Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries

Marie Pagès*1, Yannick Chaval1, Vincent Herbreteau2,3, Surachit Waengsothorn4, Jean-François Cosson1, Jean-Pierre Hugot5, Serge Morand6,7 and Johan Michaux1,8

Abstract

Background: Rodents are recognized as hosts for at least 60 zoonotic diseases and may represent a serious threat for human health. In the context of global environmental changes and increasing mobility of humans and animals, contacts between pathogens and potential animal hosts and vectors are modified, amplifying the risk of disease emergence. An accurate identification of each rodent at a specific level is needed in order to understand their implications in the transmission of diseases. Among the Muridae, the Rattini tribe encompasses 167 species inhabiting South East Asia, a hotspot of both biodiversity and emerging and re-emerging diseases. The region faces growing economical development that affects habitats, biodiversity and health. Rat species have been demonstrated as significant hosts of pathogens but are still difficult to recognize at a specific level using morphological criteria. DNA-barcoding methods appear as accurate tools for rat species identification but their use is hampered by the need of reliable identification of reference specimens. In this study, we explore and highlight the limits of the current taxonomy of the Rattini tribe.

Results: We used the DNA sequence information itself as the primary information source to establish group membership and estimate putative species boundaries. We sequenced two mitochondrial and one nuclear genes from 122 rat samples to perform phylogenetic reconstructions. The method of Pons and colleagues (2006) that determines, with no prior expectations, the locations of ancestral nodes defining putative species was then applied to our dataset. To give an appropriate name to each cluster recognized as a putative species, we reviewed information from the literature and obtained sequences from a museum holotype specimen following the ancient DNA criteria.

Conclusions: Using a recently developed methodology, this study succeeds in refining the taxonomy of one of the most difficult groups of mammals. Most of the species expected within the area were retrieved but new putative species limits were also indicated, in particular within Berylmys and Rattus genera, where future taxonomic studies should be directed. Our study lays the foundations to better investigate rodent-born diseases in South East Asia and illustrates the relevance of evolutionary studies for health and medical sciences.

Background

Among mammals, rodents are recognized as major hosts and vectors of parasites and pathogens, some of them causing important zoonoses and representing a serious threat for human health [1-5]. Most epidemiological studies have focused on the most common rodents with emphasis on commensal species such as the laboratory rat, Rattus norvegicus. A common assumption is that the rodent species responsible for disease transmission are those living close to humans, but since wild species distant from human settlements have been proven to play a key role in maintaining, spreading and transmitting pathogens and parasites (e.g. [4]), this point of view is being questioned. Specific diversity within the host community has also been shown to play an important function in the maintenance of a disease and in the probability of its transmission to humans [6,7]. Consequently,
researchers are now focusing not on a single particular host species but on the whole host community and are endeavouring to understand the role of each rodent species in the context of the entire host-pathogen community.

Today this knowledge is more urgent than ever since biodiversity in many areas is being altered rapidly by the ongoing global change. Because of anthropogenic disturbances, the host-pathogen interactions are being dramatically modified leading to new and unexpected disease risks and the emergence and/or re-emergence of infectious diseases [6-10]. To be able to predict and to anticipate some of these risks, one should be able in the case of rodent host communities, to identify first and foremost each rodent at a specific level, a real challenge when considering that rodents represent 40% of mammalian species [11] including many cryptic species, and that new genera and species are yearly described ([e.g. Laonastes aenigmamus], [12]; Saxatilomys paulinae, [13]; Mayermys gernani, [14]; Tonkinomys daovantieni, [15]).

Among Muridae rodents, the Rattini tribe encompasses 35 genera corresponding to 167 rat species [16] following the tribal arrangement of the Murinae proposed by Lecompte et al. [17]. Nearly all representatives of this tribe inhabit South East Asia, a major hotspot of biodiversity [18] faced with a runaway economic growth damaging habitats, biodiversity and health but also a hotspot of emerging and re-emerging diseases [19,20]. If the partition of the tribe among five divisions (i.e. Crunomys, Dacnomys, Maxomys, Micromys and Rattus divisions) [16,17] is widely accepted, its taxonomy remains however largely untested phylogenetically and its delimitations are not yet secured. Chirodomys, Vandeleuria, Hapalomys, Haeromys and Vernaya genera were included in the Micromys division by Musser and Carleton [16]. As the Eurasian harvest mouse, Micromys was proven to belong to the Rattini tribe ([17,21]), the whole Micromys division should belong to the Rattini tribe if Musser and Carleton’s assumption is right. However, some of these genera (i.e. Chirodomys and Vandeleuria) were recently shown to be unaffiliated to Micromys according to molecular evidences [21], while putative representatives of the Rattini tribe (i.e. Tonkinomys daovantieni, Saxatilomys paulinae, Srilankanmys sp., Hapalomys sp., Haeromys sp., Vernaya sp.) have not been investigated using molecular data and are currently considered as Murinae incertae sedis [17]. Numerous rat species have been demonstrated or postulated as major hosts of pathogens (e.g. Hantaviruses described from bandicoot rat, Bandicota indica in Thailand, [22,23]; Bandicota indica, B. savilei, Berylmys berdmorei, Niviventer sp., and Rattus sp. serologically tested positive for Rickettsia tsutsugamushi, the agent responsible for scrub typhus [24]; etc.). Although easily identified at a generic level by an expert, Asian rats are often difficult to discriminate at a specific level using morphological or cytological criteria. The wide range of intra-specific morphological variation makes morphological criteria unsuitable for accurate rat species identification and has led to an over-description of species and to a confusing taxonomy, hampered by an overabundance of synonyms. It is particularly true concerning the Rattus genus (e.g. 41 synonyms for R. norvegicus, 83 for R. rattus, etc. [16] and see also [25]) that consists of a heterogeneous accumulation of species and of several monophyletic clusters that may or may not prove to be grouped in a single genus [16]. This polyphyletic pattern is highlighted by the six species groups proposed by Musser and Carleton [16] (i.e. the Rattus rattus, Rattus exulans, Rattus norvegicus, Rattus fuscipes, Rattus leucopus and Rattus xanthurus species groups) and a seventh assemblage containing unaffiliated species (i.e. the Rattus species group unresolved) for which phylogenetic affinities are uncertain; some representatives will eventually be removed from the genus. Even karyotypic criteria, which previously claimed to be species diagnostic tools, were recently revealed to be unsuitable to discriminate between Asian rat species [26]. DNA-based methods, however, appear to be promising tools for easy and accurate rat species-specific identifications [26].

Robins et al. [25] were the first to attempt to identify Rattus species using mitochondrial DNA sequences mostly obtained from museum tissue samples. Nevertheless, their conclusions based on DNA-barcoding and tree based methods were limited because these methods need reliably identified specimens as reference. Specimens and tissues offered by museums to scientists are collected by many different people and it seems likely, given the extent of some misidentifications, that rat species identification is not an easy task even for mammal specialists. Moreover, the taxonomy of the tribe Rattini is complex and changing and often different to that in use when samples were first described and listed in museums [25].

Level of variation in cytochrome b sequences was also proposed as a reference point in making decisions concerning species-level distinctions [27]. Based on the analysis of 4 genera of rodents, Bradley and Baker [27] suggested that genetic distance values lesser than 2% were indicative of intraspecific variation and values higher than 11% of species recognition. But how to conclude between 2 and 11% ? The DNA-based species delimitation approach proposed by Pons et al. [28] relies on DNA sequence information itself as the primary information source for establishing group membership and defining putative species and does not require defining entities as priors. This method was shown to be useful for identifying meaningful entities among groups whose current taxonomy is incomplete (e.g. tiger beetles of the genus Rivacindela, [28]) or uncertain (e.g. aphids of the
genus *Brachycaudus*) and has already been successfully applied when species are difficult to conceptualize (e.g. bacteria [29] or for asexual animals, [30,31]). Using a likelihood framework, this new procedure detects the point of transition in the rate of lineage branching of a tree from interspecific long branches to intraspecific short burgeoning branching and identifies clusters of specimens corresponding to putative species.

In our study, we used molecular data to test the limits of the current taxonomy of the Rattini tribe. We aimed at identifying where species boundaries are unclear and where further investigations need to be carried out to provide a more rigorous systematic framework for epidemiological surveys. As molecular data are useful to detect and distinguish morphologically similar species, this study investigated the existence of putative cryptic species among the Rattini tribe (i.e. two or more species that are classified as a single nominal species because they are at least superficially morphologically indistinguishable [32]). To these aims, we first sequenced two mitochondrial and one nuclear genes from rat specimens coming from Southeast Asia (Thailand, Cambodia and Lao People’s Democratic Republic) to perform phylogenetic reconstructions. Then, as morphological characters are often misleading, we applied the method developed by Pons et al. [28] that determines, with no prior expectations, the locations of ancestral nodes to define putative species. Finally, we endeavoured to give a name to each cluster recognized as a putative species using information from the literature and also sequences obtained from a museum holotype specimen following all the ancient DNA guidelines.

Methods

1. Sampling

116 specimens of Rattini were selected among the 3,000 trapped by our team in the fields mostly in Thailand and punctually in Cambodia and in Lao PDR. Specimens selected were chosen in order to maximise the number of species and geographic locations analysed. Field specimen identifications and locality information are listed in Table 1 and indicated in Figure 1. Field identifications were made based on morphological criteria according to [11,33-35]. Based on morphological and cytological evidences, no specimen was identified by us as a representative of the cosmopolitan *Rattus rattus* species. Considering their preponderant place in epidemiological surveys, 4 worldwide black rat specimens (identified in [36]) were added to the sample set. To provide an appropriate outgroup, we included specimens of the Eurasian harvest mouse, *Micromys* belonging to the Rattini tribe and previously recognized as the sister lineage to the *Rattus* group sensu lato of Verneau et al., [37,38,17,21]. In total, our taxa sampling consisted of 122 rats.

For nomenclatural prospects, a small piece of skin from the holotype specimen of Leopoldamys neilli was also analysed in this study. The type specimen is the male n°54-4330 from the Centre for Thai National Reference collections, collected by W.A. Neill in 1973 at Wat Tham Prapothisat, in the Saraburi Province (Kaengkhoi District, Thailand, 14°35’N X 101°8’E) (see [33] for further details).

2. Sequence acquisition

Three genes proven valuable for rodent systematics were considered for the phylogenetic analyses [39,40,25,17]. We targeted two mitochondrial markers, the cytochrome *b* (*cytb*) and the cytochrome *c* oxydase I (*COI*) genes and the first exon of the nuclear gene encoding the interphotoreceptor retinoid binding protein (*IRBP*).

To avoid contamination, pre-amplification procedures and post-amplification analyses were performed in independent rooms in the laboratory. DNA was extracted from tissue with DNeasy Tissue Kit (Qiagen) in accordance with the manufacturer’s instructions. Primer sets used to amplify the *cytb*, *COI* and *IRBP* genes are listed in Table 2. All amplifications were carried out in 25 μL reactions containing about 30 ng of extracted DNA, 0.2 mg/mL BSA (Roche, 1 mg/mL), 300 μM of each dNTP, 0.2 μM of each primer, 1 unit of Taq polymerase (Qiagen), 2.5 μL of 10X buffer, 0.5 mM of extra MgCl2. Cycling conditions were as follows: one activation step at 94°C for 4 min followed by 40 cycles of denaturation at 94°C for 30 s, annealing at 48°C-58°C depending on the primers (Table 2) for 30 s, elongation at 72°C for 45 s-1’30 min depending on the length of the target (1 minute per kb), and a final extension at 72°C for 10 min. PCR products were sequenced by Macrogen (Seoul, South Korea).

3. Phylogenetic analyses

Sequences were aligned by eye using SEAVIEW [41] and translated into peptide sequences using the Transeq EMBOSS tool [42] to exclude putative NUMt copies and to ensure sequence orthology. As the risk of homoplasy by convergence and reversal is reduced by considering a large number of characters [43], we combined the three genes into a single dataset using the DAMBE software [44]. Thus, a total of 3,068 bp were considered in the subsequent phylogenetic analyses.

Base composition bias was evaluated using PAUP* v4.0b10 [45], and a chi-square test was performed to check for taxa with deviations of nucleotide composition. Substitutional saturation was assessed via saturation plots. Using DAMBE [44], the absolute number of transitions was plotted against MLComposite TN93 (Tamura-Nei Model) distance for all pairwise comparisons of taxa. For the three genes, the curve did not reach a plateau when subtracting the third codon position, but did reach
Table 1: Samples used in this study.

Sample information	Field Identification	Locality	Voucher localisation	Phylogenetic species	GenBank Accession Number		
Laboratory sample number	Rattus rattus	Madagascar	R1		HM217368	HM217495	HM217603
ratcostT820	Rattus rattus	India	R1		HM217367	HM217498	HM217606
ratcosR12	Rattus rattus	Oman	R1		HM217366	HM217496	HM217604
ratcostTE4264	Rattus rattus	Tanzania	R1		HM217365	HM217497	HM217605
R4003	Rattus tanezumi	Kalasin (Thailand)	MahaU	R2	HM217436	HM217563	HM217673
R2953	Rattus tanezumi	Kanchanaburi (Thailand)	R7		HM217396	HM217525	HM217634
R2996	Rattus tanezumi	Kanchanaburi (Thailand)	R2		HM217398	HM217529	HM217636
R3122	Rattus tanezumi	Kanchanaburi (Thailand)	R2		HM217407	HM217537	HM217645
R3214	Rattus tanezumi	Kanchanaburi (Thailand)	R2		HM217410	HM217540	HM217648
R3573	Rattus tanezumi	Nakhon Pathom (Thailand)	KU	R2	HM217430	HM217558	HM217667
R4016	Rattus tanezumi	Phrae (Thailand)	CBGP	R2	HM217438	HM217565	HM217675
R4424	Rattus tanezumi	Phrae (Thailand)	MahaU	R2	HM217456	HM217582	HM217693
R4436	Rattus tanezumi	Phrae (Thailand)	MahaU	R2	HM217457	HM217583	HM217694
R5294	Rattus tanezumi	Nan (Thailand)	MahaU	R2	HM217466	HM217592	HM217704
R5296	Rattus tanezumi	Nan (Thailand)	CBGP	R2	HM217467	HM217593	HM217705
L0100	Rattus tanezumi	Luang Prabang (LPDR)	MahaU	R2	HM217475	HM217489	HM217712
L0194	Rattus tanezumi	Luang Prabang (LPDR)	MahaU	R2	HM217480	HM217494	HM217717
R3029	Rattus tanezumi	Bangkok (Thailand)	R3		HM217399	HM217530	HM217637
R1843	Rattus tanezumi	Krabi (Thailand)	R3		HM217393	HM217524	HM217631
R1147	Rattus tanezumi	Nakhon Ratchasima (Thailand)	R3		HM217384	HM217515	HM217622
R1016	Rattus tanezumi	Nakhon Ratchasima (Thailand)	R3		HM217382	HM217513	HM217620
R1818	Rattus tanezumi	Prachinburi (Thailand)	R3		HM217389	HM217520	HM217627
R2794	Rattus tanezumi	Ratchaburi (Thailand)	R3		HM217394	HM217526	HM217632
R0169	Rattus tanezumi	Ratchaburi (Thailand)	R3		HM217372	HM217503	HM217610
CB0028	Rattus tanezumi	Veal Renh (Cambodia)	MahaU	R3	HM217363	HM217485	HM217601
R1833	Rattus tanezumi	Nakhon Sri Thammarat (Thailand)	R5		HM217391	HM217522	HM217629
Table 1: Samples used in this study. (Continued)

Accession	Species	Location (Country)	Collection	GenBank Accession Numbers			
R4402	*Rattus losea*	Loei (Thailand)	MahaU	HM217454, HM217581, HM217691			
R3484	*Rattus losea*	Loei (Thailand)	R4	HM217421, HM217560, HM217659			
R4230	*Rattus losea*	Loei (Thailand)	CBGP	HM217446, HM217573, HM217683			
R1015	*Rattus losea*	Nakhon Ratchasima (Thailand)	R4	HM217381, HM217512, HM217619			
R4203	*Rattus losea*	Phrae (Thailand)	CBGP	HM217443, HM217570, HM217680			
R3510	*Rattus losea*	Phrae (Thailand)	R4	HM217423, HM217552, HM217661			
R0237	*Rattus losea*	Ratchaburi (Thailand)	R4	HM217374, HM217505, HM217612			
R0238	*Rattus losea*	Ratchaburi (Thailand)	R4	HM217375, HM217506, HM217613			
R1805	*Rattus exulans*	Bangkok (Thailand)	R8	HM217388, HM217519, HM217626			
R4004	*Rattus exulans*	Kalasin (Thailand)	MahaU	HM217437, HM217564, HM217674			
R3224	*Rattus exulans*	Kanchanaburi (Thailand)	R8	HM217411, HM217541, HM217649			
R4103	*Rattus exulans*	Loei (Thailand)	MahaU	HM217440, HM217567, HM217677			
R1055	*Rattus exulans*	Nakhon Ratchasima (Thailand)	R8	HM217383, HM217514, HM217621			
R1836	*Rattus exulans*	Nakhon Sri Thammarat (Thailand)	R8	HM217392, HM217523, HM217630			
R4140	*Rattus exulans*	Phrae (Thailand)	MahaU	HM217441, HM217568, HM217678			
R0284	*Rattus exulans*	Ratchaburi (Thailand)	R8	HM217377, HM217508, HM217615			
R2795	*Rattus exulans*	Ratchaburi (Thailand)	R8	HM217395, HM217527, HM217633			
R3520	*Rattus exulans*	Sakhon Nakhon (Thailand)	MahiU	HM217424, HM217553, HM217662			
R3563	*Rattus exulans*	Surat Thani (Thailand)	KU	HM217428, HM217552, HM217666			
R3549	*Rattus exulans*	Nan (Thailand)	CBGP	HM217470, HM217595, HM217703			
R5447	*Rattus exulans*	Nan (Thailand)	CBGP	HM217472, HM217596, HM217708			
CB0001	*Rattus argentiventer*	Veal Renh (Cambodia)	MahaU	HM217362, HM217484, HM217600			
CB0104	*Rattus argentiventer*	Veal Renh (Cambodia)	MahaU	HM217364, HM217486, HM217602			
R3087	*Rattus andamanensis*	Kanchanaburi (Thailand)	R7	HM217403, HM217533, HM217641			
R4377	*Rattus andamanensis*	Loei (Thailand)	MahaU	HM217452, HM217579, HM217689			
R3548	*Rattus andamanensis*	Phrae (Thailand)	KU	HM217426, HM217555, HM217664			
R4481	*Rattus andamanensis*	Phrae (Thailand)	MahaU	HM217458, HM217584, HM217695			
R0130	*Rattus andamanensis*	Ratchaburi (Thailand)	R2	HM217371, HM217502, HM217608			
R2976	*Rattus andamanensis*	Nakhon Pathom (Thailand)	R3	HM217397, HM217528, HM217635			
Sample ID	Species	Location	Collection Site	Sequence	Accession Numbers		
-----------	------------------	---------------------------------	-----------------	----------	-------------------		
R3565	Rattus norvegicus	Nakhon Pathom (Thailand)	MahiU	R9	HM217429		
R0223	Rattus norvegicus	Ratchaburi (Thailand)	R9	HM217373	HM217504	HM217611	
R0115	Rattus norvegicus	Ratchaburi (Thailand)	R9	HM217370	HM217501	HM217609	
RNO 032	Rattus norvegicus	Cambodia	R9	HM217481	HM217499		
L0180	Rattus nitidus	Luang Prabang (LPDR)	MahaU	R10	HM217478	HM217492	HM217715
L0192	Rattus nitidus	Luang Prabang (LPDR)	MahaU	R10	HM217479	HM217493	HM217716
R4188	Rattus sp.	Phrae (Thailand)	CBGP	R3	HM217442	HM217569	HM217679
L0010	Rattus sp.	Luang Prabang (LPDR)	MahaU	R10	HM217474	HM217488	HM217711
R0856	Bandicota indica	Nakhon Pathom (Thailand)	MahaU	B1	HM217435		HM217617
R4001	Bandicota indica	Kalasin (Thailand)	MahaU	B1	HM217408	HM217538	HM217646
R3189	Bandicota indica	Kanchanaburi (Thailand)	B1	HM217435		HM217711	
R4265	Bandicota indica	Loei (Thailand)	CBGP	B1	HM217447	HM217574	HM217684
R1006	Bandicota indica	Nakhon Ratchasima (Thailand)	B1	HM217380	HM217511	HM217618	
R3521	Bandicota indica	Phrae (Thailand)	KU	B1	HM217425	HM217554	HM217663
R0269	Bandicota indica	Ratchaburi (Thailand)	B1	HM217376	HM217507	HM217614	
R3034	Bandicota indica	Ratchaburi (Thailand)	B1	HM217378	HM217509	HM217616	
R5313	Bandicota indica	Nan (Thailand)	MahaU	B1	HM217469	HM217594	HM217706
L0142	Bandicota indica	Luang Prabang (LPDR)	MahaU	B1	HM217476	HM217490	HM217713
R4408	Bandicota indica	Loei (Thailand)	CBGP	B2	HM217455		HM217692
R1284	Bandicota savilei	Nakhon Ratchasima (Thailand)	B1	HM217386	HM217517	HM217624	
R1822	Bandicota savilei	Nakhon Pathom (Thailand)	B1	HM217390	HM217521	HM217628	
R1797	Bandicota savilei	Kanchanaburi (Thailand)	B2	HM217387	HM217518	HM217625	
R1191	Bandicota savilei	Nakhon Ratchasima (Thailand)	B2	HM217385	HM217516	HM217623	
R3550	Bandicota savilei	Phrae (Thailand)	KU	B2	HM217427	HM217556	HM217665
R0093	Bandicota sp.	Ratchaburi (Thailand)	Be1	HM217369	HM217500	HM217607	
R3050	Berylmys berdmorei	Kanchanaburi (Thailand)	Be1	HM217401	HM217532	HM217639	
R4266	Berylmys berdmorei	Loei (Thailand)	CBGP	Be1	HM217448	HM217575	HM217685
R3441	Berylmys berdmorei	Loei (Thailand)	MahiU	Be1	HM217418	HM217547	HM217656
Table 1: Samples used in this study. (Continued)

Accession	Species	Location (Thailand)	Collection	GenBank Accession	GenBank Accession	GenBank Accession
L0006	Berylmys bermorei	Luang Prabang (LPDR)	MahaU Be1	HM217473	HM217487	HM217710
R3618	Berylmys bermorei	Phrae (Thailand)	KU Be1	HM217432	HM217560	HM217669
R3603	Berylmys bermorei	Phrae (Thailand)	KU Be1	HM217431	HM217559	HM217668
R4400	Berylmys bowersi	Loei (Thailand)	MahaU Be2, a	HM217453	HM217580	HM217690
R3425	Berylmys bowersi	Loei (Thailand)	KU Be2, a	HM217415	HM217544	HM217653
R3415	Berylmys bowersi	Loei (Thailand)	KU Be2, a	HM217413	HM217542	HM217651
R5410	Berylmys bowersi	Nan (Thailand)	MahaU Be2, a	HM217471	-	HM217707
L0151	Berylmys bowersi	Luang Prabang (LPDR)	MahaU Be2, a	HM217477	HM217491	HM217714
R3268	Berylmys bowersi	Kanchanaburi (Thailand)	KU Be2, b	HM217412	HM217597	HM217650
R4098	Leopoldamys sabanus	Loei (Thailand)	CBGP L1	HM217439	HM217566	HM217676
R4222	Leopoldamys sabanus	Loei (Thailand)	MahaU L1	HM217444	HM217571	HM217681
R4296	Leopoldamys sabanus	Phrae (Thailand)	MahaU L1	HM217450	HM217577	HM217687
R4276	Leopoldamys sabanus	Phrae (Thailand)	CBGP L1	HM217449	HM217576	HM217686
R4370	Leopoldamys sabanus	Phrae (Thailand)	CBGP L1	HM217451	HM217578	HM217688
R3111	Leopoldamys sabanus	Kanchanaburi (Thailand)	L3	HM217404	HM217534	HM217642
R3033	Leopoldamys sabanus	Kanchanaburi (Thailand)	L3	HM217400	HM217531	HM217638
R4517	Leopoldamys neilli	Loei (Thailand)	MahaU L2	HM217462	HM217588	HM217699
R4527	Leopoldamys neilli	Loei (Thailand)	MahaU L2	HM217463	HM217590	HM217701
R4486	Leopoldamys neilli	Phrae (Thailand)	MahaU L2	HM217460	HM217586	HM217697
R4485	Leopoldamys neilli	Phrae (Thailand)	MahaU L2	HM217459	HM217585	HM217696
R3419	Leopoldamys sp.	Loei (Thailand)	KU L1	HM217414	HM217543	HM217652
R4723	Niviventer fulvescens	Loei (Thailand)	MahaU N1	HM217465	HM217591	HM217702
R3212	Niviventer fulvescens	Kanchanaburi (Thailand)	KU N2	HM217409	HM217539	HM217647
R4525	Niviventer sp.	Loei (Thailand)	MahaU N1	HM217464	HM217589	HM217700
R3427	Niviventer sp.	Loei (Thailand)	KU N1	HM217416	HM217545	HM217654
R3429	Niviventer sp.	Loei (Thailand)	KU N1	HM217417	HM217546	HM217655
Field identifications were achieved based on morphological criteria according to [33-35] and [11].

"Phylogenetic species" relies on the DNA-based species delimitation method (see also Figure 3).

Mismatches between field identifications and phylogenetic species are highlighted in bold and reflect the difficulty to identify rat species even for experts.

"Nu deng*" was assigned to animal identified but impossible to assigned to a particular species; in Thai language, "red rat".

"-" corresponds to missing data in the phylogenetic analyses.

Voucher locations:

CBGP: Centre de Biologie et de Gestion des Populations, Montpellier, France - curator of the collections, Y. Chaval, chaval@supagro.inra.fr

/KU: Kasetsart University, Bangkok, Thailand - curator: W. Rerkamnuaychoke/MahiU: Mahidol University, Nakhon Pathom, Thailand - curator: V. Herbreteau, vincent.herbreteau@cirad.fr

/MahaU: Mahasarakham University, Mahasarakham, Thailand - curator: S. Soonchan

See Figure 1 for additional information about sample locations.
a plateau when considering the entire sequences (data not shown). To discard fast evolving transitions and improve inferences without drastically compromising the resolution, we decided to recode the third codon position nucleotides to two state categories, R (purine) and Y (pyrimidine), (RY-coding strategy; [46]).

Phylogenetic trees were reconstructed using two probabilistic approaches: maximum likelihood (ML) and Bayesian inferences (BI). The appropriate model of evolution was first determined for each gene and for the concatenated dataset (with and without RY-coding) using corrected Akaike information criterion (AICc) and MrAIC [47]. The HKY+I+Γ model was selected for both the cytb and COI genes while the GTR+Γ was selected for the IRBP gene and the combined dataset (with and without RY-coding). ML analyses were performed with PhyML-v2.4.4 [48]. For each analysis, the transition/transversion ratio, the proportion of invariable sites as well as the gamma distribution parameter (if necessary) were estimated and the starting tree was determined by BioNJ analysis of the dataset (default settings). Using optimization options, 500 bootstrap (Bp) replicates were performed. PhyML analyses were first run independently on each locus and then on the combined dataset (with and without RY-coding). Taking into account that PhyML does not allow data-partitioning, partitioned ML analysis was also performed using RAxML 7.0.4 [49]. As the model choice is limited in RAxML, the general time-reversible (GTR) + Γ model (option -m GTRGAMMA) was selected for the three partitions (option -q multipModelFileName), and individual α-shape parameters, GTR-rates and base frequencies were estimated and optimized for each partition. Robustness of the tree was assessed using the rapid bootstrap procedure (option -f a) with 100 replications (option -f numberOfRuns) [50].

Bayesian analyses were performed using MrBayes v3.1 [51]. Four independent runs of 5,000,000 generations each were performed applying appropriate independent models of evolution to each gene. A burn-in period of 1,000,000 generations was determined graphically using Tracer1.2 [52]. For each dataset, all runs gave similar tree topologies and posterior probability (pp) values.

Alternative topologies were finally tested for significance using the Shimodaira-Hasegawa test (SH test) [53] (RELL option, 1000 Bp replicates) in PAUP* v4.0.b10 [45].

4. Species delimitation: DNA-based species delimitation method

We used the DNA-based approach proposed by Pons et al. [28]. Using a likelihood framework, this new procedure detects the switch in the rate of lineage branching of a tree from interspecific long branches to intraspecific short budding branching and identifies clusters of specimens corresponding to putative species. Two models are implemented to account for the branching process of the entire tree. Under the null model, the whole sample derives from a single population obeying a coalescent process. The alternative model, called general mixed Yule coalescent (GMYC) model combines equations that separately describe branching within populations (coalescent process) and branching between species (a Yule model including speciation and extinction rates). Under the GMYC model, a threshold (T) is optimized such that nodes before the threshold are considered as species diversification events, whereas branches crossing the threshold define clusters following a coalescent process. The standard likelihood ratio test (LRT) is used to assess whether the alternative model provides a better fit than the null model. If the GMYC model is favoured over the null model, the T parameter of the maximum likelihood solution allows the number of species to be estimated. This test was achieved using the R code provided by T. G. Barracough. This latest version outputs the estimates of the number of species, of the threshold time and their 95% confidence limits (i.e. solutions with 2-log likelihood units of the maximum).

Because a pre-requisite of the method is an ultrametric tree, we used the relaxed Bayesian dating method imple-
mented in Multidivtime [54] to convert our optimal phylogram tree (estimated from the Bayesian analysis of the combined dataset) in a rooted additive tree with terminal nodes equally distant to the root. In this aim, we followed the documentation files written by Rutschmann [55] and the procedure detailed in [29]. The settings for the Markov chain Monte Carlo analyses were slightly modified (200,000 cycles in which the Markov chain was sampled 20,000 times every 10th cycle following a burnin period of 100,000 cycles). No fossil is described to calibrate our Rattini phylogeny. As our aim was simply to obtain an ultrametric tree, prior ages to lineages were arbitrarily assigned to 1 (rttm = 1; rttmsd = 0). The mean of the prior distribution for the rate of molecular evolution at the ingroup root node (rtrate) was computed as the mean of the median of the amount of evolution for the different tips of the three independent gene trees (rtrate = 0.735; rtratesd = 0.367).

5. Species identification

5.1. Within the Rattus genus

Rattus cytb (663 bp) and COI (655 bp) sequences obtained by Robins et al. [25] were extracted from GenBank and added to our mitochondrial (mt) dataset (see Table 3). As our study focuses on rodents from the Indochinese region, sequences of species belonging to the Rattus fuscipes species group (i.e. native Australian species) and to the Rattus leucopus species group (i.e. species indigenous to New Guinea and adjacent archipelagos) were not incorporated in this dataset. Two other unpublished cytb sequences of R. argentiventer and R. sikkimensis (synonym of R. andamanensis) provided by O. Verneau and F. Catzeflis were also included in the subsequent analysis. Sequences of a single representative of Berylmys, Nivivent, Leopoldamys, Maxomys and Micromys were used to root our mitochondrial phylogeny. Therefore, the mt dataset included 129 sequences corresponding to 1,318 bp of mtDNA. Partitioned ML analysis was performed using RAxML 7.0.4 [49] and the same options as before.

5.2. Ancient DNA analysis of a holotype specimen

For species assignment, we tested the relevance of DNA sequences obtained from a holotype specimen. As museum samples contain tiny amounts of poorly preserved DNA, we selected a 85 bp fragment of the cytb gene, corresponding to positions from 666 to 750 of the gene sequence of Rattus norvegicus (NCBI accession number [GenBank NC_001665]). This fragment was chosen for the following reasons: i) it corresponds to an highly variable region of the gene that allows the discrimination of most vertebrate species including the closest related ones [56] ii) its short length is suited for the PCR amplification of degraded DNA [56] and iii) it has proved valuable for species assignment based on degraded DNA extracted from archaeological samples [57].

Table 2: Primers and PCR cycling conditions used in this study.

Designation	Gene Name	Nucleotide sequence 5’ T 3’	Annealing Temperature	Fragment Length (bp)	Original Publication
Cytb	cytochrome b	ACCAATGACATGAAAAATCATCGTT TCTCCATTTCGTTACAAGAC	50°C	1213	[69]
L14723	Cytochrome c oxidase I	CCTACTCRGCCATTTTACCTATG ACTTCTGGGTGTCCAAAGAATCA	48°C	750	[25]
H15915	COI	ATTGAGCAGGGCTATGAAGAG TAGGGCTTGCTGCGAGGCGG	58°C	785	this study
BatLS310	IRBP1	ATCCCCTATGTCATCTCCTACCTATG	52°C	892	[70]
R6036R	IRBP2	ATCCCCTATGTCATCTCCTACCTATG	52°C	892	[70]
I1-Rattus	IRBP1	ATCCCCTATGTCATCTCCTACCTATG	52°C	892	[70]
J2-Rattus	IRBP2	ATCCCCTATGTCATCTCCTACCTATG	52°C	892	[70]
I2	cytb barcode	GAYAAAATYCCATTCACCACCGCGAGTCCGTGCTCGTCCTG	48°C	122	this study
J1	cytb barcode	GAYAAAATYCCATTCACCACCGCGAGTCCGTGCTCGTCCTG	48°C	122	this study

The IRBP gene was amplified into two overlapping fragments, IRBP1 and IRBP2.
Table 3: Sequences from previous studies included in the mt dataset.

Voucher	Nominal species	Origin of specimen	Cytb	COI	Phylogenetic species
RrHu1	*R. rattus*	Huahine, Society Islands	[GenBank: EF186469]	[GenBank: EF186584]	R1
RrSamoa2	*R. rattus*	Samoa	[GenBank: EF186475]	[GenBank: EF186590]	R1
RrRa18	*R. rattus*	Raiatea, Society Islands	[GenBank: EF186474]	[GenBank: EF186589]	R1
ABTC50177	*R. rattus*	Sideia Is., Papua New Guinea	[GenBank: EF186472]	[GenBank: EF186587]	R1
ABTC64906	*R. rattus diardi* (1)	Kuala Lumpur, Malaysia	[GenBank: EF186413]	[GenBank: EF186528]	R3
ABTC64907	*R. rattus diardi*	Kuala Lumpur, Malaysia	[GenBank: EF186414]	[GenBank: EF186524]	R3
ABTC64908	*R. rattus diardi*	Kuala Lumpur, Malaysia	[GenBank: EF186410]	[GenBank: EF186525]	R3
ABTC64909	*R. rattus diardi*	Kuala Lumpur, Malaysia	[GenBank: EF186411]	[GenBank: EF186526]	R3
ABTC64910	*R. rattus diardi*	Kuala Lumpur, Malaysia	[GenBank: EF186412]	[GenBank: EF186527]	R3
ABTC 8529	*R. kandianus* (2)	Sri Lanka	[GenBank: EF186444]	[GenBank: EF18655]	R3
ABTC 8536	*R. kandianus*	Sri Lanka	[GenBank: EF186445]	[GenBank: EF186560]	R3
ABTC 8540	*R. kandianus*	Sri Lanka	[GenBank: EF186446]	[GenBank: EF186561]	R3
ABTC 8487	*R. tanezumi*	Amami Island, Japan	[GenBank: EF186508]	[GenBank: EF186623]	R2
ABTC 8562	*R. tanezumi*	Amami Island, Japan	[GenBank: EF186510]	[GenBank: EF186625]	R2
ABTC47981	*R. tanezumi*	Yogyakarta, Indonesia	[GenBank: EF186493]	[GenBank: EF186608]	R2
ABTC47982	*R. tanezumi*	Yogyakarta, Indonesia	[GenBank: EF186494]	[GenBank: EF186609]	R2
ABTC47983	*R. tanezumi*	Yogyakarta, Indonesia	[GenBank: EF186495]	[GenBank: EF186610]	R2
ABTC47984	*R. tanezumi*	Yogyakarta, Indonesia	[GenBank: EF186502]	[GenBank: EF186617]	R2
ABTC47985	*R. tanezumi*	Yogyakarta, Indonesia	[GenBank: EF186503]	[GenBank: EF186618]	R2
ABTC47986	*R. tanezumi*	Yogyakarta, Indonesia	[GenBank: EF186504]	[GenBank: EF186619]	R2
ABTC47987	*R. tanezumi*	Yogyakarta, Indonesia	[GenBank: EF186505]	[GenBank: EF186620]	R2
ABTC47988	*R. tanezumi*	Yogyakarta, Indonesia	[GenBank: EF186506]	[GenBank: EF186621]	R3
ABTC47989	*R. tanezumi*	Yogyakarta, Indonesia	[GenBank: EF186507]	[GenBank: EF186622]	R2
ABTC47992	*R. tanezumi*	Jakarta, Indonesia	[GenBank: EF186490]	[GenBank: EF186605]	R3
ABTC47993	*R. tanezumi*	Jakarta, Indonesia	[GenBank: EF186491]	[GenBank: EF186606]	R2
ABTC47994	*R. tanezumi*	Jakarta, Indonesia	[GenBank: EF186492]	[GenBank: EF186607]	R5
ABTC47995	*R. tanezumi*	Jakarta, Indonesia	[GenBank: EF186496]	[GenBank: EF186611]	R3
ABTC47996	*R. tanezumi*	Jakarta, Indonesia	[GenBank: EF186497]	[GenBank: EF186612]	R3
ABTC47997	*R. tanezumi*	Jakarta, Indonesia	[GenBank: EF186498]	[GenBank: EF186613]	R3
ABTC47998	*R. tanezumi*	Jakarta, Indonesia	[GenBank: EF186499]	[GenBank: EF186614]	R3
ABTC47999	*R. tanezumi*	Jakarta, Indonesia	[GenBank: EF186500]	[GenBank: EF186615]	R3
ABTC48000	*R. tanezumi*	Jakarta, Indonesia	[GenBank: EF186501]	[GenBank: EF186616]	R3
ABTC48004	*R. tanezumi*	Northern Sulawesi, Indonesia	[GenBank: EF186511]	[GenBank: EF186626]	R3
ABTC48005	*R. tanezumi*	Northern Sulawesi, Indonesia	[GenBank: EF186512]	[GenBank: EF186627]	R3
ABTC 8489	*R. flavipes*	Hong Kong, China	[GenBank: EF186440]	[GenBank: EF186535]	R2
Chat2	*R. exulans*	Chatham Islands, New Zealand	[GenBank: EF186426]	[GenBank: EF186541]	R8
CI 6	*R. exulans*	Aitutaki, Cook Islands	[GenBank: EF186414]	[GenBank: EF186529]	R8
Fiji1	*R. exulans*	Fiji	[GenBank: EF186417]	[GenBank: EF186532]	R8
Hawaii3	*R. exulans*	Hawaii	[GenBank: EF186418]	[GenBank: EF186533]	R8
To check if it provides adequate discrimination for rat species, the whole cytb sequences of the 122 specimens were reduced to the 85 bp fragment following the groups evidenced by the DNA-based species delimitation method. Based on our sampling, rat species could be easily discriminated with this small sequence (except the two entities hereafter named Be2a and Be2b but see discussion) (see the 85 bp alignment in additional file 1). So, we decided to target this DNA barcode from the holotype of *Leopoldamys neilli*.

As we used a museum specimen, the difficulties associated with ancient DNA studies are relevant to this analysis. Hence, ancient DNA work was performed at the PALGENE national platform (CNRS, ENS Lyon, France) dedicated to ancient DNA analysis, following the standard procedures and using specific equipment and personal protections [58,59]. DNA was extracted from the holotype of *Leopoldamys neilli* following the protocol detailed by Rohland and Hofreiter [60]. Primer sets declined from Télétchéa et al., [56] were used for PCR attempts (Table 2). At least two independent PCR amplifications were performed in 25 μL reaction volumes containing 2.5 units of Perkin Elmer Gold *Taq* polymerase (Applied Biosystems), 1 mg/mL.
BSA (Roche, 20 mg/mL), 2 mM MgCl₂, 250 μM of each dNTP, 0.5 μM of primers. For each independent PCR attempt, a range of dilutions was performed to find the best compromise between inhibitor’s concentration and targeted DNA molecule concentration. DNA was amplified with a 5 min activation step at 95°C followed by 55 cycles of denaturation (94°C, 30 s), annealing (48°C, 30 s) and elongation (72°C, 45 s). Amplification products were systematically cloned using Topo TA Cloning for sequencing kit (Invitrogen). 16 clones of independent amplifications were sequenced to determine the consensus sequence (Macrogen, Seoul, South Korea).

The CAOS software, a two step character-based DNA barcoding method [61] was then used to determine if the Leopoldamys neilli holotype consensus sequence could be assigned to one of the clusters recognized as a putative species by the method of Pons et al., [28]. First, a diagnostic rules generator, P-Gnome, was used to search DNA changes through the 85 bp cytb matrix (122 sequences) and to establish diagnostic rule sets for each of the previously described entities (outputs of the DNA-based species delimitation method). Then, the P-Elf program was run to classify as a query the holotype sequence according to the rules generated by P-Gnome.

Results

1. Sequence analyses and phylogenetic reconstructions

Cytb, IRBP and COI sequences were generated for 122, 120 and 116 rat specimens respectively. All sequences were deposited in GenBank under the accession numbers HM217360 to HM217717 (Table 1). No significant difference in nucleotide composition among taxa was detected which indicated that no artificial grouping could occur due to a misleading compositional signal in the dataset. PhyML analyses were first carried out on each locus independently (data not shown). Each gene considered separately does not result in a robust Rattini phylogeny: mitochondrial markers help to resolve terminal nodes, while IRBP lends support to deepest ones. But, since the 3 genes yielded consistent, compatible topologies, sequences were concatenated and phylogenetic analyses were then carried out using the combined dataset.

Identical topologies were obtained with and without a RY-coding of the 3rd codon position (data not shown). However, better resolution and stronger topological supports (Bp and pp) were reached without an RY recoding strategy. It seems that our dataset was not informative enough for a RY recoding strategy resulting in this case in an over-depletion of the phylogenetic signal.

BI, partitioned and unpartitioned ML analyses (without RY recoding strategy) yielded the identical topology given in Figure 2. Most relationships among the Rattini tribe were well resolved (supports 61-100 for Bp, 0.82-1.00 for pp). Monophyletic groups corresponding to the Rattini divisions proposed by Musser and Carleton [16] are sustained with the highest values of Bp or pp. The Maxomys division clearly appears as the first division to diverge followed by the Dacnomys division, here represented by Leopoldamys and Niviventer genera, and the Rattus division. Berylmys appears with maximum support values as the earliest lineage to diverge among the Rattus division. A sister grouping is indicated between the genera Bandicota and Rattus, but this association is weakly supported. In fact, the monophyly of the Rattus genus received moderate pp (0.82) to weak Bp supports (61 for unpartitioned, 63 for partitioned ML analyses). To test the reliability of these findings, we considered an alternative hypothesis concerning the position of Bandicota within the Rattus division (i.e. Bandicota was placed inside the Rattus sp. cluster). SH-test failed to find significant differences between these hypotheses and the alternative branching orders of Bandicota inside the Rattus division could not be excluded (P > 0.05). Inside the Rattus sp. clade, the 3 Rattus species groups proposed by Musser and Carleton [16] could be distinguished. The R. exulans monotypic group (Re, Figure 2) clustered with the R. rattus species group (Rr, Figure 2) with high branch supports (Bp = 94/96 for the unpartitioned/partitioned ML analyses; pp = 1) and the R. norvegicus species group (Rn, Figure 2) is placed as sister taxa to the R. exulans species group/R. rattus species group cluster.

At this point in the analysis, 23 lineages (labelled R1 to M2 in the Figure 2) are identified within our taxon sampling. As their specific status are still questioned, intra-generic relationships are problematic to describe and will not be discussed in this section.

2. Species delimitation

The existence of distinct phylogenetic lineages was corroborated by the analysis of the branching rate pattern. A lineage-through-time plot based on the Multidivtime ultrametric tree evidenced a sudden increase in branching rate towards the present, likely corresponding to the switch from interspecies to intraspecies branching events (see additional file 2). To fit the position of the switch, the method of Pons et al. [28] was applied to the time calibrated tree (Figure 3). The GMYC model was preferred over the null model of uniform branching rates (lagl = 700.133, compared to null model logl = 687.218; 2ΔL= 25.83, χ² test, d.f. = 3, p < 0.0001). The model fitted the switch in the branching pattern occurring at -0.07084 (i.e. T of the ML solution/it is worth reminding that the time separating the ingroup root from the present was arbitrarily assigned to 1), leading to an estimate of 24 putative species, 4 of which containing a single individual (labelled R5, Be2b, N2 and N3 respectively Figure 3). Two Maxomys (M1 and M2), 4 Niviventer (N1 to N4), 3 Leopoldamys (L1 to L3), 2 Bandicota (B1 and B2), 3 Berylmys
(Be1, Be2a, Be2b) and 10 Rattus species (R1 to R10) could be numbered as indicated in Figure 3. It is worth noting that the Berylmys lineage (labelled Be2 in Figure 2) actually seems to correspond to two putative species following Pons et al's approach (therefore labelled Be2a and Be2b in Figure 3). Confidence interval for the threshold ranged from -0.09439 to -0.04189 and the estimated number of species ranged from 22 to 32 (i.e. estimates falling within 2 log-likelihood units of the ML solution).

3. Species identification

3.1. Within the Rattus genus

The partitioned ML analysis of the mt dataset including 64 new Rattus sequences (this study) plus 61 from previous studies [25] gave the highly resolved and robust tree represented in Figure 4. This has allowed us to name some clusters identified as putative species by the DNA-based species delimitation method. Because the monophyly of each cluster embracing the supplementary published sequences is supported with the highest Bp value, the level of confidence of these identifications could be considered as maximal if the voucher identification beforehand is correct.

Robins' sequences identified as Rattus rattus cluster with 100% Bp support with sequences assigned to R. ratti
tus specimens in [36]. Specific identification of group R1 as Rattus rattus is thus convincingly confirmed. According to the mt tree, none of our samples from Thailand, Cambodia or Lao PDR could be assigned to this species. Following the same approach, R2 seems to correspond to Rattus tanezumi, R5 to Rattus tiomanicus, R8 to Rattus exulans and R9 to Rattus norvegicus. Sequences provided by O. Verneau and F. Catzeflis allow us identifying R6 as R. argentiventer and R7 as R. andamanensis. As expected, since its distribution is restricted to Sulawesi, sequences of Rattus hoffmanni group with none of our specimens. R. hoffmanni whose phylogenetic affinities among the Rattus rattus group need to be elucidated [16] appears as the sister taxa to R. argentiventer with strong support (88 Bp). The situation appears more complex for the species R3. This group corresponds to a mix of specimens identified as R. rattus diardi in [25], Rattus kandianus (considered as a synonym of R. rattus, [16]) in [25], R. tanezumi from Indonesia [25] and R. tanezumi, R. andamanensis or R. argentiventer according to the field names we assigned during our sampling. Consequently, no nominal species could be reliably assigned to R3.

According to morphological criteria and because its sistership with Rattus norvegicus [16] (see Table 4 in discussion), R10 could be convincingly assigned to Rattus nitidus.

3.2 Ancient DNA analysis of a holotype specimen

Sequences obtained from holotype specimen We successfully obtained 85 bp cytb sequences from the Leopol-
damys neilli holotype. At least two independent PCR runs were performed, positive PCR products were cloned and consensus sequences were determined using clone sequences of independent PCR amplifications. Analysis of the differences observed between the clone sequences and consensus sequence shows that 75% of the degradation was due to deamination of cytosines, as expected from ancient DNA substrates [62,63].

Holotype sequence authentication The consensus sequence was identified as a rat cytochrome b sequence using a BLAST program (no Leopoldamys neilli cytochrome b sequence was available in databanks such as EMBL or GenBank before this study). This sequence is a genuine holotype sequence for the following reasons: (i) Rattini samples were never introduced in the ancient DNA facilities before the analysis of this specimen was performed; (ii) all the 16 clones analysed were identified as rat; (iii) the errors induced by DNA damage are perfectly consistent with the pattern generally observed for ancient DNA sequences (strong bias toward type 2 transi-
tions caused by deamination of cytosine [62,63]); (iv) for each amplification, all three PCR blanks remained negative [58]; (v) independent PCRs were performed and furnished the same conclusions. All in all, these points satisfy criteria of authentication for the ancient DNA work [59].

Assignment of the holotype sequence to a cluster The genuine holotype sequence was deposited in GenBank under the accession number HM235947. It was assigned using the CAOS software to the monophyletic cluster corresponding to the Leopoldamys species, L2, in our tree (Figures 2 and 3). Consequently, this monophyletic cluster recognized as a putative species by the method of Pons et al. [28] could be without ambiguity named as Leopoldamys neilli.

Discussion

1. Phylogenetic relationships within the Rattini tribe

1.1. Division-level relationships

Our phylogenetic analyses of Indochinese Rattini based on the combination of cytB, COI and the first exon of the IRBP genes is compatible with the revised taxonomy of Rattini divisions proposed by Musser and Carleton [16]. The Maxomys division, the Dacnomys division (here consisting of Leopoldamys and Niviventer as sister taxa) and the Rattus division (here including the genera Rattus, Bandicota and Berylmys) are sustained with the highest support values (Figure 2). These results are congruent with the Murinae phylogeny obtained by Lecompte et al. [17] based on the analysis of the combined cytB, IRBP and GHR genes. In this latter analysis, the 3 divisions are well supported and the Maxomys division is also the first to diverge followed by the Dacnomys one and the Rattus group sensu stricto of Verneau [64].
1.2. Relationships among the Rattus division: is the genus Rattus paraphyletic?
In our analyses, the position of Bandicota still remains uncertain. The monophyly of the genus Rattus is in reality weakly supported (0.82 for pp and 61/63 for Bp) and SH-test failed to reject the hypothesis of a paraphyletic Rattus genus (i.e. Bandicota is placed within Rattus). Verneau and collaborators [64,37] attempted to determine the evolutionary relationships in Rattus sensu lato using LINE-1 (L1) amplification events. In their study [37], two LINE subfamilies were identified in the Bandicota and the other Rattus species except in Rattus fuscipes. Since L1 subfamily absence from a particular taxa reflects an ancestral state rather than a derived state [64], these findings excluded Rattus fuscipes from a Bandicota/Rattus clade and placed Bandicota inside the genus Rattus leading to its paraphyly. Our study is in agreement with the multi-locus phylogeny of Lecompte et al., [17] which shows Bandicota and the genus Diplothrix diverging together prior to the Rattus clade. In the Lecompte’s study, the monophyly of the genus Rattus is highly supported (98 Bp, 1 pp) but, as in our study, no specimen of the Rattus fuscipes species group was included. To draw conclusions about paraphyly in Rattus genus, it would be judicious to complete the taxa sampling among the genus Rattus and to include representatives of each Rattus species group defined by Musser and Carleton [16] particularly representatives of the Rattus fuscipes species group.

1.3. Relationships within the genus Rattus
The genus Rattus, with a total of 66 species currently recognised [16] “is not only the single largest mammalian genus of all, but also arguably among the most complex and least understood” [65].

Within this genus, 7 species groups have been defined by Musser and Carleton [16], of which 3 inhabit the Indo-Chinese region and are relevant to this study (Rr, Re and Rn in Figures 2 and 3). The Rattus rattus species group as described by Musser and Carleton [16] comprises 21 species of which 5 may be found in Thailand, Cambodia and Lao PDR. In our phylogenetic analysis, this cluster appears unambiguously to be monophyletic (1.00 for pp; 93/97 for Bp) and was placed undoubtedly as the sister group of the monotypic exulans species group (pp = 1.00; Bp = 94/96). This association was also found in recent molecular studies [25,17] but encompassing fewer representatives of the Rattus rattus species group. According to Musser and Carleton [16], the R. norvegicus species group includes 3 species (Rattus norvegicus, R. nitidus and R. pyctoris) of which only 2 may occur in the Indo-Chinese region (Rattus norvegicus and R. nitidus). This group appears in our study as the sister taxa to the “R. exulans species group/R. rattus species group” cluster as found in [25] and [17].

Robins and colleagues [25] focusing on rats inhabiting islands in Southeast Asia, included in their sampling specimens from Australia (i.e. belonging to the Rattus fuscipes species group as defined by [16]) and from New Guinea and adjacent archipelagos (i.e. belonging to the Rattus leucopus group). Based on the analysis of nearly 2 kb of mt DNA, they recovered 5 of the 7 groups proposed by Musser and Carleton [16]. Our study, even if focusing on a different region of South East Asia, is perfectly congruent with Robins’ study, and both studies are compatible with the revised taxonomy of the Rattus genus recently proposed by Musser and Carleton [16]. The sixth group defined by the authors [16] corresponds to the xanthurus species group encompassing species native to Sulawesi and adjacent islands. According to preliminary phylogenetic analyses of cyt sequences cited in [16], this assemblage could be placed as the sister-group to the R. leucopus and R. fuscipes groups. The last group defined by Musser and Carleton [16] does not correspond to a natural cluster but was formed for practical reasons since it includes species whose phylogenetic affinities have to be clarified; some may need to be excised from Rattus.

2. Toward a deep taxonomic revision of the Rattini tribe
At a specific level, we realized that phylogenetic relationships were difficult to discuss. Species misidentifications are indeed plentiful and recurrent both in our sampling (see Table 1) and in the literature. Mt sequences from Robins et al. [25] or provided by O. Verneau and F. Catzeflis were included in our dataset but questions about the reliability of the identification of vouchers were rapidly raised. To cite a few examples, the Rattus tanezumi sample occurring in the tiananicus cluster in [25] (see Figure 4) was proposed by the authors to represent a misidentification. Similarly, the R. rattus cf. moluccarius specimen in [64] and [37] was, according to Musser and Carleton [16], an example of R. nitidus whereas their specimen assigned to Niviventer niviventer was probably improperly identified since N. niviventer has never been described in the locality where the specimen was caught [64]. We observed that the situation was worse regarding the Niviventer genus. When including sequences available in the databanks (i.e. cytochrome b sequences from [66]), numerous species appeared to be paraphyletic (data not shown). These results are presumably the consequence of species misidentifications and this explains why we decided to exclude these sequences from our analyses. All in all, these reports ([25,64] and this study) stressed the necessity of a sound taxonomic revision of the Rattini tribe. Consequently one must first determine valid species boundaries and then assign an appropriate name in accordance with the rules of the International Code of the Nomenclature.
Figure 2 Phylogenetic tree depicting relationships of the Indochinese Rattini based on the analyses of the combined cyt b, COI and IRBP genes and reconstructed following Bayesian method. BI and ML analyses of the dataset gave an identical topology. Numbers above the branches reflect support obtained from the analysis of the dataset following 3 different reconstruction methods: BI/unpartitioned ML/partitioned ML. Support values are not shown for very short branches. The symbol "**" indicates that phylogenetic relationships are not supported by the partitioned ML analysis. Rr stands for Rattus rattus species group, Re for Rattus exulans species group, Rn for Rattus norvegicus species group, following Musser and Carleton's denominations [16]. At the right hand of the tree, lineages are labelled according to the genus to which they belong.
2.1. How many rat species in the Indochinese area we investigated?

According to Musser and Carleton [16], 9 genera corresponding to the following 27 species of Rattini may occur in our sampling area (Figure 1): Hapalomys delacouri (see Background for justification of its inclusion into the Rattini tribe), Sundamys muelleri, Chironomys chiroplus, 3 Maxomys species (rajah, surijer, whiteheadi), 6 Niviventer species (falvescens, hinpoorn, langbianis, tenaster, cremoniventer, confucianus), 3 Leopoldamys species (neilli, edwardsi, sabanus), 2 Bandicota species (indica and savilei), 2 Berylmys species (bowersi and berdmorei) and 8 Rattus species (andamanensis, argentiventer, exulans, tanezumi, losea, tiomanicus, norvegicus, nitidus). According to our phylogeny (Figure 2), 23 lineages exist within our sampling and 24 putative species were suggested by the method of Pons et al. [28]. Confidence interval for the estimated number of species ranged from 22 to 32 (i.e. estimates falling within 2 log-likelihood units of the ML solution). An inadequate population sampling is one of the potential limitations of the branch length method as identified by Pons et al. [28]. However, the GMYC model was preferred over the null model of uniform branching rates indicated that the intraspecific sampling effort is satisfactory in our dataset (failure to reject the null model over the GMYC model could be an incomplete sampling per species; [28]). Moreover, among the 24 estimated species, 4 species (labelled R5, Be2b, N2 and N3 respectively in Figure 3) contain a single individual. In accordance with Pons et al, it seems that the GMYC method correctly deals with the inclusion of some rare species represented by only one single individual [28].

The estimated number of species fit well with the number of species described in the literature for this area, although there are some exceptions, in particular within the Berylmys and the Rattus genera. Our study suggests 3 putative species of Berylmys in our sampling whereas only 2 are mentioned in the literature within the geographic area sampled (Berylmys bowersi and B. berdmorei) (see Table 4). This outcome was supported by all the solutions included in the 95% confidence interval of the estimate of the number of species (Figure 3). This finding may be an artefact of the species delimitation method which could have difficulty in dealing with high level of population differentiation and strong phylogeographic patterns. As acknowledged by Pons et al., [28], a limitation of this method is that populations with partial gene flow risk being recognized as separate entities. A marked phylogeographic structuring within Berylmys bowersi could explain the distinction of Be2a and Be2b as two putative species by the branch-length method. Be2b specimen came from the Kanchanaburi locality (Table 1, Figure 1), North to the Isthmus of Kra corresponding to the limit of the peninsular Thailand whereas the specimens of the Be2b group came from the Northern Thailand (Loei and Nan provinces, Figure 1) and Northern Lao PDR (Luang Prabang province, Figure 1). Populations of Berylmys bowersi in peninsular Thailand were reported to be geographically isolated and to differ in some ways from other populations [67]. Our findings are congruent with this report. Further investigations are needed to determine if Be2a and Be2b are two phylogenetic lineages of a same species exhibiting a strong phylogeographical pattern or if they have two be considered as two closely related but separate species.

In a similar way, five species belonging to the Rattus rattus species group have been described in this area (i.e. R. andamanensis, argentiventer, tanezumi, losea, and tiomanicus). Marshall [33] reported also the presence of R. rattus in all provinces of Thailand and considered the roof rat as the most abundant mammal in the country. Interestingly, since 1998, no specimen among the 3,000 caught during our successive field surveys in rural or urban areas of Thailand, Lao PDR and Cambodia could be identified as a representative of R. rattus, according to morphological, cytological and molecular evidences. Our findings offer no support for the presence of R. rattus in the area and are in conflict with previous claims of R. rattus in the Indochinese region [33]. However, this inconsistency is probably due to a difference in the usage of “Rattus rattus” in place of “Rattus tanezumi” rather than a problem of identification or occurrence.

Finally, our analysis corroborates the presence of an additional Rattus species (labelled R3 in Figure 3) already identified as the diardii clade in the mitochondrial phylogeny of Robins et al. [25]. R3 could be a cryptic species. This statement yet needs further investigation using independent data (morphology, nuclear genes). Then, if this hypothesis proved to be correct, the R3 species would have to be carefully named (R. diardii is indeed considered at present as a synonym of R. tanezumi [16]). In agreement with our result, Aplin in his preliminary study of the cyt b [65] observed that the taxonomy of the Rattus rattus species group might be rather thornier than suggested by previous studies mostly based on karyotypic or electrophoretic evidences. Indeed, his ongoing study reports two distinct phylogegetic clades in the Asian region. The first one would correspond to an endemic Southeast Asian taxon (recorded in Vietnam, Cambodia and Southern Laos) and might correspond to our R3 according to geographical evidence. Our study and Robins’ work reveal that the distribution of this Southeast group spreads far into the South as it occurs in Thailand and in Sri Lanka and also in Malaysia, in Indonesia and Northern Sulawesi (Figures 4 and 5). The second clade proposed by Aplin [65] would be a northern and South Asian taxon (found in Japan, Hong Kong, northern Vietnam, northern Laos, and Bangladesh) and might corre-
spond to R2 (here also found in Thailand and Indonesia, Figure 4, Table 3/see also Table 4 for species name). Indeed when including Robins' sequences, R2 includes specimens from Japan and Hong Kong (Figures 4 and 5). As mentioned by Aplin [65], the latter group (R2) is more closely related to *Rattus rattus* rather than the former group (R3). In our trees (Figures 2 and 4), R2 is clearly placed as the sister taxa of *R. rattus* (R1). Our study reinforces Aplin's assumption [65] that the two Asian clades (i.e. R2 and R3) are sympatric in some part of their distribution by increasing greatly the area where the two taxa co-occur in continental Southeast Asia. Both are found in Northern and Central Thailand (Phrae, Nakhon Pathom and Ratchaburi provinces; this study). Since some specimens of both taxa were trapped in exactly the same location and time, at least in Phrae, they probably also share similar habitats and are likely syntopic.

2.2. How to give a name?

By integrating phylogenetic, morphological and geographical evidence, we proposed to attribute the names summarized in Table 4 to the 24 species highlighted herein. Our propositions are not definitive but are revisable ones. Indeed, once species boundaries are delimitated, assigning the appropriate name to each species is not an easy task particularly for the Rattini species whose taxonomy is complicated by a large number of synonym names. Even for a rodent specialist, morphological characters are sometimes misleading (see aforementioned misidentification examples) and intraspecific morphological polymorphism makes the problem more difficult. To alleviate this last difficulty, morphological studies have to consider a large number of specimens, a process that may be difficult and time-consuming to perform.

These inconveniences highlighted the great interest in obtaining molecular data from a holotype. Indeed, the holotype is by definition the element to which the name of a taxon is permanently attached. Consequently, including holotype specimens in molecular phylogenies would be very suitable to name each cluster recognized as a valid species providing that a rigorous and sound taxonomy is already set up. Indeed, holotype specimens may correspond to problematic taxa (e.g. problems of synon-
Figure 4 ML tree depicting relationships within the *Rattus* division on the basis of *mt* dataset and estimated using partitioned ML analysis. Bp values are shown above branches. Bp values equal to 100% are not indicated. Robins’ sequences are highlighted in blue when nominal and phylogenetic species are congruent, in red on the contrary (see also Table 3). *Rattus hoffmannii* sequences are indicated in grey; sequences provided by Verneau and Catzeflis in green. **Rr** for *Rattus rattus* species group, **Re** for *Rattus exulans* species group, **Rn** for *Rattus norvegicus* species group. At the right hand of the tree, cluster denomination is the same as in the Figure 3.
Phylogenetic species	Species name proposed	Phylogenetic evidences	Morphological, geographical and ecological evidences
R1	Rattus rattus	R1 specimens identified in [36] cluster unambiguously with R. rattus specimens identified by Robins et al., [25] (see Figure 4). It is worth noting that, during this study, this species was never sampled in the fields in Thailand, Laos and Cambodia.	Medium-sized rat; fur light brown to reddish brown above, white below; dark tail, equal or longer than head and body length; caught in a large range of habitats, from houses, gardens, crops and rice fields to the edge of secondary forests.
R2	Rattus tanezumi	R2 specimens cluster unambiguously with R. tanezumi specimens identified in [25] (see Figure 4).	Urban rat or rat living near human habitations. Misidentified by us as Rattus tanezumi, R argentiventer and R. andamanensis in the Rattus rattus species group.
R3	Rattus sp./to be named	R3 includes specimens identified as Rattus diardii in the study of Robins et al., [25] and rats referred to Malaysian house rat (i.e. Rattus diardii) by local populations in Indonesia (Andru, J., pers. comm.). Today, Rattus diardii has been placed as a synonym of Rattus tanezumi according to morphological criteria.	Urban rat or rat living near human habitations. Misidentified by us as Rattus tanezumi, R argentiventer and R. andamanensis in the Rattus rattus species group.
R4	Rattus losea or "losea-like"	R4 sequences cluster unambiguously with R. argentiventer sequences provided by O. Verneau and F. Catzeflis (see Figure 4)/ identification of Verneau’s specimen confirmed by G. Musser [64].	Medium-sized rat; shaggy fur brownish grey above, white to greyish below; dark tail, shorter than head and body length; caught mostly in rice fields and sometimes in dry agricultural fields. According to Aplin [35] two distinct forms of R. losea may exist. True R. losea (described from Taiwan) would be distributed from Southern China to central Vietnam. The second form "losea-like" would inhabit the Mekong Delta region from Southern Vietnam, Cambodia, Thailand, to the North of Vientiane Province in Laos. Since our analyses did not include samples from the two putative groups, it was not possible to determine if they are genetically distinct. Until this taxonomic issue is resolved, we prefer to name R4 "losea-like".
R5	Rattus tiomanicus	R5 specimens cluster unambiguously with R. tiomanicus specimens identified in [25] (see Figure 4).	Medium-sized rat; fur brown above, white below; dark tail, slightly longer than head and body length; arboreal; caught in palm plantations. Morphologically very similar to Rattus tanezumi but with shorter guard hairs.
R6	Rattus argentiventer	R6 sequences cluster unambiguously with R. argentiventer sequences provided by O. Verneau and F. Catzeflis (see Figure 4)/ identification of Verneau’s specimen confirmed by G. Musser [64].	Medium-sized rat; fur yellowish brown above, grey-white below, with developed guard hair on the back, distinct orange fringe of fur just forward of the ear; dark tail, shorter than head and body length; caught in rice fields and plantations.
	Species	Characteristics	Notes
---	---------	-----------------	-------
R7	*Rattus andamanensis*	R7 sequences cluster unambiguously with *R. sikkimensis* sequences provided by O. Verneau and F. Catzeflis (see Figure 4).	Medium-sized rat; fur orange brown above, white-creamy below, with very elongated guard hairs; dark tail, longer than head and body length; caught in evergreen forests.
R8	*Rattus exulans*	R8 specimens cluster unambiguously with *R. exulans* specimens identified in [25] (see Figure 4).	Small-sized rat; fur grey-brown above, pale grey below; dark tail, longer than head and body length; domestic species found in houses.
R9	*Rattus norvegicus*	R9 specimens cluster unambiguously with *R. norvegicus* specimens identified in [25] (see Figure 4).	Large-sized rat; fur dark-grey above, pale grey below; tail shorter than head and body length, dark above and paler beneath but not clearly separated; occurs in major ports and neighbouring cities.
R10	*Rattus nitidus*	Sister relationship with *Rattus norvegicus* evidenced by molecular data (see Figure 2).	Medium-size rat with a soft woolly fur, dorsally brown and grey-based cream on belly. Pearly white feet. A *nitidus/ norvegicus* sistership was proposed by morphologists. According to Musser and Carleton [11], both have "dense and soft fur, six pairs of teats, and an upper M1 in which the anterolabial cusp on the anterior lamina is missing or undetectable due to its coalescence with the adjacent central cusp".
B1	*Bandicota indica*	Only two Bandicota species have been described in the Indochinese region. Usually, *B. indica* specimens are unambiguously larger than *B. savilei*. Adult *B. savilei* and juvenile or immature *B. indica* may be confounded. A molecular test based on PCR amplifications with specific primers allowing discriminating between the 2 species (Chaval et al., in prep.) was used in such cases (data not shown).	Large-sized rat; fur dark above, grey below; tail shorter than head and body; aggressive and stocky; inhabits agricultural fields. The ratio of pes length to head+body length is used to distinguish *B.indica* from *B.savilei* [74].
B2	*Bandicota savilei*	Medium-sized rat; fur dark above, grey below; tail shorter than head and body; inhabits dry lands, grasslands, clearings in forest.	
Be1	*Berylmys berdmorei*	Medium-sized rat; fur grey above, white below; tail shorter than head and body; inhabits secondary forests and fields close to forests.	
Be2a	*Berylmys bowersi*	Large-sized rat; fur grey above, white below; tail slightly longer than head and body; inhabits secondary forests and fields close to forests.	
Be2b
Berylmys sp.

Berylmys mackensiei has been described in the Indochinese region by Marshall [33]. However the skull of *B. mackensiei* he studied was identified by Musser and Newcomb [75] as *B. bowersi*. Populations of *Berylmys bowersi* in peninsular Thailand were reported to be geographically isolated and to differ in some ways from those elsewhere (here speculated as to be Be2,a) [67]. Be2b specimen came from the Kanchanaburi locality, North to the isthmus of Kra and could consequently belong to this former particular population. Because of the lack of additional information about this specimen, no species name could be convincingly assigned to Be2b.

L1
Leopoldamys edwardsi

Large-sized rat; fur red-brown above, white-cream below; very long tail, longer than head and body; inhabits secondary forests.

L2
Leopoldamys neilli

Genuine sequence obtained from the holotype specimen of *L. neilli* was assigned to L2 without ambiguities.

L3
Leopoldamys sabanus

Large-sized rat; fur red-brown above, white-cream below; very long tail, longer than head and body; inhabits secondary forests. Caught in secondary forests. Often misidentified as *Leopoldamys edwardsi*. The two species of *Leopoldamys sabanus* and *Leopoldamys edwardsi* are indeed morphologically very similar. The species name we proposed for L3 is based on geographical evidences from Marshall (1977). Based on his work, the only *Leopoldamys* species that has been described in Kanchanaburi province is *Leopoldamys sabanus*. The L3 specimens were caught in this province.

N1
Niviventer fulvescens

Medium-sized rat; spiny fur red-brown above, white-cream below; tail longer than head and body, sharply bicoloured from base to tip; absence of terminal pencil and smallest length of bulla make us exclude *Niviventer confucianus* as species name.
Table 4: Species names proposed for each species recognized as putative ones by the method of Pons et al., . (Continued)

N2	Niviventer sp. 1	Marshall [67], Musser [77] and Corbet [34] documented the occurrence of Niviventer bukit in Kanchanaburi, where representatives of N2 and N3 species were caught. One of the two could be N. bukit. However, bukit is today considered as conspecific with Niviventer fulvescens [16]. Consequently, we prefer to refrain from giving a species name to these 2 species.
N3	Niviventer sp. 2	
N4	Niviventer langbianis or Chiromyscus chiropus	N4 is placed at the base of the Niviventer group. It could thus belong to the genus Niviventer or to a sister genus to Niviventer. According to Musser and Carleton [16], Chiromyscus is presumed to be one of the closest phylogenetic relatives of Niviventer. Based on morphological criteria, this specimen could be a Chiromyscus chiropus representative. However, Chiromyscus chiropus is morphologically very close to N. langbianis. Thus, N4 could be one of these two species. At the end of this work, we have just received N. langbianis samples from the AMCC. Our preliminary work based on mitochondrial DNA suggests that N4 may be N. langbianis rather than C. chiropus.
M1	Maxomys sp.	Identified by us as Maxomys surifer in the field. Could be assigned to Maxomys rajah but this species has never been reported in this area. This result could be to a bias of the branching-length method that could have some difficulties to deal with strong phylogeographic pattern. The phylogeography of Maxomys surifer was investigated using mt DNA but focusing on the large Sunda shelf area [78]. A structuration between the North-eastern Vietnam and the Southern Vietnam seems to exist but this finding is based on only four sampled (for which sequences are not available in databanks). As a greater sampling and more additional data are needed to assess the phylogeographic pattern of this species, we prefer to refrain from giving a species name to this cluster.
M2	Maxomys surifer.	Medium-sized rat; spiny fur red-brown above, white-cream below; tail slightly longer but nearly equal to head and body length, sharply bicoloured with a white tip. This is the only Maxomys species described in this area.

The congruence between geographical, morphological and phylogenetic data allows us proposing species names. Waiting for a complete taxonomic revision of the Rattini tribe, these propositions are not definitive but are revisable ones.
ynt not yet revealed), and the use of type specimens could be misleading in such context. Including holotype specimens in molecular phylogenies is however totally infeasible for the two following reasons. Firstly, holotype specimens are unique and are difficult to obtain for genetic research purposes. Sampling authorisations are very scarce and destructive sampling is generally not possible. To achieve our study, no more than 24 holotypes would be damaged if our assumptions are correct. Faced with the understandable reluctance of museum curators, non-destructive extraction procedure [68] would be an elegant suggestion. Secondly, ancient materials contain tiny amounts of poorly preserved and highly fragmented DNA. As required for this study, getting 3 kb corresponding to 3 different genes (including one nuclear one) for more than 24 holotype specimens, and following the ancient DNA guidelines would be too expensive and much too time-consuming. To circumvent this problem it is fortunately possible to target small DNA fragments as barcodes. Our study proved that this strategy is a powerful one. Following all the ancient DNA requirements, we succeeded in amplifying a genuine small cytb fragment from the *Leopoldamys neilli* holotype. This barcode was used to assign a name without ambiguity to one of the clusters (*i.e.* L2) recognized as a valid species in our analyses. Even if more holotype specimens have to be investigated to achieve a steady revision of the Rattini tribe, our work illustrates the huge opportunities ancient DNA analysis may offer to taxonomists.

Conclusions

This study represents the first step of a long-term project aiming at a deep taxonomic revision of the Rattini. Putative species delimitations have been determined here without prior assumptions and we propose a suitable methodology using molecular data from holotypes to assign the right name to each delineated species. Ancient DNA analysis of holotypes should be considered by taxonomists as a promising tool opening up new realms of possibilities (*e.g.* testing synonymy of names of unclear

Figure 5 Map of the distribution of the two Asian species of the *Rattus rattus* species group, according to the samples identified as belonging to R2 and R3 in our study (Figures 3 and 4).
taxonomy such as the synonymy of *R. tanezumi* and *R. diardii*; see Table 4). Although DNA data alone are not a panacea for species description and delimitation, we are confident that future investigations combined with other types of information will clarify the taxonomy of this confusing group. Indeed, integrative approaches merging independent data such as morphology, karyology, mitochondrial and nuclear markers are the only means to understand the diversification among, and interactions between, evolutionary lineages. Our molecular study revealed that at least 7 putative different species, including a cryptic one (R3), could exist among the *Rattus* species group (among which six were sampled within the area we investigated). As each of these species is expected to have specific ecological traits and to carry its own set of diseases, the recognition of cryptic species within Rattini could have serious implications for human health in Southeast Asia. However, this result has to be carefully considered. Indeed, it is worth noticing that the terminal nodes of our multilocus phylogeny are mostly supported by mitochondrial data (cytb and COI genes) while the deepest nodes are supported by nuclear data (IRPB). Other kinds of markers have thus to be checked for congruence. Such clarifications for the Rattini tribe are today urgently required to achieve meaningful epidemiological research in South East Asia.

List of Abbreviations

bp: base pairs; kb: kilo base pairs.

Additional material

Additional file 1 Rat 85 pb cytb alignment. The whole cytb sequences obtained from the 122 specimens selected in this study were reduced to the 85 pb DNA marker already used to discriminate closely related species from degraded DNA (56,57). Small sequences were sorted following the results of the DNA-based species delimitation method. Dots indicate identical positions as those of the reference sequence of *Rattus rattus* R12. Sites allowing discrimination between species are those shared by all the specimens of a same entity but different for all the specimens of another one. Each rat species could be distinguished from each other based on this fragment except the two *Berylmys* species Be2a and Be2b (but see discussion). We tried to maximize the geographic diversity of the specimens, however, our sampling was achieved without prior expectation and some entities determined by the DNA-based species delimitation method encompass few specimens coming from the same locality (e.g. R5, R6, R7, Be2b, L3, etc.). In this case, intra-polymorphism is not taken into account and substitutions allowing discrimination between species are thus overestimated. However, closely related rat species (such as R1 and R2 or R3 and R4, see phologeny in Figure 2) could be easily discriminated. We thus considered that this fragment is reliable for an adequate discrimination for rat species.

Additional file 2 Lineage-through-time plot based on the Multidiv-time ultrametric tree. The sudden increase in branching rate, indicated by a red line, corresponds to the shift from interspecific to intraspecific lineage branching.

Authors’ contributions

Conceived and designed the experiments: JM, JFC, MP. Performed the experiments: MP, YC, VH, SW. Analyzed the data: MP. Wrote the paper: MP, YC. Senior epidemiologists and supervisors responsible for all scientific output of the program: SM, JM, JPH. All authors read and approved the final manuscript.

Acknowledgements

Firstly, we would like to thank the two anonymous reviewers for their comments that helped us to greatly improve the manuscript. We thank K. Blasdel for English corrections. We are particularly grateful to the people who have made this work possible in the field: S. Jittapalapong from the Faculty of Veterinary Medicine, W. Rerkamnuaychoke from the Faculty of Veterinary Technology at Kasetsart University in Thailand; B. Douangboupha from the National Agricultural and Forestry Research Institute in Lao PDR and P. Buchy from the Pasteur Institute in Cambodia. We also warmly thank all the people that worked hard with us in the field to collect samples used in this study, and especially K. Chaisri and K. Satchatasapatorn. Thanks to C. Tollenaere and F. Catzeflis who provided us rat sequences or samples. We would like to acknowledge the Ambrose Monell Cryo Collection (AMCC) at the American Museum of Natural History, New York, for their support in our research. We are indebted to all the people of the ancient DNA platform PALGENE (directed by C. Hänni) and more particularly to B. Gillet. Thanks to L. Missa and S. Sujant for help in the lab and to C. Corbiser who started this work during her master study. Thanks to A. Crusaud, JY Rasplus, E. Jouselin and K. Gergoat for helpful discussions, to G. Dobigny for constant support. We express gratitude to PH. Fabre who offered us judicious advice to use the Multidiv-time software and help us to obtain the ultrametric tree needed in this study. Many thanks from Asia to T. Barracough for help for the R code. This work was supported by the French GIPANIR, Programme Santé Environnement - Santé Travail (Program 00121 05), by the PHC Franco-Thai Cooperation in Higher Education and Research (Program No.16601PK). This study is part of the ”CEROPath project” (Community ecology of rodents and their pathogens in South-East Asia: effects of biodiversity changes and implications in health ecology/ANR 07 BDV 012) funded by the French National Agency for Research.

Author Details

1 INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de Baillarguet, CS 30016, 34988 Montpellier cedex, France; 2, *Cemagref, Territoires, Environnement, Remote Sensing and Spatial Information Joint Research Unit (UMR TETE), Maison de la Télédétection, 500 rue J-F Breton, 34093 Montpellier Cedex 5, France, 3* Institut de Recherche pour le Développement (IRD), Research Unit UR178, Center for Vectors and Vector-borne Diseases (CVVD), Faculty of Sciences, Mahidol University, Bangkok 10400, Thailand; 4* Thailand Institute of Scientific and Technological Research, Bangkok, Thailand; 5* Muséum National d’Histoire Naturelle, Origine, Structure et Evolution de la Biodiversité, Paris, France; *6 Instituts des Sciences de l’Évolution, CNRS-UM2, Université Montpellier 2, 34095 Montpellier, France; 7* UMR AGRIN, CIRAD, Campus International de Baillarguet 34398 Montpellier, France and 8 *Laboratoire de génétique des microorganismes, Institut de Botanique, Université de Liège, 4000 Liège (Sart Tilman), Belgique

Received: 21 July 2009 Accepted: 18 June 2010

Published: 18 June 2010

References

1. Morand S, Krasnov BR, Poulin R: Micromammals and macroparasites: from evolutionary ecology to management. Tokyo: Springer-Verlag; 2006.
2. Herbreteau V, Henttonen H, Yoshimatsu K, Gonzalez JP, Suputtamongkol, Vugot JP: Hantavirus coevolution with their rodent hosts. In Encyclopedia of infectious diseases. Modern methodologies 1st edition. Edited by: Tibayrenc, M, Wiley & Sons Inc; 2007:243-264.
3. Henttonen H, Buchy P, Suputtamongkol Y, Jittapalapong S, Herbreteau V, LaakkonenJ, Chaval Y, Galan M, Dobigny G, Charbonnel N, Michaux J, Cosson JF, Morand S, Hugot JP: Recent discoveries of new hantaviruses widen their range and question their origins. Ann NY Acad Sci 2008, 1149:84-95.
4. Jittapalapong S, Herbreteau V, Hugot JP, Amereisopom, K, Kamchanabanthoeng A, Rerkamnuaychoke W, Morand S: Relationship of parasites and pathogens diversity to rodents in Thailand. Kasetsart J 2009, 43:106-117.
5. Meurburg B, Singleton G, Kitjasa A: Rodent-borne diseases and their risks for public health. Critical Reviews in Microbiology 2009, 35:221-270.
6. Ostfeld R, Keisling F: Biodiversity and disease risk: the case of Lyme disease. Conserv Biol 2000, 14:722-728.
7. Suzán G, Marcé E, Giermakowski JT, Mills JN, Ceballos G, Ostfeld RS, Armien B, Pascale JM, Yates TL: Experimental evidence for reduced rodent diversification drives increased hantavirus prevalence. *PLoS ONE* 2009, 4:e5461.

8. Chivian E: Biodiversity: its importance to human health Boston, Massachusetts Harvard Medical School; 2003.

9. Morand S, Krasnov B, Poulin R: Global change, biodiversity and the future of mammals-parasite interactions. In Micro-mammals and macroparasites: from evolutionary ecology to management Edited by: Morand S, Krasnov BB, Poulin R: Tokyo. Springer-Verlag, 2006:617-635.

10. de la Rocque S, Morand S, Hendrix G: Climate change and pathogens. *Rev Sci Tech Office International des Épidemios* 2008, 27:

11. Wilson D, Reeder D: *Mammal Species of the World. A Taxonomic and Geographic Reference* 3rd edition Edited by: Johns Baltimore. Maryland Hopkins University Press, 2005.

12. Jenkins KD, Kilpatrick W, Robinson M, Timmins R: Morphological and molecular investigations of a new family, genus and species of rodent (Mammalia: Rodentia: Hystricognathia) from Lao PDR. *System Biodivers* 2005, 2:419-454.

13. Musser G, Smith A, Robinson MF, Lunde D: Description of a new genus and species of rodent (Murinae, Muridae, Rodentia) from the Khammouan limestone national biodiversity conservation area in Lao PDR. *Am Mus Novit* 2005, 3497:1-31.

14. Helgen KM: A new species of murid rodent (genus *Mayermys*) from South-eastern New Guinea. *Mamm Biol* 2005, 70:61-67.

15. Musser G, Lunde D, Truong Son N: Description of a new genus and species of rodent (*Murinae*, *Muridae*, *Rodentia*) from the lower karst region of Northeastern Vietnam. *Am Mus Novit* 2006, 3571:1-41.

16. Musser G, Carleton M: *Superfamily Muroidea*. In *Mammal species of the world. A taxonomic and geographic reference Volume 2. 3rd edition* Edited by: Wilson DE, Reeder DM. Baltimore: Johns Hopkins University Press, 2005:894-1531.

17. Lecompte E, Desdevises Y, Coeur d’acier A: *A simple, fast, and accurate algorithm to infer evolutionary trees* Biology Centre, Uppsala University; 2002.

18. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J: *Biodiversity hotspots for conservation priorities*. Nature 2000, 403:858-858.

19. Matsui S: Protecting human and ecological health under viral threats in Asia. *Water Sci Technol* 2003, 51:91-97.

20. Forman S, Hungerford N, Yamakawa M, Yanase T, Tsai HJ, Joo YS, Yang DK, Supputamongkol Y, Henttonen H, Plyusnin A: *Brachycaudus* and *Mictophomyia*: from evolutionary ecology to management. *Experimental evidence for reduced phylogenetic diversity in Asia* 2005, 51:719-729.

21. Moyle H, Mouahid G, Leirs H, Cosson JF: *Sequence-based species delimitation with multilocus data* 2007, 54:519-524.

22. Xia X, LeDuc J, Chu Y, Schmaljohn C: *Phylogenetic analyses of virus isolates in the genus Hantavirus, family Bunyaviridae*. *Virology* 1994, 193:205-217.

23. Hugot JP, Payunina A, Herbreteau V, Nemirov K, Laakkonen L, Lundkvist A, Susputnamgong Y, Herndon H, Pysynin A: *Genetic analysis of rodents* 2006, 41:51-524.

24. Coleman RE, Aplin K, Denys C, Catzeflis F, Chades M, Chevret P: *Experimental evidence for reduced rodent diversification drives increased hantavirus prevalence*. *PLoS ONE* 2009, 4:e5461.

25. Chivian E: Biodiversity: its importance to human health Boston, Massachusetts Harvard Medical School; 2003.

26. Morand S, Krasnov B, Poulin R: Global change, biodiversity and the future of mammals-parasite interactions. In Micro-mammals and macroparasites: from evolutionary ecology to management Edited by: Morand S, Krasnov BB, Poulin R: Tokyo. Springer-Verlag, 2006:617-635.

27. de la Rocque S, Morand S, Hendrix G: Climate change and pathogens. *Rev Sci Tech Office International des Épidemios* 2008, 27:

28. Wilson D, Reeder D: *Mammal Species of the World. A Taxonomic and Geographic Reference* 3rd edition Edited by: Johns Baltimore. Maryland Hopkins University Press, 2005.

29. Jenkins KD, Kilpatrick W, Robinson M, Timmins R: Morphological and molecular investigations of a new family, genus and species of rodent (Mammalia: Rodentia: Hystricognathia) from Lao PDR. *System Biodivers* 2005, 2:419-454.

30. Musser G, Smith A, Robinson MF, Lunde D: Description of a new genus and species of rodent (Murinae, Muridae, Rodentia) from the Khammouan limestone national biodiversity conservation area in Lao PDR. *Am Mus Novit* 2005, 3497:1-31.

31. Helgen KM: A new species of murid rodent (genus *Mayermys*) from South-eastern New Guinea. *Mamm Biol* 2005, 70:61-67.

32. Musser G, Lunde D, Truong Son N: Description of a new genus and species of rodent (*Murinae*, *Muridae*, *Rodentia*) from the lower karst region of Northeastern Vietnam. *Am Mus Novit* 2006, 3571:1-41.

33. Musser G, Carleton M: *Superfamily Muroidea*. In *Mammal species of the world. A taxonomic and geographic reference Volume 2. 3rd edition* Edited by: Wilson DE, Reeder DM. Baltimore: Johns Hopkins University Press, 2005:894-1531.

34. Lecompte E, Aplin K, Denys C, Catzeflis F, Chades M, Chevret P: *Experimental evidence for reduced phylogenetic diversity in Asia* 2005, 51:719-729.

35. Xia X, LeDuc J, Chu Y, Schmaljohn C: *Phylogenetic analyses of virus isolates in the genus Hantavirus, family Bunyaviridae*. *Virology* 1994, 193:205-217.

36. Hugot JP, Payunina A, Herbreteau V, Nemirov K, Laakkonen L, Lundkvist A, Susputnamgong Y, Herndon H, Pysynin A: *Genetic analysis of rats* 2006, 41:51-524.

37. Xia X, LeDuc J, Chu Y, Schmaljohn C: *Phylogenetic analyses of virus isolates in the genus Hantavirus, family Bunyaviridae*. *Virology* 1994, 193:205-217.

38. Forman S, Hungerford N, Yamakawa M, Yanase T, Tsai HJ, Joo YS, Yang DK, Supputamongkol Y, Henttonen H, Plyusnin A: *Brachycaudus* and *Mictophomyia*: from evolutionary ecology to management. *Experimental evidence for reduced phylogenetic diversity in Asia* 2005, 51:719-729.

39. Xia X, LeDuc J, Chu Y, Schmaljohn C: *Phylogenetic analyses of virus isolates in the genus Hantavirus, family Bunyaviridae*. *Virology* 1994, 193:205-217.

40. Forman S, Hungerford N, Yamakawa M, Yanase T, Tsai HJ, Joo YS, Yang DK, Supputamongkol Y, Henttonen H, Plyusnin A: *Brachycaudus* and *Mictophomyia*: from evolutionary ecology to management. *Experimental evidence for reduced phylogenetic diversity in Asia* 2005, 51:719-729.

41. Xia X, LeDuc J, Chu Y, Schmaljohn C: *Phylogenetic analyses of virus isolates in the genus Hantavirus, family Bunyaviridae*. *Virology* 1994, 193:205-217.

42. Forman S, Hungerford N, Yamakawa M, Yanase T, Tsai HJ, Joo YS, Yang DK, Supputamongkol Y, Henttonen H, Plyusnin A: *Brachycaudus* and *Mictophomyia*: from evolutionary ecology to management. *Experimental evidence for reduced phylogenetic diversity in Asia* 2005, 51:719-729.

43. Xia X, LeDuc J, Chu Y, Schmaljohn C: *Phylogenetic analyses of virus isolates in the genus Hantavirus, family Bunyaviridae*. *Virology* 1994, 193:205-217.

44. Forman S, Hungerford N, Yamakawa M, Yanase T, Tsai HJ, Joo YS, Yang DK, Supputamongkol Y, Henttonen H, Plyusnin A: *Brachycaudus* and *Mictophomyia*: from evolutionary ecology to management. *Experimental evidence for reduced phylogenetic diversity in Asia* 2005, 51:719-729.

45. Xia X, LeDuc J, Chu Y, Schmaljohn C: *Phylogenetic analyses of virus isolates in the genus Hantavirus, family Bunyaviridae*. *Virology* 1994, 193:205-217.

46. Forman S, Hungerford N, Yamakawa M, Yanase T, Tsai HJ, Joo YS, Yang DK, Supputamongkol Y, Henttonen H, Plyusnin A: *Brachycaudus* and *Mictophomyia*: from evolutionary ecology to management. *Experimental evidence for reduced phylogenetic diversity in Asia* 2005, 51:719-729.
55. Rutschmann F: Bayesian molecular dating using PAML/MULTIDIVTIME. A step-by-step manual. 2005 [http://statgen.ncsu.edu/thorne/multidivtime.html]. Version 1.4

56. Télédchéa F, Bermillon J, Duffraisse M, Laudet V, Hänni C: Molecular identification of vertebrate species by oligonucleotide microarray in food and forensic samples. J Appl Ecol 2008, 45:967-975.

57. Pagès M, Desse-Berset N, Brosse L, Hänni C, Berrebi P: Historical presence of the sturgeon Acipenser sturio in the Rhône basin determined by the analysis of ancient DNA cytochrome b sequences. Conserv Genet 2009, 10:217-224.

58. Hughes S, Hayden TJ, Douady CJ, Tougaard C, Germonpré M, Stuart A, Lbova L, Carden RF, Hänni C, Say L: Molecular phylogeny of the extinct giant deer, Megaloceros giganteus. Mol Phylogenet Evo 2006, 40:285-291.

59. Gilbert MT, Bandelt HJ, Hofreiter M, Barnes I: Assessing ancient DNA studies. Trends Ecol Evo 2005, 20:541-544.

60. Rohland N, Hofreiter M: Ancient DNA extraction from bones and teeth. Nat Protoc 2007, 2:1756-1762.

61. Sarkar I, Planet P, DeSalle R: CAOS Software for use in character based DNA barcoding. Mol Ecol Resour 2008, 8:1256-1259.

62. Hofreiter M, Jaenicke V, Serre D, Haeseler Av A, Pääbo S: DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 2001, 29:4793-4799.

63. Gilbert MT, Hansen AJ, Willerslev E, Lunde D, Aplin K: DNA barcoding from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. BMC Evolutionary Biology 2010, 10:184