INTERMEDIATE CO-T-STRUCTURES, TWO-TERM SILTING OBJECTS, \(\tau\)-TILTING MODULES, AND TORSION CLASSES

OSAMU IYAMA, PETER JØRGENSEN, AND DONG YANG

Abstract. If \((A, B)\) and \((A', B')\) are co-t-structures of a triangulated category, then \((A', B')\) is called intermediate if \(A \subseteq A' \subseteq \Sigma A\). Our main results show that intermediate co-t-structures are in bijection with two-term silting subcategories, and also with support \(\tau\)-tilting subcategories under some assumptions. We also show that support \(\tau\)-tilting subcategories are in bijection with certain finitely generated torsion classes. These generalise results by Adachi, Iyama, and Reiten.

0. Introduction

The aim of this paper is to discuss the relationship between the following objects.

- Intermediate co-t-structures.
- Two-term silting subcategories.
- Support \(\tau\)-tilting subcategories.
- Torsion classes.

The motivation is that if \(T\) is a triangulated category with suspension functor \(\Sigma\) and \((X, Y)\) is a t-structure of \(T\) with heart \(H = X \cap \Sigma Y\), then there is a bijection between “intermediate” t-structures \((X', Y')\) with \(\Sigma X \subseteq X' \subseteq X\) and torsion pairs of \(H\). This is due to \([7\text{, thm. 3.1}]\) and \([10\text{, prop. 2.1}]\); see \([17\text{, prop. 2.3}]\).

We will study a co-t-structure analogue of this. The following result follows from the bijection between bounded co-t-structures and silting subcategories in \([14\text{, cor. 5.9}]\). See \([15]\) and \([3]\) for background on co-t-structures and silting subcategories, and note that the co-heart of a co-t-structure \((A, B)\) is \(A \cap \Sigma^{-1} B\), and that if \(F, G\) are full subcategories of a triangulated category then \(F * G\) denotes the full subcategory of objects \(e\) which permit a distinguished triangle \(f \rightarrow e \rightarrow g\) with \(f \in F, g \in G\).

Theorem 0.1 (=Theorem \[22]\). Let \(T\) be a triangulated category, \((A, B)\) a bounded co-t-structure of \(T\) with co-heart \(S\). Then we have a bijection between the following sets.

(i) Co-t-structures \((A', B')\) of \(T\) with \(A \subseteq A' \subseteq \Sigma A\).

(ii) Silting subcategories of \(T\) which are in \(S * \Sigma S\).

The co-t-structures in (i) are called intermediate. The silting subcategories in (ii) are called two-term, motivated by the existence of a distinguished triangle \(s_1 \rightarrow s_0 \rightarrow s'\) with \(s_i \in S\) for each \(s' \in S'\). The theorem reduces the study of intermediate co-t-structures to the study of two-term silting subcategories.
Our main results on two-term silting subcategories and \(\tau \)-tilting theory can be summed up as follows. We extend the notion of support \(\tau \)-tilting modules for finite dimensional algebras over fields given in [1] to that for essentially small additive categories, see Definition [1.3] and [1.5]. For a commutative ring \(\mathbb{k} \), we say that a \(\mathbb{k} \)-linear category is Hom-finite if each Hom-set is a finitely generated \(\mathbb{k} \)-module.

Theorem 0.2 (=Theorems 3.4 and 4.6). Let \(T \) be a triangulated category with a silting subcategory \(S \). Assume that each object of \(S \ast \Sigma S \) can be written as a direct sum of indecomposable objects unique up to isomorphism. Then there is a bijection between the following sets.

(i) Silting subcategories of \(T \) which are in \(S \ast \Sigma S \).

(ii) Support \(\tau \)-tilting pairs of \(\text{mod} \, S \).

If \(T \) is Krull–Schmidt, \(\mathbb{k} \)-linear and Hom-finite over a commutative ring \(\mathbb{k} \), and \(S = \text{add} \, s \) for a silting object \(s \), then there is a bijection between the following sets.

(iii) Basic silting objects of \(T \) which are in \(S \ast \Sigma S \), modulo isomorphism.

(iv) Basic support \(\tau \)-tilting modules of \(\text{mod} \, E \), modulo isomorphism, where \(E = \text{End}_T(s) \).

Note that in this case, there is a bijection between (i) and (iii) by [3, prop. 2.20 and lem. 2.22(a)].

Note that Theorem 0.2 is a much stronger version of [1, thm. 3.2], where \(T \) is assumed to be the homotopy category of bounded complexes of finitely generated projective modules over a finite dimensional algebra \(\Lambda \) over a field and \(s \) is assumed to be \(s \).

Moreover, we give the following link between \(\tau \)-tilting theory and torsion classes. Our main result shows that support \(\tau \)-tilting pairs correspond bijectively with certain finitely generated torsion classes, which is a stronger version of [1, thm. 2.7]. Note that \(\text{Fac} M \) is the subcategory of \(\text{Mod} \, C \) consisting of factor objects of finite direct sums of objects of \(M \), and \(P(T) \) denotes the Ext-projective objects of \(T \), see Definition 1.7.

Theorem 0.3 (=Theorem 5.1). Let \(\mathbb{k} \) be a commutative noetherian local ring, \(C \) an essentially small, Krull-Schmidt, \(\mathbb{k} \)-linear Hom-finite category. There is a bijection \(M \mapsto \text{Fac} M \) from the first to the second of the following sets.

(i) Support \(\tau \)-tilting pairs \((M, E) \) of \(\text{mod} \, C \).

(ii) Finitely generated torsion classes \(T \) of \(\text{Mod} \, C \) such that each finitely generated projective \(C \)-module has a left \(P(T) \)-approximation.

1. Basic definitions

Let \(C \) be an additive category. When we say that \(U \) is a subcategory of \(C \), we always assume \(U \) is full and closed under finite direct sums and direct summands. For a collection \(U \) of objects of \(C \), we denote by \(\text{add} \, U \) the smallest subcategory of \(C \) containing \(U \).
Let \(C \) be an essentially small additive category. We write \(\text{Mod } C \) for the abelian category of contravariant additive functors from \(C \) to the category of abelian groups and \(\text{mod } C \) for the full subcategory of finitely presented functors, see [5, pp. 184 and 204].

The suspension functor of a triangulated category is denoted by \(\Sigma \).

We first recall the notions of co-t-structures and silting subcategories.

Definition 1.1. Let \(T \) be a triangulated category. A *co-t-structure* on \(T \) is a pair \((A, B)\) of full subcategories of \(T \) such that

(i) \(\Sigma^{-1}A \subseteq A \) and \(\Sigma B \subseteq B \);
(ii) \(\text{Hom}_T(a, b) = 0 \) for \(a \in A \) and \(b \in B \),
(iii) for each \(t \in T \) there is a triangle \(a \rightarrow t \rightarrow b \rightarrow \Sigma a \) in \(T \) with \(a \in A \) and \(b \in B \).

The *co-heart* is defined as the intersection \(A \cap \Sigma^{-1}B \). See [15, 8].

Definition 1.2. Let \(T \) be a triangulated category.

(i) A subcategory \(U \) of \(T \) is called a *presilting subcategory* if \(T(u, \Sigma \geq 1 u') = 0 \) holds for any \(u, u' \in U \).
(ii) A presilting subcategory \(S \subseteq T \) is a *silting subcategory* if \(\text{thick}(S) = T \), see [3, def. 2.1(a)]. Here \(\text{thick}(S) \) denotes the smallest triangulated subcategory of \(T \) containing \(S \).
(iii) An object \(u \in T \) is called a *presilting object* if it satisfies \(T(u, \Sigma \geq 1 u) = 0 \), namely, if \(\text{add}(u) \) is a presilting subcategory. Similarly an object \(u \in T \) is called a *silting object* if \(\text{add}(u) \) is a silting subcategory.

Next we introduce the notion of support \(\tau \)-tilting subcategories.

Definition 1.3. Let \(C \) be an essentially small additive category.

(i) Let \(M \) be a subcategory of \(\text{mod } C \). A class \(\{ P_1 \rightarrow P_0 \rightarrow m \rightarrow 0 \mid m \in M \} \) of projective presentations in \(\text{mod } C \) is said to have *Property (S)* if

\[\text{Hom}_{\text{mod } C}(\pi^m, m') : \text{Hom}_{\text{mod } C}(P_0, m') \rightarrow \text{Hom}_{\text{mod } C}(P_1, m') \]

is surjective for any \(m, m' \in M \).
(ii) A subcategory \(M \) of \(\text{mod } C \) is said to be *\(\tau \)-rigid* if there is a class of projective presentations \(\{ P_1 \rightarrow P_0 \rightarrow m \rightarrow 0 \mid m \in M \} \) which has Property (S).
(iii) A *\(\tau \)-rigid pair* of \(\text{mod } C \) is a pair \((M, E)\), where \(M \) is a \(\tau \)-rigid subcategory of \(\text{mod } C \) and \(E \subseteq C \) is a subcategory with \(M(E) = 0 \), that is, \(m(e) = 0 \) for each \(m \in M \) and \(e \in E \).
(iv) A \(\tau \)-rigid pair \((M, E)\) is *support \(\tau \)-tilting* if \(E = \text{Ker}(M) \) and for each \(s \in C \)
there exists an exact sequence \(C(-, s) \xrightarrow{f} m^0 \rightarrow m^1 \rightarrow 0 \) with \(m^0, m^1 \in M \) such that \(f \) is a left \(M \)-approximation.

It is useful to recall the notion of Krull–Schmidt categories.

Definition 1.4. An additive category \(C \) is called *Krull–Schmidt* if each of its objects is the direct sum of finitely many objects with local endomorphism rings. It follows that these finitely many objects are indecomposable and determined up to isomorphism, see
It also follows that C is idempotent complete, that is, for an object c of C and an idempotent $e \in C(c,c)$, there exist objects c_1 and c_2 such that $c = c_1 \oplus c_2$ and $e = \text{id}_{c_1}$, see [12, 5.1].

(i) For $c \in C$ to be basic means that it has no repeated indecomposable direct summands.

(ii) For an object $c \in C$, let $\#_C(c)$ denote the number of pairwise non-isomorphic indecomposable direct summands of c.

The following is a ring version of Definition 1.3. Although the definition of τ-rigid is almost the same, the definition of support τ-tilting is rather different.

Definition 1.5. Let E be a ring such that $\text{mod} \ E$ is Krull–Schmidt.

(i) A module $U \in \text{mod} \ E$ is called τ-rigid if there is a projective presentation $P_1 \xrightarrow{\pi} P_0 \rightarrow U \rightarrow 0$ in $\text{mod} \ E$ such that $\text{Hom}_E(\pi, U)$ is surjective.

(ii) A τ-rigid module $U \in \text{mod} \ E$ is called support τ-tilting if there is an idempotent $e \in E$ which satisfies that $Ue = 0$ and $\#_{\text{mod} \ E}(U) = \#_{\text{prj}(E/EeE)}(E/EeE)$.

Remark 1.6. Part (ii) of the definition makes sense because $\text{prj}(E/EeE)$ is Krull–Schmidt. Namely, since $\text{mod} \ E$ is Krull–Schmidt, it follows that $\text{prj} E$ is Krull–Schmidt with additive generator E_E. The same is hence true for $(\text{prj} E)/[\text{add} eE]$ for each idempotent $e \in E$, and it is not hard to check that the endomorphism ring of E_E in $(\text{prj} E)/[\text{add} eE]$ is E/EeE, so there is an equivalence of categories

$$(\text{prj} E)/[\text{add} eE] \xrightarrow{\sim} \text{prj}(E/EeE).$$

Hence $\text{prj}(E/EeE)$ is Krull–Schmidt.

If E is a finite-dimensional algebra over a field, then the definition coincides with the original definition of basic support τ-tilting modules by Adachi, Iyama and Reiten [1, def. 0.1(c)].

Finally we introduce the notion of torsion classes.

Definition 1.7. Let C be an essentially small additive category, T a full subcategory of $\text{Mod} \ C$.

(i) We say that T is a torsion class if it is closed under factor modules and extensions.

(ii) For a subcategory M of $\text{Mod} \ C$, we denote by $\text{Fac} M$ the subcategory of $\text{Mod} \ C$ consisting of factor objects of objects of M.

(iii) We say that a torsion class T is finitely generated if there exists a full subcategory M of $\text{mod} \ C$ such that $T = \text{Fac} M$. Clearly the objects in $\text{Fac} M$ are finitely generated C-modules, which are not necessarily finitely presented.

(iv) An object t of a torsion class T is Ext-projective if $\text{Ext}_C^1(t, T) = 0$. We denote by $P(T)$ the full subcategory of T consisting of all Ext-projective objects of T.
2. Silting subcategories and co-t-structures

In this section, T is an essentially small, idempotent complete triangulated category.

Let (A, B) be a co-t-structure on T. It follows by definition that
\[
A = \{ t \in T \mid \text{Hom}(t, b) = 0 \ \forall b \in B \},
\]
\[
B = \{ t \in T \mid \text{Hom}(a, t) = 0 \ \forall a \in A \}.
\]

In particular, both A and B are idempotent complete and extension closed. Hence so is the co-heart $S = A \cap \Sigma^{-1}B$. Set
\[
S \ast \Sigma S = \{ t \in T \mid \text{there is a triangle } s_1 \to s_0 \to t \to \Sigma s_1 \} \subseteq T.
\]

The following lemma will often be used without further remark.

Lemma 2.1. There is an equality $S \ast \Sigma S = \Sigma A \cap \Sigma^{-1}B$. As a consequence, $S \ast \Sigma S$ is idempotent complete and extension closed.

Proof. The inclusion $S \ast \Sigma S \subseteq \Sigma A \cap \Sigma^{-1}B$ is clear, because both S and ΣS are contained in $\Sigma A \cap \Sigma^{-1}B$, which is extension closed. Next we show the converse inclusion. Let $t \in \Sigma A \cap \Sigma^{-1}B$. Then by Definition 1.1(iii) there is a triangle $a \to t \to b \to \Sigma a$ with $a \in A$ and $b \in B$. Since both t and Σa belong to ΣA, so is b due to the fact that A is extension closed. Thus $b \in \Sigma A \cap B = \Sigma S$. Similarly, one shows that $a \in S$. Thus we obtain a triangle $\Sigma^{-1}b \to a \to t \to b$ with $\Sigma^{-1}b$ and a in S, meaning that $t \in S \ast \Sigma S$. □

It is easy to see that $\text{Hom}(s, \Sigma^{\geq 1}s') = 0$ for any $s, s' \in S$. Namely, S is a presilting subcategory of T. The co-t-structure (A, B) is said to be *bounded* if
\[
\bigcup_{n \in \mathbb{Z}} \Sigma^n B = T = \bigcup_{n \in \mathbb{Z}} \Sigma^n A.
\]

Theorem 2.2. ([14, cor. 5.9]) There is a bijection $(A, B) \mapsto A \cap \Sigma^{-1}B$ from the first to the second of the following sets.

(i) Bounded co-t-structures on T.

(ii) Silting subcategories of T.

This result has the following consequence.

Theorem 2.3. Let (A, B) be a bounded co-t-structure on T with co-heart S. Then there is a bijection $(A', B') \mapsto A' \cap \Sigma^{-1}B'$ from the first to the second of the following sets.

(i) Bounded co-t-structures (A', B') on T with $A \subseteq A' \subseteq \Sigma A$.

(ii) Silting subcategories of T which are in $S \ast \Sigma S$.

Proof. Let (A', B') be a bounded co-t-structure on T with $A \subseteq A' \subseteq \Sigma A$. Then $B \supseteq B' \supseteq \Sigma B$. It follows that $A' \cap \Sigma^{-1}B' \subseteq \Sigma A \cap \Sigma^{-1}B = S \ast \Sigma S$. The last equality is by Lemma 2.1.

Let S' be a silting subcategory of T which is in $S \ast \Sigma S$. Let A' be the smallest extension closed subcategory of T containing $\Sigma^{\geq 0}S'$ and B' be the smallest extension closed subcategory of T containing $\Sigma^{\geq 1}S'$. Then (A', B') is the bounded co-t-structure corresponding to S' as in Theorem 2.2, see [14, cor. 5.9]. Since $S' \subseteq S \ast \Sigma S$, it follows that A'
is contained in the smallest extension closed subcategory of \(T \) containing \(\Sigma \leq 1 \) \(S \), which is exactly \(\Sigma A \). Similarly, one shows that \(B' \) is contained in \(B \), implying that \(A' \) contains \(A \). Thus, \(A \subseteq A' \subseteq \Sigma A \). \(\square \)

The co-t-structures in (i) are called \textit{intermediate} with respect to \((A, B)\). The silting subcategories in (ii) are called \textit{2-term} with respect to \(S \). Clearly, if \((A', B')\) is intermediate with respect to \((A, B)\), then \((A, B)\) is intermediate with respect to \((\Sigma^{-1} A', \Sigma^{-1} B')\).

The next result is a corollary of Theorems 2.2 and 2.3.

\textbf{Corollary 2.4.} Let \(S \) and \(S' \) be two silting subcategories of \(T \). If \(S' \) is 2-term with respect to \(S \), then \(S \) is 2-term with respect to \(\Sigma^{-1} S' \).

3. Two-term silting subcategories and support \(\tau \)-tilting pairs

In this section, \(T \) is an essentially small, idempotent complete triangulated category, and \(S \subseteq T \) is a silting subcategory.

\textbf{Remark 3.1.}

(i) There is a functor
\[F : T \to \text{Mod} S, \quad t \mapsto T(\cdot, t) \mid_S, \]
sometimes known as the restricted Yoneda functor.

(ii) By Yoneda’s Lemma, for \(M \in \text{Mod} S \) and \(s \in S \), there is a natural isomorphism
\[\text{Hom}_{\text{Mod} S} \left(S(\cdot, s), M \right) \cong M(s); \]
see [5, p. 185].

(iii) By [11, prop. 6.2(3)] the functor \(F \) from (i) induces an equivalence
\[(S \ast \Sigma S)/[\Sigma S] \cong \text{mod} S. \quad (1) \]
To get this from [11, prop. 6.2(3)], set \(\mathcal{X} = S, \mathcal{Y} = \Sigma S \), and observe that the proof works in the generality of the present paper.

\textbf{Lemma 3.2.} Let \(U \) be a full subcategory of \(S \ast \Sigma S \). For \(u \in U \) let
\[s_1^u \xrightarrow{\sigma} s_0^u \to u \to \Sigma s_1^u \quad (2) \]
be a distinguished triangle in \(T \) with \(s_0^u, s_1^u \in S \). Applying the functor \(F \) gives a projective presentation
\[P_1^U \xrightarrow{\pi^u} P_0^U \to U \to 0 \quad (3) \]
in \(\text{mod} S \), and

\(U \) is a presilting subcategory \(\iff \) the class \(\{ \pi^u \mid u \in U \} \) has Property (S).

\textit{Proof.} Clearly \(F \) applied to the distinguished triangle (2) gives the projective presentation (3).

To get the biimplication, first note that for \(u, u' \in U \) we have
\[T(u, \Sigma^{\geq 2} u') = 0 \quad (4) \]
since \(u, u' \in S \ast \Sigma S \).

By Remark 3.1(ii), the map \(\text{Hom}_{\text{mod} S}(\pi, F(u')) \) is the same as
\[T(s_0^u, u') \to T(s_1^u, u'). \quad (5) \]
So the class \(\{ \pi^u \mid u \in U \} \) has Property (S) if and only if the morphism \(\delta \) is surjective for all \(u, u' \in U \). However, the distinguished triangle \(\gamma \) induces an exact sequence

\[
T(s_0^u, u') \to T(s_1^u, u') \to T(\Sigma^{-1}u, u') \to T(\Sigma^{-1}s_0^u, u')
\]

where the last module is 0 since \(u' \in S \ast \Sigma S \). So \(\delta \) is surjective if and only if \(T(\Sigma^{-1}u, u') \cong T(u, \Sigma u') = 0 \). This happens for all \(u, u' \in U \) if and only if \(U \) is presilting because of equation (4). □

Theorem 3.3. The functor \(F : T \to \text{Mod} S \) induces a surjection

\[
\Phi : U \mapsto (F(U), S \cap \Sigma^{-1}U)
\]

from the first to the second of the following sets.

(i) Presilting subcategories of \(T \) which are contained in \(S \ast \Sigma S \).

(ii) \(\tau \)-rigid pairs of \(\text{mod} S \).

It restricts to a surjection \(\Psi \) from the first to the second of the following sets.

(iii) Silting subcategories of \(T \) which are contained in \(S \ast \Sigma S \).

(iv) Support \(\tau \)-tilting pairs of \(\text{mod} S \).

Proof. We need to prove

(a) The map \(\Phi \) has values in \(\tau \)-rigid pairs of \(\text{mod} S \).

(b) The map \(\Phi \) is surjective.

(c) The map \(\Psi \) has values in support \(\tau \)-tilting pairs of \(\text{mod} S \).

(d) The map \(\Psi \) is surjective.

(a) Let \(U \) be a presilting subcategory of \(T \) which is contained in \(S \ast \Sigma S \). For each \(u \in U \), there is a distinguished triangle \(s_1 \to s_0 \to u \to \Sigma s_1 \) with \(s_0, s_1 \in S \). Lemma 3.2 says that \(F \) sends the set of these triangles to a set of projective presentations \(\beta \) which has Property (S) because \(U \) is presilting. It remains to show that for \(u \in U \) and \(u' \in S \cap \Sigma^{-1}U \) we have \(F(u)(u') = 0 \). This is again true because \(F(u)(u') = T(u', u) \) holds and \(U \) is presilting.

(b) Let \((M, E) \) be a \(\tau \)-rigid pair of \(\text{mod} S \). For each \(m \in M \) take a projective presentation

\[
P_1 \xrightarrow{\pi^m} P_0 \to m \to 0
\]

such that the class \(\{ \pi^m \mid m \in M \} \) has Property (S). By Remark 3.1(ii) there is a unique morphism \(f_m : s_1 \to s_0 \) in \(S \) such that \(F(f_m) = \pi^m \). Moreover, \(F(\text{cone}(f_m)) \cong m \).

Since \(\beta \) has Property (S), it follows from Lemma 3.2 that the category

\[
U_1 := \{ \text{cone}(f_m) \mid m \in M \}
\]

is a presilting subcategory, and \(U_1 \subseteq S \ast \Sigma S \) is clear. Let \(U \) be the additive hull of \(U_1 \) and \(\Sigma E \) in \(S \ast \Sigma S \). Now we show that \(U \) is a presilting subcategory of \(T \). Let \(e \in E \). Clearly we have \(T(\text{cone}(f_m) \oplus \Sigma e, \Sigma^2 e) = 0 \). Applying \(T(e, -) \) to a triangle \(s_1 \xrightarrow{f_m} s_0 \to \text{cone}(f_m) \to \Sigma s_1 \), we have an exact sequence

\[
T(e, s_1) \xrightarrow{f_m} T(e, s_0) \to T(e, \text{cone}(f_m)) \to 0,
\]
which is isomorphic to $P_1(e) \xrightarrow{sm} P_0(e) \to m(e) \to 0$ by Remark 3.1(ii). The condition $M(E) = 0$ implies that $T(e, \text{cone}(f_m)) = 0$. Thus the assertion follows. It is clear that $\Phi(U) = (M, E)$.

(c) Let U be a silting subcategory of \mathcal{T} which is contained in $S \ast \Sigma S$.

Let $s \in S$ be an object of $\text{Ker } F(U)$, i.e. $T(s, u) = 0$ for each $u \in U$. This implies that $U \oplus \text{add}(\Sigma s)$ is also a silting subcategory of \mathcal{T} in $S \ast \Sigma S$. It follows from [3] Theorem 2.18 that Σs belongs to U whence s belongs to $\Sigma^{-1}U$ and hence to $S \cap \Sigma^{-1}U$. This shows the inclusion $\text{Ker } F(U) \subseteq S \cap \Sigma^{-1}U$. The reverse inclusion was shown in (a), so $\text{Ker } F(U) = S \cap \Sigma^{-1}U$.

By Corollary 2.4, we have $S \subseteq (\Sigma^{-1}U) \ast U$. In particular, for $s \in S$, there is a distinguished triangle

$$s \to u^0 \to u^1 \to \Sigma s$$

(7)

Applying F we obtain an exact sequence

$$F(s) \xrightarrow{f} F(u^0) \to F(u^1) \to 0.$$

(8)

For each $u \in U$ there is the following commutative diagram.

$$\begin{array}{ccc}
\mathcal{T}(u^0, u) & \xrightarrow{f^*} & \mathcal{T}(s, u) \\
\downarrow \downarrow & & \downarrow \downarrow \\
\text{Hom}_{\text{mod } S}(F(u^0), F(u)) & \xrightarrow{f^*} & \text{Hom}_{\text{mod } S}(F(s), F(u))
\end{array}$$

The right vertical map is induced from the Yoneda embedding, so it is bijective. It follows that f^* is surjective, that is, f is a left $F(U)$-approximation. Altogether, we have shown that $\Phi(U)$ is a support τ-tilting pair of $\text{mod } S$.

(d) Let (M, E) be a support τ-tilting pair of $\text{mod } S$ and let U be the preimage of (M, E) under Φ constructed in (b).

By definition, for each $s \in S$, there is an exact sequence $F(s) \xrightarrow{f} F(u^0_s) \to F(u^1_s) \to 0$ such that $u^0_s, u^1_s \in U$ and f is a left $F(U)$-approximation. By Yoneda’s lemma, there is a unique morphism $\alpha : s \to u^0_s$ such that $F(\alpha) = f$. Form the distinguished triangle

$$s \xrightarrow{\alpha} u^0_s \to t_s \to \Sigma s.$$

(9)

Let \tilde{U} be the additive closure of U and $\{ t_s \mid s \in U \}$. We claim that \tilde{U} is a silting subcategory of \mathcal{T} contained in $S \ast \Sigma S$ such that $\Phi(\tilde{U}) = (M, E)$.

First, $t_s \in u^0_s \ast \Sigma S \subseteq S \ast \Sigma S$. Therefore, $\tilde{U} \subseteq S \ast \Sigma S$.

Secondly, by applying F to the triangle (9), we see that $F(t_s)$ and $F(u^1_s)$ are isomorphic in $\text{mod } S$. For $u \in U$, consider the following commutative diagram.

$$\begin{array}{ccc}
\mathcal{T}(u^0_s, u) & \xrightarrow{\alpha^*} & \mathcal{T}(s, u) \\
\downarrow F(-) & & \downarrow \cong \\
\text{Hom}_{\text{mod } S}(F(u^0_s), F(u)) & \xrightarrow{f^*} & \text{Hom}_{\text{mod } S}(F(s), F(u))
\end{array}$$
By Remark 3.1(iii), the map $F(-)$ is surjective. Because f is a left $F(U)$-approximation, f^* is also surjective. So α^* is surjective too, implying that $T(t_s, \Sigma u) = 0$. On the other hand, applying $T(u, -)$ to the triangle (9), we obtain an exact sequence

$$T(u, \Sigma u_0^0) \to T(u, \Sigma t_s) \to T(u, \Sigma^2 s).$$

The two outer terms are trivial, hence so is the middle term. Moreover, if $s' \in S$ then applying $T(t_{s'}, -)$ to the triangle (9) gives an exact sequence

$$T(t_{s'}, \Sigma u_0^0) \to T(t_{s'}, \Sigma t_s) \to T(t_{s'}, \Sigma^2 s).$$

The two outer terms are trivial, hence so is the middle term. It follows that \tilde{U} is presilting. It is then silting because it generates S.

Thirdly, $F(\tilde{U}) = F(U)$ because $F(t_s) \cong F(u_1^1)$.

Finally, $S \cap \Sigma^{-1} \tilde{U} = E$. This is because $S \cap \Sigma^{-1} \tilde{U} \supseteq S \cap \Sigma^{-1} U = E$ and $S \cap \Sigma^{-1} \tilde{U} \subseteq \ker F(U) = E$.

Theorem 3.4. Assume that each object of $S \ast \Sigma S$ can be written as the direct sum of indecomposable objects which are unique up to isomorphism. Then the maps Φ and Ψ defined in Theorem 3.3 are bijective.

Proof. It suffices to show the injectivity of Φ.

By Remark 3.1(iii), when we apply the functor $F : S \ast \Sigma S \to \text{mod } S$, we are in effect forgetting the indecomposable direct summands which are in ΣS. So if $F(u) \cong F(u')$ for $u, u' \in S \ast \Sigma S$, then there is an isomorphism $u \oplus \Sigma s \cong u' \oplus \Sigma s'$ for some $s, s' \in S$. By the assumption in the theorem, if we assume that u and u' do not have direct summands in ΣS, then $u \cong u'$.

Now let U and U' be two presilting subcategories of T contained in $S \ast \Sigma S$ such that $\Phi(U) = \Phi(U')$. Let U_1 and U'_1 be respectively the full subcategories of U and U' consisting of objects without direct summands in ΣS. Then $U = U_1 \oplus (U \cap \Sigma S)$ and $U' = U'_1 \oplus (U' \cap \Sigma S)$. Since $\Phi(U) = \Phi(U')$, it follows that $F(U_1) = F(U'_1)$ and $U \cap \Sigma S = U' \cap \Sigma S$. The first equality, by the above argument, implies that $U_1 = U'_1$. Therefore $U = U'$, which shows the injectivity of Φ. \qed

4. **The Hom-finite Krull–Schmidt silting object case**

In this section, k is a commutative ring, T is a triangulated category which is essentially small, Krull–Schmidt, k-linear and Hom-finite, and $s \in T$ is a basic silting object.

We write $E = T(s, s)$ for the endomorphism ring and $S = \text{add}(s)$ for the associated silting subcategory.

Remark 4.1.

(i) We write $\text{Mod } E$ for the abelian category of right E-modules, $\text{mod } E$ for the full subcategory of finitely presented modules, and $\text{prj } E$ for the full subcategory of finitely generated projective modules.

(ii) Since s is an additive generator of S, there is an equivalence

$$G : \text{Mod } S \xrightarrow{\sim} \text{Mod } E, \ M \mapsto M(s)$$

which restricts to an equivalence

$$\text{mod } S \xrightarrow{\sim} \text{mod } E, \ M \mapsto M(s).$$
This permits us to move freely between the “E-picture” and the “S-picture” which was used in the previous section.

(iii) The restricted Yoneda functor F from the S-picture corresponds to the functor

$$T \rightarrow \text{Mod } E, \ t \mapsto T(s, t)$$

in the E-picture.

(iv) By [5, prop. 2.2(e)] the functor $t \mapsto T(s, t)$ from (iii) restricts to an equivalence

$$Y : S \sim \text{prj } E.$$

Since $S = \text{add}(s)$ is closed under direct sums and summands, it is Krull–Schmidt, and it follows that so is $\text{prj } E$.

(v) By Remark 3.1(iii) the functor $t \mapsto T(s, t)$ from (iii) induces an equivalence

$$(S \ast \Sigma S)/[\Sigma S] \sim \text{mod } E. \quad (10)$$

Since $S \ast \Sigma S$ is obviously closed under direct sums, and under direct summands by Lemma 2.1 it is Krull–Schmidt. Hence so is $(S \ast \Sigma S)/[\Sigma S]$ and it follows that so is $\text{mod } E$.

(vi) The additive category $\text{prj } E$ is Krull–Schmidt by part (iv) and has additive generator E_E. The same is hence true for $(\text{prj } E)/[\text{add } E]$ for each idempotent $e \in E$. It is not hard to check that the endomorphism ring of E_E in $(\text{prj } E)/[\text{add } E]$ is $E/E e E$, so there is an equivalence of categories

$$(\text{prj } E)/[\text{add } E] \sim \text{prj } (E/E e E).$$

In particular, $\text{prj } (E/E e E)$ is Krull–Schmidt.

The following result is essentially already in [2, prop. 2.16], [9, start of sec. 5], and [16, prop. 6.1], all of which give triangulated versions of Bongartz’s classic proof.

Lemma 4.2 (Bongartz Completion). Let $u \in S \ast \Sigma S$ be a presilting object. Then there exists an object $u' \in S \ast \Sigma S$ such that $u \oplus u'$ is a silting object.

Proof. This has essentially the same proof as classic Bongartz completion: Since T is Hom-finite over the commutative ring k, there is a right $\text{add}(u)$-approximation $u_0 \rightarrow \Sigma s$. It gives a distinguished triangle $s \rightarrow u' \rightarrow u_0 \rightarrow \Sigma s$, and it is straightforward to check that u' has the desired properties. \qed

The following result is essentially already in [9, thm. 5.4].

Proposition 4.3. Let $u \in S \ast \Sigma S$ be a basic presilting object. Then

$$u \text{ is a silting object } \iff \#_T(u) = \#_T(s).$$

Proof. The implication \Rightarrow is immediate from [3, thm. 2.27] and \Leftarrow is a straightforward consequence of [3, thm. 2.27] and Lemma 4.2. \qed

As a consequence, we have

Corollary 4.4. Let U be a presilting subcategory of T contained in $S \ast \Sigma S$. Then there exists $u \in U$ such that $U = \text{add}(u)$.

Proof. Suppose on the contrary that $U \neq \text{add}(u)$ for each $u \in U$. Then U contains infinitely many isomorphism classes of indecomposable objects. In particular, there is a basic presilting object $u \in U$ such that $\#_T(u) = \#_T(s) + 1$. By Lemma 4.2, there is an object $u' \in T$ such that $u \oplus u'$ is a basic silting object of T. Therefore, $\#_T(s) + 1 = \#_T(u) \leq \#_T(u \oplus u') = \#_T(s)$, a contradiction. Here the last equality follows from Proposition 4.3. □

Theorem 3.3 in the current setting combined with Corollary 4.4 immediately yields the following result. For an object u of $S \Sigma$, let Σu_1 be its maximal direct summand in ΣS.

Theorem 4.5. The assignment

$$u \mapsto (\text{add}(F(u)), \text{add}(u_1))$$

defines a bijection from the first to the second of the following sets.

(i) Basic presilting objects of T which are in $S \Sigma$, modulo isomorphism.
(ii) τ-rigid pairs of $\text{mod } S$.

It restricts to a bijection from the first to the second of the following sets.

(iii) Basic silting objects of T which are in $S \Sigma$, modulo isomorphism.
(iv) Support τ-tilting pairs of $\text{mod } S$.

As a consequence, if (M, E) is a τ-rigid pair of $\text{mod } S$, then there is an S-module M such that $M = \text{add}(M)$.

Next we move to the E-picture. Recall from Remark 4.1(ii) and (iv) that there are equivalences $G : \text{Mod } S \sim \text{Mod } E$ and $Y : S \sim \text{prj } E$.

Theorem 4.6. An E-module U is a support τ-tilting module if and only if the pair

$$(G^{-1}(\text{add}(U)), Y^{-1}(\text{add}(eE)))$$

is a support τ-tilting pair of $\text{mod } S$ for some idempotent $e \in E$.

Consequently, the functor $T(s, -) : T \rightarrow \text{Mod } E$ induces a bijection from the first to the second of the following sets.

(i) Basic silting objects of T which are in $S \Sigma$, modulo isomorphism.
(ii) Basic support τ-tilting modules of $\text{mod } E$, modulo isomorphism.

Proof. We only prove the first assertion. The proof is divided into three parts. Let $u_p \in S \Sigma$ be such that u_p has no direct summand in ΣS and $F(u_p) = G^{-1}(U)$.

(a) It is clear that U is a τ-rigid E-module if and only if $G^{-1}(\text{add}(U))$ is a τ-rigid subcategory of $\text{mod } S$.

(b) Let e be an idempotent of E and let $u_1 \in S$ be such that $Y(u_1) = eE$. We have

$$Ue \cong \text{Hom}_E(eE, U)$$

$$= \text{Hom}_{\text{Mod } S} (S(-, u_1), F(u_p))$$

$$\cong F(u_p)(u_1) \quad \text{Remark 3.1(ii)}$$
Therefore \(Ue = 0 \) if and only if \(M(u') = 0 \) for each \(M \in \text{add}(F(u_p)) = G^{-1}(\text{add}(U)) \) and each \(u' \in \text{add}(u_1) = Y^{-1}(\text{add}(eE)) \).

(c) Suppose that \((G^{-1}(\text{add}(U)), Y^{-1}(\text{add}(eE)))\) is a \(\tau \)-rigid pair. Let \(u \) be the corresponding basic presilting object of \(T \) as in Theorem 4.5. More precisely, \(u = u_p \oplus \Sigma u_1 \), where \(u_p \) and \(u_1 \) are as above. Then

\[(G^{-1}(\text{add}(U)), Y^{-1}(\text{add}(eE))) \text{ is a support } \tau \text{-tilting pair} \]

\[\iff u \text{ is a silting object} \quad \text{Theorem 4.5}\]

\[\iff \#T(u) = \#T(s) \quad \text{Proposition 4.3}\]

\[\iff \#S*\Sigma S(u) = \#S(s) \quad \text{Remark 4.1(iv)}\]

\[\iff \#(S*\Sigma S)/[\Sigma S](u) + \#S*\Sigma S(\Sigma u_1) = \#\text{proj}E(E) \quad \text{Remark 4.1(iv+v)}\]

\[\iff \#\text{mod}E(U) + \#\text{proj}E(eE) = \#\text{proj}E(E) \quad \text{Remark 4.1(iv+v)}\]

\[\iff \#\text{mod}E(U) = \#\text{proj}E(E) - \#\text{proj}E(eE) \quad \text{Remark 4.1(iv+v)}\]

\[\iff \#\text{mod}E(U) = \#\text{proj}(E/EeE)(E/EeE) \quad \text{Remark 4.1(vi)}\]

\[\iff U \text{ is a support } \tau \text{-tilting module}. \]

\[\Box\]

5. **Support \(\tau \)-tilting pairs and torsion classes**

In this section \(\mathbb{k} \) is a commutative noetherian local ring and \(C \) is an essentially small, Krull-Schmidt \(\mathbb{k} \)-linear and Hom-finite category.

The main result in this section is the following.

Theorem 5.1. There is a bijection \(M \leftrightarrow \text{Fac } M \) from the first to the second of the following sets.

(i) Support \(\tau \)-tilting pairs \((M, E)\) of \(\text{mod } C \).

(ii) Finitely generated torsion classes \(T \) of \(\text{Mod } C \) such that each finitely generated projective \(C \)-module has a left \(P(T) \)-approximation.

We start with the following observation.

Lemma 5.2. Let \(M \) be a subcategory of \(\text{mod } C \). The following conditions are equivalent.

(i) \(M \) is \(\tau \)-rigid.

(ii) \(\text{Ext}^1_{\text{Mod } C}(M, \text{Fac } M) = 0 \).

(iii) Each \(m \in M \) has a minimal projective presentation

\[0 \to \Omega^2 m \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \to m \to 0\]
such that for each $m' \in \mathcal{M}$ and each morphism $f : P_1 \to m'$, there exist morphisms $a : P_0 \to m'$ and $b : P_1 \to \Omega^2m$ such that $f = ad_1 + fd_2b$.

\[
\begin{array}{rcccl}
0 & \xrightarrow{\Omega^2m} & P_1 & \xrightarrow{d_2} & P_0 & \xrightarrow{d_1} & m & \xrightarrow{f} & m' \\
& & b & \downarrow{f} & a & \downarrow{g} & & \downarrow{h} & \\
& & m' & & & & & & n
\end{array}
\]

Proof. (i)⇒(ii): For each $m \in \mathcal{M}$, there exists a projective presentation $P_1 \xrightarrow{\pi} P_0 \xrightarrow{\pi} m \xrightarrow{\eta} 0$ such that $\text{Hom}_{\mathcal{M}}(\pi, m')$ is surjective for each $m' \in \mathcal{M}$. Let $n \in \text{Fac M}$ be given and pick an epimorphism $p : m' \to n$ with $m' \in \mathcal{M}$. To show $\text{Ext}^1_{\text{Mod C}}(m, n) = 0$, it is enough to show that each $f \in \text{Hom}_{\text{Mod C}}(P_1, n)$ factors through π. Since p is an epimorphism and P_1 is projective, there exists $g : P_0 \to m'$ such that $f = pg$. Then there exists $h : P_0 \to m'$ such that $g = h\pi$ by the property of π.

\[
\begin{array}{rcccl}
P_1 & \xrightarrow{\pi} & P_0 & \xrightarrow{\pi} & m & \xrightarrow{\eta} & 0 \\
& & f & \downarrow{h} & & & \\
m' & \xrightarrow{p} & n & & & & \\
\end{array}
\]

Thus $f = ph\pi$ holds, and we have the assertion.

(ii)⇒(iii): For each $m \in \mathcal{M}$, take a minimal projective presentation $0 \to \Omega^2m \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\pi} m \xrightarrow{\eta} 0$. Let $m' \in \mathcal{M}$ and $f : P_1 \to m'$ be given, set $n := \text{Im}(fd_2)$ and let $0 \to n \xrightarrow{i} m' \xrightarrow{\pi} n' \xrightarrow{\eta} 0$ be an exact sequence. Then $\pi f : P_1 \to n'$ factors through $P_1 \to \text{Im} d_1$. Since $n' \in \text{Fac M}$ and $\text{Ext}^1_{\text{Mod C}}(m, \text{Fac M}) = 0$, there exists $g : P_0 \to n'$ such that $gd_1 = \pi f$.

\[
\begin{array}{rcccl}
0 & \xrightarrow{\Omega^2m} & P_1 & \xrightarrow{d_2} & \text{Im} d_1 & \xrightarrow{d_1} & m & \xrightarrow{g} & 0 \\
& & & \downarrow{f} & \downarrow{f} & \downarrow{g} & \downarrow{h} & \downarrow{a} & \downarrow{g} \\
0 & \xrightarrow{\eta} & n & \xrightarrow{\pi} m' & \xrightarrow{\pi} n' & \xrightarrow{\eta} & 0
\end{array}
\]

Since π is an epimorphism and P_0 is projective, there exists $a : P_0 \to m'$ such that $g = \pi a$. Since $\pi(f - ad_1) = 0$, there exists $h : P_1 \to n$ such that $f = ad_1 + ih$. Since f' is surjective (by definition of n) and P_1 is projective, there exists $b : P_1 \to \Omega^2m$ such that $h = f'b$.

\[
\begin{array}{rcccl}
0 & \xrightarrow{\Omega^2m} & P_1 & \xrightarrow{d_2} & P_0 & \xrightarrow{d_1} & m & \xrightarrow{g} & 0 \\
& & & \downarrow{f'} & \downarrow{f} & \downarrow{g} & \downarrow{a} & \downarrow{g} & \downarrow{h} \\
0 & \xrightarrow{i} & n & \xrightarrow{\pi} m' & \xrightarrow{\pi} n' & \xrightarrow{\eta} & 0
\end{array}
\]

Then we have $f = ad_1 + if'b = ad_1 + fd_2b$.

(iii)⇒(i): For each $m \in \mathcal{M}$, take a minimal projective presentation $0 \to \Omega^2m \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\pi} m \xrightarrow{\eta} 0$ satisfying the assumption in (iii). We need to show that each $f : P_1 \to m'$ with $m' \in \mathcal{M}$ factors through d_1. By our assumption, there exist $a : P_0 \to m'$ and $b : P_1 \to \Omega^2m$ such that $f = ad_1 + fd_2b$. Applying our assumption to $fd_2b : P_1 \to m'$,
there exist $a' : P_0 \to m'$ and $b' : P_1 \to \Omega^2 m$ such that $f d_2 b = a'd_1 + f d_2 b d_2 b'$. Thus $f = (a + a')d_1 + f d_2 b d_2 b'$ holds. Repeating a similar argument gives

$$\text{Hom}_{\text{Mod} \, C}(P_1, M) = \text{Hom}_{\text{Mod} \, C}(P_0, M)d_1 + \text{Hom}_{\text{Mod} \, C}(P_1, M)(\text{rad} \, \text{End}_{\text{Mod} \, C}(P_1))^n$$

for each $n \geq 1$ since $d_2 \in \text{rad} \, \text{Hom}_{\text{Mod} \, C}(\Omega^2 M, P_1)$. Since C is Hom-finite over \mathbb{K}, we have $(\text{rad} \, \text{End}_{\text{Mod} \, C}(P_1))^\ell \subset \text{End}_{\text{Mod} \, C}(P_1)(\text{rad} \, \mathbb{K})$ for sufficiently large ℓ. Thus we have

$$\text{Hom}_{\text{Mod} \, C}(P_1, M) = \bigcap_{n \geq 0} \left(\text{Hom}_{\text{Mod} \, C}(P_0, M)d_1 + \text{Hom}_{\text{Mod} \, C}(P_1, M)(\text{rad} \, \mathbb{K})^n \right).$$

The right hand side is equal to $\text{Hom}_{\text{Mod} \, C}(P_0, M)d_1$ itself by Krull’s intersection Theorem \[13\].

Proposition 5.3. Let (M, E) be a support τ-tilting pair of $\text{mod} \, C$. Then $\text{Fac} \, M$ is a finitely generated torsion class with $P(\text{Fac} \, M) = M$.

Proof. (i) We show that $\text{Fac} \, M$ is a torsion class. Clearly $\text{Fac} \, M$ is closed under factor modules. We show that $\text{Fac} \, M$ is closed under extensions. Let $0 \to x \to y \xrightarrow{f} z \to 0$ be an exact sequence in $\text{Mod} \, C$ such that $x, z \in \text{Fac} \, M$. Take an epimorphism $p : m \to z$ with $m \in M$. Since $\text{Ext}^1_{\text{Mod} \, C}(m, x) = 0$ holds by Lemma 5.2(ii), we have that p factors through f. Thus we have an epimorphism $x \oplus m \to y$, and $y \in \text{Fac} \, M$ holds. Hence $\text{Fac} \, M$ is a torsion class.

(ii) Since $\text{Ext}^1_{\text{Mod} \, C}(M, \text{Fac} \, M) = 0$ holds by Lemma 5.2(ii), each object in M is Ext-projective in $\text{Fac} \, M$. It remains to show that if n is an Ext-projective object in $\text{Fac} \, M$, then $n \in M$. Let $P_1 \xrightarrow{f} P_0 \xrightarrow{c} n \to 0$ be a projective presentation. Since M is support τ-tilting, there exist exact sequence $P_i \xrightarrow{g_i} m_i \xrightarrow{h_i} m'_i \to 0$ with $m_i, m'_i \in M$ and a left M-approximation g_i for $i = 0, 1$.

Let $\mathcal{C} := C/\text{ann} \, M$ for the annihilator ideal $\text{ann} \, M$ of M and $\overline{P}_i := P_i \otimes_C \mathcal{C}$. Then we have induced exact sequences $0 \to \overline{P}_1 \xrightarrow{g_1} m_1 \xrightarrow{h_1} m'_1 \to 0$ for $i = 0, 1$ and $\overline{P}_1 \xrightarrow{f} \overline{P}_0 \xrightarrow{c} n \to 0$.

We have a commutative diagram

$$\begin{array}{ccccccccc}
0 & \longrightarrow & \overline{P}_1 & \xrightarrow{g_1} & m_1 & \xrightarrow{h_1} & m'_1 & \longrightarrow & 0 \\
& & \downarrow{f} & & \downarrow{a} & & \downarrow{b} & & \\
0 & \longrightarrow & \overline{P}_0 & \xrightarrow{g_0} & m_0 & \xrightarrow{h_0} & m'_0 & \longrightarrow & 0
\end{array}$$

of exact sequences. Taking a mapping cone, we have an exact sequence

$$0 \longrightarrow \overline{P}_1 \xrightarrow{[g_1, f]} m_1 \oplus \overline{P}_0 \xrightarrow{[h_1, 0, a, -g_0]} m'_1 \oplus m_0 \xrightarrow{[b, -h_0]} m'_0 \longrightarrow 0.$$

Since $\text{Ext}^1_{\text{Mod} \, C}(m'_0, n) = 0$ holds by Lemma 5.2(ii), we have the following commutative diagram.

$$\begin{array}{cccccccccc}
0 & \longrightarrow & \overline{P}_1 & \xrightarrow{[g_1, f]} & m_1 \oplus \overline{P}_0 & \xrightarrow{[h_1, 0, a, -g_0]} & m'_1 \oplus m_0 & \xrightarrow{[b, -h_0]} & m'_0 & \longrightarrow & 0 \\
& & \downarrow{[0, 1]} & & \downarrow{[0, 1]} & & \downarrow{[0, 1]} & & \downarrow{[0, 1]} & & \\
0 & \longrightarrow & \text{Ker} \, f & \longrightarrow & \overline{P}_1 & \xrightarrow{f} & \overline{P}_0 & \xrightarrow{e} & n & \longrightarrow & 0
\end{array}$$
Taking a mapping cone, we have an exact sequence
\[0 \rightarrow P_1 \oplus \text{Ker } f \rightarrow m_1 \oplus P_0 \oplus P_1 \rightarrow m'_1 \oplus m_0 \oplus P_0 \rightarrow m'_0 \oplus n \rightarrow 0. \]
Cancelling a direct summand of the form \(P_1 \xrightarrow{\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}} P_0 \oplus P_1 \xrightarrow{\begin{bmatrix} 1 \\ 0 \end{bmatrix}} P_0 \), we have an exact sequence
\[0 \rightarrow \text{Ker } f \rightarrow m_1 \xrightarrow{c} m'_1 \oplus m_0 \xrightarrow{d} m'_0 \oplus n \rightarrow 0. \]
Since \(\text{Im } c \in \text{Fac } M \) and \(m'_0 \oplus n \) is Ext-projective in \(\text{Fac } M \), the epimorphism \(d \) splits. Thus \(n \in M \) as desired. \(\square \)

Now we are ready to prove Theorem 5.1.

Let \(M \) be a support \(\tau \)-tilting subcategory of \(\text{mod } C \). By definition, each representable \(C \)-module has a left \(M \)-approximation. Since \(P(\text{Fac } M) = M \) holds by Proposition 5.3, the map \(M \mapsto \text{Fac } M \) is well-defined from the set (i) to the set (ii) and it is injective.

We show that the map is surjective. For \(T \) in the set described in (ii), let \(E := \bigcap_{m \in T} \text{Ker } m \) and \(M := P(T) \). We will show that \((M, E) \) is a support \(\tau \)-tilting pair of \(\text{mod } C \). Since \(\text{Ext}^1_{\text{Mod } C}(M, T) = 0 \) and \(\text{Fac } M \subset T \) hold, it follows from Lemma 5.2 that \(M \) is \(\tau \)-rigid. For \(s \in C \), take a left \(M \)-approximation \(C(-, s) \xrightarrow{f} m \).

It remains to show \(\text{Coker } f \in M \). Since \(P(\text{Fac } M) = M \) holds by Proposition 5.3, we only have to show \(\text{Ext}^1_{\text{Mod } C}(\text{Coker } f, m') = 0 \) for each \(m' \in M \). Let \(f = \iota \pi \) for \(\pi : C(-, s) \rightarrow \text{Im } f \) and \(\iota : \text{Im } f \rightarrow m \). Applying \(\text{Hom}_{\text{Mod } C}(-, m') \) to the exact sequence \(0 \rightarrow \text{Im } f \xrightarrow{\iota} m \rightarrow \text{Coker } f \rightarrow 0 \), we have an exact sequence
\[\text{Hom}_{\text{Mod } C}(m, m') \xrightarrow{\iota^*} \text{Hom}_{\text{Mod } C}(\text{Im } f, m') \rightarrow \text{Ext}^1_{\text{Mod } C}(\text{Coker } f, m') \rightarrow \text{Ext}^1_{\text{Mod } C}(m, m') = 0. \]
Let \(g : \text{Im } f \rightarrow m' \) be a morphism in \(\text{Mod } C \). Since \(f \) is a left \(M \)-approximation, there exists \(h : m \rightarrow m' \) such that \(g\pi = hf \). Then \(g = hu \) holds. Thus \(\iota^* : \text{Hom}_{\text{Mod } C}(m, m') \rightarrow \text{Hom}_{\text{Mod } C}(\text{Im } f, m') \) is surjective, and we have \(\text{Ext}^1_{\text{Mod } C}(\text{Coker } f, m') = 0 \). Consequently we have \(\text{Coker } f \in P(T) = M \). Thus the assertion follows. \(\square \)

References

1. T. Adachi, O. Iyama, and I. Reiten, \(\tau \)-tilting theory, to appear in Compos. Math. math.RT/1210.1036.
2. T. Aihara, Tilting-connected symmetric algebras, Algebra. Represent. Theor. 16 (2013), no. 3, 873–894.
3. T. Aihara and O. Iyama, Silting mutation in triangulated categories, J. London Math. Soc. (2) 85 (2012), 633–668.
4. F. W. Anderson and K. R. Fuller, “Rings and categories of modules”, Grad. Texts in Math., Vol. 13, Springer, New York, 1974.
5. M. Auslander, Representation theory of Artin algebras I, Comm. Algebra 1 (1974), 177–268.
6. H. Bass, “Algebraic K-theory”, W. A. Benjamin Inc., New York–Amsterdam, 1968.
7. A. Beligiannis and I. Reiten, “Homological and homotopical aspects of torsion theories”, Mem. Amer. Math. Soc. 188 (2007), no. 883.
8. M. V. Bondarko, Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general), J. K-Theory 6 (2010), no. 3, 387–504.
9. H. Derksen and J. Fei, General presentations of algebras, preprint (2009). math.RA/0911.4913v2.
[10] D. Happel, I. Reiten, and S. Smalø, “Tilting in abelian categories and quasitilted algebras”, Mem. Amer. Math. Soc. 120 (1996), no. 575.

[11] O. Iyama and Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), 117–168.

[12] B. Keller, The periodicity conjecture for pairs of Dynkin diagrams, Ann. of Math. (2) 177 (2013), no. 1, 111–170.

[13] H. Matsumura, “Commutative ring theory”, Cambridge Studies in Advanced Mathematics, Vol. 8. Cambridge University Press, Cambridge, 1989.

[14] O. Mendoza, E. C. Saenz, V. Santiago, and M. J. Souto Salorio, Auslander-Buchweitz context and co-t-structures, Appl. Categ. Structures 21 (2013), 417–440.

[15] D. Pauksztello, Compact corigid objects in triangulated categories and co-t-structures, Cent. Eur. J. Math. 6 (2008), 25–42.

[16] J. Wei, Semi-tilting complexes, Israel J. Math. 194 (2013), 871–893.

[17] J. Woolf, Stability conditions, torsion theories and tilting, J. London Math. Soc. 82 (2010), 663–682.

Graduate School of Mathematics, Nagoya University Chikusa-ku, Nagoya, 464-8602 Japan

E-mail address: iyama@math.nagoya-u.ac.jp
URL: http://www.math.nagoya-u.ac.jp/~iyama

School of Mathematics and Statistics, Newcastle University, Newcastle NE1 7RU

E-mail address: peter.jorgensen@ncl.ac.uk
URL: http://www.staff.ncl.ac.uk/peter.jorgensen

Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China

E-mail address: dongyang2002@gmail.com