POINCARÉ SERIES OF MONOMIAL RINGS

ALEXANDER BERGLUND

Abstract. Let k be a field, let I be an ideal generated by monomials in the polynomial ring $k[x_1, \ldots, x_t]$ and let $R = k[x_1, \ldots, x_t]/I$ be the associated monomial ring. The k-vector spaces $\text{Tor}^R_i(k, k)$ are \mathbb{N}_t-graded. We derive a formula for the multigraded Poincaré series of R,

$$P_R^k(x, z) = \sum_{i \geq 0, \alpha \in \mathbb{N}_t} \dim_k \text{Tor}_{i, \alpha}^R(k, k)x^\alpha z^i,$$

in terms of the homology of certain simplicial complexes associated to subsets of the minimal set of generators for I. The homology groups occurring in the formula can be interpreted as the homology groups of lower intervals in the lattice of saturated subsets of the generators for I.

1. Introduction

Let I be an ideal generated by monomials in the polynomial ring $Q = k[x] = k[x_1, \ldots, x_t]$ over some field k and let $R = Q/I$ be the associated monomial ring. The \mathbb{N}_t-grading of Q assigning the degree $\alpha = (\alpha_1, \ldots, \alpha_t)$ to the monomial $x_1^{\alpha_1} \cdots x_t^{\alpha_t}$ is inherited by R and by $k \cong Q/(x)$. Thus the k-vector space $\text{Tor}_i^R(k, k)$ can be equipped with an \mathbb{N}_t-grading for each i. The formal power series

$$P_R^k(x, z) = \sum_{i \geq 0, \alpha \in \mathbb{N}_t} \dim_k \text{Tor}_{i, \alpha}^R(k, k)x^\alpha z^i \in \mathbb{Z}[x_1, \ldots, x_t, z]$$

is called the multigraded Poincaré series of R. It is proved by Backelin in [3] that this series is rational of the form

$$P_R^k(x, z) = \prod_{i=1}^t (1 + x_i z) \frac{b_R(x, z)}{b_R(x, z)},$$

for a polynomial $b_R(x, z) \in \mathbb{Z}[x_1, \ldots, x_t, z]$.

In this paper we derive a formula for $b_R(x, z)$ in terms of the homology of certain simplicial complexes Δ_S associated to subsets S of the minimal set of generators, M_I, for I.

Sets of monomials are considered as undirected graphs by letting edges go between monomials having non-trivial common factors. Denote by $c(S)$ the number of connected components of a monomial set S. If S is a finite set of monomials let m_S denote the least common multiple of all elements of S.

Given a pair $S \subseteq M$ of monomial sets, S is called saturated in M if for all $m \in M$ and all connected subsets T of S, m divides m_T only if $m \in S$. Denote by $K(M)$ the set of non-empty saturated subsets of M.

1991 Mathematics Subject Classification. 13D40; Secondary: 13D02, 13D07.
If M is a monomial set and $M = M_1 \cup \ldots \cup M_r$ is its decomposition into connected components, then Δ'_M is the simplicial complex with vertex set M and simplices
\[\{ S \subseteq M \mid m_S \neq m_M \text{ or } M_i \cap S \text{ disconnected for some } i \} . \]

If $H = \bigoplus_{i \in \mathbb{Z}} H_i$ is a graded vector space with H_i finite dimensional for each i, then denote $H(z) = \sum_{i \in \mathbb{Z}} \dim H_i z^i \in \mathbb{Z}[z^{-1}, z]$.

After these explanations we can state the main result.

Theorem 1. Let k be any field. Let I be an ideal in $Q = k[x_1, \ldots, x_t]$ generated by monomials of degree at least 2, and let M be its minimal set of generators. The denominator of the Poincaré series of $R = Q/I$ is given by
\[b_R(x, z) = 1 + \sum_{S \in K(M)} m_S(-z)^{c(S)+2} \bar{H}(\Delta'_S; k)(z), \]

In section 4 we will see that $\bar{H}(\Delta'_S; k)$ can be interpreted as the reduced homology of the open interval $(0, S)$ in the set $K(M)$ partially ordered by inclusion.

Theorem 1 has the following corollary, which gives a solution to a problem posed by Avramov in [2]. It improves the bound of the z-degree of $b_R(x, z)$ given in [2] considerably.

Corollary 1. With notations as in Theorem 1
\[\deg b_R(z) \leq n + g, \]
where $b_R(z) = b_R(1, \ldots, 1, z)$, $n = |M|$ is the number of minimal generators of I and g is the largest size of a discrete subset of M. In particular
\[\deg b_R(z) \leq 2n, \]
with equality if and only if R is a complete intersection.

For a monomial set M, let L_M denote the set $\{m_S \mid S \subseteq M \}$ partially ordered by divisibility. If I is a monomial ideal, the set $L_I = L_{M_I}$ is called the lcm-lattice of I, cf. [10].

Let I and I' be monomial ideals in the polynomial rings $Q = k[x]$ and $Q' = k[x']$, respectively, where x and x' are finite sets of variables. One can introduce an equivalence relation on the class of monomial ideals by declaring that I and I' are equivalent if L_I and $L_{I'}$ are isomorphic as partially ordered graphs, that is, if there is a bijection $f : L_I \rightarrow L_{I'}$ which respects both structures. Note that we do not require that the ideals live in the same polynomial ring. This equivalence relation is studied by Gasharov, Peeva and Welker in [10], where they prove that the ring $R = Q/I$ is Golod if and only if $R' = Q'/I'$ is.

Avramov proves in [2] that, with R and R' as above, there is an isomorphism of graded Lie algebras
\[\pi^{\geq 2}(R) \cong \pi^{\geq 2}(R'). \]
Here $\pi(R)$ is the homotopy Lie algebra of R, cf. [1] chapter 10. A corollary of this result is the equality
\[b_R(z) = b_{R'}(z), \]
where $b_R(z) = b_R(1, \ldots, 1, z)$. Thus after fixing the coefficient field, $b_R(z)$ depends only on the equivalence class of I. This generalizes the fact that whether R is Golod or not depends only on the equivalence class of I.

As a consequence of our formula we obtain a slight strengthening of Avramov’s corollary, namely
Corollary 2. Let I and I' be ideals generated by monomials of degree at least 2 in the rings $k[x]$ and $k[x']$ respectively, where x and x' are finite sets of variables and k is a field. Let $R = k[x]/I$, $R' = k[x']/I'$. If $f : L_I \to L_{I'}$ is an isomorphism of partially ordered graphs, then

$$b_{R'}(x', z) = f(b_R(x, z)),$$

where $f(b_R(x, z))$ denotes the result of applying f to the coefficients of $b_R(x, z)$, regarding it as a polynomial in z.

Theorem 1 is first proved in the case when I is generated by square-free monomials and then a construction by Fröberg [9] is used to reduce the general case to this case. The starting point of the proof in the square-free case is the observation that the Poincaré series $P_{R}(x)$ is determined by a finite set of the multigraded deviations $\epsilon_{i,\alpha}(R)$ of the ring R. Then we use the fact that these multigraded deviations can be computed from a minimal model for R over the polynomial ring.

Section 2 contains definitions and conventions concerning relevant combinatorial notions. The facts about minimal models needed are given in section 3. The proof of Theorem 1 along with some auxiliary results, is presented in section 4. Section 5 contains the corollaries of the main result and their proofs. In the concluding remark of section 5 we note how Theorem 1 gives a combinatorial criterion for a monomial ring to be Golod.

2. COMBINATORICS

2.1. Simplicial complexes. A simplicial complex on a set V is a set Δ of subsets of V such that $F \subseteq G \in \Delta$ implies $F \in \Delta$. V is the vertex set of Δ. The i-faces or i-simplices of Δ are the elements in Δ of cardinality $i + 1$. We do not require that \{v\} $\in \Delta$ for all $v \in V$, but if a simplicial complex Δ is given without reference to a vertex set V, then it is assumed that $V = \cup \Delta$.

If Δ is a simplicial complex then $\tilde{C}(\Delta)$ will denote the augmented chain complex associated to Δ. Thus $\tilde{C}_i(\Delta)$ is the free abelian group on the i-faces of Δ, \emptyset being considered as the unique (-1)-face, and $\tilde{C}(\Delta)$ is equipped with the standard differential of degree -1. Therefore

$$H_i(\tilde{C}(\Delta)) = \tilde{H}_i(\Delta).$$

As usual, if G is an abelian group, then $	ilde{C}(\Delta; G) = \tilde{C}(\Delta) \otimes G$ and $\tilde{H}_i(\Delta; G) = H_i(\tilde{C}(\Delta; G))$.

The Alexander dual of a simplicial complex Δ with vertices V is the complex

$$\Delta^\vee = \{F \subseteq V \mid V - F \not\in \Delta\}.$$

The join of two complexes Δ_1, Δ_2 with disjoint vertex sets V_1, V_2 is the complex with vertex set $V_1 \cup V_2$ and faces

$$\Delta_1 \ast \Delta_2 = \{F_1 \cup F_2 \mid F_1 \in \Delta_1, F_2 \in \Delta_2\}.$$

With Δ_1 and Δ_2 as above, we define what could be called the dual join of them:

$$\Delta_1 \cdot \Delta_2 = (\Delta_1^\vee \ast \Delta_2^\vee)^\vee.$$

Thus $\Delta_1 \cdot \Delta_2$ is the simplicial complex with vertex set $V_1 \cup V_2$ and simplices

$$\{F \subseteq V_1 \cup V_2 \mid F \cap V_1 \in \Delta_1 \text{ or } F \cap V_2 \in \Delta_2\}.$$
We will now briefly review the effects of these operations on the homology groups when the coefficients come from a field k.

If $|V| = n$, then (\text{Lemma 5.5.3})

$$\widetilde{H}_i(\Delta; k) \cong \widetilde{H}_{n-i-3}(\Delta^\vee; k).$$

If C is a chain complex, then sC denotes the shift of C; $(sC)_i = C_{i-1}$. Because of the convention that a set with d elements has dimension $d-1$ considered as a simplex there is a shift in the following formula:

$$\widetilde{H}(\Delta_1 \ast \Delta_2; k) \cong s(\widetilde{H}(\Delta_1; k) \otimes_k \widetilde{H}(\Delta_2; k)).$$

If $H = \bigoplus_{i \in \mathbb{Z}} H_i$ is a graded vector space such that each H_i is of finite dimension, then let $H(z) = \sum_{i \in \mathbb{Z}} \dim H_i z^i$ be the generating function of H. The above isomorphisms of graded vector spaces can be interpreted in terms of generating functions. If Δ has n vertices, then

$$z^n \widetilde{H}(\Delta^\vee; k)(z^{-1}) = z^n \widetilde{H}(\Delta; k)(z),$$

and if $\Delta = \Delta_1 \ast \Delta_2$, then

$$\widetilde{H}(\Delta; k)(z) = z \widetilde{H}(\Delta_1; k)(z) \cdot \widetilde{H}(\Delta_2; k)(z).$$

From these two identities and an induction one can work out the following formula. If $\Delta = \Delta_1 \ldots \Delta_r$, then

$$\widetilde{H}(\Delta; k)(z) = z^{2r-2} \widetilde{H}(\Delta_1; k)(z) \ldots \widetilde{H}(\Delta_r; k)(z).$$

2.2. Sets of monomials.

Let x_1, \ldots, x_t be variables. If $\alpha \in \mathbb{N}^t$, then we write x^α for the monomial $x_1^{\alpha_1} \cdots x_t^{\alpha_t}$. The multidegree of x^α is $\deg(x^\alpha) = \alpha$. If $\alpha \in \{0, 1\}^t$, then both α and x^α are called square-free.

To a set M of monomials we associate an undirected graph, with vertices M, whose edges go between monomials having a non-trivial common factor. This is the graph structure referred to when properties such as connectedness et c., are attributed to monomial sets. Thus, for instance, a monomial set is called discrete if the monomials therein are pairwise without common factors. By $D(M)$ we denote the set of non-empty discrete subsets of M. A connected component of M is a maximal connected subset. Any monomial set M has a decomposition into connected components $M = M_1 \cup \ldots \cup M_r$, and we let $c(M) = r$ denote the number of such.

If I is an ideal in a polynomial ring generated by monomials there is a uniquely determined minimal set of monomials generating I. This minimal generating set, denoted M_I, is characterized by being an antichain, that is, for all $m, n \in M_I$, $m \parallel n$ implies $m = n$.

If S is a finite set of monomials, then m_S denotes the least common multiple of all elements of S. By convention $m_\emptyset = 1$. The set $L_M = \{m_S \mid S \subseteq M\}$ partially ordered by divisibility is a lattice with lcm as join, called the lcm-lattice of the set M. If I is a monomial ideal, then $L_I := L_{M_I}$ is called the lcm-lattice of I.

Remark: The gcd-graph of I, studied in [22], is the complement of the graph L_I.

If M, N are two sets of monomials then MN denotes the set of those monomials in M which divide some monomial in N. Write $M_m = M_{\{m\}}$, and $M_a = M_{P_a}$.

Let S be a subset of a monomial set M. The saturation of S in M is the set $\bar{S} = MN$, where $N = \{m_{S_1}, \ldots, m_{S_r}\}$ if S_1, \ldots, S_r are the connected components of S. Clearly $S \subseteq \bar{S}$, and S is called saturated in M if equality holds. Equivalently, S is saturated in M if for all $m \in M$, $m \parallel m_T$ implies $m \in S$ if T is a connected subset
of \(S \). Clearly \(S \) is saturated in \(M \) if and only if all the connected components of \(S \) are. The set of saturated subsets of \(M \) is denoted \(\bar{K}(M) \), and the set of non-empty such subsets is denoted \(K(M) \).

Two monomial sets \(M, N \) are called equivalent if there is an isomorphism of partially ordered sets \(f : L_M \rightarrow L_N \) which is also an isomorphism of graphs. Such a map \(f \) will be called an \textit{equivalence}.

To a monomial set \(M \) we associate a simplicial complex \(\Delta_M \), with vertex set \(M \) and faces

\[
\{ S \subseteq M \mid m_S \neq m_M \text{ or } S \text{ disconnected} \}.
\]

We state again the definition of the simplicial complex \(\Delta'_M \), given in the introduction. Let \(M = M_1 \cup \ldots \cup M_r \) be the decomposition of \(M \) into its connected components. The complex \(\Delta'_M \) has vertex set \(M \) and faces

\[
\{ S \subseteq M \mid m_S \neq m_M \text{ or } M_i \cap S \text{ disconnected for some } i \}.
\]

Note that

\[
\Delta'_M = \Delta_{M_1} \cdot \ldots \cdot \Delta_{M_r}.
\]

Lemma 1. Let \(M \) and \(N \) be antichains of monomials. An equivalence \(f : L_M \rightarrow L_N \) induces a bijection \(K(M) \rightarrow K(N) \), where \(S \in K(M) \) is mapped to \(f(S) \in K(N) \). Furthermore, for every \(S \subseteq M \), \(S \) and \(f(S) \) are isomorphic as graphs and the complexes \(\Delta'_S, \Delta'_{f(S)} \) are isomorphic.

Proof. If \(M \) is an antichain, then \(L_M \) is atomic with atoms \(M \). An isomorphism of lattices maps atoms to atoms, so \(f \) restricts to a graph isomorphism \(M \rightarrow N \) and hence gives rise to a bijection of subgraphs of \(M \) to isomorphic subgraphs of \(N \), which clearly maps saturated sets to saturated sets. Since the definition of \(\Delta'_S \) is phrased in terms of the graph structure of \(S \) and on the lattice structure of \(L_S \subseteq L_M \), it is clear that \(\Delta'_S \cong \Delta'_{f(S)} \) for any subset \(S \) of \(M \). \(\square \)

If \(k \) is a field and \(M \) is a monomial set in the variables \(x_1, \ldots, x_t \) then \(R = k[x_1, \ldots, x_t]/(M) \) is the monomial ring associated to \(M \). Monomial ideals are homogeneous with respect to the multigrading of \(k[x_1, \ldots, x_t] \), so monomial rings inherit this grading.

3. \(\mathbb{N}^t \)-graded Models and Deviations

In this section we will collect and adapt to the \(\mathbb{N}^t \)-graded situation some well known results on models of commutative rings. There is no claim of originality. Our main reference is \(\text{[1]} \) chapter 7.2. Inspiration comes also from the sources \(\text{[2]} \) and \(\text{[7]} \), where analogous but not directly applicable results can be found.

The notation \(|x| \) refers to the homological degree of an element \(x \). We use \(\deg(x) \) to denote the multidegree of \(x \).

3.1. Deviations

Let \(R = Q/I \), where \(I \) is a monomial ideal in \(Q \). Recall that the \textit{ith deviation}, \(\epsilon_i = \epsilon_i(R) \), of the ring \(R \) can be defined as the number of variables adjoined in degree \(i \) in an acyclic closure, \(R(X) \), of \(k \) over \(R \), cf. \(\text{[1]} \) Theorem 7.1.3. See \(\text{[1]} \) section 6.3 for the construction of acyclic closures. The ring \(R \) is \(\mathbb{N}^t \)-graded and \(k \) is an \(\mathbb{N}^t \)-graded \(R \)-module, and one can show that there is a unique \(\mathbb{N}^t \)-grading on the acyclic closure \(R(X) \) which is respected by the differential. One may therefore introduce \(\mathbb{N}^t \)-graded deviations

\[
\epsilon_{i, \alpha} = | \{ x \in X \mid |x| = i, \deg(x) = \alpha \} |.
\]
It is clear that $\epsilon_{i,\alpha} = 0$ if $|\alpha| < i$.

By the general theory, $R(X)$ is a minimal resolution of k, and hence $R(X) \otimes_R k = H(R(X) \otimes_R k)$ is isomorphic as a multigraded vector space to $\text{Tor}^R(k, k)$. This yields a product representation of the multigraded Poincaré series

$$P_k^R(x, z) = \prod_{i \geq 1, \alpha \in \mathbb{N}} \frac{(1 + x^\alpha z^{2i-1})^{\epsilon_{2i-1, \alpha}}}{(1 - x^\alpha z^{2i})^{\epsilon_{2i, \alpha}}}.$$

It is a fundamental result that the deviations ϵ_i can be computed from a minimal model of R over Q, cf. \cite{1} Theorem 7.2.6. Only trivial modifications are required in order to show that the N^i-graded deviations $\epsilon_{i, \alpha}$ can be computed from an N^i-graded minimal model of R over Q. For this reason, we will need a few facts about minimal models.

3.2. Free dg-algebras

Let $V = \bigoplus_{i \geq 0} V_i$ be a graded vector space over k such that $\dim_k V_i < \infty$ for each i. We denote by ΛV the free graded commutative algebra on V, that is,

$$\Lambda V = \text{exterior algebra}(V_{\text{odd}}) \otimes_k \text{symmetric algebra}(V_{\text{even}}).$$

Denote by (V) the ideal generated by V in ΛV. A homomorphism $f : AV \to \Lambda V$ of graded algebras with $f(V) \subseteq (W)$ induces a linear map $Lf : V \to W$, called the linear part of f, which is defined by the requirement $f(v) - Lf(v) \in (W)^2$ for all $v \in V$.

If x_1, \ldots, x_t is a basis for V_0, then $\Lambda V = Q \otimes_k \Lambda(V_+)$, where $Q = k[x_1, \ldots, x_t]$ and V_+ is the sum of all V_i for positive i. Therefore ΛV may be regarded as a Q-module and each $(\Lambda V)_n$ is a finitely generated free Q-module. Let $m \subseteq Q$ be the maximal ideal generated by V_0 in Q. Note that $(V) = (V_+) + m$ as vector spaces. The following basic lemma is a weak counterpart of Lemma 14.7 in \cite{2} and of Lemma 1.8.7 in \cite{3}.

Lemma 2. Let $f : \Lambda U \to \Lambda V$ be a homomorphism of graded algebras such that $f_0 : \Lambda(U_0) \to \Lambda(V_0)$ is an isomorphism and the linear part, $Lf : U \to V$, is an isomorphism of graded vector spaces. Then f is an isomorphism.

Proof. Identify $Q = \Lambda(U_0) = \Lambda(V_0)$ via f_0. Since Lf is an isomorphism, ΛU and ΛV are isomorphic. Thus to show that f is an isomorphism it is enough to show that $f_n : (\Lambda U)_n \to (\Lambda V)_n$ is surjective in each degree n, because f_n is a map between finitely generated isomorphic Q-modules. We do this by induction. The map f_0 is surjective by assumption. Let $n \geq 1$ and assume that f_i is surjective for every $i < n$. Then since Lf is surjective we have

$$(\Lambda V)_n \subseteq f((\Lambda U)_n) + ((V_+)^2)_n + m(\Lambda V)_n.$$

$((V_+)^2)_n$ is generated by products vw, where $|v|, |w| < n$, so by induction $((V_+)^2)_n \subseteq f((\Lambda U)_n)$. Hence

$$(\Lambda V)_n \subseteq f((\Lambda U)_n) + m(\Lambda V)_n.$$

$(\Lambda V)_n$ and $f((\Lambda U)_n)$ are graded Q-modules, so it follows from the graded version of Nakayama’s lemma that $(\Lambda V)_n = f((\Lambda U)_n)$. \hfill \square

By a free dg-algebra, we will mean a dg-algebra of the form $(\Lambda V, d)$, for some graded vector space V, where d is a differential of degree -1 satisfying $dV \subseteq (V)$. The linear part Ld of the differential d on ΛV is a differential on V, and will be
denoted \(d_0 \). A free dg-algebra \((\Lambda V, d)\) is called \textit{minimal} if \(dV \subseteq (V)^2 \). Thus \((\Lambda V, d)\) is minimal if and only if \(d_0 = 0 \).

If \((\Lambda V, d)\) is a free dg-algebra which is \(\mathbb{N}^-\)graded, that is, there is a decomposition

\[
(\Lambda V)_i = \bigoplus_{\alpha \in \mathbb{N}^-} (\Lambda V)_{i,\alpha}
\]

such that \(d(\Lambda V)_{i,\alpha} \subseteq (\Lambda V)_{i-1,\alpha} \), then denote

\[
H_{i,\alpha}(\Lambda V, d) = H_i((\Lambda V)_{\alpha}, d)
\]

The \(\mathbb{N}^-\)-grading is called non-trivial if \(\deg(v) \neq 0 \) for all \(v \in V \).

The following is a counterpart of Lemma 3.2.1 in [11], but taking the \(\mathbb{N}^-\)-grading into account. It tells us how to ‘minimize’ a given dg-algebra.

\textbf{Lemma 3.} Let \((\Lambda V, d)\) be a non-trivially \(\mathbb{N}^-\)-graded dg-algebra with \(dV_1 \subseteq m^2 \). Then there exists an \(\mathbb{N}^-\)-graded minimal dg-algebra \((\Lambda H, d')\) with \(H = H(V, d_0) \), together with a surjective morphism of dg-algebras

\[
(\Lambda V, d) \rightarrow (\Lambda H, d')
\]

which is a quasi-isomorphism if \(k \) has characteristic 0. For arbitrary \(k \) we have

\[
H_i(\Lambda V, d) \cong H_i(\Lambda H, d')
\]

for all square-free \(\alpha \in \mathbb{N}^- \) and all \(i \).

\textit{Proof.} Let \(W \) be a graded subspace of \(V \) such that \(V = \ker d_0 \oplus W \) and similarly split \(\ker d_0 \) as \(H \oplus \im d_0 \) (hence \(H \cong H(V, d_0) \)). Note that since \(dV_1 \subseteq m^2 \), \(W_0 = W_1 = 0 \). \(d_0 \) induces an isomorphism \(W \rightarrow \im d_0 \), so we may write

\[
V = H \oplus W \oplus d_0(W).
\]

Consider the graded subspace \(U = H \oplus W \oplus dW \) of \(\Lambda V \). The induced homomorphism of graded algebras

\[
f : \Lambda U \rightarrow \Lambda V
\]

is an isomorphism by Lemma 2, because \(f_0 \) is the identity on \(\Lambda H \) and the linear part of \(f \) is the map \(l_H \oplus l_W \oplus g \), where \(g : dW \rightarrow d_0(W) \) is the isomorphism taking an element to its linear part (isomorphism precisely because \(\ker d_0 \cap W = 0 \)). Thus we may identify \(\Lambda U \) and \(\Lambda V \) via \(f \). In particular \(f^{-1} df \) is a differential on \(\Lambda U \), which we also will denote by \(d \), and \((\Lambda U, d)\) is a dg-algebra in which \(\Lambda(W \oplus dW) \) is a dg-subalgebra.

The projection \(U \rightarrow H \) induces an epimorphism of graded algebras

\[
\phi : \Lambda U \rightarrow \Lambda H
\]

with kernel \((W \oplus dW)\Lambda U\), the ideal generated by \(W \oplus dW \) in \(\Lambda U \). Define a differential \(d' \) on \(\Lambda H \) by

\[
d'(h) = \phi d(h),
\]

where \(\iota \) is induced by the inclusion \(H \subseteq U \). With this definition \(\phi \) becomes a morphism of dg-algebras and it is evident that \((\Lambda H, d')\) is minimal. Furthermore \(H(H, d'_0) = H \cong H(V, d_0) \) by definition.

Consider the increasing filtration

\[
F_p = (\Lambda H)_{\leq p} \cdot (\Lambda(W \oplus dW)).
\]
Obviously $\cup F_p = \Lambda U$, and $dF_p \subseteq F_p$ since d preserves $\Lambda(W \oplus dW)$. The associated first quadrant spectral sequence is convergent, with

$$E^2_{p,q} = H_p(\Lambda H, d') \otimes_k H_q(\Lambda(W \oplus dW), d) \implies H_{p+q}(\Lambda U, d).$$

Since $W_0 = W_1 = 0$, we have $H_0(\Lambda(W \oplus dW), d) = k$, and therefore $H_0(\Lambda H, d') = E^2_{0,0} = E^3_{0,0} = \cdots = E_{0,0}^{\infty} = H_0(\Lambda U, d) = H_0(\Lambda V, d)$. If the field k has characteristic zero, then $(\Lambda(W \oplus dW), d)$ is acyclic, so in this case the spectral sequence collapses, showing that $H(\Lambda H, d') = H(\Lambda V, d)$. However, $\Lambda(W \oplus dW)$ need not be acyclic in positive characteristic p — if $x \in W$ is of even degree, then x^{np} and $x^{np-1}dx$ represent non-trivial homology classes for all $n \geq 1$. Recall however that we are working with \mathbb{N}^t-graded objects and maps. Since we have a non-trivial \mathbb{N}^t-grading, $\Lambda(W \oplus dW)|_{\alpha}$ is acyclic for square-free α, simply because no elements of the form x^a, for $x \in (W \oplus dW), a \in \Lambda(W \oplus dW), n > 1$, are there. In particular the dissidents x^{np} and $x^{np-1}dx$ live in non-square-free degrees. Hence the spectral sequence collapses in square-free degrees, regardless of characteristic, and so

$$H_{i,\alpha}(\Lambda H, d') \cong H_{i,\alpha}(\Lambda V, d),$$

for all square-free α and all i. □

3.3. Models. Let $Q = k[x_1, \ldots, x_t]$ and let $R = Q/I$ for some ideal $I \subseteq \mathbb{m}^2$. A model for the ring R over Q is a free dg-algebra $(\Lambda V, d)$ with $(\Lambda V)_0 = Q$, such that $H_0(\Lambda V, d) = R$ and $H_i(\Lambda V, d) = 0$ for all $i > 0$. In particular a model for R over Q is a free resolution

$$\cdots \to (\Lambda V)_n \to (\Lambda V)_{n-1} \to \cdots \to (\Lambda V)_1 \to Q \to R \to 0$$

of R as a Q-module. A model $(\Lambda V, d)$ is called minimal if it is a minimal dg-algebra. A minimal model for R over Q always exists, and is unique up to (non-canonical) isomorphism, cf. [1] Proposition 7.2.4.

If R is \mathbb{N}^t-graded, one can ask for the minimal model of R to be \mathbb{N}^t-graded.

Lemma 4. Let $(\Lambda V, d)$ be a minimal \mathbb{N}^t-graded dg-algebra with $H_0(\Lambda V, d) = R$, and assume that

$$H_{i,\alpha}(\Lambda V, d) = 0$$

for all $i > 0$ and all square-free $\alpha \in \mathbb{N}^t$. Then $(\Lambda V, d)$ can be completed to a minimal model $(\Lambda W, d)$ of R such that $W_\alpha = V_\alpha$ for all square-free α.

Proof. A minimal model can be constructed inductively, by successively adjoining basis elements to V in order to kill homology, cf. [1] propositions 2.1.10 and 7.2.4 for details. Since ΛV is \mathbb{N}^t-graded, we can do this one multidegree at a time. Adding a basis element of multidegree α will not affect the part of the algebra below α. Since $H_i((\Lambda V)_\alpha) = 0$ for all $i > 0$ when α is square-free, we do not need to add variables of square-free multidegrees in order to kill homology. Thus, applying this technique, we get a minimal model ΛW of R, where W is a vector space obtained from V by adjoining basis elements of non-square-free degrees. In particular $W_\alpha = V_\alpha$ for all square-free α. □

Taking \mathbb{N}^t-degrees into account, it is not difficult to modify the proof of Theorem 7.2.6 in [1] to obtain the following result:
Lemma 5. Let \((AW, d)\) be an \(\mathbb{N}^t\)-graded minimal model for \(R\) over \(Q\). Then the \(\mathbb{N}^t\)-graded deviations \(\epsilon_{i, \alpha}\) of \(R\) are given by
\[
\epsilon_{i, \alpha} = \dim_k W_{i-1, \alpha},
\]
for \(i \geq 1, \alpha \in \mathbb{N}^t\).

\[\square\]

4. Poincaré series

This section is devoted to the deduction of Theorem 1.

Theorem 1. Let \(k\) be any field. Let \(I\) be an ideal in \(Q = k[x_1, \ldots, x_t]\) generated by square-free monomials of degree at least 2, and let \(M\) be its minimal set of generators. The denominator of the Poincaré series of \(R = Q/I\) is given by
\[
b_R(x, z) = 1 + \sum_{S \in K(M)} m_S(-z)^{\epsilon(S)+2} \tilde{H}(\Delta_S; k)(z).
\]

Some intermediate results will be needed before we can give the proof. Retain the notations of the theorem throughout this section. We will frequently suppress the variables and write \(b_R = b_R(x, z)\) and \(P_R^k = P_R^k(x, z)\).

4.1. An observation. Assume to begin with that the ideal \(I\) is minimally generated by square-free monomials \(M = \{m_1, \ldots, m_n\}\) of degree at least 2. If we are given a subset \(S = \{m_i_1, \ldots, m_i_r\}\) of \(M\), where \(i_1 < \ldots < i_r\), then set \(\text{sgn}(m_{i_j}, S) = (-1)^{j-1}\). By Backelin [3], the Poincaré series of \(R\) is rational of the form
\[
P_R^k(x, z) = \prod_{i=1}^r (1 + x_i z) b_R(x, z),
\]
where \(b_R(x, z)\) is a polynomial with integer coefficients and \(x_i\)-degree at most 1 for each \(i\). We start with the following observation made while scrutinizing Backelin’s proof.

Lemma 6. If \(I\) is generated by square-free monomials, then the polynomial \(b_R\) is square-free with respect to the \(x_i\)-variables. Moreover \(b_R\) depends only on the deviations \(\epsilon_{i, \alpha}\) for square-free \(\alpha\). In fact, there is a congruence modulo \((x_1^2, \ldots, x_t^2)\):
\[
b_R \equiv \prod_{\alpha \in \{0, 1\}^t} (1 - x^\alpha p_\alpha(z)),
\]
where \(p_\alpha(z)\) is the polynomial \(p_\alpha(z) = \sum_{i=1}^{\lvert \alpha \rvert} \epsilon_{i, \alpha} z^i\).

Proof. Note that \(\epsilon_{1, e_i} = 1\) and \(\epsilon_{1, \alpha} = 0\) for \(\alpha \neq e_i (i = 1, \ldots, t)\). Hence using the product representation [3] and reducing modulo \((x_1^2, \ldots, x_t^2)\) we get (note that \((1 + mp(z))^{\alpha} \equiv 1 + nmp(z)\) for any integer \(n\) and any square-free monomial \(m\)):
\[
b_R = \prod_{i \geq 1} (1 - x_{\alpha} z^{2i})^{\epsilon_{2i, \alpha}}
\]
\[
= \prod_{i \geq 1} (1 - x_{\alpha} (\epsilon_{2i-1, \alpha} z^{2i-1} + \epsilon_{2i, \alpha} z^{2i}))
\]
\[
= \prod_{i \geq 1} (1 - x_{\alpha} p_\alpha(z)),
\]
product taken over all square-free \(\alpha\), where \(p_\alpha(z) \in \mathbb{Z}[z]\) is the polynomial \(p_\alpha(z) = \sum_{i=1}^{\lvert \alpha \rvert} \epsilon_{i, \alpha} z^i\). \[\square\]
This gives a formula for b_R in terms of the square-free deviations $\epsilon_{i,\alpha}$. Therefore we are interested in the square-free part of an \mathbb{N}^t-graded minimal model of R over Q.

4.2. Square-free deviations

In the square-free case, there is a nice interpretation of the square-free deviations in terms of simplicial homology. Recall the definition of Δ_M found in section 2.2. M_α denotes the set of monomials in M which divide x^α.

Theorem 2. Assume that I is minimally generated by a set M of square-free monomials of degree at least 2. Let α be square-free and let $i \geq 2$. If $x^\alpha \notin I_1$, then $\epsilon_{i,\alpha} = 0$, and if $x^\alpha \in I_1$ then

$$
\epsilon_{i,\alpha} = \dim_k \tilde{H}_{i-3}(\Delta_{M_\alpha}; k).
$$

The proof of this theorem depends on the construction of the square-free part of a minimal model for R, which we now will carry out.

Let C be the set of connected non-empty subsets of M and let V be the $\mathbb{N} \times \mathbb{N}^t$-graded vector space with basis $\theta \cup \{x_1, \ldots, x_t; |x_i| = 0, \deg(x_i) = \epsilon_i\}$, where

$$
Y = \{y_S \mid S \in C, |y_S| = |S|, \deg(y_S) = \deg(m_S)\}.
$$

If S is any subset of M and $S = S_1 \cup \ldots \cup S_r$ is its decomposition into connected components, then define the symbol $y_S \in \Lambda V$ by

$$
y_S = y_{S_1} \cdots y_{S_r}.
$$

It follows at once that $|y_S| = |S|$ and that $\deg(y_S) = \deg(m_S)$.

The differential d on ΛV is defined on the basis $y_S, S \in C$, by

$$
dy_S = \sum_{s \in S} \sgn(s, S) \frac{m_S}{m_S - \{s\}} y_{S - \{s\}},
$$

and is extended to all of ΛV by linearity and the Leibniz rule (and of course $dx_i = 0$). Note that it may happen that $y_{S - \{s\}}$ becomes decomposable as a product in the sum above. One verifies easily that the formula (5) remains valid for disconnected S. By definition d is of degree -1 and respects the \mathbb{N}^t-grading.

Clearly, we have $H_0(\Lambda V) = R$. Let $\alpha \in \mathbb{N}^t$ be square-free. Then the complex $(\Lambda V)_\alpha$ is isomorphic to the degree α-part of the Taylor complex on the monomials M (cf. 5). It is well-known that the Taylor complex is a resolution of R over Q, so in particular $H_i((\Lambda V)_\alpha) = 0$ for all $i > 0$. Since we assumed that the monomials m_i are of degree at least 2, we have $dV_i \subseteq m^2$. Therefore, by Lemma 3 there is a minimal \mathbb{N}^t-graded dg-algebra $(\Lambda H, d')$ such that $H \cong H(V, d_0)$, $H_0(\Lambda H, d') = H_0(\Lambda V, d) = R$ and

$$
H_{i,\alpha}(\Lambda H, d') = H_{i,\alpha}(\Lambda V, d) = 0,
$$

for all $i > 0$ and all square-free $\alpha \in \mathbb{N}^t$. Now, by Lemma 4 we can construct an \mathbb{N}^t-graded minimal model $(\Lambda W, d)$ of R, such that $W_\alpha = H_\alpha$ for all square-free α. This is all we need to know about the minimal model $(\Lambda W, d)$ in order to be able to prove Theorem 2.

Proof of Theorem 2. By Lemma 3 we get that

$$
\epsilon_{i,\alpha} = \dim_k W_{i-1,\alpha} = \dim_k H_{i-1,\alpha} = \dim_k H_{i-1,\alpha}(V, d_0),
$$

and this finishes the proof.
for square-free α. We will now proceed to give a combinatorial description of the complex $V = (V, d_0)$. V splits as a complex into its \mathbb{N}-graded components

$$V = \bigoplus_{\alpha \in \mathbb{N}} V_{\alpha}.$$

V_{α} is one-dimensional and concentrated in degree 0 for $i = 1, \ldots, t$. This accounts for the first deviations $c_{1,1} = 1$. If $|\alpha| > 1$, then V_{α} has basis y_{α} for $\alpha \in S$ in the set

$$C_{\alpha} = \{ S \subseteq M \mid m_S = x^{\alpha}, \text{ connected} \}.$$

In particular $V_{\alpha} = 0$ if $x^\alpha \not\in L_I$. The differential of V_{α} is given by

$$dy_{\alpha} = \sum_{s \in S} sgn(s, S)y_{s - \{s\}}.$$

Let Σ_{α} be the simplicial complex whose faces are all subsets of the set $M_{\alpha} = \{ m \in M \mid m \neq x^\alpha \}$, with orientation induced from the orientation $\{ m_1, \ldots, m_n \}$ of M. Define a map from the chain complex $\tilde{C}(\Sigma_{\alpha}; k)$ to the desuspended complex $s^{-1}V_{\alpha}$ by sending a face $S \subseteq M_{\alpha}$ to $s^{-1}y_{\alpha}$ if $S \subseteq C_{\alpha}$ and to 0 otherwise. In view of (7), this defines a morphism of complexes, which clearly is surjective. The kernel of this morphism is the chain complex associated to $\Delta_{M_{\alpha}}$, so we get a short exact sequence of complexes

$$0 \to \tilde{C}(\Delta_{M_{\alpha}}; k) \to \tilde{C}(\Sigma_{\alpha}; k) \to s^{-1}V_{\alpha} \to 0$$

Since Σ_{α} is acyclic, the long exact sequence in homology derived from the above sequence shows that $H_i(V_{\alpha}) \cong H_{i-2}(\Delta_{M_{\alpha}}; k)$. The theorem now follows from (8).

In terms of the polynomials $p_{\alpha}(z)$ the theorem may be stated as

$$p_{\alpha}(z) = z^3\tilde{H}(\Delta_{M_{\alpha}}; k)(z),$$

for $x^\alpha \in L_I$.

4.3. **Proof of Theorem**

Proof of Theorem

Square-free case. By Theorem 2, $p_{\alpha}(z) = 0$ unless $x^\alpha \in L_I$, in which case $p_{\alpha}(z) = z^3\tilde{H}(\Delta_{M_{\alpha}}; k)(z)$. But $\Delta_{M_{\alpha}}$ is contractible if M_{α} is disconnected, so $p_{\alpha}(z) = 0$ unless $x^\alpha \in cL_I$, where cL_I denotes the subset of L_I consisting of elements $l \neq 1$ such that M_l is connected.

Hence by Lemma 5

$$b_R \equiv \prod_{x^\alpha \in L_I} (1 - x^\alpha p_{\alpha}(z)) \mod (x_1^2, \ldots, x_t^2).$$

If we carry out the multiplication in the above formula and use that b_R is square-free with respect to the x_i-variables (by Lemma 5), we get the equality

$$b_R = 1 + \sum_{N \in D(cL_I)} \prod_{x^\alpha \in N} (-x^\alpha p_{\alpha}(z)) = 1 + \sum_{N \in D(cL_I)} m_N(-1)^{|N|} \prod_{x^\alpha \in N} p_{\alpha}(z)$$

(the identity $\prod_{x^\alpha \in N} x^\alpha = m_N$ holds because N is discrete). Using (8) the formula takes the form

$$b_R = 1 + \sum_{N \in D(cL_I)} m_N(-1)^{|N|} \prod_{x^\alpha \in N} z^3\tilde{H}(\Delta_{M_{\alpha}}; k)(z).$$
By (2) this may be written
\[b_R = 1 + \sum_{N \in D(cL_I)} m_N(-1)^{|N|}z^{|N|} + 2\tilde{H}(\Gamma; k)(z), \]
where \(\Gamma = \Delta_{M_{\alpha_1}} \cdots \Delta_{M_{\alpha_r}} \), if \(N = \{x^{\alpha_1}, \ldots, x^{\alpha_r}\} \). The point here is that
\(M_N = M_{\alpha_1} \cup \cdots \cup M_{\alpha_r} \) is the decomposition of \(M_N \) into its connected components:
any saturated subset \(S \) connected components. Then \(N = \{x^{\alpha_1}, \ldots, x^{\alpha_r}\} \). The point here is that
\(M_N = M_{\alpha_1} \cup \cdots \cup M_{\alpha_r} \) is the decomposition of \(M_N \) into its connected components:
this sets up a one-to-one correspondence between
to what we want:

By (2) this may be written
\[F(M) = 1 + \sum_{S \in K(M)} m_S(-z)^{c(S)} + 2\tilde{H}(\Delta'_S; k)(z), \]
when \(M \) is a set of monomials of degree at least 2. If \(I \) is a monomial ideal in
some polynomial ring \(Q \) over \(k \), then set \(F(I) = F(M_I) \). So far we have proved
that \(b_{Q/I} = F(I) \) whenever \(I \) is generated by square-free monomials. The claim of
Theorem 1 is that \(b_{Q/I} = F(I) \) for all monomial ideals \(I \).

Lemma 7. Let \(I \) and \(I' \) be equivalent monomial ideals, and let \(f: L_I \to L_{I'} \) be an
equivalence. Then
\[f(F(I)) = F(I'), \]
where \(f(F(I)) \) denotes the result of applying \(f \) to the coefficients \(m_S \) of \(F(I) \),
regarding it as a polynomial in \(z \).

Proof. By Lemma 1, \(f \) induces a bijection of \(K(M_I) \) onto \(K(M_{I'}) \), mapping \(S \) to
\(f(S) \), such that \(\Delta'_S \cong \Delta'_{f(S)} \) and \(c(S) = c(f(S)) \) for \(S \in K(M) \). Since \(f(m_S) = m_{f(S)} \) for all \(S \subseteq M_I \), the result follows. \(\square \)

Proof of Theorem 1 General case. We invoke the construction of Fröberg, [9] pp.
30, in order to reduce to the square-free case. Let \(I \) be any monomial ideal in
\(Q = k[x_1, \ldots, x_t] \), and let \(M = M_I \). Let \(d_i = \max_{m \in M} \deg_{x_i}(m) \). To each \(m \in M \)
we associate a square-free monomial \(m' \) in \(Q' = k[x_{i,j} \mid 1 \leq i \leq t, 1 \leq j \leq d_i] \) as follows: If \(m = x_1^{\alpha_1} \cdots x_t^{\alpha_t} \) then
\[m' = \prod_{i=1}^{t} \prod_{j=1}^{a_i} x_{i,j}. \]
The set \(M' = \{m' \mid m \in M\} \) minimally generates an ideal in \(Q' \), which we denote by
\(I' \). The map \(M' \to M, m' \mapsto m \), extends to a map \(f: L_{I'} \to L_I \) characterized by the
property that $x_{i,j}$ divides $m \in L_I$, if and only if $x_{i,j}^j$ divides $f(m)$. From this defining property it is easily seen that f is an equivalence. Therefore $f(F(I')) = F(I)$, by Lemma 7.

Let R and R' be the monomial rings associated to M and M' respectively. Using the technique of Lemma 7 it is easy to see that

$$b_R(x_1, \ldots, x_t, z) = b_{R'}(x_1, \ldots, x_t, x_1, x_2, \ldots, x_t, z),$$

that is,

$$b_R = f(b_{R'}).$$

But I' is generated by square-free monomials, so $b_{R'} = F(I')$, whence

$$b_R = f(b_{R'}) = f(F(I')) = F(I),$$

which proves Theorem 1 in general. □

5. Applications and remarks

We will here give the proofs of the corollaries to the main theorem and make some additional remarks.

Corollary 1. With notations as in Theorem 7

$$\deg b_R(z) \leq n + g,$$

where $b_R(z) = b_R(1, \ldots, 1, z)$, $n = |M_I|$ is the number of minimal generators of I and g is the independence number of M_I, i.e., the largest size of a discrete subset of M_I. In particular

$$\deg b_R(z) \leq 2n,$$

with equality if and only if R is a complete intersection.

Proof. If Δ is a simplicial complex with v vertices, then $\deg \bar{H}(\Delta; k)(z) \leq v - 2$, because either $\dim \Delta = v - 1$, in which case Δ is the $(v - 1)$-simplex and $\bar{H}(\Delta; k) = 0$, or else $\dim \Delta \leq v - 2$, in which case $\bar{H}_i(\Delta; k) = 0$ for $i > v - 2$. The simplicial complex Δ_S has $|S|$ vertices. Thus the z-degree of a general summand in the formula 11 for $b_R(x, z)$ is bounded above by $c(S) + 2 + |S| - 2 \leq g + n$, because the number of components of S can not exceed the independence number of M_I.

Since $g \leq n$ we get in particular that

$$\deg b_R(z) \leq 2n,$$

with equality if and only if M_I is discrete itself, which happens if and only if R is a complete intersection. □

Now that we know that R and R' below satisfy $b_R = F(I)$ and $b_{R'} = F(I')$, the next corollary is merely a restatement of Lemma 4.

Corollary 2. Let I and I' be ideals generated by monomials of degree at least 2 in the rings $k[\mathbf{x}]$ and $k[\mathbf{x}']$ respectively, where \mathbf{x} and \mathbf{x}' are finite sets of variables. Let $R = k[\mathbf{x}]/I$, $R' = k[\mathbf{x}']/I'$. If $f : L_I \to L_{I'}$ is an equivalence, then

$$b_{R'}(\mathbf{x}', z) = f(b_R(\mathbf{x}, z)),$$

where $f(b_R(\mathbf{x}, z))$ denotes the result of applying f to the coefficients of $b_R(\mathbf{x}, z)$, regarding it as a polynomial in z. □
Remark 1. Given formula (11), it is easy to reproduce the result, implicit in [8] and explicit in [5], that
\[b_R(x, z) = \sum_{S \subseteq M_I} (-1)^{|c(S)|} z^{|S| + c(S)} m_S, \]
when the Taylor complex on \(M_I \) is minimal. The Taylor complex is minimal precisely when \(m_T = m_S \) implies \(S = T \), for \(S, T \subseteq M_I \), i.e., when \(L_I \) is isomorphic to the boolean lattice of subsets of \(M_I \). In this case every non-empty subset \(S \) of \(M_I \) is saturated, because \(m | m_T \) implies \(m \in T \) for any \(T \subseteq M_I \), and \(\Delta'_S \) is a triangulation of the \((|S| - 2)\)-sphere, because \(m_S = m_M \) only if \(S = M \).

Remark 2. The set of saturated subsets of \(M \) constitutes a lattice with intersection as meet and the saturation of the union as join. For each \(m \in M \), the singleton \(\{m\} \) is saturated, and the set \(M' = \{\{m\} \mid m \in M\} \) is a cross-cut of the lattice \(\hat{K}(M) \), in the sense of [7], that is, it is a maximal antichain. A subset \(S \subseteq M' \) is said to span if its supremum in \(\hat{K}(M) \) is \(M \) and if its infimum is \(\emptyset \). The simplicial complex of subsets of \(M' \) that do not span can be identified with the complex
\[\Gamma_M = \{S \subseteq M \mid \tilde{S} \neq M\}. \]
Therefore, by [7] Theorem 3.1, there is an isomorphism
\[\text{H} (\Gamma_M) \cong \text{H} (\hat{K}(M)), \]
where \(\hat{K}(M) \) is the partially ordered set \(\hat{K}(M) - \{\emptyset, M\} \). As usual, the homology of a partially ordered set \(P \) is defined to be the homology of the simplicial complex of chains in \(P \).

Actually, one can check that \(\tilde{S} \neq M \) is equivalent to \(m_S \neq m_M \) or \(S \cap M_i \) disconnected for some connected component \(M_i \) of \(M \), so in fact we have an equality \(\Gamma_M = \Delta'_M \). Thus \(\Delta'_M \) computes the homology of \(\hat{K}(M) \). Moreover, if \(S \in \hat{K}(M) \) then \(\hat{K}(S) \) is equal to the sublattice \(\hat{K}(M)_{\leq S} = \{T \in \hat{K}(M) \mid T \subseteq S\} \) of \(\hat{K}(M) \). Therefore the homology groups occurring in (11) can be interpreted as the homology groups of the lower open intervals \(\hat{K}(S) = (\emptyset, S)_{\hat{K}(M)} \) of the lattice \(\hat{K}(M) \) and we may rewrite (11) as
\[b_R(x, z) = 1 + \sum_{S \in \hat{K}(M)} m_S (-z)^{c(S)} + 2^{|S|} \text{H} ((\emptyset, S)_{\hat{K}(M)}; k)(z). \]

This could be compared with the result of [10] that the Betti numbers of a monomial ring \(R = k[x_1, \ldots, x_t]/I \) can be computed from the homology of the lower intervals of the lcm-lattice, \(L_I \), of \(I \). Specifically, Theorem 2.1 of [10] can be stated as
\[P^Q_R(x, z) = 1 + \sum_{1 \neq m \in L_I} m z^2 \text{H} ((1, m)_{L_I}; k)(z). \]

Here \(P^Q_R(x, z) \) is the polynomial
\[P^Q_R(x, z) = \sum_{i \geq 0, \alpha \in \mathbb{N}^t} \dim_k \text{Tor}^{Q}_i (R, k)x^\alpha z^i. \]

The lattices \(\hat{K}(M) \) and \(L_M \) are not unrelated. There is a surjective morphism of join-semilattices from \(\hat{K}(M) \) to \(L_M \) sending \(S \) to \(m_S \), so \(L_M \) is always a quotient semilattice of \(\hat{K}(M) \). If the graph of \(M \) is complete, then the morphism is an isomorphism.
As a conclusion, we note how our formula gives a combinatorial criterion for when a monomial ring is Golod. Interesting sufficient combinatorial conditions have been found earlier, see for instance [12], but the author is not aware of any necessary condition which is formulated in terms of the combinatorics of the monomial generators.

Recall that \(R \) is called a \textit{Golod ring} if there is an equality of formal power series

\[
P_k^R(x, z) = \frac{\prod_{i=1}^{t}(1 + x_iz)}{1 - z(P^Q_R(x, z) - 1)}.
\]

In terms of the denominator polynomial the condition reads

\[b_R(x, z) = 1 - z(P^Q_R(x, z) - 1).\]

It is easily seen that \(S \) is saturated in \(M \) if and only if \(S \) is saturated in \(M_{ms} \).

Note also that \((1, m)_{LM} = L_{M_m} \setminus \{1, m\} =: L_{M_m}\). Therefore, after plugging the formulas (9) and (10) into (11) and equating the coefficients of each \(m \in LI \), we get a criterion for \(R \) to be a Golod ring as follows:

Call a monomial set \(N \) \textit{pre-Golod over} \(k \) if

\[
\tilde{H}(\bar{L}N, k)(z) = \sum_{S \in K(N) \atop m_S = m_N}^{} (-z)^{\epsilon(S)}H((\emptyset, S)_{K(N)}; k)(z).
\]

\textbf{Theorem 3.} Let \(k \) be a field and let \(I \) be a monomial ideal in \(k[x_1, \ldots, x_t] \) with minimal set of generators \(M \). Then the monomial ring \(R = k[x_1, \ldots, x_t]/I \) is Golod if and only if every non-empty subset of \(M \) of the form \(M_{m} \), with \(m \in LI \), is pre-Golod over \(k \).

\textbf{References}

1. L. L. Avramov, \textit{Infinite free resolutions}, Six lectures on commutative algebra (Bellaterra, 1996), Progr. Math., vol. 166, Birkhäuser, 1998, pp. 1–118.
2. \textit{Homotopy Lie algebras and Poincaré series of algebras with monomial relations}, Homology Homotopy Appl. 4 (2002), no. 2, 17–27, The Roos Festschrift, vol. 1.
3. J. Backelin, \textit{Les anneaux locaux à relations monomiales ont des séries de Poincaré-Betti rationelles}, C.R. Acad. Sc. Paris (1982), 607–610.
4. W. Bruns and J. Herzog, \textit{Cohen-Macaulay rings}, second ed., Cambridge Studies in Advanced Mathematics, no. 39, Cambridge University Press, 1996.
5. H. Charalambous and A. Reeves, \textit{Poincaré series and resolutions of the residue field over monomial rings}, Comm. Algebra 23 (1995), 2389–2399.
6. Y. Félix, S. Halperin, and J-C. Thomas, \textit{Rational homotopy theory}, Grad. Texts in Math., no. 205, Springer Verlag, 2000.
7. J. Folkman, \textit{The homology groups of a lattice}, J. Math. Mech. 15 (1966), 631–636.
8. R. Fröberg, \textit{Some complex constructions with applications to Poincaré series}, Lecture Notes in Math. 740 (1979), 272–284.
9. \textit{A study of graded extremal rings and of monomial rings}, Math. Scand. 51 (1982), 22–34.
10. V. Gasharov, I. Peeva, and V. Welker, \textit{The LCM-lattice in monomial resolutions}, Math. Res. Lett. 6 (1999), 521–532.
11. T.H. Gulliksen and G. Levin, \textit{Homology of local rings}, no. 20, Queen’s Papers Pure Appl. Math., 1969.
12. J. Herzog, V. Reiner, and V. Welker, \textit{Componentwise linear ideals and Golod rings}, Michigan Math. J. 46 (1999), no. 2, 211–223.

\textbf{Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden}
\textbf{E-mail address: alexb@math.su.se}