SOC IP Interfaces-A Hybrid Approach-Implementation using Open Core Protocol

N. Malathi¹, B. Srinivas², K. Sainath³, J. Hemanth Kumar⁴

¹Associate Professor, Dept. of ECE, Siddhartha Institute of Engineering and Technology, Hyderabad, India
E-Mail: npree@gmail.com¹

²,³,⁴UG Students, Dept. of ECE, Siddhartha Institute of Engineering and Technology, Hyderabad, India
E-Mail: srinivasbsiet@gmail.com², sainathksiet@gmail.com³, hemanthkumarsiet@gmail.com⁴

Abstract

System on chip design enables more and more IP core integration to meet demands of era of multimillion gate chips. The new levels of integration present significant challenges to provide compatible STD interfaces and flexible bus architectures. IP cores which are constituents of SOCs are designed with many different interfaces and common protocols. In paper proposing well define standard interface, the open core protocol for a hybrid method of AHB bus based architecture. The hybrid approach of AHB bus architecture defines a set of bus interface to make easy basic and rupture read/write transactions. AHS as well define inner shared bus architecture with multiplexers which can accommodate a small number of IP cores facilitating multi master, multi slave operations simultaneously. OPC-has been selected since it is release to the public and OCP-IP features cross bar/partial cross bar based inter connect and realizes various techniques. The tradeoffs for using OCP interface with AHB bus architecture are concluded in terms of orthogonality, performance, power and bandwidth. Each memory sub system achieved its maximum bandwidth because of OCP-interface.

Keywords : Pipeline transaction, lock transaction, single transaction, and burst transaction, SoC

I. Introduction

System on chip design enables more and more IP core integration to meet demands of era of multimillion gate chips. The new levels of integration present significant challenges to provide compatible standard interfaces and flexible bus architectures. IP cores which are constituents of SOCs are designed with many different interfaces and common protocols. For a hybrid approach of AHB bus based architecture. The hybrid approach uses both AHB bus for control operations and
OCP interface for data flow operations. OCP interface is presented through an internal cross bar architecture where one master can communicate with more than one slave simultaneously [1]. OCP also supports partial cross bar architecture where if not all masters require accessing paths to all slaves. This architecture eliminates dataflow bottlenecks common to SoC’s and helps to solve bandwidth problem with OCP protocol. Likewise OCP [2] may be autonomous of transport structural engineering which offers crossbar based interconnected giving adaptability and moving forward effectiveness once both reproduction speeds What's more information communication.

II. Related Work

Figure 1 indicates the excellent SoC building design In view of those propelled high-sounding Bus1 (AHB) which may be portrayed in the propelled Microcontroller transport building design (AMBA) determination from arm Ltd. Some regular components that we utilize done our units are shown [3], Anyway figure 1 is which is a representational of a vast number from claiming SoC outlines.

![SoC Block diagram](image)

This interconnects architecture have some distinct advantages:

a. It is a notable, all around bolstered, and a generally accessible arrangement.

b. It requires generally little rationale overhead.

c. It gives a straightforward structure and a level location space.

d. Lamentably, the straightforward single AHB design for the present complex
SoCs additionally has numerous disadvantages:

e. The issue of symmetry. There is a solitary way from/to all gadgets. This implies any entrance starting with one gadget then onto the next is obstructing every single different access regardless of whether the different access includes an alternate ace and slave. Therefore it turns into a counterfeit transmission capacity bottleneck for your framework.

f. Another issue that outcomes from all gadgets "hanging tight" in a solitary line for a solitary correspondence asset, is that the most pessimistic scenario dormancy for any gadget to gain admittance to the transport can get exceptionally high. This will influence FIFO estimating and eventually execution.

g. The AHB transport requires that a 32-bit address transport and a 32-bit information transport be steered all through the gadget. So as to accomplish the required exhibition it must keep running as quick as could be expected under the circumstances. These two necessities are in resistance. It is hard proportional the speed of a typical transport structure over huge zones so as to stay aware of the scaling frequencies of the limited processors.

h. The genuine driving issue looked by all unique AHB plans was execution. Some basic changes in capacity and innovation made the design less appropriate which drove SoC modelers to take a gander at part the AHB transport into various fragments and conceivably putting a portion of the low-speed gadgets on the ARM in figure 1. Figure 2 demonstrates a run of the mill split transport arrangement.

Figure 2: Split bus SOC architecture
Note that it is time permits will run you quit offering on that one high-sounding AHB transport done a confined zone for the more speed gadgets et cetera utilization an additional to bring down velocity units. Profits of this approach are. The energy Furthermore directing ramifications of the transport structural engineering are separated toward that number of segments [4]. Those more modest transport segments make it could be allowed to scale those recurrence higher. On the speediest rate of transport need couple devices; it could be actualized concerning illustration an AHB crossbar. An answer that is restrictive with excessively awful a significant number units.

At whatever point a gadget on the low-speed AHB must access a gadget on the fast AHB, (or the other way around), gadgets on the two transports are slowed down. The outcome is regularly that the exhibition additions of the rapid transport are lost [5]. (This issue can be alleviated to some degree by utilizing the split exchange convention that the AHB transport underpins, and adding equipment to store and advance exchanges between the two transport structures. Be that as it may, the AHB convention is certifiably not a genuine part exchange model [6]. The ace which gets a split exchange reaction is then slowed down until the exchange finishes. In this manner the round excursion access time still points of confinement execution rather than just idleness.

The blocking issue for symmetrical exchanges is sliced down the middle, however not really unraveled. This remains constant for the inactivity issue too.

III. Proposed System

We should analyze the exemplary transport structure in Figure 1 with the progressions made in Figure 2. One advantage of the transport structure in Figure 1 is that it permits extreme adaptability. Any gadget can get to some other gadget anyplace in the framework. Any gadget can be an ace, a slave, or both. Our perception is that this consensus isn't generally required. For instance, the Ethernet and USB DMA motors needn't bother with access to APB gadgets like UARTs, and SSI type interfaces. We can re-sort the gadgets in these outlines into three target gadgets being refereed for, paying little respect to the quantity of preparing components or DMA Engines.

We consent that the CSRs are not particular case device, they are large portions. And it might make decent though any ace Might load or inquiry the CSRs from claiming at whatever gadget autonomous of the others, Anyhow this may be an unnecessary streamlining. These need aid Verwoerd low-speed units that move minimal or no data, Also to a number cases, right will be best performed toward startup. The downright data transfer capacity obliged to CSR right will be effortlessly took care of toward much the slowest transport usage.

One approach to tackle the symmetry issue is propose three AHB transport sections for our application: One AHB transport joined of the DRAM, particular case of the SRAM, Also you quit offering on that one for the CSR interfaces on each square. Each pro contraption might need a unmistakable AHB pro controller should
get with each transport. This permits simultaneous entry of the two memory subsystems and the CSR deliver space, however is unmistakably a catastrophe as far as execution. It duplicates the majority of the issues depicted in Figure 1 by three as opposed to separating them as we did in Figure 2. Rather we have picked a half and half methodology as appeared in Figure 3.

Figure 3 : Hybrid Solution

Provided for those low pace need for CSR gets to What's more our prerequisite will keep up our multi-ace agreement (for instance the sum masters approach the greater part registers) we executed An standard transport for this bit of the issue. Since that multi-ace part might have been required, the AHB will be used instead of the APB. The clock recurrence on this AHB usage can be moderate; consequently the metal deferral (timing conclusion) and power issues are never again an issue. The most pessimistic scenario inertness issues related with transport structures are additionally not an issue since we are not moving any fast information on this transport.

To each of the two memory elements, we actualized an crossbar/arbiter with low overhead point-to-point joins from every ace gadget (processor or DMA) of the crossbar. The point-to-point interface protocol decided may be the OCP interface suggested Eventually Tom's perusing those non-profitable association open center

Copyright reserved © J. Mech. Cont.& Math. Sci.
N. Malath et al
Each memory requester (master device) need a immediate association will every memory Sub-System (MSS). An synchronization limit may be executed inside the MSS to constantly on ways under the crossbar. Each entry of the memory charges up wires of the least period obliged to get from person gadget of the other, every association switches just when it is moving data, and the clock recurrence about every association is precisely the thing that the gadget obliges and no more. In place on permit full data transfer capacity get should every memory, those MSS switch What's more mediation rationale runs toward those recurrence of the memory component it associate.

We might want to have IP accessible that has two particular interior interfaces; a transport interface for Control and Status Registers just, and a point-to-point connect for Burst DMA information.

III.i Bus interface
Transport interface includes a situated about interface signs What's more their comparing timing relationship. The generally acknowledged ahead chip transport. AMBA AHB characterizes a situated about transport interface should encourage fundamental (single) and more blast read/write transactions. AHB likewise characterizes those internal transport architecture, which will be basically an imparted transport made from claiming multiplexers. Those multiplexer-based transport structural engineering meets expectations great for An plan with An little number of ip cores. When the amount about coordinated circuit ip cores increases, those correspondence between ip cores also increment What's more it gets to be truly incessant that two or more expert IPs might appeal information starting with different slaves at those same duration of the time.

III.ii OCP Interface
OCP need chosen, in light it is interested in people in general and more OCP-IP need Gave exactly allowed instruments on check this protocol. Those recommended transport structural engineering features crossbar/partial-crossbar built interconnected What's more understands the majority transactions characterized to OCP, including 1) solitary transactions, 2) blast transactions, 3) lock transactions, 4) pipelined transactions, and 5) out- of-order transactions. Clinched alongside addition, those recommended transport will be adaptable such-and-such you quit offering on that one might conform the transport construction modelling as stated by those framework prerequisite.

III.iii. Burst transactions
The blast transactions permit those grouping for numerous transactions that need a specific location relationship, Furthermore can a chance to be arranged under
multi-request blast. Also single-request blast as stated by know what number of times the addresses need aid issued. Fig. 1 indicates the two sorts from claiming blast peruse transactions. Those multi-request blast Likewise characterized over AHB may be illustrated On fig. 1(a) the place the location data must make issued to each summon of a blast transaction.

As indicated done fig. 1(b), which is those blast sort characterized clinched alongside AXI, those deliver data is issued once for each blast transaction. In the recommended transport configuration both blast transactions would back such-and-such ip cores for Different blast sorts can utilize the suggested on-chip transport without evolving their first blast self-destructive considerations and conduct.

![Fig.4. (a) Multi-request burst transactions](image)

![Fig.1 Burst transactions](image)

III.iv. Lock transactions

Lock is an insurance system for bosses that have low transport needs. Without this system the read/compose exchanges of experts with lower need would be intruded on at whatever point a higher-need ace issues a solicitation. Lock exchanges keep a judge from performing assertion and guarantee that the low need experts can finish its conceded exchange without being hindered.

III.v. Pipelined Process

Fig. 2(a) also a greater amount 2(b) demonstrates the difference keeping the working for non-pipelined besides pipelined (also known as momentous for AXI) examine transactions. Completed fig. 2(a), to a non-pipelined transaction perused data must make originated again then afterward its thinking about location will make issued Furthermore a period starting with guaranteeing inertia. For example, D21 is sent straight after A21 is issued in addition to t. To a pipelined transaction similarly as demonstrated over fig. 2(b), this hard connection is not required. Therefore A21 could make issued correct following A11 may be issued without sitting tight to the comeback of information asked toward A11 (i.e., D11-D14).
III.vi. Out-of-order transactions

The out-of-request exchanges permit the arrival request of reactions to be not quite the same as the request of their solicitations. These exchanges can essentially improve the correspondence productivity of a SOC framework containing IP centers with different way in latencies as outlined in Fig. 3. In Fig. 3(a) which doesn't tolerance out-of-request exchanges, the contrasting responses from claiming A21 Also A31 must make come back then afterward that response from claiming A11. For the assistance for out-of-request exchanges Similarly as seemed Previously, fig. 3(b), those response for shorter right idler (D21, D22 Furthermore D31) might make came back in the recent past the individuals with more dormancy (D11-D14) and in this way those exchanges can be done over essentially more cycles.
A crossbar structural engineering is utilized such-and-such more than one ace might impart with more than particular case slave all the while. Though not constantly on aces require the gaining entrance to ways to know slaves, fractional crossbar structural engineering is additionally permitted.

Fundamentally OCP need the address is for 13bits, information will be from claiming 8bits, control sign will be about 3bits and blast may be of basic sort. The 8kbit memory \((2^{13} = 8192\text{bits} = 8\text{kbits})\) is utilized within the slave side so as on check those protocol purpose. That framework will provide for the inputs should OCP masted throughout compose operation and accept signs from OCP slave throughout perused operation. That primary obstructs of the recommended transport structural engineering would depicted the following.

III.vii. Arbiter

For conventional imparted transport architecture, asset controversy happens at whatever point more than one expert solicitation those transport In those same chance. To crossbar alternately halfway crossbar architecture, asset controversy happens when more than person ace may be with get the same slave all the while. In the recommended outline each slave ip may be connected with an mediator that determines which expert might get the slave.

III.viii. Decoder

Many slaves exist in the framework that decoder decodes the address and more chooses which slave return light of the focus masted. For addition, the recommended
decoder also checks if that transaction deliver will be illicit or nonexistent and reactions with a lapse message whether fundamental.

IV. Conclusion

The paper shows a SoC foundation arrangement dependent on two classes of standard interfaces. We have picked AHB for transport interface structure and OCP-IP for point to point connect.

Orthogonality: The framework can enable synchronous access to the majority of the memory gadgets without meddling with each other.

Performance: Beside the concurrent access issue, we have killed the characteristic trouble in getting the transport structure to run quick enough and constraining the framework data transmission.

Power: This may be an issue that must make illuminated with respect to a significant number fronts, Be that we have diminished those trouble of crashing expansive capacitances ahead each information transaction and we bring encouraged the simple scaling from claiming memory subsystem frequencies. We need also diminished the interface clock speeds ahead numerous units.

Stalls: Beside the concurrent access issue, we have killed the characteristic trouble in getting the transport structure to run quick enough and constraining the framework data transmission.

Memory Bandwidth: Every memory subsystem can conceivably accomplish its most extreme data transmission limit.

References

I. Advanced Microcontroller Bus Architecture (AMBA) Specification Rev 2.0 & 3.0, http://www.arm.com.

II. Choi, J.-T. Kong, S.-K. Eo, “Fast and Accurate TransactionLevel Modeling of an Extended AMBA2.0 Bus Architecture,” Design, Automation, and Test in Europe, pages 138-139, 2005.

III. Kim Y.-T., T. Kim, Y. Kim, C. Shin, E.-Y. Chung, K.-M. Lo C.-K. and R.-S. Tsay, “Automatic Generation of Cycle Accurate and Cycle Count Accurate Transaction Level Bus Models from a Formal Model,” Asia and South Pacific Design Automation Conference, pages 558-563, 2009.

IV. Open Core Protocol (OCP) Specification, http://www.ocpip.org/home.
V. Schirmer G and R. Domer, “Quantitative Analysis of Transaction Level Models for the AMBA Bus,” Design, Automation, and Test in Europe, 6 pages, 2006.

VI. owstuffworks.com

VII. 21st Century Airships, Inc., High Altitude Platforms, at http://www.21stcenturyairships.com/

VIII. Geostationary Orbits, in Wikipedia, at http://en.wikipedia.org/wiki/Geostationary_orbit (last accessed Sept. 28, 2004).

IX. TWUF, Broadband Takes to the Skiesrt Techdirt, Get Your Wireless Broadband By Stratellite,