Lymphocytes $\gamma\delta$ in clinically normal skin and peripheral blood of patients with systemic lupus erythematosus and their correlation with disease activity

Ewa Robak¹, Hanna Niewiadomska², Tadeusz Robak³,⁶, Jacek Bartkowiak⁵, Jerzy Z. Błonski³, Anna Woźniacka¹, Lech Pomorski⁴ and Anna Sysa-Jędrzejewska¹

¹Department of Dermatology and Venereology, ²Department of Oncology, ³Department of Hematology and ⁴Department of Surgery Medical University of Łódź, ul. Pabianicka 62, 93–513 Łódź, Poland

¹Corresponding Author
Tel/Fax: +48 42 684 6890
E-mail: robaktad@psk2.am.lodz.pl

Key words: SLE, $\gamma\delta$T cells, Peripheral blood, Skin, Disease activity, Prednisone, PCR, Immunohistochemistry

Introduction

Systemic lupus erythematosus (SLE) is a chronic relapsing autoimmune disorder of unknown origin with many different clinical manifestations. SLE can present with a wide range of immunological abnormalities, such as the production of a variety of autoantibodies by activated B cells, the presence of circulating immune complexes and a reduction in complement levels.¹,² T cells may have an important role in inducing B-cell hyperactivity.³,⁴ T cells in SLE show multiple abnormalities that include the presence of anti-T-lymphocyte antibodies, CD4 epitome deficiency, low levels of interleukin-2 (IL-2) receptor expression and increased levels of soluble forms of the IL-2 receptor.⁵ The most common changes in peripheral blood mononuclear cell subsets are a reduction of CD4⁺ T cells and an increase of CD8⁺ cells with imbalance of the CD4/CD8 ratio.⁶

Most mature human T cells express T-cell receptors (TCRs) on the membrane in association with the signal transduction CD3 complex. These cells are the central lymphocytes in the immune system. They provide specific pathogen recognition and long-term memory, all within the context of distinguishing foreign antigens from self-antigens.⁷,⁸ Another CD3-associated TCR complex is composed of γ- and δ-polypeptides (TCR $\gamma\delta$), which has been identified in a small population of double-negative (CD4⁻/CD8⁻) or dimly CD8⁺ peripheral blood lymphocytes, tumor cell
T cells rearrange and express clonally diverse antigen receptors similarly to TCRαβ cells. Human γδ T cells range from 1 to 15% of peripheral blood lymphocytes and show a predilection for the red pulp of the spleen and gastrointestinal tract. Increased levels of γδ T cells were detected in damaged skin from patients with infections and immune diseases, such as leprosy, cutaneous leishmaniasis, systemic sclerosis, and chronic cutaneous lupus erythematosus. Clonal expansion of TCRγδ T cells has also been reported in the peripheral blood of patients with SLE. In contrast, we and other workers have shown that the absolute number of γδ T cells in peripheral blood was lower in SLE patients than in healthy controls.

The pathologic relevance of γδ T cells in autoimmune diseases is suggested by their reactivity to highly conserved stress proteins and by the accumulation of these cells in affected organs. There are also suggestions that γδ T cells participate in both the regulation and the propagation of systemic autoimmunity.

In the present study, we have measured the number of TCRγδ cells and their subpopulations in peripheral blood and in clinically normal skin of SLE patients. We have also correlated the number of γδ T cells with disease activity.

Patients and methods

Clinical findings

The study involved 29 patients (27 females and two males), aged 18–66 years (mean, 42 years). The diagnosis of SLE was based on the revised criteria of the American Rheumatism Association (now known as the American College of Rheumatology). The mean duration of the disease was 72 months (range, 1 month–11 years). Twenty-two patients had never been treated with steroids or any other immunosuppressive agents. Six patients were treated with prednisone at a dose of 5–20 mg/day during the study and one patient with prednisone and azathioprine.

Patients with both active and inactive disease were included in the study. In all patients, the activity of the disease was determined according to the systemic lupus activity measure (SLAM) scale, as described by Linker-Israeli et al. This scale lists 32 clinical and laboratory manifestations of SLE. The maximum score in this system is 84 points. In our group of patients, the number of points ranged from 9 to 25. In the present study, we considered the score of 0–15 points for inactive disease and the score of over 15 points for active disease. By this definition, active disease was found in 15 patients while 14 patients had inactive disease.

The clinical and laboratory features of SLE patients are presented in Table 1. The control group for peripheral blood investigation comprised 19 healthy volunteers (17 women and two men), aged from 35 to 58 years (median, 45 years). Each person underwent a thorough physical evaluation by one of the authors (E.R.). Samples of normal skin were excised from 10 individuals during an operation performed because of trauma. Skin samples from the patients and control group were collected from a clinically normal, sun-exposed area.

The patients with SLE and controls showed no clinical signs of an infectious or neoplastic disease and were not given antibiotics or any other antibacterial or antiviral medication for at least 4 weeks before skin or blood donation. Informed consent was obtained from all patients and normal individuals participating in the study, which was approved by the local ethics committee.

Blood samples and immunophenotype analysis

Venous blood samples obtained from all patients and control individuals were collected at the time of clinical assessment in pyrogen-free tubes containing anticoagulant (ethylenediamine tetraacetic acid at a final concentration of 25 mM). Lymphocyte immunophenotyping and TCR diversity analysis was performed by EPICS flow cytometer S-XL (Coulter, Hialeah, FL, USA) and standard two-color immunofluorescence measurement. The details of the procedure have been described in our previous studies. Briefly, a combination of phycoerythrin-conjugated and fluorescein isothiocyanate-conjugated monoclonal antibodies (MoAbs) was
used. In polystyrene tubes, 100 μl samples of whole blood were directly stained with 10 μl of appropriate MoAbs in the dark, at room temperature. Immunoglobulin (Ig) G1 isotype control antibody conjugates were included to establish the background fluorescence. After incubation for 30 min, the samples were placed to Q-prep (Coulter) for lysis of erythrocytes and fixation of nuclear cells. At least 10,000 cells were then analyzed. Gate check was used to gate lymphocyte population defined by FS/SS and anti-CD14 and CD45 RO MoAbs. Analysis was performed using XLv2 software.

Immunohistochemistry of skin biopsies
In SLE patients, biopsies from clinically normal skin were taken from the wrist during routine diagnostic procedure of Ig deposit examination. Control skin samples were also collected from sun-exposed areas. The samples were kept at −80°C. Frozen section was carried out with a microtome (cryocut) with 3 μm layers each for histochemical study in the detection system LSAB PLUS PAP (DAKO), according to the method described by Hsu et al. The examination was carried out using monoclonal murine antibodies DAKO against CD4, CD3, CD8 and Immunotech against pan TCRγδ, Vδ2, Vδ3 and Vγ9. The presence or absence of expression of a particular antigen in lymphoid T cells was evaluated in several randomly chosen visual fields of a given preparation. Using Hogg's grid, all cells in the infiltrate were calculated, determining the percentage of cells with positive reactions in relation to all cells of the infiltrate in the examined visual fields.

The results were expressed as percentages. Throughout the whole period of study, pathologists were not informed about the source of tissue samples.

Analysis of TCR gene rearrangements by polymerase chain reaction
Frozen slices of skin specimens from studied patients were used for DNA isolation by routine proteinase K digestion and the phenol–chloform extraction procedure.

The multiplex polymerase chain reaction (PCR) procedure for the identification of TCRδ chain gene rearrangement described by Sambrook et al. was used to identify the repertoire of TCRγδ expressed on T lymphocytes in skin specimens. Three pairs of primers were used together:

Forward primers:

Vδ1: 5′-ACCTAAGCAGCCGATCATCCGCC-3′
Vδ2: 5′-ACCAACGCTGCGTGTCATAAG-3′
Vδ3: 5′-TGAGGTGGTGACTGCTCTGCACATTAGG-3′

Reverse primer:

Jδ1: 5′-ACCTCCTCCAGGAGTCTCCG-3′

Briefly, the genomic DNA was amplified in 20 μl of 1 × PCR buffer containing 200 μmol of each dNTP, 3 pmol of each primer and 1 U of Taq polymerase. The amounts of rearranged DNA obtained from the analyzed samples (especially from normal skin infiltrating lymphocytes) were low. In that case, the PCR reaction was performed with α-32P-dCTP (370 MBq/ml) to improve the sensitivity of amplification (0.25 μl per tube). Thirty cycles were run on a thermocycler (Perkin Elmer 2400) under the following conditions: denaturation at 94°C for 1 min (10 min in the first cycle), annealing at 64°C for 1 min, extension at 72°C for 1.5 min (7 min in the last cycle). The radioisotope-labeled PCR sample products were resolved using horizontal 3% agarose gel electrophoresis. Then gel was vacuum-dried and the reaction products were visualized by autoradiography. The intensity of bands (with sizes for different rearrangements between 200 and 400 base pairs) was analyzed with Molecular Analyst software using the Gel Doc 1000 Bio-Rad system. The relative proportions of different Vδ lymphocyte subsets were calculated.

Statistical analysis
To statistically calculate the obtained data the range of measured variables has been given (min–max), and mean arithmetic values (x) and standard deviation (SD) were calculated. The type of distribution of the studied features was evaluated with the Shapiro–Will test. The comparison of values of type variables in two groups were performed depending on the distribution of features with the Mann–Whitney test or a test for two means from small samples (in this case, the condition of homoscedasticity was checked by the Fischer test). If the condition of homoscedasticity was not met, comparison between mean values was carried out with the Cochran–Cox test. The differences in mean values in three groups were evaluated with the Kruskal–Wallis test or by the analysis of variance. Then, the Mann–Whitney test or Tukey test performed indirect comparisons. The correlation between features was evaluated by straight-line correlation coefficient (r) or by Spearman rank coefficient.

Results
In the present study, we have evaluated the number of Tγδ cells and their subpopulations in the peripheral blood and in normal skin of 29 SLE patients. The characteristics of the studied patients are presented in Table 1. The control group comprised of 19 healthy sex- and age-matched volunteers, and 10 patients undergoing cosmetic surgery procedures.

The expression of TCR on peripheral blood lymphocytes and also the number of CD3+, CD4+ and CD8+ lymphocytes were calculated by standard, double color immunofluorescence measurement. The results
are presented in Table 2. Our results show a significantly lower number of γδT cells in SLE patients (26.4 ± 16.9/μl) than in healthy persons (55.3 ± 20.6/μl) (*p < 0.001). However, no statistically significant correlation between the concentration of these cells and clinical activity of the disease was found (*p > 0.05) (Fig. 1). Among three γδT subpopulations, only the concentration of Vδ3 TCR+ was over twice higher in SLE (4.8 ± 6.8) patients, compared with the control group (2.2 ± 3.1), both in the active (5.0 ± 8.4) and inactive stage of the disease (4.5 ± 4.8), but the difference was not significant statistically (*p > 0.05). The concentration of other γδT subpopulations and CD3+, CD4+ and CD8+ cells was statistically significantly lower in the patients with SLE than in the control group (Table 2).

Table 2. Analysis of γδ TCR expression on peripheral blood T cells in patients with SLE and healthy donors (cell donors/μl)

Cell Subpopulation	SLE (n = 29)	Control (n = 19)	Comparison	p value
Pan γδ TCR+				
Mean ± SD	26.4 ± 16.9	55.3 ± 20.6	(a)–(d)	<0.001*
Median (2.0–68.8)	27.0	50.0	(b)–(c)–(d)–(d)	<0.001*
Range (8.0–68.8)	(2.0–59.4)	(20.0–90.0)	(b)–(d)	<0.001*
Vδ2 TCR+				
Mean ± SD	14.2 ± 12.6	38.1 ± 23.6	(a)–(d)	<0.001*
Median (0.0–53.7)	12.5	30.0	(b)–(c)–(d)	>0.05
Range (0.0–53.7)	(1.1–49.3)	(4.0–70.0)	(b)–(c)	>0.05
Vδ3 TCR+				
Mean ± SD	4.8 ± 6.8	2.2 ± 3.1	(a)–(d)	>0.05
Median (0.0–25.0)	2.24	0.20	(b)–(c)	>0.05
Range (0.0–25.0)	(0.0–17.4)	(0.08–9.0)	(b)–(c)	>0.05
Vγ9 TCR+				
Mean ± SD	16.5 ± 13.5	41.3 ± 31.1	(a)–(d)	<0.002*
Median (0.0–57.1)	13.86	30.0	(b)–(c)	>0.05
Range (0.0–49.8)	(1.1–57.1)	(4.0–100.0)	(b)–(c)	>0.05
CD3+				
Mean ± SD	773.9 ± 485.1	1174.9 ± 336.7	(a)–(d)	<0.001*
Median (12.0–1782.5)	775.0	1201.0	(b)–(c)	<0.001*
Range (376.1–1782.5)	(376.1–1782.5)	(510.0–1770.0)	(b)–(c)	<0.001*
CD4+				
Mean ± SD	203.4 ± 188.3	471.2 ± 185.2	(a)–(d)	<0.001*
Median (6.0–723.0)	148.12	518.0	(b)–(c)	>0.05
Range (44.0–723.0)	(44.0–449.1)	(197.0–891.0)	(b)–(c)	>0.05
CD8+				
Mean ± SD	281.8 ± 214.0	451.7 ± 118.9	(a)–(d)	<0.001*
Median (4.0–815.0)	232.0	430.0	(b)–(c)	>0.05
Range (114.5–815.0)	(4.0–619.1)	(271.0–632.0)	(b)–(c)	>0.005*

* Statistically significant difference.
CD3+ lymphocytes in the skin of SLE patients and healthy persons was similar (81.4 ± 7.9 and 83.0 ± 13.4%, respectively; p > 0.05). We have also found a positive correlation between the percentage of Tγδ lymphocytes in the skin and the activity of the disease (r = 0.594, p < 0.001) and between the Vδ3 TCR+ subpopulation and the activity of SLE (r = 0.659, p < 0.001) (Fig. 3). The correlation between infiltration with Tγδ lymphocytes and their subpopulations in the skin of SLE patients and the number of these cells in peripheral blood was also evaluated. A negative correlation between these parameters was noted, but...
FIG. 2. Resolution of multiplex PCR products for the identification of TCR\(\delta\) gene rearrangements. Electrophoresis in 3% agarose gel and autoradiography were performed. Lanes 1–8, control skin specimens; lanes 9–14, unevolved skin specimens of SLE patients; lane B, peripheral blood sample from healthy donor.

Table 3. Accumulation of \(\gamma\delta\) T cells in normal skin from SLE patients and normal controls (percentage of cells with positive reactions relative to all cells of the infiltrate in the examined visual fields)

Cell subpopulation	SLE (\(n = 29\))	Control (\(n = 10\))	Comparison	\(p\) value			
	Total (\(n = 29\))	Active (\(n = 15\))	Inactive (\(n = 14\))				
Pan \(\gamma\delta\) TCR*	Mean ± SD	22.0 ± 9.4	27.0 ± 9.4	16.6 ± 5.6	11.1 ± 5.5	(a)–(d)	<0.002*
	Median	20.0	26.0	16.5	11.5	(b)–(c)–(d)	<0.02*
	Range	(7.0–50.0)	(11.0–50.0)	(7.0–29.0)	(4.0–20.0)	(c)–(d)	<0.002*
\(V\delta2\) TCR*	Mean ± SD	8.9 ± 4.5	10.5 ± 4.8	6.8 ± 3.5	3.6 ± 3.1	(a)–(d)	<0.002*
	Median	8.0	10.0	6.5	2.5	(b)–(c)	<0.03*
	Range	(2.0–18.0)	(2.0–18.0)	(2.0–15.0)	(1.0–10.0)	(c)–(d)	<0.03*
\(V\delta3\) TCR*	Mean ± SD	8.0 ± 4.5	10.1 ± 4.8	5.7 ± 3.0	5.1 ± 2.5	(a)–(d)	<0.002*
	Median	7.0	11.0	6.0	4.5	(b)–(c)	<0.002*
	Range	(1.0–20.0)	(3.0–20.0)	(1.0–11.0)	(2.0–10.0)	(c)–(d)	<0.007*
\(V\gamma9\) TCR*	Mean ± SD	7.3 ± 4.6	7.9 ± 5.0	6.7 ± 4.4	2.6 ± 2.3	(a)–(d)	<0.003*
	Median	6.0	7.0	6.0	1.5	(b)–(c)	<0.008*
	Range	(1.0–19.0)	(1.0–19.0)	(1.0–16.0)	(1.0–7.0)	(c)–(d)	<0.004*
CD3*	Mean ± SD	81.4 ± 7.9	82.3 ± 7.3	80.4 ± 8.7	83.0 ± 13.4	(a)–(d)	>0.05
	Median	85.0	85.0	82.5	90.0	(b)–(c)–(d)	<0.005*
	Range	(70.0–95.0)	(70.0–95.0)	(70.0–95.0)	(50.0–95.0)	(c)–(d)	>0.05
CD4*	Mean ± SD	45.0 ± 8.3	46.3 ± 9.3	43.6 ± 7.2	57.0 ± 5.4	(a)–(d)	<0.001*
	Median	45.0	45.0	40.0	57.5	(b)–(c)	<0.002*
	Range	(30.0–60.0)	(35.0–60.0)	(30.0–55.0)	(45.0–65.0)	(c)–(d)	<0.02*
CD8*	Mean ± SD	55.0 ± 8.3	53.7 ± 9.2	56.4 ± 7.2	43.0 ± 5.4	(a)–(d)	<0.001*
	Median	55.0	55.0	60.0	42.5	(b)–(c)–(d)	<0.002*
	Range	(40.0–70.0)	(40.0–65.0)	(45.0–70.0)	(35.0–55.0)	(c)–(d)	<0.02*

* Statistically significant difference.
the differences were not statistically significant ($p > 0.05$) (Fig. 4).

In the analyzed group of 29 SLE patients, six were treated with prednisone during the study. All of them were with inactive disease. The influence of treatment with prednisone on the number $\gamma\delta$ T cells in peripheral blood and their percentage in clinically normal skin is presented in Table 4.

The percentage of $T_{\gamma\delta}$ cells in clinically normal skin was lower in the patients with SLE treated with prednisone (mean, 15.3 ± 5.2) than in the patients who were not treated with this agent (mean, $23.7 \pm$
9.5) ($p < 0.04$). Similarly, the percentage of V\(\delta\)T CR\(^+\) subpopulation was lower in patients who were not treated with prednisone (mean, 5.5 ± 2.7%) than in the treated patients (mean, 9.5 ± 4.6%).

The results of the identification of TCR\(\delta\) gene rearrangements by the PCR method and evaluation of amplified product density on gel are presented in Fig. 2 and in Table 4. It is difficult to compare, on the basis of molecular assays, the number of T\(\gamma\delta\) cells infiltrating skin specimens. Our semiquantitative estimates suggest that the total number of T\(\gamma\delta\) cells vary in the range of error between samples from SLE patients and healthy individuals (data not shown). However, we observed the appearance of the V\(\delta3^+\) T-cell subset in T-lymphocyte population infiltrating the skin specimens from SLE patients (22.4 ± 9.4% for the total...
Practically, this subpopulation was not found in skin samples from healthy control patients (1.4 ± 1.9%). We noted a significant relative decrease in the V_{δ2} T-cell subset in skin specimens of SLE patients. The relative proportion of the V_{δ1} T-cell subpopulation was not significantly changed. The V_{δ2} T-cell subpopulation dominates in the blood from healthy donors (more than 80% of pan T lymphocytes), confirming the results of earlier studies. The diffuse electrophoretic bands of PCR-amplified V_{δ} TCR genes revealed their extensive junctional diversity. This may reflect the polyclonal T-cell response to a diverse array of recognizable antigens.

Discussion

The aim of the present study was to quantitatively evaluate the number of T_{γδ} lymphocytes in peripheral blood and clinically healthy skin of SLE patients and to compare these results with their respective values in healthy individuals. The number of T_{γδ} lymphocytes in peripheral blood of SLE patients was found to be much smaller than in healthy persons, irrespective of SLE disease activity. Similar differences were observed for subpopulations V_{δ2} TCR+, V_{γ9} TCR+, CD3+, CD4+, and CD8+. However, mean values of V_{δ3} TCR+ lymphocytes were twice as high in SLE patients compared with the control group. These differences did not correlate with the activity of disease. The number of T_{γδ} lymphocytes in peripheral blood of SLE patients was also lower than in healthy persons, even though the majority of patients in the present study had not been treated with corticosteroids or other immunosuppressive drugs. In the previous study group, 22 patients among 32 (68.7%) received corticosteroids. We cannot therefore exclude the possibility that the administration of corticosteroids does not affect significantly the level of T_{γδ} lymphocytes and V_{δ2} TCR+ subpopulation in peripheral blood. A similar study was conducted by Lunardi et al. in a group of 35 SLE patients and 36 healthy persons. They found almost a 50% reduction in the percentage of T_{γδ} lymphocytes in the blood of SLE patients compared with the control group. However, similar to our study, no correlation was found between the number of these cells and the activity of SLE.

Determination of the percentage of γδT lymphocytes and their subpopulations in clinically healthy skin samples from SLE patients treated and not treated with prednisone during the study

Cell subpopulation	Cells in peripheral blood/µl	Percentage of cells with positive reaction relative to all cells				
	Prednisone (+) (n = 6)	Prednisone (–) (n = 23)	p value	Prednisone (+) (n = 6)	Prednisone (–) (n = 23)	p value
Pan γδ TCR+	20.8 ± 13.5	27.9 ± 17.7	0.05	15.3 ± 5.2	23.7 ± 9.5	<0.04*
	Median (3.4–39.0)	(2.0–68.8)		15.2	24.0	
V_{δ2} TCR+	6.5 ± 5.7	16.3 ± 13.2	0.05	5.5 ± 2.7	9.5 ± 4.6	<0.05*
	Median (1.1–14.0)	(0.0–53.7)		6.0	9.0	
V_{δ3} TCR+	2.5 ± 2.4	5.4 ± 7.5	0.05	6.2 ± 3.4	8.4 ± 4.7	>0.05
	Median (0.0–6.8)	(0.0–25.0)		5.5	7.0	
V_{γ9} TCR+	8.9 ± 7.2	18.5 ± 14.1	0.05	5.5 ± 3.9	7.8 ± 4.8	>0.05
	Median (1.1–18.0)	(0.0–57.1)		5.0	6.0	
CD3+	563.2 ± 432.6	783.5 ± 496.4	0.05	79.2 ± 10.2	82.0 ± 7.3	>0.05
	Median (617.75)	(775.0)		77.5	85.0	
	Range (20.1–1044.1)	(12.0–1782.5)		(70.0–90.0)	(70.0–95.0)	
CD4+	124.5 ± 86.7	223.9 ± 203.2	0.05	42.5 ± 8.2	45.7 ± 8.4	>0.05
	Median (122.35)	(148.12)		42.5	45.0	
	Range (10.1–235.4)	(6.0–723.0)		(30.0–55.0)	(35.0–60.0)	
CD8+	218.4 ± 218.4	298.4 ± 214.7	0.05	57.5 ± 8.2	54.3 ± 8.4	>0.05
	Median (189.3)	232.0		57.5	55.0	
	Range (6.7–605.7)	(4.0–815.0)		(45.0–70.0)	(40.0–65.0)	

* Statistically significant difference.
skin in SLE patients revealed very interesting results. Immunohistochemical studies revealed that the percentage of Tγδ lymphocytes and their subpopulations Vδ2TCR+ and Vγ9TCR+ is significantly higher in SLE patients than in healthy persons, and is higher in patients with active SLE than with inactive disease. Similar results were seen for all three subpopulations. We have also found a positive correlation between the activity of SLE and the percentage of Tγδ lymphocytes (r = 0.594, p < 0.001) and Vδ3 TCR+ lymphocytes (r = 0.659, p < 0.001). Our results were also confirmed by molecular analysis. The presence of lymphocyte populations with gene rearrangements characteristic for Vδ3+ cells in the skin of SLE patients has been confirmed beyond doubt (Fig. 2 and Table 5). If these data are compared with the results of the immunohistochemical test, it should be kept in mind that the percentage of cells with Vδ3+ rearrangement was determined in relation to the sum of amplified PCR product and may not be applied for the particular number of skin cells. Moreover, mature and selected lymphocytes with a particular rearrangement type may not have such a TCRδ gene on the membrane surface. It has been demonstrated that effective rearrangement of the TCRδ gene is not solely limited to Tδγ lymphocytes, but may also be present in the genome of cellular clones presenting receptor TCRαβ.32 In addition, the phenomenon of ‘allelic exclusion’ in the case of Tγδ lymphocytes is not always present,33 and the process of negative selection of these cells most probably occurs in peripheral target tissues.34 Our results also suggest that these cells may play a role in the pathogenesis of SLE and that the determination of Tγδ lymphocytes in clinically healthy skin may have prognostic value.

Tγδ lymphocytes in the skin have been previously determined in other autoimmune diseases. Volc-Platzer et al.19 found the accumulation of these cells in pathologically changed skin of patients with chronic cutaneous lupus erythematosus. They claim that Tγδ lymphocytes, due to their cytotoxic properties, may be responsible for epithelial damage. Tγδ lymphocytes have also been evaluated in patients with systemic sclerosis, similar to our study, where the percentage of these cells in systemic sclerosis patients was found to be higher than in the control group.18 Similar observations were made in some infectious skin diseases such as leprosy16 and cutaneous leishmaniasis.17 However, like the published studies of systemic sclerosis and cutaneous lupus erythematosus patients, accumulation of Tγδ lymphocytes was studied in pathologically changed skin but not in clinically healthy skin, like in our study. We believe that our study is the first to demonstrate that, in an autoimmune disease like SLE, these cells accumulate in clinically healthy skin as well as in diseased skin. The differences in the number of T cells between the blood and tissues may suggest their migration from blood to skin in SLE patients, mainly during exacerbation of disease.

In the present study, we have shown lower percentage of lymphocytes Tγδ and their Vδ2 TCR+ subpopulation in the skin of patients treated with prednisone than in the patients who were not treated with this agent during the study. It has been shown earlier that long-continued immunosuppressive therapy determined the disappearance of expanded γδT cells in target tissues of patients with polymyositis or other autoimmune diseases.35,36 The in vitro study indicated that all T lymphocytes bearing the γδ TCR isolated from SLE patients and healthy individuals were susceptible to dexamethasone, and steroid-induced apoptosis was the basic mechanism responsible for cell death.37 The same study has shown that 6-month glucocorticoid treatment normalized SLE γδ T-cell subfraction in blood simultaneously with clinical remission.

The mechanism that leads to the accumulation of Tγδ lymphocytes in SLE patients has not been fully elucidated. Lymphocyte trafficking is thought to be due to surface expression of three different families of cellular adhesion molecules (immunoglobulin superfamily receptors, integrins and selectins).38 This mechanism may be supported by the fact that in SLE patients there are deposits of immunoglobulins IgG or IgM, and less commonly IgA in the dermo-epidermal junction.

Table 5. The Vδ3 gene rearrangement in T cells infiltrating skin specimens of SLE patients and healthy controls (percentage of Vδ3 amplified material in relation to total PCR product visible on the gel)

Characteristics	Total (n = 29)	Active (n = 15)	Inactive (n = 14)	Control (n = 8)	Comparison	p value
Vδ3 subpopulation						
Mean ± SD	22.4 ± 9.4	25.7 ± 7.9	18.9 ± 10.8	1.4 ± 1.9	(a) – (d)	<0.001*
Median	25.5	28.0	22.5	0.5	(b) – (c)	<0.001*
Range (2.0–36.0)	(8.0–33.0)	(2.0–36.0)	(0.0–4.5)	(c) – (d)	<0.001*	

* Statistically significant difference.
In conclusion, it has been confirmed that Tγδ lymphocytes accumulate in clinically healthy skin in SLE patients, and that the percentage of these cells correlates with the activity of the disease.

ACKNOWLEDGEMENTS. The authors are indebted to Professor Daniel P. McCauliffe (UNC, North Carolina, USA) for his critical reading of the manuscript. They also thank Dr Edbieta Łos for immunoezymatic staining of skin sections and Ms Ezihażta Dziankowska-Stachowiak for statistical analysis. This work was supported in part by grant number 502-11-533 from the Medical University of Łódź, Poland.

References

1. Steinberg AD, Klinman DM. Pathogenesis of systemic lupus erythematosus. Rheum Dis Clin North Am 1988; 14: 25–41.
2. Mills JA. Systemic lupus erythematosus. N Engl J Med 1994; 330: 1871–1879.
3. Linker-IsraeI M, Quismorio FP Jr, Horwitz DA. CD 8+ lymphocytes from patients with systemic lupus erythematosus sustain, rather than suppress spontaneous, polyclonal IgG production production and synergize with CD4+ cells to support autoantibody synthesis. Arthritis Rheum 1990; 33: 1216–1225.
4. Converso M, Bertero MT, Vallario A, Calgaris-Cappio F. Analysis of T-cell clones in systemic lupus erythematosus. Haematologica 2000; 85: 118–123.
5. Tsokos GC. Overview of Cellular Immune Function in Systemic Lupus Erythematosus. 3rd edn. San Diego, CA: Academic Press, 1999. 17–54.
6. Balke AC, Kirkland PA, Kirirzó R C, Autoimmuur FP Jr, Rea T, Ehrenmann GR, Horowitz DA. T lymphocyte subsets in systemic lupus erythematosus. Correlation with corticosteroid therapy and disease activity. Arthritis Rheum 1985; 26: 745–750.
7. Blaume JA, Khattar R, Schamnaus RS. Sfering.AT CCR gamma delta cella: a specialized Tcell subset in the immune system. Annu Rev Cell Dev Biol 1995; 11: 307–353.
8. Dolves PJ, Rott MJ. Advances in immunology the immune system. N Engl J Med 2000; 343: 57–49, 108–117.
9. Brenner MB, MeLean J, Schett H, Ribben J, Ang SL, Segal JD, Devlin P. Krangel M. Two forms of the T cell receptor γ protein found on peripheral blood cytotoxic T lymphocytes. Nature 1987; 325: 689–694.
10. Borst J, Van de Graaf R, Van Oostveen JW, Arslan SL, Melief CJ, Seidman JG, Bolhuis RL. A T-cell receptor γ δ complex found on cloned functional lymphocytes. Nature 1987; 325: 683–688.
11. Lanier LL, Federspiel NA, Ruitenbergen JJ, Phillips JH, Allison JP, Littman D, Weiss A. The T cell antigen receptor complex expressed on normal peripheral blood CD4–CD8– T lymphocytes. A CD3-associated disulfide-linked mammalian chain heterodimer. J Exp Med 1987; 165: 1076–1094.
12. Krangel MS, Barnd H, Hata S, McLean J, Brenner MB. Structurally divergent human T cell receptor γ proteins encoded by distinct Cγ genes. Science 1987; 237: 64–67.
13. Lefranc MP, Rabbitts TH. Genetic organization of the human T-cell receptor γ and δ loci. Res Immunol 1987; 15: 745–750.
14. Bluestone JA, Khattri R, Sciammas RS, Sperling AI. TCR γ delta cells: a specialized T-cell subset in the immune system. Arthritis Rheum 1987; 30: 25–41.
15. Jarry A, Cerf-Bensussan N, Brousse N, Selz F, Guy-Grand D. Subsets of CD3+ (T cell receptor α/β or γ/δ) T cells in peripheral blood from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. J Exp Med 1987; 165: 689–694.
16. Bartkowiak J, Blonski JZ, Niewiadomska H, Kalczycka D, Robak T. Characterization of γδ T cells in peripheral blood from patients with B-cell chronic lymphocytic leukemia. Klinisch 1989; 29: 19–30.
17. Lefranc MP, Rabbitts TH. Genetic organization of the human T-cell receptor γ and δ loci. Res Immunol 1987; 130–138.
18. Linker-Israeli M, Quismorio FP Jr, Horwitz DA. CD 8+ lymphocytes from patients with systemic lupus erythematosus. Does it correlate to autoimmunity and to laboratory indices of disease activity. Lupus 2000; 9: 333–337.
19. Hayday A, Geng L. γδ T cells regulate autoimmunity. Curr Opin Immunol 1997: 9: 884–889.
20. Tetsuka K, Sanger EV, Ganger ME, Rendegla R, Lane N, Thylis L, Hafer DA, Raus J, Zhang J. Increased frequency of γδ T cells in cerebral spinal fluid and peripheral blood of patients with multiple sclerosis. Reactivity, cytotoxicity and T cell receptor γ gene rearrangements. J Immunol 1995; 154: 4885–4894.
21. Jacobs MR, Haynes BR. Increase in TCR γδ T lymphocytes in synovia from rheumatoid arthritis patients with active synovitis. J Clin Immunol 1992; 12: 130–138.
22. Tan EM, Cohen AS, Fries JF, Takahashi DJ, Fieldt RF, Schaller NF, Chatter N, Sultan RJ, Winchester RJ. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25: 1277–1277.
23. Bartkowiak J, Blonski JZ, Niewiadomska H, Kalczycka D, Robak T. Characterization of γδ T cells in peripheral blood from patients with B-cell chronic lymphocytic leukemia. Biomed Lett 1989; 58: 19–30.
24. Hsu SM, Rainie L, Fanger H. Use of avidin–biotin–peroxidase complex (ABC) in immunoperoxidase techniques: an comparison between ABC and unlabeled antibody (PAP) procedures. Histochem Cytochem 1981; 29: 577–580.
25. Hiett K, Fischer S, Panzer-Gruner ME. Multiplex PCR for TCR δ rearrangements: a rapid and specific approach for the detection and identification of immature and mature rearrangements in ALL. J Haematol 1998: 102: 1050–1054.
26. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning, A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1989.
27. Lunardi C, Margueric C, Bowness P, Wainwright MJ. So A.K. Reduction in T γδ cell number and alteration in subset distribution in systemic lupus erythematosus. Clin Exp Immunol 1991; 86: 203–206.
28. Lautziza P, Krangel Ms. Temporal and lineage-specific control of T cell receptor γδ gene rearrangement by T cell receptor α and β enhances. J Exp Med 1994; 179: 1915–1921.
29. Davodeau F, Peyrat MA, Honde I, Hiltt MM, De Libero G, Vie H, Bonneville M. Surface expression of two distinct functional antigen receptors on human γδ T cells. Science 1993; 260: 1800–1802.
30. Bosnien R, Hayran W. An innate view of γδ T cells. Curr Opin Immunol 1997; 9: 57–63.
31. Gerli R, Agera E, Bertotti A, Tognelli R, Flenghi L, Spinozzi F, Velardi A, Grignani F Analysis of T cells bearing different isotypic isoforms of the γδ T cell receptor in patients with systemic autoimmune disease. J Rheumato-tol 1991; 18: 1504–1510.
32. Hohlfeld R, Engel AG, Li K, Harper MC. Polymyositis mediated by T lymphocytes that express the T cell receptor γδ gene rearrangement by T cell receptor α and β enhances. J Exp Med 1984; 159: 565–577.
33. Davodeau F, Peyrat MA, Honde I, Hiltt MM, De Libero G, Vie H, Bonneville M. Surface expression of two distinct functional antigen receptors on human γδ T cells. Science 1993; 260: 1800–1802.
34. Boismenu R, Havran WL. An innate view of γδ T cells. Curr Opin Immunol 1997; 9: 57–63.
35. Gerli R, Agera E, Bertotti A, Tognelli R, Flenghi L, Spinozzi F, Velardi A, Grignani F Analysis of T cells bearing different isotypic isoforms of the γδ T cell receptor in patients with systemic autoimmune disease. J Rheumatol 1991; 18: 1504–1510.
36. Hohlfeld R, Engel AG, Li K, Harper MC. Polymyositis mediated by T lymphocytes that express the γδ T cell receptor. N Engl J Med 1991; 324: 877–881.
37. Spinozzi F, Agera E, Bionni T, Travetti A, Migliorati G, Moraca R, Nicotteli I, Riccardi C, Paulet PP, Vaccaro R, et al. T lymphocytes bearing γδ T cell receptor are susceptible to steroid induced programmed cell death. Scand J Immunol 1995; 41: 504–508.
38. Cronstein B, Weissmann G. The adhesion molecules in inflammation. Arthritis Rheum 1993; 36: 147–157.

Received 19 April 2001; Accepted 14 May 2001