Original Article

Lung toxicity of a vapor-grown carbon fiber in comparison with a multi-walled carbon nanotube in F344 rats

Takamasa Numano1*, Taiki Sugiyama1, Mayumi Kawabe1, Yukinori Mera1, Ryoji Ogawa2, Ayako Nishioka2, Hiroko Fukui2, Kei Sato2, and Yuji Hagiwara2

1 DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
2 Chemicals Assessment & Management Center, Responsible Care Department, Showa Denko K.K., 13-9 Shiba Daimon 1-Chome, Minato-ku, Tokyo 105-8518, Japan

Abstract: Carbon fibers have excellent physicochemical and electrical properties. Vapor-grown carbon fibers are a type of carbon fibers that have a multi-walled carbon tube structure with a high aspect ratio. The representative vapor-grown carbon fiber, VGCF™-H, is extremely strong and stable and has superior thermal and electrical conductivity. Because some high-aspect-ratio multi-walled carbon nanotubes (MWCNTs) have been reported to have toxic and carcinogenic effects in the lungs of rodents, we performed a 13-week lung toxicity study using VGCF™-H in comparison with one of MWCNTs, MWNT-7, in rats. Male and female F344 rats were intratracheally administered VGCF™-H at doses of 0.2, 0.4, and 0.8 mg/kg bw or MWNT-7 at doses of 0.4 and 0.8 mg/kg bw once a week for 8 weeks and then up to week 13 without treatment. The lung burden was equivalent in the VGCF™-H and MWNT-7 groups; however, the lung weight had increased and the inflammatory and biochemical parameters in the broncho-alveolar lavage fluid and histopathological parameters, including inflammatory cell infiltration, alveolar type II cells proliferation, alveolar fibrosis, pleural fibrosis, lung mesothelium proliferation, and diaphragm fibrosis, were milder in the VGCF™-H group than in the MWNT-7 group. In addition, the proliferating cell nuclear antigen (PCNA)-positive index in the visceral and pleural mesothelium was significantly higher in the MWNT-7 group than in the controls, but not in the VGCF™-H group. Thus, the results of this study indicate that the lung and pleural toxicities of VGCF™-H were less than those of MWNT-7. (DOI: 10.1293/tox.2020-0064; J Toxicol Pathol 2021; 34: 57–71)

Key words: vapor-grown carbon fiber, multi-walled carbon nanotubes, intratracheal instillation, lung toxicity

Introduction

Carbon fibers with nanoscale to submicron-scale diameters and high aspect ratios have excellent physicochemical and electrical properties. Multi-walled carbon nanotubes (MWCNTs) have a number of industrial applications, and their production is increasing with an expected market of over 3 billion USD by 2022. MWCNTs produced under different manufacturing conditions have different diameters, lengths, and shapes and hence different physicochemical and electrical properties. MWCNTs with needle-like/fibrous structures and high aspect ratios, such as MWNT-7, are considered potentially biopersistent in the lung when inhaled1. 2 and can result in pulmonary toxicity. Indeed, MWNT-7 showed persistent lung toxicity in two- and thirteen-week whole-body inhalation studies with rats3, 4 and carcinogenicity in the rat lung in a two-year whole-body inhalation study5. In addition, the inhalation of MWNT-7 promoted lung carcinogenesis initiated by methylcholangan-threne6.

Vapor grown carbon fibers have a multi-walled carbon tube structure and are formulated to enhance the electrical and thermal properties of high-performance materials. VGCF™-H is a vapor grown carbon fiber with a thick fiber diameter and is used in lithium-ion batteries and fuel cells because of its excellent thermal and electrical conductivity. VGCF™-H has a larger diameter (VGCF™-H: 148 nm; MWNT-7: 75 nm) but a shorter average fiber length than MWNT-7 (VGCF™-H: 5.2 μm; MWNT-7: 9 μm). However, like MWNT-7, it has a fibrous structure with a high aspect ratio. These facts raise the possibility that the inhalation of VGCF™-H may also induce lung toxicity and carcinogenicity.

A nose-only 13-week inhalation study exposed rats to 0.54, 2.5, and 25 mg/m³ VGCF™-H for 13 weeks, followed by a 3-month recovery period. This study reported a no-adverse-effect level of 0.54 mg/m³ for VGCF™-H. However, the effects of a long-term exposure to VGCF™-H remain unknown. Whole-body or nasal inhalation exposure
is the standard method for evaluating lung toxicity using respirable chemicals and particulate matter. However, inhalation testing requires specialized facilities, equipment, techniques, and a large quantity of test material. Consequently, the number of materials that can be tested is limited, which can result in an extended delay in the identification of toxic materials. For example, at the time of this manuscript writing, while a large number of different types of MWCNTs were being produced, only a single MWCNT, i.e., MWNT-7, had undergone long-term inhalation testing. In contrast to inhalation testing, the administration of respirable test materials by intratracheal instillation requires no special facilities, is inexpensive, and is useful for screening and hazard identification.8–12 Furthermore, since the amount of test material delivered into the lung by intratracheal instillation is known, it is possible to determine a precise dose-response relationship between the amount of test material in the lung and toxicological parameters.9,13

Therefore, in the present study, we performed a 13-week toxicity study comparing VGCF^{TM-H} with MWNT-7, a known carcinogen in the lung and pleural cavity of the rat^{15–17}, using intratracheal instillation to administer the test material. The purpose of this study was to determine and compare the subchronic lung toxicities of VGCF^{TM-H} and MWNT-7 when administered by instillation, using a combination of bronchoalveolar lavage fluid (BALF) analysis and histopathological examination.

Materials and Methods

Test materials and their preparation

The VGCF^{TM-H} used in this study (Showa Denko K.K., Tokyo, Japan) had a diameter of 148 ± 5.1 nm, a length of 5.2 ± 2.7 μm, and a surface area of 15 m²/g, and MWNT-7 (Bussan Nanotech Research Institute Inc., Tokyo, Japan) had a diameter of 75 ± 20.4 nm, a length of 9.0 ± 6.1 μm, and a surface area of 25 m²/g. Both VGCF^{TM-H} and MWNT-7 were dispersed in saline containing 0.3% w/v KolliphorTM P188 (KP188) (Sigma-Aldrich Japan Ltd., Tokyo, Japan) using a desktop-type ultrasonic bus. MWNT-7 was dispersed during deaeration. These suspensions were sonicated using a probe-type ultrasonic generator and then dispersed by a wet dispersion device to prepare their administration solutions. Subsequently, the average hydrodynamic diameter of fibers in a 0.4 mg/mL solution in saline containing 0.3% w/v KP188 was measured by dynamic light scattering (DLS) (ELSZ-2000S, Otsuka Electronics Co., Ltd., Osaka, Japan) at 25°C. The average hydrodynamic diameters of VGCF^{TM-H} and MWNT-7 were 668 ± 37 and 611 ± 54 nm, respectively, and these values were the average of eight measurements. The average hydrodynamic diameter did not change before and after passing through the microsprayer aerosolizer.

Our unpublished preliminary toxicity study using F344 rats showed that at a dose of 0.8 mg/kg bw, a single intratracheal instillation of MWNT-7, but not of VGCF^{TM-H}, induced a persistent pulmonary inflammation at 2 weeks after instillation. Therefore, the highest dose of both VGCF^{TM-H} and MWNT-7 were 0.8 mg/kg bw in the present experiment. The dose volume for instillation was set at 2.0 mL/kg bw, and the concentrations of the VGCF^{TM-H} solution was adjusted to 0.1, 0.2, and 0.4 mg/mL, and those of the MWNT-7 solution was adjusted to 0.2 and 0.4 mg/mL. Therefore, the final concentrations were 1.6, 3.2, and 6.4 mg/kg bw in the VGCF^{TM-H}-treated group and 3.2 and 6.4 mg/kg bw in the MWNT-7 treated group. The dosing volume was calculated for each individual animal based on body weight at the time of instillation. The prepared solutions were stored in the refrigerator before instillation. Prior to intratracheal instillation, the vehicle and VGCF^{TM-H} solutions were redispersed using a tabletop ultrasonic processor (Model: M1800-J, Emerson Japan, Ltd., Tokyo, Japan) for 10 min, and then vortexed for several seconds. As of instilling the MWNT-7 dosing solution, a degassing/redispersing treatment was executed for 1 min using a vacuum pump (Vacuum Pump V-100, Nihon Buchi Co., Ltd., Tokyo, Japan) and the tabletop ultrasonic processor, and then subjected to the redispersing treatment for further 9 min without degassing, and furthermore, the container was gently stirred by shaking. All dosing solutions were used within 1 h after redispersion and were gently mixed to produce a homogeneous solution immediately prior to instillation.

Animals and husbandry

Eight-week-old pathogen-free F344/DuCrjCrj rats of both sexes were obtained from Charles River Laboratories Japan, Inc. (Kanagawa, Japan). The animals were housed in a barriered-system animal room maintained under controlled conditions (temperature, 22 ± 3°C; humidity, 55 ± 15%; 12-h light-dark cycle) and were given the pellet diet CRF-1 sterilized by 30 kGy gamma irradiation (Oriental Yeast Co., Tokyo, Japan) and water ad libitum. After a two-week quarantine and acclimation period, the 10 week-old rats of each sex were randomized by body weight and assigned to seven groups (six rats in the untreated group, 11 in the vehicle group, and 16 in each of the VGCF^{TM-H} and MWNT-7 groups) on the day prior to the initial instillation. No significant differences in the average body weights were observed between groups at the commencement of the study, Bartlett test (p<0.05), and Tukey test (p<0.05, two-sided). In addition, no abnormalities were observed in the general condition of the animals during the quarantine period.

The study was approved by the Animal Experimental Committee at the DIMS Institute of Medical Science, Inc. and conducted in accordance with the “Law for the Humane Treatment and Management of Animals” (Law No. 46, May 2014), “Standards Relating to the Care and Management of Laboratory Animals and Relief of Pain” (Notice No. 84 of the Ministry of the Environment, September 2013), “Basic policies for the conduct of animal experiment in academic research institutions under the jurisdiction of the Ministry of Health, Labour, and Welfare” (Notice No. 0220-1 of the Ministry of Health, Labour and Welfare, February 2015), “Guidelines for Proper Conduct of Animal Experiments” (Science Council of Japan, June 2006), and “Standards for..."
Care and Use of Laboratory Animals of DIMS Institute of Medical Science, Inc. (June 1, 2016).

Experimental design and treatment of intratracheal instillation

Animal handling during and after intratracheal instillation was performed as described previously. Briefly, rats were placed under isoflurane anesthesia using the NARCOBIT-E for small laboratory animals (Natsume Sei-sakusho Co., Ltd., Tokyo, Japan), and the instillation of the test material solution was performed intratracheally with a DIMS-type microsprayer aerosolizer (for rats) connected to a 1-mL disposable syringe (Osaka Chemical Co., Ltd., Osaka, Japan). Instillation was performed once a week for 8 weeks (8 times in total). The single doses of VGCF-H were set at 0 (vehicle control), 0.2, 0.4, and 0.8 mg/kg bw, and those of MWNT-7 were set at 0.4 and 0.8 mg/kg bw. The animals in the untreated control group did not undergo either isoflurane anesthesia or insertion of the microsprayer aerosolizer. Animals were then observed for 6 weeks without further treatment and sacrificed after the observation period.

General observation and examination of animals

The general physical condition of the rats was checked three times on the day of instillation: immediately before and after instillation and once in the afternoon. After the 8-week dosing period, all animals were observed for clinical signs twice per day until the end of the experimental period.

Body weights and food consumption

All animals were individually weighted on the day of instillation and then weekly until the end of the experimental period. The weight at the end of the study was also measured. Food intake was measured weekly until the end of the experimental period, and the average daily food consumption was calculated.

Collection and analysis of bronchoalveolar lavage fluid (BALF)

At the end of the experimental period, all surviving animals were placed under deep isoflurane anesthesia and exsanguinated from the abdominal aorta. After blood collection, the animals were marked, and severe). The lungs subjected to BALF analysis were not used for histopathological examination. The terminology used in this study conforms to the INHAND Project. The degree of change was classified into five levels (minimal, slight, moderate, marked, and severe).

Immunohistochemical staining

Sections prepared for histopathological examination, as described above, were immunostained with anti-PCNA antibody (Merck KGaA, Germany, Monoclonal Mouse Anti-PCNA, Clone: PC 10) using the polymer method, and the PCNA-positive cells in the lung and pleural specimens were counted. The PCNA index was calculated as the percentage of total cells that stained positive for PCNA.
Statistical analysis

For comparisons of the vehicle and treated groups, the homogeneity of variance was analyzed by Bartlett’s test (p<0.05). If homogeneous, the data were analyzed using the parametric Dunnett’s test (2-sided); if not homogeneous, the data were analyzed by the non-parametric Steel’s test (2-sided). For comparisons of the untreated group vs. the vehicle group and for comparisons between the two groups supplied with the same doses of VGCF™-H and MWNT-7, the means were analyzed using the F-test. If the differences in means were non-significant in the F-test, a Student’s t-test (2-sided) was used; however, if the differences in means were significant in the F-test, a Welch’s t-test (2-sided) was used. For histopathological alterations with an assigned value for the degree of change, a two-sided Wilcoxon’s test was employed. The p-values <0.05 were considered statistically significant.

Results

General condition of animals

No deaths were observed in any of the groups. After the intratracheal instillation procedure, a moist rale was observed in the treated animals. However, no difference in the incidence or severity of the moist rale was observed among the treated groups, and the moist rale disappeared by the day after intratracheal instillation. No other obvious changes were observed in the general condition of the animals in any of the groups.

Body weight and food consumption

The body weights are shown in Fig. 1. The body weight gain was significantly suppressed in the male 6.4 mg/kg MWNT-7 group compared to the vehicle control group at week 8. However, the suppression of body weight gain was temporary, and no significant differences in the body weights were observed between the male 6.4 mg/kg MWNT-7 group and the control group after week 8. Therefore, the suppression of body weight gain in the male 6.4 mg/kg MWNT-7 group compared to the control group was assumed to be a minor effect of the intratracheal instillation of MWNT-7. No statistically significant differences in body weights were observed between untreated and other treated groups at any time during the experimental period. Furthermore, no significant differences in food consumption were observed among the groups during the experimental period (data not shown).

Macroscopic pathological examination, lung burden, and organ weight

Representative macroscopic findings of the lung are shown in Fig. 2. Macroscopically, no abnormalities were observed in the lungs of the untreated and vehicle-treated groups (Fig. 2A). A discoloration (black or gray) of the lung lobe was observed in all of the VGCF™-H- and MWNT-7-treated groups; Fig. 2B and C show lungs from a male rat administered with 6.4 mg/kg of VGCF™-H and MWNT-7, respectively. There was no difference in the incidence of lung discoloration between the VGCF™-H- and MWNT-7-treated groups. Lung discoloration was due to the color of the test materials instilled into the lung. The test material was distributed to all lung lobes but with somewhat less deposition in the cranial and peripheral areas.

The average total amount of the test material instilled into the lung (μg/rat), lung burden (μg/rat) at autopsy, and lung weight (absolute and relative weight) are shown in Table 1. The total lung burden increased in a dose-dependent manner. A significantly lower lung burden was observed in the male 3.2 mg/kg VGCF™-H group and the female 6.4 mg/kg VGCF™-H group compared to the corresponding MWNT-7-treated groups. There were no significant differences in lung burden between the other VGCF™-H- and MWNT-7-treated groups.

Significant increases in absolute and relative lung weights were observed in both the male and female vehicle-treated groups compared to the untreated group. KP188, which is known to cause weak toxic effects in the lungs, has been used in several intratracheal instillation studies for dispersing test materials15, 16, 20–24. The increase in the absolute and relative lung weights of the rats in the vehicle-treated groups was accompanied by a slight toxic effect due to repeated intratracheal instillation of the vehicle solution, KP188, as shown previously16.

The 3.2 and 6.4 mg/kg VGCF™-H- and MWNT-7-treated groups had significantly higher absolute and relative lung weights compared to the vehicle-treated groups. There were no significant differences in absolute or relative lung weights in either male or female 1.6 mg/kg VGCF™-H-treated groups and their respective vehicle controls. The absolute and relative lung weights were significantly lower in both the male and female 3.2 and 6.4 mg/kg VGCF™-H-treated groups compared to the 3.2 and 6.4 mg/kg MWNT-7-treated groups.

The absolute and relative liver, kidney, and spleen weights are shown in Table 2. Significantly higher absolute
Liver and spleen weights were observed in the female 6.4 mg/kg VGCF™-H-treated group compared to the vehicle control group. Compared to the vehicle controls, significantly higher relative liver weights in the male 6.4 mg/kg MWNT-7-treated group, significantly higher absolute liver weights in the female 6.4 mg/kg MWNT-7-treated group, and significantly higher relative spleen weights in the female 3.2 mg/kg MWNT-7-treated group were also observed. However, all of these weight changes were slight and, therefore, not considered to be of toxicological significance.

Cytological analysis in the BALF

Figure 3 shows total cells (A), neutrophils (B), macrophages (C), lymphocytes (D), and eosinophils (E) in the

Table 1. Total Amount of Test Material in the Lung, Lung Burden, Body Weight, and Lung Weight in Rats

Sex	Test material	Dose (mg/kg)	No. of rats examined	Total amount instilled (μg/rat)	Lung burden (μg/rat)	Body weight (g)	Lung weight	Absolute (g)	Relative (%)
Male	Untreated	0	5	-	355 ± 10 e	0.96 ± 0.04	0.27 ± 0.01		
	Vehicle	0	8	-	355 ± 15	1.15 ± 0.07	0.32 ± 0.01		
	VGCF™-H	1.6	8	460	305 ± 35	1.17 ± 0.05	0.33 ± 0.01		
	VGCF™-H	3.2	8	910	550 ± 73 S	1.22 ± 0.05	0.34 ± 0.01		
	VGCF™-H	6.4	8	1830	1337 ± 238	1.25 ± 0.05	0.35 ± 0.01		
	MWNT-7	3.2	8	900	646 ± 32	1.51 ± 0.04	0.43 ± 0.01		
	MWNT-7	6.4	8	1790	1157 ± 163	1.79 ± 0.06	0.52 ± 0.01		
Female	Untreated	0	5	-	188 ± 10	0.70 ± 0.04	0.37 ± 0.01		
	Vehicle	0	8	-	189 ± 5	0.79 ± 0.04	0.42 ± 0.02		
	VGCF™-H	1.6	8	280	159 ± 22	0.81 ± 0.03	0.42 ± 0.02		
	VGCF™-H	3.2	8	550	293 ± 37	0.84 ± 0.02	0.45 ± 0.02		
	VGCF™-H	6.4	8	1110	551 ± 74 S S$	0.86 ± 0.02	0.46 ± 0.01		
	MWNT-7	3.2	8	550	318 ± 66	1.05 ± 0.05	0.56 ± 0.02		
	MWNT-7	6.4	8	1090	723 ± 31	1.24 ± 0.04	0.66 ± 0.01		

Notes:
- Calculated by each body weight.
- Measured at week 13(N=5).
- The day of autopsy.
- The day of autopsy.
- Not examined.
- Mean ± S.D.
- #: significantly different from the untreated group at p<0.01.
- #: significantly different from the vehicle-treated group at p<0.05 and p<0.01, respectively.
- S and S$: significantly different from the same dose of each sex in the MWNT-7-treated group at p<0.05 and p<0.01, respectively.
- †: significantly different from the same dose of the MWNT-7-treated group at p<0.01.
BALF. In both the male and female VGCFTM-H-treated and MWNT-7-treated groups, there was a general increase in all of these parameters compared to the vehicle control groups. None of the increases were significant in the male or female 1.6 mg/kg VGCFTM-H-treated groups. In the VGCFTM-H-treated groups, an increasing trend of total cells in both sexes of 1.6, 3.2, and 6.4 mg/kg groups, significantly higher values or an increasing trend of neutrophils in both sexes of 1.6, 3.2, and 6.4 mg/kg groups, an increasing trend of macrophages in the males of 6.4 mg/kg and in the females of 1.6, 3.2, and 6.4 mg/kg groups, an increasing trend of lymphocytes in the males of 1.6, 3.2, and 6.4 mg/kg groups, significantly higher values or an increasing trend of eosinophils in both sexes of 1.6, 3.2, and 6.4 mg/kg groups were observed as compared to those of the vehicle-treated group. In the MWNT-7-treated groups, an increasing trend or significantly higher values of total protein, ALB, ALP, LDH, and IL-8 in the males and females of 1.6, 3.2, and 6.4 mg/kg groups and in the females of the 1.6 and 6.4 mg/kg groups, and an increasing trend or significantly higher levels of IL-8 in the males and females of the 1.6, 3.2, and 6.4 mg/kg groups were observed as compared to those of the vehicle-treated group. In the MWNT-7-treated groups, an increasing trend or significantly higher values of total protein, ALB, ALP, LDH, and IL-8 in the males and females of 1.6, 3.2, and 6.4 mg/kg groups were observed when comparing the same doses of VGCFTM-H and MWNT-7, the levels of total protein, ALB, ALP, LDH, and IL-8 in the males and females of 1.6, 3.2, and 6.4 mg/kg groups were observed. When comparing the same doses of VGCFTM-H and MWNT-7, the levels of total protein, ALB, ALP, LDH, and IL-8 in the males and females of 1.6, 3.2, and 6.4 mg/kg groups were observed. When comparing the same doses of VGCFTM-H and MWNT-7, the levels of total protein, ALB, ALP, LDH, and IL-8 in the males and females of 1.6, 3.2, and 6.4 mg/kg groups were observed. When comparing the same doses of VGCFTM-H and MWNT-7, the levels of total protein, ALB, ALP, LDH, and IL-8 in the males and females of 1.6, 3.2, and 6.4 mg/kg groups were observed. When comparing the same doses of VGCFTM-H and MWNT-7, the levels of total protein, ALB, ALP, LDH, and IL-8 in the males and females of 1.6, 3.2, and 6.4 mg/kg groups were observed. When comparing the same doses of VGCFTM-H and MWNT-7, the levels of total protein, ALB, ALP, LDH, and IL-8 in the males and females of 1.6, 3.2, and 6.4 mg/kg groups were observed.

Histopathological examination

The results of the histopathological findings of the lung are summarized in Table 3 for males and in Table 4 for females. The lungs of the untreated rats showed normal histology (Fig. 5A). In the vehicle-treated group, grade 1 (minimal) alveolar macrophage aggregation was significantly increased in the alveolar area (Fig. 5B). The severity of alveolar macrophage aggregation was significantly higher in all male and female VGCFTM-H and MWNT-7-treated groups compared to their respective vehicle control groups. The severity of alveolar macrophage aggregation was not different between the male VGCFTM-H and MWNT-7-treated groups. The severity of alveolar macrophage aggregation was milder in the female 3.2 and 6.4 mg/kg VGCFTM-H-treated groups compared to the female 3.2 and 6.4 mg/kg MWNT-7-treated groups.

Deposition of the test material in alveolar macrophages

Table 2. Weights of Liver, Kidney and Spleen in Rats

Sex	Test material	Dose (mg/kg)	No. of rats examined	Liver weight	Kidney weight	Spleen weight			
				Absolute (g)	Relative (%)	Absolute (g)	Relative (%)	Absolute (g)	Relative (%)
Male	Untreated	0	5	10.57 ± 0.59	2.98 ± 0.09	2.22 ± 0.07	0.63 ± 0.01	0.62 ± 0.03	0.18 ± 0.01
	Vehicle	0	8	10.46 ± 0.44	2.95 ± 0.07	2.17 ± 0.07	0.61 ± 0.02	0.64 ± 0.03	0.18 ± 0.01
	VGCFTM-H	1.6	8	10.31 ± 0.71	2.94 ± 0.10	2.13 ± 0.11	0.61 ± 0.02	0.64 ± 0.04	0.18 ± 0.01
		3.2	8	10.67 ± 0.36	2.96 ± 0.04	2.17 ± 0.12	0.60 ± 0.03	0.66 ± 0.02	0.18 ± 0.00
		6.4	8	10.56 ± 0.83	2.97 ± 0.13	2.18 ± 0.12	0.61 ± 0.03	0.64 ± 0.03	0.18 ± 0.01
	MWNT-7	3.2	8	10.61 ± 0.39	3.01 ± 0.08	2.15 ± 0.07	0.61 ± 0.01	0.63 ± 0.02	0.18 ± 0.01
		6.4	8	10.56 ± 0.55	3.09 ± 0.07**	2.10 ± 0.10	0.61 ± 0.02	0.63 ± 0.02	0.18 ± 0.01
Female	Untreated	0	5	5.39 ± 0.23	2.87 ± 0.12	1.29 ± 0.08	0.69 ± 0.05	0.40 ± 0.02	0.21 ± 0.00
	Vehicle	0	8	5.29 ± 0.19	2.80 ± 0.12	1.28 ± 0.06	0.68 ± 0.03	0.39 ± 0.01	0.20 ± 0.01
	VGCFTM-H	1.6	8	5.21 ± 0.14	2.74 ± 0.13	1.26 ± 0.05	0.66 ± 0.03	0.40 ± 0.02	0.21 ± 0.01
		3.2	8	5.46 ± 0.22	2.89 ± 0.11	1.28 ± 0.06	0.68 ± 0.03	0.40 ± 0.02	0.21 ± 0.01
		6.4	8	5.56 ± 0.13*	2.93 ± 0.09	1.30 ± 0.01	0.69 ± 0.02	0.41 ± 0.02*	0.22 ± 0.01
	MWNT-7	3.2	8	5.49 ± 0.28	2.92 ± 0.13	1.30 ± 0.05	0.69 ± 0.02	0.41 ± 0.03	0.22 ± 0.01*
		6.4	8	5.54 ± 0.41*	2.96 ± 0.18	1.29 ± 0.05	0.69 ± 0.02	0.40 ± 0.02	0.21 ± 0.01

a: Mean ± S.D. * and **: significantly different from vehicle treated group at p<0.05 and p<0.01, respectively.
was observed in all male and female VGCF\,™\,-H- and MWNT-7-treated groups. In males, the severity was milder in the 3.2 and 6.4 mg/kg VGCF\,™\,-H-treated groups compared to the 3.2 and 6.4 mg/kg MWNT-7-treated groups.

Grade 1 (minimal) granulomatous change was observed in one male rat of the 1.6 mg/kg VGCF\,™\,-H-treated group and in two female rats of the 3.2 mg/kg MWNT-7-treated group.

Inflammatory cell infiltration in the alveoli was observed in one male rat of the 1.6 mg/kg VGCF\,™\,-H-treated group and in two female rats of the 3.2 mg/kg MWNT-7-treated group.

Fig. 3. Leukocyte counts in broncho-alveolar lavage fluid (BALF). Total numbers of leukocytes (A), neutrophils (B), macrophages (C), lymphocytes (D) and eosinophils (E) in the BALF. Values are presented as mean ± SD. The left bar indicates male rats, and the right bar indicates female rats. **: p<0.01 vs. vehicle-treated group. † and ††: p<0.05 and p<0.01 vs. the same dose and gender in the MWNT-7-treated group.

Table 2. Total cell counts (×10^6/L) and differential cell counts in broncho-alveolar lavage fluid (BALF) of male and female rats treated with VGCF\,™\,-H and MWNT-7.

Total dose (mg/kg)	Test material	Vehicle	VGCF\,™\,-H	MWNT-7
0				
1.6				
3.2				
6.4				

Notes:
- ****: Significantly different from vehicle treated group at p<0.01.
- † and ††: Significantly different from same dose of each sex in MWNT-7 treated group at p<0.05 and p<0.01, respectively.
7-treated groups, and both the incidence and severity were significantly higher in the VGCF™-H- and MWNT-7-treated groups than in the respective vehicle control groups. The severity of inflammatory cell infiltration was milder in the VGCF™-H-treated groups compared to the MWNT-7-treated groups.

Proliferation of alveolar type II cells (Fig. 5C) was observed in the male 6.4 mg/kg VGCF™-H- and 3.2 and 6.4 mg/kg MWNT-7-treated groups and in all female VGCF™-H- and MWNT-7-treated groups. The incidence and severity of the proliferation of alveolar type II cells were significantly higher in these groups compared to their respective
vehicle controls. The severity of the proliferation of alveolar type II cells in the VGCF™-H-treated groups was milder than in the MWNT-7-treated groups.

Pulmonary fibrosis (Fig. 5D) was observed in all male and female VGCF™-H- and MWNT-7-treated groups. The incidence and severity of pulmonary fibrosis was significantly higher in these groups compared to their respective vehicle controls. The severity of pulmonary fibrosis in the VGCF™-H-treated groups was milder than that in the MWNT-7-treated groups.

Grade 1 (minimal) fibrosis of the visceral pleura was observed in one male of the 6.4 mg/kg VGCF™-H-treated group and in four males of the 6.4 mg/kg VGCF™-H-treated group but not in any of the females of the VGCF™-H-treated groups. However, it was observed in all MWNT-7-treated males, in 7 of 8 females of the 3.2 mg/kg MWNT-7-treated group, and in 7 of 8 females of the 6.4 mg/kg MWNT-7-treated group. The incidence and severity were significantly higher in the male 6.4 mg/kg VGCF™-H-treated group and all MWNT-7-treated groups compared to their respective vehicle control groups. The incidences and the severity of proliferation of the lung mesothelium were markedly milder in the 3.2 and 6.4 mg/kg VGCF™-H-treated groups compared to the 3.2 and 6.4 mg/kg MWNT-7-treated groups.

The results of the histopathological findings of the pleura are summarized in Table 5 for males and Table 6 for females. The parietal pleura did not show any lesion development in the untreated group. Inflammatory cell infiltration in the subpleural tissue was observed in both sexes of the vehicle-, VGCF™-H-, and MWNT-7-treated groups. However, no significant differences were observed in inflammatory cell infiltration in the VGCF™-H-treated groups compared to the vehicle control groups. It was significantly higher in the male 3.2 mg/kg MWNT-7-treated group, but not in the male 6.4 mg/kg MWNT-7-treated group or in the female

Table 3. Histopathological Findings of the Lung in Male Rats

Organ and findings	Sex	Test material	Untreated	Vehicle	VGCF™-H	MWNT-7
		Dose (mg/kg)	0	0	1.6	3.2
			3.2	6.4	3.2	6.4
No. of rats examined	5	8	8	8	8	8
Lung/bronchial						
Normal	5	0	0	0	0	0
Alveolar macrophage aggregation/(1)a						
	(2)	0	8	**0**	0	**0**
	(3)	0	8	0	8	0
	(4)	0	0	8	0	8
Deposition of test material, alveolar macrophage(1)						
	(2)	0	0	**0**	**0**	0
	(3)	0	0	8	0	8
	(4)	0	0	0	8	0
Granulomatous change/(1)						
	(2)	0	0	**0**	**0**	0
Granulomatous change/(1)						
Pulmonary fibrosis, alveoli/(1)						
	(2)	0	1	**0**	**0**	0
Pulmonary fibrosis, alveoli/(2)						
Pulmonary fibrosis, pleura/(1)						
	(2)	0	0	**0**	**0**	0
Pulmonary fibrosis, pleura/(3)						
Proliferation, mesothelium/(1)						

a: Numbers in parentheses indicate lesion grades (1) Minimal, (2) Slight, (3) Moderate, and (4) Marked. ##: Significantly different from the untreated group at p<0.01. * and **: Significantly different from the vehicle-treated group at p<0.05 and p<0.01, respectively.
13-week Lung Toxicity of VGCFTM-H in Rats

3.2 and 6.4 mg/kg MWNT-7-treated groups compared to the vehicle control groups. No fibrosis was detected in the pleural cavity of any of the rats in the VGCFTM-H-treated groups (Fig. 5G). In contrast, the fibrosis of the parietal pleura (Fig. 5H) was significantly increased in the male 3.2-6.4 mg/kg MWNT-7-treated and female 6.4 mg/kg MWNT-7-treated groups compared with their respective controls. There were no significant differences in the proliferation of the diaphragm mesothelium in any of the VGCFTM-H- and MWNT-7-treated groups compared to the vehicle control groups.

PCNA-positive index

The PCNA-positive index (%) of the mesothelium of the visceral and parietal pleura are shown in Table 7. There were no differences between any of the VGCFTM-H-treated groups and the vehicle control groups. In contrast, all MWNT-7-treated groups had significantly higher PCNA indices in the visceral pleura compared to the vehicle controls, and the male 6.4 mg/kg MWNT-7-treated group and the female 3.2 and 6.4 mg/kg MWNT-7-treated group had significantly higher PCNA indices in the parietal pleura than the vehicle controls. Notably, all VGCFTM-H-treated groups had significantly lower PCNA indices compared to their respective MWNT-7-treated counterparts.

Discussion

In the present study, the lung toxicity of VGCFTM-H was evaluated by a 13-week intratracheal instillation study. Rats were instilled with a vehicle or the test substance, VGCFTM-H at doses of 0.2, 0.4, or 0.8 mg/kg bw (total amounts of 1.6, 3.2, or 6.4 mg/kg bw) or MWNT-7 at doses of 0.2, 0.4, or 0.8 mg/kg bw (total amounts of 3.2 or 6.4 mg/kg bw), once a week from the beginning of week 1 to the beginning of week 8. Following the 8th instillation, the rats were observed for 6 weeks and sacrificed after the observation period. Both VGCFTM-H and MWNT-7 induced an increase in lung weight, changes in BALF consistent with fiber-induced lung toxicity, and histopathological changes associated with an inflammatory response in the lung. Notably, all of the changes associated with fiber-induced toxicity in the lung were clearly milder in the VGCFTM-H-treated groups compared to the MWNT-7-treated groups. In addition, the MWNT-7 treatment caused the fibrosis of the parietal pleura and a significant increase in the PCNA-positive indices in the visceral and parietal pleura, whereas VGCFTM-H did not.

Inhalation of airborne material may induce adverse effects in the human lung21. However, the toxicity assessment of respirable materials, almost all of which are used for rodents, is not widespread because the systemic inhala-
Fig. 5. Histopathological observations. A; Normal histology in the alveolar and pleural areas of the lung of a male rat in the untreated group. B; Alveolar macrophage aggregation in a male rat from the vehicle-treated group. C; Proliferation of alveolar type II cells in a male rat from the VGCFTM-H-treated group. The yellow arrow indicates the proliferation of alveolar type II cells. D; Pulmonary fibrosis and proliferation of alveolar type II cells in the alveoli of a male rat from the MWNT-7-treated group. The green arrow indicates pulmonary fibrosis involving inflammatory cell infiltration, and the yellow arrow indicates alveolar type II cell proliferation. E; Minimal fibrosis of the visceral pleura in a male rat from the VGCFTM-H-treated group. The red arrow indicates the deposition of test material in alveolar macrophages. F; Proliferation of pulmonary mesothelium in a male rat from the MWNT-7-treated group. The red arrow indicates the deposition of test material in alveolar macrophages. G; Normal histology of the parietal pleura in a male rat from the VGCFTM-H-treated group. F; Fibrosis on the parietal pleura in a male rat from the MWNT-7-treated group.
tion studies require specialized facilities, large amounts of test materials, and technical expertise for aerosol generation. In contrast, the intratracheal instillation method does not require specialized facilities, uses small amounts of test materials, and is relatively simple to perform. These factors allow the widespread use of intratracheal instillation for testing the toxicity of respirable materials; for example, some types of MWCNTs induce pulmonary toxicity and pleural toxicity26. In addition, the precise dose administered into the lung by intratracheal instillation is known, allowing the dose-response relationship between the amount of test material in the lung and toxicological parameters to be determined13, 14: Rodents are obligate nasal breathers, and the nasal barrier has a considerable effect on the penetration of respirable fibers into the lung. Any fibers that are deposited on the nasal mucosa are removed by mucociliary clearance. Seven-week-old rats and mice have nasal surface areas of 798.6 and 277.7 mm²27, respectively; the nasal cavity surface area per body weight is clearly much higher in rodents than in humans28. Using non-fibrous chemicals, only 10% of the aerosolized test chemical reached the lung when administered by inhalation to rats29, 30; thus, the penetration of fibers into the lung was dramatically reduced. Therefore, when administered by inhalation to rodents, the amount of test material that reaches the lung is unknown. In addition, given the same concentration of aerosolized fibers, the amount and size of fibers inhaled by rodents, with their highly effective nasal filtering, will be substantially different from what is inhaled by humans. Intratracheal instillation, however, directly injects the test material into the trachea, allowing the materials that may not be inhaled by a rodent to reach the lung, and the amount of material administered into the lung is known. Consequently, the use of intratracheal instillation for hazard identification and characterization is becoming increasingly recognized8–12, 16, 20, 31, making intratracheal instillation an important method of toxicity evaluation of micro and nanomaterials that have already been developed and marketed.

Carbon fibers with submicron-scale diameters, which include the MWCNTs and the vapor grown carbon fiber tested in the present study, are attracting market attention because of their excellent physicochemical properties. However, with progress in the development and production of these materials, concerns about the toxic effects of these respirable fibers are increasing. VGCF™-H is already being used for lithium-ion batteries and fuel cells, but its needle-like fibrous structure highlights the issue of insufficient information on the toxicity and carcinogenicity of VGCF™-H when inhaled15. Therefore, we conducted this initial study comparing the subchronic toxicities of VGCF™-H and MWNT-7, a known carcinogen in the rat lung and pleura5, 15.

Table 5. Histopathological Findings of the Pleura in Male Rats

Organ and findings	Sex	Test material	Untreated	Vehicle	VGCF™-H	MWNT-7			
Dose (mg/kg)			0	0	1.6	3.2	6.4	3.2	6.4
Diaphragm									
Normal	Female	Untreated	5	6	8	5	7	0	0
Infiltration, inflammatory cell/(1)a	Female	Vehicle	0	2	0	3	0	5**	4
Fibrosis/(1)	Female		0	0	0	0	0	2	1
Fibrosis/(2)	Female		0	0	0	0	0	3***	3**
Fibrosis/(3)	Female		0	0	0	0	0	1	5
Proliferation, mesothelium/(1)	Female		0	0	0	0	0	2	0

* and **: Significantly different from the vehicle-treated group at p<0.05 and p<0.01, respectively.

Table 6. Histopathological Findings of the Pleura in Female Rats

Organ and findings	Sex	Test material	Untreated	Vehicle	VGCF™-H	MWNT-7			
Dose (mg/kg)			0	0	1.6	3.2	6.4	3.2	6.4
Diaphragm									
Normal	Female	Untreated	5	7	8	8	5	5	0
Infiltration, inflammatory cell/(1)a	Female	Vehicle	0	1	0	0	3	3	3
Fibrosis/(1)	Female		0	0	0	0	0	0	4
Fibrosis/(2)	Female		0	0	0	0	0	1	3**
Proliferation, mesothelium/(1)	Female		0	0	0	0	0	1	1

* and **: Significantly different from the vehicle-treated group at p<0.01.
ministered 3.2 6.4 mg/kg VGCF TM-H, the lung weight increased, respectively, by 6% and 9% in males and by 7% and 10% in females. The increase in lung weight in the rats administered MWNT-7 was dramatically higher. In rats administered 3.2 and 6.4 mg/kg MWNT-7, the lung weight increased, respectively, by 34% and 63% in males and by 33% and 58% in females. These results indicate that VGCF TM-H exerts a much milder effect than MWNT-7 in rat lungs.

Histopathological changes related to inflammation, such as inflammatory cell infiltration, alveolar type II cell proliferation, and pulmonary fibrosis in the lung were observed in both VGCF TM-H- and MWNT-7-treated groups. However, these changes were minimal in the male and female 1.6 mg/kg VGCF TM-H-treated groups, and the severity of the changes was markedly milder in the VGCF TM-H-treated groups compared to the MWNT-7-treated groups. These results support the lung weight results, that is, VGCF TM-H exerts a much milder effect than MWNT-7 in the lung.

BALF analysis showed that both VGCF TM-H and MWNT-7 induced inflammatory responses in the lung. In general, the 1.6 mg/kg VGCF TM-H-treated groups did not have a significant elevation in any of the BALF parameters. While females in the 1.6 mg/kg VGCF TM-H-treated group had elevated ALB and IL-8 levels, the females in the 3.2 mg/kg VGCF TM-H-treated group did not have elevated ALB or IL-8 levels, and the lungs of the female rats in the 1.6 mg/kg VGCF TM-H-treated group showed very minor changes, approximately within the normal range. Therefore, the increased levels of ALB and IL-8 in the females of the 1.6 mg/kg VGCF TM-H-treated group were not considered to be of toxicological significance. Inflammatory cell infiltration was lower in the VGCF TM-H-treated groups than in the MWNT-7-treated groups, and the difference was often significant. The levels of total protein and ALB (indicators of vascular permeability), LDH (an indicator of general cytotoxicity), and ALP (an indicator of type II cell toxicity) were all generally similar in the vehicle control and VGCF TM-H-treated groups, but were generally markedly elevated in the MWNT-7-treated groups. These results support the results discussed above, that is, VGCF TM-H exerts a much milder effect than MWNT-7 in the lung.

The lung burdens at autopsy in the rats of the VGCF TM-H- and MWNT-7-treated groups was higher in males than in females. The clearance rates from the lung in the 1.6, 3.2, and 6.4 mg/kg VGCF TM-H-treated groups, respectively, were 66%, 60%, and 73% in males and 57%, 53%, and 50% in females, and the clearance rates from the lung in the 3.2 and 6.4 mg/kg MWNT-7-treated groups, respectively, were 72% and 65% in males and 58% and 66% in females. These data indicate that the clearance rates of VGCF TM-H and MWNT-7 from the lung were similar, suggesting that the difference in the lung toxicities of VGCF TM-H and MWNT-7 was due to the factors other than lung burden. For example, the surface areas of the VGCF TM-H and MWNT-7 fibers used in this study were 15 and 25 m²/g, respectively. In the present study, we did not characterize the VGCF TM-H or MWNT-7 fibers in the lung or pleural cavity; the results of the lung burden analysis indicate that the characterization of fibers retained in the tissues will be required in future studies.

MWCNTs are biopersistent and remain in the lung after their inhalation, and a small fraction of these fibers can translocate into the thoracic cavity where they induce proliferation of mesothelial cells in the parietal pleura. Histopathological examination showed no changes in any of the histopathological parameters in the pleura of any of the VGCF TM-H-treated groups compared to the vehicle controls. The administration of VGCF TM-H also did not cause pleural

Table 7. Proliferation Cell Nuclear Antigen (PCNA) labeling Index (%) of the Mesothelium of the Visceral and Parietal Pleura of Rats

Sex	Test Material	Dose (mg/kg)	No. of rats examined	PCNA labeling index (%)	
				Visceral pleura	Parietal pleura
Male	Untreated	0	5	3.24 ± 2.23	13.68 ± 5.39
	Vehicle	0	8	1.91 ± 2.15	22.40 ± 17.14
	VGCF TM-H	1.6	8	1.91 ± 1.00	17.00 ± 7.74
	VGCF TM-H	3.2	8	2.88 ± 2.18 ††	20.19 ± 13.84 ††
	VGCF TM-H	6.4	8	3.05 ± 2.25 ††	19.64 ± 10.30 ††
	MWNT-7	3.2	8	10.39 ± 4.25 **	40.24 ± 15.40
	MWNT-7	6.4	8	12.88 ± 5.28 **	44.48 ± 16.70 *
Female	Untreated	0	5	2.40 ± 0.85	13.80 ± 10.51
	Vehicle	0	8	3.05 ± 1.85	17.29 ± 9.48
	VGCF TM-H	1.6	8	2.35 ± 1.52	14.35 ± 9.10
	VGCF TM-H	3.2	8	5.31 ± 3.02 ††	22.81 ± 14.66 †
	VGCF TM-H	6.4	8	3.64 ± 1.74 ††	18.19 ± 12.38 †
	MWNT-7	3.2	8	14.83 ± 5.60 **	40.84 ± 12.63 **
	MWNT-7	6.4	8	20.26 ± 6.82 **	43.31 ± 12.22 **

a: Mean ± S.D. * and **: Significantly different from the vehicle-treated group at p<0.05 and p<0.01, respectively. † and ††: Significantly different from the same dose of each sex in the MWNT-7-treated group at p<0.05 and p<0.01, respectively.
mesothelial cell proliferation. In contrast, MWNT-7 caused fibrosis in the parietal pleura and mesothelial cell proliferation in both visceral and parietal pleura. These results are in agreement with a previous intraperitoneal injection study of carbon fibers that reported thinner straight fibers to be potentially more carcinogenic to the mesothelium than thicker straight fibers\(^2\), and with our previous long-term study in which the rats instilled with 1.5 mg/rat MWNT-7 developed mesothelioma\(^3\).

In conclusion, to evaluate the lung toxicity of VGCF\(^{-H}\), a 13-week intratracheal instillation study comparing VGCF\(^{-H}\) to MWNT-7 was carried out using male and female F344 rats. Although the lung burden analysis at the end of the study showed similar results for the VGCF\(^{-H}\)- and MWNT-7-treated groups, the lung toxicity of VGCF\(^{-H}\) was obviously less than that of MWNT-7. In addition, the histopathological examination of the pleura indicated that VGCF\(^{-H}\), unlike MWNT-7, did not induce toxicity in either visceral or parietal pleura.

Disclosure of Potential Conflicts of Interest: The authors declare no conflicts of interest associated with this manuscript.

Acknowledgments: The authors thank Dr. David B. Alexander from Nagoya City University for reading our manuscript. This study was archived at the DIMS Institute of Medical Science, Inc., by a contract study of Showa Denko KK.

References

1. Mercer RR, Scabilloni JF, Hubbs AF, Wang L, Battelli LA, McKinney W, Castranova V, and Porter DW. Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol. 10: 38. 2013. [Medline] [CrossRef]
2. Rittinghausen S, Hackbarth A, Creutzenberg O, Ernst H, Heinrich U, Leonhardt A, and Schaudien D. The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Part Fibre Toxicol. 11: 59. 2014. [Medline] [CrossRef]
3. Umeda Y, Kasai T, Saito M, Kondo H, Toya T, Aiso S, Okuda N, Nishizawa T, and Fukushima S. Two-week toxicity of multi-walled carbon nanotubes by whole-body inhalation exposure in rats. J Toxicol Pathol. 26: 131–140. 2013. [Medline] [CrossRef]
4. Kasai T, Umeda Y, Ohnishi M, Kondo H, Takeuchi T, Aiso S, Nishizawa T, Matsumoto M, and Fukushima S. Thirteen-week study of toxicity of fiber-like multi-walled carbon nanotubes with whole-body inhalation exposure in rats. Nanotoxicology. 9: 413–422. 2015. [Medline] [CrossRef]
5. Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T, Matsumoto M, and Fukushima S. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre Toxicol. 13: 53. 2016. [Medline] [CrossRef]
6. Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, Siegrist KJ, Kashon ML, Mercer RR, Bauer AK, Chen BT, Salisbury JL, Frazer D, McKinney W, Andrew M, Tsuruoka S, Endo M, Fluhrty KL, Castranova V, and Reynolds SH. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 11: 3. 2014. [Medline] [CrossRef]
7. Delorme MP, Muro Y, Ariai T, Banas DA, Frame SR, Reed KL, and Warheit DB. Ninety-day inhalation toxicity study with a vapor grown carbon nanofiber in rats. Toxicol Sci. 128: 449–460. 2012. [Medline] [CrossRef]
8. Gâlă L, Knudsen KB, Seidel C, Berthing T, Chêzeau L, Jacobson NR, Valentino S, Wallin H, Bau S, Wolff H, Sibilland S, Lorcin M, Grossmann S, Viton S, Nunge H, Darne C, Vogal U, and Cosnier F. Pulmonary toxicity of two different multi-walled carbon nanotubes in rat: comparison between intratracheal instillation and inhalation exposure. Toxicol Appl Pharm. 375: 17–31. 2019.
9. Morimoto Y, Izumi H, Yoshiura Y, Fujisawa Y, and Fujita K. Significance of intratracheal instillation tests for the screening of pulmonary toxicity of nanomaterials. J UOEH. 39: 123–132. 2017. [Medline] [CrossRef]
10. OECD. Draft guidance document on inhalation toxicity testing #39 2nd WNT Commenting Round. 2017.
11. Xu J, Futakuchi M, Alexander DB, Fukamachi K, Numano T, Suzui M, Shimizu H, Omori T, Kanno J, Hirose A, and Tsuda H. Nanosized zinc oxide particles do not promote DHPN-induced lung carcinogenesis but cause reversible epithelial hyperplasia of terminal bronchioles. Arch Toxicol. 88: 65–75. 2014. [Medline] [CrossRef]
12. Xu J, Futakuchi M, Shimizu H, Alexander DB, Yanagihara K, Fukamachi K, Suzui M, Kanno J, Hirose A, Ogata A, Sakamoto Y, Nakae D, Omori T, and Tsuda H. Multi-walled carbon nanotubes translocate into the pleural cavity and induce visceral mesothelial proliferation in rats. Cancer Sci. 103: 2045–2050. 2012. [Medline] [CrossRef]
13. Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, and Schlesinger RB. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci. 55: 24–35. 2000. [Medline] [CrossRef]
14. Mohr U, Ernst H, Roller M, and Pott F. Pulmonary tumor types induced in Wistar rats of the so-called “19-dust study”. Exp Toxicol Pathol. 58: 13–20. 2006. [Medline] [CrossRef]
15. Numano T, Higuchi H, Alexander DB, Alexander WT, Abdelgied M, El-Gazzar AM, Saleh D, Takase H, Hirose A, Naiki-ito A, Suzuki S, Takahashi S, and Tsuda H. MWCNT-7 administered to the lung by intratracheal instillation induces development of pleural mesothelioma in F344 rats. Cancer Sci. 110: 2485–2492. 2019. [Medline] [CrossRef]
16. Numano T, Morioka M, Higuchi H, Uda K, Sugiyama T, Hagiwara T, Doi Y, Imai N, Kawabe M, Mera Y, and Tama-no S. Effects of administering different vehicles via single intratracheal instillation on responses in the lung and pleural cavity of C57:CD(SD) rats. J Toxicol Pathol. 33: 11–19. 2020. [Medline] [CrossRef]
17. Iida M, Watanabe K, Tsuruufji M, Takaishi K, Iizuka Y, and Tsursufji S. Level of neutrophil chemotactic factor CINC/gro, a member of the interleukin-8 family, associated with lipopolysaccharide-induced inflammation in rats. Infect Immun. 60: 1268–1272. 1992. [Medline] [CrossRef]
18. Handa O, Naito Y, and Yoshikawa T. Rat cytokine-induced neutrophil chemoattractant-1 (CINC-1) inflammation. J Clin Biochem Nutr. 38: 51–58. 2006. [CrossRef]
19. Renne R, Brix A, Harkema J, Herbert R, Kittel B, Lewis D, March T, Nagano K, Pino M, Rittinghausen S, Rosenbruch M, Tellier P, and Wohrmann T. Proliferative and nonproliferative lesions of the rat and mouse respiratory tract. Toxicol Pathol. 37(Suppl): 5S–73S. 2009. [Medline] [CrossRef]

20. Abdelgied M, El-Gazzar AM, Alexander DB, Alexander WT, Numano T, Iigou M, Naiki-Ito A, Takase H, Abdou KA, Hirose A, Taqahashi Y, Kanno J, Abdelhamid M, Tsuda H, and Takahashi S. Pulmonary and pleural toxicity of potassium octatitanate fibers, rutile titanium dioxide nanoparticles, and MWCNT-7 in male Fischer 344 rats. Arch Toxicol. 93: 909–920. 2019. [Medline] [CrossRef]

21. Abdelgied M, El-Gazzar AM, Alexander DB, Alexander WT, Numano T, Iigou M, Naiki-Ito A, Takase H, Abdou KA, Hirose A, Taqahashi Y, Kanno J, Tsuda H, and Takahashi S. Potassium octatitanate fibers induce persistent lung and pleural injury and are possibly carcinogenic in male Fischer 344 rats. Cancer Sci. 109: 2164–2177. 2018. [Medline] [CrossRef]

22. Abdelgied M, El-Gazzar AM, Alexander DB, Alexander WT, Numano T, Iigou M, Naiki-Ito A, Takase H, Abdou KA, Hirose A, Taqahashi Y, Kanno J, Abdelhamid M, Abdou KA, Takahashi S, Alexander DB, and Tsuda H. Carcinogenic effect of potassium octatitanate (POT) fibers in the lung and pleura of male Fischer 344 rats after intrapulmonary administration. Part Fibre Toxicol. 16: 34. 2019. [Medline] [CrossRef]

23. Ohba T, Xu J, Alexander DB, Yamada A, Kanno J, Hirose A, Tsuda H, and Imaizumi Y. MWCNT causes extensive damage to the ciliated epithelium of the trachea of rodents. J Toxicol Sci. 39: 499–505. 2014. [Medline] [CrossRef]

24. Suzui M, Futakuchi M, Fukamachi K, Numano T, Abdelgied M, Takahashi S, Ohnishi M, Omori T, Tsuruoka S, Hirose A, Kanno J, Sakamoto Y, Alexander DB, Alexander WT, Iigou X, and Tsuda H. Multiwalled carbon nanotubes intratracheally instilled into the rat lung induce development of pleural malignant mesothelioma and lung tumors. Cancer Sci. 107: 924–935. 2016. [Medline] [CrossRef]

25. Mustajbegovic J, Zuskin E, Schachter EN, Kern J, Vitale K, Ebling Z, and Vrcic-Keglevic M. Respiratory findings in chemical workers exposed to low concentrations of organic and inorganic air pollutants. Am J Ind Med. 38: 431–440. 2000. [Medline] [CrossRef]

26. Xu J, Alexander DB, Futakuchi M, Numano T, Fukamachi K, Suzui M, Omori T, Kanno J, Hirose A, and Tsuda H. Size- and shape-dependent pleural translocation, deposition, fibrogenesis, and mesothelial proliferation by multiwalled carbon nanotubes. Cancer Sci. 105: 763–769. 2014. [Medline] [CrossRef]

27. Gross EA, Swenberg JA, Fields S, and Popp JA. Comparative morphometry of the nasal cavity in rats and mice. J Anat. 135: 83–88. 1982. [Medline]

28. Dahl R, and Mygind N. Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Deliv Rev. 29: 3–12. 1998. [Medline] [CrossRef]

29. Leong BK, Coombs JK, Sabaitis CP, Rop DA, and Aaron CS. Quantitative morphometric analysis of pulmonary deposition of aerosol particles inhaled via intratracheal nebulization, intratracheal instillation or nose-only inhalation in rats. J Appl Toxicol. 18: 149–160. 1998. [Medline] [CrossRef]

30. Sabaitis CP, Leong BK, Rop DA, and Aaron CS. Validation of intratracheal instillation as an alternative for aerosol inhalation toxicity testing. J Appl Toxicol. 19: 133–140. 1999. [Medline] [CrossRef]

31. Günter Oberdörster TAJK. In vivo effects: Methodologies and biokinetics of inhaled nanomaterials. NanoImpact. 10: 38–60. 2018. [CrossRef]

32. Nagai H, Okazaki Y, Chew SH, Misawa N, Yamashita Y, Akatsuka S, Ishihara T, Yamashita K, Yoshikawa Y, Yasui H, Jiang L, Ohara H, Takahashi T, Ichihara G, Kostarelos K, Miyata Y, Shinohara H, and Toyokuni S. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci USA. 108: E1330–E1338. 2011. [Medline] [CrossRef]