Virtual Gravitons at the LHC

Tilman Plehn

University of Edinburgh

ERG Heidelberg, June 2008
Outline

Large extra dimensions

Real and virtual gravitons at LHC

RG improved virtual gravitons

Outlook
Large extra dimensions

Large extra dimensions (ADD)

– new physics at LHC: cannot always look for supersymmetry
– Einstein–Hilbert action for low fundamental Planck scale

\[S = -\frac{1}{2} \int d^4x \sqrt{|g|} M_D^2 R \rightarrow -\frac{1}{2} \int d^{4+n}x \sqrt{|g|} M_D^{2+n} R \]

\[= -\frac{1}{2} (2\pi r)^n \int d^4x \sqrt{|g|} M_D^{2+n} R \]

\[\equiv -\frac{1}{2} \int d^4x \sqrt{|g|} M_{\text{Planck}}^2 R \]

⇒ express the 4D Planck scale in terms of fundamental Planck scale

\[M_{\text{Planck}} = M_D (2\pi r M_D)^{n/2} \]

Numbers to make it work

– wanted \(r M_D \gg 1\)
– constraints from gravity tests above \(O(\text{mm})\)
– \(M_D = 1 \text{ TeV} \ll M_{\text{Planck}}\) fine for \(n \gtrsim 2\)

⇒ signatures of strong gravity in extra dimension?

| \(M_D = 1 \text{ TeV}\) |
|---|---|
| \(n\) | \(r\) |
| 1 | \(10^{12} \text{ m}\) |
| 2 | \(10^{-3} \text{ m}\) |
| 3 | \(10^{-8} \text{ m}\) |
| \(\ldots\) | \(\ldots\) |
| 6 | \(10^{-11} \text{ m}\) |
Large extra dimensions at the LHC

Minimal model: only gravitons in extra dimensions

- only the interacting (tensor) graviton [QCD/QED massless, $M_D = 1$ TeV]

\[(\Box + m^2_k) G^{(k)}_{\mu\nu} = -\frac{T_{\mu\nu}}{M_{\text{Planck}}}\]

\[\Delta m \sim \frac{1}{r} = 2\pi M_D \left(\frac{M_D}{M_{\text{Planck}}} \right)^{2/n} = \begin{cases} 0.003 \text{ eV} & (n = 2) \\ 0.1 \text{ MeV} & (n = 4) \\ 0.05 \text{ GeV} & (n = 6) \end{cases}\]

- KK graviton tower with mass splitting $\Delta m \ll \text{GeV}$ [below LHC resolution]

universal couplings via $-\frac{T_{\mu\nu}}{M_{\text{Planck}}}$

\Rightarrow LHC effective theory: KK gravitons light, weakly coupled continuum

Real emission and virtual gravitons [Giudice, Rattazzi, Wells; Han, Lykken, Zhang;...]

- integration over continuous KK tower $[dm/|k| = 1/r; (d\sigma) \propto 1/M^2_{\text{Planck}}]$

\[(d\sigma) \rightarrow \int dm (d\sigma) S_{n-1} m^{n-1} r^n = \int dm (d\sigma) \frac{S_{n-1} m^{n-1}}{(2\pi M_D)^n} \left(\frac{M_{\text{Planck}}}{M_D} \right)^2\]

\[\mathcal{A} = \frac{1}{M^2_{\text{Planck}}} \frac{1}{s - m^2} \rightarrow S_{n-1} \frac{\Lambda^{n-2}_{\text{cutoff}}}{M^n_{D}} \frac{M^n_{D}}{\Lambda^{n+2}_{\text{cutoff}}}\]

\Rightarrow $1/M_D$ interaction after integration over KK tower

\Rightarrow explicit UV cutoff Λ_{cutoff} or RG improvement?
Real gravitons at LHC

Effective theory of real gravitons [Giudice, Rattazzi, Wells; Vacavant, Hichliffe...]

- real graviton emission \(pp \rightarrow G_{KK} + \text{jets} \) [coupling \(G \sim 1/M_D^{2+n} \)]
- recoil against hard jet [with \(E_j \gtrsim M_D/4 \)]
 background: radiation of \(Z \rightarrow \nu\bar{\nu} \)
- towers of ADD gravitons \(dN \propto S_{n-1} \left(M_{\text{Planck}}/M_D\right)^2 m^{n-1} dm \)
 cutoff \(M_{KK} = 0 \) for \(E_{\text{parton}} > \Lambda_{\text{cutoff}} \sim M_D \)
- observables: total rate or 5\(\sigma \) discovery reach
- little UV sensitivity for \(\Lambda_{\text{cutoff}} \rightarrow \infty \), small RG effects expected?

⇒ explicit cutoff irrelevant due to phase space [and gluon densities]
Virtual gravitons at LHC

Effective theory of virtual gravitons

- virtual graviton in s channel $pp \rightarrow \mu^+ \mu^-$
- reconstructed $m_{\mu\mu}$ for photon, Z, graviton
- divergent D8 operator

\[S = \frac{S_{n-1}}{M^2_{D} + n} \int dm \frac{m^{n-1}}{s + m^2} = \begin{cases} \frac{4\pi}{M^4_{\text{eff}}} & \text{(effective scale)} \\ \frac{S_{n-1}}{M^4_{D}} \frac{1}{2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D} \right)^{n-2} & \text{(NDA)} \\ \frac{S_{n-1}}{M^4_{D}} \frac{1}{n-2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D} \right)^{n-2} & \text{(cutoff Θ)} \end{cases} \]

\[M_{\text{eff}}[\text{TeV}] \]

5σ: $pp \rightarrow l^+l^-$ (D8)

\[\Lambda_{\text{eff}}[\text{TeV}] \]

- 100 fb$^{-1}$
- 10 fb$^{-1}$
Virtual gravitons at LHC

Effective theory of virtual gravitons [Giudice & Strumia; Giudice, Strumia, TP; Kachelries & Plümacher,...]

- virtual graviton in s channel $pp \rightarrow \mu^+ \mu^-$
- reconstructed $m_{\mu\mu}$ for photon, Z, graviton
- divergent D8 operator [leading constant in $\sqrt{s}/\Lambda_{\text{cutoff}}$]

$$S = \frac{S_{n-1}}{M_D^{2+n}} \int dm \frac{m^{n-1}}{s + m^2} = \begin{cases} \frac{4\pi}{M_4^{4+\epsilon}} S_{n-1} \frac{1}{2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D} \right)^{n-2} & \text{(effective scale)} \\ \frac{S_{n-1}}{M_D^{4+\epsilon}} \frac{1}{n-2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D} \right)^{n-2} & \text{(NDA)} \\ \frac{S_{n-1}}{M_D^{4+\epsilon}} \frac{1}{n-2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D} \right)^{n-2} & \text{(cutoff } \Theta) \end{cases}$$

- scaling of rates $M_D^{\text{max}} \sim \Lambda_{\text{cutoff}}^{(n-2)/(n+2)}$

\Rightarrow explicit cutoff needed for virtual gravitons

![Graph showing the relationship between M_D and Λ](image)
Virtual gravitons at LHC

Effective theory of virtual gravitons [Giudice & Strumia; Giudice, Strumia, TP; Kachelries & Plümmacher,...]

– virtual graviton in s channel \(pp \rightarrow \mu^+ \mu^- \)
– reconstructed \(m_{\mu \mu} \) for photon, Z, graviton
– divergent D8 operator [leading constant in \(\sqrt{s}/\Lambda_{\text{cutoff}} \)]

\[
S = \frac{S_{n-1}}{M_D^{2+n}} \int dm \frac{m^{n-1}}{s + m^2} = \begin{cases}
\frac{4\pi}{M_4^{\text{eff}}} \\
\frac{S_{n-1}}{M_4^n} \frac{1}{2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D} \right)^{n-2} \\
\frac{S_{n-1}}{M_4^n} \frac{1}{n-2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D} \right)^{n-2}
\end{cases}
\]

(leading constant in \(\sqrt{s}/\Lambda_{\text{cutoff}} \))

– scaling of rates \(M_D^{\text{max}} \sim \Lambda_{\text{cutoff}}^{(n-2)/(n+2)} \)
⇒ explicit cutoff needed for virtual gravitons

String theory as UV completion [e.g. Cullen, Perelstein, Peskin; Antoniadis, Benakli, Laugier...]

– Veneziano form factor
\[
\frac{\Gamma(1 - \alpha's) \Gamma(1 - \alpha't)}{\Gamma(1 - \alpha'(s + t))} = \frac{\Gamma(1 - s/M_S^2) \Gamma(1 - t/M_S^2)}{\Gamma(1 - (s + t)/M_S^2)} = 1 - \frac{\pi^2}{6} \frac{st}{M_S^4} + \mathcal{O} \left(M_S^{-6} \right)
\]

– string resonances above \(\Lambda_{\text{cutoff}}: \sqrt{n} M_S \)
Graviational fixed point

Matched graviton propagator [Reuter; Fischer & Litim]

- effective action: \(\Gamma_k = 1/(16\pi G_k) \int d^{4+n} x \sqrt{g} [-R(g) + \cdots] \) [Percacci’s talk]
- gravity weak enough at high energies?
- IR — no running; \(M_D \) regime — strong effects; UV — fixed point
- iterative approach: start with anomalous dimension of graviton propagator

\[
P(s, m) = \begin{cases}
\frac{1}{s + m^2} & \sqrt{s}, m < k_{\text{trans}} \\
\frac{M_D^{n+2}}{(s + m^2)^{n/2+2}} & \sqrt{s}, m > k_{\text{trans}}
\end{cases}
\]

- IR and UV contributions by virtual gravitons [UV: gluon pdf \(\rightarrow \) leading in \(\sqrt{s}/m \)]

\[
S^{(\text{FP})} = S_{n-1} M_D^4 \left(\frac{k_{\text{trans}}}{M_D} \right)^{n-2} \frac{n-1}{n-2} = (1 + (n-2)) S^{(\Theta)}
\]

- needed and not needed:
 (1) gravitational coupling \(G \sim 1/M_D^{2+n} \)
 (2) transition scale \(k_{\text{trans}} \sim M_D \)
 (3) no artificial UV cutoff \(\Lambda_{\text{cutoff}} \) [setting \(M_{\text{KK}} = 0 \)]

\(\Rightarrow \) UV fixed point regularizes KK integral
LHC signature

test artificial Λ_{cutoff} setting $M_{\text{KK}} = 0$

- perfect decoupling, as expected [similar to real emission]
- mild effects for $k_{\text{trans}} = M_D \pm 10\%$ [more details to be studied]
- reach largely independent of n
Virtual Gravitons at the LHC

Tilman Plehn

Large dimensions

Gravitons at LHC

RG improvement

Outlook

LHC signature

test artificial Λ_{cutoff} setting $M_{\text{KK}} = 0$

- perfect decoupling, as expected [similar to real emission]
- mild effects for $k_{\text{trans}} = M_D \pm 10\%$ [more details to be studied]
- reach largely independent of n

Shape of graviton kernel

- non-trivial structure from interference [shown $n = 3$]
 small $m_{\ell\ell}$: factor $S \propto (n - 1)$
 large $m_{\ell\ell}$: factor $S^2 \propto (n - 1)^2$
- UV contribution not negligible
Virtual Gravitons at the LHC

Tilman Plehn

LHC signature

test artificial \(\Lambda_{\text{cutoff}} \) setting \(M_{\text{KK}} = 0 \)

- perfect decoupling, as expected [similar to real emission]
- mild effects for \(k_{\text{trans}} = M_D \pm 10\% \) [more details to be studied]
- reach largely independent of \(n \)

Shape of graviton kernel

- non-trivial structure from interference [shown \(n = 3 \)]

 small \(m_{\ell\ell} \): factor \(S \propto (n - 1) \)
 large \(m_{\ell\ell} \): factor \(S^2 \propto (n - 1)^2 \)

- UV contribution not negligible

predicted LHC rates

- \(S^{(\text{FP})} \): UV regime in addition to \(S^{(\Theta)} \equiv S^{\text{IR}} \)

\(\sigma \) [fb]	\(n = 3 \)	\(n = 6 \)				
\(M_D \)	2 TeV	5 TeV	8 TeV	2 TeV	5 TeV	8 TeV
\(S^{(NDA)} \)	43.6	0.18	0.0053	263	1.11	0.031
\(S^{(\Theta)} \)	173	0.72	0.0204	66	0.28	0.008
\(S^{(FP)} \)	408	1.24	0.0317	398	1.21	0.031

⇒ fixed–point graviton effect stable and large
Outlook

Gravitons at LHC

– effective field theory:
 (1) real emission accidentally well defined
 (2) virtual–graviton predictions cutoff dependent
– fixed point picture: gravity weak at large scales [non-perturbative asymptotic safety]
 leading effect: anomalous dimension [Hewett & Rizzo: running coupling]
 KK theory well defined without explicit cutoff
⇒ testable at the LHC [Litim & TP, to appear tomorrow morning]
