Metabolites released from apoptotic cells act as novel tissue messengers

Christopher B. Medina\(^1,2\), *Parul Mehrotra\(^7\), *Sanja Arandjelovic\(^1,2\), *Justin S.A. Perry\(^1,2\), Yizhan Guo\(^3\), Sho Morioka\(^1,2\), Brady Barron\(^1,5\), Scott F. Walk\(^1,2\), Bart Ghesquière\(^6\), Alexander S. Krupnick\(^3,5\), Ulrike Lorenz\(^2,6\), and Kodi S. Ravichandran\(^{1,2,4,6,7}\)

\(^1\)Center for Cell Clearance, \(^2\)Department of Microbiology, Immunology, and Cancer Biology, \(^3\)Department of Surgery, \(^4\)Pharmacology, and \(^5\)Carter Immunology Center, University of Virginia, Charlottesville, VA, \(^6\)Department of Oncology and VIB, KULeuven, Belgium, and \(^7\)VIB/UGent Inflammation Research Centre, Biomedical Molecular Biology, Ghent University, Belgium. * contributed equally to this work
Supplementary Table 1. Jurkat UV metabolite release. List of metabolites released after UV treatment of Jurkat cells relative to live cell controls (n=4). Two-sided Welch’s two-sample t-test.

Supplementary Table 2. Metabolite supernatant enrichment and pellet decrease. List of metabolites released after UV treatment of Jurkat cells relative to live cell controls (n=4) and reciprocally decreased in the cell pellet (n=4).

Supplementary Table 3. HMT metabolites. List of metabolites screened in the targeted metabolomics analysis.

Supplementary Table 4. Table of metabolites released in a Panx1-dependent manner from untargeted metabolomics of Jurkat T cells undergoing apoptosis. Along with metabolite name, metabolite size (in Daltons), charge, and reference to previous studies, where particular extracellular treatment of the specific metabolites have been attempted.

References related to Supplementary Table 4.