INTRODUCTION

Drug toxicity and associated adverse events are critical issues in drug development: by a general estimate, 20–40% of novel drug candidates fail because of safety issues.\(^{1-3}\) Over the past 10 years, gene expression profiling has been introduced into drug development to predict and understand toxicity in pre-clinical settings, either as a stand-alone method\(^{4-7}\) or integrated within systematic approaches.\(^{8-13}\)

In this work, we focus on the problem of identifying transcriptomics signatures that (a) predict toxicity prior to histopathological observations and (b) extrapolate between in vitro and in vivo settings and across species. Several studies have undertaken this task:\(^{14-17}\) while making remarkable progress, they have illustrated two major challenges caused by limited data availability.\(^{18}\) First, most studies have derived signatures from small-scale experiments with one or few compounds. Such signatures suffer both from limited statistical power and from limited translatability to other compounds. At the same time, it is difficult to interpret ‘black-box’ signatures, which are statistically significant but not associated with biological function. Second, most studies have sought late-time signatures (≥24 h). Such signatures are likely to be downstream effectors of signalling networks, which are compound specific and highly dependent on the specific cellular context and the availability of complex regulatory elements, as recently revealed by the ENCODE project.\(^{19}\) In contrast, early-response genes (<24 h) may be less context specific and more generic, because many of them are essential transcription factors or regulators of stress response,\(^{20}\) and they are closer to the core machineries of ‘bow-tie-like’ signalling networks.\(^{21}\)

It is not feasible to identify early-response toxicity signatures from large-scale experiments with current bottom-up practices.\(^{22}\) Therefore, we took a top–down approach by analysing TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system), a toxicogenomics database covering 170 compounds (Supplementary Table 1). The data comprise time-series gene expression, cell-based assay readouts and pathological records (Figure 1a). TG-GATEs is publicly available and is one of the most comprehensive data sets up to date.\(^{23-25}\)

Here we report an \textit{ab initio} analysis of TG-GATEs using a novel computational pipeline (Figure 1b). We start by reporting data that support the generality of early-response genes. Next, we describe how integrative analysis of differential gene expression and cellular assay data revealed a consensus set of cytotoxicity signatures in human and rat primary hepatocytes. We provide evidence that the signatures form an evolutionarily conserved functional network that is responsible for early stress response. Finally, we confirm the network’s predictive power for hepatic and renal pathology in a short-term (<30 days) study in vivo.

MATERIALS AND METHODS

Data pre-processing

Raw data were downloaded from the TG-GATEs website (http://toxico.nibio.go.jp). Gene expression was profiled with Affymetrix Human Genome U133 PLUS 2.0 (Santa Clara, CA, USA) or Rat Genome 230 2.0 chips (Santa Clara, CA, USA). For each \textit{in vitro} experiment, a Pico-Green fluorescence assay was performed, which quantitatively measures the total DNA content of cells. For \textit{in vivo} experiments, histopathology in liver and kidney was assessed by pathologists (Supplementary Table 2).

Expression data were pre-processed with the MAss method.\(^{26}\) Differential gene expression profiles were determined by linear models using limma\(^{27}\) and expressed in logarithmic (base 2) fold changes (logFC). For \textit{in vitro} samples, cytotoxicity was determined by the difference of total DNA content between compound-treated samples and the time-matched based experimental controls. For \textit{in vivo} samples, histopathology in liver and kidney was assessed by pathologists (Supplementary Table 2).
control samples. Large reduction of DNA content indicates strong cytotoxicity.

Identification of early-response gene signatures of cytotoxicity
We merged all differential gene expression profiles of human samples, irrespective of compound, dose and time, into one matrix. Unsupervised clustering was performed and classified the samples into three groups. The statistical association between the groups and DNA content was determined by one-way analysis of variance.

A cytotoxicity matrix was constructed for each compound by projecting the three sample groups (weak, moderate and strong, referring to corresponding cytotoxicities) onto a two-way matrix of dose and time. Gene signatures were derived from progressive profiles, where compound treatment causes weak, moderate and strong cytotoxicity at 2, 8 and 24 h, respectively. Hierarchical linear models were fitted to capture early-response signatures (Supplementary Methods).

We validated the signatures by analysing rat data with the same procedure, not involving any information from human data.

Modelling and simulation with Boolean networks
Inspired by a recently developed method, the Boolean Network Ensembles, which generates semiquantitative time-response simulations from the network structure, we developed an algorithm that generates time-response profiles of expected node occupancy fractions given initial states (Supplementary Methods). Intuitively, the occupancy fraction of a node is the expected probability that the node will be ON. The time evolution of occupancy fractions simulates the dynamics of the network.

RESULTS
Early-response genes are more generic than late-time induced genes
In vivo expression and histopathological records were randomly split into a training set (80%) and a test set (20%). Radial-kernel support vector machines (SVMs) were trained by 10-fold cross-validation using LIBSVM. Optimal parameters of SVMs (C and gamma) were determined by grid search. Accuracy was measured by the F1 score, which combines precision and recall of predictions (Supplementary Methods).

Early-response signature network of drug toxicity
JD Zhang et al

cause cytotoxicity. We took a data-driven approach to address this question by integrating gene expression data with the results of DNA quantification assays (Figure 1bB). Unsupervised clustering of differential expression profiles revealed that compound-treated samples are classified into three groups with distinct features (Figure 3a). Statistical analysis showed that the groups are significantly correlated with decreasing DNA content, or equivalently, with increasing cytotoxicities (Figure 3b).

We assigned one of the three cytotoxicity levels (weak, moderate or strong) to each sample, which is associated with a unique combination of compound, dose and time. Subsequently, we built a cytotoxicity matrix for each compound, presenting how its cytotoxicity varies with dose and time (Figure 1bC). Cytotoxicity matrices of all compounds tested in human primary hepatocytes are given in Supplementary Figure 2, and two of them are illustrated in Figure 3c as examples: vitamin A, which is nontoxic over the entire tested time and dose range, and nitrofurantoin, which is an antibiotic that showed increasing toxicity both along the dose gradient and with time.

To identify early cytotoxicity signatures, which are detectable before the toxicity is visible at the molecular or phenotypic level, we focused on profiles of the progressive type, like the one described for nitrofurantoin, with weak, moderate and strong cytotoxicities at 2, 8 and 24 h, respectively (Figure 1bD). We asked if there are genes that are robustly induced at 2 h in such profiles, arguing that they may be predictive signatures of the cytotoxicity outcome at 24 h (Figure 1bE).

Statistical analysis identified five genes that are significantly upregulated at 2 h in progressive profiles: EGR1, GDF15, ATF3, FGFR1 and IL8; and one gene that is downregulated: TOB2. We note that these genes are induced by compounds of diverse chemical and pharmacological properties (Table 1). Nevertheless the genes show consistent temporal expression patterns in progressive profiles. In contrast, no significant patterns were detected when their expression profiles were examined in treatments causing no or weak toxicity up to 24 h (Supplementary Figure 3).

Conserved early cytotoxicity signatures between rat and human
The analysis procedure described above was then applied to data from rat primary hepatocytes. We emphasize again that no information obtained from the human data were carried over.

Compound-induced expression profiles were classified into four groups in rat (Supplementary Figure 4). Three of them resemble the groups in human (weak, moderate and strong): they are associated with distinct expression profiles, and are significantly correlated with increasing cytotoxicities (Figure 4a). The fourth group only contains eight samples treated by either acetaminophen (paracetamol) or phenobarbital, both non-genotoxic carcinogens (NGT5) inducing tumour formation in rodent models. Samples in this group contrast strongly with other treatments as judged by their gene expression profiles (Supplementary Figure 4). They are associated with loss of total DNA, in line with previous observations.

We built cytotoxicity matrices for all compounds that were tested in rat primary hepatocytes (Supplementary Figure 5), and focused again on the progressive profiles. Comparing compound sets inducing progressive profiles in human and rat, we found only two overlapping compounds (Table 1 and Figure 4b), no more than the random expectation ($P = 0.46$ by bootstrapping). The substantial lack of overlap may reflect the distinct bioavailability and different modes of action of compounds in the two species. In contrast, the overlap of frequently induced genes (defined as DEGs that are induced in >5% of samples) is far stronger (81 genes; Figure 4b, $P = 9.0\times10^{-6}$ by bootstrapping). The two comparisons suggest that although human and rat hepatocytes exhibit distinct temporal responses to
toxicity-inducing compounds, the underlying mechanism is conserved to some extent.

We applied statistical analysis to detect early-response genes from progressive profiles in rat. Notably, out of the six genes found in the human signatures, four orthologous genes were identified as early cytotoxicity signatures in rat: Egr1, Atf3, Gdf15 and Fgf21 (Figure 4c). Sequence analysis revealed high similarities between the orthologs (Supplementary Figure 6A). The two human genes that were not selected as signature genes in rat either do not have a rat ortholog (IL8, Supplementary Figure 6B) or just fail to achieve the predefined statistical significance (TOB2, Supplementary Figure 6C).

The observation that four early-response genes show consistent compound-induced activation in human and rat hepatocytes suggests that they are likely to be evolutionarily conserved, functionally linked and intrinsic to the cell’s stress-response system.

Figure 1. Study design of TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system) and the computational pipeline for data mining with TG-GATEs. (a) In TG-GATEs, 170 compounds are tested in up to three doses (including corresponding vehicle controls) in three systems: human primary hepatocytes, rat primary hepatocytes and rat in vivo. In in vitro experiments, compounds are administrated once at 0 h (red triangle). Gene expression profiling and Pico-Green DNA quantification assays are performed at three time points (2, 8 and 24 h). In in vivo experiments, compounds are dosed either once or repeatedly. Gene expression profiling and examination of pathology in liver and kidney take place at 3, 6, 9 and 24 h (single-dose) or at 4, 8, 15 and 29 days (repeated dose). Two biological replicates are available for most experiments. (b) The computational pipeline that integrates gene expression data, cell-assay readouts and pathology records to identify early signatures of in vitro and in vivo toxicity. Details are described in the Results section.
ATF3, GDF15, and FGF21; 5 (all four genes OFF) represents all genes at the baseline level. Note that 5 matches the state of progressive profiles at 24 h (Figures 5a and b), and 2 matches the state of non-toxic treatments (Supplementary Figures 3A and B). The Boolean network model thus is in agreement with the two observed steady states.

Next, we simulated the dynamics of the network with two different initial states (IS): IS1 assumes all four nodes are initially ON, whereas IS2 assumes only EGR1 is ON and all the others are OFF (Figure 5c). The two alternatives were chosen because neither of them could be ruled out based on prior knowledge. Independent of the choice of initial states, simulation results match very well with observed dynamics: EGR1 induction gradually decays and is finally turned OFF. The other three genes either stay ON (IS1) or are induced from OFF to ON (IS2). This implies the network dynamics is encoded by its structure, and the Boolean network is a useful model to study this network in silico.

Subsequently, we tested the robustness of the network by deleting one edge at a time and simulating the network dynamics with permuted networks. By iterating all single-edge mutations, we found that the deletion of any edge involving ATF3 (including the self-loop) dramatically alters the steady state and/or the dynamics of the network (Supplementary Figure 7). This implies that ATF3 is an essential gene of the network, and underscores the importance of ATF3 in the context of cellular response to compound-induced toxicity.42,46

Early expression changes of the network demonstrate predictive power for pathological outcomes in vivo

Finally, we evaluated the predictive power of the early-response network for pathological outcomes in vivo (Figure 1bH). To this end, we trained SVM, an established tool for binary prediction.47

An SVM is constructed in two steps. First, it is trained with samples with binary labels (the training set). The SVM learns patterns from the data by finding the boundary (known as the hyperplane) in data space that best separates samples of two classes. Next, the SVM is used to predict labels for a new data set (the test set) and its accuracy is measured by comparing the predictions with true labels.

SVMs used in this study take treatment-induced differential expression of Egr1, Atf3, Gdf15 and Fgf21 at 3 h (the earliest time point in vivo) as input, and predict histopathological outcomes at all tested time points of the in vivo study. For each time point, one SVM was trained and tested for liver and kidney, respectively. We found that SVMs are able to predict pathological outcomes with high accuracies between 80 and 97% both in liver (Figure 6a) and in kidney (Figure 6b). This finding suggests that expression changes of the four early-response genes contain information that can predict short-term in vivo pathology.

To test whether the network predictive power is superior to that of single genes, we compared SVMs powered by the four-gene network against SVMs that use single genes as input (Figures 6a and b). The network-based SVM substantially outperformed single-gene competitors, confirming synergy between the genes.

DISCUSSION

Large-scale databases such as the Drug Activity database of NCI-60 cell lines,48 Connectivity Map49 and ToxCast50 have been extensively explored to study compound-induced gene expression. However, few databases collect time series data, which is essential to identify early-response genes. We argue that such early-response genes can be valuable to understand and predict in vitro and in vivo toxicity. Our study presents a piece of evidence: although the four-gene network discussed here was identified in primary hepatocytes, it predicted liver and kidney pathology with good performance. Thus, by multivariate analysis
of time-series data, it may be possible to overcome one of the biggest hurdles for predictive in vitro toxicity, namely the lack of conserved markers between in vitro and in vivo and across species. However, we emphasize that the marker gene set identified here, whereas translatable from cellular systems to rat in vivo, allows only for a broad categorization of potential risk. This should guide researchers in prioritizing candidates out of compound series, including more specific measurements to identify the mode of action.

Many parameters have been proposed as in vitro toxicity and tissue injury markers. Gerets et al. identified a battery of six cytotoxicity assays to screen pharmaceutical compounds in...
HepG2 cells using eight drugs. Recently, Bailey et al.52 evaluated 34 acute rat toxicity studies and proposed three novel candidate genes (GSTA, ARG1 and HPD) in addition to the established ALT as drug-induced liver injury biomarkers in rats. Complementary to these studies, we present here with the network of EGR1, ATF3, GDF15 and FGF21 a signature set detectable as early as 2 h after

Table 1. Treatments that induced progressive profiles in human and rat primary hepatocytes

Compound	Human	Dose level	Dose (µM)	Rat	Dose level	Dose (µM)
Acetaminophen	H	H	5000	Caffeine	H	1000
Allyl alcohol	H	H	70	Carboplatin	M/M	600/3000
Azathioprine	H	H	72.8	Cephalothin	H	6
Benzbromarone	H	H	100	Chlorpheniramine	H	200
Diazepam	H	H	250	Cisplatin	M/M	40/200
Diclofenac	H	L	400	Colchicine	L/M/H	200/1000/5000
Ethionine	H	H	600	Diclofenac	H	400
Flutamide	H	H	50	Diethyl maleate	H	10 000
Ketoconazole	H	H	15	Diltiazem	H	250
Methapyrilene	H	H	600	Disopyramide	H	400
Naphthyl isothiocyanate	H	H	200	Enalapril	H	2000
Nitrofurantoin	H	H	125	Ethambutol	H	1000
Omeprazole	H	H	600	Galactosamine	H	10 000
Phenobarbital	H	H	10 000	Gentamicin	H	30 mg ml⁻¹
Propylthiouracil	M/H	800/4000		Hydroxyzine	H	150
TGF-beta1	L/M/H	2/10/50		Imipramine	H	100
				Isoniazid	H	10 000
Diclofenac	H	H	200	Naphthyl isothiocyanate	H	200
Nitrofurantoin	H	H	125	Papaverine	H	100
Omeprazole	H	H	600	Phenobarbital	H	10000
Phenobarbital	H	H	10 000	Puromycin aminonucleoside	L/M/H	100/500/2500
Propylthiouracil	M/H	800/4000		Quinidine	H	200
TGF-beta1	L/M/H	2/10/50		Ranitidine	H	4000
Valproic acid	H	H	10 000	Sulindac	H	2000
Valproic acid	H	H	10 000	Sulpiride	H	2000
Tacrine	H	H	200	Theophylline	H	10 000
Theophylline	H	H	10 000	Valproic acid	H	10 000

Abbreviations: TG-GATEs, Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system; TGF, Transforming growth factor. Two overlapping compounds between the species are displayed in bold. Dose level abbreviations follow the convention of TG-GATEs: H, high; M, middle; L, low.

Figure 4. Four early-response signatures were validated in rat. (a) The four groups of rat samples are significantly associated with cytotoxicities measured by DNA content. NGTX: non-genotoxic carcinogens. The three asterisks (*** indicate that the P-value of comparing DNA content of two adjacent groups is smaller than 0.001. (b) Venn diagrams comparing compounds that induce progressive profiles in human and rat, and comparing frequently induced genes in the two species. (c) Temporal patterns of the four human orthologs that are also signatures in rat. See caption of Figure 3d for legends.

HepG2 cells using eight drugs. Recently, Bailey et al.52 evaluated 34 acute rat toxicity studies and proposed three novel candidate genes (GSTA, ARG1 and HPD) in addition to the established ALT as drug-induced liver injury biomarkers in rats. Complementary to these studies, we present here with the network of EGR1, ATF3, GDF15 and FGF21 a signature set detectable as early as 2 h after...
compound administration. We propose the network should be monitored in combination with established parameters for better toxicity prediction.

Biological functions and biomarker potentials of EGR1, ATF3, GDF15 and FGF21 have been sporadically proposed for compound-induced in vitro and in vivo toxicity. EGR1, arguably the best-studied gene among them, is stimulated by many extracellular molecules. It links signalling cascades controlling cellular proliferation and apoptosis. Bioinformatics and mRNA expression analyses showed Egr1 mRNA activation is dependent on the activation of the Ras-Raf-Mek-Erk signalling pathway. Transforming growth factor-β, an important mediator of the cellular response to external stimuli and xenobiotics, activates EGR1 via SMAD3. Upregulation of EGR1 was described as an

Figure 5. Dynamics of the early-response network is encoded by its structure. (a) Dynamics of the network in human (left) and rat (right), showing their arithmetic mean (lines) and standard errors of the mean (error bars). (b) The Boolean network model. Four genes are connected with thick lines embodying binary interactions. Solid-arrow tip: positive trans-activation; solid-circle tip: indirect activation; bar: transcriptional inhibition. Biological functions are given in rectangular nodes, with genes connected to them with thin lines. Solid-circle tips indicate positive effects, and bars indicate negative effects. Only gene nodes and their interactions are used for modelling and simulation. (c) Simulated dynamics using the Boolean network model with the initial state I_{S_1} (top) and I_{S_2} (bottom). Random noise is added to facilitate visualization.

Figure 6. Performance (F_1-score) of support vector machines (SVMs) with four genes (network) as input and of SVMs with individual genes as input, in liver (a) and kidney (b).
adaptive measure to attenuate sulindac sulphide-mediated cytotoxicity in human intestinal epithelial cells. In vivo studies revealed that EGR1 is essential for ethanol-induced or cholestatic liver injury. Our study provides further evidence that early activation of EGR1, presumably an adaptive reaction against cell death, is a signature of compound-induced toxicity. Its expression alone, however, is not sufficient for prediction unless the states of the other genes in the network are known.

ATF3, a direct transcriptional target of EGR1, acts as a central hub coordinating cellular stress pathways.65,66 It has a key role in the transforming growth factor-β-SMAD pathway, providing a convergence point for the joint control of epithelial cells by multiple stress response pathways.61 Therefore, it has been proposed as a marker for a variety of stressed tissues including liver, heart, brain,62 and nerve.63 Our findings underpin its role in stress response and highlight its synergy with other genes of the network.

The other two members of the network both protect cells from apoptosis. GDF15, a transforming growth factor-β superfamily member, protects heart from ischemia/reperfusion injury.54 Its rapid induction was shown in various models of liver, lung and kidney injury.65,66 Serum levels of FGF21, a secreted protein, were recently proposed as a biomarker for liver and kidney diseases.67,68 Although their functions have been individually characterized, the hitherto undescribed coherent dynamics of the four genes induced by distinct compounds in human and rat suggest that they are more closely linked than previously thought. The network may act both as a convergence point of upstream stress-sensing pathways and as a core module coordinating downstream responses. Boolean network modelling supports the notion that the network’s intrinsic dynamics is encoded by its structure. It presents a hypothesis to explain the conserved dynamics and the generality across compounds, organ types, and even species. We believe this hypothesis should be challenged by studies with other cell types, and studies in model organisms beyond rat and human.

In conclusion, we report EGR1, ATF3, GDF15 and FGF21 as a consensus early signature of in vitro and in vivo toxicity in human and rat. It was essential to focus on early time points, because at this stage there seems to be high conservation of general stress-response signals, which diverge in later time points. Our findings demonstrate the translational value of multivariate time-series data in toxicity studies and the potential of early-response genes as predictive toxicity signatures. We recommend monitoring the network in first-line compound screenings to increase the efficiency of safety evaluations and to reduce costs and animal use.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

We thank Marco Berrens for his help on sequence analysis. We thank Laurent Essieux, Tobias Heckel, Jean-Christophe Hoflack, Thomas. Singer, and members of the bioinformatics team for support and discussions. We want to especially thank the TG-GATEs consortium for establishing the database and for making it publicly available. This work was supported by F Hoffmann-La Roche AG.

Author contributions: JDZ and ME designed research; JDZ, NB and ME performed research; JDZ, NB and ABR contributed new reagents and analytic tools; JDZ and NB analysed the data; JDZ, NB, ABR and ME wrote the paper.

REFERENCES

1. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004; 3: 711–716.

2. Arrowsmith J. Trial watch: phase II failures: 2008–2010. Nat Rev Drug Discov 2011a; 10: 328–329.

3. Arrowsmith J. Trial watch: phase III and submission failures: 2007–2010. Nat Rev Drug Discov 2011b; 10: 87.

4. Waring JF, Cuirlonis R, Jolly RA, Heindel M, Ulrich RG. Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity. Toxicol Lett 2001; 120: 359–368.

5. Waters M, Stasiwicz S, Alex Merrick B, Tenner K, Bushel P, Paules R et al. CEDS—Chemical Effects in Biological Systems: a public data repository integrating study design and toxicity data with microarray and proteomics data. Nucleic Acids Res 2008; 36(Suppl 1): D982–D990.

6. Kiyosawa N, Ando Y, Watanabe K, Niino N, Manabe S, Yamato T. Scoring multiple toxicological endpoints using a toxicogenomic database. Toxicol Lett 2009; 188: 91–97.

7. Yuan B, Wang J, Cao H, Sun R, Wang Y. High-throughput analysis of the mutagenic and cytotoxic properties of DNA lesions by next-generation sequencing. Nucleic Acids Res 2011; 39: 6594–6604.

8. Steiner G, Suter L, Boess F, Gasser R, Cristina de Vera M, Albertini S et al. Discriminating different classes of toxicants by transcript profiling. Environ Health Perspect 2004; 112: 1236–1248.

9. Heijne WH, Kienhuis AS, van Ommen B, Stierum RH, Groten JP. Systems toxicology: applications of toxicogenomics, transcriptomics, proteomics and metabolomics in toxicology. Expert Rev Proteomics 2005; 2: 767–780.

10. Butcher EC. Can cell systems biology rescue drug discovery? Nat Rev Drug Discov 2005; 4: 461–467.

11. Chiang A, Butte A. Data-driven methods to discover molecular determinants of serious adverse drug events. Clin Pharmacol Ther 2009; 85: 259–268.

12. Cami A, Arnold A, Manzi S, Reis B. Predicting adverse drug events using pharmacological network models. Sci Transl Med 2011; 3: 114ra27.

13. Loukine L, Keiser MJ, Whitebread S, Mikhaylov D, Hamon J, Jenkins B et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012; 486: 361–367.

14. Fielden MR, Eynon BP, Natsoulis G, Jarnagin K, Banas D, Kolaja K. A gene expression signature that predicts the future onset of drug-induced renal tubular toxicity. Toxicol Pathol 2005; 33: 675–683.

15. Powell CL, Kosyk O, Ross PK, Schoonhoven R, Boysen G, Svenberg JA et al. Phenotypic anchoring of acetaminophen-induced oxidative stress with gene expression profiles in rat liver. Toxicol Sci 2006; 93: 213–222.

16. Martin MT, Brennan RJ, Hu W, Ayanoglu E, Lau C, Ren H et al. Toxicogenomic study of triazole fungicides and perfluorooalkyl acids in rat livers predicts toxicity and categorizes chemicals based on mechanisms of toxicity. Toxicol Sci 2007; 97: 595–613.

17. Nioi P, Parodi IDR, Sherratt PJ, Snyder RD. Prediction of non-genotoxic carcinogenesis in rats using changes in gene expression following acute dosing. Chem Biol Interact 2008; 172: 206–215.

18. Kramer JA, Sagarte JZ, Morris DL. The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat Rev Drug Discov 2007; 6: 636–649.

19. Consortium TEP. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.

20. Activation of Immediate Early Genes By Drugs of Abuse. In: Grzanna R, Brown R eds. NIDA Research Monograph Series. US National Institute on Drug Abuse, 1993.

21. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 2006; 7: 505–516.

22. Van HNammelen P, Sasaki J. State-of-the-art genomics approaches in toxicology. J Toxicol Sci 2010; 35: 165–171.

23. Kiosawa N, Shiwaiku K, Hirode M, Omura K, Uehara T, Shimizu T et al. Utilization of a one-dimensional score for comparing chemical-induced changes in expression levels of multiple biomarker gene sets using a large-scale toxicogenomics database. J Toxicol Sci 2006; 31: 433–448.

24. Hirode M, Omura K, Kiyosawa N, Uehara T, Shimizu T, Ono A et al. Gene expression profiling in rat liver treated with various hepatotoxic-compounds inducing coagulopathy. J Toxicol Sci 2009; 34: 281–293.

25. Uehara T, Minowa Y, Morikawa Y, Kondo C, Maruyama T, Kato I et al. Prediction model of potential hepatocarcinogenicity of rat hepatocarcinogens using a large-scale toxicogenomics database. Toxicol Appl Pharmacol 2011; 255: 297–306.

26. Gautier L, Cope L, Bolstad B, Irizarry RA. affy—analyzer of Affymetrix GeneChip data at the probe level. Bioinformatics 2004; 20: 307–315.

27. Smyth G. Limma: Linear Models for Microarray Data. In: Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S (eds). Bioinformatics and computational biology solutions using R and Bioconductor. Springer: New York, 2005.

28. Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press: New York, 2007.

29. Jack J, Wambaugh JF, Shah I. Simulating quantitative cellular responses using asynchronous threshold Boolean network ensembles. BMC Syst Biol 2011: 5: 109.

30. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM TIST 2011; 2: 1.

31. Holsapple MP, Pitot HC, Cohen SH, Boobis AR, Klaunig JE, Pastoor T et al. Mode of action in relevance of rodent liver tumors to human cancer risk. Toxicol Sci 2006; 95: 51–56.
Early-response signature network of drug toxicity

JD Zhang et al

32 Hasegawa R, Furukawa F, Toyoda K, Jang JJ, Yamashita K, Sato S et al. Study for tumor-initiating effect of acetaminophen in two-stage carcinogenesis of male F344 rats. Carcinogenesis 1998; 9: 755–759.
33 Deutsch WA, Kukreja A, Shane B, Hegde V. Phenobarbital, oxazepam and Wyeth 14,643 cause DNA damage as measured by the Comet assay. Mutagenesis 2001; 16: 439–442.
34 Baek SJ, Kim J-S, Nixon JB, DiAugustine RP, Eling TE. Expression of NAG-1, a transforming growth factor-beta superfamily member, by Trogilitzone requires the early growth response gene EGR-1. J Biol Chem 2004; 279: 6883–6892.
35 Bottone FG, Moon Y, Alston-Bills B, Eling TE. Transcriptional regulation of activating transcription factor 3 involves the early growth response-1 gene. J Pharmacol Exp Ther 2005; 315: 668–677.
36 Kumbirik J, Gerlinger M, Johnson JP. Egr-1 induces the expression of its cocompress Naβ2 by activation of the Naβ2 promoter thereby establishing a negative feedback loop. J Biol Chem 2005; 280: 42785–42793.
37 Fisher J, Henzinger TA. Executable cell biology. Nat Biotechnol 2007; 25: 1239–1249.
38 Johnson CL, Weston JY, Chadi SA, Fazio EN, Huff MW, Kharitonenkov A et al. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology 2009; 137: 1795–1804.
39 Lee S-H, Krusnapan C, Baek SJ. NSAD-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3beta, C/EBPbeta and ATF3. Carcinogenesis 2010; 31: 719–728.
40 Yin X, Wolford CC, Chang Y-S, McConoughy SJ, Ramsey SA, Aderem A et al. Analysis of ATF3, an adaptive-response gene, enhances TGF-beta signaling and cancer-initiating cell features in breast cancer cells. J Cell Sci 2010; 123: 3558–3565.
41 Loeffler I, Hopfer U, Koczan D, Wolf G. Type VIII collagen modulates TGF-beta-induced proliferation of mesangial cells. J Am Soc Nephrol 2011; 22: 649–663.
42 Giraldo A, Barrett OPT, Tindall MJ, Fuller SJ, Amirak E, Bhattacharya BS et al. Feedback regulation by Atf3 in the endothelin-1-responsive transcriptome of cardiomyocytes: Egri1 is a principal Atf3 target. Biochem J 2012; 444(Pt 2): 343.
43 Alon U. An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman and Hall/CRC: Boca Raton, FL, USA, 2006.
44 Thomas R, Thieffry D, Kaufman M. Dynamical behaviour of biological regulatory networks--I. Biological role of feedback loops and practical use of the concept of negative feedback loop. Nature 1995; 375: 100–102.
45 Moon Y, Yang H, Kim YB. Up-regulation of early growth response-1 gene 1 by EGR-1 via ERK1/2 signals attenuates sulindac sulfide-mediated cytotoxicity in the human intestinal epithelial cells. Toxicol Appl Pharmacol 2007; 223: 155–163.
46 McMullen MR, Pritchard MT, Wang Q, Millward CA, Croniger CM, Nagy LE. Early growth response-1 transcription factor is essential for ethanol-induced fatty liver injury in mice. Gastroenterology 2005; 128: 2066–2076.
47 Kim ND, Moon J-O, Slitt AL, Copple BL. Early growth response factor-1 is critical for cholestatic liver injury. Toxicol Sci 2006; 90: 586–595.
48 Tanaka Y, Nakamura A, Moroika MS, Inoue S, Tamamori-Adachi M, Yamada K et al. Selection of cytotoxicity markers for the screening of new chemical entities in a program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 2007; 95: 1–12.
49 Gerets HHJ, Hanon E, Cornet M, Dhalluin S, Depelchin O, Canning M et al. Selection of cytotoxicity markers for the screening of new chemical entities in a pharmaceutical context: a preliminary study using a multiplexing approach. Toxicol In Vitro 2009; 23: 319–332.
50 Bailey WJ, Holder D, Patel H, Devlin P, Gonzalez RJ, Hamilton V et al. A performance evaluation of three drug-induced liver injury biomarkers in the rat: alpha-glutathione S-transferase, arginase 1, and 4-hydroxyphenyl-pyruvate dioxygenase. Toxicol Sci 2012; 130: 220–244.
51 Thiel G, Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 2002; 193: 287–292.
52 Sakamoto KM, Bardeleben C, Yates KE, Raines MA, Golde DW, Gasson JC. 5’ Upstream sequence and genomic structure of the human primary response gene, EGR-1/TIS5. Oncogene 1991; 6: 867–871.
53 Gineitis D, Treisman R. Differential usage of signal transduction pathways defines two types of serum response factor target gene. J Biol Chem 2001; 276: 24531–24539.
54 Chen S-J, Ning H, Ishida W, Sodin-Semfl S, Takagawa S, Mori Y et al. The early-immediate gene EGR-1 is induced by transforming growth factor-beta and mediates stimulation of collagen gene expression. J Biol Chem 2006; 281: 21183–21197.
55 Moon Y, Yang H, Kim YB. Up-regulation of early growth response gene 1 (EGR-1) via ERK1/2 signals attenuates sulindac sulfide-mediated cytotoxicity in the human intestinal epithelial cells. Toxicol Appl Pharmacol 2007; 223: 155–163.
56 McMillen MR, Pritchard MT, Wang Q, Millward CA, Croniger CM, Nagy LE. Early growth response-1 transcription factor is essential for ethanol-induced fatty liver injury in mice. Gastroenterology 2005; 128: 2066–2076.
57 Kim ND, Moon J-O, Slitt AL, Copple BL. Early growth response factor-1 is critical for cholestatic liver injury. Toxicol Sci 2006; 90: 586–595.
58 Tanaka Y, Nakamura A, Moroika MS, Inoue S, Tamamori-Adachi M, Yamada K et al. Selection of cytotoxicity markers for the screening of new chemical entities in a program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 2007; 95: 1–12.
59 Gerets HHJ, Hanon E, Cornet M, Dhalluin S, Depelchin O, Canning M et al. Selection of cytotoxicity markers for the screening of new chemical entities in a pharmaceutical context: a preliminary study using a multiplexing approach. Toxicol In Vitro 2009; 23: 319–332.
60 Bailey WJ, Holder D, Patel H, Devlin P, Gonzalez RJ, Hamilton V et al. A performance evaluation of three drug-induced liver injury biomarkers in the rat: alpha-glutathione S-transferase, arginase 1, and 4-hydroxyphenyl-pyruvate dioxygenase. Toxicol Sci 2012; 130: 220–244.
61 Thiel G, Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 2002; 193: 287–292.
62 Sakamoto KM, Bardeleben C, Yates KE, Raines MA, Golde DW, Gasson JC. 5’ Upstream sequence and genomic structure of the human primary response gene, EGR-1/TIS5. Oncogene 1991; 6: 867–871.
63 Gineitis D, Treisman R. Differential usage of signal transduction pathways defines two types of serum response factor target gene. J Biol Chem 2001; 276: 24531–24539.
64 Chen S-J, Ning H, Ishida W, Sodin-Semfl S, Takagawa S, Mori Y et al. The early-immediate gene EGR-1 is induced by transforming growth factor-beta and mediates stimulation of collagen gene expression. J Biol Chem 2006; 281: 21183–21197.
65 Moon Y, Yang H, Kim YB. Up-regulation of early growth response gene 1 (EGR-1) via ERK1/2 signals attenuates sulindac sulfide-mediated cytotoxicity in the human intestinal epithelial cells. Toxicol Appl Pharmacol 2007; 223: 155–163.
66 McMillen MR, Pritchard MT, Wang Q, Millward CA, Croniger CM, Nagy LE. Early growth response-1 transcription factor is essential for ethanol-induced fatty liver injury in mice. Gastroenterology 2005; 128: 2066–2076.
67 Kim ND, Moon J-O, Slitt AL, Copple BL. Early growth response factor-1 is critical for cholestatic liver injury. Toxicol Sci 2006; 90: 586–595.