Cancer Vaccines Targeting HER2/neu for Early Breast Cancer

Woo Sang Ryu, Gil Soo Son
Department of Surgery, Ansan Hospital, Korea University School of Medicine, Ansan, Korea

Recent studies of immune responses to pathogens have identified pathogen-associated molecular patterns recognized by the innate immune system through specialized receptors called toll-like receptors (TLRs). Signaling through these receptors initiates robust immune responses. By exploiting TLR signaling pathways, immunity to tumor-associated antigens may be generated. Many tumor-associated antigens are involved in the regulation of tumor phenotype or carcinogenesis. Immune targeting of these antigens may either alter the tumor phenotype, yielding a more treatable tumor, or eradicate early tumor stem cells preventing tumor formation. The oncoprotein HER2/neu, which is often overexpressed in ductal carcinoma in situ (DCIS), may provide such a target. Immune responses directed against HER2/neu may eliminate the disease, make tumors more amenable to anti-estrogen therapy, or prevent escape of hormone-resistant tumor phenotypes. Effective breast cancer prevention in preclinical studies utilizing murine HER2/neu transgenic models has stimulated interest in, and optimism regarding, protective breast cancer vaccines in humans. Induction of anti-HER2/neu T cell (CD4+ and CD8+) and B cell responses has been demonstrated in an ongoing clinical study targeting HER2/neu using a TLR agonist-primed dendritic cell vaccine. Moreover, these vaccinations lead to reductions in both HER2/neu expression and extent of DCIS. HER2/neu expression and aromatase activity have recently been linked through the intermediary cyclooxygenase 2 (COX-2). This convergence between growth factor and hormone mediated pathways provides additional support for the notion that a significant number of breast cancers may be prevented through effective immune targeting of HER2/neu. As progress is made towards the development of vaccines for breast cancer prevention, the contributions of immune-mediated effector and inhibitory mechanisms to the pathogenesis of HER2/neu overexpressing breast cancer will need to be better understood.

Key Words: Breast neoplasms, Dendritic cells, HER2/neu, Vaccines

INTRODUCTION

During the past decade, significant progress has been made in the development of new therapies for the treatment of breast cancer. Hormone receptor modulation agents, aromatase inhibitors, and the monoclonal antibody trastuzumab, have been incorporated into treatment paradigms. Nonetheless, approximately 40% of women with breast cancer fail primary treatment. (1) Active immunization against breast cancer employing a number of different vaccine strategies has been investigated both in murine models and in humans. While the potential benefits of active immunization are numerous and include low toxicity, high specificity, and induced immunologic memory, efficacy of tumor vaccines has thus far been quite limited. A number of factors likely contribute to this poor efficacy. Tumor associated antigens are most often overexpressed non-mutated self proteins and the ability to sensitize the immune system to recognize and respond to these antigens is, therefore, inherently limited. In addition to this tolerance, T cell dysfunction and suppressive T cell function appear to contribute to cancer pathogenesis and progression. Finally, some evidence supports a deleterious effect of the immune response in sculpting tumor phenotypes and selecting for more aggressive disease. In this article, we will review the foundation for recent efforts to design effective vaccines for breast cancer, including the rationale for selecting HER2/neu as a target, advantages of active immune therapies targeting...
HER2/neu over passive therapies such as trastuzumab, preclinical vaccination data from murine models, and strategies for overcoming the immunologic obstacles.

HER2/NEU AS A TARGET FOR IMMUNOTHERAPY

HER2/neu as a critical molecule in breast cancer pathogenesis

HER2/neu, a tyrosine kinase growth factor receptor encoded by the ErbB-2 gene, is a member of the epidermal growth factor receptor (EGFR) family. (2) This family also includes those receptors encoded by the genes ErbB-1, ErbB-3, and ErbB-4. Although no specific ligand for HER2/neu has been identified, HER-2/neu functionality is derived from the receptor’s ability to form heterodimers with other members of the EGFR family, and homodimers. (3) Dimerization of HER2/neu initiates intracellular signals via numerous molecular pathways, including those involving PI3 kinase and MAP kinase, which influence cell-cycle and apoptotic regulation. (4)

Several observations support an important role for HER2/neu in breast cancer pathogenesis and progression. HER2/neu overexpression in transgenic mice results in development of breast cancers in all mammary glands. (5) In humans, HER2/neu overexpressing node-positive cancers are characterized by more rapid progression and relative refractoriness to chemotherapy, and are associated with poorer overall survival when compared to node-positive cancers that do not overexpress HER2/neu. (6) Significantly, 50–60% of high grade ductal carcinoma in situ (DCIS) lesions, compared to 20–30% of invasive breast cancers, overexpress HER2/neu, suggesting a more prominent role in early tumor progression. (7)

HER2/neu has attracted considerable attention as a therapeutic target in breast cancer therapy for a number of reasons: 1) As stated above, overexpression of HER2/neu correlates with poor prognosis in node positive patients, 2) HER2/neu overexpression appears to be involved in early breast carcinogenesis and 3) HER2/neu is differentially expressed in malignant cells compared to normal cells, providing for specificity of therapies targeting HER2/neu. Targeting of HER2/neu using the recombinant humanized antibody trastuzumab in patients with high-risk node-positive disease has proven effective, particularly when combined with chemotherapy. (8) Thus selective targeting of HER2/neu for either treatment of early breast cancer or primary prevention, to interrupt breast cancer development may be promising.

Evidence for HER2/neu as a tumor antigen

Fundamental to efforts to immunologically target HER2/neu is the notion that HER2/neu is intrinsically immunogenic. This immunogenicity has been established in a number of studies. (9–11) Disis et al. (11) documented HER2/neu specific antibody formation in 11% (12/107) of patients with breast cancer. The antibody responses measured in some cases were quite substantial. Of note, the HER2/neu antibody–positive patients all had stage I or II disease. In a second study by Disis et al. (12) 45 women with advanced HER2/neu over-expressing breast or ovarian cancer were evaluated for specific T-cell and antibody immunity. Five of 45 patients (11%) had a specific T-cell response, while three of 45 (7%) had detectable HER2/neu specific antibodies. Kuerer et al. (10) documented proliferative cellular immune responses to HER2/neu–derived peptide in lymphocytes isolated from the axillary nodes of patients with breast cancer. HER2/neu peptides induced a predominantly T helper type 1 pattern of cytokine expression. Thus HER2/neu shows a degree of immunogenicity in at least some patients with breast cancer.

Passive immunologic targeting of HER2/neu using trastuzumab

The differential expression of HER2/neu by malignant and benign cells has allowed for passive targeting of HER2/neu with recombinant humanized antibodies (trastuzumab). (13) This agent has proven effective in patients with metastatic and high-risk invasive breast cancer, particularly when combined with cytotoxic chemotherapy. (8, 15, 16) Trastuzumab is currently being tested in early breast cancer settings for the treatment of DCIS and may serve as an effective adjunct to other therapies in the treatment of early disease. (17) However, it remains to be deter-
mined whether passive transfer of trastuzumab will induce an active immune response that protect against long term development of breast cancer.

Despite some promising clinical data supporting the efficacy of trastuzumab, the agent has several significant limitations. Cardiotoxicity associated with trastuzumab is well described. Cardiac event ranging from subclinical decreases in ejection fraction to symptomatic congestive heart failure occur in up to 30% of patients. Additionally, response rates to trastuzumab as monotherapy are low, and despite significantly improved rates of response when administered in combination with chemotherapy, the majority of patients treated with these combinations acquire resistance within a year.

For these reasons, ongoing efforts to develop vaccines directed to HER2/neu are under way. Potential benefits of active immunization over passive immunotherapy include lower toxicity and induced immunologic memory that obviate the need for long term therapy.

ACTIVE VACCINATION TARGETING HER2/NEU AS A TREATMENT FOR BREAST CANCER

Several groups have developed vaccine strategies that target HER2/neu for patients with advanced cancer. There is substantial evidence that administration of peptides derived from HER2/neu can induce HER2/neu specific CD4+ and CD8+ T cells. Although most of these vaccines have been utilized in the adjuvant setting, there is some evidence that induction of HER2/neu-specific CD8+ T cells may also help to prevent or delay recurrence of tumors. Vaccine approaches using HER2/neu peptides not only induce anti-HER2/neu specific T cells, but also can generate anti-HER2/neu antibodies. These endogenously produced antibodies may have therapeutic effects similar to those of trastuzumab. Peptide vaccines have frequently been administered with GM-CSF as an adjuvant. Whether the use of other adjuvant systems such as dendritic cells (DCs) and toll-like receptors (TLRs) agonists can improve efficacy has not been definitively addressed.

CLUES TO DEVELOPING PROTECTIVE BREAST CANCER VACCINES

Murine data thus far suggest that anti–HER2/neu immunoglobulins are principle effectors of protective immunity, as is the cytokine IFN-gamma. CD8+ CTLs appear to play a relatively dispensable role and CD4+ T cells play an early ‘helper’ role, rather than a later ‘effector’ role. In human trials of patients with either HER2/neu overexpressing in invasive breast cancer or DCIS, there are a significant number of patients who develop HER2/neu antibodies following vaccination with HER2/neu peptides. In addition, following vaccination with HER2/neu peptide pulsed DCs, there is evidence of complement fixing anti-HER2/neu antibody development in the majority of the patients. Whether this will protect patients from subsequent recurrence remains to be determined. These findings suggest that the tools have been developed to begin contemplating protective breast cancer vaccination.

OBSTACLES TO EFFECTIVE ACTIVE IMMUNOTHERAPY

HER2/neu tolerance

Given that HER2/neu is a non–mutated self protein, it is not surprising that its mere overexpression does not lead to vigorous immune responses in most patients. A number of observations, however, point to alterations in the immune response to HER2/neu which may contribute to breast cancer pathogenesis. Studies have demonstrated blunted cellular immune responses to HER2/neu in the lymph nodes of patients with metastatic disease compared to those observed in the lymph nodes of patients without metastatic disease. Czerniecki et al. have identified the presence of HER2/neu–tetramer reactive CD8+ T cells in patients with HER2/neu overexpressing DCIS. These cells are impaired in their capacity to secrete IFN–gamma in response to HER2/neu, and they highly express the B7 ligand, CTLA-4. The presence of these cells suggests that tumor antigen sensitization yields antigen specific T cells with anergic phenotypes. The
resultant tolerance allows the persistence of the HER2/neu overexpressing tumor and is a major obstacle for attempts to elicit an effective active immunologic response to HER2/neu.

Regulatory T cells

A subpopulation of CD4+ T cells with a known anergic suppressor phenotype has been identified; these cells have been termed regulatory T cells (T_{reg}) and are thought to play a role in the maintenance of peripheral tolerance.(17) The suppressive function of T_{reg} requires cell-to-cell contact but a role for immuno-inhibitory cytokines including TGF-β and IL-10 has emerged.(29) Depletion of these cells in normal hosts results in autoimmunity. Treg also appear to play a role in cancer pathogenesis and progression, and limit responses to cancer vaccines.(30,31) Evidence for this includes: 1) accumulation of Treg at tumor sites and in the peripheral blood of patients with cancer,(32) 2) enhanced anti-tumor immune responses through vaccination following depletion of T_{reg},(33) and 3) recent reports identifying tumor-specific Treg that suppress the proliferation of CD4+ effector cell.(34) CD4+ T cells that secrete TGF-β in response to HER2/neu were sometimes found in patients with HER2/neu overexpressing DCIS suggesting that tumor antigen sensitization may be accompanied by specific T_{reg} development.

Evidence for immunoediting in breast cancer

The term immunoediting describes the role that the immune response plays in sculpting a tumor’s phenotype. Dunn et al.(35) and Schreiber(36) have argued that, in some instances, the immune system eliminates clones with greater immunogenicity and leaves less immunogenic ones to continue to grow. Such immunoediting may select for tumors with more aggressive phenotypes. In breast cancer there is some evidence (both preclinical and clinical) that immunoediting influences tumor phenotype. There are a small number of patients with breast cancers that do not express HER2/neu but nonetheless are found to have anti-HER2/neu antibodies in their blood.(11) Though the existence of these antibodies is suggestive of a role for immunoediting, this observation has led some investigators to speculate that immune responses generated against HER2/neu select a non-HER2/neu-expressing phenotype. Only less than 5% of DCIS are triple negative tumors, whereas 20–30% of invasive cancers are triple negative. It is possible that these changes reflect immunologic selection for a more aggressive tumor phenotype and correlate with a progression to invasive cancer. Clearly, in situations where strong immune responses are generated, initial regression of tumors with subsequent regrowth is sometimes observed. The regrowth of tumors often heralds a transition to a more aggressive phenotype.(37) Understanding the events leading to this transition will be important if our goal is to eliminate all clones of residual breast cancer or, as we will discuss below, to alter the phenotype of breast tumors to render them curable.

STRATEGIES FOR OVERCOMING OBSTACLES TO EFFECTIVE ACTIVE IMMUNOTHERAPY

Taking advantage of innate immunity in cancer vaccines

If mechanisms of immunologic tolerance and suppression allow, and possibly even promote, the pathogenesis of breast cancer, novel strategies must be employed to elicit effective immune response against these cancers. The immune response evolved primarily to eliminate pathogens including viruses and bacteria. Medzhitov and Janeway(38) first suggested that the innate immune system has the capacity to respond to biomolecular patterns common to many pathogens. It is now known that this is achieved in part through specialized receptors known as TLRs that recognize a set of pathogen-associated molecular patterns (PAMPs).(39) These TLRs recognize relatively common pathogen–associated molecular patterns such as lipopolysaccharide (TLR4), lipoteichoic acid (TLR2), ds RNA (TLR3), ss RNA (TLR7 and 8), unmethylated deoxyribonucleotides (TLR9), and flagellin (TLR5). TLRs allow the innate immune system to rapidly respond to microbial invaders prior to the development of an adaptive immune response.(38–40) Activation of these receptors initiates at least one of two intracellular pathways, the
MyD88 adaptor protein pathway(41) and the TRIF path-
way(42), and ultimately leads to DC maturation through
NFκB activation and cytokine secretion.(43) Significantly,
TLR agonist maturation of DCs results in proliferation
of naive and effector T cells and an escape from Treg
control.(44)

Previous studies have established the importance of
IL-12 secretion of DCs in sensitizing T cells to tumor.(45)
Significantly, the pharmacologic agent R848, a TLR8
agonist, has the capacity to prime DCs for high level IL-
12p70 production when paired with additional matura-
tion agents.(45) In fact, several combinations of paired
TLR ligands(46) or single TLR ligands plus IFN-γ
can also induce IL-12p70.(47) Interestingly, it has been
shown in vitro that IFN-γ paired with the TLR4
agonist LPS can not only induce an intense burst of IL-
12 approximately 6 hr after stimulation, but can prepare
DCs for a second, more intense burst of IL-12 up to 36
hr later if the DCs subsequently encounter recombinant
CD40 ligand. These two bursts of IL-12 secretion allow
for: 1) rapid IL-12 secretion when DC precursors encounter
pathogens in peripheral tissues which can activate NK
cells and, 2) delayed secretion of IL-12 when DCs migrate,
as part of their maturation process, to the regional lymph
nodes and encounter CD40 ligand on the surface of anti-
gen-specific T cells. This second burst can polarize CD4+
T cells toward the Th1 phenotype and enhance the func-
tional avidity of CD8+ T cells,(45) allowing them to rec-
ognize and kill target cells. This TLR agonist activation
of DCs represents a link between innate and adaptive
immunity that can be exploited to increase the efficacy
of vaccine strategies targeting tumors.

NEW STRATEGIES IN BREAST CANCER
VACCINE DEVELOPMENT

Vaccines targeting HER2/neu in early stage
breast cancer

As noted above, clinical breast cancer vaccine trials
have largely focused on patients with advanced disease
or patients who have already undergone surgical resec-
tion of all apparent disease. Vaccines are less likely to
be effective in the former patients as a result of compro-
mised immune function, declining overall health, and
the frequent presence of extensive, difficult to control
disease already refractory to multiple therapies.(48) In
the latter patients, the absence of residual detectable
disease makes it exceedingly difficult to gauge vaccine
efficacy.

Since HER2/neu appears to play a role in breast car-
cinogenesis, and overexpression of HER2/neu can lead
to breast cancer development, strategies to develop vac-
cines targeting HER2/neu may be useful to treat early
disease and potentially prevent breast cancer. Preclinical
models suggest that targeted HER2/neu vaccination in
HER2/neu transgenic mice can prevent the subsequent
development of invasive breast cancer. This prevention
of breast cancer is dependent upon the activation of HER-
2/neu–specific CD4+ T cells and complement–fixing anti-
HER2/neu antibodies.(26,27) CD8+ T cells may play a
role in the elimination of HER–2/neu–expressing tumors,
especially in later, metastatic disease, but appear to be
less essential than CD4+ T cells and antibody in preven-
tative settings.(26) If effectively translated to humans,
vaccines targeting HER2/neu are likely to possess more
distinct clinical advantages in patients with DCIS or early
breast cancer than in ones with advanced cancer. Vaccin-
ating patients with early disease represents an incre-
mental step towards preventative vaccination and an
appropriate area for investigation given our current
knowledge.

HER2/neu peptide–pulsed DC vaccines for
neoadjuvant therapy in DCIS

DC vaccines represent one of several approaches for
vaccinating patients against tumor–associated antigens
such as HER2/neu. DCs polarized toward the type 1 den-
dritic cell (DC1) phenotype may produce cytokines and
chemokines critical for maximizing antitumor immunity
and may therefore enhance the efficacy of antitumor
vaccines. Ligation of these TLRs also primes DCs for
multiple bursts of IL–12 secretion, which can be triggered
when DC1s interact with CD40 ligand expressed by CD4+
T cells. In addition to IL–12, DC1s also produce other
cytokines and chemokines involved in antitumor CD4+ T cell and CTL activity. (49)

Using technologies for producing DCIs, Czerniecki et al. (50) initiated a clinical trial for patients with HER2/neu overexpressing DCIS. DCIs are pulsed with MHC class I and MHC class II peptides previously described by Murray et al. (19) and Disis et al. (20) The vaccines with autologous HER2/neu peptide–pulsed DCIs are administered in a neoadjuvant setting before surgical resection of the patients’ DCIS. Early results of this trial are highly encouraging and suggest robust sensitization of CD4+ and CD8+ T cells against HER2/neu. Additionally, complement–dependent, tumorlytic antibody was induced. This suggests that high avidity CTLs are being generated in vivo as was predicted in studies where IL-12–secreting DCs similarly sensitized T cells in vitro.

Thus, HER2/neu pulsed DC1 vaccines generate apparently vigorous immune responses in patients with DCIS despite the presence of existing tolerance to HER2/neu. The non–specific actions of TLR agonist are here utilized to overcome tolerance to a specific self antigen.

Targeted Immunoediting of HER2/neu in breast cancer

Although the eradication of existing disease remains the ultimate goal of vaccine therapy for breast cancer, vaccine–induced alterations in tumor phenotype yielding a more treatable tumor, or one with a better prognosis, would be a significant achievement. This approach has been termed as targeted immunoediting. Cells within the tumor mass are heterogeneous for the expression of a number of surface proteins, including HER2/neu and estrogen receptors. Therefore, it appears possible to utilize a DC vaccination to target selectively a discrete population of tumor cells. Because patients with DCIS tumors that overexpress HER2/neu are at higher risk for local recurrence, and because HER2/neu is a poor prognostic indicator in more advanced breast cancer, HER2/neu is a logical target for immunoediting. Indeed, Czerniecki et al. (50) found that subjects vaccinated with HER2/neu pulsed DC1 demonstrated a dramatic decrease in HER2/neu expression. (28) It remains the formidable challenge predicting which individuals are at risk for developing breast cancer and how different tumor phenotypes evolve.

POTENTIAL MULTIMODALITY THERAPIES INCORPORATING VACCINES

HER2/neu and estrogen receptor cross-talk

A growing body of clinical and laboratory research points to a complex interplay between hormone and growth factor receptor mediated pathways in the pathogenesis and progression of breast cancer. An inverse correlation between estrogen receptor status and HER2/neu expression is well established. Furthermore, anti-estrogen therapy has been demonstrated to induce increased expression of HER2/neu and EGFR in tumor cells. Indeed, conversion to HER2/neu overexpression has been observed in breast cancers following sustained anti-estrogen therapy and has been correlated with rapid disease progression. (51) Laboratory evidence supporting a dynamic interaction between growth factor receptor and hormone mediated signaling includes: decreased expression of HER2/neu in breast cancer cells after estrogen stimulation, (52) and refractoriness to anti-estrogen therapy in cells transfected with HER2 cDNA that overexpress HER2/neu. (53)

Progress has been made in indentifying connections between HER2/neu and hormone mediated pathways. (54, 55) Subbaramaiah et al. (56) have demonstrated that modulation of COX–2 expression is associated with coordinate alterations in aromatase activity in a murine model and have proposed that COX–2 in an intermediary between HER2/neu pathways and estrogen production. HER2/neu overexpression has been correlated with increased levels of COX–2 and prostaglandin E2 (PGE2). PGE2 in turn, stimulates aromatase activity especially in stromal cells which enhances estrogen biosynthesis and resultant estrogen driven tumorigenesis. Given the interaction between these pathways and suggestive evidence that clinical resistance to hormone therapies is mediated through HER2/neu overexpression and growth factor mediated pathways, preclinical and clinical studies of combination therapies targeting multiple components of these path-
ways have been undertaken with promising results. Com-
bined trastuzumab and tamoxifen have been shown to
inhibit tumor growth to a greater degree than either agent
alone in a mouse xenograft model.\(^{57}\) The combination
of letrozole and trastuzumab was also studied in a recent
phase II clinical trial and yielded good clinical responses,
albeit in a minority of patients.\(^ {58}\)

Further study will clarify which clinical settings are
most appropriate for application of these combined ther-
apies. Effective immunotherapies and, in particular, vac-
cines that generate active immunity directed against
HER2/neu, may be of particular utility in interrupting
the circuit between HER2/neu, COX2 and aromatase and
potentially preventing a substantial number of breast
cancer. As discussed above, it is conceivable that appro-
priate HER2/neu vaccination will eliminate HER2/neu
expressing tumor cells. Given the known inverse correla-
tion between HER2/neu and estrogen receptor, it is
likewise reasonable to assume that such an approach
would leave behind tumors that are estrogen receptor
positive and, therefore sensitive to hormone receptor
modulating therapies. The notions that targeted immuno-
editing of a tumor utilizing a vaccine directed at HER2/
neu might render DCIS more vulnerable to hormonal
therapies, it is enticing that subsequent administration
of estrogen receptor modulating agents will have greater
clinical efficacy.

Preclinical work suggests that the administration of
chemotherapy in combination with vaccination may
result in greater vaccine efficacy.\(^ {33}\) Chemotherapy
may deplete T cells with suppressor phenotypes (T\(_{reg}\)),
thereby enhancing the functionality of newly sensitized
effector T cells. Vaccination combined with trastuzumab
has also been investigated in a preclinical model with
promising results.\(^ {59}\) The combinations of vaccination
against HER2/neu with chemotherapy, passive immu-
notherapy or hormone therapy are areas for continued
exploration.\(^ {60}\)

CONCLUSION

The recent introduction of a preventative vaccine for
cervical cancer represents a significant advance in the
field of cancer immunotherapy. But the development of
an effective vaccine for breast cancer remains a very dis-
tinct challenge. Cervical cancer is linked to a single causal
virus, human papilloma virus, which the cervical cancer
cancer vaccine targets. The diversity of factors which contribute
to the pathogenesis of breast cancer makes the identifi-
cation of an optimal target for breast cancer immuno-
therapy more challenging. HER2/neu is emerging as an
important target in human. The application of lessons
learned in innate immunity and utilization TLR agonists
to direct the immune response towards HER2/neu may
allow us to overcome immune tolerance. A TLR agonist
primed DC vaccine targeting HER2/neu, which elicits
both a cellular and humoral immune response, is begin-
ning to yield promising results in patients with early breast
cancer. The translation of a similar strategy to a preven-
tative setting is a logical next step. By finding not only
appropriate tumor associated antigens but also mech-
anisms by which can induce robust immune response over-
coming tumor tolerance, cancer vaccines may advance
to the next higher level of effectiveness.

REFERENCES

1. Emens LA, Reilly RT, Jaffee EM. Breast cancer vaccines: maximizing
cancer treatment by tapping into host immunity. Endocr Relat Cancer
2005;12:1-17.
2. Baehner TN, Sotropoulos PA, Sotiriadou NN, Papamichail M.
Immunobiology of HER2/neu oncoprotein and its potential applica-
tion in cancer immunotherapy. Cancer Immunol Immunother 2004;
53:166-75.
3. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling
network: receptor heterodimerization in development and cancer.
Embo J 2000;19:3159-67.
4. Pianetti S, Arsura M, Romieu-Moreau R, Coffey RJ, Sorenstein GE.
Her2/neu overexpression induces NF-kappaB via a PI3-kinase/Akt
pathway involving calpain-mediated degradation of IkappaB-alpha
that can be inhibited by the tumor suppressor PTEN. Oncogene 2001;
20:1287-99.
5. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller
WI. Expression of the neu protooncogene in the mammary epithelium
of transgenic mice induces metastatic disease. Proc Natl Acad Sci
USA 1992;89:10578-82.
6. Cooke T, Reeves J, Lamnigan A, Stanton P. The value of the human
epidermal growth factor receptor-2 (HER2) as a prognostic marker.
12. Woo Sang Ryu, et al.

7. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER2/neu oncogene. Science 1987;235:177-82.

8. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344:783-92.

9. Kiessling R, Wei WZ, Herrmann F, Lindencrona JA, Choudhury A, et al. Cellular immunity to the HER2/neu protooncogene. Eur J Cancer 2001;37 (Suppl 4):S164-72.

10. Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA. High-titer HER2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 1997;15:3363-7.

11. Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA. Immunoprevention of mammary carcinoma in HER2/neu transgenic mice is IFN-gamma and B cell dependent. J Immunol 2004;173:2288-96.

12. Esteva FJ, Valero V, Booser D, Guerra LT, Murray JL, Pusztai L, et al. OBII study of weekly docetaxel and trastuzumab for patients with HER2 overexpressing metastatic breast cancer. J Clin Oncol 2002;20:1800-8.

13. Bartisch R, Wenzel C, Hussain D, Pluschnig U, Seveleda U, Koestler W, et al. Analysis of trastuzumab and chemotherapy in advanced breast cancer after the failure of at least one earlier combination: an observational study. BMC Cancer 2006;6:63.

14. Pizzica M, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA. Her2/neu dendritic cell vaccines. Clin Breast Cancer 2003;3 (Suppl 4):S164-72.

15. Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology 2006;117:433-42.

16. Antolovitch CA, Piccirillo CA, Apkinari A, Finkelstein SE, Speiss PJ, Surman DR, et al. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ Th1 cells and hindered by naturally occurring T regulatory cells. Eur J Immunol Immunother 1999;47:337-42.
35. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004;21:137-48.
36. Schreiber RD. Cancer vaccines 2004 opening address: the molecular and cellular basis of cancer immunosurveillance and immunoediting. Cancer Immun 2005;5 (Suppl 1):1.
37. Knutson KL, Lu H, Stone B, Reiman JM, Behrens MD, Prosperi CM, et al. Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol 2006;177:1526-33.
38. Medzhitov R, Janeway CA Jr. Decoding the patterns of self and non-self by the innate immune system. Science 2002;296:298-300.
39. Kopp EB, Medzhitov R. The Toll-receptor family and control of innate immunity. Curr Opin Immunol 1999;11:13-8.
40. Medzhitov R, Janeway CA Jr. The Toll receptor family and microbial recognition. Trends Microbiol 2000;8:452-6.
41. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998;2:253-8.
42. Lee JY, Lowell CA, Lemay DG, Youn HS, Rhee SH, Sohn KH, et al. The regulation of the expression of inducible nitric oxide synthase by Src-family tyrosine kinases mediated through MyD88 independent signaling pathways of Toll-like receptor 4. Biochem Pharmacol 2005;70:1231-40.
43. Akira S, Takeda K. Toll-like receptor signaling. Nat Rev Immunol 2004;4:499-511.
44. Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+ CD25+ T cell-mediated suppression by dendritic cells. Science 2003;299:1033-6.
45. Xu S, Koldowsky U, Xu M, Wang D, Fitzpatrick E, Son G, et al. High-avidity antitumor T-cell generation by toll receptor 8-primed, myeloid-derived dendritic cells is mediated by IL-12 production. Surgery 2006;140:170-8.
46. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 2005;6:769-76.
47. Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a tertiary signal. Immunol Today 1999;20:561-7.
48. Hsieh CL, Chen DS, Hwang LH. Tumor-induced immunosuppression: a barrier to immunotherapy of large tumors by cytokine-secretion tumor vaccine. Hum Gene Ther 2000;11:681-92.
49. Wesa A, Kalinski P, Kirkwood JM, Tatsumi T, Storkus WJ. Polarized type-1 dendritic cells (DC1) producing high levels of IL-12 family members rescue patient TH1-type antimelanoma CD4+ T cell responses in vitro. J Immunother 2007;30:75-82.
50. Czernicki BJ, Roses RE, Koski GK. Development of vaccines for high-risk ductal carcinoma in situ of the breast. Cancer Res 2007;67:6531-4.
51. Lipton A, Leitzel K, Ali SM, Demers L, Harvey HA, Chaudri-Ross HA, et al. Serum HER-2/neu conversion to positive at the time of disease progression in patients with breast carcinoma on hormone therapy. Cancer 2005;104:257-63.
52. Russell KS, Hung MC. Transcriptional repression of the neu protooncogene by estrogen stimulated estrogen receptor. Cancer Res 1992;52:6624-9.
53. Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 1992;24:85-95.
54. Pietras RJ. Interactions between estrogen and growth factor receptors in human breast cancers and the tumor-associated vasculature. Breast J 2003;9:361-73.
55. Osborne CK, Shou J, Massarweh S, Schiff R. Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res 2005;11:865S-70S.
56. Subbaramaiah K, Howe LR, Port ER, Brogi E, Fishman J, Liu CH, et al. HER-2/neu status is a determinant of mammary aromatase activity in vivo: evidence for a cyclooxygenase-2-dependent mechanism. Cancer Res 2006;66:5504-11.
57. Wang CX, Koay DC, Edwards A, Lu Z, Mor G, Ocal IT, et al. In vitro and in vivo effects of combination of trastuzumab (Herceptin) and tamoxifen in breast cancer. Breast Cancer Res Treat 2005;92:251-63.
58. Marcom PK, Isaacs C, Harris L, Wong ZW, Komarnarreddy A, Novielli N, et al. The combination of letrozole and trastuzumab as first or second-line biological therapy produces durable responses in a subset of HER2 positive and ER positive advanced breast cancers. Breast Cancer Res Treat 2007;102:43-9.
59. Mittendorf EA, Storrer CE, Shriver CD, Ponniah S, Peoples GE. Investigating the combination of trastuzumab and HER2/neu peptide vaccines for the treatment of breast cancer. Ann Surg Oncol 2006;13:1085-98.
60. Emens LA, Reilly RT, Jaffee EM. Augmenting the potency of breast cancer vaccines: combined modality immunotherapy. Breast Dis 2004;20:13-24.