Utilization of nanosilica from boiler ash sugar cane industry for filler of chitosan sulfate membrane on direct methanol fuel cell

NS Indrasti¹, A Ismayana¹, R Damayanti¹, A Maddu² and AY Aryanto¹
¹ Department of Agroindustrial Technology, Bogor Agricultural University, Bogor, Indonesia
² Department of Physics, Bogor Agricultural University, Bogor, Indonesia

Email: nastiti.indrasti@gmail.com

Abstract. Nanosilica from boiler ash sugar cane industry can be utilized as filler electrolyte membrane of Direct Methanol Fuel Cell (DMFC). The aim of the study was to determine the influence of ammonium sulfate addition on chitosan and nanosilica addition to performance of chitosan sulfate membrane. This research was conducted through three stages: synthesis of nanosilica using precipitation method, synthesis of chitosan sulfate with ammonium sulfate in various concentration of 0.1 M, 0.5 M, 1 M, 1.5 M, and synthesis of chitosan sulfate membrane by adding nanosilica of 1%, 3%, 5% level. The result showed that nanosilica produced had characteristics of amorphous, 330 nm of particles size, 47.49 nm of crystal size, 64% of crystallization degree, and 0.3 of Podispersity Index (PDI). The degree of sulfonation produced by chitosan sulfate was 15.86%, 19.00%, 22.84%, and 24.75%. The sulfonation chitosan and nanosilica addition gave significant effect ($\alpha = 0.05$) of membrane characteristics. Membrane with 0.1 M of ammonium sulfate and 3% of nanosilica had the highest performance with 40.75% of water absorption, 44.22% of methanol absorption, 0.66 meq/g of ion exchange capacity, and 6.48 x10^{-4} S/cm of ion conductivity. The composite membrane can be applied for DMFC.

1. Introduction
Sugar industry produces boiler ash approximately 0.3% of canes that utilized for sugar production. Boiler ash is by product of sugar industry from the combustion of bagasse on the boiler with the content of SiO_2, Al_2O_3, and Fe_2O_3 more than 70% [1]. According to [2], the result of boiler ash characterization using XRF showed that the largest contain of boiler ash is silica of 56.36%. Silica is an inorganic polymer composed of silicon and oxygen with chemical formula of SiO_2 [3]. Silica can be transformed into nanosilica with nanotechnology to improve the characteristics because nanosilica had the larger surface area than silica [3]. Nanosilica from boiler ash can be used as aditif material of ceramic production, filler of rubber production [4], ultrafiltration membrane, composite porous buffer layer [5], and composite of electrolyte membrane on DMFC [6].

DMFC is a kind of fuel cell from methanol. Membrane which commonly used on DMFC series is polytetrafluoroethylene (PTFE) known as trade name of Nafion. PTFE is an expensive polymer and thus becomes an obstacle to commercializing DMFC [7],[8]. The previous study have been developed to explore the alternative electrolyte membrane from other polymer. One of natural polymer that used...
to substitute Nafion is chitosan. Chitosan had high thermal stability but the capacity of ion exchange was low. Addition of filler had important role to increase the characteristic and performance of electrolyte membrane. The addition of filler may result membrane with required characteristics. The requirements of membrane for DMFC should have high proton conductivity and low methanol permeability. The objective of this research were to measure the effects of nanosilica addition and enhancement of ammonium sulfate towards the performances of chitosan-nanosilica electrolyte membrane.

2. Materials and methods

2.1. Materials

Materials which used in this research were boiler ash from sugar factory, natrium hydroxide (Merck/technic), sulfate acid (Merck/PA), ammonium hydroxide (Merck/PA) to produce silica, chitosan with DA 93.80%, ammonium sulfate, methanol (Merck/PA), technical HCL, acetic acid 2%, and aquades. The equipments used in this research were glass apparatus, oven, and reflux equipments. Analytical tools included X-Ray Fluorescence (XRF) ARL OPTX-2050 Analyzer, Particle Size Analyzer (PSA) Vasco, X-Ray Diffraction (XRD) Emma GBC, Fourier Transform Infrared (FTIR), and LCR-meter HIOKI 3532.

2.2. Synthesis of nanosilica

Boiler ash was filtered and then heated at a temperature of 700 °C for 6 hours using a furnace [9], and the result was furnace ash. 10 g furnace ash was extracted using 80 ml of 2.5 N NaOH for 3 hours. The solution was filtered and the residue was washed using 20 ml of boiling distilled water. The filtrate was cooled at room temperature. The filtrate was titrated using \(\text{H}_2\text{SO}_4 \) 5 N to pH 2 and added NH\(_4\)OH 2.5 N to pH 8.5. The solution was aging at room temperature for 3.5 hours, then dried at 105 °C for 12 hours to obtain dry silica [9],[3],[10]. Silica was hydrolyzed using 3 N HCl for 6 hours. The solution was filtered and the residue was washed with distilled water to pH neutral. Furthermore, the residue was dissolved in NaOH 2.5 N. After a homogeneous solution was added by \(\text{H}_2\text{SO}_4 \) 5 N to pH 7. The solution was allowed to aging at room temperature for 3 hours, then washed with hot water and dried at 105 °C for 12 hours [9],[1],[6].

2.3. Synthesis of chitosan sulfate

Chitosan was added with ammonium sulfate at various concentrations 0.1 M, 0.5 M, 1 M, and 1.5 M and ratio 2 : 20 (w/v) then stirred for 4 hours. The mixture was filtered by filtering paper, the sediment was washed with aquades water until neutral and dried for 4 hours in oven in 60 °C [11].

2.4. Synthesis of chitosan sulfate membrane

Chitosan sulfate was dissolved in acetic acid 2%. Nanosilica was added into the solution with various concentration of 1%, 3%, and 5% (w/w). The solvent was stirred until completely mixed by magnetic stirrer. After completely dissolved and no bubbles, the solvent of composite membrane was given ultrasonic for 30 minutes. The solvent was molded into plate of glass with size \(10 \times 15 \) cm and dried in oven in 40 °C for 24 hours. The dried membrane was saved in dascicatior before use it.

2.5. Characterization

Mineral content in the boiler ash and furnace ash were analyzed using X-Ray Fluorescence (XRF) [6]. Nanosilica which produced in this research was tested with Particle Size Analyzer (PSA) and X-Ray Diffraction (XRD) Emma GBC [6]. The membrane performances was tested by water and methanol absorbtion test [12], ion exchange capacity [13], ion conductivity, and functional group test [10].
3. Result and discussion

3.1. Characteristics of nanosilica

Based on analysis using XRF, the largest mineral content in boiler ash and furnace ash was silica with amount of 57.4% and 56%. Nanosilica which produced from boiler ash using precipitation method with pH 7 and aging time 3 hours had purity 97.75%. Based on the result of analysis with PDF card (Powder Diffraction File), the characteristic of nanosilica was amorphous. Amorphous properties will provide a large area of proton transport in the membrane [14]. Nanosilica which produced had crystal size, crystalinity degree, particel size, and PDI of 47.49 nm, 64%, 330 nm, and 0.3 respectively. The particles size of nanosilica in this research was included in nano-sized particles according to [15] who stated that nanoparticles size was in the range of 10-1000 nm. PDI showed the uniformity of particles size. The lower PDI value will minimize the aglomeration process [3]. According to [6], the characteristics of nanosilica produced in this research can be applied as filler of membranes for DMFC.

3.2. Water absorption and methanol absorption

Water absorption describes membrane’s ability to bind polar groups [10]. The synthesis of chitosan sulfate increased the hydrophilicity of chitosan, thus it facilitated to release proton on DMFC membrane. According to [16], the water which absorbed into membrane can facilitate to transfer proton, and the addition of silica particles can increase hydrophilic parts in polymer structure. Nanosilica additions to membrane also increased the water absorption because of its hygroscopic and amorphous properties. However the addition of nanosilica more than 3% decreased the water absorption. It was because nanosilica can cover existing sulfate groups on chitosan membrane. The value of water absorption can be seen in figure 1.

Methanol absorption was related to methanol permeability. It was the characteristic that inhibit the performance of DMFC. Similar with water absorption, the absorption of methanol was increased with the addition of nanosilica up to 3%. It was caused by the polarity of methanol, thus the water and methanol can be absorbed by hygroscopic silica and have largest surface area [12]. The value of water absorption can be seen in figure 2.

![Figure 1](image1.png)

Figure 1. The influence of nanosilica addition and (NH$_4$)$_2$SO$_4$ concentration to water absorption. () control without (NH$_4$)$_2$SO$_4$, () (NH$_4$)$_2$SO$_4$ 0.1 M, () (NH$_4$)$_2$SO$_4$ 0.5 M, () (NH$_4$)$_2$SO$_4$ 1 M, () (NH$_4$)$_2$SO$_4$ 1.5 M.

![Figure 2](image2.png)

Figure 2. The influence of nanosilica addition and (NH$_4$)$_2$SO$_4$ concentration to methanol absorption. () control without (NH$_4$)$_2$SO$_4$, () (NH$_4$)$_2$SO$_4$ 0.1 M, () (NH$_4$)$_2$SO$_4$ 0.5 M, () (NH$_4$)$_2$SO$_4$ 1 M, () (NH$_4$)$_2$SO$_4$ 1.5 M.
3.3. Ion exchange capacity and ion conductivity

Ion exchange capacity (IEC) indicates the number of protons that can be transported from the anode to the cathode. The IEC test results (figure 3) showed that the higher concentration of (NH₄)₂SO₄ that used, increased the ion exchange capacity. The value of IEC increased with by the addition of the sulfate groups in chitosan. The sulfate groups facilitated membrane to release H⁺ thus it can increased ion exchange capacity. According to [2], Sulphone group is able to release H⁺ easily, thus can be used as actif groups into proton conductive membranes to be fuel cell. The exixtence of SiO₂ groups in chitosan solution will increase the ion exchange capacity [10].

Ion conductivity play an important role in a DMFC membrane. The larger proton conductivity, quality of proton conductive membranes will better. Ion conductivity showed the efficiency of the cell reaction that occurs in the fuel cell system [17]. Figure 4 showed the influence of different concentrations of nanosilica and different concentrations of (NH₄)₂SO₄ for chitosan toward the ion conductivity. Membrane chitosan sulfate with (NH₄)₂SO₄ concentration of 0.1 M and addition of 3% nanosilica had the highest ion conductivity. The addition of nanosilica up to 3% increased proton conductivity. Ion conductivity decreased with addition of nanosilika more than 3%. This was caused by nanosilica covered the role of sulfate groups as proton conductor. The membran which have ionic conductivity/proton larger than 1 x 10⁻⁵ S/cm can be used to fuel cell utilization [18]. Nanosilica composite membrane based on chitosan sulfate can be applied as a DMFC membrane.

![Figure 3](image_url)

Figure 3. The influence of nanosilica addition and (NH₄)₂SO₄ concentration to ion exchange capacity. (■) control without (NH₄)₂SO₄, (□) (NH₄)₂SO₄ 0.1 M, (■) (NH₄)₂SO₄ 0.5 M, (□) (NH₄)₂SO₄ 1 M, (■) (NH₄)₂SO₄ 1.5 M.

![Figure 4](image_url)

Figure 4. The influence of nanosilica addition and (NH₄)₂SO₄ concentration to ion conductivity. (■) control without (NH₄)₂SO₄, (□) (NH₄)₂SO₄ 0.1 M, (■) (NH₄)₂SO₄ 0.5 M, (□) (NH₄)₂SO₄ 1 M, (■) (NH₄)₂SO₄ 1.5 M

3.3.1. Membrane functional groups

The addition of sulfate groups in the polymer chitosan was able to improved the performance of the membrane, because the sulfate group was rich with electrons thus it able to release H⁺. The addition of nanosilica in chitosan sulfate solution to produce of a DMFC membrane was able to affect the performance of the membrane. Silanol groups of nanosilica in the membrane makes it easier to absorb the water thus it can easily transfer protons. In addition, nanosilica had pores that can hold methanol permeation.

The functional groups that presented in membrane chitosan sulfate with 0.1 M (NH₄)₂SO₄ and nanosilica 3% can be seen at figure 5. The absorption peak appeared at the wave number 613 cm⁻¹.
indicating the presence of S-O bond. According to [19], a peak of about 618 cm\(^{-1}\) is a sign of S-O bond. The wave number of 890 cm\(^{-1}\) showed the presence of Si-OH groups of silica. The peak at the 1150 cm\(^{-1}\) wave number indicates the presence of a siloxane (Si-O-Si) functional group.

![Figure 5](image)

Figure 5. The result of FTIR test on membrane chitosan 0.1 M \((\text{NH}_4)_2\text{SO}_4\) and nanosilica 3%.

4. **Conclusion**

The addition of sulfate groups in chitosan and the addition of nanosilica in membrane chitosan sulfate was able to improve the performance of the membrane. Silanol groups of nanosilica increased the ability of membrane to absorb water thus it could easily transfer protons. The interaction of chitosan \((\text{NH}_4)_2\text{SO}_4\) membrane and nanosilica by Duncan test has a significant effect on the performance of the water absorption, methanol absorption, IEC, and ion conductivity membrane. Membrane with 0.1 M of ammonium sulfate and 3% of nanosilica had the highest performance with 40.75% of water absorption, 44.22% of methanol absorption, 0.66 meq/g of ion exchange capacity, and 6.48 x 10\(^{-4}\) S/cm of ion conductivity.

References

[1] Setiawan W K, Indrasti N S and Suprihatin 2015 *Proc. of Int. Conf. on Adptv and Intlgnt Agroindustry* (Indonesia: Bogor)

[2] Affandi S, Setyawan H, Winardi S, Purwanto A and Balgis R 2009 *J. Advnc. Power. Tech.* 20 468

[3] Ismayana A, Maddu A, Sailah S, Maťuška E and Indrasti N S 2017 *J. TIN* 27 228

[4] Wibowo A 2015 *Synthesis of nanosilica from boiler ash using hydrothermal method with a variance of time and temperature process* (Bogor: Bogor Agricultural University)

[5] Setiyawati M E 2015 *Chitosan and albumin template in synthesis nanosilica from boiler ash sugar cane industry with co-precipitation method* (Bogor: Bogor Agricultural University)

[6] Utomo S S 2015 *Synthesis and characterization nanosilica from boiler ash sugar cane industry with aging time and precipitation pH variation* (Bogor: Bogor Agricultural University)

[7] Antonucci P L, Arico A S, Creti P, Ramunni E and Antonucci V 1999 *J. Solid State Ionics* 125 77

[8] Jung D H, Cho S Y, Peck D H, Shin D R and Kim J S 2002 *J. of Power Srs.* 106

[9] Thuadaij N and Nuntiya A 2008 Chiang Mai *J. Sci.* 35 206

[10] Setiawan W K 2015 *Preparation of nanosilica from boiler ash by co-precipitation method as additive for electrolyte membrane based chitosan* (Bogor: Bogor Agricultural University)
[11] Darjito 2001 *Karacteristik adsorpsi Co(II) dan Cu(II) pada adsorben kitosan-sulfat* (Yogyakarta: Gadjah Mada University)
[12] Hartanto S, Sri H, Lin M and Harmani SB 2012 *J. Sains Mtri Ind.* 14 205
[13] Pramono E, Wicaksono A, Priyadi and Wulansari J 2012 *J. Physics* 2 157
[14] Handayani S, Juniust H and Dewi E L 2010 *J. Nanotek Ind.* 1
[15] Namazi H, Fathi F and Heydari A 2012 *Nanoparticles Based on Modified Polysaccharides* (Iran: In Tech)
[16] Dewi E L and Rochmadi 2007 *J. Sains Mtri Ind.* 8
[17] Julian J and Santoso E 2016 *J. Sains and Seni* 5
[18] Smitha B, Sridhar S and Khan A A 2006 *J. of Power Surs.* 159 846
[19] Soontarapa K and Intra U 2006 *Chem. Eng Comm.* 193 855

Acknowledgments

This research was financed by Directorate of Higher Education, Ministry of Technology and Higher Education, for research grant through the Grant Competency Scheme.