Genome sequence of the barred knifejaw Oplegnathus fasciatus (Temminck & Schlegel, 1844): the first chromosome-level draft genome in the family Oplegnathidae

Manuscript Number: GIGA-D-18-00300R2

Full Title: Genome sequence of the barred knifejaw Oplegnathus fasciatus (Temminck & Schlegel, 1844): the first chromosome-level draft genome in the family Oplegnathidae

Article Type: Data Note

Funding Information:
- Shandong Province Key Research and Invention Program (2017GHY15102, 2017GHY15106) Prof. shuang Yong Xiao
- Young Scientists Fund (41506170) Prof. shuang Yong Xiao

Abstract:

Background
The barred knifejaw (Oplegnathus fasciatus), a member of the Oplegnathidae family of the Centrarchiformes, is a commercially important rocky reef fish native to East Asia. O. fasciatus has become an important fishery resource for offshore cage aquaculture and fish stocking of marine ranching in China, Japan, and Korea. Recently, sexual dimorphism in growth with neo-sex chromosome and widespread biotic diseases in O. fasciatus has been received increasing concern. However, adequate genome resources for gaining insight into sex-determining mechanisms and establishing genetically resistant breeding systems for O. fasciatus are lacking. Here, we analysed the entire genome of a female O. fasciatus fish using long-read sequencing and Hi-C data to generate chromosome-length scaffolds and a highly contiguous genome assembly.

Findings
We assembled the O. fasciatus genome with a total of 245.0 Gb of raw reads that were generated using both of PacBio Sequel and Illumina HiSeq 2000 platforms. The final draft genome assembly was approximately 778.7 Mb, which reached a high level of continuity with a contig N50 of 2.1 Mb. The genome size was consistent with the estimated genome size (777.5 Mb) based on k-mer analysis. We combined Hi-C data with a draft genome assembly to generate chromosome-length scaffolds. Twenty-four scaffolds corresponding to the twenty-four chromosomes were assembled to a final size of 768.8 Mb with a contig N50 of 2.1 Mb and a scaffold N50 of 33.5 Mb using 1,372 contigs. The identified repeat sequences accounted for 33.9% of the entire genome, and 24,003 protein-coding genes with an average of 10.1 exons per gene were annotated using de novo methods, with RNA-seq data and homologies to other teleosts. According to phylogenetic analysis using protein-coding genes, O. fasciatus is closely related to Larimichthys crocea, with O. fasciatus diverging from their common ancestor approximately 70.5-88.5 million years ago.

Conclusions
We generated a high-quality draft genome with chromosome assembly for O. fasciatus using long reads by using the PacBio sequencing technologies, which represents the first chromosome-level reference genome for Oplegnathidae species. Assembly of this genome will provide insight into sex-determining mechanisms and serve as a resource for accelerating genome-assisted improvements in resistant breeding systems.

Corresponding Author: shuang Yong Xiao

CHINA
Editor reports:
Your manuscript "Genome sequence of the barred knifejaw Oplegnathus fasciatus (Temminck & Schlegel, 1844): the first chromosome-level draft genome in the family Oplegnathidae" (GIGA-D-18-00300R1) has been re-reviewed by our reviewers. Based on these reports, and my own assessment as Editor, I am pleased to inform you that it is potentially acceptable for publication in GigaScience, once you have carried out some final essential revisions suggested by our reviewers. Please also add the citation details for the GigaDB in the paper.

Reply:
Thanks a lot for the editor’s suggestion. We have add the citation details for the GigaDB in the paper.
We also have revised the time of our subject as “Oplegnathus fasciatus (Temminck & Schlegel, 1844)”.

Reviewer reports:
Reviewer #1: The authors have restructured and considerably improved the manuscript, accommodating most of my suggestions. I have some final comments, which are mostly cosmetic:

My previous comments 3/4, on the k-mer distribution - now at lines 112: this is still not very clear. I understand that the repeat content is based on fitting a model to the distribution. I do not fully agree that the peak labeled as repeated k-mers should be identified with generic repeat content, I think these are very clearly duplications (which are, of course, technically repeat content).

I would suggest to clarify the genome size calculation itself, which is now incorrect (line 112): 8.09 x10^10 / 100 = 777.5 Mb.

Reply:
We agreed with the reviewer’s comment on that the peak labeled as repeated k-mers should be identified as generic repeat content. Strictly speaking, the majority of k-mers after the 1.8 times larger than the main depth (100 in our case) were most likely from the repeated regions, including the duplications that mentioned in the comment. That is also the way we estimated the repeat ratio of the genome.

We are sorry that the method for the genome size estimation was not clear enough. To clarify the method, the following formula were used: genome size = (Nk-mer – Nerror_k-mer) / D, where G is genome size, Nk-mer is the number of k-mers, Nerror_k-mer is the number of k-mers with the depth of 1, and D is the k-mer depth. The number of k-mers with depth of 1 were eliminated since k-mers with low depth were likely from the sequencing errors. As a result, the genome size was estimated as 777.5Mb. We have revised the description of genome size estimation method in the manuscript.

Line 132, ‘complexity ... such as heterozygosity’: This does not fit the very low heterozygosity levels just identified from the k-mer profile. Possibly structural variants instead of SNPs? I don't think the high duplication levels can explain this?

Reply:
We agreed with the reviewer’s comment on that genome complexity derived from the structural variants might also increase size of the genome assembly. So we revised the sentence as “The genome complexity, such as structural variants and heterozygosity might be possible reasons to explain the relative large genome size in the assembly.”

Line 162: 'filter all base sequences than 500 bp': more than 500 bp? Less than 500 bp?

Reply:
We would like to give sincere thanks to reviewer's suggestions. We revised “filter all...
base sequences than 500 bp” as “filter all base sequences more than 500 bp”
There is a lot of redundancy between tables 1 & 3, I would suggest either merging
these or moving the finer details of the assembly to table 3 (and keep table 1 as an
overview of the final results, just N50/genome size/coverage).
Reply: Thanks a lot for the reviewer’s suggestion. We have merged the Table 3 to
Table 1 to eliminate the information redundancy.
Table 2 would be more appropriate in the supplementary information.
Reply: Thanks a lot for the reviewer’s comment. The Table 2 was moved into the
supplementary data according to the suggestion.

Additional Information:

Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes
Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the data presented should be made available in the figure legends.	
Have you included all the information requested in your manuscript?	Yes
Resources	Yes
A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite Research Resource Identifiers (RRIDs) for antibodies, model organisms and tools, where possible.	
Have you included the information requested as detailed in our Minimum Standards Reporting Checklist?	Yes
Availability of data and materials	Yes
All datasets and code on which the conclusions of the paper rely must be	
either included in your submission or deposited in **publicly available repositories** (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the “Availability of Data and Materials” section of your manuscript.

Have you have met the above requirement as detailed in our [Minimum Standards Reporting Checklist](#)?
Genome sequence of the barred knifejaw *Oplegnathus fasciatus* (Temminck & Schlegel, 1844): the first chromosome-level draft genome in the family Oplegnathidae

Yongshuang Xiao1,2,3*, Zhizhong Xiao1,2,3†, Daoyuan Ma1,2,3, Jing Liu2,3*, Jun Li1,2,3*

1Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China, 2Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, China, 3Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China

*Correspondence address: Yongshuang Xiao, Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Tel: +86-053282896729; E-mail: dahaishuang1982@163.com; Jing Liu, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Tel: +86-053282898790; E-mail: jliu@qdio.ac.cn; Jun Li, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Tel: +86-053282898718; E-mail: junli@qdio.ac.cn.

†Contributed equally to this work.

Yongshuang Xiao, ORCID: 0000-0002-1979-4555
Zhizhong Xiao, ORCID: 0000-0003-2403-1381
Daoyuan Ma, ORCID: 0000-0002-9271-4371
Abstract

Background

The barred knifejaw (*Oplegnathus fasciatus*), a member of the Oplegnathidae family of the Centrarchiformes, is a commercially important rocky reef fish native to East Asia. *O. fasciatus* has become an important fishery resource for offshore cage aquaculture and fish stocking of marine ranching in China, Japan and Korea. Recently, sexual dimorphism in growth with neo-sex chromosome and widespread biotic diseases in *O. fasciatus* has been received increasing concern. However, adequate genome resources for gaining insight into sex-determining mechanisms and establishing genetically resistant breeding systems for *O. fasciatus* are lacking. Here, we analysed the entire genome of a female *O. fasciatus* fish using long-read sequencing and Hi-C data to generate chromosome-length scaffolds and a highly contiguous genome assembly.

Findings

We assembled the *O. fasciatus* genome with a total of 245.0 Gb of raw reads that were generated using both PacBio Sequel and Illumina HiSeq 2000 platforms. The final draft genome assembly was approximately 778.7 Mb, which reached a high level of continuity with a contig N50 of 2.1 Mb. The genome size was consistent with the estimated genome size (777.5 Mb) based on k-mer analysis. We combined Hi-C data with a draft genome assembly to generate chromosome-length scaffolds. Twenty-four scaffolds corresponding to the twenty-four chromosomes were assembled to a final size of 768.8 Mb with a contig N50 of 2.1 Mb and a scaffold N50 of 33.5 Mb using 1,372 contigs. The identified repeat sequences accounted for 33.9% of the entire genome, and 24,003 protein-coding genes with an average of 10.1 exons per gene were annotated using de novo methods, with RNA-seq data and homologies to other teleosts. According to phylogenetic analysis using protein-coding genes, *O. fasciatus* is closely related to *Larimichthys crocea*, with *O. fasciatus* diverging from their common ancestor approximately 70.5-88.5 million years ago.

Conclusions

We generated a high-quality draft genome for *O. fasciatus* using long-read PacBio
sequencing technology, which represents the first chromosome-level reference genome for Oplegnathidae species. Assembly of this genome assists research into fish sex-determining mechanisms and can serve as a resource for accelerating genome-assisted improvements in resistant breeding systems.

Keywords: Oplegnathus fasciatus; chromosome-level genome assembly; Hi-C assembly; sex-determining mechanism

Data description

Introduction of O. fasciatus

The Oplegnathidae family belongs to the order Centrarchiformes, including only one genus Oplegnathus, which is comprised of seven species (O. conwayi, O. fasciatus, O. insignis, O. peaolopesi, O. punctatus, O. robinsoni, O. woodwardi), two of which (O. fasciatus and O. punctatus) are commercially valuable in East Asia. The barred knifejaw O. fasciatus (NCBI: txid 163134, Fishbase ID: 1709) (Temminck & Schlegel, 1844) is one of these two species in the Oplegnathus, which is commonly found at the depth of one to ten metres in association with rocky reefs, and distributed across a wide range of shallow waters around Korea, Japan, China and Hawaii (Fig. 1). O. fasciatus has become an important fishery resource for offshore cage aquaculture and fish stocking of marine ranching in China, Japan and Korea. It has been reported that the male of Oplegnathus possesses a neo-sex chromosome, possibly a sex chromosome Y. The sex chromosome system for Oplegnathus is considered to be X_1 X_1 X_2 X_2 / X_1 X_2 Y based on karyotype analyses. Furthermore, sexual dimorphism in growth has been detected in the O. fasciatus, with male fish exhibiting faster growth than females, possibly due to the sex chromosome system in Oplegnathus.

O. fasciatus is vulnerable to viruses (e.g., Iridovirus) and genetic degradation caused by inbreeding has led to higher susceptibility to diseases. It is vital to develop genomic resources to gain insight into sex-determining mechanisms and to accelerate the genome-assisted improvements in resistant breeding systems.

So far, a genome sequence with the chromosomal assembly of O. fasciatus has not been reported. Here, we constructed a high-quality chromosome-level reference
genome assembly for *O. fasciatus* using long reads from the PacBio DNA sequencing platform and a genome assembly strategy taking advantage of the genome assembly program Canu\(^1\). This genome assembly of *O. fasciatus* is the first chromosome-level reference genome constructed for the Oplegnathidae family. The completeness and continuity of the genome will provide high quality genomic resources for studies on sex-determining mechanisms and for accelerating the genome-assisted improvements in resistant breeding systems.

Genomic DNA extraction, genome size estimation

High-quality genomic DNA for sequencing using the Illumina platform (Illumina Inc., San Diego, CA, USA) and PacBio Sequel sequencing (Pacific Biosciences of California, Menlo Park, CA, USA) was extracted from fresh muscle tissue and blood samples from a single female *O. fasciatus*. The fish was collected from the near-shore area of Qingdao city (Yellow Sea), Shandong province. The whole-genome size of *O. fasciatus* was estimated based on Illumina DNA sequencing technology. A short-insert library (300~350 bp) was constructed and generated a total of ~90.7 Gb of raw reads using the standard protocol provided by the Illumina HiSeq X Ten platform (Illumina Inc., San Diego, CA, USA). After the removal of low-quality and redundant reads, we obtained approximately ~80.8 Gb of clean data for *de novo* assembly to estimate the whole-genome size (S Table 1, Fig. 2). All cleaned reads were subjected to 17-mer frequency distribution analysis\(^1\). As the total number of *k*-mers were approximately \(8.09 \times 10^{10}\) and the peak of *k*-mers was at a depth of 100, the genome size of *O. fasciatus* was calculated to be 777.5 Mb using the following formula with amendment:

\[
G = \frac{(N_{k\text{-mer}} - N_{\text{error}_{k\text{-mer}}})}{D},
\]

where *G* is genome size, *N*\(_{k\text{-mer}}\) is the number of *k*-mers, *N*\(_{\text{error}_{k\text{-mer}}}\) is the number of *k*-mers with the depth of 1, and *D* is the *k*-mer depth (Fig. 2). Meanwhile, an estimated heterozygosity of 0.29% and a repeat content of 38.46% were detected for *O. fasciatus* in this work. A pilot genome assembly was approximately 744.5 Mb with a contig N50 of 7.2 kb and a scaffold N50 of 84.1 kb using the Illumina data and the assembly program Platanus\(^1\) (S Table 2). The GC content was 41% (S Fig. 1). This first attempt at a genome assembly was of
low-quality, partly due to its high genomic repeat content.

Genome assembly using PacBio long reads

Two 20 kb genomic DNA libraries were constructed and sequenced using the PacBio Sequel platform, generating 62.9 Gb raw DNA reads. We obtained 4.8 million subreads (62.8 Gb in total) with an N50 read length of ~22 kb after removing adaptor (S Table 1). Canu v1.4 (Canu, RRID:SCR_015880) was first used to assemble the genome with the Corrected-Error-Rate parameter set at 0.040\(^1\). As a result, a genome assembly with a total length of 875.9 Mb was constructed for *O. fasciatus*, slightly higher than the genome size estimated by 17-mer analysis based on the Illumina data (S Table 2). The genome complexity, such as structural variants and heterozygosity might be possible reasons to explain the relative large genome size in the assembly. We therefore applied Redundans v0.13c\(^4\) to remove the sequence redundancy to obtain a genome assembly size of 778.0 Mb. We then used the Arrow tool in SMRT Link 5.0 software with the minCoverage parameter set at 15 to implement error correction based on the PacBio long reads data (Table 1). The resulting genome assembly was further polished using Illumina NGS data, which were used in the genome survey analysis above. The final draft genome assembly was 778.7 Mb, which reached a high level of continuity with a contig N50 length of 2.1 Mb (Table 1). The contig N50 of *O. fasciatus* was much higher than those of previous fish genome assemblies constructed using NGS DNA sequencing technologies and is comparable to those of recently reported model fish species (S table 3). Previous studies illuminated the relationship between read length and genome assembly; therefore, we attributed the continuity of the genome primarily to the application of long reads in the assembly.

Hi-C library construction and chromosome assembly

Hi-C is a sequencing-based approach for determining chromosome interactions by calculating the contact frequency between pairs of loci, which are strongly dependent upon the one-dimensional distance, in base pairs, between a pair of loci\(^15,\)\(^16\). In this
work, we used Hi-C to construct the genome assembly of *O. fasciatus*.

Genomic DNA was extracted for the Hi-C library from a whole-blood sample of *O. fasciatus* as previously described\(^\text{17}\). Cells were fixed with formaldehyde and lysed, and the cross-linked DNA was digested with MboI. Sticky ends were biotin-labelled and proximity ligated to form chimeric junctions and then physically sheared to a size of 300–500 bp\(^\text{17}\). Chimeric fragments representing the original cross-linked, long-distance physical interactions were then processed into paired-end sequencing libraries, and 629 million 150-bp paired-end Illumina reads (91.5 Gb) were produced with Q20 and Q30 of ~94.0% (S Table 1, S Table 4). By mapping the Hi-C data to the PacBio-based assembly using BWA software (BWA, RRID:SCR_010910), we found that sequencing data with mates mapped to a different contig (or scaffold) and data mapped to a different contig (or scaffold) (map Q5 ≥ 5) were 593.7 Mb (94.4%), 240.5 Mb (40.5%) and 205.1 Mb (34.6%), respectively (S Table 4). We then further employed BWA and Lachesis software to align paired-end reads to filter all base sequences than 500bp from each restriction site\(^\text{18}\). According to the conduct of clustering, ordering, and orienting to the assembly contigs (1,692), these sequences were grouped into 24 chromosome clusters and scaffolded using Lachesis software with tuned parameters\(^\text{19}\) (S Table 4, Fig. 3). Finally, we constructed the chromosome interactions map using Juicer software and employed the JucieBox to complete the visual correction of the interaction map. We obtained polished 1,756 polished contigs by interrupting misassembly from 1,692 contigs. Twenty-four scaffolds were assembled corresponding to the 24 chromosomes of *O. fasciatus* based on the karyotype analyses \(^\text{6,7}\) (S Table 4, Fig. 3).

A final size of 768.8 Mb accounting for the 98.7% draft genome was assembled, which showed a high level of continuity with a contig N50 of 2.1 Mb and a scaffold N50 of 33.5 Mb using 1,372 contigs. The anchor rate of contigs (> 100 kb) to chromosomes was attained up to the 99.7% based on the Hi-C assembly (Table 1). The contig N50 and scaffold N50 of *O. fasciatus* were much higher than those of previous fish genome assemblies constructed using NGS DNA sequencing technologies based on the genome assembly using PacBio long reads and Hi-C
assembly (S table 3).

178 Genome quality evaluation
179
180 To assess the completeness of the assembled *O. fasciatus* genome, we subjected the
181 assembled sequences to BUSCO version 3 evaluation (BUSCO. RRID:SCR_015008)
182 (BUSCO, actinopterygii_odb9)\(^\text{20}\). Overall, 96.6\% and 1.5\% of the 4,584 expected
183 actinopterygii genes were identified in the assembled genome as complete and partial
184 BUSCO profiles, respectively. Approximately 85 genes could be considered missing
185 in our assembly (S table 5). Among the expected complete actinopterygii genes, 4,259
186 and 171 were identified as single copy and duplicated BUSCOs, respectively (S table
187 5). We then used Minimap2 to estimate the completeness and homogeneity of genome
188 assembly based on CLR (Continuous Long Reads) subreads. A high quality of
189 completeness and homogeneity was assessed in the genome assembly, and the
190 mapping rate, coverage rate and average sequencing depth reached 90.2\%, 99.9\% and
191 80.6, respectively (S table 6). Note that the mapping ratio might be related to the
192 repetitive content of the *O. fasciatus* genome, especially for the high repeat content in
193 the sex chromosomes\(^\text{6}\). However, how the repetitive elements in the genome influence
194 the karyotypes of this species needs further investigation.

195 To further evaluate the accuracy of the *O. fasciatus* genome assembly, we
196 aligned the NGS-based short reads from the whole-genome sequencing data against
197 the reference genome using BWA\(^\text{21}\). We then used GATK (GATK,
198 RRID:SCR_001876) to implement SNP calling and filter work, and the results
199 showed that 99.8\% and 0.2\% of the 1.6 x 10\(^\text{6}\) expected SNP reads were identified in
200 the assembled genome as heterozygous and homologous SNPs, respectively. SNP
201 calling on the final assembly also yielded a heterozygosity rate of 0.20\%, supporting
202 the k-mer estimate analysis (0.29\%) (S table 7).

203 Repeat sequences within the *O. fasciatus* genome assembly
204 To identify tandem repeats, we utilized Tandem Repeat Finder to annotate repetitive
205 elements in the *O. fasciatus* genome. RepeatModeler (RepeatModeler,
RRID:SCR_015027) (version 1.04) and LTR_FINDER (LTR_Finder, RRID:SCR_015247)\(^2\) were used to construct a *de novo* repeat library with default parameters. Subsequently, we used RepeatMasker (RepeatMasker, RRID:SCR_012954)\(^2\) (version 3.2.9) to map our assembled sequences on the Repbase TE (version 14.04)\(^2\) and the *de novo* repeat library to identify known and novel transposable elements (TEs). In addition, TE-related proteins were annotated by using RepeatProteinMask software (version 3.2.2).\(^2\)

The identified repeat sequences accounted for 33.9% of the *O. fasciatus* genome including repeat sequences with 23.6% of the genome based on the *de novo* repeat library (Table 2). Approximately 23.4% of the *O. fasciatus* genome was identified as interspersed repeats (most often TEs). Among them, DNA transposable elements were the most abundant type of repeat sequences, which occupied 11.5% of the whole genome. Long interspersed nuclear elements (LINEs) and long terminal repeats (LTRs) comprised 7.3% and 4.0% of the whole genome, respectively (Table 2, S Fig. 2).

RNA preparation and sequencing

We sequenced cDNA libraries prepared from the eggs of *O. fasciatus* that were used for genome annotation using Illumina sequencing technology. RNA quality was determined based on the estimation of the ratio of absorbance at 260nm/280nm (OD = 2.0) and the RIN (value = 9.2) by using a Nanodrop ND-1000 spectrophotometer (LabTech, USA) and a 2100 Bioanalyzer (Agilent Technologies, USA), respectively. We used the Clontech SMARTer cDNA synthesis kit to complete reverse transcription. A paired-end library was prepared following the Paired-End Sample Preparation Kit manual (Illumina Inc., San Diego, CA, USA). Finally, a library with an insert length of 300 bp was sequenced by Illumina HiSeq X Ten in 150PE mode (Illumina Inc., San Diego, CA, USA). As a result, we obtained ~42.2 Gb high-quality transcriptome data from RNA-seq (S Table 1, S table 8).

Gene annotation

Gene annotation of the *O. fasciatus* genome was performed using *de novo*, homology-based and transcriptome sequencing-based predictions. We employed Augustus (Augustus, RRID:SCR_008417) (version 2.5.5)\(^2\) and GenScan...
(GENSCAN, RRID:SCR_012902) (version 1.0) software to predict protein-coding genes in the *O. fasciatus* genome assembly. Protein sequences of closely related fish species including *Larimichthys crocea*, *Lates calcarifer*, *Gasterosteus aculeatus*, *Paralichthys olivaceus*, *Cynoglossus semilaevis* and *Gadus morhua* were downloaded from Ensembl and aligned against the *O. fasciatus* genome using TBLASTN software. Subsequently, Genewise2.2.0 (GeneWise, RRID:SCR_015054) software was employed to predict potential gene structures on all alignments.

We also mapped these NGS transcriptome short reads onto our genome assembly using TopHat1.2 (TopHat, RRID:SCR_013035) software, and then we employed Cufflinks (Cufflinks, RRID:SCR_014597) to predict gene structures (S table 9). All gene models were then integrated using MAKER (MAKER, RRID:SCR_005309) to obtain a consensus gene set. The final total gene set was composed of 24,003 genes with an average of 10.1 exons per gene in the *O. fasciatus* genome (Table 1). The gene number, gene length distribution, CDS length distribution, exon length distribution and intron length distribution were all comparable with those of other teleost fish species (S table 9, S Fig. 3).

To obtain further functional annotation of the protein-coding genes in the *O. fasciatus* genome, we employed the local BLASTX (BLASTX, RRID:SCR_001653) and BLASTN (BLASTN, RRID:SCR_001598) programs and the Swiss-prot database with an e-value ≤ 1e-5 to align the non-redundant nucleotide (NT) and non-redundant protein (NR), respectively. We also used Blast2GO (Blast2GO, RRID:SCR_005828) software to search the Gene ontology (GO), and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway databases. Ultimately, 97.3% (23,364 genes) of the 24,003 genes were annotated by at least one database (S Table 10). Four types of non-coding RNAs (microRNAs, transfer RNAs, ribosomal RNAs, and small nuclear RNAs) were also annotated using the tRNAscan-SE (tRNAscan-SE, RRID:SCR_010835) and the Rfam database (S Table 11).

Gene family identification and phylogenetic tree construction

We employed the BLASTP (BLASTP, RRID:SCR_001010) program with an
e-value threshold of 1e-5 to identify gene families based on the transcript alignments of each gene from *O. fasciatus* and other fish species, which included *Larimichthys crocea*, *Gadus morhua*, *Paralichthys olivaceus*, *Cynoglossus semilaevis*, *Nototthenia coriiceps*, *Boleophthalmus pectinirostris*, *Lepisosteus oculatus*, *Gasterosteus aculeatus*, *Callorhinchus milii*, *Danio rerio*, *Salmo salar* and *Oryzias latipes*. 21,528 gene families were identified by clustering the homologous gene sequences based on H-scores calculated from Bit-score using Hcluster_sg software (S Fig. 4). Subsequently, we selected 1,236 single-copy orthogroups from the above-mentioned species to construct the phylogenetic relationship between *O. fasciatus* and other fish species. We used the ClustalW (ClustalW, RRID:SCR_002909) program to extract and align coding sequences of single-copy genes from the 1,158 orthogroups with a length filter (S Fig. 5). All the alignments were concatenated as a single data set for each species. Nondegenerated sites extracted from the data set were then joined into new sequences for each species to construct a phylogenetic tree based on the maximum-likelihood method implemented in the PhyML package (with the -m PROTGAMMAAUTO model). We used the MCMCtree program to estimate divergence times among species based on the approximate likelihood method and molecular clock data from the divergence time between medaka from the TimeTree database. According to the phylogenetic analysis, *O. fasciatus* (Eupercaria: Centrarchiformes) clustered with *Larimichthys crocea* in the order Perciformes (Eupercaria), which was consistent with the new fish species taxonomy (Fig. 4). The divergence time between *O. fasciatus* and the common ancestor with *Larimichthys crocea* was at approximately 70.5-88.5 Ma.

Conclusions

We successfully assembled the genome of *O. fasciatus* and reported the first chromosome-level genome sequencing, assembly and annotation based on long reads from the third-generation PacBio Sequel sequencing platform. The final draft genome assembly is approximately 778.7 Mb, which was slightly higher than the estimated genome size (777.5 Mb) based on k-mer analysis. Those contigs were scaffolded to chromosomes using Hi-C data, resulting in a genome with a high level of continuity.
With a contig N50 of 2.1 Mb and a scaffold N50 of 33.5 Mb. The chromosome-level genome assembly of *O. fasciatus* also being the first high-quality genome in the Oplegnathidae family. We also predicted 24,003 protein-coding genes from the generated assembly, and 97.3% (23,364 genes) of all protein-coding genes were annotated. We found that the divergence time between *O. fasciatus* and its common ancestor with *Larimichthys crocea* was approximately 70.5-88.5 Ma. As far as we known, the Y chromosomes has always exhibited many specific sequence characteristics compared to X1 and X2, such as repeat content, and those differences might increase the difficulty of the sequence assembly of chromosomes X1 and X2. The chromosome-level genome assembly together with gene annotation data generated for the female fish in this work will provide a valuable resource for further research on sex-determining mechanisms, especially for obtaining an accurate assembly of the Y chromosome in male fish. These results will also accelerate genome-wide association studies in resistant breeding systems.

Ethics Statement

This research was approved by the Animal Care and Use committee of the Chinese Academy of Science.

Availability of supporting data

Supporting data and materials are available in the *GigaScience* GigaDB database[45], with the raw sequences deposited in the SRA under the accession number SRP158313 and SRP160016[45].

Abbreviation

BUSCO: Benchmarking Universal Single-Copy Orthologs; CDS: Coding sequence; CLR: Continuous Long Reads; GO: Gene ontology; KEGG: Kyoto Encyclopaedia of Genes and Genomes; LINE: Long interspersed nuclear elements; LTR: Long terminal repeats; NGS: Next Generation Sequencing; NR: non-redundant protein; NT: non-redundant nucleotide; TE: Transposable elements.
Competing interests
The authors declare that they have no competing interests.

Funding
This study was supported by a grant from the National Natural Science Foundation of China (No. 41506170, No. 31672672, and No. 31872195), Shandong Province Key Research and Invention Program (2017GHY15102, 2017GHY15106), Qingdao Source Innovation Program (17-1-1-57-jch), Marine Fishery Institute of Zhejiang Province, Key Laboratory of Mariculture and Enhancement of Zhejiang Province (2016KF002), National Key Research and Development Program (2018YFD0901204), STS project (KFZD-SW-106, ZSSD-019), Qingdao National Laboratory for Marine Science and Technology (2015ASKJ02), China Agriculture Research System (CARS-47).

Author Contributions
YSX conceived the project. ZZX, DYM collected the samples and extracted the genomic DNA. YSX, JL and JL performed the genome assembly and data analysis. YSX, ZZX, JL, DYM and JL wrote the paper.

Reference
1. Schembri PJ, Bodilis P, Francour P, et al. Occurrence of barred kinfejaw, *Oplegnathus fasciatus* (Actinopterygii: Perciformes: Oplegnathidae), in Malta (Central Mediterranean) with a discussion on possible modes of entry. *Acta Ichthyol Piscat.* 2010; 40:101-104.
2. Mundy BC. Checklist of the fishes of the Hawaiian Archipelago. *Bishop Mus Bull Zool.* 2005; 6: 1-704.
3. An HS, Hong SW. Genetic diversity of rock bream *Oplegnathus fasciatus* in Southern Korea. *Genes Genom.* 2008; 30: 451-459.
4. Xiao YS, Li J, Ren GJ, et al. Pronounced population genetic differentiation in the rock bream *Oplegnathus fasciatus* inferred from mitochondrial DNA sequences. *Mitochondrial DNA A*. 2016; 27: 2045-2052.

5. Park HS, Kim CG, Par YJ, et al. Population Genetic Structure of Rock Bream (*Oplegnathus fasciatus* Temminck & Schlegel, 1844) Revealed by mtDNA COI Sequence in Korea and China. *Ocean Sci J*. 2018; 53: 261-274.

6. Xu DD, Lou B, Bertollo LAC, et al. Chromosomal mapping of microsatellite repeats in the rock bream fish *Oplegnathus fasciatus*, with emphasis of their distribution in the neo-Y chromosome. *Mol Cytogenet*. 2013; 6: 12.

7. Xue R, An H, Liu QH, et al. Karyotype and Ag-Nors In Male And Female Of *Oplegnathus Punctatus*. *Oceanol Limnol Sin*. 2016; 47: 626-632.

8. Xiao ZZ. Study on population genetics and culture biology of *Oplegnathus fasciatus*. Doctor thesis. 2015. P. 162-176.

9. Zhang BC, Zhang J, Xiao ZZ, et al. Rock bream (*Oplegnathus fasciatus*) viperin is a virus-responsive protein that modulates innate immunity and promotes resistance against megalocytivirus infection. *Dev Comp Immunol*. 2014; 45: 35-42.

10. Li H, Sun ZP, Jiang YL, et al. Characterization of an Iridovirus Detected in Rock Bream (*Oplegnathus fasciatus*; Temminck and Schlegel). *Chin J Virol*. 2011; 27: 158-164.

11. Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Res*. 2017; 27: 722.

12. Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. *Bioinformatics*. 2011; 27: 764-769.

13. Kajitani R, Toshimoto K, Noguchi H, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. *Genome Res*. 2014; 24: 1384-1395.

14. Przybycien LP, Gabaldón T. Redundans: an assembly pipeline for highly heterozygous genomes. *Nucleic Acids Res*. 2016; 44: e113-e113.

15. Simão FA, Waterhouse RM, Ioannidis P, et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics*. 2015; 31: 3210.
16. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. *Bioinformatics*. 2009; 25: 1754-1760.

17. Benson G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic Acids Res* 1999; 27: 573-580.

18. Tarailo-Graovac M, Chen NS. Using RepeatMasker to identify repetitive elements in genomic sequences. In: Editorial board, Baxevanis Andreas D et al. (eds.), Current Protocols in Bioinformatics, 2009. p. 4.10.1-4.10.14.

19. Jurka, J, Kapitonov VV, Pavlicek A, et al. Repbase Update, a database of eukaryotic repetitive elements. *Cytogenetic Genome Res*. 2005; 110: 462-467.

20. Stanke M, Steinkamp R, Waack S, et al. AUGUSTUS: a web server for gene finding in eukaryotes. *Nucleic Acids Res*. 2004; 32: 309-312.

21. Cai Y, González JV, Liu Z, et al. Computational systems biology methods in molecular biology, chemistry biology, molecular biomedicine, and biopharmacy. *BioMed Res Int*. 2014; 746814.

22. Flicek P, Amode MR, Barrell D, et al. Ensembl 2014. *Nucleic Acids Res*. 2014; 42: D749-D755.

23. Gertz EM, Yu YK, Agarwala R, et al. Composition-based statistics and translated nucleotide searches: Improving the TBLASTN module of BLAST. *MBC Biology*. 2006; 4: 41.

24. Birney E, Clamp M, Durbin R, et al. GeneWise and Genomewise. *Genome Res*. 2004; 14: 988-995.

25. Trapnell C, Pachter L, Salzberg SL, et al. TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics*. 2009; 25: 1105-1111.

26. Ghosh S, Chan CKK. Analysis of RNA-Seq data using TopHat and Cufflinks. *Methods Mol Biol*. 2016; 1374.

27. Campbell MS, Holt C, Moore B, et al. Genome Annotation and Curation Using MAKER and MAKER-P. *Current Protocols in Bioinformatics*. 2014; 48: 4.11.11.

28. Lobo I. Basic Local Alignment Search Tool (BLAST). *J Mol Biol*. 2008; 215: 403-410.

29. Harris MA, Clark J, Ireland A, et al. The Gene Ontology (GO) database and informatics resource. *Nucleic Acids Res*. 2004; 32: D258-D261.

30. Ogata H, Goto S, Sato K, et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids Res*. 2006; 34: D274-D279.
Acids Res. 1999; 27: 29-34.

1. Conesa A, Götz S, García-Gómez JM, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics*. 2005; 21: 3674.

2. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res*. 1997; 25: 955-964.

3. Griffiths-Jones S, Bateman A, Marshall M, et al. Rfam: an RNA family database. *Nucleic Acids Res*. 2003; 31: 439.

4. Lieberman-Aiden E, Van Berkum NL, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. *Science*. 2009; 326: 289-293.

5. Rao SSP, Huntley MH, Durand NC, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. *Cell*. 2014; 159: 1665-1680.

6. Sandborn AL, Rao SSP, Huang SC, et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. *Proc Natl Acad Sci USA*. 2015; 112: E6456.

7. Flot JF, Marie-Nelly H, Koszul R, et al. Contact genomics: scaffolding and phasing (meta) genomes using chromosome be 3D physical signatures. *FEBS Letters*. 2015; 589: 2966-2974.

8. Burton JN, Adey A, Patwardhan RP, et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. *Nat Biotechnol*. 2013; 31: 1119-1125.

9. Lobo I. Basic Local Alignment Search Tool (BLAST). *J Mol Biol*. 2008; 215: 403-410.

10. Thompson JD, Gibson TJ, Higgins DG, et al. Multiple sequence alignment using ClustalW and ClustalX. *Curr Protoc Bioinformatics*. 2002; 2.3. 1-2.3. 22.

11. Guindon S, Dufayard JF, Hordijk W, et al. PhyML: Fast and Accurate Phylogeny Reconstruction by Maximum Likelihood. *Infect Genet Evol*. 2009; 9: 384-385.

12. Yang Z, Rannala B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. *Mol Biol Evol*. 2006; 23: 212-226.

13. Hedges SB, Marin J, Suleski M, et al. Tree of life reveals clock-like speciation and diversification. *Mol Biol Evol*. 2015; 32: 835-845.

14. Betancur-R R, Wiley E, Bailly N, et al. Phylogenetic classification of bony fishes. *BMC Evol Biol*. 2017; 17: 162.
Xiao YS, Xiao ZZ, Ma DY, et al. Supporting data for "Genome sequence of the barred knifejaw Oplegnathus fasciatus (Temminck & Schlegel, 1844): the first chromosome-level draft genome in the family Oplegnathidae". GigaScience Database. 2019. http://dx.doi.org/10.5524/100556.
Table 1 Summary of *Oplegnathus fasciatus* genome assembly and annotation

Genome assembly	Draft scaffolds	Chromosome-length scaffolds based on Hi-C
Length of genome (bp)	778,731,089	768,808,243
Number of contigs	1,692	1,372
Contigs N50 (bp)	2,149,025	2,130,780
Number of scaffold	/	24
Scaffold N50 (bp)	/	33,548,962
Genome coverage (X)		314.6
Number of contigs (≥ 100 kb)	693	708
Total length of contigs (≥ 100 kb)	735,235,962	732,827,446
Mapping rate of contigs (≥ 100 kb) (%)	/	99.67

Genome annotation								
Protein-coding gene number		24,003						
Mean transcript length (kb)		16.1						
Mean exons per gene		10.1						
Mean exon length (bp)		217.7						
Mean intron length (bp)		1527.4						
Type	Repbase TEs	TE proteins	De novo	Combined TEs				
-----------	-------------	-------------	---------	--------------				
	Length (bp)	% in genome						
DNA	39,147,527	5.03	5,390,266	0.69	93,089,344	11.95	124,417,402	15.98
LINE	23,983,322	3.08	16,460,762	2.11	57,167,551	7.34	85,761,250	11.01
SINE	875,585	0.11	0	0.00	914,559	0.12	1,747,250	0.22
LTR	10,163,601	1.31	5,770,483	0.74	31,126,639	4.00	42,465,968	5.45
Satellite	2,028,992	0.26	0	0.00	2,613,480	0.34	4,361,048	0.56
Simple_repeat	1,556,026	0.20	0	0.00	5,179,965	0.67	6,386,303	0.82
Other	6,545	0.00	0	0.00	0	0.00	6,545	0.00
Unknown	331,430	0.04	0	0.00	20,636,768	2.65	20,967,052	2.69
Total	73,544,786	9.44	27,613,880	3.55	183,954,095	23.62	250,611,845	32.18
Fig. 1 A representative individual of *O. fasciatus*
Fig. 2 k-mer distribution of the *O. fasciatus* genome
Fig. 3 Hi-C interaction heatmap for *O. fasciatus* reference genome, showing interactions between the 24 chromosomes
Fig. 4 The phylogenetic relationships of *O. fasciatus* with other fishes. The bootstrap values (larger than 1) calculated from 1000 bootstrap replicates and the branch lengths (smaller than 1) were labelled at and below/above each branch, respectively.
Click here to access/download
Supplementary Material
New manuscript-tracked changes.docx
