Hypoxia Induces Dysregulation of Lipid Metabolism in HepG2 Cells via Activation of HIF-2α

Risheng Caoa Xiaodan Zhaoa,b Shuo Lia Haiyun Zhoua Weixu Chena Lihua Rena Xiqiao Zhoua Hongjie Zhang Ruihua Shia

a Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, b Department of Geriatric Medicine, Suzhou Municipal Hospital, Suzhou, China

Key Words
HIF-2α • HepG2 • Fatty acid metabolism • Cholesterol metabolism

Abstract
Background: Hypoxia is a risk factor for non-alcoholic fatty liver diseases, leading to permanent imbalance of liver lipid homeostasis and steatohepatitis. The current study examined the effect of HIF-2α, an oxygen-sensitive heterodimeric transcription factor, on hypoxia-induced dysregulation of lipid metabolism in HepG2 cells. Methods: Studies were conducted in C57BL/6 male mice and human HepG2 cells under hypoxic conditions, transfected with HIF-2α-targeted shRNA. The mRNA and protein expressions of key genes relevant to lipid metabolism were determined via RT-qPCR and western blot, respectively. Intracellular lipid accumulation was determined by Nile red, filipin staining and quantitative assay kits. Results: HIF-2α protein was quantified in both HepG2 cells and C57BL/6 mice under hypoxic conditions. Intracellular lipid accumulation and increased lipid levels induced by hypoxia were significantly reduced by silence of HIF-2α expression, associated with reversed expression of ABCA1 and ADRP, key genes involved in cholesterol excretion and fatty acid uptake respectively. However, HIF-2α had no effect on enzymatic activity and expression of key genes involved in fatty acid β-oxidation or cholesterol metabolism. Conclusion: Inhibition of HIF-2α protein reversed lipid metabolism dysregulation induced by acute hypoxia in HepG2 cells, which suggested that HIF-2α signaling may be relevant to oxygen-dependent lipid homeostasis in the liver.

R. Cao and X. Zhao contributed equally to this work.

Ruihua Shi, MD, PhD
Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, (China)
E-Mail ruihuashi@126.com
Introduction

Oxygen is crucial to the process of metabolism. A state of hypoxia, or lack of adequate oxygen, activates a variety of complex pathways at both the cellular and organ level to reinstate oxygen homoeostasis. The liver is essential to metabolism, and is extremely sensitive to low-oxygen conditions. Lipid accumulation in the blood vessels and other tissues of the liver leads to an insufficient blood supply to hepatocytes and lipid peroxidation, setting up a hypoxic microenvironment; prolonged hypoxia can promote uncontrolled lipid accumulation [1, 2]. The liver’s metabolic functions include lipid biosynthesis, uptake, catabolism, and reverse cholesterol transport. Lipid biosynthesis in the liver is regulated by sterol regulatory element-binding proteins (SREBPs), a family of transcription factors that include the isoforms SREBP-1a, SREBP-1c, and SREBP-2 [3]. SREBP-1a is a potent activator of all SREBP-responsive genes, including those that mediate the synthesis of fatty acids, cholesterol, and triglycerides, whereas SREBP-1c preferentially regulates enzymes of fatty acid synthesis. Fatty acid synthase (FAS) is the principle target of SREBP-1c [4, 5]. SREBP-2 regulates cholesterol biosynthesis and uptake, in particular the low-density lipoprotein receptor (LDLR) [6, 7]. Another target of SREBP-2 is 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), the rate-limiting step and major control point of de novo cholesterol synthesis [8, 9].

Other genes important to lipid metabolism in the liver include adipose differentiation-related protein (ADRP), which participates in fatty acid uptake. Carnitine palmitoyltransferase-1α (CPT-1α), a target of peroxisome proliferator-activated receptor alpha (PPAR-α), controls mitochondrial fatty acid import [5]. Hydroxyacyl-CoA dehydrogenase (HADH) catalyzes the NAD⁺-dependent dehydrogenation step in fatty acid β-oxidation [10].

Cholesterol catabolism involves mainly the biodegradation of cholesterol to bile acids occurring in the hepatocyte endoplasmic reticulum, and begins with the transformation of cholesterol into 7-alpha-hydroxy cholesterol catalyzed by CYP7A1 (cytochrome P450 family 7 subfamily A polypeptide 1) [11-13]. Cholesterol clearance pathways are also mediated by members of the ATP-binding cassette (ABC) transporter family. An example is ABCA1 (ABC subfamily A member 1), which participates in transport of cholesterol in the hepatocyte to lipoprotein receptors and the formation of HDL cholesterol [14, 15]. ABCG5 and ABCG8 (ABC subfamily G members 5 and 8, respectively) regulate the excretion of liver cellular cholesterol into bile [16, 17].

The hypoxia-inducible factor (HIF) family of transcription factors has a central role in the main pathway associated with hypoxic stress [18, 19]. They participate in tissue adaptive responses to hypoxia by regulating the expression of hypoxia-induced genes, allowing survival within a large range of reduced oxygen concentrations. The HIF family are heterodimers composed of one α subunit that is unstable in the presence of relatively high levels of oxygen (above 5%), and one constitutively expressed β subunit (or ARNT [aryl hydrocarbon receptor nuclear translocator]). Mammals possess three HIF isoforms, HIF-1, HIF-2, and HIF-3.

Under normoxic conditions, HIF-α subunits are targeted for proteasomal degradation by the Von Hippel-Lindau (VHL) tumor suppressor (Pvhl) catalyzed by oxygen-dependent prolyl hydroxylase domain (PHD) proteins (PHD 1, 2 and 3). Under hypoxic conditions, HIF-α subunits are stabilized and translocate to the nucleus to activate transcription upon binding to hypoxia response elements located within regulatory elements of HIF-target genes.

HIF-2α, also known as EPAS1 (Homo sapiens endothelial PAS domain protein 1), HLF (HIF-like factor), HRF (HIF-related factor), or MOP2 (member of PAS superfamily 2), was first discovered by Tian et al. in 1997 [20]. Recent studies have reported that many cellular processes such as angiogenesis, erythropoiesis, energy metabolism, cell migration, and tumor invasion are influenced by HIF-2α. Since oxygen consumption in mitochondria seriously influences fatty acid oxidation during hypoxia, it is conceivable that lipid metabolism should be regulated through activation of HIFs. However, the effects of HIF-2α and HIF-1α on lipid metabolism have not been definitively determined.
In certain cell types, the expression of PPARα and the DNA-binding affinity of PPARα were reduced during hypoxia, in a HIF-1α-dependent manner [21]. Moreover, HIF-1α has been reported to induce the expression of HIG2, a lipid droplet protein involved in neutral lipid formation [22], and HIF-1α was even considered a protective factor against alcoholic fatty liver [23]. In contrast, Rankin et al. [24] disclosed the importance of HIF-2α rather than HIF-1α in the regulation of lipid droplet formation and continuous lipid accumulation in VHL-deficient mouse liver. This conclusion was further supported by another study indicating that development of fatty liver disease in PHD2/3 knockout mice was under the control of HIF-2α [25]. Considerable controversy remains regarding hepatic steatosis in HIF-2α-deficient mice [26], and lipid accumulation stimulated by forced expression of HIF-1α in mice [27].

Considering the controversies surrounding HIFs in lipid metabolism, it is important to understand all of the mechanisms of hypoxia-induced lipid dysregulation and clarify the roles of HIFs separately. In this study, we focused on whether HIF-2α is associated with lipid metabolism under hypoxic conditions in cells of the human hepatoma cell line HepG2, and investigated the molecular processes activated within the cells.

Materials and Methods

C57BL/6 mouse liver ischemia-reperfusion (IR) model

The Ethics Committee of Nanjing Medical University approved this study. Six male C57BL/6 wild-type mice (age 10 weeks; 22-25 g) were purchased from Model Animal Research Center of Nanjing Medical University, Nanjing, China. The 6 mice were randomly apportioned to a control group or an ischemic-reperfusion (IR) group. Mice were anesthetized by intraperitoneal injection of 60 mg/kg sodium pentobarbital. The skin was disinfected with 1% iodine. The incision was mid-abdominal to allow for full liver exposure. For mice in the IR group, blood vessels were clamped with a non-invasive vascular clamp for one hour as described previously [28], which led to segmental (70%) hepatic ischemia, and then the liver was reperfused for 6 h before tissues were harvested. Mice in the control group underwent the same procedure, but with no clamping of the blood vessels. The mice were euthanized by cutting the diaphragm and heart. Hepatic tissue was obtained and rapidly stored at –70 °C for future analysis.

Cell culture

Cells of the human hepatocellular carcinoma cell line HepG2 were purchased from Shanghai Cell Bank (Shanghai, China) and cultured in Dulbecco’s modified Eagle’s medium (Wisent, South America) with 15% fetal bovine serum (FBS; Wisent, South America). Cells were incubated in normoxic (21% O₂, 5% CO₂) or hypoxic (1% O₂, 5% CO₂, 94% N₂) conditions with a humidified chamber at 37 °C.

HIF-2α negative control and inhibitor, transient and stable transfection

To silence the expression of HIF-2α, for stable transfection the plasmids pGPU6/GFP/Neo-HIF-2α-homo-1,250 and pGPU6/GFP/Neo-shNC were designed and synthesized by GenePharma (Shanghai, China; Table 1). For transient transfection, HIF-2α-silencing small interfering RNA (siRNA; EPAS1-homo-2778) and negative control siRNA (siNC) were also obtained from GenePharma (Shanghai, China; Table 2).

For gene transfection, the cells were cultured in 6-well plates to 50% confluence. The plasmids or siRNAs were transfected into cells using Lipofectamine 2000 in accordance with the manufacturer’s instructions (Invitrogen, USA). Cells were transfected for 6 h in medium without FBS. After changing to normal culture medium and culturing for 48 h, siRNA and siNC cells in transient transfection were prepared for further experiments. For stable transfection, 1 mg/mL G418 was incubated with cells for 14 d to obtain stable transfected cell lines (shRNA and shNC cells).

Real-time quantitative PCR

Total RNA from cells was extracted using Trizol reagent (Invitrogen, Carlsbad, CA, USA), and cDNA was synthesized using the PrimeScript RT Kit (Takara) in accordance with the manufacturer’s instructions. Concentrations were measured using a NanoDrop spectrophotometer (ND-1000V3.5.2 software, USA). RT-
qPCR was performed with FastStart Universal SYBR Green Master (Roche, USA) with an ABI StepOne machine (Applied Biosystems, Life Technologies, CA, USA). Briefly, qPCR cycling was performed as follows: initial denaturation at 95 °C for 10 min; 40 cycles of denaturation at 95 °C for 10 s; annealing for 60 s at 60 °C; and a melting curve profile set at 95 °C for 15 s, 60 °C for 15 s, and 95 °C for 15 s. Transcript expression levels were normalized using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) levels as an endogenous control. Primers for qPCR were synthesized by Invitrogen (Shanghai, China; Table 3).

Western blot analysis

Protein samples were prepared by homogenizing cells in RIPA buffer (Beyotime, China) containing a protease inhibitor cocktail mix from cOmplete ULTRA Tablets (Roche, Germany) on ice. The protein concentration was determined using a bicinchoninic acid protein assay kit (Keygen, Nanjing, China). Proteins were resolved via 10% SDS-PAGE, transferred to polyvinylidene fluoride membranes (Millipore, Temecula, CA, USA), blocked with 5% milk for 2 h, probed with primary antibodies at 4 °C overnight, and incubated with secondary antibodies for 2 h at room temperature. The primary antibodies were: HIF-2α (Abcam, Cambridge, MA, USA), HIF-1α (human; Cell Signaling, USA), SREBP-1 (Santa Cruz, USA), and GAPDH (BioWorld, Irving, TX, USA) were diluted at 1:1000; β-actin and GAPDH from BioWorld (Irvine, TX, USA) were diluted at 1:1000. Secondary antibodies were obtained from ZhongShan JinQiao (China). Protein levels were normalized to β-actin or GAPDH. Electrochemiluminescence was analyzed with a Chemilumager 5500 imaging system (Alpha Innotech, San Leandro, CA, USA).

Analysis of lipid accumulation via Nile red staining

HepG2 cells were plated in 6-well plates. Cells were fixed with 3.7% formaldehyde in phosphate-buffered saline (PBS) for 30 min and then rinsed twice with PBS. The cells were stained with Nile red (1 μg/mL) in 60% 2-propanol for 5 min and washed three times with PBS. Images were taken with an inverted fluorescence microscope (Olympus, Tokyo, Japan) equipped with an image recorder under a 10× lens.

Analysis of free cholesterol accumulation via Filipin staining

HepG2 cells were incubated with 22 mm × 22 mm coverslips in 6-well plates overnight. According to group, the corresponding treatment was given. Cells were washed with PBS and fixed with 3.7% formaldehyde in PBS for 30 min at 4 °C. They were subsequently treated with 0.1%.
Triton for 3 min, and washed three times with PBS. Cells were stained with 50 μg/mL Filipin III fluorescent dye at 37 °C for 30 min and washed with PBS three times. Images were obtained with a fluorescent microscope (Olympus) at 10× lens.

Measurement of intracellular free cholesterol and triglyceride levels

HepG2 cells were collected and homogenized in RIPA buffer. Intracellular triglyceride and free cholesterol were measured by using triglyceride and free cholesterol assay kits (Biovision, USA), in accordance with the kit manuals. Triglyceride and cholesterol levels were normalized to total protein concentrations.

Measurements of HADH activity

HADH activity was measured as described previously [29, 30]. Briefly, HepG2 cell pellets were homogenized in 1:10 wt/vol homogenization buffer (50 mM Tris-HCl, 1 mM EDTA, 10% glycerol [wt/vol], 0.1% Triton-100). After homogenization, the cell lysates were centrifuged at 8000 rpm for 30 min at 4 °C. In each well of a 96-well UV plate, 260 μL imidazole (50 mM, pH 7.4), 20 μL reduced nicotinamide adenine dinucleotide (0.15 mM, ε = 6.22 mol·L⁻¹·cm⁻¹), and 10 μL cell lysate were added. The absorbance was detected at 30 °C with a SpectraMax 190 spectrophotometer (Molecular Devices), at 340 nM for 5 min with 30-s intervals both before (baseline) and after adding 10 μL of 3 mM acetateyl CoA. HADH activity was normalized to total protein concentrations.

Measurements of Cholesterol Efflux

Cholesterol efflux was measured as described previously [31]. Briefly, HepG2 cells were cultured in DMEM media containing 15% FBS, trace labeled with 1 μCi/ml 3H-cholesterol (Perkin-Elmer, USA) overnight. Before treatment, cells were washed with PBS and equilibrated in media for 2 h. Cells were then incubated under normoxia or hypoxia conditions for 24 h, in serum free DMEM containing 10 μg/ml apoA-I and 2 mg/ml fatty acid-free BSA for 24 h. Supernatants were collected, centrifuged to remove cell debris, and radioactivity was quantified by scintillation counting (Microbeta2, Perkin Elmer). Cells were washed with PBS and lysed with 0.1 M NaOH, and cell lysates were analyzed by scintillation counting. Cholesterol efflux was calculated by cpm in media/(cpm in media×cpm in cellular lipid) and expressed in percent.

Statistical analysis

The equation $2^{ΔΔCt}$ was applied to calculate the fold changes of gene expression. Data are presented as the mean ± standard deviation for at least three separate experiments. Statistical analysis was performed using the paired 2-tailed Student’s t test. A P-value of <0.05 was considered statistically significant.

Results

HIF-2α expression in HepG2 cells in vitro and in C57BL/6 mice in vivo

To assess the role of HIF-2α in lipid metabolism, we first determined the HIF-2α mRNA and protein levels in HepG2 cells under normoxia and hypoxia (Fig. 1A, 1C). HIF-2α protein expression increased in hypoxia over time, in vitro reaching a maximum at 24 h of hypoxia. However, there was no change in HIF-2α mRNA levels.

To confirm our in vitro data, we created mouse liver models of ischemic-reperfusion. RNAs and protein was extracted from hepatic tissues as described in Methods. RT-qPCR and western blot analysis both revealed a slight but statistically significant increase in HIF-2α expression in IR mice compared to controls (Fig. 1B, 1D). We also determined quantities of HIF-1α protein both in vitro and in vivo and obtained similar results (Fig. 1E, 1F).

Establishment of HIF-2α-silenced HepG2 cell lines

In the present study, we established stable HIF-2α-silenced (shRNA) and negative control (shNC) cell lines by selecting transfected cells with G418. The transfection efficiency was 35% to 40%. The knockdown efficiency was confirmed by western blot analysis (Fig. 2A).
Fig. 1. HIF-2α and HIF-1α expression in HepG2 cells in vitro and in C57BL/6 mice in vivo. (A, C, E) HepG2 cells were cultured under hypoxic (1% O₂) conditions for 6, 12 and 24 h (group H). Total cell lysates were obtained to determine intracellular HIF-2α and HIF-1α expressions by RT-qPCR and western blot analysis (n = 3). (B, D, F) C57BL/6 mice were treated with ischemia-reperfusion for 6 h (group IR). Liver HIF-2α and HIF-1α expressions were detected via RT-qPCR and western blot analysis (n = 3). Each immunoblot is representative of three separate experiments. GAPDH and β-actin were used as internal controls. *P < 0.05, IR group compared with untreated control groups.

Fig. 2. Establishment of HIF-2α-silenced HepG2 cell lines. Cells were cultured in 6-well plates and transfected with pGPU6 plasmid DNA (4 μg) or HIF-2α siRNA (100 pm) by Lipofectamine 2000. After 6 h incubation, the culture media were changed to normal media and kept for 48 h until treated. For the stable transfection, cells were treated with 1 mg/mL G418 for 14 d. Cells were cultured under normoxic (21% O₂) or hypoxic (1% O₂) conditions for 24 h, and intracellular HIF-2α and HIF-1α protein expressions were detected by western blot analysis in total cell lysates. (A, C) HIF expressions of stable transfection (B, D) HIF expressions of transient transfection. Each immunoblot is representative of three separate experiments. GAPDH was used as an internal control.
Fig. 3. Effect of hypoxia and HIF-2α on lipid accumulation. HepG2 cells were plated in 6-well plates and transfected with HIF-2α siRNA (100 pM) by Lipofectamine 2000 for 6 h. After 48 h incubation, cells were cultured under normoxic (21% O₂) or hypoxic (1% O₂) conditions for 24 h, then fixed with 3.7% formaldehyde for 30 min. Cells were stained by Nile red (1 µg/mL) for 5 min or Filippin III (50 µg/mL) for 30 min as described in Materials and Methods, with images obtained by fluorescence microscopy. (A) Nile red staining for lipid accumulation, detected by FITC filter (10×). (B) Filippin staining for free cholesterol accumulation, detected by DAPI filter (10×). Each image is representative of three separate experiments. The scale bar is 100 μm. (C, D) The shNC and HIF-2α-silenced HepG2 cells were cultured under normoxic or hypoxic conditions for 24 h. The intracellular triglyceride and free cholesterol levels were determined using Biovision kits as described under Materials and Methods. *P < 0.05; **P < 0.01, shNC cell hypoxia group compared with normoxia group. *P < 0.05, shRNA cells compared with shNC cells under hypoxia.

Similarly, the efficiency of knockdown in transient transfection was also confirmed by western blot (Fig. 2B). Western blot analyses showed that cells in which RNA interference (RNAi) had been used had lower levels of HIF-2α protein under hypoxic conditions. However, levels in shNC and siNC cells were comparable to the corresponding controls. As expected, minor efficiency of RNA interference was demonstrated under normoxic conditions.

We detected HIF-1α expression in HepG2 cells to verify the specificity of designed siRNA and shRNA, which was not reversed by HIF-2α shRNA or siRNA (Fig. 2C, 2D). These results indicated that the siRNA/shRNA used in our study specifically targeted HIF-2α mRNA, without an effect on the expression of HIF-1α.

Lipid accumulation measured by staining and quantification
To investigate lipid accumulation in HepG2 cells, we used Nile red staining. Nile red fluorescent dye binds to a wide variety of lipids including triacylglycerol and most fatty acids [32]. Under
Twenty-four hours in a hypoxic environment induced marked lipid accumulation in HepG2 cells relative to the control cells that were cultured in normoxic conditions. Comparing siRNA and control cells under hypoxic environments, the results suggested that the accumulation effect was partly inhibited by silencing of HIF-2α, judging from the decreased fluorescence intensity. No significant differences were observed between siNC and the control cells. We also detected free cholesterol accumulation by means of filipin staining (Fig. 3B). The results were similar to those obtained by Nile red staining. Compared to the control group, blue fluorescence obviously increased under 24-h of hypoxia, evidence of increased cholesterol accumulation. However, under hypoxic conditions the amount of fluorescence increased less in siRNA cells than in the control group, and the degree of fluorescence of siNC cells and that of the control group were very similar. These results suggest that cholesterol accumulation induced by hypoxia can be partly reversed by inhibition of HIF-2α.

Similar results were obtained in the quantitative measurements of lipid levels in HepG2 cells (Fig. 3C, 3D). The increased triglyceride and free cholesterol levels under hypoxic conditions were significantly prevented by silence of HIF-2α expression, compared with the shNC control group.

Hypoxia regulated fatty acid metabolism in HepG2 cells

Expression of ADRP mRNA increased 3.3-fold after 24 h of hypoxia, while CPT-1α mRNA expression was reduced by 45.1% ($P < 0.05$, both; Fig. 4A, 4B). SREBP-1a and FAS protein levels appeared to be unaffected by hypoxic conditions (Fig. 4C). HADH enzymatic activity, a measure of β-oxidation, was found to be remarkably inhibited by hypoxic conditions (Fig. 4D).
In the case of cholesterol accumulation, genes involved in catabolism (ABCA1, ABCG5, ABCG8, CYP7A1) all low expressed under hypoxia for 24 h, which dropped to 13.2%, 24.0%, 23.4%, 4.8%, respectively (Fig. 5A-D). Unexpectedly, the mRNA expression of genes involved in anabolism (SREBP-2, LDLR, and HMGCR) also were reduced 65.7%, 49.6% and 89.0% under hypoxic conditions (Fig. 5E, 5F, 5G).

Hypoxia regulated cholesterol metabolism in HepG2 cells

In the case of cholesterol accumulation, genes involved in catabolism (ABCA1, ABCG5, ABCG8, CYP7A1) all low expressed under hypoxia for 24 h, which dropped to 13.2%, 24.0%, 23.4%, 4.8%, respectively (Fig. 5A-D). Unexpectedly, the mRNA expression of genes involved in anabolism (SREBP-2, LDLR, and HMGCR) also were reduced 65.7%, 49.6% and 89.0% under hypoxic conditions (Fig. 5E, 5F, 5G).

HIF-2α regulated fatty acid metabolism in HepG2 cells under hypoxia

To explore the cellular mechanism involved in fatty acid regulation by HIF-2α, we examined via RT-qPCR in shRNA cells the key genes responsible for lipid uptake and...
ADRP mRNA expression was reduced by 33% in the shRNA group under hypoxic conditions (Fig. 6A). There was no difference in mRNA levels between the two groups under hypoxic conditions, nor in HADH enzymatic activity (Fig. 6B, 6C).

Metabolism, we also evaluated by RT-qPCR the expression of key genes involved in cholesterol uptake, de novo synthesis, degradation, and reverse cholesterol transportation. Our data indicated that ABCA1 was silenced under hypoxia (P < 0.05; Fig. 7A). The cholesterol efflux relevant to hypoxia was also reversed obviously (Fig. 7H). However, between the shRNA and corresponding shNC group there were no significant differences in the mRNA expression of the other genes of interest (SREBP-2, HMGCR, LDLR, CYP7A1, all ABCG5/8; Fig. 7B-G).

Discussion

Dysregulation of lipid metabolism is increasingly recognized as a risk factor for many metabolic diseases, including nonalcoholic fatty liver disease and cardiovascular disease. Currently it is undecided whether obstructive sleep apnea syndrome affects serum lipids [33-37], but studies suggest that hypoxia may influence lipid metabolism. HIFs are important
Fig. 7. Effect of HIF-2α on cholesterol metabolism and efflux. The shNC and HIF-2α-silenced HepG2 cells were cultured in normoxic (21% O₂) or hypoxic (1% O₂) conditions for 24 h. The mRNA expression of key genes relevant to cholesterol metabolism were determined by RT-qPCR analysis (n = 3). (A) ABCA1; (B) ABCG5; (C) ABCG8; (D) CYP7A1; (E) SREBP-2; (F) LDLR; (G) HMGCR. GAPDH was used as an internal control. (H) Cell cholesterol efflux were determined as described in Materials and Methods (n = 3). Percentage was calculated by cpm in media/(cpm in media+cpm in cellular lipid). *P < 0.05; **P < 0.01; ***P < 0.001, shNC cell hypoxia group compared with normoxia group. *P < 0.05, shRNA cells compared with shNC cells under hypoxia.
transcription factors with crucial roles in allowing adaptation to hypoxic environments in mammals. In the present study, we investigated the effect of HIF-2α on lipid metabolism and the potential underlying molecular mechanisms.

We detected the expressions of HIF-2α in HepG2 cells in vitro and in C57BL/6 male mice. Under hypoxic conditions, HIF-2α mRNA and protein levels were remarkably higher both in vitro and in vivo, except that mRNA expressed in vitro was not affected by 24-h hypoxic conditions. Data obtained from our animal experiments would be better supported by a larger sample than provided at this time. Two studies conducted by Wiesener et al. [38, 39] that support our findings also showed that hypoxia has an effect on HIF-2α at the post-transcriptional level rather than the transcriptional level.

In the current study, we observed that lipid accumulation, including fatty acid and cholesterol, obviously increased under hypoxic conditions. Furthermore, we used siRNAs to knockdown HIF-2α expression. As a reflection of β-oxidation efficiency, HADH enzyme activities were significantly decreased under hypoxic conditions, which also were not affected by HIF-2α. Taken together, these data suggest that during hypoxia, ADRP signaling may be regulated by HIF-2α to participate in fatty acid accumulation. This is similar to the conclusions of Rankin et al. [24].

Unexpectedly, SREBP-1α and FAS, two key fatty acid synthesis relevant proteins induced by hypoxic conditions [42, 43] were not changed in our model. With further analysis, we found that HIF-2α significantly upregulated the uptake of fatty acid (ADRP) expression. Finally, we found that reduced β-oxidation was not regulated by HIF-2α, although inhibition of HIF-2α under hypoxia resulted in a slight increase in CPT-1α mRNA expression. As a reflection of β-oxidation efficiency, HADH enzyme activities were significantly decreased under hypoxic conditions, which also were not affected by HIF-2α. Taken together, these data suggest that during hypoxia, ADRP signaling may be regulated by HIF-2α to participate in fatty acid accumulation.

With regard to cholesterol metabolism, in the present study hypoxia was associated with an obvious decline in expression levels of the key genes in HepG2 cells. The data suggest that hypoxia leads to accumulation of cholesterol via a decrease in biodegradation and reverse transportation. Interestingly, we found that expression of SREBP-2 varied with oxygen concentration, but presented a downward trend under hypoxia. LDLR and HMGR, which are downstream of SREBP-2, also showed similar trends. Our data is in accord with that of Li et al. [44, 45] who concluded that SREBP-2 signaling, as well as the SREBP-2 target LDLR, are not relevant to oxygen concentration in obese mice. With further analysis, we found that only ABCA1 mRNA was significantly elevated by the inhibition of HIF-2α during hypoxic conditions. Furthermore, we validated that the hypoxia related cholesterol excretion was also regulated by HIF-2α. Other pathways affected by hypoxia may be through other mechanisms. One potential pathway mediated by HIF-1α was suggested by Parathatha et al. [46] and Manalo et al. [47]. Endoplasmic reticulum stress may also participate in regulation of lipid metabolism [48-51].

In conclusion, inhibition of HIF-2α protein reversed hypoxia-induced lipid accumulation in HepG2 cells by decreasing the expression of ADRP, involved in fatty acid uptake, increasing ABCA1 expression and relevant cholesterol excretion. These results suggest a possible mechanism for lipid metabolism dysregulation induced by acute hypoxia. These findings indicate that HIF-2α signaling is relevant to oxygen-dependent lipid homeostasis in the liver, and may have implications for the therapeutic treatment of fatty liver and cardiovascular diseases.
Disclosure Statement

All authors report no conflicts of interest.

Acknowledgements

We would like to express our gratitude to Dr. Junjie Qin and Dr. Jiajie Hou (Nanjing Medical University, China) for technical assistance with the animal study, Dr. Beth Shoshana Zha (Virginia Commonwealth University, USA) and Meijaden Company (Hongkong, China) for help with the native English editing of the manuscript. The study was supported by the National Natural Science Foundation of China (No.81100273; 81100274) and the innovation projects of Jiangsu Province Hospital (No.CX11

References

1. Byrne CD: Hypoxia and non-alcoholic fatty liver disease. Clin Sci (Lond) 2010;118:397-400.
2. Semenza GL: Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 2014;9:47-71.
3. Higuchi N, Kato M, Shundo Y, Tajiri H, Tanaka M, Yamashita N, Kohjima M, Kotoh K, Nakamura M, Takayanagi R, Enjoji M: Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol Res 2008;38:1122-1129.
4. Magana MM, Koo SH, Towle HC, Osborne TF: Different sterol regulatory element-binding protein-1 isoforms utilize distinct co-regulatory factors to activate the promoter for fatty acid synthase. J Biol Chem 2000;275:4726-4733.
5. Nguyen P, Leray V, Dier D, Sersier S, Le Bloc’h J, Siliart B, Dumon H: Liver lipid metabolism. J Anim Physiol Anim Nutr (Berl) 2008;92:272-283.
6. Bengoechea-Alonso MT, Ericsson J: SREBP in signal transduction: cholesterol metabolism and beyond. Curr Opin Cell Biol 2007;19:215-222.
7. Horton JD, Goldstein JL, Brown MS: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002;109:1125-1131.
8. Burg JS, Espenshade PJ: Regulation of HMG-CoA reductase in mammals and yeast. Prog Lipid Res 2011;50:403-410.
9. Jo Y, Debase-Boyd RA: Control of cholesterol synthesis through regulated ER-associated degradation of HMG CoA reductase. Crit Rev Biochem Mol Biol 2010;45:185-198.
10. Yang SY, He XY, Schulz H: 3-Hydroxyacyl-CoA dehydrogenase and short chain 3-hydroxyacyl-CoA dehydrogenase in human health and disease. FEBS J 2005;272:4874-4883.
11. Gilardi F, Mitro N, Godo C, Scotti E, Caruso D, Crestani M, De Fabiani E: The pharmacological exploitation of cholesterol 7alpha-hydroxylase, the key enzyme in bile acid synthesis: from binding resins to chromatin remodelling to reduce plasma cholesterol. Pharmacol Ther 2007;116:449-472.
12. Gupta S, Stravitz RT, Dent P, Hylemon PB: Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem 2001;276:15816-15822.
13. Noshiro M, Usui E, Kawamoto T, Kubo H, Fujimoto K, Furukawa M, Honma S, Makishima M, Honma K, Kato Y: Multiple mechanisms regulate circadian expression of the gene for cholesterol 7alpha-hydroxylase (Cyp7a), a key enzyme in hepatic bile acid biosynthesis. J Biol Rhythms 2007;22:299-311.
14. Field PJ, Watt K, Mathur SN: Origins of intestinal ABCA1-mediated HDL-cholesterol. J Lipid Res 2008;49:2605-2619.
15. Wang N, Tall AR: Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler Thromb Vasc Biol 2003;23:1178-1184.
16. Dilders A, Freak de Boer J, Anema W, Groen AK, Tietge UJ: Scavenger receptor BI and ABCG5/G8 differentially impact biliary sterol secretion and reverse cholesterol transport in mice. Hepatology 2013;58:293-303.
Kidambi S, Patel SB: Cholesterol and non-cholesterol sterol transporters: ABCG5, ABCG8 and NPC1L1: a review. Xenobiota 2008;38:1119-1139.

Majmundar AJ, Wong WJ, Simon MC: Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 2010;40:294-309.

Patel SA, Simon MC: Biology of hypoxia-inducible factor-Zalpha in development and disease. Cell Death Differ 2008;15:628-634.

Tian H, McKnight SL, Russell DW: Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 1997;11:72-82.

Narravula S, Colgan SP: Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. J Immunol 2001;166:7543-7548.

Gimm T, Wiese M, Teschemacher A, Deggerich A, Schodel J, Knaup RX, Hackenbeck T, Hellerbrand C, Amann K, Wiesner MS, Honing S, Eckardt KU, Warnecke C: Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1. FASEB J 2010;24:4443-4458.

Nishiyama Y, Goda N, Kanai M, Niwa D, Osanai K, Yamamoto Y, Senno-Matsuda N, Johnson RS, Miura S, Kabe Y, Suematsu M: HIF-1alpha induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice. J Hepatol 2012;56:441-447.

Rankin EB, Rha J, Selak MA, Unger TL, Keith B, Liu Q, Haase VH: Hypoxia-inducible factor 2 regulates lipid hepatic metabolism. Mol Cell Biol 2009;29:4527-4538.

Minamishima YA, Moskhl, Padera RF, Bronson RT, Liao R, Kaelin WG Jr: A feedback loop involving the Pd3b prolyl hydroxylase tunes the mammalian hypoxic response in vivo. Mol Cell Biol 2009;29:5729-5741.

Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F, Yan LJ, March BT, Matsumoto AM, Shelton JM, Richardson JA, Bennett MJ, Garcia JA: Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice. Nat Genet 2003;35:331-340.

Kim WY, Safran M, Buckley MR, Ebert BL, Glickman J, Bosenberg M, Regan M, Kaelin WG Jr: Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo. EMBO J 2006;25:4650-4662.

Abe Y, Hines IN, Zihari G, Pavlick K, Gray L, Kitagawa Y, Grisham MB: Mouse model of liver ischemia and reperfusion injury: method for studying reactive oxygen and nitrogen metabolites in vivo. Free Radic Biol Med 2009;46:1-7.

Ito M, Jaswal JS, Lam VH, Oka T, Zhang L, Beker DL, Lopashuk GD, Rebejka IM: High levels of fatty acids increase contractile function of neonatal rabbit hearts during reperfusion following ischemia. Am J Physiol Heart Circ Physiol 2010;298:H1426-1437.

Shrivastav S, Zhang L, Okamoto K, Lee H, Lagrana C, Abe Y, Balasubramanyam A, Lopashuk GD, Kino T, Kopp JB: HIV-1 Vpr enhances PPARbeta/delta-mediated transcription, increases PDK4 expression, and reduces PDC activity. Mol Endocrinol 2013;27:1564-1576.

Rohr I, Eigner K, Winter K, Korbelius M, Obrowsky S, Kratky D, Kovacs WJ, Stangl H: Endoplasmic reticulum stress impairs cholesterol efflux and synthesis in hepatic cells. J Lipid Res 2014;55:94-103.

Greenspan P, Mayer EP, Fowler SD: Nile red: a selective fluorescence stain for intracellular lipid droplets. J Cell Biol 1985;100:965-973.

Coughlin SR, Mawdsley L, Mugara JA, Calverley PM, Wilding JP: Obstructive sleep apnoea is independently associated with an increased prevalence of metabolic syndrome. Eur Heart J 2004;25:735-741.

Drager LF, Bortolotto LA, Maki-Nunes C, Trombetta IC, Alves MJ, Fraga RF, Negrao CE, Krieger EM, Lorenzi-Filho G: The incremental role of obstructive sleep apnoea on markers of atherosclerosis in patients with metabolic syndrome. Atherosclerosis 2010;208:490-495.

Roche F, Sforza E, Pichot V, Maudoux D, Garcin A, Celle S, Picard-Kossovsky M, Gaspoz JM, Barthelemy JC, Group PS: Obstructive sleep apnoea/hypopnea influences high-density lipoprotein cholesterol in the elderly. Sleep Med 2009;10:882-886.

Tan KC, Chow WS, Lam JC, Lam B, Wong WK, Tam S, Ip MS: HDL dysfunction in obstructive sleep apnea. Atherosclerosis 2006;184:377-382.

Tokuda F, Sando Y, Matsui H, Koike H, Yokoyama T: Serum levels of adipocytokines, adiponectin and leptin, in patients with obstructive sleep apnea syndrome. Intern Med 2008;47:1843-1849.

Wiesener MS, Jurgensen JS, Rosenberger C, Schlote CK, Horstrup JH, Warnecke C, Mandriota S, Bechmann I, Frei UA, Pugh CW, Ratcliffe PJ, Bachmann S, Maxwell PH, Eckardt KU: Widespread hypoxia-inducible expression of HIF-Zalpha in distinct cell populations of different organs. FASEB J 2003;17:271-273.
de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element-binding-protein-1c-dependent pathway. J Cell Sci 2004;117:1937-1944.

43 Shimomura I, Bashmakov Y, Horton JD: Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem 1999;274:30028-30032.

44 Li J, Grigoryev DN, Ye SQ, Thorne L, Schwartz AR, Smith PL, O’Donnell CP, Polotsky YV: Chronic intermittent hypoxia upregulates genes of lipid biosynthesis in obese mice. J Appl Physiol (1985) 2005;99:1643-1648.

45 Li J, Thorne LN, Punjabi NM, Sun CK, Schwartz AR, Smith PL, Marino RL, Rodriguez A, Hubbard WC, O’Donnell CP, Polotsky YV: Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res 2005;97:698-706.

46 Parathath S, Mick SL, Feig JE, Joaquín V, Grauer L, Habel DM, Gassmann M, Gardner LB, Fisher EA: Hypoxia is present in murine atherosclerotic plaques and has multiple adverse effects on macrophage lipid metabolism. Circ Res 2011;109:1141-1152.

47 Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JG, Semenza GL: Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 2005;105:659-669.

48 Cao R, Hu Y, Wang Y, Gurley EC, Studer EJ, Wang X, Hylemon PB, Pandak WM, Sanyal AJ, Zhang L, Zhou H: Prevention of HIV protease inhibitor-induced dysregulation of hepatic lipid metabolism by raltegravir via endoplasmic reticulum stress signaling pathways. J Pharmacol Exp Ther 2010;334:530-539.

49 Colgan SM, Hashimi AA, Austin RC: Endoplasmic reticulum stress and lipid dysregulation. Expert Rev Mol Med 2011;13:e4.

50 Lee AH, Glimcher LH: Intersection of the unfolded protein response and hepatic lipid metabolism. Cell Mol Life Sci 2009;66:2835-2850.

51 Zheng Z, Zhang C, Zhang K: Role of unfolded protein response in lipogenesis. World J Hepatol 2010;2:203-207.