Infections caused by carbapenem-resistant Klebsiella pneumoniae with hypermucoviscous phenotype: A case report and literature review

Fabio Arena, Lucia Henrici De Angelis, Marco Maria D'Andrea, Antonio Cannatelli, Lucina Fossati, Vincenzo Di Pilato, Tommaso Giani, Rossana Cavallo & Gian Maria Rossolini

To cite this article: Fabio Arena, Lucia Henrici De Angelis, Marco Maria D'Andrea, Antonio Cannatelli, Lucina Fossati, Vincenzo Di Pilato, Tommaso Giani, Rossana Cavallo & Gian Maria Rossolini (2017): Infections caused by carbapenem-resistant Klebsiella pneumoniae with hypermucoviscous phenotype: A case report and literature review, Virulence, DOI: 10.1080/21505594.2017.1286439

To link to this article: http://dx.doi.org/10.1080/21505594.2017.1286439
Infections caused by carbapenem-resistant *Klebsiella pneumoniae* with hypermucoviscous phenotype: A case report and literature review

Fabio Arena, Lucia Henrici De Angelis, Marco Maria D'Andrea, Antonio Cannatelli, Lucia Fossati, Vincenzo Di Pilato, Tommaso Giani, Rossana Cavallo, and Gian Maria Rossolini

ARTICLE HISTORY Received 30 September 2016; Revised 19 January 2017; Accepted 19 January 2017

KEYWORDS animal model; bacteremia; capsular type; carbapenemase; hypercapsule; liver abscess; liver transplantation; string test; virulence

In the mid 1980s, a hypervirulent variant of *Klebsiella pneumoniae* (hvKP) causing serious community-acquired clinical syndromes with pyogenic liver abscesses, possibly associated with bacteremic extrahepatic disseminations, was identified in Taiwan. Generally, patients presenting with these syndromes were young and without significant comorbidities, with the exception of diabetes that was found to be a major risk factor. After those first reports from the Far East, similar cases have been subsequently reported worldwide. The hvKP strains differ from classical *K. pneumoniae* strains for an increased virulence potential, that can be evaluated in animal models of infection (usually mouse or *Galleria mellonella*). The increased virulence potential has been associated with the expression of several traits, present in variable combinations, including: i) iron-scavenging systems (e.g. the IucA aerobactin, the EntH enterobactin, the IroB salmochelin and the Trp2 yersiniabactin); ii) the allantoin metabolism pathway; iii) the Kpc fimbriae; and iv) certain capsular types (e.g. K1 and K2) produced in increased abundance to form a so-called “hypercapsule.” Due to production of the hypercapsule, the colonies of these strains typically exhibit the hypermucoviscous (HM) phenotype, denoted by an abundant production of capsular material and a positive “string test.” The HM phenotype has been related with the acquisition of plasmid-borne *rmpA* and *rmpA2* genes, encoding transcriptional regulators that activate capsular biosynthesis, or with mutations of the chromosomal *rcsA* and *rcsB* genes, encoding a signaling system involved in the regulation of capsular biosynthesis. However, in some strains the mechanism(s) underlying the HM phenotype remain elusive. The HM phenotype apparently contributes to the virulence of hvKP strains and is widely considered a surrogate marker of increased virulence. However, the relationship between hvKP and the HM phenotype, i.e. whether all hvKP are HM and vice versa, remains unclear. Of the hvKP strains thus far described, most belong to a single clonal group (CG), namely CG23, although hvKP strains of other lineages (e.g. of sequence type ST86) have occasionally been reported. Consistently with their community origin, the hvKP strains are usually susceptible to antibiotics.

Unlike the hvKP strains, classical *K. pneumoniae* strains typically behave as opportunistic pathogens of lower virulence potential, mostly causing infections in hospitalized patients with some degree of impairment of the host defenses. On the other hand, these strains often carry multiple resistance determinants to antibiotics which make treatment more difficult. Carbapenem-resistant *K. pneumoniae* (CRKP), in particular, have emerged as one of the ultimate challenges for public health because of their extended antibiotic resistance phenotypes and ability to rapidly disseminate in the hospital setting and eventually even outside. The spread of CRKP is mostly linked to the expansion of successful high-risk clones producing carbapenemases of various
types (e.g. KPC, NDM, OXA-48 or VIM), with a paradigmatic example represented by the CG258 clonal lineage harbouring blaKPC carbapenemase genes.22–24

The current dichotomy between CRKP and hvKP populations in terms of resistance and virulence, however, could eventually be blurred, and the emergence of CRKP with an increased virulence potential is a worrisome perspective.25 In fact, HM strains producing extended-spectrum β-lactamases (ESBL) and carbapenemases have recently been reported,26–34 being a matter of considerable concern.

In this work we describe a case of liver abscess followed by fatal bacteraemic infection in a liver transplant patient, caused by a CRKP strain that showed an HM phenotype (CRHMKP). We also reviewed the recent literature reporting cases of CRKP with an HM phenotype.

KP04C62 was isolated in August 2011 from the blood cultures of a 52 years-old caucasian patient with septic shock. The strain exhibited an HM phenotype and was resistant to carbapenems (meropenem MIC, >64 μg/ml), extended-spectrum cephalosporins, conventional β-lactamase inhibitor combinations (amoxicillin-clavulanate, piperacillin-tazobactam), amikacin, fluoroquinolones, trimethoprim-sulfamethoxazole, and colistin (MIC, 32 μg/ml), while retaining susceptibility to gentamicin (MIC, 1 μg/ml) and tigecycline (MIC, 1 μg/ml). The patient was diabetic and had been subjected to liver transplantation for end-stage liver disease 6 months before. Immunosuppression had been with cyclosporine, methylprednisolone and mycophenolate mofetil. Four months after the transplantation a voluminous abscess in the VI and VII liver segments was diagnosed, and a CRHMKP with the same resistance profile as KP04C62 was isolated from a drainage. Despite drainage, hyperbaric oxygen treatment and combination antibiotic therapy with meropenem, gentamicin, and colistin, the abscess persisted. The patient was then subjected to surgical resection of the V, VI, VII and VIII liver segments, and the antimicrobial therapy was modified (substitution of meropenem with tigecycline). However, the clinical condition of patient worsened and he died of peritonitis and septic shock few days after surgery.

A PubMed search (accessed on December 27th 2016), using as search terms “Klebsiella,” “hypermucoviscous,” and “resistance” revealed a total of 8 reports describing cases of human infections or colonizations caused by CRHMKP strains. These reports, summarized in Table 1, are briefly reviewed below.

Zhang et al. (2015), in a multi-center retrospective study which analyzed the clinical and laboratory features of 28 cases of CRKP infections from 9 cities in China, observed between 2012 and 2013, detected 5 HM strains (17.8\%) of which only 3 were positive for rpmA/rmpA2 genes. The CRHMKP strains caused 2 cases of pneumonia and 3 of bloodstream infection. All patients for whom information were available (4 out of 5) survived the infection. The infected patients, aged from one day to 84 years, suffered of multiple underlying diseases and were all hospitalized. Three out of the 5 strains belonged to ST11 and were non-typeable by conventional serotyping methods. Another non-typeable strain was assigned to ST1700, while the remaining strain was an ST65 of serotype K2. Interestingly, the latter strain, isolated from a one-day-old infant who developed septicaemia during treatment of bronchopulmonary dysplasia and survived the infection, showed a remarkable in vitro resistance to serum killing and a high virulence in a mouse peritonitis infection model. By contrast, the other 4 strains were avirulent in the same murine model. The ST6532 strain carried the aerobactin and the enterobactin siderophores, and was resistant to carbapenems due to decreased expression of OmpK35 and OmpK36 associated with SHV-11 and TEM-53 β-lactamases production.30

Andrade et al. (2014) reported on a CRHMKP strain obtained from the blood cultures of a 36 years-old patient, during a hospital outbreak of ST11 K. pneumoniae producing KPC-2 occurred in 2013 in a tertiary-care university hospital in Ribeirão Preto (Brazil).27 The patient, admitted for acute myeloid leukemia, died for septic shock after a few days. The strain showed a multidrug resistant phenotype including colistin resistance. Capsular serotyping was not performed. The rmpA/rmpA2 genes were not detected and the mechanism underlying the HM phenotype remained unknown.

Wei et al. (2015) reported on a CRHMKP strain obtained in January 2014 from a 47 years-old patient with multiple traumatic injuries due to a traffic accident admitted in the Intensive Care Unit of a university teaching hospital in NanChang (China). The strain was isolated 20 d after hospital admission from blood, a chronic wound, and a decubitus ulcer, and the patient eventually died of infection. The strain belonged to ST11, carried the blaKPC-2 gene, expressed a K1 capsular serotype, and was positive for the rmpA/rmpA2 genes.32

Yao et al. (2015) performed a retrospective surveillance study aimed to identify HM strains in a collection of CRKP (selection criteria were positive string test and imipenem and/or meropenem minimum inhibitory concentration \geq 4mg/L) from a large Chinese hospital in the period January 2010-August 2014. Among the 60 CRKP isolated during the study period from 33 patients, 7 (isolated since February 2013 from 4 patients) were positive for the HM phenotype. These CRHMKP strains were responsible for 2 cases of pneumonia, one bloodstream infection secondary to urinary tract infection, and one gut colonization. All cases were hospital-acquired and
Table 1. Summary of articles available at PubMed database, accessed on December 27th, 2016, describing cases of infections or colonization caused by CRHMKP. Legend: pattern 1, strains with K1, positive for rmpA/rmpA2 genes, mostly of ST23 but also of other sequence types; pattern 2, strains with non-typeable serotype, mostly negative for rmpA/rmpA2 genes.

Isolate identifier	Country	Year	ST	K type	Carbapenems resistance mechanism	animal model	clinical sample	disease	age (years)	sex	comorbidities	therapy	outcome	Reference n.			
Strain 1 China 2013	11	non-typeable	OmpK35/36 decreased expression associated with β-lactamases production	negative	2	–	susceptible	avirulent in murine peritonitis	sputum	pneumonia	84	female	Coronary heart disease, Diabetes mellitus, Hypertension, Cerebral infection	Moxifloxacin, Meropenem	survived	30	
Strain 2 China 2013	1700	non-typeable	KPC-2, IMP-4	negative	2	–	resistant	avirulent in murine peritonitis	abdominal fluid	abdominal infection, septic shock	14	female	Acute myocarditis, Acute renal insufficiency	Piperaclides/taizobactam, Meropenem, Imipenem	unknown	30	
Strain 3 China 2013	65	K2	OmpK35/36 decreased expression associated with β-lactamases production	positive	–	–	susceptible	highly virulent in murine peritonitis	blood	sepsis	1 day	male	Premature, Bronchopulmonary dysplasia, Hylaline membrane disease, Severe asphyxia, Brain damage, Hypopyllegia, Cholecystectomy, Bile duct obstruction, Coronary heart disease, cancer, acute respiratory failure	Levofloxacin, Cefoperazone/subactam, Piperaclides/taizobactam, Meropenem, Imipenem	survived	30	
Strain 4 China 2012	11	non-typeable	KPC-2	positive	2	–	susceptible	avirulent in murine peritonitis	abdominal fluid	pneumonia	71	male	Cholecystectomy, common bile duct stones, Chronic bronchitis, Calculus of intrahepatic duct, Respiratory failure	Meropenem, Imipenem, Cefepime, Fosfomycin, Amoxicillin/clavulanic acid	survived	30	
Strain 5 China 2012	11	non-typeable	KPC-2	positive	2	–	susceptible	avirulent in murine peritonitis	bile	biliary tract infection, pulmonary infection, sepsis	76	male	Cholecystectomy, common bile duct stones, Chronic bronchitis, Calculus of intrahepatic duct, Respiratory failure	Moxifloxacin, Cefoperazone/subactam, Piperaclides/taizobactam, Meropenem, Imipenem, Cefazidime/taizobactam, Meropenem	survived	30	
RP59 Brazil 2013	11	–	K1	KPC-2	negative	2	resistant	susceptible	–	blood	bacteraemia	36	male	Acute myeloid leukemia	Tigecycline	unknown	27
Kp70–2 China 2013	23	K1	KPC-2	positive	1	susceptible	susceptible	–	blood	septic shock	30	male	multiple injury	unknown	died	31	
KP1088–2 China 2013	23	K1	KPC-2	positive	1	susceptible	susceptible	–	sputum and blood samples	septic shock	87	male	Abdominal infection	unknown	died	31	
KP86 China 2013	1707	K1	KPC-2	positive	1	susceptible	susceptible	–	sputum and blood samples	septic shock	88	male	Septic arthritis	unknown	died	31	
KP91 China 2013	1707	K1	KPC-2	positive	1	susceptible	susceptible	–	sputum and blood samples	septic shock	73	female	Acute myeloid leukemia	unknown	died	31	
KP96 China 2013	1707	K1	KPC-2	positive	1	susceptible	susceptible	–	sputum and blood samples	septic shock	32	male	None	unknown	died	31	
3089 Argentina 2013	23	K1	KPC-2	positive	1	susceptible	susceptible	–	tracheal secretion	suspected pneumonia	85	male	Acute myeloid leukemia	unknown	died	28	
Kp1500 China 2014	11	K1	KPC-2	positive	1	susceptible	susceptible	–	highly virulent in murine peritonitis	septic shock	47	female	Septic arthritis, Acute respiratory failure	Tigecycline	unknown	32	

(Continued on next page)
Table 1. (Continued)

Isolate identification	Country	Year	ST	K type	Carbapenem resistance mechanism	mmpA and/or ndm2 pattern	Polymyxins susceptibility	Tigecycline susceptibility	Animal model	Clinical sample	Disease	Age (years)	Sex	Comorbidities	Therapy	Outcome	Reference
cr-hvKP1, cr-hvKP4	China	2013	65	K2	KPC-2 positive	–	–	susceptible	urine, tracheal aspiration	colonization	78	male	Respiratory failure, Parkinson disease, cerebrovascular accident, duodenal ulcer, hypertension, chronic hepatic, paroxysmal atrial fibrillation	none	survived	29	
cr-hvKP2, cr-hvKP3 and cr-hvKP5	China	2014	65	K2	KPC-2 positive	–	–	susceptible	tracheal secretion, urine, blood	secondary bacteraemia after urinary tract infection	85	male	Respiratory failure, chronic obstructive pulmonary disease, cerebrovascular accident, secondary epilepsy, chronic obstructive pulmonary disease	imipenem	survived	29	
cr-hvKP6	China	2014	25	K2	–	positive	–	susceptible	tracheal secretion	pneumonia	68	male	Respiratory failure, cerebrovascular accident, secondary epilepsy	ceftazidime-subactam, ertapenem	survived	29	
cr-hvKP7	China	2014	11	non-typable	KPC-2 negative	2	–	resistant	tracheal secretion	pneumonia	91	female	Respiratory failure, chronic obstructive pulmonary disease, cerebrovascular accident, chronic obstructive pulmonary disease, pleural effusion, coronary artery disease	ertapenem	died	29	

Alkalivora pneumoniae	India	2019-10	14	K2”	OmphX36 mutation associated with β-lactamases production	negative	–	–	–	–	–	–	–	–	–	33
B20038	India	2015	43	K36”	OXA-181 positive	–	–	–	–	–	–	–	–	–	–	34
B16-67	India	2015	231	non-typable	OXA-232 negative	2	–	–	–	–	–	–	–	–	–	34

| U25 | India | 2013 | 10 | 14 | K2” | OmpX36 mutation associated with β-lactamases production | negative | – | – | – | – | – | – | – | – | 33 |
occurred in patients admitted for long periods, with several co-morbidities. In 3 cases the K. pneumoniae strains belonged to serotype K2 and carried the rmpA/rmpA2 genes (2 of ST65 and one of ST25). The remaining was an ST11 strain of a non-typable serotype, lacking the rmpA/rmpA2 genes. All strains but one produced KPC-2. One of the infected patients, a 91 years-old patient affected by pneumonia caused by the ST11 strain, died for heart failure while the other patients survived the infection.29

Zhang et al. (2015) reported on 5 cases of infection by CRHMKP with K1 capsular type, occurred in hospitalized patients in the Zhejiang Province of China in 2013. All cases had a fatal outcome regardless of their original health status. Genotyping results revealed that 2 strains belonged to ST23 and the other 3 to a new genetically related ST (ST1797, a double locus variant of ST23), and that all strains carried the rmpA/rmpA2 genes and a plasmid-borne blaKPC-2 gene. In 2 cases the acquisition of blaKPC-2 by a previously susceptible stain had occurred after or during imipenem therapy.31 These are the first described cases of acquisition of carbapenem-resistance by clinical strains of a well known hypervirulent lineage.

Cejas et al. (2014) reported on a CRHMKP of ST23 and serotype K1, carrying the rmpA/rmpA2 genes and producing the KPC-2 carbapenemase. The strain was isolated in 2013 from the tracheal aspirate of an 85 year-old man with a recent history of acute myeloid leukemia, admitted to an intensive care unit in Buenos Aires, Argentina. The patient, who was undergoing chemotherapy with methotrexate and prednisone, died 3 weeks after the isolation of the K. pneumoniae strain due to causes that were not specified.28

Most recently, 2 articles announcing the genome sequencing projects of 4 CRHMKP isolated in India, from 3 bloodstream infections and one urinary tract infection, have been published.33,34 The strains were of different sequence types and capsular types, and carried different carbapenem-resistance mechanisms. Only 2 of them were positive for rmpA/rmpA2.

Altogether, according to our search, 21 CRHMKP strains have been described in the literature. In most cases the CRHMKP strains were from infections (only in one case from colonization). The cases were mostly from China (71.4%), but also from South America and India, and occurred in patients previously hospitalized for other causes. The most frequent site of isolation was bloodstream (12 cases), followed by the respiratory tract (often in concomitance with other sites; 11 cases). One third of these strains belonged to ST23 or to genetically related STs (ST25 and ST1797), one third to ST11, and the remaining ones to several unrelated sequence types (ST14, ST43, ST65, ST231 and ST1700). K1 and K2 were the most common capsular types (12 of 21), with K1 being almost exclusively associated with ST23 or genetically related STs, while K2 with ST65, ST25 and ST14. Several strains, mostly of ST11, were reported as nontypable with conventional serotyping methods. Overall, 6 of 21 strains (28.6%) were negative for the presence of rmpA/rmpA2 genes, revealing the existence of alternative mechanisms underlying the HM phenotype. In most CRHMKP strains resistance to carbapenems was imputable to the production of the KPC-2 carbapenemase (in one case co-produced with IMP-4), but other carbapenemases (NDM-1 and OXA-48-like) were sporadically reported. In 3 strains carbapenem resistance was due to alterations in the major K. pneumoniae porins, OmpK35 and/or OmpK36, coupled with ESBL production. Regarding the phenotype toward other antimicrobial agents, CRHMKP strains retained, with few exceptions, susceptibility to colistin and tigecycline (Table 1).

The 17 cases for which clinical data are available occurred in patients of various ages (from 1 day to 91 years), with a predominance of males (70.5%) and a cumulative in-hospital mortality rate for infected patients of 56.2% (Table 1).

In summary, most CRHMKP strains described in the literature could be gathered into 2 groups with distinctive features: pattern 1, consisting of strains with K1 serotype, positive for the rmpA/rmpA2 genes, mostly of ST23 or genetically related STs; and pattern 2, consisting of strains with a non-typable serotype, mostly of ST11 and mostly negative for rmpA/rmpA2.

Interestingly, the mortality rate for patients infected by strains with pattern 1 was significantly higher than that observed for patients infected by strains with pattern 2 (100% vs. 40%; p value calculated by the Two tailed Fisher’s exact test = 0.045). Furthermore, the 2 fatal cases of infection by strains with pattern 2 were reported in patients with underlying conditions that could have significantly influenced the final outcome (age >90 y in one case, and severe hematologic malignancy in the other).

To investigate the genetic features of the KP04C62 strain, the genome was sequenced using the MiSeq platform (Illumina Inc., San Diego, CA) and a 2 × 300 bp paired-end approach. In total 946,759 reads were obtained, yielding an estimated average coverage of 103×, considering a genome size of 5.5 Mbp. Reads were assembled, using the SPAdes software,35 into 147 contigs (N50 contig size, 268,882 bp). Scaffolds, annotated using the RAST software,36 contained 5,598 coding sequences. The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession MIFX00000000. The version described in this article is version MIFX01000000. The genomic analysis showed that KP04C62 belonged to
ST512 (a single-locus variant of ST258), and that it was closely related to another ST512 strain isolated in another Italian hospital in the same period (KPB-1, accession number AYOVO00000000), which did not exhibit an HM phenotype. The 2 strains shared a common conserved genome of approximately 5.4 Mbp using the Panseq software, with only 50 SNPs (CSI phylogeny, https://cge. cbs.dtu.dk/services/CSIPhylogeny/) in the core genome.

The content of acquired resistance genes of KP04C62 was consistent with the antibiotic resistance profile (Table 2). As described previously, colistin resistance in KP04C62 was attributed to the insertional inactivation of the mgrB gene by an IS5-like element at nt 126.

The KP04C62 virulence genes content was investigated with a database of known K. pneumoniae virulence factors created ad hoc, expanding the already existing database available at http://bigd.db.pasteur.fr/klebsiella/klebsiella.html (Table S1). Interestingly, KP04C62 harbouried none of the 76 putatively acquired virulence genes present in the database. Concerning the housekeeping virulence genes, we found a nonsense mutation in the regulator fimK gene, resulting in a truncated FimK protein at position 440. The loss of FimK function in the K. pneumoniae TOP52 strain was previously reported to cause a higher expression of type 1 pili, with enhanced ability to form type 1-dependent biofilm and augmented virulence in a murine urinary tract infection model. An analogous profile of virulence genes, including the nonsense mutation in the fimK gene, was found in the closely related KPB-1 strain, which did not exhibit an HM phenotype.

Notably, the rmpA and rmpA2 genes were not detected in KP04C62, while the rcsABCD genes of this strain were identical to those found in the non-HM KPB-1 strain. Compared to the latter strain, which has a capsular gene cluster typical of clade II strains of the CG258 lineage (cps, type with wzi54 allele), the sequence of the capsular gene cluster of KP04C62 exhibited 2 original differences: a missense T→C mutation at position 221 of the wzc gene, resulting in a Leu→Pro substitution at position 74 of the Wzc protein, and a T→C missense mutation at position 332 of a putative glycosyltransferase-encoding gene (Region 11007–11768 of AYOVO10000044), resulting in a Cys→Ser substitution at position 110 of the corresponding protein. Wzc is a BY-kinase involved in the biosynthesis and transport of exopolysaccharides, which interacts with Wza (a transmembrane protein) for the translocation of the capsular polysaccharide from the periplasm across the outer membrane. The amino acid substitution identified in the Wzc of KP04C62 is situated in the N-terminal periplasmic domain which carries the site of interaction with Wza. The role of these original mutations in expression of the HM phenotype of KP04C62 will be the subject of future investigation.

To investigate the virulence potential of KP04C62 in comparison with a known highly virulent, hvKP, strain (NTUH-K2044, a typical hvKP ST23 strain with the K1 capsule serotype), we used a Galleria mellonella animal model, according to a described previously protocol. In this model, KP04C62 showed a virulence potential that was significantly lower than that of NTUH-K2044 (LD₅₀ at 72 hours, 6.1 ± 0.05 vs. 4.9 ± 0.24, P value <0.01; 3 independent replicates). This behavior was overall similar to that previously reported for another KPC-producing CG258 strain with a cps_{BO-4} capsule type (KKBO-1), and revealed that KP04C62 did not behave as a typical hvKP strain, at least in this model. To assess whether the difference in the LD₅₀ values could be, at least in part, attributed to a different growth pattern of the studied strains, we analyzed the growth of KP04C62, KKBO-1 and NTUH-K2044 at different pH values (pH 7, 6.5 and 6, in LB broth buffered with 1M HCl), considering that a lower pH (around 6.5) is encountered in the animal model. Growth was performed at 37°C for 24 h, in a volume of 5 ml, and was followed by monitoring A₆₀₀ and CFU counts. Results of these experiments, performed in triplicate, did not reveal significant differences of growth patterns among the studies strains (data not shown).

Overall, the KP04C62 strain described in this work shared several characteristics with CRHM KP of pattern 2 (capsular locus organization typical of clade II of CG258 strains, i.e. cps_{BO-4}, non-typeable with conventional serotyping methods; negative for rmpA/rmpA2). This strain caused a fatal systemic infection, originating from a liver abscess, similarly to classic ST23 hvKP strains. However, in this case the infection occurred in a severely immunocompromised patient.

In conclusion, we described the clinical, epidemiological and genetic features of the first CRHM KP strain of ST512, producing the KPC-3 carbapenemase. The strain was isolated in 2011, i. e. before most other similar strains described in the literature, and shared several characteristics with other described previously CRHM KP of pattern 2, which have a lower virulence potential compared with other HM strains that we

Table 2. Acquired antimicrobial resistance genes detected in KP04C62 with the associated resistance phenotype.

Gene	Associated phenotype
bldTEM-1, bldOXA-9, bldSHV-11	β-lactams excluding carbapenems
bldKPC-3	β-lactams including carbapenems
aac(6)I-b-cr	Aminoglycosides and quinolones
dftA12, sul1	Trimethoprim, sulphonamides
identified as pattern 1 (more often belonging to ST23 or genetically related STs, with a K1 capsular serotype and an extensive set of virulence factors, including the rmpA/rmpA2 genes). Indeed, the analysis of the existing literature suggested that pattern 2 strains are likely able to cause serious fatal infections (including liver abscesses) only in immunocompromised patients. This hypothesis was corroborated by the fact that, in the infection model, KP04C62 had a virulence potential inferior to a known hvKP strain and similar to that of another CG258 KPC-producing, potential inferior to a known hvKP strain and similar to Galleria mellonella was corroborated by the fact that, in the only in immunocompromised patients. This hypothesis cause serious fatal infections (including liver abscesses)

In our opinion, therefore, a laboratory positivity for the string test in a CRKP isolate should be interpreted as an alert for the possibility of an hvKP behavior, but confirmation requires further investigation of the genetic content of virulence determinants and possibly testing of virulence behavior in a suitable animal model. Further analysis will be necessary to characterize the mechanism underlying the HM phenotype in pattern 2 strains that generally lack rmpA/rmpA2 determinants.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Acknowledgments

We are grateful to Dr. Pei-Fang Hsieh and Dr. Jin-Town Wang for providing us with the NTUH-K2044 strain. We also thank Dr. Flora Marzia Liotti and Dr. Giulia Menchinelli for the isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection. Infect Immun 2004; 72:3783-92; PMID:15213119;

http://dx.doi.org/10.1128/IAI.72.7.3783-3792.2004

Struve C, Roe CC, Stegger M, Stahlhut SG, Hansen DS, Engeltalmer DH, Andersson PS, Driebe EM, Kepim, Krogfelt KA. Mapping the Evolution of Hypervirulent Klebsiella pneumoniae. MBio 2015; 6:e00630-15-12;

http://dx.doi.org/10.1128/mBio.00630-15

Paczsok MA, Mecas J. Klebsiella pneumoniae: Going on the Offense with a strong defense. Microbiol Mol Biol Rev 2016; 80:629-61;

PMID:27307579; http://dx.doi.org/10.1128/MMBR.00078-15

Cheng HY, Chen YS, Wu CY, Chang HY, Lai YC, Peng HL. RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43, J Bacteriol 2010; 192:3144-58;

PMID:20382770; http://dx.doi.org/10.1128/JB.00031-10

Lai YC, Peng HL, Chang HY. RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 2003; 185:788-800;

PMID:12533454; http://dx.doi.org/10.1128/JB.185.3.788-800.2003

Peirano G, Pitout JD, Laupland KB, Wehterall B, Gregson DB. Population-based surveillance for hypermucoisoviscosity Klebsiella pneumoniae causing community-acquired bacteremia in Calgary, Alberta. Can J Infect Dis Microbiol 2013; 24:e61-4;

PMID:24421832

Cubero M, Grau I, Tubau F, Pallares R, Dominguez MA, Liñares J, Ardanuy C. Hypervirulent Klebsiella pneumoniae clones causing bacteremia in adults in a teaching hospital in Barcelona, Spain (2007–2013). Clin Microbiol Infect 2015; 21:564-60

Wiskur BJ, Hunt JJ, Callegan MC. Hypermucoisoviscosity as a Virulence Factor in Experimental Klebsiella pneumoniae Endophthalmitis. Invest Ophthalmol Vis Sci 2008; 49:4931-20;

PMID:18586871; http://dx.doi.org/10.1167/iovs.08-2276

Yu WL, Ko WC, Cheng KG, Lee HC, Ke DS, Lee CC, Fung CP, Chuang YC. Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis 2006; 42:1351-8;

PMID:16619144; http://dx.doi.org/10.1086/503420

References

[1] Liu YC, Cheng DL, Lin CL. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. JAMA Intern Med 1986; 10:1913-6; http://dx.doi.org/10.1001/archinte.1986.00360230057011

[2] Liu YC, Lee SS, Yen MY, Chen YS, Wang JH, Wann SR, Lin HH. Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis 1998; 26:1434-8;

PMID:9636876; http://dx.doi.org/10.1086/516283

[3] Wang J, Yan Y, Xue X, Wang K, Shen D. Comparison of pyogenic liver abscesses caused by hypermucoisoviscous Klebsiella pneumoniae and non-Klebsiella pneumoniae pathogens in Beijing: a retrospective analysis. J Int Med Res 2013; 41:1088-97; PMID:23729468; http://dx.doi.org/10.1177/0300060513487645

[4] Shon AS, Bajwa RPS, Russo TA. Hypervirulent (hypermucoisoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013; 4:107-18; PMID:23302790;

http://dx.doi.org/10.4161/viru.22718

[5] Arena F, Spanu T, De Angelis LH, Liotti FM, D’Andrea MM, Menchinelli G, De Maio F, Rossolini GM. First case of bacteremic liver abscess caused by an ST260-related (ST1861), hypervirulent Klebsiella pneumoniae. J Infect 2016; 1:88-91; http://dx.doi.org/10.1016/j.jinf.2016.04.006

[6] Insua JL, Llobet E, Moranta D, Pérez-Gutiérrez C, Tomás A, Garimenda J, Bengochea JA. Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella. Infect Immun 2013; 81:3552-65;

PMID:23836821; http://dx.doi.org/10.1128/IAI.00391-13

[7] Russo TA, Olson R, Macdonald U, Metzger D, Maltese LM, Drake EJ, Gulick AM. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoisoviscous) Klebsiella pneumoniae. Infect Immun 2014; 82:2356-67;

PMID:24664504; http://dx.doi.org/10.1128/IAI.01667-13

[8] Chou HC, Lee CZ, Ma LC, Fang CT, Chang SC, Wang JT. Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection. Infect Immun 2004; 72:3783-92; PMID:15213119;

http://dx.doi.org/10.1128/IAI.72.7.3783-3792.2004

[9] Struve C, Roe CC, Stegger M, Stahlhut SG, Hanssen DS, Engeltalmer DH, Andersson PS, Driebe EM, Kepim, Krogfelt KA. Mapping the Evolution of Hypervirulent Klebsiella pneumoniae. MBio 2015; 6:e00630-15-12;

http://dx.doi.org/10.1128/mBio.00630-15

[10] Peirano G, Pitout JD, Laupland KB, Wehterall B, Gregson DB. Population-based surveillance for hypermucoisoviscosity Klebsiella pneumoniae causing community-acquired bacteremia in Calgary, Alberta. Can J Infect Dis Microbiol 2013; 24:e61-4;

PMID:24421832

[11] Chuang YC. Association between magA and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis 2006; 42:1351-8;

PMID:16619144; http://dx.doi.org/10.1086/503420
[17] Arena F, De Angelis LH, Cannatelli A, Di Pilato V, Amorose M, D’Andrea MM, Giani T, Rossolini GM. Colistin resistance caused by inactivation of the MgrB regulator is not associated with decreased virulence of ST258 KPC carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2016; 60:2509-12; PMID:26824959; http://dx.doi.org/10.1128/AAC.02981-15

[18] Diago-Navarro E, Chen L, Passet V, Burack S, Ulacia-Arena F, Martinez R, Darini ALC. Expansion and evolution of a carbapenem-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae isolates from clinical infections in China. J Infect 2015; 71:553-60; PMID:26304687; http://dx.doi.org/10.1016/j.jinf.2015.07.010

[19] Tiouva B, Xiao X, Wang F, Zhou L, Zhang X, Zhang J. Clinical and molecular characteristics of multi-clone carbapenem-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae isolates in a tertiary hospital in Beijing, China. Int J Infect Dis 2015; 37:107-12; PMID:26141415; http://dx.doi.org/10.1016/j.ijid.2015.06.023

[20] Zhang Y, Zeng J, Liu W, Zhao F, Hu Z, Zhao C, Wang Q, Wang X, Chen H, Li H, et al. Emergence of a hypervirulent carbapenem-resistant Klebsiella pneumoniae isolate from clinical infections in China. J Infect 2015; 71:553-60; PMID:26304687; http://dx.doi.org/10.1016/j.jinf.2015.07.010

[21] Zhang R, Lin D, Chan EW-C, Gu D, Chen GX, Chen S. Emergence of carbapenem-resistant Serotype K1 hypervirulent Klebsiella pneumoniae (hvKP) strains in China. Antimicrob Agents Chemother 2015; 60:709-11; PMID:26574010; http://dx.doi.org/10.1128/AAC.02173-15

[22] Wei DD, Wan LG, Zeng LB, Deng Q, Liu Y. Emergence of KPC-producing Klebsiella pneumoniae hypervirulent clone of capsular serotype K1 that belongs to Sequence Type 11 in Mainland China. Diagn Microbiol Infect Dis 2016; 85:192-4; PMID:27049969; http://dx.doi.org/10.1016/j.diagmicrobio.2015.03.012

[23] Rafiq Z, Sam N, Vaidyanathan R. Whole genome sequence of Klebsiella pneumoniae U25, a hypermucoviscous, multidrug resistant, biofilm producing isolate from India. Mem Inst Oswaldo Cruz 2016; 111:144-6; PMID:26872343; http://dx.doi.org/10.1590/0074-276020150423

[24] Shankar C, Nabarro LEB, Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Daniel JKL, Doss C GP, Veeraraghavan B. Draft genome sequences of three hypervirulent carbapenem-resistant Klebsiella pneumoniae isolates from bacteremia. Genome Announc 2016; 4: e01081-16; PMID:27932638

[25] Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455-77; PMID:22506599; http://dx.doi.org/10.1089/cmb.2012.0021

[26] Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formisano K, Gerdes S, Glass EM, Kubal M, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75; PMID:18261238; http://dx.doi.org/10.1186/1471-2164-9-75

[27] Cannatelli A, Di Pilato V, Giani T, Arena F, Ambretti S, Giabani P, D’Andrea MM, Rossolini GM. In vivo evolution of colistin resistance caused by KPCb producing Klebsiella pneumoniae associated with low-dosage colistin treatment. Antimicrob Agents Chemother 2014; 58:4399-403; PMID:24841267; http://dx.doi.org/10.1128/AAC.02555-14

[28] Laing C, Buchanan C, Taboada EN, Zhang Y, Kropinski A, Villegas A, Thomas JE, Gannon VPJ. Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions. BMC Bioinformatics 2010; 11:461; PMID:20843356; http://dx.doi.org/10.1186/1471-2105-11-461
[39] Cannatelli A, Giani T, D’Andrea MM, Di Pilato V, Arena F, Conte V, Tryfinopoulou K, Vatopoulos A, Rossolini GM, Group CS, et al. MgrB inactivation is a common mechanism of colistin resistance in KPC carbapenemase-producing *Klebsiella pneumoniae* of clinical origin. Antimicrob Agents Chemother 2014; 58:5696-703; PMID:25022583; http://dx.doi.org/10.1128/AAC.03110-14

[40] Rosen DA, Hilliard JK, Tiemann KM, Todd EM, Morley SC, Hunstad DA. *Klebsiella pneumoniae* FimK promotes virulence in murine pneumonia. J Infect Dis 2016; 213:649-58; PMID:26347570; http://dx.doi.org/10.1093/infdis/jiv440

[41] D’Andrea MM, Amisano F, Giani T, Conte V, Ciacci N, Ambretti S, Santoriello L, Rossolini GM. Diversity of capsular polysaccharide gene clusters in Kpc-producing *Klebsiella pneumoniae* clinical isolates of sequence type 258 involved in the Italian epidemic. PLoS One 2014; 9: e96827; PMID:24823690; http://dx.doi.org/10.1371/journal.pone.0096827

[42] Collins RF, Beis K, Dong C, Botting CH, McDonnell C, Ford RC, Clarke BR, Whitfield C, Naismith JH. The 3D structure of a periplasm-spanning platform required for assembly of group I capsular polysaccharides in *Escherichia coli*. Proc Natl Acad Sci USA 2007; 104:2390-5; PMID:17283336; http://dx.doi.org/10.1073/pnas.0607763104

[43] Fang CT, Chuang YP, Shun CT, Chang SC, Wang JT. A novel virulence gene in *Klebsiella pneumoniae* strains causing primary liver abscess and septic metastatic complications. J Exp Med 2004; 199:697-705; PMID:14993253; http://dx.doi.org/10.1084/jem.20030857

[44] Wyatt GR, Loughheed TC, Wyatt SS. The chemistry of insect hemolymph; organic components of the hemolymph of the silkworm, *Bombyx mori*, and two other species. J Gen Physiol 1956; 39:853-68; PMID:13346040; http://dx.doi.org/10.1085/jgp.39.6.853