Propagating Properties of a Partially Coherent Flat-Topped Vortex Hollow Beam in Turbulent Atmosphere

Dajun Liu*, Yaochuan Wang, Guiqiu Wang, and Hongming Yin

Department of Physics, Dalian Maritime University, Dalian 116026, China

(Received November 9, 2015 : revised January 28, 2016 : accepted February 1, 2016)

Using coherence theory, the partially coherent flat-topped vortex hollow beam is introduced. The analytical equation for propagation of a partially coherent flat-topped vortex hollow beam in turbulent atmosphere is derived, using the extended Huygens-Fresnel diffraction integral formula. The influence of coherence length, beam order \(N \), topological charge \(M \), and structure constant of the turbulent atmosphere on the average intensity of this beam propagating in turbulent atmosphere are analyzed using numerical examples.

Keywords: Partially coherent flat-topped vortex hollow beam, Atmospheric turbulence, Laser propagation

OCIS codes: (010.1300) Atmospheric propagation; (010.3310) Laser beam transmission; (140.3295) Laser beam characterization

I. INTRODUCTION

Recently, much attention has been paid to the propagation properties of a laser beam in turbulent atmosphere [1]. It is found that the intensity and spreading of a laser beam are affected by atmospheric turbulence [2-8], and the laser beam with a vortex has been widely studied, due to its potential applications in free-space laser communication. In past years, Wang et al. studied the focusing properties of a Gaussian Schell-model vortex beam in experiments [9]. Zhou et al. studied the partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere [10]. Wang and Qian studied the spectral properties of a random electromagnetic partially coherent flat-topped vortex beam in turbulent atmosphere, based on the extended Huygens-Fresnel principle [11]. Gu studied the transverse position of an optical vortex upon propagation through atmospheric turbulence [12]. Zhou and Ru studied the angular momentum density of a linearly polarized Lorentz-Gauss vortex beam [13]. Huang et al. studied the intensity distributions and spectral degree of polarization of partially coherent electromagnetic hyperbolic-sine-Gaussian vortex beams through non-Kolmogorov turbulence using numerical examples [14]. Wu et al. developed an expression for the wandering of random electromagnetic Gaussian-Schell model beams propagating in atmospheric turbulence, and studied the properties of the beams [15]. Recently, a new dark hollow beam called the partially coherent flat-topped vortex hollow beam has been proposed, which has advantages over a flat-topped hollow beam, and which has potential applications in free-space wireless laser communication. However, to the best of our knowledge, the propagation properties of a partially coherent flat-topped vortex hollow beam in turbulent atmosphere have not been reported.

In this work, we first introduce the partially coherent flat-topped vortex hollow beam based on the theory of coherence, and then investigate its propagation properties in turbulent atmosphere.

II. PROPAGATION OF A PARTIALLY COHERENT FLAT-TOPPED VORTEX HOLLOW BEAM IN TURBULENT ATMOSPHERE

In the Cartesian coordinate system with the \(z \)-axis set as the axis of propagation, a circular or elliptical flat-topped vortex hollow beam in the source plane can be described as [16]

\[
E(r_0,0) = \sum_{n=0}^{N} \frac{(-1)^{n}}{N} \binom{N}{n} \exp \left[-n \left(\frac{x_n^2}{w_x^2} + \frac{y_n^2}{w_y^2} \right) \right] \left(\frac{x_n}{w_x} + i \frac{y_n}{w_y} \right)^{M} \tag{1}
\]

*Corresponding author: liudajun@dlmu.edu.cn
Color versions of one or more of the figures in this paper are available online.
where N is the order of the elliptical flat-topped vortex hollow beam, M is the topological charge, w_x and w_y are the beam width in the x and y directions, respectively, and $\binom{N}{n}$ denotes the binomial coefficient.

Based on the theory of coherence, a fully coherent flat-topped vortex hollow beam can be extended to a partially coherent flat-topped vortex hollow beam. The second-order correlation properties of an electromagnetic beam can be characterized by the cross-spectral density function introduced by Wolf [17],

$$W(r_1, r_2, z) = \left< E(r_1, z) E^*(r_2, z) \right>$$

$$= \sqrt{I(x_1, y_1, z) I(x_2, y_2, z)} g(x_1 - x_2, y_1 - y_2)$$

(2)

where $g(x_1 - x_2, y_1 - y_2)$ is the spectral degree of coherence, assumed to have a Gaussian profile, and

$$g(x_1 - x_2, y_1 - y_2) = \exp \left[-\frac{(x_1 - x_2)^2 + (y_1 - y_2)^2}{2\sigma^2} \right]$$

(3)

where σ is the transverse coherence length.

Substituting Eq. (1) into Eq. (2), the partially coherent flat-topped vortex hollow beam can be written as

$$W_{\rho_0}(r_{10}, r_{20}, 0) = \sum_{n=0}^{N} \sum_{m=0}^{N} \left(-1 \right)^{m+n} \binom{N}{n} \binom{N}{m}$$

$$\exp \left[-\frac{m}{w_x^2} \left(\frac{x_0^2}{w_x^2} + \frac{y_0^2}{w_y^2} \right) \right] \exp \left[-\frac{n}{w_y^2} \left(\frac{x_0^2}{w_x^2} + \frac{y_0^2}{w_y^2} \right) \right]$$

$$\times \left(\frac{x_{10}w_{10} - y_{10}w_{20} + i \cdot x_{10}w_{10} - y_{10}w_{20}}{w_x w_y} \right)^M$$

$$\exp \left[-\frac{(x_{10} - x_{20})^2 + (y_{10} - y_{20})^2}{2\sigma^2} \right]$$

(4)

where $r_{10} = (x_{10}, y_{10})$ and $r_{20} = (x_{20}, y_{20})$ are the position vectors at the source plane $z = 0$.

According to the extended Huygens-Fresnel principle, the spectral density of a laser beam propagating through turbulent atmosphere can be expressed as follows [1-9]:

$$W(r, r', z) = \frac{k^2}{4\pi^2 z^2} \exp \left[-\frac{ik}{2z} (r - r_0)^2 + \frac{ik}{2z} (r' - r_0)^2 \right]$$

$$\times \exp \left[-\frac{(r - r_0)^2}{\rho_0^2} \right] \frac{M!^l}{l!} \frac{1}{w_x} \left(\frac{1}{w_y} \right)^l$$

$$\sum_{s=0}^{M} \frac{M!^l}{l! (M-s)!} \frac{1}{w_x} \left(\frac{1}{w_y} \right)^s I_x I_y$$

(5)

where $k = 2\pi/\lambda$ is the wave number; $\psi(x_0, y_0, x, y)$ is the solution to the Rytov method that represents the random part of the complex phase (the asterisk denoting complex conjugation), and $r = (x, y)$ and $r_0 = (x_0, y_0)$ are respectively the position vectors at the output plane z and the input plane $z=0$. The ensemble average in Eq. (5) can be expressed as [5]
Propagation Properties of a Partially Coherent Flat-Topped Vortex Hollow … - Dajun Liu et al.

with

\[I_x = (M - l)! \left(\frac{\pi}{a_1} \right)^{M-1} \exp \left[-\frac{1}{a_1} \left(\frac{k}{2z} x_1 - \frac{y_1 - y_2}{2\rho_0^2} \right)^2 \right] \]

\[\times \sum_{d_1=0}^{[M-2d_1]} \frac{1}{d_1! (M - l - 2d_1)!} \frac{a_1}{4} \frac{1}{t_2} \left(\frac{2\sigma^2 + 1}{\rho_0^2} \right)^{2^{d_1-2d_1}} \times i^{2d_1} \exp \left(\frac{c_1^2}{b_1^2} \right) \frac{\pi}{b_1} \left(\frac{1}{\sqrt{b_1}} \right) H_{M-1}(i) \left(-i \frac{c_2}{\sqrt{b_2}} \right) \]

\[I_y = l! \left(\frac{\pi}{a_2} \frac{1}{a_2} \right)^{y_2} \exp \left[-\frac{1}{a_2} \left(\frac{k}{2z} y_1 - \frac{y_1 - y_2}{2\rho_0^2} \right)^2 \right] \]

\[\times \sum_{d_2=0}^{l-2d_2} \frac{1}{d_2! (l - 2d_2)!} \frac{a_2}{4} \frac{1}{t_2} \left(\frac{2\sigma^2 + 1}{\rho_0^2} \right)^{2^{d_2-2d_2}} \times i^{2d_2} \exp \left(\frac{c_2^2}{b_2^2} \right) \frac{\pi}{b_2} \left(\frac{1}{\sqrt{b_2}} \right) H_{l-d_2}(i) \left(-i \frac{c_2}{\sqrt{b_2}} \right) \]

and

\[a_1 = \frac{n}{w_x^2} + \frac{ik}{2z} + \frac{1}{2\sigma^2} + \frac{1}{\rho_0^2} \] (14a)

\[b_1 = \frac{m}{w_x^2} - \frac{ik}{2z} + \frac{1}{2\sigma^2} + \frac{1}{\rho_0^2} - \frac{1}{a_1} \left(\frac{2\sigma^2 + 1}{\rho_0^2} \right) \] (14b)

\[c_1 = \frac{1}{a_1} \left(\frac{ik}{2z} x_1 - \frac{x_1 - x_2}{2\rho_0^2} \right) + \frac{1}{2\sigma^2} + \frac{1}{\rho_0^2} \] (14c)

\[a_2 = \frac{n}{w_y^2} + \frac{ik}{2z} + \frac{1}{2\sigma^2} + \frac{1}{\rho_0^2} \] (15a)

\[b_2 = \frac{m}{w_y^2} - \frac{ik}{2z} + \frac{1}{2\sigma^2} + \frac{1}{\rho_0^2} - \frac{1}{a_2} \left(\frac{2\sigma^2 + 1}{\rho_0^2} \right) \] (15b)

\[c_2 = \frac{1}{a_2} \left(\frac{ik}{2z} y_1 - \frac{y_1 - y_2}{2\rho_0^2} \right) + \frac{1}{2\sigma^2} + \frac{1}{\rho_0^2} - \frac{ik}{2z} y_2 + \frac{y_1 - y_2}{2\rho_0^2} \] (15c)

Eqs. (11)~(15) make up the main analytical expression for a partially coherent circular or elliptical flat-topped vortex beam propagating in turbulent atmosphere. Using the derived equations we can investigate the propagation and transformation of a partially coherent circular or elliptical flat-topped vortex hollow beam in turbulent atmosphere.

The degree of coherence of the laser beam is written as [19]

\[\mu(r_1, r_2, z) = \frac{W(r_1, r_2)}{W(r_1, r_2) W(r_2, r_2)} \] (16)

and the position of coherence vortices at the propagation L is expressed as [20]

\[\text{Re} \mu(r_1, r_2, z) = 0 \] (17a)

\[\text{Im} \mu(r_1, r_2, z) = 0 \] (17b)

where \text{Re} and \text{Im} are respectively the real and imaginary parts of \(\mu(r_1, r_2, z) \).

III. NUMERICAL EXAMPLES AND ANALYSIS

In this section we study the propagation properties of a partially coherent flat-topped vortex hollow beam in turbulent atmosphere. In this work, the calculation parameters \(\lambda \) and \(w_0 \) throughout the text are set to be \(\lambda = 1064 \text{ nm} \) (Nd:YAG laser) and \(w_0 = 20 \text{ nm} \).

Figures 1 and 2 show the normalized average intensity and corresponding contour graphs of, respectively, partially coherent circular and elliptical flat-topped vortex hollow beams propagating in turbulent atmosphere; the calculation parameters are \(C_n^2 = 10^{-14} \text{m}^{-2/3/3}, N=2, M=1, \sigma=10 \text{ mm} \) and \(w_y = 40 \text{ mm} \) (Fig. 2). As can be seen from Figs. 1 and 2, a partially coherent circular or elliptical flat-topped vortex hollow beam can keep its original intensity pattern over a short propagation distance (Figs. 1(a) and 2(a)), and with increasing propagation distance either beam loses its initial dark, hollow centre, and the flat-topped vortex dark hollow beam evolves into a flat-topped beam (Figs. 1(b), 1(c), 2(b), and 2(c)). The partially coherent circular and elliptical flat-topped vortex hollow beams eventually evolve respectively into circular and elliptical Gaussian beams in the far field, due to the influence of the coherence length.

Figure 3 shows the cross section (y=0) of normalized average intensity for a partially coherent circular flat-topped
FIG. 1. Normalized average intensity of a partially coherent circular flat-topped vortex hollow beam propagating in turbulent atmosphere with $C_{n}^{2}=10^{-14} m^{-2/3}$, $N=2$, and $M=1$, $w_{x}=w_{y}=20 \text{ mm}$, and $\sigma=10 \text{ mm}$. (a) $z=100 \text{ m}$, (b) $z=300 \text{ m}$, (c) $z=600 \text{ m}$, (d) $z=2000 \text{ m}$.

FIG. 2. Normalized average intensity of a partially coherent elliptical flat-topped vortex hollow beam propagating in turbulent atmosphere with $C_{n}^{2}=10^{-14} m^{-2/3}$, $N=2$, and $M=1$, $w_{x}=20 \text{ mm}$, $w_{y}=40 \text{ mm}$, and $\sigma=10 \text{ mm}$. (a) $z=100 \text{ m}$, (b) $z=300 \text{ m}$, (c) $z=600 \text{ m}$, (d) $z=2000 \text{ m}$.

A partially coherent circular flat-topped vortex hollow beam propagating in turbulent atmosphere for various values of the coherence length σ, with $C_{n}^{2}=10^{-14} m^{-2/3}$, $N=2$, and $M=1$. It can be seen from Fig. 3 that a partially coherent circular flat-topped vortex hollow beam spreads...
FIG. 3. Cross section ($r=0$) of the normalized average intensity for a partially coherent circular flat-topped vortex hollow beam propagating in turbulent atmosphere with $C_{n}^{2}=10^{-14} m^{-2/3}$, $N=2$, and $M=1$. (a) $z = 100 \ m$, (b) $z = 300 \ m$, (c) $z = 600 \ m$, (d) $z = 2000 \ m$.

FIG. 4. Cross section ($r=0$) of the normalized average intensity for a partially coherent circular flat-topped vortex hollow beam propagating in turbulent atmosphere with $\sigma=10 \ mm$, $N=2$, and $M=1$. (a) $z = 100 \ m$, (b) $z = 300 \ m$, (c) $z = 600 \ m$, (d) $z = 2000 \ m$.
more rapidly than a fully coherent beam (\(\sigma=\infty\)), with the initial coherence length \(\sigma\) decreasing during propagation, and that a partially coherent beam with a small coherence length will evolve into a Gaussian beam faster than a beam with a large coherence length in the far field (Fig. 3(d)).

Figure 4 presents the cross section (\(y=0\)) of normalized average intensity for a partially coherent circular flat-topped vortex hollow beam propagating in turbulent atmosphere for various values of \(C_{n}^{2}\), with \(\sigma=10\) mm, \(N=2\), and \(M=1\).

It can be seen that a beam propagating in turbulent atmosphere and free space (\(C_{n}^{2}=0\)) can almost keep its initial dark hollow profile over a short distance (Figs. 4(a) and (b)), and with increasing propagation distance a partially coherent flat-topped vortex hollow beam loses its initial dark hollow profile faster with increasing structure constant \(C_{n}^{2}\) in the far field (Fig. 4(d)).

Figure 5 depicts the cross section (\(y=0\)) of the normalized average intensity for a partially coherent circular flat-topped

![Figure 5](image1)

FIG. 5. Cross section (\(y=0\)) of the normalized average intensity of a partially coherent circular flat-topped vortex hollow beam propagating in turbulent atmosphere for different \(M\) and \(N\) with \(\sigma=10\) mm. (a) \(z=100\) m, (b) \(z=1000\) m, (c) \(z=100\) m, (d) \(z=1000\) m.

![Figure 6](image2)

FIG. 6. The curves for \(\text{Re } \mu=0\) and \(\text{Im } \mu=0\) for a partially coherent circular flat-topped vortex hollow beam propagating in turbulent atmosphere with \(\sigma=10\) mm, \(N=2\) and \(M=1\). (a) \(z=100\) m, (b) \(z=500\) m.
vortex hollow beam propagating in turbulent atmosphere for different values of M and N with $\sigma=10$ mm and $C_{n}^2=10^{14}$ m$^{-5/3}$. As can be seen, a beam with higher order M (Figs. 5(a) and (b)) loses its initial dark hollow center more slowly, while a beam propagating in turbulent atmosphere with different orders N has similar evolution properties with increasing propagation distance.

Figure 6 presents the curves for Re $\mu=0$ and Im $\mu=0$ for a partially coherent flat-topped vortex hollow beam propagating in turbulent atmosphere with $C_{n}^2=10^{14}$ m$^{-5/3}$, $\sigma=10$ mm, $N=2$, and $M=1$, and $r_2=(10$ mm, 20 mm). From Fig. 6(a) it can be seen that the beam propagation at a distance of $z=10$ m has a coherent vortex, and with increasing propagation distance the beam at a distance of $z=500$ m has two coherent vortices. Thus a partially coherent flat-topped vortex hollow beam will experience a change in its number of coherent vortices with increasing propagation distance in turbulent atmosphere.

IV. CONCLUSION

In this paper the partially coherent flat-topped vortex hollow beam is introduced, and then the propagation Eq. for a partially coherent flat-topped vortex hollow beam in turbulent atmosphere is derived. The average intensity of a beam propagating in turbulent atmosphere is examined using numerical examples. It is found that a partially coherent flat-topped vortex hollow beam will evolve into a Gaussian beam in the far field, and that a beam propagation in turbulent atmosphere with small coherence length or large structure constant C_{n}^2 will evolve into a Gaussian beam more rapidly. We also find that a beam with higher order M loses its initial dark, hollow center more slowly, while beams of different order N have similar evolution properties.

ACKNOWLEDGMENT

This work was supported by the Fundamental Research Funds for the Central Universities (Grants No. 3132015152, 3132015233, 3132014337, 3132014327), and National Natural Science Foundation of China (11404048, 11375034), the program for Liaoning Educational Committee (L2015071).

REFERENCES

1. F. Wang, X. Liu, and Y. Cai, “Propagation of partially coherent beam in turbulent atmosphere: A review,” Progress in Electromagnetics Research 150, 123-143 (2015).
2. Y. Cai and S. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14, 1353-1367 (2006).
3. H. Eyyuboglu and Y. Baykal, “Scintillation index of flat-topped Gaussian laser beam in strongly turbulent medium,” J. Opt. Soc. Am. A 28, 1540-1544 (2011).
4. G. Gbur and R. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25, 225-230 (2008).
5. O. Korotkova, J. Pu, and E. Wolf, “Spectral changes in electromagnetic stochastic beams propagating through turbulent atmosphere,” J. Mod. Opt. 55, 1199-1208 (2008).
6. Y. Baykal, H. T. Eyyuboglu, and Y. Cai, “Scintillations of partially coherent multiple Gaussian beams in turbulence,” Appl. Opt. 48, 1943-1954 (2009).
7. Y. Cui, C. Wei, Y. Zhang, F. Wang, and Y. Cai, “Effect of the atmospheric turbulence on a special correlated radially polarized beam on propagation,” Opt. Commun. 354, 353-361 (2015).
8. H. Wang, D. Liu, Z. Zhou, S. Tong, and Y. Song, “Propagation properties of radially polarized partially coherent beam in turbulent atmosphere,” Optics and Lasers in Engineering 49, 1238-1244 (2011).
9. F. Wang, S. Zhu, and Y. Cai, “Experimental study of the focusing properties of a Gaussian Schell-model vortex beam,” Opt. Lett. 36, 3281-3283 (2011).
10. G. Zhou, Y. Cai, and X. Chu, “Propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere,” Opt. Express 20, 9897-9910 (2012).
11. H. Wang and X. Qian, “Spectral properties of a random electromagnetic partially coherent flat-topped vortex beam in turbulent atmosphere,” Opt. Commun. 291, 38-47 (2013).
12. Y. Gu, “Statistics of optical vortex wander on propagation through atmospheric turbulence,” J. Opt. Soc. Am. A 30, 708-716 (2013).
13. G. Zhou and G. Ru, “Angular momentum density of a linearly polarized Lorentz-Gauss vortex beam,” Opt. Commun. 313, 157-169 (2014).
14. Y. Huang, F. Wang, Z. Gao, and B. Zhang, “Propagation properties of partially coherent electromagnetic hyperbolic-sine-Gaussian vortex beams through non-Kolmogorov turbulence,” Opt. Express 23, 1088-1102 (2015).
15. G. Wu, W. Dai, H. Tang, and H. Guo, “Beam wander of random electromagnetic Gaussian-schell model vortex beams propagating through a Kolmogorov turbulence,” Opt. Commun. 336, 55-58 (2015).
16. H. Liu, Y. Lü, J. Xia, X. Pu, and L. Zhang, “Flat-topped vortex hollow beam and its propagation properties,” J. Opt. 17, 075606 (2015).
17. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263-267 (2003).
18. A. Jeffrey and H. Dai, Handbook of Mathematical Formulas and Integrals, 4th ed. (Academic Press Inc., 2008).
19. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
20. G. Gbur and T. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117-125 (2003).