In memoriam: Dmitri Ivanenko (1904 – 1994)

In honor of the 110th Year Anniversary

(G. Sardanashvily, Science Newsletter, Issue 1 (2014) 16)

Dmitri Ivanenko (29.07.1904 – 30.12.1994), professor of Moscow State University, was one of the great theoreticians of XX century, an author of the proton-neutron model of atomic nucleus (1932).

D. Ivanenko was born on July 29, 1904 in Poltava (Russian Empire), where he began his creative path as a school teacher of physics. In 1923 Ivanenko entered Petrograd University. In 1926, while still a student, he wrote first scientific works with his friends George Gamov and Lev Landau (Nobel Laureate in 1962). After graduating the university, from 1927 to 1930 D. Ivanenko was a scholarship student and a researcher scientist at the Physical Mathematical Institute of Academy of Sciences of USSR. During these years he collaborated with Vladimir Fok and Viktor Ambartsumian, later to become famous.

In 1929 – 31, Dmitri Ivanenko worked at the Kharkiv Institute of Physics and Technology, being the first director of its theoretical division; Lev Landau followed him in 1932 – 37. Paskual Jordan, Victor Wieskopf, Felix Bloch (Nobel laureate in 1952) and Paul Dirac (Nobel Laureate in 1933) visited D. Ivanenko in Kharkiv. In Kharkiv, Ivanenko organized the 1st Soviet theoretical conference (1929) and the first soviet journal "Physikalische Zeitschrift der Sowjetunion" in foreign language (1932).

After returning to Leningrad at the Ioffe Physical-Technical Institute, D. Ivanenko concentrated his interest to nuclear physics. In May 1932, Ivanenko published his famous proton-neutron model of the atomic nucleus in “Nature” [18], and two months later Werner Heisenberg (Nobel laureate in 1932) referred to his work.
Iwanenko D., The neutron hypothesis, Nature, v.129, N 3265, p.798, 1932

In August 1932, D. Ivanenko and E. Gapon proposed the pioneer nuclear shell model describing the energy level arrangement of protons and neutrons in the nucleus in terms of energy levels [22]. Later this model was developed by Eugene Paul Wigner, Maria Goeppert-Mayer and J. Hans D. Jensen who shared the 1963 Nobel Prize for their contributions.

Ivanenko’s success pushed forward the nuclear physics in the USSR. In 1933 on the initiative of Dmitri Ivanenko and Igor Kurchatov, the 1st Soviet nuclear conference was organized. Paul Dirac, Frédéric Joliot-Curie (Nobel laureate in 1935), Fransis Perrin, Ftanko Rasetti, Victor Wieskopf et al participated in this Conference.

The realization of Ivanenko’s far-reaching plans and hopes was interrupted, however. In 1935 he was arrested in connection with the Sergey Kirov affair. Exile to Tomsk followed. D. Ivanenko was a professor at Tomsk and Sverdlovsk Universitie until the beginning of the World War II. From 1943 and until the last days of his life, he was closely associated with the Physics Faculty of M.V. Lomonosov Moscow State University.
Dmitri Ivanenko made the fundamental contribution to many areas of nuclear physics, field theory and gravitation theory.

In 1928, Ivanenko and Landau developed the theory of fermions as skew-symmetric tensors in contrast with the Dirac spinor model [4]. Their theory, widely known as the Ivanenko -- Landau – Kahler theory, is not equivalent to Dirac’s one in the presence of a gravitational field, and only it describes fermions in contemporary lattice field theory.

In 1929, Ivanenko and Fock generalized the Dirac equation and described parallel displacement of spinors in a curved space-time (the famous Fock – Ivanenko coefficients) [9]. Nobel laureate Abdus Salam called it the first gauge field theory.

In 1930, Ambartsumian and Ivanenko suggested the hypothesis of creation and annihilation of massive particles which became the corner stone of contemporary quantum field theory [16].

In 1934 Dmitri Ivanenko and Igor Tamm (Nobel Laureate in 1958) suggested the first non-phenomenological theory of paired electron-neutrino nuclear forces [24]. They made the significant assumption that interaction can be undergone by an exchange of massive particles. Based on their model, Nobel laureate Hideki Yukawa developed his meson theory.

In 1938, Ivanenko proposed a non-linear generalization of Dirac's equation. Based on this generalization, W. Heisenberg and he developed the unified nonlinear field theory in 50th [69].

D. Ivanenko, P.A.M. Dirac and W. Heisenberg (Berlin, 1958)

In 1944, Dmitri Ivanenko and Isaak Pomeranchuk predicted the phenomenon of synchrotron radiation given off by relativistic electrons in a betatron [39]. This radiation was soon discovered by American experimenters D. Bluitt (1946) and H. Pollock (1947). Synchrotron radiation possesses a number of very particular properties which provide its wide applications. In particular, neutron stars also are sources of this type radiation. Classical theory of synchrotron radiation was developed by Dmitri Ivanenko in
collaboration with Arseny. Sokolov in 1948, and independently by Julian Schwinger (Nobel Laureate in 1965). For their work on synchrotron radiation, D. Ivanenko, A. Sokolov and I. Pomeranchuk were awarded the Stalin Prize in 1950.

Iwanenko D., Pomeranchuk I., On the maximal energy attainable in betatron, Physical Reviews, v.65, p.343, 1944

Two of D. Ivanenko's and A. Sokolov's monographs "Classical Field Theory" and "Quantum Field Theory" were published at the beginning of the 50th. "Classical field theory" was the first contemporary book on field theory where, for instance, the technique of generalized functions was applied. Nobel laureate Ilya Prigogine referred to it as his text-book.

In 1956, D. Ivanenko developed the theory of hypernuclei discovered by Marian Danysz and Jerzy Pniewski in 1952.

At the beginning of the 1960's, D. Ivanenko did intensive scientific and organizational work on the development and coordination of gravitation research in the USSR. In 1961,
on his initiative the 1st Soviet gravitation conference was organized. D. Ivanenko was
the organizer of Soviet Gravitation Commission, which lasted until the 1980's. He was a
member of the International gravitation Committee since its founding in 1959.

In the 70 – 80th, D. Ivanenko was concentrated on gravitation theory. He developed
different generalizations of Einstein’s General Relativity, including gravity with torsion,
the hypothesis of quark stars [63] and gauge gravitation theory [79]. In 1985, D.
Ivanenko and his collaborators published two monographs “Gravitation” and "Gauge
Gravitation Theory".

Theoretical physics in the USSR has been enormously influenced by the seminar on
theoretical physics organized by D. D. Ivanenko in 1944 that has continued to meet for
50 years under his guidance at the Physics Faculty of Moscow State University. The
distinguishing characteristic of Ivanenko’s seminar was the breadth of its grasp of the
problems of theoretical physics and its discussion of the links between its various
divisions, for example, gravitation theory and elementary particle physics. The most
prominent physicists in the world participated in the seminar: Niels and Åage Bohr, Paul
Dirac, Hideki Yukawa, Julian Schwinger, Abdus Salam, Ilya Prigogine, Samuel Ting,
Paskual Jordan, Tullio Regge, John Wheeler, Roger Penrose et al.

The scientific style of Dmitri Ivanenko was characterized by great interest in ideas of
frontiers in science where these ideas were based on strong mathematical methods or
experiment.

It should be noted that seven Nobel Laureates: P.A.M. Dirac, H. Yukawa, N.Bohr, I.
Prigogine, S. Ting, M. Gell-Mann, G. ’t Hooft wrote their famous inscriptions with a chalk
on the walls of Ivanenko’s office in Moscow State University.

Selected publications of D. Ivanenko

1. Gamov G., Iwanenko D., Zur wellentheorie der materie, Zeitschrift für Physik,
 Bd.39, s.865-868, 1926.
2. Iwanenko D., Landau L., Zur albeitung der Klein-Fockschen gleichung, Zeitschrift
 für Physik, Bd.40, s.161-162, 1927.
3. Iwanenko D., Landau L., Bemerkung über quantenstatistik, Zeitschrift für Physik,
 Bd.42, s.562, 1927.
4. Iwanenko D., Landau L., Zur theorie des magnetischen electrons. I, Zeitschrift für
 Physik, Bd.48, s.340-348, 1928.
5. Ivanenko D., Über eine verallgemeinerung der geometrie, welche in der
 quantenmechanik nützlich sein kann, ДАН СССР, N4, c.73-78, 1929.
6. Ivanenko D., Deux remarques sur l’équation de Dirac, Compt. Rend. Acad Sci.
 Paris, v.188, p.616-618, 1929.
7. Fock V., Iwanenko D., Über eine mögliche geometrique deutung der
 relativistischen quantentheorie, Zeitsschrift für Physik, Bd.54, s.798-802, 1929.
8. Ivanenko D., Bemerkung über quantengeschwindigkeit, Zeitschrift für Physik,
 Bd.55, s.141-144, 1929.
9. Fock V., Iwanenko D., Géometrie quantique linéaire et déplacement parallélé,
 Compt. Rend. Acad Sci. Paris, v.188, p.1470-1472, 1929.
10. Fock V., Iwanenko D., Zur quantengeometrie, Phys. Z., Bd.30, s.648, 1929.
11. Fock V., Iwanenko D., Quantum geometry, Nature, v.123, p.838, 1929.
12. Iwanenko D., Nikolski K., Über den Zusammenhang zwischen den Cauchy-Riemannschen und Diracschen Differentialgleichungen, Zeitschrift für Physik, Bd.63, s.129-137, 1930.
13. Ambarzumian V., Iwanenko D., Zur Frage nach Vermeidung der unendlichen Selbstrückwirkung des Elektrons, Zeitschrift für Physik, Bd.64, s.563-567, 1930.
14. Ambarzumian V., Iwanenko D., Eine quantentheretische bemerkung sur einheitlichen feldtheorie, ДАН СССР, N3, c.45-49, 1930.
15. Ambarzumian V., Iwanenko D., Über eine folgerung der Diracschen theorie der protonen und electronen, ДАН СССР, т.1, N6, c.153-155, 1930.
16. Ambarzumian V., Iwanenko D., Les électrons inobservables et les rayons, Compt. Rend. Acad Sci. Paris, v.190, p.582-584, 1930.
17. Iwanenko D., Die beobachtbarkeit in der Diracschen theorie, Zeitschrift für Physik, Bd.72, s.621-624, 1931.
18. Iwanenko D., The neutron hypothesis, Nature, v.129, N 3265, p.798, 1932.
19. Iwanenko D., Neutronen und kernelektronen, Physikalische Zeitschrift der Sowjetunion, Bd.1, s.820-822, 1932.
20. Iwanenko D., Recalculation of mass defects, Nature, v.130, N 3293, p.892, 1932.
21. Iwanenko D., Sur la constitution des noyaux atomiques, Compt. Rend. Acad Sci. Paris, v.195, p.439-441, 1932.
22. Gapon E., Iwanenko D., Zur Bestimmung der isotopenzahl, Die Naturwissenschaften, Bd.20, s.792-793, 1932.
23. Gapon E., Iwanenko D., Zur Bestimmung der isotopenzahl, Physikalische Zeitschrift der Sowjetunion, Bd.2, s.99-100, 1932.
24. Iwanenko D., Interaction of neutrons and protons, Nature, v.133, p.981-982, 1934.
25. Iwanenko D., Sokolow A., Zur Neutrinotheorie des Lichtes, Physikalische Zeitschrift der Sowjetunion, Bd.9, s.692-695, 1936.
26. Iwanenko D., Sokolow A., Zur Wechselwirkung der schweren teilchen, Zeitschrift für Physik, Bd.102, s.119-131, 1936.
27. Iwanenko D., Sokolow A., Interaction of heavy nuclear particles, Nature, v.138, N3484, p.246, 1936.
28. Iwanenko D., Sokolow A., Self-interaction of neutrons and protons, Nature, v.138, p.684, 1936.
29. Iwanenko D., Sokolow A., Bemerkungen zur zweiten Quantelung der Dirac-Gleichung, Physikalische Zeitschrift der Sowjetunion, Bd.11, s.590-596, 1937.
30. Iwanenko D., Sokolow A., On the mathematical formalism of the theory of showers, Physical Review, v.53, p.910, 1938.
31. Iwanenko D., Bemerkungen zur theorie der wechselwirkung, Physikalische Zeitschrift der Sowjetunion, Bd.13, s.141-150, 1938.
32. Iwanenko D., Classical dynamics of the meson, Nature, v.144, N3636, p.77-78, 1939.
33. Iwanenko D., Sokolow A., Zur klassischen mezodynamik, Journal of Physics USSR, v.3, p.57-64, 1940.
34. Iwanenko D., Remarks on the meson theory, Journal of Physics USSR, v.3, p.417-419, 1940.
35. Iwanenko D., Sokolow A., The scattering of mesotrons by neutrons and protons according to Proca theory, Journal of Physics USSR, v.4, N3, p.278, 1941.
36. Iwanenko D., Sokolow A., Dipole character of the meson and the difficulties of the meson theory, Physical Reviews, v.60, p.277, 1941.
37. Iwanenko D., Sokolow A., Dipole character of the meson and the polarization of vacuum, Journal of Physics USSR, v.6, N3/4, p.175-179, 1942.
38. Ivanenko D., Theoretical physics in the USSR during the past twenty-five years, Nature, v.151, p.293-294, 1943.
39. Ivanenko D., Pomeranchuk I., On the maximal energy attainable in betatron, Physical Reviews, v.65, p.343, 1944.
40. Ivanenko D., Further remarks on the difficulties of the meson theory, Physical Reviews, v.66, p.157, 1944.
41. Ivanenko D., Sokolow A., On the theory of bi-particles I, Journal of Physics USSR, v.8, N1, p.54, 1944.
42. Ivanenko D., Sokolow A., On the theory of bi-particles II, Journal of Physics USSR, v.8, N6, p.358-360, 1944.
43. Ivanenko D., Non-linear generalizations of the field theory and the constant of minimal length, Nuovo Cimento Suppl. v.VI, Serie X, 1057, p.349-355, 1957.
44. Ivanenko D., Sokolik G., Unified description of ordinary and isotopic space, Nuovo Cimento, v.10, p.226-229, 1957.
45. Ivanenko D., Non-linearity in field theory // Proc. Congress on elementary particles, Padova, 1957.
46. Ivanenko D., On theory of the isotopical space // Proc. Congress on elementary particles, Padova, 1957.
47. Ivanenko D., The influence of the proton measure on the Lamb shift // Proc. Congress on elementary particles, Padova, 1957.
48. Brodskij A., Ivanenko D., On a possible connection between isobaric spin and strangeness and inversion properties of spinors, Nuclear Physics, v.13, p.447-450, 1959.
49. Ivanenko D., On the possible transmutations of ordinary matter in gravitation // Proc. 2th International Conference on Theory of Gravitation, Gauthier-Villars, Paris, 1959, p. 212.
50. Ivanenko D., Bemerkungen zu einer einheitlichen nichtlinearen theorie de materie // Max Plack Festschrift, 1958, Veb Deutscher Verlag Der Wissenschaften, Berlin, 1959, s.353-370.
51. Brodski A., Ivanenko D., On the influence of weak interactions on electromagnetic properties of fermions, Nuovo Cimento, v.16, p.556-559, 1960
52. Brodski A., Ivanenko D., Sokolik H., A new conception of the gravitational field, Acta Physica Hungarica, v.14, p.21-25, 1962.
53. D.Ivanenko, The compensation treatment of gravitation // Contribution Papers of 4th Conference on General Relativity and Gravitation (Warsaw, 1962).
54. Ivanenko D., On the possible transmutations of ordinary matter in gravitation, Les Théories Relativisties de la Gravitation, v.XCI, p.431-439, 1962.
55. Ivanenko D., // Proc. Meeting General Relativity, Firenze, 1964, p. 205.
56. Ivanenko D., Tetradic and compensational theory of gravitation, Compt. Rendus de l’Acad. Bulgare des Sciences, v.17, p.801-804, 1964.
57. Ivanenko D., Gravitation and unified picture of matter // Atti Convegno sulla Relativita Generale, Barbera Editore, Firenze, 1965, p.3-19.
58. Ivanenko D., On mesons and cosmology, Progress in Theoretical Physics Suppl., p.161-167, 1965.
59. Ivanenko D., Problems of the unified theory // Proc. 11th International congress on history of science, Warsaw, 1965.
60. Ivanenko D., Cosmology and local phenomena // Entstehung, entwicklung und perspektiven der Einsteinschen gravitationstheorie, Academie Verlag, Berlin, 1966, p.300-312.
61. Ivanenko D., Cosmology and elementary particles, Nuovo Cimento A, v.51, p.244-245, 1967.
62. Ivanenko D., Main periods of Soviet physics // XII th Congress International d’Histoire des Sciences, Librairie Scientifique et Technique, Paris, 1968, p.55-57.
63. Ivanenko D., Kurdgelaidze D., Remarks on quark stars, Lett. Nuovo Cimento, v.2, p.13-16, 1969.
64. Ivanenko D., Necessary generalizations of Einstein’s gravidynamics // Contribution Papers of 1st Indian conference on gravitation, Ahmedabad, 1969.
65. Ivanenko D., Kurdgelaidze D., Remarks on quark stars, Indian J. Pure and Appl. Phys., v.7, p.585-586, 1969.
66. Ivanenko D., On possible connections of cosmology and elementary particles, Fluides et Champ Gravitationnel en Relativité Générale, N170, p.213-215, 1969.
67. Ivanenko D., Problems of unifying of cosmology and the microphysics // Physics, Logic, and History, Plenum Press, N.Y., 1970, p.105.
68. Ivanenko D., Problems of unified theory // Abstracts of Contribution Papers to 6th International Conference on Gravitation (Copenhagen, 1971).
69. Ivanenko D., A program of unified theory, Tensor, v.25, p.161-170, 1972.
70. Ivanenko D., A new attempt at a unified field theory, Acta Physica Hungarica, v.32, p.341-352, 1973.
71. Ivanenko D., L’eterna attualita dell’opera di Einstein sulla gravitazione universall // Astrofisica e Cosmologia, Gravitazione, Quanti e Relativita - Centenario di Einstein, Giunti-Barbera, Firenze, 1979, p. 131-220.
72. Ivanenko D., Perennial actuality of Einstein’s theory of gravity // Einstein Centenarium, ed H.-J.Treder, Berlin, 1979, p.109-129.
73. Ivanenko D., Perennial modernity of Einstein’s theory of gravitation // Relativity, Quanta and Cosmology, Johnson Repr. Corp., N.Y., 1979, p.295-354.
74. Ivanenko D., Sardanashvily G., On the relativity and equivalence principles in the gauge theory of gravitation, Lettera al Nuovo Cimento, v.30, pp.220-223, 1981.
75. Ivanenko D., Sardanashvily G., Preons as prespinors, Comptes Rendus de l’Academie Bulgare des Sciences, v.34, pp.1073-1074, 1981.
76. Ivanenko D., Sardanashvily G., Relativity principle and equivalence principle in the gauge gravitation theory, Comptes Rendus de l’Academie Bulgare des Sciences, v.34, pp.1237-1239, 1981.
77. Ivanenko D., Sardanashvily G., Foliation analysis of gravitational singularities, Physics Letters A, v.91, pp.341-344, 1982.
78. Ivanenko D., On the extensions of General Relativity // Old and new questions in physics, cosmology, philosophy and theoretical biology, Plenum Press, N.Y., 1983, p.213-221.
79. Ivanenko D., Sardanashvily G., The gauge treatment of gravity, Physics Reports, v.94, pp.1-45, 1983.
80. Ivanenko D., Gravitation and elementary particles // Relativistic astrophysics and cosmology. Proc. of the Sir. A.Eddington Centenary Symp., v.1, World Scientific, Singapore, 1984, p.170-172.
81. Ivanenko D., Obukhov Yu., Gravitational interaction of fermion antisymmetric tensor fields, Annalen der Physik, Bd.42, s.59-70, 1985.
82. Ivanenko D., Obukhov Yu., Solodukhin S., On antisymmetric tensor representation of the Dirac equation, preprint IC/85/2, ICTP, Trieste, 1985.
83. Ivanenko D., Remarks on the establishing of theory of nuclear forces, Progress Theoretical Physics Suppl., N85, p.20-26, 1985.
84. Ivanenko D., Sardanashvily G., Goldstone type supergravity, Progress of Theoretical Physics, v.75, pp.969-976, 1986.
85. Ivanenko D., Gravitation and elementary particles // Nagpur 84, Proc. Relativistic astrophysics and cosmology, 1986, p.170-172.
86. Ivanenko D., Sardanashvily G., On the Goldstone gravitation theory, Pramana-Journal of Physics, v.29, pp.21-37, 1987.
87. Ivanenko D., Budylin S., Pronin P., Stochastic quantization of Einstein-Cartan gravitational theory, Annalen der Physik, Bd.45, s.191-199, 1988.
88. Ivanenko D., Consideration on unified theory, Annalen der Physik, Bd.47, s.366-368, 1990.
89. Ivanenko D., Addendum to ‘Consideration on unified theory, Annalen der Physik, Bd.48, s.304, 1991.

References

G.Sardanashvily, Dmitri Ivanenko - Soviet Physics Superstar: Unpublished Memoirs (in Russ.) (URSS, 2010)

G.Sardanashvily, Science Newsletter, Issue 1 (2014) 16

B. Fernandez, Unravelling the Mystery of the Atomic Nucleus. A Sixty Year Journey 1896 — 1956 (Springer, 2013)

Gennadi Sardanashvily

Department of Theoretical Physics, Moscow State University