Antibacterial activity of recently approved antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) strains: A systematic review and meta-analysis

Fei Liu¹, Sajad Rajabi², Chunhua Shi¹*, Ghazale Affirad³, Nazanin Omidi⁴, Ebrahim Kouhsari⁵,⁶, Saeed Khoshnood⁴ and Khalil Azizian⁷*

Abstract

Background: Methicillin-resistant Staphylococcus aureus (MRSA) infections are considered an important public health problem, and treatment options are limited. Accordingly, in this meta-analysis, we analyzed published studies to survey in vitro activity of recently approved antibiotics against MRSA isolates.

Methods: We searched electronic databases; PubMed, Scopus, and Web of Science to identify relevant studies (until November 30, 2020) that have focused on the in vitro activity of telavancin, dalbavancin, oritavancin, and tedizolid against MRSA isolates. Statistical analyses were conducted using STATA software (version 14.0).

Results: Thirty-eight studies were included in this meta-analysis. Overall in vitro activity of tedizolid on 12,204 MRSA isolates was 0.250 and 0.5 µg/mL for MIC₅₀ and MIC₉₀, (minimum inhibitory concentration at which 50% and 90% of isolates were inhibited, respectively), respectively. The overall antibacterial activity of dalbavancin on 28539 MRSA isolates was 0.060 and 0.120 µg/mL for MIC₅₀ and MIC₉₀, respectively. The overall antibacterial activity of oritavancin on 420 MRSA isolates was 0.045 and 0.120 µg/mL for MIC₅₀ and MIC₉₀, respectively. The overall antibacterial activity of telavancin on 7353 MRSA isolates was 0.032 and 0.060 µg/mL for MIC₅₀ and MIC₉₀, respectively. The pooled prevalence of tedizolid, telavancin, and dalbavancin susceptibility was 100% (95% CI: 100–100).

Conclusion: Telavancin, dalbavancin, oritavancin, and tedizolid had potent in vitro activity against MRSA isolates. The low MICs and high susceptibility rates of these antibiotics recommend a hopeful direction to introduce useful antibiotics in treating MRSA infections in the future.

Keywords: MRSA, Antibacterial activity, Tedizolid, Telavancin, Dalbavancin, Oritavancin, Lipoglycopeptide

Introduction

Staphylococcus aureus (S. aureus) is a prominent cause of hospital-acquired and community-acquired infections ranging from superficial skin and soft tissue infections to endocarditis [1, 2].

For two reasons, A) methicillin-resistant Staphylococcus aureus (MRSA) is a well-recognized public health problem worldwide [3], and B) Antibiotic-resistance pattern of MRSA. Currently, World Health Organization

*Correspondence: liufei126@163.com; k.azizian86@gmail.com
1 Department of Biomedical Engineering, Changzhi Medical College, Changzhi 046013, Shanxi, China
2 Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
Full list of author information is available at the end of the article

© The Author(s) 2022. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
(WHO) considers *S. aureus*, especially MRSA, as one of the fundamental clinical challenges throughout the world. [4]. There are limited therapeutic options for the treatment of MRSA infections. Vancomycin is introduced as a drug of choice for treating serious infections due to MRSA. However, overuse of vancomycin leads to the emergence of non-susceptible strain [5–7]. For example, vancomycin-resistant *S. aureus* (VRSA) strains have been reported from many countries, including the USA, India, Iran, and Pakistan [5–7].

Furthermore, linezolid and clindamycin are other favorable antibiotics against MRSA infections [8]. Despite different mechanisms of action, the emergence of resistant strains to these antibiotics is rising [8–12]. Increased antibiotic resistance in MRSA isolates is one of this century’s most globally significant problems [4]. Several new agents such as telavancin, dalbavancin, oritavancin, and tedizolid have recently been licensed for the treatment of infections caused by MRSA.

Following the emergence of strains with reduced susceptibility to vancomycin (first generation of glycopeptide), the second generation of semisynthetic lipoglycopeptides has been developed as alternatives for treating MRSA infections. Telavancin, dalbavancin, and oritavancin have been introduced as critical lipoglycopeptide antibiotics recently approved by the Food and Drug Administration (FDA). Telavancin was the first approved lipoglycopeptide by the FDA in 2009 [13]. Furthermore, dalbavancin and oritavancin were first approved by the FDA in 2014 [14, 15]. Lipoglycopeptides are semisynthetic derivatives characterized by adding a lipophilic side chain, which prolongs their half-lives and increases their activities against Gram-positive cocci [16]. Lipoglycopeptides inhibit cell wall synthesis by binding to C-terminal D-alanyl-D-alanine (D-Ala-D-Ala) of cell wall precursor units [17, 18]. The N-alkyl-p-chlorophenylbenzyl substituent in oritavancin confers significantly enhanced activity against vancomycin-intermediate and resistant staphylococci [17]. In addition, lipoglycopeptides can interfere with cellular membrane functions [17, 19].

Linezolid, the first oxazolidinone antibacterial agent, was approved in the United States in early 2000. The following approved oxazolidinone was tedizolid. Tedizolid is a second-generation oxazolidinone class approved in 2014 by the FDA. This antibiotic is a bacteriostatic compound against gram-positive bacteria [20]. Similar to linezolid, the mechanical action of tedizolid is inhibiting protein synthesis by binding to the 23S ribosomal RNA of the 50S subunit [21]. Tedizolid is an oxazolidinone but differs from other oxazolidinones by possessing a modified side chain at the C-5 position of the oxazolidinone nucleus that improves potency through additional binding site interactions [22]. Not many in-depth studies are available that directly compare the susceptibilities of telavancin, dalbavancin, oritavancin, and tedizolid to different MRSA strains. Therefore, this systematic meta-analysis was conducted to survey in vitro activity of recently approved antibiotics against MRSA isolates by analyzing the related published studies.

Methods

Guidelines

This review is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA) [23].

Search strategy

A systematic search was conducted to evaluate the antibacterial activity of recently approved antibiotics against MRSA strains. The electronic databases: Medline, Embase, and Web of Science were searched to identify relevant articles until November 30, 2020. The search strategy was based on keywords derived from our research questions. The keywords used in the search were: "tedizolid", "dalbavancin", "oritavancin", "telavancin", "delafloxacin", "Methicillin-Resistant Staphylococcus aureus", and "minimum inhibitory concentration". The Boolean operators were used to combine all descriptors. The search strategy was adapted to the features of each database. If possible, we searched for synonyms or used the search option for similar terms before every keyword. No limitation was applied during the searching procedure of databases, but the inclusion of the study in our full analysis required at least the English abstract to be available. The records found through database searching were merged, and the duplicates were removed using EndNote X7 (Thomson Reuters, New York, NY, USA). Reference lists of all eligible articles were also reviewed to find any additional potentially relevant studies. The flow chart of the selected articles is shown in Fig. 1.

Eligibility criteria

Identified studies that were consistent with the criteria included original articles published in English concerning the antibacterial activity of recently approved antibiotics against MRSA strains. After screening, duplicate studies, non-original articles (reviews, short communications, case studies, abstracts without full text, and book chapters), and studies that lack information regarding the minimum inhibitory concentration (MIC) were excluded. One reviewer performed the searches; then, initial screening was done by two independent reviewers for potentially relevant records matching the inclusion/exclusion criteria based on title and abstracts. Full articles were obtained from these records and were assessed...
Data extraction and quality assessment

Two reviewers coded and extracted the data independently. This process was also overseen by the third author again. All studies were consistent with the following inclusion criteria: (1) antibacterial activity was determined using one of the standard methods, including broth microdilution, agar dilution, and epsilometer (E)-test, (2) MIC50 and MIC90 (minimum inhibitory concentration at which 50% and 90% of isolates were inhibited, respectively) and their ranges were available, also (3) original studies that were performed on clinically derived isolates. Meanwhile, exclusion criteria were (1) studies that have not reported the MIC or have not used the standard susceptibility testing methods, (2) studies with a sample size < 10 isolates, and (3) studies performed on samples with animals or environment origin. Neither reviews nor systematic review articles, case reports, and articles available only in the abstract that lacks necessary information were included. Moreover, the quality of included studies was critically appraised using the Newcastle–Ottawa Scale [24]. The pre-defined review protocol was registered at the PROSPERO international prospective register of systematic reviews (http://www.crd.york.ac.uk/PROSPERO, registration number CRD11111).

Statistical analysis

The meta-analysis was performed by computing the pooled using a random-effects model with Stata/SE software, v.17 (StataCorp, College Station, TX) on studies presenting raw data on antibacterial activity of tedizolid, dalbavancin, oritavancin, telavancin, and delafloxacin against MRSA strains. The inconsistency across studies was examined by the forest plot as well as the I² statistic. Values of I² (25%, 50%, 75%) were interpreted as the presence of low, medium, or high heterogeneity, respectively.
So, the DerSimonian and Laird random effects models were used [25]. Publication bias was assessed using Egger’s test. All statistical interpretations were reported on a 95% confidence interval (CI) basis.

Study outcomes

The primary outcome of interest was the pooled prevalence susceptibility of tedizolid, dalbavancin, and telavancin against MRSA isolates. The secondary outcomes of interest were the MIC$_{50}$ and MIC$_{90}$ of tedizolid, dalbavancin, and telavancin against MRSA isolates.

Results

Systematic literature search

A total of 540 records were identified in the initial search. Among these, 357 articles were excluded after an initial screening of the title and abstract due to their irrelevance and duplication. The full texts of the remaining 183 articles were reviewed (Fig. 1). Out of 183 articles, 145 were excluded for the following reasons: meta-analysis, review, conference abstract, and article without full text (n = 70), non-relevant data, or no MIC data (n = 75). Finally, the detailed characteristics of 38 included studies in this meta-analysis are indicated in Table 1.

Characteristics of included studies

All included studies had a cross-sectional design. All included studies in this meta-analysis were high-quality (Additional file 2: Table) [24]. However, most reports have been from America (n = 19), Asia (n = 8), Europe (n = 8), and multiple continents (n = 7). In the current study, to determine the effective concentration of tedizolid, dalbavancin, oritavancin, and telavancin against MRSA isolates, the mode of MIC$_{50}$, MIC$_{90}$, and MIC ranges was estimated (Table 2). To analyze the trends for changes in the tedizolid, dalbavancin, oritavancin, and telavancin susceptibility in recent years, we performed a subgroup analysis for two periods (2010–2015 and 2016–2020) (Tables 3, 5, Additional file 1: Figure). No significant difference was observed in the pooled prevalence of tedizolid, dalbavancin, oritavancin, and telavancin susceptibilities against MRSA isolate for two periods (2010–2015 and 2016–2020) (Tables 3, 4, 5).

Antibacterial activity of tedizolid

The prevalence of tedizolid susceptibility is available in 11 studies. The overall antibacterial activity of tedizolid was 0.060, and 0.120 µg/mL for MIC$_{50}$ and MIC$_{90}$ in 28539 MRSA isolates, respectively. Out of 11 studies, the pooled prevalence of dalbavancin susceptibility was 100% (95% CI: 100–100) (Table 6). There was no substantial heterogeneity among the 11 studies (p = 0.61; I2 = 0%).

Antibacterial activity of dalbavancin

The prevalence of dalbavancin susceptibility is available in 8 studies. The overall antibacterial activity of dalbavancin was 0.032, and 0.060 µg/mL for MIC$_{50}$ and MIC$_{90}$ in 7353 MRSA isolates, respectively. From 8 studies, the pooled prevalence of telavancin susceptibility was 100% (95% CI: 100–100) (Table 6). There was no substantial heterogeneity among the eight studies (p = 0.86; I2 = 0%).

Antibacterial activity of oritavancin

The prevalence of telavancin susceptibility was available in 2 studies. The overall antibacterial activity of oritavancin was 0.045, and 0.120 µg/mL for MIC$_{50}$ and MIC$_{90}$ in 420 MRSA isolates, respectively.

Discussion

MRSA is considered one of the most critical human health problems worldwide [26]. Empirical therapies by vancomycin and linezolid were reliable options for treating MRSA infections [27]. However, reports on decreasing susceptibility to vancomycin and linezolid are worrying [28]. It is critical to introduce and characterize new effective and safe antibiotics to prevent and control the infections related to MRSA strains [29]. The findings from a systematic review demonstrated that the prevalence of VRSA increased in recent years around the world [30]. It also was shown that different continents and countries are struggling with VRSA strains [30]. Compared with the classic glycopeptides, our meta-analysis shows a higher antibacterial activity of a new class of lipoglycopeptides (telavancin and dalbavancin susceptibilities were 100%). Moreover, the estimated MIC values of three lipoglycopeptides (MIC$_{50}$/MIC$_{90}$, 0.060/0.120 µg/mL for dalbavancin, MIC$_{50}$/MIC$_{90}$, 0.032/0.060 µg/mL for telavancin, MIC$_{50}$/MIC$_{90}$, 0.045/0.120 µg/mL for oritavancin) against MRSA strains are much lower than the MIC value of vancomycin for MRSA in the literature [31]. Moreover, against both vancomycin-resistant Enterococcus (VRE) and vancomycin-susceptible Enterococcus (VSE), the MIC value of lipoglycopeptides is much lower than the MIC value of vancomycin [16].
Table 1: The details included studies

First author	Study period	Publication year	Quality score	Continents/countries	Sample source	No. MRSA isolates	Type of antibiotics	MIC50/MIC90 (µg/ml)	MIC range (µg/ml)	Susceptibility rate (%)	References
Gulseren Aktas	2005 and 2007	2010	7	Turkey	clinical isolates	237	Dalbavancin	≤0.008 / 0.25	≤0.008–2	99.6	[44]
Gulseren Aktas	2014 and 2015	2016	7	Turkey	clinical isolates	30	Dalbavancin	0.12 / 0.12	0.03–0.12	100	[45]
Maya Azrad	2015 and 2017	2019	7	Israel	Blood sample, Wounds	275	Tedizolid	0.25 / 0.3	0.19–0.5	100	[46]
						275	Dalbavancin	MIC50: 0.047 / MIC90: 0.055 (wound)/0.06 (Blood sample)	0.023–0.19	99.64	[46]
Diane M. Citron	No data	2014	6	USA	osteomyelitis	15	Dalbavancin	0.06 /0.06	≤0.03–0.12	No data	[47]
G. Ralph Corey	2011 to 2013	2016	7	USA	blood culture and ABSSI	405	Orivancin	0.03 / 0.12	0.002–0.25	99.1	[48]
Ko-Hung Chen	2013 to 2014	2015	7	Taiwan	ABSSI and pneumonia	ABSSI (50) and pneumonia (50)	Tedizolid	ABSSI (0.25/0.25) and pneumonia (0.5/0.5)	ABSSI (0.25/0.05) and pneumonia (0.25/0.05)	99.64	[21]
Yong Pil Chong	2004 to 2009	2012	7	Korea	blood cultures	569	Dalbavancin	0.25 / 0.25	0.06–0.25	98.8	[49]
Aneta Guzek	2012 to 2014	2018	7	Poland	clinical isolates	124	Dalbavancin	0.094/0.125	0.032–0.125	100	[50]
Vanthida Huang	No data	2010	7	USA	clinical isolates	220	CA-MRSA (110), MDR HA-MRSA (n = 110)	CA-MRSA: 0.0625/0.125, MDR HA-MRSA:0.125/0.125	0.015–0.006	100	[51]
Ronald N. Jones	2011–2014	2017	7	North American, Latin American, European, and Asia–Pacific Nations	bone and joint	229	Telavancin	0.03 / 0.06	≤0.015–0.006	100	[52]
First author	Study period	Publication year	Quality score	Continents/countries	Sample source	No. MRSA isolates	Type of antibiotics	MIC50/MIC90 (µg/ml)	MIC range (µg/ml)	Susceptibility rate (%)	References
---------------------------------	----------------	------------------	---------------	---	---	-------------------	---	---------------------	---------------------	------------------------	------------
James A. Karlowsky	2014 to 2016	2017	7	Asia/Pacific region (Australia [n = 2], China [n = 16], New Zealand [n = 2], Philippines [n = 2], Taiwan [n = 2]), the Latin America region (Argentina [n = 2], Brazil [n = 10], Chile [n = 2], Colombia [n = 2], Mexico [n = 6]), Russia (n = 7), and Saudi Arabia (n = 1)	ABSSSI, blood samples, respiratory infections	1839	Tedizolid	0.25 / 0.5	0.03–0.5	100	[53]
Yangsoon Lee	2011 to 2014	2015	7	Korea	SSSIs, HAP	1839	Tedizolid	0.25 / 0.5	0.03–0.5	100	[54]
María Carmen López-Díaz	2012 to 2014	2017	7	Spain	clinical isolates	1839	Tedizolid	0.25 / 0.5	0.03–0.5	100	[55]
Johanna Marcela Vane-gas Múnera	2008 to 2010	2017	7	Colombia	clinical isolates	1839	Tedizolid	0.25 / 0.5	0.03–0.5	100	[56]
Rodrigo E. Mendes	2011 to 2013	2015	7	USA	clinical isolates	1839	Tedizolid	0.25 / 0.5	0.03–0.5	100	[57]
Sandra P. McCurdy	2002–2012	2015	7	USA, Europa, Russian and Israeli	clinical isolates	1839	Tedizolid	0.25 / 0.5	0.03–0.5	100	[58]
Table 1 (continued)

First author	Study period	Publication year	Quality score	Continents/countries	Sample source	No. MRSA isolates	Type of antibiotics	MIC50/MIC90 (µg/ml)	MIC range (µg/ml)	Susceptibility rate (%)	References
R. E. Mendes	2011–2014	2017	7	North America (2150 isolates), Europe (1283), Latin America (473), and Asia-Pacific (APAC; 285) regions	blood samples	1490	Telavancin	0.03 / 0.06	≤0.015–0.12	100	[59]
Jessica Baleiro Okado	2011-2012	2018	7	Brazil	clinical isolates	27	Tedizolid	0.25 / 0.25	0.125–0.5	100	[60]
Michael A. Pfaffer	2014–2015	2019	7	USA	SSIs, bacteremia, pneumonia, intra-abdominal infections, urinary tract infections	1732	Tedizolid	0.12 / 0.12	0.03–0.25	100	[61]
Philippe Proko-ciner	2008–2009	2012	7	USA	clinical isolates	124	Tedizolid	0.25 / 0.25	0.12–0.5	100	[62]
Kenneth VI Rolston	2012–2013	2014	7	USA	clinical isolates	50	Telavancin	0.25 / 0.25	0.064–0.38	No data	[63]
Laser Sanal	2013–2016	2018	7	Turkey	blood and tracheal aspirate	50	Telavancin	0.032 / 0.064	0.016–0.125	100	[64]
Suzannah M. Schmidt-Malän	1996–2014	2016	7	USA	clinical isolates	35	Tedizolid	0.5 / 0.5	0.25–0.5	100	[65]
Wael Shams	1991–2006	2010	7	USA	bloodstream, respiratory tract and wound	168	Telavancin	0.25 / 0.50	0.08–1.00	No data	[66]
Debora Sweeney	2017		7	USA	clinical isolates	15	Oritavancin	0.06 / 0.12	0.03–0.12	100	[67]
					Dalbavancin						[67]
					Telavancin	0.06 / 0.06	0.03–0.12	100	[67]		
					Telavancin	0.06 / 0.06	0.06–0.12	100	[67]		
					Telavancin	0.25 / 0.5	0.25–0.5	100	[67]		
Jennifer I. Smart	No data (2008)	2016	7	USA	SSIs	700	Telavancin	0.06/0.06	0.03–0.12	100	[68]
Kenneth S. Thomson	No data	2013	7	USA	clinical isolates	111	Tedizolid	0.5 / 0.5	0.12–0.5	100	[69]
Floriana Campanile	2005–2007	2010	7	Italia	bloodstream, pneumonia, and SSIs	24	Dalbavancin	0.06 / 0.12	0.03–0.12	100	[70]
Table 1 (continued)

First author	Study period	Publication year	Quality score	Continents/countries	Sample source	No. MRSA isolates	Type of antibiotics	MIC50/MIC90 (µg/ml)	MIC range (µg/ml)	Susceptibility rate (%)	References
D. J. Biedenbach	2013–2014	2016	7	Argentina, Brazil, Chile, Mexico, Australia and New Zealand, China	clinical isolates	Argentina, Brazil, Chile, and Mexico (318), Australia and New Zealand (51), China (425)	Tedizolid	Argentina, Brazil, Chile and Mexico (0.5/0.5), Australia and New Zealand (0.25/0.5), China (0.25/0.5)	0.12–0.5	100	([39])
Carmen Betriu	2004–2008	2010	7	Spain	Blood samples	247	Tedizolid	0.25/0.5	0.125–0.5	100	([40])
Mekki Bensaci	2009–2013	2017	7	USA	clinical isolates	3234	Tedizolid	0.25/0.5	0.15 ≤ 0.015 to 2	99.6	([71])
Hongbin Chen	2009–2013	2014	7	China	SSSIs, lower respiratory tract infections	100	Tedizolid	0.25/0.25	0.064–1	No data	([72])
Steven D. Brown	No data	2010	7	USA	clinical isolates	129	Tedizolid	0.5/1	0.12–16	No data	([73])
Jong Hwa Yum	2002–2004	2010	7	South Korea	clinical isolates	30	Torezolid	0.5/0.5	0.5	100	([74])
Daniel F. Sahm	2011–2012	2015	7	USA, Europe	clinical isolates	1770	Torezolid	0.25/0.25	0.015–4	99.7	([75])
Shuguang Li	2014	2016	7	China	clinical isolates	632	Torezolid	0.25/0.25	0.064–0.5	100	([76])
Marina Peñuelas	No data	2016	7	Spain	clinical isolates	18	Torezolid	0.25/0.25	0.125–0.5	100	([77])
Michael A. Pfaller	2014	2016	7	Asia–Pacific, Eastern Europe, and Latin American Countries	clinical isolates	701	Tedizolid	0.12/0.12	0.03–0.25	100	([78])

ABSSSI acute bacterial skin and skin structure infections, CA-MRSA community-associated MRSA infections, HA-MRSA healthcare-acquired methicillin-resistant Staphylococcus aureus, HAP hospital-acquired pneumonia
MIC50/90 values of dalbavancin (0.06/0.12 µg/mL) are very similar to another systematic review published by Sadr in 2017 [32]. Moreover, compared to vancomycin, previous studies indicated that dalbavancin showed potent activity against biofilm-forming bacteria [33, 34]. However, a network meta-analysis showed no significant differences between dalbavancin and vancomycin in treating acute bacterial skin and soft-tissue infections (SSTIs) [35]. Dalbavancin susceptibility was more than 99% in the published systematic review in 2017, as our results [32].

In our study, the MIC50 value of oritavancin against MRSA strains is similar to a systematic review by Mendes et al. in 2015 [36]. Solo clinical trials show that oritavancin is more effective than vancomycin against MRSA infections [37]. Mendes et al. [36] evaluated the activity in vitro of oritavancin and comparators against Gram-positive pathogens causing SSTIs in European and US hospitals. They showed that oritavancin susceptibility in Gram-positive clinical isolates from the United States and Europe were 98.4% and 98.9%, respectively [36]. However, our meta-analysis studied worldwide data, and oritavancin susceptibility was 100%.

A previous systematic review and meta-analysis published in 2019 reported that the MIC50 and MIC90 of tedizolid were 0.250 and 0.500 µg/mL, respectively [38]. These MIC values are lower than the MIC values of vancomycin against MRSA strains [39, 40]. It was also shown that the MIC of tedizolid is much lower than the MIC of vancomycin against VISA strains [41]. In addition, tedizolid demonstrated greater in vitro potency than linezolid against MRSA strains, but further research is required for a treatment recommendation. However, published studies showed that some adverse events are related to the
simultaneous administration of telavancin and tedizolid [42, 43]. Moreover, in our meta-analysis, the MIC values and susceptibility rates for all four antibiotics were investigated in two periods (2010–2015 and 2016–2020), and findings were very similar between the two periods. The limited use of these antibiotics and their specific action mechanisms help explain this lack of change.

In conclusion, our results demonstrated that dalbavancin, oritavancin, telavancin, and tedizolid have antibacterial activity in vitro against MRSA isolates. However, future preclinical and clinical research are necessitated to support our findings.

Abbreviations
MRSA: Methicillin-resistant Staphylococcus aureus; MIC₅₀: Minimum inhibitory concentration at which 50% of isolates were inhibited; MIC₉₀: Minimum inhibitory concentration at which 90% of isolates were inhibited; S. aureus: Staphylococcus aureus; VRE: Vancomycin-resistant Enterococcus; SSTIs: Skin and soft-tissue infections.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12941-022-00529-z.

Additional file 1: The quality assessment of included studies in this meta-analysis.
Additional file 2: Antibacterial activity of dalbavancin telavancin, tedizolid, and dalbavancin against MRSA isolates based on year groups.

Acknowledgements
We thank the Research Fund of Changzhi Medical College (BS202023) for your kind support.

Author contributions
FL, EK, GHA, SKh, and SR, NO contributed to the work’s conception, design, drafting, and extraction of data. Ch. Sh, Kh. A. Contributed to revising and final approval of the version to be published. All authors agreed and confirmed the manuscript for publication. All authors read and approved the final manuscript.

Author’s information
Khalil Azizian; Ph. D of Medical Bacteriology in Kurdistan University of Medical Sciences. His research interests are working on nosocomial infections. He has experience in diagnostics infections and antimicrobial resistance testing.

Table 6 The pooled prevalence susceptibility of tedizolid, oritavancin, dalbavancin, and telavancin against MRSA isolates

Antibiotics	Number of studies	Number of MRSA isolates	Proportion (95% CI)	chi²	Heterogeneity P	I²	p
Dalbavancin	11	28539	1.00, (1.00,1.00)	8.22	0.61	0.00%	0.00
Oritavancin	2	420	1.00, (1.00,1.00)	7.57	0.99	0.00%	0.00
Tedizolid	21	12204	1.00, (1.00,1.00)	3.26	0.86	0.00%	0.00
Telavancin	8	7353	1.00, (1.00,1.00)				

Funding
None.

Availability of data and materials
All the data in this review are included in the manuscript.

Declarations
Ethical approval and consent to participate
The study protocol was approved by the Health Research Ethics Committee of the Golestan University of Medical Sciences (reference no. IR.GOUMS.REC.1401.139).

Consent for publications
Not applicable in this section.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Biomedical Engineering, Changzhi Medical College, Changzhi 046013, Shanxi, China. 2International Medical Campus, Iran University of Medical Sciences, Tehran, Iran. 3Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. 4Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran. 5Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran. 6Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran. 7Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.

Received: 19 June 2021 Accepted: 10 August 2022
Published online: 17 August 2022

References
1. Rajput A, Poudel S, Tsunemoto H, Meehan M, Szubin R, Olson CA, Seif Y, Lamsa A, Dillon N, Vrbancic A. Identifying the effect of vancomycin on health care–associated methicillin-resistant Staphylococcus aureus strains using bacteriological and physiological media. Gigascience. 2021;10(1):giaa156.
2. Panwala T, Gandhi P, Jethwa D. Inducible Clindamycin resistance and MRSA amongst Staphylococcus aureus isolates: A phenotypic detection.
3. Thabit AK, Nicolau DP, Kutli JL. In vitro pharmacodynamics of human simulated exposures of telavancin against methicillin-susceptible and resistant Staphylococcus aureus with and without prior vancomycin exposure. Antimicrob Agents Chemother. 2016;60(1):222–8.
4. Cascioferro S, Carbone D, Parrino B, Pecoraro C, Giovannetti E, Cirrincione G, Diana P. Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections. ChemMedChem. 2021;16(1):65–80.
5. Appelbaum PJCM. The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. Clin Microbiol Infect. 2006;12:16–23.
6. Selvabai, AP, Sattar, SBA, Jayaraman, P; SHANMUGAM PJ;OC, Research D. Detection and Characterisation of Heteroresistant Vancomycin Intermediate Staphylococcus aureus (HVRSA) using Phenotypic and Genotypic
Methods. J Clin Diagn Res. 2019. https://doi.org/10.7860/JCDR/2019/41127.12868.

7. Wu Q, Sabokroo N, Wang Y, Hashemian M, Karamollahi S, Koushari EJAR, Control I. Systematic review and meta-analysis of the epidemiology of vancomycin-resistance Staphylococcus aureus. Isolates Antimicrob Resist Infect Control. 2021;10(1):1–13.

8. Frank AL, Marcinak JF, Mangat PD, Tijho JT, Kelkar S, Schreckenberger Quinn PC, IPTPPhd, Clindamycin treatment of methicillin-resistant Staphylococcus aureus infections in children. Pediatric Infect Dis J. 2002;21(6):530–4.

9. Blair J, Webber MA, Baylay AJ, Ogboyol BD, Piddock LJJRm. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42–51.

10. Chambers HiPrm. Methicillin-resistant Staphylococcus aureus. Mechanisms of resistance and implications for treatment. 2001;109(2 Suppl):43–50.

11. GM Eliopoulos VG Meka 2004 Gold HSJCID: Antimicrobial resistance to linezolid. 2002:910–1015.

12. Lewis JS, Jorgensen JH. Antimicrobial agents for the treatment of methicillin-resistant Staphylococcus aureus. Int J Infect Dis. 2005;40(2):280–5.

13. Al Jalali V, Zeitlinger M. Clinical pharmacokinetics and pharmacodynamics of telavancin compared with the other glycopeptides. Clin Pharmacokinet. 2018;57(7):797–816.

14. Saravolatz LD, Stein GE. Oritavancin: a long-half-life lipoglycopeptide. Clin Infect Dis. 2015;61(6):627–32.

15. Dash RP, Babu RJ, Srivinas NR. Review of the pharmacokinetics of dalbavancin, a recently approved lipoglycopeptide antibiotic. Infect Dis. 2017;49(7):483–92.

16. Zhanel GG, Calic D, Schweizer F, Zelentsky S, Adam H, Lagacé-Wiens PR, Rubinstein E, Gin AS, Hoban DJ, Karlowsky JA. New perspectives. Drugs. 2010;70(7):859–86.

17. Zhanel GG, Schweizer F, Karlowsky JA. Oritavancin: mechanism of action. Clin Infect Dis. 2012;54(3):521–49.

18. Song Y, Lunde CS, Benton BM, Wilkinson BJ. Further insights into the mode of action of the lipoglycopeptide telavancin through global gene expression studies. Antimicrob Agents Chemother. 2012;56(6):3157–64.

19. Belley A, McKay GA, Arhin FF, Wikler MA, Kreiswirth BN, Mediavilla SA, Corey GR, Arhin FF, Sahm DF, Kreiswirth BN, Mediavilla SB, Citron DM, Tyrrell KL, Goldstein EJ. Comparative in vitro activities of dalbavancin and seven comparator agents against 41 Staphylococcus aureus isolates. Azhar Int J Pharm Med Sci. 2021;1(1):24–33.

20. Betriu C, Morales G, Rodríguez-Avial I, Culebras E, Gómez M, López-Fabal R, Picazo JJ. Comparative activities of TR-700 (torezolid) against staphylococci and enterococci with reduced susceptibility to glycopeptides, daptomycin, and/or linezolid from US medical centers. Antimicrob Agents Chemother. 2018;21(6):2212–5.

21. Barber KE, Smith JR, Raut A, Rybak MJ. Evaluation of telavancin against Staphylococcus aureus and enterococci with reduced susceptibility to vancomycin, telavancin, or linezolid. J Antimicrob Chemother. 2016;71(1):152–5.

22. Moeck G. Oritavancin disrupts membrane integrity of Staphylococcus aureus and vancomycin-resistant enterococci to effect rapid bacterial killing. Antimicrob Agents Chemother. 2010;54(12):5369–71.

23. Burdette SD, Trotman R. Tedizolid: the first once-daily oxazolidinone class antibiotic. Clin Infect Dis. 2015;61(8):1315–21.

24. Chen K-H, Huang Y-T, Liao C-H, Sheng WH, Hisheh P-R. In vitro activities of tedizolid and linezolid against Gram-positive cocci associated with acute bacterial skin and skin structure infections and pneumonia. Antimicrob Agents Chemother. 2015;59(10):6262–5.

25. Mikamo H, Takeue S, Iwamoto Y, Tanigawa T, Kato M, Taninura Y, Kohno S. Efficacy, safety and pharmacokinetics of tedizolid versus linezolid in patients with skin and soft tissue infections in Japan—results of a randomised, multicentre phase 3 study. J Infect Chemother. 2018;24(6):434–42.

26. Moreh D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, Atkins D, Barbour V, Barrowman N, Berlin JA, Clark J. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (Chinese edition). Journal of Chinese Integrative Medicine. 2009 Sep;7(9):889–96.

27. Liu et al. Ann Clin Microbiol Antimicrob (2022) 21:37 Page 11 of 12
Chong YP, Park SJ, Kim HS, Kim ES, Kim M-N, Kim S-H, Lee S-O, Choi S-H, Jeong J-Y, Wook JH. In vitro activities of ceftobiprole, dalbavancin, daptomycin, linezolid, and tigecycline against methicillin-resistant Staphylococcus aureus blood isolates: stratified analysis by vancomycin MIC. Diagn Microbiol Infect Dis. 2012;73(3):264–6.

Guzek A, Rybicki Z, Tomaszewski D. In vitro analysis of the minimal inhibitory concentration values of different generations of anti-methicillin-resistant Staphylococcus aureus antibiotics. Indian J Med Microbiol. 2018;36(1):119–20.

Huang V, Cheung CM, Kaatz GW, Rybak MJ. Evaluation of dalbavancin, tigecycline, minocycline, tetracycline, teicoplanin and vancomycin against community-associated and multidrug-resistant hospital-associated meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 2010;35(5):25–9.

Jones RN, Flamm RK, Castanheira M, Sader HS, Smart J, Mendes RE. Activity of telavancin in vitro against gram-positive pathogens isolated from bone and joint infections in North American, Latin American, European and Asia-Pacific nations. Diagn Microbiol Infect Dis. 2017;88(2):184–7.

Karłowska JA, Hackel MA, Bouchillon SK, Alder J, Sahm DF. In vitro activities of tigecycline and comparator antimicrobial agents against clinical isolates of Staphylococcus aureus collected in 12 countries from 2014 to 2016. Diagn Microbiol Infect Dis. 2017;89(2):151–7.

Lee Y, Hong SK, Choi S, Im W, Yong D, Lee K. In vitro activity of telavancin against gram-positive bacteria in patients with skin and skin structure infections and hospital-acquired pneumonia: a Korean multicenter study. Ann Lab Med. 2015;35(5):523.

Díaz MCL, Ríos E, Rodríguez-Avial I, Simaluiza RJ, Picazo JJ, Culebras E. In vitro activity of several antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA) isolates expressing aminoglycoside-modifying enzymes: potency of plazomicin alone and in combination with other agents. Int J Antimicrob Agents. 2017;50(2):191–6.

Müñera JM, Rios AMO, Ureñgo DM, Jiménez Quiceno JN. In vitro susceptibility of meticillin-resistant Staphylococcus aureus isolates from skin and soft tissue infections to vancomycin, daptomycin, linezolid and teizolid. Brazilian J Infect Dis. 2017;21(5):493–9.

Mendes RE, Sader HS, Flamm RK, Farrell DJ, Jones RN. Telavancin in vitro activity against a collection of methillin-resistant Staphylococcus aureus isolates, including resistant subsets, from the United States. Antimicrob Agents Chemother. 2015;59(9):3181–4.

McCurdy SP, Jones RN, Mendes RE, Puttagunta S, Dunne MW. In vitro activity of dalbavancin against drug-resistant Staphylococcus aureus isolates from a global surveillance program. Antimicrob Agents Chemother. 2015;59(8):5007–9.

Mendes R, Sader H, Smart J, Castanheira M, Flamm R. Update of the activity of telavancin against a global collection of Staphylococcus aureus causing bacteremia, including endocarditis (2011–2014). Eur J Clin Microbiol Infect Dis. 2017;36(6):1013–7.

Okado JB, Avaca-Crusca JS, Oliveira AL, Dabul ANG, da Cunha Camargo ILB. Daptomycin and vancomycin heteroresistance revealed among CCSS-CMCmeri MRSA clone and in vitro evaluation of treatment alternatives. J Glob Antimicrob Resist. 2018;14:209–16.

Pfaffer MA, Sader HS, Rhomberg PR, Flamm RK, Mendes RE. In vitro activity of telavancin in comparison with other oral and intravenous agents against a collection of community-acquired methicillin-resistant Staphylococcus aureus (2014–2015) in the United States. Microb Drug Resist. 2019;25(6):938–43.

Prokocimer P, Bien P, DeAnda C, Pillar CM, Bartzl K. In vitro activity and microbiological efficacy of telavancin (TR-700) against Gram-positive clinical isolates from a phase 2 study of oral telavancin phosphate (TR-701) in patients with complicated skin and skin structure infections. Antimicrob Agents Chemother. 2012;56(9):4608–13.

Rokston KV, Wang W, Nestor L, Coyle E, Shelburne S, Prince RA. In vivo activity of telavancin compared with vancomycin and linezolid against gram-positive organisms isolated from cancer patients. J Antimicrob Chemother. 2014;69(7):1012–9.

Şanal L, Yılmaz N, Uludag H, Öztürk R, Sen S, Cesar S. Detection of synergistic antimicrobial activities of cefotaxime, telavancin, daptomycin, and vancomycin against methicillin-resistant staphylococcus aureus strains in intensive care units. Jindushapur J Microbiol. 2018. https://doi.org/10.5812/jmm.66445.

Schmidt-Malan SM, Quaintance KEG, Karau MJ, Patel R. In vitro activity of telavancin against staphylococci isolated from prosthetic joint infections. Diagn Microbiol Infect Dis. 2016;85(1):77–9.

Shams V, Walker ES, Levy F, Reynolds SA, Peterson SM, Sarubbi FA. Comparative activity of telavancin and other antimicrobial agents against methicillin-resistant Staphylococcus aureus isolates collected from 1991 to 2006. Chemotherapy. 2010;56(S):411–6.

Sweeney D, Shina Banger DL, Arhin FF, Bellery A, Moeck G, Pillar CM. Comparative in vitro activity of oritavancin and other agents against methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis. 2017;87(2):121–8.

Smart JI, Carey G, Stryjewski ME, Wang W, Barriere SL. Assessment of telavancin minimal inhibitory concentrations by revised broth microdilution method in phase 3 complicated skin and skin-structure infection clinical trial isolates. Diagn Microbiol Infect Dis. 2017;87(3):268–71.

Thomson KS, Goering RV. Activity of telavancin (TR-700) against well-characterized methicillin-resistant Staphylococcus aureus strains of diverse epidemiological origins. Antimicrob Agents Chemother. 2013;57(6):2892–5.

Campanile F, Borbone S, Perez M, Bongiorno D, Cafiso V, Bertucco T, Purrello S, Nicolosi D, Scuderi C, Stefani S. Heteroresistance to glycopeptides in Italian meticillin-resistant Staphylococcus aureus (MRSA) isolates. Int J Antimicrob Agents. 2010;36(5):415–9.

Bensaci M, Salm D. Surveillance of telavancin activity and resistance: in vitro susceptibility of gram-positive pathogens collected over 5 years from the United States and Europe. Diagn Microbiol Infect Dis. 2017;87(2):133–8.

Chen H, Yang Q, Zhang R, He W, Ma X, Zhang J, Xia F, Zhao F, Cao J, Liu Y. In vitro antimicrobial activity of the novel oxazolidinone teizolid and comparator agents against Staphylococcus aureus and linezolid-resistant Gram-positive pathogens: a multicentre study in China. Int J Antimicrob Agents. 2014;44(3):276–7.

Brown SD, Traczewski MM. Comparative in vitro antimicrobial activities of torezolid (TR-700), the active moiety of a new oxazolidinone, torezolid phosphate (TR-701), determination of tentative disk diffusion interpretive criteria, and quality control ranges. Antimicrob Agents Chemother. 2010;54(5):2063–9.

Yum JP, Choi SH, Yong D, Chong Y, Im WB, Rhee D-K, Lee K. Comparative in vitro activities of teizolid (DA-7157) against clinical isolates of aerobic and anaerobic bacteria in South Korea. Antimicrob Agents Chemother. 2010;54(12):5381–6.

Sahm DF, Deane J, Bien PA, Locke JB, Zull DE, Shaw KJ, Bartzl KF. Results of the surveillance of teizolid activity and resistance program: in vitro susceptibility of gram-positive pathogens collected in 2011 and 2012 from the United States and Europe. Diagn Microbiol Infect Dis. 2015;81(2):112–8.

Li S, Guo Y, Zhao C, Chen H, Hu B, Chu Y, Zhang Z, Hu Y, Liu Z, Du Y. In vivo activities of teizolid compared with other antibiotics against gram-positive pathogens associated with hospital-acquired pneumonia, skin and soft tissue infection and bloodstream infection collected from 26 hospitals in China. J Med Microbiol. 2016;65(10):1215–24.

Viñuela-Prieto JM, de Mendoza DL. Activity of linezolid and teizolid against clinical isolates of meticillin-resistant and methicillin- and linezolid-resistant Staphylococcus aureus: an in vitro comparison. Rev Esp Quimioter. 2016;29(5):255–8.

Pfaffer MA, Flamm RK, Jones RN, Farrell DJ, Mendes RE. Activities of teizolid and linezolid determined by the reference broth microdilution method against 3,032 gram-positive bacterial isolates collected in Asia-Pacific, Eastern Europe, and Latin American countries in 2014. Antimicrob Agents Chemother. 2016;60(9):5393–9.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.