Síntomas post-COVID-19 de posible origen en sistema nervioso periférico y muscular.

Lorenzo Silva-Hernández¹, Borja Cabal-Paz², Diego Mayo-Canalejo³, Alejandro Horga⁴

(1) Grupo de Estudio de Enfermedades Neuromusculares, Servicio de Neurología, Hospital Universitario Puerto de Hierro de Majadahonda. (2) Servicio de Neurología, Hospital Universitario Puerto de Hierro de Majadahonda. (3) Servicio de Neurología, Hospital Universitario de Móstoles, Móstoles. (4). Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Hospital Clínico San Carlos e Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid.

Autor para la correspondencia: Lorenzo Silva-Hernández. Servicio de Neurología, Hospital Universitario Puerta de Hierro de Majadahonda, Calle Joaquín Rodrigo 1, 28222, Majadahonda, Madrid, España. Dirección de email: lorenzo.silvaher@gmail.com

Resumen

Los pacientes que han padecido COVID-19 frecuentemente refieren síntomas persistentes atribuibles a disfunción del sistema nervioso periférico y muscular. Estos síntomas pueden formar parte del denominado síndrome COVID-19 post-agudo (post-acute COVID-19 syndrome o PACS) o pueden surgir como consecuencia de las complicaciones neuromusculares del ingreso en unidades de cuidados intensivos (UCI). En este manuscrito se realiza una revisión actualizada de los síntomas de potencial origen neuromuscular en pacientes afectos de PACS, diferenciándolos en función de su posible origen a nivel de músculo, nervio periférico o sistema nervioso autónomo, así como las formas de afectación neuromuscular en pacientes que precisaron ingreso en UCI por COVID-19 grave.

Palabras clave
COVID-19; síndrome COVID-19 post-agudo; neuromuscular; neuropatía, miopatía; disautonomía.

Post-COVID symptoms of potential peripheral nervous and muscular origin

Abstract

Many patients report persistent symptoms attributable to dysfunction of the peripheral nervous and muscular systems after acute COVID-19. These symptoms may constitute part of the so-called post–acute COVID-19 syndrome (PACS), or may result from neuromuscular complications of hospitalisation in intensive care units (ICU). This article provides an updated review of symptoms of potential neuromuscular origin in patients with PACS, differentiating symptoms according to muscle, peripheral nerve, or autonomic nervous system involvement, and analyses the forms of neuromuscular involvement in patients who were admitted to the ICU due to severe COVID-19.

Keywords

COVID-19; post–acute COVID-19 syndrome; neuromuscular; neuropathy, myopathy; dysautonomia.

Abreviaturas

COVID-19: enfermedad por coronavirus SARS-CoV-2. MEC: Miopatía del enfermo crítico. MHC-I: complejo mayor de histocompatibilidad de clase I. MHC-II: complejo mayor de histocompatibilidad de clase II. PUM: potenciales de unidad motora. MxA: proteína 1 de resistencia a mixovirus. PACS: síndrome COVID-19 post-agudo. PEC: polineuropatía del enfermo crítico. POTS: síndrome de taquicardia postural ortostática. SDRA: síndrome de distrés respiratorio agudo. UCI: unidad de cuidados intensivos.
Introducción

El espectro de síntomas que pueden persistir tras la infección aguda por SARS-CoV-2 es amplio y, en ocasiones, prolongado en el tiempo [1]. Diversos términos como COVID-19 persistente o síndrome post-COVID-19 han sido empleados para describir estos síntomas, si bien actualmente existe cierto consenso en englobarlos bajo la denominación de síndrome COVID-19 post-agudo (post-acute COVID-19 syndrome o PACS por sus siglas en inglés). Esta entidad ha sido definida como la persistencia de síntomas y/o complicaciones de la infección por SARS-CoV-2 más allá de 4 a 12 semanas de los síntomas iniciales según el estudio [2-5].

Entre los síntomas frecuentemente referidos por pacientes afectos de PACS se encuentran aquellos sugerentes de disfunción del sistema nervioso periférico y muscular, como las mialgias, la debilidad o la intolerancia al ejercicio, los síntomas sensitivos principalmente positivos como las parestesias y el dolor neuropático, y los síntomas disautonómicos [1-3, 6].

Por otra parte, existen pacientes con antecedente de COVID-19 grave e ingreso prolongado en unidad de cuidados intensivos (UCI) en los que es frecuente hallar signos de afectación neuromuscular debidas a miopatía o polineuropatía del enfermo crítico así como neuropatías focales por atrapamiento relacionadas con cambios posturales o encamamiento prolongado [7-9].

En este manuscrito se realiza una revisión de la literatura científica disponible hasta la fecha sobre aquellos síntomas de potencial origen neuromuscular en pacientes afectos de PACS, diferenciándolos en función de su posible origen a nivel de músculo esquelético, nervio periférico o sistema nervioso autónomo, así como las formas de afectación neuromuscular encontradas en pacientes que precisaron ingreso en UCI por COVID-19 grave.

Síntomas de posible origen muscular

Los síntomas de posible origen muscular más habituales en pacientes con PACS son la debilidad, la intolerancia al ejercicio y las mialgias. Si bien la fatiga o astenia es probablemente el síntoma más frecuentemente descrito en estos pacientes, llegando a
persistir temporalmente con intensidad variable hasta en el 70% de los casos aproximadamente [6, 10], consideramos en este momento que es más probable su origen multifactorial que una afectación localizada a nivel de músculo esquelético, por lo que no se revisará en este apartado.

La debilidad persistente, la intolerancia al ejercicio y las mialgias son síntomas frecuentemente referidos por pacientes que han padecido COVID-19 leve. Una de las series descriptivas metodológicamente más correctas realizadas hasta el momento incluyó 30 pacientes con PACS de los que 29 tuvieron una infección inicial leve y recibieron tratamiento y observación domiciliarios. En esta serie, un 53.3% de los pacientes presentaban mialgias persistentes tras 12 semanas, habiendo sido estas un síntoma de la infección inicial en el 76.7% de los casos. A pesar de haberse recuperado inicialmente, hasta un 56.7% de los pacientes volvieron a presentar síntomas de dolor muscular tras un período aproximado de 3 semanas, si bien, al igual que con otros síntomas que componen el espectro del PACS, la mayoría de los casos (93%) presentaba un patrón cíclico de la sintomatología con periodos de remisión y empeoramiento [5]. Aunque en este estudio no se comenta específicamente sobre la debilidad o la intolerancia al ejercicio, en otra serie de 84 pacientes con PACS, hasta el 68% de los casos experimentaron síntomas de debilidad tras 6 semanas de la infección inicial, diferenciando este síntoma de la fatiga [11]. En un tercer estudio en el que se realizó un seguimiento a 6 meses de 1655 pacientes tras ingreso hospitalario por COVID-19, hasta un 63% reportaban síntomas de debilidad, si bien en este caso este síntoma se englobó también junto con la fatiga [12].

En ninguno de los estudios previamente descritos se realizó estudio de marcadores de daño muscular como la medición de creatina quinasa o cambios electromiográficos. No obstante, en otro trabajo reciente, 20 pacientes con debilidad persistente en el contexto de PACS fueron evaluados mediante estudio electrofisiológico y analítico a los 6 meses y comparados con controles sanos apareados [13]. En este estudio, tan solo uno de los 12 pacientes en los que se determinaron los niveles de creatina quinasa mostró una leve elevación de la misma (204 U/L; rango normal 50-150 U/L). En este mismo estudio se realizó una evaluación electromiográfica cuantitativa principalmente en los músculos bíceps braquial, vasto medial y tibial anterior, demostrándose que hasta en 11 de estos pacientes (55%) existían cambios miopáticos como acortamiento de la duración con o sin disminución de la amplitud o aumento de polifasia de los potenciales de unidad motora (PUM), siendo la duración de los PUM significativamente diferente frente a controles sanos en todos los músculos evaluados. La amplitud de los PUM, no obstante, no excedía el intervalo de confianza de normalidad ajustado a edad y sexo para cada
paciente. Cabe destacar que el 50% de los pacientes con cambios miopáticos en el electromiograma habían padecido una infección inicial leve-moderada [13].

Otra publicación que sugiere cambios miopáticos en pacientes que han padecido COVID-19 leve es el caso de una paciente joven que presentó un cuadro de debilidad proximal e intolerancia al ejercicio persistente 3 semanas después de una infección leve por SARS-CoV-2 [14]. La peculiaridad del caso es que, previo al inicio de la pandemia, la paciente era control sano de un estudio electromiográfico de multi-fiber muscle velocity recovery cycles (MVRC), una técnica que evalúa cambios en la polaridad de la membrana muscular y que puede aplicarse a distintas patologías musculares. En este caso, al repetirse la técnica tras la infección, se demostró un aumento de la excitabilidad de la membrana muscular en músculo tibial anterior, en el cual se comprobó además mediante biopsia una ratio miosina:actina reducida, un hallazgo característico de la miopatía de enfermo crítico. En conjunto, estos datos sugieren la existencia de cambios tanto a nivel estructural como funcional de la fibra muscular en pacientes con debilidad persistente posterior a la infección inicial [14, 15].

Desde el inicio de la pandemia, los síntomas de posible origen en músculo esquelético han sido descritos con una alta frecuencia, llegando a afectar hasta el 50% de los casos en series largas [16, 17]. No obstante, no se conocen los mecanismos precisos de potencial daño muscular. Aunque en la mayoría de las ocasiones no se realizaron estudios clínicos más profundos, se han descrito casos de miopatía de presumible origen inflamatorio [18] y de rabdomiolisis [19] como formas de presentación de la infección por SARS-CoV-2. En 2020 se describió el primer caso de miopatía inducida por depósito de proteína 1 de resistencia a mixovirus (MxA), una proteína inducida por la respuesta virica mediada por interferón tipo I, como forma de presentación de la infección COVID-19 [20]. Este hallazgo cobra importancia ante los resultados de un reciente estudio de autopsia realizado tanto sobre músculo como nervio en 35 pacientes fallecidos por COVID-19 [21]. En este estudio se detectó evidencia de miopatía inflamatoria o inmunmediada en 24 pacientes (69%), con fibras necróticas, infiltrados inflamatorios o expresión difusa o multifocal del complejo mayor de histocompatibilidad de clase I (MHC-I) en fibras no necróticas ni regenerativas. En 9 pacientes (26%), 7 de ellos con signos de miopatía necrotizante o miositis, se detectó inmunotinción de MxA anormal principalmente en los capilares musculares, lo que sugiere una sobreexpresión del sistema de respuesta virica de interferón tipo I [21]. En otro estudio de autopsia se analizó el musculo estriado en 42 pacientes fallecidos por COVID-19 grave, encontrándose en la mayoría de ellos signos de miositis de intensidad variable. En 23 pacientes (55%) se observó sobreexpresión de antígenos del MHC-I y en 7 pacientes
(17%) sobreexpresión del MHC-II, no encontrándose ninguno de estos hallazgos en 11 autopsias de control realizadas [22].

Por tanto, es posible que en pacientes con formas agudas y graves de COVID-19 la afectación muscular se deba a una respuesta inmunológica exacerbada (p. ej. respuesta de interferón tipo 1 exacerbada o tormenta de citoquinas) o sea de origen inmunomediado [21, 22]. No obstante, se requieren más estudios para comprender la fisiopatología exacta de los síntomas y signos sugerentes de daño muscular en pacientes con PACS.

Síntomas de posible origen en nervios periféricos

En pacientes con PACS son habituales también los síntomas de posible origen nervioso periférico, principalmente alteraciones sensitivas positivas como parestesias y dolor neuropático. En la serie antes descrita de 30 pacientes afectos de PACS [5], las parestesias de distribución difusa y el dolor urente estaban presentes en el 60% y 43.4% de los casos, respectivamente, y el cuestionario de dolor neuropático (DN4) resultó positivo en el 50% [5]. En otra serie de 100 pacientes con PACS, las parestesias y otros tipos de alteraciones sensitivas fueron referidas por un 38% y 15% de los pacientes, respectivamente, 4 semanas después de la infección inicial [23]. En este estudio se analizó la distribución de síntomas post-COVID-19 en función de la gravedad inicial, no encontrándose diferencias significativas en cuanto a la frecuencia de parestesias entre los grupos con enfermedad leve, grave o crítica [23].

El dolor en estos pacientes es frecuentemente descrito como de tipo neuropático (p. ej. urente o quemante) y asociado a síntomas sensitivos habitualmente positivos como parestesias o alodinia [6, 23]. También ha sido definido como radicular [24]. Aunque la distribución del dolor no siempre se detalla en los estudios publicados, se ha descrito localizado en pies o piernas o inicialmente generalizado y posteriormente distal en extremidades [23-25]. En la práctica clínica es frecuente observar que, en estos pacientes, el dolor de características neuropáticas presenta un curso variable con empeoramientos agudos o crisis de dolor.

Aunque más adelante se discuten en detalle las neuropatías en pacientes que han precisado ingreso en UCI por COVID-19 grave, las mononeuropatías aisladas o múltiples o las plexopatías braquiales también pueden ocurrir en pacientes que han padecido COVID-19 leve-moderado y constituir, por tanto, una causa de síntomas sensitivos o motores persistentes [26-31]. En la experiencia propia de los autores de esta revisión, entre los pacientes con PACS atendidos hemos observado varios casos de mononeuropatías aisladas o múltiples, sobre todo involucrando nervios medianos,
cubitales y femorocutáneos laterales en sus respectivos lugares habituales de atrapamiento, entre los cuales se incluían pacientes con formas leves de COVID-19 inicial. Casos similares han sido descritos en una comunicación reciente no publicada [32]. En algunos de los casos observados por los autores de esta revisión pueden detectarse bloqueos parciales de conducción nerviosa motora en los estudios de conducción nerviosa. La presencia de bloqueos parciales de conducción nerviosa motora en miembros superiores en pacientes con COVID-19 inicial leve también ha sido descrita en la literatura [30, 33].

Al igual que con la afectación muscular, existen pocos estudios que describan análisis anatomopatológicos de nervios periféricos en pacientes fallecidos por COVID-19. En el mismo estudio de autopsia de 35 pacientes fallecidos por COVID-19 descrito más arriba, se obtuvieron muestras del nervio femoral, encontrándose infiltrados inflamatorios perivasculares y/o endoneurales (neuritis) en 9 pacientes (26%), y expresión capilar de MxA en 7 casos (20%; solo uno con neuritis). Estos datos sugieren que, al menos en una proporción de casos de COVID-19 grave, el daño nervioso podría estar relacionado con una respuesta inmunológica exacerbada similar a la descrita en músculo [21]. No obstante, en este momento se desconocen los mecanismos fisiopatológicos subyacentes en la mayor parte de pacientes con PACS y síntomas o signos indicativos de daño nervioso periférico.

Síntomas debidos a posible disfunción autonómica

Uno de los temas de actualidad en el estudio de pacientes con PACS es la presencia de síntomas y signos secundarios a alteración del sistema nervioso autónomo [3, 34, 35]. Entre estos encontramos cuadros de intolerancia y/o hipotensión ortostática, taquicardia postural, alteraciones de la sudoración o alteraciones del ritmo intestinal o urinario. Estos síntomas pueden coexistir temporalmente y se engloban bajo el término de disfunción autonómica.

Los síndromes de intolerancia ortostática, incluyendo el síndrome de taquicardia postural ortostática (postural orthostatic tachycardia syndrome o POTS por sus siglas en inglés), son alteraciones autónomas frecuentes que pueden suceder tras infecciones víricas [36-38]. Desde que comenzasen a estudiarse los pacientes con PACS, se han comunicado multitud de casos de síndromes de intolerancia ortostática, a veces asociados a alteraciones de la sudoración, intolerancia al calor, alteraciones intestinales o urinarias o neuropatía de fibra fina [34, 35, 39-43].

Un estudio llevado a cabo en la Clínica Mayo recogió un total de 27 pacientes con PACS y síntomas de presumible origen disautonómico [35]. En todos los pacientes se llevó a
cabo un extenso estudio mediante pruebas de función sudomotora y función cardíaca vagal y adrenérgica entre otras. Un 41% de los pacientes comenzó con los síntomas durante la infección aguda, mientras que el 59% desarrolló los síntomas después de la infección (mediana 7 días, rango 0-122 días). La mediana de tiempo hasta el momento del estudio fue de 119 días. El 59% de los casos eran mujeres y la media de edad era 30 años, lo que concuerda con el perfil epidemiológico de paciente con PACS atendido habitualmente en consultas de Neurología en experiencia de los autores de la presente revisión. Entre los síntomas descritos más frecuentes se encontraban la sensación de mareo o lightheadedness, cefalea ortostática, síncope, hiperhidrosis, taquicardia postural y flushing. Síntomas como hipohidrosis, intolerancia al calor, síndrome seco, alteración urinaria, saciedad precoz, visión borrosa, alodinia o adormecimiento fueron infrecuentes. El cuadro clínico principalmente hallado fue de síntomas de intolerancia ortostática sin hipotensión ni taquicardia ortostática demostrable en las pruebas realizadas (intolerancia ortostática subjetiva) en 11 pacientes (41%), seguido de POTS en 6 pacientes (22%) e intolerancia ortostática leve en 3 pacientes (11%). Otros diagnósticos incluyeron casos aislados de ganglionopatía autonómica autoinmune o exacerbación de neuropatía autonómica o de fibra fina preexistente [35]. En otro artículo reciente se describen 6 mujeres de 26 a 50 años con intolerancia ortostática y taquicardia y/o hipotensión postural o en reposo después de enfermedad COVID-19 posible o confirmada [34].

Otros síntomas referidos por los pacientes con PACS son la sensación de embotamiento mental, conocida también como niebla mental, o la sensación de cabeza flotante. Una de las teorías para explicar estos síntomas propone la existencia de una autorregulación vascular cerebral insuficiente durante la bipedestación prolongada, un concepto denominado síndrome de hipoperfusión cerebral ortostática (orthostatic hypoperfusion syndrome u OCHOS por sus siglas en inglés) [39, 44]. Se ha descrito un caso de una paciente con PACS con esta clase de síntomas en la que se demostró una caída de la velocidad de flujo de la arteria cerebral media de un 21% a los 10 minutos de bipedestación respecto al decúbito (normal <14%), con mejora tras administración de inmunoglobulinas intravenosas, lo que, según el autor del artículo, sugiere una disautonomía de causa inmunmediada [39].

Cabe subrayar que la inmunoterapia, incluyendo la administración de inmunoglobulinas humanas inespecíficas intravenosas, carece de evidencia de eficacia suficiente
en pacientes con PACS. La ausencia de beneficio demostrado y los potenciales efectos adversos del tratamiento hacen que, en nuestra opinión, su uso empírico no sea recomendable ni generalizable.

Debilidad del paciente crítico por COVID-19

La pandemia de COVID-19 ha supuesto un incremento sin precedentes en la incidencia del síndrome de distrés respiratorio agudo (SDRA) y del enfermo crítico. Como consecuencia de la enfermedad grave por SARS-CoV-2, estancias prolongadas en UCI y sus tratamientos asociados, sería esperable observar en estos pacientes el desarrollo de debilidad adquirida en UCI [45].

Hasta el momento, la evidencia disponible en torno a la debilidad neuromuscular del enfermo crítico tras COVID-19 se limita a estudios observacionales, en su mayoría descriptivos: series de casos y casos aislados sobre sus entidades principales; la miopatía y polineuropatía del enfermo crítico (MEC y PEC, respectivamente). Estos casos se describen habitualmente como debilidad muscular flácida generalizada en extremidades y fracaso en el destete de la ventilación mecánica [9, 46-48], manifestaciones clínicas que no difieren de aquellos pacientes con MEC/PEC no asociadas a COVID-19 [49].

En un estudio prospectivo de pacientes ingresados en UCI por COVID-19 se evidenció que, de un total de 111 pacientes, 11 (10%) desarrollaron MEC/PEC. En comparación con los pacientes que no desarrollaron debilidad adquirida, los pacientes con MEC/PEC eran más frecuentemente varones con alto índice de masa corporal y presentaban estancias más prolongadas, más eventos tromboembólicos, más días de ventilación invasiva, más frecuencia de tratamiento vasoactivo, con anestésicos, opioides y bloqueantes neuromusculares, y más frecuencia de terapia de reemplazo renal (hemodiálisis veno-venosa continua) [9].

En cuanto a la recuperación de estos pacientes, esta suele ser progresiva y lenta, conllevando en la mayoría de los supervivientes períodos de varias semanas o meses de intensa rehabilitación motora. En un estudio prospectivo de 25 pacientes con debilidad muscular durante ingreso en UCI por COVID-19, se realizó seguimiento telefónico al mes de la primera valoración, comprobándose que el 36% de los pacientes no eran capaces de deambular de manera autónoma y el 92% todavía refería algún grado de debilidad muscular [48].

Las neuropatías focales pueden ocurrir también en pacientes críticos con COVID-19 [7, 49, 50]. Si bien no es una característica específica del COVID-19, series de casos
recientes sugieren una alta prevalencia de lesiones nerviosas periféricas focales con el uso del posicionamiento en prono en pacientes con SDRA debido a COVID-19 grave [7]. Esta posible mayor tendencia al desarrollo de neuropatías focales probablemente tenga un origen multifactorial, incluyendo daño directo por tracción o compresión durante el posicionamiento en prono, comorbilidades asociadas como edad avanzada, obesidad y diabetes mellitus, y un estado de hiperinflamación e hipercoagulabilidad debido a la infección vírica [7, 51, 52].

En dos series recientes de pacientes con COVID-19 grave con necesidad de ventilación asistida, los pacientes presentaron una afectación nerviosa periférica con un patrón de mononeuropatía múltiple, con un perfil electroneurográfico de afectación axonal y en regiones no habituales de atrapamiento, lo que sugiere mecanismos adicionales a la exclusiva compresión mecánica [53, 54]. En relación con lo anterior, se ha descrito un caso de plexopatía braquial en un paciente con COVID-19 y SDRA en el que no se practicó posicionamiento en prono. En este caso, los autores postularon un posible mecanismo trombótico microvascular como causa subyacente [55].

Otro de los posibles escenarios de afectación neuropática en pacientes con COVID grave que requieran ingreso en unidades de cuidados intensivos, aunque infrecuente, es el desarrollo de plexoneuropatías lumosacras secundarias a compresión directa por hemorragias retroperitoneales, las cuales pueden relacionarse con procesos sistémicos como coagulopatías, o presentar una causa traumática o iatrogénica. En estos enfermos la aparición de este tipo de neuropatías fue en mayor medida debida a la anticoagulación usada a fin de evitar eventos trombóticos [56].

Conclusión

Los pacientes con antecedente reciente de COVID-19 frecuentemente refieren síntomas sugerentes de disfunción del sistema nervioso periférico (somático y/o autonómico) y muscular. No obstante, exceptuando las complicaciones derivadas del ingreso en UCI y medidas terapéuticas asociadas, no siempre es posible objetivar dicha disfunción mediante las técnicas habitualmente disponibles en la práctica asistencial, ni se conoce con precisión su fisiopatología. Cuando los síntomas y signos sean congruentes con una mononeuropatía aislada o múltiple, es necesario conocer la existencia de un posible riesgo aumentado en pacientes con formas leves a graves de COVID-19 inicial. En otros pacientes con datos objetivos de polineuropatía periférica o miopatía, debido a su relación fisiopatológica en este momento incierta con la infección por SARS-CoV-2, recomendamos una aproximación diagnóstica y terapéutica que no difiera de la
habitualmente realizada en consultas de patología neuromuscular. Finalmente, existen pacientes con síntomas sensitivos, disautonómicos o motores sin datos objetivos de afectación neuromuscular. Algunos de estos síntomas presentan características comunes a otros trastornos como el síndrome de fatiga crónica y los trastornos neurológicos funcionales [57], por lo que sería importante evaluar si un abordaje terapéutico similar por un equipo multidisciplinar podría ser de utilidad. No obstante, son necesarios estudios adicionales para conocer mejor la fisiopatología y la historia natural de estos síntomas, y optimizar los tratamientos disponibles.

[1] Carfi A, Bernabei R, Landi F; Gemelli Against C-P-ACSG. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020;324:603-605.

[2] Yelin D, Wirtheim E, Vetter P, et al. Long-term consequences of COVID-19: research needs. Lancet Infect Dis 2020;20:1115-1117.

[3] Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med 2021;27:601-615.

[4] Carod-Artal FJ. Post-COVID-19 syndrome: epidemiology, diagnostic criteria and pathogenic mechanisms involved. Rev Neurol 2021;72:384-396.

[5] Scherlinger M, Felten R, Gallais F, et al. Refining "Long-COVID" by a Prospective Multimodal Evaluation of Patients with Long-Term Symptoms Attributed to SARS-CoV-2 Infection. Infect Dis Ther 2021;10:1747-1763.

[6] Salmon-Ceron D, Slama D, De Broucker T, et al. Clinical, virological and imaging profile in patients with prolonged forms of COVID-19: A cross-sectional study. J Infect 2021;82:e1-e4.

[7] Malik GR, Wolfe AR, Soriano R, et al. Injury-prone: peripheral nerve injuries associated with prone positioning for COVID-19-related acute respiratory distress syndrome. Br J Anaesth 2020;125:e478-e480.
[8] Abenza-Abildua MJ, Ramirez-Prieto MT, Moreno-Zabaleta R, et al. Neurological complications in critical patients with COVID-19. Neurologia (Engl Ed) 2020;35:621-627.

[9] Frithiof R, Rostami E, Kumlien E, et al. Critical illness polyneuropathy, myopathy and neuronal biomarkers in COVID-19 patients: A prospective study. Clin Neurophysiol 2021;132:1733-1740.

[10] Mandal S, Barnett J, Brill SE, et al. 'Long-COVID': a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2021;76:396-398.

[11] Tabacof L, Tosto-Mancuso J, Wood J, et al. Post-acute COVID-19 syndrome negatively impacts health and wellbeing despite less severe acute infection. medRxiv 2020.

[12] Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 2021;397:220-232.

[13] Agergaard J, Leth S, Pedersen TH, et al. Myopathic changes in patients with long-term fatigue after COVID-19. Clin Neurophysiol 2021;132:1974-1981.

[14] Rodriguez B, Nansoz S, Cameron DR, Z’Graggen WJ. Is myopathy part of long-Covid? Clin Neurophysiol 2021;132:1241-1242.

[15] Z’Graggen WJ, Trautmann JP, Boerio D, Bostock H. Muscle velocity recovery cycles: Comparison between surface and needle recordings. Muscle Nerve 2016;53:205-8.

[16] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.

[17] Romero-Sanchez CM, Diaz-Maroto I, Fernandez-Diaz E, et al. Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology 2020;95:e1060-e1070.

[18] Zhang H, Charmchi Z, Seidman RJ, Anziska Y, Velayudhan V, Perk J. COVID-19-associated myositis with severe proximal and bulbar weakness. Muscle Nerve 2020;62:E57-E60.
[19] Suwanwongse K, Shabarek N. Rhabdomyolysis as a Presentation of 2019 Novel Coronavirus Disease. Cureus 2020;12:e7561.

[20] Manzano GS, Woods JK, Amato AA. Covid-19-Associated Myopathy Caused by Type I Interferonopathy. N Engl J Med 2020;383:2389-2390.

[21] Suh J, Mukerji SS, Collens SI, et al. Skeletal Muscle and Peripheral Nerve Histopathology in COVID-19. Neurology 2021;97:e849-e858.

[22] Aschman T, Schneider J, Greuel S, et al. Association Between SARS-CoV-2 Infection and Immune-Mediated Myopathy in Patients Who Have Died. JAMA Neurol 2021;78:948-960.

[23] Anaya JM, Rojas M, Salinas ML, et al. Post-COVID syndrome. A case series and comprehensive review. Autoimmun Rev 2021:102947.

[24] Bureau BL, Obeidat A, Dhariwal MS, Jha P. Peripheral Neuropathy as a Complication of SARS-Cov-2. Cureus 2020;12:e11452.

[25] McWilliam M, Samuel M, Alkufri FH. Neuropathic pain post-COVID-19: a case report. BMJ Case Rep 2021;14.

[26] Queler S, Sneag D, Geannette C, Shin S, Winfree C, Simpson D. Long-Segment Peripheral Neuropathies after COVID-19: Magnetic Resonance Neurography Findings (4645). Neurology 2021;96.

[27] Bossaghzadeh Z, Niazvand F, Saneie M, Rahimi-Dehgolan S, Ghadikolaei HS, Mobarak S. Common Peroneal Nerve Injury in a Patient with COVID-19 Infection. Bionatura 2021;6:2043-2045.

[28] de Pinho Teixeira Alves M, Nóbrega JPG. Median Nerve Neuritis after Infection by the SARS-CoV-2 Virus. Clin Surg 2021;6:3306.

[29] Cacciavillani M, Salvalaggio A, Briani C. Pure sensory neuralgic amyotrophy in COVID-19 infection. Muscle Nerve 2021;63:E7-E8.

[30] Siepmann T, Kitzler HH, Lueck C, Platzek I, Reichmann H, Barlinn K. Neuralgic amyotrophy following infection with SARS-CoV-2. Muscle Nerve 2020;62:E68-E70.
[31] Ismail, II, Abdelnabi EA, Al-Hashel JY, Alroughani R, Ahmed SF. Neuralgic amyotrophy associated with COVID-19 infection: a case report and review of the literature. Neurol Sci 2021;42:2161-2165.

[32] Fontana S. COVID-19 and Upper Extremity Compression Neuropathy: Viral Sequela or Random Association? 2021.

[33] Daia C, Scheau C, Neagu G, et al. Nerve conduction study and electromyography findings in patients recovering from Covid-19 - Case report. Int J Infect Dis 2021;103:420-422.

[34] Dani M, Dirksen A, Taraborrelli P, et al. Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. Clin Med (Lond) 2021;21:e63-e67.

[35] Shouman K, Vanichkachorn G, Cheshire WP, et al. Autonomic dysfunction following COVID-19 infection: an early experience. Clin Auton Res 2021;31:385-394.

[36] Thieben MJ, Sandroni P, Sletten DM, et al. Postural orthostatic tachycardia syndrome: the Mayo clinic experience. Mayo Clin Proc 2007;82:308-13.

[37] Stewart JM. Common syndromes of orthostatic intolerance. Pediatrics 2013;131:968-80.

[38] Shaw BH, Stiles LE, Bourne K, et al. The face of postural tachycardia syndrome - insights from a large cross-sectional online community-based survey. J Intern Med 2019;286:438-448.

[39] Novak P. Post COVID-19 syndrome associated with orthostatic cerebral hypoperfusion syndrome, small fiber neuropathy and benefit of immunotherapy: a case report. eNeurologicalSci 2020;21:100276.

[40] Umapathi T, Poh MQW, Fan BE, Li KFC, George J, Tan JYL. Acute hyperhidrosis and postural tachycardia in a COVID-19 patient. Clin Auton Res 2020;30:571-573.

[41] Kanjwal K, Jamal S, Kichloo A, Grubb BP. New-onset Postural Orthostatic Tachycardia Syndrome Following Coronavirus Disease 2019 Infection. J Innov Card Rhythm Manag 2020;11:4302-4304.
Goodman BP, Khoury JA, Blair JE, Grill MF. COVID-19 Dysautonomia. Front Neurol 2021;12:624968.

Younger DS. Post-Acute Sequelae of SARS-Cov-2 Infection Associating Peripheral, Autonomic and Central Nervous System Disturbances: Case Report and Review of the Literature. WJNS 2021;11:17-21.

Novak P. Orthostatic Cerebral Hypoperfusion Syndrome. Front Aging Neurosci 2016;8:22.

Hosey MM, Needham DM. Survivorship after COVID-19 ICU stay. Nat Rev Dis Primers 2020;6:60.

Bax F, Lettieri C, Marini A, et al. Clinical and neurophysiological characterization of muscular weakness in severe COVID-19. Neurol Sci 2021;42:2173-2178.

Cabanes-Martinez L, Villadoniga M, Gonzalez-Rodriguez L, et al. Neuromuscular involvement in COVID-19 critically ill patients. Clin Neurophysiol 2020;131:2809-2816.

Ballve A, Llaurado A, Palasi A, et al. [Weakness as a complication of COVID-19 in critically ill patients: clinical features and prognostic factors in a case series]. Rev Neurol 2021;73:10-16.

Bolton CF, Bryan Young G. Neurological Complications in Critically Ill Patients. Neurology and General Medicine 2008:981-997.

Practice Advisory for the Prevention of Perioperative Peripheral Neuropathies 2018: An Updated Report by the American Society of Anesthesiologists Task Force on Prevention of Perioperative Peripheral Neuropathies. Anesthesiology 2018;128:11-26.

Koralnik IJ, Tyler KL. COVID-19: A Global Threat to the Nervous System. Ann Neurol 2020;88:1-11.

Fernandez CE, Franz CK, Ko JH, et al. Imaging Review of Peripheral Nerve Injuries in Patients with COVID-19. Radiology 2021;298:E117-E130.

Needham E, Newcombe V, Michell A, et al. Mononeuritis multiplex: an unexpectedly frequent feature of severe COVID-19. J Neurol 2021;268:2685-2689.
[54] Carberry N, Badu H, Ulane CM, et al. Mononeuropathy Multiplex After COVID-19. J Clin Neuromuscul Dis 2021;23:24-30.

[55] Han CY, Tarr AM, Gewirtz AN, et al. Brachial plexopathy as a complication of COVID-19. BMJ Case Rep 2021;14.

[56] Pardal-Fernández JM, Garcia-Garcia J, Gutiérrez-Rubio JM, Segura T. Plexus-neuropathy due to ilio-psoas hematoma in 4 COVID patients. Med Clin 2021;156:410-411.

[57] Wildwing T, Holt N. The neurological symptoms of COVID-19: a systematic overview of systematic reviews, comparison with other neurological conditions and implications for healthcare services. Ther Adv Chronic Dis 2021;12:2040622320976979.