Chapter 9

Cryogenics for the HL-LHC

S. Claudet1*, G. Ferlin1, E. Monneret1, A. Perin1, O. Pirotte1, M. Sisti1 and R. Van Weelder1

1CERN, Accelerator & Technology Sector, Switzerland

*Corresponding author

9 Cryogenics for the HL-LHC

9.1 Overview

The upgrade of the cryogenics for the HL-LHC will consist of the following:

- The design and installation of two new cryogenic plants at P1 and P5 for high luminosity insertions. This upgrade will be based on a new sectorization scheme aimed at separating the cooling of the magnets in these insertion regions from the arc magnets and considering the new feedboxes and superconducting links located in underground infrastructures.

- The design and installation of a new cryogenic distribution lines (QXL) at P1 and P5 in the LHC tunnel and in a new underground service galleries.

- The upgrade of the existing cryogenic plant (QSRA and QURA) cooling the LHC sector 3-4 located at P4.

- The cryogenic design support for superconducting devices, such as magnets, crab cavities, superconducting links, and the hollow electron lenses.

Some other options such as new cryogenic circuits at P7 for the HTS links and displaced current feedboxes or a new cryoplant in P4 have been discarded.

9.2 LHC machine upgrades

9.2.1 Upgraded beam parameters and constraints

The main parameters impacting on the cryogenic system are given in Table 9-1. With respect to the nominal beam parameters, the beam bunch population will double and the luminosity in the detectors of the high luminosity insertions at P1 and P5 will be multiplied by a factor 5.

Table 9-1: LHC upgraded beam parameters for 25ns bunch spacing

Parameter	Unit	Nominal LHC	Nominal HL-LHC
Beam energy, E	TeV	7	7
Bunch population, N_b	protons/bunch	1.15×10^{11}	2.2×10^{11}
Number of bunches per beam, n_b	-	2808	2748
Luminosity, L	cm$^{-2}$ s$^{-1}$	1×10^{34}	5×10^{34}
Bunch length	ns	1.04	1.04

These upgraded beam parameters will introduce new constraints to the cryogenic system.
Cryogenics for the HL-LHC

- The collimation scheme must be upgraded. As some of the new collimators will work at room temperature but be installed on the cold region, cryogenic bypasses are required to guarantee the continuity of the cryogenic and electrical distribution.

- Hollow electron lenses will be installed for halo control.

- The increase of the level of radiation to the electronics could possibly require relocating power convertors and related current feedboxes. New superconducting links will be required to connect the displaced current feedboxes to the magnets.

- To improve the luminosity performance by addressing the geometric luminosity reduction factor and possibly allowing the levelling of the luminosity, cryo-modules of crab-cavities (CC) will be added at P1 and P5.

- Finally, the matching and final focusing of the beams will require completely new insertion cryo-assemblies at P1 and P5.

9.3 Temperature level and heat loads

Heat loads to the cryogenic system have various origins and uncertainties. The heat loads deposited in the accelerator are the result of physical mechanisms, which are classified as static, resistive, beam-induced, collision-induced, or radiofrequency-induced. The nomenclature is based on the LHC Design Report [1].

An important effort has been done during the last years to estimate the future HL-LHC heat loads [2]. The heat loads values in Table 9-2 are categorized by temperature level and heat load type. Table 9-3 reports the heat load values for group of users. It indicates the total contribution from static, dynamic (nominal/ultimate), total load (nominal/ultimate) and design values.

Table 9-2: “Nominal heat load” table for the LSS.R5 for the HL-LHC. Preliminary values.

Component	Q1	Q2A	Q2B	Q3	CP	D1	Intercon.	DFX	DFM	D2	CC	
Length (m)	10.140	9.785	9.785	10.140	6.01	7.370	6.930 (6 unit †)	2.535	4.000	13.025 (14.025)	2 module units †	
(thermal shield)	(10.640)				(6)							
Cold Mass	1.9	1.9	1.9	1.9	1.9	1.9	1.9	4.5	4.5	1.9	2	
Temperature (K)	157.5	157.5	163.9	97.4	97.1	38.2	4.1	4.5	46.7	89.9		
Total Heat Load (W)	138.9	122.7	157.5	97.4	97.1	38.2	4.1	4.5	46.7	89.9		
Avg. Heat Load (W/m)	13.7	12.5	16.1	16.2	16.2	13.2	5.5 W pu	1.6	1.1	3.6	45.0 W pu	
Static (W/m)	1.7	1.7	1.7	1.7	1.7	1.8	2.2	0.3 W pu	1.6	1.1	0.6	18.9 W pu
Resistive (W/m)	0.7	0.4	0.4	0.7	3.9	0.1	0.0 W pu	0.0	0.0	0.0	0.0	0.0 W pu
Beam Induced (W/m)	0.5	0.3	0.2	0.3	0.0	0.1	2.2 W pu	0.0	0.0	0.2	0.0	0.0 W pu
Collision Induced [‡](W/m)	11.0	10.3	13.8	13.5	10.5	10.7	3.0 W pu	0.0	0.0	2.8	0.0	0.0 W pu
RF Cavity (W/m)	-	-	-	-	-	-	-	-	-	-	26.1 W pu	
Beam Screen												
Temperature (K)	60-80	60-80	60-80	60-80	60-80	60-80	-	-	4.5-20	4.5-20		
Total Heat Load (W)	223.1	97.3	144.8	133.0	66.9	74.0	375.8	0.0	0.0	49.8	46.0	
Avg. Heat Load (W/m)	22.0	9.9	14.8	13.1	11.1	10.0	54.2 W pu	0.0	0.0	3.8	23.0 W pu	
Static (W/m)	0.1	0.1	0.1	0.1	0.2	0.2	0.0 W pu	0.0	0.0	0.0	9.3	9.3 W pu
Resistive (W/m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0 W pu	0.0	0.0	0.0	13.6	13.6 W pu
Beam Induced (W/m)	5.1	2.9	4.4	5.1	0.6	2.3	42.4 W pu	0.0	0.0	3.7	0.0	0.0 W pu
Collision Induced [‡](W/m)	16.8	6.9	10.2	7.9	10.3	7.6	11.9 W pu	0.0	0.0	0.2	0.0	0.0 W pu
Component | Q1 | Q2A | Q2B | Q3 | CP | D1 | Intercon. | DFX | DFM | D2 | CC
---|---|---|---|---|---|---|---|---|---|---|---
Thermal Shield | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 |
Temperature (K) | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 | 60-80 |
Total Heat Load (W) | 66.6 | 53.2 | 53.2 | 54.3 | 133.8 | 103.2 | 22.2 | 24.9 | 28.0 | 133.1 | 609.0 |
Avg. Heat Load (W/m) | 6.3 | 5.4 | 5.4 | 5.4 | 22.2 | 14.0 | 3.2 | 8.2 | 7.0 | 9.5 | 304.5 | W pu |
Static (W/m) | 6.3 | 5.4 | 5.4 | 5.4 | 22.2 | 14.0 | 3.2 | 8.2 | 7.0 | 9.5 | 206.9 | W pu |
RF Cavity (W/m) | - | - | - | - | - | - | - | - | - | - | 97.6 | W pu |

"-" = not applicable; W pu = Watts per unit.

* Length of each interconnection unit is 1 m, except between Q3-CP which is 1.8 m and CP-D1 which is 1.13 m.
† A module unit contains 2 crab cavities.

Table 9-3: Total heat loads divided by group of users, LSS.R5 and IP5. Preliminary values.

Group*	IT	D2	CC	LSS_R5	IP5		
Cold mass length (m)	62.7	17	-	79.7	159.4		
Thermal shield length (m)	63.7	18	-	81.7	163.4		
Number of units (-)	-	-	2	2 (CC)	4 (CC)		
Cold Mass	1.9	1.9	2	1.9-2	1.9-2		
Total Design + flash (W)	1416.7	100.2	149.6	1667	3333		
Total Design (W)	1173.3	83.0	127.6	1384	2768		
Total Ultimate (W)	1103.4	68.7	89.9	1262	2524		
Total Nominal (W)	779.4	50.7	89.9	920	1840		
Dynamic - Ultimate (W)	1033.4	54.4	52.2	1140	2280		
Dynamic - Nominal (W)	709.4	36.4	52.2	798	1596		
Static (W)	70.0	14.3	37.7	122	244		
Beam Screen	496.6	153.1	413.8	1116	2233		
Temperature (K)	60-80	4.5-20	4.5-20	60-80	4.5-20	60-80	4.5-20
Total Design (W)	1685.0	74.7	97.0	1685	172	3367	343
Total Ultimate (W)	1424.1	50.9	46.0	1424	97	2846	194
Total Nominal (W)	1115.0	49.8	46.0	1115	96	2228	192
Dynamic - Ultimate (W)	1415.8	50.9	27.3	1416	78	2830	156
Dynamic - Nominal (W)	1106.7	49.8	27.3	1107	77	2211	154
Static (W)	8.4	0.0	18.7	8	19	17	37

(*) italic values are indicating Design Heat Load values

The design heat load values consider margins and technological requirements. They can be calculated by using the following equations:

\[Q_{\text{design}} = \text{MAX}[F_{\text{ov}} \cdot (F_{\text{un}} \cdot Q_{\text{static}} + Q_{\text{dynamic nominal}}); F_{\text{un}} \cdot Q_{\text{static}} + Q_{\text{dynamic ultimate}}] \ (9-1) \]
\[\dot{Q}_{\text{installed}} = \text{MAX}\left[F_{\text{op}} \cdot \dot{Q}_{\text{nominal}} ; \dot{Q}_{\text{ultimate}} \right] \]

The first equation is valid for the cold mass (1.9–2 K) and beam screens (4.5–20 K and 60–80 K). The second equation is valid for the thermal shield (60–80 K) and current leads (20–293 K). A detailed study is available on [2]. Figure 9-1 gives a global view of the heat load at 1.9 K.

Figure 9-1: Total heat load for users at 1.9 K. Preliminary values.

9.4 Impact on existing sector cryogenic plants

With new cryogenic plants dedicated to the cooling of cryogenic equipment in P1 and P5, the cooling duty of the existing sector cryogenic plants will be reduced and more equally distributed. Figure 9-2 and Figure 9-3 shows the required cooling capacities for the different temperature levels and compares them to the nominal cooling requirements and to the installed capacities. The low-load sectors equipped with upgraded ex-LEP cryogenic plants have lower installed capacity than the four cryogenic plants specially ordered for the LHC high-load sectors. For the HL-LHC, sufficient capacity margin still exists providing that the beam scrubbing of dipole beam-screens is efficient (dipole off).

Figure 9-2: Cooling capacity requirement of sector cryogenic plants. (a) Cold mass; (b) current leads
Figure 9.3: Cooling capacity requirement of sector cryogenic plants. (a) thermal shields; (b) beam screen (dipole off); (c) beam screen (dipole on).

9.5 Point 4 cryogenics

The initial baseline considered the installation of a new cryoplant in P4. Later on, was decided to evaluate an alternative scenario for the refrigeration part. The alternative scenario consisted of an upgrade of one of the existing refrigerators of P4 (equivalent of 2 kW@4.5 K with respect to the existing plant capacity of 16.5 kW@4.5 K) [6] to fulfil the required cooling capacity of existing SRF modules with sufficient margin, while keeping or adapting the distribution system depending on the alternative. As a complement, a new mobile refrigerator with a cooling capacity allowing RF tests of a single cryo-module during long shut-downs was then considered, as all other cryogenic sub-systems would be stopped for maintenance and major overhauling, but was finally abandoned.

The upgrade of the ex-LEP refrigerator included mainly:
- Replacement of 7 expansion turbines.
- Modification of one existing turbine.
- Modification of the required piping inside the boxes or for instrumentation and service panels.
The upgrade was successfully completed during the Long Shutdown 2.

The modification of the cryogenic distribution line to allow the installation of the hollow electron lenses is under study. The schematic layout can be seen in Figure 9-4 [5].

![Figure 9-4: Layout of the possible cryogenic layout at P4 (Hollow e-lens)](image)

9.6 New cryogenics for high luminosity insertions at Point 1 and Point 5

The new HL-LHC cryogenic system will require new cryo-plants of about 15 kW at 4.5 K including 3 kW at 1.8 K. They will encompass new refrigeration plants and distribution lines. Figure 9-5 illustrates the architecture of the system. A full analysis of both systems have been done in order to optimize the cost and the sourcing strategy.

![Figure 9-5: HL-LHC Cryogenic architecture at P1 and P5](image)
The main components of the new helium refrigeration system are [7]:
- The compressor station (QSCG).
- A dryer system (QSAG).
- The 4.5 K cold box (QSRG) including 80 K and 20 K absorbers and a liquid helium phase separator.
- A cryogenic vertical transfer line (QPLG) in a shaft connecting the 4.5 K surface cold box to the 1.8 K cold box located in an underground cavern.
- A 1.8 K cold box (QURCG) including the cold compressors and a phase separator.

Each HL-LHC helium refrigerator shall:
- Provide cooling to different magnets with an equivalent capacity of about 3 kW at 1.8 K.
- Supply an average helium mass flow rate of approximately 10 g/s at 4.5 K for the beam screens and recover it at around 20 K.
- Provide cooling to the Distribution Feed Boxes (DFH) with a liquefaction flow rate of 25 g/s.
- Supply an average helium mass flow rate of approximately 100 g/s at 60 K for various thermal shields and recover it at around 80 K, for a corresponding cooling capacity of 10 kW.
- Allow control of supply temperature between 300 K and 10 K during cool down of magnets.
- Accommodate heat load variation from 20 to 100 % in less than one hour twice a day.

Regarding the new distribution system it shall [8]:
- Distribute helium from the refrigerator to the different machine components in the temperature range from 4 K to 350 K with a maximum allowable pressure of 25 bar absolute.
- Control the helium flow to and from users as required for multiple operating modes.
- Have a maximum heat load for lines below 20 K (\(\Omega_{\text{eq}} \sim 320 \text{ mm}\)) lower than 0.5 W/m.
- Have a vacuum vessel diameter ranging from ~650 mm to ~770 mm.
- House five inner headers ranging from ISO DN40 to DN300 and an actively cooled thermal shield.
- Integrate approximately 200 cryogenic control valves and interface to users via 32 feeding points.

Figure 9-7 illustrates the cryogenic distribution architecture while the following details provide details on the layout for the different components.

![LHC ring centre](image)

Figure 9-6: Schematic of the cryogenic distribution architecture [8]
Figure 9-7: Layout of the IP5 Cryodistribution [9].

Figure 9-8: Detail of the distribution for the IT magnets, CP and D1. [10]
Figure 9.9: Detail of the distribution for the D2 magnet. [11]

Figure 9.10: Detail of the distribution for the Crab Cavities [12].

Process flow diagrams for the Distribution Feed boxes are available on Refs. [13] [14].
Cryogenics for the HL-LHC

9.7 References

[1] LHC Design Report Volume I - The LHC Main Ring. Chapter 11. CERN, 2004, EDMS: 445856.
[2] Updated heat load tables for the LSS.R5 for the HL-LHC, EDMS: 1610730.
[3] Process flow diagram of HL-LHC IT L5, EDMS: 1963716.
[4] Cryo distribution IP5, EDMS: 2025508.
[5] Process Flow Diagram of HL-LHC Hollow e-Lens in P4, EDMS: 2314734.
[6] IT-4472 Upgrade of the ex-LEP Refrigerator for HL-LHC - Point 4, EDMS: 2001440.
[7] MS-4631 HL-LHC He Refrigerators, EDMS 2382454.
[8] MS-4630 Supply of the Cryogenic Distribution Lines for the HL-LHC at P1 and P5, EDMS: 2381328.
[9] Process flow diagram of HL-LHC IP5, EDMS: 2025508.
[10] Process flow diagram of HL-LHC IT L5, EDMS: 1963716.
[11] Process flow diagram of HL-LHC D2 L5, EDMS: 1750118.
[12] Process flow diagram of HL-LHC Crab Cavities R5, EDMS: 2013776.
[13] Process flow diagram of HL-LHC DFX L5, EDMS: 2322140.
[14] Process flow diagram of HL-LHC DFM DSHM/DFHM R5, EDMS: 2373843.