Comprehensive behavioral analysis and quantification of brain free amino acids of C57BL/6J congenic mice carrying the 1473G allele in tryptophan hydroxylase-2

Hisatsugu Koshimizu | Nao Hirata | Keizo Takao | Keiko Toyama | Takashi Ichinose | Shigeki Furuya | Tsuyoshi Miyakawa

Abstract

Aim: Tryptophan hydroxylase 2 (Tph2) is a rate-limiting enzyme for the biosynthesis of 5-hydroxytryptamine (5-HT, serotonin). Previous studies have reported that C1473G polymorphism of the murine Tph2 gene leads to decreased 5-HT levels in the brain and abnormal behavioral phenotypes, such as impaired anxiety- and depression-like behaviors. In this study, to confirm the effect of the C1473G polymorphism on mouse phenotypes, we conducted a comprehensive battery of behavioral tests and measured the amounts of brain free amino acids involved in the production of 5-HT.

Methods: We obtained C57BL/6J congenic mice that were homozygous for the 1473G allele of Tph2 (1473G) and subjected them and their wild-type littermates (1473C) to a battery of behavioral tests. Using reverse-phase high-performance liquid chromatography (HPLC), we measured the amounts of free amino acids in the 5-HT and epinephrine synthetic/metabolic pathways in the frontal cortex, hippocampus, striatum, and midbrain.

Results: We failed to detect significant differences between genotypes in depression-like behaviors, anxiety-like behaviors, social behaviors, sensorimotor gaiting, or learning and memory, while 1473G mice exhibited a nominally significant impairment in gait analysis, which failed to reach study-wide significance. In the HPLC analysis, there were no significant differences in the amounts of 5-HT, dopamine, norepinephrine, and epinephrine in the frontal cortex, hippocampus, striatum, and midbrain.

Conclusion: Our findings do not support the idea that congenic C57BL/6J mice carrying the 1473G allele may represent an animal model of mood disorder under normal conditions without stress.

KEYWORDS
5-HT, comprehensive behavioral test battery, depression-like behavior, tryptophan hydroxylase-2
MAIN TEXT

Tryptophan hydroxylase (Tph) is a rate-limiting enzyme in 5-hydroxytryptamine (5-HT, serotonin) biosynthesis, and to date, two isoforms of Tph have been identified in mammals. Tph1 is mainly expressed in the periphery, and Tph2 is preferentially expressed in the brain. Zhang et al. reported that C1473G polymorphism exists in the mouse Tph2 gene, and the mutant mice show decreased expression of the 1473G allele of Tph2 (1473G) and exhibit abnormal behavioral phenotypes, such as impaired anxiety- and depression-like behaviors. In contrast, other groups have failed to detect these abnormal behaviors in 1473G mice. The biological significance of C1473G polymorphism remains controversial. C1473G polymorphism is reported to lead to a proline to arginine substitution and disturbance of 5-HT synthesis. This sequence alteration and the amount of 5-HT differ depending on the mouse line. Some mouse lines, including C57BL/6 and 129X1/SvJ, are homozygous for the 1473C allele (1473C), but other lines, such as BALB/c and DBA/2J, are homozygous for the 1473G allele (Table S1), causing decreased 5-HT synthesis compared to 1473C mice. The objective of the present study was to further investigate the functional significance of C1473G polymorphism in mice.

We prepared congenic C57BL/6J (B6J) mice using a backcrossing breeding strategy. In brief, heterozygous mice were created from hybrids between Balb/c A/Jc1 and B6J strains, which are homozygous for the 1473G and 1473C allele, respectively. After six successive backcrossings of heterozygous mice with the B6J strain, the heterozygous backcrosses were intercrossed to generate congenic B6J mice homozygous for the 1473G and 1473C allele. We subjected those 1473G and 1473C mice to a comprehensive behavioral test battery that included the wire hang, grip strength, rotarod, hot plate, gait analysis, Porsolt forced swim, open field, light/dark transition, and elevated plus maze tests. There were no significant differences between the genotypes in physical characteristics or on the wire hang, grip strength, rotarod, and hot plate tests. In the gait analysis, 1473G mice exhibited nominally significant impairments in the stance width of the hind paws and the step angles of the front paws, but these results failed to reach study-wide significance. None of the indices of the tail suspension and Porsolt forced swim tests (Figure S1) showed significant differences between the genotypes. No genotype-specific differences were observed in the open field (Figure S2), light/dark transition, and elevated plus-maze tests. There were no significant genotype effects in the social interaction, sociability, and social novelty preference tests. In the startle response/PPI tests, 1473G mice displayed normal acoustic startle responses and sensorimotor gating. No obvious differences between the genotypes were detected in the fear conditioning tests (Figure S3).

We next quantified the amount of free amino acids that are involved in the 5-HT metabolic pathway (eg, 5-HT and 5-hydroxyindole-3-acetic acid (5-HIAA)) in the prefrontal cortex, hippocampus, striatum, and midbrain using reverse-phase high-performance liquid chromatography (HPLC), as previously described. We also measured the amounts of free amino acids in the epinephrine (Epi) synthetic/metabolic pathway (eg, dopamine (DA), 3-methoxytyramine (3-MT), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), norepinephrine (NE), normetanephrine (NM), 3,4-dihydroxy-3-methoxyphenylglycol (MHPG), and Epi). The quantitative results are summarized in Table S2. The amounts of free amino acids in the hippocampus, striatum, and midbrain did not significantly differ between the genotypes, while there was a non-significant tendency toward decreased 5-HT in the prefrontal cortex in 1473G mice.

There are inconsistencies in the biochemical phenotype of the Tph2 1473G allele-carrying mice among the present and previous studies. The present and a previous study failed to detect significant changes in the free amino acid (5-HT, 5-HTP, and 5-HIAA) level in the frontal cortex, hippocampus, striatum, or midbrain, while a few previous studies have reported significant genotype effects in some of these areas. The inconsistent results may be due to differences in factors such as genetic background, flanking genes, age, exposure of the animals to stress, and/or experimental environments/conditions.

In conclusion, we failed to detect major differences in depression- and anxiety-like behaviors or levels of brain free amino acids in 1473G mice on a C57BL/6J genetic background, while 1473G mice exhibited nominally significant impairments in the gait analysis, which failed to reach study-wide significance. Under conditions without stress or drug administration, C57BL/6J mice homozygous for the Tph2 1473G allele displayed no significant behavioral or physiological phenotype, indicating that these congenic mice may not represent an animal model of mood disorder.

ACKNOWLEDGMENTS

This research was supported by a Grant-in-Aid for Scientific Research on Priority Areas (200163013), a Grant-in-Aid for Scientific Research (B) (21300121), a Grant-in-Aid for Scientific Research (C) (25430077), a Grant-in-Aid for Scientific Research on Innovative Areas (Comprehensive Brain Science Network) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, a grant from the Institute for Bioinformatics Research and
Test	1473G (n = 7)	1473C (n = 7)	Genotype effect
Physical characteristics			
Weight (g)	31.743 (±0.566)	31.786 (±0.635)	\(F_{1,12} = 0.003\) 0.9606
Body temperature (°C)	37.100 (±0.298)	37.299 (±0.252)	\(F_{1,12} = 0.109\) 0.7474
Neurological screen and neuromuscular strength test			
Grip strength (N)	0.893 (±0.037)	0.929 (±0.054)	\(F_{1,12} = 0.295\) 0.5968
Wire hang (% falling within 60 s)	48.143 (±5.230)	52.000 (±6.904)	\(F_{1,12} = 0.198\) 0.664
Rotarod test			
Latency to fall (s)	148.143 (±17.358)	179.452 (±11.009)	\(F_{1,12} = 2.32\) 0.1536
Hot plate test			
Latency (s)	3.014 (±0.122)	3.457 (±0.473)	\(F_{1,12} = 0.822\) 0.3826
Gait analysis			
Stance width (cm)			
Front	1.421 (±0.041)	1.357 (±0.048)	\(F_{1,12} = 1.043\) 0.3273
Hind	2.029 (±0.036)	1.900 (±0.038)	\(F_{1,12} = 6.075\) 0.0298
Step angles (°)			
Front	68.914 (±2.171)	59.900 (±3.393)	\(F_{1,12} = 5.008\) 0.045
Hind	49.850 (±3.301)	60.343 (±5.215)	\(F_{1,12} = 2.891\) 0.1148
Tail suspension test			
Immobility (%)	28.901 (±7.352)	14.549 (±2.925)	\(F_{1,12} = 3.29\) 0.0948
Porsolt forced swim test			
Immobility (%)			
Day 1	57.28 (±3.447)	56.667 (±2.559)	\(F_{1,12} = 0.02\) 0.8889
Day 2	62.839 (±5.179)	58.45 (±5.755)	\(F_{1,12} = 0.321\) 0.5813
Distance traveled (cm)			
Day 1	83.629 (±3.431)	87.823 (±3.525)	\(F_{1,12} = 0.727\) 0.4106
Day 2	68.351 (±4.33)	83.61 (±6.752)	\(F_{1,12} = 3.619\) 0.0814
Open field test			
Distance traveled (cm)	571.798 (±83.344)	623.577 (±55.978)	\(F_{1,12} = 0.266\) 0.6154
Number of vertical activities	61.905 (±7.868)	72.232 (±5.937)	\(F_{1,12} = 1.098\) 0.3154
Center time (s)	52.904 (±10.598)	41.015 (±5.684)	\(F_{1,12} = 0.977\) 0.3424
Stereotypic counts	653.768 (±48.016)	621.137 (±66.817)	\(F_{1,12} = 0.157\) 0.6986
Light/dark transition test			
Stay time in light compartment (s)	193.929 (±18.927)	190.143 (±14.931)	\(F_{1,12} = 0.025\) 0.8778
Number of transitions	20.571 (±3.108)	21.429 (±1.837)	\(F_{1,12} = 0.056\) 0.8163
Elevated plus-maze test			
Open arms entries per total entries (%)	30.292 (±3.696)	31.19 (±4.417)	\(F_{1,12} = 0.024\) 0.8787
Stay time ratio on open arms (%)	13.667 (±3.321)	13.69 (±2.641)	\(F_{1,12} < 0.0001\) 0.9956
Social interaction test			
Total duration of contact (s)	75.333 (±5.487)	69.333 (±8.098)	\(F_{1,4} = 0.376\) 0.5728
Number of contacts	55.667 (±5.511)	56.333 (±2.028)	\(F_{1,4} = 0.006\) 0.9429
Total duration of active contacts (s)	17.567 (±2.969)	17.567 (±0.696)	\(F_{1,4} = 0\) 1
Mean duration per contacts	1.433 (±0.145)	1.233 (±0.133)	\(F_{1,4} = 1.029\) 0.3679
Distance traveled (cm)	3847.5 (±268.099)	430.667 (±317.643)	\(F_{1,4} = 1.968\) 0.2333

(Continues)
Development (BIRD) of the Japan Science and Technology Agency (JST).

CONFLICT OF INTERESTS

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflict of interests.

AUTHORS’ CONTRIBUTIONS

TM was responsible for the original conception and overall design of the research. KTa and KTo established the congenic mice and performed the comprehensive behavioral test battery. TI and SF conducted the quantification of the amino acids. HK, NH, KTa, KTo, TI, SF, and TM analyzed the data. HK, NH, and TM wrote the manuscript. All authors read and approved the final manuscript.

DATA REPOSITORY

Raw data on the behavioral tests and the information about each mouse are accessible on the public database "Mouse Phenotype Database" (http://www.mouse-phenotype.org/).

ANIMAL STUDIES

All behavioral testing procedures were approved by the Institutional Animal Care and Use Committee of Graduate School of Medicine of Kyoto University and Fujita Health University.

ORCID

Hisatsugu Koshimizu http://orcid.org/0000-0002-8619-6678

Nao Hirata http://orcid.org/0000-0002-2236-6754

Keizo Takao http://orcid.org/0000-0002-4734-3583

Tsuyoshi Miyakawa http://orcid.org/0000-0003-0137-8200

REFERENCES

1. Grenett HE, Ledley FD, Reed LL, Woo SL. Full-length cDNA for rabbit tryptophan hydroxylase: functional domains and evolution of aromatic amino acid hydroxylases. Proc Natl Acad Sci USA. 1987; 84(16):5530–4.
2. Walther DJ, Peter J-U, Bashammakh S, et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science. 2003;299(5603):76.
3. Zhang X, Beaulieu J-M, Sotnikova TD, Gainetdinov RR, Caron MG. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science. 2004;305(5681):217.
4. Berger SM, Weber T, Perreau-Lenz S, et al. A functional Tph2 C1473G polymorphism causes an anxiety phenotype via compensatory changes in the serotonergic system. Neuropsychopharmacology. 2012;37(9):1986–98.

5. Jiao J, Nitzke AM, Doukas DG, Seiglie MP, Dulawa SC. Antidepressant response to chronic citalopram treatment in eight inbred mouse strains. Psychopharmacology. 2011;213(2–3):509–20.

6. Tenner K, Qadri F, Bert B, Voigt J-P, Bader M. The mTPH2 C1473G single nucleotide polymorphism is not responsible for behavioural differences between mouse strains. Neurosci Lett. 2008;431(1):21–5.

7. Osipova DV, Kulikov AV, Popova NK. C1473G polymorphism in mouse tph2 gene is linked to tryptophan hydroxylase-2 activity in the brain, intermale aggression, and depressive-like behavior in the forced swim test. J Neurosci Res. 2009;87(5):1168–74.

8. Siesser WB, Zhang X, Jacobsen JPR, Sotnikova TD, Gainetdinov RR, Caron MG. Tryptophan hydroxylase 2 genotype determines brain serotonin synthesis but not tissue content in C57Bl/6 and BALB/c congenic mice. Neurosci Lett. 2010;481(1):6–11.

9. Bazhenova EY, Bazovkina DV, Kulikova EA, et al. C1473G polymorphism in mouse tryptophan hydroxylase-2 gene in the regulation of the reaction to emotional stress. Neurosci Lett. 2017;640:105–10.

10. Mosienko V, Matthes S, Hirth N, et al. Adaptive changes in serotonin metabolism preserve normal behavior in mice with reduced TPH2 activity. Neuropsycharmacology. 2014;85:73–80.

11. Isles AR, Hathway GJ, Humby T, de la Riva C, Wilkinson LS. An mTph2 SNP gives rise to alterations in extracellular 5-HT levels, but not in performance on a delayed-reinforcement task. Eur J Neurosci. 2005;22(4):997–1000.

12. Osipova DV, Kulikov AV, Mekada K, et al. Distribution of the C1473G polymorphism in tryptophan hydroxylase-2 gene in laboratory and wild mice. Genes Brain Behav. 2010;9(5):537–43.

13. Shoji H, Irino Y, Yoshida M, Miyakawa T. Behavioral effects of long-term oral administration of aluminum ammonium sulfate in male and female C57BL/6J mice. Neuropsychopharmacol Rep. 2018;38(1):18–36.

14. Hattori S, Takao K, Funakoshi H, Miyakawa T. Comprehensive behavioral analysis of tryptophan 2,3-dioxygenase (Tdo2) knockout mice. Neuropsychopharmacol Rep. 2018;38(2):52–60.

15. Maeta K, Hattori S, Ikutomo J, et al. Comprehensive behavioral analysis of mice deficient in Rapgef2 and Rapgef6, a subfamily of guanine nucleotide exchange factors for Rap small GTPases possessing the Ras/Rap-associating domain. Mol Brain. 2018;11:27.

16. Hirata N, Hattori S, Shoji H, Funakoshi H, Miyakawa T. Comprehensive behavioral analysis of indoleamine 2,3-dioxygenase knockout mice. Neuropsychopharmacol Rep. 2018;38(3):133–44.

17. Esaki K, Takashi K, Ohmori T, Tsukino M, Ohshima T, Furuya S. Soy peptide ingestion increases neuroactive amino acids in the adult brain of wild-type and genetically engineered serine-deficient mice. J Nutr Food Sci. 2011;1:1–6.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Koshimizu H, Hirata N, Takao K, et al. Comprehensive behavioral analysis and quantification of brain free amino acids of C57BL/6J congenic mice carrying the 1473G allele in tryptophan hydroxylase-2. Neuropsychopharmacol Rep. 2019;39:56–60. https://doi.org/10.1002/npr2.12041