New inequalities of Steffensen’s type for s-convex functions

Mohammad W. Alomari

Received: 9 February 2013 / Accepted: 15 June 2013 / Published online: 21 June 2013
© African Mathematical Union and Springer-Verlag Berlin Heidelberg 2013

Abstract In this work, new inequalities connected with the Steffensen’s integral inequality for s-convex functions are proved.

Keywords Steffensen’s inequality · Hayashi’s inequality · s-Convex function

Mathematics Subject Classification (2000) 26D15 · 26A42

1 Introduction

In order to study certain inequalities between mean values, Steffensen [11] has proved the following inequality (see also [9, p. 311]):

Theorem 1 Let \(f \) and \(g \) be two integrable functions defined on \((a, b)\), \(f \) is decreasing and for each \(t \in (a, b) \), \(0 \leq g(t) \leq 1 \). Then, the following inequality

\[
\left\{ \begin{array}{c}
\int_{b-\lambda}^{b} f(t) \, dt \\
\int_{a}^{b} f(t) g(t) \, dt \leq \\
\int_{a}^{a+\lambda} f(t) \, dt
\end{array} \right. \quad (1.1)
\]

holds, where \(\lambda = \int_{a}^{b} g(t) \, dt \).

Some minor generalization of Steffensen’s inequality (1.1) was considered by Hayashi [5], using the substituting \(g(t)/A \) for \(g(t) \), where \(A \) is positive constant. For other result involving Steffensen’s type inequality, see [3,5,8–11].

In the recent work [1], Alomari et al. proved the following result:

Theorem 2 Let \(f, g : [a, b] \to \mathbb{R} \) be integrable such that \(0 \leq g(t) \leq 1 \), for all \(t \in [a, b] \) such that \(\int_{a}^{b} g(t) \, dt \) exists. If \(f \) is absolutely continuous on \([a, b]\) with \(f' \in L_p[a, b] \), \(1 \leq p \leq \infty \), then we have

M. W. Alomari (✉)
Department of Mathematics, Faculty of Science, Jerash University, 26150 Jerash, Jordan
e-mail: mwomat@gmail.com
The constant
inequalities of Hermite–Hadamard type see [2] and [7].

Let

Lemma 1 Let us start with the following lemma due to Mitrinović et al. [9]:

2

The result
functions in the second sense. 123

A function \(f : \mathbb{R}^+ \rightarrow \mathbb{R} \), where \(\mathbb{R}^+ = [0, \infty) \), is said to be \(s \)-convex in the second sense if

\[
\alpha x + \beta y \leq \alpha^s f(x) + \beta^s f(y)
\]

for all \(x, y \in [0, \infty) \), \(\alpha, \beta \geq 0 \) with \(\alpha + \beta = 1 \) and for some fixed \(s \in (0, 1] \). This class of \(s \)-convex functions is usually denoted by \(K_f^2 \), (see [6]). It can be easily seen that for \(s = 1 \), \(s \)-convexity reduces to the ordinary convexity of functions defined on \([0, \infty)\).

In [4], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which holds for \(s \)-convex functions in the second sense:

\[
2^{s-1}f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{s+1}.
\]

2 The results

Let us start with the following lemma due to Mitrinović et al. [9]:

Lemma 1 Let \(f, g : [a, b] \subset \mathbb{R}^+ \rightarrow \mathbb{R} \) be integrable such that \(0 \leq g(t) \leq 1 \), for all \(t \in [a, b] \) and \(\int_a^b g(t) \, dt \) exists. Then we have the following representation

\[
\begin{align*}
\left[\int_a^b f(t) \, dt - \int_a^b f(t) g(t) \, dt\right]^{\frac{a+\lambda}{2}} &
\leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{s+1}.
\end{align*}
\]

The constant \(k = \frac{1}{s+1} \) is the best possible in the second inequality in (1.4). For another inequalities of Hermite–Hadamard type see [2] and [7].

The aim of this paper is to establish new inequalities of Steffensen’s type for \(s \)-convex functions in the second sense.
and

\[\int_{a}^{b} f(t) g(t) \, dt - \int_{b-\lambda}^{b} f(t) \, dt = - \int_{a}^{b} \left(\int_{a}^{x} g(t) \, dt \right) f'(x) \, dx - \int_{b-\lambda}^{b} \left(\int_{x}^{b} (1 - g(x)) \, dt \right) f'(x) \, dx, \quad (2.2) \]

where \(\lambda := \int_{a}^{b} g(t) \, dt. \)

Proof

Integrating by parts

\[- \int_{a}^{a+\lambda} \left(\int_{a}^{x} (1 - g(t)) \, dt \right) f'(x) \, dx - \int_{a+\lambda}^{b} \left(\int_{x}^{b} g(t) \, dt \right) f'(x) \, dx \]

\[= - \left(\int_{a}^{a+\lambda} (1 - g(t)) \, dt \right) f(a+\lambda) + \int_{a}^{a+\lambda} f(x) \left(\int_{x}^{b} (1 - g(t)) \, dt \right) \]

\[+ \int_{a+\lambda}^{b} g(t) \, dt \, f(a+\lambda) + \int_{a+\lambda}^{b} f(x) \left(\int_{a}^{x} g(t) \, dt \right) \]

\[= - \left(\int_{a}^{a+\lambda} (1 - g(t)) \, dt \right) f(a+\lambda) + \int_{a}^{a+\lambda} f(x) \, dx \]

\[= - \lambda f(a+\lambda) + f(a+\lambda) \int_{a}^{a+\lambda} g(t) \, dt + \int_{a}^{a+\lambda} f(x) \, dx \]

\[= - \lambda f(a+\lambda) + f(a+\lambda) \int_{a}^{a+\lambda} g(t) \, dt + f(a+\lambda) \int_{a}^{a+\lambda} f(x) \, dx \]

\[= - \lambda f(a+\lambda) + f(a+\lambda) \int_{a}^{a+\lambda} g(t) \, dt + f(a+\lambda) \int_{a+\lambda}^{b} g(t) \, dt \]

\[+ \int_{a}^{a+\lambda} f(x) \, dx - \int_{a}^{a+\lambda} g(x) \, dx \]

\[= \int_{a}^{a+\lambda} f(x) \, dx - \int_{a}^{b} f(x) g(x) \, dx, \]

which gives the desired representation (2.1). The identity (2.2) can be also proved in a similar way, we shall omit the details. \(\square\)
2.1 Inequalities involving s-convexity

In the following, inequalities for absolutely continuous functions whose first derivatives are s-convex (s-concave) are given:

Theorem 3 Let $f, g : [a, b] \subset \mathbb{R}^+ \to \mathbb{R}$ be integrable such that $0 \leq g(t) \leq 1$, for all $t \in [a, b]$ such that $\int_a^b g(t) f'(t) \, dt$ exists. If f is absolutely continuous on $[a, b]$ such that $|f'|$ is s-convex on $[a, b]$, for some fixed $s \in (0, 1]$ then we have

$$\left| \int_a^{a+\lambda} f(t) \, dt - \int_a^{b} f(t) \, g(t) \, dt \right| \leq \frac{1}{(s + 1)(s + 2)} \left[\lambda^2 \left| f'(a) \right| + (b - a - \lambda)^2 \left| f'(b) \right| \right]$$

and

$$\left| \int_a^{b} f(t) \, g(t) \, dt - \int_a^{b} f(t) \, dt \right| \leq \frac{1}{(s + 1)(s + 2)} \left[\lambda^2 \left| f'(b) \right| + (b - a - \lambda)^2 \left| f'(a) \right| \right]$$

where $\lambda := \int_a^b g(t) \, dt$.

Proof Utilizing the triangle inequality on (2.1), and since $|f'|$ is s-convex, we have

$$\left| \int_a^{a+\lambda} f(t) \, dt - \int_a^{b} f(t) \, g(t) \, dt \right|$$

$$\leq \left| \int_a^{a+\lambda} f(t) \, dt \right| + \left| \int_a^{b} f(t) \, g(t) \, dt \right|$$

$$\leq \int_a^{a+\lambda} f(t) \, dt + \int_a^{b} f(t) \, g(t) \, dt$$

$$\leq \int_a^{a+\lambda} f(t) \, dt + \int_a^{b} f(t) \, g(t) \, dt$$

$$\leq \int_a^{a+\lambda} f(t) \, dt + \int_a^{b} f(t) \, g(t) \, dt$$

$$\leq \int_a^{a+\lambda} f(t) \, dt + \int_a^{b} f(t) \, g(t) \, dt$$

$$\leq \frac{f'(a+\lambda)}{\lambda^s} \int_a^b \left(\int_a^x |1 - g(t)| \, dt \right) (x - a)^s \, dx$$

$$+ \frac{f'(a)}{\lambda^s} \int_a^b \left(\int_a^x |1 - g(t)| \, dt \right) (a + \lambda - x)^s \, dx$$
New inequalities of Steffensen’s type

\[+ \frac{|f'(b)|}{(b-a-\lambda)^s} \int_{a+\lambda}^{b} \left(\int_{x}^{b} |g(t)| \, dt \right) (x-a-\lambda)^s \, dx \]

\[+ \frac{|f'(a+\lambda)|}{(b-a-\lambda)^s} \int_{a+\lambda}^{b} \left(\int_{x}^{b} |g(t)| \, dt \right) (b-x)^s \, dx \]

\[\leq \frac{|f'(a+\lambda)|}{\lambda^s} \int_{a}^{a+\lambda} (x-a)^{s+1} \, dx + \frac{|f'(a)|}{\lambda^s} \int_{a}^{a+\lambda} (x-a) (a+\lambda-x)^s \, dx \]

\[+ \frac{|f'(b)|}{(b-a-\lambda)^s} \int_{a+\lambda}^{b} (b-x) (x-a-\lambda)^s \, dx + \frac{|f'(a+\lambda)|}{(b-a-\lambda)^s} \int_{a+\lambda}^{b} (b-x)^{s+1} \, dx \]

\[= \frac{1}{(s+1)(s+2)} \left[\lambda^2 |f'(a)| + (b-a-\lambda)^2 |f'(b)| \right] \]

\[+ \frac{1}{s+2} \left[\lambda^2 + (b-a-\lambda)^2 \right] |f'(a+\lambda)| \]

which proves the first inequality in (2.3). In similar way and using (2.2) we may deduce the desired inequality (2.4), and we shall omit the details. \(\square \)

Corollary 1 In (2.3) if one chooses \(s = 1 \) then

\[\left| \int_{a}^{b} f(t) \, dt - \int_{a}^{a+\lambda} f(t) \, dt \right| \]

\[\leq \frac{1}{6} \lambda^2 |f'(a)| + \frac{1}{3} [\lambda^2 + (b-a-\lambda)^2] |f'(a+\lambda)| + \frac{1}{6} (b-a-\lambda)^2 |f'(b)| \]

(2.5)

also, in (2.4) if \(s = 1 \), then

\[\left| \int_{a}^{b} f(t) g(t) \, dt - \int_{b-\lambda}^{b} f(t) \, dt \right| \]

\[\leq \frac{1}{6} \lambda^2 |f'(b)| + \frac{1}{3} [\lambda^2 + (b-a-\lambda)^2] |f'(b-\lambda)| + \frac{1}{6} (b-a-\lambda)^2 |f'(a)| \]

(2.6)

Remark 1 In the inequalities (2.3) and (2.4), choose \(\lambda = 0 \), then we have

\[\left| \int_{a}^{b} f(t) g(t) \, dt \right| \]

\[\leq \frac{(b-a)^2}{(s+1)(s+2)} \min \left\{ (s+1) |f'(a)| + |f'(b)|, |f'(a)| + (s+1) |f'(b)| \right\} . \]

(2.7)
Another approach leads to the following result:

Theorem 4 Let \(f, g : [a, b] \subset \mathbb{R}^+ \rightarrow \mathbb{R} \) be integrable such that \(0 \leq g(t) \leq 1 \), for all \(t \in [a, b] \) such that \(\int_a^b g(t) f'(t) \, dt \) exists. If \(f \) is absolutely continuous on \([a, b]\) with \(|f'| \) is \(s \)-convex on \([a, b]\), for some fixed \(s \in (0, 1) \) then we have

\[
\left| \int_a^{a+\lambda} f(t) \, dt - \int_a^b f(t) g(t) \, dt \right| \\
\leq \frac{1}{s + 1} \left[\int_a^b g(t) \, dt \right] \cdot \left[\lambda \int f'(a) \, dt + (b-a) \int f'(a+\lambda) \, dt + (b-a-\lambda) \int f'(b) \, dt \right]
\]

and

\[
\left| \int_a^b f(t) g(t) \, dt - \int_a^{b-\lambda} f(t) \, dt \right| \\
\leq \frac{1}{s + 1} \left[\int_{b-\lambda}^b g(t) \, dt \right] \cdot \left[(b-a-\lambda) \int f'(a) \, dt + (b-a) \int f'(b-\lambda) \, dt + \lambda \int f'(b) \, dt \right]
\]

where \(\lambda := \int_a^b g(t) \, dt \).

Proof From Lemma 1, we may write

\[
\left| \int_a^{a+\lambda} f(t) \, dt - \int_a^b f(t) g(t) \, dt \right| \\
\leq \sup_{x \in [a, a+\lambda]} \left[\int_a^x (1-g(t)) \, dt \right] \cdot \int_a^{a+\lambda} f'(x) \, dx + \sup_{x \in [a+\lambda, b]} \left[\int_a^x g(t) \, dt \right] \cdot \int_{a+\lambda}^b f'(x) \, dx.
\]

Since \(|f'| \) is \(s \)-convex on \([a, b]\), then by (1.4) we have

\[
\int_a^{a+\lambda} f'(x) \, dx \leq \lambda \cdot \frac{|f'(a)| + |f'(a+\lambda)|}{s + 1},
\]

and

\[
\int_{a+\lambda}^b f'(x) \, dx \leq (b-a-\lambda) \cdot \frac{|f'(a+\lambda)| + |f'(b)|}{s + 1}.
\]
Therefore, we have

$$\left| \int_a^{a+\lambda} f(t) \, dt - \int_a^b f(t) \, g(t) \, dt \right|$$

$$\leq \lambda \cdot \frac{|f'(a)| + |f'(a + \lambda)|}{s + 1} \cdot \int_a^{a+\lambda} (1 - g(t)) \, dt$$

$$+ (b - a - \lambda) \cdot \frac{|f'(a + \lambda)| + |f'(b)|}{s + 1} \cdot \int_a^b g(t) \, dt$$

$$\leq \max \left\{ \int_a^{a+\lambda} (1 - g(t)) \, dt, \int_a^b g(t) \, dt \right\} \cdot \left[\lambda \cdot \frac{|f'(a)| + |f'(a + \lambda)|}{s + 1} \right.$$

$$\left. + (b - a - \lambda) \cdot \frac{|f'(a + \lambda)| + |f'(b)|}{s + 1} \right]$$

$$= \frac{1}{s + 1} \left[\int_a^b g(t) \, dt \right] \cdot \left[\lambda \cdot |f'(a)| + (b - a) \cdot |f'(a + \lambda)| + (b - a - \lambda) \cdot |f'(b)| \right],$$

which proves the first inequality in (2.8). The second inequality in (2.8) follows directly, since $0 \leq g(t) \leq 1$ for all $t \in [a, b]$, then

$$0 \leq \int_a^b g(t) \, dt \leq (b - a - \lambda).$$

The inequalities in (2.9) may be proved in the same way using the identity (2.2), we shall omit the details. \hfill \Box

2.2 Inequalities involving s-concavity

Theorem 5 Let $f, g : [a, b] \subset \mathbb{R}^+ \to \mathbb{R}$ be integrable such that $0 \leq g(t) \leq 1$, for all $t \in [a, b]$ such that $\int_a^b g(t) \, f'(t) \, dt$ exists. If f is absolutely continuous on $[a, b]$ with $|f'|$ is s-concave on $[a, b]$, for some fixed $s \in (0, 1]$ then we have

$$\left| \int_a^{a+\lambda} f(t) \, dt - \int_a^b f(t) \, g(t) \, dt \right|$$

$$\leq 2^{s-1} \left[\int_a^b g(t) \, dt \right] \cdot \left[\lambda \cdot |f'(a + \lambda)| + (b - a - \lambda) \cdot \left| f'\left(\frac{a + b + \lambda}{2}\right)\right| \right]$$

$$\leq 2^{s-1} (b - a - \lambda) \cdot \left[\lambda \cdot \left| f'(a + \lambda) \right| + (b - a - \lambda) \cdot \left| f'\left(\frac{a + b + \lambda}{2}\right)\right| \right]$$

(2.10)
and

\[
\left| \int_{a}^{b} f(t) g(t) \, dt - \int_{a}^{b} f(t) \, dt \right| \\
\leq 2^{s-1} \left[\int_{b}^{b} g(t) \, dt \right] \cdot \left(b - a - \lambda \right) \left| f' \left(\frac{a + b - \lambda}{2} \right) \right| + \lambda \left| f' \left(b - \frac{\lambda}{2} \right) \right| \\
\leq \lambda 2^{s-1} \left[(b - a - \lambda) \left| f' \left(\frac{a + b - \lambda}{2} \right) \right| + \lambda \left| f' \left(b - \frac{\lambda}{2} \right) \right| \right] \tag{2.11}
\]

where \(\lambda := \int_{a}^{b} g(t) \, dt \).

\textbf{Proof} Utilizing the triangle inequality on (2.1), and since \(|f'| \) is s-concave on \([a, b]\) then by (1.4) we may state

\[
\left| \int_{a}^{a+\lambda} f(t) \, dt - \int_{a}^{b} f(t) g(t) \, dt \right| \\
\leq \sup_{x \in [a, a+\lambda]} \left[\int_{a}^{x} (1 - g(t)) \, dt \right] \cdot \left| f' \left(\frac{a + \lambda}{2} \right) \right| \cdot \left(b - a - \lambda \right) \left| f' \left(\frac{a + b + \lambda}{2} \right) \right| \\
\leq 2^{s-1} \lambda \left| f' \left(\frac{a + \lambda}{2} \right) \right| \cdot \left[\left(b - a - \lambda \right) \left| f' \left(\frac{a + b + \lambda}{2} \right) \right| \right.
\]

which proves the first inequality in (2.10). The second inequality in (2.10) follows directly, since \(0 \leq g(t) \leq 1 \) for all \(t \in [a, b] \), then

\[
0 \leq \int_{a+\lambda}^{b} g(t) \, dt \leq (b - a - \lambda).
\]

The inequalities in (2.11) may be proved in the same way using the identity (2.2), we shall omit the details. \(\square \)

Another result is incorporated in the following theorem:

\textbf{Theorem 6} Let \(f, g : [a, b] \subset \mathbb{R}^+ \to \mathbb{R} \) be integrable such that \(0 \leq g(t) \leq 1 \), for all \(t \in [a, b] \) such that \(\int_{a}^{b} g(t) f'(t) \, dt \) exists. If \(f \) is absolutely continuous on \([a, b]\) with \(|f'|^q \) is s-concave on \([a, b]\), for some fixed \(s \in (0, 1] \) and \(q > 1 \), then we have

\[
\left| \int_{a}^{a+\lambda} f(t) \, dt - \int_{a}^{b} f(t) g(t) \, dt \right| \\
\leq \frac{2^{(s-1)/q}}{(p + 1)^{1/p}} \left[\lambda^2 \left| f' \left(\frac{a + \lambda}{2} \right) \right| + (b - a - \lambda)^2 \left| f' \left(\frac{a + b + \lambda}{2} \right) \right| \right], \tag{2.12}
\]

\(\square \) Springer
and

\[\left| \int_{a}^{b} f(t) \, g(t) \, dt - \int_{b-\lambda}^{b} f(t) \, dt \right| \leq \frac{2^{(s-1)/q}}{(p+1)^{1/p}} \left[(b-a)^2 \left| f'(b - \frac{\lambda}{2}) \right| + \lambda^2 \left| f'(\frac{a+b-\lambda}{2}) \right| \right], \quad (2.13) \]

where \(\lambda := \int_{a}^{b} g(t) \, dt \).

Proof From Lemma 1 and using the Hölder inequality for \(q > 1 \), and \(p = \frac{q}{q-1} \), we obtain

\[
\left| \int_{a}^{a+\lambda} f(t) \, dt - \int_{a}^{b} f(t) \, g(t) \, dt \right| \\
\leq \int_{a}^{a+\lambda} \left| \int_{a}^{x} (1 - g(t)) \, dt \right| \left| f'(x) \right| \, dx + \int_{a}^{b} \left| \int_{x}^{b} g(t) \, dt \right| \left| f'(x) \right| \, dx \\
\leq \left(\int_{a}^{a+\lambda} \left| \int_{a}^{x} (1 - g(t)) \, dt \right|^{p} \, dx \right)^{1/p} \left(\int_{a}^{a+\lambda} \left| f'(x) \right|^{q} \, dx \right)^{1/q} \\
+ \left(\int_{a}^{b} \left| \int_{x}^{b} g(t) \, dt \right|^{p} \, dx \right)^{1/p} \left(\int_{a+\lambda}^{b} \left| f'(x) \right|^{q} \, dx \right)^{1/q} := M, \quad (2.14)
\]

where \(p \) is the conjugate of \(q \).

By the inequality (1.4), we have

\[\int_{a}^{a+\lambda} \left| f'(x) \right|^{q} \, dx \leq 2^{s-1} \lambda \left| f'(a + \frac{1}{2} \lambda) \right|^{q}, \]

and

\[\int_{a+\lambda}^{b} \left| f'(x) \right|^{q} \, dx \leq 2^{s-1} (b - a - \lambda) \left| f'(\frac{a+b+\lambda}{2}) \right|^{q}, \]

which gives by (2.14)

\[M \leq 2^{(s-1)/q} \lambda^{1/q} \left| f'(a + \frac{\lambda}{2}) \right| \left(\int_{a}^{a+\lambda} (x-a)^p \, dx \right)^{1/p} \]

\[+ 2^{(s-1)/q} (b - a - \lambda)^{1/q} \left| f'(\frac{a+b+\lambda}{2}) \right| \left(\int_{a+\lambda}^{b} (b-x)^p \, dx \right)^{1/p} \]
\[
\begin{align*}
\frac{2^{(s-1)/q}}{(p + 1)^{1/p}} \left[\lambda^{1/p + 1/q} \left| f'(a + \frac{\lambda}{2}) \right| + (b - a - \lambda)^{1/p + 1/q} \left| f'(\frac{a + b + \lambda}{2}) \right| \right] \\
= \frac{2^{(s-1)/q}}{(p + 1)^{1/p}} \left[\lambda^2 \left| f'(a + \frac{\lambda}{2}) \right| + (b - a - \lambda)^2 \left| f'(\frac{a + b + \lambda}{2}) \right| \right],
\end{align*}
\]
giving the inequality (2.12).

The inequality (2.13) may be proved in the same way using the identity (2.2), we shall omit the details. \(\square\)

Remark 2 The interested reader may obtain several inequalities for log-convex, quasi-convex, \(r\)-convex and \(h\)-convex functions by replacing the condition on \(|f'| \).

Acknowledgments The author wish to thank the editor and the anonymous referees for their fruitful comments and suggestions.

References

1. Alomari, M.W., Hussain, S., Liu, Z.: Some Steffensen’s type inequalities (2013, submitted)
2. Alomari, M.W., Darus, M., Kirmaci, U.S.: Some inequalities of Hermite–Hadamard type for \(s \)-convex functions. Acta Math. Sci. **31B**(4), 1643–1652 (2011)
3. Apéry, A.: Une inégalité sur les fonctions de variable réelle. Atti del Quarto Congresso dell’Unione Matematica Italiana **1951**(2), 3–4 (1953)
4. Dragomir, S.S., Fitzpatrick, S.: The Hadamard’s inequality for \(s \)-convex functions in the second sense. Demonstr. Math. **32**(4), 687–696 (1999)
5. Hayashi, T.: On curves with monotonous curvature. Tôhoku Math. J. **15**, 236–239 (1919)
6. Hudzik, H., Maligranda, L.: Some remarks on \(s \)-convex functions. Aequat. Math. **48**, 100–111 (1994)
7. Kirmaci, U.S., et al.: Hadamard-type inequalities for \(s \)-convex functions. Appl. Math. Comp. **193**, 26–35 (2007)
8. Meidell, B.: Note sur quelques inégalités et formules d’approximation. Skand. Aktuarietids. **10**, 180–198 (1918)
9. Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and new inequalities in analysis. Kluwer, Dordrecht (1993)
10. Ostrowski, A.: Aufgabensammlung zur infinitesimalrechnung, vol. 1. Basel-Stutgar (1964)
11. Steffensen, J.F.: On certain inequalities between mean values and their application to actuarial problems. Skand. Aktuarietids. 82–97 (1918)