SOME VIRTUALLY POLY-FREE ARTIN GROUPS

S.K. ROUSHON

ABSTRACT. In this short note we prove that a class of Artin groups of affine and complex types are virtually poly-free, answering partially the question if all Artin groups are virtually poly-free.

We recall the following definition.

Definition 1. Let \mathcal{F} and $\forall\mathcal{F}$ denote the class of free groups and virtually-free groups, respectively. Let \mathcal{C} be either \mathcal{F} or $\forall\mathcal{F}$. A group G is called virtually poly-\mathcal{C}, if G contains a finite index subgroup H, and H admits a normal series $1 = H_0 \leq H_1 \leq H_2 \leq \cdots \leq H_n = H$, such that $H_i+1/H_i \in \mathcal{C}$, for $i = 0, 1, \ldots, n - 1$. In this case, H is called poly-\mathcal{C} or that H has a poly-\mathcal{C} structure. The minimum such n is called the length of the poly-\mathcal{C} structure.

Poly-\mathcal{F} groups have nice properties like, locally indicable and right orderable. In [2, Question 2] it was asked if all Artin groups are virtually poly-\mathcal{F}. Among the finite type Artin groups, the groups of types \tilde{A}_n, $B_n = C_n$, D_n, F_4, G_2 and $I_2(p)$ are already known to be virtually poly-\mathcal{F} [3].

Here, we extend this class and prove the following theorem.

Theorem 2. Let A be an Artin group of the affine type \tilde{A}_n, \tilde{B}_n, \tilde{C}_n, \tilde{D}_n or of the finite complex type $G(de, e, r)$ ($d, r \geq 2$). Then, A is virtually poly-\mathcal{F}.

The main idea behind the proof of Theorem [2] is the following result, which is easily deducible from [3, Theorem 2.2 and Remark 2.4].

Let $\mathbb{C}(m, k; q)$ be the orbifold, whose underlying space is the complex plane minus m points $p_1, p_2, \ldots, p_m \in \mathbb{C}$, with k cone points $x_1, x_2, \ldots, x_k \in \mathbb{C} - \{p_1, p_2, \ldots, p_m\}$ of orders q_1, q_2, \ldots, q_k, respectively. q denotes the k-tuple (q_1, q_2, \ldots, q_k). Let $PB_n(\mathbb{C}(m, k; q))$ be the configuration orbifold of n distinct points of $\mathbb{C}(m, k; q)$. By convention $PB_1(\mathbb{C}(m, k; q)) = \mathbb{C}(m, k; q)$.

Theorem 3. The orbifold fundamental group $\pi_1^{orb}(PB_n(\mathbb{C}(m, k; q)))$ has a poly-$\forall\mathcal{F}$ structure, consisting of finitely presented subgroups in a normal series.

Proof. Recall that, in [3, Theorem 2.2 and Remark 2.4] we proved the following exact sequence. The second homomorphism is induced by the projection to the first $n - 1$ coordinates.

$$1 \longrightarrow K \longrightarrow \pi_1^{orb}(PB_n(S)) \longrightarrow \pi_1^{orb}(PB_{n-1}(S)) \longrightarrow 1.$$

Here, $S = \mathbb{C}(k, m; q)$, and K is isomorphic to $\pi_1^{orb}(F)$, $F = S - \{(n - 1) - \text{regular points}\}$. By regular points we mean points which are not cone points, that is, points in $\mathbb{C} - \{x_1, \ldots, x_m, p_1, \ldots, p_k\}$. That is, $F = \mathbb{C}(k, m + n - 1; q)$.

2020 Mathematics Subject Classification. Primary: 20F36 Secondary: 57R18.
Key words and phrases. Poly-free groups, Artin groups, Orbifold braid groups.
July 05, 2020.
The theorem now follows by induction on n, since $\pi_{1}^{\text{orb}}(C(k, m; q))$ is finitely presented and virtually free, for all k, m and q. □

Note that the symmetric group S_n acts on $PB_n(C(m, k; q))$ by permuting the coordinates. Hence, the quotient $PB_n(C(m, k; q))/S_n$ is again an orbifold, and it is denoted by $B_n(C(m, k; q))$.

Therefore, by Theorem 3 we have the following corollary, since if a group has a finite index normal poly-VF subgroup, then the group is also poly-VF.

Corollary 4. The orbifold fundamental group $\pi_{1}^{\text{orb}}(B_n(C(m, k; q)))$ is finitely presented, and has a poly-VF structure, consisting of finitely presented subgroups in a normal series.

To prove our main theorem, furthermore, we need the following two results.

Theorem 5. All affine type Artin groups are torsion free.

Proof. This was recently proved in [5]. □

Theorem 6. (Π) Let \mathcal{A} be an Artin group, and \mathcal{O} be an orbifold as described in the following table. Then, \mathcal{A} can be embedded as a normal subgroup in $\pi_{1}^{\text{orb}}(B_n(\mathcal{O}))$. The third column gives the quotient group $\pi_{1}^{\text{orb}}(B_n(\mathcal{O}))/\mathcal{A}$.

Artin group of type	Orbifold \mathcal{O}	Quotient group	n
B_n	$C(1,0)$	$<1>$	$n > 1$
\tilde{A}_{n-1}	$C(1,0)$	\mathbb{Z}	$n > 2$
\tilde{B}_n	$C(1,1; (2))$	$\mathbb{Z}/2$	$n > 2$
\tilde{C}_n	$C(2,0)$	$<1>$	$n > 1$
\tilde{D}_n	$C(0,2; (2,2))$	$\mathbb{Z}_2 \times \mathbb{Z}_2$	$n > 2$

Table

Proof. See [1]. □

We also need the following.

Proposition 7. If a torsion free, finitely presented poly-VF group has a normal series with finitely presented subgroups, then the group is virtually poly-VF.

Proof. Let H be a poly-VF group of length n satisfying the hypothesis of the statement. The proof is by induction on n. If $n = 1$, then H is virtually free, and hence free, since it is torsion free ([Π]). Therefore, assume that the lemma is true for all poly-VF groups of length $\leq n - 1$ satisfying the hypothesis. Consider a finitely presented normal series for H giving the poly-VF structure. Then, H_{n-1} is finitely presented, torsion free and has a poly-VF structure of length $n - 1$. Hence, by the induction hypothesis, there is a finite index subgroup $K \leq H_{n-1}$ and K is poly-F. Since H_{n-1} is finitely presented, we can find a finite index subgroup K' of K which is also a characteristic subgroup of H_{n-1}. Hence, K' is also a poly-F group, and is a normal subgroup of $H = H_{n}$ with quotient virtually free. Let $q : H \to H/K'$ be
the quotient map. Consider a free subgroup L of H/K' of finite index, then $q^{-1}(L)$ is a finite index poly-\mathcal{F} subgroup of H.

This proves the Proposition. \square

Now, we are ready to prove our main theorem.

Proof of Theorem 2. From the Table of Theorem 6, we see that the Artin group of type \tilde{A}_n is a subgroup of the finite type Artin group of type B_{n+1}. Hence, by $[3]$, the Artin group of type \tilde{A}_n is virtually poly-\mathcal{F}.

Now, let \mathcal{A} be an Artin group of type \tilde{B}_n, \tilde{C}_n or \tilde{D}_n. Then, by Theorem 1, \mathcal{A} can be embedded as a normal subgroup in $\pi_1^{\text{orb}}(B_n(C(k, m; q)))$ of finite index, for some suitable k, m, q and n. Next, note that by Corollary 1, $\pi_1^{\text{orb}}(B_n(C(k, m; q)))$ is poly-\mathcal{VF} by a normal series consisting of finitely presented subgroups. Since \mathcal{A} is finitely presented and of finite index in $\pi_1^{\text{orb}}(B_n(C(k, m; q)))$, it follows that \mathcal{A} is also poly-\mathcal{VF} by a normal series consisting of finitely presented subgroups. But by Theorem 5, \mathcal{A} is also torsion free. Hence, by Proposition 7, \mathcal{A} is virtually poly-\mathcal{F}.

The $G(\text{de}, e, r)$ $(d, r \geq 2)$ type case is easily deduced from the fact that, this Artin group can be embedded as a subgroup in the finite type Artin group of type B_r. See $[4]$, Proposition 4.1.

Therefore, we have completed the proof of Theorem 2. \square
References

[1] D. Allcock, Braid pictures of Artin groups, Trans. Amer. Math. Soc. 354 (2002), no. 9, 3455-3474.
[2] M. Bestvina, Non-positively curved aspects of Artin groups of finite type, Geom. Topol. 3 (1999), 269-302.
[3] E. Brieskorn, Sur les groupes de tresses [d'après V.I. Arnol’d] Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, pp.21-44. Lecture Notes in Math., Vol 317, Springer, Berlin, 1973.
[4] R. Corran, E. Lee and S. Lee, Braid groups of imprimitive complex reflection groups, J. Algebra 427 (2015), 387-425.
[5] G. Paulini and M. Salvetti, Proof of the $K(\pi,1)$-conjecture for affine Artin groups, arXiv:1907.11795
[6] S.K. Roushon, Configuration Lie groupoids and orbifold braid groups, arXiv:2006.07106
[7] J.R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math., (2) 88 (1968), 312-334.

School of Mathematics, Tata Institute, Homi Bhabha Road, Mumbai 400005, India
E-mail address: roushon@math.tifr.res.in
URL: http://www.math.tifr.res.in/~roushon/