Platelet-derived Growth Factor (PDGF)-induced Ca$^{2+}$ Signaling in the CG4 Oligodendroglial Cell Line and in Transformed Oligodendrocytes Expressing the β-PDGFR Receptor*

Alessandro Fatatis and Richard J. Miller‡
From the Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Illinois 60637

Ca$^{2+}$ signaling induced by platelet-derived growth factor (PDGF) was investigated in the oligodendroglial cell lines CG4 and CEINGE clone 3, using fura-2 microfluorimetry and video imaging. CEINGE cl3 cells, immortalized with polyoma middle T antigen, were found to uniformly express the polyoma middle T antigen protein as well as 2',3'-cyclic nucleotide 3'-phosphodiesterase, a specific marker for oligodendroglia. PDGF-BB induced both oscillatory and non-oscillatory Ca$^{2+}$ responses in CEINGE cl3 cells as well as in CG4 cells, grown either as O-2A progenitors or differentiated oligodendrocytes. However, in CG4 cells the percentage of oscillatory Ca$^{2+}$ responses was higher than that observed in CEINGE cl3 cells. In contrast, oscillatory Ca$^{2+}$ responses were not observed in PC-12 cells transfected with β-PDGFR receptor (PDGFR) or in NIH 3T3 fibroblasts. CG4 cells expressed only the α-PDGFR, whereas CEINGE cl3 cells expressed both α and β isoforms. When CEINGE cl3 cells were exposed to PDGF-AA, which binds only to the α-PDGFR, the percentage of oscillatory Ca$^{2+}$ responses was higher than that observed after PDGF-BB stimulation. We previously reported that block of the enzyme sphingosine kinase, and a consequent increase in intracellular sphingosine levels in CEINGE cl3 cells caused an increase in the percentage of oscillatory Ca$^{2+}$ responses induced by PDGF-BB. However, in CG4 cells block of sphingosine kinase did not increase the oscillatory Ca$^{2+}$ response elicited by PDGF-BB, although the addition of exogenous sphingosine induced an oscillatory Ca$^{2+}$ response in 77% of cells studied. We hypothesize that the α-PDGFR is less effective than the β-PDGFR in stimulating the activity of sphingosine kinase. The results also suggest that α- and β-PDGFRs may differently regulate sphingolipid metabolism.

PDGF1 plays a fundamental role in the development of oligodendroglia. Oligodendrocyte progenitors, which originate from the subventricular zones, undergo several PDGF-sensi-

tive steps while acquiring the ability to produce myelin during migration and proliferation (1–4). PDGF is mitogenic and chemotactic for several cell types, including fibroblasts, smooth muscle, and glial cells (5–7). Three PDGF isoforms have been identified, being homo- or heterodimers of related A and B polypeptide chains and named AA, -AB, and -BB (8). Two separate isoforms of the PDGFR, named α and β, have also been identified (for review see Ref. 8). These receptors consist of transmembrane tyrosine kinases that dimerize upon binding to the growth factor (9). This is a prerequisite for the reciprocal phosphorylation of the receptors on different tyrosine residues localized in the intracellular portion of the molecule (10, 11).

This process leads to the formation of docking sites for molecules with catalytic activity such as PLC-γ, phosphatidylinositol 3-kinase, and Ras-GAP or molecules that function as adaptors for other substrates like Grb2, Nck, and Shc (for review see Ref. 12). It has been shown that the α-PDGFR binds both PDGF-AA and PDGF-BB with comparable affinity, whereas the β-PDGFR binds PDGF-BB exclusively (13, 14); PDGFRs also differ in their functional interaction with other molecules, like PLC-γ (15) and in the induction of several phenomena like chemotaxis, membrane edge ruffling, and mitogenesis, depending on the cell type studied (for review see Ref. 8).

It has been previously shown that oligodendroglial cells only express the α isofrom of PDGFR, which is down-regulated when O-2A glial progenitors differentiate into oligodendrocytes (16–18).

An increase in [Ca$^{2+}$], is one of the first events that occurs following the stimulation of PDGFRs (19). The role of Ca$^{2+}$ as second messenger in chemotaxis, cell proliferation, and immediate early gene expression has been well documented (20–23). For example, a clear correlation between changes in mRNA levels of a set of immediate early genes and the modulation of [Ca$^{2+}$], induced by glutamate receptor stimulation in oligodendrocyte precursors has been observed (24). Activation of different sets of genes following the stimulation of distinct intracellular Ca$^{2+}$ signaling pathways has also been described in neurons (25). It is possible that not only the magnitude of the [Ca$^{2+}$], increase but also its kinetics could play a crucial role in this process. In fact, different Ca$^{2+}$ signaling kinetics could activate separate biochemical pathways leading to diverse messages at the nuclear level. Considering the multiple events regulated by PDGF during oligodendroglial development, this possibility appears to be very interesting. However, few studies have investigated PDGF-induced Ca$^{2+}$ signaling during oligodendroglial differentiation (26). We have previously shown that mT-transformed oligodendroglial CEINGE cl3 cells responded to PDGF-BB exposure with two kinetically distinct types of Ca$^{2+}$ signals. The relative intracellular levels of the two sphingolipids, sphingosine and sphingosine 1-phosphate (SPP), which are modulated by the activity of the enzyme sphingosine kinase, appeared to be responsible for the oscillatory and non-

* This work was supported by Public Health Service Grants DA-02121, MH-40165, NS-33502, and DA-02575. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed: Dept. of Pharmacological and Physiological Sciences, The University of Chicago, 847 East 58th St., 60637 MC-0926, Chicago, IL. Tel.: 773-702-3214; Fax: 773-702-5903.

1 The abbreviations used are: PDGF, platelet-derived growth factor; R, receptor; [Ca$^{2+}$], intracellular free Ca$^{2+}$ concentration; PLC, phospholipase C; GNP, 2',3'-cyclic nucleotide 3'-phosphodiesterase; mT, polyoma middle T antigen; GaIC, galactocerebroside; PBS, phosphate-buffered saline; DMEM, Dulbecco’s modified Eagle’s medium; SPP, sphingosine 1-phosphate.
PDGF-induced Ca²⁺ Signaling in Oligodendroglial Cell Lines

In this paper, we show that CEINGE cl3 cells express both α- and β-PDGFR. The Ca²⁺ response induced by PDGF and by exogenous sphingosine and SPP in these cells was compared with that observed in the oligodendroglial cell line CG4 (28), in PC-12 cells transfected with the β-PDGFR (29), and in NIH 3T3 fibroblasts. This was done in order to ascertain whether the patterns of Ca²⁺ signaling observed in CEINGE cl3 cells are a peculiarity of this clone or a particular feature of the oligodendroglial lineage. Furthermore, the consequences of blocking sphingosine kinase on Ca²⁺ signaling caused by α- or β-PDGFR activation were investigated.

EXPERIMENTAL PROCEDURES

Materials—PDGF-BB, PDGF-AA, and TWEEN 20 were from Calbiochem-Novabiochem (San Diego, CA). ATP, sphingosine, α,β-threo-dihydrodrosphingosine, and neomycin sulfate were from Sigma. Neomycin chloride was used to avoid possible nonspecific effect of high sulfate concentrations and was prepared, as described (30), by dissolving neomycin sulfate at 1 mg/ml and precipitating the sulfate with 3 volumes of 1 M BaCl₂. The supernatant was neutralized to pH 7.4 with 1 M HCl. SPP was from Biomol (Plymouth Meeting, PA). Fura-2/acetoxymethyl ester (fura-2/AM) was from Molecular Probes (Eugene, OR). The standard buffer of the following composition (in mM): NaCl 157, KCl 5, MgSO₄ 0.4, MgCl₂ 0.5, KH₂PO₄ 0.6, NaHCO₃ 3, HEPES 20, glucose 10, CaCl₂ 2, and bovine serum albumin 0.2% (osmolality 320–340 mosm/kg), pH adjusted to 7.4 with NaOH was used. Other chemicals used in these experiments were from Sigma.

Statistical Analysis—Data values expressed as mean ± S.E. Student’s t test or Mann-Whitney non-parametric test were used, and statistical significance was defined as a p value of 0.01 or less.

RESULTS

Characterization of CEINGE cl3 Cells, Immunofluorescence and Western Blot Analysis of Middle T and CNP Protein Expression—The CEINGE cl3 cell line was obtained by infecting E14 rat brain cells with a murine leukemia virus carrying the gene encoding the polyoma mT antigen (34). Although CEINGE cl3 cells have been previously found to express a retroviral mRNA hybridizing to the polyoma mT gene (34), we decided to verify that the protein was effectively expressed.

An equal amount of protein (60 µg) from a total cell lysate of CEINGE cl3 cells and NIH 3T3 fibroblasts (as a negative control) was loaded onto a 10% polyacrylamide gel. As shown in Fig. 1, CEINGE cl3 cells expressed a protein with a molecular weight of approximately 55,000, whereas in NIH 3T3 fibroblasts the protein was not detected. Immunofluorescence staining obtained using CEINGE cl3 cells shows that a significant amount of the protein was detectable in every cell in the field (Fig. 1). No staining was obtained using NIH 3T3 fibroblasts (not shown).

The expression of the oligodendroglial marker GalC by CEINGE cl3 cells has been previously reported (34). To further characterize the clone, we investigated the expression of CNP as a specific marker, since this enzyme is expressed early and at high levels during the development and differentiation of oligodendrocytes and appears to be involved in the biogenesis of myelin (35, 36). For this purpose, an equal amount of protein (40 µg) from the total cell lysate of CEINGE cl3 cells, NIH 3T3 fibroblasts (as a negative control), and CG4 cells differentiated to oligodendrocytes (as a positive control) was loaded onto a 12.5% polyacrylamide gel. Fig. 2 shows that both CEINGE cl3 cells and CG4/oligodendrocytes expressed a protein with a similar molecular weight of approximately 45,000–50,000. The amount of protein expressed appeared to be significantly higher in CG4/oligodendrocytes when compared with CEINGE cl3 cells, whereas NIH 3T3 fibroblasts did not express this protein at all. These results were confirmed by immunofluorescence staining, showing that CEINGE cl3 cells stained posi-
tively for CNP (Fig. 2). Similar positive staining was obtained using CG4/oligodendrocytes, whereas NIH 3T3 fibroblasts appeared completely negative (not shown).

Single Cell Video Imaging of the Ca$^{2+}$ Response Induced by PDGF-BB in CEINGE Clone 3 and CG4 Cells—As described previously (27), exposure of CEINGE cl3 cells to 10 ng/ml PDGF-BB for 5 min was able to induce Ca$^{2+}$ responses with two different types of kinetics. The first response was characterized by an early single increase in [Ca$^{2+}$], which was frequently followed by a plateau. In contrast, the pattern of the second Ca$^{2+}$ response was oscillatory, with several spikes of different frequencies and magnitudes beginning significantly later than the non-oscillatory response (Fig. 3A and B). Similarly, the growth factor caused [Ca$^{2+}$] increases, both in CG4/O-2A progenitors and CG4/oligodendrocytes, with a similar dual pattern (Fig. 3C and D). The number of cells responsive to the agonist was significantly lower in CG4 cells in comparison to CEINGE cl3 cells (see Table I).

Finally, the percentage of oscillatory cells in CG4/O-2A progenitors and CG4/oligodendrocytes was higher than in CEINGE cl3 cells (Table I), and the delays preceding the onset of the two distinct Ca$^{2+}$ responses were significantly different, as observed in CEINGE cl3 cells.

Single Cell Video Imaging of the Ca$^{2+}$ Response Induced by PDGF-BB in NIH 3T3 Fibroblasts and β-PDGFR-transfected PC-12 Cells—We investigated whether Ca$^{2+}$ responses with different kinetics were also induced by PDGF-BB in other cell types such as NIH 3T3 fibroblasts and PC-12 cells transfected with the β isoform of PDGFR (29). 3T3 fibroblasts responded with a single Ca$^{2+}$ rise frequently followed by a plateau (Fig. 4B), as previously reported by others (37). Comparable responses were observed in PC-12 cells, although the magnitude of the [Ca$^{2+}$], increase was smaller than in 3T3 fibroblasts (Fig. 4A). However, the oscillatory pattern observed in CEINGE cl3 and CG4 cells was never detected in NIH 3T3 or PC-12 cells.

Expression of Both α and β Receptors for PDGF in CEINGE Clone 3 Cells, Western Blot Analysis—We investigated the expression of α and β receptors for PDGF in CG4 and CEINGE cl3 oligodendroglial cells. Positive control NIH 3T3 fibroblasts that express both PDGFR isoforms (38) and negative control parental PC-12 cells which have no detectable expression of PDGFRs (39) were also included in the immunoblots. Fig. 5 shows that the α isoform of PDGFR was detected in both CG4/O-2A progenitors and CG4/oligodendrocytes as well as in CEINGE cl3 cells. The latter cells showed an amount of protein that was comparable to that found in 3T3 fibroblasts, whereas CG4 cells expressed an even higher level of the protein regardless of their state of differentiation. In all cell types two separate proteins with an apparent molecular weight of about 180,000 and 160,000 were detected. It is likely that a mature glycosylated form and a partially modified form of the receptor are expressed as described previously in primary oligodendroglia (16). However, neither protein was detected in PC-12 cells. Although the β isoform of PDGFR was not detected in CG4 cells, in agreement with previous studies in primary oligodendroglia (16), CEINGE cl3 cells clearly expressed the β isoform of the PDGFR. The protein which has an apparent molecular weight of 190,000 was also present in 3T3 fibroblasts, whereas it was undetectable in PC-12 cells (Fig. 5).

Effect of Neomycin on PDGF-BB-induced Ca$^{2+}$ Response in
PDGF-induced Ca\(^{2+}\) Signaling in Oligodendroglial Cell Lines

CG4 and CEINGE cl3 Cells—A pharmacological approach was adopted for studying the consequences of the difference in PDGFR expression in CG4 and CEINGE cl3 cells. The aminoglycoside neomycin is able to inhibit the binding of PDGF-BB to the α receptor, whereas binding to the β receptor is not affected by this drug (30). When CG4/oligodendrocytes were preincubated with 5 mM neomycin for 15 min before stimulation with PDGF-BB (10 ng/ml), the Ca\(^{2+}\) response was totally abolished in all the 46 cells analyzed (Fig. 6A). However, subsequent exposure of the same cells to 100 μM ATP elicited a [Ca\(^{2+}\)]\(_i\) increase, usually a rapid peak followed by a plateau, in more than 90% of cells studied. This demonstrates that neomycin neither inhibited PLC\(_{β}\) nor exerted any toxic effect. However, preincubation of CEINGE cl3 cells with neomycin did not inhibit the Ca\(^{2+}\) signaling induced by PDGF-BB stimulation (Fig. 6B), and the usual pattern of both oscillatory and non-oscillatory Ca\(^{2+}\) response was observed.

Exposure of CEINGE cl3 Cells to PDGF-AA—When CEINGE cl3 cells were perfused for 5 min with 20 ng/ml PDGF-AA, which is able to bind only the α isofrom of PDGFR, 149 out of 247 cells studied (60%) showed a [Ca\(^{2+}\)]\(_i\) increase (data not shown). In 69% of the responsive cells, the kinetics were oscillatory and comparable with those induced by PDGF-BB exposure but preceded by a significantly shorter delay (146 ± 7 versus 278 ± 9 s). Similarly, a shorter delay was also detected in the remaining 31% of the cells responding in a non-oscillatory fashion, when compared with the non-oscillatory response induced by PDGF-BB in CEINGE cl3 cells (93 ± 7 versus 200 ± 7 s).

FIG. 3. Effect of PDGF-BB on [Ca\(^{2+}\)]\(_i\) in CEINGE cl3 cells and CG4/oligodendrocytes. Single cell fura-2 analysis of cells exposed to 10 ng/ml PDGF-BB is shown. Perfusion with the agonist started at 30 s and was maintained for 5 min. An acquisition point of one data point every 5 s was used. Ca\(^{2+}\) responses with non-oscillatory and oscillatory kinetics were observed in both CEINGE cl3 cells (A and B) and in CG4/oligodendrocytes (C and D). Each trace shown is from a single cell and represents a typical response for a given microscopic field of cells. Data are from 168 CEINGE cl3 cells analyzed in 11 separate experiments and from 56 CG4/oligodendrocytes analyzed in 8 separate experiments.

TABLE I

Cell type	Responsive cells	Oscillatory cells and delay (s)	Non-oscillatory cells and delay (s)
CG4/O-2A (n = 87)	22 (25%)	64%	36%
CG4/oligodendrocyte (n = 227)	56 (25%)	198 ± 11	129 ± 22
CEINGE clone 3 (n = 269)	188 (70%)	266 ± 15	183 ± 12

DISCUSSION

In these experiments we studied the Ca\(^{2+}\) responses elicited by stimulation of PDGFRs in the CG4 cell line and compared them with analogous effects induced in CEINGE cl3 cells and in cells of non-oligodendroglial origin such as NIH 3T3 fibroblasts and β-PDGFR-transfected PC-12 cells. Our results.
clearly demonstrate the oligodendroglial origin of CEINGE cl3 cells and also suggest that the oscillatory Ca2+ response induced by PDGF is a peculiarity of oligodendroglia. The results also suggest that α-PDGFR may be less effective than β-PDGFR in stimulating the enzyme sphingosine kinase.

First we characterized the CEINGE clone 3 cells. Western blot analysis for the mT antigen clearly showed expression of the protein in the CEINGE cl3 cell line. Uniform detection of the protein in all cells was evident using immunofluorescence (Fig. 1). Thus the differences in PDGF-BB-induced Ca2+ responses previously described (27) are not a consequence of unequal protein levels in the cell population. It has been previously shown that CEINGE cl3 cells stain positively for GaIC antigen, a specific immunological marker for oligodendrocytes (34). As we now also show the CEINGE cl3 cell line also expresses the specific oligodendroglial marker CNP. Two isoforms of this enzyme have been identified, with molecular weights of 46,000 and 48,000, both being derived from a single gene (41). In O-2A precursors only the mRNA encoding the larger isoform has been found, whereas in differentiated oligodendrocytes both CNP mRNAs have been described (42).
ERN blot analysis showed that a single protein band was identified in CEINGE cl3 cells, showing a molecular weight of approximately 45,000–50,000 and corresponding to a similar band identified in CG4/oligodendrocytes (Fig. 2).

CEINGE cl3 cells responded to PDGF-BB exposure with Ca2+

levels of sphingosine and SPP than in other cell types. On the other hand, in the light of our results, the possibility of a modulatory action operated by sphingolipids on other pathways, such as PLC-γ-inositol trisphosphate, cannot be ruled out.

It has been reported that cells of the oligodendroglial lineage only express the α isoform of PDGFR (17, 46) and that oligodendrocytes show a lower level of mRNA for this receptor and protein expression compared with O-2A progenitors (16). In agreement with these observations, we found that CG4 cells grown both as O-2A progenitors and oligodendrocytes expressed α-PDGFR. However, no decrease in α-PDGFR protein level was observed in CG4/oligodendrocytes, as also suggested by the similar percentages of CG4/O-2A progenitors and CG4/ oligodendrocytes that responded with a [Ca2+]i increase to PDGF-BB (Table I). This could be explained by a peculiarity of this cell line in which α-PDGFR expression has never been previously investigated or by the fact that after the 3rd day of differentiation to oligodendrocytes 1% of fetal calf serum was added to the culture medium to increase the cell survival (28, 47). The presence of basic fibroblast growth factor in the serum may have contributed to an up-regulation of α-PDGFR expression, as previously reported in primary oligodendroglia (16). Interestingly, CEINGE cl3 cells also expressed the β isoform of PDGFR. This finding was confirmed by experiments performed using neomycin as an inhibitor of PDGF-BB binding to the α-PDGFR (30). Thus, neomycin completely blocked PDGF-BB-induced Ca2+ signaling in CG4 cells, whereas it was ineffective in CEINGE cl3 cells (Fig. 6), suggesting that the Ca2+ response observed in these latter conditions was due solely to β-PDGFR activation. In light of these results, we exposed CEINGE cl3 cells to PDGF-AA in order to selectively stimulate the α-PDGFR and verify whether this could evoke a Ca2+ response different from that observed when both α- and β-PDGFRs were stimulated by PDGF-BB. In these experiments we also observed both oscillatory and non-oscillatory Ca2+ responses, although the percentage of oscillatory cells was higher and the delays preceding both Ca2+ responses were shorter than those observed using PDGF-BB. Interestingly, a second homologous PDGF stimulation of the same CEINGE cl3 cells was ineffective in increasing the [Ca2+]i, regardless of the PDGF isoform used. This suggests desensitization of the transductional mechanisms linking PDGFs with the Ca2+ signaling machinery. On the other hand, PDGF-BB exposure following a previous PDGF-AA pulse induced a Ca2+ response in the majority of the cells (Fig. 7). These data can be explained by invoking a selective desensitization of α-PDGFR by PDGF-AA and further supports the presence of β-PDGFRs in CEINGE cl3 cells.

When PDGF-BB exposure of CG4 cells was preceded by incubation with DL-threo-dihydrosphingosine, no increase in the percentage of oscillatory cells was observed in contrast to CEINGE cl3 cells (Fig. 8). Nevertheless, when exogenous sphingosine was perfused alone an oscillatory Ca2+ response

TABLE II	Ca2+ responses induced by exogenous sphingosine and SPP		
Cell type	Responsive cells	Oscillatory cells and delay (s)	Non-oscillatory cells and delay (s)
Ca2+ responses induced by exogenous sphingosine			
CG4/oligodendrocyte (n = 201)	92 (46%)	77% 188 ± 15	23% 118 ± 21
CEINGE clone 3° (n = 88)	53 (60%)	100% 129 ± 9	
Ca2+ responses elicited by exogenous SPP			
CG4/oligodendrocyte (n = 101)	44 (43%)	18% 56 ± 8	82% 43 ± 4
CEINGE clone 3° (n = 65)	38 (58%)		100% 30 ± 6

* Data from Fatatis and Miller, J. Biol. Chem. 271, 295–301, 1996.
was detected in most of the cells, whereas exposure to SPP mostly provoked non-oscillatory responses (Table II). These data suggest that although sphingosine and SPP are able to elicit two distinct types of Ca\(^{2+}\) response, as observed in CEINGE cl3 cells (27), block of sphingosine kinase did not modulate the Ca\(^{2+}\) signaling following the stimulation of \(\alpha\)-PDGFR. This result is difficult to explain in the light of information available on the mechanism of coupling of PDGFRs to the sphingolipid metabolic pathway. Although a clear correlation between PDGFR stimulation and increases in the intracellular levels of ceramide, sphingosine, and SPP have been reported (48–50), the biochemical mechanisms underlying these phenomena are still unclear. Furthermore, although stimulation of sphingosine kinase activity has been observed during \(\beta\)-PDGFR stimulation (51), no data are available regarding the \(\alpha\) isofrom of this receptor. A possible explanation of our observations could involve lack of stimulation of sphingosine kinase activity by \(\beta\)-PDGFR. This could result in higher intracellular levels of sphingosine and SPP. These data suggested that the percentage of oscillatory cells was higher in CEINGE cl3 cells stimulated with the same PDGFR isoform. This could be because the \(\beta\)-PDGFR in CEINGE cl3 stimulates sphingosine kinase to produce more SPP, thus accounting for the higher number of non-oscillatory responses. This hypothesis is supported by the observation that when CEINGE cl5 cells were stimulated with PDGF-AA instead of PDGF-BB, a higher percentage of oscillatory cells were detected. However, it seems reasonable to hypothesize that despite the absence of stimulation of sphingosine kinase activity, some SPP is still produced, accounting for the non-oscillatory Ca\(^{2+}\) responses observed during \(\alpha\)-PDGFR activation.

The possibility that different PDGF-induced Ca\(^{2+}\) responses in oligodendroglia are coupled to distinct cellular phenomena such as mitogenesis, chemotaxis, and differentiation seems very attractive. Future studies will be essential in order to correlate the kinetics of Ca\(^{2+}\) signaling induced by PDGFs to particular cytoplasmic and nuclear events.

References

Noble, M., Murray, K., Strobant, P., Waterfield, M. D., and Riddle, P. (1988) *Nature* 333, 560–562.

Raff, M. C. (1989) *Science* 243, 1450–1455.

Armstrong, R. C., Harvath, L., and Dubois-Dalcq, M. E. (1990) *J. Neurosci. Res.* 27, 460–467.

Laff, M. C., Lillien, L. E., Richardson, W. D., Burne, J. F., and Noble, M. (1988) *Nature* 333, 562–565.

Kohler, N., and Lipton, A. (1974) *Exp. Cell Res.* 87, 297–301.

Raff, M. C., Glomset, J. A., Kiar, B., and Larker, L. (1974) *Proc. Natl. Acad. Sci. U.S.A.* 71, 1207–1210.

Westmark, B., and Wasteson, Å. (1976) *Exp. Cell Res.* 98, 170–174.

Claesson-Welsh, L. (1994) *Proc. Natl. Acad. Sci. U.S.A.* 91, 595–603.

McClimon, R. D., Matsui, T., Dubois-Dalcq, M., and Aaronson, S. A. (1990) *Nature* 340, 603–614.

Hart, I. K., Richardson, W. D., Heldin, C. H., Westmark, B., and Raff, M. C. (1985) *Development* 105, 595–603.

Ellison, J. A., and de Vellis, J. (1994) *J. Neurosci. Res.* 37, 116–128.

Lopez-Rivas, A., Mendz, S. A., Nanberg, E., Sinnet-Smith, J., and Rosenberg, E. (1997) *Proc. Natl. Acad. Sci. U.S.A.* 94, 7568–7572.

Means, A. R., and Rasmussen, C. D. (1988) *Cell Calcium* 9, 313–319.

Takakuwa, N., Zhou, W., and Takakuwa, Y. (1995) *Cell Signaling* 7, 93–104.

Roche, E., and Prentki, M. (1994) *Cell Calcium* 16, 331–338.

Tietze, R., and Tsien, R. Y. (1990) *Annu. Rev. Cell Biol.* 6, 715–760.

Pendle, M., Hultclaw, C. A., Curtis, J. L., Russel, J. T., and Gallo, V. (1994) *Proc. Natl. Acad. Sci. U.S.A.* 91, 3215–3219.

Gallen, W. J., and Greenberg, M. E. D. (1986) *Curr. Opin. Neurobiol.* 5, 367–374.

Hart, I. K., Richardson, W. D., Bolsover, S. R., and Raff, M. C. (1995) *J. Cell Biol.* 131, 3411–3417.

Fatagia, S., and Miller, R. J. (1996) *J. Biol. Chem.* 271, 295–301.

J. C. L., Magal, E., Muir, D., Manthorpe, M., and Varon, S. (1992) *J. Neurosci. Res.* 31, 193–204.

Vaillancourt, R. R., Heasley, L. E., Zamarripa, J., Storey, B., Valius, M., and Tabak, D. (1990) *J. Cell Biol.* 15, 3644–3653.

Lassarabi, U. K. (1970) *Nature* 227, 680–685.

Panetto, T., Mogavero, A. R., Ammendola, R., Mesuraca, M., Fiore, F., Fatatis, A., Salvatore, G., and Cimino, F. (1993) *Neurosci. Lett.* 159, 159–162.

Mitski, R., Winter, J., Abney, E., Pruss, R. M., Gavrilovic, J., and Raff, M. C. (1993) *J. Cell Biol.* 84, 483–494.

Monge, M., Kadiiski, D., Jacque, C. M., and Zalc, B. (1986) *Cell Calcium* 3, 203–212.

Benjamin, C. W., Connor, J. A., Tarpley, W. G., and Gorman, R. R. (1988) *Proc.
Natl. Acad. Sci. U. S. A. 85, 4345–4349
38. Grotendorst, G. R., Igarashi, A., Larson, R., Soma, Y., and Charette, M. (1991) J. Cell. Physiol. 149, 235–243
39. Heasley, L. E., and Johnson, G. L. (1992) Mol. Biol. Cell 3, 545–553
40. Buehrer, B. M., and Bell, R. M. (1992) J. Biol. Chem. 267, 3154–3159
41. Monoh, K., Kurihara, T., Sakimura, K., and Takahashi, Y. (1989) Biochem. Biophys. Res. Commun. 165, 1213–1220
42. Scherer, S. S., Braun, P. E., Grinspa, J., Collarini, E. J., Wang, D.-Y., and Kamholz, J. (1994) Neuron 12, 1363–1375
43. Whitman, M., Kaplan, D. R., Schaffhausen, B. S., Cantley, L., and Roberts, T. M. (1985) Nature 315, 239–242
44. Su, W., Liu, W., Schaffhausen, B. S., and Roberts, T. M. (1995) J. Biol. Chem. 270, 12331–12334
45. Raptis, L. (1991) J. Virol. 65, 2691–2694
46. Pringle, N. P., Mudhar, H. S., Collarini, E. J., and Richardson, W. D. (1992) Development 115, 535–551
47. Gallo, V., Patneau, D. K., Mayer, M. L., and Vaccarino, P. M. (1994) Glia 11, 94–101
48. Hannun, Y. A., and Bell, R. M. (1989) Science 245, 500–507
49. Liscovitch, M., and Cantley, L. C. (1994) Cell 77, 329–334
50. Divecchia, N., and Irvine, R. F. (1995) Cell 80, 269–278
51. Olivera, A., and Spiegel, S. (1993) Nature 365, 557–560

PDGF-induced Ca^{2+} Signaling in Oligodendroglial Cell Lines