GRADED q-SCHUR ALGEBRAS

SUSUMU ARIKI

Abstract. Generalizing recent work of Brundan and Kleshchev, we introduce grading on Dipper-James’ q-Schur algebra, and prove a graded analogue of the Leclerc and Thibon’s conjecture on the decomposition numbers of the q-Schur algebra.

1. Introduction

In [15], Khovanov and Lauda introduced generalization of the degenerate affine nilHecke algebra of type A, in order to categorify $U_{-v}(g)$, the negative half of the quantized enveloping algebra associated with a simply-laced quiver. The algebra is called the Khovanov-Lauda algebra. They also proposed the study of cyclotomic Khovanov-Lauda algebras. Soon after that, Brundan and Kleshchev proved in [4] that the cyclotomic Khovanov-Lauda algebras associated with a cyclic quiver are nothing but block algebras of the cyclotomic Hecke algebras of type $G(m,1,n)$ and, more recently, they proved the graded analogue of an old result of the author of this note [3] in [5]. The aim of this note is to introduce grading on the q-Schur algebra and obtain the graded analogue of the decomposition number conjecture for the q-Schur algebra considered in [23].

The author is grateful to Professor Khovanov and Dr. Lauda for some communication about the content of [15], and to Professor Kleshchev for his comment that their proof in [6] works for Specht modules but it does not apply to the permutation modules. This motivated the author to write this note. He also thanks Dr. Fayers for some communication. The research was carried out during the author’s visit to the Isaac Newton Institute in Cambridge for attending the program Algebraic Lie Theory. He appreciates nice research environment he enjoyed there.

2. Preliminaries I: the Hecke algebra

Let F be a field, $q \in F^\times$ a primitive e^{th} root of unity where $e \geq 2$. The Hecke algebra of type A, which we denote by \mathcal{H}_n, is the F-algebra defined by generators T_1, \ldots, T_{n-1} and relations

$$(T_i - q)(T_i + 1) = 0, \quad T_iT_{i+1}T_i = T_{i+1}TiT_{i+1}, \quad T_iT_j = T_jT_i \text{ (if } j \neq i \pm 1).$$

As the Artin braid relations hold, we have well-defined elements T_w, for $w \in S_n$, and they form an F-basis of \mathcal{H}_n. We also have pairwise commuting

2000 Mathematics Subject Classification. Primary 17B37; Secondary 20C08,05E99.
elements X_1, \ldots, X_n which are defined by $X_1 = 1$, $X_{k+1} = q^{-1}T_kX_kT_k$, for $1 \leq k < n$. They are invertible in \mathcal{H}_n.

The Hecke algebra \mathcal{H}_n has the F-algebra automorphism Ψ of order 2 which is defined by $T_i \mapsto q - 1 - T_i$. It sends T_w to $(-q)^{t(w)}(T_{w^{-1}})^{-1}$, for $w \in S_n$.

The Hecke algebra \mathcal{H}_n also has the anti-F-algebra automorphism of order 2 that fixes the generators T_i. It sends T_w to $T_w^*: = T_{w^{-1}}$, for $w \in S_n$.

Let $I = \mathbb{Z}/e\mathbb{Z}$, and $\mathfrak{i} = (i_1, \ldots, i_n) \in I^n$. We call \mathfrak{i} a residue sequence. The symmetric group S_n acts on I^n by place permutation. That is,

$$w\mathfrak{i} = (i_{w^{-1}(1)}, \ldots, i_{w^{-1}(n)}), \quad \text{for } w \in S_n.$$

We denote by s_k the transposition of k and $k + 1$. Thus,

$$s_k\mathfrak{i} = (i_1, \ldots, i_{k-1}, i_{k+1}, i_k, i_{k+2}, \ldots, i_n).$$

By the Specht module theory, there are primitive central idempotents $e(\mathfrak{i})$ of the F-subalgebra of \mathcal{H}_n generated by X_1, \ldots, X_n. The idempotent $e(\mathfrak{i})$ corresponds to the simultaneous eigenvalue

$$(X_1, \ldots, X_n) \mapsto (q^{i_1}, \ldots, q^{i_n}).$$

Thus, we have $\sum_{\mathfrak{i} \in I^n} e(\mathfrak{i}) = 1$ and $e(\mathfrak{i})e(\mathfrak{j}) = \delta_{\mathfrak{i}, \mathfrak{j}}e(\mathfrak{i})$, for $\mathfrak{i}, \mathfrak{j} \in I^n$. Note that $e(\mathfrak{i})$ may be zero, and it is nonzero only when it comes from the residue sequence of a standard λ-tableau, for some $\lambda \vdash n$\footnote{Recall that if k is located on the a^kth row and the b^kth column of a standard λ-tableau, the residue sequence associated with the tableau is defined by $i_k = -a_k + b_k \pmod e$, for $1 \leq k \leq n$.} In particular, we always have $i_1 = 0 \pmod e$ whenever $e(\mathfrak{i}) \neq 0$.

Brundan and Kleshchev introduced the following elements t_1, \ldots, t_n and $\sigma_1, \ldots, \sigma_{n-1}$ in \cite{Brundan03}. The definition of t_0 is easy to state and it is

$$t_0 = \sum_{\mathfrak{i} \in I^n} (1 - q^{-i_1}X_1)e(\mathfrak{i}).$$

Note that $t_1 = 0$ by the remark above. Then, \cite{Brundan03} Lemma 2.1 implies that t_2, \ldots, t_n are nilpotent\footnote{Dr. Lauda informed the author that he and Alex Hoffnung determined upper bound for the degree of nilpotency for cyclotomic Hecke algebras, and it implies $t_a = 0$, for $1 \leq a \leq e - 1$, in our case.} The definition of $\sigma_1, \ldots, \sigma_{n-1}$ is more involved. They introduce Laurent series $P_k(\mathfrak{i})$ and $Q_k(\mathfrak{i})$ in t_1, \ldots, t_n as follows.

$$P_k(\mathfrak{i}) = \begin{cases} 1 & \text{(if } i_{k+1} = i_k), \\ (1-q)(1-q^{i_k-i_{k+1}}(1-t_k)(1-t_{k+1})^{-1})^{-1} & \text{(if } i_{k+1} \neq i_k), \end{cases}$$

$$Q_k(\mathfrak{i}) = \begin{cases} 1 - q + qt_{k+1} - t_k & \text{(if } i_{k+1} = i_k), \\ q^{i_k} & \text{(if } i_{k+1} = i_k - 1), \\ q^{i_k}(1-t_k) - q^{i_k+1}(1-t_{k+1}) & \text{(if } i_{k+1} = i_k + 1), \\ q^{i_k}(1-t_k) - q^{i_k+1}(1-t_{k+1})^2 & \text{(if } i_{k+1} \neq i_k \pm 1). \end{cases}$$
Then these Laurent series well-define elements in H_n by the nilpotency, and we define

$$
\sigma_k = \sum_{i \in I^n} (T_k + P_k(i))Q_k^{-1}(i)e(i).
$$

The main result of [4] stated in our case is the following. As we will need assume $e \geq 4$ in later sections, we exclude the case $e = 2$ in the following theorem. When $e = 2$, the last two relations in the theorem must be modified. See [4, Main Theorem] for the details. Note that the theorem allows us to view H_n as a \mathbb{Z}-graded F-algebra. We define

$$
deg(e(i)) = 0, \quad \deg(t_a) = 2, \quad \deg(\sigma_k e(i)) = \begin{cases}
-2 \text{ (if } i_k = i_{k+1}), \\
1 \text{ (if } i_k - i_{k+1} = \pm 1), \\
0 \text{ (otherwise).}
\end{cases}
$$

Theorem 2.1. Suppose that $e \geq 3$. Then H_n is defined by three sets of generators

$$
\begin{align*}
&\{e(i), \text{ for } i \in I^n \text{ such that } i_1 = 0, \\
&t_1, t_2, \ldots, t_n, \text{ where } t_1 = 0, \\
&\sigma_1, \ldots, \sigma_{n-1}
\end{align*}
$$

and relations

$$
\begin{align*}
\sum_{i \in I^n} e(i) &= 1, \\
e(i)e(j) &= \delta_{ij}e(i), \\
t_at_b &= t_bl_a, \\
t_ae(i) &= e(i)t_a, \\
\sigma_k e(i) &= e(s_k i)\sigma_k, \\
\sigma_k t_a &= t_a\sigma_k \text{ if } a \neq k, k + 1, \\
\sigma_k t_{k+1} - t_k \sigma_k &= t_{k+1} \sigma_k - \sigma_k t_k = \sum_{i_k = i_{k+1}} e(i), \\
\sigma_k \sigma_l &= \sigma_l \sigma_k \text{ if } l \geq k + 2, \\
\sigma_k^2 &= \sum_{i_k - i_{k+1} \neq 0, \pm 1} e(i) + \sum_{i_k - i_{k+1} = 1} (t_k - t_{k+1})e(i) + \sum_{i_k - i_{k+1} = -1} (t_{k+1} - t_k)e(i), \\
\sigma_k \sigma_{k+1} \sigma_k - \sigma_{k+1} \sigma_k \sigma_{k+1} &= \sum_{i_{k+2} = i_k = i_{k+1} - 1} e(i) - \sum_{i_{k+2} = i_k = i_{k+1} + 1} e(i).
\end{align*}
$$

Example 2.2. Suppose that $e \geq 3$ as above. Define $i_{\pm} = (0, \pm 1) \in I^2$. Then, H_2 has the F-basis $e(i_{\pm})$ and $t_1 = t_2 = \sigma_1 = 0$.

The new generators are called the **Khovanov-Lauda generators**. As the Hecke algebra H_n is a graded F-algebra now, we may consider the category of finite dimensional graded H_n-modules. Here, we require homomorphisms

3In fact, the set of relations stated in [loc. cit], which are the Khovanov-Lauda relations, is slightly weaker, and hence their assertion is slightly stronger: we may deduce $t_1 = 0$ and $e(i) = 0$ whenever $i_1 \neq 0$, from the Khovanov-Lauda relations.
to be degree preserving. We denote this category by $\mathcal{H}_{n}\text{-mod}^\mathbb{Z}$. We denote the obvious forgetful functor by

$$For : \mathcal{H}_{n}\text{-mod}^\mathbb{Z} \to \mathcal{H}_{n}\text{-mod}.$$

Let $A = \oplus_{k \in \mathbb{Z}} A_k$ be a finite dimensional graded F-algebra over a field F. We adopt the following convention throughout the paper.

Definition 2.3. An A-module M is a graded right A-module if it is a \mathbb{Z}-graded vector space

$$M = \bigoplus_{l \in \mathbb{Z}} M_l$$

such that $M_l A_k \subseteq M_{l+k}$.

An A-module M is a graded left A-module if it is a \mathbb{Z}-graded vector space

$$M = \bigoplus_{l \in \mathbb{Z}} M_l$$

such that $A_k M_l \subseteq M_{l-k}$.

For right and left modules, the shift functor in $A\text{-mod}^\mathbb{Z}$ is defined by $M[1]_k = M_{k+1}$, for $k \in \mathbb{Z}$.

For a graded left A-module M, we denote $M^\circ = \bigoplus_{k \in \mathbb{Z}} (M^\circ)_k$ and $(M^\circ)_k = \text{Hom}_F(M_k, F)$, which is a graded right A-module in the natural way. We call M° the natural dual of M.

The following basic facts on graded algebras will be used frequently in the rest of the paper without further notice.

Theorem 2.4. Let A be a finite dimensional graded F-algebra over a field F, $A\text{-mod}^\mathbb{Z}$ the category of finite dimensional graded right A-modules, and For : $A\text{-mod}^\mathbb{Z} \to A\text{-mod}$ the forgetful functor.

(a) A graded A-module X is indecomposable if and only if For(X) is indecomposable.

(b) Let X and Y be indecomposable. Then For(X) \simeq For(Y) if and only if $X \simeq Y[k]$, for some $k \in \mathbb{Z}$.

Proof. See [13, Theorem 3.2] for (a) and [13, Theorem 4.1] for (b). \qed

We have $e(\bar{i})^* = e(\bar{i})$, $t_a^* = t_a$, but $\sigma_k^* \neq \sigma_k$. However, as we will do later, we may use cellular algebra structure of \mathcal{H}_n to define graded dual Specht modules. For the involution Ψ, we have

$$e(\bar{i}) \mapsto e(-\bar{i}) \text{ and } t_a \mapsto \sum_{\bar{i} \in T^n} (1-t_a)^{-1} e(-\bar{i}),$$

but $\Psi(\sigma_k) \neq \sigma_k$. To remedy this, we define

$$e(\bar{i})' = \Psi(e(\bar{i})), \ t_a' = \Psi(t_a), \ \sigma_k' = \Psi(\sigma_k).$$
Then, we may use these elements as new Khovanov-Lauda generators and make \(\mathcal{H}_n \) into a graded \(F \)-algebra. We denote this graded Hecke algebra by \(\mathcal{H}'_n \). Thus, we have the isomorphism of graded \(F \)-algebras
\[
\Psi : \mathcal{H}_n \cong \mathcal{H}'_n
\]
by \(e(\hat{i}) \mapsto e(\hat{i})', \ t_a \mapsto t'_a, \ \sigma_k \mapsto \sigma'_k \). Later, we will introduce graded Specht modules \(S^\lambda \) for \(\mathcal{H}'_n \) by using this isomorphism.

Remark 2.5. To study the graded module theory for \(\mathcal{H}_n \), we have to introduce another anti-involution as follows.

Definition 2.6. The anti-\(F \)-algebra automorphism of \(\mathcal{H}_n \) of order 2 which fixes the Khovanov-Lauda generators is denoted by \(h \mapsto h^\sharp \). Thus,
\[
e(\hat{i})^\sharp = e(\hat{i}), \ t_a^\sharp = t_a, \ \sigma_k^\sharp = \sigma_k
\]
and \((h_1 h_2)^\sharp = h_2^\sharp h_1^\sharp \), for \(h_1, h_2 \in \mathcal{H}_n \).

Definition 2.7. Let \(M = \bigoplus_{k \in \mathbb{Z}} M_k \) be a graded \(\mathcal{H}_n \)-module. Then, the dual of \(M \) is the graded \(\mathcal{H}_n \)-module \(M^\sharp = \bigoplus_{k \in \mathbb{Z}} M^\sharp_k \), where
\[
M^\sharp_k = \bigoplus_{i \in \mathbb{Z}} (M^\sharp)_i^k \quad \text{and} \quad (M^\sharp)_k = \text{Hom}_F(M_{-k}, F),
\]
such that the module structure is given by \(fh(m) = f(mh^\sharp) \), for \(f \in M^\sharp \), \(h \in \mathcal{H}_n \) and \(m \in M \).

Hence, if a matrix representation of \(M \) in the Khovanov-Lauda generators is given by \(e(\hat{i}) \mapsto \hat{e}(\hat{i}), \ t_a \mapsto \hat{t}_a, \ \sigma_k \mapsto \hat{\sigma}_k \), then the transposed matrices
\[
e(\hat{i}) \mapsto \hat{t}_a \hat{e}(\hat{i}), \ t_a \mapsto \hat{t}_a, \ \sigma_k \mapsto \hat{\sigma}_k
\]
gives a matrix representation of \(M^\sharp \). Thus, we have
\[
T_k \mapsto \sum (\hat{\sigma}_k \hat{Q}_k(\hat{i}) - \hat{Q}_k(\hat{i}) \hat{t}_a)
\]
where \(\hat{P}_k(\hat{i}) \) and \(\hat{Q}_k(\hat{i}) \) are obtained from \(P_k(\hat{i}) \) and \(Q_k(\hat{i}) \) by replacing \(t_a \) with \(\hat{t}_a \).

Remark 2.8. Introduce a filtration
\[
0 = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_{n(n-1)/2} = \mathcal{H}_n
\]
on \(\mathcal{H}_n \) by declaring that \(F_\ell \), for \(0 \leq \ell \leq n(n-1)/2 \), is the \(F \)-span of the products of generators \(e(\hat{i}), \ t_a \) and \(\sigma_k \) such that \(\sigma_1, \ldots, \sigma_{n-1} \) appear in the product at most \(\ell \) times in total. Define \(\text{gr}^F \mathcal{H}_n \) to be the associated graded \(F \)-algebra. We denote the image of \(\sigma_k \) in \(\text{gr}^F \mathcal{H}_n \) by \(\hat{\sigma}_k \). Then, we may well-define \(\hat{\sigma}_w \), for \(w \in S_n \), in \(\text{gr}^F \mathcal{H}_n \) because the Artin braid relations hold in \(\text{gr}^F \mathcal{H}_n \). We remark that \(\{ \hat{\sigma}_w \mid w \in S_n \} \) is not an \(F \)-basis of \(\text{gr}^F \mathcal{H}_n \). We can only say that the elements \(t_1^{a_1} \cdots t_n^{a_n} e(\hat{i})\hat{\sigma}_w \), for \(a_1, \ldots, a_n \geq 0, \ \hat{i} \in I^n \) and \(w \in S_n \), span \(\text{gr}^F \mathcal{H}_n \). Many of them are zero. This fact will cause a problem when we try to make the permutation modules of \(\mathcal{H}_n \) into graded
modules, and we will appeal to a result by Hemmer and Nakano [14] to bypass this difficulty.

For each \(w \in S_n \), we choose a reduced expression \(w = s_{i_1} \cdots s_{i_{\ell(w)}} \) and define \(\sigma_w = \sigma_{i_1} \cdots \sigma_{i_{\ell(w)}} \), which is a lift of \(\bar{\sigma}_w \in \text{gr}^F \mathcal{H}_n \). Then, we have

\[
\mathcal{H}_n = \sum_{a_1, \ldots, a_n \geq 0} \sum_{I^\mu} \sum_{w \in S_n} F t_1^{a_1} \cdots t_n^{a_n} e(\bar{\mu}) \sigma_w.
\]

3. Preliminaries II; the \(q \)-Schur algebra

For partitions and compositions we follow standard notation. We denote the conjugate partition of a partition \(\lambda \) by \(\lambda' \).

For a composition \(\mu = (\mu_1, \mu_2, \ldots, \mu_r) \mid n \), we have the Young subgroup \(S_\mu = S_{\mu_1} \times \cdots \times S_{\mu_r} \).

The number \(r \) is denoted by \(\ell(\mu) \) and called the length or depth of \(\mu \). We define \(x_\mu = \sum_{w \in S_\mu} T_w \in \mathcal{H}_n \). The right \(\mathcal{H}_n \)-module \(M_\mu = x_\mu \mathcal{H}_n \) is called the permutation module associated with \(\mu \). Then, the \(q \)-Schur algebra is defined by

\[
S_{d,n} = \text{End}_{\mathcal{H}_n}(\oplus_{|\mu|=n, \ell(\mu) \leq d} M_\mu).
\]

Recall that, by applying the involution \(\Psi \) to \(x_\mu \), we obtain

\[
y_\mu = \sum_{w \in S_\mu} (-q)^{-\ell(w)} T_w,
\]

up to a nonzero scalar. The right \(\mathcal{H}_n \)-module \(N_\mu = y_\mu \mathcal{H}_n \) is called the signed permutation module associated with \(\mu \).

By twisting the action on \(M_\mu \) by \(\Psi \), we obtain the \(\mathcal{H}_n \)-module \((M_\mu)^\Psi \). Then \((M_\mu)^\Psi \simeq N_\mu \), so that we may consider that \(M_\mu \) and \(N_\mu \) have the same underlying vector space. Observe that \(\varphi \in \text{Hom}_{\mathcal{H}_n}(M_\nu, M_\mu) \) belongs to \(\text{Hom}_{\mathcal{H}_n}(M_\nu, M_\mu) \) if and only if it belongs to \(\text{Hom}_{\mathcal{H}_n}(N_\nu, N_\mu) \). Thus,

\[
\text{Hom}_{\mathcal{H}_n}(M_\nu, M_\mu) = \text{Hom}_{\mathcal{H}_n}(N_\nu, N_\mu),
\]

and we have \(S_{d,n} = \text{End}_{\mathcal{H}_n}(\oplus_{|\mu|=n, \ell(\mu) \leq d} N_\mu) \) as in [8, Theorem 2.24].

The \(q \)-Schur algebra is a factor algebra of the quantum algebra \(U_q(\mathfrak{gl}_d) \) and the isomorphism classes of simple \(S_{d,n} \)-modules are given by highest weight theory. We denote by \(L(\lambda) \) the simple \(S_{d,n} \)-module associated with a highest weight, or a partition, \(\lambda \vdash n \).

Recall also that the category \(S_{d,n} \)-mod is a highest weight category whose standard and costandard modules are given by Weyl modules \(W(\lambda) \) and Schur modules \(H^0(\lambda) \), respectively. The category has tilting modules \(T(\lambda) \), which is the indecomposable \(S_{d,n} \)-module with the property that

1. there is a monomorphism \(W(\lambda) \rightarrow T(\lambda) \) in \(S_{d,n} \)-mod such that the cokernel has Weyl filtration which uses only \(W(\mu) \), for \(\mu \triangleleft \lambda \),
(2) there is an epimorphism $T(\lambda) \to H^0(\lambda)$ in $S_{d,n}$-mod such that the kernel has Schur filtration\footnote{It is usually called good filtration.} which uses only $H^0(\mu)$, for $\mu \prec \lambda$.

We suppose $d \geq n$ throughout the paper. Thus, we have the projector

$$e : \bigoplus_{\mu \vdash n, \ell(\mu) \leq d} M^\mu \to M^{(1^n)}.$$

It is an idempotent in $S_{d,n}$. Then, we have $\mathcal{H}_n \simeq eS_{d,n}e$. The isomorphism is given by sending $h \in \mathcal{H}_n$ to $\varphi_h \in \text{Hom}_{\mathcal{H}_n}(M^{(1^n)}, M^{(1^n)}) = eS_{d,n}e$, for $h \in \mathcal{H}_n$, where φ_h is defined by $m \mapsto hm$, for $m \in M^{(1^n)}$. For our purposes, we should view this Hecke algebra as \mathcal{H}_n' without grading.

The functor $S_{d,n}$-mod $\to \mathcal{H}_n'$-mod given by $M \mapsto Me = M \otimes_{S_{d,n}} S_{d,n}e$ is called the Schur functor.

Remark 3.1. If we view $e \in S_{d,n}$ as the projector

$$e : \bigoplus_{\mu \vdash n, \ell(\mu) \leq d} N^\mu \to N^{(1^n)},$$

we obtain the similar isomorphism $\mathcal{H}_n \simeq eS_{d,n}e$, which sends $h \in \mathcal{H}_n$ to $\varphi_h \in \text{Hom}_{\mathcal{H}_n}(N^{(1^n)}, N^{(1^n)}) = eS_{d,n}e$, for $h \in \mathcal{H}_n$. We view this Hecke algebra as \mathcal{H}_n without grading. Then Ψ gives the isomorphism $\mathcal{H}_n \simeq eS_{d,n}e \simeq \mathcal{H}_n'$.

The $(S_{d,n}, \mathcal{H}_n)$-bimodule structure and $(S_{d,n}, \mathcal{H}_n')$-bimodule structure on $S_{d,n}e$ give two Schur functors $S_{d,n}$-mod $\to \mathcal{H}_n$-mod and $S_{d,n}$-mod $\to \mathcal{H}_n'$-mod.

The image of the first Schur functor is obtained from the image of the second by twisting the action by Ψ.

Remark 3.2. The q-Schur algebra has the anti-involution \ast which restricts to the \ast on the Hecke algebra, and we may consider the dual $M^\ast = \text{Hom}_F(M, F)$ of a $S_{d,n}$-module M. The Schur functor commutes with taking duals [9] p.83 Remarks], and $H^0(\lambda) \simeq W(\lambda)^\ast$, for $\lambda \vdash n$, by [9] Proposition 4.1.6.

Remark 3.3. Let $P(\lambda)$ and $I(\lambda)$ be the projective cover and the injective envelope of a simple $S_{d,n}$-module $L(\lambda)$, for $\lambda \vdash n$, respectively. Then, $P(\lambda)^\ast \simeq I(\lambda)$ [9, 4.3], and both $P(\lambda)$ and $I(\lambda)$ map to a self-dual \mathcal{H}_n-module called the Young module associated with λ. Later, we will introduce graded Young modules $\tilde{Y}^{\gamma\lambda}$ for \mathcal{H}_n' and graded signed Young modules Y^{λ} for \mathcal{H}_n. If we forget the grading, we have $\tilde{Y}^{\gamma\lambda} \simeq (Y^{\lambda})^\Psi$. They are self-dual. That is, $(\tilde{Y}^{\gamma\lambda})^\ast \simeq \tilde{Y}^{\gamma\lambda}$ and $(Y^{\lambda})^\ast \simeq Y^{\lambda}$ if we forget the grading.

Let t^μ be the canonical tableau associated with $\mu \vdash n$: t^μ is the row standard μ-tableau such that $1, \ldots, \mu_1$ are in the first row, $\mu_1 + 1, \ldots, \mu_1 + \mu_2$ are in the second row, etc. Then, a row standard tableau t defines an element $d(t) \in S_n$: if k is the (a_k, b_k)-entry of t^μ then $d(t)(k)$ is the (a_k, b_k)-entry of t, for $1 \leq k \leq n$. The element $d(t)$ is the distinguished coset representative in $S_\mu d(t)$.
Definition 3.4. Let s and t be row standard μ-tableaux. Then we define

$$m_{st} = T^*_d(s) \mu_T d(t).$$

Murphy showed that these elements for standard μ-tableaux s and t for partitions $\mu \vdash n$ form a cellular basis of H_n \[19, \text{3.20}\]. Later, we will introduce graded dual Specht modules based on this fact.

Recall that a tableau of weight ν is a tableau with ν_1 1’s, ν_2 2’s, etc. as entries.

Definition 3.5. Let $\lambda \vdash n$ and $\nu \models n$. For a semistandard λ-tableau S of weight ν, we define $\nu^{-1}(S)$ to be the set of standard λ-tableaux s such that if we replace 1, \ldots, ν_1 by 1, $\nu_1 + 1$, \ldots, $\nu_1 + \nu_2$ by 2, etc. then we obtain S.

Definition 3.6. Let $\lambda \vdash n$, and $\mu \models n$, $\nu \models n$. For a semistandard λ-tableau S of weight μ and a semistandard λ-tableau T of weight ν, we define

$$m_{ST} = \sum_{s \in \mu^{-1}(S)} \sum_{t \in \nu^{-1}(T)} m_{st}.$$

In particular, if T is a standard λ-tableau t we have the element $m_{S,t}$.

Theorem 3.7. The elements m_{ST}, for semistandard λ-tableaux S of weight μ, where λ runs through all partitions of n, form a basis of M_μ.

See \[19, \text{Theorem 4.9}\] for the proof. Next we recall two ways to give a basis of $\text{Hom}_{H_n}(M_\nu, M_\mu)$. See \[19, \text{Theorem 4.7}\] and \[19, \text{Theorem 4.13}\]. The latter gives a cellular basis of $S_{d,n}$. Later, we will introduce graded Schur modules based on this fact.

Theorem 3.8. For distinguished coset representatives $d \in S_\mu \backslash S_n / S_\nu$, define $\varphi^d_{\mu \nu} \in \text{Hom}_{H_n}(M_\nu, M_\mu)$ by $x_\nu \mapsto \sum_{w \in S_d \nu} T_w$. Then they form a basis of $\text{Hom}_{H_n}(M_\nu, M_\mu)$.

Theorem 3.9. Define $\varphi_{ST} \in \text{Hom}_{H_n}(M_\nu, M_\mu)$ by $x_\nu \mapsto m_{ST}$. Then these elements, where λ runs through all partitions of n, form a basis of $\text{Hom}_{H_n}(M_\nu, M_\mu)$.

We want to make the q-Schur algebra into a graded F-algebra. As m_{ST} form a basis of M_μ by Theorem 3.7, it is natural to expect that replacing $T_d(t)$ with $\sigma_d(t)$ in the definition of m_{ST}, for row standard μ-tableaux t, would give a homogeneous basis of M_μ, which then would allow us to grade M_μ and $S_{d,n}$. However, this is not the case even in the H_2 case, as $\sigma_1 = 0$ there. H_2 has $e(\underline{1})$ as a basis, so that we have to consider a basis of M_μ obtained by not only using σ_w but also using other Khovanov-Lauda generators. This is not easy to control in general.

Example 3.10. Let $\underline{1}$ be as in Example 2.2. Then, the basis elements $e(\underline{1})$ act on permutation modules as follows.

$$m_{(2)} e(\underline{1}) = m_{(2)}, \quad m_{(2)} e(\underline{-}) = 0,$$
and
\[m_{(1^2)}(\xi_+^k) = \frac{1}{q+1} m_{(1^2)}, \quad m_{(1^2)}(\xi_-^k) = m_{(1^2)} - \frac{1}{q+1} m_{(2)}. \]

A right approach is to grade signed Young modules. Then, we may grade the signed permutation modules \(N^\mu \) by using decomposition into direct sum of signed Young modules, so that we have grading on \(S_{d,n} \).

Before proceeding further, we recall the main result of [6]. It says that the first idea which failed for the permutation modules \(M^\mu \) works for Specht modules \(S^\lambda \), and we obtain graded Specht modules. The difference from the permutation modules is the fact that \(S^\lambda \) is generated by the element \(z_\lambda \), whose definition will be given below, and that \(z_\lambda \) is a simultaneous eigenvector of \(X_1, \ldots, X_n \).

Let \(N^\triangleright \) be the \(F \)-span of the elements \(m_{st} \) where \(s \) and \(t \) are standard \(\mu \)-tableaux for some \(\mu \triangleright \lambda \). It is well-known that \(N^\triangleright \) is a two-sided ideal of \(H_n \). Define the element \(z_\lambda \) by
\[z_\lambda = x_\lambda + N^\triangleright \in H_n / N^\triangleright. \]

The Specht module associated with \(\lambda \) is the right \(H_n \)-module \(S^\lambda = z_\lambda H_n \). We also denote it by \(S^\lambda_r \) when we stress that it is a right module. As we already said, \(z_\lambda \) is a simultaneous eigenvector of \(X_1, \ldots, X_n \), which implies that \(S^\lambda = \sum_{w \in S_n} F z_\lambda \sigma_w \).

Remark 3.11. Note that the Dipper-James' Specht module in [7], which is identified with Donkin's Specht module \(Sp(\lambda) \) in [9] Proposition 4.5.8, is \((S^\lambda)^\Psi \), which is the dual \((S^\lambda)^* \) of \(S^\lambda \) by [9] Proposition 4.5.9]. If \(\lambda \) is \(e \)-restricted then \(D^\lambda = S^\lambda / \text{Rad} S^\lambda \) is the simple \(H_n \)-module which is the image of \(L(\lambda) \) under the Schur functor. We call the Dipper-James' Specht modules dual Specht modules.

We consider the graded Hecke algebra \(H_n \) and introduce graded Specht modules for \(H_n \).

We already know that \(m_t = z_\lambda T_d(t) \), for standard \(\lambda \)-tableaux \(t \), form a basis of the Specht module. We fix a reduced expression for each \(w \in S_n \), and define
\[v_t = z_\lambda \sigma_d(t). \]

For a standard tableau \(t \), denote by \(x_k \), for \(1 \leq k \leq n \), the node occupied with \(k \), and \(\lambda_t(k) \) the partition which consists of \(x_1, \ldots, x_k \). We view \(x_k \) as a removable node of \(\lambda_t(k) \). We define \(N^b_t(k) \) to be the number of addable \(\text{res}(x_k) \)-nodes of \(\lambda_t(k) \) which is strictly below \(x_k \) minus the number of removable \(\text{res}(x_k) \)-nodes of \(\lambda_t(k) \) which is strictly below \(x_k \), for \(1 \leq k \leq n \).

Then we declare that \(v_t \) is homogenous of degree
\[\deg(v_t) = \sum_{k=1}^n N^b_t(k). \]

The homogeneous basis depends on the choice of reduced expressions of \(d(t) \), but the grading on the Specht module defined by the grading of the
homogeneous basis does not. This grading is compatible with the grading on H_n. Hence, the Specht modules are made into graded H_n-modules. See [6, Theorem 4.10] for the details of these statements.

Definition 3.12. We denote by S^λ the graded H_n-module defined above and call it the **graded Specht module** for H_n associated with $\lambda \vdash n$.

Next we introduce graded dual Specht modules. To do this, first we work with left modules instead of right modules and define the graded Specht module S_l^λ for H_n in the same way. The fact that the Murphy basis m_{st} form a cellular basis with respect to the anti-involution \ast implies that the dual Specht module $(S^\lambda)^\ast$ is isomorphic to the right module $(S_l^\lambda)^\circ$ when we ignore grading. Hence, it is natural to define as follows.

Definition 3.13. Let S_l^λ be the left graded Specht module for H_n. Then we define the **graded dual Specht module** \tilde{S}^λ, for $\lambda \vdash n$, by

$$\tilde{S}^\lambda = (S_l^\lambda)^\circ \in H_n^- \text{mod } \mathbb{Z}.$$

Remark 3.14. Let $v_t = z_\lambda \sigma_{d(t)}$ be the basis of S^λ. For each basis element v_t, we define

$$\tilde{v}_t = (\sigma_{d(t)})^d z_\lambda.$$

Then the dual basis of \tilde{v}_t form a basis of \tilde{S}^λ. The representing matrix of σ_k on S^λ with respect to the basis is not given by simply transposing the representing matrix of σ_k on S^λ with respect to the basis v_t. If we transpose the representing matrices of the Khovanov-Lauda generators, we obtain $(S^\lambda)^t$ instead of \tilde{S}^λ.

Next we introduce graded Specht modules for H_n'.

Definition 3.15. We define the **graded Specht module** S'^λ, for $\lambda \vdash n$, by

$$S'^\lambda = (\tilde{S}^\lambda)^\Psi \in H'_n \text{mod } \mathbb{Z}.$$

As we are given graded Specht modules S^λ, our next task is to grade signed Young modules for H_n by using them as building blocks. In fact, we first work with left modules and construct left graded signed Young modules Y_l^λ by using S_l^λ. Then we define graded signed Young modules for H_n. To do this, we must assume that $e \geq 4$. Hence,

from now on, we assume that $e \geq 4$ and $d \geq n$.

In [14, 4.3], the authors explain how to construct Young modules in the way similar to construction of tilting modules for quasi-hereditary algebras. As the Specht modules they use are dual Specht modules in our notation,

5Consider the matrix representation of S^λ with respect to the basis $z_\lambda T_{d(t)}$ and apply \ast to find that the representing matrix of T_i on S^λ with respect to the basis $T_{d(t)}^\ast z_\lambda$ is the transpose of the representing matrix of T_i on S^λ, which is the representing matrix of T_i on $(S^\lambda)^\ast$ as well as $(S^\lambda)^\circ$.

we apply the involution Ψ everywhere and transpose partitions everywhere in [loc. cit]. Note that, by the natural transformation

$$\text{Hom}(\text{For}(S_\lambda^l), \text{For}(-)) \simeq \bigoplus_{k \in \mathbb{Z}} \text{Hom}(S_\lambda^l[k], -),$$

we have $\text{Ext}^1(\text{For}(S_\lambda^l), \text{For}(-)) \simeq \oplus_{k \in \mathbb{Z}} \text{Ext}^1(S_\lambda^l[k], -)$.

Let $\lambda[0] = \lambda$ and $W_0 = S_\lambda^l$. Suppose that we have already constructed partitions $\lambda[0], \ldots, \lambda[s]$ and graded \mathcal{H}_n-modules W_0, \ldots, W_s. Then we choose $\lambda[s+1]$ maximal with respect to the dominance order such that

$$a_{s+1} := \sum_{k \in \mathbb{Z}} a_{s+1}[k] > 0,$$

where $a_{s+1}[k] = \dim_F \text{Ext}^1(S_\lambda^{[s+1]}[l], W_s)$.

Then we define W_{s+1} by the corresponding short exact sequence

$$0 \to W_s \to W_{s+1} \to \bigoplus_{k \in \mathbb{Z}} (S_\lambda^{[s+1]}[l])^{\oplus a_{s+1}[k]} \to 0.$$

Note that $\lambda^{[s+1]} \triangleleft \lambda^{[t]}$, for some $t \leq s$. Otherwise, $\text{Ext}^1(S_\lambda^{[s+1]}[l], S_\lambda^{[t]}[l]) = 0$, for all $k \in \mathbb{Z}$ and all $t \leq s$, by [14, Proposition 4.2.1], so that it implied $a_{s+1} = 0$. As the poset of partitions $\lambda \vdash n$ is finite, the process must terminate after finitely many steps. We denote the resulting module W_N, for the terminal N, by Y_λ^l. Note that we have $\text{Ext}^1(S_\mu[l], Y_\lambda^l) = 0$, for all $k \in \mathbb{Z}$ and for all $\mu \vdash n$.

We call Y_λ^l the left graded signed Young module for \mathcal{H}_n associated with λ. Then we define as follows.

Definition 3.16. The graded signed Young module for \mathcal{H}_n is defined by

$$Y_\lambda = (Y_\lambda^l)^\circ.$$

This is justified by the self-duality of the signed Young modules in the non-graded case and the following result, which follows from [14, Theorem 4.6.2].

Proposition 3.17. $\text{For}(Y_\lambda)$ is the signed Young module which is the image of the tilting $S_{d,n}$-module $T(\lambda)$ under the Schur functor with respect to the $(\mathcal{H}_n, S_{d,n})$-bimodule structure.

Next we introduce graded Young modules for \mathcal{H}_n'.

Definition 3.18. The graded Young module for \mathcal{H}_n' is defined by

$$\tilde{Y}_\nu^\lambda = (Y_\nu^\lambda)^\Psi.$$

The following is clear by the relationship between Young modules and the signed Young modules.

Proposition 3.19. $\text{For}(\tilde{Y}_\nu^\lambda)$ is the Young module which is the image of the indecomposable projective $S_{d,n}$-module $P(\lambda)$ under the Schur functor with respect to the $(\mathcal{H}_n', S_{d,n})$-bimodule structure.
We are ready to grade signed permutation modules for \mathcal{H}_n. Recall that the signed Young modules $\text{For}(Y^\lambda)$, for $\lambda \vdash n$, form a complete set of the isomorphism classes of indecomposable summands of $\bigoplus_{\mu \vdash n, \ell(\mu) \leq d} N^\mu$, by [9, 4.4]. Write N^μ as a direct sum of $\text{For}(Y^\lambda)$'s, where only λ with $\lambda \supseteq \mu'$ can appear by [9, 4.4]. By replacing $\text{For}(Y^\lambda)$ with Y^λ, we obtain the graded signed permutation module, which we also denote by N^μ. We have proved the following theorem.

Theorem 3.20. Suppose that $e \geq 4$. Then the q-Schur algebra can be made into a \mathbb{Z}-graded F-algebra.

In fact, we may replace each indecomposable direct summand $\text{For}(Y^\lambda)$ of N^μ with any shift of Y^λ. Different choice of the shifts leads to different grading on $S_{d,n}$. We want that the grading on $S_{d,n}$ is compatible with the grading on \mathcal{H}_n, which we now explain.

Observe that $\text{End}(\mathcal{H}_n) \simeq (\mathcal{H}_n)_0$, the degree zero part of \mathcal{H}_n. We write the identity $1 \in \mathcal{H}_n$ into sum of pairwise orthogonal primitive idempotents in $(\mathcal{H}_n)_0$. Let f be one of the primitive idempotents. Then, $f \mathcal{H}_n \simeq Y^\lambda[k]$, for some $\lambda \vdash n$ and some $k \in \mathbb{Z}$. We shall replace $f \mathcal{H}_n$ with $Y^\lambda[k]$. Namely, we choose the shifts so that $N^{(1^n)} \simeq \mathcal{H}_n$ in \mathcal{H}_n-mod\mathbb{Z}.

Then, we also have $\mathcal{H}'_n \simeq M^{(1^n)} = (N^{(1^n)})^\Psi$ in \mathcal{H}'_n-mod\mathbb{Z}. Hereafter, we fix a choice of the shifts satisfying this condition.

Remark 3.21. Define the graded tensor space by

\[V^{\otimes n} = \bigoplus_{\mu \vdash n, \ell(\mu) \leq d} M^\mu \in \mathcal{H}'_n \text{-mod}\mathbb{Z}. \]

Then we may write

\[S_{d,n} = \bigoplus_{k \in \mathbb{Z}} \text{Hom}(V^{\otimes n}, V^{\otimes n}[k]). \]

As in the Hecke algebra case, we denote the category of finite dimensional graded $S_{d,n}$-modules by $S_{d,n}$-mod\mathbb{Z}.

4. **Graded Schur functors**

Let $e \in S_{d,n}$ be the projector from $\bigoplus_{\mu \vdash n, \ell(\mu) \leq d} N^\mu$ to $N^{(1^n)}$. This is an idempotent and homogeneous of degree 0.

Lemma 4.1. We have the following isomorphism of graded F-algebras.

\[\mathcal{H}_n \simeq \bigoplus_{k \in \mathbb{Z}} \text{Hom}(N^{(1^n)}, N^{(1^n)}[k]) = eS_{d,n}e. \]

Proof. We look at the signed permutation module $N^{(1^n)}$. We already know that if we ignore the grading, then

\[\mathcal{H}_n \simeq eS_{d,n}e = \text{End}_{\mathcal{H}_n}(N^{(1^n)}) \]

and the isomorphism is given by $h \mapsto \varphi_h$, the left multiplication by $h \in \mathcal{H}_n$. As $y^{(1^n)} = 1$, the multiplication by a homogeneous element of degree
k, for $k \in \mathbb{Z}$, gives an endomorphism of degree k. To see this, we write the identity into the sum of pairwise orthogonal primitive idempotents in $(\mathcal{H}_n)_0$ as before. Let f and f' be two of the primitive idempotents. Since $N^{(1^n)} \simeq \mathcal{H}_n$ as graded \mathcal{H}_n-modules, we may consider f and f' as degree zero elements of $N^{(1^n)}$. Let $h \in f' \mathcal{H}_n f$ be homogeneous of degree k. Then $f' h \in (N^{(1^n)})_k$. Thus, $ hf = f'h$ implies that the left multiplication by h gives $ f \mathcal{H}_n \rightarrow f' \mathcal{H}_n[k]$. We have the isomorphism

$$\mathcal{H}_n \simeq \bigoplus_{k \in \mathbb{Z}} \text{Hom}(N^{(1^n)}, N^{(1^n)}[k]) = eS_{d,n}e$$

of graded F-algebras.

As a corollary, we have another isomorphism of graded F-algebras

$$\mathcal{H}_n' \simeq \bigoplus_{k \in \mathbb{Z}} \text{Hom}(M^{(1^n)}, M^{(1^n)})[k] = eS_{d,n}e.$$

Using the $(S_{d,n}, \mathcal{H}_n)$-bimodule structure of $S_{d,n}e$, we define

$$F_1 = - \otimes_{S_{d,n}} S_{d,n}e : \mathcal{H}_n \rightarrow \mathcal{H}_n \mathcal{H}_n.$$

The degree k part of $F_1(M)$, for $M \in \mathcal{H}_n \mathcal{H}_n \mathcal{H}_n$, is $M_k e$. We call the functor F_1 the graded Schur functor of the first kind. The right adjoint functor is defined as follows.

$$G_1 = \bigoplus_{k \in \mathbb{Z}} \text{Hom}(S_{d,n}e[-k], -) : \mathcal{H}_n \mathcal{H}_n \rightarrow \mathcal{H}_n \mathcal{H}_n.$$

Thus, the degree k part of $G_1(M)$ is $\text{Hom}(S_{d,n}e, M[k])$ and $F_1 \circ G_1(M) \simeq M$, for $M \in \mathcal{H}_n \mathcal{H}_n \mathcal{H}_n$.

Next we use the $(S_{d,n}, \mathcal{H}_n')$-bimodule structure to define

$$F_2 = - \otimes_{S_{d,n}} S_{d,n}e : \mathcal{H}_n \rightarrow \mathcal{H}_n' \mathcal{H}_n'$$

and the right adjoint functor

$$G_2 = \bigoplus_{k \in \mathbb{Z}} \text{Hom}(S_{d,n}e[-k], -) : \mathcal{H}_n' \mathcal{H}_n' \rightarrow \mathcal{H}_n \mathcal{H}_n.$$

We call the functor F_2 the graded Schur functor of the second kind. We have $F_2 \circ G_2(M) \simeq M$, for $M \in \mathcal{H}_n' \mathcal{H}_n' \mathcal{H}_n'$.

The following definition is justified by [14, Theorem 3.4.2].

Definition 4.2. We define the graded Weyl module by $W(\lambda) = G_1(S^\lambda)$, and the graded tilting module by $T(\lambda) = G_1(Y^\lambda)$.

Remark 4.3. If we follow the recipe for constructing tilting modules, we obtain certain shift of $T(\lambda)$, and it is rather complicated to determine the shift.

Next we introduce Schur modules. As in the Hecke algebra case, first we work with the left modules instead of right modules and introduce the graded Weyl module $W_l(\lambda)$, for $\lambda \vdash n$, in the same way. Then, as the
semistandard basis defined by m_{ST} form a cellular basis with respect to the anti-involution $*$, the Schur module is isomorphic to $(W_l(\lambda))^\circ$ when we ignore grading. Hence, we define as follows.

Definition 4.4. Let $W_l(\lambda)$ be the left graded Weyl module. Define the graded Schur modules $H^0(\lambda)$, for $\lambda \vdash n$, by

$$H^0(\lambda) = (W_l(\lambda))^\circ.$$

Graded simple modules are defined as follows.

Definition 4.5. Define $D_\lambda = S_\lambda / \text{Rad } S_\lambda$ if λ is e-restricted, and define $L(\lambda) = W(\lambda) / \text{Rad } W(\lambda)$ for all $\lambda \vdash n$.

By [13, Proposition 3.5], $\text{Rad } S_\lambda$ (resp. $\text{Rad } W(\lambda)$) is a graded submodule of S_λ (resp. $W(\lambda)$), so that D_λ and $L(\lambda)$ are graded simple H_n-modules and graded simple $S_{d,n}$-modules, respectively.

We record the following theorem [5, Theorem 5.10]. It says that D_λ is self-dual not only with respect to the usual non-graded anti-involution $*$ in H_n-mod but also with respect to the graded anti-involution \sharp in H_n-mod.

Theorem 4.6. The graded simple H_n-module D_λ is self-dual. Namely, we have $(D_\lambda)^\sharp \simeq D_\lambda$.

We define another sets of graded Weyl modules, graded Schur modules and graded simple modules by

$$W'(\lambda) = G_2(S'\lambda), \; H'^0(\lambda) = (W'_l(\lambda))^\circ, \; L'(\lambda) = W'(\lambda) / \text{Rad } W'(\lambda).$$

Definition 4.7. We denote the projective cover of $L'(\lambda)$ by $P'(\lambda)$.

Lemma 4.8. We have $P'(\lambda) = G_2(\tilde{Y}'_{\lambda})$, for $\lambda \vdash n$.

Proof. As we have a monomorphism $S_l^\lambda \to Y_l^\lambda$, we have the epimorphism

$$\tilde{Y}'_{\lambda} = ((Y_l^\lambda)^\circ)^\Psi \to ((S_l^\lambda)^\circ)^\Psi = S_\lambda.$$

Thus, by [14, Theorem 3.3.4(ii)], we have the epimorphism

$$G_2(\tilde{Y}'_{\lambda}) \to G_2(S_{\lambda}) = W'(\lambda).$$

We have $G_2(\tilde{Y}'_{\lambda}) \simeq P'(\lambda)[k]$, for some $k \in \mathbb{Z}$, by [14, Corollary 3.8.2]. Thus, the existence of the epimorphism $P'(\lambda)[k] \to W'(\lambda)$ implies $k = 0$. \qed

The following is our main object of study.

Definition 4.9. The graded decomposition number $d_{\lambda\mu}(v)$, for $\lambda \vdash n$ and $\mu \vdash n$, is the Laurent polynomial defined by

$$d_{\lambda\mu}(v) = \sum_{k \in \mathbb{Z}} (W(\lambda) : L(\mu)[k])v^k,$$

where $(W(\lambda) : L(\mu)[k])$ is the multiplicity of $L(\mu)[k]$ in the composition factors of $W(\lambda)$.
Note that $L(\lambda)[k]$, for $\lambda \vdash n$ and $k \in \mathbb{Z}$, form a complete set of graded simple $S_{d,n}$-modules. If μ is e-restricted, $L(\mu) = G_1(D^\mu)$, so that we have

$$d_{\lambda\mu}(v) = \sum_{k \in \mathbb{Z}} (S^\lambda : D^\mu[k])v^k.$$

Using the second sets of graded Weyl modules and graded simple modules, we define another graded decomposition number $d'_{\lambda\mu}(v)$ by

$$d'_{\lambda\mu}(v) = \sum_{k \in \mathbb{Z}} (W^\lambda(\mu) : L'([\mu])[k])v^k.$$

Lemma 4.10. We denote $S_\lambda = S_{d,i}^\lambda$ and $D_\mu = \text{Soc}S_{d,i}^{\mu'}$ if μ is e-restricted. Then we have

$$d'_{\lambda\mu}(v) = \sum_{k \in \mathbb{Z}} (S_\lambda : D_\mu[k])v^k = d_{\lambda\mu}(v).$$

Proof. Let $D^{\mu'} = S_\mu'/\text{Rad}S^{\mu'}$ and recall that $S^{\mu'} = ((S_{d,i}^\lambda)^\circ)\Psi$. Then

$$(W^\lambda(\mu) : L'([\mu])[k]) = (S^{\mu'} : D^{\mu'}[k]) = (S_{d,i}^\lambda : \text{Soc}S_{d,i}^{\mu'}[k]).$$

Thus, the first equality follows.

For the second equality, observe that $((S_{d,i}^\lambda)^\circ)\Psi = S^\lambda$. □

5. Graded decomposition numbers

Here, we recall the Leclerc-Thibon basis of the Fock space. Let Λ be the ring of symmetric functions with coefficients in $Q(v)$, and let s_λ be the Schur polynomial associated with a partition λ. Each node x of λ has the residue $\text{res}(x)$: if it is on the a^{th} row and the b^{th} column of λ, then $\text{res}(x) = -a + b \in \mathbb{Z}/e\mathbb{Z}$. The quantized enveloping algebra U_v of type $A_{e-1}^{(1)}$, which is generated by the Chevalley generators e_i’s f_i’s and the Cartan torus part, acts on Λ by

$$e_is_{\lambda} = \sum_{\text{res}(\lambda/\mu) = i} v^{-N_i^\alpha(\lambda/\mu)}s_{\mu}, \quad f_is_{\lambda} = \sum_{\text{res}(\mu/\lambda) = i} v^N_i(\mu/\lambda)s_{\mu},$$

for $i \in \mathbb{Z}/e\mathbb{Z}$, etc. where $N_i^\alpha(x)$ (resp. $N_i^b(x)$) is the number of addable i-nodes minus the number of removable i-nodes above (resp. below) x. This is called the (level 1) deformed Fock space. To identify our Fock space with those used in [17] and [23], transpose partitions.

In [17], the authors introduced the bar-involution on the deformed Fock space, and defined two kinds of the canonical bases on Λ. One of the basis, which consists of the elements b^μ_{λ}, for partitions μ, is characterized by the bar-invariance and the triangularity with requirement about polynomiality:

$$\overline{b^\mu_{\lambda}} = b^\mu_{\lambda} \text{ and } b^\mu_{\lambda} \in s_\mu + \sum_{\lambda \geq \mu} v\mathbb{Z}[v]s_\lambda.$$

Let $\mu = (\mu_1, \ldots, \mu_r)$ be a partition, and consider the infinite sequence

$$(i_1, \ldots, i_r, i_{r+1}, \ldots) = (\mu_1, \mu_2 - 1, \ldots, \mu_r - r + 1, -r, -r - 1, \ldots).$$
Lemma 5.2. Theorem 6]

The functor S which induces equivalence between the full subcategory of Schur filtered q-modules and the full subcategory of Weyl filtered S-modules is the Ringel dual description of the \mathcal{S}-module analogue of the result [12, Theorem 2.4], we may prove the above theorem by using the decomposition numbers of the Hecke algebra. As we already have the graded decomposition numbers of the Hecke algebra in [5, Corollary 5.15], we may prove the graded analogue of Theorem 5.1 by the argument in the proof of [16, Theorem 1]. We will come back to this point after preparing necessary materials.

Recall the direct sum of signed permutation modules $N = \bigoplus_{\mu \vdash n, \ell(\mu) \leq d} N^\mu$. We define $T = G_1(N)$. $\text{For}(T)$ is a full tilting $\mathcal{S}_{d,n}$-module. Then we have

$$\mathcal{S}_{d,n} = \bigoplus_{k \in \mathbb{Z}} \text{Hom}(N, N[k]) \simeq \bigoplus_{k \in \mathbb{Z}} \text{Hom}(T, T[k]).$$

This is the Ringel dual description of the q-Schur algebra. Thus, we have the functor \mathcal{F}

$$\mathcal{F} = \bigoplus_{k \in \mathbb{Z}} \text{Hom}(T[-k], -) : \mathcal{S}_{d,n} - \text{mod}^Z \to \mathcal{S}_{d,n} - \text{mod}^Z,$$

which induces equivalence between the full subcategory of Schur filtered $\mathcal{S}_{d,n}$-modules and the full subcategory of Weyl filtered $\mathcal{S}_{d,n}$-modules by [22, Theorem 6].

Lemma 5.2. We have the following:

(a) $\mathcal{F}(H^0(\lambda)[k]) = W'(\lambda)[k]$, for $\lambda \vdash n$ and $k \in \mathbb{Z}$.

(b) $\mathcal{F}(T(\lambda)) = P'(\lambda)$, for $\lambda \vdash n$.

(c) $\text{Hom}(P'(\mu), W'(\lambda)[k]) = \text{Hom}(T(\mu'), H^0(\lambda)[k]).$

\[6\text{Let } V \in \mathcal{S}_{d,n} - \text{mod}^Z, \varphi \in \text{Hom}(T, V[k]) \text{ and } f \in \text{Hom}(T, T[l]). \text{ Then the composition } T \to T[l] \to V[k+l] \text{ is denoted by } \varphi f.\]

\[7\text{Compare (a) with [9] Proposition 4.1.5}.\]
Proof. (a) Note that, due to our degree convention, \(S_{l}[\lambda'][k] = eW_{l}(\lambda')[k] \) implies that
\[
H^{0}(\lambda)[k] e = (W_{l}(\lambda')[k])^{\circ} e = (S_{l}[\lambda'][k])^{\circ} = \tilde{S}_{l}[\lambda'].
\]
Thus, \(F(H^{0}(\lambda')[k]) e = \text{Hom}(T e, H^{0}(\lambda)[k] e) \) is isomorphic to
\[
\text{Hom}(N^{(1^n)}, \tilde{S}_{l}[\lambda'][k]) \simeq \text{Hom}(M^{(1^n)}, (\tilde{S}_{l}[\lambda'])^{\Psi}[k]) \simeq (\tilde{S}_{l}[\lambda'])^{\Psi}[k].
\]
We have proved \(F_{2}(F(H^{0}(\lambda')[k])) \simeq S_{l}[\lambda'][k] \). Then, since \(F(H^{0}(\lambda')) \) has Weyl filtration, we have
\[
F(H^{0}(\lambda')[k]) \simeq G_{2} \mathcal{F}_{2}(F(H^{0}(\lambda')[k])) \simeq W^{\prime}(\lambda)[k].
\]
(b) \(F(T(\lambda')) e = \text{Hom}(T e, T(\lambda') e) = \text{Hom}(N^{(1^n)}, Y^{\lambda'}) \) implies that
\[
F(T(\lambda')) e \simeq \text{Hom}(M^{(1^n)}, (Y^{\lambda'})^{\Psi}) \simeq (Y^{\lambda'})^{\Psi} = \tilde{Y}^{\ell_{\lambda}}.
\]
We have proved \(\mathcal{F}_{2}(F(T(\lambda'))) \simeq \tilde{Y}^{\ell_{\lambda}} \). The result follows by Lemma \ref{lem:lemma42}. (c) By (a), (b) and the equivalence of the categories of Weyl filtered modules and Schur filtered modules in the non-graded case, we have
\[
\text{Hom}(P^{\prime}(\mu'), W^{\prime}(\lambda)[k]) = \text{Hom}(T(\mu'), H^{0}(\lambda')[k]).
\]

\[\square\]

Corollary 5.3. We have the following equalities.
\[
(a) \quad d^{\prime}_{\lambda}(v) = \sum_{k \in \mathbb{Z}} (T(\mu') : W(\lambda')[k]) v^{-k} = \sum_{k \in \mathbb{Z}} (T_{i}(\mu') : W_{l}(\lambda')[k]) v^{k}.
\]
\[
(b) \quad \text{Hom}(W(\lambda), H^{0}(\mu)[k]) = \begin{cases} \quad F & \text{(if } \lambda = \mu \text{ and } k = 0), \\ \quad 0 & \text{(otherwise)} \end{cases}
\]

Proof. Lemma \ref{lem:lemma42} implies that \((W^{\prime}(\lambda) : L^{\prime}(\mu)[k]) \) is equal to
\[
\dim \text{Hom}(P^{\prime}(\mu)[k], W^{\prime}(\lambda)) = \dim \text{Hom}(T(\mu)[k], H^{0}(\lambda')).
\]
Thus, if we define \(k_{\lambda} \in \mathbb{Z} \) by \(\text{Hom}(W(\lambda), H^{0}(\lambda)[k_{\lambda}]) \neq 0 \), then we have
\[
(W^{\prime}(\lambda) : L^{\prime}(\mu)[k]) = (T(\mu') : W(\lambda')[-k_{\lambda} - k]).
\]
It follows that
\[
d^{\prime}_{\lambda}(v) = \sum_{k \in \mathbb{Z}} (T(\mu') : W(\lambda')[k]) v^{-k_{\lambda} - k}.
\]
As \(Y^{\mu'} = (Y^{\mu'}_{l})^{\circ} \) implies \(T(\mu') = T_{i}(\mu')^{\circ} \), and there is a monomorphism \(W_{l}(\mu') \rightarrow T_{i}(\mu') \), we have an epimorphism \(T(\mu') \rightarrow H^{0}(\mu') \). This implies that \((T(\mu') : W(\mu')[k]) = \delta_{k \lambda} \). Hence, we set \(\lambda = \mu \) and deduce \(k_{\lambda} = 0 \). Thus, (a) and (b) follow. Note that we do not use the natural dual in the second equality in (a). Thus, the grading of \(\mathcal{H}_{n} \) is sign modified when we switch to left modules, so that \(v \) is replaced with \(v^{-1} \) there. \[\square\]
Remark 5.4. Define a v-analogue of the Kostka numbers by
\[K_{\lambda\mu}(v) = \sum_{k \in \mathbb{Z}} (N^\mu : S^k[v]) v^{-k}. \]

Define another polynomial $n_{\nu\lambda}(v)$ which is obtained by decomposing the signed permutation modules into indecomposable direct summands:
\[n_{\nu\lambda}(v) = \sum_{k \in \mathbb{Z}} (N^\mu : Y^k[v]) v^{-k}. \]

Then we have $K_{\lambda\mu}(v) = \sum_{\nu} d_{\nu\lambda}(v) n_{\nu\lambda}(v)$.

It may be interesting to compare $K_{\lambda\mu}(v)$ with the Kostka polynomials defined by the Lascoux-Schützenberger charge statistics.

In the rest of the paper, we will prove that the formula in [5] which equates $d_{\lambda\mu}(v)$ and the parabolic Kazhdan-Lusztig polynomials $e^{\mu^+}_\lambda(v^{-1})$, for e-restricted μ, holds for all μ.

Definition 5.5. Let $\lambda \vdash n$ and $\mu \vdash n$. Write $\mu = \mu^{(0)} + e\mu^{(1)}$ such that $\mu^{(0)} = (\mu^{(0)}_1, \ldots, \mu^{(0)}_d)$ is e-restricted. Then we define $\mu \vdash n + d(d-1)(e-1)$ and $\lambda, \mu \vdash n + d(d-1)(e-1)$ by
\[\begin{cases}
\mu = 2(e-1)\rho_d + (\mu^{(0)}_1, \ldots, \mu^{(0)}_d) + e\mu^{(1)}, \\
\lambda = \lambda + (e-1)(d-1, \ldots, d-1), \\
\mu = \mu + (e-1)(d-1, \ldots, d-1),
\end{cases} \]
where $\rho_d = (d-1, d-2, \ldots, 0)$.

Proposition 5.6. We have the following.

1. For each $\mu \vdash n$, there is a unique $s \in \mathbb{Z}$ such that
 \[\text{Hom}(L(\hat{\mu}), T(\hat{\mu})[s]) = F, \quad \text{Hom}(L(\lambda), T(\hat{\mu})[s]) = 0, \text{ if } \lambda \neq \hat{\mu}. \]

2. Denote the value $s \in \mathbb{Z}$ in (1) by shift(μ). Then we have
 \[d_{\lambda\mu}(v) = v^{-\text{shift}(\mu)} d_{\lambda\mu}^{\mu^+}(v^{-1}). \]

Proof. This follows from the argument in the proof of [16, Theorem 1]. Main points are that we can use [1, Proposition 5.8] and general properties of tilting modules to prove the identity, and that restrictive assumption on e in [1] was later removed in [2], so that we have no restriction on e, here. Thus, if we ignore the grading then $T(\hat{\mu})$ is the injective envelope of $L(\mu)$ in $U_q(\mathfrak{sl}_d)$-mod. Let det_q be the determinant representation of $U_q(\mathfrak{gl}_d)$. Then
\[W(\hat{\mu}) = \text{det}_q^{\otimes (e-1)(d-1)} \otimes W(\mu). \]

As a $U_q(\mathfrak{gl}_d)$-module, $\text{Soc} T(\hat{\mu}) \simeq L(\nu)$, for some $\nu \vdash n$ such that
\[L(\nu)|_{U_q(\mathfrak{sl}_d)} \simeq L(\mu). \]

It follows that $\nu = \tilde{\mu}$ and
\[\text{Hom}_{U_q(\mathfrak{gl}_d)}(L(\tilde{\mu}), T(\tilde{\mu})) = F, \quad \text{Hom}(L(\lambda), T(\tilde{\mu})) = 0, \text{ if } \lambda \neq \tilde{\mu}. \]
Note that we are in the case $d \leq n$. Rename d by d' and take $d \geq n$. We denote by ξ the projector to the direct sum of M^μ with $\ell(\mu) \leq d'$. Then, we may identify two F-algebras

$$S_{d',n} = \xi S_{d,n} \xi.$$

Applying the Hom functor

$$\text{Hom}_{S_{d,n}}(S_{d,n} \xi, -) : S_{d,n} \text{-mod} \to S_{d',n} \text{-mod},$$

which sends the Weyl module to the Weyl module with the same label, and preserves irreducibility, we return to the case $d \geq n$ and obtain

$$\text{Hom}_{S_{d,n}}(L(\tilde{\mu}), T(\tilde{\mu})) = F, \quad \text{Hom}(L(\lambda), T(\tilde{\mu})) = 0, \text{ if } \lambda \neq \tilde{\mu}.$$

in $S_{d,n} \text{-mod}$. In $S_{d,n} \text{-mod}^Z$, it implies that there is a unique $s \in \mathbb{Z}$ such that

$$\text{Hom}(L(\tilde{\mu}), T(\tilde{\mu})[s]) = F.$$

It is clear that $\text{Hom}(L(\lambda), T(\tilde{\mu})[s]) = 0$ if $\lambda \neq \tilde{\mu}$. We have proved (1).

Denote $s = \text{shift}(\mu)$. If $L(\mu)[k]$ appears as a subquotient of $W(\lambda)$ then the monomorphism from the subquotient to $T(\tilde{\mu})[s + k]$ extends to

$$W(\tilde{\lambda})|_{U_q(s\mu)} \to T(\tilde{\mu})[s + k]|_{U_q(s\mu)}.$$

Grading is absent in this statement: nevertheless, due to the fact that we will recover grading at the end, this together with (1) imply that

$$\sum_{k \in \mathbb{Z}}(W(\lambda) : L(\mu)[k])v^k = \sum_{k \in \mathbb{Z}} \dim \text{Hom}(W(\tilde{\lambda}), T(\tilde{\mu})[s + k])v^k$$

$$= \sum_{k \in \mathbb{Z}} \dim \text{Hom}(T_i(\tilde{\mu})[s + k], H^0(\tilde{\lambda}))v^k$$

$$= \sum_{k \in \mathbb{Z}} (T_i(\tilde{\mu}) : W_i(\tilde{\lambda})[-s - k])v^k.$$

The last equality is by Corollary 5.3(b). Then, it follows from Corollary 5.3(a) that

$$d_{\lambda \mu}(v) = \sum_{k \in \mathbb{Z}} (T_i(\tilde{\mu}) : W_i(\tilde{\lambda})[k])v^{-s - k} = v^{-s}d'_{\lambda \mu'}(v^{-1}).$$

We have proved (2). \hfill \square

Observe that $\tilde{\mu}'$ is e-restricted. Hence Lemma 4.10 implies that

$$d'_{\tilde{\lambda} \tilde{\mu}'}(v) = d_{\tilde{\lambda} \tilde{\mu}'}(v).$$

Now, we use results from [5]. Their deformed Fock space is dual to ours. The anti-involution which fixes the Cartan torus and interchanges e_i and f_i, for $i \in \mathbb{Z}/e\mathbb{Z}$, gives the left U_v-module structure on the dual space. Their basis which consists of M_μ's is the dual basis of our Schur polynomial basis, and their dual canonical basis in $V(\Lambda_0)^* = \text{Hom}_{Q(v)}(V(\Lambda_0), Q(v))$, which is denoted $\{ L_\lambda \mid \lambda$ is e-restricted. $\}$ in [loc. cit], is the dual basis of the canonical basis in $V(\Lambda_0)$. Hence, noting the definition of $[S^\mu : D^\lambda]_q$ [5, p.7]
where notation for shifting is in the opposite direction, \cite[Corollary 5.15]{susumu} reads
\[d_{\lambda\mu}(v) = e^+_{\lambda\mu}(v^{-1}) \] if \(\mu \) is \(e \)-restricted.

Hence, if the characteristic of \(F \) is zero, then
\[d_{\lambda\mu}(v) = v^{-\text{shift}(\mu)} d_{\lambda^\prime\mu^\prime}(v^{-1}) = v^{-\text{shift}(\mu)} e^+_{\lambda^\prime\mu^\prime}(v). \]

On the other hand, the following was proved in \cite[Theorem 2]{16}. We denote the affine symmetric group by \(\tilde{S}_d \). It acts on \(\mathbb{Z}^d \) by the level \(e \) action.

Let \(\nu \in \mathbb{Z}^d \) be the unique weight in the \(\tilde{S}_d \)-orbit \(\tilde{S}_d(\mu + \rho_d) \) that satisfies \(\nu_1 \geq \cdots \geq \nu_d \) and \(\nu_1 - \nu_d \leq e \). The stabilizer of \(\nu \) is a standard parabolic subgroup of finite order, and it has the longest element. We denote by \(\ell_\mu \) the length of the longest element.

Theorem 5.7. The following formula holds.
\[e^+_{\lambda\mu}(v) = v^{\frac{d(d-1)}{2}} - \ell_\mu e^+_{\lambda^\prime\mu^\prime}(v^{-1}). \]

The next theorem is the main result of this paper.

Theorem 5.8. Suppose that \(F \) has characteristic zero, \(q \in F^\times \) a primitive \(e \)th root of unity with \(e \geq 4 \). Then the Dipper-James’ \(q \)-Schur algebra is a \(\mathbb{Z} \)-graded \(F \)-algebra and we have
\[d_{\lambda\mu}(v) = e^+_{\lambda\mu}(v^{-1}). \]

Proof. By the previous formulas, we have
\[d_{\lambda\mu}(v) = v^{-\text{shift}(\mu)} e^+_{\lambda^\prime\mu^\prime}(v) = v^{-\text{shift}(\mu)} + \frac{d(d-1)}{2} - \ell_\mu e^+_{\lambda\mu}(v^{-1}). \]

We set \(\lambda = \mu \) to deduce that \(\text{shift}(\mu) = \frac{d(d-1)}{2} - \ell_\mu \).

To summarize, the Leclerc-Thibon canonical basis which consists of \(b^+_{\mu} \)'s computes the graded decomposition numbers of the \(q \)-Schur algebra at \(e \)th roots of unity in a field of characteristic zero where \(e \geq 4 \).

6. Examples

Let \(e = 4 \) and \(n = 4 \). We have five graded Specht modules. For each standard tableau \(t \), we denote the tableau by its reading word: the reading word of \(t \) is the permutation of \(1, \ldots, n \) obtained by reading the entries from left to right, starting with the first row and ending with the last row. We write \(v_{ijkl} \) for \(v_t \) when the reading word of \(t \) is \(ijk \). The degree \(k \) part of \(S^\lambda \) is denoted by \((S^\lambda)_k \). By permuting letters, we have the right action of the symmetric group \(S_n \) on the set of tableaux.

As \(S^{(2,2)} \) constitutes a semisimple block, we have \(Y^{(2,2)} = S^{(2,2)} = D^{(2,2)}. \) In particular, the decomposition matrix for this block is \((1) \). For the grading, \(S^{(2,2)} = (S^{(2,2)})_0 \oplus (S^{(2,2)})_1 \), where \((S^{(2,2)})_0 \) is spanned by \(v_{1324} \) and \((S^{(2,2)})_1 \) is spanned by \(v_{1234} \).
We consider the remaining four partitions. The action of \(t_1, t_2, t_3, t_4 \) and \(\sigma_1 \) are all zero on these graded Specht modules.

- \(S^{(4)} = (S^{(4)})_1 \) and \(v_{1234} \in S^{(4)}e(0123) \). \(\sigma_2 \) and \(\sigma_3 \) act as zero.
- \(S^{(3,1)} = (S^{(3,1)})_0 \oplus (S^{(3,1)})_1 \), where \((S^{(3,1)})_0\) is spanned by \(v_{1234} \in S^{(3,1)}e(0123) \), and \((S^{(3,1)})_1\) is spanned by \(v_{1243} \in S^{(3,1)}e(0132) \) and \(v_{1342} \in S^{(3,1)}e(0312) \). Hence, we have the matrix representation of the idempotents, with respect to the basis \((v_{1234}, v_{1243}, v_{1342})\), as follows. Note that the matrices act on row vectors from the right hand side.

\[
e(0123) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad e(0132) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

and \(e(0312) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \).

The action of \(\sigma_2 \) and \(\sigma_3 \) is given by

\[
\sigma_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]

- \(S^{(2,1,1)} = (S^{(2,1,1)})_0 \oplus (S^{(2,1,1)})_1 \), where \((S^{(2,1,1)})_0\) is spanned by \(v_{1234} \in S^{(2,1,1)}e(0132) \) and \(v_{1324} \in S^{(2,1,1)}e(0312) \), and \((S^{(2,1,1)})_1\) is spanned by \(v_{1423} \in S^{(2,1,1)}e(0321) \). Hence, with respect to the basis \((v_{1234}, v_{1324}, v_{1423})\), we have

\[
e(0132) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad e(0312) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

and \(e(0321) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \).

The action of \(\sigma_2 \) and \(\sigma_3 \) is given by

\[
\sigma_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.
\]

- \(S^{(1,1,1,1)} = (S^{(1,1,1,1)})_0 \) and \(v_{1234} \in S^{(1,1,1,1)}e(0321) \). \(\sigma_2 \) and \(\sigma_3 \) act as zero.

Thus, we know the following.

1. \(S^{(1,1,1,1)} = D^{(1,1,1,1)} \) and \(D^{(1,1,1,1)} = (D^{(1,1,1,1)})_0 \).
2. \(S^{(2,1,1)} \) contains a graded \(\mathcal{H}_4 \)-submodule

\[
F(0, 0, 1) \simeq D^{(1,1,1,1)}[-1].
\]
We write $D^{(2,1,1)} = S^{(2,1,1)} / D^{(1,1,1,1)}[-1]$. Then $D^{(2,1,1)} = (D^{(2,1,1)})_0$.

(3) $S^{(3,1)}$ contains a graded H_4-submodule

$$F(0, 1, 0) \oplus F(0, 0, 1) \simeq D^{(2,1,1)}[-1].$$

We write $D^{(3,1)} = S^{(3,1)} / D^{(2,1,1)}[-1]$. Then $D^{(3,1)} = (D^{(3,1)})_0$.

If $\mu \neq (4)$, then μ is e-restricted and we may compute $d_{\lambda \mu}(v)$ by

$$d_{\lambda \mu}(v) = \sum_{k \in \mathbb{Z}} (S^\lambda : D^\mu[k]) v^k.$$

If $\mu = (4)$, $L(\mu)$ appears only in $W(\lambda)$ with $\lambda \supseteq \mu$ so that the only possibility is $d_{(4)(4)} = 1$. Hence, we have obtained the graded decomposition matrix. In the table, we write $d_{\lambda \mu}(v^{-1})$ instead of $d_{\lambda \mu}(v)$, in order to compare it with the Leclerc-Thibon canonical basis which we will compute below.

\[
\begin{array}{c|c}
1^4 & 1 \\
2, 1^2 & v \ 1 \\
2^2 & . \ . \ 1 \\
3, 1 & . \ v \ . \ 1 \\
4 & . . \ . \ v \ 1 \\
\end{array}
\]

To phrase it in other terms, we have the following equations in the enriched Grothendieck group, in which we write the shift $[1]$ by v^{-1}.

$$[W((1, 1, 1, 1))] = [L((1, 1, 1, 1))],$$

$$[W((2, 1, 1))] = v[L((1, 1, 1, 1))] + [L((2, 1, 1))],$$

$$[W((2, 2))] = [L((2, 2))],$$

$$[W((3, 1))] = v[L((2, 1, 1))] + [L((3, 1))],$$

$$[W((4))] = v[L((3, 1))] + [L((4))].$$

Hence, we have the following equalities in the dual space of the enriched Grothendieck group.

\[
\begin{align*}
[L((1, 1, 1, 1))]^* &= v[W((2, 1, 1))]^* + [W((1, 1, 1, 1))]^*, \\
[L((2, 1, 1))]^* &= v[W((3, 1))]^* + [W((2, 1, 1))]^*, \\
[L((2, 2))]^* &= [W((2, 2))]^*, \\
[L((3, 1))]^* &= v[W((4))]^* + [W((3, 1))]^*, \\
[L((4))]^* &= [W((4))]^*.
\end{align*}
\]

(Table 1)

We already know the decomposition matrix for the q-Schur algebra in the non-graded case. In the following table, the convention is the classical one, and the $(\lambda, \mu)^{th}$ entry is $d_{\lambda \mu}$. We confirm that it coincides with the specialization at $v = 1$ of the graded decomposition matrix.

\[
\text{gap} \geq S := \text{Schur}(4); \\
\text{Schur}(e=4, W(), P(), F(), Pq()) \\
\text{gap} \geq \text{DecompositionMatrix}(S, 4);
\]
We may also confirm the graded decomposition matrix by constructing non-split short exact sequences
\[0 \to S^\mu[k] \to M \to S^\lambda \to 0, \]
when \(\text{Ext}^1(S^\lambda, S^\mu[k]) \neq 0 \). The formula
\[d'_{\lambda\mu}(v) = \sum_{k \in \mathbb{Z}} (T(\mu') : W(\lambda)[k])v^{-k} \]
implies that we must have
- \(Y^{(1,1,1,1)} = S^{(1,1,1,1)} \),
- \(Y^{(2,1,1)} = F_0 \supseteq F_1 = S^{(2,1,1)} \) and \(F_0/F_1 = S^{(1,1,1,1)}[1] \),
- \(Y^{(2,2)} = S^{(2,2)} \),
- \(Y^{(3,1)} = F_0 \supseteq F_1 = S^{(3,1)} \) and \(F_0/F_1 = S^{(2,1,1)}[1] \),
- \(Y^{(4)} = F_0 \supseteq F_1 = S^{(4)} \) and \(F_0/F_1 = S^{(3,1)}[1] \).

Let us consider \(Y^{(2,1,1)} \), and compute the extension explicitly. The basis elements are
\[(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), \]
and the last three have degrees 0,0,1, respectively. Then, \(Y^{(2,1,1)} \) is given by
\[t_1 = 0, \ t_2 = 0, \ t_3 = 0, \ t_4 = \begin{pmatrix} 0 & 0 & 0 & -\lambda \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \]
\[e'(0132) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \ e'(0312) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \]
\[e'(0321) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \]
\[\sigma_1 = 0, \ \sigma_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \ \sigma_3 = \begin{pmatrix} 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \]
for any \(\lambda \in F^\times \). Then,
\[(1,0,0,0,0)\sigma_3 = \lambda(0,0,1,0,0) \text{ or } (1,0,0,0,0)t_4 = -\lambda(0,0,0,1) \]
determines the degree of \((1,0,0,0,0) \) to be \(-1\).

We turn to the Lecerc-Thibon canonical basis. We denote them by \(G(\mu) \).
If \(\mu \neq (4) \), we may compute them by the LLT algorithm. If \(\mu = (4) \) then we
have \(G(\mu) = s_\mu \) as \(\mu \) has only one part. Thus, the canonical basis elements are given as follows.

\[
G((1, 1, 1, 1)) = v s_{(2,1,1)} + s_{(1,1,1,1)} (= f_1 f_2 f_3 f_0 v_{\Lambda_0}),
G((2, 1, 1)) = v s_{(3,1)} + s_{(2,1,1)} (= f_2 f_1 f_3 f_0 v_{\Lambda_0}),
G((2, 2)) = s_{(2,2)},
G((3, 1)) = v s_{(4)} + s_{(3,1)} (= f_4 f_2 f_1 f_0 v_{\Lambda_0}),
G((4)) = s_{(4)}.
\]

(Table 2)

Comparing (Table 1) and (Table 2), we confirm that the coefficient matrices are identical. This example is rather an example for the Hecke algebra than an example for the \(q \)-Schur algebra, as we did not do any substantial calculation for the partitions which are not \(e \)-restricted. An interested reader may try larger size examples.

References

[1] H. H. Andersen, Tensor products of quantized tilting modules, Commun. Math. Phys. 149 (1992), 149–159.
[2] H. H. Andersen and J. Paradowski, Fusion categories arising from semisimple Lie algebras, Commun. Math. Phys. 169 (1995), 563–588.
[3] S. Ariki, On the decomposition numbers of the Hecke algebra of \(G(m, 1, n) \), J. Math. Kyoto Univ. 36 (1996), 789–808.
[4] J. Brundan and A. Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, arXiv:0808.2032.
[5] J. Brundan and A. Kleshchev, Graded decomposition numbers for cyclotomic Hecke algebras, arXiv:0901.4450.
[6] J. Brundan, A. Kleshchev and W. Q. Wang, Graded Specht modules, arXiv:0901.0218.
[7] R. Dipper and G. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 56 (1988), 20–52.
[8] R. Dipper and G. James, The \(q \)-Schur algebra, Proc. London Math. Soc. (3) 59 (1989), 23–50.
[9] S. Donkin, The \(q \)-Schur algebra, London Math. Soc. Lecture Series 253, Cambridge Univ. Press, 1998.
[10] S. R. Doty, K. Erdmann and D. K. Nakano, Extensions of modules over \(q \)-Schur algebras, symmetric groups and Hecke algebras, Algebr. Represent. Theory 7 (2004), 67–100.
[11] Jie Du, B. Parshall and L. Scott, Quantum Weyl reciprocity and tilting modules, Commun. Math. Phys. 195 (1998), 321–352.
[12] K. Erdmann, Decomposition numbers for symmetric groups and composition factors of Weyl modules, J. Algebra 180 (1996), 316–320.
[13] R. Gordon and E. L. Green, Graded Artin algebras, J. Algebra 76 (1982), 111–137.
[14] D. J. Hemmer and D. K. Nakano, Specht filtrations for Hecke algebras of type \(A \), J. London Math. Soc. (2) 69 (2004), 623–638.
[15] M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups I, arXiv:0803.4121.
[16] B. Leclerc, Decomposition numbers and canonical bases, *Algebr. Represent. Theory* 3 (2000), 277–287.

[17] B. Leclerc and J.-Y. Thibon, Canonical bases of q-deformed Fock spaces, *Internat. Math. Res. Notices* (1996), 447–456.

[18] S. Martin, Schur Algebras and Representation Theory, *Cambridge tracts in mathematics* 112, Cambridge Univ. Press, 1993.

[19] A. Mathas, Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group, *University Lecture Series* 15, Amer. Math. Soc., 1999.

[20] E. Cline, B. Parshall and L. Scott, Integral and graded quasi-hereditary algebras, *J. Algebra* 131 (1990), 126–160.

[21] R. Rouquier, 2-Kac-Moody algebras, [arXiv:0812.5023](https://arxiv.org/abs/0812.5023).

[22] C. Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, *Math. Z.* 208 (1991), 209–223.

[23] M. Varagnolo and E. Vasserot, On the decomposition matrices of the quantized Schur algebra, *Duke Math. J.*, 100 (1999), 267–297.

S.A.: RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KYOTO 606-8502, JAPAN

E-mail address: ariki@kurims.kyoto-u.ac.jp

In reviewer’s remark in Mathematical Reviews, it is said “all the minus signs are missing” due to the fault of the publisher. Hence, I recommend reading [arXiv:math/9902006](https://arxiv.org/abs/math/9902006).