The tocopherol transfer protein mediates vitamin E trafficking between cerebellar astrocytes and neurons

Received for publication, November 3, 2021, and in revised form, January 31, 2022. Published, Papers in Press, February 9, 2022, https://doi.org/10.1016/j.jbc.2022.101712

L. Ulatowski, Mikel Ghelfi, Ryan West, J. Atkinson, C. J. Finno, and D. Manor

From the 1Department of Biology, Ursuline College, Pepper Pike, Ohio, USA; 2Department of Chemistry, Brock University, St Catharines, Ontario, Canada; 3Department of Population Health and Reproduction, University of California School of Veterinary Medicine, Davis, California, USA; 4Departments of Nutrition and Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; 5Case Comprehensive Cancer Center, Cleveland, Ohio, USA

Edited by Dennis Voelker

Alpha-tocopherol (vitamin E) is an essential nutrient that functions as a major lipid-soluble antioxidant in humans. The alpha-tocopherol transfer protein (TTP) binds alpha-tocopherol with high affinity and selectivity and regulates whole-body distribution of the vitamin. Heritable mutations in the TTPA gene result in familial vitamin E deficiency, elevated indices of oxidative stress, and progressive neurodegeneration that manifest primarily in spinocerebellar ataxia. Although the essential role of vitamin E in neurological health has been recognized for over 50 years, the mechanisms by which this essential nutrient is transported in the central nervous system are poorly understood. Here we found that, in the murine cerebellum, TTP is selectively expressed in glial fibrillary acidic protein–positive astrocytes, where it facilitates efflux of vitamin E to neighboring neurons. We also show that induction of oxidative stress enhances the transcription of the Ttpa gene in cultured cerebellar astrocytes. Furthermore, secretion of vitamin E from astrocytes is mediated by an ABC-type transporter, and uptake of the vitamin into neurons involves the low-density lipoprotein receptor–related protein 1. Taken together, our data indicate that TTP-expressing astrocytes control the delivery of vitamin E from astrocytes to neurons, and that this process is homeostatically responsive to oxidative stress. These are the first observations that address the detailed molecular mechanisms of vitamin E transport in the central nervous system, and these results have important implications for understanding the molecular underpinnings of oxidative stress–related neurodegenerative diseases.

Vitamin E is a collective term that denotes a family of eight neutral plant lipids (1), of which alpha-tocopherol is selectively retained in the body and considered the most biologically active form of the vitamin (2, 3). The potent radical-trapping activity of alpha-tocopherol is thought to prevent free radical–induced lipid peroxidation, lending the vitamin its distinction as the major lipid-soluble antioxidant in most species. Consequently, adequate vitamin E status is considered an essential line of physiological defense against oxidative stress–related diseases.

The essential requirement for alpha-tocopherol for maintaining central nervous system (CNS) health has been recognized for over 50 years. Secondary vitamin E deficiency accompanying fat malabsorption diseases, such as abetalipoproteinemia, cholestasis, and short bowel syndrome, manifests in CNS dysfunctions that can often be remedied by timely supplementation with alpha-tocopherol (4–9). The unique metabolic profile of the CNS, coupled with high levels of polyunsaturated fatty acids in neurons and astrocytes, renders this tissue particularly vulnerable to lipid peroxidation and subsequent cellular damage. Indeed, elevated levels of oxidative stress markers accompany a variety of neuropathological conditions. Analyses of autopsy samples from human patients afflicted with Alzheimer’s disease (10, 11), Parkinson’s disease (12), and amyotrophic lateral sclerosis (ALS) (13) reveal elevated levels of oxidative stress markers, especially lipid peroxidation products. Moreover, alpha-tocopherol concentrations in plasma and cerebrospinal fluid from Alzheimer’s disease and ALS patients are significantly lower than in healthy individuals (14–19). In early studies, supplementation with vitamin E was shown to decrease the levels of oxidative stress markers and to attenuate disease progression in human patients and in transgenic models of Alzheimer’s disease, Parkinson’s disease, and ALS (19–28). These findings laid the foundation for prescribing alpha-tocopherol supplements to patients afflicted with related disorders (23, 24, 29). However, because of conflicting results from more recent studies (30, 31), the utility of vitamin E as a preventative or therapeutic measure in neurodegenerative diseases remains unclear (32).

In the liver, the alpha-tocopherol transfer protein (TTP) facilitates the secretion of dietary alpha-tocopherol from hepatocytes to circulating lipoproteins for delivery to nonhepatic tissues, thereby regulating whole-body status of the vitamin (33–35). The critical role of TTP is underscored by the fact that mutations in the TTPA gene cause the familial disorder ataxia with vitamin E deficiency (AVED; Online Mendelian Inheritance in Man: 277476; (36–38)). AVED is characterized by low plasma tocopherol levels, elevated levels of oxidative stress markers, and presents as progressive spinocerebellar ataxia, dystarthis, areflexia, and neuropathy (38–40). Despite the fact that the only described outcomes of TTP mutations...
Vitamin E transport in the cerebellum

are neurological, and TTP is expressed in CNS (41, 42), very little is known regarding the specific roles and mechanisms of action of TTP in the CNS. We present here our findings on the expression of TTP in cerebellar astrocytes and its role in maintaining vitamin E adequacy in neurons under normal conditions as well as those of oxidative stress.

Results

Expression of TTP is spatially and temporally regulated in the mouse brain

The roles of TTP in regulating tocopherol transport have been primarily studied in its site of highest expression, the liver (35, 43). However, the protein is also highly expressed in the brain, kidney, lung, and placenta (41, 42, 44, 45), where its functions are poorly understood. As AVED results in strictly neurological consequences (36, 38), we focused our studies to the CNS, specifically the brain. Using semiquantitative real-time RT–PCR, we found that the murine TtpA mRNA is expressed in select regions of the brain, and that this expression pattern changes dramatically with age. Thus, expression of TTP in cerebellar astrocytes and its role in maintaining vitamin E adequacy in neurons under normal conditions as well as those of oxidative stress.

Vitamin E is selectively stored in TTP-expressing astrocytes

We next determined the cell type where α-tocopherol accumulates in the mouse cerebellum. To determine the uptake and distribution of the vitamin, we employed nitrobenzoxadiazole (NBD)-tocopherol, a fluorescent analog of vitamin E that we have previously shown to be a faithful reporter of vitamin E in vitro and in vivo (34, 57–61). Since tocopherol is thought to enter cells bound to lipoprotein particles via specific surface receptors (34, 43, 62–68), we delivered NBD-tocopherol complexed to serum lipoproteins (33, 69, 70) or to apolipoprotein E (ApoE; (71, 72)). After overnight “loading” with the fluorescent vitamin, cultured dissociated cerebella were stained and visualized by confocal fluorescence microscopy. Strong NBD-tocopherol fluorescence was observed in GFAP-positive astrocytes (Fig. 4A), as compared with β-tubulin III–positive neurons, where NBD fluorescence was much weaker (Fig. 4B). Importantly, NBD-tocopherol fluorescence was especially evident in TTP-positive cells (Fig. 4C). These observations suggest that TTP-expressing astrocytes accumulate vitamin E, and that expression of TTP in these cells regulates the vitamin’s distribution in the brain.

Vitamin E is localized to lysosomes and mitochondria

The intracellular localization of vitamin E may provide important insights into the mechanisms that regulate its
actions. Analytical determinations of vitamin E distribution in liver revealed highest concentrations in lysosomes (73, 74) and mitochondria (75), but the location of vitamin E within cells of the brain has not been reported. To determine the compartment where vitamin E accumulates, we loaded neuron-enriched or astrocyte-enriched primary cerebellar cultures with BODIPY-tocopherol and visualized the intracellular localization of the vitamin as compared with established organelle markers. Our observations indicate that (1) under all conditions tested, the fluorescent tocopherol accumulated at higher levels in astrocytes as compared with neurons (Fig. 5); (2) in both neurons and astrocytes from WT mice, we observed extensive colocalization between the fluorescent vitamin and the lysosomal marker LysoTracker (Fig. 5, A and C), suggesting that entry of vitamin E into astrocytes and neurons occurs through the endocytic pathway; (3) BODIPY-tocopherol fluorescence also exhibited moderate overlap with the mitochondria-selective marker MitoTracker in astrocytes (Fig. 5G) and minor mitochondrial colocalization in neurons (Fig. 5E); (4) the intracellular distribution pattern of BODIPY-
tocopherol was not altered in cerebellar cells prepared from TTP-null mice. Thus, in TTP−/− cells, BODIPY-tocopherol accumulated preferentially in astrocytes, where it colocalized with lysosomes (Fig. 5, B and D) but to a much lesser extent with mitochondria (Fig. 5, F and H). These observations show that the presence of TTP does not affect uptake of lipoprotein-complexed vitamin E. Rather, TTP may regulate vitamin E trafficking by modulating secretion of α-tocopherol from the cells, as it does in hepatocytes (34).

To directly test this possibility, we loaded cells with [14C]-α-tocopherol and measured secretion of the labeled vitamin into the culture media over time using a previously established assay (34). We found that astrocytes secreted vitamin E to a greater extent (approximately twofold) than neurons under identical conditions (Fig. 6). Notably, the magnitude of TTP-induced vitamin E secretion from astrocytes was similar to that observed in TTP-expressing hepatocytes, where the physiological function of TTP is established (Fig. 6; (34)). To complement these findings, we examined the effect of astrocyte-TTP on the intracellular levels of the vitamin. We loaded astrocytes with NBD-tocopherol and monitored its fluorescence within cells over time. Four hours after loading, intracellular fluorescence from NBD-tocopherol decreased by 30% (Table 1). As we have previously shown, this change in fluorescence reflects secretion of the fluorescent vitamin from the astrocytes to the culture media (34, 58, 60, 61, 76, 77). Importantly, no vitamin E was secreted from astrocytes prepared from TTP−/− mice (Table 1), indicating that this process is TTP dependent. Taken together, these findings show that trafficking of vitamin E within the cerebellum involves preferential accumulation of vitamin E in astrocytes, and TTP-dependent secretion from these cells, likely to neighboring neurons.

Transport of α-tocopherol between astrocytes and neurons

Next, we aimed to determine which other proteins participate in the transport of vitamin E between astrocytes and neurons. Since several transmembrane transporters (e.g., ABCA1, ABCG1, ABCG4) are expressed in the brain and mediate trafficking of cholesterol between different cell types (78–82), we examined their role in vitamin E transport in cultured cells. Thus, we monitored the secretion of vitamin E in cultured astrocytes in the presence and absence of glyburide, an established inhibitor of ABC-type transporters (82). We loaded cerebellar astrocytes with NBD-tocopherol and monitored the time-dependent change in intracellular fluorescence as described previously. We observed a twofold to threefold increase in intracellular NBD fluorescence in glyburide-treated cells compared with control cultures (Table 1). These findings indicate that TTP-facilitated efflux of vitamin E from astrocytes is mediated by ABCA1, ABCG1, ABCG4 or a combination thereof. We also aimed to determine the transporter that mediates vitamin E uptake by neurons. We
found that partial knockdown of the low-density lipoprotein receptor–related protein 1 (Lrp1) (79, 81) in differentiated SY5Y neurons inhibited NBD-tocopherol uptake by 15 to 20% (Fig. S1). Taken together, our findings suggest that vitamin E effluxes out of astrocytes in a pathway that requires TTP and an ABC-type transporter, and that uptake by neurons involves the Lrp1 receptor. This model is very similar to that established for the transport of cholesterol between astrocytes and neurons (83, 84).

Regulation of TTP expression by oxidative stress

It is currently not known whether vitamin E trafficking in the nervous system is a continuous process or is subject to dynamic regulation by physiological parameters. We have previously shown that the expression of the TtpA gene in hepatocytes is modulated by oxidative stress (46). To examine whether this response occurs also in cerebellar cells, we induced oxidative stress in neuron-enriched and astrocyte-enriched cerebellar cultures with hydrogen peroxide and measured the expression of the TtpA mRNA using real-time RT–PCR (Fig. 7). We found that addition of H$_2$O$_2$ to the culture media induced a dose-dependent increase in intracellular free radical species, as measured by the cell-permeable probe dichlorodihydrofluorescein (DCF) diacetate, which reports on intracellular reactive oxygen species (85). Pretreatment of the cells with α-tocopherol eliminated the H$_2$O$_2$-induced DCF fluorescence, attesting to the vitamin’s antioxidant properties and the validity of this cell system. In cultured cerebellar astrocytes, increased oxidative stress was accompanied by a dramatic (reaching 10-fold) dose-dependent increase in TtpA mRNA levels, which was prevented by pretreatment with vitamin E (Fig. 7A). In cultured cerebellar neurons, on the other hand, expression of the TtpA gene did respond neither to H$_2$O$_2$-induced DCF fluorescence, attesting to the vitamin’s antioxidant properties and the validity of this cell system. In cultured cerebellar astrocytes, increased oxidative stress was accompanied by a dramatic (reaching 10-fold) dose-dependent increase in TtpA mRNA levels, which was prevented by pretreatment with vitamin E (Fig. 7A). In cultured cerebellar neurons, on the other hand, expression of the TtpA gene did respond neither to H$_2$O$_2$-induced DCF fluorescence, attesting to the vitamin’s antioxidant properties and the validity of this cell system.

Figure 3. TTP is expressed in astrocytes. Primary dissociated astrocyte-enriched (A) and neuron-enriched (B) cerebellar cultures and cerebellar organotypic slice cultures (C and D) harvested from an 8-day-old C57BL/6J WT mice were maintained in culture prior to immunofluorescence with antibodies against TTP (A and B; green or C and D; red) and the astrocyte marker GFAP (A and C; red) or the neuronal marker β-tubulin III (B and D; red). Note the yellow in the merged images of (A and C) indicates colocalization. DAPI (blue) staining identifies the nuclei. The scale bars represent 20 μm. DAPI, 4′,6-diamidino-2-phenylindole; GFAP, glial fibrillary acidic protein; TTP, alpha-tocopherol transfer protein.
hepatocytes (46), trophoblasts (86), zebrafish (87), and human brain (42).

Discussion

The pivotal link between α-tocopherol and neurologic health in humans was made by the discovery that mutations in the TTPA gene cause the debilitating familial neurological syndrome AVED (37, 88). The TTP (encoded by the TTPA gene) has been shown to regulate body-wide levels of α-tocopherol by facilitating the secretion of the dietary vitamin from hepatocytes to circulating lipoproteins (38). A long-standing enigma has been reconciling the strict neurological phenotype of AVED with the fact that the primary site of expression of TTP is the liver, whereas only minute amounts of the protein were reported in the CNS. We therefore sought to define the role of TTP in vitamin E transport in specific cells within the brain. We focused our attention on the cerebellum since TTP is expressed in this region, it is the primary site of neurologic deficits manifested in AVED patients, it is the brain region where the greatest dysregulation of gene expression is found in Ttpa−/− mice (89) and is the most active in vitamin E metabolism (71). We found that, in the cerebellum, TTP is selectively expressed in the GFAP-positive astrocytes, where it facilitates efflux of vitamin E to neighboring neurons via an ABC-type transporter. Uptake of vitamin E into neurons is mediated, at least in part, by the LRP1. Finally, we found that induction of oxidative stress enhances the transcription of the Ttpa gene in astrocytes, thereby providing a means to maintain oxidative homeostasis in the brain in the face of increased oxidative challenge. While TTP is most highly expressed in liver, AVED patients present with strict neurologic symptoms, and postmortem findings indicate axonal degeneration of the posterior column and mild Purkinje cell loss (90, 91). At postnatal day 0, Ttpa expression was highest within susceptible neuroanatomic regions of the posterior column, including the brainstem, cerebellum, and midbrain. It is important to note that molecular dysregulation and abnormal histologic changes first appear in the spinal cord of vitamin E-deficient Ttpa−/− mice (92). Axonal degeneration continues within the spinocerebellar tract as these mice age, culminating in Purkinje cell loss by 17 to 20 months of age (47, 93). Our data show that cerebellar expression of the Ttpa gene increases with age, paralleling the anatomic injury and the delayed-onset nature of the spinocerebellar ataxic phenotype.

Our findings confirm and extend an earlier study that suggested selective expression of TTP in cerebellar Bergmann glial cells (41). Among the subtypes of glia, astrocytes serve the most diverse roles, providing structural and metabolic support to neurons, for example, glycogen storage and uptake of ions and neurotransmitters from the synaptic cleft (94). Facilitation of vitamin E efflux from astrocytes to neighboring neurons is remarkably similar to cholesterol transport in the brain (95). In fact, secretion of α-tocopherol from astrocytes and uptake of the vitamin into neurons is mediated by the very same proteins that transport cholesterol, that is, an ABC-type transporter and the LRP1, respectively (96). Experimental perturbations to cholesterol transport in the brain were shown to cause impaired development and function of the brain (97, 98). Our data raise the possibility that vitamin E status is also disrupted in these situations and may play an important and underappreciated role in related pathologies.

Our findings demonstrate that levels of the Ttpa mRNA in astrocytes increase upon rise in intracellular oxidative stress,
similar to previous observations in hepatocytes (34). Notably, transcription of \textit{TtpA} in cerebellar neurons was not affected by oxidative stress. Since astrocytes accumulate and store vitamin E, increased TTP expression in these cells is expected to cause facilitated efflux of vitamin E to adjacent neurons. Mutated versions of TTP, as found in human AVED patients, are expected to attenuate or abolish delivery of \(\alpha \)-tocopherol to Purkinje neurons, resulting in oxidative damage and compromised function that present as cerebellar ataxia. Results from this work and others lead to the working model of vitamin E transport in the cerebellum that is depicted in Figure 8.

Cholesterol transport in the brain is mediated by lipoprotein particles that are scaffolded around ApoE by astrocytes and

Figure 5. Vitamin E localizes to lysosomes and mitochondria in primary neurons and astrocytes and is not affected by the presence of TTP. Merged images of \(\text{Ttpa}^{+/+} \) primary dissociated neuron (A and B) and astrocyte (C and D) cerebella cells maintained in culture for 24 h and 7 days, respectively, from \(\text{Ttpa}^{+/+} \) (A, C, E, and G) and \(\text{Ttpa}^{-/-} \) (B, D, F, and H) mice prior to an overnight loading with BODIPY-tocopherol (green) and a subsequent staining with LysoTracker Red (A and C; red) to mark the lysosomes or with MitoTracker Red (B and D; red) to visualize mitochondria. The yellow in the perinuclear region of the neurons (A) and astrocytes (C) indicates localization of BODIPY-tocopherol to lysosomes. The yellow in the overlaid images indicates that BODIPY-tocopherol localizes to mitochondria in the astrocytes (D) but not in the neurons. These findings were unchanged in \(\text{Ttpa}^{-/-} \) mice (B, D, F, and H), indicating that this distribution pattern is not affected by the presence of TTP. The scale bars represent 10 \(\mu \)m. TTP, alpha-tocopherol transfer protein.
used to deliver lipophilic cargo to neurons. Vatassery et al. (72, 99, 100) have shown that vitamin E transport in the brain utilizes ApoE particles. Importantly, the polymorphic ApoE4 variant, associated with increased risk for cardiovascular disease (101) and Alzheimer’s disease (102), is associated with vitamin E status (103). It has been suggested that optimizing vitamin E content of CNS lipoproteins may be beneficial in preventing or treating Alzheimer’s disease (104). Our findings support this association, as uptake of vitamin E into neurons involves the major apoE receptor in the brain, LRP1 (105). Interestingly, LRP1 levels are significantly reduced in brains of patients with Alzheimer’s disease (106). As the effect of APOE4 on beta-amyloid accumulation in Alzheimer’s disease is dependent on LRP1 (107), the implications of vitamin E transport in the CNS, which may have important implications to the molecular mechanisms of vitamin E transport in the CNS, interaction with specific apoE alleles and the etiology of neurodegenerative diseases merit further study.

In conclusion, our data indicate that TTP-expressing astrocytes control the delivery of vitamin E from astrocytes to neurons, and that this process is homeostatically responsive to oxidative stress. These are the first observations that address the molecular mechanisms of vitamin E transport in the CNS, which may have important implications to the molecular underpinnings of oxidative stress–related neurodegenerative diseases.

Table 1
Intracellular accumulation of NBD-tocopherol in cultured cerebellar astrocytes

Astrocytes source	ΔF/F (%)
WT	-30%
TTP+/−	ND
WT + glyburide	+220%
TTP+/− + glyburide	+270%

Cultured cerebellar astrocytes were loaded with ApoE-complexed NBD-tocopherol as described in the Experimental procedures section. ND, below our detection limit of 3% fluorescence change; p < 0.05. Abbreviation: ND, not detectable.

Table 2
RNA harvest and PCR

Vitamin E transport in the cerebellum

![Figure 6. Secretion of vitamin E is enhanced in TTP-expressing hepatocytes and astrocytes.](image)

Figure 6. Secretion of vitamin E is enhanced in TTP-expressing hepatocytes and astrocytes. HepG2-TetOn-TTP cells (left panel) were induced to express TTP with doxycycline (1 μg/ml) where indicated. Primary cerebellar neurons and astrocytes (right panel) were harvested from Tpa−/− mice and cultured as described in the Experimental procedures section. Cells were loaded for 48 h with [14C]-α-tocopherol, followed by washes, and a secretion period of 24 h. Asterisks denote significant difference in secretion between the neurons and astrocytes or the induced and uninduced HepG2 cells (p < 0.05; Student’s t test). TTP, alpha-tocopherol transfer protein.

Experimental procedures

Mice

All animal works were performed according to the Institutional Animal Care and Use Committee–approved protocols at Case Western Reserve University. The Tpa−/− mouse model (B6.129S4-Tpa^{−/−}Fl/J; Jackson Labs) was generated by targeted disruption of exons 1 and 2 of the Tpa gene and was described earlier (108). For breeding, Tpa−/− female mice were crossed with Tpa−/− males and offspring genotype determined by PCR. Animals were sacrificed at postnatal day 8, cerebella excised, and either fixed in 3.7% paraformaldehyde for 24 h followed by paraffin embedding, flash frozen, or immediately processed for primary cell cultures.

RNA harvest and PCR

RNA was harvested using Trizol reagent (Invitrogen) followed by reverse transcription using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Primers for PCR amplification of Tppa were 5’-CTCACAGACGCTTTCTCCTGCT (forward) and 5’-ACACGACATCCACAGCTACTG’ (reverse). Ttpa expression was normalized to β-actin expression using the following primers: 5’-TGTGATGTTGGGAATGGGTCAGAA (forward) and 5’-TCTCCTTCTGCATCTCTTGCAAGA (reverse). For quantitative real-time RT–PCR, Taqman Fam-labeled probes for Tppa (Mm00803829_m1) and 18 s (Hs99999901_s1) were used. Expression of Tppa mRNA in primary cerebellar cultures was determined using comparative real-time PCR applying the Livak method of quantification (109).

Fluorescent tocopherol analogs

The syntheses and utility of these reagents were published earlier (34, 57–61, 110, 111). BODIPY-tocopherol (λ_{Ex}= 507 nm; λ_{Emission} = 511 nm; ε = 83,000 M^{−1} cm^{−1} in ethanol; (110)) was dried under nitrogen in a siliconized tube, resuspended in 6.8 μl apoE (Athens Research & Technology; final concentration of 5 μg/ml) and 1 ml of serum-free Dulbecco’s modified Eagle’s medium (DMEM), and rotated overnight at 4 °C in the dark. The complexed BODIPY-tocopherol was added to the cell culture media to 20 μM. Serum-complexed NBD-tocopherol was prepared and used as described (34).

Immunoblotting

Tissues (flash-frozen in liquid nitrogen) were lysed in radiimmunoprecipitation assay buffer (25 mM Tris [pH 7.4], 150 mM NaCl, and 1% NP-40). Endogenous expression level of TTP in lysates was determined using a rabbit polyclonal antibody raised against recombinant full-length human TTP (Covance; (112)).

Primary cultures of cerebellar cells

Cerebella were dissected from 8-day-old C57BL/6 mice (113), minced in Hanks’ balanced salt solution (HBSS) without magnesium, calcium, and phenol red (Invitrogen) and dissociated by incubation with 0.25% trypsin in PBS at 37 °C for
Where indicated, tocopherol was added 16 h prior to H$_2$O$_2$ addition. ANOVA with Tukey's post hoc testing was performed to determine significant differences in oxidative stress between treated and nontreated groups.

Figure 7. Expression of the TtpA gene in cerebellar astrocytes is regulated by oxidative stress. Real-time PCR results of normalized Ttpa expression in primary astrocytes (A) and neurons (B). Where indicated, tocopherol was added 16 h prior to H$_2$O$_2$ addition. Asterisks indicate significance of p < 0.05 compared with nontreated cells (one-way ANOVA with Tukey's post hoc testing). DCF-DA, dichlorodihydrofluorescein diacetate.

Enriched neuron cultures

About 24 h after plating dissociated cerebella, cell media were changed to a 1:1 mix of 10% FBS/DMEM and neurobasal media containing B27 supplement, 2 mM l-glutamine, 5 mM KCl, and 0.6% glucose. Within 48 h after harvesting, neuronal outgrowths dominated the culture, and greater than 80% of the cells stained positively for β-tubulin III.

Enriched astrocyte cultures

About 24 h after plating dissociated cerebella, cell media were changed to 10% FBS/DMEM. The media were changed every third day, and astrocyte cell enrichment (>90%) was confirmed by staining with anti-GFAP antibodies.

Organotypic cerebellar slice culture

The organotypic cerebellar slice culture was prepared from 8-day-old mice by a modification of established protocol for hippocampal slice cultures (114). Cerebella were removed and sagittally sliced to 150 μm sections on a vibratome (McIlwain tissue chopper). Slices were incubated in HBSS/0.5% glucose for 30 min at 4 °C and transferred onto 0.4 μm membrane inserts (Millipore) in 6-well dishes containing 25% HBSS, 50% minimal essential medium, 25% horse serum, and 0.5% glucose. Media were changed every third day, and slices were cultured for at least 7 days.

Knockdown of LRP1

Lentiviral shRNA constructs targeted against human LRP1 (TRCN0000053253) and a control shRNA in the pLKO vector (Thermo Scientific) were transfected into human embryonic kidney 293T cells using Lipofectamine-Plus (Invitrogen). At 24 and 48 h post-transfection, culture media from transfected dishes were pooled and pelleted by centrifugation at 100,000g for 1.5 h. The lentiviral pellet was resuspended in sterile PBS and used to infect cultured SH-SY5Y cells with polybrene (4 μg/ml). Infection was repeated at 48 and 72 h after the initial addition. Knockdown efficiency was evaluated using anti-LRP1 immunoblotting (catalog no.: EPR3724; Abcam).

Immunofluorescence microscopy

Serum-complexed NBD-tocopherol (34) was loaded into primary cultures grown on 50 μg/ml poly-l-lysine–coated cover slips overnight. After washing, the cells were fixed in 3.7% paraformaldehyde, permeabilized in 5% goat serum/0.3% Triton X-100, followed by incubation with anti-TTP, anti-β-tubulin III (Sigma), or anti-GFAP (Becton Dickenson) antibodies. Goat anti-rabbit Alexa 568 (Invitrogen) was used to visualize TTP, whereas goat antimouse Alexa 488 (Invitrogen) was the secondary antibody for β-tubulin III and GFAP. 4’,6-Diamidino-2-phenylindole staining was used to visualize nuclei. After mounting in SlowFade Gold antifade reagent.
Secretion of \(^{14} \text{C} \)-tocopherol from cultured cells

Secretion of \(^{14} \text{C} \)-tocopherol from cultured cells was measured as previously described (34). Briefly, in 24-well poly-
-l-lysine–coated plates, doxycycline-treated HepG2-TetOn-
TTP cells (serving as controls) or primary dissociated neuron and astrocyte cultures from C57BL/6 (WT) mice were loaded with FBS-complexed \(^{14} \text{C} \)-RRR-\(\alpha \)-tocopherol for 48 h, extensively washed, and further incubated in DMEM for the secretion period of 24 h. The secretion media were saved and pooled from two subsequent washes. Finally, cells were lysed to determine the amount of cellular \(^{14} \text{C} \)-\(\alpha \)-tocopherol. An LS 6500 multipurpose scintillation counter (Beckman Coulter) was used to determine the amount of \(^{14} \text{C} \)-\(\alpha \)-tocopherol in the various samples and calculate the secreted fraction of \(^{14} \text{C} \)-\(\alpha \)-tocopherol.

Secretion of fluorescent vitamin E from primary astrocytes

Primary astrocytes grown in 24-well poly-
l-lysine–coated plates for 7 days were loaded with apoE-complexed BODIPY-
tocopherol for 16 h, washed with 10% FBS/DMEM to remove the free tocopherol, and imaged by fluorescence microscopy. Secretion was evaluated again after additional 4 h of incubation in 10% FBS/DMEM. To examine the involvement of ABC transporters, 10 \(\mu \)M glyburide (Sigma) was added to the cells 8 h prior to tocopherol loading. Images were taken from 10 fields in triplicate wells on a Leica DM4100B inverted microscope. Quantification of fluorescence was performed as described using ImageJ software (National Institutes of Health). Fluorescence was normalized to protein content in parallel wells using the Bio-Rad protein assay. Each experiment was repeated at least three times.

Subcellular localization of vitamin E

Cultured primary cerebellar cells were plated on 35 mm glass-bottom poly-
l-lysine–coated dishes (MatTek Corporation) and grown as described previously for enriching in neurons or astrocytes. About 20 \(\mu \)M ApoE-complexed BODIPY-tocopherol were loaded for 16 h onto neurons and astrocytes after 24 h or 7 days, respectively. The cells were washed and incubated in HBSS containing either 50 nM of LysoTracker Red (Life Technologies) or MitoTracker Red (Life Technologies) to visualize lysosomes or mitochondria, respectively. Fluorescence microscopy was performed on a Zeiss LSM 510 confocal microscope using LSM software.

Detection of reactive oxygen species

Primary cerebellar cells were plated into 96-well poly-
l-lysine–coated black plates (Costar) and cultured for one (neurons) or seven (astrocytes) days prior to overnight incubation with 100 \(\mu \)M d-\(\alpha \)-tocopherol (Acros Organics). The following day, the cells were incubated in 10 \(\mu \)g/ml 2',7'-dichlorodihydrofluorescein diacetate in HBSS without phenol red (Invitrogen) for 1 h, washed, and challenged with the indicated concentration of \(\text{H}_2\text{O}_2 \) for 1 h. After a final wash in HBSS, DCF fluorescence was measured on a PerkinElmer Victor 3 plate reader (excitation = 485 nm; emission = 535 nm) and normalized to DNA content as measured after incubating cells with bisbenzamide (Sigma; 2.5 \(\mu \)g/ml in 2 M NaCl, 50 mM Na\(_2\)HPO\(_4\) [pH 7.4] in the dark at 37 °C for 60 min) in a plate reader (excitation = 365 nm; emission = 460 nm).

Statistical analyses and graphing were done using GraphPad Prism 6 (GraphPad Software, Inc). Student’s \(t \) test and one-way ANOVA with Tukey’s multiple comparisons post hoc analysis were performed, and threshold for statistical significance was set at \(p < 0.05 \).

Data availability

All data are contained within the article.

Supporting information—This article contains supporting information.

Author contributions—J. A. and D. M. conceptualization; L. U. methodology; L. U., M. G., and R. W. investigation; L. U. writing—original draft; J. A., C. F., and D. M. writing—review & editing; J. A., C. F., and D. M. supervision; D. M. project administration; D. M. funding acquisition.

Funding and additional information—This work was supported by the National Institutes of Health awards DK067494 and DK125115 (to D. M.) and T32DK007319 (to L. U.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations—The abbreviations used are: ALS, amyotrophic lateral sclerosis; ApoE, apolipoprotein E; AVED, ataxia with vitamin E deficiency; CNS, central nervous system; DCF, dichlorodihydrofluorescein; DMEM, Dulbecco’s modified Eagle’s medium; FBS, fetal bovine serum; GFAP, glial fibrillary acidic protein; HBSS, Hanks’ balanced salt solution; Lrp1, low-density lipoprotein receptor–related protein 1; NBD, nitrobenzoxadiazole; TTP, alpha-tocopherol transfer protein.

References

1. Ulatowski, L., and Manor, D. (2013) Vitamin E trafficking in neurologic health and disease. Annu. Rev. Nutr. 33, 87–103
2. Burton, G. W., Cheeseman, K. H., Doba, T., Ingold, K. U., and Slater, T. F. (1983) Vitamin E as an antioxidant in vitro and in vivo. Ciba Found. Symp. 101, 4–18
3. Ingold, K. U., Webb, A. C., Witter, D., Burton, G. W., Metcalfe, T. A., and Muller, D. P. (1987) Vitamin E remains the major lipid-soluble, chain-breaking antioxidant in human plasma even in individuals suffering severe vitamin E deficiency. Arch. Biochem. Biophys. 259, 224–225
Vitamin E transport in the cerebellum

4. Muller, D. P., and Lloyd, J. K. (1982) Effect of large oral doses of vitamin E on the neurological sequelae of patients with abetalipoproteinemia. Ann. N. Y. Acad. Sci. 393, 133–144

5. Runge, P., Muller, D. P., McAllister, J., Calver, D., Lloyd, J. K., and Taylor, D. (1986) Oral vitamin E supplements can prevent the retinopathy of abetalipoproteinemia. Br. J. Ophthalmol. 70, 166–173

6. Sokol, R. J., Butler-Simon, N., Conner, C., Heubi, J. E., Sinatra, F. R., Suchy, F. I., Heyman, M. B., Perrault, J., Rothbaum, R. I., and Levy, J. (1993) Multicenter trial of d-alpha-tocopheryl polyethylene glycol 1000 succinate for treatment of vitamin E deficiency in children with chronic cholestasis. Gastroenterology 104, 1727–1735

7. Sokol, R. J., Reubi, J. E., Butler-Simon, N., McChung, H. J., Lilly, J. R., and Silverman, A. (1987) Treatment of vitamin E deficiency during chronic childhood cholestasis with oral d-alpha-tocopheryl polyethylene glycol-1000 succinate. Gastroenterology 93, 975–985

8. Sokol, R. J., Guggenheim, M. A., Iannaccone, S. T., Barkhaus, P. E., Miller, C., Silverman, A., Balistreri, W. F., and Heubi, J. E. (1985) Improved neurologic function after long-term correction of vitamin E deficiency in children with chronic cholestasis. N. Engl. J. Med. 313, 1580–1586

9. Traber, M. G., Schiano, T. D., Stepphen, A. C., Kayden, H. J., and Shike, M. (1994) Efficacy of water-soluble vitamin E in the treatment of vitamin E malabsorption in short-bowel syndrome. Am. J. Clin. Nutr. 59, 1270–1274

10. Lovell, M. A., Ehmann, W. D., Butler, S. M., and Markesbery, W. R. (2005) Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson's disease: A meta-analysis. Lancet Neurol. 4, 362–365

11. Montine, T. J., Markesbery, W. R., Morrow, J. D., and Roberts, L. J., 2nd

12. Dexter, D. T., Carter, C. J., Wells, F. R., Javoy-Agid, F., Agid, Y., Lees, A., Jeandel, C., Nicolas, M. B., Dubois, F., Nabet-Belleville, F., Penin, F., and Vieille, S., 2002

13. Jimenez-Jimenez, F. J., de Bustos, F., Molina, J. A., Benito-Leon, J., Tallon-Barranco, A., Gasalla, T., Otti-Pareja, M., Guillamon, F., Rubio, J. C., Arenas, J., and Enriquez-de-Salamanca, R. (1997) Cerebrospinal fluid levels of alpha-tocopherol (vitamin E) in Alzheimer's disease. J. Neural Transm. (Vienna) 104, 703–710

14. Enan, M. F., Arita, M., Kayden, H. J., Di Donato, S., Reuttenauer, L., Mandel, J. L., and Koenig, M. (1998) Ataxia with isolated vitamin E deficiency: Heterogeneity of mutations and phenotypic variability in a large number of families. Am. J. Hum. Genet. 62, 301–310

15. Gotoda, T., Arita, M., Ara, H., Inoue, K., Yokota, T., Fukuo, Y., Yazaki, Y., and Yamada, N. (1995) Adult-onset spinocerebellar dysfunction caused by a mutation in the gene for the alpha-tocopherol-transfer protein. N. Engl. J. Med. 333, 1313–1318

16. Ohashi, K., Arita, M., Kayden, H., Bentini, F., Ben Hamida, M., Sokol, R., Ara, H., Inoue, K., Mandel, J. L., and Koenig, M. (1995) Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat. Genet. 9, 141–145

17. Fogel, B. L., and Perlman, S. (2007) Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol. 6, 245–257
Vitamin E transport in the cerebellum

40. Sokol, R. J. (1990) Vitamin E and neurologic deficits. Adv. Pediatr. 37, 119–148
41. Hosomi, A., Goto, K., Kondo, H., Iwatsubo, T., Yokota, T., Ogawa, M., Arita, M., Aoki, J., Arai, H., and Inoue, K. (1998) Localization of alpha-tocopherol transfer protein in rat brain. Neurosci. Lett. 256, 159–162
42. Copp, R. P., Wisniewski, T., Hentati, F., Larouarta, A., Ben Hamida, M., and Kayden, H. J. (1999) Localization of alpha-tocopherol transfer protein in the brains of patients with ataxia with vitamin E deficiency and other oxidative stress related neurodegenerative disorders. Brain Res. 822, 80–87
43. Traber, M. G., and Arai, H. (1999) Molecular mechanisms of vitamin E transport. Annu. Rev. Nutr. 19, 343–355
44. Kaempf-Rotzoll, D. E., Horiguchi, M., Hashiguchi, K., Aoki, J., Tamai, H., Linderkamp, O., and Arai, H. (2003) Human placental trophoblast cells express alpha-tocopherol transfer protein. Placenta 24, 439–444
45. Ulatowski, L., Parker, R., Warrier, G., Sultana, R., Butter, R., Jacque, C. M., Vinner, C., Kujas, M., Raoul, M., Racadot, J., and Bau, K. S., Xing, Y., Lubischer, J. L., Krieg, P. A., Krupenko, S. A., and Thompson, W. J., and Barres, B. A. (2008) A transcriptome database for standing brain development and function. Adv. Pediatr. 23, 247–254
46. Traber, M. G., and Kayden, H. J. (1984) Vitamin E is delivered to cells via the high affinity receptor for low-density lipoprotein. Am. J. Clin. Nutr. 40, 747–751
47. Kolleck, I., Schmale, M., Fechner, H., Looman, A. C., Wissel, H., and Rustow, B. (1999) HDL is the major source of vitamin E for type II pneumocytes. Free Radiic. Biol. Med. 27, 882–890
48. Goti, D., Thevajak, A., Levak-Frank, S., Frank, S., van der Westhuysen, D. R., Malie, E., and Sattler, W. (2001) Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. J. Neurochem. 76, 499–504
49. Vo Elk, F., and Gahwiler, B. H. (1997) Organotypic cultures of the rat anterior pituitary: A model of pituitary aging. Adv. Exp. Med. Biol. 423, 115–127
50. Chen, O. Y., and Dunn, C. P. (1991) Concentrations of vitamin E in various neuroanatomical regions of the brain. J. Neurochem. 147–155
51. Rupar, C. A., Albo, S., and Whitehall, J. D. (1992) Rat liver lysosome membranes are enriched in alpha-tocopherol. Biochem. Cell Biol. 70, 486–488
52. Catuccio, N. C., McKinney, R. A., Thompson, W. J., and Barres, B. A. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. J. Neurosci. 28, 264–278
53. Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubscher, I. L., Krieg, P. A., Krupenko, S. A., Thompson, W. J., and Barres, B. A. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. J. Neurosci. 28, 264–278
54. Catuccio, N. C., McKinney, R. A., Debanne, D., Mollard, P., and Cahoy, J. D. (2009) Organotypic slice cultures of the rat anterior pituitary: Morphology, physiology and cell-to-cell communication. J. Neurosci. Methods 73, 169–176
55. Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubscher, I. L., Krieg, P. A., Krupenko, S. A., Thompson, W. J., and Barres, B. A. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. J. Neurosci. 28, 264–278
56. Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubscher, I. L., Krieg, P. A., Krupenko, S. A., Thompson, W. J., and Barres, B. A. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. J. Neurosci. 28, 264–278
57. Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubscher, I. L., Krieg, P. A., Krupenko, S. A., Thompson, W. J., and Barres, B. A. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. J. Neurosci. 28, 264–278
