Decoding Reed-Solomon codes by solving a bilinear system with a Gröbner basis approach

Magali Bardet, Rocco Mora, Jean-Pierre Tillich
April 6, 2021

Sorbonne Université, INRIA Paris
Overview

Reed-Solomon decoding problem

Correcting up to Sudan bound

Beyond Sudan bound

Experiments and conclusions
Reed-Solomon decoding problem
Reed-Solomon code

A Reed-Solomon code of length n and dimension k over \mathbb{F}_q with support $a = (a_i)_{1 \leq i \leq n} \in \mathbb{F}_q^n$ is

$$RS_k(a) = \{(P(a_i))_{1 \leq i \leq n} : P \in \mathbb{F}_q[X], \deg (P) < k\}.$$

Decoding problem

Given a and b (received word) and knowing that

$$b_\ell = P(a_\ell) + e_\ell, \quad \ell \in [1, n],$$

with $t = \#\{i : e_i \neq 0\}$, retrieve P and $e_\ell, \quad \ell \in [1, n]$.

Unique solution	Polynomial # of solutions
0	$\frac{1-R}{2}$
$1 - \sqrt{2R}$	$1 - \sqrt{R}$
$1 - R$	1

Expected # of solutions $O(1)$
Reed-Solomon decoding algorithms

(Beyond Berlekamp-Welch)

\[
R \equiv \frac{k}{n}
\]

List decoding algorithms:

- Sudan '97: Sudan radius
- Guruswani, Sudan '98: Johnson radius

Power decoding algorithms:

- Schmidt, Sidorenko, Bossert '10: Sudan radius
- Nielsen '14: Sudan radius
- Nielsen '18: Johnson radius
Solving a bilinear system

Define

• \(\Lambda(X) \overset{\text{def}}{=} \prod_{i : e_i \neq 0} (X - a_i) = X^t + \sum_{j=0}^{t-1} \lambda_j X^j \)
 error locator polynomial,

• \(P(X) = \sum_{i=0}^{k-1} p_i X^i \)
 corresponding to the codeword.

We can write \(n \) bilinear equations

\[
P(a_{\ell}) \Lambda(a_{\ell}) = b_{\ell} \Lambda(a_{\ell}), \quad \ell \in [1, n]
\]

i.e.

\[
\sum_{i=0}^{k-1} \sum_{j=0}^{t} a_{\ell}^{i+j} p_i \lambda_j = \sum_{j=0}^{t} b_{\ell} a_{\ell}^j \lambda_j, \quad \ell \in [1, n] \quad \text{and} \quad \lambda_t = 1.
\]
Example: \#errors = \(d/2\)

Parameters: \([n, k]_q = [9, 3]_{31}\) RS code with \(t = 3\) errors.

\[
\begin{bmatrix}
p_0\lambda_0 & p_1\lambda_0 & p_2\lambda_0 & p_0\lambda_1 & p_1\lambda_1 & p_2\lambda_1 & p_0\lambda_2 & p_1\lambda_2 & p_2\lambda_2 & p_0 & p_1 & p_2 & \lambda_0 & \lambda_1 & \lambda_2 & 1 \\
1 & 8 & 2 & 8 & 2 & 16 & 2 & 16 & 4 & 16 & 4 & 1 & 13 & 11 & 26 & 22 \\
1 & 15 & 8 & 15 & 8 & 27 & 8 & 27 & 2 & 27 & 2 & 30 & 9 & 11 & 10 & 26 \\
1 & 30 & 1 & 30 & 1 & 30 & 1 & 30 & 1 & 30 & 1 & 30 & 2 & 29 & 2 & 29 \\
1 & 27 & 16 & 27 & 16 & 29 & 16 & 29 & 8 & 29 & 8 & 30 & 18 & 21 & 9 & 26 \\
1 & 17 & 10 & 17 & 10 & 15 & 10 & 15 & 7 & 15 & 7 & 26 & 24 & 5 & 23 & 19 \\
1 & 28 & 9 & 28 & 9 & 4 & 9 & 4 & 19 & 4 & 19 & 5 & 9 & 4 & 19 & 5 \\
1 & 5 & 25 & 5 & 25 & 1 & 25 & 1 & 5 & 1 & 5 & 25 & 8 & 9 & 14 & 8 \\
1 & 26 & 25 & 26 & 25 & 30 & 25 & 30 & 5 & 30 & 5 & 6 & 27 & 20 & 24 & 4 \\
1 & 3 & 9 & 3 & 9 & 27 & 9 & 27 & 19 & 27 & 19 & 26 & 4 & 12 & 5 & 15 \\
\end{bmatrix}
\]
Example: $\#\text{errors} = d/2$

Parameters: $[n, k]_q = [9, 3]_{31}$ RS code with $t = 3$ errors.

REDUCTION

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 12 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 26 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 29 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 28 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 24 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 29 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \\
\end{pmatrix}
\]

\[\Rightarrow \lambda_0 + 24 = 0, \quad \lambda_1 + 29 = 0, \quad \lambda_2 + 4 = 0.\]
Example: Sudan radius

Parameters: \([n, k]_q = [29, 5]_{61}\) RS code with \(t = 15\) errors (Sudan bound).

	\(\#\) equations	
	\(\text{deg. 2}\)	\(\text{deg. 1}\)
Bilinear system reduced	19	1 + 9
Multiply linear eq.s by \(p_i\)'s and reduce	59	1 + 14
Multiply linear eq.s by \(p_i\)'s and reduce	75	5 + 15 = k + t

SOLVED
Macaulay matrix

The **Macaulay matrix** $\mathcal{M}_D^{\text{Macaulay}}(S)$ in degree D of a set $S = \{f_1, \cdots, f_m\}$ of polynomials is

$$\mathcal{M}_D^{\text{Macaulay}}(S) \overset{\text{def}}{=} \begin{pmatrix} \text{monomials of degree } \leq D \end{pmatrix} \leftarrow x^\alpha f_i \text{ such that } \deg (x^\alpha f_i) \leq D.$$
Algorithm D-Gröbner Basis

Input

D Maximal degree,
$S = \{f_1, \ldots, f_m\}$ set of polynomials.

repeat

$S \leftarrow \text{Pol}(\text{EchelonForm}(\mathcal{M}^\text{acaulay}_D(S)))$

until $\dim_{\mathbb{F}_q} S$ has not increased.

Output S.

Fact

When D is fixed, computing a D-Gröbner basis has polynomial complexity.

Fact

For large enough D, a D-Gröbner basis is a Gröbner basis (Lazard ’83).
Admissible monomial order

An **admissible monomial order** $<$ is an order on the monomials of $\mathbb{K}[x_1, \ldots, x_n]$ such that:

1. $<$ is total,
2. for any m_1, m_2, m_3, $m_1 < m_2 \Rightarrow m_1 m_3 < m_2 m_3$
3. for any m, $1 < m$

Graded reverse lexicographic order (DRL) $x_1 > \cdots > x_n$

$x^\alpha <_{\text{drl}} x^\beta \iff \begin{align*}
\deg(x^\alpha) &< \deg(x^\beta) \\
\lor \\
(\deg(x^\alpha) = \deg(x^\beta)) \\
\land \exists j \text{ s.t. } (\alpha_i = \beta_i, \ \forall i > j) \land \alpha_j > \beta_j
\end{align*}$
Gröbner basis

Given $f = \sum_{\alpha \in \mathbb{N}^n} c_\alpha x^\alpha$,

- Leading Monomial: $LM(f) \overset{\text{def}}{=} \max_{c_\alpha \neq 0}(x^\alpha)$
- Leading Coefficient: $LC(f) \overset{\text{def}}{=} c_\alpha$, such that $LM(f) = x^\alpha$.
- Leading Term: $LT(f) \overset{\text{def}}{=} LC(f)LM(f)$.

Gröbner basis

Let \mathcal{I} be an ideal of $\mathbb{K}[x_1, \ldots, x_n]$ and $<$ a monomial order. Then $G = \{g_1, \cdots, g_s\} \subset \mathcal{I}$ is a Gröbner basis of \mathcal{I} if and only if

$$\langle LM(g_1), \cdots, LM(g_s) \rangle = \langle LM(f) : f \in \mathcal{I} \rangle.$$

Each ideal $\mathcal{I} \neq \{0\}$ admits a Gröbner basis (not unique).
Ideal Membership Problem

Given $f, g_1, \ldots, g_s \in \mathbb{K}[x_1, \ldots, x_n]$, determine if $f \in \langle g_1, \ldots, g_s \rangle$.

Alternatively, determine if $\exists f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n]$ s.t. $f = \sum_{i=1}^{s} f_i g_i$.

- Not trivial as in the univariate case
- Solved by Gröbner basis techniques

If $LM(g_i) \mid LM(f)$ then f can be **reduced** by g_i:

$$ r \leftarrow f - \frac{LT(f)}{LT(g_i)} g_i $$

and $r = 0$ or $LM(r) < LM(f)$.
We can iterate this reduction until the remainder r is 0 or is no more divisible by any g_i.

Fact

If $G = \{g_1, \ldots, g_s\}$ is a Gröbner basis, then $f \in I$ if and only if the last remainder r is 0.

Generalization of:

- Division in a univariate polynomial ring,
- Gaussian elimination.
Reduced Gröbner basis

Let G be a Gröbner basis for the ideal I wrt \prec. Then G is reduced if:

- $\text{LC}(g) = 1 \; \forall g \in G$,
- For any $g \in G$, $\langle \text{LT}(G \setminus \{g\}) \rangle$ does not contain any monomial of g.

Each ideal $I \neq \{0\}$ admits a unique reduced Gröbner basis.

Consider the algebraic system

$$
\begin{align*}
 f_1(x_1, \cdots, x_n) &= 0 \\
 \vdots &= \\
 f_m(x_1, \cdots, x_n) &= 0
\end{align*}
$$

Fact

If the system has a unique solution (r_1, \cdots, r_n) and $I = \langle f_1, \ldots, f_m \rangle$ is radical then the reduced Gröbner basis is given by $\{x_1 - r_1, \cdots, x_n - r_n\}$.
Here we are interested in graded orders.

Degree fall

A **degree fall** of degree s for $S = \{f_1, \cdots, f_m\}$ is a polynomial combination $\sum_{i=1}^{m} g_i f_i$ which satisfies

$$0 < s \overset{\text{def}}{=} \deg \left(\sum_{i=1}^{m} g_i f_i \right) < \max_{i=1}^{m} \deg (g_i f_i).$$

If we are able to predict non-trivial degree falls we can speed up Gröbner basis computation.
- $R(X)$ interpolator polynomial (degree $\leq n - 1$)

 $$R(a_\ell) = b_\ell, \quad \ell \in [1, n]$$

- $G(X) \overset{\text{def}}{=} \prod_{\ell=1}^{n} (X - a_\ell)$ (can be precomputed)

Key equation implicit in Gao’s decoder

| $\Lambda(X)P(X) \equiv \Lambda(X)R(X) \mod G(X)$ |
Proposition

\[
\sum_{i=0}^{k-1} \sum_{j=0}^{t} a_{\ell}^{i+j} p_i \lambda_j = \sum_{j=0}^{t} b_{\ell} a_{\ell}^j \lambda_j, \quad \ell \in [1, n]
\]

and

\[
\Lambda(X) P(X) \equiv \Lambda(X) R(X) \mod G(X)
\]

are equivalent.

They can be obtained from each other by linear combinations.
Why do we use $\Lambda(X)P(X) \equiv \Lambda(X)R(X) \mod G(X)$?

- More convenient to work with to understand Gröbner basis calculations.
- They give directly $n - k - t + 1$ linear equations, since
 - the coefficient of degree $d \in [t + k, n - 1]$ coincides with the coefficient of the same degree in $-R(X)\Lambda(X) \mod G(X)$ since $\Lambda(X)P(X)$ is of degree $\leq t + k - 1$;
 - the coefficient of $S(X)$ of degree $t + k - 1$ is equal to $p_{k-1} - \text{coeff} \left([\Lambda(X)R(X)]_{G(X)} , X^{t+k-1} \right)$ because $\Lambda(X)$ is monic and of degree t.
Correcting up to Sudan bound
Algorithm with $D = 2$ can decode up to Sudan bound

The **Algorithm**, with input the original bilinear system and $D = 2$, can decode up to Sudan decoding radius in polynomial time.

Symply powered key equations (Nielsen '14)

$$\Lambda(X)P(X)^u \equiv \Lambda(X)R(X)^u \mod G(X), \quad u \in \mathbb{Z}_+.$$

Proposition

Let $q_1 \overset{\text{def}}{=} \max\{u : t + (k - 1)u \leq n - 1\} = \left\lfloor \frac{n-t-1}{k-1} \right\rfloor$. All affine functions in the λ_i’s of the form $\text{coeff}\left(\left[\Lambda(X)R^j(X)\right]_{G(X)}, X^u\right)$ for $j \in [1, q_1]$ and $u \in [t + (k - 1)j + 1, n - 1]$ are in the linear span of the set S output by the Algorithm with $D = 2$.
Proof (sketch)

• S contains the coefficients of

$$\Lambda(X)P(X) - \Lambda(X)R(X) \mod G(X)$$

and therefore

$$\text{coeff} \left(\left[-\Lambda(X)R(X) \right]_{G(X)}, X^u \right) \text{ for all } u \in \mathbb{[} t + k, n - 1 \mathbb{]}.$$

• By induction \((j \rightarrow j + 1)\):

$$\left(\Lambda P^{j+1} - \Lambda R^{j+1} \right) \mod G$$

$$= \left(P(\Lambda P^j - \Lambda R^j) + R^j(\Lambda P - \Lambda R) \right) \mod G$$

$$= \left(P(\Lambda P^j - \Lambda R^j \mod G) + R^j(\Lambda P - \Lambda R \mod G) \right) \mod G.$$
Split the sum:

\[P(\Lambda P^j - \Lambda R^j \mod G) \mod G \]

\[R^j(\Lambda P - \Lambda R \mod G) \mod G \]
Split the sum:

\[P(\Lambda P^j - \Lambda R^j \mod G) \mod G \]

coefficients of degree in \([t + (k - 1)j + 1, n - 1]\) vanish

\[R^j(\Lambda P - \Lambda R \mod G) \mod G \]
Split the sum:

\[P(\mathcal{P}^j - \mathcal{R}^j \mod G) \mod G \]

polynomial of degree \(\leq t + (k - 1)(j + 1) \) after elimination of variables

\[R^j(\mathcal{P} - \mathcal{R} \mod G) \mod G \]
Split the sum:

- \[P(\Lambda P^j - \Lambda R^j \mod G) \mod G \]

 polynomial of degree \(\leq t + (k - 1)(j + 1) \) after elimination of variables

- \[R^j(\Lambda P - \Lambda R \mod G) \mod G \]
Split the sum:

\[P(\Lambda P^j - \Lambda R^j \mod G) \mod G \]

polynomial of degree \(\leq t + (k - 1)(j + 1) \) after elimination of variables

\[R^j(\Lambda P - \Lambda R \mod G) \mod G \]

initial polynomial equations
Split the sum:

\[P(\Lambda P^j - \Lambda R^j \mod G) \mod G \]

polynomial of degree \(\leq t + (k - 1)(j + 1) \) after elimination of variables

\[R^j(\Lambda P - \Lambda R \mod G) \mod G \]

linear combination of equations in \(S \)
Split the sum:

- \[
P(\Lambda P^j - \Lambda R^j \mod G) \mod G
\]

polynomial of degree \(\leq t + (k - 1)(j + 1)\) after elimination of variables

- \[
R^j(\Lambda P - \Lambda R \mod G) \mod G
\]

linear combination of equations in \(S\)

\[\Rightarrow \text{coeff} \left([\Lambda(X)R^{j+1}(X)]_{G(X)}, X^u \right) \text{ are in the linear span of the set } S \text{ output by a 2-Gröbner basis for } u \in \left[t + (k - 1)(j + 1) + 1, n - 1 \right].\]
Beyond Sudan bound
Example: above Sudan radius

Parameters: \([n, k]_q = [25, 5]_{31}\) RS code with \(t = 15\) errors.

# equations	deg. 3	deg. 2	deg. 1
Reduced matrix deg. 2		18	7
Multiply by \(p_i\)'s and reduce	149	31	7
Multiply by \(\lambda_i\)'s and reduce	262	38	7
Multiply by \(\lambda_i\)'s and reduce	291	41	7
Multiply by \(\lambda_i\)'s and reduce	297	50	7
Multiply by \(\lambda_i\)'s and reduce	325	67	7
Multiply by \(\lambda_i\)'s and reduce	335	91	20 = \(t + k\)

SOLVED
The "error evaluator" polynomial $\Omega(X)$ of degree $\leq t - 1$ defined by

$$\Omega(a_\ell) = -e_\ell, \text{ for all } \ell \in [1, n], \ e_\ell \neq 0.$$

We then have the identity

$$\Lambda(P - R) = \Omega G.$$

Equivalent definition of Ω as

$$\Omega \overset{\text{def}}{=} -\Lambda R \div G.$$

Fact

$\Omega(X)$’s coefficients are linear forms in the λ_i’s.
Low-degree equations in the λ_i’s

Generalization of Power decoding equations (Nielsen ’18)

$$\Lambda^s P^u = \sum_{i=0}^{u} (\Lambda^{s-i} \Omega^i) \binom{u}{i} R^{u-i} G^i \overset{\text{def}}{=} \chi(s, u), \quad u \in [1, s-1],$$

$$\Lambda^s P^u \equiv \left[\sum_{i=0}^{s-1} (\Lambda^{s-i} \Omega^i) \binom{u}{i} R^{u-i} G^i \right]_{G^s} \overset{\text{def}}{=} \chi(s, u), \quad u \in [s, v].$$

From the identity

$$(\Lambda^s P^u) (\Lambda^{s'} P^{u'}) = \Lambda^{s+s'} P^{u+u'},$$

it is clear that

$$\chi(s, u)\chi(s', u') - \chi(s + s', u + u') = 0$$

Trivially produced at degree $s + s' + u + u'$ by a Gröbner basis, but actually discovered at a rather smaller degree.
• Let $\mathcal{I}_D = \langle S \rangle_{\mathbb{F}_q}$ where S is the set output by the Algorithm with input D.

• $P \in_{\text{coef}} \mathcal{I}_v$ means that all the coefficients of P belong to \mathcal{I}_v.

• $\chi(s, u)_H \overset{\text{def}}{=} \sum_{i > ts + u(k-1)} a_i X^i$, where $\chi(s, u) = \sum_i a_i X^i$

• $q_s \overset{\text{def}}{=} \max\{u : st + u(k - 1) \leq sn - 1\}$

Theorem

For all integers $1 \leq s, 1 \leq s', 0 \leq u \leq q_s, 0 \leq u' \leq q_{s'}$

\[
\chi(s, u)_H \in_{\text{coef}} \mathcal{I}_{s+1}
\]

\[
\chi(s, u)\chi(s', u') - \chi(s + s', u + u') \in_{\text{coef}} \mathcal{I}_{s+s'+1}.
\]

Example ($s = s' = 1, u = 1, u' = 2$):

\[
[\Lambda R]_G \cdot \left[\Lambda R^2\right]_G - \left[\Lambda^2 R^3 + 3\Lambda R^2 \Omega G\right]_{G^2} \in_{\text{coef}} \mathcal{I}_3.
\]
Lemma

For all integers $1 \leq s$ and $0 \leq u < q_s$

$$
\chi(s, u) P - \chi(s, u + 1) \in_{\text{coef}} I_{s+1}
$$

$$
\chi(s, u + 1)_H \in_{\text{coef}} I_{s+1}.
$$

Generalization of linear equations at degree 2 (Sudan bound).

- linear (in λ_i’s) high coefficients \rightarrow degree-s (in λ_i’s) high coefficients,
- bilinear equations \rightarrow equations of bidegree $(1, s)$.
Proof (sketch) of the Theorem

By induction (on u_1 and u_2).

Assume

$$\chi(s_1, u_1)\chi(s_2, u_2) - \chi(s_1 + s_2, u_1 + u_2) \in \text{coef } \mathcal{I}_{s_1+s_2+1}.$$

The degree is $s_1 + s_2$, therefore

$$P\chi(s_1, u_1)\chi(s_2, u_2) - P\chi(s_1 + s_2, u_1 + u_2) \in \text{coef } \mathcal{I}_{s_1+s_2+1}.$$

By the previous Lemma,

$$\chi(s_1, u_1 + 1)\chi(s_2, u_2) - \chi(s_1 + s_2, u_1 + u_2 + 1) \in \text{coef } \mathcal{I}_{s_1+s_2+1}.$$
Proof (sketch) of the Theorem

By induction (on u_1 and u_2).
Assume

$$\chi(s_1, u_1) \chi(s_2, u_2) - \chi(s_1 + s_2, u_1 + u_2) \in \text{coef } \mathcal{I}_{s_1+s_2+1}.$$

The degree is $s_1 + s_2$, therefore

$$P \chi(s_1, u_1) \chi(s_2, u_2) - P \chi(s_1 + s_2, u_1 + u_2) \in \text{coef } \mathcal{I}_{s_1+s_2+1}.$$

By the previous Lemma,

$$\chi(s_1, u_1 + 1) \chi(s_2, u_2) - \chi(s_1 + s_2, u_1 + u_2 + 1) \in \text{coef } \mathcal{I}_{s_1+s_2+1}.$$
Proof (sketch) of the Theorem

By induction (on u_1 and u_2). Assume

$$\chi(s_1, u_1)\chi(s_2, u_2) - \chi(s_1 + s_2, u_1 + u_2) \in \text{coef } \mathcal{I}_{s_1+s_2+1}.$$

The degree is $s_1 + s_2$, therefore

$$P\chi(s_1, u_1)\chi(s_2, u_2) - P\chi(s_1 + s_2, u_1 + u_2) \in \text{coef } \mathcal{I}_{s_1+s_2+1}.$$

By the previous Lemma,

$$\chi(s_1, u_1 + 1)\chi(s_2, u_2) - \chi(s_1 + s_2, u_1 + u_2 + 1) \in \text{coef } \mathcal{I}_{s_1+s_2+1}.$$
1. Compute the polynomials in only λ_i’s from the theorem
2. Run the Algorithm with maximal degree D of the system generated in this way
3. Recover the p_i’s by solving a linear system once the λ_i’s have been retrieved.
Experiments and conclusions
Experimental results

For some parameters, quadratic equations involving only λ_i’s are enough to solve the system, and we don’t need to go to degree 3 (unlike the bilinear system).

Table 1: $[n, k]_q = [64, 27]_{64}$

t	$\#\lambda_j$	Eq.	$\#\text{Eq.}$	D	Max Matrix	C
20	3	Bilinear system	2:46	3	1522×1800	$2^{26.5}$
		System in λ_i’s	2:9	2	47×28	$2^{24.4}$

Table 2: $[n, k]_q = [256, 63]_{256}$

t	$\#\lambda_j$	Eq.	$\#\text{Eq.}$	D	Max Matrix	C
120	36	Bilinear system	2:182	3	20023×128018	$2^{38.0}$
		System in λ_i’s	2:85	2	119×703	$2^{34.5}$
When the number of remaining λ_j’s is small compared to the number of p_i’s, even if the maximal degree D is larger than for the bilinear system, the number of variables is much smaller and the computation is faster.

Table 3: $[n, k]_q = [64, 27]_{64}$

t	$\#\lambda_j$	Eq.	$\#\text{Eq.}$	D	Max Matrix	\mathbb{C}
23	9	Bilinear system	2:49	5	428533×406773	$2^{45.4}$
		System in λ_i’s	2:4, 3:22	5	1466×1641	$2^{30.1}$
24	11	Bilinear system	2:50	≥ 6	$-$	$-$
		System in λ_i’s	2:1, 3:23	7	28199×23536	$2^{35.8}$

Table 4: $[n, k]_q = [256, 63]_{256}$

t	$\#\lambda_j$	Eq.	$\#\text{Eq.}$	D	Max Matrix	\mathbb{C}
124	48	Bilinear system	2:186	≥ 4	$-$	$-$
		System in λ_i’s	2:117, 3:1, 4:189	4	164600×270725	$2^{45.2}$
In some cases we can efficiently attain and even slightly pass Johnson bound.

Table 5: \([n, k]_q = [64, 27]_{64}\)

\(t\)	\#\(\lambda_j\)	Eq.	\#Eq.	\(D\)	Max Matrix	\(C\)
23 (JB)	9	Bilinear system	2:49	5	428533 \(\times\) 406773	2^{45.4}
		System in \(\lambda_i\)'s	2:4, 3:22	5	1466 \(\times\) 1641	2^{30.1}
24	11	Bilinear system	2:50	\(\geq 6\)	–	–
		System in \(\lambda_i\)'s	2:1, 3:23	7	28199 \(\times\) 23536	2^{35.8}

Table 6: \([n, k]_q = [37, 5]_{61}\)

\(t\)	\#\(\lambda_j\)	Eq.	\#Eq.	\(D\)	Max Matrix	\(C\)
24 (JB)	12	Bilinear system	2:28	3	1065 \(\times\) 1034	2^{26.0}
		System in \(\lambda_i\)'s	2:37	3	454 \(\times\) 454	2^{28.0}
25	15	Bilinear system	2:29	3	2520 \(\times\) 1573	2^{28.0}
		System in \(\lambda_i\)'s	2:25, 3:40	4	3193 \(\times\) 3311	2^{34.3}
26	18	Bilinear system	2:30	4	20446 \(\times\) 15171	2^{33.1}
		System in \(\lambda_i\)'s	2:25, 3:37, 4:37	5	38796 \(\times\) 22263	2^{38.1}
27	21	Bilinear system	2:31	4	27366 \(\times\) 24894	2^{36.0}
Conclusions

- We proved that Gröbner bases can solve in polynomial time the bilinear system associated to the decoding problem of Reed-Solomon codes up to Sudan bound.
- We started to figure out why this Gröbner basis approach behaves much better here than for a random bilinear system (by predicting some unusual degree falls that may determine other degree falls).
- We proposed an alternative polynomial system to work with and showed that this is in some cases more convenient than taking the original bilinear system.
- We experimentally found several regions of parameters for which the Gröbner basis approach can decode efficiently up to and slightly beyond Johnson bound.
Thank you for your attention!

Questions?