Feeling Manipulated: Cytomegalovirus Immune Manipulation

Mindy Miller-Kittrell

Tim E. Sparer

University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs

Part of the Microbiology Commons

Recommended Citation

Virology Journal 2009, 6:4, doi:10.1186/1743-422X-6-4
Feeling manipulated: cytomegalovirus immune manipulation

Mindy Miller-Kittrell and Tim E Sparer*

Address: Department of Microbiology, University of Tennessee, 1414 Cumberland Ave., Knoxville, TN, USA
Email: Mindy Miller-Kittrell - mmille14@utk.edu; Tim E Sparer* - tsparer@utk.edu
* Corresponding author

Abstract

No one likes to feel like they have been manipulated, but in the case of cytomegalovirus (CMV) immune manipulation, we do not really have much choice. Whether you call it CMV immune modulation, manipulation, or evasion, the bottom line is that CMV alters the immune response in such a way to allow the establishment of latency with lifelong shedding. With millions of years of coevolution within their hosts, CMVs, like other herpesviruses, encode numerous proteins that can broadly influence the magnitude and quality of both innate and adaptive immune responses. These viral proteins include both homologues of host proteins, such as MHC class I or chemokine homologues, and proteins with little similarity to any other known proteins, such as the chemokine binding protein. Although a strong immune response is launched against CMV, these virally encoded proteins can interfere with the host's ability to efficiently recognize and clear virus, while others induce or alter specific immune responses to benefit viral replication or spread within the host. Modulation of host immunity allows survival of both the virus and the host. One way of describing it would be a kind of "mutually assured survival" (as opposed to MAD, Mutually Assured Destruction). Evaluation of this relationship provides important insights into the life cycle of CMV as well as a greater understanding of the complexity of the immune response to pathogens in general.

Introduction

After an initial primary infection herpesviruses establish latency for the life of the host with periodic and spontaneous reactivation. The coevolution of herpesviruses along with their host allowed these viruses to evolve mechanisms to modulate the host immune response. While some virally encoded proteins facilitate immune evasion, interfering with the host's ability to efficiently recognize and clear virus, others induce or alter specific immune responses to benefit the viral life cycle. Among the herpesviruses, cytomegaloviruses (CMVs) encode the greatest number of genes committed to altering both innate and adaptive immune responses (Additional files 1 and 2).

Innate Immune Responses

Complement Cascade

The complement system is composed of a number of plasma proteins that induce inflammatory mediators, opsonization of pathogens, and direct lysis of pathogens and infected cells. The binding of complement proteins to antibody-antigen complexes activates the classical complement pathway, bridging innate and humoral immune responses. The binding of complement proteins directly to the surface of pathogens or infected cells initiates the alternative pathway. Both pathways lead to a common activation of the C3 convertase and subsequent elicitation of chemoattractants (e.g. C5a), opsonizing factors (e.g.
C3b) and the membrane attack complex. Antibody-mediated complement lysis is an important mechanism for elimination of virus-infected cells. Therefore, a number of herpesviruses encode complement regulatory proteins. Herpes simplex virus 1 (HSV-1) and Epstein Barr virus (EBV) both have homologues of regulators of complement activation (RCA) proteins, such as CD46 and CD55 [1]. Complement control proteins including CD46, CD55, and CD59 regulate and also inhibit various stages within the complement cascade [2]. While no CMV encoded RCA homologues have been identified, CMVs have evolved mechanisms for limiting complement activity. HCMV infected fibroblasts are resistant to complement lysis when treated with CMV-specific antibodies, which would be expected to induce the classical complement pathway [3]. Human CMV (HCMV) incorporates cellular CD55 and CD59 into its virion. The importance of these complement inhibitory proteins was demonstrated when antibodies against CD55 decreased HCMV replication in fibroblasts following incubation with complement components [4]. The decrease in viral titers in the presence of these antibodies showed that inhibition of complement activation (i.e. interfering with inhibitory CD55) is important for HCMV replication. HCMV also upregulates the expression of CD46 and CD55 on the surface of infected cells, which decreases the accumulation of C3 convertases. This in turn, protects the cells from complement mediated lysis [5]. Although the mechanisms differ from other herpesviruses, HCMV is able to inactivate the complement cascade, increasing virus replication/survival.

Mouse CMV (MCMV) also induces CD46 expression on infected fibroblasts. This upregulation was mapped to a CMV responsive element within the CD46 promoter [6]. Mice typically express the complement regulator CRRY instead of CD46 [7]. However, MCMV infected cells resist complement lysis and CD46 expression is associated with this decrease [6]. The viral proteins that interfere with this specific, antibody-mediated complement activity during MCMV infection have not been identified.

Fc Receptor Homologues

Clinical evidence supports a role for antibodies in limiting cytomegalovirus infection [8] and modulation of antibody-mediated immunity would be beneficial for CMV survival. CMV infected cells can bind immunoglobulins in serum of seronegative individuals [9-12]. This phenomenon was linked to the expression of Fc binding proteins (FcBPs) on the surface of infected cells that are specific for IgG but not other isotypes [13-15]. Both MCMV and HCMV encode FcBPs. MCMV encodes one FcBP, fcr-1 or m138. Although, m138 has no homology to the HCMV Fcγ BP it has conserved structural features with cellular Fcγ receptors (FcγRs) and the viral FcγR of HSV (gE-gI) [16]. Normally the FcRs from the host interact with the Fc region of Igs and mediate a number of effector functions including phagocytosis, release of inflammatory cytokines, and natural killer (NK) cell-mediated antibody dependent cellular cytotoxicity (ADCC)[17]. It has been speculated that the Fc region of anti-CMV antibodies bind the viral FcγR instead of host FcγRs and block antiviral activities. m138 is important for MCMV replication in vivo. However, both wild-type and B cell deficient mice infected with a Δm138 MCMV mutant had lower viral titers in several organs compared to mice infected with wild-type MCMV. Thus impaired growth of MCMV is not due to an enhanced humoral immune response in the absence of m138 (i.e. similar titers were found in the presence or absence of humoral responses) [18,19]. Interestingly, m138 downregulates expression of H60 and MULT-1, two ligands of the activating NK receptor, NKG2D. The importance of this downregulation in vivo was demonstrated when the Δm138 MCMV was found at two logs reduced titer compared to wt MCMV. Both replicated equivalently in NK cell depleted mice. The downregulation of MULT-1, but not H60, is due to defective cellular trafficking that results in degradation of the protein [20]. m138 also decreases cell surface trafficking of the costimulatory molecule B7-1 on dendritic cells (DCs), interfering with the ability of these cells to activate antigen specific T cells [21]. Thus the MCMV FcγR should broadly affect both NK cell recognition and perhaps presentation to the adaptive immune response, although in a manner different from HSV-1 gE-gl.

Two HCMV FcγRs have been identified, gp34 and gp68, which are encoded by the genes TRL11/IRL11 and UL119-UL118, respectively [22,23]. Although the function of the HCMV-encoded FcγRs has not been determined, initially it was assumed they would function like the viral FcγR from HSV-1 (gE-gI), which protects infected cells from ADCC and complement activation [24,25]. Recently it was shown that gp68 binds the same IgG domain and with the same stoichiometry as HSV-1 gE-gI. However, the two proteins have different pH requirements for binding which may relate to different mechanisms following IgG engagement, although this possibility requires additional study [26].

Interferon-Mediated Immunity

While interferons (IFNs) are induced early during CMV infection [27-32], CMVs encode a number of proteins that mitigate the effects of IFN activation [33-35]. The type I interferons IFNα and IFNβ are part of the innate immune response to viral infections [36]. The binding of IFNα and IFNβ to the IFN receptor induces Jak/Stat signalling leading to the rapid upregulation of interferon-stimulated genes (ISGs), such as MHC class I molecules and various cytokines [37]. Two HCMV immediate early gene prod-
ucts, 72 kDa immediate early 1 (IE1) protein (IE1-p72) and IE2 protein (IE86), interfere with IFN signalling. IE1-p72 binds STAT2 inhibiting the ISG transcriptional activator, ISGF3, from binding to the ISG promoter [38,39]. IE86 blocks binding of the transcription factor NFkB to the IFNβ promoter and leads to the downregulation of IFNβ expression in HCMV infected fibroblasts [40,41].

The HCMV tegument protein pp65 (UL83) has been implicated in blocking interferon activity early during infection prior to transcription of the immediate early gene products [30]. Microarray analysis using wt HCMV and a UL83 deletion mutant revealed pp65 downregulates numerous ISGs although the mechanism for this is unclear [42]. Conflicting reports have attributed this decrease to interference with either NFkB activity or another transcriptional regulator, IRF-3, although both authors suggest a pp65-mediated defect in nuclear localization of the transcription factors likely contributes to the decreased activity [42,43]. However, a UL83 mutant virus like that used in these previous studies was also shown to have decreased IE86 expression. In contrast, cells infected with an HCMV mutant in which stop codons were used to disrupt pp65 expression, preserving IE86 expression, showed no difference in IFN expression compared to wt HCMV [44]. This suggests IE86 activity is crucial in mitigating IFN-mediated events following infection. Nevertheless, the conservation of UL83 within CMV genomes and the attenuation of an MCMV lacking expression of the murine pp65 homolog [45] points to the importance of pp65 for CMV survival in vivo.

The MCMV encoded protein, M27, interferes with both type I and type II (IFNγ) interferon activity by downregulating the signalling molecule, STAT2 [46,47]. M27 decreases transcription of constituents of the immunoproteasome [48]. This IFNγ inducible proteasome enhances MHC class I processing of peptides for presentation. Therefore, M27 may not only protect MCMV from the direct antiviral effects of interferon induction but also interfere with the presentation of viral peptides to CD8+ T cells, a common theme to be discussed below.

MCMV and HCMV also encode proteins that interact with interferon induced gene products. The MCMV gene products m142 and m143 decrease activation of protein kinase R (PKR) [49], an enzyme that blocks protein synthesis in infected cells leading to impaired viral replication. PKR is activated via dsRNA, which is produced during transcription of complementary strands of the CMV genome. Both m142 and m143 have dsRNA binding domains and may interfere with the binding of PKR with dsRNA, preventing its activation [50]. The HCMV encoded proteins TRS1 and IRS1 are capable of binding dsRNA and can substitute for the vaccinia virus (VV) RNA binding protein [51,52]. However, the role of these proteins in the context of HMCV infection has not been evaluated [53].

Natural Killer Cells

Natural killer (NK) cells are cytotoxic cells of the innate immune response that play an important role in eliminating virus-infected cells early during infection. Signalling induced via activating receptors in absence of inhibitory receptor signalling regulates the cytotoxic activity of NK cells. Inhibitory receptors recognize specific MHC class I alleles whereas a number of ligands can bind activating receptors to trigger NK cell mediated killing. NK cells are important for controlling CMV infections both in mice and humans [54]. Therefore, it is not surprising the CMVs encode numerous proteins that interfere with NK cell activity [55].

Some HCMV encoded proteins alter expression of NK cell receptor ligands. The UL16 encoded glycoprotein, gpUL16, binds a number of ligands of the NK cell activating receptor, NKG2D. gpUL16 binds members of the UL16-binding protein (ULBP) and MIC family of proteins, which are stress induced NK ligands [56]. In particular, gpUL16 binds to ULBPs 1 and 2 [57,58] and MICB [59]. gpUL16 downregulates these proteins, retaining them intracellularly in the ER or Golgi network [60-62]. The interaction of gpUL16 with these ligands blocks NK cell activation in vitro [56,57,63,64] and may represent a way for HCMV to inhibit NK cell activation due to replication-induced cell stress.

Like gpUL16, the recently identified HCMV microRNA (miRNA), miR-UL112, also decreases expression of the NK ligand, MICB. miRNAs bind to 3' UTRs and prevent their translation. The miR-UL112 mediated decrease in MICB helps protect HCMV-infected cells from NK cell recognition and killing [65] and suggests that control of MICB expression and avoidance of NK recognition is important to the HCMV life cycle. As the field of CMV miRNA’s begins to expand, an understanding of the role that miRNAs play in immune manipulation will also expand.

MCMV also encodes three proteins that downregulate ligands of the NK cell activating receptor, NKG2D. The m145 encoded protein decreases expression of MULT-1 [66], the m155 encoded glycoprotein (m155) downregulates H60 [67], and the m152 encoded glycoprotein (gp40) downregulates proteins of the RAE-1 family [68-70]. MCMV mutants lacking any one of these genes are attenuated in vivo and NK cell depletion restores MCMV growth. These results support a role for these proteins in inhibiting NK cell mediated clearance [66,69,71,72]. Although the exact mechanism of action is not known for these proteins, both m155 and gp40 act at a post-transcriptional step and...
likely interfere with trafficking of NK ligands to the cell membrane [67,69,72].

MCMV encodes two homologues of MHC class I molecules, although neither has similarity to the HCMV homolog, UL18 [73,74]. The MCMV gene m157 has low sequence homology to MHC class I molecules but structural analysis shows it has MHC-like folds [75]. m157 is expressed on infected cells and is tethered to the membrane with a glycosylphosphatidylinositol (GPI) anchor [76,77]. m157 binds to Ly49H, an activating receptor of the Ly49 family of NK receptors [75,78]. Interestingly, the m157-Ly49H interaction activates NK cells in vitro inducing NK cell cytotoxicity and cytokine and chemokine expression [79,80]. In the structural paper exploring m157/Ly49H interactions, Adams et al showed that m157 activation of Ly49H is sufficient to override MHC I/NK cell inhibition [81]. In vivo, MCMV mutants lacking m157 are more virulent in mice due to decreased NK cell activity [82]. Furthermore, MCMV replicates to higher titers in mouse strains that lack expression of Ly49H receptors [83,84], demonstrating that Ly49H activation is important for immune protection against MCMV. Although Ly49H protects against MCMV in laboratory mice, MCMV isolates from wild mice have m157 variants that fail to activate NK cells, thus providing evidence of evasion of NK recognition [85]. Mutations in m157 were also shown to accumulate following multiple passages of MCMV in mice indicating selection pressure for m157 variants that fail to activate NK cells. Furthermore, m157 also binds the inhibitory NK receptor, Ly49I, of some susceptible mouse strains such as 129/J [75]. This has led to the speculation that CMVs evolved m157 to interact with NK inhibitory receptors but in some strains of mice this immune manipulation “backfires” and causes NK cell activation. These data suggest that m157 activation of NK may occur less frequently in natural infection of mice in the wild.

m144 is another MCMV encoded MHC class I homolog [74,86]. m144 is expressed on the cell surface despite its inability to bind endogenous peptides like other MHC homologues [87]. m144 can inhibit NK cell cytolysis in vitro [88], suggesting it serves as a decoy receptor to inhibit NK cell activation. Consistent with this idea, MCMV mutants without m144 expression grow poorly in mice due to enhanced NK cell activation [89]. While a flexible region within m144 that could potentially interact with host receptors has been identified [90], m144 has not been shown to bind any cellular receptors and its mechanism of function remains unknown [88]. A rat CMV (RCMV) homolog of m144, r144, has also been identified [91]. Wild type RCMV shows enhanced replication in the salivary gland and spleen of neonatal rats when compared to an r144 deletion mutant [92]. However, what affect this protein has on NK cell activity is not currently known.

HCMV encodes several proteins that interact with and alter NK cell responses. One of the earliest identified proteins, gpUL18, is encoded by the gene UL18 and is a MHC class I homologue [93,94]. gpUL18 binds the β2-microglobulin (β2m) and unlike the MHC homologue of MCMV, m144, gpUL18 also binds endogenous peptide [95,96]. gpUL18 binds the NK cell inhibitory receptor LIR-1 with higher affinity than host MHC class I molecules [97-100]. However, the function of gpUL18 has not been clearly defined. gpUL18 expression both inhibits and activates NK cells in vitro [101-106]. For instance, gpUL18 activates NK cells from LIR-1 - mice implicating a complex mechanism for NK cell modulation. Furthermore, clinical isolates of HCMV express gpUL18 variants with different LIR-1 binding affinities [107,108] that may have differential functions. HCMV gpUL18-deletion mutants have shown both gpUL18 dependent and independent effects on NK cell activity in different cellular systems [101,109]. In addition to its effect on NK cells, gpUL18 was recently shown to inhibit dendritic cell maturation and migration. While dendritic cells express LIR-1, whether this receptor mediates the effect of gpUL18 on dendritic cell activity was not determined [110]. Importantly, the HCMV encoded proteins that downregulate host MHC class I molecules do not interfere with the expression of gpUL18, which provides “protection“ from NK cell lysis that occurs when MHC class I is downregulated [111,112]. Collectively, current data suggests gpUL18 may impact the function of several cell types in vivo that may partially relate to its ability to bind and activate LIR-1 [113].

Recently, it was found that the UL142 gene encodes a second HCMV MHC class I homologue [114]. Cells expressing gpUL142 are protected from NK cell lysis. However, this effect was not evaluated in the context of HCMV infection [115]. While the mechanism of this effect has yet to be determined, gpUL142 was shown to downregulate MICA, a ligand for the activating NK cell receptor, NKG2D [116].

Interestingly, HCMV increases expression of the non-classical MHC class I molecule, HLA-E, while downregulating expression of many other MHC class I alleles [117]. This upregulation is due to the expression of UL40, a HCMV encoded protein that contains a peptide sequence identical to the HLA-E leader peptide [118-120]. Therefore, UL40 increases expression of HLA-E independent of TAP mediated peptide processing, which the HCMV encoded protein, gpUL6, inhibits during infection [121]. HLA-E is a ligand for the inhibitory receptor CD94/NKG2A and the UL40 induced upregulation of HLA-E would be expected to protect HCMV infected cells from NK cell lysis. However, conflicting reports have found UL40 inhibited or had no effect on NK cell lysis of HCMV infected cells.
Additionally, the HLA-E restricted NK-CTLs recognize the UL40 peptide and kill virally infected cells [117,122]. Thus, whether UL40 protects HCMV infected cells or targets them for destruction requires further evaluation.

The tegument protein, pp65, also interferes with NK cell function by binding the activating receptor Nkp30. pp65 mediates the dissociation of CD3ζ, a signal transducing polypeptide, from NK cells impairing their activation [125]. Since pp65 is not secreted or expressed on infected cells, it is currently unclear how this protein mediates its effects.

Finally, the protein product of UL141, gp141, decreases the expression of CD155, a ligand for NK cell activating receptors by inhibiting CD155 transport to the cell surface [126]. This downregulation inhibits NK cell activity in vitro but further information regarding its function and impact in vivo remain to be answered.

Cytokine Homologues

Interleukin-10 (IL-10) is an immunosuppressive cytokine that downregulates inflammatory cytokine synthesis and interferes with antigen presentation by decreasing expression of MHC class II on antigen presenting cells [127]. Members of the poxvirus and herpesvirus families, including HCMV, encode IL-10 homologues [128]. In contrast to other viral IL-10 homologues, such as those encoded by EBV and orf virus, a poxvirus, both of which have high amino acid similarity (80%) to their host IL-10. The HCMV IL-10 protein, cmvIL-10, has only limited homology (27%) to human IL-10 (hIL-10) [129]. cmvIL-10 binds the IL-10 receptor, hIL-10R, albeit with lower affinity than hIL-10 [129,130]. Nevertheless, it retains the capacity to induce a strong anti-inflammatory response. cmvIL-10 downregulates expression of IFNγ and TNFα in peripheral blood mononuclear cells (PBMCs) and decreases expression of both MHC class I and II on PBMCs and DCs [130-133]. DCs exposed to cmvIL-10 inefficiently stimulated T cell proliferation [132] supporting its role in immune suppression. Furthermore, cmvIL-10 inhibits cytokine production due to the activation of the phosphotyrosdinositol 3-kinase pathway [134]. Interestingly, cmvIL-10 was recently shown to stimulate B cell proliferation but the impact of this on the immune response to CMV is unclear [135]. cmvIL-10 alters the function of non-leukocyte populations as well. By interfering with placental cytrophoblast invasion, cmvIL-10 could affect placental development, which contributes to the sequelae observed following congenital CMV infections [136].

An alternatively spliced version of cmvIL-10 was originally identified during latent HCMV infection and termed latency associated cmvIL-10 (LacmvIL-10) [137]. However, this transcript is also expressed during productive infection [138]. LacmvIL-10 fails to induce signalling pathways associated with IL-10R activation, which implies LacmvIL-10 may not bind to IL-10R or, at least, differentially activates this receptor. LacmvIL-10 also decreases MHC class II expression on granulocyte-macrophage progenitors (GM-Ps) and monocytes, both sites of CMV latency, possibly limiting clearance of latently infected cells [139].

A number of primate CMVs encode proteins similar to IL-10 [140] but only the function of the rhesus CMV (RhCMV) homologue has been evaluated to date. RhcmvIL-10 downregulates cytokine expression in PBMCs and MHC class II molecule expression in monocytes [130]. Therefore, the function of human cmvIL-10 is conserved in RhCMV. Interestingly, chimpanzee cytomegalovirus (CCMV) and MCMV do not encode IL-10 homologues [140]. MCMV infection induces cellular IL-10 expression providing a mechanism for immune interference in the absence of a virally encoded IL-10 protein [141,142]. Therefore, IL-10 immune suppression, whether cellular or viral in origin, likely creates an environment that supports efficient viral replication in the host.

Cytokine Receptor Homologues

The HCMV gene, UL144, encodes a protein with limited homology to the herpes simplex virus entry mediator (HVEM), a member of the tumour necrosis factor receptor (TNFFR) superfamily [143]. UL144 is the only TNF homolog identified in herpesviruses. The UL144 protein does not bind any known TNF ligands [143-145]. UL144 binds to a member of the Ig superfamily, B and T lymphocyte attenuator (BTLA) [146], also a ligand of HVEM [147]. Binding of UL144 to BTLA blocks T cell proliferation and could impair lymphocyte responses to HCMV [146]. UL144 activates TNFR-activated factor (TRAF6) leading to NFκB activation and upregulation of the chemokine CCL22 [145,148]. CCL22 is a chemoattractant of Th2 and regulatory T cells. Activation and attraction of these cells may help HMCV evade T cell-mediated antiviral activity. UL144 is located in the UL/b’ region of HCMV, a portion of the genome thought to encode potential virulence factors. Different UL144 genotypes have been identified in clinical isolates. However, all but one report has found no association between the different genotypes and CMV disease [144,149-155]. Although there is much speculation on the role that UL144 plays in immune modulation, its role in CMV pathogenesis and survival is still unclear.

Viral Chemokine Homologues

Many CMVs also encode chemokine homologues. Chemokines are small, chemotactic cytokines that are important
for leukocyte trafficking and activation. The best characterized of the CMV chemokines is the CC chemokine homolog of MCMV. Originally identified as the m131 gene product, MCK1, transcriptional analysis during MCMV infection determined that a spliced product of m131 and m129, referred to as MCK2 was the only transcript encoded from this locus. The CC chemokine domain is confined to the MCK1 coding region and is connected to a long carboxyl-terminal domain (199 amino acids) with no known homology to other proteins. This makes MCK2 considerably longer than other chemokines [156,157]. In contrast to UL146 (see below), the DNA sequence of MCK2 is highly conserved in isolates from wild mice [158].

Initial studies in vitro showed MCK1 induced higher levels of Ca\(^{2+}\) mobilization in peritoneal exudate cells from MCMV infected mice than cells from uninfected mice. This demonstrated that MCK1 could activate cells recruited to the site of MCMV infection [159]. The spliced product, MCK2, is important for viral spread within the host. When a recombinant MCMV with mutations in the m131 gene (generated either via point mutations or insertions) was inoculated into mice, these recombinants showed a defect in dissemination to the salivary gland. Mice infected with these mutants developed less inflammation at the site of inoculation, reduced secondary viremia, as well as lower viral titers in the salivary glands, a site of dissemination following secondary viremia [160,161]. This was the first direct evidence that a CMV encoded chemokine is important for the dissemination of the virus in its host. Additional work identified the MCK2-recruited cell type as a late myeloid progenitor, consistent with reports that CMV infects and can remain latent in cells of the myelomonocytic lineage [162].

Rat CMV (RCMV) encodes a CC chemokine with similarity to both m131 and m129, having N-terminal chemokine homology and a long carboxyl-terminus like MCK2 [163]. Rats infected with RCMV deletion mutants lacking pr131 expression, the product of the r131 locus, had reduced viral loads in the spleen and salivary glands. Additionally these mice had reduced swelling and macrophage infiltration at the site of virus inoculation [164]. Therefore, pr131 appears to be a functional homolog of MCK2.

Guinea pig CMV (GPCMV) contains a gene with homology to CC chemokines, though it lacks positional or sequence similarity to the m131/m129 genes of MCMV. GPCMV-MIP is most similar to the cellular chemokines, CCL3/CCL4 (MIP-1α/β) and CCL14 (HCC-1). GPCMV-MIP induced Ca\(^{2+}\) flux and migration of cells expressing hCCR-1 but did not elicit a response from cells expressing other CC receptors [165]. CCL14 is known to increase the proliferation of monocyte progenitors, therefore GPCMV-MIP may enhance the proliferation and/or recruitment of permissive cells consistent with the role of MCK2 [166].

HCMV encodes two ORFs with homology to CXC chemokines, UL146 and UL147 [167]. While no functional data is available for the protein product of UL147, vCXCL-2 (also called pUL147 and vCXC-2), analysis of the protein product of UL146, vCXCL-1 (also denoted pUL146 and vCXC-1), demonstrated its capacity as a functional chemokine. vCXCL-1 was shown to bind exclusively to hCXCR2 with an affinity similar to that of the host chemokine, CXCL8. Additionally, vCXCL-1 was able to induce chemotaxis and intracellular calcium release in human neutrophils, again to levels comparable to host chemokines [168]. A mutant HCMV virus with a deletion of UL146-UL147 was unable to infect neutrophils but retained its ability to infect other cells providing additional evidence these proteins facilitate an interaction of HCMV with neutrophils [169].

Chimpanzee CMV (CCMV) encodes homologues of UL146 and UL147 as well as the related gene UL146a. However, only the product of UL146 (vCXCL-1CCMV) has been evaluated thus far. vCXCL-1CCMV induces chemotaxis and calcium release in human neutrophils. Additionally, it was shown to increase expression of adhesion molecules on the surface of neutrophils and reduce apoptosis in these cells [170]. Taken together, the function of the HCMV and CCMV vCXCL-1s in vitro suggest the potential for these viral chemokines to alter the response of neutrophils in the course of CMV infection.

Due to the strict species specificity of CMVs, in vivo characterization of UL146 and UL147 has been limited to sequence analysis of clinical HCMV isolates. UL146 is highly variable, differing as much as 60% among isolates at the amino acid level [152]. It was postulated that this variability might correlate with the severity of CMV disease however no clear relationship has been identified [151,171-173]. It was recently suggested the variability of UL146 may have arisen in early human populations and likely does not contribute to the pathogenesis of congenital infection [173]. Our lab is currently working to identify whether the vCXCL-1 isolates from different clinical strains induce functional differences in neutrophils.

HCMV also encodes genes with limited homology to CC chemokines. UL128 and UL130 both have signal sequences and conserved cysteine motifs similar to CC chemokines [174], but it is yet to be determined whether these proteins actually function as chemokines. Interestingly, the UL128-131 locus was found to be necessary for endothelial cell and leukocyte tropism based on the inability of HCMV UL128-131 deletion mutants to infect
these cell types [169]. This likely explains the loss of endothelial cell tropism in lab-adapted strains of HCMV, a number of which were shown to have deletions or mutations in at least one gene from this region [174]. The UL128-131 proteins have recently been shown to interact with gHgL complexes that mediate entry of CMV into endothelial and epithelial cells, in contrast to the gHgL complexes that mediate virus entry into fibroblasts [175,176].

Chemokine Receptor Homologues
In addition to viral chemokine homologues, CMVs encode proteins with homology to chemokine receptors [177,178]. Chemokine receptors are members of the G-protein coupled receptor (GPCR) family [179]. The four chemokine receptor homologues encoded by the cytomegaloviruses have homology to the CC chemokine receptor family. Two genes, UL33 and UL78, are conserved among all sequenced CMVs, while primate CMVs encode two additional GPCRs, US27 and US28 [180].

The HCMV US28 encoded protein (pUS28) is the best characterized of the GPCR homologues. US28 has the highest sequence homology to the cellular receptor, CCR1, and binds a number of CC chemokines including CCL5 (RANTES), CCL2 (MCP-1), CCL3 (MIP-1α), and CCL4 (MIP-1β) [181,182]. Interestingly, pUS28 binds with highest affinity to the CX3C chemokine, CX3CL1 (fractalkine) [183]. Upon binding, pUS28 induces chemokine internalization, removing chemokines from the extracellular environment [184-186]. Consistent with this role, pUS28 inhibits monocyte migration in vitro and media from US28 expressing, CMV-infected monolayers deplete CCL5 and CCL2 from the media [187]. Constitutive endocytosis and recycling of pUS28 contributes to chemokine internalization however chemokine binding is not sufficient to induce constitutive endocytosis of pUS28 [188]. By acting as a "chemokine sink", pUS28 could alter or inhibit chemokine-dependent immune responses. The related chemokine homolog, pUS27, also shows some ability to internalize chemokines [185,189], perhaps illustrating a conservation of function between the viral GPCRs.

pUS28 elicits ligand-dependent signalling, triggering calcium mobilization upon CCL5, CCL2, CCL3 and CCL7 binding. pUS28 utilizes the G proteins Gaα and Gaα16 to mediate calcium mobilization upon binding of CCL5 or CCL7 [181,190,191]. Interestingly, Gaα16 expression is restricted to hematopoietic cells [192]. HCMV has a tropism for this cell lineage where pUS28 may alter Gaα16 signalling to benefit CMV's life cycle. pUS28 also induces agonist-dependent migration of smooth muscle cells (SMCs). Migration of SMCs in response to pUS28 requires the protein tyrosine kinase (PTK) pathway, indicating pUS28 activates a number of cellular pathways in vitro [193,194]. As with many CMV proteins, the effects of pUS28 vary depending on the system and cell types analyzed.

Like the Kaposi's sarcoma-associated herpesvirus (KSHV) GPCR homolog, ORF74 [195], pUS28 can constitutively activate several signalling pathways, including phospholipase C (PLC), NFκB, NFAT, and cAMP-responsive element (CRE)-dependent pathways [188,191,195-198]. CC chemokines do not enhance signalling, although CX3CL1 acts as a partial inverse agonist, decreasing the levels of pUS28 constitutive activity [191,196]. The constitutive endocytosis of pUS28 occurs independently of its constitutive signalling and different domains of pUS28 control these two phenomena [188]. pUS28, like KSHV ORF74, can induce transformation of NIH3T3 cells and promote tumour formation in nude mice. Mice inoculated with cells expressing a mutated pUS28 that lacks constitutive activity show attenuated tumour formation demonstrating the importance of constitutive signalling in pUS28-mediated tumour formation [199].

Despite extensive research on the function of pUS28, its role in CMV pathogenesis in vivo is still unknown. pUS28 sequesters host chemokines in order to alter the immune response or activates signalling pathways that contribute to viral replication or spread. pUS28-induced SMC migration may play a role in the accelerated vascular disease associated with HCMV [200,201]. Although HCMV nucleic acids have been isolated from certain cancers [202,203], whether HCMV is causal in these cancers remains to be established. Perhaps pUS28 may contribute to tumour formation in these individuals.

The UL33 gene is conserved in all β herpesviruses, including HCMV (UL33), RCMV (R33), and MCMV (M33). While no ligands have been identified for either pUL33 or pR33, pM33 is activated by CCL5 [204]. All three viral proteins show constitutive activity, although they differentially activate specific signalling pathways [196,205-207]. While not essential for viral replication in vitro, both pR33 and pM33 are important for replication of CMV in the salivary gland [208-210]. In MCMV, this defect was linked to the constitutive activity of pM33 [211] and illustrates the importance of constitutive signalling in vivo. Like pUS28, pM33 and pR33 induce SMC migration [204,212]. Taken together, this suggests GPCRs of the UL33 family alter cellular trafficking during CMV infection, which may contribute to viral pathogenesis.

The UL78 gene family encoded proteins have only limited homology to known chemokine receptors [180]. Nevertheless, this gene is conserved in all β herpesviruses suggesting they have some role in the herpesviruses life cycle.
The UL78 proteins of MCMV and RCMV, pM78 and pR78, respectively, are important for viral replication in vitro and in vivo [213-215]. The HCMV homolog, pUL78, is not required for replication of HCMV in vitro [216] thus MCMV and RCMV may be more dependent on its function for viral replication. Although, members of the UL78 family are clearly important for viral replication for some CMVs, data regarding their specific function as GPCRs is not currently available.

Viral Chemokine Binding Proteins

Chemokine binding proteins (CBPs) are virally encoded secreted proteins that competitively bind chemokines and interfere with their interactions with cellular receptors. Unlike viral chemokine and chemokine receptor homologues, which were likely acquired from the host, CBPs generally show no homology to known proteins and homology of these proteins across viruses is not conserved [217]. Until recently, no CMV species was known to encode a CBP. However, a HCMV encoded protein, p21.5, has been identified with chemokine binding properties. mRNA transcripts of the gene UL21.5 are packaged in the HCMV virion and thus may function soon after viral entry into the cell. Although many CBPs interact with multiple chemokines [218], p21.5 is unusual in that it selectively binds CCL5 (RANTES) in vitro blocking the interaction of the chemokine with its cellular receptors [219]. No data is available which evaluates the ability of p21.5 to interfere with CCL5 function in vivo and its effect on viral survival.

Apoptosis

Apoptosis is a mechanism for programmed cell death that plays an important role in the elimination of cells during development and virally infected cells as part of the host’s innate immunity [220,221]. Many viruses including CMVs have strategies to prevent apoptosis [222,223]. HCMV encodes two proteins in particular that directly interfere with the apoptosis pathway. The HCMV UL37 gene encodes a viral inhibitor of caspase-8 induced apoptosis (vMIA) and exon 1 of UL37 encodes the viral mitochondrial inhibitor of apoptosis (vMIA) [224].

vMIA protects cells from intrinsic apoptosis induced following damage to the mitochondrial membrane [225-227]. vMIA only blocks apoptosis mediated through the death receptor, Fas, in cells in which apoptosis proceeds through a mitochondrial-dependent step [228]. vMIA has not been identified in virion particles and inhibits apoptosis at later times compared to viCA [225,229]. vMIA localizes to the mitochondria [230-232] and this localization is needed for vMIA to induce structural changes and inhibit mitochondrial release of cytochrome c, blocking downstream events in the apoptosis pathway [227,233]. vMIA also induces the release of calcium from the ER which may play a role in the inhibition of apoptosis [234].

vMIA was initially shown to interact with adenine nucleotide translocator (ANT), a regulator of mitochondrial membrane permeability [227,235]. However, this interaction does not correlate with vMIA function and is likely non-specific [235]. vMIA also binds the proapoptotic protein, Bax, inducing aggregation of Bax molecules at the mitochondrial membrane preventing membrane permeabilization [236,237]. The screening of proteins that interact with the antiapoptotic domain of vMIA identified the protein, Growth Arrest and DNA Damage 45 (GADD45α). GADD45α enhances vMIA-induced apoptosis possibly protecting it from proteasomal degradation [238]. Interestingly, vMIA was also recently shown to interfere with caspase-independent cell death by blocking the activity of the serine protease, HtrA2/Omi [239]. Sequence homologues of vMIA have only been found in primate CMVs [240]. However, a recently identified positional homologue of vMIA in MCMV, m38.5, was shown to interact with Bax and inhibit apoptosis [226,241,242]. Therefore, vMIA functional homologues may exist in other cytomegaloviruses.

In contrast to vMIA, viCA protects cells in vitro from extrinsic apoptosis mediated through ligation of the death receptors, Fas and TNFR-1 [228]. viCA is a virion constituent [243] that inhibits caspase-8 activation [228]. Pro-caspase-8 is prevented from interacting with the adapter protein, Fas-associated death domain (FADD) and inhibits the processing of procaspase-8 to its active form [244]. Therefore, viCA is functionally similar, although mechanistically distinct from, cellular and viral FLICE inhibitory proteins (FLIPS), which also interfere with caspase-8 activation [245].

viCA is dispensable for replication and some HCMV lab strains have inactivating mutations in the UL36 gene [228,243,246]. Nevertheless, viCA homologues are conserved in the genomes of all sequenced β-herpesviruses except for guinea pig CMV (GPCMV) where no positional homologues has been identified [247]. The viCA homologues of RhCMV and MCMV, Rh36 and M36, respectively, also have antiapoptotic activities when transiently expressed in vitro [240,248]. Recently, it was shown that a M36 deletion mutant was attenuated in the lungs and salivary glands of mice but could be rescued by expression of a dominant-negative variant of FADD [249]. This provides important evidence for the functional significance of this protein in vivo.

The MCMV M45 encoded protein has sequence, although not functional, homology to a cellular ribonucleotide reductase [250,251]. Nevertheless, a M45 mutant virus is
attenuated in SCID mice [251]. Recently M45 was shown to suppress the cell death pathway in a manner unique to viral proteins [252]. M45 interacts with the receptor-interacting protein kinase I (RIPI) via a RIP homotypic interaction motif (RHIM). By binding to RIPI, M45 protects certain cell types from caspase-independent cell death following death receptor signalling [253,254]. This “alternative apoptosis” would likely be activated in HCMV infected cells in which vICA inhibits caspase-8 activity [255].

Adaptive Immune Response

T Cell Mediated Immunity

T cell mediated immune responses, particularly CD8+ T cell dependent responses, are integral to the clearance of cytomegalovirus infections [54]. Cytomegaloviruses, as do many herpesviruses, impair T cell activation by interfering with both MHC class I and II antigen presentation and processing [256]. Although this has been shown in vitro, Th or CTL responses are still generated during CMV infection in vivo [257-260].

The US region of the HCMV genome encodes a number of endoplasmic reticulum (ER) resident glycoproteins that alter MHC class I expression [261]. The first of these proteins to be expressed following HCMV infection is the US3 encoded immediate early protein, gpUS3, which likely interferes with T cell recognition early during viral replication [262-264]. gpUS3 binds MHC class I molecules and retains them in the ER, inhibiting antigen presentation to CD8+ T cells [265-269]. The transmembrane domains of gpUS3 are responsible for binding MHC class I [270,271]. However, luminal regions of gpUS3 are needed for retention of MHC class I in the ER [270-273]. Interestingly, gpUS3 also binds tapasin and this interaction prevents tapasin-mediated protein loading of MHC class I molecules. Therefore, gpUS3 only retains MHC class I alleles that are tapasin dependent [274]. An alternatively spliced form of gpUS3 competitively binds tapasin and may represent a regulatory mechanism for gpUS3 activity [275].

In contrast to gpUS3, the binding of MHC class I molecules to the US2 and US11 encoded HCMV proteins, gpUS2 and gpUS11, leads to the rapid degradation of MHC class I molecules [276-279]. Both proteins bind MHC class I molecules resulting in their removal from the ER to the cytosol where they undergo proteasome-dependent degradation [266,276,277]. This process requires a functional ubiquitination system although only gpUS2 specifically depends on MHC class I ubiquitination for protein degradation [280-283]. In addition to the ubiquitin system, gpUS2 and gpUS11 associate with other cellular proteins that facilitate recognition and removal of proteins via the endoplasmic reticulum associated protein degradation (ERAD) pathway [284-287]. gpUS2 forms a complex with the chaperones, calnexin, BiP, and calreticulin to mediate MHC class I degradation [288]. In contrast, gpUS11-dependent protein degradation requires Derlin-1, a protein that plays a role in the removal of misfolded proteins [289].

Why HCMV encodes two different proteins that target MHC class I for degradation is unclear. gpUS2 and gpUS11 differ in their specificities for MHC class I alleles [290,291]. While they may overlap in function, they likely mediate distinct effects on MHC class I expression [292,293]. This difference in specificity is likely the result of different binding requirements for gpUS2 and gpUS11. The luminal portion of gpUS2 interacts with residues in the α2/α3 region of the luminal domain of MHC class I molecules [294-296]. Specifically, gpUS2-mediated degradation requires the presence of an arginine at residue 181 of MHC class I molecules. However, this residue is not sufficient for degradation of some MHC class I alleles and other residues must be important for these molecules [297]. The luminal region of gpUS11 is also important for MHC class I binding, however, gpUS11 interacts with residues in the α1/α2 domain of MHC class I molecules [298,299].

The HCMV US6 gene, encodes another glycoprotein, gpUS6, that downregulates MHC class I expression [121,300,301]. Like the other US proteins that interfere with MHC class I expression, gpUS6 mediates retention of MHC class I via its luminal domain [302]. However, the gpUS6 mechanism is unique in that it binds to TAP-1 and TAP-2 heterodimers [303] in the transporter associated with antigen processing (TAP) complex [121,300,304,305]. Through its association with TAP, gpUS6 prevents the binding of ATP to TAP [306] and subsequent TAP peptide translocation [300,301]. gpUS6 expression is solely responsible for the inhibition of TAP in HCMV infected cells [307] and downregulates all MHC class I alleles tested [308]. In addition to impairing CD8+ T cell responses, this decrease in MHC class I expression also makes infected cells susceptible to NK cell cytotoxicity [308], which may explain why CMVs have evolved mechanisms for preventing NK lysis (NK cell section).

Two additional HCMV encoded proteins, gpUS8 and gpUS10, bind MHC class I molecules. However, neither protein downregulates cell surface MHC class I expression, although gpUS10 slows MHC class I maturation and egress from the ER. The function of these proteins in HCMV infection is currently unknown [309,310].

Other cytomegaloviruses have homologues of some of the HCMV US family members. CCMV encodes a gpUS6 homologue that binds TAP. However, this interaction does not downregulate MHC class I expression in chim-
panzeed cells in vitro, making the function of this homologue unclear [305]. In contrast, RhCMV encodes homologues of gpUS2, gpUS3, gpUS6, and gpUS11 [311], each of which functions similarly to its HCMV counterpart [312]. A newly identified RhCMV protein, viral inhibitor of heavy chain expression (VIHCE), is encoded by the rh178 gene, a gene unrelated to the Us6 gene family. VIHCE inhibits signal-peptide dependent MHC class I heavy chain translation, a mechanism distinct from other modulators of MHC class I expression [313]. Therefore, RhCMV may be a valuable model system for analyzing the function of these proteins during CMV infection in vivo.

MCMV encodes three proteins unrelated to those of HCMV that interfere with MHC class I expression in infected cells. m6, m152, and m4, encode gp48, gp40, and gp34 respectively. Both gp40 and gp48 inhibit antigen presentation to CD8+ T cells in vitro [314,315]. gp40 and gp48 bind MHC class I molecules and retain them intracellularly [314-316], although each protein does so via different mechanisms. gp40 retains MHC class I molecules in the ER-Golgi intermediate compartment (ERGIC)-cis golgi network [314] whereas gp48 binds to MHC class I molecules and targets them to lysosomes for degradation [315]. Deletion of m152 restores MHC class I expression in MCMV infected cells suggesting gp40 is the main regulator of MHC class I downregulation [317,318]. However, gp48 cooperates with gp40 to enhance MHC class I retention in vitro [319]. gp48 and gp40 also show different specificities for MHC class I alleles and thus are both required for efficient MHC class I downregulation in certain cell types [320,321]. Surprisingly, the presence of m152 does not impact the CTL response in mice based on studies using recombinant MCMVs. Therefore, the in vivo role of m152 as well as m4 and m6 is not clear [322-324]. One possible explanation for this lack of CTL alteration in vivo is uninfected antigen presenting cells (APCs) cross-priming CD8+ T cells, which could circumvent function of gp40 in mice [324]. If these proteins cannot prevent priming of CD8+ T cells, what is their function? There are a couple of possibilities. One is that the delay in CD8+ T cell recognition is enough to allow the virus to establish a foothold within the host and eventually establish latency. Also without this initial CD8+ T cell recognition, immunopathology could be diminished allowing the host to survive and viral spread. Recently the Reddahse group has shown that the presence of these immune modulating proteins (gp40, and gp48) actually enhance priming of CD8+ T cells [325]. How this benefits CMV survival in vivo is hard to reconcile, but may represent the evolution of mouse immune responses to counter these “immunoveasions.” The Reddahse and Hill labs are both actively pursuing answers to these questions and why CMVs would have evolved mechanisms to enhance CTL priming.

The MCMV protein gp34 also associates with MHC class I molecules [326,327]. In contrast to gp40 and gp48, gp34 decreases the intracellular retention of MHC class I molecules [319,326]. However, this phenomenon is seen only in the absence of m6 (gp48) suggesting gp48 expression may antagonize the function of gp34 and provide a mechanism to regulate the extent of MHC class I expression in infected cells [317,319]. HCMV can also interfere with the presentation of MHC class II on antigen presenting cells such as macrophages [328]. gpUS3, gpUS2, and pp65 mediate this effect. gpUS3 binds and downregulates MHC class II, which subsequently decreases antigen presentation to CD4+ T cells. gpUS3 interferes with the sorting of MHC class II to lysosomes inhibiting peptide loading in these compartments and subsequent MHC class II expression at the cell surface [269]. gpUS2 also interferes with CD4+ T cell recognition by downregulating MHC class II molecules. Similar to its effect on MHC class I, gpUS2 binds the α chain of MHC class II resulting in the proteasome-dependent degradation of MHC class II molecules in a number of different cell types in vitro [269,329-331]. Lastly, the tegument protein, pp65, also downregulates MHC class II expression. Yet another mechanism for MHC class II down regulation, pp65 mediates MHC class II trafficking to lysosomes causing their destruction [332]. MCMV infection also downregulates MHC class II expression although the viral proteins responsible for this are not currently identified [141,333]. As observed with MHC class I downregulation, CMVs have evolved multiple modes for achieving manipulation of MHC class II host responses in order to achieve evolutionary success.

Conclusion

Whether it is the destruction of important immune molecules, a redirection of these proteins intracellularly, transcriptional or translational control, alteration of signal transduction cascades, or the production of novel interfering proteins, CMVs “push” and “pull” at the immune response in such a way as to ensure their evolutionary success. Based on the numerous viral proteins that respond to the host’s defence mechanisms, the relationship of CMVs with their hosts is complex. In spite of the manipulation of both the magnitude and quality of the innate and adaptive immune responses, the host still launches a robust anti-CMV immune response but not before the virus establishes latency within the host. Therefore CMV infection does not eliminate host immunity but modulates it to allow survival of both the virus and the host, as both are important to the life cycle of the virus. With its millions of years of co evolution within us, we can use CMVs acquired "knowledge" of the immune system to uncover novel immune pathways. We can potentially exploit CMVs potential vulnerabilities for developing CMV vaccines (i.e.
ones that can not establish latency) or novel therapeutics that could minimize CMV-induced damage in immune compromised hosts.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MMK carried out the literature review and wrote this manuscript. TES conceived of the review and edited the manuscript. All authors read and approved the final manuscript.

Authors’ Information
MMK recently received her PhD with a dissertation exploring CMV viral chemokines from the University of Tennessee. TES is an assistant professor at the University of Tennessee whose lab focuses on CMV immune modulation.

Additional material

Additional file 1
Cytomegalovirus modulation of the innate immune response. A listing of the cytomegalovirus encoded proteins that interfere with the innate immune response. Click here for file
http://www.biomedcentral.com/content-supplementary/1743-422X-6-4-S1.doc

Additional file 2
CMV Modulation of the adaptive immune response. A listing of the cytomegalovirus encoded proteins that interfere with the adaptive immune response. Click here for file
http://www.biomedcentral.com/content-supplementary/1743-422X-6-4-S2.doc

References

1. Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL: Viral subversion of the immune system. *Annu Rev Immunol* 2000, 18:861-926.
2. Hirsch RL: The complement system: its importance in the host response to viral infection. *Microbiol Rev* 1982, 46:71-85.
3. Spiller OB, Hanna SM, Devine DV, Tufaro F: Neutralization of cytomegalovirus virions: the role of complement. *J Infect Dis* 1997, 176:339-347.
4. Spear GT, Lurain NS, Parker CJ, Ghassemi M, Payne GH, Saifuddin M: Host cell-derived complement control proteins CD55 and CD59 are incorporated into the virions of two unrelated enveloped viruses. *Human T cell leukemia/lymphoma virus type I (HTLV-I) and human cytomegalovirus (HCMV).* *J Immunol* 1995, 155:4376-4381.
5. Spiller OB, Morgan BP, Tufaro F, Devine DV: Altered expression of host-encoded complement regulators on human cytomegalovirus-infected cells. *Eur J Immunol* 1996, 26:1532-1538.
6. Nomura M, Kurita-Taniguchi M, Kondo K, Inoue N, Matsumoto M, Yamanishi K, Okabe M, Seya T: Mechanism of host cell protection from complement in murine cytomegalovirus (CMV) infection: identification of a CMV-responsive element in the CD46 promoter region. *Eur J Immunol* 2002, 32:2954-2964.
7. Holers VM, Kinoshita T, Molina H: The evolution of mouse and human complement C3-binding proteins: divergence of form but conservation of function. *Immunol Today* 1992, 13:231-236.
8. Pass RF: Cytomegaloviruses. In Fields Virology 4th edition. Edited by: David MK, Peter M Howley. Philadelphia: Lippincott Williams and Williams; 2001:2675-2703.
9. Westmoreland D, St. Jeor S, Rapp F: The development by cytomegalovirus-infected cells of binding affinity for normal human immunoglobulin. *J Immunol* 1976, 116:1566-1570.
10. Kalller R, Peichsel R, Goldman JN, Goldman M: An IgG-Fc receptor induced in cytomegalovirus-infected human fibroblasts. *J Immunol* 1976, 116:772-777.
11. Rahman AA, Teschner M, Sethi KK, Brandis H: Appearance of IgG (Fc) receptor(s) on cultured human fibroblasts infected with cytomegalovirus. *J Immunol* 1976, 117:253-258.
12. Frey J, Einsfelder B: Induction of surface IgG receptors in cytomegalovirus-infected human fibroblasts. *Eur J Biochem* 1984, 138:213-216.
13. Furukawa T, Hornberger E, Sakuma S, Plotkin SA: Demonstration of immunoglobulin G receptors induced by human cytomegalovirus. *J Clin Microbiol* 1975, 23:332-336.
14. Xu B, Murayama T, Ishida K, Furukawa T: Characterization of IgG Fc receptors induced by human cytomegalovirus. *J Virol* 1989, 67(4 Pt 2):893-900.
15. Murayama T, Natsumu-Sakai S, Shimokawa K, Furukawa T: Fc receptor(s) induced by human cytomegalovirus bind differentially with human immunoglobulin G subclasses. *J Virol* 1986, 67(Pt 7):1475-1478.
16. Thale R, Lucin P, Schneider K, Eggers M, Koszinowski UH: Identification and expression of a murine cytomegalovirus early gene encoding for an Fc receptor. *J Virol* 1994, 68:7757-7765.
17. Ravetch JV, Bolland S: IgG Fc receptors. *Annu Rev Immunol* 2001, 19:275-290.
18. Crnkovic-Mertens I, Messerle M, Mileic I, Szepan U, Kucic N, Krmpotic A, Jonic S, Koszinowski UH: Virus attenuation after deletion of the cytomegalovirus Fc receptor gene is not due to antibody control. *J Virol* 1998, 72:1377-1382.
19. Jonic S, Pavic I, Polic B, Crnkovic I, Lucin P, Koszinowski UH: Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. *J Exp Med* 1994, 179:1713-1717.
20. Lenac T, Budt M, Arapovic J, Hasan M, Zimmermann A, Simic H, Krmptic A, Messerle M, Ruzsics Z, Koszinowski UH, Hengel H, Jonic S: The herpesviral Fc receptor Fc-r-1 down-regulates the NKG2D ligands MULT-1 and H60. *J Exp Med* 2006, 203:1843-1850.
21. Mintern JD, Klemm EJ, Wagner M, Paquet ME, Napier MD, Kim YM, Koszinowski UH, Ploegh HL: Viral interference with B7-1 costimulation: a new role for murine cytomegalovirus Fc receptor-1. *J Immunol* 2006, 177:8422-8431.
22. Atalay R, Zimmermann A, Wagner M, Borst E, Benz C, Messerle M, Hengel H: Identification and expression of human cytomegalovirus transcription units coding for two distinct Fcgamma receptor homologs. *J Virol* 2002, 76:8396-8408.
23. Lilley BN, Ploegh HL, Tirabassi RS: Murine cytomegalovirus open reading frame TRL11/IRL1 encodes an immunoglobulin G Fc-binding protein. *J Virol* 2001, 75:1218-1221.
24. Dubin G, Basu S, Pallory DL, Basu M, Tal-Singer R, Friedman HM: Characterization of domains of herpes simplex virus type 1 glycoprotein E involved in Fc binding activity for immunoglobulin G aggregates. *J Virol* 1994, 68:2478-2485.
25. Dowler KW, Veltri RW: In vitro neutralization of HSV-2: inhibition by binding normal IgG and purified Fc to virion Fc receptor (FcR). *J Med Virol* 1984, 13:251-259.
26. Sprague ER, Reinhard H, Cheung EJ, Farley AH, Trujillo RD, Hengel H, Bjorkman PJ: The human cytomegalovirus Fc receptor gp68 binds the Fc CH2-CH3 interface of immunoglobulin G. *J Virol* 2008, 82:3490-3499.
27. Boyle KA, Pietropaolo RL, Compton T: Engagement of the cellular receptor for glycoprotein B of human cytomegalovirus activates the interferon-responsive pathway. *Mol Cell Biol* 1999, 19:3607-3613.
28. Zhu H, Cong JP, Shenk T: Use of differential display analysis to assess the effect of human cytomegalovirus on the accumulation of cellular mRNAs: induction of interferon-responsive RNAs. Proc Natl Acad Sci USA 1997, 94:13859-13900.

29. Simmen KA, Singh J, Luukkonen BG, Lopper M, Bittner A, Miller NE, Jackson MR, Compton T, Fruh K: Global modulation of cellular transcription by human cytomegalovirus is initiated by viral protein B15. Proc Natl Acad Sci USA 1998, 95:7110-7115.

30. Browne EP, Wing B, Coleman D, Shenk T: Altered cellular mRNA levels in human cytomegalovirus-infected fibroblasts: viral block to the accumulation of antiviral mRNAs. J Virol 2001, 75:12319-12330.

31. Zhu H, Cong JP, Mambota G, Gingeras T, Shenk T: Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc Natl Acad Sci USA 1998, 95:14470-14475.

32. Navarro L, Mowen K, Rodems S, Weaver B, Reich N, Spector D: Human cytomegalovirus inhibits IFN-alpha-stimulated antiviral and immunoregulatory responses by blocking multiple levels of IFN-alpha signal transduction. J Immunol 1999, 162:6107-6113.

33. Miller UT, Steinbock U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M: Functional role of type I and type II interferons in antiviral defense. Science 1994, 264:1918-1921.

34. Paulus C, Krauss S, Nevels M: A human cytomegalovirus antagonist of type I IFN-dependent signal transducer and activator of transcription signaling. Proc Natl Acad Sci USA 2006, 103:3840-3845.

35. Huh YH, Kim YE, Kim ET, Park JJ, Song MJ, Zhu H, Hayward GS, Ahn JH: Binding STAT2 by the acidic domain of human cytomegalovirus IE1 promotes viral growth and is negatively regulated by SUMO. J Virol 2008, 82:10444-10454.

36. Taylor RT, Bresnahan WA: Human cytomegalovirus immediately early-early 2 gene expression blocks virus-induced beta interferon production. J Virol 2005, 79:3873-3877.

37. Taylor RT, Bresnahan WA: Human cytomegalovirus IE86 attenuates virus- and tumor necrosis factor alpha-induced NF-kappaB-dependent gene expression. J Virol 2006, 80:10763-10771.

38. Abate DA, Watanabe S, Mocarski ES: Major human cytomegalovirus structural protein pp65 (ppUL83) prevents interferon response factor 3 activation in the interferon response. J Virol 2004, 78:10995-11006.

39. Browne EP, Shenk T: Human cytomegalovirus UL83-coded pp65 virion protein inhibits antiviral gene expression in infected cells. Proc Natl Acad Sci USA 2003, 100:11439-11444.

40. Taylor RT, Bresnahan WA: Human cytomegalovirus immediately early-2 protein IE86 blocks virus-induced chemokine expression. J Virol 2006, 80:920-928.

41. Morello CS, Cranmer LD, Spector DH: In vivo replication, latency, and immunogenicity of murine cytomegalovirus mutants with deletions in the M3 and M4 genes, the putative homologs of human cytomegalovirus pp65 (UL83). J Virol 1999, 73:7678-7693.

42. Abenes G, Lee M, Haghjoo E, Tong T, Zhan X, Liu F: Murine cytomegalovirus open reading frame M27 plays an important role in growth and virulence in mice. J Virol 2001, 75:1697-1707.

43. Zimmermann A, Trilling M, Wagner M, Wilborn M, Bubic I, Jonjic S, Koszinowski U, Hengel H: A cytomegalovirus protein reveals a dual role for STAT2 in IFN-gamma signalling and antiviral responses. J Exp Med 2005, 201:1543-1553.

44. Khan S, Zimmermann A, Basler M, Groettrup M, Hengel H: A cytomegalovirus inhibitor of gamma interferon signaling controls immunoproteasome induction. J Virol 2004, 78:1831-1842.

45. Valchanova RS, Picard-Maureau M, Budt M, Brune W: Murine cytomegalovirus m142 and m143 are both required to block protein kinase R-mediated shutdown of protein synthesis. J Virol 2006, 80:10181-10190.

46. Child SJ, Hanson LK, Brown CE, Janzen DM, Geballe AP: Double-stranded RNA binding by a heterodimeric complex of murine cytomegalovirus m142 and m143 proteins. J Virol 1999, 73:720-725.

47. Zimmermann A, Marshall EE, De Niro KL, Geballe AP: Binding and nuclear relocalization of protein kinase R by human cytomegalovirus UL16 glycoprotein. Virus Res 2001, 80:1817-1826.

48. Child SJ, Geballe AP: Evasion of cellular antiviral responses by human cytomegalovirus TRS1 and IRS1. J Virol 2004, 78:197-205.

49. Edward S, Mocarski TS, Pass Robert F: Cytomegaloviruses. In Fields Virology Volume 2. Edited by: Fields BN, Knipe DM, Howley. Philadelphia: Lippincott Williams and Wilkins; 2007:2707-2772.

50. Wilkinson GW, Tomasek P, Stanton RJ, Armstrong M, Prodhome V, Aicheler R, McSharry BP, Rickards CR, Cochrane D, Lwellyn-Lacey S, Wang EC, Griffin CA: Davison.The Human Cytomegalovirus: Soderberg-Naucler C: 2001, 12:204-212.

51. Sutherland CL, Chalupny NJ, Cosman D: The UL16-binding proteins, a novel family of MHC class I-related ligands for the NK2GD, activate natural killer cell functions. Immuno Rev 2001, 181:185-192.

52. Kubin M, Cassiano L, Chalupny J, Chin W, Cosman D, Fanslow W, Mullberg J, Rousseau AM, Ulrich D, Armitage R. ULBP1, 2, 3: novel MHC class I-related molecules that bind to human cytomegalovirus UL16 glycoprotein. Eur J Immunol 2001, 31:1428-1437.

53. Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M, Chalupny NJ: ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NK2GD receptor. Immunity 2001, 14:123-133.

54. Wu J, Chalupny NJ, Manley TJ, Riddell SR, Cosman D, Spies T: Intracellular retention of the MHC class I-related chain B ligand of human cytomegalovirus UL16 glycoprotein. J Virol 2003, 170:199-2008.

55. Dunn C, Chalupny NJ, Sutherland CL, Dosch S, Sivakumar PV, Johnson DC, Cosman D: Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NK2GD ligands, protecting against natural killer cell cytotoxicity. J Exp Med 2003, 197:1427-1439.

56. Rolle A, Mousavi-Jazi M, Eriksson M, Odberg J, Soderberg-Naue, C, Cosman D, Karre K, Cerboni C: Effects of human cytomegalovirus infection on ligands for the activating NK2GD receptor of NK cells: up-regulation of UL16-binding protein (ULBP1) and ULB2 is counteracted by the viral UL16 protein. J Virol 2003, 77:902-908.

57. Vales-Gomez M, Winterhalter A, Roda-Navauro P, Zimmermann M, Boyle L, Hengel H, Brooks A, Reburn HT: The human cytomegalovirus glycoprotein UL6 traffics through the plasma membrane and the nuclear envelope. Cell Microbiol 2006, 8:581-590.

58. Welte SA, Sinzger C, Lutz SZ, Singh-Jasuja H, Sampaio KL, Ebnig U, Ramussen H, Steinele A: Selective intracellular retention of virus-induced human cytomegalovirus UL16 glycoprotein. Eur J Immunol 2003, 33:194-203.

59. Odberg J, Browne H, Metkar S, Froelich CJ, Branden L, Cosman D, Soderberg-Naucler C: The human cytomegalovirus protein UL16 mediates increased resistance to natural killer cell cytotoxicity through resistance to cytolytic proteins. J Virol 2003, 77:4539-4545.

60. Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M, Horwitz E, Prokocimer Z, Prichard M, Hahn G, Goldman-Wohl D, Greenfield C, Yagle S, Hengel H, Altuwia Y, Margali H, Maldeboim O: Host immune system gene targeting by a viral miRNA. Science 2007, 317:376-381.

61. Kronpatic A, Hasan M, Loewendorf A, Saulig T, Halenius A, Lenac T, Pollic B, Bubic I, Kriegeskorte A, Pentjak-Pugel E, Messerer M, Hengel H, Busch DH, Koszinowski UH, Jonjic S: NK cell activation
through the NKG2D ligand MUL-T1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J Exp Med 2005, 201:112-220.

67. Lodeo MB, Abenes G, Umano EC, Houchins JP, Liu F, Lanier LL: The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60-NKG2D interactions. J Exp Med 2004, 200:1075-1081.

68. Lodeo M, Orgavara K, Hamerman JA, Arase H, Houchins JP, Mocarski ES, Lanier LL: NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J Exp Med 2003, 197:1245-1253.

69. Kropotik A, Busch DH, Bubic I, Gebhardt F, Hengel H, Hasan M, Scalzo AA, Koszinowski UH, Jonjic S: MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nat Immunol 2002, 3:529-535.

70. Pinto AK, Jamieson AM, Raultet DH, Hill AB: The role of NKG2D superfamily of C-type lectin-like receptors in human natural killer cells: importance in viral infection. J Immunol 2008, 181:12564-12571.

71. Abenes G, Chan K, Lee M, Haghjoo E, Zhu J, Zhou Z, Xian L, Liu F: Murine cytomegalovirus with a transposon insertion mutation at open reading frame m155 is deficient in growth and virulence in mice. J Virol 2004, 78:6891-6899.

72. Hasan M, Krmpotic A, Ruzsics Z, Bubic I, Lenac T, Halenius A, Loeven RM, Ogasawara K, Hamerman JA, Arase H, Houchins JP, Liu F, Lanier LL: Selective down-regulation of the NKG2D ligand H60 by mouse cytomegalovirus m155 glycoprotein. J Virol 2005, 79:2920-2930.

73. Cavanaugh VJ, Stenberg RM, Staley TL, Virgin HWt, MacDonald MR, Paetzold S, Farrell HE, Rawlinson WD, Campbell AE: Murine cytomegalovirus with a deletion of genes spanning HindIII-J displays altered cell and tissue tropism. J Virol 1996, 70:1365-1374.

74. Rawlinson WD, Farrell HE, Barrell BG: Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 1996, 70:833-849.

75. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL: Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 2002, 296:1323-1326.

76. Davis AH, Guseva NV, Ball BL, Heusel JW: Characterization of Murine Cytomegalovirus m157 from Infected Cells and Identification of Critical Residues Mediating Recognition by the NK Cell Receptor Ly49H. J Immunol 2006, 181:265-275.

77. Tripathy SK, Smith HR, Holroyd EA, Pingel JT, Yokoyama WM: Expression of m157, a murine cytomegalovirus-encoded putative major histocompatibility class I (MHC-I)-like protein, is independent of viral regulation of host MHC-I. J Virol 2006, 80:545-550.

78. Kielczewska A, Kim HS, Lanier LL, Dimasi N, Vidal SM: Critical residues at the Ly49 natural killer receptor's homodimer interface determine functional recognition of m157, a mouse cytomegalovirus MHC class I-like protein. J Immunol 2007, 178:369-377.

79. Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT, Scalzo AA, Fremont DH, Yokoyama WM: Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 2002, 99:8826-8831.

80. Dorner BG, Smith HR, French AR, Kim S, Poursine-Laurent J, Beckman DL, Pingel JT, Krocak RA, Yokoyama WM: Coordinate expression of cytokines and chemokines by NK cells during murine cytomegalovirus infection. J Immunol 2004, 172:3119-3131.

81. Adams EJ, Joo ZS, Venook RT, Boulanger MJ, Arase H, Lanier LL, Garcia KC: Structural elucidation of the m157 mouse cytomegalovirus ligand for Ly49 natural killer cell receptors. Proc Natl Acad Sci USA 2007, 104:10128-10133.

82. Bubic I, Wagner M, Krmpotic A, Saulig T, Kim S, Yokoyama WM, Jonjic S, Koszinowski UH: Gain of virulence caused by a loss of gene in murine cytomegalovirus. J Virol 2004, 78:7536-7544.

83. Daniels KA, Devora G, Lai WC, O'Donnell CL, Bennett M, Welsh RM: Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with mononclonal antibody to Ly49H. J Exp Med 2001, 194:29-44.
103. Prod’homme V, Griffin C, Aicheler RJ, Wang EC, McSharry BP, Richardson CR, Stanton RJ, Borysiewicz LK, Lopez-Botet M, Wilkinson GW, Tommas P: The human cytomegalovirus MHC class I homolog UL18 inhibits LR1+ but activates LR1-NK cells. J Immunol 2007, 178:4473-4481.

104. Wagner CS, Riise GC, Bergstrom T, Karre K, Carbone E, Berg L: Increased expression of leukocyte Ig-like receptor-1 and activating NKG2D in the response to cytomegalovirus infection. J Immunol 2007, 178:3536-3543.

105. Kim JS, Choi SE, Yun IH, Kim JY, Ahn C, Kim SJ, Hahn G: NK cell activity during human cytomegalovirus infection is dominated by US2-11-mediated HLA class I down-regulation. J Immunol 2002, 169:3257-3265.

106. Saverino D, Ghiotto F, Merlo A, Bruno S, Battini L, Occhino M, Maffei M, Tencu C, Pileri S, Baldi L, Fabbri M, Bachi A, De Santanna A, Grossi CE, Ciccone E: Specific recognition of the viral protein UL18 by CD8(+) and UL11+ T cells mediates the non- MHC class I-restricted recognition of human cytomegalovirus-infected cells. J Immunol 2007, 178:5269-5277.

107. Garrigue I, Corte MF, Magnin N, Couzi L, Capdepont S, Riel C, Odeberg J, Cerboni C, Browne H, Karre K, Moller E, Carbone E, Sodervall P, Ghiotto F, Merlo A, Bruno S, Battini L, Occhino M, Maffei M, Tencu C, Pileri S, Baldi L, Fabbri M, Bachi A, De Santanna A, Grossi CE, Ciccone E: Decreased MHC class I expression on infected cells is responsible for CD8(+) T-cell recognition of human CMV-infected cells. J Immunol 2007, 178:3536-3543.

108. Saverino D, Ghiotto F, Merlo A, Bruno S, Battini L, Occhino M, Maffei M, Tencu C, Pileri S, Baldi L, Fabbri M, Bachi A, De Santanna A, Grossi CE, Ciccone E: Human cytomegalovirus UL18 alleviated human NK-mediated swine endothelial cell lysis. Biochem Biophys Res Commun 2004, 315:144-150.

109. Davison AJ, Dolan A, Akter P, Addison C, Dargan DJ, Alcendor DJ, Wilks S, Wilkinson GW: Human cytomegalovirus-encoded interleukin-10 mediates immune evasion in the setting of CMV infection. J Immunol 2007, 178:1695-1700.

110. Weiss EH: Cytomegalovirus infection. J Clin Virol 2005, 34:6-92.

111. Scand J Immunol 2005, 61:135-141.

112. Ciccone E: Human cytomegalovirus UL141 protein (US) encodes a novel MHC class I-like molecule (UL142) that functions as a ligand for the human cytomegalovirus-encoded IL-10. J Virol 2005, 79:10432-10438.

113. Ciccone E: The cytomegalovirus homolog of interleukin-10 requires phosphatidylinositol 3-kinase activity for inhibition of T-cell responses. PLoS Pathog 2008, 4:e1000123.

114. Ciccone E: Shaping phenotype, function, and survival of dendritic cells by cytomegalovirus-encoded IL-10. J Immunol 2004, 173:3383-3391.

115. Ciccone E: Cytomegalovirus-encoded interleukin-10 homolog inhibits maturation of dendritic cells and alters their functionality. J Virol 2004, 78:8720-8731.

116. Ciccone E: Human cytomegalovirus-encoded interleukin-10 downregulates metalloproteinase activity and impairs endothelial cell migration and placental cytotoxophoblast invasiveness in vitro. J Virol 2004, 78:2831-2840.

117. Ciccone E: Human cytomegalovirus-encoded interleukin-10 downregulates placental invasive activity of human cytomegalovirus infection. J Virol 2004, 78:1440-1447.

118. Ciccone E: Human cytomegalovirus-encoded interleukin-10 inhibits transfer of virus to macrophages in vivo. J Virol 2004, 78:2831-2840.

119. Ciccone E: Human cytomegalovirus-encoded interleukin-10 reduces expression of key cytokine in vivo. J Virol 2004, 78:1440-1447.

120. Ciccone E: Human cytomegalovirus-encoded interleukin-10 reduces expression of key cytokine in vivo. J Virol 2004, 78:1440-1447.

121. Ciccone E: Human cytomegalovirus-encoded interleukin-10 reduces expression of key cytokine in vivo. J Virol 2004, 78:1440-1447.

122. Ciccone E: Human cytomegalovirus-encoded interleukin-10 reduces expression of key cytokine in vivo. J Virol 2004, 78:1440-1447.

123. Ciccone E: Human cytomegalovirus-encoded interleukin-10 reduces expression of key cytokine in vivo. J Virol 2004, 78:1440-1447.

124. Ciccone E: Human cytomegalovirus-encoded interleukin-10 reduces expression of key cytokine in vivo. J Virol 2004, 78:1440-1447.
...cytomegalovirus during the latent phase of infection. J Virol 2008, 82:3736-3750.

140. Cockrill MM, Zhou SS, Kravitz RH, Johnson JL, Sawoi ET, Blewett EL, Barry PA: Primate cytomegaloviruses encode and express an IL-10-like protein. Virology 2000, 268:272-280.

141. Redpath S, Angulo A, Gascoigne NR, Ghazal P: Murine cytomegalovirus infection down-regulates MHC class II expression on macrophages by induction of IL-10. J Immunol 1999, 162:6701-6707.

142. Cavanaugh VJ, Deng Y, Birkenbach MP, Slater JS, Campbell AE: Vicious innate and virus-specific cytotoxic T-lymphocyte responses to murine cytomegalovirus in the submaxillary salivary gland. J Virol 2003, 77:1703-1717.

143. Benedict CA, Butrovich KD, Lurain NS, Corbeli J, Rooney I, Schneider P, Tschopp J, Ware CF: Cutting edge: a novel viral TNF receptor superfamily member in virulent strains of human cytomegalovirus. J Immunol 1999, 162:6967-6970.

144. Lurain NS, Kapell KS, Huang DD, Short JA, Paintsil J, Winkfield E, Benedict CA, Ware CF, Bremer JW: Human cytomegalovirus UL144 open reading frame: sequence hypervariability in low-passage clinical isolates. J Virol 1999, 73:10040-10050.

145. Poole E, King CA, Sinclair JH, Alcami A: The UL144 gene product of human cytomegalovirus activates NFkBAP via a TRAF6-dependent mechanism. EMBO J 2006, 25:4390-4399.

146. Cheung TC, Humphreys IR, Potter KG, Norris PS, Shumway HM, Tran BR, Patterson G, Jean-Jacques R, Youn M, Speer PG, Murphy KM, Lurain NS, Benedict CA, Ware CF: Evolutionarily divergent human infected children regulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Proc Natl Acad Sci USA 2005, 102:13218-13223.

147. Sedy JR, Gavrieli M, Potter KG, Hurchla MA, Lindsley RC, Hildner K, Scheu S, Pfeffer K, Ware CF, Murphy TL, Murphy KM: B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol 2000, 6:90-98.

148. Poole E, Atkins E, Nakayama T, Yoshie O, Groves I, Nakajima T, Arnold J, Alcami A, Sinclair J: NF-kappaB-mediated activation of the chemokine CCL2 by the product of the human cytomegalovirus gene UL144 escapes regulation by viral IFN. J Virol 2008, 82:4250-4256.

149. Arav-Boger R, Battaglia CA, Lazzaretto T, Gavrieli M, Zong JC, Hayward GS, Diener-West M, Landini MP: Cytomegalovirus (CMV)-encoded UL144 (truncated tumor necrosis factor receptor) and outcome of congenital CMV infection. J Infect Dis 2006, 194:464-473.

150. Arav-Boger R, Willoughby RE, Pass RF, Zong JC, Jang WJ, Alcendor D, Hayward GS: Polymorphisms of the cytomegalovirus (CMV)-encoded tumor necrosis factor-alpha and beta-chemokine receptors in congenital CMV disease. J Infect Dis 2002, 186:1057-1064.

151. Bale JF Jr, Petheram SJ, Roberton M, Murph JR, Demmeler G: Human cytomegalovirus a sequence and UL144 variability in strains encoding the murine cytomegalovirus chemokine homolog, m131/129, is a determinant of viral pathogenicity. J Virol 2005, 79:825-29.

152. Bradley AJ, Kovacs IJ, Gatherer D, Arav-Boger R, Wang Y, Haggerty S, Schleiss MR: Polymorphisms within human cytomegalovirus chemokine, vCXCL-1(CCMV). J Virol 2007, 81:10230-10233.

153. Mao ZQ, Huang Y, Sun M, Ruan Q, Yi Y, He R, Huang YJ, Ma YP, JY YH, Sun ZR, Gao H: Genetic polymorphism of UL144 open reading frame of human cytomegalovirus DNA detected in colony samples from infants with Hirschsprung's disease. World J Gastroenterol 2007, 13:3560-3564.

154. Picone O, Costa JM, Chaix ML, Ville Y, Rouzioux C, Leruez-Ville M: Human cytomegalovirus UL144 gene polymorphisms in congenital infections. J Clin Microbiol 2005, 43:25-29.

155. Yan H, Koyano S, Inami Y, Yamamoto H, Suzutani T, Mizuguchi M, Ushijima H, Kurane I, Inoue N: Genetic variations in the gB, UL144 and UL149 genes of human cytomegalovirus strains collected from congenitally and postnatally infected Japanese children. Arch Virol 2008, 153:687-697.

156. MacDonald MR, Li XY, Virgin HH: Late expression of a beta-chemokine homolog by murine cytomegalovirus. J Virol 1997, 71:1671-1678.

157. MacDonald MR, Burney MW, Resnick SB, Virgin HH: Spliced mRNA encoding the murine cytomegalovirus chemokine homolog predicts a beta chemokine of novel structure. J Virol 1999, 73:3682-3691.

158. Smith LM, Shellam GR, Redwood AJ: Genes of murine cytomegalovirus exist as a number of distinct genotypes. Virology 2006, 352:450-465.

159. Saederup N, Lin YC, Dairaghj D, Schall TJ, Mocarski ES: Cytomegalovirus-encoded beta chemokine promotes monocyte-associated viremia in the host. Proc Natl Acad Sci USA 1999, 96:10881-10886.

160. Saederup N, Aguirre SA, Bitmansour A, Brown JM, Sparer TE, Huang J, Mocarski ES: Cytomegalovirus MCK2-2 controls mobilization and recruitment of myeloid progenitor cells to facilitate dissemination. Blood 2006, 107:30-36.

161. Vink C, Beuken E, Bruggeman CA: Complete DNA sequence of the rat cytomegalovirus genome. J Virol 2000, 74:7656-7665.

162. Noda S, Aguirre SA, Bitmansour A, Brown JM, Sparer TE, Huang J, Mocarski ES: The r131 gene of rat cytomegalovirus encodes a proinflammatory CC chemokine homolog which is essential for the production of infectious virus in the salivary glands. Virus Genes 2004, 29:43-61.

163. Penfold M, Pliao Z, Wang Y, Haggerty S, Schleiss MR: A macrophage inflammatory protein homolog encoded by guinea pig cytomegalovirus signals via CC chemokine receptor 1. Virology 2003, 316:202-212.

164. Haggerty SM, Schleiss MR: A novel CC-chemokine homolog encoded by guinea pig cytomegalovirus. Virus Genes 2002, 25:271-279.

165. Chi TA, Tom E, Kemble GW, Duke GM, Mocarski ES, Spera RR: Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol 1996, 70:78-83.

166. Penfold ME, Dairaghj D, Duke GM, Saederup N, Mocarski ES, Kemble GW, Schall TJ: Cytomegalovirus encodes a potent alpha chemokine. Proc Natl Acad Sci USA 1999, 96:9839-9844.

167. Hahn G, Revello MG, Patrone M, Percivalle E, Campanini G, Sarasini A, Wagner M, Gallina A, Milanesi G, Koszinowski U, Baldanti F, Gerna G: Human cytomegalovirus UL131-128 genes are indispensable for virus growth in epithelial cells and virus transfer to leukocytes. J Virol 2004, 78:10023-10033.

168. Miller-Kittrell M, Sai J, Penfold M, Richmond A, Spera TE: Functional characterization of chimpanzee cytomegalovirus chemokine, vCXCL-1(CCMV). Virology 2007, 364:454-463.

169. Arav-Boger R, Zong JC, Foster CB: Loss of linkage disequilibrium and accelerated protein divergence in duplicated cytomegalovirus chemokines. Virus Genes 2005, 31:65-72.

170. Hassan-Walker AF, Okwudui S, Lee L, Griffiths PD, Emery VC: Sequence variability of the alpha-chemokine UL146 from clinical strains of human cytomegalovirus. J Virol 2004, 78:573-579.

171. Bradley AJ, Kovacs IJ, Gasheri D, Dargan DJ, Alkharash KR, Chan PK, Carman WF, Dedicoat M, Emery VC, Geddes CC, Gerna G, Ben-Ismael B, Kaye S, McGregor A, Moss PA, Puszta R, Rawlinson WD, Scott GM, Wilkinson GW, Schall TJ, Davison AJ: Genotypic analysis of two hypervariable human cytomegalovirus genes. J Med Virol 2008, 80:1615-1623.

172. Akter P, Cunningham C, McSharry BP, Dolan A, Addison C, Dargan DJ, Hassan-Walker AF, Emery VC, Griffiths PD, Wilkinson GW, Davison AJ: Two novel spliced genes in human cytomegalovirus. J Gen Virol 2003, 84:1117-1122.

173. Wang D, Shenk T: Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc Natl Acad Sci USA 2005, 102:18153-18158.

174. Wang D, Shenk T: Human cytomegalovirus UL131 open reading frame is required for epithelial cell tropism. J Virol 2005, 79:10330-10338.
215. Kaptein SJ, Beisser PS, Gruithuijzen YK, Savellkuos KG, van Cleef KW, Beeken E, Grauls GE, Bruggeman CA, Vink C. The rat cytomegalovirus RTB G protein-coupled receptor gene is required for production of infectious virus in the spleen. J Gen Virol 2003, 84:257-2330.

216. Michel D, Milotic I, Wagner M, Vaida B, Holl J, Anorgo R, Mertens T: The human cytomegalovirus UL78 gene is highly conserved among clinical isolates, but is dispensable for replication in fibroblasts and a renal artery organ-culture system. J Gen Virol 2005, 86:297-306.

217. Seet BT, McFadden G. Viral chemokine-binding proteins. J Leukoc Biol 2002, 72:24-34.

218. Lalani AS, McFadden G. Secreted poxvirus chemokine binding proteins. J Leukoc Biol 1997, 62:570-576.

219. Wang D, Bresnahan W, Shenk T. Human cytomegalovirus encodes a highly specific RANTES decoy receptor. Proc Natl Acad Sci USA 2004, 101:16642-16647.

220. Michel D, Milotic I, Wagner M, Vaida B, Holl J, Ansorge R, Mertens T: Mic reticulum calcium stores. J Virol 2008, 82(13):6322-6343.

221. Vaux DL, Korsmeyer SJ. Cell death in development. Cell 1999, 96:245-254.

222. Mocarski ES Jr: Immunomodulation by cytomegaviruses: unique cytopathic strategies beyond evasion. Trends Microbiol 2002, 10:332-339.

223. McCormick AL: Control of apoptosis by human cytomegalovirus. Curr Top Microbiol Immunol 2002, 271:1833-1845.

224. Goldmacher VS: Control of apoptosis by human cytomegalovirus: rheostat regulation of caspase-8-induced apoptosis (vICA) and the viral mitochondrial importation. J Virol 2001, 75:12205-12217.

225. Andoniou CE, Degli-Esposti MA: Insights into the mechanisms of CMV-mediated interference with cellular apoptosis. Immunol Cell Biol 2006, 84:99-106.

226. Vater CA, Han JW, Lutz RJ, Watanabe S, Cahir McFarland ED, Kieff E, Mocarski ES, Chittenden T: Dual targeting of the human cytomegalovirus UL37 exon 1 protein during permissive infection. J Virol 2008, 82:3555-3567.

227. Mavnakere MS, Colberg-Poley AM: Dual targeting of the human cytomegalovirus UL37 exon 1 protein during permissive infection. J Virol 2004, 85:3233-3239.

228. Bozidis P, McFadden G. Secreted poxvirus chemokine binding proteins. J Leukoc Biol 1997, 62:570-576.

229. Wang D, Bresnahan W, Shenk T. Human cytomegalovirus encodes a highly specific RANTES decoy receptor. Proc Natl Acad Sci USA 2004, 101:16642-16647.

230. McCormick AL: Apoptosis in fibroblasts and a renal artery organ-culture system. Proc Natl Acad Sci USA 2004, 101:16642-16647.

231. Bozidis P, Larochette N, Pauleau A, Boya P, Malinconico CE, Degli-Esposti MA: Insights into the mechanisms of CMV-mediated interference with cellular apoptosis. Immunol Cell Biol 2006, 84:99-106.

232. Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer J, Schroter M, Scaffidi C, Kramer PH, Peter ME, Tschopp J: Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 1997, 386:517-521.

233. Smith GA, Pars SG: Expression of human cytomegalovirus UL36 protein is dispensable for viral replication in cultured cells. J Virol 1999, 73:7126-7131.

234. Michel D, Milotic I, Wagner M, Vaida B, Holl J, Ansorge R, Mertens T: Mitochondrial and secretory human cytomegalovirus UL37 proteins traffic into mitochondrion-associated membranes of human cells. J Virol 2008, 82:2715-2726.

235. Mocarski ES Jr: Immunomodulation by cytomegaloviruses: unique cytopathic strategies beyond evasion. Trends Microbiol 2002, 10:332-339.

236. McCormick AL: Control of apoptosis by human cytomegalovirus. Curr Top Microbiol Immunol 2002, 271:1833-1845.
Acami A, Koszinowski UH: Viral mechanisms of immune evasion. Trends Microbiol 2000, 8:410-418.

Hengel H, Reiss U, Gutermann A, Ziegler H, Joniec S, Lucin P, Koszinowski UH: Cytomegaloviral control of MHC class I function in the mouse. Immunol Rev 1999, 168:167-176.

Khan N, Hislop A, Gudgeon N, Cobbold M, Khanna R, Nayak L, Rickinson AB, Moss PA: Herpesvirus-specific CDB T cell immunity in old age: cytomegalovirus impairs the response to a cognate EBV infection. J Immunol 2004, 173:7481-7489.

Trzonkowski P, Mysliwska J, Sznit E, Wieckiewicz J, Lukaszuk K, Brydak LB, Machala M, Mysliwski A: Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination – an impact of immunosenescence. Vaccine 2003, 21:3826-3836.

Jones TR, Hanson LK, Sun L, Slater JS, Stenberg RM, Campbell AE: Multiple independent loci within the human cytomegalovirus antigen presentation subvert: Structure of the human cytomegalovirus US1 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. J Virol 1999, 73:2970-2979.

Rehm A, Engelberg A, Tortorella D, Korner J, Lehmann I, Ploegh HL, Horoten UE: Human cytomegalovirus gene products US2 and US11 differ in their ability to attack major histocompatibility class I heavy chains in dendritic cells. J Virol 2002, 76:5043-5050.

Kikkert M, Hassink G, Barel M, Hirsch C, Wal LJ van der, Wiertz E: Ubiquitination is essential for human cytomegalovirus US11-mediated dislocation of MHC class I molecules from the endoplasmic reticulum to the cytosol. Biochem J 2001, 358:369-377.

Hassink GC, Barel MT, Van Voorden SB, Kikkert M, Wiertz E: Ubiquitination of MHC class I heavy chains is essential for dislocation by human cytomegalovirus-encoded US2 but not US11. J Biol Chem 2006, 281:30063-30071.

Shamu CE, Story CM, Rapoport TA, Ploegh HL: The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J Cell Biol 1999, 145:45-58.

Flierman D, Coleman CS, Pickart CM, Rapoport TA, Chau V: E2-2SK mediates US11-triggered retro-translocation of MHC class I heavy chains in a permeabilized cell system. Proc Natl Acad Sci USA 2006, 103:11589-11594.

Shamu CE, Flierman D, Ploegh HL, Rapoport TA, Chau V: Polyubiquitination is required for US11-dependent movement of MHC class I heavy chain from endoplasmic reticulum into cytosol. Mol Biol Cell 2001, 12:2546-2555.

Tirosh I, Iwakoshi NN, Lilley BN, Lee AH, Glimcher LH, Ploegh HL: Human cytomegalovirus protein US11 provokes an unfolded protein response that may facilitate the degradation of class I major histocompatibility complex products. J Virol 2005, 79:2768-2779.

Chevalier MS, Daniels GM, Johnson DC: Binding of human cytomegalovirus US2 to major histocompatibility class I and II proteins is not sufficient for their degradation. J Virol 2002, 76:8265-8275.

Barel MT, Hassink GC, Van Voorden S, Wiertz E: Human cytomegalovirus-encoded US2 and US11 target unassembled MHC class I heavy chains for degradation. Mol Immunol 2004, 41:1258-1266.

Oresic K, Tortorella D: Endoplasmic reticulum chaperones participate in human cytomegalovirus US2-mediated degradation of class I major histocompatibility complex molecules. J Gen Virol 2008, 89:122-1130.

Lilley BN, Ploegh HL: A membrane protein required for dislocation of misfolded proteins from the ER. Nature 2004, 429:834-840.

Barel MT, Rassing M, Pizzato N, van Leeuwen D, Le Bouteiller P, Lentz F, Wiertz E: Human cytomegalovirus-encoded US2 differentially affects surface expression of MHC class I locus products and targets membrane-bound, but not soluble HLA-G1 for degradation. J Immunol 2003, 171:6757-6765.

Schuetz DJ, Tortorella D, Sebald J, Phan C, Ploegh HL: Transplant class I major histocompatibility complex (MHC) products are resistant to rapid degradation imposed by the human cytomegalovirus (HCMV) gene products US2 and US11. J Exp Med 1998, 188:499-512.

Mackold RP, Wiertz EJ, Jones TR, Ploegh HL: The HCMV gene products US1 and US2 differ in their ability to attack allelic forms of murine major histocompatibility complex (MHC) class I heavy chains. J Exp Med 1997, 185:363-366.

Furman MH, Ploegh HL, Tortorella D: Membrane-specific, host-derived factors are required for US2- and US11-mediated degradation of major histocompatibility complex class I molecules. J Biol Chem 2002, 277:3258-3267.

Gewurz BE, Gaudet R, Tortorella D, Weng EW, Ploegh HL, Wiley DC: Antigen presentation subverted: Structure of the...
human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc Natl Acad Sci U S A 2001, 98:6794-6799.

295. Gewurz BE, Wang EW, Tortorella D, Schust DJ, Ploegh HL: Human cytomegalovirus US2 endoplasmic reticulum-lumenal domain dictates association with major histocompatibility complex class I in a locus-specific manner. J Virol 2001, 75:5197-5204.

296. Story CM, Furman MH, Ploegh HL: The cytosolic tail of class I MHC heavy chain is required for its dislocation by the human cytomegalovirus US2 and US11 gene products. Proc Natl Acad Sci U S A 1999, 96:8516-8521.

297. Thilo C, Berglund P, Applequist SE, Yewdell JW, Ljunggren HG, Achar A: Dissection of the interaction of the human cytomegalovirus-derived US2 protein with major histocompatibility complex class I molecules: prominent role of a single arginine residue in human leukocyte antigen-A2. J Biol Chem 2006, 281:8950-8957.

298. Hengel H, Flohr T, Hammerling GJ, Koszinowski UH, Momburg F: US11: a potent inhibitor of major histocompatibility complex class I expression. J Virol 2001, 75:3006-3016.

299. Lee SO, Hwang S, Park J, Park B, Jin BS, Lee S, Kim E, Cho S, Kim Y, Ahn JH, Hayward GS: Human cytomegalovirus gene product US6 inhibits ATP binding by TAP. J Virol 2003, 77(Pt 9):48031-48039.

300. Hengel H, Koopmann JO, Flohr T, Muranyi W, Goulmy E, Hammerling GJ, Koszinowski UH, Momburg F: Cotransfection of the human cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med 1999, 190:1285-1296.

301. Halenius A, Momburg F, Reinhard H, Bauer D, Lobigs M, Hengel H: Human cytomegalovirus-derived US2 protein with major histocompatibility A molecule HLA-A2. J Biol Chem 2001, 276:5383-5390.

302. Krmpotic A, Messerle M, Crikovic-Mertens I, Polic B, Jonjic S, Koszinowski UH: The immunoproteasome: an enhancement of the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med 1999, 190:1285-1296.

303. Poudevigne V, Willems AM, Le Meur H, Ruppert T, Hengel H: mouse cytomegalovirus US2 gene product delays trafficking of major histocompatibility complex class I molecules. J Virol 2002, 76:11753-11756.

304. Hansen SG, Strelow UJ, Franchi DC, Anders DG, Wong SW: Complete sequence and genomic analysis of rhesus cytomegalovirus. J Virol 2003, 77:6620-6636.

305. Pande NT, Powers C, Ahn K, Fruh K: Rhesus cytomegalovirus contains functional homologues of US2, US1, US6, and US11. J Virol 2005, 79:5786-5798.

306. Powers CJ, Fruh K: Signal peptide-dependent inhibition of MHC class I heavy chain translation by rhesus cytomegalovirus. PLoS Pathog 2008, 4:e1000050.

307. Ziegler H, Thale R, Lucia P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinson W, Koszinowski UH: A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 1997, 6:567-56.

308. Reusch P, MuraHW, Lucia P, Burtner HG, Hengel H, Koszinowski UH: A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J 1999, 18:1081-1091.

309. Krmpotic A, Messerle M, Crikovic-Mertens I, Polic B, Jonjic S, Koszinowski UH: The immunoproteasome: an enhancement of the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med 1999, 190:1285-1296.

310. Halpottas R, Gentil-Marien D, Thomas D, Podlech J, Deegen P, Herter S, Oehrlein-Karpi SA, Strand D, Wagner M, Reddehase MJ: Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol 2006, 80:7613-7624.

311. Kramer AN, Tsukada M, Watanabe Y, Kim Y, Watanabe K, Tsuchida T, Hashimoto S, Hatae K, Hengel H: Multiple immune evasion genes of murine cytomegalovirus are not redundant: m4 and m52 inhibit antigen presentation in a complementary and cooperative fashion. J Exp Med 2001, 194:967-978.

312. Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH: Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion genes of cytomegaloviruses. J Virol 2006, 80:6048-6055.

313. Powers CJ, Fruh K: Signal peptide-dependent inhibition of MHC class I heavy chain translation by rhesus cytomegalovirus. PLoS Pathog 2008, 4:e1000050.
class I and II proteins in epithelial and glial cells. *J Virol* 2003, 77:9287-9294.

331. Chevalier MS, Johnson DC: Human cytomegalovirus US3 chimeras containing US2 cytosolic residues acquire major histocompatibility class I and II protein degradation properties. *J Virol* 2003, 77:4731-4738.

332. Odeberg J, Plachter B, Branden L, Soderberg-Naucler C: Human cytomegalovirus protein pp65 mediates accumulation of HLA-DR in lysosomes and destruction of the HLA-DR alpha-chain. *Blood* 2003, 101:4870-4877.

333. Heise MT, Connick M, Virgin HWt: Murine cytomegalovirus inhibits interferon gamma-induced antigen presentation to CD4 T cells by macrophages via regulation of expression of major histocompatibility complex class II-associated genes. *J Exp Med* 1998, 187:1037-1046.