Hyperactivation of Nrf2 increases stress tolerance at the cost of aging acceleration due to metabolic deregulation

Eleni N. Tsakiri1 | Sentiljana Gumeni1 | Kalliopi K. Iliaki1 | Dimitra Benaki2 | Konstantinos Vougas3 | Gerasimos P. Sykiotis4 | Vassilis G. Gorgoulis3,5,6 | Emmanuel Mikros2 | Luca Scorrano7 | Ioannis P. Trougakos1

1Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, Athens, Greece
2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National & Kapodistrian University of Athens, Athens, Greece
3Biomedical Research Foundation, Academy of Athens, Athens, Greece
4Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
5Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
6Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
7Department of Biology, Venetian Institute of Molecular Medicine, Dullbeco-Telethon Institute, University of Padua, Padova, Italy

Correspondence
Ioannis P. Trougakos, Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
Email: itrougakos@biol.uoa.gr

Abstract
Metazoans viability depends on their ability to regulate metabolic processes and also to respond to harmful challenges by mounting anti-stress responses; these adaptations were fundamental forces during evolution. Central to anti-stress responses are a number of short-lived transcription factors that by functioning as stress sensors mobilize genomic responses aiming to eliminate stressors. We show here that increased expression of nuclear factor erythroid 2-related factor (Nrf2) in Drosophila activated cytoprotective modules and enhanced stress tolerance. However, while mild Nrf2 activation extended lifespan, high Nrf2 expression levels resulted in developmental lethality or, after inducible activation in adult flies, in altered mitochondrial bioenergetics, the appearance of Diabetes Type 1 hallmarks and aging acceleration. Genetic or dietary suppression of Insulin/IGF-like signaling (IIS) titrated Nrf2 activity to lower levels, largely normalized metabolic pathways signaling, and extended flies’ lifespan. Thus, prolonged stress signaling by otherwise cytoprotective short-lived stress sensors perturbs IIS resulting in re-allocation of resources from growth and longevity to somatic preservation and stress tolerance. These findings provide a reasonable explanation of why most (if not all) cytoprotective stress sensors are short-lived proteins, and it also explains the build-in negative feedback loops (shown here for Nrf2); the low basal levels of these proteins, and why their suppressors were favored by evolution.

KEYWORDS
aging, insulin/IGF-like, metabolism, mitostasis, Nrf2, proteostasis

1 | INTRODUCTION

The viability of metazoans largely depends on their ability to regulate metabolic processes in order to produce energetic molecules, as well as on their capacity to mount anti-stress responses. These processes are mostly regulated by short-lived sensors (mainly transcription factors) which in cases of disturbing departures from the optimal levels...
set by evolution, trigger genomic responses aiming to restore normal cellular functionality (López-Otín, Blasco, Partridge, Serrano, & Kroemer, 2013). At the whole organism level, these responses require complex co-regulation and wiring of cell-autonomous and non-autonomous mechanisms (Kaushik & Cuervo, 2015). The efficiency of these processes declines during aging leading to increased morbidity and mortality (López-Otín et al., 2013).

Nevertheless, it is nowadays evident that lifespan can be prolonged by genetic and/or dietary interventions. Specifically, several studies in model organisms have shown that longevity can be increased by caloric restriction (CR) and/or genetic interventions that reduce the activity of energy- and/or nutrient-sensing signaling pathways including, the insulin/IGF-like signaling (IIS) and the Target of Rapamycin (Tor)/ribosomal protein S6 kinase signaling pathways (López-Otín et al., 2013). It is believed that CR results in activation of cellular defenses that delay the rate of age-related accumulation of stressors and/or damaged biomolecules in cells (Fontana & Partridge, 2015).

Central to cell defense pathways are the networks of DNA (DDR) and proteome (PDR) damage responses; the latter ensure proteome stability during proteotoxic stress by activating the proteostasis network (PN). Key components of the PN are the protein synthesis and trafficking machineries; the endoplasmic reticulum (ER) unfolded protein responses (UPR)59, the molecular chaperones and the two main degradation machineries, namely the Autophagy Lysosome- (ALP) and the Ubiquitin-Proteasome (UPP) pathways. ALP is mostly involved in the degradation of protein aggregates and damaged or non-functional organelles and it is subject to negative ToR regulation (Kaushik & Cuervo, 2015), while UPP ensures protein synthesis quality control and degrades normal short-lived or non-repairable misfolded proteins (Tsakiri & Trougakos, 2015). The 26S eukaryotic proteasome comprises a 20S core particle (CP) bound to 19S regulatory particles (RP). The 20S CP consists of four stacked heptameric rings (two α type surrounding two β type) that form a barrel-like structure; the caspase- (C-L), trypsin- (T-L), and chymotrypsin- (CT-L) like proteasome enzymatic activities are located at the β1, β2, and β5 subunits, respectively. The 19S RP is involved in substrate recognition, deubiquitination, unfolding, and translocation into the 20S CP (Tsakiri & Trougakos, 2015). Notably, the functionality of both the anti-stress responses module and the PN declines during in vivo aging contributing to age-related diseases (Kaushik & Cuervo, 2015); in support, disruption of proteostasis in young Drosophila flies accelerated aging (Tsakiri, Sykiotis, Papassideri, Terpos, et al., 2013). On the other hand, increased activities of proteostatic modules have been correlated with increased longevity. Consistently, forced reinvestment of resources from the germ line to the soma in C. elegans resulted in elevated somatic proteasome activity, effective clearance of damaged proteins and increased longevity (Vilchez et al., 2012). Also, Drosophila reproductive tissues age at a lower rate than the soma due to their higher proteasome activities that prevent age-related proteome instability (Tsakiri, Sykiotis, Papassideri, Gorgoulis, et al., 2013).

The network of stress-responsive cellular sensors comprises several short-lived proteins, including the transcription factors forkhead box O (FoxO), heat shock factor-1 (Hsf1) and nuclear factor erythroid 2-related factor (Nrf2). Nrf2 plays a central role in cell responses against oxidative and xenobiotic damage (Sykiotis & Boohmann, 2010). Specifically, oxidative stress abrogates the Keap1-mediated proteasomal degradation of Nrf2, which in turn accumulates in the nucleus and heterodimerizes with a small musculoaponeurotic fibrosarcoma (Maf) protein on antioxidant response elements (AREs) to upregulate the expression of antioxidant and phase II genes (Sykiotis & Boohmann, 2010). Nrf2 activity is also regulated by several protein kinases, including inhibition by Glycogen synthase kinase 3β (Gsk3β) and tyrosine kinase Fyn (Pitoniak & Boohmann, 2015).

We are using Drosophila flies as a model organism to study the functional implication of stress sensors in PN regulation, organismal physiology, and aging. We reported recently that cap “n” collar isoform-C (CncC; the Nrf2 ortholog in Drosophila) regulates antioxidant responses and proteasome functionality in flies’ tissues, and that its functionality declines in the aged soma. Notably, high levels of CncC/Nrf2 expression or endogenous activity [induced by Keap1 knock down (KD)] accelerated aging despite concomitant proteasome activation (Tsakiri, Sykiotis, Papassideri, Terpos, et al., 2013).

We report here that increased Nrf2 activity in flies enhanced stress tolerance and activated proteostatic modules in a dose-dependent manner. However, while mild Nrf2 upregulation extended lifespan, high Nrf2 expression levels reduced longevity due to reprogramming of cellular bioenergetics that resulted in the appearance of Diabetes Type 1-like (DT1) phenotypes; these toxic effects were alleviated by downregulating IIS.

RESULTS

2.1 CncC/Nrf2 overexpression (OE) activates cytoprotective proteostatic modules in a dose-dependent manner and renders flies resistant to stressors

RU486 treatment caused no significant effects on flies’ proteostatic modules and longevity (Supporting information Figure S1). Also, the cncC/nrf2, maf-S, and keap1 genes are expressed in all flies’ tissues assayed (Supporting information Figure S2); and thus, ubiquitous CncC/Nrf2 OE or activation (by keap1 KD) resembles physiological responses to systemic stress. Ubiquitous OE of CncC/Nrf2 (Supporting information Figure S3A) with the RU486-inducible GeneSwitch Tubulin driver resulted at doses higher than 10 μM of RU486 in lethality during late larval/early pupal stages. Development was successfully completed at RU486 concentrations lower than 10 μM or in non-RU486-treated transgenic larvae, despite low levels of leaky transgene expression (Supporting information Figure S3A2). Thus, Nrf2-mediated effects are likely dose dependent. Analyses in isogenic CncC/Nrf2 transgenic adult flies showed that RU486 treatment induced dose-dependent upregulation of CncC/Nrf2 (to a maximum of ~4-fold) and of proteasome subunits expression (Supporting...
information Figure S3B), as well as of proteasome assembly (Supporting information Figure S3C1) and proteasome activities (Supporting information Figures S3C2, S3C3); notably, increased CncC/Nrf2 activity coincided with proteome over-ubiquitination (Supporting information Figure S3B). Also, increasing doses of RU486 upregulated proteasomal genes in a dose-dependent manner (Supporting information Figure S3D). Other CncC/Nrf2 transcriptional targets, for example, the antioxidant genes gstd1 and trr-1 or the CncC/Nrf2 suppressor gene keap1, were also induced in a dose-dependent manner but at higher RU486 doses, while the maf-S gene showed a unique response pattern; thus, not all Nrf2-targeted enhancers are equivalent. CncC/Nrf2 OE suppressed reactive oxygen species (ROS) or carbonylated proteins (DNPs) in middle-aged flies, while both ROS and DNPs were accumulating following suppression of CncC/Nrf2 activity (Supporting information Figures S3E, S3F).

CncC/Nrf2 OE in adult flies’ tissues maximized the upregulation of proteostatic or antioxidant response genes (Figure 1a) and proteins (Figure 1b1), as well as that of proteasomal activities (Figure 1b2), after chloroquine- (CQ; lysosome inhibitor) or PS-341 (proteasome inhibitor)-mediated proteotoxic stress. It also suppressed total proteome over-ubiquitination after proteasome inhibition (Figure 1c1), further supporting proteasome activation. CncC/Nrf2 overexpressing larvae or flies were in the short-term resistant to oxidative, proteotoxic (not shown) or genotoxic stress (Figure 1c2); however, only mild CncC/Nrf2 induction (i.e., leaky expression in the absence of RU486) increased flies’ longevity (Figure 1d), whereas higher CncC/Nrf2 expression levels decreased flies’ lifespan, as well as the locomotion activity of middle-aged flies (Figure 1e). The progenia effect was evident even after short periods of CncC/Nrf2 induction in adult flies (Figure 1f) (Supporting information Table S1). Similar effects on proteostatic modules and flies’ longevity were also noted following Keap1 KD (Supporting information Figure S4) or after CncC/Nrf22.4-87 OE (Supporting information Figure S5); the latter refers to a truncated CncC/Nrf2 form that lacks the N-terminus 87 amino acids (Supporting information Figure S3A1) containing the ER-localization NHB1 domain (Pitoniak & Bohmann, 2015). Thus, prolonged CncC/Nrf2 overactivation is toxic.

In the absence of stress, inducible CncC/Nrf2 OE in adult flies promoted the upregulation of additional proteostatic modules, including atg8a, ret(2)P (the fly ortholog of p62/Sequestosome-1), hdac6, hsp70, and grp78 (ER stress-related protein) genes (Supporting information Figure S6A1); and Atg8a, Ret(2)P proteins in adult (Supporting information Figure S6A2) and larval (Supporting information Figure S6A3) tissues. CncC/Nrf2 induction in larvae resulted (as in the adult) in increased proteome ubiquitination, which was, however, less intense compared to CncC/Nrf2 KD (Supporting information Figure S6B) that has been shown (Tsakiri, Sykiotis, Papasideri, Terpos, et al., 2013) to suppresses proteasomal activity. These findings prompted us to perform high-resolution iTRAQ proteomics in somatic tissues of CncC/Nrf2 overexpressing adult flies (Supporting information Tables S2, S3). Results revealed that CncC/Nrf2 positively regulates several proteostatic modules including Hsp26 and Hsc20 chaperones, the Ubiquitin (Ub) carboxyl-terminal hydrolase Uch-L5, the ER-associated degradation chaperone Ter94 (the fly ortholog of human valosin-containing protein, VCP/p97) and its adaptor Ufd1/Npl4, as well as the Ub binding and autophagosome-assembly-related protein p47, and the E1-Ub and SUMO activating protein Aos1 (Supporting information Figure S6C). Gene expression (Supporting information Figures S6D, S6E) or chromatin immunoprecipitation (ChIP) (Supporting information Figure S7) studies showed that CncC/Nrf2 is likely a direct regulator of the expression levels of these genes. Gene Ontology analyses of the proteomics data revealed that CncC/Nrf2 OE also upregulated peptides involved in chromatin replication, stability, and silencing (Supporting information Table S2), indicating that it also affects modules involved in genome stability. In conclusion, while mild CncC/Nrf2 activation can be in the long-term beneficial, CncC/Nrf2 overactivation is paradoxically toxic in the absence of evident biomolecular damage and in spite of mobilizing cytoprotective modules that confer stress resistance.

2.2 Persistent high CncC/Nrf2 expression levels alter mitochondrial bioenergetics and deregulate metabolic pathways resulting in DT1-like phenotypes

Nano-LC-ESI-MS/MS proteomics analyses after Ub immunoprecipitation in samples from CncC/Nrf2 overexpressing flies (Supporting information Tables S4, S5) revealed differential accumulation of several over-ubiquitinated proteins including pyruvate kinase (Pyk), cytochrome c oxidase subunits 2 (Cox2) and 5B (CovB), as well as succinate-CoA ligase subunit beta (Skap) indicating that CncC/Nrf2 OE affects mitostatic pathways. Indeed, CncC/Nrf2 activation upregulated genes involved in mitochondrial dynamics (marf, oap1 and drp1), cristae stability (opo1), mitochondria motility (miro), and energetics (sdhA, ATPsyn δ) (Figure 2a). Also, CncC/Nrf2 OE increased the assembly of mitochondrial complexes I and V respiratory chain supercomplexes (RCS); conversely, increased disassembly of these RCS was observed in CncC/Nrf2 KD flies (Figure 2b). Moreover, CncC/Nrf2 OE increased mitochondrial respiratory control (ST3/ST4) and FCCP/ST4 ratios (Figure 2c1), suggesting increased substrate oxidation, tight mitochondrial coupling, and reduced proton leak. Nevertheless, closer inspection of the ST2, ST3, ST4, and FCCP values revealed that DT3 tends to decrease after CncC/Nrf2 OE (Figure 2c2), indicating lower rates of ADP phosphorylation. In line with RCS disassembly, CncC/Nrf2 KD flies showed a tendency toward reduced mitochondrial coupling and increased proton leak (Figure 2c2), as reflected in decreased ST3 and increased ST4 values, respectively (Figure 2c2). CncC/Nrf2 OE in larval nervous system or muscle (Figure 2d1; see also insert graph) led to enhanced MitoGFP reporter staining indicating a denser mitochondrial network; again, opposite effects were observed after CncC/Nrf2 KD. EM analyses showed that CncC/Nrf2 OE caused no significant effects on mitochondria fine structure, while CncC/Nrf2 KD disrupted cristae stability and outer membrane integrity (Figure 2d2). CncC/Nrf2 is also functionally involved in the upregulation of mitostatic genes upon proteasome inhibition as this effect was abolished upon CncC/Nrf2 KD.
Thus, CncC/Nrf2 modulates mitochondrial dynamics and energetics, and it induces mitochondrial genes upon proteome instability.

Downstream analyses in metabolic pathways showed that prolonged CncC/Nrf2 activation (after CncC/Nrf2 OE or Keap1 KD) resulted in gradual decrease of glucose (GLU) and glycogen (GLY).
content in flies’ tissues. In contrast, CncC/Nrf2 overactivation in flies resulted in progressively increased levels of trehalose (TREH; a fat body synthesized sugar that circulates in flies’ hemolymph) indicating a hyperglycemic state (Figure 3a). Similar to GLU synthesis in the mammalian liver, TREH synthesis in the fly fat body is coupled to fatty acid oxidation and to reduced rates of glycolysis and glycogenesis. Indeed, sustained CncC/Nrf2 activation reduced GLY staining in adult flies’ fat body (Figure 3b1). Also, BODIPY staining of fat body lipid droplets in adult flies (Figure 3b1) or larvae (Figure 3b2) documented extensive lipolysis; this is consistent with downregulation of fatty acid synthase 1 observed in proteomics analyses (Supporting information Table S2). CncC/Nrf2 overexpressing flies were sensitive to starvation (Figure 3c) and showed reduced GLY staining in muscles (Figure 3d), while exposure of flies to increased flight periods further accelerated aging and premature death (Figure 3e). Similar late DT1-like phenotypes were found after prolonged CncC/Nrf2 knockdown (Supplementary information Figure S8). These DT1-like phenotypes suggest an extensive reprogramming of metabolic signaling due to CncC/Nrf2 overactivation.

NMR-based metabolomics analysis (Supporting information Figure S9, Supporting information Table S6) in adult flies verified these observations, as CncC/Nrf2 OE increased ATP and TREH levels, whereas it decreased maltose, GLU, and GLU-1-phosphate (intermediate for GLY synthesis). In addition, triglycerides, and polyunsaturated fatty acids, the amino acids Ala and Pro, lactate (these metabolites are used as energetic substrates during active muscle contraction or during fasting), and several respiratory substrates of the Krebs cycle (e.g., succinic, fumaric, and malic acid) were significantly reduced. Notably, citric acid levels were increased indicating that glycolysis is progressively switched off. We also observed that branched proteinogenic amino acids (e.g., Leu, Ile, and Val) tend to increase, indicating uncontrolled protein catabolism that has been recognized as a marker of insulin resistance or deficiency. These effects are likely compounded by reduced protein synthesis since our proteomics analyses showed downregulation of the ribosomal assembly-related Rpl24 and Rpl17 peptides (Supporting information Table S2) and coincide with reduced locomotion activities of middle-aged flies, as well as with enhanced death rates after increased periods of flight (see above) suggesting that protein breakdown promotes diabetic myopathy-like phenotypes. The primary benign role of CncC/Nrf2 is, however, still evident in the upregulation of cytoprotective metabolites like taurine and the neurotransmitter gamma-aminobutyric acid (GABA); the latter inhibits brain insulin-producing cells (IPCs) in flies’ (Rajan & Perrimon, 2016). Further, CncC/Nrf2 OE reduced the levels of the neurotoxic metabolite 3-hydroxykynurenine, as well as of Met-sulfoxide. Notably, several of the aforementioned metabolites (e.g., TREH, ATP, lactate or citric acid) were regulated in the opposite direction after CncC/Nrf2 KD (Supporting information Table S6).

The progressive impact of CncC/Nrf2 overactivation on metabolic pathways was also evident after gene expression analyses during days 1, 2, 7, and 20, post-CncC/Nrf2 OE (Supporting information Figure S10A; upper panel). We observed upregulation of the glucogenic g6p and pepck genes, while enzymes involved in glycolysis or Krebs cycle regulation (pyk, pdk1, pdk2) were only mildly induced in the first 1-2 days of CncC/Nrf2 OE. By analyzing the expression levels of genes involved in IIS, we found a late downregulation of insulin-like peptide 2 (dlilp2; secreted from IPCs by cell-autonomous GLU sensing), along with dlilp6 (secreted during fasting states from the fat body to repress dlilp2 secretion from the brain) and impl2 (a muscle-secreted factor that inhibits dlilp2 activity) upregulation. Since dlilp functions as ligands for the sole insulin receptor (InR) in the fly genome, the observed upregulation of inr and of its downstream effector pdkp1 are likely a late compensatory response due to reduced IIS. Also, in line with increased lipolysis, CncC/Nrf2 OE resulted in upregulation of the atgl and tgl lipases genes. Similar genomic effects were evident after Keap1 KD and were (in most cases) not inverted after CncC/Nrf2 KD (Supporting information Figure S10A; middle, lower panels). Interestingly, at 20 days post-CncC/Nrf2 activation the expression pattern of several of the metabolic genes assayed was inverted, suggesting that the initial genomic responses eventually collapse. As CncC/Nrf2 activation induced dlilp2 inhibitors, (e.g., the dlilp6 and impl2 genes) we then asked whether CncC/Nrf2 directly regulates IIS modulators. We found reduced dlilp2 staining in CncC/Nrf2 overexpressing flies’ brain IPCs (Figure 4a1), likely due to TREH accumulation-mediated dlilp2 over-secretion in hemolymph (Figure 4a2). Furthermore, Impl2 was found to accumulate in head tissues and in the hemolymph (Figure 4a3) of CncC/Nrf2
overexpressing flies, while ChIP analyses showed the direct binding of CncC/Nrf2 in imprl2 regulatory elements (Figure 4b) indicating a direct regulation of the imprl2 gene by CncC/Nrf2. OE of CncC/Nrf2 also upregulated (apart from keap1; see above) its other inhibitor, namely sgg/gsk3 (Shaggy, the fly ortholog of mammalian Gsk3) (Chatterjee, Tian, Spirohn, Boutros, & Bohmann, 2016; Tsakiri et al., 2017) (Supporting information Figure S10B) indicating that as Nrf2 network evolved in higher metazoa one of its major functions is to limit its own activity (Supporting information Figure S11A). As deduced from Supporting information Figure S11A, an Nrf2-mediated decrease in IIS should trigger late Foxo and ALP activation. Indeed, we found that CncC/Nrf2 activation resulted in Foxo accumulation and reduced Akt phosphorylation; it also increased phosphorylation of AMPKα (Supporting information Figure S11B1) and suppressed an inhibitory (S213/S229) Sgg/Gsk3 phosphorylation (Supporting information Figure S11B2). We further observed higher expression levels of the autophagic atg8a (see above) and atg6 (Supporting information Figure S11C) genes and, by using mCherry-atg8a line, of the Atg8a protein (Supporting information Figure S11D). Consistently, we noted higher activity of lysosomal cathepsins B, L (Supporting information Figure S11E; cathepsin D induction was also found in proteomics analyses) and enhanced expression of a GFP-Lamp1 reporter in the nervous system (Supporting information Figure S11F) indicating upregulated chaperon mediated autophagy. We suggest that although ALP activation may enhances resistance to stressors, it likely exacerbates the increased catabolism-related side effects.

The DT1-like phenotypes were also evident after muscle-targeted CncC/Nrf2 activation. Specifically, CncC/Nrf2 OE by a strong muscle-specific driver (Merf2) was lethal at late larval/early pupa stages. Analyses in transgenic larvae (while viable) showed the induction of proteostatic and metabolic genes (Supporting information Figure S12A), along with the activation of proteasomal peptidases and lysosomal cathepsins (Supporting information Figure S12B). Transgenic larvae or pupae were significantly growth-retarded (Supporting information Figure S12C) and GLY stores in the larval muscles were depleted (Supporting information Figure S12D). Also, muscle-targeted CncC/Nrf2 OE caused a lipolytic effect in larvae fat body (Supporting information Figure S12E), indicating a cell non-autonomous systemic organ effect. By using a weaker muscle-specific driver (MHC), we found that development was concluded with only mild larval growth retardation and fat body lipolytic effects (Supporting information Figure S12F). Yet, middle-aged flies developed a “wings up” phenotype (Supporting information Figure S12G), indicating that they were unable to maintain flight muscle contraction. Given the fact that wing beat frequency is closely correlated with oxygen consumption and directly reflects the rate of ATP hydrolysis and glycolytic flux, we concluded that even mild prolonged CncC/Nrf2 induction eventually depletes energetic molecules in muscles. Beyond the shown CncC/Nrf2 OE-mediated metabolic defects, our iTRAQ proteomic analyses revealed the downregulation of proteins involved in flies’ courtship songs, mating, and vitellogenesis (Supporting information Tables S2, S3), indicating that persistent activation of alarm pathways and stress signaling-mediated suppression of IIS also downregulates reproductive machineries.

2.3 | Knocking down effectors of nutrient-sensing pathways alleviates CncC/Nrf2 OE-mediated toxicity

As metabolic syndrome mostly relates to increased IIS (e.g., due to obesity) which would result in Nrf2 activation (Supporting information Figure S11A), we sought to moderate the CncC/Nrf2 OE-mediated diabetes-like phenotypes by modulating upstream IIS effectors or other downstream components of the pathway. Reduction of IIS is expected to activate ALP, Gsk3 (a CncC/Nrf2 inhibitor), and suppress glycogen synthase (Gys; the rate-limiting enzyme of glycogenesis). We hypothesized that early constant downregulation of IIS or modulation of its end points (e.g., Atg8a OE or Gys KD) will suppress aberrant CncC/Nrf2 activity and/or will provide energetic bio-molecules (e.g., amino acids or GLU) to the organism for longer periods, thus ameliorating diabetic phenotypes. We initially found that InR or Pdpk1 KD suppressed proteasome activities, increased the mitochondrial network density and mildly enhanced lipolysis (Supporting information Figure S13). We then established transgenic flies, where CncC/Nrf2 OE was combined with InR or Pdpk1 KD and found that both genetic interventions largely rescued the CncC/Nrf2 OE-mediated larval growth retardation (Figure 5a) and mitigated CncC/Nrf2 OE-induced hyperglycemia in adult flies (Figure 5b). Also, either genetic (InR or Pdpk1 KD) (Figure 5c) or dietary (CR) (Figure 5d) constant early IIS downregulation extended the longevity of CncC/Nrf2 overexpressing flies.

Similarly, early constant Atg8a OE largely rescued the CncC/Nrf2 OE-mediated larval growth retardation, alleviated lipolysis in larval
fat body after targeted transgenes expression in muscle, and suppressed CncC/Nrf2 OE-mediated hyperglycemia (Supporting information Figure S14A). Also, Atg8α OE increased the longevity of CncC/Nrf2 overexpressing flies (Supporting information Figure S14B). We then established transgenic flies where CncC/Nrf2 OE was combined with Gys KD (Supporting information Figure S11A). We found that Gys KD reduced the intensity of CncC/Nrf2 overactivation-mediated proteome over-ubiquitination, Ref(2)P upregulation (Supporting information Figure S14C1) and proteasome activation (Supporting information Figure S14C2) (compare with Supporting information Figure S3C2). Furthermore, while Gys KD did not affect the mitochondrial respiratory control ST3/ST4 and FCCP/ST4 ratios, it decreased the absolute ST2, ST3, ST4, and FCCP values; tended to suppress maximum mitochondrial respiration (FCCP values) (compare with Figure 2) and largely normalized the expression of mitochondrial genes (Supporting information Figures S14C3–S14C5) in CncC/Nrf2 OE flies. It also partially alleviated lipolysis in larval fat body after targeted transgenes expression in muscle (Supporting information Figure S14D), normalized the GLU/TREH content in CncC/Nrf2 overexpressing flies’ tissues (Supporting information Figure S14E) indicating a more physiological IIS; enhanced the survival of CncC/Nrf2-overexpressing flies during increased periods of flight (Supporting information Figure S14F1), and it delayed aging under normal culture conditions (Supporting information Figure S14F2). NMR-based metabolomics analyses largely confirmed these findings as we (among others) found that Gys KD in CncC/Nrf2 OE flies suppressed TREH accumulation and alleviated (or inverted) alanine, proline and lactate downregulation (Supporting information Figure S15, Supporting information Table S7). Thus, IIS downregulation delays the exhaustion of energetic biomolecules in CncC/Nrf2 overexpressing flies and suppresses diabetes-like phenotypes.

Mechanistically, as deduced from Supporting information Figure S11A, early constant IIS suppression would result in reduced Nrf2 activity, for example, due to its inhibition by upstream activated Gsk3. We thus compared mean metabolic and proteostatic genes’ expression levels in CncC/Nrf2 overexpressing flies vs. the other transgenic lines used or CR treatment. As summarized in Figure 6a (see also Supporting information Figure S16), our genetic or dietary
interventions caused milder deregulation of metabolic genes’ expression. A similar effect of less intense transcriptional output was also evident after comparing the expression of proteostatic genes (which represent direct transcriptional targets of CncC/Nrf2) in double transgenic lines vs. CncC/Nrf2 overexpressing flies (Figure 6b). The impact of reduced IIS on CncC/Nrf2 activity was even more dramatic after CR, since although CR did not affect the levels of inducible transgene expression (Figure 6c), it significantly suppressed the upregulation of direct CncC/Nrf2 targets, namely proteasomal genes (Figure 6d1), protein subunits (Figure 6d2), and peptidases activities (Figure 6d3). The reduced CncC/Nrf2 activity upon IIS suppression was also confirmed in flies where CncC/Nrf2 OE was combined with dlp2 KD (Supporting information Figure S17A,B, S17B). These flies also displayed, as compared to CncC/Nrf2 overexpressing flies, normalized mitochondrial function (Supporting information Figure S17C), similar resistance to oxidants (Supporting information Figure S17D), and increased healthspan/lifespan (Supporting information Figure S17E) (Supporting information Table S1). Therefore, IIS suppression titrates CncC/Nrf2 activity to lower levels, reducing thus the emitted stress signaling.

3 | DISCUSSION

We report here that in spite of activating a wide panel of cytoprotective modules in a tunable manner, only mild CncC/Nrf2 activation enhanced healthspan, and in fact only marginally. In contrast, higher activation levels either caused larval lethality or significantly reduced adult longevity. Supportively, whereas loss of one keep1 copy, heterozygosiy for the keep1^{Wys} loss-of-function mutation, or pharmacological inhibition of Gsk3, activated CncC/Nrf2 and increased stress resistance and flies’ longevity (Castillo-Quan et al., 2016; Sykiotis & Bohmann, 2008; Tsakiri et al., 2017), deletion of keep1 led to lethality during mid-larval development (Sykiotis & Bohmann, 2008).

In C. elegans transgenic SKN-1 OE in the intestine promoted longevity, whereas SKN-1 expression from high-copy transgenic arrays was toxic (Tullet et al., 2008). Similarly, strong activation of UPRER in C. elegans conferred stress resistance while shortening lifespan (Taylor & Dillin, 2013) and Nrf2 overactivation in mouse keratinocytes resulted in epidermal inflammation (Schäfer et al., 2012); also, persistent Nrf2 activation in rodents caused lifespan alteration and stem cell exhaustion (Murakami et al., 2017). Thus, the activation level of glycolytic genes was evidently buffered by the Nrf2 pathway.
Nrf2 that enhances healthspan/lifespan is considerably lower than that which maximizes protection against toxic doses of stressors.

Our data suggest that Nrf2 also regulates mitochondrial dynamics and energetics. Consistently, recent reports indicated that Nrf2 upregulates electron transport-related genes (Misra, Homer, Lam, & Thummel, 2011) and affects mitochondria biogenesis (Palkaras, Lionaki, & Tavnerarakis, 2015). Our findings extend these observations by demonstrating that CncC/Nrf2 regulates mitochondrial dynamics, energetics, O₂ consumption, and ATP production, assembly of OXPHOS machineries and protein supercomplexes; it also mediates upregulation of mitochondrial genes after proteotoxic stress. Thus, Nrf2 is likely a key immediate sensor of altered mitochondrial energetics and/or ROS production, consistent with its tethering to the cytoplasmic side of the outer mitochondrial membrane with the mitochondrial protein PGAM5 via Keap1 binding (Sykiotis & Bohmann, 2010).

Sustained CncC/Nrf2 activation in flies’ tissues promoted late downregulation of IIS, as part of a Nrf2-driven circuit that aims to suppress its own activity (Supporting information Figure S11A), leading to hyperglycemia, extensive lipolysis, and DT1-like phenotypes. Previous studies have shown that activation of Nrf2 in the liver reduced lipid levels (Chambel, Santos-Gonçalves, & Duarte, 2015) and that Nrf2 regulated enzymes involved in GLU metabolism (Lacher et al., 2015); thus, Nrf2 likely modulates a wide panel of metabolic genes. Similarly to our findings, ablation of IPCs in flies caused developmental delay, growth retardation, and hyperglycemia (Rulifson, Kim, & Nusse, 2002), while deletion of dIlps1–5 generated small homozygotes with elevated circulating sugar levels, decreased triglycerides, and activated autophagy; these animals were growth-delayed and poorly viable (Zhang et al., 2009). IIS signaling in flies is also regulated by the secreted protein ImpL2 that binds and inhibits dIlps 2 and 5 (Alic, Hoddinott, Vinti, & Partridge, 2011). Consistently to our observations, inhibition of IIS in flies by ImpL2 OE caused systemic cachexia-like organ wasting (Kwon et al., 2015). Low IIS results in reduced GLU uptake from muscle; and hence, lactate and alanine (which decrease in CncC/Nrf2 overexpressing flies) are exported to the fat body for conversion into GLU (Berg, Tymoczko, & Lubert Stryer, 2002). After exhaustion of the lipid reservoirs, the only source of GLU precursors is proteolysis-derived amino acids triggering muscle wasting. This adverse effect is evident in DT1 patients, who in the absence of insulin replacement are in a catabolic state that results in severe depletion of both energy stores and protein mass (denutrition and cachexia); eventually, untreated DT1 patients develop severe neuropathy, myopathy, and/or cardiomyopathy due to muscle wasting (D’Souza, Al-Sajee, & Hawke, 2013). As CncC/Nrf2 overexpressing flies recapitulate these effects they provide a useful model to identify new mechanisms and therapeutic targets for these severe complications.

Prolonged stress signaling seems to be centrally linked to IIS downregulation, since genotoxic stress in XPF-ERCC1-deficient mice suppresses the somatotroph axis triggering somatic growth attenuation (Niedernhofer et al., 2006), and impaired genome maintenance suppresses the growth hormone/IGF-1 axis in mice with Cockayne syndrome (Van der Pluijm et al., 2007). Also, DNA damage in Drosophila larva epidermis induces an innate immune response that is kept in control by repression of IIS activity (Karpac, Younger, & Jasper, 2011). The same mechanism likely operates under other types of stress, since, for example, proteotoxic stress due to proteasome dysfunction mediates insulin resistance in the liver (Otoda et al., 2013). Also, flies infected with Mycobacterium marinum progressively lose metabolic stores of fat and become hyperglycemic (Dionne, Pham, Shirasu-Hiza, & Schneider, 2006), while in support of our proteomics findings of reduced abundance of yolk proteins after CncC/Nrf2 OE, inr mutant females are non-vitellogenic (Giannakou & Partridge, 2007). Thus, given also our observations in proteomics analyses showing that sustained CncC/Nrf2 activation suppressed the expression of proteins involved in courtship behavior, mating and reproduction, sleep and circadian rhythms, it emerges that persistent stress affects most regulatory networks of metazoans.

Interestingly, muscle-targeted CncC/Nrf2 OE promoted systemic effects in the fat body lipid content, indicating that normal Nrf2 activity in muscles is required non-autonomously to maintain physiological fat body functionality. Similarly, Foxo activation in the adult pericerebral fat body reduces expression of the dIlp2 synthesized in neurons and represses IIS in peripheral fat body (Hwangbo, Gershman, Tu, Palmer, & Tatar, 2004). Also, Impl2 secretion from muscles with mitochondrial distress triggers non-autonomous repression of IIS (Owusu-Ansah, Song, & Perrimon, 2013) and an aggregation-prone protein expressed in the neurons of C. elegans elicits a mitochondrial-specific unfolded protein response that affects whole-animal physiology (Berendzen et al., 2016). Our findings are thus consistent with the existence of dynamic communication between stress pathways in muscle and adaptive programs in other peripheral organs that are activated through central integration of signals spanning multiple tissues.

Since Nrf2 overactivation is likely a primary output of increased IIS in metabolic disorders (e.g., obesity), our observation that CncC/Nrf2 OE-induced diabetic phenotypes can be mitigated by early constant lowering of IIS or by modulating IIS downregulation end points (e.g., ALP activation or Gys inhibition) is of particular importance. Supportively, autophagy activation had a renoprotective role in diabetic nephropathy (Xu et al., 2015) and it improved ER stress-induced diabetes in a rodent model (Bachar-Wikstrom, Wikstrom, Kaiser, Cerasi, & Leibowitz, 2013). Also, a genetic mutation of the Gys inhibiting enzyme Gsk3β (that renders Gsk3β resistant to IIS inhibition) corrected diabetes in mouse models of insulin resistance (Tanabe et al., 2008) and protected against metabolic syndrome (Chen et al., 2016). Moreover, Gys KD in Drosophila neurons improved neurological function and extended lifespan (Sinadinos et al., 2014). Likely a cross-talk exists between autophagy and GLY breakdown in Drosophila, since it was found that autophagy is required for efficient degradation of GLY in response to starvation (Zirin, Nieuwenhuis, & Perrimon, 2013). Therefore, Atg8a activation may also alleviate the effects of CncC/Nrf2 OE by enhancing GLY breakdown (mimicking Gys KD) and thereby increasing GLY availability. A consistent and intense rescue of the CncC/Nrf2 OE-induced toxic effects in adult flies was observed after genetic or CR-mediated constant early IIS downregulation. In support, it was showed that restricted diet delays accelerated aging, improves...
neuronal function and alleviates genomic stress in DNA repair-deficient mice (Vermey et al., 2016). Our finding that IIS downregulation titrates CncC/Nr2 activity to lower levels is supported by our observation that the CncC/Nr2 OE mean transcriptional output on proteostatic genes of CR-treated flies exposed to 320 μM RU486, was similar to that found in flies cultured in normal medium containing 5 μM RU486 (Figure 6d). Consistently, the median longevity of CR-treated CncC/Nr2 overexpressing flies exposed to 320 μM RU486 was 35 days, which roughly corresponds to the median longevity of flies reared in normal culture medium containing 1–5 μM RU486 (Supporting information Table S1). Thus, IIS downregulation is dominant over CncC/Nr2 (and likely of other stress sensors) overactivation; this finding suggests therapeutic dietary interventions for various age-related diseases of chronic stress including progeroid genome instability syndromes and/or neurodegeneration.

Taken together, our findings suggest that even in the absence of biomolecular damage, persistent stress signaling triggers a highly conserved adaptive metabolic response which reallocate resources from growth and longevity to somatic preservation and stress tolerance (Supporting information Figure S18). This notion provides a reasonable explanation of why most (if not all) cytoprotective stress sensors (e.g., Nrf2, Foxo, p53, etc) are short-lived proteins, and it also explains the build-in negative feedback loops (shown here for Nrf2); the low basal levels of these proteins, and why their suppressors were favored by evolution. Despite the severe adverse effects of Nrf2 overactivation, none is sufficient reason to discredit the Nrf2 pathway as a drug target, for example, for anti-aging purposes. Evidence comes from the fact that humans have been safely ingesting Nrf2 activators in their diet for millennia and from the increased healthspan associated with mild Nrf2 activation. Yet, the critical issues of correct dosage of stress sensors activators and of their interactions with disease-related pathways remain critical to avoid clinical trial failures. Systematic analyses of the cross-talk and functional interactions of pathways controlling stress and metabolic responses in model organisms can provide valuable preclinical insights and elucidate potential therapeutic avenues against aging and age-associated pathologies.

4 | EXPERIMENTAL PROCEDURES

4.1 | Fly stocks (maintenance and transgenic lines)

The transgenic lines, UAS CncC, UAS CncCΔ1–87, UAS CncCΔ1–87, UAS Keap1, and UAS Keap1Δ1–87; the gstD-ARE:GFPII (ARE of the gstD gene) and the gstD-mARE:GFPIII (mutated version of gstD-ARE) reporter transgenic lines, as well as the Tubulin GeneSwitch Gal4 (tubGSGal4) driver, were a gift from Prof. D. Bohmann (University of Rochester, NY, USA); the conditional driver (tubGSGal4) is ubiquitously activated upon dietary administration of RU486. The w1118 stock and the transgenic strains UAS Atg8a.GFP, UAS Gys1Δ1–87, UAS Pdpk1Δ1–87, UAS Ins1Δ1–87, and UAS dIlp2Δ1–87 along with another Keap1Δ1–87 line were obtained from the Bloomington Drosophila Stock Center. To establish isogenic lines, the UAS CncC and the conditional driver tubGSGal4 transgenes were backcrossed ten times into the w1118 genetic background. The reporter lines UAS mCherry-Atg8a, GFP-Lamp1, and UAS MitoSFP, along with the ubiquitous Gal4Δ1–87, the nervous system-specific Gal4Δ1–87, and Gal4Δ1–87, and the muscle-specific Gal4Δ1–87 and Gal4Δ1–87 drivers were a gift from Prof. A. Daga (University of Padua, Padova, Italy). Since gonads display distinct aging rates and regulation of proteostatic mechanisms as compared to adult somatic tissues (Tsakiri, Sykiotis, Papasideri, Gorgoulis, et al., 2013), in all presented experiments referring to adult flies only microdissected somatic tissues (head and thorax; equal numbers from mated male and female flies) were analyzed.

4.2 | Flies culture, exposure to compounds, starvation and increased flight periods

Flies were maintained at 23°C, 60% relative humidity on a 12-hr light: 12-hr dark cycle and were fed standard medium (Trougakos & Margaritis, 1998). All used compounds [chloroquine (CQ; Sigma), the proteasome inhibitor PS-341 (Calbiochem) and RU486 (Sigma)] were added in culture medium; doses and duration of flies’ exposure to compounds are indicated in figure legends.

The CR assay was performed in young mated flies fed with standard medium containing 0.4% yeast extract. For starvation experiments, flies were exposed to 1.5% agar medium; experiments of increased flight periods were performed by placing a culture vial into an empty bigger vial (Figure 3e).

For survival curves and statistical analyses, the Kaplan–Meier procedure and log-Rank (Mantel-Cox) test were used; significance was accepted at p < 0.05. Statistical analyses for all longevity experiments are reported in Supporting information Table S1.

Full Methods are available in Supporting information Appendix S1.

ACKNOWLEDGMENTS

We acknowledge Maria Eugenia Soriano Garcia-Cuerva (University of Padua, Italy) for assisting ENT during mitochondria isolation and respiration analyses. We thank Maria Figueiredo-Pereira (Hunter College, NY, USA), Katja Koehler (ETH Zurich, Switzerland), Ernst Hafen (ETH Zurich, Switzerland), Otto Babba (Ohu University, Japan) and Gábor Juhász (Eotvos Lorand University, Hungary) for donating antibodies. We also thank Profs A. Daga and D. Bohmann for fly lines. GPS was supported by the SNSF 3103A_153062 and SEFRI-COST C15.0045 projects and from the Leenaards Foundation. VGG was supported by the Welfare Foundation for Social & Cultural Sciences (KIKPE) Greece. IPT acknowledges funding from the TASCMAR (EU-H2020) and BIOIMAGING-GR (MIS 500275) projects.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

IPT designed and supervised the study; ENT, SG, KKI and IPT conducted experiments or interpreted the data; DB and EM performed
the metabolomics analysis; KV conducted the proteomics experiments; GPS, VGG, and LS generated or contributed reagents, materials, analysis tools and edited the manuscript; IPT wrote the manuscript.

ORCID

Ioannis P. Trougakos http://orcid.org/0000-0002-6179-2772

REFERENCES

Alic, N., Hoddinott, M. P., Vinti, G., & Partridge, L. (2011). Lifespan extension by increased expression of the Drosophila homologue of the IGFBP7 tumour suppressor. Aging Cell, 10, 137–147. https://doi.org/10.1111/j.1474-9726.2010.00653.x

Bachar-Wikstrom, E., Wikstrom, J. D., Kaiser, N., Cerasi, E., & Leibowitz, G. (2013). Improvement of ER stress-induced diabetes by stimulating autophagy. Autophagy, 9, 626–628. https://doi.org/10.4161/auto.23642

Berendzen, K. M., Durieux, J., Shao, L. W., Tian, Y., Kim, H. E., Wolff, S., & Dillin, A. (2016). Neuroendocrine coordination of mitochondrial stress signaling and proteostasis. Cell, 166, 1553–1563. https://doi.org/10.1016/j.cell.2016.08.042

Berg, J. M., Tymoczko, J. L., & Lubert Stryer, L. (2002). Biochemistry (5th ed.). New York, NY: Freeman, W. H. ISBN-10: 0-7167-3051-0.

Castillo-Berg, J. M., Tymoczko, J. L., & Lubert Stryer, L. (2002). Cell metabolism; GPS, VGG, and LS generated or contributed reagents, materials, analysis tools and edited the manuscript; IPT wrote the manuscript.

Kaushik, S., & Cuervo, A. M. (2015). Proteostasis and aging. Nature Medicine, 21, 1406–1415. https://doi.org/10.1038/nm.4001

Kwon, Y., Song, W., Droujinine, I. A., Hu, Y., Asara, J. M., & Perrimon, N. (2015). Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist Iml2. Developmental Cell, 33, 36–46. https://doi.org/10.1016/j.devcel.2015.02.012

Lacher, S. E., Lee, J. S., Wang, X., Campbell, M. R., Bell, D. A., & Slattery, M. (2015). Beyond antioxidant genes in the ancient Nrf2 regulatory network. Free Radical Biology & Medicine, 88, 452–465. https://doi.org/10.1016/j.freeradbiomed.2015.06.044

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153, 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

Misra, J. R., Horner, M. A., Lam, G., & Thummel, G. S. (2011). Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes & Development, 25, 1796–1806. https://doi.org/10.1101/gad.17280911

Murakami, S., Suzuki, T., Harigae, H., Romeo, P. H., Yamamoto, M., & Motohashi, H. (2017). NRF2 activation impairs quiescence and bone marrow reconstruction capacity of hematopoietic stem cells. Molecular and Cellular Biology, 37, pii: e00086–17.

Niedernhofer, L. J., Garinis, G. A., Raams, A. S., Robinson, A. R., Appelkorn, E., Hoeijmakers, J. H. (2006). A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature, 444, 1038–1043. https://doi.org/10.1038/nature05456

Otoda, T., Takamura, T., Misu, H., Ota, T., Murata, S., Hayashi, H., ... Kaneko, S. (2013). Proteasome dysfunction mediates obesity-induced endoplasmic reticulum stress and insulin resistance in the liver. Diabetes, 62, 811–824. https://doi.org/10.2337/db11-1652

Owsusu-Ansah, E., Song, W., & Perrimon, N. (2013). Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell, 155, 699–712.

Palikaras, K., Lionaki, E., & Tavernarakis, N. (2015). Coordination of mitochondrial and phagophory biogenesis during ageing in C. elegans. Nature, 521, 525–528. https://doi.org/10.1038/nature14300

Pitonaki, A., & Bohmann, D. (2015). Mechanisms and functions of Nrf2 signaling in Drosophila. Free Radical Biology & Medicine, 88, 302–313. https://doi.org/10.1016/j.freeradbiomed.2015.06.020

Rajan, A., & Perrimon, N. (2016). Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell, 151, 123–137. https://doi.org/10.1016/j.cell.2012.08.019

Rullfson, E. J., Kim, S. K., & Nusse, R. (2002). Ablation of insulin and IGF-1 corrects diabetes in mouse models of insulin resistance. Science, 296, 1118–1120. https://doi.org/10.1126/science.1070058

Schäfer, M., Farwanah, A., Willrött, A. H., Huebner, A. J., Sandhoff, K., Roop, D., ... Werner, S. (2012). Nrf2 links epithelial barrier function with antioxidant defense. EMBO Molecular Medicine, 4, 364–379. https://doi.org/10.1002/emmm.201200219

Sinadinos, C., Valles-Ortega, J., Boulan, L., Solsona, E., Tevy, M. F., Marquez, M., ... Guinovart, J. J. (2014). Neuronal glycogen synthesis contributes to physiological aging. Aging Cell, 13, 935–945. https://doi.org/10.1111/acel.12254

Sykiotis, G. P., & Bohmann, D. (2008). Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespans in Drosophila. Developmental Cell, 14, 76–85. https://doi.org/10.1016/j.devcel.2007.12.002

Sykiotis, G. P., & Bohmann, D. (2010). Stress-activated cap’ncollar transcription factors in aging and human disease. Science Signaling, 3, re3. https://doi.org/10.1126/scisignal.3112re3

Tanabe, K., Liu, Z., Patel, S., Doble, B. W., Li, L., Cras-Ménier, C., ... Perrett, M. A. (2008). Genetic deficiency of glycogen synthase kinase-3-beta corrects diabetes in mouse models of insulin resistance. PLoS Biology, 6, e37.

Taylor, R. C., & Dillin, A. (2013). XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell, 153, 1435–1447. https://doi.org/10.1016/j.cell.2013.05.042
Trougakos, I. P., & Margaritis, L. H. (1998). Immunolocalization of the temporally “early” secreted major structural chorion proteins, Dvs38 and Dvs36, in the eggshell layers and regions of Drosophila virilis. Journal of Structural Biology, 123, 111–123. https://doi.org/10.1006/jsbi.1998.4028

Tsakiri, E. N., Gaboriaud-Kolar, N., Iliaki, K. K., Tchoumtchoua, J., Papanagnou, E. D., Chatzigeorgiou, S. I., ... Trougakos, I. P. (2017). The indirubin derivative 6-Bromoindirubin-3'-Oxime activates proteostatic modules, reprograms cellular bioenergetic pathways, and exerts antiaging effects. Antioxidants & Redox Signaling, 27, 1027–1047. https://doi.org/10.1089/ars.2016.6910

Tsakiri, E. N., Sykiotis, G. P., Papassideri, I. S., Gorgoulis, V. G., Bohmann, D., & Trougakos, I. P. (2013). Differential regulation of proteasome functionality in reproductive vs. somatic tissues of Drosophila during aging or oxidative stress. The FASEB Journal, 27, 2407–2420.

Tsakiri, E. N., Sykiotis, G. P., Papassideri, I. S., Terpos, E., Dimopoulos, M. A., Gorgoulis, V. G., ... Trougakos, I. P. (2013). Proteasome dysfunction in Drosophila signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging. Aging Cell, 12, 802–813.

Tsakiri, E. N., & Trougakos, I. P. (2015). The amazing ubiquitin-proteasome system: structural components and implication in aging. International Review of Cell and Molecular Biology, 314, 171–237.

Tullet, J. M., Hertweck, M., An, J. H., Baker, J., Hwang, J. Y., Liu, S., ... Blackwell, T. K. (2008). Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell, 132, 1025–1038.

van der Pluijm, I., Garinis, G. A., Brandt, R. M., Gorgels, T. G., Wijnhoven, S. W., Diderich, K. E., ... van der Horst, G. T. (2007). Impaired genome maintenance suppresses the growth hormone–insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLoS Biology, 5, e2.

Vermeij, W. P., Doleń, M. E., Reiling, E., Jaarsma, D., Payan-Gomez, C., Bombardieri, C. R., ... Hoeijmakers, J. H. (2016). Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature, 537, 427–431. https://doi.org/10.1038/nature19329

Vilchez, D., Morantte, I., Liu, Z., Douglas, P. M., Merkwirth, C., Rodrigues, A. P., ... Dillin, A. (2012). RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature, 489, 263–268. https://doi.org/10.1038/nature11315

Xu, Y., Liu, L., Xin, W., Zhao, X., Chen, L., Zhen, J., & Wan, Q. (2015). The renoprotective role of autophagy activation in proximal tubular epithelial cells in diabetic nephropathy. Journal of Diabetes and Its Complications, 29, 976–983. https://doi.org/10.1016/j.jdiacomp.2015.07.021

Zhang, H., Liu, J., Li, C. R., Momen, B., Kohanski, R. A., & Pick, L. (2009). Deletion of Drosophila insulin-like peptides causes growth defects and metabolic abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 106, 19617–19622. https://doi.org/10.1073/pnas.0905083106

Zirin, J., Nieuwenhuis, J., & Perrimon, N. (2013). Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biology, 11, e1001708. https://doi.org/10.1371/journal.pbio.1001708

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Tsakiri EN, Gumeni S, Iliaki KK, et al. Hyperactivation of Nrf2 increases stress tolerance at the cost of aging acceleration due to metabolic deregulation. Aging Cell. 2018:e12845. https://doi.org/10.1111/acel.12845