Supporting Information for ”Representation of leaf-to-canopy radiative transfer processes improves simulation of far-red solar-induced chlorophyll fluorescence in the Community Land Model version 5”

Rong Li¹, Danica Lombardozzi², Mingjie Shi³, Christian Frankenberg⁴,⁵, Nicholas C. Parazoo⁵, Philipp Köhler⁴, Koong Yi¹,⁶, Kaiyu Guan⁷,⁸,⁹, Xi Yang¹

¹Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA ²Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA ³Pacific Northwest National Laboratory, Richland, WA 99352, USA ⁴Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA ⁵Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA ⁶Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ⁷College of Agricultural, Consumers, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA ⁸National Center of Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA ⁹Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment (iSEE), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Contents of this file

1. Text S1 to S8
2. Figures S1 to S15
3. Tables S1 to S3
Introduction

The supporting information includes: 1) details and/or derivation of some equations related to CLM SIF simulation (text S1–S7, Table S1, and Figure S1); 2) comparisons between escape probability at the near-infrared band and at 740 nm (text S8 and Figure S2); 3) supplementary evaluation of the escape probability method (Figure S3); 4) SCOPE inputs for evaluation of the escape probability method and for site-level simulations (Tables S2 and S3); 5) additional information about the evaluation CLM simulation at the site-level (Figures S4–S9 and S13) and at the global scale (Figures S10–S12, S14, and S15).

Text S1. Calculation of the actual photochemical yield Φ_p Based on previous work (Lee et al., 2015; CLM5.0 Technical Description, 2020), the actual photochemical yield ϕ_p for C3 and C4 plants are calculated by Eq. S1 and Eq. S2, respectively.

$$\phi_p = \phi_{po} \frac{J_e}{J_o}$$

(S1)

$$\phi_p = \phi_{po} \frac{A}{A_j}$$

(S2)

where ϕ_{po} is the dark adapted maximum photochemical yield calculated by Eq. 7 in the main text. J_e is the actual electron transport rate calculated as Eq. S3, J_o is the maximum possible electron transport rate calculated as Eq. S4, A is the leaf gross photosynthesis rate, and A_j is the light-limited rate of carboxylation.

$$J_e = 0.5(1 - fnps)APAR$$

(S3)

$$J_o = 4A \frac{C_i + 2C_p}{C_i - C_p}$$

(S4)
where \(fnps = 0.15 \) is the fraction of PAR absorbed by nonphotosynthetic materials, \(C_i \) is the leaf intercellular \(CO_2 \) concentration, \(C_p \) is the \(CO_2 \) compensation point. \(C_i, C_p, A \) and \(A_j \) are simulated by the original CLM model.

Text S2. Derivation of the bi-directional scattering coefficient

The bi-directional scattering coefficient \(w \) in Eq. 10 in the main text converts incident direct solar radiation to scattered radiation at the nadir direction. \(w \) is related to leaf angle distribution, solar direction, viewing direction, and leaf reflectance and transmittance. From the information available in CLM5, the mean leaf zenith angle \((\bar{\theta}_l) \) can be derived, but other information on leaf angle distribution is not available. Thus, we derive the formula for \(w \) with leaf zenith angle fixed at \(\bar{\theta}_l \), viewing direction set as nadir, and random leaf azimuth angle based on the method described in (Verhoef, 1984) as follows:

When the sum of leaf zenith angle \((\bar{\theta}_l) \) and solar zenith angle \((\theta_s) \) is less than \(\frac{\pi}{2} \) (i.e., \(\bar{\theta}_l \leq \frac{\pi}{2} - \theta_s \)), the Sun and the sensor are always on the same side of the leaf. \(w(\bar{\theta}_l) \) can be calculated as:

\[
w(\bar{\theta}_l) = \frac{1}{2\pi} \int_0^{2\pi} f_s f_o d\phi = \frac{1}{2\pi} \int_0^{2\pi} \frac{\cos \theta_s \cos \bar{\theta}_l + \sin \theta_s \sin \bar{\theta}_l \cos \phi}{\cos \theta_s} \rho \cos \bar{\theta}_l d\phi = \rho \cos^2 \bar{\theta}_l (S5)
\]

where \(f_s \) and \(f_o \) are conversion factors associated with the projection of solar radiation and radiation at nadir viewing direction on leaf, respectively. And \(f_s \) and \(f_o \) are calculated as \(\frac{\cos \theta_s \cos \bar{\theta}_l + \sin \theta_s \sin \bar{\theta}_l \cos \phi}{\cos \theta_s} \) and \(\cos \bar{\theta}_l \), respectively (see Verhoef, 1984).

If \(\bar{\theta}_l > \frac{\pi}{2} - \theta_s \), the Sun and the sensor are on different sides of the leaf when the relative azimuth angle between leaf normal and solar direction exceeds a threshold \(\gamma \). In this case, \(w(\bar{\theta}_l) \) is calculated as:
\[w(\bar{\theta}_l) = \frac{1}{2\pi} \left[\int_{-\gamma}^{\gamma} f_s \rho f_o d\phi - \int_{-\gamma}^{2\pi-\gamma} f_s \tau f_o d\phi \right] \]
\[= \frac{1}{2\pi} \cos \bar{\theta}_l \left[\int_{-\gamma}^{\gamma} (\cos \theta_s \cos \bar{\theta}_l + \sin \theta_s \sin \bar{\theta}_l \cos \phi) d\phi - \tau \int_{-\gamma}^{2\pi-\gamma} (\cos \theta_s \cos \bar{\theta}_l + \sin \theta_s \sin \bar{\theta}_l \cos \phi) d\phi \right] \]
\[= \frac{1}{\pi} \left[\cos^2 \bar{\theta}_l \left(\gamma (\rho + \tau) - \pi \tau \right) + \sin \gamma \tan \theta_s \sin \bar{\theta}_l \cos \bar{\theta}_l (\rho + \tau) \right] \]

(S6)

where

\[\gamma = \arccos \left(-\frac{\cos \theta_s \cos \bar{\theta}_l}{\sin \theta_s \sin \bar{\theta}_l} \right) \]

(S7)

Text S3. Calculation of the upscatter parameter for the observing direction

As is shown in (Verhoef, 1984), scattering coefficients that converts direct solar radiation to upward or downward diffuse radiation is the same as the scattering coefficients that convert upward or downward diffuse radiation to the viewing direction, if the viewing zenith angle equals the solar zenith angle. Therefore, calculation of \(\beta'_o \) is similar to the calculation of \(\beta_0 \) in CLM5 (see CLM5.0 Technical Description, 2020), and the only modification needed is to replace solar angle with viewing angle (i.e., nadir in this study):

\[\omega \beta'_o = \frac{1 + \bar{\mu} K_o}{\bar{\mu} K_o} a_s(\mu_o) \]

(S8)

where

\[a_s(\mu_o) = \frac{\omega}{2} \int_0^1 \frac{\mu' G(\mu_o)}{\mu_o G(\mu') + \mu' G(\mu_o)} d\mu' \]

(S9)

definitions of the variables can be found in the main text.

Text S4. Solution of the radiative transfer equations
The only difference between Eqs. 10a and 10b and the radiative transfer equations in the original CLM5 (Eqs. 3.1 and
3.2 in *CLM5.0 Technical Description*, 2020) is the inclusion of clumping index (CI). The solution of Eqs. 10a and 10b (i.e., I_\uparrow and I_\downarrow) is similar to the solution of the radiative transfer equations in original CLM5 (see *CLM5.0 Technical Description*, 2020; Sellers, 1985), the only change needed is to scale leaf area index and stem area index with CI and is not provided here. Here we provided the solution for the radiation flux at the observing direction (I_o, the third line of Eq. 10). Following the method used by (Verhoef, 1998) and integrating the solutions of I_\uparrow and I_\downarrow, Eq. 10c (i.e., I_o) is solved as follows. Definitions of variables that have been provided in the main text are not repeated here.

Gap probability at the viewing direction is introduced as Eq. S10. The hotspot effect is not considered as most current satellite SIF products are not likely affected by the hotspot effect according to the orbits and overpass time of the satellites. While a small fraction of TROPOMI observations are affected by the hotspot effect (Köhler et al., 2018), only the measurements with phase angle (angle between the directions of the Sun and the sensor) larger than 20° from TROPOMI was used for comparisons with CLM SIF in the study. Thus, the impact of the hotspot effect on our comparison between CLM simulated SIF and TROPOMI observed SIF is minimal.

$$P_o = \exp[-K_o \cdot CI(L + S)]$$ \hspace{1cm} (S10)

The differential equation for $I_o P_o$ can be derived as:

$$\frac{dI_o P_o}{d(L + S) CI} = \frac{d(I_o \exp[-K_o \cdot CI(L + S)])}{d(L + S) CI} = P_o \frac{dI_o}{d(L + S) CI} - K_o I_o P_o$$ \hspace{1cm} (S11)

Thus,

$$-\frac{dI_o P_o}{d(L + S) CI} = P_o \left(we^{-K \cdot CI(L+S)} + v I_\uparrow + v'I_\downarrow\right)$$ \hspace{1cm} (S12)
Contribution of vegetation (i.e., excluding soil) to I_o at top-of-canopy (TOC) can be calculated as:

$$I_{o,v}(0) = I_{o,v}(0)P_o(0) = \int_{0}^{L_T+S_T} -e^{-K_oCI(L+S)} [we^{-K_oCI(L+S)} + vI^\uparrow + v' I^\downarrow] \, CId(L+S)$$

where L_T and S_T are total leaf area index and total stem area index, respectively.

By combining Eq. S13 with solutions of Eqs. 10a and 10b, contribution of vegetation to I_o at TOC for direct incident radiation and diffuse incident radiation can be derived as Eqs. S14 and S15, respectively.

$$I_{o,v}^{\text{dir}}(0) = h_{11} \frac{1 - s_2s_3}{K + K_o} + h_{12} \frac{1 - s_1s_3}{h + K_o} + h_{13} \frac{1 - s_3/s_1}{K_o - h}$$ \hspace{1cm} (S14)

$$I_{o,v}^{\text{dif}}(0) = h_{14} \frac{1 - s_1s_3}{h + K_o} + h_{15} \frac{1 - s_3/s_1}{K_o - h}$$ \hspace{1cm} (S15)

where

$$s_3 = e^{-K_oCI(L+S)}$$ \hspace{1cm} (S16)

$$h_{11} = w + \frac{vh_1}{\sigma} + \frac{v'h_4}{\sigma}$$ \hspace{1cm} (S17)

$$h_{12} = vh_2 + v'h_5$$ \hspace{1cm} (S18)

$$h_{13} = vh_3 + v'h_6$$ \hspace{1cm} (S19)

$$h_{14} = vh_7 + v'h_9$$ \hspace{1cm} (S20)

$$h_{15} = vh_8 + v'h_{10}$$ \hspace{1cm} (S21)

Definitions of other variables are the same as in (CLM5.0 Technical Description, 2020), except that L and S are scaled by CI. For cases where $K_o - h$ is close to zero ($|K_o - h| < 10^{-6}$), the first two terms of Taylor series are used for Eqs. S14 and S15, and the possible singularity when $\sigma = 0$ is taken care of with an approach similar to that presented by (Dai et al., 2004).

Contribution of soil to I_o at TOC can be calculated as Eqs. S22 and S23 for direct incident radiation and diffuse incident radiation, respectively.
where $I_{\text{dir} o,s}$ and $I_{\text{diff} o,s}$ are downward diffuse radiation at the bottom of canopy per direct incident radiation and diffuse incident radiation, respectively. And they are solutions of Eqs. 10a and 10b.

Finally, I_o at TOC per direct and diffuse incident radiation are calculated as Eqs. S24 and S25, respectively. TOC nadir reflectance and hemispherically integrated reflectance can be calculated as Eq. S26 and Eq. S27, respectively.

$$R_c,\text{nadir} = \left[S_{\text{dir}} \mu I_{\text{dir} o} + S_{\text{diff} o} \right] / (S_{\text{dir} o} + S_{\text{diff} o})$$

$$R_c,\text{hem} = \left[S_{\text{dir} o} \mu I_{\text{dir} o} + S_{\text{diff} o} \right] / (S_{\text{dir} o} + S_{\text{diff} o})$$

where $I_{\text{dir} o}$ and $I_{\text{diff} o}$ are upward diffuse radiation at TOC per direct incident radiation and diffuse incident radiation, respectively.

Text S5. Calculation of transmittance coefficients

Here, we provide both an intuitive explanation and a proof based on radiative transfer for Eqs. S28 and S29 that link upward transmittance coefficients with downward transmittance coefficients (i.e., Eq. 23 in the main text). Note that while Eq. S29 is for nadir direction in this study, the relationship is valid for any direction.
\[
T_{sh} = T_{ii}
\]
\[
T_{sn} = T_{in} + T_{nn}
\]

where \(T_{sh}\) and \(T_{sn}\) are the transmittance coefficients that represent the probabilities for radiation from soil to escape the top of canopy (directly or after scattering) from any direction in the upper hemisphere and at the nadir direction, respectively. \(T_{ii}\) is the downward diffuse flux below canopy per unit incident diffuse flux, \(T_{in}\) is the downward diffuse flux below canopy per unit nadir incident radiation, and \(T_{nn}\) is the probability that downward nadir flux reaches soil without interception by the canopy.

As canopy is vertically homogeneous (there is no vertical variation of canopy structural and optical properties) in CLM, downward and upward radiative transfer processes are similar. Transmittance of upward diffuse radiation from soil to upward diffuse radiation at TOC can be considered as the sum of three components (Fig. S1): 1) transmittance of diffuse radiation from soil to TOC without interaction with canopy (\(t_1\)); 2) transmittance of diffuse radiation from soil to TOC after scattering within canopy (without interaction with soil, \(t_2\)); 3) transmittance of diffuse radiation from soil to TOC with multiple scattering that involves soil (\(t_3\)). Similarly, transmittance of downward diffuse radiation from TOC to soil consists of three components: \(t'_1\), \(t'_2\), and \(t'_3\). Their definitions are the same as \(t_1\), \(t_2\), and \(t_3\), except that the fluxes are downward from TOC to soil. As the canopy is vertically homogeneous, upward and downward fluxes are identical. Therefore, we have \(t_1 = t'_1\), \(t_2 = t'_2\), and \(t_3 = t'_3\). Thus,

\[
T_{sh} = t_1 + t_2 + t_3 = t'_1 + t'_2 + t'_3 = T_{ii}
\]

The explanation for Eq. S29 is similar. Transmittance of upward diffuse radiation from soil to upward nadir radiation at TOC can be considered as the sum of three components
(Fig. S1): 1) transmittance of nadir radiation from soil to TOC without interaction with the canopy (t_4); 2) transmittance of diffuse radiation from soil to nadir radiation at TOC after scattering within canopy (without interaction with soil), which can in turn be considered as the product of the transmittance of diffuse radiation from soil to the last point of interaction with vegetation (t_6) and the transmittance of nadir radiation from the last point of interaction with vegetation to TOC (t_5); 3) transmittance of diffuse radiation from soil to nadir radiation at TOC with multiple scattering that involves soil, which can in turn be considered as the product of the transmittance of diffuse radiation from soil to the last point of interaction (the last point may be at soil surface or within canopy, t_8) and the transmittance of nadir radiation from the last point of interaction to TOC (t_7). Similarly, t'_4, t'_5, t'_6, t'_7, and t'_8 can be identified as components of the transmittance of downward nadir radiation at TOC to downward radiation at the bottom of canopy, whose definitions are the same as t_4–t_8, except that the fluxes are downward. As upward and downward fluxes are identical for vertically homogeneous canopy, we have $t_4 = t'_4$, $\cdots t_8 = t'_8$. Thus,

$$T_{sn} = t_4 + t_6 t_5 + t_8 t_7 = t'_4 + t'_5 t'_6 + t'_7 t'_8 = T_{nn} + T_{in} \quad (S31)$$

Eqs. S28 and S29 can also be derived from radiative transfer equations. T_{ii} and T_{in} have been derived in previous literature as Eq. S32 and Eq. S33 (CLM5.0 Technical Description, 2020). T_{nn} is P_o calculated by Eq. S10. T_{sh} and T_{sn} are I_{\uparrow} and I_o at TOC (i.e., $L + S = 0$) solved from Eq. S34 under the boundary condition defined in Eq. S35, respectively. By comparing Eq. S36a when $L + S = 0$ with Eq. S32 and comparing Eq. S36c when $L + S = 0$ with Eqs. S10 and S33, Eqs. S28 and S29 can be derived.
\[T_{ii} = h_9 s_1 + h_{10} s_1 = \frac{u_2 + \tilde{\mu} h}{d_2} - \frac{(u_2 - \tilde{\mu} h)}{d_2} = \frac{2 \tilde{\mu} h}{d_2} \]
(S32)

\[T_{in} = \frac{h_4}{\sigma} e^{-K_o C_l (L_T + S_T)} + h_5 s_1 + \frac{h_6}{s_1} \]
(S33)

\[
\begin{aligned}
 -\frac{\mu}{d(L + S) C_l} \frac{dI_{\uparrow}}{dt} + [1 - (1 - \beta)\omega]I_{\uparrow} - \omega I_{\downarrow} &= 0 \\
 \frac{\mu}{d(L + S) C_l} \frac{dI_{\downarrow}}{dt} + [1 - (1 - \beta)\omega]I_{\downarrow} - \omega I_{\uparrow} &= 0 \\
 -\frac{dI_o}{d(L + S) C_l} &= vI_{\uparrow} + v'I_{\downarrow} - K_o I_o
\end{aligned}
(S34a)

\[
\begin{aligned}
 I_{\downarrow}(0) &= 0 \\
 I_{\uparrow}(L_T + S_T) &= 1 + \alpha g I_{\downarrow}(L_T + S_T)
\end{aligned}
(S35a)

where \(I_{\downarrow}(0) \) is downward diffuse radiation at TOC, \(I_{\uparrow}(L_T + S_T) \) and \(I_{\downarrow}(L_T + S_T) \) are upward and downward diffuse radiation at bottom of canopy (cumulative plant area index of \(L_T + S_T \)), respectively. See (CLM5.0 Technical Description, 2020) for the definition of other variables. Solution of Eq. S34 under the boundary condition of Eq. S35 is:

\[
\begin{aligned}
 I_{\uparrow} &= \frac{b + \tilde{\mu} h}{d_2} e^{h \cdot C_l (L + S)} - \frac{b - \tilde{\mu} h}{d_2} e^{-h \cdot C_l (L + S)} \\
 I_{\downarrow} &= \frac{c}{d_2} \left[e^{h \cdot C_l (L + S)} - e^{-h \cdot C_l (L + S)} \right] \\
 I_o &= \frac{v(b + \tilde{\mu} h) + v' c}{d_2(K_o - h)} \left(e^{(h-K_o) C_l (L + S)} - e^{[(h-K_o) C_l (L_T + S_T)]} \right) \\
 &\quad - \frac{v(b - \tilde{\mu} h) + v' c}{d_2(K_o + h)} \left(e^{[-(K_o+h) C_l (L + S)]} - e^{[-(K_o+h) C_l (L_T + S_T)]} \right) \\
 &\quad + e^{-K_o C_l (L_T + S_T - L - S)} \left[1 + \alpha g \frac{c}{d_2} e^{h \cdot C_l (L_T + S_T)} - \alpha g \left(\frac{c}{d_2} \right) e^{-h \cdot C_l (L_T + S_T)} \right]
\end{aligned}
(S36a)

(S36b)

(S36c)

Text S6. Correction of incident PAR

When not coupled with the Community Atmosphere Model (CAM), the original CLM estimates incident PAR by assuming a fixed ratio of 0.5 between incident PAR and short-
wave radiation (SR) (CLM5.0 Technical Description, 2020). However, the ratio (0.5) is too high according to literature, especially when PAR is defined as 400-700 nm as in CLM (Tsubo & Walker, 2005). Based on measurements at 31 Ameriflux sites (Table S1), we set the ratio between incident PAR and SR to 0.435 for simulation of photosynthesis and fluorescence (except for CLM5SP-exp4). Radiation for other parts of CLM was not changed.

Text S7. Modifications for the calculation of APAR

In the original CLM5, absorbed photosynthetically active radiation (APAR) per leaf area was calculated using Eq. S37. Thus, stem and snow affect APAR per leaf area. We remove the impact of stem and snow on APAR per leaf area by introducing correction factors as shown in Eq. S38.

\[
APAR = \frac{APAR_{\text{tot}}}{eLAI + eSAI} \tag{S37}
\]

where \(APAR\) is APAR per leaf area, \(APAR_{\text{tot}}\) is total PAR absorbed by leaf, stem, and snow. \(eLAI\) and \(eSAI\) are leaf area index and stem area index not buried by snow, respectively.

\[
APAR = \frac{APAR_{\text{leaf}}}{eLAI} \tag{S38}
\]

where

\[
APAR_{\text{leaf}} = PAR_{\text{leaf}}(1 - \omega_{\text{leaf}}) = PAR_{\text{veg}} \frac{eLAI}{eLAI + eSAI}(1 - \omega_{\text{leaf}}) = APAR_{\text{veg}} \frac{eLAI}{1 - \omega_{\text{veg}} eLAI + eSAI}(1 - \omega_{\text{leaf}}) \tag{S39}
\]
\[APAR_{\text{veg}} = PAR_{\text{veg}} (1 - \omega_{\text{veg}}) = PAR_{\text{tot}} (1 - f_{\text{snow}})(1 - \omega_{\text{veg}}) = \frac{APAR_{\text{tot}}}{1 - \omega_{\text{tot}}}(1 - f_{\text{snow}})(1 - \omega_{\text{veg}}) \] (S40)

where \(APAR_{\text{leaf}} \) and \(APAR_{\text{veg}} \) are total PAR absorbed by leaf and by vegetation (leaf and stem), respectively; \(PAR_{\text{tot}}, PAR_{\text{leaf}}, \) and \(PAR_{\text{veg}} \) are total PAR intercepted by the whole canopy (leaf, stem, and snow), by leaf, and by vegetation, respectively; \(f_{\text{snow}} \) is the fraction of canopy that is snow-covered; \(\omega_{\text{leaf}}, \omega_{\text{veg}}, \) and \(\omega_{\text{tot}} \) are single scattering albedo for leaf, vegetation, and the total canopy, respectively.

Text S8. Escape probability at the near-infrared band and at 740 nm

As there is only one visible band (0.4–0.7 \(\mu \)m) and one near-infrared (NIR) band (0.7–4.0 \(\mu \)m) in CLM5, we used the escape probability calculated with NIR reflectance and transmittance to approximate the escape probability at 740 nm. Here we test the difference between leaf reflectance, leaf transmittance, and fluorescence escape probability at 740 nm and in the near-infrared (NIR) band with the LOPEX93 dataset (Hosgood et al., 1993) and the SCOPE model. NIR reflectance and transmittance were calculated by weighting leaf reflectance and transmittance spectra by white-sky solar radiation spectrum over the spectral range of 700–2500 nm according to (Majasalmi & Bright, 2019) (Eqs. S41 and S42). The white-sky solar radiation spectrum was obtained by the SCOPE model with default inputs. Leaf biophysical and biochemical parameters from the LOPEX93 dataset were then used as inputs for SCOPE simulations. Fluorescence escape probability at 740 nm was simulated with both true leaf reflectance and transmittance at 740 nm and with NIR leaf reflectance and transmittance. For the 315 samples in the LOPEX93 dataset (samples that do not provide all parameters and those with leaf chlorophyll content less than 2 \(\mu \text{g} \cdot \text{m}^{-2} \) were excluded), the relative error between leaf reflectance, leaf transmitt-
tance, and fluorescence escape probability at 740 nm and at the NIR band was always less than 11% and was less than 5% for most cases (Fig. S2). Besides, there were both overestimation and underestimation. Therefore, the escape probability at the NIR band can serve as a good approximation of the escape probability at 740 nm.

\[
\rho_{\text{nir}} = \frac{\int_{700}^{2500} \rho(\lambda) E_{\text{sky}}(\lambda) d\lambda}{\int_{700}^{2500} E_{\text{sky}}(\lambda) d\lambda}
\]

\[
\tau_{\text{nir}} = \frac{\int_{700}^{2500} \tau(\lambda) E_{\text{sky}}(\lambda) d\lambda}{\int_{700}^{2500} E_{\text{sky}}(\lambda) d\lambda}
\]

where \(\rho_{\text{nir}}\) and \(\tau_{\text{nir}}\) are NIR leaf reflectance and transmittance, respectively; \(\rho(\lambda)\), \(\tau(\lambda)\), and \(E_{\text{sky}}(\lambda)\) are the spectra of leaf reflectance, leaf transmittance and white-sky solar radiation, respectively.

References

Clm5.0 technical description. (2020). Retrieved from http://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf

Dai, Y., Dickinson, R. E., & Wang, Y.-P. (2004). A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance. *JOURNAL OF CLIMATE*, 17, 19.

Féret, J.-B., François, C., Asner, G. P., Gitelson, A. A., Martin, R. E., Bidé, L. P., ... Jacquemoud, S. (2008). Prospect-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. *Remote sensing of environment*, 112(6), 3030–3043.

Hosgood, B., Jacquemoud, S., Andreeoli, G., Verdebout, J., Pedrini, A., & Schmuck, G. (1993). *Leaf Optical Properties Experiment Database (LOPEX93) data set. available*
Köhler, P., Frankenberg, C., Magney, T. S., Guanter, L., Joiner, J., & Landgraf, J. (2018). Global Retrievals of Solar-Induced Chlorophyll Fluorescence With TROPOMI: First Results and Intersensor Comparison to OCO-2. *Geophysical Research Letters, 45*(19), 10,456–10,463. doi: 10.1029/2018GL079031

Lee, J.-E., Berry, J. A., van der Tol, C., Yang, X., Guanter, L., Damm, A., . . . Frankenberg, C. (2015, September). Simulations of chlorophyll fluorescence incorporated into the Community Land Model version 4. *Global Change Biology, 21*(9), 3469–3477. doi: 10.1111/gcb.12948

Majasalmi, T., & Bright, R. M. (2019). Evaluation of leaf-level optical properties employed in land surface models. *Geoscientific Model Development, 12*(9), 3923–3938. doi: 10.5194/gmd-12-3923-2019

Sellers, P. J. (1985, August). Canopy reflectance, photosynthesis and transpiration. *International Journal of Remote Sensing, 6*(8), 1335–1372. doi: 10.1080/01431643.1985.9523361

Tsubo, M., & Walker, S. (2005, February). Relationships between photosynthetically active radiation and clearness index at Bloemfontein, South Africa. *Theoretical and Applied Climatology, 80*(1), 17–25. doi: 10.1007/s00704-004-0080-5

Verhoef, W. (1984, October). Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. *Remote Sensing of Environment, 16*(2), 125–141. doi: 10.1016/0034-4257(84)90057-9

Verhoef, W. (1998). *Theory of radiative transfer models applied in optical remote sensing of vegetation canopies* (Unpublished doctoral dissertation). Nationaal Lucht- en
Verrelst, J., Rivera, J. P., van der Tol, C., Magnani, F., Mohammed, G., & Moreno, J. (2015, September). Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence? *Remote Sensing of Environment, 166*, 8–21. doi: 10.1016/j.rse.2015.06.002
Figure S1. Intuitive explanation of Eqs. S28 and S29. a) transmittance of upward diffuse radiation from soil to upward diffuse radiation at TOC. b) transmittance of upward radiation from soil to upward nadir radiation at TOC. c) transmittance of downward diffuse radiation at TOC to downward diffuse radiation at the bottom of canopy. d) transmittance of downward nadir radiation at TOC to downward radiation at the bottom of canopy. Black represents diffuse radiation, blue represent nadir radiation.

Figure S2. a) Relative difference between leaf reflectance (blue) and transmittance (red) at 740 nm and in the NIR band. b) Relative difference between escape probability at 740 nm and in the NIR band.
Figure S3. Evaluation of the escape probability method that we have incorporated in CLM5 with SCOPE for a) hemispherically integrated SIF at TOC \((SIF_{\text{hem}})\) and b) TOC SIF at the nadir direction \((SIF_{\text{nadir}})\). TOC SIF was limited to the realistic range of \(0–10 \text{ W} \cdot \text{m}^{-2} \cdot \text{sr}^{-1} \cdot \text{µm}^{-1}\).

Figure S4. Comparison between APAR simulated by CLM5SP-exp1 and SCOPE at a) Pace Forest, b) Harvard Forest, c) US-NR1, d) US-NE3, and e) BR-Sa1.
Figure S5. Comparison between Φ_f simulated by CLM5SP-exp1 and SCOPE at a) Pace Forest, b) Harvard Forest, c) US-NR1, d) US-NE3, and e) BR-Sa1.
Figure S6. Comparison between $f_{SIF}^{esc, nadir}$ simulated by CLM5SP-exp1 and SCOPE at a) Pace Forest, b) Harvard Forest, c) US-NR1, d) US-NE3, and e) BR-Sa1.
Figure S7. Comparison between nadir reflectance simulated by CLM5SP-exp1 and SCOPE at a) Pace Forest, b) Harvard Forest, c) US-NR1, d) US-NE3, and e) BR-Sa1.
Figure S8. Comparisons between nadir SIF simulated by SCOPE (blue solid lines), simulated by CLM5SP-exp1 (red dash-dotted dotted lines), simulated by CLM5SP-exp9 (with sustained NPQ, grey dotted line), observed from tower (green dashed lines) and observed from GOME-2 (asterisks) at US-NR1

Figure S9. Comparisons between nadir SIF simulated by CLM5SP-exp9 (with sustained NPQ) and observed at tower at US-NR1
Figure S10. Global maps of the difference between multi-year average CLM5SP-exp2 SIF and GOME-2 SIF (a); CLM5SP-exp3 SIF and GOME-2 SIF (b), CLM5SP-exp4 SIF and GOME-2 SIF (c). And the improvements of the comparison to GOME-2 SIF by considering bidirectional effect (d, $|\text{CLM5SP-exp2 - GOME-2}| - |\text{CLM5SP-exp1 - GOME-2}|$), clumping (e, $|\text{CLM5SP-exp3 - GOME-2}| - |\text{CLM5SP-exp1 - GOME-2}|$), and correction of PAR (f, $|\text{CLM5SP-exp4 - GOME-2}| - |\text{CLM5SP-exp1 - GOME-2}|$).
Figure S11. Comparison between seasonal variations of SIF observed by OCO-2 (blue solid lines), simulated by CLM5SP-exp1 (orange dashed lines), and simulated by CLM5BGC-exp1 (green dash-dotted lines) for a) broadleaf deciduous temperate tree, b) needleleaf evergreen boreal tree, c) broadleaf evergreen tropical tree, d) crop, and e) C3 non-arctic grass. All pixels dominated (> 70% land unit) by the corresponding PFT were used for comparison, locations of the pixels are the same for CLM5SP-exp1 and CLM5BGC-exp1 and are shown in f): blue: broadleaf deciduous temperate tree, cyan: needleleaf evergreen boreal tree, green: broadleaf evergreen tropical tree, yellow: crop, and red: C3 non-arctic grass. Pace SIF values are averages from 2008 to 2014, OCO-2 SIF values are from September 2014 to April 2018.
Figure S12. Comparison between seasonal variations of SIF observed by TROPOMI (blue solid lines), simulated by CLM5SP-exp1 (orange dashed lines), and simulated by CLM5BGC-exp1 (green dash-dotted lines) for a) broadleaf deciduous temperate tree, b) needleleaf evergreen boreal tree, c) broadleaf evergreen tropical tree, d) crop, and e) C3 non-arctic grass. All pixels dominated (> 70% land unit) by the corresponding PFT were used for comparison, locations of the pixels are the same for CLM5SP-exp1 and CLM5BGC-exp1 and are shown in f): blue: broadleaf deciduous temperate tree, cyan: needleleaf evergreen boreal tree, green: broadleaf evergreen tropical tree, yellow: crop, and red: C3 non-arctic grass. CLM SIF values are averages from 2008 to 2014, TROPOMI SIF values are from April 2018 to March 2020.
Figure S13. Comparisons between nadir SIF simulated by SCOPE with the new spectral distribution function for SIF emission (blue solid lines), simulated by SCOPE with the old spectral distribution function for SIF emission (grey dotted lines), simulated by CLM5SP-exp1 (red dash-dotted line), observed from tower (green dashed lines) and observed from satellites (asterisks) at a) Pace Forest, b) Harvard Forest, c) US-NR1, d) US-NE3, and e) BR-Sa1.
Figure S14. Seasonal variations (average of 2008–2014) of SIF observed by GOME-2 (blue solid line), simulated by CLM5SP-exp1 (orange dashed line), simulated by CLM5BGC-exp1 SIF (green dash-dotted line), and simulated by CLM5SP-exp5 (purple dotted line) for boreal needleleaf evergreen tree (location indicated in Fig. 6f).

Figure S15. Seasonal variations (average of 2008–2014) of LAI from MODIS product (blue solid line), prescribed for CLM5SP-exp1 (red dashed line), and simulated by CLM5BGC-exp1 (green dash-dotted line) for a) needleleaf evergreen boreal, and b) crop in the United States.
Site name	Latitude	Longitude	Start year	End year	mean PAR/SR	DOI
AR-TF1	-54.9733	-66.7335	2016	2018	0.469656	10.17190/AMF/1543389
CA-CF2	58.6658	-93.83	2008	2011	0.505076	10.17190/AMF/1634879
CA-Ca1	49.8673	-125.334	1996	2010	0.422588	10.17190/AMF/1480300
CA-Ca3	49.8705	-125.291	1999	2010	0.418955	10.17190/AMF/1480302
CA-LP1	55.11194	-122.841	2007	2016	0.423894	10.17190/AMF/1660337
CA-Obs	53.98717	-105.118	1997	2010	0.440207	10.17190/AMF/1375198
MX-Aog	26.99683	-108.789	2015	2018	0.437952	10.17190/AMF/1756414
MX-PMm	20.84617	-86.8992	2017	2018	0.420761	10.17190/AMF/1756415
PE-QFR	-3.83444	-73.319	2013	2016	0.426774	10.17190/AMF/1756433
US-A10	71.3242	-156.615	2011	2019	0.472556	10.17190/AMF/1498753
US-An1	68.99	-150.28	2008	2019	0.394907	10.17190/AMF/1246142
US-BZF	64.70373	-148.313	2013	2016	0.426774	10.17190/AMF/1756433
US-Bo1	40.0062	-88.2904	1996	2008	0.407699	10.17190/AMF/1246036
US-Hn2	46.68866	-119.464	2015	2018	0.433935	10.17190/AMF/1562389
US-Ho1	45.2041	-68.7402	1996	2018	0.459791	10.17190/AMF/1246061
US-Mpj	34.4385	-106.238	2008	2019	0.412291	10.17190/AMF/1246123
US-NR1	40.0329	-105.546	1998	2020	0.407762	10.17190/AMF/1246088
US-Ne2	41.16487	-96.4701	2001	2019	0.428731	10.17190/AMF/1246085
US-Ro1	44.7143	-93.0898	2004	2016	0.439374	10.17190/AMF/1246092
US-SR1	31.78938	-110.828	2008	2020	0.411883	10.17190/AMF/1246154
US-Tw1	38.1074	-121.647	2011	2020	0.420457	10.17190/AMF/1246147
US-Vcs	35.9193	-106.614	2016	2019	0.443394	10.17190/AMF/1416861
US-xBN	65.15401	-147.503	2017	2020	0.452766	10.17190/AMF/1617727
US-xDJ	63.88112	-145.751	2017	2020	0.446562	10.17190/AMF/1634884
US-xML	37.37828	-80.5248	2017	2020	0.438178	10.17190/AMF/1671897
US-xNQ	40.17759	-112.452	2017	2020	0.424364	10.17190/AMF/1617733
US-xSB	29.68927	-81.9934	2017	2020	0.441938	10.17190/AMF/1671899
US-xTR	45.49369	-89.5857	2017	2020	0.439434	10.17190/AMF/1634886
US-xUK	39.04043	-95.1922	2017	2020	0.443933	10.17190/AMF/1617740
US-xUN	46.23388	-89.5373	2017	2020	0.449242	10.17190/AMF/1617741
US-xWD	47.12823	-99.2414	2017	2020	0.446499	10.17190/AMF/1579724
Table S2. Variation ranges of SCOPE input parameters for evaluation of the escape probability method. The parameters were selected based on sensitivity analysis (Verrelst et al., 2015), and the variation range of the parameters are determined based on published datasets and expert knowledge (Féret et al., 2008).

Input	Interpretation	Unit	Range	
N	Leaf mesophyll structural parameter	–	1–3	
Cw	Leaf water equivalent layer	cm	0–0.0713	
Cdm	Leaf dry matter content g·cm⁻²	g·cm⁻²	0–0.0331	
Cab	Leaf chlorophyll content µg·cm⁻²	µg·cm⁻²	5–100	
LIDFa, LIDFb	Leaf inclination distribution function parameters	–	-1–1 with constrain of	[LIDFa]+[LIDFb] ≤1
LAI	Leaf area index m²·m⁻²	m²·m⁻²	0.2–7	
hc	Canopy height m	m	0.1–30	
SZA	Solar zenith angle degree	degree	0–70	
Vcmo	Maximum carboxylation capacity (at optimum temperature) fluorescence quantum	µmol·m⁻²·s⁻¹	0–200	
fqe	fluorescence quantum yield efficiency at photosystem level	–	0–0.04	
Type	Photochemical Pathway	–	0, 1	
Rin	Broadband incoming shortwave radiation (0.4-2.5 um)	W·m⁻²	0–1200	
spectrum	Type of soil reflectance spectrum	–	1, 2, 3	
Atmos_file	File defining atmospheric radiation conditions	–	FLEX-S3.Std.atm, FLEX-S3.V05.atm, FLEX-S3.V80.atm, FLEX-S3.Dry.atm, FLEX-S3.Wet.atm, FLEX-S3.H0000.atm, FLEX-S3.H1200.atm, FLEX-S3.Mar.atm, FLEX-S3.Urb.atm, FLEX-S3.Trop.atm, FLEX-S3.Wint.atm	
Table S3. Parameters used for site-level SCOPE simulations

Site	Chlorophyll content (µg·cm\(^{-2}\))	Vcmo (µmol·m\(^{-2}·s\(^{-1}\))	LIDFa	Clumping index
Virginia Forest Research Facility (Pace Forest)	40	58	-0.1732	0.71
Harvard Forest (Barn)	40	58	-0.1732	0.71
US-NR1	25	30	-0.4021	0.53
US-NE3	40	100	-0.672	0.75
BR-Sa1	40	41	-0.3189	0.70