Exploration of trace anomaly contribution to proton mass based on light vector meson photoproduction

Chen Dong\textsuperscript{1,\textit{a}}, Jiyuan Zhang\textsuperscript{1,\textit{b}}, Jingxuan Bu1, Huifang Zhou1, Xiao-Yun Wang\textsuperscript{1,2,\textit{c}}

1 Department of physics, Lanzhou University of Technology, Lanzhou 730050, China
2 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, Gansu, China

Received: 16 September 2022 / Accepted: 23 January 2023 / Published online: 6 February 2023
© The Author(s) 2023

Abstract In the quantum chromodynamics, the mass source of the proton is decomposed into four parts by the energy momentum tensor: quark energy term, gluon energy term, quark mass term and trace anomaly term. And the trace anomaly term is the most crucial contribution for studying the internal structure of the proton. In this work, under the definition of the vector meson dominant model, the trace anomaly contribution of the proton is extracted from the experimental data of light vector mesons ρ, ω and ϕ photoproduction at the near-threshold, which are $(0.53 \pm 0.15)\%$, $(1.47 \pm 0.48)\%$ and $(2.73 \pm 0.54)\%$, respectively. Further, combined with the results extracted from the heavy vector meson J/ψ photoproduction, the distribution of the trace anomaly contribution with the vector meson mass is given for the first time. These results may provide important theoretical information for determining the range of the trace anomaly contribution and for further understanding the origin of the proton mass.

1 Introduction

The emergence of the quantum chromodynamics Energy Momentum Tensor (EMT) provides a direct computational standard for understanding various properties of hadrons\cite{1}, such as mass, spin\cite{2}, angular momentum\cite{3–5}, mechanical properties\cite{1,4,6–11}, etc. All these attributes are the essential properties of hadrons, which are valuable to further exploring the internal structure of hadrons. As the most basic and stable hadron, the study of the internal structure of the proton is one of the most meaningful topics to be discussed\cite{7,12}.

The proton is composed of quarks and gluons, with a total mass of $M_N = 0.938$ GeV. However, the distribution of quarks and gluons inside the proton and their respective percentages of the total mass has been an ambiguous question. The first mass decomposition of the proton originated in 1995, Ji\cite{13,14} decomposed the mass source of the proton into four terms based on the EMT $T^{\mu\nu}$ of hadronic states: the quark energy term M_q, the gluon energy term M_g, the quark mass term M_m and the trace anomaly term M_a. Also related to EMT focusing on the decomposition of T^{00} comes from the work of Lorcé\cite{15} and Hatta\cite{16}. Lorcé’s\cite{15} decomposition consists of two schemes: a two-term decomposition and a four-term decomposition. Hatta\cite{16} primarily concentrates on the regularization scheme to prove that the trace anomaly solely comes from the gluon momentum energy tensor, while the quark mass term just comes from the quark energy tensor. Beyond that, a revisiting of the mass decomposition is developed by Metz et al.\cite{12}, who reviewed the previous similarities and differences in the origin of the proton mass and concluded that any decomposition at most exists two independent terms. This is because the existence of the forward limit leads to the EMT matrix element having two independent form factors\cite{15}. The most striking point is that using independent operators\cite{17} in their four-term decomposition computations yields the trace anomaly term $M_a = 0$, which is different from the results of other mass decomposition. The above research investigates the source of protons in terms of momentum energy tensor and whether other ways exist to enable us to comprehend the decomposition of the proton.

A novel approach in Ref.\cite{18} is proposed to relate the differential cross sections of vector meson photoproduction to the trace anomaly with the vector meson dominate (VMD) model. The trace anomaly contribution of the proton\cite{19} is studied employing J/ψ photoproduction data GlueX exper-
iment [20] at JLab, respectively. A new report [21] recently measured a new set of the differential data of \(J/\psi \) photoproduction at \(E \in [9,10, 10.60] \) GeV and extracted the trace anomaly contribution of the proton with VMD. One finds that the trace anomaly contribution extracted from the heavy meson photoproduction data varies rapidly with energy, indicating that the trace anomaly is very sensitive to the energy and has a strong dependence. This causes considerable confusion in the conclusive determination of the trace anomaly contribution of the proton. Therefore, it is necessary to study the trace anomaly contribution in terms of the cross section of light vector mesons photoproduction at the near-threshold.

As the most familiar light vector mesons, \(\rho, \omega \) and \(\phi \) have accumulated considerable experimental data [22–27] during years of development. In this work, based on the photoproduction experimental data of the three mesons, the trace anomaly contribution of the proton is extracted by VMD model and analyzed as a function of \(R \) at the near-threshold range. Here, \(R \) is proportional to the center of mass energy \(W \), representing the ratio of the final momentum \(|p_f| \) to the initial momentum \(|p_i| \). In addition, since the two gluon exchange model is reliable in predicting the mass radius of the proton [6], the trace anomaly contribution of the proton is expected based on the two gluon exchange model. Combined with the result extracted from the photoproduction data of the three vector mesons at the near-threshold, the trace anomaly contribution of the proton is systematically discussed.

The outline of the paper is organized as follows. The expression of the mass decomposition of the proton, the vector meson dominate and the two gluon exchange models are described in Sect. 2, along with a detailed discussion of trace anomaly. The results of trace anomaly coherence are presented in Sect. 3. A simple summary and discussion is presented in Sect. 4.

2 Formalism

2.1 Mass decomposition of the proton

Starting with the EMT, \(T^{\mu \nu} \) is decomposed into the traceless term \(\hat{T}^{\mu \nu} \) and trace term \(\tilde{T}^{\mu \nu} [13,14] , \)

\[
T^{\mu \nu} = \tilde{T}^{\mu \nu} + \hat{T}^{\mu \nu}
\]

where the traceless \(\tilde{T}^{\mu \nu} \) contains contributions from gluon and quark, and the trace \(\hat{T}^{\mu \nu} \) includes contributions from quark mass and trace anomaly. A more detailed decomposition is,

\[
\tilde{T}^{\mu \nu} = \tilde{T}_q^{\mu \nu}(\mu^2) + \tilde{T}_g^{\mu \nu}(\mu^2),
\]

\[
\hat{T}^{\mu \nu} = \hat{T}_m^{\mu \nu}(\mu^2) + \hat{T}_a^{\mu \nu}(\mu^2).
\]

which can be seen that \(\tilde{T}^{\mu \nu} \) and \(\hat{T}^{\mu \nu} \) are energy conserved, but the components depend on the energy scale \(\mu^2 \). Then, the EMT is expressed as a sum of four terms,

\[
T^{\mu \nu} = \tilde{T}_q^{\mu \nu}(\mu^2) + \tilde{T}_g^{\mu \nu}(\mu^2) + \hat{T}_m^{\mu \nu}(\mu^2) + \hat{T}_a^{\mu \nu}(\mu^2).
\]

Introduce the matrix element of the energy momentum tensor in the proton state \(|P\rangle \), then the left side of Eq. (2) is normalized as

\[
\langle P | \tilde{T}^{00} | P \rangle = \left(P^\mu P^\nu - \frac{1}{4} g^{\mu \nu} M_N^2 \right) / M_N,
\]

\[
\langle P | \hat{T}^{00} | P \rangle = \frac{1}{4} g^{\mu \nu} M_N.
\]

That is, the trace part is 25% of the proton total mass \(M_N \), which means \(\langle P | \tilde{T}_q^{00} | P \rangle + \langle P | \hat{T}_a^{00} | P \rangle = M_N / 4 \). Under the Hamiltonian operator, Eq. (3) can be reformulated as [15],

\[
\mathcal{H} = \mathcal{H}_q + \mathcal{H}_g + \mathcal{H}_m + \mathcal{H}_a.
\]

Hence, in the rest frame, the mass decomposition of the proton is derived from Eq. (6),

\[
M_N = M_q + M_g + M_m + M_a.
\]

The four mass components with Hamiltonian form are parameterized as,

\[
M_q = \frac{3}{4} \left(a - \frac{b}{1 + \gamma_m} \right) M_N
\]

\[
M_g = \frac{3}{4} (1 - a) M_N
\]

\[
M_m = \frac{4 + \gamma_m b M_N}{4 (1 + \gamma_m)}
\]

\[
M_a = \frac{1}{4} (1 - b) M_N.
\]

where \(b \) is trace anomaly parameter, \(a \) is the momentum fraction of the quarks and \(\gamma_m \) is the anomalous dimension of the quark mass [16,28,29]. In the chiral limit and low energy scattering, \(b = 0 \), the proton’s mass is entirely due to the contribution of gluon quantum fluctuations. In this case, \(M_m = 0 \) and \(M_a = M_N / 4 \).
2.2 Vector meson dominate

In Eq. (8), the fourth term is needed to compute the trace anomaly contribution M_α/M_N. This item contains a trace anomaly parameter b, which is the key to determining the contribution of trace anomaly. Therefore, the vector mesons dominate (VMD) model is developed to calculate parameter b and M_α/M_N.

The differential cross section at $t = t_{\text{min}}$ for $\gamma N \rightarrow VN$ process can be expressed with the VMD model,

$$\frac{d\sigma_{\gamma N \rightarrow VN}}{dt} \bigg|_{t=t_{\text{min}}} = \frac{3\Gamma_{\gamma e^+} \alpha_{\text{em}} m_V}{\sigma_{\text{em}} m_V} \left(\frac{p_3}{p_1}\right)^2 \frac{d\sigma_{\gamma N \rightarrow VN}}{dt} \bigg|_{t=t_{\text{min}}} = \frac{3\Gamma_{\gamma e^+} \alpha_{\text{em}} m_V}{\sigma_{\text{em}} m_V} R^2 \frac{d\sigma_{\gamma p \rightarrow VN}}{dt} \bigg|_{t=t_{\text{min}}},$$

with

$$p_1 = \frac{W^2 - m_N^2}{2W}, \quad (10)$$

$$p_3 = \sqrt{\frac{(W^2 - (m_V + m_N)^2)(W^2 - (m_V - m_N)^2)}{4W^2}}, \quad (11)$$

where $\alpha_{\text{em}} = 1/137$ is the fine coupling constant, $\Gamma_{\gamma e^+}$ is the lepton decay width, M_N is the mass of the proton, m_V is the mass of the light meson (ρ, ω and ϕ), and $R = |p_3|/|p_1|$ represents the ratio of the final momentum to the initial momentum. The $d\sigma_{\gamma N \rightarrow VN}/dt \bigg|_{t=t_{\text{min}}}$ is the elastic scattering in Eq. (9),

$$\frac{d\sigma_{\gamma N \rightarrow VN}}{dt} \bigg|_{t=t_{\text{min}}} = \frac{1}{64\pi m_V^3} \frac{1}{\lambda^2 - m_N^2} |F_{VN}|^2, \quad (12)$$

where $\lambda = (W^2 - m_V^2 - m_N^2)/(2m_V)$ is the nucleon energy [18]. In the low energy region, the elastic scattering amplitude F_{VN} of the particle is denoted as [30],

$$F_{VN} = r_0^3 d_2 \frac{2\pi^2}{27} 2M_N^4 (1 - b), \quad (13)$$

with the Bohr radius of meson and Wilson coefficient [30, 35],

$$r_0 = \left(\frac{4}{3\alpha_s}\right) \frac{1}{m_q}, \quad (14)$$

$$d_2^{(1S)} = \left(\frac{32}{N_C}\right)^2 \frac{\Gamma(n + \frac{5}{2})}{\Gamma(n + 5)}, \quad (15)$$

where m_q is the mass of the constituent quark, α_s is the strong coupling constant and b is trace anomaly parameter.

From the above derivations, it can be found that the primary factor affecting parameter b is the cross section of vector meson photoproduction. In addition, m_V, α_s, m_q and $\Gamma_{\gamma e^+}$ are related to the specific type of vector meson and the energy scale of the corresponding quark energy region, and also have an impact on the value of b. Their specific values are shown in Table 1.

Stay away from the chiral limit, the contribution of QCD trace anomaly to proton mass can be represented by the factor $1 - b$. By the fourth term of Eq. (8), Eq. (13) becomes

$$F_{VN} = r_0^3 d_2 \frac{2\pi^2}{27} 2M_N^4 M_\alpha M_N. \quad (16)$$

When the center of mass energy W approaches the threshold, $t_{\text{min}} \rightarrow t_{\text{max}}$, the relation between the total and differential cross sections of vector meson photoproduction is [36],

$$\sigma_{\gamma N \rightarrow VN(W_{thr})} = 4|p_1||p_3| \frac{d\sigma_{\gamma N \rightarrow VN}}{dt} \bigg|_{t=t_{\text{thr}}},$$

where $\Delta = |t_{\text{max}} - t_{\text{min}}| = 4|p_1||p_3|$ [37], $t_{\text{thr}} = -m_N^2 M_N / (m_V + M_N)$ at W_{thr}. Therefore, the Eq. (9) is represented as [36],

$$\frac{d\sigma_{\gamma N \rightarrow J/\psi N}}{dt} \bigg|_{t=t_{\text{thr}},W_{thr}} = \frac{d\sigma_{\gamma N \rightarrow J/\psi N}}{dt} \bigg|_{t=t_{\text{min}},W_{thr}} \frac{|p_1| \cdot |p_3|}{4|p_3|}. \quad (18)$$

From the above statement, we can calculate the trace anomaly contribution M_α/M_N from the total and differential cross sections $(d\sigma/dt \big|_{t=t_{\text{min}}}$ and $d\sigma/dt \big|_{t=t_{\text{thr}}}$) of vector mesons at the near-threshold.

2.3 Two gluon exchange model

Studying the photoproduction reaction of vector mesons can not only provide insight into the behaviour of the photoproduction cross section of vector mesons but also explore the related properties of the proton, such as the source of mass, mass radius and mechanical properties of the proton [1,6–11]. And also, some models [38,39] have been used.
to reproduce the cross section of vector meson photoproduction. In particular, in low energy regions, vector meson photoproduction is usually described by the exchange of two or three gluons. The process can be described as splitting photons into $q\bar{q}$ which exchanges the two gluons to scatter the initial proton. Eventually, the $q\bar{q}$ pair hadrons form the final vector meson, as shown in Fig. 1. This is the two gluon exchange model based on perturbation QCD, which can be directly related to the gluon distribution function $x g(x, m_V^2)$. Due to the existing partial distribution functions such as CTEQ6M [40], GRV98 [41], NNPDF [42], CJ15 [43,44], and IMParton16 [45]. It isn’t easy to interpret the relevant photoproduction experimental data of vector mesons at the near-threshold. Therefore, the parameterized gluon distribution function $x g(x, m_V^2) = A_0 x A_1 (1 - x) A_2$ [46,47] is introduced in this work. Here, A_0, A_1 and A_2 are free parameters, in which A_0 has the most significant influence on the cross section size of vector meson photoproduction.

Therefore, combined with $x g(x, m_V^2)$, the differential cross section of the two gluon exchange model is [48]

$$\frac{d\sigma}{dt} = \frac{\pi^3 \Gamma_e^e e^{-\alpha_s}}{6\alpha m_q^2} \left[x g \left(x, m_V^2 \right) \right]^2 \exp \left(b_0 t \right), \quad (19)$$

where b_0 is the slope which can be determined by experimental data. The total cross section of vector meson photoproduction is expressed by integrating Eq. (19) from t_{\min} to t_{\max},

$$\sigma(W) = \int_{t_{\min}}^{t_{\max}} \frac{d\sigma}{dt} dt. \quad (20)$$

Here, t_{\min} (t_{\max}) is expressed as [46,49]

$$t_{\min}(t_{\max}) = \left(\frac{m_V^2 - m_{A_1}^2 - m_{A_2}^2 + m_{A_3}^2}{2W} \right)^2 - (p_{1cm} \mp p_{3cm})^2, \quad (21)$$

where $p_{1cm} = \sqrt{E_{1cm} - m_i^2} (i = 1, 3), E_{1cm} = (W^2 + m_1^2 - m_2^2)/(2W)$ and $E_{3cm} = (W^2 - m_3^2 - m_4^2)/(2W)$.

3 Results

In our previous work [6,50], the mass radius of the proton and the scattering length of ϕN were predicted with the two gluon exchange model, which is in good agreement with those extracted directly from the experimental data. This phenomenon indicates that the two gluon exchange model is reliable for studying the physical properties of the proton. Therefore, in this work, we concentrate on the cross section of ϕ photoproduction at the near-threshold predicted by the two gluon exchange model to extract the trace anomaly contribution M_a/M_N of the proton. The relevant parameters for $p\gamma \rightarrow \phi p$ based on the two gluon exchange model are list in Table 2. In addition, ρ and ω are not composed of pure $q\bar{q}$, but a mixture of ud quarks. So the trace anomaly contributions are extracted directly from the experiment data of ρ and ω meson [25–27].

With Eq. (9), the M_a/M_N is extracted by the differential cross sections $d\sigma/dt|_{t=t_{\min}}$ of ϕ photoproduction at the near-threshold. The M_a/M_N extracted from the CLAS [23] and LEPS data [22] of ϕ photoproduction at different energies is shown in Fig. 2, where the center of mass energy W is converted into the corresponding R. There appears to be an overall upward trend here. The average trace anomaly contribution $\sqrt{\langle (M_a/M_N)^2 \rangle}$ is calculated as $(5.02 \pm 0.32)\%$. The blue line represents the result of extraction of the differential cross section of ϕ predicted by the two gluon exchange model, which increases with R. The $\sqrt{\langle (M_a/M_N)^2 \rangle} = (5.59 \pm 0.78)\%$. Here, the interval of R is $[0, 0.66]$.

Unlike the trace anomaly contribution obtained from the differential cross section, M_a/M_N extracted from the total cross section of ϕ photoproduction grows relatively gently with R, as shown in Fig. 3. The $\sqrt{\langle (M_a/M_N)^2 \rangle}$ is from the two gluon exchange model and $\sqrt{\langle (M_a/M_N)^2 \rangle} = (2.60 \pm 0.15)\%$ is extracted from the CLAS data [24]. Relating Figs. 2 and 3, at the point closest to the threshold, the M_a/M_N extracted from the total and differential cross sections of ϕ photoproduction predicted by the two gluon exchange model are adjacent, which takes into account the error bars. Moreover, the average value calculated from the total cross section at $R \in [0, 0.66]$ is almost close to the M_a/M_N calculated from the differential cross section at the threshold $R = 0$ (the M_a/M_N...
The function of the trace anomaly contribution with R based on the differential cross section $d\sigma/dt|_{t=t_{\text{min}}}$ of ϕ predicted by the two gluon exchange model (the blue line). The olive-green squares are extracted from the CLAS [23] and LEPS [22]. Compared with the result obtained by heavy vector meson photoproduction, the extraction of M_d/M_N from the ϕ photoproduction is relatively flat with the change of energy. Here, the blue band is the error bar of A_0.

The trend of the trace anomaly contribution with R based on total cross section of ϕ predicted by the two gluon exchange model (the blue line). The magenta diamond is extracted from the CLAS data [24]. Here, the blue band is the error bar of A_0.

Under the definition of Eq. (18), M_d/M_N is extracted from the differential cross sections $d\sigma/dt|_{t=t_{\text{thr}}}$ of the ϕ photoproduction at the near-threshold. As shown in Fig. 5, the energy sensitivity of M_d/M_N based on the ϕ photoproduction is decreased. Not at all as fast as Fig. 2. The average value calculated based on the two gluon exchange model is $(2.88 \pm 0.40)\%$. Table 3 lists the results calculated through experimental data of ϕ, and the average value is $(2.90 \pm 0.23)\%$. Combined with the results extracted from the total cross section before, the trace anomaly contributions of the two are almost consistent, taking the error bar into account. Therefore, considering all the results from the total and differential cross sections of ϕ, the root mean square (RMS) can be calculated as $(2.73 \pm 0.54)\%$.

Based on the experimental differential cross section of ρ [26,27] at $W \in [1.79, 1.94]$ and ω [25] at $W \in [1.73, 2.38]$ measured in the SAPHIR Collaboration [25–27], the trace anomaly contributions extracted directly with the VMD...
where, which is shown in Fig. 6. The function of the trace anomaly contribution with average values of (0.53±0.15)%.

Table 4 The result extracted from the experimental data of ρ photoproduction [26,27], where W = 1.79, 1.82, 1.87, 1.94 GeV are from Ref.[26] and W = 1.92 GeV is from Ref.[27]. The average is (0.53±0.15)%

W (GeV)	1.79	1.82	1.87
M_ω/M_N (%)	0.43 ± 0.05	0.58 ± 0.04	0.62 ± 0.05
W (GeV)	1.94	1.92	–
M_ω/M_N (%)	0.54 ± 0.07	0.48 ± 0.08	–

Fig. 5 The function of the trace anomaly contribution with R based on the differential cross section dσ/dt_{t=thr} of φ predicted by the two gluon exchange model. The notation and the blue band is the same as in Fig. 2.

Table 5 The trace anomaly contribution extracted from the experimental data of ω photoproduction [25]. The average is (1.47 ± 0.48)%

W (GeV)	M_ω/M_N (%)	W (GeV)	M_ω/M_N (%)
1.73	1.30 ± 0.03	1.98	1.19 ± 0.03
1.74	1.43 ± 0.03	2.01	1.34 ± 0.03
1.75	1.51 ± 0.03	2.04	1.41 ± 0.02
1.76	1.61 ± 0.03	2.09	1.52 ± 0.03
1.78	1.58 ± 0.02	2.13	1.67 ± 0.03
1.81	1.49 ± 0.02	2.17	1.79 ± 0.03
1.83	1.37 ± 0.02	2.22	1.72 ± 0.03
1.86	1.27 ± 0.02	2.26	1.82 ± 0.03
1.88	1.00 ± 0.02	2.30	1.81 ± 0.04
1.91	1.01 ± 0.03	2.34	1.80 ± 0.04
1.93	0.92 ± 0.03	2.38	1.70 ± 0.05
1.96	1.06 ± 0.03	–	–

Fig. 6 The trace anomaly contributions M_ω/M_N as a function of R extracted from the dσ/dt_{t=thr} of three light vector mesons photoproduction [22,23,25–27]. The olive green square is the result from γp→φp from the CLAS [23] and LEPS data [22]. The blue diamond is extracted from the data of ω derived by SAPHIR Collaboration [25]. The purple circle represents the M_ω/M_N extracted from the ρ experimental data developed by SAPHIR Collaboration [26,27].

The trace anomaly contribution obtained from the light vector meson and heavy vector meson is listed in Table 6. These results indicate that the trace anomaly contribution accounts for a small fraction of the proton mass. Figure 7 shows the trace anomaly distribution extracted from different vector mesons, which can be observed that the trace anomaly contribution is proportional to the mass of the meson. The red line is a function fitted through the results from ω, φ and J/ψ photoproduction.

In the previous work [51], the M_ω/M_N extracted from the differential cross section of J/ψ photoproduction is (3.50 ± 0.70)%. Combined with the results of this work, the trace anomaly contribution from the light vector meson and heavy vector meson is listed in Table 6. These results indicate that the trace anomaly contribution accounts for a small fraction of the proton mass. Figure 7 shows the trace anomaly distribution extracted from different vector mesons, which can be observed that the trace anomaly contribution is proportional to the mass of the meson. The red line is a function fitted through the results from ω, φ and J/ψ photoproduction.
One find that the trace anomaly contribution extracted from the meson is replaced by \(\Gamma_1 \omega \) with the results extracted from the total cross section of \(\phi \) is employed and successfully solved the problem. Combined the results from orange pentagram, the olive green square, and the purple circle represent Fig. 7 The distribution of the trace anomaly contributions obtained from different vector mesons photoproduction. The blue diamond, the orange pentagram, the olive green square, and the purple circle represent the results from \(J/\psi \) [51], \(\phi \), \(\omega \), and \(\rho \), respectively.

\[
\frac{M_a}{M_N} = \exp \left[1.50 - (0.66 \pm 0.39) \frac{1}{m_V} \right].
\]

(22)

One find that the trace anomaly contribution extracted from the \(\rho \) meson photoproduction cross section is obviously small. The main reason is that the width of the \(\rho \) meson is too large, so that the decay width \(\Gamma_{\rho \rightarrow e^+e^-} \) is more than one order of magnitude larger than \(\Gamma_{\omega \rightarrow e^+e^-} \) (as shown in Table 1), and finally the extracted trace anomaly contribution is suppressed. If the partial width \(\Gamma_{\rho \rightarrow e^+e^-} \) of the \(\rho \) meson is replaced by \(\Gamma_{\omega \rightarrow e^+e^-} \), the trace anomaly contribution extracted from the \(\rho \) photoproduction cross section is very close to that extracted from the \(\omega \) photoproduction cross section.

Table 6

Meson	\(\rho \)	\(\omega \)	\(\phi \)	\(J/\psi \) [51]
\(M_a/M_N \) (%)	0.53 \pm 0.15	1.47 \pm 0.48	2.73 \pm 0.54	3.50 \pm 0.70

Fig. 7 The distribution of the trace anomaly contributions obtained from different vector mesons photoproduction. The blue diamond, the orange pentagram, the olive green square, and the purple circle represent the results from \(J/\psi \) [51], \(\phi \), \(\omega \), and \(\rho \), respectively.

4 Conclusion

At present, the trace anomaly contribution in the proton has been extracted from the total cross section and differential cross section at \(t \approx t_{\text{min}} \) of \(\phi \) photoproduction at the near-threshold. The results show that the extraction by \(d\sigma/dt|_{t=t_{\text{min}}} \) is very sensitive to energy. To eliminate this energy dependence, the differential cross section at \(t = t_{\text{thr}} \) is employed and successfully solved the problem. Combined with the results extracted from the total cross section of \(\phi \), the RMS is calculated as \(2.73 \pm 0.54 \)%.

Furthermore, the trace anomaly contributions extracted from the cross sections of \(\rho \) and \(\omega \) photoproduction are \((0.53 \pm 0.15)\% \) and \((1.47 \pm 0.48)\% \), respectively. In our previous work [51], the trace anomaly contribution was extracted as \((3.50 \pm 0.70)\% \) from \(J/\psi \) photoproduction. By comparing and analyzing the results, it is found that the trace anomaly contribution increases linearly with the increase of the mass of the vector meson. This result is not only helpful to determine the size range of the trace anomaly contribution, but also provides an important reference for us to understand the differences in the physical mechanism of different vector meson photoproduction. In the future, we will carry out research in this area.

A new mass decomposition [12] in 2020, also starting from the energy momentum tensor \(T^{00} \), divides the proton mass into four terms. In their calculations, the trace anomaly term \(M_a/M_N = 0 \) is considered, and the proton’s mass is primarily composed of the other three parts. Although a lot of work has been done on the source of the proton mass, all of them focus on the difference between the normal and abnormal contributions, especially the trace anomaly contribution, how much it contributes to the proton mass is still the target of our further investigation. In addition, an interesting result [52] is that someone calculated the trace anomaly contribution of the hydrogen atom is also very small. All these results demonstrate that the trace anomaly contribution is still ambiguous. Therefore, acquiring more vector meson photoproduction data is necessary to investigate the source of proton mass further. In the future, the EIC facility [53,54] and JLab may have the opportunity to design more experiments to probe the proton’s internal structure and explain the source of proton mass more reasonably.

Acknowledgements This work is supported by the National Natural Science Foundation of China under Grants No. 12065014 and No. 12047501, and by the Natural Science Foundation of Gansu province under Grant No. 22J5RA266. We acknowledge the West Light Foundation of The Chinese Academy of Sciences, Grant No. 21JR7RA201.

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the relevant data are already included in the manuscript.]

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funded by SCOP3. SCOP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.

References

1. M.V. Polyakov, P. Schweitzer, Forces inside hadrons: pressure, surface tension, mechanical radius, and all that. Int. J. Mod. Phys. A 33, 1830025 (2018)

2. X.D. Ji, Gauge-invariant decomposition of nucleon spin. Phys. Rev. Lett. 78, 610–613 (1997)

3. C. Lorcé, L. Mantovani, B. Pasquini, Spatial distribution of angular momentum inside the nucleon. Phys. Lett. B 776, 38–47 (2018)

4. C. Lorcé, Energy, angular momentum and pressure force distributions inside nucleons. J. Phys. Conf. Ser. 1643, 012190 (2020)

5. C. Granados, C. Weiss, Partonic angular momentum in the nucleon’s chiral periphery. Phys. Lett. B 797, 134847 (2019)

6. X.Y. Wang, C. Dong, Q. Wang, Mass radius and mechanical properties of the proton via strange φ meson photoproduction. Phys. Rev. D 106, 056027 (2022)

7. D.E. Kharzeev, Mass radius of the proton. Phys. Rev. D 104, 054015 (2021)

8. W. Kou, R. Wang, X. Chen, Determination of the gluonic D-term and mechanical radii of proton from experimental data. arXiv:2104.12962 [hep-ph]

9. M.V. Polyakov, A.G. Shuvaev, On ‘dual’ parametrizations of generalized parton distributions. arXiv:hep-ph/0207153

10. C. Lorcé, H. Moutarde, A.P. Trawiński, Revisiting the mechanical properties of the nucleon. Eur. Phys. J. C 79, 89 (2019)

11. X.Y. Wang, F. Zeng, Q. Wang, Systematic analysis of the proton mass radius based on photoproduction of vector charmoniums. Phys. Rev. D 105, 096033 (2022)

12. A. Metz, B. Pasquini, S. Rodini, Revisiting the proton mass decomposition. Phys. Rev. D 102, 114042 (2020)

13. X.D. Ji, Breakup of hadron masses and energy–momentum tensor of QCD. Phys. Rev. D 52, 271–281 (1995)

14. X.D. Ji, A QCD analysis of the mass structure of the nucleon. Phys. Rev. Lett. 74, 1071–1074 (1995)

15. C. Lorcé, On the hadron mass decomposition. Eur. Phys. J. C 78, 120 (2018)

16. Y. Hatta, A. Rajan, K. Tanaka, Quark and gluon contributions to the QCD trace anomaly. JHEP 12, 008 (2018)

17. A. Abed Abud et al., [DUNE], Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report. Instruments 5, 31 (2021)

18. D. Kharzeev, H. Satz, A. Syamtomov, G. Zinovjev, J/ψ photoproduction and the gluon structure of the nucleon. Eur. Phys. J. C 9, 459–462 (1999)

19. R. Wang, J. Evslin, X. Chen, The origin of proton mass from J/ψ photo-production data. Eur. Phys. J. C 80, 507 (2020)

20. A. Ali et al., [GlueX], First measurement of near-threshold J/ψ exclusive photoproduction off the proton. Phys. Rev. Lett. 123, 072001 (2019)

21. B. Duran, Z.E. Mezziani, S. Joosten, M.K. Jones, S. Prasad, C. Peng, W. Armstrong, H. Atac, E. Chadakov, H. Bhatt, et al. When color meets gravity; near-threshold exclusive J/ψ photoproduction on the proton. arXiv:2207.05212 [nucl-ex]

22. T. Mibe et al., [LEPS], Diffractive phi-meson photoproduction on proton near threshold. Phys. Rev. Lett. 95, 182001 (2005)

23. B. Dey et al., [CLAS], Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction γp → φp. Phys. Rev. C 89, 055208 (2014)

24. I.I. Strakovsky, L. Pentchev, A. Titov, Comparative analysis of φp, φp, and J/ψp scattering lengths from A2, CLAS, and GlueX threshold measurements. Phys. Rev. C 101, 045201 (2020)

25. J. Barth, W. Braun, J. Ernst, K.H. Glander, J. Hannappel, N. Jopen, H. Kalinowsky, F.J. Klein, F. Klein, E. Klempt et al., Low-energy of photoproduction of omega-mesons. Eur. Phys. J. A 18, 117–127 (2003)

26. SAPHIR Collaboration, F.J. Klein et al., πN Newsletter 14, 141 (1998), J. Klein, Ph.D. Thesis, Bonn Univ. (1996)

27. C. Wu, J. Barth, W. Braun, J. Ernst, K.H. Glander, J. Hannappel, N. Jopen, H. Kalinowsky, F.J. Klein, F. Klein et al., Photoproduction of rho0 mesons and Delta-baryons in the reaction gamma p→ p+pi+pi− at energies up to s^(1/2) = 2.6-GeV. Eur. Phys. J. A 23, 317–344 (2005)

28. A.J. Buras, Asymptotic freedom in deep inelastic processes in the leading order and beyond. Rev. Mod. Phys. 52, 199 (1980)

29. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Quark mass and field anomalous dimensions to O(a^2). JHEP 10, 076 (2014)

30. D. Kharzeev, Quarkonium interactions in QCD. Proc. Int. Sch. Fermi 130, 105–131 (1996)

31. V. Mathieu et al., [JPAC], Vector meson photoproduction with a linearly polarized beam. Phys. Rev. D 97, 094003 (2018)

32. Q. Zhao, Z.P. Li, C. Bennhold, Omega and rho photoproduction with an effective quark model Lagrangian. Phys. Lett. B 436, 42–48 (1998)

33. G. Ganbol, QCD effective coupling in the infrared region. Phys. Rev. D 81, 094008 (2010)

34. W. Kou, R. Wang, X. Chen, Extraction of proton trace anomaly energy from near-threshold φ and J/ψ photo-productions. Eur. Phys. J. A 58, 155 (2022)

35. D. Kharzeev, H. Satz, A. Syamtomov, G. Zinovjev, On the sum rule approach to quarkonium–hadron interactions. Phys. Lett. B 389, 595–599 (1996)

36. A.I. Titov, T. Nakano, S. Date, Y. Ohashi, Comments on differential cross-section of phi-meson photoproduction at threshold. Phys. Rev. C 76, 048202 (2007)

37. L. Pentchev, I.I. Strakovsky, J/ψ−p scattering length from the total and differential photoproduction cross sections. Eur. Phys. J. A 57, 56 (2021)

38. X.Y. Wang, J. He, X. Chen, Systematic study of the production of hidden-bottom pentaquarks via γp and π−p scatterings. Phys. Rev. D 101, 034032 (2020)

39. X.Y. Wang, X.R. Chen, J. He, Possibility to study pentaquark states P^0 (4312), P^+ (4440), and P^− (4457) in γp → J/ψp reaction. Phys. Rev. D 99, 114007 (2019)

40. S.V. Goloskokov, Electroproduction of light vector mesons. arXiv:0712.3968 [hep-ph]

41. M. Glück, E. Reya, A. Vogt, Dynamical parton distributions revisited. Eur. Phys. J. C 5, 461–470 (1998)

42. R.D. Ball et al., [NNPDF], Unbiased global determination of parton distributions from new weak boson production and their uncertainties at NNLO and at LO. Nucl. Phys. B 855, 153–221 (2012)

43. J.F. Owens, A. Accardi, W. Melnitchouk, Global parton distributions with nuclear and finite-Q^2 corrections. Phys. Rev. D 87, 094012 (2013)

44. A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-x parton distributions from new weak boson production and deep-inelastic scattering data. Phys. Rev. D 93, 114017 (2016)

45. R. Wang, X. Chen, Dynamical parton distributions from DGLAP equations with nonlinear corrections. Chin. Phys. C 41, 053103 (2017)
46. F. Zeng, X.Y. Wang, L. Zhang, Y.P. Xie, R. Wang, X. Chen, Near-threshold photoproduction of J/ψ in two-gluon exchange model. Eur. Phys. J. C 80, 1027 (2020)
47. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07, 012 (2002)
48. A. Sibirtsev, S. Krewald, A.W. Thomas, Systematic analysis of charmonium photoproduction. J. Phys. G 30, 1427–1444 (2004)
49. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory, vol. 842 (Addison-Wesley, Boston, 1995)
50. X.Y. Wang, C. Dong, Q. Wang, Analysis of the interaction between of ϕ meson and nucleus. arXiv:2208.10289 [nucl-th]. http://cpc.ihep.ac.cn/article/doi/10.1088/1674-1137/ac9a36
51. X.Y. Wang, J. Bu, F. Zeng, Analysis of the contribution of the quantum anomaly energy to the proton mass. Phys. Rev. D 106, 094029 (2022)
52. B.D. Sun, Z.H. Sun, J. Zhou, Trace anomaly contribution to hydrogen atom mass. Phys. Rev. D 104, 056008 (2021)
53. A. Accardi, J.L. Albacete, M. Anselmino, N. Armesto, E.C. Aschenauer, A. Bacchetta, D. Boer, W.K. Brooks, T. Burton, N.B. Chang et al., Electron ion collider: the next QCD frontier: understanding the glue that binds us all. Eur. Phys. J. A 52, 268 (2016)
54. D.P. Anderle, V. Bertone, X. Cao, L. Chang, N. Chang, G. Chen, X. Chen, Z. Chen, Z. Cui, L. Dai et al., Electron-ion collider in China. Front. Phys. (Beijing) 16, 64701 (2021)