Relationships of Pulmonary Oxygen Uptake Kinetics with Skeletal Muscle Fatigue Resistance and Peak Oxygen Uptake in Healthy Young Adults

YUSUKE KUBO, RPT, MS1,2)*, YUUSUKE NISHIDA, RPT, PhD1)

1) Rehabilitation Sciences, Seirei Christopher University: 3453 Mikatahara-cho, Kita-ku, Hamamatsu City, Shizuoka 433-8558, Japan
2) Kobori Orthopedic Clinic, Japan

Abstract. [Purpose] The objective of this study was to determine the validity of pulmonary oxygen uptake kinetics in assessment of the ability of skeletal muscles to utilize oxygen. [Subjects] We evaluated 12 young, healthy males. [Methods] The subjects completed a series of tests to determine their peak oxygen uptake, pulmonary oxygen uptake kinetics at the onset of moderate-intensity treadmill exercise, and the rate of decline in electromyographic (EMG) mean power frequency (MPF) (EMG MPF rate) during one continuous, fatiguing, isometric muscle action of the plantar flexors until exhaustion at approximately 60% maximum voluntary contraction. We discussed the relationships between pulmonary oxygen uptake kinetics and EMG MPF rate reflecting the ability of skeletal muscles to utilize oxygen and between pulmonary oxygen uptake kinetics and peak oxygen uptake reflecting the ability to deliver oxygen to skeletal muscles. We hypothesized that pulmonary oxygen uptake kinetics may be more highly correlated with EMG MPF rate than peak oxygen uptake. [Results] Pulmonary oxygen uptake kinetics (33.9 ± 5.9 s) were more significantly correlated with peak oxygen uptake (50.6 ± 5.5 mL/kg/min) than EMG MPF rate (−14.7 ± 8.7%/s). [Conclusion] Pulmonary oxygen uptake kinetics is a noninvasive index that is mainly usable for evaluation of the ability of cardiovascular system to deliver oxygen to skeletal muscles in healthy young adults with slower pulmonary oxygen uptake kinetics (>20 s).

Key words: Pulmonary oxygen uptake kinetics, Oxygen utilization capacity, Oxygen delivery capacity

INTRODUCTION

In patients with cardiac disease, it is becoming increasingly clear that peripheral (skeletal muscle) factors, in addition to central (cardiac) factors, play an important role in the determination of exercise tolerance, clinical status, and quality of life5). Recently, cardiac rehabilitation programs have focused on skeletal muscles6, 7). It is clinically important to evaluate oxidative metabolism in skeletal muscles and establish a conventional index that can be widely used in routine clinical practice. This approach should interest clinicians who need noninvasive tools, allowing quantitative and longitudinal evaluation of metabolic impairment, which can be used for patient follow-up and assessment of therapies or other interventions.

At exercise onset, the fundamental adjustment of pulmonary oxygen uptake (VO2) kinetics during moderate-intensity exercise [i.e., exercise performed below the intensity corresponding to the anaerobic threshold (AT)] may be considered to represent a functional evaluation tool of oxidative metabolism at the skeletal muscle level. The rate of this adjustment, given by the VO2 time constant (τVO2), provides a useful insight into the integrated functioning of the cardiovascular, pulmonary, and muscular systems. Aerobic fitness may be defined as the ability to deliver O2 to skeletal muscles and utilize it to generate energy during exercise. In healthy individuals, it is largely accepted that τVO2 is determined by sluggish activation of enzymes and provision of substrates for mitochondrial oxidative phosphorylation (i.e., oxidative inertia hypothesis and O2 utilization limitation hypothesis)4–6, 8, 9). Doria et al9) recently reported that an improvement in τVO2 is highly correlated with percent increase in mitochondrial protein following exercise training, but this occurs without improvement in the dynamics of O2 delivery. This investigation indicates that τVO2 may be an evaluation index capable of reflecting the ability of skeletal muscle to utilize O2.

However, further investigation relevant to the relationship between τVO2 and skeletal muscle fatigue resistance is required. Skeletal muscle fatigue resistance was evaluated by the rate of decline in electromyographic (EMG) mean power frequency (MPF) (EMG MPF rate) as an index for evaluating muscle fatigue during sustained isometric mus-
cle actions. Several studies have suggested that when fatiguing isometric contractions are performed at low levels [<30% maximal voluntary contraction (MVC)], fatigue assessed by EMG changes is primarily due to neural changes, whereas at higher levels (>45% MVC), fatigue is primarily caused by metabolic factors. EMG MPF rate, measured at higher contraction levels, is an evaluation index reflecting the ability of skeletal muscle to utilize O2.

In this report, we discussed the relationships of τVO2 with skeletal muscle fatigue resistance (EMG MPF rate) and peak oxygen uptake (VO2peak) in healthy young adults, which reflect the ability to deliver O2 to skeletal muscle and determined the validation of τVO2 in assessing the ability of skeletal muscle to utilize O2. We hypothesized that τVO2 may be more highly correlated with EMG MPF rate than VO2peak.

SUBJECTS AND METHODS

Subjects

In this study, 12 healthy male subjects volunteered and gave written consent to participate. The ages, heights, masses, and body fat percentages of the subjects (mean ± SD) were 20 ± 1.7 years, 1.70 ± 0.05 m, 62.2 ± 7.0 kg, and 21.6 ± 2.1%, respectively. All procedures were approved by the Ethics Committee of Seirei Christopher University (approval No. 09007). All participants were recreationally active and nonsmokers. No participant was taking medications that would affect the cardiorespiratory response to exercise.

Methods

Participants visited the laboratory for physiological testing on four occasions within a 10-day period. To allow adequate recovery and minimize circadian/diurnal variations, each test was separated by at least 48 h and was performed at approximately the same time of the day. On day one, a maximal treadmill ramp test (0% grade; 1 km/h/min) was performed continuously, the duration of each step transition was further time averaged into 5-s bins; and τD is the time delay (so that the model is not constrained to pass through the origin.) After excluding the initial 20 s of values, while the residual sum of squares and minimal residual variations were modeled from 20 s to 63% of the steady-state increase; and TD is the time delay (so that the model is not constrained to pass through the origin.) After excluding the initial 20 s of values, while the residual sum of squares and minimal residual variations were modeled from 20 s to 63%

approximately 60% MVC. All isometric ankle flexion testing was performed on the dominant leg (based on kicking preference). The isokinetic dynamometer (Biodex System 3, Sakai Medical Co., Ltd., Tokyo, Japan) was adjusted at an ankle joint angle of 15° of plantar flexion in the sitting position with the hip and knee at 90°. Subjects performed three 5 s MVCs, that were interspersed with 5 s of rest. The highest torque developed during the three attempts was used as the individual’s MVC. After 10 min rest, 60% MVC was set as the marker on the dynamometer screen, and each subject performed one continuous, fatiguing, isometric muscle action of the plantar flexors at approximately 60% MVC until exhaustion (through visual feedback). We defined the exhaustion level as a drop in torque greater than 50% MVC.

During all treadmill exercise sessions, pulmonary gas exchange was measured breath-by-breath using a metabolic measurement system (A-E 300S, Minato Medical Science Co., Ltd., Osaka, Japan). Inspired and expired gas volumes were measured using a hot-wire respiratory flow system. The expired fractions of O2 and CO2 were analyzed using a paramagnetic O2 analyzer and an infrared CO2 analyzer, respectively. The system was calibrated prior to each exercise test according to the manufacturer’s instructions. The volume was calibrated before each exercise test by manually pumping a 2-L syringe. The O2 and CO2 analyzers were calibrated by gases of known concentration before each exercise test. Breath-by-breath VE, VO2, and VCO2 were determined, and the results were stored on a hard disk for subsequent analyses. VO2 values were filtered by removing aberrant values that were more than 4 SD of the local mean. Further, each transition value was linearly interpolated to 1-s intervals and time aligned so that time zero represented the onset of exercise. Each transition value was ensemble averaged to yield a single, average response for each subject. This transition was further time averaged into 5-s bins to provide a single time-averaged response for each subject. The on-transient response for VO2 was fitted using a monoeXponential model of the form

\[Y(t) = Y_{Bsln} + Amp \left(1 - e^{-\frac{(t-TD)\tau}{\tau}}\right) \]

where Y (t) represents VO2 at any time (t); Y Bsln is the baseline VO2 during 4 km/h/min walking; Amp is the steady-state increase in VO2 above the baseline value; τ is the time constant defined as the duration of time for VO2 to increase to 63% of the steady-state increase; and TD is the time delay (so that the model is not constrained to pass through the origin.) After excluding the initial 20 s of values, while still allowing TD to vary freely (to optimize the accuracy of parameter estimates), VO2 values were modeled from 20 s to 4 min (240 s) of the step transition; this ensured that each subject had attained a VO2 steady-state, yet did not bias the model fit during the on-transient15, 16). Model parameters were estimated by least-squares nonlinear regression (Microsoft Office Excel 2010, Microsoft Japan Co., Ltd., Tokyo, Japan) in which the best fit was defined by minimization of the residual sum of squares and minimal residual variations around the Y-axis (Y=0).

EMG (Noraxon) of the soleus was continuously recorded at a sampling frequency of 1,500 Hz using bipolar 34-mm
diameter Ag-AgCl electrodes (Blue Sensor, Ambu A/S, Ballerup, Denmark) placed 2/3rd of the way along a line between the medial condyle of the femur and the medial malleolus (according to Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles recommendations). Electrode sites were prepared by shaving, gently abrading, and cleaning them with an alcohol-ether-acetone solution. Myoelectric signals were relayed from the bipolar electrodes to a TeleMyo device (TeleMyo 2400T, Noraxon U.S.A. Inc., Scottsdale, AZ, USA). The raw EMG signal was rectified, band-pass-filtered and integrated using commercially available software (MyoResearch XP, Noraxon U.S.A. Inc., Scottsdale, AZ, USA). EMG MPF rate was then derived from the following equation:

\[
\text{EMG MPF rate (}/%/s) = \frac{\text{(first MPF - final MPF)}}{\text{first MDF} \times 100 (\%/s)} \times N \times \text{ET (s)} \times 10^3,
\]

where first and final MPF represent the mean of the first 5 s and final 5 s, respectively, during the fatigue resistance test; ET is the endurance time until exhaustion.

All analyses were performed using a statistical software package (IBM SPSS Statistics 19, IBM Corp., Armonk, NY, USA). Descriptive statistics (mean ± SD) were calculated for each physiological measure during all tests. Quantitative variables were tested for normal distribution by a Shapiro-Wilk test. Relationships between physiological measures were determined using Pearson’s product moment correlation coefficient. Significance at the level of \(p<0.05 \) was used to determine the statistical significance.

RESULTS

We found that \(\tau VO_2 \) was 33.9 ± 5.9 s, EMG MPF rate was \(-14.7 \pm 8.7\%\)/s, \(VO_2\text{peak} \) was 50.6 ± 5.5 mL/kg/min, and MVC was 126.3 ± 25.2 Nm. Table 1 shows interrelationships between \(rVO_2 \), EMG MPF rate, and \(VO_2\text{peak} \) (All \(p<0.05 \)). \(rVO_2 \) was more highly correlated with \(VO_2\text{peak} \) \((r = -0.744)\) than EMG MPF rate \((r = -0.670)\). There was no significant relationship between MVC and other measures (\(p>0.05 \)).

DISCUSSION

The primary finding of the present study is that, in healthy young adults at exercise onset, the \(rVO_2 \) measured at the alveolar level is dependent more on the ability to deliver O\(_2\) to skeletal muscles \((VO_2\text{peak})\) than on the utilization of O\(_2\) in skeletal muscle (skeletal muscle fatigue resistance; EMG MPF rate). Our results indicate that \(rVO_2 \) offers promise as a noninvasive index to mainly evaluate the ability of the cardiovascular system to deliver O\(_2\) to skeletal muscles in healthy young adults.

The present finding does not support our initial hypothesis that \(rVO_2 \) is more highly correlated with EMG MPF rate than \(VO_2\text{peak} \) or the findings from other studies showing no effect of O\(_2\) delivery on \(rVO_2 \)\(^{5-6,9} \). This may reflect that \(rVO_2 \) is limited because of the ability to deliver O\(_2\) to skeletal muscles; i.e., our result may support the O\(_2\) delivery limitation hypothesis.

This discrepancy may be due to the fact that the limiting factor in \(rVO_2 \) (O\(_2\) utilization or O\(_2\) delivery limitation) has not been fully revealed. The O\(_2\) utilization limitation hypothesis was based on the representative experiments, which showed that in older adults, but not younger adults, \(rVO_2 \) during the transition from a priming bout of heavy-intensity exercise to moderate-intensity exercise accelerated\(^{17,18} \), and this \(rVO_2 \) acceleration in the older adults was attributed either to an attenuation of muscle perfusion or O\(_2\) delivery limitation. The finding that \(rVO_2 \) was not affected by a previous bout of heavy-intensity exercise in young adults agrees with earlier findings\(^{19,20} \), and it is consistent with the suggestion that muscle blood flow and O\(_2\) delivery do not limit \(rVO_2 \) in younger adults. However, a consistent observation among these experiments was that \(rVO_2 \) was significantly faster (approximately 20–30 s)\(^{19-21} \) in young adults compared with that in older adults (approximately 40–60 s)\(^{17,18,22} \). Thus it is unclear from these experiments whether the apparent lack of \(rVO_2 \) acceleration during moderate-intensity exercise in younger adults compared with older adults is a consequence of age-dependent differences between groups or physiological differences contributing to slower \(rVO_2 \) in older adults compared with younger adults.

Gurd et al.\(^{23} \) recently demonstrated that the \(rVO_2 \) acceleration during moderate-intensity exercise after heavy-intensity warm-up exercise was not restricted to older adults and may be related to the physiological processes that control \(rVO_2 \). In young adults exhibiting slower \(VO_2 \) kinetics (\(VO_2\text{peak} >30 \) s), it was observed that \(rVO_2 \) acceleration was associated with improvement in local muscle oxygenation, whereas this was not seen in young adults exhibiting inherently faster \(VO_2 \) kinetics (i.e., \(rVO_2 \), approximately 20 s). Thus, \(rVO_2 \) acceleration was due to, in part, an increase in local muscle \(O_2 \) delivery. More recently, this observation was supported by Murias et al.\(^ {24} \), who reported that at the onset of exercise, the rate of adjustment of near-infrared spectroscopy (NIRS)-derived muscle deoxygenation [change in deoxyhemoglobin (HHb) concentration (\(\Delta [HHb] \))], or [HHb], depending on the NIRS system used (a proxy for tissue \(O_2 \) extraction) during moderate-intensity exercise was faster than \(VO_2 \) without heavy-intensity warm-up exercise, causing a period of greater reliance on \(O_2 \) extraction for a given \(VO_2 \). Thus, there was a transient mismatch in local muscle \(O_2 \) delivery to \(VO_2 \) utilization [represented as a transient “overshoot” in the normalization of the \(\Delta [HHb] \) to \(VO_2 \) (\(\Delta [HHb]/VO_2 \) ratio)]; \(rVO_2 \) was significantly reduced, and this transient overshoot in the \(\Delta [HHb]/VO_2 \) ratio was abolished with heavy-intensity warm-up exercise. In addition to this experiment, Murias et al.\(^ {25} \) demonstrated in a group of young men that those
with the highest r\(\text{VO}_2\) values presented with the largest mismatch between microvascular \(\text{O}_2\) delivery and \(\text{O}_2\) utilization, which was again represented as the highest \(\Delta[\text{HHb}] / \text{VO}_2\) overshoot. Furthermore, no \(\Delta[\text{HHb}] / \text{VO}_2\) overshoot was observed when values from subjects with r\(\text{VO}_2 <21\) s were grouped. Most recently, it was suggested that r\(\text{VO}_2\) is primarily limited by \(\text{O}_2\) provision when r\(\text{VO}_2\) exceeds approximately 20 s in young, healthy men. According to the above observations, it seems that when r\(\text{VO}_2 > 20\) s, r\(\text{VO}_2\), even in healthy young adults, is primarily limited by the ability to deliver \(\text{O}_2\) to skeletal muscles.

In the present study, r\(\text{VO}_2\) may reflect the ability to deliver \(\text{O}_2\) to skeletal muscles because this value was found to be 33.9 ± 5.9 s (>20 s). Therefore, r\(\text{VO}_2\) was more highly correlated with \(\text{VO}_{\text{peak}}\) than EMG MPF rate.

In conclusion, this study demonstrated that, in healthy young adults at exercise onset, pulmonary \(\text{VO}_2\) kinetics during the transition to moderate-intensity exercise is dependent more on the ability to deliver \(\text{O}_2\) to skeletal muscles than utilization of \(\text{O}_2\) in skeletal muscle. This suggests that \(\text{O}_2\) delivery could be a possible factor regulating r\(\text{VO}_2\) during the onset of moderate-intensity exercise in young adults having slower \(\text{VO}_2\) kinetics (r\(\text{VO}_2>20\) s).

REFERENCES

1) Georgiadou P, Adamopoulos S: Skeletal muscle abnormalities in chronic heart failure. Curr Heart Fail Rep, 2012, 9: 128–132. [Medline] [CrossRef]
2) Williams AD, Carey MF, Selig S, et al.: Circuit resistance training in chronic heart failure improves skeletal muscle mitochondrial ATP production rate—a randomized controlled trial. J Card Fail, 2007, 13: 79–85. [Medline] [CrossRef]
3) Dobiáš P, Tomand J, Spinarova L, et al.: Effects of neuromuscular electrical stimulation and aerobic exercise training on arterial stiffness and autonomic functions in patients with chronic heart failure. Artif Organs, 2012, 36: 920–930. [Medline] [CrossRef]
4) Grassi B: Regulation of oxygen consumption at exercise onset: is it really controversial? Exerc Sport Sci Rev, 2001, 29: 134–138. [Medline] [CrossRef]
5) Poole DC, Ferreira LF, Behnke BJ, et al.: The final frontier: oxygen flux into muscle at exercise onset. Exerc Sport Sci Rev, 2007, 35: 166–173. [Medline] [CrossRef]
6) DiMenna FJ, Jones AM: “Linear” versus “Nonlinear” \(\text{VO}_2\) Responses to exercise: reshaping traditional beliefs. J Exerc Sci Fit, 2009, 7: 67–84. [CrossRef]
7) Tschakovsky ME, Hughson RL: Interaction of factors determining oxygen uptake at the onset of exercise. J Appl Physiol, 1999, 86: 1101–1113. [Medline] [CrossRef]
8) Hughson RL, Tschakovsky ME, Houston ME: Regulation of oxygen consumption at the onset of exercise. Exerc Sport Sci Rev, 2001, 29: 129–133. [Medline] [CrossRef]
9) Doria C, Toniolo L, Verratti V, et al.: Improved \(\text{VO}_2\) uptake kinetics and shift in muscle fiber type in high-altitude trekkers. J Appl Physiol, 2011, 111: 1597–1605. [Medline] [CrossRef]
10) Hagberg MJ: Muscular endurance: surface electromyogram in isometric and dynamic exercise. J Appl Physiol, 1981, 51: 1–7. [Medline] [CrossRef]
11) Callawaert M, Boone J, Celine B, et al.: Quadriceps muscle fatigue in trained and untrained boys. Int J Sports Med, 2013, 34: 14–20. [Medline] [CrossRef]
12) Crenshaw AW, Karlsson S, Gerde B, et al.: Differential responses in intramuscular pressure and during fatigue indicators during low- vs. high-level isometric contractions to fatigue. Acta Physiol Scand, 1997, 160: 353–361. [Medline] [CrossRef]
13) Hatzikotoulas K, Patikas D, Bassa E, et al.: Submaximal fatigue and recovery in boys and men. Int J Sports Med, 2009, 30: 741–746. [Medline] [CrossRef]
14) Bassett DR Jr, Howley ET: Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc, 2000, 32: 70–84. [Medline] [CrossRef]
15) Bell C, Paterson DH, Kowalchuk JM, et al.: A comparison of modelling techniques used to characterise oxygen uptake kinetics during the on-transient of exercise. Exp Physiol, 2001, 86: 667–676. [Medline] [CrossRef]
16) Murias JM, Spencer MD, Kowalchuk JM, et al.: Influence of phase I duration on phase II \(\text{VO}_2\) kinetics parameter estimates in older and young adults. Am J Physiol Regul Integr Comp Physiol, 2011, 301: R218–R224. [Medline] [CrossRef]
17) Scheuermann BW, Bell C, Paterson DH, et al.: Oxygen uptake kinetics for moderate exercise are speeded in older humans by prior heavy exercise. J Appl Physiol, 2002, 92: 609–616. [Medline] [CrossRef]
18) Delorey DS, Kowalchuk JM, Paterson DH: Effects of prior heavy-intensity exercise on pulmonary \(\text{O}_2\) uptake and muscle deoxygenation kinetics in young and older adult humans. J Appl Physiol, 2004, 97: 998–1005. [Medline] [CrossRef]
19) Gerbino A, Ward SA, Whipp BJ: Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J Appl Physiol, 1996, 80: 99–107. [Medline] [CrossRef]
20) Burnley M, Jones AM, Carter H, et al.: Effects of prior heavy exercise on phase II pulmonary oxygen uptake kinetic during heavy exercise. J Appl Physiol, 2000, 89: 1387–1396. [Medline] [CrossRef]
21) Rossiter HB, Ward SA, Kowalchuk JM, et al.: Effects of prior exercise on oxygen uptake and phosphocreatine kinetics during high-intensity knee-extension exercise in humans. J Physiol, 2001, 537: 291–303. [Medline] [CrossRef]
22) Bell C, Paterson DH, Kowalchuk JM, et al.: Oxygen uptake kinetics of older humans are slowed with age but are unaffected by hyperoxia. Exp Physiol, 1999, 84: 747–759. [Medline] [CrossRef]
23) Gurd BJ, Scheuermann BW, Paterson DH, et al.: Prior heavy-intensity exercise speeds \(\text{VO}_2\) kinetics during moderate-intensity exercise in young adults. J Appl Physiol, 2005, 98: 1371–1378. [Medline] [CrossRef]
24) Murias JM, Spencer MD, Delorey DS, et al.: Speeding of \(\text{VO}_2\) kinetics during moderate-intensity exercise subsequent to heavy-intensity exercise is associated with improved local \(\text{O}_2\) distribution. J Appl Physiol, 2011, 111: 1410–1415. [Medline] [CrossRef]
25) Murias JM, Spencer MD, Kowalchuk JM, et al.: Muscle deoxygenation to \(\text{VO}_2\) relationship differs in young subjects with varying r\(\text{VO}_2\). Eur J Appl Physiol, 2011, 111: 3107–3118. [Medline] [CrossRef]
26) Spencer MD, Murias JM, Grey TM, et al.: Regulation of \(\text{VO}_2\) kinetics by \(\text{O}_2\) delivery: insights from acute hypoxia and heavy-intensity priming exercise in young men. J Appl Physiol, 2012, 112: 1023–1032. [Medline] [CrossRef]