Telomerase: An Exploration toward the End of Cancer

Abstract

Background: The distinguishing feature of cancer cells is their ability to proliferate indefinitely, which is in contrast to the restricted cell multiplication potential for somatic cells. A better understanding of this contrasting behavior was provided in the early 1990s with the discovery of a relationship between telomeres, telomerase, aging, and cancer. Telomeres (tandem repeat DNA sequence TTAGGG) are protective caps at the ends of human chromosomes. Normal human cells experience telomere shortening with each successive cell division. However, in tumor cells, an overexpression of telomerase confers limitless replicative potential to tumor cells by continuous elongation of telomeres. The objective of this review was to systematically assess the data available on telomerase expression in oral cancer, with special reference to its role in diagnosis, prognosis, and treatment. Materials and Methods: A systematic review of studies that investigated the telomerase expression in oral squamous cell carcinoma (OSCC) was registered with PROSPERO. Subsequent to registration, a predetermined search strategy in accordance with PRISMA guidelines was formulated, and a literature search was conducted using online databases along with hand searching. Results: Eighty-nine articles from PubMed, 83 from Scopus, 5 from BioMed Central, 43 from Google Scholar, and 2 from hand search were identified. A total of 21 articles were shortlisted that met strict inclusion and exclusion criteria and quality assessment. Each study was evaluated for the markers under study, type of sample used, study design/methodology, and statistical analysis. The studies were then grouped into three subheads depending on their implications in the diagnosis, prognosis, and treatment of OSCC. Conclusion: This review explains the basic biology and the clinical implications of telomerase-based diagnosis and prognosis, the prospects for its use in anticancer therapy, in the context of oral cancer.

Keywords: hTR, human telomerase reverse transcriptase, human telomerase RNA component, oral cancer, oral squamous cell carcinoma, reverse transcriptase, reverse transcriptase catalytic protein, telomerase, telomerase RNA component

Introduction

The classical hallmark of a malignant cell is its ability to multiply indefinitely.[1] This immortalization of malignant cells has been credited primarily to reactivation of the telomerase enzyme which sustains the telomere length. Telomeres are nucleoprotein structures which cap the ends of eukaryotic chromosomes and show progressive shortening with cellular multiplication. Telomere dysfunction has been known to produce the opposing pathophysiological states of degenerative aging or cancer.[2]

The telomerase enzyme complex consists of two subunits, the reverse transcriptase catalytic protein (telomerase reverse transcriptase [TERT]), and the telomerase RNA component (TERC).

Telomerase helps preserve genome stability as well as replication potential in both embryonic stem cells and proliferating progenitor cells derived from quiescent normal stem cells (e.g., male germline spermatocytes), but it is silent in somatic cells, which make up the vast majority of human tissues.[3] Normal somatic cells thus enter replicative senescence and undergo growth arrest or apoptosis. Sporadically, some cells may evade these cellular checkpoints and continue to grow limitless. These cells are characterized by maintenance of telomere length and telomerase expression.[4] Past research has shown that telomerase is activated as a rule in human malignant tissues but not in adjacent normal tissues.[5] In addition, previous studies have shown that the lack of telomerase activity correlates with critically shortened telomeres and frequent spontaneous cancer remission.[6] Thus, the expression of...
telomerase is important and may be a rate-limiting step for tumor progression.[7] Owing to its selective expression in cancer cells, telomerase targeted cancer therapeutics offer superior specificity, lesser toxicity, and fewer side effects in contrast to conventional chemotherapeutic approaches.[4]

In the past few years, valuable research from various laboratories has provided major insights into telomerase, and telomeres leading to their use as diagnostic and prognostic markers in several types of cancer. This review is an attempt to systematically analyze the data available on telomerase-based diagnosis and prognosis, the prospects for its use in anticancer therapy in the context of oral squamous cell carcinoma (OSCC).

Materials and Methods

This systematic review (PROSPERO registration number CRD42016043162) was carried out as a structured search following guidelines suggested by PROSPERO, to identify all reports of investigations that had been undertaken to assess the role of telomerase in OSCC. A search strategy was finalized utilizing MESH terms, Boolean terminology, and free text terms [Annexure 1] with key words Telomerase, hTR, TERT, human telomerase reverse transcriptase (hTERT), TERC, human telomerase RNA component (hTERC), reverse transcriptase catalytic protein, TERC, oral cancer, and OSCC. This search strategy was applied to key databases such as PubMed, Biomed Central, Scopus, and Google scholar and identified articles published from 2006 to 2016 independently by two reviewers, which was cross-checked by the third reviewer. The search was augmented by using the “related articles” link to articles recovered with PubMed. Following this, a search was done of the references cited in these articles to identify additional relevant writings. In addition, hand search of journals was performed for article retrieval. At this stage, all articles were assembled and arranged in reverse chronological order. The articles were screened, and selection of articles to be considered for review was based on stringent inclusion and exclusion criteria. Eighty-nine articles in PubMed, 83 in Scopus, 5 in BioMed Central, 43 in Google Scholar, and 2 from hand searching were retrieved [Figure 1]. Duplicates were separated from the selection, and titles and abstracts of these selected manuscripts were studied, considering exclusion and

![Figure 1: Flowchart depicting the retrieval of studies for review process](image-url)
Inclusion criteria. From the 28 identified articles, a seven had to be excluded (PubMed - 2, Scopus - 1, BioMed Central - 1, and Google Scholar - 3) due to nonavailability of full text. After scrutiny by all reviewers, 21 articles were identified for systematic review [Figure 1].

Inclusion criteria

Participants/population - Human studies, OSCC cell lines, controls, and sample size >15.

Intervention (s), exposure (s) - All original research works done on telomerase/hTERT/hTERC/terminal transferase/TERC in OSCC will be included in the study.

Exclusion criteria

Participants/population - Animal studies, xenograft models, sample size <15, and controls absent.

Intervention (s), exposure (s) - Studies using markers other than telomerase/hTERT/hTERC/terminal transferase/TERC in OSCC. Review articles will not be included.

This was followed by data extraction done independently by two reviewers. The data were recorded in a tabular form based on the following criteria:

1. Participant characteristics: tissue selected, cell line, site of tissue selection, and sample size
2. Study characteristics: marker under study, method used for research, and statistical analysis used.

Quality assessment of the articles included in the review was done based on a quality assessment instrument modified and developed from relevant articles in literature[8,9] given in Annexure 2.

The studies were analyzed and inferences were drawn after grouping of observations from relevant studies to arrive at conclusions with diagnostic, prognostic, and therapeutic implications.

Results

Twenty-one research studies analyzing telomerase activity in OSCC were shortlisted for the systematic review. Sixteen studies focused on assessing the expression of reverse transcriptase catalytic protein (TERT/hTERT) or the TERT gene as a marker for telomerase activity. Two studies used fluorescent in situ hybridization to detect TERC (TERC/hTERC) gene amplifications. Three studies used electrochemical telomerase assay to assess the telomerase activity and one study dealt with an association of glutathione S-transferase M1 (GSTM1) polymorphism with telomerase activity.

Data extraction was done, and the studies were grouped under the following subheads: implications in diagnosis [Table 1], implications in prognosis [Table 2], and therapeutic implications [Table 3].

It was noted that most studies in Tables 1 and 2 were retrospective studies done on tissues from patients. Nine studies compared OSCC with oral premalignant/dysplastic lesions,[10,11,17,18,20‑23,25] whereas five studies compared OSCC with healthy oral mucosa[10,13,17,20,23] Four studies were carried out on exfoliated cells[11,13,15,16] and four others were done on OSCC cell lines.[7,14,19,22] Strikingly, most studies from Table 3 (therapeutic implications) were done on OSCC cell lines[27‑29] and one on tissue microarray of OSCC.[30]

Discussion

Telomeres are the extreme ends of double-stranded eukaryotic chromosomes comprising tandem array of TTAGGG repeats and DNA binding proteins. In humans, it consists of repeats of TTAGGG with a 3’ end overhang that helps in the formation of D-loop and T-loop structures. Telomeres protect the chromosomal ends from degradation by exonucleases and prevent recognition as double-stranded DNA breaks, end-to-end fusions, and ring chromosome formation. Thus, telomeres play a vital role in the regulation of gene expression, functional organization of the chromosome, and in controlling the replicative life of cells and entry into senescence.[56]

Progression to malignancy requires that cells overcome senescence and switch to an immortal phenotype. Mammalian cells have an intrinsic program, the Hayflick limit,[31] that limits their multiplication to about 60–70 doublings, at which point they reach a stage of senescence. The cell division limit can be overcome, allowing them to continue doubling until they reach a critical stage (M2 or crisis). At this point, chromosomal instability arises due to end-to-end fusions and/or chromosome breakage. DNA damage checkpoints are activated along with apoptosis. Unless the cell develops a mechanism through which to stabilize telomere length, it will not survive. Cells that escape crisis and become immortalized generally achieve telomeric stability through the reactivation of telomerase.[32]

Telomerase is a ribonucleoprotein that acts to elongate telomeres in cells that possess its activity.[33] This enzyme is expressed during embryonic development, loses its expression during differentiation of somatic cells, and is almost undetectable in most normal human somatic cells.[34] By contrast, telomerase is expressed in ~85% of human cancers.[11,35] There are a few types of cells that normally express telomerase including germline cells, stem cells, hematopoietic cells, cells lining the intestine, and other rapidly proliferating cells. The widespread expression of telomerase in a variety of human cancers, while being almost undetectable in most normal cells, makes it a very attractive drug target.[32]

Diagnostic potential

The hTERT, the catalytic subunit of telomerase, is strongly associated with telomerase activity implicated in cellular immortalization and tumorigenesis.[33] Most
Table 1: Diagnostic implications

Author/year	Marker	Type of sample	Method/technique	Statistical analysis	Findings
Raghunandan et al., 2016(10)	hTERT	Archival biopsy tissues. OED (n=21), OSCC (n=20) and NOM (n=10)	IHC	Pearson’s Chi-square test, ANOVA using SPSS version 16	Intense expression of hTERT in potentially malignant lesions and OSCC suggests telomerase activity is involved in the development of dysplastic epithelium leading to multistage oral carcinogenesis.
Hayakawa et al., 2016(11)	hTERT and telomerase activity	EOCs and tissues of oral cancer (n=30), mucosa-associated disease (n=30) and healthy volunteers (n=30)	hTERT mRNA expression levels by RT-PCR and telomerase activity with ECTA	Kruskal-Wallis tests and the Steel-Dwass method using Microsoft excel 2010	hTERT expression, telomerase activity highest in patients with oral cancer and lowest in healthy volunteers. EOCs and tissues from the oral cavity could be used for diagnosis of oral cancer by ECTA.
Vinothkumar et al., 2016(12)	TERT	181 primary tumors of the uterine cervix and oral cavity (140 uterine cervix and 41 oral cavities)	PCR amplification and sequencing of TERT gene Promoter, screening for high-risk HPV-16 and HPV-18 by real time PCR	Statistical analyses with Fisher’s exact test were performed using GraphPad Prism version 6	High frequency of TERT hotspot mutations in both cervical (21.4% [30/140]) and oral (31.7% [13/41]) SCCs TERT reactivation through promoter mutation - important role in the carcinogenesis of cervical and oral cancers No significant differences in sensitivity and specificity associated with age, size of tumor, site of lesion, or degree of malignancy. ECTA, therefore, seems to be a promising assay for screening for oral cancer miR-31 collaborates with hTERT to immortalize NOKs and that this may contribute to early stage oral carcinogenesis. The targeting of downstream factors by miR-31 may further advance the neoplastic progression of immortalized NOKs, allowing them to become malignant SOX, and TERC gene amplifications are common in all SCCs, and their detection in early stages could be crucial for early detection and more accurate prognosis of OSCC
Hayakawa et al., 2016(13)	Telomerase	Exfoliated cells from the whole oral cavity, exfoliated cells from local lesions, and tissue from the lesion itself from 44 oral cancer patients and 26 healthy volunteers	ECTA	Mann-Whitney U-test using SPSS software (version 11, SPSS, Chicago, IL, USA)	The Mann-Whitney test, analysis of variance test and linear regression analysis
Hung et al., 2014(14)	miR-31 and hTERT	NOKs and OSCC cell lines - SAS and OECM-1	In situ hybridization, viral infection for exogenous gene expression, quantitative RT-PCR analysis, p53 mutation, Western blot analysis, IHC	The Mann-Whitney test, analysis of variance test and linear regression analysis	The Mann-Whitney test, analysis of variance test and linear regression analysis
Kokalj Vokac et al., 2014(15)	TERC-specific DNA probe and a SOX, DNA specific probe	Brush biopsies from 71 patients (exophytic and exulcerated oral and oropharyngeal lesions) and 22 healthy controls	Interphase FISH with a chromosome enumeration double-color DNA probe	ORs and the Fisher’s exact test was used to compare groups	The Mann-Whitney test, analysis of variance test and linear regression analysis

Contd...
Table 1: Contd...

Author/year	Marker	Type of sample	Method/technique	Statistical analysis	Findings
Mori et al., [16]	Telomerase	In oral cancer patients and 10 healthy volunteers, clinical samples were EOCs and tissue. In 17 healthy volunteers, only EOCs were collected	ECTA using FND as the probe. Real-time RT-PCR, and TRAP assay	Electrochemical data in the presence and absence of oral cancer - derived cultured cells and on clinical samples was evaluated by the Student’s t-test	The ECTA yielded high hit rates for cancerous and normal cells, especially in EOCs, results indicating that this minimally invasive test is suitable for oral cancer diagnosis
Palani et al., 2011[17]	hTERT	OSCC (n=30), leukoplakia (n=15), OSF (n=15) and NOM (n=10)	IHC	Pearson’s χ² test, Kappa statistics, ANOVA, Student’s t-test	Increased expression of hTERT protein in OSCC and leukoplakia samples when compared to NOM. hTERT immunostain parameters (cellular localization, nuclear labelling indices and nuclear LSs) in OSF were significantly different from OSCC and leukoplakia
Abrahao et al., 2011[18]	p53 and p16 and hTERT	15 PMD and 30 OSCC and 5 OEH	IHC	Pearson correlation, Fisher’s exact test, Kruskal-Wallis and Mann-Whitney tests using Graph Pad Prism 5.00, USA	The intense hTERT expression in OEH, PMD and OSCC suggests that telomerase activity is involved in the development of hyperplastic and dysplastic oral epithelium. No correlation with the grade of dysplasia in PMD or with the differentiation degree of OSCC
Kang et al., 2009[19]	hTERT	Cell lines: Primary NHOK and NHOF Human OSCC cell lines (SCC4, SCC9, SCC15, HEP-2, FaDu, BaP-T, and 1483)	Promoter magnetic precipitation assay, Western blotting, 2DGE, mass spectrometry, RT-PCR, protein function analysis, telomerase assay	-	MSH2, the hnRNPs and GRHL2 as novel hTERT promoter-binding proteins. Since these proteins were necessary for the intact expression of the hTERT promoter activity in OSCC cells, we speculate that they are in part responsible for the elevated hTERT expression and telomerase activation during oral carcinogenesis
Kim et al., 2008[7]	Hsp90 and hTERT	HOK-Bmi-1/E6 Immortalized cell Population, HNOK, OSCC cell lines	Western blotting, TRAP assay, semiquantitative RT-PCR, analysis of the hTERT promoter activity, ChIP assay	-	Physical interaction between Hsp90 and the hTERT promoter occurs in telomerase-positive cells but not in normal human cells. Hsp90 association with the hTERT promoter complex may, in part, be responsible for telomerase activation during cellular immortalization

Contd...
Table 1: Contd...

Author/year	Marker	Type of sample	Method/technique	Statistical analysis	Findings
Chen et al., 2007[20]	hTERT	82 specimens of OSCC, 116 specimens of OED, and 21 specimens of NOM	IHC	ANOVA, Student’s t-test, Chi-square test and log-rank test with the statistic program (StatSoft Inc., USA)	Increased expression of hTERT protein is an early event in oral carcinogenesis and hTERT may be a biomarker for OSCCs. Measuring the amount of cytoplasmic or nuclear expression of hTERT in OSCC samples may predict the oral cancer progression, recurrence, and prognosis

Table 2: Prognostic implications

Author/year	Marker	Tissue/site/sample	Method/technique	Statistical analysis	Findings
Raghunandan et al. 2016[10]	hTERT	Archival biopsy tissues. OED (n=21), OSCC (n=20) and NOM (n=10)	IHC	Pearson’s Chi-square test, ANOVA using SPSS software version 16.0	Increase in the mean percentage of cells showing hTERT expression from NOM to OED to OSCC
Dorji et al., 2015[21]	hTERC	30 OPMLs	Dual-color interphase FISH	Kaplan-Meier analysis using MedCalc® version 14.8.1 Fisher’s exact test using GraphPad QuickCalcs on-line tool	Precise morphological evaluation together with FISH assessment for hTERC gain might pave the way to stratify OPMLs into high-risk and low-risk categories and could be helpful in selecting the most appropriate treatment
Miyazaki et al., 2015[22]	hTERT, telomerase activity	46 cases of epithelial dysplasia (including carcinoma in situ) and 15 cases of OSCC The human gingival SCC-derived cell line, Ca9-22, and the human tongue SCC-derived cell lines HSC-3 and HSC-4	IHC, PCR-ELISA	Mann-Whitney U-test	Chronic inflammation, progressive epithelial dysplasia and long-term exposure to inflammatory cytokines lead to telomerase expression. This in turn leads to malignant transformation and regulates the invasion of certain types of oral cancer cells
Zhao et al., 2015[23]	hTERT	Paraffin embedded 37 OSCC, 15 OED samples and 10 matched adjacent NOM	Primary cultures of Human OSCC, lentiviral vector constructs, siRNA synthesis, IHC analysis, confocal immunofluorescence microscopy, wound healing assay, Western blot analyses	The mean hTERT LS and clinicopathological characteristics for OSCC, OED, and NOM samples were compared by ANOVA and Student’s t-test	The expression of hTERT increases from NOM to OED and OSCC. hTERT is over expressed in OED and OSCC tissues and correlates with clinical aggressiveness of OSCC patients

IHC=Immuno-histochemistry, ANOVA=Analysis of variance, hTERT=Human telomerase reverse transcriptase, OSCC=Oral squamous cell carcinoma, EOCs=Exfoliated oral cells, RT-PCR=Reverse transcription polymerase chain reaction, ECTA=Electrochemical telomerase assay, HPV=Human papillomavirus, SCCs=Squamous cell carcinomas, NOKs=Normal oral keratinocytes, FISH=Fluorescence in situ hybridization, ORs=Odds ratios, hTERC=Human telomerase RNA component, FND=Ferrocenylnaphthalene diimide, TRAP=Telomerase repeat amplification protocol, PMD=Potentially malignant disorders, OEH=Oral epithelial hyperplasia, 2DGE=Two-dimensional gel electrophoresis, Hsp=Heat shock protein, ChiP=Chromatin immunoprecipitation, OED=Oral epithelial dysplasia, NOM=Normal oral mucosa, LSs=Labelling scores, OSF=Oral submucous fibrosis
studies in our review employed hTERT to study telomerase activity in OSCC. Immunohistochemical labeling for hTERT, telomerase repeat amplification protocol (TRAP), polymerase chain reaction amplification, and sequencing of TERT gene, ECTA, and interphase FISH were the main methods for the selected studies. Archival biopsy tissues of diagnosed OSCC patients and potentially malignant disorders, exfoliated oral cells, OSCC cell lines, and normal oral mucosal biopsies were used as study samples. The following inferences were drawn from the studies under consideration:

a. Telomerase activity was highest in patients with OSCC and lowest in normal mucosa. The increased expression of hTERT protein is an early event in oral carcinogenesis and hTERT may be a biomarker for OSCCs.

b. ECTA was shown in three studies to be a promising assay in comparison with TRAP for screening for oral cancer.

c. Physical interaction between heat shock proteins and the hTERT promoter occurs in telomerase-positive cells but not in normal human cells. Heat shock protein association with the hTERT promoter complex may, in part, be responsible for telomerase activation during cellular immortalization.

d. SOX2 and TERC gene amplifications are common in all squamous cell carcinomas and their detection in early stages could be crucial for early detection and more accurate prognosis of OSCC.

Prognostic potential

Telomerase activity as shown by the mean hTERT expression in cells showed a steady increase from normal oral mucosa to oral epithelial dysplasia to OSCC. The selected studies help us draw the following inferences. Oral premalignant lesions could be classified into high-risk and low-risk categories by morphological evaluation together with FISH assessment for hTERC gain. Telomere expression has been linked to Chronic inflammation, progressive epithelial dysplasia, and long-term exposure to inflammatory cytokines which in turn pave the way to malignant transformation and regulates the invasion

Table 2: Contd...

Author/year	Marker	Tissue/site/sample	Method/technique	Statistical analysis	Findings
Sainger et al., 2009^[24]	GSTM1 polymorphism with telomere length and telomerase activity	Tissues specimens from 100 patients with confirmed diagnosis of oral cancer	Telomerase activity by TRAP assay, telomere length changes by Southern hybridization method, GSTM1 polymorphism by PCR	Student’s t-test, Chi-square test, Mann-Whitney U-test, multivariate analysis and Pearson’s correlation coefficients	Possible link between the absence of GSTM1 gene and telomere length alterations. Implicates the usefulness of GSTM1 polymorphism analysis and its role in determining individual susceptibility towards cancer and telomere associated changes
Pannone et al., 2007^[25]	hTERT gene expression	Tissue specimens of oral dysplasia (15) and OSCC (42). Metastatic lymph nodes also collected.	Real-time RT-PCR and IHC protein analyses	ANOVA, student-Newman-Keuls test, Chi-square test and Kaplan-Meier’s methods	No significant relationship between hTERT expression and classical clinicopathological parameters
Sainger et al., 2007^[26]	Telomere length, telomerase activity, TRF-1 and TRF-2	Tissues specimens from 100 patients with confirmed diagnosis of oral cancer	Southern hybridisation method, Western blot method and telomeric repeat amplification protocol	Unpaired and paired t-tests, ANOVA, multivariate tests, Kaplan-Meier survival curves and log rank statistics	Significant clinical usefulness of telomere length, TRF and telomerase activation in the prognosis of oral cancer patients
Chen 2007^[20]	hTERT	Specimens of OSCC (82), OED (116), and NOM (21)	IHC	ANOVA, Student’s t-test, Chi-square test and log-rank test	Significantly higher recurrence rate in OSCC patients with nuclear hTERT LSs >100% than in OSCC patients with nuclear hTERT LSs ≤100%

hTERT=Human telomerase reverse transcriptase, OSCC=Oral squamous cell carcinoma, NOM=Normal oral mucosa, IHC=Immunohistochemistry, ANOVA=Analysis of variance, OPMLs=Oral potentially malignant lesions, FISH=Fluorescence in situ hybridization, hTERC=Human telomerase RNA component, SCC=Squamous cell carcinoma, RT-PCR=Reverse transcription polymerase chain reaction, ELISA=Enzyme-linked immunosorbent assay, OED=Oral epithelial dysplasia, LS=Labelling scores, GSTM1=Glutathione S-transferase M1, TRAP=Telomerase repeat amplification protocol, TRF=Telomeric repeat binding factor
Table 3: Therapeutic implications

Author/year	Marker	Tissue/site/sample	Method/technique	Statistical analysis	Findings
Tian *et al.*, 2015[^27]	hTERT	The CAPAN-2 human pancreatic cancer cell line (HTB-80) and the CAL-27 human oral cancer cell line (CRL-2095)	Cell Viability Test, Annexin V fluorescein staining assay, Comet assay for DNA damage, telomerase activity assay, design and transfection of small interfering RNA, real-time PCR, Western blotting for hTERT	Two-tailed Student’s t-test or post hoc Bonferroni’s test using GraphPad Prism 5 software	Bufalin down regulates hTERT expression via the activation of the JNK/p38 pathway, providing new insights into the mechanisms underlying bufalin’s anti-cancer activity
Zhao *et al.*, 2015[^23]	hTERT	Paraffin embedded 37 OSCC, 15 OED samples and 10 matched adjacent NOM	Primary cultures of human OSCC, lentiviral vector constructs, siRNA synthesis, IHC analysis, confocal immunofluorescence microscopy, wound healing assay, Western blot analyses	The mean hTERT LS and clinicopathological characteristics for OSCC, OED, and NOM samples were compared by ANOVA and Student’s t-test	hTERT provides an explanation for the aggressive nature of human tumors and the possibly mechanism that links hTERT to EMT property, which may partially by targeting activation of the Wnt/β-catenin pathway. Thus, hTERT represents a possible therapeutic target in highly metastatic cancers
Liu *et al.*, 2011[^26]	hTERT	PAMAM dendrimers, generations (G), Human oral cancer cell lines (Tca8113 and SCC-9)	Real-time RT-PCR analysis, Western blot analysis, telomerase activity assay, IHC, cell apoptosis and proliferation assay	One-way ANOVA, two-tailed Student’s t-test and Mann-Whitney U-test. (Statview 4.01, Abacus Concepts)	Dendrimer-mediated shRNA efficiently silenced the hTERT gene in vitro, resulting in cell growth inhibition and apoptosis. RNAi - mediated hTERT gene silencing, coupled with dendrimer delivery, may provide a promising approach for the treatment of oral cancer
McCaul *et al.*, 2008[^29]	hTERT, telomerase activity	OSCC cell lines	Telomere function, as measured by the ABI, was tested as a predictor of radio-resistance in a panel of OSCC lines	Mann-Whitney U-test and regression analysis using the SPSS software package (SPSS Chicago, Illinois)	Telomerase inhibitors could sensitise a subset of oral SCCs with short telomeres to radiotherapy and for the first time demonstrate that the tumour ABI may assist the selection of cancers that would be suitable for such sensitisation therapy
Freier *et al.*, 2007[^30]	TERT gene and hTERT	TMA sections including 247 OSCC and 105 PSCC/LSCC	FISH for TERT and IHC for hTERT	Fisher’s exact test, Kaplan-Meier analysis, log-rank tests	High hTERT expression is a frequent finding in OSCC. It might be a promising target for the development of specific anti-neoplastic therapy approaches

[^27]: Human telomerase reverse transcriptase, RT-PCR=Reverse transcription polymerase chain reaction, OSCC=Oral squamous cell carcinoma, OED=Oral epithelial dysplasia, NOM=Normal oral mucosa, IHC=Immu-histochemistry, LSs=Labelling scores, ANOVA=Analysis of variance, EMT=Epithelial mesenchymal transition, SCC=Squamous cell carcinoma, ABI=Anaphase Bridge Index, TMA=Tissue microarray, PSCCs=Pharyngeal squamous cell carcinomas, LSCCs=Laryngeal squamous cell carcinomas, FISH=Fluorescence in situ hybridization

of certain types of oral cancer cells[^22]. Telomere length, telomeric repeat binding factor, and telomerase activation have been strongly linked to the prognosis of oral cancer patients.[^26] A high recurrence rate in OSCC patients has been associated with high hTERT labeling indices. On the contrary, work done by Pannone *et al.* showed that telomere activity could not be linked to classical clinicopathological parameters, as there was no significant relationship between hTERT expression and several clinicopathological parameters such as tumor stage, size, and histological grade.[^23] GSTM1 polymorphism has also been linked to determine individual susceptibility toward cancer and telomere-associated changes.[^24]

Therapeutic potential

Several telomerase-based immunotherapy strategies have been developed and many are in advanced clinical trials, making this a rapidly progressing field of antitelomerase cancer therapy.[^37-40] Telomerase is an attractive target antigen for cancer immunotherapy because it is expressed
almost universally in human cancers and is functionally required to sustain malignant tumor long-term growth.[41]

While telomerase is expressed in some normal tissues,[42-44] no patients have exhibited serious adverse effects (such as autoimmune disease or bone marrow depletion) indicative of an immune response against normal cells. One explanation is that normal cells express very low levels of hTERT,[44] making them poor targets relative to tumor cells with high levels of hTERT expression.

In OSCC patients, hTERT has been linked to epithelial mesenchymal transition, providing an explanation for the aggressive nature of human tumors and partially explained by activation of the Wnt/β-catenin pathway.[23] Telomerase inhibitors could also be used to sensititize a subset of OSCCs with short telomeres to radiotherapy and for the first time demonstrate that the tumor Anaphase Bridge Index may assist the selection of cancers that would be suitable for such sensitization therapy.[29] Thus, hTERT represents a possible therapeutic target in highly metastatic cancers.[23]

Conclusion

This systematic review is focused on the association of OSCC and telomerase activity with special emphasis on telomerase-based diagnosis, prognosis, and the prospects for its use in anticancer therapy. The literature search and critical review suggested a positive link between increased expression of hTERT protein and oral carcinogenesis. Increased telomerase activity/hTERT expression correlates with poorer prognosis and a high recurrence rate for OSCC. However, there is a need for studies exploring its plausible role as a biomarker in diagnostic immunopathology. The telomere hypothesis of cancer cell immortalization remains an attractive yet not fully understood concept.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011;144:646-74.
2. Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis 2010;31:9-18.
3. Martínez P, Blasco MA. Telomeric and extra-telomeric roles for telomere and the telomere-binding proteins. Nat Rev Cancer 2011;11:161-76.
4. Mocellin S, Pooley KA, Nitti D. Telomerase and the search for the end of cancer. Trends Mol Med 2013;19:125-33.
5. Kim NW, Piatsyzek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994;266:2011-5.
6. Hiyama E, Hiyama K, Yokoyama T, Matsuura Y, Piatsyzek MA, Shay JW. Correlating telomerase activity levels with human neuroblastoma outcomes. Nat Med 1995;1:249-55.
7. Kim RH, Kim R, Chen W, Hu S, Shin KH, Park NH, et al. Association of hsp90 to the hTERT promoter is necessary for hTERT expression in human oral cancer cells. Carcinogenesis 2008;29:2425-31.
8. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: A tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003;3:25.
9. Kapoor P, Kharbanda OP, Monga N, Miglani R, Kapila S. Effect of orthodontic forces on cytokine and receptor levels in gingival crevicular fluid: A systematic review. Prog Orthod 2014;15:65.
10. Raghunandan BN, Sanjai K, Kumaraswamy J, Papaiah L, Pandey B, Jyothi BM. Expression of human telomerase reverse transcriptase protein in oral epithelial dysplasia and oral squamous cell carcinoma: An immunohistochemical study. J Oral Maxillofac Pathol 2016;20:96-101.
11. Hayakawa M, Sato S, Diai I, Kodama M, Tomoeda-Mori K, Haraguchi K, et al. Screening for oral cancer using electrochemical telomerase assay. Electromanalysis 2016;28:505-7.
12. Vinothkumar V, Arunkumar G, Revathi S, Arun K, Manikanand M, Rao AK, et al. TERT promoter hot spot mutations are frequent in Indian cervical and oral squamous cell carcinomas. Tumour Biol 2016;37:7907-13.
13. Hayakawa M, Kodama M, Sato S, Tomoeda-Mori K, Haraguchi K, Habu M, et al. Electrochemical telomerase assay for screening for oral cancer. Br J Oral Maxillofac Surg 2016;54:301-5.
14. Hung PS, Tu HF, Kao SY, Yang CC, Liu CJ, Huang TY, et al. miR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes. Carcinogenesis 2014;35:1162-71.
15. Kokalj Vokac N, Cizmarcivic B, Zagorac A, Zagradins B, Lanišnik B. An evaluation of SOX2 and hTERT gene amplifications as screening markers in oral and oropharyngeal squamous cell carcinomas. Mol Cytogenet 2014;7:5.
16. Mori K, Sato S, Kodama M, Habu M, Takahashi O, Nishihara T, et al. Oral cancer diagnosis via a ferrocenylnaphthalene diimide-based electrochemical telomerase assay. Clin Chem 2013;59:289-95.
17. Palani J, Lakshminarayanan V, Kannan R. Immunohistochemical detection of human telomerase reverse transcriptase in oral cancer and pre-cancer. Indian J Dent Res 2011;22:362.
18. Abrahaa AC, Bonelli BV, Nunes FD, Dias EP, Cabral MG. Immunohistochemical expression of p53, p16 and hTERT in oral squamous cell carcinoma and potentially malignant disorders. Braz Oral Res 2011;25:34-41.
19. Kang X, Chen W, Kim RH, Kang MK, Park NH. Regulation of the hTERT promoter activity by MSH2, the h4NPs K and D, and GRHL2 in human oral squamous cell carcinoma cells. Oncogene 2009;28:565-74.
20. Chen HH, Yu CH, Wang JT, Liu BY, Wang YP, Sun A, et al. Expression of human telomerase reverse transcriptase (hTERT) protein is significantly associated with the progression, recurrence and prognosis of oral squamous cell carcinoma in Taiwan. Oral Oncol 2007;43:122-9.
21. Dorji T, Monti V, Fellegara G, Gabba S, Grazioli V, Repetti E, et al. Gain of hTERT: A genetic marker of malignancy in oral potentially malignant lesions. Hum Pathol 2015;46:1275-81.
22. Miyazaki Y, Yoshida N, Nozaki T, Inoue H, Kikuchi K, Kusama K. Telomerase activity in the occurrence and progression of oral squamous cell carcinoma. J Oral Sci 2015;57:295-303.
23. Zhao T, Hu F, Qiao B, Chen Z, Tao Q. Telomerase reverse transcriptase potentially promotes the progression
of oral squamous cell carcinoma through induction of epithelial-mesenchymal transition. Int J Oncol 2015;46:2205-15.

24. Sainger RN, Shah FD, Telang SD, Shah PM, Patel PS. Telomere attrition and telomerase activity are associated with GSTM1 polymorphism in oral cancer. Cancer Biomark 2009;5:189-95.

25. Pannone G, De Maria S, Zamparese R, Metafora S, Serpico R, Morelli F, et al. Prognostic value of human telomerase reverse transcriptase gene expression in oral carcinogenesis. Int J Oncol 2007;30:1349-57.

26. Sainger RN, Telang SD, Shukla SN, Patel PS. Clinical significance of telomere length and associated proteins in oral cancer. Biomark Insights 2007;2:9-19.

27. Tian X, Dai S, Sun J, Jiang S, Sui C, Meng F, et al. Bufalin induces mitochondria-dependent apoptosis in pancreatic and oral cancer cells by downregulating hTERT expression via activation of the JNK/p38 pathway. Evid Based Complement Alternat Med 2015;2015:546210.

28. Liu X, Huang H, Wang J, Wang C, Wang M, Zhang B, et al. Dendrimers-delivered short hairpin RNA targeting hTERT inhibits oral cancer cell growth in vitro and in vivo. Biochem Pharmacol 2011;82:17-23.

29. McCaul JA, Gordon KE, Minty F, Fleming J, Parkinson EK. Telomere dysfunction is related to the intrinsic radio-resistance of human oral cancer cells. Oral Oncol 2008;44:261-9.

30. Freier K, Pungs S, Flechtenmacher C, Bosch FX, Lichter P, Joos S, et al. Frequent high telomerase reverse transcriptase expression in primary oral squamous cell carcinoma. J Oral Pathol Med 2007;36:267-72.

31. Hayflick L. Mortality and immortality at the cellular level. A review. Biochemistry (Mosc) 1997;62:1180-90.

32. Cunningham AP, Love WK, Zhang RW, Andrews LG, Tollefsbol TO. Telomerase inhibition in cancer therapeutics: Molecular-based approaches. Curr Med Chem 2006;13:2875-88.

33. Kumar SK, Zain RB, Ismail SM, Cheong SC. Human telomerase reverse transcriptase expression in oral carcinogenesis – A preliminary report. J Exp Clin Cancer Res 2005;24:639-46.

34. Masutomi K, Yu EY, Khurts S, Ben-Porath I, Currier JL, Metz GB, et al. Telomerase maintains telomere structure in normal human cells. Cell 2003;114:241-53.

35. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997;33:787-91.

36. Bablani Popli D, Sircar K, Chowdhry A, Rani V. Role of heat shock proteins in oral squamous cell carcinoma: A systematic review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015;159:366-71.

37. Minerv B, Hipp J, Finat H, Schmidt JD, Langlade-Demoyen P, Zanetti M. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc Natl Acad Sci U S A 2000;97:4796-801.

38. Vonderheide RH. Universal tumor antigens for cancer vaccination: Targeting telomerase for immunoprevention. Discov Med 2007;7:103-8.

39. Liu JP, Chen W, Schwarzer AP, Li H. Telomerase in cancer immunotherapy. Biochim Biophys Acta 2010;1805:35-42.

40. Carpenter EL, Vonderheide RH. Telomerase-based immunotherapy of cancer. Expert Opin Biol Ther 2006;6:1031-9.

41. Vonderheide RH. Telomerase as a universal tumor-associated antigen for cancer immunotherapy. Oncogene 2002;21:674-9.

42. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 1996;18:173-9.

43. Uchida N, Otsuka T, Shigematsu H, Maeda M, Sugio Y, Itoh Y, et al. Differential gene expression of human telomerase-associated protein hTERT and TEP1 in human hematopoietic cells. Leuk Res 1999;23:1127-32.

44. Tahara H, Yasui W, Tahara E, Fujimoto J, Ito K, Tamai K, et al. Immuno-histochemical detection of human telomerase catalytic component, hTERT, in human colorectal tumor and non-tumor tissue sections. Oncogene 1999;18:1561-7.
Annexures

Annexure 1: Search strategy ([telomerase] or [telomerase reverse transcriptase] or [human TERT gene] or [reverse transcriptase catalytic protein] or [TRAP] or [terminal transferase] or [telomerase RNA component] or [telomerase RNA] or [hTR]) and ([oral cancer] or [oral squamous cell carcinoma] or [head and neck cancer])

Annexure 2: Quality assessment instrument

I. Study design
1. Objective – objective clearly formulated (Y), (No), (Unclear)
2. Sample size – considered adequate (Y), (No), (Unclear)
3. Spectrum of patients/sample representative of patients receiving the test in practice (Y), (No), (Unclear)
4. Was an appropriate sample size calculation performed and were sufficient patients included in the study (Y), (No), (Unclear)
5. Ethical clearance mentioned (Y), (No), (Unclear)
6. Selection criteria-clearly described (Y), (No), (Unclear)
7. Randomization – stated (Y), (No), (Unclear)
8. Baseline characteristics-clearly defined (Y), (No), (Unclear)
9. Control-clearly defined (Y), (No), (Unclear)
10. Were withdrawals from the study explained (Y), (No), (Unclear).

II. Statistical analysis
1. Dropouts – dropouts included in data analysis (Y), (No), (Unclear)
2. Statistical analysis – appropriate for data (Y), (No), (Unclear)
3. Statistical significance level – P value stated (Y), (No), (Unclear)
4. Confidence intervals provided (Y), (No), (Unclear).

III. Study results and conclusions
1. Conclusions-specific (Y), (No), (Unclear).