Antibody Responses to *Mycoplasma pneumoniae*: Role in Pathogenesis and Diagnosis of Encephalitis?

Patrick M. Meyer Sauteur1,2,3,4, Bart C. Jacobs5,6, Emiel B. M. Spuesens1,2, Enno Jacobs7, David Nadal3,4, Cornelis Vink2,8, Annemarie M. C. van Rossum1

1 Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC–Sophia Children’s Hospital, University Medical Center, Rotterdam, The Netherlands, 2 Laboratory of Pediatrics, Erasmus MC–Sophia Children’s Hospital, University Medical Center, Rotterdam, The Netherlands, 3 Division of Infectious Diseases and Hospital Epidemiology, University Children’s Hospital of Zurich, Zurich, Switzerland, 4 Children’s Research Center (CRC), University Children’s Hospital of Zurich, Zurich, Switzerland, 5 Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands, 6 Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands, 7 TÜ Dresden, Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, Dresden, Germany, 8 Erasmus University College, Erasmus University, Rotterdam, The Netherlands

The pathogenesis of encephalitis associated with the respiratory pathogen *Mycoplasma pneumoniae* is not well understood. A direct infection of the central nervous system (CNS) and an immune-mediated process have been discussed [1]. Recent observations suggest that intrathecally detectable antibodies against the bacteria, which can serve to establish the etiology of encephalitis, may indeed mediate the disease.

Mycoplasma pneumoniae is a major cause of upper and lower respiratory tract infections in humans worldwide, particularly in children [2,3]. Up to 40% of community-acquired pneumonia in children admitted to the hospital are attributed to *M. pneumoniae* infection [4–7]. Although the infection is rarely fatal, patients of every age can develop severe and fulminant disease. Apart from the respiratory tract infection, *M. pneumoniae* can cause extrapulmonary manifestations. They occur in up to 25% of manifest *M. pneumoniae* infections and may affect almost every organ, including the skin as well as the hematologic, cardiovascular, musculoskeletal, and nervous system [8]. Encephalitis is one of the most common and severe complications [1]. *M. pneumoniae* infection is established in 5%–10% of pediatric encephalitis patients [9,10], and up to 60% of them show neurologic sequelae [10,11].

It is important to establish the cause of encephalitis at an early stage in order to specifically treat what can be treated and to avoid unnecessary treatment. The diagnosis of *M. pneumoniae* encephalitis is challenging. The current diagnostic algorithm of the “Consensus Statement of the International Encephalitis Consortium” [12] recommends for the diagnosis of *M. pneumoniae* infection in children with encephalitis (1) serology and polymerase chain reaction (PCR) from throat samples (routine studies), and if positive test results and/or respiratory symptoms are present, then (2) additionally PCR in cerebrospinal fluid (conditional studies).

However, *M. pneumoniae* serology and PCR in the respiratory tract cannot discern between colonization and infection in a clinically relevant time frame [13]. The main reason for this is the relatively high prevalence of *M. pneumoniae* in the upper respiratory tract of healthy children (up to 56%) [13,14]. The demonstrated positive serological results in such asymptomatic PCR-positive children (positive immunoglobulin (Ig) M in 17%, IgG in 24%, and IgA in 6% of 66 cases) [13] may simply reflect one or more previous encounters with *M. pneumoniae* and are not necessarily related to the presence of *M. pneumoniae* in the respiratory tract. It is clear that this may give rise to an overestimation of the *M. pneumoniae*-related disease burden. A more reliable diagnosis of *M. pneumoniae* infection may be achieved by using paired patient sera in order to detect seroconversion and/or a 4-fold increase in antibody titers in addition to PCR (Table 1; table references: [13,15–24]). However, such procedures are time-consuming and are therefore neither practicable nor useful in an acutely ill patient.

The detection rate of *M. pneumoniae* by PCR in the CSF of *M. pneumoniae* encephalitis patients is relatively low (0%–14%) [9,10,25,26]. Moreover, various cases with *M. pneumoniae* encephalitis in which bacterial DNA could not be detected in the CSF had a more prolonged duration of respiratory symptoms before the onset of encephalitis (>5–7 days) [10,25,27]. These cases indicate that *M. pneumoniae* encephalitis may exemplify a postinfectious phenomenon that manifests after clearance of the bacteria from the CNS or respiratory tract by the immune system. The immune response to *M. pneumoniae* in the CNS or other sites may also contribute to the encephalitis (Figure 1; figure references: [1]).

Interestingly, a promising diagnostic marker for *M. pneumoniae* encephalitis has recently emerged from a few case studies. In one study, intrathecal synthesis of antibodies to *M. pneumoniae* was reported in 14 cases of *M. pneumoniae* encephalitis (74%) [28]. The intrathecal production of antibodies is generally considered a highly specific marker for infection of the CNS [22]. All cases that underwent PCR testing (93%) indeed had a positive PCR targeting *M. pneumoniae* in the CSF [28] even though it has been recently demonstrated that intrathecal antibody responses to *M. pneumoniae* but not bacterial DNA can be present at the onset of clinical encephalitis [29]. In another study, it was reported that intrathecal antibodies to *M. pneumoniae*...
Table 1. Overview of diagnostic tests for *M. pneumoniae*.

Method	Test	Target/Antigen	Antibodies	Specimen	Performance	Value	Comments	
Direct identification of *M. pneumoniae*	PCR	Different target genes (e.g., P1 gene, 16S rDNA, 16S rRNA, RepMP elements, etc.)	-	Respiratory specimen (nasopharyngeal secretion, pharyngeal swab, sputum, bronchoalveolar lavage, CSF, and other bodily fluids or tissues)	High sensitivity, high specificity	RD	NAATs provide fast results (in less than a day) and may be earlier than serology (because antibody production requires several days); validation and standardization required for routine diagnostic	
Culture			-	Respiratory specimen (see above)	Low sensitivity, high specificity	AD	Special enriched broth or agar media; isolation takes up to 21 days	
Non-specific serological tests for *M. pneumoniae*	Cold-agglutinin test (“bedside test”)	Erythrocytes (I antigen)	Cold agglutinins (IgM)	Serum	Low sensitivity, low specificity	RD	Cold agglutinins target the I antigen of erythrocytes (alternative theory: cold agglutinins target directly *M. pneumoniae* adhered to erythrocytes); positive in only about 50% and in the first week of symptoms; less well studied in children; cross-reactivity with other pathogens and noninfectious diseases	
Specific serological tests for *M. pneumoniae*	CFT	Crude antigen extract with glycolipids and/or proteins	IgGs (no discrimination between isotypes)	Serum	Sensitivity and specificity comparable to EIA	RD	Positive criteria: 4-fold titer increase between acute and convalescent sera or single titer ≥ 1:32; cross-reactivity with other pathogens and noninfectious diseases	
	PA			IgM and IgG simultaneously	Serum	Moderate-high sensitivity, moderate-high specificity	RD	The sensitivity depends on the time point of the first serum and on the availability of paired sera (for seroconversion and/or rise in titer); “gold standard”: 4-fold titer increase as measured in paired sera
	EIA	Proteins (e.g., adhesion protein P1) and/or glycolipids	IgM, IgG, IgA	Serum	Moderate-high sensitivity, moderate-high specificity	RD	See above	
	Immunoblotting			High sensitivity, high specificity	Serum	Moderate-high sensitivity, moderate-high specificity	RD	Confirmatory assay
	IFA			Less sensitive and less specific than ELISA	Serum	Moderate-high sensitivity, moderate-high specificity	RD	Subjective interpretation

Abbreviations: AD, advanced diagnostic test; CFT, complement fixation test; CNS, central nervous system; CSF, cerebrospinal fluid; EIA, enzyme immunoassay; IFA, immunofluorescent assay; Ig, immunoglobulin; NAATs, nucleic acid amplification tests; PA, particle agglutination assay; PCR, polymerase chain reaction; RD, routine diagnostic test; RepMP, repeated *M. pneumoniae* DNA. References: [13,15–24].

1Qualitative statements included because of the wide range of test performances, which depend on the assay, the patient cohort (children and/or adults), the reference standard (PCR, culture, and/or serology), the respiratory specimen (for PCR), and the time point of the sample collection after disease onset (for EIA)—e.g., sensitivities and specificities for PCR [17,18]: 79%–98% and 96%–99% for IgM and IgG; sensitivities and specificities for IgG EIA [17,19]: 35%–77% and 49%–100%, respectively; and for IgM EIA [17,19]: 35%–77% and 77%–100% (no indication on specificity because of missing information on previous *M. pneumoniae* infections).

2Molecular epidemiological differentiation of clinical strains on the basis of differences in the P1 gene by PCR or in the number of repetitive sequences at a given genomic locus by multilocus variable-number tandem-repeat analysis (MLVA) [23].

3Largely replaced by EIA.

4Kinetics of antibody responses in blood. IgM: onset: within 1 week after the onset of symptoms; peak: 3–6 weeks; persistence: months (to years). IgG: onset: 2 weeks after IgM; peak: 2 weeks after IgM; persistence: years (to lifelong). IgA: onset, peak, and decrease earlier than IgM.

5Antibody responses in the CNS differ from blood. There is no switch from an IgM to an IgG response; the pattern of IgM, IgG, and IgA synthesis remains rather constant and depends on the cause, and there is a long-lasting and slow decay of intrathecal antibody synthesis [22]. In *M. pneumoniae* encephalitis, a dominant IgM response has been observed [29].

6The prevalence of serum IgA determined by EIA has been shown to be very low in PCR-positive children with symptomatic respiratory tract infection (20%) [13].

7In our knowledge, no validated test is available.

8Immunoblotting with a combination of at least five specific *M. pneumoniae* proteins showed sensitivities (in relation to PCR) of 83% (IgM), 51% (IgG), and 64% (IgA), and specificities of 94%–100% (IgM), 98%–100% (IgG), and 93%–97% (IgA) [24].

9In adults, may lead directly to an IgG response in the absence of an IgM response; IgA: onset, peak, and decrease earlier than IgM.

10In adults, may lead directly to an IgG response in the absence of an IgM response; IgA: onset, peak, and decrease earlier than IgM.

11The prevalence of serum IgA determined by EIA has been shown to be very low in PCR-positive children with symptomatic respiratory tract infection (20%) [13].

12In our knowledge, no validated test is available.

13Immunoblotting with a combination of at least five specific *M. pneumoniae* proteins showed sensitivities (in relation to PCR) of 83% (IgM), 51% (IgG), and 64% (IgA), and specificities of 94%–100% (IgM), 98%–100% (IgG), and 93%–97% (IgA) [24].

14In our knowledge, no validated test is available.

15Immunoblotting with a combination of at least five specific *M. pneumoniae* proteins showed sensitivities (in relation to PCR) of 83% (IgM), 51% (IgG), and 64% (IgA), and specificities of 94%–100% (IgM), 98%–100% (IgG), and 93%–97% (IgA) [24].

16In our knowledge, no validated test is available.

17Immunoblotting with a combination of at least five specific *M. pneumoniae* proteins showed sensitivities (in relation to PCR) of 83% (IgM), 51% (IgG), and 64% (IgA), and specificities of 94%–100% (IgM), 98%–100% (IgG), and 93%–97% (IgA) [24].

18In our knowledge, no validated test is available.
were found to cross-react with galactocerebroside C (GalC) in eight out of 21 (38%) of *M. pneumoniae* encephalitis cases [30]. All eight cases showed a negative PCR targeting *M. pneumoniae* in CSF. The cross-reactivity in these cases is likely induced by molecular mimicry between bacterial glycolipids and host myelin glycolipids, including GalC and gangliosides (Figure 2; figure references: [31–34]). Cross-reactive, anti-GalC antibodies have previously been detected in patients with Guillain-Barré syndrome (GBS) who suffered from a preceding *M. pneumoniae* infection [32,35–38]. GBS is a typical postinfectious immune-mediated peripheral neuropathy [39]. In GBS, cross-reactive antibodies cause complement activation and formation of a membrane attack complex at the peripheral nerves, resulting in neuromuscular paralysis. Anti-GalC antibodies have been associated with demyelination in patients with GBS [35,38]. Moreover, these anti-GalC antibodies cause neuropathy in rabbits that are immunized with GalC [40]. Such antibodies may also be involved in demyelination of central nerve cells in *M. pneumoniae* encephalitis, as a significant correlation was found between the presence of anti-GalC antibodies in the CSF and demyelination (*p* = 0.026) [30].

Anti-GalC antibodies have not only been detected in CSF but also in the serum of *M. pneumoniae* encephalitis patients [30,36,41–43], including rates from 13% (2/15) [30] to 100% (3/3) [41], respectively. It is possible that during inflammation the blood-brain barrier (BBB) can become permeable, which would thereby enable antibodies to cross the BBB and cause disease. As a consequence, the cross-reactive antibodies in the CSF of *M. pneumoniae* encephalitis patients do not necessarily have to be produced intrathecally (Figure 1).

M. pneumoniae infections may also be followed by the production of antibodies to gangliosides, both in patients with GBS and in those with encephalitis. In *M. pneumoniae* encephalitis, such antibodies were directed against GQ1b [44,45] or GM1 [46] (Figure 2). Interestingly, anti-GQ1b antibodies are associated with a distinct and severe encephalitis variant, referred to as Bickerstaff brain stem encephalitis [47].

In conclusion, while PCR and serology may be of limited value in the diagnosis of *M. pneumoniae* encephalitis, the detection of intrathecal antibodies to *M. pneumoniae*, including cross-reactive antibodies against GalC and gangliosides, may be regarded as a promising new diagnostic tool. The routine diagnostic workup of *M. pneumoniae* encephalitis should therefore aim for the detection of *M. pneumoniae* antibodies in both CSF and serum, in addition to *M. pneumoniae* PCR in CSF. Intrathecal antibodies can be detected by widely accessible enzyme immunoassays (EIAs) or immunoblotting (Table 1), while

Figure 1. Proposed schematic pathomechanisms in *M. pneumoniae* encephalitis. (Left) Respiratory tract infection. *M. pneumoniae* resides mostly extracellularly on epithelial surfaces. Its close association allows the production of direct injury by a variety of local cytotoxic effects. Furthermore, it can induce inflammatory responses, elicited by both adhesion proteins and glycolipid epitopes that result in pneumonia. (Right) Encephalitis. Extrapolmonary disease of the CNS is characterized by systemic dissemination with resultant direct infection and local tissue injury (A) or immune-mediated injury (B,C). The latter may occur as a result of cross-reactive antibodies against myelin components, e.g., gangliosides and galactocerebroside C. These antibodies could theoretically have originated from intrathecal synthesis (B) or from outside the CNS (C). Figure adapted from [1]; see references in the text.
doi:10.1371/journal.ppat.1003983.g001
Intrathecal antibody synthesis can be established either by calculation of an antibody index [22] or through parallel immunoblotting of simultaneously collected CSF and serum samples [48,49]. Antiganglioside antibodies can be detected routinely by some specialized laboratories, but their detection together with cross-reactive antibodies against GalC primarily serve scientific purposes and may help to clarify *M. pneumoniae* antibodies’ immune target(s). Furthermore, their hypothesized role in the pathogenesis might provide a basis for immunomodulatory treatment in *M. pneumoniae* encephalitis.

References

1. Narita M (2009) Pathogenesis of neurologic manifestations of *Mycoplasma pneumoniae* infection. Pediatr Neurol 41: 159–166.
2. Foy HM (1993) Infections caused by *Mycoplasma pneumoniae* and possible carrier state in different populations of patients. Clin Infect Dis 17 Suppl 1: S37–S46.
3. Lind K, Benzon MW, Jensen JS, Clyde WA Jr (1997) A seroepidemiological study of *Mycoplasma pneumoniae* infections in Denmark over the 50-year period 1946–1995. Eur J Epidemiol 13: 581–586.
4. Michalewicz IC, Olen K, Lusano J, Rollins NK, Duffy LB, et al. (2004) Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children. Pediatr Infect Dis J 23: 701–707.
5. Baer G, Engleke G, Abele-Horn M, Schaad UB, Heininger U (2003) Role of *Chlamydia pneumoniae* and *Mycoplasma pneumoniae* as causative agents of community-acquired pneumonia in hospitalised children and adolescents. Eur J Clin Microbiol Infect Dis 22: 742–745.
6. Principi N, Esposito S, Blasi F, Allegra L, Meowgh study group (2001) Role of *Mycoplasma pneumoniae* and *Chlamydia pneumoniae* in children with community-acquired lower respiratory tract infections. Clin Infect Dis 32: 1201–1209.
7. Juven T, Mertzola J, Waris M, Leinonen M, Meurman O, et al. (2000) Etiology of community-acquired pneumonia in 254 hospitalized children. Pediatr Infect Dis J 19: 293–298.
8. Narita M (2010) Pathogenesis of extrapulmonary manifestations of *Mycoplasma pneumoniae* infection with special reference to pneumonia. J Infect Chemother 16: 162–169.
9. Christie LJ, Honarmand S, Talkington DF, Gavali SS, Pras C, et al. (2007) Pediatric encephalitis: what is the role of *Mycoplasma pneumoniae*? Pediatrics 120: 305–313.
10. Bitun A, Ford-Jones EL, Petric M, MacGregor D, Heurter H, et al. (2001) Acute childhood encephalitis and *Mycoplasma pneumoniae*. Clin Infect Dis 32: 1674–1684.
11. Bitun A, Ford-Jones E, Blaser S, Richardson S (2003) *Mycoplasma pneumoniae* encephalitis. Semin Pediatr Infect Dis 14: 96–107.
12. Venkatesan A, Tunkel AR, Bloch KC, Lauring AS, Seyfar J, et al. (2013) Case Definitions, Diagnostic Algorithms, and Priorities in Encephalitis: Consensus Statement of the International Encephalitis Consortium. Clin Infect Dis 57: 1114–1128.
13. Spaesens EB, Fraaij PL, Visser EG, Hoogenboezem T, Hop WC, et al. (2013) Carriage of *Mycoplasma pneumoniae* in the upper respiratory tract of symptomatic and asymptomatic children: an observational study. PLoS Med 10 e1001444.
14. Wood PR, Hill VL, Burks ML, Peters JL, Singh H, et al. (2013) *Mycoplasma pneumoniae* in children.
with acute and refractory asthma. Ann Allergy Asthma Immunol 110: 328–334 e1.
15. Jacobs E (1993) Serological diagnosis of Mycoplasma pneumoniae infections: a critical review of current procedures. Clin Infect Dis 17 Suppl 1: S79–S82.
16. Waite KB, Talkington DF (2004) Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev 17: 697–728, table of contents.
17. Loeni K, Gossens H, Jevon M (2010) Acute respiratory infection due to Mycoplasma pneumoniae: current status of diagnostic methods. Eur J Clin Microbiol Infect Dis 29: 1031–1069.
18. Nadal D, Bossart W, Zucol F, Steiner F, Berger C, et al. (2001) Community-acquired pneumonia in children due to Mycoplasma pneumoniae: diagnostic performance of a seminested 16S rDNA-PCR. Diagn Microbiol Infect Dis 39: 15–19.
19. Beermsa MF, Dirven K, van Dam AP, Templeton KE, Clais EC, et al. (2005) Evaluation of 12 commercial tests and the complement fixation test for Mycoplasma pneumoniae-specific immunoglobulin G (IgG) and IgM antibodies, with PCR used as the "gold standard". J Clin Microbiol 43: 2277–2283.
20. Ozaki T, Nishimura N, Aih J, Watanabe N, Muto T, et al. (2007) Utility of a rapid diagnosis kit for Mycoplasma pneumoniae in children, and the antimicrobial susceptibility of the isolates. J Infect Chemother 13: 204–207.
21. Gavranich JB, Chang AB (2005) Antibiotics for community acquired lower respiratory tract infections (ERTI) secondary to Mycoplasma pneumoniae in children. Cochrane Database Syst Rev 2005: CD000873.
22. Reiber H (1994) Flow rate of cerebrospinal fluid (CSF)—a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J Neurol Sci 122: 119–203.
23. Jacobs E (2012) Mycoplasma pneumoniae: view in the focus of clinicians and epidemiologists. Euro Surveill 17: 1–3.
24. Dumke R, Schuel A, Cynvacatus C, Nuyttens H, Herrmann R, et al. (2012) Optimized serodiagnosis of Mycoplasma pneumoniae infections. Diagn Microbiol Infect Dis 73: 200–203.
25. Daxbock F, Blacky A, Krause R, Assadian O (2004) Diagnosis, treatment, and prognosis of Mycoplasma pneumoniae childhood encephalitis: systematic review of 58 cases. J Child Neurol 19: 685–471.
26. Domenesch C, Levelce N, Lena B, Najjouillah F, Floret D (2009) Role of Mycoplasma pneumoniae in pediatric encephalitis. Eur J Clin Microbiol Infect Dis 28: 91–94.
27. Narita M, Yamada S (2001) Two distinct patterns of central nervous system complications due to Mycoplasma pneumoniae infection. Clin Infect Dis 33: 916–917.
28. Benzinou H, Dove P, Mueller-Premru M, Avsic-Zupanc T, Socan M, et al. (2000) Intrathecal synthesis of specific antibodies in patients with invasion of the central nervous system by Mycoplasma pneumoniae. Eur J Clin Microbiol Infect Dis 19: 521–530.
29. Meyer Sauteur PM, Relly C, Hackenberg A, Stahr N, Berger C, et al. (2014) Mycoplasma pneumoniae Intrathecal Antibody Responses in Bickerstaff Brain Stem Encephalitis. Neuropediatrics 45: 61–63.
30. Christie LJ, Horanmand S, Yagi S, Ruiz S, Glauser CA (2007) Anti-galactocerebroside testing in Mycoplasma pneumoniae-associated encephalitis. J Neuromunmol 189: 129–131.
31. Jacobs E, Bard A, Oberle K, Schultz E (1995) Molecular mimicry by Mycoplasma pneumoniae to evade the induction of adherence inhibiting antibodies. J Med Microbiol 43: 422–429.
32. Kusunoki S, Shiina M, Kanazava I (2001) Anti-Gal-C antibodies in GBS subsequent to mycoplasma infection: evidence of molecular mimicry. Neurology 57: 736–738.
33. Rottem S (2003) Interaction of mycoplasmas with host cells. Physiol Rev 83: 417–432.
34. Willison HJ, Yuki N (2002) Peripheral neuropathies and anti-glycolipid antibodies. Brain 125: 2591–2625.
35. Ang CW, Tio-Gillen AP, Groen J, Herbrink P, Jacobs BC, et al. (2005) Cross-reactive anti-galactocerebroside antibodies and Mycoplasma pneumoniae infections in Guillain-Barré syndrome. J Neuromunol 136: 179–183.
36. Sasaki K, Odaka M, Mori M, Hirata K, Yuki N (2004) Acute motor axonal neuropathy after Mycoplasma infection: Evidence of molecular mimicry. Neurology 62: 949–956.
37. Arakawa H, Yuhara Y, Todokoro M, Kato M, Kusunoki S, et al. (2003) Anti-galactocerebroside antibodies and Mycoplasma pneumoniae infections in Guillain-Barré syndrome. J Neuromunol 189: 129–131.
38. Kasukawa M, Shiina M, Kanazava I (2001) Anti-Gal-C antibodies in GBS subsequent to mycoplasma infection: evidence of molecular mimicry. Neurology 57: 736–738.
39. Rottem S (2003) Interaction of mycoplasmas with host cells. Physiol Rev 83: 417–432.
40. Willison HJ, Yuki N (2002) Peripheral neuropathies and anti-glycolipid antibodies. Brain 125: 2591–2625.
41. Ang CW, Tio-Gillen AP, Groen J, Herbrink P, Jacobs BC, et al. (2005) Cross-reactive anti-galactocerebroside antibodies and Mycoplasma pneumoniae infections in Guillain-Barré syndrome. J Neuromunol 136: 179–183.
42. Sasaki K, Odaka M, Mori M, Hirata K, Yuki N (2004) Acute motor axonal neuropathy after Mycoplasma infection: Evidence of molecular mimicry. Neurology 62: 949–956.
43. Arakawa H, Yuhara Y, Todokoro M, Kato M, Kusunoki S, et al. (2003) Anti-galactocerebroside antibodies and Mycoplasma pneumoniae infections in Guillain-Barré syndrome. J Neuromunol 189: 129–131.
44. Kasukawa M, Shiina M, Kanazava I (2001) Anti-Gal-C antibodies in GBS subsequent to mycoplasma infection: evidence of molecular mimicry. Neurology 57: 736–738.
45. Rottem S (2003) Interaction of mycoplasmas with host cells. Physiol Rev 83: 417–432.
46. Willison HJ, Yuki N (2002) Peripheral neuropathies and anti-glycolipid antibodies. Brain 125: 2591–2625.
47. Odaka M, Yuki N, Yamada M, Koga M, Takemi T, et al. (2003) Bickerstaff's brainstem encephalitis associated with IgG anti-GQ1b antibody subsequent to Mycoplasma pneumoniae infection: favorable response to immunoadsorption therapy. J Child Neurol 18: 403–405.
48. Steer AC, Marr K, Cornberg AJ (2006) Bickerstaff brainstem encephalitis associated with Mycoplasma pneumoniae infection. J Child Neurol 21: 333–334.
49. Fusco C, Bonini E, Soncini G, Frattini D, Giovannini S, et al. (2010) Transient basal ganglia and thalamic involvement following Mycoplasma pneumoniae infection associated with anti-ganglioside antibodies. J Child Neurol 25: 1029–1033.
50. Odaka M, Yuki N, Yamada M, Koga M, Takemi T, et al. (2003) Bickerstaff's brainstem encephalitis: clinical features of 62 cases and a subgroup associated with Guillain-Barré syndrome. Brain 126: 2279–2290.
51. Monteyne P, Albet F, Weissbrich B, Zardini E, Ciardi M, et al. (1997) The detection of intrathecal synthesis of anti-herpes simplex IgG antibodies: comparison between an antigen-mediated immunoblotting technique and antibody index calculations. European Union Concerted Action on Virus Meningitis and Encephalitis. J Med Virol 53: 324–331.
52. Granerod J, Cunningham R, Zuckerman M, Mutton K, Davies NW, et al. (2010) Causality in acute encephalitis: defining aetologies. Epidemiol Infect 138: 783–800.