Higher-Order Scheme-Independent Calculations of Physical Quantities in the Conformal Phase of a Gauge Theory

Thomas A. Ryttova and Robert Shrockb
(a) CP3-Origins and Danish Institute for Advanced Study
University of Southern Denmark, Campusvej 55, Odense, Denmark and
(b) C. N. Yang Institute for Theoretical Physics
Stony Brook University, Stony Brook, NY 11794, USA

We consider an asymptotically free vectorial SU(N_c) gauge theory with N_f massless fermions in a representation R, having an infrared fixed point (IRFP) of the renormalization group at α_{IR} in the conformal non-Abelian Yang-Mills vectorial gauge theory (in $d = 4$ spacetime dimensions) with a set of massless fermions at an IRFP of the renormalization group in the Coulomb phase, where it exhibits scale invariance \[1,2\]. Here we consider a theory of this type, with gauge group $G = SU(N_c)$ and N_f massless fermions ψ_j, $1 \leq j \leq N_f$, in a representation \bar{R}, where \bar{R} is the fundamental (F), adjoint (adj), or symmetric rank-2 tensor (S). The dependence of the gauge coupling $g = g(\mu)$ on the Euclidean momentum scale μ is described by the beta function, $\beta = d\alpha/dt$, where $\alpha(\mu) = g(\mu)^2/(4\pi)$ and $dt = d\ln \mu$. The IRFP occurs at an IR zero of β at α_{IR}. At this fixed point, an operator O for a physical quantity exhibits scaling behavior with a dimension $D_O = D_{O,free} - \gamma_O$, where $D_{O,free}$ is the free-field dimension and γ_O is the anomalous dimension.

Two important quantities that characterize the properties at the IRFP α_{IR} are $\gamma_{\bar{\psi}\psi,IR}$ and β'_{IR}. Here, β'_{IR} is equivalent to the anomalous dimension of $F_{\mu\nu}F^\mu\nu$, where $F_{\mu\nu}$ is the (rescaled) field-strength tensor \[4\]. As physical quantities, $\gamma_{\bar{\psi}\psi,IR}$ and β'_{IR} are scheme-independent (SI) \[3\]. However, conventional series expansions of these quantities in powers of α, calculated to a finite order, do not maintain this scheme-independence beyond the lowest orders. Clearly, it is very valuable to calculate and analyze series expansions for $\gamma_{\bar{\psi}\psi,IR}$ and β'_{IR} that are scheme-independent at each order. Some early work was in \[6,7\]. A natural expansion variable is

$$\Delta_f = N_u - N_f,$$

where, for a given N_c and R, N_u is the upper (u) limit to N_f allowed by asymptotic freedom. Scheme-independent series expansions of $\gamma_{\bar{\psi}\psi,IR}$ and β'_{IR} are

$$\gamma_{\bar{\psi}\psi,IR} = \sum_{j=1}^{\infty} \kappa_j \Delta_j^f$$

and

$$\beta'_{IR} = \sum_{j=1}^{\infty} d_j \Delta_j^f,$$

where $\kappa_j = 0$ for all G, R, and Δ_f. For general G and R, the κ_j were calculated to order $j = 3$ in \[8\] and the d_j to order $j = 4$ in \[3\], and for $G = SU(3)$ and $R = F$, κ_4 was computed in \[10\] and d_5 in \[3\].

Here we report our calculations of these scheme-independent expansions of $\gamma_{\bar{\psi}\psi,IR}$ and β'_{IR} to the highest orders yet achieved, presenting κ_4 and d_5 for an asymptotically free SU(N_c) gauge theory with a conformal IR fixed point, for $R = F$, adj, S. We also report our calculation of κ_3 for supersymmetric quantum chromodynamics (SQCD). We believe that our new results are a substantial advance in the knowledge of conformal field theory. Our results have the advantage of scheme independence at each order in Δ_f, in contrast to scheme-dependent (SD) series expansions of $\gamma_{\bar{\psi}\psi,IR}$ and β'_{IR} in powers of α \[11,16\] and they complement other approaches to understanding conformal and superconformal field theory, such as the bootstrap \[17\] and lattice simulations \[18\].

The conventional power-series expansions of β and $\gamma_{\bar{\psi}\psi}$ are

$$\beta = -2\alpha \sum_{\ell=1}^{\infty} b_\ell \left(\frac{\alpha}{4\pi} \right)^\ell$$

and

$$\gamma_{\bar{\psi}\psi} = \sum_{\ell=1}^{\infty} c_\ell \left(\frac{\alpha}{4\pi} \right)^\ell,$$

where b_ℓ and c_ℓ are calculated to finite order in $1/\alpha$. These expressions are the starting points of the analysis of the scheme-independent expansions in the text.
where b_ℓ and c_ℓ are the ℓ-loop coefficients; b_1 \cite{19}, b_2 \cite{20}, and $c_1 = 6C_f$ are scheme-independent, while the b_ℓ with $\ell \geq 3$ and the c_ℓ with $\ell \geq 2$ are scheme-dependent, i.e. they depend on the scheme used for regularization and renormalization \cite{22}. We denote the n-loop (nt) β and $\gamma_{\psi \psi}$ as β_{nt} and $\gamma_{\psi \psi, nt}$ and the IR zero of β_{nt} as α_{nt}.

The calculation of κ_j requires, as inputs, the values of the b_ℓ for $1 \leq \ell \leq j + 1$ and the c_ℓ for $1 \leq \ell \leq j$. The calculation of d_j requires, as inputs, the values of the b_ℓ for $1 \leq \ell \leq j$. Thus, importantly, κ_j does not receive any corrections from b_ℓ with $\ell > j + 1$ or c_ℓ with $\ell > j$, and similarly, d_j does not receive any corrections from any b_ℓ with $\ell > j$.

The coefficients κ_j were calculated in \cite{8} for an (AF vectorial) supersymmetric gauge theory (SGT) with gauge group G and N_f pairs of chiral superfields in the R and \bar{R} representation, for $j = 1, 2$. Complete agreement was found, to the order calculated, with the exactly known result in the conformal non-Abelian Coulomb phase (NACP) \cite{21,22}.

$$\gamma_{\psi \psi, \text{IR}, \text{SGT}} = \frac{2T_f}{3C_A} \Delta_f \frac{\kappa_4}{1 - 2T_f / 3C_A \Delta_f} \gamma_f,$$ \hfill (6)

In this theory, Δ_f is the conformal NACP is the interval $N_t < N_f < N_u$, where $N_f = N_u/2$, so that Δ_f varies from 0 to a maximum of $(\Delta_f)^{\text{max}} = 3C_A/(4T_f)$ in the NACP \cite{25}. Hence, $\gamma_{\psi \psi, \text{IR}, \text{SGT}}$ increases monotonically from 0 to 1 as N_f decreases from N_u to N_t, saturating the upper bound $\gamma_{\psi \psi, \text{IR}, \text{SGT}} < 1$ from conformal invariance in this SGT \cite{22}.

As a test of the accuracy of the Δ_f expansion, we have now calculated κ_4 for SQCD with $R = F$, using inputs from \cite{26}. We find $\kappa_3 = 1/(3N_c)^3$, in perfect agreement, to this order, with the exact result, Eq. (10). This agreement explicitly illustrates the scheme independence of the κ_j, since our calculations in \cite{8} and here used inputs computed in the \overline{DR} scheme, while \cite{11} was derived in the NSVZ scheme \cite{21}. Our new result has a far-reaching implication: it strongly suggests that $\kappa_4 = [2T_f/(3C_A)]^2 \kappa_3$ for all j, so that the expansion (2) for this supersymmetric gauge theory, calculated to order $O(\Delta_f)^{2}$, agrees with the exact result to the given order for all p.

Because of electric-magnetic duality \cite{22}, as $N_f \rightarrow N_t$ in the NACP, the physics is described by a magnetic theory with coupling strength going to zero, or equivalently, by an electric theory with divergent α_{IR}.

The Δ_f expansion also avoids a problem in which an \overline{DR} may not be manifest as a physical IR zero of the n-loop beta function for some n. Indeed, although β_{nt} has a physical $a_{IR, nt}$ in SQCD for $n = 2, 3$ loops \cite{22}, we have analyzed β_{nt} (in the \overline{DR} scheme), and we find that for a range of N_f in the NACP, it does not exhibit a physical $a_{IR, nt}$. This is analogous to the situation that we found for $a_{IR, 5t}$ in the non-supersymmetric gauge theory \cite{26}. In both cases, the Δ_f expansions (2) and (3) circumvent this problem of a possible unphysical $a_{IR, nt}$ that one may encounter in using the convention expansions (4) and (5).

We next present our results for κ_4 and d_5 for a (non-supersymmetric) SU(N_c) gauge theory, making use of the impressive recent computation of b_5 in \cite{28}. (We have actually calculated κ_4 and d_5 for general G and R \cite{29}, but only present results here for $R = F, \text{adj}, S$.) The two-loop beta function has an IR zero (IRZ) in the interval $I_{1RZ}: N_t < N_f < N_u$, with upper and lower (ℓ) ends at $N_u = 11N_c/(4T_f)$ and $N_t = 17C_A/(2T_f(5C_A + 3C_f))$ \cite{24}. The non-Abelian Coulomb phase extends downward in I_{1RZ} from N_u to a lower value denoted N_f, c_t \cite{30}. Since chiral symmetry is exact in the NACP, one can classify the bilinear fermion operators according to their flavor transformation properties. These operators include the flavor-singlet $\psi \psi$ and the flavor-adjoint $\psi_T a \psi$, where a is a generator of SU(N_f). These have the same anomalous dimension \cite{31}, which we write simply as $\gamma_{\psi \psi}$.

For general G and R, the coefficients b_ℓ were computed up to loop order $\ell = 4$ \cite{32} (checked in \cite{33} and the c_ℓ also up to loop order $\ell = 4$ \cite{31}, in the widely used \overline{MS} scheme \cite{32}. These results were used in \cite{8} to calculate the κ_j to order $j = 3$ and in \cite{9} to calculate d_j to order $j = 4$. For $N_c = 3$ and $R = F$, b_5 was computed in \cite{36}, and this was used to calculate κ_4 in \cite{10} and d_5 in \cite{9} for this case (see also \cite{16}).

We first report our results for κ_4 and d_5 for $R = F$, using b_5 from \cite{28}. We denote the Riemann zeta function as $\zeta_s = \sum_{n=1}^{\infty} n^{-s}$. We obtain

$$\kappa_{4,F} = \frac{4(N_c^2 - 1)}{3^4 N_c^4 (25N_c^2 - 11)^2} \left[263345440N_c^{12} - 673169750N_c^{10} + 256923326N_c^8 - 290027700N_c^6 + 557945201N_c^4 - 208345544N_c^2 + 6644352 \right. + 384(25N_c^2 - 11)(4400N_c^{10} - 123201N_c^8 + 480349N_c^6 - 486126N_c^4 + 84051N_c^2 + 1089)\zeta_3 \right] + 211200N_c^2(25N_c^2 - 11)^2(N_c^6 + 3N_c^4 - 16N_c^2 + 22)\zeta_5 \] \hfill (7)
and

\[d_{5,F} = \frac{2^5}{3^6N^3(25N^2 - 11)^3} \left[N_c^{12} \left(-298194551 - 423300000\zeta_3 + 528000000\zeta_5 \right) \\
+ N_c^{10} \left(414081770 + 1541114400\zeta_3 - 821040000\zeta_5 \right) + N_c^8 \left(80227411 - 4170620256\zeta_3 + 2052652800\zeta_5 \right) \\
+ N_c^6 \left(210598856 + 5101712352\zeta_3 - 4268183040\zeta_5 \right) + N_c^4 \left(-442678324 - 2250221952\zeta_3 + 2744628480\zeta_5 \right) \\
+ N_c^2 \left(129261880 + 304571520\zeta_3 - 534103680\zeta_5 \right) + 3716152 + 1022208\zeta_3 \right], \tag{8} \]

where the simple factorizations of the denominators have been indicated. For this \(R = F \) case, we find that \(\kappa_4 > 0 \), as was also true of \(\kappa_j \) with \(1 \leq j \leq 3 \) (indeed, \(\kappa_1 \) and \(\kappa_2 \) are manifestly positive for any \(G \) and \(R \)). We also find the same positivity results for \(R = adj \) and \(R = S \). The property that for all of these representations \(R \), \(\kappa_j > 0 \) for \(1 \leq j \leq 4 \) and for all \(N_c \) implies two important monotonicity results. First, for these \(R \), and with a fixed \(p \) in the interval \(1 \leq p \leq 4 \), \(\gamma_{\psi,IR,\Delta_1^F} \) is a monotonically increasing function of \(\Delta_1 \) for \(N_f \in I_{IRZ} \). Second, for these \(R \), and with a fixed \(N_f \in I_{IRZ} \), \(\gamma_{\psi,IR,\Delta_1^F} \) is a monotonically increasing function of \(p \) in the range \(1 \leq p \leq 4 \). In addition to the manifestly positive \(\kappa_1 \) and \(\kappa_2 \), a plausible conjecture is that, for these \(R \), \(\kappa_j > 0 \) for all \(j \geq 3 \). Note that the exact result \(\beta \) for the supersymmetric gauge theory shows that in that theory, \(\kappa_j > 0 \) for all \(j \) and for any \(G \) and \(R \).

In Figs. 1 and 2 we plot \(\gamma_{IR,\Delta_1^F} \) for \(R = F \), \(N_c = 2, 3 \) and \(1 \leq p \leq 4 \). In Table 1 we list values of these \(\gamma_{IR,\Delta_1^F} \) \[37]. These all satisfy the upper bound \(\gamma_{IR} < 2 \) from conformal invariance \[25\]. Below, we will often omit the \(\psi \) subscript, writing \(\gamma_{\psi,IR} \equiv \gamma_{IR} \) and \(\gamma_{\psi,IR,\Delta_1^F} \equiv \gamma_{IR,\Delta_1^F} \).

For this \(R = F \) case we first remark on the comparison of \(\gamma_{IR,\Delta_1^F} \) with calculations of \(\gamma_{IR,\alpha\ell} \) from analyses of power series in \(\alpha \), which were performed to \(n = 4 \) loop level in \[11\]\[14\] using \(b_\ell \) and \(c_\ell \) in the \(\text{MS} \) scheme (with studies of scheme dependence in \[13\]) and extended to \(n = 5 \) loop level for \(N_c = 3 \) in \[16\]. We have noted that \(\beta_{\alpha\ell} \) does not have a physical \(\alpha_{IR,5\ell} \) for \(N_f \) in the lower part of the interval \(I_{IRZ} \[16\]. Although we were able to surmount this problem via Padé approximants in \[16\], these are still scheme-dependent, while the \(\Delta_1 \) expansion has the advantage of being scheme-independent. In general, we find that for a given \(N_c \) and \(N_f \), the value of \(\gamma_{IR,\Delta_1^F} \) that we calculate to highest order, namely \(p = 4 \), is somewhat larger than \(\gamma_{IR,\alpha\ell} \) calculated to its highest order \[10, 13\]. For example, for \(N_c = 3, N_f = 12 \), \(\gamma_{IR,\alpha\ell} = 0.253, \gamma_{IR,5\ell} \approx 0.255 \) (using a value of \(\alpha_{IR,5\ell} \) from a Padé approximant \[10, 16\]), while \(\gamma_{IR,\Delta_1^F} = 0.338 \) and an extrapolation yields the estimate 0.400(5) for \(\gamma_{IR} = \lim_{p \to \infty} \gamma_{IR,\Delta_1^F} \[10\]. Similarly, for \(N_c = 2 \) and \(N_f = 8 \), \(\gamma_{IR,\alpha\ell} = 0.204 \), while \(\gamma_{IR,\Delta_1^F} = 0.298 \) and for \(N_c = 4, N_f = 16, \gamma_{IR,\alpha\ell} = 0.269 \), while \(\gamma_{IR,\Delta_1^F} = 0.352 \).

We next compare our new results with lattice measurements, restricting to cases where the lattice studies are consistent with the theories being IR-conformal \[15, 50\]. For \(N_c = 3 \), we compared our calculations of \(\gamma_{IR,\Delta_1^F} \) with lattice measurements for \(N_f = 12 \) in \[10\], finding general consistency with the range of lattice results, although our \(\gamma_{IR,\Delta_1^F} \) and extrapolation to the exact \(\gamma_{IR} \) were higher than some of the lattice values. We also found consistency for the cases \(N_f = 10 \) and \(N_f = 8 \[10\]. Here, we compare with lattice results for \(\gamma_{IR} \) in the case \(N_c = 2, N_f = 8 \). (It is not clear from lattice studies if the SU(2), \(R = F \), \(N_f = 6 \) theory has a conformal IRFP or not \[18, 30, 38\].) Following lattice studies of the SU(2), \(R = F \), \(N_f = 8 \) theory by several groups \[18, 30, 38\], a recent measurement is \(\gamma_{IR} = 0.15 \pm 0.02 = 0.15(2) \[40\]. Our value \(\gamma_{IR,\Delta_1^F} = 0.298 \) is somewhat higher than this lattice result.

We proceed to discuss \(d_5 \) for \(R = F \). In Fig. 3 we plot \(\beta_{IR,\Delta_1^F} \) for \(R = F \), \(N_c = 3 \), and \(2 \leq p \leq 5 \). In Table 1 we

![Plot](image_url)
we list values of $\beta^\prime_{IR,\Delta_3^f}$ for $R = F$, $N_c = 2$, 3 and $2 \leq p \leq 5$. For $R = F$ and general N_c, d_2 and d_3 are positive, while d_4 and d_5 are negative. For the case SU(3), $N_f = 12$, we get $\beta^\prime_{IR,\Delta_3^f} = 0.228$. The conventional n-loop calculation yielded $\beta^\prime_{IR,3e} = 0.2955$ and $\beta^\prime_{IR,4e} = 0.282$ [41], so $\beta^\prime_{IR,\Delta_3^f}$ is slightly smaller than $\beta^\prime_{IR,4e}$. A recent lattice measurement yields $\beta^\prime_{IR,2} = 0.26(2)$ [42], consistent with both our $\beta^\prime_{IR,\Delta_3^f}$ and $\beta^\prime_{IR,4e}$.

We next discuss the case $R = adj$, for which $N_a = 11/4$ and $N_f = 17/16$, so I_{IRZ} includes the single integer value $N_f = 2$ (whence $\Delta_f = N_a - 2 = 3/4$). Results for this case were given for κ_p with $1 \leq p \leq 3$ in [8] and for d_p with $1 \leq p \leq 4$ in [9]. Here we find

$$\kappa_{4,adj} = \frac{53389393}{2^7 \cdot 3^{14}} + \frac{368}{3^{19} \cdot 3^3} + \left(\frac{2170}{3^{16}} + \frac{33952}{3^{11} \cdot 3^3} \right) N_c^{-2}$$

$$+ 0.0946976 + 0.193637 N_c^{-2}$$

(9)

and

$$d_{5,adj} = \frac{-7141205}{2^3 \cdot 3^{16}} + \frac{5504}{3^{12} \cdot 3^3}$$
\[- \left(\frac{30928}{3^{14}} + \frac{465152}{3^{13}} \zeta_3 \right) N_e^{-2} \]
\[= -\left(0.828739 \times 10^{-2}\right) - 0.357173 N_e^{-2}.\]

(10)

We remark on the SU(2), $N_f = 2$, $R = \text{adj}$ theory, which has been of interest \[43\]. Extensive lattice studies of this theory have been performed and are consistent with IR conformality \[13\]. We get $\beta^\prime_{IR,\Delta^2_3} = 0.147$; and $\gamma_{IR,\Delta^3_3} = 0.465$, $\gamma_{IR,\Delta^3_3} = 0.511$, and $\gamma_{IR,\Delta^4_3} = 0.556$. These γ_{IR,Δ^r_3} values are close to our n-loop calculations in \[13\] for this theory, namely $\gamma_{IR,3\ell} = 0.543$, $\gamma_{IR,4\ell} = 0.590$. Lattice measurements of this theory have yielded a wide range of values of γ_{IR} including, 0.49(13) \[44\], 0.22(6) \[45\], 0.31(6) \[46\], 0.17(5) \[47\], 0.20(3) \[48\], 0.50(26) \[49\], and 0.15(2) \[50\] (see references for details of uncertainty estimates).

Finally, we discuss the case $R = S$. For SU(2), $S = \text{adj}$, already discussed above. For SU(3), we focus on the $N_f = 2$ theory, for which we find $\beta^\prime_{IR,\Delta^2_3} = 0.333$; and $\gamma_{IR,\Delta^3_3} = 0.789$, $\gamma_{IR,\Delta^3_3} = 0.960$, and $\gamma_{IR,\Delta^4_3} = 1.132$ \[37\]. For comparison, our n-loop results from \[13\] for this case are $\gamma_{IR,3\ell} = 0.500$ and $\gamma_{IR,4\ell} = 0.470$. Lattice studies of this theory include one that concludes that it is IR-conformal and gets an effective $\gamma_{IR} \approx 0.45$ \[50\] and another that concludes that it is not IR-conformal and gets an effective $\gamma_{IR} \approx 1$ \[51\].

In summary, we have presented calculations of $\gamma_{\bar{\psi}\psi,IR}$ and β^\prime_{IR} at a conformal IR fixed point of an asymptotically free gauge theory with fermions, to the highest orders yet achieved. We believe that these results are of fundamental value for the understanding of conformal field theory, especially because they are scheme-independent.

This research was supported in part by the Danish National Research Foundation grant DNRF90 to CP3-Origins at SDU (T.A.R.) and by the U.S. NSF Grant NSF-PHY-16-162028 (R.S.).

[1] The assumption of massless fermions incurs no loss of generality, since if a fermion had a nonzero mass m_0, it would be integrated out of the effective field theory at scales $\mu < m_0$, and hence would not affect the IR limit $\mu \to 0$.

[2] Some early analyses of connections between scale and conformal invariance include A. Salam, Ann. Phys. (NY) \textbf{53}, 174 (1969); D. J. Gross and J. Wess, Phys. Rev. D \textbf{2}, 753 (1970); C. G. Callan, S. Coleman, and R. Jackiw, Ann. Phys. (NY) \textbf{59}, 42 (1970). More recent works include J. Polchinski, Nucl. Phys. B \textbf{303}, 226 (1988); J.-F. Fortin, B. Grinstein and A. Stergiou, JHEP 01 (2013) 184 (2013); A. Dymarsky, Z. Komargodski, A. Schwimmer, and S. Thiesse, JHEP \textbf{10}, 171 (2015) and references therein.

[3] With flavor indices explicit, $\bar{\psi}_i \psi_j \equiv \sum_{\ell=1}^{N_f} \bar{\psi}_{i,\ell} \psi_{j,\ell}$.

[4] S. S. Gubser, A. Nellore, S. S. Pufu, and E. D. Rocha, Phys. Rev. Lett. \textbf{101}, 131601 (2008).

[5] D. J. Gross, in \textit{Methods in Field Theory}, eds. R. Balian and J. Zinn-Justin, Les Houches 1975 (North Holland, Amsterdam, 1976), p. 141.

[6] T. Banks and A. Zaks, Nucl. Phys. B \textbf{196}, 189 (1982).

[7] G. Grunberg, Phys. Rev. D \textbf{46}, 2228 (1992).

[8] T. A. Ryttov, Phys. Rev. Lett. \textbf{117}, 071601 (2016).

[9] T. A. Ryttov and R. Shrock, Phys. Rev. D \textbf{94}, 125005 (2016).

[10] T. A. Ryttov and R. Shrock, Phys. Rev. D \textbf{94}, 105014 (2016).

[11] E. Gardi and M. Karliner, Nucl. Phys. B \textbf{529}, 383 (1998); E. Gardi and G. Grunberg, JHEP 03, 024 (1999).

[12] F. A. Chishtie, V. Elias, V. A. Miransky, and T. G. Steele, Prog. Theor. Phys. \textbf{104}, 603 (2000).

[13] T. A. Ryttov and R. Shrock, Phys. Rev. D \textbf{83}, 056011 (2011).

[14] C. Pica, F. Sannino, Phys. Rev. D \textbf{83}, 035013 (2011).

[15] T. A. Ryttov and R. Shrock, Phys. Rev. D \textbf{86}, 065032 (2012); T. A. Ryttov and R. Shrock, Phys. Rev. D \textbf{86}, 085005 (2012); R. Shrock, Phys. Rev. D \textbf{88}, 036003 (2013); R. Shrock, Phys. Rev. D \textbf{90}, 045011 (2014); R. Shrock, Phys. Rev. D \textbf{91}, 125039 (2015); T. A. Ryttov, Phys. Rev. D \textbf{89}, 016013 (2014); T. A. Ryttov, Phys. Rev. D \textbf{89}, 056001 (2014); T. A. Ryttov, Phys. Rev. D \textbf{90}, 056007 (2014); G. Choi and R. Shrock, Phys. Rev. D \textbf{90}, 125029 (2014); G. Choi and R. Shrock, Phys. Rev. D \textbf{93}, 065013 (2016); G. Choi and R. Shrock, Phys. Rev. D \textbf{94}, 065038 (2016); J. A. Gracey and R. M. Simms, Phys. Rev. D \textbf{91}, 085037 (2015); P. M. Stevenson, Mod. Phys. Lett. A \textbf{31}, 1650226 (2016).

[16] T. A. Ryttov and R. Shrock, Phys. Rev. D \textbf{94}, 105015 (2016).

[17] Some recent reviews include S. Rychkov, \textit{EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions} [arXiv:1601.05000]; D. Simmons-Duffin, 2015 TASI Lectures on the Conformal Bootstrap [arXiv:1602.07982], and D. Poland, Nature Phys. \textbf{12}, 535 (2016).

[18] See, e.g., talks in the CP3 Workshop at http://cp3-origins.dk/events/meetings/mass2013 Lattice-2014 at https://www.bnl.gov/lattice2014; SCGT15 at http://www.kmi.nagoya-u.ac.jp/workshop/SCGT15 and Lattice-2015 at http://www.aics.riken.jp/sympo/lattice2015. Lattice-2016 at https://www.southampton.ac.uk/lattice2016; see also T. DeGrand, Rev. Mod. Phys. \textbf{88}, 015001 (2016).

[19] D. J. Gross and F. Wilczek, Phys. Rev. Lett. \textbf{30}, 1343 (1973); H. D. Politzer, Phys. Rev. Lett. \textbf{30}, 1346 (1973); G. ’t Hooft, unpublished.

[20] W. E. Caswell, Phys. Rev. Lett. \textbf{33}, 244 (1974); D. R. T. Jones, Nucl. Phys. B \textbf{75}, 531 (1974).

[21] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov (NSVZ), Nucl. Phys. B \textbf{229}, 381, 407 (1983); Phys. Lett. B \textbf{166}, 329 (1986).

[22] N. Seiberg, Nucl. Phys. B \textbf{435}, 129 (1995).

[23] C_A and C_T are the quadratic Casimir invariants for the adjoint representation and the fermion representation R and T_f is the trace invariant. We use the standard normalizations for these, so that for $G = SU(N_c)$,
Here, N_f is formally extended to the nonnegative real numbers, with the understanding that the physical values are nonnegative integers.

For all R cases considered, we have studied the ratios κ_{p-1}/κ_p and $|d_{p-1}/d_p|$ to get estimates of the rapidity of convergence of the series Eqs. (2) and (3). These suggest that for $R = F$, $\gamma_{IR,\Delta f}$ and $\beta'_{IR,\Delta f}$ should be reasonably accurate over a substantial part of the NACP. The convergence may be slower for $R = \text{adj}$ and $R = S$, with the narrower intervals I_{IR} in these cases.

Some SU(2) $N_f = 6$ lattice studies include F. Bursa et al., Phys. Lett. B696, 374 (2011); T. Karavirta et al., JHEP 1205 (2012) 003; M. Tomii et al., arXiv:1311.0099; M. Hayakawa et al., Phys. Rev. D 88, 094504, 094506 (2013); T. Appelquist et al., Phys. Rev. Lett. 112, 111601 (2014); V. Leino et al., arXiv:1610.09989; J. M. Suorsa et al., [arXiv:1611.02022] and references therein.

For all R cases considered, we have studied the ratios κ_{p-1}/κ_p and $|d_{p-1}/d_p|$ to get estimates of the rapidity of convergence of the series Eqs. (2) and (3). These suggest that for $R = F$, $\gamma_{IR,\Delta f}$ and $\beta'_{IR,\Delta f}$ should be reasonably accurate over a substantial part of the NACP. The convergence may be slower for $R = \text{adj}$ and $R = S$, with the narrower intervals I_{IR} in these cases.

Some SU(2) $N_f = 6$ lattice studies include F. Bursa et al., Phys. Lett. B696, 374 (2011); T. Karavirta et al., JHEP 1205 (2012) 003; M. Tomii et al., arXiv:1311.0099; M. Hayakawa et al., Phys. Rev. D 88, 094504, 094506 (2013); T. Appelquist et al., Phys. Rev. Lett. 112, 111601 (2014); V. Leino et al., arXiv:1610.09989; J. M. Suorsa et al., [arXiv:1611.02022] and references therein.

For all R cases considered, we have studied the ratios κ_{p-1}/κ_p and $|d_{p-1}/d_p|$ to get estimates of the rapidity of convergence of the series Eqs. (2) and (3). These suggest that for $R = F$, $\gamma_{IR,\Delta f}$ and $\beta'_{IR,\Delta f}$ should be reasonably accurate over a substantial part of the NACP. The convergence may be slower for $R = \text{adj}$ and $R = S$, with the narrower intervals I_{IR} in these cases.

For all R cases considered, we have studied the ratios κ_{p-1}/κ_p and $|d_{p-1}/d_p|$ to get estimates of the rapidity of convergence of the series Eqs. (2) and (3). These suggest that for $R = F$, $\gamma_{IR,\Delta f}$ and $\beta'_{IR,\Delta f}$ should be reasonably accurate over a substantial part of the NACP. The convergence may be slower for $R = \text{adj}$ and $R = S$, with the narrower intervals I_{IR} in these cases.

For all R cases considered, we have studied the ratios κ_{p-1}/κ_p and $|d_{p-1}/d_p|$ to get estimates of the rapidity of convergence of the series Eqs. (2) and (3). These suggest that for $R = F$, $\gamma_{IR,\Delta f}$ and $\beta'_{IR,\Delta f}$ should be reasonably accurate over a substantial part of the NACP. The convergence may be slower for $R = \text{adj}$ and $R = S$, with the narrower intervals I_{IR} in these cases.