The complement system in liver diseases: Evidence-based approach and therapeutic options

Thomas Lunga, Benjamin Sakemb, Lorenz Risch b, Reinhard Würznerc, Giuseppe Coluccid,e, Andreas Cernyf, Urs Nydeggerb,*

a Labormedizinisches Zentrum Dr. Risch, Lagerstrasse 30, CH-9470, Buchs, Switzerland
b Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
c Medical University Innsbruck, Division of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Schöpfstrasse 41, A-6020, Innsbruck, Austria
d Clinica Luganese Moncucco, Lugano, Via Moncucco, CH-6900, Lugano, Switzerland
e Faculty of Medicine, University of Basel, Basel, Switzerland
f Epatocentro Ticino, Via Soldino 5, CH-6900, Lugano, Switzerland

ARTICLE INFO

Keywords:
- Hepatocyte
- Complement system
- Complosome
- Autoantibody
- Diagnostic tests

ABSTRACT

Complement is usually seen to largely originate from the liver to accomplish its tasks systemically – its return to the production site has long been underestimated. Recent progress in genomics, therapeutic effects on complement, standardised possibilities in medical laboratory tests and involvement of complosome brings the complement system with its three major functions of opsonization, cytolysis and phagocytosis back to liver biology and pathology. The LOINC™ system features 20 entries for the C3 component of complement to anticipate the application of artificial intelligence data banks algorithms of which are fed with patient-specific data connected to standard lab assays for liver function. These advancements now lead to increased vigilance by clinicians. This reassessment article will further elucidate the distribution of synthesis sites to the three germ layer-derived cell systems and the role complement now known to play in embryogenesis, senescence, allotransplantation and autoimmune disease. This establishes the liver as part of the gastro-intestinal system in connection with nosological entities never thought of, such as the microbiota-liver-brain axis. In neurological disease etiology infectious and autoimmune hepatitis play an important role in the context of causative vir reactive complement activation. The mosaic of autoimmunity, i.e. multiple combinations of the many factors producing varying clinical pictures, leads to the manifold facets of liver autoimmunity.

1. Introduction

The liver is the major site of protein synthesis, including complement components and excluding gammaglobulins [1,2]. The overlap of inflammatory and autoimmune responses in many diseases is a challenge in the care for patients, especially for the choice among therapeutic options built on basic, epidemiological and clinical studies [3–5]. Sequential recruitment of partakers of the innate and acquired immunity in a disarranged standing, superimposed by reparative processes lead to organ damage and dysfunction, typical of most autoimmune diseases [6,7]. To fulfill diagnostic criteria, autoimmune diseases follow a predilection of particular organs [8] but systemic involvement is not unusual [9,10]. Beyond progress in diagnostic procedures and therapeutic measures, the development in medical laboratory technology make cellular and humoral diagnostics more meaningful in uncovering excessive autoimmune reactions. One of the players, the complement system, scrutinized decennies ago for its role in hepatobiliary diseases [11], is going through a revival in clinical importance, none the least because of an upsurge in therapeutic possibilities; we now have a means to therapeutically monitor opsonic, phagocytic and cytolytic complement functions [10,12], even in rare diseases [13]. Among the various organs, the liver merits particular attention since it produces complement components and at the same time it can be victim of local activation of the same components or by sequestering C3b-coated red blood cells [14].

Through this, the manuscript extends the aspects of autoimmune hepatitis to alcoholic, inflammatory and microbial liver diseases. Nosological entities of liver diseases are scrutinized for the passive
involvement or the active role of the complement system in immunopathological damage (Table 1). Furthermore, the current insight into the intracellular complement activation (now alluded to complosome) [15] impinging on metabolic properties of the involved cells make novel approaches into exploration of complement in liver diseases necessary [16–18]. Since complement components are released by the liver into the systemic circulation, blood perfuses them to any given site and within the single site, these components far reach into infrastructural location, the liver itself included. The question then is, which type or group of liver disorder might be a target of complement action. The disease pathogenicity varies largely and may include genetic, metabolic and/or toxic causes.

Design, development and diagnostic strategies in laboratory medicine now allow to decipher subtle differences in organ damage, liver included. The elementary cell types which constitute the liver are derived from tissue layers separating as early as during gastrulation. When it comes to the liver one may relate them to their cytokine profile (Table 2). A colour code shows these different ontogenic proveniences (red: endoderm, yellow: mesoderm/neural crest and blue: endoderm). The three pathways of activation, classical, lectin and alternative pathways are listed alongside their activating factors, i.e. immune components of the liver is extended to such cell types as adipocytes, macrophages, endometrium, and endothelial cells and IEPs [35,48,49] (Table 2).

The complement system with its early role in ontogeny [37] may call on signals in liver organogenesis (Fig. 1).

Regeneration and organogenesis share common features in hepatocyte proliferation [38] since breaking and repair of DNA is perpetually associated in both, organogenesis and reformation of all tissues in nature [39–41]. On top is this, stem cell colonization of liver tissue values from the capacity of this tissue to find its way when displaced on ectopic environment comes without surprise [31] www.nirm-pitt.net. Regeneration, studied by transcriptomic and metabolomic measurements can be tracked down to complement component C3 cascade through activation of the TNF signaling pathway further triggering acute phase genes such as serum amyloid proteins and orosomucoids [29].

1.1. Synthesis sites of complement components

The Germ-layer differences underlie, hepatocytic- and non-hepatocytic hepaticogenic origin of liver anatomy [1,2,42] (Fig. 2). Hepatocytes, and such immune cells as Monocytes/Macrophages, Dendritic Cells, Plasma Cells, Invariant Lyphocytes (ILC) [43,44] and γδ T lymphocytes are derived from different provenience. Components of the complement cascade appear very early in evolution and ontogenesis, some components being expressed as early as the gastrula/neurula phase [45]. Intracellular, i.e. cytoplasmatic activity of complement, has been baptized as ‘complosome’, the -ending “-ome” or “-omics” used to indicate that complement intervenes in several intracellular functions (15) like used in other designations such as transcriptome or methylome [46] and other -omics [15].

The three pathways of activation, classical, lectin and alternative pathways are listed alongside their activating factors, i.e. immune complexes, ficolin and microorganisms. Some components, such as C1q, C3, C5 and C7, are synthesized, at least in part, in other cells than hepatocytes, i.e. in cells of ectodermal, mesosomal and endodermal origin (see Table 2) A colour code shows these different ontogenic proveniences (red: endoderm, yellow: mesoderm/neural crest and blue: endoderm). Finally, with the recent insights into complosome activity [15], some sedentary liver cells of the immune system may be involved in liver metabolic processes. Complosome: a relatively recent designation to imply participation of complement components at their very site of production [15]. Complosome interacts during T cell activation [17]. Complement is instrumental in both, T and B cell responses and helps to regulate basic cellular functions, even those of metabolic impact. Some complement components may play a so far undefined developmental role in ontogenesis and in migration of neurons. In the developing brain the lectin/MAST arm of the complement pathway and C3 (Fig. 2), have been found to be required for neuronal migration in the developing brain cortex [47]. An informative way of assessing the contribution of hepatocytes to a protein pool would be to look at liver producing specific/- individual allotypes (Fig. 1). The primary synthesis site for complement components of the liver is extended to such cell types as adipocytes, macrophages, endometrium, and endothelial cells and IEPs [35,48,49]. While most complement components are mainly synthesized or expressed in hepatocytes, for example C1q (except C1q and C7) and IFN, others like C1q, C7, D, Fd are synthesized and expressed in other cells [2, 32]. The extra-hepatic synthesis of C7 was confirmed in the framework of liver transplantation [50]. The allotypes of C7 present in the circulation of liver recipients do not change to the donor allotype after liver transplantation, assessed by specific typing of allotypes or alleles of the C7
Table 1
List of diagnostic labels for different liver diseases. A large variety of liver diseases affecting different structures of the organ and being caused by a variety of pathogenic triggers.

Liver Diseases	Causes	Risks factors	Involvement of antibodies and/or Complement	Laboratory Assays
Infections	· Hepatitis A · Hepatitis B (+/− D) · Hepatitis C · Hepatitis E	· Injecting drugs using shared needles · Tattoos or body piercings · Blood transfusion before 1992 · Exposure (other people’s blood, faeces or body fluids)	+++++ Immune complexes [19]	Serology and PCR
	· Other pathogens, e.g. tropical virus, bacterium, parasite, fungi	· Unprotected sex · Poor hygienic conditions		Serology, PCR, microbial cultures, microscopy & histology
Autoimmunity Immune system abnormality	· Autoimmune hepatitis · Primary sclerosing cholangitis · Primary sclerosing (biliary) cholangitis	· Genetic predisposition and environmental triggers	+++++ Autoantibodies [22]	IF, ELISA and Immunoblot Ultrasound, Liver biopsy & Transarterial chemoembolization
NAFLD (nonalcoholic fatty liver disease)	· Fat supplanting liver tissue	· Diabetes type 2 · Obesity (Metabolic syndrome) · Drug induced (e. g. Amiodaron) · Genetic predisposition	NI48M PNPX3 (patatin-like phospholipase domain-containing protein 3)	Gammas - GT ↑ Extended Lab tests: transaminases, lipids, glucose, histology. Exclude HBV/HCV
Including NASH (non alcoholic steatotic hepatitis)				
AFLD (alcoholic fatty liver disease)	· Alcoholic abusus	· Alcohol	C1q [25] C3, C1q, D [26]	CDT (Carbohydrate-Deficient-Transferrin) ↑Ethylglucuronid ↑ Extended Lab tests: Gamma-GT, IgA, transaminases, cholinesterase, albumin, clotting factors, haemogram
Genetics	Hemochromatosis type 1	· NA		
	Hyperoxaluria and oxalosis, Wilson’s disease	· NA		
	Alpha-1Antitrypsin deficiency	· NA		
	Familial intrahepatic cholestasis Liver cancer Liver adenoma	Genetic background, Liver transplantation · Exposure to certain chemicals or toxins. · Heavy alcohol use and unknown factors, HCV	C4d deposits [27]	
	Drug and poison induced Drug therapy induced on diverse illnesses and unknowingly contact with poison (e. g.: fungal, heavy metals, carbon tetrachloride)	Drug therapy induced on diverse illnesses and unknowingly contact with poison (e. g.: fungal, heavy metals, carbon tetrachloride)	[29] [30] [31]	
	Liver regeneration and other			

Footnotes: NA: not applicable.

M/N polymorphism. Thus, the majority of circulating C7 is not hepatocyte-derived. In contrast, the C6 of a C6 A allotyped recipient will change to C6 B after having received a liver from a donor of that allotype. This is important for modulated terminal complement complex (TCC) assembly for which C7 is the limiting molecule. Upon complement activation, circulating C5b6 complexes are provided systemically, but unlike C6 or C8, C7 is differentially provided locally by monocytes and PMNLs at inflammatory sites, which determines the magnitude of complement attack, measured by the amount of TCC.

Symbiotic microbial flora on an individual’s body stays at the cusp of major changes in the wake of disruptive approaches such as gene, RNA and cell therapies. These enable therapeutic intervention towards disease in so far unprecedented ways; the pace of these changes is driven by advanced approaches such as CRISPR, which makes it possible to correct errors in DNA or even to tailor otherwise healthy DNA to ones design with relative ease.

1.2. GALT: gut associated lymphoid system: crosstalk with liver

The complement system plays a part in the homeostasis of the intestinal lumen; C3 can be synthesized by intestinal epithelial cells (IEC) [48] an endosomal mucosal cell layer which also produces abundantly IgA.
The intestinal tract microbiota hosts foreign genome largely defined by two dominant phylotypes, Bacteriodetes and Firmicutes, with minor ones such as Proteobacteria, Actinobacteria, Fusobacteria and Verrucomicrobia completing (Fig. 2). The mature microbiome might drive inflammation in liver disease and governs tolerance to these bacteria [53]. The gut-associated lymphoid tissue [51] (GALT) scans microbiota composition: portal blood reaching the liver will be processed at least in part, by immune recognition. GALT is rich in CD4+ T-cells [54] and the Th17 cells functioning under the concurrence of complosome [55]. Ductal pancreatic and healthy intestinal epithelial cells such as enterocytes have been found to express C1q, C4, C3, FB, CD46 and CD59 under basal conditions [56] to different extents. Unexpectedly indeed, a role of the complement system to maintain homeostasis at the host/environmental mucosal interface became apparent when gut intraepithelial cells were found to express and secrete complement components likely to play a role in resolving chronic interstitial inflammation.

Table 2

Origin	Cell type	Cytokine	Crosstalk complement	resident(r)	Main function	Literature
Endoderm	Hepatocyte	IL-1β, IL-6, IL-8	C1r/s, C4, C2, C4bp, C3, FB, C1 – C9 (excl. C1q,C7)	r	Protein synthesis	[52]
Mesoderm	Hepatic sinusoidal cells	IL-10	C1q, C7, D, P	r	Innate immune defense	[33], [34], [35]
Mesoderm	Lymphoid iNKT	Responsive to IL-2, IL-9 produced by helper cells	Thymus	t	Innate and acquired immune defense	

Fig. 1. Cellular origin of different complement components based on ontogenic provenience. red: endoderm, yellow: mesoderm/neural crest and blue: endoderm. Membrane attack complex (terminal complement complex, C5b-9).

2. **Complement activation in alcoholic liver diseases (ALD)**

2.1. **Current appraisal**

Some 20 years ago complement activation in acute ALD was demised by such studies as the one published from England [57]. In this work, 20 patients were screened for C3 and factor B serum levels as well as with C3d/C3, C4d/C4 and Fa/factor B ratios which were not different from healthy controls. Presently, literature reviews fail to relate alcoholic damage with complement activation. Fatty transformation or inflammation reveal involvement of complement activation be it causative or as a consequence of histopathological evidence for organ damage C3 levels are increased in patients with hepatic steatosis [58].

2.2. **Currently available lab analyses**

Before prescribing lab tests we need to exclude drug-induced liver
damage which may mimick alcohol damage. In addition, non-alcoholic fatty liver disease (NAFLD), hemochromatosis, M. Wilson or alpha1-antitrypsin deficiency need exclusion.

The calibration of laboratory assays for complement is under the auspices of the committee for standardisation and quality assessment of complement mesurements. In an effort to produce international comparativity in results the LOINC coding system (search.loinc.org) of Regenstrief™ (Center for Biomedical Informatics, Indianapolis IN, USA) features 20 entries for C3 analysis alone and in the wake of artificial intelligence and electronic patient dossier, the standardisation will have to be pushed further. The data coordination lab at our local University Hospital (IDCL Insel) now uses LOINC coding and is in line with international efforts to make laboratory results comparable. Many complement assays have been con ected as commercially available and the producers do contribute to international standardisation. Autoantibodies to complement proteins are also ready for introduction into diagnosis for autoimmune diseases, perhaps for liver autoimmunity as well since their involvement in autoimmune diseases is now acknowledged. A list of European Diagnostic investigational and routine laboratories that provide detailed complement analyses or are in a position to counsel medics on the development status of regional offers may be consulted on. These labs provide extended analyses important for some patients, such as FH, C1 Inhibitor, and (auto-) antibodies against some components. The assembly of routine lab assays is ascribed to the five mayor disciplines of lab analytics, i.e. clinical chemistry, hematology, immunology, microbiology and embracing the four, genetics.

Genetics of Alcoholic and Non-Alcoholic (fatty) liver diseases are now backed by robust markers, among them the most prominent PNPLA3 (Adiponutrin) or TM6SF2 a gene that encodes for reduction of triglyceride hydrolysis, particularly in lipid droplet disease. ADH1B-ADH1C and its variants protect an individual against dependence on alcohol; risk-reducing genes to develop ALD have also been discovered, such as the HSD17B. To more closely narrow down involvement of alcoholic liver damage, search for carbohydrate-deficient-transferrin and ethylglucuronid are now established as reliable markers; the topic of alcohol-ase related disorders has recently been updated elsewhere. Despite substantial efforts to look out for genetics of inflammation, and despite knowledge on the complement system providing for novel insights into inflammation and autoimmune liver diseases, a genetic background of liver diseases leaves out the complement system and bears some potential for better understanding AIH non the least because the organ expresses genes of complement components. Participation of complement in acute or chronic liver failure, although a very likely event, remains to be explored. In situ imaging with DNA hybridization and fluorescence could focus on complement in liver disease.

Few studies have assessed the association between complement and AFLD or in NASH. The linkage of complement components to lipid metabolism is poorly alluded to in complement research protocols let alone in lipidology. As yet, if a protein can contain a phospholipase domain or express rare variants it might express lipolytic properties to hydrolyze phospholipid substrates at specific ester bonds. A recent review on the involvement of complement in AFLD has provided a metaanalysis, mainly with studies in mice, to underscore the involvement of several complement components (C1q, C3, C5 and factor D) in alcoholic liver damage. C3-deficient mice are more susceptible to ethanol-induced hepatic injury and steatosis. In fact the complement system is now acknowledged to be involved in the pathogenesis of liver disorders with some caveats in primary biliary cirrhosis. In addition, immunoreactivity of C5a receptor (C5aR) is enhanced in alcoholic hepatitis.

3. Role of complement activation in non-alcoholic liver disease including infectious hepatitis

In our most recent publication, we reported the importance of complement system assays in diagnosing liver diseases without focusing on fatty liver disease (FLD) to which immunology is currently turning increased attention. For inflammatory mediators implicated in ALD and NAFLD please go
back to https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4887345/table/T1/. Table 1.

3.1. Non alcoholic liver damage (NALD)

Nonalcoholic fatty liver disease (NAFLD) comprises a disease spectrum with the common denominator of triglyceride (TG) accumulation in the form of intracellular droplets in hepatocytes causing steatosis and often is part of a systemic disorder [77–79]. NAFLD is a metabolic disorder with alcohol-associated liver disease in individuals who consume little or no alcohol. Steatosis, i.e. excessive intrahepatic fat accumulation, is linked to inflammation, cell death and fibrosis then progressing to nonalcoholic steatohepatitis (NASH). With patatin-like phospholipase domain-containing protein 3 (PNPLA3) being strongly associated with NAFLD and AFLD, mostly in males [24]. Scientific evidence is now solid to attribute autoimmune processes to liver diseases, although definite identification of liver-specific autoantigens lag behind when compared to other organ-specific autoimmune diseases, such as in Hashimoto disease [82]. The establishment of a human proteome library to discover autoantibodies against so far unprecedented liver autoantigens might open the door to use phage display to identify the cause of autoimmune diseases as a whole [83]. Liver tolerance may be broken by viral infections exposing natural liver constituents, e.g. cytotoxic lymphocytes [84] and research is ongoing on animal models [85]. Cytochrome P4502D6 has been identified as cross-reacting between virus and itself and intestinal microbiome components sneaking up to the liver might become involved [86]. Currently at the forefront of interest we find the concept of the autoimmunectomy indeed, to reflect the search of infections which initiate autoimmunity. We have ourselves seen a molecular mimicry between Campylobacter jejuni and anti-GM1 autoantibodies [87] an observation still under focus [88].

As recentlly completed to the concept that molecular mimicry feigned by infectious agents might induce PBC, epidemiological studies observing that patients suffering from this disease have a higher incidence of urinary tract infections; indeed, experiments with laboratory animals infected by E. coli (DHα ATCC 25922 strains) let appear autoimmune cholangitis as evidenced by histopathology and AMA immunoblotting [89]. With acute hepatitis caused by hepatitis E virus (HEV) reported to feign [90] AIH a molecular mimicry linked to hepatic autoantigens must be suspected. Clinicians are in need of a rapid and targeted diagnosis using appropriate lab tests in order to prevent development of such processes into chronic liver diseases Table 3 and Fig. 3. Most cases of hepatocellular carcinoma (HCC) arise in a cirrhotic liver which makes that prevention of cirrhosis is, in fact, also HCC prevention [91].

3.2. Viral hepatitis

The special linking of viruses for the liver depends, at least in part, on complement proteins, but basically remains obscure. What makes a virus type hepatotropic? Is complement involved? Among all viruses, especially hepatitis viruses are implicated with liver disease. Among all hepatitis viruses the involvement of complement in the two usually nonchronic disease-causing viruses, hepatitis A and E appears to be less likely, but there are studies in immunodeficiencies which point towards an interaction with complement.

The wide spectrum of liver diseases caused by Hepatitis B virus (HBV) extends from aggressive virus genotypes of spherical Dane particles surrounding an inner nucleocapsid composed of hepatitis B core antigen (HBcAg) complexed with virally encoded polymerase and the viral double-stranded DNA genome of about 3.2 kilobase pairs [92] to impaired immune defense capacities of the host. Before long, investigaters of the complement system have scrutinized the role of this system or of single components thereof in liver immunopathology/inflammation, especially if triggered by viruses. Thanks to genetic characterization of HBV strains by Next-Generation Sequencing and functional analysis of HBV variants combined with up-to-date histological explorations strong evidence of a crucial involvement of complement, at least in some liver diseases, is now appearing [93]. There is evidence from mice studies that CAS may play an important role in maintaining liver homeostasis going as far as to control serum triglyceride and cholesterol [94]. Both, CLq activating immune-complexes formed by HBcAg derived from all HBV strains as well deposits of anaphylatoxins C5a, C3a and C5b-9 (TCC) complexes in diseased liver now strengthen prior suspicions that inflammatory reactions involving complement contribute to hepatic immunopathological damage (Table 4).

In a large cohort of cirrhosis patients, C5a serum concentrations decreased from an original rise in chronically hepatitis B virus infected patients, undergoing liver biopsy, to announce worsening of the disease.
with limited delineation to other pathological damage. (a) ANA centromere (AC-3), (b) liver mitochondria, (c) VSM47 rat cell line (confirmatory assay for anti-actin). overlap symbols denote squares with limited delineation to other findings.

Table 4
Stepwise lab assays for confirmation of hepatitis B and C infection.

Virus	Lab Test	Extended I	Extended II
Hepatitis B	HBs-Antigen, anti-HBs, anti-HBe (HBs, anti-HBe)	Quantitative PCR, (and genotype), Look for HBsAg-anti-HBsAg complexes	C5a [95]
Hepatitis C	Anti-HCV, HCV antigen, HCV-PCR Immunoblot	Quantitative PCR (and genotype)	Cryoglobulins, circulating immune complexes [97]

* Please note, that in current practice complement analysis is mostly absent.

[95] and reduced C4 and C3 serum levels were observed recently in a clinical study involving over 150 patients suffering from chronic hepatitis B [98]. A further potentially useful, but still to be evaluated assay would be a TCC ELISA.

In the framework of a Swiss-Polish research project scrutinizing epidemiology and infectious pathways in the two countries we have extensively reviewed the ways Hepatitis C (HCV), an RNA virus, is transmitted [99]. The undiagnosed fraction is higher in Switzerland than in Poland, 49% versus 10% which reflects different transmission routes: medical procedures in Poland and drug abuse in Switzerland. The epidemiology of immunodeficiency in Poland lets assume that primary deficiency is more frequent in this country [100]. The prevalence in Switzerland of HCV positivity is 1/1000 inhabitants, of whose 80% are asymptomatic. The interaction with complement occurs in an indirect manner: Cryoglobulinemia, a systemic condition which involves prolonged and excess circulation of soluble immune complexes, is associated with binding of complement components to the complexes. The complexes are then trapped in the liver and induce inflammation [19]. Hepatitis C virus can now be eliminated within a few months – the interferon era has come to a conclusion. Up to this writing, 15,000 patients have been successfully treated using sofosbuvir, which was introduced in 2014, in combination with adjuvant drugs. Sofosbuvir induces chain fragmentation in the HCV-RNA, thus inactivating the virus. The Swiss Guidelines (SALS 11.2017) are linked to an HCV App Advisor which directs doctors in a constructive direction. The drug interactions potentially causing drug-induced liver damage can be monitored (www.hep-druginteractions.org) and likely do not cause complement activation, but this has yet to be confirmed.

The hepatitis E virus (HEV), after infecting victims through the fecoral route, preferentially persist in immunosuppressed patients, which may lead to chronic hepatitis and accelerated development of cirrhosis [101]. A hepatitis E virus peptide (HEV-p179) represents a conformation-dependent neutralization epitope and the p179-C3d fusion protein enhances antibody responses to HEV [102]. Of 6735 patients hospitalized at the Military Medical Academy Hospital in Sofia, Bulgaria, 2.5% suffered from acute HEV infection [103]. These cases were judged as sporadic autochthonous. It became suspicious that HEV infection, followed by acute hepatitis would mimic AIH. Additional evidence, that ‘mimic’ could mean ‘induce’ comes from a recent study on acutely HEV infected patients, who developed anti-nuclear, anti-smooth muscle and/or anti-neutrophil cytoplasmic antibodies (ANCA) [90].

The sexually transmitted Herpes simplex virus 2 (HSV-2) is usually found coated with complement proteins, also in genital fluids. In this instance, complement activation enhances viral attack potential, since complement opsonization of HSV-2 favours infection of dendritic cells, unless opsonization with HSV-2 specific antibodies more or less abolishes HSV-2 infection of dendritic cells [104].

Cytomegalovirus (CMV) may be seen as the prototype of asymptomatic hepatitis virus attack as half of the central European population expresses anti-CMV in their serum, first hand proof of former CMV infection, but most often symptomless. However, first, CMV evades complement as seen in the mouse model, where mouse CMV up-regulates gene expression of complement inhibitors [105], second, even an apparent infection drives the immune system into immunosenescence [106], and third, CMV is definitely one of the most feared virus infections in transplantation [107].

As for CMV, the majority of the population of first and second world, are also showing anti-EBV antibodies in their serum. As for CMV, however, this is not harmless at all, at least for immunocompromised subjects. This is easily understood when EBV is considered a very deadly virus with the present human race as survivors of a natural selection hundreds of thousands years ago. Immunodeficiency, however, would make all the evolutionary adjustments meaningless and even for immunocompetent subjects the liver is damaged through an infection [108].

Target of immunity is EBV glycoprotein 350/220 (gp350) that
mediates attachment of B cells through complement receptor 2 (CR2/CD21). The elevation of liver enzymes after an attack of febrile, also called Pfeiffer's, disease quite often persists for weeks and months and some authors link this virus with an elevated risk to develop liver disease later in life [109].

Many tropical viruses, both of DNA and RNA types, affect the liver as a priority organ, comprising Yellow fever, Dengue or haemorrhagic fever viruses. Viruses have developed strategies to evade attack by complement or to use complement for invasion of host cells [110,111].

Yellow fever virus can be specifically lysed by complement [112] and causes severe hepatitis [113]. The incidence has recently regressed due to the availability of vaccines. In contrast, Dengue is on the rise. That infection regularly affects the liver. Starting from asymptomatic elevated transaminase levels to acute liver failure, dengue has all the properties of a hepatic illness. In Dengue virus (DENV) infected cells, FH protein is induced by DENV both extra- & intracellularly, but the overall imbalance of the complement system involves an increased C3 deposition on DENV and a hyperreactive alternative pathway of complement, due to increased levels of the acute phase complement protein FB [114].

Ebola virus has been studied in animal models [115] to induce antibodies specific for a plasmid encoding the surface glycoprotein (GP) of the Zaire strain. This enhanced infectivity with model viruses. This phenomenon was downregulated by heat-inactivation of added serum and restored by complement system inhibitors, suggesting that heat-labile factors other than the complement system are also required [116]. Some authors foreshadow that complement-activating anti-EBOV antibodies actually might opsonize the virus, so that it infects target cells more easily [117], whereas the vast majority of antibodies neutralizes the virus.

Marburg virus is also panopteric, but favours the liver. Mannose-binding lectin (MBL), the serum lectin that mediates innate immune functions including activation of the lectin complement pathway, binds to carbohydrates expressed on some viral glycoproteins. Virus pseudotyped with Ebola or Marburg glycoprotein was neutralized by complement, while the Marburg glycoprotein-pseudotyped virus (Ravn strain) was less sensitive to neutralization [118].

3.3. Non-viral infectious hepatitis

For most patients suffering from bacterial, fungal or parasitic infections, the liver takes the position of providing immune defense, producing complement components, many of them in the framework of acute phase response, CRP included. However, quite a number of them attack the liver, making it an important target, complicating the infection.

4. Autoimmune liver diseases and HELLP syndrome

When serum transaminase activity and gamma globulin levels are elevated a suspected diagnosis of AIH will require confirmation with autoantibody diagnostics. Laboratory diagnosis of AIH is largely based on detection of autoantibodies on cell lines (e.g. Hep2-cells) and tissue (e.g. liver, kidney, microsomes) using indirect immunofluorescence assay (IFA) (see also chapter 3) national and international expert groups issue recommendations for ANA testing and European autoimmunity standardisation initiative representing 15 European countries the IUIS, WHO and CDC supervise autoantibody standardising committees [119]. In addition, consensus is sought on antinuclear antibody patterns, the Hep-2 cells serving reference for a definite nomenclature [120,121]. AIH joins general mechanisms of systemic autoimmune diseases such as SLE or organ specific autoimmune diseases such as thyroiditis. Involvement of the complement system in these diseases is in pursuit of wisdom by animal lab experiments and clinical observations. Since the therapeutic approach of many autoimmune diseases share common protocols one would, at a first sight, not be worried and prescribe to these patients similar therapeutic protocols on the immunosuppressive track: steroids, immunosuppressants, IVIG, plasmapheresis or extracorporeal immunoabsorption. Monoclonal antibody therapy, such as with rituximab would also be considered. As yet, the etiology of AIH may substantially differ from other organs in that the autoinfection or the Shoenfeld ASIA induction of autoimmune disease [122] might be at work in some patients. With autoinfection, Dimitrios Petrou Bogdanos has coined the term to reflect the search of infections causing autoimmunity [123]. Some patients with AIH are documented to have passed prior to outbreak a viral infection and the complement system adds up to maintenance of chronic autoimmune inflammation [12].

Separation of autoimmune hepatitis into subgroups might pave the way to more closely see pathogenic processes at work [124]. Gatselis et al., 2015 propose that AIH-1 patients more often present with ANA and/or ASMA and SLA/LP antibodies whereas AIH-2 is more often associated with LKM-1-specificity. C3 and immunoglobulin A levels were lower in AIH-2 when over 800 children and adolescents with autoimmune hepatitis were reviewed in a Brazilian multicentric survey. Selective removal of pathogenic, complement-activating autoantibodies has been proposed and original procedures are in progress, for the time being confined to laboratory animals [125]. As a matter of fact, our local client doctors rarely ask autoantibody spectrum in combination with complement analytics. Both Th17 cells and the intestinal microbiome have been implicated in AIH. Patients have elevated serum IL-17, an altered microbiota, and increased bacterial translocation. The advances in therapeutics focused on the complement system have been achieved with other diseases than those attacking the liver [10].

In advanced cirrhosis, levels of lectin-complement pathway components in ascitic fluid and blood are lower, which confers low C4 and C3 in serum and ficolin-1 with C3 in ascitic fluid positive predictive values for all-cause mortality independently of liver function especially when cirrhosis is complicated by ascites [126]. When patients suffer from Hemolytic Uremic Syndrome, the gut-liver axis needs to fight against pathogenic microbes; anti-FH autoantibodies have recently been described in this context [127] and patients with dermatomyositis may form circulating immune complexes with FH as the antigen portion.

The first medical treatment for this incurable disease was ursodeoxycholic acid, approved in 1997 after it was found to delay the progression of liver disease and improve transplantation –free survival [128]. Among the proteins found in the bile fluid, a few belong to the complement system as found be proteomic analyses [129].

Proteomic approaches involving bioinformatics aim to track down evidence for complement tissue-damaging complement activation [21,132]. Antigen enrichment technology was recently applied to capture autoantigens of human intrahepatic biliary epithelial cells (HIBECs) that are recognized by autoantibodies from the sera of PBC patients.

Autoantigen proteins were identified from PBC patient serum. Among them, those analysed by Gene Ontology protein annotations (biological processes, cellular components, and molecular functions) and the Kyoto Encyclopedia of Genes and Genomes pathways were related to mitochondria highly enriched in AMA (antimitochondrial antibody)-positive PBC patients. In this study emanating from the Chinese Academy of Medical Sciences, autoantigens of AMA-negative PBC patients were involved in B-cell activation, NLRP3 inflammasome involvement [130] recognition of phagocytosis, and complement activation [95,131]. These data once again make that anti-M2 assays are important in differentiating AIH from PBC (Table 3). Primary sclerosing cholangitis (PSC), more particularly IgG4-associated cholangitis (IAC) is now well acknowledged to be an intrahepatic disease. IgG4 has been described in autoimmune diseases. The IgG4-associated variety is clearly distinguished from the classical PBC. Because IgG4 does poorly activate complement, it has been proposed that it acts as a blocking agent for binding of the more pathogenic IgG1-3 subclass autoantibodies [132]. The multi-focal bile duct strictures of PSC are rare but stand for an informative experiment of nature; there may be overlaps with coexisting AIH. Seen from the diagnostic laboratory, in absence of conducive markers, some clinicians took care of patients with perinuclear ANCA or x-ANCA, the latter ones reactive with neutrophil...
antigens other than myeloperoxidase/proteinases 3. Recent insights into ANCA-associated vasculitis ascribe complement activation a definite role in disease progression.

HELLP (H for hemolysis, EL for elevated liver function tests, and LP for low platelet counts) occurs in approximately 0.5% of pregnancies but reaching up to 10% in those complicated by preeclampsia [133]. We are not yet as far as to be able to make a link between elevated liver enzymes and the participation of complement components in HELLP – however, the successful injection of monoclonal antibodies against C5 (Eculizumab®) into patients with preeclampsia/HELLP (134) for whom complement activation might be a threat [135] rises our degree of attention to include the liver (EL) into the functioning of the complement system.

5. Therapeutic options available to manage complement-induced immunopathology

Complement components produced by the diseased liver, has not seen an uprise in therapeutic options targeting complement such as we have seen it with hematological, ophthalmological, infectious and dermatological diseases. Synthesis by itself cannot be sparked by any means unless by such long known and prescribed nutritional enrichments providing protein synthesis with amino acids. If attacked from the outside by viruses and or by complement-activating immune complexes, virucidal therapy and immune complex/cryoglobulin suppression is advised using plasma exchange, IVIG therapy based on shifting the antigenantibody ratio in the complexes by anti-idiotypic antibodies contained in IVIG [136]. Impressively, antibody therapeutics not only have spurred the worldwide demand for IVIG [137] preparations but also continue to expand the spectrum of therapeutic monoclonal antibodies (mAbs), of which liver directed therapeutic agents may become an option. The liver may be a target for unwanted effects of mAb therapy with daclizumab used for multiple sclerosis therapy (anti-IL2R, CD25) as prominent example [138]. An update is available on the ‘Antibodies to watch’ article series in the Mabs Journal. Antibody-drug conjugates and mAb pharmacokinetics continue to improve but de

Diseases	Standard therapy	Biologicals	Influence of Complement components	References
Alcoholic fatty liver disease	- abstinence	Topiramate (Topomax®)	+	[142]
Non-alcoholic fatty liver disease	Medication for Hyperlipidamie/...	Anti-TNF therapy	+	[143,144]
Non-alcoholic steatoic hepatitis	Extended: Thiazolidinedione/Vitamin E	Etezimibe (Zetia®)	+ www.drugs.com	
Viral hepatitis	Direct-acting antiviral drugs (DAAs)/virostatics Entecavir, Tenofovir, Sofosbuvir	Pegylated-interferon, Ribavirin	++	[145]
Non-viral infections	Antibiotics, sulfonamides	(anti-CD20)	+	[147]
AIH	prednisone, IVIG, azathioprine (Azasan, Imuran) plasmapheresis, extracorporeal immunoabsorption	Rituximab	++	[148]
HELLP	Steroids, plasma exchange	Eculizumab (Soliris®)	++	[134]

Table 5
Selection of liver diseases therapeutic options with emphasis on putative complement systems activation.

For the time being data are sparse when it comes to perceive the involvement of the complement system in immunosenescence. Gene pathways up-regulated by age include complement genes [157]. The risk to develop non-alcoholic fatty liver disease (NAFLD) in old age hikes apparently driven by cellular senescence of hepatocytes [158] as observed in a study with hepatocytes isolated from livers of wild-type mice. An irreversible cell-cycle arrest was associated to secretion of proinflammatory cytokines (notably IL-6) and mitochondrial dysfunction, the latter impinging on both, on aging and obesity-related pathol-
ogy, especially insulin resistance. Indeed, C4 levels have recently been described to correlate with body mass index and decreased C4 long gene copy number was speculated to be linked to prolonged life span [159] (to be confirmed). Such metabolic processes seem of importance none the least to the pharmaceutical science creating geroprotectors. Senescent cells increase their secretion of a broad repertoire of proinflammatory factors, collectively known as the senescence-associated secretory...
phenotype which can induce tissue dysfunction [160,161] driver of age-dependent hepatic steatosis. Inflammaging is driven by proinflammatory cytokines with the complement system at stake [162,163]. Thus, retinal pigment epithelium can modulate expression of complement activation in macrophages – supposedly liver metabolic zonation units (see 1.1) might do the same [162].

Medicine, a profession of lifelong learning now provides evidence for the involvement of the multifaceted complement system, synthesized in a large part by the liver, in diseases of this very same production site. The more we will learn on its immunopathological role complement plays, complosome included, in liver diseases, the more complement therapeutics will take up momentum in helping liver patients.

Contributions

Thomas Lung, Giuseppe Colucci and Urs Nydegger did the medical writing to which.

Reinhard Würzner contributed text & references about involvement of complement in liver physiology and viral diseases; Benjamin Sakem wrote to which.

C. Kemper, M. Kolev, G. Arbore, E.E. West, M. Kolev, C. Kemper, Complement and the regulation of Th1 responses, Adv. Immunol. 138 (2018) 35–70.

L.P. Ganesan, J. Kim, Y. Wu, S. Mohanty, G.S. Phillips, D.J. Birmingham, et al., Pegamamibll on liver sinusoidal endothelial cells small immune complexes, J. Immunol. 189 (10) (2012) 4981–4988.

M.F. de Andrade, V.D. de Almeida, L.M.S. de Souza, D.C.C. Paiva, C.M. Andrade, T.A.A de Medeiros Fernandes, Involvement of neutrophils in Chagas disease pathology, Parasite Immunol. 40 (12) (2018), e12555.

T. Sandri, F.A. Andrade, K.C.F. Lidani, E. Enig, A.B.W. Boldt, B. Mordmuller, et al., Human collectin-11 (COLEC11) and its synergic genetic interaction with MASP2 are associated with the pathophysiology of Chagas disease, PLoS Neglected Trop. Dis. 13 (4) (2019), e0007324.

A. Wang, S.C. Huen, H.H. Luan, S. Yu, C. Zhang, J.D. Gallezot, et al., Neglecting effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation, Cell 166 (6) (2016) 1512–1525 e12.

S.R. Rensen, Y. Saats, A. Driessen, C.J. Peutz-Jovestra, N. Niyonzima, M. Pirooznia, et al., Activation of the complement system in human nonalcoholic fatty liver disease, Hepatology 50 (6) (2009) 1809–1817.

Q. Jia, C. Li, Y. Xia, Q. Zhang, H. Wu, H. Du, et al., Association between complement C3 and prevalence of fatty liver disease in an adult population: a cross-sectional study from the Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSiHealth) cohort study, PLoS One 10 (4) (2015), e0122026.

J.J. Cohen, S. Roychowdhury, M.R. McMullen, A.B. Stavitsky, L.E. Nagy, Complement and alcoholic liver disease: role of C3 in the pathogenesis of ethanol-induced liver injury in mice, Gastroenterology 139 (2) (2010) 644–674, 74 e1.

C.J. Lin, Z.G. Hu, G.D. Yuan, B. Lei, S.Q. He, Complements are involved in alcoholic fatty liver disease, hepatitis and fibrosis, World J. Hepatol. 10 (10) (2018) 662–669.

K.R. Patel, S. Harpavat, M. Finegold, K. Elkin, J. Hicks, M. Firan, et al., Post-transplant recurrent bile salt export pump disease: a form of antibody-mediated graft dysfunction and utilization of C4D, J. Pediatr. Gastroenterol. Nutr. 65 (4) (2017) 364–369.

G. Vitale, S. Giotto, R. Vukotic, F. Raimondi, P. Andreone, Familial Intrahepatic Cholestatic New and Wide Perspectives, Dig Liver Dis, 2019.

J. S. Shin, R.A. DeAngelis, E.S. Reis, S. Gupta, M.R. Maurya, C. Evans, et al., Systems analysis of the complement-induced priming phase of liver regeneration, J. Immunol. 197 (6) (2016) 2500–2508.

A. Holtzinger, P.R. Streeter, F. Sarangi, S. Hillhorn, M. Niapour, S. Ogawa, et al., Small molecules that modulate endometrial induction and hepatocyte differentiation from human pluripotent stem cells, Development 142 (24) (2015) 4253–4265.

R. Usóh, J. Komori, H. Kuge, K. Tatsumi, M. Yamada, S. Hirohshi, et al., Adult hepatocytes direct liver organogenesis through non-parenchymal cell recruitment in the kidney, J. Hepatol. 68 (4) (2018) 744–753.

K.M. Morris, D.P. Aden, B.B. Knowles, H.R. Colten, Complement biosynthesis by the human hepatoma-derived cell line HepG2, J. Clin. Investig. 70 (4) (1982) 906–913.

F. Gakhosov, S. Lim, G. Hoefell, D. Low, T. Huber, Origin and differentiation of microglia, Front. Cell. Neurosci. 7 (2013) 45.

B.P. Morgan, D. Kavanagh, Introduction to complement in health and disease: novel aspects and insights, Semin. Immunopathol. 40 (1) (2018) 1–22.

R. Lubbers, M.F. van Essen, C. van Kooten, L.A. Trouw, Production of complement components by cells of the immune system, Clin. Exp. Immunol. 189 (2) (2017) 183–194.

K.S. Zare, Hepatocyte differentiation: from the endoderm and beyond, Curr. Opin. Genet. Dev. 15 (5) (2001) 568–574.

M. Elvington, M.K. Liszewski, J.P. Atkinson, Evolutionn of the complement regulatory proteins: friend or foe? Gastroenterology 150 (8) (2016) 1704–1709.

V.A. McLin, C.H. Hu, R. Shah, M. Jamrich, Expression of complement components by cells of the immune system, Clin. Exp. Immunol. 188 (2) (2017) 183–194.

E.C. Friedberg, DNA damage and repair, Nature 421 (6921) (2003) 436–440.

J. S. Min, R.A. DeAngelis, E.S. Reis, S. Gupta, M.R. Maurya, C. Evans, et al., Systems analysis of the complement-induced priming phase of liver regeneration, J. Immunol. 197 (6) (2016) 2500–2508.

J.S. Min, R.A. DeAngelis, E.S. Reis, S. Gupta, M.R. Maurya, C. Evans, et al., Systems analysis of the complement-induced priming phase of liver regeneration, J. Immunol. 197 (6) (2016) 2500–2508.

R. Usóh, J. Komori, H. Kuge, K. Tatsumi, M. Yamada, S. Hirohshi, et al., Adult hepatocytes direct liver organogenesis through non-parenchymal cell recruitment in the kidney, J. Hepatol. 68 (4) (2018) 744–753.

K.M. Morris, D.P. Aden, B.B. Knowles, H.R. Colten, Complement biosynthesis by the human hepatoma-derived cell line HepG2, J. Clin. Investig. 70 (4) (1982) 906–913.

S.S. Huppert, K.M. Campbell, Emerging advancements in liver regeneration and organogenesis as tools for liver replacement, Curr. Opin. Transplant. 21 (6) (2016) 581–587.

J. Gregan, P.K. Rabitsh, B. Saksen, O. Cotak, L. Latypov, E. Lehmann, et al., Novel genes required for meiotic chromosome segregation are identified by a high-throughput knockout screen in fission yeast, Curr. Biol. 15 (18) (2005) 1663–1669.

J. Mittelstadt, D. Sagan, Cracking Down the Ageing Code, Flatiron Books, New York City, 2016, p. 326.

E.C. Friedberg, DNA damage and repair, Nature 421 (6921) (2003) 436–440.

A. Circou, G. Garner, W. Fukuda, X. Wang, T. Hilgve, A.J. Szaal, et al., Genetic dissection of the murine complement C1r promoter region generates deficient mice with extrapathogenic effect of C3 mRNA, Immunopharmacology 42 (1–3) (1999) 135–149.

M.L. Robinette, A. Fuchs, V.S. Gorte, J.S. Lee, Y. Wang, S.K. Durum, et al., Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets, Nat. Immunol. 16 (3) (2015) 306–317.

B. Gao, H. Tsukamoto, Inflammation in alcoholic and nonalcoholic fatty liver disease: friend or foe? Gastroenterology 150 (6) (2016) 1704–1709.

V.A. McLin, C.H. Hu, R. Shah, M. Jamrich, Expression of complement components coincides with early patterning and organogenesis in Xenopus laevis, Int. J. Dev. Biol. 50 (6) (2006) 135–149.

E. C. Friedberg, DNA damage and repair, Nature 421 (6921) (2003) 436–440.

A. Circou, G. Garner, W. Fukuda, X. Wang, T. Hilgve, A.J. Szaal, et al., Genetic dissection of the murine complement C1r promoter region generates deficient mice with extrapathogenic effect of C3 mRNA, Immunopharmacology 42 (1–3) (1999) 135–149.

M.L. Robinette, A. Fuchs, V.S. Gorte, J.S. Lee, Y. Wang, S.K. Durum, et al., Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets, Nat. Immunol. 16 (3) (2015) 306–317.
[47] A. Gorelik, T. Sapir, R. Haftner-Krausz, T. Olender, T.M. Battezzati, M. Agostoni, et al., Complement system is not activated in primary biliary cirrhosis, Clin. Exp. Immunol. 179 (3) (2019) 349–353.

[48] M. Gardinalli, L. Conciato, C. Caffaro, A. Cesnignani, P.M. Battezzati, A. Agostoni, et al., Complement system is not activated in primary biliary cirrhosis, Clin. Exp. Immunol. 179 (3) (2019) 349–353.

[49] L. Hof, L. Berem, M. Comi, E. Saccorni, P. Bencini, S. Bella, et al., The complement system is not activated in primary biliary cirrhosis, Clin. Exp. Immunol. 179 (3) (2019) 349–353.

[50] M. Jahnz-rozyk, M. Siedlar, E. Bernatowska, J. Rolinski, M. Pac, E. Wiesik-Migala, et al., Association between hemoglobin glycation index and hepatic steatosis in non-diabetic individuals, Diabetes Res. Clin. Pract. 134 (2017) 53–58.

[51] J.J. Wang, G.X. Yang, W.C. Zhang, L. Lu, K. Tsuneyama, M. Kronenberg, et al., Role of anti-gA antibodies in non-obese diabetic (NOD)B6 (Idd10/Idd18) mice, Clin. Exp. Immunol. 175 (2) (2014) 192–201.

[52] B. Terzoli, B. Piccolo, P. Ripellino, C. Gobbi, S.A.H.S.C. Group, Autoimmune liver diseases serology in acute hepatitis E virus infection, J. Autoimmun. 24 (2018) 1–6.

[53] I. Wiegand, T. Berg, The etiology, diagnosis and prevention of liver cirrhosis, Dtsch Arztebl Int 110 (6) (2013) 85–91.

[54] T.J. Liang, Hepatitis B: the virus and disease, Hepatology 49 (5 Suppl) (2009) S13–S21.

[55] Z. Chen, G. Diaz, T. Pollicino, H. Zhao, R.E. Engle, P. Schuck, et al., Increased activity of the complement C5a is an indicator of severity in primary biliary cirrhosis, PLoS One 10 (7) (2015), e0131730.

[56] Y. Deng, H. Zhao, J. Zhuo, L. Yang, G. Wang, China Hepatitis B Related Fibrosis Assessment Research Group, Complement S is an indicator of significant fibrosis and earlier cirrhosis in patients chronically infected with hepatitis B virus, Infection 45 (1) (2017) 75–81.

[57] A. Matsumoto, M. Imaizumi, Y. Tanaka, S. Nishiguchi, H. Yatsushiri, T. Ishida, et al., Novel and highly sensitive immunoassay for total hepatitis B virus surface antigen, including those that complexed with hepatitis B surface antibody, J. Gastroenterol. 52 (3) (2017) 376–384.

[58] A. El-Shamy, A.D. Branch, T.D. Schiano, P.D. Gorevic, The complement system and chronic inflammation in autoimmune liver disease? Mol. Ther. 9 (2) (2004) 178–182.

[59] S. Basu-Ray, K. Datta, B. Wang, L. Wang, J. Zhao, M. Kronenberg, et al., Association between complement C3/C4 and liver function in patients with liver cirrhosis, Hepato-Gastroenterology 59 (51) (2012) 1451–1453.

[60] M. Gardinalli, L. Conciato, C. Caffaro, A. Cesnignani, P.M. Battezzati, A. Agostoni, et al., Complement system is not activated in primary biliary cirrhosis, Clin. Exp. Immunol. 179 (3) (2019) 349–353.

[61] H. Shen, B.A. French, H. Liu, B.C. Tillman, S.W. French, Increased activity of the complement system in the liver of patients with alcoholic hepatitis, Exp. Mol. Pathol. 97 (3) (2014) 338–344.

[62] T. Lung, L. Riech, M. Sakem, R. Wurzner, U. Nydegger, The utility of complement assays in clinical immunology: a comprehensive review, J. Autoimmun. 95 (2018) 191–200.

[63] T. Wilkinson, A. Tadokor, J. Hepburn, R.R. Schade, Nonalcoholic fatty liver disease: a comprehensive approach, J. Autoimmun. 95 (2018) 191–200.
[161] N. Herranz, J. Gil, Mechanisms and functions of cellular senescence, J. Clin. Investig. 128 (4) (2018) 1238–1246.
[162] C. Luo, J. Zhao, M. Chen, H. Xu, The expression of C1 inhibitor (C1INH) in macrophages is upregulated by retinal pigment epithelial cells - implication in subretinal immune privilege in the aging eye, Aging (Albany NY) 10 (6) (2018) 1380–1389.
[163] Y. Zhuang, J. Lyga, Inflamming in skin and other tissues - the roles of complement system and macrophage, Inflamm. Allergy - Drug Targets 13 (3) (2014) 153–161.