Follow-Up Study of Children with Precocious Puberty Treated with Cyproterone Acetate

Shaw Watanabe, Yadong Cui, Ayako Tanaka, Toshiaki Tanaka, Masatoshi Fujimoto, Yoshitake Matsuo, Katsuhiko Tachibana, Susumu Yamasaki, and Ad hoc Committee for CPA

A total of 1840 children and adolescents treated with cyproterone acetate (CPA) to block gonadal function, as a treatment for precocious puberty, short stature and other disorders, were registered to survey for the risk of developing hepatic tumors. Patients responding to follow-up numbered 1552 (85%). The cumulative dose and duration of CPA therapy for boys and girls were 110.4g and 2.6 years, and 122.9 g and 2.8 years, respectively. Among the 1552 patients, five hepatoma cases were found. Four underwent successful surgery and remain alive and well to date. Two of the 5 cases had been given more than 500g, the other 3 more than 1000 g, of CPA. Three had also been given androgens before CPA administration. Although further follow-up is necessary to monitor for the development of adenoma and hepatoma, the risk of developing these tumors among patients to whom limited doses of CPA were administered appears to be negligible. J Epidemiol, 1997; 7: 173-178.

cyproterone acetate, precocious puberty, liver tumor, adverse effects

Cyproterone acetate (CPA; 6-chloro-17-alpha-acetoxy-1,2 alpha-methylenepregna-4,6-diene-3,20-dione) is a synthetic progestagen that suppresses gonadotropin secretion and blocks androgen action as a competitive inhibitor of androgen receptors. Since its introduction, CPA has been used in the treatment of male hypersexuality, deviationism, and prostatic carcinoma. It is also used for treatment of women with androgen-related diseases, and small doses have been widely used as oral contraceptives. In Japan, CPA was introduced in 1983 to treat precocious puberty, because of its gonadal suppressive action resulting in better growth. CPA was subsequently used to treat growth hormone (GH) deficient children and non-GH deficient short stature. Three cases of hepatocellular carcinoma have been reported, however, in CPA patients in Japan. To date, 6 cases of hepatocellular carcinoma have also been reported in the international literature. The former appeared to be fortuitous, and the latter risk was lower than that associated with other contraceptives (personal communication; Multicentric International Liver Tumor Study: MILTS).

In Japan, it was found to be important to monitor children and adolescent CPA users for liver tumors, because idiopathic precocious puberty is no longer treated with CPA in other countries worldwide. Thus, it is worthwhile to ascertain the situation in Japan. It was quite routine to delay puberty for a few years, in the early 60s and 70s, before LHRH superagonists became available.

The mortality rate from primary liver cancer in Japan is less than 0.2 per 100,000 for people under 20 years old. Thus, three cases of hepatoma among CPA users suggest a high risk asso-
associated with CPA treatment10. An ad hoc committee was established to register all patients who used CPA and to follow-up these patients focusing on the development of hepatic abnormalities including hepatic adenoma or hepatoma.

PATIENTS AND METHODS

From 1993 to the end of 1996, 36 main hospitals and clinics in Japan were included in the survey (see annex). It was estimated that more than 70\% of all patients receiving CPA therapy were managed by these hospitals, according to drug company sales records. Pediatricians in charge completed the questionnaire for each patient receiving CPA in their hospitals. The contents of the questionnaire included the diagnosis, details of CPA therapy, such as the start and the final date of the prescription, duration of therapy, compliance, dosage, and other drugs used simultaneously. Results from ultrasonography, liver function tests, and serum alpha-fetoprotein measurement were also recorded by the physicians in charge, if these tests had been carried out. Registered patients were requested to receive follow-up health check-ups to detect possible liver tumors by either ultrasonography or alpha-feto protein. Physicians in charge were consulted if there were any problems concerning the data. No control group was included in this surveillance study, i.e. no patients with precocious puberty but who did not receive CPA treatment were followed. The data management and analysis were done with Excel, SAS, and SPSS.

RESULTS

In all, 1,552 questionnaires were returned, for a response rate of 85\%. Among these cases, 582 were males and 970 were females. The basic diseases included idiopathic precocious puberty and several varieties of short stature with children entering puberty who were still small, such as growth hormone deficiency (GHD), and non-GHD short stature (Table 1). Among males, GHD and non-GHD short stature were the most common diseases. The other rare diseases were congenital adrenal hyperplasia with central precocious puberty, organic precocious puberty and testo-toxicosis. Among the females, there were 324 cases of idiopathic precocious puberty. In addition to the 177 cases of non-GHD short stature in females, there were 54 of congenital adrenal hyperplasia, 37 of organic precocious puberty, 24 of McCune-Albright syndrome, and 120 of other miscellaneous causes.

On average, males began to take CPA at around 12.1 years old, while females started therapy earlier (9.8 years). At the end of the survey, 276 of the 1552 cases were still taking CPA. The mean duration of CPA use was 2.6 years in males, and 2.8 years in females. 33.1\% used more than 3 years, 20.4\% used more than 4 years, and 11.9\% used more than 5 years. Daily doses of CPA were 50, 100, 150, or 200 mg per day according to body weight. The lowest dose was 50 mg a week, and the highest dose was 600 mg per day. High doses were given in the 1980s to cases who did not respond well to CPA. The total amounts of CPA administered were 110.4 g (median 76.2g, range 0.3-737.5 g) and 122.9 g (median 84.7g, 0.8-1218.0 g) for male and female patients, respectively. More than 200 g had been given to 17\% patients, and more than 250 g in 10.2\% patients. More than 500 g CPA had been given to 24 patients.

Many other drugs were also prescribed, and growth hormone was the most common combination drug (642 cases). The other frequently used drugs were LH-RH analog (304 cases, glucocorticoid (144 cases), thyroxin (142 cases), progesterin (107 cases), mineral corticoid (66 cases), and androgenic steroids, such as stanozolol (52 cases).

By the end of 1995, there were 43 cases who had abnormal ultrasonographic results, 56\% of whom were found to have a

Disease category	Male	%	Female	%	Total	%
Idiopathic precocious puberty	37	6.4	324	33.4	361	23.3
Organic precocious puberty	27	4.6	37	3.8	64	4.1
Congenital adrenal hyperplasia	37	6.4	54	5.6	91	5.9
McCune Albright syndrome	0	0.0	24	2.5	24	1.6
Testotoxicosis	3	0.5	0	0.0	3	0.2
Short stature with early puberty						
Growth hormone deficiency (GHD)	296	50.9	249	25.7	545	35.0
Turner syndrome	0	0.0	18	1.9	18	1.2
Non-GHD short stature	132	22.7	177	18.3	309	19.9
Subclassification unknown	4	0.7	3	0.3	7	0.5
Other diseases	41	7.0	83	8.6	124	8.0
Unclear	5	0.9	1	0.1	6	0.4
Total	582		970		1552	
fatty liver. Twenty patients had abnormal results on liver function tests, including GPT, GOT, gamma-GTP and choline esterase, and 5 cases had levels higher than the normal range of alpha-fetoprotein. Two had returned to normal in the second follow-up survey. The maximum dosage and the total amount of CPA for those with abnormal findings were higher than for those with normal findings (194.1 mg/day versus 164.8 mg/day, 198.0 g versus 112.3 g, respectively) (p<0.01). The duration of treatment was slightly longer in these patients but this was not statistically significant (3.1 years versus 2.6 years).

Follow-up status of the patients is shown in Table 2. There were 7 deaths recorded in the follow-up survey (Table 3). One died of liver cancer, 1 in a traffic accident, 2 of cerebral hemorrhage, 1 after a cardiac operation (the patient suffered from both Turner's syndrome and coarctation of the aorta), 1 of a brain tumor, and 1 due to an epileptic attack.

Table 2 shows the characteristics of the five heptoma cases. The first 3 were reported previously. Briefly, the first case started CPA treatment when she was 13 years old, with a diagnosis of Russell-Silver syndrome. Prior to CPA usage, stanozolol (1mg/day) had been administered for 10 months. CPA was taken for 3 years at an initial dose of 100 mg per day, subsequently increased to 200-250 mg/day to stop menstruation. About 7 years after the cessation of CPA treatment, a tumor mass was found by ultrasonography in the right hepatic lobe. The level of LDH, alkaline phosphatase, gamma-glutamyl transferase (gamma-GT), and alpha-fetoprotein in the blood were higher than normal. The tumor was resected, and diagnosed as a hepatocellular carcinoma. Two years later she died of respiratory insufficiency due to pulmonary metastasis at 23 years of age. The second and third female cases had Turner syndrome. CPA was given to the second girl at 200-300 mg/day when she was 10 years old. Stanozolol (0.5 mg/day) was also used for 7 years and 7 months. After treatment for 9 years, liver cancer was detected by computed tomography. The tumor was successfully resected and the elevated alpha-fetoprotein returned to a normal value. In the third girl, CPA (200 mg/day) was started at 9 years of age, and used for 7 years and 10 months. The patient was referred to the hospital due to a liver tumor when she was 19 years old, and a large hepatic tumor was seen on both ultrasonography and computed tomography. The alpha-fetoprotein level was high on admission. A right extended lobectomy was done. At the time of discharge, alpha-fetoprotein was still slightly higher than normal (290.1 ng/ml), but she was otherwise in good health. Both cases had also received recombinant growth hormone and LH-RH analogue (Buserelin) in addition to CPA.

The fourth case was a girl with McCune-Albright syndrome.

Table 2. Follow-up status.

Follow-up	Frequency	%
Followed at out-patient clinic	892	57.5
Treatment at another hospital	53	3.5
Treatment completed	450	29.0
Lost to follow-up	31	2.0
Deceased	7	0.5
Total	1,552	

*Among whom 40 patients, who had been given more than 100 g of CPA, were confirmed to be alive through the permanent registration system for residents.

Table 3. Deceased cases among CPA users.

Sex	Diagnosis	Cause of death	Age of death	Age at onset of therapy	Duration	CPA dose
Case 1.	M Organic PP (brain tumor)	Brain tumor	16y	16y	3m	100mg/day, total 9g
Case 2.	M Noonan synd. Moyamoya-disease.	Post-operative	21y	12y	2y4m	150-200mg/day, total 115.5g
Case 3.	M GHD	Cerebral hemorrhage	13y	12y	6m	213.7g
Case 4.	F non-GHD short stature epilepsy, achondroplasia	Traffic accident	17y	12y	5y7m	36g
Case 5.	F Turner, coarctation aorta	Epilepsy	13y	12y	6m	36g
Case 6.	F GHD	Subarachnoidal hemorrhage	14y	13y	2y	100-300mg/day, total 60g
Case 7.	F Russell-Silver synd.	Hepatoma	23y	13y	3y	150-350mg/day, total 525.0g

PP, precocious puberty; synd., syndrome.
Table 4. Hepatoma Cases of among CPA users.

Case	Age (yr)	Sex	Diagnosis	Start dose (mg/day)	Dose (mg/day)	Period (yr)	Total dose (mg)	Interval (yr)	Other drugs	Outcome
Case 1	22 F	Russell-Silver synd.		13	150-350	3	525g	7	Buserelin	deceased
Case 2	19 F	Turner synd.		10	200-300	9	560g	on use	rGh, Buserelin	alive
Case 3	19 F	Turner synd.		9	200	7y10m	1100g	2y4m	rGh, Buserelin	alive
Case 4	12 F	McCune-Albright synd.		4	200-300	4y+	988g	on use	Alfacalciferol	alive
Case 5	21 M	Adrenal hyperplasia		7	100-300	15y	1562g	on use	Cortisol	alive

rGh, recombinant growth hormone.

CPA was given at 200-300 mg/day for more than 4 years, starting at age 4 years. Somatostatin (100-150 ug/day) was also administered for one year. Bromocriptine (2.5-7.5 mg/day) was given to prevent gigantism. LH-RH analog (960-1290 ug/day) and alfacalciferol (D3) were also administered for 2 years. A hepatic tumor was found by ultrasonography, and a right hepatic lobectomy was performed. The fifth case was diagnosed as having simple virilizing type congenital adrenal hyperplasia at 3 years and 9 months of age. The patient had taken CPA (100-350 mg/day) since he was 6.5 years old. The total amount of CPA taken during the period of 7 years reached 1562g. In 1995, when he was 21 years old, a hepatic tumor was found by ultrasonography, and the level of alpha-fetoprotein at that time was more than 15,000 ng/dl. Left hepatic lobectomy was performed, and the alpha-fetoprotein level normalized. All cases had hepatocellular carcinoma (Edmondson I-II) with some adenomatous features. Neither antigens nor antibodies to hepatitis B or C virus were detected. Serum levels of alkaline phosphatase, LDH and gamma-GTP were found to be higher than normal before the liver tumors were diagnosed.

DISCUSSION

Formerly, CPA was used as the main treatment for precocious puberty, in Japanese children and adolescents, with the aim of stimulating growth via gonadal suppression. This study provides surveillance data focusing on the adverse effects of CPA therapy. Our data reveal that patients with hepatoma were given cumulative CPA doses of more than 500 g for over 2.5 years. Despite different underlying genetic conditions and different therapeutic regimens, including androgenic steroids, one common feature was long-term and high dose CPA treatment.

CPA treatment is only one of the common features in this surveillance. In four of the five cases, hepatomas were detected around 20 years of age, such that a weak promoting effect of CPA is a possibility.

Experimental studies have suggested that CPA has both promoting and initiating activity in the rat liver13-15. The genotoxic effects in the formation of hepatic tumors with long-term exposure in humans is assumed, because cultured human hepatic cells exposed to CPA in vitro showed altered DNA repair mechanism16. The CPA-DNA adducts persisted for several months, and some metabolites such as 3-gamma-OH-CPA or 3-OAc-CPA bound covalently to DNA in vitro, and 3-gamma-OH-CPA also bound DNA in vivo17,18. CPA strongly elicited DNA repair processes in primary cultures of hepatocytes from female rats18. On the contrary, CPA itself did not cause mutagenicity in rat liver cells19. Pharmacologically, CPA is a synthetic steroid which has both anti-androgenic and progestagenic effects. The complex interaction between CPA and sex hormone receptors may promote carcinogenesis20,21.

Although laboratory results have shown CPA to be genotoxic in cultured human hepatocytes, there is neither in vivo nor epidemiological evidence of this action to date, except for several case reports of hepatic carcinoma in patients given CPA therapy6,11. The current surveillance may provide further epidemiological clues as to the carcinogenic effect of CPA in humans with on-going follow-up.

Presently, the use of CPA as a component of oral contraceptives is restricted to only 2 mg per day. Patients with a history of having taken more than 500g of CPA are recommended to undergo close follow-up by ultrasonography and liver function tests, including alpha-fetoprotein measurement, at least once a year.

CONCLUSION

The present data provide epidemiological clues as to the role of CPA in hepatocarcinogenesis among children and adolescents taking this drug. The incidences and mortality rates of hepatic tumors in this age category are too small, with the exception of hepatoblastoma, for the meaningful calculation of a standardized incidence ratio (SIR).

Five cases of hepatocarcinoma among patients taking CPA constitute an unusually high number and the possibility of an association with long-term treatment with extremely high doses of CPA, at a young age, cannot be excluded. In order to ascertain the epidemiological relationship between CPA use and the development of hepatic tumors, further analytical study is required which would allow conclusions on causality to be drawn20.
Hepatoma Among Cyproterone Autate Uses

ACKNOWLEDGMENT

The authors sincerely thank the members of the Ad Hoc Committee for Androcur to collecting data and follow-up patients for this study. We appreciate Dr. Rothar Heinemann, Director of Zentrum fur Epidemiologie und Gesundheitsforschung for his constructive discussion for this manuscript. The Foundation of Human Science supported a part of this study.

REFERENCES

1. Editorial. Cyproterone acetate. Lancet 1976; i: 1003.
2. Meijer WH, Willemsse PHB, Sleijfer T, et al. Hepatocellular damage by Cyproterone acetate. Eur J Cancer Clin Oncol 1986; 22(9): 1121-1122.
3. Levesque H., Trivalle C., Manchon N.D., et al. Fulminant hepatitis due to cyproterone acetate. Lancet 1989; 1(8631): 215-216.
4. Blake JC, Sawyer AM, Dooley JS, et al. Severe hepatitis caused by cyproterone acetate. Gut 1990; 31: 556-557.
5. Parys BT, Hamid S., and Thomson R.G.N. Severe hepatocellular dysfunction following cyproterone acetate therapy. Br J Urol 1991; 67: 312-313.
6. Pavlos E. D., Eliahu G., and Rappel C. Hepatitis due to Cyproterone Acetate. Eur J Cancer 1992; 28A(1): 1931-1932.
7. Riola R., Crino L., Carloni G., and Natalini G. Cyproterone acetate: hepatotoxicity and prostatic cancer treatment. Annals Oncology 1993; 4: 701-702.
8. Ohri SK, Caer JAR, Keane PF. Hepatocellular carcinoma and treatment with cyproterone acetate. Br J Urol 1991; 67: 213-221.
9. Kattan J., Apatz A., Culine S., et al. Hepatocellular carcinoma during hormonotherapy for prostatic cancer. Am J Clin Oncol Cancer Clin Trials 1994; 17(5): 390-392.
10. Watanabe S, Yamasaki S, Tanae A, et al. Three cases of hepatocellular carcinoma among cyproterone users. Lancet 1994; 344(8936): 1567-1568.
11. Rudiger T, Beckmann J, and Queiber W. Hepatocellular carcinoma after treatment with cyproterone acetate combined with ethinyloestradiol. Lancet 1995; 345(8937): 452-453.
12. The MILTS Collaborative Study Team. Multicentric international liver tumour study protocol of the casecontrol study on hepatocellular cancer. Pharmacoepidemiol Drug Safety 1996; 5: 173-186.
13. Topinka J, Andrae U, Schwarz LR, and Wolff T. Cyproterone acetate generates DNA adducts in rat liver and in primary rat hepatocyte cultures. Carcinogenesis 1993; 14(3): 423-427.
14. Deml E, Schwarz LR, and Oesterle D. Initiation of enzymealtered foci by the synthetic steroid cyproterone acetate in rat liver foci bioassay. Carcinogenesis 1993; 14(6): 1229-1231.
15. Neumann I, Thierau D, Andrae U, et al. Cyproterone acetate induces DNA damage in cultured rat hepatocytes and preferentially stimulates DNA synthesis in gammaglutamyltranspeptidase-positive cells. Carcinogenesis 1992; 13(3): 373-378.
16. Martelli A, Mattioli F, Fazio S, et al. DNA repair synthesis and DNA fragmentation in primary cultures of human and rat hepatocytes exposed to cyproterone acetate. Carcinogenesis 1995; 16(6): 1265-1269.
17. Werner s, Topinka J, Wolff T, and Schwarz LR. Accumulation and persistence of DNA adducts of the synthetic steroid cyproterone acetate in rat liver. Carcinogenesis 1995; 16(10): 2369-2372.
18. Kerdar RS, Baumann A, et al. Identification of 3alpha-hydroxy-cyproterone acetate as a metabolite of cyproterone acetate in the bile of female rats and the potential of this and other already known or putative metabolites to form DNA adducts in vitro. Carcinogenesis 1995; 16(8): 1835-1841.
19. Topinka J, Binkova B, Zhu HK, et al. DNA-damaging activity of the cyproterone acetate analogues chlormadinone acetate and megestrol acetate in rat liver. Carcinogenesis 1995; 16(7): 1483-1487.
20. Kasper P, Tegethoff K, and Mueller L. In vitro mutagenicity studies on cyproterone acetate using female rat hepatocytes for metabolic activation and as indicator cells. Carcinogenesis 1995; 16(10): 2309-2314.
21. Iqbal MJ, Wilkinson ML, Johnson PJ, and Williams R. Sex steroid receptor proteins in foetal, adult and malignant human liver tissue. Br J Cancer 1983; 48: 791-796.
22. Nagasue N, Kohno H, Yamanoi A, et al. Progesterone receptor in hepatocellular carcinoma. Correlation with androgen and estrogen receptors. Cancer 1991; 67: 2501-2505.
23. Rabe T, Feldmann K, Heinemann L, and Runebaum B. Cyproterone acetate. Is it hepato- or genotoxic? Drug Safety 1996; 14: 25-38.
Collaborating doctors and hospitals:
Ayako Tanabe, Itsuro Hibi, Toshiaki Tanaka (National Children’s’ Hospital), Yoshiaki Okada (Okada Clinic), Kazuo Shizume (Shizume Memorial Clinic), Yoshikazu Nishi (Hiroshima Red Cross Hospital), Katsuhiko Tachibana (Kanagawa Children’s’ Medical Center), Kumiko Araki (Kochi Medical College), Naoya Koda (Saitama Children’s’ Medical Center), Masamichi Ogawa (Nagoya University Hospital), Kenji Fujieda. (Hokkaido University Hospital)Yosuke Shigematsu (Fukui Medical College), Soroku Nishiyama, Noritaka Iwatani (Kumamoto University Hospital), Nobutake Matsuo (Keio University Hospital), Nobuhide Ohyama (Kitasato University Hospital), Susumu Yokoya (Toranomon Hospital), Katsumi Goji (Hyogo Children’s’Hospital), Terumasa Okuno (Asahikawa Medical College), Takeo Kuribayashi (Dokkyo University Hospital), Kazuyuki Ishitobi, Takehiko Ozeki (Tottori University Hospital), Hitoshi kohno (Fukuoka Children’s’ Hospital), Takeshi Yazawa (Okazaki city Hospital), Susumu Konda (Chiba University Hospital), Masatoshi Fujimoto (St. Marianne University Hospital), Yutaka Igarashi (Tohoku University Hospital), Mitsunori Murata (Tokyo Women’s’ Medical College, 2nd Hospital), Haruo Ogawa, Yuichi Nakagawa (Hamamatsu Medical College), Shinobu Ida (Osaka Mother-Children General Health Center), Keinosuke Fujita (Osaka Medical College, Osaka General Medical Center, Osaka Children’s’ Health Center), Hiroaki Inomata (Teikyo University Hospital), Mari Satoh (Toho University Omori Hospital), Tatsuhiko Uragami (Nihon University Surugadai Hospital), Takayuki Konishi (Asahikawa City Hospital), Nobuyoshi Ishikawa (Kitami Red Cross Hospital), Akemi Koike (Toton Hospital), Shunichi Tsutsumishima (Obihiro Kosei Hospital).