Draft genome sequence of *Paenibacillus sp.* strain A2

Beiwen Zheng\(^1\), Fan Zhang\(^2\), Hao Dong\(^3\), Lujun Chai\(^2\), Fuchang Shu\(^3\), Shaojin Yi\(^3\), Zhengliang Wang\(^3\), Qingfeng Cui\(^4\), Hanping Dong\(^4\), Zhongzhi Zhang\(^5\), Dujie Hou\(^2\), Jinshui Yang\(^6\)* and Yuehui She\(^3\)*

Abstract

Paenibacillus sp. strain A2 is a Gram-negative rod-shaped bacterium isolated from a mixture of formation water and petroleum in Daqing oilfield, China. This facultative aerobic bacterium was found to have a broad capacity for metabolizing hydrocarbon and organosulfur compounds, which are the main reasons for the interest in sequencing its genome. Here we describe the features of *Paenibacillus sp.* strain A2, together with the genome sequence and its annotation. The 7,650,246 bp long genome (1 chromosome but no plasmid) exhibits a G+C content of 54.2 % and contains 7575 protein-coding and 49 RNA genes, including 3 rRNA genes. One putative alkane monooxygenase, one putative alkanesulfonate monooxygenase, one putative alkanesulfonate transporter and four putative sulfate transporters were found in the draft genome.

Keywords: *Paenibacillus sp.* strain A2, Genome, Hiseq2000, Sulfonate biodegradation

Introduction

Paenibacillus is a genus of aerobic, Gram-positive, rod-shaped, and endospore forming bacteria, formerly included within the genus *Bacillus*, but was proposed as a separate genus in 1993 on the basis of its unique distinctive phenotypic and genotypic features [1]. Strains in this genus have been detected in a variety of environments including soil, water, rhizosphere, vegetable matter, forage and insect larvae, as well as clinical samples [2–6]. One hundred and forty nine species and four subspecies have previously been recorded in the genus *Paenibacillus*. These bacteria produce various metabolites, which can catalyze a wide variety of synthetic reactions in fields ranging from cosmetics to biofuel production and have gained importance in agriculture, industrial and medical applications [7].

Surfactant flooding is an important form of EOR to reduce the interfacial tension between oil and water to an ultra-low value [8]. Until now, sulfonate surfactants have been widely adopted as flooding agents in EOR in some oilfields under different geological conditions [9].

Surfactant flooding technology has been widely applied in the Daqing oilfield (China), and in our previous work three indigenous bacteria were isolated as crude-oil degrading species that enhance oil recovery [10]. While screening hydrocarbon-degrading bacteria previously, we isolated a *Paenibacillus sp.* strain A2 from a mixture of formation water and petroleum in Daqing oilfield. Strain A2 grows aerobically with tetradecane and hexadecane as the sole carbon and energy source, and was also found to have a capacity to metabolize organosulfur compounds. To date, data on the genetic basis of metabolizing hydrocarbon and sulfur compounds in genus *Paenibacillus* are only sparsely available. To gain insight into the nature and genomic plasticity of this strain from a unique niche its genome was sequenced and here we report a summary classification and genome annotations for *Paenibacillus sp.* strain A2.

Organism information

Classification and features

Paenibacillus sp. strain A2 was isolated from a mixture of formation water and petroleum in Daqing oilfield, China, in March 2012. It is a Gram-positive bacterium that can grow on LB broth agar at 37 °C. Cells of strain A2 are rod-shaped, showed a diameter ranging 0.4–0.7 μm and from 1.5 to 3.6 μm long, occurring
predominantly singly (Fig. 1). Growth occurs under aerobic condition. The optimum temperature for growth is 37 °C, with a temperature range of 15–45 °C (Table 1). Cell morphology, motility and sporulation were examined by using scanning electron microscopy (Quanta 200, FEI Co., USA).

Comparative 16S rRNA gene sequence analysis by BLASTN using the NCBI-NR/NT database revealed 94–99 % sequence similarity to members of genus *Paenibacillus*. Neighbor-Joining phylogenetic analysis based on Kimura 2-parameter model indicated the *Paenibacillus* sp. strain A2 is most closely related the strain *Paenibacillus ehimensis* KCTC 3748T (AY116665) and *Paenibacillus koreensis* YC300T (AF130254) (Fig. 2).

Biochemical features were tested by using two automated systems, the Vitek2 Compact (bioMérieux, Marcy l’Étoile, Fig. 1: Scanning electron micrograph of cells of strain A2. Bar: 5.0 μm.

Table 1: Classification and general features of *Paenibacillus* sp. strain A2

MIGS ID	Property	Term	Evidence code
	Classification	Domain: Bacteria	TAS [31]
		Phylum: Firmicutes	TAS [32–34]
		Class: Bacilli	TAS [35, 36]
		Order: Bacillales	TAS [37, 38]
		Family: Paenibacillaceae	TAS [39]
		Genus: Paenibacillus	TAS [1, 39–42]
		Species: Paenibacillus sp.	IDA
	Strain:	A2	IDA
	Gram stain	Positive	IDA
	Cell shape	Rod-shaped	IDA
	Motility	Motile	IDA
	Sporulation	Spore-forming	IDA
	Temperature range	Mesophile	IDA
	Optimum temperature	37°b	IDA
	pH range; Optimum	5.0–9.0; 6.0–8.0	IDA
	Carbon source	Glucose, xylose, mannitol, arabinose	IDA
	Energy source	Glucose, xylose, mannitol, arabinose	IDA
	Terminal electron receptor	Not reported	IDA

MIGS-6 Habitat Environment IDA
MIGS-6.3 Salinity Tolerates 5 % NaCl IDA
MIGS-22 Oxygen Not reported IDA
MIGS-15 Biotic relationship Free living IDA
MIGS-14 Pathogenicity Non pathogenic, BSL1 NAS
MIGS-4 Geographic location Daqing, China IDA
MIGS-5 Sample collection time March 2012 IDA
MIGS-4.1 Latitude 45°92'N IDA
MIGS-4.2 Longitude 124°68'8"E IDA
MIGS-4.4 Altitude Not reported IDA

Evidence codes - IDA inferred from direct assay, TAS traceable author statement (i.e., a direct report exists in the literature), NAS non-traceable author statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are the Gene Ontology project [43].
France) and Phoenix 100 ID/AST system (Becton Dickinson Company, Sparks, MD. USA). Positive reactions were obtained for glucose, xylose, mannitol and arabinose. Negative reactions were observed for fructose, trehalose, gluconic acid, sucrose, maltose, urea, cellobiose, glucoside, tagatose and maltotriose. This strain was susceptible to gentamicin, ciprofloxacin, levofloxacin, moxifloxacin, tri-methoprim/sulfamethoxazole, amoxicillin, imipenem, meropenem, ciprofloxacin, tigecycline and rifampicin, but resistant to metronidazole.

Genome sequencing information

Genome project history

Paenibacillus sp. strain A2 was selected for sequencing on the basis of its phylogenetic position and 16S rRNA similarity to other members of the genus Paenibacillus, and is part of a microbial diversity study of the oilfield aiming at isolating all bacterial species degrading crude-oil. This whole genome shotgun project of Paenibacillus sp. strain A2 is deposited in the Genome On Line Database and the draft genome sequence is deposited at DDBJ/EMBL/GenBank under the accession
JFHX00000000 and consists of 180 contigs. A summary of the project information and its association with MIGS version 2.0 compliance are shown in Table 2 [11].

Growth conditions and genomic DNA preparation

Paenibacillus sp. strain A2 was grown aerobically on LB broth, at 37 °C for 16 h. Genomic DNA was extracted using the DNeasy blood and tissue kit (Qiagen, Germany), according to the manufacturer’s recommended protocol. The quantity of DNA was measured by the NanoDrop Spectrophotometer and Cubit. Then 10 μg of DNA was sent to BGI (Shenzhen, China) for sequencing on a HiSeq2000 system.

Genome sequencing and assembly

One DNA library was generated (450 bp insert size, with the Illumina adapter at both ends detected by Agilent DNA analyzer 2100), then sequenced using an Illumina Hiseq 2000 genomic sequencer, with a 2 × 100 pair end sequencing strategy. Finally, we obtained a total of 5,728,134 M bp and performed the following quality control steps: 1) Reads linked to adapters at both end were considered as sequencing artifacts and removed. 2) Bases with quality index lower than Q20 at both ends were trimmed. 3) Reads with ambiguous bases (N) were removed. 4) Single qualified reads were discarded (In this situation, one read is qualified but its mate is not). Filtered 1378 M clean data were assembled into scaffolds using the Velvet version 1.2.07 with parameters “-scaffolds no” [12], then we use a PAGIT flow [13] to prolong the initial contigs and correct sequencing errors to arrive at a set of improved scaffolds.

Table 2 Project information
MIGS ID
MIGS-31
MIGS-28
MIGS-29
MIGS-31.2
MIGS-30
MIGS-32

Table 3 Genome statistics
Attribute
Genome size (bp)
DNA coding region (bp)
DNA G+C (bp)
DNA scaffolds
Total genes
Protein coding genes
RNA genes
Pseudo genes
Genes in internal clusters
Genes with function prediction
Genes with Pfam domains
Genes assigned to COGs
Genes with signal peptides
Genes with transmembrane helices
CRISPR repeats

The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome
Fig. 3 Genomic view of prophage regions identified in the genome of Paenibacillus sp. A2
Genome annotation

Predicted genes were identified using Glimmer version 3.0 [14]. tRNAscan-SE version 1.21 [15] was used to find tRNA genes, whereas ribosomal RNAs were found by using RNAmmer version 1.2 [16]. To annotate predicted genes, we used HMMER version 3.0 [17] to align genes against Pfam version 27.0 [18] (only pfam-A was used) to find genes with conserved domains. KAAS server [19] was used to assign translated amino acids into KEGG Orthology [20] with single-directional best hit method. Translated genes were aligned with the COG database [21, 22] using NCBI blastp (hits should have scores no less than 60, e value is no more than 1e-6). To find genes with hypothetical or putative functions, we aligned genes against the NCBI nucleotide sequence database (nt database was downloaded at Sep 20, 2013) by using NCBI blastn, only if hits have identity no less than 0.95, coverage no less than 0.9, and reference genes were annotated as putative or hypothetical. To define genes with a signal peptide, we use SignalP version 4.1 [23] to identify genes using default parameters. TMHMM 2.0 [24] was used to identify genes with transmembrane helices. Prophages and putative phage like elements in the genome were identified using prophage-predicting PHAST [25]. Blast of the three genomes together with strain 2745-2 were performed using blast+program [26]. BLAST Ring Image Generator (BRIG) was used for genome alignment visualization [27].

Genome properties

The draft genome sequence of *Paenibacillus sp.* strain A2 revealed a genome size of 7,650,246 bp and a G+C content of 54.2 % (Table 3). The genome contain 7575 coding sequences, 46 tRNAs (excluding 1 pseudo tRNAs) and incomplete rRNA operons (one small subunit rRNA and two large subunit rRNAs). A total of 3112 protein-coding genes were assigned as putative function or hypothetical proteins. Four thousand seven hundred ten genes were categorized into COGs functional groups (including putative or hypothetical genes). The properties and the statistics of the genome are summarized in Tables 3 and 4. Nine prophage regions have been identified in the genome of strain A2 (Fig. 3), including one intact, six incomplete and two questionable regions (Table 5).

Insights from the genome sequence

Paenibacillus sp. strain A2 grows aerobically with tetrade- cane and hexadecane as the sole carbon and energy source, and has capability of degrading alkanesulfonate suggesting that it has developed a number of evolutionary

| Table 5 Summary of prophage regions in *Paenibacillus sp.* A2 |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Region | Region length | Completeness | CDS | Specific keyword |
| 1 | 13.2 kb | incomplete | 17 | tail |
| 2 | 43.5 kb | intact | 55 | tail, plate, capsid, protease, portal, terminase, integrase, transposase |
| 3 | 16.9 kb | incomplete | 16 | tail |
| 4 | 23.6 kb | questionable | 23 | tail, capsid, head, portal, terminase |
| 5 | 20.2 kb | incomplete | 21 | terminase, portal, head, capsid, tail |
| 6 | 19.3 kb | incomplete | 21 | tail |
| 7 | 37.7 kb | incomplete | 24 | integrase, tail |
| 8 | 30.5 kb | incomplete | 25 | integrase |
| 9 | 15.9 kb | questionable | 22 | tail, lysi, plate |

| Table 6 Summary of proteins involved in hydrocarbon and sulfur metabolisms |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Protein | Start | Stop | Protein product | Length | Description |
| 1 | 3628875 | 3629657 | WP_025849555.1 | 260 | alkanesulfonate transporter permease subunit |
| 2 | 3629626 | 3630852 | WP_025849556.1 | 408 | alkanesulfonate monoxygenase |
| 3 | 6287814 | 6288827 | WP_025846226.1 | 337 | alkane 1-monoxygenase |
| 4 | 1957755 | 1958930 | WP_025851077.1 | 391 | sulfamate adenylyltransferase |
| 5 | 2493097 | 2493636 | WP_025850577.1 | 179 | adenylylsulfate kinase |
| 6 | 3634266 | 3635159 | WP_025849561.1 | 297 | sulfatem/ltiosulfate transporter permease subunit |
| 7 | 3635181 | 3636017 | WP_025849562.1 | 278 | sulfatem transporter |
| 8 | 3636039 | 3637142 | WP_025849563.1 | 367 | sulfatem transporter subunit |
| 9 | 4328289 | 4330016 | WP_025849042.1 | 575 | sulfatem transporter |
| 10 | 5127629 | 5128231 | WP_025847883.1 | 200 | adenylylsulfate kinase |
strategies that allow for habitat adaptation. To identify pathways associated with niche adaptation to a petroleum reservoir, we explored the genome content for genes associated with hydrocarbon and sulfur metabolism (Table 6). Alkane monooxygenases have been proposed as one of the two unrelated classes of enzymes responsible for the aerobic transformation of midchain-length n-alkanes (C5 to C16) and in some cases even longer alkanes [28]. Sulfate transporters and alkanesulfonate transporter have been shown to play an essential role in metabolizing organosulfur compounds [29, 30]. Based on this knowledge, the genome sequence of strain A2 provides the basis to elucidate its genetic basis for crude oil degradation and adaptation to the petroleum reservoir. BLAST search of nucleotide sequence between strain A2 and other seven Paenibacillus species showed that A2 has highest similarity with Paenibacillus elgii B69, which is consistent with the 16 s rRNA sequence alignment (Fig. 4).

Conclusions
Paenibacillus sp. strain A2, was isolated from a mixture of formation water and petroleum and has a broad capacity for metabolizing hydrocarbon and organosulfur compounds. To date, no metabolic pathways involved in petroleum degradation or sulfur compounds have been characterized in genus Paenibacillus. The genome sequence of the A2 will hopefully provide new insights into the mechanism of degradation and microorganisms adapt to the petroleum reservoir after surfactant flooding. Furthermore, our data takes a step toward a comprehensive genomic catalog of the metabolic diversity of genus Paenibacillus.
Abbreviations
EOR: enhanced oil recovery; PAGIT: post assembly genome improvement toolkit; TMHMM: transmembrane prediction using hidden markov models.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BWZ, FZ, HD and LJC conducted the study. JSY and YHS performed the data analyses, genome comparison, and wrote the manuscript. BWZ, FCS, JSY, ZLW, QFC, HPD, ZZ and DJH participated in writing the manuscript. FZ and LJC performed genome sequencing, assembly and annotation. All authors read and approved the final manuscript.

Acknowledgements
This study was sponsored by the National Natural Science Foundation of China (Grant No. 81301461, 51574038 and 51474034), 863 Program (Grant No. LQ13H190002) of the Ministry of Science and Technology, Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ13H190002).

Author details
1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China. 2Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, School of Energy Resources, China University of Geosciences, Beijing, China. 3College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China. 4Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang, China. 5State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China. 6College of Life Sciences, China Agricultural University, Beijing, China.

Received: 21 July 2014 Accepted: 22 December 2015

References
1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek. 1993;64:253–60.
2. Montes MJ, Mercade E, Boaz N, Guirao J. Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol. 2004;54:1521–6.
3. McSpadden Gardner BB. Ecology of Bacillus and Paenibacillus spp. in Agricultural Systems. Phytopathology. 2004;94:1252–8.
4. Lal S, Tabachnicki C, Bacher S. Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J Microbiol. 2009;49:2–10.
5. Quyan J, Pei Z, Lutwick L, Dalal S, Yang L, Cassai N, et al. Case report: Paenibacillus thiaminolyticus: a new cause of human infection, inducing bacteremia in a patient on hemodialysis. Ann Clin Lab Sci. 2008;38:393–400.
6. Mishra AK, Lagier JC, Rivet R, Raoul D, Faurie P. Non-contiguous finished genome sequence and description of Paenibacillus senegalensis sp. nov. Stand Genomic Sci. 2012;7:70–81.
7. Konishi J, Maruhashi K. 2-(2'-Hydroxyphenyl)benzene sulfinate desulfinase from the thermophilic desulfurizing bacterium Paenibacillus sp. strain A11-2: purification and characterization. Appl Microbiol Biotechnol. 2003;62:356–61.
8. Yang J, Qiao WH, Li ZS, Cheng LB. Effects of branching in hexadeoxypolysaccharide sulfate isomers on interfacial tension behavior in oil-in-water systems. Fuel. 2005;84:1607–11.
9. Yan H, Guo XL, Yuan SL, Liu CB. Molecular dynamics study of the effect of calcium ions on the monolayer of SDC and SDS surfactants at the vapor/liquid interface. Langmuir. 2011;27:5762–71.
10. She Y, Zhang F, Xia J, Hong SQ, Wang ZL, Shu FC, et al. Investigation of biosurfactant-producing indigenous microorganisms that enhance residual oil recovery in an oil reservoir after polymer flooding. Appl Biochem Biotechnol. 2011;163:223–34.
11. Field D, Garry G, Gray T, Morrison N, Selenigut J, Sterk P, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26:541–7.
12. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research. 2008;18:821–9.
13. Swain MT, Tsai U, Asselfa SA, Newbold C, Bertman M, Otto TD. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs. Nature Protocols. 2012;7:1260–94.
14. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007;23:673–9.
15. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research. 1997;25:5955–64.
16. Lagesen K, Hallin P, Redlund EA, Staerfeldt HH, Rogens T, Lheray D. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research. 2007;35:3180–8.
17. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1001915.
18. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40:D480–484.
19. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Research. 2001;29:22–8.
20. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research. 2000;28:33–6.
21. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods. 2011;8:785–6.
22. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology. 2001;305:567–80.
23. Zhou Y, Liang Y, Lynch KH, Dennis JI, Willard DH, PHAST: a fast phage search tool. Nucleic Acids Research. 2011;39:W347–52.
24. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
25. Allikhan N-F, Petty NK, Zakour NLB, Beatson SA. BLAST Ring Image Generator (BRIIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12:402.
26. van Beilen JB, Funhoff EG. Alkane hydroxylations involved in microbial alkane degradation. Appl Microbiol Biotechnol. 2007;74:13–21.
27. Zhou Y, Liang Y, Lynch KH. Chalkers J, Willard DH, PASHA: a fast phage search tool. Nucleic Acids Research. 2011;39:W347–52.
28. Araki M, Goto S, Hattori M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–484.
29. van Heijne G, Nordhoff T, Schirmer C, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology. 2001;305:567–80.
30. Zhou Y, Liang Y, Lynch KH, Dennis JI, Willard DH, PHAST: a fast phage search tool. Nucleic Acids Research. 2011;39:W347–52.
31. Araki M, Goto S, Hattori M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–484.
32. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Research. 2001;29:22–8.
33. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research. 2000;28:33–6.
34. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods. 2011;8:785–6.
35. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology. 2001;305:567–80.
36. Zhou Y, Liang Y, Lynch KH, Dennis JI, Willard DH, PHAST: a fast phage search tool. Nucleic Acids Research. 2011;39:W347–52.
37. Araki M, Goto S, Hattori M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–484.
38. van Beilen JB, Funhoff EG. Alkane hydroxylations involved in microbial alkane degradation. Appl Microbiol Biotechnol. 2007;74:13–21.
39. Zhou Y, Liang Y, Lynch KH. Chalkers J, Willard DH, PASHA: a fast phage search tool. Nucleic Acids Research. 2011;39:W347–52.
40. Araki M, Goto S, Hattori M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–484.
41. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol. 1997;47:289–98.

42. Behrendt U, Schumann P, Stieglmeier M, Pukall R, Augustin J, Sproer C, et al. Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity—description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room. Syst Appl Microbiol. 2010;33:328–36.

43. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.