Domination in intersecting hypergraphs

Yanxia Dong¹, Erfang Shan¹,²† Shan Li, Liying Kang¹
¹Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China
²School of Management, Shanghai University, Shanghai 200444, P.R. China

Abstract

A matching in a hypergraph H is a set of pairwise disjoint hyperedges. The matching number $\alpha'(H)$ of H is the size of a maximum matching in H. A subset D of vertices of H is a dominating set of H if for every $v \in V \setminus D$ there exists $u \in D$ such that u and v lie in an hyperedge of H. The cardinality of a minimum dominating set of H is called the domination number of H, denoted by $\gamma(H)$. It is known that for a intersecting hypergraph H with rank r, $\gamma(H) \leq r - 1$. In this paper we present structural properties on intersecting hypergraphs with rank r satisfying the equality $\gamma(H) = r - 1$. By applying the properties we show that all linear intersecting hypergraphs H with rank 4 satisfying $\gamma(H) = r - 1$ can be constructed by the well-known Fano plane.

Keywords: Hypergraph; Intersecting hypergraph; Domination; Matching; Linear hypergraph

AMS (2000) subject classification: 05C65, 05C69, 05C70

1 Introduction

Hypergraphs are a natural generalization of undirected graphs in which “edges” may consist of more than 2 vertices. More precisely, a (finite) hypergraph $H = (V(H), E(H))$ consists of a (finite) set $V(H)$ and a collection $E(H)$ of non-empty subsets of $V(H)$. The elements of $V(H)$ are called vertices and the elements of $E(H)$ are called hyperedges, or simply edges of the hypergraph. An r-edge is an edge containing exactly r vertices. The rank of H, denoted by $r(H)$, is the maximum size of an edge in H. Specially, An r-uniform hypergraph H is a hypergraph such that all edges are r-edges. A hypergraph is called linear if any two edges of the hypergraph intersect in at most one vertex. Obviously, every (simple) graph is a linear

*Research was partially supported by the National Nature Science Foundation of China (No. 11571222)
†Corresponding authors. Email address: efshan@shu.edu.cn
2-uniform hypergraph. Throughout this paper, we only consider hypergraphs of rank \(r \geq 2 \) without multiple edges and all edges have size at least 2.

The degree of a vertex \(v \) in \(H \), denoted by \(d_H(v) \), is the number of edges of \(H \) containing the vertex \(v \). A vertex of degree zero is called an isolated vertex. A vertex of degree \(k \) is called a degree-\(k \) vertex. The minimum and maximum degree among the vertices of \(H \) are denoted by \(\delta(H) \) and \(\Delta(H) \), respectively. The quasidegree of \(v \) in \(H \), denoted \(qd_H(v) \), is the maximum number of edges of \(H \) whose pairwise intersection is only \(v \). Two vertices \(u \) and \(v \) in \(H \) are adjacent if there is an edge \(e \) of \(H \) such that \(\{u, v\} \subseteq e \). The open neighborhood of a vertex \(v \) in \(H \), denoted \(N_H(v) \), is the set of all vertices different from \(v \) that are adjacent to \(v \). If \(H \) is clear from the context, we denote \(d_H(v) \), \(qd_H(v) \) and \(N_H(v) \) by \(d(v) \), \(qd(v) \) and \(N(v) \), respectively.

Two edges in \(H \) are said to be overlapping if they intersect in at least two vertices.

A partial hypergraph \(H' = (V(H'), E(H')) \) of \(H = (V(H), E(H)) \), denoted by \(H' \subseteq H \), is a hypergraph such that \(V(H') \subseteq V(H) \) and \(E(H') \subseteq E(H) \). In the class of graphs, partial hypergraphs are called subgraphs. In particular, if \(V(H') = V(H) \), \(H' \) is called a spanning partial hypergraph of \(H \).

For a hypergraph \(H \) and \(X \subseteq V(H) \), \(H - X \) denotes the hypergraph obtained by removing the vertices \(X \) from \(H \) and removing all edges that intersect \(X \). For a subset \(E' \subseteq E(H) \) of edges in \(H \), we define \(H - E' \) to be the hypergraph obtained from \(H \) by deleting the edges in \(E' \) and resulting isolated vertices, if any. If \(E' = \{e\} \), then we write \(H - E' \) simply as \(H - e \). For \(e \in E(H) \) and \(v \in e \), if we remove the vertex \(v \) from the edge \(e \), we say that the resulting edge is obtained by \(v \)-shrinking the edge \(e \).

1.1 Domination, matchings and transversals in hypergraphs

A dominating set in a hypergraph \(H \) is a subset \(D \) of vertices of \(H \) such that for every vertex \(v \in V(H) \setminus D \) there exists an edge \(e \in E(H) \) for which \(v \in e \) and \(e \cap D \neq \emptyset \). Equivalently, every vertex \(v \in V(H) \setminus D \) is adjacent to a vertex in \(D \). The minimum cardinality of a dominating set in \(H \) is called its domination number, denoted by \(\gamma(H) \). A matching in \(H \) is a set of disjoint edges. The maximum cardinality of a matching in \(H \) is called the matching number, denoted by \(\alpha'(H) \). A subset \(T \) of vertices in \(H \) is a transversal (also called cover) if \(T \) has a nonempty intersection with each edge of \(H \). The transversal number, \(\tau(H) \), is the minimum size of a transversal of \(H \). Transversals and matchings in hypergraphs are well studied in the literature (see e.g. \[4, 7, 9, 12, 15, 16, 17, 18\]) and elsewhere. Domination in hypergraphs, was introduced by Acharya \[1\] and studied further in \[2, 5, 6, 15, 27, 28\].

For a hypergraph \(H \) of rank \(r \), when \(r = 2 \), \(H \) is a graph, Haynes et al. \[14\] observed that
When \(r \geq 3 \), by definitions, clearly \(\gamma(H) \leq \tau(H) \) and \(\alpha'(H) \leq \tau(H) \) still hold. The extremal graphs, i.e., linear 2-uniform hypergraphs achieving \(\gamma(G) \leq \tau(G) \) were studied in [5, 23, 25, 29]. Recently, Arumugam et al. [5] investigated the hypergraphs of rank \(r \geq 3 \) satisfying \(\gamma(H) = \tau(H) \), and proved that their recognition problem is NP-hard on the class of linear hypergraphs of rank 3.

In [21] we observed that the inequality \(\gamma(H) \leq \alpha'(H) \) does not hold for a hypergraph \(H \) of rank \(r \geq 3 \), and the difference \(\gamma(H) - \alpha'(H) \) can be arbitrarily large. Further, we obtained the following inequality.

Theorem 1.1. ([21]) If \(H \) is a hypergraph of rank \(r \geq 2 \) without isolated vertex, then \(\gamma(H) \leq (r - 1)\alpha'(H) \) and this bound is sharp.

In particular, if \(r = 2 \) in Theorem 1.1, as Haynes et al. [14] observed, \(\gamma(H) \leq \alpha'(H) \).

For extremal hypergraphs of rank \(r \) satisfying \(\gamma(H) = (r - 1)\alpha'(H) \), Randerath et al. [26] gave a characterization of graphs (hypergraphs of rank \(r = 2 \)) with minimum degree two. In 2010, Kano et al. [22] provided a complete characterization of graphs with minimum degree one. For the case when rank \(r = 3 \), we give a complete characterization of hypergraphs \(H \) in [28]. For the case when \(r \geq 4 \), a constructive characterization of hypergraphs with \(\gamma(H) = (r - 1)\alpha'(H) \) seems difficult to obtain. Thus we restrict our attention to intersecting hypergraphs.

A hypergraph is intersecting if any two edges have nonempty intersection. Clearly, \(H \) is intersecting if and only if \(\alpha'(H) = 1 \). Intersecting hypergraphs are well studied in the literature (see, for example, [3, 8, 10, 11, 13, 19, 20, 24]). For an intersecting hypergraph \(H \) of rank \(r \), we immediately have \(\gamma(H) \leq r - 1 \).

In this paper we first give some structural properties on the intersecting hypergraphs of rank \(r \) achieving the equality \(\gamma(H) = r - 1 \). By applying the properties and Fano plane, we provides a complete characterization of linear intersecting hypergraphs \(H \) of rank 4 satisfying \(\gamma(H) = r - 1 \).

2 The intersecting hypergraphs of rank \(r \) with \(\gamma(H) = r - 1 \)

In this section we give some structural properties on intersecting hypergraphs of rank \(r \) satisfying \(\gamma(H) = r - 1 \). The properties play an important role in the characterization of intersecting hypergraphs of rank 4 with \(\gamma(H) = r - 1 \).

Let \(\mathcal{H}_r \) be a family of intersecting hypergraphs of rank \(r \) in which each hypergraph \(H \) satisfies \(\gamma(H) = r - 1 \).
Lemma 2.1. For every $H \in \mathcal{H}_r$, there exists an r-uniform spanning partial hypergraph H^* of H such that every edge in H^* contains exactly one degree-1 vertex.

Proof. Let $H_0 = H$. We define recursively the hypergraph H_i by H_{i-1}. If there exists an edge $e_{i-1} \in E(H_{i-1})$ such that $d_{H_{i-1}}(v) \geq 2$ for each vertex v in e_{i-1}, then set $H_i := H_{i-1} - e_{i-1}$ for $i \geq 1$. By repeating this process until every edge which remains contains at least one degree-1 vertex, we obtain a spanning partial hypergraph of H. Assume that the above process stops when $i = k$. Let $H^* = H_k$. Then H^* is a spanning partial hypergraph of H. Clearly, every edge in H^* contains at least one degree-1 vertex and H^* is still intersecting.

We claim that each edge in H^* contains exactly one degree-1 vertex. Suppose not. Then there exists an edge e containing at least two degree-1 vertices. Let $D = \{v \in e \mid d_H(v) \geq 2\}$. Then $|D| \leq r - 2$. Since H^* is intersecting, D is a transversal of H^*, so $\gamma(H^*) \leq \tau(H^*) \leq |D| \leq r - 2$. Since H^* is a spanning partial hypergraph of H, we have $\gamma(H) \leq \gamma(H^*) \leq r - 2$, contradicting the assumption that $\gamma(H) = r - 1$. Further, we show that H^* is r-uniform. Suppose not. Let e^* be an edge of H^* such that $|e^*| \leq r - 1$ and u the unique degree-1 vertex of e^*. Since H^* is intersecting, $e^* \setminus \{u\}$ is a dominating set of H^*. Thus $\gamma(H) \leq \gamma(H^*) \leq r - 2$, contradicting $\gamma(H) = r - 1$ again. □

For each $H \in \mathcal{H}_r$, let H^* be the r-uniform spanning partial hypergraph of H in Lemma 2.1. Further, let H' be the hypergraph obtained from H^* by shrinking every edge to $(r - 1)$-edge by removing the degree-1 vertex from each edge of H^* and deleting multiple edges, if any. Obviously, H' is an $(r - 1)$-uniform intersecting hypergraph.

Lemma 2.2. For every $H \in \mathcal{H}_r$, $\gamma(H) = \gamma(H^*) = \tau(H^*) = \tau(H') = r - 1$.

Proof. Let $e \in E(H^*)$ and u be the unique degree-1 vertex in e. Since H^* is intersecting, $e \setminus \{u\}$ is a transversal of H^*, so $\gamma(H^*) \leq \tau(H^*) \leq r - 1$. On the other hand, note that $\gamma(H^*) \geq \gamma(H) = r - 1$. Hence $\gamma(H^*) = \tau(H^*) = \gamma(H) = r - 1$. By the construction of H', clearly any transversal of H' is a transversal of H^* and $e \setminus \{u\}$ is also a transversal of H'. Hence $\tau(H') = \tau(H^*)$. The equality chain follow. □

Lemma 2.3. For $r \geq 3$ and every vertex v in H', $2 \leq qd_{H'}(v) \leq r - 1$.

Proof. Suppose, to the contrary, that there exists a vertex $v \in V(H')$ such that $qd_{H'}(v) \leq 1$ or $qd_{H'}(v) \geq r$.

Suppose that $qd_{H'}(v) \leq 1$. Note that every vertex H' has degree at least 2, so $qd_{H'}(v) \neq 1$. Hence $qd_{H'}(v) = 0$. Let e be an edge containing v. Since H' is intersecting, $e \cap f \neq \emptyset$ for any $f \in E(H') \setminus \{e\}$. In particular, if $v \in e \cap f$, then $|e \cap f| \geq 2$ since $d_{H'}(v) \geq 2$ and $qd_{H'}(v) = 0$. Thus $e \setminus \{v\}$ would be a transversal of H', contradicting the fact in Lemma 2.2. □
Suppose that \(qd_{H'}(v) \geq r \). Let \(e_1, \ldots, e_r \) be the edges whose pairwise intersection is only \(v \). By Lemma 2.2 and \(r \geq 3 \), we have \(\tau(H') = r - 1 \geq 2 \). This implies that there exists an edge \(g \) such that \(v \not\in g \). Since \(H' \) is intersecting, \(|g \cap e_i| \geq 1 \) for each \(i = 1, 2, \ldots, r \). But then \(|g| \geq r \), contracting the fact that \(H' \) is \((r-1)\)-uniform.

Lemma 2.4. Let \(H \in \mathcal{H}_r \) \((r \geq 3)\). If \(H \) is linear, then every edge of \(H' \) has at most one degree-2 vertex and \(\Delta(H') = r - 1 \).

Proof. If \(H \) is linear, so is \(H' \). First, we show that every edge of \(H' \) has at most one degree-2 vertex. Suppose not, and let \(e \) be an edge of \(H' \) with two degree-2 vertices. Suppose not, let \(v \in V(H') \) such that \(d_{H'}(v) = 2 \). Then \(|V(H')| \leq (r-1)(r-a) \). Let \(v \in V(H') \) such that \(d_{H'}(v) = r-a \). Then \(|N_{H'}(v)| = (r-2)(r-a) \). Note that \(V(H') \setminus N_{H'}(v) \) is a transversal of \(H' \). But \(|V(H') \setminus N_{H'}(v)| \leq (r-1)(r-a) - (r-2)(r-a) = r-a \leq r-2 \). Thus \(\tau(H') \leq r-2 \), contradicting that \(\tau(H') = r-1 \).

Next we show that \(\Delta(H') = r - 1 \). Suppose not, let \(\Delta(H') = r-a \) where \(a \geq 2 \). As we have seen, \(H' \) is a linear intersecting \((r-1)\)-uniform hypergraph with \(\tau(H') = r-1 \). Then \(|V(H')| \leq (r-1)(r-a) \). Let \(v \in V(H') \) such that \(d_{H'}(v) = r-a \). Then \(|N_{H'}(v)| = (r-2)(r-a) \). Note that \(V(H') \setminus N_{H'}(v) \) is a transversal of \(H' \). But \(|V(H') \setminus N_{H'}(v)| \leq (r-1)(r-a) - (r-2)(r-a) = r-a \leq r-2 \). Thus \(\tau(H') \leq r-2 \), contradicting that \(\tau(H') = r-1 \).

Lemma 2.5. Let \(H \in \mathcal{H}_r \) \((r \geq 3)\). If \(H \) is linear, then \(3(r-2) \leq |E(H')| \leq (r-1)^2 - (r-1) + 1 \), \(n(H') = (r-1)^2 - (r-1) + 1 \), and so \(\gamma(H') = 1 \).

Proof. Since \(H' \) is a linear intersecting \((r-1)\)-uniform hypergraph, \(|E(H')| = \sum_{v \in e} d_{H'}(v) - (r-2) \) for any edge \(e \in E(H') \). By Lemma 2.4, we immediately have \(3(r-2) \leq |E(H')| \leq (r-1)^2 - (r-1) + 1 \).

We now show that \(n(H') = (r-1)^2 - (r-1) + 1 \). Let \(v \in V(H') \) such that \(d_{H'}(v) = \Delta(H') = r-1 \). Then \(|n(H')| \geq |N_{H'}(v) \cup \{v\}| = (r-1)(r-2) + 1 = (r-1)^2 - (r-1) + 1 \). Suppose that \(|n(H')| \geq (r-1)^2 - (r-1) + 2 \). Then there exists \(u \in V(H') \) such that \(u \not\in N_{H'}(v) \cup \{v\} \). By Lemma 2.3, \(d_{H'}(u) \geq 2 \), so there exist two edges \(e_1 \) and \(e_2 \) such that \(u \in e_1 \cap e_2 \). Clearly, \(v \not\in e_1 \) and \(v \not\in e_2 \). Since \(H' \) is linear intersecting, \(e_1 \) intersects each one of the edges that contains \(v \), implying that \(|e_1| \geq 5 \). This contradicts that \(H' \) is an \((r-1)\)-uniform hypergraph. Therefore, \(n(H') = (r-1)^2 - (r-1) + 1 \), that is, \(n(H') = |N_{H'}(v) \cup \{v\}| \). This implies that \(\{v\} \) is a dominating set of \(H' \), so \(\gamma(H') = 1 \).
3 Linear intersecting hypergraphs H of rank 4 with $\gamma(H) = 3$

In the section we give a complete characterization of linear intersecting hypergraphs H of rank 4 with $\gamma(H) = r - 1$. For this purpose, let F be the Fano Plane and let F^- be the hypergraph obtained from F by deleting any edge of F. The two hypergraphs F and F^- are shown in Fig. 1.

![Figure 1: The Fano Plane F and the hypergraph F^-](image)

Lemma 3.1. Let $H \in \mathcal{H}_4$ and H' be the hypergraph as defined in the above section. If H is linear, then $H' = F$ or $H' = F^-$.

Proof. By Lemma 2.5, we have $6 \leq |E(H')| \leq 7$ and $n(H') = 7$ for $r = 4$. Note that H' is a linear intersecting 3-uniform hypergraph. If $|E(H')| = 7$, then H' must be the Fano plane F. If $|E(H')| = 6$, then H' is the hypergraph F^- (see Fig. 1). \qed

To complete our characterization, we let F_1 (F_1^-) be the hypergraph obtained from F (F^-) by adding a new vertex to each edge of F (F^-), respectively. Let F_2 be the hypergraph obtained from F_1 by shrinking one edge to 3-edge by removing the degree-1 vertex in the edge. Let F_3 be the hypergraph obtained from F_1^- by adding a new edge $f = \{x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}\}$ where $x_{i_1}, x_{i_2}, x_{i_3}$ and x_{i_4} lie in distinct edges of F_1^- and $d_{F_1^-}(x_{i_1}) = d_{F_1^-}(x_{i_2}) = 2$, $d_{F_1^-}(x_{i_3}) = d_{F_1^-}(x_{i_4}) = 1$. We define $\mathcal{L} = \{F_1, F_1^-, F_2, F_3\}$ (see Fig. 2). Clearly, every hypergraph in \mathcal{L} is a linear intersecting hypergraph of rank 4.

Theorem 3.1. For a linear intersecting hypergraph H of rank 4, $\gamma(H) = 3$ if and only if $H \in \mathcal{L}$.

Proof. First, suppose that $H \in \mathcal{L}$, and let e be an arbitrary edge of H containing four vertices and v the degree-1 vertex. Then it is easy to check that $D = e \setminus \{e\}$ is a minimum dominating set of H. Thus $\gamma(H) = 3$.

6
Conversely, suppose that \(\gamma(H) = 3 \), we show that \(H \in \mathcal{L} \). Let \(H^* \) and \(H' \) be the hypergraphs corresponding to \(H \) as defined in above section. By Lemma \[3.1\] \(H' = F \) or \(H' = F^- \), so \(H^* = F_1 \) or \(H^* = F^-_1 \).

Case 1. \(H^* = F_1 \). In this case, we claim that \(H = H^* = F_1 \). It suffices to show that \(E(H) \setminus E(H^*) = \emptyset \). Suppose not. Let \(e \in E(H) \setminus E(F_1) \). Then \(|e \cap f| = 1 \) for any \(f \in E(F_1) \). By the construction of \(F_1 \), \(V(F_1) = V(F) \cup I \) where \(I \) consists of seven degree-1 vertices in \(F_1 \). Note that any two vertices of \(F \) lie in exactly one common edge of \(F_1 \), so \(|e \cap V(F)| \leq 1 \). This implies that \(|e| \geq 5 \), since \(H \) is linear and intersecting. This contradicts that \(r(H) = 4 \).

Case 2. \(H^* = F^-_1 \). In this case, we show that \(H \in \{ F^-_1, F_2, F_3 \} \). It suffices to show that \(H = F_3 \) if \(H \neq F^-_1 \) and \(H \neq F_2 \). Let \(V(F^-_1) = V_1 \cup V_2 \cup V_3 \) where \(V_i \) is the set of degree-\(i \) vertices in \(F^-_1 \). Then \(|V_1| = 6, |V_2| = 3 \) and \(|V_3| = 4 \). Suppose now that \(H \neq F^-_1 \) and \(H \neq F_2 \). Then \(E(H) \setminus E(F^-_1) \neq \emptyset \). Let \(e \in E(H) \setminus E(F^-_1) \). Suppose that \(e \cap V_3 \neq \emptyset \). Since \(H \) is linear and intersecting, \(|e \cap f| = 1 \) for any \(f \in E(F^-_1) \). Note that any two vertices of \(V_3 \) lie in exactly one common edge of \(F^-_1 \), so \(|e \cap V_3| = 1 \). Let \(e \cap V_3 = \{x_i\} \). This implies that \(e \supseteq V_1 \cup V(H - x_i) \). But then \(x_i \) is a dominating set of \(H \), contradicting that \(\gamma(H) = 3 \). Hence \(e \cap V_3 = \emptyset \), and thus \(e \subseteq V_1 \cup V_2 \). Suppose that \(|e \cap V_2| \leq 1 \). Then \(|e \cap V_1| \geq 4 \). Hence \(|e| \geq 5 \), a contradiction. So \(|e \cap V_2| = 2 \) since \(H \neq F_2 \). It immediately follows that \(E(H) \setminus E(F^-_1) = \{e\} \). Therefore, \(H = F_3 \).

\[\Box\]

4 Conclusions

In this paper we present the propositions of the intersecting hypergraphs that achieve the equality \(\gamma(H) = r - 1 \). Especially, we provide a complete characterization of the linear intersecting hypergraphs with rank \(r = 4 \) satisfying \(\gamma(H) = 3 \). One is interested in characterizing the extremal intersecting hypergraphs with rank \(r = 4 \) satisfying \(\gamma(H) = 3 \).

![Figure 2: The hypergraphs \(F_1, F^-_1, F_2 \) and \(F_3 \)](image)
References

[1] B.D. Acharya, Domination in hypergraphs, AKCE J. Combin. 4 (2007) 117–126.

[2] B.D. Acharya, Domination in hypergraphs II. New directions, Proc. Int. Conf.-ICDM 2008, Mysore, India, pp. 1–16.

[3] R. Aharoni, C.J. Argue, Covers in partitioned intersecting hypergraphs, European J. Combin. 51 (2016) 222–226.

[4] N. Alon, Transversal numbers of uniform hypergraphs, Graphs Combin. 6 (1990) 1–4.

[5] S. Arumugam, B. Jose, C. Bujtás, Zs. Tuza, Equality of domination and transversal numbers in hypergraphs, Discrete Appl. Math. 161 (2013) 1859–1867.

[6] Cs. Bujtás, M.A. Henning, Zs. Tuza, Transversals and domination in uniform hypergraphs, European J. Combin. 33 (2012) 62–71.

[7] V. Chvátal, C. McDiarmid, Small transversals in hypergraphs, Combinatorica 12 (1992) 19–26.

[8] S. Das, B. Sudakov, Most probably intersecting hypergraphs, Electron. J. Combin. 22 (1) (2015) #P 1.80.

[9] M. Dorfling, M. A. Henning, Linear hypergraphs with large transversal number and maximum degree two, European J. Combin. 36 (2014) 231–236.

[10] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 12(2) (1961) 313–320.

[11] P. Frankl, Z. Füredi, Finite projective spaces and intersecting hypergraphs, Combinatorica 6 (1986) 335–354.

[12] Z. Füredi, Matchings and covers in hypergraphs, Graphs Combin. 4 (1988) 115–206.

[13] B. Guiduli, Z. Kirfily, On intersecting hypergraphs, Discrete Math. 182 (1998) 139–151.

[14] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.

[15] M.A. Henning, C. Löwenstein, Hypergraphs with large domination number and edge sizes at least 3, Discrete Appl. Math. 160 (2012) 1757–1765.
[16] M.A. Henning, C. Löwenstein, Hypergraphs with large transversal number and with edge sizes at least four, Cent. Eur. J. Math. 10(3) (2012) 1133–1140.

[17] M. A. Henning, A. Yeo, Hypergraphs with large transversal number and with edge sizes at least three, J. Graph Theory 59 (2008) 326–348.

[18] M.A. Henning, A. Yeo, Transversals and matchings in 3-uniform hypergraphs, European J. Combin. 34 (2013) 217–228.

[19] M.A. Henning, A. Yeo, Matching critical intersecting hypergraphs, Quest. Math. 37 (2014) 127–138.

[20] A.J.W. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford 18(2) (1967) 369–384.

[21] L. Kang, S. Li, Y. Dong, E. Shan, Matching and domination numbers in r-uniform hypergraphs, accepted in J. Comb. Optim.

[22] M. Kano, Y. Wu, Q. Yu, Star-uniform graphs, Graphs Combin. 26 (2010) 383–394.

[23] R. Laskar, H.B. Valikar, On domination related concepts in graph theory, in: S.B. Rao (Ed.), Combinatorics and Graph Theory, Lecture Notes in Mathematics, vol. 885, Springer, Berlin, 1981. pp. 308–320.

[24] T. Mansour, C. Song, R. Yuster, A comment on Ryser’s conjecture for intersecting hypergraphs, Graphs Combin. 25 (2009) 101–109.

[25] B. Randerath, L. Volkmann, Characterization of graphs with equal domination and covering number, Discrete Math. 191 (1998) 159–169.

[26] B. Randerath, L. Volkmann, Characterization of graphs with equal domination and matching number, Util. Math. 55 (1999) 65–72.

[27] B.K. Jose, Zs. Tuza, Hypergraph domination and strong independence, Appl. Anal. Discrete Math. 3 (2009) 237–358.

[28] E.F. Shan, Y.X. Dong, L.Y. Kang, S. Li, Extremal hypergraphs for matching number and domination number, submitted.

[29] Y. Wu, Q. Yu, A characterization of graphs with equal domination number and vertex cover number, Bull. Malays. Math. Sci. Soc. (2) 35 (2012) 803–806.