Quantum Jordanian twist

Vladimir D. Lyakhovsky a,b
Alexander M. Mirolubov b
Mariano A. del Olmo a

a Departamento de Física Teórica, Facultad de Ciencias
Universidad de Valladolid, E-47011, Valladolid, Spain.
b Theoretical Department, St. Petersburg State University,
198904, St. Petersburg, Russia

Abstract

The quantum deformation of the Jordanian twist F_{qJ} for the standard quantum
Borel algebra $U_q(B)$ is constructed. It gives the family $U_{qJ}(B)$ of quantum algebras
depending on parameters ξ and h. In a generic point these algebras represent the
hybrid (standard–nonstandard) quantization. The quantum Jordanian twist can be
applied to the standard quantization of any Kac–Moody algebra. The corresponding
classical r–matrix is a linear combination of the Drinfeld–Jimbo and the Jordanian
ones. The two-parametric families of Hopf algebras obtained here are smooth and for
the limit values of the parameters the standard and nonstandard quantizations are
recovered. The twisting element F_{qJ} also has the correlated limits, in particular
when q tends to unity it acquires the canonical form of the Jordanian twist. To
illustrate the properties of the quantum Jordanian twist we construct the hybrid
quantizations for $U(sl(2))$ and for the corresponding affine algebra $\hat{U}(sl(2))$. The
universal quantum \mathcal{R}–matrix and its defining representation are presented.

1 Introduction

It is known for a long time \cite{[1]} that a Hopf algebra $\mathcal{A}(m, \Delta, \epsilon, S)$ with multiplication
$m: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$, coproduct $\Delta: \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$, counit $\epsilon: \mathcal{A} \to C$, and antipode
$S: \mathcal{A} \to \mathcal{A}$ can be transformed with an invertible (twisting) element $\mathcal{F} \in \mathcal{A} \otimes \mathcal{A}$, $\mathcal{F} = \sum f_i^{(1)} \otimes f_i^{(2)}$, into a
twisted one $\mathcal{A}_\mathcal{F}(m, \Delta_\mathcal{F}, \epsilon_\mathcal{F}, S_\mathcal{F})$ that have the same multiplication and counit but different
coproduct and antipode. The twisted coproduct is given by

$$\Delta_\mathcal{F}(a) = \mathcal{F}\Delta(a)\mathcal{F}^{-1}. \quad (1.1)$$

The twisting element has to satisfy the equations

$$\epsilon \otimes \text{id}(\mathcal{F}) = \epsilon(\mathcal{F}) = 1, \quad (1.2)$$

$$\mathcal{F}_{12}(\Delta \otimes \text{id})(\mathcal{F}) = \mathcal{F}_{23}(\text{id} \otimes \Delta)(\mathcal{F}). \quad (1.3)$$
There are several special types of twists. For our purposes the most interesting will be the factorizable twist whose twisting element satisfies the factorized twist equations [2]:

\[(\Delta \otimes \text{id})(\mathcal{F}) = \mathcal{F}_{13}\mathcal{F}_{23},\]
\[(\text{id} \otimes \Delta_{\mathcal{F}})(\mathcal{F}) = \mathcal{F}_{12}\mathcal{F}_{13}.\]

If the initial Hopf algebra \mathcal{A} is quasitriangular with universal \mathcal{R}–matrix \mathcal{R} then $\mathcal{A}_{\mathcal{F}}$ is the twisted Hopf algebra whose universal element $\mathcal{R}_{\mathcal{F}}$ is related to the initial one by

\[\mathcal{R}_{\mathcal{F}} = \mathcal{F}_{21}\mathcal{R}\mathcal{F}^{-1}.\]

The Jordanian twist with the two-dimensional carrier subalgebra $B(2)$,

\[[H, E] = E,\]

defined by the canonical twisting element

\[\mathcal{F}_{\mathcal{J}}^c = e^{H \otimes \sigma}, \quad \sigma = \ln(E + 1),\]

is the first and very important example [3] of a nontrivial twist with explicitly defined twisting element.

It was proved in [3] that there exist mixed quantizations combining the properties of the standard deformations and that of the twisted algebras. Up to now a considerable amount of studies devoted to combined (standard–nonstandard) quantizations were performed (especially for the case of $U(sl(2))$, $U(gl(2))$ and the corresponding quantum groups). See, for example, the works by Gerstenhaber et al [4], Kupershmidt [5], Ballesteros et al [6], Abdesselam et al [7, 8], Aneva et al [9] and references therein. (The last work contains a kind of review of the situation with the combined deformations and we shall return to it in Section 4.) But a question remains, whether it is possible to supply the combined quantization with a twisting element that would bring it “back” to the standard quantum algebra (such as $U_q(sl(2))$). This “going back” procedure is a limit process. In fact there are two limits to be considered, they are related with the behaviour of two main parameters: the deformation parameter $h = \ln q$ and the twisting parameter ξ. Recently a q–analog $(\mathcal{F}_{\mathcal{J}}^c)_q$ of the Jordanian twisting element [10] was constructed. It transforms the standard quantization $U_q(sl(2))$ into the combined deformation $(U_q(sl(2)))_{\mathcal{J}}$ and the inverse operator $(\mathcal{F}_{\mathcal{J}}^c)_q^{-1}$ obviously brings the algebra $(U_q(sl(2)))_{\mathcal{J}}$ back into the standard deformation. For us it is important to notice that the Hopf algebra $(U_q(sl(2)))_{\mathcal{J}}$ has no classical limit for $h \to 0$.

In this paper we demonstrate that there are other sheets of combined quantizations for which both limits exist: for $h \to 0$ (the standard q–deformation) and for $\xi \to 0$ (the nonstandard or Jordanian deformation). We investigate the existence of quantum deformations that do not only refer to the combined classical r–matrix and can be connected with the standard quantization by a twist, but such that all their algebraic elements (bialgebraic structure, universal \mathcal{R}–matrix and twisting element) have well defined limits. In
Section 2 we demonstrate that this problem can be solved by constructing a quantum deformation F_{qJ} of the Jordanian twist F_J. This new quantum Jordanian twist F_{qJ} acts on the standard quantizations of the universal enveloping algebras and transforms them into the hybrid quantizations (we have borrowed this term from Ref. [9]). The twisting element F_{qJ} itself and all the corresponding twisted constructions have both natural limits. In Section 3 we apply this twist to the quantum algebras based on $sl(2)$ and get the hybrid quantizations of $U(sl(2))$ and of the quantum affine algebra $U(\widehat{sl}(2))$,

$$U_q(sl(2)) \xrightarrow{F_{qJ}} U_q(sl(2)),$$

$$U_q(\widehat{sl}(2)) \xrightarrow{F_{qJ}} U_q(\widehat{sl}(2)).$$

The corresponding universal R-matrices and their defining representations are also presented.

2 Quantum Jordanian twist for $U_q(B)$

Proposition 1 The quantum Borel algebra $U_q(B)$

\[[H, E] = E, \quad \Delta(H) = H \otimes 1 + 1 \otimes H, \]
\[\Delta(E) = E \otimes 1 + e^{H} \otimes E, \]

admits the twist with the element

\[\tilde{F}_{qJ} = e^{H \otimes \sigma}, \quad \sigma = \ln(E + e^{H}). \]

Proof. We shall demonstrate that the element (2.2) satisfies the factorized twist equations. The first of them is trivially fulfilled due to the primitivity of H. To check the second let us change the basis. The new generator

\[\tilde{E} = E - 1 + e^{H}, \]

has the same coproduct as E. Performing the substitution we get for $U_q(B)$ the relations:

\[[H, \tilde{E}] = \tilde{E} + 1 - e^{H}, \quad \Delta(H) = H \otimes 1 + 1 \otimes H, \]
\[\Delta(\tilde{E}) = \tilde{E} \otimes 1 + e^{H} \otimes \tilde{E}, \]

and σ from (2.2) gets the form

\[\sigma = \ln(1 + \tilde{E}). \]

The adjoint action of H on \tilde{E} differs from that of H on E by terms that are central. So, one gets

\[e^{ad(H \otimes \sigma)} \circ \tilde{E} \otimes 1 = \tilde{E} \otimes e^{\sigma} + (1 - e^{H}) \otimes (e^{\sigma} - 1). \]
Now we can obtain the final form of the coproduct for e^σ,

\[
\tilde{\Delta}_{qJ}(e^\sigma) = \tilde{\Delta}_{qJ}(\tilde{E} + 1) = e^{\text{ad}(H \otimes \sigma)} \circ (\tilde{E} \otimes 1 + e^{hH} \otimes \tilde{E} + 1 \otimes 1) = e^{\text{ad}(H \otimes \sigma)} \circ (\tilde{E} \otimes 1) + e^{hH} \otimes \tilde{E} + 1 \otimes 1 = \tilde{E} \otimes e^\sigma + 1 \otimes e^\sigma = e^\sigma \otimes e^\sigma.
\]

(2.5)

Consequently, σ becomes primitive with respect to the deformed coproduct $\tilde{\Delta}_{qJ}$. Thus, the element \tilde{F}_{qJ} satisfies also the second of the factorized twist equations (1.4). This completes the proof. ♠

It will be useful to introduce now the twisting parameter ξ. This can be achieved by rescaling the generator $E \rightarrow \xi E$. So, Proposition 1 is valid also for the parametric set of twisting elements

\[
\tilde{F}_{qJ}(h, \xi) = e^{H \otimes \sigma}, \quad \sigma = \ln(\xi E + e^{hH}).
\]

(2.6)

Performing the twisting we obtain the smooth two-parameter set $\{\tilde{U}_{qJ}(B)(h, \xi)\}$ of Hopf algebras

\[
[H, E] = E, \quad \tilde{\Delta}_{qJ}(H) = H \otimes 1 + e^{\text{ad}(H \otimes \sigma)} \circ (1 \otimes H), \quad \tilde{\Delta}_{qJ}(E) = \frac{1}{\xi} \left(e^\sigma \otimes e^\sigma - e^{\text{ad}(H \otimes \sigma)} \circ (e^{hH} \otimes e^{hH})\right).
\]

(2.7)

This set describes the hybrid quantization that have the properties both of the standard quantization and of the Jordanian. For the limit values of the parameters we get the Hopf algebras whose characteristics are different from the generic ones. The boundary of the set corresponding to $h = 0$ gives the ordinary Jordanian quantization $\tilde{U}_{qJ}(B)(0, \xi) = U_{\sigma}(B)$. The boundary $\tilde{U}_{qJ}(B)(h, 0)$ describes the Hopf algebras that are equivalent to the standard deformation $U_q(B)$ but have the shifted coproduct for E. Such behaviour is in accordance with the limit form of the twisting element (2.8)

\[
\tilde{F}_{qJ}(h, 0) = e^{hH \otimes H}.
\]

(2.8)

If we want to go back (when ξ tends to zero) to the initial algebra $U_q(B)$ the compensating Reshetikhin twist must be applied. The final construction is defined as follows.

Proposition 2 The quantum Borel algebra $U_q(B)$

\[
[H, E] = E, \quad \Delta(H) = H \otimes 1 + 1 \otimes H, \quad \Delta(E) = E \otimes 1 + e^{hH} \otimes E,
\]

admits the twist with the element

\[
\mathcal{F}_{qJ}(h, \xi) = e^{H \otimes \omega} e^{-hH \otimes H}, \quad \omega = \ln \left((\xi E + 1) e^{hH}\right).
\]

(2.9)
Proof. The first factor of the twisting element (2.9) transforms the quantized Borel $U_q(B)$ into its dual Hopf algebra:

$$[H, E] = E, \quad \Delta_q(H) = H \otimes 1 + 1 \otimes H,$$

$$\Delta_q(E) = E \otimes e^{-hH} + 1 \otimes E. \quad (2.10)$$

The substitution $E \to E e^{-hH}$ brings us back to the initial Borel in the form (2.1) and also changes ω in (2.9) for σ (as defined in (2.6)). After this we find ourselves in the situation of the Proposition 1. ♠

Applying the twist (2.9) to $U_q(B)$ we get the Hopf algebras with the following defining relations:

$$[H, E] = E,$n

$$\Delta_q(H) = H \otimes 1 + e^{\text{ad}(H \otimes \omega)} \circ (1 \otimes H),$$

$$\Delta_q(E) = \frac{1}{\xi} \left((e^\omega \otimes e^\omega) - e^{\text{ad}(H \otimes \omega)} \circ \left(e^{-hH} \otimes e^{-hH} \right) - 1 \otimes 1 \right). \quad (2.11)$$

We have two correlated smooth sets: the set $\{U_q(J)(h, \xi)\}$ of hybrid quantizations (2.11) and the set of quantum Jordanian twists $\{F_q(J)(h, \xi)\}$. For each point $U_q(J)(h, \xi)$ of the first set there exits a twist $F_q^{-1}(h, \xi)$ that connects this point with the algebra $U_q(J)(h, 0)$. Now the sets have the appropriate boundary behaviour:

$$U_q(J)(h, \xi) \quad h \to 0 \searrow \quad \xi \to 0 \quad U_q(J)(h, 0) = U_q(B) \quad (2.12)$$

$$F_q(J)(h, \xi) \quad h \to 0 \searrow \quad \xi \to 0 \quad F_q(J)(h, 0) = 1 \otimes 1 \quad (2.13)$$

For the internal points of $\{U_q(J)(h, \xi)\}$ the defining relations (2.11) can be written in a compact form

$$[H, e^\omega] = e^\omega - e^{hH},$$

$$\Delta_q(J)(H) = H \otimes 1 + e^{\text{ad}(H \otimes \omega)} \circ (1 \otimes H),$$

$$\Delta_q(J)(e^\omega) = e^\omega \otimes e^\omega. \quad (2.14)$$

But such description becomes incomplete on the boundary $\{U_q(J)(h, 0)\}$ where $\omega(h, 0) = hH$.

3 Jordanian deformations of quantum algebras
3.1 Hybrid quantization $U_q\mathcal{J}(sl(2))$

The quantum Jordanian twists $\mathcal{F}_q\mathcal{J}(h, \xi)$ and $\tilde{\mathcal{F}}_q\mathcal{J}(h, \xi)$ can be applied to any Hopf algebra containing the quantized Borel algebra (2.1). Let us start with the standard quantization $U_q(sl(2))$:

$$[H, E_\pm] = \pm E_\pm,$$
$$[E_+, E_-] = \frac{e^{hH} - e^{-hH}}{1 - e^{2h}},$$
$$\Delta_q(H) = H \otimes 1 + 1 \otimes H,$$
$$\Delta_q(E_+) = E_+ \otimes 1 + e^{hH} \otimes E_+,$$
$$\Delta_q(E_-) = E_- \otimes e^{-hH} + 1 \otimes E_-.$$

(3.1)

Applying the twist $\mathcal{F}_q\mathcal{J}(h, \xi)$ in the form given in (2.9) we get the two-parameter set $\{U_q\mathcal{J}(sl(2))(h, \xi)\}$ of quantum deformations that are the hybrids of standard and Jordanian ones:

$$[H, E_\pm] = \pm E_\pm,$$
$$[E_+, E_-] = \frac{e^{hH} - e^{-hH}}{1 - e^{2h}},$$
$$\Delta_{q\mathcal{J}}(H) = H \otimes 1 + e^{\text{ad}(H \otimes \omega)} \circ (1 \otimes H),$$
$$\Delta_{q\mathcal{J}}(E_+) = \frac{1}{\xi} \left(e^\omega \otimes e^\omega - e^{\text{ad}(H \otimes \omega)} \circ \left(e^{-hH} \otimes e^{-hH} \right) - 1 \otimes 1 \right),$$
$$\Delta_{q\mathcal{J}}(E_-) = E_- \otimes e^{-\omega} + e^{\text{ad}(H \otimes \omega)} \circ (1 \otimes E_-).$$

(3.2)

The Hopf algebras $U_q(sl(2))$ and $U_{q\mathcal{J}}(sl(2))$ form the boundaries of this set:

$$U_{q\mathcal{J}}(B)(h, \xi)$$

(3.3)

$$h \to 0 \quad \xi \to 0$$

$$U_{q\mathcal{J}}(sl(2)) = U_{q\mathcal{J}}(sl(2))(0, \xi) \quad U_{q\mathcal{J}}(sl(2))(h, 0) = U_q(sl(2))$$

When the internal subset $\{U_{q\mathcal{J}}(sl(2))(h, \xi) \mid h > 0, \xi > 0\}$ is considered the compact form of the defining relations can be used,

$$[H, e^\omega] = e^\omega - e^{hH},$$
$$[H, E_-] = -E_-,$$
$$[E_-, e^\omega]_{e^h} = \xi \frac{1 - e^{2hH}}{1 - e^{2h}},$$
$$\Delta_{q\mathcal{J}}(H) = H \otimes 1 + e^{\text{ad}(H \otimes \omega)} \circ (1 \otimes H),$$
$$\Delta_{q\mathcal{J}}(e^\omega) = e^\omega \otimes e^\omega,$$
$$\Delta_{q\mathcal{J}}(E_-) = E_- \otimes e^{-\omega} + e^{\text{ad}(H \otimes \omega)} \circ (1 \otimes E_-).$$

(3.4)

The algebra (3.1) is quasitriangular with the universal \mathcal{R}-matrix

$$\mathcal{R}_q = e^{hH \otimes H} \sum_{n=0}^{\inf} \frac{(1 - e^{-h})^n}{[n]!} (E_- \otimes E_+)^n e^{\frac{1}{2}h\ln(n-1)}, \quad [n] = \frac{e^{\frac{nh}{2}} - e^{-\frac{nh}{2}}}{e^{\frac{h}{2}} - e^{-\frac{h}{2}}}.$$

(3.5)
The same is true for the hybrid algebra $U_{qJ}(sl(2))(h, \xi)$. According to the general properties of twisted quasitriangular algebras (see eq. (1.5)) $U_{qJ}(sl(2))(h, \xi)$ has the following R-matrix,

$$\mathcal{R}_{qJ} = e^{\omega \otimes H} e^{-hH \otimes H} \mathcal{R}_{qJ} e^{hH \otimes H} e^{-H \otimes \omega}. \tag{3.6}$$

In a case of the smooth set of quantized algebras the classical limit depends on how we fix the linear subvariety that describes the deformation quantization. If we want to disclose the hybrid properties of the set $\{U_{qJ}(sl(2))(h, \xi)\}$ we are to find a smooth curve intermediate between the standard deformation subvariety $\{U_{qJ}(sl(2))(h, 0) | h \geq 0\}$ and the pure twist subvariety $\{U_{qJ}(sl(2))(0, \xi) | \xi \geq 0\}$. Obviously, it is sufficient to consider a linear subvariety $\{U_{qJ}(sl(2))(\zeta \xi, \xi) | \xi \geq 0, \zeta > 0\}$ where we had put $h = \zeta \xi$. In the corresponding set $\{\mathcal{R}_{qJ} | h = \zeta \xi\}$ of hybrid R-matrices (3.6) we let ξ to be in the neighborhood of zero and extract the classical r-matrix

$$r_{qJ} = E_{+} \wedge H + \zeta (H \otimes H + E_{-} \otimes E_{+}). \tag{3.7}$$

This expression is the well known hybrid solution [4] of the classical Yang–Baxter equation.

3.2 Hybrid quantum affine algebra $U_{qJ}(\hat{sl}(2))$

The explicit construction of Jordanian twist [3], extended Jordanian twist [11] and chains of twists [12] provided the possibility to obtain the mixed quantizations for current algebras – the twisted Yangians [13, 14, 15]. Analogously, with the help of the q–Jordanian twist $\mathcal{F}_{qJ}(h, \xi)$ we can obtain the hybrid quantizations for Kac–Moody algebras.

Let us consider, for example, the quantum affine algebra $U_q(sl(2))$ [16, 17] defined as a deformed infinite dimensional Lie algebra with the Cartan matrix

$$A = (a_{ij}) = [(\lambda_i, \lambda_j)] = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}, \quad i, j = 0, 1;$$

the generators $H_i, E_{\pm \lambda_i}, D$ and the relations

$$\begin{align*}
[H_i, E_{\pm \lambda_j}] &= \pm \frac{1}{2} a_{ij} E_{\pm \lambda_j}, \\
[E_{\lambda_i}, E_{-\lambda_j}] &= \delta_{ij} e^{h \lambda_i - e^{-h \lambda_i}}, \\
[D, E_{\pm \lambda_i}] &= \pm \delta_{i0} E_{\pm \lambda_i}, \quad i, j = 0, 1; \\
[H_i, H_j] &= [H_i, D] = 0, \\
(ad_q E_{\pm \lambda_i})^{1-a_{ij}} \circ E_{\pm \lambda_j} &= 0, \quad i \neq j.
\end{align*} \tag{3.8}$$

Here ad_q is the q–adjoint operator

$$ad_q E_{\lambda_i} \circ E_{\lambda_j} = E_{\lambda_i} E_{\lambda_j} - e^{h(\lambda_i, \lambda_j)} E_{\lambda_j} E_{\lambda_i}.$$
We shall put \(q = e^{\frac{1}{2}h} \) and introduce the rescaled generators

\[
e_{\pm\lambda_i} = e^{-\frac{1}{4}h}E_{\lambda_i}.
\]

Let \(\delta = \lambda_0 + \lambda_1 \) be the minimal imaginary root of \(\widehat{sl}(2) \). Then, the so called normal ordering \[18\] in the system of positive roots \(\Lambda_+ \) is fixed as follows

\[
\lambda_0, \lambda_0 + \delta, \ldots, \lambda_0 + n\delta, \ldots, \delta, 2\delta, \ldots, \lambda_1 + (l + 1)\delta, \lambda_1 + l\delta, \ldots, \lambda_1.
\]

(3.10)

According to this ordering the generators for composite roots are obtained as follows

\[
e_{\delta}' = [2]^{-1} \left[e_{\lambda_0}, e_{\lambda_1} \right]_{q}, \quad e_{\lambda_0 + n\delta}' = (-1)^n (ad e_{\delta}')^n \circ e_{\lambda_0},
\]

\[
e_{\lambda_1 + n\delta}' = (ad e_{\delta}')^n \circ e_{\lambda_1}, \quad e_{n\delta}' = [2]^{-1} \left[e_{\lambda_0 + (n-1)\delta}, e_{\lambda_1} \right]_{q}.
\]

(The \(q \)-numbers above are the same as in \[15\].) Finally, the generators \(e_{n\delta} \) are defined by means of the Schur polynomials:

\[
e_{n\delta}' = \sum_{p_1 + 2p_2 + \ldots + np_n = n} \frac{(q^2 - q^{-2})^{\sum p_i - 1}}{p_1! \ldots p_n!} e_{p_1}^1 e_{p_2}^2 \ldots e_{p_n}^n.
\]

The generators for the negative roots are defined with the help of the involution

\[
(H_i)^* = -H_i, \quad (e_{\pm\lambda_i})^* = e_{\mp\lambda_i}, \quad h^* = -h.
\]

In term of these generators the universal \(R \)-matrix of \(U_q(\widehat{sl}(2)) \) has the form \[19\]

\[
R^{D,I} = \left(\prod_{n \leq 0} \exp_q \left((q - q^{-1})e_{\alpha + n\delta} \otimes e_{-\alpha - n\delta} \right) \right) \cdot \exp \left(\sum_{n > 0} \frac{n(e_{n\delta} \otimes e_{-n\delta})}{q^n q^{-2n}} \right) \cdot \left(\prod_{n \leq 0} \exp_q \left((q - q^{-1})e_{\beta + n\delta} \otimes e_{-\beta - n\delta} \right) \right) \cdot K,
\]

(3.11)

where \(K \) stands for

\[
K = \exp \left(\sum_{i,j} 2hd_{ij}H_i \otimes H_j \right),
\]

\(d \) is the inverse of the extended (nondegenerate) Cartan matrix \(\bar{a} \) \[20\] and the \(q \)-exponent is defined as the series

\[
\exp_q \equiv \sum \frac{x^n}{(n)_q^{-2}}, \quad (n)_q^{-2} = \frac{q^{-2n} - 1}{q^{-2} - 1}.
\]

Note that the order of \(q \)-exponents in (3.11) is direct in the first product (\(\to \)) and inverse in the second one (\(\leftarrow \)).

Any quantum Borel subalgebra \(U_q(B) \in U_q(\widehat{sl}(2)) \) can be used as a carrier algebra to perform the quantum Jordanian twisting. If we have to consider representations of the corresponding quasitriangular quantum algebras the simplest choice is to take the Hopf
subalgebra generated by H_0 and E_{λ_0}. The twist deformation is performed by the element (see (2.9))

$$\mathcal{F}_{qJ}(h, \xi) = e^{H_0 \otimes \omega_0} e^{-hH_0 \otimes H_0}, \quad \omega_0 = \ln \left((\xi E_{\lambda_0} + 1) e^{hH_0} \right) \quad (3.12)$$

and produces the Jordanian quantum affine algebra $U_{qJ}(\widehat{sl(2)})$. It has the commutators defined by (3.8) and the deformed coproducts:

$$\begin{align*}
\Delta_{qJ}(H_i) &= H_i \otimes 1 + e^{\text{ad}(H_0 \otimes w)} \circ (1 \otimes H_i); \\
\Delta_{qJ}(D) &= D \otimes 1 + e^{\text{ad}(H_0 \otimes w)} \circ (1 \otimes D); \\
\Delta_{qJ}(E_{\lambda_0}) &= \frac{1}{\xi}(e^w \otimes e^w - e^{\text{ad}(H_0 \otimes w)} \circ (e^{-hH_0} \otimes e^{-hH_0}) - 1 \otimes 1); \\
\Delta_{qJ}(E_{-\lambda_0}) &= E_{-\lambda_0} \otimes e^{-w} + e^{\text{ad}(H_0 \otimes w)} \circ (1 \otimes E_{-\lambda_0}); \\
\Delta_{qJ}(E_{\lambda_1}) &= (E_{\lambda_1} \otimes e^{-w}) \cdot (e^{\text{ad}(H_0 \otimes w)} \circ (1 \otimes e^{hH_0})) + e^{h(H_1 + H_0) \otimes E_{\lambda_1}}; \\
\Delta_{qJ}(E_{-\lambda_1}) &= (E_{-\lambda_1} \otimes e^{+w}) \cdot (e^{\text{ad}(H_0 \otimes w)} \circ (1 \otimes e^{-h(H_1 + H_0)})) \\
&
\end{align*} \tag{3.13}$$

The twisted (hybrid) universal \mathcal{R}–matrix for $U_{qJ}(\widehat{sl(2)})$ has the following form

$$\mathcal{R}^{DJ}_{qJ} = e^{w \otimes H} e^{-H \otimes H} \cdot \left(\prod_{n \leq 0} \exp_q \left((q - q^{-1}) e_{\alpha+n\delta} \otimes e_{-\alpha-n\delta} \right) \right) \cdot \\
\cdot \exp \left(\sum_{n>0} \frac{n(e_{\alpha+n\delta} \otimes e_{-n\delta})}{q^{2n} - q^{-2n}} \right) \cdot \left(\prod_{n \leq 0} \exp_q \left((q - q^{-1}) e_{\beta+n\delta} \otimes e_{-\beta-n\delta} \right) \right) \cdot \mathcal{K} \cdot e^{hH \otimes H} e^{-H \otimes w} \tag{3.14}$$

It satisfies the parametric QYBE

$$\mathcal{R}_{12}(z_1/z_2)\mathcal{R}_{13}(z_1/z_3)\mathcal{R}_{23}(z_2/z_3) = \mathcal{R}_{23}(z_2/z_3)\mathcal{R}_{13}(z_1/z_3)\mathcal{R}_{12}(z_1/z_2).$$

In the fundamental representation of $sl(2)$ we get the hybrid matrix solution:

$$d \left(\mathcal{R}^{DJ}_{qJ} \right) = \frac{1-z}{y^2(1-y^{-2})} \exp \left(\sum_{n>0} \frac{n}{n} \frac{q^n - q^{-n}}{q^n + q^{-n}} \right) \cdot \begin{pmatrix}
 a_1 & sq & -s & s^2 \\
 0 & q & a_2 & s \\
 0 & za_2 & q & -sq \\
 0 & 0 & 0 & a_1 \\
\end{pmatrix} \tag{3.15}$$

where

$$a_1 = \frac{q^2 - z}{1 - z}, \quad a_2 = \frac{q^2 - 1}{1 - z}, \quad s = \frac{\xi}{1 + q}.$$

The expression for the universal \mathcal{R}-matrix (3.14) as well as for its defining representation (3.13) describes a smooth variety of solutions of QYBE. This is the two-dimensional variety with the coordinates h and ξ and with the spectral parameter z:

$$\begin{align*}
\mathcal{R}_{qJ}^{DJ}(h, \xi) &\rightarrow h \rightarrow 0 \searrow \xi \rightarrow 0 \\
\mathcal{R}^{DJ}_{qJ}(h, 0) &= \mathcal{R}^{DJ}_{qJ}(h, \xi) \\
\end{align*} \tag{3.16}$$
When \(\xi \) goes to zero we return to the initial quantum affine algebra \(U_q(\widehat{sl}(2)) \) and the corresponding \(R \)-matrix (3.11). In the limit \(h \to 0 \) we get the nonstandard quantization \(U_\mathcal{J}(\widehat{sl}(2)) \) of the affine algebra \(U(\widehat{sl}(2)) \) performed by the Jordanian twist

\[
\mathcal{F}_\mathcal{J} = e^{H_0 \otimes \sigma_0},
\]

with \(\sigma_0 = \ln (1 + E_{\lambda_0}) \). The \(R \)-matrix in this limit case becomes the ordinary Jordanian.

4 Conclusions

We have demonstrated that there exists the hybrid quantization \(U_{q,\mathcal{J}}(sl(2)) \) with well defined natural limits with respect to the two deformation parameters \(h \) and \(\xi \). Moreover, each quantum algebra \(U_{q,\mathcal{J}}(sl(2)) \) can be considered together with the twisting element \(\mathcal{F}_{q,\mathcal{J}} \) that connects it with the corresponding standard quantization \(U_q(sl(2)) \). Both natural limits exist also for the triples \((U_{q,\mathcal{J}}(sl(2)), \mathcal{F}_{q,\mathcal{J}}, R_{\mathcal{DJ}q}) \). Such limit behaviour illustrates the difference between previously obtained combined quantizations \([6, 7, 8, 10]\) and the deformation \(U_{q,\mathcal{J}} \) produced by the quantum Jordanian twist. Contrary to the cases of \((q, \xi)\)–deformation by Ballesteros et al \([6]\) (BHP–deformation) and the constructions proposed by Abdesselam et al \([7, 8]\) and Stolin \([10]\) in the triple \((U_{q,\mathcal{J}}(sl(2)), \mathcal{F}_{q,\mathcal{J}}, R_{q,\mathcal{DJ}}) \) there are no singularities when \(q \to 1 \). This means that the sets \(\{U_{q,\mathcal{J}}(sl(2))\} \) and \(\{((U_{q,\mathcal{J}})(sl(2)))_{\mathcal{J}}\} \), as well as the BHP–deformation, refer to different “sheets”.

In a review by Aneva et al \([3]\) the BHP–deformation was considered as being not an authentic hybrid quantization. The reason was that in the generic points the standard and the BHP–deformations are equivalent (as it was proved in \([3]\)). From our point of view the requirement of nonequivalence to \(U_q \) is too strong in the context of hybrid quantizations. The main criterion here must be the possibility for a Hopf algebra to be submerged in a two-dimensional smooth variety whose boundaries are \(U_q \) and \(U_{\mathcal{J}} \). As it was shown in \([21]\) this implies that it is a quantization of a hybrid classical \(r \)–matrix (3.7).

Notice that the Jordanian quantum affine algebra \(U_{q,\mathcal{J}}(sl(2)) \) constructed in Section 3 is an example of twisted quantum nontwisted affine algebras, \(U_{q,\mathcal{J}}(sl(2)) = U_{q,\mathcal{J}}(A_{1}^{(1)}) \). The word “twisted” in the term “twisted affine algebra” (introduced by Kac \([20]\)) has the meaning different from that of the Drinfeld’s deformation procedure \([1]\). This is why the term “Jordanian” is preferable here.

The quantum Jordanian twist \(\mathcal{F}_{q,\mathcal{J}} \) can be applied to any Hopf algebra containing the quantum Borel subalgebra \(U_q(B) \). In particular it can be used to produce hybrid deformations of the twisted affine algebras (the Kac–Moody algebras listed in the tables Aff2 and Aff3 in \([20]\)).
Acknowledgments

V. L. would like to thank the Vicerrectorado de Investigación de la Universidad de Valladolid for supporting his stay. This work has been partially supported by DGES of the Ministerio de Educación y Cultura of España under Project PB98-0360, the Junta de Castilla y León (España) and the Russian Foundation for Fundamental Research under the grant 00-01-00500.

References

[1] Drinfeld V.G. 1983 *Dokl. Akad. Nauk. USSR* **273** 531.

[2] Reshetikhin N.Yu. 1990 *Lett. Math. Phys.* **20** 331.

[3] Ogievetsky O.V. 1993 *Suppl. Rendiconti Cir. Math. Palermo, Serie II* **37**, 185 (preprint MPI-Ph/92-99, Munich (1992)).

[4] Gerstenhaber M., Giaquinto A. and Schack S.D. 1992 *Quantum groups. Proceedings in EIMI 1990* Lect. Notes Math. 1510, ed. P.P.Kulish (Berlin, Springer) p. 9.

[5] Kupershmidt B.A. 1992 *J. Phys. A: Math.Gen.* **25** L1239.

[6] Ballesteros A., Herranz F.J. and Parashar P. 1999 *J. Phys. A: Math.Gen.* **32** 2369.

[7] Abdesselam B., Chakrabarti A. and Chakrabarti R. 1998 *Mod. Phys. Lett.* **A13** 779.

[8] Abdesselam B., Chakrabarti A., Chakrabarti R. and Segar J. 1999 *Mod. Phys. Lett.* **A14** 765.

[9] Anev B.L., Arnaudon D., Chakrabarti A., Dobrev V.K. and Mihov S.G. 2000 “On combined standard–nonstandard or hybrid (q,h)–deformations”, *Preprint math.QA/0006206*.

[10] Stolin A. 2000, “On quantum Belavin–Drinfeld list”, talk given at the IX-th Intern. Colloquium “Quantum Groups and Integrable Systems”, Prague 19-21 June 2000.

[11] Kulish P.P., Lyakhovsky V.D. and Mudrov A.I. 1999 *J. Math. Phys.* **40** 4569.

[12] Kulish P.P., Lyakhovsky V.D. and del Olmo M.A. 1999 *J. Phys. A: Math. Gen.* **32** 8671.

[13] Kulish P.P. and Stolin A. 1997 *Czech. J. Phys.* **47** 1207.

[14] Lyakhovsky V.D. 2000 “Twist deformations for Yangians”, *Preprint* SPbU-IP-00-04, Saint Petersburg (2000), *Preprint* math.QA/0002048 (to be published in Proceedings of SQS-99, Dubna)
[15] Kulish P.P., Lyakhovsky V.D. and Stolin A.A. 2000 “Full chains of twists for orthogonal algebras”, math.QA/0008044 (to be published in Czech. J. Phys.)

[16] Drinfeld V.G. 1985 Soviet. Math. Dokl. 32 254.

[17] Jimbo M. 1985 Lett. Math. Phys. 10 63; 1986 Comm. Math. Phys. 102 537.

[18] Khoroshkin S.M. and Tolstoy V.N. 1992 Funktsional Anal. i Prilozhen. 26 85.

[19] Khoroshkin S.M. and Tolstoy V.N. 1992 Lett. Math. Phys. 24 231.

[20] Kac V.G. 1995 Infinite dimensional Lie algebras (Cambridge University Press, Cambridge) (Chapter 8).

[21] Kulish P.P. and Lyakhovsky V.D. 1998 Czech. J. Phys. 48 1415.