The Carter constant for inclined orbits about a massive Kerr black hole: I. Circular orbits

P G Komorowski\(^1\), S R Valluri\(^{1,2}\) and M Houde\(^1\)

\(^1\) Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada
\(^2\) Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada

E-mail: pkomorow@uwo.ca, valluri@uwo.ca and mhoude2@uwo.ca

Received 2 March 2010, in final form 20 August 2010
Published 28 October 2010
Online at stacks.iop.org/CQG/27/225023

Abstract

In an extreme binary black hole system, an orbit will increase its angle of inclination (\(i\)) as it evolves in Kerr spacetime. We focus our attention on the behaviour of the Carter constant (\(Q\)) for near-polar orbits, and develop an analysis that is independent of and complements radiation-reaction models. For a Schwarzschild black hole, the polar orbits represent the abutment between the prograde and retrograde orbits at which \(Q\) is at its maximum value for given values of the latus rectum (\(\bar{l}\)) and the eccentricity (\(e\)). The introduction of spin (\(\bar{S} = |\mathbf{J}|/M^2\)) to the massive black hole causes this boundary, or abutment, to be moved towards greater orbital inclination; thus, it no longer cleanly separates prograde and retrograde orbits. To characterize the abutment of a Kerr black hole (KBH), we first investigated the last stable orbit (LSO) of a test-particle about a KBH, and then extended this work to general orbits. To develop a better understanding of the evolution of \(Q\) we developed analytical formulae for \(Q\) in terms of \(\bar{l}\), \(e\) and \(\bar{S}\) to describe elliptical orbits at the abutment, polar orbits and LSOs. By knowing the analytical form of \(\partial Q/\partial \bar{l}\) at the abutment, we were able to test a 2PN flux equation for \(Q\). We also used these formulae to numerically calculate the \(\partial i/\partial \bar{l}\) of hypothetical circular orbits that evolve along the abutment. From these values we have determined that

\[
\frac{\partial i}{\partial \bar{l}} = \left(122.7 \bar{S} - 36 \bar{S}^3\right) \bar{l}^{-11/2} - \left(63/2 \bar{S} + 35/4 \bar{S}^3\right) \bar{l}^{-9/2} - 15/2 \bar{S} \bar{l}^{-7/2} - 9/2 \bar{S} \bar{l}^{-5/2}.
\]

By taking the limit of this equation for \(\bar{l} \to \infty\), and comparing it with the published result for the weak-field radiation reaction, we found the upper limit on \(\partial Q/\partial \bar{l}\) for the full range of \(\bar{l}\) up to the LSO. Although we know the value of \(\partial Q/\partial \bar{l}\) at the abutment, we find that the second and higher derivatives of \(Q\) with respect to \(\bar{l}\) exert an influence on \(\partial i/\partial \bar{l}\). Thus the abutment becomes an important analytical and numerical laboratory for studying the evolution of \(Q\) and \(i\) in Kerr spacetime and for testing current and future radiation-back-reaction models for near-polar retrograde orbits.

PACS numbers: 04.20.−q, 95.30.Sf, 95.75.Pq
1. Introduction

In his landmark work of 1968, Brandon Carter derived a new constant of motion that pertained to orbital motion in the gravitational field of a Kerr black hole (KBH) [1]. In due course, this constant became known as the Carter constant, which joins the set of important constants of motion: the orbital angular momentum (L_z, z-axis projection), the orbital energy (E) and finally the Carter constant (Q). These constants of motion can be developed rigorously from the Hamilton–Jacobi equation [1–3].

An extreme mass ratio binary black hole system is composed of a secondary object (which may be a compact object (CO) of several solar masses) in orbit around a primary object (which is a massive black hole (MBH) of several million solar masses). Extreme mass ratio inspirals (EMRIs) are expected to emit gravitational wave radiation (GW) of sufficiently high energy and in the appropriate frequency band for detection by the Laser Interferometer Space Antenna (LISA) to be feasible [4–7]. The emission of GW causes the constants of motion to evolve, which in turn affects the GW power spectrum. Therefore some useful methods have been developed to describe this evolution. For example, the quadrupole formalism [8–11] and the Teukolsky equation [12–14] have yielded important results. The analytical description of the evolution of Q has been more difficult to achieve than it has been for the other two constants of motion [15], although the use of the Teukolsky equation has shown great promise [4, 5, 7, 15, 16] in this endeavour.

As the CO inspirals, the gravitational radiation reaction causes the value of Q to change [4, 5, 7, 15–22]. Therefore a non-equatorial orbit lists as its angle of inclination, i, increases with respect to time; a near-polar prograde orbit becomes polar, and ultimately retrograde [17, 23]. Such listing behaviour of an inclined orbit has been studied and confirmed using the most current Teukolsky-based fluxes [22]. It is our goal to develop an analytical and numerical methodology for testing and improving radiation-reaction models for predicting orbit listing and inspirals for near-polar orbits.

Our interest lies in studying KBH systems; yet, the Schwarzschild black hole (SBH) is an important datum. An infinitesimal amount of spin angular momentum ($\delta \tilde{S} \ll 1$) may be imparted to an MBH such that, for practical purposes, it can be regarded as an SBH (by virtue of its minuscule effect on the surrounding spacetime); yet, the spherical symmetry of the system has been broken and a z-axis defined. Then an SBH can be considered to have a prograde or retrograde inclined orbit, and the set of polar orbits define the abutment, at which Q will be at its maximum value (Q is non-negative for any bound orbit), for given values of \tilde{l}, ϵ and \tilde{S} (ceteris paribus).

In section 2 the motion of a test-particle in an inclined orbit is analysed from first principles [24–27] to yield the effective radial potential and an analytical expression of \tilde{L}_r for a last stable orbit (LSO). In section 3 we continue our analysis to find the roots of the effective radial- and polar-angle potentials and use them to derive analytical expressions for \tilde{E} and X^2 (where $X = \tilde{L}_r - \tilde{S}\tilde{E}$). The concept of the abutment is then refined. In section 4, we derive a set of critical formulae that express Q at the LSO, along the abutment, and for the set of polar orbits. The interrelationships between these formulae are examined and a map of admissible values of Q with respect to \tilde{l} and ϵ is drawn. In section 5, this map is used to better understand the path in the Q–\tilde{l} plane that is followed by an evolving circular orbit. We demonstrate the importance of the first and second derivatives of Q (on the abutment) with respect to \tilde{l} for understanding the rate of change of i as the orbit lists.

We use geometrical units by setting the speed of light and gravitational constant to unity (i.e. $c = 1$ and $G = 1$); therefore, mass energy is in units of time (seconds). In addition, many of the parameters we use will be normalized with respect to the mass of the black hole (M).
or with respect to the test-particle mass \((m)\). In appendix A, the symbols used in this paper are tabulated. By emphasising normalized variables, the analytical equations and numerical formalism are much better handled.

2. The motion of a test-particle in an inclined orbit

A sound mathematical analysis can be made on the assumption that the secondary body is of infinitesimal mass (i.e. a test-particle). In such a case, the background metric of the MBH dominates. In the case of EMRIs, the small ratio of the CO mass to the MBH mass \((\eta \lesssim 10^{-5})\) warrants our use of idealized test-particle calculations [4, 5, 7, 28].

2.1. Basic orbital equations

We begin by considering a test-particle in orbit about a KBH of arbitrary spin, \(\tilde{S}\), for which the four-momentum can be given the general definition [29]

\[
P_{\gamma} = \left[-m \tilde{E}, m \tilde{\Sigma} \left(\frac{dR}{d\tilde{\tau}} \right), mML_{\tilde{\theta}}, mML_{z} \right].
\]

where

\[
\tilde{\Delta} = (R^2 - 2R + S^2)
\]

and

\[
\tilde{\Sigma} = (R^2 + S^2 \cos^2(\theta)).
\]

Unlike the analysis in [29], we use normalized variables at the outset and offer a more thorough treatment. Because we are now considering inclined elliptical orbits, one cannot simplify the four-momentum by setting \(\tilde{L}_{\tilde{\theta}} = 0\). But by knowing the Carter constant in terms of normalized variables (i.e. obtained by dividing through by \(mM\)),

\[
Q = \frac{\cos^2(\theta)\tilde{L}_z^2}{\sin^2(\theta)} + \tilde{L}_z^2 + \cos^2(\theta)S^2(1 - \tilde{E}^2),
\]

one can obtain the component of orbital angular momentum, \(L\), projected upon the equatorial plane of the KBH,

\[
\tilde{L}_{\tilde{\theta}} = \sqrt{Q - \frac{\cos^2(\theta)\tilde{L}_z^2}{\sin^2(\theta)} - \cos^2(\theta)S^2(1 - \tilde{E}^2)},
\]

and substitute it into the expression for the four-momentum:

\[
P_{\gamma} = \left[-m \tilde{E}, m \tilde{\Sigma} \left(\frac{dR}{d\tilde{\tau}} \right), mM \sqrt{Q - \frac{\cos^2(\theta)\tilde{L}_z^2}{\sin^2(\theta)} - \cos^2(\theta)S^2(1 - \tilde{E}^2)}, mL_{z} \right].
\]

The invariant quantity,

\[
\tilde{P} \cdot \tilde{P} = P_{\gamma} P_{\delta} g^{\gamma\delta}|_{Kerr} = -m^2,
\]

is calculated tensorially using the inverse Kerr metric (see appendix B) and used to develop the radial orbital equation for a test-particle:

\[
\tilde{\Sigma}^2 \left(\frac{dR}{d\tilde{\tau}} \right)^2 = -(1 - \tilde{E}^2)R^4 + 2R^3 - (\tilde{L}_z^2 + \tilde{S}^2(1 - \tilde{E}^2) + Q)R^2 + 2((\tilde{L}_z - \tilde{S}\tilde{E})^2 + QR - Q\tilde{S}^2).
\]

By setting \(Q = 0\), equation (8) reduces to the equation for an equatorial orbit (see [20]).
At the radial turning points, \(\frac{dR}{d\tau} = 0 \). Equation (8) becomes
\[
0 = R^4 - 2 \frac{R^3}{1 - \hat{E}^2} + \frac{(\hat{L}_z^2 + \hat{S}^2(1 - \hat{E}^2) + Q)R^2}{1 - \hat{E}^2} - 2 \frac{(\hat{L}_z - \hat{S}E)^2 + QR}{1 - \hat{E}^2} + \frac{Q\hat{S}^2}{1 - \hat{E}^2}. \tag{9}
\]
In the limit \(\hat{S} \to 0 \) (set \(\hat{S} = 0 \) while retaining a non-zero value for \(Q \)) equation (9) becomes
\[
0 = R^4 - 2 \frac{R^3}{1 - \hat{E}^2} + \frac{(\hat{L}_z^2 + Q)R^2}{1 - \hat{E}^2} - 2 \frac{(\hat{L}_z^2 + Q)R}{1 - \hat{E}^2}. \tag{10}
\]
Thus, the square of the total orbital angular momentum, \(\hat{L}^2 = \hat{L}_z^2 + Q \), confirms that, for the specific case of an SBH, \(Q \) represents the square of the component of angular momentum projected on the \(x-y \) plane of the coordinate system (see appendix B in [30] and appendix C in this paper for a more detailed treatment).

Some important research [21, 31] has been performed by working with the orbital inclination angle, \(\iota \), instead of \(Q \); but in our study, the value of \(Q \) will be taken as a system parameter. If \(Q \) is chosen to be zero, then the orbital plane coincides with the equatorial plane of the KBH (i.e. \(\iota = 0 \) and \(\theta = \pi/2 \)) and for a test-particle in a polar orbit (i.e. \(\iota = \pi/2 \) and \(0 \leq \theta \leq \pi \)) \(\hat{L}_z \) must vanish. The choice of working directly with the Carter constant, \(Q \), as a system parameter is consistent with the approach taken by Carter [1] and more recently emphasised by others [5, 22, 32].

2.2. Effective radial potential

To proceed, we use a version of equation (8), which is quadratic in, \(\hat{E} \),
\[
- R(3 + R\hat{S}^2 + 2\hat{S}^2)\hat{E}\hat{E} + 4R\hat{L}_z\hat{E} \\
+ R(R - 2)(Q + \hat{L}_z^2) + R^2(R^2 - 2R + \hat{S}^2) + Q\hat{S}^2 = 0. \tag{11}
\]

The roots of this equation can be used to determine the effective potential of the test-particle (\(\tilde{V}_e \)):
\[
\tilde{V}_e = (2R\hat{L}_z\hat{S} \pm \sqrt{RZ\hat{E}}) \times (R(\hat{L}_z^2 + 2\hat{S}^2 + 2R\hat{S}^2 + Q\hat{S}^2))^{-1}, \tag{12}
\]

where
\[
Z = R^5 + \left(Q + \hat{S}^2 + \hat{L}_z^2\right) R^3 + 2\hat{R}^2\hat{S}^2 + \hat{S}^2 QR + 2Q\hat{S}^2.
\]

When the LSO is reached, \(\tilde{E} \) corresponds to a local maximum of \(\tilde{V}_e \) closest to the event horizon. Therefore one calculates the derivative of \(\tilde{V}_e \) with respect to \(R \) and equates it to zero, i.e.
\[
\frac{d\tilde{V}_e}{dR} = -(2R\hat{L}_z\hat{S})(3 R^2 + \hat{S}^2)\sqrt{RZ\hat{E}} + R^3\hat{L}_z\hat{S}^2 + (R^3 + \hat{S}^2 R + 2\hat{S}^2)Z_1)
\times (R\sqrt{RZ\hat{E}}(R^3 + \hat{S}^2 R + 2\hat{S}^2))^{-1}
\]
\[= 0, \tag{13}\]

where
\[
Z_1 = R^5 - 3R^4 + \hat{S}^2 R^3 - 3R^2 \hat{S}^2 - 6\hat{S}^2 R - 2\hat{S}^4,
\]
and
\[
Z_2 = -R^6 + R^4 Q - (2\hat{S}^2 + 3Q)R^4 + (2Q\hat{S}^2 + 4\hat{S}^2)R^3 - (\hat{S}^4 + 2Q\hat{S}^2)R^2 + \hat{S}^4 QR + \hat{S}^4 Q.
\]
2.3. Orbital angular momentum at the last stable orbit

We can now develop an equation for the \tilde{L}_z of a test-particle in an inclined orbit about a KBH (in a manner similar to that described in [29]) and extend the concept to general orbits. It should be noted that the value of \tilde{L}_z considered here is not valid for general orbits, but pertains to the LSO. After eliminating the square root in equation (13) to yield a new equation that is quadratic in \tilde{L}_z^2, the solution is found to be

$$
\tilde{L}_z^2 = \left\{-R^8 + (3 + Q)R^7 + (-2 S^2 - 6 Q)R^6 + \left((-6 + 2 Q)S^2 + 9 Q\right)R^5 + \left(-S^4 + (-10 Q + 12)S^2\right)R^4 + \left((-5 + Q)S^4 + 6 Q S^2\right)R^3 - 6 S^4 R^2 + 5 S^4 R Q - 2 S^6 Q \pm 2 \tilde{S}(3 R^2 + S^2)\right\} \left(R^5 - R^4 Q + 3 R^3 Q + Q^2 S^2\right)^{-1},
$$

which provides a relationship between \tilde{L}_z and R (which here represents the pericentre radius) of the test-particle LSO. This result is independent of whether one begins the calculation with \tilde{V}_+ or \tilde{V}_-. One can now plot \tilde{L}_z with respect to the value of the pericentre (the point of closest approach, R_p) for an LSO for the cases where $S = 0.0$ (figure 1), $S = 0.5$ (figure 2) and $S = 0.99$ (figure 3). The values of \tilde{L}_z calculated for an SBH are plotted in figure 1 for the range of Q values 0.0–16.0.
Figure 2. The relationship between \tilde{L}_z and pericentre, R, for a KBH with $\tilde{S} = 0.50$. Various values of Q are depicted. The polar LSO (d) and the LSO at the abutment (e) are distinct. In table B2 some values of R_{LSO} for this KBH system are listed.

For an SBH, the prograde (plus) and retrograde (minus) formulae for \tilde{L}_z^2 (equation (14)) are reflections of one another about the R axis (figure 1). But when $\tilde{S} > 0$, the plus equations are pulled below the R axis and this symmetry is lost (figures 2 and 3). There now exists a set of retrograde LSOs which are governed by the plus form of equation (14). The importance of this fact is revealed when we set the quantity beneath the square root in equation (14) to zero, i.e.

$$R^5 - QR^4 + 3QR^3 + Q^2S^2 = 0.$$ \hspace{2cm} (15)

The polynomial describes the boundary at which the plus and minus equations for \tilde{L}_z^2 are equal and it offers an insight into the behaviour of Q for LSOs that are nearly polar ($\iota \simeq \pi/2$). If $\tilde{S} = 0$, then for an elliptical LSO [11, 29, 33],

$$R_p = 2 (3 + e) / (1 + e).$$ \hspace{2cm} (16)

By substituting equation (16) into equation (15) and solving for Q, one obtains

$$Q = 4 (3 + e)^2 [(1 + e)(3 - e)]^{-1}.$$ \hspace{2cm} (17)

This result applies to LSOs at the boundary and specifies an upper limit on Q for orbits around an SBH. Now we must develop these ideas for general orbits about a KBH that have not yet reached their LSO.
3. Analysis of the trajectory equations

3.1. Introduction

There exist four trajectory equations [1, 30, 34] in two categories:

\[\Sigma \frac{dR}{d\tau} = \pm \sqrt{V_R (R)} \] \hspace{1cm} (18)

\[\Sigma \frac{d\theta}{d\tau} = \pm \sqrt{V_\theta (\theta)} \] \hspace{1cm} (19)

\[\Sigma \frac{d\phi}{d\tau} = \tilde{V}_\phi \] \hspace{1cm} (20)

\[\Sigma \frac{dt}{d\tau} = \tilde{V}_t. \] \hspace{1cm} (21)

Figure 3. The relationship between \(\tilde{L}_z \) and pericentre, \(R \), for a KBH with \(\tilde{S} = 0.99 \). Various values of \(Q \) are depicted. The separation of the polar LSO (d) and the LSO at the abutment (e) is increased with the higher value of \(\tilde{S} \). In table B3 some values of \(r_{LSO} \) for this KBH system are listed.
See appendix B to see equations for functions $\tilde{V}_R(R)$, \tilde{V}_θ, \tilde{V}_ϕ and \tilde{V}_t. We have already developed equation (18) in section 2.1 (equation (8)), and equation (19) can also be developed by a similar method (see appendix C).

One obtains, from equations (18) and (19), the following condition:

$$\frac{dR}{\sqrt{\tilde{V}_R(R)}} = \frac{d\theta}{\sqrt{\tilde{V}_\theta(\theta)}},$$

on the geodesic of the test-particle, which is a general form of the equation specified by Schmidt (equation (16) in [30]). Given equation (19) [34], one can find the proper time of the orbit:

$$\tilde{\tau} = \int_{\theta_1}^{\theta_2} \frac{\tilde{V}_\theta(\theta)}{\sqrt{\tilde{V}_R(R)}} d\theta = \int_{r_1}^{r_2} \frac{R^2 dR}{\sqrt{\tilde{V}_R(R)}} + \tilde{S}^2 \int_{\theta_1}^{\theta_2} \cos^2(\theta) \frac{1}{\sqrt{\tilde{V}_\theta(\theta)}} d\theta,$$

where the integral has been split into its separate R and θ integral terms, see equation (22). The same result is found when starting with equation (18) instead. Two other important integrals that can be calculated for the coordinate time and the azimuthal angle are given in Schmidt (equations (14) and (15) [30]) in which a detailed analysis is made on the basis of the Hamiltonian. Equation (23) can be solved to yield elliptic functions [20]; therefore, the roots of \tilde{V}_R and \tilde{V}_θ contain information necessary for deriving analytical formulae for Q in terms of l and e (for given \tilde{S}) and ι as a function of Q. This will be shown in sections 3.3 and 4.

3.2. Roots of the radial equation

We introduce $X = \tilde{L}_z - \tilde{S}\tilde{E}$ and convert equation (9) to the form

$$0 = R^4 - 2R^3 \frac{R^3}{(1 - E^2)} + \frac{(X^2 + \tilde{S}^2 + 2\tilde{S}\tilde{E}X + Q)R^2}{(1 - E^2)} - 2\frac{(X^2 + Q)R}{(1 - E^2)} + \frac{Q\tilde{S}^2}{(1 - E^2)}.$$

This substitution is consistent with the approach in [29] and that undertaken by Glampedakis and Kennefick [20], and it will help us to derive the latus rectum of the LSO. Analytically, the use of X^2 in this case offers an advantage over the use of L_z^2.

3.2.1. Elliptical orbits

By finding the four roots of equation (24) one can derive analytical formulae for X and \tilde{E}, in terms of e, \tilde{l}, Q and \tilde{S}, which apply to general orbits (and are not limited to the LSO). Although the roots are easily obtained in terms of the constants of motion: \tilde{L}_z, \tilde{E} and Q, they are complicated and as such not helpful. To simplify the analysis, we assume a priori that an inclined orbit can be characterized by an eccentricity, e [35]. Therefore the radius of the orbit at its pericentre is described by

$$r_p = \frac{\tilde{l}}{1 + e},$$

and correspondingly, at its apocentre

$$r_a = \frac{\tilde{l}}{1 - e}.$$

To proceed, consider an expansion of the four possible roots $\{r_3 < r_p \leq r_4 \leq r_a\}$:

$$R^4 = (r_3 + r_4 + r_a + r_p)R^3 + (r_3r_4 + r_3r_a + r_4r_p + r_ar_a + r_ar_p + r_pr_a)R^2$$

$$- (r_3r_4r_a + r_3r_4r_p + r_3r_pr_a + r_4r_pr_a)R + r_3r_4r_pr_a = 0.$$

8
By equating the coefficients of the two polynomials in equations (24) and (27) one obtains the two independent equations:

\[
\frac{\tilde{l}(2 \tilde{r}_3 \tilde{r}_4 + r_3 \tilde{l} + r_4 \tilde{r})}{(1 - e^2)} = 2 \frac{X^2 + Q}{1 - \tilde{E}^2},
\]

(28)

and

\[
\frac{r_4 \tilde{r}_4^2}{1 - e^2} = \frac{Q \tilde{S}^2}{1 - \tilde{E}^2},
\]

(29)

which have been simplified, using equations (25) and (26). Let us solve equations (28) and (29) to obtain

\[
r_3 = \frac{(1 - e^2)}{\tilde{l}(1 - \tilde{E}^2)}[(Q(\tilde{l} - \tilde{S}^2) + X^2 \tilde{l}) \pm \sqrt{Z_3}]
\]

(30)

and

\[
r_4 = \frac{Q \tilde{S}^2 (1 - e^2)}{r_3 \tilde{r}_4 (1 - \tilde{E}^2)},
\]

(31)

where

\[
Z_3 = (\tilde{l} - \tilde{S}^2)^2 Q^2 - \tilde{l} \left(\frac{(1 - E^2) \tilde{S}^2 \tilde{l}^3}{1 - e^2} - 2X^2 \tilde{l} + 2X^2 \tilde{S}^2 \right) Q + X^4 \tilde{l}^2.
\]

If \(Q = 0\), then selecting the minus sign in equation (30) yields \(r_3 = 0\); therefore, the plus sign is the one taken as physically meaningful. For \(Q = 0\), equation (30) reduces to

\[
r_3 = 2 X^2 (1 - e^2),
\]

(32)

which applies to an equatorial orbit. The value of \(r_4\) equals zero when \(Q = 0\) as can be seen in equation (31).

3.2.2. Parabolic orbits. Parabolic orbits have importance to the empirical study of the interaction of stars with MBHs [36, 37]. For parabolic orbits both \(e = 1\) and \(\tilde{E} = 1\). We refer back to equation (24), and set \(\tilde{E} = 1\):

\[
0 = R^3 - \frac{1}{2}(X^2 + \tilde{S}^2 + 2\tilde{S}X + Q)R^3 + (X^2 + Q)R - \frac{1}{2}Q \tilde{S}^2.
\]

(33)

There are now three possible finite roots \(\{r_4 < r_3 \leq r_p\}\), which can be used in a new general equation (\(r_a\) is infinite in the case of a parabolic orbit):

\[
R^3 - (r_3 + r_4 + r_p)R^2 + (r_4 r_3 + r_3 r_p + r_4 r_p)R - r_4 r_3 r_p = 0.
\]

(34)

The pericentre simplifies (with \(e = 1\)) to become

\[
r_p = \tilde{l},
\]

(35)

and correspondingly, at its apocentre,

\[
r_a \rightarrow \infty.
\]

(36)

We obtain the solutions for the additional roots

\[
r_3 = \frac{1}{\tilde{l}^2} [(Q(\tilde{l} - \tilde{S}^2) + X^2 \tilde{l}) \pm \sqrt{Z_4}]
\]

(37)

and

\[
r_4 = \frac{Q \tilde{S}^2}{r_3 \tilde{l}},
\]

(38)

where

\[
Z_4 = (\tilde{l} - \tilde{S}^2)^2 Q^2 - \tilde{l}(\tilde{S}^2 \tilde{l}^2 - 2X^2 \tilde{l} + 2X^2 \tilde{S}^2)Q + X^4 \tilde{l}^2.
\]
3.3. Roots of the polar-angle equation

Let us focus on the denominator of the second term in equation (23), i.e. \(\sqrt{V_\theta} \), to derive an analytical relationship for the limits of integration, \(\theta_1 \) and \(\theta_2 \), from which one may determine \(\iota \). We shall work with \(\tilde{V}_\theta \) in terms of \(\tilde{L}_z \), i.e.

\[
I = \tilde{S}^2 \int_{\theta_1}^{\theta_2} \frac{\sin(\theta) \cos^2(\theta)}{\sqrt{Q \sin^2(\theta) - \sin^2(\theta) \cos^2(\theta) \tilde{S}^2 (1 - \tilde{E}^2) - \cos^2(\theta) \tilde{L}_z^2}} \, d\theta.
\]

Equation (23) is an elliptic integral; thus, the limits of integration correspond to the zeroes of the denominator. By making the substitution

\[
u = \cos(\theta),
\]

the integral, \(I \), becomes

\[
I = \tilde{S}^2 \int_{\nu_1}^{\nu_2} \frac{-\nu^2 \, d\nu}{\sqrt{\tilde{S}^2 (1 - \tilde{E}^2) \nu^4 - (Q + \tilde{L}_z^2 + \tilde{S}^2 (1 - \tilde{E}^2)) \nu^2 + Q}}.
\]

for which the roots, \(\beta_+ = \cos^2(\theta_+) \), can be calculated and used to determine (given that \(\cos(\theta) = \cos(\pi/2 - \iota) = \sin(\iota) \)) the exact angle of inclination of an orbit for which the values of \(\tilde{S} \), \(Q \) and \(\tilde{L}_z \) are known, when working in Boyer–Lindquist coordinates. We will calculate \(\iota \) using

\[
\sin^2(\iota) = \frac{1}{2} Q + \tilde{L}_z^2 + \tilde{S}^2 (1 - \tilde{E}^2) - \sqrt{\left(Q + \tilde{L}_z^2 + \tilde{S}^2 (1 - \tilde{E}^2)\right)^2 - 4 Q \tilde{S}^2 (1 - \tilde{E}^2)},
\]

which differs from the approximation in [5, 21]. Note that in dealing with results that are of first order and third order in \(\tilde{S} \), one may consider the approximation to \(\iota \) to be reasonably close to equation (42) [38].

3.4. Orbital energy and an analytical expression for \(X^2 \)

As outlined in [20], the next step will be to develop a formula for orbital energy, \(\tilde{E} \), in terms of \(e, \tilde{l} \) and \(X^2 \). By referring to equations (24) and (27), this derivation proceeds by solving

\[
r_1 + r_3 + r_p + r_a = 2(1 - \tilde{E}^2)^{-1}
\]

to yield

\[
\tilde{E} = \pm \frac{1 - e^2}{\tilde{l}} \sqrt{Q (\tilde{l} - \tilde{S}^2) + X^2 \tilde{l} + \tilde{l}^3 (e^2 + \tilde{l} - 1)(1 - e^2)^{-2}},
\]

for which we use the positive case. For \(Q = 0 \), equation (44) simplifies to

\[
\tilde{E} = \sqrt{1 - \frac{(1 - e^2)}{\tilde{l}}} \left(1 - \frac{X^2 (1 - e^2)}{\tilde{l}^2}\right),
\]

which is the expression for \(\tilde{E} \) in an equatorial orbit.

It is interesting to observe that for an inclined orbit around an SBH (\(\tilde{S} = 0 \)), the equation for \(\tilde{E} \) (equation (44)) reduces to

\[
\tilde{E} = \sqrt{\left(\tilde{l} - 2(1 + e)(\tilde{l} - 2(1 - e))\right) / \tilde{l} (\tilde{l} - 3 - e^2)}.
\]
which is the expression for orbital energy of a test-particle in orbit around an SBH (see equation (2.5) in [33]). Further, this equation for \(E \) shows no dependence on \(Q \). This property is expected since the orbital energy must be independent of orientation in the spherically symmetric coordinate system of an SBH.

In the general case, we observe that \(E \) is a function of \(X^2 \) (see equation (44)), and thus it is not in explicit form because \(X = L_z - \tilde{S}E \). Therefore the use of \(X^2 \) in place of \((L_z - \tilde{S}E)^2\) simplifies the analysis by avoiding an unending recursive substitution of \(E \) into the equation. Although one may derive a formula for \(E \) in explicit form, it is better to perform the analysis using equation (44).

To calculate an analytical expression for \(X^2 \), we substitute equation (44) into our original quartic (equation (9)) and evaluate it at either \(r_p \) or \(r_o \) (the two simplest choices of the four roots) to yield

\[
(1 + e)^{-2}(l^2(\tilde{S}^2 - l) + 2QS^2(1 + e^2) + l(X^2 + Q)(\tilde{l} - 3 - e^2)) \\
+ 2\tilde{S}X\sqrt{l(X^2 + Q)(1 - e^2) - Q\tilde{S}^2(1 - e^2)^2 + l^2(\tilde{l} + e^2 - 1))} = 0.
\]

By eliminating the square root, and solving for \(X^2 \) in the resulting quadratic, one obtains

\[
X^2_{\pm} = \frac{Z_5 + Z_6 Q \pm 2\tilde{S} \sqrt{Z_7 Z_8 Z_9}}{l(l(3 - \tilde{l} + e^2)^2 - 4\tilde{S}^2(1 - e^2)^2)},
\]

where

\[
Z_5 = \tilde{l}^3([\tilde{l} + 3e^2 + 1]S^2 - \tilde{l}(3 - \tilde{l} + e^2)), \\
Z_6 = -2(1 - e)^2\tilde{S}^4 + 2\tilde{l}(2e^4 + (2 - \tilde{l})e^2 + 4 - \tilde{l})\tilde{S}^2 - \tilde{l}^2(3 - \tilde{l} + e^2)^2, \\
Z_7 = \tilde{S}^2(1 + e)^2 + \tilde{l}(\tilde{l} - 2(1 + e)), \\
Z_8 = \tilde{S}^2(1 - e)^2 + \tilde{l}(\tilde{l} - 2(1 - e))
\]

and

\[
Z_9 = (\tilde{l}^5 + \tilde{S}^2 Q^2(1 - e^2)^2 + Q\tilde{l}^3(3 - \tilde{l} + e^2)).
\]

\(X^2_{\pm} \) has a minus and a plus solution, which we will carefully describe in the next section. We have avoided the analytical difficulties that would arise by working with \(L_z \) directly. Indeed, the advantage of using \(X = L_z - \tilde{S}E \) is more than a simple change of variables, but rather an essential step in solving these equations.

3.5. Prograde and retrograde descriptions of \(X^2 \)

The expression for \(X^2_{\pm} \) (see equation (48)) contains the square root, \(\pm 2\tilde{S} \sqrt{Z_7 Z_8 Z_9} \), for which \(Q \) is found only in \(Z_9 \) as a quadratic. Therefore it is easy to derive an expression for \(Q \) for which \(Z_9 = 0 \) and thus determine where the minus and plus equations for \(X^2_{\pm} \) meet or abut. This information is important for determining which form of equation (48) to use. We will call the set of general orbits for which \(Z_9 = 0 \) the abutment to avoid confusing it with the result for the boundary between the plus and minus forms of \(L_z \) at the LSO.

A prograde orbit has an \(L_z > 0 \). Correspondingly, when \(L_z < 0 \) the orbit is retrograde, and if \(L_z = 0 \), the orbit is polar. When using the minus and plus forms of the equation for \(X^2_{\pm} \) (equation (48)), one must recognize that \(X^2_{\pm} \) governs all of the prograde orbits, the polar orbits and the near-polar retrograde orbits up to the abutment, and \(X^2_{\pm} \) governs the remaining retrograde orbits. If one considers an SBH system, then the abutment will be comprised only of polar orbits (and it is only then that \(X^2_{\pm} \) cleanly separates the prograde and retrograde orbits). If \(\tilde{S} > 0 \), the abutment will always consist of retrograde orbits.
Figure 4. A plot of $X_2^−$ with respect to Q for a circular orbit ($\tilde{l} = 6.25$) about a KBH of spin $\tilde{S} = 0.5$. The slope of $X_−$ can be assumed to have no discontinuities; therefore, the point at $Q_{\text{switch}} = 11.26$ indicates that if $Q > Q_{\text{switch}}$, then $X_− = -\sqrt{X_2^−}$.

For orbits governed by X_2^+, $X_+ = -\sqrt{X_2^+}$, but for those governed by $X_2^−$, the choice of sign depends on the value of Q. The plot of $X_2^−$ with respect to Q for a circular orbit with $\tilde{l} = 6.25$ about a KBH of $\tilde{S} = 0.5$ (figure 4) shows that for $\partial X_−/\partial Q$ to remain continuous over the range of real values of Q, the minus sign must be chosen when evaluating $X_−$ for $Q > Q_{\text{switch}}$. An analytical formula for Q_{switch} can be found by solving $X_2^− = 0$ for Q. The general solution is

$$Q_{\text{switch}} = \tilde{l}^2 (\tilde{l} - \tilde{S}^2)(\tilde{l}(\tilde{l} - e^2 - 3) + 2(1 + e^2)\tilde{S}^2)^{-1},$$

(50)

and for an SBH

$$Q_{\text{switch}} = \tilde{l}^2 (\tilde{l} - e^2 - 3)^{-1}.$$

(51)

For large orbits ($\tilde{l} \to \infty$) equation (50) can be converted to its asymptotic form by first factoring out \tilde{l} from each term to obtain

$$Q = \tilde{l} \left(1 - \frac{\tilde{S}^2}{\tilde{l}}\right) \left(1 - \frac{3 + e^2}{\tilde{l}} + \frac{2(1 + e^2)\tilde{S}^2}{\tilde{l}^2}\right)^{-1},$$

(52)

for which the denominator may be brought up to the numerator to yield

$$Q \approx \tilde{l} \left(1 - \frac{\tilde{S}^2}{\tilde{l}}\right) \left(1 + \frac{3 + e^2}{\tilde{l}} - \frac{(3 + e^2)^2 + 2(1 + e^2)\tilde{S}^2}{\tilde{l}^2}\right).$$

(53)

In the limit such as $\tilde{l} \to \infty$,

$$Q_{\text{switch}} = \tilde{l} + 3 + e^2 - \tilde{S}^2.$$

(54)

Equation (54) describes the locus of points at which $\tilde{L}_z = \tilde{S}\tilde{E}$ (which is effectively constant for large \tilde{l}); therefore, Q_{switch} does not describe a trajectory.
We have developed two formulae: one for \tilde{L}^2_z at the LSO (equation (14)) and the other for X^2_{\pm} of general circular and elliptical orbits (equation (48)). For \tilde{L}^2_z, the boundary between the plus and minus forms is described by

$$R^5_p - Q R^4_p + 3 Q R^3_p + Q^2 S^2 = 0,$$

(55)

where R_p represents the pericentre. And for X^2_{\pm}, the abutment is described by

$$\tilde{l}^5 + S^2 Q^2 (1 - e^2)^2 + Q^2 (3 - \tilde{l} + e^2) = 0.$$

(56)

As equations (55) and (56) describe the boundaries (where the plus and minus forms are equal) that pertain to different quantities (\tilde{L}^2_z and X^2_{\pm}), they will not in general coincide. If one substitutes $R_p = \tilde{l}/(1 + e)$ into equation (55) one obtains

$$\tilde{l}^5 - Q(1 + e) \tilde{l}^4 + 3 Q(1 + e) \tilde{l}^3 + Q^2 S^2 (1 + e)^5 = 0,$$

(57)

which equals equation (56) when $e = 0$ (i.e. for a circular orbit). If $\tilde{S} = 0$ (SBH case), then $X^2_{\pm} = \tilde{L}^2_{\pm}$ and the two boundaries must be identical. If one substitutes $\tilde{l} = 6 + 2e$ into equation (56) and solves for Q, then the same expression as in equation (17) is obtained.

4. The characteristics of the Carter constant equations and the domain of the orbital parameters

4.1. Introduction

In describing an arbitrary orbit, it must be recognized that each parameter (\tilde{l}, e and Q) has a domain. The value of e lies between 0, for a circular orbit, and 1, for a parabolic orbit. Although \tilde{l} has no upper limit, its minimum value is \tilde{l}_{LSO}; while Q, which is non-negative, does have an upper limit that depends on the size of \tilde{l}. The complicated interrelationships between these parameters can be better understood if we derive a set of analytical formulae to describe the behaviour of Q with respect to \tilde{l} and e. In the sections that follow, we shall examine the LSO, abutment and polar orbits. A representative plot of these curves is shown in figure 5 for $e = \{0.0, 0.25, 0.50, 0.75, 1.0\}$ and a KBH spin of $S = 0.99$.

4.2. Last stable orbit

In [29] a new analytical formula for the latus rectum of an elliptical equatorial LSO was developed. We can perform a similar treatment for inclined LSOs, but the polynomial that results is of ninth order in \tilde{l}, currently making the derivation of an analytical solution infeasible. The use of the companion matrix [29, 39, 40] simplifies the numerical calculation of the prograde and retrograde \tilde{l}_{LSO}.

We refer back to equations (25), (26), (30) and (31), but because \tilde{E} will equal the maximum value of \tilde{V}_r (closest to the event horizon) we can specify $r_3 = r_p$ as an additional condition [26, 29, 33]. Therefore the remaining root, r_4, can be easily solved, using

$$\frac{r_4 \tilde{l}^3}{(1 + e)(1 - e^2)} \frac{Q \tilde{S}^2}{1 - E^2},$$

(58)

to yield

$$r_4 = \frac{Q \tilde{S}^2 (1 + e)(1 - e^2)}{(1 - E^2)^3 \tilde{l}^3}.$$

(59)
Figure 5. A sequence of Q--\tilde{T} maps for various values of e for a KBH system with $\tilde{S} = 0.99$. The short-dashed lines represent Q_X (equation (63)), the long-dashed lines represent Q_{polar} (equation (69)) and the solid lines represent Q_{LSO} (equation (62)). (a) Circular orbit; (b) $e = 0.25$; (c) $e = 0.5$; (d) $e = 0.75$; (e) parabolic orbit.

Substituting the four roots (two of which are equal) into equation (43) yields
\[
\frac{Q S^2 (1 + e)(1 - e^2)}{(1 - \tilde{E}^2)\tilde{t}^3} + 2 \frac{\tilde{t}}{1 + e} + \frac{\tilde{t}}{1 - e} = 2 \left(1 - \tilde{E}^2\right)^{-1}.
\] (60)

Substituting the expression for \tilde{E} (equation (44)) into equation (60) and cross multiplying, we obtain
\[
\tilde{t}^2 \left(1 + e\right)^2 \left(1 - e\right)^3 Z_{10} Z_{11} = 0,
\] (61)
where

\[Z_{10} = (-3l - 2e + e^2l)X_\pm^2 + 4Q\hat{S}^2 + 4Q\hat{S}^2e - 2QLe + Qe^2l - 3QL + l^3 \]

and

\[Z_{11} = (1 - e^3)(lX_\pm^2 + Ql - Q\hat{S}^2) - l^3. \]

By setting \(Z_{10} = 0 \) and substituting the formula for \(X_\pm^2 \) (equation (48)) one obtains a polynomial, \(p(l) \), in terms of \(l \) (to order 9), \(e \), \(Q \) (to second order) and \(\hat{S} \) (see equation (B.9) in appendix B). The companion matrix of \(p(l) \) provides a powerful method to calculate the values of \(l \) both for a prograde and retrograde LSO by numerically evaluating the eigenvalues of the matrix. Optimized techniques for solving for eigenvalues are available [41, 42]. Such a numerical analysis was performed to obtain representative values of \(\tilde{I}_{\text{LSO}} \).

The corresponding values of \(\tilde{I}_{\text{LSO}} \), which we derived from \(Z_{11} = 0 \) \((\text{ceteris paribus})\) were smaller and thus not physically reachable by a test-particle. This result demonstrates that \(Z_{10} = 0 \) is the appropriate solution.

Because \(p(l) \) is a quadratic in terms of \(Q \), an alternative way to analyse the behaviour of orbits as they approach their LSO is available. One solves for \(Q \), analytically, to obtain

\[Q_{\text{LSO}} = \frac{1}{4}(Z_{12} - \hat{S}^2Z_{13}\sqrt{Z_{14}})(\hat{S}^4Z_{15})^{-1}. \] (62)

where

\[Z_{12} = \tilde{l}^4(e + 1)(\tilde{l}^2 - (2e^2 + e + 3)\tilde{l} + 2(e + 1)(2e^2 - e + 3))\hat{S}^2 \]
\[- \tilde{l}^3(e + 1)^2(2e^3 + e^2 + l(3 - e + 1))\hat{S}^3, \]
\[Z_{13} = (3 - e)((e + 1)^2\hat{S}^2 - \tilde{l}(2e + 2 - \tilde{l})), \]
\[Z_{14} = \tilde{l}^5(e + 1)^3((e - 1)^2\hat{S}^2 + \tilde{l}(2e - 2)), \]

and

\[Z_{15} = (e + 1)^2((e - 1)^2(e + 1)^3\hat{S}^2 \]
\[- \tilde{l}(\tilde{l}^2 - (e + 1)(e^2 - 2e + 3)\tilde{l} + (2e^2 - 4e + 3)(e + 1)^2)). \]

We now have, through equation (62), the means to plot the value of \(Q_{\text{LSO}} \) with respect to \(\tilde{I}_{\text{LSO}} \). For a KBH, one may use \(\tilde{I}_{\text{LSO}} \) in the domain \([\tilde{I}_{\text{LSO, prograde}}, \tilde{I}_{\text{LSO, retrograde}}]\) as the independent variable.

4.3. The abutment

The roots of equation (49) allow us to calculate the value of \(Q \) along the abutment \((Q_X) \) in terms of the orbital values of \(\tilde{l} \), \(e \) and the KBH spin, \(\hat{S} \), and we obtain, taking the minus sign of the quadratic solution,

\[Q_X = \frac{l^2}{2\hat{S}^2(1 - e^2)^2}(\tilde{l}(\tilde{l}^2 - e^2 - 3) - \sqrt{\tilde{l}^2(\tilde{l}^2 - e^2 - 3)^2 - 4\tilde{l}(1 - e^2)^2\hat{S}^2}). \] (63)

Equation (63) appears to have poles at \(\hat{S} = 0 \) and \(e = 1 \), but we can demonstrate that it reduces to a well-behaved function at these values of \(\hat{S} \) and \(e \). We first factor out the term, \(\tilde{l}(\tilde{l}^2 - e^2 - 3) \), to obtain

\[Q_X = \frac{l^2(\tilde{l}^2 - e^2 - 3)}{2(1 - e^2)^2\hat{S}^2} \left(1 - \sqrt{1 - \frac{4(1 - e^2)^2\hat{S}^2}{l(\tilde{l}^2 - e^2 - 3)^2}} \right). \] (64)
Equation (64) can be simplified by making a binomial expansion of its square root to yield

\[Q_X = \frac{\tilde{l}^2 (\tilde{l} - \tilde{e}^2 - 3)}{2 (1 - \tilde{e}^2)^2 \tilde{S}^2} \left\{ 1 - 1 + \frac{2 (1 - \tilde{e}^2)^2 \tilde{S}^2}{l(l - \tilde{e}^2 - 3)^2} + 2 \left[\frac{(1 - \tilde{e}^2)^2 \tilde{S}^2}{l(l - \tilde{e}^2 - 3)^2} \right]^2 + 4 \left[\frac{(1 - \tilde{e}^2)^2 \tilde{S}^2}{l(l - \tilde{e}^2 - 3)^2} \right]^3 + 10 \left[\frac{(1 - \tilde{e}^2)^2 \tilde{S}^2}{l(l - \tilde{e}^2 - 3)^2} \right]^4 \cdots \right\}. \] (65)

Equation (65) simplifies to a power series in terms of \((1 - \tilde{e}^2)^2 \tilde{S}^2\); therefore, only the first term will remain when \(\tilde{S} = 0\) or \(e = 1\). We now have a greatly simplified expression, which applies to elliptic orbits around an SBH and parabolic orbits about a KBH, i.e.

\[Q_X = \frac{l^2 (l - e^2 - 3)}{l^2 (l - 4)^{-1}}. \] (66)

Further, as \(l \to \infty\) in elliptical orbits,

\[\frac{4 (1 - e^2)^2 \tilde{S}^2}{l(l - e^2 - 3)^2} \to 0; \] (67)

therefore, a similar binomial treatment may be performed on equation (64) to yield \(Q_X \cong l + e^2 + 3\) for large \(l\). This result is consistent with the fact that as \(l \to \infty\), the spacetime looks more Schwarzschild in nature. As in the case of equation (17), \(Q_X\) (equation (63)) also defines an upper limit on \(Q\) for specific values of \(l\) and \(e\). The points above the \(Q_X\) curve are inaccessible, and this property can be shown by direct calculation.

This result confirms the choice of the minus sign in solving the quadratic equation (56) for \(Q_X\). Recall that equation (48) applies to bound orbits in general and is not restricted to LSOs (as is the case for \(L^2\) (see equation (14))); therefore, the value of \(Q_X\) can be evaluated for all values of \(l \geq l_{L_m, \text{prograde}}\), and it will apply to both sets of orbits governed by \(X^2\) or \(X^2_+\).

4.4. Polar orbit

We consider polar orbits in this paper, although orbits of arbitrary inclination are also important. The polar orbit (governed by \(X^2\)) is precisely defined by setting \(L_z = 0\) from which we obtain \(X^2 = \tilde{S}^2 \tilde{E}^2\); therefore, we can derive an analytical formula for \(Q\) of a polar orbit (\(Q_{\text{polar}}\)) of arbitrary \(l\) and \(e\).

We have the formula for \(X^2\) in terms of \(l\), \(e\), and \(Q\) (see equation (48)), and \(\tilde{E}\) can also be expressed in these terms (see equation (44)). Therefore \(X^2 = \tilde{S}^2 \tilde{E}^2 = 0\) can be simplified and factored to yield

\[A(B_1 Q - \tilde{l}^2 B_2)(C_1 Q - \tilde{l}^2 C_2) = 0, \] (68)

where

\[A = l^3 - (2e^2 + 6)l^2 + (e^2 + 3)^2 l - 4S^2 (1 - e^2)^2, \]
\[B_1 = \tilde{l}^3 b_1 = \tilde{l}^3 \left[1 - (3 + e^2) \tilde{l}^{-1} + 2 \tilde{S}^2 \left(1 + e^2 \right) \tilde{l}^{-2} - 2 \tilde{S}^2 \left(1 - e^2 \right) \tilde{l}^{-3} \right. \]
\[+ \tilde{S}^4 (1 - e^2) \tilde{l}^{-4} + \tilde{S}^4 (1 - e^2) \tilde{l}^{-5} \right], \]
\[B_2 = \tilde{l}^3 b_2 = \tilde{l}^3 \left[1 + 2 \tilde{S}^2 (1 + e^2) \tilde{l}^{-2} - 4 \tilde{S}^2 (1 - e^2) \tilde{l}^{-3} + \tilde{S}^4 (1 - e^2) \tilde{l}^{-4} \right], \]
\[C_1 = \tilde{l}^3 c_1 = \tilde{l}^3 \left[1 - (3 + e^2) \tilde{l}^{-1} + 2 \tilde{S}^2 (1 + e^2) \tilde{l}^{-2} + 2 \tilde{S}^2 (1 - e^2) \tilde{l}^{-3} \right. \]
\[- 3 \tilde{S}^4 (1 - e^2) \tilde{l}^{-4} + \tilde{S}^4 (1 - e^2) \tilde{l}^{-5} \right]. \]
and
\[C_2 = \tilde{I}^4 C_2 = \tilde{I}^4 [1 - 4S^2\tilde{I}^{-1} + 2S^2(3 - e^2)\tilde{I}^{-2} - 4S^2(1 - e^2)\tilde{I}^{-3} + \tilde{S}^4(1 - e^2)\tilde{I}^{-4}] . \]

The factor, \(A\), offers no physically meaningful results. It does not provide a solution for \(Q\), and for \(0 \leq \tilde{S} < 1.0\) and \(0 \leq e \leq 1.0\), we find that \(3 \leq \tilde{I} \leq 4\), which lies beyond the LSO. The factor, \(B_1 Q - \tilde{I}^2 B_2 = 0\), yields the result
\[Q_{\text{polar}} = \tilde{I}^2 B_2 B_1^{-1} . \]
And the factor, \(C_1 Q - \tilde{I}^2 C_2 = 0\), yields the result
\[Q_{\text{polar}} = \tilde{I}^2 C_2 C_1^{-1} . \]

We examine equations (69) and (70) to discover which one is physically significant. In the Schwarzschild limit (\(\tilde{S} \to 0\)) we find that they coincide. But let us consider the weak-field limit (\(\tilde{I} \to \infty\)). Equation (69), \(Q_{\text{polar}} = \tilde{I} b_2 b_1^{-1}\), can be expanded in powers of \(\tilde{I}\), and the terms with powers of \(\tilde{I}^{-1}\) and lower approach zero as \(\tilde{I} \to \infty\) to yield the asymptotic limit of equation (69):
\[Q_{\text{polar}} \approx \tilde{I} + 3 + e^2 . \]

In a similar treatment of equation (70) one obtains
\[\tilde{I}^{-1} C_1^{-1} \approx \tilde{I} + 3 + e^2 - 4S^2 , \]
which we can disregard as unphysical because it incorrectly implies that the spin of the KBH influences the trajectory of a test-particle at infinity. This situation differs from that described by equation (54), which does not describe a trajectory. Test calculations confirm that equation (69) is the appropriate choice and equation (70) can be disregarded since the values of \(\tilde{I}_{\text{LSO}}\) obtained by solving equation (70) are less than (or equal to) the results from equation (69) (ceteris paribus). Equation (69) applies to all bound orbits; hence, \(Q_{\text{polar}}\) can be evaluated over a range \(\tilde{I} \gtrsim \tilde{I}_{\text{LSO, prograde}}\), but it applies only to orbits governed by \(X_2^2\). In the SBH case (\(\tilde{S} = 0\)), \(B_1 = \tilde{I} - (3 + e^2)\tilde{I}^2\) and \(B_2 = \tilde{I}^4\). Therefore
\[Q_{\text{polar}} = \tilde{I}^2 (\tilde{I} - e^2 - 3)^{-1} , \]
which has an asymptotic behaviour similar to that of \(Q_X\).

4.5. Some characteristics of the Carter constant formulae

4.5.1. The last stable orbit on the abutment. In figures (5) and (6) one observes that the functions for \(Q_X\) and \(Q_{\text{LSO}}\) intersect at a single tangential point, which represents the value of \(\tilde{I}\) of an LSO that lies at the abutment described by \(X_2^2\). The equation \(Q_X - Q_{\text{LSO}} = 0\) (see equations (63) and (62)) can be solved to yield
\[\tilde{I}_{\text{LSO, abutment}} = \frac{1}{12} (Z_{16} + \chi_1 + \chi_0 Z_{16}^{-1}) , \]
where
\[Z_{16} = (216(1 + e)(5 + e)^2(1 - e^2)\tilde{S}^2 + \chi_1 \chi_2 \chi_3) + 12\sqrt{3}Z_{17} , \]
\[Z_{17} = (1 + e)(5 + e)^2 \times (108(1 + e)(5 + e)(1 - e)\tilde{S}^4 + \chi_1 \chi_2 \chi_3(1 - e)^2\tilde{S}^2 - (1 + e)(9 - e^2)^2\chi_4^2) , \]
\(\chi_0 = e^5 + 6e^5 - 9e^4 - 60e^3 + 111e^2 + 342e + 441\),
\(\chi_1 = e^3 + 3e^2 + 2e + 33\),
\(\chi_2 = e^3 + 3e^2 - 9e - 30\),
\(\chi_3 = e^3 + 3e^2 - 21e - 39\).
Figure 6. The three Q formulae derived in section 4 define a map. In zone (A), only prograde orbits are found. In zone (B), both prograde and retrograde orbits are found. Above the Q_polar curve (zones (a) and (b)) only retrograde orbits can exist. But in zone (a), the orbits are governed by X^2_\perp, while in zone (b) they are governed by either X^2_\perp or X^2_\parallel. The points along Q_X and Q_{LSO} mark the values of ι. In this case the orbit is circular ($e = 0$) and the KBH spin is $\tilde{S} = 0.99$.

and

$$\chi_4 = e^3 + 3e^2 - 5e + 9.$$

It is at this tangential point that the Q_{LSO} curve is split into two segments: the minus segment ($\tilde{l} < \tilde{l}_{LSO,abutment}$) that defines the values of \tilde{l}_{LSO} (and Q_{LSO}) associated with inclined LSOs that are governed by X^2_\perp, and the plus segment ($\tilde{l} > \tilde{l}_{LSO,abutment}$), which corresponds to inclined LSOs governed by X^2_\parallel. Consequently, the points beneath Q_{LSO} define only orbits governed by X^2_\perp. Further, orbits with \tilde{l} and Q values that lie to the left of the minus segment of Q_{LSO} are undefined. Therefore the Q_{LSO} curve for $\tilde{l} < \tilde{l}_{LSO,abutment}$ and the Q_X curve for $\tilde{l} > \tilde{l}_{LSO,abutment}$ define a curve along which the upper limit of Q is specified.

Calculations of the value of $\tilde{l}_{LSO,abutment}$ (equation (74)) were performed for various eccentricities and two values of KBH spin ($\tilde{S} = 0.5$ and $\tilde{S} = 0.99$); they are listed in table 1. We have also numerically calculated the values of \tilde{l} for the maximal point of the Q_{LSO} curve and listed them for comparison. For both circular and parabolic orbits,

$$\tilde{l}_{LSO,abutment} = \tilde{l}_{LSO,max},$$

irrespective of the value of \tilde{S}. Otherwise,

$$\tilde{l}_{LSO,abutment} < \tilde{l}_{LSO,max},$$

from which one may infer the curve which specifies that the upper limit of Q is monotonically increasing with respect to \tilde{l} (with a point of inflection at $\tilde{l}_{LSO,abutment}$ for circular and parabolic orbits). The values of $\tilde{l}_{LSO,abutment}$ show that the upper limit of Q also increases monotonically
with respect to e. Further, $\ell_{\text{LSO, abutment}} = 8.0$ for a parabolic orbit, which equals the ℓ_{LSO} of a parabolic orbit about an SBH.

4.5.2. The last stable polar orbit

The polar curve applies to polar orbits, which are governed by X^2; therefore, only the intersection of the Q_{polar} curve with the minus segment of the Q_{LSO} curve ($\ell < \ell_{\text{LSO, abutment}}$) needs to be considered. It is at this point that the ℓ_{LSO} of a polar orbit of arbitrary e is defined. It was found from numerical calculations of $\ell_{\text{polar, LSO}}$ (where the Q_{polar} curve intersects the minus segment of the Q_{LSO} curve) and the ℓ value at the minimal point of Q_{polar} that in the case of circular and parabolic orbits,

$$\ell_{\text{polar, min}} = \ell_{\text{polar, LSO}};$$

(77)

otherwise,

$$\ell_{\text{polar, min}} < \ell_{\text{polar, LSO}}.$$

(78)

One may infer from this result that the value of Q_{polar} is monotonically increasing with respect to ℓ (and has a point of inflection at $\ell_{\text{polar, LSO}}$ for circular and parabolic orbits).

4.5.3. The Schwarzschild limiting case

The analysis of these formulae in the case where $\hat{S} \rightarrow 0$ is an important test. An examination of the analytical formulae for Q_{switch} (equation (51)), Q_X (equation (63)) and Q_{polar} (equation (69)) show that when $\hat{S} = 0$, all three formulae equal

$$Q = l^2(\ell - e^2 - 3)^{-1}.$$

(79)

In the Schwarzschild limit, we find that the abutment and the set of polar orbits approach one another, as required by the spherical symmetry of Schwarzschild spacetime.

5. The analysis of the Carter constant for an evolving orbit

5.1. Introduction

We now perform an analysis of the evolution of Q in Kerr spacetime in the domain, which is defined by the three Q curves we have derived ($Q_{\text{LSO, X, polar}}$) in equations (62), (63)
and (69). The behaviour of \(Q_{\text{switch}} \) (equation (50)) will not be considered here, although it is important in guiding the choice of sign in \(\pm \sqrt{X_2^2} \).

The three equations for \(Q_X \), \(Q_{L SO} \) and \(Q_{\text{polar}} \) define a map (see figure 6) from which one might infer the characteristics of a path followed by an inclined orbit as it evolves. These paths \(Q_{\text{path}} \) fall into two families: one governed by \(X_2^2 \) and the other by \(X_2^\pm \). We conjecture that paths in the same family never cross; therefore, if \(Q_{\text{path}} \) reaches \(Q_X \), then it can do so only once. Let us concentrate on the behaviour of an evolving orbit at the abutment, which is where \(Q_{\text{path}} \) may change from one family to the other. Therefore there are two modes to consider:

\[
X_2^- \Rightarrow X_2^+ \quad (80)
\]
and

\[
X_2^+ \Rightarrow X_2^- \quad (81)
\]

The mode represented by equation (80) corresponds to a rapid listing rate, where prograde orbits can cross \(Q_{\text{polar}} \) and intersect \(Q_X \). The mode represented by equation (81) corresponds to orbits that list at a slow rate, have constant \(\iota \) or exhibit decreasing \(\iota \) over time. And a prograde orbit cannot reach \(Q_X \) since \(Q_X \) lies on the retrograde side of \(Q_{\text{polar}} \).

For this paper we will consider the evolution of a circular orbit \((e = 0) \) because we wish to limit our initial analysis to the relationship between \(Q \) and \(\tilde{l} \). Elliptical orbits will be treated in a forthcoming paper [38].

5.2. The evolutionary path in the \(Q-\tilde{l} \) plane

In figure 6 one may imagine a path, \(Q_{\text{path}} \), that starts at a large value of \(\tilde{l} \) as both \(Q \) and \(\tilde{l} \) monotonically decrease with respect to time. If the curve reaches \(Q_X \), then it must intersect it tangentially (as the zone above the \(Q_X \) curve is inaccessible). It is at that point that the orbit ceases to be governed by \(X_2^\pm \) and is governed by \(X_2^\pm \).

At the abutment, \(\partial Q/\partial \tilde{l} \) and \(\partial Q/\partial e \) can be calculated analytically (see appendix B) irrespective of the model used to determine the radiation back-reaction. Given \(\dot{\tilde{l}} = d\tilde{l}/dt \) and \(\dot{e} = de/dt \) that have been derived according to some independent model, according to a linear approximation one may define

\[
\dot{Q} = \frac{\partial Q}{\partial \tilde{l}} \dot{\tilde{l}} + \frac{\partial Q}{\partial e} \dot{e}. \quad (82)
\]

For a circular orbit \((e = 0) \) it has been proven that \(\dot{e} = 0 \) [18]; therefore, the second term in equation (82) is zero.

5.2.1. A Preliminary test at the abutment. Because we can perform an analytical calculation of \(\partial Q/\partial \tilde{l} \) at the abutment, we can estimate \(\dot{\tilde{l}} \) with equation (82):

\[
\frac{\partial \tilde{l}}{\partial \tilde{l}} = Q \left(\frac{\partial Q}{\partial \tilde{l}} \right)^{-1}, \quad (83)
\]
if the 2PN \(Q \) flux (see equation (A.3) in [22] (after equation (56) in [5])) is known, i.e.

\[
\left(\frac{\partial Q}{\partial \tilde{l}} \right)_{2\text{PN}} = -\sin(i) \left(\frac{64}{5} \frac{m}{M^2} \right) (1 - \epsilon^2)^{3/2} \tilde{l}^{-7/2} \sqrt{Q} \times \left\{ g_9(e) - \tilde{l}^{-1} g_{11}(e) + (\pi g_{12}(e) - \cos(i)Sg_{10}(e))\tilde{l}^{-3/2} \right. \\
\left. - \left(g_{13}(e) - S^2 \left(g_{14}(e) - \frac{45}{8} \sin^2(i) \right) \right) \tilde{l}^{-2} \right\}. \quad (84)
\]
where the functions \(g_9(e), g_{10}^b(e), g_{11}(e), g_{12}(e), g_{13}(e)\) and \(g_{14}(e)\) are listed in appendix B (the Carter constant, \(Q\), has been normalized by dividing by \((mM)^2\)). We performed test calculations on circular orbits of \(\tilde{l} = \{7.0, 100.0\}\) with KBH spin \(\tilde{S} = \{0.05, 0.95\}\), which correspond to those used by Hughes [4]. In table 2, we compare our results with those of Hughes to find that they are reasonably consistent with some deviation for \(\tilde{S} = 0.95\) and \(\tilde{l} = 7.0\). We have adjusted the results in Hughes by dividing them by \(\sin(\iota)\) (where \(\iota \equiv \pi/3\)) so that they will correspond to our near-polar orbits; but this is only an approximation since \(\iota\) appears in other terms in equation (84).

5.3. The analysis of \(\iota\) on the abutment

The analysis of \(\iota\) and its derivatives with respect to \(\tilde{l}\) and \(\epsilon\) will be treated in detail in a forthcoming paper [38], but it is appropriate to present a short preliminary exploration here.

Unlike \(Q_{\text{PN}}\) (which appears in equation (84)), \(Q_X\) contains no explicit variable, \(\iota\); therefore, for circular orbits this property greatly simplifies the total derivative of \(Q_X\) with respect to \(\tilde{l}\) since \(\partial Q_X/\partial \iota = 0\), i.e.

\[
\frac{\partial Q_X}{\partial \tilde{l}} = \frac{\partial Q_X}{\partial \tilde{l}} + \frac{\partial Q_X}{\partial \iota} \frac{\partial \iota}{\partial \tilde{l}} = \frac{\partial Q_X}{\partial \tilde{l}}.
\]

Therefore equation (85) demonstrates that \(\partial \iota/\partial \tilde{l}\) is not constrained on the abutment in the same way as \(\partial Q/\partial \tilde{l}\) (see section 5.2.1). Consider equations (63), (48), (44) and (42). They form a calculation sequence, which on the abutment creates a one to one mapping, \(Q_X \rightarrow \iota\); otherwise, there are two possible values of \(\iota\) for a given value of \(Q\). Thus \(\partial \iota/\partial \tilde{l}\) can be found either by numerical methods or analytically [38]. In the remainder of this section we shall investigate the behaviour of \(\partial \iota/\partial \tilde{l}\) for orbits on the abutment.

5.3.1. Numerical analysis of \(\iota\) on the abutment. We can numerically estimate the change of \(\iota\) with respect to \(\tilde{l}\) at the abutment by first finding the change in \(Q\) for an extrapolation of the evolving orbit’s path (\(Q_{\text{path}}\)). Because both \(Q_{\text{path}} = Q_X\) and \(\partial Q_{\text{path}}/\partial \tilde{l} = \partial Q_X/\partial \tilde{l}\) at the point where \(Q_{\text{path}}\) intersects \(Q_X\), the equations of the second-order extrapolation of \(Q_{\text{path}}\) at the abutment can be written as

\[
Q_{\text{path}}(\tilde{l} - \delta \tilde{l}) = Q_X - \delta \tilde{l} \frac{\partial Q_X}{\partial \tilde{l}} + \frac{\delta \tilde{l}^2}{2} \frac{\partial^2 Q_{\text{path}}}{\partial \tilde{l}^2}
\]

\[
Q_{\text{path}}(\tilde{l} + \delta \tilde{l}) = Q_X + \delta \tilde{l} \frac{\partial Q_X}{\partial \tilde{l}} + \frac{\delta \tilde{l}^2}{2} \frac{\partial^2 Q_{\text{path}}}{\partial \tilde{l}^2}.
\]

These equations are used to calculate \(\iota_-\) (associated with \(\tilde{l} - \delta \tilde{l}\)) and \(\iota_+\) (\(\tilde{l} + \delta \tilde{l}\)), where \(\delta \tilde{l}\) is the small amount (10^{-32}) by which we extrapolate from the value of \(\tilde{l}\) at which \(Q_X\) and \(Q_{\text{path}}\)
intersect. Equations (86) and (87) include the second derivative of Q_{path} with respect to ℓ, which warrants further analysis.

Because $\delta \ell$ is so small we used MATLAB, set to a precision of 256 digits, to perform the numerical analysis. From these extrapolated values of Q_{path} we obtain

$$\frac{\partial \ell}{\partial l} \cong (\ell_+ - \ell_-)(2\delta \ell)^{-1}. \quad (88)$$

Note that since ℓ increases as ℓ decreases (with respect to time), $\partial \ell/\partial \ell \leq 0$.

5.3.2. The first-order extrapolation. Consider a first-order linear approximation, in which we drop the second derivatives in equations (86) and (87). The derivation of the corresponding first-order approximation by testing it in the Schwarzschild limit. The results for small fast modes yield the slow mode corresponds to orbits for which

$$X_+ \text{ and } X_- \text{ (equation (48)) from } Q_{\text{path}}(\ell + \delta \ell) \text{ (we use } -\sqrt{X_+^2} \text{ and we must use } -\sqrt{X_-^2} \text{ if } Q_{\text{path}}(\ell \pm \delta \ell) \text{ in appendix B)}.

(vii) Calculate X_+ and X_- from $Q_{\text{path}}(\ell - \delta \ell)$.
(viii) Using equation (44), calculate the orbital energies (\tilde{E}) for each of $Q_{\text{path}}(\ell - \delta \ell)$ and $Q_{\text{path}}(\ell + \delta \ell)$.
(ix) Now that the values of X_+, X_-, E, \tilde{E} are known, the value of ℓ_+ (ℓ_- and $\ell_+\rangle$ can be calculated, using equation (42). We use the expression $\tilde{L}_i = X + \tilde{S} \tilde{E}$.

We can estimate $\partial \ell/\partial \ell$, with equation (88).

We have performed this sequence of first-order calculations for each mode (equations (80) and (81)) over a range of \tilde{S} and \tilde{I} values, and a representative set is shown in table 3. The slow and fast modes yield $\partial \ell/\partial \ell$ values that are of opposite sign, and these results might suggest that the slow mode corresponds to orbits for which $\partial \ell/\partial \ell < 0$. But let us first assess the validity of the first-order approximation by testing it in the Schwarzschild limit. The results for small \tilde{S} (table 3) demonstrate that this approximation is incomplete since it produces a non-zero result for $\tilde{S} \gtrless 0$, which is unphysical. On each side of the abutment, the value of Q_{path} is underestimated. This observation warns that a more complete model that includes the higher derivatives of Q_{path}. Indeed, we have found that using $\partial Q_{X}/\partial \ell$ alone cannot offer a sufficiently accurate mathematical description of the orbital evolution at the abutment and warrants the development of second and higher derivatives of Q_{path}. One reasonably expects this numerical method to produce an accurate estimate of $\partial \ell/\partial \ell$, but the transition an orbit makes at the abutment from X_{+}^2 to X_{-}^2 makes its behaviour more complicated.

5.3.3. The second-order extrapolation. Equations (86) and (87) provide a second-order approximation of Q_{path} in the vicinity of the point of tangential intersection between Q_{X} and Q_{path}. At this formative stage of our work with the abutment, we will use $\partial^2 Q_{X}/\partial \ell^2$ (see equation (B.13) in appendix B) in place of $\partial^2 Q_{\text{path}}/\partial \ell^2$ in equations (86) and (87) as an...
Table 3. The values of $\partial \iota / \partial \tilde{l}$ (in radians) obtained by a linear extrapolation by $\tilde{l} = 10^{-32}$.

\tilde{l}	$\tilde{l} = 6.25$	$\tilde{l} = 7.0$	$\tilde{l} = 10.0$	$\tilde{l} = 100$
$S = 0.99$				
ι (degree)	104.3865	101.5796	96.1803	90.1719
First order (slow)	+8.796 923 5019 $\times 10^{-2}$	+6.399 724 8415 $\times 10^{-2}$	+2.673 049 9968 $\times 10^{-2}$	+2.645 407 7633 $\times 10^{-4}$
First order (fast)	$-2.466 703 3336 \times 10^{-1}$	$-1.715 822 8931 \times 10^{-1}$	$-6.309 479 6456 \times 10^{-2}$	$-3.552 069 2654 \times 10^{-4}$
Second order (slow)	$-7.935 054 9169 \times 10^{-2}$	$-5.379 252 0450 \times 10^{-2}$	$-1.818 214 8244 \times 10^{-2}$	$-4.533 307 5104 \times 10^{-5}$
$\left(\frac{\partial \iota}{\partial \tilde{l}} \right)_{\text{min}}$	$-7.935 054 9169 \times 10^{-2}$	$-5.379 252 0450 \times 10^{-2}$	$-1.818 214 8244 \times 10^{-2}$	$-4.533 307 5104 \times 10^{-5}$
$S = 0.5$				
ι (degree)	97.2125	95.8133	93.1100	90.0868
First order (slow)	+1.132 685 3682 $\times 10^{-1}$	+8.301 338 5020 $\times 10^{-2}$	+3.426 324 5153 $\times 10^{-2}$	+2.865 378 9706 $\times 10^{-4}$
First order (fast)	$-1.762 970 1738 \times 10^{-1}$	$-1.367 525 8947 \times 10^{-1}$	$-5.250 610 8860 \times 10^{-2}$	$-3.323 227 5582 \times 10^{-4}$
Second order (slow)	$-3.945 265 5089 \times 10^{-2}$	$-2.686 960 2227 \times 10^{-2}$	$-9.121 431 8535 \times 10^{-3}$	$-2.289 242 9382 \times 10^{-5}$
$\left(\frac{\partial \iota}{\partial \tilde{l}} \right)_{\text{min}}$	$-3.945 265 5089 \times 10^{-2}$	$-2.686 960 2227 \times 10^{-2}$	$-9.121 431 8535 \times 10^{-3}$	$-2.289 242 9382 \times 10^{-5}$
$S = 0.1$				
ι (degree)	91.4387	91.1602	90.6212	90.0174
First order (slow)	+1.400 483 0192 $\times 10^{-1}$	+1.019 005 8051 $\times 10^{-1}$	+4.105 818 7759 $\times 10^{-2}$	+3.047 061 4607 $\times 10^{-4}$
First order (fast)	$-1.557 393 4281 \times 10^{-1}$	$-1.126 050 0157 \times 10^{-1}$	$-4.469 838 5942 \times 10^{-2}$	$-3.138 627 1509 \times 10^{-4}$
Second order (slow)	$-7.845 520 4437 \times 10^{-3}$	$-5.352 210 5306 \times 10^{-3}$	$-1.820 099 0911 \times 10^{-3}$	$-4.578 284 5088 \times 10^{-6}$
$\left(\frac{\partial \iota}{\partial \tilde{l}} \right)_{\text{min}}$	$-7.845 520 4437 \times 10^{-3}$	$-5.352 210 5306 \times 10^{-3}$	$-1.820 099 0911 \times 10^{-3}$	$-4.578 284 5088 \times 10^{-6}$
Table 3. (Continued.)

θ (degree)	$\tilde{\ell} = 6.25$	$\tilde{\ell} = 7.0$	$\tilde{\ell} = 10.0$	$\tilde{\ell} = 100$
$S = 1.00 \times 10^{-3}$	90.0144	90.0116	90.0062	90.0002
First order (slow)	$+1.476\,138\,9187 \times 10^{-1}$	$+1.070\,893\,5531 \times 10^{-1}$	$+4.283\,894\,5741 \times 10^{-2}$	$+3.092\,325\,6836 \times 10^{-4}$
First order (fast)	$-1.477\,707\,6382 \times 10^{-1}$	$-1.071\,963\,8097 \times 10^{-1}$	$-4.287\,534\,4203 \times 10^{-2}$	$-3.093\,241\,3388 \times 10^{-4}$
Second order (slow)	$-7.843\,597\,8256 \times 10^{-5}$	$-5.351\,282\,8102 \times 10^{-5}$	$-1.819\,923\,0792 \times 10^{-5}$	$-4.578\,276\,1194 \times 10^{-8}$
First order (fast)	$-1.476\,922\,2926 \times 10^{-1}$	$-1.071\,428\,0363 \times 10^{-1}$	$+4.285\,712\,4658 \times 10^{-2}$	$+3.092\,783\,0473 \times 10^{-4}$
First order (slow)	$-1.476\,923\,8613 \times 10^{-1}$	$-1.071\,429\,1066 \times 10^{-1}$	$-4.285\,716\,1056 \times 10^{-2}$	$-3.092\,783\,9630 \times 10^{-4}$
Second order (slow)	$-7.843\,597\,6327 \times 10^{-8}$	$-5.351\,282\,7171 \times 10^{-8}$	$-1.819\,923\,0615 \times 10^{-8}$	$-4.578\,276\,1185 \times 10^{-11}$
First order (fast)	$-1.476\,923\,8613 \times 10^{-1}$	$-1.071\,429\,1066 \times 10^{-1}$	$-4.285\,716\,1056 \times 10^{-2}$	$-3.092\,783\,9630 \times 10^{-4}$
Second order (slow)	$-7.843\,597\,6331 \times 10^{-8}$	$-5.351\,282\,7174 \times 10^{-8}$	$-1.819\,923\,0616 \times 10^{-8}$	$-4.578\,276\,1186 \times 10^{-11}$
approximation. We repeated the ten-point sequence of calculations for the slow mode (equation (81)), as outlined in section 5.3.2. The results of this numerical analysis are included in Table 3. We observe that as \(\tilde{S} \to 0 \), \(\partial \iota / \partial \tilde{l} \to 0 \), as required. Further, the second-order \(\partial \iota / \partial \tilde{l} \) results for the slow mode represent listing orbits (i.e. \(\partial \iota / \partial \tilde{l} < 0 \)); therefore, the maximum list rate associated with paths that change from \(X_2^+ \Rightarrow X_2^- \) (slow) at the abutment will have an upper limit that corresponds to the minimal value of \(\partial \iota / \partial \tilde{l} \) for that mode.

5.3.4. The calculation of \((\partial \iota / \partial \tilde{l})_{\text{min}} \). Let us consider the use of the \(Q_X \) curve itself to estimate the value of \((\partial \iota / \partial \tilde{l})_{\text{min}} \) of an evolving orbit as it intersects the abutment. In this case, \(Q_{\text{path}}(\tilde{l} - \delta \tilde{l}) = Q_X(\tilde{l} - \delta \tilde{l}) \) \((\partial \iota / \partial \tilde{l})_{\text{min}} \)

\[Q_{\text{path}}(\tilde{l} + \delta \tilde{l}) = Q_X(\tilde{l} + \delta \tilde{l}), \]

where we have assumed that the path followed by the evolving orbit locally matches the \(Q_X \) curve (equations (89) and (90) that are used in point (v)). This analysis yields the minimum value of \((\partial \iota / \partial \tilde{l})_{\text{min}} \) at \(\tilde{l} \) for a KBH spin, \(\tilde{S} \), as specified in point (i). For the slow mode, the rate of change of \(\iota \) can be no smaller. If \(Q_{\text{path}} \) deviates from \(Q_X \) in its second and higher derivatives, then the actual value of \(\partial \iota / \partial \tilde{l} \) will be greater than \((\partial \iota / \partial \tilde{l})_{\text{min}} \).

5.3.5. Analysis. In Table 3 the values of \((\partial \iota / \partial \tilde{l})_{\text{min}} \) are in good agreement with the second-order calculations, although a difference is evident for \(\tilde{S} = 10^{-6} \).

We calculated \((\partial \iota / \partial \tilde{l})_{\text{min}} \) for various KBH spins \((10^{-18} \leq \tilde{S} \leq 0.99) \) over a wide range of orbit sizes \((10^2 \leq \tilde{l} \leq 10^{12}) \). It was noted that the results for very large orbits were described well by an equation of the form

\[(\partial \iota / \partial \tilde{l})_{\text{min}} = -\kappa_1 \tilde{S} \tilde{l}^\rho \]

and that \(\kappa_1 \) and \(\rho \) can be found by performing a least-squares fit on \(|(\partial \iota / \partial \tilde{l})_{\text{min}}| \). For orbits closer to the LSO, we find that

\[(\partial \iota / \partial \tilde{l})_{\text{min}} = -(\kappa_1 \tilde{S} + \kappa_3 \tilde{S}^3) \tilde{l}^\rho. \]

In Figure 7, \(|(\partial \iota / \partial \tilde{l})_{\text{min}}| \) data for the range \(10^9 \leq \tilde{l} \leq 10^{12} \) are shown on a log–log plot. By linear regression analysis, its asymptotic behaviour \((f_{5,5}) \) can be found (see Table 4). In successive steps each power of \(\tilde{l} \) in the series can be derived as the higher powers are subtracted from the original numerical dataset. A linear relationship between \((\partial \iota / \partial \tilde{l})_{\text{min}} \) and \(\tilde{S} \) is found for \(f_{2,5} \) and \(f_{3,5} \), but for \(f_{4,5} \) and \(f_{5,5} \), which cover ranges of \(\tilde{l} \) closer to the LSO, an \(\tilde{S}^3 \) term appears. The correlation coefficients \((r^2) \) of these regression analyses were better than 99.9999%.

One may find the specific mode that applies at the abutment by comparing the results in the first line of Table 4 with the weak-field radiation-reaction post-Newtonian results available in the literature. Consider the quotients of the formulae presented in equation (3.9) of [4] where \(t \approx \pi/2 \):

\[\frac{l_{\text{weak}}}{r_{\text{weak}}} = \frac{\partial t}{\partial l} = -\frac{61}{48} \tilde{S} \tilde{l}^{-2}. \]
Figure 7. The values of $|\partial \iota / \partial \tilde{l}|_{\text{min}}$ plotted for various values of \tilde{S} for circular orbits, where $\tilde{S} = 0.99$ and $10^0 \leq \tilde{l} \leq 10^{12}$.

Table 4. The coefficients and powers of the series that describe $(\partial \iota / \partial \tilde{l})_{\text{min}}$.

Range	ϱ	κ_1	κ_3	
$f_{2.5}$	$10^0 \leq \tilde{l} \leq 10^{12}$	$-2.500 \pm 3 \times 10^{-7}$	$4.500 \pm 5 \times 10^{-13}$	
$f_{3.5}$	$10^0 \leq \tilde{l} \leq 10^{12}$	$-3.500 \pm 7 \times 10^{-9}$	$7.500 \pm 1 \times 10^{-7}$	
$f_{4.5}$	$10^0 \leq \tilde{l} \leq 10^{12}$	$-4.500 \pm 2 \times 10^{-7}$	$31.5 \pm 4 \times 10^{-9}$	$8.75 \pm 1 \times 10^{-4}$
$f_{5.5}$	$10^0 \leq \tilde{l} \leq 10^{12}$	$-5.500 \pm 2 \times 10^{-4}$	$122.70 \pm 2 \times 10^{-8}$	$-35.98 \pm 9 \times 10^{-4}$

An identical first-order result can also be derived from equation (4.3) in [7]. Equation (93) is of the same form as equation (91). Because $-61/48 > -4.5$ in the weak-field radiation-reaction regime, one may consider $X_2^2 \Rightarrow X_2^2$ to be the pertinent mode. Therefore $(\partial \iota / \partial \tilde{l})_{\text{min}}$ describes the lower limit of $\partial \iota / \partial \tilde{l}$ for all $\tilde{l} > \tilde{l}_{\text{SO, abutment}}$. By numerical analysis, we found

$$
(\frac{\partial \iota}{\partial \tilde{l}})_{\text{min}} \approx -(122.7\tilde{S} - 36\tilde{S}^3)\tilde{l}^{-11/2} - (63/2\tilde{S} + 35/4\tilde{S}^3)\tilde{l}^{-9/2} - 15/2\tilde{S}^{7/2} - 9/2\tilde{S}^{-5/2}.
$$

(94)

In table 5, we compare the results of equation (94) with those of [4], and although they differ, it is confirmed that the listing of an inclined orbit in a KBH system proceeds by the slow method. As before (table 2), we adjust the results in [4] by dividing them by $\sin(\pi/3)$ so that they will correspond approximately to our near-polar orbits. Although we use equation (42) to calculate the value of ι in this work, and this differs from the formula used...
Table 5. An estimate of \(\langle M^2/m \rangle \partial \iota/\partial t\), based on equation (94), for circular orbits. The values in parenthesis (which were originally calculated at \(\iota \equiv \pi/3\)) are taken from [4] and have been adjusted by dividing by \(\sin(\iota)\).

\(\tilde{l} = 7\)	\(\tilde{l} = 100\)			
\(\tilde{S} = 0.05\)	\(-9.4541 \times 10^{-5}\)	\((-1.2557 \times 10^{-5})\)	\(-2.9301 \times 10^{-11}\)	\((-7.7291 \times 10^{-12})\)
\(\tilde{S} = 0.95\)	\(-1.8144 \times 10^{-3}\)	\((-1.3941 \times 10^{-4})\)	\(-5.5681 \times 10^{-10}\)	\((-1.3903 \times 10^{-10})\)

Figure 8. Contours of constant \(Q\) in the \(\tilde{l}\)-\(\iota\) plane for a circular \((e = 0)\) orbit about a KBH with spin \(\tilde{S} = 0.99\). Polar orbits are indicated by the short-dashed line on the \(\tilde{l}\)-axis. The long-dashed curve corresponds to the abutment. Four curves (solid lines) of constant \(Q = \{12.25, 13.0, 14.0, 15.0\}\) are shown over a range of orbital inclination angles \((90^\circ \leq \iota \leq 115^\circ)\). The segment of each curve that lies below the abutment is governed by \(X_2^2\); above the abutment, the segment is governed by \(X_2^1\). At the points of intersection between the abutment and the curves of constant \(Q\), \(\partial \iota/\partial \tilde{l} = \infty\), which suggests a singularity. The four arrows represent four tangential intersections on the abutment: (a) corresponds to the case where \(\iota\) is constant; (b) corresponds to the evolution of the orbit along the abutment; (c) represents the fast mode and (d) the slow mode. Note that the four cases cannot occur together; they are shown on a single plot for illustrative purposes.

In [5, 21], we recognize that they are sufficiently similar for us to make a general inference about the relative sizes of \(\partial \iota/\partial t\) in [4] and those calculated here.

Figure 8 shows the contours of the constant \(Q\) on an \(\tilde{l}\)-\(\iota\) plane for circular orbits \((e = 0)\) about a KBH of spin \(\tilde{S} = 0.99\). One of the important features of \(\partial \iota/\partial \tilde{l}\) on the abutment is the suggestion of a coordinate singularity \((\partial \iota/\partial \tilde{l} \to \infty)\); but this is for the specialized case in which the orbit evolves with a constant value of \(Q\). It has been confirmed that \(\partial Q/\partial \tilde{l} > 0\) on the abutment (see Section 5.2.1); hence, such a singularity for the \(\partial \iota/\partial \tilde{l}\)
of an evolving orbit is not physically manifested. The arrows labelled (a), (b), (c) and (d) show some important examples of how $\partial \iota / \partial \tilde{l}$ can vary at the abutment. One observes that $\partial \iota / \partial \tilde{l}$ is not uniquely fixed by $\partial Q / \partial \tilde{l}$. Nevertheless, figure 8 provides an important picture of the behaviour of ι as the orbit tangentially intersects the abutment, and it warrants further study.

6. Conclusions

In our study of inclined elliptical orbits about a KBH, we found that the minus form of $X^2_\pm (X = \tilde{L}_z - \tilde{S}\tilde{E})$ is shifted away from the polar orbit position to encompass near-polar retrograde orbits. The abutment (which is a set of orbits that lie at the junction between the minus and plus forms of X^2_\pm) is shifted the greatest near to the LSO of the KBH and asymptotically becomes more polar with increasing latus rectum (\tilde{l}).

We developed a set of analytical formulae that characterize the behaviour of the Carter constant (Q) at the LSO, abutment and polar orbit. Further, the curves that describe Q for an LSO and Q at the abutment (between the minus and plus forms of X^2_\pm) intersect at a single tangential point, for which we derived an analytical formula. From these equations one can define the domain of Q for an evolving orbit (Q_{path}). The two families of curves defined by Q_{path} are governed by either X^2_+ or X^2_-, and the curves within each family never cross. Therefore, at the abutment, Q_{path} can either change from $X^2_- \Rightarrow X^2_+$ or from $X^2_+ \Rightarrow X^2_-$. This result aids in the investigation of the listing of an orbit at the abutment.

We have used the abutment as an analytical and numerical laboratory for the study of the evolution of Q for inclined circular orbits. The first derivative of Q_X with respect to \tilde{l} ($\partial Q_X / \partial \tilde{l}$) allows us to test the consistency of 2PN Q fluxes with estimated values of $\partial \tilde{l} / \partial t$. Further, by converting Q to the angle of orbital inclination (ι), it was possible to calculate the minimum rate of change of ι with respect to \tilde{l}, $\left(\partial \iota / \partial \tilde{l}\right)_{\text{min}}$, independently of a radiation-back-reaction model. Comparison with published weak-field post-Newtonian results shows that the $X^2_+ \Rightarrow X^2_-$ mode applies, and this mode must apply to the entire range of orbit size, $\tilde{l} \geq \tilde{l}_{\text{LSO, abutment}}$.

Although Q_X and $\partial Q_X / \partial \tilde{l}$ are important, the higher derivatives also display critical behaviour. The second derivatives of Q_{path} warrant more study as it will improve our understanding to the effect of the radiation back-reaction on the listing behaviour of the orbit. The analysis of elliptical orbits at the abutment will introduce new elements to the listing behaviour, which arise from the first derivative of Q_X and the second and higher derivatives of Q_{path}, both with respect to e. Such a result might be valuable in our understanding of current and future radiation-back-reaction models.

Acknowledgments

PGK thanks Western Science (UWO) for their financial support. MH’s research is funded through the NSERC Discovery Grant, Canada Research Chair, Canada Foundation for Innovation, Ontario Innovation Trust and Western’s Academic Development Fund programs. SRV would like to acknowledge the Faculty of Science for a UWO Internal Science Research Grant award during the progress of this work. The authors thankfully acknowledge Drs N Kiriushcheva and S V Kuzmin for their helpful discussions of the manuscript.
Appendix A. Terms

Table A1. Orbital parameters.

Parameter	Symbol	Normalized symbol		
Test-particle mass	m	$-$		
Mass of MBH (typically $10^6 M_\odot$)	M	$-$		
Orbital radius	r	$R = rM^{-1}$		
Semi-major axis	a	$A = aM^{-1}$		
Latus rectum	l	$\tilde{l} = lM^{-1}$		
Proper time	τ	$\tilde{\tau} = \tau M^{-1}$		
Orbital energy	E	$\tilde{E} = Em^{-1}$		
Effective potential energy	V	$\tilde{V} = Vm^{-1}$		
Spin angular momentum (KBH)	J	$\tilde{S} =	J	M^{-2}$
Orbital angular momentum (z component)	L_z	$\tilde{L}_z = L_z(mM)^{-1}$		
Orbital angular momentum (θ component)	L_θ	$\tilde{L}_\theta = L_\theta(mM)^{-1}$		
Proper time	Σ	$\tilde{\Sigma} = \Sigma M^{-2}$		
Δ	$\tilde{\Delta} = \Delta M^{-2}$			
Δ	$\tilde{\Delta} = \Delta M^{-2}$			
X^2	$X^2_\perp = L_z - \tilde{S}\tilde{E}$			

* We set the speed of light and gravitational constant to unity (i.e. $c = 1$ and $G = 1$); therefore, mass energy is in units of time (seconds).

Appendix B. Ancillary equations

B.1. The Kerr metric and its inverse

The inverse Kerr metric expressed in the Boyer–Lindquist coordinate system is

$$g_{\alpha\beta|\text{Kerr}} = \begin{bmatrix}
\frac{-\Delta - M^2 \tilde{S}^2 \sin^2(\theta)}{\rho^2} & 0 & 0 & -\frac{2M \tilde{S} R \sin^2(\theta)}{\rho^2} \\
0 & \rho^2 & 0 & 0 \\
0 & 0 & \rho^2 & 0 \\
-\frac{2M M^2 \tilde{S} R \sin^2(\theta)}{\rho^2} & 0 & 0 & \frac{M^4 (R^2 + \tilde{S}^2)^2 - M^2 \tilde{S}^2 \Delta \sin^2(\theta)}{\rho^2} \sin^2(\theta)
\end{bmatrix}. \tag{B.1}$$

To simplify the presentation of the metric, we define the parameter

$$\Sigma = \rho^2 = M^2 (R^2 + \tilde{S}^2 \cos^2(\theta)). \tag{B.2}$$

29
The inverse Kerr metric is
\[
\mathbf{g}^{\mu\nu}_{\text{Kerr}} = (\Sigma)^{-1}
\begin{bmatrix}
-\Sigma (R^2 + S^2) + 2 S^2 R - 2 \cos^2(\theta) S^2 R \\
(R^2 - 2 R + S^2) & 0 & 0 & -2 S R \\
0 & R^2 - 2 R + S^2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-2 S R & 0 & 0 & (R^2 - 2 R + S^2) \cos^2(\theta) \\
M(R^2 - 2 R + S^2) & 0 & 0 & (R^2 - 2 R + S^2) \sin^2(\theta)
\end{bmatrix}
\]
(B.3)

The determinant of the Kerr metric was calculated to be \(\text{Det} = -\Sigma^2 \sin^2(\theta) \).

B.2. Effective potentials

The effective potentials \([1, 30, 34, 43]\) that appear in equations (18)–(21) are

\[
\begin{align*}
\tilde{V}_R(R) &= T^2 - \tilde{\Delta} [R^2 + (\tilde{L}_z - \tilde{S} \tilde{E})^2 + Q] \\
\tilde{V}_\theta(\theta) &= Q - \cos^2(\theta) \left(\tilde{S}^2 (1 - \tilde{E}^2) + \frac{\tilde{L}_z^2}{\sin^2(\theta)} \right) \\
\tilde{V}_\phi &= -\left(\tilde{S} \tilde{E} - \frac{\tilde{L}_z}{\sin^2(\theta)} \right) + \frac{\tilde{S} \tilde{T}}{\tilde{\Delta}} \\
\tilde{V}_t &= -\tilde{S} (\tilde{S} \tilde{E} \sin^2(\theta) - \tilde{L}_z) + \frac{(R^2 + \tilde{S}^2) T}{\tilde{\Delta}}
\end{align*}
\]
(B.4–B.7)

with

\[T = \tilde{E} (R^2 + \tilde{S}^2) - \tilde{L}_z \tilde{S}. \]

The Carter constant \((Q)\) is normalized:

\[
Q = \frac{1}{(mM)^2} \left[\frac{\cos^2(\theta) \tilde{L}_z^2}{\sin^2(\theta)} + \tilde{L}_\theta^2 + \cos^2(\theta) \tilde{S}^2 (m^2 - E^2) \right]
\]

\[
= \frac{\cos^2(\theta) \tilde{L}_z^2}{\sin^2(\theta)} + \tilde{L}_\theta^2 + \cos^2(\theta) \tilde{S}^2 (1 - \tilde{E}^2).
\]
(B.8)

B.3. Ninth-order polynomial in \(\tilde{l} \) for calculating \(\tilde{l}_{LSO} \)

\[
\begin{align*}
p(\tilde{l}) &= \tilde{l}^9 - 4 (3 + e) \tilde{l}^8 - (-36 - 2 \tilde{S}^2 e^2 + 6 \tilde{S}^2 - 24 e + 4 \tilde{S} e - 4 e^3) \tilde{l}^7 \\
&+ 4 \tilde{S}^2 (e + 1) (-e^2 + 2 Q - 7) \tilde{l}^6 - \tilde{S}^2 (e + 1) (-\tilde{S}^2 e^3 + 5 \tilde{S}^2 e^2 - 3 \tilde{S}^2 e - 9 \tilde{S}^2 + 16 Q e^2 \tilde{l}^5 \\
&+ 8 Q e + 24 Q) \tilde{l}^4 + 8 Q \tilde{S}^2 (e + 1)^2 (4 e^2 + \tilde{S}^2 e - 2 e - 3 \tilde{S}^2 + 6) \tilde{l}^3 \\
&+ 8 Q \tilde{S}^4 (e + 1)^3 (-2 e^3 - e^2 + 2 Q - 1) \tilde{l}^2 - 16 \tilde{S}^4 Q (e^2 - 2 e + 3) (e + 1) \tilde{l}^1 \\
&+ 16 \tilde{S}^4 \tilde{Q}^2 (2 e^2 - 4 e + 3) (e + 1) \tilde{l} - 16 \tilde{S}^6 \tilde{Q}^2 (e - 1)^2 (e + 1)^5 \\
&= 0
\end{align*}
\]
(B.9)
B.4. The first and second derivatives of Q_X

Given

\[\xi_1 = i(i - e^2 - 3), \]
\[\xi_2 = 4iS^2(1 - e^2) \]
\[\xi_3 = 2i - e^2 - 3. \]

From equation (63) the equation for Q_X is

\[Q_X = \frac{2 \tilde{I}^3}{\xi_2} (\xi_1 - \sqrt{\xi_1^2 - \xi_2}). \] (B.10)

We obtain the following first and second derivatives of Q_X with respect to I and with respect to e:

\[
\frac{\partial Q_X}{\partial I} = \frac{2 \tilde{I}^3}{\xi_2} \left(I \xi_3 - \frac{1}{2} \left(\frac{2 \tilde{I} \xi_3 - \xi_2}{\sqrt{\xi_1^2 - \xi_2}} \right) + 2(\xi_1 - \sqrt{\xi_1^2 - \xi_2}) \right),
\] (B.11)

\[
\frac{\partial Q_X}{\partial e} = \frac{4e \tilde{I}^3}{\xi_2} \left[\left(\frac{1}{\sqrt{\xi_1^2 - \xi_2}} \right) \right. \left(-I(1 - e^2) + \frac{(I(1 - e^2) \xi_3 - \xi_2)}{\sqrt{\xi_1^2 - \xi_2}} \right) + 2(\xi_1 - \sqrt{\xi_1^2 - \xi_2}) \right],
\] (B.12)

\[
\frac{\partial^2 Q_X}{\partial I^2} = \frac{2 \tilde{I}^2}{\xi_2} \left[I^2 + \frac{1}{4} \frac{(2 \tilde{I} \xi_3 - \xi_2)^2}{(\xi_1^2 - \xi_2)^{3/2}} - \tilde{I}^2 \frac{(6 \xi_3 + (3 + e^2)^2)}{\sqrt{\xi_1^2 - \xi_2}} \right.
\]
\[
\left. + 4 \left(\frac{I \xi_3 - \frac{1}{2} \left(\frac{2 \tilde{I} \xi_3 - \xi_2}{\sqrt{\xi_1^2 - \xi_2}} \right) + 2(\xi_1 - \sqrt{\xi_1^2 - \xi_2}) \right) \right],
\] (B.13)

\[
\frac{\partial^2 Q_X}{\partial e^2} = \frac{4e \tilde{I}^3}{\xi_2} \left[\left(1 - e^2 \right)^2 + 2e^2 \left(\frac{(I(1 - e^2) \xi_3 - \xi_2)}{(\xi_1^2 - \xi_2)^{3/2}} \right) \right.
\]
\[
\left. + (1 - e^2)^2 \left(\frac{(I^2 - 3(1 + e^2) + 4iS^2(3e^2 - 1))}{\sqrt{\xi_1^2 - \xi_2}} \right) \right.
\]
\[
\left. + 8e^2 \left(-I(1 - e^2) + \frac{(I(1 - e^2) \xi_3 - \xi_2)}{\sqrt{\xi_1^2 - \xi_2}} \right) \right) + 2(5e^2 + 1)(\xi_1 - \sqrt{\xi_1^2 - \xi_2}) \right].
\] (B.14)

B.5. The 2PN flux for Q

According to equation (A.3) in [22] (after equation (56) in [5])

\[
\left(\frac{\partial Q}{\partial \tau} \right)_{2PN} = -\sin(i) \frac{64}{5} \frac{m}{M^2} (1 - e^2)^{3/2} \tilde{T}^{-7/2} \sqrt{Q}
\]
\[
\times \left[g_9(e) - \frac{1}{\tilde{T}} g_{11}(e) + \left(\pi g_{12}(e) - \cos(i) \tilde{S} g_{10}^b(e) \right) I^{-3/2}
\right.
\]
\[
\left. - \left(g_{13}(e) - \tilde{S}^2 \left(g_{14}(e) - \frac{45}{8} \sin^2(i) \right) \right) I^{-2} \right].
\] (B.15)
where

\[
\begin{align*}
g_9 &= 1 + \frac{1}{8} e^2, \\
g_{10}^b &= \frac{61}{8} + \frac{91}{32} e^2 + \frac{461}{64} e^4, \\
g_{11} &= \frac{127}{32} + \frac{425}{64} e^2, \\
g_{12} &= 4 + \frac{97}{8} e^2, \\
g_{13} &= \frac{44711}{9072} + \frac{302893}{6048} e^2 \quad \text{and} \quad \\
g_{14} &= \frac{33}{16} + \frac{95}{16} e^2.
\end{align*}
\]

Note that the Carter constant has been normalized by dividing by \((mM)^2\).

B.6. Tables associated with figures 1, 2 and 3

Table B1. Numerical values of \(R_{LSO}\) estimated from figure 1 for a circular LSO around an SBH. There is no circular LSO for \(Q > 12\).

\(Q\)		\(R_{LSO}\) (prograde)
0.000 000	a	6.000 A
5.000 000	b	6.000 B
10.000 000	c	6.000 C
12.000 000	d,e	6.000 D, E
13.000 000	f	F
16.000 000	g	G

Table B2. Numerical values of \(R_{LSO}\) estimated from figure 2 for a circular LSO around a KBH of spin \(\tilde{S} = 0.50\). There is no circular LSO for \(Q > 12.0545\).

\(Q\)		\(R_{LSO}\) (governed by \(X_2\))
0.000 000	a	4.233 A
5.000 000	b	4.709 B
10.000 000	c	5.366 C
11.828 365	d	5.842 D
12.054 503	e	6.067 E
13.000 000	f	F
16.000 000	g	G

Table B3. Numerical values of \(R_{LSO}\) estimated from figure 3 for a circular orbit around a KBH of spin \(\tilde{S} = 0.99\). There is no circular LSO for \(Q > 12.203 171\).

\(Q\)		\(R_{LSO}\) (governed by \(X_2\))
0.000 000	a	1.455 A
5.000 000	b	3.074 B
10.000 000	c	4.730 C
11.252 920	d	5.280 D
12.203 171	e	6.245 E
13.000 000	f	F
16.000 000	g	G
Appendix C. An explicit treatment of $d\theta/d\tau$ in the effective potential

For the sake of completeness, we demonstrate a method for calculating a polynomial that describes $d\theta/d\tau$.

Recall that

$$\Delta = M^2(R^2 - 2R + \tilde{S}^2)$$

and

$$\Sigma = \rho^2 = M^2(R^2 + \tilde{S}^2\cos^2(\theta)).$$

Therefore one may consider a normalized form of these equations:

$$\tilde{\Delta} = \frac{\Delta}{M^2} = (R^2 - 2R + \tilde{S}^2)$$

and

$$\tilde{\Sigma} = \frac{\rho^2}{M^2} = (R^2 + \tilde{S}^2\cos^2(\theta)).$$

Note that

$$\frac{\rho^2}{\Delta} = \frac{\Sigma}{\Delta} = \frac{\tilde{\Sigma}}{\tilde{\Delta}}.$$ (C.3)

In working with the quantity, $dr/d\tau$, in [29] it did not matter about the division of the radial distance by the black hole mass, M, since the proper time, τ, would also have been normalized in the same way, i.e.

$$\frac{dr}{d\tau} = \frac{d(M(\tau))}{d(M(\frac{\tau}{M}))} = \frac{dR}{d\tilde{\tau}}.$$ (C.4)

Indeed, one ought to consider the normalization of the proper time with respect to black hole mass. Although one could escape difficulties when only considering $dr/d\tau$, it is mandatory that the normalized proper time be explicitly considered when evaluating the quantity, $d\theta/d\tau$.

The polar angle, θ, is already dimensionless, and as such cannot be normalized. Therefore

$$\frac{d\theta}{d\tau} = \frac{d\theta}{d(M(\frac{\tau}{M}))} = \frac{1}{M} \frac{d\theta}{d\tilde{\tau}}.$$ (C.5)

We may rewrite the four-momentum in terms of $d\theta/d\tilde{\tau}$ in addition to $dR/d\tilde{\tau}$, where $X = \tilde{L}_z - \tilde{S}\tilde{E}$:

$$P_\gamma = \left[-m\tilde{E}, m\frac{\rho^2}{\Delta} \left(\frac{dR}{d\tilde{\tau}} \right), m\frac{\rho^2}{M} \left(\frac{d\theta}{d\tilde{\tau}} \right), mM \left(X + \tilde{S}\tilde{E} \right) \right].$$ (C.6)
By evaluating $\vec{P} \cdot \vec{P}$ and substituting the known relation for $dR/d\tau$ one obtains
\[\Sigma^2 \sin^2(\theta) \left(\frac{dR}{d\tau} \right)^2 + \Delta \left(\frac{d\theta}{d\tau} \right)^2 = -\sin^2(\theta) \left(1 - \tilde{E}^2 \right) R^4 + 2 \sin^2(\theta) R^3 \]
\[- (X^2 + \tilde{S}^2 + 2X \tilde{E} \tilde{S} - \cos^2(\theta) \tilde{S}^2 (1 - \tilde{E}^2)) R^2 \]
\[+ 2 \left(X^2 + \tilde{S}^2 \cos^2(\theta) + 2X \cos^2(\theta) \tilde{E} \tilde{S} - \cos^4(\theta) \tilde{S}^2 (1 - \tilde{E}^2) \right) R \]
\[- \left((X^2 + \tilde{S}^2 + 2X \tilde{E} \tilde{S}) \cos^2(\theta) - \cos^4(\theta) (1 - \tilde{E}^2) \tilde{S}^2 \right). \]
(C.7)

We know from equation (8) that
\[\Sigma^2 \left(\frac{dR}{d\tau} \right)^2 = -(1 - \tilde{E}^2) R^4 + 2 R^3 - (X^2 + \tilde{S}^2 + 2 \tilde{E} \tilde{S} (X + Q) R^2 + 2(X^2 + Q) R - Q \tilde{S}^2 \]
(C.8)

and we can substitute this expression into equation (C.7) to simplify it; thus,
\[\Sigma^2 \left(\frac{dR}{d\tau} \right)^2 = \tilde{\Delta} \left(\frac{d\theta}{d\tau} \right)^2 = 0 \times R^4 + 0 \times R^3 \]
\[- \left((X^2 + \tilde{S}^2 + 2X \tilde{E} \tilde{S}) \cos^2(\theta) - \cos^4(\theta) \tilde{S}^2 (1 - \tilde{E}^2) - \sin^2(\theta) Q \right) R^2 \]
\[+ 2 \left((X^2 + \tilde{S}^2 + 2X \tilde{E} \tilde{S}) \cos^2(\theta) - \cos^4(\theta) \tilde{S}^2 (1 - \tilde{E}^2) - \sin^2(\theta) Q \right) R \]
\[- \left((X^2 + \tilde{S}^2 + 2X \tilde{E} \tilde{S}) \cos^2(\theta) - \cos^4(\theta) \tilde{S}^2 (1 - \tilde{E}^2) - \sin^2(\theta) Q \right) \tilde{S}^2. \]
(C.9)

which factors to
\[\Sigma^2 \sin^2(\theta) \left(\tilde{\Delta} \left(\frac{d\theta}{d\tau} \right)^2 \right) = \tilde{\Delta} \left(\sin^2(\theta) Q - (X^2 + \tilde{S}^2 + 2 \tilde{E} \tilde{S}) \cos^2(\theta) + \cos^4(\theta) \tilde{S}^2 (1 - \tilde{E}^2) \right) \]
(C.10)

and simplifies to
\[\Sigma^2 \left(\frac{d\theta}{d\tau} \right)^2 = \frac{1}{\sin^2(\theta)} \left(\sin^2(\theta) Q - (X^2 + \tilde{S}^2 + 2 \tilde{E} \tilde{S}) \cos^2(\theta) + \cos^4(\theta) \tilde{S}^2 (1 - \tilde{E}^2) \right) \]
\[= Q - \tilde{L}_z^2 \left(\frac{\cos^2(\theta)}{\sin^2(\theta)} \right) - \tilde{S}^2 (1 - \tilde{E}^2) \cos^2(\theta). \]
(C.11)

One can equate
\[mM \tilde{L}_\psi = m \rho^2 \left(\frac{d\theta}{d\tau} \right) \]
(C.12)

and thus obtain
\[\tilde{L}_\psi = \Sigma \frac{d\theta}{d\tau} \]
(C.13)

which, using equation (C.9), confirms the relationship for the Carter constant. Further, we note that $\tilde{L}_z^2 = Q$ at the orbital nodes and $\tilde{L}_z = 0$ at the zenith or nadir of the orbit. It is in these respects that the Carter constant possesses a physical meaning for a KBH.

References

[1] Carter B 1968 Global structure of the Kerr family of gravitational fields Phys. Rev. 174 1559–71
[2] Carter B 1973 Black hole equilibrium states Black Holes, Les Astres Occlus ed C Dewitt and B S Dewitt (New York, NY: Gordon and Breach) pp 57–214
P G Komorowski et al

Class. Quantum Grav. 27 (2010) 225023

[3] Goldstein H, Poole C and Safko J 2005 Classical Mechanics (Singapore: Pearson Education) third edn.
[4] Hughes S A 2000 Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission Phys. Rev. D 61 084004
[5] Gair J R and Glampedakis K 2006 Improved approximate inspirals of test bodies into Kerr black holes Phys. Rev. D 73 064037
[6]Mohanty S D and Nayak R K 2006 Tomographic approach to resolving the distribution of LISA galactic binaries Phys. Rev. D 73 083006
[7] Ganz K, Hikida W, Nakano H, Sago N and Tanaka T 2007 Adiabatic evolution of three ‘constants’ of motion for greatly inclined orbits in Kerr spacetime Prog. Theor. Phys. 117 1041–66
[8] Peters P C and Mathews J 1963 Gravitational radiation from point masses in a Keplerian orbit Phys. Rev. 131 435–40
[9] Peters P C 1964 Gravitational radiation and the motion of two point masses Phys. Rev. 136 B1224–32
[10] Thorne K S 1987 300 Years of Gravitation (Cambridge: Cambridge University Press)
[11] Barack L and Cutler C 2004 Lisa capture sources: approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy Phys. Rev. D 69 082005
[12] Press W H and Teukolsky S A 1973 On the evolution of the secularly unstable, viscous Maclaurian spheroids Astrophys. J. 181 513–8
[13] Teukolsky S A 1973 Perturbations of a rotating black hole: I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations Astrophys. J. 185 635–48
[14] Press W H and Teukolsky S A 1973 Perturbations of a rotating black hole: II. Dynamical stability of the Kerr metric Astrophys. J. 185 649–74
[15] Ori Amos 1997 Radiative evolution of the Carter constant for generic orbits around a Kerr black hole Phys. Rev. D 55 3444–56
[16] Ori A 1995 Radiative evolution of orbits around a Kerr black hole Phys. Lett. A 202 347–51
[17] Ryan F D 1996 Effect of gravitational radiation reaction on nonequatorial orbits around a Kerr black hole Phys. Rev. D 53 3064–69
[18] Kennelrick D and Ori A 1996 Radiation-reaction-induced evolution of circular orbits of particles around Kerr black holes Phys. Rev. D 53 4319–26
[19] Hughes S A 2001 Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission: II. Inspiral trajectories and gravitational waveforms Phys. Rev. D 64 064004
[20] Glampedakis K and Kennefick D 2002 Zoom and whirl: eccentric equatorial orbits around spinning black holes and their evolution under gravitational radiation reaction Phys. Rev. D 66 044002
[21] Glampedakis K, Hughes S A and Kennefick D 2002 Approximating the inspiral of test bodies into Kerr black holes Phys. Rev. D 66 064005
[22] Barausse E, Hughes S A and Rezzolla L 2007 Circular and noncircular nearly horizon-skimming orbits in Kerr spacetimes Phys. Rev. D 76 044007
[23] Ryan F D 1995 Effect of gravitational radiation reaction on circular orbits around a spinning black hole Phys. Rev. D 52 3159
[24] Bardeen J M 1973 Timelike and null geodesics in the Kerr metric Black Holes, Les Astres Occlus ed C Dewitt and B S Dewitt (New York, NY: Gordon and Breach) pp 215–39
[25] Shapiro S L and Teukolsky S A 1983 Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (New York: Wiley Interscience) 663 pp
[26] Chandrasekhar S 1983 The Mathematical Theory of Black Holes (International Series of Monographs on Physics vol 69) (Oxford: Oxford University Press) 665 p
[27] Schutz B F 2005 A First Course in General Relativity 17th edn (Cambridge: Cambridge University Press)
[28] Ori A and Thorne K S 2000 Transition from inspiral to plunge for a compact body in a circular equatorial orbit around a massive, spinning black hole Phys. Rev. D 62 124022
[29] Komorowski P, Valluri S R and Hoyle M 2009 A study of elliptical last stable orbits about a massive Kerr black hole Class. Quantum Grav. 26 085001
[30] Schmidt W 2002 Celestial mechanics in Kerr spacetime Class. Quantum Grav. 19 2743–64
[31] Sundararajan P A 2008 Transition from adiabatic inspiral to geodesic plunge for a compact object around a massive Kerr black hole: generic orbits Phys. Rev. D 77 124050
[32] Drasco S and Hughes S A 2006 Gravitational wave snapshots of generic extreme mass ratio inspirals Phys. Rev. D 73 044027
[33] Cutler C, Kennefick D and Poisson E 1994 Gravitational radiation reaction for bound motion around a Schwarzschild black hole Phys. Rev. D 50 3816–3835
[34] Bardeen James M, Press William H and Teukolsky Saul A 1972 Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation Astrophys. J. 178 347
[35] Stojanidasis E and Tsoubelis D 1987 Polar orbits in the Kerr space-time Gen. Rel. Grav. 19 1235–49
[36] Alexander T and Livio M 2001 Tidal scattering of stars on supermassive black holes in galactic centers *Astrophys. J.* 560 L143–6

[37] Bogdanović T, Eracleous M, Mahadevan S, Sigurdsson S and Laguna P 2004 Tidal disruption of a star by a black hole: observational signature *Astrophys. J.* 610 707–21

[38] Komorowski P G, Valluri S R and Houde M The Carter constant for inclined orbits about a massive Kerr black hole: II. Near-circular, near-polar orbits (in preparation)

[39] Golub G H and van Loan C F 1996 *Matrix Computations* (Johns Hopkins Studies in the Mathematical Sciences) (Baltimore: Johns Hopkins University Press)

[40] Edelman A. and Murakami H 1995 Polynomial roots from companion matrix eigenvalues *Math. Comput.* 64 763–76

[41] Sorensen D C and Yang C 1998 A truncated RQ iteration for large scale eigenvalue calculations *SIAM J. Matrix Anal. Appl.* 19 1045–73

[42] Yang C 2005 Solving large-scale eigenvalue problems in SciDAC applications *J. Phys.: Conf. Ser.* 16 425–34

[43] Babak S, Fang H, Gair J R, Glampedakis K and Hughes S A 2007 ‘Kludge’ gravitational waveforms for a test-body orbiting a Kerr black hole *Phys. Rev. D* 75 024005