Title:

Complexes of C-projective modules

Author(s):

E. Amanzadeh and M. T. Dibaei
COMPLEXES OF C-PROJECTIVE MODULES

E. AMANZADEH* AND M. T. DIBAEI

(Communicated by Siamak Yassemi)

ABSTRACT. Inspired by a recent work of Buchweitz and Flenner, we show that, for a semidualizing bimodule C, C–perfect complexes have the ability to detect when a ring is strongly regular. It is shown that there exists a class of modules which admit minimal resolutions of C–projective modules.

Keywords: Semidualizing, C–projective, P_C–resolution, C–perfect complex, strongly regular.

MSC(2010): Primary: 13D05; Secondary: 16E05, 16E10.

1. Introduction

Let R be a left and right noetherian ring (not necessarily commutative), all modules left R–modules and C a semidualizing (R, R)–bimodule (Definition 2.1). A complex X_\bullet of R–modules is said to be C–perfect if it is quasiisomorphic to a finite complex

$$T_\bullet = 0 \rightarrow C \otimes_R P_n \rightarrow C \otimes_R P_{n-1} \rightarrow \cdots \rightarrow C \otimes_R P_1 \rightarrow C \otimes_R P_0 \rightarrow 0,$$

where each P_i is a finite (i.e. finitely generated) projective R–module. The width of such a C–perfect complex X_\bullet, denoted by $\text{wd}(X_\bullet)$, is defined to be the minimal length n of a complex T_\bullet satisfying the above conditions. Recall from [3], a ring R is called strongly regular whenever there exists a non-negative integer r such that every R–perfect complex is quasiisomorphic to a direct sum of R–perfect complexes of width $\leq r$. Buchweitz and Flenner, in [3], characterize the commutative noetherian rings which are strongly regular.

Our first objective is to detect when a ring is strongly regular by means of C–perfect complexes (Theorem 3.8). We also prove that C–projective modules (i.e., modules of the form $C \otimes_R P$ with P projective) have the ability to detect when a ring is hereditary (Proposition 3.1).
Our second goal is to find a class of R–modules which admit minimal resolutions of C–projective modules (see Theorem 3.10).

2. Preliminaries

Throughout, R is a left and right noetherian ring (not necessarily commutative) and let all R–modules be left R–modules. Right R–modules are identified with left modules over the opposite ring R^{op}. An (R, R)–bimodule M is both left and right R–module with compatible structures.

Definition 2.1. [9, Definition 2.1] An (R, R)–bimodule C is semidualizing if it is a finite R–module, finite R^{op}–module, and the following conditions hold.

1. The homothety map $R \rightarrow \text{Hom}_{R^{op}}(C, C)$ is an isomorphism.
2. The homothety map $R \rightarrow \text{Hom}_R(C, C)$ is an isomorphism.
3. $\text{Ext}^{\geq 1}_R(C, C) = 0$.
4. $\text{Ext}^{\geq 1}_{R^{op}}(C, C) = 0$.

Assume that R is a commutative noetherian ring, then the above definition agrees with the definition of semidualizing R–module (see e.g. [9, 2.1]). Also, every finite projective R–module of rank 1 is semidualizing (see [11, Corollary 2.2.5]).

Definition 2.2. [9, Definition 3.1] A semidualizing (R, R)–bimodule C is said to be faithfully semidualizing if it satisfies the following conditions

(a) If $\text{Hom}_R(C, M) = 0$, then $M = 0$ for any R–module M;
(b) If $\text{Hom}_{R^{op}}(C, N) = 0$, then $N = 0$ for any R^{op}–module N.

Note that over a commutative noetherian ring, all semidualizing modules are faithfully semidualizing, by [9, Proposition 3.1].

For the remainder of this section C denotes a semidualizing (R, R)–bimodule. The following class of modules, is already appeared in, for example, [8], [9], and [13].

Definition 2.3. An R–module is called C–projective if it has the form $C \otimes_R P$ for some projective R–module P. The class of (resp. finite) C–projective modules is denoted by \mathcal{P}_C (resp. \mathcal{P}^f_C).

A complex A of R–modules is called $\text{Hom}_R(\mathcal{P}_C, -)$–exact if $\text{Hom}_R(C \otimes_R P, A)$ is exact for each projective R–module P. The term $\text{Hom}_R(\mathcal{P}_C, -)$–exact is defined dually.

For the notations in the next fact one may see [12, Definitions 1.4 and 1.5].

Fact 2.1. A \mathcal{P}_C–resolution of an R–module M is a complex X in \mathcal{P}_C with $X_{-n} = 0 = H_n(X)$ for all $n > 0$ and $M \cong H_0(X)$. The following exact sequence is the augmented \mathcal{P}_C–resolution of M associated to X:

$$X^+ = \cdots \rightarrow C \otimes_R P_1 \rightarrow C \otimes_R P_0 \rightarrow M \rightarrow 0.$$
A \mathcal{P}_C-resolution X of M is called proper if in addition $X^+ = \text{Hom}_R(\mathcal{P}_C, -)$-exact.

The \mathcal{P}_C-projective dimension of M is the quantity

$$\mathcal{P}_C - \text{pd}(M) = \inf \{ \sup \{ n \geq 0 \mid X_n \neq 0 \} \mid X \text{ is an } \mathcal{P}_C - \text{resolution of } M \}.$$

The objects of \mathcal{P}_C-projective dimension 0 are exactly \mathcal{P}_C-projective R-modules.

The notion (proper) \mathcal{P}_C-coresolution is defined dually. The augmented \mathcal{P}_C-coresolution Y associated to a \mathcal{P}_C-coresolution X is denoted by $\mathcal{P}_C + Y$.

In [13], the authors proved the following proposition for a commutative ring R. However, by an easy inspection, one can see that it is true even if R is non-commutative.

Proposition 2.4. Assume that C is a faithfully semidualizing (R, R)-bimodule and that M is an R-module. The following statements hold true.

(a) [13, Corollary 2.10(a)] The inequality $\mathcal{P}_C - \text{pd}(M) \leq n$ holds if and only if there is a complex

$$0 \rightarrow C \otimes_R P_n \rightarrow \cdots \rightarrow C \otimes_R P_0 \rightarrow M \rightarrow 0$$

which is $\text{Hom}_R(\mathcal{P}_C, -)$-exact.

(b) [13, Theorem 2.11(a)] $\text{pd}_R(M) = \mathcal{P}_C - \text{pd}_R(C \otimes_R M)$.

(c) [13, Theorem 2.11(c)] $\mathcal{P}_C - \text{pd}_R(M) = \text{pd}_R(\text{Hom}_R(C, M))$.

Remark 2.5. By [9, Proposition 5.3] the class \mathcal{P}_C is precovering, that is, for an R-module M, there exists a projective R-module P and a homomorphism $\phi : C \otimes_R P \rightarrow M$ such that, for every projective Q, the induced map

$$\text{Hom}_R(C \otimes_R Q, C \otimes_R P) \xrightarrow{\text{Hom}_R(C \otimes_R Q, \phi)} \text{Hom}_R(C \otimes_R Q, M)$$

is surjective. Then one can iteratively take precovers to construct a complex

$$W = \cdots \rightarrow C \otimes_R P_n \xrightarrow{\partial_2^X} C \otimes_R P_0 \rightarrow M \rightarrow 0 \quad (2.5.1)$$

such that W^+ is $\text{Hom}_R(\mathcal{P}_C, -)$-exact, where

$$W^+ = \cdots \rightarrow C \otimes_R P_1 \xrightarrow{\partial_2^X} C \otimes_R P_0 \xrightarrow{\phi} M \rightarrow 0.$$

For the notions precovering, covering, preenveloping and enveloping one can see [6].

Note that if C is faithfully semidualizing (R, R)-bimodule and M is an R-module, then, by Proposition 2.4(a), $\mathcal{P}_C - \text{pd}(M)$ is equal to the length of the shortest complex as (2.5.1). Thus for any R-module M, the quantity \mathcal{P}_C-projective dimension of M, defined in [9] and [13], is equal to $\mathcal{P}_C - \text{pd}(M)$ in Fact 2.1.
3. Results

A ring R is (left) hereditary if every left ideal is projective. The Cartan-Eilenberg theorem [10, Theorem 4.19] shows that R is hereditary if and only if every submodule of a projective module is projective. We show that the quality of being hereditary can be detected by C--projective modules, which is interesting on its own.

Proposition 3.1. Assume that C runs through the class of faithfully semidualizing (R, R)--bimodules. The following statements are equivalent.

(i) R is left hereditary.

(ii) For any C, every submodule of a C--projective R--module is also C--projective.

(iii) There exists a C such that every submodule of a C--projective R--module is also C--projective.

Proof. (i)\Rightarrow(ii). Let C be a faithfully semidualizing bimodule and N a submodule of $C \otimes_R P$, where P is a projective R--module. Then one gets the exact sequence $0 \to \text{Hom}_R(C, N) \to P$. As R is left hereditary, $\text{Hom}_R(C, N)$ is a projective R--module. By Proposition 2.4(c), \mathcal{P}_C--pd$(N) = \text{pd}(\text{Hom}_R(C, N)) = 0$.

(ii)\Rightarrow(iii) is immediate.

(iii)\Rightarrow(i). As every submodule of a C--projective R--module is C--projective, for any R--module M one has \mathcal{P}_C--pd$(M) \leq 1$. Then for any R--module N one gets $\text{pd}(N) = \mathcal{P}_C$--pd$(C \otimes_R N) \leq 1$, by Proposition 2.4(b). It follows that every submodule of a projective is projective and so, by [10, Theorem 4.19], R is left hereditary. \qed

Definition 3.2. A complex X_\bullet of R--modules is called C--perfect if it is quasiisomorphic to a finite complex

$$T_\bullet = 0 \to C \otimes_R P_n \to C \otimes_R P_{n-1} \to \cdots \to C \otimes_R P_1 \to C \otimes_R P_0 \to 0,$$

where P_i are finite projective R--modules. The width of such a C--perfect complex X_\bullet, denoted by $\text{wd}(X_\bullet)$, is defined to be the minimal length n of a complex T_\bullet satisfying the above conditions. A C--perfect complex X_\bullet is called indecomposable if it is not quasiisomorphic to a direct sum of two non-trivial C--perfect complexes.

Definition 3.3. [3, Definition 1.1] A ring R is called strongly r--regular if every perfect complex over R is quasiisomorphic to a direct sum of perfect complexes of width $\leq r$. If R is strongly r--regular for some r then it will be called strongly regular.

Remark 3.4. As Professor Ragnar-Olaf Buchweitz kindly pointed out in his personal communication with the authors, in [3] it should be added the blanket statement that rings are noetherian and modules are finite. Thus Definition 3.3
agrees with [3, Definition 1.1]. Indeed, over a noetherian ring every perfect complex has bounded and finite homology.

Note that a hereditary ring \(R \) is strongly 1-regular, see [3, Remark 1.2].

In order to bring the results Theorem 3.8 and Proposition 3.9, we quote some preliminaries.

Definition 3.5. [7, III.3.2(b)] and [4, Definition 2.2.8] Let \(\alpha : A \to B \) be a morphism of \(R \)-complexes. The mapping cone \(\text{Cone}(\alpha) \), is a complex which is given by

\[
(\text{Cone}(\alpha))_n = B_n \oplus A_{n-1} \quad \text{and} \quad \partial_n^{\text{Cone}(\alpha)} = \begin{pmatrix} \partial_n^B & \alpha_{n-1} \\
0 & -\partial_n^A \end{pmatrix}.
\]

It easy to see that the following lemma is also true if \(R \) is non-commutative.

Lemma 3.6. Let \(\alpha : A \to B \) be a morphism of \(R \)-complexes and \(M \) be an \(R \)-module. The following statements hold true.

(a) [4, Lemma 2.2.10] The morphism \(\alpha \) is a quasiisomorphism if and only if \(\text{Cone}(\alpha) \) is acyclic.

(b) [4, Lemma 2.3.11] \(\text{Cone}(\text{Hom}_R(M, \alpha)) \cong \text{Hom}_R(M, \text{Cone}(\alpha)) \).

(c) [4, Lemma 2.4.11] \(\text{Cone}(M \otimes_R \alpha) \cong M \otimes_R \text{Cone}(\alpha) \).

Remark 3.7. Let \(C \) be a semidualizing \((R, R)\)-bimodule. Assume that
\[
X = 0 \to X_n \to X_{n-1} \to \cdots \to X_1 \to X_0 \to 0
\]
is an exact complex of \(R \)-modules.

(a) If each \(X_i \) is a projective \(R \)-module, then it is easy to see that the induced complex \(C \otimes_R X \) is exact.

(b) If each \(X_i \) is a \(C \)-projective \(R \)-module, then the induced complex \(\text{Hom}_R(C, X) \) is exact, since \(\text{Ext}_R^{\geq 1}(C, X_i) = 0 \).

Theorem 3.8. The following statements are equivalent.

(i) \(R \) is strongly \(r \)-regular.

(ii) For any faithfully semidualizing bimodule \(C \), every \(C \)-perfect complex is quasiisomorphic to a direct sum of \(C \)-perfect complexes of width \(\leq r \).

(iii) There exists a faithfully semidualizing bimodule \(C \) such that every \(C \)-perfect complex is quasiisomorphic to a direct sum of \(C \)-perfect complexes of width \(\leq r \).

Proof. (i)\(\Rightarrow\)(ii). Let \(R \) be strongly \(r \)-regular, \(C \) a faithfully semidualizing bimodule. Assume that \(X_\bullet \) is a \(C \)-perfect complex. Then, by Definition 3.2, there exists a finite complex
\[
T_\bullet = 0 \to C \otimes_R P_n \to C \otimes_R P_{n-1} \to \cdots \to C \otimes_R P_0 \to 0,
\]
such that each \(P_i \) is a finite projective \(R \)-module and \(X_\bullet \) is quasiisomorphic to \(T_\bullet \). Therefore \(\text{Hom}_R(C, T_\bullet) \cong 0 \to P_n \to P_{n-1} \to \cdots \to P_0 \to 0 \) is a perfect complex. By Definition 3.3, there is a quasiisomorphism \(\alpha :
\[
\text{Hom}_R(C, T_{\bullet}) \cong \bigoplus_{i=1}^{r} F^{(i)}_{\bullet},
\]
where each \(F^{(i)}_{\bullet} \) is a perfect complex of width \(\leq r \). We may assume that each \(F^{(i)}_{\bullet} \) is a perfect complex of finite projective \(R \)-modules. By Lemma 3.6(a), \(C_{\bullet} \) is a perfect complex of projective \(R \)-modules, Remark 3.7 implies that the complex \(C \otimes_R C_{\bullet} \) is acyclic. By Lemma 3.6, the complex \(\text{Cone}(C \otimes_R C_{\bullet}) \) is acyclic too and so \(C \otimes_R C_{\bullet} \) is quasi-isomorphic. Therefore \(T_{\bullet} \) is quasi-isomorphic to \(\bigoplus_{i=1}^{r} C \otimes_R F^{(i)}_{\bullet} \). Note that each \(C \otimes_R F^{(i)}_{\bullet} \) is a \(C \)-perfect complex of width \(\leq r \).

(ii)\Rightarrow(iii) is immediate.

(iii)\Rightarrow(i). Let \(Y_{\bullet} \) be a perfect complex. Then, by Definition 3.2, there is a finite complex \(F_{\bullet} = 0 \to P_m \to P_{m-1} \to \cdots \to P_0 \to 0 \) of finite projective modules which is quasi-isomorphic to \(Y_{\bullet} \). As \(C \otimes_R F_{\bullet} \) is a \(C \)-perfect complex, our assumption implies that there is a quasi-isomorphism \(\beta : C \otimes_R F_{\bullet} \to \bigoplus_{i=1}^{r} T^{(i)}_{\bullet} \), where each \(T^{(i)}_{\bullet} \) is a \(C \)-perfect complex of width \(\leq r \). We may assume that, for each \(i \),

\[
T^{(i)}_{\bullet} = 0 \to C \otimes_R P^{(i)}_{n_i} \to \cdots \to C \otimes_R P^{(i)}_0 \to 0
\]

where each \(P^{(i)}_j \) is a finite projective \(R \)-module. Similar to the proof of (i)\Rightarrow(ii), one observes that \(\text{Hom}_R(C, \beta) \) is a quasi-isomorphism. Therefore \(F_{\bullet} \) is quasi-isomorphic to \(\bigoplus_{i=1}^{r} \text{Hom}_R(C, T^{(i)}_{\bullet}) \). Note that each \(\text{Hom}_R(C, T^{(i)}_{\bullet}) \) is a perfect complex of width \(\leq r \). Thus \(R \) is strongly \(r \)-regular.

In [2, Section 1], Avramov and Martsinkovsky define a general notion of minimality for complexes: A complex \(X \) is \textit{minimal} if every homotopy equivalence \(\sigma : X \to X \) is an isomorphism. In [14, Lemma 4.8], it is proved that, over a commutative local ring \(R \) with maximal ideal \(m \), a complex \(X \) consisting of modules in \(P^d_C \) is minimal if and only if \(\partial^X(X) \subseteq mX \).

In consistent to [3, Lemma 1.6] we prove the following proposition.

Proposition 3.9. Let \(R \) be a commutative noetherian local ring and \(C \) a semidualizing \(R \)-module. The following statements hold true.

(a) Every \(C \)-perfect complex \(X_{\bullet} \) is quasi-isomorphic to a minimal finite complex \(T_{\bullet} = 0 \to C \otimes_R F_n \to C \otimes_R F_{n-1} \to \cdots \to C \otimes_R F_1 \to C \otimes_R F_0 \to 0 \), where each \(F_i \) is finite free \(R \)-module.

(b) If two minimal finite complexes of modules of the form \(C^m = \bigoplus^m C \) are quasi-isomorphic, then they are isomorphic.

Proof. (a). By Definition 3.2, a \(C \)-perfect complex \(X_{\bullet} \) is quasi-isomorphic to a finite complex \(T_{\bullet} = 0 \to C \otimes_R P_n \to C \otimes_R P_{n-1} \to \cdots \to C \otimes_R P_1 \to C \otimes_R P_0 \to 0 \), where each \(P_i \) is a finite free \(R \)-module. The complex \(\text{Hom}_R(C, T_{\bullet}) \) is a perfect complex and so, by [3, Lemma 1.6(1)], there exists a minimal finite complex.
of finite free R–modules and a quasiisomorphism $\alpha : \text{Hom}_R(C, T_\bullet) \xrightarrow{\sim} F_\bullet$. As in the proof of Theorem 3.8, it follows that $C \otimes_R \alpha : C \otimes_R \text{Hom}_R(C, T_\bullet) \rightarrow C \otimes_R F_\bullet$ is a quasiisomorphism. As $C \otimes_R F_\bullet$ is a minimal finite complex, we are done.

(b). Let T_\bullet and L_\bullet be two minimal finite complexes of modules of the form C^m. Assume that $\alpha : T_\bullet \rightarrow L_\bullet$ is a quasiisomorphism. Then, by Remark 3.7 and Lemma 3.6, $\text{Hom}_R(C, \alpha) : \text{Hom}_R(C, T_\bullet) \rightarrow \text{Hom}_R(C, L_\bullet)$ is a quasiisomorphism of minimal finite complexes of finite free R–modules. Thus, by the proof of [3, Lemma 1.6(2)], $\text{Hom}_R(C, \alpha)$ is an isomorphism. Now, there is a commutative diagram of complexes and morphisms

\[
\begin{array}{ccc}
T_\bullet & \xrightarrow{\sim} & L_\bullet \\
\uparrow{\cong} & & \uparrow{\cong} \\
C \otimes_R \text{Hom}_R(C, T_\bullet) & \xrightarrow{\cong} & C \otimes_R \text{Hom}_R(C, L_\bullet),
\end{array}
\]

where the vertical morphisms are natural isomorphisms. This implies that α itself must be an isomorphism. \qed

It is proved in [14, Lemma 4.9] that every finite module M over a commutative noetherian local ring R with P_C–pd$(M) < \infty$ admits a minimal P_C–resolution. Now we show that every finite R–module which has a proper P_C–resolution, admits a minimal proper one. Note that if P_C–pd$(M) < \infty$ then M admits a proper P_C–resolution (see proof of [13, Corollary 2.10]).

Theorem 3.10. Assume that R is a commutative noetherian local ring and that C is a semidualizing R–module. Then P_C is covering in the category of finite R–modules. For any finite R–module M, there is a complex $X = \cdots \rightarrow C^{n_1} \rightarrow C^{n_0} \rightarrow 0$ with the following properties.

1. $X^+ = \cdots \rightarrow C^{n_1} \rightarrow C^{n_0} \rightarrow M \rightarrow 0$ is $\text{Hom}_R(P_C, -)$–exact.
2. X is a minimal complex.

If M admits a proper P_C–resolution, then X^+ is exact and so X is a minimal proper P_C–resolution of M.

Proof. Let M be a finite R–module. Assume that $n_0 = \nu(\text{Hom}_R(C, M))$ denotes the number of a minimal set of generators of $\text{Hom}_R(C, M)$ and that $\alpha : R^{n_0} \rightarrow \text{Hom}_R(C, M)$ is the natural epimorphism. As α is a P_C–cover of $\text{Hom}_R(C, M)$, the natural map $\beta = C \otimes_R R^{n_0} \xrightarrow{C \otimes_R \alpha} C \otimes_R \text{Hom}_R(C, M) \xrightarrow{\nu} M$ is a P_C–cover of M. Set $M_1 = \text{Ker} \beta$ and $n_1 = \nu(\text{Hom}_R(C, M_1))$. Thus there is a P_C–cover $\beta_1 : C \otimes_R R^{n_1} \rightarrow M_1$. Proceeding in this way one obtains a complex

\[
X = \cdots \xrightarrow{\partial_2 = \epsilon_2 \beta_2} C \otimes_R R^{n_1} \xrightarrow{\partial_1 = \epsilon_1 \beta_1} C \otimes_R R^{n_0} \rightarrow 0,
\]
where $\epsilon_i : M_i \to C \otimes_R R^{n_i-1}$ is the inclusion map for all $i \geq 1$. As the maps in X are obtained by P_C^1-covers, the complex X^+ is $\text{Hom}_R(P_C, -)$-exact. It is easy to see that $\text{Hom}_R(C, X)$ is minimal free resolution of $\text{Hom}_R(C, M)$. Now we show that X is a minimal complex. Let $f : X \to X$ be a morphism which is homotopic to id_X. It is easy to see that the morphism $\text{Hom}_R(C, f)$ is homotopic to $\text{id}_{\text{Hom}_R(C, X)}$. As the complex $\text{Hom}_R(C, X)$ is minimal, by [2, Proposition 1.7], the morphism $\text{Hom}_R(C, f)$ is an isomorphism. The commutative diagram

$$
\begin{array}{ccc}
X & \xrightarrow{f} & X \\
\downarrow \cong & & \downarrow \cong \\
C \otimes_R \text{Hom}_R(C, X) & \xrightarrow{\cong} & C \otimes_R \text{Hom}_R(C, X),
\end{array}
$$

with vertical natural isomorphisms, implies that f is an isomorphism. Therefore, by [2, Proposition 1.7], X is minimal. If M admits a proper P_C-resolution, then by [13, Corollary 2.3], X^+ is exact. □

The proof of the next lemma is similar to [13, Corollary 2.3].

Lemma 3.11. Let R be a commutative noetherian ring and let M be a finite R-module. Assume that C is a semidualizing R-module. The following are equivalent.

(i) M admits a proper P_C^1-coresolution.

(ii) Every $\text{Hom}_R(-, P_C^1)$-exact complex of the form

$$
0 \to M \to C \otimes_R Q_0 \to C \otimes_R Q_{-1} \to \cdots
$$

is exact, where Q_i is an object of P_C^1 for all $i \leq 0$.

(iii) The natural homomorphism $M \to \text{Hom}_R(\text{Hom}_R(M, C), C)$ is an isomorphism and $\text{Ext}_R^{\geq 1}(\text{Hom}_R(M, C), C) = 0$.

Proposition 3.12. Assume that R is a commutative noetherian local ring and that C is a semidualizing R-module. Then P_C^1 is enveloping in the category of finite R-modules. For any finite R-module M, there is a complex $Y = 0 \to C^{m_0} \to \cdots$ with the following properties.

(1) $Y^+ = 0 \to M \to C^{m_0} \to C^{m_1} \to \cdots$ is $\text{Hom}_R(-, P_C)$-exact.

(2) Y is a minimal complex.

If M admits a proper P_C^1-coresolution, then Y^+ is exact and so Y is a minimal proper P_C^1-coresolution of M.

Proof. Let M be a finite R-module. Assume that $m_0 = \nu(\text{Hom}_R(M, C))$ denotes the number of a minimal set of generators of $\text{Hom}_R(M, C)$ and that $\alpha : R^{m_0} \to \text{Hom}_R(M, C)$ is the natural P_C^1-cover of $\text{Hom}_R(M, C)$. It follows that $\gamma = M \xrightarrow{\delta m} \text{Hom}_R(\text{Hom}_R(M, C), C) \xrightarrow{\text{Hom}_R(\alpha, C)} \text{Hom}_R(R^{m_0}, C)$ is a P_C^1-envelope of M. Set $M_{-1} = \text{Coker}\gamma$ and $m_1 = \nu(\text{Hom}_R(M_{-1}, C))$. As
mentioned, there is a \mathcal{P}_C^I-envelope $\gamma_1 : M_{-1} \longrightarrow \text{Hom}_R(R^{m_1}, C)$. Proceed-
ing in this way one obtains a complex $Y = 0 \longrightarrow \text{Hom}_R(R^{m_0}, C) \xrightarrow{\partial_0 = \gamma_1 \pi_1} \text{Hom}_R(R^{m_1}, C) \xrightarrow{\partial_1 = \gamma_2 \pi_2} \cdots$, where π_i is the natural epimorphism for all $i \geq 1$. Since the maps in Y are obtained by \mathcal{P}_C^I-envelopes, the complex ^+Y is $\text{Hom}_R(\mathcal{P}_C^I, \bullet)$-exact. It is easy to see that $\text{Hom}_R(Y, C)$ is minimal free resolution of $\text{Hom}_R(M, C)$. Similar to the proof of Theorem 3.10, we find that Y is a minimal complex. If M admits a proper \mathcal{P}_C^I-coresolution, then, by Lemma 3.11, ^+Y is exact.

In the following example we find an R–module M with \mathcal{P}_C^I–pd(M) = ∞ which admits a minimal proper \mathcal{P}_C^I–resolution. This example shows that a commutative noetherian local ring which admits an exact zero-divisor is not a strongly regular ring.

Example 3.13. Let R be a commutative noetherian local ring and C a semidualizing R–module. Assume that x, y form a pair of exact zero-divisors on both R and C (e.g. see [1, Example 3.2]). Then \mathcal{P}_C^I–pd(C/xC) = $\text{pd}(R/xR) = \infty$. The complex

$$T_\bullet = \cdots \xrightarrow{x} C \xrightarrow{y} C \xrightarrow{x} C \longrightarrow 0 \ (\text{resp. } L_\bullet = 0 \longrightarrow C \xrightarrow{x} C \xrightarrow{y} C \xrightarrow{x} \cdots)$$

is a minimal \mathcal{P}_C^I–resolution (resp. \mathcal{P}_C^I–coresolution) of C/xC. By [1, Proposition 3.4], C/xC is a semidualizing R/xR–module. By [5, Proposition 2.13], there are isomorphisms

$$\text{Hom}_R(C, C/xC) \cong \text{Hom}_{R/xR}(C/xC, C/xC) \cong R/xR,$$

$$\text{Hom}_R(C/xC, C) \cong \text{Hom}_{R/xR}(C/xC, C/xC) \cong R/xR.$$ Applying $\text{Hom}_R(C, -)$ and $\text{Hom}_R(-, C)$ on the above complexes, respectively, would result the isomorphisms $\text{Hom}_R(C, T^*_\bullet) \cong F^*_\bullet$ and $\text{Hom}_R(^+L_\bullet, C) \cong F^*_\bullet$, where F^*_\bullet is the exact complex $\cdots \xrightarrow{y} R \xrightarrow{x} R \xrightarrow{y} R \xrightarrow{x} R \longrightarrow R/xR \longrightarrow 0$. Therefore T_\bullet (resp. L_\bullet) is a minimal proper \mathcal{P}_C^I–resolution (resp. \mathcal{P}_C^I–coresolution) of C/xC.

For each n, one obtains a C–perfect complex of length n as

$$T_\bullet^{(n)} = 0 \longrightarrow C \longrightarrow C \longrightarrow \cdots \xrightarrow{x} C \xrightarrow{y} C \xrightarrow{x} C \longrightarrow 0,$$

where $T_\bullet^{(n)} = T_\bullet$ for all $0 \leq i \leq n$ and $T_i^{(n)} = 0$ otherwise. Note that the induced map $d_i : T_i^{(n)}/\text{Ker} d_i \rightarrow T_{i-1}^{(n)}$ is injective, where $\text{Ker} d_i$ is equal to yC or xC. As C is indecomposable R–module, $T_\bullet^{(n)}$ is indecomposable which has a similar proof to [3, Proposition 1.5].
Acknowledgment

The authors are grateful to the referee for his/her careful reading of the paper and valuable comments. The second author was supported in part by a grant from IPM (No.93130110).

REFERENCES

[1] E. Amanzadeh and M. T. Dibaei, Auslander class, G_C and C-projective modules modulo exact zero-divisors, *Comm. Algebra* **43** (2015), no. 10, 4320–4333.

[2] L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, *Proc. London Math. Soc. (3)* **85** (2002), no. 2, 393–440.

[3] R-O. Buchweitz and H. Flenner, Strong global dimension of commutative rings and schemes, *J. Algebra* **422** (2015) 741–751.

[4] L. W. Christensen and H. B. Foxby, Hyperhomological algebra with applications to commutative rings, http://www.math.ttu.edu/~lchriste/download/918-final.pdf

[5] M. T. Dibaei and M. Ghelbi, Sequence of exact zero-divisors, arXiv:1112.2353v3 (2012).

[6] E. E. Enochs and O. M. G. Jenda, Relative homological algebra, 30, Walter de Gruyter & Co., Berlin, 2000.

[7] S. I. Gelfand and Y. I. Manin, Methods of Homological Algebra, Springer-Verlag, Berlin, 1996.

[8] H. Holm and P. Jørgensen, Semi-dualizing modules and related Gorenstein homological dimensions, *J. Pure Appl. Algebra* **205** (2006), no. 2, 423–445.

[9] H. Holm and D. White, Foxby equivalence over associative rings, *J. Math. Kyoto Univ.* **47** (2007), no. 4, 781–808.

[10] J. J. Rotman, An Introduction to Homological Algebra, Springer Universitext, Second Edition, New York, 2009.

[11] S. Sather-Wagstaff, Semidualizing modules, http://www.ndsu.edu/pubweb/~ssatherw/DOCS/sdm.pdf

[12] S. Sather-Wagstaff, T. Sharif and D. White, Stability of Gorenstein categories, *J. Lond. Math. Soc. (2)* **77** (2008), no. 2, 481–502.

[13] R. Takahashi and D. White, Homological aspects of semidualizing modules, *Math. Scand.* **106** (2010), no. 1, 5–22.

[14] D. White, Gorenstein projective dimension with respect to a semidualizing module, *J. Commut. Algebra* **2** (2010), no. 1, 111–137.

(Ensiyeh Amanzadeh) FAculty of MATHeMATICAL SCIENCES AND COMPUTER, KHARAZMI UNIVERSITY, TEBRAN, IRAN.

E-mail address: en.amanzadeh@gmail.com

(Mohammad Taghi Dibaei) FAculty of MATHeMATICAL SCIENCES AND COMPUTER, KHARAZMI UNIVERSITY, TEBRAN, IRAN

AND

School of MATHEMATICS, INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES (IPM), P.O. BOX 19395-5746, TEBRAN, IRAN.

E-mail address: dibaeimt@ipm.ir