Apoptotic Index and Mib-1 Antibody Expression in Premalignant and Malignant Lesions of Uterine Cervix

Kanupriya Gupta1*, Kiran Alam2, Veena Maheshwari1, Roobina Khan1 and Rajyashri Sharma2

1Department of Pathology, JN Medical College, AMU Aligarh, Haryana, India
2Department of Obstetrics & Gynaecology, J.N. Medical College, AMU Aligarh, Haryana, India

Abstract

Introduction: Cervical cancers are the second most frequent type of female cancer, responsible for about 5% of cancer deaths in females worldwide. Recently, parameters of cell proliferation and cell death have emerged as important diagnostic and prognostic tools.

Aims: The aim was to evaluate the role of Apoptotic Index and Ki-67 as proliferation marker in premalignant and malignant lesions of uterine cervix. Materials and Methods: The study included 179 patients of cervical dysplasias and malignancy. Evaluation of Apoptotic Index (using light microscopy) was performed on hematoxylin and eosin-stained sections. Ki-67 (MIB-1 antibody) expression was both graded as well as Labelling Index was calculated. Statistical evaluation was carried out using the Student t-test (p<0.05).

Results: There was increase in mean Apoptotic Index with increasing grade of dysplasia and difference in mean values between CIN-I and CIN-II; CIN-I and CIN-III were found to be statistically significant. Also Apoptotic Index increased from well differentiated Squamous Cell Carcinoma (SCC) to poorly differentiated SCC. There was increase in mean Labelling Index with increasing grade of dysplasia and when the p-value amongst these groups was statistically significant. Labelling Index was maximum in Poorly Differentiated SCC and minimum in Moderately Differentiated SCC and p value amongst these groups was found to be statistically significant.

Conclusion: Both Apoptotic Index and Ki-67 expression could be used as biomarkers in the evaluation of the proliferative activity and progressive potential of dysplastic and neoplastic changes.

Keywords: Cervical cancer; Lymph node; Metastasis; PEComa; Treatment; Systematic review; Survival

Introduction

Cervical cancers are the second most frequent type of female cancer, responsible for about 5% of cancer deaths in females worldwide [1]. Having said this, however, no form of cancer better documents the remarkable effects of prevention, early diagnosis and curative therapy on the mortality rate than does cancer cervix. Papanicolaou (Pap) smear screening programmes and histologic interpretation of biopsy specimen by the pathologist have significantly reduced the mortality of cervical cancers. However, the Pap test is not very accurate due to subjective test criteria. This limits the present screening programmes and emphasizes the need for the identification of specific biomarkers for dysplastic epithelial cells to aid in primary screening and lesion diagnosis [2].

Apoptosis is genetically controlled death which enables the elimination of the cells that have been damaged [3]. As apoptotic tumour cells can be identified and counted by light microscopy, there has been interest in the application of the enumeration of apoptosis in malignant growths as a putative prognostic marker.

Ki-67 is a proliferative marker. In 1990, it was demonstrated that the MIB-1 antibody detects Ki-67 antigen in the G1, S, G2 and M phase, but it is absent in the G0 phase [4]. Therefore, this antibody may be a useful marker of proliferation in dysplastic lesions, particularly in cervical smears, and, in addition, can be of prognostic value [5].

Materials and Methods

The present study was carried out on 179 patients of cervical dysplasias and malignancy for a period of 2 years. A detailed clinical history and examination was carried out along with routine investigations. The post surgical specimens were then processed. All clinical history and examination was carried out along with routine cervical smears, and, in addition, can be of prognostic value [5].

Calculation of MIB-1 Labelling Index [8]

MIB-1 labelling index (LI) was calculated by the number of
positive cells per 100 cervical epithelial cells in different areas under X400 magnification and the mean was calculated. Positive nuclei were expressed as the percentage of total nuclei counted. MIB-1 labelling index was calculated as follows:

\[
\text{Labeling Index} = \frac{\text{No. of cells showing positive staining}}{\text{Total No. of cells}} \times 100
\]

Statistical evaluation was carried out using the Student t test, with P<0.05 being significant.

A total of 179 cases of cervical lesions were divided into 4 broad categories: Cervical dysplasia - 78 cases (43.6%) [CIN-I-45, CIN-II-19, CIN-III-14], Squamous cell carcinomas (SCC)-94 cases (52.5%) [Well Differentiated (WD SCC)-20, moderately differentiated (MD SCC)-66, Poorly Differentiated (PD SCC)-8], Adenosquamous carcinoma-3 cases (1.7%).

The apoptotic cells showed certain well defined features which included cell shrinkage, condensation and deep eosinophilia of the cytoplasm and pyknotic, round to crescentric or irregular nucleus (Figure 1). Karyorrhexis was also observed frequently. Apoptotic bodies, which appeared as tiny, round and pyknotic nuclear fragments, were seen scattered among tumour cells and sometimes forming a cluster.

Results

The mean value of Apoptotic Index increased progressively from dysplasia (0.178% ± 0.143) to SCC (0.652% ± 0.302) and the difference was found to be statistically significant. There was increase in mean AI with increasing grade of dysplasia i.e. from CIN-I (0.106% ± 0.084); to CIN-II (0.24% ± 0.106); to CIN-III (0.34% ± 0.184) , however the AI values between CIN-II and CIN-III were not found to be statistically significant but difference in mean values between CIN-I and CIN-II ; CIN-I and CIN-III were found to be statistically significant (p<0.05). An increase in apoptotic index was observed from well differentiated SCC to poorly differentiated SCC. The mean AI in WD SCC was (0.577% ± 0.274) ; MD SCC was (0.664% ± 0.31) and in PD SCC was (0.7% ± 0.3), but no statistical significance was observed on correlation. The mean AI in adenocarcinoma was (0.567% ± 0.153) and in adenosquamous carcinoma was (0.433% ± 0.208) (Table 1).

50 cases out of total cases of cervical dysplasias and carcinomas were subjected to immunohistochemical staining for Ki-67.

Out of 20 cases of dysplasias, 16 (80%) showed low proliferation, 3(15%) showed moderate proliferation and 1 (5%) high proliferation. Out of 26 cases of SCC 19 (73.1%) showed moderate and 7 (26.9%) showed high proliferation (Figure 2 and Table 2).

The mean value of LI (Labelling Index) was found to increase as the nature of the lesion changed from dysplasia (16.94 ± 14.871) to SCC (50.754 ± 12.625) and the difference was found to be extremely statistically significant (p value <0.0001). There was increase in mean LI with increasing grade of dysplasia, from CIN-I (5.54 ± 2.185); to CIN-II (18.9 ± 2.491); to CIN-III (42.5 ± 7.937), and when the p value amongst these groups was evaluated, it was found to be statistically significant. The mean LI in WD SCC was 55.333 ± 7.789; MD SCC was 43.976 ± 3.152 and in PD SCC was 80 ± 5. Correlation between WD SCC and MD SCC; MD SCC and PD SCC; PD SCC and WD SCC (p value <0.05) was found to be statistically significant. The mean LI in Adenocarcinoma was 55 ± 21.213 and mean LI in Adenosquamous Carcinoma was 52 ± 8.485 (Table 3).

Discussion

Our study is based on the evaluation of Apoptotic Index in 179
indicating that the Ki-67 antigen could be used as a marker for cells in all active phases of the cell division cycle, but is absent in non-proliferating cells [16]. The results are in concordance with the study done by Nam et al., [12], Harmsel et al. [18], Pablo Conesa et al. [19] and Simionescu et al. [20], who also showed an increase in mean basal Labelling as we move from CIN-I to CINI-II.

The mean LI was found to increase as the nature of the lesion changed from dysplasia to SCC. Similar results were observed by Mehrotra et al., Nam et al., Shoji et al. and Natália et al. [8,12,14,17]. Also the mean Labelling Index (LI) in cervical dysplasias increased with increasing grade of dysplasia. Similar results were obtained by Nam et al. [12], Harmsel et al. [18], Pablo Conesa et al. [19] and Simionescu et al. [20], who also showed an increase in mean basal Labelling as we move from CIN-I to CINI-II.

The mean LI in WD SCC was 55.333 ± 7.789; MD SCC was 43.976 ± 3.152 and in PD SCC was 80 ± 5. The study conducted by Pahuja et al. [21] showed an increase in LI from WD SCC to PD SCC. The Study showed maximum mean value in PD SCC similar to ours. The study conducted by Nam et al., also showed an increase in LI from WD SCC to PD SCC [12].

The increasing prevalence Apoptotic Index and Ki-67 expression with increasing grade of dysplasia and increase in progression from dysplasia to carcinoma shows that both of these could be used as biomarkers in the evaluation of the proliferative activity and progressive potential of dysplastic and neoplastic changes.

References

1. HPV Information Centre (2010) ICO Information Centre on HPV and Cervical Cancer.
2. Srivastava S (2010) P16INK4A and MIB-1: an immunohistochemical expression in preneoplasia and neoplasia of the cervix. Indian J Pathol Microbiol 53: 516-524.
3. Diamini Z, Mbita Z, Zungu M (2004) Genealogy, expression, and molecular mechanisms in apoptosis. Pharmacol Ther 101: 1-15.
4. Gerdes J (1990) Ki-67 and other proliferation markers useful for immunohistochemical diagnostic and prognostic evaluations in human malignancies. Semin Cancer Biol 1: 199-206.
5. Goel MM, Mehrotra A, Singh U, Gupta HP, Misra JS (2005) MIB-1 and PCNA immunostaining as a diagnostic adjunct to cervical Pap smear. Diagn Cytopathol 33: 15-19.
6. Vijaya V Mysorekar, Saritha David, Saraswati G Rao (2008) Proliferative and Apoptotic Indices in Squamous Epithelial Lesions of the Cervix, Bahrain Medical Bulletin 30: 327-332.
7. Ancuta E, Ancuta C, Cozma LG, Iordache C, Anghelache-Lupascu I, et al. (2009) Tumor biomarkers in cervical cancer: focus on Ki-67 proliferation factor and E-cadherin expression. Rom J Morphol Embryol 50: 413-418.
8. Mehrotra Anju, Goel Madhu, Mulani P (2008) Assessment of monoclonal antibody MIB-1 labeling indices in cervical intraepithelial lesions of the uterine cervix in paraffin section. J Obstet Gynecol India 58.
9. Soini Y, Pålkkö P, Lehto VP (1998) Histopathological evaluation of apoptosis in cancer. Am J Pathol 153: 1041-1053.
10. Harrison DJ (1996) Counting apoptosis—why and how? Clin Mol Pathol 49: M245-246.
11. Bircall MA, Winterford CM, Allan DJ, Harmon BV (1995) Apoptosis in normal epithelium, premalignant and malignant lesions of the oropharynx and oral cavity: a preliminary study. Eur J Cancer B Oral Oncol 31B: 380-383.
12. Nam JH, Kim JH, Huh J, KOH CW, NA JH, et al. (1998) Correlation of lesion grade in cervical neoplasia with cell proliferation and apoptosis. Int J Gynecol Cancer 8.
13. Gavriel Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119: 493-501.
14. Shoji Y, Saegusa M, Takano Y, Ohbu M, Okayasu I (1996) Correlation of cervical premalignant and malignant squamous and adeno carcinoma cell lesions on light microscopy. Apoptotic bodies were counted using ×400 magnification and similar to the views of Soini et al. [9], we observed that a fairly accurate assessment of apoptosis is possible by light microscopy. Apoptosis was high in areas of necrosis (Figure 3) and these areas were excluded from the evaluation, as well as areas with intense inflammatory infiltrate. Apoptotic cells in the stroma around the tumors should also be disregarded.

Apoptosis is morphologically identifiable and characterized by light and electron microscopy. Although it is accepted that electron microscopy is the best way to identify apoptotic cells, this method is not practical in most histological studies of specimens [10]. Several studies assessing the prognostic relevance of apoptosis have used the In-Situ End-Labelling (ISEL) or the TdT-mediated dUTP-biotin nick End-Labelling (TUNEL) techniques [11-14]. However, it has been argued that TUNEL and ISEL do not differentiate equivocally apoptosis from cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119: 493-501.

Table 3: Correlation of LI with grades of cervical dysplasia and cancer.

S.No	Category	No. of Cases	Mean LI±SD	Range (Min-Max)
1	CIN-I	10	5.54 ± 2.185	3-11.2
2	CIN-II	6	18.9 ± 2.491	15.2-22.4
3	CIN-III	4	42.5 ± 7.937	33-55
4	WD SCC	6	55.333 ± 7.789	47-68
5	MD SCC	17	43.976 ± 3.152	35-49
6	PD SCC	3	80 ± 5	75-85
7	Adenocarcinoma	2	55 ± 21.213	40-70
8	Adenosquamous Carcinoma	2	52 ± 8.485	46-58

Table 3: Correlation of LI with grades of cervical dysplasia and cancer.

Figure 3: Numerous apoptotic cells and bodies seen in necrotic areas H&E (×100).

The mean LI in WD SCC was 55.333 ± 7.789; MD SCC was 43.976 ± 3.152 and in PD SCC was 80 ± 5. The study conducted by Pahuja et al. [21] showed an increase in LI from WD SCC to PD SCC. The Study showed maximum mean value in PD SCC similar to ours. The study conducted by Nam et al., also showed an increase in LI from WD SCC to PD SCC [12].

The increasing prevalence Apoptotic Index and Ki-67 expression with increasing grade of dysplasia and increase in progression from dysplasia to carcinoma shows that both of these could be used as biomarkers in the evaluation of the proliferative activity and progressive potential of dysplastic and neoplastic changes.
apoptosis with tumour cell differentiation, progression, and HPV infection in cervical carcinoma. J Clin Pathol 49: 134-138.

15. Mundle SD, Raza A (1995) The two in situ techniques do not differentiate between apoptosis and necrosis but rather reveal distinct patterns of DNA fragmentation in apoptosis. Lab Invest 72: 611-613.

16. Gerdes J, Lemke H, Balsch H, Wacker HH, Schwab U, et al. (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133: 1710-1715.

17. Natália Gaspar Munhoz, Damaris Aparecida Rodrigues, Juliana Figueiredo Pedregosa, Juliana Olsen Rodrigues, Melissa Silva Garcia Junqueira, et al. (2009) The Use of Molecular Markers (p16, Ki-67 and E-Cadherin) in Uterine Cervical Biopsies; The Open Pathology Journal 3: 10-17.

18. ter Harmsel B, Kuijpers J, Smets F, Jeunink M, Trimbos B, et al. (1997) Progressing imbalance between proliferation and apoptosis with increasing severity of cervical intraepithelial neoplasia. Int J Gynecol Pathol 16: 205-211.

19. Conesa-Zamora P, Doménech-Peris A, Orantes-Casado FJ, Ortiz-Reina S, Sahuquillo-Frias L, et al. (2009) Effect of Human Papillomavirus on Cell Cycle–Related Proteins p16, Ki-67, Cyclin D1, p53, and ProEx C in Precursor Lesions of Cervical Carcinoma: a tissue microarray study. Am J Clin Pathol 132: 378-390.

20. Simionescu C, Margaritescu C, Stepan A, Georgescu CV, Niculescu M, et al. (2010) The utility of p16, E-cadherin and Ki67 in cervical squamous intraepithelial lesions diagnosis. Rom J Morphol Embryol 51: 621-626.

21. Pahuja S, Choudhury M, Gupta U (2003) Ki-67 labelling as a proliferation marker in pre-invasive squamous epithelial lesions of cervix. Indian J Pathol Microbiol 46: 402-404.