INTEGRABLE FRACTIONAL MEAN FUNCTIONS ON SPACES OF HOMOGENEOUS TYPE.

JUSTIN FEUTO, IBRAHIM FOANA, AND KONIN KOUA

ABSTRACT. The class of Banach spaces $(L^q, L^p)_\alpha(X, d, \mu)$, $1 \leq q \leq \alpha \leq p \leq \infty$, introduced in [10] in connection with the study of the continuity of the fractional maximal operator of Hardy-Littlewood and of the Fourier transformation in the case $X = \mathbb{R}^n$ and μ is the Lebesgue measure, was generalized in [7] to the setting of homogeneous groups. We generalize it here to spaces of homogeneous type and we prove that the results obtained in [7] such as relations between these spaces and Lebesgue spaces, weak Lebesgue and Morrey spaces, remain true.

1. Introduction

In [23], Muckenhoupt raised the problem of characterizing weight functions u and v for which the inequality

\begin{equation}
\int_{-\infty}^{+\infty} |\hat{f}(x)|^p u(x)dx \leq C \int_{-\infty}^{+\infty} |f(x)|^p v(x)dx
\end{equation}

holds for every f in the Lebesgue space $L^p(\mathbb{R})$.

Aguilera and Harboure showed in [1] that, in the case $v = 1$ and $1 < p < 2$, a necessary condition for (1) is

\begin{equation}
\left[\sum_{k=-\infty}^{k=+\infty} \left(\int_{r^k}^{r^{(k+1)}} u(x) \right)^{b} \right]^{\frac{1}{b}} \leq C r^{p-1}, \quad r > 0
\end{equation}

where $b = \frac{2}{2-p}$.

1991 Mathematics Subject Classification. 43A15; 43A85.
Key words and phrases. Amalgam spaces, space of homogeneous type.
Let us assume that \(n \) is a positive integer and \(1 \leq q \leq \alpha \leq p \leq \infty \). For any Lebesgue-measurable function \(f \) on \(\mathbb{R}^n \), we set

\[
\|f\|_{q,p,\alpha} = \begin{cases}
\sup_{r>0} r^n \left(\frac{1}{p} \right) \left[\sum_{k \in \mathbb{Z}^n} \left(\| f \chi_{I^r_k} \|_q \right)^p \right]^{\frac{1}{p}} & \text{if } p < \infty \\
\sup_{r>0} r^n \left(\frac{1}{p} \right) \sup_{k \in \mathbb{Z}^n} \| f \chi_{I^r_k} \|_q & \text{if } p = \infty
\end{cases}
\]

Here \(I^r_k = \prod_{j=1}^n \left(k_j r, (k_j + 1) r \right) \), \(k = (k_1, \ldots, k_n) \in \mathbb{Z}^n \), \(r > 0 \) and \(\| \cdot \|_q \) denotes the usual norm on the Lebesgue space \(L^q(\mathbb{R}^n) \). We denote by \(L_0(\mathbb{R}^n) \) the complex vector space of equivalent classes (modulo equality Lebesgue almost everywhere) of Lebesgue measurable complex-valued functions on \(\mathbb{R}^n \). It is clear that \(\| \cdot \|_{q,p,\alpha} \) may be looked at as a map of \(L_0(\mathbb{R}^n) \) into \([0, \infty)\). We define

\[
(L^q, L^p)^\alpha(\mathbb{R}^n) = \left\{ f \in L_0(\mathbb{R}^n) : \|f\|_{q,p,\alpha} < \infty \right\}.
\]

Fofana has proved in \[10\] that \(((L^q, L^p)^\alpha(\mathbb{R}^n), \| \cdot \|_{q,p,\alpha})\) is a complex Banach space and that the Lebesgue spaces \(L^q(\mathbb{R}^n) \), the Morrey spaces \(M^{(1-\frac{1}{\alpha})}_q(\mathbb{R}^n) \) and the Lorenz spaces \(L^{\alpha,\infty}(\mathbb{R}^n) \) (in the case \(q < \alpha < p \)) are its sub-spaces.

Note that condition \((2)\) can be written as \(u \in \left(L^1, L^b \right)^{\frac{1}{2-p}} \), with \(b = \frac{2}{2-p} \).

Further results on Fourier transform may be expressed in the setting of \((L^q, L^p)^\alpha(\mathbb{R}^n)\) and related spaces of Radon measures (see \[11, 20\]). These spaces are also related to \(L^q - L^p \) multiplier problems (see \[19, 25\]) and well-suited to establish norm inequalities for fractional maximal functions \[12\].

It is clear that \((L^q, \ell^p)^\alpha(\mathbb{R}^n)\) is a subspace of the so-called amalgam space of Wiener \((L^q, \ell^p)(\mathbb{R}^n)\), defined by

\[
(L^q, \ell^p)^\alpha(\mathbb{R}^n) = \left\{ f \in L_0(\mathbb{R}^n) : 1 \|f\|_{q,p} < \infty \right\}
\]

where for \(r > 0 \)

\[
r \|f\|_{q,p} = \begin{cases}
\left(\sum_{n \in \mathbb{Z}^n} \left(\| f \chi_{I^r_n} \|_q \right)^p \right)^{\frac{1}{p}} & \text{if } p < \infty \\
\sup_{k \in \mathbb{Z}^n} \| f \chi_{I^r_k} \|_q & \text{if } p = \infty
\end{cases}
\]

These amalgam spaces have been used by Wiener (see \[31\]) in connection with Tauberian theorems. Long after, Holland undertook their systematic study (see \[18\]). Since then, they have been extensively studied (see the survey paper \[15\] and the references therein) and generalized to locally compact groups (see \[27, 3, 2\]). They may be looked at as spaces of functions that behave locally as elements of \(L^q(\mathbb{R}^n) \) and globally as belonging to \(L^p(\mathbb{R}^n) \). Taking this into account, Feichtinger has introduced Banach spaces whose elements belong locally to some Banach space, and globally to another (see \[6\]).
Replacing \(\mathbb{R}^n \) by a homogeneous group \(G \), the authors have defined and studied \((L^q, L^p) \alpha (G)\) spaces (see [7]). They proved that results obtained in [10] remain valid for \((L^q, L^p) \alpha (G)\).

In the present paper, we extend the definition of these spaces to spaces of homogeneous type. In this setting, we obtain interesting links between \((L^q, L^p) \alpha (X)\) and classical Banach function spaces.

These spaces are well suited for studying norm inequalities on fractional maximal operators. Actually, in [8] we established some continuity properties for these operators from \((L^q, L^p) \alpha (X)\) to weak-Lebesgue spaces, which extended in this context analogous results known in the Euclidean case (see [12], [24]).

The paper is organized as follows. Section 2 contains definitions and the main results, whose proofs are given in Section 4. Section 3 is devoted to auxiliary results.

Throughout the paper, \(C \) denotes positive constants that are independent of the main parameters involved, with values which may differ from line to line. Constants with subscripts, such as \(C_1 \), do not change in different occurrences.

2. Definitions-Results

A space of homogeneous type \((X, d, \mu)\) is a quasi metric space \((X, d)\) endowed with a non negative Borel measure \(\mu \) satisfying the doubling condition

\[
0 < \mu \left(B(x,2r) \right) \leq C\mu \left(B(x,r) \right) < \infty, \quad x \in X \text{ and } r > 0,
\]

where \(B(x,r) = \{ y \in X : d(x,y) < r \} \) is the ball with center \(x \) and radius \(r > 0 \). If \(C^{\prime}_\mu \) is the smallest constant \(C \) for which (7) holds, then \(D_\mu = \log_2 C^{\prime}_\mu \) is called the doubling order of \(\mu \). It is known (see [27]) that for all balls \(B_2 \subset B_1 \)

\[
\frac{\mu \left(B_1 \right)}{\mu \left(B_2 \right)} \leq C_\mu \left(\frac{r \left(B_1 \right)}{r \left(B_2 \right)} \right)^{D_\mu},
\]

where \(r(B) \) denote the radius of the ball \(B \) and \(C_\mu = C^{\prime}_\mu (2\kappa)^{D_\mu}, \kappa \geq 1 \) being a constant such that

\[
d(x,y) \leq \kappa \left(d(x,z) + d(z,y) \right), \quad x, y, z \in X.
\]

Two quasi metrics \(d \) and \(\delta \) on \(X \) are said to be equivalent if there exists constants \(C_1 > 0 \) and \(C_2 > 0 \) such that

\[
C_1 d(x,y) \leq \delta(x,y) \leq C_2 d(x,y), \quad x, y \in X.
\]

Observe that topologies defined by equivalent quasi metrics on \(X \) are equivalent. It is shown in [21] that on any space of homogeneous type \((X, d, \mu)\), there is a quasi metric \(\delta \) equivalent to \(d \) for which balls are open sets.

In the sequel we assume that \(X = (X, d, \mu) \) is a fixed space of homogeneous type and:

- all balls \(B(x,r) = \{ y \in X : d(x,y) < r \} \) are open subsets of \(X \) endowed with the \(d \)-topology,
- \((X, d) \) is separable,
\[\mu(X) = \infty, \]
\[B_{(x,R)} \setminus B_{(x,r)} \neq \emptyset, \ 0 < r < R < \infty \text{ and } x \in X. \]

As proved in [30], the last assumption implies that there exist two constants \(\tilde{C}_\mu > 0 \) and \(\delta_\mu > 0 \) such that for all balls \(B_2 \subset B_1 \) of \(X \)

\[\mu(B_1) \mu(B_2) \geq \tilde{C}_\mu \left(\frac{r(B_1)}{r(B_2)} \right)^{\delta_\mu}. \] (10)

For \(1 \leq p \leq \infty, \| \cdot \|_p \) denotes the usual norm on the Lebesgue space \(L^p(X) \).

For any \(\mu \)-measurable function \(f \) on \(X \), we set:

- \(\lambda_f(\alpha) = \mu(\{ x \in X : |f(x)| > \alpha \}), \ \alpha > 0, \)
- \(f_*(t) = \inf \{ \alpha > 0 : \lambda_f(\alpha) \leq t \}, \ t > 0, \)
- \(f^*(t) = \frac{1}{t} \int_0^t f_*(u) du, \ t > 0, \)
- \(\| f \|_{p,q} = \left\{ \begin{array}{ll} \left[\frac{p}{q} \int_0^\infty \left(t^\frac{1}{p} f^*(t) \right)^q \frac{dt}{t} \right]^\frac{1}{q} & \text{if } 1 \leq p, q < \infty \\ \sup_{t > 0} t^\frac{1}{p} f^*(t) & \text{if } 1 \leq p \leq \infty \text{ and } q = \infty \end{array} \right. \)
- \(\lambda_f(\alpha) = \mu(\{ x \in X : |f(x)| > \alpha \}), \ \alpha > 0, \)
- \(f_*(t) = \inf \{ \alpha > 0 : \lambda_f(\alpha) \leq t \}, \ t > 0, \)
- \(f^*(t) = \frac{1}{t} \int_0^t f_*(u) du, \ t > 0, \)
- \(\| f \|_{p,q} = \left\{ \begin{array}{ll} \left[\frac{p}{q} \int_0^\infty \left(t^\frac{1}{p} f^*(t) \right)^q \frac{dt}{t} \right]^\frac{1}{q} & \text{if } 1 \leq p, q < \infty \\ \sup_{t > 0} t^\frac{1}{p} f^*(t) & \text{if } 1 \leq p \leq \infty \text{ and } q = \infty \end{array} \right. \)

Let \(L_0(X) \) be the complex vector space of equivalent classes (modulo equality \(\mu \)-almost everywhere) of \(\mu \)-measurable complex-valued functions on \(X \). Then \(\| \cdot \|_{p,q} \) is a map from \(L_0(X) \) into \([0, \infty)\). It is known (see [28]) that:

- for \(1 < p, q \leq \infty, \) the space \(L^{p,q}(X) = \left\{ f \in L_0(X) : \| f \|_{p,q} < \infty \right\} \) endowed with \(f \mapsto \| f \|_{p,q} \), is a complex Banach space (called Lorentz space),
- \(f \mapsto \| f \|_{p,q}^* = \left\{ \begin{array}{ll} \left[\frac{p}{q} \int_0^\infty \left(t^\frac{1}{p} f^*(t) \right)^q \frac{dt}{t} \right]^\frac{1}{q} & \text{if } 1 \leq p, q < \infty \\ \sup_{t > 0} t^\frac{1}{p} f^*(t) & \text{if } 1 \leq p \leq \infty \text{ and } q = \infty \end{array} \right. \)
- \(\sup_{t > 0} t^\frac{1}{p} f^*(t) = \sup_{\alpha > 0} \lambda_f(\alpha)^\frac{1}{p}. \)

In the sequel we assume that \(1 \leq q \leq \alpha \leq p \leq \infty. \)

Notation 2.1. For any \(\mu \)-measurable function \(f \) on \(X \) and any \(r > 0 \), we put

\[r \| f \|_{q,p,\alpha} = \left\{ \begin{array}{ll} \left[\int_X \left(\mu(B(y,r))^{\frac{1}{q} - \frac{1}{p} - \frac{1}{2}} \left\| f \chi_{B(y,r)} \right\|_q \right)^p d\mu(y) \right]^\frac{1}{p} & \text{if } p < \infty \\ \sup_{y \in X} \mu(B(y,r))^{\alpha - \frac{1}{2}} \left\| f \chi_{B(y,r)} \right\|_q & \text{if } p = \infty \end{array} \right., \] (11)

where \(\chi_{B(y,r)} \) denotes the characteristic function of \(B(y,r) \), and we use the convention \(\frac{1}{q} = 0 \) if \(q = \infty \).

Theorem 2.2. For any \(\mu \)-measurable function \(f \) on \(X \) and \(r > 0 \), we have \(r \| f \|_{q,p,\alpha} = 0 \) if and only if \(f = 0 \) \(\mu \)-almost everywhere.

By the previous result we may (and shall) look at \(r \| f \|_{q,p,\alpha} \) as a map from \(L_0(X) \) into \([0, \infty] \).
Notation 2.3. For $r > 0$, we define

$$(L^q, L^p)^\alpha_r(X) = \left\{ f \in L_0(X) : r \| f \|_{q,p,\alpha} < \infty \right\}.$$

Theorem 2.4. For any positive real number r, $((L^q, L^p)^\alpha_r(X), r \| \cdot \|_{q,p,\alpha})$ is a complex Banach space.

As in the Euclidean case we have the following results.

Theorem 2.5. Let r be a positive real number, $1 \leq q_1 < q_2 \leq \alpha$ and $\alpha \leq p_1 < p_2 < \infty$. Then

\begin{align*}
(12) & \quad r \| \cdot \|_{q_1,p,\alpha} \leq r \| \cdot \|_{q_2,p,\alpha} \\
(13) & \quad r \| \cdot \|_{q,\infty,\alpha} \leq C r \| \cdot \|_{q_2,p,\alpha} \leq C' r \| \cdot \|_{q_1,p,\alpha},
\end{align*}

where $C > 0$ and $C' > 0$ are constants independent of r.

Theorem 2.6. There is a constant $C > 0$ such that

\begin{equation}
(14) \quad r \| \cdot \|_{q,p,\alpha} \leq C r \| \cdot \|_{\alpha}
\end{equation}

for any real number $r > 0$.

$(L^q, L^p)^\alpha_r(X)$ is actually a generalization of the Wiener amalgam space $(L^q, \ell^p)(\mathbb{R}^n)$. This appears clearly when we compare $r \| \cdot \|_{q,p}$ as define in (6), to the norm $\| \cdot \|^{d_{mr}}_{q,p,\alpha}$ which is equivalent to $r \| \cdot \|_{q,p,\alpha}$ (see Proposition 4.1). Now we define a subspace of $(L^q, L^p)^\alpha_r(X)$ which generalizes $(L^q, \ell^p)^\alpha(\mathbb{R}^n)$.

Definition 2.7. We set

$$(L^q, L^p)^\alpha(X) = \left\{ f \in L_0(X) : \| f \|_{q,p,\alpha} < \infty \right\},$$

where $\| f \|_{q,p,\alpha} = \sup_{r>0} r \| f \|_{q,p,\alpha}$.

From Definition 2.7, Theorem 2.4, Theorem 2.6 and Theorem 2.5 the following results are straightforward.

Theorem 2.8. a) $((L^q, L^p)^\alpha(X), \| \cdot \|_{q,p,\alpha})$ is a complex Banach space and there exists a constant $C > 0$ such that

\begin{equation}
(15) \quad \| \cdot \|_{q,p,\alpha} \leq C \| \cdot \|_{\alpha}.
\end{equation}

b) Assume that $1 \leq q_1 < q_2 \leq \alpha$ and $\alpha \leq p_1 < p_2 < \infty$. Then

$$\| \cdot \|_{q_1,p,\alpha} \leq C \| \cdot \|_{q_2,p,\alpha}$$

and

$$\| \cdot \|_{q,p,\alpha} \leq C \| \cdot \|_{q_1,p,\alpha},$$

for some constant $C > 0$.

The continuous embedding of $L^\alpha(X)$ into $(L^q, L^p)^\alpha(X)$ expressed by Inequality (15), may be an equivalence in some cases.

Theorem 2.9. There is a constant $C > 0$ such that $\|\cdot\|_\alpha \leq C \|\cdot\|_{q,p,\alpha}$ whenever $q = \alpha$ or $\alpha = p$.

In the case $q < \alpha < p$, the space $(L^q, L^p)^\alpha(X)$ contains properly $L^\alpha(X)$ as it appears in the following theorem.

Theorem 2.10. Assume that $1 \leq q < \alpha < p \leq \infty$. Then there is a constant C such that

$$\|\cdot\|_{q,p,\alpha} \leq C \|\cdot\|_{\alpha,p}.$$

The previous result may be strengthened in some cases.

Theorem 2.11. Assume that $1 \leq q < \alpha < p$ and that there exists a non decreasing function φ on $[0, \infty)$ and two constants $0 < a \leq b < \infty$ such that

$$(16) \quad a \varphi(r) \leq \mu(B(x,r)) \leq b \varphi(r), \ x \in X, r > 0.$$

Then there is $C > 0$ such that

$$\|\cdot\|_{q,p,\alpha} \leq C \|\cdot\|_{\alpha,\infty}.$$

From the doubling condition (8) and the reverse doubling condition (10), we obtain that the function φ appearing in hypothesis (16) satisfies

$$(17) \quad a_0 r^{D_\mu} \leq \varphi(r) \leq b_0 r^{D_\mu}, \ r \leq 1,$$

$$(18) \quad a_1 r^{D_\mu} \leq \varphi(r) \leq b_1 r^{D_\mu}, \ 1 \leq r,$$

where a_0, b_0, a_1 and b_1 are positive constants.

Notice that Hypothesis (16) is fulfilled for example in the case where X is an Ahlfors n regular metric space, i.e., there is a positive integer n and a constant $C > 0$ such that

$$C^{-1} r^n \leq \mu(B(x,r)) \leq C r^n, \ x \in X, \ r > 0,$$

and also in the case where X is a Lie group with polynomial growth equipped with a left Haar measure μ and the Carnot-Carathéodory metric d associated with a Hörmander system of left invariant vector fields (see [17], [22] and [29]).

The next result shows that the inclusion of $L^{\alpha,\infty}(X)$ into $(L^q, L^p)^\alpha(X)$ is proper.

Theorem 2.12. Under the hypothesis of Theorem 2.11 we have $(L^q, L^p)^\alpha(X) \setminus L^{\alpha,\infty}(X) \neq \emptyset$.
3. Auxiliary results

In order to establish various inclusions between the function spaces we study, we need the following ”dyadic cube decomposition” of X, proved in [27].

Lemma 3.1. There is $\rho > 1$, depending only on κ in (9) (we may take $\rho = 8\kappa^5$), such that, given any integer m, there exists a family $\{(x_j^k, E_j^k) : k \in \mathbb{Z}, k \geq m, 1 \leq j < N_k\}$ where x_j^k are points of X and E_j^k subsets of X satisfying:

(i) $N_k \in \mathbb{N}^* \cup \{\infty\}, k \geq m$,
(ii) $B_{(x_j^k, \rho^k)} \subset E_j^k \subset B_{(x_j^k, \rho^{k+1})}$, $k \geq m$, $1 \leq j < N_k$,
(iii) $X = \bigcup_{j=1}^{N_k} E_j^k$, and $E_j^k \cap E_j^k = \emptyset$ if $i \neq j$, $k \geq m$,
(iv) $E_j^k \subset E_j^l$ or $E_j^k \cap E_i^l = \emptyset$, $\ell > k \geq m$, $1 \leq j < N_k, 1 \leq i < N_{\ell}$.

The E_j^k are referred to as dyadic cubes of generation k.

Notation 3.2. Given an integer $k \geq m$ and $r > 0$, we set

(i) $T_r^k(x) = \{i : 1 \leq i < N_k$ and $E_j^k \cap B_{(x_r)} \neq \emptyset\}$, $x \in X$,
(ii) $S_r^k(j) = \{i : 1 \leq i < N_k$ and $E_i^k \cap B_{(y_r)} \neq \emptyset$ for some $y \in E_j^k\}$, $1 \leq j < N_k$.

Remark that $i \in S_r^k(j)$ if and only if $j \in S_r^k(i)$. Inequality (8) provides us with the following useful estimates on the cardinals $\#(S_r^k(x))$ and $\#(T_r^k(x))$ of the sets $S_r^k(x)$ and $T_r^k(x)$ respectively.

Lemma 3.3. Given integers $k \geq m$, $1 \leq j < N_k$ and $r > 0$, we have

\[\mu(B_{(y_r)}) \leq \mathcal{N}_1(k, r) \mu(E_j^k), \ y \in E_j^k,\]

(19)

\[\mu(E_j^k) \leq \mathcal{N}_2(k, r) \mu(E_j^k) \text{ and } \mu(E_j^k) \leq \mathcal{N}_2(k, r) \mu(E_j^k), \ i \in S_r^k(j),\]

(20)

\[\#(T_r^k(x)) \leq \mathcal{N}_2(k, r), \ x \in X,\]

(21)

\[\#(S_r^k(x)) \leq \mathcal{N}_3(k, r), \ x \in X,\]

and

(22)

where $\mathcal{N}_1(k, r) = C_{\mu} \left[\kappa + \frac{\rho}{\rho^k}\right]^{D_{\mu}}$, $\mathcal{N}_2(k, r) = C_{\mu} \left[\kappa \left(2\kappa^2 + 1\right)\rho + \frac{\rho}{\rho^k}\right]^{D_{\mu}}$ and $\mathcal{N}_3(k, r) = C_{\mu} \left[\kappa \left(2\kappa^2 + 1\right)\rho + \frac{\rho}{\rho^k}\right]^{D_{\mu}}$.

Proof. (a) Inequalities (19) and (20) are obtained immediately from inequality (8), the following inclusions:

- $B_{(x_j^k, \rho^k)} \subset B_{(x_j^k, \kappa(\rho^{k+1}+r))}$ and $B_{(y_r)} \subset B_{(x_j^k, \kappa(\rho^{k+1}+r))}$, $y \in E_j^k$
- $E_j^k \subset B_{(y, \kappa(2\kappa^2+1+r))}$ and $B_{(x_j^k, \rho^k)} \subset B_{(y, \kappa(2\kappa^2+1+r))}$, $y \in E_j^k$ and $E_j^k \cap B_{(y, \rho^k)} \neq \emptyset$,

and the remark stated after Notation 3.2.
Lemma 3.1 (iii) asserts that the E^k_i ($1 \leq i < N_k$) are pairwise disjoints. Furthermore we have the following inclusions.

- $B(x_i^+, \rho^k) \subset E^k_i \subset B(x_i, \kappa(2\kappa \rho^{k+1} + r))$, $x \in X$ and $i \in T^k_r(x)$,
- $E^k_i \subset B((x_i^+)^{(2\kappa^2+1)} \rho^{k+1} + r)$ and $B(x_i^+, \rho^k) \subset B((x_i^+)^{(2\kappa^2+1)} \rho^{k+1} + r)$, $i \in T^k_r(j)$.

Thus by Inequality (8), we obtain for $x \in X$

$$\#(T^k_r(x))C^{-1} \left[\kappa(2\kappa \rho^k + \frac{r}{\rho^k}) \right]^{-D_\mu} \mu\left(B(x, \kappa(2\kappa \rho^{k+1} + r))\right) \leq \sum_{i \in T^k_r(x)} \mu\left(B(x_i^+, \rho^k)\right) \leq \mu\left(B(x, \kappa(2\kappa \rho^{k+1} + r))\right)$$

and similarly

$$\#(S^k_r(j))N^{-1} \mu\left(E^k_j\right) \leq \sum_{i \in S^k_r(j)} \mu\left(E^k_i\right) \leq \mu\left(B(x_i^+, \kappa((2\kappa^2+1) \rho^{k+1} + r))\right)$$

$$\leq C \left[\kappa(2\kappa^2 + 1) \rho^k + \frac{r}{\rho^k} \right]^{-D_\mu} \mu\left(E^k_j\right).$$

Inequalities (21) and (22) follow.

\[\Box\]

Lemma 3.4. Assume that $1 \leq q, p \leq \infty$, with $p \neq \infty$, $0 \leq s$, m and k are integers satisfying $k \geq m$, $1 \leq j < N_k$ and $2\kappa \rho^{k+1} \leq r$. Then, for any μ-measurable function f on X, we have

$$\mu\left(E^k_j\right)^{-s} \left\| f \chi_{E^k_j} \right\|_q^p \leq \mathcal{N}_1(k, r)^{s+1} \int_{E^k_j} \mu\left(B(y, r)\right)^{-s-1} \left\| f \chi_{B(y, r)} \right\|_q^p d\mu(y)$$

where $\mathcal{N}_1(k, r)$ is as in Inequality (19).

Proof. Notice that

$$\inf_{E^k_j} \left\| f \chi_{B(y, r)} \right\|_q^p \leq \mu\left(E^k_j\right)^{-1} \int_{E^k_j} \left\| f \chi_{B(y, r)} \right\|_q^p d\mu(y)$$

with equality only when $\left\| f \chi_{B(y, r)} \right\|_q$ is a constant almost everywhere on E^k_j. Thus, there exists an element y^k_j of E^k_j such that

$$\left\| f \chi_{B(y^k_j, r)} \right\|_q^p \leq \mu\left(E^k_j\right)^{-1} \int_{E^k_j} \left\| f \chi_{B(y, r)} \right\|_q^p d\mu(y).$$

Since E^k_j is included in $B(y, r)$ for every y in E^k_j, we have

$$\mu\left(E^k_j\right)^{-s} \left\| f \chi_{E^k_j} \right\|_q^p \leq \mu\left(E^k_j\right)^{-s} \left\| f \chi_{B(y^k_j, r)} \right\|_q^p \leq \mu\left(E^k_j\right)^{-s-1} \int_{E^k_j} \left\| f \chi_{B(y, r)} \right\|_q^p d\mu(y).$$

The result follows from inequality (19). \[\Box\]
We shall use the following result which may be viewed as a generalization of the Young inequality in a space without group structure.

Lemma 3.5. Let β, γ be elements of $[1, \infty]$ such that $\frac{1}{\gamma} = \frac{1}{\beta} + \frac{1}{t} - 1$ and $K(x, y)$ a positive kernel on X. There is a constant $C > 0$ such that

$$
\|Tg\|_{\gamma} \leq C \|\|K\|_{\beta}\|_{\infty} \|g\|_{t, \gamma}^{*}, \ g \in L_{0}(X),
$$

where

$$
Tg(y) = \int_{X} g(x)K(x, y)d\mu(x),
$$

and

$$
\left\|\left\|K\right\|_{\beta}\right\|_{\infty} = \max \left(\sup \operatorname{ess} \|K(\cdot, y)\|_{\beta}; \sup \operatorname{ess} \|K(x, \cdot)\|_{\beta}\right).
$$

Proof. 1) Let $g \in L_{0}(X)$ and put $\tilde{g}(y) = \int_{X} |g(x)| K(x, y)d\mu(x)$. We claim that

$$
\|\tilde{g}\|_{t, \infty}^{*} \leq C \|\|K\|_{\beta}\|_{\infty} \|g\|_{t, \infty}^{*}.
$$

If $g \notin L^{t, \infty}(X)$ or $\|g\|_{t, \infty}^{*} = 0$, or $\|\|K\|_{\beta}\|_{\infty} \in \{0, \infty\}$ then the claim is trivially verified. So we assume that $0 < \|g\|_{t, \infty}^{*} < \infty$ and $0 < \|\|K\|_{\beta}\|_{\infty} < \infty$. Define

$$
g_{1}(x) = \begin{cases}
 g(x) & \text{if } |g(x)| \leq M \\
 0 & \text{if not}
\end{cases}
$$

and $g_{2}(x) = g(x) - g_{1}(x), \ x \in X,$

where M is a positive real number to be specified later. For $\alpha > 0$, we have

$$
\lambda_{\tilde{g}}(\alpha) \leq \lambda_{\tilde{g}_{1}} \left(\frac{\alpha}{2}\right) + \lambda_{\tilde{g}_{2}} \left(\frac{\alpha}{2}\right) \text{ since } \tilde{g} \leq \tilde{g}_{1} + \tilde{g}_{2}.
$$

a) We can estimate $\lambda_{\tilde{g}_{1}} \left(\frac{\alpha}{2}\right)$ as follows:

$$
\int_{X} |g_{1}(x)|^{\beta} d\mu(x) = \beta' \int_{0}^{\infty} s^{\beta' - 1} \lambda_{g_{1}}(s) ds \leq \beta' \int_{0}^{M} s^{\beta' - 1} \lambda_{g_{1}}(s) ds
$$

$$
\leq \beta' \left(\int_{0}^{M} s^{\beta' - 1} ds\right)^{t} \left\|\|g\|_{t, \infty}^{*}\right\|^{t}
= \frac{\beta'}{\beta' - t} M^{\beta' - t} \left\|\|g\|_{t, \infty}^{*}\right\|^{t}.
$$

So,

$$
|\tilde{g}_{1}(y)| = \int_{X} |g_{1}(x)| K(x, y)d\mu(x) \leq \left(\int_{X} |g_{1}(x)|^{\beta} d\mu(x)\right)^{\frac{1}{\beta'}} \left(\int_{X} K^{\beta}(x, y)d\mu(x)\right)^{\frac{1}{\beta'}}
\leq \left(\frac{\lambda_{\tilde{g}}(\alpha)}{2}\right)^{\frac{1}{\beta'}} M^{\frac{\beta'}{\beta' - t}} \left\|\|g\|_{t, \infty}^{*}\right\|^{\frac{t}{\beta'}} \|\|K\|_{\beta}\|_{\infty}.
$$

Let us choose

$$
M = \left(\frac{\alpha}{2}\right)^{\frac{t}{\beta'}} \left(\frac{1}{\gamma}\right)^{\frac{\gamma}{\beta'}} \left\|\|g\|_{t, \infty}^{*}\right\|^{\frac{\beta'}{\beta'}} \|\|K\|_{\beta}\|_{\infty}^{\frac{\beta}{\beta'}}.
$$
We have \(\| \tilde{g}_1 \|_{\infty} \leq \frac{\alpha}{2} \) and therefore \(\lambda_{\tilde{g}_1} \left(\frac{\alpha}{2} \right) = 0 \).

b) We also have the following estimate of \(\lambda_{\tilde{g}_2} \left(\frac{\alpha}{2} \right) \):

\[
\int_X |g_2(x)| \, d\mu(x) = \int_0^\infty \lambda_{g_2}(s) \, ds \leq \int_0^M \lambda_g(M) \, ds + \int_M^\infty \lambda_g(s) \, ds \\
\leq M^{1-t} \left(\| g \|_{t,\infty}^* \right)^t + \left(\int_M^\infty s^{-t} \, ds \right) \left(\| g \|_{t,\infty}^* \right)^t = \left(\frac{t}{t-1} \right) M^{1-t} \left(\| g \|_{t,\infty}^* \right)^t.
\]

Therefore,

\[
\lambda_{\tilde{g}_2} \left(\frac{\alpha}{2} \right) \leq \left(\frac{2}{\alpha} \right)^\beta \int_{\{u \in X : |\tilde{g}_2(u)| > \frac{\alpha}{2} \}} \left(\int_X |g_2(x)| \, K(x, y) \, d\mu(x) \right)^\beta \, d\mu(y) \\
\leq \left(\frac{2}{\alpha} \right)^\beta \left[\int_X |g_2(x)| \left(\int_{\{u \in X : |\tilde{g}_2(u)| > \frac{\alpha}{2} \}} K^\beta(x, y) \, d\mu(y) \right)^\frac{1}{\beta} \, d\mu(x) \right]^\beta \\
\leq \left(\frac{2}{\alpha} \right)^\beta \| K \|_\beta \|_\infty \left[\int_X |g_2(x)| \, d\mu(x) \right]^\beta \\
\leq \left(\frac{2}{\alpha} \right)^\beta \| K \|_\beta \|_\infty \left(\frac{t}{t-1} \right) M^{1-t} \left(\| g \|_{t,\infty}^* \right)^t \leq \left(C \alpha^{-1} \| K \|_\beta \|_\infty \| g \|_{t,\infty}^* \right)^\gamma,
\]

with \(C = (2)^\gamma \left(\frac{t}{t-1} \right)^\beta \left(\frac{t}{\gamma} \right)^{\gamma(t-1)} \).

From a) and b) we get

\[
\lambda_{\tilde{g}}(\alpha) \leq \left(C \alpha^{-1} \| K \|_\beta \|_\infty \| g \|_{t,\infty}^* \right)^\gamma.
\]

As this inequality is true for \(\alpha > 0 \), we have

\[
\| Tg \|_{\gamma,\infty}^* \leq C \| K \|_\beta \|_\infty \| g \|_{t,\infty}^*.
\]

2) Notice that \(T \) is a linear operator. Therefore, the result follows from 1) and Stein interpolation theorem (see [28]).

\[\square\]

4. PROOF OF THE MAIN RESULTS

Throughout this paragraph, for every \(r > 0 \), \(m_r \) denotes the unique integer which verifies

\[(23) \quad \rho^{m_r+1} \leq \frac{r}{2\kappa} < \rho^{m_r+2}. \]

Notice that the constants in Lemma \ref{lem:N1} satisfy

\[(24) \quad \mathcal{N}_1(m_r, \rho) \leq C \mu [\kappa \rho(1 + 2\kappa \rho)]^{D^\mu} = \mathcal{N}_1, \]

\[(25) \quad \mathcal{N}_2(m_r, \rho) \leq C \mu [2\kappa^2 \rho(1 + \rho)]^{D^\mu} = \mathcal{N}_2, \]
and
\[(26) \quad \mathfrak{N}_3(m_r, r) \leq C_\mu \left[\kappa \rho (2\kappa^2 + 2\kappa \rho + 1) \right]^{D_\mu} \mathfrak{N}_2 = \mathfrak{N}_3.\]

Proof of Theorem 2.2. Let \(f \) be a \(\mu \)-measurable function on \(X \) such that \(r \|f\|_{q,p,\alpha} = 0. \) Since balls in \(X \) have positive measure, \(\|\mu(B_{(r)}^{\frac{1}{q} - \frac{1}{p} - \frac{1}{q}}) \|_q = 0 \) implies that there exists a \(\mu \)-null subset \(E \) of \(X \) such that
\[\|f\chi_{B_{(r)}}\|_q = 0 \text{ in } X \setminus E. \]
Similarly, for any \(y \) in \(X \setminus E \), there exists a \(\mu \)-null subset \(F_y \) of \(X \) out of which \(f\chi_{B_{(y,r)}} = 0 \). For \(1 \leq j \leq N_{m_r} \), the intersection of \(X \setminus E \) and \(B_{(x^m_r, \rho \sum_{k>n})} \) is non-void. So we may pick in it an element \(y_j \). Since \(E_j^{m_r} \subset B_{(x^m_r, \rho \sum_{k>n})} \subset B_{(y_j, r)} \), we have \(X = \bigcup_{j=1}^{N_{m_r}} E_j^{m_r} = \bigcup_{j=1}^{N_{m_r}} B_{(y_j, r)} \). Setting \(F = \bigcup_{j=1}^{N_{m_r}} F_{y_j} \), we have \(f = 0 \) in \(X \setminus F \). The result follows from the fact that \(\mu(F) = 0. \)

Proof of Theorem 2.4. It is clear from Theorem 2.2 and the definition of \(r \|\cdot\|_{q,p,\alpha} \) that \((L^q, L^p)^\alpha_r(X)\) is a complex vector space and \(r \|\cdot\|_{q,p,\alpha} \) is a norm on it. All we need to prove is completeness.

Let \((f_n)_{n>0} \) be a sequence of elements of \((L^q, L^p)^\alpha_r(X)\) such that \(\sum_{n>0} r \|f_n\|_{q,p,\alpha} < \infty. \)

Since \(\sum_{n>0} \left\| \mu(B_{(r)})^{\frac{1}{q} - \frac{1}{p} - \frac{1}{q}} \right\|_q = \sum_{n>0} r \|f_n\|_{q,p,\alpha} < \infty, \) there exists a \(\mu \)-null subset \(E \) of \(X \) out of which
\[\sum_{n>0} \left\| f_n \chi_{B_{(y,r)}} \right\|_q < \infty. \]
Therefore, for any element \(y \) of \(X \setminus E \), there is a \(\mu \)-null subset \(F_y \) of \(X \) out of which
\[\sum_{n>0} f_n \chi_{B_{(y,r)}} \] converges absolutely. Arguing as in the proof of Theorem 2.2, we shall obtain a \(\mu \)-null subset \(F \) of \(X \) such that \(\sum_{n>0} f_n \) converges absolutely on \(X \setminus F \). Define
\[f(x) = \begin{cases} \sum_{n>0} f_n(x) & \text{if } x \in X \setminus F, \\ 0 & \text{otherwise}. \end{cases} \]
We have
\[r \|f\|_{q,p,\alpha} \leq \sum_{n>0} r \|f_n\|_{q,p,\alpha} < \infty. \]
In addition, for any positive integer \(n \) and any element \(y \) of \(X \),
\[\left\| f\chi_{B_{(y,r)}} - \sum_{k=1}^{n} f_k \chi_{B_{(y,r)}} \right\|_q \leq \sum_{k>n} \left\| f_k \chi_{B_{(y,r)}} \right\|_q. \]
Therefore
\[r \left\| f - \sum_{k=1}^{n} f_k \right\|_{q,p,\alpha} \leq \sum_{k>n} r \| f_k \|_{q,p,\alpha}. \]

Thus \(\sum_{n>0} f_n \) converges to \(f \) in \((L^q, L^p)_r^\alpha (X) \). \(\square \)

The norm \(r \| \cdot \|_{q,p,\alpha} \) is not easy to be used. The following proposition provides us with an equivalent norm.

Proposition 4.1. Let \(f \) be any \(\mu \)-measurable function on \(X \), and \(r > 0 \). Put
\[\| f \|_{q,p,\alpha}^{dmr} = \left\{ \begin{array}{ll}
\left[\sum_{j=1}^{N_{mr}} \left(\mu(E_j^{mr}) \frac{q}{p} \| f \|_{q,p,\alpha} \right)^\frac{1}{q} \right]^\frac{p}{q} & \text{if } p < \infty,
\sup_{1 \leq j < N_{mr}} \mu(E_j^{mr}) \frac{1}{q} \| f \|_{q,p,\alpha} & \text{if } p = \infty.
\end{array} \right. \]

Then, there are positive constants \(C_1 \) and \(C_2 \), not depending on \(f \) and \(r \), such that
\[(27) \quad C_1 \ r \| f \|_{q,p,\alpha} \leq \| f \|_{q,p,\alpha}^{dmr} \leq C_2 \ r \| f \|_{q,p,\alpha}. \]

Proof. Let \(f \) be any \(\mu \)-measurable function on \(X \) and \(r > 0 \).

1st case. We suppose that \(p < \infty \).

a) We have
\[r \left\| f \right\|_{q,p,\alpha}^p = \int_X \left\{ \mu(B(y,r))^{\frac{q}{p}} \frac{1}{p} \int_X \left(|f|^q \chi_{B(y,r)} \right) (x) d\mu(x) \right\}^{\frac{p}{q}} d\mu(y) \]
\[= \sum_{j=1}^{N_{mr}} \int_{E_j^{mr}} \left\{ \sum_{i \in I_{mr}(y)} \mu(B(y,r))^{\frac{q}{p}} \frac{1}{p} \int_{E_i^{mr}} \left(|f|^q \chi_{B(y,r)} \right) (x) d\mu(x) \right\}^{\frac{p}{q}} d\mu(y) \]
\[\leq \frac{N_{mr}^{\frac{1}{2}}}{\frac{1}{2}} \sum_{j=1}^{N_{mr}} \int_{E_j^{mr}} \mu(B(y,r))^{\frac{q}{p}} \frac{1}{p} \sum_{i \in I_{mr}(y)} \left[\int_{E_i^{mr}} \left(|f|^q \chi_{B(y,r)} \right) (x) d\mu(x) \right]^{\frac{p}{q}} d\mu(y), \]

according to Inequalities (21) and (25). As \(2\kappa \rho_{mr+1} \leq r \), we have \(E_i^{mr} \subset B(y,2\kappa r) \) for \(i \in I_{mr}(y) \) and therefore by Inequality (8),
\[(28) \quad \mu(E_i^{mr}) \leq C_\mu(2\kappa)^{D_\mu} \mu(B(y,r)), \quad i \in I_{mr}(y). \]

Taking into account Inequalities (28), (20) and (25), we obtain
\[r \left\| f \right\|_{q,p,\alpha}^p \leq C \sum_{j=1}^{N_{mr}} \sum_{i \in I_{mr}(y)} \mu(E_i^{mr})^{\frac{p}{q}} \| f \|_{E_i^{mr}}^p. \]

So by Inequalities (22) and (26) we get
\[r \left\| f \right\|_{q,p,\alpha}^p \leq C N_3 \sum_{i=1}^{N_{mr}} \mu(E_i^{mr})^{\frac{p}{q}} \| f \|_{E_i^{mr}}^p \leq C N_3 \left(\| f \|_{q,p,\alpha}^{dmr} \right)^p. \]
b) Notice that if \(r \|f\|_{q,p,\alpha} = \infty \), then (27) follows trivially from the above inequality. Let us assume that \(r \|f\|_{q,p,\alpha} < \infty \). For \(1 \leq j < N_{m_r} \), we have

\[
\mu \left(E_{j}^{m_{r}} \right) \left[\frac{1}{p} - \frac{1}{q} \right] \left\| f \chi_{E_{j}^{m_{r}}} \right\|_{p}^{q} \leq \mathcal{N}_{1}^{\frac{1}{p} - \frac{1}{q} + 1} \int _{E_{j}^{m_{r}}} \mu \left(B(y,r) \right) \left[\frac{1}{p} - \frac{1}{q} \right] \left\| f \chi_{B(y,r)} \right\|_{q}^{p} d\mu(y),
\]

according to Lemma 3.4. As the \(E_{j}^{m_{r}} (1 \leq j < N_{m_r}) \) are pairwise disjoints, this implies

\[
\|f\|_{d_{m_{r}},q,p,\alpha} \leq \mathcal{N}_{1}^{\frac{1}{p} - \frac{1}{q} + 1} r \|f\|_{q,p,\alpha}.
\]

\(2^{\text{nd}} \text{ case.} \) We suppose that \(p = \infty \).

(a) We have

\[
r \|f\|_{q,\infty,\alpha} = \sup_{y \in X} \left[\sum_{j \in T_{m_{r}}^{0}(y)} \mu \left(B(y,r) \right) \left[\frac{1}{p} - \frac{1}{q} \right] \int _{E_{j}^{m_{r}}} \left\| f \chi_{B(y,r)} (x) \right\|_{q}^{p} d\mu(x) \right]^{\frac{1}{q}}
\]

\[
\leq \left[C_{\mu} (2\kappa)^{D_{\mu}} \right]^{\frac{1}{p} - \frac{1}{q}} \sup_{y \in X} \sum_{j \in T_{m_{r}}^{0}(y)} \mu \left(E_{j}^{m_{r}} \right) \left[\frac{1}{p} - \frac{1}{q} \right] \left\| f \chi_{E_{j}^{m_{r}}} \right\|_{q}
\]

\[
\leq \left[C_{\mu} (2\kappa)^{D_{\mu}} \right]^{\frac{1}{p} - \frac{1}{q}} \mathcal{N}_{2} \|f\|_{d_{m_{r}},q,\infty,\alpha},
\]

according to Inequalities (28), (21) and (25).

(b) From Inequalities (19) and (24) we have

\[
\mu \left(E_{j}^{m_{r}} \right) \left[\frac{1}{p} - \frac{1}{q} \right] \leq \mathcal{N}_{1} \mu \left(B(y,r) \right) \left[\frac{1}{p} - \frac{1}{q} \right], \quad 1 \leq j < N_{m_r} \text{ and } y \in E_{j}^{m_{r}}
\]

and therefore

\[
\|f\|_{d_{m_{r}},q,\infty,\alpha} \leq \mathcal{N}_{1} \sup_{1 \leq j < N_{m_r}} \sup_{y \in E_{j}^{m_{r}}} \mu \left(B(y,r) \right) \left[\frac{1}{p} - \frac{1}{q} \right] \left\| f \chi_{E_{j}^{m_{r}}} \right\|_{q}.
\]

As \(2\kappa \rho_{m_{r}+1} \leq r \), we have

\[
E_{j}^{m_{r}} \subset B(y,r), \quad 1 \leq j < N_{m_r} \text{ and } y \in E_{j}^{m_{r}}.
\]

Thus,

\[
\|f\|_{d_{m_{r}},q,\infty,\alpha} \leq \mathcal{N}_{1} \sup_{y \in X} \mu \left(B(y,r) \right) \left[\frac{1}{p} - \frac{1}{q} \right] \left\| f \chi_{B(y,r)} \right\|_{q} = \mathcal{N}_{1} r \|f\|_{q,\infty,\alpha}.
\]

\(3^{\text{rd}} \text{ case.} \) For \(q = p = \infty \), it is clear that

\[
(29) \quad r \|f\|_{\infty,\infty,\infty} = \|f\|_{\infty} = \|f\|_{d_{m_{r}},\infty,\infty}.
\]

\(\square \)

Proof of Theorem 2.5

a) Inequality (12) is an immediate consequence of Hölder inequality.
b) Observe that as $0 < p_1 < p_2 < \infty$, we have for any sequence $(a_j)_{1 \leq j}$ of nonnegative numbers,

$$\sup_{1 \leq j} a_j \leq \left(\sum_{j=1}^{\infty} a_j^{p_2} \right)^{1/p_2} \leq \left(\sum_{j=1}^{\infty} a_j^{p_1} \right)^{1/p_1}$$

and therefore

$$\| \cdot \|_{q,\infty,\alpha} \leq \| \cdot \|_{q,p_2,\alpha} \leq \| \cdot \|_{q,p_1,\alpha}.$$

Inequality (13) follows from these inequalities and Proposition 4.1. □

Proof of Theorem 2.6. Let f be any μ-measurable function on X.

1st case. We suppose that $p = \infty$.

By Hölder inequality we have

$$r \|f\|_{q,\infty,\alpha} \leq \sup_{y \in X} \left\| f \chi_{B(y,r)} \right\|_{\alpha} \leq \|f\|_{\alpha}.$$

2nd case. We suppose that $p < \infty$. Then we have

$$\|f\|_{q,p,\alpha} \leq \left[\sum_{j=1}^{N_m} \left(\mu(E_j^{m_{r}}) \right)^{\frac{1}{p}-\frac{1}{q}} \|f \chi_{E_j^{m_{r}}}\|_{q} \right]^{\frac{1}{p}} \leq \left(\sum_{j=1}^{N_m} \left(\|f \chi_{E_j^{m_{r}}}\|_{\alpha} \right)^{\frac{1}{p}} \right)^{\frac{1}{\alpha}} \leq \|f\|_{\alpha}$$

according to Hölder inequality, the fact that $0 < \alpha \leq p < \infty$ and the pairwise disjointness of the $E_j^{m_{r}}$ ($1 \leq j < N_m$). From this inequality and Proposition 4.1 we obtain (14).

□

Proof of Theorem 2.9.

1st case. We suppose that $q = \alpha = p$.

It is clear from Proposition 4.1 that there is a constant C_2, not depending on f, such that

$$\|f\|_{\alpha} = \|f\|_{q,p,\alpha} \leq C_2 \|f\|_{\alpha,\alpha,\alpha}, \quad r > 0$$

and therefore

$$\|f\|_{\alpha} \leq C_2 \|f\|_{\alpha,\alpha,\alpha}.$$

2nd case. We suppose that $q = \alpha < p = \infty$.

For any element y of X formula (11) yields

$$\left\| f \chi_{B(y,r)} \right\|_{\alpha} \leq r \|f\|_{\alpha,\infty} \leq \|f\|_{\alpha,\infty}, \quad r > 0$$

and therefore

$$\|f\|_{\alpha} = \lim_{r \to \infty} \left\| f \chi_{B(y,r)} \right\|_{\alpha} \leq \|f\|_{\alpha,\infty}.$$
3^{rd} case. We suppose that $q = \alpha < p < \infty$. For $y \in X$ and $r > 0$, we have

$$\|f \chi_{B(y,r)}\|_\alpha = \left(\sum_{j=1}^{N_mr} \int_{E_j^{mr}} |f(x)|^\alpha \chi_{B(y,r)}(x) d\mu(x)\right)^{\frac{1}{\alpha}}$$

$$= \left(\sum_{j \in T_r^{mr}(y)} \int_X \left| (f \chi_{E_j^{mr}})(x) \right|^\alpha \chi_{B(y,r)}(x) d\mu(x)\right)^{\frac{1}{\alpha}}$$

$$\leq \left(\sum_{j \in T_r^{mr}(y)} \|f \chi_{E_j^{mr}}\|_\alpha^\frac{1}{\alpha} \left(\sum_{j \in T_r^{mr}(y)} \|f \chi_{E_j^{mr}}\|_\alpha^p\right)^{\frac{1}{p}}\right)^{\frac{1}{\alpha}}$$

according to Inequalities (20) and (24). So by Proposition 4.1, we get

$$\|f \chi_{B(y,r)}\|_\alpha \leq \|f\|_{q,p,p} C_2 r \|f\|_{\alpha,\alpha,p}, \quad y \in X, \ r > 0$$

and therefore

$$\|f\|_\alpha \leq \|f\|_{q,p,p} C_2 r \|f\|_{\alpha,\alpha,p}.$$

4^{th} case. We suppose that $q < \alpha = p$. We assume that $\|f\|_{q,p,p} < \infty$, since otherwise the result follows from Theorem 2.8. For $r > 0$, put

$$f_r(x) = \mu\left(B_{(y,r)}\right)^{-\frac{1}{\beta}} \left\|f \chi_{B(y,r)}\right\|_q.$$

On one hand, we have for μ-almost every x in X,

$$|f(x)| = \lim_{r \to 0} f_r(x) \leq \|f\|_{q,\infty,\infty}.$$

Consequently

$$\|f\|_\infty \leq \|f\|_{q,\infty,\infty}.$$

On the other hand,

$$\left[\int_X f_r^p(x) d\mu(x)\right]^{\frac{1}{p}} \leq C \|f\|_{q,p,p}.$$

So, according to Fatou’s lemma, $|f|^p$ is integrable and $\|f\|_p \leq C \|f\|_{q,p,p}$.

\square

Proof of Theorem 2.10. Let $\frac{1}{\beta} = 1 - \frac{q}{\alpha} + \frac{q}{p}$, f a μ-measurable function on X and $r > 0$. We have $1 < \beta$, $\frac{\alpha}{q} < \infty$ and $\frac{q}{p} = \frac{1}{\beta} + \frac{q}{\alpha} - 1$. Put

$$K(x, y) = \mu\left(B_{(x,r)}\right)^{-\frac{1}{\beta}} \chi_{B_{(y,r)}}(x), \quad x, y \in X$$

and

$$Tg(y) = \int_X g(x)K(x, y) d\mu(y), \quad g \in L_0(X).$$
If \(x \in B_{(y,r)} \) then \(B_{(y,r)} \subset B_{(x,2\kappa r)} \) and therefore \(\mu \left(B_{(y,r)} \right)^{-1} \leq C \mu \left(2\kappa \right)^{D_\mu} \mu \left(B_{(x,r)} \right)^{-1} \).

Thus

\[
\left(\int_X |K(x,y)|^\beta \, d\mu(y) \right)^{\frac{1}{\beta}} = \left(\int_X \mu \left(B_{(y,r)} \right)^{-1} \chi_{B(x,r)}(y) \, d\mu(y) \right)^{\frac{1}{\beta}} \leq C \mu \left(2\kappa \right)^{D_\mu},
\]

and

\[
\left(\int_X |K(x,y)|^\beta \, d\mu(x) \right)^{\frac{1}{\beta}} = \left(\int_X \mu \left(B_{(y,r)} \right)^{-1} \chi_{B(y,r)}(x) \, d\mu(x) \right)^{\frac{1}{\beta}} = 1.
\]

By Lemma 3.5, there is a constant \(C \) such that

\[
\|T(|f|^q)\|_q \leq C \|f\|_{\alpha,p}^\ast \|f\|_{\beta,q}^\ast.
\]

Furthermore

\[
r \|f\|_{q,p,\alpha} = \left[\int_X (T(|f|^q)(y))^\frac{p}{q} \, d\mu(y) \right]^\frac{1}{p} = \left(\|T(|f|^q)\|_q \right)^\frac{1}{p}.
\]

Thus

\[
r \|f\|_{q,p,\alpha} \leq \left(C \|f\|_{\alpha,p}^\ast \|f\|_{\beta,q}^\ast \right)^\frac{1}{q} = C_{\alpha,p}^\frac{1}{p} \|f\|^\ast_{\alpha,p}.
\]

The result follows. \(\square \)

Proof of Theorem 2.11. Let \(f \) be any \(\mu \)-measurable function on \(X \). If \(f \) does not belong to \(L^\alpha,\infty(X) \) then \(\|f\|_{\alpha,\infty} = \infty \) and there is nothing to prove. So we assume that \(f \) is in \(L^\alpha,\infty(X) \) and put \(\|f\|_{\alpha,\infty}^\ast = A. \)

a) Let us fix \(r \) and \(\lambda \) in \((0,\infty) \) and put

\[
E = \{ x \in X : |f(x)|^q > \beta \} \text{ with } \beta = \frac{\lambda}{4\varphi(\rho^{m_r+1})b}.
\]

For any integer \(1 \leq j < N_{m_r} \) such that \(\|f_{E_{j}}\|_{q} > \lambda \), we have

\[
\lambda - \|f_{E_{j}\cap E_{j}}\|_{q} < \int_{E_{j}\cap E_{j}\setminus E} |f(x)|^q \, d\mu(x) \leq \beta \mu \left(E_{j}^{m_r} \setminus E \right) \leq \frac{\lambda}{4}.
\]

Therefore \(\frac{3\lambda}{4} < \|f_{E_{j}\cap E_{j}}\|_{q} \) and

\[
\# \left(\left\{ j : 1 \leq j < N_{m_r} \text{ and } \|f_{E_{j}}\|_{q} > \lambda \right\} \right) \leq \# \left(\left\{ j : 1 \leq j < N_{m_r} \text{ and } \|f_{E_{j}\cap E_{j}}\|_{q} > \frac{3\lambda}{4} \right\} \right).
\]

Thus

\[
\frac{3\lambda}{4} \# \left(\left\{ j : 1 \leq j < N_{m_r} \text{ and } \| f \chi_{E_j} \|_q^q > \lambda \right\} \right)
\]

\[
\leq \frac{3\lambda}{4} \# \left(\left\{ j : 1 \leq j < N_{m_r} \text{ and } \| f \chi_{E_j} \|_q^q > \frac{3\lambda}{4} \right\} \right)
\]

\[
\leq \sum_{j=1}^{N_{m_r}} \int_{E \cap E_{m_r}^j} |f(x)|^q d\mu(x) \leq \left(\frac{\alpha}{\alpha - q} \right) A^q \mu(E)^{1 - \frac{q}{\alpha}}
\]

according to Kolmogorov condition (see [16]). As

\[
\mu(E) = \lambda_f(\beta_1^\frac{1}{q}) \leq \left(\beta_1^{-\frac{1}{q}} A \right)^\frac{\alpha}{\alpha - q} = \left(\frac{4\varphi(\rho^{m_r+1})b}{\lambda} \right)^\frac{\alpha}{\alpha - q} A^\alpha,
\]

we obtain

\[
\frac{3\lambda}{4} \# \left(\left\{ j : 1 \leq j < N_{m_r} \text{ and } \| f \chi_{E_j} \|_q^q > \lambda \right\} \right) \leq \frac{\alpha}{\alpha - q} \left(\frac{4\varphi(\rho^{m_r+1})b}{\lambda} \right)^{\frac{\alpha}{\alpha - q} - 1} A^\alpha,
\]

that is

\[
\# \left(\left\{ j : 1 \leq j < N_{m_r} \text{ and } \| f \chi_{E_j} \|_q^q > \lambda \right\} \right) \leq C \varphi(\rho^{m_r+1})^{\frac{\alpha}{\alpha - q} - 1} \lambda^{-\frac{\alpha}{\alpha - q}} A^\alpha
\]

with \(C = \frac{4^\alpha a b^{\frac{\alpha}{\alpha - q} - 1}}{3(\alpha - q)} \).

b) Assume that \(p < \infty \). Suppose that \(1 < s < \infty \) and \(r > 0 \) and put

\[
d_j = \left\| f \chi_{E_j} \right\|_q A^{-1} \left[b \varphi(\rho^{m_r+1}) \right]^{\frac{1}{q} - \frac{1}{s}} \left(\frac{\alpha}{\alpha - q} \right)^{-\frac{1}{q}}, \quad 1 \leq j < N_{m_r}.
\]

From Kolmogorov condition, we obtain \(0 \leq d_j \leq 1 \) for \(1 \leq j < N_{m_r} \). In addition, for any number \(\lambda \), we have

\[
\# \left(\left\{ j : 1 \leq j < N_{m_r}, d_j > \lambda \right\} \right) \leq C \left[\left(\frac{\alpha}{\alpha - q} \right)^{\frac{1}{q}} \lambda \right]^{-\alpha}
\]

according to Inequality (30). Thus, we have

\[
\sum_{j=1}^{N_{m_r}} d_j^p = \sum_{n=1}^{\infty} \left(\sum_{s^{-n-1} < d_k \leq s^{-n}} d_k^p \right) \leq \sum_{n=1}^{\infty} C \left[\left(\frac{\alpha}{\alpha - q} \right)^{\frac{1}{q}} s^{-n-1} \right]^{-\alpha} s^{-np}
\]

\[
\leq C \left(\frac{\alpha}{\alpha - q} \right)^{\frac{\alpha}{q}} \sum_{n=1}^{\infty} s^{\alpha - (p - \alpha)n} = C \left(\frac{\alpha}{\alpha - q} \right)^{\frac{\alpha}{q}} s^{2\alpha - p} s^{p - \alpha - 1}.
\]
This implies that
\[
\|f\|_{q,p,\alpha}^{d_{nm}} \leq \left[\sup_{1 \leq j < N_{mr}} \frac{\varphi(\rho_{mr+1})}{\mu(E_{j}^{mr})} \right]^{\frac{1}{q}} \cdot \left\{ \sum_{j=1}^{N_{mr}} \left[\|f \chi_{E_{j}^{mr}}\|_{q} A^{-1} (b \varphi(\rho_{mr+1}))^{\frac{1}{q}} \left(\frac{\alpha}{\alpha - q} \right)^{\frac{1}{q}} \right]^{p} \right\}^{\frac{1}{p}}
\]
\[
\times Ab^{\frac{1}{q} - \frac{1}{\alpha}} \left(\frac{\alpha}{\alpha - q} \right)^{\frac{1}{q}}
\]
\[
\leq \left[\sup_{1 \leq j < N_{mr}} \frac{\varphi(\rho_{mr+1})}{\mu(E_{j}^{mr})} \right]^{\frac{1}{q} - \frac{1}{\alpha}} \left(\frac{\alpha}{\alpha - q} \right)^{\frac{1}{q}(1-\frac{p}{\alpha})} \left(\frac{s^{2\alpha-p}}{s^{\alpha-q} - 1} \right)^{\frac{1}{p}} C_{q}^{\frac{1}{p}} A.
\]
As \(r > 0\) is arbitrary in \((0, \infty)\), we obtain
\[
\|f\|_{q,p,\alpha} \leq C \|f\|_{\alpha,\infty}^{*}
\]
with \(C\) a constant not depending on \(f\).
c) For any number \(r > 0\) and positive integer \(j < N_{mr}\), we have according to Kolmogorov condition
\[
\mu\left(E_{j}^{mr} \right)^{\frac{1}{\alpha} - \frac{1}{q}} \|f \chi_{E_{j}^{mr}}\|_{q} \leq \left(\frac{\alpha}{\alpha - q} \right)^{\frac{1}{q}} A.
\]
Thus
\[
\|f\|_{q,\infty,\alpha} \leq \left(\frac{\alpha}{\alpha - q} \right)^{\frac{1}{q}} \|f\|_{\alpha,\infty}^{*}.
\]
\[\square\]

Up to now we have used in our proofs the decomposition of \(X\) in dyadic cubes as given by Sawyer and Wheeden in [27]. The dyadic cubes \(E_{j}^{k} k \geq m, 1 \leq j < N_{k}\) have their size bounded below by \(\rho^{m}\) with \(\rho > 1\) and \(m\) a fixed integer. For the proof of the next theorem, we shall use the following decomposition given by Christ in [5].

Lemma 4.2. There exist a collection of open subsets \(\{Q_{k}^{\alpha} : k \in \mathbb{Z}, \alpha \in I_{k}\}\), and constants \(\rho \in (0, 1), c_{0} > 0, \eta > 0\) and \(c_{1}, c_{2} < \infty\) such that
\[
\begin{align*}
&\text{(i) } \mu\left(X \setminus \bigcup_{\alpha} Q_{k}^{\alpha} \right) = 0 \ \forall k, \\
&\text{(ii) } \text{if } \ell \geq k \text{ then either } Q_{k}^{\alpha} \subset Q_{\ell}^{\alpha} \text{ or } Q_{k}^{\alpha} \cap Q_{\ell}^{\alpha} = \emptyset, \\
&\text{(iii) } \text{for each } (k, \alpha) \text{ and each } \ell < k \text{ there is a unique } \beta \text{ such that } Q_{k}^{\alpha} \subset Q_{\beta}^{\ell}, \\
&\text{(iv) } \text{diameter}(Q_{k}^{\alpha}) \leq c_{1}\rho^{k}, \\
&\text{(v) } \text{each } Q_{k}^{\alpha} \text{ contains some ball } B_{(\rho_{\alpha}, c_{0}\rho^{k})}, \\
&\text{(vi) } \mu\left(\{x \in Q_{k}^{\alpha} : d(x, X \setminus Q_{k}^{\alpha}) \leq t\rho^{k} \} \right) \leq c_{2}t^{\eta}\mu(Q_{k}^{\alpha}) \ \forall k, \alpha, \forall t > 0.
\end{align*}
\]

Proof of Theorem 2.12. Throughout the proof, we shall use the notation of the above lemma.
A- (a) Let us consider an element \(\beta_1 \) of \(I_1 \) and put \(E_1 = Q_{\beta_1}^1 \). Then
\[
B_{(\varepsilon_{\beta_1}, \alpha \rho)} \subset Q_{\beta_1}^1 \subset B_{(\varepsilon_{\beta_1}, \alpha \rho)}.
\]
So by Inequalities (16), (17) and (18),
\[
\mu(E_1) = m \in \left[a_0 c_0^\mu \rho^D \mu, b b_0 c_1^\mu \rho^D \mu \right].
\]
(b) Let \(\alpha_2 \in I_{-2^2-1} \) such that \(Q_{\beta_1}^1 \subset Q_{\alpha_2}^{-2^2-1} \).
Put
\[
F_1 = \emptyset, \quad F_2 = Q_{2^2-1}^{-2^2-1} \text{ and } J_2 = \left\{ j \in I_{-2^2-1} : d(Q_j^{-2^2-1}, F_2) > \epsilon_1 \rho^{-2^2-1} \right\}.
\]
For each \(j \in J_2 \), let \(\beta_j \in I_2 \) be so that \(d(z_j^{-2^2-1}, Q_{\beta_j}^2) < \rho^2 \). We have
\[
\mu(Q_{\beta_j}^2) \in \left[a_0 c_0^\mu \rho^{2D \mu}, b b_0 c_1^\mu \rho^{2D \mu} \right], \quad j \in J_2.
\]
We can therefore choose a finite subset \(J_2 \) of \(J_2 \) such that
\[
\sum_{j \in J_2} \mu(Q_{\beta_j}^2) \in \left[m, m + b b_0 c_1^\mu \right].
\]
Let us take
\[
E_2 = \bigcup_{j \in J_2} Q_{\beta_j}^2.
\]
(c) Let us consider for every \(j \in J_2 \) the element \(\alpha_j \) of \(I_{-2^3-1} \) such that \(Q_j^{-2^3-1} \subset Q_{\alpha_j}^{-2^3-1} \).
Put
\[
F_3 = \bigcup_{j \in J_3} Q_{\alpha_j}^{-2^3-1} \text{ and } J_3 = \left\{ j \in I_{-2^3-1} : d(Q_j^{-2^3-1}, F_3) > \epsilon_1 \rho^{-2^3-1} \right\}.
\]
For any \(j \in J_3 \), let \(\beta_j \in I_3 \) such that \(d(z_j^{-2^3-1}, Q_{\beta_j}^3) < \rho^3 \). We have
\[
\mu(Q_{\beta_j}^3) \in \left[a_0 c_0^\mu \rho^{3D \mu}, b b_0 c_1^\mu \rho^{3D \mu} \right], \quad j \in J_3.
\]
Thus we can pick a finite subset \(J_3 \) in \(J_3 \) such that
\[
\sum_{j \in J_3} \mu(Q_{\beta_j}^3) \in \left[m, m + b b_0 c_1^\mu \rho^{3D \mu} \right].
\]
Put \(E_3 = \bigcup_{j \in J_3} Q_{\beta_j}^3 \).
(d) By iteration we obtain two sequences \((E_n)_{n \geq 1}\) and \((F_n)_{n \geq 1}\) such that
- \(\mu(E_n) \in \left[m, m + b b_0 c_1^\mu \rho^{nD \mu} \right] \) and \(E_n = \bigcup_{j \in J_n} Q_{\beta_j}^n \), where \(J_n \) is a finite subset of \(I_{-2^n-1} \),
- \(d(z_j^{-2^n-1}, Q_{\beta_j}^n) < \rho^n \) and \(d(Q_j^{-2^n-1}, F_n) > \epsilon_1 \rho^{-2^n-1} \).

B- We fix \(n \geq 1 \).
(a) Let \((x, r) \in X \times \mathbb{R}^*_+.\) Suppose that \(\ell, j \in J_n\) with \(B_{(x,r)} \cap Q^n_{\beta_j} \neq \emptyset \neq B_{(x,r)} \cap Q^n_{\beta_\ell} .\)

There exists \(x_1, x_2 \in Q^n_{\beta_j}\) and \(y_1, y_2 \in Q^n_{\beta_\ell}\) such that \(d(z_j^{-2^n-1}, x_1) < \rho^n, \)
\(x_2 \in B_{(x,r)}, d(z_\ell^{-2^n-1}, y_1) < \rho^n, y_2 \in B_{(x,r)} .\)

Therefore

\[
\rho^{-2^n-1} \leq d\left(z_j^{-2^n-1}, z_\ell^{-2^n-1}\right) \leq \kappa \left[d\left(z_j^{-2^n-1}, x_1\right) + d\left(x_1, z_\ell^{-2^n-1}\right)\right] \\
\leq \kappa \rho^n + 2\kappa^3 c_1 \rho^n + 2\kappa^4 r + \kappa^4 \left[d\left(y_2, y_1\right) + d\left(y_1, z_\ell^{-2^n-1}\right)\right] \\
< \left(\kappa + 2\kappa^3 c_1 + 2\kappa^5 c_1 + \kappa^4\right) \rho^n + 2\kappa^4 r .
\]

It follows that

\[
r > \frac{1}{2\kappa^4} \left[\rho^{-2^n-1} - \left(\kappa + 2\kappa^3 c_1 + 2\kappa^5 c_1\right) \rho^n\right] \\
= \frac{\rho^n}{2\kappa^4} \left[\rho^{-2^n-1-n} - \left(\kappa + 2\kappa^3 c_1 + 2\kappa^5 c_1\right)\right] .
\]

(b) In the sequel we assume that \(n\) is sufficiently great such that

\[
c_1 \rho^n < 1 \leq \frac{\rho^n}{2\kappa^4} \left[\rho^{-2^n-1-n} - \left(\kappa + 2\kappa^3 c_1 + 2\kappa^5 c_1 + \kappa^4\right)\right] = r_n .
\]

1st case. We suppose that \(0 < r \leq c_1 \rho^n .\)

Then every ball \(B_{(x,r)}\) meets at most one \(Q^n_{\beta_j} (j \in J_n) .\) Therefore,

\[
r \|\chi_{E_n}\|_{q,p,\alpha} = \left[\int_X \left(\mu\left(B_{(x,r)}\right)\right)^{\frac{1}{\alpha} - \frac{1}{p} - \frac{1}{q}} \|\chi_{E_n \cap B_{(x,r)}}\|_q^p \ d\mu(x)\right]^\frac{1}{p} \\
= \left[\sum_{j \in J_n} \int_{\left\{x \in X : B_{(x,r)} \cap Q^n_{\beta_j} \neq \emptyset\right\}} \left(\mu\left(B_{(x,r)}\right)\right)^{\frac{1}{\alpha} - \frac{1}{p} - \frac{1}{q}} \mu\left(E_n \cap B_{(x,r)}\right)^\frac{1}{p} \ d\mu(x)\right]^\frac{1}{p} \\
\leq \left[\sum_{j \in J_n} \mu\left\{x \in X : B_{(x,r)} \cap Q^n_{\beta_j} \neq \emptyset\right\} \sup_{B_{(x,r)} \cap Q^n_{\beta_j} \neq \emptyset} \mu\left(B_{(x,r)}\right)\right]^\frac{1}{p} \\
\leq \left[\sum_{j \in J_n} \mu\left(B_{(x,r)}\right)^{\frac{1}{p}} \left(\mathbf{b}\varphi\left(r\right)\right)^{\frac{1}{\alpha} - \frac{1}{p}}\right]^\frac{1}{p} \\
\leq \left(\mathbf{b}\varphi\left(r\right)\right)^{\frac{1}{p} - \frac{1}{p}} \left[\sum C_\mu\left(\frac{\kappa}{\c_0 \rho^n}\right) D_\mu \mu\left(Q^n_{\beta_j}\right)\right]^\frac{1}{p} \\
\leq C_\mu\left(\frac{2\kappa c_1}{c_0}\right) \frac{\mu\left(E_n\right)^\frac{1}{p}}{\left(\mathbf{b}\mathbf{b}_0 c_1 \rho^n\right)^{\frac{1}{\alpha} - \frac{1}{p}} \delta_n} .
\]
2nd case. We suppose that $c_1 \rho^n < r \leq r_n$.
Arguing as in the first case, we obtain

$$
 \|r \|X_{\alpha \eta} \|_{q,p,\alpha} \leq \left[\sum_{j \in J_n} \mu \left(\{ x \in X : B(x,r) \cap Q_{\beta j}^n \neq \emptyset \} \right) \right] \left(\sup_{B(x,r) \cap Q_{\beta j}^n \neq \emptyset} \mu(B(x,r)) \right)^{\frac{\beta}{q} - \frac{\beta}{q} - 1} \mu \left(B(x,r) \cap Q_{\beta j}^n \right)^{\frac{\beta}{q}}
$$

$$
\leq \left\{ \sum_{j \in J_n} C_{\mu} \left(\frac{\kappa(r + c_1 \rho^n)}{r} \right)^D \mu \left(\varphi(r) (a \varphi(r))^{\frac{\beta}{q} - \frac{\beta}{q} - 1} \right) \right\} \left(\mu \left(B(x,r) \cap Q_{\beta j}^n \right) \right)^{\frac{\beta}{q}}.
$$

For the second inequality we have used the doubling condition of μ, the relationship between μ and φ, the growth condition on φ and the inclusion $Q_{\beta j}^n \subset B(z_{\beta j}^n, c_1 \rho^n)$. Thus

$$
\|r \|X_{\alpha \eta} \|_{q,p,\alpha} \leq C_{\mu} \left(\frac{\kappa(r + c_1 \rho^n)}{r} \right)^D \mu \left(B(x,r) \cap Q_{\beta j}^n \right)^{\frac{\beta}{q}} \mu \left(B(x,r) \cap Q_{\beta j}^n \right)^{\frac{\beta}{q}}
$$

$$
\leq C_{\mu} \left(\mu \left(E_n \right) \right)^{\frac{\beta}{q}} \left(\left(a \varphi(r) \right)^{\frac{\beta}{q} - \frac{\beta}{q} - 1} \right) \left(\mu \left(E_n \right) \right)^{\frac{\beta}{q}} \left(\left(a \varphi(r) \right)^{\frac{\beta}{q} - \frac{\beta}{q} - 1} \right).
$$

3rd case. We suppose $r > r_n$.

$$
\|r \|X_{\alpha \eta} \|_{q,p,\alpha} \leq \left[\sum_{j \in J_n} \int \left\{ x \in X : B(x,r) \cap Q_{\beta j}^n \neq \emptyset \right\} \mu(B(x,r)) \mu \left(E_n \cap B(x,r) \right) d\mu(x) \right]^\frac{1}{p}
$$

$$
\leq \left[\sum_{j \in J_n} \mu \left(E_n \right) \mu \left(B(z_{\beta j}^n, c_1 \rho^n) \right) \left(a \varphi(r) \right)^{\frac{\beta}{q} - \frac{\beta}{q} - 1} \right]^\frac{1}{p}
$$

$$
\leq \mu \left(E_n \right) \left(a \varphi(r) \right)^{\frac{\beta}{q} - \frac{\beta}{q} - 1} \left(\#(J_n) \right) C_{\mu} \left(\frac{\kappa}{\beta} \right)^{D} \varphi(r)
$$

But for all $j \in J_n$, $a_0 c_{\rho^n} \rho^n \mu \leq \mu \left(Q_{\beta j}^n \right) \leq b_0 c_{\rho^n} \rho^n \mu$. Thus

$$
\#(J_n) \leq \frac{m}{a_0 c_{\rho^n} \rho^n \mu},
$$

and

$$
\|r \|X_{\alpha \eta} \|_{q,p,\alpha} \leq C_{\mu} \left(\mu \left(E_n \right) \right)^{\frac{\beta}{q}} \left(\rho \left(\frac{\rho}{\rho} + \mu \left(\frac{\rho}{\rho} + \frac{1}{\rho} \right) \left(\rho^{n-1} - \left(\kappa + 2 \kappa^3 c_1 + 2 \kappa^5 c_1 \right) \right) \right)^{\frac{\beta}{q} - \frac{\beta}{q} - 1}
$$

$$
\leq C_{\mu} \left(\mu \left(E_n \right) \right)^{\frac{\beta}{q}} \left(\rho \left(\frac{\rho}{\rho} + \mu \left(\frac{\rho}{\rho} + \frac{1}{\rho} \right) \right) \left(\rho^{n-1} - \left(\kappa + 2 \kappa^3 c_1 + 2 \kappa^5 c_1 \right) \right) \right)^{\frac{\beta}{q} - \frac{\beta}{q} - 1}
$$

It follows that if we choose n_0 such that for all $n \geq n_0$

$$
\frac{\left(\rho \left(\frac{\rho}{\rho} + \mu \left(\frac{\rho}{\rho} + \frac{1}{\rho} \right) \right) \left(\rho^{n-1} - \left(\kappa + 2 \kappa^3 c_1 + 2 \kappa^5 c_1 \right) \right) \right)^{\frac{\beta}{q} - \frac{\beta}{q} - 1}}{\left(\rho^{n-1} - \left(\kappa + 2 \kappa^3 c_1 + 2 \kappa^5 c_1 \right) \right)^{\frac{\beta}{q} - \frac{\beta}{q} - 1}} < 1,
$$

then
then
\[r \left\| \chi_{E_n} \right\|_{q,p,\alpha} \leq C \rho^{-n} D_{\alpha} \left(\frac{1}{2} - \frac{1}{q} + \delta \frac{1}{q} - \frac{1}{p} \right) \mu(E_n)^{\frac{1}{p}}, \quad r > 0. \]
That is
\[\left\| \chi_{E_n} \right\|_{q,p,\alpha} \leq C \rho^{-n} D_{\alpha} \left(\frac{1}{2} - \frac{1}{q} + \delta \frac{1}{q} - \frac{1}{p} \right) \]
and therefore
\[\left\| \chi_{U_n \geq n^q E_n} \right\|_{q,p,\alpha} < \infty \text{ and } \left\| \chi_{U_n \geq n^q E_n} \right\|_{\alpha,\infty}^* = \infty. \]
Thus, \(f = \chi_{U_n \geq n^q E_n} \) is in \((L^q, L^p)^\alpha(X) \setminus L^{\alpha,\infty}(X) \). □

References

[1] N. E. Aguilera and E. O. Harboure, On the search for weighted norm inequalities for the Fourier transform. Pacific J. Math., 104 (1983), 1-14.
[2] J. P. Bertrandias et C. Dupuis, Transformation de Fourier sur les espaces \(\ell^p(L^p') \). Ann. Inst. Fourier, (1) 29 (1979), 189-206.
[3] R. C. Busby and H. A. Smith, Product-convolution operators and mixed-norm spaces. Trans. Amer. Math. Soc. 263 (1981), 309-341.
[4] R. Coifman, G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes. Lecture Notes in Math, Vol. 242. Berlin: Springer, 1971
[5] M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math 60 (1990), 601-628.
[6] H. G. Feichtinger, Wiener amalgams over Euclidean spaces and some of their applications. Function Spaces (Edwardsville, IL, 1990), Lecture Notes in Pure and Appl. Math. 136 Dekker New York (1992), 123-137.
[7] J. Feuto, I. Fofana and K. Koua, Espaces de fonctions à moyenne fractionnaire intégrable sur les groupes localement compacts. Afrika Mat. (3) 15 (2003), 73-91.
[8] J. Feuto, I. Fofana and K. Koua, Weighted norms inequalities for a maximal operator in some subspace of amalgams. to appear in Can. Math. Bull. (arxiv 09014197).
[9] I. Fofana, Étude d’une classe d’espaces de fonctions contenant les espaces de Lorentz. Afrika Mat. (3) 5 (1995), 53-76.
[10] I. Fofana, Continuité de l’intégrale fractionnaire et espace \((L^q, \ell^p)^\alpha \). C.R.A.S Paris,(1) 308 (1989), 525-527.
[11] I. Fofana, Transformation de Fourier dans \((L^q, \ell^p)^\alpha \) et \(M^p,\alpha \). Afrika Mat. (3) 5 (1995), 53-76.
[12] I. Fofana, Espaces \((L^q, \ell^p)^\alpha \) et continuité de l’opérateur maximal fractionnaire de Hardy-Littlewood. Afrika Mat. (3) 12 (2001), 23-37.
[13] G. B Folland and E. M. Stein, Hardy spaces on Homogeneous groups, Mathematical Notes 28, Princeton University Press. Princeton, New Jersey 1982.
[14] J. J. Fournier, On the Hausdorff-Young theorem for amalgams. Monatsh. Math. 95 (1983), 117-135.
[15] J. J. F. Fournier and J. Stewart, Amalgams of \(L^p \) and \(L^q \). Bulletin of the AMS (13) 1 (1985), 1-21.
[16] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics. Amsterdam: North-Holland Publishing Co., 1985.
[17] Y. Han, D. Müller and D. Yang, A theory of Besov and Triebel-Lizorkin Spaces on Metric Measure Space Modeled on Carnot-Carathéodory Spaces. Abstr Appl Anal, 2008, Art. ID 893409, 252 pp.
[18] F. Holland, *Harmonic Analysis on amalgams of L^p and ℓ^q*, J. London Math. Soc. (2) 10 (1975), 295-305.
[19] A. Kpata, I. Fofana and K. Koua, *Necessary condition for measures which are (L^q, L^p) multipliers*. to appear in An. Math. Blaise Pascal (16) n° 2 (2009).
[20] K. S. Lau, *Fractal Measure and Mean p-variations*. Journ. Funct. Anal. 108 (1992), 427-457.
[21] R. Marcíás and C. Segovia, *Lipschitz functions on spaces of homogeneous type*, Adv. in Math. 33, (1979), 257-270.
[22] D. Mascrè, *Inégalités à poids pour l’opérateur de hardy-Littlewood-Sobolev dans les espaces métriques mesurés à deux demi-dimensions*. Coll. Math. (105) 1 (2006), 77-104.
[23] B. Muckenhoupt, *Weighted norm inequalities for classical operators*. Proc. Symp. Pure Math. 35 (1977), 69-83.
[24] B. Muckenhoupt and R. Wheeden, *Weighted norm inequalities for fractional integrals*. Trans. of the AMS, 192 (1974), 261-274.
[25] A. M. Oberlin, *Affine dimension: measuring the vestiges of curvature*. Michigan Math. J. 51, 1 (2003), 13-26.
[26] M. Rao and Z. Ren, *Theory of Orlicz spaces*. Dekker, New York, 1991.
[27] E. T. Sawyer and R. L. Wheeden, *Weighted inequalities for fractional integrals on euclidean and homogeneous spaces*. Amer. J. Math. 114 (1992), 813-874.
[28] E. M. Stein and G. Weiss, *Introduction to Fourier Analysis on Euclidean spaces*. Princeton, New Jersey, Princeton University Press (1971).
[29] N. Th. Varopoulos, *Analysis on Lie groups*. J. Funct. Anal. 76 (1988), 346-410.
[30] R. L. Wheeden, *A characterization of some weighted norm inequalities for the fractional maximal function*. Studia Math. 107 (1993), 251-272.
[31] N. Wiener, *On the representation of functions by trigonometrical integrals*. Math. Z., 24 (1926), 575-616.

UFR DE MATHEMATIQUES ET INFORMATIQUE, Université de Cocody, 22BP 1194 Abidjan 22, République de Côte d’Ivoire

E-mail address: justfeuto@yahoo.fr

UFR DE MATHEMATIQUES ET INFORMATIQUE, Université de Cocody, 22BP582 Abidjan 22, République de Côte d’Ivoire

E-mail address: fofana_ib_math_ab@yahoo.fr

UFR DE MATHEMATIQUES ET INFORMATIQUE, Université de Cocody, 22BP582 Abidjan 22, République de Côte d’Ivoire

E-mail address: kroubla@yahoo.fr