GLOBAL GORENSTEIN DIMENSIONS

DRISS BENNIS AND NAJIB MAHDOU

Dedicated to our Advisor Salah-Eddine Kabbaj.

Abstract. In this paper, we prove that the global Gorenstein projective dimension of a ring R is equal to the global Gorenstein injective dimension of R, and that the global Gorenstein flat dimension of R is smaller than the common value of the terms of this equality.

1. Introduction

Throughout this paper, R denotes a non-trivial associative ring with identity, and all modules are, if not specified otherwise, left R-modules. All the results, except Proposition 2.6, are formulated for left modules and the corresponding results for right modules hold as well. For an R-module M, we use $\text{pd}_R(M)$, $\text{id}_R(M)$, and $\text{fd}_R(M)$ to denote, respectively, the classical projective, injective, and flat dimension of M. We use $\text{l.gldim}(R)$ and $\text{r.gldim}(R)$ to denote, respectively, the classical left and right global dimension of R, and $\text{wgldim}(R)$ to denote the weak global dimension of R. Recall that the left finitistic projective dimension of R is the quantity $\text{l.FPD}(R) = \sup\{\text{pd}_R(M) \mid M \text{ is an } R\text{-module with } \text{pd}_R(M) < \infty\}$.

Furthermore, we use $\text{Gpd}_R(M)$, $\text{Gid}_R(M)$, and $\text{Gfd}_R(M)$ to denote, respectively, the Gorenstein projective, injective, and flat dimension of M (see [3, 4, 8]). The main result of this paper is an analog of a classical equality that is used to define the global dimension of R, see [12, Theorems 9.10]. For Noetherian rings the following theorem is proved in [4, Theorem 12.3.1].

Theorem 1.1. The following equality holds:

$$\sup\{\text{Gpd}_R(M) \mid M \text{ is an } R\text{-module}\} = \sup\{\text{Gid}_R(M) \mid M \text{ is an } R\text{-module}\}.$$

We call the common value of the quantities in the theorem the left Gorenstein global dimension of R and denote it by $\text{l.Ggldim}(R)$. Similarly, we set

$$\text{l.wGgldim}(R) = \sup\{\text{Gfd}_R(M) \mid M \text{ is an } R\text{-module}\}$$

and call this quantity the left weak Gorenstein global dimension of R.

Corollary 1.2. The following inequalities hold:

1. $\text{l.wGgldim}(R) \leq \sup\{\text{l.Ggldim}(R), \text{r.Ggldim}(R)\}$.
2. $\text{l.FPD}(R) \leq \text{l.Ggldim}(R) \leq \text{l.gldim}(R)$.
3. $\text{l.wGgldim}(R) \leq \text{wgldim}(R)$.

Equalities hold in (2) and (3) if $\text{wgldim}(R) < \infty$.

The theorem and its corollary are proved in Section 2.

*Proceedings of the American Mathematical Society, To appear
2000 Mathematics Subject Classification. 16E05, 16E10, 16E30, 16E65.
Key words and phrases. Global dimension of rings; weak global dimension of rings; Gorenstein homological dimensions of modules; Gorenstein global dimension of rings; weak Gorenstein global dimension of rings.
2. PROOFS OF THE MAIN RESULTS

The proof uses the following results:

Lemma 2.1. If \(\sup \{ \text{Gpd}_R(M) \mid M \text{ is an } R \text{-module} \} < \infty \), then, for a positive integer \(n \), the following are equivalent:

1. \(\sup \{ \text{Gpd}_R(M) \mid M \text{ is an } R \text{-module} \} \leq n \);
2. \(\text{id}_R(P) \leq n \) for every \(R \)-module \(P \) with finite projective dimension.

Proof. Use [6, Theorem 2.20] and [12, Theorem 9.8]. □

The proof of the main theorem depends on the notions of strong Gorenstein projectivity and injectivity, which were introduced in [1] as follows:

Definition 2.2. ([1, Definition 2.1]). An \(R \)-module \(M \) is called strongly Gorenstein projective, if there exists an exact sequence of projective \(R \)-modules

\[
P = \cdots \rightarrow P \xrightarrow{f} P \xrightarrow{f} P \xrightarrow{f} \cdots
\]

such that \(M \cong \text{Ker } f \) and such that \(\text{Hom}_R(_, Q) \) leaves the sequence \(P \) exact whenever \(Q \) is a projective \(R \)-module.

Strongly Gorenstein injective modules are defined dually.

Remark 2.3. It is easy to see that an \(R \)-module \(M \) is strongly Gorenstein projective if and only if there exists a short exact sequence of \(R \)-modules \(0 \rightarrow M \rightarrow P \rightarrow M \rightarrow 0 \), where \(P \) is projective, and \(\text{Ext}^i_R(M, Q) = 0 \) for some integer \(i > 0 \) and for every \(R \)-module \(Q \) with finite projective dimension (or for every projective \(R \)-module \(Q \)).

Strongly Gorenstein injective modules are characterized in similar terms.

The principal role of these modules is to characterize the Gorenstein projective and injective modules, as follows:

Lemma 2.4. ([1, Theorems 2.7]). An \(R \)-module is Gorenstein projective (resp., injective) if and only if it is a direct summand of a strongly Gorenstein projective (resp., injective) \(R \)-module.

Proof of Theorem[7] For every integer \(n \) we need to show:

\(\text{Gpd}_R(M) \leq n \) for every \(R \)-module \(M \) \(\iff \) \(\text{Gid}_R(M) \leq n \) for every \(R \)-module \(M \).

We only prove the direct implication; the converse one has a dual proof.

Assume first that \(M \) is strongly Gorenstein projective. By Remark[2,3] there is a short exact sequence \(0 \rightarrow M \rightarrow P \rightarrow M \rightarrow 0 \) with \(P \) is projective. The Horseshoe Lemma, see [10, Remark page 187], gives a commutative diagram

* In [1] the base ring is assumed to be commutative. However, for the result needed here, one can show easily that this assumption is not necessary.
where \(I_i \) is injective for \(i = 0, \ldots, n - 1 \). Since \(P \) is projective, \(\text{id}_R(P) \leq n \) (by Lemma 2.1), hence \(E_n \) is injective. On the other hand, from \([7] \) Theorem 2.2, \(\text{pd}_E(E) \leq n \) for every injective \(R \)-module \(E \). Then, \(\text{Ext}^i_R(E, I_0) = 0 \) for all \(i \geq n + 1 \). Then, from Remark 2.5 \(I_n \) is strongly Gorenstein injective, and so \(\text{GId}_R(M) \leq n \). This implies, from \([6] \) Proposition 2.19, that \(\text{GId}_R(G) \leq n \) for any Gorenstein projective \(R \)-module \(G \), since every Gorenstein projective \(R \)-module is a direct summand of a strongly Gorenstein projective \(R \)-module (Lemma 2.4).

Finally, consider an \(R \)-module \(M \) with \(\text{Gpd}_R(M) \leq m \leq n \). We can assume that \(\text{Gpd}_R(M) \neq 0 \). Then, there exists a short short exact sequence \(0 \rightarrow K \rightarrow N \rightarrow M \rightarrow 0 \) such that \(N \) is Gorenstein projective and \(\text{Gpd}_R(K) \leq m - 1 \) \([6] \) Proposition 2.18]. By induction, \(\text{GId}_R(K) \leq n \) and \(\text{GId}_R(N) \leq n \). Therefore, using \([6] \) Theorems 2.22 and 2.25] and the long exact sequence of \(\text{Ext} \), we get that \(\text{GId}_R(M) \leq n \).

Proof of Corollary 1.2 (1). We may assume that \(\text{sup}(l.\text{Ggldim}(R), r.\text{Ggldim}(R)) < \infty \). Then, the character module, \(I^* = \text{Hom}_R(I, \mathbb{Q}/\mathbb{Z}) \), of every injective right \(R \)-module \(I \) has finite projective dimension (by \([7] \) Theorem 2.2) \([12] \) Theorem 3.52]). Then, similarly to the proof of \([6] \) Proposition 3.4], we get that every Gorenstein projective \(R \)-module is Gorenstein flat. Therefore, \(l.\text{wGgldim}(R) \leq \text{sup}(l.\text{Ggldim}(R), r.\text{Ggldim}(R)) \).

(2) and (3). The inequality \(l.\text{FPD}(R) \leq l.\text{Ggldim}(R) \) follows from \([6] \) Theorem 2.28].

The inequalities \(l.\text{Ggldim}(R) \leq l.\text{gldim}(R) \) and \(l.\text{wGgldim}(R) \leq \text{wgdim}(R) \) hold true since every injective (resp., flat) module is Gorenstein projective (resp., Gorenstein flat).

If \(\text{wgdim}(R) < \infty \), then, from \([10] \) Corollary 3], \(l.\text{FPD}(R) = l.\text{Ggldim}(R) = l.\text{gldim}(R) \) and, from \([11] \) Corollary 3.8], \(l.\text{wGgldim}(R) = \text{wgdim}(R) \).

Remark 2.5. It is well-known that there are examples of rings for which the left and right global dimensions differ (see \([8] \) pages 74-75] \([9] \)). Then, by Corollary 1.2 the same examples show that there are also examples of rings for which the left and right Gorenstein global dimensions differ. However, as the classical case \([12] \) Corollary 9.23], we have \(l.\text{Ggldim}(R) = r.\text{Ggldim}(R) \) if \(R \) is Noetherian \([4] \) Theorem 12.3.1].

For the case where \(l.\text{Ggldim}(R) = 0 \) or \(r.\text{Ggldim}(R) = 0 \), we have the following result which is \([2] \) Theorem 2.2] in non-commutative setting. Recall that a ring is called quasi-Frobenius, if it is Noetherian and both left and right self-injective (see \([11] \)).

Proposition 2.6. The following are equivalent:

1. \(R \) is quasi-Frobenius;
2. \(l.\text{Ggldim}(R) = 0 \);
(3) \(r \cdot \text{Ggldim}(R) = 0 \).

Proof. The implications \(1 \Rightarrow 2 \) and \(1 \Rightarrow 3 \) are well-known (see, for example, [4] Exercise 5, page 257).

The implication \(2 \Rightarrow 1 \) follows from Lemma 2.1 and Faith-Walker Theorem [11, Theorem 7.56]. The implication \(3 \Rightarrow 1 \) is proved similarly. □

We finish with a generalization of a result of Iwanaga, see [4, Proposition 9.1.10].

Corollary 2.7. Assume that \(l \cdot \text{Ggldim}(R) \leq n \) holds for some non-negative integer \(n \). If for an \(R \)-module \(M \) one of the numbers \(\text{pd}_R(M), \text{id}_R(M), \) or \(\text{fd}_R(M) \) is finite, then all of them are smaller or equal to \(n \).

Proof. If \(\text{pd}_R(M) \) is finite, then [6, Proposition 2.27] and the assumption give \(\text{pd}_R(M) = \text{Gpd}_R(M) \leq n \). The argument for \(\text{id}_R(M) < \infty \) is similar. Finally, Corollary 1.2(2) and the assumption give \(l \cdot \text{FPD}(R) \leq n \), and then \(\text{fd}_R(M) < \infty \) implies \(\text{pd}_R(M) < \infty \) by [10, Proposition 6]. □

ACKNOWLEDGEMENTS. The authors would like to express their sincere thanks for the referee for his/her helpful suggestions.

REFERENCES

1. D. Bennis and N. Mahdou, *Strongly Gorenstein projective, injective, and flat modules*, J. Pure Appl. Algebra 210 (2007), 437–445.
2. D. Bennis, N. Mahdou and K. Ouarghi, *Rings over which all modules are strongly Gorenstein projective*. Accepted for publication in Rocky Mountain Journal of Mathematics. Available from arXiv:0712.0127v2.
3. L. W. Christensen, *Gorenstein dimensions*, Lecture Notes in Math., Springer-Verlag, Berlin (2000).
4. E. E. Enochs and O. M. G. Jenda, *Relative homological algebra*, Walter de Gruyter, Berlin-New York (2000).
5. R. M. Fossum, P. A. Griffith and I. Reiten, *Trivial extensions of abelian categories*, Lecture Notes in Math., Springer-Verlag, Berlin (1975).
6. H. Holm, *Gorenstein homological dimensions*, J. Pure Appl. Algebra 189 (2004), 167–193.
7. H. Holm, *Rings with finite Gorenstein injective dimension*, Proc. Amer. Math. Soc. 132 (2004), 1279–1283.
8. H. Holm, *Gorenstein Homological Algebra*, Ph.D. thesis, University of Copenhagen, Denmark, (2004).
9. A. V. Jategaonkar, *A counter-example in ring theory and homological algebra*, J. Algebra 12 (1969), 418–440.
10. C. U. Jensen, *On the vanishing of lim ←−*, J. Algebra 15 (1970), 151–166.
11. W. K. Nicholson and M. F. Youssif, *Quasi-Frobenius Rings*, Cambridge University Press (2003).
12. J. Rotman, *An Introduction to Homological Algebra*, Academic Press, New York (1979).