Signatures of TSPAN8 variants associated with human metabolic regulation and diseases

Tisham De, Angela Goncalves, Doug Speed, ..., Michael R. Johnson, Marjo-Riitta Jarvelin, Lachlan JM. Coin

tisham.de08@imperial.ac.uk

Highlights
We demonstrate neuro-exocrine axis for type 2 diabetes and metabolic regulation

Human induced pluripotent stem cells was successfully applied for disease modeling

We note germline CNV deletions are reversed to somatic amplifications

We characterized gene variants associated with obesity with greater odds ratio than FTO SNPs

De et al., iScience 24, 102893
August 20, 2021 © 2021 The Author(s).
https://doi.org/10.1016/j.isci.2021.102893
Signature of TSPAN8 variants associated with human metabolic regulation and diseases

Tisham De,1,2,3,17,* Angela Goncalves,4,5 Doug Speed,6,7,8 Philippe Froguel,2,3,9 NFBC consortium, Daniel J. Gaffney,4 Michael R. Johnson,10,16 Marjo-Riitta Jarvelin,11,12,13,14,16 and Lachlan JM. Coin1,2,15,16

SUMMARY
Here, with the example of common copy number variation (CNV) in the TSPAN8 gene, we present an important piece of work in the field of CNV detection, that is, CNV association with complex human traits such as H NMR metabolomic phenotypes and an example of functional characterization of CNVs among human induced pluripotent stem cells (HiPSC). We report TSPAN8 exon 11 (ENSE00003720745) as a pleiotropic locus associated with metabolomic regulation and show that its biology is associated with several metabolic diseases such as type 2 diabetes (T2D) and cancer. Our results further demonstrate the power of multivariate association models over univariate methods and define metabolomic signatures for variants in TSPAN8.

INTRODUCTION
In human genetics, the concept of common genetic variation in common diseases has been the central tenet of research for more than two decades. Landmark studies such as the Wellcome Trust Case Control Consortium (WTCCC) analysis of eight common diseases first reported a common CNV (CNVR5583.1, TSPAN8 exon 7 deletion, ENSE0000871916) associated with type 2 diabetes (T2D) (Wellcome Trust Case Control Consortium et al., 2010). CNVR5583.1 was validated by polymerase chain reaction (PCR) and was found to have an allele frequency of 36% and 40% for cases and controls, respectively. One of the best tagging single-nucleotide polymorphisms (SNPs) for CNVR5583.1 was reported to be rs1705261 with r2 = 0.998 with highest linkage disequilibrium (LD) among all SNPs. CNVR5583.1, a common exonic variant for controls (minor allele frequency [MAF] = 40%, highest CNV frequency among all WTCCC disease and control cohorts), has not been reported or rediscovered in any of the recent large-scale CNV discovery projects. These include the thousand genomes project (1KG) (n = 2,504), the gnomAD project (n = 141,456), and more recently the CNV analysis from UK biobank (UKBB) (Aguirre et al., 2019) (n = 472,228). Furthermore, well-established longitudinal studies such as the Northern Finland Birth Cohorts (Rantakallio, 1988; Jarvelin et al., 1997) (NFBC) and UKBB (Bycroft et al., 2018) are powerful resources for uncovering the effect of common genetic variants on quantitative traits and lifestyle phenotypes such as socioeconomic status, medication, and diet.

Building on the theme of common genetic variants and their role in common diseases and by integrating insights from current important landmark human genetic resources, our study here exemplifies that common human genetic variation, in particular common CNVs in the TSPAN8 gene, can play an important and common role in the pathogenesis of diabetes and cancer. Furthermore, these manifestations are most likely caused through metabolic dysregulation. Through in-depth gene expression analysis including from the human induced pluripotent stem cells project (HipSci) and PheWAS results for TSPAN8, METTL7B (a trans CNV-QTL for TSPAN8), and NKX2-2 (a common transcription factor), we suggest that TSPAN8, METTL7B and NKX2-2 are expressed in tandem in different tissues of the body in humans and in other species and are likely to be linked through molecular functions.

RESULTS
TSPAN8 CNVs
Here, we have reported the rediscovery of CNVR5583.1 in the 1KG next-generation sequence (NGS) data for multiple human populations including Finnish (FIN) and British (GBR) populations. Using cnvHitSeq (see STAR Methods), we report the CNV deletion frequency for CNVR5583.1 in FIN and GBR as 37.7% and 30%, respectively. Here, with the example of common copy number variation (CNV) in the TSPAN8 gene, we present an important piece of work in the field of CNV detection, that is, CNV association with complex human traits such as H NMR metabolomic phenotypes and an example of functional characterization of CNVs among human induced pluripotent stem cells (HiPSC). We report TSPAN8 exon 11 (ENSE00003720745) as a pleiotropic locus associated with metabolomic regulation and show that its biology is associated with several metabolic diseases such as type 2 diabetes (T2D) and cancer. Our results further demonstrate the power of multivariate association models over univariate methods and define metabolomic signatures for variants in TSPAN8.

INTRODUCTION
In human genetics, the concept of common genetic variation in common diseases has been the central tenet of research for more than two decades. Landmark studies such as the Wellcome Trust Case Control Consortium (WTCCC) analysis of eight common diseases first reported a common CNV (CNVR5583.1, TSPAN8 exon 7 deletion, ENSE0000871916) associated with type 2 diabetes (T2D) (Wellcome Trust Case Control Consortium et al., 2010). CNVR5583.1 was validated by polymerase chain reaction (PCR) and was found to have an allele frequency of 36% and 40% for cases and controls, respectively. One of the best tagging single-nucleotide polymorphisms (SNPs) for CNVR5583.1 was reported to be rs1705261 with r2 = 0.998 with highest linkage disequilibrium (LD) among all SNPs. CNVR5583.1, a common exonic variant for controls (minor allele frequency [MAF] = 40%, highest CNV frequency among all WTCCC disease and control cohorts), has not been reported or rediscovered in any of the recent large-scale CNV discovery projects. These include the thousand genomes project (1KG) (n = 2,504), the gnomAD project (n = 141,456), and more recently the CNV analysis from UK biobank (UKBB) (Aguirre et al., 2019) (n = 472,228). Furthermore, well-established longitudinal studies such as the Northern Finland Birth Cohorts (Rantakallio, 1988; Jarvelin et al., 1997) (NFBC) and UKBB (Bycroft et al., 2018) are powerful resources for uncovering the effect of common genetic variants on quantitative traits and lifestyle phenotypes such as socioeconomic status, medication, and diet.

Building on the theme of common genetic variants and their role in common diseases and by integrating insights from current important landmark human genetic resources, our study here exemplifies that common human genetic variation, in particular common CNVs in the TSPAN8 gene, can play an important and common role in the pathogenesis of diabetes and cancer. Furthermore, these manifestations are most likely caused through metabolic dysregulation. Through in-depth gene expression analysis including from the human induced pluripotent stem cells project (HipSci) and PheWAS results for TSPAN8, METTL7B (a trans CNV-QTL for TSPAN8), and NKX2-2 (a common transcription factor), we suggest that TSPAN8, METTL7B and NKX2-2 are expressed in tandem in different tissues of the body in humans and in other species and are likely to be linked through molecular functions.

RESULTS
TSPAN8 CNVs
Here, we have reported the rediscovery of CNVR5583.1 in the 1KG next-generation sequence (NGS) data for multiple human populations including Finnish (FIN) and British (GBR) populations. Using cnvHitSeq (see STAR Methods), we report the CNV deletion frequency for CNVR5583.1 in FIN and GBR as 37.7% and 30%,
respectively (Figure 1 and Table S1A). Next, guided by the NGS derived CNV breakpoint information for common exonic CNVs in 1KG data and SNP tagging CNV information (LD) from the WTCCC 16K CNV study, we identified CNVs in TSPAN8 exon 10 and TSPAN8 exon 11 in two Northern Finland population cohorts – NFBC 1986 (n = 4,060) and NFBC 1966 (n = 5,240). These two CNV regions lie close to the most significant SNP associated with T2D in TSPAN8 (Figure 2). LD information from the 1KG data when juxtaposed on the UKBB PhewAS results (57 million TOPMed-imputed variants in 400,000 British white individuals) indicate high population specificity (Figure 3). This LD structure in TSPAN8 was more pronounced than that in PCSK9. These results indicate that additional evolutionary, migratory, or human adaptation factors are likely to be involved at these genomic loci.

In NFBC 1986, genotyped on Illumina Cardio-Metabochip platform (Voight et al., 2012), we rediscovered CNVR5583.1 with an allele frequency of ~8% (Table S1B) tagged by rs1705261 with r^2 = 0.942 (Table S1C). In addition, a common CNV (MAF ~5% in NFBC, 1986 and 1KG Fin) overlapped with exon 11 in TSPAN8 which was found to be in weak LD with CNVR5583.1. The LD results were SNP-CNV r^2 = 0.623 and CNV-CNV r^2 = 0.68 (Figures S1A and S1B). PennCNV results for NFBC and other population cohorts seem to indicate undercalling of CNVs in TSPAN8 (Figure S2 and Table S1D).

We highlight that in the public release of CNV data from gnomAD consortium, three common CNV deletions with MAF >5% (MAFs 51%, 26% and 9%) were reported in TSPAN8 but none of these were exonic or overlapped with CNVR5583.1 or TSPAN8 exon 11 (Table S1E). However, we find that there are marked visual differences in sequencing depth coverage across TSPAN8 exon 11 and exon 7 (CNVR5583.1), indicating the presence of structural variation in these regions (Table S1F). The 1KG CNV release reported no common CNVs within the TSPAN8 gene (Table S1G). In the Memorial Sloan Kettering Cancer Center (MSKCC, url: https://www.mskcc.org/about) portal for pan-cancer data (The Cancer Genome Atlas (TCGA) project data included), consisting of ~87,000 samples across 287 different cancer types, we observed that TSPAN8 common germline deletions, including CNVR5583.1, are almost completely depleted (deletion allele frequency <0.01%). In contrast, in most cancer types where TSPAN8 was found to be altered ~2% of the 87,823 patients (91,339 samples from 287 studies), most patient genomes had amplifications with allele frequency >5% (Figure S3). CNV analysis of the HipSci patient germline genomes and the donor-derived cell lines data indicated a similar pattern. We found TSPAN8 CNV deletions with MAF ~5% in germline genomes (Figure S4), and this was reduced to allele frequency of <0.01% in the patient-derived induced pluripotent stem (iPS) cell lines.

Metabolomic signatures of TSPAN8 variants

Metabolomic signatures were obtained by applying univariate and multivariate approaches (Multiphen, see STAR Methods) using cnvHap-derived CNV genotypes. Across TSPAN8 and within a window of one megabase around TSPAN8, the strongest CNV-metabolome association signal was discovered within TSPAN8 exon 11 (chr12:71523134), closely followed by exon 10 and other nearby probes (Figures 4A and 4B). At chr12:71523134, on meta-analysis (inverse variance fixed effects) of 228 metabolic phenotypes in NFBC 1986 and NFBC 1966 (n = 9,190), we found the top metabolic phenotype to be HDL\(\text{\text{_\text{\text{_T\text{\text{G}}} - (Triglycerides in high-density lipoprotein [HDL], p value = 0.00102, Table S2A ii). In our multivariate signature analysis, a signature consisting of several subclasses of HDL was found to be associated with multivariate joint signature with a p value of 0.00368, located at 12:71526593 (Figures 4C and S2A vi). Genome-wide univariate inflation factors for CNV HDL\(\text{\text{TG\text{_T\text{\text{_G}}} associations were found to be 1.004 and 1.157 in NFBC 1986 and NFBC 1966, respectively (Table S2B). Using genotyping platform intensity measurement log-r ratio (LRR)–based association model (association independent of cnvHap genotypes or CNV calling), HDL\(\text{\text{TG replicated in the meta-analysis of NFBC 1986 and NFBC 1966 with a p value of 0.0873 (Table S2C ii). In a separate British replication cohort (Whitehall), the strongest lipid association signal in the TSPAN8 gene was observed for HDL lipid at 12:71526064, near exon 10 with univariate LRR p value of 5.02 × 10^{-8} (Table S2D). Across all cohorts and association approaches, the strongest signal in TSPAN8 was found at chr12:71523134 (exon 11) with a p value = 7.33 × 10^{-233} (Table S2C vi) with a metabolomic signature consisting of 27 metabolites. Influence of sex on association results is reported for Whitehall cohort in Table S2D. In NFBC cohorts, this report is given in Table S2H iii and in Figures S18–S23.

Furthermore, CNV at chr12:71523134 (MAF ~2%) exhibited strong pleiotropy with >50% (115/228) of the metabolites having a significant p value < 0.05 (Figure 5). In contrast, significant SNP association results at the same position (MAF = 43%) showed pleiotropy of only 2%. In addition, individuals with CNV deletion
at chr12:71523134 had significantly higher levels of metabolite levels, particularly for low-density lipoprotein (LDL) and its subcategories (Table S2E). We found 61% (22/36) of LDL and its subclasses had a significant p value < 0.05 for higher metabolite levels.
We report all univariate and multivariate CNV genotype associations and validation results for all common and rare CNVs in the TSPAN8 gene with 228 metabolomic phenotypes in NFBC 1986 and NFBC 1966 characterized by nuclear magnetic resonance (NMR) in Tables S2A, S2C, and S2D and their subsections. We highlight two metabolites of interest from previous genome-wide association study (GWAS) of human metabolome (Suhre et al., 2011; Shin et al., 2014) which lie near TSPAN8 exon 10, namely 1) ratio of 7-methylguanine to mannose (chr12:71524858, p value = 6.58 x 10^-11) and 2) 3,4-dihydroxybutyrate (chr12:71526064, p value = 7.36 x 10^-15 synonym: 3,4-dihydroxybutyric acid) (Table S2F).

Functional characterization and biology of TSPAN8

To understand the function of TSPAN8 CNVs further, we carried out genome-wide TSPAN8 CNV-QTL (germline CNVs association with iPS cell line gene expression) analysis in human induced pluripotent stem cells from the HipSci project (Kilpinen et al., 2017). One of the top hits included METTL7B (genome-wide rank 3, p value = 0.000195, Q value = 0.865, Table S3A). We observe that in addition to these results, it might be possible to assign a priori assumption for functional relationship between TSPAN8 and METTL7B based on current knowledge of common transcriptional factors, gene and protein co-expression, and PheWAS analysis.

Figure 2. Regional Manhattan plot

SNP association results for TSPAN8 in T2D DIAMANTE GWAS analysis (N ~1 million) obtained from the T2D knowledge portal (url: http://www.type2diabetessgenetics.org/). Schematic includes epigenetic annotations for transcriptional activity within TSPAN8. Of note, within a window of one megabase, the most significant SNP association locus for T2D outcome lies near TSPAN8 exon 11 (rs1796330, chr12:71522953, p value = 3.20 x 10^-14).
NKX2-2 is a common epigenetic regulator for TSPAN8 and METTL7B active in adult human pancreatic islets (Figures 3D and S6, Table S3B). Main evidence of tissue-specific expression for these three genes included GTEx and Novartis whole-body gene expression maps (Boos et al., 2013) (Figures S7 and S8), significant tissue-specific SNP-eQTLs (GTEx, Table S3C), eQTL colocalization, and causality results reported by the T2D knowledge portal (Table S3D), single-cell gene expression databases (Figures 6A and 6B and Tables S3E, S3F, and S3G), and whole-body gene expression results in mouse (Tabula Muris, Figure S9), Papio anubis, Ovis aries, and Xenopus laevis (Table S3H). In developing Xenopus laevis, NKX2-2 and TSPAN8 expression seemed to have a positive correlation from Nieuwkoop and Faber (Nieuwkoop and Faber, 1994) (NF) stage 12 to 35-36, but from NF stage 35/36, they become negatively correlated, suggesting additional transcriptional repression factors in play. Such factors are unknown at the moment and warrant further investigation (Figure S10).

Thus, combining evidence from multiple databases and publications, we have demonstrated strong evidence of in-tandem RNA and protein co-expression for NKX2-2, TSPAN8, and METTL7B. We further hypothesize that these three genes together are likely to be functionally linked in energy homeostasis and glucose metabolism in the body through their coordinated action in tissues and organs related to insulin, hormones, other signaling molecules – 1) production: pancreas, 2) processing: liver and gut, 3) regulation: brain and central nervous system, and 4) uptake: muscles/other organs.

Figure 3. LD results from 1KG
Regional Manhattan plot for association of results of SNPs with 1400 EHR-derived broad PheWAS codes from the UK Biobank (n = 400,000 url: https://pheweb.org/). Results are next stratified by LD results for different population ancestries from the 1KG project. Of note, the LD structure seems to be correlated with human migration routes from Africa.
The protein structure of TSPAN8 remains unknown at the moment. However, the protein structure of TSPAN28 which has strong sequence similarity with TSPAN8 (e-value = 2 x 10^-31) has been determined and further shown to bind with cholesterol (Zimmerman et al., 2016) (Figure 6C). Here, we show that TSPAN8 exon 11 deletion when mapped to TSPAN28 might lie close to the closest cholesterol-binding pocket, thus opening up the possibility that TSPAN8 exon 11 deletion might have an effect on cellular cholesterol transport, binding, and metabolism.

Disease, lifestyle, and exposome analysis of TSPAN8, NKX2-2, and METTL7B

Here, we report CNV association with disease outcomes for TSPAN8, NKX2-2, and METTL7B in previously characterized cohorts, namely DESIR for T2D (Vaxillaire et al., 2008), child obesity cohort (Walters et al., 2010), and adult obesity cohort (Walters et al., 2010) (Table S4A). LRR-based association p values for these
cohorts for probes in TSPAN8 exon 11 (chr12:7152314) were 0.0651, 0.00305, and 2.57 × 10⁻¹², respectively. These results included several genomic loci with significant CNV disease signals.

In NFBC 1986 and NFBC 1966, the top PheWAS traits associated with TSPAN8, METTL7B, and NKX2-2 included insulin medication, glycemic traits, and smoking (Tables S4B and S4C), while common phenotypes from the FINNGEN project included T2D, diabetes with coma (both type 1 and 2), neurological complications, and several categories of glycemic traits (Table S4E). Some common lifestyle and exposome phenotypes from several public databases and GWAS catalogs included death at home, medication use, body mass index (BMI), hip circumference, waist hip ratio in females, and balding pattern in males (Figure S11; Tables S4F–S4K). A common metabolomic signature for CNVs in TSPAN8, NKX2-2, and METTL7B included XXL_VLDL_L (total lipids in chylomicrons and extremely large very-low-density lipoprotein [VLDL]) which was recently reported to be associated with increased all-cause mortality rate in humans (Deelen et al., 2019). In cancer biology, TSPAN8 has been well characterized and is mainly implicated in cancer hallmarks related to metastasis and angiogenesis. By comparing and contrasting mutations including CNVs, single-nucleotide variants (SNVs), and gene expression, with a well-known classic tumor suppressor gene such as PTEN (Figure S3C), we propose that TSPAN8 is likely to be an oncogene, involved in cancer metabolism through CNV amplifications and overexpression. Thus, since TSPAN8 SNVs are quite sparse, TSPAN8 CNVs are more likely to be cancer driver events. Overall survival estimates for patients with overexpression in TSPAN8 in many cancer types were also found to be significantly lower (Table S4L).

DISCUSSION

Finnish populations are known to be enriched for deleterious variants and hence are likely to be of added value for understanding molecular mechanisms of common disease such as T2D and metabolic disorders. Here, we have reported in-depth association analyses of CNVs using univariate and multivariate approaches in the TSPAN8 gene with 228 circulating plasma metabolites in more than 9,300 Finnish individuals. In our analysis, we have highlighted some important aspects related to CNV detection and association approaches for cohorts with large sample sizes, commonly characterized through microarrays and NGS platforms. Some salient points included successful application of ‘population aware’ methods for CNV detection, application of probabilistic measures for CNV genotypes for improved CNV-phenotype associations, and leveraging intensity-based approaches for independent validation of CNV-phenotype associations. We demonstrate that CNVs are prevalent in germline, somatic, and iPSC cell line genomes; however, their characterization, especially determining correct breakpoints and allele frequency, remains...
challenging and underexplored. Importantly, approaches for delineating functional impact of bystander CNVs from real disease-causing pathogenic variants remain limited at the moment. New technologies based on CRISPR-based genome engineering, long read sequencing, and sequence-guided reanalysis of published GWAS microarray data sets are some promising leads to address these challenges.

Using a modest sample size of ~9,100, our multivariate approach of using all 228 metabolomic phenotypes in a single model allowed us to pinpoint the most significant and also perhaps the functionally important region in TSPAN8 located within or near exon 11. In contrast, the multiethnic DIAMANTE meta-analysis for T2D (Mahajan et al., 2018) reported the most significant SNP in TSPAN8 near exon 10 at 12:71522953 with a p value = 3.2 x 10^{-14} using a sample size of ~1 million (74,124 T2D cases and 824,006 controls). This result highlights the power of multivariate metabolomics analysis for genomics and highlights its relevance for rare variant analysis which usually requires extremely large sample sizes.

In the HipSci data, we rediscovered TSPAN8 CNV deletions in iPS donor genomes with MAF ~5% and subsequent CNV-QTL analysis led to the discovery of METTL7B, as a potential new trans CNV-QTL for TSPAN8. Furthermore, NKK2-2 was found to be a common transcription factor for these two genes active in pancreatic islets. The initial evidence from the iPS cell lines analysis is suggestive but weak owing to

Figure 6. Functional characterization

(A) Single-cell gene expression results from the Human Cell Atlas. Correlation of single-cell gene expression data for TSPAN8 and METTL7B in specific cell types, namely, ductal cells in the pancreas, hepatocytes in the liver, progenitor cells in the colon, and enterocytes in the ileum. Single-cell gene expression was obtained from the Human Cell Atlas project and analyzed and visualized through the cellxgene software (https://data.humancellatlas.org/analyze/portals/cellxgene).

(B) Single-cell gene expression data in the human pancreas. Published single-cell gene expression data showing tissue specificity of TSPAN8 in the ductal cells of the human pancreas (Single Cell Gene Expression Atlas, Segerstolpe Å, Palasantza A et al. (2016) Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes.).

(C) 3-dimensional protein structure of TSPAN28: 3D protein structure from protein databank showing a cholesterol-binding pocket in TSPAN28 (PDB: 5TCX). The closest cholesterol binding site in TSPAN28 is located at VAL 212 (at a distance of 5.4 Ångström (Å) from cholesterol). In TSPAN8, amino acid SER 213 maps to exon 11 or chr12:71523134.
nonsignificant Q value; however, several additional results from epigenetic and single-cell RNA-Seq data reinforced our hypothesis that TSPAN8, METTL7B, and NKX2-2 are likely to be functionally linked in a very tissue-specific manner in humans and other species. This evidence enabled us to build a robust a priori hypothesis for TSPAN8 and METTL7B and gives more weight to the HipSci results. An additional important result we would like to highlight is the possible involvement of TSPAN8, METTL7B, and NKX2-2 in the PPAR pathway. To elucidate further, we note that NKX2-2 has been experimentally shown to regulate TSPAN8 and PPARG (Tables S3B and S2). In addition to this, the fact that METTL7B (Synonym: ALDI-Associated With Lipid Droplets 1 (Turro et al., 2006)) physically co-localizes with PLIN1 on peroxisomes in the cell cytosol, suggests that the PPAR pathway might indeed be a common denominator (Figure S12).

Another observation we make here is that in addition to strong tissue-specific gene expression in humans and other species, TSPAN8, NKX2-2, and METTL7B further tend to be expressed in pairs but never together, i.e. all three genes being expressed in the same tissue is rarely seen. This phenomenon of pair exclusivity of gene expression was also indirectly reflected through Kaplan-Meier survival curve estimates for many cancer types (Table S4L). Some highlights of such patterns included pancreatic ductal carcinoma and kidney cancer, both of which have strong germline tissue expression. One exception to this pattern was cervical cancer where all three genes were found to be overexpressed. Cervical cancer has links to human papillomavirus (HPV), and thus, it might be a genuine outlier. However, we caution that these observations are preliminary and require further experimental investigation before any definitive conclusions can be made.

TSPAN8 and METTL7B both seem to have strong evidence of being involved with obesity. TSPAN8’s role in obesity is strongly indicated by knockout experiment in mice leading resistance to weight gain (~15.6%) and also corroborated by our novel association results for child obesity, where we found deletions in TSPAN8 are protective against obesity with an odds ratio of 24.59 (p value = 1.268 x 10^-6) (Table S1L i). METTL7B’s role in obesity is a relatively new observation. Of importance is a recent GWAS analysis of childhood onset obesity (Riveros-McKay et al., 2019) where the authors reported rs540249707 near METTL7B to have an odds ratio of 3.6 (95% confidence interval [CI] = 2.13–6.08, p value = 1.77 x 10^-6) which was higher than that of the FTO variant rs9928094 with an odds ratio of 1.44 (95% CI = 1.33–1.57, p value = 1.42 x 10^-16). Furthermore, METTL7B variants have also been reported as one of the top hits in GWAS of amphetamine response (Table S4H ii). Although discontinued, amphetamines are known to be prescribed as antiobesity medication (Ricca et al., 2009) with side effects related to increased alertness. Whether association of TSPAN8 and METTL7B with obesity, central nervous system, or other traits is driven by independent molecular mechanisms or through common molecular pathways is left unvalidated at the moment.

Findings from single-cell data indicate that TSPAN8 is mainly expressed in pancreatic ductal and acinar cells, thus highlighting its involvement of the neuro-exocrine axis for energy homeostasis and metabolism. Furthermore, NKX2-2 and TSPAN8 seem to be strongly coexpressed in similar regions of the human brain, in particular in the midbrain region around the hypothalamus, neural stem, and spinal cord. METTL7B on the other hand is overexpressed in glioblastoma (Figure S3B). Observations of several fold high expressions for TSPAN8 and NKX2-2 are replicated in the UK Brain Expression Study (Ramasamy et al., 2014) (Figure S13) and were also reflected through results from MetaXcan, eCAVIAR, and COLOC analysis for TSPAN8 (Table S3D). These observations for TSPAN8 and NKX2-2 suggest genetic links in the neuro-exocrine axis for energy and metabolic homeostasis in humans. Our neurological observations are further intriguing owing to an earlier reported association of TSPAN8 SNPs in exon 10 with 3,4-dihydroxybutyrate (synonym: 3,4-dihydroxybutyric acid). Butyrate has hormone-like properties and can induce enhanced secretion of glucagon and insulin (Gao et al., 2009) in the pancreas and has known beneficial effects on intestinal homeostasis for energy metabolism via the gut-brain axis (Li et al., 2018). Importantly, 3,4-dihydroxybutyric acid is known to be linked to satiety (Shimizu et al., 1984; Minami et al., 1988) and with ultra-rare succinic semialdehyde dehydrogenase deficiency (SSADH).

Using principles similar to reverse genetics, through PheWAS and phenotypic trait analysis, we further strengthen our metabolomic and gene expression findings. One such example is a common metabolomic signature for TSPAN8, METTL7B, and NKX2-2 CNVs, XXL_VLDL_L, which was recently found to be associated with all-cause mortality (Deelen et al., 2019). The mortality risk factor is further corroborated by strong PheWAS signal for traits related to death at home in UK Biobank results which were common for all three
genes and had the most significant p value = 1.87 × 10^{-33} for TSPAN8 (Table S4i). Some of the other phenotypic traits of interest included high medication use, diabetes with neurological complications, several categories of glycemic traits, BMI, hip circumference, and fat mass.

Our observations from current scientific literature indicate that all common germline CNV deletions (at least 5 CNVs with MAF >5%) in TSPAN8 are nearly depleted in almost all somatic cancer genomes. The fact that they are also depleted in iPSC line genomes postulates that TSPAN8 CNVs are likely to be under unknown somatic evolutionary forces. In contrast, genes such as GSTM1 or RHD which also harbor common germline CNV deletions with MAF >30% seem to retain CNV deletions during their somatic evolution (data not presented). This phenomenon indicates that human germline genomes might have inbuilt safety mechanisms or harbor tumor-suppressive variants, in order to provide inherent protection against uncontrolled cell proliferation or cancer. Similar to TSPAN8 CNV deletions, one might expect such tumor-suppressive events to be present as ‘common variants’ in various human populations.

Of note, germline metabolomic signatures of TSPAN8 and its associated genes can shed light on cancer metabolism, which can be exploited for diagnostic, therapeutic, or palliative interventions. One such possibility which warrants further investigation is our observation that TSPAN8 and METTL7B (active but with weak expression) are expressed with high specificity in triple-negative breast cancer (Figure S14).

To conclude, our results robustly demonstrate the strong pleiotropic effects of TSPAN8, METTL7B, and NKX2-2 on a wide range of human phenotypes, suggesting common molecular mechanisms and biological pathways, which opens up possibilities for diagnostic and therapeutic approaches for metabolic diseases.

Limitations of the study
There are several limitations in our study. First, we were restricted to 228 metabolites (mostly lipids, lipoproteins, and fatty acids) measured and provided by Nightingale Healthcare Limited (https://nightrigalehealth.com/). In reality, the human metabolome is quite large and complex (N >>228). Hence, the real effect of TSPAN8 variants on other categories of metabolite classes remains unknown. In addition, the genotyping platforms used to detect CNVs in our study are not sufficiently dense to map CNVs to high resolution. The fact that the cnvHap algorithm leverages probe-by-probe re-clustering of LRR and BAF values to estimate CNV genotypes alleviates this problem to some extent.

STAR METHODS
Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- RESOURCE AVAILABILITY
 - Lead contact
 - Materials availability
 - Data and code availability
- EXPERIMENT MODEL AND SUBJECT DETAILS
 - Study cohorts
 - Metabolomic measurements in NFBC 1986 and NFBC 1966
 - Lipid measurements in WH-II
- METHODS DETAILS
 - CNV analysis
 - cnvHap: Normalization and quality control
 - CNV predictions using cnvHap
 - CNV segmentation
 - Expected CNV genotypes
 - Association analysis
 - Intensity-based validation of CNV association
 - Multiple testing
 - Linkage disequilibrium
- QUANTIFICATION AND STATISTICAL ANALYSIS
- ADDITIONAL RESOURCES
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102893.

ACKNOWLEDGMENTS

We would like to thank Luise Cederkvist Kristiansen for her preliminary work and analysis of NFBC cohorts. We would like to thank Mr Matthias Heger and Mrs Pat Murphy for administrative help and guidance. Dr Tisham De was supported by Imperial College London School of Public Health PhD scholarship from 2011 to 2014.

AUTHOR CONTRIBUTIONS

T.D., L.J.M.C., M.R.J., and M.-R.J. were involved in study design, performed analysis, and wrote the manuscript. A.G. and D.G. carried out analysis of HipSci data and helped in writing the manuscript. D.S. advised on statistical inference and helped in writing the manuscript. P.F. provided access and advised on obesity and type 2 diabetes cohorts.

DECLARATION OF INTEREST

No external or financial interests to be declared.

Received: January 8, 2021
Revised: June 18, 2021
Accepted: July 20, 2021
Published: August 20, 2021

REFERENCES

Aguirre, M., Rivasa, M.A., and Prieto, J. (2019). ‘Phenome-wide burden of copy-number variation in the UK biobank’. Am. J. Hum. Genet. 105, 373–383.

Bellas, E., Johnson, M.R., and Coin, L.J.M. (2012). ‘cnvHiTSeq: integrative models for high-resolution copy number variation detection and genotyping using population sequencing data’. Genome Biol. 13, R120.

Boos, J.A., Kirk, D.W., Piccolotto, M.L., Zuercher, W., Gfeller, S., Neuner, P., Dattler, A., Wishart, W.L., Von Arx, F., Beverly, M., et al. (2013). Whole-body scanning PCR, a highly sensitive method to study the biodistribution of miRNAs, noncoding RNAs and therapeutic oligonucleotides. Nucleic Acids Res. 41, e145.

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L.T., Sharp, K., Motyer, A., Vukcevic, D., Delaneau, O., O’Connell, J., et al. (2018). The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209.

Coin, L.J.M., Asher, J.E., Walters, R.G., Moustafa, J., De Smith, A.J., Sladek, R., Balding, D.J., Froguel, P., and Blakemore, A.I.F. (2010). cnvHap: an integrative population and haplotype-based multplatform model of SNPs and CNVs. Nature methods 7, 541–546.

Deelen, J., Kettunen, J., Fischer, K., van der Spek, A., Trompet, S., Kastenmüller, G., Boyd, A., Zierer, J., van den Akker, E.B., Aala-Korpela, M., et al. (2019). A metabolic profile of all-cause phenotypes can increase discovery in GWAS. Nat. Genet. 52, 1505–1513.

Mehajan, A., Talun, D., Thumer, M., Robertson, N.P., Torres, J.M., Rayner, N.W., Payne, A.J., Steinhorsdottir, V., Scott, R.A., Grarup, N., et al. (2018). Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513.

Minami, T., Oomura, Y., Nabekura, J., and Fukuda, A. (1988). Direct effects of 3,4-dihydroxybutyric acid gamma-lactone and 2,4,5-trihydroxypentanionic acid gamma-lactone on lateral and ventromedial hypothalamic neurons. Brain Res. 462, 258–264.

Nyholm, D.R. (2004). A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet. 74, 765–769.

O’Reilly, P.F., Hoggart, C.J., Pomyen, Y., Calboli, F.C.F., Elliott, P., Jarvelin, M.-R., and Coin, L.J.M. (2012). MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. PLoS one 7, e34861.

Ramasamy, A., Trabuzni, D., Gueli, S., Varghese, V., Smith, C., Walker, R., De, T., UK Brain Expression Consortium, North American Brain Expression Consortium, Coin, L., et al. (2014). Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat. Neurosci. 17, 1418–1428.

Rantakallio, P. (1988). The longitudinal study of the northern Finland birth cohort of 1966. Paediatric Perinatal Epidemiol. 2, 59–88.

Ricca, V., Castellini, G., Mannucci, E., Monani, M., Ravaldi, C., Gorni, Amedei, S., Lo Suro, C., Rotella, C.M., and Faravelli, C. (2009). Amphetamine derivatives and obesity. Appetite 52, 405–409.

Riveros-McKay, F., Mistry, V., Bounds, R., Hendrickx, A., Keogh, J.M., Thomas, H., Henning, E., Corbin, L.J., Understanding Society Scientific Group, O’Rahilly, S., et al. (2019). ‘Genetic architecture of human thinness compared to severe obesity’. PLoS Genet. 15, e1007603.
Shimizu, N., Oomura, Y., and Sakata, T. (1984). Modulation of feeding by endogenous sugar acids acting as hunger or satiety factors. Am. J. Physiol. 246, R542–R550.

Shin, S.-Y., Fauman, E.B., Petersen, A.-K., Krumsieck, J., Santos, R., Huang, J., Arnold, M., Erte, I., Forgetta, V., Yang, T.-P., et al. (2014). An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543–550.

Suhre, K., Shin, S.-Y., Petersen, A.-K., Mohney, R.P., Meredith, D., Wågele, B., Altmaier, E., CARDioGRAM, Deloukas, P., Erdmann, J., et al. (2011). Human metabolic individuality in biomedical and pharmaceutical research. Nature 477, 54–60.

Turro, S., Ingelmo-Torres, M., Estanyol, J.M., Tebar, F., Fernández, M.A., Albor, C.V., Gaus, K., Grewal, T., Enrich, C., Pol, A., et al. (2006). Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 7, 1254–1269.

Vaxillaire, M., Veslot, J., Dina, C., Proença, C., Cauchi, C., Charpentier, G., Tichet, J., Fumeron, F., Marre, M., Meyre, D., et al. (2008). Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study. Diabetes 57, 244–254.

Voight, B.F., Kang, H.M., Ding, J., Palmer, C.D., Sidore, C., Chines, P.S., Burtt, N.P., Fuchsberger, C., Li, Y., Erdmann, J., et al. (2012). The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 8, e1002793.

Walters, R.G., Jacquemont, S., Valseia, A., de Smith, A.J., Martinet, D., Andersson, J., Falchi, M., Chen, F., Andreux, J., Lobbens, S., et al. (2010). A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature 463, 671–675.

Wellcome Trust Case Control Consortium, Craddock, N., Hurles, M.E., Cardin, N., Pearson, R.D., Plagnol, V., Robson, S., Vukcevic, D., Barnes, C., Conrad, D.F., et al. (2010). Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464, 713–720.

Zimmerman, B., Kelly, B., McMillan, B.J., Seegar, T.C.M., Ovor, R.O., Kruse, A.C., and Blacklow, S.C. (2016). Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell 167, 1041–1051.e11.
STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Experimental models: Organisms/strains	Human induced pluripotent stem cells (HipSci)	https://www.phe-culturecollections.org.uk/	Catalog no 77650042
Software and algorithms	R	https://www.r-project.org/	v3.6.3
	Java	https://www.oracle.com/uk/java/	JDK 7
	cnvHap	https://www.imperial.ac.uk/people/l.coin	NA
	cnvHitSeq	https://sourceforge.net/projects/cnvhitseq/	NA
	Multiphen	https://github.com/lachlancoin/MultiPhen	NA

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr Tisham De (tisham.de08@imperial.ac.uk or de.tisham@gmail.com).

Materials availability

NFBC material can be requested from the consortium website https://www.oulu.fi/nfbc/materialrequest.

Data and code availability

- Data

NFBC data are available with appropriate access permissions. Further details are available here https://www.oulu.fi/nfbc/materialrequest.

Data related to the WH-II study and their phenotypes are available at the following website https://www.ucl.ac.uk/whitehallII/

- Code

All codes used to process and analyze data are published, and the source code is currently available at.

Multiphen: https://github.com/lachlancoin/MultiPhen

cnvHap: https://www.imperial.ac.uk/people/l.coin

cnvHitSeq: https://sourceforge.net/projects/cnvhitseq/

- Additional information

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

This study did not generate new reagents or software code.

EXPERIMENT MODEL AND SUBJECT DETAILS

Study cohorts

All cohorts reported in this study including data from 1KG project, NFBC 1986, NFBC 1966, Whitehall II study (WH-II), DESIR, Child Obesity cohort, Adult Obesity cohort, 1958 British Birth Cohort 1958 (BC1958), National Blood Survey (NBS), Helsinki Birth cohort (HBCS), and HipSci samples have prior ethical approval and consent from all study subjects involved. Further details including aims and methods have
been reported earlier. In our analysis, we refer to NFBC 1986 as the primary discovery cohort for CNVs and metabolomic signatures and NFBC 1966 and WH-II as replication cohorts. BC1958, NBS, and HBCS were used as control cohorts for ascertaining CNV allele frequencies. Child obesity, Adult obesity, and DESIR cohorts were used for replicating disease outcomes. 1KG NGS data were used for CNV breakpoint and frequency calculations. HipSci data were used for functional characterization of CNVs.

Metabolomic measurements in NFBC 1986 and NFBC 1966

Metabolomic measurements for NFBC 1986 (n=228) and NFBC 1966 (n=228) cohorts were carried out using high-throughput 1H nuclear magnetic resonance (NMR) technology developed by Nightingale Healthcare Limited (https://nightingalehealth.com/).

Further details of aims and methods for characterization of various lipoprotein species, ratios, and size along with other metabolites have been described earlier. A complete list of metabolomic phenotypes used in our analysis, their names, and categories is listed in Table S5. Clinical characteristics including age and gender for NFBC cohorts are reported in Table S6.

Lipid measurements in WH-II

After obtaining relevant permissions, we had access to the following lipid measurements for our analysis – apoprotein A1 (Apo A1), apoprotein B (Apo B), cholesterol total (Bchol), cholesterol HDL (HDL), intermediate-density lipoprotein (IDL), triglycerides (Trig), lipoprotein A (LPA), and cholesterol LDL (LDL).

METHODS DETAILS

CNV analysis

NGS-based CNV identification. First, CNV calls were generated using the cnvHiTSeq algorithm (Bellos et al., 2012) in TSPAN8 genic region using NGS low-coverage data from 1KG project for 17 different populations. cnvHiTSeq uses a Hidden Markov Model (HMM)–based probabilistic model for genotyping and discovering CNVs from NGS platforms. It incorporates various signatures from sequencing data such as read depth, read pair, and allele frequency information and then integrates them into a single HMM model to provide improved sensitivity for CNV detection. Normalization of the sequence data prior to CNV analysis using cnvHiTSeq was performed in the following manner: sequencing files in binary alignment format (bam) for the different populations were first downloaded from the 1KG website. For each population, samples were normalized in a sliding window of 25 base pairs and were corrected for wave effects and GC content. Next, cnvHiTSeq was run with a combination of read depth and split read information, with an initial transition probability of 0.15 and 15 expectation maximization (EM) training iterations.

cnvHap: Normalization and quality control

Cohorts genotyped on the Illumina platform were processed through the Illumina Beadstudio (now called Genomestudio2.0) software. LRR, B-allele frequency (BAF), and sample SNP genotypes were exported from the Beadstudio software as ‘final reports’ for subsequent CNV analysis. Prior to CNV calling, data normalization was done in a genotyping-plate-specific manner in order to correct for batch effects. For every genotyping plate, data were adjusted for LRR median correction and LRR variance. Genomic wave effects were accounted for by fitting a localized loess function with a 500-kbp window. Next, the processed LRR and BAF values with relevant covariates such as genotyping plate, BAF, LRR variance were used as input by the cnvHap software for CNV calling.

CNV predictions using cnvHap

CNVs in the TSPAN8 gene were called in various cohorts using the cnvHap algorithm (Coin et al., 2010). This algorithm uses a haplotype HMM for simultaneously discovering and genotyping CNVs from various high-throughput SNP genotyping platforms such as Illumina Cardio-MetaboChip and Agilent aCGH arrays. The haplotype HMM of cnvHap uses combined information of CNVs (LRR) and SNP (BAF) data in population aware mode for CNV predictions. cnvHap has specific emission parameters for different genotyping platforms. In our analysis, we used Illumina-platform-specific emission parameters in all cases. cnvHap was used in its population aware mode where all samples were simultaneously used to train the model. In contrast, CNV detection methods such as PennCNV trains the HMM one sample at a time and does not leverage population-level information for CNV prediction.
CNV segmentation

cnvHap calculates the most probable linear sequence of copy number states (hidden state of the HMM model) for each sample by using dynamic programming and outputs this sequence as CNV breakpoints.

Additionally, cnvHap also calculates probabilistic CNV genotypes or expected CNV genotypes (described later) based on posterior probabilities. Of note, CNV allele frequency based on breakpoints information might differ from frequency calculated using posterior probabilities of CNV genotypes.

Expected CNV genotypes
The haplotype HMM of cnvHap calculates the probability of deletion and duplication for each sample at a given probe which we refer to as the expected CNV genotypes. For example, at a particular probe, if a sample has CNV genotype assigned as 1 (heterozygous deletion) with probability of 0.8, then the expected CNV genotype is calculated as

\[1 \times 0.8 + 2 \times 0.2 = 1.2 \]

The expected CNV genotypes were calculated separately for deletions and duplications for every sample and at every probe location. We have used expected CNV genotypes for all our association analyses and results.

Association analysis

Next, using the MultiPhen software (O’Reilly et al., 2012), we carried out both univariate and multivariate approaches for associating expected CNV genotypes with metabolomic phenotypes in all cohorts. In the univariate analysis, for every probe location, P values for association were calculated using expected CNV genotypes as predictors and metabolomic phenotypes as the outcome. For common genomic probe locations, meta-analysis of NFBC 1986 and NFBC 1966 was performed using the inverse variance fixed-effect model.

For multivariate analysis, we used the MultiPhen software which implements a reverse regression model where phenotypes are used as predictors and CNV genotypes as used as outcome. We refer to this model as a multivariate joint model. The multivariate joint model uses ordinal probit regression to associate CNV genotypes (outcome) with multiple metabolomic phenotypes (predictors) simultaneously and provides a single joint p value capturing the effect of all phenotypes together. In addition, we have further implemented a variable selection method into this model by using a custom backward-selection algorithm. This backward-selection method reduces the correlation structure in the phenotypic space through an iterative process and in the end provides a set of uncorrelated variables. This uncorrelated set of variables is next used in the standard MultiPhen multivariate joint model to obtain a single P value and effect size for all phenotypes. In our analysis, we refer to this subset of phenotypes as metabolomic signatures. In all univariate and multivariate regression analyses, phenotypes were transformed using quantile normalization and 50 LRR principal components (PCs), LRR variance, and sex were used as covariates.

Intensity-based validation of CNV association

There have been several reports regarding the use of direct raw signal data from various technology platforms without using intermediate processing or software as an input for bioinformatics methods. Such approaches have previously been applied for CNV-phenotype association studies where LRR intensity measurements from genotyping platforms were used (Eleftherohorinou et al., 2011). Here, we have leveraged a similar approach by using LRR-phenotype association results as an alternate method to validate CNV genotype-phenotype association results. Similar to CNV association analysis, we applied univariate and multivariate approaches from MultiPhen for the LRR data and used for 50 LRR PCs, LRR variance, and sex as covariates in the model.

Multiple testing

Previous studies have reported the presence of a high degree of correlation in metabolomic and lipid phenotypes. In order to adjust for multiple testing thresholds in the presence of such correlation structure, several alternate methods to Bonferroni correction such as the Sidak-Nyholt correction have been...
proposed (Nyholt, 2004). Briefly in this method, for calculating the net number of effective tests \(M_{\text{eff}}\) in the presence of correlation structure in the phenotypes, the following formula can be used.

\[
M_{\text{eff}} = 1 + \left(\frac{1}{C_0} \right) \left(1 - \frac{\text{Var}(\lambda_{\text{obs}})}{M} \right)
\]

Here \(\lambda_{\text{obs}}\) is the eigen decomposition of the correlation matrix of metabolomic phenotypes. The net effective number of tests \(M_{\text{eff}}\) obtained can then be applied to the Sidak formula or the Bonferroni correction, in order to determine the correct p value threshold. On applying this correction to Sidak-Nyholt and the Bonferroni method, the adjusted multiple testing the p value thresholds obtained were 8.05e-4 and 7.8e-4, respectively.

Linkage disequilibrium

In NFBC 1986 and other cohorts, LD calculation was done using Pearson correlation coefficient for LRR and CNV genotype data from genotyping arrays and sequence data. In addition, a linear regression model was also used to calculate LD between CNV genotype and the number of B-alleles. In NFBC 1966, no probes were found to be in LD \((r^2>0.5)\) with TSPAN8 exon 11 or CNVR5583.1 and hence not reported.

QUANTIFICATION AND STATISTICAL ANALYSIS

All quantitative and statistical analyses are described in detail in the methods section of STAR Methods.

ADDITIONAL RESOURCES

Further details regarding the Northern Finland Birth Cohorts longitudinal study are available here- https://www.oulu.fi/nfbc/nfbc1966_1986.