An inequality for solutions of the
Navier-Stokes equations in \mathbb{R}^n

T. Hagstrom, 1 J. Lorenz, 2 J. P. Zingano 3 and P. R. Zingano 3

1 Department of Mathematics
Southern Methodist University
Dallas, TX 75275-0235, USA

2 Department of Mathematics and Statistics
University of New Mexico
Albuquerque, NM 87131-0001, USA

3 Departamento de Matemática Pura e Aplicada
Universidade Federal do Rio Grande do Sul
Porto Alegre, RS 91509-900, Brazil

Abstract
We obtain a new inequality that holds for general Leray solutions of the incompressible Navier-Stokes equations in \mathbb{R}^n ($n \leq 4$). This recovers important results previously obtained by other authors regarding the time decay of solution derivatives (of arbitrary order).

2010 AMS Subject Classification: 35B40 (primary), 35D30, 35Q30, 76D05

Keywords: time decay of solution derivatives, Leray global weak solutions, incompressible Navier-Stokes equations, Schonbek-Wiegner estimates

1. Introduction
In this note we derive a fundamental new inequality for general Leray solutions of the incompressible Navier-Stokes equations (in dimension $n \leq 4$), that is, global solutions $u(\cdot, t) \in L^\infty((0, \infty), L^2(\mathbb{R}^n)) \cap L^2((0, \infty), \mathcal{H}^1(\mathbb{R}^n)) \cap C_w([0, \infty), L^2(\mathbb{R}^n))$ of the fluid flow system

\begin{align*}
 u_t + u \cdot \nabla u + \nabla p &= \nu \Delta u, \quad (1.1a) \\
 \nabla \cdot u(\cdot, t) &= 0, \quad (1.1b) \\
 u(\cdot, 0) &= u_0 \in L^2(\mathbb{R}^n), \quad (1.1c)
\end{align*}

that satisfy the generalized energy inequality
\[\| u(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 2 \nu \int_s^t \| Du(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 d\tau \leq \| u(\cdot, s) \|_{L^2(\mathbb{R}^n)}^2, \quad \forall \ t \geq s \]

(1.2)

for a.e. \(s \geq 0 \), including \(s = 0 \). Such solutions were first constructed by Leray [9, 10] for \(n \leq 3 \), and later by other authors with different methods and more general space dimension, see e.g. [3, 4, 8, 16, 17, 18]. In (1.1) above, \(\nu > 0 \) is a given constant, \(u = u(x, t) \) and \(p = p(x, t) \) are the unknowns (the flow velocity and pressure, respectively), with condition (1.1c) satisfied in \(L^2(\mathbb{R}^n) \), i.e., \(\| u(\cdot, t) - u_0 \|_{L^2(\mathbb{R}^n)} \to 0 \) as \(t \to 0 \). In the present work, we always assume \(2 \leq n \leq 4 \).

A well known property of Leray solutions is that they are eventually very regular: there is always some \(t^* \geq 0 \) such that one has \(u \in C(\mathbb{R}^n \times (t^*, \infty)) \) and, moreover,

\[u(\cdot, t) \in C(((t^*, \infty), H^m(\mathbb{R}^n)), \quad \forall \ m \geq 0, \]

(1.3)

see e.g. [4, 7, 9, 10, 15, 17]. It is also well established that \(\lim_{t \to 0} \| u(\cdot, t) \|_{L^2(\mathbb{R}^n)} = 0 \) and, more generally,

\[\lim_{t \to 0} t^{m/2} \| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)} = 0 \]

(1.4)

for every \(m \geq 1 \), and for all Leray solutions to the system (1.1) [11, 12, 13, 15]. Furthermore, suitable stronger assumptions on the initial data have led to interesting finer estimates for the solutions and their derivatives, see e.g. [6, 12, 15, 19]. An important shortcut for many of these results (including (1.4) and the Schonbek-Wiegner estimates [15]) is provided by the following fundamental inequality recently discovered by the authors, which has eluded previous studies.\(^2\)

\[\limsup_{t \to \infty} t^{\alpha + m/2} \| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K(\alpha, m) \nu^{-m/2} \limsup_{t \to \infty} t^\alpha \| u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \]

(1.5)

for every \(m \geq 1 \), where

\[K(\alpha, m) = \min_{\delta > 0} \{ \delta^{-1/2} \prod_{j=0}^{m} (\alpha + j/2 + \delta)^{1/2} \}. \]

\(^1\) It is known that \(t^* = 0 \) if \(n = 2 \), \(t^* \leq \nu^{-5/2} \| u_0 \|^4_{L^2(\mathbb{R}^3)} \) if \(n = 3 \), \(t^* \leq \nu^{-3} \| u_0 \|^2_{L^2(\mathbb{R}^4)} \) if \(n = 4 \).

\(^2\) For the definition of \(\| u(\cdot, t) \|_{L^2(\mathbb{R}^n)}, \| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \) and other similar norms, see (1.6).

Main Theorem. Let \(n \leq 4 \), \(u_0 \in L^2_0(\mathbb{R}^n) \), and let \(u(\cdot, t) \) be any particular Leray solution to the Navier-Stokes equations (1.1). Then we have, for every \(\alpha \geq 0 \):

\[\limsup_{t \to \infty} t^{\alpha + m/2} \| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K(\alpha, m) \nu^{-m/2} \limsup_{t \to \infty} t^\alpha \| u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \]

(1.5)
In Section 2 we present our original derivation of (1.5), which was based in part on some previous ideas in [2 5 6 20]. Alternative proofs could also be developed (using e.g. Schonbek’s Fourier splitting method [13 14]), but we prefer to follow the very way in which (1.5) was first revealed.

Notation. As already shown, boldface letters are used for vector quantities, as in \(\mathbf{u}(x, t) = (u_1(x, t), ..., u_n(x, t)) \). Also, \(\nabla p = \nabla p(\cdot, t) \) denotes the spatial gradient of \(p(\cdot, t) \); \(D_j = \partial/\partial x_j \); \(\nabla \cdot \mathbf{u} = D_1 u_1 + ... + D_n u_n \) is the (spatial) divergence of \(\mathbf{u}(\cdot, t) \). \(L^2(\mathbb{R}^n) \) denotes the space of functions \(\mathbf{v} = (v_1, ..., v_n) \in L^2(\mathbb{R}^n) \equiv L^2(\mathbb{R}^n) \) with \(\nabla \cdot \mathbf{v} = 0 \) in the distributional sense; \(\mathcal{H}^1(\mathbb{R}^n) = \mathcal{H}^1(\mathbb{R}^n) \) with \(\mathcal{H}^1(\mathbb{R}^n) \) being the homogeneous \(L^2 \) Sobolev space of order 1; \(\mathcal{H}^m(\mathbb{R}^n) = \mathcal{H}^m(\mathbb{R}^n) \), where \(\mathcal{H}^m(\mathbb{R}^n) \) is the space of functions \(v \in L^2(\mathbb{R}^n) \) whose \(m \)-th order derivatives are also square integrable. \(C_w(I, L^2(\mathbb{R}^n)) \) denotes the set of mappings from a given interval \(I \subseteq \mathbb{R} \) to \(L^2(\mathbb{R}^n) \) that are \(L^2 \)-weakly continuous at each \(t \in I \). \(\| \cdot \|_{L^q(\mathbb{R}^n)} \), \(1 \leq q \leq \infty \), are the standard norms of the Lebesgue spaces \(L^q(\mathbb{R}^n) \), with the vector counterparts

\[
\| \mathbf{u}(\cdot, t) \|_{L^q(\mathbb{R}^n)} = \left\{ \sum_{i=1}^{n} \int_{\mathbb{R}^n} |u_i(x, t)|^q \, dx \right\}^{1/q} \tag{1.6a}
\]

\[
\| \mathbf{D}^m \mathbf{u}(\cdot, t) \|_{L^q(\mathbb{R}^n)} = \left\{ \sum_{i,j_1,...,j_m=1}^{n} \int_{\mathbb{R}^n} |D_{j_1} \cdots D_{j_m} u_i(x, t)|^q \, dx \right\}^{1/q} \tag{1.6b}
\]

if \(1 \leq q < \infty \); if \(q = \infty \), then \(\| \mathbf{u}(\cdot, t) \|_{L^\infty(\mathbb{R}^n)} = \max \{ \| u_i(\cdot, t) \|_{L^\infty(\mathbb{R}^n)} \; : \; 1 \leq i \leq n \} \), \(\| \mathbf{D} \mathbf{u}(\cdot, t) \|_{L^\infty(\mathbb{R}^n)} = \max \{ \| D_j u_i(\cdot, t) \|_{L^\infty(\mathbb{R}^n)} \; : \; 1 \leq i, j \leq n \} \), and so forth.

2. Proof of (1.5)

The derivation of (1.5) below takes advantage of the regularity property (1.3) and proceeds by induction in \(m \). It combines standard techniques (energy inequalities and related interpolation estimates) with well known properties of Leray solutions (namely, that \(\| \mathbf{u}(\cdot, t) \|_{L^2(\mathbb{R}^n)} \to 0 \) as \(t \to \infty \)), or that

\[
\lim_{t \to \infty} \| \mathbf{D} \mathbf{u}(\cdot, t) \|_{L^2(\mathbb{R}^n)} = 0, \tag{2.1}
\]

which are easy to obtain directly). As the proofs for \(n = 2, 3, 4 \) are entirely similar, we will present the details for one case only — say, \(n = 4 \). Let then \(\mathbf{u}(\cdot, t) \) be any given Leray solution to (1.1), in \(\mathbb{R}^4 \), such that we have, for some \(\alpha \geq 0 \),

\[
\limsup_{t \to \infty} t^\alpha \| \mathbf{u}(\cdot, t) \|_{L^2(\mathbb{R}^4)} =: \lambda_0(\alpha) < \infty. \tag{2.2}
\]
Let $\delta > 0$, $0 < \epsilon < 2$ be given, and let t_* be the solution’s regularity time as defined in (1.3). Recalling the basic estimate

$$\| u \|_{L^2(\mathbb{R}^4)} \leq \| D u \|_{L^2(\mathbb{R}^4)}, \tag{2.3}$$

from which we get

$$\| D^\ell u \|_{L^4(\mathbb{R}^4)} \leq \| D^m u \|_{L^4(\mathbb{R}^4)} \leq \| D^m u \|_{L^4(\mathbb{R}^4)}$$

for arbitrary $m \geq 0$, $0 \leq \ell \leq m$, we may proceed along the lines of [2, 20] as follows.

Taking the dot product of (1.1a) with $(t - t_0)^{2\alpha + \delta} u(x, t)$ and integrating the result on $\mathbb{R}^4 \times [t_0, t]$, for $t \geq t_0 > t_*$, we obtain, because of (1.1b),

$$(t - t_0)^{2\alpha + \delta} \| u(\cdot, t) \|_{L^2(\mathbb{R}^4)}^2 + 2\nu \int_{t_0}^{t} (\tau - t_0)^{2\alpha + \delta} \| D u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)}^2 \, d\tau$$

$$= (2\alpha + \delta) \int_{t_0}^{t} (\tau - t_0)^{2\alpha + \delta - 1} \| u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)}^2 \, d\tau$$

for $t \geq t_0 \geq t_*$. This promptly gives, by (2.2), that

$$\int_{t_0}^{t} (\tau - t_0)^{2\alpha + \delta} \| D u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)}^2 \, d\tau \leq \frac{1}{2\nu} \frac{2\alpha + \delta}{\delta} (\lambda_0(\alpha) + \epsilon)^2 (t - t_0)^{\delta} \tag{2.5}$$

for all $t \geq t_0$ (choosing $t_0 \geq t_*$ sufficiently large). Next, for $m = 1$, we similarly have

$$(t - t_0)^{2\alpha + 1}\| D u(\cdot, t) \|_{L^2(\mathbb{R}^4)}^2 + 2\nu \int_{t_0}^{t} (\tau - t_0)^{2\alpha + 1}\| D^2 u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)}^2 \, d\tau$$

$$\leq (2\alpha + 1 + \delta) \int_{t_0}^{t} (\tau - t_0)^{2\alpha + \delta}\| D u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)}^2 \, d\tau +$$

$$K_1 \int_{t_0}^{t} (\tau - t_0)^{2\alpha + 1 + \delta}\| u(\cdot, \tau) \|_{L^4(\mathbb{R}^4)}\| D u(\cdot, \tau) \|_{L^4(\mathbb{R}^4)}\| D^2 u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)} \, d\tau$$

(where $K_1 = 8 \sqrt{2}$), which gives, by (2.3):

$$(t - t_0)^{2\alpha + 1}\| D u(\cdot, t) \|_{L^2(\mathbb{R}^4)}^2 + 2\nu \int_{t_0}^{t} (\tau - t_0)^{2\alpha + 1}\| D^2 u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)}^2 \, d\tau$$

$$\leq (2\alpha + 1 + \delta) \int_{t_0}^{t} (\tau - t_0)^{2\alpha + \delta}\| D u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)}^2 \, d\tau +$$

$$K_1 \int_{t_0}^{t} (\tau - t_0)^{2\alpha + 1 + \delta}\| D u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)}\| D^2 u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)} \, d\tau$$

for $t \geq t_0$. By (2.1) and (2.5), we then get (increasing t_0 if necessary):
\[(t - t_0)^{2\alpha + 1} \| D u(\cdot, t) \|_{L^2(\mathbb{R}^4)}^2 \leq \frac{1}{2\nu} (2\alpha + 1 + \delta) \frac{2\alpha + \delta}{\delta} (\lambda_0(\alpha) + \epsilon)^2 \quad (2.6a)\]

and

\[
\int_{t_0}^t (\tau - t_0)^{2\alpha + 1 + \delta} \| D^2 u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)}^2 d\tau \leq \frac{(2\alpha + 1 + \delta)(2\alpha + \delta)}{\delta \cdot [(2 - \epsilon)\nu]^2} (\lambda_0(\alpha) + \epsilon)^2 (t - t_0)^\delta \quad (2.6b)
\]

for all \(t \geq t_0 \). Proceeding in this way \((m = 2, 3, \ldots) \) we obtain at the \(m \)th step

\[
(t - t_0)^{2\alpha + m + \delta} \| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^4)}^2 + 2 \nu \int_{t_0}^t (\tau - t_0)^{2\alpha + m + \delta} \| D^{m+1} u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)}^2 d\tau
\]

\[
\leq (2\alpha + m + \delta) \int_{t_0}^t (\tau - t_0)^{2\alpha + m - 1 + \delta} \| D^m u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)}^2 d\tau + K_m \int_{t_0}^t (\tau - t_0)^{2\alpha + m + \delta} \| D^{m+1} u(\cdot, \tau) \|_{L^4(\mathbb{R}^4)} \| D^{m+\ell} u(\cdot, \tau) \|_{L^4(\mathbb{R}^4)} d\tau \quad (2.7)
\]

for \(t \geq t_0 \), and some constant \(K_m > 0 \), where \([m/2]\) denotes the integer part of \(m/2 \).

This gives, by (2.4):

\[
(t - t_0)^{2\alpha + m + \delta} \| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^4)}^2 + 2 \nu \int_{t_0}^t (\tau - t_0)^{2\alpha + m + \delta} \| D^{m+1} u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)}^2 d\tau
\]

\[
\leq (2\alpha + m + \delta) \int_{t_0}^t (\tau - t_0)^{2\alpha + m - 1 + \delta} \| D^m u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)}^2 d\tau + \left(1 + \left[\frac{m}{2}\right]\right) \cdot K_m \int_{t_0}^t (\tau - t_0)^{2\alpha + m + \delta} \| D^{m+1} u(\cdot, \tau) \|_{L^4(\mathbb{R}^4)} \| D^{m+\ell} u(\cdot, \tau) \|_{L^4(\mathbb{R}^4)} d\tau.
\]

At this stage, we would already know from the previous steps that

\[
(t - t_0)^{2\alpha + k} \| D^k u(\cdot, t) \|_{L^2(\mathbb{R}^4)}^2 \leq \frac{1}{\delta \cdot [(2 - \epsilon)\nu]^k} \left\{ \prod_{j=0}^k (2\alpha + j + \delta) \right\} (\lambda_0(\alpha) + \epsilon)^2 \quad (2.8a)
\]

and

\[
\int_{t_0}^t (\tau - t_0)^{2\alpha + k + \delta} \| D^{k+1} u(\cdot, \tau) \|_{L^2(\mathbb{R}^4)}^2 d\tau \leq \frac{\delta^{-1}}{[(2 - \epsilon)\nu]^{k+1}} \left\{ \prod_{j=0}^k (2\alpha + j + \delta) \right\} \times (\lambda_0(\alpha) + \epsilon)^2 \cdot (t - t_0)^\delta \quad (2.8b)
\]

for all \(t \geq t_0 \), and each \(0 \leq k < m \). By (2.1) and (2.7), and increasing \(t_0 \) if necessary, we would then obtain (2.8) for \(k = m \) as well, completing the induction step.
The argument above established that, for each \(m \geq 1 \), we have
\[
(t - t_0)^{2\alpha + m} \| D^m \mathbf{u}(\cdot, t) \|_{L^2(\mathbb{R}^4)}^2 \leq \frac{1}{\delta \cdot (2 - \epsilon) \nu}^{m} \left\{ \prod_{j=0}^{m} (2\alpha + j + \delta) \right\} \left(\lambda_0(\alpha) + \epsilon \right)^2
\]
for all \(t \) sufficiently large. Since \(\delta > 0 \), \(0 < \epsilon < 2 \) are arbitrary, this gives the result.

Acknowledgements.
Work of the first author was supported by NSF Grant DMS-1418871, and that of the last author by CAPES Grant # 88881.067966/2014-01. Any opinions, findings, and conclusions or recommendations are those of the authors and do not necessarily reflect the views of the National Science Foundation or CAPES.

References

[1] J. Benameur and R. Selmi, Long time decay to the Leray solution of the two-dimensional Navier-Stokes equations, Bull. London Math. Soc. 44 (2012), 1001-1019.

[2] P. Braz e Silva, L. Schütz and P. R. Zingano, On some energy inequalities and supnorm estimates for advection-diffusion equations in \(\mathbb{R}^n \), Nonl. Anal. 93 (2013), 90-96.

[3] H. Fujita and T. Kato, On the Navier-Stokes initial value problem, Arch. Rat. Mech. Anal. 16 (1964), 269-315.

[4] T. Kato, Strong \(L^p \)-solutions of the Navier-Stokes equations in \(\mathbb{R}^m \), with applications to weak solutions, Math. Z. 187 (1984), 471-480.

[5] H.-O. Kreiss, T. Hagstrom, J. Lorenz and P. R. Zingano, Decay in time of the solutions of the Navier-Stokes equations for incompressible flows, unpublished note, University of New Mexico, Albuquerque, NM, 2002.

[6] H.-O. Kreiss, T. Hagstrom, J. Lorenz and P. R. Zingano, Decay in time of incompressible flows, J. Math. Fluid Mech. 5 (2003), 231-244.

[7] H.-O. Kreiss and J. Lorenz, Initial-boundary value problems and the Navier-Stokes equations, Academic Press, New York, 1989. (Reprinted in the series SIAM Classics in Applied Mathematics, Vol. 47, 2004.)

[8] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (2nd ed.), Gordon and Breach, New York, 1969.
[9] J. Leray, *Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique*, J. Math. Pures Appl. **12** (1933), 1-82.

[10] J. Leray, *Essai sur le mouvement d’un fluide visqueux emplissant l’espace*, Acta Math. **63** (1934), 193-248.

[11] K. Masuda, *Weak solutions of the Navier-Stokes equations*, Tôhoku Math. Journal **36** (1984), 623-646.

[12] M. Oliver and E. S. Titi, *Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in \(\mathbb{R}^n \)*, J. Funct. Anal. **172** (2000), 1-18.

[13] M. E. Schonbek, *\(L^2 \) decay for weak solutions of the Navier-Stokes equations*, Arch. Rat. Mech. Anal. **88** (1985), 209-222.

[14] M. E. Schonbek, *The Fourier splitting method*, in: P. Concus and K. Lancaster (Eds.), *Advances in Geometric Analysis and Continuum Mechanics*, International Press, Cambridge, 1995, pp. 269-274.

[15] M. E. Schonbek and M. Wiegner, *On the decay of higher-order norms of the solutions of Navier-Stokes equations*, Proc. Roy. Soc. Edinburgh **126A** (1996), 677-685.

[16] M. Shinbrot and S. Kaniel, *The initial value problem for the Navier-Stokes equations*, Arch. Rat. Mech. Anal. **21** (1966), 270-285.

[17] H. Sohr, *The Navier-Stokes Equations*, Birkhäuser, Basel, 2001.

[18] R. Temam, *Navier-Stokes Equations: theory and numerical analysis* (2nd ed.), AMS/Chelsea, Providence, 1984.

[19] M. Wiegner, *Decay results for weak solutions of the Navier-Stokes equations on \(\mathbb{R}^n \)*, J. London Math. Soc. **35** (1987), 303-313.

[20] P. R. Zingano, *Nonlinear \(L^2 \) stability under large disturbances*, J. Comp. Appl. Math. **103** (1999), 207-219.