MSTW PDFs and impact of PDFs on cross sections at Tevatron and LHC

Graeme Watt

CERN PH-TH

Ringberg Workshop: New Trends in HERA Physics 2011

Ringberg Castle, Tegernsee, Germany, 26th September 2011
Introduction

Talk mostly based on two recent papers (with some updates):

- G. Watt,
 "*Parton distribution function dependence of benchmark Standard Model total cross sections at the 7 TeV LHC*

 [JHEP 09 (2011) 069, arXiv:1106.5788]

- R. S. Thorne and G. Watt,
 "*PDF dependence of Higgs cross sections at the Tevatron and LHC: response to recent criticism*

 [JHEP 08 (2011) 100, arXiv:1106.5789]

"Impact of PDFs on cross sections at Tevatron and LHC"

PDFs \Rightarrow cross sections at the Tevatron and LHC.
Cross sections at the Tevatron and LHC \Rightarrow PDFs.
MSTW 2008 PDFs [http://projects.hepforge.org/mstwpdf/]

MSTW 2008 NLO PDFs (68% C.L.)

\[Q^2 = 10 \text{ GeV}^2 \]

\[Q^2 = 10^4 \text{ GeV}^2 \]

G. Watt
MSTW 2008 PDFs [http://projects.hepforge.org/mstwpdf/]

A. D. Martin, W. J. Stirling, R. S. Thorne, G. Watt

- “Parton distributions for the LHC”
 [Eur. Phys. J. C 63 (2009) 189, arXiv:0901.0002]

- “Uncertainties on α_S in global PDF analyses and implications for predicted hadronic cross sections”
 [Eur. Phys. J. C 64 (2009) 653, arXiv:0905.3531]

- “Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions”
 [Eur. Phys. J. C 70 (2010) 51, arXiv:1007.2624]

- “The effects of combined HERA and recent Tevatron $W \rightarrow \ell\nu$ charge asymmetry data on the MSTW PDFs”
 [DIS 2010 proceedings, arXiv:1006.2753]
Data sets fitted in MSTW 2008 NLO analysis [arXiv:0901.0002]

Data set	χ^2 / N_{pts}
H1 MB 99 e^+p NC	9 / 8
H1 MB 97 e^+p NC	42 / 64
H1 low Q^2 96–97 e^+p NC	44 / 80
H1 high Q^2 98–99 e^-p NC	122 / 126
H1 high Q^2 99–00 e^+p NC	131 / 147
ZEUS SVX 95 e^+p NC	35 / 30
ZEUS 96–97 e^+p NC	86 / 144
ZEUS 98–99 e^-p NC	54 / 92
ZEUS 99–00 e^+p NC	63 / 90
H1 99–00 e^+p CC	29 / 28
ZEUS 99–00 e^+p CC	38 / 30
H1/ZEUS $e^\pm p$ F_2^{charm}	107 / 83
H1 99–00 e^+p incl. jets	19 / 24
ZEUS 96–97 e^+p incl. jets	30 / 30
ZEUS 98–00 $e^\pm p$ incl. jets	17 / 30
DØ II $p\bar{p}$ incl. jets	114 / 110
CDF II $p\bar{p}$ incl. jets	56 / 76
CDF II $W \to l\nu$ asym.	29 / 22
DØ II $W \to l\nu$ asym.	25 / 10
DØ II Z rap.	19 / 28
CDF II Z rap.	49 / 29

Data set	χ^2 / N_{pts}
BCDMS μp F_2	182 / 163
BCDMS μd F_2	190 / 151
NMC μp F_2	121 / 123
NMC μd F_2	102 / 123
NMC $\mu n/\mu p$	130 / 148
E665 μp F_2	57 / 53
E665 μd F_2	53 / 53
SLAC ep F_2	30 / 37
SLAC ed F_2	30 / 38
NMC/BCDMS/SLAC F_L	38 / 31
E866/NuSea pp DY	228 / 184
E866/NuSea pd/pp DY	14 / 15
NuTeV νN F_2	49 / 53
CHORUS νN F_2	26 / 42
NuTeV $\nu N \times F_3$	40 / 45
CHORUS $\nu N \times F_3$	31 / 33
CCFR $\nu N \to \mu\mu X$	66 / 86
NuTeV $\nu N \to \mu\mu X$	39 / 40
All data sets	2543 / 2699

- Red = New w.r.t. MRST 2006 fit.
Input parameterisation in MSTW 2008 NLO fit

At input scale $Q_0^2 = 1$ GeV2:

\[
\begin{align*}
 xu_v &= A_u x^{\eta_1} (1 - x)^{\eta_2} (1 + \epsilon_u \sqrt{x} + \gamma_u x) \\
 xd_v &= A_d x^{\eta_3} (1 - x)^{\eta_4} (1 + \epsilon_d \sqrt{x} + \gamma_d x) \\
 xS &= A_S x^{\delta_S} (1 - x)^{\eta_S} (1 + \epsilon_S \sqrt{x} + \gamma_S x) \\
 x(d - \bar{u}) &= A_\Delta x^{\eta_\Delta} (1 - x)^{\eta_S + 2} (1 + \gamma_\Delta x + \delta_\Delta x^2) \\
 xg &= A_g x^{\delta_g} (1 - x)^{\eta_g} (1 + \epsilon_g \sqrt{x} + \gamma_g x) + A_{g'} x^{\delta_{g'}} (1 - x)^{\eta_{g'}} \\
 x(s + \bar{s}) &= A_+ x^{\delta_S} (1 - x)^{\eta_+} (1 + \epsilon_S \sqrt{x} + \gamma_S x) \\
 x(s - \bar{s}) &= A_- x^{0.2} (1 - x)^{\eta_-} (1 - x/x_0)
\end{align*}
\]

- A_u, A_d, A_g and x_0 are determined from sum rules.
- 28 parameters allowed to go free to find best fit,
 20 parameters allowed to go free for error propagation.
Compare to input parameterisation in HERAPDF fits

Input parameterisation \((Q_0^2 = 1.9 \text{ GeV}^2)\) in HERAPDF1.0/1.5

\[xu_\nu = A_{u_\nu} x^{B_{q_\nu}} (1 - x)^{C_{u_\nu}} (1 + E_{u_\nu} x^2)\]
\[xd_\nu = A_{d_\nu} x^{B_{q_\nu}} (1 - x)^{C_{d_\nu}}\]
\[x\bar{u} = A_{\bar{q}} x^{B_{\bar{q}}} (1 - x)^{C_{\bar{u}}}\]
\[x\bar{d} = A_{\bar{q}} x^{B_{\bar{q}}} (1 - x)^{C_{\bar{d}}}\]
\[x\bar{s} = 0.45 x\bar{d}\]
\[xs = x\bar{s}\]
\[xg = A_g x^{B_g} (1 - x)^{C_g}\]

- **10 parameters** for central fit and “experimental” uncertainties, additional “model” and “parameterisation” uncertainties.
- **4 more params.** for HERAPDF1.5 NNLO (2 for \(g\), 1 each for \(u_\nu, d_\nu\)).
Dynamic tolerance: different for each eigenvector

- Outer (inner) error bars give tolerance for 90% (68%) C.L.
Impact of Tevatron Run II jet data on high-x gluon

- Run II jet data prefer **softer** gluon at high x than Run I.
NuTeV/CCFR dimuon cross sections and strangeness

\[
\frac{d\sigma}{dx dy}(\nu_\mu N \rightarrow \mu^+ \mu^- X) = B_c \, A \, \frac{d\sigma}{dx dy}(\nu_\mu N \rightarrow \mu^- c X)
\]
\[\propto |V_{cs}|^2 \xi S(\xi, Q^2) + |V_{cd}|^2 \ldots\]

- \(\nu_\mu\) and \(\bar{\nu}_\mu\) cross sections constrain \(s\) and \(\bar{s}\).
W+charm as a probe of strangeness [CMS PAS EWK-11-013]

- Dominant $\bar{s}g \rightarrow W^+ \bar{c}$ and $sg \rightarrow W^- c$.
- 5% from $\bar{d}g \rightarrow W^+ \bar{c}$, 15% from $dg \rightarrow W^- c$.

$$R_{c}^{\pm} \equiv \frac{\sigma(W^+ + \bar{c})}{\sigma(W^- + c)} = 0.92 \pm 0.19{\text{(stat.)}} \pm 0.04{\text{(syst.)}}$$

$$R_{c} \equiv \frac{\sigma(W + c)}{\sigma(W + \text{jets})} = 0.143 \pm 0.015{\text{(stat.)}} \pm 0.024{\text{(syst.)}}$$

$x(s + \bar{s})(x, Q^2 = 2 \text{ GeV}^2)$:

Ratio	MCFM (MSTW08)	MCFM (CT10)	MCFM (NNPDF2.1)
R_{c}^{\pm}	$0.881^{+0.022}_{-0.032}$	$0.915^{+0.006}_{-0.006}$	0.902 ± 0.008
R_{c}	$0.118^{+0.002}_{-0.002}$	$0.125^{+0.013}_{-0.007}$	0.103 ± 0.005
Dependence on strong coupling $\alpha_S(M_Z^2)$ [MSTW, arXiv:0905.3531]

MSTW 2008 NNLO (α_S) PDF fit

- **Experimental error** on best-fit $\alpha_S(M_Z^2)$ using same method applied to determine the tolerance for each eigenvector.
\[\Delta \chi^2_{\text{global}} \] as a function of \(\alpha_S(M^2_Z) \) for the NNLO global fit

\[\alpha_S(M^2_Z) = 0.1171^{+0.0014}_{-0.0014} \quad (68\% \text{ C.L.})^{+0.0034}_{-0.0034} \quad (90\% \text{ C.L.}) \]

- Additional theory uncertainty (\(\lesssim |\text{NNLO} - \text{NLO}| = 0.003 \)).
- cf. \(\alpha_S(M^2_Z) = 0.1184 \pm 0.0007 \) [S. Bethke, arXiv:0908.1135].
Impact of α_S on SM Higgs uncertainty versus M_H

- Enhanced “PDF+α_S” uncertainty compared to “PDF only”.

G. Watt
Heavy-quark mass dependence [MSTW, arXiv:1007.2624]

Impact of (pole-mass) $m_{c,b}$ variation on LHC cross sections

- Vary $m_c = 1.40 \pm 0.15$ GeV \Rightarrow just over 1% change in $\sigma_{W,Z}$.
- Vary $m_b = 4.75 \pm 0.25$ GeV \Rightarrow negligible change (0.1%).

LHC, $\sqrt{s} = 7$ TeV	σ_W	σ_Z	σ_H
PDF only uncertainty	$+1.7\%$	$+1.7\%$	$+1.1\%$
	-1.6%	-1.5%	-1.6%
PDF+α_S uncertainty	$+2.5\%$	$+2.5\%$	$+3.7\%$
	-1.9%	-1.9%	-2.9%
PDF+$\alpha_S+m_{c,b}$ uncertainty	$+2.7\%$	$+2.9\%$	$+3.7\%$
	-2.2%	-2.4%	-2.9%

- Only slight increase in uncertainty on $\sigma_{W,Z}$, no impact on σ_H.
Impact of combined HERA I data [arXiv:0911.0884] (R. Thorne)

- Changes not large enough to warrant an immediate update.
Heavy quark contribution to DIS structure function F_2

- **General-mass variable flavour number scheme (GM-VFNS)**
 - Interpolates between two well-defined regions ($H \equiv c, b$):
 - **FFNS** for $Q^2 \leq m_H^2$, **ZM-VFNS** for $Q^2 \gg m_H^2$.
 - Ambiguous up to $O(m_H^2/Q^2)$ terms \Rightarrow theory uncertainty.
Impact of GM-VFNS variations [R. Thorne, arXiv:1006.5925]

Status of MSTW PDF analysis

- Benchmark
- W and Z production
- Higgs, top and jet production
- α_S from DIS

Summary

Impact of GM-VFNS variations

F_2^{charm} at NLO (fixed PDFs)

- **Figure**
- **Graphs**
- **Curves**
- **Legend**

F_2^{charm} at NNLO (fixed PDFs)

- **Figure**
- **Graphs**
- **Curves**
- **Legend**

G. Watt
Impact of GM-VFNS variations [R. Thorne, arXiv:1006.5925]

Effect on g and u at NLO

Effect on g and u at NNLO
Background and motivation for benchmark exercise

- Various fitting groups currently produce PDF sets: **MSTW, CT, NNPDF, HERAPDF, AB(K)M, (G)JR.**
- Quantifying and understanding differences *between* groups is as (or more) important as continued improvements *within* groups.
- Recent work initiated by activities of **LHC Higgs Cross Section Working Group** and **PDF4LHC Working Group**.
- Use most recent public NLO PDFs from all fitting groups to calculate LHC benchmark processes: W^\pm, Z^0, $t\bar{t}$, $gg \rightarrow H$.

Aims:
- Establish degree of compatibility and identify outliers.
- Compare cross sections at *same* α_s values.
- To what extent are differences in predictions due to *different* α_s values used by each group, rather than differences in PDFs?
- Results initially presented in talk by **G.W.** at PDF4LHC meeting at CERN on **26th March 2010** and formed basis for subsequent **PDF4LHC Interim Report** [arXiv:1101.0536].
- Subsequent update and extension to NNLO [G.W., arXiv:1106.5788].
Status of PDFs from different groups in March 2010

- Consider only *public* sets, where “public” ≡ available in LHAPDF.
- Then LHAPDF V5.8.2 (released 18th March 2010).
- Highlight major differences in data and theory between groups:

	MSTW08	CTEQ6.6	NNPDF2.0	HERAPDF1.0	ABKM09	GJR08/JR09
HERA DIS	✔	✔	✔	✔	✔	✔
Fixed-target DIS	✔	✔	✔	✔	x	✔
Fixed-target DY	✔	✔	✔	✔	x	✔
Tevatron W,Z	✔	✔	✔	✔	x	✔
Tevatron jets	✔	✔	✔	✔	x	✔
GM-VFNS	✔	✔	x	✔	x	✔
NNLO	✔	x	x	x	x	✔

- “Global” ≡ includes all five main categories of data.
- GJR08 *almost* global but restrictive “dynamical” parameterisation.
- Three groups with NLO global fits, but only one at NNLO. Approx. NNLO for jets, massive $O(\alpha_S^3)$ NC and $O(\alpha_S^2)$ CC DIS.
- CTEQ6.6 only uses Tevatron Run I data, not Run II.
- NNPDF2.0 inadequate through use of ZM-VFNS for DIS.
Status of PDFs from different groups in September 2011

- Now **LHAPDF V5.8.6** (released 2nd August 2011).
- Highlight major differences in data and theory between groups:

	MSTW08	CT10	NNPDF2.1	HERAPDF1.5	ABKM09	GJR08/JR09
HERA DIS	✔	✔	✔	✔	✔	✔
Fixed-target DIS	✔	✔	✔		✔	✔
Fixed-target DY	✔	✔	✔	✔	✔	✔
Tevatron W, Z	✔	✔	✔	✔	✔	✔
Tevatron jets	✔	✔	✔	✔	✔	✔
GM-VFNS	✔	✔	✔	✔	✔	✔
NNLO	✔	✗	✔	✔	✔	✔

- **CT10** uses both Tevatron Run I and Run II data.
- Only **CT10, NNPDF2.1** and **HERAPDF** use combined HERA I.
- Only **HERAPDF1.5** uses preliminary combined HERA II data.
- **NNPDF2.0 (ZM-VFNS)** → **NNPDF2.1 (GM-VFNS)**, now allowing meaningful comparison to other NLO global fits.
- **NNPDF2.1** and **HERAPDF1.5** now provided at NNLO.
Default values of $\alpha_S(M^2_Z)$ used by different fitting groups

- $\alpha_S(M^2_Z)$ for MSTW08, ABKM09 and GJR08/JR09 fitted.
- $\alpha_S(M^2_Z)$ for other groups applied as an external constraint.
- Smaller symbols indicate alternative $\alpha_S(M^2_Z)$ values provided.
- Fitted NLO $\alpha_S(M^2_Z)$ always larger than NNLO $\alpha_S(M^2_Z)$: attempt by fit to mimic missing higher-order corrections.
Ratio of NLO quark–antiquark luminosity functions

\[
\frac{\partial L \Sigma_q(q\bar{q})}{\partial \hat{s}} = \frac{1}{s} \int_{t}^{1} \frac{dx}{x} \sum_{q=d,u,s,c,b} [q(x, \hat{s})\bar{q}(\tau/x, \hat{s}) + (q \leftrightarrow \bar{q})], \quad \tau \equiv \frac{\hat{s}}{s}
\]

- Relevant values of \(\sqrt{\hat{s}} = M_{W,Z}\) are indicated: good agreement for global fits (left), but more variation for other sets (right).
\[\Sigma_q (q\bar{q}) \text{ luminosity at LHC (} \sqrt{s} = 7 \text{ TeV)} \]

- NNLO trend between groups similar to NLO (apart from HERAPDF).

G. Watt (September 2011)
NLO W^\pm and Z^0 total cross sections versus $\alpha_S(M_Z^2)$

- Global fits in good agreement for σ_{W^\pm} and σ_{Z^0} (left plots).
- Small PDF uncertainties in predictions for W/Z ratio:
 \[
 \frac{\sigma_{W^+} + \sigma_{W^-}}{\sigma_{Z^0}} \sim \frac{u(x_1) + d(x_1)}{0.29 u(\tilde{x}_1) + 0.37 d(\tilde{x}_1)}
 \]
NNLO W^{\pm} and Z^0 total cross sections versus $\alpha_S(M_Z^2)$

- HERAPDF1.5 closer to global fits at NNLO for σ_{W^\pm} and σ_{Z^0} (left plots).
- W/Z ratio insensitive to NNLO corrections (and α_S):
NLO W^+ and W^- total cross sections versus $\alpha_S(M_Z^2)$

- Slightly more spread in separate σ_{W^+} and σ_{W^-}.
- Reflected in W^+/W^- ratio:

$$\frac{\sigma_{W^+}}{\sigma_{W^-}} \sim \frac{u(x_1)\bar{d}(x_2)}{d(x_1)\bar{u}(x_2)} \sim \frac{u(x_1)}{d(x_1)}$$
NNLO W^+ and W^- total cross sections versus $\alpha_S(M_Z^2)$

- HERAPDF1.5 closer to global fits at NNLO for σ_{W^+} and σ_{W^-} (left plots).
- W^+/W^- ratio insensitive to NNLO corrections (and α_S):
Consolidate two cross section measurements (and their ratio).

- Luminosity uncertainty of 3.4% (ATLAS) or 4% (CMS).
- Know correlation of both data and theory (from PDFs).
NNLO W^\pm vs. Z^0 and W^+ vs. W^- total cross sections

- Correlation of ellipse \iff uncertainty in ratio of cross sections.

- Largest uncertainty in ATLAS/CMS total cross-section ratios from acceptance calculation \Rightarrow compare to theory within acceptance.
NNLO W^\pm vs. Z^0 and W^+ vs. W^- fiducial cross sections

[http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2011-06/]

- NNLO comparisons now possible using FEWZ or DYNNLO codes.
• MSTW08 has input $x_u \propto x^{0.29 \pm 0.02}$ and $x_d \propto x^{0.97 \pm 0.11}$.

• First PDF constraint from LHC data (\rightarrow NNPDF2.2).

Many other groups assume equal powers \(\Rightarrow\) potential bias.
Wide spread in predictions using different NNLO PDF sets.
Differential cross sections: $d\sigma(\ell^+)/d\eta_\ell$ and $d\sigma(\ell^-)/d\eta_\ell$

[http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2011-06/]

- ATLAS provide differential cross sections for W^+ and W^- with information on correlated systematic uncertainties.
 - Potentially more useful for PDF fits than simply $A_\ell(\eta_\ell)$.

G. Watt
\(W^\pm \rightarrow \ell^\pm \nu \) charge asymmetry at the Tevatron

- **Outstanding issues to be resolved concerning Tevatron data**, particularly when split up into \(p_T^\ell \) bins \([\text{MSTW, arXiv:1006.2753}]\).
- **Current plan**: consider only inclusive \(p_T^\ell \) bin, try to fit nuclear effects in deuteron structure functions simultaneously with PDFs.
Exclusion limits at 95% C.L. for SM Higgs boson

Mass (GeV)	SM σ/σ_{SM}
Tevatron	156 - 177, 0.08 - 0.09
ATLAS	146 - 232, 0.02 - 0.03
	256 - 282, 0.04 - 0.04
	296 - 466, 0.04 - 0.07
CMS	145 - 216, 0.02 - 0.03
	226 - 288, 0.03 - 0.04
	310 - 340, 0.04 - 0.05

- σ_{SM} uses MSTW 2008 PDFs.

[TEVNPHWG, arXiv:1107.5518]
Tevatron Higgs exclusion limits: a critical appraisal

[Baglio, Djouadi, Ferrag, Godbole, arXiv:1101.1832]

Phys. Lett. B 699 (2011) 368
Tevatron Higgs exclusion limits: a critical appraisal

[Baglio, Djouadi, Ferrag, Godbole, arXiv:1101.1832]
\(gg \rightarrow H \) total cross sections versus SM Higgs mass \(M_H \)

HERAPDF1.5 and **NNPDF2.1** results agree with **MSTW08**.
$gg \to H$ total cross sections versus $\alpha_s(M_Z^2)$

- $\alpha_s(M_Z^2)$ values can only partly explain low σ_H for ABKM09.
• Relevant values of $\sqrt{s} = M_H$ are indicated.
Ratio of gluon–gluon luminosity functions

- Relevant values of $\sqrt{s} = M_H, 2m_t$ are indicated.
Top-pair production at the Tevatron and LHC

- ∼80% of $\sigma_{t\bar{t}}^{\text{NLO}}$ from gg at LHC (7 TeV), cf. ∼15% at Tevatron.
- Compare NLO and various NNLO approximations for total $\sigma_{t\bar{t}}$ (pb) for $m_t = 173$ GeV [Kidonakis, Pecjak, arXiv:1108.6063]:

Calculation	Tevatron	LHC (7 TeV)
NLO	6.74 $^{+0.36+0.37}_{-0.76-0.24}$	160 $^{+20+8}_{-21-9}$
Aliev et al. [arXiv:1007.1327]	7.13 $^{+0.31+0.36}_{-0.39-0.26}$	164 $^{+3+9}_{-9-9}$
Kidonakis [arXiv:1009.4935]	7.08 $^{+0.00+0.36}_{-0.24-0.24}$	163 $^{+7+9}_{-5-9}$
Ahrens et al. [arXiv:1105.5824]	6.65 $^{+0.08+0.33}_{-0.41-0.24}$	156 $^{+8+8}_{-9-9}$

- First uncertainty is perturbative (μ_R,F variation etc.).
- Second uncertainty is the MSTW08 PDF error at 90% C.L.
$t\bar{t}$ total cross sections versus $\alpha_S(M_Z^2)$ at the LHC

- **NNLO (approx.)** using HATHOR code [Aliev et al., arXiv:1007.1327].
- Compare to single most precise current LHC measurements.
 - **CMS**: $\sigma_{t\bar{t}} = 164 \pm 3\,(\text{stat.}) \pm 12\,(\text{syst.}) \pm 7\,(\text{lumi.}) \text{ pb (e/}\mu+\text{jets+b-tag)}$ [CMS PAS TOP-11-003]
 - **ATLAS**: $\sigma_{t\bar{t}} = 179.0 \pm 9.8\,(\text{stat.+syst.}) \pm 6.6\,(\text{lumi.}) \text{ pb (using kinematic information of lepton+jets events)}$ [ATLAS-CONF-2011-121]
 - Tevatron: $m_t = 173.2 \pm 0.9 \text{ GeV}$ [TEVEWWG, arXiv:1107.5255].

Increasing m_t by 2 GeV decreases predicted $\sigma_{t\bar{t}}$ at LHC by 6%.

G. Watt
JETS

PV: Any PDF should reproduce jet data if being used for Higgs

Closest observable to Higgs in terms of Luminosity, kinematics and power of coupling!

[D. de Florian, talk at “Higgs Hunting 2011”, Orsay, France, 28th July 2011]
Jets as a discriminator of the high-x gluon distribution

JETS

PV: Any PDF should reproduce jet data if being used for Higgs

Closest observable to Higgs in terms of Luminosity, kinematics and power of coupling!

\[g \xrightarrow[\sigma]{} \text{jet} \]

\[g \xrightarrow[2\text{-loop}]{} \text{jet} \]

\[g \xrightarrow[t,b]{} H \]

[D. de Florian, talk at “Higgs Hunting 2011”, Orsay, France, 28th July 2011]

- **Problem:** NNLO $\hat{\sigma}$ unknown, approximate with NLO $\hat{\sigma}$ and 2-loop threshold corrections [Kidonakis, Owens, hep-ph/0007268].
- Jet cross sections calculated with **FASTNLO** [Kluge, Rabbertz, Wobisch, hep-ph/0609285]: includes 2-loop threshold corrections.
- Take different scale choices $\mu_R = \mu_F = \mu = \{p_T/2, p_T, 2p_T\}$ as some indication of the theoretical uncertainty.
Status of MSTW PDF analysis

Benchmark

W and Z production

Higgs, top and jet production

αS from DIS

Summary

Scale dependence and size of 2-loop threshold corrections

Ratio w.r.t. LO for different μ

CDF Run II inclusive jet data (kT, D = 0.7)

(K-factor = Ratio w.r.t. LO using MSTW08 NNLO PDFs)

K-factor range	pT (GeV)	Ratio w.r.t. LO			
0.0 <	y	JET	≤ 0.1	10^5	1.0
0.1 <	y	JET	< 0.7	10^6	1.2
0.7 <	y	JET	≤ 1.1	10^7	1.2
1.1 <	y	JET	< 1.8	10^8	1.2
1.6 <	y	JET	≤ 2.1	10^9	1.4

- μR = μF = 0.5•pT
- μR = μF = 1.0•pT
- μR = μF = 2.0•pT

Solid lines: NLO D = 2-loop threshold

Ratio w.r.t. NLO with μ = pT

CDF Run II inclusive jet data (kT, D = 0.7)

(Ratio w.r.t. NLO using MSTW08 NNLO PDFs)

K-factor range	pT (GeV)	Ratio w.r.t. NLO			
0.0 <	y	JET	≤ 0.1	10^5	1.0
0.1 <	y	JET	< 0.7	10^6	1.2
0.7 <	y	JET	≤ 1.1	10^7	1.2
1.1 <	y	JET	< 1.8	10^8	1.2
1.6 <	y	JET	≤ 2.1	10^9	1.4

- μR = μF = 0.5•pT
- μR = μF = 1.0•pT
- μR = μF = 2.0•pT

Solid lines: NLO D = 2-loop threshold

- K-factor with μ = pT more uniform across |y|JET| bins than μ = pT/2.
- Scale dependence stabilised by inclusion of 2-loop threshold corrections.
- Lack of exact NNLO should **not** prevent use of jet data in PDF fits.
Inclusive jet production at the Tevatron and LHC

- **LHC jets**: generally lower x_T, no correlated systematics.
- **Current best constraint on high-x gluon from Tevatron jets.**

[M. Wobisch et al., arXiv:1109.1310]

[MSTW, arXiv:0905.3531]
Treatment of correlated systematic uncertainties

- Important to account for *correlated* systematic uncertainties of experimental data points [CTEQ6, hep-ph/0201195]:

\[
\chi^2 = \sum_{i=1}^{N_{\text{pts.}}} \left(\frac{\hat{D}_i - T_i}{\sigma_i^{\text{uncorr.}}} \right)^2 + \sum_{k=1}^{N_{\text{corr.}}} r_k^2,
\]

where \(\hat{D}_i \equiv D_i - \sum_{k=1}^{N_{\text{corr.}}} r_k \sigma_{k,i}^{\text{corr.}} \) are *shifted* data points.
- Trade-off between systematic shifts \(r_k \) and fitted parameters.
- More traditional form (with hidden systematic shifts):

\[
\chi^2 = \sum_{i=1}^{N_{\text{pts.}}} \sum_{j=1}^{N_{\text{pts.}}} (D_i - T_i) (V^{-1})_{ij} (D_j - T_j),
\]

where \(V_{ij} = \delta_{ij} (\sigma_i^{\text{uncorr.}})^2 + \sum_{k=1}^{N_{\text{corr.}}} \sigma_{k,i}^{\text{corr.}} \sigma_{k,j}^{\text{corr.}} \).
- \(\chi^2 \) definition similar to Eq. (1) used by MSTW and CTEQ.
- \(\chi^2 \) definition similar to Eq. (2) used by ABKM and NNPDF.
Values of $\chi^2/N_{\text{pts.}}$ for different NNLO PDFs and scale choices:

NNLO PDF	$\alpha_s(M_Z^2)$	$\mu = p_T/2$	$\mu = p_T$	$\mu = 2p_T$
MSTW08	0.1171	1.39 (+0.35)	0.69 (−0.45)	0.97 (−1.30)
NNPDF2.1	0.1190	0.68 (−0.77)	0.71 (−2.02)	0.71 (−3.46)
HERAPDF1.0	0.1145	2.37 (−2.65)	1.48 (−3.64)	1.29 (−4.12)
HERAPDF1.0	0.1176	2.24 (−0.48)	1.13 (−1.60)	1.09 (−2.23)
HERAPDF1.5	0.1176	1.61 (+1.22)	0.77 (+0.30)	1.06 (−0.39)
ABKM09	0.1135	1.53 (−4.27)	1.23 (−5.05)	1.44 (−5.65)
JR09	0.1124	0.75 (+0.13)	1.26 (−0.61)	2.20 (−1.22)

Numbers in brackets are the systematic shift ("$-r_{\text{lumi.}}$") for the 5.8% luminosity uncertainty.

Highlight in *italics* if $|r_{\text{lumi.}}| \in [1, 3]$ and in **bold** if $|r_{\text{lumi.}}| > 3$.

Optimal χ^2 for ABKM09 requires data to be normalised downwards by $\sim 30\%$, i.e. 5-σ luminosity shift.
Description of Tevatron W/Z total cross sections

- CDF/DØ measurements of W/Z cross sections are dominated by $\sim 6\%$ luminosity uncertainty (common to jet cross sections).
- All NNLO PDFs in good agreement with W/Z cross sections.
- Can use Tevatron W/Z cross sections as a luminosity monitor: demand agreement with theory prediction to effectively remove normalisation uncertainty from jet cross sections.
- Done automatically in MSTW08 fit by fitting CDF $d\sigma_Z/dy_Z$.

\begin{itemize}
 \item CDF/DØ measurements of W/Z cross sections are dominated by $\sim 6\%$ luminosity uncertainty (common to jet cross sections).
 \item All NNLO PDFs in good agreement with W/Z cross sections.
 \item Can use Tevatron W/Z cross sections as a luminosity monitor: demand agreement with theory prediction to effectively remove normalisation uncertainty from jet cross sections.
 \item Done automatically in MSTW08 fit by fitting CDF $d\sigma_Z/dy_Z$.
\end{itemize}
Data/theory ratio for MSTW08 and ABKM09

CDF Run II inclusive jet data (k_T, D = 0.7)
(data points before systematic shifts, show total errors)

| $|y^{\text{JET}}|$ | Data/Theory | p_T^{JET} (GeV) |
|-----------------|-------------|--------------------------|
| 0.0 < $|y^{\text{JET}}|$ < 0.1 | Data/Theory | p_T^{JET} (GeV) |
| 0.1 < $|y^{\text{JET}}|$ < 0.7 | Data/Theory | p_T^{JET} (GeV) |
| 0.7 < $|y^{\text{JET}}|$ < 1.1 | Data/Theory | p_T^{JET} (GeV) |
| 1.1 < $|y^{\text{JET}}|$ < 1.6 | Data/Theory | p_T^{JET} (GeV) |
| 1.6 < $|y^{\text{JET}}|$ < 2.1 | Data/Theory | p_T^{JET} (GeV) |

$|H_R| = |H_F| = 1.0 \times p_T^{\text{JET}}$

NNLO PDFs, 76 data points
- MSTW08, $\chi^2 = 34$
- ABKM09, $\chi^2 = 68$

Inner error bars: only uncorrelated
Outer error bars: total (add in quadrature)

[ABM, arXiv:1105.5349]

- ABM studies: data lie above theory even after refitting.
 But still 15% increase in σ_H ($M_H = 165$ GeV) at Tevatron.
- Would be interesting to see impact of Tevatron jet data on ABKM09 fit with constrained CDF/DØ normalisation.
Description of CDF II inclusive jet \((k_T)\) data [hep-ex/0701051]

- More realistic \(\chi^2\) computation without complication of including \(W/Z\) data: simply constrain \(|r_{\text{lumi.}}| < 1\).
- Values of \(\chi^2/N_{\text{pts.}}\) for different NNLO PDFs and scale choices:

NNLO PDF	\(\alpha_S(M_Z^2)\)	\(\mu = p_T/2\)	\(\mu = p_T\)	\(\mu = 2p_T\)
MSTW08	0.1171	1.39	0.69	0.97
NNPDF2.1	0.1190	**0.68**	0.81	1.29
HERAPDF1.0	0.1145	2.64	2.15	2.20
HERAPDF1.0	0.1176	2.24	1.17	1.23
HERAPDF1.5	0.1176	1.61	**0.77**	1.06
ABKM09	0.1135	2.55	2.76	3.41
JR09	0.1124	**0.75**	1.26	2.21

- Highlight in **bold** if \(\chi^2/N_{\text{pts.}} < 0.83\), i.e. 90\% C.L. region.
Distribution of pulls and systematic shifts

\[\chi^2 = \sum_{i=1}^{N_{\text{pts.}}} \left(\frac{\hat{D}_i - T_i}{\sigma_i^{\text{uncorr.}}} \right)^2 + \sum_{k=1}^{N_{\text{corr.}}} r_k^2 \]

- Plot distribution of \(\chi^2 \) contributions from each of two terms:

Pulls, \((\hat{D}_i - T_i)/\sigma_i^{\text{uncorr.}}\)

Systematic shifts, \(r_k\)

- **MSTW08**: both distributions follow Gaussian behaviour.
- **ABKM09**: broader tail for pulls, non-Gaussian systematic shifts.
Treatment of F_L correction for NMC data

- Recent claim that bulk of MSTW/ABKM difference explained by F_L for NMC data [Alekhin, Blümlein, Moch, arXiv:1101.5261].

$$\frac{d^2\sigma}{dx \, dQ^2} \simeq \frac{4\pi \alpha^2}{x \, Q^4} \left[1 - y + \frac{y^2/2}{1 + R(x, Q^2)} \right] F_2(x, Q^2)$$

- ABKM fit NMC cross sections, MSTW fit NMC F_2 corrected for $R = \sigma_L/\sigma_T \simeq F_L/(F_2 - F_L)$, where [NMC, hep-ph/9610231]:

$$R(x, Q^2) = \begin{cases} R_{\text{NMC}}(x) & \text{if } x < 0.12 \\ R_{\text{1990}}(x, Q^2) & \text{if } x > 0.12 \end{cases}$$

ABKM09	MSTW08
Fit NMC cross section	Fit NMC F_2
$Q^2 \geq 2.5$ GeV2, $W^2 \geq 3.24$ GeV2	$Q^2 \geq 2$ GeV2, $W^2 \geq 15$ GeV2
Fit empirical higher-twist	Neglect higher-twist
Separated beam energies	Averaged beam energies
Correlated systematics	Neglect correlations
3 input gluon parameters	7 input gluon parameters
No jet data	Tevatron jet data
Effect of NMC F_L treatment on $\alpha_S(M_Z^2)$ and σ_H

NNLO PDF	$\alpha_S(M_Z^2)$	σ_H at Tevatron	σ_H at 7 TeV LHC
MSTW08	0.1171	0.342 pb	7.91 pb
Use R_{1990} for NMC F_2	0.1167	-0.7%	-0.9%
Cut NMC F_2 ($x < 0.1$)	0.1162	-1.2%	-2.1%
Cut all NMC F_2 data	0.1158	-0.7%	-2.1%
Cut $Q^2 < 5$ GeV2, $W^2 < 20$ GeV2	0.1171	-1.2%	$+0.4\%$
Cut $Q^2 < 10$ GeV2, $W^2 < 20$ GeV2	0.1164	-3.0%	-1.7%
Fix $\alpha_S(M_Z^2)$	0.1130	-11%	-7.6%
Input $xg > 0$, no jets	0.1139	-17%	-4.9%
ABKM09	0.1135	-26%	-11%

- α_S and σ_H insensitive to treatment of NMC F_L.
- Similar stability found by NNPDF [arXiv:1102.3182], but using a fixed $\alpha_S(M_Z^2)$.
- Conclusion: jets stabilise fit (lessen sensitivity to details).
Common lore that DIS-only fits prefer low α_S. Is it true?

ABKM09: $\alpha_S(M_Z^2) = 0.1135 \pm 0.0014$, cf. MSTW08: 0.1171 ± 0.0014.

- **Answer**: Not all DIS data sets prefer low $\alpha_S(M_Z^2)$ values.
- True only for BCDMS, and for E665 and SLAC ep data.
- NMC, SLAC ed and HERA data prefer high $\alpha_S(M_Z^2)$ values.
Correlation between α_S and gluon distribution

- Known that α_S is **anticorrelated** with low-x gluon through scaling violations of HERA data: $\frac{\partial F_2}{\partial \ln(Q^2)} \sim \alpha_S g$. Then α_S is **correlated** with high-x gluon through momentum sum rule.

- **MSTW08**: $\alpha_S(M_Z^2) = 0.1171 \pm 0.0014$ [arXiv:0905.3531].
- Positive input gluon: $\alpha_S(M_Z^2) = 0.1157$, but $\Delta \chi^2_{\text{global}} = 63$.
What is α_S from only DIS in the MSTW08 NNLO fit?

[Studies prompted by question from G. Altarelli, December 2010]

- **Global fit**: $\alpha_S(M_Z^2) = 0.1171 \pm 0.0014$ [arXiv:0905.3531].
- **DIS-only fit** gives $\alpha_S(M_Z^2) = 0.1104$ (BCDMS-dominated), but input $xg < 0$ for $x > 0.4$ due to lack of data constraint. $\Rightarrow F_2^{\text{charm}} < 0$ and $\chi^2/N_{\text{pts.}} \sim 10$ for Tevatron jets.
- DIS-only fit fixing high-x gluon parameters gives $\alpha_S(M_Z^2) = 0.1172$.
- DIS-only fit without BCDMS gives $\alpha_S(M_Z^2) = 0.1193$.
- Global fit without BCDMS gives $\alpha_S(M_Z^2) = 0.1181$.
- **Conclusion**: Tevatron jet data vital to pin down high-x gluon, giving smaller low-x gluon and therefore larger α_S in the global fit compared to a DIS-only fit, at the expense of some deterioration in the fit quality of the BCDMS data.
Input values to world average $\alpha_S(M_Z^2)$ [S. Bethke, arXiv:0908.1135]

- τ-decays (N3LO)
- Quarkonia (lattice)
- Y decays (NLO)
- DIS F_2 (N3LO)
- DIS jets (NLO)
- e^+e^- jets & shps (NNLO)
- Electroweak fits (N3LO)
- e^+e^- jets & shapes (NNLO)

- “DIS F_2” from BBG06 [Blümlein, Böttcher, Guffanti, hep-ph/0607200].
- Non-singlet analysis: free of assumptions on gluon (in principle).
Non-singlet QCD analysis of DIS data \[\text{[BBG06, hep-ph/0607200]}\]

Order	$\alpha_S(M_Z^2)$ (expt.)
NLO	$0.1148^{+0.0019}_{-0.0019}$
NNLO	$0.1134^{+0.0019}_{-0.0021}$
NNNLO	$0.1141^{+0.0020}_{-0.0022}$

- Fit F_2^p and F_2^d for $x > 0.3$ (neglect singlet contribution), and F_2^{NS}.
- But singlet makes up about:
 - 10% of F_2^p at $x = 0.3$,
 - 2% of F_2^p at $x = 0.5$.

Exercise: perform MSTW08 NNLO DIS-only fit to F_2^p and F_2^d for $x > 0.3$ (282 points, 160 from BCDMS).

$\Rightarrow \alpha_S(M_Z^2) = 0.1103 \begin{pmatrix} 0.1130 \end{pmatrix}$ without (with) singlet included.
(Lower than BBG06 due to lack of $y > 0.3$ cut on BCDMS.)

Conclusion: low value of $\alpha_S(M_Z^2)$ found by BBG06 due to
(i) dominance of BCDMS data and (ii) neglect of singlet.

Closest possible to reliable extraction of $\alpha_S(M_Z^2)$ **from DIS is**
MSTW08 NNLO combined analysis of DIS, DY and jet data:

$\alpha_S(M_Z^2) = 0.1171 \pm 0.0014 \text{ (68\% C.L.)} \pm 0.0034 \text{ (90\% C.L.)}$
Summary

- **MSTW08** still fairly current: no immediate update planned.
- The LHC is starting to provide useful input data for PDF fits.
- Now reasonably good agreement between *global* fits from **MSTW08**, **CT10**, and **NNPDF2.1**, all using GM-VFNS.
- More variation with other PDF sets using more limited data sets and/or restrictive input PDF parameterisations.
- (But **HERAPDF1.5 NNLO** is surprisingly close to **MSTW08**.)
- Tevatron jet data are important to pin down the high-x gluon, with indirect effect on the value of $\alpha_S(M_Z^2)$ extracted.