Integrable Operators and Canonical Differential Systems

Lev Sakhnovich

My address: Lev Sakhnovich, 735, Crawford, Brooklyn, 11223, New York, NY, USA.
My tel. (718) 646-2757.
My e-mail address: Lev.Sakhnovich@verizon.net
Research Professor, University of Connecticut at Storrs.
Abstract

In this article we consider a class of integrable operators and investigate its connections with the following theories: the spectral theory of non-self-adjoint operators, the Riemann-Hilbert problem, the canonical differential systems and the random matrices theory.

Introduction

In the article [12] we considered the operators of the type

$$Sf = L(x)f(x) + \text{P.V.} \int_a^b \frac{D(x,t)}{x-t} f(t) dt,$$

where $f(x)\in L^2_k(a,b)$ and $k\times k$ matrix functions $L(x)$ and $D(x,t)$ are such that

$$L(x) = L^*(x), \quad D(x,t) = -D^*(t,x).$$

(The symbol P.V. indicates that the corresponding integral is understood as the principal value.)

Later in the work [8] the important class of the operators S, when

$$k = 1, \quad L(x) = 1, \quad D(x,x) = 0,$$

was studied in details. These results had a number of interesting applications [5],[8].

In our works [12],[13] the connection of the operators S with the spectral theory of non-selfadjoint operators was shown. The operator identity

$$(QS - SQ)f = \int_a^b D(x,t)f(t) dt, \quad Qf = xf(x),$$

plays an essential role in these articles. From the identity (4) follows the statement.
Proposition 1. Let the kernel $D(x,t)$ be degenerate, i.e. $D(x,t) = iA(x)A^*(t)$, where $A(x)$ is a $k \times m$ matrix function ($k \leq m$). If the operator S is invertible, then the operator $T = S^{-1}$ has the form

$$Tf = M(x)f(x) + P.V. \int_{a}^{b} \frac{E(x,t)}{x-t} f(t) dt,$$ \hspace{1cm} (5)$$

where $M(x) = M^*(x)$ and the kernel $E(x,t)$ is also degenerate and has the form

$$E(x,t) = iB(x)B^*(t),$$ \hspace{1cm} (6)$$

$B(x)$ is a $k \times m$ matrix function.

The operators S and T lead to the Riemann-Hilbert matrix problem

$$W_+^2 + (\sigma) = W_-^2 - (\sigma) R^2(\sigma), \quad a \leq \sigma \leq b,$$ \hspace{1cm} (7)$$

where $m \times m$ matrix function $W(z)$ is analytic, when $z \notin [a,b]$. Here matrix function $R^2(\sigma)$ can be constructed with the help of the operators S and T, $W_\pm(\sigma)$ is defined by the relation

$$W_\pm(\sigma) = \lim_{y \to 0} W(z), \quad z = \sigma + iy.$$ \hspace{1cm} (8)$$

In the present article an essential role is played by the canonical differential system

$$\frac{d}{dx} W(x,z) = i \frac{JH(x)}{z-x} W(x,z), \quad W(0,z) = I_m,$$ \hspace{1cm} (9)$$

where $m \times m$ matrix J is such that

$J = J^*$, \quad $J^2 = I_m$ and $H(x) \geq 0$.

The monodromy matrix of system (9) coincides with the solution of the Riemann-Hilbert problem (7), i.e.

$$W(z) = W(b,z).$$ \hspace{1cm} (10)$$
Let us note that \(W(z) \) is a characteristic matrix function of the operator (see \([2],[10]\))
\[
Af = xf + i \int_a^x \beta(x)J\beta^*(t)f(t)dt, \quad f(x) \in L^2_k(a,b),
\]
where \(\beta(x) \) is a \(k \times m \) matrix function such, that
\[
\beta^*(x)\beta(x) = H(x).
\]
We deduce in this article a new sufficient condition of the linear similarity of the operator \(A \) to the operator \(Qf = xf \). It easily follows from (9) that \(W(x, z) \) in the neighborhood of \(z = \infty \) admits the representation
\[
W(x, z) = I_m + \frac{M_1(x)}{z} + \frac{M_2(x)}{z^2} + \ldots,
\]
where
\[
M_1(x) = i \int_a^x JH(t)dt.
\]
In view of (9) and (14) all the coefficients \(M_k(x) \) are defined if the coefficient \(M_1(x) \) is known. This fact is of interest as the representation
\[
W(b, z) = I_m + \frac{M_1(b)}{z} + \frac{M_2(b)}{z^2} + \ldots
\]
is closely connected with the problems of the random matrices theory \([4],[14]\).
From the view point of the random matrix theory it is important that in this article the procedure of constructing the matrix \(M_1(x) \) is given (section 3). We pay the principal attention to the matrix version of the class (3), when
\[
k \geq 1, \quad L(x) = I_k, \quad D(x, x) = 0.
\]
For this class the corresponding matrix function \(R^2(x) \) from (7) has a special structure, namely
\[
[R^2(x) - I_m]^2 = 0.
\]
The corresponding matrix function $JH(x)$ is nilpotent when $m = 1$, i.e.

$$[JH(x)]^2 = 0. \quad (18)$$

In the last part of the paper we consider a number of examples.

1 Integrable operators and Riemann-Hilbert problem

In this section we remind of a number of facts contained in the paper [12]. We use these facts in the next sections. Let $W(z)$ be $m \times m$ matrix function.

We suppose that the following conditions are fulfilled.

1). Matrix function $W(z)$ is analytic in the domain $z \notin [a, b], (-\infty < a < b < \infty)$ and satisfies the equality

$$W(z) = I_m + \frac{1}{2\pi i} \int_a^b \frac{F(x)}{x-z} dx, \quad (19)$$

where $F(x)$ is bounded $m \times m$ matrix function on the segment $[a,b]$.

2). The relations

$$W^*(z) JW(z) = J, \quad (20)$$

$$i \frac{W^*(z) JW(z) - J}{z - \bar{z}} > 0, \quad z \neq \bar{z} \quad (21)$$

are true. (Here $m \times m$ matrix J satisfies the equalities $J = J^*, \quad J^2 = I$).

The equality (1) guarantees the almost everywhere existence of the limits

$$W_\pm(x) = \lim W(z) \quad \text{as} \quad y \to \pm 0, \quad z = x + iy. \quad (22)$$

Now we use the polar decomposition (see [11])

$$W_+(x) = U(x)R(x), \quad W_-(x) = U(x)R^{-1}(x), \quad (23)$$
where $m \times m$ matrix functions $U(x)$ and $R(x)$ are such that

$$U^*(x)JU(x) = J, \quad JR(x) = R^*(x)J$$

and in addition the spectrum of $R(x)$ is positive.

Matrix function $R(x)$ is called J-module of matrix function $W_+(x)$. By relations (23) and (24) we have

$$R^2(x) = JW_+^*(x)JW_+(x).$$

According to the theory of J-module [11] the relations

$$D(x) = J[R(x) - R^{-1}(x)] \geq 0, \quad x \in [a, b],$$

$$D(x) = 0, \quad x \notin [a, b]$$

are true. Now we introduce the matrix functions $F_1(x), F_2(x)$ with the help of the relations

$$F_1^*(x)F_1(x) = D(x), \quad F_2(x) = F_1(x)JU^*(x).$$

Remark 1. Matrix functions $F_1(x)$ and $F_2(x)$ are $k \times m$ matrices, where $k = \sup \{ \text{rank} D(x) \}, a \leq x \leq b$. Hence $k \leq m$.

Using relations (23),(26) and (28) we can write

$$W_+(x) - W_-(x) = F_2^*(x)F_1(x) = F(x).$$

In addition to conditions 1) and 2) we suppose:

3). The matrix functions $F_1(x)$ and $F_2(x)$ are bounded on segment $[a, b]$.

Let us define the operators Π and Γ by formulas $\Pi g = \frac{1}{\sqrt{2\pi}} \int_a^b F_1(x)g$,

$$\Gamma g = -\frac{i}{\sqrt{2\pi}} F_2(x)g,$$

where g are $m \times 1$ vectors, Πg and Γg belong to $L^2_k(a, b)$.

Then we have

$$\Pi^*f(x) = \frac{1}{\sqrt{2\pi}} \int_a^b F_1^*(x)f(x)dx,$$
where $f(x) \in L^2_k(a,b)$. The next assertion follows from formulas (19), (30) and (31).

Proposition 2. The matrix function $W(z)$ admits the realization

$$W(z) = I_m - \Gamma^* (Q - zI)^{-1} \Pi,$$ \hspace{1cm} (32)

where the operator Q is defined by the relation

$$Qf = xf, \quad f(x) \in L^2_k(a,b).$$ \hspace{1cm} (33)

Next we introduce the $k \times k$ matrix

$$L(x) = [I_k + \frac{1}{4}(F_1(x) J F_1^*(x))^2]^{1/2}$$ \hspace{1cm} (34)

and consider the operators

$$Sf = L(x)f(x) + \frac{i}{2\pi} P.V. \int_a^b \frac{F_1(x) J F_1^*(t)}{x-t} f(t) dt,$$ \hspace{1cm} (35)

$$Tf = L(x)f(x) - \frac{i}{2\pi} P.V. \int_a^b \frac{F_2(x) J F_2^*(t)}{x-t} f(t) dt.$$ \hspace{1cm} (36)

The introduced operators S and T are acting in the space $L^2_k(a,b)$ and $f(x)$ is a $k \times 1$ vector function.

Theorem 1. (see [13], p.45-46) The operators S and T are positive, bounded and

$$T = S^{-1}, \quad SF_2(x) = F_1(x) J.$$ \hspace{1cm} (37)

From relation (23) we deduce that

$$W_+(x) = W_-(x) R^2(x), \quad x \in [a,b]$$ \hspace{1cm} (38)
\[W_+(x) = W_-(x), \quad x \notin [a, b] \]

Formulas (38) and (39) lead to the Riemann-Hilbert Problem.

Problem 1. To recover the matrix function \(W(z) \) by the given \(J \)-module \(R(x) \).

In the case \(J = I \) Problem 1 plays an essential role in the prediction theory of the stationary processes [15]. The case when \(J \neq I \) is important for the theory of random matrices [5], [8],[14].

We solve Problem 1 in the following way.

1. By the given matrix \(R^2(x) \) we construct the matrix \(D(x) \) (see (26)).
2. Using the first of equalities (28) we find \(F_1(x) \).
3. With the help of formula (1) the operator \(S \) is constructed.
4. Due to the second equality of (37) we have \(F_2(x) = S^{-1}F_1(x)J \).
5. Now it is easy to see that formulas (19) and (29) give the solution of the Riemann-Hilbert problem (7) with the normalizing condition

\[W(z) \to I \quad \text{as} \quad z \to \infty. \]

Remark 2. The operators \(S \) and \(T \) defined by formulas (1) and (5) are called integrable [5], [8]. The case when \(k = 1 \) and

\[F_1(x)JF_1^*(x) = 0 \]

has important applications in the theory of the random matrices(see [4], [7], [8], [14]). The general case was used in the spectral theory of the non-selfadjoint operators [12],[13].
2 Spectral theory

We introduce some important notions.

Let the linear bounded operator have the form

\[A = A_R + iA_I, \] \hspace{1cm} (42)

where \(A_R \) and \(A_I \) are self-adjoint operators acting in Hilbert space \(H \). There is a bounded linear operator \(K \) which maps a Hilbert space \(G \) in \(H \) so that

\[A_I = KJK^*, \] \hspace{1cm} (43)

where \(J \) acts in \(G \) and \(J = J^*, \quad J^2 = I \).

Definition 2 (see [2], [10]). The operator function

\[W(\lambda) = I - 2iK^*(A - \lambda I)^{-1}KJ \] \hspace{1cm} (44)

is called the characteristic operator function of \(A \).

We recall that the simple part of \(A \) means the operator which is induced by \(A \) on the subspace \(\sum_{k=0}^{\infty} A^kD_A \), where \(D_A = (A - A^*)H \). In paper [12] we deduced Theorem 1 for the case \(m \leq \infty \). From this fact we obtain the following assertion [12],[13].

Theorem 2. If the characteristic operator function \(W(z) \) of the operator \(A \) satisfies the condition

\[||W(z)|| \leq c, \quad z \neq \bar{z} \] \hspace{1cm} (45)

for some \(c \), then the simple part of \(A \) is linearly similar to a self-adjoint operator with a absolutely continuous spectrum.

It follows from relation (45) that \(W(z) \) satisfies the conditions 1)-3). The converse is not true. Using this fact we receive a new version of Theorem 2.
Theorem 3. If the characteristic operator function $W(z)$ of the operator A satisfies the conditions 1)-3), then the statement of Theorem 2 is true.

Example. We consider the case when

$$F_1(x) = [x + i, x - i], \quad 0 \leq x \leq 1, \quad j = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$ \hspace{1cm} (46)

The corresponding operator S has the form

$$Sf = f(x) - \frac{1}{\pi} \int_0^1 f(t)dt.$$ \hspace{1cm} (47)

Due to relations (46) and (47) we have

$$F_2(x) = [-q(x), q(x)],$$ \hspace{1cm} (48)

where

$$q(x) = x + \frac{1}{2(\pi - 1)} + i \frac{\pi}{\pi - 1}.$$ \hspace{1cm} (49)

Using the property of the Cauchy integral (see [6]) we deduce from relation (19) that

$$W(z) = -\frac{1}{2\pi i} F(0) \log z + 0(1), \quad z \neq \bar{z}, \quad |z| < \frac{1}{2},$$ \hspace{1cm} (50)

$$W(z) = -\frac{1}{2\pi i} F(1) \log(z - 1) + 0(1), \quad z \neq \bar{z}, \quad |z - 1| < \frac{1}{2}.$$ \hspace{1cm} (51)

It follows from formulas (46) and (48), (49) that $F(0) \neq 0, \quad F(1) \neq 0$. Hence the constructed $W(z)$ satisfies the conditions of Theorem 3 but does not satisfy the condition (45) of Theorem 2.

3 Canonical differential systems

It follows from Theorem 3 that the following operator

$$S_\xi f = L(x)f(x) + \frac{i}{2\pi} P.V. \int_a^x \frac{F_1(x)JF_1^*(t)}{x-t} f(t)dt$$ \hspace{1cm} (52)
is positive, bounded and invertible.

We set
\[\Phi(\xi, x) = S^{-1}_\xi F_1(x), \quad (53) \]
\[B(\xi) = \frac{1}{2\pi} \int_a^\xi \Phi^*(\xi, x) F_1(x) dx. \quad (54) \]

Lemma 1. The matrix function \(B(\xi) \) is absolutely continuous and monotonically increasing.

Proof. As it is known [3],[9] the operator \(S^{-1} \) can be represented in the form
\[S^{-1} = U^*U, \quad (55) \]
where the linear bounded operator \(U \) acts in the space \(L^2_\xi(a,b) \) and satisfies the condition
\[U^*P_\xi = P_\xi U^*P_\xi, \quad a \leq \xi \leq b, \quad (56) \]
where \(P_\xi f(x) = f(x), a \leq x \leq \xi \) and \(P_\xi f(x) = 0, \quad \xi \leq x \). From relations (54) and (55) we deduce the equality
\[\frac{d}{dx} B(x) = H(x) = \frac{1}{2\pi} h^*(x) h(x), \quad (57) \]
where
\[h(x) = UF_1(x). \quad (58) \]
The lemma is proved.

Let us consider the system of equations
\[W(x, z) = I + iJ \int_a^x \frac{dB(\xi)}{z - \xi} W(\xi, z). \quad (59) \]

Theorem 4. (see[13], Ch.3) The following equality
\[W(b, z) = W(z) \quad (60) \]
Corollary 1. The integral system (59) is equivalent to the differential system
\[
\frac{dW(x, z)}{dx} = \frac{iJH(x)}{z - x} W(x, z), \quad H(x) \geq 0
\]
with the boundary condition \(W(a, z) = I_m \). Here the matrix function \(H(x) \) is defined by relation (57).

Corollary 2. The matrix function \(W(z) \) is the monodromy matrix of system (61), i.e. \(W(z) = W(b, z) \).

Due to (61) in the neighborhood of \(z = \infty \) the following relation
\[
W(x, z) = I + M_1(x)/z + M_2(x)/z^2 + ...
\]
is fulfilled. It follows from (59) and (61) that
\[
M_1(x) = iJB(x).
\]

Formulas (53) (54) and (63) give the solution of the following inverse problem.

Problem 2. To recover the matrix function \(H(x) \) and \(M_1(x) \) by the given \(J \)-module \(R(x) \). Theorem 3 and relation (54) imply the following assertion.

Proposition 3. If equality
\[
F_1(x) = 0, \quad \alpha \leq x \leq \beta, \quad \alpha \neq \beta
\]
is true then
\[
F_2(x) = 0, \quad W_+(x) = W_-(x), \quad R(x) = I, \quad \alpha \leq x \leq \beta.
\]

Corollary 3. If condition (64) is fulfilled then
\[
B'(x) = H(x) = 0, \quad \alpha \leq x \leq \beta.
\]
4 Examples

Example 1. Let us consider the case when

\[J = j = \begin{bmatrix} -I_m & 0 \\ 0 & I_m \end{bmatrix} \] \tag{67} \]

and

\[R^2(x) = \begin{bmatrix} 0 & \phi(x) \\ -\phi^*(x) & 2I_m \end{bmatrix}, \quad 0 \leq x \leq r, \] \tag{68} \]

where \(\phi(x)\phi^*(x) = I_m \). From (68) we deduce that

\[R(x) = 1/2 \begin{bmatrix} I_m & \phi(x) \\ -\phi^*(x) & 3I_m \end{bmatrix} \] \tag{69} \]

The matrix \(R(x) \) satisfies the following conditions.
1. The spectrum of \(R(x) \) is positive.
 Indeed, we obtain by direct calculation that \([R(x) - I]^2 = 0 \). Hence the spectrum of the matrix \(R(x) \) is concentrated at the point \(\lambda = 1 \).
2. The relation

\[jR(x) = R^*(x)j \] \tag{70} \]

is true.

It means that \(R(x) \) is the \(j \)-module of the matrix \(W(z) \) which satisfies relation (7). From (68) we deduce that

\[R(x) - R^{-1}(x) = \begin{bmatrix} -I_m & \phi(x) \\ -\phi^*(x) & I_m \end{bmatrix}. \] \tag{71} \]

According to (71) we have

\[D(x) = j[R(x) - R^{-1}(x)] = \begin{bmatrix} I_m & -\phi(x) \\ -\phi^*(x) & I_m \end{bmatrix}. \] \tag{72} \]
Hence the equality
\[F_1(x) = [I_m, -\phi(x)] \]
holds. Using (73) we obtain the relations
\[F_1(x)jF_1^*(x) = 0, \]
\[F_1(x)jF_1^*(t) = \phi(x)\phi^*(t) - I_m \]
Thus in case (69) we deduce from (52) and (74),(75) that operator the \(S_\xi \) has the form
\[S_\xi f = f(x) + \frac{i}{2\pi} \text{P.V.} \int_0^\xi \frac{\phi(x)\phi^*(t) - I_m}{x-t} f(t) dt. \]
The fact that the operator \(V \) defined as
\[Vf = \frac{1}{\pi} \text{P.V.} \int_{-\infty}^{\infty} \frac{f(t)}{x-t} dt, \quad f \in L^2(-\infty, \infty) \]
is unitary implies that
\[S_\xi \geq 0. \]
Further we suppose that the operator \(S_r \) is invertible.
Hence the operators \(S_\xi, \quad \xi \leq r \) are invertible as well.

Remark 3. If \(\phi(x) \) satisfies Hölder condition then there exists such \(r > 0 \) that \(S_r \) is invertible.
Using relation (53) we have
\[\Phi(x, \xi) + \frac{i}{2\pi} \text{P.V.} \int_0^\xi \frac{\phi(x)\phi^*(t) - I_m}{x-t} \Phi(t, \xi) dt = F_1(x). \]
where
\[\Phi(x, \xi) = [\Phi_1(x, \xi), \Phi_2(x, \xi)]. \]
Here \(\Phi_k(x, \xi) \) are \(m \times m \) matrix functions (\(k = 1, 2 \)). It follows directly from (73) and (79) that

\[
\Phi_1(x, \xi) + \frac{i}{2\pi} P.V. \int_0^\xi \frac{\phi(x)\phi^*(t) - I_m}{x-t} \Phi_1(t, \xi) dt = I_m, \tag{81}
\]
\[
\Phi_2(x, \xi) + \frac{i}{2\pi} P.V. \int_0^\xi \frac{\phi(x)\phi^*(t) - I_m}{x-t} \Phi_2(t, \xi) dt = -\phi(x), \tag{82}
\]
and

\[
\Phi_1(x, \xi)\Phi_1^*(x, \xi) = \Phi_2(x, \xi)\Phi_2^*(x, \xi). \tag{83}
\]

Due to (37) and (54) the formulas

\[
F_2(x) = [-\Phi_1(x, 1), \Phi_2(x, 1)], \tag{84}
\]
\[
B(\xi) = \frac{1}{2\pi} \int_0^\xi \begin{bmatrix} \Phi_1(x, \xi) & \Phi_2(x, \xi) \\ -\phi^*(x)\Phi_1(x, \xi) & -\phi^*(x)\Phi_2(x, \xi) \end{bmatrix} dx. \tag{85}
\]

are true.

Example 2. We separately consider the partial case of Example 1, when \(m = 1 \).

It follows from (72) and (82) that

\[
\Phi_2(x, \xi) = -\phi(x)\Phi_1(x, \xi). \tag{86}
\]

Hence formula (85) takes the form:

\[
B(\xi) = \frac{1}{2\pi} \int_0^\xi \begin{bmatrix} \Phi_1(x, \xi) & -\Phi_1(x, \xi) \phi(x) \\ -\phi(x)\Phi_1(x, \xi) & \Phi_1(x, \xi) \end{bmatrix} dx. \tag{87}
\]

Comparing formulas (57) and (87) we deduce the representation

\[
H(x) = B'(x) = a(x) \begin{bmatrix} 1 & e^{ia(x)} \\ e^{-ia(x)} & 1 \end{bmatrix}, \tag{88}
\]

15
where $a(x) \geq 0, \alpha(x) = \alpha(x)$. Due to (88) the matrix $jH(x)$ is nilpotent, i.e.

$$[jH(x)]^2 = 0.$$ \hfill (89)

Example 3. Let us consider the partial case of Example 1, when

$$m = 1, \phi(x) = e^{2iux}, \ u = \bar{u}.$$ \hfill (90)

Example 3 plays an important role in the theory of the random matrices \cite{4},\cite{7},\cite{14}.

Now the operator S_ξ takes the form

$$S_\xi f = f(x) - \frac{1}{\pi} \int_0^\xi e^{iu(x-t)} \frac{\sinu(x-t)}{x-t} f(t) dt.$$ \hfill (91)

The operator S_ξ defined by formula (52) is invertible for all $0 < \xi < \infty$ (see \cite{4}, p.167).

We denote by $\Psi(x, \xi, u)$ the solution of the equation

$$\Psi(x, \xi, u) - \frac{1}{\pi} \int_0^\xi \frac{\sinu(x-t)}{x-t} \Psi(t, \xi, u) dt = e^{-iux}.$$ \hfill (92)

Then according to relations (81) and (82) we have

$$\Phi_1(x, \xi, u) = e^{iux} \Psi(x, \xi, u), \ \Phi_2(x, \xi, u) = -e^{-iux} \Psi(x, \xi, u).$$ \hfill (93)

It follows from (87) and (93), that

$$B(\xi, u) = \frac{1}{2\pi} \int_0^\xi \begin{bmatrix} e^{iux} \Psi(x, \xi, u) & -e^{iux} \Psi(x, \xi, u) \\ -e^{-iux} \Psi(x, \xi, u) & e^{-iux} \Psi(x, \xi, u) \end{bmatrix} dx.$$ \hfill (94)

Example 4. Let us consider the case when $m = 1$ and

$$J = j = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}.$$ \hfill (95)
and
\[
R(x) = \frac{1}{2} \begin{bmatrix}
2 - |\psi(x)|^2 & -\overline{\psi(x)}^2 \\
\psi(x)^2 & 2 + |\psi(x)|^2
\end{bmatrix}, \quad 0 \leq x \leq r.
\tag{96}
\]

The matrix \(R(x) \) satisfies the following conditions.

1. **The spectrum of \(R(x) \) is positive.**

 Indeed, we obtain by direct calculation that \([R(x) - I]^2 = 0 \). Hence the spectrum of the matrix \(R(x) \) is concentrated at point \(\lambda = 1 \).

2. **The relation**
\[
jR(x) = R^*(x)j
\tag{97}
\]

 is true.

 It means that \(R(x) \) is the \(j \)-module of the matrix \(W(z) \) which satisfies relation (7). From (96) we deduce that
\[
R(x) - R^{-1}(x) = jD(x) = jF_1^*(x)F_1(x),
\tag{98}
\]
where
\[
F_1(x) = [\psi(x), \overline{\psi(x)}].
\tag{99}
\]
Using (99) we obtain the relations
\[
F_1(x)jF_1^*(x) = 0,
\tag{100}
\]
\[
F_1(x)jF_1^*(t) = \psi^*(x)\psi(t) - \psi(x)\psi^*(t)
\tag{101}
\]
Thus we deduce from (99) and (101), that the operator \(S_\xi \) in case (96) has the form
\[
S_\xi f = f(x) + \frac{i}{2\pi}P.V.\int_{0}^{\xi} \frac{\psi^*(x)\psi(t) - \psi(x)\psi^*(t)}{x - t} f(t) dt.
\tag{102}
\]

Further we suppose that the operators \(S_\xi \) are positive and invertible \((0 < \xi \leq r)\).

Remark 4. If \(\psi(x) \) satisfies the Hölder condition, then there exists such \(r > 0 \)

17
that the operators \(S_\xi \) are positive and invertible \((0 < \xi \leq r)\).

It follows directly from (99) and (102), that

\[
\Phi_1(x, \xi) + \frac{i}{2\pi} P.V. \int_0^\xi \frac{\psi^*(x)\psi(t) - \psi(x)\psi^*(t)}{x-t} \Phi_1(t, \xi) dt = \psi(x),
\]

\(\Phi_2(x, \xi) + \frac{i}{2\pi} P.V. \int_0^\xi \frac{\psi^*(x)\psi(t) - \psi(x)\psi^*(t)}{x-t} \Phi_2(t, \xi) dt = \overline{\psi(x)},\) (103)

where

\[
\Phi_1(x, \xi)\Phi_1^*(x, \xi) = \Phi_2(x, \xi)\Phi_2^*(x, \xi).
\] (105)

Due to (103) and (104) we have

\[
F_2(x) = [-\Phi_1(x, 1), \Phi_2(x, 1)], \quad \Phi_1(x, \xi) = \overline{\Phi_2(x, \xi)}
\] (106)

\[
B(\xi) = \frac{1}{2\pi} \int_0^\xi \begin{bmatrix} \overline{\psi(x)\Phi_1(x, \xi)} & \overline{\psi(x)\Phi_1(x, \xi)} \\ \psi(x)\Phi_1(x, \xi) & \psi(x)\Phi_1(x, \xi) \end{bmatrix} dx.
\] (107)

It follows from (107) that relation (89) is true in this case as well.

Remark 5. Comparing formulas (69) and (96) we see that Examples 1 and 3 coincide when \(m = 1 \) and

\[
\phi(x) = -\overline{\psi(x)}^2, \quad |\phi(x)| = 1.
\] (108)

Remark 6. If

\[
\psi(x) = i\sqrt{\gamma} e^{-iux}, \quad 0 < \gamma \leq 1,
\] (109)

due to (96) we have

\[
R^2(x) = \begin{bmatrix} 1 - \gamma & \gamma e^{2iux} \\ -\gamma e^{-2iux} & 2 + \gamma \end{bmatrix}.
\] (110)

The corresponding Riemann-Hilbert problem was considered in [4].

Let us represent \(\psi(x) \) in the form

\[
\psi(x) = A(x) + iB(x),
\] (111)
where
\[A(x) = \overline{A(x)}, \quad B(x) = \overline{B(x)}. \quad (112) \]

Then the operator \(S_\xi \) takes the form
\[
S_\xi f = f(x) - \frac{1}{\pi} P.V. \int_0^\xi \frac{A(x)B(t) - B(x)A(t)}{x - t} f(t) dt. \quad (113)
\]

The following partial cases of \(\psi(x) \) play an essential role in a number of applications [7]:
\[\psi_1(x) = \sqrt{\pi} [Ai(x) + iAi'(x)], \quad (114) \]

where \(Ai(x) \) is the Airy function, and
\[\psi_2(x) = \sqrt{\frac{\pi}{2}} [J_\alpha(\sqrt{x}) + i\sqrt{x}J'_\alpha(\sqrt{x})], \quad (115) \]

where \(J_\alpha(z) \) is the Bessel function.

Reference

1. Brodskii M.S., Triangular and Jordan Representation of Linear Operators, *Amer. Math. Soc.* 1971.
2. Brodskii M.S. and Livsic M.S., Spectral Analysis of Non-self-adjoint Operators and Intermediate Systems, *Amer. Math. Soc. Transl.* (2) 13, 265-346, 1960
3. Davidson K.R., Nest Algebras, *Pitnam, Res. Notes Math.*, 1988
4. Deift P., Its A. and Zhou X, A Riemann-Hilbert Approach to Asymptotic Problems Arising in the Theory of Random Matrix Models, and also in the Theory of Integrable Statistical Mechanics, *Annals of Math.*, 146, 149-235, (1997).
5. Deift P., Integrable Operators, *Amer. Math. Soc. Transl.* 2, v. 189, 69-84, 1999.
6. Gakhov F.D., Boundary Problems, *Nauka, Moscow, 1977.*
7. Harnad J., Tracy C.A. and Widom H., Hamiltonian Structure of Equations Appearing in Random Matrices, *arXiv, 1-18, 1993.*
8. Its A.R., Izergin V.E., Korepin V.E. and Slavnov N.A., The quantum Correlation Function as the τ Function of Classical Differential Equations, 407-417, *Important developments in soliton theory, A.S.Fokas and V.E.Zakharov (eds) Springer Verlag, 1993.*
9. Larson D. R., Nest Algebras and Similarity Transformation, *Ann.Math., 125, p.409-427, 1985.*
10. Livsic M.S., Operators, Oscillations, Waves, Open Systems, *Transl. of Math. Monographs, 34, Providence, 1973.*
11. Potapov V.P., The Multiplicative Structure of J-contractive Matrix Function, *American Math. Society Translation, 15, 131-243, 1960.*
12. Sakhnovich L.A., Operators Similar to the Unitary Operator with Absolutely Continuous Spectrum, *Functional Anal. and Appl., 2:1, 48-60, 1968.*
13. Sakhnovich L.A., Spectral Theory of Canonical Differential Systems. Method of Operator Identities. *Operator Theory, Adv. and Appl. 107, Birkhäuser, 1999.*
14. Widom H., Asymptotic for the Fredholm Determinant of the Sine Kernel on a Union of Intervals, *Comm. Math. Phys. 171, 159-180, 1995.*
15. Wiener N., Extrapolation, Interpolation and Smoothing of Stationary Time Series, *Cambridge, 1949.*