In recent years, deeper and wider neural networks have shown excellent performance in computer vision tasks, while their enormous amount of parameters results in increased computational cost and overfitting. Several methods have been proposed to compress the size of the networks without reducing network performance. We present a novel incremental training algorithm for deep neural networks called planting. Our planting can search the optimal network architecture with smaller number of parameters for improving the network performance by augmenting channels incrementally to layers of the initial networks while keeping the earlier trained parameters fixed. We propose using the knowledge distillation method for training the channels planted. By transferring the knowledge of deeper and wider networks, we can grow the networks effectively and efficiently.

We evaluate the effectiveness of the proposed method on different datasets such as CIFAR-10/100 and STL-10. For the STL-10 dataset, we show that we are able to achieve comparable performance with only 7% parameters compared to the larger network and reduce the overfitting caused by a small amount of the data.

Our planting approach consists of the following training processes (show in Fig.1)

(0) Training a large network as the teacher network.
(1) Training a small network with fewer channels of each layer by a standard classification training method.
(2) Adding channels to a layer on the small network by using a knowledge distillation method with the teacher network while keeping the earlier trained parameters fixed.
(3) Repeat (2) the number of layers times
(4) Selecting a planted network with the smallest validation loss as the next base network for planting
(5) Repeating (4) while reducing the classification loss than the previous network

We have performed experiments using CIFAR-10/100 and STL-10. The structure of networks are shown in Table.1.

Table 1 The Structure of Networks

Network for CIFAR-10/100	Network for STL-10
ReLU(conv1(kernel=3))	ReLU(conv1(kernel=3))
max pooling(2x2)	max pooling(2x2)
ReLU(conv2(kernel=3))	ReLU(conv2(kernel=3))
max pooling(2x2)	max pooling(2x2)
ReLU(conv3(kernel=3))	ReLU(conv3(kernel=3))
max pooling(2x2)	max pooling(2x2)
ReLU(conv4(kernel=3))	ReLU(conv4(kernel=3))
max pooling(2x2)	max pooling(2x2)
ReLU(conv5(kernel=3))	ReLU(conv5(kernel=3))
max pooling(2x2)	max pooling(2x2)
ReLU(fc1)	ReLU(fc1)
output=fc2)	output=fc2)

Table 2 The Results on CIFAR-10

Network	Params	Test Err.	Test Acc.	Loss func
Teacher	128K	0.5007	88.10%	CELoss
Student	128K	0.3823	88.51%	KL-Loss
Initial Network (Student[8])	20.4K	0.8300	71.35%	CELoss
Student[16]	43.9K	0.6671	79.42%	CELoss
Student[32]	104.8K	0.4898	84.03%	CELoss
Student[64]	282.0K	0.4431	86.83%	CELoss
Ours	40.6K	0.4825	84.35%	KL-Loss

Table 3 The Results on CIFAR-100

Network	Params	Test Err.	Test Acc.	Loss func
Teacher	128K	0.5100	76.57%	CELoss
Student	128K	1.6232	60.05%	KL-Loss
Student[8]	32.0K	2.5280	36.13%	CELoss
Initial Network (Student[16])	55.5K	2.1370	45.45%	CELoss
Student[32]	116.5K	1.9022	52.15%	CELoss
Student[64]	293.6K	1.9510	55.74%	CELoss
Ours	78.5K	1.7584	53.31%	KL-Loss

Table 4 The Results on STL-10

Network	Params	Test Err.	Test Acc.	Loss func
Teacher[64]	445.8K	1.1807	66.47%	CELoss
Initial Network (Student[8])	40.8K	1.2776	55.55%	CELoss
Student[16]	84.9K	1.2924	59.34%	CELoss
Student[32]	186.8K	1.9998	61.10%	CELoss
Ours	82.6K	1.0772	67.12%	KL-Loss

Conclusion

We proposed a novel incremental training method called planting using knowledge transfer, that can train smaller network with excellent performance and find the optimal network architecture automatically. We confirmed that the proposed approach was able to achieve comparable performance with smaller parameters compare to the larger network and reduce the over-fitting.