Quality of Life in Danish Blood Donors Treated for Superficial Fungal Infections

Pernille LINDSØ ANDERSEN1,2, Gregor B. E. JEMEC2,3, Isabella C. LOFT1, Ditte M. L. SAUNTE2,3 and Ole B. PEDERSEN2,3

1Department of Clinical Immunology, Naestved Hospital, Naestved, 2Department of Dermatology, Zealand University Hospital Roskilde, Sygehusvej 5, DK-4000 Roskilde, and 3Department of Clinical Medicine, Health Sciences Faculty, University of Copenhagen, Denmark. E-mail: pelso@regionsjaeland.dk

Accepted Nov 29, 2021; Epub ahead of print Nov 29, 2021

SHORT COMMUNICATION

Superficial fungal infections (SFI) of the skin, nails or hair are treated with topical or systemic antifungal drugs (1). Physical symptoms, such as itch, pain and hair loss, can lead to impaired quality of life (QoL) in patients with SFI (2). Previous studies on QoL in patients with SFI have either focused exclusively on nail infections (2) or patients treated in hospitals, representing more severe cases of SFI (3–5). The aim of this study was to investigate QoL in individuals treated for SFI compared with those not treated for SFI in a cohort of Danish blood donors.

Blood donors (> 18 years of age) participating in the Danish Blood Donor Study (DBDS) (from June 1, 2018 to March 29, 2019) were included in the study. As blood donors are required to be in good health to donate blood, the study cohort had no predisposing conditions for SFI, i.e. immunosuppression and cardiovascular disease. Participants with a history of SFI were identified using a questionnaire item: “Have you had fungal infection in your skin or nails?”.

To further validate the phenotype, only participants treated by a physician with > 1 antifungal agent were considered to be cases. Participants who answered “no” and had no relevant prescription were classed as “controls”. Data on antifungal treatment were obtained from the Danish National Prescription Registry (DNPR) (from January 1, 1995 to June 30, 2018).

MATERIALS, METHODS AND RESULT

QoL was measured using the Short Form 12 questionnaire, scored in 2 dimensions; the physical component score (PCS) and mental component score (MCS). The PCS includes general health perception, physical functioning, and pain, while the MCS includes mood, social activities, and work ability explained by emotional factors (6). Symptoms of depression were assessed with the validated Major Depression Inventory (MDI) (7) and questionnaire data on previously diagnosed depression. Cohen’s Perceived Stress Scale categorized psychological stress into low, moderate, and high stress levels. Other covariates, including sex, age, annual income, work status, and highest obtained education level, were obtained through national registers, while smoking and body mass index were obtained through the DBDS questionnaire.

Cumulative prevalence was determined as the proportion with self-reported SFI only, and the proportion of prescription-validated SFI cases. Associations between SFI treatment and demographic factors and lifestyle were investigated with logistic regressions. Linear regressions predicted QoL by SFI were adjusted for age, sex, smoking, BMI, and demographic. Similarly, logistic regressions, adjusted for the aforementioned confounders, assessed associations between stress/depression (outcome) and SFI treatment (predictor). p-values < 0.05 were considered statistically significant and Holm-Bonferroni corrected for multiple tests. Analyses were performed in RStudio® version 1.2.1578 (RStudio®, Boston, MA, USA).

The study included 30,334 participants (52.1% males, 47.9% females). A total of 7,553 participants reported SFI, corresponding to a cumulative prevalence of 24.9% (95% confidence interval (95% CI) 24.4–25.4%). Of these, 3,466 (11.4% in total, 95% CI 11.1–11.8%) were treated for SFI (Table I). In comparison, 12,406 participants were considered as controls. A total of 2,038/3,466 (58.8%) received topical agents only, 267/3,466 (7.7%) received systemic agents only, and 1,161/3,466 (33.5%) received both. Table SII presents cumulative age-adjusted prevalence of SFI treatment. SFI treatment was associated with male sex (OR 1.41; 95% CI 1.30–1.52), increase in age per year (OR 1.02; 95% CI 1.01–1.02), increase in BMI (OR 1.03; 95% CI 1.02–1.04), and education level higher than high-school (OR 1.37; 95% CI 1.26–1.48).

Treatment for SFI was negatively associated with PCS (−1.58 points; 95% CI −2.19, −0.99) and MCS (−2.75 points; 95% CI −3.48, −2.02) after adjustment. Likewise, participants treated for SFI had an increased risk of higher stress level (OR 1.31; 95% CI 1.21–1.43) and higher risk of previous depression diagnosis (OR 1.58; 95% CI 1.30–1.91), than control participants (Table I). Effect sizes of relevant confounders of QoL are shown in Tables SII and SIII. Separate data on participants treated for onychomycosis are shown in Table SIV.

DISCUSSION

Dermatophytosis has been shown to markedly decrease QoL, correlating with the severity and spread of the disease in patients treated in hospital (3–5). Furthermore, patients with SFI may experience psychological distress due to embarrassment, low self-esteem, anxiety, and depression (4). However, these results are of Indian origin, a country with a widespread epidemic of dermatophytosis in up to 37–78% of the population, often occurring as recalcitrant disease (3). However, our results support that, even in Danish blood donors, with presumably milder disease than subjects in India, SFI, or at least SFI treatment, is associated with QoL impairment (Table I). Furthermore, the current study showed correlations with previous depression and mental stress in participants treated for SFI (Table I). However, these findings may be confounded by SFI treatment as a proxy for other diseases or a general health-seeking behaviour.

Consistent with the literature, treatment for SFI was associated with older age, male sex, and higher BMI (8). Surprisingly, no association was observed between smok-
Table I. Demographics and outcomes

Demographics	Men	Women	p-value	
Diagnosis				
SFI/controls	SF1, n = 2,126	Controls, n = 6,463		
Demographics				
Median age at inclusion, years (IQR)	46.0 (36.0–54.8)	41.1 (29.2–52.2)		
Mean BMI (SD)	26.6 (3.8)	26.1 (3.8)		
Current smokers, n (%)	248 (11.7)	910 (14.1)		
Median yearly income, DKK (IQR)	439,824 (338,823–570,270)	395,587 (257,407–522,484)		
Highest education, n (%)				
Elementary school	142 (6.8)	681 (10.8)		
High-school	964 (46.3)	3,177 (50.4)		
Short-cycle higher education 2–2.5 years	550 (9.7)	212 (10.2)		
Medium-cycle higher education 3–4 years	416 (20.0)	1,058 (16.8)		
Long-cycle higher education 5–6 years	349 (16.8)	835 (13.3)		
Socioeconomic status, n (%)				
Working	1,879 (88.4)	5,190 (80.3)		
Unemployed or receiver of public economic support	37 (1.8)	38 (2.8)		
Students	158 (7.4)	977 (15.1)		
Retired	34 (1.6)	86 (1.3)		
Other	18 (0.8)	60 (0.9)		
Outcomes				
Health-related quality of life				
SF1 (all), n = 2,126	55.16 (52.36–56.81)	55.8 (53.4–56.9)	<0.001*	
Controls, n = 6,463	55.5 (53.1–56.3)	56.8 (53.4–57.2)		
SF1 (all), n = 1,340	54.1 (49.0–56.7)	54.6 (49.8–56.7)		
Controls, n = 5,943 SFI (all), n = 6,463	52.2 (45.5–55.3)	52.7 (46.5–55.3)		
Change in SF-12 score (%)				
95% CI				
Physical health (physical component score), median (IQR)	-1.58 [-2.19, -0.99]	-2.93 [-4.02, -1.83]	<0.001*	
Mental health (mental component score), median (IQR)	-2.75 [-3.48, -2.02]	-5.53 [-7.01, -4.07]	<0.001*	
Stress, n (%)				
Low	1,507 (72.7)	4,821 (76.1)		
Moderate	563 (27.2)	1,496 (23.6)		
High	< 5 (1.1)	20 (0.3)		
Classification by major depression inventory, yes (%)/no (%)	< 5 (<2.0)/1267	14 (0.3)/3,994	N/A	
Diagnosed by a physician, yes (%)/no (%)	71 (5.6)/1,198	198 (5.0)/3,799	1.58 [1.30, 1.91]	<0.001*
Depression, n (%)				
OR [95% CI]				
OR [95% CI]				
Discussion				

In conclusion, treatment for SFI is common, even in a cohort without known predisposing factors. Furthermore, treatment for SFI seems to be associated with impaired QoL, higher level of mental stress, and previous depression, and higher level of education in Danish blood donors.

ACKNOWLEDGEMENTS

The Danish Blood Donor Study is funded by: The Danish Council for Independent Research – Medical Sciences (grant number 09-069412); The Danish Administrative Regions (http://www.regioner.dk); The A. P. Møller Foundation for the Advancement of Medical Science; The Danish Bio- and Genome Bank (http://www.regioner.dk/rbgben). None of the funders had any influence on study design, data collection and analysis, decision to publish, or preparation of this manuscript.

Oral and written informed consent was obtained from all participants. The DBDS (1-10-72-95-13) and DBDSII (SJ-740) are approved by the Scientific Ethical Committees in Central Denmark Region and Region Zealand, respectively. The DBDS was approved by the Danish Data Protection Agency (P-2019-99). This study was conducted in accordance with the principles of the Declaration of Helsinki.

PLA and ICL received support from Naestved, Slagelse and Ringsted Hospitals’ Research Fund, and PLA received a PhD grant from the Danish Council for Independent Research – Medical Sciences.
REFERENCES

1. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses 2008; 51: 2–15.

2. Gupta AK, Mays RR. The impact of onychomycosis on quality of life: a systematic review of the available literature. Skin Appendage Disord 2018; 4: 208–216.

3. Mushtaq S, Faizi N, Amin SS, Adil M, Mohtashim M. Impact on quality of life in patients with dermatophytosis. Australas J Dermatol 2020; 61: e184–e188.

4. Narang T, Bhattacharjee R, Singh S, Jha K, Kavita, Mahajan R, et al. Quality of life and psychological morbidity in patients with superficial cutaneous dermatophytosis. Mycoses 2019; 62: 680–685.

5. Patel NH, Padhiyar JK, Patel AP, Chhebber AS, Patel BR, Patel TD. Psychosocial and financial impact of disease among patients of dermatophytosis, a questionnaire-based observational study. Indian Dermatol Online J 2020; 11: 373–377.

6. Steenstrup T, Pedersen OB, Hjelmborg J, Skytthe A, Kyvik KO. Heritability of health-related quality of life: SF-12 summary scores in a population-based nationwide twin cohort. Twin Res Hum Genet 2013; 16: 670–678.

7. Olsen LR, Jensen DV, Noerholm V, Martiny K, Bech P. The internal and external validity of the Major Depression Inventory in measuring severity of depressive states. Psychol Med 2003; 33: 351–356.

8. Burzykowski T, Molenberghs G, Abeck D, Hanek E, Hay R, Katsambas A, et al. High prevalence of foot diseases in Europe: results of the Achilles Project. Mycoses 2003; 46: 496–505.

9. Lu L, Mackay DF, Pell JP. Meta-analysis of the association between cigarette smoking and peripheral arterial disease. Heart 2014; 100: 414–423.

10. Kaspersen KA, Pedersen OB, Petersen MS, Hjalgrim H, Rostgaard K, Moller BK, et al. Obesity and risk of infection: results from the Danish Blood Donor Study. Epidemiology 2015; 26: 580–589.

11. Lindso Andersen P, Jemec GB, Pedersen OB, Saunte DM. An increase in use of antifungals for superficial infections in Denmark during 1997–2018. APMIS 2021; 129: 32–34.