Global well-posedness of the Cauchy problem for a fifth-order KP-I equation in anisotropic Sobolev spaces

Yongsheng Lia, Wei Yanb, Yimin Zhangc

aSchool of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China

bSchool of Mathematics and Information Science, Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, Henan Normal University, Xinxiang, Henan 453007, P. R. China

cDepartment of Mathematics, Wuhan University of Technology, Wuhan430070, China

aWuhan, Hubei 430070, P. R. China

\textbf{Abstract} In this paper, we consider the Cauchy problem for the fifth-order KP-I equation

$$u_t + \partial_x^5 u + \partial_x^{-1} \partial_y^2 u + \frac{1}{2} \partial_x (u^2) = 0.$$

Firstly, we establish the local well-posedness of the problem in the anisotropic Sobolev spaces $H^{s_1, s_2}(\mathbb{R}^2)$ with $s_1 > -\frac{9}{8}$ and $s_2 \geq 0$. Secondly, we establish the global well-posedness of the problem in $H^{s_1, 0}(\mathbb{R}^2)$ with $s_1 > -\frac{4}{7}$. Our result improves considerably the results of Saut and Tzvetkov (J. Math. Pures Appl. 79(2000), 307–338.) and Li and Xiao (J. Math. Pures Appl. 90(2008), 338–352.) and Guo, Huo and Fang (J. Diff. Eqns. 263 (2017), 5696–5726).

Emails: yshli@scut.edu.cn (YS Li); yanwei19821115@sina.cn (W Yan); zhangyimin@whut.edu.cn (YM Zhang)
Keywords: fifth-order KP-I equation; Cauchy problem; Anisotropic Sobolev spaces

Short Title: Cauchy problem for fifth-order KP-I equation

Corresponding Author: Wei Yan

Email Address: yanwei19821115@sina.cn

AMS Subject Classification: 35Q53; 35B30
Global well-posedness of the Cauchy problem
for a fifth-order KP-I equation in
anisotropic Sobolev spaces

Yongsheng Lia, Wei Yanb, Yimin Zhangc

aSchool of Mathematics, South China University of Technology,
Guangzhou, Guangdong 510640, P. R. China

bSchool of Mathematics and Information Science,
Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control,
Henan Normal University, Xinxiang, Henan 453007, P. R. China

cDepartment of Mathematics, Wuhan University of Technology, Wuhan430070, China

Wuhan, Hubei 430070, P. R. China

Abstract

In this paper, we consider the Cauchy problem for the fifth-order KP-I equation

\[u_t + \partial_x^5 u + \partial_x^{-1} \partial_y^2 u + \frac{1}{2} \partial_x (u^2) = 0. \]

Firstly, we establish the local well-posedness of the problem in the anisotropic Sobolev spaces $H^{s_1, s_2}(\mathbb{R}^2)$ with $s_1 > -\frac{9}{8}$ and $s_2 \geq 0$. Secondly, we establish the global well-posedness of the problem in $H^{s_1, 0}(\mathbb{R}^2)$ with $s_1 > -\frac{4}{7}$. Our result improves considerably the results of Saut and Tzvetkov (J. Math. Pures Appl. 79(2000), 307–338.) and Li and Xiao (J. Math. Pures Appl. 90(2008), 338–352.) and Guo, Huo and Fang (J. Diff. Eqns. 263 (2017), 5696–5726).

1. Introduction

This paper is devoted to studying the Cauchy problem for the fifth-order KP-I equa-

Emails: yshli@scut.edu.cn (YS Li); yanwei19821115@sina.cn (W Yan); zhangyimin@whut.edu.cn (YM Zhang)
tion

\[u_t + \partial_x^5 u + \partial_x^{-1} \partial_y^2 u + \frac{1}{2} \partial_x (u^2) = 0, \]
\[u(x, y, 0) = u_0(x, y) \]
(1.1)
(1.2)

in anisotropic Sobolev space \(H^{s_1, s_2}(\mathbb{R}^2) \).

(1.1) appears as a model describing certain long dispersive waves (see [1, 31, 32]). It is considered as the higher-order version of the following KP equation

\[u_t + \alpha \partial_x^3 u + \partial_x^{-1} \partial_y^2 u + \frac{1}{2} \partial_x (u^2) = 0, \]
(1.3)

where the coefficient \(\alpha \) may be either positive or negative. The KP equation (1.3) occurs in physical contexts as models for the propagation of dispersive long waves with weak transverse effects and is regarded as the two-dimensional extensions of the Korteweg-de-Vries equation (see [30]). When \(\alpha < 0 \), (1.3) is known as the KP-I equation. When \(\alpha > 0 \), (1.3) is known as the KP-II equation.

Several people have studied its Cauchy problem for (1.3), see [4, 15, 16, 25–29, 37, 49–54] for the KP-II equation (1.3) with \(\alpha > 0 \), and see [3, 7, 8, 13, 17–19, 21–24, 33, 39–42, 44, 56] for the KP-I equation (1.3) with \(\alpha < 0 \).

For the KP-II equation, by using the Fourier restriction norm method, Bourgain [4] established the global well-posedness of its Cauchy problem in \(L^2(\mathbb{R}^2) \) and \(L^2(T^2) \). Takaokao and Tzvetkov [51] and Isaza and Mejía [25] established the local well-posedness of KP-II equation in \(H^{s_1, s_2}(\mathbb{R}^2) \) with \(s_1 > -\frac{1}{2} \) and \(s_2 \geq 0 \). Takaoka [49] established the local well-posedness of KP-II equation in \(H^{s_1, 0}(\mathbb{R}^2) \) with \(s_1 > -\frac{1}{2} \) with the assumption that

\[\left\| \xi^{-\frac{1}{2} + \epsilon} \mathcal{F}_x u_0 \right\|_{L^2} < \infty \]

for the suitable chosen \(\epsilon \). By introducing some resolution spaces, Hadac et al. [16] established the small data global well-posedness and scattering result of KP-II equation in the homogeneous anisotropic Sobolev space \(\dot{H}^{-\frac{1}{2}, 0}(\mathbb{R}^2) \) defined in [16] and arbitrary large initial data local well-posedness in both homogeneous Sobolev space \(\dot{H}^{-\frac{1}{2}, 0}(\mathbb{R}^2) \) and inhomogeneous anisotropic Sobolev space \(H^{-\frac{1}{2}, 0}(\mathbb{R}^2) \). Recently, by using new bilinear
estimates, Koch and Li [37] established the global well-posedness and scattering for the KP-II equation in three space dimensions with small initial data.

For the KP-I equation, Kenig, Molinet, Saut and Tzvetkov studied its Cauchy problem and periodic boundary value problem and showed that the problems are globally well-posed in the second energy spaces on both \mathbb{R}^2 and \mathbb{T}^2 (see [33, 41, 42]). Molinet et al. [40] proved that the Picard iterative method does not work for the KP-I equation in standard Sobolev space and in anisotropic Sobolev space, since the flow map fails to be real-analytic at the origin in these spaces. Ionescu et al. [18] established the global well-posedness of KP-I in the natural energy space E^1 with the aid of some resolution spaces and bootstrap inequality and the energy estimates. Molinet et al. [43] established the local well-posedness of the Cauchy problem for the KP-I equation in $H^{s,0}(\mathbb{R}^2)$ with $s > \frac{3}{2}$. Guo et al. [13] established the local well-posedness of the Cauchy problem for the KP-I equation in $H^{1,0}(\mathbb{R}^2)$. Zhang [56] established the local well-posedness of the periodic KP-I initial value problem in the Besov type space $B^{\frac{3}{2}}_{2,1}(\mathbb{T}^2)$.

Saut and Tzvetkov [46] established the global well-posedness of the Cauchy problem for the fifth order KP-II equation

$$u_t - \partial_x^5 u + \alpha \partial_x^3 u + \partial_x^{-1} \partial_y^2 u + \frac{1}{2} \partial_x (u^2) = 0, \alpha \in \mathbb{R},$$

in $H^{s_1,s_2}(\mathbb{R}^2)$ with $s_1 > -\frac{1}{4}$, $s_2 \geq 0$. Isaza et al. [20] established the local well-posedness of the fifth-order KP-II equation in $H^{s_1,s_2}(\mathbb{R}^2)$ with $s_1 > -\frac{5}{4}$, $s_2 \geq 0$ and globally well-posed in $H^{s_1,0}(\mathbb{R}^2)$ with $s_1 > -\frac{4}{7}$ with the aid of I-method.

By using the Fourier restriction norm method and the Cauchy-Schwartz inequalities as well as some calculus inequalities, Saut and Tzvetkov [47] established the global well-posedness of Cauchy problem for the fifth order KP-I equation (1.1) with initial data $u_0 \in L^2(\mathbb{R}^2)$ and finite energy. By using the Fourier restriction norm method and the dyadic decomposed Strichartz estimates, Chen et al. [6] established the local well-posedness of the problem (1.1)(1.2) in the interpolated energy space E^s with $0 < s \leq 1$, where

$$E^s = \{ u_0 \in E^s : \| u_0 \|_{E^s} = \| (1 + |\xi|^2 + |\mu/\xi|)^s \mathcal{F}_{xy} u_0(\xi,\mu) \|_{L^2} < \infty \}.$$

In particular, Chen et al. established the global well-posedness of the problem (1.1)(1.2)
in the energy space E^1. By using the Fourier restriction norm method and sufficiently exploiting the geometric structure of the resonant set of (1.1) to deal with the high-high frequency interaction, Li and Xiao [38] established the global well-posedness of the Cauchy problem (1.1)(1.2) in $L^2(\mathbb{R}^2)$. Guo et al. [12] established the local well-posedness of the Cauchy problem for (1.1) in $H^{s,0}(\mathbb{R}^2)$ with $s \geq -\frac{3}{4}$. Yan et al. [55] proved that the Cauchy problem for (1.1) is locally well-posed in $H^{s,0}(\mathbb{R}^2)$ with $s > -\frac{6}{23}$ with the aid of I-method introduced in [9, 10]. The method of [55] establishing local well-posedness is different from the method of [12]. Saut and Tzvetkov [48] have proved that the Cauchy problem for (1.1) posed on $T \times \mathbb{R}$ is globally well-posed in the energy space. Compared to the fifth order KP-II equation, the structure of the fifth order KP-I equation is complicated. The reason is that the resonant function of the fifth-order KP-I equation does not possess the same good property as its of fifth-order KP-II equation. More precisely, the resonant function of the fifth order KP-I equation is

$$R_1(\xi_1, \xi_2, \mu_1, \mu_2) := \phi(\xi, \mu) - \phi(\xi_1, \mu_1) - \phi(\xi_2, \mu_2)$$

$$= \frac{\xi_1 \xi_2}{\xi} \left[5\xi^2(\xi_1^2 + \xi_1 \xi_2 + \xi_2^2) - \left(\frac{\mu_1}{\xi_1} - \frac{\mu_2}{\xi_2} \right)^2 \right],$$

(1.5)

and the resonant function of the fifth order KP-II equation is

$$R_\Pi(\xi_1, \xi_2, \mu_1, \mu_2) := \phi(\xi, \mu) - \phi(\xi_1, \mu_1) - \phi(\xi_2, \mu_2)$$

$$= \frac{\xi_1 \xi_2}{\xi} \left[5\xi^2(\xi_1^2 + \xi_1 \xi_2 + \xi_2^2) + \left(\frac{\mu_1}{\xi_1} - \frac{\mu_2}{\xi_2} \right)^2 \right].$$

(1.6)

We remark that $R_1(\xi_1, \xi_2, \mu_1, \mu_2) = 0$ gives a surface, while $R_\Pi(\xi_1, \xi_2, \mu_1, \mu_2)$ will never be zero away from the origin.

In this paper, motivated by [7, 20, 38, 47], by using the Fourier restriction norm method introduced in [2, 5, 36, 45] and developed in [34, 35], the Cauchy-Schwartz inequality and Strichartz estimates as well as suitable splitting of domains, we establish the local well-posedness of the Cauchy problem for the fifth-order KP-I equation in the anisotropic Sobolev spaces $H^{s_1, s_2}(\mathbb{R}^2)$ with $s_1 > -\frac{9}{8}$ and $s_2 \geq 0$; combining the local well-posness result of this paper with the I-method introduced in [9, 10], we established the global well-posedness of the problem in $H^{s_1, 0}(\mathbb{R}^2)$ with $s_1 > -\frac{4}{7}$. Thus, our result considerably improves the result of [12, 38, 47].
We introduce some notations before presenting the main results. Throughout this paper, we assume that \(C \) is a positive constant which may vary from line to line. \(a \sim b \) means that there exist constants \(C_j > 0 (j = 1, 2) \) such that \(C_1 |b| \leq |a| \leq C_2 |b| \). \(a \gg b \) means that there exist a positive constant \(C' \) such that \(|a| > C' |b| \). \(0 < \epsilon \ll 1 \) means that \(0 < \epsilon < 10^{-4} \). We define

\[
\langle \cdot \rangle := 1 + |\cdot|,
\]
\[
\phi(\xi, \mu) := \xi^5 + \frac{\mu^2}{\xi},
\]
\[
\sigma := \tau + \phi(\xi, \mu), \sigma_j = \tau_j + \phi(\xi_j, \mu_j) (j = 1, 2),
\]
\[
\mathcal{F} u(\xi, \mu, \tau) := \frac{1}{(2\pi)^{3}} \int_{\mathbb{R}^3} e^{-ix\xi - iy\mu - i\tau t} u(x, y, t) dx dy dt,
\]
\[
\mathcal{F}_{xy} f(\xi, \mu) := \frac{1}{2\pi} \int_{\mathbb{R}^2} e^{-ix\xi - iy\mu} f(x, y) dx dy,
\]
\[
\mathcal{F}^{-1} u(\xi, \mu, \tau) := \frac{1}{(2\pi)^{3}} \int_{\mathbb{R}^3} e^{ix\xi + iy\mu + i\tau t} u(x, y, t) dx dy dt,
\]
\[
D_x u(x, y, t) := \frac{1}{(2\pi)^{2}} \int_{\mathbb{R}^3} |\xi|^a \mathcal{F} u(\xi, \mu, \tau) e^{ix\xi + iy\mu + i\tau t} d\xi d\mu d\tau,
\]
\[
P^2 u(x, y, t) := \frac{1}{(2\pi)^{2}} \int_{|\xi| \geq 2} \int_{\mathbb{R}^2} \mathcal{F} u(\xi, \mu, \tau) e^{ix\xi + iy\mu + i\tau t} d\xi d\mu d\tau,
\]
\[
W(t) f := \frac{1}{2\pi} \int_{\mathbb{R}^2} e^{ix\xi + iy\mu + i\phi(\xi, \mu)} \mathcal{F}_{xy} f(\xi, \mu) d\xi d\mu.
\]

Let \(\eta \) be a bump function with compact support in \([-2, 2] \subset \mathbb{R} \) and \(\eta = 1 \) on \((-1, 1) \subset \mathbb{R} \). For each integer \(j \geq 1 \), we define \(\eta_j(\xi) = \eta(2^{-j} \xi) - \eta(2^{1-j} \xi), \eta_0(\xi) = \eta(\xi), \eta_j(\xi, \mu, \tau) = \eta_j(\sigma) \), thus, \(\sum_{j \geq 0} \eta_j(\sigma) = 1 \). \(\psi(t) \) is a smooth function supported in \([0, 2] \) and equals 1 in \([0, 1] \). Let \(I \subset \mathbb{R}^d, \chi_I(x) = 1 \) if \(x \in I \); \(\chi_I(x) = 0 \) if \(x \) does not belong to \(I \).

We define

\[
\|f\|_{L^p_t L^q_x} := \left(\int_{\mathbb{R}} \left(\int_{\mathbb{R}^2} |f|^p dx dy \right)^{\frac{q}{p}} dt \right)^{\frac{1}{q}}.
\]

We denote by \(H^{s_1, s_2}(\mathbb{R}^2) \) the anisotropic Sobolev space as follows:

\[
H^{s_1, s_2}(\mathbb{R}^2) := \left\{ u_0 \in \mathcal{S}'(\mathbb{R}^2) : \|u_0\|_{H^{s_1, s_2}(\mathbb{R}^2)} = \|\langle \xi \rangle^{s_1} \langle \mu \rangle^{s_2} \mathcal{F}_{xy} u_0(\xi, \mu)\|_{L^2_{\xi \mu}} \right\}.
\]

The Bourgain space \(X^{s_1, s_2}_b \) is defined by

\[
X^{s_1, s_2}_b := \left\{ u \in \mathcal{S}'(\mathbb{R}^3) : \|u\|_{X^{s_1, s_2}_b} = \|\langle \xi \rangle^{s_1} \langle \mu \rangle^{s_2} \langle \sigma \rangle^b \mathcal{F} u(\xi, \mu, \tau)\|_{L^2_{\xi \mu}} < \infty \right\}.
\]
The space $X_{b}^{s_{1},s_{2}}([0,T])$ denotes the restriction of $X_{b}^{s_{1},s_{2}}$ onto the finite time interval $[0,T]$ and is equipped with the norm

$$
\|u\|_{X_{b}^{s_{1},s_{2}}([0,T])} = \inf \left\{ \|g\|_{X_{b}^{s_{1},s_{2}}}, g \in X_{b}^{s_{1},s_{2}}, u(t) = g(t) \text{ for } t \in [0,T] \right\}.
$$

For $s < 0$ and $N \in \mathbb{N}^+, N \geq 20$, we define an operator I_{N} by $\mathcal{F} I_{N} u(\xi,\mu,\tau) = M(\xi) \mathcal{F} u(\xi,\mu,\tau)$, where $M(\xi) = 1$ if $|\xi| < N$; $M(\xi) = (|\xi|/N)^{s}$ if $|\xi| \geq N$.

The main results of this paper are as follows.

Theorem 1.1. (Local well-posedness) Let $|\xi|^{-1} \mathcal{F}_{xy} u_{0}(\xi,\mu) \in \mathcal{S}'(\mathbb{R}^{2})$. Then, the Cauchy problem for (1.1) is locally well-posed in $H^{s_{1},s_{2}}(\mathbb{R}^{2})$ with $s_{1} > -9/8$, $s_{2} \geq 0$.

Remark 1. We only consider the case of $-9/8 < s_{1} < 0$, $s_{2} \geq 0$. For $s_{1} \geq 0$, $s_{2} \geq 0$ the local well-posedness is proved by Li and Xiao [38]. Lemmas 3.1 and 3.2 are the key ingredients in establishing the bilinear estimates in Lemmas 4.1 and 4.2. Once Lemma 4.1 is proven to be valid, then we can combine it and Lemma 2.6 with the fixed point argument to obtain the local wellposedness. Since the phase function $\phi(\xi,\mu)$ is singular at $\xi = 0$, to define the derivative of $W(t)u_{0}$, the requirement $|\xi|^{-1} \mathcal{F}_{xy} u_{0}(\xi,\mu) \in \mathcal{S}'(\mathbb{R}^{2})$ is necessary.

Theorem 1.2. (Global well-posedness) Let $|\xi|^{-1} \mathcal{F}_{xy} u_{0}(\xi,\mu) \in \mathcal{S}'(\mathbb{R}^{2})$. Then the Cauchy problem for (1.1) is globally well-posed in $H^{s_{1},0}(\mathbb{R}^{2})$ with $s_{1} > -4/7$.

Remark 2. We only consider the case of $-4/7 < s_{1} < 0$, $s_{2} \geq 0$. The case of $s_{1} \geq 0$, $s_{2} \geq 0$ is proved by Li and Xiao [38]. For the fifth order KP-II equation, Isaza, López and Mejía [29] obtained the same result about the global well-posedness, that is, the Cauchy problem for the fifth order KP-II equation is also globally well-posed in $H^{s_{1},s_{2}}(\mathbb{R}^{2})$ with $s_{1} > -\frac{4}{7}$, $s_{2} \geq 0$.

The rest of the paper is arranged as follows. In Section 2, we give some preliminaries. In Section 3, we establish two L^{2} bilinear estimates. In Section 4, we establish three bilinear estimates. In Section 5, we prove the local well-posedness. In Section 6, we firstly prove Lemma 6.1 which is a variation of Theorem 1.1, then, we apply Lemmas 6.1, 4.2 and 2.6 to prove Theorem 1.2.

2. Preliminaries
This section is devoted to present Lemmas 2.1–2.6.

Lemma 2.1. Let \(b > |a| \geq 0 \). Then, we have

\[
\int_{-b}^{b} \frac{dx}{(x + a)^{\frac{1}{2}}} \leq C b^{\frac{1}{2}}, \tag{2.1}
\]

\[
\int_{\mathbb{R}} \frac{dt}{(t)^{\gamma}(t-a)^{\gamma}} \leq C (a)^{-\gamma}, \gamma > 1, \tag{2.2}
\]

\[
\int_{\mathbb{R}} \frac{dt}{(t)^{\gamma}|t-a|^{\gamma}} \leq C (a)^{-\frac{1}{2}}, \gamma \geq 1, \tag{2.3}
\]

\[
\int_{-K}^{K} \frac{dx}{|x|^{\frac{1}{2}}|a-x|^{\frac{1}{2}}} \leq C \frac{K^{\frac{1}{2}}}{|a|^{\frac{1}{2}}}. \tag{2.4}
\]

Proof. The conclusion of (2.1) is given in (2.4) of Lemma 2.1 in [20]. (2.2)-(2.3) can be seen in Proposition 2.2 of [47]. (2.4) can be seen in [15, Page 6562].

This completes the proof of Lemma 2.1.

Lemma 2.2. Let \(T \in (0, 1) \) and \(s_1, s_2 \in \mathbb{R} \) and \(-\frac{1}{2} < b' \leq 0 \leq b \leq b' + 1 \). Then, for \(h \in X_{b'}^{s_1, s_2} \), we have

\[
\left\| \psi(t) S(t) \phi \right\|_{X_{b'}^{s_1, s_2}} \leq C \left\| \phi \right\|_{H_{s_1, s_2}}, \tag{2.5}
\]

\[
\left\| \psi \left(\frac{t}{T} \right) \int_{0}^{t} S(t - \tau) h(\tau) d\tau \right\|_{X_{b'}^{s_1, s_2}} \leq C T^{1+b'-b} \| h \|_{X_{b'}^{s_1, s_2}}. \tag{2.6}
\]

For the proof of Lemma 2.2, we refer readers to [5, 11, 34] and [14, Lemma 1.7 and Lemma 1.9].

Lemma 2.3. Let \(b > \frac{1}{2} \). Then,

\[
\left\| D_{x}^\frac{1}{2} u \right\|_{L_t^4 L_x^4(\mathbb{R}^3)} \leq C \| u \|_{X_{b}^{0,0}}. \tag{2.7}
\]

For the proof of Lemma 2.3, we refer readers to [15, Theorem 3.1].

Lemma 2.4. Let

\[
|\sigma - \sigma_1 - \sigma_2| = \left| \xi \xi_1 \xi_2 (5 \xi^2 - 5 \xi_1 \xi + 5 \xi_1^2) - \frac{\xi_1 \xi_2}{\xi} \left(\frac{\mu_1}{\xi_1} - \frac{\mu_2}{\xi_2} \right) \right|
\geq \left| \xi \xi_1 \xi_2 (5 \xi^2 - 5 \xi_1 \xi + 5 \xi_1^2) \right| \geq \frac{1}{4}.
\]
\[F P_\mathcal{H}^4(u_1, u_2)(\xi, \mu, \tau) = \int_{\mathbb{R}^3} \chi_{|\xi| \leq \frac{1}{4}}(\xi, \mu_1, \tau_1, \xi, \mu, \tau) \prod_{j=1}^2 \mathcal{F} u_j(\xi_j, \mu_j, \tau_j) d\xi_1 d\mu_1 d\tau_1. \]

For \(b > \frac{1}{2} \), we have
\[
\left\| P_\mathcal{H}^4(u_1, u_2) \right\|_{L^2_{\xi \mu \tau}} \leq C \left\| D_x^{\frac{1}{2}} u_1 \right\|_{X^{\sigma,0}_b} \left\| D_x^{-1} u_2 \right\|_{X^{0,0}_b}. \tag{2.8}
\]

Proof. Let
\[
f_1(\xi_1, \mu_1, \tau_1) = |\xi_1|^{-\frac{1}{2}} (\sigma_1)^b \mathcal{F} u_1(\xi_1, \mu_1, \tau_1), f_2(\xi_2, \mu_2, \tau_2) = |\xi_2|^{-1} (\sigma_2)^b \mathcal{F} u_2(\xi_2, \mu_2, \tau_2).
\]

To obtain (2.8), it suffices to prove that
\[
\left\| \int_{\mathbb{R}^3} \frac{|\xi_1|^{-\frac{1}{2}} |\xi_2| f_1(\xi_1, \mu_1, \tau_1) f_2(\xi_2, \mu_2, \tau_2)}{2 \prod_{j=1}^2 (\sigma_j)^b} d\xi_1 d\mu_1 d\tau_1 \right\|_{L^2_{\xi \mu \tau}} \leq C \prod_{j=1}^2 \| f_j \|_{L^2_{\xi \mu \tau}}. \tag{2.9}
\]

To obtain (2.9), by duality, it suffices to prove that
\[
\left\| \int_{\mathbb{R}^3} \frac{|\xi_1|^{-\frac{1}{2}} |\xi_2| f(\xi, \mu, \tau) f_1(\xi_1, \mu_1, \tau_1) f_2(\xi_2, \mu_2, \tau_2)}{2 \prod_{j=1}^2 (\sigma_j)^b} d\xi_1 d\mu_1 d\tau_1 \right\|_{L^2_{\xi \mu \tau \tau}} \leq C \| f \|_{L^2_{\xi \mu \tau \tau}} \prod_{j=1}^2 \| f_j \|_{L^2_{\xi \mu \tau}}. \tag{2.10}
\]

We define
\[
I(\xi, \mu, \tau) := \int_{\mathbb{R}^3} \frac{|\xi_1|^{-1} |\xi_2|^2}{2 \prod_{j=1}^2 (\sigma_j)^b} d\xi_1 d\mu_1 d\tau_1. \tag{2.11}
\]

For fixed \((\xi, \mu, \tau)\), we make the change of variables \(L : (\xi_1, \mu_1, \tau_1) \rightarrow (\Delta, \sigma_1, \sigma_2) \), where
\[
\Delta := \xi \xi_1 \xi_2 (5 \xi^2 - 5 \xi_1 + 5 \xi_2), \\
\sigma_1 := \tau_1 + \phi(\xi_1, \mu_1), \sigma_2 := \tau_2 + \phi(\xi_2, \mu_2).
\]
By using a direct computation, since \(\sigma = \tau + \phi(\xi, \mu) \), we have
\[
\sigma_1 + \sigma_2 - \sigma = -\Delta + \frac{(\xi_1 \mu_2 - \mu_1 \xi_2)^2}{\xi_1 \xi_2}.
\] (2.12)

Thus, we have the Jacobian determinant equals
\[
\frac{\partial (\Delta, \sigma_1, \sigma_2)}{\partial (\xi_1, \mu_1, \tau_1)} = -10 \left(\xi_1^2 - \xi_2^2 \right) \left(\xi_1^2 + \xi_2^2 \right) \left(\frac{\mu_1}{\xi_1} - \frac{\mu_2}{\xi_2} \right)
= -10 \left(\xi_1^2 - \xi_2^2 \right) \left(\xi_1^2 + \xi_2^2 \right) \left(\sigma_1 + \sigma_2 - \sigma + \Delta \right)^{\frac{1}{2}} \left(\frac{\xi}{\xi_1 \xi_2} \right)^{\frac{1}{2}}.
\] (2.13)

Notice that it is possible to divide the integration into a finite number of open subsets \(W_i \) such that \(L \) is an injective \(C^1 \)-function in \(W_i \) with non-zero Jacobian determinant.

From (2.13), since \(|\xi_1| \leq \frac{\xi_1}{4} \) and \(|\Delta| \sim |\xi_1| |\xi_2| \), we have
\[
\left| \frac{\partial (\Delta, \sigma_1, \sigma_2)}{\partial (\xi_1, \mu_1, \tau_1)} \right| = 10 \left| \left(\xi_1^2 - \xi_2^2 \right) \left(\xi_1^2 + \xi_2^2 \right) \left(\frac{\mu_1}{\xi_1} - \frac{\mu_2}{\xi_2} \right) \right|
= 10 \left| \left(\xi_1^2 - \xi_2^2 \right) \left(\xi_1^2 + \xi_2^2 \right) \left(\sigma_1 + \sigma_2 - \sigma + \Delta \right)^{\frac{1}{2}} \left(\frac{\xi}{\xi_1 \xi_2} \right)^{\frac{1}{2}} \right|
\sim |\xi_1|^{-1} |\xi_2|^2 |\Delta|^{\frac{1}{2}} |\sigma_1 + \sigma_2 - \sigma + \Delta|^{\frac{1}{2}}.
\] (2.14)

Since \(|\sigma_1 + \sigma_2 - \sigma| \geq \frac{|\Delta|}{4} \), by using the change of variables \((\xi_1, \mu_1, \tau_1) \rightarrow (\Delta, \sigma_1, \sigma_2) \) and (2.4), we have
\[
I(\xi, \mu, \tau) := \int_{\mathbb{R}^3} \chi_{|\xi_1| \leq \frac{\xi_1}{4}} \frac{|\xi_2|^2 |\xi_1|^{-1} d\xi_1 d\mu_1 d\tau_1}{\prod_{j=1}^{26} (\sigma_j)^{2b}}
\leq C \int_{\mathbb{R}^3} \frac{\chi_{|\Delta| \leq 4|\sigma_1 + \sigma_2 - \sigma| \Delta d\sigma_1 d\sigma_2}}{|\Delta|^{\frac{1}{2}} |\sigma_1 + \sigma_2 - \sigma + \Delta|^{\frac{1}{2}} 2 \prod_{j=1}^{26} (\sigma_j)^{2b}}
= \int_{\mathbb{R}^2} \left(\int_{\mathbb{R}} \frac{\chi_{|\Delta| \leq 4|\sigma_1 + \sigma_2 - \sigma| \Delta}}{|\Delta|^{\frac{1}{2}} |\sigma_1 + \sigma_2 - \sigma + \Delta|^{\frac{1}{2}} 2 \prod_{j=1}^{26} (\sigma_j)^{2b}} d\sigma_1 d\sigma_2 \right)
\leq C \int_{\mathbb{R}^2} \frac{d\sigma_1 d\sigma_2}{\prod_{j=1}^{26} (\sigma_j)^{2b}} \leq C.
\] (2.15)

11
Combining (2.10) with (2.15), by using the Cauchy-Schwartz inequality twice, we have

\[
\int_{\mathbb{R}^3} \chi_{|\xi_1| \leq \frac{|\xi_2|}{4}} |\xi_2||\xi_1|^{-\frac{3}{2}}f_1(\xi_1, \mu_1, \tau_1)f_2(\xi_2, \mu_2, \tau_2)f(\xi, \mu, \tau) d\xi_1 d\mu_1 d\tau_1 \leq C \left[\sup_{\xi, \mu, \tau} I(\xi, \mu, \tau) \right]^\frac{1}{2} \|f\|_{L^2_{\tau \mu}} \prod_{j=1}^2 \|f_j\|_{L^2_{\tau \mu}}
\]

\[
\leq C \|f\|_{L^2_{\tau \mu}} \prod_{j=1}^2 \|f_j\|_{L^2_{\tau \mu}}. \tag{2.16}
\]

This completes the proof of Lemma 2.4.

Lemma 2.5. Let

\[
|\sigma - \sigma_1 - \sigma_2| = \left| \frac{\xi \xi_1 \xi_2 (5\xi^2 - 5\xi_1 + 5\xi_1^2) - \frac{\mu_1}{\xi_1} - \frac{\mu_2}{\xi_2}}{4} \right| \geq \frac{|\xi_1 \xi_2 (5\xi^2 - 5\xi_1 + 5\xi_1^2)|}{4},
\]

\(b > \frac{1}{2}\) and \(G(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) = f_1(\xi_1, \mu_1, \tau_1)f_2(\xi - \xi_1, \mu - \mu_1, \tau - \tau_1)f(\xi, \mu, \tau)\), we have

\[
\int_{\mathbb{R}^6} \left| \frac{|\xi|^{-\frac{1}{2}}|\xi_2| G(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau)}{\sigma(\sigma)^b} \right| d\xi_1 d\mu_1 d\tau_1 d\xi d\mu d\tau \leq C \|f\|_{L^2_{\tau \mu}} \prod_{j=1}^2 \|f_j\|_{L^2_{\tau \mu}}, \tag{2.17}
\]

\[
\int_{\mathbb{R}^6} \left| \frac{|\xi|^{-\frac{1}{2}}|\xi_2| G(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau)}{\sigma(\sigma)^b} \right| d\xi_1 d\mu_1 d\tau_1 d\xi d\mu d\tau \leq C \|f\|_{L^2_{\tau \mu}} \prod_{j=1}^2 \|f_j\|_{L^2_{\tau \mu}}, \tag{2.18}
\]

\[
\int_{\mathbb{R}^6} \left| \frac{|\xi|^{-\frac{1}{2}}|\xi_2| G(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau)}{\sigma(\sigma)^b} \right| d\xi_1 d\mu_1 d\tau_1 d\xi d\mu d\tau \leq C \|f\|_{L^2_{\tau \mu}} \prod_{j=1}^2 \|f_j\|_{L^2_{\tau \mu}}, \tag{2.19}
\]

\[
\int_{\mathbb{R}^6} \left| \frac{|\xi|^{-\frac{1}{2}}|\xi_2| G(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau)}{\sigma(\sigma)^b} \right| d\xi_1 d\mu_1 d\tau_1 d\xi d\mu d\tau \leq C \|f\|_{L^2_{\tau \mu}} \prod_{j=1}^2 \|f_j\|_{L^2_{\tau \mu}}. \tag{2.20}
\]

Proof. We firstly prove (2.17). When \(\frac{|\xi_1|}{4} \geq |\xi_2|\), from Lemma 2.4, we have (2.17) is valid. When \(\frac{|\xi_1|}{4} < |\xi_2|\), since \(|\xi|^{-\frac{1}{2}}|\xi_2| \leq C|\xi_1|^{-\frac{1}{2}}|\xi_2|\), from Lemma 2.3, we know that (2.17) is valid. Let \(\xi_1 = \xi', \mu_1 = \mu', \tau_1 = \tau'\) and \(-\xi_2 = \xi', -\mu_2 = \mu'\) and \(-\xi = \xi' - \xi_1, -\mu = \mu' - \mu_1, -\tau = \tau' - \tau_1\) and \(\sigma_2 = \sigma_2' = \phi(\xi_2, \mu_2), \sigma_1 = \sigma_1' = \phi(\xi_1, \mu_1)\). Thus, \(-\sigma = \sigma_2', \sigma_1 = \sigma_1'\). Let

\[
H(\xi_1', \mu_1', \tau_1', \xi', \mu', \tau') = f_1(\xi_1', \mu_1', \tau_1')f_2(-\xi', -\mu', -\tau')f(-\xi_2', -\mu_2', -\tau_2').
\]
To obtain (2.18), it suffices to prove that

\[
\left| \int_{\mathbb{R}^6} \frac{|\xi^1|^2 |\xi^2|}{\langle \sigma^1 \rangle b \langle \sigma^2 \rangle b} H(\xi^1, \mu^1, \tau^1, \xi^2, \mu^2, \tau^2) d\xi^1 d\mu^1 d\tau^1 d\xi^2 d\mu^2 d\tau^2 \right|
\leq C \|f\|_{L^2_{\xi \mu}} \prod_{j=1}^2 \|f_j\|_{L^2_{\xi \mu}}.
\]

(2.21)

Obviously, (2.21) follows from (2.17). By using a proof similar to (2.18), we obtain that (2.19)-(2.20) are valid.

This ends the proof of Lemma 2.5.

Lemma 2.6. Let \(0 < b_1 < b_2 < \frac{1}{2}\). Then, we have

\[
\|\chi_1(\cdot) u\|_{X^0,b_1} \leq C \|u\|_{X^0,b_2},
\]

(2.22)

\[
\|\chi_1(\cdot) u\|_{X^0,b_2} \leq C \|u\|_{X^0,b_1}.
\]

(2.23)

For the proof of Lemma 2.6, we refer the readers to Lemma 3.1. of [26].

3. \(L^2\)-bilinear estimates

Inspired by the idea of Lemma 5.1 of [18], we give the proof of Lemma 3.1. For \(k \in \mathbb{Z}\) and \(l, j \in \mathbb{R}\), we define

\[
D_{k,l,j} := \{ (\xi, \mu, \tau) : |\xi| \in [2^{k-1}, 2^{k+1}], |\mu| \leq 2^l, |\tau + \phi(\xi, \mu)| < 2^j \},
\]

\[
D_{k,\infty,j} := \bigcup_{l \in \mathbb{Z}} D_{k,l,j}.
\]

Lemma 3.1. Assume \(\alpha \in \mathbb{R}\) and \(k_1, k_2, k_3 \in \mathbb{Z}\), \(k_{\max} = \max \{k_1, k_2, k_3\}\) and \(k_{\min} = \min \{k_1, k_2, k_3\}\) and \(j_1, j_2, j_3 \in \mathbb{Z}_+; j_{\max} = \max \{j_1, j_2, j_3\}\) and \(f_i : \mathbb{R}^3 \to \mathbb{R}\) are \(L^2\) functions supported in \(D_{k,\infty,j_i}(i=1, 2, 3)\). We assume that

\[
R_l(\xi_1, \xi_2, \mu_1, \mu_2) \leq 2^{k_1+k_2+k_3+2k_{\max}-60},
\]

(3.1)

\[
j_{\max} \leq k_1 + k_2 + k_3 + 2k_{\max} - 60.
\]

(3.2)

(1) If \(|k_1 - k_2| \leq 5, k_1 \geq 20\), then, we have

\[
\int_{\mathbb{R}^3} (f_1 * f_2) f_3 d\xi d\mu d\tau \leq C 2^{\frac{j_3 + j_2 + j_1}{2}} 2^{-\frac{7}{4}(k_1 + k_2) + \frac{k_3}{2}} \prod_{j=1}^3 \|f_j\|_{L^2}.
\]

(3.3)
(2) If \(k_2 - 10 \geq k_1 \) and \(|k_2 - k_3| \leq 5, k_2 \geq 20, \) then, we have

\[
\int_{\mathbb{R}^3} (f_1 * f_2) f_3 d\xi_1 d\mu_1 d\tau_1 \leq C 2^{\frac{1}{2}+\frac{k_1}{2}} 2^{-\frac{7}{2}(k_2+k_3)-\frac{k_1}{2}} \prod_{j=1}^{3} \|f_j\|_{L^2}. \tag{3.4}
\]

Proof. First we prove (3.3). From (5.4) of [18], we have

\[
\int_{\mathbb{R}^3} (f_1 * f_2) f_3 = \int_{\mathbb{R}^3} (\tilde{f}_1 * \tilde{f}_3) f_2 = \int_{\mathbb{R}^3} (\tilde{f}_2 * \tilde{f}_3) f_1. \tag{3.5}
\]

where \(\tilde{f}_i = f_i(-\xi, -\mu, -\tau)(i = 1, 2). \) Due to the symmetry in (3.5), without loss of generality, we may assume \(j_3 = \max \{j_1, j_2, j_3\}. \) We define

\[
f_i^\#(\xi_i, \mu_i, \theta_i) := f_i(\xi_i, \mu_i, \theta_i - \phi(\xi_i, \mu_i))(i = 1, 2, 3).
\]

Obviously, \(\|f_i^\#\|_{L^2} = \|f_i\|_{L^2}. \) The left-hand side of (3.3) can be rewritten as follows:

\[
\int_{\mathbb{R}^6} \left(\prod_{i=1}^{2} f_i^\#(\xi_i, \mu_i, \theta_i) \right) f_3^\#(\xi_1 + \xi_2, \mu_1 + \mu_2, R_1(\xi_1, \mu_1, \xi_2, \mu_2))d\xi_1 d\xi_2 d\mu_1 d\mu_2 d\theta_1 d\theta_2, \tag{3.6}
\]

where \(R_1(\xi_1, \xi_2, \mu_1, \mu_2) \) is the resonant function defined as in (1.5). The functions \(f_i^\# \) \((i = 1, 2)\) are supported in the sets

\[
\left\{ (\xi_i, \mu_i, \theta_i) : \xi_i \in \tilde{I}_{ki}, \mu_i \in \mathbb{R}, |\theta_i| \leq 2^{j_i} \right\}
\]

and \(f_3^\# \) is supported in the set

\[
\left\{ (\xi_3, \mu_3, \theta_3) : \xi_3 \in \tilde{I}_{k_3}, \mu_3 \in \mathbb{R}, |\theta_3| \leq 2^{j_3} \right\}.
\]

We will prove that if \(g_i : \mathbb{R}^2 \rightarrow \mathbb{R} \) are \(L^2 \) functions supported in \(\tilde{I}_{ki} \times \mathbb{R}(i = 1, 2) \) and \(g : \mathbb{R}^2 \rightarrow \mathbb{R} \) are \(L^2 \) functions supported in \(\tilde{I}_{k} \times \mathbb{R} \times [-2^j, 2^j] \), then, we have

\[
\int_{\mathbb{R}^3} \left(\prod_{j=1}^{2} g_j(\xi_j, \mu_j) \right) g(\xi_1 + \xi_2, \mu_1 + \mu_2, R_1(\xi_1, \mu_1, \xi_2, \mu_2))d\xi_1 d\xi_2 d\mu_1 d\mu_2
\]

\[
\leq C 2^\frac{1}{2} 2^{-\frac{7}{2}(k_1+k_2)+\frac{k_1}{2}} \|g\|_{L^2} \prod_{j=1}^{2} \|g_j\|_{L^2}. \tag{3.7}
\]

When \(j \leq k_1 + k_2 + k_3 + 2k_{\text{max}} - 60 \) is valid, we may assume that the integral in the left-hand side of (3.7) is taken over the set

\[
\mathcal{R}_{++} = \left\{ (\xi_1, \mu_1, \xi_2, \mu_2) : \xi_1 + \xi_2 \geq 0, \frac{\mu_1}{\xi_1} - \frac{\mu_2}{\xi_2} \geq 0 \right\} \tag{3.8}
\]
since other case can be proved similarly to case (3.8). We make the changes of variables

\[\mu_1 = \sqrt{5}\xi_1^3 + \beta_1 \xi_1, \mu_2 = -\sqrt{5}\xi_2^3 + \beta_2 \xi_2. \]

(3.9)

From (3.9), we have

\[\frac{\mu_1}{\xi_1} - \frac{\mu_2}{\xi_2} = \sqrt{5}\xi_1 + \beta_1 - \beta_2 = \sqrt{5}(\xi_1^2 + \xi_2^2) + \beta_1 - \beta_2 \geq 0. \]

(3.10)

From (3.10), we know that

\[\beta_1 - \beta_2 \geq -\sqrt{5}(\xi_1^2 + \xi_2^2). \]

(3.11)

By using the assumption upon \(g \) and the definition of \(R_1(\xi_1, \mu_1, \xi_2, \mu_2) \), we infer that

\[
\left| (\beta_1 - \beta_2)^2 + 2\sqrt{5}(\beta_1 - \beta_2)(\xi_1^2 + \xi_2^2) + 5\xi_1\xi_2(4\xi_1\xi_2 - 3\xi^2) \right| \leq 2^{j+k-1-k_1-k_2+3}.
\]

(3.12)

The left hand side of (3.7) can be bounded by

\[
C2^{k_1+k_2} \int_S h_1(\xi_1, \sqrt{5}\xi_1^3 + \beta_1 \xi_1)h_2(\xi_2, -\sqrt{5}\xi_2^3 + \beta_2 \xi_2) \\
\times h(\xi_1 + \xi_2, \sqrt{5}(\xi_1^3 - \xi_2^3) + \beta_1 \xi_1 + \beta_2 \xi_2, R_1(\xi_1, \beta_1, \xi_2, \beta_2)d\xi_1 d\xi_2 d\beta_1 d\beta_2.
\]

(3.13)

where

\[
S = \{(\xi_1, \beta_1, \xi_2, \beta_2) : \xi_1 + \xi_2 \geq 0, \beta_1 - \beta_2 \text{ satisfies (3.11) - (3.12)} \}.
\]

(3.14)

and

\[
\tilde{R}_1(\xi_1, \beta_1, \xi_2, \beta_2) \\
= (\beta_1 - \beta_2)^2 + 2\sqrt{5}(\beta_1 - \beta_2)(\xi_1^2 + \xi_2^2) + 5\xi_1\xi_2(4\xi_1\xi_2 - 3\xi^2).
\]

(3.15)

We define the functions \(h_i : \mathbb{R}^2 \rightarrow \mathbb{R} \) supported in \(\tilde{I}_k \times \mathbb{R} \) \((i = 1, 2)\)

\[
h_1(\xi_1, \beta_1) = 2^k g_1(\xi_1, \sqrt{5}\xi_1^3 + \beta_1 \xi_1),
\]

(3.16)

\[
h_2(\xi_2, \beta_2) = 2^k g_2(\xi_2, -\sqrt{5}\xi_2^3 + \beta_2 \xi_2).
\]

(3.17)

with \(\|h_i\|_{L^2} \approx \|g_i\|_{L^2} \) \((i = 1, 2)\).
To prove (3.7), it suffices to prove that
\[
2^{k_1+k_2} \int_\mathcal{S} h_1(\xi_1, \beta_1)h_2(\xi_2, \beta_2) \\
\times h(\xi_1 + \xi_2, \sqrt{5}(\xi_1^3 - \xi_2^3) + \beta_1 \xi_1 + \beta_2 \xi_2, \tilde{R}_1(\xi_1, \beta_1, \xi_2, \beta_2) d\xi_1 d\xi_2 d\beta_1 d\beta_2 \\
\leq C 2^{\frac{k_1+k_2}{2}} 2^{-\frac{7}{2}(k_1+k_2)+\frac{k_1}{2}} \|h\|_{L^2} \prod_{j=1}^2 \|h_j\|_{L^2}. \tag{3.18}
\]

Combining (3.11) with (3.12), we have
\[
\sqrt{5}(B_1 - B_2) \leq \beta_1 - \beta_2 \\
\leq \frac{\sqrt{5}(B_1 + B_2)}{\xi_1^2 + \xi_2^2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} + B_2}. \tag{3.19}
\]
where
\[
B_1 = \xi_1 \xi_2 \left[3\xi_1^2 + 2\xi_1 \xi_2 + 3\xi_2^2\right], \quad B_2 = \frac{2^{j+k-k_1-k_2+3}}{5}. \tag{3.20}
\]

Now we claim that the following inequality is valid
\[
\left| \beta - \frac{\sqrt{5}B_1}{\xi_1^2 + \xi_2^2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)}} \right| \leq B_3, \tag{3.21}
\]
where
\[
B_3 = 2^j 3^{(k_1+k_2)+10}. \tag{3.22}
\]

When \(\xi_1 \xi_2 \geq 0\), we have
\[
\sqrt{\xi^2(\xi^2 - \xi_1\xi_2 - \frac{3\alpha}{5})} \pm B_2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \geq \xi^2. \tag{3.23}
\]

By using a direct computation, since
\[
B_1 \leq 3\xi^4, \quad \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \pm B_2 \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \geq \frac{B_1}{3}, \tag{3.24}
\]
we have
\[
\left| \frac{B_1}{\xi_1^2 + \xi_2^2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)}} - \frac{B_1}{\xi_1^2 + \xi_2^2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \pm B_2} \right| \\
= \frac{B_1 B_2}{\left[\xi_1^2 + \xi_2^2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \pm B_2\right] \left[\xi_1^2 + \xi_2^2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \pm B_2\right]} \\
\times \frac{1}{\left[\sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \pm B_2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \right]} \\
\leq \frac{B_3}{10}. \tag{3.25}
\]
By using a direct computation, we have
\[
\frac{B_2}{\xi_1^2 + \xi_2^2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \pm B_2} \leq \frac{B_3}{10}. \tag{3.26}
\]
Combining (3.25) with (3.26), we have (3.21) is valid.

When \(\xi_1\xi_2 \leq 0\), we have
\[
\sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \pm B_2 \geq |\xi||\xi_1\xi_2|^{1/2}. \tag{3.27}
\]
Since
\[
\left[\xi_1^2 + \xi_2^2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \pm B_2\right]
\left[\xi_1^2 + \xi_2^2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \pm B_2\right] \geq \frac{B_1}{4}, \tag{3.28}
\]
by a direct computation we have
\[
\left|\frac{B_1}{\xi_1^2 + \xi_2^2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \pm B_2} - \frac{B_1}{\xi_1^2 + \xi_2^2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \pm B_2}\right|
\leq \frac{B_3}{10}. \tag{3.29}
\]
By a direct computation, we have
\[
\frac{B_2}{\xi_1^2 + \xi_2^2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)} \pm B_2} \leq \frac{B_3}{10}. \tag{3.30}
\]
By (3.23)-(3.30), we see that (3.21) is valid.

To obtain (3.18), we make the change of variable \(\beta_1 = \beta_2 + \beta\). Thus, (3.11)-(3.12) can be rewritten as follows:
\[
\beta \geq -\sqrt{5(\xi_1^2 + \xi_2^2)},
\left|\beta^2 + 2\sqrt{5}\beta(\xi_1^2 + \xi_2^2) + 5(4\xi_1^2\xi_2^2 - 3\xi_1^2\xi_2)\right| \leq 2^{j+k-1-2^{k+1}}. \tag{3.31}
\]
Since \(|\xi_j| \in [2^{k-1}, 2^{k+1}] (j = 1, 2)\), we can assume that \(\xi_j = a_j2^{k_j} (j = 1, 2)\), where \(1 \leq |a_j| \leq 2\). Consequently, (3.21) can be rewritten as follows:
\[
\left|\beta - \sqrt{5}f_1(a_1, a_2, k_1, k_2)\right| \leq B_3, \tag{3.32}
\]
17
where
\[f_1(a_1, a_2, k_1, k_2) = \frac{a_1 a_2 2^{k_1+k_2} (3a_1^2 4^{k_1} + a_1 a_2 2^{k_1+k_2+1} + 3a_2^2 4^{k_2})}{a_1^2 4^{k_1} + a_2^2 4^{k_2} + \sqrt{(a_1 2^{k_1} + a_2 2^{k_2})^2 (a_1^2 4^{k_1} + a_1 a_2 2^{k_1+k_2} + a_2^2 4^{k_2})}} \frac{B_1}{\xi_1^2 + \xi_2^2 + \sqrt{\xi^2 (\xi^2 - \xi_1 \xi_2)}}. \] (3.33)

Thus, the left hand side of (3.18) can be bounded by
\[2^{k_1+k_2} \int_{\tilde{S}} h_1(\xi_1, \beta + \beta_2) h_2(\xi_2, \beta_2) \chi_{[-1, 1]} \left(\frac{\beta - \sqrt{5} f_1(a_1, a_2, k_1, k_2)}{B_3} - m \right) \times h(\xi_1, \xi_2, A(\xi_1, \xi_2, \beta) + \beta_2(\xi_1 + \xi_2), B(\xi_1, \xi_2, \beta)) d\xi_1 d\xi_2 d\beta d\beta_2, \] (3.34)

where
\[\tilde{S} = \{(\xi_1, \xi_2, \beta, \beta_2) \in \mathbb{R}^4, \xi_1 + \xi_2 \geq 0, \beta \text{ satisfies (3.21)}\}. \] (3.35)
\[A(\xi_1, \xi_2, \beta) = \sqrt{5} [\xi_1^3 - \xi_2^3] + \beta \xi_1, \] (3.36)
\[B(\xi_1, \xi_2, \beta) = \frac{\xi_1 \xi_2}{\xi} \left(\beta^2 + 2\sqrt{5} \beta (\xi_1^2 + \xi_2^2) + 5 \xi_1 \xi_2 (4 \xi_1 \xi_2 - 3 \xi^2) \right). \] (3.37)

Let \(j' = j - \frac{3(k_1+k_2)}{2} + 10 \). Decompose
\[h_i(\xi', \beta') = \sum_{m \in \mathbb{Z}} h_i^m(\xi', \beta') \chi_{[0, 1]} \left(\frac{\beta' - \sqrt{5} f_1(a_1, a_2, k_1, k_2)}{2^{j'}} - m \right) = \sum_{m \in \mathbb{Z}} h_i^m(\xi', \beta'), \quad i = 1, 2 \] (3.38)

for all \(a_j \in R, \frac{1}{2} \leq |a_j| \leq 2 (j = 1, 2) \). Obviously, if \(m_1, m_2 \in \mathbb{Z}, m_1 \neq m_2 \), then
\[\prod_{i=1}^{2} h_i^m(\xi', \beta') = 0. \]

Thus, for \(m_1, m_2 \in \mathbb{Z}, m_1 \neq m_2 \), we have \(\prod_{i=1}^{2} h_i^m(\xi', \beta') = 0 \). Consequently, we have
\[\|h_i(\xi', \beta')\|_{L_{x'}^2} = \left\| \sum_{m \in \mathbb{Z}} h_i^m(\xi', \beta') \right\|_{L_{x'}^2} = \left(\sum_{m \in \mathbb{Z}} \|h_i^m\|_{L_{x'}^2}^2 \right)^{\frac{1}{2}}. \] (3.39)

Thus, (3.34) is controlled by
\[2^{k_1+k_2} \sum_{|m-m'| \leq 4} \int_{\tilde{S}} h_1^m(\xi_1, \beta + \beta_2) h_2^{m'}(\xi_2, \beta_2) \times h(\xi_1 + \xi_2, A(\xi_1, \xi_2, \beta) + \beta_2(\xi_1 + \xi_2), B(\xi_1, \xi_2, \beta)) d\xi_1 d\xi_2 d\beta d\beta_2. \] (3.40)
To prove (3.18), it suffices to prove that

$$2^{k_1+k_2} \int_S h_1^m(\xi_1, \beta + \beta_2) h_2^{m'}(\xi_2, \beta_2) \chi_{[m',m+1]} \left(\frac{\beta_2 - \sqrt{5} f_1(a_1, a_2, k_1, k_2)}{2^{j'}} \right)$$

$$\times h(\xi_1 + \xi_2, A(\xi_1, \xi_2, \beta) + \beta_2(\xi_1 + \xi_2), B(\xi_1, \xi_2, \beta)) \, d\xi_1 d\xi_2 d\beta d\beta_2$$

$$\leq C 2^{\frac{j}{4}(k_1+k_2)+\frac{3k_3}{4}} \|h\|_{L^2} \|h_1^m\|_{L^2} \|h_2^{m'}\|_{L^2}. \quad (3.41)$$

If (3.41) is valid, by using the Cauchy-Schwartz inequality, we have

$$2^{k_1+k_2} \sum_{|m-m'| \leq 4} \int_S h_1^m(\xi_1, \beta + \beta_2) h_2^{m'}(\xi_2, \beta_2)$$

$$\times h(\xi_1 + \xi_2, A(\xi_1, \xi_2, \beta) + \beta_2(\xi_1 + \xi_2), B(\xi_1, \xi_2, \beta)) \, d\xi_1 d\xi_2 d\beta d\beta_2$$

$$\leq C 2^{\frac{j}{4}(k_1+k_2)+\frac{3k_3}{4}} \|h\|_{L^2} \sum_{|m-m'| \leq 4} \|h_1^m\|_{L^2} \|h_2^{m'}\|_{L^2}$$

$$= C 2^{\frac{j}{4}(k_1+k_2)+\frac{3k_3}{4}} \|h\|_{L^2} \left[\sum_{m \in \mathbb{Z}} \|h_1^m\|_{L^2} \left(\sum_{m-4 \leq m' \leq m+4} \|h_2^{m'}\|_{L^2} \right) \right]$$

$$\leq C 2^{\frac{j}{4}(k_1+k_2)+\frac{3k_3}{4}} \|h\|_{L^2} \left[\sum_{m \in \mathbb{Z}} \|h_1^m\|_{L^2}^2 \right]^{\frac{1}{2}} \left[\sum_{m \in \mathbb{Z}} \left(\sum_{m-4 \leq m' \leq m+4} \|h_2^{m'}\|_{L^2}^2 \right) \right]^{\frac{1}{2}}$$

$$\leq C 2^{\frac{j}{4}(k_1+k_2)+\frac{3k_3}{4}} \|h\|_{L^2} \left(\sum_{m \in \mathbb{Z}} \sum_{m-4 \leq m' \leq m+4} \|h_2^{m'}\|_{L^2}^2 \right)$$

$$\leq C 2^{\frac{j}{4}(k_1+k_2)+\frac{3k_3}{4}} \|h\|_{L^2} \prod_{i=1}^2 \|h_i\|_{L^2}. \quad (3.42)$$

To prove (3.41), without loss of generality, we assume that $|\xi_1| \leq |\xi_2|$. To prove (3.41), by using the Minkowski inequality with respect to variables (ξ_1, ξ_2, β) with

$$S' = \{(\xi_1, \xi_2, \beta) \in \mathbb{R}^3, \xi_1 + \xi_2 \geq 0, \beta \text{ satisfies } (3.21)\}, \quad (3.43)$$

the left-hand side of (3.40) is controlled by

$$2^{k_1+k_2} \int_{\mathbb{R}} \chi_{[m,m+1]} \left(\frac{\beta_2 - \sqrt{5} f_1(a_1, a_2, k_1, k_2)}{2^{j'}} \right)$$

$$\times \left(\int_S |h_1^m(\xi_1, \beta + \beta_2) h_2^{m'}(\xi_2, \beta_2)|^2 d\xi_1 d\xi_2 d\beta d\beta_2 \right)^{\frac{1}{2}}$$

$$\times \left(\int_S |h(\xi_1 + \xi_2, A(\xi_1, \xi_2, \beta) + \beta_2(\xi_1 + \xi_2), B(\xi_1, \xi_2, \beta))|^2 d\xi_1 d\xi_2 d\beta d\beta_2 \right)^{\frac{1}{2}} d\beta_2. \quad (3.44)$$
From (3.44), it suffices to prove that
\[
\left(\int_{S''} |h(\xi_1 + \xi_2, A(\xi_1, \xi_2, \beta) + \beta_2(\xi_1 + \xi_2), B(\xi_1, \xi_2, \beta))|^2 \, d\xi_1 d\xi_2 d\beta \right)^{\frac{1}{2}} \leq C 2^{-\frac{k_1 + k_2}{2}} \|h\|_{L^2}.
\] (3.45)

If (3.45) is valid, by using the Cauchy-Schwartz inequality with respect to β_2, we have (3.44) is controlled by
\[
C 2^{-(k_1 + k_2) + \frac{k_2}{2}} \int_{\mathbb{R}} \chi(m', m'+1) \left(\frac{\beta_2 - \sqrt{5} f_1(a_1, a_2, k_1, k_2)}{2^{r'}} \right) \|h_1^m\|_{L^2} \|h_2^{m'}(\cdot, \beta_2)\|_{L^{k_2}} \, dh \, d\beta_2
\]
\[
= C 2^{-(k_1 + k_2) + \frac{k_2}{2}} \int_{\mathbb{R}} \chi(m'+1)^{2^{r'}} + \sqrt{5} f_1(a_1, a_2, k_1, k_2) \|h_1^m\|_{L^2} \|h_2^{m'}(\cdot, \beta_2)\|_{L^{k_2}} \, dh \, d\beta_2
\]
\[
\leq C 2^{-(k_1 + k_2) + \frac{k_2}{2}} \frac{2^{r'}}{2^{r}} \|h\|_{L^2} \|h_1^m\|_{L^2} \|h_2^{m'}\|_{L^2}
\]
\[
\leq C 2^{\frac{k_1 + k_2}{2}} \frac{2^{r'}}{2^{r}} \|h\|_{L^2} \|h_1^m\|_{L^2} \|h_2^{m'}\|_{L^2}. \quad \text{(3.46)}
\]

To prove (3.45), we may assume that $\beta_2 = 0$ and make the change of variable $\beta = \sqrt{5} \xi_1 \xi_2 \nu$. From (3.21), we have
\[
\left| \nu - \frac{3\xi_1^2 + 2\xi_1 \xi_2 + 3\xi_2^2}{\xi_1^2 + \xi_2^2 + \sqrt{5} (\xi_1^2 - \xi_2^2)} \right| \leq 2^{-20}. \quad \text{(3.47)}
\]

The left hand side of (3.44) is controlled by
\[
C 2^{\frac{k_1 + k_2}{2}} \left(\int_{S''} |h(\xi_1 + \xi_2, H_1(\xi_1, \xi_2, \nu), H_2(\xi_1, \xi_2, \nu))| \, d\xi_1 d\xi_2 d\nu \right)^{\frac{1}{2}}, \quad \text{(3.48)}
\]
where
\[
S'' = \left\{(\xi_1, \xi_2, \nu) \in \mathbb{R}^3 : \xi_i \in \tilde{I}_k, \nu \text{ satisfies (3.45)} \right\}, \quad \text{(3.49)}
\]
\[
H_1(\xi_1, \xi_2, \nu) = \sqrt{5} (\xi_1^3 - \xi_2^3 + \nu \xi_1^2 \xi_2), \quad \text{(3.50)}
\]
\[
H_2(\xi_1, \xi_2, \nu) = \frac{5(\xi_1 \xi_2)^2}{\xi} \left(\xi_1 \xi_2 \nu^2 + 2\nu (\xi_1^3 + \xi_2^3) + 4\xi_1 \xi_2 - 3\xi^2 \right). \quad \text{(3.51)}
\]

We consider $\xi_1 \xi_2 \geq 0, \xi_1 \xi_2 \leq 0$, respectively.

Firstly, we consider $\xi_1 \xi_2 \geq 0$. We define the function
\[
G(\xi, x) = 2^{-k_3 + 2k_1 + 2k_2} \left| h \left(\xi, \sqrt{5} \left[\xi_1^3 - \xi_2^3 + x \right], \frac{5(\xi_1 \xi_2)^2}{\xi} \left[y + 4\xi_1 \xi_2 - 3\xi_2^2 \right] \right) \right|^2, \quad \text{(3.52)}
\]

\[
20
\]
where

\[x = \xi_1^2 \xi_2 \nu, \quad y = \xi_1 \xi_2 \nu^2 + 2(\xi_1^2 + \xi_2^2) \nu. \]

(3.53)

Obviously, \(\|G\|_{L^1} = \|h\|_{L^2}^2 \). From (3.52), we have (3.48) can be bounded by

\[C 2^{-k_1 + k_2 - k_3} \left(\int_{S''} |G(\xi_1 + \xi_2, \xi_1^2 \xi_2 \nu, \xi_1 \xi_2 \nu^2 + 2(\xi_1^2 + \xi_2^2) \nu)|d\xi_1 d\xi_2 d\nu \right)^{\frac{1}{2}}. \]

(3.54)

We make the change of variables \((\xi_1, \xi_2, \nu) \rightarrow (\xi_1 + \xi_2, \xi_1^2 \xi_2 \nu, \xi_1 \xi_2 \nu^2 + 2(\xi_1^2 + \xi_2^2) \nu)\), thus the absolute value of the Jacobi determinant equals

\[|\nu \xi_1| |\nu \xi_1 \xi_2 (\xi_1 - 3 \xi_2) + 2 (\xi_1^3 - \xi_1 \xi_2^2 - 2 \xi_2^3)|. \]

(3.55)

By using a direct computation, we have (3.55) equals

\[|\nu ^2 \xi_1 (\xi_1 - 3 \xi_2)| \left| \nu + \frac{2(\xi_1^3 - \xi_1 \xi_2^2 - 2 \xi_2^3)}{\xi_1 \xi_2 (\xi_1 - 3 \xi_2)} \right|, \]

(3.56)

where \(\nu \) satisfies (3.47).

By using a direct computation, we have

\[\left| \frac{2(\xi_1^3 - \xi_1 \xi_2^2 - 2 \xi_2^3)}{\xi_1 \xi_2 (\xi_1 - 3 \xi_2)} \right| \geq 2. \]

(3.57)

From (3.47), we have

\[1 - 2^{-20} \leq |\nu| \leq \left| \frac{3 \xi_1^2 + 2 \xi_1 \xi_2 + 3 \xi_2^2}{\xi_1^2 + \xi_2^2 + \sqrt{\xi_2^2 (\xi^2 - \xi_1 \xi_2)}} \right| + 2^{-20} \leq \frac{3}{2} + 2^{-20}. \]

(3.58)

Combining (3.57) with (3.58), we have

\[|\nu| \left| \nu + \frac{2(\xi_1^3 - \xi_1 \xi_2^2 - 2 \xi_2^3)}{\xi_1 \xi_2 (\xi_1 - 3 \xi_2)} \right| \geq \frac{1}{4}. \]

(3.59)

Combining (3.56) with (3.59), we have

\[|\nu \xi_1| |\nu \xi_1 \xi_2 (\xi_1 - 3 \xi_2) + 2 (\xi_1^3 - \xi_1 \xi_2^2 - 2 \xi_2^3)| \geq C \xi_1^2 \xi_2^2. \]

(3.60)

Combining (3.54) with (3.60), we have (3.45) can be bounded by

\[C 2^{-\frac{3(k_1 + k_2)}{2} + k_3} \|G\|_{L^1} \leq C 2^{-\frac{3(k_1 + k_2)}{2} + k_3} \|h\|_{L^2}^2. \]

(3.61)
Now we consider $\xi_1 \xi_2 \leq 0$. We define
\[
G(\xi, x, y) = 2^{-k_3 + 7k_1} \left| h \left(\xi, \sqrt{5} \left[\xi_1^3 - \xi_2^3 + \xi_1^2 \xi_2 \right], \frac{5(\xi_1 \xi_2)^2}{\xi} \left[y + 4\xi_1 \xi_2 - 3\xi_2^2 \right] \right) \right|^2, \quad (3.62)
\]
where
\[
x = \nu, \quad y = \xi_1 \xi_2 \nu^2 + 2(\xi_1^2 + \xi_2^2) \nu. \quad (3.63)
\]
Obviously, $\|G\|_{L^1} \approx \|h\|_{L^2}^2$. From (3.62), we have (3.48) can be bounded by
\[
C 2^{-\frac{5k_1 - k_3}{2}} \left(\int_{S^*} |G(\xi_1 + \xi_2, \nu, \xi_1 \xi_2 \nu^2 + 2(\xi_1^2 + \xi_2^2) \nu)|d\xi_1 d\xi_2 d\nu \right)^\frac{1}{2}.
\quad (3.64)
\]
We make the change of variables $(\xi_1, \xi_2, \nu) \rightarrow (\xi_1 + \xi_2, \nu, \xi_1 \xi_2 \nu^2 + 2(\xi_1^2 + \xi_2^2) \nu)$, thus the absolute value of the Jacobi determinant equals
\[
|\xi_1 - \xi_2| |\nu(4 - \nu)|. \quad (3.65)
\]
From (3.47), we have
\[
1 - 2^{-20} \leq \frac{3\xi_1^2 + 2\xi_1 \xi_2 + 3\xi_2^2}{\xi_1^2 + \xi_2^2 + \sqrt{\xi_2^2(\xi_1^2 - \xi_1 \xi_2)}} - 2^{-20}
\leq |\nu| \leq \frac{3\xi_1^2 + 2\xi_1 \xi_2 + 3\xi_2^2}{\xi_1^2 + \xi_2^2 + \sqrt{\xi_2^2(\xi_1^2 - \xi_1 \xi_2)}} + 2^{-20} \leq 3 + 2^{-20}. \quad (3.66)
\]
Combining (3.65) with (3.66), we have
\[
|\xi_1 - \xi_2| |\nu(4 - \nu)| \sim 2^{k_1}. \quad (3.67)
\]
Combining (3.64) with (3.67), we have (3.44) can be bounded by
\[
C 2^{-\frac{3(\xi_1^2 + \xi_2^2)}{2}} \left(\int_{S^*} |G(\xi_1, \beta_1)h_1(\xi_1, \beta_1)h_2(\xi_2, \beta_2) \times h(\xi_1 + \xi_2, \sqrt{5}(\xi_1^3 - \xi_2^3) + \beta_1 \xi_1 + \beta_2 \xi_2, \beta_1 \xi_1 + \beta_2 \xi_2, d\xi_1 d\xi_2 d\beta_1 d\beta_2 \leq 2^{2\frac{1}{2} \frac{5k_1 - 5k_2}{2}} \|h\|_{L^2} \prod_{j=1}^{2} \|h_j\|_{L^2}. \quad (3.68)
\]
Therefore the proof of (3.3) is completed.

Now we prove (3.4). From (3.5)-(3.17), we know that it suffices to prove
\[
2^{\frac{k_1 + k_2}{2}} \int_{S^*} h_1(\xi_1, \beta_1)h_2(\xi_2, \beta_2) \times h(\xi_1 + \xi_2, \sqrt{5}(\xi_1^3 - \xi_2^3) + \beta_1 \xi_1 + \beta_2 \xi_2, \beta_1 \xi_1 + \beta_2 \xi_2, d\xi_1 d\xi_2 d\beta_1 d\beta_2 \leq C 2^{2\frac{1}{2} \frac{5k_1 - 5k_2}{2}} \|h\|_{L^2} \prod_{j=1}^{2} \|h_j\|_{L^2}. \quad (3.69)
\]

where \(h_i(i = 1, 2)\) are defined as in (3.16)-(3.17) and \(S\) is defined as in (3.14) and \(\tilde{R}_1(\xi_1, \beta_1, \xi_2, \beta_2)\) is defined as in (3.15) and \(\beta_1 - \beta_2\) satisfies (3.19)-(3.20). To obtain (3.69), we make the change of variable \(\beta_1 = \beta_2 + \beta\). Now we claim that the following inequality is valid

\[
\left| \beta - \frac{\sqrt{5}B_1}{\xi_1^2 + \xi_2^2 + \sqrt{\xi^2(\xi^2 - \xi_1\xi_2)}} \right| \leq B_4, \tag{3.70}
\]

where \(B_1\) is defined as in (3.21) and

\[
B_4 = 2^{j - 3k_2 + 10}. \tag{3.71}
\]

(3.70) can be proved similarly to (3.21). Since \(|\xi_j| \in [2^{kj-1}, 2^{kj+1}](j = 1, 2)\), we can assume that \(\xi_j = a_j 2^kj(j = 1, 2)\), where \(\frac{1}{2} \leq |a_j| \leq 2\). Consequently, (3.70) can be rewritten as follows:

\[
\left| \beta - \sqrt{5}f_1(a_1, a_2, k_1, k_2) \right| \leq B_4, \tag{3.72}
\]

where \(f_1(a_1, a_2, k_1, k_2)\) is defined as in (3.33).

Thus, the left hand side of (3.68) can be bounded by

\[
2^{k_1 + k_2} \int_{\tilde{S}} h_1(\xi_1, \beta + \beta_2)h_2(\xi_2, \beta_2)\chi_{[-1,1]} \left(\frac{\beta_2 - \sqrt{5}f_1(a_1, a_2, k_1, k_2)}{B_4} - m \right) \times h(\xi_1 + \xi_2, A(\xi_1, \xi_2, \beta) + \beta_2(\xi_1 + \xi_2), B(\xi_1, \xi_2, \beta))d\xi_1d\xi_2d\beta d\beta_2, \tag{3.73}
\]

where \(\tilde{S}\) satisfies (3.35) and \(A(\xi_1, \xi_2, \beta)\) satisfies (3.36) and \(B(\xi_1, \xi_2, \beta)\) satisfies (3.37).

Let \(j'' = j - 3k_2 + 10\). Decompose

\[
h_i(\xi', \beta') = \sum_{m \in \mathbb{Z}} h_i(\xi', \beta')\chi_{[0,1]} \left(\frac{\beta' - \sqrt{5}f_1(a_1, a_2, k_1, k_2)}{2^{j''}} - m \right)
= \sum_{m \in \mathbb{Z}} h_i^m(\xi', \beta'), \tag{3.74}
\]

\(i = 1, 2\). Obviously, \(\|h_i\|_{L^2} = \left(\sum_{m \in \mathbb{Z}} \|h_i^m\|_{L^2}^2 \right)^{\frac{1}{2}}\). Thus, (3.73) is controlled by

\[
2^{k_1 + k_2} \sum_{|m - m'| \leq 4} \int_{\tilde{S}} h_i^m(\xi_1, \beta + \beta_2)h_2^{m'}(\xi_2, \beta_2) \times h(\xi_1 + \xi_2, A(\xi_1, \xi_2, \beta) + \beta_2(\xi_1 + \xi_2), B(\xi_1, \xi_2, \beta))d\xi_1d\xi_2d\beta d\beta_2. \tag{3.75}
\]
To prove (3.69), it suffices to prove that
\[
2^{\frac{k_1+k_2}{2}} \int_{S} h_1^m(\xi_1, \beta + \beta_2)h_2^{m'}(\xi_2, \beta_2)\chi_{[m',m'+1]} \left(\frac{\beta_2 - \sqrt{5}f_1(a_1, a_2, k_1, k_2)}{2^{\gamma'}} \right)
\times h(\xi_1 + \xi_2, A(\xi_1, \xi_2, \beta) + \beta_2(\xi_1 + \xi_2), B(\xi_1, \xi_2, \beta))d\xi_1d\xi_2d\beta d\beta_2
\leq C 2^{\frac{k_1+k_2}{2}} \|h\|_{L^2} h_1^m \|h_2^{m'}\|_{L^2}.
\tag{3.76}
\]

From (3.66), it suffices to prove that
\[
\left(\int_{S'} |h(\xi_1 + \xi_2, A(\xi_1, \xi_2, \beta) + \beta_2(\xi_1 + \xi_2), B(\xi_1, \xi_2, \beta))|^2 d\xi_1d\xi_2d\beta \right)^{\frac{1}{2}}
\leq C 2^{-\frac{3k_2}{2}} \|h\|_{L^2}.
\tag{3.77}
\]

If (3.77) is valid, by using the Cauchy-Schwartz inequality with respect to \(\beta_2 \), we have (3.75) is controlled by
\[
C 2^{-\frac{k_1+k_2}{2}} \int_{\mathbb{R}} \chi_{[m',m'+1]} \left(\frac{\beta_2 - \sqrt{5}f_1(a_1, a_2, k_1, k_2)}{2^{\gamma'}} \right)
\times \|h_1^m\|_{L^2} \|h_2^{m'}(\cdot, \beta_2)\|_{L^2_2} \|h\|_{L^2} d\beta_2
= C 2^{-\frac{k_1+k_2}{2}} \int_{\mathbb{R}} \left(\frac{\beta_2 - \sqrt{5}f_1(a_1, a_2, k_1, k_2)}{2^{\gamma'}} \right)
\times \|h_1^m\|_{L^2} \|h_2^{m'}(\cdot, \beta_2)\|_{L^2_2} \|h\|_{L^2} d\beta_2
\leq C 2^{-\frac{k_1+k_2}{2}} \|h\|_{L^2} \|h_1^m\|_{L^2} \|h_2^{m'}\|_{L^2}.
\tag{3.78}
\]

To prove (3.77), we may assume that \(\beta_2 = 0 \) and make the change of variable \(\beta = \sqrt{5}\xi_1\xi_2\nu \). The left hand side of (3.77) is controlled by
\[
C 2^{k_1+k_2} \left(\int_{S''} |h(\xi_1 + \xi_2, H_1(\xi_1, \xi_2, \nu), H_2(\xi_1, \xi_2, \nu))|^2 d\xi_1d\xi_2d\nu \right)^{\frac{1}{2}},
\tag{3.79}
\]
where \(S'' \) is defined as in (3.49) and \(H_1(\xi_1, \xi_2, \nu) \) is defined as in (3.50) and \(H_2(\xi_1, \xi_2, \nu) \) is defined as in (3.51).

We define the function \(G(\xi, x, y) \) as in (3.52) and \(x, y \) as in (3.53). Obviously, \(\|G\|_{L^1} \approx \|h\|_{L^2}^2 \). Thus, we have (3.79) can be bounded by
\[
C 2^{-\frac{k_1}{2}} \left(\int_{S''} |G(\xi_1 + \xi_2, \xi_1^2\xi_2\nu, \xi_1\xi_2\nu^2 + 2(\xi_1^2 + \xi_2^2)\nu)|d\xi_1d\xi_2d\nu \right)^{\frac{1}{2}}.
\tag{3.80}
\]

24
We make the change of variables \((\xi_1, \xi_2, \nu) \rightarrow (\xi_1 + \xi_2, \xi_1^2 \xi_2 \nu, \xi_1 \xi_2 \nu^2 + 2(\xi_1^2 + \xi_2^2)\nu)\), thus the absolute value of the Jacobi determinant equals

\[
2|\nu(\xi_1^3 - \xi_1 \xi_2^2 - 2\xi_2^3)| \left| \frac{\xi_1 \xi_2(\xi_1 - 3\xi_2)\nu}{2(\xi_1^3 - \xi_1 \xi_2^2 - 2\xi_2^3)} + 1 \right|. \tag{3.81}
\]

In this case, by using a direct computation, we have

\[
|\nu(\xi_1^3 - \xi_1 \xi_2^2 - 2\xi_2^3)| \left| \frac{\xi_1 \xi_2(\xi_1 - 3\xi_2)\nu}{2(\xi_1^3 - \xi_1 \xi_2^2 - 2\xi_2^3)} + 1 \right| \leq \frac{1}{32}. \tag{3.82}
\]

From (3.43), we have

\[
1 - 2^{-20} \leq \left| \frac{3\xi_1^2 + 2\xi_1 \xi_2 + 3\xi_2^2}{\xi_1^2 + \xi_2^2 + \sqrt{\xi_1^2 (\xi_2^2 - \xi_1 \xi_2)}} \right| - 2^{-20} \leq |\nu| \leq \left| \frac{3\xi_1^2 + 2\xi_1 \xi_2 + 3\xi_2^2}{\xi_1^2 + \xi_2^2 + \sqrt{\xi_1^2 (\xi_2^2 - \xi_1 \xi_2)}} \right| + 2^{-20} \leq 3 + 2^{-20}. \tag{3.83}
\]

Combining (3.82) with (3.83), we have

\[
|\nu(\xi_1^3 - \xi_1 \xi_2^2 - 2\xi_2^3)| \left| \frac{\xi_1 \xi_2(\xi_1 - 3\xi_2)\nu}{2(\xi_1^3 - \xi_1 \xi_2^2 - 2\xi_2^3)} + 1 \right| \sim |\xi_1(\xi_1^3 - \xi_1 \xi_2^2 - 2\xi_2^3)| \sim 2^{k_1 + 3k_2}. \tag{3.84}
\]

Combining (3.84) with the fact that \(\|G\|_{L^1} \approx \|h\|_{L^2}^2\), we have (3.78) can be bounded by

\[
C2^{-\frac{3k_3}{2} - k_1} \|G\|_{L^1} \leq C2^{-\frac{3k_3}{2} - k_1} \|h\|_{L^2}^2. \tag{3.85}
\]

This completes the proof of Lemma 3.1.

Inspired by the idea of Lemma 5.2 of [18], we give the proof of Lemma 3.2.

Lemma 3.2. Assume \(\alpha \in \mathbb{R}\) and \(k_1, k_2, k_3 \in \mathbb{Z}\), \(k_{\text{max}} = \max \{k_1, k_2, k_3\} \geq 20\) and \(k_{\text{min}} = \min \{k_1, k_2, k_3\}\) and \(j_1, j_2, j_3 \in \mathbb{Z}_+\), \(j_{\text{max}} = \max \{j_1, j_2, j_3\}\) and \(f_i : \mathbb{R}^3 \to \mathbb{R}\) are \(L^2\) functions supported in \(\mathcal{D}_{k_i, \infty, j_i, i = 1, 2, 3}\). Then, \(k_{\text{max}} \geq 20\), we have

\[
\int_{\mathbb{R}^3} (f_1 * f_2) f_3 d\xi d\mu d\tau \leq C2^{\frac{j_1 + j_2 + j_3}{2}} 2^{-\frac{k_{\text{max}} - k_{\text{min}}}{2}} \prod_{j=1}^3 \|f_j\|_{L^2}. \tag{3.86}
\]

Proof. From (3.79), we assume that \(j_3 = \max \{j_1, j_2, j_3\}\). Then, we have

\[
\int_{\mathbb{R}^3} (f_1 * f_2) f_3 d\xi d\mu d\tau \leq C\|f_3\|_{L^2} \|f_1 * f_2\|_{L^2} \leq C\|f_3\|_{L^2} \prod_{j=1}^2 \|\mathcal{F}^{-1}(f_j)\|_{L^4}. \tag{3.87}
\]
From Theorem 3.1 of [15], we have
\[\left\| \int \chi^\frac{1}{2} f_j(\xi, \mu) e^{ix\xi + iy\mu} e^{it\phi(\xi, \mu)} d\xi d\mu \right\|_{L^4_{x,y,t}} \leq C \| f_j \|_{L^2_{\xi,\mu}} (j = 1, 2). \] (3.88)

From (3.88), by using the Cauchy-Schwartz inequality with respect to \(\theta \), we have
\[\left\| \int |\xi|^{\frac{1}{4}} f_j^\#(\xi, \mu, \tau) e^{ix\xi + iy\mu} e^{it\phi(\xi, \mu)} d\xi d\mu d\tau \right\|_{L^4_{x,y,t}} \leq C \int |f_j^\#(\xi, \mu, \theta)|^{\frac{1}{2}} d\theta \leq C 2^{\frac{k}{2}} \| f_j^\#(\xi, \mu, \theta) \|_{L^2_{\xi,\mu,\theta}}. \] (3.89)

Here \(f_j^\#(j = 1, 2) \) are defined as in Lemma 3.1. From (3.89), we have
\[\| \mathcal{F}^{-1}(f_j) \|_{L^4} \leq C 2^{-\frac{k}{2}} 2^{\frac{k}{2}} \| f_j(\xi, \mu, \tau) \|_{L^2_{\xi,\mu,\tau}}. \] (3.90)

Inserting (3.90) into (3.87) yields
\[\int_{\mathbb{R}^3} (f_1 * f_2) f_3 \leq C \| f_3 \|_{L^2} \| f_1 * f_2 \|_{L^2} \]
\[\leq C 2^{\frac{j_1 + j_2}{2}} 2^{-\frac{k_{\max} + k_{\min}}{2}} \| f \|_{L^2} \prod_{j = 1}^2 \| \mathcal{F}^{-1}(f_j) \|_{L^4}. \] (3.91)

Combining the fact with \(j_3 = \max \{ j_1, j_2, j_3 \} \) with (3.91), we have (3.86) is valid.

This completes the proof of Lemma 3.2.

4. Bilinear estimates

This section is devoted to establishing Lemmas 4.1-4.3. Lemma 4.1 is used to establish Theorems 1.1. Lemma 4.2 is used to establish the almost conservation. Lemma 4.3 is used to establish Lemma 6.1 which is the variant of Theorem 1.1.

Lemma 4.1. Let \(-\frac{9}{8} + 16\epsilon \leq s_1 < 0, s_2 \geq 0 \) and \(u_j \in X^{s_1, s_2} \frac{1}{2 + \epsilon} (j = 1, 2) \). Then, we have
\[\| \partial_x (u_1 u_2) \|_{X^{s_1, s_2} \frac{1}{2 + \epsilon}} \leq C \prod_{j = 1}^2 \| u_j \|_{X^{s_1, s_2} \frac{1}{2 + \epsilon}}. \] (4.1)
Proof. To derive (4.1), by duality, it suffices to show that
\[
\left| \int_{\mathbb{R}^3} \tilde{u} \partial_x (u_1 u_2) dx dy dt \right| \leq C \| u \|_{X^{-s_1, -s_2}_{\frac{3}{2} - 2\epsilon}} \prod_{j=1}^{2} \| u_j \|_{X^{s_1, s_2}_{\frac{3}{2} + \epsilon}}. \tag{4.2}
\]
for \(u \in X^{-s_1, -s_2}_{\frac{3}{2} - 2\epsilon} \). Let
\[
F(\xi, \mu, \tau) = \langle \xi \rangle^{-s_1} \langle \mu \rangle^{-s_2} \langle \sigma \rangle^{\frac{1}{2} - 2\epsilon} \mathcal{F} u(\xi, \mu, \tau),
\]
and
\[
F_j(\xi_j, \mu_j, \tau_j) = \langle \xi_j \rangle^{s_1} \langle \mu_j \rangle^{s_2} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon} \mathcal{F} u_j(\xi_j, \mu, \tau_j) (j = 1, 2), \tag{4.3}
\]
and
\[
D := \left\{ (\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \in \mathbb{R}^6, \xi = \sum_{j=1}^{2} \xi_j, \mu = \sum_{j=1}^{2} \mu_j, \tau = \sum_{j=1}^{2} \tau_j \right\}.
\]
To derive (4.2), from (4.3), it suffices to show that
\[
\int_{D} \frac{|\xi| \langle \xi \rangle^{s_1} \langle \mu \rangle^{s_2} F(\xi, \mu, \tau) \prod_{j=1}^{2} F_j(\xi_j, \mu_j, \tau_j)}{\langle \sigma_j \rangle^{\frac{1}{2} - 2\epsilon} \prod_{j=1}^{2} \langle \xi_j \rangle^{s_1} \langle \mu_j \rangle^{s_2} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}} dV \leq C \| F \|_{L^2_{\xi, \mu}} \prod_{j=1}^{2} \| F_j \|_{L^2_{\xi, \mu}}, \tag{4.4}
\]
where \(dV := d\xi d\mu d\tau d\xi d\mu d\tau \). Without loss of generality, by using the symmetry, we assume that \(|\xi_1| \geq |\xi_2| \) and \(F(\xi, \mu, \tau) \geq 0, F_j(\xi_j, \mu_j, \tau_j) \geq 0 (j = 1, 2) \) and
\[
D^* := \{ (\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \in D, |\xi_2| \geq |\xi_1| \}.
\]
Let
\[
\Omega_1 = \{(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \in D^*, |\xi_2| \leq |\xi_1| \leq 80\},
\]
\[
\Omega_2 = \{(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \in D^*, |\xi_1| \geq 80, |\xi_1| \gg |\xi_2|, |\xi_2| \leq 20\},
\]
\[
\Omega_3 = \{(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \in D^*, |\xi_1| \geq 80, |\xi_1| \gg |\xi_2|, |\xi_2| > 20\},
\]
\[
\Omega_4 = \{(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \in D^*, |\xi_1| \geq 80, 4|\xi| \leq |\xi_1| \sim |\xi_2|, |\xi| \leq 20, \xi_1 \xi_2 < 0\},
\]
\[
\Omega_5 = \{(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \in D^*, |\xi_1| \geq 80, 4|\xi| \leq |\xi_1| \sim |\xi_2|, |\xi| > 20, \xi_1 \xi_2 < 0\},
\]
\[
\Omega_6 = \{(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \in D^*, |\xi_1| \geq 80, |\xi_2| \sim |\xi_1|, \xi_1 \xi_2 < 0, |\xi| \geq |\xi_2| / 4\},
\]
\[
\Omega_7 = \{(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \in D^*, |\xi_1| \geq 80, |\xi_2| \sim |\xi_1|, \xi_1 \xi_2 > 0\}.
\]
Obviously, \(D^* \subset \bigcup_{j=1}^{7} \Omega_j \). We define
\[
K_1(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) := \frac{|\xi| \langle \mu \rangle^{s_2} \langle \xi \rangle^{s_1}}{\langle \sigma_j \rangle^{\frac{1}{2} - 2\epsilon} \prod_{j=1}^{2} \langle \xi_j \rangle^{s_1} \langle \mu_j \rangle^{s_2} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}} \tag{4.5}
\]
and

\[
\text{Int}_j := \int_{\Omega_j} K_1(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) F(\xi, \mu, \tau) \prod_{j=1}^{2} F_j(\xi_j, \mu_j, \tau_j) d\xi_1 d\mu_1 d\tau_1 d\xi d\mu d\tau, \tag{4.6}
\]

\[1 \leq j \leq 7, j \in \mathbb{N}. \]

Since \(s_2 \geq 0 \) and \(\mu = \sum_{j=1}^{2} \mu_j \), we have \(\langle \mu \rangle^{s_2} \leq \prod_{j=1}^{2} \langle \mu_j \rangle^{s_2} \), thus, we have

\[
K_1(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \leq \frac{|\xi| \langle \xi \rangle^{s_1}}{\langle \sigma \rangle^{\frac{1}{2}-2\epsilon} \prod_{j=1}^{2} \langle \xi_j \rangle^{s_1} \langle \sigma_j \rangle^{\frac{1}{2}+\epsilon}}. \tag{4.6}
\]

Now we estimate the integrals \(\text{Int}_j \) over the above seven regions one by one.

(I) Region \(\Omega_1 \). In this region \(|\xi| \leq |\xi_1| + |\xi_2| \leq 160 \), this case can be proved similarly to case \(\text{low} + \text{low} \rightarrow \text{low} \) of Pages 344–345 of Theorem 3.1 in [38].

(II) Region \(\Omega_2 \). In this region, we have \(|\xi| \sim |\xi_1|\).

By using the Cauchy-Schwartz inequality with respect to \(\xi_1, \mu_1, \tau_1 \), from (4.6), we have

\[
\text{Int}_2 \leq C \int_{\mathbb{R}^3} \frac{|\xi|}{\langle \sigma \rangle^{\frac{1}{2}-2\epsilon}} \left(\int_{\mathbb{R}^3} \langle \sigma_1 \rangle^{-(1+2\epsilon)} \langle \sigma_2 \rangle^{-(1+2\epsilon)} d\xi_1 d\mu_1 d\tau_1 \right)^{\frac{1}{2}} \times \left(\int_{\mathbb{R}^3} \prod_{j=1}^{2} |F_j(\xi_j, \mu_j, \tau_j)|^2 d\xi_1 d\mu_1 d\tau_1 \right)^{\frac{1}{2}} F(\xi, \mu, \tau) d\xi d\mu d\tau. \tag{4.7}
\]

By using (2.2), we have

\[
\frac{|\xi|}{\langle \sigma \rangle^{\frac{1}{2}-2\epsilon}} \left(\int_{\mathbb{R}^3} \langle \sigma_1 \rangle^{-(1+2\epsilon)} \langle \sigma_2 \rangle^{-(1+2\epsilon)} d\xi_1 d\mu_1 d\tau_1 \right)^{\frac{1}{2}} \leq C \frac{|\xi|}{\langle \sigma \rangle^{\frac{1}{2}-2\epsilon}} \left(\int_{\mathbb{R}^2} \frac{d\xi_1 d\mu_1}{\langle \tau + \phi(\xi_1, \mu_1) + \phi(\xi_2, \mu_2) \rangle^{1+2\epsilon}} \right)^{\frac{1}{2}}. \tag{4.8}
\]

Let \(\nu = \tau + \phi(\xi_1, \mu_1) + \phi(\xi_2, \mu_2) \) and \(\Delta = \xi_1 \xi_2 (5\xi_2^2 - 5\xi_1 + 5\xi_1^2) \), since \(|\xi_1| \gg |\xi_2| \), then we have the absolute value of Jacobian determinant equals

\[
\left| \frac{\partial(\Delta, \nu)}{\partial(\xi_1, \mu_1)} \right| = 2 \left| \frac{\mu_1}{\xi_1} - \frac{\mu_2}{\xi_2} \right| |5(\xi_1^4 - \xi_2^4) - 3\alpha(\xi_1^2 - \xi_2^2)|
= 2 |\sigma - \nu - \Delta|^{\frac{1}{2}} \left| \frac{\xi}{\xi_1 \xi_2} \right| \frac{1}{2} |5(\xi_1^4 - \xi_2^4) - 3\alpha(\xi_1^2 - \xi_2^2)|
\sim |\sigma - \nu + \delta|^{\frac{1}{2}} \left| \frac{\xi}{\xi_1 \xi_2} \right| |\xi_1|^4. \tag{4.9}
\]

28
Inserting (4.9) into (4.8), using (2.3), we have

\[
\frac{\|\xi\|}{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon}} \left(\int_{\mathbb{R}^3} \langle \sigma_1 \rangle^{-(1+2\epsilon)} \langle \sigma_2 \rangle^{-(1+2\epsilon)} d\xi_1 d\mu_1 d\tau_1 \right)^{\frac{1}{2}}
\]

\[
\leq C \frac{\|\xi\|}{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon}} \left(\int_{\mathbb{R}^2} \frac{d\xi_1 d\mu_1}{\langle \tau + \phi(\xi_1, \mu_1) + \phi(\xi_2, \mu_2) \rangle^{1+2\epsilon}} \right)^{\frac{1}{2}}
\]

\[
\leq \frac{C}{\|\xi\| \langle \sigma \rangle^{\frac{1}{2} - 2\epsilon}} \left(\int_{|\Delta| < 20|\xi|^4} \frac{d\Delta}{\langle \Delta - \sigma \rangle^{\frac{1}{2}}} \right)^{\frac{1}{2}}. \tag{4.10}
\]

When $|\sigma| < 20|\xi|^4$, combining (4.10) with (2.1), we have

\[
\frac{C}{\|\xi\| \langle \sigma \rangle^{\frac{1}{2} - 2\epsilon}} \left(\int_{|\Delta| < 20|\xi|^4} \frac{d\Delta}{\langle \Delta - \sigma \rangle^{\frac{1}{2}}} \right)^{\frac{1}{2}} \leq C \frac{|\xi|}{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon}} \leq C. \tag{4.11}
\]

When $|\sigma| \geq 20|\xi|^4$, from (4.10), we have

\[
\frac{C}{\|\xi\| \langle \sigma \rangle^{\frac{1}{2} - 2\epsilon}} \left(\int_{|\Delta| < 20|\xi|^4} \frac{d\Delta}{\langle \Delta - \sigma \rangle^{\frac{1}{2}}} \right)^{\frac{1}{2}} \leq C \frac{|\xi|^2}{\|\xi\| \langle \sigma \rangle^{\frac{1}{2} - 2\epsilon}} \leq C \frac{|\xi|}{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon}} \leq C. \tag{4.12}
\]

Combining (4.8) with (4.9)-(4.12), we have

\[
\frac{|\xi|}{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon}} \left(\int_{\mathbb{R}^3} \langle \sigma_1 \rangle^{-(1+2\epsilon)} \langle \sigma_2 \rangle^{-(1+2\epsilon)} d\xi_1 d\mu_1 d\tau_1 \right)^{\frac{1}{2}} \leq C. \tag{4.13}
\]

Inserting (4.13) into (4.7), by using the Cauchy-Schwartz inequality with respect to ξ, μ, τ, we have

\[
\text{Int}_2 \leq C \int_{\mathbb{R}^3} \frac{|\xi|}{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon}} \left(\int_{\mathbb{R}^3} \langle \sigma_1 \rangle^{-(1+2\epsilon)} \langle \sigma_2 \rangle^{-(1+2\epsilon)} d\xi_1 d\mu_1 d\tau_1 \right)^{\frac{1}{2}}
\]

\[
\times \left(\int_{\mathbb{R}^3} 2 \prod_{j=1}^2 |F_j(\xi_j, \mu_j, \tau_j)|^2 d\xi_1 d\mu_1 d\tau_1 \right)^{\frac{1}{2}} F(\xi, \mu, \tau) d\xi d\mu d\tau
\]

\[
\leq C \int_{\mathbb{R}^3} \left(\int_{\mathbb{R}^3} 2 \prod_{j=1}^2 |F_j(\xi_j, \mu_j, \tau_j)|^2 d\xi_1 d\mu_1 d\tau_1 \right)^{\frac{1}{2}} F(\xi, \mu, \tau) d\xi d\mu d\tau
\]

\[
\leq C \|F\|_{L^2_{\xi,\mu}} \prod_{j=1}^2 \|F_j\|_{L^2_{\xi,\mu}}. \tag{4.14}
\]

(III) Region Ω_3. In this region, we have $|\xi| \sim |\xi_1|$. In this region, we consider

\[
|\sigma - \sigma_1 - \sigma_2| = \left| \xi_1 \xi_2 (5\xi_2^2 - 5\xi_1 + 5\xi_1^2) - \frac{\xi_1 \xi_2}{\xi} \left| \frac{\mu_1}{\xi_1} - \frac{\mu_2}{\xi_2} \right|^2 \right|
\]

\[
\geq \frac{|\xi_1 \xi_2 (5\xi_2^2 - 5\xi_1 + 5\xi_1^2)|}{2^{70}} \tag{4.15}
\]
Thus, combining (2.17) with (4.20), we have

\[|\sigma - \sigma_1 - \sigma_2| = \left| \xi_1 \xi_2 (5\xi^2 - 5\xi_1 + 5\xi_2^2) - \frac{\xi_1 \xi_2}{\xi} \left(\frac{\mu_1}{\xi} - \frac{\mu_2}{\xi_2} \right)^2 \right| < \frac{|\xi_1 \xi_2 (5\xi^2 - 5\xi_1 + 5\xi_2^2)|}{2^{70}}, \tag{4.16} \]

respectively.

When (4.15) is valid, we have one of the following three cases must occur:

\[|\sigma| := \max \{ |\sigma|, |\sigma_1|, |\sigma_2| \} \geq C \left| \xi_1 \xi_2 (5\xi^2 - 5\xi_1 + 5\xi_2^2) \right|, \tag{4.17} \]

\[|\sigma_1| := \max \{ |\sigma|, |\sigma_1|, |\sigma_2| \} \geq C \left| \xi_1 \xi_2 (5\xi^2 - 5\xi_1 + 5\xi_2^2) \right|, \tag{4.18} \]

\[|\sigma_2| := \max \{ |\sigma|, |\sigma_1|, |\sigma_2| \} \geq C \left| \xi_1 \xi_2 (5\xi^2 - 5\xi_1 + 5\xi_2^2) \right|. \tag{4.19} \]

When (4.17) is valid, since \(-\frac{q}{8} + 16\epsilon \leq s_1 < 0\), we have

\[
K_1(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \leq \frac{|\xi| \langle \xi \rangle^{s_1}}{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon} \prod_{j=1}^{2} \langle \xi_j \rangle^{s_1} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}} \leq C \frac{|\xi|^{1+8\epsilon} \xi_2 |^{-s_1 - \frac{1}{2} + 2\epsilon}}{\prod_{j=1}^{2} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}} \leq C \frac{|\xi|^{1+8\epsilon} \xi_2 |^{-s_1 - \frac{1}{2} + 2\epsilon}}{\prod_{j=1}^{2} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}} \leq \frac{|\xi|^{\frac{1}{2}} |\xi_2|^{-\frac{1}{2}}}{\prod_{j=1}^{2} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}}. \tag{4.20} \]

Thus, combining (2.17) with (4.20), we have

\[|\text{Int}_3| \leq C \| F \|_{L^2_{\xi_\mu}} \prod_{j=1}^{2} \| F_j \|_{L^2_{\xi_\mu}}. \]

When (4.18) is valid, since \(-\frac{q}{8} + 16\epsilon \leq s_1 < 0\) and

\[\langle \sigma \rangle^{\frac{1}{2} + 2\epsilon} \langle \sigma_1 \rangle^{\frac{1}{2} - \epsilon} \leq \langle \sigma \rangle^{\frac{1}{2} + 2\epsilon}, \]

we have

\[
K_1(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \leq \frac{|\xi| \langle \xi \rangle^{s_1}}{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon} \prod_{j=1}^{2} \langle \xi_j \rangle^{s_1} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}} \leq C \frac{|\xi|^{1+8\epsilon} \xi_2 |^{-s_1 - \frac{1}{2} + 2\epsilon}}{\langle \sigma \rangle^{1+2\epsilon} \langle \sigma_2 \rangle^{\frac{1}{2} + \epsilon}} \leq C \frac{|\xi|^{\frac{1}{2}} |\xi_2|^{-\frac{1}{2}}}{\langle \sigma \rangle^{\frac{1}{2} + \epsilon} \langle \sigma_2 \rangle^{\frac{1}{2} + \epsilon}}. \tag{4.21} \]

Thus, combining (2.19) with (4.21), we have

\[|\text{Int}_3| \leq C \| F \|_{L^2_{\xi_\mu}} \prod_{j=1}^{2} \| F_j \|_{L^2_{\xi_\mu}}. \]
Thus, combining (2.20) with (4.22), we have

\[\langle \sigma \rangle^{-\frac{1}{2} + 2 \epsilon} \langle \sigma_2 \rangle^{-\frac{1}{2} - \epsilon} \leq \langle \sigma \rangle^{-\frac{1}{2} - \epsilon} \langle \sigma_2 \rangle^{-\frac{1}{2} + 2 \epsilon}, \]

we have

\[
K_1(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \leq \frac{\langle \xi \rangle^2}{\langle \sigma \rangle^{\frac{1}{2} - 2 \epsilon} \prod_{j=1}^{2} \langle \xi_j \rangle^2 \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}} \leq C \frac{|\xi|^{1 + 8 \epsilon} |\xi_1|^{-s_1 - \frac{1}{2} + 2 \epsilon}}{|\sigma_1|^{\frac{1}{2} + \epsilon} |\sigma|^{\frac{1}{2} + \epsilon}}
\]

\[
\leq C \frac{|\xi_1|^{\frac{1}{2} - 14 \epsilon} |\xi|^{-1 + 8 \epsilon}}{|\sigma_1|^{\frac{1}{2} + \epsilon} |\sigma|^{\frac{1}{2} + \epsilon}} \leq C \frac{|\xi|^{-\frac{1}{2}} |\xi|}{|\sigma|^{\frac{1}{2} + \epsilon} |\sigma|^{\frac{1}{2} + \epsilon}}.
\]

(4.22)

Thus, combining (2.20) with (4.22), we have

\[|\text{Int}_3| \leq C \|F\|_{L^2_{2\xi_\mu}} \prod_{j=1}^{2} \|F_j\|_{L^2_{2\xi_\mu}}. \]

When (4.16) is valid, we consider the following two cases respectively.

\[
\max \{|\sigma|, |\sigma_1|, |\sigma_2|\} \geq \frac{|\xi_1 \xi_2 (5 \xi_2^2 - 5 \xi_1 \xi + 5 \xi_1^2)|}{2^{80}}, \quad (4.23)
\]

\[
\max \{|\sigma|, |\sigma_1|, |\sigma_2|\} < \frac{|\xi_1 \xi_2 (5 \xi_2^2 - 5 \xi_1 \xi + 5 \xi_1^2)|}{2^{80}}, \quad (4.24)
\]

We dyadically decompose the spectra as

\[\langle \sigma \rangle \sim 2^j, \quad \langle \sigma_1 \rangle \sim 2^{j_1}, \quad \langle \sigma_2 \rangle \sim 2^{j_2}, \quad |\xi| \sim 2^k, \quad |\xi_1| \sim 2^{k_1}, \quad |\xi_2| \sim 2^{k_2}. \]

We define

\[f_{k,m,j_m} := |\eta_k(\xi_m) \eta_{j_m}(\sigma_m) F(\xi_m, \mu_m, \tau_m)|, \quad (m = 1, 2), \]

\[f_{k,j} := |\eta_k(\xi) \eta_j(\sigma) F(\xi, \mu, \tau)|. \]

When (4.23) is valid, by using Lemma 3.2, since \(-\frac{a}{8} + 16 \epsilon \leq s_1 < 0\), we have

\[
\text{Int}_3 \leq C \sum_{k,k_1,k_2 > 0} \sum_{j_1,j_2,j \geq 0} 2^{-j(\frac{1}{2} - 2 \epsilon) - (j_1 + j_2)(\frac{1}{2} + \epsilon) - k_2 s_1 + k} \int_{\mathbb{R}^6} f_{k,j} \prod_{m=1}^{2} f_{k_m,j_m} dV \]

\[
\leq C \sum_{k,k_1,k_2 > 0} \sum_{j_1,j_2,j \geq 0} 2^{2j_1 - (j_1 + j_2) \epsilon - \max \frac{k}{2} - k_2 (s_1 + \frac{1}{2}) + \frac{16}{\epsilon}} \|f_{k,j}\|_{L^2} \prod_{m=1}^{2} \|f_{k_m,j_m}\|_{L^2}; \quad (4.25)
\]
when \(j = j_{\text{max}} \), from (4.25), since \(-\frac{9}{8} + 16\epsilon \leq s_1 < 0\), we have

\[
\text{Int}_3 \leq C \sum_{k,k_1,k_2>0} \sum_{j_1,j_2,j>0} 2^{-j(\frac{7}{2} - 2\epsilon) - (j_1 + j_2)\epsilon - k_2(s_1 + \frac{1}{4}) + \frac{3k}{4}} \int_{\mathbb{R}^6} f_{k,j} \prod_{m=1}^{2} f_{k_m,j_m} dV
\leq C \sum_{k,k_1,k_2>0} 2^{-k_2(s_1 + \frac{3}{4} - 8\epsilon) - k(\frac{7}{4} - 8\epsilon)} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}
\leq C \sum_{k,k_1,k_2>0} 2^{-k_2(s_1 + \frac{3}{4} - 10\epsilon) - k(\frac{7}{4} - 5\epsilon)} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}
\leq C \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2};
\] (4.26)

when \(j_1 = j_{\text{max}} \), from (4.25), since \(-\frac{9}{8} + 16\epsilon \leq s_1 < 0\), we have

\[
\text{Int}_3 \leq C \sum_{k,k_1,k_2>0} \sum_{j_1,j_2,j>0} 2^{2j\epsilon - (j_1 + j_2)\epsilon - \frac{4m\epsilon}{s_1} - k_2(s_1 + \frac{1}{4}) + \frac{3k}{4}} \|f_{k,j}\|_{L^2} \prod_{m=1}^{2} \|f_{k_m,j_m}\|_{L^2}
\leq C \sum_{k,k_1,k_2>0} 2^{-k_2(s_1 + \frac{3}{4} - \epsilon) - k(\frac{7}{4} - \epsilon)} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}
\leq C \sum_{k,k_1,k_2>0} 2^{-k_2(s_1 + \frac{3}{4} - 5\epsilon) - k(\frac{7}{4} - 5\epsilon)} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}
\leq C \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2};
\] (4.27)

when \(j_2 = j_{\text{max}} \), this case can be proved similarly to case \(j_1 = j_{\text{max}} \).

When (4.24) is valid, by using (2) of Lemma 3.1, since \(-\frac{9}{8} + 16\epsilon \leq s_1 < 0\), we have

\[
\text{Int}_3 \leq C \sum_{k,k_1,k_2>0} \sum_{j_1,j_2,j>0} 2^{-j(\frac{7}{2} - 2\epsilon) - (j_1 + j_2)\epsilon - k_2s_1 + k} \int_{\mathbb{R}^6} f_{k,j} \prod_{m=1}^{2} f_{k_m,j_m} dV
\leq C \sum_{k,k_1,k_2>0} \sum_{j_1,j_2,j>0} 2^{2j\epsilon - (j_1 + j_2)\epsilon - k_2(s_1 + \frac{1}{2}) - \frac{3k}{2}} \|f_{k,j}\|_{L^2} \prod_{m=1}^{2} \|f_{k_m,j_m}\|_{L^2}
\leq C \sum_{k,k_1,k_2>0} 2^{-k_2(s_1 + \frac{3}{2}) - \frac{3k}{2}} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}
\leq C \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}.
\] (4.28)

(IV) Region \(\Omega_4 \). In this case, we consider (4.15), (4.16), respectively.

When (4.15) is valid, one of (4.17)-(4.19) must occur.
When (4.17) is valid, since \(-\frac{3}{8} + 16\epsilon \leq s_1 < 0\), we have
\[
\begin{align*}
K_1(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) &\leq \frac{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon} 2 \prod_{j=1}^{2} \langle \xi_j \rangle^{s_1} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}}{\prod_{j=1}^{2} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}}
&\leq C \frac{\langle \xi \rangle^{\frac{1}{2} + 2\epsilon} \langle \xi_2 \rangle^{\frac{1}{2} - 2\epsilon}}{\prod_{j=1}^{2} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}}
&\leq C \frac{\langle \xi \rangle^{\frac{1}{2} + 2\epsilon} \langle \xi_2 \rangle^{\frac{1}{2} - 2\epsilon}}{\prod_{j=1}^{2} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}}. \tag{4.29}
\end{align*}
\]
Thus, combining (2.17) with (4.29), we have
\[
|\text{Int}_4| \leq C \|F\|_{L^2_{\xi \mu}} \prod_{j=1}^{2} \|F_j\|_{L^2_{\xi \mu}}.
\]

When (4.18) is valid, since \(-\frac{3}{8} + 16\epsilon \leq s_1 < 0\) and
\[
\langle \sigma \rangle^{-\frac{1}{2} - 2\epsilon} \langle \sigma_1 \rangle^{-\frac{1}{2} - \epsilon} \leq \langle \sigma \rangle^{-\frac{1}{2} - \epsilon} \langle \sigma_1 \rangle^{-\frac{1}{2} - 2\epsilon},
\]
we have
\[
\begin{align*}
K_1(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) &\leq \frac{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon} 2 \prod_{j=1}^{2} \langle \xi_j \rangle^{s_1} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}}{\prod_{j=1}^{2} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}}
&\leq C \frac{\langle \xi \rangle^{\frac{1}{2} + 2\epsilon} \langle \xi_2 \rangle^{\frac{1}{2} - 2\epsilon}}{\prod_{j=1}^{2} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}}
&\leq C \frac{\langle \xi \rangle^{\frac{1}{2} + 2\epsilon} \langle \xi_2 \rangle^{\frac{1}{2} - 2\epsilon}}{\prod_{j=1}^{2} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}}. \tag{4.30}
\end{align*}
\]
Thus, combining (2.19) with (4.30), we have
\[
|\text{Int}_4| \leq C \|F\|_{L^2_{\xi \mu}} \prod_{j=1}^{2} \|F_j\|_{L^2_{\xi \mu}}.
\]

When (4.19) is valid, this case can be proved similarly to (4.18).

When (4.16) is valid, we consider (4.23) and (4.24), respectively.

We dyadically decompose the spectra as
\[
\langle \sigma \rangle \sim 2^j, \quad \langle \sigma_1 \rangle \sim 2^{j_1}, \quad \langle \sigma_2 \rangle \sim 2^{j_2}, \quad |\xi| \sim 2^k, \quad |\xi_1| \sim 2^{k_1}, \quad |\xi_2| \sim 2^{k_2}.
\]

We define
\[
\begin{align*}
f_{km,jm} := &\ |\eta_{km}(\xi_m)\eta_{jm}(\sigma_m)F_l(\xi_m, \mu_m, \tau_m)|, \quad (m = 1, 2), \\
f_{k,j} := &\ |\eta_k(\xi)\eta_j(\sigma)F(\xi, \mu, \tau)|, \quad dV = d\xi_1 d\mu_1 d\tau_1 d\xi d\mu d\tau.
\end{align*}
\]
When (4.23) is valid, by Lemma 3.2, since \(-\frac{9}{8} + 16\epsilon \leq s_1 < 0\), we have

\[
\text{Int}_4 \leq C \sum_{k_1, k_2 > 0} \sum_{k, j_1, j_2, j \geq 0} 2^{-j(\frac{1}{2} - 2\epsilon) - (j_1 + j_2)(\frac{1}{4} + \epsilon) - 2k_2s_1 + k} \int_{\mathbb{R}^6} f_{k,j} \prod_{m=1}^{2} f_{km,jm} dV
\]

\[
\leq C \sum_{k_1, k_2 > 0} \sum_{k, j_1, j_2, j \geq 0} 2^{2j\epsilon - (j_1 + j_2)\epsilon - k_2(2s_1 + \frac{1}{4}) + \frac{3k}{2}} \text{\|} f_{k,j} \text{\|}_{L^2} \prod_{m=1}^{2} \text{\|} f_{km,jm} \text{\|}_{L^2}; \quad (4.31)
\]

when \(j = j_{\text{max}}\), from (4.31), since \(-\frac{9}{8} + 16\epsilon \leq s_1 < 0\), we have

\[
\text{Int}_4 \leq C \sum_{k_1, k_2 > 0} \sum_{k, j_1, j_2, j \geq 0} 2^{-j(\frac{1}{2} - 2\epsilon) - (j_1 + j_2)(\frac{1}{4} + \epsilon) - 2k_2s_1 + k} \int_{\mathbb{R}^6} f_{k,j} \prod_{m=1}^{2} f_{km,jm} dV
\]

\[
\leq C \sum_{k_1, k_2 > 0} 2^{-k_2(2s_1 + \frac{7}{4} - 8\epsilon) + k(\frac{1}{4} + \epsilon)} \text{\|} f \text{\|}_{L^2} \prod_{m=1}^{2} \text{\|} f_m \text{\|}_{L^2}
\]

\[
\leq C \text{\|} f \text{\|}_{L^2} \prod_{m=1}^{2} \text{\|} f_m \text{\|}_{L^2}; \quad (4.32)
\]

when \(j_1 = j_{\text{max}}\), from (4.31), since \(-\frac{9}{8} + 16\epsilon \leq s_1 < 0\), we have

\[
\text{Int}_4 \leq C \sum_{k_1, k_2 > 0} \sum_{k, j_1, j_2, j \geq 0} 2^{2j\epsilon - (j_1 + j_2)\epsilon - k_2(2s_1 + \frac{1}{4}) + \frac{3k}{2}} \text{\|} f_{k,j} \text{\|}_{L^2} \prod_{m=1}^{2} \text{\|} f_{km,jm} \text{\|}_{L^2}
\]

\[
\leq C \sum_{k_1, k_2 > 0} 2^{-k_2(2s_1 + \frac{7}{4} - 8\epsilon) + k(\frac{1}{4} + \epsilon)} \text{\|} f \text{\|}_{L^2} \prod_{m=1}^{2} \text{\|} f_m \text{\|}_{L^2}
\]

\[
\leq C \text{\|} f \text{\|}_{L^2} \prod_{m=1}^{2} \text{\|} f_m \text{\|}_{L^2}; \quad (4.33)
\]

when \(j_2 = j_{\text{max}}\), this case can be proved similarly to case \(j_1 = j_{\text{max}}\).

When (4.24) is valid, by using (1) of Lemma 3.1, since \(-\frac{9}{8} + 16\epsilon \leq s_1 < 0\), we have

\[
\text{Int}_4 \leq C \sum_{k_1, k_2 > 0} \sum_{k, j_1, j_2, j \geq 0} 2^{-j(\frac{1}{2} - 2\epsilon) - (j_1 + j_2)(\frac{1}{4} + \epsilon) - 2k_2s_1 + k} \int_{\mathbb{R}^6} f_{k,j} \prod_{m=1}^{2} f_{km,jm} dV
\]

\[
\leq C \sum_{k_1, k_2 > 0} \sum_{k, j_1, j_2, j \geq 0} 2^{2j\epsilon - (j_1 + j_2)\epsilon - k_2(2s_1 + \frac{7}{2}) + \frac{3k}{2}} \text{\|} f_{k,j} \text{\|}_{L^2} \prod_{m=1}^{2} \text{\|} f_{km,jm} \text{\|}_{L^2}
\]

\[
\leq C \sum_{k_1, k_2 > 0} 2^{-k_2(2s_1 + \frac{7}{2} - 8\epsilon) + k(\frac{3}{2} + \epsilon)} \text{\|} f \text{\|}_{L^2} \prod_{m=1}^{2} \text{\|} f_m \text{\|}_{L^2}
\]

\[
\leq C \text{\|} f \text{\|}_{L^2} \prod_{m=1}^{2} \text{\|} f_m \text{\|}_{L^2}; \quad (4.34)
\]

(V) Region \(\Omega_5\). In this region, we consider (4.15), (4.16), respectively.
When (4.15) is valid, one of (4.17)-(4.19) must occur.

When (4.17) is valid, since \(-\frac{9}{8} + 16\epsilon \leq s_1 < 0\), we have
\[
K_1(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \leq \frac{|\xi| \langle \xi \rangle^{s_1}}{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon} \prod_{j=1}^2 \langle \xi_j \rangle^{s_1} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}} \leq C \frac{|\xi|^{\frac{5}{8} + 14\epsilon} |\xi_j|^{\frac{1}{2} - 24\epsilon}}{\langle \sigma \rangle^{\frac{1}{2} + \epsilon} \langle \sigma_j \rangle^{\frac{1}{2} - 24\epsilon}} \leq C \frac{|\xi|^{\frac{7}{8} - \frac{3}{2} |\xi_j|}}{\langle \sigma \rangle^{\frac{1}{2} + \epsilon} \langle \sigma_j \rangle^{\frac{1}{2} - 24\epsilon}}.
\] (4.35)

Thus, combining (2.17) with (4.35), we have
\[
|\text{Int}_5| \leq C \|F\|_{L^2_{\xi_1,\mu}} \prod_{j=1}^2 \|F_j\|_{L^2_{\xi_j,\mu}}.
\]

When (4.18) is valid, since \(-\frac{9}{8} + 16\epsilon \leq s_1 < 0\) and
\[
\langle \sigma \rangle^{-\frac{1}{2} + 2\epsilon} \langle \sigma_1 \rangle^{-\frac{1}{2} - \epsilon} \leq \langle \sigma \rangle^{-\frac{1}{2} - \epsilon} \langle \sigma_1 \rangle^{-\frac{1}{2} + 2\epsilon},
\]
we have
\[
K_1(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \leq \frac{|\xi| \langle \xi \rangle^{s_1}}{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon} \prod_{j=1}^2 \langle \xi_j \rangle^{s_1} \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}} \leq C \frac{|\xi|^{\frac{5}{8} + 14\epsilon} |\xi_j|^{\frac{1}{2} - 24\epsilon}}{\langle \sigma \rangle^{\frac{1}{2} + \epsilon} \langle \sigma_j \rangle^{\frac{1}{2} - 24\epsilon}} \leq C \frac{|\xi|^{\frac{7}{8} - \frac{3}{2} |\xi_j|}}{\langle \sigma \rangle^{\frac{1}{2} + \epsilon} \langle \sigma_j \rangle^{\frac{1}{2} - 24\epsilon}}.
\] (4.36)

Thus, combining (2.19) with (4.36), we have
\[
|\text{Int}_5| \leq C \|F\|_{L^2_{\xi_1,\mu}} \prod_{j=1}^2 \|F_j\|_{L^2_{\xi_j,\mu}}.
\]

When (4.19) is valid, this case can be proved similarly to (4.18) with the aid of (2.20).

When (4.16) is valid, consider (4.23), (4.24), respectively.

We dyadically decompose the spectra as
\[
\langle \sigma \rangle \sim 2^j, \quad \langle \sigma_1 \rangle \sim 2^{j_1}, \quad \langle \sigma_2 \rangle \sim 2^{j_2}, \quad |\xi| \sim 2^k, \quad |\xi_1| \sim 2^{k_1}, |\xi_2| \sim 2^{k_2}.
\]

We define
\[
f_{k_m,j_m} := |\eta_{k_m}(\xi_m)\eta_{j_m}(\sigma_m)F_1(\xi_m, \mu_m, \tau_m)| (m = 1, 2),
\]
\[
f_{k,j} := |\eta_{k}(\xi)\eta_{j}(\sigma)F(\xi, \mu, \tau)|, \quad dV = d\xi_1 d\mu_1 d\tau_1 d\xi d\mu d\tau.
\]
When (4.23) is valid, we use Lemma 3.2 to deal with this case. Thus, by Lemma 3.2, since \(-\frac{9}{8} + 16\epsilon \leq s_1 < 0\), we have

$$\text{Int}_5 \leq C \sum_{k_1, k_2 > 0, k_1, j_2 \geq 0} \sum_{2} 2^{-j\left(\frac{3}{4} - 2\epsilon\right) - (j_1 + j_2)(\frac{3}{4} + \epsilon) - 2k_2s_1 + k(1 + s_1)} \left(\int_{\mathbb{R}^6} f_{k,j} \prod_{m=1}^{2} f_{k_m,j_m} \, dV\right) \leq C \sum_{k_1, k_2 > 0, k_1, j_2 \geq 0} 2^{2^j e - (j_1 + j_2)\epsilon - \max_k - k_2(2s_1 + \frac{3}{4}) + k\left(\frac{3}{4} + s_1\right)} \left\| f_{k,j} \right\|_{L^2} \prod_{m=1}^{2} \left\| f_{k_m,j_m} \right\|_{L^2}. \quad (4.37)$$

When \(j = j_{\text{max}}\), from (4.37), if \(\frac{9}{8} + 16\epsilon \leq s_1 < -\frac{3}{4}\), we have

$$\text{Int}_5 \leq C \sum_{k_1, k_2 > 0, k_1, j_2 \geq 0} \sum_{2} 2^{2^j e - (j_1 + j_2)\epsilon - \max_k - k_2(2s_1 + \frac{3}{4}) + k\left(\frac{3}{4} + s_1\right)} \left\| f_{k,j} \right\|_{L^2} \prod_{m=1}^{2} \left\| f_{k_m,j_m} \right\|_{L^2} \leq C \sum_{k_1, k_2 > 0, k} 2^{-k_2(2s_1 + \frac{9}{8} - 8\epsilon) + k\left(\frac{3}{4} + 2\epsilon\right)} \left\| f \right\|_{L^2} \prod_{m=1}^{2} \left\| f_m \right\|_{L^2} \leq C \left\| f \right\|_{L^2} \prod_{m=1}^{2} \left\| f_m \right\|_{L^2}. \quad (4.38)$$

When \(j = j_{\text{max}}\), from (4.37), if \(-\frac{3}{4} \leq s_1 < 0\), we have

$$\text{Int}_5 \leq C \sum_{k_1, k_2 > 0, k_1, j_2 \geq 0} \sum_{2} 2^{2^j e - (j_1 + j_2)\epsilon - \max_k - k_2(2s_1 + \frac{3}{4}) + k\left(\frac{3}{4} + s_1\right)} \left\| f_{k,j} \right\|_{L^2} \prod_{m=1}^{2} \left\| f_{k_m,j_m} \right\|_{L^2} \leq C \sum_{k_1, k_2 > 0} 2^{-k_2(2s_1 + \frac{9}{8} - 8\epsilon)} \left\| f \right\|_{L^2} \prod_{m=1}^{2} \left\| f_m \right\|_{L^2} \leq C \left\| f \right\|_{L^2} \prod_{m=1}^{2} \left\| f_m \right\|_{L^2}. \quad (4.39)$$

When \(j_1 = j_{\text{max}}\), from (4.38), if \(-\frac{9}{8} + 16\epsilon \leq s_1 < -\frac{3}{4}\), we have

$$\text{Int}_5 \leq C \sum_{k_1, k_2 > 0, k_1, j_2 \geq 0} \sum_{2} 2^{2^j e - (j_1 + j_2)\epsilon - \max_k - k_2(2s_1 + \frac{3}{4}) + k\left(\frac{3}{4} + s_1\right)} \left\| f_{k,j} \right\|_{L^2} \prod_{m=1}^{2} \left\| f_{k_m,j_m} \right\|_{L^2} \leq C \sum_{k_1, k_2 > 0, k} 2^{-k_2(2s_1 + \frac{9}{8} - 4\epsilon)} \left\| f \right\|_{L^2} \prod_{m=1}^{2} \left\| f_m \right\|_{L^2} \leq C \left\| f \right\|_{L^2} \prod_{m=1}^{2} \left\| f_m \right\|_{L^2}. \quad (4.40)$$
When \(j_2 = j_{\text{max}} \), from (4.38), if \(-\frac{3}{4} \leq s_1 < 0\), we have

\[
\text{Int}_5 \leq C \sum_{k_1, k_2 > 0} \sum_{j_1, j_2, j_3 \geq 0} 2^{2j_\epsilon - (j_1 + j_2)\epsilon - \frac{3}{2}k_1 + k_2 s_1} \left\| f_{k,j} \right\|_{L^2} \prod_{m=1}^{2} \left\| f_{k_m,j_m} \right\|_{L^2}

\leq C \sum_{k_1, k_2 > 0} 2^{-k_2 (s_1 + \frac{3}{4} - 4\epsilon)} \left\| f \right\|_{L^2} \prod_{m=1}^{2} \left\| f_{m} \right\|_{L^2}

\leq C \left\| f \right\|_{L^2} \prod_{m=1}^{2} \left\| f_{m} \right\|_{L^2}.
\] (4.41)

When \(j_2 = j_{\text{max}} \), this case can be proved similarly to case \(j_1 = j_{\text{max}} \).

When (4.24) is valid, by using (1) of Lemma 3.1, since \(-\frac{9}{8} + 16\epsilon \leq s_1 < 0\), we have

\[
\text{Int}_5 \leq C \sum_{k, k_1, k_2 > 0} \sum_{j_1, j_2, j_3 \geq 0} 2^{-j(\frac{3}{4} - 2\epsilon - (j_1 + j_2)\epsilon - 2k s_1) + k_1 (1 + s_1)} \int_{\mathbb{R}^6} f_{k,j} \prod_{m=1}^{2} f_{k_m,j_m} dV

\leq C \sum_{k, k_1, k_2 > 0} \sum_{j_1, j_2, j_3 \geq 0} 2^{-j(\frac{3}{4} - 2\epsilon - (j_1 + j_2)\epsilon - 2k s_1) + k_1 (1 + s_1)} \left\| f_{k,j} \right\|_{L^2} \prod_{m=1}^{2} \left\| f_{k_m,j_m} \right\|_{L^2}

\leq C \sum_{k, k_1, k_2 > 0} 2^{-k_2 (s_1 + \frac{3}{8} - 4\epsilon) + k_1 (1 + s_1)} \left\| f \right\|_{L^2} \prod_{m=1}^{2} \left\| f_{m} \right\|_{L^2}

\leq C \sum_{k, k_1, k_2 > 0} 2^{-k_2 (s_1 + 2 - 10\epsilon)} \left\| f \right\|_{L^2} \prod_{m=1}^{2} \left\| f_{m} \right\|_{L^2}

\leq C \left\| f \right\|_{L^2} \prod_{m=1}^{2} \left\| f_{m} \right\|_{L^2}.
\] (4.42)

(VI) Region \(\Omega_6 \). In this region, we consider (4.15), (4.16), respectively.

When (4.15) is valid, one of (4.17)-(4.19) must occur.

When (4.17) is valid, since \(-\frac{9}{8} + 16\epsilon \leq s_1 < 0\), we have

\[
K_1(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \leq C \frac{\left| \xi \right| \langle \xi \rangle^{s_1}}{\langle \sigma \rangle^{\frac{3}{2} - 2\epsilon} \prod_{j=1}^{2} \langle \xi_j \rangle^{s_1} \langle \sigma_j \rangle^{\frac{3}{2} + \epsilon}} \leq C \frac{\left| \xi_2 \right|^{\frac{3}{8} - s_1 + 10\epsilon}}{\prod_{j=1}^{2} \langle \sigma_j \rangle^{\frac{3}{2} + \epsilon}} \leq C \frac{\left| \xi_1 \right| \langle \xi \rangle^{s_1} \langle \xi \rangle^{\frac{3}{2} + \epsilon}}{\prod_{j=1}^{2} \langle \sigma_j \rangle^{\frac{3}{2} + \epsilon}}.
\] (4.43)

Thus, combining (2.17) with (4.43), we have

\[
|\text{Int}_6| \leq C \left\| F \right\|_{L^2_{\xi_1\mu}} \prod_{j=1}^{2} \left\| F_j \right\|_{L^2_{\xi_2\mu}}.
\]
When (4.18) is valid, since $-\frac{9}{8} + 16\epsilon \leq s_1 < 0$ and
\[
\langle \sigma \rangle^{-\frac{1}{2} + 2\epsilon} \langle \sigma_1 \rangle^{-\frac{1}{2} - \epsilon} \leq \langle \sigma \rangle^{-\frac{1}{2} - \epsilon} \langle \sigma_1 \rangle^{-\frac{1}{2} + 2\epsilon},
\]
we have
\[
K_1(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \leq C \frac{\langle \sigma \rangle^{\frac{3}{2} - s_1 + 10\epsilon}}{\langle \sigma \rangle^{\frac{1}{2} + \epsilon} \langle \sigma_2 \rangle^{\frac{1}{2} + \epsilon}} \leq C \frac{\langle \xi \rangle^s_1}{\langle \sigma \rangle^{\frac{1}{2} + \epsilon} \langle \sigma_2 \rangle^{\frac{1}{2} + \epsilon}}.
\]

Thus, combining (2.19) with (4.44), we have
\[
|\text{Int}_6| \leq C \|F\|_{L^2_{r,\xi,\mu}} \prod_{j=1}^2 \|F_j\|_{L^2_{r,\xi,\mu}}.
\]

When (4.19) is valid, this case can be proved similarly to (4.18) with the aid of (4.20).

When (4.16) is valid, this case can be proved similarly to case (4.16) of Region Ω_5.

(VII) Region Ω_7. This case can be proved similarly to Region Ω_6.

This completes the proof of Lemma 4.1.

Remark 3. In the case (4.23) of Region Ω_4 it leads to the requirement $-\frac{9}{8} < s_1 < 0$.

Lemma 4.2. Let $-1 + 10\epsilon \leq s < 0$. Then, we have
\[
\|\partial_x [I_N(u_1 u_2) - I_N u_1 I_N u_2]\|_{X^{0,0}_{\frac{1}{2} + 2\epsilon}} \leq C N^{-2 + 10\epsilon} \prod_{j=1}^2 \|I_N u_j\|_{X^{0,0}_{\frac{1}{2} + \epsilon}}.
\]

Proof. To prove (4.45), by duality, it suffices to prove that
\[
\left| \int_{\mathbb{R}^3} \bar{h} \partial_x [I_N(u_1 u_2) - I_N u_1 I_N u_2] \, dxdydt \right| \leq C N^{-2 + 10\epsilon} \|h\|_{X^{0,0}_{\frac{1}{2} - 2\epsilon}} \prod_{j=1}^2 \|I_N u_j\|_{X^{0,0}_{\frac{1}{2} + \epsilon}}.
\]

for $h \in X^{0,0}_{\frac{1}{2} - 2\epsilon}$. Let
\[
F(\xi, \mu, \tau) = \langle \sigma \rangle^{\frac{1}{2} - 2\epsilon} M(\xi) \Phi h(\xi, \mu, \tau),
\]
\[
F_j(\xi_j, \mu_j, \tau_j) = M(\xi_j) \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon} \Phi u_j(\xi_j, \mu, \tau_j) \quad (j = 1, 2).
\]
To obtain (4.46), from (4.47), it suffices to prove
\[
\int_{\mathbb{R}^2} \int_{\mathbb{R}^2} G(\xi_1, \xi_2) F(\xi_1, \xi_2, \mu_1, \mu_2) \prod_{j=1}^2 F_j(\xi_j_1, \mu_j, \tau_j) \frac{|\xi|}{2} \frac{d\xi_1 d\mu_1 d\tau_1 d\xi d\mu d\tau}{(\sigma_j)^{\frac{1}{2}-2\epsilon} \prod_{j=1}^2 (\sigma_j)^{\frac{1}{2}+\epsilon}} \leq C N^{-1+10\epsilon} \|F\|_{L^2_{\xi\mu\tau}} \prod_{j=1}^2 \|F_j\|_{L^2_{\xi\mu\tau}},
\]
(4.48)

where
\[
G(\xi_1, \xi_2) = \frac{M(\xi_1)M(\xi_2) - M(\xi)}{M(\xi_1)M(\xi_2)}.
\]

Without loss of generality, we assume that \(F(\xi, \mu, \tau) \geq 0, F_j(\xi_j, \mu_j, \tau_j) \geq 0\) \((j = 1, 2)\). By symmetry, we can assume that \(|\xi_1| \geq |\xi_2|\).

We define
\[
A_1 = \left\{ (\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \in D^*, |\xi_2| \leq |\xi_1| \leq \frac{N}{2} \right\},
\]
\[
A_2 = \left\{ (\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \in D^*, |\xi_1| > \frac{N}{2}, |\xi_1| \geq |\xi_2|, |\xi_2| \leq 2A \right\},
\]
\[
A_3 = \left\{ (\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \in D^*, |\xi_1| > \frac{N}{2}, |\xi_1| \geq |\xi_2|, 2A < |\xi_2| \leq N \right\},
\]
\[
A_4 = \left\{ (\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \in D^*, |\xi_1| > \frac{N}{2}, |\xi_1| \geq |\xi_2|, |\xi_2| > N \right\}.
\]

Here \(D^*\) is defined as in Lemma 3.1. Obviously, \(D^* \subset \bigcup_{j=1}^4 A_j\). We define
\[
K_2(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) := \frac{|\xi| G(\xi_1, \xi_2)}{\langle \sigma_j \rangle^{\frac{1}{2}-2\epsilon} \prod_{j=1}^2 \langle \sigma_j \rangle^{\frac{1}{2}+\epsilon}}
\]
(4.49)

and
\[
J_k := \int_{A_j} K_2(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) F(\xi_1, \mu_1, \tau_1) \prod_{j=1}^2 F_j(\xi_j_1, \mu_j, \tau_j) d\xi_1 d\mu_1 d\tau_1 d\xi d\mu d\tau,
\]

\(1 \leq k \leq 4, k \in \mathbb{N}\).

We consider (4.15) and (4.16), respectively.

When (4.15) is valid, one of (4.17)-(4.19) must occur, from [20, Lemma 1.4], we have
\[
\sum_{k=1}^4 J_k \leq C N^{-2(2-10\epsilon)} \|F\|_{L^2_{\xi\mu\tau}} \prod_{j=1}^2 \|F_j\|_{L^2_{\xi\mu\tau}},
\]

39
Thus, we only consider the case (4.16).

Now we consider the integrals over the above four regions one by one.

(I) Region \(A_1\). In this case, since \(M(\xi_1, \xi_2) = 0\), thus we have \(J_1 = 0\).

(II) Region \(A_2\). From [20, Page 902], we have

\[
G(\xi_1, \xi_2) \leq C \frac{|\xi_2|}{|\xi_1|}.
\] (4.50)

Inserting (4.46) into (4.47) yields

\[
K_2(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \leq C \frac{|\xi| G(\xi_1, \xi_2)}{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon} \prod_{j=1}^{2} \langle \sigma_j \rangle^{\frac{4}{3} + \epsilon}} \leq \frac{C \langle \sigma \rangle^{\frac{1}{2} - 2\epsilon} \prod_{j=1}^{2} \langle \sigma_j \rangle^{\frac{4}{3} + \epsilon}}{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon} \prod_{j=1}^{2} \langle \sigma_j \rangle^{\frac{4}{3} + \epsilon}}.
\] (4.51)

We dyadically decompose the spectra as

\[
\langle \sigma \rangle \sim 2^j, \quad \langle \sigma_1 \rangle \sim 2^{i_1}, \quad \langle \sigma_2 \rangle \sim 2^{i_2}, \quad |\xi| \sim 2^k, \quad |\xi_1| \sim 2^{k_1}, \quad |\xi_2| \sim 2^{k_2}.
\]

We define

\[
f_{k_m,j_m} := \eta_{k_m}(\xi_m) \eta_{j_m}(\sigma_m) F_j(\xi_m, \mu_m, \tau_m) (m = 1, 2),
\]

\[
f_{k,j} := \eta_k(\xi) \eta_j(\sigma) |F(\xi, \mu, \tau)|.
\]

Thus, by using (2.4), we have

\[
J_2 \leq C \sum_{k_1, k_2 \geq 0} \sum_{j_1, j_2 \geq 0} 2^{-j(\frac{5}{2} - 2\epsilon) - (j_1 + j_2)(\frac{4}{3} + \epsilon) + k_2} \int_{\mathbb{R}^d} f_{k,j} \prod_{m=1}^{2} f_{k_m,j_m} dV.
\] (4.52)

In this case, we consider (4.23), (4.24), respectively.

When (4.23) is valid, we consider \(j = j_{\text{max}}, j_1 = j_{\text{max}}, j_2 = j_{\text{max}}\), respectively.

When \(j = j_{\text{max}}\) is valid, from (4.52), we have

\[
J_2 \leq C \sum_{k_1, k_2 \geq 0} \sum_{j_1, j_2} 2^{-k(\frac{5}{2} - 8\epsilon) - (j_1 + j_2)\epsilon + k_2(\frac{4}{3} + 2\epsilon)} \|f\|_{L^2} \prod_{j=1}^{2} \|f_j\|_{L^2}
\]

\[
\leq CN^{-(\frac{5}{2} - 8\epsilon)} \|f\|_{L^2} \prod_{j=1}^{2} \|f_j\|_{L^2}.
\] (4.53)
When \(j_1 = j_{\max} \) is valid, from (4.52), we have

\[
J_2 \leq C \sum_{k_1, k_2 > 0, \ k_1, j_1, j_2, j_3 \geq 0} 2^{2j_3 - 2(j_1 + j_2)\epsilon} \sum_{k_1, k_2 > 0, \ k_1, j_1, j_2, j_3 \geq 0} \frac{2^{j_3} - j_3}{k_3} \frac{2^{j_3} + j_3}{k_3} \| f \|_{L^2} \prod_{j_1}^2 \| f_j \|_{L^2}
\]

\[
\leq C \sum_{k_1, k_2 > 0, \ k_1, j_1, j_2 \geq 0} 2^{2j_3 - 2(j_1 + j_2 - j_3)\epsilon} \sum_{k_1, k_2 > 0, \ k_1, j_1, j_2 \geq 0} \frac{2^{j_3} - j_3}{k_3} \frac{2^{j_3} + j_3}{k_3} \| f \|_{L^2} \prod_{j_1}^2 \| f_j \|_{L^2}
\]

\[
\leq C \sum_{k_1, k_2 > 0, \ k} 2^{(\frac{2}{3} - 4\epsilon)} k_1 + k_2 (\frac{1}{3} + \epsilon) \| f \|_{L^2} \prod_{j_1}^2 \| f_j \|_{L^2}
\]

\[
\leq C N^{-\left(\frac{2}{3} - 4\epsilon \right)} \| f \|_{L^2} \prod_{j_1}^2 \| f_j \|_{L^2}.
\] (4.54)

When \(j_2 = j_{\max} \) is valid, this case can be proved similarly to \(j_1 = j_{\max} \) of Region \(A_2 \).

When (4.24) is valid, by using (2) of Lemma 3.1, we have

\[
J_2 \leq C \sum_{k_1, k_2 > 0, \ k_1, j_1, j_2, j_3 \geq 0} 2^{2j_3 - 2(j_1 + j_2)\epsilon} \sum_{k_1, k_2 > 0, \ k_1, j_1, j_2, j_3 \geq 0} \frac{2^{j_3} - j_3}{k_3} \frac{2^{j_3} + j_3}{k_3} \| f \|_{L^2} \prod_{j_1}^2 \| f_j \|_{L^2}
\]

\[
\leq C \sum_{k_1, k_2 > 0, \ k_1, j_1, j_2 \geq 0} 2^{-(2 - 8\epsilon)k_1 + 3k_2(\frac{1}{3} + \epsilon)} \| f \|_{L^2} \prod_{j_1}^2 \| f_j \|_{L^2}
\]

\[
\leq C \sum_{k_1, k_2 > 0, \ k} 2^{(\frac{1}{2} - 8\epsilon)k_1 + k_2 (\frac{1}{2} + \epsilon)} \| f \|_{L^2} \prod_{j_1}^2 \| f_j \|_{L^2}
\]

\[
\leq C N^{-\left(\frac{1}{2} - 8\epsilon \right)} \| f \|_{L^2} \prod_{j_1}^2 \| f_j \|_{L^2}.
\] (4.55)

(III) Region \(A_3 \). From of [20, Page 902], we know that (4.50) is valid. Combining (4.50) with (4.49), we have

\[
K_2(\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \leq C \frac{\min \{ |\xi_1|, |\xi_1|, |\xi_2| \}}{\langle \sigma \rangle^{\frac{1}{2} - 2\epsilon} \prod_{j_1}^2 \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon}}.
\] (4.56)

We dyadically decompose the spectra as

\[
\langle \sigma \rangle \sim 2^j, \quad \langle \sigma_1 \rangle \sim 2^{j_1}, \quad \langle \sigma_2 \rangle \sim 2^{j_2}, \quad |\xi| \sim 2^k, |\xi_1| \sim 2^{k_1}, \quad |\xi_2| \sim 2^{k_2}.
\]

We define

\[
f_{km,jm} := \eta_{km}(\xi_m) \eta_{jm}(\sigma_k) F_m(\xi_m, \mu_m, \tau_m) \quad (m = 1, 2),
\]

\[
f_{k,j} := \eta_k(\xi) \eta_j(\sigma) |F(\xi, \mu, \tau)|.
\]
Thus, we have

\[
J_3 \leq C \sum_{m_1, m_2 > 0, m_1, j_2 \geq 0} 2^{-j_{1/2} - 2\epsilon} (j_1 + j_2) (1/2 + \epsilon) + \min\{k, k_1, k_2\} \\
\times \int_{\mathbb{R}^6} f_{m,j} \prod_{m=1}^{2} f_{k_m,j_m} dV.
\] (4.57)

In this case, we consider (4.23), (4.24), respectively.

When (4.23) is valid, by using Lemma 3.2, we have

\[
J_3 \leq C \sum_{k, k_1, k_2 > 0} 2^{-j_{1/2} - 2\epsilon} (j_1 + j_2) (1/2 + \epsilon) + \frac{k}{2} + \min\{k, k_1, k_2\} \\
\times \int_{\mathbb{R}^6} f_{k,j} \prod_{m=1}^{2} f_{k_m,j_m} dV.
\] (4.58)

When \(j = j_{\text{max}} \), from (4.58), we have

\[
J_3 \leq C \sum_{k_1, k_2 > 0} 2^{-j_{1/2} - 2\epsilon} (j_1 + j_2) (1/2 + \epsilon) + \frac{k}{2} + \min\{k, k_1, k_2\} \|f_{k,j}\|_{L^2} \prod_{m=1}^{2} \|f_{k_m,j_m}\|_{L^2} \\
\leq C N^{-2+10\epsilon} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}. \tag{4.59}
\]

When \(j_1 = j_{\text{max}} \), from (4.59), we have

\[
J_3 \leq C \sum_{k_1, k_2 > 0} 2^{j_2 - (1/2 - 2\epsilon)} (j_1 + j_2) (1/2 + \epsilon) + \frac{k}{2} + \min\{k, k_1, k_2\} \|f_{k,j}\|_{L^2} \prod_{m=1}^{2} \|f_{k_m,j_m}\|_{L^2} \\
\leq C \sum_{k_1, k_2 > 0, k} 2^{-k_2 (1/4 - 4\epsilon) + \min\{k, k_1, k_2\} (1/2 + \epsilon)} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2} \\
\leq C N^{-2+5\epsilon} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}. \tag{4.60}
\]

When \(j_2 = j_{\text{max}} \), this case can be proved similarly to the case \(j_1 = j_{\text{max}} \).
When (4.24) is valid, combining (2) of Lemma 3.1 with (4.60), we have

\[J_3 \leq C \sum_{k,k_1,k_2>0,j_1,j_2,j_3 \geq 0} 2^{-j_1(\frac{3}{2} - 2\epsilon) - (j_1 + j_2)(\frac{3}{2} + \epsilon) + \min\{k,k_1,k_2\}} \int_{\mathbb{R}^6} f_{k,j} \prod_{m=1}^{2} f_{k_m,j_m} dV \]

\[\leq C \sum_{k,k_1,k_2>0,j_1,j_2,j_3 \geq 0} 2^{2j_1(2 \epsilon) - 2k_1} \frac{\|f_{k,j}\|_{L^2}}{} \prod_{m=1}^{2} \|f_{k_m,j_m}\|_{L^2} \]

\[\leq C \sum_{k,k_1,k_2>0} 2^{-k_1(2 - 10\epsilon)} \frac{\|f\|_{L^2}}{} \prod_{m=1}^{2} \|f_{m}\|_{L^2} \]

\[\leq C N^{-2 + 11\epsilon} \frac{\|f\|_{L^2}}{} \prod_{m=1}^{2} \|f_{m}\|_{L^2}. \] (4.61)

(IV) Region A_4. In this case, we have

\[M(\xi_1, \xi_2) \leq C N^{2\delta_1} (|\xi_1|, |\xi_2|)^{-\delta_1}. \] (4.62)

We dyadically decompose the spectra as

\[\langle \sigma \rangle \sim 2^j, \quad \langle \sigma_1 \rangle \sim 2^{j_1}, \quad \langle \sigma_2 \rangle \sim 2^{j_2}, \quad |\xi| \sim 2^k, \quad |\xi_1| \sim 2^{k_1}, \quad |\xi_2| \sim 2^{k_2}. \]

We define

\[f_{k_m,j_m} := \eta_{k_m} (\xi_m) \eta_{j_m} (\sigma_m) F_m (\xi_m, \mu_m, \tau_m), \quad (m = 1, 2), \]
\[f_{k,j} := \eta_k (\xi) \eta_j (\sigma) |F(\xi, \mu, \tau)|. \]

Thus, we have

\[J_4 \leq C N^{2s} \sum_{m_1,m_2>0,m_{j_1,j_2,j_3 \geq 0}} 2^{-j_1(\frac{1}{2} - 2\epsilon) - (j_1 + j_2)(\frac{1}{2} + \epsilon) + \min\{k,k_1,k_2\} + k} \]
\[\times \int_{\mathbb{R}^6} f_{k,j} \prod_{m=1}^{2} f_{k_m,j_m} dV. \] (4.63)

In this case, we consider (4.23), (4.24), respectively.

When (4.23) is valid, by using Lemma 3.2, from (4.63), we have

\[J_4 \leq C N^{2s} \sum_{m_1,m_2>0,m_{j_1,j_2,j_3 \geq 0}} 2^{2\epsilon(j_1 + j_2)\epsilon - \frac{\max}{2} + (m_1 + m_2)s - \frac{k_1 - k_2}{4} \min\{k,k_1,k_2\} + k} \]
\[\times \|f\|_{L^2} \prod_{m=1}^{2} \|f_{m}\|_{L^2}. \] (4.64)
In this case, we consider \(k = k_{\text{min}}, k_2 = k_{\text{min}}, \) respectively.

When \(k = k_{\text{min}} \) is valid, we consider \(j = j_{\text{max}}, j_1 = j_{\text{max}}, j_2 = j_{\text{max}}, \) respectively.

When \(j = j_{\text{max}} \), from (4.64), since \(s_1 \geq -1 + 6\epsilon \), we have

\[
\begin{align*}
J_4 \leq C N^{2s_1} \sum_{k_1, k_2 > 0, k} \sum_{j_1, j_2, j \geq 0} 2^{-j(\frac{1}{2} - 2\epsilon) - (j_1 + j_2)\epsilon - k(2s_1 + \frac{1}{4}) + \frac{3}{4}k} \| f_{k,j} \|_{L^2} \prod_{m=1}^{2} \| f_{k_m, j_m} \|_{L^2} \\
\leq C \sum_{k_1, k_2 > 0, k} 2^{-k(2s_1 + \frac{1}{4} - 8\epsilon) + k(\frac{1}{4} + 2\epsilon)} \| f \|_{L^2} \prod_{m=1}^{2} \| f_m \|_{L^2} \\
\leq C \sum_{k_1 > 0} 2^{-k(2s_1 + 2 - 10\epsilon)} \| f \|_{L^2} \prod_{m=1}^{2} \| f_m \|_{L^2} \\
\leq C N^{-2 + 10\epsilon} \| f \|_{L^2} \prod_{m=1}^{2} \| f_m \|_{L^2}. \tag{4.65}
\end{align*}
\]

When \(j_1 = j_{\text{max}} \) is valid, from (4.64), since \(s_1 \geq -1 + 6\epsilon \), we have

\[
\begin{align*}
J_4 \leq C \sum_{k_1, k_2 > 0, k} \sum_{j_1, j_2 \geq 0} 2^{-\left(\frac{1}{2} - \epsilon\right)j_1 - j_2\epsilon - (k_1 + k_2)s_1 - k\frac{1}{4} + \frac{3}{4}k} \| f_{k,j} \|_{L^2} \prod_{m=1}^{2} \| f_{k_m, j_m} \|_{L^2} \\
\leq C \sum_{k_1, k_2 > 0, k} 2^{-k(2s_1 + \frac{1}{4} - 4\epsilon) + k(\frac{1}{4} + \epsilon)} \| f \|_{L^2} \prod_{m=1}^{2} \| f_m \|_{L^2} \\
\leq C \sum_{k_1 > 0} 2^{-k(2s_1 + 2 - 5\epsilon)} \| f \|_{L^2} \prod_{m=1}^{2} \| f_m \|_{L^2} \\
\leq C N^{-2 + 11\epsilon} \| f \|_{L^2} \prod_{m=1}^{2} \| f_m \|_{L^2}. \tag{4.66}
\end{align*}
\]

When \(j_2 = j_{\text{max}} \) is valid, this case can be proved similarly to \(j_1 = j_{\text{max}} \).

When \(k_2 = k_{\text{min}} \) is valid, we consider \(j = j_{\text{max}}, j_1 = j_{\text{max}}, j_2 = j_{\text{max}}, \) respectively.

\[
44
\]
When \(j = j_{\text{max}} \), from (4.64), since \(s_1 \geq -1 + 10\epsilon \), we have

\[
J_4 \leq CN^{2s_1} \sum_{k_1, k_2 > 0, k} \sum_{j_1, j_2 \geq 0} 2^{-(\frac{1}{2} - 2\epsilon)(j_1 + j_2)\epsilon - k_1(s_1 - \frac{1}{4}) - k_2(s_1 + \frac{1}{2})} \times \|f_{k,j}\|_{L^2} \prod_{m=1}^{2} \|f_{k_m,j_m}\|_{L^2}
\]

\[
\leq CN^{2s_1} \sum_{k_1, k_2 > 0, k} 2^{-(\frac{1}{2} - 2\epsilon)(j)\epsilon - k_1(s_1 - \frac{1}{4}) - k_2(s_1 + \frac{1}{2})} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}
\]

\[
\leq CN^{2s_1} \sum_{k_1, k_2 > 0} 2^{-(\frac{1}{2} - 2\epsilon)(j)\epsilon - k_1(s_1 + \frac{1}{2} - 8\epsilon) - k_2(s_1 + \frac{1}{2} - 2\epsilon)} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}
\]

\[
\leq CN^{2s_1} \sum_{k} 2^{-k_1(s_2 + \frac{1}{4} - 4\epsilon) - k_2(s_2 + \frac{1}{2} + \epsilon)} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}
\]

\[
\leq CN^{-2+10\epsilon} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}. \tag{4.67}
\]

When \(j_1 = j_{\text{max}} \) is valid, from (4.64), since \(s_1 \geq -1 + 10\epsilon \), we have

\[
J_4 \leq CN^{2s_1} \sum_{k_1, k_2 > 0, k} \sum_{j_1, j_2 \geq 0} 2^{-(\frac{1}{2} - \epsilon)j_1 - (j_2)\epsilon - k_1(s_1 - \frac{1}{4}) - k_2(s_1 + \frac{1}{2})} \|f_{k,j}\|_{L^2} \prod_{m=1}^{2} \|f_{k_m,j_m}\|_{L^2}
\]

\[
\leq CN^{2s_1} \sum_{k_1, k_2 > 0, k} 2^{-(\frac{1}{2} - \epsilon)j_1 - (j_2)\epsilon - k_1(s_1 - \frac{1}{4}) - k_2(s_1 + \frac{1}{2})} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}
\]

\[
\leq CN^{2s_1} \sum_{k} 2^{-k_1(s_2 + \frac{1}{2} - 4\epsilon) - k_2(s_2 + \frac{1}{2} + \epsilon)} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}
\]

\[
\leq CN^{-2+5\epsilon} \|f\|_{L^2} \prod_{m=1}^{2} \|f_m\|_{L^2}. \tag{4.68}
\]

When \(j_2 = j_{\text{max}} \) is valid, this case can be proved similarly to \(j_1 = j_{\text{max}} \).

This completes the proof of Lemma 4.2.

Lemma 4.3. Let \(s \geq -\frac{9}{8} + 16\epsilon, s_2 \geq 0 \) and \(u_j \in X^{s_1, s_2}_{\frac{1}{2}+\epsilon} \). Then, we have

\[
\|\partial_x I(u_1 u_2)\|_{X_{\frac{1}{2}+\epsilon}^{0,-2\epsilon}} \leq C \prod_{j=1}^{2} \|I u_j\|_{X_{\frac{1}{2}+\epsilon}^{0,0}}. \tag{4.69}
\]

Proof. To prove (4.69), by duality, it suffices to prove that

\[
\left| \int_{\mathbb{R}^3} \bar{u} \partial_x I(u_1 u_2) dx dy dt \right| \leq C \|u\|_{X_{\frac{1}{2}+\epsilon}^{0,0}} \prod_{j=1}^{2} \|I u_j\|_{X_{\frac{1}{2}+\epsilon}^{0,0}}. \tag{4.70}
\]

for \(u \in X_{\frac{1}{2}+\epsilon}^{0,0} \). Let

\[
F(\xi, \mu, \tau) = \langle \sigma \rangle^{\frac{1}{2} - 2\epsilon} \mathcal{F} u(\xi, \mu, \tau),
\]

\[
F_j(\xi_j, \mu_j, \tau_j) = M(\xi_j) \langle \sigma_j \rangle^{\frac{1}{2} + \epsilon} \mathcal{F} u_j(\xi_j, \mu, \tau_j)(j = 1, 2), \tag{4.71}
\]
and
\[D := \left\{ (\xi_1, \mu_1, \tau_1, \xi, \mu, \tau) \in \mathbb{R}^6, \xi = \sum_{j=1}^{2} \xi_j, \mu = \sum_{j=1}^{2} \mu_j, \tau = \sum_{j=1}^{2} \tau_j \right\}. \]

To obtain (4.70), from (4.71), it suffices to prove that
\[
\int_D |\xi| M(\xi) F(\xi, \mu, \tau) F_j(\xi_j, \mu_j, \tau_j) d\xi_1 d\mu_1 d\tau_1 d\xi d\mu d\tau
\leq C\|F\|_{L^2_b}^2 \prod_{j=1}^{2} \|F_j\|_{L^2_b}. \quad (4.72)
\]

From (2.4) of [26], we have
\[
\frac{M(\xi)}{\prod_{j=1}^{2} M(\xi_j)} \leq C \frac{\|\xi\|^s}{\prod_{j=1}^{2} (\xi_j)^s}. \quad (4.73)
\]

Inserting (4.73) into the left hand side of (4.72), we have
\[
\int_D \frac{|\xi|\|\xi\|^s F(\xi, \mu, \tau) F_j(\xi_j, \mu_j, \tau_j)}{(\sigma_j)^{1+2\epsilon}} \prod_{j=1}^{2} (\xi_j)^s (\sigma_j)^{1+2\epsilon} d\xi_1 d\mu_1 d\tau_1 d\xi d\mu d\tau. \quad (4.74)
\]

By using (4.4), we have (4.74) can be bounded by
\[
C\|F\|_{L^2_b}^2 \prod_{j=1}^{2} \|F_j\|_{L^2_b}. \quad (5.3)
\]

This completes the proof of Lemma 4.3.

5. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1.

We define
\[
\Phi_1(u) := \psi(t) W(t) u_0 + \frac{1}{2} \psi \left(\frac{t}{\tau} \right) \int_0^t W(t-\tau) \partial_x(u^2) d\tau, \quad (5.1)
\]
\[
B_1(0, 2C\|u_0\|_{H^{s+2}}) := \left\{ u : \|u\|_{X^{s+2}_{\delta+2}} \leq 2C\|u_0\|_{H^{s+2}} \right\}. \quad (5.2)
\]

Combining Lemmas 2.2, 4.1 with (5.1)-(5.2), we derive that
\[
\|\Phi_1(u)\|_{X^{s+2}_{\delta+2}} \leq \|\eta(t) W(t) u_0\|_{X^{s+2}_{\delta+2}} + \left\| \frac{1}{2} \eta \left(\frac{t}{\tau} \right) \int_0^t W(t-\tau) \partial_x(u^2) d\tau \right\|_{X^{s+2}_{\delta+2}}
\leq C\|u_0\|_{H^{s+2}} + CT^\epsilon \|\partial_x(u^2)\|_{X^{s+2}_{\delta+2}}
\leq C\|u_0\|_{H^{s+2}} + CT^\epsilon \|u\|_{X^{s+2}_{\delta+2}}^2
\leq C\|u\|_{H^{s+2}} + 4C^3 T^\epsilon \|u_0\|_{H^{s+2}}^2. \quad (5.3)
\]
We define
\[T^\varepsilon := \left[16C^2(\|u_0\|_{H^{s_1,s_2}} + 1) \right]^{-1}. \] (5.4)

From (5.3)-(5.4), we have
\[\|\Phi_1(u)\|_{X^{s_1,s_2}} \leq C\|u_0\|_{H^{s_1,s_2}} + C\|u_0\|_{H^{s_1,s_2}} = 2C\|u_0\|_{H^{s_1,s_2}}. \] (5.5)

Thus, \(\Phi_1 \) maps \(B_1(0, 2C\|u_0\|_{H^{s_1,s_2}}) \) into \(B_1(0, 2C\|u_0\|_{H^{s_1,s_2}}) \). Combining Lemmas 2.2, 4.1 with (5.4)-(5.5), we have
\[\|\Phi_1(u_1) - \Phi_1(u_2)\|_{X^{s_1,s_2}} \leq C \left(\frac{1}{2} \eta \left(\frac{t}{T} \right) \int_0^t W(t-\tau) \partial_x (u_1^2 - u_2^2) d\tau \right) \leq CT^\varepsilon \|u_1 - u_2\|_{X^{s_1,s_2}} \leq 4C^2T^\varepsilon \|u_0\|_{H^{s_1,s_2}} \|u_1 - u_2\|_{X^{s_1,s_2}} \leq \frac{1}{2} \|u_1 - u_2\|_{X^{s_1,s_2}}. \] (5.6)

Thus, \(\Phi_1 \) is a contraction mapping in the closed ball \(B_1(0, 2C\|u_0\|_{H^{s_1,s_2}}) \). Consequently, \(u \) is the fixed point of \(\Phi \) in the closed ball \(B_1(0, 2C\|u_0\|_{H^{s_1,s_2}}) \). Then \(v := u|_{[0,T]} \in X^{s_1,s_2}_{\frac{T}{T+\varepsilon}}([0,T]) \) is a solution to the Cauchy problem for (1.1) with the initial data \(u_0 \) in the interval \([0,T]\). For the facts that uniqueness of the solution and the solution to the Cauchy problem for (1.1) is continuous with respect to the initial data, we refer the readers to Theorems II, III of [24].

This completes the proof of Theorem 1.1.

6. Proof of Theorem 1.2

We firstly prove Lemma 6.1 which is a variant of Theorem 1.1, then we apply Lemma 6.1 to prove Theorem 1.2.

Lemma 6.1. Let \(s_1 > -\frac{9}{8} \) and \(R := \frac{1}{8(C+1)^{\gamma}}, \) where \(C \) is the largest of those constants which appear in (2.7)-(2.8), (4.42), (4.66). Then, the Cauchy problem for (1.1) is locally well-posed for data satisfying
\[\|I_N u_0\|_{L^2} \leq R. \] (6.1)

Moreover, the solution to the Cauchy problem for (1.1) exists on a time interval \([0,1]\).
Proof. We define \(v := I_N u \). Let \(u \) be the solution to the Cauchy problem for (1.1), then \(v \) is the solution to the following equations

\[
v_t + \partial_x^5 v + \partial_x^{-1} \partial_y^2 v + \frac{1}{2} I_N \partial_x (I_N^{-1} v)^2 = 0. \tag{6.2}\]

Thus, \(v \) satisfies the following equations

\[
v = W(t)v_0 + \frac{1}{2} \int_0^t W(t - \tau) I_N \partial_x (I_N^{-1} v)^2 \, d\tau. \tag{6.3}\]

We define

\[
\Phi_2(v) := \psi(t) W(t) I_N u_0 + \frac{1}{2} \psi(t) \int_0^t W(t - \tau) I_N \partial_x (I_N^{-1} v)^2 \, d\tau. \tag{6.4}\]

Combining Lemma 2.2 with 4.3, we have

\[
\|\Phi_2(v)\|_{X^{0,0}} \leq \|\psi(t) W(t) I_N u_0\|_{X^{0,0}} + C \|\psi(t) \int_0^t W(t - \tau) I_N \partial_x (I_N^{-1} v)^2 \|_{X^{0,0}} \]

\[
\leq C \|I_N u_0\|_{L^2} + C \|I_N \partial_x (I_N^{-1} v)^2\|_{X^{0,0}} \]

\[
\leq C \|I_N u_0\|_{L^2} + C \|I_N \partial_x (I_N^{-1} v)^2\|_{X^{0,0}} \]

\[
\leq C \|I_N u_0\|_{L^2} + C \|v\|_{X^{0,0}}^2 \]

\[
\leq CR + C \|v\|_{X^{0,0}}^2. \tag{6.5}\]

We define

\[
B_2(0, 2CR) := \left\{ v : \|v\|_{X^{0,0}} \leq 2CR \right\}. \tag{6.6}\]

Combining (6.5)-(6.6) with the definition of \(R \), we have

\[
\|\Phi_2(v)\|_{X^{0,0}} \leq CR + 4C^3 R^2 = 2CR. \tag{6.7}\]

Thus, \(\Phi_2 \) is a map from \(B_2(0, 2CR) \) to \(B_2(0, 2CR) \). We define

\[
v_j := I_N u_j \ (j = 1, 2), \quad w_1 = I_N^{-1} v_1 - I_N^{-1} v_2, \quad w_2 := I_N^{-1} v_1 + I_N^{-1} v_2. \tag{6.8}\]

Combining Lemmas 2.2, 3.1, 3.2, (6.5)-(6.6) with the definition of \(R \), we have

\[
\|\Phi_2(v_1) - \Phi_2(v_2)\|_{X^{0,0}} \leq C \|\psi(t) \int_0^t W(t - \tau) \partial_x I_N \left[(I_N^{-1} v_1)^2 - (I_N^{-1} v_2)^2\right] d\tau\|_{X^{0,0}} \]

\[
\leq C \|\partial_x I_N (w_1 w_2)\|_{X^{0,0}} \]

\[
\leq C \|v_1 - v_2\|_{X^{0,0}} \left(\|v_1\|_{X^{0,0}} + \|v_2\|_{X^{0,0}}\right) \]

\[
\leq 4C^2 R \|v_1 - v_2\|_{X^{0,0}} \leq \frac{1}{2} \|v_1 - v_2\|_{X^{0,0}}. \tag{6.9}\]

48
Thus, Φ_2 is a contraction mapping from $B_2(0, 2CR)$ to $B_2(0, 2CR)$. Consequently, u is the fixed point of Φ_2 in the closed ball $B_2(0, 2CR)$. Then $v := Iu_{|[0,1]} \in X^{0,0}_{\frac{1}{2}+\epsilon}([0,1])$ is a solution to the Cauchy problem for (5.3) with the initial data I_Nu_0 on the interval $[0,1]$. For the uniqueness of the solution and the fact that the solution is continuous with respect to the initial data, we refer the readers to Theorem II, III of [24].

This completes the proof of Lemma 6.1.

Now we apply the idea of [20] and Lemmas 2.7, 4.2, 6.1 to prove Theorem 1.2.

For $\lambda > 0$, we define

$$u_\lambda(x, y, t) := \lambda^{\frac{4}{s+2}} u \left(\lambda^{\frac{1}{s} + \frac{2}{s+2}} x, \lambda^{\frac{1}{s} + \frac{2}{s+2}} y, \lambda t \right), \quad u_{0\lambda}(x, y) := \lambda^{\frac{4}{s+2}} u \left(\lambda^{\frac{1}{s} + \frac{2}{s+2}} x, \lambda^{\frac{1}{s} + \frac{2}{s+2}} y \right).$$

(6.10)

Thus, $u_\lambda(x, y, t) \in X^{s+1,0}_{\frac{1}{2}+\epsilon}([0, \frac{T}{\lambda}])$ is the solution to

$$
\begin{align*}
\partial_t u_\lambda + \partial_x^2 u_\lambda + \partial_x^{-1} \partial_y^2 u_\lambda + u_\lambda \partial_x u_\lambda &= 0, \\
u_\lambda(x, y, 0) &= u_{0\lambda}(x, y),
\end{align*}
$$

(6.11)

if and only if $u(x, y, t) \in X^{s,0}_{\frac{1}{2}+\epsilon}([0, T])$ is the solution to the Cauchy problem for (1.1) in $[0, T]$ with the initial data u_0. By using a direct computation, for $\lambda \in (0, 1)$, we have

$$
\|I_N u_{0\lambda}\|_{L^2} \leq C N^{-s} \lambda^{\frac{2}{s+2} + \frac{s}{s+2}} \|u_0\|_{H^{s,0}}.
$$

(6.13)

For $u_0 \neq 0$ and $u_0 \in H^{s,0}(\mathbb{R}^2)$, we choose λ, N such that

$$
\|I_N u_{0\lambda}\|_{L^2} \leq C N^{-s} \lambda^{\frac{2}{s+2} + \frac{s}{s+2}} \|u_0\|_{H^{s,0}} := \frac{R}{4}.
$$

(6.14)

Then there exists w_3 which satisfies that $\|w_3\|_{X^{s,0}_{\frac{1}{2}+\epsilon}} \leq 2CR$ such that $v := w_3 \mid_{[0,1]}$ is a solution to the Cauchy problem for (6.11) with $u_{0\lambda}$. Multiplying (6.11) by $2I_Nu_{\lambda}$ and integrating with respect to x, y yield

$$
\frac{d}{dt} \int_{\mathbb{R}^2} (I_N u)^2 \, dx \, dy + \int_{\mathbb{R}^2} I_N u \partial_x I_N \left[(u)^2 \right] \, dx \, dy = 0.
$$

(6.15)

Inserting

$$
\int_{\mathbb{R}^2} I_N u \partial_x \left[(I_N u)^2 \right] \, dx \, dy = 0
$$

into (6.15) yields

$$
\frac{d}{dt} \int_{\mathbb{R}^2} (I_N u)^2 \, dx \, dy = - \int_{\mathbb{R}^2} I_N u \partial_x \left[I_N \left((u)^2 \right) \right] \, dx \, dy.
$$

(6.16)
Combining (6.16) with Lemmas 2.6, 4.2, we have

\[
\int_{\mathbb{R}^2} (I_N u(x, y, 1))^2 dx dy - \int_{\mathbb{R}^2} (I_N u_0)^2 dx dy = -\int_{0}^{1} \int_{\mathbb{R}^2} I_N u_\lambda \partial_x \left[I_N ((u_\lambda)^2) - (I_N u_\lambda)^2 \right] dx dy dt
\]

\[
\leq C \left\| \chi_{[0,1]}(t) I_N u_\lambda \right\|_{X^{0,0}_\frac{1}{2}+\epsilon} \left\| \chi_{[0,1]}(t) \partial_x \left[I_N ((u_\lambda)^2) - (I_N u_\lambda)^2 \right] \right\|_{X^{0,0}_\frac{1}{2}+\epsilon}
\]

\[
\leq C \| I_N u_\lambda \|_{X^{0,0}_\frac{1}{2}+\epsilon} \left\| \partial_x \left[I_N ((u_\lambda)^2) - (I_N u_\lambda)^2 \right] \right\|_{X^{0,0}_\frac{1}{2}+2\epsilon}
\]

\[
\leq CN^{-2+10\epsilon} \| I_N u_\lambda \|_{X^{0,0}_\frac{3}{4}+\epsilon}^3. \tag{6.17}
\]

From (6.14) and (6.15) and the definition of \(R \), we have

\[
\int_{\mathbb{R}^2} (I_N u(x, y, 1))^2 dx dy \leq \frac{R^2}{16} + CN^{-2+10\epsilon} \| I_N u_\lambda \|_{X^{\frac{3}{4}+\epsilon}}^{3}
\]

\[
\leq \frac{R^2}{16} + 8C^4 N^{-2+10\epsilon} R^3 \leq \frac{R^2}{16} + CN^{-2+10\epsilon}. \tag{6.18}
\]

Let \(N \) be sufficiently large such that such that \(8C^4 N^{-2+10\epsilon} R^3 \leq \frac{3}{4} R^2 \), then

\[
\left[\int_{\mathbb{R}^2} (I_N u(x, y, 1))^2 dx dy \right]^\frac{1}{2} \leq R. \tag{6.19}
\]

We consider \(I_N u(x, y, 1) \) as the initial data and repeat the above argument, from Lemma 6.1, we obtain that (6.11)-(6.12) possess a solution in \(\mathbb{R}^2 \times [1, 2] \). In this way, we can extend the solution to (6.11)-(6.12) to the time interval \([0, 2]\). The above argument can be repeated \(L \) steps, where \(L \) is the maximal positive integer such that

\[
CN^{-2+10\epsilon} L \leq \frac{3}{4} R^2. \tag{6.20}
\]

More precisely, the solution to (6.11)-(6.12) can be extended to the time interval \([0, L]\). Thus, we can prove that (6.11)-(6.12) are globally well-posed in \([0, T_\lambda]\) if

\[
L \geq \frac{T_\lambda}{\lambda}. \tag{6.21}
\]

From (6.20), we know that

\[
L \sim N^{2-10\epsilon}. \tag{6.22}
\]

50
We know that (6.21) is valid provided that the following inequality is valid

\[CN^{2-10\epsilon} \geq \frac{T}{\lambda} \sim CTN^{-\frac{5\epsilon}{2s}}. \]

(6.23)

In fact, (6.23) is valid if

\[N^2 > N^{-\frac{5\epsilon}{2s}} \]

(6.24)

which is equivalent to \(-\frac{4}{7} < s < 0\).

This completes the proof of Theorem 1.2.

Acknowledgments

This work is supported by the Natural Science Foundation of China under grant numbers 11571118 and 11771127. The first author is also supported by the Fundamental Research Funds for the Central Universities of China under the grant number 2017ZD094, while second author is also supported by the Young core Teachers program of Henan Normal University under grant number 15A110033.

References

References

[1] L. A. Abramyan, Y. A. Stepanyants, The structure of two-dimensional solitons in media with anomalously small dispersion, *Sov. Phys. JETP.* 61(1985), 963–966.

[2] M. Beals, Self-spreading and strength of singularities for solutions to semilinear wave equations, *Ann. of Math.* 118(1983), 187–214.

[3] M. Ben-Artzi, J. C. Saut, Uniform decay estimates for a class of oscillatory integrals and applications, *Diff. Int. Eqns.* 12(1999), 137–145.

[4] J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, *Geom. Funct. Anal.* 3 (1993), no. 4, 315–341.
[5] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part II: The KdV equation, *Geom. Funct. Anal.* 3(1993), 209–262.

[6] W. G. Chen, J. F. Li, C. X. Miao, On the low regularity of the fifth order Kadomtsev-Petviashvili I equation, *J. Diff. Eqns.* 245(2008), 3433–3469.

[7] J. Colliander, C. E. Kenig, G. Staffilani, Low regularity solutions for the Kadomtsev-Petviashvili I equation, *Geom. Funct. Anal.* 13(2003), 737–794.

[8] J. Colliander, A. D. Ionescu, C. E. Kenig, G. Staffilani, Weighted low-regularity solutions of the KP-I initial-value problem, *Discrete Contin. Dyn. Syst.* 20(2008), 219–258.

[9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness for KdV in Sobolev Spaces of negative index, *Electr. J. Diff. Eqns.* 2001(2001), 1–7.

[10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Sharp global well-posedness for KdV and modified KdV on \mathbb{R} and \mathbb{T}, *J. Amer. Math. Soc.* 16(2003), 705–749.

[11] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain), *Astérisque* (1996), no. 237, Exp. No. 796, 4, 163–187, séminaire Bourbaki, Vol. 1994/95.

[12] B. L. Guo, Z. H. Huo, S. M. Fang, Low regularity for the fifth order Kadomtsev-Petviashvili-I type equation, *J. Diff. Eqns.* 263(2017), 5696–5726.

[13] Z. H. Guo, L. Z. Peng, B. X. Wang, On the local regularity of the KP-I equation in anisotropic Sobolev space, *J. Math. Pures Appl.* 94(2010), 414–432.

[14] A. Grünrock, New applications of the Fourier restriction norm method to wellposedness problems for nonlinear Evolution Equations, Ph.D. Universität Wuppertal, 2002, Germany, Dissertation.

[15] M. Hadac, Well-posedness for the Kadomtsev-Petviashvili II equation and generalizations, *Trans. Amer. Math. Soc.* 360(2008), 6555–6572.
[16] M. Hadac, S. Herr, H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, *Ann. Inst. H. Poincaré-AN*, (2009), 917–941.

[17] N. Hayashi, P. I. Naumkin, Large time asymptotics for the Kadomtsev-Petviashvili equation, *Comm. Math. Phys.* 332(2014), 505–533.

[18] A. D. Ionescu, C. E. Kenig, D. Tataru, Global well-posedness of the KP-I initial-value problem in the energy space, *Invent. Math.* 173 (2008), 265–304.

[19] P. Isaza, F. Linares, G. Ponce, On the propagation of regularity of solutions of the Kadomtsev-Petviashvili equation, *SIAM J. Math. Anal.* 48(2016), 1006–1024.

[20] P. Isaza, J. López, J. Mejía, Cauchy problem for the fifth order Kadomtsev-Petviashvili (KPII) equation, *Commun. Pure Appl. Anal.* 5(2006), 887–905.

[21] P. Isaza, J. Mejía, V. Stallbohm, Local solution for the Kadomtsev-Petviashvili equation with periodic conditions, *Manuscr. Math.* 75(1992), 383–393.

[22] P. Isaza, J. Mejía, V. Stallbohm, A regularity theorem for the Kadomtsev-Petviashvili equation with periodic boundary conditions, *Nonlinear Anal.* 23(1994), 683–687.

[23] P. Isaza, J. Mejía, V. Stallbohm, Local solution for the Kadomtsev-Petviashvili equation in \mathbb{R}^2, *J. Math. Anal. Appl.* 196(1995), 566–587.

[24] P. Isaza, J. Mejía V. Stallbohm, The Cauchy problem for the Kadomtsev-Petviashvili equations (KPII) in Sobolev spaces H^s, $s > 0$, *Diff. Int. Eqns.* 14(2001), 529–557.

[25] P. Isaza, J. Mejía, Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices, *Commun. Partial Diff. Eqns.* 26(2001), 1027–1054.

[26] P. Isaza, J. Mejía, Global solution for the Kadomtsev-Petviashvili equation (KP-II) in anisotropic Sobolev spaces of negative indices, *Electr. J. Diff. Eqns.* 2003, 68, 12 pp.
[27] P. Isaza, J. Mejía, N. Tzvetkov, A smoothing effect and polynomial growth of the Sobolev norms for the KP-II equation, *J. Diff. Eqns.* 220(2006), 1–17.

[28] P. Isaza, J. López, J. Mejía, The Cauchy problem for the Kadomtsev-Petviashvili (KPII) equation in three space dimensions, *Commun. Partial Diff. Eqns.* 32(2007), 611–641.

[29] P. Isaza, J. López, J. Mejía, On the support of solutions to the Kadomtsev-Petviashvili (KP-II) equation, *Commun. Pure Appl. Anal.* 10(2011), 1239–1255.

[30] B. B. Kadomtsev, V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, *Soviet. Phys. Dokl.* 15(1970), 539–541.

[31] V. I. Karpman, V. Yu. Belashov, Dynamics of two dimensional solitons in weakly dispersive media, *Phys. Lett. A.* 154(1991), 131–139.

[32] V. I. Karpman, V. Yu. Belashov, Evolution of three-dimensional nonlinear pulses weakly dispersive media, *Phys. Lett. A.* 154(1991), 1401–144.

[33] C. E. Kenig, On the local and global well-posedness theory for the KP-I equation, *Ann. Inst. H. Poincaré-AN*, 21(2004), 827–838.

[34] C. E. Kenig, G. Ponce, L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, *Duke Math. J.* 71(1993), 1–21.

[35] C. E. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV equation, *J. Amer. Math. Soc.* 9(1996), 573–603.

[36] S. Klainerman, M. Machedon, Smoothing estimates for null forms and applications, *Int. Math. Res. Not.* 1994(9), 1994, 383–389.

[37] H. Koch, J. F. Li, Global well-posedness and scattering for small data for the three-dimensional Kadomtsev-Petviashvili II equation, *Commun. Partial Diff. Eqns.* 42(2017), 950–976.
[38] J. F. Li, J. Xiao, Well-posedness of the fifth order Kadomtsev-Petviashvili I equation in anisotropic Sobolev spaces with nonnegative indices, *J. Math. Pures Appl.* 90(2008), 338-352.

[39] Y. Liu, Strong instability of solitary-wave solutions to a Kadomtsev-Petviashvili equation in three dimensions, *J. Diff. Eqns.* 180(2002), 153–170.

[40] L. Molinet, J. C. Saut, N. Tzvetkov, Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation, *Duke Math. J.* 115(2002), 353–384.

[41] L. Molinet, J. C. Saut, N. Tzvetkov, Global well-posedness for the KP-I equation, *Math. Ann.* 324(2002), 255–275.

[42] L. Molinet, J. C. Saut, N. Tzvetkov, Correction: Global well-posedness for the KP-I equation [Math. Ann.324(2002), 255-275;MR1933858] Math. Ann. 328(2004), 707–710.

[43] L. Molinet, J. C. Saut, N. Tzvetkov, Global well-posedness for the KP-I equation on the background of a non localized solution, *Commun. Math. Phys.* 272(2007), 775–810.

[44] L. C. Molinet, J. C. Saut, N. Tzvetkov, Global well-posedness for the KP-II equation on the background of a non-localized solution, *Ann. Inst. H. Poincaré-AN*, 28 (2011), 653–676.

[45] J. Rauch, M. Reed, Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension, *Duke Math. J.* 49(1982), 397–475.

[46] J. C. Saut, N. Tzvetkov, The Cauchy problem for higher-order KP equations, *J. Diff. Eqns.* 153(1999), 196–222.

[47] J. C. Saut, N. Tzvetkov, The Cauchy problem for the fifth order KP equations, *J. Math. Pures Appl.* 79(2000), 307–338.

[48] J. C. Saut, N. Tzvetkov, On periodic KP-I type equations, *Commun. Math. Phys.* 221(2001), 451–476.
[49] H. Takaoka, Global well-posedness for the Kadomtsev-Petviashvili II equation, *Discrete Contin. Dyn. Syst.* 6(2000), 483–499.

[50] H. Takaoka, Well-posedness for the Kadomtsev-Petviashvili II equation, *Adv. Diff. Eqns.* 5(2000), 1421-1443.

[51] H. Takaoka, N. Tzvetkov, On the local regularity of the Kadomtsev-Petviashvili-II equation, *Int. Math. Res. Not.* 2001(2001), 77–114.

[52] N. Tzvetkov, On the Cauchy problem for Kadomtsev-Petviashvili equation, *Commun. Partial Diff. Eqns.* 24(1999), 1367–1397.

[53] N. Tzvetkov, Global low-regularity solutions for Kadomtsev-Petviashvili equation, *Diff. Int. Eqns.* 13(2000), 1289-1320.

[54] N. Tzvetkov, Long time bounds for the periodic KP-II equation, *Int. Math. Res. Not.* 2004(2004), 2485–2496.

[55] W. Yan, Y. S. Li, J. H. Huang, J. Q. Duan, The Cauchy problem for two dimensional generalized Kadomtsev-Petviashvili-I equation in anisotropic Sobolev spaces, arXiv:1709.01983.

[56] Y. Zhang, Local well-posedness of KP-I initial value problem on torus in the Besov space, *Commun. Partial Diff. Eqns.* 41(2016), 256–281.