Electromagnetic Transition Rate Measurements in the $N=80$ Isotope, 138Ce

T Alharbi1,2, P J R Mason1, P H Regan1, N Mărginean3, Zs Podolyák1, A Algora4, N Alazemi1, A M Bruce5, R Britton1, M R Bunce1, D Bucurescu3, N Cooper6, D Deleanu3, D Filipescu3, W Gelletly1, D Ghita4, T Glodariu3, G Ilie6,3, S Kisyov7, J Lintott1, S Lalkovski7, S Liddick8, C Mihai6, K Mulholland9, R Mărginean3, A Negret3, M Nakhostin1, O J Roberts5, S Rice1, J F Smith9, L Stroe3, T Sava3, C Townsley1, E Wilson1, V Werner6, M Zheka7 and N V Zamfir3

1Department of Physics, University of Surrey, Guildford GU2 7XH, UK.
2Department of Physics, Almajmaah University, P.O. Box 66, 11952, Saudi Arabia.
3Horia Hulubei - National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania.
4IFIC, CSIC-Universidad de Valencia, A. C. 22085, E 46071, Valencia, Spain.
5School of Engineering, University of Brighton, Brighton BN2 4GJ, UK.
6Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520-8120, USA.
7Faculty of Physics, University of Sofia St. Kliment Ohridski, BG-1164 Sofia, Bulgaria.
8National Superconducting Cyclotron Laboratory Michigan State University, USA.
9School of Engineering, University of the West of Scotland, High Street, Paisley PA1 2BE, UK.

E-mail: t.alharbi@surrey.ac.uk

Abstract. A study of intrinsic state halflife measurements in the $N=80$ nucleus 138Ce has been made using the 130Te(12C,4n)138Ce fusion evaporation reaction at beam energy of 56 MeV. The fast-timing gamma-ray coincidence method was used with a mixed LaBr$_3$(Ce)-HPGe array to establish the lifetimes of the yrast $I^\pi=6^+$ state at 2294 keV, the $I^\pi=5^-$ state at 2218 keV, the $I^\pi=11^+$ state at 3943 keV and the 14^+ state at that at 5312 keV, all of which are in the sub nanosecond regime. Reduced transition probabilities have been calculated for the electromagnetic decays from these states.

1. Introduction
The 138Ce nucleus lies near the $N=82$ shell closure and has 8 protons above the $Z=50$ closed proton shell. Excited states in $N=80$ nuclei present an interplay of single-particle and collective degrees of freedom. Even-Z $N=80$ isotones all exhibit yrast $I^\pi=10^+$ isomeric states from 130Sn to 148Er [1-7], based, predominantly on two-neutron-hole ($\nu h_{11/2}$)2 configurations.

The current work was aimed at establishing decay halflives for states in the $N=80$ isotope 138Ce to compare with the expected shell model structures expected in this nucleus.
2. Experimental Setup and Data Analysis

The nuclei of interest were populated using the 130Te(12C, 4n)138Ce fusion evaporation reaction at beam energy of 56 MeV. The beam was provided by the Tandem van de Graaff accelerator at the National Institute for Physics and Nuclear Engineering, Bucharest, Romania. An isotopically enriched 130Te target of thickness 1 mg/cm2 with a 20 mg/cm2 208Pb backing to stop the recoiling nuclei was used. The experiment was performed over a continuous beam time of 2.5 days, with an average on-target beam current of approximately 10 pnA. The production cross section for the 130Te(12C, 4n)138Ce reaction was estimated using the ENSDF 4 code [8] and found to be 650 mb. The experimental set-up comprised of eight hyper pure germanium detectors (HPGe) and eight LaBr$_3$(Ce) scintillators arranged in a similar configuration to that described in reference [9]. Three different sizes of LaBr$_3$(Ce) crystal were used in the present work, namely those having crystal dimensions of (a) (three) 2×2 cylindrical; (b) (three) $1.5''\times1.5''$ cylindrical and (c) (two) $1''\times1.5''$ conical. Energy and efficiency calibrations for the response of the detectors in the array were performed using standard 132Eu, 137Cs, 133Ba and 60Co sealed, point sources placed at the target position. During the experiment data were taken with the validated master trigger conditions of either (i) Ge-Ge-Ge or (ii) LaBr$_3$(Ce)-LaBr$_3$(Ce)-Ge gamma-ray energy coincidences. A total of $\sim2\times10^8$ LaBr$_3$(Ce) γ-γ energy coincidences were recorded during the experiment for subsequent off-line analysis.

The data were sorted off-line into a range of gamma-ray energy and time difference coincidence matrices and cubes, which were then interrogated with different, gamma-ray energy conditions and analyzed with the GASPWARE [10] and RADWARE [11] packages. The total projection spectra of the E_2-E_γ coincidences matrices from the 130Te+12C fusion evaporation reaction are shown in figure 1 where (a) is the total projection from HPGe detectors and (b) is the total projection spectra from the combined LaBr$_3$(Ce) detectors. The most strongly populated nuclei in the experiment were 138Ce and 139Ce arising from the 4n and 3n evaporation channels respectively. The instrument time response for each LaBr$_3$(Ce) detector and constant fraction discriminator (CFD) combination in the mixed array required an off-line correction for the low-energy time walk. In order to achieve this, the method described by Marginean et al., in reference [9] was used.

Figure 2 shows the partial level scheme for 138Ce relevant to the present work and based on the previous study reported in reference [12]. The yrast 6^+ state is predicted to be based on admixtures of $(\pi g_{7/2})^2$ and $(\nu h_{11/2})^{-2}$ configurations.

For the lifetime measurements, two different techniques were used: (i) the centroid shift method in cases where the lifetime of the nuclear state was significantly shorter than the time resolution (full width at half-maximum) for the LaBr$_3$(Ce) set-up and (ii) a single decay component fitted exponential decay (with a prompt response convolution) for longer (> 1ns) decays.

Figure 3 shows the lifetime measurements obtained by gating on feeding and deexciting transitions across levels of interest on the sorted $E_{\gamma 1}-E_{\gamma 2}-\Delta T$ cubes. Additional gating conditions such as using transitions observed in the HPGe to select cascades below or above the 10^+ isomer in 138Ce were also employed in order to obtain cleaner LaBr$_3$(Ce) coincident spectra. Figure 4 shows examples of time difference spectra which give “prompts” the time resolution of LaBr$_3$(Ce) detector: (a) 789-1038-keV with FWHM=460(9) ps (b) 390-1038-keV with FWHM=550(11) ps (c) 467-1038-keV with FWHM=540(10) ps (d) 430-980-keV with FWHM=510(10) ps.

3. Discussion and Results

The nucleus 138Ce has eight valence protons outside the closed shell $Z=50$ and two neutron holes with respect to $N=82$ [7]. Electromagnetic decays from the yrast 6^+ state in 138Ce are predicted to be based on transitions between states built mainly from admixtures of $(\pi g_{7/2})^2$.
Figure 1. Total projection from the \(^{130}\text{Te}(_{12}^{12}\text{C},4n)^{138}\text{Ce} \) fusion evaporation reaction at beam energy of 56 keV. Total projection spectrum measured using the (a) HPGe and (b) LaBr\(_3\)(Ce) detectors, respectively.

Figure 2. Partial level scheme of \(^{138}\text{Ce} \) relevant to the present work, taken from reference [12].

and \((\nu h_{11/2})^{-2}\) shell model configurations. Table 1 summarises the experimental state decay halflives obtained from the present work in \(^{138}\text{Ce} \). These are discussed individually below:

3.1. The \(6^+\) state
The 2294 keV level was identified in \(^{136}\text{Ba}(\alpha,4n\gamma) \) studies [13, 14] and has a well established spin/parity of \(I^\pi = 6^+ \) [15]. The state deexcites to \(I^\pi = 5^- \) state via a near pure \(E1 \) transition with an energy of 77-keV. It also decays directly to the yrast \(I^\pi = 7^- \) state via another near-pure \(E1 \) with a transition energy of 165-keV. A third decay branch from the yrast \(6^+ \) state is observed via a 467-keV \(E2 \) transition to the yrast \(I^\pi = 4^+ \) state in \(^{138}\text{Ce} \). Figure 3 shows (a) the fitted exponential decay of the yrast \(6^+ \) state in \(^{138}\text{Ce} \), resulting from the time differences observed between pairs of LaBr\(_3\)(Ce) detectors by gating on the gamma-ray energies of 815- and 165-keV. This time-difference spectrum was fitted with an exponential decay convoluted with a Gaussian time resolution and gives a value of the halflife of the \(I^\pi = 6^+ \) state of \(t_{1/2} = 866(15) \) ps. Figure 3 (b) shows the measured halflife of the \(6^+ \) state to be \(t_{1/2} = 860(50) \) ps, obtained by gating on the gamma-ray energies of 815- and 467-keV gamma-ray pair.

3.2. The \(5^-\) state
Figure 3 (c) shows the time spectra associated with the decay of the yrast \(5^- \) state in \(^{138}\text{Ce} \). An extracted experimental halflife of \(t_{1/2} = 450(14) \) ps was obtained from the centroid shift of the time difference spectra gated on \(77^- \) and 390-keV transitions in the LaBr\(_3\)(Ce) detectors.
3.3. The 11^+ state
A gamma-ray energy of 403 keV depopulates the yrast 11^+ state, which has a previously reported decay half-life limit of $t_{1/2} \leq 1.5$ ns [16]. Figure 3 (d) shows the measured half-life of the 11^+ state extracted in the current work with a value of $t_{1/2} = 107(4)$ ps obtained from the centroid shift of the time distribution associated with the 418- and 403-keV coincident transitions.

3.4. The 14^+ state
Figure 3 (e) shows the lifetime associated with the decay of the yrast 14^+ state. A measured half-life of $t_{1/2} = 66(3)$ ps was obtained using the centroid shift for the two difference distributions gated on the 254- and 338-keV transitions.

Table 1. Measured transition rates from excited states in 138Ce.

E_{Level} (keV)	J_i^π	\rightarrow	J_f^π	E_γ (keV)	$t_{1/2}$ (ps)	$L\lambda$	B.R. (%)	$B(\lambda L)$ (W.u.)
2294	6^+	\rightarrow	4^+	467	860(50)	$E2^+$	15	0.104 (11)
2294	6^+	\rightarrow	7^-	165	866(15)	$E1^*$	53	$3.4(4) \times 10^{-5}$
2294	6^+	\rightarrow	5^-	77	845(33)	$E1^*$	25.6	0.00015 (4)
2218	5^-	\rightarrow	4^+	390	450(14)	$E1^*$	78.9	7.5(7) \times 10^{-6}
3943	11^+	\rightarrow	10^+	403	107(4)	$M1^*$	93.8	0.00310 (9)
5312	14^+	\rightarrow	13^+	338	66(3)	$M1^\parallel$	25.7	0.0022 (13)

* Taken from [17].

§ Taken from [18].

Figure 3. Time spectra obtained in 138Ce from LaBr$_3$(Ce) $E_{\gamma 1}-E_{\gamma 2}-\Delta T$ cube with HPGe gate showing the time difference between; (a) 815- and 165-keV (b) 815- and 467-keV (c) 77- and 390-keV (d) 418- and 403-keV (e) 254- and 338-keV. The continuous lines in panels (a) and (b) are Gaussian exponential convolution fits to the spectra.
4. Conclusions
In the present work excited states in 138Ce has been populated through fusion evaporation reactions. Lifetime measurements of excited states in 138Ce have been made using the fast gamma-ray coincidence timing method with LaBr$_3$(Ce) scintillation detectors. Halflives of the yrast 6^+, 5^-, 11^+ and 14^+ states have been determined for the first time. Reduced transition probabilities have been calculated for the electromagnetic decays from these states.

5. Acknowledgements
We would like to thank the staff of the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), R-76900 Bucharest, Romania for their excellent technical support during this experiment. This work is supported by the Science and Technology Facilities Council STFC (UK), Almajmaah University (Saudi Arabia), the DMU02/1 contact with the Bulgarian Science Fund, the Bulgarian-Romanian partnership contract number BRS-07/23 and No 460/PNII Module III, U.S. DOE under grant no. DE-FG02-91ER40609 and FPA2008-06419-C02-01. SR and RB acknowledge support from the Engineering and Physical Science Research Council (UK).

References
[1] B. Fogelberg, K. Heyde, and J. Sau, Nucl. Phys. A352, 157 (1981).
[2] J. Genevey et al., Phys. Rev. C63, 054315 (2001).
[3] J. J. Valiente-Dobón et al., Phys. Rev. C69, 024316 (2004).
[4] J. C. Merdinger et al., Nucl. Phys. A346, 281 (1980).
[5] M. Lach et al., Z. Phys. A319, 235 (1984).
[6] H. A. Roth et al., Eur. Phys. J. A10, 275 (2001).
[7] G. Lo Bianco et al., Nucl. Phys. A470, 266 (1987).
[8] O.B. Tarasov and D. Bazin, Nucl. Instr. and Meth. B, 204, 174 (2003).
[9] N. Märginean et al., Eur. Phys. J. A46, 329 (2010).
[10] D. Bazzacco and N. Märginean Private Communication.
[11] D. Radford, Nucl. Instrum. Meth. A361, 297 (1995).
[12] M. Müller et al., Nuclear Physics. A304, 1-28 (1978).
[13] J. Ludziejewski, P. Koldewijn and H. Arnold, Nucl. Phys. A184, 473 (1972).
[14] J. Ludziejewski and H. Arnold, Z. Phys. A - Atoms and Nuclei 277, 357 (1976).
[15] G. Lo Bianco et al., Z. Phys. A - Atoms and Nuclei 318, 195 (1984).
[16] J. Ludziejewski et al., Physics Scripta. Vol 14, 133 (1976).
[17] G. Lo Bianco and P. Paruzzi, Nuclear Physics. A470, 266-284 (1987).
[18] T. Bhattacharjee et al., Nuclear Physics. A825, 16-38 (2009).