Cramer’s rules for Hermitian systems of coquaternionic equations.

Ivan Kyrchei *

Abstract

In this paper properties of the determinant of a Hermitian matrix are investigated, and determinantal representations of the inverse of a Hermitian coquaternionic matrix are given. By their using, Cramer’s rules for left and right systems of linear equations with Hermitian coquaternionic matrices of coefficients are obtained. Cramer’s rule for a two-sided coquaternionic matrix equation $AXB = D$ (with Hermitian A, B) is given as well.

Keywords: quaternion algebra; split quaternion; coquaternion; noncommutative determinant; system of linear equations; Cramer’s rule; matrix equation

MSC2010 : 11R52, 15A15, 15A24

1 Introduction

A quaternion algebra $H(a, b)$ over a field F (denoted by $(a, b)_F$) are a central simple algebra over F, and a four-dimensional vector space over F with basis \{1, i, j, k\} and the following multiplication rules:

\[i^2 = a, \quad j^2 = b, \quad ij = k, \quad ji = -k, \]

where \{a, b\} $\subset F$. To every quaternion algebra $H(a, b)$, one can associate a quadratic form n (called the norm form) on H such that $n(xy) = n(x)n(y)$,

*Pidstrygach Institute for Applied Problems of Mechanics and Mathematics, str.Naukova 3b, Lviv, Ukraine, 79060, kyrchei@lms.lviv.ua
for all \(x \) and \(y \) in \(H \). A linear mapping \(x \to \overline{x} = t(x) - x \) is also defined on \(H \). It is an involution with properties

\[
\overline{x} = x, \quad \overline{x + y} = \overline{x} + \overline{y}, \quad \overline{xy} = \overline{y} \cdot \overline{x}.
\]

An element \(\overline{x} \) is called the conjugate of \(x \in H \). \(t(x) \) and \(n(x) \) are called the trace and the norm of \(x \) respectively. \(\{n(x), t(x)\} \subset F \) for all \(x \) in \(H \) and possess the following conditions,

\[
n(x) = n(x), \quad t(x) = t(x), \quad t(q \cdot p) = t(p \cdot q).
\]

Depending on the choice of \(F, a \) and \(b \) we have only two possibilities ([1]):

1. \((a, b, F)\) is a division algebra. The most famous example of a non-split quaternion algebra is Hamilton’s quaternions \(\mathbb{H} = \{-1, -1\} \).

2. \((a, b, F)\) is isomorphic to the algebra of all \(2 \times 2 \) matrices with entries from \(F \). In this case we say that the \(F \)-algebra is split.

In contrast to a quaternion division algebra, a split quaternion algebra contains zero-divisors, nilpotent elements and nontrivial idempotents.

One of the most famous split quaternion algebras is the split quaternions of James Cockle ([2]) \(H_{S}(\{-1\}) \), which can be represented as

\[
H_{S} = \{q = q_{0} + q_{1}i + q_{2}j + q_{3}k : \{q_{0}, q_{1}, q_{2}, q_{3}\} \in \mathbb{R}\}.
\]

\(H_{S} \) is an associative, non-commutative, non-division ring with four basis elements \(\{1, i, j, k\} \) satisfying the equalities

\[
i^{2} = -1, \quad j^{2} = k^{2} = 1, \\
i j = -ji = k, \quad jk = -kj = -i, \quad ik = -ki = -j.
\]

The split quaternions of James Cockle are also named coquaternions. In this paper we shall consider coquaternions and denote their \(H \) to simplify.

Coquaternions is a recently developing topic. There are some studies related to geometric applications of split quaternions such as ([3]-[5]). Particularly, the geometric and physical applications of coquaternions require solving coquaternionic equations and their systems. Therefore, there are many studies on coquaternionic equations. We mention only some recent papers. The method of rearrangements has been used to solve linear quaternionic equations involving \(axb \) in [6], new method of solving general linear
coquaternionic equations with the terms of the form \(axb \) has been obtained in \([7]\). The properties of coquaternion matrices has been discussed in \([8]\). Particularly, in \([8]\) the authors have defined the complex adjoint matrix of coquaternion matrices and given the definition of q-determinant of coquaternion matrices that is an usual determinant of the complex adjoint matrix.

Recently, in \([9]\) the concept of immanant (consequently, determinant and permanent) has been extended to a split quaternion algebra using methods of the theory of the row and column determinants. The theory of the row and column determinants was introduced in \([10, 11]\) for matrices over the quaternion non-split algebra. This theory over the quaternion skew field is being actively developed as by the author (see, for ex. \([12-15]\)), and others (see, for ex. \([16-18]\)).

In this paper properties of the determinant of a Hermitian matrix over \(\mathbb{H} \) will been investigated, and determinantal representations will been given for the inverse of a Hermitian coquaternion matrix. Firstly in Section 2, we shall give some properties of coquaternions, coquaternion matrices, and noncommutative determinants in Subsection 2.1, and some basic concepts and results from the theory of the row-column determinants of coquaternion matrices in Subsection 2.2. We shall consider the lemma about expanding row and column determinants by cofactors along corresponding rows and columns in this subsection as well. In Section 3, properties of the determinant of a Hermitian coquaternion matrix will been investigated by using row-column determinants. In Section 4, determinantal representations for inverses of Hermitian coquaternion matrix will been given and Cramer’s rules for left and right systems of linear equations will been obtained. In Section 5, we shall get Cramer’s rule for two-sided coquaternionic matrix equations \(AXB = D \), where \(A, B \) are Hermitian. The main results will been illustrated by examples.

2 Preliminaries

2.1 Coquaternions, coquaternion matrices and noncommutative determinants

For any coquaternion \(q = q_0 + q_1i + q_2j + q_3k \in \mathbb{H} \), by \(\text{Re} \ q := q_0 \) and \(\text{Im} \ q := q_1i + q_2j + q_3k \), we define the real and imagine parts of \(q \), respectively. The conjugate of a coquaternion \(q \) is \(\bar{q} = q_0 - q_1i - q_2j - q_3k \), then the trace
\[t(q) = 2 \text{Re} q = 2q_0 \] and the norm form \(n(q) = q \bar{q} = q_0^2 + q_1^2 - q_2^2 - q_3^2 \). The norm form of a coquaternion \(q \) usually denote by \(I_q := n(q) \). The norm of a coquaternion by \(\|q\| = \sqrt{|I_q|} \) are considered as well. If \(\|q\| = 1 \), then \(q \) is called unit coquaternion. Notice that \(p = \frac{q}{\|q\|} \) is a unit coquaternion for \(q \in H \) with \(\|q\| \neq 0 \) and \(i, j, \) and \(k \) are the basis units. The inverse of the coquaternion \(q \) is \(q^{-1} = \frac{q}{I_q} \), where \(I_q \neq 0 \). We indicate by \(U(H) \) the set of all invertible elements of \(H \) and \(D(H) \) the set of all zero-divisors of \(H \).

Denote by \(H^{n \times m} \) a set of \(n \times m \) matrices with entries in \(H \) and by \(M(n, H) \) a ring of \(n \times n \) coquaternionic matrices. This is a ring with a unit which is the usual identity matrix \(I_n \). By usual way, we define the transpose \(A^T = (a_{ji}) \in H^{n \times m} \), the conjugate \(\bar{A} = (a_{ij}) \in H^{m \times n} \), the Hermitian adjoint matrix (the conjugate transpose) \(A^* = (a_{ji}) \in H^{n \times m} \) of \(A = (a_{ij}) \in H^{m \times n} \), and the inverse \(A^{-1} \) of \(A = (a_{ij}) \in H^{n \times n} \). For more properties of split quaternions the reader is referred to \([19]-[21]\).

Definition 2.1 Let a functional \(d : M(n, H) \to H \) satisfy the following axioms.

Axiom 1 \(d(A) = 0 \) if and only if the matrix \(A \) is non invertible.

Axiom 2 \(d(A \cdot B) = d(A) \cdot d(B) \) for \(\forall B \in M(n, H) \).

Axiom 3 If the matrix \(A' \) is obtained from \(A \) by adding a left-multiple of a row to another row or a right-multiple of a column to another column, then \(d(A') = d(A) \).

Then the functional \(d \) is called the determinant of \(A \in M(n, H) \).

But in \([22]\), it is proved that if a determinant functional satisfies Axioms 1, 2, 3, then its value is real. The famous examples of such determinant are the determinants of Study and Diedonné.

In another way of looking a noncommutative determinant is defined as a rational function from entries. In particular, in the theory of the Gelfand-Retah quasideterminants \([24,25]\), an arbitrary \(n \times n \) matrix over a skew field
has been associated with an $n \times n$ matrix whose entries are quasideterminants. The quasideterminant is not an analog of the usual determinant but rather of a ratio of the determinant of an $n \times n$-matrix to the determinant of an $(n - 1) \times (n - 1)$-submatrix.

At last, at the third approach a noncommutative determinant is defined, by analogy to the usual determinant, as the alternating sum of $n!$ products of entries of a matrix but by specifying a certain ordering of coefficients in each term. Moore [26] was the first who achieved the fulfillment of the main Axiom 1 by such definition of a noncommutative determinant. But it has been done not for all square matrices over a skew field but only Hermitian matrices. Later, Dyson [27] described the theory in more modern terms. But until recently, the Moore determinant has not been extended to arbitrary square matrices over \mathbb{H}. The full and natural extension of the definition of Moore’s determinant to arbitrary square matrices over \mathbb{H} has been reached in the theory of column-row determinants.

Recently in [8] the q-determinant of coquaternionic matrices has been introduced by the followings. Let $A = A_1 + A_2 j \in \mathbb{H}^{n \times n}$, where A_1 and A_2 are complex matrices. Then the complex adjoint matrix $\chi_A \in \mathbb{C}^{2n \times 2n}$ is defined as

$$\chi_A := \begin{pmatrix} A_1 & A_2 \\ A_2 & A_1 \end{pmatrix}$$

and the q-determinant of A is defined as the usual determinant of χ_A, that is $|A|_q = |\chi_A|$. It has been shown that properties of the q-determinant is close to the usual determinant, especially, it satisfies Axioms 1, 2. Since the q-determinant of $A \in \mathbb{H}^{n \times n}$ takes a value not in \mathbb{H} but in \mathbb{C} and the q-determinant can not be expanded by cofactors along an arbitrary row or column, then determinantal representations of the inverse A^{-1} by the q-determinant could not be obtained.

2.2 Definitions and basic properties of the column and row determinants

For $A = (a_{ij}) \in \mathbb{H}^{n \times n}$ we define n row determinants as follows.

Definition 2.2 [9] The i-th row determinant of $A = (a_{ij}) \in \mathbb{H}^{n \times n}$ is defined as

$$\text{rdet}_i A = \sum_{\sigma \in S_n} (-1)^{n-r} a_{i \sigma(k_1)} a_{i \sigma(k_1+1)} \cdots a_{i \sigma(k_1+i_l - 1)} \cdots a_{i \sigma(k_r+1)} \cdots a_{i \sigma(i_k + l_r)}.$$
where left-ordered cycle notation of the permutation \(\sigma \) is written as follows

\[
\sigma = (i_{k_1}i_{k_1+1} \ldots i_{k_1+l_1})(i_{k_2}i_{k_2+1} \ldots i_{k_2+l_2}) \ldots (i_{k_r}i_{k_r+1} \ldots i_{k_r+l_r}).
\]

Here the index \(i \) starts the first cycle from the left and other cycles satisfy the conditions, \(i_{k_2} < i_{k_3} < \ldots < i_{k_r}, \) \(i_{k_t} < i_{k_t+s}, \) for all \(t = \sum \tau_r \) and \(s = \frac{1}{l_1}, l_t, \) (since \(\text{sign}(\sigma) = (-1)^{n-r} \)).

For \(A = (a_{ij}) \in H^{n \times n} \) we define \(n \) column determinant as well.

Definition 2.3 The \(j \)-th column determinant of \(A = (a_{ij}) \in H^{n \times n} \) is defined as

\[
\text{rdet}_j A = \sum_{\tau \in S_n} (-1)^{n-r} a_{j_\tau, j_\tau+l_\tau} \ldots a_{j_{k_r+1}j_{k_r}} \ldots a_{j_{k_1+1}j_{k_1}} a_{j_{k_1}j},
\]

where right-ordered cycle notation of the permutation \(\tau \in S_n \) is written as follows

\[
\tau = (j_{k_r+l_\tau} \ldots j_{k_r+1}j_{k_r}) \ldots (j_{k_2+l_\tau} \ldots j_{k_2+1}j_{k_2}) \ (j_{k_1+l_\tau} \ldots j_{k_1+1}j_{k_1}).
\]

Here the first cycle from the right begins with the index \(j \) and other cycles satisfy the following conditions, \(j_{k_2} < j_{k_3} < \ldots < j_{k_r}, \) \(j_{k_t} < j_{k_t+s}, \) for all \(t = \sum \tau_r \) and \(s = \frac{1}{l_1}, l_t. \)

In [9] the basic properties of the column and row imanants of a square matrix over \(H \) has been consider. These properties can be evidently extend to column-row determinants.

Proposition 2.4 (The first theorem about zero of an row-column determinant) If one of the rows (columns) of \(A = (a_{ij}) \in H^{n \times n} \) consists of zeros only, then \(\text{rdet}_i A = 0 \) and \(\text{cdet}_j A = 0 \) for all \(i = 1, n. \)

Denote by \(Ha \) and \(aH \) left and right principal ideals of \(H, \) respectively.

Proposition 2.5 (The second theorem about zero of an row determinant) Let \(A = (a_{ij}) \in H^{n \times n} \) and \(a_{ki} \in Ha_i \) and \(a_{ij} \in a_i H, \) where \(n(a_i) = 0 \) for \(k, j = 1, n \) and for all \(i \neq k. \) Let \(a_{11} \in Ha_1 \) and \(a_{22} \in a_1 H \) if \(k = 1, \) and \(a_{kk} \in Ha_k \) and \(a_{11} \in a_k H \) if \(k = i > 1, \) where \(n(a_k) = 0. \) Then \(\text{rdet}_k A = 0. \)
Proposition 2.6 (The second theorem about zero of an column determinant) Let $A = (a_{ij}) \in H^{n \times n}$ and $a_{ik} \in a_kH$ and $a_{ji} \in H\sigma_i$, where $n(a_i) = 0$ for $k, j = 1, n$ and for all $i \neq k$. Let $a_{11} \in a_1H$ and $a_{22} \in H\sigma_1$ if $k = 1$, and $a_{kk} \in a_kH$ and $a_{11} \in H\sigma_k$ if $k > 1$, where $n(a_k) = 0$. Then $\text{cdet}_k A = 0$.

Proposition 2.7 If the i-th row of $A = (a_{ij}) \in H^{n \times n}$ is left-multiplied by $b \in H$, then $\text{rdet}_i A_t (b \cdot a_i) = b \cdot \text{rdet}_i A$ for all $i = 1, n$.

Proposition 2.8 If the j-th column of $A = (a_{ij}) \in H^{n \times n}$ is right-multiplied by $b \in H$, then $\text{cdet}_j A_j (a_j \cdot b) = \text{cdet}_j A \cdot b$ for all $j = 1, n$.

Proposition 2.9 If for $A = (a_{ij}) \in H^{n \times n}$ there exists $t \in \{1, \ldots, n\}$ such that $a_{ij} = b_j + c_j$ for all $j = 1, n$, then for all $i = 1, n$

$$\text{rdet}_i A = \text{rdet}_i A_t (b) + \text{rdet}_i A_t (c),$$
$$\text{cdet}_i A = \text{cdet}_i A_t (b) + \text{cdet}_i A_t (c),$$

where $b = (b_1, \ldots, b_n) \in H^{1 \times n}$, $c = (c_1, \ldots, c_n) \in H^{1 \times n}$ are arbitrary row-vectors.

Proposition 2.10 If for $A = (a_{ij}) \in H^{n \times n}$ there exists $t \in \{1, \ldots, n\}$ such that $a_{it} = b_i + c_i$ for all $i = 1, n$, then for all $j = 1, n$

$$\text{rdet}_j A = \text{rdet}_j A_t (b) + \text{rdet}_j A_t (c),$$
$$\text{cdet}_j A = \text{cdet}_j A_t (b) + \text{cdet}_j A_t (c),$$

where $b = (b_1, \ldots, b_n)^T \in H^{n \times 1}$, $c = (c_1, \ldots, c_n)^T \in H^{n \times 1}$ are arbitrary column-vectors.

Proposition 2.11 If A^* is the Hermitian adjoint matrix (the conjugate transpose) of $A = (a_{ij}) \in H^{n \times n}$, then $\text{rdet}_i A^* = \text{cdet}_i A$ for all $i = 1, n$.

The following lemma enables to expand $\text{rdet}_i A$ by cofactors along the i-th row for all $i = 1, n$. Consequently, the calculation of the row determinant of a $n \times n$ matrix is reduced to the calculation of the row determinant of a lower dimension matrix.

Definition 2.12 Let $A \in M(n, H)$ and $\text{rdet}_i A = \sum_j a_{ij} R_{ij}$, for all $i = 1, n$.

Then R_{ij} is called the right ij-th cofactor of A.

7
Lemma 2.13 Let R_{ij} be the right ij-th cofactor of $A \in M(n, H)$, that is $r_{det_i} A = \sum_{j=1}^{n} a_{ij} \cdot R_{ij}$ for all $i = 1, \ldots, n$. Then

\[
R_{ij} = \begin{cases}
- r_{det_k} A_{i, j}^i (a_i), & i \neq j, k = \begin{cases}
 j, & i > j; \\
 j - 1, & i < j;
\end{cases} \\
r_{det_k} A^i, & i = j, k = \min \{ I_n \setminus i \}
\end{cases} \tag{2.1}
\]

where $A_{i, j}^i (a_i)$ is obtained from A by replacing the j-th column with the i-th column, and then by deleting both the i-th row and column, $I_n = \{1, \ldots, n\}$.

Proof. At first we prove that $R_{ii} = r_{det_k} A_{ii}^i$, where $k = \min \{ I_n \setminus i \}$.

If $i = 1$, then $r_{det_1} A = a_{11} \cdot R_{11} + a_{12} \cdot R_{12} + \ldots + a_{1n} \cdot R_{1n}$. Consider some monomial of $r_{det_1} A$ such that begin with a_{11} from the left,

\[
a_{11} \cdot R_{11} = \sum_{\bar{\sigma} \in S_n} (-1)^{n-r} a_{11} a_{2i_2} \ldots a_{i_{k_2+1}} a_{i_{k_{1}+1}} \ldots a_{i_{k_r+1}} a_{i_{k_r}} = \]

\[
a_{11} \sum_{\bar{\sigma}_1 \in S_{n-1}} (-1)^{n-1-(r-1)} a_{2i_2} \ldots a_{i_{k_2+1}} a_{i_{k_1+1}} \ldots a_{i_{k_r+1}} a_{i_{k_r}},
\]

where

\[
\bar{\sigma} = (1) (2 i_{k_2} \ldots i_{k_2+l_2}) \ldots (i_{k_r} i_{k_{r+1}} \ldots i_{k_r+l_r}),
\]

\[
\bar{\sigma}_1 = (2 i_{k_2} \ldots i_{k_2+l_2}) \ldots (i_{k_r} i_{k_{r+1}} \ldots i_{k_r+l_r}).
\]

S_{n-1} is the symmetric group on the set $I_n \setminus 1$. The numbers of the disjoint cycles and coefficients of every monomial of R_{11} decrease by one. Since elements of the second row start these monomials on the left and elements of the first row and column do not belong to their, then

\[
R_{11} = \sum_{\bar{\sigma}_1 \in S_{n-1}} (-1)^{n-1-(r-1)} a_{2i_2} \ldots a_{i_{k_2+l_2}} \ldots a_{i_{k_r+l_r}} = \det_2 A_{11}^1. \tag{2.2}
\]

If now $i \neq 1$, then

\[
r_{det_i} A = a_{11} \cdot R_{11} + a_{i2} \cdot R_{i2} + \ldots + a_{in} \cdot R_{in} \tag{2.3}
\]

Consider some monomial of $r_{det_i} A$ such that begins with a_{ii} from the left,

\[
a_{ii} \cdot R_{ii} = \sum_{\bar{\sigma} \in S_n} (-1)^{n-r} a_{ii} a_{1i_2} \ldots a_{i_{k_2+l_2}} \ldots a_{i_{k_r+l_r}} = \]

\[
a_{ii} \cdot \sum_{\bar{\sigma}_1 \in \tilde{S}_{n-1}} (-1)^{n-1-(r-1)} a_{1i_2} \ldots a_{i_{k_2+l_2}} \ldots a_{i_{k_r+l_r}} a_{i_{k_r}} = \]

\[8\]
where
\[
\tilde{\sigma} = (i) \cdot (1 i_{k_2} \ldots i_{k_2+1}) \ldots (i_{k_r} i_{k_r+1} \ldots i_{k_r+l_r}),
\]
\[
\tilde{\sigma}_1 = (1 i_{k_2} \ldots i_{k_2+1}) \ldots (i_{k_r} i_{k_r+1} \ldots i_{k_r+l_r}).
\]

\(\tilde{S}_{n-1}\) is the symmetric group on \(I_n \setminus i\). The numbers of disjoint cycles and the coefficients of every monomial of \(R_{ii}\) again decrease by one. Each monomial of \(R_{ii}\) begins on the left with an entry of the first row. Since elements of the first row start these monomials on the left and elements of the \(i\)-th row and column do not belong to their, then
\[
R_{ii} = \sum_{\tilde{\sigma} \in \tilde{S}_{n-1}} (-1)^{n-1-(r-1)} a_{i_{k_2} \ldots i_{k_2+1}} \ldots a_{i_{k_r+l_r} i_{k_r}} = \text{rdet}_1 A^{ii}. \tag{2.4}
\]

By combining (2.2) and (2.4), we get \(R_{ii} = \text{rdet}_k A^{ii}, k = \min\{I_n \setminus i\}\).

Now suppose that \(i \neq j\). Consider some monomial of \(\text{rdet}_i A\) in (2.3) such that begins with \(a_{ij}\) from the left,
\[
a_{ij} \cdot R_{ij} = \sum_{\sigma \in S_n} (-1)^{n-r} a_{ij} a_{j_{k_1} \ldots k_{1+l_1}} \ldots a_{i_{k_r+l_r} i_{k_r}} = -a_{ij} \cdot \sum_{\sigma \in S_n} (-1)^{n-r-1} a_{j_{k_1} \ldots k_{1+l_1}} \ldots a_{i_{k_r+l_r} i_{k_r}},
\]
where \(\sigma = (i_j \ldots i_{k_1+1}) \ldots (i_{k_r} i_{k_r+1} \ldots i_{k_r+l_r})\). Denote \(\bar{a}_{i_{k_1+l_1} j} = a_{k_1+l_1} i\) for all \(i_{k_1+l_1} \in I_n\). Then
\[
a_{ij} \cdot R_{ij} = -a_{ij} \cdot \sum_{\tilde{\sigma} \in \tilde{S}_{n-1}} (-1)^{n-r-1} a_{j_{k_1} \ldots \bar{a}_{i_{k_1+l_1} j} \ldots a_{i_{k_r+l_r} i_{k_r}}},
\]
where \(\tilde{\sigma}_1 = (j \ldots i_{k_1+l_1}) \ldots (i_{k_r} i_{k_r+1} \ldots i_{k_r+l_r})\). The permutation \(\tilde{\sigma}_1\) does not contain the index \(i\) in each monomial of \(R_{ij}\). This permutation satisfies the conditions of Definition 2.2 for \(\text{rdet}_j A^{ij} (a_j)\). The matrix \(A^{ij} (a_j)\) is obtained from \(A\) by replacing the \(j\)-th column with the column \(i\), and then by deleting both the \(i\)-th row and column. That is,
\[
\sum_{\tilde{\sigma}_1 \in \tilde{S}_{n-1}} (-1)^{n-r-1} a_{j_{k_1} \ldots \bar{a}_{i_{k_1+l_1} j} \ldots a_{i_{k_r+l_r} i_{k_r}} = \text{rdet}_j A^{ii} (a_i)
\]

But \(A^{ij} (a_i)\) is a quadratic matrix of order \(n - 1\). Therefore, more precisely on the set of indices of the matrix \(A^{ij} (a_i)\) should be noted follows. If \(i > j\), then the index \(j\) remains the same for \(A^{ij} (a_i)\) and
\[
R_{ij} = -\text{rdet}_j A^{ii} (a_i) \tag{2.5}
\]
But if \(i < j \), then after deleting both the \(i \)-th row and column in \(A \) the \(j \)-th row will be the \(j - 1 \)-th row of \(A_{ij}^{ii}(a_{i,i}) \). Therefore,

\[
R_{ij} = -r\det_{j-1} A_{ij}^{ii}(a_{i,i}) \tag{2.6}
\]

Combining (2.5) and (2.6), we finally obtain (2.1). □

Definition 2.14 Let \(A \in M(n, H) \) and \(cdet_j A = \sum_i L_{ij} a_{ij} \), for all \(j = 1, n \). Then \(L_{ij} \) is called the left \(ij \)-th cofactor of \(A \).

Lemma 2.15 Let \(L_{ij} \) be the left \(ij \)th cofactor of of a matrix \(A \in M(n, H) \), that is \(cdet_j A = \sum_i L_{ij} \cdot a_{ij} \) for all \(j = 1, n \). Then

\[
L_{ij} = \begin{cases}
-cdet_k A_{i,j}^{ij}(a_{i,j}), & i \neq j, \quad k = \begin{cases}
i, & j > i; \\
i - 1, & j < i;
\end{cases} \\
cdet_k A_{i,i}^{ii}, & i = j, \quad k = \min(J_n \setminus j)
\end{cases} \tag{2.7}
\]

where \(A_{i,j}^{ij}(a_{i,j}) \) is obtained from \(A \) by replacing the \(i \)-th row with the \(j \)-th row, and then by deleting both the \(j \)-th row and column, \(J_n = \{1, \ldots, n\} \).

Proof. The proof is similar to the proof of Lemma 2.13 □

If \(A^* = A \), then \(A \in H^{n \times n} \) is called a Hermitian matrix. We finish this section by the following theorem which is crucial for row-column determinants of a Hermitian matrix.

Theorem 2.16 If \(A \in H^{n \times n} \) is a Hermitian matrix, then

\[
r\det_1 A = \ldots = r\det_n A = c\det_1 A = \ldots = c\det_n A \in \mathbb{R}.
\]

By Theorem 2.16 we have the following definition.

Definition 2.17 Since all column and row determinants of a Hermitian matrix over \(H \) are equal, we can define the determinant of a Hermitian matrix \(A \in H^{n \times n} \). By definition, we put for all \(i = 1, n \),

\[
\det A := r\det_i A = c\det_i A.
\]

Evidently, if \(A \in H^{2 \times 2} \) is Hermitian and \(a_{ij} \in D(H) \) for all \(i, j = 1, 2 \), then \(\det A = 0 \). It would be expected in the general case, but the following example claims that it is not true.
Example 1 Consider the Hermitian matrix

\[
A = \begin{pmatrix}
0 & 1 - k & 1 - j \\
1 + k & 0 & 1 + j \\
1 + j & 1 - j & 0
\end{pmatrix}.
\] (2.8)

It can easily be checked that \(a_{ij} \in \mathcal{D}(H) \) for all \(i, j = 1,3 \). So,

\[
\det A = r\det_1 A = 0 - 0(1 + j)(1 - j) + (1 - k)(1 + j)(1 + j) - (1 - k)(1 + k)0 +
(1 - j)(1 - j)(1 + k) - (1 - j)(1 + j)0 = 4.
\]

3 Properties of the column and row determinants of a Hermitian matrix

Theorem 3.1 If the matrix \(A_j, (a_i) \) is obtained from a Hermitian matrix \(A \in M(n,H) \) by replacing its \(j \)-th row with the \(i \)-th row, then for all \(i, j = 1, n \) such that \(i \neq j \) we have

\[
r\det_j A_j, (a_i) = 0. \tag{3.1}
\]

Proof. We assume \(n > 3 \) for \(A \in M(n,H) \). The case \(n \leq 3 \) is easily proved by a simple check. Consider some monomial \(d \) of \(r\det_j A_j, (a_i) \). Suppose the index permutation of its coefficients forms a direct product of \(r \) disjoint cycles, and denote \(i = i_s \). Consider all possibilities of disposition of an entry of the \(i_s \)-th row in the monomial \(d \).

(i) Suppose an entry of the \(i_s \)-th row is placed in \(d \) such that the index \(i_s \) starts some disjoint cycle, i.e.:

\[
d = (-1)^{n-r}a_{j_1} \ldots a_{i_{k,j}} u_1 \ldots u_\rho a_{i_{i_{s+1}}} \ldots a_{i_{k+m,s}} v_1 \ldots v_p \tag{3.2}
\]

Here we denote by \(u_\tau \) and \(v_t \) products of coefficients whose indices form some disjoint cycles for all \(\tau = 1, \rho \) and \(t = 1, p \) such that \(\rho + p = r - 2 \) or there are no such products. For \(d \) there are the following three monomials of \(r\det_j A_j, (a_i) \).

\[
d_1 = (-1)^{n-r}a_{j_1} \ldots a_{i_{k,j}} u_1 \ldots u_\rho a_{i_{s+1}} \ldots a_{i_{k+m,s}} v_1 \ldots v_p,
\]

\[
d_2 = (-1)^{n-r+1}a_{j_{i_{s+1}}} \ldots a_{i_{s+m,s}} a_{i_{i_{1}}} \ldots a_{i_{k,j}} u_1 \ldots u_\rho v_1 \ldots v_p,
\]

\[
d_3 = (-1)^{n-r+1}a_{j_{s+m}} \ldots a_{i_{s+1}} a_{i_{i_{1}}} \ldots a_{i_{k,j}} u_1 \ldots u_\rho v_1 \ldots v_p.
\]
Suppose $a_{ji_1} \ldots a_{ji_d} = x$ and $a_{i_s i_{s+1}} \ldots a_{i_s m i_s} = y$, then $\overline{y} = a_{i_s i_{s+m}} \ldots a_{i_{s+1} i_s}$. Taking into account $a_{ji_1} = a_{i_s i_1}$, $a_{ji_{i-1}} = a_{i_s i_{i-1}}$ and $a_{ji_{i+1}} = a_{i_s i_{i+1}}$, we consider the sum of these monomials.

$$d + d_1 + d_2 + d_3 = (-1)^{n-r} (xu_1 \ldots u_p y + xu_1 \ldots u_p \overline{y} - yxu_1 \ldots u_p - \overline{y} \cdot xu_1 \ldots u_p v_1 \ldots v_p = (-1)^{n-r} (xu_1 \ldots u_p t(y) - t(y)xu_1 \ldots u_p) v_1 \ldots v_p = 0. \quad (3.3)$$

Thus among the monomials of $\text{rdet}_j A_j \cdot (a_i)$ we find three monomials for d such that the sum of these monomials and d is equal to zero.

If in (3.2) $m = 0$ or $m = 1$, we accordingly get such monomials,

\begin{align*}
\tilde{d} &= (-1)^{n-r} a_{ji_1} \ldots a_{ji_d} u_1 \ldots u_p a_{i_s i_s} v_1 \ldots v_p, \\
\tilde{d} &= (-1)^{n-r} a_{ji_1} \ldots a_{ji_d} u_1 \ldots u_p a_{i_s i_{s+1}} a_{i_{s+1} i_s} v_1 \ldots v_p.
\end{align*}

For them, there are the following monomials, respectively,

\begin{align*}
\tilde{d}_1 &= (-1)^{n-r+1} a_{ji_1} a_{i_s i_1} \ldots a_{ji_d} u_1 \ldots u_p v_1 \ldots v_p, \\
\tilde{d}_1 &= (-1)^{n-r+1} a_{ji_1} a_{i_s i_{s+1}} a_{i_{s+1} i_s} \ldots a_{ji_d} u_1 \ldots u_p v_1 \ldots v_p.
\end{align*}

Taking into account $a_{ji_1} = a_{i_s i_1}$, $a_{ji_d} = a_{i_s i_d} \in \mathbb{R}$, $a_{ji_{i+1}} = a_{i_s i_{i+1}}$, and $a_{i_s i_{s+1}} a_{i_{s+1} i_s} = n(a_{i_s i_{s+1}}) \in \mathbb{R}$, we obtain $\tilde{d} + \tilde{d}_1 = 0$, $\tilde{d} + \tilde{d}_1 = 0$. Hence, the sums of corresponding two monomials of $\text{rdet}_j A_j \cdot (a_i)$ are equal to zero in these both cases.

ii) Now suppose that the index i_s is placed in another disjoint cycle than j and does not start this cycle,

$$\tilde{d} = (-1)^{n-r} a_{ji_1} \ldots a_{ji_d} u_1 \ldots u_p a_{i_{q+1} i_{q+1}} \ldots a_{i_{s-1} i_s} a_{i_s i_{s+1}} a_{i_{s+1} i_{s+1}} a_{i_{s+1} i_{s+1}} \ldots a_{i_{q-1} i_q} v_1 \ldots v_p.$$

Here we denote by u_r and v_t products of coefficients whose indices form some disjoint cycles for all $\tau = \overline{1, \rho}$ and $t = \overline{1, p}$ such that $\rho + p = r - 2$ or there are no such products. Now for d there are the following three monomials of $\text{rdet}_j A_j \cdot (a_i)$,

\begin{align*}
\tilde{d}_1 &= (-1)^{n-r} a_{ji_1} \ldots a_{ji_d} u_1 \ldots u_p a_{i_{q+1} i_{q+1}} \ldots a_{i_{s+1} i_{s+1}} a_{i_{s+1} i_{s+1}} \ldots a_{i_{q-1} i_q} v_1 \ldots v_p, \\
\tilde{d}_2 &= (-1)^{n-r+1} a_{ji_1} \ldots a_{ji_d} a_{i_{q+1} i_{q+1}} \ldots a_{i_{s+1} i_{s+1}} a_{i_{s} i_{s+1}} a_{i_{s+1} i_{s+1}} \ldots a_{i_{q+1} i_{q+1}} v_1 \ldots v_p, \\
\tilde{d}_3 &= (-1)^{n-r+1} a_{ji_1} \ldots a_{ji_d} a_{i_{q-1} i_q} a_{i_{q+1} i_{q+1}} \ldots a_{i_{s-1} i_s} a_{i_{s} i_{s+1}} a_{i_{s+1} i_{s+1}} \ldots a_{i_{q-1} i_q} v_1 \ldots v_p.
\end{align*}
Assume that
\[a_{i_s i_{s+1}} \ldots a_{i_q i_{q+1}} = \varphi, a_{i_q i_{q+1}} \ldots a_{i_{q-1} i_s} = \phi, a_{i_1 i_2} \ldots a_{i_k j} = x, \]
\[a_{i_q i_{q+1}} \ldots a_{i_s i_{s+1}} a_{i_s i_{s+1}} \ldots a_{i_q i_{q+1}} = y, a_{i_q i_{q+1}} a_{i_q i_{q+1}} a_{i_q i_{q+1}} a_{i_q i_{q+1}} = y_1. \]

Then we obtain
\[y = \phi \varphi, \quad y_1 = \varphi \phi, \quad \overline{y} = a_{i_q i_{q-1}} a_{i_{q-1} i_q} a_{i_q i_{q-1}} a_{i_{q-1} i_q}, \quad \text{and} \quad \overline{y_1} = a_{i_s i_{s-1}} a_{i_{s-1} i_s} a_{i_{s-1} i_s} a_{i_s i_{s-1}}. \]

Accounting for \(a_{i_1 i_1}, a_{i_{i_s} i_{i_s}} = a_{i_{i_s} i_{i_s}}, a_{j i_{s+1}} = a_{i_{i_s} i_{i_s}} \), we have
\[
\begin{align*}
\tilde{d} + \tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3 &= (-1)^{n-r}(x_{u_1} \ldots u_\rho y + x_{u_1} \ldots u_\rho \overline{y} - y_1 x_{u_1} \ldots u_\rho - \overline{y}_1 x_{u_1} \ldots u_\rho) \\
&\times v_1 \ldots v_\rho = (-1)^{n-r}(x_{u_1} \ldots u_\rho t(y) - t(y_1) x_{u_1} \ldots u_\rho) v_1 \ldots v_\rho = \\
&= (-1)^{n-r}(t(\phi \cdot \varphi) - t(\varphi \cdot \phi)) x_{u_1} \ldots u_\rho v_1 \ldots v_\rho. \quad (3.4)
\end{align*}
\]

Since by the rearrangement property of the trace, \(t(\phi \cdot \varphi) = t(\varphi \cdot \phi) \), then we obtain
\[\tilde{d} + \tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3 = 0. \]

(iii) If the indices \(i_s \) and \(j \) are placed in the same cycle, then we have the following monomials: \(d_1, \tilde{d}_1, \tilde{d}_1 \) or \(\tilde{d}_1 \). As shown above, for each of them there are another one or three monomials of \(rdet J_1 A_{j_i} (a_{i_s}) \) such that the sums of these two or four corresponding monomials are equal to zero.

We have considered all possible kinds of disposition of an entry of the \(i \)-th row as a factor of some monomial \(d \) of \(rdet J_1 A_{j_i} (a_{i_s}) \). For \(d \), in each case there exist one or three corresponding monomials such that accordingly the sum of the two or four monomials is equal to zero. Thus, we have (3.1).

We note that if one of factors of \(d \) is zero, then evidently \(d, d_1, d_2, d_3 \) are equal 0. If two adjacent factors of \(d \) are adjacent zero divisors (i.e. their product equals zero), then the sums (3.3) or (3.4) contain these adjacent zero divisors as well. Hence, the sums will be equal zero by the same cause. □

The following theorem can be proved similarly.

Theorem 3.2 If the matrix \(A_{i_j} (a_{i_j}) \) is obtained from a Hermitian matrix \(A \in M(n, H) \) by replacing of its \(i \)-th column with the \(j \)-th column, then \(cdet_i A_{i_j} (a_{i_j}) = 0 \) for all \(i, j = 1, \ldots, n \) such that \(i \neq j \).

Corollary 3.3 If a Hermitian matrix \(A \in M(n, H) \) consists two same rows (columns), then \(\det A = 0 \).
Proof. Suppose the \(i \)-th row of \(A \) coincides with the \(j \)-th row, i.e. \(a_{ik} = a_{jk} \) for all \(k \in I_n \) and \(\{i, j\} \in I_n \) such that \(i \neq j \). Then \(\overline{a_{ik}} = \overline{a_{jk}} \) for all \(k \in I_n \). Since \(A \) is Hermitian, then \(a_{ki} = a_{kj} \) for all \(k \in I_n \), where \(\{i, j\} \in I_n \) and \(i \neq j \). It means that \(A \) has two same corresponding columns as well. The matrix \(A \) may be represented as \(A_i, (a_j) \), where \(A_i, (a_j) \) is obtained from \(A \) by replacing the \(i \)-th row with the \(j \)-th row. By Theorem \(3.1 \) we have,

\[
\det A = \det_i A = \det_i A_i (a_j) = 0. \quad \square
\]

We are needed by the following lemmas.

Lemma 3.4 \([10]\) Let \(T_n \) be the sum of all possible products of the \(n \) factors, each of which are either \(h_i \in H \) or \(\overline{h_i} \) for all \(i = 1, n \), by specifying the ordering in the terms, \(T_n = h_1 \cdot h_2 \cdots \cdot h_n + \overline{h_1} \cdot h_2 \cdots \cdot \overline{h_n} \). Then \(T_n \) consists of the \(2^n \) terms and \(T_n = t(h_1) t(h_2) \cdots t(h_n) \).

Lemma 3.5 If the matrix \(A_i, (a_i, b) \) is obtained from a Hermitian matrix \(A \in M(n, H) \) by right-multiplying of its \(i \)-th column by \(b \in H \), then for all \(i = 1, n \) we have \(\det_i A, (a, b) = \det A \cdot b \).

Proof. Consider some monomial \(d \) of \(A_i, (a_i, b) \) for \(i = 1, n \). Denote \(i_{k_1} = i \). Then,

\[
d = (-1)^{n-r}a_{i_{k_1}, i_{k_1+1}} \cdots a_{i_{k_1+i_{l_1}-1}, i_{k_1}} b a_{i_{k_2}, i_{k_2+1}} \cdots a_{i_{k_2+i_{l_2}-1}, i_{k_2}} \cdots \times
\]

\[
\times a_{i_{k_r}, i_{k_r+1}} \cdots a_{i_{k_r+i_{l_r}-1}, i_{k_r}} = (-1)^{n-r} h_1 \cdot b \cdot h_2 \cdots \cdot h_r,
\]

where \(h_s = a_{i_{k_s}, i_{k_s+1}} \cdots a_{i_{k_s+i_{l_s}-1}, i_{k_s}} \) for all \(s = 1, r \). If \(l_s = 1 \), then \(h_s = a_{i_{k_s}, i_{k_s+1}} \cdot a_{i_{k_s+1}, i_{k_s}} = n(a_{i_{k_s}, i_{k_s+1}}) \in \mathbb{R} \), and if \(l_s = 0 \), then \(h_s = a_{i_{k_s}, i_{k_s}} \in \mathbb{R} \). Suppose there exists such \(s \) that \(l_s \geq 2 \). By Definition \(2.2 \) the index permutation \(\sigma \) of \(d \) forms a direct products of disjoint cycles and its cycle notation is left-ordered. Denote by \(\sigma_s (i_{k_s}) := (i_{k_s}, i_{k_s+1}, \ldots, i_{k_s+l_s}) \) a cycle which corresponds to a factor \(h_s \). Then \(\sigma_s^{-1} (i_{k_s}) := (i_{k_s}, i_{k_s+l_s}, i_{k_s+1}, \ldots, i_{k_s+1}) \) is the cycle which is inverse to \(\sigma_s (i_{k_s}) \) and corresponds to the factor \(\overline{h_s} \). There exist \(2^{n-1} \) monomials of \(A_i, (a_i, b) \) such that their indices permutations form the direct products of the disjoint cycles \(\sigma_s (i_{k_s}) \) or \(\sigma_s^{-1} (i_{k_s}) \) for all \(s = 1, r \) and keeping their ordering from 1 to \(r \), where \(p = r - \rho \), and \(\rho \) is the number of the cycles of the first and second orders. Then by Lemma \(3.4 \) for the sum \(C_1 \) of these monomials and \(d \) we obtain,

\[
C = (-1)^{n-r} b \cdot \alpha t(h_{\nu_1}) \cdots t(h_{\nu_p}),
\]
where \(\alpha \in \mathbb{R} \) is a product of factors whose indices form cycles of the first and second orders. Since \(t(h_{\nu_k}) \in \mathbb{R} \) for all \(\nu_k \in \{1, \ldots, r\} \) and \(k = \frac{1}{p} \), then \(b \) commutes with \(t(h_{\nu_k}) \in \mathbb{R} \) for all \(\nu_k \in \{1, \ldots, r\} \) and \(k = \frac{1}{p} \). Therefore, \(\text{rdet}_i A \cdot (a_i \cdot b) = \text{rdet}_i A \cdot b = b \cdot \text{det} A \). □

Lemma 3.6 If \(A_i \cdot (b \cdot a_i) \) is obtained from Hermitian \(A \in M(n, H) \) by left-multiplying of its \(i \)-th row by \(b \in H \), then for all \(i = \frac{1}{1}, n \) we have

\[
\text{cdet}_i A_i \cdot (b \cdot a_i) = b \cdot \text{det} A
\]

The proof is similar to the proof of Lemma 3.5.

By Theorems 3.1, 3.2, Lemmas 3.5 and 3.6, and basic properties of the row and column determinants, we have the following theorems.

Theorem 3.7 If the \(i \)-th row of a Hermitian matrix \(A \in M(n, H) \) is replaced with a left linear combination of its other rows, i.e. \(a_i = c_1 a_i_1 + \ldots + c_k a_i_k \), where \(c_l \in H \) for all \(l = \frac{1}{1}, k \) and \(\{i, i_l\} \subset I_n \), then

\[
\text{rdet}_i A_i \cdot (c_1 a_i_1 + \ldots + c_k a_i_k) = \text{cdet}_i A_i \cdot (c_1 a_i_1 + \ldots + c_k a_i_k) = 0.
\]

Theorem 3.8 If the \(j \)-th column of a Hermitian matrix \(A \in M(n, H) \) is replaced with a right linear combination of its other columns, i.e. \(a_j = a_{j_1} c_1 + \ldots + a_{j_k} c_k \), where \(c_l \in H \) for all \(l = \frac{1}{1}, k \) and \(\{j, j_l\} \subset J_n \), then

\[
\text{cdet}_j A_j \cdot (a_{j_1} c_1 + \ldots + a_{j_k} c_k) = \text{rdet}_j A_j \cdot (a_{j_1} c_1 + \ldots + a_{j_k} c_k) = 0.
\]

Definition 3.9 Let \(a_i \in H^{n \times 1} \) for all \(i = \frac{1}{1}, m \). Row-vectors \(a_1, \ldots, a_m \) are left linearly dependent, if there exist scalars \(\{b_1, \ldots, b_m\} \subset H \) (which are not all zero) such that \(b_1 \cdot a_1 + \ldots + b_m \cdot a_m = 0 \), where \(0 \) is the zero row vector. If no such scalars exist, then the vectors are said to be left-linearly independent.

Definition 3.10 Let \(a_j \in H^{1 \times n} \) for all \(j = \frac{1}{1}, m \). Column-vectors \(a_1, \ldots, a_m \) are right linearly dependent, if there exist scalars \(\{c_1, \ldots, c_m\} \subset H \) (which are not all zero) such that \(a_1 \cdot c_1 + \ldots + a_m \cdot c_m = 0 \), where \(0 \) is the zero column-vector. If no such scalars exist, then the column-vectors are said to be right-linearly independent.

By Lemma 3.3, the evident corollary of Theorems 3.7 and 3.8 follows.
Corollary 3.11 If the i-th row of Hermitian $A \in M(n,H)$ is a left linear combination of its other rows, or its j-th column is a right linear combination of its other columns, i.e. $\exists \mathbf{c} \in H$ for $l = 1, k$ such that $\mathbf{a}_i = c_1 \mathbf{a}_{i_1} + \ldots + c_k \mathbf{a}_{i_k}$ or $\mathbf{a}_i = \mathbf{a}_{i_1} c_1 + \ldots + \mathbf{a}_{i_k} c_k$ for $\{i, i_1\} \subset I_n$, then $\det A = 0$.

From Theorems 3.7, 3.8 and basic properties of the row-column determinants for arbitrary matrices, we can obtain the following theorems as well.

Theorem 3.12 If the i-th row of a Hermitian matrix $A \in M(n,H)$ is added a left linear combination of its other rows, then

$$\text{rdet}_i A_i \left(a_i + c_1 \cdot a_{i_1} + \ldots + c_k \cdot a_{i_k} \right) =$$

$$= \text{cdet}_i A_i \left(a_i + c_1 \cdot a_{i_1} + \ldots + c_k \cdot a_{i_k} \right) = \det A,$$

where $c_l \in H$ for all $l = 1, k$ and $\{i, i_l\} \subset I_n$.

Theorem 3.13 If the j-th column of a Hermitian matrix $A \in M(n,H)$ is added a right linear combination of its other columns, then

$$\text{cdet}_j A_j \left(a_j + a_{j_1} c_1 + \ldots + a_{j_k} c_k \right) =$$

$$= \text{rdet}_j A_j \left(a_j + a_{j_1} c_1 + \ldots + a_{j_k} c_k \right) = \det A,$$

where $c_l \in H$ for all $l = 1, k$ and $\{j, j_l\} \subset J_n$.

4 Determinantal representations the inverse of a Hermitian matrix

4.1 The inverse of a Hermitian matrix

Theorem 4.1 If $A \in M(n,H)$ is Hermitian and $\det A \neq 0$, then there exist an unique right inverse matrix $(RA)^{-1}$ and an unique left inverse matrix $(LA)^{-1}$ of A, where $(RA)^{-1} = (LA)^{-1} =: A^{-1}$, and they have the following determinantal representations, respectively,

$$(RA)^{-1} = \frac{1}{\det A} \begin{pmatrix} R_{11} & R_{21} & \cdots & R_{n1} \\ R_{12} & R_{22} & \cdots & R_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ R_{1n} & R_{2n} & \cdots & R_{nn} \end{pmatrix}, \quad \text{(4.1)}$$

\[(LA)^{-1} = \frac{1}{\det A} \begin{pmatrix} L_{11} & L_{21} & \cdots & L_{n1} \\ L_{12} & L_{22} & \cdots & L_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ L_{1n} & L_{2n} & \cdots & L_{nn} \end{pmatrix}, \quad (4.2)\]

where \(R_{ij}\) and \(L_{ij}\) can be obtained by (2.1) and (2.7), respectively, for all \(i, j = 1, n\).

Proof. Let \(B = A \cdot (RA)^{-1}\). We obtain the entries of \(B\) by multiplying matrices. For all \(i = 1, n\), we have

\[b_{ii} = (\det A)^{-1} \sum_{j=1}^{n} a_{ij} \cdot R_{ij} = (\det A)^{-1} \cdot \text{rdet}_i A = \frac{\det A}{\det A} = 1,\]

and for all \(i \neq j\)

\[b_{ij} = (\det A)^{-1} \sum_{s=1}^{n} a_{is} \cdot R_{js} = (\det A)^{-1} \cdot \text{rdet}_j A \cdot (a_{i_\cdot}) .\]

If \(i \neq j\), then by Theorem 3.1 \(\text{rdet}_j A \cdot (a_{i_\cdot}) = 0\). Consequently \(b_{ij} = 0\). Thus \(B = I\) and \((RA)^{-1}\) is the right inverse of the Hermitian matrix \(A\).

Suppose \(D = (LA)^{-1} A\). We again get the entries of \(D\) by multiplying matrices. For all \(i = 1, n\),

\[d_{ii} = (\det A)^{-1} \sum_{i=1}^{n} L_{ij} \cdot a_{ij} = (\det A)^{-1} \cdot \text{cdet}_i A = \frac{\det A}{\det A} = 1,\]

and for all \(i \neq j\),

\[d_{ij} = (\det A)^{-1} \sum_{s=1}^{n} L_{si} \cdot a_{sj} = (\det A)^{-1} \cdot \text{cdet}_{i_\cdot} A \cdot (a_{i_\cdot}).\]

If \(i \neq j\), then by Theorem 3.2 \(\text{cdet}_{i_\cdot} A \cdot (a_{i_\cdot}) = 0\). Therefore \(d_{ij} = 0\) for all \(i \neq j\). Thus \(D = I\) and \((LA)^{-1}\) is the left inverse of the Hermitian matrix \(A\).

The equality \((RA)^{-1} = (LA)^{-1}\) because of the uniqueness of inverses over associative rings. □

Moreover, the following criterion of invertibility of a Hermitian matrix can be obtained.
Theorem 4.2 If $A \in M(n,H)$ is Hermitian, then the following propositions are equivalent.

i) A is invertibility, i.e. $A \in GL(n,H)$;

ii) rows of A are left-linearly independent;

iii) columns of A are right-linearly independent;

iii) $\det A \neq 0$.

Proof. $i) \Rightarrow ii)$ Consider a right system of linear equations $A \cdot x = y$. The fact A is invertible means that the linear transformation $A : x \to y$ is a bijection. Suppose that rows of A are left-linearly dependent. It means that $\exists i \in I_n$ and $\exists c \in H$ for $l = 1, k$ such that $a_i = c_1 a_{i_1} + \ldots + c_k a_{i_k}$. Then, by elementary row operations the i-th row reduce to zero, and we lose the bijectivity of the linear transformation A. It follows that A is non-invertible. Hence, the supposition is false, and rows of A are left-linearly independent.

The equivalence $ii) \Rightarrow iii)$ can be proved similarly by considering a left system of linear equations $xA = y$.

The equivalences $ii) \Rightarrow iii)$ and $iii) \Rightarrow iii)$ follow from Corollary 3.11.

Finally, the equivalence $iii) \Rightarrow i)$ is given by Theorem 4.1.

Remark 4.3 By Theorems 4.2, 3.12 and 3.13 the determinant of a coquaternionic Hermitian matrix satisfy Axioms 1, 3 of a noncommutative determinant.

4.2 Cramer’s rule for systems of linear coquaternionic equations in Hermitian case

Theorem 4.4 Let

$$A \cdot x = y$$ (4.3)

be a right system of linear equations with a matrix of coefficients $A \in M(n,H)$, a column of constants $y = (y_1, \ldots, y_n)^T \in H^{n \times 1}$, and a column of unknowns $x = (x_1, \ldots, x_n)^T$. If A is Hermitian and $\det A \neq 0$, then the solution of (4.3) is given by components,

$$x_j = \frac{c_{det} A_{\cdot j}(y)}{\det A}, \quad j = 1, n.$$ (4.4)
Proof. Since det\(A \neq 0\), then, by Theorem 4.1, there exists the unique inverse matrix \(A^{-1}\). From this the existence and uniqueness of solutions of \((4.3)\) follows immediately.

By considering \(A^{-1}\) as the left inverse, the solution of \((4.3)\), \(x = A^{-1} \cdot y\), can be represented by components as follows,

\[x_j = (\text{det}A)^{-1} \sum_{i=1}^{n} L_{ij} \cdot y_i, \quad j = 1, n,\]

where \(L_{ij}\) is the left \(ij\)-th cofactor of \(A\). From here \((4.4)\) follows immediately. \(\square\)

Theorem 4.5 Let \(x \cdot A = y\) \((4.5)\) be a left system of linear equations with a matrix of coefficients \(A \in M(n, H)\), a row of constants \(y = (y_1, \ldots, y_n) \in \mathbf{H}^{1 \times n}\), and a row of unknowns \(x = (x_1, \ldots, x_n)\). If \(A\) is Hermitian and \(\text{det}A \neq 0\), then the solution of \((4.3)\) is given by components,

\[x_i = \frac{r\text{det}_i A_i(y)}{\text{det} A}, \quad i = 1, n.\]

Proof. The proof is similar to the proof of Theorem 4.4 by using \((4.1)\) for determinantal representation of \(A^{-1}\). \(\square\)

Example 2 Let consider a right system of linear equations \(Ax = b\) \((4.6)\) with the matrix \(A\) from \((2.8)\) and \(b = (i \ j \ k)^T\). Since \(A\) is Hermitian and \(\text{det}A = 4\), we can find the solution of \((4.6)\) by Cramer’s rule \((4.4)\).

\[x_1 = \frac{1}{\text{det}A} \text{cdet}_1 \begin{pmatrix} i & 1-k & 1-j \\ j & 0 & 1+j \\ k & 1-j & 0 \end{pmatrix} = \frac{-3 - i + 3j + k}{4},\]

\[x_2 = \frac{1}{\text{det}A} \text{cdet}_2 \begin{pmatrix} 0 & i & 1-j \\ 1+k & j & 1+j \\ 1+j & k & 0 \end{pmatrix} = \frac{1 + 3i + j - k}{4},\]

\[x_3 = \frac{1}{\text{det}A} \text{cdet}_3 \begin{pmatrix} 0 & 1-k & i \\ 1+k & 0 & j \\ 1+j & 1-j & k \end{pmatrix} = \frac{2j + 2k}{4}.\]
Now, we shall find the inverse \(A^{-1} \) of \(A \) by (4.2).

\[
L_{11} = \text{cdet}_1 \begin{pmatrix} 0 & 1 + j \\ 1 - j & 0 \end{pmatrix} = 0, \quad L_{12} = -\text{cdet}_1 \begin{pmatrix} 1 + k & 1 + j \\ 1 + j & 0 \end{pmatrix} = 2 + 2j,
\]
\[
L_{13} = -\text{cdet}_1 \begin{pmatrix} 1 + j & 1 - j \\ 1 + k & 0 \end{pmatrix} = 1 + i - j + k,
\]
\[
L_{21} = -\text{cdet}_1 \begin{pmatrix} 1 - k & 1 - j \\ 1 - j & 0 \end{pmatrix} = 2 - 2j, \quad L_{22} = \text{cdet}_1 \begin{pmatrix} 0 & 1 - j \\ 1 + j & 0 \end{pmatrix} = 0,
\]
\[
L_{23} = -\text{cdet}_2 \begin{pmatrix} 0 & 1 - k \\ 1 + j & 1 - j \end{pmatrix} = 1 + i + j - k,
\]
\[
L_{31} = -\text{cdet}_2 \begin{pmatrix} 0 & 1 + j \\ 1 - k & 1 - j \end{pmatrix} = 1 - i + j - k,
\]
\[
L_{32} = -\text{cdet}_2 \begin{pmatrix} 0 & 1 - j \\ 1 + k & 1 + j \end{pmatrix} = 1 - i - j + k,
\]
\[
L_{33} = \text{cdet}_2 \begin{pmatrix} 0 & 1 - k \\ 1 + k & 0 \end{pmatrix} = 0.
\]

Therefore,

\[
A^{-1} = \frac{1}{4} \begin{pmatrix} 0 & 2 - 2j & 1 - i + j - k \\ 2 + 2j & 0 & 1 - i - j + k \\ 1 + i - j + k & 1 + i + j - k & 0 \end{pmatrix}.
\]

Finally, we see that by the matrix method the identical result is obtained,

\[
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 0 & 2 - 2j & 1 - i + j - k \\ 2 + 2j & 0 & 1 - i - j + k \\ 1 + i - j + k & 1 + i + j - k & 0 \end{pmatrix} \begin{pmatrix} i \\ j \\ k \end{pmatrix} = \frac{1}{4} \begin{pmatrix} -3 - i + 3j + k \\ 1 + 3i + j - k \\ 2j + 2k \end{pmatrix}.
\]

5 Cramer’s rules for some coqaternionic matrix equations

Theorem 5.1 Suppose

\[
AXB = C
\] (5.1)
is a two-sided matrix equation, where $A \in \mathbb{H}^{m \times m}$, $B \in \mathbb{H}^{n \times n}$, $C \in \mathbb{H}^{m \times n}$ are given, $X \in \mathbb{H}^{n \times n}$ is unknown, and A, B are Hermitian. If $\det A \neq 0$ and $\det B \neq 0$, then the unique solution of (5.1) can be represented as follows,

$$x_{ij} = \frac{\text{rdet}_j B_{j.} (c_i)}{\det A \cdot \det B},$$

or

$$x_{ij} = \frac{\text{cdet}_i A_{.i} (c_j)}{\det A \cdot \det B},$$

where $c_i := (\text{cdet}_i A_{.i} (c_1), \ldots, \text{cdet}_i A_{.i} (c_n)) \in \mathbb{H}^{n \times 1}$ is the row-vector and $c_j := (\text{rdet}_j B_{j.} (c_1), \ldots, \text{rdet}_j B_{j.} (c_m))^T \in \mathbb{H}^{1 \times m}$ is the column-vector and c_i, c_j are the i-th row and the j-th column of C, respectively, for all $i = 1, m, j = 1, n$.

Proof. By Theorem 4.1, A and B are invertible. There exists the unique solution of (5.1), $X = A^{-1}CB^{-1}$. If we represent A^{-1} as a left inverse by (4.2) and (B^{-1}) as a right inverse by (4.1), then we have

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} L_{11}^A & L_{21}^A & \cdots & L_{m1}^A \\ L_{12}^A & L_{22}^A & \cdots & L_{m2}^A \\ \vdots & \vdots & \ddots & \vdots \\ L_{1m}^A & L_{2m}^A & \cdots & L_{mn}^A \end{pmatrix} \times \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{pmatrix} \frac{1}{\det B} \begin{pmatrix} R_{11}^B & R_{21}^B & \cdots & R_{n1}^B \\ R_{12}^B & R_{22}^B & \cdots & R_{n2}^B \\ \vdots & \vdots & \ddots & \vdots \\ R_{1n}^B & R_{2n}^B & \cdots & R_{mn}^B \end{pmatrix},$$

where L_{ij}^A is a left ij-th cofactor of A for all $i, j = 1, m$, and R_{ij}^B is a right ij-th cofactor of B for all $i, j = 1, n$. It implies

$$x_{ij} = \sum_{l=1}^{n} \left(\sum_{k=1}^{m} L_{ki}^A c_{kl} \right) R_{jl}^B \frac{1}{\det A \cdot \det B},$$

for all $i = 1, m, j = 1, n$. From this by Definition 2.3 we obtain

$$\sum_{k=1}^{m} L_{ki}^A c_{kl} = \text{cdet}_i A_{.i} (c_i),$$

21
where $c_{i,l}$ is the l-th column of C for all $l = 1, n$. Consider the row-vector

$$c^A_i := (cdet_i A_{,i} (c_{1}), \ldots, cdet_i A_{,i} (c_{n}))$$

for all $i = 1, m$. By Definition 2.2, $\sum_{l=1}^{n} c^A_{il} R_{jl}^B = rdet_j B_{,j} (c^A_i)$, then we get (5.2). Having changed the order of summation in (5.4), we have

$$x_{ij} = \frac{\sum_{k=1}^{m} L_{ki} \left(\sum_{l=1}^{n} c_{kl} R_{jl}^B \right)}{\det A \cdot \det B}.$$

By Definition 2.2 we have $\sum_{l=1}^{n} c_{kl} R_{jl}^B = rdet_j B_{,j} (c_{k})$, where c_{k} is the k-th row-vector of C for all $k = 1, n$. Denote the following column-vector by

$$c^B_j := (rdet_j B_{,j} (c_{1}), \ldots, rdet_j B_{,j} (c_{m}))^T$$

for all $j = 1, n$. By Definition 2.3, $\sum_{k=1}^{n} L_{ki} c^B_{kj} = cdet_i A_{,i} (c^B_j)$, then we finally have (5.3). □

If, in (5.1), we put $A = I_m$ or $B = I_n$, then, respectively, we evidently get the following corollaries.

Corollary 5.2 Suppose

$$AX = C \tag{5.5}$$

is a right matrix equation, where $A \in H^{m \times m}$, $C \in H^{m \times n}$ are given, $X \in H^{m \times n}$ is unknown, and A is Hermitian. If $\det A \neq 0$, then the unique solution of (5.5) can be represented as follows,

$$x_{ij} = \frac{cdet_i A_{,i} (c_{j})}{\det A}$$

where c_{j} is the j-th column of C, for all $i = 1, m, j = 1, n$.

Corollary 5.3 Suppose

$$XB = C \tag{5.6}$$

is a left matrix equation, where $B \in H^{n \times n}$, $C \in H^{m \times n}$ are given, $X \in H^{m \times n}$ is unknown, and B is Hermitian. If $\det B \neq 0$, then the unique solution of (5.6) can be represented as follows,

$$x_{ij} = \frac{rdet_j B_{,j} (c_{i})}{\det B}$$

where c_{i} is the i-th row of C, for all $i = 1, m, j = 1, n$. 22
Example 3 Let consider the matrix equations

\[AXB = C \] \hspace{1cm} (5.7)

with the matrix \(A \) from (2.8), \(B = \begin{pmatrix} 1 & k \\ -k & 1 \end{pmatrix} \), and \(C = \begin{pmatrix} i & 1 \\ 0 & j \\ k & -i \end{pmatrix} \). Since \(A, B \) are Hermitian and \(\det A = 4 \) and \(\det B = 2 \), we can find the solution of (5.7) by Cramer’s rule (5.3). Firstly, we obtain the column-vectors \(c^B_j \) for \(j = 1, 2 \). Since

\[c^B_{11} = \text{rdet}_1 B_1(c_1) = \text{rdet}_1 \begin{pmatrix} i \\ -k \\ 1 \end{pmatrix} = i + k, \]

\[c^B_{21} = \text{rdet}_1 B_2(c_2) = \text{rdet}_1 \begin{pmatrix} 0 \\ -k \\ j \end{pmatrix} = -i, \]

\[c^B_{31} = \text{rdet}_1 B_3(c_3) = \text{rdet}_1 \begin{pmatrix} k \\ -k \\ -i \end{pmatrix} = j + k, \]

then \(c^B_1 = \begin{pmatrix} i + k \\ -i \\ j + k \end{pmatrix} \). Similarly, we get \(c^B_2 = \begin{pmatrix} 1 - j \\ j \\ -1 - i \end{pmatrix} \). Then by (5.3), we have

\[x_{11} = \frac{\text{cdet}_1 A_1(c^B_1)}{\det A \cdot \det B} = \frac{1}{8} \text{cdet}_1 \begin{pmatrix} i + k & 1 - k & 1 - j \\ -i & 0 & 1 - j \\ j + k & 1 - j & 0 \end{pmatrix} = \frac{-2i + j - k}{4}. \]

Similarly, we obtain

\[x_{12} = \frac{-2 + j + k}{4}, x_{21} = \frac{i + j}{4}, x_{22} = \frac{-1 - k}{4}, x_{31} = \frac{1 + i + j + 3k}{8}, x_{32} = \frac{3 - 2i - j + 2k}{8}. \]

Finally,

\[X = \frac{1}{8} \begin{pmatrix} -4i + 2j - 2k & -4 + 2j + 2k \\ 2i + 2j & -2 - 2k \\ 1 + i + j + 3k & 3 - 2i - j + 2k \end{pmatrix}. \]
References

[1] D.W. Lewis, Quaternion algebras and the algebraic legacy of Hamilton’s quaternions. Irish Math. Soc. Bulletin 57 (2006), 41-64.

[2] J. Cockle, On systems of algebra involving more than one imaginary. Phil. Mag. 35 (1849), 434-435.

[3] L. Kula, Y. Yayli, Split quaternions and rotations in semi euclidean space E_2^4. J. Korean Math. Soc. 44 (2007), 1313-1327.

[4] M. Özdemir, A.A. Ergin, Rotations with unit timelike quaternions in Minkowski 3-space. J. Geom. Phys. 56 (2006), 322336.

[5] P. Bracken, Split-quaternionic representation of the moving frame for timelike surfaces in 3-dimensional Minkowski spacetime. Journal of Mathematics and Statistics 6(1) (2010), 56-59.

[6] V. Shpakivsky, Linear quaternionic equations and their systems. Adv. Appl. Clifford Algebras 21 (2011) 637-645.

[7] M. Erdoğdu, M. Özdemir, Two-sided linear split quaternionic equations with unknowns. Linear and Multilinear Algebra 63 (2015), 97-106.

[8] Y. Alagöz, K. H. Oral, S.Yüce, Split quaternion matrices. Miskolc Mathematical Notes 13 (2012), 223-232.

[9] I. Kyrchei, The column and row immanants of matrices over a split quaternion algebra. Adv. Appl. Clifford Algebras 25 (2015), 611-619.

[10] I. Kyrchei, Cramer’s rule for quaternionic systems of linear equations. Fundamentalnaya i Prikladnaya Matematika 134 (2007), 67-94.

[11] I. Kyrchei, The theory of the column and row determinants in a quaternion linear algebra. In: Albert R. Baswell (Eds.), Advances in Mathematics Research 15, pp. 301-359, Nova Sci. Publ., New York, 2012.

[12] I. Kyrchei, Determinantal representations of the Moore-Penrose inverse over the quaternion skew field. Journal of Mathematical Sciences 180 (012), 23-33.
[13] I. Kyrchei, *Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations*. Linear Algebra Appl. **438** (2013), 136-152.

[14] I. Kyrchei, *Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations*. Appl. Math. Comp. **238** (2014), 193-207.

[15] I. Kyrchei, *Determinantal representations of the W-weighted Drazin inverse over the quaternion skew field*. Appl. Math. Comp. **264** (2015), 453-465.

[16] G.J. Song, Q.W. Wang, H.X. Chang, *Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field*. Comput. Math. Appl. **61** (2011), 1576-1589.

[17] G.J. Song, Q.W. Wang, *Condensed Cramer rule for some restricted quaternion linear equations*. Appl. Math. Comp. **218** (2011), 3110-3121.

[18] G.J. Song, *Bott-Duffin inverse over the quaternion skew field with applications*. Journal of Applied Mathematics and Computing **41** (2013), 377-392.

[19] M. Erdoğdu, M. Özdemir, *On complex split quaternion matrices*. Adv. Appl. Clifford Algebras **23** (2013), 625-638.

[20] M. Erdoğdu, M. Özdemir, *On eigenvalues of split quaternion matrices*. Adv. Appl. Clifford Algebras **23** (2013), 615-623.

[21] C. Flaut, V. Shpakivskyi, *On complex split quaternion matrices*. Adv. Appl. Clifford Algebras **23** (2013), 657-671.

[22] H. Aslaksen, *Quaternionic determinants*. Math. Intellig. **18** (1996), 57-65.

[23] N. Cohen, S. De Leo, *The quaternionic determinant*. Elec. J. Lin. Alg. **7** (2000), 100-111.

[24] I. Gelfand, V. Retakh, *A determinants of matrices over noncommutative rings*. Funct. Anal. Appl. **25** (1991), 13-35.
[25] I. Gelfand, V. Retakh, *A theory of noncommutative determinants and characteristic functions of graphs*. Funct. Anal. Appl. **26** (1992), 1-20.

[26] E.H. Moore, *On the determinant of an Hermitian matrix of quaternionic elements*. Bull. Amer. Math. Soc. **28** (1922), 161-162.

[27] F. J.Dyson, *Quaternion determinants*. Helvetica Phys. Acta **45** (1972), 289-302.