Design and Implementation of Quadri phase Sequences with Good Merit Factor Values

Aggala NagaJyothi*
Department of ECE, Vignan's Institute of Information Technology, Visakhapatnam - 530049, A.P., India; aggala.jyothi@gmail.com

Abstract

Objective: Design of quadriphase codes with superior merit factor in basically a nonlinear multivariable optimization problem. Quadriphase transformation is applied to low side lobes in bi phase generation of binary sequence. In order to provide real time hardware for identification and generation of quadriphase pulse compression sequences. Methods/Statistical Analysis: An efficient VLSI architecture has been proposed. The objectives to achieve high main lobe and low side lobes by poly phase codes. Findings: Initially pulse compression techniques are applied followed by binary quadriphase transformation. By applying a transformation to the biphase code using of sub pulses consequently results in the generation of codes. Near constant envelopes are created. Improvements/Applications: The systematic quadriphase sequences are useful for application to radar and continuation. There is scope for further development of merit factor.

Keywords: Merit Factor (MF), Pseudo Random Binary Sequence (PRBS) Generator, Pulse Compression, Quadriphase Sequence

1. Introduction

Usages of quadriphase wave shape in radar applications are existing. There is a necessity to reduce side lobe of biphase counterpart keeping the time domain characteristics intact. T & B suggested a novel transformation for obtaining decimated side lobe pattern. Interestingly such formulation manifest autocorrelation function identical to that of binary coding. For generation of random numbers many researchers have used the underlying uncertainly. Some researchers have used the underlying uncertainty on FPGA.

In biphase radar, the response of match filter is associated with undesirable side lobes. The endeavor of this paper is to explore polyphase codes which are likely to minimize the side lobe being Doppler tolerant.

Implementation of quadriphase pattern especially form binary sequence in spreaded spectrum communication has been highlighted.

2. Compression Techniques

In, radars pulse are compressed such that aver rage transmitted power pulse can be achieved without sacrificing the range advantage of short pulse. These pulse compression methods are particularly relevant in case of constraint of peak power. Long pulse gives the advantage of higher detection ability observed in Figure 1 where as short pulse has greater resolution accuracy. Both these need to be combined. Number of methods on these combinations has been suggested earlier.

*Author for correspondence
Figure 1. Envelope of complex signal.

Phase code signals form Barker to quadriphase and various frequency coded signals have been proposed by many researchers11,12. It may be assumed that no particular waveforms have all the merit for target resolution. Moreover a salient feature of concern is the centrally placed spike in the ambiguity surface. There exists a need for optimizing the reduction in interference factor when the enlargement of peak is shifted from the rest.

3. Binary To Quadriphase (BTQ) Transformation

Mismatch loss in the receiver coupled with distorted radial spectrum result from usage of rectangular sub pulses in binary code. Quadriphase does not suffer from these problems. For generating optimum quadriphase pattern are shown in Figure 2 and Figure 3. Barker sequences are preferable13. The chief merit of the BTQ transformation is manifest desirable range of side lobe spectrum. The biphase code can be converted to quadriphase by

\begin{equation}
q_k = j^{s(k-1)}c_k \quad k = 1,2,3,..K-1
\end{equation}

The shape of above signal is of

\begin{equation}
y(t) = \sum_{k=1}^{K} j^{s(k-1)} c_k A(t - k\tau_c)
\end{equation}

13 bit biphase code transformed to quadriphase. It may be noted that shape remains constant except at the terminal points. Usually from probability distributed methods are shown in Figure 4, PRBS can be designed using physical or computational techniques. Computer method is adopted in the paper to create random bit strings of PRBS14. There numbers are is repeatable. Quadriphase can be achieved by any two binary sequences having period K.

\begin{equation}
q_k = \frac{1}{2} (1 + j) x_k + \frac{1}{2(1 - j)} y_k
\end{equation}

Figure 2. LFSR quadriphase generator.

Figure 3. 5 RTL Schematic for TOP module for quadriphase codes.

Here n is the length of biphase code, scan factor is ± 1.

Figure 4. Technology Schematic for TOP module for quadriphase codes.
In reverse computation, quadriphase can be dissolved into two binary and chains. The cross correlation of quadri phase is related to that of binary by a factor $\sqrt{2}$ giving 3db improvement in interference\cite{15,16}.

$$K = 2^r - 1$$ \hspace{1cm} \text{(5)}$$

$$q_k = j^{q_k} \text{ where } j = \sqrt{-1}$$ \hspace{1cm} \text{(6)}$$

Utilizing binary (mod 2) quaternary (mod 4) sequences. PRBS can be developed with the proper results. LFSR, consisting of r shift register, depends on the basic sequence and the type of feedback. So that errors are minimized. For r=5 and best value 1000, the generated sequences is of length 31. When LFSR\cite{17,18} is bought to initial condition the binary sequences are produced Table 1.

Table 1. Conversion of 13 bit baker code into quadriphase code

13 bit Baker code into quadriphase code
1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1
1, j, -j, -j, 1, -j, -j, 1, j, -j, 1, j, -j

13002302113332002301221110001

The desired sequence is obtained using Equation 5.5

$$\{q_n\} = j, -j, 1, 1, -1, -j, 1, j, j, -j, -j, -1, 1, 1, -1, -j, 1, j, -1, -j, j, j, 1, 1, 1, j.$$ \hspace{1cm} \text{(5.5)}$$

$$\{q_n\} = \frac{\pi}{2}, \frac{3\pi}{2}, 0, 0, \pi, \frac{3\pi}{2}, 0, \pi, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{3\pi}{2}, \frac{3\pi}{2}, \pi, 0, \pi, \frac{3\pi}{2}, 0, \frac{\pi}{2}, \pi, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \pi, 0, 0, \frac{\pi}{2}.$$ \hspace{1cm} \text{(5.5)}$$

4. Experimental Verification

Quadriphase nodes are generated and tested on FPGA kits Xilinx Spartan-II synthesized the sequence. SESP2BRD having 100 k gates, ten thousand logic blocks, SRAM were chosen for this purpose. The successful implementation was indicated by visual signal. An architecture for design (observed in Figures 6 and 7) of ternary codes based on SKH (Simon Kronecker Hamming) has been suggested. In this work, architecture for quadriphase is based on PRBS with phase indication as shown.

Figure 6. Design summary of quadriphase top module.

Figure 7. Merit factor vs. length of sequence.

5. Results

The synthesized quadriphase has high MF. Language features are avoided or that the design can cover many devices.
Design and Implementation of Quadri phase Sequences with Good Merit Factor Values

These sequences have many useful application areas in radar signal communication. The MF has been noticed to be high for longer length in Figure and in Table 2.

S. No.	Length of the Sequence (Quadriphase)	Merit Factor(MF)
1	5	5
2	7	4.667
3	10	3.03
4	13	5.12
5	15	4.28
6	16	6.16
7	18	4.23
8	21	5.15
9	23	7.7794
10	25	5.2826
11	30	5.1
12	31	5.08

6. Conclusion

In comparison with conventional phase code based on rectangular sub pulses, the quadriphase codes synthesized in this paper achieve lower side lobes. In this case quadriphase codes are transformed biphasic type using Cosine sub pulses which are overlapped to create a constant shape. The performance measure can be computed on MATLAB for VHDL code. The architecture selected for the purpose has given excellent MF.

7. References

1. Taylor Jr, JW, Blinchikoff HJ. Quadriphase code-a radar pulse compression signal with unique characteristics. IEEE Transactions on Aerospace and Electronic Systems. 1988; 24(2):156–70.
2. Blinchikoff HJ. Range side lobe reduction for the quadriphase codes. IEEE Transactions on Aerospace and Electronic Systems. 1996; 32(2):668–75.
3. Damtie B, Lehtinen M, Orispaa M, Vierinen J. Mismatched filtering of a periodic quadriphase codes. IEEE Transactions on Information Theory. 2008; 54(4):1742–9.
4. Matsufuji S, Suehiro N. Complex Hadamard matrices related to bent sequences. IEEE Transactions on Information Theory. 1996; 42(2):637.
5. Levanon N, Freedman A. Ambiguity function of quadriphase coded radar pulse. IEEE Transactions on Aerospace and Electronic Systems. 1989; 25(6):848–53.
6. Levanon N, Freedman A. Ambiguity function of quadriphase coded radar pulse. IEEE Transactions on Aerospace and Electronic Systems. 1989; 25(6):848–53.
7. Sewak K, Rajput P, Panda AK. (ch). FPGA implementation of 16 bit BBS and LFSR PN sequence generator: A comparative study. IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS); 2012 Mar. p. 1–3.
8. Panda AK, Rajput P, Shukla B. FPGA implementation of 8, 16 and 32 bit LFSR with maximum length feedback polynomial using VHDL. IEEE International Conference on Communication Systems and Network Technologies (CSNT); 2012 May. p. 769–73.
9. Krone SM, Sarwate DV. Quadrature sequences for spread-spectrum multiple-access communication. IEEE Transactions on Information Theory. 1984; 30(3):520–9.
10. Brookner E. Radar technology. Dedham: Mass., Artech House, Inc.; 1977. p. 444.
11. Nagajyothi A, Rajeswari KR. Graphical user interface based signal generator for radar/sonar pulse compression codes. International Journal of Computer Applications. 2013; 82(16):15–9.
12. Aggala NJ. Design and implementation of the ternary sequences with good merit factor values. International Journal of Computer Applications. 2014; 92(9).
13. Taylor JW, Blinchikoff HJ. Quadriphase code-a radar pulse compression signal with unique characteristics. IEEE Transactions on Aerospace and Electronic Systems. 1988; 24(2):156–70.
14. Ahmad A, Al-Busaidi SS, Al-Musharafi MJ. On properties of PN sequences generated by LFSR – A generalized study and simulation modeling. Indian Journal of Science and Technology. 2013; 6(10):5351–8.
15. Balaji N, Rao SK, Rao SM. Generation of six phase pulse compression sequences using FPGA. IEEE International Conference on Computer Science and Information Technology (ICCSIT’08); 2008 Aug. p. 829–35.
16. Kumar HA, Umadevi S. Implementation of fast radix-10 BCD multiplier in FPGA. Indian Journal of Science and Technology. 2015; 8(19).
17. Sampath Dakshina Murthy A, Koteswara Rao S, Naga Jyothi A, Das RP. Analysis of effect of Ballistic coefficient in the formulations and performance of EKF with emphasis on air drag. Indian Journal of Science and Technology. 2015; 8(31).
18. Sampath Dakshina Murthy A, Naga Jyothi A. Minimization of degeneracy problem by roughening particle filter. International Journal of Modern Electronics and Communication Engineering. 2016 May; 4(3).