Molecular, cellular and functional changes in the retinas of young adult mice lacking the voltage-gated K+ channel subunits Kv8.2 and K2.1

Xiaotian Jiang
The University of Western Australia

Rabab Rashwan
Lions Eye Institute

Valentina Voigt
Lions Eye Institute

Jeanne Nerbonne
Washington University School of Medicine in St. Louis

David M Hunt
The University of Western Australia

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Jiang, Xiaotian; Rashwan, Rabab; Voigt, Valentina; Nerbonne, Jeanne; Hunt, David M; and Carvalho, Livia S, "Molecular, cellular and functional changes in the retinas of young adult mice lacking the voltage-gated K+ channel subunits Kv8.2 and K2.1." *International Journal of Molecular Sciences*. 22,9. (2021).
https://digitalcommons.wustl.edu/open_access_pubs/10385

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Article

Molecular, Cellular and Functional Changes in the Retinas of Young Adult Mice Lacking the Voltage-Gated K⁺ Channel Subunits Kv8.2 and K2.1

Xiaotian Jiang 1,†, Rabab Rashwan 2,3,†, Valentina Voigt 2, Jeanne Néronne 4, David M. Hunt 1,2,† and Livia S. Carvalho 1,2,‡

1 Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, WA 6009, Australia; 21636345@student.uwa.edu.au (X.J.); david.hunt@uwa.edu.au (D.M.H.)
2 Lions Eye Institute, Nedlands, WA 6009, Australia; rababrashwan@lei.org.au (R.R.); vvoigt@lei.org.au (V.V.)
3 Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia 61519, Egypt
4 Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; jneronne@wustl.edu
* Correspondence: liviacarvalho@lei.org.au
† Equal first authors.

Abstract: Cone Dystrophy with Supernormal Rod Response (CDSRR) is a rare autosomal recessive disorder leading to severe visual impairment in humans, but little is known about its unique pathophysiology. We have previously shown that CDSRR is caused by mutations in the KCNV2 (Potassium Voltage-Gated Channel Modifier Subfamily V Member 2) gene encoding the Kv8.2 subunit, a modulatory subunit of voltage-gated potassium (Kv) channels. In a recent study, we validated a novel mouse model of Kv8.2 deficiency at a late stage of the disease and showed that it replicates the human electroretinogram (ERG) phenotype. In this current study, we focused our investigation on young adult retinas to look for early markers of disease and evaluate their effect on retinal morphology, electrophysiology and immune response in both the Kv8.2 knockout (KO) mouse and in the Kv2.1 KO mouse, the obligate partner of Kv8.2 in functional retinal Kv channels. By evaluating the severity of retinal dystrophy in these KO models, we demonstrated that retinas of Kv KO mice have significantly higher apoptotic cells, a thinner outer nuclear cell layer and increased activated microglia cells in the subretinal space. Our results indicate that in the murine retina, the loss of Kv8.2 subunits contributes to early cellular and physiological changes leading to retinal dysfunction. These results could have potential implications in the early management of CDSRR despite its relatively nonprogressive nature in humans.

Keywords: CDSRR; cone-rod dystrophy; KCNV2; KCNI; voltage-gated potassium channels; photoreceptors; retinal degeneration
ERG response to bright flashes; the rod a-wave response remains reduced and delayed, whereas the rod b-wave becomes supernormal in amplitude under high intensity light stimulus [8,9].

Vertebrate voltage-gated K⁺ channels (Kv) channels are tetramers of four subunits arranged as a ring [10]. Each subunit is composed of two main regions; the pore domain, which allows selective permeability of ion species across the cell membrane, is formed by S5, S6 and a loop that interconnects all subunits; and the voltage-sensor domain, comprising of S1-S4, which undergoes the conformational changes in response to membrane voltage variations [10]. There are around 50 Kv subunits described so far. The Kv8.2 subunit is a member of the KvS (defined as silent or modifier subunits) subfamily that are unable to form homotetrameric channels [7,11]. To form functional channels, they must heterotetramerize with subunits from the Kvα2 family (Kv2.1 or Kv2.2) [9,12,13]. A recent report [14] showed that Kv8.2 is mostly co-expressed with Kv2.1 in the inner segments of rod and cone photoreceptors in mice, macaques and humans, but it is also co-expressed with Kv2.2 in monkey and human cones only. So far, all the reported mutations in KCNV2 show a fully recessive mode of inheritance, with similar clinical features of the disease [2,8,15,16]. Kv8.2 is the only silent subunit that has thus far been implicated in human disease, but the basis of its unique pathophysiological phenotype and its role in disease development and progression remains unclear, potentially limiting the development of efficient treatment strategies.

In a recent study [17], our group described a novel mouse model of CDSRR that shows a similar ERG phenotype to the one seen in CDSRR patients, including the presence of the supernormal b-wave under a bright light stimulus. This study also showed overall thinning of the retinal outer nuclear layer with significant photoreceptor cell death [17]. In an effort to maximize disease detection, this first study focused on six-month-old animals. However, since visual loss symptoms in CDSRR patients start at a relatively early age, the goal of the present study was to extend our analysis of our mouse model to an earlier disease stage, thereby providing a better evaluation of disease progression. We were also interested in evaluating the potential cellular, molecular and functional changes the absence of Kv subunits can have in the retinas of young adult mice. In this study, we provide a more in-depth morphological and physiological characterization of both Kv8.2 and Kv2.1-deficient mouse models in two-month-old animals, including histological analysis of Kv subunits, photoreceptor markers, outer nuclear layers thickness, quantification of retinal stress and immune profile and functional assessment of visual response. Our data show for the first time that Kv8.2 knockout (KO) retinas still express Kv2.1 subunits, indicating the presence of homotetrameric Kv2.1 channels. We also show that loss of both Kv subunits induces significant photoreceptor death, thinning of the outer nuclear layer, reduction in the photopic visual response, and short and long-term activation of a retinal immune response. These data provide further validation of this KO mouse line as a model for CDSRR, and thereby a useful tool for elucidating the molecular and cellular disease mechanisms. It could also be useful in expanding our understanding of the role of Kv channels in the visual cascade. Finally, it could prove invaluable in assessing and validating novel treatment strategies for CDSRR.
analysis also corroborated Kv subunit expression in the Kv8.2 KO retinas. In the Kv2.1 retinas, Kcnv2 mRNA is present while Kv8.2 protein is absent, indicating that Kv8.2 does not transport to the inner segments when Kv2.1 is absent, as shown in our previous in vitro work [18]. The presence of Kcnb1 mRNA in Kv2.1 KO retinas (Figure 1E) is expected due to how the Kv2.1 KO line has been generated (please see Materials and Methods section). To determine whether Kv8.2 and Kv2.1 are colocalized with mouse cones as well as rods, and if the localization of the homo-tetrameric Kv2.1 subunit in the Kv8.2 KO followed the same pattern, we used a cone-specific marker, cone arrestin, to distinguish between rod and cone outer segments (OS). Figure 2 shows that both Kv8.2 and Kv2.1 subunits are present in both rod and cone photoreceptor IS regions. It also shows that the homo-tetrameric Kv2.1 subunits are localized to the IS region in the Kv8.2 KO retina. Comparing the cone and rod maker staining in the Kv8.2 KO and WT retinas, there is reduced cone arrestin staining in both KO retinas, indicating a possible down-regulation of cone markers and impaired cone outer segments formation (Figure 1B).

Figure 1. Retinal localization and expression of the voltage-gated K⁺ channel protein subunits Kv8.2 and Kv2.1 in wild type (WT), Kv8.2 knockout (KO) and Kv2.1 KO. (A-C) Representative confocal images of the inner segment (IS) area, outer nuclear layer (ONL), inner nuclear layer (INL) and ganglion cell layer (GCL) showing expression of Kv8.2 and Kv2.1 mouse subunits in wild type (A), Kv8.2 KO (B) and Kv2.1 KO (C) retinas at 20× (top panels) and 40× (bottom panels) magnification. Scale bars = 20 μM (top panels) and 50 μM (bottom panels). (D,E) Relative mRNA expression of Kcnv2 and Kcnb1 genes in all three lines. Results are presented as mean ± SD from n = 3 (WT and Kv8.2 KO) and n = 4 (Kv2.1 KO).
Figure 2. Representative confocal images of wild type and knockout (KO) retinas from central (10° from optic nerve) dorsal-ventral areas showing signal overlap of (A) rhodopsin (Rho, red) or (B) cone arrestin (Arr3, red) with both Kv subunits in wild type and Kv2.1 subunit in Kv8.2 KO retinas (green). No anti-Kv8.2 and anti-Kv2.1 staining was observed in the Kv2.1 KO retinas. ONL, outer nuclear layer; IS, inner segment; INL, inner nuclear layer; OS, outer segment. Scale bar = 20 μM.

2.2. Retinal Thickness and Cell Death

The loss of Kv8.2 presents as a progressive cone-rod dysfunction in humans mainly affecting the cone and rod photoreceptors located in the outer nuclear layer (ONL). We, therefore, used paraffin-embedded sections, which better maintain the integrity of the retinal layers, to quantify the thickness of ONL in wild type (WT) and both KO retinas at a relatively early stage of the disease (two months of age). The original thickness of the ONL was calculated in pixels and then converted to μM in ImageJ (Figure 3A,B). A two-way ANOVA with 95% CI was conducted to compare the thickness of ONL in WT, Kv8.2 KO and Kv2.1 KO retinas. The most significant difference was observed in the central retina.
Figure 3. Retinal thickness and cell death in wild type (WT) and knockout (KO) retinas. (A) Representative histological retinal sections from the dorsal-ventral region of KO models and WT showing the different retinal layers. RPE, retinal pigment epithelium; OS/IS, outer segment/inner segment; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; RGC, retinal ganglion cells. Scale bar = 100 μM. (B) Quantification of outer nuclear layer (ONL) thickness in the different mouse models in central (10° from optic nerve) and peripheral (80° from optic nerve) areas of the retina. No differences were observed between dorsal or ventral areas. The results are presented as mean +/− SEM, with statistical analysis by two-way ANOVA and Sidak’s multiple comparison test post hoc with * p < 0.002. (C) Quantification of cell death in the ONL of WT, Kv8.2 KO and Kv2.1 KO retinas via TUNEL (Terminal deoxynucleotidyl transferase dUTP Nick End Labeling) staining. Results are presented as mean +/− SD from n = 3−5, and p values were obtained through one-way ANOVA and Tukey’s multiple comparison test post hoc with * p < 0.006.

In a previous study [17] of the Kv8.2 KO mouse, we showed a significant amount
an early-onset progressive cell death. Furthermore, the Kv2.1 KO retina also showed a significant amount of cell death at two months, corroborating the findings of reduced outer nuclear layer thickness shown in Figure 3B, and thereby indicating that the complete absence of Kv channels is detrimental to photoreceptor survival.

2.3. Retinal Gliaosis and Microglial Activation

As Müller glia and microglia are the predominant glial cell types that maintain the steady-state in the healthy retina, we sought to determine whether loss of Kv8.2 or Kv2.1 subunits was correlated with an altered retinal glia profile as seen in other models of inherited retinal degeneration. We first determined whether the retinas of Kv deficient mice showed signals of retinal stress as indicated by the expression of the glial fibrillary acidic protein (GFAP) in Müller glia cells. GFAP expression in retinal Müller glia is used as an indicator of tissue stress and has been associated with several models of retinal degeneration [19]. Histological analysis and quantification of GFAP protein expression showed an increase in GFAP expression in both Kv2.1 KO and Kv8.2 KO retinas compared to WT (Figure 4A,B). However, when gene expression was assessed, a significant increase was only seen in the Kv2.1 KO retinas (Figure 4C).
Using confocal z-stack images of retinal flatmounts stained with the microglia marker Iba1, we quantified microglia numbers in the inner nuclear layer (INL) and the outer nuclear layer (ONL). In the WT retinas, resident microglia cells exhibited a ramified morphology with a small, round soma, and various branching processes (Figure 4D,E). These inactivated microglia cells were mainly located in the INL. In the Kv8.2 KO retinas, microglia cells assume a reactive state, progressing into phagocytic microglial cells. Under this reactive state, microglia cells proliferate and can assume an amoeboid form (Figure 4E) and migrate into the ONL (Figure 4D) [20].

When quantified, there was a significant 10-fold increase in microglia numbers in the ONL of Kv8.2 KO retinas compared to WT (WT, 3 ± 0.65; Kv8.2 KO, n = 3, 31.75 ± 4.53; p = 0.0074; Figure 4D); WT 41.25 ± 4.84; Kv8.2 KO, n = 3, 76 ± 4.16; p = 0.0018), together with a significant increase in microglia numbers in the INL of Kv8.2 KO animals (WT 41.25 ± 4.84; Kv8.2 KO, 76 ± 4.16; p = 0.0018). No significant changes compared to WT were found for the Kv2.1 KO retinas. The increased number of microglia in both outer and inner layers of the Kv8.2 KO retina indicates activation and proliferation of microglia cells during disease. The comparison of microglia numbers in the different retinal areas (superior, inferior, temporal and nasal) showed no significant spatial differences.

2.4. Long-Term Immune Response

Our data shows a significant increase in microglia numbers in the INL and the presence of activated microglia in the ONL only in the retinas of two-month-old Kv8.2 KO animals. In order to further investigate the effect of disease progression on the localized immune response, we used flow cytometry to characterize and quantify the immune profile of two-month-old WT and Kv8.2 KO retinas via a validated panel of immune markers for retinal samples [21]. Figure 5 shows the different immune cell markers evaluated and total numbers per animal (two eyes pooled). Similar to our histology data, we observed a trend for increased numbers of both microglia and CD45+ cells in Kv8.2 KO, but only CD45+ was statistically significant. However, when microglia were analyzed for CD11c+, an activation marker on microglia normally not expressed in steady-state, we observed a significant increase in the Kv8.2 KO retinas compared to WT. Interestingly, both natural killer cells (NK1.1+) and granulocyte (Ly6G+) were significantly increased in Kv8.2 KO retinas, indicating activation of the innate immune response. However, a slightly increased, but not significant, number of T cells (CD8+ and CD4+) was also observed. To evaluate whether the immune response seen at two months had any long-term effects, we also ran the same panel on six-month-old retinas from WT and Kv8.2 KO mice. As shown in Supplementary Figure S2, CD45+, NK1.1+, and Ly6G+ cells were all still significantly increased at six months, but activated microglia (CD11c+) were not different from WT.
Figure 5. Characterization of immune cells present in the retina of wild type (WT) and Kv8.2 knockout (KO) mice. Panels show quantification of different types of immune cells in two-month-old WT and Kv8.2 KO retinas. Results are presented as mean ± SEM from n = 6. p values were obtained through unpaired t-test with Welch’s correction, *p = 0.0286, **p < 0.0029 and ***p = 0.0002.
KO mice showed significantly reduced optomotor responses (clockwise: WT, 17 ± 0.66; Kv8.2 KO, 9.25 ± 0.85; Kv2.1 KO, 9.66 ± 1.20; p < 0.0002. Anti-clockwise: WT, 14.33 ± 2.02; Kv8.2 KO, 8 ± 1.42; Kv2.1 KO, 8 ± 1.73; p = 0.002).

Figure 6. Photopic visual response from Kv deficient retinas. (A) Representative light-adapted photopic full flash ERG traces from wild type (WT), Kv8.2 knockout (KO) and Kv2.1 KO animals taken at 25 cd.s/m². (B) Quantification of photopic a-wave in all three genotypes at different stimulus intensities. * denote significance between the Kv lines and WT with p < 0.0005. No statistical difference was observed between the Kv8.2 and Kv2.1 KO lines. (C) Quantification of photopic b-wave in all three genotypes at different stimulus intensities. * denote significance between the Kv lines and WT with p < 0.0005. No statistical difference was observed between the Kv8.2 and Kv2.1 KO lines. (D) Light-adapted photopic optomotor response from all three genotypes. Y-axis shows tracking movements per 2 min. * p < 0.002 compared to WT. Results for (B–D) are presented as mean +/- SD from n = 3–4 animals (6 eyes per genotype). Significance was obtained through a two-way ANOVA and Tukey’s multiple comparison test post hoc.

Our previous study carried out on six-month-old mice [17] showed that the switch to an enhanced positive component of the b-wave in Kv8.2 KO retinas occurred between 0.01 and 0.1 cd.s/m². The data shown in Figure 7 are from two-month-old mice and were obtained from a series of dark-adapted scotopic responses ranging from 0.1 to 25 cd.s/m² (Figure 7B). Figure 7A shows representative scotopic traces from WT, Kv8.2 KO and Kv2.1 KO at 25 cd.s/m² where the enhanced positive component of the b-wave can be seen in the Kv8.2 KO group.
Figure 7. Scotopic ERG response. (A) Representative traces of dark-adapted full flash scotopic responses at 25 cd.s/m². Traces show the distinctive supernormal b-wave (+b) component of the ERG trace in both Kv8.2 and Kv2.1 KO animals. Amplitude length of a-wave (a) and full b-wave (b) are also shown. (B) Quantification of the dark-adapted scotopic a-wave, b-wave and positive b-wave components at different light intensities for WT, Kv8.2 KO and Kv2.1 KO animals. Results are presented as mean ±/− SD from n = 3–4 animals (six eyes per genotype); significance was obtained through a two-way ANOVA and Tukey’s multiple comparison test post hoc. a-wave: * p < 0.0001 at all intensities for both Kv lines compared to WT; ** p = 0.0085 between Kv8.2 and Kv2.1 KO lines. b-wave: * p < 0.01 between Kv8.2 and Kv2.1 KO lines only. Not significant compared to WT. Positive b-wave: ** p = 0.0025 only between WT and Kv8.2 only. * p = 0.004 (0.3 cd.s m⁻²) and p < 0.0006 (1–25 cd.s m⁻²) between Kv lines and WT. Not significant between Kv lines.

3. Discussion

Since its first report in 2006 [2], several different types of KCNV2 mutations have now been confirmed to lead to CDSRR. However, the physiological basis between deficient Kv8.2 subunits and the diagnostic supernormal rod ERG response seen in patients is still not well understood. In our previous study, we validated a Kv8.2 KO mouse model of CDSRR [17] and thoroughly characterized its electrophysiological response, showing that voltage-gated K⁺ channels are essential for the generation of normal a-, b- and c-wave responses. We also confirmed that knocking out the Kcnv2 gene in the mouse also generates a supernormal scotopic b-wave response at higher light intensities, as seen in CDSRR patients.

Clinical studies have shown that CDSRR is a slowly progressing disorder. However, reports of age-related visual acuity changes, ERG responses and macular abnormalities
3.1. Early Morphological Changes in Potassium Channel Deficient Retinas

Our data corroborate a previous report by Gayet-Primo and colleagues [14] that Kv8.2 is co-expressed with Kv2.1 in the inner segment of mouse cone and rod photoreceptors. However, more importantly, we have now confirmed that in the absence of the Kv8.2 subunit, Kv2.1 subunits can still traffic to the inner segment whereas Kv8.2 subunits do not reach the inner segment when Kv2.1 is absent. This result is in line with our previous in vitro work [18], which showed that the modulatory Kv8.2 subunits need their copartner Kv2.1 to traffic to the cell membrane. As we’ve shown, when Kv2.1 subunits are absent from mouse photoreceptors, Kv8.2 subunits are also missing, indicating, as found in vitro, that Kv8.2 subunits need Kv2.1 to traffic to the inner segments of photoreceptors in vivo.

It seems clear both from our work and from clinical studies that the absence of heterotetrameric Kv channels in the retina causes a slowly progressing, but significant, loss of photoreceptor cells from an early stage of the disease. Enhancement of voltage-gated homomeric Kv2.1 channel activity, and subsequent cellular efflux of K⁺ ions, have been shown to accompany apoptotic cell death in cortical neurons [26] and could, therefore, explain the loss of photoreceptors seen in CDSRR. However, the apoptotic surge of Kv2.1 channel activity is only possible via a p38-dependent increase in Kv2.1 phosphorylation [27] and, since retinal Kv2.1 subunits are less phosphorylated than cortical Kv2.1 [14], it could also explain why photoreceptor cell death progresses mildly in CDSRR. However, cellular K⁺ efflux-mediated apoptosis does not explain the cell death observed in the Kv2.1 KO retina, which was almost double that in Kv8.2 KO (30% vs. 17%, respectively in the central retina). This suggests that the complete absence of voltage-gated K⁺ channels most likely generates a greater ionic imbalance within, and potentially extracelular to, photoreceptors which could then result in the activation of apoptosis independent of K⁺ efflux. Potential differences in photoreceptor cell death mechanisms between Kv8.2 and Kv2.1 KO models are also evident by a discrepancy in the rate of cell death between retinal regions. In the Kv8.2 KO mice, loss of photoreceptors was only significant in the central retina, whereas in the Kv2.1 KO mice there was a similar loss between central and peripheral retina. Despite the lack of a macula, the central loss of photoreceptors in the Kv8.2 KO mouse mirrors the macular thinning reported in CDSRR patients [3]. The comparable rod:cone ratio, and the phagocytic load of the RPE between the peripheral human macular and central mouse retina [28], could account for this similarity and provide further clues towards elucidating cell death mechanisms in CDSRR.

3.2. Absence of Kv82 Activates an Innate Immune Response in the Retina

The contribution of non-cell-autonomous mechanisms involving inflammation in different types of inherited retinal degeneration (IRD; of which CDSRR is a part) remains unclear, particularly the role of retinal microglia [29,30]. However, there is an increasing appreciation of the non-cell-autonomous contributions that microglia make to the rate and extent of photoreceptor degeneration. One study [31] reported that microglia in mouse models of retinitis pigmentosa (RP) and human RP contribute to photoreceptor cell death by activating non-cell-autonomous inflammation pathways.
stage. Flow cytometry analysis of the retinas at two months revealed infiltration of natural killer (NK) cells and granulocytes that usually traffic into the eye under inflammatory conditions. NK cells are a central component of the innate immune system and play a critical role in regulating the adaptive immune response. Those cells are known to have an essential role in generating the inflammatory response during uveitis [33,34] and in AMD pathogenesis [35].

Granulocytes produce a wide array of toxic reactive oxygen species and proteases that can further damage ocular cells, while NK cells have cytolitic activity promoting neutrophil infiltration and produce cytokines able to recruit immune cells into the eye [36]. Photoreceptor cells within the retina do not express MHC class I molecules [37], making them vulnerable to NK cell-mediated lysis; therefore, the presence of these cells could represent a threat to the integrity of the retinal environment. We, therefore, believe that the increased presence of both granulocytes and NK cells in our CDSRR model, aligned with our morphological and functional data, suggest that the observed loss of photoreceptor cells could potentially be mediated, or exacerbated, by inflammatory signals.

3.3. Potassium Currents and the ERG b-Wave

A study by Gayet-Primo et al. (2018) [14] indicated that photoreceptors might contain both Kv2.1/Kv8.2 heterotrameric and Kv2.1 homotrameric channels, with the former responsible for the low voltage-activated I_{Ks} current and the latter for the high voltage-activated current. Since heterotrameric Kv2.1/Kv8.2 channels are absent from Kv8.2 KO mice, these mice should, therefore, lack the low voltage-activated I_{Ks} current. Our data indicate that Kv2.1 homotrameric channels are present in the Kv8.2 KO retina, so the high voltage-activated current mediated by homo-tetrameric Kv2.1 channels should be present. In the absence, however, of modulation by the Kv8.2 subunit, these homotrameric Kv2.1 channels most likely remain closed at low light intensities, and only open in the presence of higher voltages generated by higher light intensities. This might indeed be the case in Kv8.2 KO rod photoreceptors, which show an increase in the amplitude of the supernormal rod response in direct response to increasing light intensities. Cones, however, appear to behave differently. Kv8.2 KO mice show a significantly, and equally, reduced cone flash ERG responses at all light intensities, which is also seen in CDSRR patients [6,7]. A similar reduction in the photopic a-wave is also seen in the Kv2.1 KO mice, so it would appear that the a-wave, which is generated in photoreceptors, requires functional and modulated Kv channels; where they are absent, a smaller non-Kv-dependent response is seen. The photopic b-wave is also depressed in Kv KO mice and does not show the elevated positive b-wave component seen in the scotopic ERGs of these mice.

A reduction in cone visual function was also confirmed in this study by analyzing the optomotor response, showing that a loss in photopic ERG manifests as a loss of visual response. Based on the clinical manifestations and predominantly macular-specific degeneration seen in CDSRR patients [7], it is clear that KCNV2 mutations affect rods and cones differently. From our data, since the a-wave amplitudes in the Kv8.2 and Kv2.1 knockout mice were significantly lower than in wild-type mice, the loss of the photopic b-wave component in these mice suggests that the b-wave component is mediated by cones, and not rods.
hypothesized that unmodulated homotrameric Kv2.1 channels depolarize the rods’ resting potential, thereby affecting the voltage-gated calcium current. This would have the effect of shutting down neurotransmitter release under bright light stimuli to generate a supernormal postreceptoral b-wave response. If the presence of unmodulated Kv2.1 channels (as seen in the Kv8.2 KO) has the same effect on rod depolarization as a complete lack of Kv channels (as seen in the Kv2.1 KO), this would explain the supernormal b-wave in young Kv2.1 KO retinas but not its absence at six months of age. The latter absence may arise, therefore, from the detrimental effects of the continued lack of functional Kv channels as the retina develops.

The b-wave response combines changes in the membrane potential of bipolar and Muller glia cells induced by photoreceptor activation via glutamate release that depolarizes bipolar cells, and an increase in extracellular K⁺ that depolarizes Müller glial cells, respectively [38]. We therefore propose a modified hypothesis for the supernormal b-wave, i.e., that a complete absence of Kv channels or presence of the unmodulated Kv2.1 homotrameric channels creates an imbalance in extracellular K⁺ which alters the depolarization rate of rod bipolar and/ or Muller glial cells. This extracellular K⁺ imbalance would be transient in Kv2.1 KO retinas and only present at early ages. With time, and as a result of an absent outward rectifying K⁺ current in photoreceptors, the supernormal b-wave response in Kv2.1 KO retinas disappears. In the Kv8.2 KO retina, however, the presence of homotrameric Kv2.1 channels would still produce a K⁺ current, albeit only at high voltages (e.g., high light stimuli), but continuing over time. This is consistent with the current paradigm that both bipolar and Muller glia cells contribute to the b-wave, and the increase in extracellular K⁺ picked up by Muller glia comes most likely from the depolarized bipolar cells [39,40]. The presence of inward-rectifying K⁺ channels in Muller glial cells [41] and outward rectifying K⁺ channels in bipolar cells [42] could potentially support this hypothesis. Furthermore, Muller glia’s role in K⁺ siphoning from the extracellular space into the vitreous is well known [43,44], and our GFAP protein expression data indicate that in both Kv8.2 KO and Kv2.1 KO retinas, Muller glia are under stress. Interestingly, Muller glia stress seems to be more pronounced in Kv2.1 KO retinas (mRNA and protein level), which aligns with the higher number of cell deaths observed in this line. However, it might also suggest that the complete lack of Kv2.1 subunits has a higher impact on extracellular K⁺ levels, potentially overworking Muller glia cell’s K⁺ siphoning capacity. Although the importance of K⁺ to the b-wave is now widely accepted, no studies to date have yet been able to determine the molecular mechanism of how Muller glia, bipolar cells and K⁺ interact to give rise to the ERG b-wave. The data presented here, and our previously published work on the Kv8.2 and Kv2.1 KO models [17], indicate that these mice models could be excellent tools to help further our understanding of vision physiology.

4. Materials and Methods

4.1. Animals

All mice were group-housed in a climate-controlled facility on a 12-h light/dark cycle
4.2. Immunohistochemistry and Imaging

Enucleated eyes from Kv2.1 KO, Kv8.2 KO and wild type (WT) mice were fixed for 1 h at room temperature in 4% paraformaldehyde (PFA, Electron Microscopy Sciences, Inc., Hatfield, PA, USA) in 1X phosphate-buffered saline (PBS, Sigma-Aldrich, North Ryde, NSW, Australia). After fixation, the cornea, lens and sclera were removed, and eyecups placed back in 4% PFA for an additional 30 min at room temperature. Eyecups were then cryoprotected in a 20% sucrose (Sigma-Aldrich, North Ryde, NSW, Australia) solution overnight at 4 °C, embedded in optimal cutting temperature (O.C.T compound; Tissue-Tek, Sakura Finetek Inc. Torrance, CA, USA) media and sectioned at 14 um using a Leica (CM 3050S) cryostat. Sectioning was done on the sagittal plane (nasal to temporal direction) so that sections are on the dorsal-ventral axis.

For staining of retinal sections, nonspecific binding sites were blocked for 1 h at room temperature in block solution containing 10% normal goat serum, 0.5% Triton X-100, (Sigma-Aldrich, St. Louis, MO, USA) 1% BSA (Sigma-Aldrich, St. Louis, MO, USA) in 1X PBS. Primary antibodies were diluted in block solutions and applied to sections overnight at room temperature (Supplementary Table S1). After washing with 1X PBS the next day, sections were incubated in secondary antibody diluted in block solution (1:500) for 2 h at room temperature. Secondary antibodies were raised in goat and conjugated to AlexaFluor-488 (Abcam, Cambridge, MA, USA), or -568 (Abcam, Cambridge, MA, USA). Slides were then incubated in DAPI (4’,6-diamidino-2-phenylindole, 0.5 µg/mL in 1X PBS) for 10 min to label cell nuclei and mounted using Dako mounting medium (Agilent Technologies, Santa Clara, CA, USA). For flat-mount Iba1 staining, eyes were enucleated and fixed in 4% PFA overnight at 4 °C. Flat-mount retinas were marked at the superior part of the cornea and dissected into four quadrants indicating superior, nasal, inferior and temporal parts of the retina. After fixation in 4% PFA at 4 °C for an extra 1 h, retinas were incubated in 10% normal goat serum, 3% Triton X-100, 1% BSA in 1X PBS for 1 h at room temperature. Primary antibody incubation was done overnight at room temperature (Supplementary Table S1). The retinas were then washed with 1X PBS and labeled with secondary antibody also overnight at 4 °C at a 1:500 dilution in block solution. All images were acquired on a Nikon A1Si confocal microscope located at the UWA Harry Perkins Centre for Microscopy, Characterization and Analysis (CMCA, Nedlands, WA, Australia) and were taken from the dorsal and/or ventral areas.

Quantification of Immunohistochemistry Images

Quantification of retinal outer nuclear layer thickness was done on formalin-fixed paraffin sections stained with hematoxylin and eosin (H&E). Briefly, eyes were fixed in Davidson fixative for 24 h at room temperature. They were then incubated for 24 h in 10% formalin and embedded in paraffin. Sections were cut as described above (sagittal plane) at 10 µM and stained with H&E. For quantification of the ONL thickness, central and periphery images were taken as following. Central images were taken on each side of the optic nerve (dorsal and ventral) at around 10° (central) and 80° (periphery) from the optic
determined using control tissue sections (WT) and applied to all images for analysis. The percentage of the fluorescent area was calculated for each image and averaged across each line. No difference in fluorescence intensity was observed between dorsal and ventral areas.

4.3. Apoptosis

Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) was performed using the ApopTag® Red In situ Apoptosis Detection kit (MilliporeSigma, Burlington, MA, USA). Staining followed the manufacturer’s protocol and TUNEL-positive cells were counted on an Olympus Fluorescent Microscope BX60.

4.4. RNA Extraction and Real-Time Quantitative Polymerase Chain Reaction (qPCR)

Total RNA was extracted from whole retinas using TriReagent (Sigma-Aldrich) as per the manufacturer’s instructions. Reverse transcription was performed using QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany) as per manufacturer’s instructions. Quantitative Real-Time PCR (qPCR) was performed on a Bio-Rad CFX Connect Real-Time System using Taqman Fast Advanced master mix (Thermo Fisher Scientific, Waltham, MA, USA) with the following gene assays: Gfap (Mm01253033_m1), Kcnv2 (Mm00807577_m1); Kcnb1 (Mm00492791_m1) and Gapdh, (Mm99999915_g1). Gene expression was normalized to Gapdh and relative expression calculated using the ΔΔCt method.

4.5. Electroretinogram (ERG Recordings)

Retinal function was evaluated via full-field flash scotopic and photopic electoretinogram (ERG) measurements using the IMsERG system (OcuScience LLC, Rolla, MO, USA). Mice were dark-adapted overnight and handled subsequently only under dim red light. Mice were anesthetized with 2% isoflurane in 100% oxygen at a flow rate of 1 L/min and pupils dilated by applying 1% tropicamide (MYDRIACYL®, Alcon, Geneva, Switzerland) to the surface of the cornea. A drop of 2% hypermellose (GONIOVISC, HUB Pharmaceuticals, LLC, Rancho Cucamonga, CA, USA) solution was also applied to the cornea to keep it moist throughout the recordings and prior to placing the electrodes on the eye. Sedated animals were placed on a heating pad kept at 37 °C, and a stainless-steel ground electrode was placed sub-dermally above the base of the tail, and reference electrodes were placed sub-dermally in each cheek along the jawline in an anterior direction. The eye electrodes combined a silver thread with a contact lens and were placed on top of the cornea for each eye. The mice were then placed under the Ganzfeld dome to ensure a uniform illumination stimulus was presented.

Scotopic and photopic recordings followed previously described protocols [46] and consisted of the following. For scotopic recordings, animals were dark-adapted for 12 h, and single-flash recordings were obtained through the presentation of 1 ms flashes (four repeats) with the following intensities (all in cd.s/m²): 0.1, 0.3, 1, 3, 10, 25. The time interval between consecutive repeats was 10 s at 0.10 Hz. A recovery time of 60 sec was present between the different intensities. For photopic recordings, animals were light-adapted
5 min acclimatization in the drum, the stripes were rotated clockwise for 2 min, then anticlockwise for 2 min, with a 30 s pause for the change of direction. Tests were performed under mesopic light range (1000 lux), and a video was recorded. Head-tracking movements in response to the moving stimulus were only considered if they followed the direction and angular speed of the rotating stripes (1 revolution/min) and lasted for more than one second. The number of tracking movements during the 2 min test in each direction were averaged for each mouse.

4.7. Flow Cytometry

Single-cell suspensions of retinal tissue were prepared at the indicated collection age. Briefly, eyes were dissected to separate the anterior from the posterior segment. The posterior segment was dissected to separate the retina from the choroid/sclera. Retinas from both globes were pooled for each mouse before the tissue was manually homogenized and digested in a mixture of 10 µg/mL Liberase (Roche, Basel, Switzerland), Cat No #0540119001 and 10 µg/mL DNase I (Sigma, USA) in 1X PBS for 40 min at 37 °C. The resulting single-cell preparations were stained with antibodies specific for CD45 (30F11), CD11b (M1/70), CD3 (145-2C11), CD4 (RM4-5), CD8 (53-6.7), NKp1.1 (PK136), CD11c (HL3), CD19 (6D5), CD64 (X54-5/7.1), F/480 (BM8), MHC-II (M5/114), Ly6C (AL21), Ly6G (1AB). Antibodies were obtained from BD Biosciences (San Jose, CA, USA), BioLegend (San Diego, CA, USA), or eBioscience (San Diego, CA, USA). Fixable viability stain 620 (BD Biosciences) was used for live/dead discrimination. Samples were analyzed using an LSRFortessa X-20 instrument (BD Biosciences). The gating strategies used to identify immune cell populations in the retina are shown in Supplementary Figure S1. All data analysis was performed using the FlowJo software package (FlowJo, LLC, Ashland, OR, USA).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/ijms22094877/s1.

Author Contributions: Conceptualization, X.J., L.S.C. and D.M.H.; methodology and experiments, X.J., R.R., V.V.; formal analysis, X.J., R.R., V.V. and L.S.C.; resources, J.N.; writing—original draft preparation, X.J. and L.S.C.; writing—review and editing, L.S.C., D.M.H., R.R., V.V., J.N. and X.J.; supervision, L.S.C. and D.M.H.; funding acquisition, L.S.C. and D.M.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by a Department of Health WA Merit Awards 2016-17 (L.S.C. and D.M.H.), the Lions Eye Institute (L.S.C.) and a UWA Postgraduate Award International Students and RTP International Fees Offset Scholarships to X.J.

Institutional Review Board Statement: All animal use was approved by the Institutional Animal Ethics Committees of the University of Western Australia (RA/3/300/114, approval dates 1 March 2017–28 May 2020) and the Harry Perkins Medical Research Institute (AE097, approval dates 25 February 2018–31 March 2021) and was in accordance with the Australian Code for the Care and Use of Animals for Scientific Purposes and the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research.
References

1. Gouras, P.; Eggers, H.M.; Mackay, C.J. Cone Dystrophy, Nyctalopia, and Supernormal Rod Responses. A new retinal degeneration. *Arch. Ophthalmol.* 1983, 101, 718–724. [CrossRef] [PubMed]

2. Wu, H.; Cowing, J.A.; Michaelides, M.; Wilkie, S.E.; Jeffery, G.; Jenkins, S.A.; Mester, V.; Bird, A.C.; Robson, A.G.; Holder, G.E.; et al. Mutations in the Gene KCNV2 Encoding a Voltage-Gated Potassium Channel Subunit Cause “Cone Dystrophy with Supernormal Rod Electroretinogram” in Humans. *Am. J. Hum. Genet.* 2006, 79, 574–579. [CrossRef] [PubMed]

3. Wissinger, B.; Dang, S.; Jagle, H.; Hansen, L.; Baumann, B.; Rudolph, G.; Wolf, C.; Bonin, M.; Koeppen, K.; Ladewig, T.; et al. Cone Dystrophy with Supernormal Rod Response Is Strictly Associated with Mutations in KCNV2. *Investig. Ophthalmol. Vis. Sci.* 2008, 49, 751–757. [CrossRef]

4. Wissinger, B.; Schaic, S.; Baumann, B.; Bonin, M.; Jagle, H.; Friedburg, C.; Varsányi, B.; Hoyng, C.B.; Dollfus, H.; Heckenlively, J.R.; et al. Large deletions of the KCNV2 gene are common in patients with cone dystrophy with supernormal rod response. *Hum. Mutat.* 2011, 32, 1398–1406. [CrossRef]

5. Zelinger, L.; Wissinger, B.; Eli, D.; Kohl, S.; Sharon, D.; Banin, E. Cone Dystrophy with Supernormal Rod Response: Novel KCNV2 Mutations in an Underdiagnosed Phenotype. *Ophthalmolmol. 2013*, 120, 2338–2343. [CrossRef] [PubMed]

6. Abdelkader, E.; Yasir, Z.H.; Khan, A.M.; Raddadi, O.; Khandkar, R.; Alateeq, N.; Nowilaty, S.; Alshahran, N.; Schatz, P. Analysis of retinal structure and function in cone dystrophy with supernormal rod response. *Doc. Ophthal mol.* 2020, 141, 23–32. [CrossRef]

7. Zobor, D.; Kohl, S.; Wissinger, B.; Zrenner, E.; Jagle, H. Rod and Cone Function in Patients with KCNV2 Retinopathy. *PLoS ONE* 2012, 7, e46762. [CrossRef]

8. Vincent, A.; Wright, T.; Garcia-Sanchez, Y.; Kisilak, M.; Campbell, M.; Westall, C.; Héon, E. Phenotypic characteristics including in vivo cone photoreceptor mosaic in KCNV2-related “cone dystrophy with supernormal rod electroretinogram”. *Investig. Ophthalmol. Vis. Sci.* 2013, 54, 898–908. [CrossRef]

9. Czirják, G.; Tóth, Z.E.; Enyedi, P. Characterization of the Heteromeric Potassium Channel Formed by Kv2.1 and the Retinal Subunit Kv8.2 in Xenopus Oocytes. *J. Neurophysiol.* 2007, 98, 1213–1222. [CrossRef]

10. Börjesson, S.I.; Elinder, F. Structure, Function, and Modification of the Voltage Sensor in Voltage-Gated Ion Channels. *Cell Biophys.* 2008, 52, 149–174. [CrossRef]

11. Jorge, B.S.; Campbell, C.M.; Miller, A.R.; Rutter, E.D.; Gurnett, C.A.; Vanoye, C.G.; George, A.L.; Kearney, J.A. Voltage-gated potassium channel KCNV2 (Kv8.2) contributes to epilepsy susceptibility. *Proc. Natl. Acad. Sci. USA* 2011, 108, 5443–5448. [CrossRef]

12. Melis, R.; Stauffer, D.; Zhao, X.; Zhu, X.L.; Albrecht, B.; Pongs, O.; Brothman, A.; Leppert, M. Physical and genetic localization of a Shab subfamily potassium channel (KCNB1) gene to chromosomal region 20q13.2. *Genomics* 1995, 25, 285–287. [CrossRef]

13. Bocksteins, E.; Raes, A.L.; Van De Vijver, G.; Bruyns, T.; Van Bogaert, P.P.; Nyders, D.J. Kv2.1 and silent Kv subunits underlie the delayed rectifier K+ current in cultured small mouse DRG neurons. *Am. J. Physiol. Physiol.* 2009, 296, C1271–C1278. [CrossRef] [PubMed]

14. Gayet-Primo, J.; Yaeger, D.B.; Khanjian, R.A.; Puthussery, T. Heteromeric KV2/KV8.2 Channels Mediate Delayed Rectifier Potassium Currents in Primate Photoreceptors. *J. Neurosci.* 2018, 38, 3414–3427. [CrossRef] [PubMed]

15. Ben Salah, S.; Kamei, S.; Sénéchal, A.; Lopez, S.; Bazalgette, C.; Eliaou, C.M.; Zanlonghi, X.; Hamel, C.P. Novel KCNV2 Mutations in Cone Dystrophy with Supernormal Rod Electroretinogram. *Am. J. Ophthalmol.* 2008, 145, 1099–1106. [CrossRef] [PubMed]

16. Thigayalingam, S.; McGee, T.L.; Weleber, R.G.; Sandberg, M.A.; Trzupek, K.M.; Berson, E.L.; Dryja, T.P. Novel Mutations in the KCNV2 Gene in Patients with Cone Dystrophy and a Supernormal Rod Electroretinogram. *Ophthalmol. Genet.* 2007, 28, 135–142. [CrossRef] [PubMed]

17. Hart, N.S.; Mountford, J.K.; Voigt, V.; Fuller-Carter, P.; Barth, M.; Nerbonne, J.M.; Hunt, D.M.; Carvalho, L.S. The Role of the Voltage-Gated Potassium Channel Proteins Kv8.2 and Kv2.1 in Vision and Retinal Disease: Insights from the Study of Mouse Gene Knock-Out Mutations. *eNeuro* 2019, 6. [CrossRef]

18. Smith, K.E.; Wilkie, S.E.; Tebbs-Warner, J.T.; Jarvis, B.J.; Gallasch, L.; Stocker, M.; Hunt, D.M. Functional Analysis of Missense Mutations in Kv8.2 Causing Cone Dystrophy with Supernormal Rod Electroretinogram. *J. Biol. Chem.* 2012, 287, 43867–43883. [CrossRef]
24. Nakamura, N.; Tsunoda, K.; Fujinami, K.; Shinoda, K.; Tomita, K.; Hatase, T.; Usui, T.; Akahori, M.; Iwata, T.; Miyake, Y. Long-term observation over ten years of four cases of cone dystrophy with supernormal rod electroretinogram. *Nippon. Ganka Gakkai Zasshi* 2013, 117, 629–640. [PubMed]

25. Sergouniotis, P.I.; Holder, G.E.; Robson, A.G.; Michaelides, M.; Webster, A.R.; Moore, A.T. High-resolution optical coherence tomography imaging in KCNV2retinopathy. *Br. J. Ophthalmol.* 2011, 96, 213–217. [CrossRef]

26. Pal, S.; Hartnett, K.A.; Nerbonne, J.M.; Levitan, E.S.; Aizenman, E. Mediation of Neuronal Apoptosis by Kv2.1-Encoded Potassium Channels. *J. Neurosci.* 2003, 23, 4798–4802. [CrossRef] [PubMed]

27. Redman, P.T.; He, K.; Hartnett, K.A.; Jefferson, B.S.; Hu, L.; Rosenberg, P.A.; Levitan, E.S.; Aizenman, E. Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. *Proc. Natl. Acad. Sci. USA* 2007, 104, 3568–3573. [CrossRef]

28. Volland, S.; Esteve-Rudd, J.; Hoo, J.; Yee, C.; Williams, D.S. A Comparison of Some Organizational Characteristics of the Mouse Central Retina and the Human Macula. *PLoS ONE* 2015, 10, e0125631. [CrossRef] [PubMed]

29. Mustafi, D.; Maeda, T.; Kohno, H.; Nadeau, J.H.; Palczewski, K. Inflammatory priming predisposes mice to age-related retinal degeneration. *J. Clin. Investig.* 2012, 122, 2989–3001. [CrossRef]

30. Yoshida, N.; Ikeda, Y.; Notomi, S.; Ishikawa, K.; Murakami, Y.; Hisatomi, T.; Enaida, H.; Ishibashi, T. Laboratory Evidence of Sustained Chronic Inflammatory Reaction in Retinitis Pigmentosa. *Ophthalmology* 2013, 120, e5–e12. [CrossRef]

31. Zhao, L.; Zabel, M.K.; Wang, X.; Ma, W.; Shah, P.; Fariss, R.N.; Qian, H.; Parkhurst, C.N.; Gan, W.; Wong, W.T. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. *EMBO Mol. Med.* 2015, 7, 1179–1197. [CrossRef] [PubMed]

32. Zabel, M.K.; Zhao, L.; Zhang, Y.; Gonzalez, S.R.; Ma, W.; Wang, X.; Fariss, R.N.; Wong, W.T. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1–CX3CR1 signaling in a mouse model of retinitis pigmentosa. *Glia* 2016, 64, 1479–1491. [CrossRef]

33. Sugita, S.; Shimizu, J.; Makabe, K.; Keino, H.; Watanabe, T.; Takahashi, M. Inhibition of T cell-mediated inflammation in uveitis by a novel anti-CD3 antibody. *Arthritis Res.* 2017, 19, 176. [CrossRef]

34. Fu, Q.; Man, X.; Wang, X.; Song, N.; Li, Y.; Xue, J.; Sun, Y.; Lin, W. CD83 + CCR7 + NK cells induced by interleukin 18 by dendritic cells promote experimental autoimmune uveitis. *J. Cell. Mol. Med.* 2018, 23, 1827–1839. [CrossRef] [PubMed]

35. Goverdhan, S.V.; Khakoo, S.I.; Gaston, I.I.; Chen, X.; Lotery, A.J. Age-related macular degeneration is associated with the HLA-Cw*0701 Genotype and the natural killer cell receptor AA haplotype. *Investig. Ophthalmol. Vis. Sci.* 2008, 49, 5077–5082. [CrossRef] [PubMed]

36. Niederkorn, J.Y. NK Cells in the Eye. In *Natural Killer Cells; Lotze, M.T., Thomson, A.W., Eds.; Academic Press*: Cambridge, MA, USA, 2010; Chapter 29; pp. 385–401. [CrossRef]

37. Zhang, J.; Wu, G.S.; Ishimoto, S.; Pararajasegaram, G.; Rao, N.A. Expression of Major Histocompatibility Complex Molecules in Rodent Retina. *Investig. Ophthalmol. Vis. Sci.* 1997, 38, 1848–1857.

38. Asi, H.; Perlman, I. Relationships between the electroretinogram a-wave, b-wave and oscillatory potentials and their application to clinical diagnosis. *Doc. Ophthalmol.* 1992, 79, 125–139. [CrossRef] [PubMed]

39. Dick, E.; Miller, R.F. Extracellular K+ activity changes related to electroretinogram components. I. Amphibian (I-type) retinas. *J. Gen. Physiol.* 1985, 85, 885–909. [CrossRef] [PubMed]

40. Dick, E.; Miller, R.F.; Bloomfield, S. Extracellular K+ activity changes related to electroretinogram components. II. Rabbit (E-type) retinas. *J. Gen. Physiol.* 1985, 85, 911–931. [CrossRef]

41. Newman, E.A. Inward-rectifying potassium channels in retinal glial (Muller) cells. *J. Neurosci.* 1993, 13, 3333–3345. [CrossRef]

42. Klumpp, D.; Song, E.; Ito, S.; Sheng, M.; Jan, L.; Pinto, L. The Shaker-like potassium channels of the mouse rod bipolar cell and their contributions to the membrane current. *J. Neurosci.* 1995, 15, 5004–5013. [CrossRef]

43. Newman, E.A.; Frambach, D.A.; Odette, L.L. Control of extracellular potassium levels by retinal glial cell K+ siphoning. *Science* 1984, 225, 1174–1175. [CrossRef] [PubMed]

44. Karwowski, C.J.; Lu, H.-K.; Newman, E.A. Spatial buffering of light-evoked potassium increases by retinal Muller (glial) cells. *Science* 1989, 244, 578–580. [CrossRef]