Criteria for Starlikeness Using Schwarzian Derivatives

Asha Sebastian and V. Ravichandran

Dedicated to Professor Milutin Obradović

Abstract. For a normalised analytic function \(f \) defined on the open unit disk in the complex plane, we determine several sufficient conditions for starlikeness in terms of the quotients \(Q_{ST} := zf' (z)/f(z) \), \(Q_{CV} := 1 + zf''(z)/f'(z) \) and the Schwarzian derivative \(Q_{SD} := z^2((f''(z)/f'(z))^2 - (f''(z)/f'(z))^2 / 2) \). These conditions were obtained by using the admissibility criteria of starlikeness in the theory of second order differential subordination.

1. Introduction

A function \(f : D := \{ z \in \mathbb{C} : |z| < 1 \} \rightarrow \mathbb{C} \) is starlike if \(tf(z) \in f(D) \) for all \(z \in D \) and \(t \in [0, 1] \). We shall restrict our functions to belong to the class \(A \) of all analytic functions \(f : D \rightarrow \mathbb{C} \) normalized by the condition \(f(0) = f'(0) - 1 = 0 \). Let \(S \subset A \) consists of univalent functions and \(S^* \subset A \) be the class of starlike functions. A function \(f \in A \) is convex if \(f(D) \) is convex and the class of all convex functions is denoted by \(K \). Analytically, starlike and convex functions are characterized by \(\text{Re} Q_{ST} > 0 \) and \(\text{Re} Q_{CV} > 0 \) where \(Q_{ST} := zf'(z)/f(z) \) and \(Q_{CV} := 1 + zf''(z)/f'(z) \). For \(0 \leq \gamma < 1 \), the class \(S^*(\gamma) \) of starlike functions of order \(\gamma \) is defined by \(S^*(\gamma) := \{ f \in A : \text{Re} Q_{ST} > \gamma \} \) and the class \(K(\gamma) \) of convex functions of order \(\gamma \) is defined by \(K := \{ f \in A : \text{Re} Q_{CV} > \gamma \} \). The functions in the classes \(S^* \) and \(K \) are univalent. A well-known univalence criteria of Nehari involves the Schwarzian derivative of function \(f \in A \) defined by \(\{ f, z \} := ((f''(z)/f'(z))^2 - (f''(z)/f'(z))^2 / 2) \) and \(Q_{SD} := z^2\{ f, z \} \). Nehari [13, 14] studied necessary and sufficient conditions relating Schwarzian derivatives to univalency of functions \(f \in A \). Schwarzian derivatives were studied by several authors (see [5, 6]). Sharma et al. [20] discussed sufficient conditions for strong starlike functions and Cho et al. [3] studied higher order Schwarzian derivatives for Janowski classes.

Obradović [16] has shown that the condition \(|f''(z)| < 1 \) implies starlikeness of \(f \in A \) and the condition \(|f''(z)| < 1/2 \) implies convexity. These simple conditions were further studied, among others, by Tuneski [24, 26, 27] and Kown and Sim [7]. Our interest is to provide such simple sufficient conditions for starlikeness using \(Q_{ST}, Q_{CV} \) and \(Q_{SD} \). Our

2010 Mathematics Subject Classification. 30C80, 30C45.

Key words and phrases. Univalent functions; convex functions; starlike functions; subordination; Schwarzian derivative.

The first author is supported by an institute fellowship from NIT Tiruchirappalli.
main tool in getting these result is the general theory of differential subordination introduced by Miller and Mocanu \[11\]. Miller and Mocanu \[12\, pp.244\] discussed on admissibility conditions related to the starlikeness and convexity; they proved that if \(f \in A \), with \(f(z)f'(z)/z \neq 0 \), \(\Re \psi(Q_{ST},Q_{CV},Q_{SD}) > 0 \) then the function \(f \) is starlike, provided the function \(\psi : C^3 \to C \) satisfy \(\Re \psi(i\rho,i\tau,\xi+i\eta) \leq 0 \), whenever \(\rho, \tau, \xi, \eta \in \mathbb{R} \), \(\rho \tau \geq (1+3\rho^2)/2 \) and \(\rho \eta \geq 0 \). Several authors (see, for example, \[4, 8, 9, 15, 18, 22, 29\]) applied this theory to investigate criteria for the functions to be starlike or convex. Ravichandran et al. \[19\] proved that if \(f \in A \) satisfies \(\Re Q_{ST}Q_{CV} > (\gamma+1)(\gamma-1/2) \), then the function \(f \) is starlike of order \(\gamma \). Motivated essentially by these works, we have a systematic discussion on various criteria involving \(Q_{ST}, Q_{CV} \) and \(Q_{SD} \) for the starlikeness of functions in class \(A \).

For a given set \(\Omega \subset C \), the class \(\Psi(\Omega) \) of admissible functions consists of functions \(\psi : C^3 \times D \to C \) satisfying the admissibility condition
\[
\psi(i\rho,i\tau,\xi+i\eta) \notin \Omega \quad (1.1)
\]
for \(z \in D \), and for all real \(\rho, \tau, \xi, \eta \) with
\[
\rho \tau \geq \frac{1}{2}(1+3\rho^2), \quad \rho \eta \geq 0. \quad (1.2)
\]
Our theorems are proved by making use of the following extension of the criteria of Miller and Mocanu for the starlikeness of functions \(f \in A \) given in terms of the Schwarzian derivatives:

Theorem 1.1. \[1\, p. 9\] If \(f \in A \) with \(f(z)f'(z)/z \neq 0 \) satisfies
\[
\psi(Q_{ST},Q_{CV},Q_{SD}) \in \Omega
\]
for some \(\psi \in \Psi(\Omega) \), then the function \(f \) is starlike.

2. Criteria for starlikeness

Lewandowski et al. \[8\] discussed the criterion for starlikeness of a function \(f \in A \). Many authors have developed sufficient conditions for starlikeness and convexity of functions. See \[4, 9, 15, 18, 22, 29\]. In this section, we derive results relating the Schwarzian derivatives and starlikeness of functions in the class \(A \).

Theorem 2.1. Let \(\alpha \geq 0 \) and \(\beta \geq 0 \). If the function \(f \in A \) satisfy any of the following inequalities
\[
(i) \quad \Re (Q_{ST}(\alpha Q_{CV} + \beta Q_{SD})) > -\alpha/2,
(ii) \quad \Re (Q_{CV}(\alpha Q_{ST} + \beta Q_{SD})) > -\alpha/2,
(iii) \quad \Re (Q_{ST}(\alpha Q_{ST} + \beta Q_{SD})) > 0,
(iv) \quad \Re (Q_{CV}(\alpha Q_{CV} + \beta Q_{SD})) > 0,
\]
then the function \(f \) is starlike.

Proof. For \(i = 1, 2, 3, 4 \), let \(\Omega_i \) be defined by \(\Omega_1 := \{ w \in C : \Re w > -\alpha/2 \} =: \Omega_2 \) and \(\Omega_3 := \{ w \in C : \Re w > 0 \} =: \Omega_4 \) and the functions \(\psi_i : C^3 \to C \) be defined by
\[
\psi_1(u,v,w) = u(\alpha v + \beta w),
\psi_2(u,v,w) = v(\alpha u + \beta w),
\psi_3(u,v,w) = u(\alpha u + \beta w)
\]
and

\[\psi_4(v, w) = v(\alpha u + \beta w). \]

The hypothesis of the theorem shows that the function \(\psi_i \) satisfies

\[\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega_i \quad \text{for} \quad i = 1, 2, 3, 4. \]

It then follows from Theorem 1.1 that the function \(f \) is starlike provided \(\psi_i \in \Psi(\Omega_i) \). We complete the proof by showing that the function \(\psi_i \in \Psi(\Omega_i) \).

Let \(\alpha \geq 0 \) and \(\beta \geq 0 \) and \(\rho, \tau, \xi, \eta \in \mathbb{R} \) satisfy the conditions \(\rho \tau \geq (1 + 3\rho^2)/2 \) and \(\rho \eta \geq 0 \). Then, we have

\[\text{Re} \psi_1(i\rho, i\tau, \xi + i\eta) = -\alpha \rho \tau - \beta \rho \eta \leq -\alpha (1 + 3\rho^2)/2 \leq -\alpha/2, \]

and this proves that the function \(\psi_1 \in \Psi(\Omega_1) \). For the function \(\psi_2 \), we have

\[\text{Re} \psi_2(i\rho, i\tau, \xi + i\eta) = -\alpha \rho \tau - \beta \tau \eta \leq -\alpha (1 + 3\rho^2)/2 \leq -\alpha/2, \]

and so the function \(\psi_2 \in \Psi(\Omega_2) \). Similarly, we have

\[\text{Re} \psi_3(i\rho, i\tau, \xi + i\eta) = -\alpha \rho^2 - \beta \rho \eta \leq 0, \]

and

\[\text{Re} \psi_4(i\rho, i\tau, \xi + i\eta) = -\alpha \tau^2 - \beta \tau \eta \leq 0, \]

so that the functions \(\psi_3 \in \Psi(\Omega_3) \) and \(\psi_4 \in \Psi(\Omega_4) \).

Remark 2.2. Theorem 2.1 (i) with \(\alpha = 1 \), \(\beta = 0 \) reduces to a sufficient condition for starlikeness obtained by Ravichandran et al. [19].

Various authors [2, 10, 11] have investigated on expressions involving the product of the terms \(Q_{ST} \) and \(Q_{CV} \) for the study of starlikeness of functions. The following theorems discuss the influence of Schwarzian derivatives in many such cases.

Theorem 2.3. Let \(\alpha \geq 0 \) and \(\beta \geq 0 \). If the function \(f \in A \) satisfy any of the following inequalities

(i) \(\text{Re} \left(Q_{CV}(\alpha Q_{ST} + (1 - \alpha)Q_{ST}^2 + \beta Q_{SD}) \right) > -\alpha/2, \)
(ii) \(\text{Re} \left(Q_{ST}(\alpha Q_{CV} + (1 - \alpha)Q_{CV}^2 + \beta Q_{SD}) \right) > -\alpha/2, \)
(iii) \(\text{Re} \left(Q_{ST}(\alpha Q_{CV} + (1 - \alpha)Q_{CV}^2 + \beta Q_{SD}) \right) > -\alpha/2, \)
(iv) \(\text{Re} \left(Q_{CV}(\alpha Q_{ST} + (1 - \alpha)Q_{ST}^2 + \beta Q_{SD}) \right) > -\alpha/2, \)

then the function \(f \) is starlike.

Proof. Let \(\Omega \) be defined by \(\Omega := \{ w \in \mathbb{C} : \text{Re} w > -\alpha/2 \} \) and for \(i = 1, 2, 3, 4 \), let the functions \(\psi_i : \mathbb{C}^3 \rightarrow \mathbb{C} \) be defined by

\[\psi_1(u, v, w) = v(\alpha u + (1 - \alpha)u^2 + \beta w), \]
\[\psi_2(u, v, w) = u(\alpha v + (1 - \alpha)v^2 + \beta w), \]
\[\psi_3(u, v, w) = u(\alpha v + (1 - \alpha)u^2 + \beta w) \]

and

\[\psi_4(v, w) = v(\alpha u + (1 - \alpha)v^2 + \beta w). \]
The hypothesis of the theorem shows that the function \(\psi_i \) satisfies

\[\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega \quad \text{for} \quad i = 1, 2, 3, 4. \]

It then follows from Theorem 1.1 that the function \(f \) is starlike provided \(\psi_i \in \Psi(\Omega) \). We complete the proof by showing that the function \(\psi_i \in \Psi(\Omega) \).

Let \(\alpha \geq 0 \) and \(\beta \geq 0 \) and \(\rho, \tau, \xi, \eta \in \mathbb{R} \) satisfy the conditions \(\rho \tau \geq (1 + 3\rho^2)/2 \) and \(\rho \eta \geq 0 \). Then, we have

\[\Re \psi_1(i\rho, i\tau, \xi + i\eta) = -\alpha \rho \tau - \beta \tau \xi \leq -\frac{\alpha}{2}(1 + 3\rho^2) \leq -\frac{\alpha}{2}, \]

and this proves that the function \(\psi_1 \in \Psi(\Omega) \). For the function \(\psi_2 \), we have

\[\Re \psi_2(i\rho, i\tau, \xi + i\eta) = -\alpha \rho \tau - \beta \rho \eta \leq -\frac{\alpha}{2}(1 + 3\rho^2) \leq -\frac{\alpha}{2}, \]

and so the function \(\psi_2 \in \Psi(\Omega_2) \). Similarly, we have

\[\Re \psi_3(i\rho, i\tau, \xi + i\eta) = -\alpha \rho \tau - \beta \tau \xi \leq -\frac{\alpha}{2}(1 + 3\rho^2) \leq -\frac{\alpha}{2}, \]

and

\[\Re \psi_4(i\rho, i\tau, \xi + i\eta) = -\alpha \rho \tau - \beta \tau \xi \leq -\frac{\alpha}{2}(1 + 3\rho^2) \leq -\frac{\alpha}{2}, \]

so that the functions \(\psi_3 \in \Psi(\Omega) \) and \(\psi_4 \in \Psi(\Omega) \).

Theorem 2.4. Let \(\alpha \geq 0 \) and \(\beta \geq 0 \). If the function \(f \in A \) satisfy any of the following inequalities

\[
(i) \quad \Re \left(Q_{ST}(\alpha Q_{ST} + (1 - \alpha)Q_{ST}^2 + \beta Q_{SD}) \right) > 0 \\
(ii) \quad \Re \left(Q_{CV}(\alpha Q_{CV} + (1 - \alpha)Q_{CV}^2 + \beta Q_{SD}) \right) > 0, \\
(iii) \quad \Re \left(Q_{ST}(\alpha Q_{ST} + (1 - \alpha)Q_{ST}^2 + \beta Q_{SD}) \right) > 0, \\
(iv) \quad \Re \left(Q_{CV}(\alpha Q_{CV} + (1 - \alpha)Q_{CV}^2 + \beta Q_{SD}) \right) > 0,
\]

then the function \(f \) is starlike.

Proof. Let \(\Omega \) be defined by \(\Omega := \{ w \in \mathbb{C} : \Re w > 0 \} \) and for \(i = 1, 2, 3, 4 \), let the functions \(\psi_i : \mathbb{C}^3 \rightarrow \mathbb{C} \) be defined by

\[\psi_1(u, v, w) = u(\alpha u + (1 - \alpha)u^2 + \beta w), \]
\[\psi_2(u, v, w) = v(\alpha v + (1 - \alpha)v^2 + \beta w), \]
\[\psi_3(u, v, w) = u(\alpha u + (1 - \alpha)v^2 + \beta w) \]

and

\[\psi_4(u, v) = v(\alpha v + (1 - \alpha)u^2 + \beta w). \]

The hypothesis of the theorem shows that the function \(\psi_i \) satisfies

\[\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega \quad \text{for} \quad i = 1, 2, 3, 4. \]

It then follows from Theorem 1.1 that the function \(f \) is starlike provided \(\psi_i \in \Psi(\Omega) \). We complete the proof by showing that the function \(\psi_i \in \Psi(\Omega) \).

Let \(\alpha \geq 0 \) and \(\beta \geq 0 \) and \(\rho, \tau, \xi, \eta \in \mathbb{R} \) satisfy the conditions \(\rho \tau \geq (1 + 3\rho^2)/2 \) and \(\rho \eta \geq 0 \). Then, we have

\[\Re \psi_1(i\rho, i\tau, \xi + i\eta) = -\alpha \rho^2 - \beta \rho \eta \leq 0, \]
and this proves that the function \(\psi_1 \in \Psi(\Omega) \). For the function \(\psi_2 \), we have
\[
\Re \psi_2(i\rho, i\tau, \xi + i\eta) = -\alpha \tau^2 - \beta \tau \eta \leq 0,
\]
and so the function \(\psi_2 \in \Psi(\Omega_2) \). Similarly, we have
\[
\Re \psi_3(i\rho, i\tau, \xi + i\eta) = -\alpha \rho^2 - \beta \rho \eta \leq 0,
\]
and
\[
\Re \psi_4(i\rho, i\tau, \xi + i\eta) = -\alpha \tau^2 - \beta \tau \eta \leq 0,
\]
so that the functions \(\psi_3 \in \Psi(\Omega) \) and \(\psi_4 \in \Psi(\Omega) \).

Remark 2.5. For \(\alpha = 1 \) and \(\beta = 1 \) in Part (iv) of Theorem 2.4, the obtained result is same as the one discussed by Miller and Mocanu [12], pp.247 for the expression \(\Re \left(Q_{CV}^2 + Q_{SD} \right) > 0 \).

Using the theory of differential subordination, Owa and Obradović [17] proved that the function \(f \in A \) is starlike, if \(\Re \left((Q_{ST}^2/2) + Q_{CV} \right) > 0 \). In a generalised manner, we prove for some other cases as well.

Theorem 2.6. Let \(\alpha > 0 \) and \(\beta \geq 0 \). If the function \(f \in A \) satisfy any of the following inequalities
\[
(i) \ Re \left(\beta Q_{SD} Q_{ST} + \alpha (1 + Q_{CV})^2 \right) > \alpha,
(ii) \ Re \left(\beta Q_{SD} Q_{ST} + \alpha (1 + Q_{ST})^2 \right) > \alpha,
(iii) \ Re \left(\beta Q_{SD} Q_{CV} + \alpha (1 + Q_{CV})^2 \right) > \alpha,
(iv) \ Re \left(\beta Q_{SD} Q_{CV} + \alpha (1 + Q_{ST})^2 \right) > \alpha,
\]
then the function \(f \) is starlike.

Proof. Let \(\Omega \) be defined by \(\Omega := \{ w \in \mathbb{C} : \Re w > \alpha \} \) and for \(i = 1, 2, 3, 4 \), let the functions \(\psi_i : \mathbb{C}^3 \to \mathbb{C} \) be defined by
\[
\psi_1(u, v, w) = \beta uv + \alpha (1 + v)^2, \quad \psi_2(u, v, w) = \beta uw + \alpha (1 + u)^2,
\]
\[
\psi_3(u, v, w) = \beta vw + \alpha (1 + v)^2 \quad \text{and} \quad \psi_4(v, w) = \beta vw + \alpha (1 + u)^2.
\]
The hypothesis of the theorem shows that the function \(\psi_i \) satisfies
\[
\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega \quad \text{for } i = 1, 2, 3, 4.
\]
It then follows from Theorem 1.1 that the function \(f \) is starlike provided \(\psi_i \in \Psi(\Omega) \). We complete the proof by showing that the function \(\psi_i \in \Psi(\Omega) \).

Let \(\alpha \geq 0 \) and \(\beta \geq 0 \) and \(\rho, \tau, \xi, \eta \in \mathbb{R} \) satisfy the conditions \(\rho \tau \geq (1 + 3\rho^2)/2 \) and \(\rho \eta \geq 0 \). Then, we have
\[
\Re \psi_1(i\rho, i\tau, \xi + i\eta) = -\beta \rho \eta - \alpha \tau^2 + \alpha \leq \alpha,
\]
and this proves that the function \(\psi_1 \in \Psi(\Omega) \). For the function \(\psi_2 \), we have
\[
\Re \psi_2(i\rho, i\tau, \xi + i\eta) = -\alpha \rho^2 - \beta \rho \eta + \alpha \leq \alpha,
\]
and so the function \(\psi_2 \in \Psi(\Omega_2) \). Similarly, we have
\[
\Re \psi_3(i\rho, i\tau, \xi + i\eta) = -\alpha \tau^2 - \beta \tau \eta + \alpha \leq \alpha,
\]
and
\[
\Re \psi_4(i\rho, i\tau, \xi + i\eta) = -\alpha \rho^2 - \beta \tau \eta + \alpha \leq \alpha,
\]
so that the functions \(\psi_3 \in \Psi(\Omega) \) and \(\psi_4 \in \Psi(\Omega) \).

Miller and Mocanu \(\text{[12]} \) determined sufficient conditions relating the starlikeness of functions in class \(\mathcal{A} \) and Schwarzian derivatives. As an application to the discussion, they obtained that for parameters \(\alpha, \beta \), the sufficient conditions \(\text{Re} \left(\alpha Q_{ST} + \beta Q_{CV} + Q_{ST} Q_{SD} \right) > 0 \) and \(\text{Re} \left(Q_{ST} Q_{CV} + Q_{ST} Q_{SD} \right) > -1/2 \) imply starlikeness. The forthcoming theorems follow as a generalisation of above observations.

Theorem 2.7. Let \(\alpha > 0 \) and \(\beta \geq 0 \). If the function \(f \in \mathcal{A} \) satisfy any of the following inequalities

(i) \(\text{Re} \left(\beta Q_{SD} Q_{ST} + \alpha Q_{CV} (1 + Q_{ST}) \right) > -\alpha/2 \),

(ii) \(\text{Re} \left(\beta Q_{SD} Q_{CV} + \alpha Q_{ST} (1 + Q_{CV}) \right) > -\alpha/2 \),

(iii) \(\text{Re} \left(\beta Q_{SD} Q_{CV} + \alpha Q_{CV} (1 + Q_{ST}) \right) > -\alpha/2 \),

(iv) \(\text{Re} \left(\beta Q_{SD} Q_{ST} + \alpha Q_{ST} (1 + Q_{CV}) \right) > -\alpha/2 \),

then the function \(f \) is starlike.

Proof. Let \(\Omega \) be defined by \(\Omega := \{ w \in \mathbb{C} : \text{Re} w > -\alpha/2 \} \) and for \(i = 1, 2, 3, 4 \), let the functions \(\psi_i : \mathbb{C}^3 \to \mathbb{C} \) be defined by

\[
\psi_1(u, v, w) = \beta uw + \alpha v(1 + u), \quad \psi_2(u, v, w) = \beta vw + \alpha u(1 + v),
\]

\[
\psi_3(u, v, w) = \beta vw + \alpha v(1 + u) \quad \text{and} \quad \psi_4(v, w) = \beta uw + \alpha u(1 + v).
\]

The hypothesis of the theorem shows that the function \(\psi_i \) satisfies

\[
\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega \quad \text{for} \quad i = 1, 2, 3, 4.
\]

It then follows from Theorem \(\text{[13]} \) that the function \(f \) is starlike provided \(\psi_i \in \Psi(\Omega) \). We complete the proof by showing that the function \(\psi_i \in \Psi(\Omega) \).

Let \(\alpha \geq 0 \) and \(\beta \geq 0 \) and \(\rho, \tau, \xi, \eta \in \mathbb{R} \) satisfy the conditions \(\rho \tau \geq (1 + 3\rho^2)/2 \) and \(\rho \eta \geq 0 \). Then, we have

\[
\text{Re} \psi_1(i \rho, i \tau, \xi + i \eta) = -\beta \rho \eta - \alpha \rho \tau \leq -\alpha/2 (1 + 3\rho^2) \leq -\alpha/2,
\]

and this proves that the function \(\psi_1 \in \Psi(\Omega) \). For the function \(\psi_2 \), we have

\[
\text{Re} \psi_2(i \rho, i \tau, \xi + i \eta) = -\alpha \rho \tau - \beta \tau \eta \leq -\alpha/2 (1 + 3\rho^2) \leq -\alpha/2,
\]

and so the function \(\psi_2 \in \Psi(\Omega_2) \). Similarly, we have

\[
\text{Re} \psi_3(i \rho, i \tau, \xi + i \eta) = -\alpha \rho \tau - \beta \tau \eta \leq -\alpha/2 (1 + 3\rho^2) \leq -\alpha/2,
\]

and

\[
\text{Re} \psi_4(i \rho, i \tau, \xi + i \eta) = -\alpha \rho \tau - \beta \rho \eta \leq -\alpha/2 (1 + 3\rho^2) \leq -\alpha/2,
\]

so that the functions \(\psi_3 \in \Psi(\Omega) \) and \(\psi_4 \in \Psi(\Omega) \).

Theorem 2.8. Let \(\alpha > 0 \) and \(\beta \geq 0 \). If the function \(f \in \mathcal{A} \) satisfy any of the following inequalities

(i) \(\text{Re} \left(\beta Q_{SD} Q_{ST} + \alpha Q_{ST} (1 + Q_{ST}) \right) > 0 \),

(ii) \(\text{Re} \left(\beta Q_{SD} Q_{CV} + \alpha Q_{ST} (1 + Q_{ST}) \right) > 0 \),

(iii) \(\text{Re} \left(\beta Q_{SD} Q_{ST} + \alpha Q_{CV} (1 + Q_{CV}) \right) > 0 \),
(iv) \(\Re (\beta Q_{SD} Q_{CV} + \alpha Q_{CV} (1 + Q_{CV})) > 0 \),
then the function \(f \) is starlike.

Proof. Let \(\Omega \) be defined by \(\Omega := \{w \in \mathbb{C} : \Re w > 0\} \) and for \(i = 1, 2, 3, 4 \), let the functions \(\psi_i : \mathbb{C}^3 \rightarrow \mathbb{C} \) be defined by
\[
\psi_1(u,v,w) = \beta uv + \alpha u(1 + u), \quad \psi_2(u,v,w) = \beta vw + \alpha u(1 + u), \\
\psi_3(u,v,w) = \beta uv + \alpha v(1 + v) \quad \text{and} \quad \psi_4(v,w) = \beta vw + \alpha v(1 + v).
\]
The hypothesis of the theorem shows that the function \(\psi_i \) satisfies
\[
\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega \quad \text{for} \quad i = 1, 2, 3, 4.
\]
It then follows from Theorem 1.1 that the function \(f \) is starlike provided \(\psi_i \in \Psi(\Omega) \). We complete the proof by showing that the function \(\psi_i \in \Psi(\Omega) \).

Let \(\alpha > 0 \) and \(\beta \geq 0 \) and \(\rho, \tau, \xi, \eta \in \mathbb{R} \) satisfy the conditions \(\rho \tau \geq (1 + 3 \rho^2)/2 \) and \(\rho \eta \geq 0 \). Then, we have
\[
\Re \psi_1(i \rho, i \tau, \xi + i \eta) = -\alpha \rho^2 - \beta \rho \eta \leq 0,
\]
and this proves that the function \(\psi_1 \in \Psi(\Omega) \). For the function \(\psi_2 \), we have
\[
\Re \psi_2(i \rho, i \tau, \xi + i \eta) = -\alpha \rho^2 - \beta \tau \eta \leq 0,
\]
and so the function \(\psi_2 \in \Psi(\Omega_2) \). Similarly, we have
\[
\Re \psi_3(i \rho, i \tau, \xi + i \eta) = -\alpha \tau^2 - \beta \rho \eta \leq 0,
\]
and
\[
\Re \psi_4(i \rho, i \tau, \xi + i \eta) = -\alpha \tau^2 - \beta \tau \eta \leq 0,
\]
so that the functions \(\psi_3 \in \Psi(\Omega) \) and \(\psi_4 \in \Psi(\Omega) \).

Some authors \[2, 17\] considered the powers of the expressions \(Q_{ST}, Q_{CV} \) and analysed their significance in the starlikeness of a function. The following theorems with Schwarzian derivatives are examined in a similar manner.

Theorem 2.9. Let \(0 \leq \alpha \leq 1 \) and \(\beta \geq 0 \). If the function \(f \in \mathcal{A} \) satisfy any of the following inequalities
\[
(i) \Re (\alpha Q_{ST} + (1 - \alpha)Q_{ST}^2 + \beta Q_{SD} Q_{CV}) > 0, \\
(ii) \Re (\alpha Q_{ST} + (1 - \alpha)Q_{ST}^2 + \beta Q_{SD} Q_{ST}) > 0, \\
(iii) \Re (\alpha Q_{ST} + (1 - \alpha)Q_{CV}^2 + \beta Q_{SD} Q_{ST}) > 0, \\
(iv) \Re (\alpha Q_{CV} + (1 - \alpha)Q_{ST}^2 + \beta Q_{SD} Q_{CV}) > 0, \\
(v) \Re (\alpha Q_{CV} + (1 - \alpha)Q_{CV}^2 + \beta Q_{SD} Q_{CV}) > 0, \\
(vi) \Re (\alpha Q_{CV} + (1 - \alpha)Q_{ST}^2 + \beta Q_{SD} Q_{ST}) > 0, \\
(vii) \Re (\alpha Q_{ST} + (1 - \alpha)Q_{CV}^2 + \beta Q_{SD} Q_{CV}) > 0, \\
(viii) \Re (\alpha Q_{CV} + (1 - \alpha)Q_{ST}^2 + \beta Q_{SD} Q_{ST}) > 0,
\]
then the function \(f \) is starlike.

Proof. Let \(\Omega \) be defined by \(\Omega := \{w \in \mathbb{C} : \Re w > 0\} \) and for \(i = 1, 2, \cdots, 8 \), let the functions \(\psi_i : \mathbb{C}^3 \rightarrow \mathbb{C} \) be defined by
\[
\psi_1(u,v,w) = \alpha u + (1 - \alpha)u^2 + \beta v w,
\]
\[
\psi_2(u,v,w) = \alpha u + (1 - \alpha)u^2 + \beta uw,
\]
\[
\psi_3(u,v,w) = \alpha u + (1 - \alpha)v^2 + \beta uw,
\]
\[
\psi_4(u,v,w) = \alpha v + (1 - \alpha)u^2 + \beta uw,
\]
\[
\psi_5(u,v,w) = \alpha v + (1 - \alpha)v^2 + \beta vw,
\]
\[
\psi_6(u,v,w) = \alpha v + (1 - \alpha)u^2 + \beta vw,
\]
\[
\psi_7(u,v,w) = \alpha u + (1 - \alpha)v^2 + \beta vw
\]

and
\[
\psi_8(v,w) = \alpha v + (1 - \alpha)v^2 + \beta uw.
\]

The hypothesis of the theorem shows that the function \(\psi_i\) satisfies
\[
\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega \quad \text{for} \quad i = 1, 2, \cdots, 8.
\]

It then follows from Theorem 1.1 that the function \(f\) is starlike provided \(\psi_i \in \Psi(\Omega)\). We complete the proof by showing that the function \(\psi_i \in \Psi(\Omega)\).

Let \(0 \leq \alpha \leq 1\) and \(\beta \geq 0\) and \(\rho, \tau, \xi, \eta \in \mathbb{R}\) satisfy the conditions \(\rho \tau \geq (1 + 3\rho^2)/2\) and \(\rho \eta \geq 0\). Then, we have
\[
\text{Re} \psi_1(i\rho, i\tau, \xi + i\eta) = -(1 - \alpha)\rho^2 - \beta \tau \eta \leq 0,
\]
and this proves that the function \(\psi_1 \in \Psi(\Omega)\). For the function \(\psi_2\), we have
\[
\text{Re} \psi_2(i\rho, i\tau, \xi + i\eta) = -(1 - \alpha)\rho^2 - \beta \rho \eta \leq 0,
\]
and so the function \(\psi_2 \in \Psi(\Omega_2)\). Similarly, we have
\[
\text{Re} \psi_3(i\rho, i\tau, \xi + i\eta) = -(1 - \alpha)\tau^2 - \beta \rho \eta \leq 0,
\]
and
\[
\text{Re} \psi_4(i\rho, i\tau, \xi + i\eta) = -(1 - \alpha)\rho^2 - \beta \rho \eta \leq 0,
\]
so that the functions \(\psi_3 \in \Psi(\Omega)\) and \(\psi_4 \in \Psi(\Omega)\). Proceeding in a similar way, we have
\[
\text{Re} \psi_5(i\rho, i\tau, \xi + i\eta) = -(1 - \alpha)\tau^2 - \beta \tau \eta \leq 0,
\]
and this proves that the function \(\psi_5 \in \Psi(\Omega)\). For the function \(\psi_6\), we have
\[
\text{Re} \psi_6(i\rho, i\tau, \xi + i\eta) = -(1 - \alpha)\rho^2 - \beta \tau \eta \leq 0,
\]
and so the function \(\psi_6 \in \Psi(\Omega_2)\). Similarly, we have
\[
\text{Re} \psi_7(i\rho, i\tau, \xi + i\eta) = -(1 - \alpha)\tau^2 - \beta \tau \eta \leq 0,
\]
and
\[
\text{Re} \psi_8(i\rho, i\tau, \xi + i\eta) = -(1 - \alpha)\tau^2 - \beta \rho \eta \leq 0,
\]
so that the functions \(\psi_7 \in \Psi(\Omega)\) and \(\psi_8 \in \Psi(\Omega)\).

Theorem 2.10. Let \(0 \leq \alpha \leq 1\) and \(\beta \geq 0\). If any of the following two inequalities hold for the function \(f \in \mathcal{A}\),

(i) \(\text{Re}(Q_{CV}(\alpha Q_{ST} + (1 - \alpha)Q_{CV} + \beta Q_{SD})) > -\alpha/2,\)

(ii) \(\text{Re}(Q_{ST}(\alpha Q_{CV} + (1 - \alpha)Q_{ST} + \beta Q_{SD})) > -\alpha/2,\)

then the function \(f\) is starlike.
Proof. Let \(\Omega\) be defined by \(\Omega := \{ w \in \mathbb{C} : \text{Re}\,w > -\alpha/2 \}\) and for \(i = 1, 2\), let the functions \(\psi_i : \mathbb{C}^3 \to \mathbb{C}\) be defined by

\[
\psi_1(u, v, w) = u(\alpha u + (1 - \alpha)v + \beta w)
\]

and

\[
\psi_2(u, v, w) = u(\alpha v + (1 - \alpha)u + \beta w).
\]

The hypothesis of the theorem shows that the function \(\psi_i\) satisfies

\[
\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega \quad \text{for} \quad i = 1, 2.
\]

It then follows from Theorem 1.1 that the function \(f\) is starlike provided \(\psi_i \in \Psi(\Omega)\). We complete the proof by showing that the function \(\psi_i \in \Psi(\Omega)\).

Let \(0 \leq \alpha \leq 1\) and \(\beta \geq 0\) and \(\rho, \tau, \xi, \eta \in \mathbb{R}\) satisfy the conditions \(\rho \tau \geq (1 + 3\rho^2)/2\) and \(\rho \eta \geq 0\). Then, we have

\[
\text{Re} \psi_1(i \rho, i \tau, \xi + i \eta) = -\alpha \rho \tau - (1 - \alpha)\tau^2 - \beta \tau \eta \leq -\frac{\alpha}{2}(1 + 3\rho^2) \leq -\frac{\alpha}{2},
\]

and this proves that the function \(\psi_1 \in \Psi(\Omega)\). For the function \(\psi_2\), we have

\[
\text{Re} \psi_2(i \rho, i \tau, \xi + i \eta) = -(1 - \alpha)\rho^2 - \alpha \rho \tau - \beta \tau \eta \leq -\frac{\alpha}{2}(1 + 3\rho^2) \leq -\frac{\alpha}{2},
\]

and so the function \(\psi_2 \in \Psi(\Omega)\).

Remark 2.11. Let \(\alpha = 1\) and \(\beta = 0\), then the results obtained from both Part(i) and Part(ii) of Theorem 2.10 is same as the sufficient condition for starlikeness obtained by Ramesha and Padmanabhan [18].

Theorem 2.12. Let \(\alpha > 0\) and \(\beta \geq 0\). If the function \(f \in A\) satisfy any of the following inequalities

(i) \(\text{Re} \left(\alpha (Q_{CV}/Q_{ST}) + \beta (Q_{SD}/Q_{ST})\right) < 3\alpha/2\)

(ii) \(\text{Re} \left(\alpha (Q_{CV}/Q_{ST}) + \beta (Q_{SD}/Q_{CV})\right) < 3\alpha/2\)

then the function \(f\) is starlike.

Proof. Let \(\Omega\) be defined by \(\Omega := \{ w \in \mathbb{C} : \text{Re}\,w < 3\alpha/2 \}\) and for \(i = 1, 2\), let the functions \(\psi_i : \mathbb{C}^3 \to \mathbb{C}\) be defined by

\[
\psi_1(u, v, w) = \alpha(v/u) + \beta(w/u) \quad \text{and} \quad \psi_2(u, v, w) = \alpha(v/u) + \beta(w/v).
\]

The hypothesis of the theorem shows that the function \(\psi_i\) satisfies

\[
\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega \quad \text{for} \quad i = 1, 2.
\]

It then follows from Theorem 1.1 that the function \(f\) is starlike provided \(\psi_i \in \Psi(\Omega)\). We complete the proof by showing that the function \(\psi_i \in \Psi(\Omega)\).

Let \(\alpha > 0\) and \(\beta \geq 0\) and \(\rho, \tau, \xi, \eta \in \mathbb{R}\) satisfy the conditions \(\rho \tau \geq (1 + 3\rho^2)/2\) and \(\rho \eta \geq 0\). Then, we have

\[
\text{Re} \psi_1(i \rho, i \tau, \xi + i \eta) = \frac{\alpha \tau}{\rho} + \frac{\beta \eta}{\rho} \geq \frac{\alpha (1 + 3\rho^2)}{2\rho^2} \geq \frac{3\alpha}{2},
\]

and this proves that the function \(\psi_1 \in \Psi(\Omega)\). For the function \(\psi_2\), we have

\[
\text{Re} \psi_2(i \rho, i \tau, \xi + i \eta) = \frac{\alpha \tau}{\tau} + \frac{\beta \eta}{\tau} \geq \frac{\alpha (1 + 3\rho^2)}{2\rho^2} \geq \frac{3\alpha}{2}.
\]
and so the function $\psi_2 \in \Psi(\Omega_2)$.

Remark 2.13. The sufficient conditions for starlikeness obtained by Tuneski [25, pp.523] follows from Part(i) and Part(ii) of Theorem 2.12 when $\alpha = 1$ and $\beta = 0$.

Theorem 2.14. Let $\alpha > 0$ and $\beta \leq 0$. If the function $f \in A$ satisfy any of the following inequalities

(i) $\Re\left(\alpha(Q_{ST}/Q_{CV}) + \beta(Q_{SD}/Q_{CV})\right) > 2\alpha/3$,

(ii) $\Re\left(\alpha(Q_{ST}/Q_{CV}) + \beta(Q_{SD}/Q_{ST})\right) > 2\alpha/3$,

then the function f is starlike.

Proof. Let Ω be defined by $\Omega := \{w \in \mathbb{C} : \Re w > 2\alpha/3\}$ and for $i = 1, 2$, let the functions $\psi_i : \mathbb{C}^3 \to \mathbb{C}$ be defined by

$\psi_1(u, v, w) = \alpha(u/v) + \beta(w/v)$ and $\psi_2(u, v, w) = \alpha(u/v) + \beta(w/u)$.

The hypothesis of the theorem shows that the function ψ_i satisfies

$\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega$ for $i = 1, 2$.

It then follows from Theorem 1.1 that the function f is starlike provided $\psi_i \in \Psi(\Omega)$. We complete the proof by showing that the function $\psi_1 \in \Psi(\Omega)$.

Let $\alpha > 0$ and $\beta \leq 0$ and $\rho, \tau, \xi, \eta \in \mathbb{R}$ satisfy the conditions $\rho \tau \geq (1 + 3\rho^2)/2$ and $\rho \eta \geq 0$. Then, we have

$$\Re\psi_1(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \rho}{\tau} + \frac{\beta \eta}{\tau} \leq \frac{2\alpha \rho^2}{(1 + 3\rho^2)} \leq \frac{2\alpha}{3},$$

and this proves that the function $\psi_1 \in \Psi(\Omega)$. For the function ψ_2, we have

$$\Re\psi_2(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \rho}{\tau} + \frac{\beta \eta}{\rho} \leq \frac{2\alpha \rho^2}{(1 + 3\rho^2)} \leq \frac{2\alpha}{3},$$

and so the function $\psi_2 \in \Psi(\Omega_2)$.

Theorem 2.15. Let $\alpha < 0$ and $\beta \in \mathbb{R}$. If the function $f \in A$ satisfy any of the following inequalities

(i) $\Re\left(\alpha(Q_{SD}/Q_{ST}) + \beta Q_{ST}\right) > 0$,

(ii) $\Re\left(\alpha(Q_{SD}/Q_{CV}) + \beta Q_{ST}\right) > 0$,

(iii) $\Re\left(\alpha(Q_{SD}/Q_{ST}) + \beta Q_{CV}\right) > 0$,

(iv) $\Re\left(\alpha(Q_{SD}/Q_{CV}) + \beta Q_{CV}\right) > 0$,

then the function f is starlike.

Proof. Let Ω be defined by $\Omega := \{w \in \mathbb{C} : \Re w > 0\}$ and for $i = 1, 2, 3, 4$, let the functions $\psi_i : \mathbb{C}^3 \to \mathbb{C}$ be defined by

$\psi_1(u, v, w) = \alpha(w/u) + \beta u$, \quad $\psi_2(u, v, w) = \alpha(w/v) + \beta u$,

$\psi_3(u, v, w) = \alpha(w/u) + \beta v$ and $\psi_4(v, w) = \alpha(w/v) + \beta v$.

The hypothesis of the theorem shows that the function ψ_i satisfies

$\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega$ for $i = 1, 2, 3, 4$.

It then follows from Theorem 1.1 that the function f is starlike provided $\psi_i \in \Psi(\Omega)$. We complete the proof by showing that the function $\psi_i \in \Psi(\Omega)$.

Let $\alpha < 0$ and $\beta \in \mathbb{R}$ and $\rho, \tau, \xi, \eta \in \mathbb{R}$ satisfy the conditions $\rho \tau \geq (1 + 3\rho^2)/2$ and $\rho \eta \geq 0$. Then, we have

$$\text{Re} \psi_1(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \eta}{\rho} \leq 0,$$

and this proves that the function $\psi_1 \in \Psi(\Omega)$. For the function ψ_2, we have

$$\text{Re} \psi_2(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \eta}{\tau} \leq 0,$$

and so the function $\psi_2 \in \Psi(\Omega_2)$. Similarly, we have

$$\text{Re} \psi_3(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \eta}{\rho} \leq 0,$$

and

$$\text{Re} \psi_4(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \eta}{\tau} \leq 0,$$

so that the functions $\psi_3 \in \Psi(\Omega)$ and $\psi_4 \in \Psi(\Omega)$.

Many authors have dedicated significant part of their works on developing conditions for the functions to be starlike. In such a way, the quotients $Q_{CV}/Q_{ST}, (Q_{CV} - \gamma)/Q_{ST}$ were introduced and examined. See [21, 23, 25, 28]. Along with the quotients, we consider Schwarzian derivatives and discuss its consequences in the study of starlikeness of functions.

Theorem 2.16. Let $\alpha \leq 0$ and $\beta \geq 0$. If the function $f \in A$ satisfy any of the following inequalities

(i) $\text{Re} \left(\alpha \left(Q_{SD}/Q_{ST} \right) + Q_{ST}(1 + \beta Q_{ST}) \right) > 0$,
(ii) $\text{Re} \left(\alpha \left(Q_{SD}/Q_{CV} \right) + Q_{ST}(1 + \beta Q_{ST}) \right) > 0$,
(iii) $\text{Re} \left(\alpha \left(Q_{SD}/Q_{CV} \right) + Q_{CV}(1 + \beta Q_{CV}) \right) > 0$,
(iv) $\text{Re} \left(\alpha \left(Q_{SD}/Q_{ST} \right) + Q_{CV}(1 + \beta Q_{CV}) \right) > 0$,

then the function f is starlike.

Proof. Let Ω be defined by $\Omega := \{ w \in \mathbb{C} : \text{Re} w > 0 \}$ and for $i = 1, 2, 3, 4$, let the functions $\psi_i : \mathbb{C}^3 \to \mathbb{C}$ be defined by

$$\psi_1(u, v, w) = \alpha(w/u) + u(1 + \beta u), \quad \psi_2(u, v, w) = \alpha(w/v) + u(1 + \beta u),$$

$$\psi_3(u, v, w) = \alpha(w/v) + v(1 + \beta v) \quad \text{and} \quad \psi_4(v, w) = \alpha(w/u) + v(1 + \beta v).$$

The hypothesis of the theorem shows that the function ψ_i satisfies

$$\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega \quad \text{for} \ i = 1, 2, 3, 4.$$

It then follows from Theorem 1.1 that the function f is starlike provided $\psi_i \in \Psi(\Omega)$. We complete the proof by showing that the function $\psi_i \in \Psi(\Omega)$.

Let $\alpha \leq 0$ and $\beta \geq 0$ and $\rho, \tau, \xi, \eta \in \mathbb{R}$ satisfy the conditions $\rho \tau \geq (1 + 3\rho^2)/2$ and $\rho \eta \geq 0$. Then, we have

$$\text{Re} \psi_1(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \eta}{\rho} - \beta \rho^2 \leq 0,$$
and this proves that the function $\psi_1 \in \Psi(\Omega)$. For the function ψ_2, we have

$$\text{Re } \psi_2(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \eta}{\tau} - \beta \rho^2 \leq 0,$$

and so the function $\psi_2 \in \Psi(\Omega_2)$. Similarly, we have

$$\text{Re } \psi_3(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \eta}{\tau} - \beta \tau^2 \leq 0,$$

and

$$\text{Re } \psi_4(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \eta}{\rho} - \beta \tau^2 \leq 0,$$

so that the functions $\psi_3 \in \Psi(\Omega)$ and $\psi_4 \in \Psi(\Omega)$.

\[\blacksquare \]

Theorem 2.17. Let $\alpha \leq 0$ and $\beta \geq 0$. If the function $f \in \mathcal{A}$ satisfy any of the following inequalities

(i) $\text{Re } (\alpha(Q_{SD}/Q_{ST}) + Q_{ST}(1 + \beta Q_{CV})) > -\beta/2$,

(ii) $\text{Re } (\alpha(Q_{SD}/Q_{ST}) + Q_{CV}(1 + \beta Q_{ST})) > -\beta/2$,

(iii) $\text{Re } (\alpha(Q_{SD}/Q_{CV}) + Q_{CV}(1 + \beta Q_{ST})) > -\beta/2$,

(iv) $\text{Re } (\alpha(Q_{SD}/Q_{CV}) + Q_{ST}(1 + \beta Q_{CV})) > -\beta/2$,

then the function f is starlike.

Proof. Let Ω be defined by $\Omega := \{w \in \mathbb{C} : \text{Re } w > -\beta/2\}$ and for $i = 1, 2, 3, 4$, let the functions $\psi_i : \mathbb{C}^3 \to \mathbb{C}$ be defined by

$$\psi_1(u, v, w) = \alpha(w/u) + u(1 + \beta v), \quad \psi_2(u, v, w) = \alpha(w/u) + v(1 + \beta u),$$

$$\psi_3(u, v, w) = \alpha(w/v) + v(1 + \beta u) \quad \text{and} \quad \psi_4(v, w) = \alpha(w/v) + u(1 + \beta v).$$

The hypothesis of the theorem shows that the function ψ_i satisfies

$$\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega \quad \text{for } i = 1, 2, 3, 4.$$

It then follows from Theorem 1.1 that the function f is starlike provided $\psi_i \in \Psi(\Omega)$. We complete the proof by showing that the function $\psi_i \in \Psi(\Omega)$.

Let $\alpha \geq 0$ and $\beta \geq 0$ and $\rho, \tau, \xi, \eta \in \mathbb{R}$ satisfy the conditions $\rho \tau \geq (1 + 3\rho^2)/2$ and $\rho \eta \geq 0$. Then, we have

$$\text{Re } \psi_1(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \eta}{\rho} - \beta \rho \tau \leq \frac{\beta(1 + 3\rho^2)}{2} \leq -\frac{\beta}{2},$$

and this proves that the function $\psi_1 \in \Psi(\Omega)$. For the function ψ_2, we have

$$\text{Re } \psi_2(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \eta}{\tau} - \beta \rho \tau \leq \frac{\beta(1 + 3\rho^2)}{2} \leq -\frac{\beta}{2},$$

and so the function $\psi_2 \in \Psi(\Omega_2)$. Similarly, we have

$$\text{Re } \psi_3(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \eta}{\tau} - \beta \rho \tau \leq \frac{\beta(1 + 3\rho^2)}{2} \leq -\frac{\beta}{2},$$

and

$$\text{Re } \psi_4(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \eta}{\rho} - \beta \tau \leq \frac{\beta(1 + 3\rho^2)}{2} \leq -\frac{\beta}{2},$$

so that the functions $\psi_3 \in \Psi(\Omega)$ and $\psi_4 \in \Psi(\Omega)$.

\[\blacksquare \]
Theorem 2.18. Let $\alpha \leq 0$ and $\beta > 0$. If the function $f \in A$ satisfy any of the following inequalities

(i) $\text{Re} \left(\alpha(Q_{SD}/Q_{ST}) + \beta Q_{ST}Q_{CV} \right) > -\beta/2$,
(ii) $\text{Re} \left(\alpha(Q_{SD}/Q_{CV}) + \beta Q_{ST}Q_{CV} \right) > -\beta/2$,
(iii) $\text{Re} \left(\alpha(Q_{SD}/Q_{CV}) + \beta Q_{ST}Q_{ST} \right) > 0$,
(iv) $\text{Re} \left(\alpha(Q_{SD}/Q_{ST}) + \beta Q_{CV}Q_{CV} \right) > 0$,
(v) $\text{Re} \left(\alpha(Q_{SD}/Q_{ST}) + \beta Q_{ST}Q_{ST} \right) > 0$,
(vi) $\text{Re} \left(\alpha(Q_{SD}/Q_{CV}) + \beta Q_{CV}Q_{CV} \right) > 0$,

then the function f is starlike.

Proof. For $i = 1, 2, \cdots, 6$, let Ω_i be defined by $\Omega_1 := \{ w \in \mathbb{C} : \text{Re} w > -\beta/2 \} =: \Omega_2$ and $\Omega_3 := \{ w \in \mathbb{C} : \text{Re} w > 0 \} =: \Omega_4 := \Omega_5 := \Omega_6$ and the functions $\psi_i : \mathbb{C}^2 \to \mathbb{C}$ be defined by

$$
\psi_1(u, v, w) = \alpha(w/u) + \beta u v, \quad \psi_2(u, v, w) = \alpha(w/v) + \beta u v,
$$

$$
\psi_3(u, v, w) = \alpha(w/v) + \beta u^2, \quad \psi_4(u, v, w) = \alpha(w/u) + \beta v^2,
$$

$$
\psi_5(u, v, w) = \alpha(w/u) + \beta u^2 \quad \text{and} \quad \psi_6(v, w) = \alpha(w/v) + \beta v^2.
$$

The hypothesis of the theorem shows that the function ψ_i satisfies

$$
\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega_i \quad \text{for} \quad i = 1, 2, \cdots, 6.
$$

It then follows from Theorem 1.1 that the function f is starlike provided $\psi_i \in \Psi(\Omega_i)$. We complete the proof by showing that the function $\psi_i \in \Psi(\Omega_i)$.

Let $\alpha \leq 0$ and $\beta > 0$ and $\rho, \tau, \xi, \eta \in \mathbb{R}$ satisfy the conditions $\rho \tau \geq (1 + 3 \rho^2)/2$ and $\rho \eta \geq 0$. Then, we have

$$
\text{Re} \psi_1(i \rho, i \tau, \xi + i \eta) = \frac{\alpha \eta}{\rho} - \beta \rho \tau \leq \frac{-\beta(1 + 3 \rho^2)}{2} \leq \frac{-\beta}{2},
$$

and this proves that the function $\psi_1 \in \Psi(\Omega_1)$. For the function ψ_2, we have

$$
\text{Re} \psi_2(i \rho, i \tau, \xi + i \eta) = \frac{\alpha \eta}{\tau} - \beta \rho \tau \leq \frac{-\beta(1 + 3 \rho^2)}{2} \leq \frac{-\beta}{2},
$$

and so the function $\psi_2 \in \Psi(\Omega_2)$. Similarly, we have

$$
\text{Re} \psi_3(i \rho, i \tau, \xi + i \eta) = \frac{\alpha \eta}{\tau} - \beta \rho^2 \leq 0,
$$

and

$$
\text{Re} \psi_4(i \rho, i \tau, \xi + i \eta) = \frac{\alpha \eta}{\rho} - \beta \tau^2 \leq 0,
$$

so that the functions $\psi_3 \in \Psi(\Omega_3)$ and $\psi_4 \in \Psi(\Omega_4)$. Proceeding in a similar way, we have

$$
\text{Re} \psi_5(i \rho, i \tau, \xi + i \eta) = \frac{\alpha \eta}{\rho} - \beta \rho^2 \leq 0
$$

and this proves that the function $\psi_5 \in \Psi(\Omega_5)$. For the function ψ_6, we have

$$
\text{Re} \psi_6(i \rho, i \tau, \xi + i \eta) = \frac{\alpha \eta}{\tau} - \beta \tau^2 \leq 0,
$$

and so the function $\psi_6 \in \Psi(\Omega_6)$.

Theorem 2.19. Let $\alpha > 0$ and $\beta \geq 0$. If the function $f \in A$ satisfy any of the following inequalities

(i) $\Re \left(\alpha \left(\frac{Q_{CV}}{Q_{ST}} \right) - \beta Q_{SD}Q_{CV} \right) < \frac{3\alpha}{2}$,
(ii) $\Re \left(\alpha \left(\frac{Q_{CV}}{Q_{ST}} \right) - \beta SD \right) < \frac{3\alpha}{2}$,
(iii) $\Re \left(\alpha \left(\frac{Q_{ST}}{Q_{CV}} \right) + \beta Q_{SD}Q_{CV} \right) < \frac{2\alpha}{3}$,
(iv) $\Re \left(\alpha \left(\frac{Q_{ST}}{Q_{CV}} \right) + \beta Q_{SD}Q_{ST} \right) < \frac{2\alpha}{3}$,

then the function f is starlike.

Proof. For $i = 1, 2, 3, 4$, let Ω_i be defined by $\Omega_1 := \{ w \in \mathbb{C} : \Re w < \frac{3\alpha}{2} \} =: \Omega_2$ and $\Omega_3 := \{ w \in \mathbb{C} : \Re w > \frac{2\alpha}{3} \} =: \Omega_4$ and the functions $\psi_i : \mathbb{C}^3 \to \mathbb{C}$ be defined by

$\psi_1(u, v, w) = \alpha (v/u) - \beta vw$, $\psi_2(u, v, w) = \alpha (v/u) - \beta uw$,
$\psi_3(u, v, w) = \alpha (u/v) + \beta vw$ and $\psi_4(v, w) = \alpha (u/v) + \beta uw$.

The hypothesis of the theorem shows that the function ψ_i satisfies $\psi_i(Q_{ST}, Q_{CV}, Q_{SD}) \in \Omega_i$ for $i = 1, 2, 3, 4$.

It then follows from Theorem 1.1 that the function f is starlike provided $\psi_i \in \Psi(\Omega_i)$. We complete the proof by showing that the function $\psi_i \in \Psi(\Omega_i)$.

Let $\alpha > 0$ and $\beta \geq 0$ and $\rho, \tau, \xi, \eta \in \mathbb{R}$ satisfy the conditions $\rho \tau \geq (1 + 3\rho^2)/2$ and $\rho \eta \geq 0$. Then, we have

$\Re \psi_1(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \tau}{\rho} + \beta \tau \eta \geq \frac{\alpha (1 + 3\rho^2)}{2\rho^2} \geq \frac{3\alpha}{2}$

and this proves that the function $\psi_1 \in \Psi(\Omega_1)$. For the function ψ_2, we have

$\Re \psi_2(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \tau}{\rho} + \beta \rho \eta \geq \frac{\alpha (1 + 3\rho^2)}{2\rho^2} \geq \frac{3\alpha}{2}$

and so the function $\psi_2 \in \Psi(\Omega_2)$. The real valued function $2\rho^2/(1 + 3\rho^2)$ is an increasing function and the maximum value of the function is $2/3$. Then, we have

$\Re \psi_3(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \rho}{\tau} - \beta \tau \eta \leq \frac{2\alpha \rho^2}{1 + 3\rho^2} \leq \frac{2\alpha}{3},$

and

$\Re \psi_4(i\rho, i\tau, \xi + i\eta) = \frac{\alpha \rho}{\tau} - \beta \rho \eta \leq \frac{2\alpha \rho^2}{1 + 3\rho^2} \leq \frac{2\alpha}{3},$

so that the functions $\psi_3 \in \Psi(\Omega_3)$ and $\psi_4 \in \Psi(\Omega_4)$.

Remark 2.20. Note that substitution of $\alpha = 1$ and $\beta = 0$ in Part(i) and Part(ii) of Theorem 2.19 provide the same result as the one obtained in [25] pp.523].
References

[1] R. M. Ali, V. Ravichandran and N. Seenivasagan, Subordination and superordination on Schwarzian derivatives, J. Inequal. Appl. 2008, Art. ID 712328, 18 pp.

[2] M. P. Chén and S. Owa, Some criteria for certain classes of analytic functions, Math. Japon. 42 (1995), no. 2, 319–323.

[3] N. E. Cho, V. Kumar and V. Ravichandran, Sharp bounds on the higher order Schwarzian derivatives for Janowski classes, Symmetry 10 (2018), no. 8, 348.

[4] S. Fukui, A remark on a class of certain analytic functions, Proc. Japan Acad. Ser. A Math. Sci. 66 (1990), no. 7, 191–192.

[5] S. Kanas, Norm of pre-Schwarzian derivative for the class of k-uniformly convex and k-starlike functions, Appl. Math. Comput. 215 (2009), no. 6, 2275–2282.

[6] O. S. Kwon and Y. J. Sim, Starlikeness and Schwarzian derivatives of higher order of analytic functions, Commun. Korean Math. Soc. 32 (2017), no. 1, 93–106.

[7] O. S. Kwon and Y. J. Sim, Sufficient conditions for Carathéodory functions and applications to univalent functions, Math. Slovaca 69 (2019), no. 5, 1065–1076.

[8] Z. Lewandowski, S. Miller and E. Złotkiewicz, Generating functions for some classes of univalent functions, Proc. Amer. Math. Soc. 56 (1976), 111–117.

[9] J.-L. Li and S. Owa, Sufficient conditions for starlikeness, Indian J. Pure Appl. Math. 33 (2002), no. 3, 313–318.

[10] L. J. Lin and S. Owa, Properties of the Salagean operator, Georgian Math. J. 5 (1998), no. 4, 361–366.

[11] S. S. Miller and P. T. Mocanu, Some classes of first-order differential subordinations, Michigan Math. J. 32 (1985), no. 2, 185–195.

[12] S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.

[13] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545–551.

[14] Z. Nehari, Some criteria of univalence, Proc. Amer. Math. Soc. 5 (1954), 700–704.

[15] M. Nunokawa, S. Owa, S. K. Lee, M. Obradović, M. K. Aouf, H. Saitoh, A. Ikeda and N. Koike, Sufficient conditions for starlikeness, Chinese J. Math. 24 (1996), no. 3, 265–271.

[16] M. Obradović, Simple sufficient conditions for univalence, Mat. Vesnik 49 (1997), no. 3–4, 241–244.

[17] S. Owa and M. Obradović, An application of differential subordinations and some criteria for univalence, Bull. Austral. Math. Soc. 41 (1990), no. 3, 487–494.

[18] C. Ramesha, S. Kumar and K. S. Padmanabhan, A sufficient condition for starlikeness, Chinese J. Math. 23 (1995), no. 2, 167–171.

[19] V. Ravichandran, C. Selvaraj and R. Rajalaksmi, Sufficient conditions for starlike functions of order α, JIPAM. J. Inequal. Pure Appl. Math. 3 (2002), no. 5, Article 81, 6 pp.

[20] K. Sharma, N. E. Cho and V. Ravichandran, Sufficient conditions for strong starlikeness, Bull. Iranian Math. Soc. 47 (2021), no. 5, 1453–1475.

[21] H. Silverman, Convex and starlike criteria, Int. J. Math. Math. Sci. 22 (1999), no. 1, 75–79.

[22] S. Singh and S. Gupta, First order differential subordinations and starlikeness of analytic maps in the unit disc, Kyungpook Math. J. 45 (2005), no. 3, 395–404.

[23] V. Singh and N. Tuneski, On criteria for starlikeness and convexity of analytic functions, Acta Math. Sci. Ser. B (Engl. Ed.) 24 (2004), no. 4, 597–602.

[24] N. Tuneski, A note on some simple sufficient conditions for univalence, Fract. Calc. Appl. Anal. 2 (1999), no. 5, 721–728.

[25] N. Tuneski, On certain sufficient conditions for starlikeness, Int. J. Math. Math. Sci. 23 (2000), no. 8, 521–527.

[26] N. Tuneski, On some simple sufficient conditions for univalence, Math. Bohem. 126 (2001), no. 1, 229–236.

[27] N. Tuneski, Some simple sufficient conditions for starlikeness and convexity, Appl. Math. Lett. 22 (2009), no. 5, 693–697.

[28] N. Tuneski and H. Irmak, On some sufficient conditions for starlikeness, Sci. Magna 6 (2010), no. 1, 105–109.
[29] N. Xu and D. Yang, Some criteria for starlikeness and strongly starlikeness, Bull. Korean Math. Soc. 42 (2005), no. 3, 579–590.

Department of Mathematics, National Institute of Technology, Tiruchirappalli-620015, India
Email address: ashanitt18@gmail.com

Department of Mathematics, National Institute of Technology, Tiruchirappalli-620015, India
Email address: vravi68@gmail.com; ravic@nitt.edu