Image Segmentation Using Deep Learning: A Survey

Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and Demetri Terzopoulos

Abstract—Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.

Index Terms—Image segmentation, deep learning, convolutional neural networks, encoder-decoder models, recurrent models, generative models, semantic segmentation, instance segmentation, medical image segmentation.

1 INTRODUCTION

Image segmentation is an essential component in many visual understanding systems. It involves partitioning images (or video frames) into multiple segments or objects [1]. Segmentation plays a central role in a broad range of applications [2], including medical image analysis (e.g., tumor boundary extraction and measurement of tissue volumes), autonomous vehicles (e.g., navigable surface and pedestrian detection), video surveillance, and augmented reality to count a few. Numerous image segmentation algorithms have been developed in the literature, from the earliest methods, such as thresholding [3], histogram-based bundling, region-growing [4], k-means clustering [5], watersheds [6], to more advanced algorithms such as active contours [7], graph cuts [8], conditional and Markov random fields [9], and sparsity-based [10]-[11] methods. Over the past few years, however, deep learning (DL) networks have yielded a new generation of image segmentation models with remarkable performance improvements —often achieving the highest accuracy rates on popular benchmarks— resulting in what many regard as a paradigm shift in the field. For example, Figure 1 presents sample image segmentation outputs of a prominent deep learning model, DeepLabv3 [12].

Image segmentation can be formulated as a classification problem of pixels with semantic labels (semantic segmentation) or partitioning of individual objects (instance segmentation). Semantic segmentation performs pixel-level labeling with a set of object categories (e.g., human, car, tree, sky) for all image pixels, thus it is generally a harder undertaking than image classification, which predicts a single label for the entire image. Instance segmentation extends semantic segmentation scope further by detecting and delineating each object of interest in the image (e.g., partitioning of individual persons).

Our survey covers the most recent literature in image segmentation and discusses more than a hundred deep learning-based segmentation methods proposed until 2019. We provide a comprehensive review and insights on different aspects of these methods, including the training data, the choice of network architectures, loss functions, training strategies, and their key contributions. We present a comparative summary of the performance of the reviewed methods and discuss several challenges and potential future directions for deep learning-based image segmentation models.

We group deep learning-based works into the following categories based on their main technical contributions:

1) Fully convolutional networks
2) Convolutional models with graphical models
3) Encoder-decoder based models
4) Multi-scale and pyramid network based models
5) R-CNN based models (for instance segmentation)
6) Dilated convolutional models and DeepLab family
7) Recurrent neural network based models
8) Attention-based models
9) Generative models and adversarial training
10) Convolutional models with active contour models
11) Other models

Some the key contributions of this survey paper can be summarized as follows:

- This survey covers the contemporary literature with respect to segmentation problem, and overviews more than 100 segmentation algorithms proposed till 2019, grouped into 10 categories.
- We provide a comprehensive review and an insightful analysis of different aspects of segmentation algorithms using deep learning, including the training data, the choice of network architectures, loss functions, training strategies, and their key contributions.
- We provide an overview of around 20 popular image segmentation datasets, grouped into 2D, 2.5D (RGB-D), and 3D images.
- We provide a comparative summary of the properties and performance of the reviewed methods for segmentation purposes, on popular benchmarks.
- We provide several challenges and potential future directions for deep learning-based image segmentation.

The remainder of this survey is organized as follows: Section 2 provides an overview of popular deep neural network architectures that serve as the backbone of many modern segmentation algorithms. Section 3 provides a comprehensive overview of the most significant state-of-the-art deep learning based segmentation models, more than 100 till 2019. We also discuss their strengths and contributions over previous works here. Section 4 reviews some of the most popular image segmentation datasets and their characteristics. Section 5.1 reviews popular metrics for evaluating deep-learning-based segmentation models. In Section 5.2, we report the quantitative results and experimental performance of these models. In Section 6, we discuss the main challenges and future directions for deep learning-based segmentation methods. Finally, we present our conclusions in Section 7.

2 Overview of Deep Neural Networks

This section provides an overview of some of the most prominent deep learning architectures used by the computer vision community, including convolutional neural networks (CNNs) [13], recurrent neural networks (RNNs) and long short term memory (LSTM) [14], encoder-decoders [15], and generative adversarial networks (GANs) [16]. With the popularity of deep learning in recent years, several other deep neural architectures have been proposed, such as transformers, capsule networks, gated recurrent units, spatial transformer networks, etc., which will not be covered here.

2.1 Convolutional Neural Networks (CNNs)

CNNs are among the most successful and widely used architectures in the deep learning community, especially for computer vision tasks. CNNs were initially proposed by Fukushima in his seminal paper on the “Neocognitron” [17], based on the hierarchical receptive field model of the visual cortex proposed by Hubel and Wiesel. Subsequently, Waibel et al. [18] introduced CNNs with weights shared among temporal receptive fields and backpropagation training for phoneme recognition, and LeCun et al. [13] developed a CNN architecture for document recognition (Figure 2).

![Fig. 2. Architecture of convolutional neural networks. From [13].](image)

CNNs mainly consist of three type of layers: i) convolutional layers, where a kernel (or filter) of weights is convolved in order to extract features; ii) nonlinear layers, which apply an activation function on feature maps (usually element-wise) in order to enable the modeling of non-linear functions by the network; and iii) pooling layers, which replace a small neighborhood of a feature map with some statistical information (mean, max, etc.) about the neighborhood and reduce spatial resolution. The units in layers are locally connected; that is, each unit receives weighted inputs from a small neighborhood, known as the receptive field, of units in the previous layer. By stacking layers to form multi-resolution pyramids, the higher-level layers learn features from increasingly wider receptive fields. The main computational advantage of CNNs is that all the receptive fields in a layer share weights, resulting in a significantly smaller number of parameters than fully-connected neural networks. Some of the most well-known CNN architectures include: AlexNet [19], VGGNet [20], ResNet [21], GoogLeNet [22], MobileNet [23], and DenseNet [24].

2.2 Recurrent Neural Networks (RNNs) and the LSTM

RNNs [25] are widely used to process sequential data, such as speech, text, videos, and time-series, where data at any given time/position depends on previously encountered data. At each time-stamp the model collects the input from the current time X_i and the hidden state from the previous step h_{i-1}, and outputs a target value and a new hidden state (Figure 3).

![Fig. 3. Architecture of a simple recurrent neural network.](image)

RNNs are typically problematic with long sequences as they cannot capture long-term dependencies in many real-world applications (although they exhibit no theoretical limitations in this regard) and often suffer from gradient vanishing or exploding problems. However, a type of RNNs called Long Short Term Memory (LSTM) [14] is designed to avoid these issues. The LSTM architecture (Figure 4) includes three gates (input gate, output gate, forget gate), which
regulate the flow of information into and out from a memory cell, which stores values over arbitrary time intervals.

2.3 Encoder-Decoder and Auto-Encoder Models

Encoder-Decoder models are a family of models which learn to map data-points from an input domain to an output domain via a two-stage network: The encoder, represented by an encoding function \(z = f(x) \), compresses the input into a latent-space representation; the decoder, \(y = g(z) \), aims to predict the output from the latent space representation. The latent representation here essentially refers to a feature (vector) representation, which is able to capture the underlying semantic information of the input that is useful for predicting the output. These models are extremely popular in image-to-image translation problems, as well as for sequence models in NLP. Figure 5 illustrates the block-diagram of a simple encoder-decoder model. These models are usually trained by minimizing the reconstruction loss \(L(y, \hat{y}) \), which measures the differences between the ground-truth output \(y \) and the subsequent reconstruction \(\hat{y} \). The output here could be an enhanced version of the image (such as in image de-blurring, or super-resolution), or a segmentation map.

Auto-encoders are special case of encoder-decoder models in which the input and output are the same. Several variations of auto-encoders have been proposed. One of the most popular is the stacked denoising auto-encoder (SDAE) [26], which stacks several auto-encoders and uses them for image denoising purposes. Another popular variant is the variational auto-encoder (VAE) [27], which imposes a prior distribution on the latent representation. VAEs are able to generate realistic samples from a given data distribution. Another variant is adversarial auto-encoders, which introduces an adversarial loss on the latent representation to encourage them to approximate a prior distribution.

2.4 Generative Adversarial Networks (GANs)

GANs are a newer family of deep learning models [16]. They consist of two networks—a generator and a discriminator (Figure 6). The generator network \(G = z \rightarrow y \) in the conventional GAN learns a mapping from noise \(z \) (with a prior distribution) to a target distribution \(y \), which is similar to the “real” samples. The discriminator network \(D \) attempts to distinguish the generated samples (“fakes”) from the “real” ones. The GAN loss function may be written as \(\mathcal{L}_{GAN} = \mathbb{E}_{z \sim p_{data}(z)}[\log D(z)] + \mathbb{E}_{y \sim p_{data}(y)}[\log(1 - D(G(z)))]. \)

We can regard the GAN as a minimax game between \(G \) and \(D \), where \(D \) is trying to minimize its classification error in distinguishing fake samples from real ones, hence maximizing the loss function, and \(G \) is trying to maximize the discriminator network’s error, hence minimizing the loss function. After training the model, the trained generator model would be \(G^* = \arg \min_G \max_D \mathcal{L}_{GAN} \) In practice, this function may not provide enough gradient for effectively training \(G \), specially initially (when \(D \) can easily discriminate fake samples from real ones). Instead of minimizing \(\mathbb{E}_{z \sim p_{data}(z)}[\log(1 - D(G(z)))], \) a possible solution is to train it to maximize \(\mathbb{E}_{z \sim p_{data}(z)}[\log(D(G(z)))]. \)

Since the invention of GANs, researchers have endeavored to improve/modify GANs several ways. For example, Radford et al. [28] proposed a convolutional GAN model, which works better than fully-connected networks when used for image generation. Mirza [29] proposed a conditional GAN model that can generate images conditioned on class labels, which enables one to generate samples with specified labels. Arjovsky et al. [30] proposed a new loss function based on the Wasserstein (a.k.a. earth mover’s distance) to better estimate the distance for cases in which the distribution of real and generated samples are non-overlapping (hence the Kullback-Leibler divergence is not a good measure of the distance). For additional works, we refer the reader to [31].

2.5 Transfer Learning

In some cases the DL-models can be trained from scratch on new applications/datasets (assuming a sufficient quantity of labeled training data), but in many cases there are not enough labeled data available to train a model from scratch and one can use transfer learning to tackle this problem. In transfer learning, a model trained on one task is re-purposed on another (related) task, usually by some adaptation process toward the new task. For example, one can imagine adapting an image classification model trained on ImageNet to a different task, such as texture classification, or face recognition. In image segmentation case, many people use a model trained on ImageNet (a larger dataset than most of image segmentation datasets), as the encoder part of the network, and re-train their model from those initial weights. The assumption here is that those pre-trained models should be able to capture the semantic information of the image required for segmentation, and therefore enabling them to train the model with less labeled samples.
This section provides a detailed review of more than a hundred deep learning-based segmentation methods proposed until 2019, grouped into 10 categories. It is worth mentioning that there are some pieces that are common among many of these works, such as having encoder and decoder parts, skip-connections, multi-scale analysis, and more recently the use of dilated convolution. Because of this, it is difficult to mention the unique contributions of each work, but easier to group them based on their underlying architectural contribution over previous works.

3.1 Fully Convolutional Networks

Long et al. [32] proposed one of the first deep learning works for semantic image segmentation, using a fully convolutional network (FCN). An FCN (Figure 7) includes only convolutional layers, which enables it to take an image of arbitrary size and produce a segmentation map of the same size. The authors modified existing CNN architectures, such as VGG16 and GoogLeNet, to manage non-fixed sized input and output, by replacing all fully-connected layers with the fully-convolutional layers. As a result, the model outputs a spatial segmentation map instead of classification scores.

Through the use of skip connections in which feature maps from the final layers of the model are up-sampled and fused with feature maps of earlier layers (Figure 8), the model combines semantic information (from deep, coarse layers) and appearance information (from shallow, fine layers) in order to produce accurate and detailed segmentations. The model was tested on PASCAL VOC, NYUDv2, and SIFT Flow, and achieved state-of-the-art segmentation performance.

This work is considered a milestone in image segmentation, demonstrating that deep networks can be trained for semantic segmentation in an end-to-end manner on variable-sized images. However, despite its popularity and effectiveness, the conventional FCN model has some limitations—it is not fast enough for real-time inference, it does not take into account the global context information in an efficient way, and it is not easily transferable to 3D images. Several efforts have attempted to overcome some of the limitations of the FCN.

For instance, Liu et al. [33] proposed a model called ParseNet, to address an issue with FCN—ignoring global context information. ParseNet adds global context to FCNs by using the average feature for a layer to augment the features at each location. The feature map for a layer is pooled over the whole image resulting in a context vector. This context vector is normalized and unpool to produce new feature maps of the same size as the initial ones. These feature maps are then concatenated. In a nutshell, ParseNet is an FCN with the described module replacing the convolutional layers (Figure 9).

FCNs have been applied to a variety of segmentation problems, such as brain tumor segmentation [34], instance-aware semantic segmentation [35], skin lesion segmentation [36], and iris segmentation [37].

3.2 Convolutional Models With Graphical Models

As discussed, FCN ignores potentially useful scene-level semantic context. To integrate more context, several approaches incorporate probabilistic graphical models, such as Conditional Random Fields (CRFs) and Markov Random Field (MRFs), into DL architectures.

Chen et al. [38] proposed a semantic segmentation algorithm based on the combination of CNNs and fully connected CRFs (Figure 10). They showed that responses from the final layer of deep CNNs are not sufficiently localized for accurate object segmentation (due to the invariance properties that make CNNs good for high level tasks such as classification). To overcome the poor localization property of deep CNNs, they combined the responses at the final CNN layer with a fully-connected CRF. They showed that their model is able to localize segment boundaries at a higher accuracy rate than it was possible with previous methods.

Schwing and Urtasun [39] proposed a fully-connected deep structured network for image segmentation. They
presented a method that jointly trains CNNs and fully-connected CRFs for semantic image segmentation, and achieved encouraging results on the challenging PASCAL VOC 2012 dataset. In [40], Zheng et al. proposed a similar semantic segmentation approach integrating CRF with CNN.

In another relevant work, Lin et al. [41] proposed an efficient algorithm for semantic segmentation based on contextual deep CRFs. They explored “patch-patch” context (between image regions) and “patch-background” context to improve semantic segmentation through the use of contextual information.

Liu et al. [42] proposed a semantic segmentation algorithm that incorporates rich information into MRFs, including high-order relations and mixture of label contexts. Unlike previous works that optimized MRFs using iterative algorithms, they proposed a CNN model, namely a Parsing Network, which enables deterministic end-to-end computation in a single forward pass.

3.3 Encoder-Decoder Based Models

Another popular family of deep models for image segmentation is based on the convolutional encoder-decoder architecture. Most of the DL-based segmentation works use some kind of encoder-decoder models. We group these works into two categories, encoder-decoder models for general segmentation, and for medical image segmentation (to better distinguish between applications).

3.3.1 Encoder-Decoder Models for General Segmentation

Noh et al. [43] published an early paper on semantic segmentation based on deconvolution (a.k.a. transposed convolution). Their model (Figure 11) consists of two parts, an encoder using convolutional layers adopted from the VGG 16-layer network and a deconvolutional network that takes the feature vector as input and generates a map of pixel-wise class probabilities. The deconvolution network is composed of deconvolution and unpooling layers, which identify pixel-wise class labels and predict segmentation masks.

This network achieved promising performance on the PASCAL VOC 2012 dataset, and obtained the best accuracy (72.5%) among the methods trained with no external data at the time.

In another promising work known as SegNet, Badrinarayanan et al. [44] proposed a convolutional encoder-decoder architecture for image segmentation (Figure 12). Similar to the deconvolution network, the core trainable segmentation engine of SegNet consists of an encoder network, which is topologically identical to the 13 convolutional layers in the VGG16 network, and a corresponding decoder network followed by a pixel-wise classification layer. The main novelty of SegNet is in the way the decoder upsamples its lower resolution input feature map(s); specifically, it uses pooling indices computed in the max-pooling step of the corresponding encoder to perform non-linear upsampling. This eliminates the need for learning to up-sample. The (sparse) up-sampled maps are then convolved with trainable filters to produce dense feature maps. SegNet is also significantly smaller in the number of trainable parameters than other competing architectures. A Bayesian version of SegNet was also proposed by the same authors to model the uncertainty inherent to the convolutional encoder-decoder network for scene segmentation [45].

Several other works adopt transposed convolutions, or encoder-decoders for image segmentation, such as Stacked Deconvolutional Network (SDN) [46], Linknet [47], W-Net [48], and locality-sensitive deconvolution networks for RGB-D segmentation [49].

3.3.2 Encoder-Decoder Models for Medical and Biomedical Image Segmentation

There are several models initially developed for medical/biomedical image segmentation, which are inspired by FCNs and encoder-decoder models. U-Net [50], and V-Net [51], are two well-known such architectures, which are now also being used outside the medical domain.

Ronneberger et al. [50] proposed the U-Net for segmenting biological microscopy images. Their network and training strategy relies on the use of data augmentation to learn from the available annotated images more effectively. The U-Net architecture (Figure 13) comprises two parts, a contracting path to capture context, and a symmetric expanding path that enables precise localization. The down-sampling or contracting part has a FCN-like architecture that extracts features with 3×3 convolutions. The up-sampling or expanding part uses up-convolution (or deconvolution), reducing the number of feature maps while increasing their dimensions. Feature maps from the down-sampling part of the network are copied to the up-sampling part to avoid losing pattern information. Finally, a 1×1 convolution processes the feature maps to generate a segmentation map that categorizes each pixel of the input image. U-Net was trained on 30 transmitted light microscopy images, and it won the ISBI cell tracking challenge 2015 by a large margin.

Various extensions of U-Net have been developed for different kinds of images. For example, Cieck [52] proposed a U-Net architecture for 3D images. Zhou et al. [53] developed a nested U-Net architecture. U-Net has also been applied...
3.4 Multi-Scale and Pyramid Network Based Models

Multi-scale analysis, a rather old idea in image processing, has been deployed in various neural network architectures. One of the most prominent models of this sort is the Feature Pyramid Network (FPN) proposed by Lin et al. [56], which was developed mainly for object detection but was then also applied to segmentation. The inherent multi-scale, pyramidal hierarchy of deep CNNs was used to construct feature pyramids with marginal extra cost. To merge low and high resolution features, the FPN is composed of a bottom-up pathway, a top-down pathway and lateral connections. The concatenated feature maps are then processed by a 3×3 convolution to produce the output of each stage. Finally, each stage of the top-down pathway generates a prediction to detect an object. For image segmentation, the authors use two multi-layer perceptrons (MLPs) to generate the masks.

Zhao et al. [57] developed the Pyramid Scene Parsing Network (PSPN), a multi-scale network to better learn the global context representation of a scene (Figure 15). Different patterns are extracted from the input image using a residual network (ResNet) as a feature extractor, with a dilated network. These feature maps are then fed into a pyramid pooling module to distinguish patterns of different scales. They are pooled at four different scales, each one corresponding to a pyramid level and processed by a 1×1 convolutional layer to reduce their dimensions. The outputs of the pyramid levels are up-sampled and concatenated with the initial feature maps to capture both local and global context information. Finally, a convolutional layer is used to generate the pixel-wise predictions.

Ghiasi and Fowlkes [58] developed a multi-resolution reconstruction architecture based on a Laplacian pyramid that uses skip connections from higher resolution feature maps and multiplicative gating to successively refine segmentation boundaries reconstructed from lower-resolution maps. They showed that, while the apparent spatial resolution of convolutional feature maps is low, the high-dimensional feature representation contains significant sub-pixel localization information.

There are other models using multi-scale analysis for segmentation, such as DM-Net (Dynamic Multi-scale Filters Network) [59], Context contrasted network and gated multi-scale aggregation (CCN) [60], Adaptive Pyramid Context Network (APC-Net) [61], Multi-scale context intertwining (MSCI) [62], and salient object segmentation [63].

3.5 R-CNN Based Models (for Instance Segmentation)

The regional convolutional network (R-CNN) and its extensions (Fast R-CNN, Faster R-CNN, Maksed-RCNN) have proven successful in object detection applications. Some of the extensions of R-CNN have been heavily used to address the instance segmentation problem; i.e., the task of simultaneously performing object detection and semantic segmentation. In particular, the Faster R-CNN [64] architecture (Figure 16) developed for object detection uses a region proposal network (RPN) to propose bounding box candidates. The RPN extracts a Region of Interest (RoI), and a RoIPool layer computes features from these proposals in
order to infer the bounding box coordinates and the class of the object.

In one extension of this model, He et al. [65] proposed a Mask R-CNN for object instance segmentation, which beat all previous benchmarks on many COCO challenges. This model efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. Mask R-CNN is essentially a Faster R-CNN with 3 output branches (Figure 17)—the first computes the bounding box coordinates, the second computes the associated classes, and the third computes the binary mask to segment the object. The Mask R-CNN loss function combines the losses of the bounding box coordinates, the predicted class, and the segmentation mask, and trains all of them jointly. Figure 18 shows the Mask-RCNN result on some sample images.

The Path Aggregation Network (PANet) proposed by Liu et al. [66] is based on the Mask R-CNN and FPN models (Figure 19). The feature extractor of the network uses an FPN architecture with a new augmented bottom-up pathway improving the propagation of low-layer features. Each stage of this third pathway takes as input the feature maps of the previous stage and processes them with a 3×3 convolutional layer. The output is added to the same stage feature maps of the top-down pathway using a lateral connection and these feature maps feed the next stage. As in the Mask R-CNN, the output of the adaptive feature pooling layer feeds three branches. The first two use a fully connected layer to generate the predictions of the bounding box coordinates and the associated object class. The third processes the RoI with an FCN to predict the object mask.

Dai et al. [67] developed a multi-task network for instance-aware semantic segmentation, that consists of three networks, respectively differentiating instances, estimating masks, and categorizing objects. These networks form a cascaded structure, and are designed to share their convolutional features. Hu et al. [68] proposed a new partially-supervised training paradigm, together with a novel weight transfer function, that enables training instance segmentation models on a large set of categories, all of which have box annotations, but only a small fraction of which have mask annotations.

Chen et al. [69] developed an instance segmentation model, MaskLab (Figure 20), by refining object detection with semantic and direction features based on Faster R-CNN. This model produces three outputs, box detection, semantic segmentation, and direction prediction. Building on the Faster-RCNN object detector, the predicted boxes provide accurate localization of object instances. Within each region of interest, MaskLab performs foreground/background segmentation by combining semantic and direction prediction.

Another interesting model is Tensormask, proposed by Chen et al. [70], which is based on dense sliding window instance segmentation. They treat dense instance segmentation as a prediction task over 4D tensors and present a general framework that enables novel operators on 4D tensors. They demonstrate that the tensor view leads to large gains over baselines and yields results comparable to Mask R-CNN. TensorMask achieves promising results on dense object segmentation (Figure 21).
Many other instance segmentation models have been developed based on R-CNN, such as those developed for mask proposals, including R-FCN [71], DeepMask [72], SharpMask [73], PolarMask [74], and boundary-aware instance segmentation [75]. It is worth noting that there is another promising research direction that attempts to solve the instance segmentation problem by learning grouping cues for bottom-up segmentation, such as Deep Watershed Transform [76], and Semantic Instance Segmentation via Deep Metric Learning [77].

3.6 Dilated Convolutional Models and DeepLab Family

Dilated convolution (a.k.a. “atrous” convolution) introduces another parameter to convolutional layers, the dilation rate. The dilated convolution (Figure 22) of a signal \(x(i) \) is defined as \(y_i = \sum_{k=1}^{K} x[i + rk]w[k] \), where \(r \) is the dilation rate that defines a spacing between the weights of the kernel \(w \). For example, a \(3 \times 3 \) kernel with a dilation rate of 2 will have the same size receptive field as a \(5 \times 5 \) kernel while using only 9 parameters, thus enlarging the receptive field with no increase in computational cost. Dilated convolutions have been popular in the field of real-time segmentation, and many recent publications report the use of this technique. Some of most important include the DeepLab family [78], multi-scale context aggregation [79], dense upsampling convolution and hybrid dilated convolution (DUC-HDC) [80], densely connected Atrous Spatial Pyramid Pooling (DenseASPP) [81], and the efficient neural network (ENet) [82].

DeepLabv1 [38] and DeepLabv2 [78] are among some of the most popular image segmentation approaches, developed by Chen et al. The latter has three key features. First is the use of dilated convolution to address the decreasing resolution in the network (caused by max-pooling and striding). Second is Atrous Spatial Pyramid Pooling (ASPP), which probes an incoming convolutional feature layer with filters at multiple sampling rates, thus capturing objects as well as image context at multiple scales to robustly segment objects at multiple scales. Third is improved localization of object boundaries by combining methods from deep CNNs and probabilistic graphical models. The best DeepLab (using a ResNet-101 as backbone) has reached a 79.7% mIoU score on the 2012 PASCAL VOC challenge, a 45.7% mIoU score on the PASCAL-Context challenge and a 70.4% mIoU score on the Cityscapes challenge. Figure 23 illustrates the Deeplab model, which is similar to [38], the main difference being the use of dilated convolution and ASPP.

Subsequently, Chen et al. [12] proposed DeepLabv3, which combines cascaded and parallel modules of dilated convolutions. The parallel convolution modules are grouped in the ASPP. A \(1 \times 1 \) convolution and batch normalisation are added in the ASPP. All the outputs are concatenated and processed by another \(1 \times 1 \) convolution to create the final output with logits for each pixel.

In 2018, Chen et al. [83] released Deeplabv3+, which uses an encoder-decoder architecture (Figure 24), including atrous separable convolution, composed of a depthwise convolution (spatial convolution for each channel of the input) and pointwise convolution (\(1 \times 1 \) convolution with the depthwise convolution as input). They used the DeepLabv3 framework as encoder. The most relevant model has a modified Xception backbone with more layers, dilated depthwise separable convolutions instead of max pooling and batch normalization. The best DeepLabv3+ pretrained on the COCO and the JFT datasets has obtained a 89.0% mIoU score on the 2012 PASCAL VOC challenge.
(potentially) improve the estimation of the segmentation map. Using RNNs, pixels may be linked together and processed sequentially to model global contexts and improve semantic segmentation. One challenge, though, is the natural 2D structure of images.

Visin et al. [84] proposed an RNN-based model for semantic segmentation called ReSeg. This model is mainly based on another work, ReNet [85], which was developed for image classification. Each ReNet layer (Figure 25) is composed of four RNNs that sweep the image horizontally and vertically in both directions, encoding patches/activations, and providing relevant global information. To perform image segmentation with the ReSeg model (Figure 26), ReNet layers are stacked on top of pre-trained VGG-16 convolutional layers that extract generic local features. ReNet layers are then followed by up-sampling layers to recover the original image resolution in the final predictions. Gated Recurrent Units (GRUs) are used because they provide a good balance between memory usage and computational power.

In another work, Byeon et al. [86] developed a pixel-level segmentation and classification of scene images using long-short-term-memory (LSTM) network. They investigated two-dimensional (2D) LSTM networks for images of natural scenes, taking into account the complex spatial dependencies of labels. In this work, classification, segmentation, and context integration are all carried out by 2D LSTM networks, allowing texture and spatial model parameters to be learned within a single model.

Liang et al. [87] proposed a semantic segmentation model based on the Graph Long Short-Term Memory (Graph LSTM) network, a generalization of LSTM from sequential data or multidimensional data to general graph-structured data. Instead of evenly dividing an image to pixels or patches in existing multi-dimensional LSTM structures (e.g., row, grid and diagonal LSTMs), they take each arbitrary-shaped superpixel as a semantically consistent node, and adaptively construct an undirected graph for the image, where the spatial relations of the superpixels are naturally used as edges. Figure 27 presents a visual comparison of the traditional pixel-wise RNN model and graph-LSTM model. To adapt the Graph LSTM model to semantic segmentation (Figure 28), LSTM layers built on a super-pixel map are appended on the convolutional layers to enhance visual features with global structure context. The convolutional features pass through 1×1 convolutional filters to generate the initial confidence maps for all labels. The node updating sequence for the subsequent Graph LSTM layers is determined by the confidence-drive scheme based on the initial confidence maps, and then the Graph LSTM layers can sequentially update the hidden states of all superpixel nodes.

Xiang and Fox [88] proposed Data Associated Recurrent Neural Networks (DA-RNNs), for joint 3D scene mapping and semantic labeling. DA-RNNs use a new recurrent neural network architecture (Figure 29) for semantic labeling on RGB-D videos. The output of the network is integrated with mapping techniques such as Kinect-Fusion in order to inject semantic information into the reconstructed 3D scene.

Hu et al. [89] developed a semantic segmentation algorithm based on natural language expression, using a combination of CNN to encode the image and LSTM to encode its natural language description. This is different from traditional semantic segmentation over a predefined set of semantic classes, as, e.g., the phrase “two men sitting on the right bench” requires segmenting only the two people on the right bench and no one standing or sitting on another
To produce pixel-wise segmentation for language expression, they propose an end-to-end trainable recurrent and convolutional model that jointly learns to process visual and linguistic information (Figure 30). In the considered model, a recurrent LSTM network is used to encode the referential expression into a vector representation, and an FCN is used to extract a spatial feature map from the image and output a spatial response map for the target object. An example segmentation result of this model (for the query “people in blue coat”) is shown in Figure 31.

3.8 Attention-Based Models

Attention mechanisms have been persistently explored in computer vision over the years, and it is therefore not surprising to find publications that apply such mechanisms to semantic segmentation.

Chen et al. [90] proposed an attention mechanism that learns to softly weight multi-scale features at each pixel location. They adapt a powerful semantic segmentation model and jointly train it with multi-scale images and the attention model (Figure 32). The attention mechanism outperforms average and max pooling, and it enables the model to assess the importance of features at different positions and scales.

In contrast to other works in which convolutional classifiers are trained to learn the representative semantic features of labeled objects, Huang et al. [91] proposed a semantic segmentation approach using reverse attention mechanisms. Their Reverse Attention Network (RAN) architecture (Figure 33) trains the model to capture the opposite concept (i.e., features that are not associated with a target class) as well. The RAN is a three-branch network that performs the direct, and reverse-attention learning processes simultaneously.

Li et al. [92] developed a Pyramid Attention Network for semantic segmentation. This model exploits the impact of global contextual information in semantic segmentation. They combined attention mechanisms and spatial pyramids to extract precise dense features for pixel labeling, instead of complicated dilated convolutions and artificially designed decoder networks.

More recently, Fu et al. [93] proposed a dual attention network for scene segmentation, which can capture rich contextual dependencies based on the self-attention mechanism. Specifically, they append two types of attention modules on top of a dilated FCN which models the semantic interdependencies in spatial and channel dimensions, respectively. The position attention module selectively aggregates the feature at each position by a weighted sum of the features at all positions.

Various other works explore attention mechanisms for semantic segmentation, such as Expectation-Maximization Attention (EMANet) [94], Criss-Cross Attention Network (CCNet) [95], end-to-end instance segmentation with recurrent attention [96], a point-wise spatial attention network for scene parsing [97], and a discriminative feature network (DFN) [98], which comprises two sub-networks: a Smooth Network (that contains a Channel Attention Block and global average pooling to select the more discriminative features) and a Border Network (to make the bilateral features of the boundary distinguishable).

3.9 Generative Models and Adversarial Training

Since their introduction, GANs have been applied to a wide range tasks in computer vision, and have been adopted for image segmentation too.

Luc et al. [99] proposed an adversarial training approach for semantic segmentation. They trained a convolutional semantic segmentation network (Figure 34), along with an adversarial network that discriminates ground-truth segmentation maps from those generated by the segmentation network. They showed that the adversarial training approach leads to improved accuracy on the Stanford Background and PASCAL VOC 2012 datasets.

Souly et al. [100] proposed semi-weakly supervised semantic segmentation using GANs. It consists of a generator
network providing extra training examples to a multi-class classifier, acting as discriminator in the GAN framework, that assigns sample a label y from the K possible classes or marks it as a fake sample (extra class).

In another work, Hung et al. [101] developed a framework for semi-supervised semantic segmentation using an adversarial network. They designed an FCN discriminator to differentiate the predicted probability maps from the ground truth segmentation distribution, considering the spatial resolution. The considered loss function of this model contains three terms: cross-entropy loss on the segmentation ground truth, adversarial loss of the discriminator network, and semi-supervised loss based on the confidence map; i.e., the output of the discriminator.

Xue et al. [102] proposed an adversarial network with multi-scale L1 Loss for medical image segmentation. They used an FCN as the segmentor to generate segmentation label maps, and proposed a novel adversarial critic network with a multi-scale L1 loss function to force the critic and segmentor to learn both global and local features that capture long and short range spatial relationships between pixels.

Various other publications report on segmentation models based on adversarial training, such as Cell Image Segmentation Using GANs [103], and segmentation and generation of the invisible parts of objects [104].

3.10 CNN Models With Active Contour Models

The exploration of synergies between FCNs and Active Contour Models (ACMs) [7] has recently attracted research interest. One approach is to formulate new loss functions that are inspired by ACM principles. For example, inspired by the global energy formulation of [105], Chen et al. [106] proposed a supervised loss layer that incorporated area and size information of the predicted masks during training of an FCN and tackled the problem of ventricle segmentation in cardiac MRI.

A different approach initially sought to utilize the ACM merely as a post-processor of the output of an FCN and several efforts attempted modest co-learning by pre-training the FCN. One example of an ACM post-processor for the task of semantic segmentation of natural images is the work by Le et al. [107] in which level-set ACMs are implemented as RNNs. Deep Active Contours by Rupprecht et al. [108], is another example. For medical image segmentation, Hatamizadeh et al. [109] proposed an integrated Deep Active Lesion Segmentation (DALS) model that trains the FCN backbone to predict the parameter functions of a novel, locally-parameterized level-set energy functional. In another relevant effort, Marcos et al. [110] proposed Deep Structured Active Contours (DSAC), which combines ACMs and pre-trained FCNs in a structured prediction framework for building instance segmentation (albeit with manual initialization) in aerial images. For the same application, Cheng et al. [111] proposed the Deep Active Ray Network (DarNet), which is similar to DSAC, but with a different explicit ACM formulation based on polar coordinates to prevent contour self-intersection. A truly end-to-end backpropagation trainable, fully-integrated FCN-ACM combination was recently introduced by Hatamizadeh et al. [112], dubbed Deep Convolutional Active Contours (DCAC).

3.11 Other Models

In addition to the above models, there are several other popular DL architectures for segmentation, such as the following: Context Encoding Network (EncNet) that uses a basic feature extractor and feeds the feature maps into a Context Encoding Module [113], RefineNet [114], which is a multi-path refinement network that explicitly exploits all the information available along the down-sampling process to enable high-resolution prediction using long-range residual connections. Seednet [115], which introduced an automatic seed generation technique with deep reinforcement learning that learns to solve the interactive segmentation problem, Feedforward-Net [116] which maps image super-pixels to rich feature representations extracted from a sequence of nested regions of increasing extent and exploits statistical structures in the image and in the label space without setting up explicit structured prediction mechanisms. Yet additional models include BoxSup [117], Graph convolutional networks [118], Wide ResNet [119], Exfuse (enhancing low-level and high-level features fusion) [120], dual image segmentation (DIS) [121], FoveaNet (Perspective-aware scene parsing) [122], Ladder DenseNet [123], Bilateral segmentation network (BiSeNet) [124], Semantic Prediction Guidance for Scene Parsing (SPGNet) [125], Gated shape CNNs [126], Adaptive context network (AC-Net) [127], Dynamic-structured semantic propagation network (DSSPN) [128], symbolic graph reasoning (SGR) [129], CascadeNet [130], Scale-adaptive convolutions (SAC) [131], Unified perceptual parsing (UperNet) [132]. Panoptic segmentation [133] is also another interesting segmentation problem with rising popularity, and there are already several interesting works on this direction, including Panoptic Feature Pyramid Network [134], attention-guided network for Panoptic segmentation [135], and Seamless Scene Segmentation [136].

Figure 35 illustrates the timeline of popular DL-based works for semantic segmentation, as well as instance segmentation since 2014. Given the large number of works developed in the last few years, we only show some of the most representative ones.

4 Image Segmentation Datasets

In this section we provide a summary of some of the most widely used image segmentation datasets. We group these datasets into 3 categories—2D images, 2.5D RGB-D (color+depth) images, and 3D images—and provide details about the characteristics of each dataset. The listed datasets have pixel-wise labels, which can be used for evaluating model performance.
It is worth mentioning that some of these works, use data augmentation to increase the number of labeled samples, especially the ones which deal with small datasets (such as in medical domain). Data augmentation serves to increase the number of training samples by applying a set of transformation (either in the data space, or feature space, or sometimes both) to the images (i.e., both the input image and the segmentation map). Some typical transformations include translation, reflection, rotation, warping, scaling, color space shifting, cropping, and projections onto principal components. Data augmentation has proven to improve the performance of the models, especially when learning from limited datasets, such as those in medical image analysis. It can also be beneficial in yielding faster convergence, decreasing the chance of over-fitting, and enhancing generalization. For some small datasets, data augmentation has been shown to boost model performance more than 20%.

4.1 2D Datasets

The majority of image segmentation research has focused on 2D images; therefore, many 2D image segmentation datasets are available. The following are some of the most popular:

PASCAL Visual Object Classes (VOC) [137] is one of the most popular datasets in computer vision, with annotated images available for 5 tasks—classification, segmentation, detection, action recognition, and person layout. Nearly all popular segmentation algorithms reported in the literature have been evaluated on this dataset. For the segmentation task, there are 21 classes of object labels—vehicles, household, animals, aeroplane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table, potted plant, sofa, TV/monitor, bird, cat, cow, dog, horse, sheep, and person (pixel are labeled as background if they do not belong to any of these classes). This dataset is divided into two sets, training and validation, with 1,464 and 1,449 images, respectively. There is a private test set for the actual challenge. Figure 36 shows an example image and its pixel-wise label.

PASCAL Context [138] is an extension of the PASCAL VOC 2010 detection challenge, and it contains pixel-wise labels for all training images. It contains more than 400 classes (including the original 20 classes plus backgrounds from PASCAL VOC segmentation), divided into three categories (objects, stuff, and hybrids). Many of the object categories of this dataset are too sparse and, therefore, a subset of 59 frequent classes are usually selected for use. Figure 37 shows the segmentation map of three sample images of this dataset.

Microsoft Common Objects in Context (MS COCO) [139] is another large-scale object detection, segmentation, and captioning dataset. COCO includes images of complex everyday scenes, containing common objects in their natural contexts. This dataset contains photos of 91 objects types, with a total of 2.5 million labeled instances in 328k images. It has been used mainly for segmenting individual object instances. Figure 38 shows the difference between MS COCO labels and the previous datasets for a given sample image. The detection challenge includes more than 80 classes, providing more than 82k images for training, 40.5k images for validation, and more than 80k images for its test set.

Cityscapes [140] is a large-scale database with a focus on semantic understanding of urban street scenes. It contains a diverse set of stereo video sequences recorded in street scenes from 50 cities, with high quality pixel-level annotation of 5k frames, in addition to a set of 20k weakly annotated frames. It includes semantic and dense pixel annotations of 30 classes,
grouped into 8 categories—flat surfaces, humans, vehicles, constructions, objects, nature, sky, and void. Figure 39 shows four sample segmentation maps from this dataset.

Fig. 39. Three sample images with their corresponding segmentation maps from the Cityscapes dataset. From [140].

ADE20K/MIT Scene Parsing (SceneParse150) offers a standard training and evaluation platform for scene parsing algorithms. The data for this benchmark comes from the ADE20K dataset [130], which contains more than 20K scene-centric images exhaustively annotated with objects and object parts. The benchmark is divided into 20K images for training, 2K images for validation, and another batch of images for testing. There are 150 semantic categories in this dataset.

SiftFlow [141] includes 2,688 annotated images from a subset of the LabelMe database. The 256 × 256 pixel images are based on 8 different outdoor scenes, among them streets, mountains, fields, beaches, and buildings. All images belong to one of 33 semantic classes.

Stanford background [142] contains outdoor images of scenes from existing datasets, such as LabelMe, MSRC, and PASCAL VOC. It contains 715 images with at least one foreground object. The dataset is pixel-wise annotated, and can be used for semantic scene understanding. Semantic and geometric labels for this dataset were obtained using Amazon’s Mechanical Turk (AMT).

Berkeley Segmentation Dataset (BSD) [143] contains 12,000 hand-labeled segmentations of 1,000 Corel dataset images from 30 human subjects. It aims to provide an empirical basis for research on image segmentation and boundary detection. Half of the segmentations were obtained from presenting the subject a color image and the other half from presenting a grayscale image. The public benchmark based on this data consists of all of the grayscale and color segmentations for 300 images. The images are divided into a training set of 200 images and a test set of 100 images.

Youtube-Objects [144] contains videos collected from YouTube, which include objects from ten PASCAL VOC classes (aeroplane, bird, boat, car, cat, cow, dog, horse, motorbike, and train). The original dataset did not contain pixel-wise annotations (as it was originally developed for object detection, with weak annotations). However, Jain et al. [145] manually annotated a subset of 126 sequences, and then extracted a subset of frames to further generate semantic labels. In total, there are about 10,167 annotated 480×360 pixel frames available in this dataset.

KITTI [146] is one of the most popular datasets for mobile robotics and autonomous driving. It contains hours of videos of traffic scenarios, recorded with a variety of sensor modalities (including high-resolution RGB, grayscale stereo cameras, and a 3D laser scanners). The original dataset does not contain ground truth for semantic segmentation, but researchers have manually annotated parts of the dataset for research purposes. For example, Alvarez et al. [147] generated ground truth for 323 images from the road detection challenge with 3 classes, road, vertical, and sky.

Other Datasets are available for image segmentation purposes too, such as Semantic Boundaries Dataset (SBD) [148], PASCAL Part [149], SYNTHIA [150], and Adobes Portrait Segmentation [151].

4.2 2.5D Datasets

With the availability of affordable range scanners, RGB-D images have become popular in both research and industrial applications. The following RGB-D datasets are some of the most popular:

NYU-D V2 [152] consists of video sequences from a variety of indoor scenes, recorded by the RGB and depth cameras of the Microsoft Kinect. It includes 1,449 densely labeled pairs of aligned RGB and depth images from more than 450 scenes taken from 3 cities. Each object is labeled with a class and an instance number (e.g., cup1, cup2, cup3, etc.). It also contains 407,024 unlabeled frames. This dataset is relatively small compared to other existing datasets. Figure 40 shows a sample image and its segmentation map.

Fig. 40. A sample from the NYU V2 dataset. From left: the RGB image, pre-processed depth, and set of labels. From [152].

SUN-3D [153] is a large-scale RGB-D video dataset that contains 415 sequences captured for 254 different spaces in 41 different buildings; 8 sequences are annotated and more will be annotated in the future. Each annotated frame comes with the semantic segmentation of the objects in the scene, as well as information about the camera pose.

SUN RGB-D [154] provides an RGB-D benchmark for the goal of advancing the state-of-the-art in all major scene understanding tasks. It is captured by four different sensors and contains 10,000 RGB-D images at a scale similar to PASCAL VOC. The whole dataset is densely annotated and includes 146,617 2D polygons and 58,657 3D bounding boxes with accurate object orientations, as well as the 3D room category and layout for scenes.

UW RGB-D Object Dataset [155] contains 300 common household objects recorded using a Kinect style 3D camera. The objects are organized into 51 categories, arranged using WordNet hypernym-hyponym relationships (similar to
ImageNet). This dataset was recorded using a Kinect style 3D camera that records synchronized and aligned 640 × 480 pixel RGB and depth images at 30 Hz. This dataset also includes 8 annotated video sequences of natural scenes, containing objects from the dataset (the UW RGB-D Scenes Dataset).

ScanNet [156] is an RGB-D video dataset containing 2.5 million views in more than 1,500 scans, annotated with 3D camera poses, surface reconstructions, and instance-level semantic segmentations. To collect these data, an easy-to-use and scalable RGB-D capture system was designed that includes automated surface reconstruction, and the semantic annotation was crowd-sourced. Using this data helped achieve state-of-the-art performance on several 3D scene understanding tasks, including 3D object classification, semantic voxel labeling, and CAD model retrieval.

3D Datasets

3D image datasets are popular in robotic, medical image analysis, 3D scene analysis, and construction applications. Three dimensional images are usually provided via meshes or other volumetric representations, such as point clouds. Here, we mention some of the popular 3D datasets.

Stanford 2D-3D: This dataset provides a variety of mutually registered modalities from 2D, 2.5D and 3D domains, with instance-level semantic and geometric annotations [157], and is collected in 6 indoor areas. It contains over 70,000 RGB images, along with the corresponding depths, surface normals, semantic annotations, global XYZ images as well as camera information.

ShapeNet Core: ShapeNetCore is a subset of the full ShapeNet dataset [158] with single clean 3D models and manually verified category and alignment annotations [159]. It covers 55 common object categories with about 51,300 unique 3D models.

Sydney Urban Objects Dataset: This dataset contains a variety of common urban road objects, collected in the central business district of Sydney, Australia. There are 631 individual scans of objects across classes of vehicles, pedestrians, signs and trees [160].

5 Performance Review

In this section, we first provide a summary of some of the popular metrics used in evaluating the performance of segmentation models, and then we provide the quantitative performance of the promising DL-based segmentation models on popular datasets.

5.1 Metrics For Segmentation Models

Ideally, a model should be evaluated in multiple respects, such as quantitative accuracy, speed (inference time), and storage requirements (memory footprint). Measuring speed can be tricky, as it depends on the hardware and experimental conditions, but it is an important factor in real-time applications, as is the memory footprint if a model is intended for small devices with limited memory capacity. However, most of the research works so far, focus on the metrics for evaluating the model accuracy. Below we summarize the most popular metrics for assessing the accuracy of segmentation algorithms. Although quantitative metrics are used to compare different models on benchmarks, the visual quality of model outputs is also important in deciding which model is best (as human is the final consumer of many of the models developed for computer vision applications).

Pixel accuracy simply finds the ratio of pixels properly classified, divided by the total number of pixels. For $K + 1$ classes (K foreground classes and the background) pixel accuracy is defined as Eq 1:

$$PA = \frac{\sum_{i=0}^{K} p_{ii}}{\sum_{i=0}^{K} \sum_{j=0}^{K} p_{ij}},$$

where p_{ij} is the number of pixels of class i predicted as belonging to class j.

Mean Pixel Accuracy (MPA) is the extended version of PA, in which the ratio of correct pixels is computed in a per-class manner and then averaged over the total number of classes, as in Eq 2:

$$MPA = \frac{1}{K+1} \sum_{i=0}^{K} \frac{p_{ii}}{\sum_{j=0}^{K} p_{ij}}.$$

Intersection over Union (IoU) or the Jaccard Index is one of the most commonly used metrics in semantic segmentation. It is defined as the area of intersection between the predicted segmentation map and the ground truth, divided by the area of union between the predicted segmentation map and the ground truth:

$$IoU = J(A, B) = \frac{|A \cap B|}{|A \cup B|},$$

where A and B denote the ground truth and the predicted segmentation maps, respectively. It ranges between 0 and 1.

Mean-IoU is another popular metric, which is defined as the average IoU over all classes. It is widely used in reporting the performance of modern segmentation algorithms.

Precision / Recall / F1 score are popular metrics for reporting the accuracy of many of the classical image segmentation models. Precision and recall can be defined for each class, as well as at the aggregate level, as follows:

$$Precision = \frac{TP}{TP + FP}, \quad Recall = \frac{TP}{TP + FN},$$

where TP refers to the true positive fraction, FP refers to the false positive fraction, and FN refers to the false negative fraction. Usually we are interested into a combined version of precision and recall rates. A popular such a metric is called the F1 score, which is defined as the harmonic mean of precision and recall:

$$F1-score = \frac{2 \text{Prec Rec}}{\text{Prec} + \text{Rec}}.$$

Dice coefficient is another popular metric for image segmentation, which can be defined as twice the overlap area of predicted and ground-truth maps, divided by the total number of pixels in both images. The Dice coefficient is very similar to the IoU:

$$Dice = \frac{2|A \cap B|}{|A| + |B|}.$$

When applied to boolean data (e.g., binary segmentation maps), and referring to the foreground as a positive class,
TABLE 1
Accuracies of segmentation models on the PASCAL VOC test set.
(* Refers to the model pre-trained on another dataset.)

Method	Backbone	mIoU
FCN [32]	VGG-16	62.2
CRF-RNN [40]	-	72.0
CRF-RNN [*]	-	74.7
BoxSup [*]	[117]	-
Piecewise [*]	[41]	-
DFN [*]	[42]	77.5
DeepLab-CRF [78]	ResNet-101	79.7
GCN [*]	[118]	-
RefineNet [114]	ResNet-101	84.2
Wide ResNet [19]	WideResNet-38	84.9
PSPNet [57]	ResNet-101	85.4
DeepLabV3 [12]	ResNet-101	85.7
PSANet [97]	ResNet-101	85.7
EncNet [113]	ResNet-101	85.9
DFN [*]	[98]	86.2
Exfuse [120]	ResNet-101	86.2
SDN [*]	[46]	86.6
DIS [121]	ResNet-101	86.8
DM-Net [*]	[59]	87.06
APC-Net [*]	[61]	87.1
EMANet [94]	ResNet-101	87.7
DeepLabV3+ [83]	Xception-71	87.8
Exfuse [120]	ResNetXt-131	87.9
MSCN [62]	ResNet-152	88.0
EMANet [94]	ResNet-152	88.2
DeepLabV3+ [*] [83]	Xception-71	89.0

The Dice coefficient is essentially identical to the F1 score, defined as Eq 7:

\[
\text{Dice} = \frac{2TP}{2TP + FP + FN} = F1. \tag{7}
\]

The Dice coefficient and IoU are positively correlated.

5.2 Quantitative Performance of DL-Based Models

In this section we tabulate the performance of several of the previously discussed algorithms on popular segmentation benchmarks. It is worth mentioning that although most models report their performance on standard datasets and use standard metrics, some of them fail to do so, making across-the-board comparisons difficult. Furthermore, only a small percentage of publications provide additional information, such as execution time and memory footprint, in a reproducible way, which is important to industrial applications of segmentation models (such as drones, self-driving cars, robotics, etc.) that may run on embedded consumer devices with limited computational power and storage, making fast, light-weight models crucial.

The following tables summarize the performances of several of the prominent DL-based segmentation models on different datasets. Table 1 focuses on the PASCAL VOC test set. Clearly, there has been much improvement in the accuracy of the models since the introduction of the FCN, the first DL-based image segmentation model.1 Table 2 focuses on the Cityscapes test dataset. The latest models feature about 23% relative gain over the initial FCN model on this dataset. Table 3 focuses on the MS COCO stuff test set. This dataset is more challenging than PASCAL VOC, and Cityscapes, as the highest mIoU is approximately 40%. Table 4 focuses on the ADE20k validation set. This dataset is also more challenging than the PASCAL VOC and Cityscapes datasets. Finally, Table 5 summarizes the performance of several prominent models for RGB-D segmentation on the NYUD-v2 and SUN-RGBD datasets.

TABLE 2
Accuracies of segmentation models on the Cityscapes dataset.

Method	Backbone	mIoU
FCN-8s [32]	-	-
DFN [42]	-	66.8
Dilation10 [79]	-	67.1
DeepLabV2 [78]	ResNet-101	70.4
RefineNet [114]	ResNet-101	73.6
FoveaNet [122]	ResNet-101	74.1
Ladder DenseNet [123]	Ladder DenseNet-169	73.7
GCN [118]	ResNet-101	76.9
DUC-HDC [80]	ResNet-101	77.6
Wide ResNet [119]	WideResNet-38	78.4
PSPNet [57]	ResNet-101	85.4
BiSeNet [124]	ResNet-101	78.9
DFN [98]	ResNet-101	79.3
PSA Net [97]	ResNet-101	80.1
DenseASPP [81]	DenseNet-161	80.6
SPGNet [125]	2xResNet-50	81.1
DANet [93]	ResNet-101	81.5
CCNet [95]	ResNet-101	81.4
DeepLabV3 [12]	ResNet-101	81.3
AC-Net [127]	ResNet-101	82.3
CS-CNN [126]	WideResNet	82.8

TABLE 3
Accuracies of segmentation models on the MS COCO stuff dataset.

Method	Backbone	mIoU
RefineNet [114]	ResNet-101	33.6
CCN [60]	Ladder DenseNet-101	35.7
DANet [93]	ResNet-50	39.9
DSSPN [128]	ResNet-101	40.1
EMA-Net [94]	ResNet-50	40.1
SGR [129]	ResNet-101	40.1
DANet [93]	ResNet-101	40.1
EMA-Net [94]	ResNet-50	40.1
AC-Net [127]	ResNet-101	40.1

TABLE 4
Accuracies of segmentation models on the ADE20k validation dataset.

Method	Backbone	mIoU
FCN [32]	-	29.39
DilatedNet [79]	-	32.31
CascadeNet [130]	-	34.9
RefineNet [114]	ResNet-152	40.7
PSPNet [57]	ResNet-101	43.29
PSPNet [57]	ResNet-269	44.94
EncNet [113]	ResNet-101	44.64
SAC [131]	ResNet-101	44.3
PSA Net [97]	ResNet-101	43.7
UpNet [132]	ResNet-101	42.66
DSSPN [128]	ResNet-101	43.68
DM-Net [59]	ResNet-101	45.5
AC-Net [127]	ResNet-101	45.9
We will next introduce some of the promising research directions that we believe will help in further advancing image segmentation algorithms.

6 Challenges and Opportunities

There is not doubt that image segmentation has benefited greatly from deep learning, but several challenges lie ahead. We will next introduce some of the promising research directions that we believe will help in further advancing image segmentation algorithms.

6.1 More Challenging Datasets

Several large-scale image datasets have been created for semantic segmentation and instance segmentation. However, there remains a need for more challenging datasets, as well as datasets for different kinds of images. For still images, datasets with a large number of objects and overlapping objects would be very valuable. This can enable training models that are better at handling dense object scenarios, as well as large overlaps among objects as is common in real-world scenarios.

With the rising popularity of 3D image segmentation, especially in medical image analysis, there is also a strong need for large-scale 3D images datasets. These datasets are more difficult to create than their lower dimensional counterparts. Existing datasets for 3D image segmentation available are typically not large enough, and are synthetic, and therefore larger and more challenging 3D image datasets can be very valuable.

Table 5

Method	NYUD-v2 m-Acc	NYUD-v2 m-IoU	SUN-RGBD m-Acc	SUN-RGBD m-IoU
Mutex [161]	-	31.5	-	-
MS-CNN [162]	45.1	34.1	-	-
FCN [32]	46.1	34.0	-	-
Joint-Seg [163]	52.3	39.2	-	-
SegNet [44]	-	-	44.76	31.84
Structured Net [41]	53.6	40.6	53.4	42.3
B-SegNet [45]	-	-	45.9	30.7
3D-GNN [164]	55.7	43.1	57.0	45.9
LSD-Net [49]	60.7	45.9	58.0	-
RefineNet [114]	58.9	46.5	58.5	45.9
D-aware CNN [165]	61.1	48.4	53.5	42.0
RDFNet [166]	62.8	50.1	60.1	47.7
G-Aware Net [167]	68.7	59.6	74.9	54.5

To summarize the tabulated data, there has been significant progress in the performance of deep segmentation models over the past 5–6 years, with a relative improvement of 25%–42% in mIoU on different datasets. However, some publications suffer from lack of reproducibility for multiple reasons—they report performance on non-standard benchmarks/databases, or they report performance only on arbitrary subsets of the test set from a popular benchmark, or they do not adequately describe the experimental setup and sometimes evaluate the model performance only on a subset of object classes. Most importantly, many publications do not provide the source-code for their model implementations. However, with the increasing popularity of deep learning models, the trend has been positive and many research groups are moving toward reproducible frameworks and open-sourcing their implementations.

6.2 Interpretable Deep Models

While DL-based models have achieved promising performance on challenging benchmarks, there remain open questions about these models. For example, what exactly are deep models learning? How should we interpret the features learned by these models? What is a minimal neural architecture that can achieve a certain segmentation accuracy on a given dataset? Although some techniques are available to visualize the learned convolutional kernels of these models, a concrete study of the underlying behavior/dynamics of these models is lacking. A better understanding of the theoretical aspects of these models can enable the development of better models curated toward various segmentation scenarios.

6.3 Weakly-Supervised and Unsupervised Learning

Weakly-supervised (a.k.a. few shot learning) and unsupervised learning are becoming very active research areas. These techniques promise to be specially valuable for image segmentation, as collecting labeled samples for segmentation problem is problematic in many application domains, particularly so in medical image analysis. The transfer learning approach is to train a generic image segmentation model on a large set of labeled samples (perhaps from a public benchmark), and then fine-tune that model on a few samples from some specific target application. Self-supervised learning is another promising direction that is attracting much attraction in various fields. There are many details in images that can be captured to train a segmentation model with far fewer training samples, with the help of self-supervised learning. Models based on reinforcement learning could also be another potential future direction, as they have scarcely received attention for image segmentation. For example, MOREL [168] introduced a deep reinforcement learning approach for moving object segmentation in videos.

6.4 Real-time Models for Various Applications

In many applications, accuracy is the most important factor; however, there are applications in which it is also critical to have segmentation models that can run in near real-time, or at least near common camera frame rates (at least 25 frames per second). This is useful for computer vision systems that are, for example, deployed in autonomous vehicles. Most of the current models are far from this frame-rate; e.g., FCN-8 takes roughly 100 ms to process a low-resolution image. Models based on dilated convolution help to increase the speed of segmentation models to some extent, but there is still plenty of room for improvement.

6.5 Memory Efficient Models

Many modern segmentation models require a significant amount of memory even during the inference stage. So far, much effort has been directed towards improving the accuracy of such models, but in order to fit them into specific devices, such as mobile phones, the networks must be simplified. This can be done either by using simpler models, or by using model compression techniques, or even training a complex model and then using knowledge distillation techniques to compress it into a smaller, memory efficient network that mimics the complex model.
6.6 3D Point-Cloud Segmentation

Numerous works have focused on 2D image segmentation, but much fewer have addressed 3D point-cloud segmentation. However, there has been an increasing interest in point-cloud segmentation, which has a wide range of applications, in 3D modeling, self-driving cars, robotics, building modeling, etc. Dealing with 3D unordered and unstructured data such as point clouds poses several challenges. For example, the best way to apply CNNs and other classical deep learning architectures on point clouds is unclear. Graph-based deep models can be a potential area of exploration for point-cloud segmentation, enabling additional industrial applications of these data.

7 Conclusions

We have surveyed more than 100 recent image segmentation algorithms based on deep learning models, which have achieved impressive performance in various image segmentation tasks and benchmarks, grouped into ten categories such as: CNN and FCN, RNN, R-CNN, dilated CNN, attention-based models, generative and adversarial models, among others. We summarized quantitative performance analyses of these models on some popular benchmarks, such as the PASCAL VOC, MS COCO, Cityscapes, and ADE20k datasets. Finally, we discussed some of the open challenges and potential research directions for image segmentation that could be pursued in the coming years.

Acknowledgments

The authors would like to thank Dr. Tsung-Yi Lin, for reviewing this work, and providing very helpful comments and feedback.

References

[1] R. Szeliski, Computer vision: algorithms and applications. Springer Science & Business Media, 2010.
[2] D. Forsyth and J. Ponce, Computer vision: a modern approach. Prentice Hall Professional Technical Reference, 2002.
[3] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979.
[4] R. Nock and F. Nielsen, “Statistical region merging,” IEEE Transactions on pattern analysis and machine intelligence, vol. 26, no. 11, pp. 1452–1459, 2004.
[5] N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Image segmentation using k-means clustering algorithm and subtractive clustering algorithm,” Procedia Computer Science, vol. 54, pp. 764–771, 2015.
[6] L. Najman and M. Schmitt, “Watershed of a continuous function,” Signal Processing, vol. 38, no. 1, pp. 99–112, 1994.
[7] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” International journal of computer vision, vol. 1, no. 4, pp. 321–331, 1988.
[8] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Transactions on pattern analysis and machine intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.
[9] N. Plath, M. Toussaint, and S. Nakajima, “Multi-class image segmentation using conditional random fields and global classification,” in Proceedings of the 26th Annual International Conference on Machine Learning. ACM, 2009, pp. 817–824.
[10] J.-L. Starck, M. Elad, and D. L. Donoho, “Image decomposition via the combination of sparse representations and a variational approach,” IEEE transactions on image processing, vol. 14, no. 10, pp. 1570–1582, 2005.
[11] S. Minneci and Y. Wang, “An admn approach to masked signal decomposition using subspace representation,” IEEE Transactions on Image Processing, vol. 28, no. 7, pp. 3192–3204, 2019.
[12] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image segmentation,” arXiv preprint arXiv:1706.05587, 2017.
[13] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.
[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing systems, 2014, pp. 2672–2680.
[17] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position,” Biological cybernetics, vol. 36, no. 4, pp. 193–202, 1980.
[18] A. Wabel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme recognition using time-delay neural networks,” IEEE transactions on acoustics, speech, and signal processing, vol. 37, no. 3, pp. 328–339, 1989.
[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.
[20] K. Simonany and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.
[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.
[24] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.
[25] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning representations by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.
[26] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion,” Journal of machine learning research, vol. 11, no. Dec, pp. 3371–3408, 2010.
[27] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
[28] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.
[29] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784, 2014.
[30] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint arXiv:1701.07875, 2017.
[31] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.
[32] W. Liu, A. Rabinovich, and A. C. Berg, “Parsenet: Looking wider to see better,” arXiv preprint arXiv:1506.04579, 2015.
[33] G. Wang, W. Li, S. Ourselin, and T. Vercauteren, “Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks,” in International MICCAI Brainlesion Workshop. Springer, 2017, pp. 178–190.
[34] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance-aware semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2359–2367.
[35] Y. Yuan, M. Chao, and Y.-C. Lo, “Automatic skin lesion segmentation using deep fully convolutional networks with jaccard
distance,” IEEE transactions on medical imaging, vol. 36, no. 9, pp. 1876–1886, 2017.
[37] N. Liu, H. Li, M. Zhang, J. Lui, Z. Sun, and T. Tan, “Accurate iris segmentation in non-cooperative environments using fully convolutional networks,” in 2016 International Conference on Biometrics (ICB), IEEE, 2016, pp. 1–8.
[38] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic image segmentation with deep convolutional nets and fully connected crfs,” arXiv preprint arXiv:1412.7062, 2014.
[39] A. G. Schwing and R. Urtasun, “Fully connected deep structured networks,” arXiv preprint arXiv:1503.02351, 2015.
[40] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. Torr, “Conditional random fields as recurrent neural networks,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1529–1537.
[41] G. Lin, C. Shen, A. Van Den Hengel, and I. Reid, “Efficient piecewise training of deep structured models for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 3194–3203.
[42] Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang, “Semantic image segmentation via deep parsing network,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1377–1385.
[43] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic segmentation,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1520–1528.
[44] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture for image segmentation,” IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.
[45] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding,” arXiv preprint arXiv:1511.02680, 2015.
[46] J. Fu, J. Lui, Y. Wang, J. Zhou, C. Wang, and H. Lu, “Stacked deconvolutional network for semantic segmentation,” IEEE Transactions on Image Processing, 2019.
[47] A. Chaurasia and E. Culurciello, “Linknet: Exploiting encoder representations for efficient semantic segmentation,” in 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2017, pp. 1–4.
[48] X. Xia and B. Kulis, “W-net: A deep model for fully unsupervised image segmentation,” arXiv preprint arXiv:1711.08506, 2017.
[49] Y. Cheng, R. Cai, Z. Li, X. Zhao, and K. Huang, “Locality-sensitive deconvolution networks with gated fusion for rgb-d indoor semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3029–3037.
[50] O. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d u-net: learning dense volumetric segmentation from sparse annotation,” in International conference on medical image computing and computer-assisted intervention. Springer, 2016, pp. 424–432.
[51] Z. Zhou, M. M. R. Siddiquie, N. Tadjkhashi, and J. Lian, “Unet++: A nested u-net architecture for medical image segmentation,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, 2018, pp. 3–11.
[52] Z. Zhang, Q. Liu, and Y. Wang, “Road extraction by deep residual u-net,” IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 5, pp. 749–753, 2018.
[53] T. Brosch, L. Y. Tang, Y. Yoo, D. K. Li, A. Traboulsee, and R. Tan, “Deep 3d convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation,” IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1229–1239, 2016.
[54] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–2125.
[55] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2881–2890.
[56] G. Ghiasi and C. C. Fowlkes, “Laplacian pyramid reconstruction and refinement for semantic segmentation,” in European Conference on Computer Vision. Springer, 2016, pp. 519–534.
[57] J. He, Z. Deng, and Y. Qiao, “Dynamic multi-scale filters for semantic segmentation,” in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 3562–3572.
[58] H. Ding, X. Jiang, B. Shuai, A. Qun Liu, and G. Wang, “Context contrasted feature and gated multi-scale aggregation for scene segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2393–2402.
[59] J. He, Z. Deng, L. Zhou, Y. Wang, and Y. Qiao, “Adaptive pyramid context network for semantic segmentation,” in Conference on Computer Vision and Pattern Recognition, 2019, pp. 7519–7528.
[60] X. Xia and B. Kulis, “W-net: A deep model for fully unsupervised image segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 603–619.
[61] G. Li, Y. Xie, L. Lin, and Y. Yu, “Instance-level salient object segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2386–2395.
[62] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” in Advances in neural information processing systems, 2015, pp. 91–99.
[63] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2961–2969.
[64] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8759–8768.
[65] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via multi-task network cascades,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 3150–3158.
[66] R. Hu, P. Dollár, K. He, T. Darrell, and R. Girshick, “Learning to segment every thing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2323–2421.
[67] L.-C. Chen, A. Hermans, G. Papandreou, P. Schroff, P. Wang, and H. Adam, “Masklab: Instance segmentation by refining object detection with semantic and direction features,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4013–4022.
[68] X. Chen, R. Girshick, K. He, and P. Dollár, “Tensormask: A foundation for dense object segmentation,” arXiv preprint arXiv:1903.12174, 2019.
[69] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based fully convolutional networks,” in Advances in neural information processing systems, 2016, pp. 379–387.
[70] P. O. Pinheiro, R. Collobert, and P. Dollár, “Learning to segment object candidates,” in Advances in Neural Information Processing Systems, 2015, pp. 1986–1994.
[71] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár, “Learning to refine object segments,” in European Conference on Computer Vision. Springer, 2016, pp. 75–91.
[72] E. Xie, P. Sun, X. Song, W. Wang, X. Lui, D. Liang, C. Shen, and P. Luo, “Polarmask: Single shot instance segmentation with polar representation,” arXiv preprint arXiv:1909.13226, 2019.
[73] Z. Hayden, X. He, and M. Salzmann, “Boundary-aware instance segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5696–5704.
[74] M. Bai and R. Urtasun, “Deep watershed transform for instance segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5221–5229.
[75] A. Fathi, Z. Wojna, V. Rathod, P. Wang, H. O. Song, S. Guadarrama, and K. P. Murphy, “Semantic instance segmentation via deep metric learning,” arXiv preprint arXiv:1703.10277, 2017.
[76] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848, 2017.
[77] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” arXiv preprint arXiv:1511.07122, 2015.
[78] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cottrill, “Understanding convolution for semantic segmentation,” in
winter conference on applications of computer vision. IEEE, 2018, pp. 1451–1460.

[81] M. Yang, K. Yu, C. Zhang, Z. Li, and K. Yang, “Denseapp for semantic segmentation in street scenes,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3684–3692.

[82] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep neural network architecture for real-time semantic segmentation,” arXiv preprint arXiv:1606.02147, 2016.

[83] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with atrous separable convolution for semantic image segmentation,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 801–818.

[84] F. Visin, M. Cicone, A. Romero, K. Kastner, K. Cho, Y. Bengio, M. Matteucci, and A. Courville, “Reseg: A recurrent neural network-based model for semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016, pp. 41–48.

[85] F. Visin, K. Kastner, K. Cho, M. Matteucci, A. Courville, and Y. Bengio, “Renet: A recurrent neural network based alternative for semantic segmentation,” arXiv preprint arXiv:1505.00393, 2015.

[86] W. Byeon, T. M. Breuel, F. Rauze, and M. Liwicki, “Scene labeling with lstm recurrent neural networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3547–3555.

[87] X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan, “Semantic object parsing with graph lstm,” in European Conference on Computer Vision, 2016, pp. 123–138.

[88] Y. Xiang and D. Fox, “Da-rnn: Semantic mapping with data associated recurrent neural networks,” arXiv preprint arXiv:1703.03098, 2017.

[89] R. Hu, M. Rohrbach, and T. Darrell, “Segmentation from natural language expressions,” in European Conference on Computer Vision. Springer, 2016, pp. 108–124.

[90] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to scale: Scale-aware semantic image segmentation,” in Proceedings of the ieee conference on computer vision and pattern recognition, 2016, pp. 3640–3649.

[91] Q. Huang, C. Xia, C. Wu, S. Li, Y. Wang, Y. Song, and C.-C. J. Kuo, “Semantic segmentation with reverse attention,” arXiv preprint arXiv:1707.06426, 2017.

[92] H. Li, P. Xiong, J. An, and L. Wang, “Pyramid attention network for scene segmentation,” arXiv preprint arXiv:1805.10180, 2018.

[93] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention network for scene segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3146–3154.

[94] X. Li, Z. Zhong, J. Wu, Y. Yang, Z. Lin, and H. Liu, “Expectation-maximization attention networks for semantic segmentation,” in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 9167–9176.

[95] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu, “Ccnets: Criss-cross attention for semantic segmentation,” in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 603–612.

[96] M. Ren and R. S. Zemel, “End-to-end instance segmentation with recurrent attention,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6656–6664.

[97] H. Zhao, Y. Zhang, S. Liu, J. Shi, C. Change Loy, D. Lin, and J. Jia, “Psanet: Point-wise spatial attention network for scene parsing,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 267–283.

[98] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Song, “Learning a discriminative feature network for semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1857–1866.

[99] P. Luc, C. Couprie, S. Chintala, and J. Verbeek, “Semantic segmentation using adversarial networks,” arXiv preprint arXiv:1611.08408, 2016.

[100] N. Souly, C. Spampinato, and M. Shah, “Semi supervised semantic segmentation using generative adversarial network,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5688–5696.

[101] W.-C. Hung, Y.-H. Tsai, Y.-T. Liu, Y.-Y. Lin, and M.-H. Yang, “Adversarial learning for semi-supervised semantic segmentation,” arXiv preprint arXiv:1802.07934, 2018.
T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual

J. Fu, J. Liu, Y. Wang, Y. Li, Y. Bao, J. Tang, and H. Lu, “Adaptive

C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Bisenet: Bilat-

S. D. Jain and K. Grauman, “Supervoxel-consistent foreground

A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic

A. Kirillov, R. Girshick, K. He, and P. Dollar, “Panoptic feature

A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner, “Scannet: Richly-annotated 3d reconstructions of

I. Armeni, A. Sax, A. R. Zamir, and S. Savarese, “Joint 2D-3D-Semantic Data for Indoor Scene Stylization,” ArXiv e-prints, Feb. 2017.

A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.

L. Yi, L. Shao, M. Savva, H. Huang, Y. Zhou, Q. Wang, B. Graham, M. Engelke, R. Klokov, V. Lemptisky et al., “Large-scale 3d shape reconstruction and segmentation from shapenet core55,” arXiv preprint arXiv:1710.06104, 2017.

Z. Deng, S. Todorovic, and L. Jan Latecki, “Semantic segmentation of rgbd images with mutex constraints,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1733–1741.

D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture,” in IEEE international conference on computer vision, 2015, pp. 2650–2658.

A. Mousavian, H. Pirsiavash, and J. Kosecka, “Joint semantic segmentation and depth estimation with deep convolutional networks,” in International Conference on 3D Vision. IEEE, 2016.

X. Gu, R. Liao, J. Jia, S. Fidler, and R. Urtasun, “3d graph neural networks for rgbd semantic segmentation,” in IEEE International Conference on Computer Vision, 2017, pp. 5199–5208.

W. Wang and U. Neumann, “Depth-aware cnn for rgbd segmentation,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 135–150.

J. Park, K.-S. Hner Vision and S. Lee, “Rdfnet: Rgb-d multi-level residual feature fusion for indoor semantic segmentation,” in IEEE International Conference on Computer Vision, 2017, pp. 4980–4989.

J. Jiao, Y. Wei, Z. Jie, H. Shi, R. W. Lau, and T. S. Huang, “Geometry-aware distillation for indoor semantic segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 2869–2878.

V. Goel, J. Weng, and P. Poupart, “Unsupervised video object segmentation for deep reinforcement learning,” in Advances in Neural Information Processing Systems, 2018, pp. 5683–5694.