Invariant measures for multidimensional fractional stochastic volatility models

Balázs Gerencsér1,2 · Miklós Rásonyi1,2

Received: 27 August 2021 / Revised: 18 March 2022 / Accepted: 21 May 2022 / Published online: 20 June 2022
© The Author(s) 2022

Abstract
We establish convergence to an invariant measure as time tends to infinity, for a large class of (possibly non-Markovian) stochastic volatility models. Our arguments are based on a novel coupling idea for Markov chains which also extends to Markov chains in random environments in an efficient way.

Keywords Markov chain in random environment · Coupling · Stochastic volatility · Invariant measure · Fractional volatility

Mathematics Subject Classification 60J05 · 60J25 · 91G80

1 Introduction
Stochastic volatility models (in the simplest one-dimensional case) are of the form
\[dS_t = \nu_t(S_t, V_t) dt + V_t S_t \, d\overline{W}_t, \]
where \(\overline{W}\) is a Brownian motion, \(\nu_t\) is a suitable function and \(S\) describes the (discounted) price of an asset with volatility process \(V\).

This article is dedicated to István Gyöngy on the occasion of his 70th birthday.

Both authors enjoyed the support of the “Lendület” grant LP 2015-6 of the Hungarian Academy of Sciences. The first author was also supported by NRDI (National Research, Development and Innovation Office) grant FK 135711, the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the ÚNKP-20-5 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund.

Miklós Rásonyi
rasonyi@renyi.hu

1 Alfréd Rényi Institute of Mathematics, Budapest, Hungary
2 Eötvös Loránd University, Budapest, Hungary
The present paper is about the long-term behaviour of S. In the Markovian case, V satisfies a stochastic differential equation (SDE),

$$dV_t = \nu_2(V_t) dt + \sigma(V_t) dB_t,$$

(2)

where B is another Brownian motion, possibly correlated with \overline{W}; ν_2, σ are suitable functions. In such diffusion models there is an arsenal of techniques from Markov process theory to show that the law of S_t tends to a limit as $t \to \infty$, see e.g. [12, 25, 32, 33, 38, 41, 42], Chapter 20 of [31] and Subsection 7.1 of [22].

Recently, however, fractional stochastic volatility models have become popular (see [9, 15, 45]), where the process V is not Markovian. For instance,

$$V_t = \exp(J_t), \quad J_t := \int_{-\infty}^t K(t-s) dB_s,$$

(3)

with some (two-sided) Brownian motion B, and a suitable function $K : \mathbb{R}_+ \to \mathbb{R}$. In such a setting the question of stochastic stability becomes difficult, one cannot rely on the usual Markovian techniques and there seem to be no results in the literature that would imply the convergence of the law of S_t as $t \to \infty$ at this level of generality.

We now explain our motivations for studying such models. Asset price processes often show mean-reversion (for instance, commodities or commodity futures, see [6, 8]). Optimal investment problems for such assets were considered in [17], see also the study [13] on asymptotic arbitrage. Long-term investments may also be studied in the framework of ergodic, risk-sensitive or adaptive control (see e.g. [5, 11, 24, 36]). All these approaches require that the law of S_t should converge to a steady state as $t \to \infty$. Long-term investment problems for fractional processes were treated in [18, 34], but these studies do not cover fractional stochastic volatility models.

The present paper proves that – under mean-reversion and smoothness conditions on the drift of S and integrability assumptions on V_0, S_0 – the stochastic system (S_t, V_t) converges to an invariant probability, independent of the initialization S_0. A multi-asset framework is treated and B, \overline{W} are allowed to have a stochastic correlation. Our arguments are based on a new coupling construction for (discrete-time) Markov processes in random environments.

In the extant literature on fractional volatility, asset dynamics is most often considered for purposes of derivative pricing; [4, 14, 20] are early examples. These papers thus work under the risk-neutral measure, which corresponds to taking $\nu_1 \equiv 0$ in (1). As we have in mind a different class of problems (portfolio optimization), we work under the physical probability, where ν_1 is non-zero.

In Sect. 2 we rigorously formulate our main results, Theorems 2.9 and 2.10. A novel (discrete-time) coupling method is introduced in Sect. 3. As a warm-up, it is first presented for (ordinary) Markov chains in Sect. 3.1. Sect. 3.2 develops the same ideas in the more involved setting of Markov chains in random environments. In Sect. 4 we prove the main results, combining advanced Malliavin calculus techniques with the discrete-time construction of Sect. 3.2.
2 Results

Scalar product in finite-dimensional Euclidean spaces is denoted by \(\langle \cdot, \cdot \rangle \), the corresponding norm is \(| \cdot | \), where the dimension of the space may vary. For a matrix \(A \), \(A^* \) denotes its transpose. For matrices \(A \), \(|A| \) denotes the operator norm.

All the random objects in the present paper live on a fixed probability space \((\Omega, \mathcal{F}, P)\). For a Polish space \(\mathcal{X} \), its Borel sigma-algebra is denoted \(\mathcal{B}(\mathcal{X}) \). If \(Z : \Omega \to \mathcal{X} \) is \(\mathcal{F}/\mathcal{B}(\mathcal{X}) \) measurable (that is, if \(Z \) is a \(\mathcal{X} \)-valued random variable) then \(\mathcal{Z}(Z) \) denotes its law on \(\mathcal{B}(\mathcal{X}) \).

Fix \(d, m \in \mathbb{N} \setminus \{0\} \) with \(d \leq m \). The number of assets is \(d \) and the dimension of the driving noise \(m \). For every \(k \geq 1 \), let \(\mathcal{W}^k \) denote the set of continuous \(\mathbb{R}^k \)-valued functions on \(\mathbb{R} \) which is a Polish space under the metric

\[
d_k(f, g) := \sum_{i=-\infty}^{\infty} \frac{1}{2^{|i|}} \left[1 \wedge \sup_{u \in [i,i+1]} |f(u) - g(u)| \right], \quad f, g \in \mathcal{W}^k.
\]

Let \(B_t, t \in \mathbb{R} \) be a two-sided \(m \)-dimensional Brownian motion (i.e. \(B_t, B_{-t}, t \in \mathbb{R}_+ \) are independent standard \(m \)-dimensional Brownian motions), let \(\mathcal{G}_t, t \in \mathbb{R} \) denote its completed natural filtration. Let \(\mathcal{V} \) denote the set of \(d \times d \) non-singular matrices, \(\mathcal{R} \) the set of \(d \times m \) matrices \(r \) satisfying \(rr^* < I \), where \(I \) is the \(d \)-dimensional identity matrix and \(A < B \) for symmetric, positive semidefinite \(d \times d \) matrices \(A, B \) means that \(B - A \) is positive definite. Similarly, \(A \preceq B \) means that \(B - A \) is positive semidefinite and \(\sqrt{A} \) denotes the usual (symmetric) square root of semidefinite matrices.

Let \(V_t, t \in \mathbb{R} \) (resp. \(\rho_t, t \in \mathbb{R} \)) be \(\mathcal{V} \)-valued (resp. \(\mathcal{R} \)-valued) processes with continuous trajectories.

Notice that \(B_t := (B_t - B_{t+s})_{s \in \mathbb{R}} \) (resp. \(V_t := (V_{t+s})_{s \in \mathbb{R}} \) and \(\rho_t := (\rho_{t+s})_{s \in \mathbb{R}} \)) can be naturally regarded as a \(\mathcal{W}^m \)-valued (resp. \(\mathcal{W}^{d \times d} \)-valued and \(\mathcal{W}^{d \times m} \)-valued) random process indexed by \(t \in \mathbb{R} \).

Assumption 2.1 There are measurable functions \(F_1 : \mathcal{W}^m \to \mathcal{W}^{d \times d} \), \(F_2 : \mathcal{W}^m \to \mathcal{W}^{d \times m} \) such that \(V_t = F_1(B_t) \), \(\rho_t = F_2(B_t) \). Furthermore, \((V_t, \rho_t), t \in \mathbb{R} \) is adapted to \(\mathcal{G}_t, t \in \mathbb{R} \).

In plain English, \((V_t, \rho_t)\) is a nonanticipative functional of the increments of the Brownian motion \(B \) up to \(t \). A specification like (3) is a typical example. Under Assumption 2.1, \((V_t, \rho_t, B_t), t \in \mathbb{R} \) is a stationary process in the strong sense.

Let \(W_t, t \in \mathbb{R}_+ \) be another, \(d \)-dimensional standard Brownian motion with (completed) natural filtration \(\mathcal{F}_t, t \in \mathbb{R}_+ \). Instead of prices, it is more convenient to work with log-prices. Hence we consider \(d \) financial assets whose log-price is given by the \(d \)-dimensional process \(L_t, t \in \mathbb{R}_+ \) which is the solution of the stochastic differential equation

\[
dL_t = \zeta(L_t, V_t) dt + V_t \rho_t \, dB_t + V_t \sqrt{I - \rho_t \rho_t^*} \, dW_t, \tag{4}
\]

where \(L_0 \) is a random variable and \(\zeta : \mathbb{R}^d \times \mathcal{V} \to \mathbb{R}^d \) is a measurable function.
Assumption 2.2 Let G_∞ be independent of \mathcal{F}_∞. Let $L_0 = l(R, V_0, R_0)$ for some measurable $l : [0, 1] \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and $[0, 1]$-uniformly distributed random variable R, which is assumed to be independent of $G_\infty \lor \mathcal{F}_\infty$.

Remark 2.3 An arbitrary joint law for (L_0, V_0, R_0) can be realized for suitable l, hence Assumption 2.2 is not restrictive at all. For practical applications, actually, one may assume L_0 to be constant.

Assumption 2.2, together with Assumptions 2.4 and 2.7, stipulated below, guarantee a unique $(\mathcal{F}_t \lor G_t)_{t \in \mathbb{R}_+}$-adapted solution to (4), by Theorem 7 on page 82 of [28].

Assumption 2.4 The function $\zeta(x, v)$ is twice continuously differentiable in its first variable, $\partial_x \zeta, \partial_{xx} \zeta$ are bounded. Furthermore, there is $K > 0$ such that $|\zeta(x, v_1) - \zeta(x, v_2)| \leq K (1 + |v_1| + |v_2|)|v_1 - v_2|$ for all $x \in \mathbb{R}^d, v_1, v_2 \in \mathcal{V}$ (polynomial Lipschitz condition in v).

The following mean-reversion (or dissipativity) condition is rather standard, also in a non-Markovian context, see e.g. [21].

Assumption 2.5 There exist $\alpha, \beta > 0, \xi \geq 2$ such that

$$\langle x, \zeta(x, v) \rangle \leq -\alpha |x|^2 + \beta (1 + |v|^\xi), \quad x \in \mathbb{R}^d, \quad v \in \mathcal{V}. $$

Example 2.6 We briefly comment on the meaning of Assumptions 2.4 and 2.5 in a simple case with one asset ($d = 1$) whose price satisfies

$$dS_t = v_1(S_t)S_t dt + V_t S_t d\tilde{W}_t$$

with some $S_0 > 0$, with a $(\mathbb{R} \setminus \{0\}) \times (-1, 1)$-valued stationary process (V_t, ρ_t) and Brownian motion $d\tilde{W}_t = \rho_t dB_t + \sqrt{1 - \rho_t^2}dW_t$. Let the function v_1 be such that $\tilde{v}_1(x) := v_1(\exp(x))$ is twice continuously differentiable with $\tilde{v}_1', \tilde{v}_1''$ bounded and satisfying

$$x \tilde{v}_1(x) \leq -\tilde{\alpha}|x|^2 + \tilde{\beta}, \quad x \in \mathbb{R}$$

with some $\tilde{\alpha}, \tilde{\beta} > 0$. Then $L_t := \ln(S_t)$ has dynamics

$$dL_t = \left[\tilde{v}_1(L_t) + \frac{V^2_t}{2}\right] dt + V_t d\tilde{W}_t$$

and $\zeta(x, v) := \tilde{v}_1(x) + v^2/2$ satisfies Assumption 2.5 (with $\xi = 2$ and with suitable α, β). Assumption 2.4 also holds true. This example shows how the Lipschitz-continuity condition on v naturally arises in Assumption 2.4. It also shows that the most relevant case is where $\xi = 2$.

Finally, we stipulate moment conditions on the volatility process and on the initial condition.
Assumption 2.7 Let $E[|V_0|^{\max\{\xi,4\}}] < \infty$ holds for the ξ of Assumption 2.5.

Assumption 2.8 Let $E[|L_0|^2] < \infty$ hold.

Our principal result is now presented.

Theorem 2.9 Let Assumptions 2.1, 2.2, 2.4, 2.5, 2.7 and 2.8 be in force. Then

$$\mathcal{L}(L_t, V_t, R_t) \rightarrow \mu_{\sharp}, \ t \rightarrow \infty$$

holds for some probability μ_{\sharp} on $\mathcal{B}(\mathbb{R}^d \times \mathcal{W}^d \times \mathcal{W}^d \times \mathcal{W}^d \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d)$, in the sense of weak convergence of probability measures. The probability μ_{\sharp} does not depend on L_0 and it is invariant in the following sense: if $\mathcal{L}(L_0, V_0, R_0) = \mu_{\sharp}$ then $\mathcal{L}(L_t, V_t, R_t) = \mu_{\sharp}$ for every $t > 0$.

In the following theorem, instead of Assumption 2.5 one assumes the weaker condition (6) below. This comes at the price of strengthening Assumptions 2.7 and 2.8 to (7) below.

Theorem 2.10 Let Assumptions 2.2 and 2.4 hold, let

$$\langle x, \xi(x, v) \rangle \leq -\alpha |x|^{1+y} + \beta (1 + |v|^\xi), \ x \in \mathbb{R}^d, \ v \in \mathcal{W}$$

hold for some $\alpha, \beta > 0, \xi \geq 2 \ and \ 0 < y < 1$. Let us assume

$$E\left[e^{\kappa_0|L_0|}\right] < \infty, \ E\left[e^{\kappa_0|V_0|^{\xi/y}}\right] < \infty$$

for some $\kappa_0 > 0$. Then the conclusions of Theorem 2.9 hold.

3 Coupling constructions

Following the conventions of measure theory, the total variation norm of a finite signed measure μ on $\mathcal{B}(\mathcal{Z})$ is defined as

$$||\mu||_{TV} := \sup_{\phi \in \Phi_1} \left| \int_{\mathcal{Z}} \phi(z) \mu(dz) \right|,$$

where Φ_1 denotes the family of measurable functions $\phi : \mathcal{Z} \rightarrow [-1, 1]$. The underlying \mathcal{Z} may vary but it will always be clear from the context. Note that for \mathcal{Z}-valued random variables Z_1, Z_2 we always have

$$||\mathcal{L}(Z_1) - \mathcal{L}(Z_2)||_{TV} \leq 2P(Z_1 \neq Z_2).$$
3.1 Markov chains

First we are working in the setting of general state space discrete-time Markov chains. Our main ideas are explained in this simple context before turning to Markov chains in random environments in the next subsection.

Proofs for the stochastic stability of Markov chains are usually based on two ingredients, see e.g. [31]. First, it is checked (using Lyapunov functions) that the chain returns often enough to a fixed set C. Second, a minorization condition holds on C for the transition kernel so couplings occur whose probabilities can be estimated. Such C are called “small sets”.

When the state space is \mathbb{R}^d, it happens often that all compact sets are small. This is the case for both discretized and discretely sampled non-degenerate diffusions. The coupling method of the present subsection exploits the latter property, formulated in more abstract terms. Otherwise we rely on standard “coupling from the past” ideas, see e.g. [10, 37].

Although Theorem 3.4 below seems to be new, its statement contains little revelation. Its proof, on the contrary, presents original ideas which will become fruitful in the more general setting of the next subsection where existing results do not apply. We construct couplings on a sequence of small sets and then exploit (assuming a certain form of tightness) that the chain stays in these sets with large enough probabilities. The crucial methodological contribution of this approach is that, instead of analysing return times to a set C (which have a complicated dependence structure due to the random environment), one can repeatedly use simple, one-step estimates.

Another approach based on one-step estimates was presented in [23], using a contraction argument in a suitable metric. When applying it in the presence of the random environment, however, the metric to be used becomes dependent on that environment, see [16].

Let \mathcal{P}_b denote the set of probabilities μ on $\mathcal{B}(\mathcal{X})$ such that if X_0 has law μ then

$$
\lim_{n \to \infty} \sup_{t \in \mathbb{N}} P(X_t \not\in \mathcal{X}_n) = 0.
$$

Notice that \mathcal{P}_b might well be empty. We write $X_0 \in \mathcal{P}_b$ when we indeed mean $\mathcal{L}(X_0) \in \mathcal{P}_b$. We stipulate next that minorization conditions should hold on each of the sets \mathcal{X}_n.

Assumption 3.2 There exists a sequence $\alpha_n \in (0, 1], n \in \mathbb{N}$ and a sequence of probability measures ν_n, $n \in \mathbb{N}$ such that

$$
Q(x, A) \geq \alpha_n \nu_n(A), \ A \in \mathcal{B}(\mathcal{X}), \ x \in \mathcal{X}_n, \ n \in \mathbb{N}.
$$

(9)
We recall a representation result for kernels satisfying the minorization condition (9), in terms of random mappings that are constant on the respective \mathcal{X}_n with probability at least α_n.

Lemma 3.3 Let Assumption 3.2 be in force. Let U be a uniform random variable on $[0, 1]$. For each $n \in \mathbb{N}$, there exists a mapping $T^n(\cdot, \cdot) : [0, 1] \times \mathcal{X} \rightarrow \mathcal{X}$ satisfying

$$Q(x, A) = P(T(U, x) \in A), \ x \in \mathcal{X}, \ A \in \mathcal{B}(\mathcal{X}),$$

such that for all $u \in [0, \alpha_n]$,

$$T^n(u, x_1) = T^n(u, x_2) \text{ for all } x_1, x_2 \in \mathcal{X}_n. \quad (10)$$

Proof Such a representation is well-known, see page 228 in [7]. \qed

Theorem 3.4 Let Assumption 3.2 hold. Then there exists a probability μ_* on $\mathcal{B}(\mathcal{X})$ such that

$$||\mathcal{L}(X_t) - \mu_*||_{TV} \rightarrow 0, \ t \rightarrow \infty \quad (11)$$

holds for every $X_0 \in \mathcal{P}_b$.

Proof Theorem 3.4 follows from Theorem 3.10 below (choosing \mathcal{Y} a singleton). Nonetheless we provide a proof in the present, simple setting, in order to elucidate the main ideas.

Fix $\varepsilon > 0$ and choose $n = n(\varepsilon)$ so large that

$$\sup_{t \in \mathbb{N}} P(X_t \notin \mathcal{X}_n) \leq \varepsilon. \quad (12)$$

We estimate coupling probabilities on \mathcal{X}_n, using independent copies of the random mappings constructed in Lemma 3.3 above.

Let $U_k, k \in -\mathbb{N}$ be an independent sequence of uniform random variables on $[0, 1]$, independent of X_0. Let $T^n(\cdot, \cdot)$ be the mapping constructed in Lemma 3.3. Define the process

$$\tilde{X}_t := [T^n(U_0, \cdot) \circ \cdots \circ T^n(U_{-t+1}, \cdot)](X_0), \ t \in \mathbb{N}$$

where we mean $\tilde{X}_0 = X_0$. Notice that $\mathcal{L} (\tilde{X}_t) = \mathcal{L}(X_t)$ for each $t \in \mathbb{N}$.

Fix integers $1 \leq s < t$. For each $j = 0, \ldots, s$, define the following disjoint events:

$$A^{s,t}_j := \left\{ [T^n(U_{-j}, \cdot) \circ \cdots \circ T^n(U_{-t+1}, \cdot)](X_0) = [T^n(U_{-j}) \circ \cdots \circ T^n(U_{-s+1}, \cdot)](X_0) \right\},$$

$$B^{s,t}_j := \left\{ [T^n(U_{-j}, \cdot) \circ \cdots \circ T^n(U_{-t+1}, \cdot)](X_0) \neq [T^n(U_{-j}, \cdot) \circ \cdots \circ T^n(U_{-s+1}, \cdot)](X_0), \ [T^n(U_{-j}, \cdot) \circ \cdots \circ T^n(U_{-t+1}, \cdot)](X_0) \in \mathcal{X}_n, \ [T^n(U_{-j}, \cdot)](X_0) \in \mathcal{X}_n \right\}.$$
\[\circ \circ \circ T^n(U_{-s+1}, \cdot)(X_0) \in \mathcal{X}_n^c, \]

\[C^{s,t}_j := \Omega \setminus (A^{s,t}_j \cup B^{s,t}_j), \]

where we mean

\[A^{s,t}_j := \left\{ [T^n(U_{-s}, \cdot) \circ \cdots \circ T^n(U_{-t+1}, \cdot)](X_0) = X_0 \right\}, \]

\[B^{s,t}_j := \left\{ [T^n(U_{-s}, \cdot) \circ \cdots \circ T^n(U_{-t+1}, \cdot)](X_0) \neq X_0, [T^n(U_{-s}, \cdot) \circ \cdots \circ T^n(U_{-t+1}, \cdot)](X_0) \in \mathcal{X}_n, X_0 \in \mathcal{X}_n^c \right\}. \]

Define also \(p^{s,t}_j := P(A^{s,t}_j) \). We aim to show that, for \(s \) large, \(p^{s,t}_0 \) is close to 1 for each \(t > s \), which means that \(\tilde{X}_t \) very likely equals \(\tilde{X}_s \). We estimate \(p^{s,t}_j \) by backward recursion. Notice that

\[P(C^{s,t}_j) \leq P([T^n(U_{-s}, \cdot) \circ \cdots \circ T^n(U_{-t+1}, \cdot)](X_0) \notin \mathcal{X}_n) \]

\[+ P([T^n(U_{-s}, \cdot) \circ \cdots \circ T^n(U_{-t+1}, \cdot)](X_0) \notin \mathcal{X}_n) \]

\[= P(X_{t-j} \notin \mathcal{X}_n) + P(X_{s-j} \notin \mathcal{X}_n) \leq 2\epsilon, \]

by (12). Define \(H_{j,t} := \sigma(X_0, U_{-j}, \ldots, U_{-t+1}) \). On the event \(B^{s,t}_j \in H_{j,t} \) we have

\[P\left(A^{s,t}_{j-1} \mid H_{j,t} \right) \geq P\left(U_{j-1+1} \in [0, \alpha_n] \mid H_{j,t} \right) = P\left(U_{j-1+1} \in [0, \alpha_n] \right) = \alpha_n \text{ a.s.} \]

since \(T^n(U_{-j+1}, \cdot) \) is a constant mapping on \(\mathcal{X}_n \) when \(U_{-j+1} \in [0, \alpha_n] \), and \(U_{-j+1} \) is independent of \(H_{j,t} \). On the other hand, on the event \(A^{s,t}_j \in H_{j,t} \) we have

\[P\left(A^{s,t}_{j-1} \mid H_{j,t} \right) = 1 \text{ a.s. for trivial reasons. Hence} \]

\[p^{s,t}_{j-1} \geq p^{s,t}_j + \alpha_n P(B^{s,t}_j) \geq p^{s,t}_j + \alpha_n (1 - p^{s,t}_j - 2\epsilon), \]

using (13). We get by backward recursion using (14), starting from the trivial \(p^{s,t}_s \geq 0 \), that

\[p^{s,t}_0 \geq (1 - 2\epsilon)\alpha_n \frac{1 - (1 - \alpha_n)^s}{1 - (1 - \alpha_n)} = (1 - 2\epsilon)[1 - (1 - \alpha_n)^s], \]

remembering also the formula for the sum of a geometric series. It follows from (8) that for all integers \(1 \leq s < t \),

\[||L(X_t) - L(X_s)||_{TV} \leq 2P(\tilde{X}_t \neq \tilde{X}_s) = 2(1 - p^{s,t}_0) \leq 4\epsilon + 2(1 - \alpha_n)^s, \]

(15)

which is smaller than \(5\epsilon \) for \(s \) large enough. As \(\epsilon \) was arbitrary, the sequence \(L(X_t), t \in \mathbb{N} \) is shown to be Cauchy for the total variation distance hence it converges to some probability \(\mu_+ \).
Let $X_t, X'_t, t \in \mathbb{N}$ denote Markov chains with transition kernel Q, started from $X_0, X'_0 \in \mathcal{P}_b$, respectively. Then, using $U_k, k \in \mathbb{N}$ independent of $\sigma(X_0, X'_0)$, we get $||L(X_t) - L(X'_t)||_{TV} \to 0$ as $t \to \infty$ analogously to the argument above. This shows that μ_* is independent of the choice of $X_0 \in \mathcal{P}_b$.

Remark 3.5 Assume $\mathcal{X} := \mathbb{R}^d$ and $\mathcal{X}_n := \{x \in \mathcal{X} : |x| \leq n\}, n \in \mathbb{N}$. Let $V(x) := g(|x|)$ for some non-decreasing $g : \mathbb{R}_+ \to \mathbb{R}_+$ with $g(\infty) = \infty$. If the initial state X_0 is such that

$$\sup_{k \in \mathbb{N}} E[V(X_k)] < \infty,$$ \hspace{2cm} (16)

then $X_0 \in \mathcal{P}_b$, as seen from Markov’s inequality.

The argument for proving Theorem 3.4 above, in fact, provides us with a convergence rate estimate, too. For each t, (17) below allows to optimize over n and to choose $n = n(t)$ that gives the best estimate.

Corollary 3.6 Under Assumption 3.2, in the setting of Remark 3.5, for each $n \in \mathbb{N}$ and $t \in \mathbb{N}$,

$$||L(X_t) - \mu_*||_{TV} \leq 4 \sup_{k \in \mathbb{N}} E[V(X_k)] g(n) + 2(1 - \alpha_n)^t. \hspace{2cm} (17)$$

Proof This follows from (12), (15) and from Markov’s inequality. \hfill \Box

We demonstrate the application of Corollary 3.6 and the resulting rate through a simple example.

Example 3.7 Consider a stable scalar AR(1) process, where $\mathcal{X} = \mathbb{R}$ and the dynamics is

$$X_{t+1} = \gamma X_t + \epsilon_{t+1}, \hspace{2cm} (18)$$

where $0 < \gamma < 1$, ϵ_t is an independent series of standard Gaussian variables, and X_0 is a constant initialization.

In order to apply Corollary 3.6, we choose $V(x) = g(|x|) = e^{\beta x^2}$ with $\beta < \frac{1 - \gamma^2}{2}$. To confirm (16), expanding the dynamics Eq. (18) we see

$$X_t = \gamma^t X_0 + \sum_{s=1}^{t} \gamma^{t-s} \epsilon_s \sim \mathcal{N}\left(\gamma^t X_0, \frac{1 - \gamma^{2t}}{1 - \gamma^2}\right).$$

Consequently,

$$EV(X_t) = \frac{1}{\sqrt{2\pi \frac{1 - \gamma^{2t}}{1 - \gamma^2}}} \int_{-\infty}^{\infty} e^{-\frac{1 - \gamma^{2t}}{2(1 - \gamma^2)}(z - \gamma^t X_0)^2} e^{\beta z^2} dz \leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1 - \gamma^{2t}}{2}(z - \gamma^t X_0)^2} e^{\beta z^2} dz < \infty,$$
and this quantity is also bounded above uniformly in t by some $c(\gamma, \beta, X_0)$ since $|\gamma^t X_0|$ decreases as $t \to \infty$.

We also need Assumption 3.2, the minorization condition for a sequence of small sets. Let

$$\mathcal{F}_n = [-n, n], \quad \nu = \frac{1}{2} Leb|[-1, 1],$$

for all n. In order to acquire α_n, we need to find the infimum of $\frac{dQ(x, \cdot)}{d\nu(\cdot)}$ on the appropriate sets, and now that they are both absolutely continuous distributions, this boils down to comparing the densities, therefore

$$\alpha_n = \inf_{x \in [-n, n], z \in [-1, 1]} \frac{Q(x, dz)}{\frac{1}{2} dz} = \sqrt{2} \pi e^{-\frac{(\gamma n + 1)^2}{2}}. \quad (19)$$

Substituting the computed expressions Corollary 3.6 provides

$$||\mathcal{L}(X_t) - \mu_*||_{TV} \leq \frac{4c(\gamma, \beta, X_0)}{\exp(\beta n^2)} + 2 \left(1 - \sqrt{2} \pi e^{-\frac{(\gamma n + 1)^2}{2}}\right)^t. \quad (20)$$

It remains to choose n depending on t to get the best bound possible. Clearly there is a tradeoff: for small values of n, the first term is weak while for large values of n the second term increases and can remain bounded away from 0.

Let us present the heuristics to find a near-optimal n. The second term in (20) is approximately

$$2 \exp \left(-t \sqrt{\frac{2}{\pi}} \exp \left(-\frac{(\gamma n + 1)^2}{2}\right)\right).$$

We get the optimal bounds if the two terms agree (ignoring constants):

$$\exp(-\beta n^2) = \exp \left(-t \sqrt{\frac{2}{\pi}} \exp \left(-\frac{(\gamma n + 1)^2}{2}\right)\right),$$

$$\log \beta + 2 \log n = \log t + \frac{1}{2} \log \frac{2}{\pi} - \frac{(\gamma n + 1)^2}{2}.$$

It is easy to see that the value of $\sqrt{\frac{\log t}{\gamma}}$ for n “almost” satisfies the latter equality but it does not lead to the desired estimate (21) below. Still, inspired by this option we choose

$$n = \left\lceil \left(\sqrt{\frac{2}{\gamma}} - \eta\right) \sqrt{\log t} \right\rceil$$
with some small $\eta > 0$. Using this choice in our bound (20) and noting

$$(\gamma n + 1)^2 \leq \left(\gamma \left(\frac{\sqrt{2}}{\gamma} - \eta \right) \sqrt{\log t + 2} \right)^2$$

we get

$$||L(X_t) - \mu_*||_{TV} \leq \frac{4c(\gamma, \beta, X_0)}{\exp\left(\beta \left(\frac{\sqrt{2}}{\gamma} - \eta \right)^2 \log t \right)} + 2 \left[1 - \sqrt{\frac{2}{\pi}} \exp \left[- \left(\left(\frac{1}{\sqrt{2}} - \eta \right)^2 \sqrt{\log t + \sqrt{2}} \right) \right] \right]^t.$$

In the exponent of the first term we could choose the coefficient of the logarithm arbitrarily close to $1 - \frac{\gamma^2}{2} \left(\frac{\sqrt{2}}{\gamma} \right)^2 = \frac{1}{\gamma^2} - 1$. Although the second term looks daunting, observe that it has the order of $(1 - t^{-1 + \eta'})^t$ with some $\eta' > 0$ therefore it has subpolynomial decay and is negligible compared to the first term.

Summing up, for a rate estimate we get that for any $h > 0$ there is some constant $C_h > 0$ such that

$$||L(X_t) - \mu_*||_{TV} \leq \frac{C_h}{t^{\frac{1}{\gamma^2} - 1 - h}}.$$ (21)

In the model (18), $||L(X_t) - \mu_*||_{TV}$ decreases geometrically in t so only a suboptimal rate can be achieved by our method. Nevertheless, the estimates leading to (21) are of great interest since they can serve as a basis for similar results for certain non-Markovian models, where power convergence rates are common, see e.g. [21]. One can thus treat models like (32) below (which are not covered by current literature).

Then, using technology from [16, 29], various mixing properties and laws of large numbers (with rate estimates) can be established for functionals of the process X_t, $t \in \mathbb{N}$. Central limit theorems can also be derived from mixing conditions, see [44]. These developments, however, are out of the scope of the present article.

3.2 Markov chains in random environments

We now extend Theorem 3.4 to Markov chains in random environments. These processes still evolve in $\mathcal{X} = \bigcup_{n \in \mathbb{N}} \mathcal{X}_n$, but their dynamics is be influenced by another random process we are just about to introduce. Let \mathcal{Y} be another Polish space and let $Y_t, t \in \mathbb{Z}$ be a (strict sense) stationary process in \mathcal{Y}. We assume that a non-decreasing sequence $\mathcal{Y}_n \in \mathcal{B}(\mathcal{Y}), n \in \mathbb{N}$ is given with $\mathcal{Y}_0 \neq \emptyset$. Let $Q : \mathcal{X} \times \mathcal{Y} \times \mathcal{B}(\mathcal{X}) \to [0, 1]$ be a parametrized family of transition kernels, i.e. $Q(\cdot, \cdot, A)$ is measurable for all $A \in \mathcal{B}(\mathcal{X})$ and $Q(x, y, \cdot)$ is a probability for all $(x, y) \in \mathcal{X} \times \mathcal{Y}$. We say that the process $X_t, t \in \mathbb{N}$ is a Markov chain in a random environment with transition kernel Q if it is an \mathcal{X}-valued stochastic process such that
\[P(X_{t+1} \in A \mid \sigma(Y_j, j \in \mathbb{Z}; X_j, 0 \leq j \leq t)) = Q(X_t, Y_t, A), \quad t \in \mathbb{N}. \]

(22)

Denote by \(\mathcal{M}_0 \) the set of probability laws on \(\mathcal{X} \times \mathcal{Y}^\mathbb{Z} \) such that their second marginal equals the law of \((Y_k)_{k \in \mathbb{Z}}\). Let \(\mathcal{M}_b \) denote the set of those \(\mu \in \mathcal{M}_0 \) for which the process \(X_t, t \in \mathbb{N} \) started from \(X_0 \) with \(\mathcal{L}(X_0, (Y_k)_{k \in \mathbb{Z}}) = \mu \) satisfies

\[
\sup_{t \in \mathbb{N}} P(X_t \notin \mathcal{X}_n) \to 0, \quad n \to \infty. \tag{23}
\]

We write \(X_0 \in \mathcal{M}_b \) in the sequel when we really mean \(\mathcal{L}(X_0, (Y_k)_{k \in \mathbb{Z}}) \in \mathcal{M}_b \).

Assumption 3.8 Let \(P(Y_0 \notin \mathcal{Y}_n) \to 0 \) hold as \(n \to \infty \). There exists a sequence \(\alpha_n \in (0, 1], n \in \mathbb{N} \) and a sequence of probability measures \(v_n, n \in \mathbb{N} \) such that for all \(n \in \mathbb{N} \),

\[
Q(x, y, A) \geq \alpha_n v_n(A), \quad A \in \mathcal{B}(\mathcal{X}), \quad y \in \mathcal{Y}_n, \quad x \in \mathcal{X}_n.
\]

A parametric version of Lemma 3.3 comes next.

Lemma 3.9 Let Assumption 3.8 be in force. Let \(U \) be a uniform random variable on \([0, 1]\). For each \(n \in \mathbb{N} \), there exists a measurable mapping \(T^n(\cdot, \cdot, \cdot) : [0, 1] \times \mathcal{X} \times \mathcal{Y} \to \mathcal{X} \) satisfying \(Q(x, y, A) = P(T^n(U, x, y) \in A), \quad x \in \mathcal{X}, \quad y \in \mathcal{Y}, \quad A \in \mathcal{B}(\mathcal{X}) \) such that for all \(u \in [0, \alpha_n] \),

\[
T^n(u, x_1, y) = T^n(u, x_2, y) \text{ for all } x_1, x_2 \in \mathcal{X}_n, \quad y \in \mathcal{Y}_n.
\]

Proof This is a straightforward extension of the case with \(\mathcal{Y} \) a singleton, that is, of Lemma 3.3 above. See Lemma 7.1 of [29].

The following abstract result serves as the basis of Sect. 4 below. We do not know of any similar results in the literature. Existing papers have fairly restrictive assumptions: either Doeblin-like conditions (as in [26, 27, 39]) or strong contractivity hypotheses (as in [40]).

Theorem 3.10 Let Assumption 3.8 hold and let \(\mathcal{M}_b \neq \emptyset \). Let \(X_t, t \in \mathbb{N} \) denote a Markov chain in a random environment with transition kernel \(Q \), started from some \(X_0 \in \mathcal{M}_b \). Then there exists a probability \(\mu_\pi \) on \(\mathcal{B}(\mathcal{X} \times \mathcal{Y}^\mathbb{N}) \) such that

\[
||\mathcal{L}(X_t, (Y_{t+k})_{k \in \mathbb{Z}}) - \mu_\pi||_{TV} \to 0, \quad t \to \infty. \tag{24}
\]

If \(X'_t, t \in \mathbb{N} \) is another such Markov chain in random environment started from \(X'_0 \in \mathcal{M}_b \) then

\[
||\mathcal{L}(X_t, (Y_{t+k})_{k \in \mathbb{Z}}) - \mathcal{L}(X'_t, (Y_{t+k})_{k \in \mathbb{Z}})||_{TV} \to 0, \quad t \to \infty. \tag{25}
\]

In particular, \(\mu_\pi \) does not depend on the choice of \(X_0 \in \mathcal{M}_b \). The probability \(\mu_\pi \) is invariant in the following sense: if \(X_0 \) is such that \(\mathcal{L}(X_0, (Y_k)_{k \in \mathbb{Z}}) = \mu_\pi \) then \(\mathcal{L}(X_t, (Y_{t+k})_{k \in \mathbb{Z}}) = \mu_\pi \) for each \(t \in \mathbb{N} \).
Proof} The core idea of the proof is identical to that of Theorem 3.4, with the extra task of checking whether the process \(Y \) stays in \(\mathcal{B}_n \) for some suitable \(n \). In order to prove invariance, however, here we need to construct \(\tilde{X}_\infty \) such that \(\tilde{X}_t \) (to be defined soon) converges to \(\tilde{X}_\infty \) a.s. in a stationary way (along a suitable subsequence). This requires a more complicated setup.

There exists a measurable function \(g : \mathcal{Y}^\mathbb{Z} \times [0, 1] \to \mathcal{X} \) and a uniform \([0, 1]\)-valued random variable \(R \), independent of \(\sigma(Y_k, k \in \mathbb{Z}) \), such that \(\mathcal{L}(X_0, (Y_k)_{k \in \mathbb{Z}}) = \mathcal{L}(g((Y_k)_{k \in \mathbb{Z}}, R), (Y_k)_{k \in \mathbb{Z}}) \). Let \(U_k, k \in -\mathbb{N} \) be an independent family of uniform random variables on \([0, 1]\), independent of \(\sigma(R, (Y_k)_{k \in \mathbb{Z}}) \). Let \(T^n(\cdot, \cdot, \cdot), n \in \mathbb{N} \) be the mappings constructed in Lemma 3.9.

For each integer \(m \geq 1 \) choose \(n(m) \in \mathbb{N} \) so large that

\[
P(Y_0 \notin \mathcal{Y}_{n(m)}) + \sup_{k \in \mathbb{N}} P(X_k \notin \mathcal{X}_{n(m)}) \leq 1/2^m. \tag{26}
\]

Let \(N(m) \geq 1 \) be so large that \((1 - \alpha_{n(m)})^{N(m)} \leq 1/2^m \). Define \(M_0 := 0, M_m := \sum_{j=1}^m N(j) \). Define the following random mappings from \(\mathcal{X} \to \mathcal{X} \), for each \(m \geq 1 \):

\[
\tilde{T}_m(\cdot) := T^{n(m)}(U_{-M_m-1}, \cdots, Y_{-M_m-1-1}) \circ \cdots \circ T^{n(m)}(U_{-M_m+1}, \cdots, Y_{-M_m})
\]

and

\[
T_m(\cdot) := \tilde{T}_1(\cdot) \circ \cdots \circ \tilde{T}_m(\cdot).
\]

Let \(T_0 \) be the identity mapping of \(\mathcal{X} \).

Let \(\tilde{X}_0 := g((Y_k)_{k \in \mathbb{Z}}, R) \) and for each \(m \in \mathbb{N} \) and each \(M_m + 1 \leq t \leq M_{m+1} \), define the process

\[
\tilde{X}_t := T_m(\cdot) \circ T^{n(m+1)}(U_{-M_m-1}, \cdots, Y_{-M_m-1})
\]

\[
\circ \cdots \circ T^{n(m+1)}(U_{-t+1}, \cdots, Y_{-t})(g((Y_{-t+k})_{k \in \mathbb{Z}}, R)).
\]

Notice that \(\mathcal{L}(\tilde{X}_t, (Y_k)_{k \in \mathbb{Z}}) = \mathcal{L}(X_t, (Y_{t+k})_{k \in \mathbb{Z}}) \) by construction, for each \(t \in \mathbb{N} \).

Fix \(m \geq 2 \) and let \(M_m + 1 \leq t \leq M_{m+1} \) be arbitrary. For each \(j = M_{m-1}, \ldots, M_m \) we define the following random variables:

\[
V_{j,t} := [T^{n(m)}(U_{-j}, \cdots, Y_{-j-1}) \circ \cdots \circ T^{n(m)}(U_{-M_m+1}, \cdots, Y_{-M_m})
\]

\[
\circ T^{n(m+1)}(U_{-M_m}, \cdots, Y_{-M_m-1}) \circ \cdots \circ T^{n(m+1)}(U_{-t+1}, \cdots, Y_{-t})](g((Y_{-t+k})_{k \in \mathbb{Z}}, R)),
\]

\[
W_{j,t} := [T^{n(m)}(U_{-j}, \cdots, Y_{-j-1})
\]

\[
\circ \cdots \circ T^{n(m)}(U_{-M_m+1}, \cdots, Y_{-M_m})](g((Y_{-M_m+k})_{k \in \mathbb{Z}}, R)),
\]

with the understanding that

\[
W_{M_m,t} = g((Y_{-M_m+k})_{k \in \mathbb{Z}}, R)
\]
and
\[V_{M_m,t} := T^{n(m+1)}(U_{-M_m}, \ldots, Y_{-M_m-1}) \circ \cdots \circ T^{n(m+1)}(U_{-t+1}, \ldots, Y_{-t})(g((Y_{-t+k})_{k\in\mathbb{Z}}, R)). \]

Consider the corresponding disjoint events
\[
\begin{align*}
A_{j,t} & := \{ V_{j,t} = W_{j,t} \}, \\
B_{j,t} & := \{ V_{j,t} \neq W_{j,t}, V_{j,t} \in \mathcal{X}_{n(m)}, W_{j,t} \in \mathcal{X}_{n(m)}, Y_{-j} \in \mathcal{Y}_{n(m)} \}, \\
C_{j,t} & := \Omega \setminus (A_{j,t} \cup B_{j,t}).
\end{align*}
\]

Define also \(p_{j,t} := P(A_{j,t}), j = M_{m-1}, \ldots, M_m \). Notice that
\[
P(C_{j,t}) \leq P(V_{j,t} \notin \mathcal{X}_{n(m)}) + P(W_{j,t} \notin \mathcal{X}_{n(m)}) + P(Y_{-j} \notin \mathcal{Y}_{n(m)})
\]
\[= P(X_{t-j} \notin \mathcal{X}_{n(m)}) + P(X_{M_m-j} \notin \mathcal{X}_{n(m)}) + P(Y_{-j} \notin \mathcal{Y}_{n(m)})
\leq 1/2^{m-1}, \quad (27)
\]
by the stationarity of the process \(Y \) and by (26).

Define \(\mathcal{H}_{j,t} := \sigma((Y_k)_{k \in \mathbb{Z}}, R, U_{-j}, \ldots, U_{-t+1}) \). On \(B_{j,t} \in \mathcal{H}_{j,t} \) we have
\[
P\left(A_{j-1,t} \mid \mathcal{H}_{j,t} \right) \geq P\left(U_{-j+1} \in [0, \alpha_{n(m)}] \mid \mathcal{H}_{j,t} \right) = P(U_{-j+1} \in [0, \alpha_{n(m)}]) = \alpha_{n(m)} \text{ a.s.}
\]

since \(T^{n(m)}(U_{-j+1}, \ldots, y) \) is a constant mapping on \(\mathcal{X}_{n(m)} \), for each \(y \in \mathcal{Y}_{n(m)} \) when \(U_{-j+1} \in [0, \alpha_{n(m)}] \), and \(U_{-j+1} \) is independent of \(\mathcal{H}_{j,t} \). On the other hand, on \(A_{j,t} \in \mathcal{H}_{j,t} \) we have
\[
P\left(A_{j-1,t} \mid \mathcal{H}_{j,t} \right) = 1 \text{ a.s., trivially. Hence}
\]
\[
p_{j-1,t} \geq p_{j,t} + \alpha_{n(m)} P(B_{j,t}) \geq p_{j,t} + \alpha_{n(m)} (1 - p_{j,t} - 1/2^{m-1}), \quad (28)
\]
using (27), which leads (by backward induction starting from \(p_{M_m,t} \geq 0 \)) to
\[
p_{M_m-1,t} \geq (1 - 1/2^{m-1})[1 - (1 - \alpha_{n(m)})^{N(m)}],
\]
and eventually to
\[
P(\tilde{X}_t \neq \tilde{X}_{M_m}) \leq P(V_{M_m-1,t} \neq W_{M_m-1,t}) = 1 - p_{M_m-1,t} \leq 1/2^{m-1}
\]
\[+(1 - \alpha_{n(m)})^{N(m)} \leq 1/2^{m-2}, \quad (29)
\]
remembering the choice of \(N(m) \). These relations establish, in particular, that for the event
\[A_m := \{ \tilde{X}_{M_j} = \tilde{X}_{M_m} \text{ for all } j \geq m \}.
\]
we have
\[P(\Omega \setminus A_m) \leq \sum_{j=m}^{1} \frac{1}{2j-2} \leq 1/2^{m-3}. \] (30)

We can thus define unambiguously \(\tilde{X}_\infty := \tilde{X}_{M_m} \) on \(A_m \) and, doing this for all \(m \geq 2 \), a random variable \(\tilde{X}_\infty \) gets almost surely defined. Clearly, for all \(M_m + 1 \leq t \leq M_{m+1} \),
\[P(\tilde{X}_t \neq \tilde{X}_\infty) \leq P(\tilde{X}_t \neq \tilde{X}_{M_m}) + P(\tilde{X}_{M_m} \neq \tilde{X}_\infty) \leq 1/2^{m-4}, \]
by (29) and (30). Denoting by \(\mu_\approx \) the law of \((\tilde{X}_\infty, (Y_k)_{k \in \mathbb{Z}}) \),
\[||L(X_t, (Y_{t+k})_{k \in \mathbb{Z}}) - \mu_\approx||_{TV} \leq 2 P(\tilde{X}_t \neq \tilde{X}_\infty) \to 0, \ t \to \infty. \]

Now we turn to proving (25). In addition to \(\tilde{X}_t \), let us also define \(\tilde{X}_t' \) in the same manner with \(g \) replaced by \(g' : \mathcal{Y} \times [0, 1] \to \mathcal{X} \) such that \(L(X_0', (Y_k)_{k \in \mathbb{Z}}) = L(g'((Y_k)_{k \in \mathbb{Z}}, R), (Y_k)_{k \in \mathbb{Z}}) \). We get by analogous arguments that
\[||L(X_t, (Y_{t+k})_{k \in \mathbb{Z}}) - L(X_t', (Y_{t+k})_{k \in \mathbb{Z}})||_{TV} = ||L(\tilde{X}_t, (Y_k)_{k \in \mathbb{Z}}) - L(\tilde{X}_t', (Y_k)_{k \in \mathbb{Z}})||_{TV} \to 0, \ t \to \infty. \]

To see invariance, fix \(\varepsilon > 0 \) and notice that for \(m = m(\varepsilon) \) large enough,
\[P(\tilde{X}_{M_m} \neq \tilde{X}_\infty) + P(\tilde{X}_{M_{m+1}} \neq \tilde{X}_\infty) \leq \varepsilon. \] (31)
Let us take \(U^* \) uniform on \([0, 1]\), independent of all the random objects that have appeared so far. We use the mapping \(T^0(\cdot, \cdot, \cdot) \) below but \(T^n(\cdot, \cdot, \cdot) \) for any \(n \) would do equally well. Notice that
\[L(T^0(U^*, \tilde{X}_{M_m}, Y_0), (Y_{1+k})_{k \in \mathbb{Z}}) = L(\tilde{X}_{M_{m+1}}, (Y_k)_{k \in \mathbb{Z}}) \]
and then from (31), necessarily,
\[||L(T^0(U^*, \tilde{X}_{M_m}, Y_0), (Y_{1+k})_{k \in \mathbb{Z}}) - \mu_\approx||_{TV} \leq 2\varepsilon. \]
Now employing the limiting random variable representing \(\mu_\approx \),
\[||L(T^0(U^*, \tilde{X}_{M_m}, Y_0), (Y_{1+k})_{k \in \mathbb{Z}}) - L(T^0(U^*, \tilde{X}_\infty, Y_0), (Y_{1+k})_{k \in \mathbb{Z}})||_{TV} \]
\[\leq 2 P(T^0(U^*, \tilde{X}_{M_m}, Y_0) \neq T^0(U^*, \tilde{X}_\infty, Y_0)) \]
\[\leq 2 P(\tilde{X}_{M_m} \neq \tilde{X}_\infty) \leq 2\varepsilon. \]
Thus we have
\[||L(T^0(U^*, \tilde{X}_\infty, Y_0), (Y_{1+k})_{k \in \mathbb{Z}}) - \mu_\approx||_{TV} \leq 4\varepsilon \]
and, as ε was arbitrary, $\mathcal{L}(T^0(\mathbf{U}^*, \tilde{X}_\infty, Y_0), (Y_{1+k})_{k \in \mathbb{Z}}) = \mu_{\tilde{Z}}$ follows. Clearly, this means that

$$\mathcal{L}(X_0, (Y_k)_{k \in \mathbb{Z}}) = \mu_{\tilde{Z}} \text{ implies } \mathcal{L}(X_1, (Y_{1+k})_{k \in \mathbb{Z}}) = \mu_{\tilde{Z}}$$

and the latter extends immediately to $\mathcal{L}(X_t, (Y_t+k)_{k \in \mathbb{Z}}) = \mu_{\tilde{Z}}$ for all $t \geq 2$, too. The proof is complete. \hfill \Box

Before transitioning to the analysis of continuous-time processes, let us demonstrate the application of Theorem 3.10 on a benchmark model: the discrete-time counterpart of (1) with log-Gaussian V_t. We take the simplest mean-reverting drift, but the same argument applies under more general dissipativity conditions.

Example 3.11 Consider the following model for financial time series. Let $\eta_t, t \in \mathbb{Z}$ be independent standard Gaussian random variables and $Z_t = \sum_{k=0}^{\infty} a_k \eta_{t-k}$, a causal moving average with constants $a_k, k \in \mathbb{N}$ satisfying $\sum_k a_k^2 < \infty$. Therefore Z_t is almost surely well defined and is a stationary Gaussian process. Z_t represents the log-volatility of an asset’s log-price X_t which in turn is defined as

$$X_{t+1} = \gamma X_t + \rho e^{Z_t} \eta_{t+1} + \sqrt{1 - \rho^2} e^{Z_t} \varepsilon_{t+1},$$

(32)

where $\gamma \in (0, 1), \rho \in (-1, 1)$ and $\varepsilon_k, k \in \mathbb{N}$ is an i.i.d. series of zero-mean random variables, also independent of $\eta_t, t \in \mathbb{Z}$.

For the ε_k we assume they have finite variance and have a positive density $f(x)$ such that for all $n \in \mathbb{N}$, $\inf_{x \in [-n,n]} f(x) = c(n) > 0$. Additionally, we assume the initial price X_0 has finite variance and is independent of $\eta_t, t \in \mathbb{Z}, \varepsilon_k, k \in \mathbb{N}$.

We claim that under these natural assumptions Theorem 3.10 is applicable to the model (32).

First of all, the random environment is defined as $Y_t := (Z_t, \eta_{t+1})$. We choose

$$\mathcal{X}_n = \{x \in \mathbb{R} : |x| \leq n\} \quad \mathcal{Y}_n = \{(z, \eta) \in \mathbb{R}^2 : |z|, |\eta| \leq n\}.$$

We first verify Assumption 3.8, fix some $n \in \mathbb{N}$ and $v_n = \frac{1}{2} \text{Leb}_{[-1,1]}$. Now that we are working with absolutely continuous distributions, we have to find a lower bound of the transition density to $[-1, 1]$ from any departure point $X_t \in \mathcal{X}_n, (Z_t, \eta_{t+1}) \in \mathcal{Y}_n$.

Rearranging (32), we get

$$\varepsilon_{t+1} = \frac{X_{t+1} - \gamma X_t}{\sqrt{1 - \rho^2} e^{Z_t}} + \frac{\rho}{\sqrt{1 - \rho^2} \eta_{t+1}}.$$

Requiring X_{t+1} to arrive in $[-1, 1]$, knowing $X_t, \eta_{t+1} \in [-n,n], e^{Z_t} \in [e^{-n}, e^n]$, the possible needed values of ε_{t+1} are restricted within some bounded interval...
[−d(n), d(n)]. Using the condition on the bounded positivity of the density \(f(x) \) of \(\varepsilon_{t+1} \) we get a valid minorization with

\[
\alpha_n = 2 \inf_{x \in [-d(n), d(n)]} f(x) = 2c(d(n)) > 0.
\]

It is left to confirm that \(X_0 \in \mathcal{M}_b \), so that \(X_t \) uniformly rarely leaves the small sets. By recursively using (32) we may express \(X_t \) as follows:

\[
X_t = \sum_{s=1}^{t} \gamma^{t-s} e^{Z_{t-s}} \left(\rho \eta_s + \sqrt{1 - \rho^2} \varepsilon_s \right) + \gamma^t X_0.
\]

To bound \(X_t \), we compute \(E[X_t^2] \). Observe that when evaluating the square of this sum, all cross-terms cancel when taking expectation, even the ones only involving \(Z \) and \(\eta \). Consequently,

\[
E[X_t^2] = \sum_{s=1}^{t} \gamma^{2t-2s} E \left[e^{2Z_{t-s}} \right] \left(\rho^2 E[\eta_s^2] + (1 - \rho^2) E[\varepsilon_s^2] \right) + \gamma^t E[X_0^2].
\]

Regarding these terms, remember that \(Z_t \) was Gaussian thus it has finite exponential moments and all appearing variables had finite variances. Moreover, due to the stationarity of all components appearing, we have the time-independent bound

\[
E[X_t^2] \leq \frac{1}{1 - \gamma^2} E \left[e^{2Z_0} \right] \left(\rho^2 E[\eta_1^2] + (1 - \rho^2) E[\varepsilon_1^2] \right) + E[X_0^2] =: K < \infty.
\]

From here we can conveniently bound

\[
\sup_{t \in \mathbb{N}} P(\{|X_t| > n\}) \leq \frac{K}{n^2},
\]

which indeed converges to 0 as \(n \to \infty \). This reasoning shows that \(\mathcal{L}(X_0, (Z_k, \eta_{k+1})_{k \in \mathbb{Z}}) \in \mathcal{M}_b \). We have verified the minorization Assumption 3.8 just before so Theorem 3.10 applies, ensuring convergence in total variation. The present example complements Example 3.4 of [16] where convergence in total variation was established under stronger assumptions (but with a rate estimate).

4 Proofs in continuous time

Until finishing the proof of Theorem 2.9, we assume that all the hypotheses of that theorem are in force. Let us first establish a simple continuity property.

Lemma 4.1 When \(s \to 0 \), \(\sup_{t \in \mathbb{R}} \{E[d_{d \times d}(V_{t+s}, V_t)] + E[d_{d \times m}(R_{t+s}, R_t)]\} \to 0 \) holds true.

\(\square \) Springer
Proof By stationarity of V, ρ, this amounts to proving $E[d_{d\times d}(V_s, V_0)] + E[d_{d\times m}(R_s, R_0)] \to 0$. The process V has trajectories that are uniformly continuous on compacts hence $\sup_{u \in [i, i+1]} |V_{i+s} - V_{i}| \to 0$ almost surely as $s \to 0$, for each $i \in \mathbb{Z}$. Then $E[1 \wedge \sup_{u \in [i, i+1]} |V_{i+s} - V_{i}|] \to 0$ for each i and, finally, $E[d_{d\times d}(V_s, V_0)] \to 0$ by the definition of d. We argue in the same manner for R. \hfill \square

Now let us prove a moment estimate.

Lemma 4.2 We have $\bar{L} := \sup_{t \in \mathbb{R}_+} E[|L_t|^2] < \infty$.

Proof Fix $k \in \mathbb{N}$, for the moment. Define the stopping times $\tau_l := \inf\{t > k : |L_t| > l\}$ for $l \in \mathbb{N}$. Itô’s formula and Assumption 2.5 imply that, for all $k \leq t \leq k + 1$,

$$e^{2\alpha(t \wedge \tau_l - k)}|L_{t \wedge \tau_l}|^2 = |L_k|^2 + \int_k^{t \wedge \tau_l} 2e^{2\alpha(s-k)}\langle L_s, \xi(L_s, V_s) \rangle \, ds$$

$$+ \int_k^{t \wedge \tau_l} 2e^{2\alpha(s-k)}L_s^* V_s d\bar{W}_s$$

$$+ \int_k^{t \wedge \tau_l} e^{2\alpha(s-k)} \text{tr}(V_s^* V_s) \, ds + \int_k^{t \wedge \tau_l} 2\alpha e^{2\alpha(s-k)}|L_s|^2 \, ds$$

$$\leq |L_k|^2 - \int_k^{t \wedge \tau_l} 2\alpha e^{2\alpha(s-k)}|L_s|^2 \, ds$$

$$+ \int_k^{k+1} 2e^{2\alpha(s-k)} \beta (1 + |V_s|^\xi) \, ds$$

$$+ \int_k^{t \wedge \tau_l} 2e^{2\alpha(s-k)}L_s^* V_s d\bar{W}_s + e^{2\alpha} \int_k^{k+1} d|V_s|^2 \, ds$$

$$+ \int_k^{t \wedge \tau_l} 2\alpha e^{2\alpha(s-k)}|L_s|^2 \, ds$$

$$\leq |L_k|^2 + \int_k^{k+1} 2e^{2\alpha} \beta (1 + |V_s|^\xi) \, ds$$

$$+ \int_k^{t \wedge \tau_l} 2e^{2\alpha(s-k)}L_s^* V_s d\bar{W}_s + e^{2\alpha} \int_k^{k+1} d|V_s|^2 \, ds,$$

where $\bar{W}_t = \int_0^t \rho_s \, dB_s + \int_0^t \sqrt{T - \rho_s \rho_s^*} \, dW_s$ is a d-dimensional standard Brownian motion. Taking expectations and noting the martingale property of the stochastic integral,

$$E[e^{2\alpha(t \wedge \tau_l - k)}|L_{t \wedge \tau_l}|^2] \leq E[|L_k|^2] + \int_k^{k+1} e^{2\alpha} (2\beta + d)(1 + E[|V_s|^\xi]) \, ds.$$

Noting stationarity of V and applying Fatou’s lemma,

$$E[|L_t|^2] \leq e^{-2\alpha(t-k)} E[|L_k|^2] + e^{2\alpha} (2\beta + d)(1 + E[|V_0|^\xi]). \quad (34)$$
Setting $t = k + 1$, Assumption 2.8 and an induction on k show that $E[|L_k|^2] < \infty$ for all $k \in \mathbb{N}$, in fact, sup$_k E[|L_k|^2] < \infty$. Finally, also sup$_{t \geq 0} E[|L_t|^2] < \infty$ follows from (34).

Let C_k denote the Banach space of continuous \mathbb{R}^k-valued functions on $[0, 1]$ equipped with the usual maximum norm $|| \cdot ||_{C_k}$. The family of functions in $C_{d \times d}$ whose values are non-singular is denoted by C^+. We further define
\[
C^1 := \{ \mathbf{r} \in C_{d \times m} : \mathbf{r}_t \mathbf{r}^*_t \leq I, \ t \in [0, 1] \}
\]
as well as
\[
C^{1+} := \{ \mathbf{r} \in C_{d \times m} : \mathbf{r}_t \mathbf{r}^*_t < I, \ t \in [0, 1] \}.
\]

The auxiliary process to be defined in (35) below plays a key role in our arguments. The parameters \mathbf{v}, \mathbf{r} represent the “frozen” values of trajectories of the volatility and correlation processes, while \mathbf{z} is a generic value of the stochastic integral of $V \rho$ with respect to B.

For each $\mathbf{v} \in C_{d \times d}$, $\mathbf{z} \in C_d$, $\mathbf{r} \in C^1$ and $x \in \mathbb{R}^d$, let $\tilde{X}_t(\mathbf{v}, \mathbf{z}, \mathbf{r}, x)$, $t \in [0, 1]$ denote the unique \mathcal{F}_t-adapted solution of the SDE
\[
d\tilde{X}_t(\mathbf{v}, \mathbf{z}, \mathbf{r}, x) = \zeta \left(\tilde{X}_t(\mathbf{v}, \mathbf{z}, \mathbf{r}, x) + \mathbf{z}_t, \mathbf{v}_t \right) dt + \mathbf{v}_t \sqrt{I - \mathbf{r}_t \mathbf{r}^*_t} dW_t, \quad \tilde{X}_{0}(\mathbf{v}, \mathbf{z}, \mathbf{r}, x) = x, \tag{35}
\]
which exists e.g. by Theorem 7 on page 82 of [28]. We shall use the shorthand notation $\mathbf{q} := (\mathbf{v}, \mathbf{z}, \mathbf{r}, x)$ in the sequel. Introduce also the space $\mathcal{Y} := C_{d \times d} \times C_d \times C^1$ where the random environment (to be defined in (37) below) evolves.

In line with the notations of the standard reference work [35], $\mathbb{D}^{k.p}$ denotes the p-Sobolev space of k times Malliavin differentiable functionals. The first and second Malliavin derivative of a functional F is denoted by DF, D^2F or D_rF, $D^2_{r_1,r_2} F$ when we need to emphasize that these are random processes/fields indexed by r, r_1, r_2. The Skorokhod integral operator (the adjoint of D) is denoted by δ. The notation H refers to the Hilbert-space of square-integrable \mathbb{R}^d-valued functions on $[0, 1]$. For $F = (F^1, \ldots, F^d)$ with $F^i \in \mathbb{D}^{1.2}$, $i = 1, \ldots, d$ the corresponding Malliavin matrix $\sigma(F)$ is defined as
\[
\sigma(F)_{ij} = \sum_{l=1}^d \int_0^1 D_i^{(l)} F^i D_j^{(l)} F^j \, ds,
\]
where $D_i^{(l)} F^i$ denotes the lth coordinate of $D F^i$. In the sequel, the notation L^p refers to the usual space of p-integrable real-valued random variables, for $p \geq 1$. We define $\gamma := \sigma^{-1}$ on the event where σ is invertible and 0 otherwise.

Lemma 4.3 For each $\mathbf{q} \in \mathcal{Y} \times \mathbb{R}^d$, we have $\tilde{X}_1(\mathbf{q}) \in \cap_{p \geq 1} \mathbb{D}^{2.p}$, $D \tilde{X}_1(\mathbf{q})$ and $D^2 \tilde{X}_1(\mathbf{q})$ are bounded. Furthermore, if $\mathbf{v} \in C^+$ and $\mathbf{r} \in C^{1+}$ then γ is uniformly bounded, in particular, $1/\det(\sigma(\tilde{X}_1(\mathbf{q}))) \in \cap_{p \geq 1} L^p$ holds.
Proof The first statement follows from the proof of Theorem 2.2.2 of [35] which applies in the cases \(N = 1, 2 \) by Assumption 2.4.

To see the last statement, recall from Theorem 2.2.1 of [35] that the matrix-valued process \((M_t(u))_{ij} := D^{(j)} \tilde{X}^i_t(q), t \in [u, 1]\) satisfies the (random) ordinary differential equation

\[
dM_t(u) = \partial\xi_x \left(\tilde{X}_t(q) + z_t, \nu_t \right) M_t(u) dt, \quad M_u(u) = v_u \sqrt{I - r_u r_u^*}, \tag{36}
\]

for each \(u \in [0, 1] \). Assumption (2.4) gives us \(K' \) with \(|\partial\xi_x| \leq K'\). We see that

\[
M_1(u)M_1^*(u) = v_u \sqrt{I - r_u r_u^*} \exp \left(\int_u^1 \partial\xi_x (\tilde{X}_s(q) + z_s, v_s) \right.
\]

\[
+ \partial\xi_x^*(\tilde{X}_s(q) + z_s, v_s) ds \left. \right) \sqrt{I - r_u r_u^*} v_u^*
\]

\[
\geq \exp(-2K')v_u (I - r_u r_u^*)v_u^*
\]

\[
\geq \epsilon I,
\]

for some \(\epsilon = \epsilon(v, r) > 0 \) since \(v \in \mathbb{C}^+ \) and \(r \in \mathbb{C}^{1+} \). This implies our claim since

\[
\sigma(\tilde{X}_t(q)) = \int_0^1 M_1(u)M_1^*(u) du.
\]

It follows also from (36) that \(D \tilde{X}_1(q) \) is bounded, for each \(q \). Finally, Lemma 2.2.2 of [35] implies that, for each pair of indices \(i, l \), the second derivative \(DD^{(j)} \tilde{X}^i_t(q) \) satisfies for all indices \(j \) and for all \(s \leq u \leq t \),

\[
|D_t^{(j)} D_u^{(l)} \tilde{X}^i_t(q)| = \left| \int_u^t (D_s^{(j)} \partial\xi_x (\tilde{X}_r(q) + z_r, \nu_r)) D_u^{(l)} \tilde{X}^i_r(q) \right.
\]

\[
+ \partial\xi_x (\tilde{X}_r(q) + z_r, \nu_r) D_s^{(j)} D_u^{(l)} \tilde{X}^i_r(q) \right| dr
\]

\[
\leq \int_u^t K_1 + K_2 |D_t^{(j)} D_u^{(l)} \tilde{X}^i_t(q)| \right| dr.
\]

for constants \(K_1, K_2 \) since \(\partial\xi_x, \partial_{xx} \xi \), \(D \tilde{X}^i_t(q) \) are all bounded. Gronwall’s lemma now guarantees that also \(D_t^{(j)} D_u^{(l)} \tilde{X}^i_t(q) \) is bounded. \(\square \)

We now set up a discrete-time machinery so that we can invoke the results of Sect. 3.2. Set \(\mathcal{Y}_n := \mathbb{R}^d \) and \(\mathcal{Y}_n := \{ x \in \mathbb{R}^d : |x| \leq n \}, n \in \mathbb{N} \). Define, for \(k \in \mathbb{Z} \), the \(\mathcal{Y} \)-valued random variables

\[
Y_k := \left((V_{k+t})_{t \in [0,1]}, (Z_{k+t} - Z_k)_{t \in [0,1]}, (\rho_{k+t})_{t \in [0,1]} \right), \tag{37}
\]

where we denote \(Z_u := \int_0^u V_s \rho_s dB_s, u \in \mathbb{R}_+ \). \(Y \) is a stationary process by Assumption 2.1.
By Prokhorov’s theorem, there exist an increasing sequence of compact sets $D_n \subset C_{d \times d} \times C_d \times C^1$, $n \in \mathbb{N}$ such that $P(Y_0 \notin D_n) \leq 1/n$. As $V \in \mathcal{V}$ and $\rho \in \mathcal{R}$, $P(Y_0 \in C^+ \times C_d \times C^{1+}) = 1$ holds. Thus there is an increasing \mathbb{N}-valued sequence $l(n) \to \infty$, $n \to \infty$ such that the sets

$$
\mathcal{Y}_n := \{(v, z, r) \in D_n : r_s r_s^* \leq (1 - 1/l(n))I, \ v_s v_s^* \geq I/l(n), \ s \in [0, 1]\}
$$

satisfy $P(Y_0 \notin \mathcal{Y}_n) \leq 2/n, \ n \in \mathbb{N}$. Being closed subsets of the respective D_n, they are compact and satisfy $P(Y_0 \notin \mathcal{Y}_n) \to 0, \ n \to \infty$.

We define a metric on $\mathcal{D} := \mathcal{Y} \times \mathbb{R}^d$ by setting, for $q_i = (v^i, z^i, r^i, x^i), \ i = 1, 2$,

$$
\rho(q_1, q_2) := \|v^1 - v^2\|_{C_{d \times d}} + \|z^1 - z^2\|_{C_d} + \|r^1 - r^2\|_{C_{d \times m}} + |x^1 - x^2|.
$$

Continuity of $\tilde{X}_t(q)$ and its Malliavin derivatives with respect to the parameter q is established next.

Lemma 4.4 For each $n \in \mathbb{N}$ and $p \geq 2$ there exists $C(n, p) > 0$ such that for all $q^1, q^2 \in \mathcal{Y}_n \times \mathcal{X}_n$ we have

$$
E^{1/p} \sup_{t \in [0, 1]} |\tilde{X}_t(q^1) - \tilde{X}_t(q^2)|^p \leq C(n, p)\rho(q^1, q^2),
$$

$$
E^{1/p} \left[\|D\tilde{X}_1(q^1) - D\tilde{X}_1(q^2)\|_{H^p}^p \right] \leq C(n, p)\rho(q^1, q^2),
$$

$$
E^{1/p} \left[\|D^2\tilde{X}_1(q^1) - D^2\tilde{X}_1(q^2)\|_{H^p \otimes H}^p \right] \leq C(n, p)\rho(q^1, q^2).
$$

Proof For $i = 1, 2$, define the Picard iterates $Z^i_0(t) := x^i, \ t \in [0, 1]$ and

$$
Z^i_{l+1}(t) := x^i + \int_0^t \xi(Z^i_l(s) + z^i_s, v^i_s) \ ds + \int_0^t v^i_s \sqrt{I - r^i_s r^i_s^*} \ dW_s, \quad (38)
$$

for $t \in [0, 1]$ and $l \in \mathbb{N}$. Let K_0 denote a bound for $|\partial_s \xi|$ such that $K_0 \geq K$ where K is as in Assumption 2.4. Clearly,

$$
\sup_{u \in [0, t]} |Z^1_{l+1}(u) - Z^2_{l+1}(u)|
$$

$$
\leq |x^1 - x^2| + K_0 \int_0^t \sup_{u \in [0, s]} |Z^1_{l+1}(u) - Z^2_{l+1}(u)|
$$

$$
+ (1 + |v^1_s| + |z^1_s - z^2_s| + |v^2_s|)|v^1_s - v^2_s| \ ds
$$

$$
+ \sup_{s \in [0, t]} \left| \int_0^s v^1_u \sqrt{I - r^1_u r^1_u^*} - v^2_u \sqrt{I - r^2_u r^2_u^*} \ dW_u \right|.
$$

Note that there is $C > 0$ such that

$$(x_1 + x_2 + x_3 + x_4 + x_5)^2 \leq C(x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2), \ x_i \in \mathbb{R}, \ i = 1, 2, 3, 4, 5.$$

\(\square\) Springer
Taking squares and using Cauchy’s inequality we arrive at

\[
\sup_{u \in [0,t]} |Z_{l+1}^1(u) - Z_{l+1}^2(u)|^2 \\
\leq \left(C |x^1 - x^2|^2 + C K_0^{2} \int_0^t \sup_{u \in [0,s]} |Z_{l+1}^1(u) - Z_{l+1}^2(u)|^2 + |z_s^1 - z_s^2|^2 \right) \\
+ (1 + |v_s^1| + |z_s^1 - z_s^2|^2 + |v_s^2|)^2|v_s^1 - v_s^2|^2 ds \\
+ C \sup_{s \in [0,t]} \left| \int_0^s v_u^1 \sqrt{I - r_u^1 r_u^1} - v_u^2 \sqrt{I - r_u^2 r_u^2} dW_u \right|^2.
\]

Taking expectations, applying Doob’s inequality and noting \(t \leq 1 \),

\[
E \sup_{u \in [0,t]} |Z_{l+1}^1(u) - Z_{l+1}^2(u)|^2 \\
\leq \left(\frac{C |x^1 - x^2|^2 + C K_0^{2} \int_0^t \sup_{u \in [0,s]} |Z_{l+1}^1(u) - Z_{l+1}^2(u)|^2 + |z_s^1 - z_s^2|^2}{1 + |v_s^1| + |z_s^1 - z_s^2|^2 + |v_s^2|} \right) \\
+ 4CE \int_0^1 \left(v_u^1 \sqrt{I - r_u^1 r_u^1} - v_u^2 \sqrt{I - r_u^2 r_u^2} \right)^2 du \\
\leq C_n' \left[\rho^2(q^1, q^2) + \int_0^t E \sup_{u \in [0,s]} |Z_{l+1}^1(u) - Z_{l+1}^2(u)|^2 ds \right].
\]

for suitable \(C_n' \) because \(z \rightarrow \sqrt{I - zz^*} \) is Lipschitz-continuous on the set \(\{ z \in \mathbb{C}^1 : zz^* \leq (1 - \epsilon)I \} \), for all \(\epsilon > 0 \). Grönwall’s lemma implies that for some constant \(C_n'' \), independent of \(l \),

\[
E \left[\sup_{t \in [0,1]} |Z_{l+1}^1(t) - Z_{l+1}^2(t)|^2 \right] \leq C_n'' \rho^2(q^1, q^2).
\]

Since Picard iterates converge, (see e.g. Lemma 2.2.1 in [35]), we get

\[
E^{1/2} \left[\sup_{t \in [0,1]} |\tilde{X}(q^1) - \tilde{X}(q^2)|^2 \right] \leq \sqrt{C_n''} \rho(q^1, q^2).
\]

A similar argument works in \(L^p \) with \(p > 2 \), too. Now recall that \(D\tilde{X}(q), D^2\tilde{X}(q) \) also satisfy similar (even simpler) equations, see Theorem 2.2.1 of [35], so analogous arguments apply to them, proving the remaining two inequalities. \(\square \)

We continue with some more technical material. In the following lemma, we rely on the powerful techniques presented in [3].

Lemma 4.5 The random variables \(\tilde{X}_1(q) \) have densities \(p_u(q)(u) \), \(u \in \mathbb{R}^d \) with respect to \(\text{Leb}_d \), the \(d \)-dimensional Lebesgue measure, for each \(q \in \mathcal{Y}_n \times \mathcal{Y}_n' \), for each \(n \).
These densities have versions such that the mapping \((u, q) \rightarrow p_q(u)\) is continuous on \(\mathcal{Y}_n \times \mathcal{Z}_n\), for each \(n\).

Proof Fix \(n\), let \(q_k \in \mathcal{Y}_n \times \mathcal{Z}_n\) and \(u_k \in \mathbb{R}^d\), \(k \in \mathbb{N}\) be such that

\[
(u_n, q_n) := (u_n, v_n, r_n, z_n, x_n) \rightarrow (u, q) := (u, v, r, z, x)
\]

hold as \(n \rightarrow \infty\). Let \(\partial_i Q, i = 1, \ldots, d\) denote the \(i\)th partial derivative of the Poisson kernel on \(\mathbb{R}^d\), see page 14 of \([3]\). We rely on the Malliavin-Thalmaier formula for the density of functionals on the Wiener space \([30]\), as presented in \([3]\). By Theorem 2.3.1 of \([3]\), the representation

\[
p_q(u) = \sum_{i=1}^{d} \sum_{j=1}^{d} E \left[\partial_i Q \left(\tilde{X}_1(q) - u \right) \delta \left(\gamma^{i,j}(\tilde{X}_1(q)) D \tilde{X}_1(q) \right) \right]
\]

provides the density function of \(\tilde{X}_1(q)\) (with respect to the \(d\)-dimensional Lebesgue-measure).

Fix \(i, j\). By Lemma 4.3, the sequence \(\tilde{X}_1(q_n)\) is bounded in \(\mathbb{D}^{2,p}\) for all \(p\) and \(\gamma(\tilde{X}_1(q_n))\) is uniformly bounded, hence \(\partial_i Q \left(\tilde{X}_1(q_n) - u \right)\) is bounded in \(L^{(d+1)/d}\) by (2.86) in Theorem 2.3.1 of \([3]\). By Corollary 2.2.12 in \([3]\), the sequence \(\delta \left(\gamma^{i,j}(\tilde{X}_1(q)) D \tilde{X}_1(q)\right)\) is bounded in \(L^p\) for all \(p \geq 1\), in particular in \(L^{(d+1)/2(d+2)/d}\). Applying Hölder’s inequality with the conjugate pair of exponents \((d+1)/(d+1/2)\) and \(2d+2\), we get that

\[
E \left[\partial_i Q \left(\tilde{X}_1(q_n) - u \right) \delta \left(\gamma^{i,j}(\tilde{X}_1(q_n)) D \tilde{X}_1(q_n) \right) \right]^{(d+1)/d} \leq E \left[\partial_i Q \left(\tilde{X}_1(q_n) - u \right) \right]^{(d+1)/d} \left(\delta \left(\gamma^{i,j}(\tilde{X}_1(q_n)) D \tilde{X}_1(q_n) \right) \right)^{(d+1)/(2d+2)} \]

hence

\[
\sup_n E \left[\partial_i Q \left(\tilde{X}_1(q_n) - u \right) \delta \left(\gamma^{i,j}(\tilde{X}_1(q_n)) D \tilde{X}_1(q_n) \right) \right]^{(d+1)/d} < \infty. \tag{40}
\]

This means that the sequence \(\partial_i Q \left(\tilde{X}_1(q_n) - u_n \right) \delta \left(\gamma^{i,j}(\tilde{X}_1(q_n)) D \tilde{X}_1(q_n) \right), n \in \mathbb{N}\) is uniformly integrable hence it suffices to prove that

\[
\partial_i Q \left(\tilde{X}_1(q_n) - u_n \right) \delta \left(\gamma^{i,j}(\tilde{X}_1(q_n)) D \tilde{X}_1(q_n) \right) \rightarrow \partial_i Q \left(\tilde{X}_1(q) - u \right) \delta \left(\gamma^{i,j}(\tilde{X}_1(q)) D \tilde{X}_1(q) \right), n \rightarrow \infty \tag{41}
\]
in probability. We remark that in (40) we can also take a supremum in $u \in C$ for any compact $C \subset \mathbb{R}^d$ and this also implies

$$\sup_n \sup_{u \in C} P_{q_n}(u) < \infty. \quad (42)$$

We start by treating the factor $\partial_i Q$ in (41). Let $\varepsilon > 0$ be given. Notice that each $\partial_i Q$ is Lipschitz-continuous outside a ball of radius ε, with Lipschitz-constant, say, K_ε. Let M be such that $\sup_n |u_n| \leq M$ and denote by A_d the volume of the unit ball in \mathbb{R}^d. We thus have, by the Markov inequality,

$$P \left(|\partial_i Q \left(\tilde{X}_1(q_n) - u_n \right) - \partial_i Q \left(\tilde{X}_1(q) - u \right) | \geq \varepsilon \right) \leq P \left(|\tilde{X}_1(q_n) - u_n| \leq \varepsilon \right) + P \left(|\tilde{X}_1(q) - u| \leq \varepsilon \right) + K_\varepsilon E \left[\tilde{X}_1(q_n) - u_n - \tilde{X}_1(q) + u \right] / \varepsilon \leq A_d \varepsilon^d \sup_{|v| \leq M+\varepsilon} \sup_k p_{q_k}(v) + A_d \varepsilon^d \sup_{|v| \leq M+\varepsilon} p_q(v) + K_\varepsilon E \left[\tilde{X}_1(q_n) - u_n - \tilde{X}_1(q) + u \right] / \varepsilon.$$

Here the third term is smaller than ε for n large enough, by Lemma 4.4. Then all three terms can be made arbitrarily small by choosing ε small enough and n large enough, the suprema being finite by (42). This shows convergence in probability for the first factor in (41).

Now we turn to the second factor in (41). By Proposition 1.5.4 of [35], convergence of

$$\gamma^{i,j}(\tilde{X}_1(q_n)) D\tilde{X}_1(q_n) \to \gamma^{i,j}(\tilde{X}_1(q)) D\tilde{X}_1(q) \quad (43)$$

implies the L^2-convergence (hence also convergence in probability) of

$$\delta \left(\gamma^{i,j}(\tilde{X}_1(q_n)) D\tilde{X}_1(q_n) \right) \to \delta \left(\gamma^{i,j}(\tilde{X}_1(q)) D\tilde{X}_1(q) \right).$$

So it remains to establish (43).

Since $\gamma^{i,j}(\tilde{X}_1(q_n))$ are uniformly bounded and $D\tilde{X}_1(q_n) \to D\tilde{X}_1(q)$ in $L^2([0, 1] \times \Omega)$, we clearly have that $\gamma^{i,j}(\tilde{X}_1(q_n)) D\tilde{X}_1(q_n) \to \gamma^{i,j}(\tilde{X}_1(q)) D\tilde{X}_1(q)$ in $L^2([0, 1] \times \Omega)$ by Lemma 4.4 and by the fact that matrix inversion is a continuous operation. Let us now have a closer look at the Malliavin derivative of $\gamma^{i,j}(\tilde{X}_1(q_n)) D\tilde{X}_1(q_n)$.

First, let us recall that $D^2 \tilde{X}_1(q_n) \to D^2 \tilde{X}_1(q)$ in $L^p([0, 1]^2 \times \Omega)$ for all $p \geq 1$, by Lemma 4.4. Also, $\gamma^{i,j}(\tilde{X}_1(q_n)) \to \gamma^{i,j}(\tilde{X}_1(q))$ in L^p and $D\tilde{X}_1(q_n) \to D\tilde{X}_1(q)$ in L^p. It remains to establish

$$D\gamma^{i,j}(\tilde{X}_1(q_n)) \to D\gamma^{i,j}(\tilde{X}_1(q)) \quad (44)$$
in L^p.

Denote by $G: \mathcal{Y} \to \mathbb{R}^{d \times d}$ the operation of matrix inversion and by G' its derivative. We find that, on the set of positive definite matrices bounded away from 0, G' is bounded. Now (44) follows from Lemma 4.4 and from our previous observations. As these arguments work for all i, j, we indeed get $p_{q_{n_i}}(u_n) \to p_{q}(u)$. □

Proving the positivity of densities is an evergreen topic in Malliavin calculus. We rely on the deep study [2] in the next lemma.

Lemma 4.6 We have $p_{q}(u) > 0$ for every q, u.

Proof Fix q, u. We will choose $0 < \eta < 1/2$ later. We will apply Theorem 3.3 of [2] with the choice $y = u$, $r = 1$, $T = 1$, $\delta = \eta$,

$$F = \tilde{X}_1(q), \ F_{1-\eta} = \tilde{X}_{1-\eta}(q),$$

$$G_\eta = v_{1-\eta} \sqrt{I - r_{1-\eta}r_{1-\eta}^* (W_1 - W_{1-\eta})},$$

$$R_\eta = R_{\eta}^1 + R_{\eta}^2 = \int_{1-\eta}^1 (v_s \sqrt{I - r_s r_s^*} - v_{1-\eta} \sqrt{I - r_{1-\eta}r_{1-\eta}^*}) \, dW_s$$

$$+ \int_{1-\eta}^1 \zeta(\tilde{X}_s(q) + z_s, v_s) \, ds.$$

We are now checking the conditions of that theorem.

First, $F_{1-\eta}$ is $\mathcal{F}_{1-\eta}$-measurable. Second, as all coordinates of $\tilde{X}_1(q)$ are in $\mathbb{D}^{2,\infty}$ by Lemma 4.3, so are those of R_δ. Third, since $s \to (r_s, v_s)$ is continuous and $r_s \in C^1$, $v_s \in C^+$, there is $\varepsilon > 0$ such that $v_s \sqrt{I - r_s r_s^*} \geq \varepsilon I$ for all s. It follows that

$$C_\eta := \int_{1-\eta}^1 v_s^* [I - r_s r_s^*] v_s \, ds \geq \eta \varepsilon^2 I.$$

Clearly, $\det(C_\eta) \neq 0$.

In order to apply Theorem 3.3 of [2], it remains to check that the event

$$\tilde{\Gamma}_{\eta,1} = \{|F_{1-\eta} - y| \leq 1/2\} \cap \{|C_{\eta}^{-1/2} R_\eta|_{1,2,q} \leq e^{-1}\}$$

has positive probability for a suitable η. Here q and a are explicit constants whose precise form can be found in [2]. For $U \in \mathbb{R}^d$ with all coordinates in $\mathbb{D}^{2,q}$ the norm $||U||_{3,2,q}$ is defined as the random quantity

$$(E_{T-\eta}||U||_q^q + E_{T-\eta} \left[\left(\int_{T-\eta}^T |D_s(U)|^2 \, ds \right)^{q/2} \right]$$

$$+ E_{T-\eta} \left[\left(\int_{T-\eta}^T \int_{T-\eta}^T |D_{s_1,s_2}^2(U)|^2 \, ds_1 \, ds_2 \right)^{q/2} \right]^{1/q}.$$

(45)
with $E_{T - \eta}$ denoting conditional expectation with respect to $\mathcal{F}_{T - \eta}$. As we have already seen,

$$C_{\eta}^{-1/2} \leq \frac{1}{\varepsilon \sqrt{\eta}} I,$$

so it suffices to show that

$$\hat{\Gamma}_{\eta, 1} := \{|F_{1 - \eta} - u| \leq 1/2\} \cap \{|R_{\eta}|_{\eta, 2, q} \leq a^{-1} \varepsilon \sqrt{\eta}\}$$

has positive probability.

By an easy extension of the support theorem for diffusions, see [19], the process $\tilde{X}(q)$ has full support on the space of continuous functions starting from x, so we clearly have that

$$P(A_{\eta}) > 0$$

for each $0 < \eta < 1/2$. A standard argument (like Lemma 19 of [1]) shows that

$$\|R_{\eta}\|_{\eta, 2, q} \leq (1 + |F_{1 - \eta}|)\eta$$

almost surely. But then on A_{η} we have $\|R_{\eta}\|_{\eta, 2, q} \leq (1 + |u| + 1/2)\eta$. Clearly, this is smaller than $ae^{-1} \varepsilon \sqrt{\eta}$ for η small enough. We conclude that the set $\hat{\Gamma}_{\eta, q}$ contains A_{η} for η small enough, consequently it has positive probability. Now Theorem 3.3 of [2] implies that $p_{q}(\cdot) \geq c$ Lebesgue-a.s. with some $c > 0$ in a neighbourhood of u. As $p_{q}(u)$ is continuous in u, $p_{q}(u) \geq c$, showing our lemma.

Corollary 4.7 There exist constants $\tilde{c}_{n} > 0$, $n \in \mathbb{N}$ such that for each $A \in \mathcal{B}(\mathbb{R})$ with $A \subset [-1, 1]$ and for all $(v, z, r) \in \mathcal{Y}_{n}$, $x \in \mathcal{X}_{n}$,

$$P(\tilde{X}_{1}(v, z, r, x) \in A) \geq \tilde{c}_{n} \text{Leb}(A).$$

Proof Compactness of $[-1, 1] \times \mathcal{Y}_{n} \times \mathcal{X}_{n}$, Lemmas 4.5 and 4.6 imply that

$$\inf_{(u, q) \in [-1, 1] \times \mathcal{Y}_{n} \times \mathcal{X}_{n}} p_{q}(u) > 0.$$

Define $\hat{X}_{t}(v, z, r, x) := \tilde{X}_{t}(v, z, r, x) + z_{t}$, $t \in [0, 1]$. This process satisfies the integral equation

$$\hat{X}_{t}(v, z, r, x) = x + \int_{0}^{t} \zeta(\hat{X}_{s}, v_{s}) \, ds + z_{t} + \int_{0}^{t} v_{s} \sqrt{I - r_{s} r_{s}^{*}} \, dW_{s}, \quad t \in [0, 1]$$

hence it serves as the “parametric version” of (4).
Corollary 4.8 There exist constants \(\hat{c}_n > 0, n \in \mathbb{N} \) such that for each \(A \in \mathcal{B}(\mathbb{R}) \) with \(A \subset [-1, 1] \) and for all \((\mathbf{v}, \mathbf{z}, \mathbf{r}) \in \mathcal{B}_n, x \in \mathcal{X}_n \),

\[
P(\hat{X}_1(\mathbf{v}, \mathbf{z}, \mathbf{r}, x) \in A) \geq \hat{c}_n \text{Leb}(A).
\]

Proof Note that \((\mathbf{v}, \mathbf{z}, \mathbf{r}) \rightarrow ||\mathbf{z}||_{C_d} \) is bounded on each \(\mathcal{B}_n \). Hence there is \(N \geq n \) such that whenever \(x \in \mathcal{X}_n \) one has \(x + \mathbf{z}_1 \in \mathcal{X}_N \) for all \(\mathbf{q} \in \mathcal{B}_n \). Now Corollary 4.7 readily implies the statement. \(\square \)

Lemma 4.9 There exists a measurable mapping \(\Xi : \Omega \times \bigcup_n \mathcal{B}_n \times \mathbb{R} \rightarrow C_d \) such that it satisfies for all \(\mathbf{q} \in \bigcup_n \mathcal{B}_n \times \mathbb{R} \)

\[
\Xi_t(\mathbf{q}) = x + \int_0^t \xi(\Xi_s(\mathbf{q}), \mathbf{v}_s) \, ds + \mathbf{z}_t + \int_0^t \mathbf{v}_s \sqrt{I - \mathbf{r}_s \mathbf{r}_s^*} \, dW_t, \ t \in [0, 1].
\]

For almost all \(\omega \), \(\Xi(\omega, \cdot, \cdot) \) is continuous. Furthermore, \(\Xi_t(\cdot, Y_k, L_k), t \in [0, 1] \) is a version of \(L_{k+i}, t \in [0, 1] \). From now on we always take this version of \(L \).

Proof Let us take an increasing sequence of sets \(B_n \subset \mathcal{B}_n \times \mathcal{X}_n, n \in \mathbb{N} \) which are countable and dense in \(\mathcal{B}_n \times \mathcal{X}_n \). By Lemma 4.4, there is a common \(P \)-null set \(N \in \mathcal{F} \) such that for \(\omega \in \Omega \setminus N \) the mapping \(\mathbf{q} \rightarrow (\hat{X}_n(\mathbf{q})(\omega))_{n \in [0,1]} \in C_d \) is uniformly continuous on \(B_n \) for each \(n \) hence it has a continuous extension to \(\mathcal{B}_n \times \mathcal{X}_n \) which coincides with the respective extensions on \(\mathcal{B}_i \times \mathcal{X}_i \) for \(i \leq n \). Hence we eventually get a function \(\Xi : (\Omega \setminus N) \times \bigcup_n \mathcal{B}_n \times \mathbb{R} \rightarrow C_d \) that is measurable in its first variable and jointly continuous in its second and third, hence jointly measurable in all three variables. (We set \(\Xi := 0 \) on \(N \).)

For any \(\mathcal{B}_\infty \vee \mathcal{X}_k \)-measurable step function \(\mathbf{Q} : \Omega \rightarrow \bigcup_n \mathcal{B}_n \times \mathbb{R} \) with \(\mathbf{Q} = (\mathbf{V}, \mathbf{Z}, \mathbf{R}, X) \) it clearly holds that

\[
\Xi_t(\mathbf{Q}) = X + \int_0^t \xi(\Xi_s(\mathbf{Q}), \mathbf{v}_s) \, ds + \mathbf{Z}_t + \int_0^t \mathbf{v}_s \sqrt{I - \mathbf{R}_s \mathbf{R}_s^*} \, dW_t, \ t \in [0, 1],
\]

and then this extends by continuity to all \(\bigcup_n \mathcal{B}_n \times \mathbb{R} \)-valued \(\mathcal{B}_\infty \vee \mathcal{X}_k \)-measurable random variables \(\mathbf{Q} \), by continuity. In particular, it holds for \(\mathbf{Q} := (Y_k, L_k) \), which proves the second statement. \(\square \)

Let us define the parametrized kernel \(Q \) as follows: for each \((x, y) \in \mathbb{R} \times \bigcup_n \mathcal{B}_n \) and for all continuous and bounded \(\phi : \mathbb{R}^d \rightarrow \mathbb{R}^d \) we let

\[
\int_{\mathbb{R}^d} \phi(\mathbf{z}) \, Q(x, y, d\mathbf{z}) := E[\phi(\Xi_1(y, x))].
\]

This clearly defines a probability for all \((x, y) \), and for a fixed \(\phi \) it is measurable in \((x, y) \) by Lemma 4.9. Now we can recursively generate

\[
X_0 := L_0, \ X_{t+1} := \Xi_{t+1}(Y_t, X_t), t \in \mathbb{N} \setminus \{0\}
\]
holds in $||·||_{TV}$. Working on a finer time grid, we similarly obtain that, for each $k \in \mathbb{N}$, the sequence of laws $\mathcal{L}(L_{l/2^k}, V_{l/2^k}, R_{l/2^k}), l \in \mathbb{N}$ converge in $||·||_{TV}$ as $l \to \infty$ and all these limits necessarily equal μ_{π}.

Assumption 2.4 implies Lipschitz-continuity of ζ in its first variable and local Lipschitz-continuity with linearly growing Lipschitz-continuity in its second variable. In particular, $|\zeta(x, v)| \leq C(1 + |x| + |v|^2)$, hence for $0 < h \leq 1$,

$$E[|L_{t+h} - L_t|^2]$$

$$\leq 3E \left[\left(\int_{t}^{t+h} \zeta(L_s, V_s) \, ds \right)^2 \right] + 3E \left[\left(\int_{t}^{t+h} V_s \rho_s \, dB_s \right)^2 \right]$$

$$+ 3E \left[\left(\int_{t}^{t+h} \sqrt{1 - \rho_s^2} \, dW_s \right)^2 \right]$$

$$\leq \int_{t}^{t+h} C \left[E[|L_s|^2] \right]$$

$$+ E[|V_0|^4] + 1 \right] ds + 3 \int_{t}^{t+h} E[|V_0|^2] \, ds + 3 \int_{t}^{t+h} E[|V_0|^2] \, ds$$

$$\leq hC[\tilde{L} + E[|V_0|^4] + 1 + E[|V_0|^2]] \leq Ch,$$

(46)

by Assumption 2.4 and Lemma 4.2. It is only at this point that we need $E[|V_0|^4] < \infty$.

For each $t \in \mathbb{R}_+$ and $k \in \mathbb{N}$, let $l(k, t)$ denote the integer satisfying $l(k, t)/2^k \leq t < [l(k, t) + 1]/2^k$. Notice that, for k fixed, $l(k, t) \to \infty$ as $t \to \infty$. We estimate, using (46),
Proof of Theorem 2.10

\begin{align*}
w(\mathcal{L}(L_t, V_t, R_t), \mu_{\tilde{\tau}}) \\
\leq w(\mathcal{L}(L_l, V_l, R_l), \mathcal{L}(L_{(k,l)/2^k}, V_{(k,l)/2^k}, R_{(k,l)/2^k})) \\
+ w(\mathcal{L}(L_{(k,l)/2^k}, V_{(k,l)/2^k}, R_{(k,l)/2^k}), \mu_{\tilde{\tau}}) \\
\leq E[L_t - L_{(k,l)/2^k}] + E[d_{\mathcal{d} \times d}(V_t, V_{(k,l)/2^k})] \\
+ E[d_{\mathcal{d} \times m}(R_t, R_{(k,l)/2^k})] + C\|\mathcal{L}(L_{(k,l)/2^k}, V_{(k,l)/2^k}, R_{(k,l)/2^k}) - \mu_{\tilde{\tau}}\|_{TV} \\
\leq \sqrt{C/2^k} + \sup_{t \in \mathbb{R}} \left\{ E[d_{\mathcal{d} \times d}(V_t, V_{(k,l)/2^k})] + E[d_{\mathcal{d} \times m}(R_t, R_{(k,l)/2^k})] \right\} \\
+ C\|\mathcal{L}(L_{(k,l)/2^k}) - \mu_{\tilde{\tau}}\|_{TV}.
\end{align*}

Noting Lemma 4.1 and Theorem 3.10, the latter expression can be made arbitrarily small by first choosing k large enough and then choosing t large enough.

Now we turn to proving stationarity. Theorem 3.10 implies that, if $\mathcal{L}(L_0, V_0, R_0) = \mu_{\tilde{\tau}}$ then

$$\mathcal{L}(L_t, V_t, R_t) = \mu_{\tilde{\tau}} \quad (47)$$

holds for all dyadic rationals $t \geq 0$. For an arbitrary $t \in \mathbb{R}$, take dyadic rationals $t_n \to t$, $n \to \infty$ and estimate

$$w(\mathcal{L}(L_t, V_t, R_t), \mathcal{L}(L_{t_n}, V_{t_n}, R_{t_n})) \leq E[L_t - L_{t_n}] + E[d_{\mathcal{d} \times d}(V_t, V_{t_n})] + E[d_{\mathcal{d} \times m}(R_t, R_{t_n})],$$

which tends to 0 as $n \to \infty$, by Lemma 4.1 and by (46). Hence (47) holds for all $t \in \mathbb{R}$. \qed

Proof of Theorem 2.10 Notice that, in the proof of Theorem 2.9, we used Assumption 2.5 only in Lemma 4.2. Under our current assumptions, we verify

$$\sup_{t \geq 0} E[e^{\kappa |L_t|}] < \infty$$

for some $\kappa > 0$. This trivially entails

$$\tilde{L} := \sup_{t \geq 0} E[|L_t|^2] < \infty,$$

and the rest of the proof follows verbatim that of Theorem 2.9.

We use the Lyapunov-function $g(x) := \exp\left(\kappa \sqrt{1 + |x|^2}\right)$, $x \in \mathbb{R}^d$, where $0 < \kappa \leq \kappa_0$ will be chosen later. Note that

$$\partial_i g(x) = \exp\left(\kappa \sqrt{1 + |x|^2}\right) \frac{\kappa x_i}{\sqrt{1 + |x|^2}}, \quad i = 1, \ldots, d,$$

and $|\partial_{ij} g(x)| \leq C_0 \kappa g(x)$ for all x, with some constant $C_0 > 0$, for all $1 \leq i, j \leq d$.

\textcopyright{} Springer
Fix $k \in \mathbb{N}$. Define the stopping times $\tau_l := \inf\{t > k : |L_t| > l\}$ for $l \in \mathbb{N}$. Apply Itô’s lemma to obtain
\[
e^{\alpha(t \wedge \tau_l - k)} e^{\kappa \sqrt{1 + |L_{t \wedge \tau_l}|^2}} \leq e^{\kappa \sqrt{1 + |L_k|^2}} + \int_k^{t \wedge \tau_l} e^{\alpha(s-k)} \frac{e^{\kappa \sqrt{1 + |L_s|^2}}}{\sqrt{1 + |L_s|^2}} \langle L_s, \zeta(L_s, V_s) \rangle \, ds
+ \int_k^{t \wedge \tau_l} e^{\alpha(s-k)} \frac{e^{\kappa \sqrt{1 + |L_s|^2}}}{\sqrt{1 + |L_s|^2}} L_s^* V_s \, dW_s
+ \int_k^{t \wedge \tau_l} C_1 \kappa e^{\alpha(s-k)} e^{\kappa \sqrt{1 + |L_s|^2}} \, ds
+ \int_k^{t \wedge \tau_l} \alpha e^{\alpha(s-k)} e^{\kappa \sqrt{1 + |L_s|^2}} \, ds,
\]
for some $C_1 > 0$. Taking expectations, using the martingale property of stochastic integrals and (6), we arrive at
\[
E \left[e^{\alpha(t \wedge \tau_l - k)} e^{\kappa \sqrt{1 + |L_{t \wedge \tau_l}|^2}} \right]
\leq E \left[e^{\kappa \sqrt{1 + |L_k|^2}} \right]
+ \int_k^{t \wedge \tau_l} \kappa e^{\alpha(s-k)} e^{\kappa \sqrt{1 + |L_s|^2}} \left(-\alpha |L_s|^{1+\gamma} + \beta (1 + |V_s|^\xi) \right) \, ds
+ \int_k^{t \wedge \tau_l} C_1 \kappa e^{\alpha(s-k)} e^{\kappa \sqrt{1 + |L_s|^2}} |V_s|^2 \, ds
+ \int_k^{t \wedge \tau_l} \alpha e^{\alpha(s-k)} e^{\kappa \sqrt{1 + |L_s|^2}} \, ds.
\]
Set $C_2 := C_1 + \beta$. Let us notice that, on the event
\[
A := \left\{ |L_s| \geq \max \left\{ 1, \left(\frac{2 \sqrt{2}}{\kappa} \right)^{1/\gamma} + \left(\frac{2 \sqrt{2} C_2}{\alpha} \right)^{1/\gamma} (1 + |V_s|^\xi) \right\} \right\}
\]
we have
\[
-\frac{\alpha \kappa}{\sqrt{1 + |L_s|^2}} |L_s|^{1+\gamma} + C_2 \kappa (1 + |V_s|^\xi) + \alpha \leq 0
\]
On the complement of A,
\[
\exp \left(\kappa \sqrt{1 + |L_s|^2} \right) \leq \exp \left(\kappa + \kappa \left(1 + \left(\frac{2 \sqrt{2}}{\kappa} \right)^{1/\gamma} + \left(\frac{2 \sqrt{2} C_2}{\alpha} \right)^{1/\gamma} (1 + |V_s|^\xi) \right) \right).
\]
Letting \(l \to \infty \) and applying Fatou’s lemma, our estimate takes the form

\[
E \left[e^{\alpha(t-k)} e^{\kappa \sqrt{1+|L_l|^2}} \right] \leq E \left[e^{\kappa \sqrt{1+|L_k|^2}} \right] + C_3(\kappa) \int_k^{k+1} E \left[(1 + |V_s|^\xi) \exp \left(\kappa \left(\frac{2\sqrt{2}C_2}{\alpha} \right)^{1/\gamma} (1 + |V_s|^\xi)^{1/\gamma} \right) \right] ds \leq E \left[e^{\kappa \sqrt{1+|L_k|^2}} \right] + C_4(\kappa) E \left[(1 + |V_0|^\xi) \exp \left(\kappa \left(\frac{2\sqrt{2}C_2}{\alpha} \right)^{1/\gamma} 2^{1/\gamma |V_0|^\xi/\gamma} \right) \right].
\]

for all \(k \leq t \leq k + 1 \), with constants \(C_3(\kappa), C_4(\kappa) \). Choosing \(\kappa \) such that \(\left(\frac{2\sqrt{2}C_2}{\alpha} \right)^{1/\gamma} 2^{1/\gamma} \kappa < \kappa_0 \), the second integral is finite, by (6). Now we can easily conclude, as in Lemma 4.2 above.

\[\square \]

Funding Open access funding provided by ELKH Alfréd Rózsa Institute of Mathematics.

Data availability statement There is no associated data to this manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bally, V.: Lower bounds for the density of locally elliptic Itô processes. Ann. Probab. 34, 2406–2440 (2006)
2. Bally, V., Caramellino, L.: Positivity and lower bounds for the density of Wiener functionals. Potential Anal. 39, 141–168 (2013)
3. Bally, V., Caramellino, L.: Integration by parts formulas, Malliavin calculus and regularity of probability laws. In: V. Bally, L. Caramellino and R. Cont: Stochastic integration by parts and functional Itô calculus, 1–114, Birkhäuser (2016)
4. Bayer, Ch., Friz, P., Gatheral, J.: Pricing under rough volatility. Quant. Financ. 16, 887–904 (2016)
5. Benveniste, A., Métivier, M., Priouret, P.: Adaptive algorithms and stochastic approximations. Springer, Berlin/Heidelberg (1990)
6. Bessembinder, H., Coughenor, J.F., Seguin, P.J., Smoller, M.M.: Mean-reversion in equilibrium asset prices: evidence from the futures term structure. J. Financ. 50, 361–375 (1995)
7. Bhattacharya, R., Waymire, E.: Stochastic Processes with Applications. Wiley & Sons, New York (1990)
8. Casassus, J., Collin-Dufresne, P.: Stochastic convenience yield implied from commodity futures and interest rates. J. Financ. 60, 2283–2331 (2005)
9. Cont, F., Renault, É.: Long memory in continuous-time stochastic volatility models. Math. Financ. 8, 291–323 (1998)
10. Diaconis, P., Freedman, D.: Iterated random functions. SIAM Rev. 41, 45–76 (1999)
11. Di Masi, G.B., Stettner, L.: Risk sensitive control of discrete time Markov processes with infinite horizon. SIAM J. Control Optimiz. 38, 61–78 (2000)
12. Down, D., Meyn, S.P., Tweedie, R.L.: Exponential and uniform ergodicity of Markov processes. Ann. Probab. 23, 1671–1691 (1995)
13. Föllmer, H., Schachermayer, W.: Asymptotic Arbitrage and large deviations. Math. Financ. Econ. 1, 213–249 (2008)
14. Fukasawa, M.: Short-time at-the-money skew and rough fractional volatility. Quant. Financ. 17, 189–198 (2017)
15. Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Financ. 18, 933–949 (2018)
16. Gerencsér, B., Rásonyi, M.: On the ergodicity of certain Markov chains in random environments. Submitted, (2020). arXiv:1807.03568v3
17. Guasoni, P., Nagy, L., Rásonyi, M.: Young, timid and risk seekers. To appear in Mathematical Finance, (2021). SSRN:3763151
18. Guasoni, P., Nika, Zs., Rásonyi, M.: Trading fractional Brownian motion. SIAM J. Financ. Math. 10, 769–789 (2019)
19. Guasoni, P., Rásonyi, M.: Fragility of arbitrage and bubbles in local martingale diffusion models. Financ. Stoch. 19, 215–231 (2015)
20. Guennoun, H., Jacquier, A., Roome, P., Shi, F.: Asymptotic behavior of the fractional Heston model. SIAM J. Finan. Math. 9, 1017–1045 (2018)
21. Hairer, M.: Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann. Probab. 33, 703–758 (2005)
22. Hairer, M.: Convergence of Markov processes. Lecture notes (2016). http://hairer.org
23. Hairer, M., Mattingly, J.: Yet another look at Harris’ ergodic theorem for Markov chains. In: Dalang, R., Dozzi, M., Russo F. (Eds.), Seminar on stochastic analysis, random fields and applications VI., Progress in Probability, vol. 63, 109–117 (2011)
24. Hernandez-Lerma, O., Lasserre, J.B.: Discrete-time Markov control processes. Springer, Berlin/Heidelberg (1996)
25. Khasminskii, R.Z.: Stochastic stability of differential equations, 2nd edn. Springer, Berlin/Heidelberg (2012)
26. Kifer, Y.: Perron-Frobenius theorem, large deviations, and random perturbations in random environments. Math. Zeitschrift 222, 677–698 (1996)
27. Kifer, Y.: Limit theorems for random transformations and processes in random environments. Trans. Am. Math. Soc. 350, 1481–1518 (1998)
28. Krylov, N.V.: Controlled diffusion processes. Springer, Berlin/Heidelberg (1980)
29. Lovas, A., Rásonyi, M.: Markov chains in random environment with applications in queuing theory and machine learning. To appear in Stochastic Processes and their Applications, (2021). arXiv:1911.04377v2
30. Malliavin, P., Thalmaier, A.: Malliavin calculus for financial applications. Springer, Berlin/Heidelberg (2010)
31. Meyn, S.P., Tweedie, R.L.: Markov chains and stochastic stability, 2nd edn. Cambridge University Press, Cambridge (2009)
32. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes II. Continuous time processes and sampled chains. Adv. Appl. Prob. 25, 487–517 (1993)
33. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25, 518–548 (1993)
34. Nagy, L., Rásonyi, M.: Optimal long-term investment in illiquid markets when prices have negative memory. To appear in Electronic Communications in Probability, (2021). arXiv:2005.07080
35. Nualart, D.: The Malliavin calculus and related topics, 2nd edn. Springer, Berlin/Heidelberg (2006)
36. Pitera, M., Stettner, L.: Long run risk-sensitive portfolio with general factors. Math. Method. Oper. Res. 83, 265–293 (2016)
37. Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algorithms 9, 223–252 (1996)
38. Roberts, G.O., Tweedie, R.L.: Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2, 341–363 (1996)
39. Seppäläinen, T.: Large deviations for Markov chains with random transitions. Ann. Probab. 22, 713–748 (1994)
40. Stenflo, Ö.: Markov chains in random environments and random iterated function systems. Trans. Am. Math. Soc. **353**, 3547–3562 (2001)
41. Veretennikov, AYu.: Bounds for the mixing rate in the theory of stochastic equations. Theory Probab. Appl. **32**, 273–281 (1987)
42. Veretennikov, AYu.: On polynomial mixing bounds for stochastic differential equations. Stoch. Processes Appl. **70**, 115–127 (1997)
43. Villani, C.: Optimal transport. Old and new. Springer, Berlin/Heidelberg (2009)
44. Withers, C.S.: Central limit theorems for dependent variables I. Z. Wahsch. verw. Gebiete **57**, 509–534 (1981)
45. https://sites.google.com/site/roughvol/home/risks-1

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.