Молекулярные детерминанты резистентности 
Salmonella enterica к антибиотикам

Павлова А.С.1, Бочарова Ю.А.2, Кулешов К.В.185, Подколзин А.Т.1, Чеботарь И.В.2

1ЦНИИ Эпидемиологии Роспотребнадзора, Москва, Россия;
2Российский национальный исследовательский медицинский университет имени Н.И. Пирогова, Москва, Россия

Аннотация
Нетифоидные штаммы Salmonella enterica представляют большую опасность для здоровья человека. Проблема сальмонеллёзов осложняется прогрессирующим распространением нечувствительности к антибиотикам среди клинических и сельскохозяйственных штаммов S. enterica. Настоящий обзор литературы обобщает современные сведения о механизмах устойчивости S. enterica к антибиотикам и иллюстрирует многообразие и сложность молекулярных систем, обеспечивающих антибиотикорезистентность (АР) у S. enterica. Описан спектр природной резистентности и тщательно охарактеризованы адаптивные (приобретённые) механизмы устойчивости к представителям основных классов антибиотиков, включая β-лактамы, фторхинолоны, аминогликозиды, тетрациклины, нитрофураны, сульфонамиды, фосфомицин, хлорамфеникол (левомицетин) и полимиксин (колистин). Перечислены генетические детерминанты резистентности, передающиеся горизонтальным путём. В обзоре проанализированы только те варианты молекулярных механизмов АР, клиническая значимость которых была доказана комплексом корректных генетических и биохимических исследований. Описаны общие характеристики устойчивости к антибиотикам у нетифоидных сальмонелл. У многих штаммов S. enterica наблюдаются сочетание различных механизмов АР и множественная резистентность. Поднят вопрос о неоднородности распространения резистентности среди различных групп/сертотипов внутри вида S. enterica. В частности, некоторые клональные комплексы с признаками резистентности оказываются более успешными патогенами человека и животных. Сальмонеллы, как и большинство других бактерий, демонстрируют неканонический вид устойчивости к антибиотикам — биоплёнковую резистентность, которая реализуется за счёт нескольких механизмов, главными из которых являются фильтрующая/сорбционная способность биоплёночного матрикса и трансформация биоплёночных клеток в дормантные и персистирующие формы.

Ключевые слова: обзор, Salmonella enterica, антибиотики, антибиотикорезистентность, гены

Источник финансирования. Работа выполнена в рамках государственного задания по теме НИР № AAAA-A21-121011990054-5 «Клинико-эпидемиологическая характеристика инфекционной патологии желудочно-кишечного тракта и ассоциированных состояний».

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Для цитирования: Павлова А.С., Бочарова Ю.А., Кулешов К.В., Подколзин А.Т., Чеботарь И.В. Молекулярные детерминанты резистентности Salmonella enterica к антибиотикам. Журнал микробиологии, эпидемиологии и иммунобиологии. 2021;98(6):721–730. DOI: https://doi.org/10.36233/0372-9311-140
Molecular determinants of antibiotic resistance in *Salmonella enterica* antibiotic resistance

Anastasia S. Pavlova¹, Yuliya A. Bocharova², Konstantin V. Kuleshov¹⁰, Aleksandr T. Podkolzin¹, Igor V. Chebotar²

¹Central Research Institute of Epidemiology, Moscow, Russia; ²Pirogov Russian National Research Medical University, Moscow, Russia

Abstract

Nontyphoid strains of *Salmonella enterica* pose a great threat to human health. The problem of salmonellosis is aggravated compounded by the progressive spread of antibiotic resistance among clinical and agricultural strains of *S. enterica*. This literature review summarizes the current knowledge of the mechanisms of antibiotic resistance in *S. enterica* and illustrates the diversity and complexity of molecular systems providing antibiotic resistance. The spectrum of natural resistance is described and the adaptive (acquired) mechanisms of resistance to representatives of the main classes of antibiotics, including fluoroquinolones, aminoglycosides, tetracyclines, nitrofurans, sulfonamides, fosfomycin and chloramphenicol, are thoroughly characterized. Particular emphasis is placed on the analysis of the molecular genetic mechanisms of *S. enterica* resistance to representatives of the most important classes of antibiotics — β-lactams, and to reserve antibiotics — polymyxins (colistin). Genetic determinants of resistance, transmitted by a horizontal path route are also described. The review analyzes only those variants of the molecular mechanisms of antibiotic resistance where the clinical significance has been proven by a set of correct genetic (sequencing) and biochemical (confirmation of the spectrum of hydrolyzed β-lactams) studies. The main ways of regulating the expression of antibiotic resistance are also described. Many *S. enterica* strains exhibit a combination of different mechanisms of antibiotic resistance and have a multiple resistance. The question was raised about the heterogeneity of the distribution of resistance among different groups/serotypes within the *S. enterica* species. In particular, some clonal complexes with signs of resistance are more successful pathogens in humans and animals. *Salmonella*, like most other bacteria, exhibit a non-canonical type of antibiotic resistance — biofilm resistance, which is realized through several mechanisms, the main of which are the filtering/sorption capacity of the biofilm matrix and the transformation of biofilm cells into dormant and persistent forms.

Despite the fact that the functional significance of the molecular assemblies that determine antibiotic resistance is the same for all enterobacteria, the specification of the mechanisms of resistance in *Salmonella* is a necessary link for the development of molecular diagnostic systems for assessing the sensitivity to antimicrobial drugs.

**Keywords:** overview, *Salmonella enterica*, antimicrobials, antibiotic resistance, genes

**Funding source.** The work was carried out within the framework of the state assignment on the topic of research work No. AAAA-A21-121011990054-5 "Clinical and epidemiological characteristics of infectious pathology of the gastrointestinal tract and associated conditions".

**Conflict of interest.** The authors declare no apparent or potential conflicts of interest related to the publication of this article.

**For citation:** Pavlova A.S., Bocharova Yu.A., Kuleshov K.V., Podkolzin A.T., Chebotar I.V. Molecular determinants of antibiotic resistance in *Salmonella enterica* antibiotic resistance. Journal of microbiology, epidemiology and immunobiology = Zhurnal mikrobiologii, èpidemiologii i immunobiologii. 2021;98(6):721–730. DOI: https://doi.org/10.36233/0372-9311-140

Введение

Говоря о распространении антибиотикорезистентности (АР) бактерий, следует акцентировать внимание на видах, представляющих наибольшую опасность для здоровья человека. К числу таких патогенов принадлежат нетифоидные штаммы *Salmonella enterica*. Их эпидемиологическая и клиническая актуальность определяется несколькими причинами. Во-первых, *Salmonella* занимает одну из лидирующих позиций среди всех пищевых бактериальных патогенов человека [1]. Только в США ежегодно сальмонеллёзом заболевают более 1 200 000 человек, у 23 000 из которых болезнь протекает в тяжёлой форме и требует госпитализации [2]. Заболеваемость гастроинтестинальным сальмонеллэзом в Европейском союзе в 2018 г. составила 20,1 на 100 тыс. населения [3]. Распространённость вирулентных клонов *S. enterica* сохраняется на
в высоком уровне, что подтверждается статистикой смертности и заболеваемости некишечными (инфекционными) формами сальмонеллёза, летальность при которых достигает до 21%, а у инфекциономпетрированных пациентов — до 30% [3]. Во-вторых, генетическая гетерогенность и выраженная способность к полигастальной адаптации сальмонелл пока не даёт реальных результатов управления сальмонеллёзной инфекцией при помощи иммунопрофилактики в естественных резервуарах. В-третьих, экологическая пластичность сальмонеллы позволяет ей адаптироваться к условиям массового применения антимикробных препаратов, не только в здравоохранении, но и в сельхозпроизводстве, что вызывает глобальное распространение АР-штаммов и усиливает риск их переноса в организм человека [4–6]. Именно устойчивость к антибиотикам форм S. enterica расцениваются экспертами Центра по контролю и профилактике заболеваний США в качестве наиболее серьёзной угрозы для современного здравоохранения3.

Первостепенная задача, которую ставит Высшему комитету по тестированию антимикробной резистентности, формулируется как «улучшение понимания вопросов устойчивости бактерий к антибиотикам форм сальмонеллёза, успешно используемых в сельхозпроизводстве, что вызывает глобальное распространение АР-штаммов и усиливает риск их переноса в организм человека [4–6]. Именно устойчивость к антибиотикам форм S. enterica расцениваются экспертами Центра по контролю и профилактике заболеваний США в качестве наиболее серьёзной угрозы для современного здравоохранения4.

Приобретённая (адаптивная) резистентность

Резистентность к β-лактамным антибиотикам

Мишенью для β-лактамных антибиотиков являются участвующие в синтезе пептидогликана — ферменты (транс- и карбоксипептидазы), которые названы пенициллинсвязывающими белками (penicillin-binding proteins, PBP). У грампозитивных бактерий они локализованы в периплазматической мембране, а у грамнегативных бактерий они локализованы в периплазме. Чтобы защищать β-лактамные антибиотики от воздействия β-лактамаз, которые деградируют β-лактамные антибиотики, бактерии используют два механизма. Первым из них являются ферменты (транс- и карбоксипептидазы), которые названы пенициллинсвязывающими белками: блокаду поступления извне и удаление их из цитоплазматического пространства, следовательно β-лактамам не проникает через цитоплазматическую мембрану. Поэтому бактерии не используют для защиты от β-лактамов эффлюкс-помпцы цитоплазматической мембраны, которые откачивают субстанции из цитоплазмы в периплазму. Эффлюкс-системы, обеспечивающие откачку антибиотика из периплазматического пространства, действуют очень эффективно и успешно используются бактериями для выживания при терапии β-лактамами. Чтобы снизить концентрацию β-лактамных антибиотиков в периплазме сальмонеллы, успешно используют два механизма: блокаду поступления извне и удаление их из периплазмы наружу. К подавлению поступления извне приводит поломка или снижение экспрессии поринов, через которые происходит транспорт β-лактамов. К таким поринам относятся OmpF, OmpD, Ail/OmpX-подобный порин [10–12]. Удаление из периплазмы β-лактамов у S. enterica реализуется посредством гиперактивного экспортера AcrAB-TolC [13, 14].

Однако самым сильным инструментом нейтрализации β-лактамов у S. enterica, как и у других грамнегативных бактерий, являются ферменты β-лактамазы [15–21]. Доказано, что сальмонелла может продуцировать β-лактамазы всех четырёх типов классификации Ambler [21]:

- класс A — KPC (карбапенемаза), TEM (β-лактамазы расширенного спектра или БЛРС), CTX-M (БЛРС), SHV (БЛРС);
• класс В — GIM (карбапенемаза), VIM (карбапенемаза), IMP (карбапенемаза), NDM (карбапенемаза), SPM (карбапенемаза);
• класс С — CMY (цефалоспориназа), FOX (БЛРС/слабая карбапенемаза);
• класс D — OXA (спектр гидролизуемых β-лактамов различен — от оксациллина до карбапенемов).

Выработка β-лактамаз у сальмонелл чаще но- сит постоянный (конститутивный) характер, реже она является индуцибельной.

Модификация мишени, защищающая S. enterica от β-лактамных антибиотиков, проявляется в виде мутаций пенициллинсвязывающих белков РВР3, РВР4 and РВР6 [22]. Для S. enterica отсутствуют корректно доказанные данные о возможности резистентности к β-лактамам за счёт экранирования мишеней.

**Резистентность к фторхинолонам**

Мишени фторхинолонов — ДНК-гираза, топоизомераза IV — находятся внутри клеток, поэтому для того, чтобы связаться с мишениями грамнегативных бактерий, фторхинолоны должны транспортироваться через две мембраны — цитоплазматическую и наружную. Если транслокация фторхинолонов через цитоплазматическую мембрану не вызывает затруднений, то проникновение через наружную мембрану, содержащую плотно расположенные липополисахариды (ЛПС), возможно только через специфические порины. Для того чтобы понизить эффективность фторхинолонов, бактерии используют относительно простые эффлюкс-помпы, локализованные исключительно в цитоплазматической мембране и обеспечивающие откачку субстратных эффлюкс-систем AcrAB-TolC, MdtK, MdfA (синоним — СmlA/Сmr), TetA, TetB, TetC, TetD, TetG и TetL [24, 30–32]. Гены этих эффлюкс-помп, локализованные исключительно в цитоплазматической мембране, могут передаваться горизонтально.

Для S. enterica доказано существование фторхинолон-резистентности, зависимой от дефекта поринов наружной мембраны ОмпF, через который происходит транспорт фторхинолонов [23]. Резистентность S. enterica к фторхинолонам за счёт эффлюкс-механизмов может возникнуть при гиперфункции хромосомно-кодируемых и плазмидных ДНК-гираз, тополизомераз IV [25]. Гены, которые кодируют экранирующие белки (гены семейства qnr, включая qnrA, qnrB, qnrS, qnrC, qnrD), являются плазмидными и передаются горизонтально.

**Резистентность к аминогликозидам**

Мишеню для аминогликозидов у S. enterica является 16S rРНК в составе 30S субъединицы рибосомы. Устойчивость к аминогликозидам за счёт эффлюкса реализуется у S. enterica при гиперфункции эффлюкс-системы AcrAB [24]. Ферментативная инактивация аминогликозидов у сальмонеллы осуществляется аминогликозид-аминогликозидазой (AAC(6’)-Iб) и аминогликозид-фосфотрансферазой [26, 27]. Передача генов указанных ферментов осуществляется путём плазмидного перенося.

Модификация мишеней для аминогликозидов (16S rРНК) может происходить у сальмонелл через два противоположно направленных механизмов: гиперметилирование и полную блокаду метилирования 16S rРНК в позиции G527 16S rРНК. Гиперметилирование и полную блокаду метилирования 16S rРНК у сальмонелл обеспечивает остаточная способность к активации мишеней, которая реализуется при помощи трансфераз 16S rРНК, переносящих 16S rРНК в составе 30S субъединицы рибосомы, тигециклин имеет дополнительную мишень — 23S rРНК. У стойчивость к тетрациклинам за счёт механизмов защиты мишени, которые происходят транспорт, тетрациклины присутствуют в виде мутаций пенициллинсвязывающих белков (гены семейства tetX, переносящие под действием флавинзависимой моноксидазы TetM, катализирующей GTP-зависимую дегидроксигидратацию GTP, синтезируемых ферментами TetX, которая приводит к их деструкции через гидроксилирование/окисление [32]. Гены этого фермента (tetX) переносятся плазмидами и могут передаваться горизонтальным путём.

У S. enterica может присутствовать механизм защиты мишеней, который реализуется при помощи протеина TetM, который катализирует GTP-зависимую дегидроксигидратацию GTP, синтезируемых ферментами TetX, которая приводит к их деструкции через гидроксилирование/окисление [32].
Гены tetM также являются плазмидными, что обесчевает возможность их горизонтального переноса. Для S. enterica отсутствуют корректно доказанные данные о молекулярных механизмах устойчивости к тетрациклину за счёт модификации мишени и нарушения пориновой проницаемости.

**Резистентность к хлорамфениколу (левомицетину)**

Мишенью для хлорамфеникола является 23S рРНК в составе 50S субъединицы рибосомы. Достаточное для проявления резистентности снижение концентрации хлорамфеникола в цитоплазме S. enterica может возникать вследствие поломки порина OmpF, через который хлорамфеникол поступает в клетку, а также за счёт гиперактивации мультисубстратной эффлюкс-системы AcrAB-ToIC и эффлюкс-помп цитоплазматической мембраны Cml, FloR [24, 33]. Гены эффлюкс-помп cml, floR являются плазмидными и передаются горизонтально. Инактивация хлорамфеникола сальмонеллами ферментируется CHL-ацилтрансферазами, гены которых (cat-гены) тоже переносятся плазмидами [34]. Возможность модификации мишени мицелам хлорамфеникола у S. enterica вследствие мутации показана только в экспериментах in vitro. Виду консервативности сайта связывания хлорамфеникола резистентность к хлорамфениколу, связанная с модификацией мишени, у диких и клинических штаммов S. enterica практически не встречается. Для S. enterica отсутствуют корректно доказанные данные о возникновении резистентности к хлорамфениколу путём защиты мишени.

**Резистентность к фосфомицину**

Мишеню для фосфомицина служит фермент UDP-N-ацитилглюкозамин-енолпируват трансфераза (синимном — энзим MurA), участвующий в синтезе пептидогликана. Фосфомицин поступает в клетку, а также за счёт гиперактивации мультисубстратной эффлюкс-системы AcrAB-ToIC и эффлюкс-помп цитоплазматической мембраны Cml, FloR [24, 33]. Гены эффлюкс-помп cml, floR являются плазмидными и передаются горизонтально. Инактивация хлорамфеникола сальмонеллами ферментируется CHL-ацилтрансферазами, гены которых (cat-гены) тоже переносятся плазмидами [34]. Возможность модификации мишени мицелам хлорамфеникола у S. enterica вследствие мутации показана только в экспериментах in vitro. Виду консервативности сайта связывания хлорамфеникола резистентность к хлорамфениколу, связанная с модификацией мишени, у диких и клинических штаммов S. enterica практически не встречается. Для S. enterica отсутствуют корректно доказанные данные о возникновении резистентности к хлорамфениколу путём защиты мишени.

**Резистентность к колистину (полимиксину)**

Резистентность к колистину (полимиксинам) — это заслуживающая внимания проблема, требующая дальнейшего изучения. Важнейший механизм резистентности к этой группе антимикробных препаратов у S. enterica связан с приобретением плазмидных генов, кодирующих активный транспорт колистина (инфлюкс) через наружную мембрану. Показано, что около 40% S. enterica не реагируют на колистин, а 15% S. enterica не реагируют на колистин даже при высоких концентрациях. Важнейший механизм резистентности к колистину — это мутация, ведущая к инактивации колистина.

**Резистентность к сульфонамидам, триметоприму**

Сульфонамиды воздействуют на дигидроптерат-синтетазу, триметоприм — на дигидроптерат-редуктазу. Повреждение мишени вызывает нарушение синтеза тетрагидрофолиевой кислоты, являющейся предшественником тимидина, что приводит к подавлению синтеза нуклеиновых кислот и блокаде метаболизма бактериальной клетки.

**Резистентность к нитрофуранам**

Нитрофураны воздействуют на генетически инактивированный фермент-мишень — липополисахарид (ЛПС). Колистин-резистентность у S. enterica определяется двумя основными механизмами: первый — применение нитрофуранов в дозах, безопасных для самих бактерий, что приводит к инактивации нитрофуранов."
микологической точки зрения: его детерминирует плаэмид-переносимый ген mcr-1, который кодирует фермент фосфатидилэтаноламинтрансферазу, нарушающую нормальный синтез ЛПС [41].

В 2012 г. Y. Agerso и соавт. предположили, что снижение чувствительности к колистину связано с определенной структурой плаэмид [42]. Дальнейшие исследования в этой области показали, что устойчивость к колистину наблюдается у S. enterica serovar Typhimurium, принадлежащим к одной O-группе (O:1,9,12) [42]. Дальнейшие исследования в этой области показали, что устойчивость к колистину наблюдается у S. enterica serovar Typhimurium, принадлежащим к одной O-группе (O:1,9,12) [42].

Однако существуют другие механизмы, которые позволяют сделать вывод о том, что в целом устойчивость сальмонелл реализуется согласно закономерностям, которые не являются уникальными. Функциональная значимость молекулярных ансамблей, основанных на конъюгационных переносах, является важной темой для дальнейших исследований. Возможно, что появление нового гена mcr-1 в коллекции сальмонелл может повлиять на эпидемиологическую ситуацию и потребуется дополнительное изучение данного гена в разных клинических и эпидемиологических условиях.

**Заключение**

Анализ информации о механизмах AP S. enterica позволяет сделать вывод о том, что в целом устойчивость сальмонелл реализуется согласно закономерностям, которые не являются уникальными. Функциональная значимость молекулярных ансамблей, определяющих резистентность, однотипна для всех энтеробактерий. Однако это не уменьшает важности изучения структурных особенностей молекулярно-генетических детерминант резистентности у S. enterica, знание которых необходимо для решения эпидемиологических задач, разработки противомикробных препаратов и управления пандемиями.
дигностических инструментов, а также для про- гнозирования эволюции резистентности сальмо- нелл в локальных и глобальных масштабах. Остро- та проблемы особенно ярко проявляется в контек- сте трансформации сальмонелл в резистентный «супермикроб» как следствия неконтролируемого применения антибиотиков в сельскохозяйственном производстве [6, 52]. Надеемся, что фактическая применимость антибиотиков в сельском хозяйстве как следствия неконтролируемого изменения условий продуктивности сальмонеллы в резистентные идиомикробиологических исследований и их ассоциации с важными микробиологическими процессами, включая иммунореактивность био- плеоходных бактерий. Клиническая микробиология и анти- микробная химиотерапия. Смоленск: МакМаx; 2007.

12. Чебацкая И.В., Маминский А.Н., Кончакова Е.Д., Лазаре- ва А.В., Чистякова В.П. Антибиотикорезистентность био- плеоходных бактерий. Клиническая микробиология и анти- микробная химиотерапия. 2012; 14(1): 51–8.

13. Чебоаров И.В., Бочарова Ю.А., Гурьев А.С., Маминский Н.А. Стратегии выживания бактерий в условиях контакта с анти- биотиками. Клиническая лабораторная диагностика. 2020; 65(2): 116–21. https://doi.org/10.18821/0890-2084-2020-65-2-116-21.

14. Uddin M.J., Ahn J. Characterization of β-lactamase-and efflux pump-mediated multiple antibiotic resistance in Salmonella typhimurium. Food Sci. Biotechnol. 2018; 27(3): 921–8. https://doi.org/10.1007/s10068-018-0317-1

15. Fernández J., Guerra B., Rodicio M.R. Resistance to carba- penems in non-typoidal Salmonella enterica serovars from hu- mans, animals and food. Vet. Rec. 2018; 183(2): 42.

16. Hu W.S., Lin J.F., Lin Y.H., Chang H.Y. Outer membrane protein STM3031 (Ail/OmpX-like protein) plays a key role in the cell-fate resistance of Salmonella enterica serovar Typhimurium. Agents Chemother. 2009; 53(8): 3248–55. https://doi.org/10.1128/AAC.00079-09

17. Nkaido H., Basina M., Nguyen V.Y., Rosenberg E.Y. Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those β-lactam antibiotics containing lipophilic side chains. J. Bacteriol. 1998; 180(17): 4686–92. https://doi.org/10.1128/jb.180.17.4686-4692.1998

18. Saw H.T.H., Webber M.A., Mushtaq S., Woodford N., Pid- dock L.J.V. Inactivation or inhibition of AcrAB-ToLC increases resistance of carbapenemase-producing Enterobacteriaceae to carbapenems. J. Antimicrob. Chemother. 2016; 71(6): 1510–9. https://doi.org/10.1093/jac/dkw028

19. Tate H., Holster J.P., Hsu C.H., Chen J., Hoffmann M., Li, C., et al. Comparative analysis of extended-spectrum-β-lactamase CTX-M-65-producing Salmonella enterica serovar Infantis isolates from humans, food animals, and retail chickens in the United States. Antimicrob. Agents Chemother. 2017; 61(7): e00488-17. http://doi.org/10.1128/AAC.00488-17

20. Miragou V., Tzouvelekis L.S., Rossiter S., Tzelepi E., Angu- lo F.J., Whichard J.M. Imipenem resistance in a Salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob. Agents Chemother. 2003; 47(4): 1297–300. http://doi.org/10.1128/AAC.47.4.1297-1300.2003

21. Carroll L.M., Wiedmann M., den Bakker H., Siler J., Warchock- si S., Kent D., et al. Whole-genome sequencing of drug-resist- ant Salmonella enterica isolates from dairy cattle and humans in New York and Washington states reveals source and geographic associations. Appl. Environ. Microbiol. 2017; 83(12): e00140-17. https://doi.org/10.1128/AEM.00140-17

22. Yates C., Amyes S. Extended-spectrum β-lactamases in non-typoidal Salmonella spp. isolated in the UK are now a reality: why the late arrival? J. Antimicrob. Chemother. 2005; 56(2): 262–4. https://doi.org/10.1093/jac/dki237

23. Usha G., Chunderika M., Prashini M., Willem S.A., Yusuf E.S. Characterization of extended-spectrum β-lactamases in Salmonella spp. at a tertiary hospital in Durban, South Africa. Diagn. Microbiol. Infect. Dis. 2008; 62(1): 86–91. http://doi.org/10.1016/j.diagmicrobio.2008.04.014

24. Fischer J., Schmoger S., Jahn S., Helmuth R., Guerra B. NDM-1 carbapenemase-producing Salmonella enterica subsp. enter- ica serovar Corvallis isolated from a wild bird in Germany. J. Antimicrob. Chemother. 2013; 68(12): 2954–6. https://doi.org/10.1093/jac/dkt260

25. Ambler R.P. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. 1980; 299: 321–31. https://doi.org/10.1098/rstb.1980.0049

26. Sun S., Selmer M., Andersson D.I. Resistance to β-lactam anti- biotics conferred by point mutations in penicillin-binding pro- teins PBP3, PBP4 and PBP6 in Salmonella enterica. PLoS One 2014; 9(5): e97202. https://doi.org/10.1371/journal.pone.0097202

27. Vidovic S., An R., Rendahl A. Molecular and physiological characterization of fluoroquinolone-highly resistant Salmonella enteritidis strains. Front. Microbiol. 2019; 10: 729. https://doi.org/10.3389/fmicb.2019.00729

28. Andersson J., He G.X., Kakarla P., Ranjana K.C.R., Kumar S., Lakra W.S., et al. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int. J. Environ. Res. Public Health. 2015; 12(2): 1487–547. https://doi.org/10.3390/ijerph120201487

29. Cuypers W.L., Jacob J., Wong V., Klemm E.J., Deborggraeve S., Puyvelde S.V. Fluoroquinolone resistance in Salmonella: insights by whole-genome sequencing. Microb. Genom. 2018; 4(7): e001995.https://doi.org/10.1099/mgen.0.000195

30. Magalhães M.L., Vetting M.W., Gao F., Freiburger L., Au- clair K., Blanchard J.S. Kinetic and structural analysis of bi- substrate inhibition of the Salmonella enterica aminoglycoside 6′-N-acetyltransferase. Biochemistry. 2008; 47(2): 579–84. https://doi.org/10.1021/bi701957c

31. Woegerbauer M., Zeininger J., Springer B., Hufnagl P., In- dra A., Korschineck I., et al. Prevalence of the aminoglyco- side phosphotransferase genes aph (3′)-IIIa and aph (3′)-Ia in
Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica and Staphylococcus aureus isolates in Austria. J. Med. Microbiol. 2014; 63(2): 210–7.
https://doi.org/10.1099/jmm.0.05789-0

28. Wachino J.I., Arakawa Y. Exogenously acquired 16S RNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist. Update. 2012; 15(3): 133–48. https://doi.org/10.1016/j.drup.2012.05.001

29. Mikheil D.M., Shippy D.C., Eakley N.M., Okwumabua O.E., Fadl A.A. Deletion of gene encoding methyltransferase (gidB) confers high-level antimicrobial resistance in Salmonella. J. Antimicrob. Chemother. 2012; 65(4): 185–92. https://doi.org/10.1093/jac/dks127

30. Roberts M.C. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 1996; 19(1): 1–24. https://doi.org/10.1111/j.1574-6976.1996.tb00251.x

31. Nishino K., Latiﬁ T., Groisman E.A. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 2006; 59(1): 126–41. https://doi.org/10.1111/j.1365-2958.2005.04940.x

32. Chopra I., Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001; 65(2): 232–60. https://doi.org/10.1128/MMBR.65.2.232-260.2001

33. Toro C.S., Lobos S.R., Calderon I., Rodriguez M., Mora G.C. Clinical isolate of a poreless Salmonella typhi resistant to high levels of chloramphenicol. Antimicrob. Agents Chemother. 1999; 34(9): 1715–9. https://doi.org/10.1128/AAC.34.9.1715-0

34. Schwarz S., Kehrenberg C., Doublet B., Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 2004; 28(5): 519–42. https://doi.org/10.1016/j.femsre.2004.04.001

35. Khatoon A., Malik H.M.T., Aurongzeb M., Raza S.A., Karim A. First detection of a fosfomycin resistance gene, fosA7, in Salmonella enterica serovar Paratyphi A strain using a shotgun sequencing approach. J. Glob. Antimicrob. Resist. 2019; 17(1): 7–15. https://doi.org/10.3201/eid1701.p11101

36. Island M.D., Wei B.Y., Kadner R.J. Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 1992; 174(9): 2754–62. https://doi.org/10.1128/jb.174.9.2754-2762.1992

37. Rehman M.A., Yin X., Persaud-Lachhman M.G., Diarra M.S. Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J. Bacteriol. 1991; 173: 443–8. https://doi.org/10.1128/jb.173.2.443-448.1991

38. Chen C.Y., Nace G.W., Solow B., Fratamico P. Complete nucleotide sequences of 84.5-and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. Plasmid. 2007; 57: 29–43. https://doi.org/10.1016/j.plasmid.2006.05.005

39. Michael G.B., Freitag C., Wendlandt S., Christopher Eidam C., Fellner T., Lopes G.V. Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiol. 2015; 10(3): 427–43. https://doi.org/10.2217/fmb.14.93

40. Scallan E., Hoekstra R.M., Angulo F.J., Tauxe R.V., Widdowson M.A., Roy S.L., et al. Foodborne illness acquired in the United States - major pathogens. Emerg. Infect. Dis. 2011; 17(1): 7–15. https://doi.org/10.3201/eid1701.p11101

41. The European Union one health 2018 zoonoses report. EFSA J. 2019; 17(12): e05926. https://doi.org/10.2903/j.efsa.2019.5926

42. Dhanoo A., Fatt Q.K. Non-typhoidal Salmonella bacteriaeemia: epidemiology, clinical characteristics and its association with severe immunosuppression. Ann. Clin. Microbiol. Antimicrob. 2009; 8: 15. https://doi.org/10.1186/1476-0711-8-15

43. Van Boeckel T.P., Broker C., Gilbert M., Grenfell B.T., Levin S.A., Robinson T.P., et al. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA. 2015; 112(18): 5649–54. https://doi.org/10.1073/pnas.1503141112

44. Economou V., Gousia P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug. Resist. 2015; 8: 49–61. http://doi.org/10.2147/IDR.S5778
Extended-spectrum β-lactamases in non-typhoidal Salmonella spp. isolated in the United States.

Saw H.T.H., Webber M.A., Mushtaq S., Woodford N., Piddock L.J.V. Inactivation or inhibition of AcrAB-TolC increases resistance of carbapenemase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2009; 53(8): 3248–55.

12. Hu W.S., Lin J.F., Lin Y.H., Chang H.Y. Outer membrane protein STM3031 (AmpX-like protein) plays a key role in the ceftriaxone resistance of Salmonella enterica serovar Typhimurium. Agents Chemother. 2009; 53(8): 3248–55. https://doi.org/10.1128/AAC.00079-09

13. Nikaido H., Basina M., Nguyen V.Y., Rosenberg E.Y. Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those β-Lactam antibiotics containing lipophilic side chains. J. Bacteriol. 1998; 180(17): 4696–92. https://doi.org/10.1128/JB.180.17.4696-4692.1998

14. Saw H.T.H., Webber M.A., Mushtaq S., Woodford N., Piddock L.J.V. Inactivation or inhibition of AcrAB-ToIC increases resistance of carbapenemase-producing Enterobacteriaceae to carbapenems. J. Antimicrob. Chemother. 2016; 71(6): 1510–9. https://doi.org/10.1093/jac/dkw028

15. Tate H., Folster J.P., Hsu C.H., Chen J., Hoffmann M., Li C., et al. Comparative analysis of extended-spectrum-β-lactamase CTX-M-65-producing Salmonella enterica serovar Infantis isolates from humans, food animals, and retail chickens in the United States. Antimicrob. Agents Chemother. 2017; 61(7): e000195. https://doi.org/10.1128/AAC.000195-17

16. Miriagou V., Tzouvelekis L.S., Belousov Yu.V., Kozlov S.N. Characterization of extended-spectrum β-lactamases in non-typhoidal Salmonella spp. isolated in the United States. Antimicrob. Agents Chemother. 2003; 47(4): 1297–300. https://doi.org/10.1128/AAC.47.4.1297-1300.2003

17. Carroll L.M., Wiedmann M., den Bakker H., Siler J., Warchocki S., Kent D., et al. Whole-genome sequencing of drug-resistant Salmonella enterica isolates from dairy cattle and humans in New York and Washington states reveals source and geographic associations. Appl. Environ. Microbiol. 2017; 83(12): e00488-17. http://doi.org/10.1128/AEM.00488-17

18. Yates C., Amyes S. Extended-spectrum β-lactamases in non-typhoidal Salmonella spp. isolated in the UK are now a reality: why the late arrival? J. Antimicrob Chemother. 2005; 56(2): 262–4. https://doi.org/10.1093/jac/dki237

19. Usha G., Chunderika M., Prashini M., Willem S.A., Yusuf E.S. Characterization of extended-spectrum β-lactamases in Salmonella spp. at a tertiary hospital in Durban, South Africa. Diagn. Microbiol. Infect. Dis. 2008; 62(1): 86–91. http://doi.org/10.1016/j.diagmicrobio.2008.04.014

20. Fischer J., Schmoger S., Jahn S., Helmuth R., Guerra B. NDM-1 carbapenemase-producing Salmonella enterica subsp. enterica serovar Carvallis isolated from a wild bird in Germany. J. Antimicrob. Chemother. 2013; 68(12): 2954–6. https://doi.org/10.1093/jac/dkt260

21. Ambler R.P. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. 1980; 299: 321–31. https://doi.org/10.1098/rstb.1980.0049

22. Sun S., Selmer M., Andersson D.I. Resistance to β-lactam antibiotics conferred by point mutations in penicillin-binding proteins PBP3, PBP4 and PBP6 in Salmonella enterica. PLoS One. 2014; 9(5): e97202. https://doi.org/10.1371/journal.pone.0097202

23. Vidovic S., An R., Rendahl A. Molecular and physiological characterization of fluoroquinolone-highly resistant Salmonella enteritidis strains. Front. Microbiol. 2019; 10: 729. https://doi.org/10.3389/fmicb.2019.00729

24. Andersen J., He G.X., Kakarla P., Ranjana K.C.R., Kumar S., Lakra W.S., et al. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int. J. Environ. Res. Public Health. 2015; 12(4): 1487–547. https://doi.org/10.3390/ijerph12041487

25. Cuypers W.L., Jacob J., Wong V., Klemm E.J., Deborggrave S., Puyvelde S.V. Fluoroquinolone resistance in Salmonella: insights by whole-genome sequencing. Microb. Genom. 2018; 4(7): e000195. https://doi.org/10.1099/mgen.0.000195

26. Magalhães M.L., Netting M.W., Gao F., Freiburger L., Auclair K., Blanchard J.S. Kinetic and structural analysis of bi-substrate inhibition of the Salmonella enterica aminoglycoside 6′-N-acetyltransferase. Biochemistry. 2008; 47(2): 579–84. https://doi.org/10.1021/bi701957c

27. Woegerbauer M., Zeinzinger J., Springer B., Hufnagl P., Indra A., Korschinek I., et al. Prevalence of the aminoglycoside phosphotransferase genes aph (3′)-Ila and aph (3′)-IIa in Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica and Staphylococcus aureus isolates in Austria. J. Med. Microbiol. 2014; 63(2): 210–7. https://doi.org/10.1099/jmm.0.065789-0

28. Wachino J.I., Arakawa Y. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist. Updat. 2012; 15(3): 133–48. https://doi.org/10.1016/j.drup.2012.05.001

29. Mikhail D.M., Shippy D.C., Eckley N.M., Okwumabua O.E., Fadl A.A. Deletion of gene encoding methyltransferase (gidB) confers high-level antimicrobial resistance in Salmonella. J. Antimicrob. Chemother. 2012; 65(4): 185–92. https://doi.org/10.1093/acin/aet212.5

30. Roberts M.C. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 1996; 19(1): 1–24. https://doi.org/10.1111/j.1574-6976.1996.tb00251.x

31. Nishino K., Latifi T., Groisman E.A. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 2006; 59(1): 126–41. https://doi.org/10.1111/j.1365-2958.2005.04940.x

32. Chopra I., Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001; 65(2): 232–60. https://doi.org/10.1128/MMBR.65.2.232-260.2001

33. Toro C.S., Lobos S.R., Calderon I., Rodriguez M., Mora G.C. Clinical isolate of a porinless Salmonella typhimurium resistant to high levels of chloramphenicol. Antimicrob. Agents Chemother. 1990; 34(9): 1715–9. https://doi.org/10.1128/AAC.34.9.1715

34. Schwarz S., Kehrenberg C., Doublet B., Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 2004; 28(5): 519–42. https://doi.org/10.1016/j.femsre.2004.04.001

35. Khatoon A., Malik H.M.T., Aurongzeb M., Raza S.A., Karim A. Draft genome of a macrolide resistant XDR Salmonella enterica serovar Paratyphi A strain using a shotgun sequencing approach. J. Glob. Antimicrob. Resist. 2019; 19: 129–31. https://doi.org/10.1016/j.jgarr.2019.09.001
36. Island M.D., Wei B.Y., Kadner R.J. Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 1992; 174(9): 2754–62. https://doi.org/10.1128/ jb.174.9.2754-2762.1992

37. Rehman M.A., Yin X., Persaud-Lachmann M.G., Diarra M.S. First detection of a fosfomycin resistance gene, fosA7, in Salmonella enterica serovar Heidelberg isolated from broiler chickens. Antimicrob. Agents Chemother. 2017; 61(8): e00410-17. https://doi.org/10.1128/AAC.00410-17

38. Garcia V., Montero I., Bances M., Rodicio R., Rehman M.A., Yin X., Persaud-Lachmann M.G., Diarra M.S. In vivo and in vitro genetic and phenotypic utility of the fosA7 gene in Salmonella enterica serovar Heidelberg U302 strain G8430. Plasmid. 2007; 57: 29–43. https://doi.org/10.1016/j.plasmid.2006.05.005

39. Ricci V., Zhang D., Teale C., Piddock L.J.V. The O-antigen epitope governs susceptibility to Colistin in Salmonella enterica. mBio. 2020; 11(1): e02831-19. https://doi.org/10.1128/mBio.02831-19

40. Sun S., Negrea A., Rhen M., Andersson D.I. Genetic analysis of nontyphoidal Salmonella enterica serovar Typhimurium: pandemic “DT 104” and pUO-SVBR2. Microb. Drug Resist. 2017; 23(4): 405–12. https://doi.org/10.1016/j.mdr.2016.02.027

41. Lima T., Domingues S., Da Silva G.J. Plasmid-mediated colistin resistance in Salmonella enterica: a review. Microorganisms. 2019; 7(2): 55. https://doi.org/10.3390/microorganisms7020055

42. Agero Y., Torpdahl M., Zachariasen C., Seyfarth A., Hammerum A.M., Nielsen E.M. Tentative colistin epidemiological cut-off value for Salmonella spp. Foodborne Pathog. Dis. 2012; 9(4): 367–9. https://doi.org/10.1089/fpd.2011.1015

43. Island M.D., Wei B.Y., Kadner R.J. Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 1992; 174(9): 2754–62. https://doi.org/10.1128/ jb.174.9.2754-2762.1992

44. Ahmer B.M.M. Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol. Microbiol. 2004; 52(4): 933–45. https://doi.org/10.1111/j.1365-2958.2004.04054.x

45. McDermott P.F., Zhao S., Tate H. Antimicrobial resistance in nontyphoidal Salmonella. Microbial. Spectrum. 2018; 6(4): ARBA-0014-2017. https://doi.org/10.1128/microbiolspec.ARBA-0014-2017

46. Le Hello S., Hendriksen R.S., Doubelt B., Fisher I., Nielsen E., Whichard J.M., et al. International spread of an epidemic population of Salmonella enterica serotype Kentucky ST198 resistant to ciprofloxacin. J. Infect. Dis. 2011; 204(5): 675–84. https://doi.org/10.1093/infdis/jir049

47. Cadenas M., Kelman T., Marco M.L., Piskesy M. Understanding antimicrobial resistance (AMR) profiles of Salmonella biofilm and Planktonic bacteria challenged with disinfectants commonly used during poultry processing. Foods. 2019; 8(7): 275. https://doi.org/10.3390/foods8070275

48. Chebotar’ I.V., Mayanskiy A.N., Mayanskiy N.A. Matrix of microbial biofilms. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 2016; 18(1): 9–19. (in Russian)

49. von Wintersdorff C.J.H., Penders J., van Nierkerk J.M., Mills N.D., Majumder S., van Alphen L.B., et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 2016; 7: 173. https://doi.org/10.3389/fmicb.2016.00173

50. Bertram J., Strätz M., Dürr P. Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J. Bacteriol. 1991; 173: 443–8. https://doi.org/10.1128/jb.173.2.443-448.1991

51. Chen C.Y., Nace G.W., Solow B., Fratamico P. Complete nucleotide sequences of 84.5-and 3.2-kb plasmids in the multidrug-resistant Salmonella enterica serovar Typhimurium U302 strain G8430. Plasmid. 2007; 57: 29–43. https://doi.org/10.1016/j.plasmid.2006.05.005

52. Michael G.B., Freitag C., Wendlandt S., Christopher Eidam C., Feßler A.T., Lopes G.V., et al. Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiol. 2015; 10(3): 427–43. https://doi.org/10.2217/fmb.14.93

Информация об авторах
Павлова Анастасия Сергеевна — м.н.с. лаб. молекулярной диагностики и эпидемиологии кишечных инфекций ЦНИИ Эпидемиологии, Москва, Россия, https://orcid.org/0000-0003-4619-9337
Бочарова Юлия Александровна — Cand. Sci. (Biol.), senior researcher, Laboratory of molecular microbiology, Pirogov Russian National Research Medical University, Moscow, Russia, https://orcid.org/0000-0002-5238-7900

Information about the authors
Anastasia S. Pavlova — junior researcher, Laboratory of molecular diagnostics and epidemiology of intestinal infections, Central Research Institute of Epidemiology, Moscow, Russia, https://orcid.org/0000-0003-4619-9337

The article was submitted 03.03.2021; accepted for publication 11.06.2021; published 20.07.2021