Research article

Synthesis, spectral analysis, molecular docking and DFT studies of 3-(2,6-dichlorophenyl)-acrylamide and its dimer through QTAIM approach

Akhilesh Kumar Shukla, Aniruddh Prasad Chaudhary, Jyoti Pandey

Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226025, Uttar Pradesh, India
Department of Chemistry, Udai Pratap College (An Autonomous Institution) Varanasi, Uttar Pradesh, India

ARTICLE INFO

Keywords:
Organic chemistry
Theoretical chemistry
Hydroxamic acid
HOMO-LUMO
NLO
QTAIM
Molecular docking

ABSTRACT

In this paper, an experimental study of (E)-3-(2,6-dichlorophenyl)-acrylamide and its associated dimer were analysed with molecular docking, DFT and QTAIM approach. To spot, describe, and measure the non-covalent interactions (NCIs) of the atoms in the molecules of the monomer and its dimer, some important topological parameters of the charge densities, \(\rho(r) \) acquired from the Bader’s QTAIM tool are determined, quantitatively. The bond paths are shown to persist for a range of five types of NCIs such as weak conventional (C-H-CI) and nonconventional (C-\(\cdots \cdot \)C and N-O-CI), medium (N-H-CI) and strong O-H-O NCIs revealed by the existence of BCPs (ranging from 1.921 - 3.259 \(\text{Å} \)). A comprehensive explanation of the spectroscopic data like vibrational, electronic, and NMR spectra is reported along with the NLO, reactivity. Hydroxamic acid exhibited an excellent nonlinear optical activity (\(\beta_0 = 14.8098 \times 10^{-36} \)). To predict the various reactive sites in the molecule, molecular electrostatic potential diagrams were displayed.

1. Introduction

Hydroxamic acids play a vital role in development of organic and inorganic molecules [1] and they have also been valuable intermediates in the pharmaceutical applications [2, 3, 4, 5]. The exploration of their biological activity features with different metal ions assigning to their inhibitory action against enzymes having metallo-protein as their functional group [6, 7, 8, 9]. Furthermore, hydroxamate revived metals from waste water due to significant adsorption of metals (mainly iron). As customarily, some particular metals dissolved in excess amount in water produced toxic concentration as in acid mine drainage, hazardous health problems such as excess cumulation of iron in body, posing hemochromatosis [10].

Literature study shows that the quantum chemical study on structural and spectroscopic properties and NLO (nonlinear optical) property of the titled compound is not yet reported. So, the QCCs with the density functional theory (DFT) approach have been used to investigate the theoretical aspects of titled compound. The curiosity of synthesis of hydroxamate was arising in our mind due to their biological properties and higher first order hyperpolarizability values. Since, molecule showing excellent nonlinear optical properties is used in optoelectronic devices, optical modulation, molecular switching, optical memory and frequency doubling [11, 12]. By optimizing donor-acceptor strength of the \(\pi \)-conjugated systems, the non-linear optical (NLO) result of a molecule can be enhanced and synthetically modelled [13]. The quantum chemical calculations (QCCs) are playing significant role for understanding of the electronic polarization and intermolecular interactions.

The synthesized aryl acrylamide has been analyzed by different spectroscopic methods. In the current work, we described the DFT calculation on molecular structure and spectral properties, electronic features and docking analysis, hydrogen bonds (HBS) and NLO result of the titled system. In the sequence of the structure-activity relationship (SAR), the molecular electrostatic potential (MEP) data have also been shown. QTAIM (quantum theory of atom in molecule) tool has been implemented to analyse the TPs (topological parameters) at the bond critical points (BCPs) and demonstrate the nature of the conventional and nonconventional noncovalent interactions (NCIs).

2. Material and method

Commercially accessible reagent grade chemicals were utilized. All reactions were followed by TLC on E. Merck Kieselgel 60 F254, with recognition by UV light, spraying 20% aq. KMnO4 arrangement and additionally showering 4%ethanolic H2SO4. Column chromatography was performed on Silica Gel (60–120 mesh, E. Merck). IR spectrum was recorded as thin films or in KBr arrangement with a Perkin-Elmer
Spectrum RX-1 (4000–450 cm⁻¹) spectrophotometer. ¹H and ¹³C NMR spectra were recorded through Bruker DRX 400 MHz in DMSO-d₆ solvent. Chemical shift value of titled compound was calculated in ppm with respect to TMS (tetramethylsilane) and peaks were denoted; s (singlet), d (doublet), t (triplet), dd (double doublet), m (multiplet); J in Hz. By using a Quattro II (Micromass) instrument, ESI mass spectra were performed.

2.1. General procedure for the synthesis of compound (3) [14]

Took hydroxylamine hydrochloride (5 mmol), KOH (10 mmol) and desired acrylate (1 mmol) in methanol at 0–5 °C, this mixture was stirred at room temperature till utilization of the starting material (according to TLC). At end of the reaction, crude mass was obtained, then it was purified by column (SiO₂, 60–120 mesh) using a gradient of EtOAc/hexane as eluent to produce the pure compound 3 in good yield (Scheme 1) [14].

The reaction of ethyl-3-(2,6-dichlorophenyl) acrylate 2 (0.5 g, 2.03 mmol), hydroxyl amine hydrochloride (0.708 g, 10.15 mmol) and KOH (1.14 g, 20.3 mmol) in methanol at 0–5 °C to produce titled compound 3 in 74% yield (0.85 g) as a white solid, MP 142–143 °C. In ¹H NMR spectrum of compound (H-21). In ¹³C NMR spectrum of compound (see Table 2), signals for C-7 and C-8 carbons at δ 134.1 and 128.1 ppm respectively and for C-3 and C-5 at δ 131.2 (2C) and for C-2 and C-6 at δ 130.8 (2C) for C-4 at δ 132.4 and the carbons of C-1 and C-11 at δ 129.3 and δ 162.0 ppm. The experimental data for ¹H NMR and ¹³C NMR spectrum can be seen in Figures S1 and S2 of the Supplementary Information (SI). In HRMS data of compound 3, the protonated molecular ion peak [M + H]⁺ was observed at m/z 231.9940 and the related data can be discerned from Figure S3 of the SI.

2.2. Computational methods

The whole estimation of the compound 3 and its dimer were completed with assistance of Gaussian 09 [15] using the B3LYP functional at 6-31G(d,p) basis set. The structures were visualized with the assistance of Gauss View 5.0 program. In basis set 6-31G (d, p), the ‘d’ and ‘p’ indicates the polarization functions on heavy atoms and hydrogen atoms respectively and also described the polar bonds of compound [16, 17]. All calculations have been performed at particular temperature (298.15 K) as well as solvent (water and DMSO) phases. Electronic properties for example, HOMO-LUMO gap and the related transitions were processed with the assistance of time-dependant TD-DFT/B3LYP by 6-13G(d,p) basis set in water solvent [18, 19, 20]. Vibrational frequency of titled compound was assigned with help of potential energy distribution (PED) through GAR2PED software [21]. By using scaling factor 0.9806, the theoretical vibrational wavenumbers were scaled. Since theoretical wavenumbers are greater than the observed wavenumbers due to discard of anharmonicity present in real system. The QTAIM calculations were performed by AIMALL tool [22]. The DFT approach has been extensively used to identify the connection between the electronic structure and the NLO response of the natural materials. Molecular electrostatic potential diagram was performed for finding reactive site to further studies.

3. Results and discussion

3.1. ¹H, ¹³C-NMR spectroscopy and mass spectrometry

To prediction of accurate molecular geometries, the reliable calculations of magnetic properties are very essential. ¹H NMR spectrum is a significant tool for identifying different types of protons and also explains the electronic environment around the proton. ¹³C NMR spectrum delivers sufficient structural information with respect to various carbon atoms present in the compound [23, 24]. ¹H and ¹³C-NMR chemical shifts were calculated at B3LYP/6-31G (d, p) using gauge-including atomic orbital (GIAO) approach in DMSO-d₆ solvent. In ¹H NMR spectrum of compound 3 (see Table 1), one proton broad singlet found at δ 10.31–10.05 ppm suggest the presence of N-H (H-20) proton. In the case of α-β unsaturated alkene the appearance of δ 7.49–7.45 ppm (1H, doublet) and the appearance of δ 6.55–6.51 ppm (1H, doublet) suggest the presence of (—CH) for H-18, H-19 respectively and one multiplet (2H) in the range of δ 7.54–7.52 ppm for H-16 and H-17 and appearance of one triplet (1H) proton in the range of δ 7.39–7.35 for H-15 and one proton broad singlet found at δ 2.52–2.50 ppm suggest the presence of –OH (H-21). In ¹³C NMR spectrum of compound 3 (see Table 2), signals for C-7 and C-8 carbons at δ 134.1 and 128.1 ppm respectively and for C-3 and C-5 at δ 132.0 (2C) and for C-2 and C-6 at δ 130.8 (2C) for C-4 at δ 132.4 and the carbons of C-1 and C-11 at δ 129.3 and δ 162.0 ppm. The experimental data for ¹H NMR and ¹³C NMR spectrum can be seen in Figures S1 and S2 of the Supplementary Information (SI). In HRMS data of compound 3, the protonated molecular ion peak [M + H]⁺ was observed at m/z 231.9940 and the related data can be discerned from Figure S3 of the SI.

A. Electronic features analysis

I. Molecular structures and energetics

We start in view of the stable monomer of compound 3 and its associated dimer system (optimized i.e. minimum energy structures of both) of which some chosen and useful optimized geometries and electronic parameters at the B3LYP/6-31G(d,p) level of theory. For the sake of convenience, the atomic numbering scheme for compound 3 and its associated dimer system have been shown in the present work as displayed in Figure 1, respectively. To avoid any confusion, we remark at the outset that for given compound 3 and its associated dimer, the geometric parameters, like bond distances and bond angles variation with the tool deployed for the computation study. The theoretically calculated geometries of both systems can be seen in Table S1 of the SI.

II. Vibrational analysis

The experimental and calculated vibrational wavenumbers of aryl acrylamide dimer and monomer at B3LYP/6-31G(d,p) level and their assignment using PED% can be seen in Table 3. The comparison of experimental IR with calculated IR is, shown in Figure S4 of the SI. In monomer and dimer 21 and 42 atoms are present which gives 57 and 114 vibrational modes respectively. The experimental wavenumbers of dimer have good conformity with the calculated wavenumbers of the dimer than the monomer and vibrational analysis evident that the existence of dimer in the solid state. The N-H stretching frequency of hydroxamate part of the aryl acrylamide dimer is observed at 3269 cm⁻¹ and its calculated value obtain at 3462 and 3425 cm⁻¹. However reported value of N-H stretching is 3230 cm⁻¹ [25]. The O-H stretching frequency of hydroxamate is merged in N-H stretching frequency due to hydrogen bonding. In general, the C=O stretching vibration of amide is observed at 1640-1680 cm⁻¹ [26] but in acryl amide dimer the C=O stretching vibration observed at 1691 cm⁻¹ and the calculated value of C=O stretching vibration obtained at 1681 cm⁻¹. The out of plane bending bands were appeared at 617 cm⁻¹ and their corresponding out of plane vibrations were calculated at 756 cm⁻¹ for carbonyl group. In aryl acryl amide dimer the observed and calculated N-O stretching frequency are 959 cm⁻¹ and 968 cm⁻¹, respectively. However in aromatic Hydroxamic acid the reported N-O stretching frequency is 950 cm⁻¹ [27]. In dimer, for N-O observed stretching frequency has good agreement with theoretical value. Ashour et al. were reported C=C stretching vibrations of aromatic heterocyclic ring usually observe at 1576 and 1568 cm⁻¹ [28]. In titled compound the C=C bond

Scheme 1. Synthesis of acrylamide derivatives; Reagents and Conditions (i) LiOH (1.1 eq), tri-ethyl phosphononacetate (TEPA) (1.1 eq), THF, RT (ii) NH₂OH.HCl (5 eq), KOH (10 eq), CH₃OH, 0°C-RT.

1. A.K. Shukla et al. Heliyon 6 (2020) e05016
appeared at 1427 and 1549 cm$^{-1}$ in FT-IR spectrum and their PED calculation gives stretching frequency at 1572 and 1644 cm$^{-1}$. In aryl acryl amide dimer the theoretical and experimental C-H stretching frequency obtained at 3052 and 3007 cm$^{-1}$, respectively where as in aromatic system the reported C-H stretching is 3003 cm$^{-1}$ [29]. The wagging and puckering mode of C-H appears at 778 and 719 cm$^{-1}$ however its calculated values obtained at 781 and 759 cm$^{-1}$ respectively. These result evident that the experimental and calculated values of the C-H stretching are consistent with the literature.

III. UV-Vis spectrum and electronic transitions

In order to explain the spectral aspect and understanding of diverse electronic transitions of aryl acrylamide compound, the UV-Vis absorption spectrum recorded. The electronic range of aryl acrylamide has been assigned with the assistance of TD-DFT calculations using the aforementioned approach. The experimental and calculated vertical electronic excitation energies, oscillator strength (f), contributions along with their assignments in solvent and gas phase, are tabulated in Table 4. The experimentally observed UV-Vis spectrum of aryl acrylamide and their dimer have good overlapping with theoretically spectrum in gas as well as in water are shown in Figure S5 of the SI. The wavelengths of absorption maximum (λ_{max}) values observed in water are 221 and 268 nm. However calculated assimilation maximum in gas as well as in water are 217.40, 216.32 and 285.33, 290.75 nm they can be relegated to $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$ transitions in aryl acrylamide compound, respectively. The theoretical calculation of acryl amide dimer shows absorption maximum (λ_{max}) 282.95 ($n \rightarrow \pi^*$)

Atom	$\delta_{\text{calcd.}}$	$\delta_{\text{exp.}}$	Assignment
H15	7.4535	7.39-7.35	d, H Benzene ring
H16	7.3736	7.54	m, H Benzene ring
H17	7.3786	7.54	m, 1H Benzene ring
H18	7.0413	7.49-7.45	D, H Double bond
H19	6.042	6.55-6.51	D, H Double bond
H20	7.5303	10.31-10.05	Brs, H, for NH
H21	6.9797	2.52-2.50	Brs, H, for OH

Table 2. Calculated and experimental 13C NMR chemical shifts (δ/ppm) of compound 3 in DMSO-d$_6$ solvent at 25°C.

Atom	$\delta_{\text{calcd.}}$	$\delta_{\text{exp.}}$	Assignment
C1	124.4653	129.5	S, C for Benzene ring
C2	123.9977	130.8	S, C for Benzene ring
C3	138.7705	132.0	S, C for Benzene ring
C4	132.0012	132.4	S, C for Benzene ring
C5	137.8252	130.8	S, C for Benzene ring
C6	123.814	132.0	S, C for Benzene ring
C7	135.9236	134.1	S, for double bond
C8	118.9454	128.1	S, for double bond
C11	160.1913	162.0	S, for C=O

Figure 1. Optimized geometry of monomer of compound 3 and its dimer.
Table 3. Experimental and calculated (selected) vibrational wavenumbers of monomer and its dimer using B3LYP/6-31G(d,p) and their assignments [harmonic wavenumbers (cm$^{-1}$), IR int (Km$^{-1}$ mol$^{-1}$)].

Wavenumber unscaled	Wavenumber scaled 0.9806	Wavenumber Expt.	IRint	Assignment PED > 5%
3603	3462	18.5	(ν(N3H441)) (98)	
3565	3425	12.1	(ν(N1H20)) (97)	
3525	3387	15.3	(ν(C3H442)) (96)	
3518	3370	38.87	(ν(C1C2)) (50)	
3180	3055	10.1	(ν(C3C4)) (53)	
3176	3052	12.37	(δ(C3C9)) (79)	
1750	1681	132.17	(ν(C11O12)) (55)	
1746	1677	118.9	(ν(C4C5)) (56)	
1711	1644	16.6	(ν(C8H9)) (40)	
1714	1549	24.32	(ν(C8H9)) (50)	
1636	1572	1427	(ν(C2C2H4)) (20)	
1608	1545	56.36	(2(ν(C1H15)) (15)-2(ν(C3C2H4)) (7)-5(ν(C6C5)) (6)	
1580	1545	13.14	(δ(C1O5)) (14)	
1560	1499	49.8	(ν(N3O35H42)) (37)	
1552	1491	69.38	(δ(C1H20N13)) (11)	
1484	1426	30.83	(δ(C2C2H4)) (19)-2(ν(C6H8)) (17)-5(ν(C2C2H4)) (7)	
1469	1411	1344	(ν(C8H9)) (28)	
1469	1411	1304	(ν(C8H9)) (50)	
1360	1390	41.62	(ν(C8H9)) (27)	
1345	1389	78.05	(ν(C8H9)) (50)	
1339	1338	1179	(ν(C1H20N13)) (22)	
1337	1337	216.18	(7(ν(C1H20N13)) (17)-5(ν(C8H9)) (10)-2(ν(C6C5)) (6)-5(ν(C6C5)) (7)	
1242	1194	10.99	(ν(C1H20N13)) (10)	
1220	1173	22	(ν(C1H20N13)) (11)	
1220	1172	1058	(ν(C8H9)) (40)	
1202	1155	1004	(ν(C8H9)) (50)	
1201	1154	12.69	(ν(C8H9)) (50)	
1180	1134	15.94	(ν(C8H9)) (20)	
1106	1062	13.53	(δ(C2C2H3)) (26)	
1106	1062	10.63	(δ(C1H20N13)) (31)-2(ν(C8H9)) (10)-2(ν(C6C5)) (9)-5(ν(C6C5)) (9)	
1071	1029	136.34	(ν(N3O35)) (47)-5(ν(C8H9)) (10)	
1067	1025	140.08	(ν(C1C2)) (84)	
872.2	814	16.22	(ν(C2C8)) (17)	
814	782	90.42	(ν(C1C2)) (83)	
813	781	171.11	(ν(C1C2)) (85)	
790	759	32.25	(ν(C2C8)) (20)	
787	756	617	(ω(C8C8H9) 2(ν(C1C2)) (18)-5(ν(C1C2)) (10)	
783	753	15.2	(ν(C1C2)) (19)-2(ν(C8C8H9) (12)	
782	743	9.85	(ν(C2C8) (13)-5(ν(C6C5) (9)-5(ν(C6C5) (8)	

Proposed assignment and potential energy distribution (PED) for vibrational modes: Types of vibrations: ω- stretching, δsc- scissoring, ρ- rocking, ωw- wagging, δd- deformation, δs- symmetric deformation, δas- asymmetric deformation, τ- torsion.

in gas phase which have good agreement with experimentally and theoretically observed wavelength of monomer. Thus, it is worthy to say that these values appear to show satisfactory correlation with computed value.

IV. Molecular orbitals (MOs)

In the field of quantum chemistry, the molecular orbitals (MOs) have an important role in exploring the electron transition, electric and optical properties, and global chemical reactivity of a species. The energy of LUMO and HOMO and their energy difference express the realism that the charge transfer relations is taking place within the system and it is a diagnostic of the chemical reactivity of the system. A species consisting of a large HOMO-LUMO energy gap is associated with a low chemical reactivity and high kinetic stability. This is due to the connection of the chemical reactivity with the chemical hardness which is
characterized as the resistance to disturb in the electron distribution in a system. In terms of the MOs, the chemical hardness keeps up correspondences to the HOMO-LUMO energy gap. The small HOMO-LUMO energy gap forms the distortion of the electron cloud easy, which in turn results in more chemical reactivity. For parent system (compound 3) and its dimer, the HOMO-LUMO energy gap is 4.17 and 4.39 eV in the gaseous state respectively.

The MOs of the title systems (compound 3 and its associated dimer) have been investigated to acquire visual insights about the distribution of the HOMOs and the LUMOs and are displayed in Figure 2. In compound 3, it can be seen that HOMOs are positioned primarily near to only the CONH OH framework of the acrylamide group of the benzene ring, whereas the related LUMO (L-60) becomes visible to be mainly spread over the region close to the acrylamide group attached to the C4 atom existing between the dichloro groups attached to C3 and C5 atoms of the benzene ring. In case of the dimer of compound 3, the majority of the HOMOs are located over the position around the same (segment 2 of the dimer as clearly indicated in Figure 2) as mentioned in the case of the monomer of the compound 3. However, the respective LUMOs are found primarily occupying the large region of the same (but in segment 1 of the dimer as fairly shown in Figure 2) as indicated for the monomer of the compound 3.

Excitations and Contributions (%)	Solvents	λ max Exp.	λ max calc.	E (eV)	f	Assignment
Monomer						
59→60 (H→L) 64%	Gas	268	285.33	4.1699	0.1179	n→π*
46%	Water	290.75	4.2351	0.1627		
55→60 (H-4→L) 60%	Gas	221	217.40	5.7030	0.1100	π→π*
52%	Water	216.32	5.7316	0.1615		
Dimer						
118→119 (H→L) 46%	Gas	282.95	4.3819	0.1281		n→π*

Table 4. Calculated and experimental electronic excitations for (3): E/eV, oscillatory strength (f), (λ max/nm) at TD-DFT/B3LYP/6-31G(d,p) level.
V. Natural population analyses

In the field of chemistry, the atomic charge in the molecular species has a crucial role in the application of Quantum chemical calculations as it is fundamental and it provides the electronic structure, molecular polarizability, and many more features of the chemical systems. Natural population study (NPS) is a very popular and broadly used technique [30]. The total atomic charges of all atoms of the title compounds obtained by the NPA analysis using B3LYP/6-31G(d,p) level of theory, are shown in Table S2 of the SI. It is worthy to mention that C11 atom of the compound 3 has the most positive natural (0.61272) charge while the O12 atom exhibits the most negative natural (-0.62961) among all atoms present in the molecule. Among all the hydrogen atoms, H21 contains the highest positive natural (0.49971) charge. In the case of dimer of compound 3, the same C11 atom possesses the highest positive (0.61533) charge whereas O33 has -0.63131 value of the most negative natural charge over the entire system. The oxygen atom acquires more negative charge due to its more electronegativity, however hydrogen and carbon atom acquire more positive charge due to less electronegativity. Therefore, the presence of huge negative charge on O-molecule and net positive charge on H-atom may reveal the electrostatic attraction between the atoms which may provide an important contribution for the inter-and intramolecular interactions.

B. The quantum theory of atoms in molecules (QTAIM) analysis

A popular and powerful tool developed by Bader, the QTAIM theory is broadly used in modern quantum chemistry for probing the reactivity and properties of molecular structures along with the Non covalent interactions [31, 32, 33, 34]. The control of the delocalization of ρ-electron(s) on H-bonding makes a special kind of cooperatively is known as resonance assisted H-bonding. For an energetically stable and equilibrium molecular system, the Laplacian $\nabla^2 \rho(r)$ symbolizes the chemical features of the systems. A BCP comes out between two adjacent atoms according to the QTAIM approach when two neighbouring atoms are chemically linked and the character of the chemical bond and molecular reactivity can be explained by the ED (electron density) $\rho(r)$, and its consequent Laplacian, $\nabla^2 \rho(r)$. A decrease in the $\rho(r)$ correponds to an increase in the bond distance (BD) of the corresponding bond, in general [35]. As there is an intimate connection between the ED and the BD, it may be possible to utilize the QTAIM based ED parameter in inspecting more subtle information about the arrangement of the chemical as well as biomolecular species.

The analyzed TPs at the BCP like the corresponding $\rho(r)$, $\nabla^2 \rho(r)$, energy of interatomic links such as local electronic kinetic energy density, $G(r)$, local electronic potential energy density, $V(r)$, and local total electronic energy density, $H(r)$, and delocalization index, DI(A,B), have been utilized for illustrating the description of the NCIs between two interatomic interacting atoms of the compound 3 and its associated dimer system which are displayed in Table 5. The QTAIM based pictures of the compound 3 and its associated dimer are displayed in Figure 3 (a) and (b).

For a covalent interaction, $\nabla^2 \rho(r)$ is always lower than zero and the $\rho(r)$ is greater than 0.1 au. Moreover, in the case of the NCI, the sign of the $\nabla^2 \rho(r)$ at a BCP, exposes whether the charge is focused as in closed-shell interaction (HBs, ionic, van der Waals’), the ED $\rho(r)$ is typically small (order of 10^-2 au for the HB and 10^-3 au for a van der Waals’ interaction) while the $\nabla^2 \rho(r)$ is greater than zero [36,37,38]. The ref. [24] explains that the HBs can be classified as (1) $\nabla^2 \rho(r) < 0$ and $G(r) + V(r) < 0$. The atom acquire more positive charge due to its more electronegativity, however hydrogen and carbon atom acquire more positive charge due to less electronegativity.

Table 5. Topological parameters for compound 3 and its dimer: electron density (ρ_{BCP}), Laplacian of electron density $\nabla^2 \rho(r)$, kinetic energy density $G(r)$, potential energy density $V(r)$, and total energy density $H(r)$, at bond critical point (BCP).

Interactions	BD	BPL	$\rho(r)$	$\nabla^2 \rho(r)$	$G(r)$	$V(r)$	$H(r)$	DI (A,B)
Monomer (Compound 3)								
O14-H21–O12	1.931	1.974	0.0317	+0.1030	+0.0263	-0.0268	-0.005	0.0744
C11-O12–C4	2.994	2.997	0.0099	+0.0348	+0.0076	-0.0066	+0.001	0.0326
Dimer of Compound 3 (QTAIM Parameters for Segment 1)								
O14-H21–O12	1.928	1.972	0.0318	+0.1039	+0.0265	-0.0270	-0.005	0.0748
C11-O12–C4	2.995	2.998	0.0099	+0.0347	+0.0076	-0.0066	+0.001	0.0325
Connecting QTAIM Parameters for Segments 1 and 2								
C23-H57–C10	3.259	3.295	0.0026	+0.0086	+0.0016	-0.001 (-2.6 l)	0.0006	0.0170
N13-H20–C30	2.782	2.840	0.0078	+0.0299	+0.0059	-0.0044 (-11.6)	0.0015	0.0291
N13-C14–C30	3.299	3.318	0.0062	+0.0258	+0.0054	-0.0043 (-11.6)	+0.0011	0.0366
QTAIM Parameters for Segment 2								
O35-H42–O33	1.952	1.976	0.0316	+0.1027	+0.0262	-0.0267	-0.005	0.0740
C52-O33–C25	2.982	2.987	0.0101	+0.0352	+0.0078	-0.0067	+0.0011	0.0335

$\rho(r)$, $\nabla^2 \rho(r)$, $G(r)$, $V(r)$, $H(r)$ in a.u. and $V(r)$ in bracket (kJ/mol).
0 (strong HBs) (2) $\nabla^2 \rho(r) > 0$ and $G(r) + V(r) < 0$ (medium HBs); and (3) $\nabla^2 \rho(r) > 0$ and $G(r) + V(r) > 0$ (weak HBs) and they are mainly electrostatic; where $G(r) + V(r)$ is also known as the total electron energy density, $H(r)$. Table 5 lists the bonding features of the intermolecular NCl.s. An examination of Figures 3 (a) and (b) reveals, besides the C-H–Cl and N-H–Cl bonding interactions, other nonconventional type bonding interactions as Cl–O and C–O appeared by the presence of BCPs. Hence, three nonconventional type interactions (one Cl–O exists between the both segments and total two C–Os in both segments of the dimer system) and four H-bonding interactions (total two O–H–O in both segments of the dimer complex, one C-H–Cl, and one N–H–Cl interactions lying between the connecting fragments) are observed in the dimer compound. A total two intra- (one O–H–O in each segment) and two intermolecular (one C-H–Cl and one N-H–Cl in the bridging part) H-bonding interactions were observed using the QTAIM tool.

The ellipticity (ε) at BCP is a delicate record to screen the character of a bond. The ε is related to λ_1 and λ_2 consequent to the eigenvalues of the Hessian and is defined by a relationship: $\varepsilon = (\lambda_1/\lambda_2) - 1$. The ellipticity values for bonds C1-C2, C2-C3, C3-C4, C4-C5, C5-C6 and Cl-C6 were 0.217, 0.243, 0.253, 0.250, 0.244, and 0.216 respectively. The ellipticity values for bonds C1-C2, C2-C3, C3-C4, C4-C5, C5-C6 and C1-C6 were 0.217, 0.243, 0.253, 0.250, 0.244, and 0.216 respectively. The lower estimations of ellipticity affirm that there is delocalization of electron in aromatic ring [39, 40]. However the higher ellipticity esteem for C4-O12 bond (1.162) demonstrates electrons of this bond is not delocalized.

C. NLO properties

Non-linear optical (NLO) property is an important property by that the key elements of recurrence moving, optical regulation, optical exchanging, optical rational and optical memory for the rising advances in territories, for example, media communications, flag handling, and optical interconnections [41, 42, 43, 44]. In request to research the connection between the atomic structure and the NLO response, first hyperpolarizability (β_0) and related properties for example, mean polarizability (α_0), and total dipole moment μ_0 have been determined using B3LYP/6-31G(d,p) in light of the limited field approach. The 21 components of the 3-dimensional matrixes can be decreased to 10 segments because of the Kleinman symmetry [45]. The yield information from Gaussian 09 provides 10 segments of this network as

$$\alpha_0 = \frac{1}{3}\alpha_{xx} + \alpha_{yy} + \alpha_{zz}$$

$$\mu_0 = \sqrt{\beta_{xx}^2 + \beta_{yy}^2 + \beta_{zz}^2}$$

Where β_{xx}, β_{yy} and β_{zz} are calculated as follows

$$\beta_x = \beta_{xx} + \beta_{yy} + \beta_{zz}$$

$$\beta_y = \beta_{yy} + \beta_{xx} + \beta_{yz}$$

$$\beta_z = \beta_{zz} + \beta_{xx} + \beta_{xy}$$

Extensive estimation of the specific part of polarizability and hyperpolarizability demonstrate a generous delocalization of charge. The dipole moment (μ), the total first static hyperpolarizability (β_0) and mean polarizability (α) are related directly to the nonlinear optical property of the compound. The calculated first-order molecular hyperpolarizability (β_0) and dipole moment (μ) of the compound are $\beta_0 = 14.8098 \times 10^{-30}$ esu and 2.5998D, respectively (see Table 6).

D. Molecular electrostatic potential (MEP) analysis

Molecular electrostatic potential (MEP) provides data about the net electrostatic effect of delivered at a point in space, by the total charge distribution over the atom [47]. It plays a vital role to investigating correlation between the molecular structures, the physicochemical property relationship of the molecules. It gives sufficient information about the molecular interaction with one another and inside the molecule. MEP has been used substantial for predicting reactive behaviour and inter and intra-molecular interaction of molecule. These interactions may be helpful in supporting for the formation of dimer compounds. MEP provides the visual comprehension of relative polarity and envisages the reactivity of atom towards the electrophilic and nucleophilic responses [48, 49, 50, 51, 52]. AIM study also provides inter and intra molecular interaction along with hydrogen bonding which is supported MEP results.

To envisage the reactive sites of the title fragment and its dimer, MEP (electrostatic potential mapped onto an electron iso-density surface) from optimized geometry was considered and is exhibited as Figure 4 and Figure 5. The diverse estimations of electrostatic potential at the surface is shown by diverse colours and potential increments all together red < orange < yellow < green < blue.

The electrophilic (red and yellow region) and nucleophilic (blue region) centre of the molecule were exhibited by MEP. From the MEP, it is evident that the red region on oxygen molecule recommends its nucleophilic nature and the blue region on hydrogen proposes its electrophilic nature.

E. Docking analysis

Molecular docking is a very useful computational tool for predicting ligand-protein binding site [53]. Based on the structure of compound, dissimilar biological activities can be primarily predicted by an online instrument, PASS (Prediction of Activity Spectra). The geometries of these compounds were then optimized by the Tripos force field and

Table 6. Calculated dipole moment (μ_0), polarizability (α_0), anisotropy of polarizability ($\Delta \alpha$), first hyperpolarizability (β_0) and their components using the B3LYP/6-31G(d,p).

Dipole moment	Polarisability	Hyperpolarizability
μ_x	α_{xx}	β_{xx}
μ_y	α_{yy}	β_{yy}
μ_z	α_{zz}	β_{zz}
μ	α_0	β_0
$\Delta \alpha$		

\[
\begin{array}{cccc}
\mu_x & 1.1754 & \alpha_{xx} & 167.806 & \beta_{xx} \\
\mu_y & 0.7447 & \alpha_{yy} & -1.471 & \beta_{yy} \\
\mu_z & 2.1961 & \alpha_{zz} & 130.318 & \beta_{zz} \\
\mu & 2.5998 & \alpha_0 & -20.039 & \beta_0 \\
\alpha_{xx} & -13.875 & \beta_{xx} & 36.815 \\
\alpha_{yy} & 90.032 & \beta_{yy} & -22.441 \\
\alpha_{zz} & 23.7526 & \beta_{zz} & 24.771 \\
\Delta \alpha & 83.6214 & \beta_0 & 7.017 \\
\end{array}
\]
Gasteiger–Huckel using Sybyl 7.1. Energy minimization was done by utilizing the Powell method with an energy combination gradient of 0.001 kcal mol\(^{-1}\). Reference protein coordinates designed for docking were obtained from the X-ray structure of LigA bound to AMP (PDB ID: 1ZAU) after being shorn off the water molecules. The binding pocket of LigA is bordered by the residues Leu90, Ser91, Leu122, Glu121, Lys123, Asn94, Ala124, Arg144 and Glu184. The compounds were docked into the dynamic site of the catalyst utilizing Autodock 3.0.5. Kollman charges, polar hydrogen and solvation parameters were added and charges on residues were neutralized. Ligands were set up for counts by including gasteiger charges. The cubic grid box extent was set at 64 × 54 × 58 Å (x, y, and z) with dispersing of 0.375 Å, which incorporated all the amino acid deposits that were available in the catalytic site of rigid macromolecules. AutoGrid 8 program was utilized to create grid maps. The remainder of the parameters were set at their standard default values. The population size was lay down to 150 and the individuals were initialized randomly. AutoGrid 8 program was used to produce grid maps. A maximum of 20 poses were evaluated with the Lamarckian genetic algorithm (LGA), with the medium come to energy assessments (250000). The most stable configuration of the protein-inhibitor complexes was then chosen by the looking at the HB association among the top-ranked docked poses as well as Binding and Docking energies were seen in Figure 6.

4. Conclusion

In the present work, the aryl acrylamide was synthesized and characterized by \(^1\)H NMR, \(^{13}\)C NMR, FT-IR, UV-Vis techniques and mass spectrometry. On the basis of the calculated orbital coefficients and M.O. plots for the aryl acrylamide compound, the nature of major electronic groups designated to be n → π* type. Intramolecular interactions investigated by AIM approach, exhibited the nearness of intramolecular HBs in the molecule. The chemical strength of synthesized compound was proved by the calculation of HOMO-LUMO band gap. MEP plot shows...
that negative regions present over the oxygen atoms which is possible for nonleptic attacks. The calculated total stationary hyperpolarizability (β₀ = 14.0898 × 10⁻³⁰ esu.) for titled molecule in vacuum is observed to be 39.72 step than that of standard urea Debye and (β₀ = 0.3728 × 10⁻³⁰ esu). This tremendous NLO result, proposes titled molecule to be a possible contender for the nonlinear optical applications.

Declarations

Author contribution statement

Akilesh Kumar Shukla: Performed the experiments.
Aniruddh Prasad Chaudhary: Analyzed and interpreted the data; Wrote the paper.
Jyoti Pandey: Conceived and designed the experiments.

Funding statement

This work was supported by Babasaheb Bhimrao Ambedkar University (BBAU) (A Central University) Lucknow, DBT, New Delhi (Project no. BT/PR12145/AOQ-3/830/2016) and AKS is thankful for UGC University fellowship.

Competing interest statement

The authors declare no conflict of interest.

Additional information

Supplementary content related to this article has been published online at https://doi.org/10.1016/j.heliyon.2020.e05016.

References

[1] S.P. Gupta, A. Sharma, The chemistry of hydroxamic acids, in: S.P. Gupta (Ed.), Hydroxamic Acids: A unique Family of Chemicals with Multiple Biological Activities, Springer, Berlin, Germany, 2013, pp. 1–17. https://link.springer.com/chapter/10.1007/978-3-642-38111-9_1.
[2] H. Kozlowski Kurzak, E. Farkas, Hydroxamic and aminohydroxamic acids and their complexes with metal ions, Coord. Chem. Rev. 114 (1992) 169–200. http://pscd.rac.fau.edu/vibad/index.php?action=goArticle&articleID=539782.
[3] W.H. Wang, W.S. Liu, Y.W. Wang, Y. Li, L.F. Zheng, D.Q. Wang, Self-assembly and cytotoxicity study of waterwheel-like dinuclear metal complexes: The first metal complexes appended with multiple free hydroxamic acid groups, J. Inorg. Biochem. 101 (2007) 297–305.
[4] E.M.F. Muri, M.J. Nieto, R.D. Sindelar, J.S. Williamson, Hydroxamic acids as pharmacological agents, Curr. Med. Chem. 9 (2002) 1631–1653.
[5] W.M. Kamierski, G. Wolberg, J.G. Wilson, S.R. Smith, D.S. Williams, H.H. Thorp, L. Molina, Iron chelates bind nitric oxide and decrease mortality in an experimental model of septic shock, Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 9138–9141.
[6] C.J. Marjion, J.P. Parker, K.B. Nolan, Hydroxamic acids: An important class of metalloenzyme inhibitors, in: 2nd ed., in: J. Reedijk, K.R. Poeppelmeier (Eds.), Metalloenzyme Inhibitors, in: 2nd ed., in: J. Reedijk, K.R. Poeppelmeier (Eds.), Metalloenzyme Inhibitors and Antitumor Agents, J. Comput. Chem. 11 (2007) 465–492.
[7] S. Tarig, M. Khalid, A.R. Raza, S.L. Rubah, S. Figuir, M. Usman Khan, M.N. Tahir, A.A.C. Braga, Experimental and computational investigations of new indole derivatives: A combined spectroscopic, SC-XRD, DFT/DFT and QTAID analysis, J. Mol. Sci. (2017) 2017. https://doi.org/10.3390/jmj10722102.
[8] U. Koch, P. Popelier, Characterization of CHO hydrogen bonds on the basis of charge density, J. Phys. Chem. 99 (1995) 9477–9754.
[9] R. Singh, K. Singh, S.K. Pandey, A computational scrutiny on the stability, structure, and electronic features of alkane sulfonate based zincate salts with varying counter cations, Chem. Select 3 (2018) 13048–13056.
[10] R.F.W. Bader, J.R. Cheeseman, in: AIMPAC, 2000.
[11] A.B. Ahmed, H. Feki, Y. Abid, H. Roughia, C. Minot, A. Malyay, Crystal structure, vibrational spectra and theoretical studies of L-histidinium dihydrogen phosphate-phosphoric acid, J. Mol. Str. 920 (2009) 1–7.
[12] N.P. Chamberlain, The Practice of NMR Spectroscopy with Spectra-Structure Correlations for Hydrocarbons, Plenum Press, 1977.
[13] R.F.W. Bader, J.R. Cheeseman, in: AIMPAC, 2000.
[14] K. Burke, J. Werschink, E.K. Gros, Time-dependent density functional theory: Past, present, and future, J. Chem. Phys. 123 (2005), 062206.
[15] R. Importa, C. Ferrante, R. Bozio, V. Barone, The polarizability in solution of tetra-phenyl-porphyrin derivatives in their excited electronic states: a PC/TD-DFT study, Phys. Chem. Chem. Phys. 16 (2014) 15524–15530.
[16] J.M.L. Martin, C. Van Alsemoy, GAR2PED: A Program to Obtain a Potential Energy Distribution from a Gaussian Archive Record, University of Aberwrt, Belgium, 2007.
[17] R. F.W. Bader, J.R. Cheeseman, in: AIMPAC, 2000.
[18] D. Becke, On the parameterization of the local correlation functional. What is Becke-3LYP?, J. Chem. Phys. 98 (1993) 1372.
[19] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electronic density, Phys. Rev. B 8 (1978) 785.
[20] M.E. Cisada, Time-dependent density functional response theory for molecules recent advances in density functional methods, Chapter 5, World Sci. (1995) 155–192.
[21] R. Importa, C. Ferrante, R. Bozio, V. Barone, The polarizability in solution of tetra-phenyl-porphyrin derivatives in their excited electronic states: a PC/TD-DFT study, Phys. Chem. Chem. Phys. 16 (2014) 15524–15530.
[22] R. Importa, C. Ferrante, R. Bozio, V. Barone, The polarizability in solution of tetra-phenyl-porphyrin derivatives in their excited electronic states: a PC/TD-DFT study, Phys. Chem. Chem. Phys. 16 (2014) 15524–15530.
[23] B. Saha, S. Chakraborty, G. Das, A comparative metal ion adsorption study by trimesic acid coated alumina: A potential adsorbent, J. Colloid Interface Sci. 323 (2008) 26–32.
[24] R.K. Singh, A.K. Singh, Synthesis, molecular structure, spectral analysis, natural bond order and intramolecular interactions of 2-acyetylpyridine thiosemicarbazone: a combined DFT and AIM approach, J. Mol. Struct. 1094 (2015) 61–72.
[25] P. Rawat, R.N. Singh, Experimental and DFT study on a newly synthesized ethyl 2-cyano-3-[5-(phenyl-hydrazonemethyl)-1H-pyrrol-2-yl] acrylate, J. Mol. Struct. 1081 (2015) 293–305.
[26] P. Rawat, R.N. Singh, Experimental and DFT study on a newly synthesized ethyl 2-cyano-3-[5-(phenyl-hydrazonemethyl)-1H-pyrrol-2-yl] acrylate, J. Mol. Struct. 1081 (2015) 293–305.
remarkable role of polarized aromatic groups, J. Am. Chem. Soc. 125 (2003) 15651–15658. http://pascal-francis.inist.fr/vibad/index.php?action=−getRecordDetail&idt=15363555.

[42] M. Nakano, H. Fujita, M. Takahata, K. Yamaguchi, Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: Toward an understanding of structure−property relation in NLO responses of fractal antenna dendrimers, J. Am. Chem. Soc. 124 (2002) 9648–9655.

[43] H.J. Sajan, V.S. Jayakumar, J. Zaleski, Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate, J. Mol. Struct. 785 (2006) 42–53.

[44] C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Florsheimer, P. Kaatz, P. Günter, Organic nonlinear optical materials, Gordon & Breach, Basel, 1995.

[45] D.A. Kleinmann, Nonlinear Dielectric Polarization in Optical Media, Phys. Rev. 126 (1962) 1977–1979.

[46] H.A. Kurtz, J.J.P. Stewart, K.M. Dieter, Calculation of the Nonlinear Optical Properties of Molecules, J. Compt. Chem. (1990).

[47] P. Thul, V.P. Gupta, V.J. Ram, P. Tandon, Structural and spectroscopic studies on 2-pyranones, Spectrochim. Acta A 75 (2010) 251–260.

[48] Scrocco, J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: an eristic interpretation by means of electrostatic molecular potentials, Adv. Quant. Chem. 11 (1978) 115–193.

[49] R.K. Singh, A.K. Singh, DFT calculations on molecular structure, spectral analysis, multiple interactions, reactivity, NLO property and molecular docking study of flavanol-2, 4-dinitrophenylhydrazone, J. Mol. Struct. 1129 (2017) 128–141.

[50] P. Rawat, R.N. Singh, A. Ranjan, S. Ahmad, R. Saxena, Antimycobacterial, antimicrobial activity, experimental (FT-IR, FT-Raman, NMR, UV-Vis, DSC) and DFT (transition state, chemical reactivity, NBO, NLO) studies on pyrrole-isonicotinoyl hydrazone, Spectrochim. Acta Part A Mol. and Biomol. Spec. 179 (2017) 1–10.

[51] J. Luque, J.M. Lopez, M. Orozco, Perspective on ‘Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects, Theor. Chem. Acc. 103 (2000) 343–345.

[52] M.S. Almutari, A.M. Alanazi, E.S. Al-Abdullah, A.A. El-Emam, S.K. Pathak, R. Srivastava, O. Prasad, L. Sinha, FT-IR and FT-Raman spectroscopic signatures, vibrational assignments, NBO, NLO analysis and molecular docking study of 2-[[5-(adamantan-1-yl)-4-methyl-4H-1, 2, 4-triazol-3-yl] sulfanyl]-N, N-dimethylethanamine, Spectrochim. Acta A 140 (2015) 1–14.

[53] D.S. Goodsell, G.M. Morris, A.J. Olson, Automated docking of flexible ligands: applications of AutoDock, J. Mol. Recog. 9 (1996) 1–5.