Two new sesquiterpenes from *Chloranthus japonicus* Sieb

Qiang-Qiang Lu\(^a\), Xin-Wei Shi\(^{a,*}\), Shao-Jun Zheng\(^b\), Jun-Hui Zhou\(^a\), Xin-Ai Cui\(^a\) and Jin-Ming Gao\(^{c,*}\)

\(^a\)Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710061, Shaanxi, P.R. China

\(^b\)School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China

\(^c\)Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China

*Corresponding authors.

Phone: 86-29-85251800 Fax: 86-29-85251800

Email: sxw@ms.xab.ac.cn; jinminggao@nwsuaf.edu.cn

Abstract

Two new sesquiterpenes, namely, 1β,10β-dihydroxy-eremophil-7(11), 8-dien-12,8-olide (1) and 8,12-epoxy-1β-hydroxyeudesm-3,7,11-trien-9-one (2), together with three known sesquiterpenoids, shizukolidol (3), 4α-hydroxy-5α(H)-8β-methoxyeudesm-7(11)-en-12,8-olide (4), and neolitacumone B (5), and two known monoterpenes, (3R,4S,6R)-p-menth-1-en-3,6-diol (6) and (R)-p-menth-1-en-4,7-diol (7), were isolated from the whole plant of *Chloranthus japonicus* Sieb. Their structures were elucidated on the basis of spectroscopic data analysis and comparison with those of related known compounds. Compounds 4-7 were isolated from this plant for the first time.

Keywords: *Chloranthus japonicus*; sesquiterpenes; monoterpenes
List of supporting information

Table S1. 1H (500 MHz) and 13C NMR (125 MHz) data of 1 and 2.................................3

Figure S1. Key HMBC, COSY and NOESY correlations for 1 and 2......................4

Figure S2. 1H NMR Spectrum of 1 in CDCl$_3$...5

Figure S3. 13C NMR Spectrum of 1 in CDCl$_3$...6

Figure S4. DEPT NMR Spectrum of 1 in CDCl$_3$...7

Figure S5. HSQC Spectrum of 1 in CDCl$_3$..8

Figure S6. 1H-1H COSY Spectrum of 1 in CDCl$_3$..9

Figure S7. HMBC Spectrum of 1 in CDCl$_3$..10

Figure S8. NOESY Spectrum of 1 in CDCl$_3$...11

Figure S9. HR-ESI-MS Spectrometry of 1...12

Figure S10. 1H NMR Spectrum of 2 in CDCl$_3$...13

Figure S11. 13C NMR Spectrum of 2 in CDCl$_3$..14

Figure S12. DEPT NMR Spectrum of 2 in CDCl$_3$..15

Figure S13. HSQC Spectrum of 2 in CDCl$_3$...16

Figure S14. 1H-1H COSY Spectrum of 2 in CDCl$_3$..17

Figure S15. HMBC Spectrum of 2 in CDCl$_3$...18

Figure S16. NOESY Spectrum of 2 in CDCl$_3$..19

Figure S17. HR-ESI-MS Spectrometry of 2...20
Table S1. 1H NMR (500 MHz) and 13C NMR (125 MHz) data of 1 and 2 (recorded in CDCl$_3$, δ in ppm, J in Hz).

Position	Compound 1	Compound 2		
	δ_C	δ_H	δ_C	δ_H
1	74.6	3.88 br s	66.3	4.40 m
2	28.9	1.67 m (H-α)	38.3	1.39 dd (13.3, 10.4, H-α)
		2.16 m (H-β)		2.69 dd (13.3, 5.9, H-β)
3	25.2	1.36 m (H-α)	126.3	5.56 br s
		1.65 m (H-β)		
4	34.2	2.13 m	135.2	
5	43.0		45.6	2.80 m
6	32.8	2.65 d (16.4, H-α)	21.8	2.42 dd (16.5, 11.9, H-α)
		2.44 d (16.4, H-β)		2.86 dd (16.5, 4.4, H-β)
7	148.0		137.2	
8	152.2		146.1	
9	110.6	5.79 s	190.2	
10	74.4		46.9	
11	123.4		120.7	
12	170.9		144.7	7.39 q (1.0)
13	8.6	1.91 s	7.8	2.03 d (1.0)
14	15.5	0.89 d (6.9)	15.9	1.10 s
15	15.4	1.01 s	20.7	1.82 d (1.5)
Figure S1. Key HMBC, COSY and NOESY correlations for 1 and 2.
Figure S2. 1H NMR Spectrum of 1 in CDCl$_3$.
Figure S3. 13C NMR Spectrum of 1 in CDCl$_3$.
Figure S4. DEPT NMR Spectrum of 1 in CDCl$_3$.
Figure S5. HSQC Spectrum of 1 in CDCl₃.
Figure S6. 1H-1H COSY Spectrum of 1 in CDCl$_3$.
Figure S7. HMBC Spectrum of 1 in CDCl$_3$.
Figure S8. NOESY Spectrum of 1 in CDCl$_3$.
Figure S9. HR-ESI-MS Spectrometry of 1.
Figure S10. 1H NMR Spectrum of 2 in CDCl$_3$.
Figure S11. 13C NMR Spectrum of 2 in CDCl$_3$.
Figure S12. DEPT NMR Spectrum of 2 in CDCl₃.
Figure S13. HSQC Spectrum of 2 in CDCl₃.
Figure S14. 1H-1H COSY Spectrum of 2 in CDCl$_3$.
Figure S15. HMBC Spectrum of 2 in CDCl₃.
Figure S16. NOESY Spectrum of 2 in CDCl$_3$.
Figure S17. HR-ESI-MS Spectrometry of 2.