HAUSDORFF DIMENSION FOR THE IMAGES OF FELLER PROCESSES

V. KNOPOVA RENÉ L. SCHILLING JIAN WANG

Abstract. Let \((X_t)_{t\geq 0}\) be a Feller process generated by a pseudo-differential operator whose symbol satisfies \(\|p(\cdot, \xi)\|_{\infty} \leq c(1 + |\xi|^2)\) and \(p(\cdot, 0) \equiv 0\). The Hausdorff dimension of the set \(\{X_t : t \in E\}\) for any analytic set \(E \subset [0, \infty)\) is almost surely bounded above by \(\beta_{\infty} \dim H E\), and for a large class of examples we establish the lower bound \(\delta_{\infty} \dim H E\) where

\[
\beta_{\infty} := \inf \left\{ \delta > 0 : \lim_{|\xi| \to \infty} \sup_{|\xi| \leq |\xi|} \sup_{z \in \mathbb{R}^d} |p(z, \eta)| = 0 \right\},
\]

\[
\delta_{\infty} := \sup \left\{ \delta > 0 : \lim_{|\xi| \to \infty} \inf_{z \in \mathbb{R}^d} \Re p(z, \xi) = \infty \right\}.
\]

Our result extends the dimension estimates for Lévy processes of Blumenthal and Getoor (1961) and Millar (1971).

Keywords: Feller process, pseudo-differential operator, symbol, Hausdorff dimension, Blumenthal–Getoor index

MSC 2010: 60J25; 60J75; 60G17; 28A80; 35S05.

1. Background and Main Result

A Feller process \((X_t)_{t\geq 0}\) with state space \(\mathbb{R}^d\) is a strong Markov process such that the associated operator semigroup \((T_t)_{t\geq 0}\),

\[
T_t u (x) = E^x (u (X_t)), \quad u \in C_{c} (\mathbb{R}^d), \; t \geq 0, \; x \in \mathbb{R}^d,
\]

\((C_{c} (\mathbb{R}^d)\) is the space of continuous functions vanishing at infinity) enjoys the Feller property, i.e.

it maps \(C_{c} (\mathbb{R}^d)\) into itself. A semigroup is said to be a Feller semigroup, if \((T_t)_{t\geq 0}\) is a one-parameter semigroup of linear contraction operators \(T_t : C_{c} (\mathbb{R}^d) \to C_{c} (\mathbb{R}^d)\) which is strongly continuous: \(\lim_{t \to 0} \|T_t u - u\|_{\infty} = 0\) for any \(u \in C_{c} (\mathbb{R}^d)\), and has the sub-Markov property: \(0 \leq T_t u \leq 1\) whenever \(0 \leq u \leq 1\).

The infinitesimal generator \((A, D(A))\) of the semigroup \((T_t)_{t\geq 0}\) (or of the process \((X_t)_{t\geq 0}\)) is given by the strong limit

\[
Au := \lim_{t \to 0} \frac{T_t u - u}{t}
\]
on the set \(D(A) \subset C_{c} (\mathbb{R}^d)\) of all \(u \in C_{c} (\mathbb{R}^d)\) for which the above limit exists with respect to the uniform norm. We will call \((A, D(A))\) Feller generator for short.

Let \(C_{c}^\infty (\mathbb{R}^d)\) be the space of smooth functions with compact support. Under the assumption that the test functions \(C_{c}^\infty (\mathbb{R}^d)\) are contained in \(D(A)\), Ph. Courrège

\begin{thebibliography}{9}

1. V. Knopova: V. M. Glushkov Institute of Cybernetics NAS of Ukraine, 30187, Kiev, Ukraine. vic_knopova@gmx.de.
2. R. Schilling: TU Dresden, Institut für Mathematische Stochastik, 01062 Dresden, Germany. rene.schilling@tu-dresden.de.
3. J. Wang: School of Mathematics and Computer Science, Fujian Normal University, 350007, Fuzhou, P.R. China. jianwang@fjnu.edu.cn.
\end{thebibliography}
[6, Theorem 3.4] proved that the generator A restricted to $C_c^\infty(\mathbb{R}^d)$ is a pseudo-differential operator,

$$Au(x) = -p(x, D)u(x) := -\int e^{i(x, \xi)} p(x, \xi) \hat{u}(\xi) \, d\xi, \quad u \in C_c^\infty(\mathbb{R}^d),$$

with symbol $p : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$, where \hat{u} is the Fourier transform of u, i.e. $\hat{u}(x) = (2\pi)^{-d} \int e^{-i(x, \xi)} u(\xi) \, d\xi$. The symbol $p(x, \xi)$ is locally bounded in (x, ξ), measurable as a function of x, and for every fixed $x \in \mathbb{R}^d$ it is a continuous negative definite function in the co-variable. This is to say that it enjoys the following Lévy-Khintchine representation,

$$p(x, \xi) = c(x) - i(b(x), \xi) + \frac{1}{2} i^2(b(\xi), \xi) + \int_{\mathbb{R}^d \setminus \{0\}} (1 - e^{i(z, \xi)} + i(z, \xi) 1_{\{|z| \leq 1\}}) \nu(x, dz),$$

where $(c(x), b(x), a(x), \nu(x, dz))_{x \in \mathbb{R}^d}$ are the Lévy characteristics: $c(x)$ is a nonnegative measurable function, $b(x) := (b_j(x)) \in \mathbb{R}^d$ is a measurable function, $a(x) := (a_{jk}(x)) \in \mathbb{R}^{d \times d}$ is a nonnegative definite matrix-valued function, and $\nu(x, dz)$ is a nonnegative, σ-finite kernel on $\mathbb{R}^d \times \mathcal{B}(\mathbb{R}^d \setminus \{0\})$ such that for every $x \in \mathbb{R}^d$, $\int_{\mathbb{R}^d \setminus \{0\}} (1 + |z|^2) \nu(x, dz) < +\infty$. For details and a comprehensive bibliography we refer to the monographs [10] by N. Jacob and the survey [3]. Since we will only consider the case where $c \equiv 0$, we will from now on use the Lévy triplet $(b(x), a(x), \nu(x, dz))$.

It is instructive to have a brief look at Lévy processes which are a particular but important subclass of Feller processes. Our standard reference for Lévy processes is the monograph by K. Sato [20]. A Lévy process $(Y_t)_{t \geq 0}$ is a stochastically continuous random process with stationary and independent increments. The characteristic exponent or the symbol $\psi : \mathbb{R}^d \to \mathbb{C}$ of a Lévy process is a continuous negative definite function, i.e. it is given by a Lévy-Khintchine formula of the form (1.2) with characteristics $(b, a, \nu(dz))$ which do not depend on x.

The notion of Hausdorff dimension is very useful in order to characterize the irregularity of stochastic processes. The Hausdorff dimension of the image sets of a Lévy process has been extensively studied, see [2, 19, 18] and also the survey paper [29, 30] for details. Recall that the Hausdorff dimension of a set $A \subset \mathbb{R}^d$ is the unique number λ, where the λ-dimensional Hausdorff measure $\mathcal{H}^\lambda(A)$, defined by

$$\mathcal{H}^\lambda(A) = \sup_{\varepsilon > 0} \inf \left\{ \sum_{n=1}^{\infty} (\text{diam } A_n)^{\lambda} : A_n \text{ Borel, } \bigcup_{n=1}^{\infty} A_n \supset A \text{ and diam } A_n \leq \varepsilon \right\},$$

changes from $+\infty$ to a finite value.

For the study of the Hausdorff dimension for the sample paths of Lévy processes, various indices were introduced in [2, Sections 2, 3 and 5]:

$$\beta'' = \sup \left\{ \delta > 0 : \lim_{|\xi| \to \infty} \frac{\text{Re } \psi(\xi)}{|\xi|^{\delta}} = \infty \right\},$$

$$\beta = \inf \left\{ \delta > 0 : \lim_{|\xi| \to \infty} \frac{|\psi(\xi)|}{|\xi|^{\delta}} = 0 \right\}.$$
Remark 1.1. Let \((Y_t)_{t \geq 0}\) be a \(d\)-dimensional Lévy process with indices \(\beta''\) and \(\beta\) given above. For every analytic set \(E \subset [0, 1]\) we have, almost surely
\[
\min\{d, \beta'' \dim_HE\} \leq \dim_HE \leq \min\{d, \beta \dim_HE\}.
\]

The purpose of this paper is to estimate the Hausdorff dimension for the image of a Feller process. Throughout we will make the following assumptions on the symbol \(p(x, \xi)\):
\[
\|p(\cdot, \xi)\|_\infty \leq c(1 + |\xi|^2) \quad \text{and} \quad p(\cdot, 0) \equiv 0.
\]

The first condition means that the generator has only bounded ‘coefficients’, see, e.g. [24, Lemma 2.1] or [25, Lemma 6.2]; the second condition implies that the Feller process is conservative in the sense that the life time of the process is almost surely infinite, see [23, Theorem 5.2].

We can now state the first result of our paper, which partly extends Remark 1.1.

Theorem 1.2. Let \((X_t)_{t \geq 0}\) be a Feller process with the generator \((A, D(A))\) such that \(C_c^\infty(\mathbb{R}^d) \subset D(A)\), i.e. \(A|_{C_c^\infty(\mathbb{R}^d)} = -p(\cdot, D)\) is a pseudo-differential operator with symbol \(p(x, \xi)\). Assume that the symbol satisfies (1.3). Then, for every bounded analytic set \(E \subset [0, \infty)\),
\[
(1.4) \quad \dim_H X(E) \leq \min\{d, \beta_{\infty} \dim_HE\}
\]
holds almost surely, where the generalized Blumenthal-Getoor indices (at infinity) are given by
\[
\beta_{\infty} := \inf \left\{ \delta > 0 : \lim_{|\xi| \to \infty} \sup_{|y| \leq |\xi|} \sup_{z \in \mathbb{R}^d} \frac{|p(z, \eta)|}{|\xi|^\delta} = 0 \right\}.
\]

Remark 1.3. The index \(\beta_{\infty}\) coincides with the index \(\beta_{\infty}^{\mathbb{R}^d}\) from [3, Remark 5.14b].

The inequality (1.4) with \(E = [0, 1]\) can also be deduced from the variation of sample functions for Feller processes. Recall that, for a \(p \in (0, \infty)\) and a function \(f\) defined on the interval \([0, T]\) and taking values in \(\mathbb{R}^d\), its \(p\)-variation is given by
\[
V_p(f, [0, T]) = \sup \left\{ \sum_{j=0}^{m-1} |f(t_{j+1}) - f(t_j)|^p : 0 = t_0 < t_1 < \ldots < t_m = T, \ m \geq 1 \right\}.
\]

Then, we have the following assertion.

Proposition 1.4. Let \((X_t)_{t \geq 0}\) be a Feller process with the generator \((A, D(A))\) such that \(C_c^\infty(\mathbb{R}^d) \subset D(A)\), i.e. \(A|_{C_c^\infty(\mathbb{R}^d)} = -p(\cdot, D)\) is a pseudo-differential operator with symbol \(p(x, \xi)\). Assume that the symbol satisfies (1.3). Then, for any \(p > \beta_{\infty}\), the \(p\)-variation of the sample function \((X_t)_{t \geq 0}\) is finite almost surely. In particular,
\[
\mathcal{H}^p X([0, 1]) \leq 2^{p-1}V_p(X, [0, 1]) < \infty
\]
holds almost surely, and so \(\dim_H X([0, 1]) \leq \beta_{\infty}\).

To show the lower bound we need more assumptions on the Feller process.

Theorem 1.5. Let \((X_t)_{t \geq 0}\) be a Feller process in \(\mathbb{R}^d\) with the transition probability density \(p(t, x, y)\), which satisfies
\[
(1.5) \quad p(t, x, y) \leq ct^{-d/\alpha}, \quad t \in (0, 1], \ x, y \in \mathbb{R}^d,
\]
for some \(\alpha \in (0, 2) \). Then, for any analytic set \(E \subset [0, 1] \) we have
\[
\dim_H X(E) \geq (\alpha \land d) \dim_H E.
\]

Let us give a few examples where the conditions of Theorem 1.5 are satisfied.

Example 1.6.

(a) For a Lévy process condition (1.5) is easy to check; for example, it holds true the characteristic exponent \(\psi \) satisfies
\[
\Re \psi(\xi) \geq c|\xi|^\alpha, \quad |\xi| > 1.
\]

(b) For a symmetric Markov process condition (1.5) is equivalent to the following Nash type inequality
\[
\|f\|_{L^2(\mathbb{R}^d; dx)}^{2+2\alpha/d} \leq C \left[D(f, f) + \delta \|f\|_{L^2(\mathbb{R}^d; dx)}^2 \right] \|f\|_{L^1(\mathbb{R}^d; dx)}, \quad f \in C_c^\infty(\mathbb{R}^d),
\]
for some positive constants \(C \) and \(\delta \), where \(D(f, f) = -\langle f, Af \rangle_{L^2(\mathbb{R}^d; dx)} \). See [10, Vol. II, Section 3.6], also the original paper [4] and [1, 26] for more recent developments. The reader can refer to [5, Proposition II.1] for general (non-symmetric) semigroups satisfying (1.5) in terms of functional inequalities.

c) Sufficient conditions when a Lévy type process satisfies (1.5) are given in [12, 13], where the approach relies on the parametrix construction of a Markov process.

Consider the triplet
\[
(b(x), 0, m(x, z) \mu(\text{d}z))
\]
where the functions \(b(\cdot) \) and \(m(\cdot, z) \) are bounded and Hölder continuous with \(m(x, z) \geq c > 0 \) for all \(x, z \in \mathbb{R}^d \); \(\mu \) is the Lévy measure: \(\int_{\mathbb{R}^d} |z|^2 \land 1 \mu(\text{d}u) < \infty \), moreover it satisfies the following condition: There exists \(\beta > 1 \) such that
\[
\sup_{t \in S^d} q^U(t \ell) \leq \beta \inf_{t \in S^d} q^L(t \ell), \quad r \geq 1,
\]
where \(S^d \) is the unit sphere in \(\mathbb{R}^d \), and
\[
q^U(\xi) := \int_{\mathbb{R}^d} (|\xi, z|^2 \land 1) \mu(\text{d}z), \quad q^L(\xi) := \int_{|\xi, z| \leq 1} |\xi, z|^2 \mu(\text{d}z).
\]
Note that the Lévy–Khintchine exponent
\[
q(\xi) = \int_{\mathbb{R}^d} (1 - \cos(\xi, z)) \mu(\text{d}z),
\]
always satisfies the inequalities \((1 - \cos 1)q^L(\xi) \leq q(\xi) \leq 2q^U(\xi) \); moreover, we have for large \(|\xi|\) the relations
\[
q(\xi) \asymp q^L(\xi) \asymp q^U(\xi), \quad |\xi| > 1,
\]
i.e. the exponent does not oscillate "too much". In particular, condition (1.9) on the Lévy measure \(\mu(\text{d}z) \) together with the boundedness of \(m(x, z) \) implies that
\[
\inf_{x \in \mathbb{R}^d} \Re p(x, \xi) \geq c|\xi|^\alpha, \quad |\xi| > 1,
\]
holds for \(\alpha = 2/\beta \in (0, 2) \) and \(c > 0 \), see [11, 13]. It was proved in [13] that starting with the Lévy characteristics as in (1.8) there exists a Feller process \((X_t)_{t \geq 0} \) associated with symbol \(p(x, \xi) \) given by (1.2) and, moreover, this process \((X_t)_{t \geq 0} \) possesses the transition probability density \(p(t, x, y) \). Similar conditions (for a slightly different Lévy triplet) are given in [12].
d) Condition (1.5) holds true for the transition probability density of the stable-like process associated with the Lévy triplet $(0, 0, |z|^{-1-\alpha(x)} d|z| \tilde{\mu}(x, d\ell))$, where $\ell := z/|z|$ for $z \in \mathbb{R}^d$; here, the index function $\alpha(x)$ and the kernel $\tilde{\mu}(x, d\ell)$ are bounded and continuous such that

$$C_1 \leq \int_{S^d} |(v, \ell)|^{\alpha(x)} \tilde{\mu}(x, d\ell) \leq C_2, \quad v \in S^d, x \in \mathbb{R}^d,$$

holds with some positive constants C_1 and C_2, see [14, Theorem 5.1]. In this case, α in (1.5) is equal to $\min_{x \in \mathbb{R}^d} \alpha(x)$.

Remark 1.7. Note that in the cases a), c) and d) (cf. Example 1.6) the characteristic exponent and the symbol satisfy, respectively, (1.7) and (1.10) where, for d), $\alpha = \min_{x \in \mathbb{R}^d} \alpha(x)$. This allows to state the lower bound in terms of the Blumenthal–Getoor index:

$$\dim_H X(E) \geq (\delta_\infty \wedge d) \dim_H E,$$

where

$$\delta_\infty := \sup \left\{ \delta > 0 : \lim_{|\xi| \to \infty} \inf_{z \in \mathbb{R}^d} \text{Re} p(z, \xi) = \infty \right\}$$

is the generalized Blumenthal–Getoor index at infinity. This index coincides with the index $\delta_\infty^{\mathbb{R}^d}$ from [3, Remark 5.14b].

2. PROOFS

Proof of Theorem 1.2. (1) We first claim that for any $p > \beta_\infty$,

$$(2.11) \quad \mathbb{P}^x \left(\sup_{|s-t| \leq h} |X_s - X_t| > u \right) \leq c h u^{-p}$$

holds for all $x \in \mathbb{R}^d$, $h > 0$ and $u \in (0, u_0)$, where u_0 and c are two positive constants independent of h. By the Markov property, it suffices to verify that for sufficiently small $u > 0$

$$\sup_{x \in \mathbb{R}^d} \mathbb{P}^x \left(\sup_{0 \leq r \leq t-s} |X_r - x| \geq (t-s)^{1/p} u \right) \leq c u^{-p}.$$

Note that, according to [27, Proposition 4.3],

$$\sup_{x \in \mathbb{R}^d} \mathbb{P}^x \left(\sup_{0 \leq r \leq t-s} |X_r - x| \geq u \right) \leq c (t-s) \sup_{z \in \mathbb{R}^d} \sup_{|\xi| \leq 1/u} |p(z, \xi)|.$$

This along with the very definition of β_∞ yields the required assertion (2.11).

(2) Now we will follow the proofs of [28, Lemma 4.7 and Proposition 4.8] and [22, Theorem 4] (with some significant modifications) to get the desired upper bound. We first suppose that $\dim_H E < 1$. For any constant γ with $\gamma \in (\dim_H E, 1)$, there exists a sequence of balls $\{B(t_{j,k}, h_{j,k})\}_{j,k \in \mathbb{N}}$ such that

$$E \subset \bigcup_{k=1}^\infty B(t_{j,k}, h_{j,k}) \text{ for all } j \in \mathbb{N}, \quad \lim_{j \to \infty} \sup_{k \in \mathbb{N}} h_{j,k} = 0 \text{ and } \sup_{j,k \in \mathbb{N}} \sum_{k=1}^\infty (h_{j,k})^\gamma < \infty.$$

Without loss of generality, we further assume that $h_{j,k} \leq 1/j$ for all $j, k \in \mathbb{N}$. For $j \in \mathbb{N}$, let

$$\Omega_j := \left\{ \omega : \sup_{|s-t| \leq 1/j} |X_s - X_t| \leq u_0 \right\},$$
where \(u_0 \) is the constant in (2.11). Note that \(X(\Omega) \subseteq \bigcup_{k=1}^{\infty} B(X_{t,j,k}, D(t_{j,k}, h_{j,k})) \), where \(D(t, h) = \sup_{|s-t| \leq h} |X_s - X_t| \). Then, for any \(j \geq j_0 \) and \(p > \beta_\infty \),

\[
\sum_{k=1}^{\infty} \mathbb{E}(\gamma^p(t_{j,k}, h_{j,k}) I_{\Omega_{j_0}}) \leq \gamma p \sum_{k=1}^{\infty} \int_{0}^{u_0} \gamma^{p-1} \mathbb{P}(D(t_{j,k}, h_{j,k}) \geq u) \, du
\]

\[
= \gamma p \sum_{k=1}^{\infty} \int_{0}^{u_0} \gamma^{p-1} \mathbb{P} \left(\sup_{|s-t_{j,k}| \leq h_{j,k}} |X_s - X_{t_{j,k}}| \geq u \right) \, du
\]

\[
\leq c \gamma p \sum_{k=1}^{\infty} \int_{0}^{u_0} \gamma^{p-1} (1 \wedge (h_{j,k} u^{-p})) \, du,
\]

where the last inequality follows from (2.11). It is elementary to verify that, up to a constant, the integral in the last term is bounded by

\[
\int_{0}^{h_{j,k}^{1/p}} \gamma^{p-1} \, du + h_{j,k} \int_{h_{j,k}^{1/p}}^{u_0} \gamma^{p-1} \, du \leq c_1 h_{j,k}^\gamma
\]

with some constant \(c_1 \) independent of \(j_0 \) and \(h_{j,k} \). Therefore,

\[
\sup_{j \geq j_0} \sum_{k=1}^{\infty} \mathbb{E}(\gamma^p(t_{j,k}, h_{j,k}) I_{\Omega_{j_0}}) \leq c_2 \sup_{j \geq j_0} \sum_{k=1}^{\infty} h_{j,k}^\gamma < \infty,
\]

which yields \(\sup_{j \geq j_0} \mathbb{E}^x(\mathcal{F}_{\gamma/j}^p(X(\Omega) \cap \Omega_{j_0})) < \infty \). Using monotone convergence we get that

\[
\mathbb{E}^x(\mathcal{F}_{\gamma/j}^p(X(\Omega) \cap \Omega_{j_0})) < \infty \quad \text{and} \quad \mathcal{F}_{\gamma/j}^p(X(\Omega) \cap \Omega_{j_0}) < \infty \quad \text{a.s.}
\]

This implies that \(\dim_H X(\Omega) \leq \gamma p \) almost surely on \(\Omega_{j_0} \). Note that, according to (2.11), we have \(\lim_{j \to \infty} \mathbb{P}(\Omega_j) = 1 \). Letting first \(j_0 \to \infty \), then \(\gamma \to \dim_H E \), and finally \(p \to \beta_\infty \) along countable sequences proves the desired assertion. \(\fbox{1} \)

(3) Next, we consider \(\dim_H E = 1 \). We may assume that \(E = [0, 1] \). In this case, for any \(j \in \mathbb{N} \), we cover \([0, 1] \) by finitely many set \(E_{j,k} := [(k-1)/j, k/j] \) for \(k = 1, 2, \ldots, j \). Hereafter we will adopt the notations used in part (2). As in the calculations here, we can obtain that for any \(j \geq j_0 \) and \(p > \beta_\infty \),

\[
\sup_{j \geq j_0} \sum_{k=1}^{j} \mathbb{E} \left(D^p \left(\frac{k-1}{j}, \frac{1}{j} \right) I_{\Omega_{j_0}} \right) \leq c p \sup_{j \geq j_0} \sum_{k=1}^{j} \frac{1}{j} = c p
\]

holds with some constant \(c \) independent of \(j_0 \). Then, \(\dim_H X(\Omega) \leq p \) almost surely on \(\Omega_{j_0} \). The required assertion follows by letting \(j_0 \to \infty \) then \(p \to \beta_\infty \). \(\square \)

\(\fbox{1} \) has proven the following conclusion for the upper bound of the Hausdorff dimension for the images of Markov process \((X_t)_{t \geq 0}\) on \(\mathbb{R}^d \): Suppose that there exist positive and finite constants \(H_1 \) and \(\beta \) such that

\[
\mathbb{P} \left(\sup_{|s-t| \leq h} |X_s - X_t| \geq h^{H_1} u \right) \leq c u^{-\beta}
\]

for all \(t \geq 0, h \in (0, h_0) \) and \(u \geq u_0 \), where \(h_0, u_0 \) and \(c \) are positive constants. Then, for every analytic set \(E \subset [0, \infty) \) with \(\dim_H E \leq \beta H_1, \dim_H X(\Omega) \leq d \wedge (\dim_H E/H_1) \) almost surely. The sufficient condition here is completely different from our sufficient condition (2.11), which is key to yield our required upper bounded via the index \(\beta_\infty \).
Proof of Proposition 1.4. (1) According to [16, Theorem 1.3] and [17, Theorem 3], we know that if there exist two positive constants r_0 and C such that for all $t > 0$ and $0 < r < r_0$,

$$a(t, r) := \sup_{0 < s \leq t, x \in \mathbb{R}^d} \mathbb{P}^x(\{X_s - x \geq r\}) \leq C\epsilon^\beta r^{-\alpha}$$

with two constants $\alpha > 0$ and $\beta > (3 - \epsilon)/(\epsilon - 1)$, then for any $p > \alpha/\beta$, the p-variation of the sample function $(X_t)_{t \geq 0}$ is finite almost surely. It is clear that for any $t, r > 0$,

$$a(t, r) \leq \sup_{x \in \mathbb{R}^d} \mathbb{P}^x(\sup_{s \leq t} |X_s - x| \geq r).$$

Applying [3, Corollary 5.2] yields that

$$a(t, r) \leq c t \sup_{x \in \mathbb{R}^d} \sup_{|\xi| \leq 1/r} |p(x, \xi)|$$

holds for some constant $c > 0$. By the very definition of β_∞, for any $p > \beta_\infty$, there exists an r_0 small enough such that for any $0 < r \leq r_0$,

$$\sup_{x \in \mathbb{R}^d} \sup_{|\xi| \leq 1/r} |p(x, \xi)| \leq r^{-p},$$

which proves the finiteness of the p-variation because of Manstavičius' results mentioned earlier.

(2) For any $\epsilon > 0$, let $\{E_j\}_{j=1}^n$ be a sequence of closed, non-overlapping intervals such that $[0, 1] \subset \bigcup_{j=1}^n E_j$, $E_j \cap E_k = \emptyset$ and $\text{diam } E_j \leq \epsilon$ for all $1 \leq j, k \leq n$. Without loss of generality, we further assume that $\{E_j\}_{j=1}^n$ is arranged in the natural order, i.e. for any $1 \leq j \leq n - 1$, if $s \in E_j$ and $t \in E_{j+1}$, then $s \leq t$. For $1 \leq j \leq n$, let $t_j \in E_j$ be the right endpoint of the interval E_j. We may assume that $t_n = 1$. Then,

$$\sum_{j=1}^n \sup_{s, t \in E_j} |X(s) - X(t)|^p \leq \sum_{j=1}^n \left(\sup_{s \in E_j} |X(s) - X(t_j)| + \sup_{t \in E_j} |X(t) - X(t_j)| \right)^p \leq 2^{p-1} \sum_{j=1}^n \sup_{s \in E_j} |X(s) - X(t_j)|^p.$$

Since the paths of a Feller process are right-continuous with finite left-limits, we can choose for every $\eta > 0$ some $\tau_j = \tau^{n, \eta}_{j}(\omega) \in E_j$ such that

$$\sup_{t \in E_j} |X(t) - X(t_j)|^p \leq |X(\tau_j) - X(t_j)|^p + \frac{\eta}{n}.$$

Note that the set of points $\{0, \tau_1, \tau_1, \ldots, \tau_n, t_n\}$ is a partition of $[0, 1]$. Therefore, combining all the estimates above, we arrive at

$$\mathcal{H}_p^\infty(X([0, 1])) \leq \sum_{j=1}^n \sup_{s, t \in E_j} |X(s) - X(t)|^p \leq 2^{p-1} \left(V_p(X, [0, 1]) + \eta \right).$$

Letting $\epsilon \to 0$ and then $\eta \to 0$ yields the assertion. \hfill \Box

The proof of Theorem 1.4 relies on several results, which for the reader's convenience we quote below. First, define the λ-capacity of a Borel set $B \subset \mathbb{R}^d$ as follows:

$$\text{Cap}_\lambda(B) := \left(\inf \left\{ \int_B \int_B |x - y|^{-\lambda} \varpi(dy) \varpi(dx) : \varpi \in \mathcal{M}_1^+(B) \right\} \right)^{-1}$$

(2.12)
Lemma 2.1. If $F \subset \mathbb{R}^d$ is a closed set with strictly positive Hausdorff measure $\mathcal{H}^\lambda(F) > 0$ for some $\lambda > 0$, then $\text{Cap}_\lambda(F) > 0$ for all $\lambda' < \lambda$.

The lemma below is taken from [2, Lemma 2.2], see also [15].

Lemma 2.2. Let $f : \mathcal{X} \mapsto \mathbb{R}^d$ be a measurable function on a metric space $(\mathcal{X}, d(\cdot, \cdot))$, and $E \subset \mathcal{X}$ be a Borel set. If there exists a probability measure $\varpi \in \mathcal{M}_1^+(E)$ such that

$$\int_E \int_E |f(x) - f(y)|^{-\lambda} \varpi(dx)\varpi(dy) < \infty$$

for some $\lambda > 0$, then $\mathcal{H}^\lambda(f(E)) > 0$.

Let $(Y_t)_{t \geq 0}$ be a Markov process in \mathbb{R}^d, and

$$\beta'(Y, x) := \sup \{\lambda \geq 0 : \mathbb{E}^x(|Y_t - Y_s|^{-\lambda}) = O(|t-s|^{-1}) \text{ as } t-s \to 0\} ,$$

This index was introduced in [21].

Lemma 2.3. Let $(Y_t)_{t \geq 0}$ be a Markov process with values in \mathbb{R}^d, and $E \subset [0,1]$ be an analytic set with Hausdorff dimension $\dim_H E$. Then,

$$\dim_H Y(E) \geq \beta'(Y, x) \dim_H E \quad \mathbb{P}^x - \text{a.e.}$$

Proof. Let $0 < \lambda < \beta'(Y, x)$ and $0 < \alpha < \alpha' < \dim_H E$. We find, using Jensen’s inequality for concave functions, that there exists a constant $C > 0$ such that

$$\mathbb{E}^x |Y_t - Y_s|^{-\lambda} \leq \left(\mathbb{E}^x |Y_t - Y_s|^{-\lambda'}\right)^\alpha \leq C |t-s|^{-\alpha}, \quad |t-s| \leq 1.$$

Since $\alpha' < \dim_H E$, we have $\mathcal{H}^{\alpha'}(E) = \infty$, where $\mathcal{H}^{\alpha'}(E)$ is the Hausdorff measure of E with dimension α'. We will use the following result, proved in [7, p. 489, Corollary]: Let $A \subset \mathbb{R}^d$ be an analytic set with $\mathcal{H}^\lambda(A) = \infty$ for some $\lambda > 0$. Then for any $r > 0$ there exists a closed subset $F_r \subset A$ such that $\mathcal{H}^\lambda(F_r) \geq r$. By this, there exists a closed set $F \subset E$ such that $\Lambda^\alpha(F) > 0$, which implies by Lemma 2.1 that $\text{Cap}_\alpha(F) > 0$ for all $\alpha < \alpha'$. By the definition of the capacity, there exists a probability measure with support on F such that

$$\int_F \int_F |t-s|^{-\alpha} \mu(dt)\mu(ds) < \infty.$$

Thus, the above inequality, together with (2.16) and the Fubini theorem, gives us

$$\mathbb{E}^x \left(\int_F \int_F |Y_t - Y_s|^{-\alpha} \mu(dt)\mu(ds)\right) < \infty,$$

which in turn yields that

$$\int_F \int_F |Y_t - Y_s|^{-\alpha} \mu(dt)\mu(ds) < \infty \quad \mathbb{P}^x - \text{a.s.}$$

According to Lemma 2.2, we get

$$\Lambda^\alpha(Y(E, \omega)) \geq \Lambda^\alpha(Y(F, \omega)) > 0 \quad \mathbb{P}^x - \text{a.s.}$$

Therefore, we derive the statement of the lemma by passing to the limit as $\alpha \uparrow \dim_H E$ and $\lambda \uparrow \beta'(Y, x)$. \hfill \square
Now, we are in a position to present the proof of Theorem 1.4.

Proof of Theorem 1.4. By the strong Markov property and (1.5), we have for any \(\lambda < d \wedge \alpha, x \in \mathbb{R}^d \) and \(0 < s < t \) with \(t - s \leq 1 \)

\[
E^x|X_t - X_s|^{-\lambda} = E^x|X_t - X_s|^{-\lambda} \left[\mathbb{1}_{\{|X_t - X_s| \leq (t-s)^{1/\alpha}\}} + \mathbb{1}_{\{|X_t - X_s| > (t-s)^{1/\alpha}\}} \right] \\
\leq E^x \left\{ E^x \left[|X_{t-s} - X_0|^{-\lambda} \mathbb{1}_{\{|X_{t-s} - X_0| \leq (t-s)^{1/\alpha}\}} \right] \right\} + (t-s)^{-\lambda/\alpha} \\
= E^x \int_{|X_s - y| \leq (t-s)^{1/\alpha}} |X_s - y|^{-\lambda} p(t-s, X_s, y) \, dy + (t-s)^{-\lambda/\alpha} \\
\leq c_1 (t-s)^{-\lambda/\alpha} \int_{|X_s - y| \leq (t-s)^{1/\alpha}} \left((t-s)^{-1/\alpha} |X_s - y| \right)^{-\lambda} (t-s)^{-d/\alpha} \, dy \\
+ (t-s)^{-\lambda/\alpha} \\
= c_2 (t-s)^{-\lambda/\alpha} \int_{|y| \leq 1} |y|^{-\lambda} \, dy + (t-s)^{-\lambda/\alpha} \\
\leq c_3 (t-s)^{-\lambda/\alpha} \\
\leq c_3 (t-s)^{-1}.
\]

Thus, we have the lower estimate for the index \(\beta'(X, x) \) defined in (2.14):

\[\beta'(X, x) \geq \lambda \quad \mathbb{P}^x \text{– a.e.} \]

Letting \(\lambda \to d \wedge \alpha \) in the inequality above, we prove (1.6) by Lemma 2.3. \(\square \)

Acknowledgement. Financial support through the Scholarship for Young Scientists 2012-2014, Ukraine (for Victoria Knopova), DFG (grant Schi 419/8-1) (for René L. Schilling) and the National Natural Science Foundation of China (No. 11201073) and the Program for New Century Excellent Talents in Universities of Fujian (No. JA12053) (for Jian Wang) are gratefully acknowledged.

References

[1] Bendikov, A. and Maheux, P.: Nash-type inequalities for fractional powers of non-negative self-adjoint operators, *Trans. Am. Math. Soc.* **359** (2007), 3085–3097.

[2] Blumenthal, R.M. and Getoor, R.K.: Sample functions of stochastic processes with stationary independent increments, *J. Math. Mech.* **10** (1961), 493–516.

[3] Böttcher, B., Schilling, R.L. and Wang, J.: *Lévy-Type Processes: Construction, Approximation and Sample Path Properties*, Lecture Notes in Mathematics, vol. 2099, Lévy Matters III, Springer, Berlin 2014.

[4] Carlen, E. A., Kusuoka, S. and Stroock, D. W.: Upper bounds for symmetric Markov transition functions, *Ann. Inst. H. Poincaré Probab. Statist.* **23** (1987), 245–287.

[5] Coulhon, T.: Ultracontractivity and Nash type inequalities, *J. Funct. Anal.* **141** (1996), 510–539.

[6] Courrége, Ph.: Sur la forme intégro-différentielle des opérateurs de \(C^\infty_K \) dans \(C \) satisfaisant au principe du maximum, *Sém. Théorie du Potentiel* (1965/66) exposé 2, 38 pp.

[7] Davies, R.O.: Subsets of finite measure in analytic sets, *Indagationes Math.* **14** (1952), 488–489.

[8] Falconer, K. J.: *The Geometry of Fractal Sets*, Cambridge University Press, Cambridge 1985.

[9] Frostman, O.: Potential d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, *Meddel. Lunds Univ. Math. Sem.* **3** (1935), 1–118.

[10] Jacob, N.: *Pseudo Differential Operators and Markov Processes* (3 vols), Imperial College Press, London 2001, 2002, 2005.
V. Knopova, A. René L. Schilling, and Jian Wang

[11] Knopova, V.: Compound kernel estimates for the transition probability density of a Lévy process in \mathbb{R}^n, to appear in Theory of Probab. and Math. Stat., also see arXiv: 1310.7081
[12] Knopova, V. and Kulik, A.: Parametrix construction for certain Lévy-type processes and applications, see arXiv: 1307.3087
[13] Knopova, V. and Kulik, A.: Intrinsic compound kernel estimates for the transition probability density of a Lévy type processes and their applications, see arXiv: 1308.0310
[14] Kolokoltsov, V. N.: Symmetric stable laws and stable-like jump-diffusions, Proc. London Math. Soc. 3 (2000), 725–768.
[15] McKean, H. P.: Hausdorff-Besicovitch dimension of Brownian motion paths, Duke Math. J. 22 (1955), 165–331.
[16] Manstavičius, M.: p-Variation of strong Markov processes, Ann. Probab. 32 (2004), 2053–2066.
[17] Manstavičius, M.: A non-Markovian process with unbounded p-variation, Elect. Comm. in Probab. 10 (2005), 17–28.
[18] Millar, P.W.: Path behavior of processes with stationary independent increments, Z. Wahrsch. verw. Geb. 17 (1971), 53–73.
[19] Pruitt, W.E.: The Hausdorff dimension of the range of a process with stationary independent increments, Indiana J. Math. 19 (1969), 371–378.
[20] Sato, K.: Lévy processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge 1999.
[21] Schilling, R.L.: Zum Pfadverhalten von Markovschen Prozessen, die mit Lévy-Prozessen vergleichbar sind, PhD Dissertation, 1994.
[22] Schilling, R.L.: Feller processes generated by pseudo-differential operators: On the Hausdorff dimension of their sample paths, J. Theor. Probab. 11 (1998), 303–330.
[23] Schilling, R.L.: Conservativeness and extensions of Feller semigroups, Positivity 2 (1998), 239–256.
[24] Schilling, R.L.: Growth and Hölder conditions for the sample paths of Feller processes, Probab. Theor. Related Fields 112 (1998), 565–611.
[25] Schilling, R.L. and Schnurr, A.: The symbol associated with the solution of a stochastic differential equation, Elect. J. Probab. 15 (2010), 1369–1393.
[26] Schilling, R.L. and Wang, J.: Functional inequalities and subordination: stability of Nash and Poincaré inequalities, Math. Z. 272 (2012), 921-936
[27] Schilling, R.L. and Wang, J.: Some theorems on Feller processes: transience, local times and ultracontractivity, Trans. Amer. Math. Soc. 365 (2013), 3255–3286.
[28] Shieh, N.R. and Xiao, Y.: Hausdorff and packing dimensions of the images of random fields, Bernoulli 16 (2010), 926–952.
[29] Taylor, S.J.: The measure theory of random fractals, Math. Proc. Cambridge Philos. Soc. 100 (1986), 383–406.
[30] Xiao, Y.M.: Random fractals and Markov processes, Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, (Michel L. Lapidus and Machiel van Frankenhuijsen, editors) pp. 261–338, American Mathematical Society, 2004.