Do We Need an Implantable Cardioverter-defibrillator for Primary Prevention in Cardiac Resynchronisation Therapy Patients?

Demosthenes G Katritsis1 and Angelo Auricchio2

1. Hygeia Hospital, Athens, Greece; 2. Fondazione Cardiocentro Ticino, Lugano, Switzerland

Keywords
Cardiac resynchronisation therapy, sudden cardiac death, non-ischaemic cardiomyopathy, implantable cardioverter-defibrillator

Prospective Randomised Controlled Trials
Multiple prospective randomised controlled trials have been conducted to establish the use of CRT in different categories of heart failure patients; these studies have consistently demonstrated the superiority of CRT compared with best medical therapy in improving ventricular function, the patient’s functional capacity, and prognosis. The greatest majority of prospective randomised controlled studies used a CRT device combined with an ICD (CRT-D).

Indeed, past prospective randomised controlled trials of primary prevention in patients with heart failure indicated that ICD reduced mortality in post-MI patients with left ventricular ejection fraction (LVEF) <30 % (Multicentre Automatic Defibrillator Implantation Trial II; MADIT II),1 and ischaemic or non-ischaemic cardiomyopathy in patients with LVEF <35 % (Sudden Cardiac Death in Heart Failure Evaluation (DEFINITE) study, in which 458 patients with NICM were randomised to medical therapy or an ICD, ICD therapy did not reduce mortality. A significant reduction of SCD and overall mortality by CRT-D according to established criteria and who received CRT-D had significantly lower risks for death and readmission than those who received an ICD therapy alone.6

Clinical Daily Practice
All that, however, contrasts with clinical daily practice in which approximately one-third of patients receive a CRT without an ICD function (CRT-P). The clinical justification to offer a sizable group of patients a CRT-P device is given by the lack of a perceived realistic, additional survival benefit, as provided by an ICD, in addition to what may be achieved by CRT-P alone. Clinical factors possibly associated with higher mortality due to heart failure rather than SCD (the latter can be effectively reduced only by an ICD) are advanced age, cardiovascular comorbidities, some neurological diseases associated with severe cognitive and/or physical impairment, psychiatric disorders, and life expectancy <1 year due to neoplasia.

Another key factor that may justify the use of CRT-P instead of CRT-D could be represented by the aetiology, as occurs with non-ischaemic cardiomyopathy (NICM). Both the Cardiomyopathy Trial (CAT)7 and Amiodarone Versus Implantable Cardioverter-Defibrillator Trial (AMIOVIRT)8 used single- and dual-chamber ICDs, but neither trial showed any survival benefit of ICDs in patients with NICM. Importantly, these studies involved small numbers of patients.

In the Defibrillators in Non-ischaemic Cardiomyopathy Treatment Evaluation (DEFINITE) study, in which 458 patients with NICM were randomised to medical therapy or an ICD, ICD therapy did not reduce total mortality, despite a significant reduction in SCD.9 In the recent Defibrillator Implantation in Patients With Non-ischaemic Systolic Heart Failure (DANISH) study, neither ICD nor CRT-D reduced total mortality in patients with NICM.10 Notably, only patients aged younger than 68 years had a significant reduction of SCD and overall mortality by CRT-D compared with CRT-P/best medical therapy. These studies cast doubt on the relative benefit of CRT-D versus CRT-P in patients with NICM, despite the promising results in favour of ICD in the non-ischaemic setting by a recent meta-analysis.11
New Developments

Some recent data by Levya et al., who evaluated mid-wall cardiac fibrosis by cardiac magnetic resonance, showed that CRT-D was markedly superior to CRT-P in terms of total mortality, cardiovascular mortality, and all composite endpoints in those patients with mid-wall fibrosis, whereas no benefit from CRT-D over CRT-P was observed in those patients without mid-wall fibrosis with respect to any of the endpoints.12 These findings indirectly substantiate the results of a meta-analysis by Disertori et al. indicating that late gadolinium enhancement analysis by Disertori et al. indicating that late gadolinium enhancement is particularly strong in patients with severely depressed ejection fraction, which suggests its potential to improve patient selection for ICD implantation. However, to be put into practice, late gadolinium enhancement protocols need to be standardised with respect to execution modalities and the setting of diagnostic thresholds.

New developments may also provide additional data and new insights. The value of electrophysiology testing in assessing the need for an ICD, at least in the ischaemic setting, continues to be debated.13 Such a possibility could further facilitate the selection of appropriate CRT-D candidates.

Recent studies using His bundle pacing could further revolutionise the field of CRT. In some cases, a significant improvement of functional capacity and ventricular function has been observed.14–15 Whether and in which patients His bundle pacing may represent a suitable alternative to CRT remains to be determined. Similarly, whether improvement of the efficacy of CRT will be adequate to refuse the need for an ICD in certain patients remains to be seen.

Conclusion

Currently, and in the absence of hard data to guide clinical practice in this respect, we have to rely on the recommendations by the 2013 (and 2017) update of the American College of Cardiology/American Heart Association and 2016 European Society of Cardiology guidelines on heart failure, and recommend an ICD, with or without CRT, in patients with non-ischaemic or ischaemic (at least 40 days post-MI) heart failure, LVEF ≤35 %, and NYHA II/III.16–19

1. Moss AJ, Sareli V, Klein H, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346:877–83. https://doi.org/10.1056/NEJMoa0203474; PMID: 11907284.
2. Bandy GH, Lee KL, Posel IE, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;353:225–37. https://doi.org/10.1056/NEJMoa043999; PMID: 15697222.
3. Bristow MR, Saxon LA, Biletnikoff J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50. https://doi.org/10.1056/NEJMoa030423; PMID: 15152059.
4. Tang AS, Kritikos A, Lifakou M, et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med. 2010;363:2385–95. https://doi.org/10.1056/NEJMoa1005140; PMID: 21073630.
5. Goldberger J, Koyfman V, Klein HJ, et al. Survival with cardiac-resynchronization therapy in mild heart failure. N Engl J Med. 2014;370:164–71. https://doi.org/10.1056/NEJMoa1412442; PMID: 24979999.
6. Mosso FA, M X, Curtis LH, et al. Comparative effectiveness of cardiac-resynchronization therapy with an implantable cardioverter-defibrillator versus defibrillator therapy alone: a cohort study. Ann Intern Med. 2014;160:608–15. https://doi.org/10.7326/M13-1679; PMID: 24746233.
7. Barsich O, Antz M, Bezzar S, et al. Primary prevention of sudden cardiac death in depressed, dilated cardiomyopathy: the Cardiomyopathy Trial (CAT). Circulation. 2002;105:1453–8. https://doi.org/10.1161/01.CIR.0000021350.99718.AD; PMID: 11914545.
8. Stockberger SA, Hummel JD, Bartlett TS, et al. Amiodarone versus implantable cardioverter-defibrillator: randomized trial in patients with nonischemic dilated cardiomyopathy and asymptomatic nonsustained ventricular tachycardia – AMMOVIRT. J Am Coll Cardiol. 2003;41:1707–12. https://doi. org/10.1016/S0735-1097(03)00297-3; PMID: 12761611.
9. Katoji A, Oyer A, Gaubert P, et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med. 2004;350:2111–8. https://doi.org/10.1056/NEJMoa030423; PMID: 15152059.
10. Joben I, Thune JI, Nelson JC, et al. Defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med. 2016;375:1221–30. https://doi.org/10.1056/NEJMoa1609202; PMID: 27571116.
11. Goelwala H, Bajaj NS, Arora G, Arora P. Implantable cardioverter-defibrillator for nonischemic cardiomyopathy: an updated meta-analysis. Circulation. 2017;135:201–31. https://doi.org/10.1161/CIRCULATIONAHA.116.026556; PMID: 27993958.
12. Ulaya P, Zajiceta A, Azequial E, et al. Outcomes of cardiac-resynchronization therapy with or without defibrillation in patients with nonischemic cardiomyopathy. J Am Coll Cardiol. 2017;70:1266–27. https://doi.org/10.1016/j.jacc.2017.07.012; PMID: 28895794.
13. Disertori M, Rigoni M, Pace N, et al. Myocardial fibrosis assessment by LGE is a powerful predictor of ventricular tachyarrhythmias in ischemic and nonischemic LV dysfunction: a meta-analysis. JACC Cardiovasc Imaging. 2019;12:1046–55. https://doi.org/10.1016/j.jcmg.2016.01.038; PMID: 27482691.
14. Katritsis DG, Zografos T, Hindricks G. Electrophysiology testing for risk stratification of patients with ischaemic cardiomyopathy: a call for action. Europace. 2017. https://doi.org/10.1093/europace/eux305; PMID: 29259891; epub ahead of print.
15. Hindricks G. Permanent His bundle pacing is associated with reduction in mortality and morbidity compared to right ventricular pacing results from the Giesinger His Bundle Pacing Registry. Presented at ACC.2016; 10–12 March 2016.
16. Katritsis DG. Choice of ventricular pacing: the end of non-physiological, apical ventricular pacing? Heart Rhythm. 2017;6:159–60. https://doi.org/10.15221/jan2017.6.159; PMID: 29326429.
17. Vajjyanamar P, Pandamukkil R, Jaron O, et al. Permanent His bundle pacing: recommendations from a multicenter His bundle pacing collaborative working group for standardization of definitions, implant measurements, and troubleshooting. Heart Rhythm. 2018;15:600–8. https://doi.org/10.1016/j.hrthm.2017.10.039; PMID: 29106697.
18. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACC/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;69:776–803. https://doi.org/10.1016/j.jacc.2017.04.025; PMID: 28641007.
19. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–2180. https://doi.org/10.1093/eurheartj/hew372; PMID: 27286819.