A Novel Secreted Metalloprotease (CD2830) from Clostridium difficile Cleaves Specific Proline Sequences in LPXTG Cell Surface Proteins

Paul J. Hensbergen*‡, Oleg I. Klychnikov*, Dennis Bakker§, Vincent J. C. van Winden§, Nienke Ras§, Arjan C. Kemp§, Robert A. Cordfunke¶, Irina Dragan*, André M. Deelder*, Ed J. Kuijper§, Jeroen Corver§, Jan W. Drijfhout¶, and Hans C. van Leeuwen‡§

Bacterial secreted proteins constitute a biologically important subset of proteins involved in key processes related to infection such as adhesion, colonization, and dissemination. Bacterial extracellular proteases, in particular, have attracted considerable attention, as they have been shown to be indispensable for bacterial virulence.

Here, we analyzed the extracellular subproteome of Clostridium difficile and identified a hypothetical protein, CD2830, as a novel secreted metalloprotease. Following the identification of a CD2830 cleavage site in human HSP90β, a series of synthetic peptide substrates was used to identify the favorable CD2830 cleavage motif. This motif was characterized by a high prevalence of proline residues. Intriguingly, CD2830 has a preference for cleaving Pro–Pro bonds, unique among all hitherto described proteases. Strikingly, within the C. difficile proteome two putative adhesion molecules, CD2831 and CD3246, were identified that contain multiple CD2830 cleavage sites (13 in total). We subsequently found that CD2830 efficiently cleaves CD2831 between two prolines at all predicted cleavage sites. Moreover, native CD2830, secreted by live cells, cleaves endogenous CD2831 and CD3246.

These findings highlight CD2830 as a highly specific endoproteinase with a preference for proline residues surrounding the scissile bond. Moreover, the efficient cleavage of two putative surface adhesion proteins points to a possible role of CD2830 in the regulation of C. difficile adhesion.

Clostridium difficile is an anaerobic, Gram-positive, spore-forming bacterium. Human intake of spores occurs through the fecal-oral route. Upon leaving the stomach and becoming exposed to bile acids in the small intestine, the C. difficile spores germinate. Once germinated, the vegetative cells in the colon encounter an unreceptive environment (1). Competition with the normal flora, immune responses, gastric fluids (2), and specialized antimicrobial peptides all act against a developing infection. Moreover, the physical barrier formed by a layer of glycoproteins (mucins) covering the underlying epithelial cells forms a major hurdle for firm adhesion.

Many enteric pathogens express factors that reduce competition, allow evasion of host immune responses, and promote adhesion and/or invasion of tissues. These virulence factors are located in the cell membrane or wall (controlling adhesion and protection) or are secreted (modifying the surrounding environment). The best studied virulence factors in C. difficile are the toxins TcdA and TcdB (3, 4), which cause destruction of the intestinal barrier by disrupting the epithelial actin cytoskeleton. It is speculated that the subsequent increased permeability of the intestinal epithelium leads to increased exudation of fluids, including nutritional substances. Damage to the intestinal mucosa causes the main symptoms of C. difficile infection, including pseudomembranous colitis (1).

Data illustrating how C. difficile circumvents host defense mechanisms are limited. As an example, in response to attack by antimicrobial peptides, C. difficile expresses a set of genes that change the surface charge, thereby diminishing the interaction of cationic antimicrobial peptides on the bacterial surface (5).
obvious candidate molecules for direct interaction with the host and are most likely involved in processes such as adhesion and colonization. Footholds on the host cell surface proteins include the extracellular matrix components fibronectin, laminin, collagen, and fibrinogen, which all have been implicated in C. difficile adhesion (6–9). In addition, C. difficile secretory proteins are released into the surrounding environment, where they can exert their function. However, besides the toxins, little is known about extracellular factors that contribute to C. difficile infection (8, 10).

In this study we analyzed the secreted proteins of C. difficile and characterized a very specific, highly active secreted metalloprotease, CD2830. We demonstrate that it has a unique preference for hydrolyzing Pro–Pro bonds in an overall pro-alloprotease, CD2830. We indicate a role for this enzyme in bacterial motility.

EXPERIMENTAL PROCEDURES

Chemicals Used—IgA was purchased from VWR International (Amsterdam, the Netherlands) (401098), and recombinant HSP90b (SPR-102A) and recombinant HSP90α (SPR-101A) were obtained from Sanbio (Uden, the Netherlands). Sequencing-grade modified trypsin was acquired from Promega (Madison, WI). Peptides were synthesized at the Leiden University Medical Center facility as described previously (11). Synthetic FRET peptides contained an N-terminal Lys-Dabcyl and a C-terminal Glu-Edans. 1,10-Phenantroline was purchased from Sigma-Aldrich.

C. difficile Strains and Growth Conditions—The C. difficile strains were grown anaerobically in a microaerobic cabinet (Don Whitley DG 250) at 37°C in pre-reduced 3% Bacto Tryptose, 2% yeast extract (Difco), and 0.1% thiglycolate (pH 7.4) medium (TY); brain heart infusion broth (Oxoid, Basingstoke, MA) supplemented with 0.5% yeast extract and 0.01% l-cysteine (Sigma) (12); or minimal medium (Difco), and 0.1% thioglycolate (pH 7.4) medium (TY); brain heart infusion broth (Oxoid, Basingstoke, MA) supplemented with 0.5% yeast extract and 0.01% l-cysteine (Sigma) (12); or minimal medium broth (13). When required, the broth was supplemented with appropriate antibiotics. Mid-logarithmic growth phase pre-cultures (A600 0.4–0.8) were used to inoculate pre-reduced TY broth to a starting A600 of 0.05. Optical density readings were taken hourly in the exponential growth phase and at 12 and 24 h post-inoculation.

Proteomic Analysis of the C. difficile Exoproteome—For analysis of the exoproteome, 12 ml of minimal medium from C. difficile strain 630 grown to early stationary phase was collected. Intact bacterial cells were removed via centrifugation for 10 min at 7000 g. The resulting supernatant was filtered through a 0.45-/m filter (Whatman FP 30). The filtered supernatant was separated on a SDS-PAGE gel (NuPAGE 4–12% gradient Bis-Tris gels, Invitrogen, Carlsbad, CA) and Coomassie stained (Simple Blue Safe Stain, Invitrogen). In-gel digestion and LC–ion trap MS files. Peptides were identified in the database (strain 630, C. difficile Strains and Growth Conditions—

Molecular & Cellular Proteomics 13.5

The pET28a 6xHis-HSP90b plasmid was kindly provided by Dr. Daumantas Matulis.

Purification of rCD2830, rCD2831, and rHSP90β—The bacterial expression constructs were transformed into the Escherichia coli DE3 C43 strain (Lucigen, Middleton, WI), and a single colony was cultivated on a rotary shaker (200 rpm) in 100 mM of Luria broth at 37°C until an A600 of 0.5 was reached, after which the cultures were induced with 1 mM isopropyl-ß-D-galactoside for 5 h, using ampicillin (50 μg/ml) as a selection marker. We followed the protocol for the preparation of cleared E. coli lysates under native conditions from Qiagen (Venlo, the Netherlands) as described in the fifth edition of the QIAexpressonist, with the following modifications: The E. coli lysate (50 mM sodium phosphate buffer, pH 7.4, 5 mM 2-mercaptoethanol, 0.1% Nonidet P-40, 300 mM NaCl) containing his-tagged proteins were loaded on a 1-ml HisTrap HP column (GE Healthcare). The column was washed with 20 ml of lysis buffer. The his-tagged proteins were eluted at 150 mM imidazole using a 25-ml linear gradient ranging from 20 to 250 mM imidazole.

Proteolytic Assays with CD2830—CD2830 proteolytic assays were performed at 37°C in phosphate-buffered saline (PBS) (pH 7.4). 0.5 mM ZnCl2 for a duration of 16 h, unless otherwise stated. Reactions were stopped by the addition of Laemmli loading buffer and by heating the samples at 95°C. Proteolytic assays with the single protein targets were performed with 0.5 μg of rCD2830 and 3 μg of HSP90α, 3 μg of HSP90β, 5 μg of IgA1 and A2 and 2 or 5 μg of rCD2831. IgA1 and IgA2 were preincubated with 50 μM 2-mercaptoethanol in PBS for 30 min at 50°C prior to digestion. For the proteo-
lytic assay with a Caco-2 lysate, the lysate was prepared as described in the manual for Pierce IP lysis buffer (Thermo Scientific). 10 µg of lysate was incubated with 1 µg of rCD2830. Protease activity was visualized via SDS-PAGE of the samples followed by Coomassie staining. The peptide cleavage assays were performed with 20 pmol peptides and 1 µg of rCD2830. After overnight incubation at 37°C, samples were analyzed with MALDI-TOF-MS (Ultraflex II and UltraflexXTreme, Bruker) as described previously (15). Cleavage was scored as positive when both product peptides were present and one of them had an intensity of at least 25% of the substrate ion.

The CD2830-mediated cleavage of FRET peptides was followed by fluorescence detection at an excitation wavelength of 355 nm and an emission wavelength of 485 nm in a 96-well plate reader (Mithras LB940, Berthold Technologies, Bad Wildbad, Germany). For determination of the steady-state kinetics, incubations were stopped at 30-s time intervals by mixing 10 µl of reaction mix with 10 µl of 0.25% TFA. These samples were further diluted to 100 µl using 80 µl of PBS and measured as described above. Initial velocities were determined based on the slope of the reaction curve during the first 2 min. A calibration curve plotting the fluorescence intensity versus the cleaved peptide concentration after complete cleavage of the peptide was used to convert the initial velocity from fluorescence units per second to nanomoles per second. Data were then fitted to the Michaelis–Menten equation, from which the \(K_{\text{m}}, V_{\text{max}}, \) and \(K_{\text{cat}} \) values were derived.

Identification of CD2830 Cleavage Products of HSP90β—In-gel digestion of untreated and CD2830-treated HSP90β was performed as described previously (14). Peptides were injected onto a trap column equilibrated with 0.1% formic acid (Acclaim PepMap100, 100 µm × 2 cm, nanoViper C18, 5 µm, 100 Å, Thermo Scientific) and separated on an analytical reverse phase column (Acclaim PepMap RSLC, 75 µm × 50 cm, nanoViper C18, 2 µm, 100 Å, Thermo Scientific) coupled to an ion trap mass spectrometer (amaZon Speed, Bruker) at a flow rate of 300 nL/min. The liquid chromatography was performed with a piece-linear gradient (0–10 min at 2% B, 10–25 min to 5% B, 25–165 min to 25% B, 165–175 min to 30% B, 175–190 min to 35% B, 190–195 min to 100% B, and 195–210 min at 100% B, where B is 95% acetonitrile/0.1% formic acid). For mass spectrometric analysis, ions were generated using a Captive Spray (Bruker) at a spray voltage of 1.4 kV. The temperature of the heated capillary was 180°C.

For the analysis of tryptic digest, eluting peptides were analyzed using the data-dependent MS/MS mode over an m/z range of 300–1400. The 10 most abundant ions in an MS spectrum were selected for MS/MS analysis via collision-induced dissociation using helium as the collision gas.

For direct identification of the CD2830 cleavage products from HSP90β and recombinant CD2831, proteolytic digestions were performed as described above. After desalting on a reverse phase cartridge as described above, peptides were eluted using 50% acetonitrile, 0.1% formic acid and then directly infused into the Q-TOF mass spectrometer (maXis, Bruker) with a syringe pump (flow rate = 30 µL/h). For mass spectrometric analysis, ions were generated using the Capture Spray (Bruker) with the same parameters as described above.

Data were recorded for 5 min (mass range: m/z 300–1400).

Identification of CD2830 Cleavage Products of CD2831 and CD3246 in Conditioned Medium—The conditioned minimal growth medium of C. difficile cells (10 ml of the supernatant after 30 min at 30,000g) was desalted on a reverse phase cartridge (C-18 Oasis HLB, 1 cc, 30 mg, Waters, Etten-Leur, the Netherlands), and peptides were eluted stepwise using 150 µl of 20% and then 50% acetonitrile in 0.1% formic acid. The samples were dried in a vacuum concentrator until the volume was approximately 25 µl. Peptides were analyzed via LC–ion trap MS/MS using the same LC parameters as described above. During the whole run, MS/MS data acquisition was continuously performed on m/z values corresponding to the expected peptides (m/z 680.8 (CD2831 peptide) and m/z 638.8 (CD3246 peptide)).

RESULTS

Proteomics Analysis of the Extracellular Medium of C. difficile—In order to identify proteins secreted by C. difficile strain 630, we analyzed the culture medium at early stationary growth phase using SDS-PAGE followed by in-gel tryptic digestion and reverse phase LC–ion trap MS/MS (supplemental Fig. S1A). This approach identified 115 proteins in total (supplemental Tables S1 and S2). It is well known that such a proteomic subtraction often contains not only truly secreted proteins, but also, for example, major cytoplasmic proteins (16). Bioinformatic analysis (SignalP (17)) showed that 39 proteins (34%) contained a signal sequence (Table I) and only a few proteins seemed to be truly cleaved and released (no lipid anchors or cell wall binding motifs). One of the predicted genuinely secreted proteins, the uncharacterized protein CD2830 (Q183R7), appeared to be highly expressed, based on the number of identified unique peptides (10) and overall sequence coverage (47%). This finding prompted us to analyze CD2830 in more detail.

Based on a BLAST search of the nonredundant protein sequence database, C. difficile CD2830 showed the greatest homology to several proteins within the group of Geobacilli and Paenibacilli, represented by the phylogenetic tree in Fig. 1A. Surprisingly, no other close homologues were found in species belonging to the Clostridia class. Although the function of these homologues has not been experimentally determined, they have several common structural features. Based on the presence of a signal peptide, all are predicted to be secreted proteins (data not shown). In the UniProt database, several of them are annotated to contain a signature motif for metalloprotease activity, and all have a conserved HEXxH motif in which the two histidine residues coordinate the zinc ion in the active site, common to zinc metalloproteases (Fig. 1A, sequence alignment in lower panel).

Moreover, analysis of CD2830 using the Phyre2 three-dimensional structure prediction server (18) demonstrated, with 100% confidence, over 97% alignment coverage, and 18% amino acid identity (Fig. 1B), similarity to the catalytic domain of anthrax toxin lethal factor (ALF) (1) (residues 575–771) (19). Among the identical residues was the abovementioned HEXxH motif (Fig. 1C). Two observations can be made with respect to the CD2830 fold in comparison to ALF. First, the structure of ALF comprises four structural domains (I, II, III, and IV) including an N-terminal domain that binds the membrane-translocating component (domain I, Fig. 1B). Structural similarity with CD2830 extends only to the C-terminal region containing the metalloprotease domain (domain IV, Fig. 1B).

Secondly, identical residues between CD2830 and ALF

\(^1\) The abbreviations used are: ALF, anthrax toxin lethal factor; HSP, heat shock protein.
mostly correspond to internal, structural fold–determining residues, and not to the specific contacts (19, 20) between ALF and its target peptide (Fig. 1C, arrowheads). In summary, this analysis indicates that CD2830 is a secreted, functionally active zinc metalloprotease with a fold similar to that of ALF, but with different targets.

Genetic Prevalence of CD2830 — To determine the distribution of the cd2830 gene among the genomes of *C. difficile*, we
evaluated the genomic DNA of 30 strains, encompassing the six major lineages (21), by means of PCR using specific primers for \(cd2830 \). We found that in all strains tested the \(cd2830 \) gene was present, emphasizing the importance of this gene for the species.

Recombinant CD2830 Is a Functional Protease Cleaving HSP90/H9252—To investigate the predicted metalloprotease activity of CD2830, we cloned the \(cd2830 \) gene into a bacterial expression vector and overexpressed recombinant CD2830 protein (rCD2830) in \(E. coli \) and purified the protein (supple-
mental Fig. S1B). rCD2830 was measured via electrospray ionization Q-TOF MS under neutral conditions and after acidification, and we confirmed the presence of a bound Zn$^{2+}$ (supplemental Figs. S1C and S1D).

We then focused on the identification of substrates of CD2830. For this purpose, we incubated total C. difficile and Caco-2 cell lysates with and without rCD2830 and analyzed these samples via SDS-PAGE. No difference between the rCD2830 treated and untreated C. difficile samples was apparent (data not shown). However, when the human Caco-2 lysate was incubated with rCD2830, a clear cleavage product of ∼85 kDa was noticeable (arrow in Fig. 2A). We subsequently analyzed this 85-kDa cleavage product using reverse phase LC–ion trap MS/MS after in-gel tryptic digestion and identified the major protein as heat shock protein (HSP) 90β (data not shown).

To confirm that HSP90β was cleaved by rCD2830, we performed a proteolytic assay with purified HSP90β and also included the HSP90α isomorph, which has 93% sequence identity with HSP90β. As can be seen in Fig. 2B, purified HSP90β is cleaved by rCD2830. Surprisingly, purified HSP90α was not cleaved (Fig. 2C). In order to determine the precise cleavage site, we employed two strategies. First, we compared the LC-MS/MS analyses of the in-gel tryptic digests of the rCD2830-cleaved and uncleaved HSP90β. A clear signal at m/z 871.5 [M+2H]$^2^+$ was noticeable in the digest of CD2830-treated HSP90β but was absent in the untreated sample (Fig. 2D, left-hand panel). On the basis of MS/MS data, this species was identified as the semi-tryptic HSP90β peptide Leu686–Ala702 (Fig. 2D, right-hand panel). Second, we measured the small HSP90β fragment originating after rCD2830 cleavage
by means of direct-infusion electrospray ionization Q-TOF mass spectrometry (Fig. 2E). The mass of this peptide corresponds to the C-terminal part of HSP90β (Ala703–Asp734, theoretical m/z 1207.039 [M+H]+). Therefore, both approaches clearly demonstrated that HSP90β is cleaved by rCD2830 between alanine 702 and 703 (Fig. 2F). Because both homologous alanines are also present in HSP90α (Fig. 2F) but are insensitive to CD2830 cleavage, this indicates that the surrounding amino acid residues are important for the specificity of CD2830.

Identification of the CD2830 Cleavage Site Motif—To determine whether CD2830 is also capable of cleaving small peptides, we generated a synthetic peptide (KAAEPPNAAVPDEIK) based on the identified cleavage site of HSP90β and incubated this with rCD2830. Using MALDI-TOF-MS analysis, we observed cleavage of this peptide, and the products at m/z 829.40 [M+H]+ (KAAEPPNA) and m/z 771.41 [M+H]+ (AVPDEIK) confirmed the CD2830 cleavage between the two alanine residues (Fig. 3A). When we assayed an HSP90α peptide containing the homologous sequence surrounding the cleavage site, DTSAVTEE (Fig. 2F), no cleavage was observed, again demonstrating the specificity of CD2830 for the C-terminal region of HSP90β (data not shown).

Next we aimed at determining the CD2830 cleavage motif in order to screen databases for additional putative CD2830 substrate proteins. For this purpose, we generated a synthetic
peptide library in which the six positions flanking the cleavage site (P, N, A, V, P) within the peptide described above (KAAEEPNAAPVDEIK) were permuted to each of the 19 standard amino acids (Fig. 3B). Each of the resulting 114 peptides was individually incubated for 16 h with rCD2830 and then measured using MALDI-TOF-MS to determine whether cleavage had occurred. Amino acid residues in a substrate undergoing cleavage are commonly designated P3, P2, P1, P1’, P2’, and P3’. In brief (Fig. 3B), the screening of the 114 synthetic peptides demonstrated that the most stringent position was P3’ (i.e., only peptides with a proline at this position were cleaved). The requirement of a proline at position P3’ explains why HSP90α (threonine at P3’; Fig. 2F) was not cleaved. The two positions flanking the scissile bond, A’A, only tolerated replacement by a proline. The P2’ position could, in addition to valine, also accommodate a proline or an isoleucine. Less stringent requirements were observed for positions P3 and P2, where many amino acids were tolerated (P3: P, F, V, C, I, Y, W, E, M; P2: N, F, L, M, H, Y, W, R).

Overall, a striking prevalence of multiple proline residues surrounding the scissile bond was observed, and the possibility of a proline at P1’ is especially remarkable because most proteolytic enzymes, including trypsin, do not allow for this. To gain more insight about the relative preference for proline residues around the scissile bond, we incubated binary mixtures of synthetic peptides with rCD2830. These peptides varied in the presence of either a proline or an alanine at the P1 and P1’ positions within our reference peptide (KAAEENAAVPDEIK, KAAEENPAVPDEIK, KAAEENPPVPDEIK). Assaying the cleavage of mixtures of two of these peptides after 15 min of incubation with rCD2830 showed that the peptide containing a proline at both P1 and P1’ was more efficiently cleaved than peptides with either one or two alanines at these positions (Fig. 3C). This was corroborated by the appearance of the product peptides (data not shown). Subsequently, we synthesized peptides in which we increased the number of proline residues and tested these for cleavage by CD2830. Intriguingly, even a peptide with six consecutive proline residues within our reference peptide was cleaved (supplemental Fig. S2).

We subsequently developed a fluorescent assay using FRET peptides that allowed fast, real-time quantitative analysis of CD2830 activity. First of all, we demonstrated that CD2830 is inhibited by the chelating agent o-phenanthroline (supplemental Fig. S3), confirming that CD2830 is a metalloprotease. We also used these FRET peptides to gain more insight into the parameters of the kinetics of CD2830 activity. This again showed that peptides having two prolines around the scissile bond were cleaved at the highest rate (Fig. 3D and supplemental Fig. S4A), confirming the data shown above (Fig. 3C). Moreover, of the three different amino acid options at the P2’ position, proline also appeared to be the most efficient, although real-time kinetics were very similar to having either a Val or an Ile at that position (Fig. 3D). The V_{max} and K_{cat} values with the peptide having four consecutive prolines (spanning the P1–P3’ positions) were $77 \pm 9 \mu M$ ($n = 4$), 0.08 ± 0.009 nmol/s ($n = 4$), and 19 ± 2 s$^{-1}$ ($n = 4$), respectively (supplemental Fig. S4B).

Next, we wanted to test whether such a proline-rich sequence would also be cleaved in the context of an intact protein. One putative protein target of CD2830 containing a proline-rich motif is IgA2, because the flexible hinge region of the heavy chain contains the sequence PVPPPVPCC. Several bacterial species produce an IgA protease suggested to be important for immune evasion. We decided to investigate the cleavage of IgA2 by CD2830 and indeed observed cleavage of IgA2 within the hinge region PVPPPVPCC (supplemental Fig. S5).

CD2830 Substrate Cleavage Sites Are Found in C. difficile

LPXTG Proteins—To find potential targets of CD2830 in the C. difficile proteome, we performed a ScanProsite search (22) using the above-described cleavage motif [PA][PA][VP][P]. We found only four potential signal sequences containing proteins harboring a CD2830 cleavage motif within the C. difficile strain 630 proteome: CD0515 (carboxypeptidase), CD2831 (putative adhesin, collagen binding), CD3043 (putative transglutaminase), and CD3246 (putative collagen binding). Remarkably, CD2831, located next to CD2830 in the genome, and CD3246 contained six and seven consecutive potential cleavage sites, respectively (Fig. 4A). The region containing these sites seemed conserved between CD2831 and CD3246 (shaded areas in Fig. 4A). Moreover, CD2831 and CD3246 had features common to LPXTG cell wall anchored proteins, and the putative protease cleavage sites were directly adjacent to this peptidoglycan anchor motif. The multitude of potential target sites suggests effective cleavage of these two cell surface proteins, and based on the 13 potential cleavage sites in these two proteins a consensus motif was constructed (Fig. 4B). In agreement with the results of our peptide screen described above, a striking overall proline-rich motif is apparent, and preferences for a proline at P4’ and asparagine at P2’ seem plausible.

Based on the multitude of possible cleavage sites, we decided to study CD2830-mediated cleavage of these C. difficile putative adhesion molecules in more detail. Noteworthy, CD3246, but not CD2831, has been lost in the genomes of C. difficile ribotype 027, including the virulent R20291 strain (23). Therefore, we initially focused our research on CD2831. To confirm cleavage of CD2831 (putative adhesion protein; Fig. 4C) by CD2830, we produced part of CD2831 as a recombinant protein and tested it for cleavage. As shown in Fig. 4D, within 5 min of incubation with rCD2830, all recombinant CD2831 was cleaved. Therefore, this cleavage was much more efficient than that observed for HSP90β (Fig. 2B) and IgAs (supplemental Fig. S5). Because the gel analysis did not allow us to discriminate which of the six putative target sites were cleaved, we also analyzed the CD2831 cleavage products via direct-infusion electrospray ionization Q-TOF-MS.
This showed that each predicted CD2830 cleavage site within CD2831 was efficiently cleaved (Fig. 4E).

CD2830 is functionally secreted from C. difficile cells and cleaves endogenous CD2831 and CD3246—in order to test whether secreted native CD2830 is active within the medium of C. difficile growing cells, we incubated a synthetic peptide containing a CD2830 cleavage site identified in CD2831 (KD-TIVINPvPPvPP) with conditioned minimal medium. Subsequent MALDI-TOF-MS analysis (Fig. 5A) revealed cleavage of the peptide, thereby demonstrating that CD2830 is secreted as a functional protease from C. difficile cells. Moreover, using our fluorescent assay, we demonstrated that more than 90% of the proteolytic activity was present in the medium and only less than 10% in the cell pellet, supporting the evidence that CD2830 was actively secreted in the medium (data not shown).
Having established that CD2830 is actively secreted, we investigated whether this activity is sufficient to cleave endogenous CD2831. For this purpose, we set up a method for the targeted measurement of CD2831 cleavage products via LC–ion trap MS/MS analysis. As a reference for retention time and fragmentation pattern, we first analyzed the rCD2831 sample treated with rCD2830 protease. We focused on m/z 680.8 [M+2H]^{2+}, corresponding to one of the CD2831 product peptides (PAPPNTDEPIVNP; Fig. 4E). This peptide eluted around 100 min, as shown by the sum of the intensities of the transitions 680.8 → 1032.5, 680.8 → 1131.5, and 680.8 → 1245.6, characteristic for this peptide (Fig. 5B, upper part). Analysis of the conditioned medium of C. difficile unambiguously identified the presence of the same CD2831 cleavage product, based on both retention time and MS/MS fragmentation (Fig. 5B, lower part). This clearly shows that native CD2830 activity cleaved endogenous CD2831. This could also explain the identification of CD2831 in our secretome analysis (Table I).

Similarly, we tested whether a CD3246 cleavage product could be identified in the medium. As a reference, we used a synthetic putative CD2830 product peptide from CD3246.
(PVPIDDDVVPN; Fig. 4A). We first analyzed this peptide via LC–ion trap MS/MS to determine the retention time and MS/MS spectrum (Fig. 5C, upper panels). Then, we analyzed the conditioned cell culture medium and observed a clear signal corresponding to the same peptide (Fig. 5C, lower part), demonstrating the presence of the CD3246 cleavage product in the conditioned medium.

Overall, the above data clearly demonstrate that C. difficile cells secrete active CD2830 that can cleave the endogenous putative cell surface molecules CD2831 and CD3246.

DISCUSSION

Bacterial secreted proteins constitute a biologically important subset of proteins that are involved in multiple processes to aid proliferation and infection. Bacterial extracellular proteases, in particular, have attracted considerable attention, as these have often been shown to be indispensable for bacterial virulence. Here, we studied a novel secreted metalloprotease, CD2830, which we identified as a genuinely secreted protein from C. difficile.

After the initial identification of HSP90β as a substrate for CD2830, we identified a CD2830 cleavage motif using a synthetic peptide library screen. The identified CD2830 cleavage motif is unique and has hitherto not been described for any other protease (24, 25). The strong preference for proline residues at the P1, P1', and P3' positions is especially intriguing. The distinctive cyclic structural characteristics of proline create conformational constraints to proline-containing peptides. Peptide bonds containing a proline residue are in general less sensitive to proteolytic cleavage, especially with a proline at the P1' position. However, some proline-specific enzymes have evolved, most of which target either N- or C-terminally located residues (26, 27). Even though proteolytic cleavage at a Pro–Pro bond has been observed before (28, 29), to the best of our knowledge, CD2830 is the first enzyme with a high preference for hydrolysis of such a peptide bond. Our peptide library screen indicated less stringency for amino acid residues at the P2 and P3 positions. Because in the current study we permuted the amino acid positions based on the initial cleavage site (PNAAVP), additional screens and kinetic experiments should elucidate a more detailed picture of the optimal CD2830-cleavage motif with respect to these two positions. In addition, structural analysis of the catalytic domain of CD2830 in complex with the target peptide might reveal specific contacts important for proteolytic activity.

Using the CD2830 protease cleavage motif from our peptide library screen, we found many potential CD2830 substrates (~600) in the human subset of signal-peptide-containing proteins (membrane-associated or secreted proteins). Given the preference for prolines surrounding the scissile bond, this list would be restricted to 238 possible candidate substrates. Several of these proteins might play a role in defense against bacterial infections. Clearly, the presence of a putative CD2830 cleavage site does not make such a protein an assured substrate, as the cleavage site might be inaccessible or the protease and substrate might never co-localize or be synthesized at the same time. Based on the cleavage motif and the preference for multiple prolines, we studied the cleavage of IgA2 by CD2830. Except for Clostridium ramosum, whose IgA protease cleaves one isoform of human IgA2 (IgA2(1)) (30), the IgA2 subclass is resistant to other bacterial IgA proteases. We have now shown that IgA2 heavy chain can be cleaved by CD2830 in vitro within the hinge region. Notably, numerous bacterial species produce proteases that cleave at Pro–Ser and Pro–Thr sites within the hinge region of IgA1 (31–33). This IgA1 region contains two consecutive Pro-Pro-Thr-Pro motifs. In accordance with our identified motif, the Thr presumably prevents cleavage by CD2830 within this region, although glycosylation and accessibility of the cleavage site within the hinge region might also play a role. Whether CD2830 can cleave IgA in vivo and is relevant for immune evasion remains to be determined. Although several studies have provided a link between virulence and the expression of IgA proteases, it has been difficult to prove that such proteases are virulence factors in vivo. This is related to the fact that only human, gorilla, chimpanzee, and orangutan IgA are susceptible to the hitherto described IgA proteases (32, 34, 35).

Several observations within our study demonstrated that the C. difficile proteins CD2831 and CD3246 are candid CD2830 substrates. First, both proteins contain multiple CD2830 cleavage sites. Second, recombinant CD2831 was very efficiently cleaved by rCD2830 at all predicted cleavage sites. Third, cleavage of endogenous CD2831 and CD3246 by native CD2830 was observed in cultures of C. difficile cells.

The two C. difficile substrates identified are putative adhesin proteins and contain C-terminal PPXTG (CD2831) and SPXTG (CD3246) motifs, respectively. In Gram-positive bacteria, surface proteins harboring such a signal are covalently linked to the cell wall by the transpeptidase sortase, and several studies have shown the importance of these cell surface proteins for bacterial virulence (36–39). In C. difficile strain 630, only one putative sortase has been identified (8), and the number of putative sortase substrates appears to be limited (8, 9, 40, 41), but as yet no study has revealed genuine sortase substrates in C. difficile.

Cleavage of adhesion proteins has been shown to be an important mechanism for the control of their surface levels. In Staphylococcus aureus, a secreted protease (aureolysin) cleaves the clumping factor ClfB (42), a protein involved in adherence to blood clots. The aureolysin homologue in Enterococcus faecalis, gelatinase GelE, cleaves a surface adhesion protein, thereby controlling the ability of cells to adhere to collagens (43). In Bacillus anthracis, adhesion to human endothelial cells is regulated by cleavage of one of the major surface layer proteins (BslA) by the abundantly secreted protease InhA (39). Clear examples also are found in Gram-
negative bacteria. In *Bordetella pertussis*, the SphB1 protease releases a major adhesin from the cell surface. Interestingly, an SphB1 knockout shows greater adhesion *in vitro* but attenuated colonization *in vivo* (44).

These examples all point to a role for a specific protease in the control of adhesion versus motility. We propose a similar role for CD2830 through cleavage of CD2831 and CD3246. Clearly, in such a scenario, protease and adhesion proteins have opposite effects, requiring tight control *in vivo*. In the past decade, the bacterial second messenger c-di-GMP has emerged as a central mediator in regulating prokaryotic adhesion/biofilm formation versus motility (45, 46). In *Pseudomonas fluorescens*, for example, a c-di-GMP binding protein sequesters a protease responsible for cleavage of an adhesion protein at low levels of c-di-GMP but releases it at higher concentrations, thereby regulating bacterial motility (47, 48). Besides c-di-GMP binding proteins, other c-di-GMP-sensing regulatory structures are riboswitches, RNA structures controlling gene expression through binding of specific ligands. In *C. difficile*, two types of c-di-GMP riboswitches have been described (49–51) that are oppositely regulated by c-di-GMP; the class I riboswitch is activated at low levels of c-di-GMP, whereas the class II c-di-GMP riboswitch is activated at higher levels of c-di-GMP (Fig. 6).

Interestingly, the 5'UTR of *cd2830* contains a class I c-di-GMP riboswitch that, for example, was also found to control the expression of flagellar genes (52). Strikingly, three of the four loci containing a class II riboswitch encode putative adhesion molecules, *CD2831*, *CD3246*, and *CD3513* (putative pilin). Two of these three proteins were identified as *CD2830* substrates in this study (Fig. 6). The inverse regulation of *cd2830* and *cd2831* expression by c-di-GMP was very recently confirmed in cells with inducible expression of one of the many (53) c-di-GMP synthases (54). Consequently, the remarkable picture emerges that in *C. difficile*, c-di-GMP inversely regulates gene expression of a protease-encoding gene (*CD2830*) and its adjacent gene encoding its substrate (*CD2831*). The control of adhesion versus motility in *C. difficile* and the role of c-di-GMP and specific surface proteins are only starting to be elucidated, but our data suggest that *CD2830* plays a pivotal role in this process. Testing this model (Fig. 6) will be the main focus of our future studies.

In conclusion, we have characterized *CD2830* as a highly active secreted metalloprotease from *C. difficile* with a unique preference for multiple proline residues surrounding the scissile bond. The identification of two *C. difficile* adhesion proteins as efficient *CD2830* substrates suggests that *CD2830* plays a role in *C. difficile* adhesion and motility.
Acknowledgments—We thank Dr. Ron Hokke and Dr. Manfred Wurzer for critical reading of the manuscript and Dr. Rico Derks for valuable suggestions for the data analysis.

‡ To whom correspondence should be addressed: Paul Hensbergen, Ph.D., Center for Proteomics and Metabolomics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands, Tel.: +31-71-526-5076/8704, Fax: +31-71-526-6907, E-mail: P.Hensbergen@lumc.nl; Hans van Leeuwen, Ph. D., Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands, Tel.: +31-71-526-6797, E-mail: H.C.van_Leeuwen@lumc.nl.

REFERENCES

1. Rupnik, M., Wilcox, M. H., and Gerdning, D. N. (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7, 526–536
2. Muniz, L. R., Knosp, C., and Yeretzian, G. (2012) Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front. Immunol. 3, 310
3. Kuehne, S. A., Cartman, S. T., Heap, J. T., Kelly, M. L., Cockayne, A., and Minton, N. P. (2010) The role of toxin A and toxin B in Clostridium difficile infection. Nature 467, 711–713
4. Lytras, D., O’Connor, J. R., Howarth, P. M., Sambol, S. P., Carter, G. P., Phumova, T., Poon, R., Adams, V., Vedantam, G., Johnson, S., Gerdin, D. N., and Rood, J. L. (2009) Toxin B is essential for virulence of Clostridium difficile. Nature 458, 1176–1179
5. McBride, S. M., and Sonenshein, A. L. (2011) The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. Microbiology 157, 1457–1465
6. Lin, Y. P., Kuo, C. J., Koleci, X., McDonough, S. P., and Chang, Y. F. (2011) Marganese binds to Clostridium difficile Fbp68 and is essential for fibronectin binding. J. Biol. Chem. 286, 3957–3969
7. Henequen, C., Janoir, C., Barc, M. C., Collignon, A., and Karjalainen, T. (2003) Identification and characterization of a fibronectin-binding protein from Clostridium difficile. Microbiology 149, 2779–2787
8. Sebabia, M., Wren, B. W., Mullany, P., Fairweather, N. F., Minton, N., Stabler, R., Thomson, N. R., Roberts, A. P., Cerdeno-Tarraga, A. M., Wang, H., Holden, M. T., Wright, A., Churcher, C., Quail, M. A., Baker, S., Bason, N., Brooks, K., Cushing, T., Corver, J., Davis, P., Dowd, L., Fraser, A., Fellows, T., Hance, Z., Holroyd, S., Jagels, K., Moule, S., Mungall, K., Price, C., Rabatinovitsch, E., Sharp, S., Simmonds, M., Stevens, K., Unwin, L., Whithead, S., Dupuy, B., Dougan, G., Barrett, B., and Parkhill, J. (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38, 779–786
9. Tuli, L., Marchi, S., Petrociani, R., Shaw, H. A., Fairweather, N. F., Scarselli, M., Soriano, M., and Leuzzi, R. (2013) CbpA: a novel surface exposed fibronectin binding. Mol. Microbiol. 87, 1197–1209
10. Vedantam, G., Clark, A., Chu, M., McQuade, R., Mallozzi, M., and Minton, N. P. (2010) Mass spectrometric identification of aberrantly glycosylated human apolipoprotein C-III peptides in urine from Schistosoma mansoni-infected individuals. Mol. Cell. Proteomics 9, 667–681
11. Petersen, T. N., Brunak, S., von, H. G., and Nielsen, H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 765–766
12. Kelley, L. A., and Stempel, M. J. (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371
13. Pannifer, A. D., Wong, T. Y., Schwarzenbacher, R., Renatus, M., Petosa, C., Bienkowska, J., Lacy, D. B., Collier, R. J., Park, S., Leppila, S. H., Hanna, P., and Liddington, R. C. (2001) Crystal structure of the anthrax lethal factor. Nature 414, 229–233
14. Vedantam, G., Wong, T. Y., Schwarzenbacher, R., Jarrell, E. T., Leppila, S. H., Collier, R. J., Liddington, R. C., and Cantley, L. C. (2004) The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor. Nat. Struct. Mol. Biol. 11, 60–66
15. Knetsch, C. W., Terveer, E. M., Lauber, C., Gorbalean, A. E., Harmanus, C., Kuiper, E. J., Corver, J., and van Leeuwen, H. C. (2012) Comparative analysis of an expanded Clostridium difficile reference strain collection reveals genetic diversity and evolution through six lineages. Infect. Genet. Evol. 12, 1577–1585
16. Castro, E., Sigrist, C. J., Gattiker, A., Buillard, V., Langenidj–Genevaux, P. S., Gasteiger, E., Bairoch, A., and Hulo, N. (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34, W532–W535
17. He, M., Sebabia, M., Lawley, T. D., Stan, R. A., Dawson, L. F., Martin, M. J., Holt, K. E., Seth-Smith, H. M., Quail, M. A., Rance, B., Brooks, K., Churcher, C., Harris, D., Bentley, S. D., Burrows, C., Clark, L., Corton, C., Murray, V., Rose, G., Thurston, S., van, T. A., Walker, D., Wren, B. W., Dougan, G., and Parkhill, J. (2010) Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc. Natl. Acad. Sci. U.S.A. 107, 7527–7532
18. Igarashi, Y., Eroshkin, A., Gramatikova, S., Gramatikoff, K., Zhang, Y., Smith, S. L., Osterman, A. L., and Godzik, A. (2007) CDD: a proteolytic event database. Nucleic Acids Res. 35, D546–D549
19. Rawlings, N. D., Barrett, A. J., and Bateman, A. (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 40, D343–D350
20. Vanhoof, G., Goossens, F., De, M. I., Hendriks, D., and Scharpe, S. (1995) Site-directed mutagenesis of the Bacillus cereus SUR gene: identification of a new member of the SUR family. J. Mol. Biol. 255, 779–786
21. Cunningham, D. F., and O’Connor, B. (1997) Proline specific peptidases. Biochem. Biophys. Acta 1343, 160–186
22. Patterson, B. C., and Sang, Q. A. (1997) Angiostatin-converting enzyme activities of human matriptase (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J. Biol. Chem. 272, 28823–28825
23. Nolte, W. M., Tagore, D. M., Lane, W. S., and Saghathelin, A. (2009) Peptidomics of prolyl endopeptidase in the central nervous system. Biochemistry 48, 11971–11981
24. Fujimori, Y., Iwaki, M., Hodohara, K., Hosoda, S., and Kobayashi, K. (1986) The site of cleavage in human alpha chains of IgA1 and IgA2/2αm(1) allotype paraproteins by the clostridial IGA protease. Mol. Immunol. 23, 147–150
25. Qiu, J., Brackee, G. P., and Plaut, A. G. (1996) Analysis of the specificity of bacterial immunoglobulin A (IgA) proteases by a comparative study of gamma globulins and IgA1 allotype paraproteins by the clostridial IGA protease. Mol. Immunol. 33, 933–937
26. Woof, J. M., Ferras, D. M., Lane, W. S., and Saghathelin, A. (2009) The function of immunoglobulin A in immunity. J. Pathol. 208, 270–282
27. Gass, J., and Khsosa, C. (2007) Prolyl endopeptidases. Cell Mol. Life Sci. 64, 345–355
28. Senior, B. W., and Wool, J. M. (2005) The influences of hinge length and composition on the susceptibility of human IgA to cleavage by diverse bacterial IgA1 proteases. J. Immunol. 174, 7792–7799
29. Wool, J. M., and Russell, M. W. (2011) Structure and function relationships in IgA. Mucosal Immunol. 4, 590–597
30. Budzik, J. M., Marraffini, L. A., and Schneewind, O. (2007) Assembly of pili in the surface of Bacillus cereus vegetative cells. Mol. Microbiol. 66, 495–510
37. Hendrickx, A. P., Budzik, J. M., Oh, S. Y., and Schneewind, O. (2011) Architects at the bacterial surface—sortases and the assembly of pili with isopeptide bonds. Nat. Rev. Microbiol. 9, 166–176
38. Maresso, A. W., and Schneewind, O. (2008) Sortase as a target of anti-infective therapy. Pharmacol. Rev. 60, 128–141
39. Tonry, J. H., McNichol, B. A., Ramarao, N., Chertow, D. S., Kim, K. S., Stibitz, S., Schneewind, O., Kashanchi, F., Bailey, C. L., Popov, S., and Chung, M. C. (2012) Bacillus anthracis protease InhA regulates BslA-mediated adhesion in human endothelial cells. Cell Microbiol. 14, 1219–1230
40. Pallen, M. J., Lam, A. C., Antonio, M., and Dunbar, K. (2001) An embarrassment of sortases—a richness of substrates? Trends Microbiol. 9, 97–102
41. Comfort, D., and Clubb, R. T. (2004) A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria. Infect. Immun. 72, 2710–2722
42. McAleese, F. M., Walsh, E. J., Sieprawska, M., Potempa, J., and Foster, T. J. (2001) Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J. Biol. Chem. 276, 29969–29978
43. Pinkston, K. L., Gao, P., Diaz-Garcia, D., Sillanpaa, J., Nallapareddy, S. R., Murray, B. E., and Harvey, B. R. (2011) The Fsr quorum-sensing system of Enterococcus faecalis modulates surface display of the collagen-binding MSCRAMM Ace through regulation of gelE. J. Bacteriol. 193, 4317–4325
44. Coutte, L., Willery, E., Antoine, R., Drobecq, H., Locht, C., and Jacob-Dubuisson, F. (2003) Surface anchoring of bacterial subtilisin important for maturation function. Mol. Microbiol. 49, 529–539
45. Mills, E., Pultz, I. S., Kulasekara, H. D., and Miller, S. I. (2011) The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol. 13, 1122–1129
46. Hengge, R. (2009) Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 7, 263–273
47. Newell, P. D., Boyd, C. D., Sondermann, H., and O'Toole, G. A. (2011) A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol. 9, e1000587
48. Newell, P. D., Yoshio, S., Hvoreanu, K. L., Mond, R. D., and O'Toole, G. A. (2011) Systematic analysis of diguanylate cyclases that promote biofilm formation by Pseudomonas fluorescens Pf0–1. J. Bacteriol. 193, 4685–4698
49. Lee, E. R., Baker, J. L., Weinberg, Z., Sudarsan, N., and Breaker, R. R. (2010) An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329, 845–848
50. Sudarsan, N., Lee, E. R., Weinberg, Z., Moy, R. H., Kim, J. N., Link, K. H., and Breaker, R. R. (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321, 411–413
51. Chen, A. G., Sudarsan, N., and Breaker, R. R. (2011) Mechanism for gene control by a natural allosteric group I ribozyme. RNA 17, 1967–1972
52. Purcell, E. B., McKee, R. W., McBride, S. M., Waters, C. M., and Tamayo, R. (2012) Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J. Bacteriol. 194, 3307–3316
53. Bordeleau, E., Fortier, L. C., Malouin, F., and Burrus, V. (2011) c-di-GMP turnover in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genet. 7, e1002039
54. Soutourina, O. A., Monot, M., Boudry, P., Sajut, L., Pichon, C., Sismeiro, O., Semenova, E., Severinov, K., Le, B. C., Coppee, J. Y., Dupuy, B., and Martin-Verstraete, I. (2013) Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile. PLoS Genet. 9, e1003493