Multi-bump solutions for a class of quasilinear problems involving variable exponents

Claudianor O. Alves · Marcelo C. Ferreira

Received: 19 March 2014 / Accepted: 6 June 2014 / Published online: 19 June 2014
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2014

Abstract We establish the existence of multi-bump solutions for the following class of quasilinear problems

$$-\Delta_{p(x)} u + (\lambda V(x) + Z(x))u^{p(x)-1} = f(x, u) \text{ in } \mathbb{R}^N, \ u \geq 0 \text{ in } \mathbb{R}^N,$$

where the nonlinearity $f: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ is a continuous function having a subcritical growth and potentials $V, Z: \mathbb{R}^N \to \mathbb{R}$ are continuous functions verifying some hypotheses. The main tool used is the variational method.

Keywords Variational Methods · Positive solutions · Asymptotic behavior of solutions · $p(x)$-Laplacian

Mathematics Subject Classification (2000) 35A15 · 35B09 · 35B40 · 35H30

1 Introduction

In this paper, we consider the existence and multiplicity of solutions for the following class of problems

Partially supported by INCT-MAT and PROCAD.
C. O. Alves was partially supported by CNPq/Brazil 303080/2009-4.

C. O. Alves · M. C. Ferreira

Universidade Federal de Campina Grande, Unidade Acadêmica de Matemática, Campina Grande, PB CEP: 58429-900, Brazil

e-mail: marcelo@dme.ufcg.edu.br

C. O. Alves

e-mail: coalves@dme.ufcg.edu.br
Here, $\lambda > 0$ is a parameter, $p: \mathbb{R}^N \to \mathbb{R}$ is a Lipschitz function, $V, Z: \mathbb{R}^N \to \mathbb{R}$ are continuous functions with $V \geq 0$, and $f: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ is continuous having a subcritical growth. Furthermore, we take into account the following set of hypotheses:

1. $1 < p_- = \inf_{\mathbb{R}^N} p \leq p_+ = \sup_{\mathbb{R}^N} p < N$.
2. $\Omega = \text{int } V^{-1}(0) \neq \emptyset$ and bounded, $\overline{\Omega} = V^{-1}(0)$ and Ω can be decomposed in k connected components $\Omega_1, \ldots, \Omega_k$ with $\text{dist}(\Omega_i, \Omega_j) > 0$, $i \neq j$.
3. There exists $M > 0$ such that $\lambda V(x) + Z(x) \geq M$, $\forall x \in \mathbb{R}^N, \lambda \geq 1$.
4. There exists $K > 0$ such that $|Z(x)| \leq K$, $\forall x \in \mathbb{R}^N$.

(f_1)

$$\limsup_{|t| \to \infty} \frac{|f(x, t)|}{|t|^{q(x)-1}} < \infty, \text{ uniformly in } x \in \mathbb{R}^N,$$

where $q: \mathbb{R}^N \to \mathbb{R}$ is continuous with $p_+ < q_-$ and $q \ll p^* = \frac{Np}{N-p}$. Here, the notation $q \ll p^*$ means that $\inf_{\mathbb{R}^N} (p^* - q) > 0$.

(f_2) $f(x, t) = o(|t|^{p+1}), t \to 0$, uniformly in $x \in \mathbb{R}^N$.

(f_3) There exists $\theta > p_+$ such that

$$0 < \theta F(x, t) \leq f(x, t)t, \forall x \in \mathbb{R}^N, t > 0,$$

where $F(x, t) = \int_0^t f(x, s) \, ds$.

(f_4) $\frac{f(x, t)}{t^{p+1}}$ is strictly increasing in $t \in (0, \infty)$, for each $x \in \mathbb{R}^N$.

(f_5) $\forall a, b \in \mathbb{R}, a < b$, $\sup_{x \in \mathbb{R}^N} \sup_{t \in [a, b]} |f(x, t)| < \infty$.

A typical example of nonlinearity verifying (f_1) -- (f_5) is

$$f(x, t) = |t|^{q(x)-2}t, \forall x \in \mathbb{R}^N \text{ and } \forall t \in \mathbb{R},$$

where $p_+ < q_-$ and $q \ll p^*$.

Partial differential equations involving the $p(x)$-Laplacian arise, for instance, as a mathematical model for problems involving electrorheological fluids and image restorations, see [1,2,11–13,29]. This explains the intense research on this subject in the last decades. A lot of works, mainly treating nonlinearities with subcritical growth, are available (see [4–9,16–18,20–24,28] for interesting works). Nevertheless, to the best of the author’s knowledge, this is the first work dealing with multi-bump solutions for this class of problems.
The motivation to investigate problem (P_λ) in the setting of variable exponents has been the papers \cite{3} and \cite{15}. In \cite{15}, inspired by del Pino and Felmer \cite{14} and Séré \cite{30}, the authors considered (P_λ) for $p = 2$ and $f(u) = u^q$, $q \in (1, \frac{N+2}{N-2})$ if $N \geq 3$; $q \in (1, \infty)$ if $N = 1, 2$. The authors showed that (P_λ) has at least $2^k - 1$ solutions u_λ for large values of λ. More precisely, one solution for each non-empty subset Υ of $\{1, \ldots, k\}$. Moreover, fixed $\Upsilon \subset \{1, \ldots, k\}$, it was proved that, for any sequence $\lambda_n \to \infty$, we can extract a subsequence (λ_{n_k}) such that $(u_{\lambda_{n_k}})$ converges strongly in $H^1(\mathbb{R}^N)$ to a function u, which satisfies $u = 0$ outside $\Omega_\Upsilon = \bigcup_{j \in \Upsilon} \Omega_j$ and $u|_{\Omega_j}$, $j \in \Upsilon$, is a least energy solution for

\[
\begin{aligned}
-\Delta u + Z(x)u &= u^q, \quad \text{in } \Omega_j, \\
u &\in H^1_0(\Omega_j), \ u > 0, \quad \text{in } \Omega_j.
\end{aligned}
\]

In \cite{3}, employing some different arguments than those used in \cite{15}, Alves extended the results described above to the p-Laplacian operator, assuming that in (P_λ) the nonlinearity f possesses a subcritical growth and $2 \leq p < N$. In particular, fixed $\Upsilon \subset \{1, \ldots, k\}$, for any sequence $\lambda_n \to \infty$, we can extract a subsequence (λ_{n_k}) such that $(u_{\lambda_{n_k}})$ converges strongly in $W^{1,p}(\mathbb{R}^N)$ to a function u, which satisfies $u = 0$ outside Ω_Υ and $u|_{\Omega_j}$, $j \in \Upsilon$, is a least energy solution for

\[
\begin{aligned}
-\Delta_p u + Z(x)u &= f(u), \quad \text{in } \Omega_j, \\
u &\in W^{1,p}_0(\Omega_j), \ u > 0, \quad \text{in } \Omega_j.
\end{aligned}
\]

In the present paper, we extend the results found in \cite{3} to the $p(x)$-Laplacian operator. However, we would like to emphasize that in a lot of estimates, we have used different arguments from that found in \cite{3}. The main difference is related to the fact that for equations involving the $p(x)$-Laplacian operator it is not clear that Moser’s iteration method is a good tool to get the estimates for the L^∞-norm. Here, we adapt some ideas explored in \cite{18} and \cite{25} to get these estimates. For more details see Sect. 5.

Since we intend to find nonnegative solutions, throughout this paper, we replace f by $f^+: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ given by

\[
f^+(x, t) = \begin{cases} f(x, t), & \text{if } t > 0 \\ 0, & \text{if } t \leq 0. \end{cases}
\]

Nevertheless, for the sake of simplicity, we still write f instead of f^+.

The main theorem in this paper is the following:

Theorem 1.1 Assume that (H_1) – (H_3) and (f_1) – (f_3) hold. Then, there exist $\lambda_0 > 0$ with the following property: for any non-empty subset Υ of $\{1, 2, \ldots, k\}$ and $\lambda \geq \lambda_0$, problem (P_λ) has a solution u_λ. Moreover, if we fix the subset Υ, then for any sequence $\lambda_n \to \infty$, we can extract a subsequence (λ_{n_k}) such that $(u_{\lambda_{n_k}})$ converges strongly in $W^{1,p(x)}(\mathbb{R}^N)$ to a function u, which satisfies $u = 0$ outside $\Omega_\Upsilon = \bigcup_{j \in \Upsilon} \Omega_j$ and $u|_{\Omega_j}$, $j \in \Upsilon$, is a least energy solution for

\[
\begin{aligned}
-\Delta_{p(x)} u + Z(x)u &= f(x, u), \quad \text{in } \Omega_j, \\
u &\in W^{1,p(x)}_0(\Omega_j), \ u \geq 0, \quad \text{in } \Omega_j.
\end{aligned}
\]

Notations: The following notations will be used in the present work:

- C and C_i will denote generic positive constant, which may vary from line to line;
- In all the integrals, we omit the symbol dx.

\[\text{Springer}\]
• If \(u \) is a measurable function, we denote \(u^+ \) and \(u^- \) its positive and negative part, i.e.,
\[u^+(x) = \max\{u(x), 0\} \quad \text{and} \quad u^-(x) = \min\{u(x), 0\}. \]

• If \(u, v \) are measurable functions, \(u_- = \text{ess inf}_{\mathbb{R}^N} u, u_+ = \text{ess sup}_{\mathbb{R}^N} u \) and the notation \(u \ll v \) means that \(\text{ess inf}_{\mathbb{R}^N} (v - u) > 0 \). Moreover, we will denote by \(u^* \) the function
\[
u^*(x) = \begin{cases} \frac{Nu(x)}{N-u(x)}, & \text{if } u(x) < N, \\ \infty, & \text{if } u(x) \geq N. \end{cases}
\]

2 Preliminaries on variable exponents Lebesgue and Sobolev spaces

In this section, we recall some results on variable exponents Lebesgue and Sobolev spaces found in [8,19,21] and their references.

Let \(h \in L^\infty(\mathbb{R}^N) \) with \(h^- = \text{ess inf}_{\mathbb{R}^N} h \geq 1. \) The variable exponent Lebesgue space \(L^h(\mathbb{R}^N) \) is defined by
\[
L^h(\mathbb{R}^N) = \left\{ u : \mathbb{R}^N \to \mathbb{R}; u \text{ is measurable and } \int_{\mathbb{R}^N} |u|^h < \infty \right\},
\]
endowed with the norm
\[
|u|_h = \inf \left\{ \lambda > 0; \int_{\mathbb{R}^N} \left(\frac{|u|^h}{\lambda} \right) \leq 1 \right\}.
\]
The variable exponent Sobolev space is defined by
\[
W^{1,h}(\mathbb{R}^N) = \left\{ u \in L^h(\mathbb{R}^N); |\nabla u| \in L^h(\mathbb{R}^N) \right\},
\]
with the norm
\[
\|u\|_{1,h} = \inf \left\{ \lambda > 0; \int_{\mathbb{R}^N} \left(\frac{|\nabla u|^h}{\lambda} + |u|^h \right) \leq 1 \right\}.
\]
If \(h^- > 1 \), the spaces \(L^h(\mathbb{R}^N) \) and \(W^{1,h}(\mathbb{R}^N) \) are separable and reflexive with these norms.

We are mainly interested in subspaces of \(W^{1,h}(\mathbb{R}^N) \) given by
\[
E_W = \left\{ u \in W^{1,h}(\mathbb{R}^N); \int_{\mathbb{R}^N} W(x)|u|^h < \infty \right\},
\]
where \(W \in C(\mathbb{R}^N) \) is such that \(W^- > 0. \) Endowing \(E_W \) with the norm
\[
\|u\|_W = \inf \left\{ \lambda > 0; \int_{\mathbb{R}^N} \left(\frac{|\nabla u|^h}{\lambda} + W(x) \frac{|u|^h}{\lambda} \right) \leq 1 \right\},
\]
E_W is a Banach space. Moreover, it is easy to see that $E_W \hookrightarrow W^{1,h(x)}(\mathbb{R}^N)$ continuously. In addition, we can show that E_W is reflexive. For the reader’s convenience, we recall some basic results.

Proposition 2.1 The functional $\varphi : E_W \to \mathbb{R}$ defined by

$$
\varphi(u) = \int_{\mathbb{R}^N} \left(|\nabla u|^{h(x)} + W(x) |u|^{h(x)} \right),
$$

(2.1)

has the following properties:

(i) If $\|u\|_W \geq 1$, then $\|u\|^{\frac{h}{h^+}}_W \leq \varphi(u) \leq \|u\|^{\frac{h}{h^-}}_W$.

(ii) If $\|u\|_W \leq 1$, then $\|u\|^{\frac{h}{h^+}}_W \leq \varphi(u) \leq \|u\|^{\frac{h}{h^-}}_W$.

In particular, for a sequence (u_n) in E_W,

$$
\|u_n\|_W \to 0 \iff \varphi(u_n) \to 0, \text{ and},
$$

(u_n) is bounded in $E_W \iff \varphi(u_n)$ is bounded in \mathbb{R}.

Remark 2.2 For the functional $\varphi_{h(x)} : L^{h(x)}(\mathbb{R}^N) \to \mathbb{R}$ given by

$$
\varphi_{h(x)}(u) = \int_{\mathbb{R}^N} |u|^{h(x)},
$$

an analogous conclusion to that of Proposition 2.1 also holds.

Proposition 2.3 Let $m \in L^\infty(\mathbb{R}^N)$ with $0 < m_- \leq m(x) \leq h(x)$ for a.e. $x \in \mathbb{R}^N$. If $u \in L^{h(x)}(\mathbb{R}^N)$, then $|u|^{m(x)} \in L^{\frac{h(x)}{m(x)}}(\mathbb{R}^N)$ and

$$
\left| |u|^{m(x)} \right|^{\frac{h(x)}{m(x)}} \leq \max \left\{ |u|^{m_-}_{h(x)}, |u|^{m_+}_{h(x)} \right\} \leq |u|^{m_-}_{h(x)} + |u|^{m_+}_{h(x)}.
$$

Related to the Lebesgue space $L^{h(x)}(\mathbb{R}^N)$, we have the following generalized Hölder’s inequality.

Proposition 2.4 (Hölder’s inequality) If $h_- > 1$, let $h' : \mathbb{R}^N \to \mathbb{R}$ such that

$$
\frac{1}{h(x)} + \frac{1}{h'(x)} = 1 \quad \text{for a.e. } x \in \mathbb{R}^N.
$$

Then, for any $u \in L^{h(x)}(\mathbb{R}^N)$ and $v \in L^{h'(x)}(\mathbb{R}^N)$,

$$
\int_{\mathbb{R}^N} |u v| \, dx \leq \left(\frac{1}{h_-} + \frac{1}{h_-'} \right) |u|_{h(x)} |v|_{h'(x)}.
$$

We can define variable exponent Lebesgue spaces with vector values. We say $u = (u_1, \ldots, u_L) : \mathbb{R}^N \to \mathbb{R}^L \in L^{h(x)}(\mathbb{R}^N, \mathbb{R}^L)$ if, and only if, $u_i \in L^{h(x)}(\mathbb{R}^N)$, for $i = 1, \ldots, L$. On $L^{h(x)}(\mathbb{R}^N, \mathbb{R}^L)$, we consider the norm $|u|_{L^{h(x)}(\mathbb{R}^N, \mathbb{R}^L)} = \sum_{i=1}^L |u_i|_{h(x)}$.

We state below lemmas of Brezis–Lieb type. The proof of the two first results follows the same arguments explored at [26], while the proof of the latter can be found at [8].

Springer
Proposition 2.5 (Brezis–Lieb lemma, first version) Let \((u_n)\) be a bounded sequence in
\(L^{h(x)}(\mathbb{R}^N, \mathbb{R}^L)\) such that \(u_n(x) \rightarrow u(x)\) for a.e. \(x \in \mathbb{R}^N\). Then, \(u \in L^{h(x)}(\mathbb{R}^N, \mathbb{R}^L)\) and
\[
\int_{\mathbb{R}^N} |u_n|^{h(x)} - |u_n - u|^{h(x)} - |u|^{h(x)} \, dx = o_n(1). \tag{2.2}
\]

Proposition 2.6 (Brezis–Lieb lemma, second version) Let \((u_n)\) be a bounded sequence in
\(L^{h(x)}(\mathbb{R}^N, \mathbb{R}^L)\) with \(h > 1\) and \(u_n(x) \rightarrow u(x)\) for a.e. \(x \in \mathbb{R}^N\). Then
\[
u_n \rightharpoonup u \quad \text{in} \quad L^{h(x)}(\mathbb{R}^N, \mathbb{R}^L).
\]

Proposition 2.7 (Brezis–Lieb lemma, third version) Let \((u_n)\) be a bounded sequence in
\(L^{h(x)}(\mathbb{R}^N, \mathbb{R}^L)\) with \(h > 1\) and \(u_n(x) \rightarrow u(x)\) for a.e. \(x \in \mathbb{R}^N\). Then
\[
\int_{\mathbb{R}^N} |u_n|^{h(x)-2} u_n - |u_n - u|^{h(x)-2} (u_n - u) - |u|^{h(x)-2} u \, dx = o_n(1), \tag{2.3}
\]

To finish this section, we notice that for any open subset \(\Omega \subset \mathbb{R}^N\), we can define in the
same way the spaces \(L^{h(x)}(\Omega)\) and \(W^{1,h(x)}(\Omega)\). Moreover, all the above propositions have
analogous versions for these spaces and, besides, we have the following embedding theorem
of Sobolev’s type.

Proposition 2.8 ([21, Theorems 1.1, 1.3]) Let \(\Omega \subset \mathbb{R}^N\) an open domain with the cone
property, \(h: \overline{\Omega} \rightarrow \mathbb{R}\) satisfying \(1 < h_- \leq h_+ < N\) and \(m \in L^\infty_+(\Omega)\).

(i) If \(h\) is Lipschitz continuous and \(h \leq m \leq h^*\), the embedding \(W^{1,h(x)}(\Omega) \hookrightarrow L^{m(x)}(\Omega)\)
is continuous;
(ii) If \(\Omega\) is bounded, \(h\) is continuous and \(m \ll h^*\), the embedding \(W^{1,h(x)}(\Omega) \hookrightarrow L^{m(x)}(\Omega)\)
is compact.

3 An auxiliary problem

In this section, we work with an auxiliary problem adapting the ideas explored in del Pino
and Felmer [14] (see also [3]).

We start noting that the energy functional \(I_\lambda: E_\lambda \rightarrow \mathbb{R}\) associated with \((P_\lambda)\) is given by
\[
I_\lambda(u) = \int_{\mathbb{R}^N} \frac{1}{p(x)} \left(|\nabla u|^{p(x)} + (\lambda V(x) + Z(x)) |u|^{p(x)} \right) - \int_{\mathbb{R}^N} F(x, u),
\]
where \(E_\lambda = (E, \| \cdot \|_\lambda)\) with
\[
E = \left\{ u \in W^{1,p(x)}(\mathbb{R}^N); \int_{\mathbb{R}^N} V(x)|u|^{p(x)} < \infty \right\},
\]
and
\[
\|u\|_\lambda = \inf \{ \sigma > 0; \rho_\lambda \left(\frac{u}{\sigma} \right) \leq 1 \},
\]
being
\[q_\lambda(u) = \int_{\mathbb{R}^N} \left(|\nabla u|^{p(x)} + (\lambda V(x) + Z(x))|u|^{p(x)} \right). \]

Thus, \(E_\lambda \hookrightarrow W^{1,p(x)}(\mathbb{R}^N) \) continuously for \(\lambda \geq 1 \) and \(E_\lambda \) is compactly embedded in \(L^{h(x)}_{loc} (\mathbb{R}^N) \), for all \(1 \leq h < p^* \). In addition, we can show that \(E_\lambda \) is a reflexive space. Also, being \(\mathcal{O} \subset \mathbb{R}^N \) an open set, from the relation
\[q_{\lambda, \mathcal{O}}(u) = \int_{\mathcal{O}} \left(|\nabla u|^{p(x)} + (\lambda V(x) + Z(x))|u|^{p(x)} \right) \geq M \int_{\mathcal{O}} |u|^{p(x)} = M q_{p(x), \mathcal{O}}(u), \]
for all \(u \in E_\lambda \) with \(\lambda \geq 1 \), writing \(M = (1 - \delta)^{-1} \nu \), for some \(0 < \delta < 1 \) and \(\nu > 0 \), we derive
\[q_{\lambda, \mathcal{O}}(u) - \nu q_{p(x), \mathcal{O}}(u) \geq \delta q_{\lambda, \mathcal{O}}(u), \quad \forall u \in E_\lambda, \lambda \geq 1. \] (3.2)

Remark 3.1 From the above commentaries, in this work the parameter \(\lambda \) will be always bigger than or equal to 1.

We recall that for any \(\epsilon > 0 \), the hypotheses \((f_1), (f_2)\) and \((f_3)\) yield
\[f(x, t) \leq \epsilon |t|^{p(x) - 1} + C_x |t|^{q(x) - 1}, \quad \forall x \in \mathbb{R}^N, t \in \mathbb{R}, \] (3.3)
and, consequently,
\[F(x, t) \leq \epsilon |t|^{p(x)} + C_x |t|^{q(x)}, \quad \forall x \in \mathbb{R}^N, t \in \mathbb{R}, \] (3.4)
where \(C_x \) depends on \(\epsilon \). Moreover, for each \(\nu > 0 \) fixed, the assumptions \((f_2)\) and \((f_3)\) allow us considering the function \(a : \mathbb{R}^N \to \mathbb{R} \) given by
\[a(x) = \min \left\{ a > 0 ; \frac{f(x, a)}{a^{p(x) - 1}} = \nu \right\}. \] (3.5)

From \((f_2)\), it follows that
\[0 < a_- = \inf_{x \in \mathbb{R}^N} a(x). \] (3.6)

Using the function \(a(x) \), we set the function \(\tilde{f} : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R} \) given by
\[\tilde{f}(x, t) = \begin{cases} f(x, t), & t \leq a(x) \\ \nu t^{p(x) - 1}, & t \geq a(x) \end{cases}, \]
which fulfills the inequality
\[\tilde{f}(x, t) \leq \nu |t|^{p(x) - 1}, \quad \forall x \in \mathbb{R}^N, t \in \mathbb{R}. \] (3.7)

Thus
\[\tilde{f}(x, t) \leq \nu |t|^{p(x)}, \quad \forall x \in \mathbb{R}^N, t \in \mathbb{R}, \] (3.8)
and
\[\tilde{F}(x, t) \leq \frac{\nu}{p(x)} |t|^{p(x)}, \quad \forall x \in \mathbb{R}^N, t \in \mathbb{R}, \] (3.9)
where \(\tilde{F}(x, t) = \int_0^t \tilde{f}(x, s) \, ds \).
Now, once that \(\Omega = \text{int } V^{-1}(0) \) is formed by \(k \) connected components \(\Omega_1, \ldots, \Omega_k \) with
\(\text{dist}(\Omega_i, \Omega_j) > 0, \ i \neq j, \) then for each \(j \in \{1, \ldots, k\} \), we are able to fix a smooth bounded domain \(\Omega'_j \) such that
\[
\overline{\Omega'_j} \subset \Omega'_j \quad \text{and} \quad \overline{\Omega'_i} \cap \overline{\Omega'_j} = \emptyset, \quad \text{for } i \neq j. \tag{3.10}
\]

From now on, we fix a non-empty subset \(\Upsilon \subset \{1, \ldots, k\} \) and
\[
\Omega_{\Upsilon} = \bigcup_{j \in \Upsilon} \Omega_j, \quad \Omega'_{\Upsilon} = \bigcup_{j \in \Upsilon} \Omega'_j, \quad \chi_{\Upsilon} = \begin{cases} 1, & \text{if } x \in \Omega'_{\Upsilon} \\ 0, & \text{if } x \notin \Omega'_{\Upsilon}. \end{cases}
\]

Using the above notations, we set the functions
\[
g(x, t) = \chi_{\Upsilon}(x) f(x, t) + (1 - \chi_{\Upsilon}(x)) \tilde{f}(x, t), \ (x, t) \in \mathbb{R}^N \times \mathbb{R}
\]
and
\[
G(x, t) = \int_0^t g(x, s) \, ds, \ (x, t) \in \mathbb{R}^N \times \mathbb{R},
\]
and the auxiliary problem
\[
(A_\lambda) \begin{cases} -\Delta_{p(x)} u + (\lambda V(x) + Z(x)) |u|^{p(x)-2} u = g(x, u), & \text{in } \mathbb{R}^N, \\ u \in W^{1, p(x)}(\mathbb{R}^N). \end{cases}
\]

The problem \((A_\lambda)\) is related to \((P_\lambda)\) in the sense that, if \(u_\lambda \) is a solution for \((A_\lambda)\) verifying
\[
uu(x) \leq a(x), \ \forall x \in \mathbb{R}^N \setminus \Omega'_{\Upsilon},
\]
then it is a solution for \((P_\lambda)\).

In comparison with \((P_\lambda)\), problem \((A_\lambda)\) has the advantage that the energy functional associated with \((A_\lambda)\), namely, \(\phi_\lambda : E_\lambda \to \mathbb{R} \) given by
\[
\phi_\lambda(u) = \int_{\mathbb{R}^N} \frac{1}{p(x)} \left(|\nabla u|^{p(x)} + (\lambda V(x) + Z(x)) |u|^{p(x)} \right) - \int_{\mathbb{R}^N} G(x, u),
\]
satisfies the \((PS)\) condition, whereas \(I_\lambda \) does not necessarily satisfy this condition. In this way, the mountain pass level (see Theorem 3.6) is a critical value for \(\phi_\lambda \).

Proposition 3.2 \(\phi_\lambda \) satisfies the mountain pass geometry.

Proof From (3.4) and (3.9),
\[
\phi_\lambda(u) \geq \frac{1}{p_+} \mathcal{Q}_{\lambda}(u) - \epsilon \int_{\mathbb{R}^N} |u|^{p(x)} - C_\epsilon \int_{\mathbb{R}^N} |u|^{q(x)} - \frac{\nu}{p_-} \int_{\mathbb{R}^N} |u|^{p(x)},
\]
for \(\epsilon > 0 \) and \(C_\epsilon > 0 \) be a constant depending on \(\epsilon \). By (3.1), fixing \(\epsilon < \frac{M}{p_+} \) and \(\nu < p_- M \left(\frac{1}{p_+} - \frac{\epsilon}{M} \right) \) and assuming \(\|u\|_{\lambda} < \min \{1, 1/C_q\} \), where \(|v|_{q(x)} \leq C_q \|v\|_{\lambda}, \ \forall v \in E_\lambda, \) we derive from Proposition 2.1
\[
\phi_\lambda(u) \geq \alpha \|u\|_{\lambda}^{p_+} - C \|u\|_{\lambda}^{q_-},
\]
where \(\alpha = \left(\frac{1}{p^+} - \frac{q}{p^M} \right) - \frac{v}{p^- M} > 0 \). Once \(p^+ < q^- \), the first part of the mountain pass geometry is satisfied. Now, fixing \(v \in C_0^\infty(\Omega_T) \), we have for \(t \geq 0 \)

\[
\phi_\lambda(tv) = \int_{\mathbb{R}^N} \frac{t^{p(x)}}{p(x)} \left(|\nabla v|^{p(x)} + Z(x)|v|^{p(x)} \right) - \int_{\mathbb{R}^N} F(x, tv).
\]

If \(t > 1 \), by (3.8) and (3.9),

\[
\phi_\lambda(tv) \leq \frac{t^{p^+}}{p^-} \int_{\mathbb{R}^N} \left(|\nabla v|^{p(x)} + Z(x)|v|^{p(x)} \right) - C_1 t^\theta \int_{\mathbb{R}^N} |v|^\theta - C_2,
\]

and so,

\[
\phi_\lambda(tv) \to -\infty \text{ as } t \to +\infty.
\]

The last limit implies that \(\phi_\lambda \) verifies the second geometry of the mountain pass. \(\square \)

Proposition 3.3 All \((PS)_d\) sequences for \(\phi_\lambda \) are bounded in \(E_\lambda \).

Proof Let \((u_n)\) be a \((PS)_d\) sequence for \(\phi_\lambda \). So, there is \(n_0 \in \mathbb{N} \) such that

\[
\phi_\lambda(u_n) - \frac{1}{\theta} \phi'_\lambda(u_n) u_n \leq d + 1 + \|u_n\|_\lambda, \text{ for } n \geq n_0.
\]

On the other hand, by (3.8) and (3.9)

\[
\tilde{F}(x, t) - \frac{1}{\theta} \tilde{f}(x, t)t \leq \left(\frac{1}{p(x)} - \frac{1}{\theta} \right) v|t|^{p(x)}, \quad \forall x \in \mathbb{R}^N, \quad t \in \mathbb{R},
\]

which together with (3.2) gives

\[
\phi_\lambda(u_n) - \frac{1}{\theta} \phi'_\lambda(u_n) u_n \geq \left(\frac{1}{p^+} - \frac{1}{\theta} \right) \delta \varrho_\lambda(u_n), \quad \forall n \in \mathbb{N}.
\]

Hence

\[
d + 1 + \max \{ \varrho_\lambda(u_n)^{1/p^-}, \varrho_\lambda(u_n)^{1/p^+} \} \geq \left(\frac{1}{p^+} - \frac{1}{\theta} \right) \delta \varrho_\lambda(u_n), \quad \forall n \geq n_0,
\]

from where it follows that \((u_n)\) is bounded in \(E_\lambda \). \(\square \)

Proposition 3.4 If \((u_n)\) is a \((PS)_d\) sequence for \(\phi_\lambda \), then given \(\epsilon > 0 \), there is \(R > 0 \) such that

\[
\limsup_{n} \int_{\mathbb{R}^N \setminus B_R(0)} \left(|\nabla u_n|^{p(x)} + (\lambda V(x) + Z(x))|u_n|^{p(x)} \right) < \epsilon.
\]

(3.11)

Hence, once that \(g \) has a subcritical growth, if \(u \in E_\lambda \) is the weak limit of \((u_n)\), then

\[
\int_{\mathbb{R}^N} g(x, u_n) u_n \, dx \to \int_{\mathbb{R}^N} g(x, u) u \, dx \quad \text{and} \quad \int_{\mathbb{R}^N} g(x, u_n) v \, dx \to \int_{\mathbb{R}^N} g(x, u) v \, dx, \quad \forall v \in E_\lambda.
\]

Proof Let \((u_n)\) be a \((PS)_d\) sequence for \(\phi_\lambda \), \(R > 0 \) large such that \(\Omega_{\Gamma} \subset B_{R}(0) \) and \(\eta_R \in C^\infty(\mathbb{R}^N) \) satisfying

\[
\eta_R(x) = \begin{cases}
0, & x \in \frac{B_{R}(0)}{2} \\
1, & x \in \mathbb{R}^N \setminus B_{R}(0),
\end{cases}
\]

\(\square \) Springer
0 ≤ \eta_R ≤ 1 and |\nabla \eta_R| \leq \frac{C}{R}, where C > 0 does not depend on R. This way,

\[\int_{\mathbb{R}^N} \left(|\nabla u_n|^{p(x)} + (\lambda V(x) + Z(x))|u_n|^{p(x)} \right) \eta_R \]

\[= \phi'_\lambda(u_n) (u_n \eta_R) - \int_{\mathbb{R}^N} u_n |\nabla u_n|^{p(x)-2} \nabla u_n \cdot \nabla \eta_R + \int_{\mathbb{R}^N \setminus \Omega'_\epsilon} f(x, u_n) u_n \eta_R.\]

Denoting

\[I = \int_{\mathbb{R}^N} \left(|\nabla u_n|^{p(x)} + (\lambda V(x) + Z(x))|u_n|^{p(x)} \right) \eta_R,\]

it follows from (3.8),

\[I \leq \phi'_\lambda(u_n) (u_n \eta_R) + \frac{C}{R} \int_{\mathbb{R}^N} |u_n| |\nabla u_n|^{p(x)-1} + \nu \int_{\mathbb{R}^N} |u_n|^{p(x)} \eta_R.\]

Using Hölder’s inequality 2.4 and Proposition 2.3, we derive

\[I \leq \phi'_\lambda(u_n) (u_n \eta_R) + \frac{C}{R} \int_{\mathbb{R}^N} |u_n| |\nabla u_n|^{p(x)-1} + \nu \int_{\mathbb{R}^N} |u_n|^{p(x)} \eta_R.\]

Since \((u_n)\) and \(|\nabla u_n|\) are bounded in \(L^{p(x)}(\mathbb{R}^N)\) and \(\frac{\nu}{M} = 1 - \delta\), we obtain

\[\int_{\mathbb{R}^N \setminus B_R(0)} \left(|\nabla u_n|^{p(x)} + (\lambda V(x) + Z(x))|u_n|^{p(x)} \right) \leq o_n(1) + \frac{C}{R}.\]

Therefore

\[\limsup_n \int_{\mathbb{R}^N \setminus B_R(0)} \left(|\nabla u_n|^{p(x)} + (\lambda V(x) + Z(x))|u_n|^{p(x)} \right) \leq \frac{C}{R}.\]

So, given \(\epsilon > 0\), choosing a \(R > 0\) possibly still bigger, we have that \(\frac{C}{R} < \epsilon\), which proves (3.11). Now, we will show that

\[\int_{\mathbb{R}^N} g(x, u_n) u_n \rightarrow \int_{\mathbb{R}^N} g(x, u) u.\]

Using the fact that \(g(x, u) u \in L^1(\mathbb{R}^N)\) together with (3.11) and Sobolev embeddings, given \(\epsilon > 0\), we can choose \(R > 0\) such that

\[\limsup_{n \to +\infty} \int_{\mathbb{R}^N \setminus B_R(0)} |g(x, u_n) u_n| \leq \frac{\epsilon}{4} \quad \text{and} \quad \int_{\mathbb{R}^N \setminus B_R(0)} |g(x, u) u| \leq \frac{\epsilon}{4}.\]

On the other hand, since \(g\) has a subcritical growth, we have by compact embeddings

\[\int_{B_R(0)} g(x, u_n) u_n \rightarrow \int_{B_R(0)} g(x, u) u.\]
Combining the above information, we conclude that
\[\int_{\mathbb{R}^N} g(x, u_n) u_n \rightarrow \int_{\mathbb{R}^N} g(x, u) u. \]
The same type of arguments works to prove that
\[\int_{\mathbb{R}^N} g(x, u_n) v \rightarrow \int_{\mathbb{R}^N} g(x, u) v \quad \forall v \in E_\lambda. \]

\[\square \]

Proposition 3.5 \(\phi_\lambda \) verifies the \((PS)\) condition.

Proof Let \((u_n)\) be a \((PS)_d\) sequence for \(\phi_\lambda\) and \(u \in E_\lambda\) such that \(u_n \rightharpoonup u\) in \(E_\lambda\). Thereby, by Proposition 3.4,
\[\int_{\mathbb{R}^N} g(x, u_n) u_n \rightarrow \int_{\mathbb{R}^N} g(x, u) u \quad \text{and} \quad \int_{\mathbb{R}^N} g(x, u_n) v \rightarrow \int_{\mathbb{R}^N} g(x, u) v, \quad \forall v \in E_\lambda. \]
Moreover, the weak limit also gives
\[\int_{\mathbb{R}^N} |\nabla u|^{p(x)-2} \nabla u \cdot (u_n - u) \rightarrow 0 \]
and
\[\int_{\mathbb{R}^N} (\lambda V(x) + Z(x)) |u|^{p(x)-2} u (u_n - u) \rightarrow 0. \]
Now, if
\[P_n^1(x) = \left(|\nabla u|^{p(x)-2} \nabla u_n - |\nabla u|^{p(x)-2} \nabla u \right) \cdot (u_n - u), \]
and
\[P_n^2(x) = \left(|u|^{p(x)-2} u - |u|^{p(x)-2} u \right) (u_n - u), \]
we derive
\[\int_{\mathbb{R}^N} \left(P_n^1(x) + (\lambda V(x) + Z(x)) P_n^2(x) \right) = \phi_\lambda'(u_n) u_n + \int_{\mathbb{R}^N} g(x, u_n) u_n - \phi_\lambda'(u) u - \int_{\mathbb{R}^N} g(x, u_n) u \]
\[- \int_{\mathbb{R}^N} \left(|\nabla u|^{p(x)-2} \nabla u \cdot (u_n - u) + (\lambda V(x) + Z(x)) |u|^{p(x)-2} u (u_n - u) \right). \]
Recalling that \(\phi_\lambda'(u_n) u_n = o_n(1)\) and \(\phi_\lambda'(u) u = o_n(1)\), the above limits lead to
\[\int_{\mathbb{R}^N} \left(P_n^1(x) + (\lambda V(x) + Z(x)) P_n^2(x) \right) \rightarrow 0. \]
Now, the conclusion follows as in [8]. \(\square \)

Theorem 3.6 The problem \((A_\lambda)\) has a (nonnegative) solution, for all \(\lambda \geq 1\).

Proof The proof is an immediate consequence of the Mountain Pass Theorem due to Ambrosetti and Rabinowitz [10]. \(\square \)
4 The \((PS)_\infty\) condition

A sequence \((u_n) \subset W^{1,p(x)}(\mathbb{R}^N)\) is called a \((PS)_\infty\) sequence for the family \((\phi_\lambda)_\lambda\geq 1\), if there is a sequence \((\lambda_n) \subset [1, \infty)\) with \(\lambda_n \to \infty\) as \(n \to \infty\), verifying
\[
\phi_{\lambda_n}(u_n) \to c \quad \text{and} \quad \|\phi_{\lambda_n}(u_n)\| \to 0, \quad \text{as} \quad n \to \infty.
\]

Proposition 4.1 Let \((u_n) \subset W^{1,p(x)}(\mathbb{R}^N)\) be a \((PS)_\infty\) sequence for \((\phi_\lambda)_\lambda\geq 1\). Then, up to a subsequence, there exists \(u \in W^{1,p(x)}(\mathbb{R}^N)\) such that \(u_n \to u\) in \(W^{1,p(x)}(\mathbb{R}^N)\). Furthermore,

(i) \(\varrho_{\lambda_n}(u_n - u) \to 0\) and, consequently, \(u_n \to u\) in \(W^{1,p(x)}(\mathbb{R}^N)\);

(ii) \(u = 0\) in \(\mathbb{R}^N \setminus \Omega_\gamma\), \(u \geq 0\) and \(u|_{\Omega_j} \colon j \in \gamma\), is a solution for

\[
(P_j)\begin{cases}
-\Delta_p(x)u + Z(x)|u|^{p(x)-2}u = f(x,u), \quad \text{in} \ \Omega_j, \\
u \in W^{1,p(x)}(\Omega_j);
\end{cases}
\]

(iii) \(\int_{\mathbb{R}^N} \lambda_n V(x)|u_n|^{p(x)} \to 0\);

(iv) \(\varrho_{\lambda_n,\Omega_j}(u_n) \to \int_{\Omega_j} \left(\left|\nabla u(x)\right|^{p(x)} + Z(x)|u|^{p(x)}\right)\), for \(j \in \gamma\);

(v) \(\varrho_{\lambda_n,\mathbb{R}^N \setminus \Omega_\gamma}(u_n) \to 0\);

(vi) \(\varphi_{\lambda_n}(u_n) \to \int_{\Omega_\gamma} \frac{1}{p(x)} \left(\left|\nabla u\right|^{p(x)} + Z(x)|u|^{p(x)} \right) - \int_{\Omega_\gamma} F(x,u)\).

Proof Using the same reasoning as in the proof of Proposition 3.3, we obtain that \((\varrho_{\lambda_n}(u_n))\) is bounded in \(\mathbb{R}\). Then \((\|u_n\|_{\lambda_n})\) is bounded in \(\mathbb{R}\) and \((u_n)\) is bounded in \(W^{1,p(x)}(\mathbb{R}^N)\). So, up to a subsequence, there exists \(u \in W^{1,p(x)}(\mathbb{R}^N)\) such that

\[
u_n \to u \quad \text{in} \quad W^{1,p(x)}(\mathbb{R}^N) \quad \text{and} \quad u_n(x) \to u(x) \quad \text{for} \quad \text{a.e.} \ x \in \mathbb{R}^N.
\]

Now, for each \(m \in \mathbb{N}\), we define \(C_m = \left\{ x \in \mathbb{R}^N : V(x) \geq \frac{1}{m} \right\}\). Without loss of generality, we can assume \(\lambda_n < 2(\lambda_n - 1), \ \forall n \in \mathbb{N}\). Thus

\[
\int_{C_m} |u_n|^{p(x)} \leq \frac{2m}{\lambda_n} \int_{C_m} \left(\lambda_n V(x) + Z(x) \right) |u_n|^{p(x)} \leq \frac{2m}{\lambda_n} \varrho_{\lambda_n}(u_n) \leq \frac{C}{\lambda_n}.
\]

By Fatou’s lemma, we derive

\[
\int_{C_m} |u|^{p(x)} = 0,
\]

which implies that \(u = 0\) in \(C_m\) and, consequently, \(u = 0\) in \(\mathbb{R}^N \setminus \overline{\Omega}\). From this, we are able to prove \((i) - (vi)\).

\[(i)\] Since \(u = 0\) in \(\mathbb{R}^N \setminus \overline{\Omega}\), repeating the argument explored in Proposition 3.5 we get

\[
\int_{\mathbb{R}^N} \left(P^1_n(x) + (\lambda_n V(x) + Z(x)) P^2_n(x) \right) \to 0,
\]

where

\[
P^1_n(x) = \left(\left|\nabla u_n\right|^{p(x)-2} \nabla u_n - \left|\nabla u\right|^{p(x)-2} \nabla u \right) \cdot (\nabla u_n - \nabla u).
\]
and

\[P_n^2(x) = \left(|u_n|^{p(x)-2}u_n - |u|^{p(x)-2}u \right)(u_n - u). \]

Therefore, \(\varrho_{\lambda_n}(u_n - u) \to 0 \), which implies \(u_n \to u \) in \(W^{1,p(x)}(\mathbb{R}^N) \).

(ii) Since \(u \in W^{1,p(x)}(\mathbb{R}^N) \) and \(u = 0 \) in \(\mathbb{R}^N \setminus \Omega \), we have \(u \in W^{1,p(x)}_0(\Omega) \) or, equivalently, \(u|_{\Omega_j} \in W^{1,p(x)}_0(\Omega_j) \), for \(j = 1, \ldots, k \). Moreover, the limit \(u_n \to u \) in \(W^{1,p(x)}(\mathbb{R}^N) \) combined with \(\phi'_{\lambda_n}(u_n) \varphi \to 0 \) for \(\varphi \in C_0^\infty(\Omega_j) \) implies that

\[
\int_{\Omega_j} \left(|\nabla u|^{p(x)-2} \nabla u \cdot \nabla \varphi + Z(x)|u|^{p(x)-2}u \varphi \right) - \int_{\Omega_j} g(x,u)\varphi = 0, \quad (4.1)
\]

showing that \(u|_{\Omega_j} \) is a solution for

\[
\begin{cases}
-\Delta_{p(x)}u + Z(x)|u|^{p(x)-2}u = g(x,u), & \text{in } \Omega_j, \\
u \in W^{1,p(x)}_0(\Omega_j).
\end{cases}
\]

This way, if \(j \in \Upsilon \), then \(u|_{\Omega_j} \) satisfies \((P_j) \). On the other hand, if \(j \notin \Upsilon \), we must have

\[
\int_{\Omega_j} \left(|\nabla u|^{p(x)} + Z(x)|u|^{p(x)} \right) - \int_{\Omega_j} \tilde{f}(x,u)u = 0.
\]

The above equality combined with \((3.8)\) and \((3.2)\) gives

\[0 \geq \varrho_{\lambda_j}(\Omega_j)(u) - \nu_{\varphi_{p(x)},\Omega_j}(u) \geq \delta_{\varrho_{\lambda_j},\Omega_j}(u) \geq 0, \]

from where it follows \(u|_{\Omega_j} = 0 \). This proves \(u = 0 \) outside \(\Omega_{\Upsilon} \) and \(u \geq 0 \) in \(\mathbb{R}^N \).

(iii) It follows from (i), since

\[
\int_{\mathbb{R}^N} \lambda_n V(x)|u_n|^{p(x)} = \int_{\mathbb{R}^N} \lambda_n V(x)|u_n - u|^{p(x)} \leq 2\varrho_{\lambda_n}(u_n - u).
\]

(iv) Let \(j \in \Upsilon \). From (i),

\[
\varrho_{p(x),\Omega_j'}(u_n - u), \varrho_{p(x),\Omega_j'}(\nabla u_n - \nabla u) \to 0.
\]

Then by Proposition 2.5,

\[
\int_{\Omega_j'} \left(|\nabla u_n|^{p(x)} - |\nabla u|^{p(x)} \right) \to 0 \quad \text{and} \quad \int_{\Omega_j'} Z(x)(|u_n|^{p(x)} - |u|^{p(x)}) \to 0.
\]

From (iii),

\[
\int_{\Omega_j'} \lambda_n V(x)(|u_n|^{p(x)} - |u|^{p(x)}) = \int_{\Omega_j'} \lambda_n V(x)|u_n|^{p(x)} \to 0.
\]

This way

\[
\varrho_{\lambda_n,\Omega_j'}(u_n) - \varrho_{\lambda_n,\Omega_j'}(u) \to 0.
\]
Once $u = 0$ in $\Omega_j \setminus \Omega_j$, we get
\[
\varrho_{\lambda_n, \Omega_j}(u_n) \to \int_{\Omega_j} \left(|\nabla u|^{p(x)} + Z(x)|u|^{p(x)} \right).
\]

(v) By (i), $\varrho_{\lambda_n}(u_n - u) \to 0$, and so,
\[
\varrho_{\lambda_n, \mathbb{R}^N \setminus \Omega}(u_n) \to 0.
\]

(vi) We can write the functional ϕ_{λ_n} in the following way
\[
\phi_{\lambda_n}(u_n) = \sum_{j \in \Upsilon} \int_{\Omega_j} \frac{1}{p(x)} \left(|\nabla u_n|^{p(x)} + (\lambda_n V(x) + Z(x))|u_n|^{p(x)} \right)
+ \int_{\mathbb{R}^N \setminus \Omega} \frac{1}{p(x)} \left(|\nabla u_n|^{p(x)} + (\lambda_n V(x) + Z(x))|u_n|^{p(x)} \right) - \int G(x, u_n).
\]

From (i) – (v),
\[
\int_{\Omega_j} \frac{1}{p(x)} \left(|\nabla u_n|^{p(x)} + (\lambda_n V(x) + Z(x))|u_n|^{p(x)} \right)
\to \int_{\Omega_j} \frac{1}{p(x)} \left(|\nabla u|^{p(x)} + Z(x)|u|^{p(x)} \right),
\]

\[
\int_{\mathbb{R}^N \setminus \Omega} \frac{1}{p(x)} \left(|\nabla u_n|^{p(x)} + (\lambda_n V(x) + Z(x))|u_n|^{p(x)} \right) \to 0.
\]

and
\[
\int_{\mathbb{R}^N} G(x, u_n) \to \int_{\Omega} F(x, u).
\]

Therefore
\[
\phi_{\lambda_n}(u_n) \to \int_{\Omega} \frac{1}{p(x)} \left(|\nabla u|^{p(x)} + Z(x)|u|^{p(x)} \right) - \int F(x, u).
\]

\[
\Box
\]

5 The boundedness of the (A_{λ}) solutions

In this section, we study the boundedness outside Ω'_{Υ} for some solutions of (A_{λ}). To this end, we adapt for our problem arguments found in [18] and [25].

Proposition 5.1 Let (u_{λ}) be a family of solutions for (A_{λ}) such that $u_{\lambda} \to 0$ in $W^{1,p(x)}(\mathbb{R}^N \setminus \Omega_{\Upsilon})$, as $\lambda \to \infty$. Then, there exists $\lambda^* > 0$ with the following property:
\[
|u_{\lambda}|_{\infty, \mathbb{R}^N \setminus \Omega'_{\Upsilon}} \leq a_-, \quad \forall \lambda \geq \lambda^*.
\]

Hence, u_{λ} is a solution for (P_{λ}) for $\lambda \geq \lambda^*$.

Before to prove the above proposition, we need to show some technical lemmas.
Lemma 5.2 There exist \(x_1, \ldots, x_l \in \partial \Omega_1' \) and corresponding \(\delta_{x_1}, \ldots, \delta_{x_l} > 0 \) such that

\[
\partial \Omega_1' \subset \mathcal{N} (\partial \Omega_1') := \bigcup_{i=1}^{l} B_{\delta_{x_i}} (x_i).
\]

Moreover,

\[
q^{x_i}_+ \leq (p^{-}_x)^{*},
\]

where

\[
q^{x_i}_+ = \sup_{B_{\delta_{x_i}} (x_i)} q, \quad p^{x_i}_+ = \inf_{B_{\delta_{x_i}} (x_i)} p \quad \text{and} \quad (p^{-}_x)^{*} = \frac{N p^{x}_+}{N - p^{x}_-}.
\]

Proof From (3.10), \(\Omega_1' \subset \Omega_1 \). So, there is \(\delta > 0 \) such that

\[
B_{\delta} (x) \subset \mathbb{R}^N \setminus \Omega_1, \quad \forall x \in \partial \Omega_1'.
\]

Once \(q \ll p^{*} \), there exists \(\epsilon > 0 \) such that \(\epsilon \leq p^{*} (y) - q (y) \), for all \(y \in \mathbb{R}^N \). Then, by continuity, for each \(x \in \partial \Omega_1' \), we can choose a sufficiently small \(0 < \delta_x \leq \delta \) such that

\[
q^{x}_+ \leq (p^{-}_x)^{*},
\]

where

\[
q^{x}_+ = \sup_{B_{\delta_x} (x)} q, \quad p^{x}_+ = \inf_{B_{\delta_x} (x)} p \quad \text{and} \quad (p^{-}_x)^{*} = \frac{N p^{x}_+}{N - p^{x}_-}.
\]

Covering \(\partial \Omega_1' \) by the balls \(B_{\delta_x} (x) \), \(x \in \partial \Omega_1' \), and using its compactness, there are \(x_1, \ldots, x_l \in \partial \Omega_1' \) such that

\[
\partial \Omega_1' \subset \bigcup_{i=1}^{l} B_{\delta_{x_i}} (x_i).
\]

\(\Box \)

Lemma 5.3 If \(u_\lambda \) is a solution for \((A_\lambda) \), in each \(B_{\delta_{x_i}} (x_i) \), \(i = 1, \ldots, l \), given by Lemma 5.2, it is fulfilled

\[
\int_{A_{k,R,x_i}} |\nabla u_\lambda|^p_{x_i} \leq C \left((k^{q^p} + 2)|A_{k,\delta,x_i}| + (\delta - \bar{\delta})(p^{-}_x)^{*} \int_{A_{k,\delta,x_i}} (u_\lambda - k)(p^{x}_-)^{*} \right),
\]

where \(0 < \bar{\delta} < \delta < \delta_{x_i} \), \(k \geq \frac{a_{-} - 4}{4} \), \(C = C(p_{-}, p_{+}, q_{-}, q_{+}, \nu, \delta_{x_i}) > 0 \) is a constant independent of \(k \), and for any \(R > 0 \), we denote by \(A_{k,R,x_i} \) the set

\[
A_{k,R,x_i} = B_R (x_i) \cap \left\{ x \in \mathbb{R}^N ; u_\lambda (x) > k \right\}.
\]

Proof We choose arbitrarily \(0 < \bar{\delta} < \delta < \delta_{x_i} \) and \(\xi \in C^\infty (\mathbb{R}^N) \) with

\[
0 \leq \xi \leq 1, \quad \text{supp} \; \xi \subset B_{\delta} (x_i), \; \xi = 1 \text{ in } B_{\bar{\delta}} (x_i) \quad \text{and} \quad |\nabla \xi| \leq \frac{2}{\delta - \bar{\delta}}.
\]

For \(k \geq \frac{a_{-} - 4}{4} \), we define \(\eta = \xi^{p^+} (u_\lambda - k)^{+} \). We notice that

\[
\nabla \eta = p_{+} \xi^{p^+ - 1} (u_\lambda - k) \nabla \xi + \xi^{p^+} \nabla u_\lambda.
\]
on the set \(\{ u_{\lambda} > k \} \). Then, writing \(u_{\lambda} = u \) and taking \(\eta \) as a test function, we obtain

\[
p_+ \int_{A_k, \lambda, x_i} \xi^{p+1} (u - k) | \nabla u |^{p(x) - 2} \nabla u \cdot \nabla \xi + \int_{A_k, \lambda, x_i} \xi^{p+1} | \nabla u |^{p(x)} \\
+ \int_{A_k, \lambda, x_i} (\lambda V(x) + Z(x)) u^{p(x) - 1} \xi^{p+1} (u - k) = \int_{A_k, \lambda, x_i} g(x, u) \xi^{p+1} (u - k).
\]

If we set

\[
J = \int_{A_k, \lambda, x_i} \xi^{p+1} | \nabla u |^{p(x)},
\]

using that \(\nu \leq \lambda V(x) + Z(x), \forall x \in \mathbb{R}^N \), we get

\[
J \leq p_+ \int_{A_k, \lambda, x_i} \xi^{p+1} (u - k) | \nabla u |^{p(x) - 1} | \nabla \xi | \\
- \int_{A_k, \lambda, x_i} \nu u^{p(x) - 1} \xi^{p+1} (u - k) + \int_{A_k, \lambda, x_i} g(x, u) \xi^{p+1} (u - k). \tag{5.2}
\]

From (5.2), (3.3) and (3.7),

\[
J \leq p_+ \int_{A_k, \lambda, x_i} \xi^{p+1} (u - k) | \nabla u |^{p(x) - 1} | \nabla \xi | \\
- \int_{A_k, \lambda, x_i} \nu u^{p(x) - 1} \xi^{p+1} (u - k) \\
+ \int_{A_k, \lambda, x_i} (\nu u^{p(x) - 1} + C_{\nu} u^{q(x) - 1}) \xi^{p+1} (u - k),
\]

from where it follows

\[
J \leq p_+ \int_{A_k, \lambda, x_i} \xi^{p+1} (u - k) | \nabla u |^{p(x) - 1} | \nabla \xi | + C_{\nu} \int_{A_k, \lambda, x_i} u^{q(x) - 1} (u - k).
\]

Using Young’s inequality, we obtain, for \(\chi \in (0, 1) \),

\[
J \leq \frac{p_+ (p_+ - 1)}{p_-} \chi^{p_+ - 1} J + \frac{2p_+ p_+}{p_-} \chi^{-p_+} \int_{A_k, \lambda, x_i} \left(\frac{u - k}{\delta - \delta} \right)^{p(x)} \\
+ \frac{C_{\nu} (q_+ - 1)}{q_-} \int_{A_k, \lambda, x_i} u^{q(x)} + \frac{C_{\nu} (1 + \delta^{q_+}_{x_i})}{q_-} \int_{A_k, \lambda, x_i} \left(\frac{u - k}{\delta - \delta} \right)^{q(x)}.
\]

Writing

\[
Q = \int_{A_k, \lambda, x_i} \left(\frac{u - k}{\delta - \delta} \right)^{(p_+)}_x,
\]

\(\Box \) Springer
for \(\chi \approx 0^+ \) fixed, due to (5.1), we deduce

\[
J \leq \frac{1}{2} J + \frac{2^{p_+} p_+}{p_-} \chi^{-p_+} (|A_{k,\bar{\delta},x_i}| + Q) + \frac{C_v 2^{q_+} (q_+ - 1) (1 + \delta^{q_+}_{\bar{n}})}{q_-} (|A_{k,\bar{\delta},x_i}| + Q)
\]

\[
+ \frac{C_v 2^{q_+} (q_+ - 1) (1 + k^{q_+})}{q_-}|A_{k,\bar{\delta},x_i}| + \frac{C_v (1 + \delta^{q_+}_{\bar{n}})}{q_-} (|A_{k,\bar{\delta},x_i}| + Q).
\]

Therefore

\[
\int_{A_{k,\bar{\delta},x_i}} |\nabla u|^{p(x)} \leq J \leq C \left[(k^{q_+} + 1)|A_{k,\bar{\delta},x_i}| + Q\right] + |A_{k,\bar{\delta},x_i}|
\]

for a positive constant \(C = C(p_-, p_+, q_-, q_+, \nu, \delta_{x_i}) \) which does not depend on \(k \). Since

\[
|\nabla u|^{p_{\bar{n}}} - 1 \leq |\nabla u|^{p(x)}, \forall x \in B_{\delta_{x_i}}(x_i),
\]

we obtain

\[
\int_{A_{k,\bar{\delta},x_i}} |\nabla u|^{p_{\bar{n}}} \leq C \left[(k^{q_+} + 2)|A_{k,\bar{\delta},x_i}| + (\bar{\delta} - \delta)^{-\left(p_{\bar{n}}\right)^*} \int_{A_{k,\bar{\delta},x_i}} (u - k)^{\left(p_{\bar{n}}\right)^*}\right],
\]

for a positive constant \(C = C(p_-, p_+, q_-, q_+, \nu, \delta_{x_i}) \) which does not depend on \(k \). \(\square \)

The next lemma can be found at ([27, Lemma 4.7]).

Lemma 5.4 Let \((J_n)\) be a sequence of nonnegative numbers satisfying

\[
J_{n+1} \leq CB^n J_n^{1+\eta}, \ n = 0, 1, 2, \ldots,
\]

where \(C, \eta > 0 \) and \(B > 1 \). If

\[
J_0 \leq C^{-\frac{1}{\eta}} B^{-\frac{1}{\eta^2}},
\]

then \(J_n \to 0, \) as \(n \to \infty. \)

Lemma 5.5 Let \((u_\lambda)\) be a family of solutions for \((A_\lambda)\) such that \(u_\lambda \to 0 \) in \(W^{1,p(x)}(\mathbb{R}^N \setminus \Omega_T) \), as \(\lambda \to \infty. \) Then, there exists \(\lambda^* > 0 \) with the following property:

\[
|u_\lambda|_{\infty,N(\beta \Omega_T)} \leq a_-, \forall \lambda \geq \lambda^*.
\]

Proof It is enough to prove the inequality in each ball \(B_{\delta_{x_i}}(x_i), i = 1, \ldots, l, \) given by Lemma 5.2. We set

\[
\bar{\delta}_n = \frac{\delta_{x_i}}{2} + \frac{\delta_{x_i}}{2n+1}, \delta_n = \frac{\bar{\delta}_n + \bar{\delta}_{n+1}}{2}, k_n = \frac{a_-}{2} \left(1 - \frac{1}{2n+1}\right), \forall n = 0, 1, 2, \ldots.
\]

Then

\[
\bar{\delta}_n \downarrow \frac{\delta_{x_i}}{2}, \delta_n + 1 < \delta_n < \bar{\delta}_n, \ k_n \uparrow \frac{a_-}{2}.
\]
From now on, we fix

\[J_n(\lambda) = J_n = \int_{A_{\delta_x_n \cdot x}} (u_{\lambda}(x) - k_n) \left(p_{\lambda}^x \right)^* , \quad n = 0, 1, 2, \ldots \]

and \(\xi \in C^1(\mathbb{R}) \) such that

\[0 \leq \xi \leq 1, \quad \xi(t) = 1, \quad \text{for} \ t \leq \frac{1}{2}, \quad \text{and} \ \xi(t) = 0, \quad \text{for} \ t \geq \frac{3}{4}. \]

Setting

\[\xi_n(x) = \xi \left(\frac{2^{n+1}}{\delta_{x_i}} \left(|x - x_i| - \frac{\delta_{x_i}}{2} \right) \right), \quad x \in \mathbb{R}^N, \quad n = 0, 1, 2, \ldots, \]

we have \(\xi_n = 1 \) in \(B_{\delta_{x_n+1}}(x_i) \) and \(\xi_n = 0 \) outside \(B_{\delta_{x_n}}(x_i) \). Writing \(u_{\lambda} = u \), we get

\[J_{n+1} \leq \int_{A_{\delta_{x_n+1} \cdot x} - \delta_{x_i}} (u(x) - k_{n+1}) \xi_n(x) \left(p_{\lambda}^x \right)^* \]

\[= \int_{B_{\delta_{x_n}}(x_i)} \left((u - k_{n+1})^{+}(x) \xi_n(x) \right) \left(p_{\lambda}^x \right)^* \]

\[\leq C(N, p_{\lambda}^x) \left(\int_{B_{\delta_{x_n}}(x_i)} |\nabla ((u - k_{n+1})^{+}\xi_n)(x)|_{p_{\lambda}^x} \right) \left(p_{\lambda}^x \right)^* \]

\[\leq C(N, p_{\lambda}^x) \left(\int_{A_{\delta_{x_n+1} \cdot x} - \delta_{x_i}} |\nabla u|_{p_{\lambda}^x}^{p_{\lambda}^x} + \int_{A_{\delta_{x_n+1} \cdot x} - \delta_{x_i}} (u - k_{n+1})^{+} \xi_n \left(p_{\lambda}^x \right)^* \right). \]

Since

\[|\nabla \xi_n(x)| \leq C(\delta_{x_i}) 2^{n+1}, \quad \forall x \in \mathbb{R}^N, \]

writing \(\frac{\left(p_{\lambda}^x \right)^*}{p_{\lambda}^x} = \tilde{J}_{n+1} \), we obtain

\[\tilde{J}_{n+1} \leq C(N, p_{\lambda}^x, \delta_{x_i}) \left(\int_{A_{\delta_{x_n+1} \cdot x} - \delta_{x_i}} |\nabla u|_{p_{\lambda}^x}^{p_{\lambda}^x} + 2^{np_{\lambda}^x} \int_{A_{\delta_{x_n+1} \cdot x} - \delta_{x_i}} (u - k_{n+1})^{+} \xi_n \right). \]
Using Lemma 5.3,

\[\tilde{J}_{n+1} \leq C \left(N, p_{x_i}^+, \delta_{x_i} \right) \left(\left(k_{n+1}^{q_+} + 2 \right) |A_{k_{n+1}, \tilde{\delta}_{x_i}}| \right) + \left(\frac{2^n+3}{\delta_{x_i}} \right) \left(p_{x_i}^- \right)^* \int_{A_{k_{n+1}, \tilde{\delta}_{x_i}}} (u - k_{n+1}) \left(p_{x_i}^- \right)^* + 2^n p_{x_i}^- \int_{A_{k_{n+1}, \tilde{\delta}_{x_i}}} (u - k_{n+1}) p_{x_i}^- \right)

\leq C \left(N, p_{x_i}^-, \delta_{x_i} \right) \left(\left(k_{n+1}^{q_+} + 2 \right) |A_{k_{n+1}, \tilde{\delta}_{x_i}}| \right) + 2^n \left(p_{x_i}^- \right)^* \int_{A_{k_{n+1}, \tilde{\delta}_{x_i}}} (u - k_{n+1}) \left(p_{x_i}^- \right)^* + 2^n p_{x_i}^- \int_{A_{k_{n+1}, \tilde{\delta}_{x_i}}} (u - k_{n+1}) p_{x_i}^- \right).

From Young’s inequality

\[\int_{A_{k_{n+1}, \tilde{\delta}_{x_i}}} (u - k_{n+1}) p_{x_i}^- \leq C \left(p_{x_i}^- \right) \left(|A_{k_{n+1}, \tilde{\delta}_{x_i}}| \right) + \int_{A_{k_{n+1}, \tilde{\delta}_{x_i}}} (u - k_{n+1}) \left(p_{x_i}^- \right)^* \right).

Thus

\[\tilde{J}_{n+1} \leq C \left(N, p_{x_i}^-, \delta_{x_i} \right) \left(\left(\left(\frac{a_-}{2} \right)^{q_+} + 2 \right) |A_{k_{n+1}, \tilde{\delta}_{x_i}}| + 2^n \left(p_{x_i}^- \right)^* \right) \left(J_n + 2^n p_{x_i}^- J_n \right).

Now, since

\[J_n \geq \int_{A_{k_{n+1}, \tilde{\delta}_{x_i}}} (u - k_n) \left(p_{x_i}^- \right)^* \geq (k_{n+1} - k_n) \left(p_{x_i}^- \right)^* \left(A_{k_{n+1}, \tilde{\delta}_{x_i}} \right) \]

it follows that

\[|A_{k_{n+1}, \tilde{\delta}_{x_i}}| \leq \left(\frac{2^n+3}{\frac{n+3}{a_-}} \right) \left(p_{x_i}^- \right)^* \]

and so,

\[\tilde{J}_{n+1} \leq C \left(N, p_{x_i}^-, \delta_{x_i}, a_-, q_+ \right) \left(2^n \left(p_{x_i}^- \right)^* \right) J_n + 2^n \left(p_{x_i}^- \right)^* \left(J_n + 2^n \left(p_{x_i}^- \right)^* \right) J_n + 2^n \left(p_{x_i}^- \right)^* \left(J_n + 2^n \left(p_{x_i}^- \right)^* \right) J_n. \]

Fixing \(\alpha = \left(p_{x_i}^+ + \left(p_{x_i}^- \right)^* \right) \), it follows that

\[J_{n+1} \leq C \left(N, p_{x_i}^+, \delta_{x_i}, a_-, q_+ \right) \left(\frac{\alpha \left(p_{x_i}^+ \right)^*}{2} \right)^* \left(J_n \right) \left(\frac{\left(p_{x_i}^- \right)^*}{p_{x_i}^-} \right)^*, \]

and consequently

\[J_{n+1} \leq C B^n J_n^{1+\eta}, \]
Proof of Proposition 5.1

We derive

\[\int_{\Omega_1} \left(u_\lambda - \frac{a}{4} \right)^p = J_0(\lambda) = C \left(\frac{1}{4} \right)^p \lambda \geq \lambda_i. \]

From Lemma 5.4, \(J_n(\lambda) \to 0 \), \(n \to \infty \), for all \(\lambda \geq \lambda_i \), and so,

\[u_\lambda \leq \frac{a}{2} < a_- \quad \text{in} \quad B_{\delta i}, \quad \text{for all} \quad \lambda \geq \lambda_i. \]

Now, taking \(\lambda^* = \max\{ \lambda_1, \ldots, \lambda_l \} \), we conclude that

\[|u_\lambda|_{\infty, N(\beta \Omega')} < a_- \quad \forall \lambda \geq \lambda^*. \]

\(\square \)

Proof of Proposition 5.1

Fix \(\lambda \geq \lambda^* \), where \(\lambda^* \) is given at Lemma 5.5, and define \(\overline{u}_\lambda : \mathbb{R}^N \setminus \Omega_Y' \to \mathbb{R} \) given by

\[\overline{u}_\lambda(x) = (u_\lambda - a_-)^+ (x). \]

From Lemma 5.5, \(\overline{u}_\lambda \in W^{1,p(x)}(\mathbb{R}^N \setminus \Omega_Y'). \) Our goal is showing that \(\overline{u}_\lambda = 0 \) in \(\mathbb{R}^N \setminus \Omega_Y' \). This implies

\[|u_\lambda|_{\infty, \mathbb{R}^N \setminus \Omega_Y'} \leq a_- \]

In fact, extending \(\overline{u}_\lambda = 0 \) in \(\Omega_Y' \) and taking \(\overline{u}_\lambda \) as a test function, we obtain

\[\int_{\mathbb{R}^N \setminus \Omega_Y'} \left| \nabla u_\lambda \right|^{p(x)-2} \nabla u_\lambda \cdot \nabla \overline{u}_\lambda + \int_{\mathbb{R}^N \setminus \Omega_Y'} \left(\lambda V(x) + Z(x) \right) u_\lambda^{p(x)-2} u_\lambda \overline{u}_\lambda = \int_{\mathbb{R}^N \setminus \Omega_Y'} g(x, u_\lambda) \overline{u}_\lambda. \]

Since

\[\int_{\mathbb{R}^N \setminus \Omega_Y'} \left| \nabla u_\lambda \right|^{p(x)-2} \nabla u_\lambda \cdot \nabla \overline{u}_\lambda = \int_{\mathbb{R}^N \setminus \Omega_Y'} \left| \nabla \overline{u}_\lambda \right|^{p(x)}, \]

\[\int_{\mathbb{R}^N \setminus \Omega_Y'} \left(\lambda V(x) + Z(x) \right) u_\lambda^{p(x)-2} u_\lambda \overline{u}_\lambda = \int_{\mathbb{R}^N \setminus \Omega_Y'} \left(\lambda V(x) + Z(x) \right) u_\lambda^{p(x)-2} (\overline{u}_\lambda + a_-) \overline{u}_\lambda \]

and

\[\int_{\mathbb{R}^N \setminus \Omega_Y'} g(x, u_\lambda) \overline{u}_\lambda = \int_{\mathbb{R}^N \setminus \Omega_Y'} g(x, u_\lambda) \overline{u}_\lambda (\overline{u}_\lambda + a_-) \overline{u}_\lambda, \]

where

\[\left(\mathbb{R}^N \setminus \Omega_Y' \right)_+ = \left\{ x \in \mathbb{R}^N \setminus \Omega_Y' : u_\lambda(x) > a_- \right\}, \]

we derive

\[\int_{\mathbb{R}^N \setminus \Omega_Y'} \left| \nabla \overline{u}_\lambda \right|^{p(x)} + \int_{\mathbb{R}^N \setminus \Omega_Y'} \left(\lambda V(x) + Z(x) \right) u_\lambda^{p(x)-2} - \frac{g(x, u_\lambda)}{u_\lambda} \right) (\overline{u}_\lambda + a_-) \overline{u}_\lambda = 0, \]
Now, by (3.7),
\[(\lambda V(x) + Z(x))u_\lambda^{p(x)-2} - \frac{g(x, u_\lambda)}{u_\lambda} > v u_\lambda^{p(x)-2} - \frac{\tilde{f}(x, u_\lambda)}{u_\lambda} \geq 0 \text{ in } (\mathbb{R}^N \setminus \Omega'_Y)_+ .\]

This form, \(\tilde{u}_\lambda = 0\) in \((\mathbb{R}^N \setminus \Omega'_Y)_+\). Obviously, \(\tilde{u}_\lambda = 0\) at the points where \(u_\lambda \leq a_-\), consequently, \(\tilde{u}_\lambda = 0\) in \(\mathbb{R}^N \setminus \Omega'_Y\).

6 A special critical value for \(\phi_\lambda\)

For each \(j = 1, \ldots, k\), consider
\[I_j(u) = \int_{\Omega_j} \frac{1}{p(x)} \left(|\nabla u|^{p(x)} + Z(x)|u|^{p(x)} \right) - \int_{\Omega_j} F(x, u), \; u \in W_0^{1,p(x)}(\Omega_j),\]

the energy functional associated to \((P_j)\), and
\[\phi_{\lambda, j}(u) = \int_{\Omega'_j} \frac{1}{p(x)} \left(|\nabla u|^{p(x)} + (\lambda V(x) + Z(x))|u|^{p(x)} \right) - \int_{\Omega'_j} F(x, u), \; u \in W^{1,p(x)}(\Omega'_j),\]

the energy functional associated to
\[\left\{ -\Delta_{p(x)} u + (\lambda V(x) + Z(x))|u|^{p(x)-2} u = f(x, u), \quad \text{in } \Omega'_j, \right.\]
\[\left. \frac{\partial u}{\partial \eta} = 0, \quad \text{on } \partial \Omega'_j. \right\}

It is fulfilled that \(I_j\) and \(\phi_{\lambda, j}\) satisfy the mountain pass geometry and let
\[c_j = \inf_{\gamma \in \Gamma_j} \max_{t \in [0, 1]} I_j(\gamma(t)) \text{ and } c_{\lambda, j} = \inf_{\gamma \in \Gamma_{\lambda, j}} \max_{t \in [0, 1]} \phi_{\lambda, j}(\gamma(t)),\]

their respective mountain pass levels, where
\[\Gamma_j = \left\{ \gamma \in C\left([0, 1], W_0^{1,p(x)}(\Omega_j) \right); \gamma(0) = 0 \text{ and } I_j(\gamma(1)) < 0 \right\}\]
and
\[\Gamma_{\lambda, j} = \left\{ \gamma \in C\left([0, 1], W^{1,p(x)}(\Omega'_j) \right); \gamma(0) = 0 \text{ and } \phi_{\lambda, j}(\gamma(1)) < 0 \right\} .\]

Invoking the \((PS)\) condition on \(I_j\) and \(\phi_{\lambda, j}\), we ensure that there exist \(w_j \in W_0^{1,p(x)}(\Omega_j)\) and \(w_{\lambda, j} \in W^{1,p(x)}(\Omega'_j)\) such that
\[I_j(w_j) = c_j \text{ and } I'_j(w_j) = 0\]
and
\[\phi_{\lambda, j}(w_{\lambda, j}) = c_{\lambda, j} \text{ and } \phi'_{\lambda, j}(w_{\lambda, j}) = 0.\]

Lemma 6.1 There holds that

(i) \(0 < c_{\lambda, j} \leq c_j, \forall \lambda \geq 1, \forall j \in \{1, \ldots, k\}\);

(ii) \(c_{\lambda, j} \to c_j\) as \(\lambda \to \infty, \forall j \in \{1, \ldots, k\} .\)
Proof (i) Once $W^{1,p(x)}_0(\Omega_j) \subset W^{1,p(x)}(\Omega'_j)$ and $\phi_{\lambda,j}(\gamma(1)) = I_j(\gamma(1))$ for $\gamma \in \Gamma_j$, we have $\Gamma_j \subset \Gamma_{\lambda,j}$. This way

$$c_{\lambda,j} = \inf_{\gamma \in \Gamma_{\lambda,j}} \max_{t \in [0,1]} \phi_{\lambda,j}(\gamma(t)) \leq \inf_{\gamma \in \Gamma_j} \max_{t \in [0,1]} \phi_{\lambda,j}(\gamma(t)) = \inf_{\gamma \in \Gamma_j} \max_{t \in [0,1]} I_j(\gamma(t)) = c_j.$$

(ii) It suffices to show that $c_{\lambda_n,j} \to c_j$, as $n \to \infty$, for all sequences (λ_n) in $[1, \infty)$ with $\lambda_n \to \infty$, as $n \to \infty$. Let (λ_n) be such a sequence and consider an arbitrary subsequence of $(c_{\lambda_n,j})$ (not relabeled). Let $w_n \in W^{1,p(x)}(\Omega'_j)$ with

$$\phi_{\lambda_n,j}(w_n) = c_{\lambda_n,j} \text{ and } \phi'_{\lambda_n,j}(w_n) = 0.$$

By the previous item, $(c_{\lambda_n,j})$ is bounded. Then, there exists (w_{n_k}) subsequence of (w_n) such that $\phi_{\lambda_{n_k},j}(w_{n_k})$ converges and $\phi'_{\lambda_{n_k},j}(w_{n_k}) = 0$. Now, repeating the same type of arguments explored in the proof of Proposition 4.1, there is $w \in W^{1,p(x)}(\Omega_j) \setminus \{0\} \subset W^{1,p(x)}(\Omega'_j)$ such that

$$w_{n_k} \to w \text{ in } W^{1,p(x)}(\Omega'_j), \text{ as } k \to \infty.$$

Furthermore, we also can prove that

$$c_{\lambda_{n_k},j} = \phi_{\lambda_{n_k},j}(w_{n_k}) \to I_j(w)$$

and

$$0 = \phi'_{\lambda_{n_k},j}(w_{n_k}) \to I'_j(w).$$

Then, by (f4),

$$\lim_k c_{\lambda_{n_k},j} \geq c_j.$$

The last inequality together with item (i) implies

$$c_{\lambda_{n_k},j} \to c_j, \text{ as } k \to \infty.$$

This establishes the asserted result.

\[\square \]

In the sequel, let $R > 1$ verifying

$$0 < I_j\left(\frac{1}{R}w_j\right), I_j(Rw_j) < c_j, \text{ for } j = 1, \ldots, k. \quad (6.1)$$

There holds that

$$c_j = \max_{t \in [1/R^2, 1]} I_j(tRw_j), \text{ for } j = 1, \ldots, k.$$

Moreover, to simplify the notation, we rename the components Ω_j of Ω in way such that $\Upsilon = \{1, 2, \ldots, l\}$ for some $1 \leq l \leq k$. Then, we define:

$$\gamma_0(t_1, \ldots, t_l)(x) = \sum_{j=1}^l t_jRw_j(x), \ \forall (t_1, \ldots, t_l) \in [1/R^2, 1]^l,$$

$$\Gamma_* = \left\{ \gamma \in C([1/R^2, 1]^l, E_\lambda \setminus [0]) \ ; \ \gamma = \gamma_0 \text{ on } \partial [1/R^2, 1]^l \right\}$$

\[\square \] Springer
and
\[
b_{\lambda, \gamma} = \inf_{\gamma \in \Gamma_*} \max_{(t_1, \ldots, t_l) \in [1/R^2, 1]^l} \phi_{\lambda, j}(\gamma(t_1, \ldots, t_l)).
\]

Next, our intention is proving that \(b_{\lambda, \gamma}\) is a critical value for \(\phi_{\lambda, j}\). However, to do this, we need to some technical lemmas. The arguments used are the same found in [3]; however, for reader’s convenience, we will repeat their proofs.

Lemma 6.2 For all \(\gamma \in \Gamma_*\), there exists \((s_1, \ldots, s_l) \in [1/R^2, 1]^l\) such that
\[
\phi_{\lambda, j}'(\gamma(s_1, \ldots, s_l)) = 0, \quad \forall j \in \mathcal{Y}.
\]

Proof Given \(\gamma \in \Gamma_*\), consider \(\tilde{\gamma} : [1/R^2, 1]^l \to \mathbb{R}^l\) such that
\[
\tilde{\gamma}(t) = (\phi_{\lambda, 1}'(\gamma(t)), \ldots, \phi_{\lambda, l}'(\gamma(t)))\gamma(t), \quad \text{where } t = (t_1, \ldots, t_l).
\]
For \(t \in \partial [1/R^2, 1]^l\), it holds \(\tilde{\gamma}(t) = \tilde{\gamma}_0(t)\). From this, we observe that there is no \(t \in \partial [1/R^2, 1]^l\) with \(\tilde{\gamma}(t) = 0\). Indeed, for any \(j \in \mathcal{Y}\),
\[
\phi_{\lambda, j}'(\gamma_0(t))\gamma_0(t) = I_j'(t_j R w_j)(t_j R w_j).
\]
This form, if \(t \in \partial [1/R^2, 1]^l\), then \(t_j = 1\) or \(t_j = \frac{1}{R}\), for some \(j \in \mathcal{Y}\). Consequently,
\[
\phi_{\lambda, j}'(\gamma_0(t))\gamma_0(t) = I_j'(R w_j)(R w_j) \quad \text{or} \quad \phi_{\lambda, j}'(\gamma_0(t))\gamma_0(t) = I_j'\left(\frac{1}{R} w_j\right)\left(\frac{1}{R} w_j\right).
\]
Therefore, if \(\phi_{\lambda, j}'(\gamma_0(t))\gamma_0(t) = 0\), we get \(I_j(R w_j) \geq c_{j_0}\) or \(I_j'\left(\frac{1}{R} w_j\right) \geq c_{j_0}\), which is a contradiction with (6.1).

Now, we compute the degree \(\deg(\tilde{\gamma}, (1/R^2, 1)^l, (0, \ldots, 0))\). Since
\[
\deg(\tilde{\gamma}, (1/R^2, 1)^l, (0, \ldots, 0)) = \deg(\tilde{\gamma}_0, (1/R^2, 1)^l, (0, \ldots, 0)),
\]
and, for \(t \in (1/R^2, 1)^l\),
\[
\tilde{\gamma}_0(t) = 0 \iff t = \left(\frac{1}{R}, \ldots, \frac{1}{R}\right),
\]
we derive
\[
\deg(\tilde{\gamma}, (1/R^2, 1)^l, (0, \ldots, 0)) \neq 0.
\]
This shows what was stated. \(\square\)

Proposition 6.3 If \(c_{\lambda, \gamma} = \sum_{j=1}^{l} c_{\lambda, j}\) and \(c_{\gamma} = \sum_{j=1}^{l} c_{j}\), then

(i) \(c_{\lambda, \gamma} \leq b_{\lambda, \gamma} \leq c_{\gamma}, \forall \lambda \geq 1\);

(ii) \(b_{\lambda, \gamma} \to c_{\gamma}\), as \(\lambda \to \infty\);

(iii) \(\phi_{\lambda, j}(\gamma(t)) < c_{\gamma}, \forall \lambda \geq 1, \gamma \in \Gamma_*\) and \(t = (t_1, \ldots, t_l) \in \partial [1/R^2, 1]^l\).

Proof (i) Once \(\gamma_0 \in \Gamma_*\),
\[
b_{\lambda, \gamma} \leq \max_{(t_1, \ldots, t_l) \in [1/R^2, 1]^l} \phi_{\lambda, j}(\gamma_0(t_1, \ldots, t_l)) = \max_{(t_1, \ldots, t_l) \in [1/R^2, 1]^l} \sum_{j=1}^{l} I_j(t_j R w_j) = c_{\gamma}.
\]
Now, fixing \(s = (s_1, \ldots, s_l) \in [1/R^2, 1]^l \) given in Lemma 6.2 and recalling that
\[
c_{\lambda, j} = \inf \left\{ \phi_{\lambda, j}(u) : u \in W^{1, p(x)}(\Omega_j') \setminus \{0\} \text{ and } \phi_{\lambda, j}'(u)u = 0 \right\},
\]
it follows that
\[
\phi_{\lambda, j}(\gamma(s)) \geq c_{\lambda, j}, \forall j \in \Upsilon.
\]
From (3.9),
\[
\phi_{\lambda, R^N \setminus \Omega'_\Upsilon}(u) \geq 0, \forall u \in W^{1, p(x)}(R^N \setminus \Omega'_\Upsilon),
\]
which leads to
\[
\phi_{\lambda}(\gamma(t)) \geq \sum_{j=1}^l \phi_{\lambda, j}(\gamma(t)), \forall t = (t_1, \ldots, t_l) \in [1/R^2, 1]^l.
\]
Thus
\[
\max_{(t_1, \ldots, t_l) \in [1/R^2, 1]^l} \phi_{\lambda}(\gamma(t)) \geq \phi_{\lambda}(\gamma(s)) \geq c_{\lambda, \Upsilon},
\]
showing that
\[
b_{\lambda, \Upsilon} \geq c_{\lambda, \Upsilon};
\]
(ii) This limit is clear by the previous item, since we already know \(c_{\lambda, j} \to c_j \), as \(\lambda \to \infty \); (iii) For \(t = (t_1, \ldots, t_l) \in \partial [1/R^2, 1]^l \), it holds \(\gamma(t) = \gamma_0(t) \). From this,
\[
\phi_{\lambda}(\gamma(t)) = \sum_{j=1}^l I_j(t_j R w_j).
\]
Writing
\[
\phi_{\lambda}(\gamma(t)) = \sum_{j=1}^l I_j(t_j R w_j) + I_{j_0}(t_{j_0} R w_{j_0}),
\]
where \(t_{j_0} \in \left\{ \frac{1}{R^2}, 1 \right\} \), from (6.1) we derive
\[
\phi_{\lambda}(\gamma(t)) \leq c_\Upsilon - \epsilon,
\]
for some \(\epsilon > 0 \), so (iii).

\[\square\]

Corollary 6.4 \(b_{\lambda, \Upsilon} \) is a critical value of \(\phi_{\lambda} \), for \(\lambda \) sufficiently large.

Proof Assume \(b_{\lambda, \Upsilon} \) is not a critical value of \(\phi_{\lambda} \) for some \(\tilde{\lambda} \). We will prove that exists \(\lambda_1 \) such that \(\tilde{\lambda} < \lambda_1 \). Indeed, by item (iii) of Proposition 6.3, we have seen that
\[
\phi_{\lambda}(\gamma_0(t)) < c_\Upsilon, \forall \lambda \geq 1, t \in \partial [1/R^2, 1]^l.
\]
This way
\[
\mathcal{M} = \max_{t \in \partial [1/R^2, 1]^l} \phi_{\lambda}(\gamma_0(t)) < c_\Upsilon.
\]
Since $b_{\lambda,\Upsilon} \to c_\Upsilon$ (item (ii) of Proposition 6.3), there exists $\lambda_1 > 1$ such that if $\lambda \geq \lambda_1$, then

$$\mathcal{M} < b_{\lambda,\Upsilon}.$$

So, if $\lambda \geq \lambda_1$, we can find $\tau = \tau(\lambda) > 0$ small enough, with the ensuing property

$$\mathcal{M} < b_{\lambda,\Upsilon} - 2\tau. \quad (6.2)$$

From the deformation’s lemma [31, Page 38], there is $\eta: E_{\lambda} \to E_{\lambda}$ such that

$$\eta\left(\phi_{\lambda}^{b_{\lambda,\Upsilon} + \tau}\right) \subset \phi_{\lambda}^{b_{\lambda,\Upsilon} - \tau} \text{ and } \eta(u) = u, \text{ for } u \neq \phi_{\lambda}^{-1}\left([b_{\lambda,\Upsilon} - 2\tau, b_{\lambda,\Upsilon} + 2\tau]\right).$$

Then, by (6.2),

$$\eta(\gamma_0(t)) = \gamma_0(t), \quad \forall t \in \partial[1/R^2, 1]^d.$$

Now, using the definition of $b_{\lambda,\Upsilon}$, there exists $\gamma_\star \in \Gamma_{\star}$ satisfying

$$\max_{t \in [1/R^2, 1]^d} \phi_{\lambda}^{\tau}(\gamma_\star(t)) < b_{\lambda,\Upsilon} + \tau. \quad (6.3)$$

Defining

$$\tilde{\gamma}(t) = \eta(\gamma_\star(t)), \quad t \in [1/R^2, 1]^d,$$

due to (6.3), we obtain

$$\phi_{\lambda}^{\tau}(\tilde{\gamma}(t)) \leq b_{\lambda,\Upsilon} - \tau, \quad \forall t \in [1/R^2, 1]^d.$$

But since $\tilde{\gamma} \in \Gamma_{\star}$, we deduce

$$b_{\lambda,\Upsilon} \leq \max_{t \in [1/R^2, 1]^d} \phi_{\lambda}^{\tau}(\tilde{\gamma}(t)) \leq b_{\lambda,\Upsilon} - \tau,$$

a contradiction. So, $\tilde{\lambda} < \lambda_1$. \hfill \Box

7 The proof of the main theorem

To prove Theorem 1.1, we need to find nonnegative solutions u_λ for large values of λ, which converges to a least energy solution in each Ω_j ($j \in \Upsilon$) and to 0 in Ω_c^Υ as $\lambda \to \infty$. To this end, we will show two propositions which together with the Propositions 4.1 and 5.1 will imply that Theorem 1.1 holds.

Henceforth, we denote by

$$r = R^{p^+} \sum_{j=1}^l \left(\frac{1}{p^+} - \frac{1}{\theta} \right)^{-1} c_j, \quad B_r^j = \{ u \in E_\lambda : \varrho_{\lambda}(u) \leq r \}$$

and

$$\phi_{\lambda}^{c_j} = \{ u \in E_\lambda : \phi_{\lambda}(u) \leq c_j \}.$$

Moreover, for small values of μ,

$$\mathcal{A}_{\mu}^j = \{ u \in B_r^j : \varrho_{\lambda,\mathbb{R}^N \setminus \Omega_\Upsilon}(u) \leq \mu, \ |\phi_{\lambda,j}(u) - c_j| \leq \mu, \ \forall j \in \Upsilon \}.$$

Springer
We observe that
\[w = \sum_{j=1}^{l} w_j \in A^\mu_{\lambda} \cap \phi^C_{\lambda}, \]
showing that \(A^\mu_{\lambda} \cap \phi^C_{\lambda} \neq \emptyset \). Fixing
\[0 < \mu < \frac{1}{4} \min_{j \in \Gamma} c_j, \quad (7.1) \]
we have the following uniform estimate of \(\| \phi'_{\lambda}(u) \| \) on the region \((A^\lambda_{2\mu} \setminus A^\lambda_{\mu}) \cap \phi^C_{\lambda} \).

Proposition 7.1 Let \(\mu > 0 \) satisfying (7.1). Then, there exist \(\Lambda_* \geq 1 \) and \(\sigma_0 > 0 \) independent of \(\lambda \) such that
\[\| \phi'_{\lambda}(u) \| \geq \sigma_0, \quad \text{for } \lambda \geq \Lambda_* \text{ and all } u \in (A^\lambda_{2\mu} \setminus A^\lambda_{\mu}) \cap \phi^C_{\lambda}. \quad (7.2) \]

Proof We assume that there exist \(\lambda_n \to \infty \) and \(u_n \in (A^\lambda_{2\mu} \setminus A^\lambda_{\mu}) \cap \phi^C_{\lambda_n} \) such that
\[\| \phi'_{\lambda_n}(u_n) \| \to 0. \]
Since \(u_n \in A^\lambda_{2\mu} \), this implies \((\phi_{\lambda_n}(u_n)) \) is a bounded sequence and, consequently, it follows that \((\phi_{\lambda_n}(u_n)) \) is also bounded. Thus, passing a subsequence if necessary, we can assume \(\phi_{\lambda_n}(u_n) \) converges. Thus, from Proposition 4.1, there exists \(0 \leq u \in \nabla_{1,p}(\Omega_\Gamma) \) such that \(u|_{\Omega_j}, j \in \Upsilon, \) is a solution for \((P_j), \)
\[\phi_{\lambda_n}(u_n) \to 0 \quad \text{and} \quad \phi_{\lambda_n,j}(u_n) \to I_j(u). \]

We know that \(c_j \) is the least energy level for \(I_j \). So, if \(u|_{\Omega_j} \neq 0 \), then \(I_j(u) \geq c_j \). But since \(\phi_{\lambda_n}(u_n) \leq c_\Gamma \), we must analyze the following possibilities:

(i) \(I_j(u) = c_j, \forall j \in \Upsilon; \)
(ii) \(I_{j_0}(u) = 0, \) for some \(j_0 \in \Upsilon. \)

If (i) occurs, then for \(n \) large, it holds
\[\phi_{\lambda_n}(u_n) \leq \mu \quad \text{and} \quad \phi_{\lambda_n,j}(u_n) - c_j \leq \mu, \forall j \in \Upsilon. \]
So \(u_n \in A^\lambda_{\mu}, \) a contradiction.

If (ii) occurs, then
\[\phi_{\lambda_n,j_0}(u_n) - c_{j_0} \to c_{j_0} > 4\mu, \]
which is a contradiction with the fact that \(u_n \in A^\lambda_{2\mu}. \) Thus, we have completed the proof. \(\square \)

Proposition 7.2 Let \(\mu > 0 \) satisfying (7.1) and \(\Lambda_* \geq 1 \) given in the previous proposition. Then, for \(\lambda \geq \Lambda_* \), there exists a solution \(u_{\lambda} \) of \((A_{\lambda}) \) such that \(u_{\lambda} \in A^\lambda_{\mu} \cap \phi^C_{\lambda}. \)

Proof Let \(\lambda \geq \Lambda_* \). Assume that there are no critical points of \(\phi_{\lambda} \) in \(A^\lambda_{\mu} \cap \phi^C_{\lambda}. \) Since \(\phi_{\lambda} \) is a \((PS) \) functional, there exists a constant \(d_{\lambda} > 0 \) such that
\[\| \phi'_{\lambda}(u) \| \geq d_{\lambda}, \quad \text{for all } u \in A^\lambda_{\mu} \cap \phi^C_{\lambda}. \]
\(\square \)
From Proposition 7.1, we have
\[\| \phi'_\lambda(u) \| \geq \sigma_0, \quad \text{for all } u \in (A_{2\mu}^\lambda \setminus A_\mu^\lambda) \cap \phi_{\lambda}^{CY}, \]
where \(\sigma_0 > 0 \) does not depend on \(\lambda \). In what follows, \(\Psi : E_\lambda \to \mathbb{R} \) is a continuous functional verifying
\[\Psi(u) = 1, \quad \text{for } u \in A_{2\mu}^\lambda, \quad \Psi(u) = 0, \quad \text{for } u \notin A_{2\mu}^\lambda \quad \text{and} \quad 0 \leq \Psi(u) \leq 1, \quad \forall u \in E_\lambda. \]
We also consider \(H : \phi_{\lambda}^{CY} \to E_\lambda \) given by
\[H(u) = \begin{cases} -\Psi(u)\| Y(u) \|^{-1} Y(u), & \text{for } u \in A_{2\mu}^\lambda, \\ 0, & \text{for } u \notin A_{2\mu}^\lambda, \end{cases} \]
where \(Y \) is a pseudo-gradient vector field for \(\Phi_\lambda \) on \(K = \{ u \in E_\lambda : \phi'_\lambda(u) \neq 0 \} \). Observe that \(H \) is well defined, once \(\phi'_\lambda(u) \neq 0 \), for \(u \in A_{2\mu}^\lambda \cap \phi_{\lambda}^{CY} \). The inequality
\[\| H(u) \| \leq 1, \quad \forall \lambda \geq \Lambda_\ast \quad \text{and} \quad u \in \phi_{\lambda}^{CY}, \]
guarantees that the deformation flow \(\eta : [0, \infty) \times \phi_{\lambda}^{CY} \to \phi_{\lambda}^{CY} \) defined by
\[\frac{d\eta}{dt} = H(\eta), \quad \eta(0, u) = u \in \phi_{\lambda}^{CY} \]
verifies
\[\frac{d}{dt} \phi_{\lambda}(\eta(t, u)) \leq -\frac{1}{2} \Psi(\eta(t, u))\| \phi'_\lambda(\eta(t, u)) \| \leq 0, \quad (7.3) \]
\[\left\| \frac{d\eta}{dt} \right\|_{\lambda} = \left\| H(\eta) \right\|_{\lambda} \leq 1 \quad (7.4) \]
and
\[\eta(t, u) = u \quad \text{for all } t \geq 0 \quad \text{and} \quad u \in \phi_{\lambda}^{CY} \setminus A_{2\mu}^\lambda. \quad (7.5) \]

We study now two paths, which are relevant for what follows:

- The path \(t \mapsto \eta(t, \gamma_0(t)), \) where \(t = (t_1, \ldots, t_l) \in [1/R^2, 1]^l \).

The definition of \(\gamma_0 \) combined with the condition on \(\mu \) gives
\[\gamma_0(t) \notin A_{2\mu}^\lambda, \quad \forall t \in \partial[1/R^2, 1]^l. \]
Since
\[\phi_{\lambda}(\gamma_0(t)) < c_T, \quad \forall t \in \partial[1/R^2, 1]^l, \]
from (7.5), it follows that
\[\eta(t, \gamma_0(t)) = \gamma_0(t), \quad \forall t \in \partial[1/R^2, 1]^l. \]

So, \(\eta(t, \gamma_0(t)) \in \Gamma_\ast, \) for each \(t \geq 0 \).

- The path \(t \mapsto \gamma_0(t), \) where \(t = (t_1, \ldots, t_l) \in [1/R^2, 1]^l. \)

We observe that
\[\text{supp} (\gamma_0(t)) \subset \overline{\Omega_T} \]
and
\[\phi_{\lambda}(\gamma_0(t)) \text{ does not depend on } \lambda \geq 1, \]
forall $t \in [1/R^2, 1]$]. Moreover,

$$\phi_\lambda (\gamma_0 (t)) \leq c_\Gamma, \ \forall t \in [1/R^2, 1]$$

and

$$\phi_\lambda (\gamma_0 (t)) = c_\Gamma \text{ if, and only if, } t_j = \frac{1}{R}, \ \forall j \in \mathcal{Y}.$$

Therefore

$$m_0 = \sup \left\{ \phi_\lambda (u) : u \in \gamma_0 ([1/R^2, 1]) \setminus A^\lambda_\mu \right\}$$

is independent of λ and $m_0 < c_\Gamma$. Now, observing that there exists $K_* > 0$ such that

$$|\phi_\lambda, j (u) - \phi_\lambda, j (v)| \leq K_* \| u - v \|_{\lambda, \omega_j}, \ \forall u, v \in B^\lambda_\mu \text{ and } \forall j \in \mathcal{Y},$$

we derive

$$\max_{t \in [1/R^2, 1]} \phi_\lambda \left(\eta (T, \gamma_0 (t)) \right) \leq \max \left\{ m_0, c_\Gamma - \frac{1}{2} \sigma_0 \mu \right\}, \quad (7.6)$$

for $T > 0$ large.

In fact, writing $u = \gamma_0 (t), \ t \in [1/R^2, 1]$, if $u \notin A^\lambda_\mu$, from (7.3),

$$\phi_\lambda (\eta (t, u)) \leq \phi_\lambda (u) \leq m_0, \ \forall t \geq 0,$$

and we have nothing more to do. We assume then $u \in A^\lambda_\mu$ and set

$$\tilde{\eta} (t) = \eta (t, u), \ \tilde{d}_\lambda = \min \{ d_\lambda, \sigma_0 \} \text{ and } T = \frac{\sigma_0 \mu}{K_* \tilde{d}_\lambda}.$$

Now, we will analyze the ensuing cases:

Case 1: $\tilde{\eta} (t) \in A^{\lambda}_{2\mu} \forall t \in [0, T]$.

Case 2: $\tilde{\eta} (t_0) \in \partial A^{\lambda}_{2\mu}$, for some $t_0 \in [0, T]$.

Analysis of Case 1

In this case, we have $\Psi (\tilde{\eta} (t)) = 1$ and $\left\| \phi_\lambda (\tilde{\eta} (t)) \right\| \geq \tilde{d}_\lambda$ for all $t \in [0, T]$. Hence, from (7.3),

$$\phi_\lambda (\tilde{\eta} (T)) = \phi_\lambda (u) + \int_0^T \frac{d}{ds} \phi_\lambda (\tilde{\eta} (s)) \ ds \leq c_\Gamma - \frac{1}{2} \int_0^T \tilde{d}_\lambda \ ds,$$

that is,

$$\phi_\lambda (\tilde{\eta} (T)) \leq c_\Gamma - \frac{1}{2} \tilde{d}_\lambda T = c_\Gamma - \frac{1}{2} \sigma_0 \mu,$$

showing (7.6).

Analysis of Case 2

In this case, there exist $0 \leq t_1 \leq t_2 \leq T$ satisfying

$$\tilde{\eta} (t_1) \in \partial A^{\lambda}_{\mu}, \quad \tilde{\eta} (t_2) \in \partial A^{\lambda}_{2\mu},$$

$$\tilde{\eta} (t_1) \in \partial A^{\lambda}_{\mu}, \quad \tilde{\eta} (t_2) \in \partial A^{\lambda}_{2\mu},$$
and
\[\tilde{\eta}(t) \in A^\lambda_{2^\mu} \setminus A^\lambda_{\mu}, \forall t \in (t_1, t_2]. \]

We claim that
\[\| \tilde{\eta}(t_2) - \tilde{\eta}(t_1) \| \geq \frac{1}{2K^* \mu}. \]

Setting \(w_1 = \tilde{\eta}(t_1) \) and \(w_2 = \tilde{\eta}(t_2) \), we get
\[\rho_{\lambda, R \setminus \Omega_\gamma}(w_2) = \frac{3}{2} \mu \quad \text{or} \quad |\varphi_{\lambda, j_0}(w_2) - c_{j_0}| = \frac{3}{2} \mu, \]
for some \(j_0 \in \Upsilon \). We analyze the latter situation, once that the other one follows the same reasoning. From the definition of \(A^\lambda_{\mu} \),
\[|\varphi_{\lambda, j_0}(w_1) - c_{j_0}| \leq \mu, \]
consequently,
\[\| w_2 - w_1 \| \geq \frac{1}{K^*} |\varphi_{\lambda, j_0}(w_2) - \varphi_{\lambda, j_0}(w_1)| \geq \frac{1}{2K^* \mu}. \]

Then, by mean value theorem, \(t_2 - t_1 \geq \frac{1}{2K^* \mu} \) and, this form,
\[\varphi_{\lambda}(\tilde{\eta}(T)) \leq \varphi_{\lambda}(u) - \int_0^T \Psi(\tilde{\eta}(s)) \| \varphi'_{\lambda}(\tilde{\eta}(s)) \| ds \]
implying
\[\varphi_{\lambda}(\tilde{\eta}(T)) \leq c_\gamma - \int_{t_1}^{t_2} \sigma_0 \, ds = c_\gamma - \sigma_0(t_2 - t_1) \leq c_\gamma - \frac{1}{2K^*} \sigma_0 \mu, \]
which proves 7.6. Fixing \(\varphi(t_1, \ldots, t_l) = \eta(T, \gamma_0(t_1, \ldots, t_l)) \), we have that \(\tilde{\eta} \in \Gamma_* \) and, hence,
\[b_{\lambda, \gamma} \leq \max_{(t_1, \ldots, t_l) \in \{1/R^2, 1\}} \varphi_{\lambda}(\tilde{\eta}(t_1, \ldots, t_l)) \leq \max \left\{ m_0, c_\gamma - \frac{1}{2K^*} \sigma_0 \mu \right\} < c_\gamma, \]
which contradicts the fact that \(b_{\lambda, \gamma} \to c_\gamma \). \(\square \)

Proof of Theorem 1.1 According Proposition 7.2, for \(\mu \) satisfying (7.1) and \(\Lambda_* \geq 1 \), there exists a solution \(u_{\lambda} \) for \((A_{\lambda}) \) such that \(u_{\lambda} \in A^\lambda_{\mu} \cap \phi_{\lambda}^{C_\gamma} \), for all \(\lambda \geq \Lambda_* \).

Claim: There are \(\lambda_0 \geq \Lambda_* \) and \(\mu_0 > 0 \) small enough, such that \(u_{\lambda} \) is a solution for \((P_{\lambda}) \) for \(\lambda \geq \Lambda_0 \) and \(\mu \in (0, \mu_0) \).

Indeed, assume by contradiction that there are \(\lambda_n \to \infty \) and \(\mu_n \to 0 \), such that \((u_{\lambda_n}) \) is not a solution for \((P_{\lambda_n}) \). From Proposition 7.2, the sequence \((u_{\lambda_n}) \) verifies:

(a) \(\phi'_{\lambda_n}(u_{\lambda_n}) = 0, \forall n \in \mathbb{N}; \)
(b) \(\rho_{\lambda_n, R \setminus \Omega_\gamma}(u_{\lambda_n}) \to 0; \)
(c) \(\phi_{\lambda_n, j}(u_{\lambda_n}) \to c_j, \forall j \in \Upsilon. \)
The item (b) ensures we can use Proposition 5.1 to deduce u_{λ_n} is a solution for (P_{λ_n}), for large values of n, which is a contradiction, showing this way the claim.

Now, our goal is to prove the second part of the theorem. To this end, let (u_{λ_n}) be a sequence verifying the above limits. Since $\Phi_{\lambda_n}(u_{\lambda_n})$ is bounded, passing a subsequence, we obtain that $\Phi_{\lambda_n}(u_{\lambda_n}) \to c$. This way, using Proposition 4.1 combined with item (c), we derive u_{λ_n} converges in $W^{1,p(x)}(\mathbb{R}^N)$ to a function $u \in W^{1,p(x)}(\mathbb{R}^N)$, which satisfies $u = 0$ outside Ω and $u|_{\Omega_j}, \ j \in \N$, is a least energy solution for

\begin{align*}
-\Delta_{p(x)} u + Z(x)u &= f(u), \quad \text{in } \Omega_j, \\
u \in W^{1,p(x)}_0(\Omega_j), \ u \geq 0, \quad \text{in } \Omega_j.
\end{align*}

Acknowledgments The authors would like to thank the anonymous referee for their valuable suggestions.

References

1. Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)
2. Acerbi, E., Mingione, G.: Regularity results for electro-rheological fluids: stationary case. C. R. Math. Acad. Sci. Paris 334, 817–822 (2002)
3. Alves, C.O.: Existence of multi-bump solutions for a class of quasilinear problems. Adv. Nonlinear Stud. 6, 491–509 (2006)
4. Alves, C.O.: Existence of solutions for a degenerate $p(x)$-Laplacian equation in \mathbb{R}^N. J. Math. Anal. Appl. 345, 731–742 (2008)
5. Alves, C.O.: Existence of radial solutions for a class of $p(x)$-Laplacian equations with critical growth. Differ. Integral Equ. 23, 113–123 (2010)
6. Alves, C.O., Barreiro, J.L.P.: Existence and multiplicity of solutions for a $p(x)$-Laplacian equation with critical growth. J. Math. Anal. Appl. 403, 143–154 (2013)
7. Alves, C.O., Ferreira, M.C.: Nonlinear perturbations of a $p(x)$-Laplacian equation with critical growth in \mathbb{R}^N. Math. Nach. 287(8–9), 849–868 (2014)
8. Alves, C.O., Ferreira, M.C.: Existence of solutions for a class of $p(x)$-Laplacian equations involving a concave-convex nonlinearity with critical growth in \mathbb{R}^N. Topol. Methods Nonlinear Anal. (2014, to appear)
9. Alves, C.O., Souto, M.A.S.: Existence of solutions for a class of problems in \mathbb{R}^N involving $p(x)$-Laplacian. Prog. Nonlinear Differ. Equ. Their Appl. 66, 17–32 (2005)
10. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)
11. Antontsev, S.N., Rodrigues, J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52, 19–36 (2006)
12. Brézis, H., Lieberman, G.M.: A relation between pointwise and viscosity solutions of second order elliptic PDE. Commun. Partial Differ. Equ. 12, 1233–1246 (1987)
13. Brézis, H., Nirenberg, L.: Characterizations of the ranges of some nonlinear operators and applications to boundary value problems. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5, 169–220 (1978)
14. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1623–1642 (2006)
15. del Pino, M., Felmer, P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 12, 649–669 (2001)
16. Ding, Y.H., Tanaka, K.: Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscr. Math. 122(1), 109–135 (2003)
17. Fan, X.L., Zhao, D.: A class of De Giorgi type and Hölder continuity. Nonlinear Anal. 36, 295–318 (1999)
18. Fan, X.L., Zhao, D.: Sobolev embedding theorems for spaces $W^{K,p(x)}(\Omega)$. J. Math. Anal. Appl. 262, 749–760 (2001)
22. Fernández, Bonder J., Saintier, N., Silva, A.: On the Sobolev embedding theorem for variable exponent spaces in the critical range. J. Differ. Equ. **253**, 1604–1620 (2012)

23. Fernández Bonder, J., Saintier, N., Silva, A.: On the Sobolev trace theorem for variable exponent spaces in the critical range. Ann. Mat. Pura Appl. (2014, to appear)

24. Fu, Y., Zhang, X.: Multiple solutions for a class of $p(x)$-Laplacian equations in involving the critical exponent. Proc. R. Soc. Edinb. Sect. A **466**, 1667–1686 (2010)

25. Fusco, N., Sbordone, C.: Some remarks on the regularity of minima of anisotropic integrals. Commun. Partial Differ. Equ. **18**(1–2), 153–167 (1993)

26. Kavian, O.: Introduction à la théorie de points critiques et applications aux problèmes elliptiques. Springer, Paris (1993)

27. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and quasilinear elliptic equations. Academic Press, New York (1968)

28. Mihăilescu, M., Rădulescu, V.: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proc. Am. Math. Soc. **135**(9), 2929–2937 (2007)

29. Ruzicka, M.: Electrorheological fluids: modeling and mathematical theory. Lecture Notes in Mathematics, vol. 1748, Springer, Berlin (2000)

30. Séré, E.: Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z. **209**, 27–42 (1992)

31. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)