BOREL WHITEHEAD GROUPS

Saharon Shelah

Institute of Mathematics
The Hebrew University
Jerusalem, Israel

Rutgers University
Mathematics Department
New Brunswick, NJ USA

MSRI
Berkeley, CA USA

Abstract. We investigate the Whiteheadness of Borel abelian groups (ℵ₁-free, without loss of generality as otherwise this is trivial). We show that CH (and even WCH) implies any such abelian group is free, and always ℵ₂-free.
0.1 Definition. 1) We say that $\vec{\psi} = (\psi_0, \psi_1)$ is a code for a Borel abelian group if:

(a) $\psi_0(\ldots, \ldots)$ codes a Borel equivalence relation $E = E_{\vec{\psi}}$ on a subset $B_* = B^*_{\vec{\psi}}$ of ω^2 so $[\psi_0(\eta, \eta) \leftrightarrow \eta \in B_*]$ and $[\psi_0(\eta, \nu) \rightarrow \eta \in B_* \& \nu \in B_*]$, the group will have a set of elements $B = B^*_{\vec{\psi}}/E_{\vec{\psi}}$.

(b) $\psi_1 = \psi_1(x, y, z)$ code a Borel set of triples from ω^2 such that $
abla \{ (x/E_{\vec{\psi}}, y/E_{\vec{\psi}}, z/E_{\vec{\psi})} : \psi_1(x, y, z) \}$ is the graph of a function from $B \times B$ to B such that $(B, +)$ is an abelian group.

2) We say Borel$^+$ if (b) is replaced by:

(b)$'$ ψ_1 codes a Borel function from $B_* \times B_*$ to B_* which respects $E_{\vec{\psi}}$, the function is called $+$ and $(B, +)$ is an abelian group (well, we should denote the function which $+$ induces from $(B_*/E_{\vec{\psi}}) \times (B_*/E_{\vec{\psi}})$ into $B_*/E_{\vec{\psi}}$ by e.g. $+_{E_{\vec{\psi}}}$, but are not strict).

We let $B^*_{\vec{\psi}} = B_{\vec{\psi}} = (B, +)$ be the group coded by $\vec{\psi}$; abusing notation we may write B for $B_{\vec{\psi}}$.

Clearly

0.2 Observation: The set of codes for Borel abelian groups is Π_2^1.

An abelian group B is Borel if it has a Borel code.

An interesting problem suggested by Dave Marker is the Borel version of Whitehead’s problem: namely

0.3 Question: Is every Borel Whitehead group free?

In this paper we will give a partial answer to this question. We will show that every Borel Whitehead group is \aleph_2-free. In particular, the continuum hypothesis implies that every Borel Whitehead group is free. This latter result provides a contrast to the author’s proof ([Sh:98]) that it is consistent with CH that there is a Whitehead group of cardinality \aleph_1 which is not free.

We refer the reader to [EM] for the necessary background material on abelian groups.

Suppose B is an \aleph_1-free abelian group. Let $S_0 = \{ G \subset B : |G| = \aleph_0 \text{ and } B/G \text{ is not } \aleph_1\text{-free} \}$. It is well known that if B is not \aleph_2-free, then S_0 is stationary. We will argue that the converse is true for Borel abelian groups and the answer is quite absolute. Lastly, we deal with weakening Borel to Souslin.

0.4 Question: If B is an \aleph_2-free Borel abelian group, what can be the n in the analysis of a nonfree \aleph_2-free abelian subgroup of B from [Sh 161] (or see [EM] or [Sh 523])?

We thank Todd Eisworth for corrections.
1.1 Hypothesis. Let B be an \aleph_1-free Borel abelian group. Let $\bar{\psi}$ be a Borel code for B.

Let $S_B = S_{\bar{\psi}} = \{ K \subseteq B : K$ is a countable subgroup and B/K is not \aleph_1-free $\}$.

1.2 Lemma. 1) If S_B is stationary, then B is not \aleph_2-free.

2) Moreover, there is an increasing continuous sequence $\langle G_i : i < \omega_1 \rangle$ of countable subgroups of B such that G_{i+1}/G_i is not free for each $i < \omega_1$.

Remark. On such proof in model theory see [Sh 43, §2], [BKM78] and [Sch85].

Proof. We work in a universe $V \models ZFC$. Force with $P = \{ p : p$ is a function from some $\alpha < \omega_1$ to $\omega^2 \}$.

Let $G \subseteq P$ be V-generic and let $V[G]$ denote the generic extension.

Since P is \aleph_1-closed, forcing with P adds no new reals. Thus $\bar{\psi}$ still codes B in the generic extension, i.e. $B^V_{\bar{\psi}[G]} = B^V_{\bar{\psi}}$. Forcing with P also adds no new countable subsets of B hence “B is \aleph_1-free” holds in V iff it holds in $V[G]$. Similarly if $K \subseteq B$ is countable, then “B/K is \aleph_1-free” holds in V iff it holds in $V[G]$. Thus, $S^V_{\bar{\psi}} = S^V_{\bar{\psi}[G]}$. Moreover, since P is proper, $S_{\bar{\psi}}$ remains stationary (see [Shf, Ch.III]).

Since $V[G] \models CH$, we can write

$$B = \bigcup_{\alpha < \omega_1} B_\alpha,$$

where $\bar{B} = \langle B_\alpha : \alpha < \omega_1 \rangle$ is an increasing continuous chain of countable subgroups.

Let $S = \{ \alpha < \omega_1 : B/B_\alpha$ is not \aleph_1-free $\}$. Since $S_{\bar{\psi}}$ is stationary (as a subset of $[B]^{\aleph_0}$) necessarily, S is a stationary subset of ω_1. So $V[G] \models "B$ is not free$"$.

By Pontryagin’s criteria for each $\alpha \in S$ there are $n_\alpha \in \omega$ and $a_\alpha^0, \ldots, a_\alpha^{n_\alpha}$ such that

$$PC(B_\alpha \cup \{ a_\alpha^0, \ldots, a_\alpha^{n_\alpha} \})/B_\alpha$$

is not free, where $PC(X) = PC(X, B)$ is the pure closure of the subgroup of B which X generates. We choose n_α minimal with this property.

Work in $V[G]$. Let κ be a regular cardinal such that $\mathcal{H}(\kappa)$ satisfies enough axioms of set theory to handle all of our arguments, and let $<^*$ be a well ordering of $\mathcal{H}(\kappa)$. Let $N \preceq (\mathcal{H}(\kappa), e, <^*)$ be countable such that $\bar{\psi}, S, \langle B_\alpha : \alpha < \omega_1 \rangle$ and $\langle \langle a_\alpha^0, \ldots, a_\alpha^{n_\alpha} \rangle : \alpha < \omega_1 \rangle$ belong to N.

The model N has been built in $V[G]$, but since forcing with P adds no new reals, there is a transitive model $N_0 \in V$ isomorphic to N and let h be an isomorphism from N onto N_0. Clearly h maps $\bar{\psi}$ to $\bar{\psi}$. From now on we work in V.

We build an increasing continuous elementary chain $\langle N_\alpha : \alpha < \omega_1 \rangle$, choosing N_α by induction on α, as follows. Note the N_α’s are not necessarily transitive or even well founded.

Let $\Gamma = \Gamma_\alpha = \{ \varphi(v) : N_\alpha \models "\delta \in h(S) : \varphi(\delta)" \}$ is stationary” and $\varphi \in \Phi_\alpha$ where Φ_α is the set of first order formulas with parameters from N_α in the vocabulary.
\[\{ \in, <^* \} \] and the only free variable \(v \). Let \(\leq_{\Gamma} \) be the following partial order of \(\Gamma : \theta \leq_{\Gamma} \varphi \) iff \(N_{\alpha} \models "(\forall x)(\varphi(x) \rightarrow \theta(x))" \). Let \(t_{\alpha} \) be a subset of \(\Gamma_{\alpha} \) such that:

(a) \(t_{\alpha} \) is downward closed, i.e. if \(\theta \leq_{\Gamma} \varphi \) and \(\varphi \in t_{\alpha} \) then \(\theta \in t_{\alpha} \)

(b) \(t_{\alpha} \) is directed

(c) for some countable \(M_{\alpha} \prec \langle \mathcal{H}(\kappa), \in, <^* \rangle \) to which \(N_{\alpha} \) belongs, if \(\Gamma \in M_{\alpha}, \Gamma \subseteq \Gamma_{\alpha} \) is a dense subset of \(\Gamma_{\alpha} \) then \(t_{\alpha} \cap \Gamma \neq \emptyset \).

Clearly by the density if \(\varphi \in \Gamma_{\alpha} \) and \(\theta \in \Phi_{\alpha} \), then \(\varphi \wedge \theta \in \Gamma_{\alpha} \) or \(\varphi \wedge \neg \theta \in \Gamma_{\alpha} \). Thus, \(t_{\alpha} \) is a complete type over \(N_{\alpha} \). Since \(N_{\alpha} \) has definable Skolem functions, we can let \(N_{\alpha+1} \) be the Skolem hull of \(N_{\alpha} \cup \{ b_{\alpha} \} \) where \(N_{\alpha} \prec N_{\alpha+1}, b_{\alpha} \in N_{\alpha+1} \) realizes \(t_{\alpha} \).

We claim that \(N_{\alpha+1} \) has no “new natural numbers”, i.e. if \(N_{\alpha+1} \models "c \text{ is a natural numbers}" \) then \(c \in N_{\alpha} \). Why? As \(c \in N_{\alpha+1} \) clearly for some \(f \in N_{\alpha} \) we have \(N_{\alpha} \models "f \text{ is a function with domain } \omega_1, \text{ the countable ordinals}" \) and \(N_{\alpha+1} \models "f(b_{\alpha}) = c" \). Let

\[D_f = \{ \varphi(v) \in \Gamma : N_{\alpha} \models "(\forall x)(\varphi(x) \rightarrow f(x) \text{ is not a natural number})" \text{ or for some } d \in N_{\alpha} \text{ we have } N_{\alpha} \models "(\forall x)(\varphi(x) \rightarrow f(x) = d)" \} . \]

It is easy to check that \(D_f \) is a subset of \(\Gamma_{\alpha} \), it belongs to \(M_{\alpha} \) and it is a dense subset of \(\Gamma_{\alpha} \); hence \(t_{\alpha} \cap D_f \neq \emptyset \). Let \(\varphi(x) \in D_f \cap t_{\alpha} \), so \(N_{\alpha+1} \models \varphi[b_{\alpha}] \), and by the definition of \(D_f \) we get the desired conclusion.

If \(N_{\alpha} \models "b \text{ is a countable ordinal}" \) then \(N_{\alpha+1} \models "b < b_{\alpha} \& b_{\alpha} \text{ is a countable ordinal}" \). Also \(N_{\alpha+1} \models "b_{\alpha} \in h(S)" \).

We claim that \(b_{\alpha} \) is the least ordinal of \(N_{\alpha+1} \setminus N_{\alpha} \) in the sense of \(N_{\alpha+1} \). Assume \(N_{\alpha+1} \models "c \text{ is a countable ordinal}, c < b_{\alpha}" \) so for some \(f \in N_{\alpha} \) we have \(N_{\alpha} \models "f : \omega_1 \rightarrow \omega_1 \text{ is a function}" \) and \(N_{\alpha+1} \models "c = f(b_{\alpha})", N_{\alpha+1} \models "f(b_{\alpha}) < b_{\alpha}" \). Then \(N_{\alpha} \models "(\exists \beta \in h(S) : f(\beta) < \beta) \text{ is a stationary subset of } \omega_1" \). Let \(D = \{ \varphi(v) \in \Gamma : (\exists \gamma < \omega_1)(\forall \upsilon)((\varphi(v) \rightarrow f(\upsilon) = \gamma) \lor (\forall \upsilon)((\varphi(v) \rightarrow f(\upsilon) \geq \upsilon)) \} \). By Fodor’s lemma (which \(N_{\alpha} \) satisfies) \(D \) is a dense subset of \(\Gamma_{\alpha} \) and clearly \(D \subseteq M_{\alpha} \). Since \(t_{\alpha} \) is sufficiently generic, there is a \(\gamma \in N_{\alpha} \) such that \(N_{\alpha+1} \models "f(b_{\alpha}) = \gamma" \).

Now \(N_{\alpha} \) is not necessarily wellfounded but it has standard \(\omega \) and without loss of generality \(N_{\alpha} \models "a \subseteq \omega" \) implies \(a = \{ n < \omega : N_{\alpha} \models "n \in a" \} \) so as \(h(\psi) = \tilde{\psi} \) clearly \(N_{\alpha} \models "x/E^\psi \in B^\psi \Rightarrow x/E^\psi \in B, \text{ and } N_{\alpha} \models "x, y, z \in B, x/E^\psi + y/E^\psi = z/E^\psi \Rightarrow x/E^\psi + y/E^\psi = z/E^\psi" \) .

For each \(\alpha < \omega_1 \), if \(N_{\alpha} \models "b < \omega_1" \), let \(B_{\alpha}^b \) be the group \((h(B))_b \) as interpreted in \(N_{\alpha} \), i.e. \(N_{\alpha} \) thinks that \(B_{\alpha}^b \) is the \(b \)-th group in the increasing chain \(h(B) \).

Clearly \(B_{\alpha}^b \subseteq B \) is the equality, otherwise let \(j_{\alpha}^\psi \) map \((x/E^\psi)^{N_{\alpha}} \to x/E^\psi \), so \(j_{\alpha}^\psi \) embeds \(B_{\alpha}^b \) into \(B^\psi \); let this image be called \(G_{\alpha}^\psi \). Also in \(N_{\alpha} \) there is a bijection between \(B_{\alpha}^b \) and \(\omega \). If \(\gamma > \alpha \), since \(N_{\alpha} \leq N_{\gamma} \) have the same natural numbers, clearly \(B_{\alpha}^b = B_{\gamma}^\psi \) when \(E^\psi \) is equality or \(j_{\alpha}^\psi = j_{\gamma}^\psi \) and \(G_{\alpha}^\psi = G_{\gamma}^\psi \) in the general case. In particular, \(G_{\alpha+1}^{b_{\alpha}} \) is the union of \(\{ G_{\alpha}^\psi : N_{\alpha} \models "b < \omega_1" \} \).

For \(\alpha < \omega_1 \), let \(G_{\alpha} = G_{\alpha+1}^{b_{\alpha}} \) and let \(h((j_{\alpha}^\psi : \ell \leq m_{\alpha} : \alpha \in S)) \in N_{\alpha+1} \) be \(\langle (\alpha_{\alpha}^\psi/E^\psi)^{N_{\alpha}} : \ell \leq m_{\alpha} \rangle \), so \(N_{\alpha+1} \) thinks that \(\langle \alpha_{\alpha}^\psi/E^\psi : \ell \leq m_{\alpha} \rangle \) witness that \(h(B)/B_{\alpha+1}^{b_{\alpha}} \) is not free. Clearly \(\alpha_{\alpha}^\psi/E^\psi, \ldots, \alpha_{m_{\alpha}}^\psi/E^\psi \in G_{\alpha+1} \) and
is not free. So $G_{\alpha+1}/G_{\alpha}$ is not free. Let $G = \bigcup_{\alpha < \omega_1} G_{\alpha}$. Then G is not free. But G is a subgroup of B, thus B is not \aleph_2-free.

Remark. Instead of the forcing we could directly build the N_α’s but we have to deal with stationary subsets of ω_2 instead of ω_1.

1.3 Corollary. If B is an \aleph_1-free Borel abelian group, then B is \aleph_2-free if and only if $\{K \subseteq B : |K| = \aleph_0 \text{ and } B/K \text{ is } \aleph_1\text{-free}\}$ is not stationary.

1.4 Fact: If $2^{\aleph_0} < 2^{\aleph_1}$ then every Borel Whitehead group B is \aleph_2-free.

Proof. By [DvSh 65] (or see [EM]) as $2^{\aleph_0} < 2^{\aleph_1}$ we have: if G be a Whitehead group of cardinality \aleph_1 and $G = \bigcup_{\alpha < \omega_1} G_{\alpha}$ is such that $\langle G_{\alpha} : \alpha < \omega_1 \rangle$ is an increasing continuous chain of countable subgroups, then $\{\alpha : G_{\alpha+1}/G_{\alpha} \text{ is not free}\}$ does not contain a closed unbounded set (see [EM, Ch.XII,1.8]). Thus, if B is not \aleph_2-free, then the subgroup G constructed in the proof of lemma 1.2 is not Whitehead. Since being Whitehead is a hereditary property (see [EM]), B is not Whitehead.

The lemma shows that

1.5 Conclusion. For Borel abelian groups B^ψ, “B^ψ is \aleph_2-free” is absolute (in fact it is a Σ_1^1 property of ψ).

Proof. The formula will just say that there is a model of a suitable fragment of ZFC (e.g. ZC) with standard ω to which ψ belongs and it satisfies “B^ψ is \aleph_2-free”.
§2 On \aleph_2-free Whitehead

2.1 Theorem. If B is a Borel Whitehead group, then B is \aleph_2-free.

2.2 Conclusion: (CH) Every Whitehead Borel abelian group is free.

Before we prove we quote [Sh 44, Definition 3.1].

2.3 Definition. 1) If L is a subset of the \aleph_1-free abelian group, G, $PC(L, G)$ is the smallest pure subgroup of G which contains L. Note that if H is a pure subgroup of $G, L \subseteq H$ then $PC(L, G) = PC(L, H)$. We omit G if it is clear.

2) If H is a subgroup of G, L a finite subset of $G, a \in G$, we say that $\pi(a, L, H, G)$ means that: $PC(H \cup L) = PC(\pi(a, L, H, G))$ but for no $b \in PC(H \cup L \cup \{a\})$ is $PC(\pi(a, L, H, G)) = PC(H \cup L \cup \{a\})$.

Proof. Assume B is not \aleph_2-free. We repeat the proof of Lemma 1.2. So in V^P, B is a non-free \aleph_1-free abelian group of cardinality \aleph_1. Hence by [Sh 44, p.250.3.1(3)], B satisfies possibility I or possibility II where we have chosen $B = (B_\alpha : \alpha < \omega_1)$ increasing continuous with B_α countable, $B = \bigcup_{\alpha < \omega_1} B_\alpha$; the possibilities are explained below. The proof splits into the two cases.

Possibility I: By [Sh 44, p.250].

So we can find (still in V^P) an ordinal $\delta < \omega_1$ and $a_\ell^i \in B$ for $i < \omega_1, \ell < n_i$ such that

(A) $\{a_\ell^i + \delta B : \ell < \omega_1, \ell \leq n_i\}$ is independent in B/B_δ

(B) $\pi(a_\ell^i, L_i, B_\delta, B)$ where L_i is the subgroup of B generated by $\{a_\ell^i : \ell < n_i\}$.

This situation does not survive well under the process and the proof of Lemma 1.2 but after some analysis a revised version will.

Without loss of generality $n_i = n_*(v) = n^*$ (by the pigeon hole principle). Let $N \prec (H(\chi), \in, <^*)$ be countable such that $\mu, B_\delta, B, (B_\alpha : \alpha < \omega_1), \langle a_0^i, \ldots, a_{n_i}^i : i < \omega_1 \rangle$ belong to N. We can find $M \subseteq V, M \cong N$; without loss of generality M is transitive (so $M \models \text{“}n \text{ is a natural number” iff } n$ is a natural number).

Let $\mathfrak{B} \prec (H(\chi), \in, <^*)$ be countable, $M \in \mathfrak{B}$. Let Φ_M be the set of f.o. formulas $\varphi(v)$ in the vocabulary $\{\in, <^*\}$ and parameters from M and the only free variable v. Now we imitate the proof of [Sh 202]. Let $\Gamma = \{\varphi(v) \in \Phi_M : M \models \text{“}\alpha < \omega_1 : \varphi(\alpha)\text{ is uncountable”}\}$ (equivalently Γ is $\{a \subseteq \omega_1 : |a| = \aleph_1\}|M\}$. We can find $\langle t_\eta(v) : \eta \in \omega_2 \rangle$ such that:

(a) each $t_\eta(v)$ a suitable generic subset of Γ, i.e. Γ, is ordered by $\varphi_1(v) \leq \varphi_2(v)$ if $M \models (\forall v)(\varphi_2(v) \rightarrow \varphi_1(v))$ so $t_\eta(v)$ is directed, downward closed and is not disjoint to any dense subset of Γ from \mathfrak{B}

(b) for $k < \omega, \eta_0, \ldots, \eta_{k-1} \in \omega_2$ which are pairwise distinct $\langle t_{\eta_0}(v), \ldots, t_{\eta_{k-1}}(v) \rangle$ is generic too (for Γ^k), i.e. if $D \in \mathfrak{B}$ is a dense subset of Γ^k then $\prod_{\ell < k} t_{\eta_\ell}(v)$ is not disjoint to D.

Saahar SHELAH
(See explanation in the end of the proof of case II).
So for each \(\eta, t_\eta(v) \) is a complete type over \(M \) hence we can find \(M_\eta, M \prec M_\eta, M_\eta \)
the Skolem hull of \(M \cup \{ y_\eta \} \) such that \(y_\eta \) realizes \(t_\eta(v) \) in \(M_\eta \). So \(M_\eta \models \{ y_\eta \) a
countable ordinal\}. Without loss of generality if \(M_\eta \models \{ \rho \in \omega^2 \) then \(\rho \in \omega^2 \) and \(\rho(n) = i \iff M_\eta \models \rho(n) = i \) when \(n < \omega, i < 2 \).
Let \(h : N \to M \) be the isomorphism from \(N \) onto \(M \). We still use \(B_3 \)!
As \(\bar{a} = \langle \langle a^\ell_\eta : \ell \leq n^* : i < \omega_1 \rangle \in N \rangle \) we can look at \(\bar{a} \) and \(h(\bar{a}) \) as a two-place function (with variables written as superscript and subscript). So we can let \(a^\ell_\eta(\ell \leq n^*, \eta \in \omega^2) \) be
reals such that: \(M_\eta \models \{ h(\bar{a})^\ell_\eta = a^\ell_\eta \} \). By absoluteness \(a^\ell_\eta \in B \) (more exactly \(a^\ell_\eta \in B \) \(\bar{a} = B^\equiv_a, a^\ell_\eta/E^\equiv \in B \) and \(\pi(a^\ell_\eta, a^\ell_\eta : \ell < n^*), B_3, B \))
If we can prove that \(\{ a^\ell_\eta : \eta \in \omega^2, \ell \leq n^* \} \) is independent over \(B_3 (= h(B_3)) \), then
the proof of [Sh:98, 3.3] finish our case: proving \(B \) is not Whitehead group. But
independence is just a demand on every finite subset. So it is enough to prove
\[\oplus \text{ if } k < \omega, \eta_0, \ldots, \eta_{k-1} \in \omega^2 \text{ are distinct, then } \{ a^\ell_{\eta_m} : \ell \leq n^*, m \leq k \} \text{ is independent over } B_3. \]
We prove this by induction on \(k \). For \(k = 0 \) this is vacuous, for \(k = 1 \) it is part of
the properties of each \(\{ a^\ell_\eta : \ell \leq n^* \} \). So let us prove it for \(k + 1 \). Remember that
\(\langle t_{\eta_0}(v), \ldots, t_{\eta_k}(v) \rangle \) (more exactly \(\prod_{\ell < k} t_{\eta_\ell}(v) \)) is a generic subset of \(\Gamma^k \).
Assume the desired conclusion fails. So by absoluteness we can find \(\varphi_\ell(v) \in t_{\eta_\ell}(v) \) and \(s^\ell_m \in \mathbb{Z} \) for \(m \leq k, \ell \leq n^* \) such that:
\[\ominus \text{ if } t^m_{\eta_m}(v) \subseteq \Gamma \text{ is generic over } B \text{ for } m \leq k, \text{ moreover } \langle t^m_{\eta_m}(v) : m \leq k \rangle \text{ is a generic subset of } \Gamma \text{ over } B \text{ and } \varphi_\ell(v) \in t^m_{\eta_m}(v), \text{ then (defining } M^\ell_{\eta_m} \text{ by } t^m_{\eta_m}(v) \text{ and } a^\ell_{\eta_m} \text{ as before) } \sum_{\ell \leq n^*, m \leq k} s^m_\ell a^\ell_{\eta_m} = t \in B_3. \]
Clearly for \(m \leq k \) we have \(M \models \{ v : M \models \{ \varphi_m(v) \lor v \text{ a countable ordinal} \} \) has order type \(\omega_1^\ast \) and without loss of generality \(M \models \{ v : M \models \{ \neg \varphi_m(v) \lor v \text{ a countable ordinal} \} \) has order type \(\omega_1^\ast \).
So in \(M \) there are \(g_0, \ldots, g_k \in M \) such that: \(M \models \{ g_i \text{ is a permutation of } \omega_1, \text{ for } i \leq k \} \) we have \((v)(\forall \varphi(v) \leftrightarrow \varphi_0(g_0(v)) \) and \(g_0(v), g_1(v), \ldots, g_k(v) \) are pairwise
distinct\}. Let for \(m \leq k, t^m_{\eta_0}(v) = \{ \varphi(v) \in \Gamma : \varphi(g_i(v)) \in t^m_{\eta_i}(v) \} \). Let in \(M^\eta_{\eta_0}, y^\eta_{\eta_0} = [g_i(y^\eta_{\eta_0})]^{M^m_{\eta_0}}, a^\eta_{\eta_0} \} \text{ is generic over } B \text{ and } \varphi_0(v) \in t^m_{\eta_0}(v), \text{ pairwise } t^m_{\eta_0}(v) \subseteq \Gamma^k + 1 \text{ is generic over } B \)
and \(\varphi(v) \in t^m_{\eta_0}(v), \varphi_0(v) \in t^m_{\eta_0}(v), \ldots, \varphi_k(v) \in t^m_{\eta_0}(v) \). Hence for each \(i \leq k \) in \(B \) we have
\[\sum_{\ell \leq n^*, m \leq k} s^m_\ell a^\ell_{\eta_0} + \sum_{0 < m \leq k \leq n^*} \sum_{\ell \leq n^*} s^m_\ell a^\ell_{\eta_0} = t \in B_3. \]
By linear algebra \(\{ a^\ell_{\eta_0} : i \leq k, \ell \leq n^* \} \) is not independent (actually, \(i = 0, 1 \) suffices - just subtract the equations). By absoluteness this holds in \(M^\eta_{\eta_0} \). But the
formula saying this is false holds in \((\mathcal{M}(\chi), \in, <^*) \) hence in \(N \), hence in \(M \), hence in \(M^\eta_{\eta_0} \) (it speaks on \(\bar{a}, B, B_3 \)), contradiction. So \(\ominus \) fails hence \(\oplus \) holds so we have
finished Possibility I.
Possibility II of [Sh 44, p.250]: In this case we have “not possibility I” but $S = \{\delta < \omega_1 : \delta \text{ a limit ordinal and there are } a^\delta_\ell \text{ for } \ell \leq n_\delta \text{ such that } \pi(a^\delta_n, a^\delta_\ell : \ell < n_\delta, B, B_\delta, B) \}$ is stationary; all in VP. Now without loss of generality we can find $\langle a^\delta_n : n < \omega \rangle$ such that: $a^\delta_n < a^\delta_{n+1}, \delta = \bigcup_{n<\omega} a^\delta_n$, and there are $y^\delta_m \in B_{\delta+1}, t^\delta_m \in B_{\alpha^\delta_{n+1}}$ and $s^\delta_{m,\ell} \in \mathbb{Z}$, (for $\ell < n_\delta$) such that:

$\exists(s)_0 y_0^\delta = a^\delta_{n_\delta}$ and

$(s)_2 s^\delta_{m,n_\delta} y^\delta_{m+1} = \sum_{\ell < n^*} s^\delta_{m,\ell} a^\delta_\ell + y^\delta_m + t^\delta_m$

$(s)_3 s^\delta_{m,n_\delta} > 1$, moreover if s is a proper divisor of s^δ_{m,n_δ} (e.g. 1) then $s y^\delta_{m+1,n_\delta}$ is not in $B_\delta + \{(a^\delta_\ell : \ell < n_\delta) \cup \{y^\delta_{n_\delta}\}B$

$(s)_4$ if $\alpha \in \delta \setminus \{a^\delta_n : n < \omega \}$ then $PC_B(B_{\alpha+1} \cup \{a^\delta_0, \ldots, a^\delta_{n_\delta}\}) = PC_B(B_{\alpha} \cup \{a^\delta_0, \ldots, a^\delta_{n_\delta}\}) + B_{\alpha+1}$

[why? known, or see later.]

Without loss of generality $\delta \in S \Rightarrow n_\delta = n^*$. So as in the proof of Lemma 1.2 we can choose countable $N < (\mathcal{H}(\chi), \epsilon, <^*)$ such that $\alpha = \langle a^\delta_\ell : \ell \leq n^* : \delta \in S \rangle$, $\alpha = \langle \langle \delta^\alpha_n : n < \omega : \delta \in S \rangle, \langle \langle s^\delta_{m,\ell} : \ell \leq n^* : y^\delta_m, t^\delta_m \rangle : \delta \in S \rangle \rangle$ belongs to N, then define M and choose \mathcal{B} as before. We let this time $\Gamma = \Gamma_M$ be as in the proof of Lemma 1.2, that is $\{\varphi(v) : M \models \{\{\delta \in S : \varphi(\delta)\} \} \text{ stationary}\}$. We can find $\langle t_{\eta}(v) : \eta \in \omega_2 \rangle$ such that:

(a) each $t_{\eta}(v) \subseteq \Gamma$ is generic over \mathcal{B} as before hence

(b) for $k < \omega$ and pairwise distinct $\eta_0, \ldots, \eta_{k-1} \in \omega_2, \langle t_{\eta_0}, \ldots, t_{\eta_{k-1}} \rangle$ is generic over \mathcal{B}

(c) letting M_{n^*}, y_{η} be such that: $M < M_{n^*}, y_{n^*}$ the Skolem hull of $M_{n^*} \cup \{y_{n^*}\}, y_{\eta}$ realizes $t_{\eta}(v)$ in M_{n^*} we have

(i) $M_{n^*} \models \"y_{n^*} \text{ is a countable ordinal } \in S^n\"$

(ii) $M \models \"a \text{ is a countable ordinal}\" \Rightarrow M_{n^*} \models \"a < y_{n^*}\"$

(iii) if $y \in M_{n^*}$ satisfies (i) + (ii) then $M_{n^*} \models \"y_{\eta} < y\"$

So looking at $h : N \rightarrow M$ the isomorphism, then $a^\eta_n = [h(\alpha)]^\eta_n$ for $n < \omega$ satisfies:

$M_{n^*} \models \"a^\eta_n \text{ a countable ordinal}\"$

$M_{n^*} \models \"a^\eta_n < a^\eta_{n+1} < y_{\eta}\"$

$M_{n^*} \models \"[h(\alpha)]^\eta_n \text{ is unbounded below } y_{\eta}\"$

hence $\{a^\eta_n : n < \omega \} \subseteq M$ is unbounded among the countable ordinals of M.

Now by easy manipulation (see proof below):

(c) if $\eta_1 \neq \eta_2$ then $\{a^\eta_1 : n < \omega \} \cap \{a^\eta_2 : n < \omega \}$ is finite.
(We can be lazy here demanding just that no \(\{ \alpha_n^\eta : n < \omega \} \) is included in the union of a finite set with the union of finitely many sets of the form \(\{ \alpha_n^\eta : n < \omega \} \) which follows from pairwise generic, and one has to do slightly more abelian group theory work below).

Now we can let \(a_\ell^n = [(h(\bar{a}))_\ell]^{M_n} \). By linear algebra we get the independence hence a contradiction to our being in possibility II (or directly get \(\otimes \) in the proof in the case possibility I holds).

An alternative is the following:

We are assuming that in \(V^P \), possibility I fails. So also in \(V \), letting \(A = M \cap \bar{B^\mathsf{\dagger}} \)

the following set is countable:

\[
K[A] =: \{ \langle a_\ell : \ell \leq n \rangle : n < \omega, a_\ell \in B, (a_\ell : \ell \leq n) \text{ independent over } A \text{ in } B \text{ and } \pi(a_n, \langle a_\ell : \ell < n \rangle_B, A, B) \} \text{ (see proof later).}
\]

For each such \(\bar{a} = \langle a_\ell : \ell \leq n \rangle \) we can look at a relevant type it realizes over \(A \)

\[
t(\bar{a}, A) = \{ (\exists y)(s_y = \sum_{\ell \leq n} s_\ell x_\ell) : B \models (\exists y)(s_y = \sum s_\ell a_\ell), \]

\[
\text{ s, } s_\ell \text{ integers} \}
\]

so \(\{ t(\bar{a}, A) : \bar{a} \in K[A] \} \) is countable. But for the \(\eta \in {}^\omega 2 \) the types \(t(\langle a_\ell^n : \ell < n_\eta \rangle, A) \) are pairwise distinct, contradiction, so actually case II never occurs.

We still have some debts in the treatment of possibility II.

Why do clauses (b) and (c) hold? For each \(n \) we let

\[
\Gamma_{M,n} = \left\{ \varphi(v) : \right. \\
(i) \quad \varphi(v) \text{ is a first order formula with parameters from } M \\
(ii) \quad \text{for some } \beta_\ell^\eta \in M \cap \omega_1 \text{ for } \ell < n \text{ we have} \\
\quad \quad \quad \quad M \models "(\forall v)(\varphi(v) \rightarrow v \in h(S)) \& \bigwedge_{\ell < n} (h(\bar{a}))_\ell^\nu = \beta_\ell^\nu" \\
(iii) \quad \quad \quad M \models "(\forall \beta < \omega_1)(\exists v \in \mathbb{N}_1)[(\varphi(v) \& \beta < (h(\bar{a}))_\nu)]" \}
\]

Now note:

\[\otimes_0 \Gamma_{M,n} \subseteq \Gamma_M \]
\[\otimes_1 \text{ if } \varphi(v) \in \Gamma_M \text{ and } n < \omega \text{ then for some } m \in [n, \omega) \text{ and } \beta_\ell \in M \cap \omega_1 \text{ for } \ell < m \text{ we have } "\varphi(v) \& \bigwedge_{\ell < m} "(h(\bar{a}))_\ell^\nu = \beta_\ell^\nu" \text{ belongs to } \Gamma_{M,m} \]
\[\otimes_2 \text{ if } \varphi(v) \in \Gamma_{M,n} \text{ and } \beta \in M \cap \omega_1 \text{ then } \varphi'(v) = \varphi(v) \& \beta < (h(\bar{a}))_\nu \text{ belongs to } \Gamma_{M,n}. \]

Now let \(\langle \mathcal{D}_n : n < \omega \rangle \) be the family of dense open subsets of \(\Gamma_M \) which belong to \(\mathcal{B} \). We choose by induction on \(n, \langle \varphi_\eta(v) : \eta \in {}^n 2 \rangle, k_\eta < \omega \) such that:

\[(a) \ \varphi_n(v) \in \Gamma_{M,k_\eta} \]
(β) $\varphi_\eta(v) \in D_\ell$ if $\ell < \ell g(\eta)$

(γ) $\varphi_\eta(v) \leq_\Gamma \varphi_{\eta \cdot i}(v)$ for $i = 0, 1$

(δ) if $\eta_0 \neq \eta_1 \in {}^n2, \eta_i < \nu_i \in {}^{n+1}2$ for $i = 0, 1$ and $k_{n_0} \leq k < k_{\nu_0}$ and $M \models (\forall v)(\varphi_{\nu_0}(v) \rightarrow (h(\bar{\alpha}))^v_k = \beta)$ then $M \models (\forall v)[\varphi_{\nu_1}(v) \rightarrow \bigwedge_{\ell < k_{\nu_1}} (h(\bar{\alpha}))^v_\ell \neq \beta]$.

There is no problem to do it and $t_\eta(v) = \{\varphi(v) \in \Gamma_M : \varphi(v) \leq_{r_M} \varphi_{\eta \cap n}(v)$ for some $n < \omega\}$ for $\eta \in {}^{\omega^2}$ are as required.

Why does \boxtimes hold?

For $\delta \in S$ let $w_\delta = \{\alpha < \delta : PC_B(B_\alpha + 1 \cup \{a_0^\delta, \ldots, a_n^\delta, B_\alpha + 1 \subseteq B\}).$

Let $S' = \{\delta \in S : (\forall \alpha < \delta)(|w_\delta \cap \alpha| < \aleph_0)\}$, if S' is stationary we get \boxtimes, otherwise $S \setminus S'$ is stationary, and for $\delta \in S \setminus S'$ let $\alpha_\delta = \text{Min}\{\alpha : w_\delta \cap \alpha \text{ is infinite}\}$. By Fodor’s lemma for some $\alpha(*) < \omega_1, S'' = \{\delta \in S \setminus S' : \alpha_\delta = \alpha(*)\}$ is stationary hence uncountable and we can get possibility I, contradiction. \Box
§3 Refinements

We may wonder if we can weaken the demand “Borel”.

3.1 Definition. 1) We say \(\overline{\psi} \) is a code for a Souslin abelian group if in Definition 0.1 we weaken the demand on \(\psi_0, \psi_1 \) to being a \(\sum_1^1 \) relation.
2) A model \(M \) of a fragment of ZFC is essentially transitive if:

(a) if \(M \models \text{“} x \text{ is an ordinal”} \) and \(\{ \{ y : y <^M x \}, \in^M \} \) is well ordered then \(x \) is an ordinal and \(M \models \text{“} y \in x \iff y \in x \)
(b) if \(\alpha \) is an ordinal, \(\{ \{ y : y <^M x \}, \in^M \} \) is well ordered and \(M \models \text{“} \alpha \text{ an ordinal, }rk(x) = \alpha^\prime \)”, then \(M \models \text{“} y \in x \iff y \in x \.

3) For \(M \) essentially transitive with standard \(\omega \) such that \(\overline{\psi} \in M \) let \(B^M \) is \(B^{\overline{\psi}} \) as interpreted in \(M \) and \(\text{trans}(M) = \{ x \in M : x \text{ as in (b) of part (2)} \} \).

3.2 Fact. 1) “\(\overline{\psi} \) codes a Souslin abelian group” in a \(\Pi_2 \) property.
2) If \(M \) is a model of a suitable fragment of set theory (comprehension is enough), then \(M \) is isomorphic to an essentially transitive model.
3) If \(M \) is an essentially transitive model with standard \(\omega \) of a suitable fragment of ZFC and \(\overline{\psi} \in M \), (note \(\overline{\psi} \) is really a pair of subsets of \(\mathcal{P}(\mathbb{N}_0) \)), then letting \(B^{\overline{\psi}} = (B^{\overline{\psi}})^M \cap \text{trans}(M) \) there is a homomorphism \(j_M \) from \(B^M \) into \(B = B^{\overline{\psi}} \) such that \(M \models \text{“} t = x/E^{\overline{\psi}} \) implies \(j_M(t) = x/E^\psi \).
4) If \(M \prec N \) are as in (3), then \(j_M \subseteq j_N \).

Proof. Straightforward.

3.3 Claim. 1) In 1.2, 2.1 we can assume that \(B = B^{\overline{\psi}} \) is only Souslin.
2) If \(B = B^{\overline{\psi}} \) is not \(\aleph_2 \)-free, then case I of [Sh 44](3.1) holds, more of the conclusion of case I in the proof of 2.1 holds.

Remark. If only \(\psi_1 \) is Souslin, i.e. is \(\sum_1^1 \), just repeat the proofs.

Proof. For both we imitate the proof of 2.1.

In both possibilities, for each \(\eta \in \text{“} 2 \), let \(G_\eta \) be the group which \(\overline{\psi} \) defines in \(M_\eta \), (the \(M_\eta \)'s chosen as there). So \(j_{M_\eta} \) is a homomorphism from \(G_\eta \) into \(B \). However, \(j_M \subseteq j_{M_\eta} \) and \(j_M \) is one to one. Now in defining \(\pi(x, L, B_3, B) \) we can add that we cannot find \(L' \cup \{ x' \} \subseteq PC(B_3 \cup L \cup \{ x \}) \) such that \(\pi(x', L', B_3, B) \) and \(|L'| < |L| \), i.e. the \(n \) is minimal. As \(B \) is \(\aleph_1 \)-free, this implies that \(j_M \upharpoonright B(\text{PC}(B_3 \cup \{ a_\ell : \ell \leq n^* \})^{M_\eta} \) is one to one and by easy algebraic argument, we can get, for 2.1, non-Whiteheadness and for 1.2, non-\(\aleph_2 \)-freeness. \(\square_3.3 \)

3.4 Fact. 1) “\(B^{\overline{\psi}} \) is non-\(\aleph_2 \)-free” is a \(\sum_1^1 \)-property of \(\overline{\psi} \), assuming \(B^{\overline{\psi}} \) is a \(\aleph_1 \)-free Souslin abelian group.
2) “\(\overline{\psi} \) codes a \(\aleph_1 \)-free Souslin abelian group” is a \(\Pi_1^1 \)-property of \(\overline{\psi} \).

Proof. Just check.
REFERENCES.

[BKM78] J. Barwise, K. Kaufmann, and M. Makkai. Stationary logic. *Annals of Mathematical Logic*, **13:**171–224, 1978.

[DvSh 65] Keith J. Devlin and Saharon Shelah. A weak version of ♦ which follows from $2^{\aleph_0} < 2^{\aleph_1}$. *Israel Journal of Mathematics*, **29:**239–247, 1978.

[EM] Paul C. Eklof and Alan Mekler. *Almost free modules; Set theoretic methods*. North Holland Library, 1990.

[Sch85] J. Schmerl. Transfer theorems and their application to logics. In J.Barwise and S.Feferman, editors, *Model Theoretic Logics*, pages 177–209. Springer-Verlag, 1985.

[Sh 44] Saharon Shelah. Infinite abelian groups, Whitehead problem and some constructions. *Israel Journal of Mathematics*, **18:**243–256, 1974.

[Sh 43] Saharon Shelah. Generalized quantifiers and compact logic. *Transactions of the American Mathematical Society*, **204:**342–364, 1975.

[Sh:98] Saharon Shelah. Whitehead groups may not be free, even assuming CH. II. *Israel Journal of Mathematics*, **35:**257–285, 1980.

[Sh 202] Saharon Shelah. On co-κ-Souslin relations. *Israel Journal of Mathematics*, **47:**139–153, 1984.

[Sh 161] Saharon Shelah. Incompactness in regular cardinals. *Notre Dame Journal of Formal Logic*, **26:**195–228, 1985.

[Sh 523] Saharon Shelah. Existence of Almost Free Abelian groups and reflection of stationary set. *Mathematica Japonica*, **45:**1–14, 1997.

[Sh:f] Saharon Shelah. *Proper and improper forcing*. Perspectives in Mathematical Logic. Springer, 1998.