Effect of Oxide Thickness Variation in Sub-micron NMOS Transistor

N Mohd Radzi¹ and R Sanudin¹
¹Nano Simulation Research Group (NanoSIM), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA

Corresponding author: rahmats@uthm.edu.my

Abstract. Aggressive scaling of metal oxide semiconductor (MOS) devices have resulted in the use of ultrathin gate oxides, which in turn enhanced the device performance. This work examines different components of tunnelling electron in scaled n-type MOS (NMOS) with ultrathin gate oxides (1.2-2.0 nm). Direct tunnelling currents are focused on the currents between the gate and the channel region in the substrates. The gate direct tunnelling currents are investigated by theoretical modelling and simulation experiments and their effects on the leakage current from those two approaches are compared. The simulation of this project was carried out using Sentaurus TCAD software. A 90 nm NMOS transistor is simulated to investigate the electron tunnelling phenomenon and its effect on the device performance. The 90 nm NMOS device was designed and characterized using Sentaurus TCAD software. In this project, there are two major simulations done using Sentaurus Process and Sentaurus Device. There are four parameters being investigated, which are is oxide thickness (\(T_{ox}\)), threshold voltage (\(V_{TH}\)), drain voltage (\(V_D\)) and gate voltage (\(V_G\)), to obtained result of drain current (\(I_D\)) and leakage current (\(I_{OFF}\)). The simulations data results are listed in the Inspect tools and used to plot graphs to compare between simulation and calculation results. The electrons start tunnelling at the \(T_{ox}\) of 1.4 nm with resulting in large \(I_{OFF}\) of 2.45x10⁻⁹ A at \(V_D\) of 0.5V. The simulation results are found to be almost identical with the theoretical modelling.

1. Introduction
Gate oxide thickness (\(T_{OX}\)) is the insulator layer between gate and substrate in metal oxide semiconductor field effect transistor (MOSFET). This gate oxide thickness can be used to modify the threshold voltage of a transistor [1, 2]. Lower oxide thickness and hence lower threshold voltage in critical paths can maintain the performance. Higher oxide thickness not only reduces gate oxide but also the leakage current decrease exponentially with an increase in the oxide thickness [3, 4]. The increases current not only adversely affect the MOS device performance but also greatly increase the standby power consumption of a highly integrated chip [5, 6].

\(SiO_2\) is a very good insulator, but at very small thickness levels electrons can move across the very thin insulation. The probability drops off exponentially with oxide thickness [7, 8]. The probability of electrons moves through the insulating gate oxide barrier increases with the increasing electric field across it. As complementary metal oxide semiconductor (CMOS) devices shrink in size, their gate oxide...
thickness reduces which reduces the gate voltage. Reducing the gate oxide below 3 nm appears to be difficult because current leaks through the thin oxide layer \[4, 9\].

There are some factors that caused the gate leakage flow through the dielectric to the substrate. The power dissipation due to leakage through a thin SiO\(_2\) gate oxide increase energy consumption \[10, 11\]. First is the oxide thickness layer. The thinner oxide, the larger gate induced drain leakage current. Various leakage current at a given oxide thickness are independent of the channel length. The thinner oxide layer the more dominant on the drain leakage current at lower drain voltage biases \[12, 13\]. The drain leakage current such as band to band and gate induced drain leakage currents have always been a concern for MOSFET scaling. When combining with ultrathin oxides, these effects are significant compared to the gate direct leakage current. Second is the permittivity of oxide layer material. High permittivity (high-k) materials are introduces in scaled transistor to further decrease the electrical thickness while maintaining a reliable physical thickness and low gate leakage \[14-16\]. Third is drain punch through. When the drain voltage is high enough, the depletion region around the drain may extend to source. Thus, causing current to flow irrespective of the gate voltage. When the source-drain electric field is too large, the electron speed will be high enough to break the electron-hole pair. Moreover, the electrons will penetrate the gate oxide, causing a gate current \[17, 18\].

The threshold voltage (\(V_{TH}\)) for transistor MOSFET is the voltage that was generated between the gate and source at MOS device where current drain source drop until zero \[12\]. \(V_{TH}\) is the minimum voltage to turn on the MOS transistor. It is also defined as the applied gate voltage achieving the required threshold inversion point. In this paper, the relationship between parameters that affect the \(V_{TH}\) is being investigated. These changing trend of threshold voltage will be visualised to see whether the targeted parameters are improving or withholding the device performance.

2. Modelling of Oxide Thickness Variation

The modelling was specific to the drain current on the NMOS transistor. The value of oxide thickness, \(V_{TH}\) and gate voltage was varied to study the effect of these parameters on drain current. The determination of drain current is depending on the three conditions in I-V characteristic. They are transition point, non-bias saturation point, and saturation point and described by (1), (2) and (3) respectively.

\[
V_{D \ (sat)} = V_G - V_{TH} \tag{1}
\]

\[
I_D = \frac{K_n}{2} (V_G - V_{TH})^2 \tag{2}
\]

\[
I_D = K_n \left[2(V_G - V_{TH})V_D - V_D^2 \right] \tag{3}
\]

where \(\varepsilon_{ox} = \varepsilon_r \varepsilon_0\). \(V_0\) is the threshold voltage, \(V_G\) is the gate voltage and \(K_n = \frac{W \mu_n C_{ox}}{L}\). Next, the oxide capacitance and threshold voltage are calculated using (4), (5) and (6).

\[
C_{ox} = \frac{\varepsilon_{ox} \varepsilon_0}{T_{ox}} = \frac{\varepsilon (\varepsilon_r)}{T_{ox}} \tag{4}
\]

\[
\phi_{FN} = V_T \ln \left(\frac{N_D}{n_i} \right) = \left(\frac{KT}{q} \right) \ln \left(\frac{N_D}{n_i} \right) \tag{5}
\]
\[V_{TH} = V_{FB} + 2|\phi_{Fn}| + \frac{2\varepsilon_r q N_A (2\phi_{Fn})}{C_{ox}} \]

where \(V_{TH} \) is the threshold voltage, \(L \) is the length of gate, \(C_{ox} \) is the oxide capacitance, \(W \) is the width, \(\varepsilon_r \) is the dielectric constant of SiO\(_2\), \(\varepsilon_0 \) is the vacuum permittivity, \(T_{OX} \) is oxide thickness, \(N_A \) and \(N_D \) is the doping concentration, \(n_i \) is the intrinsic carrier concentration, \(k \) is Boltzmann’s constant, \(T \) is room temperature and \(q \) is the electron charge. The following parameters are fixed as follows: \(N_A=4.7\times10^{17} \text{ cm}^{-3}, N_D=1\times10^{18} \text{ cm}^{-3}, L=90 \text{ nm and } W=0.2 \mu\text{m}. \)

2.1. Determination of \(V_{TH} \) with varying \(T_{OX} \)

Firstly, the \(V_{TH} \) was determined for different value of \(T_{OX} \). In this case, \(V_{TH} \) is calculated against \(T_{OX} \) with varying value of \(T_{OX} \) from 1.2 nm to 2.8 nm.

2.2. Determination of \(I_D \) with varying \(V_D \) for different \(V_G \) at \(T_{OX}=1.2 \text{ nm} \)

Next, \(I_D \) was determined by varying the value of \(V_D \) with different value of \(V_G \). \(I_D \) is calculated against \(V_D \) for \(V_G=1.0 \text{V}, 1.5 \text{V}, 2.0 \text{V}, 2.5 \text{V} \text{ and } 3.0 \text{V} \) at \(T_{OX}=1.2 \text{ nm} \).

2.3. Determination of \(I_D \) with varying \(V_D \) for different \(V_{TH} \)

Lastly, the calculation was done by varying the value of \(V_D \) with different value of \(V_{TH} \). \(I_D \) is calculated against \(V_D \) for \(V_{TH}=0.38 \text{V}, 0.44 \text{V}, 0.50 \text{V} \text{ and } 0.57 \text{V} \) at \(T_{OX}=1.4 \text{ nm}, 1.8 \text{ nm}, 2.0 \text{ nm}, 2.2 \text{ nm} \text{ and } 2.8 \text{ nm} \).

2.4. Simulation in Sentaurus TCAD

The oxide thickness variation at 90 nm NMOS transistor was simulated by using NMOS Procem window shown in Figure 1. The parameters that used for the simulation were gate length, doping concentration, oxide thickness, drain voltage, gate voltage and threshold voltage to find the value of drain current and leakage current. There are four graph obtained from this simulation, which are \(V_{TH} \) against \(T_{OX} \), \(I_D \) against \(V_D \) with varying \(V_G \), \(I_D \) against \(V_D \) with varying \(V_{TH} \) and \(I_{OFF} \) against \(V_D \) with varying \(T_{OX} \).

![Figure 1. NMOS_procem window in Sentaurus Workbench (SWB)](image)

3. Results and discussion

In this section, the variation of oxide thickness at 90 nm NMOS transistor was obtained by three factors which affect the drain current \(I_D \) and leakage current \(I_{OFF} \). The factors are threshold voltage \(V_{TH} \), gate voltage \(V_G \) and oxide thickness \(T_{OX} \). A total of four graphs were plotted to see the effect of \(I_D \) against
these factors. The first graphs were plotted V_{TH} against T_{OX}. The other three graphs were plotted by varying the value of V_G, V_{TH} and T_{OX} in Sentaurus Workbench tool to obtain I_D and I_{OFF}. All of the graphs were plotted based on result obtained in Sentaurus TCAD simulation.

3.1. V_{TH} against T_{OX}
In this simulation, it is assumed that gate length L is 90nm, doping concentration, N_A is $4.7\times10^{17} \text{cm}^{-3}$, N_D is $1\times10^{18} \text{cm}^{-3}$ and varies value of T_{OX} from 1.2 nm to 2.8 nm to obtained values of V_{TH}. The values of T_{OX} that used for simulation were recorded in Table 1 the associated graph is shown in Figure 2.

T_{OX} (nm)	V_{TH} (V)
1.2	0.36
1.4	0.36
1.8	0.37
2.2	0.38
2.8	0.39

Figure 2. Changing of V_{TH} against T_{OX}

From Figure 2, it is observed that the V_{TH} is directly proportional with T_{OX}. As the T_{OX} increase, the V_{TH} increase in proportion to the T_{OX}.

3.2. I_D against V_D with varying V_G
In this simulation, T_{OX} is 1.2 nm, with both V_D and V_G are varied. The simulated I_D were recorded in Table 2 and the graph is shown in Figure 3.
Table 2. Values of I_D against V_D with several V_G

V_D (V)	V_G = 1.0 V	V_G = 1.5 V	V_G = 2.0 V	V_G = 2.5 V	V_G = 3.0 V
0.5	0.019	0.036	0.044	0.049	0.053
1.0	0.020	0.044	0.064	0.076	0.083
1.5	0.021	0.045	0.068	0.088	0.101
2.0	0.021	0.046	0.070	0.091	0.109
2.5	0.022	0.046	0.070	0.092	0.112
3.0	0.022	0.047	0.071	0.093	0.113
3.5	0.022	0.047	0.071	0.094	0.114
4.0	0.022	0.047	0.072	0.094	0.115
4.5	0.023	0.048	0.072	0.095	0.115
5.0	0.023	0.048	0.072	0.095	0.116

Figure 3. Changing of I_D against V_D with several V_G

Referring to Figure 3, the I_D changes linearly with V_D before reaching its saturation value. For small large value V_D, the values of I_D increase until $V_D = 2$V. The only difference for these graphs is the changes in V_G. It is observed that the I_D increases with the increasing of V_D and V_G. After the saturation point is achieved, the value of I_D will remain constant.

3.3. I_D against V_D with varying V_{TH}

The values of each parameter that used for simulation were recorded in Table 3 and the associated graph is shown in Figure 4.
Table 3. Values of V_th for different N_a and L

V_D (V)	I_D (mA)	V_th = 0.38 V	V_th = 0.44 V	V_th = 0.50 V	V_th = 0.57 V
0.5	0.062	0.059	0.057	0.055	
1.0	0.097	0.094	0.091	0.088	
1.5	0.119	0.114	0.120	0.107	
2.0	0.131	0.125	0.121	0.116	
2.5	0.137	0.130	0.125	0.120	
3.0	0.141	0.133	0.127	0.121	
3.5	0.143	0.134	0.128	0.122	
4.0	0.144	0.135	0.129	0.123	
4.5	0.145	0.136	0.130	0.124	
5.0	0.146	0.137	0.130	0.125	

Figure 4. Changing of V_th for different N_a and L

In Figure 4, it is observed that the increment of I_D is linear as V_D is increased for small V_D. I_D is linearly increased in non-saturation region and start to saturate when achieved the saturation bias point. After the saturation bias point the drain current will remain constant. When V_D increases, I_D also increases with various value of threshold voltage.

3.4. I_off against V_D with varying T_OX

The values of each parameter that used for simulation were recorded in Table 4 and the associated graph is shown in Figure 5.
Table 4. Values of I_{OFF} against V_D with varies of T_{OX}

V_D (V)	$T_{OX} = 1.4$ nm	$T_{OX} = 1.8$ nm	$T_{OX} = 2.2$ nm	$T_{OX} = 2.8$ nm
0.5	2.45E-09	9.66E-11	1.59E-11	4.67E-12
1.0	8.06E-09	1.96E-10	2.50E-11	6.22E-12
1.5	2.05E-08	3.50E-10	3.62E-11	7.79E-12
2.0	4.40E-08	5.73E-10	4.84E-11	9.47E-12
2.5	8.28E-08	8.37E-10	6.37E-11	1.14E-11
3.0	1.39E-07	1.21E-09	8.31E-11	1.32E-11
3.5	2.08E-07	1.73E-09	1.06E-10	1.49E-11
4.0	2.98E-07	2.42E-09	1.29E-10	1.68E-11
4.5	4.14E-07	3.24E-09	1.56E-10	1.90E-11
5.0	5.57E-07	4.30E-09	1.88E-10	2.16E-11

Figure 5. Changing of I_{OFF} against V_D with varies of T_{OX}

Figure 5 illustrates the I_{OFF} against V_D with varying T_{OX} at $V_G=3.0$V. The graph shows various values of T_{OX} to see the effect of T_{OX} instead of I_{OFF}. The I_{OFF} decreases as the T_{OX} increase due to increment in T_{OX} that causes the I_{OFF} to decrease. It shows that when oxide thickness increase than the gate leakage current decrease. This observation suggests that as the oxide thickness becomes thicker, there is a low leakage current and when the oxide thickness is low there are high leakage currents present.
4. Conclusion
In this work, modelling of T_{ox} variation has been carried out and investigation of its effect over the transistor performance is presented. The simulation results show that the V_{th} is directly proportional to T_{ox} whereas I_D is directly proportional to V_D for various V_G and V_{th} up to the boundary of its saturation level. In addition, the simulation results also illustrates that the I_{OFF} is increased as T_{ox} becomes thinner. A trade off exists to achieve improvement in device performance as suggested by the simulation results. Thinner T_{ox} contributes to higher I_D since V_{th} is suppressed. However, thinner T_{ox} also leads to higher I_{OFF}, which is undesirable in transistor operation. Therefore, the T_{ox} need to be optimised in such a way that both I_D and I_{OFF} tuned the desired level.

5. References
[1] Jang, E, Shin, S, Jung, J W, Jung, Y J and Kim, K R 2016 Device optimization on gate oxide and spacer dielectric permittivity for well-tempered; nanoscale MOSFET in 2016 IEEE Silicon Nanoelectronics Workshop (SNW)
[2] Kumar, K K and Rao, N B 2012 Variable gate oxide thickness MOSFET: A device level solution for sub-threshold leakage current reduction in 2012 International Conference on Devices, Circuits and Systems (ICDCS)
[3] Habersat, D B, Lelis, A J and Goldsman, N 2013 Simulating ion transport and its effects in silicon carbide power MOSFET gate oxides in 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)
[4] Pradhan, K P, Singh, D, Mohapatra, S K and Sahu, P K 2015 Double material gate oxide (DMGO) SiGe-on-insulator (SGOI) MOSFET: A proposal and analysis in 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)
[5] Lin, J T, Haga, S, Shih, M T and Lin, Y H 2014 A new low power unipolar CMOS in 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT)
[6] Okuhara, H, Kitamori, K, Fujita, Y, Usami, K and Amano, H 2015 An optimal power supply and body bias voltage for a ultra low power micro-controller with silicon on thin box MOSFET in 2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)
[7] Markov, S, Yam, C, Chen, G, Aradi, B, Penazzi, G and Frauenheim, T 2014 Towards atomic level simulation of electron devices including the semiconductor-oxide interface in 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)
[8] Randriamihaja, Y M, Bravaix, A, Huard, V, Rideau, D, Rafik, M and Roy, D 2010 Multiple microscopic defects characterization methods to improve macroscopic degradation modeling of MOSFETs in 2010 IEEE International Integrated Reliability Workshop Final Report
[9] Islam, A 2015 Technology scaling and its side effects in 2015 19th International Symposium on VLSI Design and Test
[10] Rao, A and Mukhopadhyay, G 2013 Gate leakage in hafnium oxide high-k metal gate nMOSFETs in 2013 2nd International Conference on Advances in Electrical Engineering (ICAE)
[11] Saramekala, G K and Tiwari, P K 2014 A Two-Dimensional Subthreshold Current Model of Recessed-Source/Drain (Re-S/D) SOI MOSFETs with High-k Dielectric in 2014 8th Asia Modelling Symposium
[12] Ji, F, Liu, L, Huang, Y and Xu, J p 2015 Influences of k values of gate dielectric and buried insulator on subthreshold slope of UTB SOI MOSFETs in 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)
[13] Pey, K L, Shubhakar, K, Raghavan, N, Wu, X and Bosman, M 2013 Impact of local variations in high-k dielectric on breakdown and recovery characteristics of advanced gate stacks in 2013 IEEE International Conference of Electron Devices and Solid-state Circuits
[14] Aji, A S and Darma, Y 2013 Simulation of charge-trapping effect on floating gate Si/Ge/Si quantum dots MOSFET memory with high-...
[15] Eriguchi, K, Kamei, M, Takao, Y and Ono, K 2012 High-k MOSFET performance degradation by plasma process-induced charging damage; Impacts on device parameter variation in 2012 IEEE International Integrated Reliability Workshop Final Report

[16] Jelodar, M S, Ilatikhameneh, H, Sarangapani, P, Mehrotra, S R, Klimeck, G, Kim, S and Ng, K 2015 Tunneling: The major issue in ultra-scaled MOSFETs in 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO)

[17] Teramoto, A, Sugawa, S and Ohmi, T 2013 High-speed and highly accurate evaluation of electrical characteristics in MOSFETs in Proceedings of 2013 International Conference on IC Design & Technology (ICICDT)

[18] Wu, T, Gu, L, Zhao, Z, Li, J and Dai, D 2014 Gate tunneling current model of strained Si for scaled NMOSFET in 2014 International Conference on Mechatronics and Control (ICMC)