Laplacian Spectrum of non-commuting graphs of finite groups

Parama Dutta, Jutirekha Dutta and Rajat Kanti Nath

Department of Mathematical Sciences,
Tezpur University, Napaam-784028, Sonitpur, Assam, India.
Emails: parama@gonitsora.com, jutirekhadutta@yahoo.com and rajatkantinath@yahoo.com

Abstract: In this paper, we compute the Laplacian spectrum of non-commuting graphs of some classes of finite non-abelian groups. Our computations reveal that the non-commuting graphs of all the groups considered in this paper are L-integral. We also obtain some conditions on a group \(G \) so that its non-commuting graph is L-integral.

Key words: non-commuting graph, spectrum, L-integral graph, finite group.

2010 Mathematics Subject Classification: 05C50, 15A18, 05C25, 20D60.

1 Introduction

Let \(G \) be a finite group with centre \(Z(G) \). The non-commuting graph of a non-abelian group \(G \), denoted by \(A_G \), is a simple undirected graph whose vertex set is \(G \setminus Z(G) \) and two vertices \(x \) and \(y \) are adjacent if and only if \(xy \neq yx \). Various aspects of non-commuting graphs of different finite groups can be found in [1, 4, 8, 12, 23]. In [12], Elvierayani and Abdussakir have computed the Laplacian spectrum of the non-commuting graph of dihedral groups \(D_{2m} \) where \(m \) is odd and suggested to consider the case when \(m \) is even. In this paper, we compute the Laplacian spectrum of the non-commuting graph of \(D_{2m} \) for any \(m \geq 3 \) using a different method. Our method also enables to compute the Laplacian spectrum of the non-commuting graphs of several well-known families finite non-abelian groups such as the quasidihedral groups, generalized quaternion groups, some projective special linear groups, general linear groups etc. In a separate paper [11], we study the Laplacian energy of non-commuting graphs of the groups considered in this paper.

For a graph \(\mathcal{G} \) we write \(\overline{\mathcal{G}} \) and \(V(\mathcal{G}) \) to denote the complement of \(\mathcal{G} \) and the set of vertices of \(\mathcal{G} \) respectively. Let \(A(\mathcal{G}) \) and \(D(\mathcal{G}) \) denote the adjacency matrix and degree matrix of a graph \(\mathcal{G} \) respectively. Then the Laplacian matrix of \(\mathcal{G} \) is given by \(L(\mathcal{G}) = D(\mathcal{G}) - A(\mathcal{G}) \). We write \(L-Spec(\mathcal{G}) \) to denote the Laplacian spectrum of \(\mathcal{G} \) and \(L-Spec(\mathcal{G}) = \{ \alpha_1, \alpha_2, \ldots, \alpha_n \} \) where \(\alpha_1 < \alpha_2 < \cdots < \alpha_n \) are the eigenvalues of

*Corresponding author
$L(G)$ with multiplicities a_1, a_2, \ldots, a_n respectively. A graph G is called L-integral if $L\text{-Spec}(G)$ contains only integers. As a consequence of our results, it follows that the non-commuting graphs of all the groups considered in this paper are L-integral. It is worth mentioning that L-integral graphs are studied extensively in \cite{3, 15, 17}.

2 Preliminary results

It is well-known that $L\text{-Spec}(K_n) = \{0^1, n^{n-1}\}$ where K_n denotes the complete graph on n vertices. Further, we have the following results.

Theorem 2.1. If $G = l_1K_{m_1} \sqcup l_2K_{m_2} \sqcup \cdots \sqcup l_kK_{m_k}$, where $l_iK_{m_i}$ denotes the disjoint union of l_i copies of K_{m_i} for $1 \leq i \leq k$ and $m_1 < m_2 < \cdots < m_k$, then

$$L\text{-Spec}(G) = \{\alpha \sum_{i=1}^{k} l_i, \alpha l_1(m_1-1), \alpha l_2(m_2-1), \ldots, \alpha l_k(m_k-1)\}.$$

Theorem 2.2. \cite{18} Theorem 3.6] Let G be a graph such that $L\text{-Spec}(G) = \{\alpha_1 a_1, \alpha_2 a_2, \ldots, \alpha_n a_n\}$ then $L\text{-Spec}(\overline{G})$ is given by

$$\{0, |V(G)| - \alpha_n a_n, |V(G)| - \alpha_{n-1} a_{n-1}, \ldots, |V(G)| - \alpha_1 a_1 - 1\}.$$

As a corollary of the above two theorems we have the following result.

Corollary 2.3. If $G = l_1K_{m_1} \sqcup l_2K_{m_2} \sqcup \cdots \sqcup l_kK_{m_k}$, where $l_iK_{m_i}$ denotes the disjoint union of l_i copies of K_{m_i} for $1 \leq i \leq k$ and $m_1 < m_2 < \cdots < m_k$, then

$$L\text{-Spec}(G) = \{0, \left(\sum_{i=1}^{k} l_i m_i - m_k\right) l_k(m_k-1), \ldots, \left(\sum_{i=1}^{k} l_i m_i - m_k\right) l_k(m_k-1), \ldots, \left(\sum_{i=1}^{k} l_i m_i - m_k\right) l_k(m_k-1)\}.$$

A group G is called an AC-group if $C_G(x)$ is abelian for all $x \in G \setminus Z(G)$. Various aspects of AC-groups can be found in \cite{1, 10, 21}. The following result gives the Laplacian spectrum of the non-commuting graph of a finite non-abelian AC-group.

Theorem 2.4. Let G be a finite non-abelian AC-group. Then

$$L\text{-Spec}(\mathcal{A}_G) = \{0, |G| - |X_1|, |X_2| - |Z(G)|, \ldots, \}$$

$$|G| - |X_n|, |X_1| - |Z(G)| = 1, \ldots, |G| - |Z(G)| = 1, \ldots, ||G| - |Z(G)|\}.$$

where X_1, \ldots, X_n are the distinct centralizers of non-central elements of G such that $|X_1| \leq \cdots \leq |X_n|$.

Proof. Let G be a finite non-abelian AC-group and $X_i = C_G(x_i)$ where $x_i \in G \setminus Z(G)$ and $1 \leq i \leq n$. Let $x, y \in X_i \setminus Z(G)$ for some i and $x \neq y$ then, since G an AC-group, there is an edge between x and y in \mathcal{A}_G. Suppose that $x \in (X_i \cap X_j) \setminus Z(G)$ for some $1 \leq i \neq j \leq n$. Then $[x,x] = 1$ and $[x,x] = 1$. Let $s \in C_G(x)$ then $[s,x_i] = 1$ since $x_i \in C_G(x)$ and G is an AC-group. Therefore, $s \in C_G(x)$ and so $C_G(x) \subseteq C_G(x)$. Again, let $t \in C_G(x)$ then $[t,x] = 1$ since $x \in C_G(x)$ and G is an AC-group. Therefore, $t \in C_G(x)$ and so $C_G(x) \subseteq C_G(x)$. Thus $C_G(x) = C_G(x)$.
Similarly, it can be seen that $C_G(x) = C_G(x_j)$, which is a contradiction. Therefore, $X_i \cap X_j = Z(G)$ for any $1 \leq i \neq j \leq n$. This shows that
\[A_G = \bigcap_{i=1}^n K_{|X_i| - |Z(G)|}. \] (2.1)

Therefore, by Corollary 2.3 we have
\[L-\text{Spec}(A_G) = \{0, \left(\sum_{i=1}^n (|X_i| - |Z(G)|) - (|X_n| - |Z(G)|)\right)^{|X_n| - |Z(G)| - 1}, \ldots, \]
\[\left(\sum_{i=1}^n (|X_i| - |Z(G)|) - (|X_1| - |Z(G)|)\right)^{|X_1| - |Z(G)| - 1}, \left(\sum_{i=1}^n (|X_i| - |Z(G)|)\right)^{n-1}\}.

Hence, the result follows noting that $\sum_{i=1}^n (|X_i| - |Z(G)|) = |G| - |Z(G)|$. \qed

Corollary 2.5. Let G be a finite non-abelian AC-group and A be any finite abelian group. Then
\[L-\text{Spec}(A_G \times A) = \{0, (|A||G| - |X_n|)|^{A(|X_n| - |Z(G)|) - 1}, \ldots, \]
\[(|A||G| - |X_1|)|^{A(|X_1| - |Z(G)|) - 1}, (|A||G| - |Z(G)|)^{n-1}\}.

where X_1, \ldots, X_n are the distinct centralizers of non-central elements of G such that $|X_1| \leq \cdots \leq |X_n|$.

Proof. It is easy to see that $G \times A$ is an AC-group and $X_1 \times A, X_2 \times A, \ldots, X_n \times A$ are the distinct centralizers of non-central elements of $G \times A$. Hence, the result follows from Theorem 2.4 noting that $Z(G \times A) = Z(G) \times A$. \qed

3 Groups with given central factors

In this section, we compute the Laplacian spectrum of the non-commuting graphs of some families of finite non-abelian groups whose central factors are some well-known finite groups. We begin with the following.

Theorem 3.1. Let G be a finite group and $\frac{G}{Z(G)} \cong Sz(2)$, where $Sz(2)$ is the Suzuki group presented by $\langle a, b : a^3 = b^5 = 1, b^{-1}ab = a^2 \rangle$. Then
\[L-\text{Spec}(A_G) = \{0, (15|Z(G)|)^{4|Z(G)| - 1}, (16|Z(G)|)^{|Z(G)| - 5}, (19|Z(G)|)^{5}\}.

Proof. We have
\[\frac{G}{Z(G)} = \langle aZ(G), bZ(G) : a^5Z(G) = b^7Z(G) = Z(G), b^{-1}abZ(G) = a^2Z(G) \rangle.

Observe that
\[C_G(ab) = Z(G) \cup abZ(G) \cup a^4b^2Z(G) \cup a^5bZ(G), \]
\[C_G(a^2b) = Z(G) \cup a^2bZ(G) \cup a^3b^2Z(G) \cup ab^4Z(G), \]
\[C_G(a^2b^3) = Z(G) \cup a^2b^3Z(G) \cup ab^2Z(G) \cup a^4bZ(G), \]
\[C_G(b) = Z(G) \cup bZ(G) \cup b^2Z(G) \cup b^3Z(G), \]
\[C_G(a^3b) = Z(G) \cup a^3bZ(G) \cup a^2b^2Z(G) \cup ab^3Z(G) \]
and
\[C_G(a) = Z(G) \cup aZ(G) \cup a^2Z(G) \cup a^3Z(G) \cup a^4Z(G).

are the only centralizers of non-central elements of G. Also note that these centralizers are abelian subgroups of G. Thus G is an AC-group. We have $|C_G(a)| = |C_G(b)| = 4|Z(G)|$.

Therefore, by Theorem 2.4 the result follows.

Theorem 3.2. Let G be a finite group such that $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$, where p is a prime integer. Then

$$\text{L-Spec}(A_G) = \{0, ((p^2 - p)|Z(G)|)^{(p^2 - 1)}|Z(G)| - p, ((p^2 - 1)|Z(G)|)^{p^2 - 1}\}.$$

Proof. Let $|Z(G)| = n$ then since $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$ we have $\frac{G}{Z(G)} = \langle aZ(G), bZ(G) : a^p, b^p, aba^{-1}b^{-1} \in Z(G) \rangle$, where $a, b \in G$ with $ab \neq ba$. Then for any $z \in Z(G)$, we have

$$C_G(a) = C_G(a^i z) = Z(G) \cup aZ(G) \cup \cdots \cup a^{p-1}Z(G) \text{ for } 1 \leq i \leq p - 1,$$

$$C_G(a^i b) = C_G(a^i bz) = Z(G) \cup a^i bZ(G) \cup \cdots \cup a^{(p-1)i}b^{p-1}Z(G) \text{ for } 1 \leq j \leq p.$$

These are the only centralizers of non-central elements of G. Also note that these centralizers are abelian subgroups of G. Therefore, G is an AC-group. We have $|C_G(a)| = |C_G(a^i b)| = pn$ for $1 \leq j \leq p$. Hence, the result follows from Theorem 2.4.

As a corollary we have the following result.

Corollary 3.3. Let G be a non-abelian group of order p^3, for any prime p, then

$$\text{L-Spec}(A_G) = \{0, (p^3 - p^2)p^2 - 1, (p^3 - p^2)^p\}.$$

Proof. Note that $|Z(G)| = p$ and $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Hence the result follows from Theorem 3.2.

Theorem 3.4. Let G be a finite group such that $\frac{G}{Z(G)} \cong D_{2m}$, for $m \geq 2$. Then

$$\text{L-Spec}(A_G) = \{0, m|Z(G)|^{(m-1)|Z(G)| - 1}, (2(m-1)|Z(G)|)^{m|Z(G)| - m}, ((2m - 1)|Z(G)|)^m\}.$$

Proof. Since $\frac{G}{Z(G)} \cong D_{2m}$ we have $\frac{G}{Z(G)} = \langle xZ(G), yZ(G) : x^2, y^m, xyx^{-1}y \in Z(G) \rangle$, where $x, y \in G$ with $xy \neq yx$. It is not difficult to see that for any $z \in Z(G)$,

$$C_G(xy^j) = C_G(xy^j z) = Z(G) \cup xy^j Z(G), 1 \leq j \leq m$$

and

$$C_G(y) = C_G(y^i z) = Z(G) \cup yZ(G) \cup \cdots \cup y^{m-1}Z(G), 1 \leq i \leq m - 1$$

are the only centralizers of non-central elements of G. Also note that these centralizers are abelian subgroups of G. Therefore, G is an AC-group. We have $|C_G(x^j y)| = 2n$ for $1 \leq j \leq m$ and $|C_G(y)| = mn$, where $|Z(G)| = n$. Hence, the result follows from Theorem 2.4.

Using Theorem 3.4 we now compute the Laplacian spectrum of the non-commuting graphs of the groups $M_{2n,1}, D_{2n}$, and Q_{4n} respectively.
Corollary 3.5. Let \(M_{2m} = \langle a, b : a^m = b^2 = 1, bab^{-1} = a^{-1} \rangle \) be a metacyclic group, where \(m \geq 2 \). Then \(\text{L-Spec}(A_{M_{2m}}) \) is one of the following:

\[
\begin{cases}
\{0, (2m)^{m-1} \}, & \text{if } m \text{ is odd} \\
\{0, (2m)^{m-2} \}, & \text{if } m \text{ is even}.
\end{cases}
\]

Proof. Observe that \(Z(M_{2m}) = \langle b^2 \rangle \) or \(\langle b^2 \rangle \cup a^{\frac{m}{2}} \langle b^2 \rangle \) according as \(m \) is odd or even. Also, it is easy to see that \(M_{2m} \cong D_{2m} \) or \(D_m \) according as \(m \) is odd or even. Hence, the result follows from Theorem 3.3.

As a corollary to the above result we have the following result.

Corollary 3.6. Let \(D_{2m} = \langle a, b : a^m = b^2 = 1, bab^{-1} = a^{-1} \rangle \) be the dihedral group of order \(2m \), where \(m \geq 2 \). Then

\[
\text{L-Spec}(A_{D_{2m}}) = \begin{cases}
\{0, m^{m-2}, (2m-1)^m \} & \text{if } m \text{ is odd} \\
\{0, m^{m-3}, (2m-4)^m, (2m-2)^m \} & \text{if } m \text{ is even}.
\end{cases}
\]

Corollary 3.7. Let \(Q_{4n} = \langle x, y : y^{2n} = 1, x^2 = y^n, xyx^{-1} = y^{-1} \rangle \), where \(n \geq 2 \), be the generalized quaternion group of order \(4n \). Then

\[
\text{L-Spec}(A_{Q_{4n}}) = \{0, (2n)^{2n-2}, (4n-4)^n, (4n-2)^n \}.
\]

Proof. The result follows from Theorem 3.3 noting that \(Z(Q_{4n}) = \{1, a^n \} \) and \(Q_{4n} \cong D_{2n} \).

4 Some well-known groups

In this section, we compute the Laplacian spectrum of the non-commuting graphs of some well-known families of finite groups. We begin with the family of finite groups having order \(pq \) where \(p \) and \(q \) are primes.

Proposition 4.1. Let \(G \) be a non-abelian group of order \(pq \), where \(p \) and \(q \) are primes with \(p \mid (q - 1) \). Then

\[
\text{L-Spec}(A_G) = \{0, (pq - q)^{q-2}, (pq - p)^{pq-2q}, (pq - 1)^q \}.
\]

Proof. It is easy to see that \(|Z(G)| = 1 \) and \(G \) is an AC-group. Also the centralizers of non-central elements of \(G \) are precisely the Sylow subgroups of \(G \). The number of Sylow \(q \)-subgroups and Sylow \(p \)-subgroups of \(G \) are one and \(q \) respectively. Hence, the result follows from Theorem 2.4.

Proposition 4.2. The Laplacian spectrum of the non-commuting graph of the quasidihedral group \(QD_{2^n} = \langle a, b : a^{2^{n-1}} = b^2 = 1, bab^{-1} = a^{2^{n-2} - 1} \rangle \), where \(n \geq 4 \), is given by

\[
\text{L-Spec}(A_{QD_{2^n}}) = \{0, (2^{n-2})^{2^{n-1}-3}, (2^n - 4)^{2^{n-2}}, (2^n - 2)^{2^{n-2}} \}.
\]
Proof. It is well-known that \(Z(QD_{2^n}) = \{1, a^{2^n-2}\} \). Also
\[
C_{QD_{2^n}}(a) = C_{QD_{2^n}}(a^i) = \langle a \rangle \quad \text{for} \quad 1 \leq i \leq 2^{n-1} - 1, i \neq 2^{n-2}
\]
and
\[
C_{QD_{2^n}}(a^i b) = \{1, a^{2^n-2}, a^i b, a^{i+2^n-2} b\} \quad \text{for} \quad 1 \leq j \leq 2^{n-2}
\]
are the only centralizers of non-central elements of \(QD_{2^n} \). Note that these centralizers are abelian subgroups of \(QD_{2^n} \). Therefore, \(QD_{2^n} \) is an AC-group. We have \(|C_{QD_{2^n}}(a)| = 2^{n-1} \) and \(|C_{QD_{2^n}}(a^i b)| = 4 \) for \(1 \leq j \leq 2^{n-2} \). Hence, the result follows from Theorem \(2.3 \).

Proposition 4.3. The Laplacian spectrum of the non-commuting graph of the projective special linear group \(PSL(2, 2^k) \), where \(k \geq 2 \), is given by
\[
\text{L-Spec}(\mathcal{A}_{PSL(2, 2^k)}) = \{0, (2^{3k} - 2^{k+1} - 1)^2, (2^{3k} - 2^{k+1})^2, (2^{3k} - 2^k - 1)^2\}.
\]

Proof. We know that \(PSL(2, 2^k) \) is a non-abelian group of order \(2^k(2^{2k} - 1) \) with trivial center. By Proposition 3.21 of \([1]\), the set of centralizers of non-trivial elements of \(PSL(2, 2^k) \) is given by
\[
\{xP_{x^{-1}}, xAx^{-1}, xBx^{-1} : x \in PSL(2, 2^k)\}
\]
where \(P \) is an elementary abelian \(2 \)-subgroup and \(A, B \) are cyclic subgroups of \(PSL(2, 2^k) \) having order \(2^k, 2^k-1 \) and \(2^k+1 \) respectively. Also the number of conjugates of \(P, A \) and \(B \) in \(PSL(2, 2^k) \) are \(2^k, 2^k-1(2^k+1) \) and \(2^k-1(2^k-1) \) respectively. Note that \(PSL(2, 2^k) \) is an AC-group and so, by \(2.4 \), we have
\[
\mathcal{A}_{PSL(2, 2^k)} = (2^k + 1)K_{|xP_{x^{-1}}|} \cup 2^{k-1}(2^k + 1)K_{|xAx^{-1}|} \cup 2^{k-1}(2^k - 1)K_{|xBx^{-1}|}.
\]
That is, \(\mathcal{A}_{PSL(2, 2^k)} = (2^k + 1)K_{|xP_{x^{-1}}|} \cup 2^{k-1}(2^k + 1)K_{|xAx^{-1}|} \cup 2^{k-1}(2^k - 1)K_{|xBx^{-1}|} \). Hence, the result follows from Corollary \(2.3 \).

Proposition 4.4. The Laplacian spectrum of the non-commuting graph of the general linear group \(GL(2, q) \), where \(q = p^n > 2 \) and \(p \) is a prime integer, is given by
\[
\text{L-Spec}(\mathcal{A}_{GL(2, q)}) = \{0, (q^4 - q^3 - 2q^2 + q + 1)^2, (q^4 - q^3 - 2q^2 + 1)^2, (q^4 - q^3 - 2q^2 + 2)^2\}
\]
\[
(q^4 - q^3 - 2q^2 + 3q - 1)^2, (q^4 - q^3 - q^2 + 1)^2, (q^4 - q^3 - q^2 + 2q)^2\}.
\]

Proof. We have \(|GL(2, q)| = (q^2 - 1)(q^2 - q) \) and \(|Z(GL(2, q))| = q - 1 \). By Proposition 3.26 of \([1]\), the set of centralizers of non-central elements of \(GL(2, q) \) is given by
\[
\{xDx^{-1}, xIx^{-1}, xP_{Z(GL(2, q))}x^{-1} : x \in GL(2, q)\}
\]
where \(D \) is the subgroup of \(GL(2, q) \) consisting of all diagonal matrices, \(I \) is a cyclic subgroup of \(GL(2, q) \) having order \(q^2 - 1 \) and \(P \) is the Sylow \(p \)-subgroup of \(GL(2, q) \) consisting of all upper triangular matrices with \(1 \) in the diagonal. The orders of \(D \) and \(P_{Z(GL(2, q))} \) are \((q - 1)^2 \) and \(q(q - 1) \) respectively. Also the number of conjugates
Hence, it can be seen that all the centralizers of non-central elements of $GL(2,q)$ are constructed by Hanaki (see [14]), and so, by (2.1), we have $A_{GL(2,q)} = \frac{q(q+1)}{2}K_{|\mu|D_{2q-1}|-q+1} \cup \frac{q(q-1)}{2}K_{|\mu|D_{2q-1}|-q+1} \cup (q+1)K_{|\mu|P_{Z(GL(2,q))}|x^{-1}|q+1}$. That is, $A_{GL(2,q)} = \frac{q(q+1)}{2}K_{2-3q+2} \cup \frac{q(q-1)}{2}K_{-q-2} \cup (q+1)K_{2-2q+1}$. Hence, the result follows from Corollary 2.3.

Proposition 4.6. Let $F = GF(2^n)$, $n \geq 2$ and ϑ be the Frobenius automorphism of F, that is, $\vartheta(x) = x^2$ for all $x \in F$. Then the Laplacian spectrum of the non-commuting graph of the group

$$A(n, \vartheta) = \left\{ U(a, b) = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & \vartheta(a) & 1 \end{bmatrix} : a, b \in F \right\}$$

under matrix multiplication given by $U(a, b)U(a', b') = U(a + a', b + b' + a'\vartheta(a))$ is

$$\text{L-Spec}(A(n, \vartheta)) = \{0, (2^{2n} - 2^{n+1})^{(2^n - 1)^2}, (2^{2n} - 2^n)^{2^n - 2}\}.$$

Proof. Note that $Z(A(n, \vartheta)) = \{ U(0, b) : b \in F \}$ and so $|Z(A(n, \vartheta))| = 2^n$. Let $U(a, b)$ be a non-central element of $A(n, \vartheta)$. It can be seen that the centralizer of $U(a, b)$ in $A(n, \vartheta)$ is $Z(A(n, \vartheta)) \cup U(a, 0)Z(A(n, \vartheta))$. Clearly, $A(n, \vartheta)$ is an AC-group and so, by (2.1), we have $A_{A(n, \vartheta)} = (2^n - 1)K_{2^n}$. Hence the result follows from Corollary 2.3.

Proposition 4.6. Let $F = GF(p^n)$, p be a prime. Then the Laplacian spectrum of the non-commuting graph of the group

$$A(n, p) = \left\{ V(a, b, c) = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix} : a, b, c \in F \right\}$$

under matrix multiplication $V(a, b, c)V(a', b', c') = V(a + a', b + b' + ca', c + c')$ is

$$\text{L-Spec}(A(n, p)) = \{0, (p^{3n} - p^{2n})^{p^{3n-2p^n-1}}, (p^{3n} - p^n)^{p^n}\}.$$

Proof. We have $Z(A(n, p)) = \{ V(0, 0, 0) : b \in F \}$ and so $|Z(A(n, p))| = p^n$. The centralizers of non-central elements of $A(n, p)$ are given by

(i) If $b, c \in F$ and $c \neq 0$ then the centralizer of $V(0, b, c)$ in $A(n, p)$ is $\{ V(0, b', c') : b', c' \in F \}$ having order p^{2n}.

(ii) If $a, b \in F$ and $a \neq 0$ then the centralizer of $V(a, b, 0)$ in $A(n, p)$ is $\{ V(a', b', 0) : a', b' \in F \}$ having order p^{2n}.

(iii) If $a, b, c \in F$ and $a \neq 0, c \neq 0$ then the centralizer of $V(a, b, c)$ in $A(n, p)$ is $\{ V(a', b', caa^{-1}) : a', b' \in F \}$ having order p^{2n}.

It can be seen that all the centralizers of non-central elements of $A(n, p)$ are abelian. Hence $A(n, p)$ is an AC-group and so, by (2.1), we have

$$A_{A(n, p)} = K_{p^{2n}-p^n} \cup K_{p^{2n}-p^n} \cup (p^n - 1)K_{p^{2n}-p^n} = (p^n + 1)K_{p^{2n}-p^n}.$$

Hence the result follows from Corollary 2.3.

We would like to mention here that the groups considered in Proposition 4.5, 4.6 are constructed by Hanaki (see [14]). These groups are also considered in [10], in order to compute their numbers of distinct centralizers.
5 Some consequences

Note that the non-commuting graphs of all the groups considered in Section 3 and 4 are L-integral. In this section, we determine some conditions on G so that its non-commuting graph becomes L-integral.

A finite group is called an n-centralizer group if it has n numbers of distinct element centralizers. It clear that 1-centralizer groups are precisely the abelian groups. There are no 2, 3-centralizer finite groups. The study of these groups was initiated by Belcastro and Sherman [6] in the year 1994. We have the following results regarding n-centralizer groups.

Proposition 5.1. If G is a finite 4-centralizer group then \mathcal{A}_G is L-integral.

Proof. Let G be a finite 4-centralizer group. Then, by [6, Theorem 2], we have $\frac{G}{Z(G)} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Therefore, by Theorem 3.2 we have

$$L\text{-Spec}(\mathcal{A}_G) = \{0, (2|Z(G)|)^{3|Z(G)|-3}, (3|Z(G)|)^{2}\}. $$

Hence, \mathcal{A}_G is L-integral. \qed

Further, we have the following result.

Proposition 5.2. If G is a finite $(p+2)$-centralizer p-group for any prime p, then \mathcal{A}_G is L-integral.

Proof. Let G be a finite $(p+2)$-centralizer p-group. Then, by [5, Lemma 2.7], we have $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Therefore, by Theorem 3.2 we have

$$L\text{-Spec}(\mathcal{A}_G) = \{0, ((p^2 - p)|Z(G)|^{p^2-1}|Z(G)|^{p-1}, (p^2 - 1)|Z(G)|^p\}. $$

Hence, \mathcal{A}_G is L-integral. \qed

Proposition 5.3. If G is a finite 5-centralizer group then \mathcal{A}_G is L-integral.

Proof. Let G be a finite 5-centralizer group. Then by [6, Theorem 4] we have $\frac{G}{Z(G)} \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ or D_6. Now, if $\frac{G}{Z(G)} \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ then by Theorem 5.2 we have $L\text{-Spec}(\mathcal{A}_G) = \{0, (6|Z(G)|)^{8|Z(G)|-4}, (8|Z(G)|)^3\}$ and hence \mathcal{A}_G is L-integral. If $\frac{G}{Z(G)} \cong D_6$ then, by Theorem 5.4 we have

$$L\text{-Spec}(\mathcal{A}_G) = \{0, (3|Z(G)|)^{2|Z(G)|-1}, (4|Z(G)|)^{3|Z(G)|-1}, (5|Z(G)|)^3\} $$

and hence \mathcal{A}_G is L-integral. Therefore, the result follows. \qed

We also have the following corollary.

Corollary 5.4. Let G be a finite non-abelian group and \{${x}_1, x_2, \ldots, x_r$\} be a set of pairwise non-commuting elements of G having maximal size. Then \mathcal{A}_G is L-integral if $r = 3, 4$.

Proof. By Lemma 2.4 in [2], we have that G is a 4-centralizer or a 5-centralizer group according as $r = 3$ or 4. Hence the result follows from Proposition 5.1 and Proposition 5.3. \qed
The commuting probability of a finite group G denoted by $\Pr(G)$ is the probability that any two randomly chosen elements of G commute. Clearly, $\Pr(G) = 1$ if and only if G is abelian. The study of $\Pr(G)$ is originated from a paper of Erdős and Turán [13]. Various results on $\Pr(G)$ can be found in [7, 9, 19]. The following results show that A_G is L-integral if $\Pr(G)$ has some particular values.

Proposition 5.5. If $\Pr(G) \in \{\frac{5}{14}, \frac{2}{5}, \frac{11}{27}, \frac{1}{2}, \frac{5}{8}\}$ then A_G is L-integral.

Proof. If $\Pr(G) \in \{\frac{5}{14}, \frac{2}{5}, \frac{11}{27}, \frac{1}{2}, \frac{5}{8}\}$ then as shown in [22, pp. 246] and [20, pp. 451], we have $\frac{G}{Z(G)}$ is isomorphic to one of the groups in $\{D_{14}, D_{10}, D_8, D_6, \mathbb{Z}_2 \times \mathbb{Z}_2\}$. If $\frac{G}{Z(G)}$ is isomorphic to D_{14}, D_{10}, D_8 or D_6 then, by Theorem 3.4 it follows that A_G is L-integral. If $\frac{G}{Z(G)}$ is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ then, by Theorem 3.2 it follows that A_G is L-integral. Hence, the result follows.

Proposition 5.6. Let G be a finite group and p the smallest prime divisor of $|G|$. If $\Pr(G) = \frac{2^2p + 1}{p}$ then A_G is L-integral.

Proof. If $\Pr(G) = \frac{2^2p + 1}{p}$ then by [16, Theorem 3] we have $\frac{G}{Z(G)}$ is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$. Now, by Theorem 3.2 it follows that A_G is L-integral.

Proposition 5.7. If G is a non-solvable group with $\Pr(G) = \frac{1}{2}$ then A_G is L-integral.

Proof. By [7, Proposition 3.3.7], we have that G is isomorphic to $A_5 \times B$ for some abelian group B. Since A_5 is an AC-group, by Corollary 3.3 it follows that A_G is L-integral.

A graph is called planar if it can be embedded in the plane so that no two edges intersect geometrically except at a vertex to which both are adjacent. We conclude this paper with the following result.

Proposition 5.8. Let G be a finite group then A_G is L-integral if A_G is planar.

Proof. It was shown in Proposition 2.3 of [11] that A_G is planar if and only if G is isomorphic to D_6, D_8 or Q_8. Therefore, by Corollary 5.6 and Corollary 5.7 the result follows.

References

[1] A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, *J. Algebra*, 298, 468–492 (2006).

[2] A. Abdollahi, S. M. Jafarain and A. M. Hassanabadi, Groups with specific number of centralizers, *Houston J. Math.*, 33(1), 43–57 (2007).

[3] N. M. M. Abreu, C. T. M. Vinagre, A. S. Bonifácioa and I. Gutman, The Laplacian energy of some Laplacian integral graph, *MATCH Commun. Math. Comput. Chem.*, 60, 447–460 (2008).

[4] M. Afkhami, M. Farrokhi D. G. and K. Khashyarmanesh, Planar, toroidal, and projective commuting and non-commuting graphs, *Comm. Algebra*, 43(7), 2964–2970 (2015).

[5] A. R. Ashrafi, On finite groups with a given number of centralizers, *Algebra Colloq.*, 7(2), 139–146 (2000).
[6] S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, *Math. Magazine*, 67(5), 366–374 (1994).

[7] A. Castelaz, *Commutativity degree of finite groups*, M.A. thesis, Wake Forest University (2010).

[8] M. R. Darafsheh, H. Bigdely, A. Bahrani and M. D. Monfared, Some results on non-commuting graph of a finite group, *Ital. J. Pure Appl. Math.* No. 27, 107–118 (2010).

[9] A. K. Das, R. K. Nath and M. R. Pournaki, A survey on the estimation of commutativity in finite groups, *Southeast Asian Bull. Math.*, 37(2), 161–180 (2013).

[10] A. K. Das and D. Nongsiang, On the genus of the commuting graphs of finite non-abelian groups, *Int. Electron. J. Algebra*, 19, 91–109 (2016).

[11] P. Dutta and R. K. Nath, Laplacian energy of non-commuting graphs of finite groups, preprint.

[12] R. R. Elvierayani and Abdussakir, Spectrum of the Laplacian Matrix of Non-commuting Graph of Dihedral Group D_{2n}, Proceeding International Conference, 2013, The 4th Green Technology Faculty of Science and Technology Islamic of University State Maulana Malik Ibrahim Malang.

[13] P. Erdős and P. Turán, On some problems of a statistical group-theory IV, *Acta. Math. Acad. Sci. Hungar.*, 19, 413–435 (1968).

[14] A. Hanaki, A condition of lengths of conjugacy classes and character degree, *Osaka J. Math* 33, 207–216 (1996).

[15] S. Kirkland, Constructably Laplacian integral graphs, *Linear Algebra Appl.*, 423, 3–21 (2007).

[16] D. MacHale, How commutative can a non-commutative group be?, *Math. Gaz.*, 58, 199–202 (1974).

[17] R. Merris, Degree maximal graphs are Laplacian integral, *Linear Algebra Appl.*, 199, 381–389 (1994).

[18] B. Mohar, The Laplacian spectrum of graphs, *Graph Theory, Combinatorics, and Applications*, 2, Ed. Y. Alavi, G. Chartrand, O. R. Oellermann, A. J. Schwenk, Wiley, 1991, pp. 871–898.

[19] R. K. Nath, *Commutativity degrees of finite groups – a survey*, M. Phil. thesis, North-Eastern Hill University (2008).

[20] R. K. Nath, Commutativity degree of a class of finite groups and consequences, *Bull. Aust. Math. Soc.*, 88(3), 448–452 (2013).

[21] D. M. Rocke, p-groups with abelian centralizers, *Proc. London Math. Soc.* 30(3), 55–75 (1975).

[22] D. J. Rusin, What is the probability that two elements of a finite group commute?, *Pacific J. Math.*, 82(1), 237–247 (1979).

[23] A. A. Talebi, On the non-commuting graphs of group D_{2n}, *Int. J. Algebra* 2(20), 957–961 (2008).