757142	ACGTTGGATGCTTTATGACCTACAGT	ACGTTGGATGCTTTATGACCTACAGT	95	CAGGAGGACTGACACAGACAGACAGA	
BMAL1	rs4757144	ACGTTGGATGCTTTATGACCTACAGT	ACGTTGGATGCTTTATGACCTACAGT	103	aagaACGGGCTGATTTAAA	
Gene	SNP ID	美学一	5'端序列	3'端序列	Length	等位碱基
--------	----------	-------	----------	----------	--------	----------
BMAL1	rs6486120	ACGTTGGATGAGAGGCCCTTGCACTAGG	ACGTTGGATGAAATTTGGGCCTCATGTG	114	cGGCTCTGTGTTGTTTAT	
BMAL1	rs7126303	ACGTTGGATGAAAGGGACCTCACCACATCC	ACGTTGGATGGGAAGCCGCTTTAAAATC	101	GCCATCTCAAAGGCAAGT	
BMAL1	rs969485	ACGTTGGATGGAAAGGGCCCATGTG	ACGTTGGATGAAATTTGGGCCTCATGTG	100	gcctcTAATGAACTGCAAGTCCT	
CLOCK	rs10002541	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	94	tcGGCTCTGTGTTGTTTAT	
CLOCK	rs10462028	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	92	TCGAGCATCCCAATTC	
CLOCK	rs1048004	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	90	GTCTCCTTGGACTTTAGG	
CLOCK	rs11133373	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	107	cTACTTGGCTTCCCTAG	
CLOCK	rs11133383	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	98	ggGAGAAGAGACAAATAGT	
CLOCK	rs11133389	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	98	catCTTCCAGTGGTGTG	
CLOCK	rs11133391	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	119	cagtGAAACTGAGGAGATAT	
CLOCK	rs11240	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	99	TCTGGTCTTCCGTTAAATA	
CLOCK	rs11726609	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	99	gatAATAGTAGCTGCGACAGAAAGG	
CLOCK	rs11735267	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	109	TAAAGGAGTGAAAAAGGAAAAAT	
CLOCK	rs11824092	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	100	taCTGCGACACAGTGGG	
CLOCK	rs11931061	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	102	cccctgATCTGCAAGCAGTACTGAGT	
CLOCK	rs11932595	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	104	GTTTAGACCCCTGCC	
CLOCK	rs11943456	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	117	aatgCTGAAACCCACACAGCCT	
CLOCK	rs12504300	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	114	ATTTGGACTGATAAGGAAGT	
CLOCK	rs12648271	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	119	cATGTGAGATTTAGTCTTCCTAAAGCC	
CLOCK	rs12649507	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	83	GCCTAAATGCGAAGGAG	
CLOCK	rs13102385	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	114	gttgACTGTATATTGGTAACCTGG	
CLOCK	rs13132420	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	99	GCCTAGAGCTTTTCTCCTT	
CLOCK	rs17721497	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	97	GTGGCACCCTGACA	
CLOCK	rs1801260	ACGTTGGATGAGGACCTCACCACATCC	ACGTTGGATGAAATTTGGGCCTCATGTG	86	ggaacTAAACACTGTCAGAACAGCCTG	

3
rs2070062	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	112	TGGTTGGTCATAATAAGAGAG
rs2272073	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	118	TTGGAGGCTTACTCTCA
rs2412646	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	110	TGTTATATCAGGTCAGAAGT
rs2412648	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	91	TCTCACACTCTAAGGAGGAA
rs3736544	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	102	tattGGTGCAAGTTGCTGGAT
rs3749474	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	114	ggCCCTACTTTACTTTTTCAATT
rs3762836	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	104	ccTTCTCTCTGTTGCAGA
rs3792603	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	120	GTTCTCTACCTTTAGGCT
rs3805147	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	87	TCTTGACAATAAAAACCTCTATTTATA
rs3805148	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	92	gGTGACTAAAGTGACTTTGAAAT
rs3805151	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	98	ggTGGCAAGATAAAAAT
rs3817444	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	105	cctgACAGGAAAGTAGCACTAT
rs4340844	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	111	cccgAGGTATGCTATTTATATACAGC
rs4580704	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	98	gGTGTCCCAAACCACCTATCTGCTCAT
rs4864546	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	94	ggagGCTGTGTTCTTCTATTT
rs4864548	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	110	GACAGTGAATAGGAGATG
rs534654	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	111	cctcGCTGCTCTTGACAGGTA
rs6811250	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	99	GGCTTTCTCAATAGATG
rs6832769	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	104	GTGATTGGGAATGATTTTGTTATAGAA
rs6843722	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	116	cagtGACGATTAGAAAAATGCAAGT
rs6850524	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	82	CGGGAGTCACAAAGAT
rs6858749	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	99	acGGAAGTTTAACCTGCTGAAAGG
rs726967	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	119	AGTATACAGAAGAAATTCA
rs7660668	ACGTTGGATGGCTTTTGTACTCTGGATCT	ACGTTGGATGGCTTTTGTACTCTGGATCT	116	TGGGCAACAAAGTCA
Gene	SNP	Sequence 1	Sequence 2	Length
CLOCK	rs7698022	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	120
CLOCK	rs9312661	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	120
CYP1A2*1B	rs2470890	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	114
CYP1A2*1C	rs2069514	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	112
CYP1A2*1D	rs3569413	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	107
CYP1A2*1E	rs2069526	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	111
CYP3A4	rs4646437	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	90
CYP3A4*18A	rs28371759	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	109
CYP3A4*1B	rs2740574	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	101
CYP3A4*23	rs2687116	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	110
CYP3A4*23	rs3735451	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	101
CYP3A4*4	rs55951658	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	116
CYP3A4*2A	rs61469810	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	101
CYP3A4*3	rs680055	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	112
CYP3A5*4	rs56411402	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	113
CYP3A5*5	rs59965422	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	105
CYP3A7	rs1021	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	119
CYP3A7	rs12360	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	100
CYP3A7*1D	rs55798860	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	107
CYP3A7*2	rs2257401	ACGTTGGATGTTGAACTTCTTGTTGAAACAGG	ACGTTGGATGAGGCTATAAACAGTAAAGT	100

Abbreviations: AHR, aryl hydrocarbon receptor; AHRR, aryl-hydrocarbon receptor repressor; ARNT, aryl hydrocarbon receptor nuclear translocator; BMAL1, aryl hydrocarbon receptor nuclear translocator-like protein 1 or Brain and Muscle ARNT-Like 1; CLOCK, circadian Locomotor Output Cycles Kaput.
Table 2: Single nucleotide polymorphisms (SNPs) association with preterm infants in bronchopulmonary dysplasia (BPD) group and BPD-free group

Gene	SNPs	Model	Genotype	Frequency no. (%)	BPD group no. (%)	BPD -free group no. (%)	Odds ratio	95% CI	p
ADORA1	rs16851030	C>T	CC	45 (40.91)	17 (58.6)	28 (34.6)	1	1.00	0.25
	rs2236625	G>A	CC	92 (82.88)	28 (96.5)	64 (78)	1	1.00	0.01
	rs34923252	T>A	TT	94 (83.93)	28 (96.5)	66 (79.5)	1	1.00	0.015
	rs5760425	T>G	TT	31 (27.93)	4 (13.8)	27 (32.9)	1	1.00	0.038
	rs5996696	A>C	AA	94 (83.93)	28 (96.5)	66 (79.5)	1	1.00	0.15
ADORA2A	rs2298383	C>T	CC	31 (27.93)	4 (13.8)	27 (32.9)	1	1.00	0.038
	rs4822492	C>G	CC	79 (71.82)	4 (13.8)	27 (33.3)	1	1.00	0.035
	rs5751876	T>C	TT	31 (27.93)	4 (13.8)	27 (32.9)	1	1.00	0.038
	rs5760423	T>G	TT	31 (27.93)	4 (13.8)	27 (32.9)	1	1.00	0.038
ADORA3	rs10776727	C>A	CC	40 (36.36)	6 (20.7)	34 (42)	1	1.00	0.035
BMAL1	rs4757144	G>A	GG	38 (34.55)	5 (18.5)	33 (39.8)	1	1.00	0.036
PDE1A	rs1549870	G>A	GG	54 (49.54)	19 (65.5)	35 (43.8)	1	1.00	0.043
PDE4A	rs6511698	C>T	CC	27 (24.32)	3 (10.3)	24 (29.3)	1	1.00	0.03
			TC/TT	84 (75.68)	26 (89.7)	58 (70.7)	0.28	0.08-01	0.03
ADORA2A	rs4822489	G>A	GG	34 (30.36)	7 (24.1)	27 (32.5)	1	1.00	0.028
	rs7811989	G>A	AG	76 (65.45)	22 (81.5)	50 (60.2)	0.34	0.12-1.00	0.0054
AHR	rs966221	A>G	AA	62 (53.86)	17 (58.6)	45 (54.9)	1	1.00	0.019
			AG	44 (39.64)	8 (27.6)	36 (43.9)	1	1.00	0.019
PDE4D	rs2290035	T>A	TT	46 (48.94)	8 (33.3)	38 (54.3)	1	1.00	0.0066
BMAL1	rs762551	A>C	AA	49 (44.14)	17 (58.6)	32 (39)	1	1.00	0.033
CYP1A2	rs2472299	G>A	AA	49 (44.14)	17 (58.6)	32 (39)	1	1.00	0.033

Notes:
- Dominant model: CC/TT vs. GC/GT
- Codominant model: AA/AG/TT vs. GG/GT
Data from BPD group was defined as case group and data from BPD-free group was defined as control group for the association analysis.

Abbreviations: BPD, bronchopulmonary dysplasia; ADORA1, Adenosine A1 receptor gene; ADORA2A, Adenosine A2A receptor gene; ADORA3, Adenosine A3 receptor gene; BMAL1, aryl hydrocarbon receptor nuclear translocator-like protein 1 or Brain and Muscle ARNT-Like 1; PDE1A, Phosphodiesterase 1A gene; PDE4A, Phosphodiesterase 4A gene; PDE4D, Phosphodiesterase 4D gene; AHR, Aryl hydrocarbon receptor gene; CI, Confidence interval.
Table 3 Single nucleotide polymorphisms (SNPs) association with preterm infants in severe neurological injury (SNI) group and SNI-free group†

Gene	SNPs	Model	Genotype	Frequency no. (%)	SNI group no. (%)	SNI-free group no. (%)	Odds ratio	95% CI	p
ADA	rs2472304 G>A	Dominant	GG	79 (71.17)	11 (52.4)	68 (75.6)	1	0.041	
			GA/AA	32 (28.83)	10 (47.6)	22 (24.4)	0.36	0.13-0.95	
ADORA2A	rs5760410 A>G	AA	32 (29.36)	8 (36.4)	24 (27.6)	1		0.043	
		GA	53 (48.62)	13 (59.1)	40 (46)	1.03	0.37-2.83	0.011	
		GG	24 (22.02)	1 (4.5)	23 (26.4)	7.67	0.89-66.20		
AHRR	rs2292596 C>G	CC	55 (49.55)	14 (66.7)	41 (45.6)	1		0.11	
		CG	38 (34.23)	7 (33.3)	31 (34.4)	1.51	0.55-4.19		
		GG	18 (16.22)	0 (0)	18 (20)	NA	0.00-NA		
CLOCK	rs2070062 A>C	AA	91 (82.73)	18 (85.7)	73 (82)	1		0.01	
		CA	17 (15.45)	1 (4.8)	16 (18)	3.95	0.49-31.74		
		CC	2 (1.82)	2 (9.5)	0 (0)	0	0.00-NA		
BMAL1	rs4757142 G>A	GG	49 (44.14)	10 (47.6)	39 (43.3)	1		0.032	
		AG	48 (43.24)	5 (23.8)	43 (47.8)	2.21	0.69-7.02		
		AA	14 (12.61)	6 (28.6)	8 (8.9)	0.34	0.10-1.21		

† Data from SNI group was defined as case group and data from SNI-free group was defined as control group for the association analysis.

Abbreviations: SNI, Severe neurological injury; ADA, Adenosine deaminase gene; ADORA2A, Adenosine A2A receptor gene; AHRR, aryl-hydrocarbon receptor repressor; CLOCK, circadian Locomotor Output Cycles Kaput; BMAL1, aryl hydrocarbon receptor nuclear translocator-like protein 1 or Brain and Muscle ARNT-Like 1; CI, Confidence interval.