Method for selective quantification of immune and inflammatory cells in the cornea using flow cytometry

Mamoru Ogawa1,2, Takenori Inomata3,4‡, Tina Shiang5, Kazuo Tsubota2, Akira Murakami2‡

1Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama 230-0045, Japan
2Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
3Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, 113-0033, Japan
4Department of Strategic Operating Room Management and Improvement, Juntendo University Faculty of Medicine, Tokyo, 113-0033, Japan
5University of Massachusetts Medical School, Department of Radiology, MA 01655, USA

*Corresponding author: Takenori Inomata, Email: tinoma@juntendo.ac.jp

Competing interests: The authors have declared that no competing interests exist.

Abbreviations used: ANOVA, analysis of variance; BSA, bovine serum albumin; FSC, forward scatter; PBS, phosphate-buffered saline; PCR, polymerase chain reaction; SEM, standard error of measurement; SSC, side scatter; VEGF, vascular endothelial growth factor

Received February 26, 2018; Revision received August 23, 2018; Accepted August 23, 2018; Published November 22, 2018

ABSTRACT

The cornea serves as a protective surface against the environment (i.e., allergens, pollutants, desiccation and microorganisms) and promotes vision, made possible by corneal transparency. This protocol describes corneal preparation for flow cytometry to assess cells localized in the cornea. Our model details the process, from determining how many corneas are needed in the experiment to corneal excision to digestion and staining of the cornea cells. The simplicity of the model allows for systematic analysis of different corneal mechanisms of immunity, inflammation, angiogenesis and wound healing. In corneal transplantation, residential immune and inflammatory cells are key to the mechanisms that underlie angiogenesis, opacity and graft rejection. In addition, this model can also elucidate cellular mechanisms mediating corneal graft outcomes and wound healing. Lastly, this model can be used to analyze the efficacy of new medications such as instillation and subconjunctival injections and assess the potential of therapeutic molecules to enhance graft survival and wound healing in vivo.

Keywords: cornea, flow cytometry, angiogenesis, inflammation, immune privilege, transplantation, wound healing

BACKGROUND

The ocular surface is continuously exposed to environmental agents such as allergens, pollutants, desiccation and microorganisms [1]. The smooth wet surface of the cornea is the major refractive surface of the visual system [2], made possible by corneal transparency. When this environment collapses due to infection or inflammation, the normally transparent and avascular cornea develops opacification and neovascularization [3,4], resulting in decreased visual acuity. Dry eye disease induces ocular damage by the inflammatory cascade from innate and adaptive immune responses [5-7]. In the corneal wound healing process, opacity occurring due to corneal stromal fibroblasts and myofibroblasts is problematic [8]. Corneal transplantation is performed to address the corneal opacity. However, high-risk recipient corneas with angiogenesis experience acute rejection in greater than 40%–90% of cases [3,9].

The cornea can be observed optometrically and is an excellent choice for analyzing the efficacy of new medications such as instillation and subconjunctival injection [10,11]. Clinical and experimental studies are investigating the use of hyaluronic acid and fibronectin for wound healing [12-14], steroids and immunosuppressants [15,16], and even anti-VEGF drugs for neovascularization, inflammation and rejection [17-20]. In wound healing, immune cells migrate along neovessels in the transparent corneal tissue [6,21,22], so controlling the corneal environment is important. Immunostaining, PCR, and western blotting can be used to confirm immune cells and inflammatory cells localized in the cornea, but flow cytometry is the most effective method of quantification of inflammatory cells in the cornea.

Much research on corneal flow cytometry has been done so far [9,23]. Previously, studies have shown that immune cells circulate in the cornea and cervical lymph nodes to control the immunocompetence of the cornea [24]. Furthermore, immune cells localized in the cornea affect rejection, angiogenesis, and wound healing [8,25]. However, since the

How to cite this article: Ogawa M, Inomata T, Shiang T, Tsubota K, Murakami A. Method for selective quantification of immune and inflammatory cells in the cornea using flow cytometry. J Biol Methods 2018;5(4):e102. DOI: 10.14440/jbm.2018.237
murine cornea is small and it is difficult to obtain cells abundantly, it is important to understand how to obtain accurate results from experiments. Therefore, this paper introduces a flow cytometry protocol for murine corneas. Briefly, we introduce the process from cornea harvesting to digestion and flow cytometry preparation. Furthermore, we delineate the number of corneas needed for successful flow cytometry and provide steps for troubleshooting.

MATERIALS

Reagents

Corneas from age- and sex-matched mice were used to decrease variability. Depending on the aim of the study, this technique can be applied to different strains, genders, ages and animal models.

- DNase I (Roche, Basel, Switzerland, cat. # 10104159001)
- Collagenase D (Sigma-Aldrich, St. Louis, MO, cat. # 1108882001)
- RPMI-1640 media (Lonza, Walkersville, MD, cat. # 12-702F)
- Fetal Bovine Serum (ATLANTA biological, GA, cat. # S11550)
- Phosphate-Buffered Saline (PBS) (CORNINIG, MA, cat. # 21-0404-CMR)
- Bovine Serum Albumin (BSA) (SIGMA-ALDRICH, MO, cat. # A2153-100G)
- Fc receptor blocking antibody (eBioscience, San Diego, CA, cat. # 14-0161-85)
- PE-anti-mouse CD45 Antibody (BioLegend, San Diego, CA, cat. # 103106)
- FITC anti-mouse CD4 Antibody (BioLegend, CA, cat. # 100510)
- Propidium iodide solution (Sigma-Aldrich, MO, cat. # P4864)

Equipment

- Scissors (Vannas and curved)
- 1.5 ml Sampling Tubes (WATSON, cat. # 131-415C)
- 12 × 75 mm Polystyrene Culture Tube (FACS tube) (QSP, CA, cat. # 530-B-1Q)
- Sterile Jeweler’s forceps (one blunt and one fine)
- 6 well Multidish (IWAKI, Japan, cat. # 3810-006)
- 70 μm cell strainer (FALCON, USA, cat. # 352350)
- 22 G 5 ml Syringe (TERUMO, Japan, cat. # ss-05Szz2232)
- Flow cytometer (BD FACScantoTM II Flow Cytometer)
- FlowJo software X 10.0.7 (FlowJo LLC, Ashland, OR, USA)

PROCEDURE

All animal experiments conducted in this protocol were approved by the Institutional Animal Care and Use Committee of the Juntendo University Faculty of Medicine (cat. # 290120) and RIKEN Center for Integrative Medical Sciences (cat. # 29-009-4).

Cornea harvesting

1. Punch out the corneal limbus with a 30 G needle (Fig. 1A). In parallel to the iris, punch outside the limbus and reduce the sclera as much as possible.
2. Cut the cornea circularly from the puncture wound at the corneal limbus with Vannas scissors (Fig. 1B).
3. Peel the iris from the back of the cornea under a microscope.

Cornea digesting

4. Add DNase I (0.002 g) and collagenase D (0.004 g) in 1 ml of RPMI-1640 to a 1.5 ml tube (ideally up to 4 corneas per tube) (Fig. 1C).
5. Incubate solution in a 37°C bath for 60 min (Fig. 1D), inverting every 10 min (while pipetting up and down).
6. Add 200 μl of FBS to the tube to stop the DNase I and collagenase D, and add the tube contents to a cell strainer in a 6-well plate with 5 ml RPMI for filtering (Fig. 1E).

Single cell suspension

7. Mash the corneas using the plunger of a 5 ml syringe (Fig. 1F).
8. Add filtrate to the FACS tube (Fig. 1G). Wash the filter and dish with 5 ml RPMI-1640 and transfer to the FACS tube.

Flow cytometry

9. Centrifuge the FACS tube at 1300 RPM for 10 min. Pour and discard the supernatant.
10. Add 2 ml of FACS buffer (1% BSA with PBS) and centrifuge at 1300 RPM for 10 min. Pour and discard the supernatant.
PROTOCOL

11. Add 1 μl of Fc receptor blocking antibody to each sample and keep the samples at 4°C on the shaker for 30 min.
12. Add the surface antibodies (i.e., CD45 and CD4) directly to each sample, and keep the samples at 4°C for 1–2 h.
13. Add 2 ml of FACS buffer to each sample and centrifuge at 1300 RPM for 10 min. Pour and discard the supernatant.
14. Add 300 μl of FACS buffer with propidium iodide solution (0.5 mg/ml) and run flow cytometry.
15. Results were analyzed using FlowJo software.
16. Doublets discrimination was performed by forward scatter (FSC) and side scatter (SSC) gating.
17. Dead cells should be excluded from further analysis.

![Fig 1. Schematic drawing of the harvesting and digestion of corneal tissue for flow cytometry.](image)

ANTICIPATED RESULTS

Figure 1 shows the total number of cornea cells and passenger leukocytes obtained, counted using binocular microscope. When using between one and four corneas, the number of single suspended cells can be collected as expected. However, loss of single suspended cells was noted at eight corneas (See Troubleshooting). The frequencies of live/dead cells were shown in *Figure 2*. Among the cells obtained after doublets discrimination, over 90% were live cells between one and four corneas, however the dead cells were increased at eight corneas. Therefore, the ideal number of corneas to be used with the amount of lysis reagent in our protocol is four corneas. Based on this result, it is possible to set up an experiment plan corresponding to the required number of cells.

Figure 2. Anticipated total number of cornea cells and leukocytes by flow cytometry. A. The figure shows the anticipated number of cornea cells obtained from C57BL6 mice using this protocol. *B*. The live/dead cells in the total number of cornea cells and leukocytes. *P* values are calculated using one-way ANOVA with Bonferroni post hoc test, and error bars represent SEM. *P < 0.05, **P < 0.01 and ***P < 0.001.*
Our model allows for detailed analysis of immune pathways of interest, including the Th1 immune response, regulatory effect of T cells, pro-inflammatory and tolerogenic capacity of antigen presenting cells, and the role of innate and adaptive immunity in angiogenesis [9,23]. We also recommend this protocol for assessing the changes in cornea cells in the wound healing process. Moreover, this model can be used with knockout and transgenic mice to evaluate various molecular pathways participating in the immune response, angiogenesis and wound healing processes.

Other models for assessing cornea cells have been used previously and may complement the model proposed in this paper. Real-time PCR and western blot analysis can be used for quantification of corneal cells, but it is difficult to accurately measure the limited amount of RNA and protein in individual corneas, and the aforementioned methods are not effective for residential cells that require multiple staining. Figure 3 shows CD45+ leukocytes in corneal cells induced by inflammation [23,26]. Our protocol enables the detection of dynamic trends of localized cells in the cornea during wound healing.

In this model, you can detect dynamic changes in local corneal cells used in conjunction with other models such as the eye drop challenge, medical injections to the eye, wound healing and corneal transplantation model. Previously, we published the protocol for the high-risk corneal transplantation model [27]. Briefly, inflamed and neovascularized (high-risk) host beds (BALB/c) were created by three intrastromal sutures placed into the central cornea using 11-0 nylon sutures (AB-0550S, MANI, Tochigi, Japan) 14 days before corneal transplantation to induce host beds prone to reject the grafts. Mice with unmanipulated (low-risk) host beds served as controls. For allogeneic corneal transplantation, C57BL/6 corneas were grafted onto BALB/c host beds. Figure 4 shows CD4+ T cells in corneal cells post-transplantation. We can detect recruited CD4+ T cells post-transplantation and demonstrate significantly increased CD4+ T cells in high-risk inflamed corneal transplantations compared to low-risk corneal transplantations.

Overall, the simplicity, availability, and the cost-effectiveness of the described model provide a unique platform to study basic principles of immunity and angiogenesis for ophthalmic pathologies.

![Figure 3](image1.png)

Figure 3. CD45+ leukocytes cornea cells. A and B. Representative flow cytometry dot plots (A) and bar graphs showing frequencies of CD45+ leukocytes among corneal cells from naive BALB/c mice (B). Bar graphs show mean ± SEM.

![Figure 4](image2.png)

Figure 4. CD4+ T cells 14 days post-transplantation. A and B. Representative flow cytometry dot plots (A) and bar graphs showing the frequencies of CD4+ T cells of corneal cells among naive cornea, low-risk corneal transplantation and high-risk corneal transplantation (B). N = 5 mice/group, data represents results of three independent experiments. P values are calculated using one-way ANOVA with Bonferroni post hoc test, and error bars represent SEM. *P < 0.05, **P < 0.01 and ***P < 0.001.
Here we list potential issues and provide troubleshooting instructions. If few cells can be collected, melting time may be too short or the mesh time for the single cell suspension may be insufficient. Consider increasing the dissolution time and mesh time. Figure 5 shows the number of cells obtained when the cell suspension was performed with only 1 ml of RPMI. If the RPMI is not sufficient for the single cell suspension, cells may remain in the mesh. Cell loss may occur, a problem that worsens as the number of corneas increases. Therefore, we recommend preparing 5 ml or more of RPMI when doing a single cell suspension in a 6 well plate.

Figure 5. Cell loss in single cell suspension. The number of cells obtained when the cell suspension was performed with only 1 ml of RPMI for filtering step. *P values are calculated using one-way ANOVA with Bonferroni post hoc test, and error bars represent SEM (\(P < 0.05\)).

Table 1. Troubleshooting for single cell suspension.

Problem	Cause	Suggestion
Few cells	Short melting time or mesh time	Increasing the dissolution time or mesh time
	Lack of RPMI-1640	Enough RPMI-1640 (5 ml or more RPMI-1640)
Cell loss	Too many cornea samples	Adjust the amount of DNase I and collagenase D
Increased cells	Contamination of other tissues	Peel off the iris as much as possible when collecting the cornea

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP 16K20332 (TI).

References

1. Niederkorn JY (2011) Cornea: Window to Ocular Immunology. Curr Immunol Rev 7: 328-335. doi: 10.2174/157339511796196593. PMID: 21789035
2. Gipson IK (2007) The ocular surface: the challenge to enable and protect vision: the Friedenwald lecture. Invest Ophthalmol Vis Sci 48: 4391-4398. doi: 10.1167/iovs.07-0770. PMID: 17898256
3. Inomata T, Mashaghi A, Di Zazzo A, Lee S, Chiang H, et al. (2017) Kinetics of Angiogenic Responses in Corneal Transplantation. Cornea 36: 491-496. doi: 10.1097/ICO.0000000000001127. PMID: 28060028
4. Hua J, Jin Y, Chen Y, Inomata T, Lee H, et al. (2014) The resolvin D1 analogue controls maturation of dendritic cells and suppresses alloimmunity in corneal transplantation. Invest Ophthalmol Vis Sci 55: 5944-5951. doi: 10.1167/iovs.14-14356. PMID: 25146982
5. Stevenson W, Chauhan SK, Dana R (2012) Dry eye disease: an immune-mediated ocular surface disorder. Arch Ophthalmol 130: 90-100. doi: 10.1001/archophthalmol.2011.364. PMID: 22232476
6. Inomata T, Hua J, Nakao T, Shiang T, Chiang H, et al. (2018) Corneal Tissue From Dry Eye Donors Leads to Enhanced Graft Rejection. Cornea 37: 95-101. doi: 10.1097/ICO.0000000000001400. PMID: 29023237
7. Chen Y, Chauhan SK, Shao C, Omoto M, Inomata T, et al. (2017) IFN-γ-Expressing Th17 Cells Are Required for Development of Severe Ocular Surface Autoimmunity. J Immunol 199: 1163-1169. doi: 10.4049/jimmunol.1602144. PMID: 28637904
8. Ljubimov AV, Saghizadeh M (2015) Progress in corneal wound healing. Prog Retin Eye Res 49: 17-45. doi: 10.1016/j.preteyeres.2015.07.002. PMID: 26197361
9. Inomata T, Hua J, Di Zazzo A, Dana R (2016) Impaired Function of Peripherally Induced Regulatory T Cells in Hosts at High Risk of Graft Rejection. Sci Rep 6: 39924. doi: 10.1038/srep39924. PMID: 28088995
10. Abud TB, Amparo F, Saboo US, Di Zazzo A, Dohlman TH, et al. (2016) A Clinical Trial Comparing the Safety and Efficacy of Topical Tacrolimus versus Methylprednisolone in Ocular Graft-versus-Host Disease. Ophthalmology 123: 1449-1457. doi: 10.1016/j.ophtha.2016.02.044. PMID: 27086024

11. Dastjerdi MH, Sadrai Z, Saban DR, Zhang Q, Dana R (2011) Corneal penetration of topical and subconjunctival bevacizumab. Invest Ophthalmol Vis Sci 52: 8718-8723. doi: 10.1167/iovs.11-7871. PMID: 22003112

12. Price RD, Berry MG, Navsaria HA (2007) Hylauronic acid: the scientific and clinical evidence. J Plast Reconstr Aesthet Surg 60: 1110-1119. doi: 10.1016/j.bjps.2007.03.005. PMID: 17466613

13. Dua HS, Gomes JA, Singh A (1994) Corneal epithelial wound healing. Br J Ophthalmol 78: 401-408. doi: 10.1136/bjo.78.5.401. PMID: 8250777

14. Itoi M, Kim O, Kimura T, Momose T, et al. (1995) Effect of sodium hyaluronate ophthalmic solution on peripheral staining of rigid contact lens wearers. CLAO J 21: 261-264. PMID: 8565197

15. Gupta D, Illingworth C (2011) Treatments for corneal neovascularization: a review. Cornea 30: 927-938. doi: 10.1097/ICO.0b013e31821200d4. PMID: 21389584

16. Utine CA, Stern M, Akpek EK (2010) Clinical review: topical ophthalmic use of cyclosporin A. Ocul Immunol Inflamm 18: 352-361. doi: 10.3109/09273948.2010.498657. PMID: 20735287

17. Chang J, Garg NK, Lunde E, Han K, Jain S, et al. (2012) Corneal neovascularization: an anti-VEGF therapy review. Surv Ophthalmol 57: 415-429. doi: 10.1016/j.survophthal.2012.01.007. PMID: 22898649

18. Philipp W, Speicher L, Hummel C (2000) Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sci 41: 2514-2522. PMID: 10937562

19. Emami-Naeini P, Dohlman TH, Omoto M, Hattori T, Chen Y, et al. (2014) Soluble vascular endothelial growth factor receptor-3 suppresses allosensitization and promotes corneal allograft survival. Graefes Arch Clin Exp Ophthalmol 252: 1755-1762. doi: 10.1007/s00417-014-2749-5. PMID: 25091513

20. Di Zazzo A, Tahvildari M, Subbarayal B, Yin J, Dohlman TH, et al. (2017) Proangiogenic Function of T Cells in Corneal Transplantation. Transplantation 101: 778-785. doi: 10.1097/TP.0000000000001390. PMID: 27490416

21. Chauhan SK, Dohlman TH, Dana R (2014) Corneal lymphatics: role in ocular inflammation as inducer and responder of adaptive immunity. J Clin Cell Immunol 5: 1000256. doi: 10.4172/2155-9899.1000256. PMID: 25580370

22. Hua J, Stevenson W, Dohlman TH, Inomata T, Tahvildari M, et al. (2016) Graft site microenvironment determines dendritic cell trafficking through the CCR7-CCL19/21 Axis. Invest Ophthalmol Vis Sci 57: 1457-1467. doi: 10.1167/iovs.15-17551. PMID: 27031839

23. Tahvildari M, Omoto M, Shen Y, Emami-Naeini P, Inomata T, et al. (2016) In vivo expansion of regulatory T cells by low-dose interleukin-2 treatment increases allograft survival in corneal transplantation. Transplantation 100: 525-532. doi: 10.1097/TP.0000000000001044. PMID: 26881788

24. Yamagami S, Dana MR, Tsuru T (2002) Draining lymph nodes play an essential role in alloimmunity generated in response to high-risk corneal transplantation. Cornea 21: 405-409. doi: 10.1097/00003226-200205000-00014. PMID: 11973391

25. Amouzegar A, Chauhan SK, Dana R (2016) Alloimmunity and Tolerance in Corneal Transplantation. J Immunol 196: 3983-3991. doi: 10.4049/jimmunol.1600251. PMID: 27183635

26. Crnej A, Omoto M, Dohlman TH, Dohlman CH, Dana R (2014) Corneal inflammation after miniature keratoprosthesis implantation. Invest Ophthalmol Vis Sci 56: 185-189. doi: 10.1167/iovs.13-15884. PMID: 25515579

27. Inomata T, Mashaghi A, Di Zazzo A, Dana R (2015) Ocular surgical models for immune and angiogenic responses. J Biol Methods 2: doi: 10.14440/jbm.2015.78. PMID: 26550579
