The complete linear mitochondrial genome of the hydrozoan jellyfish *Cladonema multiramosum* Zhou et al., 2022 (Cnidaria: Hydrozoa: Cladonematidae)

Xinyu Fanga,b,c, Konglin Zhoua,c and Jianming Chena,c

aInstitute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China; bCollege of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; cFujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou, China

ABSTRACT

In this study, we sequenced and analyzed the complete mitochondrial genome of *Cladonema multiramosum* Zhou et al., 2022 from Fujian, China. The length of the linear mitochondrial genome is 15164 bp, containing 13 protein-coding genes (cox2, atp8, atp6, cox3, nad2, nad5, nad6, nad3, nad4L, nad1, nad4, cob, cox1), two tRNAs (trnM and trnW) and 2 rRNAs (12S and 16S). The arrangement of mitogenomes show some little differences in different hydrozoan groups. The phylogenetic analysis of 13 protein coding genes (PCGs) in Cnidarians showed that *C. multiramosum* was closely related to *Cladonema pacificum.*

Unlike other hydromedusae, *Cladonema* medusae prefer to stay on substrates with adhesive tentacles, resulting in their absence in conventional zooplankton samples (Schuchert 2006). Although *Cladonema* medusae are easily overlooked in marine ecological investigations, *Cladonema pacificum* and *Cladonema radiatum* have been used as model organisms to research biological development (e.g., branching morphogenesis and eye development), regeneration and evolution (Grazier et al. 2012; Fuji et al. 2019; Fujita et al. 2019, 2021). *Cladonema* polyps could be divided into two groups in morphology, one has an aboral whorl of filiform tentacles while the other lacks them (Zhou et al. 2022). According to the phylogenetic tree based on 16S rRNA, *Cladonema* polyps with filiform tentacles form a clade and emerge as a sister group of *C. pacificum* that lacks filiform tentacles (Zhou et al. 2022). Thus, the appearance or disappearance of filiform tentacles in polyps might be related to the phylogeny within the genus *Cladonema.* At present, only the mitochondrial genome of *C. pacificum* has been reported in the genus *Cladonema* (Kayal et al. 2015). Thus, we report the complete mitochondrial genome of *Cladonema multiramosum,* which owns filiform tentacles (Zhou et al. 2022), to provide a robust resource to understand phylogenetic relationship of *Cladonema* species.

The medusae of *C. multiramosum* were collected from an *Oryzias melastigma* aquarium in Dr Chen’s lab in the Institute of Oceanography, Minjiang University, Fuzhou, China (26°4’19.24”N, 119°10’46.76”E) in February 2020. The voucher specimens were deposited at Dr. Chen’s lab (contact Chen Liang by email: chanleeon@mju.edu.cn) under the voucher number MJU-HYD-1–4. The DNA was extracted from a pool of five medusae using a DNeasy Blood & Tissue Kit (QIAGEN, QIAEN GmbH, Hilden, Germany) according to the manufacturer’s instructions. The sequencing of *C. multiramosum* mitogenome was carried out with an Illumina NovaSeq 6000 platform (paired-end 150 bp reads, 10 Gb in total) at Novogene Co., Ltd. (Beijing, China). The remaining part of the DNA was deposited in Dr. Chen’s lab with a unique code (DNA-CM1). De novo assembly was conducted using GetOrganelle v1.7.1 (Jin et al. 2020). Then, the mitochondrial genome was annotated preliminary in MITOS2 Web Server (http://mitos2.bioinf.uni-leipzig.de/index.py) (Bernt et al. 2013) and tRNAscan-SE v2.0 (Lowe and Eddy 1997). To ensure the accuracy of the annotation, the open reading frames of 13 protein coding genes (PCGs) were check by DNAStar Lasergene v7.1 (Burland 2000), and then all the annotated genes were confirmed using NCBI-BLAST (http://blast.ncbi.nlm.nih.gov). The annotated mitochondrial genome was deposited in GenBank with the accession number MZ747707. *C. multiramosum* is an invertebrate animal, and is neither endangered or protected species, meeting the needs of ethical approval.

The complete linear mitochondrial genome of *C. multiramosum* was 15164 bp in length and was highly AT-biased (A: 31.0%; T: 40.7%; C: 13.5%; G: 14.8%). The *C. multiramosum* mitogenome contained 13 PCGs (cox2, atp8, atp6, cox3, nad2, nad5, nad6, nad3, nad4L, nad1, nad4, cob, cox1), two tRNAs (trnM and trnW) and two rRNAs (12S and 16S rRNA). The arrangement of mitogenomes show some little differences in different hydrozoan groups (Kayal et al. 2015). But the order...
of the 13 PCGs of *C. multiramosum* was the same as other known hydrozoan mitochondrial genomes (Seo et al. 2021).

The tandem sequences of 13 mitochondrial PCGs of 36 hydrozoan species and three scyphozoan species (outgroup) were used to infer the phylogenetic trees using maximum-likelihood (ML, based on GTR + G + I model) in PhyML 3.0 (Guindon et al. 2010) and neighbour-joining (NJ, based on the K2P model) in MEGA X (Tamura et al. 2011) with 1,000 bootstrap replicates. The ML topology showed that the *C. multiramosum* formed a sister relationship with *C. pacificum* (Figure 1).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the National National Science Foundation of China (No. 41806181), the Natural Science Foundation of Fujian Province of China (No. 2021J011042), Program for Innovative Research Team in Science and Technology in Fujian Province University, and The Talent introduction pre-research project of Minjiang University (No. MJY20017).

Author contributions

All the authors agreed to be listed and approved the submitted version of this manuscript. Xinyu Fang completed the analysis and manuscript, Konglin Zhou conducted experiments and revised the manuscript, Jianming Chen provided the funds and resource for this research.

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/nuccore/MZ747707 under the accession no.MZ747707. The associated Bioproject, SRA, and Bio-Sample numbers are PRJNA803599, SRX14160122, and SAMN25658255, respectively.

ORCID

Konglin Zhou http://orcid.org/0000-0002-2162-2859
References

Bernt A, Donath A, Jühling F, Extembrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2): 921–319.

Burland TG. 2000. DNASTAR’s Lasergene sequence analysis software. In: Misener S, Krawetz SA, editors. Bioinformatics methods and protocols. Totowa, NJ: Humana Press (Methods in Molecular Biology™); vol 132.

Fujiki A, Hou S, Nakamoto A, Kumano G. 2019. Branching pattern and morphogenesis of medusa tentacles in the jellyfish Cladonema pacificum (Hydrozoa, Cnidaria). Zoological Lett. 5(1):12.

Fujita S, Kuranaga E, Nakajima YI. 2019. Cell proliferation controls body size growth, tentacle morphogenesis, and regeneration in hydrozoan jellyfish Cladonema pacificum. PeerJ. 7:e7579.

Fujita S, Kuranaga E, Nakajima YI. 2021. Regeneration potential of jellyfish: cellular mechanisms and molecular insights. Genes. 12(5):758.

Graziussi DF, Suga H, Schmid V, Gehring WJ. 2012. The “Eyes absent” (eya) gene in the eye-bearing hydrozoan jellyfish Cladonema radiatum: conservation of the retinal determination network. J Exp Zool. 318(4):257–267.

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3): 307–321.

Jin J-J, Yu W-B, Yang J-B, Song Y, dePamphilis CW, Yi T-S, Li D-Z. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21(1).

Kayal E, Bentlage B, Cartwright P, Yanagihara AA, Lindsay DJ, Hopcroft RR, Collins AG. 2015. Phylogenetic analysis of higher-level relationships within Hydrodolinina (Cnidaria: Hydrozoa) using mitochondrial genome data and insight into their mitochondrial transcription. PeerJ. 3:e1403.

Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25(5): 955–964.

Schuchert P. 2006. The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Fillifera part 4. Revue Suisse de Zoologie. 113(2): 325–410.

Seo JS, Eom HJ, Cho JK, Kang HS, Rhee JS. 2021. The linear mitochondrial genome of commensal hydroid Eutima japonica (Cnidaria, Hydrozoa, Eirenidae). Mitochondrial DNA B Resour. 6(3):1082–1084.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 28(10):2731–2739.

Zhou KL, Gu Y, Wang L, Chen JM. 2022. Discovery of Cladonema multiramosum sp. nov. (Cnidaria: Hydrozoa: Cladonematidae) using DNA barcoding and life cycle analyses. Acta Oceanol Sin. 41(3): 44–52.