MODERATE DEVIATIONS FOR A CURIE-WEISS MODEL WITH DYNAMICAL EXTERNAL FIELD

Anselm Reichenbachs

Abstract. In the present paper we prove moderate deviations for a Curie-Weiss model with external magnetic field generated by a dynamical system, as introduced by Dombry and Guillotin-Plantard in [5]. The results extend those already obtained in the case of a constant external field by Eichelsbacher and Löwe in [2]. The Curie-Weiss model with dynamic external field is related to the so called dynamic \mathbb{Z}-random walks (see [12]). We also prove a moderate deviation result for the dynamic \mathbb{Z}-random walk, completing the list of limit theorems for this object.

2010 Mathematics Subject Classification. 60 F 10, 60 K 35, 82 B 44, 82 B 41, 60 G 50.

February 17, 2022.

1. Introduction

There is a long tradition in considering mean-field models in statistical mechanics such as the Curie-Weiss models. They can be considered as an approximation of the Ising model. Even though these models involve some strong simplifications important physical phenomena can be observed. In [10] and [11], Ellis and Newman proved limit theorems for a class of Curie-Weiss models. These results have been extended by Dombry and Guillotin-Plantard in [5] to a Curie-Weiss model with random external field generated by a dynamical system. They proved a weak law of large numbers, a CLT and a large deviation principle for the mean magnetization of the model. The purpose of the present paper is to prove moderate deviation principles (MDP for short) for the Curie-Weiss model with dynamical external field, extending results already obtained for a class of Curie-Weiss models with constant external field by Eichelsbacher and Löwe in [2].

From a technical point of view there is no distinction between a MDP and a large deviation principle. However, a large deviation principle is normally established on the scale of a law of large numbers, while MDPs describe the probabilities on a scale between a law of large numbers and some central limit theorem. But typically, the rate function in a large deviations regime will depend on the distribution of the underlying random variables, while a MDP inherits properties of both the central limit behaviour as well as the large deviation principle: the speed of convergence to zero of the probability of an untypical event usually is exponential while the rate function does not depend on the fine structure of the underlying distribution. Nevertheless, there are interesting examples which show that this “folklore” does not always hold true. Namely, a “breakdown” of a moderate deviation principle has been proved for the overlap parameter in the Hopfield model in [8], i.e. a MDP does not hold for the hole range of scalings of the overlap parameter.

We consider the following physical model: For a fixed positive integer d and a finite subset $\Lambda \subset \mathbb{Z}^d$ a ferromagnetic crystal is described by a configuration space $\Omega_\Lambda = \Omega^\Lambda$, Ω called spin space, and random variables

Keywords and phrases: moderate deviations, large deviations, statistical mechanics, Curie-Weiss model, dynamic random walks, ergodic theory

1 Ruhr-Universität Bochum, Fakultät für Mathematik, NA 4/26, 44780 Bochum, Germany;
e-mail: anselm.reichenbachs@rub.de
MODERATE DEVIATIONS FOR A CURIE-WEISS MODEL WITH DYNAMICAL EXTERNAL FIELD

$\Sigma^\Lambda_i : \Omega_\Lambda \to \Omega$, $\Sigma^\Lambda_i(\sigma) = \sigma_i$. Σ^Λ_i is called the spin at site i. We restrict ourselves to the classical Curie-Weiss model, where the spins take values in $\Omega = \{+1, -1\}$. The crystal is exposed to an external magnetic field, described by a dynamical system $S = (E, A, \mu, T)$, i.e. a probability space (E, A, μ), a measure-preserving transformation $T : E \to E$ and a measurable function $J : E \to [0, 1]$. We denote by $\beta = T^{-1} > 0$ the inverse temperature and by $J > 0$ a coupling constant. For a spin configuration, i.e. a realization $(\Sigma^\Lambda_i)_{i \in \Lambda} = (\sigma_i)_{i \in \Lambda}$ and $x \in E$ we define the Hamiltonian (see [3]), which specifies the energy of the given configuration $\sigma = (\sigma_i)_{i \in \Lambda}$:

$$H_{\Lambda, x}(\sigma) = -\frac{\beta J}{2|\Lambda|} \left(\sum_{i \in \Lambda} \sigma_i \right)^2 - \frac{1}{2} \sum_{i \in \Lambda} \log \left(\frac{f(T^i x)}{1 - f(T^i x)} \right) \sigma_i.$$

The energy is due to the interaction of the spins and the force of the external magnetic field. The probability of observing the system in state $\sigma = (\sigma_i)_{i \in \Lambda}$ is specified by the Gibbs measure:

$$P_{\Lambda, x}(\sigma) \equiv P_{\Lambda, x, \beta}(\sigma) = \frac{1}{Z_{\Lambda, x}} \exp (-[H_{\Lambda, x}(\sigma)])^\boxplus$$

The normalizing factor $Z_{\Lambda, x}$ is called partition function. For each configuration $\sigma = (\sigma_i)_{i \in \Lambda}$ we define the total magnetization $M_{\Lambda} = \sum_{i \in \Lambda} \Sigma_i$. Without loss of generality we set $d = 1$, $\Lambda = \{1, \ldots, n\}$ in the sequel and we write n instead of Λ, as well as $\Sigma_i^{(n)}$, $P_{n, x}$ and M_n. So we consider a spin model on the complete graph with n edges. This model belongs to the class of mean field models, i.e. the spatial interaction is the same for every pair of spins (J konst). $\{ \log \left(\frac{f(T^i x)}{1 - f(T^i x)} \right) \}_{i \geq 1}$ specifies a magnetic field, which is inhomogeneous in space. The special case $f = \frac{1}{2}$ corresponds to the Curie-Weiss-Modell with zero external field. Furthermore, any external field $\{ g(T^i x) \}_{i \geq 1}$ can be considered choosing the function $f = \frac{g}{1 + e^g}$.

In the case $\beta = 0$ (infinite temperature) $P_{n, x}$ is equal to the product measure

$$\prod_{i=1}^n \left(f(T^i x) \delta_1 + (1 - f(T^i x)) \delta_{-1} \right).$$

Then M_n is a sum of $Ber(f(T^i x))$—distributed random variables σ_i and it defines a dynamic Z-random walk. For further details see [3] or [12].

Let us recall the definition of a large deviation principle:

Let E be a metric space, endowed with the Borel sigma-field $B(E)$ and $(\gamma_n)_{n}$ be a sequence of positive reals with $\gamma_n \to \infty$ as $n \to \infty$. A sequence of probability measures $(\mu_n)_{n \in \mathbb{N}}$ on E is said to satisfy a large deviation principle (LDP for short) with speed γ_n and good rate function $I : E \to [0, +\infty]$ if

- I is lower-semicontinuous and has compact level sets $\Phi(s) = \{ x \in E : I(x) \leq s \}$, $s \in E$.
- For every open set $G \subset E$ it holds

$$\liminf_{n \to \infty} \frac{1}{\gamma_n} \log \mu_n(G) \geq - \inf_{x \in G} I(x).$$

- For every closed set $A \subset E$ it holds

$$\limsup_{n \to \infty} \frac{1}{\gamma_n} \log \mu_n(A) \leq - \inf_{x \in A} I(x).$$

Similarly we say that a sequence of random variables $(Y_n)_{n \in \mathbb{N}}$ with values in E obeys a large deviation principle with speed γ_n and good rate function $I : E \to [0, +\infty]$ if the sequence of their distributions does. We will speak

1In the case that β is fixed we keep quiet about this dependency in the notation of the measure.
about a moderate deviation principle (MDP), whenever the scaling of the corresponding random variable is between that of an ordinary law of large numbers and that of a central limit theorem.

In [12] the authors proved a LDP for the mean magnetization M_n/n in the above defined Curie-Weiss model with dynamical external field. We briefly recall these statements and outline the main ideas of the proofs. The authors introduced a dynamic random walk, which is defined in the following way: Consider a dynamical system $S = (E, A, \mu, T)$, where (E, A, μ) is a probability space and T is a measure-preserving transformation defined on E. Let $f : E \to [0, 1]$ be a measurable function. For each $x \in E$ denote by P_x the distribution of the time-inhomogeneous random walk

$$S_0 = 0, \quad S_n = \sum_{i=1}^{n} X_i \text{ for } n \geq 1$$

with step distribution

$$P_x(X_i = z) = \begin{cases} f(T^i x), & \text{if } z = 1 \\ 1 - f(T^i x), & \text{if } z = -1 \\ 0, & \text{otherwise.} \end{cases}$$

Using the Gärtner-Ellis Theorem (Birkhoff’s theorem implies the needed convergence of the logarithmic moment generating function) the authors proved the following result in [12].

For μ-almost every $x \in E$, the sequence $(S_n/n)_{n \in \mathbb{N}}$ satisfies a LDP with speed n and good rate function

$$\Lambda_n^*(y) = \sup_{\lambda \in \mathbb{R}} \{ (\lambda, y) - \Lambda_x(\lambda) \},$$

where

$$\Lambda_x(\lambda) = \mathbb{E} \left(\log \left(f e^\lambda + (1 - f) e^{-\lambda} \right) \mid T \right) (x),$$

T being the σ-field generated by the fixed points of the transformation T.

Under further assumptions on the dynamical system one can apply a stronger version of Birkhoff’s theorem (see [13]), which states pointwise convergence against a constant instead of μ-almost sure convergence. The result reads as follows:

Suppose that the above defined dynamical system $S = (E, A, \mu, T)$ is uniquely ergodic, with compact metric space E, continuous transformation T and continuous function f. Then the above LDP holds for every point $x \in E$ with deterministic rate function

$$\Lambda(\lambda) = \int_E \log \left(f(y) e^\lambda + (1 - f) e^{-\lambda} \right) \, d\mu(y).$$

The authors in [12] also prove a functional central limit theorem for the dynamic random walk. For the purpose of completeness we also give a MDP for the dynamic random walk. To this end, we consider the centered random variables $\hat{X}_i = X_i - (2f(T^i x) - 1)$ and first define precisely what a MDP is in our case of partial sums of independent random variables. We say that the partial sums of independent random variables we are interested in are the \hat{X}_i. Then the above LDP holds for every point $x \in E$ with rate function

$$\Lambda(\lambda) = \int_E \log \left(f(y) e^\lambda + (1 - f) e^{-\lambda} \right) \, d\mu(y).$$

The authors in [12] also prove a functional central limit theorem for the dynamic random walk. For the purpose of completeness we also give a MDP for the dynamic random walk. To this end, we consider the centered random variables $\hat{X}_i = X_i - (2f(T^i x) - 1)$ and first define precisely what a MDP is in our case of partial sums of independent random variables. We say that the partial sums of independent random variables we are interested in are the \hat{X}_i. Then the above LDP holds for every point $x \in E$ with rate function

$$\Lambda(\lambda) = \int_E \log \left(f(y) e^\lambda + (1 - f) e^{-\lambda} \right) \, d\mu(y).$$

The authors in [12] also prove a functional central limit theorem for the dynamic random walk. For the purpose of completeness we also give a MDP for the dynamic random walk. To this end, we consider the centered random variables $\hat{X}_i = X_i - (2f(T^i x) - 1)$ and first define precisely what a MDP is in our case of partial sums of independent random variables. We say that the partial sums of independent random variables we are interested in are the \hat{X}_i. Then the above LDP holds for every point $x \in E$ with rate function

$$\Lambda(\lambda) = \int_E \log \left(f(y) e^\lambda + (1 - f) e^{-\lambda} \right) \, d\mu(y).$$
We get the following theorem.

Theorem 1.1 (Moderate deviations for the dynamic random walk under the quenched measure). Suppose that \(f(1 - f) \in C_1(S) \) and \(a := \int_E 4f(1 - f)d\mu > 0 \). Then for all \(x \in E, \frac{1}{an}\hat{S}_n \) obeys a MDP with speed \(\frac{a^2}{n} \) rate function \(I(t) = \frac{t^2}{2a} \).

Corollary 1.2. If the dynamical system \(S \) is uniquely ergodic with compact space \(E \) and if \(f \) is continuous, then the assertion of Theorem 1.1 holds.

Remark 1.3. Note that a MDP under the annealed measure, i.e., under the measure \(\mathbb{P}(dy) = \int_E \mathbb{P}_x(dy) d\mu(x) \), can be obtained combining Theorems 2.1 and 2.2 in [4] with Theorem 1.1 above.

Now the LDP for the dynamic random walk on the integers yields a LDP for the mean magnetization \(M_n/n \) via Varadhan’s lemma, since its distribution is absolutely continuous with respect to the distribution of the dynamic random walk and equal to

\[
\frac{dP_{M_n}}{d\mathbb{P}_{x}}(y) = \frac{1}{Z_{n,x}} \exp \left[\frac{\beta J y^2}{2n} \right],
\]

where \(Z_{n,x} = \mathbb{E}_x \left\{ \exp \left[\frac{\beta J (S_n)^2}{2n} \right] \right\} \) is a normalizing constant, i.e., the integrand is a continuous and bounded function on \([-1,1]\). So \(M_n/n \) under \(P_{n,x} \) obeys a LDP with speed \(n \) and good rate function

\[
I_{\beta,x}(s) = \lambda^*(s) - \frac{\beta J s^2}{2} - \inf_{z \in \mathbb{R}} \left\{ \Lambda^*(z) - \frac{\beta J z^2}{2} \right\}, \tag{1.1}
\]

where \(\Lambda^* \) denotes the Fenchel-Legendre transform from above.

The authors also prove central limit theorems for the associated magnetization. Analogously to the treatment in [10] and [11], the asymptotic behaviour of \(M_n \) depends on the extremal points of a function \(G \), which is a transformation of the rate function of the above LDP for the mean magnetization and defined by

\[
G(s) = \frac{\beta J s^2}{2} - \int_E L(f(y), \beta Js) d\mu(y).
\]

Furthermore, one defines for every \(n \geq 1 \) the function

\[
G_n(s) = \frac{\beta J s^2}{2} - \frac{1}{n} \log \mathbb{E}_x(\exp(\beta JsS_n)) \tag{1.2}
\]

\[
= \frac{\beta J s^2}{2} - \sum_{i=1}^{n} L(f(T^i x), \beta Js), \tag{1.3}
\]

where

\[
L(\phi, s) := \begin{cases} [0, 1] \times \mathbb{R} \rightarrow \mathbb{R} \\ (\phi, s) \mapsto \log(\phi e^s + (1 - \phi)e^{-s}). \end{cases} \tag{1.4}
\]

The function \(G \) is real analytic, and the set where \(G \) achieves its minimum is non-empty and finite (see Th. 3.1 in [5]). So we denote by \(g = \min\{G(s) : s \in \mathbb{R}\} \) the value of the global minimum (which is nonpositive since \(G(0) = 0 \)) and by \(m_1, \ldots, m_r \) the minimizers of \(G \). Furthermore, one defines the type \(2k_i \) and the strength \(\lambda_i > 0 \) of the minimum \(m_i \) by

\[
2k_i = \min\{j \geq 0 \mid G^{(j)}(m_i) \neq 0\}
\]

\[
\lambda_i = G^{(2k_i)}(m_i).
\]
Usually, multiple minima occur for values of β larger than some critical value β_c and this phenomenon is called a “phase transition”. For an explicit class of dynamical systems, the authors in [5] can compute a critical temperature β_c for the model. But the situation for $\beta > \beta_c$, i.e. multiple minima of G, seems not to be well understood as we try to outline in the following: In [11] Ellis and Newman proved a law of large numbers (for the Curie-Weiss model with constant external field), i.e. they showed that the mean magnetization converges weakly to a linear combination of the minima of maximal type of G, whose weights can be written explicitly in terms of the types and strengths of the corresponding minima. On the other hand, an LDP for the mean magnetization of this model also yields weak convergence to the zeros of the respective rate function. Interestingly enough, Ellis et al. recently proved in [1] (Th. A.1) by means of convex analysis, that the set of global minimizers of G coincides with the set of zeros of the LDP rate function. This general theorem can also be applied to the Curie-Weiss model with dynamical external field and yields coincidence of the set of zeros of the above LDP rate function and the set of minimizers of G. Astonishingly, in the treatment of the Curie-Weiss model with dynamical external field in [5], the authors claimed that the mean magnetization does not converge in distribution in the case of multiple minima of G. Nevertheless, they proved exponential equivalence of M_n/n to a linear combination of the minimizers of G, i.e. for every continuous bounded function h, the expectation of $h(M_n/n)$ under $P_{n,x}$ is equivalent, as n goes to infinity, to

$$\sum_{i=1}^r b_{i,n} h(m_i) / \sum_{i=1}^r b_{i,n}.$$

For details on the n-dependent weights $b_{i,n}$ see Th. 3.2 in [5].

For the case of a unique minimum m of G, the following limit theorem for the fluctuations of M_n/n around m has been proved in [5] (Th. 3.3): Assume that the unique minimum m of G is of type $2k$ and strength λ and that for every $j \in \{1, \ldots, 2k\}$, the function $\partial_j L(f(\cdot), \beta Jm)$ belongs to the class $C_{j/2k}(S)$. Then, the following convergence of measures holds:

$$\frac{M_n - nm}{n^{1-1/2k}} \Rightarrow Z(2k, \tilde{\lambda}),$$

where $Z(2k, \tilde{\lambda})$ is the probability measure with density function

$$C \exp\left(-\tilde{\lambda}s^{2k}/(2k)!\right),$$

C being a normalizing constant and

$$\tilde{\lambda} = \left\{ \begin{array}{ll} \left(\frac{k-1}{k}\right)^{-1} & \text{if } k = 1, \\ \lambda & \text{if } k \geq 2. \end{array} \right.$$

The purpose of the present paper is to analyze the asymptotic behaviour of M_n on a moderate deviation scale. Our results read as follows:

Theorem 1.4 (Moderate deviations for the Curie-Weiss model with dynamical external field, conditioned version). Let m be a (local or global) minimum of G of type $2k$ and strength λ and assume that for every $j \in \{1, \ldots, 2k\}$ the function $y \mapsto \partial_j L(f(y), \beta Jm)$ belongs to the class $C_{j/2\pi}(S)$. Then there exists an $A = A(m) > 0$ such that for all $0 < a < A$ and for every $1 - \frac{1}{2k} < \alpha < 1$ the sequence of measures

$$\left\{ P_{n,x} \left(\frac{M_n - nm}{n^\alpha} \in \cdot \bigg| \frac{M_n}{n} \in [m-a, m+a] \right) \right\}_{n \in \mathbb{N}}$$
satisfies a MDP with speed \(n^{1-2k+2k\alpha} \) and rate function
\[
I(z) \equiv I_{k,\lambda,\beta,J}(z) := \begin{cases} \frac{z^2}{2\sigma^2}, & k = 1 \\ \frac{\lambda z^{2k}}{(2k)!}, & k \geq 2, \end{cases}
\]
where \(\sigma^2 = \frac{1}{k} - \frac{1}{\beta J} \).

Theorem 1.5 (Moderate deviations for the Curie-Weiss model with dynamical external field, unconditioned version). Assume that \(G \) has a unique global minimum \(m \) of type \(2k \) and strength \(\lambda \) and that for every \(j \in \{1, \ldots, 2k\} \) the function \(y \mapsto \frac{\partial^j}{\partial s^j} L(f(y), \beta Jm) \) belongs to the class \(\mathcal{C}_{\frac{\lambda}{\beta}}(S) \). Then for every \(1 - \frac{1}{2k} < \alpha < 1 \) the sequence of measures
\[
\left\{ P_{n,x} \left(\frac{M_n - nm}{n^\alpha} \in \bullet \right) \right\}_{n \in \mathbb{N}}
\]
satisfies a MDP with speed \(n^{1-2k+2k\alpha} \) and rate function
\[
I(z) \equiv I_{k,\lambda,\beta,J}(z) := \begin{cases} \frac{z^2}{2\sigma^2}, & k = 1 \\ \frac{\lambda z^{2k}}{(2k)!}, & k \geq 2, \end{cases}
\]
where \(\sigma^2 = \frac{1}{k} - \frac{1}{\beta J} \).

2. Auxiliary results

In this section we state several lemmas that we will need in the proofs of our main theorems. The first lemma contains some important information about the sequence of functions \(G_n \) and the function \(G \), as defined in the introduction of the present paper. For the proof we refer to Theorem 3.1, Lemma 3.2 und Lemma 3.4 in [5] respectively.

Lemma 2.1. (i) The function \(G \) is real analytic and the set where \(G \) attains its global minimum is non-empty and finite.
(ii) The sequence of functions \((G_n)_{n \geq 1} \) converges uniformly to \(G \) on compacta of \(\mathbb{R} \) as \(n \) goes to infinity.
Furthermore, the sequence of derivative functions \((G_n^{(k)})_{n \geq 1} \) converges uniformly to \(G^{(k)} \) for every \(k \geq 1 \) on compacta of \(\mathbb{R} \) as \(n \) goes to infinity.
(iii) Let \(A \subset \mathbb{R} \) be a closed subset containing no global minima of \(G \). Then there exists \(\epsilon > 0 \) such that
\[
e^{-ng} \int_A e^{-nG_n(s)} \, ds = O(e^{-n\epsilon}).
\]
(where \(g \) is the value of the global minimum of \(G \).)

The following Lemma is a key ingredient for the proof of our MDPs. It is based on the Taylor expansion of \(G \) and a slight generalization of Lemma 3.3 in [5].

Lemma 2.2. Let \(m \) be a (local or global) minimum of \(G \) of type \(2k \) and strength \(\lambda \). Suppose that for every \(j \in \{1, \ldots, 2k\} \) the function \(y \mapsto \frac{\partial^j}{\partial s^j} L(f(y), \beta Jm) \) belongs to the set \(\mathcal{C}_{\frac{\lambda}{\beta}}(S) \). Let \(1 - \frac{1}{2k} < \alpha < 1 \). Then the following assertions hold:
(i) For every \(s \in \mathbb{R} \)
\[
\lim_{n \to \infty} \frac{1}{n^{2k(\alpha-1)}} (G_n(m + sn^{-(1-\alpha)}) - G_n(m)) = \lambda \frac{s^{2k}}{(2k)!}. \tag{2.1}
\]
The convergence is uniform on compact intervals of the form \([-M, M]\).
(ii) There exist $r > 0$ and $N \in \mathbb{N}$ such that for all $n \geq N$ and $s \in \left[-rn^{(1-\alpha)}, rn^{(1-\alpha)}\right]$ the following upper bound is valid:

$$\frac{1}{n^{2k(\alpha-1)}} (G_n(m + sn^{-(1-\alpha)}) - G_n(m)) \geq \frac{\lambda}{2} \frac{s^{2k}}{(2k)!} - \sum_{j=1}^{2k-1} |s|^j. \quad (2.2)$$

Proof: ad (i): Let $s \in \mathbb{R}$ and $u = sn^{-(1-\alpha)}$. Taylor expansion yields

$$G_n(m + u) - G_n(m) = \sum_{j=1}^{2k} \frac{G_j^2(n)}{j!} u^j + R_n(u), \quad (2.3)$$

where the remainder R_n can be written in the integral form

$$R_n(u) = R_{n,2k}(m + u) = \int_{m}^{m+u} \frac{(m + u - t)^{2k}}{(2k)!} G_n^{(2k+1)}(t) \, dt$$

or rather (substituting $t = m + \vartheta u$)

$$R_n(u) = \frac{u^{2k+1}}{(2k)!} \int_{0}^{1} (1 - \vartheta)^{2k} G_n^{(2k+1)}(m + \vartheta u) \, d\vartheta.$$

The j-th derivative of G_n in m is equal to

$$G_n^{(j)}(m) = P_j(m) - \frac{(\beta J)^j}{n} \sum_{i=1}^{n} \frac{\partial^j}{\partial s^j} L(f(T^j x), \beta J m),$$

where

$$P_j(m) = \begin{cases}
\beta J m, & j = 1 \\
\beta J, & j = 2 \\
0, & \text{otherwise.}
\end{cases}$$

Lemma 2.1 (ii) states that for every $j \in \{1, 2, \ldots\}$

$$G_n^{(j)}(m) \rightarrow G^{(j)}(m) = P_j(m) - (\beta J)^j \int_{E} \frac{\partial^j}{\partial s^j} L(f(y), \beta J m) \, d\mu(y).$$

The assumption that $y \mapsto \frac{\partial^j}{\partial s^j} L(f(y), \beta J m)$ belongs to the set $C_{\frac{2\pi}{n}}$ implies that for all $j \in \{1, \ldots, 2k\}$

$$n \left| G_n^{(j)}(m) - G^{(j)}(m) \right| = o(n^{\frac{2k}{2}}).$$

Since

$$G^{(j)}(m) = \begin{cases}
0, & j = 1, \ldots, 2k - 1 \\
\lambda, & j = 2k
\end{cases}$$

it follows for every $j \in \{1, \ldots, 2k - 1\}$

$$G_n^{(j)}(m) \rightarrow 0 \quad (2.4)$$

and for $j = 2k$

$$G_n^{(2k)}(m) \rightarrow \lambda. \quad (2.5)$$
For the remainder we get
\[
\frac{1}{n^{2k(\alpha-1)}} R_n(s n^{-(1-\alpha)}) = s^{2k+1} n^{-(1-\alpha)} \int_0^1 (1 - \theta)^{2k} G_n^{(2k+1)}(m + \theta s n^{-(1-\alpha)}) d\theta.
\]
This implies
\[
\frac{1}{n^{2k(\alpha-1)}} R_n(s n^{-(1-\alpha)}) \to 0, \quad n \to \infty,
\]
(2.6)
since \(G_n^{(2k+1)}\) is uniformly bounded on the compact interval \([m - |s|, m + |s|]\). Using (2.4), (2.6) and (2.8) we thus get
\[
\frac{1}{n^{2k(\alpha-1)}} (G_n(m + s n^{-(1-\alpha)}) - G_n(m)) = \sum_{j=1}^{2k} \frac{G_n^{(j)}(m)}{j!} n^{(2k-j)(1-\alpha)} s^j
\]
\[
+ \frac{1}{n^{2k(\alpha-1)}} R_n(s n^{-(1-\alpha)})
\to \lambda \frac{s^{2k}}{(2k)!}, \quad n \to \infty
\]
(2.7)
(2.8)
The first 2\(k - 1\) summands fade away in the limit \(n \to \infty\) since for \(j \in \{1, \ldots, 2k - 1\}\) we have
\[
G_n^{(j)}(m) n^{(2k-j)(1-\alpha)} = G_n^{(j)}(m) (n^{1-\frac{\alpha}{2}})^{2k(1-\alpha)} \left(\frac{n^{1-\frac{\alpha}{2}}}{n^{1-\frac{\alpha}{2}}} \right)^{1-2k(1-\alpha)}
\]
\[
= \frac{G_n^{(j)}(m)}{n^{1-\frac{\alpha}{2}} (1-2k(1-\alpha))} \to 0, \quad n \to \infty
\]
(2.9)
here the nominator converges to 0 (see (2.4)) and the exponent of \(n\) in the denominator is positive, so it converges to +\(\infty\) (since the assumption \(1 - \frac{1}{2k} < \alpha < 1\) yields \((1 - \frac{1}{2k})(1 - 2k(1 - \alpha)) > 0\)). We thus have proved the first assertion (2.1) of the Lemma. The convergence is uniform for \(s \in [-M, M]\), since \(s\) is independent of \(n\) on the right hand side of equation (2.7).

(a) We now prove (2.2). Equations (2.8) and (2.9) imply, that there exists \(N \in \mathbb{N}\), such that for all \(n \geq N\) and all \(j \in \{1, \ldots, 2k - 1\}\)
\[
\left| \frac{G_n^{(j)}(m) n^{(2k-j)(1-\alpha)}}{j!} \right| \leq 1
\]
(2.10)
and for \(j = 2k\)
\[
G_n^{(2k)}(m) \geq \frac{3}{4} \lambda.
\]
Now, because of the uniform convergence of \(G_n^{(2k+1)}\) on compacta of \(\mathbb{R}\) there exists \(M > 0\) such that \(\left| G_n^{(2k+1)}(s) \right| \leq M\) for all \(n \in \mathbb{N}\) and for all \(s \in [m - 1, m + 1]\). Let \(r := \min \left\{ \frac{(2k+1)\lambda}{4M}, 1 \right\}\). Then for all \(n \in \mathbb{N}\) and for all
s ∈ [−rn(1−α), rn(1−α)] we have
\[
-\frac{(2k)!}{s^{2k}} \frac{1}{n^{2k(α−1)}} R_n(sn^{−(1−α)}) \leq \left| sn^{-1} \int_0^1 (1 − \vartheta)^{2k} G_n(2k + 1)(m + \vartheta sn^{−(1−α)}) d\vartheta \right|
\leq \left| sn^{-1} \cdot M \left[-\frac{1}{2k + 1} (1 − \vartheta)^{(2k+1)} \right] \right|^1_0
\leq r \cdot M \cdot \frac{1}{2k + 1}
\leq \frac{\lambda}{4},
\]
thus
\[
\frac{1}{n^{2k(α−1)}} R_n(sn^{−(1−α)}) \geq -\frac{\lambda}{4} \frac{s^{2k}}{(2k)!}.
\]
Using the estimates (2.10) and (2.11) equation (2.7) yields for all \(n \geq N \)
\[
\frac{1}{n^{2k(α−1)}} (G_n(m + sn^{−(1−α)}) − G_n(m))
= \frac{2k}{j!} G_n^{(j)}(m) n^{(2k−j)(1−α)} s^j + \frac{1}{n^{2k(α−1)}} R_n(sn^{−(1−α)})
\geq \sum_{j=1}^{2k−1} -\left| G_n^{(j)}(m) n^{(2k−j)(1−α)} s^j + \frac{G_n^{(2k)}(m)s^{2k}}{(2k)!} \right| - \frac{\lambda}{4} \frac{s^{2k}}{(2k)!}
\geq \frac{\lambda}{2} \frac{s^{2k}}{(2k)!} - \sum_{j=1}^{2k−1} |s|^j
\]
This is assertion (ii) of the Lemma. The proof is complete.

\(\square \)

The following lemma concerns a well known transformation of our mean-field measure, sometimes called the Hubbard-Stratonovich transform in the literature. For the proof we refer to Lemma 3.1 in [3].

Lemma 2.3. Let \(W \) be a \(\mathcal{N}(0, \frac{1}{2}) \) -distributed random variable, defined on some probability space \((Ω, \mathcal{F}, Q)\) and independent of \(M_n \) for every \(n \geq 1 \), and let \(m \) and \(α \) be some real numbers. Then the random variable
\[
\frac{M_n − nm}{n^α} + \frac{W}{n^{α−1/2}}
\]
under the measure \(Q_{n,x} := P_{n,x} \otimes Q \) has a density with respect to the Lebesgue measure given by
\[
\frac{\exp(-nG_n(m + sn^{−(1−α)}))}{\int_\mathbb{R} \exp(-nG_n(m + sn^{−(1−α)}))ds}.
\]

The usefulness of the previous lemma lies in the fact that one can often prove MDPs for the convolution, using the Taylor series expansion of \(G \). Clearly, the type \(2k \) and strength \(λ \) of the global minimum \(m \) of \(G \) will therefore play an important role. We next state two lemmas which ensure that it does not matter whether we consider the sequence of measures \(P_{n,x} \circ (\frac{M_n−nm}{n^α} + \frac{W}{n^{α−1/2}})^{-1} \) or the sequence \(P_{n,x} \otimes Q \circ (\frac{M_n−nm}{n^α} + \frac{W}{n^{α−1/2}})^{-1} \) as long as \(k \geq 2 \).
Lemma 2.4. If the sequence of random variables $\frac{M_n - nm}{n^\alpha} + \frac{W}{n^{\alpha - 1/2}}$ satisfies a MDP with respect to $Q_{n,x} = P_{n,x} \otimes Q$ with speed n^γ, $\gamma < 2\alpha - 1$ and rate function I, then so does $\frac{M_n - nm}{n^\alpha}$ with respect to $P_{n,x}$ and the speed and rate function agree.

Proof: The proof is based on an exponential equivalence and can be found in [7]. Nevertheless we give the proof in order to allude to the problems that arise in the case $\gamma = 0$. One shows that the two sequences $\frac{M_n - nm}{n^\alpha} + \frac{W}{n^{\alpha - 1/2}}$ and $\frac{M_n - nm}{n^\alpha}$ are exponentially equivalent and therefore have the same moderate deviation behaviour (see Th. 4.2.13 in [3]). For all $\epsilon > 0$ the following estimate holds:

$$P_{n,x} \otimes Q\left(\left|\frac{M_n - nm}{n^\alpha} + \frac{W}{n^{\alpha - 1/2}} - \frac{M_n - nm}{n^\alpha}\right| > \epsilon\right) = P_{n,x} \otimes Q\left(\frac{W}{n^{\alpha - 1/2}} > \epsilon\right) = Q\left(|W| > cn^{\alpha - \frac{1}{2}}\right) \leq \sqrt{\frac{2\beta J}{\pi}} \frac{1}{cn^{\alpha - \frac{1}{2}}} \exp\left(-\frac{\beta J}{2}c^2n^{2\alpha - 1}\right).$$

This implies

$$\limsup_{n \to \infty} \frac{1}{n^\gamma} \log P_{n,x} \otimes Q\left(\left|\frac{M_n - nm}{n^\alpha} + \frac{W}{n^{\alpha - 1/2}} - \frac{M_n - nm}{n^\alpha}\right| > \epsilon\right) \leq \limsup_{n \to \infty} \left(-\frac{\beta J}{2}c^2n^{2\alpha - 1} - \log\left(\frac{n^\gamma}{\sqrt{2\beta J}cn^{\alpha - \frac{1}{2}}}\right)\right) = \limsup_{n \to \infty} \left(-\frac{\beta J}{2}c^2\left(n^{2\alpha - 1} - 1\right) - \frac{\log\left(\frac{\sqrt{2\beta J}n^{\alpha - \frac{1}{2}}}{n^\gamma}\right)}{n^\gamma}\right) = -\infty,$$

since $\gamma < 2\alpha - 1$ by assumption.

In the case $\gamma = 0$ the speed of the MDP in Theorems [13] and [15] is of the same order as the variance of the respective Gaussian random variable. Therefore the above argument for exponential equivalence fails. In [7] the authors proved a “transfer principle” for LDP which can be applied in this special case (see Proposition A.1 in [7]). The application of this Proposition reads as follows:

Lemma 2.5. Suppose that $\frac{M_n - nm}{n^\alpha} + \frac{W}{n^{\alpha - 1/2}}$ satisfies a MDP with respect to $Q_{n,x} = P_{n,x} \otimes Q$ with speed $n^{2\alpha - 1}$ and rate function $\lambda \frac{x^2}{2\sigma^2}$ for a $\lambda \neq \beta J$. Then so does $\frac{M_n - nm}{n^\alpha}$ with respect to $P_{n,x}$, $1 - \frac{1}{2} < \alpha < 1$, with the same speed and rate function $\frac{x^2}{2\sigma^2}$, where $\sigma^2 = \frac{1}{\lambda} - \frac{1}{\beta J}$.

Proof: See Lemma 3.6 in [7].

Our last lemma can be considered as a starting point of the *Laplace method* in the theory of large deviations. It will be used in the proof of our main theorems. Though it is often used implicitly in the literature we could not find a proof in the relevant books. We therefore give an own proof.

Lemma 2.6. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function, $M > 0$ a real number and $\gamma_n \to \infty$ a sequence of positive integers. Then

$$\lim_{n \to \infty} \frac{1}{\gamma_n} \log \int_{\{|x| \leq M\}} \exp[\gamma_n f(x)] \, dx = \max_{\{|x| \leq M\}} f(x).$$
Proof: Since f is continuous it attains its supremum on the compact interval $[-M, M]$. We get the following estimates for the limes superior and the limes inferior:

\[
\limsup_{n \to \infty} \frac{1}{\gamma_n} \log \int_{\{|x| \leq M\}} \exp \left[\gamma_n f(x) \right] dx \leq \limsup_{n \to \infty} \frac{1}{\gamma_n} \log \int_{\{|x| \leq M\}} \exp \left[\gamma_n \max_{|y| \leq M} f(y) \right] dx \\
= \limsup_{n \to \infty} \frac{1}{\gamma_n} \log \left\{ \exp \left[\gamma_n \max_{|y| \leq M} f(y) \right] \cdot 2M \right\} \\
= \max_{|y| \leq M} f(y)
\]

For $\epsilon > 0$ and $y \in [-M, M]$ let $O_{y, \epsilon} := \{ x \in [-M, M] \mid f(x) > f(y) - \epsilon \}$. Since f is continuous this level set is measurable with respect to Lebesgue measure and for every $\epsilon > 0$ there exists a $\delta > 0$ such that $B(y, \delta) \cap [-M, M]$ is contained in $O_{y, \epsilon}$, so this set has positive Lebesgue measure. Now let $\epsilon > 0$ and $y \in [-M, M]$. Then

\[
\int_{\{|x| \leq M\}} \exp \left[\gamma_n f(x) \right] dx \geq \int_{O_{y, \epsilon}} \exp \left[\gamma_n f(x) \right] dx \\
\geq \int_{O_{y, \epsilon}} \exp \left[\gamma_n (f(y) - \epsilon) \right] dx \\
= \exp \left[\gamma_n (f(y) - \epsilon) \right] \cdot \lambda(O_{y, \epsilon}) > 0
\]

This implies

\[
\liminf_{n \to \infty} \frac{1}{\gamma_n} \log \int_{\{|x| \leq M\}} \exp \left[\gamma_n f(x) \right] dx \geq f(y) - \epsilon
\]

for all $y \in [-M, M]$ and all $\epsilon > 0$. In particular we get

\[
\liminf_{n \to \infty} \frac{1}{\gamma_n} \log \int_{\{|x| \leq M\}} \exp \left[\gamma_n f(x) \right] dx \geq \max_{|y| \leq M} f(y).
\]

\[
\Box
\]

3. Proofs

In this section we first give the proof of our moderate deviation result [1.1] for the dynamic random walk. Thereafter we prove our main Theorems 1.4 and 1.5, i.e. MDPs for the fluctuations of the mean magnetization around the minimizer of G. Our proofs use Laplace method, an equivalent formulation of a LDP which is based on the asymptotic analysis of the scaled logarithms of certain expectations. We refer to the book [6] for a detailed introduction to this approach to large deviation theory. The Laplace method has been successfully applied in the context of the Blume-Emery-Griffiths model in [2], where the authors prove MDP’s for the case of size dependent temperatures, i.e. the limit results are obtained as the pair (β, J) converges along appropriate sequences (β_n, J_n) to points belonging to various subsets of the phase digram. Our proof has been inspired by this approach since we have a similar n-dependence in the Hubbard-Stratonovich transform via the functions G_n.

Proof of Theorem 1.7: In order to apply Gärtner-Ellis-Theorem [3] we consider the Laplace transform of our random variable of interest. Denote by $s_n^2 = \sum_{i=1}^n \text{Var}_x(Y_i) = \sum_{i=1}^n 4f(T^ix)(1 - f(T^ix))$ and let $x \in E$. Let us
fix $x \in E$ and write $\lambda_i \equiv \lambda_i(x) = f(T^i x)$. We then get for each $t \in \mathbb{R}$

$$\log \mathbb{E}_x \left[e^{t \frac{n^2}{a_n} (S_n / a_n) } \right] = \sum_{i=1}^n \log \mathbb{E}_x [ta_n (X_i - 2 \lambda_i + 1)/n]$$

$$= \sum_{i=1}^n \log \left(\lambda_i e^{t a_n (X_i - 2 \lambda_i + 1)/n} + (1 - \lambda_i) e^{t a_n (-2 \lambda_i)/n} \right)$$

$$= \sum_{i=1}^n \log \left(e^{-t a_n 2 \lambda_i/n} (\lambda_i e^{t a_n /n - 1}) \right)$$

$$= -t a_n 2 \sum_{i=1}^n \frac{\lambda_i}{n} + \sum_{i=1}^n \log \left(1 + \lambda_i (e^{t a_n /n} - 1) \right).$$

For n large enough we have $\lambda_i (e^{t a_n /n} - 1) \in [0, 1]$ so that we can use Taylor expansion for the logarithm.

$$\log \left(1 + \lambda_i (e^{t a_n /n} - 1) \right) = \lambda_i (e^{t a_n /n} - 1) - \frac{\lambda_i^2}{2} (e^{t a_n /n} - 1)^2 + \frac{\lambda_i^3}{3} (e^{t a_n /n} - 1)^3 + o \left(\lambda_i^4 (e^{t a_n /n} - 1)^4 \right)$$

$$= \lambda_i \frac{2 t a_n}{n} + \lambda_i \frac{(2t)^2 a_n^2}{2n^2} + \lambda_i \frac{(2t)^3 a_n^3}{3! n^3} + o \left(\frac{\lambda_i a_n^4}{n^4} \right) - \lambda_i^2 \frac{(2t)^2 a_n^2}{2n^2}$$

$$- \lambda_i^3 \frac{(2t)^3 a_n^3}{3! n^3} + o \left(\frac{\lambda_i^2 a_n^4}{n^4} \right) + \lambda_i^3 \frac{(2t)^3 a_n^3}{3! n^3} + o \left(\frac{\lambda_i a_n^4}{n^4} \right) (3.1)$$

$$= \lambda_i \frac{2 t a_n}{n} + \lambda_i \frac{(2t)^2 a_n^2}{2n^2} - \lambda_i^2 \frac{(2t)^2 a_n^2}{2n^2} + o \left(\lambda_i (1 - \lambda_i) \frac{a_n^3}{n^3} \right) (3.2)$$

Here we used Taylor series for the exponential function at 0 in (3.1) and the following estimate in equation (3.2).

$$\lambda_i \frac{(2t)^3 a_n^3}{3! n^3} - \lambda_i^2 \frac{(2t)^3 a_n^3}{3! n^3} + \lambda_i^3 \frac{(2t)^3 a_n^3}{3! n^3} = \lambda_i^2 \frac{(2t)^3 a_n^3}{3! n^3} (1 - 3\lambda_i + 2\lambda_i^2)$$

$$= \frac{(2t)^3 a_n^3}{3! n^3} \lambda_i (1 - \lambda_i) (1 - 2\lambda_i)$$

$$\leq \frac{(2t)^3 a_n^3}{3! n^3} \lambda_i (1 - \lambda_i).$$

We therefore finally get

$$\log \left(1 + \lambda_i (e^{t a_n /n} - 1) \right) = \frac{(2t)^2 a_n^2}{2n} \sum_{i=1}^n \lambda_i (1 - \lambda_i) + o \left(\frac{a_n^3}{n^3} \sum_{i=1}^n \lambda_i (1 - \lambda_i) \right)$$

$$= \frac{(2t)^2 a_n^2}{2n} \sum_{i=1}^n 4 f(T^i x) (1 - f(T^i x)) + o \left(\frac{a_n^3}{n^2} \sum_{i=1}^n f(T^i x) (1 - f(T^i x)) \right)$$

for all $t \in \mathbb{R}$ and $n \to \infty$. Thus

$$\lim_{n \to \infty} \frac{n}{a_n^3} \log \left(1 + \lambda_i (e^{t a_n /n} - 1) \right) = \frac{(2t)^2}{2}$$

(3.3)
since $f \in C_1(S)$ and $a_n/n \rightarrow 0$ as $n \rightarrow \infty$ by assumption. An application of the Gärtner-Ellis-Theorem (see Th. 3.2.6 in [3]) now yields an MDP for $\frac{1}{a_n} \dot{S}_n$ with speed $\frac{a_n^2}{n}$ and rate function

$$I(t) = \sup_x \left\{ xt - \frac{t^2 a}{2} \right\} = \frac{t^2}{2a}.

\square$$

Proof of Theorem 1.4. We would like to prove a MDP for the sequence of probability measures

$$\left\{ P_{n,x} \left(\frac{M_n - nm}{n^\alpha} \in \bullet \left| \frac{M_n}{n} \in [m-a, m+a] \right. \right) \right\}_{n \in \mathbb{N}}$$

$$= \left\{ P_{n,x} \left(\frac{M_n - nm}{n^\alpha} \in \bullet \left| \frac{M_n - nm}{n^\alpha} \in [-an^{1-\alpha}, an^{1-\alpha}] \right. \right) \right\}_{n \in \mathbb{N}}$$

for some $A = A(m)$ and all $0 < a < A$. The Lemmas 2.4 und 2.5 state that it suffices to prove a MDP for the sequence of measures

$$\left\{ Q_{n,x} \left(\frac{M_n - nm}{n^\alpha} + \frac{W}{n^{\alpha - \frac{1}{2}}} \in \bullet \left| \frac{M_n - nm}{n^\alpha} + \frac{W}{n^{\alpha - \frac{1}{2}}} \in [-an^{1-\alpha}, an^{1-\alpha}] \right. \right) \right\}_{n \in \mathbb{N}}.$$

Lemma 2.6 yields for every Borel set B

$$Q_{n,x} \left(\frac{M_n - nm}{n^\alpha} + \frac{W}{n^{\alpha - \frac{1}{2}}} \in B \left| \frac{M_n - nm}{n^\alpha} + \frac{W}{n^{\alpha - \frac{1}{2}}} \in [-an^{1-\alpha}, an^{1-\alpha}] \right. \right)$$

$$= \frac{\int_B \exp(-nG_n(sn^{-1})\cdot ds)}{\int_{-an^{1-\alpha}}^{an^{1-\alpha}} \exp(-nG_n(sn^{-1})\cdot ds)}.$$

We will prove a MDP for this sequence of measures via Laplace principle. Theorem 1.2.3 in [6] states that it satisfies a MDP with the respective speed and rate function if and only if it satisfies the Laplace principle. So let $\Psi \in C_0(\mathbb{R})$ be a continuous and bounded function. To verify the Laplace principle we have to show that

$$\lim_{n \rightarrow \infty} \frac{1}{n^{1-2k+2\alpha}} \log \int_\mathbb{R} \exp \left[n^{1-2k+2\alpha} \Psi(s) \right] Q_{n,x} \left(Y_n \in ds \left| Y_n \in [-an^{1-\alpha}, an^{1-\alpha}] \right. \right)$$

$$= \sup_{s \in \mathbb{R}} \left\{ \Psi(s) - \lambda \frac{s^{2k}}{(2k)!} \right\}, \quad (3.4)$$

where we used the abbreviation $Y_n := \frac{M_n - nm}{n^\alpha} + \frac{W}{n^{\alpha - \frac{1}{2}}}$. We substitute the density of $Q_{n,x}(Y_n \in \bullet \left| Y_n \in [-an^{1-\alpha}, an^{1-\alpha}] \right. \right.$ on the left hand side of (3.3) and thus have to analyze the following object:

$$\frac{1}{n^{1-2k+2\alpha}} \log \left\{ \frac{\int_{-an^{1-\alpha}}^{an^{1-\alpha}} \exp \left[n^{1-2k+2\alpha} \Psi(s) - nG_n(m + sn^{-1}) \right] \cdot ds}{\int_{-an^{1-\alpha}}^{an^{1-\alpha}} \exp \left[-nG_n(m + sn^{-1}) \right] \cdot ds} \right\},$$

or equivalently

$$\frac{1}{n^{1-2k+2\alpha}} \log \left\{ \frac{\int_{-an^{1-\alpha}}^{an^{1-\alpha}} \exp \left[n^{1-2k+2\alpha} \Psi(s) - n(G_n(m + sn^{-1}) - G_n(m)) \right] \cdot ds}{\int_{-an^{1-\alpha}}^{an^{1-\alpha}} \exp \left[-n(G_n(m + sn^{-1}) - G_n(m)) \right] \cdot ds} \right\}. \quad (3.5)$$
We consider the nominator and the denominator in (3.5) separately. Lemma 2.2 states that there exist \(r > 0, N \in \mathbb{N} \) and a polynomial \(H(s) = \frac{\lambda s^2}{2} \sum_{j=1}^{2k} |s|^j \) such that for all \(n \geq N \) and for all \(s \) with \(|s| < rn^{1-\alpha} \) the following estimate holds:

\[
\frac{1}{n^{2k(\alpha-1)}} (G_n(m + sn^{-(1-\alpha)}) - G_n(m)) \geq H(s). \tag{3.6}
\]

We choose \(A(m) := r \). Since the leading coefficient of \(H \) is positive, \(H(s) \to \infty \) for \(|s| \to \infty \). Since \(H(s) \to \infty \) and \(\lambda \frac{s^2}{2k} \to \infty \) for \(|s| \to \infty \), there exists \(M > 0 \) such that \(\sup_{|s| > M} \{ \Psi(s) - H(s) \} \leq -|\Delta| - 1 \) and the supremum of \(\Psi - \lambda \frac{s^2}{2k} \) over \(\mathbb{R} \) is attained on the interval \([-M, M]\). This and item (3.6) together imply that for all \(0 < a < A \) and for all \(n \geq N \) with \(an^{1-\alpha} > M \) it holds

\[
\begin{align*}
\sup_{\{M < |s| < an^{1-\alpha}\}} \left\{ n^{1-2k+2k\alpha} \Psi(s) - n(G_n(m + sn^{-1-\alpha}) - G_n(m)) \right\} \\
= \sup_{\{M < |s| < an^{1-\alpha}\}} \left\{ n^{1-2k+2k\alpha} \left[\Psi(s) - \frac{1}{n^{2k(\alpha-1)}} (G_n(m + sn^{-1-\alpha}) - G_n(m)) \right] \right\} \\
\leq -n^{1-2k+2k\alpha} \left(\sup_{s \in \mathbb{R}} \left\{ \Psi(s) - \lambda \frac{s^2}{(2k)!} \right\} \right) + 1. \tag{3.7}
\end{align*}
\]

Now let \(0 < a < A \), with \(A = A(m) \) being the constant chosen above. Lemma 2.2 then implies that for all \(\delta > 0 \) and \(n \) large enough

\[
\left| \frac{1}{n^{2k(\alpha-1)}} (G_n(m + sn^{-1-\alpha}) - G_n(m)) - \lambda \frac{s^2}{(2k)!} \right| < \delta,
\]

for all \(s \in [-M, M] \), where \(M \) is the constant chosen in (3.7). Thus

\[
\begin{align*}
\exp \left(-n^{1-2k+2k\alpha} \cdot \delta \right) \int_{\{|s| \leq M\}} \exp \left(n^{1-2k+2k\alpha} \left[\Psi(s) - \lambda \frac{s^2}{(2k)!} \right] \right) \, ds \\
\leq \int_{\{|s| \leq M\}} \exp \left(n^{1-2k+2k\alpha} \left[\Psi(s) - \frac{1}{n^{2k(\alpha-1)}} (G_n(m + sn^{-1-\alpha}) - G_n(m)) \right] \right) \, ds \\
\leq \exp \left(n^{1-2k+2k\alpha} \cdot \delta \right) \int_{\{|s| \leq M\}} \exp \left(n^{1-2k+2k\alpha} \left[\Psi(s) - \lambda \frac{s^2}{(2k)!} \right] \right) \, ds \tag{3.8}
\end{align*}
\]

Estimate (3.7) implies for \(n \) large enough

\[
\begin{align*}
\int_{\{M < |s| < an^{1-\alpha}\}} \exp \left(n^{1-2k+2k\alpha} \Psi(s) - n(G_n(m + sn^{-1-\alpha}) - G_n(m)) \right) \, ds \\
\leq 2an^{1-\alpha} \exp \left(-n^{1-2k+2k\alpha} \left(\sup_{s \in \mathbb{R}} \left\{ \Psi(s) - \lambda \frac{s^2}{(2k)!} \right\} \right) + 1 \right). \tag{3.9}
\end{align*}
\]
Therefore

$$\exp \left(-n^{1-2k+2\alpha} \right) \int_{\{|s| \leq M\}} \exp \left(n^{1-2k+2\alpha} \left[\Psi(s) - \lambda \frac{s^{2k}}{(2k)!} \right] \right) \, ds$$

$$\leq \int_{-an^{1-\alpha}}^{an^{1-\alpha}} \exp \left[n^{1-2k+2\alpha} \Psi(s) - n(G_n(m + sn^{(1-\alpha)}) - G_n(m)) \right] \, ds$$

$$\leq \exp \left(n^{1-2k+2\alpha} \right) \int_{\{|s| \leq M\}} \exp \left(n^{1-2k+2\alpha} \left[\Psi(s) - \lambda \frac{s^{2k}}{(2k)!} \right] \right) \, ds$$

$$+ 2an^{1-\alpha} \exp \left(-n^{1-2k+2\alpha} \left[\sup_{s \in \mathbb{R}} \{ \Psi(s) - \lambda \frac{s^{2k}}{(2k)!} \} + 1 \right] \right).$$

Lemma 2.6 and the fact that the supremum of $$\Psi - \lambda \frac{s^{2k}}{(2k)!}$$ is attained on the interval $$[-M, M]$$ now yield

$$\lim_{n \to \infty} \frac{1}{n^{1-2k+2\alpha}} \log \int_{\{|s| \leq M\}} \exp \left(n^{1-2k+2\alpha} \left[\Psi(s) - \lambda \frac{s^{2k}}{(2k)!} \right] \right) \, ds$$

$$= \sup_{\{|s| \leq M\}} \{ \Psi(s) - \lambda \frac{s^{2k}}{(2k)!} \}$$

$$= \sup_{s \in \mathbb{R}} \{ \Psi(s) - \lambda \frac{s^{2k}}{(2k)!} \}.$$

Therefore

$$\sup_{s \in \mathbb{R}} \{ \Psi(s) - \lambda \frac{s^{2k}}{(2k)!} \} - \delta$$

$$\leq \lim \inf_{n \to \infty} \frac{1}{n^{1-2k+2\alpha}} \log \int_{-an^{1-\alpha}}^{an^{1-\alpha}} \exp \left[n^{1-2k+2\alpha} \Psi(s) - n(G_n(m + sn^{(1-\alpha)}) - G_n(m)) \right] \, ds$$

$$\leq \lim \sup_{n \to \infty} \frac{1}{n^{1-2k+2\alpha}} \log \int_{-an^{1-\alpha}}^{an^{1-\alpha}} \exp \left[n^{1-2k+2\alpha} \Psi(s) - n(G_n(m + sn^{(1-\alpha)}) - G_n(m)) \right] \, ds$$

$$\leq \sup_{s \in \mathbb{R}} \{ \Psi(s) - \lambda \frac{s^{2k}}{(2k)!} \} + \delta.$$

Since this equality is valid for all $$\delta > 0$$ we finally get

$$\lim_{n \to \infty} \frac{1}{n^{1-2k+2\alpha}} \log \int_{-an^{1-\alpha}}^{an^{1-\alpha}} \exp \left[n^{1-2k+2\alpha} \Psi(s) - n(G_n(m + sn^{(1-\alpha)}) - G_n(m)) \right] \, ds$$

$$= \sup_{s \in \mathbb{R}} \{ \Psi(s) - \lambda \frac{s^{2k}}{(2k)!} \}.$$

Considering the special case $$\Psi \equiv 0$$ yields

$$\lim_{n \to \infty} \frac{1}{n^{1-2k+2\alpha}} \log \int_{-an^{1-\alpha}}^{an^{1-\alpha}} \exp \left[-n(G_n(m + sn^{(1-\alpha)}) - G_n(m)) \right] \, ds$$

$$= \sup_{s \in \mathbb{R}} \left\{ -\lambda \frac{s^{2k}}{(2k)!} \right\}$$

$$= 0.$$.
Taking these two limits together we get \(\Psi(s) = \lim_{n \to \infty} \Psi_n(s)\). Now the Lemmas 2.4 and 2.5 can be applied in the cases \(k \geq 2\) and \(k = 1\) respectively. This yields the assertion.

\[\square\]

Proof of Theorem 1.4: The Lemmas 2.4 and 2.5 state that it suffices to prove a MDP for the sequence of measures

\[\left\{ Q_{n,x} \left(\frac{M_n - nm}{n^\alpha} + \frac{W}{n^{\alpha/2}} \in \bullet \right) \right\}_{n \in \mathbb{N}}.\]

By Theorem 1.4 we already know that for some \(A(m)\) and all \(0 < a < A(m)\) the sequence

\[\left\{ Q_{n,x} \left(\frac{M_n - nm}{n^\alpha} + \frac{W}{n^{\alpha/2}} \in \bullet \left| \frac{M_n - nm}{n^\alpha} + \frac{W}{n^{\alpha/2}} \in [-an^{1-\alpha}, an^{1-\alpha}] \right. \right) \right\}_{n \in \mathbb{N}}\]

obeys a MDP with the above speed and rate function. We prove the MDP again via Laplace method, i.e. we consider for \(\Psi \in \mathcal{C}_b(\mathbb{R})\)

\[
\frac{1}{n^{1-2k+2\alpha}} \log \int_{\mathbb{R}} \exp \left[n^{1-2k+2\alpha} \Psi(s)\right] dQ_{n,\beta}(s)
= \frac{1}{n^{1-2k+2\alpha}} \log \left\{ \frac{\int_{\mathbb{R}} \exp \left[n^{1-2k+2\alpha} \Psi(s) - nG_n(m + sn^{-1-\alpha})\right] ds}{\int_{\mathbb{R}} \exp \left[-nG_n(m + sn^{-1-\alpha})\right] ds} \right\}
\]

or equivalently

\[
\frac{1}{n^{1-2k+2\alpha}} \log \left\{ \frac{\int_{\mathbb{R}} \exp \left[n^{1-2k+2\alpha} \Psi(s) - n(G_n(m + sn^{-1-\alpha}) - G_n(m))\right] ds}{\int_{\mathbb{R}} \exp \left[-n(G_n(m + sn^{-1-\alpha}) - G_n(m))\right] ds} \right\}.
\]

und we study the nominator and the denominator separately. To this end we apply the conditioned version of the MDP as stated in Theorem 1.4 and the remaining work consists in controlling the missing integrals. For that purpose we make use of the assumed uniqueness of the global minimum of \(G\). Due to the lack of space we write

\[(\ldots) := \exp \left[n^{1-2k+2\alpha} \Psi(s) - n(G_n(m + sn^{-1-\alpha}) - G_n(m))\right].\]

We then get

\[
\frac{1}{n^{1-2k+2\alpha}} \log \int_{\mathbb{R}} (\ldots) ds
= \frac{1}{n^{1-2k+2\alpha}} \log \left\{ \int_{[-an^{1-\alpha}, an^{1-\alpha}]} (\ldots) ds + \int_{\{|s| > an^{1-\alpha}\}} (\ldots) ds \right\},
\]

thus

\[
\begin{align*}
\liminf_{n \to \infty} \frac{1}{n^{1-2k+2\alpha}} \log \int_{[-an^{1-\alpha}, an^{1-\alpha}]} (\ldots) ds
&\leq \limsup_{n \to \infty} \frac{1}{n^{1-2k+2\alpha}} \log \left\{ \int_{[-an^{1-\alpha}, an^{1-\alpha}]} (\ldots) ds + \int_{\{|s| > an^{1-\alpha}\}} (\ldots) ds \right\} \\
&= \max \left\{ \limsup_{n \to \infty} \frac{1}{n^{1-2k+2\alpha}} \log \int_{[-an^{1-\alpha}, an^{1-\alpha}]} (\ldots) ds, \right. \\
&\left. \limsup_{n \to \infty} \frac{1}{n^{1-2k+2\alpha}} \log \int_{\{|s| > an^{1-\alpha}\}} (\ldots) ds \right\}.
\end{align*}
\]

(3.11)
Theorem 1.4 implies
\[\lim_{n \to \infty} \frac{1}{n^{1-2k+2\alpha}} \log \int_{\{|s| > an^{1-\alpha}\}} (\ldots) \, ds = \sup_{s \in \mathbb{R}} \left\{ \Psi(s) - \lambda \frac{s^{2k}}{(2k)!} \right\}. \]

We now show that the second argument of the maximum converges to \(-\infty\) as \(n\) goes to \(\infty\). Thereby we make use of the uniqueness of the global minimum \(m\) of \(G\). Lemma 2.1 (iii) implies
\[\frac{1}{n^{1-2k+2\alpha}} \log \int_{\{|s| > an^{1-\alpha}\}} (\ldots) \, ds = \frac{1}{n^{1-2k+2\alpha}} \log \int_{\{|t-m| > a\}} \exp \left[n^{1-2k+2\alpha} \Psi((t-m)n^{1-\alpha}) - n(G_n(t) - G_n(m)) \right] \, dt \]
\[\leq \frac{1}{n^{1-2k+2\alpha}} \log \left\{ \exp \left[n^{1-2k+2\alpha} \|\Psi\|_{\infty} \cdot n^{1-\alpha} e^{nG_n(m)} \int_{\{|t-m| > a\}} \exp(-nG_n(t)) \, dt \right] = O(e^{-n-a}) \right\} \]
\[= \|\Psi\|_{\infty} + \frac{1}{n^{1-2k+2\alpha}} \log \{ n^{-\alpha} O(\exp[-n(\epsilon + (g - G_n(m)))]) \} \]
\[\to -\infty, \quad n \to \infty, \quad (3.12) \]

since the set \(|t-m| > a\) does not contain a minimum of \(G\). This together with inequality (3.11) yields
\[\lim_{n \to \infty} \frac{1}{n^{1-2k+2\alpha}} \log \int_{\mathbb{R}} (\ldots) \, ds = \lim_{n \to \infty} \frac{1}{n^{1-2k+2\alpha}} \log \int_{\{-an^{1-\alpha} < s < an^{1-\alpha}\}} (\ldots) \, ds \]
\[= \sup_{s \in \mathbb{R}} \left\{ \Psi(s) - \lambda \frac{s^{2k}}{(2k)!} \right\}. \]

Considering the special case \(\Psi \equiv 0\) implies
\[\lim_{n \to \infty} \frac{1}{n^{1-2k+2\alpha}} \log \int_{\mathbb{R}} \exp \left[-n(G_n(m) + sn^{-1-\alpha}) - G_n(m) \right] \, ds = \sup_{s \in \mathbb{R}} \left\{ -\lambda \frac{s^{2k}}{(2k)!} \right\} = 0. \]

These two limits together yield (3.4). By Lemma 2.3 and Lemma 2.5 we get the assertion for the case \(k \geq 2\) and \(k = 1\) respectively.

\[\square \]

For illustrational purposes we give a concrete example of a dynamical system and compute the rate function of the respective MDP explicitly. Note that this dynamical system has already been considered in [5]. We refer to this paper in order to check that our conditions imposed in Theorem 1.5 hold true for this concrete example.
4. Example: irrational rotation on the torus

In [5] the authors consider the dynamical system \((T, B(T), \lambda_T, T_\alpha)\). There \(T = \mathbb{R}/\mathbb{Z} = [0,1[\) denotes the one-dimensional torus, \(\lambda_T\) the restricted Lebesgue-measure and \(T_\alpha\) the irrational rotation with angle \(\alpha\) of type \(\eta\) (see Definition 5.3 in [5]), i.e. \(x \mapsto x + \alpha \mod 1\).

Let \(f(x) = x\) be the identity on \(T\). In [5] it is proved that the Curie-Weiss model with dynamical external field according to this dynamical system exhibits a phase transition at the critical temperature \(\beta_c = \frac{3}{2J}\).

Theorem 4.1 (MDP for the irrational rotation on the one-dimensional torus). For the above defined dynamical system the following assertions hold true.

1. For \(\beta < \beta_c, \eta < 2\) and for all \(\frac{1}{2} < \alpha < 1\) the sequence of measures

\[
\left\{ P_{n,x} \left(\frac{M_n - nm}{n^\alpha} \in \bullet \right) \right\}_{n \in \mathbb{N}}
\]

satisfies a MDP with scale \(n^{2\alpha-1}\) and rate function

\[
I(z) = \frac{z^2}{2\sigma^2},
\]

where \(\sigma^2 = \frac{2}{2J}\).

2. For \(\beta = \beta_c, \eta < 4/3\) and for all \(\frac{1}{2k} < \alpha < 1\) the sequence of measures

\[
\left\{ P_{n,x} \left(\frac{M_n - nm}{n^\alpha} \in \bullet \right) \right\}_{n \in \mathbb{N}}
\]

satisfies a MDP with scale \(n^{1-2k+2k\alpha}\) and rate function

\[
I(z) = \frac{9}{80}z^4.
\]

References

[1] M. Costeniuc, R. S. Ellis: Complete analysis of the phase transitions and ensemble equivalence for the Curie-Weiss-Potts model. Journal of Mathematical Physics 46 (2005), 1-25.

[2] M. Costeniuc, R. S. Ellis, P. T.-H. Otto: Multiple Critical Behavior of Probabilistic Limit Theorems in the Neighborhood of a Tricritical Point. Journal of Statistical Physics 127 (2007), 495-552.

[3] A. Dembo und O. Zeitouni: Large Deviations Techniques and Applications. Springer-Verlag New York, 2. Auflage, 1998.

[4] I. H. Dinwoodie, S. L. Zabell Large Deviations for exchangeable random vectors. The Annals of Probability 20 (1992), No. 3, 1147-1166.

[5] C. Dombry, N. Guillotin-Plantard: The Curie-Weiss model with dynamical external field. Markov Processes and related fields 15 (2009), 1-30.

[6] P. Dupuis, R. S. Ellis: A Weak Convergence Approach to the Theory of Large Deviations. John Wiley & Sons, 1997.

[7] P. Eichelsbacher, M. Löwe: Moderate Deviations for a Class of Mean-Field Models. Markov Processes and related fields 15 (2009), 345-366.

[8] P. Eichelsbacher, M. Löwe: Moderate Deviations for the overlap parameter in the Hopfield model. Probability Theory and Related Fields 130 (2004), 441-472.

[9] R. S. Ellis: Entropy, Large Deviations and Statistical Mechanics. Springer-Verlag New York, 1985.

[10] R. S. Ellis, C. M. Newman: Limit Theorems for Sums of Dependent Random Variables occurring in Statistical Mechanics. Springer-Verlag, Z. für Wahrscheinlichkeitstheorie und verw. Gebiete 44 (1978), 117-139.

[11] R. S. Ellis, C. M. Newman: Limit Theorems for Sums of Dependent Random Variables occurring in Statistical Mechanics II. Conditioning, Multiple Phases, and Metastability. Springer-Verlag, Z. für Wahrscheinlichkeitstheorie und verw. Gebiete 51 (1980), 153-169.

[12] N. Guillotin-Plantard, R. Schott: Dynamic Random Walks: Theory and Applications. Elverier B.V., 2006.

[13] F. Merlevède, M. Peligrad: Functional moderate deviations for triangular arrays and applications. ALEA 5 (2009), 3-20.

[14] K. Petersen: Ergodic Theory. Cambridge University Press, 1983.