AN APPLICATION OF GROUP EXPANSION TO THE ANDERSON-BERNOULLI MODEL

J. BOURGAIN

ABSTRACT. We establish smoothness of the density of states for 1D lattice Schrödinger operators with potential taking values $\pm \lambda$, for λ in a class of small algebraic numbers and energy $E \in (-2,2)$ suitably restricted away from ± 2.

0. Introduction

Let $H = \Delta + \lambda V$, where Δ is the lattice Laplacian on \mathbb{Z} and $V_z = (V_n)_{n \in \mathbb{Z}}$ are independent variables in $\{1,-1\}$. The spectral theory of this operator, referred to as the Anderson-Bernoulli model (A-B for short) has been studied by various authors. It was shown by Halperin [S-T] that for fixed λ, the integrated density of states (IDS) $\mathcal{N}(E)$ of H is not Hölder continuous of any order α larger than

$$\alpha_0 = \frac{2 \log 2}{\arccosh (1 + \lambda)}.$$ \hspace{0.5cm} (0.1)

Hölder regularity for some $\alpha > 0$ has been established in several papers.

In [Ca-K-M], le Page’s method is used. Different approaches (including the super-symmetric formalism) appear in the paper [S-V-W] that relies on harmonic analysis principles around the uncertainty principle. Recently [B1], the author showed that $\mathcal{N}(E)$ restricted to $\delta < |E| < 2 - \delta$ ($\delta > 0$ fixed) is at least Hölder-regular of exponent $\alpha(\lambda) \to 0$.

It is believed that in fact for $\lambda \to 0$, $\mathcal{N}(E)$ becomes arbitrarily smooth and in particular $\frac{d\mathcal{N}(E)}{dE}$ is bounded for $|\lambda|$ small enough. No result of this type for the A-B model seems presently known. Recall also Thouless formula relating $\mathcal{N}(E)$ with the Lyapounov exponent $L(E)$ of H, i.e.

$$L(E) = \int \log |E - E'| d\mathcal{N}(E').$$ \hspace{0.5cm} (0.2)
Since $\mathcal{N}(E)$ is obtained as the Hilbert transform of $L(E)$, their regularity properties may be derived from each other.

The purpose of this Note is to prove the following in support of the above conjecture.

Theorem. Let H_λ be the A-B model considered above and restrict $|E| < 2 - \delta$ for some fixed $\delta > 0$. Given a constant $C > 0$ and $k \in \mathbb{Z}_+$, there is some $\lambda_0 = \lambda_0(C, k) > 0$ such that $\mathcal{N}(E)$ is C^k-smooth on $]-2 + \delta, 2 - \delta[$ provided λ satisfies the following conditions

1. $|\lambda| < \lambda_0$
2. λ is an algebraic number of degree $d < C$ and minimal polynomial $P_d(x) \in \mathbb{Z}[X]$ with coefficients bounded by $(\frac{1}{\lambda})^C$
3. λ has a conjugate λ' of modulus $|\lambda'| \geq 1$

This seems in particular to be the first statement of Lipschitz behavior of the IDS for an A-B model. Several comments are in order. Firstly, the arithmetic assumptions on λ permit to exploit a spectral gap theorem for the projective action ρ of $SL_2(\mathbb{R})$ on $P_1(\mathbb{R})$ that was established in [B-Y] and which is our main tool (cf. also the application in [B2] of the latter result to regularity of Furstenberg measures). This spectral gap property is not a consequence of hyperbolicity but is obtained by an adaptation to $SL_2(\mathbb{R})$ of the arguments from [B-G] on spectral gaps in $SU(2)$, established by methods from arithmetic combinatorics (we will not elaborate on these aspects here; see also §4). In its abstract setting, the result from [B-Y] may be formulated as follows. We identify $P_1(\mathbb{R})$ with the torus $T = \mathbb{R}/\mathbb{Z}$.

Proposition 1. [B-Y].

Given a constant $0 < c < 1$, there is $R_0 \in \mathbb{Z}_+$ such that the following holds. Let $R > R_0$ and $\mathcal{G} \subset SL_2(\mathbb{R}), |\mathcal{G}| = R$ generating freely the free group F_R on R generators. Assume moreover

1. $\|g - e\| < R^{-c}$ for $g \in \mathcal{G}$
2. \mathcal{G} satisfies the following ‘non commutative diophantine condition’. Denote $W_\ell(\mathcal{G}) \subset SL_2(\mathbb{R})$ the set of words of length at most ℓ written in the \mathcal{G}-elements. Then, for all $\ell \in \mathbb{Z}_+$

$$\|g - e\| > R^{-\ell/c} \text{ for } g \in W_\ell(\mathcal{G}) \setminus \{e\}.$$
Then there is a finite dimensional subspace V of $L^2(T)$, that may be taken

$$V = [e(n\theta); |n| < K] \quad (e(n\theta) = e^{2\pi i n\theta})$$

where $K = K(R) \in \mathbb{Z}$ large enough, such that if $f \in L^2(T)$, $\|f\|_2 = 1$ and $f \perp V$, then

$$\left\| \frac{1}{2R} \sum_{g \in G} (\rho_g f + \rho_{g^{-1}} f) \right\|_2 < \frac{1}{2}. \quad (0.8)$$

In the construction from [B-Y], the elements of G have rational entries, more precisely, $G \subset SL_2(\mathbb{R}) \cap \frac{1}{Q} \text{Mat}_{2 \times 2}(\mathbb{Z})$ with $Q \in \mathbb{Z}_+$ satisfying

$$Q^c < |G| < R < Q. \quad (0.9)$$

Obviously $\|g - e\| \geq Q^{-\ell}$ for $g \in W_\ell(G) \{e\}$ and in this way we obtain condition (0.7). In the application in this paper, G will consist of algebraic elements of bounded degree $d < C$ and height bounded by R^C. The required diophantine condition follows then from [G-J-S], Proposition 4.3, again invoking simple arithmetic considerations. Presently, the [G-J-S] argument seems the only known one to establish such non-commutative DC and it is a major problem in this area of group expansion to treat non-algebraic generators. This explains why in (0.4), λ was assumed algebraic. Let us next explain assumption (0.5), which in some sense is the novel input. Denote for a fixed $E \in]-2 + \delta, 2 - \delta[$

$$g_+ = \begin{pmatrix} E + \lambda & -1 \\ 1 & 0 \end{pmatrix} \quad g_- = \begin{pmatrix} E - \lambda & -1 \\ 1 & 0 \end{pmatrix}. \quad (0.10)$$

Clearly

$$h_1 = g_+ g_-^{-1} = \begin{pmatrix} 1 & 2\lambda \\ 0 & 1 \end{pmatrix}$$

$$h_2 = g_+^{-1} g_- = \begin{pmatrix} 1 & 0 \\ 2\lambda & 1 \end{pmatrix}. \quad (0.11)$$

We use the following result due to Brenner [Br].

Proposition 2. ([Br]).
If \(\mu \in \mathbb{R}, |\mu| \geq 2 \), then the group generated by the parabolic elements

\[
A = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ \mu & 1 \end{pmatrix}
\]

is free.

As pointed out in [L-U], the same conclusion holds if \(\mu \) is an algebraic number with an algebraic conjugate \(\mu' \) such that \(|\mu'| \geq 2 \). Hence, if \(\lambda \) satisfies (0.5), the elements \(h_1, h_2 \) defined in (0.11) will generate a free group. The set \(\mathcal{G} \) in Proposition 1 is then obtained by considering elements \(h_1^r h_2^r \), \(r = 1, \ldots, R \). Using Proposition 1, we prove that

\[
\|f - \rho g_+ f\|_2 + \|f - \rho g_- f\|_2 > \frac{1}{8} \lambda^\tau \tag{0.12}
\]

if \(f \in L^2(\mathbb{T}), \|f\|_2 = 1, f \in V^\perp \).

Here \(\tau > 0 \) is arbitrary and fixed, \(|\lambda| \) taken sufficiently small depending on \(\tau \) (for our purpose, \(\tau < \frac{1}{2} \) will do). Note that the inequality (0.12), restricted to \(f \in V^\perp, \|f\|_2 = 1 \), is considerably stronger than the general inequality (cf. [S-V-W], Theorem 4.1)

\[
\|f - \rho g_+ f\|_2 + \|f - f g_- f\|_2 > c|\lambda| \tag{0.13}
\]

if \(f \in L^2(\mathbb{T}), \|f\|_2 = 1 \).

From (0.12), we derive a restricted spectral gap for the operator

\[
\frac{1}{4}(I + \rho g_+ + \rho g_-) \quad \text{i.e.}
\]

\[
\left\| \frac{1}{3}(f + \rho g_+ f + \rho g_- f) \right\|_2 \leq (1 - c \lambda^{2\tau}) \|f\|_2 \quad \text{for} \quad f \in V^\perp \tag{0.14}
\]

and (0.14) is then processed further to derive certain smoothing estimates for the convolution powers (cf. [B2]), from which eventually the regularity of the Lyapounov exponent is derived.

Some comments about the energy restriction \(|E| < 2 - \delta \). At some stage of our analysis, we make use of the Figotin-Pastur transformation, setting

\[
E = 2 \cos \kappa \quad (0 < \kappa < \pi) \tag{0.15}
\]

and conjugating the cocycle by the matrix

\[
S = \frac{1}{(\sin \kappa)^{\frac{\tau}{2}}} \begin{pmatrix} 1 & -\cos \kappa \\ 0 & \sin \kappa \end{pmatrix}. \tag{0.16}
\]
This gives
\[Sg\pm S^{-1} = \begin{pmatrix} \cos \kappa & -\sin \kappa \\ \sin \kappa & \cos \kappa \end{pmatrix} \pm \lambda \begin{pmatrix} 1 & \frac{\cos \kappa}{\sin \kappa} \\ 0 & 0 \end{pmatrix} \] (0.17)
which for small \(\lambda \) are perturbations of a rotation. We did not explore here how to handle the edges of the spectrum.

Finally, let us point out that while \(\lambda \) is taken small, we do not let \(\lambda \to 0 \) in the above Theorem and the regularity estimates on \(N(E) \) degenerate in the limit \(\lambda \to 0 \).

1. A spectral gap estimate

In this section, we prove the following

Proposition 3. Fix constants \(C > 1, 0 < \tau < \frac{1}{2} \). Let \(\lambda \) be an algebraic number of degree \(d < C \) and with minimal polynomial \(P_d(x) = \sum_{j=0}^{d} a_j x^j \in \mathbb{Z}[X] \). Assume

\[
(1.1) \quad |\lambda|, \lambda_0 = \lambda_0(C, \tau) < \frac{1}{10} \\
(1.2) \quad H = \max |a_j| < \left(\frac{1}{2} \right)^C \\
(1.3) \quad \lambda \) has an algebraic conjugate \(\lambda' \) with \(|\lambda'| \geq 2 \).
\]

Denote
\[
h_1 = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad h_2 = \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}
\]
and let \(\rho \) be the projective representation of \(SL_2(\mathbb{R}) \), acting on \(L^2(\mathbb{T}) \). There is a finite dimensional space \(V = [e(n\theta); |n| < K] \), where \(K = K(\lambda) \), such that if \(f \in L^2(\mathbb{T}), \|f\|_2 = 1 \) and \(f \perp V \), then
\[
\|f - \rho h_1 f\|_2 + \|f - \rho h_2 f\|_2 > \frac{1}{4} \lambda^\tau. \quad (1.4)
\]

By (0.11), Proposition 3 implies (0.12) for \(\lambda \) satisfying assumption (0.5) of the Theorem.

Proof of Proposition 3.

The argument relies on Proposition 1 and 2 stated in Section 0.

Let \(f \) be as above (with \(K \) to be specified) and assume
\[
\|f - \rho h_1 f\|_2 < \varepsilon_0, \|f - \rho h_1 f\|_2 < \varepsilon_0. \quad (1.5)
\]
Denoting $W_{\ell}(h_1, h_2)$ the words of length at most ℓ written in h_1, h_2 and their inverses, it follows from (1.5) that
\[
\|f - \rho_g f\|_2 < \ell \varepsilon_0 \quad \text{for} \quad g \in W_{\ell}(h_1, h_2).
\] (1.6)

By Proposition 2 and (1.3), h_1, h_2 are generators of the free group F_2. Let
\[
R = \lfloor |\lambda|^{-\tau} \rfloor \quad \text{(1.7)}
\]
and define for $r = 1, \ldots, R$
\[
g_r = h_1^r h_2^r = \begin{pmatrix} 1 & r\lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ r\lambda & 1 \end{pmatrix}.
\] (1.8)

Then $G = \{g_1, \ldots, g_R\}$ are free generators of F_R and clearly satisfy
\[
\|1 - g\| < \lambda^{\frac{1}{2}} \quad \text{for} \quad g \in G.
\] (1.9)

In order to apply Proposition 1, we need to verify the DC (0.7). This is basically Proposition 4.3 from [G-J-S], but we recall the argument since the quantitative aspects of the estimate matter here.

Take $N \in \mathbb{Z}_+$, $N \leq H$ such that $N\lambda = \mu \in \mathcal{O} = \mathcal{O}_{\mathbb{Q}(\lambda)}$ (the integers of the number field $\mathbb{Q}(\lambda)$). If $w \in W_{\ell}(G)$, the entries of $w - 1$ are, by (1.8), of the form $f(\lambda)$ with $f(x) \in \mathbb{Z}[X]$ of degree $D \leq 2\ell$ and coefficients bounded by $(2 + R)^{2\ell}$. Let $\lambda = \lambda_1, \lambda_2, \ldots, \lambda_d$ be the conjugates of λ and set $\mu_j = N\lambda_j \ (1 \leq j \leq d)$ which are the conjugates of μ. Thus $N^D f(\lambda_j) = f_1(\mu_j)$ where $f_1(X) = N^d f(\frac{X}{N}) \in \mathbb{Z}[X]$. Assuming $f(\lambda) \neq 0$, it follows that $\prod_{j=1}^d f_1(\mu_j) \in \mathbb{Z} \setminus \{0\}$ and hence
\[
|f_1(\mu)| \geq N^{-(d-1)D} \prod_{j=2}^d |f(\lambda_j)|^{-1}. \quad \text{(1.10)}
\]

Since $|\lambda_j| \leq H + 1, |f(\lambda_j)| \leq (2 + R)^{2\ell} (H + 1)^{2\ell}$ and by (1.10), (1.7), (1.2)
\[
\|w - 1\| \geq |f(\lambda)| \geq N^{-dD}[(2 + R)(1 + H)]^{-2\ell(d-1)} > R^{-4(C+1)d\ell} = R^{-C'\ell}
\]

Taking $|\lambda| < \lambda_0(C, \tau)$, we get $R > R_0$ and the conclusion of Proposition 1 applies with some K depending on the size of λ.

From (0.8), it follows in particular that for some $g \in G \subset W_{2R}(h_1, h_2)$
\[
\frac{1}{2} < \|f - \rho_g f\|_2 < 2R\varepsilon_0
\]
implying (1.4). This proves Proposition 3. □

In the sequel, we will use (0.12) for some fixed \(\tau < \frac{1}{2} \).

2. Smoothing estimates

For \(g \in SL_2(\mathbb{R}) \), denote by \(\tau_g \) the action on \(\mathcal{P}_1(\mathbb{R}) \), identified with the circle \(\mathbb{T} = \mathbb{R}/\mathbb{Z} \). Thus if \(g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), \(ad - bc = 1 \), then

\[
e^{i\tau_g(\theta)} = \frac{(a \cos \theta + b \sin \theta) + i(c \cos \theta + d \sin \theta)}{[(a \cos \theta + b \sin \theta)^2 + (c \cos \theta + d \sin \theta)^2]^{1/2}}
\]

and \(\rho_g f = (\tau_{g^{-1}}')^{1/2} (f \circ \tau_g) \). Recall that

\[
\tau_g'(\theta) = \frac{\sin^2 \tau_g(\theta)}{(c \cos \theta + d \sin \theta)^2} = \frac{1}{[a \cos \theta + b \sin \theta]^2 + (c \cos \theta + d \sin \theta)^2}
\]

hence

\[
\|g\|^2 \leq \tau_g' \leq \|g\|^2 \quad \text{and} \quad |\tau_g^{(s)}| \leq c_s \|g\|^{2s} \text{ for } s \in \mathbb{Z}_+.
\]

Assume \(|E| < 2 - \delta \) and perform the Figotin-Pastur transformation (0.15)-(0.17) denoting \(\tilde{g}_\pm = Sg_\pm S^{-1} \). Since \(\rho_{\tilde{g}} = \rho_S \rho_{g_\pm} \rho_{S^{-1}} \), it follows from (0.12) that

\[
\|f - \rho_{\tilde{g}_+} f\|_2 + \|f - \rho_{\tilde{g}_-} f\|_2 > \frac{1}{8} \lambda^\tau
\]

provided \(\|f\|_2 = 1 \). Since \(\tau_S \) acts on \(\mathbb{T} \) as a smooth diffeomorphism, the space \(V \) may clearly be redefined as to ensure that (2.4) holds for \(f \in V^\perp, \|f\|_2 = 1 \). Observe also that by (0.17) and our assumption \(|E| < 2 - \delta \), \(\delta \) fixed, \(\tilde{g}_\pm \) are \(O(\lambda) \) perturbations of a circle rotation. Hence, by (2.2)

\[
\|\tilde{g}_\pm\| < 1 + C\lambda
\]

\[
\tau_{\tilde{g}_\pm}' = 1 + O(\lambda).
\]

Denoting

\[
\tilde{T}_1 = \frac{1}{3}(I + \rho_{(\tilde{g}_+)^{-1}} + \rho_{(\tilde{g}_-)^{-1}})
\]

(2.4) implies that

\[
\|\tilde{T}_1 f\|_2 < 1 - \frac{1}{2300} \lambda^{2\tau} \text{ if } f \in V^\perp, \|f\|_2 = 1.
\]
Since \(\rho(\tilde{g} \pm)^{-1} f = ((\tau_{\tilde{g}})^{\pm})^{1/2} (f \circ \tau_{\tilde{g}}) \), (2.6) clearly implies (assuming \(\lambda \) small enough)

\[
\| T f \|_2 \leq \left(1 - \frac{1}{2301} \right)^{2r} \| f \|_2 \text{ for } f \in V^\perp
\]

(2.9)

where \(V = \{ e(n\theta) ; |n| < K \} \) and we defined

\[
\tilde{T} f = \frac{1}{3} \left(f + (f \circ \tau_{\tilde{g}}) + (f \circ \tau_{\tilde{g}}) \right).
\]

(2.10)

For simplicity, we drop the \(\sim \) notation in the next considerations.

Our next goal is to deduce from the contractive estimate (2.9) further bounds on \(T^m \) acting on various spaces. Note that obviously

\[
\| T^m f \|_\infty \leq \| f \|_\infty.
\]

(2.11)

Let \(g \in W_t(g_+, g_-), n \in \mathbb{Z}, n' \in \mathbb{Z}_* \). By change of variable and partial integration, we obtain

\[
\left| \int e(n' \tau_g(x) + nx) dx \right| = \left| \int e(n' y + n \tau_{g^{-1}}(y)) \tau_{g^{-1}}(y) dy \right|
\]

\[
\ll_{r} \frac{1}{|n'|^r} \| e(n \tau_{g^{-1}})^{r} \tau_{g^{-1}} \|_{C^r}
\]

\[
\ll_{r} \frac{1}{|n'|^r} (|n|^r \| g \|^{2(r+1)}) \quad \text{(by (2.3))}
\]

\[
\ll_{r} \frac{|n|^r}{|n'|^r} (1 + C|\lambda|)^2(r+1)\ell
\]

(2.12)

since \(\| g \| < (1 + C\lambda)^\ell \) from (2.5).

Lemma 1.

\[
\| T^m f \|_2 \leq C(\lambda) \| f \|_2.
\]

(2.13)

Proof. Denote \(P_K \) the orthogonal (= Fourier) projection on \(V \) and decompose \(f = f^{(1)} + f^{(2)}, f^{(1)} = P_K f, f^{(2)} \perp V \).

Thus

\[
\| f^{(1)} \|_\infty \leq \sqrt{2K} \| f \|_2 \text{ and } \| f^{(2)} \|_2 \leq \| f \|_2
\]

and

\[
\| T^m f \|_2 \leq \| T^m f^{(1)} \|_2 + \| T^m f^{(2)} \|_2
\]

\[
\leq \| T^m f^{(1)} \|_\infty + \| T^{m-1} f_1 \|_2 \quad (f_1 = T f^{(2)})
\]

\[
\leq \| f^{(1)} \|_\infty + \| T^{m-1} f_1 \|_2 \quad \text{(by (2.11))}
\]

\[
\leq \sqrt{2K} \| f \|_2 + \| T^{m-1} f_1 \|_2
\]

(2.14)
where, by (2.9),
$$
\|f_1\|_2 \leq (1 - c\lambda^{2r})\|f^{(2)}\|_2 \leq (1 - c\lambda^{2r})\|f\|_2.
$$

Repeat (2.14) with f replaced by f_1 and iterate to get
$$
\|T^m f\|_2 \lesssim \sqrt{2K\lambda^{-2r}}\|f\|_2
$$
proving (2.13). \hfill \square

There is the following refinement of Lemma 1.

Lemma 2. Let $\text{supp} \hat{f} \cap [-2^k, 2^k] = \phi$ with $k > k(\lambda)$.

Then
$$
\|T^m f\|_2 \leq C(\lambda)e^{-\min(c\lambda^{2r}m, r)\|f\|_2} \quad (2.15)
$$
for any given $r \geq 1$ (assuming λ small enough).

Proof. In view of Lemma 1, it suffices to establish (2.15) for $m < C\lambda^{-2r}r$. Set $F_m = T^m f$ and decompose $F_m = P_k F_m + (F_m - P_k F_m) = F_m^{(1)} + F_m^{(2)}$. Then, using (2.12)
$$
|\hat{F}_m(n)| \leq \max_{g \in W_m} \sum_{|n'| > 2^k} |\hat{f}(n')| |e^{(n' \tau_g)}(n)|
$$
$$
\ll_r |n|^r e^{C|\lambda|\rho m} \sum_{|n'| > 2^k} |\hat{f}(n')| |n'|^{-r}
$$
$$
\ll_r |n|^r e^{Cr|\lambda|\rho} 2^{-k(r-\frac{1}{2})}\|f\|_2
$$
$$
\ll_r |n|^r \left(e^{Cr|\lambda|2r-2} \frac{1}{\sqrt{2}}\right)^r \|f\|_2 < |n|^r e^{-\frac{1}{10}r} \|f\|_2
$$
\quad (2.16)

by the assumption on m and λ sufficiently small ($\tau < \frac{1}{2}$).

Thus
$$
\|F_m^{(1)}\|_\infty \leq \sqrt{2K} \|F_m^{(1)}\|_2 \leq CK^{r+1} e^{-\frac{1}{10}rk}\|f\|_2.
$$

Estimate
$$
\|F_{m+1}\|_2 \leq \|TF_m^{(1)}\|_\infty + \|TF_m^{(2)}\|_2
$$
$$
\leq CK^{r+1} e^{-\frac{1}{10}rk}\|f\|_2 + (1 - c\lambda^{2r})\|F_m\|_2 \quad (2.17)
$$
where we used again (2.9).
Iteration of (2.17) with \(m < Cr\lambda^{-2\tau k}\) gives
\[
\|F_m\|_2 \leq \left[Cr(\lambda)e^{-\frac{1}{2}\tau k} + e^{-c\lambda^{2\tau}m}\right]\|f\|_2.
\]
This proves (2.15). \(\square\)

Next, we establish bounds on higher Sobolev norms.

Lemma 3. For \(s \in \mathbb{Z}_+, |\lambda| < \lambda(s)\), we have for \(f \in H^s(\mathbb{T})\)
\[
\|T^m f\|_{H^s} \leq C(\lambda)\|f\|_2 + e^{-c\lambda^{2s}m}\|f\|_{H^s}.
\](2.18)

In particular
\[
\|T^m f\|_{H^s} \leq C\|f\|_{H^s}.
\]

Proof. Apply Lemma 2 with \(m = m_0(\lambda)\) to specify, \(K_1 = 2^{m_0}\), to obtain
\[
\|T^{m_0} (I - P_{K_1})\|_{2 \to 2} \leq C(\lambda)e^{-c\lambda^{2s}m_0}
\](2.20)
while on the other hand for \(s \in \mathbb{Z}_+\)
\[
\|T^{m_0} (I - P_{K_1})\|_{H^s \to H^s} \leq \|T^{m_0}\|_{H^s \to H^s} < C_s \max_{g \in W_{m_0}} \|g\|^{2s} < C_s e^{C \lambda s m_0}.
\](2.21)

Assuming \(\lambda\) sufficiently small and taking \(m_0 = m_0(\lambda, s)\), interpolation between (2.20), (2.21) will imply that
\[
\|T^{m_0} (I - P_{K_1})\|_{H^s \to H^s} < \frac{1}{10}.
\](2.22)
Set \(F_m = T^m f\). Then
\[
\|F_{m+m_0}\|_{H^s} \leq \|T^{m_0} P_{K_1} F_m\|_{H^s} + \|T^{m_0} (I - P_{K_1}) F_m\|_{H^s}
\]
\[
\leq C(\lambda)K_1\|F_m\|_2 + \frac{1}{10}\|F_m\|_{H^s}
\]
\[
\leq C(\lambda)\|f\|_2 + \frac{1}{10}\|F_m\|_{H^s}.
\](2.23)
Iteration of (2.23) implies (2.18). \(\square\)

Lemmas 1, 2, 3 hold for \(\tilde{T}\) defined in (2.10). If we define now \(T\) by
\[
Tf = \frac{1}{3}(f + (f \circ \tau_{g_+}) + (f \circ \tau_{g_-}))
\](2.24)
clearly T and \tilde{T} are related by

$$\tilde{T} f = (T(f \circ \tau_S)) \circ \tau_{S^{-1}}$$

with S given by (0.16). Thus τ_S intertwines T^m and $(\tilde{T})^m$, Lemma 3 remains valid for the original T given by (2.24).

Let μ be the probability measure on $SL_2(\mathbb{R})$ defined by

$$\mu = \frac{1}{2}(\delta_{g^+} + \delta_{g^-}). \quad (2.25)$$

The Furstenberg measure ν is the (unique) μ-stationary measure on $P_1(\mathbb{R}) \simeq T$, i.e. satisfying

$$\nu = \sum_g (\tau_g)_* [\nu] \mu(g). \quad (2.26)$$

For $f \in C^1(T)$, one has large deviation inequalities (cf. [B-L]) of the form

$$\left\| \sum_g (f \circ \tau_g) \mu^{(\ell)}(g) - \int f \, d\nu \right\|_\infty \leq C e^{-c(\lambda)\ell} \|f\|_{C^1}. \quad (2.27)$$

Since

$$T = \frac{1}{3} I + \frac{2}{3} \sum \tau_g \mu(g)$$

$$T^\ell = 3^{-\ell} \sum_{m=0}^{\ell} \binom{\ell}{m} 2^m \left(\sum (\tau_g)_* \mu^{(m)}(g) \right), \quad (2.28)$$

Combined with (2.27), this gives

Lemma 4.

$$\|T^\ell f - \int f \, d\nu\|_\infty \leq C(\lambda)e^{-c(\lambda)\ell} \|f\|_{C^1}. \quad (2.29)$$

Proof. L.h.s. of (2.29) is bounded by

$$C\|f\|_{C^1} 3^{-\ell} \sum_{m=0}^{\ell} \binom{\ell}{m} 2^m e^{-c(\lambda)m} \leq C\|f\|_{C^1} \left(\frac{2}{3} + \frac{1}{3} e^{-c(\lambda)} \right)^\ell. \quad \square$$

Lemma 5. For $s \geq 1$ and $f \in H^{s+1}$

$$\|(T^\ell f)'\|_{H^s} \leq C(\lambda)e^{-c(\lambda)\ell} \|f\|_{H^{s+1}}.$$
Proof. Choose some $\ell_1 < \ell$ and write

$$
\| (T^\ell f)' \|_{H^s} \leq \| T^\ell f - \int f \, d\nu \|_{H^{s+1}}
\leq \| T^{\ell_1} (T^{\ell-\ell_1} f - \int f \, d\nu) \|_{H^{s+1}}
\leq C(\lambda) \| T^{\ell-\ell_1} f - \int f \, d\nu \|_2 + e^{-c(\lambda)\ell_1} \| T^{\ell-\ell_1} f \|_{H^{s+1}} \quad \text{(by Lemma 3)}
\leq C(\lambda) e^{-c(\lambda)(\ell-\ell_1)} \| f \|_{C^1} + C(\lambda) e^{-c(\lambda)\ell_1} \| f \|_{H^{s+1}} \quad \text{(by Lemmas 4, 3)},
$$

and (2.30) follows by taking $\ell_1 \sim \frac{\ell}{2}$.

\[\square\]

3. Smoothness of Lyapunov exponent and density of states

Recall Thouless’ formula

$$
L(E) = \int \log |E - E'| \, dN(E')
$$

which shows that the Lyapunov exponent $L(E)$ and the IDS $N(E)$ are related by the Hilbert transform. Hence it suffices to consider smoothness of $L(E)$.

Recall also that if η is the site distribution of H, then

$$
L(E) = \int \log \left\| \begin{pmatrix} E - V & -1 \\ 1 & 0 \end{pmatrix} \frac{\cos \theta}{\sin \theta} \right\| \eta(dv) \nu_E(d\theta)
= \int A \log \left\| \begin{pmatrix} E \pm \lambda & -1 \\ 1 & 0 \end{pmatrix} \frac{\cos \theta}{\sin \theta} \right\| \nu_E(d\theta) \quad \text{(3.1)}
$$

in the Bernoulli case. Denote

$$
\Phi_E(\theta) = A \log \left\| \begin{pmatrix} E \pm \lambda & -1 \\ 1 & 0 \end{pmatrix} \frac{\cos \theta}{\sin \theta} \right\| \quad \text{(3.2)}
$$

which is a smooth function in (θ, E).

By (3.1) and Lemma 4,

$$
\| L(E) - (T_E)^\ell \Phi_E \|_\infty < C e^{-c\ell} \quad \text{(3.3)}
$$

noting the dependence of T on E (constants in the sequel may depend on λ).

Proof of the Theorem.
By the preceding, it suffices to show that $L(E)$ is a C^k-function of E, assuming λ_0 in (0.3) sufficiently small.

By (3.3), it will suffice to establish bounds on $\partial_E^{(k)} (T_E^\ell \Phi_E)$ that are uniform in ℓ.

Returning to (0.10), let $\mathcal{G} = \{g_+^{(E)}, g_-^{(E)}, 1\}$. For $g_1, \ldots, g_\ell \in \mathcal{G}$, the chain rule gives

$$
\partial_E (\Phi_E \circ \tau_{g_1 \ldots g_\ell}) = (\partial_E \Phi_E) \circ \tau_{g_1 \ldots g_\ell} + \sum_{m=1}^\ell \left[(\Phi_E \circ \tau_{g_1 \ldots g_{m-1}})' \circ \tau_{g_m \ldots g_\ell}\right][\partial_E \tau_{g_{m+1}} \circ \tau_{g_{m+2} \ldots g_\ell}]
$$

(3.4)

where $\partial_E \tau_g = -\sin^2 \tau_g$. Averaging (3.4) gives therefore

$$
\partial_E (T_E^\ell \Phi_E) = T_E^\ell (\partial_E \Phi_E) - \sum_{m=1}^\ell T_E^{\ell-m+1} [(T_E^{m-1} \Phi_E)' \sin^2 \theta].
$$

(3.5)

Thus

$$
|(3.5)| < C + \sum_{m=1}^\ell \| (T_E^{m-1} \Phi_E)' \|_\infty
$$

and applying Lemma 5 with $f = \Phi_E$ and $s = 1$ shows that $\| (T_E^m \Phi_E)' \|_\infty \leq C e^{-cm}$.

For $s = 2$, one obtains by iteration of (3.5) expansions of the form

$$
T_E^{m_1} \left(\sin^2 \theta (T_E^{m_2} (\sin^2 \theta (T_E^{m_3} \Phi_E)'))' \right)
$$

(3.6)

where $\ell = m_1 + m_2 + m_3$.

Again from Lemma 5, applied consecutively for $s = 1, s = 2$,

$$
|(3.6)| \lesssim \| (T_E^{m_2} (\sin^2 \theta (T_E^{m_3} \Phi_E)'))' \|_{H^1} \lesssim e^{-cm_2} \| (T_E^{m_3} \Phi_E)' \|_{H^2} \lesssim e^{-c(m_2+m_3)}.
$$

The continuation of the process is clear.
4. Further comments

1. One could conjecture a restricted spectral gap of the form (0.12) to be valid without arithmetical assumptions on λ. This would enable us to show that the density of states of the A-B model is C^k-smooth provided the coupling $\lambda \neq 0$ is sufficiently small (at least with E restricted as in the above Theorem). Note that algebraic hypothesis on λ appear in two places. Firstly in the expansion result from [B-Y], where it is used to establish the non-commutative diophantine property of the group (see also [B-G]). In fact weaker properties (such as positive box dimension at appropriate scales) would suffice. But the only available technique so far is that from [G-J-S] using arithmetic heights. Secondly, our application of Brenner’s result is based on algebraic conjugation. The conclusion from Proposition 2 is known to fail for certain values of μ and a complete understanding of which are the ‘free’ values of μ seems not available at the present.

2. The A-B model may in some sense be viewed as a non-commutative version of the classical Bernoulli convolution problem about which there is an extensive literature. Recall that for $0 < \lambda < 1$, one considers the measure ν_λ obtained from the random series

$$\sum_{n=0}^{\infty} v_n \lambda^n$$

where $\{v_n\}$ is a sequence of independent ± 1-valued Bernoulli variables, $\mathbb{P}(v_0 = 1) = \mathbb{P}(v_0 + 1) = \frac{1}{2}$. As pointed out in [L-V], ν_λ is μ_λ-stationary, where μ_λ is the probability measure supported on the two similarities $x \to \lambda x \pm 1$ putting $1/2$ mass on each. A major problem about the measures ν_λ is their absolute continuity. Starting from the work of Erdős, several results on this issue were obtained. In particular Solomyak [Sol] proved that ν_λ is absolutely continuous for almost all $\lambda > \frac{1}{2}$, while Erdős observed that ν_λ is singular if λ^{-1} is a Pisot number. Returning to the A-B model, the situation turns out to be quite different, as our Theorem applies in particular if λ^{-1} is a sufficiently large Pisot number and in this case the Furstenberg measure is absolutely continuous with C^k-density. The latter statement follows easily from the above analysis indeed (cf. also [B2]). Let $f \in L^\infty(\mathbb{T})$, $|f| \leq 1$ and $\text{supp} \hat{f} \subset [-2^{k+1}, -2^k] \cup [2^k, 2^{k+1}]$. By (2.26), (2.28), $\langle \nu, f \rangle = \langle \nu, T^m f \rangle$ for all m. Taking now m large enough and applying the above Lemmas 3 and
2, it follows that
\[
\|T^{2m} f\|_\infty \leq C \|T^{2m} f\|_{H^1} \leq C \|T^m f\|_1 \leq e^{-rk} < C^{-k}
\] (4.2)
where \(C_\lambda\) can be made arbitrarily large for \(\lambda\) small enough. Hence we obtain
\[
|\langle \nu, f \rangle| < C_\lambda^{-k},
\]
from where the smoothness claim for \(\frac{d\nu}{d\theta}\).

Acknowledgment: The author is grateful to the mathematics department of UC Berkeley for their hospitality.

References

[B-L] P. Bougerol, J. Lacroix, Products of random matrices with applications to Schrödinger operators, Birkhauser 1985.

[B1] J. Bourgain, On the Furstenberg measure and density of states for the Anderson-Bernoulli model at small disorder, J. Analyse Math, Vol. 117 (2012), 273–295.

[B2] J. Bourgain, Finitely supported measures on \(SL_2(\mathbb{R})\) which are absolutely continuous at infinity, Geom. Funct. Anal. Lecture Notes, to appear

[B-G] J. Bourgain and A. Gamburd, On the spectral gap for finitely-generated subgroups of \(SU(2)\), Invent. Math. 171 (2008), 83–121.

[B-Y] J. Bourgain and A. Yehudayoff, Expansion in \(SL_2(\mathbb{R})\) and monotone expanders, GAFA, Vol. 23 (2013), 1–41.

[Br] J.L. Brenner, Quelques groupes tibris de matrices, CR Acad. Sc, Paris 241 (1955), 1689–1691.

[Ca-K-M] R. Carmona, A. Klein, G. Martinelli, Anderson localization for Bernoulli and other singular potentials, Comm. Math. Phys. 108 (1987), 41–66.

[G-J-S] A. Gamburd, D. Jacobson, P. Sarnak, Spectra of elements in the group ring of \(SU(2)\), JEMS, 1, 51–85.

[L-U] R.C. Lyndon, J.L. Ullman, Groups generated by two parabolic linear fractional transformations, Canad. J. Math, 21 (1969), 1388–1403.

[L-V] E. Lindenstrauss, P. Varju, Spectral gap in the group of Euclidean isometries, preprint 7/013.

[S-T] B. Simon, M. Taylor, Harmonic analysis on \(SL_2(\mathbb{R})\) and smoothness of the density of states in the one-dimensional Anderson model, Comm. Math. Pys. 101 (1985), 1–10.

[S-V-W] C. Shubin, T. Vakilian, T. Wolf, Some harmonic analysis questions suggested by Anderson-Bernoulli models, Geom. Funct. Anal. 8 (1998), 932–964.

[Sol] B. Solomyak, On the random series \(\sum \pm \lambda^n\) (an Erdos problem), Annals Math. (2), 142 (1995), no 3, 611–625.

Institute for Advanced Study, Princeton, NJ 08540

E-mail address: bourgain@ias.edu