Characterizations of Completely N_{nc} (Weakly N_{nc})-irresolute Functions via N_{nc}-open Sets

A. Vadivel 1, Mohanarao Navuluri 2 and P. Thangaraja 3
1 Department of Mathematics, Government Arts College (Autonomous), Karur, Tamil Nadu - 639 005, India
2 Department of Mathematics, Government College of Engineering, Bodinayakkanur, Tamil Nadu-625 582, India
1,3 Department of Mathematics, Annamalai University, Annamalai Nagar, Tamil Nadu - 608 002, India
Corresponding author: Mohanarao Navuluri

E-mail: 1avmaths@gmail.com, 2mohanaraonavuluri@gmail.com and 3thangarajap1991@gmail.com

Abstract. The purpose of present this paper is to introduce and investigate two new classes of N_{nc}-irresolute functions called completely N_{nc}-e-irresolute functions and completely weakly N_{nc}-e-irresolute functions in topological spaces by using the concept of N_{nc}-open sets. Several new characterizations and interesting properties concerning completely N_{nc}-e-irresolute functions and completely weakly N_{nc}-e-irresolute functions are obtained. Furthermore the relationships between these functions and some other well-known types of functions are also given.

Keywords and phrases: N_{nc}-e-irresolute functions, completely N_{nc}-e-irresolute functions and completely weakly N_{nc}-e-irresolute functions.

1. Introduction
Smarandache’s neutrosophic framework have wide scope of constant applications for the fields of Computer Science, Information Systems, Applied Mathematics, Artificial Intelligence, Mechanics, Medicine, dynamic, Management Science and Electrical & Electronic and so forth [1, 2, 3, 4, 30, 31]. Smarandache [24] described the Neutrosophic set on three portion (T-Truth, F-Falshood, I-Indeterminacy) Neutrosophic sets. Neutrosophic topological spaces (nts’s) presented by Salama and Alblowi [21]. Lellies Thivagar et al. [6, 7] was given the mathematical presence of N topology, which is a non-empty set equipped with N arbitrary topologies. Al-Hamido et al. [5] investigate the chance of extending the idea of neutrosophic crisp topological spaces into N-neutrosophic crisp topological spaces and examine a portion of their essential properties. In 2018, Lellies Thivagar et al. [7] introduced N_n continuous in N neutrosophic crisp topological spaces. In 2020, Vadivel and Thangaraja [28] the concept of N_{nc}-continuous in N topological spaces. The aim of present this paper is to introduce and investigate other new types of irresolute functions via N_{nc}-e-open sets called completely N_{nc}-e-irresolute functions and completely weakly N_{nc}-e-irresolute functions. Some characterizations and interesting properties of these functions are discussed.
2. Preliminaries

Definition 2.1 [22, 23] A neutrosophic crisp set (ncs) H in a nonempty set X has the form $H = (H_1, H_m, H_n)$, where $H_1, H_m, & H_n$ are subsets of X. Defined $\phi_n = (\phi, \phi, X)$, $X_n = (X, X, \phi)$. ncs(X) means the set of all ncs’s in X. A ncs of Type 1 (resp. 2 & 3) (in short, ncs-Type 1 (resp. 2 & 3)), if it satisfies $H_1 \cap H_m = H_m \cap H_n = H_n \cap H_l = \phi$ (resp. $H_1 \cap H_m = H_m \cap H_n = H_n \cap H_l = \phi$ and $H_1 \cup H_m \cup H_n = X & \cap H_l \cap H_m \cap H_n = \phi$ and $H_1 \cup H_m \cup H_n = X$). ncs$(1)_3$($X$) $(ncS2(X)$ and $ncS3(X)$) means set of all ncs Type 1 (resp. 2 & 3).

Definition 2.2 Let $H = (H_1, H_m, H_n), M = (M_l, M_m, M_n) \in ncS(X)$. Then $H \subseteq M$ (resp. $H = M$), if $H_1 \subseteq M_l, H_m \subseteq M_m$ and $H_n \supseteq M_n$ (resp. $H \subseteq M$ and $M \subseteq H$); $H^c = (H_n, H_n, H_l)$; $H \cap M = (H \cap M_l, H_m \cap M_m, H_n \cap M_n); H \cup M = (H \cup M_l, H_m \cup M_m, H_n \cup M_n)$. Let $(A_j)_{j \in J} \subseteq ncS(X)$, where $H_j = (H_{j_1}, H_{j_2}, H_{j_3})$. Then $\bigcup_{j \in J} H_j$ (simply $\bigcup H_j) = (\bigcap H_{j_1}, \bigcap H_{j_2}, \bigcup H_{j_3})$.

Definition 2.3 [22] A neutrosophic crisp topology (briefly, nct) on a non-empty set X is a family τ of ncs sets of X satisfying

(i) $\phi_n, X_n \in \tau$.
(ii) $H_1 \cap H_m \in \tau \forall H_1 & H_m \in \tau$.
(iii) $\bigcup_{a} H_a \in \tau$, for any $\{H_a : a \in J\} \subseteq \tau$.

Then (X, τ) is a neutrosophic crisp topological space (briefly, ncts) in X. Elements of τ are called neutrosophic crisp open sets (briefly, ncos) in X. A ncs C is closed set (briefly, nccs) iff its complement C^c is ncos.

Definition 2.4 [5] $nc\tau_1, nc\tau_2, \ldots, nc\tau_N$ are N-arbitrary crisp topologies defined on a nonempty set X and the collection $N_{nc}\tau = \{A \subseteq X : A = \bigcup_{j=1}^{N} H_j \cup \bigcap_{j=1}^{N} L_j, H_j, L_j \in nc\tau_j\}$ is called N neutrosophic crisp (briefly, N_{nc}-)topology on X if the axioms are satisfied:

(i) $\phi_n, X_n \in N_{nc}\tau$.
(ii) $\bigcup_{j=1}^{n} A_j \in N_{nc}\tau \forall \{A_j\}_{j=1}^{n} \in N_{nc}\tau$.
(iii) $\bigcap_{j=1}^{n} A_j \in N_{nc}\tau \forall \{A_j\}_{j=1}^{n} \in N_{nc}\tau$.

Then $(X, N_{nc}\tau)$ is called a N_{nc}-topological space (briefly, N_{nc}ts) on X. Elements of $N_{nc}\tau$ are called N_{nc}-open sets (N_{nc}os) & its complement is called N_{nc}-closed sets (N_{nc}cs) on X. The elements of X are known as N_{nc}-sets (N_{nc}s) on X.

Definition 2.5 [5] Let H be an N_{nc}s on a N_{nc}ts of X, then the N_{nc} interior of H (briefly, N_{nc}int(H)) and N_{nc} closure of H (briefly, N_{nc}cl(H)) are defined as

(i) N_{nc}int$(H) = \bigcup\{A : A \subseteq H & A$ is a N_{nc}os in $X\}$ & N_{nc}cl$(H) = \bigcap\{C : H \subseteq C & C$ is a N_{nc}cs in $X\}$.

(ii) N_{nc}-regular open [25] set (briefly, N_{nc}ros) if $H = N_{nc}$int$(N_{nc}$cl(H)).

The complement of an N_{nc}ros is called an N_{nc}-regular closed set (briefly, N_{nc}rcs) in X. The family of all N_{nc}ros of X is denoted by N_{nc}ROS(X).

Definition 2.6 [26] A set H is said to be a
Characterizations of completely N_{nc}-irresolute functions

Throughout this section, let (X, N_{nc}) and (Y, N_{nc}) be any two N_{nc} sets.

Definition 3.1 A map $f : (X, N_{nc}) \to (Y, N_{nc})$ is said to be N_{nc}-continuous [7] (resp. N_{nc}-irresolute [29]) if $f^{-1}(H)$ is both N_{nc}-open and N_{nc}-closed (resp. N_{nc}-irresolute) in X for each N_{nc} set H of Y.

Example 3.2 Let $X = \{d, c, b, a\}$, $N_{nc} \Gamma_1 = \{\phi, X, C, B, A\}$, $N_{nc} \Gamma_2 = \{\phi, X, N\}$. Define $f : (X, 2_{nc}) \to (X, 2_{nc})$ as an identity map, then it is 2_{nc}-irresolute but not sN_{nc}-cts, the set $f^{-1}(\{a, \phi\}) = \{a, \phi\}$ is a 2_{nc}-open but not 2_{nc}-closed in X.

Remark 3.1 Every sN_{nc}-cts function is cN_{nc}-irresolute but every cN_{nc}-irresolute function is N_{nc}-irresolute. But not conversely.

Theorem 3.1 Let $f : (X, N_{nc}) \to (Y, N_{nc})$ be a function. Then

(i) f is cN_{nc}-irresolute;

(ii) $f^{-1}(M)$ is N_{nc}-open in $X \forall N_{nc}$ set M of Y are equivalent.

Proof. (i) \Rightarrow (ii): Let M be any N_{nc}-open set of Y, then $Y \setminus M \in N_{nc}OS(X)$. By (i), $f^{-1}(Y \setminus M) = X \setminus f^{-1}(M) \in N_{nc}ROS(X)$. We have $f^{-1}(M) \in N_{nc}RCS(X)$.

(ii) \Rightarrow (i): is similar to proof (i) \Rightarrow (ii).

Lemma 3.1 Let H be an N_{nc}-open set of a N_{nc}-cts X. Then the following hold:

(i) If L is N_{nc}-open in X, then so is $L \cap H$ in the N_{nc} subspace $(H, N_{nc} \Psi_H)$.

Example 3.1 Let $X = \{c, b, a\}$, $N_{nc} \Gamma_1 = \{\phi, X, N\}$, $N_{nc} \Gamma_2 = \{\phi, X, n\}$. Define $f : (X, 2_{nc}) \to (X, 2_{nc})$ as an identity map, then it is 2_{nc}-cts but not sN_{nc}-cts, the set $f^{-1}(\{a, \phi\}) = \{a, \phi\}$ is a 2_{nc}-open but not 2_{nc}-closed in X.

Example 3.2 Let $X = \{d, c, b, a\}$, $N_{nc} \Gamma_1 = \{\phi, X, C, B, A\}$, $N_{nc} \Gamma_2 = \{\phi, X, N\}$. Define $f : (X, 2_{nc}) \to (X, 2_{nc})$ as an identity map, then it is 2_{nc}-irresolute but not cN_{nc}-irresolute, the set $f^{-1}(\{b, \phi, \{d, c\}\}) = \{b, \phi, \{d, c\}\}$ is a 2_{nc}-open but not 2_{nc}-closed in X.

Remark 3.2 From the above arguments, we obtain the following diagrams:

$$sN_{nc}$-cts $\implies cN_{nc}$-irresolute $\implies N_{nc}$-irresolute

Theorem 3.1 Let $f : (X, N_{nc}) \to (Y, N_{nc})$ be a function. Then

(i) f is cN_{nc}-irresolute;

(ii) $f^{-1}(M)$ is N_{nc}-open in $X \forall N_{nc}$ set M of Y are equivalent.

Proof. (i) \Rightarrow (ii): Let M be any N_{nc}-open set of Y, then $Y \setminus M \in N_{nc}OS(X)$. By (i), $f^{-1}(Y \setminus M) = X \setminus f^{-1}(M) \in N_{nc}ROS(X)$. We have $f^{-1}(M) \in N_{nc}RCS(X)$.

(ii) \Rightarrow (i): is similar to proof (i) \Rightarrow (ii).
If $M \subseteq H$ is $N_{nc}ro$ in $(H, N_{nc}\Psi_H)$, then there exists a $N_{nc}ro$ set L in $(X, N_{nc}\Psi) \ni M = L \cap H$.

Theorem 3.2 If $f : (X, N_{nc}\Psi) \to (Y, N_{nc}\Psi^*)$ is a $cN_{nc}eIrr$ function and H is any $N_{nc}o$ set of X, then the restriction $f|_H : H \to Y$ is $cN_{nc}eIrr$.

Proof. Let M be an $N_{nc}e$ set of Y. By hypothesis $f^{-1}(M)$ is $N_{nc}ro$ in X. Since H is $N_{nc}o$ in X, it follows from Lemma 3.1 that $(f|_H)^{-1}(M) = H \cap f^{-1}(M)$, which is $N_{nc}ro$ in H. Therefore, $f|_H$ is $cN_{nc}eIrr$.

Theorem 3.3 For functions $h_1 : (X, N_{nc}\Psi) \to (Y, N_{nc}\Psi^*)$ and $h_2 : (Y, N_{nc}\Psi^*) \to (Z, N_{nc}\Psi^{**})$ the following hold:

(i) If h_1 is $cN_{nc}eIrr$ (resp. $cN_{nc}Cts, cN_{nc}eIrr$ & $sN_{nc}Cts$) and h_2 is $N_{nc}eIrr$ (resp. $cN_{nc}eIrr$, $N_{nc}eCts$ & $cN_{nc}eIrr$), then $h_2 \circ h_1 : X \to Z$ is $cN_{nc}eIrr$ (resp. $cN_{nc}eIrr$, $cN_{nc}Cts$ & $cN_{nc}eIrr$),

(ii) If h_1 and h_2 are $cN_{nc}eIrr$, then $h_2 \circ h_1$ is $cN_{nc}eIrr$.

Proof. The proof is obvious and easy thus omitted.

Definition 3.2 A $N_{nc}ts (X, N_{nc}\Psi)$ is said to be N_{nc} almost (resp. $N_{nc}e$) connected if X cannot be written as the union of two non-empty disjoint $N_{nc}ro$ (resp. $N_{nc}e$) sets.

Theorem 3.4 If $f : (X, N_{nc}\Psi) \to (Y, N_{nc}\Psi^*)$ is a $cN_{nc}eIrr$ surjective function and X is N_{nc} almost connected, then Y is $N_{nc}e$-connected.

Definition 3.3 A $N_{nc}ts (X, N_{nc}\Psi)$ is said to be:

(i) N_{nc} Nearly-compact if every $N_{nc}ro$ cover of X has a finite N_{nc} subcover,

(ii) N_{nc} Nearly-countably compact if every N_{nc} countable cover of X by $N_{nc}ro$ sets has a finite N_{nc} subcover,

(iii) N_{nc} Nearly-Lindelöf if every N_{nc} cover of X by $N_{nc}ro$ sets has a countable N_{nc} subcover,

(iv) N_{nc}-compact if every N_{nc} cover of X by $N_{nc}eo$ sets has a finite N_{nc} subcover,

(v) countably N_{nc}-compact if every N_{nc} countable cover of X by $N_{nc}eo$ sets has a finite N_{nc} subcover,

(vi) N_{nc}-Lindelöf if every N_{nc} cover of X by $N_{nc}eo$ sets has a countable N_{nc} subcover.

Theorem 3.5 If $f : (X, N_{nc}\Psi) \to (Y, N_{nc}\Psi^*)$ is a $cN_{nc}eIrr$ surjective function. Then the following statements hold: If X is

(i) N_{nc} nearly-compact, then Y is $N_{nc}e$-compact.

(ii) N_{nc} nearly-Lindelöf, then Y is N_{nc}-Lindelöf.

(iii) N_{nc} nearly-countably compact, then Y is $cN_{nc}e$-compact.

Definition 3.4 A $N_{nc}ts (X, N_{nc}\Psi)$ is said to be:

(i) N_{nc} S-closed (resp. $N_{nc}e$-closed compact) if every $N_{nc}rc$ (resp. $N_{nc}ec$) cover of X has a finite N_{nc} subcover,

(ii) countably N_{nc} S-closed-compact (resp. countably $N_{nc}e$-closed compact) if every countable N_{nc} cover of X by $N_{nc}rc$ (resp. $N_{nc}ec$) sets has a finite N_{nc} subcover,

(iii) S N_{nc}-Lindelöf (resp. $N_{nc}e$-closed Lindelöf) if every N_{nc} cover of X by $N_{nc}rc$ (resp. $N_{nc}ec$) sets has a countable N_{nc} subcover.
Theorem 3.6 If \(f : (X, N_{nc}\Psi) \to (Y, N_{nc}\Psi^*) \) is a \(cN_{nc}eIrr \) surjective function. Then the following statements hold: If \(X \) is

(i) \(N_{nc} \) \(S \)-closed, then \(Y \) is \(N_{nc}e \)-closed compact.

(ii) \(N_{nc} \) \(S \)-Lindelöf, then \(Y \) is \(N_{nc}e \)-closed Lindelöf.

(iii) countably \(N_{nc} \) \(S \)-closed-compact, then \(Y \) is countably \(N_{nc}e \)-closed compact.

Definition 3.5 A \(N_{nc} \) \(X \) is said to be almost \(N_{nc} \) regular (resp. strongly \(N_{nc}e \)-regular) if \(\forall \) \(N_{nc}r \) \(c \) (resp. \(N_{nc}ec \) \(c \)) set \(M \subseteq X \) and any point \(x \in X \setminus M \), there exists disjoint \(N_{nc}e \) \(o \) (resp. \(N_{nc}eo \)) sets \(U \) \& \(V \) \(\ni x \in U \) and \(M \subseteq V \).

Definition 3.6 A function \(f : (X, N_{nc}\Psi) \to (Y, N_{nc}\Psi^*) \) is called \(\rho \) \(N_{nc}e \)-closed if the image of each \(N_{nc}ec \) set of \(X \) is an \(N_{nc}e \) \(ec \) set in \(Y \).

Theorem 3.7 If a mapping \(f : (X, N_{nc}\Psi) \to (Y, N_{nc}\Psi^*) \) is \(N_{nc}e \)-closed, then for each subset \(B \) of \(Y \) and an \(N_{nc}e \) \(o \) \(set \(U \) \(of \) \(X \) containing \(f^{-1}(B) \), \(\exists \) a \(N_{nc}e \) \(o \) \(set \(V \) \(in \) \(Y \) containing \(B \) \(\ni f^{-1}(B) \subseteq U \).

Theorem 3.8 If \(f : (X, N_{nc}\Psi) \to (Y, N_{nc}\Psi^*) \) is \(cN_{nc}eIrr \) e-open from an almost \(N_{nc} \) regular space \(X \) onto a space \(Y \), then \(Y \) is \(sN_{nc}e \)-regular.

Definition 3.7 A \(N_{nc} \) \((X, N_{nc}\Psi) \) is said to be:

(i) Almost \(N_{nc} \)-normal if for each \(N_{nc}c \) \(set \(L \) and each \(N_{nc}r \) \(c \) \(set \(M \) such that \(L \cap M = \phi \), there exist disjoint \(N_{nc}o \) \(sets \(U \) and \(V \) such that \(L \subseteq U \) and \(M \subseteq V \).

(ii) strongly \(N_{nc}e \)-normal if for each pair of disjoint \(N_{nc}ec \) \(sets \(L \) and \(M \) of \(X \), there exist disjoint \(N_{nc}eo \) \(sets \(U \) and \(V \) such that \(L \subseteq U \) and \(M \subseteq V \).

Theorem 3.9 If \(f : X \to Y \) is \(cN_{nc}eIrr \) e-open from an almost \(N_{nc} \)-normal space \(X \) onto a space \(Y \), then \(Y \) is strongly \(N_{nc}e \)-normal.

Definition 3.8 A \(N_{nc} \) \((X, N_{nc}\Psi) \) is said to be \(N_{nc}e-T_1 \) (resp. \(N_{nc}r-T_1 \)) if for each pair of distinct points \(x \) and \(y \) of \(X \), there exist \(N_{nc}e \) \(o \) (resp. \(N_{nc}ro \)) \(sets \(L \) and \(M \) containing \(x \) and \(y \), respectively, such that \(x \notin M \) and \(y \notin L \).

Theorem 3.10 If \(f : (X, N_{nc}\Psi) \to (Y, N_{nc}\Psi^*) \) is a \(cN_{nc}eIrr \) injective function and \(Y \) is \(N_{nc}e-T_1 \), then \(X \) is \(N_{nc}r-T_1 \).

Definition 3.9 A \(N_{nc} \) \((X, N_{nc}\Psi) \) is said to be \(N_{nc}e-T_2 \) (resp. \(N_{nc}r-T_2 \)) for each pair of distinct points \(x \) and \(y \) in \(X \), there exist disjoint \(N_{nc}e \) \(o \) (resp. \(N_{nc}ro \)) \(sets \(L \) and \(M \) in \(X \) such that \(x \in L \) and \(y \in M \).

Theorem 3.11 If \(f : (X, N_{nc}\Psi) \to (Y, N_{nc}\Psi^*) \) is a \(cN_{nc}eIrr \) injective function and \(Y \) is \(N_{nc}e-T_2 \), then \(X \) is \(N_{nc}r-T_2 \).

Theorem 3.12 Let \(Y \) be an \(N_{nc}e-T_2 \) space. Then the following statements hold:

(i) If \(h_1, h_2 : (X, N_{nc}\Psi) \to (Y, N_{nc}\Psi^*) \) are \(cN_{nc}eIrr \) functions, then the set \(H = \{ x \in X : h_1(x) = h_2(x) \} \) is \(N_{nc}e dc \) in \(X \).

(ii) If \(h_1 : (X, N_{nc}\Psi) \to (Y, N_{nc}\Psi^*) \) is a \(cN_{nc}eIrr \) function, then the set \(K = \{ (x, y) \in X \times X : h_1(x) = h_1(y) \} \) is \(N_{nc}e dc \) in \(X \times X \).
4. Characterizations of completely weakly N_{nc}-irresolute functions

Definition 4.1 A function $f : (X, N_{nc}\Psi) \rightarrow (Y, N_{nc}\Psi')$ is said to be completely weakly N_{nc}-irresolute (briefly $cwN_{nc}eIrr$) if for each $x \in X$ and $\forall N_{nc}o$ set V containing $f(x)$, \exists an $N_{nc}o$ set U containing $x \in f(U) \subseteq V$.

Remark 4.1 It is clear that, every $cN_{nc}eIrr$ function is $cwN_{nc}eIrr$ and every $cwN_{nc}eIrr$ function is $N_{nc}eIrr$. But the converses are not true in general as shown in the following examples.

Example 4.1 In Example 3.2, then it is
(i) $cw2_{nc}eIrr$ but not $c2_{nc}eIrr$, the set $f^{-1}((\{b, a\}, \{\phi\}, \{d, c\}) = \{a, b\}, \{\phi\}, \{d, c\})$ is a $2_{nc}cos$ but not $2_{nc}ros$ in X.
(ii) $2_{nc}eIrr$ but not $cw2_{nc}eIrr$, the set $f((\{b, c\}, \{\phi\}, \{d, a\})) \subseteq (\{b\}, \{\phi\}, \{c, a, d\})$.
\[\{b\}, \{\phi\}, \{d, c, a\}\] is a $2_{nc}cos$ and $(\{c, b\}, \{\phi\}, \{d, a\})$ is a $2_{nc}ros$.

Remark 4.2 From the Remarks of 3.1 & 4.1 we obtain the following diagrams:
\[sN_{nc}eIrr \rightarrow cN_{nc}eIrr \rightarrow cwN_{nc}eIrr \rightarrow N_{nc}eIrr\]

Theorem 4.1 For a function $f : (X, N_{nc}\Psi) \rightarrow (Y, N_{nc}\Psi')$ the statements
(i) f is $cwN_{nc}eIrr$.
(ii) For each $x \in X$ and each $N_{nc}o$ set V of Y containing $f(x)$, \exists an $N_{nc}o$ set U of X containing $x \in f(U) \subseteq V$,
(iii) $f(N_{nc}cl(A)) \subseteq N_{nc}cl(f(A))$ subset A of X,
(iv) $N_{nc}cl(f^{-1}(B)) \subseteq f^{-1}(N_{nc}cl(B))$ subset B of Y,
(v) For each $N_{nc}ec$ set V of Y, $f^{-1}(V)$ is $N_{nc}c$ in X,
(vi) $f^{-1}(N_{nc}int(B)) \subseteq N_{nc}int(f^{-1}(B))$ subset B of Y
are equivalent.

Theorem 4.2 Let $h_1 : (X, N_{nc}\Psi) \rightarrow (Y, N_{nc}\Psi')$ be functions. If the graph $h_2 : X \rightarrow X \times Y$ of h_1 is $cwN_{nc}eIrr$, then so is h_1.

Theorem 4.3 For functions $h_1 : X \rightarrow Y$ and $h_2 : Y \rightarrow Z$ the following hold: If h_1 is
(i) $cwN_{nc}eIrr$ and h_2 is $N_{nc}eIrr$, then $h_2 \circ f : X \rightarrow Z$ is $cwN_{nc}eIrr$,
(ii) $cN_{nc}Cts$ and h_2 is $cwN_{nc}eIrr$, then $h_2 \circ h_1 : X \rightarrow Z$ is $cN_{nc}eIrr$,
(iii) $N_{nc}eIrr$ and h_2 is $cwN_{nc}eIrr$, then $h_2 \circ h_1 : X \rightarrow Z$ is $cN_{nc}eIrr$,
(iv) $cwN_{nc}eIrr$ and h_2 is $N_{nc}Cts$, then $h_2 \circ h_1 : X \rightarrow Z$ is $N_{nc}Cts$,
(v) $N_{nc}eIrr$ and h_2 is $cwN_{nc}eIrr$, then $h_2 \circ h_1 : X \rightarrow Z$ is $N_{nc}eIrr$,
(vi) $N_{nc}Cts$ and h_2 is $cwN_{nc}eIrr$, then $h_2 \circ h_1 : X \rightarrow Z$ is $cwN_{nc}eIrr$.

Definition 4.2 A function $f : (X, N_{nc}\Psi) \rightarrow (Y, N_{nc}\Psi')$ is said to be almost N_{nc}-open (briefly, $aN_{nc}o$) if $f^{-1}(V)$ is $N_{nc}o$ in X for every $N_{nc}o$ set V of Y.

Theorem 4.4 Let $h_1 : (X, N_{nc}\Psi) \rightarrow (Y, N_{nc}\Psi')$ be almost $N_{nc}o$ and $h_2 : (Y, N_{nc}\Psi') \rightarrow (Z, N_{nc}\Psi'')$ be any function such that $h_2 \circ h_1 : (X, N_{nc}\Psi) \rightarrow (Z, N_{nc}\Psi'')$ is $cN_{nc}eIrr$, then h_2 is $cwN_{nc}eIrr$.

Proof. Let V be an $N_{nc}o$ set in $(Z, N_{nc}\Psi'')$. Since $h_2 \circ h_1$ is $cN_{nc}eIrr$, $(h_2 \circ h_1)^{-1}(V) = h_1^{-1}(h_2^{-1}(V))$ is $N_{nc}o$ in $(X, N_{nc}\Psi)$. Since h_1 is $aN_{nc}o$ surjection, $h_1(h_1^{-1}(h_2^{-1}(V))) = h_2^{-1}(V)$ is $N_{nc}o$ in Y. Therefore, h_2 is $cwN_{nc}eIrr$.

6
Theorem 4.5 Let \(h_1 : (X, N_{nc}Ψ) \rightarrow (Y, N_{nc}Ψ^*) \) be \(N_{nc}o \) surjection and \(h_2 : (Y, N_{nc}Ψ^*) \rightarrow (Z, N_{nc}Ψ^{**}) \) be any function such that \(h_2 \circ h_1 : (X, N_{nc}Ψ) \rightarrow (Z, N_{nc}Ψ^{**}) \) is \(cwN_{nc}eIrr \), then \(h_2 \) is \(cwN_{nc}eIrr \).

Definition 4.3 (i) A filterbase \(L \) is said to be \(L \)-convergent to a point \(x \) in \(X \) if for each \(U \in eOS(X) \), \(\exists B \in L \ni B \subseteq U \).

(ii) A filterbase \(L \) is said to be convergent to a point \(x \) in \(X \) if for each \(N_{nc}o \) set \(U \) of \(X \) containing \(x \), \(\exists B \in L \ni B \subseteq U \).

Theorem 4.6 Let \(h_1 : (X, N_{nc}Ψ) \rightarrow (Y, N_{nc}Ψ^*) \) be \(cwN_{nc}eIrr \), then for each point \(x \in X \) and each filterbase \(N_{nc}e \) in \(X \) converging to \(x \), the filterbase \(h_1(L) \) is \(N_{nc}e \)-convergent to \(h_1(x) \).

5. Conclusion

Several generalized forms of continuity and irresoluteness have been introduced during the last few years. Recently, continuity and irresoluteness of functions in topological spaces have been researched by many mathematicians and physicists (see [8, 9, 10, 11, 12, 13, 17, 18, 19]), El Naschie, [10] derived quantum gravity from set theory. Also El-Naschie in [14] has indicated that there was a contribution towards the resolution of some fundamental questions linking space-time geometry and topology. Since the mathematical theory of fuzzy sets is highly developed and used extensively in many practical and engineering problems and Furthermore, since El-Naschie has shown that the notion of fuzzy topology have very important applications in quantum particle physics especially in related to both string theory and \(\infty \) theory [9, 15, 16]. Thus, it should be mentioned that the present work in this paper may have become relevant to the works of El-Naschie [9, 10]. Also the neutrosophic topological version of the concepts and results introduced in this paper are very important.

References

[1] Abdel-Basset M, Chang V, Mohamed M and Smarandche F 2019 A Refined Approach for Forecasting Based on Neutrosophic Time Series Symmetry vol 11 457.
[2] Abdel-Basset M, Manogaran G, Gamal A and Chang V 2019 A Novel Intelligent Medical Decision Support Model Based on Soft Computing and IoT IEEE Internet of Things Journal.
[3] Abdel-Basset M, and Mohamed M 2019 A novel and powerful framework based on neutrosophic sets to aid patients with cancer Future Generation Computer Systems vol 98 pp 144-153.
[4] Abdel-Basset M, Gamal A, Manogaran G and Long H V 2019 A novel group decision making model based on neutrosophic sets for heart disease diagnosis Multimedia Tools and Applications pp 1-26.
[5] Al-Hamido R K, Gharibah T, Jafari S and Smarandache F 2018 On neutrosophic crisp topology via N-topology Neutrosophic Sets and Systems vol 23 pp 96-109.
[6] Lellis Thivagar M, Ramesh V, Arockia M D 2016 On new structure of N-topology Cogent Mathematics (Taylor and Francis) vol 3 pp 1204104.
[7] Lellis Thivagar M, Jafari S, Antonyansamy V and Sutha Devi V 2018 The ingenuity of neutrosophic topology via N-topology Neutrosophic Sets and Systems vol 19 pp 91-100.
[8] M. S. El-Naschie, On the uncertainty of Cantorian geometry and the two-slit experiment, Chaos, Solitons & Fractals, 9 (1998), 517–529.
[9] El-Naschie M S 2004 Quantum gravity from descriptive set theory Chaos, Solitons & Fractals vol 19 pp 1339–1344.
[10] El-Naschie M S 2004 Quantum gravity cliford algebras, fuzzy set theory and the fundamental constants of nature Chaos, Solitons & Fractals vol 20 pp 437–450.
[11] El-Naschie M S 2004 The symplictic, vacum exotic quasi-particles and gravitational instanton Chaos, Solitons & Fractals vol 22 pp 1–11.
[12] El-Naschie M S 2006 Topics in the mathematical physics of E-infinity theory Chaos, solitons & Fractals vol 30 pp 656–663.
[13] El-Naschie M S 2005 On a fuzzy kahler-like manifold which is consistent with the two-slit experiment Int. J. Nonlinear Sci. Numer Simul vol 6 pp 95–108.
[14] El-Naschie M S 2000 On the unification of heterotic strings, M theory and ϵ^∞ theory Chaos, solitons & Fractals vol 11 pp 2397–2408.
[15] El-Naschie M S 2004 A review of E-infinity theory and the mass spectrum of high energy particle physics Chaos, solitons & Fractals, vol 19 pp 209–236.
[16] El-Naschie M S 2005 The two-slit experiment as the foundation of E-infinity of high energy physics Chaos, solitons & Fractals vol 25 pp 509–514.
[17] Nasef A A 2001 On b-locally closed sets and related topics Chaos, solitons & Fractals vol 12 pp 1909–1915.
[18] Nasef A A 2001 A mother weak forms of faint continuous Chaos, solitons & Fractals vol 12 pp 2219–2225.
[19] Nasef A A 2005 Some properties of contra-γ-continuous functions Chaos, solitons & Fractals vol 24 pp 471–477.
[20] Rajesh N 2011 Two new types of irresolute functions via b-open sets Acta. Math. Hungars vol 27 pp 287-297.
[21] Salama A A and Alblowi S A 2012 Generalized neutrosophic set and generalized neutrosophic topological spaces Journal computer sci. engineering vol 2 pp 31-35.
[22] Salama A A, Smarandache F and Kroumov V 2014 Neutrosophic crisp sets and neutrosophic crisp topological spaces Neutrosophic Sets and Systems vol 2 pp 25-30.
[23] Salama A A and Smarandache F 2015 Neutrosophic crisp set theory Educational Publisher Columbus Ohio USA.
[24] Smarandache F 2020 Neutrosophy and neutrosophic logic First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA.
[25] Vadivel A and John Sundar C 2020 γ-Open Sets in N_{nc}-Topological Spaces Advances in Mathematics: Scientific Journal vol 9 pp 2197-2202.
[26] Vadivel A and John Sundar C $N_{nc}\delta$-open sets Submitted.
[27] Vadivel A and Thangaraja P On $N_{nc}DP^*$-sets and Decomposition of continuity in N_{nc} Topological Spaces Submitted.
[28] Vadivel A and Thangaraja P e-continuous and Somewhat e-continuity in N_{nc}-Topological Spaces Submitted.
[29] Vadivel A and Thangaraja P Completely $N_{nc}e$ (weakly $N_{nc}e$) irresolute functions via $N_{nc}e$-open sets Submitted.
[30] Venkateswaran Rao V and Srinivasa Rao Y Neutrosophic Pre-open sets and Pre-closed sets in Neutrosophic Topology International Journal of chemTech Research vol 10 pp 449-458.
[31] Wadie F, Al-Omeri and Saied Jafari 2019 Neutrosophic pre-continuity multifunctions and almost pre-continuity multifunctions Neutrosophic Sets and Systems vol 27 pp 53-69.