Risk of bleeding associated with antiangiogenic monoclonal antibodies bevacizumab and ramucirumab: a meta-analysis of 85 randomized controlled trials

Bingkun Xiao1
Weilan Wang2
Dezhi Zhang3

1Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China; 2Department of Pharmacy, Chinese PLA General Hospital, Beijing, China; 3Department of Pharmacy, The 264th hospital of PLA, Taiyuan, Shanxi, China

Aim: Bevacizumab and ramucirumab are antiangiogenic monoclonal antibodies, which target vascular endothelial growth factor-A and vascular endothelial growth factor receptor-2, respectively, used in various cancers. Bleeding events have been described with these two agents. We conducted an up-to-date meta-analysis to determine the relative risk (RR) associated with the use of antiangiogenic monoclonal antibodies, bevacizumab and ramucirumab.

Methods: This meta-analysis of randomized controlled trials was performed after searching PubMed, American Society for Clinical Oncology Abstracts, European Society for Medical Oncology Abstracts, and the proceedings of major conferences for relevant clinical trials. RR and 95% CIs were calculated by random-effects or fixed-effects models for all-grade and high-grade bleeding events related to the angiogenesis inhibitors.

Results: Eighty-five randomized controlled trials were selected for the meta-analysis, covering 46,630 patients. The results showed that antiangiogenic monoclonal antibodies significantly increased the risk of all-grade (RR: 2.38, 95% CI: 2.09–2.71, p<0.00001) and high-grade (RR: 1.71, 95% CI: 1.48–1.97, p<0.00001) bleeding compared with control arms. In the subgroup analysis, bevacizumab significantly increased the risk of all-grade (RR: 2.73, 95% CI: 2.24–3.33, p<0.00001) and high-grade bleeding (RR: 1.98, 95% CI: 1.68–2.34, p<0.00001), but ramucirumab only increased the risk of all-grade bleeding (RR: 1.94, 95% CI: 1.76–2.13, p<0.00001) and no difference was observed for the risk of high-grade bleeding (RR: 1.04, 95% CI: 0.78–1.39, p=0.79) compared with the control group. For lung cancer patients, bevacizumab significantly increased the risk of all-grade (RR: 4.72, 95% CI: 1.99–11.19, p=0.0004) and high-grade pulmonary hemorrhage (RR: 3.97, 95% CI: 1.70–9.29, p=0.001), but no significant differences in the risk of all-grade (RR: 1.09, 95% CI: 0.76–1.57, p=0.64) and high-grade (RR: 1.22, 95% CI: 0.35–4.21, p=0.75) pulmonary hemorrhage were observed for ramucirumab. The increased risk of all-grade and high-grade bleeding was also observed in colorectal cancer or non-colorectal tumors and low-dose or high-dose angiogenesis inhibitors.

Conclusion: Antiangiogenic monoclonal antibodies are associated with a significant increase in the risk of all-grade and high-grade bleeding. Ramucirumab may be different from bevacizumab in terms of the risk of high-grade bleeding and the risk of all-grade and high-grade pulmonary hemorrhage in lung cancer patients.

Keywords: bevacizumab, ramucirumab, antiangiogenic monoclonal antibodies, bleeding, meta-analysis
Introduction

Angiogenesis is a complex biological process that plays an important role in sustaining growth, invasion, and the metastatic potential of tumors, and this process is mainly driven by vascular endothelial growth factor (VEGF). One of the VEGF family members, VEGF-A (commonly referred to as VEGF), has been demonstrated to be important in angiogenesis. Among all receptors, vascular endothelial growth factor receptor (VEGFR)-2 is widely thought to be principally linked to the stimuli of angiogenesis in malignancies. Blocking the function of VEGF-A or its receptor VEGFR-2 has been the most important antiangiogenic strategy for cancer therapy.

Bevacizumab and ramucirumab are the most important antiangiogenic monoclonal antibodies, which target VEGF-A and its receptor VEGFR-2, respectively, used in various cancers. Bevacizumab is approved by the Food and Drug Administration (FDA) for the treatment of patients with metastatic colorectal cancer, advanced non-squamous non-small cell lung cancer (NSCLC), metastatic renal cell carcinoma, recurrent glioblastoma, advanced cervical cancer, and platinum-resistant ovarian cancer, and ramucirumab is approved by the FDA for the treatment of advanced gastric or gastroesophageal junction adenocarcinoma, metastatic NSCLC, and advanced colorectal cancer.

Bleeding events are a kind of major adverse events reported in clinical trials of bevacizumab and ramucirumab, which may cause severe outcomes that could be even life threatening. The main mechanism of bleeding is that angiogenesis inhibitors disrupt tumor vasculature through inhibition of VEGF signaling and lead to thrombosis or bleeding.

However, the relative risk (RR) of bleeding events in patients with cancer treated with these two antiangiogenic monoclonal antibodies has yet to be defined. Therefore, we conducted an up-to-date meta-analysis of available clinical trials to determine the RR of bleeding in cancer patients treated with antiangiogenic monoclonal antibodies, bevacizumab and ramucirumab.

Materials and methods

Search strategy

This study was conducted in accordance with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (Supplementary material). We searched PubMed, American Society for Clinical Oncology Abstracts, and European Society for Medical Oncology Abstracts for relevant trials till September 2017. Moreover, we also searched the clinical trial registration website (https://www.ClinicalTrials.gov) to obtain information on registered randomized controlled trials (RCTs). Keywords used in the search were “bevacizumab,” “avastin,” “ramucirumab,” “IMC1121B,” “LY3009806,” and “randomized controlled trials.” The search was limited to RCTs published in English.

Selection of trials

Data abstraction and quality assessment were conducted independently by two reviewers. Disagreements were resolved by discussion with an independent expert. The RCTs were eligible for inclusion in our meta-analysis: 1) prospective Phase II and Phase III RCTs in patients with cancer, 2) random assignment of participants to these two antiangiogenic monoclonal antibodies treatment or control groups, 3) available data, including the event or incidence of bleeding and sample size for analysis. Phase I and single-arm phase II trials were excluded because of their lack of control groups.

Data extraction

We extracted details on study characteristics, treatment information, results, and safety profiles from the selected trials. Clinical endpoints were obtained from the safety profile of each clinical trial. All-grade, high-grade bleeding and all-grade, high-grade pulmonary hemorrhage in lung cancers were recorded according to the version of National Cancer Institute-Common Terminology Criteria for Adverse Events used in each trial.

Statistical analysis

Data were calculated by Review Manager version 5.2 (The Nordic Cochrane Centre, Copenhagen, Denmark). For the outcomes, the RR was calculated for dichotomous data. Statistical heterogeneity in the results of the trials was assessed by the chi-square test, and expressed by the I^2 index. When there was no statistically significant heterogeneity, a pooled effect was calculated with a fixed-effect model. When considerable heterogeneity was found ($p<0.1$, or $I^2>50\%$), a random-effect model was employed. Subgroup analysis was conducted to examine whether the RRs of all-grade and high-grade bleeding varied by drug type, drug dosage, and cancer type.

Results

Search results

We reviewed 2,045 potentially relevant articles from our initial search strategies. A total of 1,906 articles were excluded on screening abstracts and titles for the following reasons: review articles, case reports, basic researches,
Phase I or single-arm Phase II studies, irrelevant topics, and duplicate reports. The remaining 139 articles were retrieved for full evaluation, and 54 articles were excluded for unavailable data for assessment of bleeding or antiangiogenic monoclonal antibodies in both treatment and control arms. Finally, 85 RCTs were included in this meta-analysis. The study search process is shown in a flow chart (Figure 1).

Patients

A total of 85 studies and 46,630 patients were included for the analysis. Bevacizumab was investigated in 72 trials and ramucirumab was investigated in 13 trials. All of the studies included 21 colorectal cancer, 15 breast cancer, 16 lung cancer, three renal cell cancer, two pancreatic cancer, five ovarian cancer, six gastric or gastroesophageal junction adenocarcinoma, one glioblastoma, one lymphoma, one lymphocytic leukemia, two melanoma, two malignant mesothelioma, one prostate cancer, one cervical cancer, one leiomyosarcoma, two urothelial carcinoma, two hepatocellular carcinoma, and one soft tissue sarcoma. In addition, 35 trials were treated with low-dose drugs (28 trials for bevacizumab at 2.5 mg/kg/week, seven trials for ramucirumab at 3.3 mg/kg/week) and 46 trials were treated with high-dose drugs (40 trials for bevacizumab at 5 mg/kg/week, six trials for ramucirumab at 4 mg/kg/week). Other 4 three-arm trials were two arms of different dosage levels of bevacizumab and one arm of control. All of these RCTs were judged to be of adequate quality (Jadad score is 3–5). Baseline characteristics of the 85 RCTs are provided in Table 1.

RR of all-grade bleeding

Forty-three RCTs were available to calculate the RR of all-grade bleeding in patients assigned to angiogenesis inhibitors arms versus control arms. The results showed that antiangiogenic monoclonal antibodies significantly increased the risk of all-grade (RR: 2.38, 95% CI: 2.09–2.71, p<0.00001) bleeding compared with control arms. There was statistically significant heterogeneity (I²=74%) across the trials; we incorporated it into a random-effects model (Figure 2).

RR of high-grade bleeding

The RR of high-grade (≥grade 3) bleeding was determined in 82 RCTs. The results showed that antiangiogenic monoclonal antibodies significantly increased the risk of all-grade bleeding (RR: 1.71, 95% CI: 1.48–1.97, p<0.00001) with a fixed-effects models (I²=19%) (Figure 3).

RR according to drug type

As an exploratory analysis, patients were stratified according to drug type. We found that bevacizumab significantly increased the risk of all-grade (RR: 2.73, 95% CI: 2.24–3.33, p<0.00001) and high-grade bleeding (RR: 1.98, 95% CI: 1.68–2.34, p<0.00001), but ramucirumab only increased

Figure 1 Outline of the search flow diagram.

Abbreviation: RCTs, randomized controlled trials.
Table I Characteristics of studies included in the meta-analysis

Author	Year	Malignancy	Phase	No. in intervention/control	Concurrent treatment	Dose (mg/kg/week)	No. of bleeding events in intervention/control			
Bevacizumab										
Kabbinavar et al	2003	CRC	II	67/35	Fluorouracil + leucovorin	2.5 or 5	NR 3/0			
Hurwit et al	2004	CRC	III	393/397	Irinotecan + fluorouracil + leucovorin	2.5	NR 12/10			
Kabbinavar et al	2005	CRC	III	100/104	Fluorouracil + leucovorin	2.5	NR 5/3			
Gantoni et al	2007	CRC	III	287/285	Oxaplatin + fluorouracil + leucovorin	5	NR 10/1			
Saltz et al	2008	CRC	III	694/675	Cephalatin + oxaplatin/fluorouracil + folinic acid + oxaplatin	2.5	NR 13/8			
Allegra et al	2009	CRC	III	1,326/1,321	Oxaplatin + fluorouracil + leucovorin	2.5	NR 25/25			
Tebbutt et al	2010	CRC	III	157/156	Cephalatin	2.5	19/19			
Statopoulos et al	2010	CRC	III	114/108	Irinotecan + leucovorin	2.5	0/1			
Guan et al	2011	CRC	III	141/70	Irinotecan + fluorouracil + leucovorin	2.5	NR 1/1			
Dotan et al	2012	CRC	II	12/11	Cephalatin + oxaplatin + cetuximab	2.5	6/4			
De Gramont et al	2012	CRC	III	1,145/1,126	Oxaplatin + fluorouracil + leucovorin	2.5	0/1			
Bennouna et al	2013	CRC	III	401/409	Fluorouracil/ceaplabin + oxaplatin/irinotecan	2.5	NR 8/1			
Cunningham et al	2013	CRC	III	134/136	Cephalatin	2.5	34/9			
Cao et al	2015	CRC	II	65/77	Irinotecan + fluorouracil + leucovorin	5	NR 5/0			
Hegewisch-Becker et al	2015	CRC	III	156/158	None	2.5	14/11			
Passardi et al	2015	CRC	III	176/194	Irinotecan + fluorouracil + leucovorin/oxaplatin + fluorouracil + leucovorin	2.5	30/9			
Masi et al	2015	CRC	III	91/92	Irinotecan + fluorouracil + leucovorin/oxaplatin + fluorouracil + leucovorin	2.5	19/2 0/0			
Koeberle et al	2015	CRC	III	131/131	None	2.5	5/1 0/0			
Snoeren et al	2015	CRC	III	39/36	Cephalatin + oxaplatin	2.5	NR 0/1			
Miller et al	2005	BC	III	229/215	Cephalatin	5	66/24			
Miller et al	2007	BC	III	365/346	Paclitaxel	5	NR 2/0			
Miles et al	2010	BC	III	499/231	Docetaxel	2.5 or 5	NR 5/2			
Bruisky et al	2011	BC	III	458/221	Cephalatin/taxane/gemcitabine/vinorelbine	5	NR 8/0			
Robert et al	2011	BC	III	817/403	Cephalatin/taxane/anthracycline	5	NR 14/1			
von Minckwitz et al	2012	BC	III	956/969	Epirubicin/anthracycline/oxaplatin	5	NR 4/3			
Gianni et al	2013	BC	III	215/206	Docetaxel + trastuzumab	5	NR 3/1			
Cameron et al	2013	BC	III	1,288/1,271	Anthracycline/taxane	5	NR 8/2			
Coudert et al	2014	BC	II	7/25	Trastuzumab + docetaxel	5	NR 0/0			
von Minckwitz et al	2014	BC	III	245/238	Taxane/anthracycline/ceaplabin/vinorelbine/gemcitabine/cyclophosphamide	5	33/18			
Sikov et al	2015	BC	II	215/218	Paclitaxel ± carboplatin ± doxorubicin + cyclophosphamide	5	NR 7/0			
Diéras et al	2015	BC	II	56/57	Trebananib + paclitaxel	5	29/17			
Miles et al	2017	BC	III	238/233	Paclitaxel	5	106/62			
Johnson et al	2004	LC	II	66/32	Carboplatin + paclitaxel	2.5 or 5	NR 6/0			
Reference	Year	Tissue or Disease	Stage	Treatment 1	Treatment 2	Treatment 3	Treatment 4	Toxicity	Dose	Comments
-------------------	------	-------------------	-------	-------------	-------------	-------------	-------------	----------	------	---------------------------------
Sandler et al.	2006	LC	III	Paclitaxel	Carboplatin				5	NR
Herbst et al.	2007	LC	II	Paclitaxel	Carboplatin				9	19/3
Reck et al.	2009	LC	III	Docetaxel	Carboplatin				5	NR
Herbst et al.	2011	LC	III	Cisplatin	Gemcitabine				5	1/31
Niho et al.	2012	LC	II	Erlotinib					5	10/7
Boutsikou et al.	2013	LC	III	Docetaxel	Carboplatin	Erlotinib			7/0	3/0
Seto et al.	2014	LC	II	Carboplatin	Paclitaxel				5	4/22
Zhou et al.	2015	LC	II-III	Cisplatin	Epitaxorubicin + Cyclophosphamide				5	2/1
Pujol et al.	2015	LC	II-III	Docetaxel					20/3	0/0
Takeda et al.	2016	LC	II	Pemtrexed					5	0/0
Karayama et al.	2016	LC	II	Carboplatin	Interferon				5	1/1
Tiseo et al.	2017	LC	III	Cisplatin	Interferon				5	21/4
Escudier et al.	2007	RCC	III	Gemcitabine + Erlotinib				2.5	124/67	22/16
Rini et al.	2010	RCC	III	Gemcitabine					5	5/4
Van Cutsem et al.	2009	PC	II	Paclitaxel					2.5	14/7
Kinder et al.	2010	PC	II	Paclitaxel					5	14/7
Burger et al.	2011	OC	II	Paclitaxel					5	14/7
Perren et al.	2011	OC	II	Paclitaxel					5	14/7
Pujade-Lauraine et al.	2014	OC	II	Paclitaxel					5	14/7
Aghajanian et al.	2015	OC	II	Paclitaxel					5	14/7
Coleman et al.	2017	OC	II	Paclitaxel					5	14/7
Ohtsu et al.	2011	GC	III	Cisplatin					5	9/9
Okines et al.	2013	GC	VI	Epirubicin + Cisplatin + Capetitabine				2.5	2/12	1/3
Shen et al.	2015	GC, GEJC	III	Cisplatin					5	15/7
Cunningham et al.	2017	GEJC	VI	Epirubicin + Cisplatin + Capetitabine				2.5	15/7	2/2
Chino et al.	2014	Gioblastoma	III	Radiotherapy + Temozolomide				5	186/97	15/8
Gilbert et al.	2014	Gioblastoma	III	Cisplatin					5	4/2
Balana et al.	2016	Gioblastoma	II	Temozolomide				5	5/0	
Seymour et al.	2014	Lymphoma	III	Rituximab + Doxorubicin + Vinristine + Cyclophosphamide + Prednisone instead of R-CHOP	77/31	8/1				
Kay et al.	2016	Lymphocytic leukemia	II	Pentostatin + Cyclophosphamide + Rituximab	5	NR	1/0	2/5		
Kim et al.	2012	Melanoma	II	Paclitaxel		Gemcitabine	None	5	13/13	2/5
Corrie et al.	2012	Melanoma	II	Paclitaxel	Gemcitabine	None	2.5	15/16	1/1	
Kinder et al.	2012	MM	II	Gemcitabine	Pemtrexed	Docetaxel	Docetaxel	5	91/16	2/0
Zalcman et al.	2016	MM	II	Pemtrexed		Docetaxel		5	NR	35/16
Kelly et al.	2012	Prostate cancer	III	Docetaxel	Pemtrexed	Docetaxel		5	NR	10/2
Tewari et al.	2014	Cervical cancer	III	Paclitaxel/topotecan + Cisplatin				5	NR	2/6
Hensley et al.	2015	uLMS	II	Gemcitabine + Docetaxel				2.5	3/1	3/1
Pinter et al.	2015	HC	II	IFSamide + vinristine + actinomycin-D + Doxorubicin instead of VADO/IVACyclophosphamide + Vinorelbine	178/174	3/1				
Chisholm et al.	2017	STSs	II	TACE				5	3/1	3/1

(Continued)
Table 1 (Continued)

Author	Year	Malignancy	Phase	No. in intervention/control	Dose Concurrent treatment	No. of bleeding events in intervention/control	Grade	All grade	Grade 3
Ramucirumab	2016	LC	II	76/81	Docetaxel	6/76/18	0.00001	1.94	1.76–2.13
Yoh et al.	2015	LC	III	68/84	Docetaxel	15/14	0.00001	1.99–11.19	1.76–2.13
Doebele et al.	2014	LC	III	67/69	Docetaxel	11/18	0.00001	1.99–11.19	1.76–2.13
garon et al.	2014	LC	III	627/618	Docetaxel	5/12	0.00001	1.99–11.19	1.76–2.13
Petrylak et al.	2015	Uc	II	46/45	Docetaxel	5/12	0.00001	1.99–11.19	1.76–2.13
Petrylak et al.	2016	Uc	III	263/267	Docetaxel	9/12	0.00001	1.99–11.19	1.76–2.13
Tabernero et al.	2015	CRC	III	529/528	None	13/9	0.00001	1.99–11.19	1.76–2.13
Moore et al.	2016	CRC	II	52/49	Oxaliplatin + fluorouracil + leucovorin	5/12	0.00001	1.99–11.19	1.76–2.13
Yardley et al.	2016	CRC	III	752/382	Docetaxel	26/13	0.00001	1.99–11.19	1.76–2.13
Mackey et al.	2015	Bc	III	752/382	Docetaxel	26/13	0.00001	1.99–11.19	1.76–2.13
Fuchs et al.	2014	Bc	III	26/13	Erbitin	1/1	0.00001	1.99–11.19	1.76–2.13
Wilke et al.	2016	Bc	III	26/13	Paclitaxel	14/8	0.00001	1.99–11.19	1.76–2.13
Yoon et al.	2016	Bc	III	26/13	Oxaliplatin + fluorouracil + leucovorin	5/12	0.00001	1.99–11.19	1.76–2.13
Zhu et al.	2015	Bc	III	26/13	None	1/1	0.00001	1.99–11.19	1.76–2.13

Abbreviations: CRC, colorectal cancer; Bc, breast cancer; lc, lung cancer; rcc, renal cell carcinoma; Pc, pancreatic cancer; Oc, ovarian cancer; gc, gastric cancer; MM, malignant mesothelioma; ulMs, uterine leiomyosarcoma; Uc, urothelial carcinoma; ec, esophagus cancer; geJc, gastroesophageal junction cancer; hc, hepatocellular carcinoma; sTss, soft tissue sarcomas; nr, not reached; Tace, transarterial chemoembolization.

In the subgroup analysis by dosage, the increased risk of all-grade and high-grade bleeding was observed in both low-dose and high-dose angiogenesis inhibitors.

The risks of all-grade bleeding were comparable between patients with low-dose angiogenesis inhibitors (RR: 2.46, 95% CI: 1.95–3.11) and high-dose angiogenesis inhibitors (RR: 2.34, 95% CI: 2.00–2.73) (Table 2). The risk of high-grade bleeding was more frequently observed in patients with high-dose angiogenesis inhibitors (RR: 2.17, 95% CI: 1.79–2.64) than in those with low-dose angiogenesis inhibitors (RR: 1.31, 95% CI: 1.06–1.60) (Table 3).

RR according to tumor type

Studies were further stratified according to tumor type (colorectal cancer vs non-colorectal tumors). Increased risk of all-grade and high-grade bleeding was observed in both the colorectal cancer arm and non-colorectal tumors arm. The risks of all-grade (RRs for colorectal cancer and non-colorectal tumors were 2.24, 95% CI: 1.58–3.19 and 2.42, 95% CI: 2.09–2.80, respectively) (Table 2) and high-grade bleeding (RRs for colorectal cancer and non-colorectal tumors were 1.52, 95% CI: 1.13–2.03 and 1.77, 95% CI: 1.50–2.09, respectively) (Table 3) were comparable between patients with colorectal cancer and non-colorectal tumors.

Publication bias

To minimize publication bias, we selected papers strictly according to the inclusion criteria. Furthermore, a funnel plot...
was used to detect publication bias and no apparent bias was found according to it for all-grade and high-grade bleeding.

Discussion

To the best of our knowledge, this is the first and the largest meta-analysis to assess the risk of bleeding associated with antiangiogenic monoclonal antibodies bevacizumab and ramucirumab. The results of our meta-analysis showed a significant 2.38-fold increased all-grade bleeding risk and a 1.71-fold increased high-grade bleeding risk with these agents. A similar risk of bleeding is also associated with other VEGF receptor tyrosine kinase inhibitors. In order to identify potential risk factors, we performed subgroup analysis according to drug types. The results

Study or subgroup	Experimental events	Control events	Total	Weight (%)	Risk ratio M–H, random, 95% CI	Risk ratio M–H, random, 95% CI
Aghajanian et al	170	247	78	233	3.8	2.06, 1.68–2.51
Boutsikou et al	7	116	0	113	0.2	14.62, 0.84–252.94
Chiot et al	186	461	97	450	3.8	1.87, 1.52–2.31
Coleman et al	140	330	27	327	3.1	5.14, 3.50–7.53
Corrie et al	153	671	13	672	2.4	11.79, 6.76–20.55
Cunningham et al	34	134	9	136	1.9	3.83, 1.91–7.68
Cunningham et al	15	468	7	477	1.4	2.18, 0.90–5.31
Diéras et al	29	56	17	57	2.7	1.74, 1.08–2.78
Doebele et al	26	67	13	69	2.3	2.06, 1.16–3.66
Dotan et al	6	12	4	11	1.3	1.38, 0.52–3.61
Escudier et al	112	337	28	304	3.1	3.61, 2.46–5.30
Fuchs et al	30	236	13	229	2.2	1.12, 0.61–2.07
Garon et al	181	627	94	618	3.7	1.90, 1.52–2.37
Hegewisch-Becker et al	14	156	11	158	1.7	1.29, 0.60–2.75
Hensley et al	7	52	2	51	0.3	0.49, 0.05–5.24
Koebeler et al	5	131	1	131	0.3	5.00, 0.59–42.21
Mackey et al	361	752	85	382	3.8	2.16, 1.76–2.64
Masi et al	19	91	2	92	0.7	9.60, 2.30–40.05
Miles et al	106	238	62	233	3.6	1.67, 1.30–2.16
Miller et al	66	229	24	215	2.9	2.58, 1.68–3.96
Moore et al	25	52	9	43	2.1	2.62, 1.36–5.04
Nish et al	94	119	18	88	3.0	2.55, 1.72–3.78
Passardi et al	30	176	9	194	1.9	3.67, 1.79–7.52
Perren et al	295	745	87	735	3.8	3.43, 2.76–4.26
Petrylak et al	31	46	12	45	2.5	2.53, 1.50–4.27
Petrylak et al	67	263	46	267	3.3	1.48, 1.06–2.07
Pinter et al	3	16	1	11	0.3	2.06, 0.25–17.34
Pujol et al	7	37	2	37	0.6	3.50, 0.78–15.75
Rini et al	21	362	4	347	1.1	5.03, 1.75–14.51
Seto et al	54	75	22	77	3.1	2.52, 1.72–3.69
Seymour et al	77	395	31	386	3.0	2.43, 1.64–3.59
Statopoulos et al	3	114	0	108	0.2	6.63, 0.35–126.96
Taberner et al	232	529	120	528	3.9	1.93, 1.60–2.32
Takeda et al	20	50	3	50	1.0	6.67, 2.11–21.02
Tebbutt et al	19	157	19	156	2.2	0.99, 0.55–1.80
Van Cutsen et al	124	296	67	287	3.6	1.79, 1.40–2.30
von Minckwitz et al	33	245	18	238	2.4	1.78, 1.03–3.07
Wilke et al	137	327	59	326	3.6	2.34, 1.79–3.04
Yardley et al	13	69	3	65	0.9	4.08, 1.22–13.67
Yoh et al	39	76	23	81	3.0	1.81, 1.20–2.72
Yoon et al	36	82	20	80	2.8	1.76, 1.12–2.76
Zalcman et al	91	222	16	224	2.6	5.74, 3.49–9.44
Zhu et al	90	277	55	276	3.5	1.63, 1.22–2.18

Total, 95% CI 10,141 9,490 100 2.38, 2.09–2.71

Figure 2 RR of all-grade bleeding.

Abbreviations: M–H, Mantel–Haenszel; RR, relative risk.
showed that ramucirumab differed from bevacizumab in terms of the risk of high-grade bleeding and the risk of all-grade and high-grade pulmonary hemorrhage in lung cancer patients. The mechanisms underlying these differences remained unclear. A possible explanation was that bevacizumab, as an anti-VEGF-A agent, specified both VEGFR-1 and VEGFR-2, whereas ramucirumab was only specified for VEGFR-2. VEGFR-2 was the major mediator of VEGFR-1 and VEGFR-2, whereas ramucirumab was only specified for VEGFR-2.
of VEGF-driven responses in endothelial cells. The precise function of VEGFR-1 was not entirely established and some studies showed that VEGFR-1 could also regulate proliferation and survival of endothelial cells. Increased level of tumor VEGFR-1 expression has been shown to be associated with high tumor angiogenesis. VEGF/VEGFR-1 signaling-mediated tumor cell monocyte chemoattractant protein-1 expression could represent a mechanism responsible for the tumor angiogenic switch. Therefore, bevacizumab increased the risk of bleeding by inhibiting both VEGFR-1 and VEGFR-2. Squamous cell tumors are more frequently centrally located and have a greater tendency to cavitate as compared to adenocarcinoma, which is the main risk factor of pulmonary hemorrhage. The difference in the risk of pulmonary hemorrhage caused bevacizumab to be used only for non-squamous NSCLC and ramucirumab to be used for any tumor histology of NSCLC.

Our study also demonstrated that both low-dose and high-dose angiogenesis inhibitors increased the risk of bleeding. The risk of high-grade bleeding was more frequently observed in patients with high-dose angiogenesis inhibitors, suggesting that the risk may be dose-dependent and close supervision and careful management should be emphasized especially in patients with high dosage.

In a meta-analysis of bevacizumab, patients with colorectal cancer were found to have the highest risk of bleeding compared to other tumors. For colorectal cancer patients, high-grade bleeding such as perforation was commonly fatal and life threatening. Therefore, we performed a subgroup analysis according to colorectal cancer and non-colorectal tumors in order to identify the potential risk factors. Results showed that the risk of all-grade and high-grade bleeding was comparable between patients with colorectal cancer and non-colorectal tumors, suggesting that the increased risk of bleeding is associated with many tumor types.

Limitations

There are several limitations in this meta-analysis. First, we performed stratification analysis only for colorectal cancer and non-colorectal tumor types because too many tumor types were included in the analysis and assessment was difficult. Second, we did not evaluate the risk of pulmonary hemorrhage between bevacizumab and ramucirumab in colorectal cancer patients.
Table 1: Weighted Risk Ratio for All-Grade Pulmonary Hemorrhage

Study or subgroup	Experimental events	Control events	Total	Weight (%)	Risk ratio M–H, fixed, 95% CI	
Bevacizumab						
Boutsikou et al⁴¹	7	116	0	113	0.9	14.62, 0.84–252.94
Karayama et al⁵¹	1	45	1	35	1.9	0.78, 0.05–12.00
Nihno et al⁵⁵	26	119	3	58	6.9	4.22, 1.33–13.38
Seto et al⁵⁷	6	75	1	77	1.7	6.16, 0.76–49.95
Subtotal, 95% CI			355	283	11.3	4.72, 1.99–11.19
Total events			40	5		
Heterogeneity: χ²=2.37, df=3 (p=0.50); I²=0%						
Test for overall effect: Z=3.52 (p=0.0004)						

Table 2: Weighted Risk Ratio for High-Grade Pulmonary Hemorrhage

Study or subgroup	Experimental events	Control events	Total	Weight (%)	Risk ratio M–H, fixed, 95% CI	
Bevacizumab						
Boutsikou et al⁴¹	3	116	0	113	4.4	6.82, 0.36–130.57
Herbst et al⁴²	2	39	0	42	4.2	5.38, 0.27–108.58
Herbst et al⁴²	3	313	1	313	8.7	3.00, 0.31–28.68
Johnson et al⁴²	6	66	0	32	5.8	6.40, 0.37–110.26
Karayama et al⁵¹	0	45	0	35	Not estimable	
Nihno et al⁵⁵	1	119	0	58	5.8	1.48, 0.06–35.66
Pujol et al⁵¹	0	37	0	37	Not estimable	
Reck et al⁵³	8	659	2	327	23.2	1.98, 0.42–9.29
Sandler et al⁵¹	8	427	1	440	8.6	8.24, 1.04–65.63
Seto et al⁵⁷	0	75	0	77	Not estimable	
Takeda et al⁵¹	0	50	0	50	Not estimable	
Tiseo et al⁵²	0	95	0	103	Not estimable	
Zhou et al⁵⁰	0	140	0	134	Not estimable	
Subtotal, 95% CI			2,181	1,761	60.8	3.97, 1.70–9.29
Total events			31	4		
Heterogeneity: χ²=1.96, df=6 (p=0.92); I²=0%						
Test for overall effect: Z=3.18 (p=0.001)						

Table 3: Weighted Risk Ratio for High-Grade Pulmonary Hemorrhage

Study or subgroup	Experimental events	Control events	Total	Weight (%)	Risk ratio M–H, fixed, 95% CI	
Ramucirumab						
Garon et al²²	4	627	4	618	35.0	0.99, 0.25–3.92
Yoh et al⁵¹	1	76	0	81	4.2	3.19, 0.13–77.25
Subtotal, 95% CI			703	699	39.2	1.22, 0.35–4.21
Total events			5	4		
Heterogeneity: χ²=0.44, df=1 (p=0.51); I²=0%						
Test for overall effect: Z=0.32 (p=0.75)						

| **Total events** | | | 36 | 8 | | |
| **Heterogeneity:** χ²=4.50, df=8 (p=0.81); I²=0% |
| **Test for subgroup differences:** χ²=2.37, df=1 (p=0.12); I²=57.7% |

Figure 4 RR of all-grade pulmonary hemorrhage.
Abbreviations: M–H, Mantel-Haenszel; RR, relative risk.

Figure 5 RR of high-grade pulmonary hemorrhage.
Abbreviations: M–H, Mantel-Haenszel; RR, relative risk.
lung squamous cell carcinoma patients due to the small sample size or absence of original data. Finally, our literature search was limited to articles published in English leading to some selection bias.

Conclusion
Despite the limitations of our meta-analysis, we conclude that antiangiogenic monoclonal antibodies are associated with a significant increase in the risk of all-grade and high-grade bleeding. Ramucirumab may be different from bevacizumab in terms of the risk of high-grade bleeding and the risk of all-grade and high-grade pulmonary hemorrhage in lung cancer patients. Clinicians should be aware of this adverse effect and ensure close monitoring, especially in patients at high risk.

Acknowledgment
This study was supported by the Beijing Natural Science Foundation (7142125).

Disclosure
The authors report no conflicts of interest in this work.

References
1. Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer. 2007;96:1788–1795.
2. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358:2039–2049.
3. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23:1011–1027.
4. Poole RM, Vaidya A. Ramucirumab: first global approval. Drugs. 2014;74:1047–1058.
5. Klickapa S, Abali H, Celik I. Bevacizumab, bleeding, thrombosis, and warfarin. J Clin Oncol. 2003;21:3542.
6. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–269.
7. Higgin JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560.
8. Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol. 2003;21:60–65.
9. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–2342.
10. Kabbinavar FF, Schulz J, McLeod M, et al. Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Oncol. 2005;23:3697–3705.
11. Giontonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol. 2007;25:1539–1544.
12. Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26:2013–2019.
13. Allegra CJ, Yothers G, O’Connell MJ, et al. Initial safety report of NSABP C-08: a randomized phase III study of modified FOLFOX6 with or without bevacizumab for the adjuvant treatment of patients with stage II or III colon cancer. J Clin Oncol. 2009;27:3385–3390.
14. Tebbutt NC, Wilson K, Gbeka VI, et al. Capecitabine, bevacizumab, and mitomycin in first-line treatment of metastatic colorectal cancer: results of the Australasian Gastrointestinal Trials Group randomized phase III MAX study. J Clin Oncol. 2010;28:3191–3198.
15. Stathopoulos GP, Batziou C, Trafalis D, et al. Treatment of colorectal cancer with and without bevacizumab: a phase III study. Oncology. 2010;78:376–381.
16. Guan ZZ, Xu JM, Luo RC, et al. Efficacy and safety of bevacizumab plus chemotherapy in Chinese patients with metastatic colorectal cancer: a randomized phase III ARTIST trial. Chin J Cancer. 2011;30:682–689.
17. Dotan E, Meropol NJ, Burtness B, et al. A Phase II study of capecitabine, oxaliplatin, and cetuximab with or without bevacizumab as frontline therapy for metastatic colorectal cancer. A Fox Chase extramural research study. J Gastrointest Cancer. 2012;43:562–569.
18. de Gramont, Van Cutsem E, Schmolli HI, et al. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol. 2012;13:1225–1233.
19. Bennouna J, Sastre J, Arnold D, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol. 2013;14:29–37.
20. Cunningham D, Lang I, Marcuello E, et al. Bevacizumab plus capecitabine versus capecitabine alone in elderly patients with previously untreated metastatic colorectal cancer (AVEX): an open-label, randomised phase 3 trial. Lancet Oncol. 2013;14:1077–1085.
21. Cao R, Zhang S, Ma D, Hu L. A multi-center randomized phase II clinical study of bevacizumab plus irinotecan, 5-fluorouracil, and leucovorin (FOLFIRI) compared with FOLFIRI alone as second-line treatment for Chinese patients with metastatic colorectal cancer. Med Oncol. 2015;32:325–329.
22. Hegewisch-Becker S, Graeven U, Lerehennuller CA, et al. Maintenance strategies after first-line oxaliplatin plus fluoropyrimidine plus bevacizumab for patients with metastatic colorectal cancer (AIO0207): a randomised, non-inferiority, open-label, phase 3 trial. Lancet Oncol. 2015;16:1355–1369.
23. Passardi A, Nanni O, Tassiniari D, et al. Effectiveness of bevacizumab added to standard chemotherapy in metastatic colorectal cancer: final results for first-line treatment from the ITACA randomized clinical trial. Ann Oncol. 2015;26:1201–1207.
24. Massi G, Salvatore L, Boni L, et al. Continuation or reintroduction of bevacizumab beyond progression to first-line therapy in metastatic colorectal cancer: final results of the randomized BEBYP trial. Ann Oncol. 2015;26:724–730.
25. Koebel D, Betticher DC, von Moos R, et al. Bevacizumab continuation versus no continuation after first-line chemotherapy plus bevacizumab in patients with metastatic colorectal cancer: a randomized phase III non-inferiority trial (SAKK 41/06). Ann Oncol. 2015;26:709–714.
26. Snoeren N, van Hillegersberg R, Schouten SB, et al. Randomized phase III study to assess efficacy and safety of adjuvant CAPOX with or without bevacizumab in patients after resection of colorectal liver metastases: HEPATICA study. Neoplasia. 2017;19:93–99.
27. Miller KD, Chap LI, Holmes FA, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol. 2005;23:792–799.
28. Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357:2666–2676.
29. Miles DW, Chan A, Dirix LY, et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2010;28:3239–3247.

30. Bruhusky AM, Hurvitz S, Perez E, et al. RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2011;29: 4286–4293.

31. Robert NJ, Dieras V, Glaspy J, et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol. 2011;29:1252–1260.

32. von Minckwitz G, Eidmann H, Rezai M, et al. Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N Engl J Med. 2012;366:299–309.

33. Gianni L, Romieu GH, Lichinitser M, et al. AVEREL: a randomized phase III trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J Clin Oncol. 2013;31:1719–1725.

34. Cameron D, Brown J, Dent R, et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol. 2013;14:933–942.

35. Coudert B, Pierga JY, Mouret-Reynier MA, et al. Use of [18F]-FDG PET to predict response to neoadjuvant trastuzumab and docetaxel in patients with HER2-negative breast cancer, and addition of bevacizumab to neoadjuvant trastuzumab and docetaxel in [18F]-FDG PET-predicted non-responders (AVATAXHER): an open-label, randomised phase 2 trial. Lancet Oncol. 2014;15:1493–1502.

36. von Minckwitz G, Puglisi F, Cortes J, et al. Bevacizumab plus chemotherapy versus chemotherapy alone as second-line treatment for patients with HER2-negative locally recurrent or metastatic breast cancer after first-line treatment with bevacizumab plus chemotherapy (TANIA): an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15:1269–1278.

37. Sikov WM, Berry DA, Perou CM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33:13–21.

38. Diéras V, Wildiers H, Jassem J, et al. Trebananib (AMG 386) plus weekly paclitaxel with or without bevacizumab as first-line therapy for HER2-negative locally recurrent or metastatic breast cancer: a phase 2 randomized study. Breast. 2015;24:182–190.

39. Miles D, Cameron D, Bondarenko I, et al. Bevacizumab plus paclitaxel versus placebo plus paclitaxel as first-line therapy for HER2-negative metastatic breast cancer (MERIDIAN): a double-blind placebo-controlled randomised phase III trial with prospective biomarker evaluation. Eur J Cancer. 2017;70:146–155.

40. Johnson DH, Feehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004;22:2184–2191.

41. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–2550.

42. Herbst RS, O’Neill VJ, Feehrenbacher L, et al. Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell lung cancer. J Clin Oncol. 2007;25:4743–4750.

43. Reck M, von Pawel J, Zatloukal P, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiL. J Clin Oncol. 2009;27:1227–1234.

44. Herbst RS, Ansari R, Bustin F, et al. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): a double-blind, placebo-controlled, phase III trial. Lancet. 2011;377:1846–1854.

45. Niho S, Kunioh H, Nokihara H, et al. Randomized phase II study of first-line carboplatin-paclitaxel with or without bevacizumab in Japanese patients with advanced nonsquamous non-small-cell lung cancer. Lung Cancer. 2012;76:362–367.

46. Boutsikou E, Kontakiotis T, Zarogoulidis P, et al. Docetaxel-carboplatin in combination with erlotinib and/or bevacizumab in patients with non-small cell lung cancer. Onco Targets Ther. 2013;6:125–134.

47. Seto T, Kato T, Nishio M, et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced nonsquamous non-small-cell lung cancer harbouring EGFR mutations (J025567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol. 2014;15:1236–1244.

48. Zhou C, Wu YL, Chen G, et al. BEYOND: a randomized, double-blind, placebo-controlled, multicenter, phase III study of first-line carboplatin/paclitaxel plus bevacizumab or placebo in Chinese patients with advanced or recurrent nonsquamous non-small-cell lung cancer. J Clin Oncol. 2015;33:2197–2204.

49. Pujol JL, Lavole A, Quoix E, et al. Randomized phase II–III study of bevacizumab in combination with chemotherapy in previously untreated extensive small-cell lung cancer: results from the IFCT-0802 trial. Ann Oncol. 2015;26:908–914.

50. Takeda M, Yamanaka T, Seto T, et al. Bevacizumab beyond disease progression after first-line treatment with bevacizumab plus chemotherapy in advanced nonsquamous non-small cell lung cancer (West Japan Oncology Group 5910L): an open-label, randomized, phase 2 trial. Cancer. 2016;122:1050–1059.

51. Karayama M, Inui N, Fujisawa T, et al. Maintenance therapy with pemetrexed and bevacizumab versus pemetrexed monotherapy after induction therapy with carboplatin, pemetrexed, and bevacizumab in patients with advanced non-squamous non small cell lung cancer. Euro J Cancer. 2016;58:30–37.

52. Tiseo M, Boni L, Ambrosio F, et al. Italian, multicenter, phase III, randomized study of cisplatin plus etoposide with or without bevacizumab as first-line therapy in extensive-disease small-cell lung cancer: the GOIRC-AIFA FARM6PMFJM trial. J Clin Oncol. 2017;35:1281–1287.

53. Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370:2103–2111.

54. Rini BI, Halabi S, Rosenberg JE, et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol. 2010;28:2137–2143.

55. Van Cutsem E, Verveenne WL, Bennouna J, et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J Clin Oncol. 2009;27:2231–2237.

56. Kindler HL, Niedzwiecki D, Hollis D, et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol. 2010;28:3617–3622.

57. Burger RA, Brady MF, Bookman MA, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2013;368:2473–2483.

58. Pujade-Lauraine E, Hilpert F, Weber B, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELLA open-label randomized phase III trial. J Clin Oncol. 2014;32:1302–1308.

59. Aghajanian C, Goff B, Nycur L, Wang YV, Hussain A, Blank SV. Final overall survival and safety analysis of OCEANS, a phase 3 trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer. Gynecol Oncol. 2015;139:10–16.
61. Coleman RL, Brady MF, Herzog TJ, et al. Bevacizumab and paclitaxel-carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): a multicentre, open-label, randomised, phase 3 trial. *Lancet Oncol*. 2017;18:779–791.

62. Oltus A, Shah MA, Von Cutsem E, et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. *J Clin Oncol*. 2011;29:3968–3976.

63. Okines AF, Langley RE, Thompson LC, et al. Bevacizumab with peri-operative epirubicin, cisplatin and capecitabine (ECX) in localised gastro-oesophageal adenocarcinoma: a safety report. *Ann Oncol*. 2013;24:702–709.

64. Shen L, Li J, Xu J, et al. Bevacizumab plus capecitabine and cisplatin in Chinese patients with inoperable locally advanced or metastatic gastric or gastrointestinal junction cancer: randomized, double-blind, phase III study (AVATAR study). *Gastric Cancer*. 2015;18:168–176.

65. Cunningham D, Stenning SP, Armstrong TS, et al. A randomized trial of peri-operative chemotherapy with or without bevacizumab in operable oesophagogastric adenocarcinoma (UK Medical Research Council ST03): primary analysis results of a multicentre, open-label, randomised phase 2–3 trial. *Lancet Oncol*. 2017;18:357–370.

66. Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. *N Engl J Med*. 2014;370:709–722.

67. Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. *N Engl J Med*. 2014;370:699–708.

68. Balana C, De Las Penas R, Sepulveda JM, et al. Bevacizumab and temozolomide versus temozolomide alone as neoadjuvant treatment in unrected glioblastoma: the GENOM 009 randomized phase II trial. *J Neurooncol*. 2016;127:569–579.

69. Seymour JF, Pfreundschuh M, Trneny M, et al. R-CHOP with or without bevacizumab in patients with stage IV non-small cell lung cancer after disease progression on platinum-based therapy. *Lung Cancer*. 2016;99:186–193.

70. Kay NE, Strati P, LaPlant BR, et al. Peri-operative chemotherapy with or without bevacizumab in patients with previously untreated diffuse large B-cell lymphoma: final MAIN study outcomes. *Haematologica*. 2014;99:1343–1349.

71. Petrylak DP, Tagawa ST, Kohli M, et al. Docetaxel as monotherapy or combined with ramucirumab or irinotecan in second-line treatment for locally advanced or metastatic urothelial carcinoma: a phase 3 study. *Lancet*. 2014;384:665–673.

72. Zalcman G, Mazieres J, Margery J, et al. Bevacizumab for newly diagnosed metastatic breast cancer in patients with hormone receptor-positive, HER2-negative, breast cancer (the ELIASE study): a randomized, double-blind, placebo-controlled, phase 2 study. *Lancet Oncol*. 2017;18:177–185.

73. Kay NE, Strati P, LaPlant BR, et al. A randomized phase II trial comparing chemoimmunotherapy with or without bevacizumab in previously untreated patients with chronic lymphocytic leukemia. *OncoTARGET*. 2016;48:78269–78280.

74. Kindler HL, Karrison TG, Gandara DR, et al. Multicenter, double-blind, placebo-controlled, randomized phase II trial of gemcitabine/cisplatin plus bevacizumab in patients with previously untreated advanced melanoma. *J Clin Oncol*. 2012;30:34–41.

75. Corrie PG, Marshall A, Dunn JA, et al. Adjuvant bevacizumab in patients with melanoma at high risk of recurrence (AVAST-M): preplanned interim results from a multicentre, open-label, randomised controlled phase 3 study. *Lancet Oncol*. 2014;15:620–630.

76. Kelly WK, Halabi S, Carducci M, et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. *J Clin Oncol*. 2012;30:2509–2515.

77. Zalcman G, Mazieres J, Margery J, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. *Lancet*. 2016;387:1405–1414.

78. Kelly WK, Halabi S, Carducci M, et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. *J Clin Oncol*. 2012;30:1534–1540.

79. Tewari KS, Sill MW, Long HJ, et al. Improved survival with bevacizumab in advanced cervical cancer. *N Engl J Med*. 2014;370:734–743.

80. Hensley ML, Miller A, O’Malley DM, et al. Randomized phase III trial of gemcitabine plus docetaxel plus placebo or bevacizumab in first-line treatment for metastatic uterine leiomyosarcoma: an NRG Oncology/Gynecologic Oncology Group study. *J Clin Oncol*. 2015;33:1180–1185.
92. Zhu AX, Park JO, Ryoo BY, et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind multicentre, phase 3 trial. Lancet Oncol. 2015;16:859–870.
93. Je Y, Schutz FA, Choueiri TK. Risk of bleeding with vascular endothelial growth factor receptor tyrosine-kinase inhibitors sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials. Lancet Oncol. 2009;10:967–974.
94. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7:1194–1201.
95. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive hematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–827.
96. Al-Moundhri MS, Al-Shukaili A, Al-Nabhani M, et al. Measurement of circulating levels of VEGF-A, -C, and -D and their receptors, VEGFR-1 and -2 in gastric adenocarcinoma. World J Gastroenterol. 2008;14:3879–3883.
97. Li C, Liu B, Dai Z, Tao Y. Knockdown of VEGF receptor-1 (VEGFR-1) impairs macrophage infiltration, angiogenesis and growth of clear cell renal cell carcinoma (CRCC). Cancer Biol Ther. 2011;12:872–880.
98. Sandler AB, Schiller JH, Gray R, et al. Retrospective evaluation of the clinical and radiographic risk factors associated with severe pulmonary hemorrhage in first-line advanced, unresectable nonsmall-cell lung cancer treated with carboplatin and paclitaxel plus bevacizumab. J Clin Oncol. 2009;27:1405–1412.
99. Hang XF, Xu WS, Wang JX, et al. Risk of high-grade bleeding in patients with cancer treated with bevacizumab: a meta-analysis of randomized controlled trials. Eur J Clin Pharmacol. 2011;67:613–623.
100. Zhu X, Tian X, Yu C, Hong J, Fang J, Chen H. Increased risk of hemorrhage in metastatic colorectal cancer patients treated with bevacizumab: an updated meta-analysis of 12 randomized controlled trials. Medicine (Baltimore). 2016;95:e4232.
Supplementary material

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
Abstract	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
Introduction	3,4	Describe the rationale for the review in the context of what is already known.	3,4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOs).	4
Methods	5	Indicate if a review protocol exists, if and where it can be accessed (eg, Web address), and, if available, provide registration information including registration number.	5
Protocol and registration	6	Specify study characteristics (eg, PICO, length of follow-up) and report characteristics (eg, years considered, language, publication status) used as criteria for eligibility, giving rationale.	4,5
Eligibility criteria	7	Describe all information sources (eg, databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	4
Information sources	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	4
Search	9	State the process for selecting studies (ie, screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
Study selection	10	Describe method of data extraction from reports (eg, piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5
Data collection process	11	List and define all variables for which data were sought (eg, PICO, funding sources) and any assumptions and simplifications made.	5
Data items	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	5
Risk of bias in individual studies	13	State the principal summary measures (eg, risk ratio, difference in means).	5
Summary measures	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (eg, I²) for each meta-analysis.	5
Synthesis of results	15	Specify any assessment of risk of bias that may affect the cumulative evidence (eg, publication bias, selective reporting within studies).	5
Risk of bias across studies	16	Describe methods of additional analyses (eg, sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	5
Additional analyses	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	6
Results	18	For each study, present characteristics for which data were extracted (eg, study size, PICO, follow-up period) and provide the citations.	6
Study selection	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	6
Study characteristics	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	7,8
Risk of bias within studies	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	7,8
Results of individual studies	22	Present results of any assessment of risk of bias across studies (see item 15).	7,8

(Continued)
PRISMA 2009 Checklist (Continued)

Section/topic	#	Checklist item	Reported on page #
Additional analysis	23	Give results of additional analyses, if done (eg, sensitivity or subgroup analyses, meta-regression [see item 16]).	7,8
Discussion			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (eg, healthcare providers, users, and policy makers).	9,10
Limitations	25	Discuss limitations at study and outcome level (eg, risk of bias), and at review-level (eg, incomplete retrieval of identified research, reporting bias).	10
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	10,11
Funding			
Funding	27	Describe sources of funding for the systematic review and other support (eg, supply of data); role of funders for the systematic review.	11

Notes: Moher D, Liberati A, Tetzlaff J, Altman DG; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. For more information, visit: www.prisma-statement.org.