A PATH INTEGRATION APPROACH TO THE CORRELATORS OF XY HEISENBERG MAGNET AND RANDOM WALKS

N. M. BOGOLIUBOV* and C. MALYSHEV†

St.-Petersburg Department, Steklov Mathematical Institute, RAS
Fontanka 27, St.-Petersburg, 191023, RUSSIA

* E-mail: bogoliub@pdmi.ras.ru
† E-mail: malyshev@pdmi.ras.ru

Abstract

The path integral approach is used for the calculation of the correlation functions of the XY Heisenberg chain. The obtained answers for the two-point correlators of the XX magnet are of the determinantal form and are interpreted in terms of the generating functions for the random turns vicious walkers.

Keywords: Path Integration; XY Heisenberg Magnet; Random Walks.
1 Introduction

The problem of enumeration of paths of vicious walkers on one-dimensional lattice was formulated by M. Fisher [1] and since then continues to attract much attention (see refs. in [2, 3]). The walkers are called ‘vicious’ because they annihilate each other at the same lattice site, and their trajectories are thus non-intersecting. Similar problems appear in the theory of domain walls [4], directed percolation [5], self-organized criticality [6], and polymer theory [7]. It has been proposed Ref. [2] to use the XX Heisenberg chain to enumerate the paths of the random turns vicious walkers.

Approach based on path integration was developed in Refs. [8, 9] to calculate thermal correlation functions of the XY Heisenberg magnet. Dependence of the integration variables on the imaginary time is defined by special quasi-periodicity conditions. In the present paper, this method is used for the calculation of the two-point correlation functions of the XX model and the interpretation of the obtained answer in terms of the generating functions of the random turns vicious walkers is given.

2 The problem

The Hamiltonian of the periodic XY Heisenberg chain of “length” M (M is chosen to be even) in transverse magnetic field $h > 0$ is:

$$H = H_0 + \gamma H_1 - h S^z, \quad H_0 \equiv - \sum_{n,m=1}^{M} \Delta_{nm}^{(\pm)} \sigma_n^+ \sigma_m^-,$$

$$H_1 \equiv - \frac{1}{2} \sum_{n,m=1}^{M} \Delta_{nm}^{(\pm)} (\sigma_n^+ \sigma_m^+ + \sigma_n^- \sigma_m^-), \quad S^z \equiv \frac{1}{2} \sum_{n=1}^{M} \sigma_n^z.$$

Here S^z is z-component of the total spin operator, and the entries of the so-called hopping matrix $\Delta_{nm}^{(s)}$ ($s = \pm$) are:

$$2 \Delta_{nm}^{(s)} \equiv \delta_{|n-m|,1} + s \delta_{|n-m|,M-1},$$

where $\delta_{n,l}$ is the Kronecker symbol. The Pauli matrices $\sigma_n^\pm = (1/2)(\sigma_n^x \pm i \sigma_n^y)$ and σ_n^z, where $n \in M \equiv \{1, \ldots, M\}$, satisfy the commutation relations: $[\sigma_k^+, \sigma_l^-] = \delta_{kl} \sigma_k^z$ and $[\sigma_k^z, \sigma_l^\pm] = \pm 2 \delta_{kl} \sigma_k^\pm$. The periodic boundary condition reads: $\sigma_{n+M}^a = \sigma_n^a, \forall n$. The Hamiltonian H (1), taken at $\gamma = 0$ (the case of XX magnet), commutes with S^z.

Time-dependent thermal correlation functions are defined as follows:

$$G_{ab}(m,t) \equiv Z^{-1} \text{Tr} \left(\sigma_i^a e^{-\beta H} \sigma_k^b(t) e^{-\beta H} \right), \quad Z \equiv \text{Tr} \left(e^{-\beta H} \right),$$

where $\sigma_k^b(t) \equiv e^{itH} \sigma_k^b e^{-itH}$, $\beta = 1/T$ is inverse temperature, and t is time. This correlator may be rewritten in terms of the canonical lattice Fermi fields c_i, c_i^\dagger, where $i, j \in M$, by means of the Jordan-Wigner map:

$$\sigma_n^+ = \left(\prod_{j=1}^{n-1} \sigma_j^z \right) c_n, \quad \sigma_n^- = c_n^\dagger \left(\prod_{j=1}^{n-1} \sigma_j^z \right), \quad n \in M,$$

where $\sigma_j^z = 1 - 2c_j c_j^\dagger$. The periodic conditions for the spin operators result in the boundary conditions for the fermions:

$$c_{M+1} = (-1)^N c_1, \quad c_{M+1}^\dagger = c_1^\dagger (-1)^N,$$
where $N = \sum_{n=1}^{M} c_n^\dagger c_n$ is the operator of the total number of particles. In the fermionic representation, H (1) will take a form $H = H^+ P^+ + H^- P^-$, where $P^\pm = (1/2)(I \pm (-1)^N)$ are projectors [8]. The operators H^s are of identical form with $s = \pm$ pointing out a correspondence between these operators and appropriate specification of the conditions (4): $c_{M+1} = -s c_1, c_{M+1}^\dagger = -s c_1^\dagger$.

Equation (3) for the z-components of spins, for instance, becomes:

$$G_{zz}(m,t) = 1 - 2 Z^{-1} \text{Tr} \left(c_{l+m}^\dagger c_{l+m} e^{-\beta H} \right) - 2 Z^{-1} \text{Tr} \left(c_{l}^\dagger c_{l} e^{-\beta H} \right)$$

$$+ 4 Z^{-1} \text{Tr} \left(c_{l+m}^\dagger c_{l+m} e^{iH} c_{l}^\dagger c_{l} e^{-(\beta+i)t)H} \right).$$

To evaluate (5), it is convenient to consider the generating functional:

$$G \equiv G(S,T|\mu,\nu) = Z^{-1} \text{Tr} \left(e^{\nu H} e^{T e^{-\mu H}} \right),$$

where μ, ν are the complex parameters, $\mu + \nu = \beta$. Two operators, $S \equiv e^{\dagger S_c}$ and $T \equiv e^{\dagger T_c}$, are defined through the matrices $\hat S = \text{diag} \left\{ S_1, S_2, \ldots, S_M \right\}$, $\hat T = \text{diag} \left\{ T_1, T_2, \ldots, T_M \right\}$. For instance, the last term in R.H.S. of (5) is obtained from (6) in the following way:

$$\frac{\partial}{\partial S_k} \frac{\partial}{\partial T_l} G(S,T|\mu,\nu) \bigg|_{S_n, T_n, \forall n} \rightarrow 0 \quad \mu, \nu \rightarrow -it, \beta + it$$

As a result, we express the trace in R.H.S. of (6) in the form [8]:

$$\text{Tr} \left(e^{S} e^{-\mu H} e^{T} e^{-\nu H} \right) = \frac{1}{2} \left(G_F^+ Z_F^+ + G_F^- Z_F^- + G_B^+ Z_B^+ - G_B^- Z_B^- \right),$$

where

$$G_F^+ Z_F^+ = \text{Tr} \left(e^{S} e^{-\mu H^\pm} e^{T} e^{-\nu H^\pm} \right),$$

$$G_B^+ Z_B^+ = \text{Tr} \left(e^{S} e^{-\mu H^\pm} e^{T} (-1)^N e^{-\nu H^\pm} \right),$$

and $Z_F^\pm = \text{Tr} \left(e^{\pm \beta H^\pm} \right)$, $Z_B^\pm = \text{Tr} \left((-1)^N e^{\pm \beta H^\pm} \right)$.

3 The path integral

We use the coherent states $|z\rangle \equiv \exp(c^\dagger z)|0\rangle$ and $\langle z^*| \equiv \langle 0| \exp(z^* c)$ generated from the Fock vacuum $|0\rangle$, $c_k|0\rangle = 0$, $\forall k$. We use the short-hand notations for the M-component objects, say, $z^* \equiv (z_1^*, \ldots, z_M^*)$ and $z \equiv (z_1, \ldots, z_M)$ formed by the independent Grassmann parameters z_k, z^*_k ($k \in \mathcal{M}$). Besides, $\sum_{k=1}^{M} c_k^\dagger z_k \equiv c^\dagger z$, $\prod_{k=1}^{M} dz_k \equiv dz$, etc. Then, we shall represent [9] the trace of the operator in $G_F^\pm Z_F^\pm$ (8) by means of the Grassmann integration over dz, dz^*:

$$G_F^\pm Z_F^\pm = \int dz \, dz^* \, e^{\ast z} \langle z^*| e^{S} e^{-\mu H^\pm} e^{T} e^{-\nu H^\pm}|z\rangle.$$

For the sake of simplicity we shall consider the XX model only and take those H^\pm that correspond to H (1) at $\gamma = 0$.

To represent R.H.S. of (9) as the path integral, we first introduce new coherent states $|x(I)\rangle$, $\langle x^*(I)|$, where $2L \times M$ independent Grassmann parameters are arranged in the form
of $2L$ “vectors” $x^*(I), x(I)$ ($I \in \{1, \ldots, L\}$). It allows to insert L times the decompositions of unity
\[\int dx^*(I) dx(I) \exp(-x^*(I)x(I)) |x(I)\rangle \langle x^*(I)| \]
into R.H.S. of (9). We define then the additional variables satisfying the quasi-periodicity conditions:
\[-\hat{E} x(0) = x(L + 1) \equiv z, \quad x^*(L + 1) = x^*(0) \hat{E}^{-1} \equiv z^*. \tag{10} \]
Here, $\hat{E} \equiv e^S e^{-\mu \hat{H}^\pm} e^{\hat{T}}$ with the matrices \hat{H}^\pm expressed [9] through the hopping matrices (2): $\hat{H}^\pm = -\hat{\Delta}^{(\mp)} + h\hat{T}$, where \hat{T} is a unit $M \times M$ matrix. The described procedure allows to pass in the limit $L \to \infty$ from $(L + 1)$-fold integration to the continuous one over “infinite” product of the measures $d\lambda^\pm$ $x^\tau \tau
\begin{align*}
G^\pm_F Z^\pm_F &= \int e^S d\lambda^* d\lambda \prod_\tau dx^\tau(\tau) dx(\tau).
\end{align*}

The integration over the auxiliary Grassmann variables λ^*, λ guarantees the fulfilment of the continuous version of the constraints (10). The action functional is $S \equiv \int L(\tau) d\tau$, where $L(\tau)$ is the Lagrangian:
\[L(\tau) \equiv x^\tau(\tau) \left(\frac{d}{d\tau} - \hat{H}^\pm \right) x(\tau) + J^\tau(\tau)x(\tau) + x^\tau(\tau)J(\tau), \]
\[J^\tau(\tau) \equiv \lambda^*(\delta(\tau) \hat{T} + \delta(\tau - \nu) \hat{E}^{-1}), \quad \delta(\tau) \equiv \delta(\tau) \hat{T} + \delta(\tau - \nu) \hat{E} \lambda. \]

The δ-functions reduce τ to the segment $[0, \beta]$. The stationary phase requirements $\delta S/\delta x^* = 0, \delta S/\delta x = 0$ yield the regularized answer [9]:
\[G^\pm_F = \det \left(\hat{T} + \frac{e^{(\beta - \nu)\hat{H}^\pm} e^S e^{-\mu \hat{H}^\pm} e^{\hat{T}} - \hat{T}}{\hat{T} + e^{\beta \hat{H}^\pm}} \right). \]

The remainder correlators $G_{ab}(m, t)$ (3) (with $a, b \in \{+, -\}$) are obtained analogously.

4 Random walks

The evolution of the states obtained by selective flipping of the spins governed by the XX Hamiltonian H_0 (1) is related to a model of a random turns vicious walkers [2,3]. Indeed, let us consider the following average over the ferromagnetic state vectors $\langle \uparrow |, | \uparrow \rangle$:
\[F_{j;1}(\lambda) \equiv \langle \uparrow | \sigma^+_j e^{-\lambda H_0} \sigma^-_i | \uparrow \rangle, \tag{11} \]
where $| \uparrow \rangle \equiv \otimes^M_{n=1} | \uparrow \rangle_n$, i.e., all spins are up, and λ is an “evolution” parameter. Spin up (or down) corresponds to empty (or occupied) site. Differentiating $F_{j;1}(\lambda)$ (11) and applying the commutator $[H_0, \sigma^+_j]$, we obtain the differential-difference equation (master equation):
\[\frac{d}{d\lambda} F_{j;1}(\lambda) = \frac{1}{2} \left(F_{j+1;1}(\lambda) + F_{j-1;1}(\lambda) \right). \tag{12} \]

The average $F_{j;1}$ may be considered as the generating function of paths made by a random walker travelling from tth to jth site. Really, its K-th derivative has the form
\[\frac{d^K}{d\lambda^K} F_{j;1}(\lambda) \bigg|_{\lambda=0} = \langle \uparrow | \sigma^+_j (-H_0)^K \sigma^-_i | \uparrow \rangle = \sum_{n_1, \ldots, n_K} \Delta^{(+)}_{j_{n_{K-1}}} \cdots \Delta^{(+)}_{h_{n_1}} \Delta^{(+)}_{n_1}. \]
A single step to one of the nearest sites is prescribed by the hopping matrix (2) with \(s = + \). After \(K \) steps, each path connecting \(l^{th} \) and \(j^{th} \) sites contributes into the sum. The \(N \)-point correlation function \((N \leq M)\),

\[
F_{j_1,j_2,\ldots,j_N,l_1,l_2,\ldots,l_N}(\lambda) = \langle \hat{\sigma}_{j_1}^+ \sigma_{j_2}^+ \cdots \sigma_{j_N}^+ e^{-\lambda H_0} \sigma_{l_1}^- \sigma_{l_2}^- \cdots \sigma_{l_N}^- | \hat{\psi} \rangle, \tag{13}
\]

enumerates the nests of the lattice paths of \(N \) random turns vicious walkers being initially located at the positions \(l_1 > l_2 > \cdots > l_N \) and, eventually, at \(j_1 > j_2 > \cdots > j_N \). It is expressed in the form [2]:

\[
F_{j_1,\ldots,j_N;l_1,\ldots,l_N}(\lambda) = \det (F_{j_r; l_s}(\lambda))_{1 \leq r, s \leq N}. \tag{14}
\]

The ground and the excited states of the XX chain at \(h = 0 \) with the total spin equal to \((M/2) - N\) are decomposed over a basis of states \(\sigma_{l_1}^- \sigma_{l_2}^- \cdots \sigma_{l_N}^- | \hat{\psi} \rangle \) with \(N \) spins flipped [10]. Therefore, the trace \(\tilde{F}_{m+1,1}(\lambda) \equiv \text{Tr} \left(\sigma_{m+1}^+ e^{-\lambda H_0} \sigma_1^- \right) \) is a linear combination of the generating functions (13) describing the evolution of \(N + 1 \) random turns walkers. The initial and the final positions of one of them are fixed at \(l_1 = 1 \) and \(j_1 = m + 1 \), respectively, while for the rest ones these positions are random. In the thermodynamic limit, the number of the virtual walkers tends to infinity. We apply the procedure described in 3 to calculation of \(\tilde{F}_{m+1,1}(\lambda) \) in the limit when \(M \) and \(N \) are large enough. In this limit, the contribution of the terms with the subindex ‘B’ become, with regard at (8), negligible in (7). We thus obtain:

\[
\begin{align*}
\tilde{F}_{m+1,1}(\lambda) &= \left[\text{Tr} \left(e^{-\lambda \hat{H}_0} \tilde{e}_{1,m+1} \right) - \frac{d}{d\alpha} \right] \det \left(\hat{I} + \hat{U}_m + \frac{\alpha}{M} \hat{V}_m \right) \bigg|_{\alpha = 0} \\
&= \det \left(\hat{I} + \hat{U}_m \right) \left[\text{Tr} \left(e^{-\lambda \hat{H}_0} \tilde{e}_{1,m+1} \right) - \frac{1}{M} \text{Tr} \left(\frac{\hat{V}_m}{\hat{I} + \hat{U}_m} \right) \right],
\end{align*}
\]

where \(\tilde{e}_{1,m+1} \equiv (\delta_{1,n} \delta_{m+1,l})_{1 \leq n, l \leq M} \), and the matrix \(\hat{H}_0 \) is used instead of \(\hat{H}^\pm \) since \(s \) can be taken zero at large enough \(M \). The traces of \(\lambda \)-dependent \(M \times M \) matrices \(\hat{U}_m \) and \(\hat{V}_m \) are given below. Differential equation analogous to (12) is fulfilled by \(\tilde{F}_{m+1,1}(\lambda) \). At large separation \(m \) it takes the form:

\[
\frac{d}{d\lambda} \tilde{F}_{m+1,1}(\lambda) = \frac{1}{2} \left(\tilde{F}_{m;1}(\lambda) + \tilde{F}_{m+2;1}(\lambda) \right) - \text{Tr} \left(H_0 \sigma_{m+1}^+ e^{-\lambda H_0} \sigma_1^- \right). \tag{15}
\]

We expand formally \(\tilde{F}_{m+1,1}(\lambda) \) with respect to \(\hat{U}_m \) and obtain the answer in two lowest orders as follows:

\[
\begin{align*}
\tilde{F}_{m+1,1}(\lambda) &\approx F_{m+1,1}(\lambda) + F_{m+1,1}(\lambda) \times \text{tr} \hat{U}_m - \frac{1}{M} \text{tr} \hat{V}_m, \\
\text{tr} \hat{U}_m &= (M - 2m) F_{1;1}(\lambda), \\
\frac{1}{M} \text{tr} \hat{V}_m &= F_{m+1,1}(2\lambda) - 2 \sum_{l=1}^{m} F_{m+1,l}(\lambda) F_{l;1}(\lambda). \tag{16}
\end{align*}
\]

Although \(M \) and \(m \) are chosen to be large in this expansion, the ratio \(m/M \) is kept bounded. In each order the master equation (15) is fulfilled by (16). The contribution of the second order can be re-expressed through the two-point functions \(F_{m+1;l;1,1}(\lambda) \) (see (13), (14)). Thus, summation over intermediate positions (of a virtual walker located at \(l^{th} \) site) arises in the second order. A similar picture is expected in next orders.
5 Acknowledgement

One of us (C. M.) is grateful to the Organizers of 9th International Conference “Path Integrals – New Trends and Perspectives”. This work was partially supported by the RFBR, No. 07-01-00358.

References

[1] M. E. Fisher, *J. Stat. Phys.* **34**, 667 (1984).
[2] N. M. Bogoliubov, *J. Math. Sci.* **138**, 5636 (2006).
[3] N. M. Bogoliubov, *J. Math. Sci.* **143**, 2729 (2007).
[4] D. Huse, M. Fisher, *Phys. Rev. B* **29**, 239 (1984).
[5] E. Domany, W. Kinzel, *Phys. Rev. Lett.* **53**, 311 (1984).
[6] P. Bak, C. Tang, K. Wiesenfeld, *Phys. Rev. A* **38**, 364 (1988).
[7] J. W. Essam and A. J. Guttmann, *Phys. Rev. E* **52**, 5849 (1995).
[8] C. Malyshev, *Functional integration with “automorphic” boundary conditions and correlators of z-components of spins in the XY and XX Heisenberg chains*, in *New Developments in Mathematical Physics Research*, ed. Charles V. Benton (Nova Science Publishers, New York, 2004), pp. 85–116.
[9] C. Malyshev, *J. Math. Sci.* **136**, 3607 (2006).
[10] F. Colomo, A. G. Izergin, V. E. Korepin, V. Tognetti, *Theor. Math. Phys.* **94**, 19 (1993).