We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,600
Open access books available

177,000
International authors and editors

195M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Metabolism of Pesticides by Human Cytochrome P450 Enzymes In Vitro – A Survey

Khaled Abass1,2*, Miia Turpeinen1, Arja Rautio2, Jukka Hakkola1 and Olavi Pelkonen1
1Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, 2Centre of Arctic Medicine, Thule Institute, University of Oulu, Finland

1. Introduction

Cytochrome P450 enzymes (CYPs) are active in the metabolism of wide variety of xenobiotics. The investigation of the contributions of human CYPs in pesticides metabolism, especially insecticides, is still growing. One of the background tools to facilitate this task is by sorting the contribution of each human CYP isoform in the metabolism of pesticides. This paper attempts to provide a comprehensive literature survey on the role of human hepatic CYPs such as human CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5 and CYP3A7 in pesticides biotransformation in vitro as well as to sort the reactions mediated. Based on relevant publications identified by searching databases from 1995 through 2011, more than 400 metabolic reactions were reported to be mediated at least in part by human CYPs in vitro. Some information on older papers was obtained from previous literature surveys compiled by Hodgson 2001 & 2003. Finally, we give brief insight into potential modulations and consequences of human CYP genes – pesticides interactions.

2. Xenobiotic biotransformation

Xenobiotic biotransformation is the process by which lipophilic foreign compounds are metabolized through enzymatic catalysis to hydrophilic metabolites that are eliminated directly or after conjugation with endogenous cofactors via renal or biliary excretion. These metabolic enzymes are divided into two groups, Phase I and Phase II enzymes (Rendic and Di Carlo, 1997; Oesch et al. 2000). Phase I reactions are mediated primarily by cytochrome P450 family of enzymes, but other enzymes (e.g. flavin monooxygenases, peroxidases, amine oxidases, dehydrogenases, xanthine oxidases) also catalyze oxidation of certain functional groups. In addition to the oxidative reactions there are different types of

* Corresponding author email: khaled.megahed@oulu.fi; khaled.m.abass@gmail.com
Permanent address: Department of Pesticides, Menoufiya University, Menoufiya, Egypt
hydrolytic reactions catalysed by enzymes like carboxylesterases and epoxide hydrolases (Low, 1998; Hodgson and Goldstein, 2001; Parkinson, 2001).

Fig. 1. The percentage of human recombinant cytochrome P450 isoforms involved in pesticides metabolism. 63 compounds (36 insecticides; 14 fungicides; 10 herbicides; 2 plant growth regulators and a biocide agent) were metabolized at least in part by one or more human enzymes yielded 495 metabolic reactions.

Phase I products are not usually eliminated rapidly, but undergo a subsequent reaction in which an endogenous substrate such as glucuronic acid, sulfuric acid, acetic acid, or an amino acid combines with the existing or newly added or exposed functional group to form a highly polar conjugate to make them more easily excreted (LeBlanc and Dauterman, 2001; Rose and Hodgson, 2004; Zamek-Gliszczynski et al. 2006).

Fig. 2. Schematic description of the two main phases of drug metabolism. In general, a parent compound is converted into an intermediate metabolite which is then conjugated, but metabolism may involve only one of these reactions. Some metabolites are more toxic than the parent compound (Ahokas and Pelkonen, 2007; Liska et al. 2006).
3. Cytochrome P450 enzyme system

3.1 Nomenclature, location and microsomal preparation

P450 enzymes are categorized into families and subfamilies by their sequence similarities. The human genomes comprise 57 CYP genes and about the same numbers of pseudogenes, which are grouped according to their sequence similarity into 18 families and 44 subfamilies. The web site, http://drnelson.utmem.edu/CytochromeP450.html, contains more detailed classification related to the cytochrome P450 metabolizing enzymes. The CYP enzymes in the families 1-3 are active in the metabolism of a wide variety of xenobiotics including drugs (Rendic and Di Carlo, 1997; Pelkonen et al. 2005; Zanger et al. 2008). CYPs are found in high concentration in the liver, but are present in a variety of other tissues, including lung, kidney, the gastrointestinal tract, nasal mucosa, skin and brain (Lawton et al. 1990; Hjelle et al. 1986; Tremaine et al. 1985; Dutcher and Boyd, 1979; Peters and Kremers, 1989; Adams et al. 1991; Eriksson and Brittebo, 1991; Khan et al. 1989; Dhawan et al. 1990; Bergh and Strobel, 1992) and located primarily in the endoplasmic reticulum.

Microsomes can be prepared easily from frozen liver tissue, and enzymatic activities are stable during prolonged storage (Beaune et al. 1986; Pearce et al. 1996; Yamazaki et al. 1997). Microsomes consist of vesicles of the hepatocyte endoplasmic reticulum and are prepared by standard differential ultracentrifugation (Pelkonen et al. 1974). Microsomes are derived from the endoplasmic reticulum as a result of tissue homogenization and are isolated by two centrifugation steps. The tissues are typically homogenized in buffer and centrifuged at 10,000g for 20 minutes, the resulting supernatant, referred to as S9 fraction, can be used in studies where both microsomal and cytosolic enzymes are needed. S9 fraction is centrifuged at 100,000g for 60 minutes to yield the microsomal pellets and a cytosolic supernatant. The pellet is typically re-suspended in a volume of buffer and stored at -70°C (Figure 3) (Testa and Krämer, 2005).

Fig. 3. A simplified scheme of the preparation of microsomes (Testa and Krämer, 2006). Testa and Krämer: The biochemistry of drug metabolism - an introduction part I. Principals and overview. Chemistry & Biodiversity. 2005, 3, 1053-1101; © Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
Microsomes have many advantages including easy adaptation to higher throughput assays, easy preparation and use, good stability during storage, high CYP concentration and high rate of metabolite turnover. (Pelkonen et al. 2005; Brandon et al. 2003; Ekins et al. 1999; Ekins et al. 2000; Pelkonen and Raunio, 2005).

3.2 Function
CYP oxidation reactions involve a complex series of steps. The initial step involves the binding of a substrate to oxidized CYP, followed by a one-electron reduction catalyzed by NADPH cytochrome P450 reductase to form a reduced cytochrome-substrate complex. The next several steps involve interaction with molecular oxygen, the acceptance of the second electron from NADPH cytochrome b5 reductase, followed by subsequent release of water and the oxygenated product of the reaction. This reaction sequence results in the addition of one oxygen atom to the substrate, while the other atom is reduced to water (Parkinson, 2001; Rose and Hodgson, 2004; Guengerich, 2001) (figure 3).

Fig. 4. Generalized P450 catalytic cycle (Sohl et al. 2008) (Sohl et al. J. Biol. Chem. 2008).

4. In vitro approaches
In vitro approaches to characterize metabolic fate for human clearance predication have become more frequent with the increase in the availability of human-derived materials. All
models have certain advantages and disadvantages, but the common advantage to these approaches is the reduction of the complexity of the study system. In vitro model range from simple to more complex systems: individual enzymes, subcellular fractions, cellular systems, liver slices and whole organ, respectively. However, the use of in vitro models is always a compromise between convenience and relevance. Different in vitro models and their advantages and disadvantages have been described previously (Pelkonen et al. 2005; Brandon et al. 2003; Pelkonen and Raunio, 2005; Pelkonen and Turpeinen, 2007).

5. Identification of the individual CYP enzyme(s) involved in the metabolism of a xenobiotic

To understand some of the factors related to xenobiotic metabolism that can influence the achievement of these aims, there are several important points to consider such as determination of the metabolic stability of the compound, identification of reactive metabolites, evaluation of the variation between species, identification of human CYPs and their isoforms involved in the activation or detoxification, evaluation of the variation between individuals, identification of individuals and subpopulations at increased risk and finally overall improvement of the process of human risk assessment.

Basically the identification of the individual CYP enzyme(s) involved in the metabolism of a xenobiotic is necessary for in vitro – in vivo extrapolation and prediction if the results of the metabolic stability and metabolic routes in human in vitro systems indicate that CYP enzymes contribute significantly to the metabolism of a xenobiotic. Due to the broad substrate specificity of CYP enzymes, it is possible for more than one enzyme to be involved in the metabolism of a single compound.

In vitro methods have been established to determine which CYP isoform(s) is (are) involved in the metabolism of a xenobiotic (Pelkonen et al. 2005; Pelkonen and Raunio, 2005). The identification could be achieved by different approaches such as cDNA-expressed enzymes, correlation studies, inhibition studies with CYP-selective chemical inhibitors and specific antibodies and inhibition of CYP enzymes.

5.1 cDNA-expressed enzymes

The availability of a full panel of recombinant enzymes covering the major human liver CYPs allows a direct approach for assaying the metabolism of a compound by incubation with the isolated isoforms. This can be done by following substrate consumption or product formation by each isoform using the same analytical methods as for human liver microsomes-based assays (Reponen et al. 2010). The biotransformation of a xenobiotic by a single CYP does not necessarily mean its participation in the reaction in vivo. The relative roles of individual CYPs cannot be quantitatively estimated using this approach due to the interindividual variation in the levels of individual active CYPs in the liver (Guengerich, 1999; Guengerich, 1995). However, cDNA-expressed CYPs are well suited for isoform identification in a high-throughput screening format (White, 2000). The relative importance of individual isoform to in vivo clearance is dependent upon the relative abundance of each isoform. When taking into account the average composition of human hepatic CYPs, an approximate prediction of the participation of any CYP enzyme in the whole liver activity can be achieved (Rodrigues, 1999; Rostami-Hodjegan and Tucker, 2007).
5.2 Correlation studies
Using a bank of “phenotyped” liver microsomes, correlation analysis could be performed. Correlation analysis involves measuring the rate of xenobiotic metabolism by several liver samples from individual humans and correlating reaction rates with the level of activity of the individual CYP enzymes in the same microsomal samples. If there are a sufficient number of individual samples (at least ten), the correlation plot would give the information needed for the evaluation of the participating CYPs. The higher the correlation between the activities, the larger the probability that the respective CYP enzyme is responsible for the metabolism of the xenobiotic. Another approach is to correlate the levels of an individual CYP determined by Western blot analysis against the metabolic activity (Beaune et al. 1986; Brandon et al. 2003; Berthou et al. 1994; Guengerich, 1995; Jacolot et al. 1991; Wolkers et al. 1998).

5.3 Inhibition studies with CYP-selective chemical inhibitors and specific antibodies
Pooled human liver microsomes or individual liver microsomal samples should be used to examine the effect of CYP-selective chemical inhibitors or selective inhibitory antibodies. Antibody inhibition involves an evaluation of the effects of inhibitory antibodies against selective CYP enzymes on the metabolism of a xenobiotic in human liver microsomes. Chemical inhibition involves an evaluation of the effects of known CYP enzyme inhibitors on the metabolism of a xenobiotic. Several compounds have been characterized for their inhibitory potency against different CYPs; for example, furafylline is perhaps the most potent and selective inhibitor of CYP1A2, tranylcypromine of CYP2A6, thiopeta and ticlopidine of CYP2B6, trimethoprim and sulfaphenazole are selective inhibitors of CYP2C8 and CYP2C9, respectively, fluconazole may be used for CYP2C19, quinidine is a commonly used in vitro diagnostic inhibitor of CYP2D6 activity, pyridine and disulfiram of CYP2E1, and ketoconazole and itraconazole are among many potent and relatively selective inhibitors of CYP3A4 often used in vitro and in vivo as diagnostic inhibitors (Rendic and Di Carlo, 1997; Pelkonen et al. 2005; Pelkonen and Raunio, 2005; Bourrie et al. 1996; Clarke et al. 1994; Nebert and Russell, 2002; Pelkonen et al. 2008; Schmider et al. 1995; Sesardic et al. 1990).

5.4 Inhibition of CYP enzymes
Testing the inhibitory interactions of a xenobiotic on CYP-specific model activity in human liver microsomes in vitro provides information about the affinity of the compound for CYP enzymes (Pelkonen and Raunio, 2005). The type of CYP inhibition can be either irreversible (mechanism-based inhibition) or reversible. Irreversible inhibition requires biotransformation of the inhibitor, while reversible inhibition can take place directly, without metabolism. Reversible inhibition is the most common type of enzyme inhibition and can be further divided into competitive, noncompetitive, uncompetitive, and mixed-type inhibition (Pelkonen et al. 2008). The inhibitory interactions of a xenobiotic on CYP enzymes can be tested by co-incubating a series of dilutions of a xenobiotic with a reaction mixture containing single or multiple substrates. In the single substrate assay, traditionally CYP interaction studies are performed using specific assays for each CYP isoform. A decrease in probe metabolite formation produced by inhibition is usually analyzed by LC-UV, LC-MS or fluorometry. In the cocktail assay, several CYP-selective probes are incubated with human liver microsomes and analyzed by LC-MS-MS (Tolonen et al. 2007; Turpeinen et al. 2006; Turpeinen et al. 2005; Tolonen et al. 2005).
6. Pesticides reported to be metabolized at least in part by certain human cytochrome P450

During the recent years, a large number of papers have been published on the activities of human CYPs involved in the metabolism of pesticides. Human CYPs involved in metabolism of pesticides and related compounds were listed and updated previously several years ago by Hodgson 2001 & 2003 (Hodgson, 2001; 2003). Abbreviations used in the coming tables are listed in table 1. The updated human CYPs and their isoforms catalyzing pesticides biotransformation in addition to reactions detection methods are listed below in tables containing the primary CYP-specific information (Tables 2 to 13). Additional summary table contains information classified according to individual metabolic reactions and chemical classes of pesticides (Table 14).

Chemical class	Abb.	Pesticide type	Abb.	Detection method	Abb.
Acylalanine	AcA	Aldicarb	A.	Acetylcholine esterase inhibition	AChE inh.
Carbamates	CA	Carbaryl	B.	Electron capture detector	ECD
Chloroacetamide	ChAc	Herbacide	B.	Gas chromatography	GC
Chlorinated cyclohexane	CCD	Herbicide	F.	Liquid chromatography	LC
Conazole	CZ	Herbicide	H.	Mass spectrometry	MS
Neonicotinoid	NC	Insect repellent	I. R.	Nuclear magnetic resonance	NMR
Organochlorine	OC	Insecticide	I.	Photo Diode Array Detector	PDA
Organophosphorus	OP	Molluscicide	M.	Ultraviolet detector	UV
Organotin	OT	Plant growth regulator	PGR.	Thin layer chromatography	TLC
Oxaathiin	OX	Neonicotinoid	I.	Thin layer chromatography	TLC
Phenyl pyrazole	PP	Carbosulfan	I.	Thin layer chromatography	TLC
Oxathiin	OX	Triazine	TA	Thin layer chromatography	TLC
Phenyl pyrazole	PP	Triazine	TA	Thin layer chromatography	TLC
Phenyl urea	PU	Triazine	TA	Thin layer chromatography	TLC
Phenyl pyrazole	PP	Triazine	TA	Thin layer chromatography	TLC

Table 1. Abbreviations

6.1 CYP1A1

Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
Ametryne	TA	H.	N-Deethylation	LC-UV	Lang et al. 1997
			N-Deisopropylation		
			Sulfoxidation		
Atrazine	TA	H.	N-Deethylation	LC-UV	Lang et al. 1997
			N-Deisopropylation		
			Sulfoxidation		
Carbaryl	CA	I.	Aromatic hydroxylation	LC-UV	Tang et al. 2002
			Methyl Oxidation		
Carbosulfan	CA	I.	N-S cleavage	LC-MS	Abass et al. 2010
			Sulfoxidation		
cis-Permethrin	PY	I.	Oxidative metabolism	LC-MS	Scollo et al. 2009

www.intechopen.com
Table 2. Pesticides reported to be metabolized at least in part by human CYP1A1.

6.2 CYP1A2

Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
Ametryne	TA	H.	N-Deethylation	LC-UV	Lang et al. 1997
Atrazine	TA	H.	N-Deethylation	LC-UV	Lang et al. 1997
Azinophos methyl	OP	I.	Desulfuration	AChE Inh.	Buratti et al. 2002
Bioresmethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Carbaryl	CA	I.	Aromatic hydroxylation	LC-UV	Tang et al. 2002
Carbofuran	CA	I.	N-S cleavage	LC-UV	Usmani et al. 2004a
Carbosulfan	CA	I.	N-S cleavage	LC-MS	Abass et al. 2010
Chlorpyrifos	OP	I.	Desulfuration	AChE Inh., LC-UV	Buratti et al. 2002
cis-Permethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Cypermethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Diazinon	OP	I.	Desulfuration	AChE Inh.	Buratti et al. 2002
Dimethoate	OP	I.	Desulfuration	AChE Inh.	Buratti and Testai, 2007
Disulfoton	OP	I.	Sulfoxidation	LC-UV	Usmani et al. 2004b
Diuron	PU	H.	N-Demethylation	LC-MS	Abass et al. 2007c
Table 3. Pesticides reported to be metabolized at least in part by human CYP1A2.

Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
Fenthion	OP	I.	Desulfuration Sulfoxidation	LC-UV	Leoni et al. 2008
Furametpyr	OX	F.	N-Demethylation	TLC, NMR & MS	Nagahori et al. 2000
Imidacloprid	NC	I.	Nitroimine reduction	TLC	Schulz-Jander and Casida, 2002
Malathion	OP	I.	Desulfuration	AChE Inh.	Buratti et al. 2005
Methiocarb	OP	I.	Sulfoxidation	LC-UV	Usmani et al. 2004b
Methoxychlor	OC	I.	O-Demethylation	TLC	Stresser and Kupfer, 1998
Parathion	OP	I.	Desulfuration	AChE Inh., LC-UV	Buratti et al. 2002
Phorate	OP	I.	Sulfoxidation	LC-UV	Usmani et al. 2004b
Sulprofos	OP	I.	Sulfoxidation	LC-UV	Usmani et al. 2004b
Terbutylazine	TA	H.	N-Deethylation	LC-UV	Lang et al. 1997
Terbutryne	TA	H.	N-Deethylation Sulfoxidation	LC-UV	Lang et al. 1997
τ-Permethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
β-Cyfluthrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
λ-Cyhalothrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009

Table 4. Pesticides reported to be metabolized at least in part by human CYP2A6.

Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
Carbaryl	CA	I.	Aromatic hydroxylation Methyl Oxidation	LC-UV	Tang et al. 2002
Carbosulfan	CA	I.	N-S cleavage	LC-MS	Abass et al. 2010
DEET	I. R.		N-Deethylation	LC-UV	Usmani et al. 2002
Diazinon	OP	I.	Desulfuration Dearylation	LC-UV	Kappers et al. 2001
Dimethoate	OP	I.	Desulfuration	AChE Inh.	Buratti and Testai, 2007
Diuron	PU	H.	N-Demethylation	LC-MS	Abass et al. 2007c
Imidacloprid	NC	I.	Imidazolidine oxidation	TLC	Schulz-Jander and Casida, 2002
6.4 CYP2B6

Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
Acetachlor	ChAc	H.	N-Dealkoxylation	LC-UV	Coleman et al. 2000
Alachlor	ChAc	H.	N-Dealkoxylation	LC-UV	Coleman et al. 2000
Atrazine	TA	H.	Sulfoxidation	LC-UV	Lang et al. 1997
Atrazine	TA	H.	N-Deisopropylation	LC-UV, LC/PDA & LC-MS	Lang et al. 1997, Joo et al. 2010
Azinophos methyl	OP	I.	Desulfuration	AChE Inh. LC-UV	Buratti et al. 2002
Bioresemethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Butachlor	ChAc	H.	N-Dealkoxylation	LC-UV	Coleman et al. 2000
Carbaryl	CA	I.	Aromatic hydroxylation	LC-UV, LC/PDA & LC-MS	Lang et al. 1997, Joo et al. 2010
Carbosulfan	CA	I.	N-S cleavage Sulfoxidation	LC-MS	Abass et al. 2010
Chlorpyrifos	OP	I.	Desulfuration	AChE Inh. LC-UV	Buratti et al. 2002
			Desulfuration Dearylation	LC-UV	Tang et al. 2001; Foxenberg et al. 2007; Mutch and Williams 2006; Croom et al. 2010
DEET	I. R.		Aromatic methyloxidation	LC-UV	Usmani et al. 2002
Diazinon	OP	I.	Desulfuration	AChE Inh. LC-UV	Buratti et al. 2002
			Desulfuration Dearylation	LC-UV	Mutch and Williams 2006; Kappens et al. 2001
Dimethoate	OP	I.	Desulfuration	AChE Inh.	Buratti and Testai 2007
Disulfoton	OP	I.	Sulfoxidation	LC-UV	Usmani et al. 2004b
Diuron	PU	H.	N-Demethylation	LC-MS	Abass et al. 2007c
Endosulfan-α	CCD	I.	Sulfoxidation	LC-UV	Casabar et al. 2006
				GC-ECD	Lee et al. 2006
Imidacloprid	NC	I.	Nitroimine reduction	TLC	Schulz-Jander and Casida 2002
Fenthion	OP	I.	Desulfuration Sulfoxidation	LC-UV	Leoni et al. 2008
Malathion	OP	I.	Desulfuration	AChE Inh.	Buratti et al. 2005
MCP2A	AcA	H.	N-Dealkoxylation	LC-UV	Coleman et al. 2000
Metalaxyl	AcA	F.	O-Demethylation Lactone formation	LC-MS	Abass et al. 2007b
Methiocarb	OP	I.	Sulfoxidation	LC-UV	Usmani et al. 2004b
Methoxychlor	OC	I.	O-Demethylation	TLC	Stresser and Kupfer
Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
-----------------	----------------	------	--	------------------	--
Parathion	OP I.		Desulfuration	AChE Inh. LC-UV	Buratti et al. 2002
			Desulfuration Dearylation	AChE Inh. LC-UV	Sams et al. 2000
Phorate	OP I.		Desulfuration	LC-UV	Foxenberg et al. 2007; Mutch and Williams 2006; Mutch et al. 2003; Mutch et al. 1999; Butler and Murray 1997
Profenofos	OP I.		Hydroxypropylation Desthiopropylation	LC-UV	Abass et al. 2007b
Terbutryne	TA H.		Sulfoxidation	LC-UV	Lang et al. 1997a
triadimefon	TriA F.		t-butyl group metabolism Oxidative	LC-UV	Barton et al. 2006
λ-Cyhalothrin	PY I.		Oxidative metabolism	LC-MS	Scollon et al. 2009

Table 5. Pesticides reported to be metabolized at least in part by human CYP2B6.

6.5 CYP2C8

Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
Amitrazine	TA H.		N-Deisopropylation	LC-UV	Lang et al. 1997
Atrazine	TA H.		N-Deisopropylation	LC/PDA & LC-MS	Joo et al. 2010
Bifenthrin	PY I.		Oxidative metabolism	LC-MS	Scollon et al. 2009
Bioresmethrin	PY I.		Oxidative metabolism	LC-MS	Scollon et al. 2009
Carbaryl	CA I.		Aromatic hydroxylation Methyl Oxidation	LC-UV	Tang et al. 2002
Carbosulfan	CA I.		N-S cleavage	LC-MS	Abass et al. 2010
Chlorpyrifos	OP I.		Desulfuration Dearylation	LC-UV	Mutch and Williams 2006
cis-Permethrin	PY I.		Oxidative metabolism	LC-MS	Scollon et al. 2009
Cypermethrin	PY I.		Oxidative metabolism	LC-MS	Scollon et al. 2009
Deltamethrin	PY I.		Oxidative metabolism	LC-MS	Godin et al. 2007
Diazinon	OP I.		Desulfuration Dearylation	LC-UV	Mutch and Williams 2006
Dimethoate	OP I.		Desulfuration	AChE Inh.	Buratti and Testai 2007
Dicuron	PU H.		N-Demethylation	LC-MS	Abass et al. 2007c
Esfenvalerate	PY I.		Oxidative metabolism	LC-MS	Godin et al. 2007
Parathion	OP I.		Desulfuration Dearylation	LC-UV	Mutch and Williams 2006; Mutch et al. 2003
Resmethrin	PY I.		Oxidative metabolism	LC-MS	Scollon et al. 2009
Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
----------------------	----------------	------	-----------------------------------	------------------	----------------------------------
S-Bioallethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
τ-Permethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
β-Cyfluthrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
λ-Cyhalothrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Table 6. Pesticides reported to be metabolized at least in part by human CYP2C8.					

6.6 CYP2C9

Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
Ametryne	TA	H.	N-Deisopropylation Sulfoxidation	LC-UV	Lang et al. 1997
Atrazine	TA	H.	N-Deisopropylation	LC/PDA & LC-MS	Joo et al. 2010
Bifenthrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Bioresmethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Carbaryl	CA	I.	Aromatic hydroxylation Methyl Oxidation	LC-UV	Tang et al. 2002
Chlorthalon	OP	I.	Desulfuration Dearylation	LC-UV	Tang et al. 2001; Croom et al. 2010
Chlordifen	OP	I.	Desulfuration Dearylation	LC-UV	Kappers et al. 2001
Chlorpyrifos	OP	I.	Desulfuration Dearylation	LC-UV	Usmani et al. 2004b
Cypermethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Cypermethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Diazinon	OP	I.	Desulfuration Dearylation	LC-UV	Kappers et al. 2001
Dimethoate	OP	I.	Desulfuration AChE Inh.	AChE Inh.	Buratti and Testai 2007
Dieldrin	PU	H.	N-Demethylation	LC-MS	Abass et al. 2007c
Endosulfan-α	CCD	I.	Sulfoxidation	LC-UV	Casab et al. 2006
Esfenvalerate	PY	I.	Oxidative metabolism	LC-MS	Godin et al. 2007
Fenthion	OP	I.	Desulfuration Sulfoxidation	LC-UV	Leoni et al. 2008
Imidacloprid	NC	I.	Imidazolidine oxidation	TLC	Schulz-Jander and Casida 2002
Methiocarb	OP	I.	Sulfoxidation	LC-UV	Usmani et al. 2004b
Methoxychlor	OC	I.	O-Demethylation	TLC	Stresser and Kupfer 1998
Parathion	OP	I.	Desulfuration Dearylation	LC-UV	Foxenberg et al. 2007
Phorate	OP	I.	Sulfoxidation	LC-UV	Usmani et al. 2004b
Resmethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
S-Bioallethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Sulprofos	OP	I.	Sulfoxidation	LC-UV	Usmani et al. 2004b
τ-Permethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
------------	----------------	------	-----------------------------------	-----------------------------------	----------------------------
Ametryne	TA	H.	N-Deethylation N-Deisopropylation	LC-UV	Lang et al. 1997
Atrazine	TA	H.	N-Deisopropylation N-Deethylation	LC-UV LC-UV	Lang et al. 1997
Azinophos methyl	OP	I.	Desulfuration	AChE Inh. & LC-UV	Buratti et al. 2002
Bifenthrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Bioresmethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Carbaryl	CA	I.	Aromatic hydroxylation Methyl Oxidation	LC-UV	Tang et al. 2002
Carbofuran	CA	I.	Ring oxidation	LC-UV	Usmani et al. 2004a
Carbosulfan	CA	I.	N-S cleavage Sulfoxidation	LC-MS LC-MS	Abass et al. 2010
Chlorpyrifos	OP	I.	Desulfuration	AChE Inh. & LC-UV	Buratti et al. 2002
cis-Permethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Cypermethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
DEET	I. R.		N-Deethylation	LC-UV	Usmani et al. 2002
Deltamethrin	PY	I.	Oxidative metabolism	LC-MS	Godin et al. 2007
Diazinon	OP	I.	Desulfuration	AChE Inh. & LC-UV	Buratti et al. 2002
Dimethoate	OP	I.	Desulfuration Dearylation	LC-UV	Mutch and Williams 2006; Kappers et al. 2001
Disulfoton	OP	I.	Sulfoxidation	AChE Inh.	Buratti and Testai 2007
Diuron	PU	H.	N-Demethylation	LC-MS	Usmani et al. 2004b

Table 7. Pesticides reported to be metabolized at least in part by human CYP2C9.

6.7 CYP2C19
Table 8. Pesticides reported to be metabolized at least in part by human CYP2C19.

Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
Atrazine	TA	H.	N-Deethylation	LC-UV	Lang et al. 1997
Carbaryl	CA	I.	Aromatic hydroxylation Methyl Oxidation	LC-UV	Tang et al. 2002
Chlorpyrifos	OP	I.	Desulfuration Dearylation	LC-UV	Mutch and Williams 2006
Table 9. Pesticides reported to be metabolized at least in part by human CYP2D6.

Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
Atrazine	TA H.		N-Deethylation	LC-UV	Lang et al. 1997
			N-Deisopropylation		
Carbaryl	CA I.		Aromatic hydroxylation	LC-UV	Tang et al. 2002
			Methyl Oxidation		
DEET	I. R.		Aromatic methyl oxidation	LC-UV	Usmani et al. 2002
Diuron	PU H.		N-Demethylation	LC-MS	Abass et al. 2007c
Imidacloprid	NC I.		Nitroimine reduction	TLC	Schulz-Jander and Casida 2002
Methiocarb	OP I.		Sulfoxidation	LC-UV	Usmani et al. 2004b
Parathion	OP I.		Desulfuration		
			Dearylation		
Sulprofos	OP I.		Sulfoxidation	LC-UV	Usmani et al. 2004b

Table 10. Pesticides reported to be metabolized at least in part by human CYP2E1.

Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
Atrazine	TA H.		N-Deethylation	LC-UV	Lang et al. 1997
			N-Deisopropylation		
Carbaryl	CA I.		Aromatic hydroxylation	LC-UV	Tang et al. 2002
			Methyl Oxidation		
DEET	I. R.		Aromatic methyl oxidation	LC-UV	Usmani et al. 2002
Diuron	PU H.		N-Demethylation	LC-MS	Abass et al. 2007c
Imidacloprid	NC I.		Nitroimine reduction	TLC	Schulz-Jander and Casida 2002
Parathion	OP I.		Desulfuration		
			Dearylation		
6.10 CYP3A4

Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
Acetachlor	ChAc	H.	N-Dealkoxylation	LC-UV	Coleman et al. 2000
Alachlor	ChAc	H.	N-Dealkoxylation	LC-UV	Coleman et al. 2000; Coleman et al. 1999
Ametryne	TA	H.	N-Deethylolation	LC-UV	Lang et al. 1997
Atrazine	TA	H.	N-Deethylation,	LC-UV	Lang et al. 1997
Azinophos methyl	OP	I.	Desulfuration	AChE Inh. & LC-UV	Buratti et al. 2002
Bioremethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Butachlor	ChAc	H.	N-Dealkoxylation	LC-UV	Coleman et al. 2000
Carbarly	CA	I.	Aromatic hydroxylation,	LC-UV	Tang et al. 2002
Carbosulfan	CA	I.	N-S cleavage,	LC-MS	Abass et al. 2010
Chlorpyrifos	OP	I.	Desulfuration	AchE Inh. & LC-UV	Buratti et al. 2002; Sams et al. 2000; Buratti et al. 2006
cis-Permethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
Cypermethrin	PY	I.	Oxidative metabolism	LC-MS	Scollon et al. 2009
DEET	I. R.		N-Deethylolation	LC-UV	Usmani et al. 2002
Diazinon	OP	I.	Desulfuration	AChE Inh. & LC-UV	Buratti et al. 2002
Dimethoate	OP	I.	Desulfuration	AChE Inh.	Sams et al. 2000
Diniconazole	CZ	F.	Hydroxylation	LC-MS	Buratti and Testai 2007
Disulfoton	PU	H.	N-Demethylation	LC-MS	Usmani et al. 2004b
Endosulfan-α	CCD	I.	Sulfoxidation	LC-UV	Casabar et al. 2006
Endosulfan-β	CCD	I.	Sulfoxidation	GC-ECD	Lee et al. 2006
Epoxiconazole	CZ	F.	Hydroxylation	GC-ECD	Lee et al. 2006
Fenbuconazole	CZ	F.	Hydroxylation	LC-MS	Mazur and Kenneke 2008
Fenthion	OP	I.	Desulfuration,	LC-UV	Leoni et al. 2008
Fipronil	PP	I.	Sulfoxidation	AChE Inh. & LC-UV	Buratti et al. 2006
Pesticide	Metabolite	Enzyme	Method	Reference	
-------------------------	-------------------------------------	--------	-------------------------------	-----------------------------------	
Furametpyr	OX F. N-Demethylation	TLC NMR & MS	Nagahori et al. 2000		
Hexachlorobenzene	OC I. Aromatic hydroxylation	TLC NMR & MS	Mehmood et al. 1996		
Hexaconazole	CZ F. Hydroxylation	LC-MS	Mazur and Kenneke 2008		
Imidacloprid	NC I. Imidazolidine oxidation	TLC	Schulz-Jander and Casida 2002		
Ipconazole	CZ F. Hydroxylation	LC-MS	Mazur and Kenneke 2008		
Malathion	OP I. Desulfuration	AChE Inh. & LC-UV	Buratti et al. 2005; Buratti et al. 2006		
Metalaxyl	AcA F. Ring hydroxylation, Methyl hydroxylation, O-Demethylation, Lactone formation	LC-MS	Abass et al. 2007b		
Metconazole	CZ F. Hydroxylation	LC-MS	Mazur and Kenneke 2008		
Methiocarb	OP I. Sulfoxidation	LC-UV	Usmani et al. 2004b		
Myclobutanil	TA F. n-butyl metabolism	LC-UV	Barton et al. 2006		
Myclobutanil	TA F. Aliphatic hydroxylation	LC-MS	Mazur and Kenneke 2008		
Paclobutrazole	TA PGR Hydroxylation	LC-MS	Mazur and Kenneke 2008		
Parathion	OP I. Desulfuration, Dearylation	AChE Inh. & LC-UV	Buratti et al. 2002; Buratti et al. 2006		
Pentachlorobenzene	OC I. Aromatic hydroxylation	TLC NMR & MS	Mehmood et al. 1996		
Phorate	OP I. Sulfoxidation	LC-UV	Usmani et al. 2004b		
Profenofos	OP I. Hydroxypropylation, Deshiopropylation	LC-MS	Abass et al. 2007a		
Propiconazole	CZ F. Aliphatic hydroxylation	LC-MS	Mazur and Kenneke 2008		
Resmethrin	PY I. Oxidative metabolism	LC-MS	Scollon et al. 2009		
S-Bioallethrin	PY I. Oxidative metabolism	LC-MS	Scollon et al. 2009		
Sulprofos	OP I. Sulfoxidation	LC-UV	Usmani et al. 2004b		
Terbutylazine	TA H. N-Deethylation	LC-UV	Lang et al. 1997		
Terbutryn	TA H. N-Deethylation Sulfoxidation	LC-UV	Lang et al. 1997		
t-Bromuconazole	CZ F. Aromatic hydroxylation	LC-MS	Mazur and Kenneke 2008		
t-Permethrin	PY I. Oxidative metabolism	LC-MS	Scollon et al. 2009		
triadimefon	TA F. t-butyl group metabolism	LC-UV	Barton et al. 2006		
Tributyltin	OT BA. Dealkylation	GC	Ohhira et al. 2006		
Triphenyltin	OT F. A. M. Dearylation	GC	Ohhira et al. 2006		
Triticonazole	CZ F. Hydroxylation	LC-MS	Mazur and Kenneke 2008		
Uniconazole	CZ PGR Oxidative metabolism	LC-MS	Mazur and Kenneke 2008		
β-Cyfluthrin	PY I. Oxidative metabolism	LC-MS	Scollon et al. 2009		
α-Cyhalothrin	PY I. Oxidative metabolism	LC-MS	Scollon et al. 2009		

Table 11. Pesticides reported to be metabolized at least in part by human CYP3A4.
Table 12. Pesticides reported to be metabolized at least in part by human CYP3A5.

Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
Carbaryl	CA	I.	Aromatic hydroxylation Methyl Oxidation	LC-UV	Tang et al. 2002
Carbosulfan	CA	I.	N-S cleavage Sulfoxidation	LC-MS	Abass et al. 2010
Chlorpyrifos	OP	I.	Desulfuration Dearylation	LC-UV LC-UV	Foxenberg et al. 2007; Mutch and Williams 2006; Croom et al. 2010
			Desulfuration	AChE Inh. & LC-UV	Buratti et al. 2006
DEET	I. R.		N-Deethylation	LC-UV	Usmani et al. 2002
Deltamethrin	PY	I.	Oxidative metabolism	LC-MS	Godin et al. 2007
Diazinon	OP	I.	Desulfuration Dearylation	LC-UV	Mutch and Williams 2006
Diuron	PU	H.	N-Demethylation	LC-MS	Abass et al. 2007c
Endosulfan-α	CCD	I.	Sulfoxidation	GC-ECD	Lee et al. 2006
Endosulfan-β	CCD	I.	Sulfoxidation	GC-ECD	Lee et al. 2006
Esfenvalerate	PY	I.	Oxidative metabolism	LC-MS	Godin et al. 2007
Fenthion	OP	I.	Desulfuration	AChE Inh. & LC-UV	Buratti et al. 2006
Malathion	OP	I.	Desulfuration	AChE Inh. & LC-UV	Buratti et al. 2006
Myclobutanil	TriA	F.	n-butyl metabolism	LC-UV	Barton et al. 2006
Parathion	OP	I.	Desulfuration Dearylation	LC-UV	Foxenberg et al. 2007; Mutch and Williams 2006; Mutch et al. 2003; Mutch et al. 1999
			Desulfuration	AChE Inh. & LC-UV	Buratti et al. 2006
Sulprofos	OP	I.	Sulfoxidation	LC-UV	Usmani et al. 2004b
6.12 CYP3A7

Pesticide	Chemical class	Type	Metabolic pathway	Detection method	Reference
Atrazine	TA	H.	N-Deisopropylation	LC/PDA & LC-MS	Joo et al. 2010
Carbosulfan	CA	I.	N-S cleavage Sulfoxidation	LC-MS	Abass et al. 2010
Chlorpyrifos	OP	I.	Desulfuration Dearylation	LC-UV	Foxenberg et al. 2007; Croom et al. 2010
				AChE Inh. & LC-UV	Buratti et al. 2006
Endosulfan-α	CCD	I.	Sulfoxidation	LC-UV	Casabar et al. 2006
Fenthion	OP	I.	Desulfuration	AChE Inh. & LC-UV	Buratti et al. 2006
Malathion	OP	I.	Desulfuration	AChE Inh. & LC-UV	Buratti et al. 2006
Parathion	OP	I.	Desulfuration Dearylation	LC-UV	Foxenberg et al. 2007
				AChE Inh. & LC-UV	Buratti et al. 2006

Table 13. Pesticides reported to be metabolized at least in part by human CYP3A7.

6.13 Metabolic reactions

Table 14 contains information classified according to individual metabolic reactions and the corresponding pesticides.

Reactions	Pesticides	CYP enzymes involved at least in part
Aliphatic hydroxylation	Alachlor; myclobutanil; propiconazole	CYP3A4
	Carbaryl	CYP1A1; CYP1A2; CYP3A4
	Hexachlorobenzene; pentachlorobenzene; r-bromacronazol	CYP3A4
Aromatic methyl oxidation	DEET	CYP2B6
β-O-Demethylation	Methoxychlor	CYP2C18
Dealkylation	Tributyltin	CYP2C9; CYP2C18; CYP2C19; CYP3A4
Dearylation	Chlorpyrifos; diazinon	CYP1A2; CYP2A6; CYP2B6;CYP2C9; CYP2C19; CYP2D6; CYP3A4; CYP3A5
	Parathion	CYP2C19; CYP3A4; CYP2B6; CYP2C8; CYP3A5; CYP1A2;
	Triphenyltin	CYP2C9; CYP2C18; CYP2C19; CYP3A4
Metabolism Pathway	Insecticide	CYP Enzymes
--------------------	-------------	-------------
Desthiopropylation	Profenofos	CYP3A4; CYP2B6
Desulfuration	Azinophos methyl	CYP2C19; CYP3A4
	Chlorpyrifos	CYP2C19; CYP3A4; CYP2B6; CYP3A5; CYP2D6; CYP3A7
	Diazinon	CYP1A2; CYP2A6; CYP2B6; CYP2C9; CYP2C19; CYP2D6; CYP3A4; CYP3A5
	Dimethoate	CYP1A2; CYP3A4
	Fenthion; malathion	CYP1A2; CYP2B6; CYP3A4; CYP3A5; CYP3A7
	Parathion	CYP2C19; CYP3A4; CYP2B6; CYP2C8; CYP3A5; CYP2C8; CYP2D6
Hydroxylation	Diniconazole; epoxiconazole; fenbuconazole; hexaconazole; ipconazole; metconazole; paclobutrazole; triticonazole; uniconazole	CYP3A4
Hydroxypropylation	Profenofos	CYP2B6; CYP2C19
Imidazolidine oxidation	Imidacloprid	CYP3A4
Lactone formation	Metalaxyl	CYP2B6
Methyl Oxidation	Carbaryl	CYP1A2; CYP2B6
n-butyl side-chain metabolism	Myclobutanil	CYP2C19
N-Dealkoxylation	Acetachlor; alachlor; butachlor	CYP3A4; CYP2B6
	Metachlor	CYP2B6
N-Deethylation	Ametryn; atrazine; terbutylazine; terbutryn	CYP1A1 CYP1A2 CYP2C19 CYP3A4 DEET CYP2C19
N-Deisopropylation	Ametryne; atrazine	CYP1A1; CYP1A2 CYP2B6 CYP2E1 CYP2C8 CYP2C9 CYP2C19 CYP3A4 CYP3A7
N-Demethylation	Diuron	CYP1A1; CYP1A2; CYP2C19; CYP3A4
	Furametpyr	CYP1A2; CYP2C19
Nitroimine reduction	Imidacloprid	CYP3A4
N-S cleavage	Carbasulfan	CYP3A4; CYP3A5
O-Demethylation	Metalaxyl	CYP2B6
	Methoxychlor	CYP1A2; CYP2C19
Oxidative metabolism	Bifenthrin; s-bisallethrin; λ-cyhalothrin	CYP2C19
	Bioresmethrin; cypermethrin; τ-permethrin	CYP1A2; CYP2C19
	cis-permethrin; resmethrin	CYP2C9; CYP2C19
	Deltamethrin	CYP2C8; CYP2C19; CYP3A5
	Esfenvalerate	CYP2C8; CYP2C19; CYP3A5; CYP2C9
	t-cyfluthrin	CYP2C8; CYP2C19
Ring hydroxylation	Metalaxyl	CYP3A4
Metabolism of Pesticides by Human Cytochrome P450 Enzymes In Vitro – A Survey

Ring oxidation	Carbofuran	CYP3A4
Sulfoxidation	Ametryn	CYP1A2
	Carbosulfan	CYP1A1; CYP2B6; CYP3A5
	Disulfoton; phorate; sulprofos	CYP2C9; CYP2C18; CYP2C19
	Endosulfan-α	CYP2B6; CYP3A4
	Endosulfan-β	CYP3A4; CYP3A5
	Fenthion; methiocarb	CYP2C9; CYP2C19
	Fipronil	CYP3A4
	Terbutryne	CYP1A2; CYP3A4
t-butyl group metabolism	Triadimefon	CYP2C19

Table 14. Type of reactions catalyzed at least in part by CYPs in one or more corresponding pesticide biotransformation.

7. Induction of CYP enzymes

Induction is defined as an increase in enzyme activity associated with an increase in intracellular enzyme concentration. CYP-pesticides interactions involve either induction or inhibition of metabolizing enzymes. Many induction studies have been conducted in vitro using primary human hepatocytes, human hepatoma cell lines or cell lines derived from other human tissues (Dierickx, 1999; Delescluse et al. 2001; Coumoul et al. 2002; Sanderson et al. 2002; Wyde et al. 2003; Lemaire et al. 2004). Primary culture of hepatocyte maintain whole cell metabolism since transporters and both phase I and phase II enzymes are present. Likewise, HepaRG cells express a large panel of liver-specific genes including several CYP enzymes, which is in contrast to HepG2 cell lines. In addition to P450 enzymes, HepaRG cells have a stable expression of phase II enzymes, transporters and nuclear transcription factors over a time period of six weeks in culture (Aninat et al. 2006; Anthérieu et al. 2010; Kanebratt and Andersson, 2008; Turpeinen et al. 2009).

Both immunoblotting and reverse transcription polymerase chain reaction (RT-PCR) techniques have been applied to examine the pesticide-CYP induction (Wyde et al. 2003; Lemaire et al. 2004; Das et al. 2006; Sun et al. 2005; Johri et al. 2007; Barber et al. 2007). However, problems in tissue availability, interindividual differences, reproducibility and ethical issues preclude the efficient large-scale use of human primary hepatocytes for induction screening.

One important factor regulating the expression of drug metabolising enzymes is induction by a diverse group of endogenous and exogenous substances that bind to the nuclear receptors pregnane X receptor (PXR) or constitutive androstane receptor (CAR), thereby causing significant up-regulation of gene transcription (Pelkonen et al. 2008; Handschin and Meyer, 2003). Therefore, the development of mechanism-based test systems for induction screening, based for example on in vitro pregnane X receptor/constitutive androstane receptor activation, is currently very active, and some test systems are in use as a first step for the identification of potential inducers (Pelkonen et al. 2005; Pelkonen and Raunio, 2005).

Whereas the acute effects of exposure to high doses of pesticides are well known, the long-term effects of lower exposure levels remain controversial. The ability of chemicals to induce metabolic enzymes, including cytochrome P450 (CYP), has long been considered as one of...
the most sensitive biochemical cellular responses to toxic insult (Gonzalez et al. 1993; Denison and Whitlock Jr., 1995), since it often occurs at much lower doses of the chemical than those known to cause lethal or overtly toxic effects. Assessment of inducibility of xenobiotic-metabolising enzymes by pesticides is vital for health risk assessment. Numerous pesticides are capable of inducing their own metabolism and by enzyme induction can also lead to enhanced biotransformation of other xenobiotics. Several articles on CYP gene inducibility by pesticides and other chemicals used in agriculture and public health have been published (Abass et al. 2009) and a review article dealing with CYP gene modulation by pesticides is needed.

8. Acknowledgements

This work was supported by a grant from KONE foundation - Finland.

9. References

Abass, K.; Reponen, P. & Pelkonen, O. (2009). Metabolic and interactions properties of selected fungicides, In: Fungicides: chemistry, environmental impact and health effects, De Costa, P. & Bezerra, P., (Ed.), (25-62), Nova Science Publisher, ISBN: 978-1-60692-631-4, New York

Abass, K.; Reponen, P.; Jalonen, J. & Pelkonen, O. (2007a). In vitro metabolism and interaction of profenofos by human, mouse and rat liver preparations. Pestic. Biochem. Physiol., Vol. 87, No. 3, (238-247).

Abass, K.; Reponen, P.; Jalonen, J. & Pelkonen, O. (2007b). In vitro metabolism and interactions of the fungicide metalaxyl in human liver preparations. Environ. Toxicol. Pharmacol., Vol. 23, No. 1, (39-47).

Abass, K.; Reponen, P.; Turpeinen, M.; Jalonen, J. & Pelkonen, O. (2007c). Characterization of diuron N-demethylation by mammalian hepatic microsomes and cDNA-expressed human cytochrome P450 enzymes. Drug Metab. Dispos., Vol. 35, No. 9, (1634-1641).

Abass, K.; Reponen, P.; Mattila, S. & Pelkonen, O. (2010). Metabolism of carbosulfan II. Human interindividual variability in its in vitro hepatic biotransformation and the identification of the cytochrome P450 isoforms involved. Chem. Biol. Interact., Vol. 185, No. 3, (163-173).

Adams, D.R.; Jones, A.M.; Plopper, C.G.; Serabit-Singh, C.J. & Philpot, R.M. (1991). Distribution of cytochrome P-450 monooxygenase enzymes in the nasal mucosa of hamster and rat. Am. J. Anat., Vol. 190, No. 3, (291-298).

Ahokas, J. & Pelkonen, O. (2007). Pharmacokinetics: How Does The Body Handle Drugs? In: Pharmacology, Encyclopedia of Life Support Systems (EOLSS), UNESCO, (Ed.), UNESCO Publishing-Eolss Publishers, , Oxford, UK

Aninat, C.; Piton, A.; Glaise, D.; Le Charpentier, T.; Langouet, S.; Morel, F.; Guguen-Guillouzo, C. & Guillouzo, A. (2006). Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab Dispos, Vol. 34, No. 1, (75-83).
Anthérieu, S.; Chesné, C.; Li, R.; Camus, S.; Lahoz, A.; Picazo, L.; Turpeinen, M.; Tolonen, A.; Uusitalo, J.; Guguen-Guillouzo, C. & Guillouzo, A. (2010). Stable expression, activity, and inducibility of cytochromes P450 in differentiated HepaRG cells. Drug Metab. Dispos., Vol. 38, No. 3, (516-525).

Barber, D.S.; McNally, A.J.; García-Reyero, N. & Denslow, N.D. (2007). Exposure to p,p'-DDE or dieldrin during the reproductive season alters hepatic CYP expression in largemouth bass (Micropterus salmoides). Aquatic Toxicology, Vol. 81, No. 1, (27-35).

Barton, H.A.; Tang, J.; Sej, Y.M.; Stanko, J.P.; Murrell, R.N.; Rockett, J.C. & Dix, D.J. (2006). Metabolism of myclobutanil and triadimefon by human and rat cytochrome P450 enzymes and liver microsomes. Xenobiotica, Vol. 36, No. 9, (793-806).

Beaune, P.H.; Kremers, P.G.; Kaminsky, L.S.; De Graeve, J.; Albert, A. & Guengerich, F.P. (1986). Comparison of monoxygenase activities and cytochrome P-450 isozyme concentrations in human liver microsomes. Drug Metab. Dispos., Vol. 14, No. 4, (437-442).

Bergh, A.F. & Strobel, H.W. (1992). Reconstitution of the brain mixed function oxidase system: Purification of NADPH-cytochrome P450 reductase and partial purification of cytochrome P450 from whole rat brain. J. Neurochem., Vol. 59, No. 2, (575-581).

Berthou, F.; Dreano, Y.; Belloc, C.; Kangas, L.; Gautier, J. & Beaune, P. (1994). Involvement of cytochrome P450 3A enzyme family in the major metabolic pathways of toremifene in human liver microsomes. Biochem. Pharmacol., Vol. 47, No. 10, (1883-1895).

Bourrie, M.; Meunier, V.; Berger, Y. & Fabre, G. (1996). Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J. Pharmacol. Exp. Ther., Vol. 277, No. 1, (321-332).

Brandon, E.F.A.; Raap, C.D.; Meijerman, I; Beijnen, J.H. & Schellens, J.H.M. (2003). An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol. Appl. Pharmacol., Vol. 189, No. 3, (233-246).

Buratti, F.M.; Volpe, M.T.; Fabrizi, L.; Meneguz, A.; Vittozzi, L. & Testai, E. (2002). Kinetic parameters of OPT pesticide desulfuration by c-DNA expressed human CYPs. Environ. Toxicol. Pharmacol., Vol. 11, No. 3-4, (181-190).

Buratti, F.M.; D’Aniello, A.; Volpe, M.T.; Meneguz, A. & Testai, E. (2005). Malathion bioactivation in the human liver: The contribution of different cytochrome P450 isoform. Drug Metab. Dispos., Vol. 33, No. 3, (295-302).

Buratti, F.M.; Leoní, C. & Testai, E. (2006). Foetal and adult human CYP3A isoforms in the bioactivation of organophosphorothionate insecticides. Toxicol. Lett., Vol. 167, No. 3, (245-255).

Buratti, F.M. & Testai, E. (2007). Evidences for CYP3A4 autoactivation in the desulfuration of dimethoate by the human liver. Toxicology, Vol. 241, No. 1-2, (33-46).

Butler, A.M. & Murray, M. (1997). Biotransformation of parathion in human liver: Participation of CYP3A4 and its inactivation during microsomal parathion oxidation. J. Pharmacol. Exp. Ther., Vol. 280, No. 2, (966-973).

Casabar, R.C.T.; Wallace, A.D.; Hodgson, E. & Rose, R.L. (2006). Metabolism of endosulfan-[alpha] by human liver microsomes and its utility as a simultaneous in vitro probe for CYP2B6 and CYP3A4. Drug Metab. Dispos., Vol. 34, No. 10, (1779-1785).

www.intechopen.com
Clarke, S.E.; Ayrton, A.D. & Chenery, R.J. (1994). Characterization of the inhibition of P4501A2 by furafylline. *Xenobiotica*, Vol. 24, No. 6, (517).

Coleman, S.; Liu, S.; Linderman, R.; Hodgson, E. & Rose, R.L. (1999). In vitro metabolism of alachlor by human liver microsomes and human cytochrome P450 isoforms. *Chem. Biol. Interact.*, Vol. 122, No. 1, (27-39).

Coleman, S.; Linderman, R.; Hodgson, E. & Rose, R.L. (2000). Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes. *Environ. Health Perspect.*, Vol. 108, No. 12, (1151).

Coumoul, X.; Diry, M. & Barouki, R. (2002). PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides. *Biochemical Pharmacology*, Vol. 64, No. 10, (1513-1519).

Croom, E.L.; Wallace, A.D. & Hodgson, E. (2010). Human variation in CYP-specific chlorpyrifos metabolism. *Toxicology*, Vol. 276, No. 3, (184-191).

Dai, D.; Tang, J.; Rose, R.; Hodgson, E.; Bienstock, R.J.; Mohrenweiser, H.W. & Goldstein, J.A. (2001). Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. *J. Pharmacol. Exp. Ther.*, Vol. 299, No. 3, (825-831).

Das, G.P.; Shaik, A.P. & Jamil, K. (2006). Cytotoxicity and genotoxicity induced by the pesticide profenofos on cultured human peripheral blood lymphocytes. *Drug Chem. Toxicol.*, Vol. 29, No. 3, (313).

Delescluse, C.; Ledirac, N.; Li, R.; Piechocki, M.P.; Hines, R.N.; Gidrol, X. & Rahmani, R. (2001). Induction of cytochrome P450 1A1 gene expression, oxidative stress, and genotoxicity by carbaryl and thiabendazole in transfected human HepG2 and lymphoblastoid cells. *Biochemical Pharmacology*, Vol. 61, No. 4, (399-407).

Denison, M.S. & Whitlock Jr., J.P. (1995). Xenobiotic-inducible transcription of cytochrome P450 genes. *J. Biol. Chem.*, Vol. 270, No. 31, (18175-18178).

Dhawan, A.; Parmar, D.; Das, M. & Seth, P.K. (1990). Cytochrome P-450 dependent monoxygenases in neuronal and glial cells: Inducibility and specificity. *Biochem. Biophys. Res. Commun.*, Vol. 170, No. 2, (441-447).

Diericks, P.J. (1999). CYP1/2 activation and glutathione-dependent cytotoxicity of four pesticides in Hep G2 and Fa32 cells. *Toxicology in Vitro*, Vol. 13, No. 4-5, (779-783).

Dutcher, J.S. & Boyd, M.R. (1979). Species and strain differences in target organ alkylation and toxicity by 4-ipomeanol predictive value of covalent binding in studies of target organ toxicities by reactive metabolites. *Biochemical Pharmacology*, Vol. 28, No. 23, (3367-3372).

Ekins, S.; Mäenpää, J. & Wrighton, S.A. (1999). In vitro metabolism: subcellular fractions, In: *Handbook of drug metabolism*, Woolf, T.F., (Ed.), (369-399). Marcel Dekker, , New York

Ekins, S.; Ring, B.J.; Grace, J.; McRobie-Belle, D.J. & Wrighton, S.A. (2000). Present and future in vitro approaches for drug metabolism. *J. Pharmacol. Toxicol. Methods*, Vol. 44, No. 1, (313-324).

Eriksson, C. & Brittebo, E.B. (1991). Metabolic activation of the herbicide dichlobenil in the olfactory mucosa of mice and rats. *Chem. Biol. Interact.*, Vol. 79, No. 2, (165-177).
Metabolism of Pesticides by Human Cytochrome P450 Enzymes In Vitro – A Survey

Foxenberg, R.J.; McGarrigle, B.P.; Knaak, J.B.; Kostyniak, P.J. & Olson, J.R. (2007). Human hepatic cytochrome P450-specific metabolism of parathion and chlorpyrifos. Drug Metab. Dispos., Vol. 35, No. 2, (189-193).

Godin, S.J.; Crow, J.A.; Scollon, E.J.; Hughes, M.F.; DeVito, M.J. & Ross, M.K. (2007). Identification of rat and human cytochrome P450 isoenzymes and a rat serum esterase that metabolize the pyrethroid insecticides deltamethrin and esfenvalerate. Drug Metab. Dispos., Vol. 35, No. 9, (1664-1671).

Gonzalez, F.J.; Liu, S. & Yano, M. (1993). Regulation of cytochrome P450 genes: molecular mechanisms. Pharmacogenetics and Genomics, Vol. 3, No. 1, (51-57).

Guengerich, F.P. (1995). Cytochromes P450 of human liver. Classification and activity profiles of the major enzymes, In: Advances in drug metabolism in man. Pacifici, G.M. & Fracchia, G.N., (Ed.), (179-231), Office for the Official Publications of the European Communities, ISBN: 978-9282739822, Luxembourg.

Guengerich, F.P. (1999). Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu. Rev. Pharmacol. Toxicol., Vol. 39, No. 1, (1-17).

Guengerich, F.P. (1995). Cytochromes P450 of human liver. Classification and activity profiles of the major enzymes, In: Advances in drug metabolism in man. Office for the Official Publications of the European Communities, Pacifici, G.M. & Fracchia, G.N., (Ed.), (179-231), Luxembourg.

Guengerich, F.P. (2001). Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol., Vol. 14, No. 6, (611-650).

Handschin, C. & Meyer, U.A. (2003). Induction of Drug Metabolism: The Role of Nuclear Receptors. Pharmacological Reviews, Vol. 55, No. 4, (649-673).

Hjelle, J.; Hazelton, G.; Klaassen, C. & Hjelle, J. (1986). Glucuronidation and sulfation in rabbit kidney. J. Pharmacol. Exp. Ther., Vol. 236, No. 1, (150-156).

Hodgson, E. & Goldstein, J.A. (2001). Metabolism of toxicants: phase I reactions and pharmacogenetics, In: Introduction to Biochemical Toxicology, Hodgson, E. & Smart, R.C., (Ed.), (67-113), Wiely, New York.

Hodgson, E. (2001). In vitro human phase I metabolism of xenobiotics I: Pesticides and related chemicals used in agriculture and public health. J Biochem Mol Toxicol, Vol.15 (296-299).

Hodgson, E. (2003). In vitro human phase I metabolism of xenobiotics I: Pesticides and related compounds used in agriculture and public health, may 2003. J. Biochem. Mol. Toxicol., Vol. 17, No. 4, (201-206).

Jacolot, F.; Simon, I.; Dreano, Y.; Beaune, P.; Riche, C. & Berthou, F. (1991). Identification of the cytochrome P450 IIIA family as the enzymes involved in the N-demethylation of tamoxifen in human liver microsomes. Biochem. Pharmacol., Vol. 41, No. 12, (1911-1919).

Johri, A.; Yadav, S.; Dhawan, A. & Parmar, D. (2007). Overexpression of cerebral and hepatic cytochrome P450p50 alters behavioral activity of rat offspring following prenatal exposure to lindane. Toxicology and Applied Pharmacology, Vol. 225, No. 3, (278-292).

Joo, H.; Choi, K. & Hodgson, E. (2010). Human metabolism of atrazine. Pestic. Biochem. Physiol., Vol. 98, No. 1, (73-79).

www.intechopen.com
Kanebratt, K.P. & Andersson, T.B. (2008). Evaluation of HepaRG cells as an in vitro model for human drug metabolism studies. *Drug Metab. Dispos.*, Vol. 36, No. 7, (1444-1452).

Kappers, W.A.; Edwards, R.J.; Murray, S. & Boobis, A.R. (2001). Diazinon Is Activated by CYP2C19 in Human Liver. *Toxicol. Appl. Pharmacol.*, Vol. 177, No. 1, (68-76).

Khan, W.A.; Park, S.S.; Gelboin, H.V.; Bickers, D.R. & Mukhtar, H. (1989). Monoclonal antibodies directed characterization of epidermal and hepatic cytochrome P-450 isozymes induced by skin application of therapeutic crude coal tar. *J. Invest. Dermatol.*, Vol. 93, No. 1, (40-45).

Lang, D.H.; Rettie, A.E. & Bocker, R.H. (1997). Identification of enzymes involved in the metabolism of atrazine, terbuthylazine, ametryne, and terbutryne in human liver microsomes. *Chem. Res. Toxicol.*, Vol. 10, No. 9, (1037-1044).

Lawton, M.; Gasser, R.; Tynes, R.; Hodgson, E. & Philpot, R. (1990). The flavin-containing monooxygenase enzymes expressed in rabbit liver and lung are products of related but distinctly different genes. *J. Biol. Chem.*, Vol. 265, No. 10, (5855-5861).

LeBlanc, G.A. & Dauterman, W.C. (2001). Conjugation and elimination of toxicants, In: *Introduction to Biochemical Toxicology*, Hodgson, E. & Smart, R.C., (Ed.), Wiley, ISBN: 9780838543320, New York.

Lee, H.; Moon, J.; Chang, C.; Choi, H.; Park, H.; Park, B.; Lee, H.; Hwang, E.; Lee, Y.; Liu, K. & Kim, J. (2006). Stereoselective metabolism of endosulfan by human liver microsomes and human cytochrome P450 isoforms. *Drug Metab. Dispos.*, Vol. 34, No. 7, (1090-1095).

Lemaire, G.; de Sousa, G. & Rahmani, R. (2004). A PXR reporter gene assay in a stable cell culture system: CYP3A4 and CYP2B6 induction by pesticides. *Biochem. Pharmacol.*, Vol. 68, No. 12, (2347-2358).

Leoni, C.; Buratti, F.M. & Testai, E. (2008). The participation of human hepatic P450 isoforms, flavin-containing monooxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion. *Toxicol. Appl. Pharmacol.*, Vol. 233, No. 2, (343-352).

Liska, D.; Lyon, M. & Jones, D.S. (2006). Detoxification and biotransformational imbalances. *J Sci Heal*, Vol. 2, No. 2, (122-140).

Low, L.K. (1998). Metabolic changes of drugs and related organic compounds, In: *Wilson and Gisvold’s textbook of organic medicinal and pharmaceutical chemistry*, Delgado, J.N. & Remers, W.A., (Ed.), (43-122), Lippincott-Raven, ISBN: 0397515839, Philadelphia.

Mazur, C.S. & Kenneke, J.F. (2008). Cross-species comparison of conazole fungicide metabolites using rat and rainbow trout (Onchorhynchus mykiss) hepatic microsomes and purified human CYP 3A4. *Environ. Sci. Technol.*, Vol. 42, No. 3, (947-954).

Mehmood, Z.; Williamson, M.P.; Kelly, D.E. & Kelly, S.L. (1996). Metabolism of organochlorine pesticides: The role of human cytochrome P450 3A4. *Chemosphere*, Vol. 33, No. 4, (759-769).

Mutch, E.; Daly, A.K.; Leathart, J.B.; Blain, P.G. & Williams, F.M. (2003). Do multiple cytochrome P450 isoforms contribute to parathion metabolism in man? *Arch. Toxicol.*, Vol. 77, No. 6, (313-320).
Mutch, E.; Blain, P.G. & Williams, F.M. (1999). The role of metabolism in determining susceptibility to parathion toxicity in man. *Toxicol. Lett.*, Vol. 107, No. 1-3, (177-187).

Mutch, E. & Williams, F.M. (2006). Diazinon, chlorpyrifos and parathion are metabolised by multiple cytochromes P450 in human liver. *Toxicology*, Vol. 224, No. 1-2, (22-32).

Nagahori, H.; Yoshino, H.; Tomigahara, Y.; Isobe, N.; Kaneko, H. & Nakatsuka, I. (2000). Metabolism of furametpyr. 1. identification of metabolites and in vitro biotransformation in rats and humans. *J. Agric. Food Chem.*, Vol. 48, No. 11, (5754-5759).

Nebert, D.W. & Russell, D.W. (2002). Clinical importance of the cytochromes P450. *Lancet*, Vol. 360, No. 9340, (1155-1162).

Oesch, F.; Herrero, M.E.; Hengstler, J.G.; Lohmann, M. & Arand, M. (2000). Metabolic Detoxification: Implications for Thresholds. *Toxicol Pathol*, Vol. 28, No. 3, (382-387).

Ohhira, S.; Enomoto, M. & Matsui, H. (2006). In vitro metabolism of tributyltin and triphenyltin by human cytochrome P-450 isoforms. *Toxicology*, Vol. 228, No. 2-3, (171-177).

Parkinson, A. (2001). Biotransformation of xenobiotics, In: *Casarett and Doull's toxicology: the basic science of poisons*, Klaassen, C.D., (Ed.), (113–186), McGraw-Hill Medical Pub. Division, ISBN: 0071124555 : 44.99; 0071347216 (U.S.), New York ; London

Pelkonen, O.; Turpeinen, M.; Hakkola, J.; Honkkakoski, P.; Hukkanen, J. & Raunio, H. (2008). Inhibition and induction of human cytochrome P450 enzymes: current status. *Arch. Toxicol.*, Vol. 82, No. 10, (667-715).

Pelkonen, O.; Kaltiala, E.H.; Larmi, T.K.I. & Karki, N.T. (1974). Cytochrome P 450 linked monoxygenase system and drug induced spectral interactions in human liver microsomes. *Chem. Biol. Interact.*, Vol. 9, No. 3, (205-216).

Pelkonen, O. & Turpeinen, M. (2007). In vitro–in vivo extrapolation of hepatic clearance: Biological tools, scaling factors, model assumptions and correct concentrations. *Xenobiotica*, Vol. 37, No. 10, (1066-1089).

Pelkonen, O. & Raunio, H. (2005). In vitro screening of drug metabolism during drug development: can we trust the predictions? *Expert Opin. Drug Metab. Toxicol.*, Vol. 1, No. 1, (49-59).

Pelkonen, O.; Turpeinen, M.; Uusitalo, J.; Rautio, A. & Raunio, H. (2005). Prediction of drug metabolism and interactions on the basis of in vitro investigations. *Basic Clin. Pharmacol. Toxicol.*, Vol. 96, No. 3, (167-175).

Peters, W.H.M. & Kremers, P.G. (1989). Cytochromes P-450 in the intestinal mucosa of man. *Biochemical Pharmacology*, Vol. 38, No. 9, (1535-1538).

Rendic, S. & Di Carlo, F.J. (1997). Human cytochrome P450 enzymes: A status report summarizing their reactions, substrates, inducers, and inhibitors. *Drug Metab. Rev.*, Vol. 29, No. 1-2, (413-580).
Rodrigues, A.D. (1999). Integrated cytochrome P450 reaction phenotyping. Attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. *Biochem. Pharmacol.*, Vol. 57, No. 5, (465-480).

Rose, R.L. & Hodgson, E. (2004). Metabolism of toxicants, In: *Text Book of Modern Toxicology*, Hodgson, E., (Ed.), (111-148), Wiley, ISBN: 978-0-470-46206-5, New York.

Rostami-Hodjegan, A. & Tucker, G.T. (2007). Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. *Nat. Rev. Drug Discov.*, Vol. 6, No. February, (140-148).

Sams, C.; Mason, H.J. & Rawbone, R. (2000). Evidence for the activation of organophosphate pesticides by cytochromes P450 3A4 and 2D6 in human liver microsomes. *Toxicol. Lett.*, Vol. 116, No. 3, (217-221).

Sanderson, J.T.; Boerma, J.; Lansbergen, G.W.A. & van den Berg, M. (2002). Induction and Inhibition of Aromatase (CYP19) Activity by Various Classes of Pesticides in H295R Human Adrenocortical Carcinoma Cells. *Toxicology and Applied Pharmacology*, Vol. 182, No. 1, (44-54).

Schmider, J.; Greenblatt, D.; von Moltke, L.; Harmatz, J. & Shader, R. (1995). N-demethylation of amitriptyline in vitro: role of cytochrome P-450 3A (CYP3A) isoforms and effect of metabolic inhibitors. *J. Pharmacol. Exp. Ther.*, Vol. 275, No. 2, (592-597).

Schulz-Jander, D.A. & Casida, J.E. (2002). Imidacloprid insecticide metabolism: human cytochrome P450 isoymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction. *Toxicol. Lett.*, Vol. 132, No. 1, (65-70).

Scolon, E.J.; Starr, J.M.; Godin, S.J.; DeVito, M.J. & Hughes, M.F. (2009). In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome P450 isoforms. *Drug Metab. Dispos.*, Vol. 37, No. 1, (221-228).

Sesardic, D.; Boobis, A.R.; Murray, B.P.; Murray, S.; Segura, J.; de la Torre, R. & Davis, D.S. (1990). Furafylline is a potent and selective inhibitor of cytochrome P4501A2 in man. *Br. J. Clin. Pharmacol.*, Vol. 29, No. 5, (651-663).

Sohl, C.D.; Isin, E.M.; Eoff, R.L.; Marsch, G.A.; Stec, D.F. & Guengerich, F.P. (2008). Cooperativity in Oxidation Reactions Catalyzed by Cytochrome P450 1A2. *Journal of Biological Chemistry*, Vol. 283, No. 11, (7293-7308).

Stresser, D.M. & Kupfer, D. (1998). Human cytochrome P450-catalyzed conversion of the proestrogenic pesticide methoxychlor into an estrogen. Role of CYP2C19 and CYP1A2 in O-demethylation. *Drug Metab. Dispos.*, Vol. 26, No. 9, (868-874).

Sun, G.; Thai, S.; Tully, D.B.; Lambert, G.R.; Goetz, A.K.; Wolf, D.C.; Dix, D.J. & Nesnow, S. (2005). Propiconazole-induced cytochrome P450 gene expression and enzymatic activities in rat and mouse liver. *Toxicol. Lett.*, Vol. 155, No. 2, (277-287).

Tang, J.; Cao, Y.; Rose, R.L.; Brimfield, A.A.; Dai, D.; Goldstein, J.A. & Hodgson, E. (2001). Metabolism of chlorpyrifos by human cytochrome P450 isoforms and human, mouse, and rat liver microsomes. *Drug Metab. Dispos.*, Vol. 29, No. 9, (1201-1204).

Tang, J.; Cao, Y.; Rose, R.L. & Hodgson, E. (2002). In vitro metabolism of carbaryl by human cytochrome P450 and its inhibition by chlorpyrifos. *Chem. Biol. interact.*, Vol. 141, No. 3, (229-241).
Metabolism of Pesticides by Human Cytochrome P450 Enzymes In Vitro – A Survey

Tang, J.; Tang, J.; Amin Usmani, K.; Hodgson, E. & Rose, R.L. (2004). In vitro metabolism of fipronil by human and rat cytochrome P450 and its interactions with testosterone and diazepam. *Chem. Biol. Interact.*, Vol. 147, No. 3, (319-329).

Testa, B. & Krämer, S. (2006). The Biochemistry of Drug Metabolism? An Introduction. *Chemistry & Biodiversity*, Vol. 3, No. 10, (1053-1101).

Tolonen, A.; Turpeinen, M.; Usitalo, J. & Pelkonen, O. (2005). A simple method for differentiation of monoisotopic drug metabolites with hydrogen–deuterium exchange liquid chromatography/electrospray mass spectrometry. *European Journal of Pharmaceutical Sciences*, Vol. 25, No. 1, (155-162).

Tolonen, A.; Petsalo, A.; Turpeinen, M.; Usitalo, J. & Pelkonen, O. (2007). In vitro interaction cocktail assay for nine major cytochrome P450 enzymes with 13 probe reactions and a single LC/MSMS run: analytical validation and testing with monoclonal anti-CYP antibodies. *J. Mass Spec.*, Vol. 42, No. 7, (960-966).

Tremaine, L.M.; Diamond, G.L. & Quebbemann, A.J. (1985). Quantitative determination of organ contribution to excretory metabolism. *Journal of Pharmacological Methods*, Vol. 13, No. 1, (9-35).

Turpeinen, M.; Usitalo, J.; Jalonen, J. & Pelkonen, O. (2005). Multiple P450 substrates in a single run: rapid and comprehensive in vitro interaction assay. *Eur. J. Pharm. Sci.*, Vol. 24, No. 1, (123-132).

Turpeinen, M.; Korhonen, L.E.; Tolonen, A.; Usitalo, J.; Juvenile, R.; Raunio, H. & Pelkonen, O. (2006). Cytochrome P450 (CYP) inhibition screening: Comparison of three tests. *Eur. J. Pharm. Sci.*, Vol. 29, No. 2, (130-138).

Turpeinen, M.; Tolonen, A.; Chesne, C.; Guillouzo, A.; Usitalo, J. & Pelkonen, O. (2009). Functional expression, inhibition and induction of CYP enzymes in HepaRG cells. *Toxicol In Vitro*, Vol. 23, No. 4, (748-753).

Usmani, K.A.; Rose, R.L.; Goldstein, J.A.; Taylor, W.G.; Brimfield, A.A. & Hodgson, E. (2002). In vitro human metabolism and interactions of repellent N,N-diethyl-m-toluamide. *Drug Metab. Dispos.*, Vol. 30, No. 3, (289-294).

Usmani, K.A.; Hodgson, E. & Rose, R.L. (2004a). In vitro metabolism of carbofuran by human, mouse, and rat cytochrome P450 and interactions with chlorpyrifos, testosterone, and estradiol. *Chem. Biol. Interact.*, Vol. 150, No. 3, (221-332).

Usmani, K.A.; Karoly, E.D.; Hodgson, E. & Rose, R.L. (2004b). In vitro sulfoxidation of thioether compounds by human cytochrome P450 and flavin-containing monoxygenase isoforms with particular reference to the CYP2C subfamily. *Drug Metab. Dispos.*, Vol. 32, No. 3, (333-339).

White, R.E. (2000). High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. *Annu. Rev. Pharmacol. Toxicol.*, Vol. 40, No. 1, (133-157).

Wolkers, J.; Witkamp, R.F.; Nijmeijer, S.M.; Burkow, I.C.; de Groene, E.M.; Lydersen, C.; Dahle, S. & Monsenhouwer, M. (1998). Phase I and phase II enzyme activities in Ringed seals (Phoca hispida): characterization of hepatic cytochrome P450 by activity patterns, inhibition studies, mRNA analyses, and western blotting. *Aquatic Toxicol.*, Vol. 44, No. 1-2, (103-115).

Wyde, M.E.; Bartolucci, E.; Ueda, A.; Zhang, H.; Yan, B.; Negishi, M. & You, L. (2003). The Environmental Pollutant 1,1-Dichloro-2,2-bis (p-chlorophenyl)ethylene Induces Rat
Hepatic Cytochrome P450 2B and 3A Expression through the Constitutive Androstane Receptor and Pregnane X Receptor. *Mol Pharmacol*, Vol. 64, No. 2, (474-481).

Yamazaki, H.; Inoue, K.; Turvy, C.G.; Guengerich, F.P. & Shimada, T. (1997). Effects of freezing, thawing, and storage of human liver samples on the microsomal contents and activities of cytochrome P450 enzymes. *Drug Metab. Dispos.*, Vol. 25, No. 2, (168-174).

Zamek-Gliszczynski, M.J.; Hoffmaster, K.A.; Nezasa, K.; Tallman, M.N. & Brouwer, K.L.R. (2006). Integration of hepatic drug transporters and phase II metabolizing enzymes: mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. *Eur. J. Pharm. Sci.*, Vol. 27, No. 5, (447-486).

Zanger, U.; Turpeinen, M.; Klein, K. & Schwab, M. (2008). Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. *Anal. Bioanal. Chem.*, Vol. 392, No. 6, (1093-1108).
This book contains 30 Chapters divided into 5 Sections. Section A covers integrated pest management, alternative insect control strategies, ecological impact of insecticides as well as pesticides and drugs of forensic interest. Section B is dedicated to chemical control and health risks, applications for insecticides, metabolism of pesticides by human cytochrome p450, etc. Section C provides biochemical analyses of action of chlorfluazuron, pest control effects on seed yield, chemical ecology, quality control, development of ideal insecticide, insecticide resistance, etc. Section D reviews current analytical methods, electroanalysis of insecticides, insecticide activity and secondary metabolites. Section E provides data contributing to better understanding of biological control through Bacillus sphaericus and B. thuringiensis, entomopathogenic nematodes insecticides, vector-borne disease, etc. The subject matter in this book should attract the reader's concern to support rational decisions regarding the use of pesticides.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Khaled Abass, Miia Turpeinen, Arja Rautio, Jukka Hakkola and Olavi Pelkonen (2012). Metabolism of Pesticides by Human Cytochrome P450 Enzymes In Vitro – A Survey, Insecticides - Advances in Integrated Pest Management, Dr. Farzana Perveen (Ed.), ISBN: 978-953-307-780-2, InTech, Available from: http://www.intechopen.com/books/insecticides-advances-in-integrated-pest-management/metabolism-of-pesticides-by-human-cytochrome-p450-enzymes-in-vitro-a-survey
