NON–EXISTENCE RESULTS AND ANALYTICAL BOUNDS OF EIGENVALUES FOR A CLASS OF FRACTIONAL EIGENVALUE PROBLEMS

MOHAMMED AL–REFAI

Abstract. In this paper, we study a class of linear and nonlinear fractional eigenvalue problems with fractional derivative of Caputo type. The problem is obtained by fractionalizing a term of the well-known Sturm-Liouville operator and it covers a wide class of fractional eigenvalue problems. By applying simple maximum principles, we obtain necessary conditions for the existence of eigenfunctions and analytical bounds for the eigenvalues. We also establish a uniqueness result for the nonlinear eigenvalue problem. The results in this paper are discussed in two common spaces of fractional derivatives.

Mathematics subject classification (2010): 34A08, 34Bxx, 35J40.

Keywords and phrases: Fractional differential equations, Caputo fractional derivative, maximum principles, Sturm-Liouville eigenvalue problems.

REFERENCES

[1] A RWA BA ABDULLA, M. AL–REFAI AND A. AL–RAWASHDEH, On the Existence and Uniqueness of Solutions for a Class of non–Linear Fractional Boundary Value Problems, Journal of King Saud University–Science, 28 (2016), 103–110.
[2] T. S. ALEROEV, H. T. ALEROEVA, A problem on the zeros of the Mittag-Liffler function and the spectrum of a fractional-order differential operator, Electronic Journal of Qualitative Theory of Differential Equations 25 (2009), 1–18.
[3] H. T. ALEROEVA, T. S. ALEROEVA, N.-M. NIE, Y.-F. TANG, Boundary value problems for differential equations of fractional order, Memoirs on Differential Equations and Mathematical Physics 49 (2010), 21–82.
[4] M. AL–REFAI, Basic results on nonlinear eigenvalue problems of fractional order, Electronic Journal of Differential Equations Vol. 191 (2012), 1–12.
[5] M. AL–REFAI, T. ABDELJAWAD, Fundamental Results of Conformable Sturm-Liouville Eigenvalue Problems, Complexity, Volume 2017 (2017), Article ID 3720471, 7 pages, https://doi.org/10.1155/2017/3720471.
[6] Q. AL-MDALLAL, An efficient method for solving fractional Sturm-Liouville problems, Chaos, Solitons and Fractals 1, 40 (2009), 183–189.
[7] P. ANTUNES, R. FERREIRA, An augmented-RBF method for solving fractional Sturm-Liouville eigenvalue problems, Siam Journal of Scientific Computing, Jan. 2015, DOI 10.1137/140954209.
[8] L. CHANGPIN, D. WEIHANG, Remarks on fractional derivatives, Appl. Math. Comput. 187 (2007), 777–784.
[9] V. ERTÜRK, Computing eigenelements of Sturm-Liouville problems of fractional order via fractional differential transform method, Mathematical and Computational Applications 3, 16 (2011), 712–720.
[10] M. A. HAJJI, Q. AL-MDALLAL, F. ALLAN, An efficient algorithm for solving higher-order fractional Sturm-Liouville eigenvalue problems, Journal of Computational Physics 272 (2014), 550–558.
[11] Z. HAN, J. LIU, S. SUN, Y. ZHAO, Eigenvalue problem for a class of nonlinear fractional differential equations, Ann. Funct. Anal. 1, 4 (2013), 25–39.
[12] B. JIN, R. LAZAROV, J. PASCIAK, W. RUNDELL, A finite element method for fractional Sturm-Liouville problem, arXiv:1307.5114v1[Math.NA], 2013.
[13] M. Klimek and O. Agrawal, *Fractional Sturm-Liouville problem*, Comput. Math. Appl. 5, 66 (2013), 795–812.

[14] M. Klimek, *Fractional Sturm-Liouville problem in terms of Riesz derivatives*, Theoretical development and applications of non-integer order systems, 7th Conference on Non-Integer Order Calculus and its Applications, Szczecin, Poland, 2015.

[15] J. Li, J. Qi, *Spectral problems for fractional differential equations from nonlocal continuum mechanics*, Advances in Difference Equations 2014, 85 (2014), doi:10.1186/1687-1847.

[16] I. Podlubny, *Fractional Differential Equations*, Academic Press, New York, 1999.

[17] K. Prasad, B. Krishna, *Eigenvalues for iterative systems of Sturm-Liouville fractional order two-point boundary value problems*, Fractional Calculus and Applied Analysis 3, 17 (2014), 638–653.

[18] M. Rivero, J. Trujillo, M. Velasco, *A fractional approach to the Sturm-Liouville problem*, Cent. Eur. J. Phys. 11 (2013), 1246–1254.

[19] V. Kiryakova, *Generalized Fractional Calculus and Applications*, John Wiley and Sons, New York, 1994.

[20] W. Wang and X. Guo, *Eigenvalue problem for fractional differential equations with nonlinear integral and disturbance parameter in boundary conditions*, Bound Value Probl. 42 (2016), doi:10.1186/s13661-016-0548-0.

[21] G. Zayernouri, G. Karniadakis, *Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation*, Journal of Computational Physics 252 (2013), 495–517.