THE INTRINSIC SHAPE OF SPIRAL GALAXIES IN THE 2MASS LARGE GALAXY ATLAS

BARBARA S. RYDEN

Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210; ryden@astronomy.ohio-state.edu

Received 2005 August 5; accepted 2005 December 14

ABSTRACT

The apparent shapes of spiral galaxies in the Two Micron All Sky Survey Large Galaxy Atlas are used to constrain the intrinsic shapes of their disks. When the distribution of apparent axis ratios is estimated using a nonparametric kernel method, the shape distribution is inconsistent with axisymmetry at the 90% confidence level in the B band and at the 99% confidence level in the Ks band. If spirals are subdivided by Hubble type, the late-type spirals (Sc and later) are consistent with axisymmetry, while the earlier spirals are strongly inconsistent with axisymmetry. The distribution of disk ellipticity can be fitted adequately with either a Gaussian or a lognormal distribution. The best fits for the late spirals imply a median ellipticity of $\epsilon \approx 0.07$ in the B band and $\epsilon \approx 0.02$ in the Ks band. For the earlier spirals, the best fits imply a median ellipticity of $\epsilon \approx 0.18$ in the B band and $\epsilon \approx 0.30$ in the Ks band. The observed scatter in the Tully-Fisher relation, for both late and early spirals, is consistent with the disk ellipticity measured in the B band. This indicates that excluding spirals of Hubble type earlier than Sc will minimize the intrinsic scatter in the Tully-Fisher relation used as a distance indicator.

1. INTRODUCTION

The intrinsic shapes of disks in spiral galaxies, although difficult to determine, are useful to know. In particular, the ellipticity of a disk in its outer region reflects the nonaxisymmetry of the potential in which it exists and thus provides information about the shape of dark matter halos. Noncircular disks produce scatter in the Tully-Fisher relation between rotation velocity and absolute magnitude (Tully & Fisher 1977; Franx & de Zeeuw 1992); therefore, knowledge of the disk ellipticity helps in understanding the origin of scatter in the Tully-Fisher relation. In particular, the usefulness of the Tully-Fisher relation as a distance indicator would be enhanced for a population of disk galaxies with small intrinsic ellipticity. If the shape of a disk is approximated as an ellipsoid with principal axes of length $a \geq b \geq c$, the disk shape can be described by two parameters: the dimensionless disk thickness, $\gamma \equiv c/a$, and the disk ellipticity, $\epsilon \equiv 1 - b/a$. The simplest approximation, that disks are infinitesimally thin and perfectly circular ($\gamma = 0, \epsilon = 0$), is occasionally useful; for many purposes, however, it is useful to have a more accurate estimate of the shapes of disks.

The thickness of disks can be determined from catalogs of edge-on spiral galaxies, such as the Flat Galaxy Catalogue (Karachentsev et al. 1993) and the Revised Flat Galaxy Catalogue (Karachentsev et al. 1999). Some supernovae galaxies have axis ratios as small as $\gamma \approx 0.05$ (Goad & Roberts 1981). The study of Guthrie (1992), using images of edge-on spirals from blue Palomar Sky Survey plates, found that log q had a mean value of -0.95. The mean disk thickness depends on the spirals’ morphological type (Bottinelli et al. 1983); Guthrie (1992) found that the mean value of log q ranges from -0.7 for edge-on Sa galaxies to -1.1 for edge-on Sd galaxies. The disk thickness of an individual spiral galaxy also depends on the wavelength at which it is observed. Edge-on spirals have strong vertical color gradients, becoming much redder with increasing height above the midplane (Dalcanton & Bernstein 2002). This gradient reflects the transition from the thin disk, with its young blue stellar population, to the thick disk, with its older redder population. As a consequence, q of an edge-on galaxy becomes larger at longer wavelengths. For example, the galaxies in the Dalcanton & Bernstein (2000) sample were chosen to have $q \leq 0.125$ at blue wavelengths; in deep R-band images, the typical axis ratio increases to $q \approx 0.23$ (Dalcanton & Bernstein 2002). Similarly, Mitronova et al. (2004) found that edge-on spirals that have $q \approx 0.17$ in blue images have $q \approx 0.35$ in 2 μm images.

Estimates of the distribution of disk ellipticity ϵ can be made from the distribution of apparent axis ratios q for a large population of randomly oriented spiral galaxies. The signature of nonzero ellipticity, in this case, is a scarcity of nearly circular ($q \approx 1$) spiral galaxies. Binney & de Vaucouleurs (1981), using spiral galaxies from the Second Reference Catalogue of Bright Galaxies (de Vaucouleurs et al. 1976), concluded that late-type spirals were better fitted by slightly elliptical disks ($\epsilon \approx 0.1$) than by perfectly circular disks. More recent studies (Grosbøl 1985; Lambas et al. 1992; Fasano et al. 1993; Alam & Ryden 2002; Ryden 2004) have confirmed the ellipticity of disks and have permitted estimates of the distribution function for intrinsic ellipticity. The distribution of ϵ is commonly fitted with a half-Gaussian peaking at $\epsilon = 0$. Values of σ_ϵ in this case range from $\sigma_\epsilon \approx 0.12$ (Lambas et al. 1992) through $\sigma_\epsilon \approx 0.13$ (Fasano et al. 1993) to $\sigma_\epsilon \approx 0.21$ (Ryden 2004).

Kinematic studies can also provide an estimate of the ellipticity of the gravitational potential in the disk plane. In an elliptical potential with small ellipticity ϵ_ϕ, the closed stellar orbits will themselves be ellipses (Binney 1978). When the resulting elliptical stellar disk is seen in projection, the isophotal principal axes will be misaligned with the kinematic principal axes. Because of the misalignment, there will be a velocity gradient along the isophotal minor axis proportional to $\epsilon_\phi \sin 2\phi$, where ϕ is the azimuthal viewing angle relative to the long axis of the potential (Franx & de Zeeuw 1992). Measurement of the kinematic misalignment for a sample of nine disk galaxies yielded an average ellipticity of $\epsilon_\phi \approx 0.044$ (Schoenmakers et al. 1997; Schoenmakers 1998). A similar analysis of gas kinematics in seven disk galaxies by Beauvais & Bothun (1999) found an average ellipticity of $\epsilon \approx 0.059$ for the gas orbits. Andersen & Bershady (2002), using the method of Andersen et al. (2001), combined two-dimensional kinematic and photometric data for a sample of
28 nearly face-on disk galaxies; they found an average halo ellipticity of \(\epsilon_h \approx 0.054 \) and an average disk ellipticity of \(\epsilon \approx 0.076 \) for their sample. Taking into account the selection criteria of Andersen & Bershady (2002), the implied median disk ellipticity is \(\epsilon \approx 0.10 \) (Ryden 2004).

Much of what we know about the ellipticity of disks thus comes from looking at galaxies with low inclination; much of what we know about disk thickness comes from looking at galaxies with high inclination. In principle, both ellipticity and thickness can be determined by looking at a sample of disk galaxies with random inclinations (Fasano et al. 1993). However, at visible wavelengths, thanks to the effects of dust, it is difficult to create a sample in which the disk inclinations are completely random. Because disk galaxies are not fully opaque, a flux-limited sample will be deficient in nearly edge-on galaxies (Huizinga & van Albada 1992). Because disk galaxies are not fully transparent, a flux-limited sample in which the disk inclinations are completely random is probably impossible.

The apparent shape of each galaxy in the 2MASS Large Galaxy Atlas (LGA) is seen in the near-infrared (Jarrett et al. 2003). The functional form adopted by Jarrett et al. (2003), in which the isoluminosity surfaces of the galaxy are adequately approximated as similar concentric coaxial ellipsoids, is

\[
m^2 = x^2 + y^2/\beta^2 + z^2/\gamma^2,
\]

where \(1 \geq \beta \geq \gamma \). The galaxy is viewed from an angle \((\theta, \phi)\), where \(\theta \) is the polar angle measured from the positive \(z\)-axis and \(\phi \) is the azimuthal angle measured from the positive \(x\)-axis. Assuming perfect transparency, the isophotes of the galaxy will be ellipses, given by the formula

\[
M^2 = DX^2 + EY^2.
\]

If I define, following Binney (1978),

\[
A(\theta, \phi) = \cos^2 \theta (\beta^2 \sin^2 \phi + \cos^2 \phi) + \gamma^2 \sin^2 \theta,
\]

\[
B(\theta, \phi) = (1 - \beta^2) \cos \theta \sin 2\phi,
\]

\[
C(\phi) = \sin^2 \phi + \beta^2 \cos^2 \phi,
\]

\[
f(\theta, \phi) = \gamma^2 \sin^2 \theta (\beta^2 \cos^2 \phi + \sin^2 \phi) + \beta^2 \cos^2 \theta,
\]

then

\[
D(\theta, \phi) = \frac{1}{2\theta} \left[A + C - \sqrt{(A - C)^2 + B^2} \right],
\]

\[
E(\theta, \phi) = \frac{1}{2\theta} \left[A + C + \sqrt{(A - C)^2 + B^2} \right].
\]

Jarrett et al. (2003) find that LGA galaxies are well fitted, outside their central nucleus or core, by a Sérsic profile,

\[
\mu(X) = \mu_0 \exp \left[-\left(X/\alpha \right)^{1/n} \right].
\]

The functional form adopted by Jarrett et al. (2003), in which \(\alpha \) is a scale radius, is readily converted to the more usual form,

\[
\mu(X) = \mu(R_e) \exp \left\{ -b_n \left(X/R_e \right)^{1/n} - 1 \right\},
\]

in which \(R_e \) is the effective radius, or half-light radius. The conversion from scale length \(\alpha \) to effective radius \(R_e = (b_n)\alpha \), where an adequate approximation to \(b_n \) is (Ciotti & Bertin 1999)

\[
b_n \approx 2n - \frac{1}{3} + \frac{4}{405n} + \frac{46}{25515n^2}.
\]

For the spiral galaxies in the LGA, the best-fitting profiles are usually close to exponential; 90% of the spiral galaxies have \(0.7 \leq n \leq 1.4 \) in the \(K_s \) band. In this range of \(n \), the effective radius ranges from \(R_e = 1.06\alpha \) (when \(n = 0.7 \)) to \(R_e = 3.55\alpha \) (when \(n = 1.4 \)).
If a galaxy has a surface brightness profile given by equation (9), then if it were viewed face-on (that is, from along the $\theta = 0$ axis) its profile would be

$$\mu(X) = \mu_0 \exp\left[-(X/X_0)^{1/n}\right],$$

where X_0 is the scale length along the apparent long axis and μ_0 is the central surface brightness, as seen from the angle $\theta = 0$. Let R_{20} be the value of X at which the surface brightness falls to the specified isophotal brightness $\mu_{20} = 20$ mag arcsec$^{-2}$. For the profile of equation (12),

$$R_{20}^0 = \alpha \left[\ln \left(\mu_0 / \mu_{20} \right) \right]^n.$$

If we actually view the disk galaxy from an angle (θ, ϕ), the central surface brightness of the disk is

$$\mu_d(\theta, \phi) = \mu_0 \beta \sqrt{D(\theta, \phi)E(\theta, \phi)},$$

and the scale length along the apparent long axis is

$$\alpha(\theta, \phi) = \alpha_0 / \sqrt{D(\theta, \phi)}.$$

The isophotal radius R_{20} at which the surface brightness on the long axis falls to μ_{20} is

$$R_{20}(\theta, \phi) = \alpha \left[\ln \left(\mu_d / \mu_{20} \right) \right]^n.$$

The apparent axis ratio of the disk, seen from the angle (θ, ϕ), is $q = (D/E)^{1/2}$. Thus, the face-on isophotal radius, R_{20}^0, is related to the observed values of $R_{20}(\theta, \phi)$ and $\alpha(\theta, \phi)$ by the relation

$$R_{20}^0 = \sqrt{D} R_{20} \left[1 + (\alpha / R_{20})^{1/n} \ln (q / \beta D) \right]^n.$$

Although R_{20}, α, and q can be measured for any particular galaxy seen in projection, β and $D(\theta, \phi)$ cannot. However, if the disk is axisymmetric, then $\beta = D = 1$, the scale length α is independent of viewing angle, and the face-on isophotal radius can be deduced from the observed properties:

$$R_{20}^0 = R_{20} \left[1 + (\alpha / R_{20})^{1/n} \ln q \right]^n.$$

For all $n > 0$, an axisymmetric disk appears smallest when seen face-on ($R_{20}^0 \leq R_{20}$).

3. SHAPE OF AXISYMMETRIC DISKS

If we assume that spiral galaxies are axisymmetric, then the analysis of § 2 suggests a way of assembling an inclination-independent subsample of disk galaxies from the 2MASS LGA. If the LGA contains all galaxies with $R_{20} > 60''$, then, assuming axisymmetry, it will contain all galaxies with $R_{20} > 60''$. Thus, from the tabulated values for R_{20}, α, n, and q (Jarrett et al. 2003), I compute R_{20}^0 for each spiral galaxy, using equation (18). If $R_{20} > 60''$, the spiral is included in the inclination-independent subsample.

In this way, I find that 193 spiral galaxies in the 2MASS LGA have $R_{20}^0 > 60''$. Of these galaxies, 130 have a Hubble type earlier than Sc (14 S0/a, 6 Sa, 28 Sab, 40 Sb, and 42 Sbc); I call these the “early spirals.” The remaining 63 spirals have a Hubble type of Sc or later (36 Sc, 18 Scd, 8 Sd, and 1 Sm); I call these the “late spirals.” If I had not done the inclination correction to find R_{20}^0, I would have found 161 early spirals and 117 late spirals with $R_{20} > 60''$.

The apparent axis ratios q_K and q_B for the 193 LGA spirals in the inclination-corrected sample are shown in Figure 1. Spirals with $q_K < 0.3$ are generally less flat in the K_s band than in the B band. It can also been seen that extremely flat spirals, with $(q_B + q_K)/2 < 0.2$, and nearly round spirals, with $(q_B + q_K)/2 > 0.9$, are more likely to be late types (Fig. 1, squares) than early types (Fig. 1, triangles). Intermediate axis ratios, however, with $(q_B + q_K)/2 < 0.5$, are strongly dominated by early spirals. When galaxies with detectable visible-light bars (types SAB and SB) are compared to galaxies of type S and SA, no significant difference is found in their axis ratio distributions; $P > 0.1$ as measured both by a Kolmogorov-Smirnov test and by a χ^2 test, in both bands.

On a cautionary note, it should be pointed out that q_K, the axis ratio of the 3σ isophote, does not measure the shape at the same physical distance from each galaxy’s center. Because looking at a disk edge-on enhances the surface brightness, the distance R_{20}, the semimajor axis of the 3σ isophote, does not measure the shape at the same distance as a function of $\ln q$. On average, R_{20} measures the shape at larger radii, on average, for galaxies with $q_K < 0.5$ than for galaxies with $q_K > 0.5$. To illustrate the trend, Figure 2 shows R_{20}, in units of the effective radius, $R_e = (b_n/\mu)^{1/2}$, as a function of $\ln q_K$. On average, $R_{3\sigma}/R_e$ tends to increase as q_K decreases. The best linear fit to the data for late spirals, shown as the dashed line in Figure 2, is

$$R_{3\sigma}/R_e = 0.976 - 0.617 \ln q_K,$$

with a correlation coefficient $r = -0.64$. The best fit to the data for early spirals, shown as the dotted line in Figure 2, is

$$R_{3\sigma}/R_e = 1.235 - 0.670 \ln q_K,$$

with a correlation coefficient $r = -0.56$. Although the scatter in the relation is large, the 3σ isophote tends to be closer to the
galaxy’s center for nearly face-on axisymmetric disks than for nearly edge-on disks. If the isoluminosity surfaces of a disk galaxy were perfectly similar oblate spheroids, it would not matter where q_K is measured. However, for early-type, big-bulged spirals, the value of q_K measured for galaxies of low inclination can be significantly affected by light from the galaxy’s central bulge. A similar relation holds true between the early spirals, the mean and standard deviation of q_B indicate the B axis ratios. The solid line in each case is the best fit, while the dotted lines indicate the 80% confidence interval estimated from bootstrap resampling. The horizontal error bars show the initial kernel width h. Bottom: Distribution of intrinsic axis ratios, assuming the spirals are randomly oriented oblate spheroids.

3.1. Nonparametric Fits

The distributions of apparent axis ratios, $f(q_K)$ and $f(q_B)$, were estimated for the galaxies in the sample using a nonparametric kernel technique (Vio et al. 1994; Tremblay & Merritt 1995; Ryden 1996). Estimating a function f by the use of kernels gives a smooth estimate function f with no a priori restrictions on its shape, unlike a parametric fit to f. Given a sample of n axis ratios, q_1, q_2, \ldots, q_n, the kernel estimate of the frequency distribution $f(q)$ is

$$f(q) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h_i} K \left(\frac{q - q_i}{h_i} \right),$$

(21)

where $K(x)$ is the kernel function, normalized so that its integral over all x is equal to 1. To ensure that the estimate f is smoothly differentiable, I adopt a Gaussian kernel, $K(x) \propto \exp\left(-x^2/2\right)$. The parameter h_i in equation (21) is the kernel width, determined using the standard adaptive two-stage estimator of Abramson (1982). In the two-stage estimator, the first stage consists of making an initial estimate f_0 using a fixed kernel width h. The initial kernel width is given by the formula $h = 0.94n^{-0.2}$, with $n = 193$.

The estimated distribution of axis ratios for the 193 spirals in the inclination-corrected sample is shown in Figure 3 (top). The solid red line indicates $f(q_K)$, while the solid blue line indicates $f(q_B)$. The dotted lines indicate the 80% error intervals estimated from bootstrap resampling. In the bootstrap analysis, I randomly selected $n = 193$ data points, with substitution, from the original sample of 193 axis ratios; a new estimate f was then created from the bootstrapped data. After doing 5000 bootstrap estimates, I determined the 80% error interval; in Figure 3, 10% of the bootstrap estimates lie above the upper dotted line, and 10% lie below the lower dotted line. If the spiral galaxies were infinitesimally thin, perfectly circular disks, the distribution function would be $f = 1$ for $0 \leq q \leq 1$; the deviations of $f(q_K)$ and $f(q_B)$ from this form reveal that the spiral galaxies in our sample are not perfectly circular disks.
sample are neither infinitesimally thin nor perfectly circular. In
the K_s band, galaxies are slightly rounder on average than in the
B band: $\langle q_K \rangle = 0.538$ versus $\langle q_B \rangle = 0.525$. In addition, there is
a slightly greater spread in shapes in the B band: $\sigma(q_K) = 0.212$
versus $\sigma(q_B) = 0.234$.

Given the assumption of oblateness, it is straightforward to do
a numerical inversion of $\hat{f}(q)$, the estimated distribution of ap-
parent axis ratios, to find $\hat{N}(\gamma)$, the estimated distribution of in-
trinsic axis ratios. The relation between $f(q)$ and $\hat{N}(\gamma)$ is

$$
\hat{f}(q) = \int_{q}^{q+dq} P(q|\gamma) \hat{N}(\gamma) dq,
$$

where $P(q|\gamma) dq$ is the probability that a galaxy with a short-
to-long axis ratio γ has an apparent axis ratio in the range
$q \to q + dq$ when seen from a randomly chosen viewing angle.
For a population of oblate spheroids (Sandage et al. 1970)

$$
P(q|\gamma) = \begin{cases}
\frac{q}{(1 - \gamma^2)^{1/2}(q^2 - \gamma^2)^{1/2}} & \text{if } \gamma \leq q \leq 1 \\
0 & \text{otherwise}.
\end{cases}
$$

Equation (23) is a Volterra equation of the first kind; in its
discretized form, it can be inverted to find \hat{N} by a process of
forward substitution (see Vincent & Ryden [2005] for details).

Figure 3 (bottom) shows the distributions of intrinsic axis ratios in
the K_s band (red line) and the B band (blue line). The
solid line, in each case, is the distribution found by inverting
equation (23). Because \hat{N} is a deconvolution of \hat{f}, any noise
present in \hat{f} will be amplified in \hat{N}; to produce an acceptably
smooth estimate of \hat{N}, it is thus necessary to use a value of the
initial kernel width h that is larger than the optimal value for
computing \hat{f} (Tremblay & Merritt 1995). For computing \hat{N}, I
used a kernel width h that was 20% greater than the value used
to compute \hat{f}.

The deduced distributions \hat{N} show that the most probable
value of γ is $\gamma_K = 0.25$ in the K_s band and $\gamma_B = 0.17$ in the B
band. A striking aspect of the distributions \hat{N} seen in Figure 3 is
that they are negative for large values of γ. In the K_s band, \hat{N}
dips below zero for $\gamma_K > 0.58$; in the B band, \hat{N} is below zero
for $\gamma_B > 0.67$. This is a physical absurdity, implying a negative
number of nearly spherical galaxies. The 80% confidence band,
delineated by the dotted lines in Figure 3 (bottom), falls below
zero in both bands for $\gamma \geq 0.7$. This means that fewer than 10% of
the bootstrap resamplings yield nonnegative estimates in this
range of γ. The hypothesis that the spiral galaxies are a population
of randomly oriented oblate spheroids can thus be rejected at the
90% (one sided) confidence level. If the 98% confidence band is
laid out in a similar manner, with 1% of the bootstrap resamplings
lying above the band and 1% lying below, it is found that in the
K_s band, the confidence band dips below zero for $\gamma = 0.8$. Thus,
in the K_s band, the oblate hypothesis can be rejected at the 99%
(one sided) confidence level. In the B band, where the shape is
measured farther from the galaxies’ centers, the oblate hypothesis
cannot be rejected at the 99% confidence level.

For the complete inclination-adjusted sample, the hypothesis
that the galaxies are perfectly axisymmetric can be rejected at
a fairly strong confidence level, particularly in the near-infrared.
However, Figure 1 reveals that the distribution of apparent shapes
is different for late spirals and for early spirals. Thus, it is worth-
while to look at $f(q)$ and the derived $\hat{N}(\gamma)$ for late and early spirals
separately. Figure 4 (top) shows $f(q_K)$ and $f(q_B)$ for the $n = 63$
late spirals in the sample. The distribution of apparent axis ratios
in the K_s band, indicated by the red lines, is similar to the dis-
tribution in the B band, indicated by the blue lines. In both cases, the
distribution f is nearly constant over a wide range of q. The ded-
uced distributions of intrinsic axis ratios, $\hat{N}(\gamma_K)$ and $\hat{N}(\gamma_B)$,
are indicated by the red and blue lines, respectively, in Figure 4
(bottom). In both bands, the distribution \hat{N} never falls below
zero; thus, the oblate hypothesis is perfectly acceptable, both
for the B band data and for the K_s band data. If the oblate hy-
pothesis is accepted, the average disk thickness is smaller in the
B band: $\langle q_B \rangle = 0.12$ as compared to $\langle q_K \rangle = 0.19$. In both
bands, the width of the function \hat{N} is comparable to the kernel
width h used, indicating that the true spread in γ_B and γ_K may
be less than is shown in the smoothed distributions of Figure 4.

The apparent shapes of early spirals, shown in Figure 5 (top),
are strikingly different from the apparent shapes of late spi-
ars. For early spirals, the distribution f is not uniform over q,
but instead is peaked at $q \sim 0.5$, with a marked scarcity of gal-
axies with $q \gtrsim 0.8$. Such a nonuniform distribution is typical of
a population of triaxial ellipsoids. The distribution of q_B (Fig. 5,
red lines) is particularly strongly peaked at $q \sim 0.5$, which may
be attributed, in part, to a contribution of light from nonaxisym-
metric bulges. However, even the distribution of q_B measured
at a much larger radius within each galaxy, is inconsistent with
axisymmetry. The deduced distributions of intrinsic axis ratios,
shown in Figure 5 (bottom), demonstrate how grossly inconsist-
tent the observed distributions of q_K and q_B are with the hypoth-
thesis of randomly oriented oblate spheroids. The oblate hypothesis
can, in fact, be ruled out at the 99% confidence level for both the
K_s band isophotal shapes and the B-band isophotal shapes. Thus,
the deviations from axisymmetry in the full sample of spiral
galaxies can be attributed to the early spirals in the sample; the late spirals are perfectly consistent with axisymmetry.

3.2. Parametric Fits

For comparison with previous studies, it is useful to make parametric estimates of $\frac{N}{C_{13}}$, in addition to the nonparametric kernel estimates of § 3.1. A common convention (Huizinga & van Albada 1992; Fasano et al. 1993) is to fit the distribution of intrinsic axis ratios with a Gaussian:

$$N(\gamma) d\gamma \propto \exp \left[-\frac{(\gamma - \mu_\gamma)^2}{2\sigma_\gamma^2} \right] d\gamma$$

for $0 \leq \gamma \leq 1$, with $N = 0$ elsewhere. Inspection of Figure 4 (bottom) indicates that this should provide a reasonable fit for the late spirals, at least.

The best-fitting values of μ_γ and σ_γ were determined by a χ^2 fit to the binned distribution of q_K and q_B. In each band, the n values of q were divided into $n_{bin} = 12$ bins of equal width. After choosing particular values for μ_γ and σ_γ, I randomly chose n values of γ, drawn from the distribution of equation (25). After randomly selecting a viewing angle for each mock disk, I computed its apparent axis ratio $q(\gamma, \theta, \phi)$ from the formulas in § 2. The model axis ratios were then binned in the same way as the observed axis ratios. After repeating this procedure 8000 times for a given $(\mu_\gamma, \sigma_\gamma)$ pair, I calculated the mean and standard deviation of the expected number of model galaxies in each bin and computed a χ^2 probability for that particular pair of parameters.

Figure 6 shows the isoprobability contours in the two-dimensional parameter space, where the probability is measured...
by a χ^2 fit to the binned data. The fit to the K_r-band data is shown by the red lines; the fit to the B-band data is shown by the blue lines. In each band, the best-fitting values of μ_γ and σ_γ are indicated by an asterisk.

In Figure 6 (top), the fit is made to the complete inclination-adjusted sample of $n = 193$ spirals. In the K_r band, the best fit in this region of parameter space is $(\mu_\gamma, \sigma_\gamma) = (0.26, 0.09)$, which yields a χ^2 probability $P \approx 0.20$. In the B band, the best fit is $(\mu_\gamma, \sigma_\gamma) = (0.17, 0.03)$, which yields $P \approx 0.17$. For these fits, the biggest contributions to χ^2 come from the two bins with $q \geq 0.83$, for which this axisymmetric model predicts more galaxies than are observed. In the K_r band, spiral galaxies are not only thicker, on average, than in the B band, but they also have a greater spread in thicknesses. The typical γ-value I find for spirals in the B band, $\mu_\gamma = 0.17$, is greater than the value of $\mu_\gamma = 0.13$ found by Fasano et al. (1993) for a volume-limited sample of 766 spirals, using apparent axis ratios taken from the Third Reference Catalogue of Bright Galaxies (de Vaucouleurs et al. 1991). As seen in Figure 6 (top), the best values of $(\mu_\gamma, \sigma_\gamma)$ found by Fasano et al. (1993) lie just inside the $P = 0.01$ contour for the 2MASS LGA spirals.

Figure 6 (middle) shows the fit for the late spirals only (Hubble type Sc and later). The $n = 63$ galaxies in this subsample do not place a strong constraint on μ_γ and σ_γ; the $P = 0.5$ contour, indicated by the heavy solid line, contains a large swath of parameter space, particularly in the K_r band. The best fit in the K_r band is $(\mu_\gamma, \sigma_\gamma) = (0.18, 0.06)$, which yields a χ^2 probability $P \approx 0.91$. In the B band, the best fit is $(\mu_\gamma, \sigma_\gamma) = (0.14, 0.02)$, yielding $P \approx 0.80$. Once again, as for the complete sample, the K_r-band data indicate both a larger average thickness and a greater spread in thicknesses than do the B data. However, in both bands, the data are consistent with $\sigma_\gamma = 0$. An excellent fit results if all the late spirals are assumed to have an intrinsic axis ratio γ equal to, or slightly smaller than, the smallest apparent axis ratio q in the subsample ($q_K = 0.12$ for NGC 4302 and $q_B = 0.12$ for NGC 5907). The best fit found by Huizinga & van Albada (1992) for a sample of Sc galaxies, $(\mu_\gamma, \sigma_\gamma) = (0.16, 0.02)$, and by Fasano et al. (1993) for a sample of galaxies of type $4.5 < t \leq 7.0$, $(\mu_\gamma, \sigma_\gamma) = (0.10, 0.03)$, are both statistically consistent with the results for late-type LGA 2MASS spirals in the B band; see Figure 6 (middle).

Figure 6 (bottom) shows the results of fitting a Gaussian distribution for γ to the early spirals (Hubble type Sbc and earlier). The best fits are not as good as the excellent fits found for the late spirals. The best fit in the K_r band is $(\mu_\gamma, \sigma_\gamma) = (0.29, 0.08)$, for which the χ^2 probability is $P \approx 0.06$. The best fit in the B band is $(\mu_\gamma, \sigma_\gamma) = (0.20, 0.04)$, yielding $P \approx 0.08$. The relatively poor fits are the result of demanding axisymmetry; the Gaussian form of equation (25) is not primarily to blame, since the nonparametric kernel estimate revealed that no distribution $N(\gamma) > 0$ gives a good fit to the early spirals. As with the late spirals, the average thickness and the spread of thicknesses is greater in the K_r band than in the B band. The greater disk thickness in the infrared is more pronounced for the early spirals than for the late spirals. For early spirals, the best-fitting μ_γ in the K_r band is 50% greater than in the B band; for late spirals, the best-fitting μ_γ in the K_r band is only 20% greater than in the B band.

4. SHAPE OF NONAXISYMMETRIC DISKS

Given that a distribution of axisymmetric $(\epsilon = 0)$ disks does not give a good fit to early spirals, it would be useful to know which distribution of nonaxisymmetric disks gives the best fit to the early spirals (and to the late spirals, for that matter). A fundamental difficulty is that even if $f(q)$ were known perfectly, it would not uniquely determine $N(\gamma, \epsilon)$. However, the joint distribution of the disk thickness γ and the disk ellipticity ϵ is not beyond all conjecture. I use the approach of assuming a parameterized functional form for the distribution $N(\gamma, \epsilon)$ and finding which values of the parameters give the best fit to the observed distributions of axis ratios. This approach yields permissible fits to $N(\gamma, \epsilon)$, but these fits, it should be remembered, are not unique solutions.

4.1. Gaussian Parametric Fits

I assume that $N(\gamma, \epsilon) = N_\gamma(\gamma)N_\epsilon(\epsilon)$, where N_γ is the same Gaussian assumed in equation (25) and N_ϵ is a Gaussian distribution (Lambas et al. 1992; Huizinga & van Albada 1992; Fasano et al. 1993; Ryden 2004):

$$N_\epsilon(\epsilon) \propto \exp \left[-\frac{(\epsilon - \mu_\epsilon)^2}{2\sigma_\epsilon^2}\right] d\epsilon. \quad (26)$$

The function $N(\gamma, \epsilon)$ is nonzero inside the region $0 \leq \gamma \leq 1$ and $0 \leq \epsilon \leq 1 - \gamma$. A complication of fitting nonaxisymmetric models is the increased difficulty of deriving an inclination-corrected subset of spiral galaxies. If a galaxy is not an axisymmetric disk, it is impossible from photometry alone to determine absolutely whether or not its face-on semimajor axis R_0^0 is greater than the cutoff value of 60". To illustrate the effects of nonaxisymmetry, consider a mildly triaxial disk, with $\epsilon \ll 1$. For such a disk, $\beta = 1 - \epsilon$, $D \approx 1 + 2\epsilon \cos^2 \phi$, and the face-on semimajor axis is, from equation (17),

$$R_{20}^0 = (1 + \epsilon \cos^2 \phi)R_{20} \left[1 + (\alpha/R_{20})^{1/n}(\ln q - \epsilon \cos 2\phi)^2\right]^{\epsilon/n}. \quad (27)$$

Thus, the face-on isophotal radius R_{20}^0 of a triaxial disk may be either smaller or larger than that of an axisymmetric disk with the same observed values of R_{20}, α, n, and q. Since R_{20}^0 cannot be greater than the observed R_{20} for a nonaxisymmetric disk, a sample complete to $R_{20} = 60"$ is not guaranteed to be complete to $R_{20}^0 = 60"$. However, for mildly eccentric disks ($\epsilon \ll 1$), the potential incompleteness effects should be small.

To make the inclination correction, I begin by assuming values for the parameters μ_γ, σ_γ, μ_ϵ, and σ_ϵ. I randomly select a value of γ and of ϵ from the appropriate distribution functions and randomly choose a viewing angle (θ, ϕ). I then compute $\beta = 1 - \epsilon, D(\theta, \phi)$, using equation (7), $E(\theta, \phi)$, using equation (8), and the apparent axis ratio $q = (D/E)^{1/2},$ 1 then have one possible (β, D) pair corresponding to the observable apparent axis ratio q. Having binned the entire range of q, from $q = 0$ to $q = 1$, into 100 equal-width bins, I can then place the (β, D) pair into the appropriate bin. I repeat the process of randomly choosing γ, ϵ, θ, and ϕ, computing β, D, E, and q, and putting the resulting (β, D) pair into the appropriate bin in q, until I have done a total of $\sim 5 \times 10^6$ iterations of this process, keeping a maximum of 1000 (β, D) pairs for each bin in q. Now consider a specific galaxy with measured values of R_{20}, α, n, and q_K. I go to the appropriate bin in axis ratio q and pull out (β, D) pairs, determining how many of the pairs result in $R_{20}^0 > 60"$, using equation (17). A fraction F of the (β, D) pairs, where $0 \leq F \leq 1$, will result in the face-on isophotal radius R_{20}^0 of this galaxy being greater than the lower limit of 60". I then created binned distributions of q_K and q_B, with $q_{\text{max}} = 12$, for comparison with model distributions. In the binned distributions of observed axis ratios, the axis ratio for each galaxy is given a weight equal to the fraction F. As a consequence, the total number $n = \sum F$ of galaxies in the
From K_s indicate the complete sample of LGA spirals. The heavy solid line, light solid line, and dotted line are 0.25, 0.5, 0.75, and 1.0 mag.

Tully-Fisher relation (see Ryden (2004), and H indicates Huizinga & van Albada (1992). F indicates Fasano et al. (1993), L indicates Lambas et al. (1992), R indicates Ryden (1993), and Ryden (2004), who find good fits for Gaussian distributions with μ, and σ, are determined by looking at galaxies that close to edge-on, with $q > 0.5$. Thus, the best-fitting values of μ, and σ, that I found by assuming $e = 0$ should not be greatly changed when $0 < e < 1$. I therefore fix the values of μ, and σ, for each sample of galaxies to be equal to those determined in §3.2, where galaxies were assumed to be axisymmetric. This reduces the parameter space to two dimensions. After fixing μ, and σ, I choose values of μ, and σ, I then randomly select n values of γ from the distribution of equation (25), n values of ϵ from the distribution of equation (27), and n random viewing angles. The apparent axis ratio $q(\gamma, e, \theta, \phi)$ for each of n mock galaxies is computed from the formulas given in §2. The model axis ratios are then binned into $n_{\text{bin}} = 12$ equal-width bins. After repeating this procedure $\sim 10^4$ times for a given (μ, σ) pair, I calculate the mean and standard deviation of the expected number of mock galaxies in each bin, and compute a χ^2 probability for that particular set of parameters.

Figure 7 shows the isoprobability contours in (μ, σ) parameter space. The fit to the K_s-band data is shown by the red lines; the fit to the B-band data is shown by the blue lines. In each band, the best-fitting values of μ, and σ, in the displayed region of parameter space are indicated by an asterisk. The best-fitting μ and σ, for each galaxy sample, at each wavelength, are given in Table 1. Figure 7 (top) displays the results for the complete sample of spirals, weighted by the appropriate fraction F for each galaxy. The best fits have $\mu \approx 0$ and $\sigma \approx 0.16$ (B band) and $\sigma \approx 0.26$ (K_s band). The most probable ellipticity for these skewed distributions is $\epsilon \approx 0$, but there is a long tail to higher ellipticities. The results for the 2MASS LGA spirals are in good agreement with those of Lambas et al. (1992), Fasano et al. (1993), and Ryden (2004), who find good fits for Gaussian distributions with $\mu = 0$, and $\sigma \approx 0.2$. [I only computed solutions with $\mu \geq 0$. It is mathematically permissible to have $\mu < 0$. In the limit $-\mu \gg \sigma$, this leads to an exponential distribution function: $N \propto \exp(-\epsilon/h_\epsilon)$, with a scale length $h_\epsilon = \sigma^2/|\mu| \ll \sigma$. Exponential functions peaking at $\epsilon = 0$ do not give a significantly better fit than Gaussian functions peaking at $\epsilon = 0$.]

TABLE 1

Band	μ_s	σ_s	μ_u	σ_u	μ_q	σ_q	
All Sample	K_s	0.26	0.09	0.01	0.26	-0.14	2.74
	B	0.17	0.03	0.01	0.16	-2.36	0.96
Late Sample	K_s	0.18	0.06	0.02	0.02	-3.86	0.74
	B	0.14	0.02	0.07	0.02	-2.63	0.13
Early Sample	K_s	0.29	0.08	0.02	0.47	-0.14	1.74
	B	0.20	0.04	0.09	0.22	-1.77	0.83
Figure 7 (middle) shows the results of fitting a Gaussian distribution of ellipticities to the late spirals (Sc and later). This plot emphasizes that the apparent shapes of late spirals are consistent with axisymmetry. The best fit in each band has $\mu_\varepsilon \leq 0.07$ and $\sigma_\varepsilon = 0.02$, but $\mu_\varepsilon = 0, \sigma_\varepsilon = 0$ also gives an excellent fit, with $P > 0.5$. Although perfect axisymmetry is not compulsory, there are constraints on how large the disk ellipticities can be. The region in parameter space for which $P > 0.5$ (demarcated by the heavy solid lines Fig. 7, middle) is confined within the limits $\mu_\varepsilon \leq 0.10, \sigma_\varepsilon \leq 0.15$. The parameters found by Fasano et al. (1993) for their sample of late-type galaxies, $\mu_\varepsilon = 0.12$ and $\sigma_\varepsilon = 0.11$, imply a greater mean ellipticity than is found in the 2MASS LGA sample.

Figure 7 (bottom) shows the results of fitting a Gaussian distribution of ellipticities to the early spirals (Sbc and earlier). The best fit in the K_s band, that a lognormal distribution provides a good fit to the observed disk ellipticities. Finding the best values of μ_η and σ_η for each sample of spirals is done using the technique outlined in § 3.2. Once again, the values of μ_η and σ_η used were those that gave the best fit in the axisymmetric case.

Figure 8 displays the isoprobability contours in (μ_η, σ_η) space. For all subsamples and both colors, the lognormal distribution of ellipticities (eq. [28]) can provide as good a fit as the Gaussian distribution (eq. [26]). The best-fitting parameters μ_η and σ_η, as measured by a χ^2 fit to the binned data, are indicated by asterisks in Figure 8 and are listed in Table 1. The best lognormal fit to each subsample yields a median ellipticity that is within ~15% of that provided by the best Gaussian fit. For all spirals, the median ellipticity is $\epsilon \approx 0.10$ in the B band and $\epsilon \approx 0.16$ in the K_s band.

Figure 8 (top) shows the results for the complete sample of spirals. The best fit in the B band, $\mu_\eta = -2.36$ and $\sigma_\eta = 0.96$, is

4.2. Lognormal Parametric Fits

Satisfactory fits to the distribution of apparent axis ratios can also be found using a lognormal distribution of ellipticities, rather than a Gaussian. If I define $\eta \equiv \ln \epsilon$, then a lognormal distribution can be written in the form

$$
N_\varepsilon(\epsilon) \, d\epsilon \propto \exp \left[-\frac{(\eta - \mu_\eta)^2}{2\sigma_\eta^2} - \frac{(\ln \epsilon - \mu_\eta)^2}{2\sigma_\eta^2} \right] \, d\eta
$$

$$
\propto \exp \left[-\frac{(\eta - \mu_\eta)^2}{2\sigma_\eta^2} \right] \, d\eta.
$$

Motivation for the lognormal fit is provided by Andersen et al. (2001) and Andersen & Bershady (2002), who find, by combining photometric and kinematic information for nearly face-on spirals, that a lognormal distribution provides a good fit to the observed disk ellipticities. Finding the best values of μ_η and σ_η for each sample of spirals is done using the technique outlined in § 3.2. Once again, the values of μ_η and σ_η used were those that gave the best fit in the axisymmetric case.

Figure 8 displays the isoprobability contours in (μ_η, σ_η) space. For all subsamples and both colors, the lognormal distribution of ellipticities (eq. [28]) can provide as good a fit as the Gaussian distribution (eq. [26]). The best-fitting parameters μ_η and σ_η, as measured by a χ^2 fit to the binned data, are indicated by asterisks in Figure 8 and are listed in Table 1. The best lognormal fit to each subsample yields a median ellipticity that is within ~15% of that provided by the best Gaussian fit. For all spirals, the median ellipticity is $\epsilon \approx 0.10$ in the B band and $\epsilon \approx 0.16$ in the K_s band.

Figure 8 (top) shows the results for the complete sample of spirals. The best fit in the B band, $\mu_\eta = -2.36$ and $\sigma_\eta = 0.96$, is
seen to be similar to the best fit found by Ryden (2004) for a sample of exponential galaxies in the Sloan Digital Sky Survey ($\mu_n = -2.06$ and $\sigma_n = 0.83$ in the b band). It is also in agreement with the best fit to the sample of Andersen & Bershady (2002), corrected for their selection criteria ($\mu_n = -2.29$ and $\sigma_n = 1.04$). The best fit in the K_b band, $\mu_n = -0.14$ and $\sigma_n = 2.74$, requires a much broader spread in ellipticities in addition to a greater median ellipticity. However, the values of μ_n and σ_n are not very strongly constrained; excellent fits, with $P > 0.5$, are produced over a wide range of parameter space with $\mu_n \gtrsim -1$ and $\sigma_n \gtrsim 1$.

Figure 8 (middle) shows the results for the late spirals. The best-fitting lognormal distribution in each band implies a small amount of disk ellipticity; the median ellipticity of late spirals is $\epsilon \approx 0.07$ in the B band and $\epsilon \approx 0.02$ in the K_b band. However, the shapes of late spirals are seen, once again, to be consistent with axisymmetry ($\mu_n \rightarrow \infty$, $\sigma_n = 0$). The only region of parameter space that is strongly excluded is the lower right corner of the panel, where μ_n is large and σ_n is small. Finally, Figure 8 (bottom) shows the results for the early spirals. The best fit in the B band implies a median ellipticity of $\epsilon \approx 0.18$ for the early spirals. The best fit in the K_b band implies a still greater degree of disk ellipticity, with a median ellipticity of $\epsilon \approx 0.30$.

5. IMPLICATIONS AND DISCUSSION

The 2MASS LGA provides a sample of nearby spiral galaxies with large angular size ($R_3, m > 60''$ at $k \sim 2$ μm). In this paper, I have used this relatively small sample of very well-resolved galaxies to estimate the distribution of apparent and intrinsic shapes of spiral galaxies. An intriguing result of this study is the difference in disk ellipticity ϵ between disk galaxies of early and late Hubble types.

If the entire population of 2MASS LGA spirals is considered, summed over all Hubble types, the distribution of ellipticities in the B band is consistent with earlier photometric studies using larger sample sizes (Lambs et al. 1992; Fasano et al. 1993; Ryden 2004). The K_b-band ellipticity is greater, but the shape of the 3σ isophote in the K_b band can be influenced by light from triaxial bulges. The distribution $N(\epsilon)$ for shapes in the B band can be modeled as a Gaussian peaking at $\mu_\epsilon \approx 0$ and width $\sigma_\epsilon \approx 0.16$ or as a lognormal distribution with $\mu_\epsilon \approx -2.4$ and $\sigma_\epsilon \approx 1.0$; both these distributions imply a mean ellipticity ϵ ≈ 0.1. When the late spirals, consisting mainly of Hubble type Sc, are examined, they are found to be perfectly consistent with axisymmetry in both the B and the K_b band. The early spirals, consisting mainly of types Sb and Sbc, show a high degree of ellipticity, even in the B band, in which the mean ellipticity is $\epsilon \approx 0.18$.

It has been noted by Franx & de Zeeuw (1992) that a disk ellipticity of $\epsilon > 0.1$ cannot be reconciled with the observed small scatter in the Tully-Fisher relation (Tully & Fisher 1977) if the disk ellipticity is assumed to trace the potential ellipticity. Suppose that stars and gas are on closed orbits in a logarithmic potential with rotation speed v_r. If the potential has a small ellipticity $\epsilon_\phi \ll 1$ in the orbital plane, then the integrated line profile from the disk will have a width $W = 2v_r(1 - \epsilon_\phi \cos 2\phi) \sin \theta$ when viewed from a position angle (θ, ϕ) (Franx & de Zeeuw 1992). The difference in line width from that produced in a purely circular disk will produce a scatter in the observed Tully-Fisher relation. If all disks have $\epsilon_\phi = 0.1$, the expected scatter is 0.3 mag, even if the inclination has been determined accurately from kinematic information (Franx & de Zeeuw 1992). In most studies of the Tully-Fisher relation, the inclination is determined photometrically, from the apparent axis ratio of the disk, assuming (perhaps erroneously) that the disk is axisymmetric. If inclinations are determined in this way, the scatter in the Tully-Fisher relation will be even greater.

If galaxies had infinitesimally thin circular disks, the relation between apparent axis ratio q and inclination θ would be $q = \cos \theta$. If the thin disks actually have ellipticity ϵ and are viewed at high inclination ($\sin^2 \theta \gg 2\epsilon$), the apparent axis ratio will be $q \approx \cos \theta (1 - \epsilon \cos 2\phi)$. Thus, if the inclination is estimated by the relation $\theta_{\text{phot}} \equiv \cos^{-1} q$, a fractional error $\propto \epsilon \cos 2\phi$ will be introduced into $\cos \theta_{\text{phot}}$ and an error $\propto \epsilon \cos^2 \theta \cos 2\phi$ will be introduced into $\sin \theta_{\text{phot}}$. Since the observed velocity width W must be divided by $\sin \theta$ to find the rotation speed v_r, the error produced by using $\sin \theta_{\text{phot}}$ instead of $\sin \theta$ will be negligible only when $\cot^2 \theta \ll 1$. Thus, most studies of the Tully-Fisher relation use galaxies of high inclination ($\theta_{\text{phot}} \gtrsim 45^\circ$). The Tully-Fisher relation for nearby face-on galaxies (see, for instance, Andersen & Bershady 2003) can only be determined if the inclinations are determined kinematically.

In Figures 7 and 8, the dashed lines indicate the expected amount of scatter in the Tully-Fisher relation if the potential ellipticity is given by either a Gaussian distribution (Fig. 7) or by a lognormal distribution (Fig. 8). Starting at the lower left corner of each panel, the contours are drawn at the levels 0.25, 0.5, 0.75, and 1.0 mag. The inclinations are assumed to be estimated from the apparent axis ratio. Since the disks are not always infinitesimally thin, the inclination θ_{phot} is estimated using the relation

$$\cos^2 \theta_{\text{phot}} = \frac{q^2 - \mu^2_\epsilon}{1 - \mu^2_\epsilon}.$$

Ultrathin galaxies with $q < \mu_\epsilon$ are assumed to have $\cos \theta = 1$. All galaxies with $\theta_{\text{phot}} < 45^\circ$ are discarded.

If all spirals are considered together, the best-fitting ellipticity distributions—either Gaussian or lognormal—imply approximately 1 mag of scatter if the potential ellipticity equals the disk ellipticity: this can be seen in the top panels of Figures 7 and 8. The best-fitting ellipticity for the late spirals, as seen in the middle panels of Figures 7 and 8, implies only 0.3 mag of scatter. Finally, the best-fitting ellipticity for the early spirals, seen in the bottom panels of Figures 7 and 8, leads to 1.4 mag of scatter in the Tully-Fisher relation. By comparing the predicted scatter from disk ellipticity to the actual scatter in the Tully-Fisher relation for these galaxies, I can place constraints on how much of the scatter can be attributed to the disk ellipticity.

To create a Tully-Fisher plot for the spirals in the 2MASS LGA sample, I took the relevant astrophysical parameters from the HyperLeda database. As a measure of galaxy luminosity, I used the I-band absolute magnitude; multiband studies of the Tully-Fisher relation indicate that the observed scatter is minimized in or near the near-infrared. The I-band absolute magnitude is computed from the apparent magnitude m_I (corrected for Galactic extinction and internal extinction) and the distance modulus $m - M$. The distance modulus was computed from the radial velocity v_{rad}, corrected for infall of the Local Group toward Virgo, assuming a Hubble constant $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$; for galaxies with $v_{\text{rad}} < 500$ km s$^{-1}$, the distance modulus was taken from the literature, with preference given to Cepheid distances. As a measure of rotation speed, I used the maximum rotation velocity v_{max} determined from the 21 cm line of neutral hydrogen. In computing v_{max}, the inclination used is the photometric estimate θ_{phot}, using the axis ratio of the 25 mag arcsec$^{-2}$ isophote as the apparent axis ratio q.

2 See http://leda.univ-lyon1.fr.
Fisher relation, found using an unweighted inverse fit (Schechter dotted line is the fit to the early spirals (MI photometry in HyperLeda. A total of with a scatter in (MI/C18 with \(n = 43 \)). For instance, the absolute magnitude \(M_I \) is subject to errors in flux measurement, errors in determining distance, and errors in extinction correction. The rotation speed \(v_m \) is subject to errors in measuring 21 cm line widths and errors in converting line widths to deduced rotation speeds. Let us suppose that the two sources of scatter add in quadrature: \(\sigma^2_{\text{rms}} = \sigma^2_{\text{ell}} + \sigma^2_{\text{err}} \). If \(\sigma_{\text{err}} \) is the same for both early and late spirals, then

\[
\sigma_{\text{ell}}(\text{early})^2 - \sigma_{\text{ell}}(\text{late})^2 = \sigma_{\text{rms}}(\text{early})^2 - \sigma_{\text{rms}}(\text{late})^2 = (0.91 \text{ mag})^2.
\]

If late spirals are perfectly axisymmetric, which is permitted by the data, then \(\sigma_{\text{ell}}(\text{late}) = 0 \text{ mag} \) and \(\sigma_{\text{ell}}(\text{early}) = 0.91 \text{ mag} \). The largest possible values of \(\sigma_{\text{ell}} \) come if I naively assume that \(\sigma_{\text{err}} = 0 \); in this limiting case, \(\sigma_{\text{ell}}(\text{late}) = 0.62 \text{ mag} \) and \(\sigma_{\text{ell}}(\text{early}) = 1.10 \text{ mag} \).

For early spirals, the Tully-Fisher relation thus implies that the intrinsic scatter due to ellipticity lies in the range \(\sigma_{\text{ell}} = 0-0.62 \text{ mag} \). This is consistent with the value \(\sigma_{\text{ell}} = 0.3 \text{ mag} \) derived from the best-fitting distributions of disk ellipticity. For early spirals, the Tully-Fisher relation implies an intrinsic scatter due to ellipticity in the range \(\sigma_{\text{ell}} = 0.91-1.10 \text{ mag} \). This is smaller than the value \(\sigma_{\text{ell}} = 1.4 \text{ mag} \) derived from the best-fitting distributions of disk ellipticity. However, in the bottom panels of Figures 7 and 8 the band where \(\sigma_{\text{ell}} = 0.91-1.10 \text{ mag} \) overlaps the region where \(P > 0.1 \); thus, the ellipticities derived from the apparent shapes and from the Tully-Fisher relation are not discrepant at a high confidence level.

The difference in disk ellipticity between earlier and later spirals, and the resulting difference in Tully-Fisher scatter, helps to explain the apparent discrepancy between the relatively large disk ellipticity (\(\epsilon \approx 0.1 \)) seen in photometric studies (Binney & de Vaucouleurs 1981; Grosbøl 1985; Lambas et al. 1992; Fasano et al. 1993; Alam & Ryden 2002; Ryden 2004) and the relatively small intrinsic scatter (\(\sigma \approx 0.3 \text{ mag} \)) seen in some studies of the Tully-Fisher relation. For instance, Verheijen (2001), in his study of spirals in the Ursa Major cluster, found that his DE (distance estimator) subsample of spirals had a Tully-Fisher relation with 0.26 mag of scatter in the I band; the intrinsic scatter had a most likely value of only 0.06 mag. This small scatter was partly due to the strict selection criteria imposed; galaxies were excluded if they were obviously interacting, had prominent bars, or had irregular outer isophotes. Galaxies of Hubble types earlier than Sb or later than Sd were also excluded. The scatter was further minimized by the fact that the resulting subsample of 16 spirals contained 10 galaxies of type Sc, Sed, and Sd (late spirals, in my classification) and only six galaxies of type Sb and Sbc. If the spirals in the 2MASS LGA are characteristic of all spiral galaxies, then scatter in the Tully-Fisher relation can be reduced by excluding spirals of Hubble type earlier than Sc.

In addition to the practical implications for minimizing scatter in the Tully-Fisher relation, the difference in ellipticity between early and late spirals provides an intriguing clue for the formation and evolution of spiral galaxies. Why should the Sb and Sbc galaxies dominating the early spiral sample be more elliptical at \(R_2^s \) than the Sc galaxies? One possibility is that the triaxiality of a dark halo’s potential affects the Hubble type of the spiral embedded within it. Kormendy & Kennicutt (2004) estimate that the majority of spirals with Hubble type of Sb and later contain “pseudobulges” rather than classical bulges. Pseudobulges are formed as gas is transported to small radii by non-axisymmetric structures such as triaxial halos, spiral structure, elliptical disks, and bars. Simulations of disk galaxies in triaxial...
dark halos (El-Zant & Hassler 1998; El-Zant 2001) indicate that pseudobulges grow by secular evolution on a timescale of a few Gyr. The Hubble type of the resulting galaxy depends on both the halo core radius and the potential asymmetry, with greater halo nonaxisymmetry leading to larger bulges.

High-resolution n-body simulations of virialized dark halos in the mass range $10^{12} M_\odot \lesssim M \lesssim 10^{14} M_\odot$ indicate that virialized halos are well described as triaxial shapes (Jing & Suto 2002; Allgood et al. 2006). More massive halos are further from spherical, on average. In a CDM simulation, the mean short-to-long axis ratio of a halo with mass M at the present day ($z = 0$) is $\langle \gamma \rangle \approx 0.54 (M/M_\odot)^{-0.05}$, where $M_\odot = 1.2 \times 10^{13} M_\odot$ is the characteristic nonlinear mass scale (Allgood et al. 2006). The mean intermediate-to-long axis ratio also decreases with increasing mass, going from $\langle \beta \rangle \approx 0.76$ at $M = 0.1 M_\odot$ to $\langle \beta \rangle \approx 0.71$ at $M = M_\odot$. (Dissipation by baryons tends to compress the dark halo into a more nearly spherical shape in its central regions [Kazantzidis et al. 2004], but will not destroy the trend that lower mass halos are rounder on average in the plane of the baryonic disk.) At a given halo mass, there exists a fairly wide spread in β around the mean value, with standard deviation $\sigma_\beta \sim 0.1$ for $\langle \beta \rangle \sim 0.7$ (Allgood et al. 2006). The nearly axisymmetric halos will give rise to nearly circular disks and smaller pseudobulges, such as those seen in Sc galaxies. The more nonaxisymmetric halos will give rise to elliptical disks and larger pseudobulges, such as those seen in Sb and Sbc galaxies. The mean mass of Sb spirals is greater than that of Sc spirals; however, the spread in masses for a given Hubble type is greater than the difference in the mean (Roberts & Haynes 1994). This would be expected if the difference between early (Sb and Sbc) spirals and late (Sc) spirals is not due primarily to differences in halo mass, but rather is due to differences in halo nonaxisymmetry.

This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. It also makes use of the HyperLeda galaxy database. James Pizagno provided useful Tully-Fisher insights.