Approaching Thouless Energy and Griffiths Regime in Random Spin Systems By Singular Value Decomposition

Wen-Jia Rao
School of Science, Hangzhou Dianzi University, Hangzhou 310027, China.
(Dated: February 24, 2022)

We employ singular value decomposition (SVD) to study the eigenvalue spectra of random spin systems. By SVD, eigenvalue spectrum is decomposed into orthonormal modes W_k with weight λ_k. We show that the scree plot (λ_k with respect to k) in the ergodic phase contains two branches that both follow power-law $\lambda_k \sim k^{-\alpha}$ but with different exponents α. By evaluating W_k, it’s verified the part of λ_k with $k > k_{Th}$ is universal that follows random matrix theory, where k_{Th} is related to the Thouless energy. We further demonstrate that α corresponds only to the exponential part of the level spacing distribution while being insensitive to the level repulsion, or equivalently the system’s symmetry. Consequently, α gives an underestimation for the many-body localization transition point, which suggests a non-ergodic behavior that may be attributed to the Griffiths regime.

I. INTRODUCTION

The quantum phases of matter in isolated systems is a focus of modern condensed matter physics, where the existence of two generic phases has been well-established: an ergodic phase and a many-body localized (MBL) phase. In an ergodic phase, the system acts as the heat bath for its subsystem, which results in extensive quantum entanglement that follows volume-law. In contrast, an MBL phase is where localization persists in the presence of weak interactions, which leads to area-law entanglement. The different scaling behaviors of quantum entanglement provide the modern understanding about these two phases.

On the other hand, the ergodic and MBL phase are traditionally distinguished by their eigenvalue statistics whose foundation is laid by the random matrix theory (RMT). RMT is a powerful mathematical tool that describes the universal properties of the eigenvalues in the ergodic phase which depend only on the system’s symmetry while independent of microscopic details. Specifically, the Gaussian orthogonal/unitary ensemble (GOE/GUE) describes systems with/without time reversal symmetry, and Gaussian symplectic ensemble (GSE) stands for time-reversal invariant systems with broken spin rotational invariance. On the contrary, the eigenvalues in MBL phase are independent of each other and belongs to the Poisson ensemble.

Compared to the properties of each phase, the evolution between them is much less understood, especially on the ergodic side. There are two issues of particular interest. First one concerns the energy scale called Thouless energy E_{Th}, defined through the Thouless time $t_{Th} = \hbar / E_{Th}$, which measures the average time a particle takes to diffuse over the system. Therefore, eigenvalue fluctuations below E_{Th} are well characterized by RMT and hence universal, while those above E_{Th} are model dependent. This energy scale E_{Th} is difficult to observe with local spectral statistics such as level spacing or spacing ratio distributions, but can be probed by long-range spectral measures such as the number variance or spectral form factor. The second issue regards the Griffiths regime near the transition region, where an inhomogeneous mixture of locally thermal and localized regions co-exist and result in anomalously slow dynamics and multifractality of eigenstates. Unlike the Thouless energy, study of Griffiths effect is normally based on eigenfunctions.

In this work, we employ the singular-value-decomposition (SVD) to study the eigenvalue spectra of random spin systems with MBL transition, and show that both the Thouless energy and Griffiths regime can be revealed through the scaling of singular values. The advantage of this method are two-folded. For the Thouless energy, SVD requires no unfolding procedure, which is necessary for studying number variance and spectral form factor, and therefore avoids the potential ambiguity raised by concrete unfolding strategy. Very recently, Berkovits employed SVD to the study of Thouless energy in Anderson model and the identification of non-ergodic extended phase in the Rosenzweig-Porter model, and now we bring it to the many-body regime. For the Griffiths effect, the inputs of SVD are the eigenvalue spectra, which are numerically much easier to obtain than the eigenfunctions.

The underlying mechanism behind SVD is to view the eigenvalue spectrum of a complex quantum system as a time-series and by performing SVD to the “sample matrix” (see Eq. (2) in Sec.II) we are able to distinguish the trend and fluctuation modes therein. This technique is in essence identical to the unsupervised machine learning algorithm called principal component analysis (PCA), which has also found various applications in condensed matter physics. However, while PCA deals with several components with largest weights, we shall see the universal information of MBL system is encoded in the intermediate components with lower weights.

This paper is organized as follows. In Sec. II we introduce the SVD method, and show the scree plot (singular values as a function of level index) for the MBL phase reflects a clear integrable behavior, while that for the ergodic phase breaks into two branches—a universal high-order part that belongs to RMT and a non-universal part, with the starting point of the former identifying the Thouless energy E_{Th}. In Sec. III we dig into the structures of the principal components, and show the higher-order ones are close to the Fourier modes of the eigenvalue spectrum, and explain why the higher-order part of scree plot is universal. In Sec. IV we demonstrate the scree plot only reflects the exponential part of the level...
spacings distribution while being insensitive to the level repulsion, or equivalently the system’s symmetry. Consequently, as detailed in Sec. [VI] it gives an underestimation on the ergodic-MBL transition point, which suggests a non-ergodic behavior that may be attributed to the Griffiths regime. Discussion and conclusion come in Sec. [VI].

II. SVD on Eigenvalue Spectra

In this work we consider the paradigmatic spin model with ergodic-MBL transition, that is, the anti-ferromagnetic Heisenberg model with random external fields [13], the Hamiltonian reads

\[H = \sum_{i=1}^{L} S_i \cdot S_{i+1} + \sum_{i=1}^{L} \sum_{\tau=x,y,z} h_{\tau} \varepsilon_{i}^{\tau} S_{i}^{\tau}, \tag{1} \]

where the coupling strength is set to be 1, and \(\varepsilon_{i}^{\tau} \)'s are random variables within range \([-1, 1]\). We first consider the orthogonal case with time-reversal symmetry, that is, \(h_{x} = h_{z} = h \neq 0 \) and \(h_{y} = 0 \), where an ergodic-MBL transition happens at \(h_{c} \approx 4.95 [14, 15] \). Using exact diagonalization, we generate \(N = 1000 \) samples of eigenvalue spectra at various randomness \(h \) in an \(L = 13 \) system, with the Hilbert space dimension being \(2^{13} = 8192 \). For each spectrum, we take out the middle \(P = 1000 \) eigenvalues, and arrange them into an \(N \times P \) matrix \(X \),

\[X = \begin{pmatrix} E_{1}^{(1)} & E_{2}^{(1)} & \ldots & E_{P}^{(1)} \\ E_{1}^{(2)} & E_{2}^{(2)} & \ldots & E_{P}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ E_{1}^{(N)} & E_{2}^{(N)} & \ldots & E_{P}^{(N)} \end{pmatrix}, \tag{2} \]

where \(E_{i}^{(j)} \) stands for the \(i \)-th eigenvalue in the \(j \)-th sample. For clarity, we shall call \(X \) the “sample matrix”. We then perform SVD on \(X \), which equals to re-express \(X \) as

\[X = U A W \equiv \sum_{k} \sigma_{k} X^{(k)}, \quad X_{ij}^{(k)} = U_{ik} W_{kj}, \tag{3} \]

where \(A \) is an \(N \times P \) matrix whose non-zero elements \(A_{i,i} \equiv \sigma_{i} \) are the ordered singular values \(\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r} \) with \(r \leq \min[N, P] = \text{Rank}[X] \). This technique is equivalent to the machine learning algorithm called principal component analysis (PCA), the spirit of which is to view the eigenvalue spectrum as a multi-dimensional data, and by SVD we decompose it into orthonormal modes \(W_{k} \) – the \(k \)-th row of the \(P \times P \) matrix \(W \) – with weight \(\sigma_{k} \). The \(W_{k} \) is called principal component in the terminology of PCA, and encodes one feature (character) of the eigenvalue spectrum, whose physical meaning is read by evaluating its behavior \(W_{k}[i] \), where \(i \) denotes the energy level index. Given the decreasing tendency of \(\sigma_{k} \), we can approximate the original sample matrix \(X \) by \(\tilde{X} = \sum_{k=1}^{m} \sigma_{k} X^{(k)} \) with some value \(m \), hence achieving the purpose of dimension reduction. In most applications of PCA, we only keep several dominant components with largest weights. However, as we shall see, the universal information of the random spin system is encoded in the intermediate components with lower weights.

Another interpretation of SVD is to treat \(X \) as a multivariate time series, with \(\lambda_{k} \equiv \sigma_{k}^{2} \) being the eigenvalue of the covariance matrix \(X^{T} X \). It has been demonstrated [24, 25, 37] that \(\lambda_{k} \) with large \(k \) follows the power-law behavior

\[\lambda_{k} \sim \frac{1}{k^{\alpha}}, \tag{4} \]

with \(\alpha = 1 \) in the chaotic (integrable) system, corresponding to the ergodic (MBL) phase respectively.

As a demonstration, we generate the sample matrix \(X \) for Eq. (1) with \(L = 13 \) at various randomness strengths, and plot the resulting \(\lambda_{k} \) after SVD with respect to index \(k \) (the so-called scree plot) in a log-log scale in Fig. 1. Without loss of generality, we divide each \(\lambda_{k} \) by the largest value \(\lambda_{1} \). For comparison, we also generate eigenvalue spectra from modeling GOE matrices (orthogonal matrices with random elements drawn from standard Gaussian distribution \(N(0, 1) \)) of the same size, the resulting \(\lambda_{k} / \lambda_{1} \) appear as the grey dots therein. Clearly, in all cases, the first two modes are orders of magnitudes larger than the rest, which indicates the existence of two overwhelming features in the eigenvalue spectrum. For reasons detailed in next section, we identify them to be the mean energy \(\langle E \rangle \) and mean level spacing \(\langle s \rangle \). While for large modes with \(k > 300 \), the weights drops very rapidly, indicating they contribute little to the properties of the eigenvalue spectrum. The universal information is thus expected to be encoded in the intermediate modes with \(2 < k < 300 \).

More specifically, for case in the MBL phase (\(h = 5 \)), the
scree plots with $3 \leq k \leq 200$ fits well into the power-law behavior Eq. (4) with $\alpha = 1.962$, very close to the value 2 for integrable system as expected. While for data in the ergodic phase ($h = 1$), λ_k divides into two parts: the higher-part $30 \leq k \leq 200$ with power-law exponent $\alpha_2 \approx 1.085$ almost coincides with that of modelling GOE, reflecting a clear chaotic behavior, and this part is identified to be universal below Thouless energy and related to RMT; while the lower-part $3 \leq k \leq 15$ follows a super-Poissonian power-law behavior with $\alpha_1 \approx 2.567$, and is therefore identified to be the model-dependent part beyond Thouless energy, the more detailed analysis will be provided in Sec.III. Interestingly, this value of α_1 happens to be close to the one in the metallic phase of a 3D Anderson model [2], which may suggest a subtle correspondence between these two models.

From Fig. 1 we can see such a two-branch scree plot is general for data in ergodic phase, and quantitatively we identify the Thouless energy E_{Th} through the starting point of the chaotic behavior $\lambda_k \sim k^{-1}$, which is $k_{Th} \sim 30$ for the case $h = 1$. As the randomness grows, the k_{Th} increases – which indicates E_{Th} decreases – and the two branches gradually get mixed. At the transition point $h \simeq 3$, the scree plot becomes almost identical to that of the MBL phase, suggesting the saturation of α_2 may be an indicator for the MBL transition. However, as discussed in detail in Sec. V this may not provide an accurate estimation.

Up to now, we have shown the scree plots provides a transparent way to reveal the Thouless energy E_{Th}. However, since there's artifact in determining where the chaotic behavior $\lambda_k \sim k^{-1}$ begins to hold, this method is less accurate in quantitatively determining E_{Th} than more standard probes like spectral form factor. Meanwhile, the numerics clearly indicate that E_{Th} decreases with randomness strength, which is qualitatively consistent with the results in Ref. [29]. Moreover, as stated in Sec.I, the central advantage of SVD is that it requires no unfolding procedure. To further pursue the physics behind the scree plot, we now turn to the analysis of principal components W_k.

III. PRINCIPAL COMPONENT ANALYSIS

The k-th principal component of the eigenvalue spectrum is represented by the k-th row of the matrix W, we therefore evaluate the behavior of W_k with respect to the energy level index i to read out the physics. The results in this section are based on the data from $h = 1$, and we have checked they hold in other cases as well.

We have seen in Fig. 1 that the scree plot is dominated by two largest weights λ_1 and λ_2, which means the eigenvalue spectrum contains two dominant features that are overwhelming over other features. We therefore draw the behaviors of two dominant modes W_1 and W_2 in Fig. 2(a), it's clear that both of them are linearly dependent with level index i, suggesting they correspond to two non-fluctuating features of the eigenvalue spectrum. We postulate these two dominant features to be the mean energy $\langle E \rangle$ and the mean level spacing $\langle s \rangle$, both of which are non-universal. To support this conjecture, we first change the input data from the eigenvalues $\{E_i\}$ to the level spacings $\{s_i = E_{i+1} - E_i\}$. With this input, the information of mean energy $\langle E \rangle$ is lost, leaving $\langle s \rangle$ as the only dominant feature. Therefore when applying SVD to this new sample matrix X', we should observe only one dominant weight λ_1. This is verified in Fig. 2(b), where $\lambda_1/\lambda_2 = 789.14$ is observed. We can further change the input to be the spacing ratios $\{s_{i+1}/s_i\}$, where the information about $\langle E \rangle$ and $\langle s \rangle$ are both lost, and the resulting scree plot is expected to contain no dominant weights. This is also verified in Fig. 2(b), where we see λ_1 is the same order with λ_2 (the precise value is $\lambda_1/\lambda_2 = 2.25$), which confirms our conjecture.

Strictly speaking, the mean energy $\langle E \rangle$ and level spacing $\langle s \rangle$ are non-universal for different reasons. The $\langle E \rangle$ stands for the global energy scale of the system and therefore depends on the model’s details. While $\langle s \rangle$ is the value that can be artificially assigned when counting level statistics, which stems from the mathematical degree of freedom in the joint probability distribution function of the eigenvalues. To be specific, recall the eigenvalue distribution function in the standard WD class is:

$$P (\{E_i\}) = A_1 \prod_{i<j} |E_i - E_j|^\beta e^{-A_2 \sum_i E_i^2}; \beta = 1, 2, 4, \text{ (5)}$$

where A_1 and A_2 are two parameters constrained by single normalization condition $\int P (\{E_i\}) \prod_i dE_i = 1$. From $P (\{E_i\})$ we can derive the celebrated WD distribution $P (s) = A_1 s^{\beta} e^{-A_2 s^2/2}$ using Wigner surmise [31,32]. The single normalization condition $\int P (s) ds = 1$ is not sufficient to determine two parameters A_1, A_2, which gives us the freedom to choose $\langle s \rangle$. In most practical studies, we take $\langle s \rangle$ to be 1.

Having understood the physics of the two dominant components, we now return to analysis of the components W_k ($k \geq 3$) of the original sample matrix X, several of which are plotted in Fig. 2(c),(d). We observe clear sinusoidal behaviors of W_k with respect to level index i, with the frequency increasing with k. Specifically, we have $W_k[i] \sim \cos \left(\frac{(k-1)\pi}{N}i + \varphi_k \right)$ with $N = 1000$ being the number of eigenvalues, which indicates the component W_k is close to the k-th Fourier mode of the eigenvalue spectrum. Therefore, for smaller k, W_k reflects the level fluctuations on larger energy scale. When k is not so large, this energy scale goes beyond Thouless energy, so its behavior is non-universal; while when k exceeds certain threshold k_{Th}, this energy scale falls within Thouless energy. This threshold k_{Th} divides the λ_k into two parts: the non-universal part with $k < k_{Th}$ and universal part with $k > k_{Th}$. This is the origin of the two-branch structure of the scree plot in the ergodic phase.

The local fluctuations of the eigenvalue spectra can be further revealed by considering the power spectrum function, whose definition is

$$F_m (k) = \left| \frac{1}{r} \sum_{n=1}^r \left[\left(\sum_{p=3}^{m} \sigma_p X_{m/n}^{(p)} \right) \exp \left(-\frac{2\pi i nk}{r} \right) \right] \right|^2, \text{ (6)}$$
FIG. 2. (a) Behaviors of the two dominant components \(W_{1/2} \), the linear behaviors indicate they correspond to two non-fluctuating features of the eigenvalue spectrum, which are suspected to be the mean energy \(\langle E \rangle \) and level spacing \(\langle s \rangle \). (b) Scree plots of \(\lambda_k \) after performing SVD on the sample matrix comprised of level spacings and spacing ratios, where the ratio of first two weights \(\lambda_1/\lambda_2 \) = 789.14 (2.25) in respective cases. (c), (d) Behaviors of typical higher components \(W_k \), the quasi-sinusoidal behaviors indicate they are close to the \(k \)-th Fourier mode of the eigenvalues, and the frequency increases with \(k \).

![Diagram](image)

FIG. 3. Power spectrum function \(F(k) \) for ergodic \((h = 1)\) and MBL \((h = 5)\) phases, in the former a clear two-branch structure appears just like in the scree plot of \(\lambda_k \). The power-law exponents \(\gamma \simeq \alpha \) are observed in all cases.

![Diagram](image)

where \(\sum_{p=3}^{r} \sigma_i X_{\max}^{(p)} \) are the eigenvalue spectra after “global unfolding”\(^{[24-25]} \). By averaging over the ensemble we get the power spectrum function \(F(k) = \frac{1}{N} \sum_{i=1}^{N} F_{\max}(k) \), which was shown to behave differently in integrable and chaotic systems\(^{[24-25]} \). To this end, we calculate \(F(k) \) in the \(h = 1 \) (5) case standing for the ergodic (MBL) phase, the results are shown in Fig. 3. As we can see, \(F(k) \) behaves totally similar to \(\lambda_k \); in the ergodic phase \(F(k) \) divides into two branches that both follow \(1/k^2 \), specifically, the lower modes satisfy \(\gamma_1 \approx 2.5 \approx \alpha_1 \) and higher modes satisfy \(\gamma_2 \approx 1 \approx \alpha_2 \); while for the MBL case, a single curve with \(\gamma \approx 2 \approx \alpha \) appears. This coincidence has also appeared in the non-interacting Anderson model\(^{[24]} \) which indicates that \(F(k) \) and \(\lambda_k \) essentially contain identical physical information. Based on the PCA results above, we can provide a qualitative explanation as follows.

We have verified that \(W_k \) is close to the Fourier modes of eigenvalue spectrum for \(k \geq 3 \), hence the power-law behavior \(\lambda_k \sim k^{-\alpha} \) essentially indicates a decreasing trend of the eigenvalues’ Fourier weights. On the other hand, the definition of \(F(k) \) in Eq. (6) drops the first two dominant terms \(X^{1/2} \), which stand for the mean energy \(\langle E \rangle \) and level spacing \(\langle s \rangle \) that are both non-fluctuating. Therefore, the fluctuating behaviors of original eigenvalue spectra and the one after “global unfolding” (that is, \(\sum_{p \geq 3} \sigma_p X_{\max}^{(p)} \)) should be the same. Consequently, the scaling behaviors of \(\lambda_k \) and \(F(k) \) are expected to be identical.

A technical issue worth mentioning is that the choice of power spectrum in Eq. (6) is not unique. Another routine is to construct the following time-series\(^{[24-25]} \):

\[
\delta_n = \sum_{i=1}^{n} (s_i - \langle s \rangle) = s_n - n \langle s \rangle, \tag{7}
\]

where \(s_n \) is the \(n \)-th order level spacing. It is clear that \(\langle \delta_n \rangle \) gets rid of the non-universal information about \(\langle E \rangle \) and \(\langle s \rangle \), in a similar way to \(\sum_{k=3}^{r} \sigma_k X_i^{(k)} \) in Eq. (6), hence its Fourier weight \(S(k) \) show totally similar behaviors to \(F(k) \) in Fig. 3. Despite these qualitative estimations, we also note the analytical derivation for \(S(k) \) is recently given in Ref. [51-53].

IV. RELATING \(\alpha \) TO LEVEL SPACING DISTRIBUTION

Up to now, we have demonstrated that the power-law exponent \(\alpha \) (which is \(\alpha_2 \) in the ergodic phase) for \(\lambda_k \) with large \(k \) is universal that related to RMT. However, the power-law exponent \(\alpha \) is only a single number, it’s still questionable whether it can distinguish different random matrix ensembles which may contain multiple parameters. For example, the general form of level spacing distribution \(P(s) \) contains two parts: the polynomial part that reflects the level repulsion, and an exponential part that reflects large \(s \) decaying. As for the random spin system, a widely-used two-parameter spacing distribution for the ergodic-MBL transition is proposed by Serbyn and Moore\(^{[20]} \), i.e.

\[
P(\beta_1, \beta_2, s) = C_1 s^{\beta_1} \exp \left(-C_2 s^{2-\beta_2} \right). \tag{8}
\]

For case deep in the ergodic phase, we have \(\beta_1 = 1, \beta_2 = 0 \) standing for the GOE distribution; while for case deep in the MBL phase, \(\beta_1 = 0, \beta_2 = 1 \) for the Poisson ensemble. We conjecture that the power exponent \(\alpha \) of \(\lambda_k \) corresponds only to the parameter \(\beta_2 \) in the exponential part, while being insensitive to the level repulsion \(\beta_1 \). If this conjecture is correct, two deductions are immediate: (i) the scree plot with \(\alpha = 2 \) does not necessarily correspond to the Poisson ensemble, but also to a number of intermediate ensembles whose spacing...
distribution decays as e^{-Cs}; (ii) the scree plot with $\alpha = 1$ in ergodic phase is insensitive to the level repulsion, or equivalently the symmetry of the system.

To verify (i), we consider the random matrix model called short-range plasma model (SRPM)\[53\] which describes the eigenvalues as an ensemble of one-dimensional particles with only nearest neighboring logarithmic interactions. SRPM holds the semi-Poisson distribution which is widely accepted as the critical distribution at the MBL transition point. It is shown\[53\] that the large s behavior of SRPM decays as $s^\beta e^{-(\beta+1)s}$ with β being the Dyson index controlling the strength of level repulsion. Thus, if the deduction (i) holds, we should observe identical power-law exponents α for cases with different β. To effectively obtain the eigenvalue spectrum of the SRPM, we make use of an elegant correspondence between SRPM and the Poisson ensemble, that is, the spectrum comprised of every $(\beta+1)$-th eigenvalue from the Poisson ensemble is identical to the eigenvalue spectrum of SRPM with index 53. Therefore, we can easily obtain the sample matrix of SRPM to perform SVD, and the resulting scree plots for $\beta = \{1,2,3,4\}$ are displayed in Fig. 3(a). As expected, the scree plots are totally similar, and the power-law exponent $\alpha \simeq 2$ appears in all cases, which verifies (i).

For deduction (ii), we first consider a unitary spin system that breaks time-reversal symmetry, i.e. the case with $h_x = h_y = h_z = h \neq 0$ in Eq. (1). This model undergoes an ergodic-MBL transition around $h_c \simeq 2.4412$ with the level spacing distribution evolving from GUE to Poisson. We likewise take $h = 1$ and $h = 5$ to represent the ergodic and MBL phase respectively. With the same size of samples, we obtain the resulting scree plots shown in Fig. 3(b), where we also draw $\{\lambda_k/\alpha\}$ from a modeling GUE for comparison. As can be seen, $\lambda_k \sim 1/k$ appears in both the higher part of ergodic phase and modeling GUE, which are totally similar to the cases in Fig. 1 and $\lambda_k \sim 1/k^2$ appears for data in MBL phase as expected. We further consider the Gaussian β ensemble which holds the same form of eigenvalue distribution as WD classes (Eq. (5)) but with β different from $\{1,2,4\}$. The eigenvalue spectra of general Gaussian β ensemble can be efficiently generated by diagonalizing the following tridiagonal matrix\[55\]

$$M_\beta = \frac{1}{\sqrt{2}} \begin{pmatrix} x_1 & y_1 & & & \\ y_1 & x_2 & y_2 & & \\ & \ddots & \ddots & \ddots & \\ & & y_{N-2} & x_{N-1} & y_{N-1} \\ & & & y_{N-1} & x_N \end{pmatrix}$$

where the diagonals x_i $(i = 1, 2, ..., N)$ follow the normal distribution $N(0,2)$, and y_k $k = 1, 2, ..., N-1$ follows the χ distribution with parameter $(N-1)\beta$. Without loss of generality, we select several non-standard values of β, and generate 1000 samples of eigenvalue spectrums with the matrix dimension $N = 4000$ to construct the sample matrix X. The resulting scree plots are displayed in Fig. 4(b), we see the chaotic behavior $\lambda_k \sim k^{-\alpha}$ appears in all cases as expected. Thus, combining Fig. 4(b) and (c) we confirm deduction (ii).

V. EVOLUTION OF α_2 DURING ERGODIC-MBL TRANSITION

Given the universal information of the system is encoded in the power exponent α_2 of the higher part of the scree plot, it’s a natural idea to employ it to detect the ergodic-MBL transition, without referring to the study of eigenfunctions. We expect the exponent α_2 to evolve from 1 in ergodic phase to 2 in MBL phase. Specifically, we consider the orthogonal spin model Eq. (1) with length $L = 13$ in the randomness range $h \in [1,5]$ with interval $\delta h = 0.2$. We generate 1000 samples of eigenvalue spectra at each h, and select 1000 eigenvalues in the middle to construct the sample matrix X and hence obtain λ_k. The exponent α_2 is determined by fitting $\lambda_k \sim k^{-\alpha_2}$ for $50 < k < 250$ in all cases.

For comparison, we employ another eigenvalue-based quantity to detect the MBL transition, that is, the inter-sample randomness, whose definition goes as follows. First, we adopt a variant definition of spacing ratio, which is\[57\]

$$t_i = \frac{\min \{s_{i+1}, s_i\}}{\max \{s_{i+1}, s_i\}}.$$ \hfill (10)

where $s_i = E_{i+1} - E_i$ is the i-th level spacing. The mean value \bar{t} in different ensembles has been calculated to be $\bar{t}_{\text{GOE}} = 0.536$ and $\bar{t}_{\text{Poisson}} = 0.386$. The calculation of \bar{t} contains two steps: first we calculate the mean spacing ratio $t_S = \langle t_i \rangle_{\text{samp}}$ in one sample, then we average t_S over an ensemble of samples to get $\bar{t} = \langle t_S \rangle_{\text{en}}$. The two steps generates two types of variance, the first one is $V_S = \langle (t_i^2 \bar{t}^2) \rangle_{\text{en}}$, i.e. the variance of sample-averaged spacing ratio over ensemble, which measures the inter-sample randomness; another one is $V_I = \langle (t_i^2) \rangle_{\text{en}}$ where $V_I = \langle (t_i^2) \rangle_{\text{en}}$, measuring the intrinsic intra-sample randomness. In an MBL system driven by random disorder such as Eq. (1), the distribution of t_S near the transition region will deviate from a Gaussian function – a manifestation of Griffiths regime – which results in a peak of V_S at the transition point.\[55,62\] Therefore, we can compute the evolution of V_S to locate the transition.

The evolution of V_S and α_2 are drawn collectively in Fig. 5. The peak of V_S identifies the transition point to be $h_c = 3.2$, which is very close to the widely accepted value $h_c \simeq 3.15$. While α_2 saturates to 2 at roughly $h = 2$, smaller than the transition value. This clearly indicates a non-ergodic region in the ergodic phase.

One explanation for this result is the existence of Griffiths regime close to the transition point that contains locally localized small regions. To be specific, the evolution of the spacing distribution in Eq. (8) during the ergodic-MBL transition was discussed by Serbyn and Moor\[60\] where they showed that Griffiths effects affect the large s decaying of $P(s)$ more than the small s behavior. Consequently the parameter β_2 becomes $\beta_2 \sim 1$ even when the system is globally in the metallic phase. As demonstrated in previous section, α_2 detects only the power exponent in the exponential part of $P(s)$ (that is, β_2), it is not surprising that α_2 saturates earlier than the transition happens. However, we cannot rule out other possibilities such as the existence of non-ergodic extended phase\[61,65\].
values of β to the randomness strength h of current work. This, however, goes beyond the scope of current work.

By treating the eigenvalue spectrum as a time-series, we show that the eigenvalue spectra of the random spin systems, for example, the mean energy $\langle E \rangle$, can be used to infer the system’s ergodic-MBL transition point, which suggests a non-ergodic behavior that may be attributed to Griffiths regime. Moreover, we also improve the understanding about the power-law behavior $\lambda_k \sim k^{-\alpha}$ of the MBL system. By studying the scree plots of SRPM, unitary spin chain and non-standard Gaussian β ensembles, we verified the universal exponent α corresponds to the parameter β_2 of the exponential part of level spacing distribution in Eq. (5) while being insensitive to the level repulsion parameter β_1, or equivalently the symmetry of the system. Consequently, α gives an underestimation for the ergodic-MBL transition point, which suggests a non-ergodic behavior that may be attributed to Griffiths regime.

The existence of subtle correspondence between the eigenvalues and eigenfunctions is an intriguing property of complex quantum systems and there is certainly more hidden information in the eigenvalues that deserves to be explored. One immediate direction is to construct an eigenvalue-based time series that is able to read the symmetry of the system (most probably through the level repulsion). It’s also possible to apply SVD to non-Hermitian MBL systems with complex eigenvalues, it’s exciting to see whether such power-law scree plots appear in these systems or not.

VI. CONCLUSION AND DISCUSSION

We have employed the singular value decomposition (SVD) to study the eigenvalue spectra of the random spin systems. By treating the eigenvalue spectrum as a time-series, we show that the eigenvalue spectrum are dominated by two non-universal features – the mean energy $\langle E \rangle$ and level spacing $\langle s \rangle$, while higher component $W_k (k \geq 3)$ is close to the spectrum’s k-th Fourier mode. Consequently, the scree plot of the singular values λ_k in the ergodic phase exhibits two-branch structure: a non-universal (model-dependent) lower-order part and a universal higher-order part that belong to RMT, and the starting point of the latter gives an estimation for the Thouless energy. Compared to more standard probes like number variance or spectral form factor, this approach requires no-unfolding procedure.

Moreover, we also improve the understanding about the power-law behavior $\lambda_k \sim k^{-\alpha}$. By studying the scree plots of SRPM, unitary spin chain and non-standard Gaussian β ensembles, we verified the universal exponent α corresponds only to the parameter β_2 in the exponential part of level spacing distribution in Eq. (5) while being insensitive to the level repulsion parameter β_1, or equivalently the symmetry of the system. Consequently, α gives an underestimation for the ergodic-MBL transition point, which suggests a non-ergodic behavior that may be attributed to Griffiths regime.

The existence of subtle correspondence between the eigenvalues and eigenfunctions is an intriguing property of complex quantum systems and there is certainly more hidden information in the eigenvalues that deserves to be explored. One immediate direction is to construct an eigenvalue-based time series that is able to read the symmetry of the system (most probably through the level repulsion). It’s also possible to apply SVD to non-Hermitian MBL systems with complex eigenvalues, it’s exciting to see whether such power-law scree plots appear in these systems or not.

VII. ACKNOWLEDGEMENTS.

The author acknowledges E. Kanizziep for introducing Ref. [51-53]. This work is supported by the National Natural Science Foundation of China through Grant No.11904069.

* wjr@hdu.edu.cn

1 I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. Lett. 95, 206603 (2005); 95, 046404 (2005).
