Entropy flow of a perfect fluid in (1+1) hydrodynamics

Guillaume Beuf∗ and Robi Peschanski†
Institut de Physique Théorique,
CEA, IPhT, F-91191 Gif-sur-Yvette, France
CNRS, URA 2306

Emmanuel N. Saridakis‡
Department of Physics,
University of Athens,
GR-15771 Athens, Greece

Using the formalism of the Khalatnikov potential, we derive exact general formulae for the entropy flow \(dS/dy\), where \(y\) is the rapidity, as a function of temperature for the (1+1) relativistic hydrodynamics of a perfect fluid. We study in particular flows dominated by a sufficiently long hydrodynamic evolution, and provide an explicit analytical solution for \(dS/dy\). We discuss the theoretical implications of our general formulae and some phenomenological applications for heavy-ion collisions.

PACS numbers: 12.38.Mh, 24.10.Nz

I. INTRODUCTION

There is an accumulating evidence that hydrodynamics may be relevant for the description of the medium created in high-energy heavy ion collisions [1]. Indeed, experimental measurements such as the elliptic flow [2] shows the existence of a collective effect on the produced particles which can be described in terms of a motion of the fluid. More precisely, numerical simulations of the hydrodynamic equations describe quite well the distribution of low-\(p_\perp\) particles [1], with an equation of state close to that of a “perfect fluid” with a rather low viscosity. On the other hand, it seems useful to discuss a simplified picture [3, 4], which can be qualitatively understood in physical terms, namely the idea that the evolution of the system before freeze-out is dominated by the longitudinal motion. Thus, the hydrodynamic transverse motion can be neglected or at least factorized out in order to study the longitudinal flow only.

Indeed, the two seminal applications of relativistic hydrodynamics to particle and heavy-ion collisions, by Landau [3] and by Bjorken [4], start with this 1+1 approximation, valid in the determinative stage of the reaction. The longitudinal hydrodynamic approach has found many applications. It has been used in the literature [5, 6] in order to discuss aspects of the hydrodynamical flow which are relevant for the physical understanding of high-energy particle scattering and, more recently [7], of heavy-ion collisions.

Soon after the first proposal by Landau and its derivation of a large-time approximation [3], Khalatnikov [8] showed that (1+1) hydrodynamics derive from a potential verifying a linear equation. The Khalatnikov potential has been used in the literature in an initial period [9, 10], but has not been recently considered, to our knowledge. Very recently, the interest on looking for exact solutions of (1+1) hydrodynamics has been revived and one finds new examples and applications of exact solutions, e.g. [11, 12]. For instance, in a recent paper [11], a unified description of Bjorken and Landau (1+1) flows has been proposed as a class of exact solutions of (1+1) hydrodynamics based on harmonic flows. (1+1) hydrodynamics appears also quite recently in the application of string-theoretical ideas to the formation a strongly interacting quark-gluon plasma [13]. These exact solutions allow to find explicit analytical solutions for relevant observables. Among these, the entropy flow \(dS/dy\), where \(y\) is the rapidity, is quite interesting, since it may be related to the multiplicity distribution of particles. Our goal is to go beyond particular cases and obtain a general expression of the entropy flows as a function of the temperature for a generic solution of (1+1) hydrodynamics, i.e. for a generic solution of the Khalatnikov equation.

We are interested in the distribution \(dS/dy\) of entropy density per unit of the rapidity \(y\) which is related to the flow velocities \(u_\pm = e^{\pm y}\) in the (1+1) approximation. This “hydrodynamic observable” depends in an essential

∗Electronic address: guillaume.beuf@cea.fr
†Electronic address: robi.peschanski@cea.fr
‡Electronic address: msaridak@phys.uoa.gr
way on the assumed hypersurface1 through which we want to compute the flow (and eventually relate it to physical observables in collisions). For given entropy s and energy ϵ densities, dS/dy depends on the hypersurface one considers to follow the hydrodynamic evolution. It is particularly interesting to consider hypersurfaces corresponding to a fixed-temperature. Indeed, it allows to follow the cooling of the hydrodynamic flow, from an initial stage characterized by a high temperature, towards a final stage which is often associated to a freeze-out temperature. Hence our aim is to derive an expression of dS/dy as a function of temperature for a given Khalatnikov potential and to investigate its properties, both on theoretical and phenomenological points of view.

Our main new result, \textit{i.e.} the general expressions for the entropy flow as a function of the Khalatnikov potential, can be found in three different versions (49, 50, 53). One or the other expressions can be more suitable for a given explicit problem.

The plan of our paper is as follows. First, in section II, we group, for completion, all the necessary material, including the hydrodynamic equations, the Khalatnikov potential, its equation and solutions, recast and derived in a modern framework using light-cone variables. In section III, we formulate and derive the general expression of the entropy flow in rapidity as a function of the temperature evolution. In section IV, we derive and study a family of exact solutions, namely the ones where the final entropy distribution is dominated by the hydrodynamical evolution and not by the initial conditions. They generalize the Landau flow, and give the asymptotic behavior of physical flows in the limit of long hydrodynamical evolution. We provide in particular the exact analytic expression of the final entropy distribution corresponding to the Belenkij-Landau [9] solution. Then, in section V, we compare the profile of the entropy distributions, as well as their energy dependence, with the relevant experimental data. The final section is traditionally devoted to conclusions and outlook.

II. (1+1) RELATIVISTIC HYDRODYNAMICS OF A PERFECT FLUID

A. Hydrodynamic equations

We consider a perfect fluid whose energy-momentum tensor is

$$T^{\mu\nu} = (\epsilon + p)u^\mu u^\nu - p\eta^{\mu\nu},$$

where ϵ is the energy density, p is the pressure and u^μ ($\mu = \{0, 1, 2, 3\}$) is the 4-velocity in the Minkowski metric $\eta^{\mu\nu}$. It obeys the equation

$$\partial_\mu T^{\mu\nu} = 0.$$

Using the standard thermodynamical identities (where we have assumed for simplicity vanishing chemical potential):

$$p + \epsilon = Ts; \quad d\epsilon = Tds; \quad dp = sdT,$$

the system of hydrodynamic equations closes by relating energy density and pressure through the general equation of state

$$\frac{dp}{d\epsilon} = \frac{sdT}{Tds} = c_s^2(T).$$

We consider now the (1+1) approximation of the hydrodynamic flow, restricting it only to the longitudinal direction. Within such an approximation, the effect of the transverse dimensions is only reflected through the equation of state (4). Note that we do not \textit{a priori} assume the traceless condition $T^{\mu\mu} = 0$, and thus the fluid is considered as “perfect” (null viscosity) but not necessarily “conformal” (null trace).

Let us introduce light-cone coordinates

$$z^\pm = t \pm z = z^0 \pm z^1 = \tau e^{\pm\eta} \Rightarrow \left(\frac{\partial}{\partial z^0} \pm \frac{\partial}{\partial z^1}\right) = 2\frac{\partial}{\partial z^\pm} \equiv 2\partial_\pm$$

where $\tau = \sqrt{z^+ z^-}$ is the proper time and $\eta = \frac{1}{2} \ln(z^+/z^-)$ is the space-time rapidity of the fluid. We also introduce for further use the light-cone components of the fluid velocity

$$u^\pm \equiv u^0 \pm u^1 = e^{\pm\eta},$$

1 We keep the term \textit{hypersurface} in the (1+1) case to keep track, even formally, of the transverse motion.
where y is the usual rapidity variable (in the energy-momentum space).

The hydrodynamic equations (2) take the form

$$
(\partial_+ + \partial_-) T^{00} + (\partial_+ - \partial_-) T^{01} = 0
$$

$$
(\partial_+ + \partial_-) T^{01} + (\partial_+ - \partial_-) T^{11} = 0 .
$$

(7)

B. Khalatnikov potential

It is known [8, 9] that one can replace to the non-linear problem of (1+1) hydrodynamic evolution with a linear equation for a suitably defined potential. In this section we follow the method of Ref.[8], recasting the calculations in the light-cone variables.

Inserting in (7) the known relations (1) for $T^{\mu\nu}$ and expressing everything in light-cone coordinates using (5,6), one obtains the following two equations:

\[
\left(\frac{e^{2y} - 1}{2}\right) \partial_+ (\epsilon + p) + e^{2y} (\epsilon + p) \partial_+ y + \left(\frac{1 - e^{-2y}}{2}\right) \partial_- (\epsilon + p) + e^{-2y} (\epsilon + p) \partial_- y + \partial_+ p - \partial_- p = 0
\]

\[
\left(\frac{e^{2y} + 1}{2}\right) \partial_+ (\epsilon + p) + e^{2y} (\epsilon + p) \partial_+ y + \left(\frac{1 + e^{-2y}}{2}\right) \partial_- (\epsilon + p) - e^{-2y} (\epsilon + p) \partial_- y - \partial_+ p - \partial_- p = 0 .
\]

In (8) the energy density ϵ and pressure p are considered as functions of the kinematic light-cone variables (z^+, z^-). One key ingredient of the potential method [8] is to express the hydrodynamic equations in terms of the hydrodynamical variables $y = \log u^+ = - \log u^-$ and $\theta = \log [T/T_0]$, where T_0 is an arbitrary temperature scale.

Relations (8) can be further transformed by inserting the differentials of the thermodynamic relations (3), namely

$$
\frac{\partial_\pm (\epsilon + p)}{\partial_\pm} = T_0 \frac{\partial_\pm (s e^\theta)}{\partial_\pm}.
$$

(9)

Multiplying the first equation of (8) by $(e^{-2y} + 1)$, the second by $(e^{-2y} - 1)$, adding them and using (9), one obtains:

$$
\partial_+ (e^{\theta+y}) = \partial_- (e^{\theta-y}).
$$

(10)

Eq.(10) proves the existence of a potential\(^2\) $\Phi(z^+, z^-)$ verifying:

$$
\partial_z \Phi(z^+, z^-) \equiv u^\pm T = T_0 e^{\theta \pm y}.
$$

(11)

In this way, (10) is automatically satisfied.

In order to transform the system of equations (8) from the kinematic variables (z^+, z^-) to the dynamical ones (θ, y), one introduces [8] the Khalatnikov potential χ, considered as a function of $(u^+ T, u^- T)$ through a Legendre transform:

$$
\chi(u^+ T, u^- T) \equiv \Phi(z^+, z^-) - z^- u^+ T - z^+ u^- T
$$

(12)

where z^\pm are functions of $(u^+ T, u^- T)$ implicitly defined by (11). Hence, we get:

$$
\frac{\partial \chi}{\partial (u^+ T)} = -z^\pm + [\partial_+ \Phi - u^- T] \frac{\partial z^+}{\partial (u^+ T)} + [\partial_- \Phi - u^+ T] \frac{\partial z^-}{\partial (u^+ T)} \equiv -z^\pm ,
$$

(13)

where, due to the relations (11), the terms between brackets are zero. Knowing the Khalatnikov potential χ, which is a function of the thermodynamic variables, one can find the kinematic variables of the flow by derivation.

In the following, we will always consider the Khalatnikov potential χ as function of θ and y, keeping the same notation for χ. That change of variables corresponds for the differential operators to

$$
\frac{\partial}{\partial (u^\pm T)} = \frac{1}{2T_0} e^{-\theta \mp y} (\partial_\theta \pm \partial_y).
$$

(14)

\(^2\) The function Φ has some degree of arbitrariness since we could define $\partial_\pm \Phi \equiv T_0 e^{\theta \pm y} + \varphi_\pm (z^\mp)$, with $\varphi_- (z^-)$ and $\varphi_+ (z^+)$ arbitrary one-variable functions. This freedom, analogous to a gauge choice, does not modify the final results.
In those variables, relation (13) writes
\[z^\pm(\theta, y) = \frac{1}{2T_0} e^{-\theta \pm y} \left(-\partial_\theta \chi \pm \partial_y \chi\right). \tag{15} \]

From (15), one also gets the expressions for the proper time \(\tau \) and the space-time rapidity \(\eta \) (defined as in (5))
\[\tau(\theta, y) = \frac{e^{-\theta}}{2T_0} \sqrt{(\partial_\theta \chi)^2 - (\partial_y \chi)^2}, \]
\[\eta(\theta, y) = y + \frac{1}{2} \log \left(\frac{-\partial_\theta \chi + \partial_y \chi}{-\partial_\theta \chi - \partial_y \chi}\right) = y - \tanh^{-1} \left(\frac{\partial_\theta \chi}{\partial_\theta \chi}\right). \tag{16} \]

C. Khalatnikov equation

Coming back to the system of equations (8), another independent combination can be obtained. Multiplying the first equation by \((e^{-2y} - 1)\), the second by \((e^{-2y} + 1)\) and adding, we obtain
\[\partial_+ (u^+ s) + \partial_- (u^- s) = 0, \tag{17} \]
This relation corresponds physically to the conservation of the entropy along the flow. It is a property of the perfect fluid that the motion of the pieces of the fluid along the velocity lines is isentropic.

Following the logics of the Legendre transform, we transform relation (17) using the \((\theta, y)\)-base. For this sake, we write down the following partial derivatives:
\[\frac{\partial (u^+ s)}{\partial \theta} \equiv u^+ ds \frac{\partial}{\partial \theta} = \frac{\partial (u^+ s)}{\partial z^+} \frac{\partial z^+}{\partial \theta} + \frac{\partial (u^+ s)}{\partial z^-} \frac{\partial z^-}{\partial \theta}, \]
\[\frac{\partial (u^+ s)}{\partial y} \equiv u^+ s = \frac{\partial (u^+ s)}{\partial z^+} \frac{\partial z^+}{\partial y} + \frac{\partial (u^+ s)}{\partial z^-} \frac{\partial z^-}{\partial y}. \tag{18} \]
Solving this system of linear equations we obtain:
\[\frac{\partial (u^+ s)}{\partial z^+} = \frac{1}{D} \left[u^+ \frac{\partial z^-}{\partial y} ds \frac{\partial z^-}{\partial \theta} - u^+ s \frac{\partial z^-}{\partial \theta}\right], \]
\[\frac{\partial (u^+ s)}{\partial z^-} = \frac{1}{D} \left[u^+ \frac{\partial z^+}{\partial y} ds \frac{\partial z^+}{\partial \theta} + u^+ s \frac{\partial z^+}{\partial \theta}\right], \tag{19} \]
where
\[D = \frac{\partial z^+}{\partial \theta} \frac{\partial z^-}{\partial y} - \frac{\partial z^+}{\partial y} \frac{\partial z^-}{\partial \theta}. \tag{20} \]

Inserting (19) into the entropy-flow conservation relation (17) we acquire:
\[\frac{ds}{d\theta} \left[u^+ \frac{\partial z^-}{\partial y} - u^+ \frac{\partial z^+}{\partial y} - s \left(u^+ \frac{\partial z^-}{\partial \theta} + u^+ \frac{\partial z^+}{\partial \theta}\right)\right] = 0. \tag{21} \]

Obtaining the expression of the \(z^\pm \) derivatives from (15), the equation (21) leads to:
\[\frac{1}{s} \frac{ds}{d\theta} \left[\partial_\theta \chi - \partial_y \chi\right] - \partial_\theta \chi + \partial_y \chi = 0. \tag{22} \]
Making use of the sound velocity relation (4) we finally arrive at the Khalatnikov equation [8, 9]:
\[c_s^2 \partial_\theta^2 \chi(\theta, y) + \left[1 - c_s^2\right] \partial_\theta \chi(\theta, y) - \partial_y^2 \chi(\theta, y) = 0. \tag{23} \]

Hence, the non-linear system of equations which governs the \((1+1)\) hydrodynamical flow has been converted into a linear, second-order, hyperbolic partial differential equation. Note that the Khalatnikov equation is valid independently from the specific form of the sound velocity.

3 We assume that the determinant \(D \) is non-zero, which is the case except on exceptional lines [9].
D. Application: solutions of the Khalatnikov equation for fixed c_s.

In this section, for our purpose, we present the solutions of the Khalatnikov equation with a constant speed of sound:

$$c_s^2 = \frac{p}{\epsilon} = g^{-1},$$ \hspace{1cm} (24)

where g will be considered as a parameter in the Khalatnikov equation (23). Note that in this case the general relations (3) write

$$\epsilon = \epsilon_0 \left(\frac{T}{T_0} \right)^{g+1} = \epsilon_0 e^{(g+1)\theta},$$ \hspace{1cm} (25)

for the energy density and

$$s = s_0 \left(\frac{T}{T_0} \right) = s_0 e^{g\theta}$$ \hspace{1cm} (26)

for the entropy density.

Writing

$$\chi(\theta, y) = e^{-\left(\frac{g-1}{2}\right)\theta} Z(\theta, y)$$ \hspace{1cm} (27)

and inserting it into (23), we acquire:

$$\partial_\theta^2 Z - g \partial_y^2 Z - \left(\frac{g-1}{2}\right)^2 Z = 0,$$ \hspace{1cm} (28)

where we have used a compact notation for partial derivatives.

It is convenient to replace the variables θ and y by α and β, defined by

$$\alpha \equiv -\theta + \frac{y}{\sqrt{g}} \quad \text{and} \quad \beta \equiv -\theta - \frac{y}{\sqrt{g}},$$ \hspace{1cm} (29)

such that equation (28) takes the form

$$\partial_\alpha \partial_\beta \tilde{Z}(\alpha, \beta) - \left(\frac{g-1}{2}\right)^2 \tilde{Z}(\alpha, \beta) = 0.$$ \hspace{1cm} (30)

We solve this equation following the Green’s functions formalism, i.e. we look for distributions $\tilde{G}(\alpha, \beta)$ such that

$$\partial_\alpha \partial_\beta \tilde{G}(\alpha, \beta) - \left(\frac{g-1}{2}\right)^2 \tilde{G}(\alpha, \beta) = \delta(\alpha)\delta(\beta).$$ \hspace{1cm} (31)

The relevant solution of equation (31) is\(^4\)

$$\tilde{G}(\alpha, \beta) = \Theta(\alpha) \Theta(\beta) I_0 \left(\frac{g-1}{2} \sqrt{\alpha \beta} \right),$$ \hspace{1cm} (32)

with I_0 the modified Bessel function of the first kind and Θ the Heaviside function. Using the relation

$$\delta(\alpha) \delta(\beta) \equiv \delta \left(-\theta + \frac{y}{\sqrt{g}} \right) \delta \left(-\theta - \frac{y}{\sqrt{g}} \right) = \sqrt{g} \delta(\theta) \delta(y),$$ \hspace{1cm} (33)

we deduce from (32) the relevant Green’s function of (28):

$$G(\theta, y) = \frac{1}{4\sqrt{g}} \tilde{G}(\alpha, \beta) = \frac{1}{4\sqrt{g}} \Theta \left(-\theta + \frac{y}{\sqrt{g}} \right) \Theta \left(-\theta - \frac{y}{\sqrt{g}} \right) I_0 \left(\frac{g-1}{2} \sqrt{\theta^2 - \frac{y^2}{g}} \right),$$ \hspace{1cm} (34)

\(^4\) There exist other Green’s functions of equation (31), with e.g. $\Theta(-\alpha)$ instead of $\Theta(\alpha)$, or $\Theta(-\beta)$ instead of $\Theta(\beta)$. Assuming that the fluid naturally expands and cools down during the evolution, and taking the arbitrary temperature scale T_0 to be the maximal temperature of the sources, $-\theta$ increases with time. Thus (32) gives the only physical solution of equation (31), analogous to the retarded propagator of the D’Alembert equation. Finally, note that for the obvious physical requirement of finite behavior at $\alpha, \beta \to \infty$, we reject the solutions of (31) containing the Bessel-K_0 function instead of I_0.
which verifies
\[\partial^2_{\theta} G - \partial^2_y G - \left(\frac{\eta}{2} \right)^2 G = \delta(\theta)\delta(y). \] (35)

Thus, we can construct the general solution of Khalatnikov equation (23), inserting a distribution of sources \(F(\hat{\theta}, \hat{y}) \), as:
\[
\chi(\theta, y) = e^{-\left(\frac{\eta}{2} \right)^2} \int d\hat{y} \int d\hat{\theta} G(\theta - \hat{\theta}, y - \hat{y}) F(\hat{\theta}, \hat{y}) = \frac{1}{4\sqrt{g}} e^{-\left(\frac{\eta}{2} \right)^2} \int d\hat{y} \int_{\theta + y/y/\sqrt{g}}^{\infty} d\hat{\theta} F(\hat{\theta}, \hat{y}) I_0 \left(\frac{g - 1}{2} \sqrt{(\theta - \hat{\theta})^2 + (y - \hat{y})^2} \right), \tag{36}
\]

Equation (36) gives the most general solution, for any distribution of sources of hydrodynamic flow. In the context of heavy-ion collisions, we are mostly interested in solutions that correspond to the evolution of a flow starting from initial conditions on a curve of the \((\theta, y)\) plane. Therefore, one should impose constraints on \(F(\hat{\theta}, \hat{y}) \), in order to describe the initial conditions. In section IV we will consider a physically-interesting sub-class of solutions.

III. DERIVATION OF THE ENTROPY FLOW

Coming back to the general formalism, let us now derive the exact formula for the entropy flow \(dS/dy \) at a given fixed temperature \(T_F = T_0 e^{\theta_F} \), as a function of rapidity \(y \). For a general \((1+1)\) hydrodynamic expansion we consider the solution formulated in terms of the general Khalatnikov potential \(\chi(\theta, y) \), given by (36). The entropy distribution at fixed temperature is expressed through the amount of entropy flowing through the hypersurface of fixed temperature \(T_F \), in an infinitesimal rapidity interval. It is given by (see e.g. [11])
\[
\frac{dS}{dy} \equiv s_F u^\mu d\lambda_\mu = s_F u^\mu n^\mu \frac{d\lambda}{dy}, \tag{37}
\]
where \(d\lambda \) is the infinitesimal (space-like) length element along the hypersurface of fixed temperature \(T_F \), and \(n^\mu \) is the normal to the hypersurface. The entropy density depends only on the temperature and not on \(y \). Hence it is constant along the fixed-temperature hypersurface, namely \(s_F \equiv s(T_F) \propto T_F^3 \).

A. The flow through the fixed-temperature hypersurface

As we have mentioned, we concentrate on hypersurfaces at fixed temperature \(T_F \) (or equivalently at \(\theta_F = \log [T_F/T_0] \)). It is convenient to use as kinematical functions the proper time \(\tau = \sqrt{z^+ z^-} \) and the space-time rapidity \(\eta = \frac{1}{2} \ln(z^+ / z^-) \), considered as functions of \(\theta \) and \(y \). In this \((\theta, y)\)-base, the fixed-temperature hypersurface is parameterized by
\[
\tau_F(y) = \tau(\theta_F, y), \quad \eta_F(y) = \eta(\theta_F, y) \tag{38}
\]
considered as functions of \(y \) at \(\theta_F \) fixed. The tangent vector to the hypersurface reads:
\[
V^+(y) \equiv z_F^+(y) = (\tau_F^+ + \eta_F^+ \tau_F) e^{n^F} \quad \text{and} \quad V^-(y) \equiv z_F^-(y) = (\tau_F^- - \eta_F^- \tau_F) e^{-n^F}, \tag{39}
\]
where the primes denote derivatives with respect to \(y \). Hence, we can construct the normalized perpendicular vector to the fixed-temperature curve \((n^+(y), n^-(y))\) defined by
\[
n^+(y) n^-(y) = 1 \quad \text{and} \quad \frac{1}{2} [n^+(y) V^-(y) + n^-(y) V^+(y)] = 0. \tag{40}
\]
Using (39) the second equation translates into
\[
n^+(y) e^{-n^F} (\eta_F^+ \tau_F - \tau_F^+) = n^-(y) e^{n^F} (\eta_F^- \tau_F + \tau_F^-). \tag{41}
\]
Provide $|\eta'_F(y)| > |\frac{\tau'_F(y)}{\tau_F(y)}|$ for all y, we find

$$n^+(y) = \frac{\eta'_F(y) + \tau'_F(y)}{\eta'_F(y) - \tau'_F(y)} e^{\eta_F}$$

$$n^-(y) = \frac{\eta'_F(y) - \tau'_F(y)}{\eta'_F(y) + \tau'_F(y)} e^{-\eta_F}.$$

(42)

Following Ref.[11], $d\lambda^\mu = d\lambda n^\mu$ is defined such that

$$(d\lambda)^2 = d\lambda^\mu d\lambda_\mu = -dz^R dz^- = -(\tau^2_F - \tau_F^2) (dy)^2,$$

(43)

where the minus sign comes from the fact that the hypersurface is a space-like curve. Thus, we have

$$d\lambda = \sqrt{\tau^2_F - \tau^2_F} dy.$$

(44)

So, inserting (42) and (44) in (37), we finally find

$$\frac{dS}{dy}(y) = s_F [\tau_F(y) \eta'_F(y) \sinh(\eta_F(y) - y) + \tau'_F(y) \sinh(\eta_F(y) - y)].$$

(45)

B. Expression of the entropy flow

Let us now introduce the expression of the entropy flow in terms of the Khalatnikov potential. Starting from (15), we obtain:

$$\cosh(\eta - y) = -\frac{1}{2\tau_T e^\theta} \partial_\theta \chi(\theta, y)$$

$$\sinh(\eta - y) = \frac{1}{2\tau_T e^\theta} \partial_\theta \chi(\theta, y).$$

(46)

Now, inserting (46) in (45) we can eliminate the hyperbolic trigonometrical functions acquiring:

$$\frac{dS}{dy}(y) = s_F \left[\frac{-\tau_F(y) \eta'_F(y) \partial_\theta \chi(\theta, y) + \tau'_F(y) \partial_\theta \chi(\theta, y)}{2\tau_T e^\theta \tau_F(y)} \right]_{\theta = \theta_F}.$$

(47)

Furthermore, by differentiation of the relations (16) with respect to y, at $\theta = \theta_F$, we find

$$\tau'_F(y) = \frac{e^{-\theta}}{2} \frac{[(\partial_\theta \chi)(\partial_y \partial_\theta \chi) - (\partial_y \chi)(\partial^2_{\theta \theta} \chi)]\big|_{\theta = \theta_F}}{(\partial_\theta \chi)^2 - (\partial_y \chi)^2}$$

$$\eta'_F(y) = \frac{[(\partial_\theta \chi)^2 - (\partial_y \chi)^2 + (\partial_y \chi)(\partial_y \partial_{\theta} \chi) - (\partial_\theta \chi)(\partial^2_{\theta \theta} \chi)]\big|_{\theta = \theta_F}}{(\partial_\theta \chi)^2 - (\partial_y \chi)^2}.$$

(48)

Then, inserting the relations (48) and (16) in (47), we obtain a remarkably simple expression, namely:

$$\frac{dS}{dy}(y) = \frac{s_F}{2\tau_T} \left[\partial^2_\theta \chi(\theta, y) - \partial_\theta \chi(\theta, y) \right]_{\theta = \theta_F}.$$

(49)

which possesses a full generality, as long as the Khalatnikov potential $\chi(\theta, y)$ exists. In addition, using the Khalatnikov equation (23), (49) can be also written as:

$$\frac{dS}{dy}(y) = \frac{s_F c^2(T_F)}{2\tau_T} \left[\partial^2_\theta \chi(\theta, y) - \partial_\theta \chi(\theta, y) \right]_{\theta = \theta_F}.$$

(50)

There is an interesting third version of equations (49,50), featuring the potential Φ instead of χ. The definition (12) of χ can be written alternatively

$$\chi = \Phi - T\tau e^{\eta - y} - T\tau e^{-\eta + y} = \Phi - 2T\tau \cosh(\eta - y).$$

(51)
Inserting in (51) the first relation of (46), one obtains
\[\Phi = \chi(\theta, y) - \partial_\theta \chi(\theta, y). \] (52)

Inserting that last relation into (50), and considering the potential \(\Phi \) (originally defined in (11) as a function of \(z^+ \) and \(z^- \)) now as a function of \(\theta \) and \(y \), one gets a third equivalent formula for the entropy flow through fixed-temperature hypersurfaces, namely
\[\frac{dS}{dy}(y) = -s_F c_s^2(T_F) \frac{\partial_\theta \Phi(\theta, y)|_{\theta=\theta_F}}{2T_F}. \] (53)

The set of expressions (49), (50) and (53) form our main formal result. They provide the exact form of the entropy flow along fixed-temperature hypersurfaces, for a general (1+1) hydrodynamic evolution. We also mention that, beyond the derivation of the Khalatnikov potential at fixed sound velocity, formulae (49,50,53) still hold for a general speed of sound, once the solution of the general Khalatnikov equation (23) is known. It is important to note that relations (49,52) are valid as long as there exist \(\chi \) or \(\Phi \) potentials, even if there is no reduction to a linear equation, i.e. no entropy conservation in the (1+1) projection of the flow, while relations (50,53) are valid when the Khalatnikov equation holds i.e. with entropy conservation in the (1+1) projection of the flow.

C. Examples

Let us check the general formulae for the entropy flow considering exact hydrodynamical solutions known in the literature, namely the Bjorken flow [4] and the harmonic flows [11].

a. Bjorken flow: The Bjorken flow corresponds to boost-invariance, i.e. \(\partial_y \chi \equiv 0 \). In this case, the Khalatnikov equation (23) reduces to
\[\chi''(\theta) + (g - 1)\chi'(\theta) = 0, \] (54)
which has as generic solution
\[\chi(\theta) = Ce^{-(g-1)\theta}, \] (55)
\(C \) being an integration constant. Let us choose \(C \) and the arbitrary temperature scale \(T_0 \) such that at the proper time \(\tau = \tau_0 \), the temperature of the fluid is \(T = T_0 \). Inserting (55) in relations (16) one finds \(C = 2T_0\tau_0/(g - 1) \), and the known expressions for the Bjorken flow, namely
\[\tau(\theta, y) = \tau_0 e^{-\eta} \quad \text{and} \quad \eta \equiv y, \] (56)
i.e. the equality of rapidity with space-time rapidity. Finally, the Khalatnikov potential for the Bjorken solution writes
\[\chi(\theta) = \frac{2T_0\tau_0}{(g - 1)} e^{-(g-1)\theta} = \frac{2T\tau}{(g - 1)}. \] (57)
Inserting (57) into (49), one obtains the entropy flow
\[\frac{dS}{dy}(y) = s_F \tau_F = s_0\tau_0 = \text{cst.}. \] (58)
Hence, as expected from boost invariance of the Bjorken flow, not only the total entropy but also the entropy flow is conserved.

b. Harmonic flows: Following Ref.[11], one is led to introduce new auxiliary variables \(l^+(z^+) \) and \(l^-(z^-) \) satisfying
\[\frac{dl^\pm}{dz^\pm} = \lambda e^{-l^\pm z}, \] (59)
where \(\lambda = \text{cst.} \). The thermodynamic variables can be explicitly written \([11]\) as

\[
\begin{align*}
\theta &= -\frac{g+1}{4g} \left(\lambda^{2} + \lambda^{-2} \right) + \frac{g-1}{2g} \lambda^{+} \lambda^{-} \\
y &= \frac{1}{2} \left(\lambda^{2} - \lambda^{-2} \right).
\end{align*}
\]

(60)

Using the property (11) of the potential \(\Phi \) one writes

\[
\frac{\partial \Phi}{\partial \lambda^{\pm}} = \frac{d_{\lambda}^{\pm}}{d\lambda^{\pm}} \partial \lambda^{\pm} \Phi = \frac{d_{\lambda}^{\pm}}{d\lambda^{\pm}} T_{0} e^{\theta \mp y}.
\]

(61)

Now, inserting (59) and the expressions (60), one obtains

\[
\frac{\partial \Phi}{\partial \lambda^{\pm}} = \lambda T_{0} e^{\theta \mp y} = \lambda T_{0} e^{\frac{g-1}{2g} \lambda^{+} \lambda^{-}}.
\]

(62)

The expressions (62) are symmetric in \(\lambda^{+} \) and \(\lambda^{-} \) and thus, by mere integration, one gets

\[
\Phi(\lambda^{+}, \lambda^{-}) = \lambda T_{0} \int_{\lambda^{+}}^{\lambda^{-}} \int_{\lambda^{+}}^{\lambda^{-}} dv e^{\frac{g-1}{2g} \lambda^{+} \lambda^{-}}.
\]

(63)

Using our relation (53), and the relation

\[
\partial \theta \Phi = \lambda T_{0} e^{\frac{2-1}{2g} (\theta^{+} + \theta^{-})^{2}} \partial \theta (\lambda^{+} + \lambda^{-}),
\]

(65)

one gets the result for the entropy flow

\[
\frac{dS}{dy}(y) = \frac{\sqrt{2} \lambda T_{0} \sigma_{F}}{g T_{0}} e^{\frac{\lambda^{+}}{2g} (\theta^{+} + \theta^{-})^{2}} \frac{|y|}{\sqrt{\theta^{2} - y^{2}/g}} \left(-\theta - \sqrt{\theta^{2} - y^{2}/g} \right)^{-1/2}.
\]

(66)

Using our general formalism, we thus recover the nontrivial result obtained by direct calculation (see Ref.\([11]\), formula (58)). Interestingly enough, we note that for the family of harmonic flows as an example, it appears to be much simpler to use formula (53) for the potential \(\Phi \) than using the Khalatnikov potential \(\chi \) itself.

Note that we have to make a specific discussion of the limiting case when \(g = 1 \), that is when the speed of sound equals the speed of light. In fact in this case, the harmonic flow cannot be obtained as above and the solution for the flow acquires a more general form. Coming back to equation (23), one finds that the Khalatnikov potential itself is harmonic, namely \(\chi(\theta, y) \equiv h_{+}(y + \theta \sqrt{g}) + h_{-}(y - \theta \sqrt{g}) \) where \(h_{+}, h_{-} \) are arbitrary functions. We thus recover the results noted in Refs.\([15]\).

IV. EVOLUTION DOMINATED SOLUTIONS

In general, a longitudinal flow in the final state follows from a longitudinal pressure gradient and/or from a longitudinal flow in the initial state. Let us consider the sub-class of solutions where the effect of the initial flow is negligible compared to the one of the initial pressure gradient. This sub-class corresponds to the dominance of the hydrodynamic evolution over the influence of the initial conditions. A typical example of such a solution is the Belenkij-Landau solution \([9]\), where the fluid is initially at rest (the so-called “full stopping” initial conditions), and then expands into the vacuum.

\[5\] Here we use our convention \(\theta = \log T/T_{0} \) with opposite sign w.r.t. \([11]\).
A. Khalatnikov potential and entropy flow

In order to model an evolution-dominated flow, let us consider all the sources at rest, i.e. \(F(\hat{\theta}, \hat{y}) \propto \delta(\hat{y}) \). Let us also take the arbitrary temperature scale \(T_0 \) to be the maximal temperature of the sources (hence \(\theta \equiv \log(T/T_0) \leq 0 \), i.e. \(F(\hat{\theta}, \hat{y}) \propto \Theta(-\hat{\theta}) \). All in all, we write

\[
F(\hat{\theta}, \hat{y}) = 4\sqrt{g} K(\hat{\theta}) \Theta(-\hat{\theta}) \delta(\hat{y}).
\]

(67)

Inserting (67) in (36), and replacing the variable \(\hat{\theta} \) by \(\theta' \equiv \theta - \hat{\theta} \), one gets

\[
\chi(\theta, y) = e^{-\frac{(\chi_{\theta} - \chi_{\hat{\theta}})}{\sqrt{g}}} \int_{\theta}^{\infty} I_0 \left(\frac{g-1}{2} \sqrt{\theta'^2 - y^2/g} \right) K(\theta - \theta') d\theta',
\]

where the function \(K(\theta - \theta') \) carries the information on the initial conditions. Note that \(\theta' \) is also negative.

In the following it is convenient to use a Laplace representation of (68). Since \(\theta \leq 0 \), we introduce the Laplace transform, and its inverse, with respect to \(-\theta \) as:

\[
\hat{f}(\gamma) = \int_{-\infty}^{0} d\theta e^{\gamma \theta} f(\theta)
\]

\[
f(\theta) = \int_{-\infty}^{\gamma_0 + \infty} \frac{d\gamma}{2\pi i} e^{-\gamma \theta} \hat{f}(\gamma),
\]

(69)

where \(\gamma_0 \) is a real constant that exceeds the real part of all the singularities of the integrand, i.e the integral is calculated on an imaginary contour that lies on the right of all singularities. Following [9], the Khalatnikov potential (68) can be written as a convolution of the two functions:

\[
\Theta(-\theta) K(\theta) = \int_{\gamma_0 - \infty}^{\gamma_0 + \infty} \frac{d\gamma}{2\pi i} e^{-\gamma \theta} \hat{K}(\gamma)
\]

\[
\Theta(-\theta - |y|/\sqrt{g}) I_0 \left(\frac{g-1}{2} \sqrt{\gamma^2 - y^2/g} \right) = \int_{\gamma_0 - \infty}^{\gamma_0 + \infty} \frac{d\gamma}{2\pi i} \frac{1}{\sqrt{\gamma^2 - (g-1)^2/4}} \left[e^{-\gamma \theta - \frac{\gamma_i}{\sqrt{\gamma^2 - (g-1)^2/4}}} \right].
\]

(70)

As the Laplace transform changes convolutions into ordinary products, one gets the Laplace representation

\[
\chi(\theta, y) = \int_{\gamma_0 - \infty}^{\gamma_0 + \infty} \frac{d\gamma}{2\pi i} \left[e^{-\frac{(\gamma + 2\gamma_0)}{2\sqrt{g}} \theta - \frac{\gamma_i}{\sqrt{g}} \sqrt{\gamma^2 - (g-1)^2/4}} \right] \frac{\hat{K}(\gamma)}{\sqrt{\gamma^2 - (g-1)^2/4}}.
\]

(71)

Notice that, while the expression of the solution (68) restricts the phase-space domain in the interval \(|y| \leq -\sqrt{g} \theta \), equation (71) may allow for an analytic continuation of the solution of the Khalatnikov potential outside this region. However the outside region may be different (e.g. with \(\chi \equiv \Theta \), as in [9]).

Let us now investigate the properties of the entropy flow given by the solutions (71) of the Khalatnikov equation. Inserting the Khalatnikov potential (71) into the expression of the entropy distribution (50), one is led to the following formula:

\[
\frac{dS}{dy}(\gamma) = \frac{8F}{2gT_F} \int_{\gamma_0 - \infty}^{\gamma_0 + \infty} \frac{d\gamma}{2\pi i} \exp \left[-\gamma \theta_F + \frac{\gamma_i}{\sqrt{g}} \sqrt{\gamma^2 - (g-1)^2/4} \right] \frac{\hat{K}(\gamma)}{\sqrt{\gamma^2 - (g-1)^2/4}}.
\]

(72)

In formula (72), one may distinguish the kernel

\[
Q(\gamma, y) \equiv \frac{\exp \left[-\frac{|y|\gamma}{\sqrt{g}} \sqrt{\gamma^2 - (g-1)^2/4} \right]}{\sqrt{\gamma^2 - (g-1)^2/4}}
\]

(73)

driving the dynamical hydrodynamic evolution as expressed on the entropy flow, and the coefficient function

\[
\hat{C}_f(\gamma) = \left[(\gamma + g/2)^2 - 1/4 \right] \hat{K}(\gamma)
\]

(74)

which encodes the initial conditions of the entropy flow.
B. Total entropy

Since we have a well-defined relation (72) for the entropy distribution, it is easy to perform the integration over \(y \) and obtain the total entropy flux through the hypersurface with fixed temperature \(T = T_F \).

Formally, (72) leads to:

\[
S_{tot}\big|_{\theta=\theta_F} \approx 2 \iint dy \frac{s_F}{2gT_F} \frac{d\gamma}{\gamma} \left(\frac{\gamma+1}{\sqrt{\gamma^2-(g-1)^2}} \right) e^{-\frac{\theta_F}{2} \sqrt{\gamma^2-(g-1)^2}} K(\gamma) \left(\frac{\gamma + g-1}{\gamma + g-1} \right) e^{-\theta_F \gamma} e^{-\frac{\theta_F}{2} \sqrt{\gamma^2-(g-1)^2}} \theta_F.
\]

where we took into account the \(\Theta(\theta-|y|/\sqrt{g}) \) function present in (70). Indeed, the hydrodynamical flow is limited in the region inside this domain, with possible contributions on the boundary \(\theta = |y|/\sqrt{g} \) (Riemann waves, see, e.g. [9]).

We know that, by construction, the flow is isentropic and thus the total entropy \(S_{tot} \) is conserved. In fact it is possible to show that the dominant part of the total conserved entropy results from the kernel (73) more than other sources such as the coefficient function (74) or the boundary Riemann waves. Hence the hydrodynamical dynamics dominate. For this sake, let us release for simplicity the boundary limitations of the integral over \(y \). One writes

\[
S_{tot} \approx \frac{s_F}{T_F \sqrt{g}} \iint dy \frac{d\gamma}{\gamma} \left(\frac{\gamma+1}{\sqrt{\gamma^2-(g-1)^2}} \right) K(\gamma) e^{-\theta_F \gamma} e^{-\frac{\theta_F}{2} \sqrt{\gamma^2-(g-1)^2}} \theta_F \frac{\theta_F}{T_F} \sqrt{g} [(g-1)/2] e^{-(g-1)(\theta_F)}.
\]

Indeed, the complex integral is obtained through the singularities of the integrand, which can be due either to the initial conditions (through singularities of \(K(\gamma) \)) or to the hydrodynamical dynamics (through the pole at \(\gamma = (g-1)/2 \)), or both. If the singularities of \(K(\gamma) \) are situated at the left (resp. right) of the pole, they will be subdominant (resp. dominant) in the total entropy. Assuming a dominance of the hydrodynamic flow, we get the final result of (76). The physical meaning of (76) becomes clear when using the thermodynamical relation (26) and the entropy density \(s_0 \) at the temperature \(T_0 \). The total entropy writes\(^6\)

\[
S_{tot} \approx \frac{s_0 \sqrt{g}}{T_0} \sqrt{g} [(g-1)/2],
\]

and thus does not depend on the features of the flow at \(T = T_F \). In conformity with the isentropic property of the flow, the total hydrodynamic entropy of the perfect fluid should be conserved, as the expression (77) is independent of \(T_F \). This provides a self-consistency check for an evolution-dominated flow. In more general cases, one should also take into account the other contributions.

A final comment is in order. A priori, the domain of integration \(|y| \leq Y/2 \) comes from energy-momentum conservation. However, the formula (68) for the Khalatnikov potential is only valid in the domain \(|y| \leq -\sqrt{g} \theta_F \). In the flow-dominated approximation, \(-\sqrt{g} \theta_F \) and \(Y/2 \) are considered large enough such that the integration domain can extend to infinity and the kernel only contributes\(^7\).

C. Relation to the Belenkij-Landau solution

We have studied the dependence of our results on the coefficient function (74) by imposing various relevant analytic forms for \(K(\gamma) \). We observed that typical meromorphic functions bounded by a constant\(^8\) at infinity and with poles at the left of \(\gamma = \frac{g-1}{2} \) give smooth and similar entropy flow distributions, almost identical at large enough \(\theta_F \). Hence we conjecture that all physical evolution-dominated solutions to be almost identical, at least for a sufficiently large

\(^6\) Note that \(\tilde{K} \) is dimensionless as the potential \(\chi \).

\(^7\) We have performed numerical checks which show that thanks to the decreasing exponential behavior, the boundary term contributes negligibly to the total entropy.

\(^8\) Indeed, choosing \(K(\gamma) \) of strictly positive degree leads to an unphysical angular point at \(y = 0 \) and to a function \(K(\theta) \), see (70), containing derivatives of Dirac distributions, i.e. structures that are too singular to describe physical flows.
value of \(\theta_F = \log(T_F/T_0) \). In order to provide an analytic expression for the entropy flow characteristic of the family of solutions, we remark that the following choice of the coefficient function (74)

\[
\bar{C}_f(\gamma) = C \left(\gamma + \frac{g-1}{2} \right) \quad \Rightarrow \quad \bar{K}(\gamma) = \frac{C}{(\gamma + \frac{g+1}{2})},
\]

(78)

where \(C \) is a dimensionless constant, corresponds to the hydrodynamical flow with an initial full stopping condition [9].

The Belenkij-Landau solution [9] describes the evolution of a slice of fluid of width \(2L \) initially at rest and expanding in the vacuum. It consists in a hydrodynamical flow bounded by Riemann waves. The matching conditions between the flow and the waves in space-time translated in terms of temperature and rapidity variables are realized by imposing zero boundary conditions on the Khalatnikov potential \(\chi \) on the characteristics \(\theta = \pm y/\sqrt{g} \). Another condition on the potential is that the center of the slice remains by symmetry at rest \((y = 0)\) during the evolution.

We have checked that the energy flow, resulting from modifications of the Ansatz (78) satisfying the dominance of the kernel singularity, is not sensibly modified from the one given by inserting the coefficient function (78) into (72).

Inserting now (78) into (71), the Khalatnikov potential between the characteristics \(-\theta \geq |y|/\sqrt{g} \) acquires the analytic form [9, 10]

\[
\chi(\theta, y) = C \int_{\theta}^{\infty} I_0 \left(\frac{g-1}{2} \sqrt{\theta^2 - \frac{y^2}{g}} \right) e^{\theta - \left(\frac{g-1}{2} \right) y^2} d\theta'.
\]

(79)

The potential is identically zero in the region \(-\theta \leq |y|/\sqrt{g} \). Note that the constant in (78,79) is such that \(C \propto LT_0 \) with our notations.

Let us now insert this specific solution to our general formula (50) for the entropy distribution. Calculating the derivatives we find:

\[
\frac{dS}{dy}(y) = s_F \frac{(g-1)C}{4g T_F} e^{-\left(\frac{g-1}{2} \right) \theta_F} \left[I_0 \left(\frac{g-1}{2} \sqrt{\theta_F^2 - \frac{y^2}{g}} \right) - I_1 \left(\frac{g-1}{2} \sqrt{\theta_F^2 - \frac{y^2}{g}} \right) \frac{\theta_F}{\sqrt{\theta_F^2 - y^2/g}} \right].
\]

(80)

Since \(\theta_F \) is negative, this expression is always positive, at least in the region \(\theta_F^2 - y^2/g \geq 0 \). Hence the positivity of the entropy flow is ensured. Finally, the expression (80) is divergence-free, since it is finite for \(\theta_F^2 = y^2/g \). We also note that it is still real in the analytic continuation of the solution (80) for \(\theta_F^2 < y^2/g \), since in this case both the numerator and the denominator of the second term are purely imaginary\(^9\).

For the total entropy, inserting (78) into the general formula (75) one gets, using the thermodynamic relations (26)

\[
S_{\text{tot}} = \frac{C}{\sqrt{g}} \frac{s_F}{T_F} e^{-\left(\frac{g-1}{2} \right) \theta_F} = \frac{C}{\sqrt{g}} \frac{s_0}{T_0}.
\]

(81)

A comment is in order at this point. Condition (78) has been considered to describe the so-called full stopping conditions. In the original papers [9], it consists in the assumptions that i) there is a specific plane where the medium is at rest for all times, and that ii) on the vacuum-boundary we have just a simple (Riemann) wave. In fact, the resulting entropy flow distribution is expected to be more general and is characteristic of the evolution-dominated hydrodynamic flows. Hence the Khalatnikov potential (79) (already obtained in [9]) and the entropy flow (80) may serve as an analytic formulation for the class of evolution-dominated flows. In fact, their features are essentially determined by the evolution kernel \(Q(\gamma, y) \) (see formula (73)).

Finally, it is interesting to note that formula (72) gives the possibility to compare the hydrodynamic predictions with those of other existing models of heavy-ion (and eventually hadron-hadron, soft scattering) reactions. This relies on the possibility of relating thermodynamic quantities, such as the temperature and the entropy, to observed properties of the particle multiplicities. In this scheme, the rapidity of particles is defined by the corresponding value of \(y \equiv \log v^+ \) obtained from the fluid velocity of the lump of fluid giving rise locally to the hadrons. In the same context, the overall temperature gradient \(\theta_F \) will be related to the total available rapidity and the entropy to the multiplicity up to phenomenological factors. We will discuss in the next section the phenomenological issues of our derivation, but the general theoretical idea is that formula (72) can be compared with the one-particle inclusive hadronic cross section which is related to the scattering amplitudes. In this respect the generic form (73) of the hydrodynamic evolution kernel may serve for a comparison of hydrodynamic properties with conventional models of scattering amplitudes.

\(^9\) Positivity may also extend, but is not ensured due to the appearance of Bessel function zeroes.
V. PHENOMENOLOGICAL APPLICATIONS

Motivated by the seminal works of Landau [3] and Bjorken [4], the comparison of their predictions for (1+1) hydrodynamics with some features of the data has been made (see e.g. [5–7, 9, 10]). Even if such a rough approximation, ignoring the details of the transverse motion or of the hadronization, cannot replace the numerical simulations, it has given some useful information on the dynamics of the quark-gluon plasma. For instance, the order of magnitude estimates made using the Bjorken flow in the central region [4] and the comparison of the multiplicity distributions with the predictions of the Landau flow [6, 7] have indicated that the proper-time region during which the hydrodynamic flow is approximately (1+1) dimensional has a deep impact on the whole process. Our aim is to take benefit of the explicit form (80) representative of the entropy of evolution-dominated flows, based on the Khalatnikov potential (79), to revisit the discussion in the light of recent experimental results.

For the phenomenological application, we will concentrate on the entropy flow corresponding to the BelenkJ-Landau solution. From (80) and (81), one obtains the formula

$$\frac{dS}{dy}(y) = S_{\text{tot}} \frac{(g-1)}{4\sqrt{g}} e^{\frac{(g-1)}{2} \theta_F} \left[I_0 \left(\frac{g-1}{2} \sqrt{\theta_F^2 - y^2/g} \right) - I_1 \left(\frac{g-1}{2} \sqrt{\theta_F^2 - y^2/g} \right) \frac{\theta_F}{\sqrt{\theta_F^2 - y^2/g}} \right], \quad (82)$$

where we have used the normalization by the total entropy S_{tot}. Formula (82) still depends on two hydrodynamical parameters θ_F, the logarithmic temperature evolution, and the speed of sound $c_s = g^{-1/2}$.

A. Multiplicity distribution at fixed energy

In order to investigate the phenomenological validity of formula (82), let us consider the experimental BRAHMS data for the charged multiplicity distribution in the most central collisions as a function of the rapidity measured recently at RHIC [16]. For sake of simplicity, in accordance with the (1+1) dimensional approximation of the dynamics that we consider, we will make the following assumptions. We will identify the rapidity if the fluid elements $y_F \equiv 1/2 \log(u^+/u^-)$ with the rapidity of the particles $y_p \equiv 1/2 \log(p^+/p^-)$. We thus keep the same notation y. In the same way, we assume that the multiplicity distribution of produced particles dN/dy in rapidity can be considered to be equal, up to a constant factor, to the entropy distribution dS/dy. One expects that the end of the hydrodynamic behavior appears at a typical temperature T_F, related to a hadronization or freeze-out temperature, and independent of the total c.o.m. energy of the collision. On the other hand, the initial temperature T_0 is expected to depend on the total c.o.m. energy (or equivalently on the total rapidity Y) and on the centrality of the collision, through the energy density $\epsilon(T_0)$ of the medium produced by the pre-hydrodynamic stage of the collision. Thus, $\theta_F = \log T_F/T_0$, should be a function of Y and of the centrality. Our formalism, based on the 1+1 dimensional approximation of the flow, is not appropriate to have a precise description of the freeze-out. Note however that some improvement could be obtained by using, e.g., the Cooper-Frye formalism [17] in the derivation of the entropy flow. We postpone this to further studies.

Using then formula (82) for dN/dy and fitting BRAHMS data by adjusting the parameter θ_F we obtain a good description for different values of g. In Fig. 1, as an example, we present the BRAHMS data fitted with (82), for four pairs of g and θ_F values, reported on the figure. In these plots the solid line corresponds to the physically meaningful region ($\frac{y^2}{g} \leq \theta_F^2$), while the dotted line corresponds to the analytic continuation of formula (82) in the region $\frac{y^2}{g} > \theta_F^2$, where the applicability of the solution (82) is theoretically questionable.

The phenomenological application appears to be correct for quite different values of the speed of sound $c_s \equiv g^{-1/2}$. The overall form of the curves is satisfactory. For the first curve at $c_s = 1/\sqrt{3}$ (i.e. the conformal case), however, the analytic continuation beyond $\frac{y^2}{g} \leq \theta_F^2$ is soon reached. We will comment on this remark later on. Indeed, when decreasing the speed of sound, e.g. for $g = 5$, the physical domain $\frac{y^2}{g} \leq \theta_F^2$ extends in rapidity.

Some comments on these results are in order.

a) It has been well-known since long [6] and confirmed more recently that a Gaussian fit to the data

$$\frac{dS}{dy}(y) \sim e^{-y^2/Y} \quad (83)$$

10 We also assume that the multiplicity distribution of charged particles is proportional to the total one.
11 One may also note that the curve indicates a violation of positivity before the kinematical limit.
FIG. 1: BRAHMS data fitted with the hydrodynamic formula. The data are taken from [16] and they correspond to charged pions in central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The solid line corresponds to the physical region ($\frac{y}{g} \leq \theta_F^2$), while the dotted one corresponds to its analytic continuation ($\frac{y}{g} > \theta_F^2$). The small vertical line marks the experimental beam-rapidity $Y_{beam} \sim Y/2$.

with a variance \sqrt{Y}, as predicted by Landau [3], was reasonably verified. We noticed, that, indeed, expression (82) has an approximate Gaussian form, but it does not correspond, except for very large θ_F, to the expansion of the exact entropy distribution near $y = 0$, as in the original argument [3] which was based on an asymptotic approximation

Hence, the sub-asymptotic features of the full solution plays an important phenomenological role.

b) There is apparently no track of the transition between the physical regime $\frac{y}{g} \leq \theta_F^2$ and its analytic continuation, described by the dotted lines in Fig.1. This is related to the mathematical property of the general solution (72) expressed using a Laplace transform. In short, the $I_0,1$ Bessel functions are transformed into $J_0,1$ with the same argument up to a factor i, without discontinuity.

c) This transition is however meaningful. In fact one knows that the lines $\frac{y}{g} = \pm \theta_F$ delineate different regions of the hydrodynamical regime. Discontinuities, and thus shock or Riemann waves may occur at these boundaries, called characteristics of the equation [18]. Hence some other solutions may branch at this point (see e.g. [9, 10]). However, our results do not depend on the specific form of these other solutions such as the shock waves considered in [9, 10].

B. Energy dependence of the multiplicity distributions

Going a step further, we would like to interpret the energy dependence (i.e. the Y dependence) of the (1+1) solution for the entropy flow compared with multiplicity data. For this sake, we make use of the Gaussian fits reported in [16] for different sets of data ranging from the AGS to RHIC.

In Fig. 2 we give the determination of θ_F as a function of Y which gives a good description of the Gaussian fits with the variance taken from [16]. As in the previous study of BRAHMS data, we performed this fit for six different values of g. As shown in Fig. 2 the corresponding relation is clearly linear. We can write:

$$\theta_F = -\kappa (Y - Y_0) .$$

(84)

As shown on the figure, the constant term Y_0 depends appreciably on g while the slope $\kappa \approx 0.2$ remains only slightly dependent on it. On a physical ground, the linear relation (84) has a reasonable interpretation. The initial

12 It is indeed easy to verify that for phenomenological values of θ_F, this approximation does not work in the data range.

13 In fact, the prediction (83) fits reasonably well, but we used instead the actual best-fit determination of the variances provided in [16].
This relation, properly stating, is exact only for the Bjork en boost-invariant flow. However, one expects that it remains approximately valid in the central region of more general flows (see, e.g. [11].)

temperature of the medium is expected to grow as a power $\kappa \leq 1$ of the incident energy. One finds approximately $T_0/T_F = e^{-\theta_F} \sim e^{2\kappa(Y - Y_0)}$. Hence the more energy is available, the longer the hydrodynamical evolution lasts. At smaller speed of sound the hydrodynamical evolution has to occur on a larger temperature interval in order to describe the same entropy distribution, as could be expected.

Moreover, there is a physical argument, analogous to the one proposed by Landau [3], for the existence of a linear proportionality property between the temperature ratio and the total c.o.m. energy. Assuming the approximate validity of the Bjorken relation $T_0/T_F = e^{-\theta_F} \sim e^{2\kappa(Y - Y_0)}$, where τ_0 (resp. τ_F) are the initial (resp. final) proper-times of the (1+1) hydrodynamical evolution and reporting in (84) one finds

$$\log \tau_0/\tau_F \approx \kappa g (Y - Y_0) \ .$$

Indeed, following [3], the separation proper-time from (1+1) hydrodynamics to the (1+3) regime is of order $\log \Delta \tau_\pi \sim 1/2 Y$ where Δ is the typical transverse size of the initial particles. Assuming that we can approximate Δ/τ_π by τ_0/τ_F, and taking into account the Bjorken flow approximation, formula (85) is suggestive of the proportionality property. We leave the precise values for $\kappa, \tau_0/\tau_F$ and Y_0 to a further determination of g since the data we discussed do not prefer a precise value of κg (to be compared with 1/2 obtained for $\log \Delta \tau_\pi$).

An interesting consequence of the linear relation (84) between θ_F and Y at fixed g is the possibility of relating the general hydrodynamic entropy distribution (72) to the one-particle inclusive cross-section and thus to the appropriate scattering amplitudes. These are not easy to formulate in the hydrodynamical formalism. Being more specific, let us transform the formula (72) in terms of the energy dependence using κ as the coefficient of proportionality in (84). We get

$$dN/dy(y, Y) \propto \int_{Y_0 - i\infty}^{Y_0 + i\infty} \frac{d\gamma}{2\pi i} e^{-\kappa(Y - Y_0)(\gamma + \frac{\gamma^2}{4})} \left(\gamma + g/2\right)^2 - 1/4 \right] \tilde{K}(\gamma) e^{\frac{1}{\sqrt{\gamma^2 - (g/1)^2}}}. \tag{86}$$

Formula (86) shows that the characteristic hydrodynamic kernel Q (see (73)) appears also as the kernel of the Laplace transform in Y of the one-particle inclusive cross-section, up to a redefinition of the conjugate moment $\omega = \kappa \gamma$ of the total rapidity Y. This relation may be useful to compare various theories and models for scattering amplitudes of high-energy collisions with the predictions of hydrodynamic evolution.
VI. CONCLUSIONS AND OUTLOOK

Let us summarize the results of our study:

On the theoretical ground, we have the following results:

i) We have recalled and reformulated the derivation of the Khalatnikov potential and equation in terms of light-cone variables. This allows to formulate the initial nonlinear problem of (1+1) hydrodynamics of a perfect fluid in terms of solutions of a linear equation. As an application, using the Green function formalism we derive the general form of the solution for constant speed of sound.

ii) Expressing the flow of entropy through fixed-temperature hypersurfaces, we provide general and simple expressions of the entropy flow dS/dy in terms of the Khalatnikov potential15.

iii) We check and illustrate the simplicity of the obtained formulae for dS/dy by applying the formalism to some exact hydrodynamic solutions which were not using the Khalatnikov formulation, such as the Bjorken flow and the less straightforward example of the harmonic flows of Ref.[11].

iv) We use our formalism to find the entropy flow for the subclass of solutions for which the hydrodynamic evolution dominates over the influence of initial conditions. A characteristic example of such flows is the one studied long ago by Landau and Belen'kij [9], corresponding to full stopping initial conditions. We provide an exact expression for the related entropy flow.

As a phenomenological application, we discuss the relevance of the full stopping entropy flow for modern heavy-ion experiments which was advocated, e.g. in Refs.[6, 7].

i) The exact expression of dS/dy for the Belen’kij-Landau solution, depending only on the ratio T_F/T_0 and on the speed of sound c_s, is in agreement with the shape of the multiplicity distribution of particles $dN/d\eta(y,Y)$ observed in heavy-ion reactions, with a linear relation between the temperature ratio and the total rapidity $\log T_0/T_F = \kappa [Y - Y_0(c_s)]$.

ii) However, comparing our exact results with the asymptotic Gaussian predictions [3, 6] for the multiplicity distributions, we find that nonasymptotic contributions play an important role in the phenomenological description.

iii) The speed of sound, which is the remaining parameter in our study, is not determined by the multiplicity distribution, since the phenomenological description seems satisfactory for a rather large range of the parameter $\gamma \equiv 1/c_s^2$. However, even if one does not see any sizable effect on the curve for $dS/dy(y,Y)$ one notices that the physical domain of the hydrodynamic expansion is restricted by the condition $y^2 \leq \gamma \theta_F^2$, especially for a speed of sound as large as the conformal one $c_s = 1/\sqrt{3}$.

This summary of conclusions leads to a few comments on possible further developments of our approach. Some of them are technical but could provide a further insight on the features of (1+1) hydrodynamics. First, it should be useful to study in detail a larger set of solutions. Second, implementing the Cooper-Frye formalism [17] directly in terms of the Khalatnikov potential could refine the hypothesis of a fixed final temperature T_F. Also, the investigation of the entropy flow through other hypersurfaces, in particular the proper-time ones (c.f. [11]) would be welcome, in particular to allow for a straightforward implementation of fixed proper-time initial conditions.

On the phenomenological point-of-view, it is important to develop the comparison of the (1+1) approach with the data and including more corrections to the idealized dominance of the longitudinal motion. One question could be settled at least phenomenologically, which is the determination of the best fit for the speed of sound parameter, which is presently rather free. Also, including a viscosity contribution is another important issue, together with the investigation of the entropy flows with varying speed-of-sound.

One may ask what is the meaning of the transition on the lines $y^2 = \gamma \theta_F^2$, which appear even in the physical rapidity region. Mathematically, they are the Riemann characteristics of the Khalatnikov equations and as such, they are regions where discontinuities may appear [18]. Indeed, these characteristics were used in the old studies [9, 10] to connect boundary Riemann waves to the domain of dynamical hydrodynamic evolution. What is their meaning, if any, in the modern view we have now of high-energy collisions, is an interesting open question.

On a more conceptual point-of-view, our study of the entropy flow and its dependence on rapidity may have some impact on recent studies [13, 14] of the AdS/CFT correspondence. It relates the hydrodynamics of a fluid, whose microscopic description is the one of a gauge field theory, with the string theory in a higher-dimensional space where the Einstein equations govern the gravitational properties of its low-energy regime. The actual realizations of the duality correspondence for a collective flow require boost-invariance and thus are limited to the Bjorken flow. This flow contains an infinite energy, and is thus of limited relevance. Knowing the analytic form of more physical solutions should be helpful to derive their dual gravitational backgrounds, which is a priori a formidable task.

15 After the completion of this paper, we noticed a related study in Ref.[19]
Acknowledgements: We thank Andrzej Bialas and Jean-Yves Ollitrault for useful suggestions. One of us (E.N.S) wishes to thanks Institut de Physique Théorique, CEA, for the hospitality during the preparation of the present work.

[1] See, for instance, T. Hirano, “Hydrodynamic approaches to relativistic heavy ion collisions,” Acta Phys. Polon. B 36, 187 (2005);
P. Huovinen and P. V. Ruuskanen, “Hydrodynamic models for heavy ion collisions,” Ann. Rev. Nucl. Part. Sci. 56, 163 (2006).
[2] J. Y. Ollitrault, “Anisotropy As A Signature Of Transverse Collective Flow,” Phys. Rev. D 46, 229 (1992).
[3] L. D. Landau, “On the multiparticle production in high-energy collisions,” Izv. Akad. Nauk Ser. Fiz. 17, 51 (1953) (in russian). [English translation: Collected Papers of L. D. Landau, edited by D. ter Haar (Gordon and Breach, New-York, 1968)].
[4] J. D. Bjorken, “Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region,” Phys. Rev. D 27, 140 (1983).
[5] See for instance:
F. Cooper, G. Frye and E. Schonberg, “Landau’s Hydrodynamic Model Of Particle Production And Electron Positron Annihilation Into Hadrons,” Phys. Rev. D 11, 192 (1975);
K. J. Eskola, K. Kajantie and P. V. Ruuskanen, “Hydrodynamics of nuclear collisions with initial conditions from perturbative QCD,” Eur. Phys. J. C 1, 627 (1998).
[6] P. Carruthers and M. Duong-Van, “New scaling law based on the hydrodynamical model of particle production,” Phys. Lett. B 41 (1972) 597,
“Rapidity and angular distributions of charged secondaries according to the hydrodynamical model of particle production,” Phys. Rev. D 8 (1973) 859.
[7] P. Steinberg, “Landau hydrodynamics and RHIC phenomena,” Acta Phys. Hung. A 24, 51 (2005).
[8] I.M.Khalatnikov, Zh.Eksp. Teor. Fiz. 26 529 (1954) (in Russian). For an english version, see Ref.[9], with a correction of the equation for the potential.
[9] S. Z. Belenkij and L. D. Landau, “The Relations Between Correlation Functions Of Produced Particles And The Dynamics Of High-Energy Multiparticle Production,” Prog. Theor. Phys. 17, 241 (1957);
G. A. Milekhin, “On the vibrations of the electronic plasma,” Sov. Phys. JETP 35, 682; [Zh. Eksp. Teor. Fiz. 35, 978 (1958)].
[10] S. Amai, H. Fukuda, C. Iso, M. Sato, “The Relations Between Correlation Functions Of Produced Particles And The Dynamics Of High-Energy Multiparticle Production,” Prog. Theor. Phys. 17, 241 (1957);
G. A. Milekhin, “On the vibrations of the electronic plasma,” Sov. Phys. JETP 35, 682; [Zh. Eksp. Teor. Fiz. 35, 978 (1958)].
[11] A. Bialas, R. A. Janik and R. B. Peschanski, “Unified description of Bjorken and Landau 1+1 hydrodynamics,” Phys. Rev. C 76, 054901 (2007).
[12] T. Csorgo, M. I. Nagy and M. Csanad, “A New Family of Simple Solutions of Perfect Fluid Hydrodynamics,” Phys. Lett. B 663, 306 (2008);
S. Pratt, “A co-moving coordinate system for relativistic hydrodynamics,” Phys. Rev. C 75, 024907 (2007).
[13] R. A. Janik and R. Peschanski, “Asymptotic perfect fluid dynamics as a consequence of AdS/CFT,” Phys. Rev. D 73, 045015 (2006);
“Gauge / gravity duality and thermalization of a boost-invariant perfect fluid,” Phys. Rev. D 74, 046007 (2006).
[14] G. Policastro, D. T. Son and A. O. Starinets, “The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma,” Phys. Rev. Lett. 87, 081601 (2001);
H. Nastase, “The RHIC fireball as a dual black hole,” arXiv:hep-th/0501068;
E. Shuryak, S. J. Sin and I. Zahed, “A gravity dual of RHIC collisions,” J. Korean Phys. Soc. 50, 384 (2007);
Y. V. Kovchegov and A. Taliotis, “Early time dynamics in heavy ion collisions from AdS/CFT correspondence,” Phys. Rev. C 76, 014905 (2007).
[15] M. S. Borisch and V. I. Zhdanov, “Exact Solutions of the Equations of Relativistic Hydrodynamics Representing Potential Flows,” SIGMA 3, 116 (2007) [arXiv:0709.1053 [math-ph]];
M. I. Nagy, T. Csorgo and M. Csanad, “Detailed description of accelerating, simple solutions of relativistic perfect fluid hydrodynamics,” Phys. Rev. C 77, 024908 (2008).
[16] I. G. Bearden et al, BRAHMS Collaboration, “Centrality dependence of charged-particle pseudorapidity distributions from d + Au collisions at s(NN)**(1/2) = 200-GeV,” Phys. Rev. Lett. 94, 162301 (2005).
[17] F. Cooper and G. Frye, “Landau’s Hydrodynamic Model Of Particle Production And Electron Positron Annihilation Into Hadrons,” Phys. Rev. D 10, 186 (1974).
[18] R. Courant and D. Hilbert, “Methods of Mathematical Physics”, Vol. 2, New York : Wiley, (1989).
[19] G.A.Milekhin, “Hydrodynamic theory of multiple production of particles in collisions between fast nucleons and nuclei” Zh. Eksp. Teor. Fiz. 35, 1185 (1958) [Sov. Phys. JETP 35, 829 (1959)].