Neutralization of IL-4 and IFN-γ Facilitates inducing TGF-β-induced CD4+Foxp3+ Regulatory Cells

Xiaojuan Tao1, Jilin Ma1, Yonghua Zhang1, Jianning Yu1, Long Cai1, Juhua Wang2, Song Guo Zheng2

1Division of Rheumatology, Immunology and Nephrology, Zhejiang Traditional Chinese Medicine and Western Medicine Hospital, Hangzhou, P.R. China; 2Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, USA

ABSTRACT

It has been well recognized that TGF-β is able to induce CD4+CD25+Foxp3+ suppressor/regulatory T (iTreg) cells and IL-2 facilitates iTreg induction and expansion, however, only half of TGF-β-induced CD4+CD25+ cells express Foxp3 and remaining CD4+CD25+Foxp3- cells may represent effector cells. Whether other factor(s) can increase Foxp3 expression by CD4+CD25+ cells induced with TGF-β is still unclear. Here we show that addition of exogenous IFN-γ or IL-4 diminished the ability of TGF-β to induce Foxp3 expression and IL-2 failed to rescue this decreased Foxp3 expression. Conversely, neutralization of IFN-γ and IL-4 significantly enhanced the ability of TGF-β to induce Foxp3 and develop the suppressive activity, indicating that different cytokine profiles affect the differentiation of CD4+CD25+Foxp3+ subset induced by TGF-β. These results show that combination of antibodies against IFN-γ and IL-4 and TGF-β enhances the efficacy of generation and function of iTreg cells and may therefore provide a novel therapeutic strategy for the treatment of autoimmune and other chronic inflammatory diseases. (Int J Biomed Sci 2008; 4 (1): 52-57)

Keywords: suppressor/regulatory T cells; cytokine; Foxp3; autoimmunity

INTRODUCTION

Naturally occurring, thymus-derived CD4+CD25+ suppressor/regulator T cells (nTregs) play a pivotal role in maintenance of immune tolerance to self antigens (1, 2). Lack or dysfunction of nTregs have appeared to be involved in the development and progression of autoimmune diseases, such as type I diabetes, multiple sclerosis, rheumatoid arthritis and active lupus (3-6). nTregs account for only 5%-10% of peripheral CD4+ T cells in mice and 1-2% in human (7). Foxp3, one of forkhead family transcription factor members, is a lineage specification factor for Tregs and plays an important role in the development and function of Treg cells (8, 9). It is likely that manipulation of nTreg cells may provide another approach to treat autoimmune diseases. Nonetheless, small numbers and decreased suppressive activity following expansion limit their potential for therapeutic considerations (10).

Treg cells are heterogeneous and composed of either thymus-derived nTregs or those that can be induced outside of the thymus (induced Treg, iTreg) (10). Although
several CD4+ iTreg cell subsets have been reported, the transforming growth factor-β (TGF-β)-induced iTreg subset has attracted attention since it has properties similar to that of nTreg (11-16). TGF-β is able to induce TCR engaged CD4+CD25+Foxp3+ precursor T cells to become CD4+CD25+ cells that express Foxp3+ and appear to become suppressor or regulatory T cells in vitro and in vivo (11-21).

TGF-β is a pleiotropic cytokine exerting a differential impact on the differentiation of T lymphocytes depending on the target cell type and distinct cytokine milieu (22). Whereas TGF-β induces the differentiation of Foxp3+ Treg cells in the presence of IL-2 (23, 24), TGF-β also facilitates the induction of IL-17-producing (Th17) cells, at least in animal models (25-27). In addition, TGF-β has a critical function as an antagonist of Th1 development affecting IFN-γ as well as T-beta (28, 29), of Th2 differentiation affecting IL-4 (30, 31). Although it has been reported that non-T cell-derived IL-6 abolishes the ability of TGF-β to induce Foxp3+ cells (32), it is still unclear whether other Th1 and Th2 cytokines produced by T cells also affect the differentiation of iTreg cells induced by TGF-β.

In the present work, we confirmed that TGF-β is able to induce naïve CD4+CD25- cells to express Foxp3 and develop suppressive activity in the absence of antigen presenting cells (APC). However, the addition of exogenous IFN-γ or IL-4 diminished the ability of TGF-β to induce Foxp3+ cells (32), it is still unclear whether other Th1 and Th2 cytokines produced by T cells also affect the differentiation of iTreg cells induced by TGF-β.

In the present work, we confirmed that TGF-β is able to induce naïve CD4+CD25- cells to express Foxp3 and develop suppressive activity in the absence of antigen presenting cells (APC). However, the addition of exogenous IFN-γ or IL-4 diminished the ability of TGF-β to induce Foxp3+ cells (32), it is still unclear whether other Th1 and Th2 cytokines produced by T cells also affect the differentiation of iTreg cells induced by TGF-β.

In the present work, we confirmed that TGF-β is able to induce naïve CD4+CD25- cells to express Foxp3 and develop suppressive activity in the absence of antigen presenting cells (APC). However, the addition of exogenous IFN-γ or IL-4 diminished the ability of TGF-β to induce Foxp3+ cells (32), it is still unclear whether other Th1 and Th2 cytokines produced by T cells also affect the differentiation of iTreg cells induced by TGF-β.

In the present work, we confirmed that TGF-β is able to induce naïve CD4+CD25- cells to express Foxp3 and develop suppressive activity in the absence of antigen presenting cells (APC). However, the addition of exogenous IFN-γ or IL-4 diminished the ability of TGF-β to induce Foxp3+ cells (32), it is still unclear whether other Th1 and Th2 cytokines produced by T cells also affect the differentiation of iTreg cells induced by TGF-β.

In the present work, we confirmed that TGF-β is able to induce naïve CD4+CD25- cells to express Foxp3 and develop suppressive activity in the absence of antigen presenting cells (APC). However, the addition of exogenous IFN-γ or IL-4 diminished the ability of TGF-β to induce Foxp3+ cells (32), it is still unclear whether other Th1 and Th2 cytokines produced by T cells also affect the differentiation of iTreg cells induced by TGF-β.

In the present work, we confirmed that TGF-β is able to induce naïve CD4+CD25- cells to express Foxp3 and develop suppressive activity in the absence of antigen presenting cells (APC). However, the addition of exogenous IFN-γ or IL-4 diminished the ability of TGF-β to induce Foxp3+ cells (32), it is still unclear whether other Th1 and Th2 cytokines produced by T cells also affect the differentiation of iTreg cells induced by TGF-β.

In the present work, we confirmed that TGF-β is able to induce naïve CD4+CD25- cells to express Foxp3 and develop suppressive activity in the absence of antigen presenting cells (APC). However, the addition of exogenous IFN-γ or IL-4 diminished the ability of TGF-β to induce Foxp3+ cells (32), it is still unclear whether other Th1 and Th2 cytokines produced by T cells also affect the differentiation of iTreg cells induced by TGF-β.

In the present work, we confirmed that TGF-β is able to induce naïve CD4+CD25- cells to express Foxp3 and develop suppressive activity in the absence of antigen presenting cells (APC). However, the addition of exogenous IFN-γ or IL-4 diminished the ability of TGF-β to induce Foxp3+ cells (32), it is still unclear whether other Th1 and Th2 cytokines produced by T cells also affect the differentiation of iTreg cells induced by TGF-β.

In the present work, we confirmed that TGF-β is able to induce naïve CD4+CD25- cells to express Foxp3 and develop suppressive activity in the absence of antigen presenting cells (APC). However, the addition of exogenous IFN-γ or IL-4 diminished the ability of TGF-β to induce Foxp3+ cells (32), it is still unclear whether other Th1 and Th2 cytokines produced by T cells also affect the differentiation of iTreg cells induced by TGF-β.

In the present work, we confirmed that TGF-β is able to induce naïve CD4+CD25- cells to express Foxp3 and develop suppressive activity in the absence of antigen presenting cells (APC). However, the addition of exogenous IFN-γ or IL-4 diminished the ability of TGF-β to induce Foxp3+ cells (32), it is still unclear whether other Th1 and Th2 cytokines produced by T cells also affect the differentiation of iTreg cells induced by TGF-β.

In the present work, we confirmed that TGF-β is able to induce naïve CD4+CD25- cells to express Foxp3 and develop suppressive activity in the absence of antigen presenting cells (APC). However, the addition of exogenous IFN-γ or IL-4 diminished the ability of TGF-β to induce Foxp3+ cells (32), it is still unclear whether other Th1 and Th2 cytokines produced by T cells also affect the differentiation of iTreg cells induced by TGF-β.

In the present work, we confirmed that TGF-β is able to induce naïve CD4+CD25- cells to express Foxp3 and develop suppressive activity in the absence of antigen presenting cells (APC). However, the addition of exogenous IFN-γ or IL-4 diminished the ability of TGF-β to induce Foxp3+ cells (32), it is still unclear whether other Th1 and Th2 cytokines produced by T cells also affect the differentiation of iTreg cells induced by TGF-β.

In the present work, we confirmed that TGF-β is able to induce naïve CD4+CD25- cells to express Foxp3 and develop suppressive activity in the absence of antigen presenting cells (APC). However, the addition of exogenous IFN-γ or IL-4 diminished the ability of TGF-β to induce Foxp3+ cells (32), it is still unclear whether other Th1 and Th2 cytokines produced by T cells also affect the differentiation of iTreg cells induced by TGF-β.
EDTA and 0.01% NaN3. To block non-specific staining, anti-CD16/32 antibody (2.4G2) was added. Antibodies for cell surface markers were added and cells were incubated 25 min on ice. Following staining, the cells were washed twice and analyzed the same day or fixed in PBS containing 1% paraformaldehyde and 0.01% NaN3, and cells were examined on the Epics XL-MC and data analyzed using EXPO32 software. Intracellular Foxp3 staining was performed as per Foxp3-staining kit protocol.

In vitro proliferation/suppression assays

Proliferation assays were performed by stimulating responding T cells in 96 flat-bottom microtiter plates in RPMI 1640 with immobilized anti-CD3 (0.5 µg/ml), soluble anti-CD28 for 72 h at 37°C in 5% CO₂. For suppression assays, TGF-beta1-treated or untreated T cells were co-cultured with CD4⁺CD25- responder T cells with immobilized anti-CD3 (0.5 µg/ml), soluble anti-CD28 in 96-well plates for 72 h at 37°C/5% CO₂. Cell cultures were pulsed with 1 uCi ³H-thymidine for the last 16 h to determine the extent of suppression.

RT-PCR for Foxp3 expression

Total RNA was extracted from cells using TRIzol reagent and used to determine the expression and relative level of the transcription factor Foxp3. First-strand cDNA was synthesized using Omniscript TR kit (Qiagen) with random hexamer primers (Invitrogen Life Technologies). Foxp3 and hypoxanthine guanine phosphoribosyl transferase (HPRT) mRNA was measured by a semiquantitative RT-PCR using published primers (8). The relative expression of Foxp3 was determined by normalizing expression of each target to HPRT.

Statistical analysis

Results are expressed as mean ± SEM, and are representative of 3-5 similar experiments. Analysis for statistically significant differences was performed with Student’s t-test. P<0.05 was considered a difference, and P<0.01 was considered a significant difference.

RESULTS

Addition of exogenous IFN-γ or IL-4 decreases the Foxp3 expression induced by TGF-β

As described previously by us and others, naïve CD4⁺CD25- T cells activated with anti-CD3/CD28 in the presence IL-2 and TGF-β become CD4⁺CD25⁺ and more than 50% CD25⁺ cells have been converted into Foxp3⁺ cells (13, 23, Fig.1). TGF-β plays a unique role in the induction of Foxp3 expression and development of suppressive activity since TGF-β failed to induce CD4⁺CD25⁺ cells from TGF-β receptor II dominate mice to express Foxp3 (data not shown). As IL-2 facilitates the induction of Foxp3 expression and IL-6 diminishes Foxp3 expression induced by TGF-β (20, 21, 32), it is possible other cytokines also affect the Foxp3 expression in CD4⁺CD25⁺ cells induced by TGF-β. We consider the possibility that cytokines which induce the differentiation of Th1 or Th2 cells may reduce the ability of TGF-β to induce Foxp3 since TGF-β suppresses Th1 and Th2 differentiation. As shown in Fig. 1, addition of exogenous IFN-γ or IL-4 markedly decreased the ability of TGF-β to induce Foxp3. These data indicate that different cytokines affect the differentiation of CD4⁺ cells and induction of TGF-β-iTreg cells needs specific cytokine profiles in addition to TCR engagement.

Neutralization of IFN-γ or IL-4 markedly enhances the ability of TGF-β to induce Foxp3 expression and develop suppressive activity

Since the addition of exogenous IFN-γ or IL-4 markedly decreased the ability of TGF-β to induce Foxp3, we next considered whether neutralization of IFN-γ or IL-4 can increase the ability of TGF-β to induce Foxp3. Accordingly, IL-2 + TGF-β induced 56% of CD4⁺CD25⁺ responder T cells to express Foxp3, addition of anti-IFN-γ or anti-IL-4 slightly increased Foxp3 expression in IL-2/TGF-β-induced CD4⁺CD25⁺ cells (about 64%, data not shown), however, Foxp3 expression was significantly unregulated to 77% when both anti-IFN-γ and anti-IL-4 were simultaneously added to cultures (Fig. 2A & B). Consistently, neutralization of anti-IFN-γ and anti-IL-4 also enhanced the Foxp3 mRNA expression of IL-2/TGF-β-induced CD4⁺CD25⁺ cells (Fig. 2C).

We also assessed suppressive activities of CD4⁺CD25⁺ cells induced by IL-2 and TGF-β with or without anti-IFN-γ and anti-IL-4 or control IgG. The experiment shown in Fig. 3 reveals that the suppressive activity of iTreg induced by IL-2 and TGF-β in the presence of both anti-IFN-γ and anti-IL-4 antibodies is significantly greater than in the absence of antibodies. These data suggest that neutralization of IFN-γ and IL-4 not only increases the Foxp3 expression in CD4⁺CD25⁺ cells induced by IL-2 and TGF-β, but also enhances the suppressive activity of these cells.

DISCUSSION

The present study evaluates the ability of neutralization of IFN-γ and IL-4 to induce and enhance suppressive func-
The percentage of activated CD4+CD25+ cells expressing Foxp3 is shown and values indicate the mean ± SEM of three separate experiments. *P values were calculated by Student t test and indicate significant effects of IFN-γ or IL-4 on TGF-β treated cells (**p<0.01). (A), Scatter plots are gated on CD4, and the percentage of cells expressing both CD25 and Foxp3 is shown in the upper left and right quadrant. The example shown is representative of three separate experiments (B).

Figure 2. Neutralization of IFN-γ and IL-4 significantly increases the ability of TGF-β to induce naïve CD4+CD25- cells to express Foxp3. Splenic CD4+CD25- cells isolated from C57BL/6 mice were stimulated with immobilized anti-CD3, soluble anti-CD28 and IL-2 ± TGF-β with or without anti-IFN-γ and IL-4 or control rat IgG1 for four days. Foxp3 expression among CD4+ cells was determined by FACS analysis as described in Figure 1. (A), Values indicate the mean ± SEM of four separate experiments. *P values indicate significant effects of anti-IFN-γ and anti-IL-4 on TGF-β treated cells compared to control IgG (**p<0.01). (B), The percentage of CD4+Foxp3+ cells is shown in the upper right quadrant and is representative of four independent experiments. (C), Values indicate the mean ± SEM for four separate experiments of Foxp3 mRNA semiquantitative expression on the different groups of cells (**p<0.01).
titiated by TGF-β. It is similar that addition of IFN-γ or IL-4 inhibits the differentiation of Th17 cells induced by combination of IL-6 and TGF-β (25-27). IL-2 fails to overcome the effect of IFN-γ or IL-4 on TGF-β-induced Foxp3 expression in CD4+ cells although IL-2 critically involves in the development and expansion of TGF-β-induced Foxp3+ Tregs (23, 24).

The mechanism(s) by which IFN-γ or IL-4 affects the ability of TGF-β to induce Foxp3+ Treg cells remains unclear. Although cytokines promoting the differentiation of Th1, Th2, Th17 or Treg cells are known to antagonize each other (34), it is also possible that they have some synergizing role in promoting the differentiation of distinct CD4+ subsets. Others have reported while IL-4 favors Th2 differentiation, combination of IL-4 and TGF-β resulted in generation of Th1 cells (35). The importance of IFN-γ in regulating TGF-β production was further confirmed in the study showing that CD4+ cells from IFN-γ−/− mice produced more TGF-β compared to wild type mice (35).

It is likely the neutralization of IFN-γ or IL-4 enhances Foxp3 expression in CD4+CD25+ cells induced by TGF-β. As shown in Fig. 1 and reported previously, only 50% of TGF-β-induced CD4+CD25+ cells express Foxp3 (23). This implies that fully half of, the TGF-β-induced CD4+CD25+ cells do not express Foxp3 and may represent CD4+ effector cells. In order to reliably generate induced Treg cells ex vivo, it will be important to increase CD25+Foxp3+ and decrease CD25−Foxp3− cells since suppressive activity is closely associated with Foxp3 expression (23). This study establishes a new protocol that will improve the ability of TGF-β to induce iTreg cells ex vivo, thereby increasing the likelihood that manipulation of TGF-β-induced iTreg cells may provide a novel therapeutic strategy for the treatment of autoimmune diseases and other chronic inflammatory diseases.

CONFLICT OF INTEREST

The authors declare that no conflicting interests exist.

REFERENCES

1. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 2005; 6: 345.
2. Shevach EM. CD4+CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2002; 2 (6): 389.
3. Atkinson MA, Leiter EH. The NOD mouse model of type 1 diabetes: as good as it gets? Nat. Med. 1999; 5 (6): 601.
4. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 2004; 199 (7): 971.
5. Ehrenstein MR, Evans JG, Singh A, Moore S, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 2004; 200 (3): 277.
6. Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4+CD25+T regulatory cell function in patients with active systemic lupus erythematosus. J. Immunol. 2007; 178 (4): 2579.
7. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25+ regulatory cells in human peripheral blood. J. Immunol. 2001; 167 (3): 1245.
8. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003; 299 (5609): 1057.
9. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003; 4 (4): 330.
10. Horwitz DA, Zheng SG, Gray JD, Wang JH, et al. Regulatory T cells generated ex vivo as an approach for the therapy of autoimmune disease. Semin. Immunol. 2004; 16 (2): 135-143.
11. Yamagishi S, Gray JD, Hashimoto S, Horwitz DA. A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J. Immunol. 2001; 166 (12): 7282.
12. Zheng SG, Gray JD, Ohtsuka K, Yamagishi S, et al. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25− precursors. J. Immunol. 2002; 169 (8): 4183.
13. Chen W, Jin W, Hardegen N, Li KJ, et al. Conversion of peripheral CD4+CD25− naïve T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 2003; 198 (12):
EFFECT OF ANTI-IFN-γ AND ANTI-IL-4 ON ITREG

1875.
14. Zheng SG, Wang JH, Gray GD, Soucier H, et al. Natural and induced CD4+CD25− cells educate CD4+CD25+ cells to develop suppressive activity: the role of IL-2, TGF-β, and IL-10. J. Immunol. 2004; 172 (9): 5213.

15. Peng Y, Laouar Y, Li MO, Green A, et al. TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc. Natl. Acad. Sci. USA. 2004; 101 (13): 4572.

16. Fantini MC, Becker C, Monteleone G, Pallone F, et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25− T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 2004; 172 (9): 5149.

17. Zheng SG, Wang JH, Koss MN, Quismorio F Jr, et al. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 type 2 development through inhibition of GATA-3 expression. J. Immunol. 2006; 176 (8): 4730.

18. Weber SE, Haberstorn J, Godebu E, Mros GA, et al. Adaptive islet-specific regulatory CD4 T cells control autoimmune diabetes and mediate the disappearance of pathogenic Th1 cells in vivo. J. Immunol. 2006; 176 (8): 4730.

19. Fantini MC, Becker C, Tubbe I, Nikolaev A, et al. Transforming growth factor beta induced Foxp3+ regulatory T cells suppress Th1 mediated experimental colitis. Gut. 2006; 55 (5): 671.

20. Zheng SG, Meng L, Wang JH, Watanabe M, et al. Transfer of regulatory T cells generated ex vivo modifies graft rejection through induction of tolerogenic CD4+CD25+ cells in the recipient. Int. Immunol. 2006; 18 (2): 279.

21. DiPaolo RJ, Brinster C, Davidson TS, Andersson J, et al. Autoantigen-specific TGFBeta-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J. Immunol. 2007; 179 (7): 4685.

22. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-β. Annu. Rev. Immunol. 1998; 16: 137.

23. Zheng SG, Wang JH, Wang P, Gray JD, et al. IL-2 is essential for TGF-beta to convert naive CD4+CD25− cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J. Immunol. 2007; 178 (4): 2018.

24. Davidson TS, DiPaolo RJ, Andersson J, Shevach EM. Cutting Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J. Immunol. 2007; 178 (7): 4022.

25. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, et al. TGF-beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006; 24 (2): 179.

26. Park H, Li Z, Yang X, Chang SH, et al. A distinct lineage of CD4+ T cells regulates tissue inflammation by producing interleukin 17. Nature Immunol. 2005; 6 (11): 1133.

27. Harrington LE, Hatton RD, Mangan PR, Turner H, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 2005; 6 (11): 1123.

28. Gorelik L, Constant S, and Flavell RA. Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J. Exp. Med. 2002; 195 (11): 1499.

29. Lin JT, Martin SL, Xia L, Gorham JD. TGF-β1 uses distinct mechanisms to inhibit IFN-γ expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. J. Immunol. 2005; 174 (10): 5950.

30. Gorelik L, Fields PE, Flavell RA. Cutting edge: TGF-β inhibits Th type 2 development through inhibition of GATA-3 expression. J. Immunol. 2000; 165 (9): 4773.

31. Heath VL, Murphy EE, Crain C, Tomlinson MG, et al. TGF-β1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur. J. Immunol. 2000; 30 (9): 2639.

32. Dominitzki S, Fantini MC, Neufert C, Nikolaev A, et al. Cutting Edge: Trans-Signaling via the Soluble IL-6R Abrogates the Induction of Foxp3 in Naïve CD4+CD25− T Cells. J. Immunol. 2005; 178 (7): 4022.

33. Li MO, Wan YY, Sanjabi S, Robertson A, et al. Transforming Growth Factor-β Regulation of Immune Responses. Annu. Rev. Immunol. 2006; 24: 99.

34. Reiner SL. Development in Motion: Helper T Cells at Work. Cell. 2007; 129 (1): 33.

35. Seder RA, Marth T, Sieve MC, Strober W, et al. Factors involved in the differentiation of TGF-β-producing cells from naïve CD4+ T cells: IL-4 and IFN-γ have opposing effects, while TGF-β positively regulates its own production. J. Immunol. 1998; 160 (12): 5719.