A proton-pentaquark mixing and the intrinsic charm model

Mikhail Mikhasenko1,2

1Institute for High Energy Physics, Protvino, Russia
2Moscow Institute of Physics and Technology, Russia

A new interpretation of intrinsic charm phenomenon based on the assumption of pentaquark $|uudc\bar{c}\rangle$ mixing with a proton is offered. The structure function of the c-quark in the pentaquark is constructed. Mixing different states is considered theoretically and using experiment data on D-meson production and inclusive production of the hidden charm particles.

Today there are many articles \cite{1,2} related to intrinsic charm concept, which was introduced by Brodsky et al. \cite{3}. In the present article we want to discuss a new interpretation of this phenomenon. As will be shown below, the intrinsic charm problem is closely related to the pentaquark $|uudc\bar{c}\rangle$ existence and mixing of that state with the proton.

Authors of ref. \cite{3} made the assumption that Fock state decomposition of the proton wave-function contains a non-negligible $|uudc\bar{c}\rangle$ component, which results in the specific distribution of c-quark in proton. According to \cite{3}, the probability to find $|uudc\bar{c}\rangle$ configuration, in classical perturbation theory, is given by the expression

$$W(A \to q_1 \ldots q_5) \sim \left| \frac{\langle q_1 \ldots q_5 | M | A \rangle}{E_A - E_{q_1} - \ldots - E_{q_5}} \right|^2,$$

where q_i is the momentum of i-th quark, A is an initial state, M is a transition matrix element, E_i is the energy of i-th quark.

Transforming the above expression and integrating over all quark’s contributions except of one c-quark, the authors of \cite{3}, derive the expression the distribution of c-quark:

$$P(x) = N x^2 \left[(1 - x)(1 + 10x + x^2) + 6x(1 + x) \ln \frac{1}{x} \right],$$

where N is determined by normalization condition for one c-quark $\int P(x)dx = 1$.

The distribution $P(x)$ is shown in fig. 1 by solid line. From eq.(2) and Fig.1 we can see that average momentum fraction of c-quark is equal to $2/7$. As a result, noticeable

*mikhail.mikhasenko@ihep.ru
contribution of intrinsic charm into inclusive production of D, J/ψ or χ_c-mesons should be seen at $\langle x \rangle \approx 2/7$ [4, 5].

It is necessary to notice that the probability to find $|uud\bar{c}\rangle$ configuration [1] was constructed under inherently perturbative assumption, since the factor $1/(E - E')$ is used. Let us consider alternative, essentially nonperturbative, model [6]. We construct structure function for c-quark in the pentaquark $|uud\bar{c}\rangle$, which has quantum numbers like a proton. The probability to find i-th quark with momentum fraction x_i in proton for small x_i can be obtained from Regge asymptotic:

$$dP_i(x_i) \sim \frac{x_i^{1-\alpha_i}}{\sqrt{x_i^2 + \mu^2/P^2}},$$

(3)

where α_i is the intercept of corresponding leading Regge trajectory. For sea quarks this parameter is equal to 1, in the case of light valence quarks we have $\alpha_{1,2,3} = \alpha_{u,d}(0) \approx 0.5$ from leading Regge f, A_2 trajectories, while for c-quark the intercept of leading J/ψ-trajectory is equal to $\alpha_{4,5} = \alpha_c(0) \approx -2.2$ [7, 8]. Thus, the structure function of the n-particle state has the form

$$dG(x_1, \ldots, x_n) \sim \delta \left(1 - \sum_{i=1}^{n} x_i\right) \prod_{i=1}^{n} \frac{dx_i x_i^{1-\alpha_i}}{\sqrt{x_i^2 + \mu^2/P^2}}.$$

(4)

Integrating this expression in the case of $|uud\bar{c}\rangle$ pentaquark over $dx_1 \ldots dx_3$ we can calculate the structure function of c-quark:

$$G(x) = M x^{-\alpha_5} (1 - x)^{-1+\gamma_A+\sum_{i=1}^{4}(1-\alpha_i)},$$

(5)

where M is a parameter, which stands normalization: $\int G(x) dx = 1$.

In original Kuti-Weisskopf model [6] the unknown parameter $\gamma_A = 3$ determining the sea normalization can be obtain using Drell-Yan-West relation [9]. Using this value we get

$$G(x) = M x^{2.2} (1 - x)^{6.7}.$$

(6)

The structure function of the c-quark for the pentaquark $|uud\bar{c}\rangle$ [6] is shown in Fig. 1 by dotted line in comparison with the formula [2].

As we can see in Fig. 1 the probability distributions [2] and [6] are almost the same, under parameters we chose. The result is amazing — perturbative model [3] and our non-perturbative model, based on Regge trajectories of c-quarks give the same probability distribution. The question is appeared, how it could happen. We have one solution only:
The fraction momentum distribution of c-quark in the $|uud\bar{c}\rangle$ state: in the intrinsic charm model \cite{3} satisfied \cite{2} (solid line); in the alternative approach based on \cite{6} model satisfied \cite{6} (dashed line)

the presented in ref. \cite{3} probability distribution refers to the c-quark distribution in the pentaquark $|uud\bar{c}\rangle$ and has nothing to do with sea c-quarks.

We have one more argument in favor of the hypothesis. It is well known that the quark distribution functions in K-mesons and π-mesons are different. The difference can be explained by the model \cite{4} (see \cite{10}) on the one hand and by \cite{11} model on the other hand. It convinces us that the probability distributions \cite{2} and \cite{6} refer to the valence c-quark momentum distribution in the pentaquark $|uud\bar{c}\rangle$.

The next problem appeared is the proton-pentaquark mixing which determines absolute normalization. Let matrix element for $p \rightarrow |uud\bar{c}\rangle$ be equal to V, then admixture of the pentaquark in a proton is given by factor $V/(E_1 - E_2)$, where E_1, E_2 are energies of the pentaquark and the nucleon respectively. The matrix element can be evaluated as Λ_{QCD} and the energy difference can be estimated as the difference of masses. In that way the probability to find the pentaquark in a proton is less than:

$$W(p \rightarrow uud\bar{c}) \leq \left(\frac{300 \text{ MeV}}{3 \text{ GeV}} \right)^2 \approx 1\%$$ \hspace{1cm} (7)

In fact we should expect the mixing to be much smaller. Most likely it is due to different color state of quarks in the pentaquark and in a proton. There are also experimental constraints on this parameter:

1. In the original work \cite{3}, based on assumption that most of the charm cross-section comes from diffraction in pp-interaction, the mixing was evaluated by 1%.
2. In the later work [11] the restriction 0.59% was given, based on data of European Muon Collaboration (EMC) in hadronic scattering. The best fit to data gave 0.31%.

3. Differential spectrum of D-mesons in photo-production processes [11] contradicts the intrinsic charm hypothesis and set the contribution restriction in the range of $\sim 0.1 - 0.2\%$.

4. The most severe restriction on the mixing hypothesis can be obtained by hidden charm particles production. Such analysis was performed in ref. [3]. According to this paper the upper bound in the $p \to |uudc\bar{c}\rangle$ probability is $\sim 10^{-7}$.

The discussed model, based on the assumption about the pentaquark-proton mixing, gives a consistent interpretation of the intrinsic charm phenomenon, which is used for the hadron physics application [1]. It is worth emphasizing that the observation of the intrinsic charm phenomenon can be result of existence of the stable pentaquark $|uudc\bar{c}\rangle$. A discovery of pentaquark $|uudc\bar{c}\rangle$ or getting more stringent restriction is a task of future experiments.

Author would like to thank Prof. A.K.Likhoded and A.V.Luchinsky for productive discussions and a set of constructive remarks. This work was financially supported by the grant of the president of Russian Federation (#MK-3513.2012.2).

[1] G. Lykasov, V. Bednyakov, A. Pikelner, and N. Zimin, Europhys.Lett. 99, 21002 (2012), arXiv:1205.1131 [hep-ph]
[2] W. Freeman and D. Toussaint (MILC Collaboration), Phys.Rev. D88, 054503 (2013), arXiv:1204.3866 [hep-lat]
[3] S. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, Phys.Lett. B93, 451 (1980)
[4] S. Gershtein, A. Likhoded, and S. a. Slabospitsky, Sov.J.Nucl.Phys. 34, 128 (1981)
[5] V. A. Litvine and A. Likhoded, Phys.Atom.Nucl. 62, 679 (1999)
[6] J. Kuti and V. F. Weisskopf, Phys.Rev. D4, 3418 (1971)
[7] V. Kartvelishvili, A. Likhoded, and V. Petrov, Phys.Lett. B78, 615 (1978)
[8] S. Gershtein, A. Likhoded, and A. a. Luchinsky, Phys.Rev. D74, 016002 (2006), arXiv:hep-ph/0602048 [hep-ph]
[9] S. Drell and T.-M. Yan, Phys.Rev.Lett. 24, 181 (1970)
[10] P. Chliapnikov, V. Kartvelishvili, V. Knyazev, and A. Likhoded, *Nucl.Phys.*, \textbf{B148}, 400 (1979)

[11] E. Hoffmann and R. Moore, *Z.Phys.*, \textbf{C20}, 71 (1983)