MiRNA-429 suppresses the growth of gastric cancer cells in vitro

Di Liu, Peng Xia, Dongmei Diao, Yao Cheng, Hao Zhang, Dawei Yuan, Chen Huang, Chengxue Dang

Department of Surgical Oncology, the First Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China;

Department of Genetics and Molecular Biology, Medical School of Xi’an Jiaotong University/Key Laboratory of Environment and Genes Related Diseases of Ministry of Education, Xi’an, Shaanxi 710061, China.

Received 15 May 2012, Revised 18 June 2012, Accepted 29 July 2012, Epub 20 September 2012

Abstract

Micro-RNAs (miRNAs) have been found to be implicated in a very wide range of physiological processes. This study was aimed to investigate the regulation of miRNA-429 (miR-429) in gastric cancer cells on cell proliferation and apoptosis. Quantitative PCR was employed to detect the expressions of miR-429 after eukaryotic expression plasmid of miR-429 and its inhibitor were transiently transfected into poorly differentiated human gastric cancer cell line BGC823. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assays were used to examine proliferation ability. Apoptosis was analyzed by flow cytometry after transfection. The results showed that 48 h after transfection, overexpression of miR-429 reached maximum efficiency. Compared with mock transfection, miR-429 inhibited tumor cell proliferation significantly (P < 0.05) at 48 h and 72 h. Overexpression of miR-429 promoted tumor cell apoptosis when compared with mock transfected cells (P < 0.05). On the contrary, miR-429 inhibitor promoted tumor cell proliferation and inhibited apoptosis when compared with controls (P < 0.05). Our results suggested that miRNA-429 may serve as a tumor suppressor during tumorigenesis of gastric cancer and may be a potential gastric cancer therapeutic target.

Keywords: microRNA, gastric cancer, cell cycle, apoptosis

INTRODUCTION

Micro-RNAs (miRNAs) are non-coding single-stranded RNA, typically containing 18-25 nucleotide sequence. It has been found that there are more than 1,000 miRNAs in the mammalian genome, and miRNAs have been found to be implicated in a very wide range of physiological processes including developmental timing, cellular proliferation, apoptosis, cell differentiation, metabolism, and hormone secretion. MiRNAs are involved in tumorigenesis and development mainly through inhibiting target gene mRNA translation or degrading mRNA. The cell cycle regulation system with cyclins/CDK/Rb as key mol-
ecules is an important pathway for tumorigenesis and development, among which some unknown mechanisms could play significant roles. In-depth study of miRNAs revealed that they regulate cell cycle by targeting cyclin[10,11][10,11]. Understanding how miRNAs silence target cyclin mRNAs has been the focus of intensive research. In this study, we overexpressed miRNA449a/b in gastric cancer cells, and examined the effect of miRNA449a/b overexpression on cell proliferation and apoptosis of gastric cancer cells in details. It is believed that miR-429 could negatively regulate gastric cancer cells and potentially play a therapeutic role in the near future.

MATERIALS AND METHODS

Materials and reagents

Human gastric cancer cell line BGC823 was obtained from Cell Resource Center of Shanghai Institute of Biochemistry and Cell Biology, SIBS, CAS. The human gastric cancer cells were maintained in RPMI 1640 medium (Hyclone, South Logan, UT USA) supplemented with 10% fetal bovine serum (FBS) and antibiotics. LipofectamineTM 2000 was obtained from Invitrogen (Carlsbad, CA, USA). Oligonucleotides were synthesized and purified by high-performance liquid chromatography (Auget Co. Ltd., Beijing, China). Trizol was bought from Invitrogen. RT-PCR kit was obtained from TAKARA Co. (Dalian, China).

Construction of the eukaryotic expression plasmid pcDNA6.2-GW EmGFP-miR-429

The sequences of ha-mir-429 was obtained from miRBase (http://www.mirbase.org/). The annealed double-stranded miRNA was cloned into the linearized pcDNA6.2-GW EmGFP-miR vector. The resultant construct was transformed into E. coli TOP10 competent cells. The bacteria were then plated on spectinomycin agarose LB plate and then incubated at 37°C overnight, and single colonies were chosen from the plate. The sequence was confirmed by sequencing at Beijing Genomics Institute (Beijing, China).

Cell transfection

Cells were transfected with DNA plasmid using LipofectamineTM 2000 (Invitrogen Grand Island, NY, USA). Logarithmically growing cells (5 × 104 cells/L) were seeded into 6-well plate (2 × 102 cells/well). When the cells became 70% confluent, cell transfection was conducted. Serum-free RPMI 1640 was used for rinsing twice, and 2 mL/well serum-free RPMI 1640 was added to each well. DNA-LipofectamineTM 2000 solution was prepared according to the ratio of DNA 0.1 g : LipofectamineTM 2000 0.5 μL. The solution was added to the following 4 groups: control, inhibitor, mock and miR-429, respectively. The medium was removed from the 6-well plate after incubation at 37°C in 5% CO\textsubscript{2} for 6 h. The plate was rinsed twice with serum-free RPMI 1640. Sufficient complete medium was applied, and cells were incubated at 37°C in 5% CO\textsubscript{2} for 24 h. Transfection efficiency (>90%) was confirmed by fluorescent microscopy.

Quantitative PCR analysis

Oligonucleotides were synthesized and purified by high-performance liquid chromatography by Auget Co. Ltd.. Reverse transcription was performed using PrimeScriptTMRT reagent Kit. Ten μL reaction system was used at 42°C for 15 min, and at 85°C for 5 s. SYBR®Premix Ex TaqTM kit was used to perform quantitative PCR. Fifty μL reaction system was used by incubation at 95°C for 5 min, 95°C for 10 s, 60°C for 20 s, 72°C for 20 s, and 78°C for 20 s, and totally for 40 cycles. All the experiments were performed in triplicate. The expression of miR-429 was normalized against U6. Reaction data were collected.

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assays

The cell proliferation assay was done with the MTT method. The logarithmically growing BGC823 cells (5 × 103 /L) were seeded into 96-wells plates at 100 μL/well 24 h prior to transfection. The transfections were performed as described above. Twenty μL of MTT (5 mg/mL) was added to each well and incubated for 4 h, and then the supernatant was discarded. Finally, 150 μL dimethyl sulfoxide was added to each well and oscillated for 10 min to dissolve the precipitate. Absorbance of OD was measured at 490 nm through UV spectrophotometer at 24, 48 and 72 h after transfection. The assay was performed three times in eight replicates.

Cell apoptosis assay by flow cytometry

Cells in the logarithm stage (5 × 103 /L) were obtained and seeded (103/well) into 6-well plate. When the cells reached 70% confluent, the transfections were performed as described above. Sufficient complete medium was added after 24 h. Cells were harvested 48 h post-transfection. Single cell suspension was prepared and centrifuged at 1500 rpm for 5 min. The supernatant was discarded, and cells were resuspended with PBS and then cell counting was performed. In addition, 5 × 103 cell suspension was centrifuged at
1500 rpm for 5 min and then the supernatant was removed. Cells were washed in cold PBS, and incubated with Annexin V-FITC and propidium iodide for 15 min in the dark, and cell apoptosis was analyzed by flow cytometry within 1 h. The assay was performed three times independently.

Statistical analysis

Statistical analysis was performed using Statistical Program for Social Sciences (SPSS) software 13.0 (SPSS Inc., Chicago, IL, USA). Independent samples t-test was used to analyze differences between groups. All experiments were done at least in triplicate and the level of significance was set at $P < 0.05$ for all tests.

RESULTS

The detection of miR-429 expression with real-time PCR

MiR-429 expression was assessed using real-time PCR after transfection with eukaryotic expression plasmid pcDNA6.2-GWEmGFP-miR-429 and its inhibitor. Total RNA was extracted from transfected cell lines by Trizol 24 and 48 h after transfection. The results showed that overexpression of miR-429 and inhibitory effect by the inhibitor reached maximum efficiency at 48 h after transfection (Fig. 1).

![Fig. 1 The effect of miR-429 expression plasmid and inhibitor on miR-429.](image)

Detection of miR-429 expression with real-time PCR. MiR-429 expression was assessed using real-time PCR after transfection with eukaryotic expression plasmid pcDNA6.2-GWEmGFP-miR-429 and its inhibitor. Total RNA was extracted from transfected cell lines by Trizol 24 and 48 h after transfection. The results showed that overexpression of miR-429 and inhibitory effect by the inhibitor reached maximum efficiency at 48 h after transfection (Fig. 1).

The effect of miR-429 on the proliferation of gastric cancer cells

We evaluated the functional role of miR-429 in gastric cancer cells by measuring cell proliferation in BGC823 cells which were transfected with the eukaryotic expression plasmid pcDNA6.2-GWEmGFP-

![miR-429 and its inhibitor. MTT assays were employed to detect the proliferation of BGC823 cell lines. Overexpression of miR-429 in BGC823 inhibited cell proliferation while downregulation of miR-429 in BGC823 cell lines promoted cell proliferation. Compared with the control group, the proliferation of tumor cells in the inhibitor groups noticeably increased at 48 h and 72 h ($P < 0.05$) (Fig. 2). On the other hand, compared with the mock group, the proliferation of tumor cells in the miR-429 groups were inhibited significantly at 48 h and 72 h ($P < 0.05$).

![Fig. 2 MiR-429 inhibited BGC823 cell proliferation.](image)

Fig. 2 MiR-429 inhibited BGC823 cell proliferation. MTT cell proliferation assay was performed on days 1 to 3 as indicated after transfection of BGC823 cells with mock, miR-429, control, or miR-429 inhibitor.

The effect of miR-429 on apoptosis

We also explored the function of miR-429 in BGC823 cells by examining changes in apoptosis after the gastric cancer cells were transfected with the eukaryotic expression plasmid pcDNA6.2-GWEmGFP-miR-429 and its inhibitor. DNA content of transiently miRNA-transfected cells was analyzed by flow cytometry. Compared with the control group, the early and late apoptosis of BGC823 cell lines in the inhibitor group was significantly inhibited ($P < 0.05$). Compared with the mock group, tumor cell apoptosis in the miR-429 group was promoted significantly ($P < 0.05$) (Fig. 3).

![Fig. 3 The effect of miR-429 on apoptosis.](image)

Fig. 3 The effect of miR-429 on apoptosis. BGC823 cells were transfected with mock, miR-429, control, or miR-429 inhibitor. After 48 h, cells were collected, stained with Annexin-V and propidium iodide, and analyzed by flow cytometry. A significant difference between control and inhibitor group, mock and miR-429 group were detected in early, late apoptosis and total apoptosis ($P < 0.05$).
DISCUSSIONS

An important biological characteristic of tumors is their unrestrained growth potentiality. The activation of oncogenes and the aberrant expression of tumor suppressor genes are the main factors leading to tumors. Cell proliferation is tightly regulated by cyclins, cyclin-dependent kinase (CDK) and cyclin-dependent kinase inhibitors (CKIs). Previous studies have demonstrated that miRNAs regulated the cell cycle by targeting key proteins in signaling pathways functioning in the molecular mechanisms of tumorigenesis. An increasing number of studies have confirmed that miRNAs were involved in several cancers including cervical cancer,[10] ovarian cancer,[11] lung cancer,[12] breast cancer,[13] colon cancer,[14] prostate cancer[15] and so on. This offers new ideas and inspirations in our studies on the mechanism of the effect of certain key proteins on tumor cell cycle. As a member of miR-200 family, miR-429 may be an important step in tumor progression[16]. Hu et al.[17] reported that downregulation of miR-200 miRNAs predicted poorer survival in ovarian cancer patients. Aberrant expression of miR-200b/200c/429 were identified in endometrial cancer.[18] MiR-200b/200c/429 were observed to contribute to cisplatin resistance by repressing AP2α expression in endometrial cancer cells. Increasing evidence demonstrated that the miR-200 family plays a key role during tumorigenesis in some kinds of cancers. Current researches show that miRNAs regulated the expression of key proteins through combining its 5′ and 3′-UTR of target genes[19], but this combination had poor specificity because a miRNA might have several target genes. Based on different combination rules between miRNAs and target genes, different algorithm software were designed to predict miRNAs target genes, and as the predicted target of miR-200 family downregulated key proteins in cell cycle post-transcriptionally by targeting its mRNA 3′-UTR region. As a result, cancer cells were arrested in G1 phase. Thereby, biological behaviors such as cell proliferation, apoptosis and so on were affected. Collectively, our results are consistent with the hypothesis that miR-429 is involved in the negative regulation of gastric cancer cells.

Recent evidence supports that miRNAs could serve as potential targets for therapy and aid in the diagnosis of disease in the future[22]. In addition, a study provided evidence that miRNAs could affect chemotherapeutic resistance of tumors[12,23,24]. Lawrie et al.[25] detected specific differential expression of miR-21 in the serum of patients with diffuse large B-cell lymphoma, which provided a basis for its potential use as a diagnosis marker, and confirmed that specific differential expression of miR-21 was closely related with patients’ relapse-free survival. Similarly, the study by Si et al.[26] found that the proliferation and metastasis of breast cancer was prevented by lowering the expression of miR-21. Therefore, it is becoming clear that miRNAs play a key role in the tumorigenesis through different mechanisms. In this study, the clarification of miR-429 as tumor suppressor makes it possible for molecular diagnosis of miRNA-dependent tumors and miRNA-based therapies.

References

[1] Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12: 861-74
[2] Bhatt K, Mi QS, Dong Z. microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am J Physiol Renal Physiol 2011; 300: F602-10
[3] Van Rooij E. The art of microRNA research. CircRes 2011; 108: 219-34
[4] Lima RT, Busacca S, Almeida GM, et al. microRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 2011; 47: 163-74
[5] Davis-Dusenbery BN, Hata A, microRNA in Cancer: the involvement of aberrant microRNA biogenesis regulatory pathways. Genes Cancer 2010; 1: 1100-14
[6] Farazi TA, Spitzer JI, Morozov P, Tuschi T. miRNAs in human cancer. J Pathol 2011; 223: 102-15
[7] Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79: 351-79
[8] Lin SL, Chang DC, Ying SY, Lee D, Wu DT. microRNA miR-302 inhibits the tumorigenecity of human
pluripotent stem cells by coordinate suppression of the CDK2 and CDK4/6 cell cycle pathways. Cancer Res 2010; 70: 9473-82

[9] Pickering MT, Stadler BM, Kowalik TF. miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene 2009; 28:140-5

[10] Pang RT, Leung CO, Ye TM, Liu M, Chiu PC, Lam KK. microRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis 2010; 31: 1037-44

[11] Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O. miR-17-1 and miR-20a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med 2011; 17: 1627-35

[12] Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon YJ, Nkankeu A. EGFR and MET receptor tyrosine kinase altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 2011; 17: 1627-35

[13] Eades G, Yang M, Yao Y. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem 2011; 286: 40725-33

[14] Borralho PM, Simoes AE, Gomes SE. miR-143 overexpression impairs growth of human colon carcinoma xenografts in mice with induction of apoptosis and inhibition of proliferation. PLoS One 2011; 6: e23787

[15] Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V. Regulatory role of miR-203 in prostate cancer progression and metastasis. Clin Cancer Res 2011; 17: 5287-98

[16] Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid A. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593-601

[17] Hu X, Macdonald DM, Hueftner PC, Feng Z, El Naga IM, Schwarz JK. A miR-200 microRNA cluster as a prognostic marker in advanced ovarian cancer. Gynecol Oncol 2009; 114: 457-64

[18] Wu Y, Xiao Y, Ding X, Zhuo Y, Ren P, Zhou C. A miR-200b/200c/429-binding site polymorphism in the 3’ untranslated region of the AP2a gene is associated with cisplatin resistance. PLoS One 2011; 6: e29043

[19] Fabian MR, Sundermeier TR, Sonenberg N. Understanding how miRNAs post-transcriptionally regulate gene expression. Prog Mol Subcell Biol 2010; 50: 1-20

[20] Kota J, Chivukula RR, O’Ronnell KA, Wentzel EA, Montgomery CL, Hwang HW. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137;: 1005-17

[21] Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH. Functional links between clustered microRNA: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 2009; 37: 1672-81

[22] Sempere LF. Integrating contextual miRNA and protein signatures for diagnostic and treatment decisions in cancer. Expert Rev Mol Diagn 2011; 11: 813-27

[23] Tryndyak VP, Beland FA, Pogribny IP. E-cadherin transcriptional down-regulation by epigenetic and microRNA-200 family alterations is related to mesenchymal and drug-resistant phenotypes in human breast cancer cells. Int J Cancer 2010; 126: 2575-83

[24] Yang H, Kong W, He L, Zhao JJ, O’Donnel JD, Wang J. microRNA expression profiling in human ovarian cancer. miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 2008; 68: 425-33

[25] Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008; 141: 672-5

[26] Si ML, Zhu S, Hu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene 2007; 26: 2799-803