Water Quality Evaluation of Selected Springs in Qazania Area, Diala Governorate, East Iraq

Joudah A. H. Alkilabi1,*, Qays K. N. Alkhlidy1 and Nidhal H. Khaleefa1

1General Commission for Groundwater, Ministry of Water Resources, Baghdad, Iraq
*Correspondence: jodahaefan@gmail.com

Received: 2 July 2020; Accepted: 24 December 2020; Published: 28 February 2021

Abstract

Twenty-five spring water samples were collected from the study area and analyzed for major constituents’ concentrations Ca2+, Mg2+, Na+, K+, Cl−, SO42−, HCO3− and NO3−. The parameters of H, TDS and EC were measured as well. The springs water is neutral to slightly alkaline, Piper’s diagram classification indicates that most samples are earth alkaline water with an increase portion of alkali with prevailing sulfate and chloride. A Dominant cation is sodium followed by calcium then magnesium, while sulfate is a dominant anion followed by chloride, bicarbonate then nitrate. The dominant water type is NaSO4 which represents 64% of all samples followed by NaCl type which represents 28% and CaSO4 type which represents 8% of all samples. According to Water Quality Index (WQI) classification, 24% of whole samples are excellent, 8% is good, 24% poor and 44% are unsuitable for human drinking. According to Richard diagram, 20% of all samples have been fallen in C2S1 class where they are good for irrigation, 68% of all samples have been fallen in C4S2 class where they are poor for irrigation and 8% of all samples have been fallen in C4S3 class where they are very poor for irrigation, therefore it is clear that the most springs samples are not suitable for irrigation purposes except for very salt-tolerant plants.

Keywords: Qazania; Spring water; Piper Diagram; Water Quality Index; Irrigation; Richrd Diagram

1. Introduction

Water quality depends on many factors which include geology, degree of chemical weathering of prevailing lithology, quality of recharge water as well as water-rock interactions (Dikeogu et al. 2018). Groundwater becomes a primary and important resource in many areas of the world, so it is important to study its quality and quantity to identify its suitability for drinking, irrigation, industrial and other usages (Scanlon et al. 2006). Numerous studies established on the perspective of understanding the influence of groundwater availability on multiple hydrological and environmental aspects (Ali and Abdel-Hameed, 2018; Das and Pal 2019; Niaz et al. 2018; Pande et al. 2019 in Awadh et al., 2019). Groundwater is an essential natural water resource that supplies the population for different uses as in domestic, agricultural and industrial purposes, where it provides about half of all the freshwater used worldwide (Shiklomanov, 1996 and Chilton et al., 1994 in Awadh et al., 2016). Few researches were carried out on the springs in this region although tens of those springs are existed, probably due to the fear of the presence of military remnants from the Irani-Iraqi war. Parsons (1955) mentioned that there are numerous springs in the Khanaqin-Jassan area, which mostly parallel to the low hills zone along the

DOI: 10.46717/igi.54.1B.10Ms-2021-02-28
Iranian border. Those springs apparently originate at the intersection of the water table with the ground surface, where the transitional slopes from the low eastern hills flatten to form the alluvial plain to the west. Sissakian et al. (2017) studied the characters and types of alluvial fans in the middle and eastern parts of Iraq. There are many alluvial fans in Mandili vicinity and differentiated into five stages depending on tone, drainage density, drainage type, materials of the top cover and cultivation density. Al-Sudani (2018) studied the hydrochemical evaluation and utilization of groundwater in Khanaqin area. The study of Fakhre and Abdulhussein (2020) showed that the hydrochemical properties of groundwater and some springs in Qazania area, their results showed that the water wells and springs are highly mineralized and characterized by low alkalinity and very high hardness the research aims to evaluate the chemistry of spring water in Qazania and recommended to human different life utilizations.

2. Study Area

Qazania is a part of Mindili County which locates in Diala City. The study area lies between the latitudes 33° 20′ 00″ – 33° 39′ 00″ and longitudes 45° 33′ 00″ – 45° 57′ 00″, which cover area of 767 km². It was delineated on the Iraqi-Iranian border. Mandili locates to the north, Tursak toward the west and Dilala-Wassit toward the south (Fig. 1). Springs located at the ends of alluvial fans and recharged from the east where outcrops of geological formations. The main aquifers are Bai Hassan, Mukdadiyah, Injana, and Fatha formations, these aquifers consist of different materials and have different permeabilities therefore they have different effects on the quality of water.

Fig. 1. Location map of the study area

113
3. Stratigraphy

According to Barwary (1991), the geological formations in the study area from younger to older are quaternary deposits then Bai Hassan, Mukdadiyah, Injana, and Fatha formations. Quaternary deposits represented by slope deposits, valley deposits and alluvial fan deposits consist mainly of gravel, sand, silt and clay. Bai Hassan Formation is composed of conglomerate, claystone and some sandstone. Claystones are predominant in the upper part. Conglomerates are massive loose, compacted, composed of gravels of different colour, shape, size and composition. The Mukdadiyah Formation is composed of alternation of medium-coarse grained sandstone, siltstone and claystone beds. Sandstone beds are containing very often pebbles. The Injana Formation is composed at monotoneous alternating at sandstone, claystone, and siltstone beds. Sandstones beds become thicker, less compacted and coarser upwards. Claystones are brownish, fractured, silty, and containing often lenses of siltstones and/or sandstones. The Fatha Formation consists of two members. Both members are cyclic in nature. Each cycle starts with claystone followed by marl, thin limestone and thick gypsum on the top. They are alternating in regular order.

4. Materials and Methods

Twenty-five springs were selected to collect water samples in October 2019. Springs locations were dropped by portable GPS instrument. Samples were collected by pre-cleaned polyethylene one-liter bottles, which are rinsed with water before filled. Springs samples were sent to the laboratory of the General Commission for Ground Water in Iraq to analyze for main cations and anions Ca\(^{2+}\), Mg\(^{2+}\), Na\(^+\), K\(^+\), HCO\(_3\)\(^-\), SO\(_4\)\(^{2-}\), and NO\(_3\)\(^-\) (Table 1). Ca\(^{2+}\) and Mg\(^{2+}\) were analyzed by Titration with EDTA, Na\(^+\) and K\(^+\) were analyzed by Flame photometer instrument, HCO\(_3\) is analyzed by titration with HCl using phenolphthalein and methanol 60%, SO\(_4\)\(^{2-}\) analyzed by titration with BaCl\(_2\)-EDTA using Eriochrome black-T indicator, Cl\(^-\) analyzed by titration with AgNO\(_3\) using potassium chromate indicator and finally NO\(_3\)\(^-\) analyzed by using UV-Spectrophotometric method.

4.1. Mathematical Equations

To make sure the accuracy of chemical analysis, it was adopted the cation-anion balance using equation below:

\[
R.D\% = 100 \times \frac{|(r\sum Cat - r\sum Ani) / (r\sum Cat + r\sum Ani)|}{1} \quad (1)
\]

Where:
R.D\%: Relative difference
r: (epm) equivalent per million
r\sum Cat: Summation of positive ions concentrations in (epm) unit
r\sum Ani: Summation of negative ions concentrations in (epm) unit

According to Hem (1991), if (RD ≤ 5%) the results could be accepted for interpretations and if (5% < RD ≤ 10%) the results could be accepted with risk, while if RD% > 10% cannot depended on the results in hydrochemical interpretations.

All results of relative difference (RD) are less 5% which confirm the accuracy of chemical analysis.

WQI were calculated using Weighted Arithmetic Index Method to evaluate suitability for human drinking by using the following equations:

\[
WQI = \sum Q_i W_i / \sum W_i \quad (2)
\]

Where:
Q\(_i\): Quality rating scale
W\(_i\): Unit weight
\[Q_i = \left(\frac{V_i - V_0}{S_i - V_0}\right) \times 100 \] (3)

Where:

\(V_i \): Estimated concentration of ith parameter
\(V_0 \): The ideal value of this parameter in pure water = 0 (except pH = 7.0 and DO = 14.6 mg/l).
\(S_i \): Standard value of ith parameter.

\[W_i = \frac{K}{S_i} \] \hspace{1cm} (4)

Where:

\(K \): A proportionality constant

\[K = \frac{1}{\sum \left(\frac{1}{S_i}\right)} \] \hspace{1cm} (5)

To evaluate the suitability of groundwater for irrigation purposes, TDS, Sodium adsorption ratio (SAR), and residual sodium carbonate (RSC) were calculated according to following equations:

\[SAR = \frac{Na}{\sqrt{(Ca+Mg)/2}} \] \hspace{1cm} (6)

\[RSC = (HCO_3^- + CO_3^{2-}) - (Ca^{2+} + Mg^{2+}) \] \hspace{1cm} (7)

5. Results and Discussion

The chemical components of hydrochemical parameters of springs water indicate that there are multi water sources where springs SP-3, SP-6, SP-7, SP-8, SP-11 and SP-15 were extract water from the Bai Hassan Formation which consists mainly of gravel and conglomerate. Springs SP-1, SP-4, SP-14 and SP-23 were extract water mainly from quaternary deposits which have high portion of clay minerals. Remained springs extract mixed water from more than one formation in region (Table 1). The cation order is \(Na^+ > Ca^{2+} > Mg^{2+} > K^+ \), where mean concentrations are 407 mg/l, 207 mg/l, 108 and 35 mg/l, respectively. Sodium is a dominant cation in 24 spring samples which represent 96% of groundwater samples, while calcium dominates only in one sample which represent 4% of the samples. The anions order is \(SO_4^{2-} > Cl^- > HCO_3^- > NO_3^- \) where mean concentrations are 805 mg/l, 516 mg/l, 343 mg/l and 1.6 mg/l, respectively. Eighteen samples which represent 72% of all samples have a sulfate as a dominant anion, while chloride is a dominant in seven samples which represent 28% of all samples. The pH values range from 7.12 to 7.61 and the mean value is 7.22 indicates that the springs water is slightly alkaline. According to hydrochemical formula the water type of 16 samples which represent 64% of all samples is \(NaSO_4 \) type, (2) samples which represent 8% of all samples is \(CaSO_4 \) type, and (7) samples which represent 28% of all samples is \(NaCl \) type. Mean value of EC is 3920 µs/cm with standard deviation 2390 and the mean value of TDS is 2594 with standard deviation 1551. The high standard deviation of EC and TDS values indicate that the springs water in the study area were extracted from more than one formation. Piper diagram was used to assess the hydrochemical facies of springs water. This diagram graphically represents some of the multiple variables associated with major cation and anion data and aid rapid determinations of similarities and differences in water samples (Piper, 1944). According to Langguth (1966), the Piper diagram can be divided into seven fields. It’s clear as in Fig.2 that the most samples have been fallen in e field where earth alkaline water with increase portion of alkali with prevailing sulfate and chloride. Only S-P4, SP-13, SP-19, SP-20 and SP-25 have been fallen in g field where alkaline water with prevailing sulfate and chloride.
Table 1. Chemical parameters for the springs water samples of the study area

No	Water type	PH	EC μS/cm	T.D.S mg/l	Ca²⁺ mg/l	Mg²⁺ mg/l	Na⁺ mg/l	K⁺ mg/l	Cl⁻ mg/l	HCO₃⁻ mg/l	SO₄²⁻ mg/l	NO₃⁻ mg/l	T.H mg/l	WQI	SAR	RSC
SP-1	Na₂SO₄	7.27	9770	6340	420	270	880	160	1150	750	1891	2.2	2160	493	7	-31
SP-2	Na₂SO₄	7.2	4290	2800	240	120	470	9	543	472	825	2.1	1093	52	5	-14
SP-3	CaSO₄	7.16	727	492	38	18	36	0.6	81	24	128	2.5	169	10	1	-3
SP-4	Na₂SO₄	7.3	5550	3580	253	142	552	73	644	520	1140	1.4	1216	235	6	-16
SP-5	Na₂SO₄	7.18	3910	2600	240	130	390	17	550	241	900	1.2	1134	73	4	-19
SP-6	NaCl	7.24	599	395	38	16	50	2	95	20	112	2	161	16	-1	-3
SP-7	CaCl₂	7.15	689	470	39	20	38	0.8	83	24	130	2.3	180	10	1	-3
SP-8	NaCl	7.15	443	300	30	10	51	0.6	92	16	72	1.1	116	9	2	-2
SP-9	Na₂SO₄	7.2	4070	2660	266	105	414	16	590	457	769	1.2	1096	70	4	-14
SP-10	Na₂SO₄	7.14	4250	2770	220	122	440	35	546	420	840	1.4	1051	121	5	-14
SP-11	NaCl	7.25	602	410	38	18	72	4	120	19	90	1.1	169	22	2	-3
SP-12	Na₂SO₄	7.61	4030	2600	257	89	392	7	490	441	780	1.3	1008	57	-1	-3
SP-13	Na₂SO₄	7.3	4420	2880	130	110	560	90	500	561	902	1.6	777	277	7	-6
SP-14	NaCl	7.21	8580	5560	430	245	830	68	1120	614	1795	1.1	2082	234	6	-32
SP-15	NaCl	7.24	799	580	61	38	75	2	183	23	181	1.4	309	18	2	-6
SP-16	Na₂SO₄	7.14	4350	2800	235	114	465	8	538	468	820	1.2	1056	47	5	-13
SP-17	Na₂SO₄	7.2	4360	2810	238	116	464	9	540	467	822	1.1	1072	51	5	-14
SP-18	Na₂SO₄	7.17	5230	3380	292	140	540	95	625	475	1195	1.7	1305	293	5	-18
SP-19	Na₂SO₄	7.14	3990	2570	190	125	470	35	580	114	1010	1.3	989	121	5	-18
SP-20	Na₂SO₄	7.19	3740	2465	172	115	452	38	564	108	993	2.4	903	130	5	-16
SP-21	NaCl	7.3	4000	2580	283	135	392	28	600	473	635	1.4	1262	108	4	-17
SP-22	Na₂SO₄	7.22	4320	2790	245	118	472	37	550	472	850	1.6	1097	55	5	-14
SP-23	Na₂SO₄	7.12	7190	4700	390	205	743	124	982	530	1650	1.7	1817	382	6	-28
SP-24	NaCl	7.17	3570	3370	230	116	360	7	575	460	595	1.7	1052	44	4	-13
SP-25	Na₂SO₄	7.2	4530	2960	210	82	610	60	560	415	922	1.8	862	192	7	-10
Max	7.61	9770	6340	430	270	850	160	1150	750	1891	2.5	2160	493	7	-2	
Min	7.12	443	300	30	10	36	0.6	81	16	72	2.1	116	9	1	-32	
Mean	7.22	3920	2594	207	108	407	35	516	343	805	1.6	965	124	4	-14	
Std	0.10	2390	1551	117	66	238	43.6	291	227	507	0.44	560	128	1.9	8.2	

Fig. 2. Piper diagram for springs water samples of the study area

5.1. Suitability of Water for Human Drinking

The suitability of water for drinking is of great importance to the human life, and the impact of water on health derives principally from the consumption of water containing pathogenic organisms or
toxic chemicals (WHO, 2012 in Awedh S.M. et al. 2016). WQI was evaluated by applying the Weighted Arithmetic Index method used by Brown et al. (1972). Parameters pH, TDS, Ca$^{2+}$, Mg$^{2+}$, Na$^+$, K$,^+$, Cl$^-$, SO$_4^{2-}$, NO$_3^-$, and TH used to calculate WQI for springs samples. All concentrations of the main positive and negative ions as well as values of pH and TDS for the samples SP-3, SP-6, SP-7, SP-8, SP-11 and SP-15 are compatible with the Iraqi, 2009 and WHO, 2012 human drinking standards, therefore (as that clear in Table 2) WQI values for these samples which represents 24% of all samples have been fallen in the grade A. samples SP-16 and SP-24 which represent 8% of all samples have been fallen in grade B. The groundwater of eight water samples mentioned above have been extracted from the Bai Hassan Formation. Samples SP-2, SP-5, SP-9, SP-12, SP-17 and SP-22 which represent 24% of all samples have been fallen in grade C. Springs water for this grade were extracted from both Bai Hassan and Injana formations together. Remaining water samples which represent 44% of all samples have been fallen in grade E, these water samples extracted from Fatha formation and quaternary deposits. According to WQI values the springs water in general not suitable for human drinking except samples mentioned above that fall in grades A and B.

Table 2. Classification of water based on WQI

WQI	Water Quality	Grade
0-25	Excellent	A
26-50	Good	B
51-75	Poor	C
76-100	Very Poor	D
Above 100	Unsuitable	E

5.2. Suitability of Water for Irrigation Purposes

The most important factors to increase the salinity of springs water are high percentage of evaporated water and the interaction with the formation materials. The parameters EC, SAR, and RSC indices were used to identify the suitability of springs water for irrigation purposes. Plant roots absorb very little salt from the soil solution and the evaporation process increases the salinity of the water, both processes result increasing a concentration of salts in the soil water. If irrigation applied so sparingly that leaching is Ineffectual, or if drainage is inadequate, the soil will become saline and the growth of crops will be inhibited or prevented. Wilcox (1955) classified waters according to EC to four classes (C1, C2, C3, and C4). The dividing points between classes are 250, 750, and 2250 micromhos/cm. According to Turgeon (2000), hazardus and limitation of these classes are as in Table 3.

Table 3. Classification of springs water based on EC values according to Wilcox (1955) and Turgeon (2000)

Groups	EC (μS/cm)	Hazard and Limitations
C1	< 250	Low hazard; no detrimental effects on plants, and no soil build up expected.
C2	250 - 750	Sensitive plants may show stress; moderate leaching prevents salt accumulation in soil.
C3	750 - 2250	Salinity will adversely affect most plants; requires selection of salt tolerant plants, careful irrigation, good drainage, and leaching.
C4	>2250	Generally unacceptable for irrigation, except for very salt tolerant plants, excellent drainage, frequent leaching, and intensive management.
According to electrical conductivity values springs samples SP-3, SP-6, SP-7, SP-8, SP-11, and SP-15 which represent 24 percent of all samples have been fallen in group C2 whereas remaining samples which represent 76 percent of all samples have been fallen in group C4; this indicate that the most of springs water unacceptable for irrigation except for very salt tolerant plants.

5.3. Residual Sodium Carbonate (RSC)

Water having high concentration of HCO$_3$ tends to precipitate Ca$^{2+}$ and Mg$^{2+}$ as CaCO$_3$ and MgCO$_3$ therefore the relative proportion of Na$^+$ in the water is increased in the form of sodium bicarbonate. According to Eaton (1950) and Richard (1954). Water is classified into three classes according to RSC as that clear in Table 4. When the RSC values are more than 2.5 meq/l the water are unsuitable for irrigation. RSC values for springs samples are less than 1.25 therefore the water is suitable for irrigation purposes according to this index.

RSC meq/l	Irrigation Class	Number of samples
< 1.25	Safe	All samples
1.25 – 2.50	Marginal	--
> 2.50	Unsuitable	--

5.4. Sodium Adsorption Ratio (SAR)

An elevated salinity causes a reduction in the osmotic activity of plants and affects the absorption of nutrients and water from the soil (Saleh et al., 1999 in Al-Harahshah et al., 2020). SAR is considered as an indicator of the ratio of sodium ion to calcium and magnesium ions in the sample. The high values of SAR are an indication of the degree of substitution of sodium in the water with calcium and magnesium in the soil. Richard (1954) classified the water according to SAR values to four classes as in Table 5. All springs samples have SAR values less than 10 therefore they considered an excellent for irrigation in respect to this index.

SAR	Symbol	Quality of water	Samples
<10	S1	Excellent	All samples
11 – 18	S2	Good	--
19 – 26	S3	Doubtful	--
>26	S4	Unsuitable	--

Richard diagram is a combination between the classification according to EC on X axis and the classification according to SAR on Y axis. This diagram divides water to sixteen classes for irrigation suitability. Springs water samples SP-3, SP-6, SP-7, SP-8, and SP-11 which represent 20% of all samples have been fallen in C2S1 class where they are good for irrigation. Sample SP-15 have been fallen in C3S1 class where it is admissible for irrigation. Samples SP-2, SP-4, SP-5, SP-9, SP-10, SP-12, SP-13, SP-16, SP-17, SP-18, SP-19, SP-20, SP-21, SP-22, SP-23, SP-24, and SP-25 which represent 68% of all samples have been fallen in C4S2 class where they are poor for irrigation. Samples SP-1 and SP-14 which represent 8% of all samples have been fallen in C4S3 class where they are very poor for irrigation (Table 6 and Fig.3).
Table 6. Separation of springs water samples on Richard Diagram classes

Water classes	Suitability for irrigation	Springs samples
C1S1	Excellent	--
C1S2	Good	--
C1S3	Admissible	--
C1S4	Poor	--
C2S1	Good	SP-3, SP-6, SP-7, SP-8, SP-11
C2S2	Good	--
C2S3	Marginal	--
C2S4	Admissible	--
C3S1	Admissible	SP-15
C3S2	Marginal	--
C3S3	Marginal	--
C3S4	Poor	--
C4S1	Poor	SP-5
C4S2	Poor	SP-2, SP-4, SP-9, SP-10, SP-12, SP-13, SP-16, SP-17, SP-18, SP-19, SP-20, SP-21, SP-22, SP-23, SP-24, SP-25
C4S3	Very Poor	SP-1, SP-14
C4S4	Very Poor	--

Fig. 3. Richard diagram of springs water samples for the study area

6. Conclusions

Qazania area is an important agricultural area in Diala governorate-east Iraq. Springs water in the area is extracted from four geological formations, Fatha, Ingana, Mukdadia, and Bai Hassan in addition
to quaternary deposits. Dominant cation is Na\(^+\) followed by Ca\(^{2+}\), Mg\(^{2+}\) then K\(^+\) whereas dominant anion SO\(_4^{2-}\) followed by Cl\(^-\), HCO\(_3^-\) then NO\(_3^-\). The dominant water type is NaSO\(_4\) followed by NaCl type. According to WQI values, water for only eight springs considered safe for human drinking in respect of chemical constituents. Only six samples are suitable for irrigation purposes.

Acknowledgements

The authors are very grateful to Mr. Basim K. M. Al-Mashadani the Head of Diala Branch of General Commission for Groundwater for providing the supplies for field work, also we are very greatful to Mrs. Nidal Hadi Head of the Geology Department in the General Commission for Groundwater. The authors are very grateful to the Editor in Chief Prof. Dr. Salih M. Awadh, the Secreatry of Journal Mr. Samir R. Hijab and the Technical Editors for their great efforts and valuable comments.

References

Al-Harahshah, S., Al-Raggad, M., Al-Shdaifat A. and Al-Wreikat M., 2020. Hydrochemical evaluation of the Azraq unconfined aquifer, Jordan., Iraqi Geological Journal 53 (2A), 1-18

Ali, M. E., Abdel-Hameed, M., 2018. The potential of nitrate removal from groundwater of Bani-Suif west area, Egypt using nanocomposite reverse osmosis membranes. Journal of Basic and Environmental Sciences 5, 230-239.

Awadh, S. M., Al Mimar, H. S., Yaseen, Z. M., 2020. Groundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of Iraq. Environment, Development and Sustainability, 1-21

Awadh, S. M., Al-Kilabi, J. A. Abdulhussein, F. M., 2016, Assessment of groundwater quality using water quality index in Al-Hawija area, Northern Iraq. Iraqi Geological Journal 39-49(1), 67-76.

Awadh, S. M., Abdulhussein, F. M., Al-Kilabi, J. A., 2016. Hydrogeochemical processes and water-rock interaction of groundwater in Al-Dammam aquifer at Bahr al-Najaf, central., Iraqi Bulletin of Geology and Mining 12(1), 1-15.

Barwary, A. M., 1991. The Geology of Mandalai Quadrangle Sheet NI-38-11 (GM-21) scale 1:250 000.

Brown, R., Mccleiland, N., Deiniger, R., Oconnor, M., 1972. Water quality index-crossing the physical barrier. In: Proceedings of international conference on water pollution research, Jerusalem, 787-797.

Chilton, P. J., Lawrence, A. R. and Barker, J. A., 1994. Pesticides in groundwater: some preliminary observations on behaviour and transport in tropical environments. British Geological Survey, Maclean Building, Wallingford, Oxfordshire, UK.

Dikeogu, T. C., Okeke, O. C., Ogbehniulu, L. O., Ogbenna, P. C., 2018. Major ion chemistry and hydrochemical processes of Ngeneagu spring water at Akpugoze Eji River, Enugu, southeastern Nigeria., International Journal of Advanced Academic Research Sciences, Technology & Engineering, 4 (2).

Eaton, F. M., 1950. Significance of carbonate irrigation water. Soils Science 69(2),123-133.

Fakhre, H. N. and Abdulhussein, F. M., 2020. hydrochemical assessment of groundwater and some springs in Qazaniyah Area, Diyala Province, East of Iraq., Iraqi Journal of Science 61(9), 2277-2292.

Hem, J. D., 1991. Study and interpretation of the chemical characteristics of natural water. USGS Water Supply, 2254, 263p.

Al-Sudani, H.I., 2018. Hydrochemical evaluation and utilization of groundwater in Khanaqin Area, Diyala Governorate, East of Iraq., Iraqi Journal of Science 59(4C), 2279-2288.

Langguth, H. R., 1966. Die Grundwasser verhältnisse im Bereich des Velberter Sattels, Rheinisches Schiefergebirge. Der Minister für Ernährung, Landwirtschaft und Forsten, NRW, Düsseldorf. (unpublished).

Niaz, A., Khan, M. R., Ijaz, U., Yasin, M., Hameed, F., 2018. Determination of groundwater potential by using geoelectrical method and petrographic analysis in Rawalakot and adjacent areas of Azad Kashmir, sub-Himalayas, Pakistan. Arabian Journal of Geosciences 11(16), 468.

Parsons, 1955. Groundwater Resources of Iraq, Volume 1, Khanaqin-Jassan area.

120
Piper, A. M., 1944. A graphical procedure in the geochemical interpretation of water analysis. Transactions American Geophysical union. 25, 914-928.

Richard, L. A., 1954. Diagnosis and Improvement of Saline Alkali Soils: Agriculture, Handbook. US Department of Agriculture, Washington, D. C., 160: 60

Saleh, A., AL-Ruwaish, F., and Shehata, M., 1999. Hydrogeochemical processes operating within the main aquifers of Kuwait. Journal Arid Environment, 42,195-209.

Scanlon, B., Keese, K., Flint, A., Flint, L., Gaye, C., Edmunds, W. Simmers, 2006. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Process 20, 3335-3370. Department of Agriculture, Washington, 969.

Shiklomanov, I. A., 1996. Assessment of water resources and availability in the world. Scientific and Technical Report. St. Petersburg, Russia, State Hydrological Institute. 127pp.

Sissakian, V. K., Capigian, A. O., Al-Ansari, N., and Knutsson, S., 2017. Characters and types of alluvial fans in the middle and eastern parts of Iraq., Journal of Earth Sciences and Geotechnical Engineering 7(3), 115-140

Turgeon, A. J., 2000. Irrigation Water Quality, College of Agricultural sciences, Pennsylvania State University, USA.

WHO, World Health Organization, 2012. Rapid Assessment of Drinking Water Quality, Handbook for Implementation, 138pp.

Wilcox, L. V., 1955. Classification and Use of Irrigation Waters., U. S. Department of Agriculture.