Pattern of NSAID Poisoning in a Referral Poisoning Center of Iran: Solutions to Reduce the Suicide

Nazanin Bagherian Rad* and Mitra Rahimi*†

*Department of Toxicology and Pharmacology, Islamic Azad University of Medical Sciences, Tehran, Iran. †Department of Clinical Toxicology, Loghman-Hakim Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Abstract

NSAIDs are nonsteroidal anti-inflammatory drugs, thus, they will provide analgesic, antipyretic, anti-inflammatory, antiplatelet effects. Severe poisoning and death because of acute intoxication can occur by ingestions of more than 400 mg/kg. This cross-sectional retrospective study was carried out in on all patients referred to Loghman Hakim Hospital from 2011 to 2016. Grouping of our patients was based on the amount of NSAID ingestion, Type of NSAID, patient’s conscious level according to Reed Scaling criteria, suicide attempt, and gender. Data were analyzed using the SPSS software. A P-value of 0.05 or less was considered to be statistically significant. The period prevalence of NSAID poisoning was 0.14% and the incidence was 3.816/100,000/year. The uppermost number of poisoning were seen in 2012 (20.96%). Mean age was 23.75 ± 9.76 years and most of the intoxications were seen in females (66.37%). Of the patients, 140 (61.13%) had ingested less than 200 mg/kg, and 9.17% committed suicide having a mortality rate of 0.43%. The most common NSAIDs that had been used were Ibuprofen (73.79%). Of patients, 83.4% underwent through common complications of NSAID poisoning. We find significant relationship between the type of NSAID and higher sodium, BUN, ALT, ALP, CPK levels in men, and higher LDH level in women. Besides, we found substantial correlation between using short-acting NSAIDs and female gender, suicide action, arrival to the hospital less than 12 h, amounts under 200 mg/kg, hospitalization longer than 12 h, and presentation of loss of consciousness.

Keywords: Anti-inflammatory agents; Non-steroidal; Poisoning; Adverse effects; Overdose.

Introduction

NSAIDs are nonsteroidal anti-inflammatory drugs. They, non-selectively, impede cyclooxygenases and reduce the formation of prostaglandins and thromboxanes (Eicosanoids in cell membranes). Thus, they will provide analgesic, antipyretic, anti-inflammatory, anti-platelet effects. This group of drugs has one prototype named Acetylsalicylic acid (ASA) that itself consists of over 20 types of drugs and irreversibly hinder cyclooxygenases (1). After ingestion, NSAIDs mostly are gone through hepatic metabolism by CYP2C8, 2C9, 2C19 and/or glucuronidation. They tend to bind to proteins, which define their distribution to the central nervous system (CNS). The metabolites excrete via glomerular filtration and tubular discharge. NSAID’s half-life is either short acting (<8 h) or long acting (>8 h). Consequently, active metabolites of those with longer half-life would have further enterohepatic circulation (2–3). Severe poisoning and death as a result

* Corresponding author:
E-mail: mrahimi744@gmail.com
of acute intoxication with NSAIDs can occur by ingestions of more than 400 mg/kg. There are six aspects of acute NSAID toxicity (4). First and following the intake of great amounts of NSAIDs such as ibuprofen, naproxen, and phenylbutazone, enhanced anion gap metabolic acidosis take place. This can cause cardiac dysrhythmias and electrolyte deviations (5–8). Acute renal failure (reversible) is the second clinical aspect of acute NSAID toxicity that is due to vasodilator prostaglandins’ blockage (9). Third and in cases of ibuprofen overdose, hypotension and cardiovascular collapse cause cardiovascular toxicity (8). Moreover, 30 percent of Ibuprofen intoxications would develop CNS toxicity (drowsiness to coma) (10). Yet seizure was observed only with intake of propionic acids, pyrazolones, acetic acids, and anthranilic acids (11–13). Besides after ingestion of phenylbutazone and indomethacin aplastic anemia and agranulocytosis have been reported. Last but not least, anaphylaxis has been shown in certain cases as well (14). The 2016 report of the American Association of Poison Control Centers, demonstrated that analgesics are still the most common category of drug in acute overdose (11.2%; 18.1% intentional overdose; 80.42% fatality following ingestion) having slightly increase over the past few years (15). We found the same results from the National Poisons Information Service of United Kingdom with paracetamol in the first place and ibuprofen in the second (16). Although there are several case reports from other countries, we find no report on NSAIDs toxicity’s incidence, prevalence, distribution, and mortality in Iran. Therefore, the main aim of this study is an epidemiological investigation on NSAIDs intoxication, along with finding solutions to reduce the suicide actions associated with NSAID abuse.

Experimental

After confirmation by the Ethics Committee of Islamic Azad University of Medical Sciences, this cross-sectional retrospective study was carried out in on all patients referred to Loghman Hakim Hospital from January 2011 to January 2016. This center is a referral poison center, which serves a population of more than 12.5 million and has an annual emergency department census of 24000 to 30000 only for poisoned patients. Based on the Loghman Hakim Hospital of Shahid Beheshti University of Medical Sciences’ policies, written consent is given for using patient’s information for research prior to their admission to the hospital. In addition, the study protocol obeys the ethical guidelines of the Declaration of Helsinki. Entry criteria include patient’s complete record, a definitive diagnosis of pure NSAID toxicity. A self-made questionnaire containing information regarding the demographics, type of NSAID and purpose of use, on-presentation vital signs and laboratory data, duration of hospitalization, treatments given, and the outcome was filled for every single patient. At large, a total of 14,754 patients with NSAIDs poisoning and consumption of simultaneous drugs were extracted from hospital’s database. Only 229 cases had pure NSAID toxicity during six-year period. Grouping of our patients was based on the amount of NSAID ingestion (below 200 mg/kg; 200–400 mg/kg; more than 400 mg/kg), Type of NSAID (short vs. long acting NSAIDs), patient’s conscious level according to Reed Scaling criteria (loss of consciousness or LOC and no loss of consciousness or No LOC), suicide attempt, and gender. It should be noted that short-acting NSAIDs are Ibuprofen, Diclofenac, Indomethacin, Aspirin, Mefenamic acid that have less than eight hours half-life. In contrast, there are long acting NSAIDs, which are as follows: Naproxen, Celecoxib, Meloxicam, and Piroxicam. Data were analyzed using the social package for statistical analysis SPSS software version 25. The data was presented by mean ± SD for continuous variables and frequency for categorical variables. Distribution of the data was tested by the Kolmogorov–Smirnov test. The Chi-square (plus odds ratio) and Fisher’s exact tests along with Lambda, Phi, Cramer’s V., Eta, Pearson, Spearman correlation coefficients were used to analyze qualitative variables. Statistical comparison was made using Mann–Whitney U-test or Kruskal-Wallis test for nonparametric variables and independent t-test (Two-tailed) or One-way Anova for parametric ones. Multiple Regression (linear) was used to foresee the
value of a variable based on the value of other variables. The outcome (dependent variable) was type of the NSAID that caused poisoning. The Predictor (independent variable) were demographics, vital signs, arterial blood gases analysis, laboratory results, and complications. For all tests, a P-value of 0.05 or less was considered to be statistically significant.

Results

Here, we present the number of clients referring to the emergency department of Loghman Hakim hospital with pure NSAID poisoning in six years. The period prevalence of NSAID poisoning was 0.14% in six years, and the incidence was 3.816/100,000/year. It should be noted that total population of hospitalized poisoned patients within these six years in our hospital was 164,333.

All of the 229 participants had oral ingestion of NSAIDs. The uppermost number of NSAID poisoning were seen in 2012 (n = 48, 20.96%), and the lowermost number of whom were related to the year 2015 (n = 29, 12.66%). Other year’s distribution of NSAID intoxicated patients was as follows: 2011 (n = 38, 16.59%), 2013 (n = 44, 19.21%), 2014 (n = 30, 13.10%), 2016 (n = 40, 17.46%).

Based on the Demographics results, the majority of patients were female 66.37% (152 cases). Mean age of patients was 23.75 ± 9.76 years with a range of 13 to 90 years. With respect to gender, the average age was 25.09 ± 9 and 23.08 ± 9 for males and females, correspondingly. Of the patients, 140 (61.13%) had ingested less than 200 mg of NSAIDs per kg, 59 cases (25.76%) had consumed 200 to 400 mg/kg, and 30 cases (13.10%) had ingested more than 400 mg/kg of NSAIDs. Twenty-one individual has committed suicide action and the mortality rate of our study was 0.43%.

Of the included patients, 224 cases (97.81%) had intentional consumption and the rest (2.18%) of our patients had used NSAIDs inadvertently. The NSAIDs that had been used were Ibuprofen (n = 169), Aspirin (n = 36), Diclofenac (n = 3), Naproxen (n = 3), Mefenamic acid (n = 3), Indomethacin (n = 2), Meloxicam (n = 1). Moreover, there were cases who used combination of NSAIDs [Aspirin + Ibuprofen (n = 3), Ibuprofen + Indomethacin (n = 2), Ibuprofen + Diclofenac (n = 2), Ibuprofen + Naproxen (n = 1), Ibuprofen + Mefenamic acid (n = 3), Ibuprofen + Diclofenac + Naproxen + Celecoxib (n = 1)].

Table 1 shows general characteristics of NSAID poisoned patients from their arrival to the emergency department to their release from the hospital. All of which revealed to have a significant correlation with using short acting NSAIDs. In addition, through analysis of the time interval (hours) between NSAID ingestion and arrival of poisoned patients to the hospital revealed that most of the subjects arrived under 4 h (n = 139, 60%), and the minority of patients arrived between 17-20 h interval (n = 3, 1%).

On the basis of clinical manifestations, 191 patients underwent through common complications of NSAID poisoning (Figure 1). The majority of our patients presented gastrointestinal complications (n = 125, 65.44%), followed by neurologic complications (n = 12, 62.82%) and acid-base deviations (n = 55, 28.79%). On the other hand, respiratory complications were only observed in four cases (2.09%).

Based on every patient’s condition, we used different therapeutic approaches. Commonly, the most prevalent treatment option was mixture of administration of activated charcoal and sorbitol, fluid therapy, psychiatric consult, and supportive treatment (76.4%). All of our patients were undergone supportive treatment and fluid therapy, and 227 (99.12 %) of whom were administrated with charcoal and sorbitol. Of patients, 226 cases (98.68%) had psychiatric consult. The smallest amount of individual treatment approaches were belong to bicarbonate sodium administration (7 cases, 3.05%), and gastrointestinal washing (6 cases, 2.62%). In addition, eight (3.49%) patients required to be intubated, and consequently they were transferred to the intensive care unit.

Unfortunately, one of our patients did not survive. Patient was female with 16 years of age. She took Ibuprofen orally, having intentional purpose of use but did not commit suicide. The amount of drug was under 200 mg/kg. She was arrived to the emergency room of hospital having 1-4 hinterval between ingestion and entrance. Her on arrival vital stats were as follows: PR = 120 per min, RR
Her consciousness level was two on the basis of reed scale criteria. ABG analysis revealed respiratory acidosis (pH 7.24, PCO2 = 66.70, HCO3 = 16.60) (Table 2). Treatment options were administration of activated charcoal and sorbitol, gastrointestinal washing, fluid therapy, intubation, bicarbonate sodium, and supportive care. Ultimately, she underwent neurological (agitation and seizure), renal complications (acute renal failure followed by vasodilator prostaglandin’s blockage), and acid-base deviations. Despite our very best effort, she was passed away under 12 h of hospitalization. The cause of death was cardiac arrest and CPR was not successful.

Table 1. General characteristics of NSAID poisoned patients.

Variable	Long-acting NSAIDs N = 6, Percent of Column	Short-acting NSAIDs N = 223, Percent of Column	P-value	Odds Ratio	95% Confidence Interval	Multiple Regression R, R square, P
Gender	Male 3 (50%)	74 (33.18%)	<0.001	.000	0.098-2.000	
	Female 3 (50%)	149 (66.81%)				
Year	2011 0	38 (17.04%)				R = 0.231
	2012 2 (33.33%)	46 (20.62%)				R² = 0.053
	2013 4 (66.66%)	26 (11.65%)	.003			P = 0.015
	2014 0	29 (13%)				
	2015 0	40 (17.93%)				
	2016 0					
Suicide Attempt	1 (16.66%)	20 (8.96%)	<0.001	<0.001	0.055-4.000	
Interval between consumption and admission	<12 h 5 (83.33%)	204 (91.47%)	0.038		NS	
	>12 h 1 (16.66%)	19 (8.52%)				
Amount of NSAID	<200 mg/kg 5 (83.33%)	135 (60.53%)	<0.001		NS	
	200-400 mg/kg 1 (16.66%)	59 (26.45%)				
	>400 mg/kg 0	29 (13%)				
Duration of Hospitalization	<12 h 1 (16.67%)	5 (2.24%)				R = 0.063
	12-24 h 4 (66.66%)	209 (93.72%)				R² = 0.004
	24-48 h 1 (16.67%)	6 (2.69%)	0.031			P = 0.828
	>48 h 0	3 (1.34%)				
Presentation of Clinical Complications	3 (50%) 188 (84.30%)	0.026	NS	R = 0.152		
	Loss of Consciousness 0	19 (8.52%)	<0.001		NS	R² = 0.023
	ICU Stay 0	8 (3.58%)	<0.001		NS	P < 0.001

*A P-value of 0.05 or less was considered to be statistically significant. **NS = not significant. P-values are obtained using Lambda, Phi, Cramer’s V, Chi-Square, Eta, Fisher’s Exact, Pearson, Spearman correlation coefficients based on each variable.
Discussion

In this study, we presented epidemiology of NSAID poisoning along with the demographics, laboratory analysis, clinical complications, and treatment options. Within six years of this study, we found 229 cases of NSAID intoxications. The majority of patients were found in 2012 year. In this study, we found a slight increase in NSAIDs abuse between 2011 and 2016. Based on CDC report, due to the aging population, we would encounter increase in using NSAIDs. Most of our intoxicated patients were female, abused ibuprofen, ingested under 200 mg/kg of NSAIDs, took under four hours between oral ingestion and emergency room admission, and were not suicidal. Of cases, 188 ones underwent major complications and one patient did not survive.

Here, the mortality rate associated with NSAID poisoning was estimated as 0.43%. It was due to neurological (agitation and seizure), renal complication, and persistent acid-base deviations followed by cardiac arrest. This result is very low, in contrast to 2016 report of the American Association of Poison Control Centers (80.42%) (15). Another study revealed a 30-day mortality of 25% resultant from peptic ulcer perforation among 2061 patients of three Danish counties (17). Besides, a systematic review study between years 1997-2008 demonstrated 61,067 cases of NSAID poisoning and revealed that the mortality rates were decreasing from 11.6% to 7.4%. This study only considered upper gastrointestinal bleed and perforation in hospitalized cases (18). One other study showed a mortality rate of 21.99% due to cardiovascular disease in United Kingdom Norfolk Arthritis Register (19). Out of these investigations we can conclude that our mortality rate in a referral poison center of Iran is lower than any other studies. This is because we considered all of the cases of NSAID poisoning, no matter what was the complication that resulted
Table 2. The on arrival Vital Signs, Arterial Blood Gases, Laboratory Panel distribution, and age in the included patients of this study.

Parameter	Gender	Suicide	Multiple Regression R, R², P						
	Male Mean	Female Mean	Yes Mean	Yes SD	No Mean	No SD	P-value		
Age (year)	25.09 9.75	23.08 9.72	NS***	23.52 7.04	23.78 10	NS	NS		
Vital Signs									
PR (beat/min)	92 18	90 15	NS	93 16	90 16	NS	NS		
RR (beat/min)	16 3	16 2	NS	17 5	16 2	NS	NS		
SBP (mmHg)	117 16	112 14	0.006	117 24	114.03 13	NS	R = 0.144		
DBP (mmHg)	75 9	72 8	0.008	72 11	73 9.01	NS	NS		
T (°C)	36 0.00	36 0.00	NS	36 0.00	36 0.00	NS	NS		
Arterial Blood Gases									
PH	7 0.06	7 0.05	NS	7 0.05	7 0.06	NS	NS		
PCO2	44 7	40 7	0.001	37 8.03	42 7	0.020	R = 0.043		
HCO₃⁻	25 4	23 4	0.003	21 3	24 4	0.001	R = 0.043		
Laboratory Panels									
Bs (mg/dL)	114 51	111.06 18	NS	105 12	112 34	NS	NS		
FBS (mg/dL)	105 41	96 32	NS	122 65	96 30	0.007	R = 0.144		
Na⁺ (mmol/L)	141.58 3.75	141.52 3.66	<0.001	140.95	3.86	141.61	3.67	<0.001	R = 0.073
K (mmol/L)	4.12 0.40	4.17 0.39	NS	4.21 .38	4.15 .39	NS	NS		
BUN (mg/dL)	32.8 11.1	24.02 6.6	<0.001	27 10.4	27.02 9.29	NS	R = 0.158		
Cr (mg/dL)	1.13 1.11	0.93 0.18	<0.001	1.11 0.27	0.99 0.19	0.041	R = 0.158		
AST (U/L)	29 27	24 11	NS	24 8	26 19	NS	NS		
ALT (U/L)	24 23	18 10	0.003	19 14	20 16	NS	NS		
ALP (U/L)	219 136	190 78	<0.001	196 73	200 105	NS	NS		
CPK (µg/L)	243 507	103 83	NS	157 154	151.03 321	NS	R = 0.256		
LDH (U/L)	484 202	498 178	NS	504 154	492 189	NS	NS		
Bili T (mg/dL)	0.76 0.49	0.61 0.29	NS	0.46 0.25	0.68 0.38	0.006	R = 0.041		
Bili D (mg/dL)	0.23 0.21	0.19 0.11	NS	0.14 0.07	0.21 0.16	0.016	R = 0.041		

PR: Pulse rate; RR: respiratory rate; SBP: systolic blood pressure; DBP: diastolic blood pressure; T: temperature; Bs: blood sugar; FBS: fasting blood sugar; Na: sodium; K: potassium; BUN: Blood Urea Nitrogen; Cr: creatinine; AST: aspartate aminotransferase; ALT: alanine aminotransferase; ALP: alkaline phosphatase; CPK: Creatine phosphokinase; LDH: Lactate dehydrogenase; SD: standard deviation; Bil T: Bilirubin Total; Bil D: Bilirubin Direct. *Na and HCo₃⁻ had normal distribution, thus independent sample t-test was used for these parameters only. **A P-value of 0.05 or less was considered to be statistically significant. ***NS: not significant.
death, as long as they had used NSAIDs only. Furthermore, we included every person with any background disease that resulted their usage of NSAID.

Every day and all around the world, more than 30 million of people are using NSAIDs. Based on recent analysis on global sales, ibuprofen, diclofenac, and naproxen have the majority of sales, correspondingly either by prescription or over-the-counter (20). This can justify why Ibuprofen is among the most abused NSAIDs both in this study and many others (21). In contrast, COX-2 selective agents such as meloxicam and celecoxib are experiencing a huge decrease (55.1 to 29.2% in US; 8.4% in Germany) over the past few years, while non selective NSAIDS are having an increase globally (50.2 to 73.9% in US; 19.0 million in defined daily doses in Germany), studies in the US and Germany revealed (22, 23). In addition, although many estimations pointed 10-40% of NSAIDs usage happened in patients older than 65 years of age (21), only two cases (0.87%) of our study had this age range. This reveals that our young population had more inclination toward using NSAIDs than elderly patients. The reasons could be this young population is not aware of potential side effects of NSAIDs mainly because they are bought over-the-counter and they are presumed to be safe.

There are many reports on complications associated with NSAID abuse. The incidence of gastrointestinal complications (both upper and lower GI) is 12.9-50.4% based on systemic reviews (20). However, the incidence of GI complications in our study was higher (65.44% of adverse effects, 54.58% of total included population). It was seen, particularly, in cases who used ibuprofen, naproxen, aspirin, diclofenac, mfenamic acid, and indomethacin. Studies showed that COX-2 selective NSAIDs have lower risk for GI complications than others. It should be noted that there are several risk factors pertaining to NSAIDs’ GI complications, such as higher dosage use, elderly, Helicobacter Pylori infection, and history of peptic ulcers. Likewise, simultaneous use of low-dose aspirin can magnify GI adverse effects (20).

Neurologic complications consisted 62.82% of the complications of our study. Ibuprofen, aspirin, indomethacin, meloxicam, and mfenamic acid were among the culprit NSAIDs in such patients. Based on a prospective study, 30% of cases with ibuprofen overdose developed CNS toxicity (10). Seizures have been reported with abuse of ibuprofen, diclofenac, indomethacin, and mfenamic acids both in large and small doses. Seizures could be due to decline in production of prostaglandin and thromboxane (11).

Acid-base alteration had the third grade of adverse effects in our study (28.79%). It was seen in patients who ingested ibuprofen, indomethacin, aspirin, naproxen, and diclofenac. Studies indicated that metabolic acidosis can occur in such patients due to the enhanced onion gap, and it is especially associated with ibuprofen and naproxen (5–8). In this study, 18 (32.72%) of cases with acid-base abnormalities experienced metabolic acidosis, nonetheless, most of the cases underwent through respiratory acidosis (n = 27, 49.09%).

Laboratory analysis for detection of NSAID poisoning consist of BUN and creatinine, serum electrolytes, complete blood count, and arterial blood gasses (24). In this research, we find significant relationship the NSAID type and the following laboratory values; A) Elevated values in males: 1. Na (141.58 ± 3.75, 0.06 mmol/L increase in men compared to women), 2. BUN (32.80 ± 11.10, 8.78 mg/dL increase in men compared to women), 3. ALT (24 ± 23, 6 U/L increase in men in men compared to women), 4. ALP (219 ± 136, 29 U/L increase in men compared to women), 5. CPK (243 ± 507, 140 µg/L increase in men compared to women). B) Elevated values in females: LDH (498 ± 178, 14 U/L increase in women compared to men). Although, there are scarce amount of studies that were reported laboratory values, in NSAID poisoned patients, we found one case report that represent same results with respect to laboratory panels only, as ours (25).

Since there are no antidotes for NSAID poisoning, management of such cases is to secure airways, decontamination of GI tract, correction of acid-base deviations, using benzodiazipines for seizures (26).

In conclusion, we find significant association between the type of NSAID and
higher sodium, BUN, ALT, ALP, CPK levels in men, and higher LDH level in women. In addition, we found substantial correlation between using short-acting NSAIDs and female gender, suicide action, arrival to the hospital less than 12 h, amounts under 200 mg/kg, hospitalization longer than 12 h, and presentation of loss of consciousness.

According to the results of this study, a part of NSAIDs poisoned individuals used NSAIDs intentionally and suicidally. The proper use of media advertising, holding various seminars as well as conducting more research on psychological problems can reduce suicide rates in our country. We recommend more investigations on psychological injuries which have a significant role in identifying root causes of suicide action. Early diagnosis of these problems could prevent mental crises lead to suicide. Moreover, adequate training and supervision of pharmacies is important for controlling NSAIDs poisoning. Because these are over-the-counter drugs (OTC), they are being sold without prescription. The consequences are easier access for people, negligence the side effects, and misuse of the drug for non-therapeutic purposes. Finally, studies with a larger sample size and across the country can provide a wealth of information on the situation and deliver patterns of consumption in the country. Besides, timely diagnosis and treatment of these patients can reduce mortality and complications.

Acknowledgement

The authors express their sincere appreciations to the staff of archive section of Loghman Hakim Hospital for their assistance and support.

References

(1) Morita I. Distinct functions of COX 1 and COX 2. Prostaglandins Other Lipid Mediat. (2002) 68: 165–75.
(2) Saad J and Pellegrini MV. Nonsteroidal Anti-Inflammatory Drugs (NSAID) Toxicity. [Updated 2020 Jan 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526006/.
(3) Pereira Leite C, Nunes C, Jamal SK, Cuccovia IM and Reis S. Nonsteroidal anti-inflammatory therapy: a journey toward safety. Med. Res. Rev. (2017) 37: 802–59.
(4) Volans G, Monaghan J and Colbridge M. Ibuprofen overdose. Int. J. Clin. Pract. (2003) 135: 54–60.
(5) Levine M, Khurana A and Ruha AM. Polyuria, acidosis, and coma following massive ibuprofen ingestion. J. Med. Toxicol. (2010) 6: 315–7.
(6) Marciniak KE, Thomas IH, Brogan TV, Roberts JS and Czaja Mazor SS. Massive ibuprofen overdose requiring extracorporeal membrane oxygenation for cardiovascular support. Pediatr. Crit. Care Med. (2007) 8: 180–2.
(7) Wood DM, Monaghan J, Streepe P, Jones AL and Dargan PI. Fatality after deliberate ingestion of sustained release ibuprofen: a case report. Crit. Care (2006) 10: R44.
(8) Holubek W, Stolbach A, Nurok S, Lopez O, Wetter A and Nelson L. A report of two deaths from massive ibuprofen ingestion. J. Med. Toxicol. (2007) 3: 52–5.
(9) Gambaro G and Perazella MA. Adverse renal effects of anti-inflammatory agents: evaluation of selective and nonselective cyclooxygenase inhibitors. J. Intern. Med. (2003) 253: 643–52.
(10) McElwee NE, Veltri JC, Bradford DC and Rollins DE. A prospective, population based study of acute ibuprofen overdose: complications are rare and routine serum levels not warranted. Ann. Emerg. Med. (1990) 19: 657–62.
(11) Sanchez Hernandez MC, Delgado J, Navarro AM, Orta JC, Hernandez M and Conde J. Seizures induced by NSAID. Allergy (1999) 54: 90–1.
(12) Steinhauser HB and Hertting G. Lowering of the convulsive threshold by non-steroidal anti-inflammatory drugs. Eur. J. Pharmacol. (1981) 69: 199–203.
(13) Robson RH, Balali M, Critchley J, Proudfoot AT and Prescott L. Mefenamic acid poisoning and epilepsy. Br. Med. J. (1979) 2: 1438.
(14) Risks of agranulocytosis and aplastic anemia. A first report of their relation to drug use with special reference to analgesics. The International Agranulocytosis and Aplastic Anemia Study. JAMA (1986) 256: 1749–57.
(15) Gummin DD, Mowry JB, Spyker DA, Brooks DE, Fraser MO and Banner W. 2016 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 34th Annual Report. Clin. Toxicol. (Phila) (2017) 55: 1072–254.
(16) Thomas S and Duarte Davidson R. National Poisons Information Service Report 2017/18
NSAID Poisoning

(17) Thomsen RW, Riis A, Munk EM, Nørgaard M, Christensen S and Sørensen HT. 30-day mortality after peptic ulcer perforation among users of newer selective COX 2 inhibitors and traditional NSAIDs: a population based study. *Am. J. Gastroenterol.* (2006) 101: 2704.

(18) Straube S, Tramèr MR, Moore RA, Derry S and McQuay HJ. Mortality with upper gastrointestinal bleeding and perforation: effects of time and NSAID use. *BMC Gastroenterol.* (2009) 9: 41.

(19) Goodson NJ, Brookhart AM, Symmons DPM, Silman AJ and Solomon DH. Non-steroidal anti-inflammatory drug use does not appear to be associated with increased cardiovascular mortality in patients with inflammatory polyarthritis: results from a primary care based inception cohort of patients. *Ann. Rheum. Dis.* (2009) 68: 367–72.

(20) Conaghan PG. A turbulent decade for NSAIDs: update on current concepts of classification, epidemiology, comparative efficacy, and toxicity. *Rheumatol. Int.* (2012) 32: 1491–502.

(21) Lanas A and Ferrandez A. Inappropriate prevention of NSAID induced gastrointestinal events among long term users in the elderly. *Drugs Aging* (2007) 24: 121–31.

(22) Schüssel K and Schulz M. Prescribing of COX 2 inhibitors in Germany after safety warnings and market withdrawals. *Int. J. Pharm. Sci. Rev. Res.* (2006) 61: 878–86.

(23) Greenberg JD, Fisher MC, Kremer J, Chang H, Rosenstein ED, Kishimoto M, Lee S, Yazici Y, Kavanaugh A and Abramson SB. The COX 2 inhibitor market withdrawals and prescribing patterns by rheumatologists in patients with gastrointestinal and cardiovascular risk. *Clin. Exp. Rheumatol.* (2009) 27: 395.

(24) Hadgraft J. Formulation of anti-inflammatory agents. In: Lowe NJ and Hensby C. *Nonsteroidal anti-inflammatory drugs.* S Karger Publisher, New York (1989) 21-43.

(25) Chen HW, Chen KC and Chen JS. Colchicine and NSAID combination causing acute kidney injury. *J. Coll. Physicians Surg. Pak.* (2012) 22: 737–9.

(26) Jones A. Over the counter analgesics: a toxicologic perspective. *Am. J. Ther.* (2002) 9: 245–57.

This article is available online at http://www.ijpr.ir