Steady-state first-pass perfusion (SSFPP): A 3D TWIST in myocardial first-pass perfusion imaging

Shivraman Giri1*, Hui Xue2, Abdul Wattar1, Yu Ding1, Randall M Kroeker3, Gerhard Laub4, Peter Kellman6, Sven Zuehlsdorff5, Subha V Raman1, Orlando P Simonetti1

From 15th Annual SCMR Scientific Sessions
Orlando, FL, USA. 2-5 February 2012

Summary
A new approach to myocardial first-pass perfusion imaging is presented; this technique, called SSFPP, is based on 3D SSFP sequence whereby magnetization is maintained in constant steady-state, while data acquisition is gated to diastole. This results in high SNR and CNR, and other characteristics that can potentially mitigate dark rim artifacts. The high-blood myocardial contrast of SSFP allows automatic segmentation, which, combined with registration, facilitates image analysis.

Background
Although introduced in 1990, myocardial first-pass perfusion imaging has not yet become a routine diagnostic tool, primarily because of insufficient image quality, insufficient coverage, and dark rim artifacts (DRA). Current techniques rely on a saturation recovery (SR) preparation for T1 contrast, resulting in poor SNR, low efficiency, and k-space modulation during SR. Further, the post-processing of these images is tedious. In this work, we propose an alternative perfusion imaging technique, called Steady-State First Pass Perfusion (SSFPP).

Objective
To develop a new 3D first-pass perfusion imaging technique that can potentially address the limitations of current methods.

Theory
SSFPP is a 3D SSFP sequence in which the magnetization is maintained in constant steady-state while the data acquisition is gated to diastole. The SNR and CNR are similar to those in SSFP cine imaging, allowing the use of automatic segmentation algorithms. Furthermore, the tissue contrast is dependent on T1/T2; serendipitously, this causes blood signal to remain almost constant, whereas the myocardial signal exhibits a nearly linear correlation with contrast agent concentration. Maintenance of steady-state throughout data acquisition avoids k-space modulation, and the elimination of saturation recovery time increases data acquisition efficiency by reducing deadtime.

Methods
SSFPP was implemented on a 1.5T scanner (Avanto, Siemens). RF pulse (time-bandwidth product = 10, flip angle ~40°) was optimized for 3D slab excitation profile. Other parameters: resolution ~2.2x2.8x8mm³, matrix 160x103x6, slab oversampling 33.3%, TR = ~2.7 ms, Multihance (0.1 mmol/kg). 3D K-space was acquired using parallel imaging (GRAPPA, rate=3, 24 intrinsic reference lines, 32 channel phased array coil (QED LLC)) and TWIST acquisition scheme; for the latter, a central 4% of k-space was updated every frame, whereas the peripheral region was undersampled at 33%, leaving a “temporal footprint” of 3 heart beats. Acquisition time per 3D frame was ~300-340 ms. Images were acquired in three healthy subjects during contrast agent injection to evaluate feasibility of this new method.

Non-rigid registration, optimized for dynamically varying contrast, was used for three-dimensional motion-correction prior to automated contouring of endo and epicardial borders.

Pixel-wise contrast enhancement ratio (CER) maps were computed for each frame, where each pixel is given by: \(\frac{S_n - S_{baseline}}{S_{baseline}} \); time intensity curves (TIC) of these CER images were used for semi-quantitative analysis.
Results
Figures 1 and 2 show images and TICs from a SAX slice of one subject. Similar results were noted in other two subjects.

Conclusions
3D SSFP avoids many of the suspected causes of DRA and could potentially mitigate this problem. Steady-state imaging provides high SNR and CNR that, combined
with image registration, can facilitate effective perfusion quantification.

Funding
The project is partially supported by Award Number R01HL102450 from the National Heart, Lung, and Blood Institute.

Author details
1The Ohio State University, Columbus, OH, USA. 2Siemens Corporate Research, Princeton, NJ, USA. 3Siemens Healthcare, Winnipeg, MB, Canada. 4Siemens Healthcare, San Francisco, CA, USA. 5Siemens Healthcare, Chicago, IL, USA. 6National Institutes of Health, Bethesda, MD, USA.

Published: 1 February 2012

doi:10.1186/1532-429X-14-S1-P251

Cite this article as: Giri et al.: Steady-state first-pass perfusion (SSFPP): A 3D TWIST in myocardial first-pass perfusion imaging. *Journal of Cardiovascular Magnetic Resonance* 2012, 14(Suppl 1):P251.