Vector Boson Transverse Momentum Distributions at the Tevatron

G. Corcella
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, U.S.A.

M.H. Seymour
Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire. OX11 0QX. U.K.

Abstract. We show vector boson transverse momentum distributions at the Tevatron, obtained by running the HERWIG Monte Carlo event generator with matrix-element corrections. We compare our results with some recent DØ and CDF data.

Vector boson production at hadron colliders is a fundamental process to test Quantum Chromodynamics and the Standard Model of the electroweak interactions. The lowest order processes $q\bar{q}' \rightarrow W$ and $q\bar{q} \rightarrow Z/\gamma^*$ are not sufficient to perform reliable phenomenological predictions, but the initial-state radiation has to be taken into account. A possible way to deal with such multiple emissions consists in running a Monte Carlo event generator. Standard Monte Carlo algorithms describe parton cascades in the soft/collinear approximation, with ‘dead zones’ in the phase space which can be filled by the using of the exact first-order matrix element.

In we implemented matrix-element corrections to the HERWIG simulation of Drell–Yan interactions: we filled the missing phase space using the exact $\mathcal{O}(\alpha_S)$ matrix element (hard corrections) and corrected the shower in the already-populated region using the exact amplitude for every hardest-so-far emission (soft corrections). For W production at the Tevatron, about 4% of the events are generated in the dead zone, about half of which are $qq' \rightarrow Wg$ events. Similar results hold for Z production as well.

An interesting observable to study is the vector boson transverse momentum q_T, which is the object of many theoretical and experimental analyses. While in the parton shower approximation it has to be $q_T < m_{W,Z}$, after matrix-element corrections a fraction of events with larger values of q_T is to be expected. In Fig. (a), we plot the W q_T

† Talk given at the UK Phenomenology Workshop on Collider Physics, Durham, U.K., 19-24 September 1999.
Figure 1. (a): W transverse momentum distribution at the Tevatron according to HERWIG before (dotted line) and after matrix-element correction for $q_{T\text{int}} = 0$; (b): comparison of the DØ data with HERWIG 6.1 after detector corrections for $q_{T\text{int}} = 0$ (solid) and 1 GeV (dashed).

As far as Z production is concerned, we have some preliminary CDF data, already corrected for detector effects, which we compare with HERWIG 6.1 in Fig. 2, where the options $q_{T\text{int}} = 0$, 1 and 2 GeV are investigated. The agreement is acceptable and the role of the implemented matrix-element corrections is crucial in order to succeed in fitting in with the data for $q_T > 50$ GeV. At very low q_T, the best fit is obtained by setting $q_{T\text{int}} = 2$ GeV. In Fig. 3, we plot the ratio of the W and the Z transverse momentum spectra, both normalized to unity, for different values of $q_{T\text{int}}$. Although it can be seen from Fig. 2 (b) that the Z q_T spectrum depends strongly on $q_{T\text{int}}$ at low q_T, the ratio of the W and Z spectra is insensitive to it. This is good news for the W mass measurement in hadron collisions, as this ratio is one of the main theory inputs that is needed. A strong dependence on unknown non-perturbative parameters like $q_{T\text{int}}$ could limit the accuracy of the W mass measurement at the Tevatron and, ultimately, at the LHC.

We have added matrix-element corrections to HERWIG’s treatment of vector boson production in hadron collisions. They make an enormous difference at high transverse
Figure 2. Z transverse momentum distribution according to HERWIG 5.9 with zero intrinsic transverse momentum (dotted line) and according to HERWIG 6.1 with $q_{T\text{int}} = 0$ (solid), 1 GeV (dashed) and 2 GeV (dot-dashed), compared with the CDF data over the whole spectrum (a) and for low q_T values (b).

Figure 3. The ratio R of the W and Z transverse momentum spectra, running HERWIG 6.1, for $q_{T\text{int}} = 0$ (solid), 1 GeV (dashes) and 2 GeV (dotted).

momentum q_T, but little at low q_T. Although the dependence of the results on the non-perturbative intrinsic q_T of partons in the proton ($q_{T\text{int}}$) is quite strong at low q_T, it is very similar in the W and Z cases, so that the ratio of the two q_T spectra is almost independent of $q_{T\text{int}}$.

References

[1] G. Marchesini et al., Comput. Phys. Commun. 67 (1992) 465.
[2] G. Corcella and M.H. Seymour, hep-ph/9908335.
[3] DØ Collaboration, B. Abbott et al., Phys. Rev. Lett. 80 (1998) 5498.
[4] CDF Collaboration, T. Affolder et al., Fermilab-Pub-99/220-E.