Prospective Randomized Controlled Trial on the Efficacy of Continuous Positive Airway Pressure and Adaptive Servo-Ventilation in the Treatment of Chronic Complex Insomnia

Barry Krakow a,b,⁎, Natalia D. McIver a,b, Victor A. Ulibarri a,b, Jessica Krakow a,b, Ronald M. Schrader c

a Sleep & Human Health Institute, 6739 Academy Rd NE, Ste 380, Albuquerque, NM 87109, USA
b Maimonides Sleep Arts & Sciences, Ltd., 6739 Academy Rd NE, Ste 380, Albuquerque, NM 87109, USA
c RMS Biostatistics Services, 13129 Bluemist Ln NE, Albuquerque, NM 87111, USA

A R T I C L E I N F O

Article history:
Received 5 October 2018
Received in revised form 28 May 2019
Accepted 19 June 2019
Available online 8 August 2019

Keywords:
Efficacy trial
Insomnia
Sleep quality
Sleep fragmentation
Obstructive sleep apnea
Upper airway resistance syndrome
Complex insomnia
Continuous positive airway pressure
Adaptive servo-ventilation
Apnea
Hypopnea
Respiratory effort-related arousals

A B S T R A C T

Background: Complex insomnia, the comorbidity of chronic insomnia and obstructive sleep apnea (OSA), is a common sleep disorder, but the OSA component, whether presenting overtly or covertly, often goes unsuspected and undiagnosed due to a low index of suspicion. Among complex insomniacs, preliminary evidence demonstrates standard CPAP decreases insomnia severity. However, CPAP causes respiratory pressure intolerance or iatrogenic central apneas that may diminish its use. An advanced PAP mode—adaptive servo-ventilation (ASV)—may alleviate CPAP side-effects and yield superior outcomes.

Methods: In a single-site protocol investigating covert complex insomnia (ClinicalTrials.gov identifier: NCT02365064), a low index of suspicion for this comorbidity was confirmed by exclusion of 455 of 660 eligible patients who presented during the study period with overt OSA signs and symptoms. Ultimately, stringent inclusion/exclusion criteria to test efficacy yielded 40 adult, covert complex insomnia patients [average Insomnia Severity Index (ISI) moderate/severe 19.30 (95% CI 18.42–20.17)] who reported no definitive OSA symptoms or risks and who failed behavioral or drug therapy for an average of one decade. All 40 were diagnosed with OSA and randomized (using block randomization) to a single-blind, prospective protocol, comparing CPAP (n = 21) and ASV (n = 19). Three successive PAP titrations and randomized (using block randomization) to a single-blind, prospective protocol, comparing CPAP (n = 21) and ASV (n = 19). Three successive PAP titrations fine-tuned pressure settings, facilitated greater PAP use, and collected objective sleep and breathing data. Patients received 14 weeks of treatment including intensive biweekly coaching and follow-up to foster regular PAP use in order to accurately measure efficaciousness. Primary outcomes measured insomnia severity and sleep quality. Secondary outcomes measured daytime impact: OSA-induced impairment, fatigue severity, insomnia impairment, and quality of life. Performance on these seven variables was assessed using repeated measures ANCOVA to account for the multiple biweekly time points. Findings: At intake, OSA diagnosis and OSA as a cause for insomnia were denied by all 40 patients, yet PAP significantly decreased insomnia severity scores (p = 0.021 in the primary ANCOVA analysis). To quantify effect sizes, measures of impairment, residual objective sleep breathing events, and normalized breathing periods consistently demonstrated larger beneficial effects for ASV over CPAP. Interpretation: PAP therapy was highly efficacious in decreasing insomnia severity in chronic insomnia patients with previously undiagnosed co-morbid OSA. ASV proved superior to CPAP in this first efficacy trial to compare advanced to traditional PAP modes in complex insomnia. Future research must determine the following: physiological mechanisms to explain how OSA causes chronic insomnia; general population prevalence of this comorbidity; and, cost-effectiveness of ASV therapy in complex insomnia. Last, efforts to raise awareness of complex insomnia are urgently needed as patients and providers appear to disregard both overt and covert signs and symptoms of OSA in the assessment of chronic insomnia.

© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Research in context

Evidence before this study

Nearly 50-years of research in the field of sleep medicine have been unable to discover a universally accepted theory on the etiology and fundamental nature of the most common sleep complaint: chronic insomnia. Numerous attempts to identify definitive causality have instead elucidated multiple and diverse precipitants for chronic insomnia, leading to a consensus model defining unwanted bouts of sleeplessness as a psychophysiological condition. The most effective treatment has been established with cognitive-behavioral therapy for insomnia (CBT-I); yet, pharmacotherapy including OTC remedies are selected or prescribed more frequently. Nonetheless, treatment with the advanced PAP mode known as ASV proved most efficacious among a population historically intolerant to or susceptible to failing CPAP.

1. Introduction

Most medical and mental health professionals identify insomnia, the most common sleep condition affecting 25% of adults intermittently and 10% regularly [1], as a psychological disorder with clinical pathophysiological effects managed with behavioral therapies or pharmacotherapy [1, 2]. As such, over-the-counter (OTC) agents are widely available but with scant evidence of efficacy [3]. Prescription sedatives are extensively marketed and dispensed, yet efficacy and safety questions persist regarding long-term use [1, 3]. The American Academy of Sleep Medicine (AASM) recommends gold standard cognitive-behavioral therapy for insomnia (CBT-I) [3, 4], which navigates insomniacs through reframing steps to adjust thinking (cognitive) and actions (behavioral), to “stop losing sleep over losing sleep.” CBT-I is highly efficacious with limited accessibility [5, 6], although newer internet programs are expanding CBT-I resources [7]. However, CBT-I may cause adverse effects from sleep restriction [8].

In sharp contrast to this standard perspective on the most common sleep disorder, a newer physiological conceptualization of insomnia, originally termed “complex insomnia” in 2001, has been defined as the comorbidity of chronic insomnia and covert obstructive sleep apnea (OSA) [9]. This comorbidity was discovered much earlier by Guilleminault et al. [10] in five insomnia patients with co-occurring, previously unsuspected sleep-disordered breathing [10]. Conventional wisdom typically dispels this co-occurrence as an epiphenomenon based on the coincidental high prevalence of both disorders [11-13]. In contrast, complex insomnia theory proposes OSA, or its variant upper airway resistance syndrome (UARS), directly causes chronic insomnia in a sizeable proportion of patients unaware of their OSA/UARS [11, 13-15]; the theory posits sleep breathing events are critical pathophysiological factors triggering chronic, pervasive, objective sleep fragmentation (i.e. poor sleep quality), which ultimately fuels unwanted sleeplessness [9].

In this new model, chronic insomnia is in part a medical disorder of abnormal sleep respiration [16-29], but the true prevalence is unknown as no general population studies have been conducted. Nonetheless, extensive literature studying numerous cohorts suggests co-morbid insomnia and objectively diagnosed OSA/UARS are quite common [11, 13-15]. Among patients presenting with primary insomnia, investigated within or outside sleep center populations and grouped by patient characteristics or co-occurring health conditions, OSA/UARS prevalence was as follows: active duty military (38%) [30], chronic kidney disease (51%) [31], crime victims (91%) [9], disaster survivors (95%) [32], elderly (29–43%) [33, 34], hypnotic failure (71–91%) [35-37], postmenopausal women (83%) [38], primary care patients (23%–34%) [39–41], PTSD patients (76%) [42], rape survivors (90%) [43], and veterans (46%) [44].

The potential clinical relevance of the complex insomnia theory has been further elaborated upon in 14 peer-reviewed treatment studies, all demonstrating significant improvements with medium to large effects in chronic insomnia patients’ outcomes following OSA therapies. Modalities included CPAP [16–23], auto-bilevel PAP (ABPAP) [24–26], adaptive servo-ventilation (ASV) [25, 26, 29], oral airway surgery (e.g. T & A, UPPP) [21], oral appliance therapy [28], bariatric surgery [16], and signs or symptoms, such as a lack of obesity, sleepiness, and witnessed apneas. Overall, many chronic insomnia patients may be receiving inadequate or inappropriate treatment from medications that do not treat a key pathophysiological component of their condition. Last, among these types of patients failing conventional therapies, treatment with any PAP mode decreases insomnia; but, notably, treatment with the advanced PAP mode known as ASV proved most efficacious among a population historically intolerant to or susceptible to failing CPAP.

Added value of this study

The current efficacy research trial demonstrates how: 1) providers and patients frequently overlook the link between sleep apnea and insomnia; 2) PAP therapy unequivocally and rapidly reverses objective sleep fragmentation, thereby improving sleep quality; 3) marked improvements in sleep quality lead to marked insomnia improvements; 4) ASV PAP therapy is more efficacious than CPAP through its capacity to provide significantly higher inspiratory pressures and significantly lower expiratory pressures, which result in greater normalization of sleep breathing as well as greater patient comfort; and 5) ASV PAP therapy demonstrates superior efficacy to CPAP in treating complex insomnia based on levels of success (insomnia remission rates) nearly equivalent to gold standard CBT-I. Clinically, these chronic insomnia disorder patients had been failing several insomnia treatments for a decade, on average, and neither they nor their doctors or therapists imagined they had been suffering from sleep apnea. Taken together, this efficacy trial provides new and additional evidence to categorize abnormal sleep respiration as a causative factor triggering insomnia through sleep fragmentation effects.

Implications of all the available evidence

The link between chronic, objective, sleep apnea-induced sleep fragmentation (i.e. degraded sleep quality) and chronic insomnia appears more prevalent than previously recognized. In this protocol, 455 of 660 eligible chronic insomnia patients were excluded from the study because they overtly suffered signs and symptoms of undiagnosed and untreated OSA, apparently for one decade. Another variant, covert complex insomnia, is even more difficult to diagnose due to the absence of sleep breathing fluctuations, thus likely causing chronic insomnia symptoms that do not respond favorably to conventional CBT-I therapies. Despite the commonality of co-morbid OSA, the prevalence of this complex insomnia syndrome remains unknown, making it difficult to quantify accurately its contribution to chronic insomnia and its pathophysiological factors. Such factors include hypoxia and hypercapnia, which directly impact the neuronal pathways controlling sleep breathing and sleep architecture, respectively. This study raises new questions on the identification, diagnosis, and treatment of chronic insomnia patients co-morbid with OSA/UARS, suggesting the need for additional research to further elucidate the clinical relevance of this syndrome to patients’ outcomes following OSA therapies.
nasal dilator strips that expand cross-sectional volume of nasal airflow [27]. This evidence informs the theory that treatment of OSA/UARS decreases insomnia severity by reversing sleep fragmentation triggered by objectively diagnosable sleep breathing events, a well-described therapeutic process that enhances sleep consolidation (greater sleep quality) [45].

Unfortunately, current professional attitudes about CPAP, the gold standard OSA treatment, appear to presume nearly automatic rejection by insomnia patients [20,46–48]. Even among most sleep medicine specialists, CPAP is believed to be a nonstarter for insomniacs due to older evidence showing CPAP worsens insomnia [49]; and, other evidence shows insomnia makes CPAP adherence more difficult [48]. However, more recent evidence suggests advanced PAP modes (ABPAP, ASV) are associated with greater use among insomnia patients who previously failed CPAP [50].

In general, continuous pressure (fixed CPAP) failures are often the result of recurring or persistent subjective or objective expiratory pressure intolerance (EPI)—the unpleasant and sometimes traumatizing sensation of breathing out against pressurized airflow (described as “drowning in air”). EPI (also described as claustrophobic-like) emerges among insomnia patients attempting CPAP and may be associated with iatrogenic central sleep apneas (CSA) [29]. Both side-effects (EPI, CSA) are observed among individuals who reject CPAP [25]. Advanced PAP may prove more efficacious than CPAP by providing dual pressures with lower exhalation settings to yield a comfort effect; some advanced PAP modes (e.g. ASV) deliver dual pressures using proprietary volume-based algorithms coupled with a respiratory back-up rate to eliminate CSA [51]. No studies, however, have compared the efficacy of CPAP to advanced PAP therapy in chronic insomnia patients.

The current randomized controlled trial (RCT) evaluated adult complex insomnia patients randomized to CPAP or ASV. We hypothesized ASV would prove more efficacious than CPAP in significantly decreasing insomnia severity by restoring sleep quality, subjectively and objectively. Our secondary hypothesis predicted superior ASV efficacy to CPAP in decreasing daytime impairment, improving quality of life, and enhancing various objective measures of sleep and breathing.

2. Methods

2.1. Efficacy Trial Requirements for Sample Selection Based on Complex Insomnia Presentation

An efficacy protocol was applied [52–54], because no standard treatment of complex insomnia has been established. Moreover, no comparative studies have tested CPAP versus advanced PAP for complex insomnia patients. Last, beyond general difficulties in adhering to PAP therapy, complex insomniacs have manifested greater barriers to regular use of PAP and therefore require considerably more hands-on support to achieve a reasonable degree of adherence sufficient to test efficacy [14,15,26,29,50,55].

Complex insomnia presents in two distinct forms: covert and overt. In covert complex insomnia, described as occult [34], covert [9], or veiled [11] during the past two decades by several research groups [9,34,41,44], minimal or no signs and symptoms of a sleep breathing disorder are reported. Instead, insomnia complaints are usually intense or urgent, leading primary care providers, mental health professionals, and some sleep medicine specialists to bypass other potential etiologies to explain sleeplessness [49]. These patients may never be sent for sleep center referrals but are almost invariably offered pharmacotherapy as well as psychotherapy (rarely CBT-I). These covert cases were selected for the current protocol, because they closely match the common clinical presentation of those patients who appear to be “pure” insomniacs (psychologically driven) seen in mental health and primary care clinics. They also provide an additional masking advantage to the protocol, because they themselves never suspect the presence of a sleep breathing disorder or imagine it as a cause of their sleeplessness.

In contrast, overt presentations of complex insomnia are more common and invariably include risks or symptoms like witnessed apneas, obesity, and daytime sleepiness [56]. However, many healthcare professionals managing large clinical caseloads of insomnia patients remain unaware that these risks portend a link to a physical cause for sleeplessness [12,56]. Thus, current practices may have created an aversive filter that prevents the recognition of the need for sleep testing in either overt or covert forms of complex insomnia. Nonetheless, overt complex insomnia patients were excluded from this protocol, because their awareness of breathing symptoms or OSA risks could have led to bias against our specific aim to work with patients who never suspected the presence of a sleep breathing disorder. Parenthetically, by restricting the sample to covert complex insomnia, the protocol indirectly provided an opportunity to confirm this general problem of low index of suspicion, because many overt cases would be excluded in our recruitment process.

2.2. IRB Approval, Intake, & Inclusion/Exclusion Criteria

The study was approved by Presbyterian Healthcare Institutional Review Board and listed at https://clinicaltrials.gov/ct2/show/NCT02365064 (February, 2015, after which recruitment began) and followed CONSORT guidelines. Patients completed a standard online intake for Maimonides Sleep Arts & Sciences (Albuquerque, NM). The first author identified potentially eligible patients following intake review; these patients then learned of a randomized controlled trial of two unspecified treatments for chronic insomnia. Primary inclusion criteria were adult chronic insomnia disorder patients who believed their sleep problems were due to psychological, psychiatric, behavioral, or environmental factors and affirmed classic features of insomnia (racing thoughts at bedtime, clock-watching, anxiety and fear in the bedroom, poor sleep hygiene, lying awake in bed, “losing sleep over losing sleep” aka psycho-physiological conditioning, or regular use of OTC or prescription sleep aids). Patients echoed common presentations of chronic insomnia observed at mental health, primary care, and sleep clinics [1,3]; non-believed sleep breathing symptoms or disorders caused or contributed to their insomnia prior to being objectively diagnosed with sleep-disordered breathing. Main exclusion criteria (Fig. 1) focused on obvious risks for a sleep breathing disorder: obesity, excessive daytime sleepiness, witnessed apneas, and past evaluations at sleep centers. Patients without psychological features of insomnia [1] were excluded. Co-morbid sleep disorders, notably restless legs syndrome (RLS) and periodic limb movement disorder (PLMD), were major exclusion criteria, but due to their inconsistent diagnostic manifestations, some of these patients needed to be excluded post-randomization [57] (see Section 2.5). Last, due to recent controversies on the use of ASV in congestive heart failure patients [58], cardiac patients were excluded.

2.3. Procedure

2.3.1. Pre-Research Diagnosis & Informed Consent

Timeline of the protocol (Fig. 2) begins with patient referral to the sleep center. No recruitment advertising was conducted; primary care physicians were apprised of the research and instructed not to divulge the protocol to candidates, who were informed of a “chronic insomnia research study.” Pre-research, diagnostic PSG was completed. During results review, eligible patients learned for the first time about their co-occurring OSA (apnea-hypopnea index (AHI) > 5) or UARS, the latter diagnosed when respiratory effort-related arousals (REAs) (aka flow limitation events) yielded a respiratory disturbance index (RDI) > 15 when AHI < 5. Discussion of the protocol and informed consent followed. A theory was offered about problematic breathing during sleep causing EEG sleep fragmentation, resulting in chronic insomnia. At consent, no discussion occurred about psychological aspects of insomnia. Interventions were described as two types of PAP, but specifics were omitted. Patients were instructed and needed to agree to forego new sleep or psychotropic
medications; established sleep aids and psychotropic drugs at current dosages were permitted for protocol entirety. Extensive time commitments and tasks in the 15-week protocol were reviewed. All these steps were completed prior to randomization, thus neither the principal investigator nor the two co-investigators were aware of any PAP mode assignments prior to a patient completing the consent step.

Fig. 1. Flowchart showing a) eligibility and final sample of chronic insomnia disorder patients presenting with chief complaint of chronic psychophysiological insomnia attributed to behavioral, psychological, psychiatric, and environmental factors, and b) excluded patients’ details. Abbreviations: ISI — Insomnia Severity Index; ITT — intent to treat; Dx — diagnosis; BMI — body mass index; ESS — Epworth Sleepiness Scale; PSG — Polysomnography Sleep Test; Rx — prescription; OSA — obstructive sleep apnea; UARS — upper airway resistance syndrome; ASV — adaptive servo-ventilation; CPAP — continuous positive airway pressure; RLS — restless leg syndrome; PLMD — periodic limb movement disorder. Footnote: Chronic insomnia disorder as defined by the AASM: chief complaint of insomnia, ISI ≥ 15, impairment due to insomnia, and duration of at least 6 months. Randomization reset halfway through sample collection due to exclusion of ASV participants secondary to disproportionate leg movement disorders in this group. Withdrawn patients after randomization and completion of first exposure to PAP treatment; chose not to pursue research without offering explanation. Intercurrent medical/psychiatric patients developed medical or psychiatric issues that required immediate attention and subsequent removal from the study due to treatment plan. Final ITT included all eligible randomized patients, total n = 61. The 17 exclusions were eligible for the study and completed the informed consent and randomization process. However, during a titration study they exhibited independent RLS/PLMD and were excluded as post-randomization exclusions. Unable/unwilling: patients with scheduling conflicts or no interest in participation; comorbidities/urgent care required: patients with multiple health issues that may have confounded research or patients who needed immediate treatment of their sleep-disordered breathing; unstable Rx dose: patients working with doctors to titrate medication dosage; no diagnosis of OSA: did not meet requirements for OSA/UARS.
2.4 Protocol

2.4.1 Randomization, PAP Technology and Masking

After consent, random assignment was conducted using non-stratified block randomization of block size 4, with equal weights for each arm (CPAP or ASV). Research staff were unaware of the randomization schedule and only learned of PAP mode assignment after consent. Patients then completed one-week prospective sleep diaries followed by first overnight in-lab titration. All patients were PAP naïve and therefore unable to detect mode distinctions between fixed pressurized air (CPAP) and ASV, the latter technology providing higher inspiratory pressures to more effectively titrate RERAs while maintaining lower expiratory pressure to prevent expiratory pressure intolerance [59,60]. AASM mandates RERAs should be eliminated during a titration [45].

Patients were set up with ResMed AirCurve™ devices, masked by blocking LCD visualization using thick black paper and tape, with built-in capacity to apply either ASV or CPAP [61].

2.4.2 Repeat Titrations, Follow-up, and Support

A specific aim prevented over-titration to avoid harm from intolerable pressurized air (EPI). As stated, AASM requires titration to optimal settings, including virtual elimination of residual RERA breathing events (normal airflow signal) [45], but when pressures provoke discomfort or intolerance, settings are lowered temporarily. Pressures were then gradually increased during the entire protocol to reach optimal settings. To resolve these conflicting objectives, we worked to normalize the airflow signal as much as possible while recognizing efforts to eliminate RERAs may provoke EPI or frank central apneas (Fig. 2).

Pre-Study	Consent	Protocol
Referral or Self-referral to MSAS	Device set-up and Patient Begins Home use	First Titration (tech-attended PSG)
Intake	Follow-up #1 Daytime Appointment, Outcomes	Week 0
OSA/UARS Diagnosis (tech-attended PSG); Diagnostic Review	Follow-up #2 Daytime Appointment, Outcomes	Week 2
Randomization	Follow-up #3 Daytime Appointment, Outcomes	Week 4
Informed Consent	Follow-up #4 Daytime Appointment, Outcomes	Week 6
Begin Daily Sleep Diary	Follow-up #5 Daytime Appointment, Outcomes, and Exit from Study	Week 8

Fig. 2. Protocol timeline: patient pathway from referral through study exit. Abbreviations: MSAS — Maimonides Sleep Arts & Sciences; OSA — obstructive sleep apnea; UARS — upper airway resistance syndrome; PSG — Polysomnography Sleep Test; ISI — Insomnia Severity Index; ESS — Epworth Sleepiness Scale; III — Insomnia Impairment Index; FSS — Fatigue Severity Scale; FOSQ-10 — Functional Outcomes of Sleep Questionnaire Short Form; QLESQ — Quality of Life Enjoyment and Satisfaction Questionnaire Summary; DxPSG — Diagnostic Polysomnography Sleep Test; MD — medical director; CPAP — continuous positive airway pressure; ASV — adaptive servo-ventilation; SQ-Lik — sleep quality (Likert scale); SQ-Pct — sleep quality (percent scale); ODD — objective data download. Footnote: “Intake included ISI, ESS, III, FSS, FOSQ-10, QLESQ; potentially eligible patients were informed “the protocol does not involve drugs, placebos or deception; it is a randomized controlled trial of two different techniques to treat chronic insomnia,” but no further details were provided about treatment. “Online sleep diary completed daily via home computer or smart phone throughout the study and included two questions regarding subjective sleep quality, SQ-Lik and SQ-Pct, as well as subjective sleep indices. Pre-treatment sleep diary completed for 7 consecutive days prior to first titration. “Patients encouraged to use PAP nightly; the protocol was designed for patients to quickly attain or approach standard PAP compliance metrics to ensure final results would measure efficacy among two samples of regular users. Adaptation to CPAP and ASV may follow different courses, because CPAP users must contend with EPI and central apneas from the outset; whereas ASV patients may experience immediate alleviation of EPI as well as fewer or no central apneas. However, ASV patients may struggle with the constant auto-adjusting changes embedded within this technology, which makes some individuals feel as if they are losing control over their breathing. “Completion of protocol granted patient ownership of the PAP device and transportation reimbursement (B3).
Follow-up occurred daily with sleep tracking logs to gather standard sleep indices (see abbreviations in Section 2.4.2) as well as sleep quality assessments. Additional follow-up occurred at biweekly intervals (4 hours, and average pressurized air levels[53]. Final follow-up measured sleep indices (see abbreviations in Section 2.4.3) as well as sleep quality indicative of better sleep quality for both measures. The main secondary measures included three impairment indexes [Insomnia Impairment Index (III), Fatigue Severity Scale (FSS), Functional Outcomes of Sleep Questionnaire Short Form (FOSQ-10)] and one quality of life scale [Quality of Life Enjoyment and Satisfaction Questionnaire Summary Form (QLESQ)]. (See supplement for detailed descriptions.) Objective measurements focused on respiratory disturbance indexes, sleep indices [sleep onset latency (SOL), wake after sleep onset (WASO), and sleep efficiency (SE)], and sleep architecture. Normalized sleep breathing time (NSBT) measured by percent and in minutes, measured at all four PSGs (diagnostic and three titrations), was calculated by subtracting time spent during apneas, hypopneas, FLEs and other arousals from total sleep time. PSGs were scored by an independent, registered, 20-bite limitation

2.4.3. Measurements

Primary subjective instruments comprised the Insomnia Severity Index (ISI) and two self-rating sleep quality measures: SQ-Lik, based on an 8-point Likert scale and SQ-Pct, a 0 to 100% rating with higher scores indicative of better sleep quality for both measures. The main secondary measures included three impairment indexes [Insomnia Impairment Index (III), Fatigue Severity Scale (FSS), Functional Outcomes of Sleep Questionnaire Short Form (FOSQ-10)] and one quality of life scale [Quality of Life Enjoyment and Satisfaction Questionnaire Summary Form (QLESQ)]. (See supplement for detailed descriptions.) Objective measurements focused on respiratory disturbance indexes, sleep indices [sleep onset latency (SOL), wake after sleep onset (WASO), and sleep efficiency (SE)], and sleep architecture. Normalized sleep breathing time (NSBT) measured by percent and in minutes, measured at all four PSGs (diagnostic and three titrations), was calculated by subtracting time spent during apneas, hypopneas, FLEs and other arousals from total sleep time. PSGs were scored by an independent, registered, 20-year experienced sleep technologist, blinded to protocol and PAP mode.

2.5. Power Analysis, Sample Size Estimates and Re-randomization

We hypothesized large to very large effects in ASV users compared to medium to large effects in CPAP users for primary outcomes, thus we anticipated an average net difference between modes of ~0.80 effect size for insomnia and sleep quality measures. Two-tailed significance testing at α = 0.05 with 90% power and n = 26 per group (total sample of 52) yielded a minimal detectable difference of 4 units on the ISI scale

Table 1a
Comparison of sociodemographics and insomnia chronicity for total randomized sample (n = 61) by mode and completion status: % or mean(95% confidence interval)a.

Sociodemographics	Total (n = 61)	ASV (n = 32)	CPAP (n = 29)	p-valueb, g**	Completers (n = 40)	Non-completers (n = 21)	p-valueb, g**
Gender (%)	68.9 (55.7–80.1)	71.9 (53.3–86.3)	65.5 (45.7–82.1)	0.782, 0.74 (0.25–2.20)	65.0 (48.3–79.4)	76.2 (52.8–91.8)	0.561, 1.72 (0.52–5.70)
Age (years)	45.44 (41.51–49.37)	45.89 (40.26–51.52)	44.95 (39.1–50.76)	0.814, 0.06 (0.23–4.13)	48.38 (43.66–53.11)	39.84 (32.94–46.73)	0.041, 0.57 (0.00–1.00)
BMI	24.81 (23.94–25.69)	25.07 (23.76–26.38)	24.53 (23.32–25.75)	0.545, 0.16 (0.20–4.45)	24.97 (23.82–26.13)	24.50 (23.05–25.95)	0.595, 0.14 (0.30–1.00)
Caucasian (%)	70.5 (57.4–81.5)	65.6 (46.8–81.4)	75.9 (56.5–89.7)	0.414, 0.61 (0.20–1.86)	75.0 (58.8–87.3)	61.9 (38.4–81.9)	0.378, 1.85 (0.59–5.74)
Hispanic (%)	21.3 (11.9–33.7)	25.0 (11.5–43.4)	17.2 (5.8–35.8)	0.541, 1.60 (0.46–5.60)	17.5 (7.3–32.8)	28.6 (11.3–52.2)	0.341, 0.53 (0.15–1.85)
College degree (%)	54.1 (40.8–66.9)	56.3 (37.7–73.6)	51.7 (32.5–70.6)	0.800, 1.20 (0.44–3.29)	55.0 (38.5–70.7)	52.4 (29.8–74.3)	1.000, 1.11 (0.39–3.20)
Married (%)	54.1 (40.8–66.9)	56.3 (37.7–73.6)	51.7 (32.5–70.6)	0.800, 1.20 (0.44–3.29)	52.5 (36.1–68.5)	57.1 (34.0–78.2)	0.791, 0.83 (0.29–2.40)

Table 1b
Comparison of sociodemographics and insomnia chronicity for completers (n = 40) by mode: % or mean(95% confidence interval)a.

Sociodemographics	Completers (n = 40)	ASV (n = 19)	CPAP (n = 21)	p-valueb, g**
Gender (%)	65.0 (48.3–79.4)	73.7 (48.8–90.9)	57.1 (34.0–78.2)	0.333, 0.48 (0.13–1.82)
Age (years)	48.38 (43.66–53.11)	52.03 (44.94–59.12)	45.09 (38.54–51.64)	0.140, 0.47 (0.00–1.00)
BMI	24.97 (23.80–26.13)	24.78 (22.76–28.60)	25.15 (23.81–26.50)	0.745, 0.10 (0.30–1.00)
Caucasian (%)	75.0 (58.8–87.3)	73.7 (48.8–90.9)	76.2 (52.8–91.8)	1.000, 0.88 (0.21–3.66)
Hispanic (%)	17.5 (7.3–32.8)	15.8 (3.4–39.6)	19.0 (5.4–41.9)	1.000, 0.80 (0.15–4.13)
College degree (%)	55.0 (38.5–70.7)	52.6 (28.9–75.6)	57.1 (34.0–78.2)	1.000, 0.83 (0.24–2.90)
Married (%)	52.5 (36.1–68.5)	57.9 (33.5–79.7)	47.6 (25.7–70.2)	0.545, 1.51 (0.43–5.28)

Duration (years) | 10.26 (8.41–12.10) | 11.24 (8.75–13.72) | 9.18 (6.32–12.03) | 0.268, 0.28 (0.15–1.00) |

9.80 (7.48–12.13) | 11.23 (8.12–14.34) | 8.52 (4.93–12.10) | 0.244, 0.37 (0.15–1.00) |

a t-test confidence interval for continuous variables.

b p-value is Fisher’s exact t-test for dichotomous variables, t-test for continuous variables.

c Odds ratio (95% confidence interval) calculated for dichotomous variables; Hedges’ g calculated for continuous variables.
Presented to the sleep center with a chief complaint of chronic insomnia patients were acutely excluded due to high suspicions for a sleep breathing disorder (obesity, excessive daytime sleepiness, witnessed apneas, past sleep center encounters, or past OSA/UARS diagnosis) (Fig. 1b). Interestingly, among these 455 excluded patients, 75% reported no awareness of sleep breathing as a cause of their nocturnal awakenings, and 65% denied sleep breathing treatments as relevant to their sleep problems. Remarkably, 163 of these 455 had already been diagnosed with sleep apnea yet none reported awareness of any relationship between sleep breathing and insomnia; the remaining 292 chronic insomnia patients were ultimately diagnosed with OSA/UARS. See Fig. 1b for additional exclusions.

As noted above, the final sample comprised 61 patients of which 40 (19 ASV and 21 CPAP) completed the full protocol (see Fig. 1a, for post-randomization exclusions and other patients who withdrew from the study). These 40 completers comprised the final sample from which the efficacy analysis was conducted [52–54].

Sociodemographics (Tables 1a and 1b) and baseline subjective and objective sleep variables (Tables 2a and 2b) were analyzed with two-tailed t-test or Fisher’s exact test, as appropriate, for all 61 randomized individuals including comparisons for completers vs non-completers and separately for the two modes. To compare treatment modalities over the course of the study (multiple time points) for the main outcomes, repeated measures ANCOVA using linear mixed models accounted for within-subject correlations, with correlation structure chosen by minimizing AIC (Akaike Information) and checked by regression diagnostics and varigrams; in all cases either AR(1) or compound symmetry was selected. Nonlinear trends were modeled by fitting week of study using restricted cubic splines with 4 knots [65]. A modality × week interaction allowed different trends for the two modes. Calculations were with R [66] using rms [67] and nime [68] packages. Significance testing was by Wald χ² tests at the 0.05 level.

To describe a clinical perspective on the overall changes in outcomes as well as to calculate pre- and post-treatment effect sizes (Hedges’ g) for all primary and secondary variables and for objective and subjective sleep variables, a paired t-test was conducted. The observed significance level was set at p < 0.05 for all hypothesis testing and a 95% confidence interval was calculated for all reported effect sizes. The Table 2a presents the comparison of baseline characteristics for objective/subjective primary and secondary measures, % or mean (95% confidence interval), by total randomized sample (n = 61).

Table 2a
Comparison of baseline characteristics for objective/subjective primary and secondary measures, % or mean (95% confidence interval), by total randomized sample (n = 61).

Primary measures	Total (n = 61)	ASV (n = 32)	CPAP (n = 29)	p-value, g	Completers (n = 40)	Non-completers (n = 21)	p-value, g
ISI	19.97 (19.08–20.85)	19.91 (18.63–21.19)	20.01 (18.73–21.34)	0.887, 0.03	19.30 (18.40–20.20)	21.24 (19.31–23.17)	0.069, 0.57
SQ-Lik	2.98 (2.73–3.12)	3.05 (2.70–3.41)	2.90 (2.54–3.25)	0.532, 0.15	3.08 (2.76–3.40)	2.78 (2.39–3.16)	0.218, 0.031
SQ-Pct (%)	51.20 (47.20–55.50)	52.84 (48.02–57.66)	49.40 (42.61–56.18)	0.394, 0.22	52.01 (47.16–56.88)	49.66 (42.04–57.28)	0.394, 0.15
Secondary measures	Questionnaires						
subjective sleep measures, additional analysis included the following:

- Between group comparisons at baseline using 2-sample t-tests; within-group comparisons of change from baseline to end of study using paired t-tests; and, comparison of change scores from baseline to end of study using 2-sample t-tests. Last, due to small sample sizes, Fisher’s exact test was used for dichotomous variables of changes in insomnia disorder status (remission rates) and changes in flattening index severity (ODD flow limitation respiratory patterns).

All primary and secondary variables as well as objective and subjective sleep variable data are presented as means with 95% confidence intervals. Assumptions were checked using standard diagnostics. To correct for severe non-normal distributions, exact Wilcoxon signed-rank tests with Hodges-Lehmann estimates and confidence intervals were used as appropriate [69,70].

3. Results

3.1. Sociodemographics and Baseline Characteristics

Among 61 eligible participants, there were 32 randomized to ASV and 29 randomized to CPAP with no systematic statistical differences between the two groups for sociodemographic variables (Tables 1a and 1b) or baseline primary and secondary measures or baseline objective and subjective sleep measures (Tables 2a and 2b). When comparing the 40 who completed the study and the 21 participants who did not, the 21 non-completers were noticeably younger with less severe OSA without other systematic differences between groups (Tables 1a and 2a). There were also no sociodemographic differences based on PAP mode among the completers of the study (Table 1b); these 40 individuals were predominately middle-aged [mean (95% CI), 48.38 (43.66–53.11)], married (52.5%), Caucasian (75.0%) or Hispanic (17.5%), females (65.0%) with normal BMI [24.97 (23.82–26.13)] and a college degree (55.0%) (Table 1b).

The final sample of 40 completers suffered moderately severe insomnia [ISI 19.30 (18.40–20.20)] (Table 1b), with statistically significant separation between modes by week 11. Within-group effect sizes for decrease from baseline to final follow-up were markedly different [ASV, 13.21 (10.72–15.70), g = 2.50; CPAP, 9.29 (6.29–12.28), g = 1.39], leading to exit ISI scores
averaging subthreshold insomnia diagnostic levels for ASV [5.89 (4.14–7.65)] compared to average persisting borderline insomnia for CPAP [10.19 (7.61–12.77)]. The between group effect size for difference in change scores was in the medium-large range (g = 0.65). Clinically, 68% of ASV users no longer met the validated scale criteria for an insomnia disorder (ISIb < 8), whereas only 24% of CPAP users attained this remission status, Fisher’s exact p = 0.010.

Marked improvement in scores were evident in both sleep quality scales [improvement: SQ-Lik 1.34 (0.99–1.69) and SQ-Pct 19.63 (14.04–25.23)]. Between groups analysis showed superiority of ASV over CPAP for changes in SQ-Lik [Wald χ² (4 df) = 11.42, p = 0.022] (Fig. 4b) and SQ-Pct [Wald χ² (4 df) = 50.61, p < 0.0001] (Fig. 4c), as estimated mean ASV values were consistently higher, with statistically significant separation by the third and second weeks respectively (or two months earlier than separation for insomnia). Within groups, ASV yielded very large effects in improvement from baseline to final follow-up [SQ-Lik 1.65 (1.10–2.19), g = 1.42 and SQ-Pct 24.33% (17.99–30.66), g = 1.81] compared to large effects for CPAP [1.06 (0.61–1.52), g = 1.04 and 15.39% (6.27–24.51), g = 0.75]. The between group effect sizes for difference in change were SQ-Lik = 0.54 and SQ-Pct = 0.51. As a clinical distinction to gauge changes in sleep quality, ASV patients at exit averaged “Good” sleep quality compared to “Adequate” for CPAP patients, consistent with differences in endpoint scores [4.87 (4.44–5.30) vs 4.01 (3.52–4.51) and 79.14% (74.94–83.35) vs 64.86% (57.08–72.64) respectively].

There were no significant differences in primary outcome change scores within PAP mode between those using prescription sleep aids and those not using such aids (Supplement).

3.3. Secondary Outcomes: Impairment and Quality of Life

III scores decreased for the entire sample [mean change 9.28 (6.61–11.94)]. Between groups analysis revealed ASV superiority to CPAP [Wald χ² (4 df) = 14.87, p = 0.005] (Fig. 4d) with statistically significant separation between modes by week 13; this change occurred 2 weeks after the separation in ISI scores attained significance. Although III showed a large effect for improvement within subjects for CPAP [6.00 (3.07–8.93), g = 0.91], the ASV effect was larger [12.89 (8.63–17.16), g = 1.43]. The between group effect size for difference in change was large (g = 0.88).
a. Insomnia Severity Index (ISI)

b. Sleep Quality – Likert (SQ-Lik)

c. Sleep Quality – Percent (SQ-Pct)

d. Insomnia Impairment Index (III)

e. Fatigue Severity Scale (FSS)

f. Functional Outcomes of Sleep Questionnaire Short Form (FOSQ-10)

g. Quality of Life Enjoyment and Satisfaction Questionnaire Summary Form (QLESQ)

Fig. 4. Improvement in (a) insomnia, (b, c) sleep quality, (d–f) daytime impairment, and (g) quality of life over 14 weeks of therapy by mode.

- a. Insomnia Severity Index (ISI)

- b. Sleep Quality – Likert (SQ-Lik)

- c. Sleep Quality – Percent (SQ-Pct)

- d. Insomnia Impairment Index (III)

- e. Fatigue Severity Scale (FSS)

- f. Functional Outcomes of Sleep Questionnaire Short Form (FOSQ-10)

- g. Quality of Life Enjoyment and Satisfaction Questionnaire Summary Form (QLESQ)

Estimated trajectories for primary outcomes of each mode are shown along with 95% confidence intervals for average scores at each time point. Overlap in the band indicates intersection of confidence intervals.

- (a) Average ISI scores for ASV patients drop below clinical threshold for insomnia (ISI = 8) by week 7 and statistical separation between modes occurred at week 11.

- (b) Mean SQ-Lik scores were consistently higher for ASV shortly after baseline, with statistically significant separation by the third week.

- (c) Mean SQ-Pct scores were consistently higher for ASV reaching nearly 80% at final follow-up with significant separation between the modes by the second week.

- (d) III mirrored the changes in ISI but significant separation between the modes did not occur until week 13.

- (e–g) No statistical separation between modes occurred, although there was a trend for between mode separation in QLESQ scores.
FSS and FOSQ-10 scores improved significantly for the entire sample \([FSS \chi^2(10 df) = 7.08, p = 0.132]\) \((\text{Fig. 4e})\) or FOSQ-10 scores \([FSS \chi^2(4 df) = 3.06, p = 0.548]\) \((\text{Fig. 4f})\). Of potential clinical import, albeit speculatively, when comparing improvement within each mode, ASV demonstrated greater observed effects to CPAP \(\text{(large vs small to medium-sized)}\) for FSS \([\text{ASV 18.11 (13.10–23.11), } g = 1.71; \text{CPAP 4.81 (−0.27 to 9.89), } g = 0.42]\) and for FOSQ-10 \([\text{ASV 2.44 (1.08–3.80), } g = 0.85; \text{CPAP 0.90 (−0.30 to 2.10), } g = 0.34]\). The between group effect sizes for difference in change were large \((g = 1.21\) and \(g = 0.72\) respectively). Baseline imbalances may be an alternate explanation for these findings.

Quality of life scores as measured by the QLESQ significantly increased by nearly 10% for the entire sample \([\text{mean 9.33 (4.46–14.20)}\]. A trend was noted for ASV compared to CPAP for improvement in QLESQ scores \([\text{ASV 20.67 (17.24–24.02), } g = 0.79; \text{CPAP 4.81 (−0.27 to 9.89), } g = 0.42]\). Between-group effect size for difference in change was large \((g = 0.70)\).

3.4. Intent-to-Treat Analyses

Intent-to-treat analysis included the 40 completers and the additional 21 non-completers \((13 \text{ ASV, 8 CPAP})\). At baseline \((\text{Table 2a})\), there were no differences in primary variables \(\text{(insomnia and sleep quality)}\) between the two groups aside from the 21 non-completers who were noticeably younger with less severe OSA as previously mentioned. Non-completer follow-up data were mostly missing at most time points due to early to early withdrawal from the protocol \((\text{see Fig. 1 for explanations})\). The ITT patients \((61 \text{ total})\) were analyzed for the 7 main primary and secondary scales described above. A sensitivity analysis assessed whether results changed with inclusion of the 21 additional patients. LME methods were repeated by adding the sparse data from the 21 withdrawn patients; there was no attempt to impute missing values, because none of the non-completers had appreciable time in treatment. Neither statistical significance nor direction of effect changed, and qualitative behavior as seen in \(\text{Fig. 4a–g}\) was essentially unchanged.

3.5. Objective Respiratory Event Indexes and Data Downloads

Objective respiratory data by mode is available in \(\text{Tables 3a–3c}\). On the final titration and corroborated on final ODD, AH residual breathing events were similar between groups \([\text{AHI-titration: ASV 0.53 (0.20–9.30) vs CPAP 2.25 (0.60–3.65); AHI-ODD: ASV 0.57 (0.22–0.93) vs CPAP 1.60 (0.33–2.88)}\]. In contrast, final titration RERAs per hour were significantly fewer for ASV compared to CPAP \([7.71 (4.24–11.18)\ vs 17.32 (10.41–24.24), p = 0.016, g = 0.79]\). Moreover the ANCOVA analysis for all time points in the study demonstrated a significantly greater reduction of RERAs in the ASV group compared to CPAP \([\text{Wald } \chi^2(3 df) = 22.5, p < 0.0001, \text{ Fig. 5a)}\]. The within-group changes for RERAs were \([\text{ASV: 5.99 (1.95–10.03), } p < 0.0001, g = 0.70; \text{CPAP: −1.36 (−8.37 to 11.08) } p = 0.774, g = 0.06]\); between group differences were non-significant albeit medium effect sizes were observed \([7.35 (−3.01 to 17.70); p = 0.16, g = 0.44]\). This finding was somewhat corroborated using final ODD flattening frequency \(\text{(ODD surrogate for RERAS)}\), which revealed a trend \([\text{Wald } \chi^2 = 3.879, p = 0.062]\) for the comparison between ASV and CPAP \([\text{mild/moderate residual flattening: 74% ASV, 43% CPAP vs. moderate/severe residual flattening: 26% ASV, 57% CPAP}]\).

Additional objective respiratory parameters were analyzed based on normal sleep breathing time \((\text{NSBT})\). Consistent with other breathing improvements noted above, repeated measure ANCOVA revealed improvement in the percent normal sleep breathing time for ASV over CPAP \((\text{Wald } \chi^2 = 37.9, p < 0.0001, \text{ Fig. 5b})\) as well as for normal sleep breathing time in minutes \((\text{Wald } \chi^2 = 17.2, p < 0.0001, \text{ Fig. 5c})\). Using pre- and post-test analysis for percent time spent in NSBT, ASV demonstrated a trend in improvement compared to CPAP \([32.60\% (20.67–44.52)\ vs 17.86\% (4.45–321.26), p = 0.094, g = 0.53]\) and based on final titration data, there was a 20% difference in groups \([88.89\% (83.08–94.70)\ vs 68.11\% (56.76–79.47)\) \(\text{(t-test } p = 0.002, g = 1.02)\). Pre- and post-test for NSBT minutes showed greater improvement within each mode, ASV demonstrating greater observable effects to CPAP \(\text{(large vs small to medium-sized)}\) for FSS \([\text{ASV 14.00 (6.94–23.10), } g = 0.94; \text{CPAP 5.10 (−1.65 to 11.85), } g = 0.34]\). Between group effect size for difference in change was large \((g = 0.70)\).

![Fig. 5. Improvement in (a) Respiratory Effort-Related Arousal (RERA) Index, (b) percent Normal Sleep Breathing Time, and (c) Normal Sleep Breathing Time in minutes, over 14 weeks of therapy by mode. Estimated trajectories for outcomes of each mode are shown along with 95% confidence intervals for average scores at each time point. Overlap in the band indicates intersection of confidence intervals. (a) RERA index improved for the ASV group at first encounter with PAP therapy and remained low for the duration of the study whereas the CPAP group increased in RERA index at first encounter with PAP and then gradually decreased back to baseline RERA index. (b) Percent time with Normal Sleep Breathing improved at first encounter with PAP and remained relatively consistent for the remainder of the study with ASV demonstrating nearly 20% more time with normal sleep breathing throughout treatment. (c) Minutes spent with Normal Sleep Breathing improved for both groups at first encounter with PAP therapy and continued to improve for the ASV group.](image-url)
3.6. Prospective Sleep Indices and Objective Sleep Architecture

For both modes, daily online sleep diary metrics showed significant improvements or medium to large effects from baseline to exit for SOL, WASO, and SE; whereas, rare sleep architecture changes occurred. Between PAP mode changes were non-significant (Tables 3a–3c).

Table 3a
Completer intake, final outcome, and change scores for subjective/objective primary and secondary measures, mean (95% confidence interval), for CPAP.

Measure	Intake CPAP (n = 21)	Final/exit CPAP (n = 21)	Change CPAP (n = 21)	Within-subjects CPAP: p, g
Primary measures				
ISI	19.48 (18.30-20.65)	10.19 (7.61-12.77)	9.29 (6.29-12.28)	<0.0001, 1.39
LSQ-Lik	2.95 (2.53-3.38)	4.01 (3.52-4.51)	1.06 (0.61-1.52)	<0.0001, 1.04
SQ-Pct (%)	49.47 (42.53-56.41)	64.86 (57.08-72.64)	15.39 (6.27-24.51)	0.002, 0.75
Secondary measures				
Questionnaires				
ESS	5.52 (3.89-7.16)	4.86 (3.42-6.30)	0.67 (−0.69 to 2.02)	0.316, 0.22
FSS	18.00 (15.23-20.77)	12.00 (8.57-15.43)	6.00 (3.07-8.93)	0.0001, 0.91
FOSQ-10	36.81 (30.47-43.15)	32.00 (25.79-38.21)	4.81 (−0.27 to 9.89)	0.062, 0.42
QLESQ (%)	61.56 (51.38-69.65)	66.67 (58.81-74.53)	5.10 (−1.65 to 11.85)	0.131, 0.34
Sleep diary				
SOL	57.40 (29.91-84.88)	31.06 (11.37-50.75)	26.33 (14.30-38.36)	0.0002, 0.98
WASO	90.57 (59.83-121.30)	40.78 (25.23-56.32)	49.79 (18.30-81.08)	0.0034, 0.71
SE (%)	71.87 (65.48-78.25)	84.02 (79.86-88.17)	12.15 (5.83-18.47)	0.0007, 0.86
PSG sleep indices				
SOL	26.76 (11.77-41.75)	32.85 (10.82-54.87)	6.09 (−26.29 to 14.12)	0.537, 0.13
WASO	68.71 (40.67-96.75)	62.99 (41.29-84.68)	5.72 (−21.01 to 32.46)	0.660, 0.10
SE (%)	77.50 (68.80-86.31)	76.75 (67.98-85.52)	0.75 (−3.84 to 8.64)	0.838, 0.04
N1 (%)	7.47 (4.18-10.76)	6.17 (3.69-8.64)	1.31 (−2.25 to 4.86)	0.453, 0.16
N2 (%)	62.28 (55.70-68.85)	57.08 (51.96-62.20)	5.20 (−1.94 to 12.33)	0.144, 0.33
N3 (%)	13.19 (8.70-17.67)	20.73 (16.35-25.10)	7.54 (−1.99 to 13.10)	0.010, 0.61
REM (%)	17.07 (13.04-21.10)	16.03 (12.63-19.44)	1.04 (−2.22 to 3.30)	0.514, 0.14
REMI (min)	60.89 (43.58-78.21)	53.76 (39.80-67.71)	7.13 (−6.70 to 20.96)	0.295, 0.23
REMCI (min)	12.28 (8.10-16.46)	12.33 (9.44-15.21)	0.05 (−4.46 to 4.60)	0.981, 0.01
PSG breathing indices				
AHI	22.83 (12.64-33.01)	2.25 (0.60-3.65)	19.48 (9.66-29.30)	0.0005, 0.89
CAI	0.28 (0.10-0.30)	0.40 (0.10-0.70)	0.10 (−0.25 to 0.30)	<0.0001, 0.19
RDI	38.79 (30.56-47.02)	20.67 (12.63-28.70)	18.12 (10.33-25.92)	<0.0001, 1.04
RERAI	15.97 (10.88-21.05)	17.32 (10.41-24.24)	1.36 (−8.37 to 11.08)	0.774, 0.06
NSBT (%)	50.26 (39.67-60.54)	68.11 (56.76-79.47)	17.86 (4.45-31.26)	0.012, 0.59
NSBT (min)	170.15 (125.74-214.55)	208.51 (162.83-254.20)	38.36 (3.32-80.05)	0.069, 0.41

Abbreviations: ASV = adaptive servo-ventilation; CPAP = continuous positive airway pressure; ISI = Insomnia Severity Index; LSQ-Lik = Sleep quality Likert scale; PSQ-Pct = Sleep quality percent scale; ESS = Epworth Sleepiness Scale; III = Insomnia Impairment Index; FSS = Fatigue Severity Scale; FOSQ-10 = Functional Outcomes of Sleep Questionnaire Short Form; QLESQ = Quality of Life Enjoyment and Satisfaction Questionnaire Summary; SOL = sleep onset latency; WASO = wake after sleep onset; SE = sleep efficiency; N1 = non-REM stage 1; N2 = non-REM stage 2; N3 = non-REM stage 3; REM = rapid eye movement sleep; REMCI = REM consolidation index; AHI = Apnea Hypopnea Index; RDI = Respiratory Disturbance Index; RERAI = Respiratory Effort-Related Arousal event Index; NSBT = normal sleep breathing time.

a) t-test confidence interval.
b) All changes are in expected direction (improvement) except those identified by †.c) Due to high prevalence of “O”s in data, Exact Wilcoxon Sign Ranked Test.

3.7. Adverse Effects

Side-effects were consistent with those commonly seen with regular PAP use. The most common subjective side-effects to PAP therapy were mask leak (90.0%), dry mouth (87.5%), skin irritation (70.0%), mask related insomnia (60.0%), mouth leak (57.5%), congestion (57.5%), skin crease from mask (52.5%), nostril tickle/burn (50.0%), aerophagia (40.0%), and eye irritation (37.5%). There were no systematic differences between modes; and, despite the high frequency of complaints, these issues were not sufficiently distressing to prevent the final sample from completing the protocol. The most common reported adverse effects among the six patients who received a device but did not complete the study due to intolerance (Fig. 1), were mask related insomnia (5 of 6), pressure related insomnia (4 of 6), and no appreciable benefit from PAP (3 of 6). Another complication manifested in the form of persistent EPI among CPAP patients compared to its near absence in ASV, consistent with greater or enhanced ASV comfort effects from lower exhalation pressures.

4. Discussion

In a randomized controlled trial on the efficacy of two PAP therapy modes, insomnia severity markedly decreased by targeting poor sleep quality (i.e. eradicating sleep breathing induced sleep fragmentation) in covert complex insomnia patients. The results from this sample support the older and now re-emerging theory categorizing chronic
insomnia as a medical disorder of pervasive, respiratory-induced, objective sleep fragmentation. Successful PAP treatment of chronic insomnia confirmed this underlying medical etiology, which had gone undetected by patients and providers for an average of one decade. Moreover, our novel design, the first to our knowledge to compare two PAP modes in chronic insomnia patients, demonstrated superior ASV efficacy over CPAP based on significantly greater improvements in insomnia and sleep quality.

Remarkably, two-thirds of ASV users no longer met insomnia disorder criteria compared to only one-quarter on CPAP at the close of the study. Both daily sleep quality measures not only confirmed ASV superiority but also of singular import, between mode separation occurred far earlier in the protocol for sleep quality than for insomnia outcomes, consistent with the theory that poor sleep quality fueled insomnia in this sample of patients. Greater ASV treatment gains further substantiated this medical disorder theory, because more efficacious treatment of all sleep breathing events achieved better results, albeit it must be noted that continued use of the PAP device would be required to maintain these improvements.

Objectively, a significantly higher proportion of sleep time spent with normalized airflow on ASV compared to CPAP provides evidence of a dose–response relationship, and as noted above, this near normalization of airflow occurred instantaneously during the very first exposure to ASV (Fig. 5), whereas CPAP demonstrated very minor improvements throughout the entire protocol. In other words, the larger treatment effects with ASV compared to CPAP resulted in significantly lower residual RERAs and flattening frequencies, presumably due to ASV delivery of significantly higher inspiratory pressures and significantly lower expiratory pressures. Physiologically, as hypothesized, ASV appeared to protect against EPI while providing more efficacious treatment of RERAs. Overall, these technological advantages yielded greater patient comfort, superior objective responses, and easier adaptability than traditional CPAP.

In sum, OSA/UARS manifested as a pivotal factor in insomnia impairment, but statistical results were less robust due to the small sample and baseline imbalances, albeit effect size differences between PAP modes ranged from medium to large. Still, it cannot go without saying that if these patients were treated with CBT-I earlier in their average decade-long chronicity, they may have gained similar, or perhaps greater insomnia improvements (though sleep quality gains might have lagged despite the presence of co-morbid OSA [71]). Future investigations must clarify the timing for PAP or CBT-I as first-line therapy for complex insomnia patients or whether concurrent administration is worthwhile [12,55,72].
Abbreviations: ASV — adaptive servo-ventilation; CPAP — continuous positive airway pressure; ISI — Insomnia Severity Index; SQ-Lik — Sleep quality Likert scale; SQ-Pct (%) — Sleep quality percent scale; ESS — Epworth Sleepiness Scale; III — Insomnia Impairment Index; FSS — Fatigue Severity Scale; FOSEQ—10 — Functional Outcomes of Sleep Questionnaire Short Form; QLESQ — Quality of Life Enjoyment and Satisfaction Questionnaire Summary; SOL — sleep onset latency; WASO — wake after sleep onset; SE — sleep efficiency; N1 — non-REM stage 1; N2 — non-REM stage 2; N3 — non-REM stage 3; REM — rapid eye movement sleep; REMCI — REM consolidation index; AHI — Apnea Hypopnea Index; RDI — Respiratory Disturbance Index; RERA — Respiratory Effort-Related Arousal event Index; OSA — obstructive sleep apnea; UARS — upper airway resistance syndrome; NSBT — non-REM sleep breathing time.

Table 3c
Change between subjects*	Between subjects (p-value, g)	
Primary measures		
ISI	3.92 (−7.70 to −0.15)	0.042, 0.65
SQ-Lik	0.58 (−0.10 to 1.27)	0.094, 0.54
SQ-Pct (%)	8.94 (−1.85 to 19.72)	0.101, 0.51
Secondary measures		
Questionnaires		
ESS	−0.49 (−2.68 to 1.70)	0.652, 0.14
BI	−6.89 (−11.92 to −1.87)	0.009, 0.88
FSS	−13.30 (−20.20 to −6.39)	0.0004, 1.21
FOSEQ-10	1.67 (0.13–3.21)*	0.030, 0.72*
QLESQ (%)	10.71 (0.00–21.43)*	0.034, 0.70*
Sleep diary		
SOL	0.58 (−16.60 to 17.77)†	0.946, 0.02
WASO	14.89 (−23.29 to 53.06)	0.434, 0.24
SE (%)	3.68 (−11.55 to 4.19)†	0.349, 0.29
PSG sleep indices		
SOL	13.26 (−36.62 to 10.10)	0.257, 0.35
WASO	5.84 (−32.90 to 44.59)†	0.762, 0.10
SE (%)	3.61 (−6.88 to 14.09)	0.490, 0.22
N1 (%)	0.05 (−4.08 to 3.99)	0.981, 0.01
N2 (%)	0.75 (−9.91 to 11.41)†	0.887, 0.04
N3 (%)	1.64 (−9.85 to 8.58)†	0.689, 0.13
REM (%)	0.95 (−4.34 to 6.24)	0.718, 0.11
REMCI (min)	10.21 (−11.27 to 31.69)	0.341, 0.30
REMCI (%)	0.48 (−8.05 to 9.01)	0.909, 0.04
PSG breathing indices		
AHI	5.47 (−5.24 to 16.18)†	0.305, 0.31
CAI	0.18 (−0.44 to 0.08)	0.163, 0.46
RDI	1.88 (11.17–7.41)	0.683, 0.13
RERA	7.35 (−3.01 to 17.70)	0.157, 0.44
NSBT (%)	14.74 (−2.62 to 32.10)	0.094, 0.53
NSBT (min)	89.74 (29.38–150.11)	0.005, 0.94

Abbreviations: ASV — adaptive servo-ventilation; CPAP — continuous positive airway pressure; ISI — Insomnia Severity Index; SQ-Lik — Sleep quality Likert scale; SQ-Pct (%) — Sleep quality percent scale; ESS — Epworth Sleepiness Scale; III — Insomnia Impairment Index; FSS — Fatigue Severity Scale; FOSEQ—10 — Functional Outcomes of Sleep Questionnaire Short Form; QLESQ — Quality of Life Enjoyment and Satisfaction Questionnaire Summary; SOL — sleep onset latency; WASO — wake after sleep onset; SE — sleep efficiency; N1 — non-REM stage 1; N2 — non-REM stage 2; N3 — non-REM stage 3; REM — rapid eye movement sleep; REMCI — REM consolidation index; AHI — Apnea Hypopnea Index; RDI — Respiratory Disturbance Index; RERA — Respiratory Effort-Related Arousal event Index; OSA — obstructive sleep apnea; UARS — upper airway resistance syndrome; NSBT — non-REM sleep breathing time.

While our results require replication with larger samples, research must determine the following: (1) the prevalence of complex insomnia among treatment-seeking insomnia patients; (2) a clearer pathophysiological explanation for how sleep breathing disorders cause or aggravate insomnia; and (3) the most efficacious and cost-effective treatment regimens [12,55]. Given the entrenched process whereby insomnia complaints eclipse any OSA suspicions even in the presence of obesity, sleepiness, and classic sleep breathing symptoms, at minimum we recommend consideration of intake screening questions focusing on nonrestorative sleep to facilitate proper assessment. With the advent of home sleep testing (HST) early evaluation is feasible [84], although RERA measurement on HST may be inconsistent [85], a potential disadvantage given the crucial importance of this subtle sleep breathing event in our treatment paradigm [86]. Finally, as chronic insomnia has been linked to so many conditions such as depression [87,88], suicide [89–91], and cardiovascular disease including hypertension, myocardial infarction, congestive heart failure, cardiac arrhythmias, and the metabolic syndrome [2], as well as costing tens of billions of dollars annually in healthcare expenses, decreased productivity, sick days and accidents [2,92], it might prove informative to explore whether past research has been unknowingly influenced by the effects of undetected OSA or UARS among various insomnia cohorts [93].
several patients struggled to achieve standard adherence. Then again, some coaching aspects were restricted so as to not reveal mode or not to discuss PAP delivery of pressures. These issues are crucial to the practicality of using PAP for complex insomnia and clearly point to a likely need to research alternative sleep breathing treatments (e.g. oral appliance therapy, ENT surgery, or even nasal strips or other nasal dilators). Moreover, head-to-head studies may reveal CBT-I as effective as PAP in decreasing insomnia severity when accounting for dropouts; albeit, the sequelae from untreated OSA may reveal deficiencies in first-line CBT-I. And, it is essential to point out that in contrast to CBT-I, PAP most likely would require regular application to maintain therapeutic effects. Other limitations were the absence of a placebo control and use of a single-blind design, which could be addressed in future experimental designs. The problem of co-morbid PLMD must also be addressed through larger samples.

In conclusion, our study supports the original 1973 [9], subsequent 2001 [9], and currently re-emerging theory elucidating chronic insomnia as a medical disorder of compromised sleep breathing [13,14,17,21,42,55,80,81]. And, regardless of the apparent superiority of ASV over CPAP, a main import of the study was the demonstration of consistent therapeutic effects: when OSA/UARS is treated, sleep quality (a complaint about not sleeping well) rapidly improves, leading to downstream effects on both insomnia (a complaint about not sleeping) and ostensibly impairment (a complaint about daytime effects of poor sleep quality). These intricate pathophysiological mechanisms continue to be overlooked by many healthcare providers who encounter chronic insomniacs. Education to increase awareness on how sleep breathing events induce chronic sleep fragmentation must be disseminated throughout medical and mental health professional communities. Doing so will diminish chronic insomnia patients’ exposure to ineffective and sometimes harmful medications as well as numerous, non-insomnia-focused psychological therapies, all of which result in variable impact on chronic, pathophysiological sleep fragmentation. Correct diagnosis may also lead to reduced morbidity and mortality from untreated OSA/UARS [94]. Placing sleep-disordered breathing at or near the top rung of the differential diagnosis in the evaluation of a chronic insomnia disorder is a vital step toward helping patients who suffer, unwittingly, from a medical disorder of objectively measurable nonrestorative sleep due to abnormal sleep respiration.

Contributors

BK derived hypotheses, created study design and protocol, analyzed data, and wrote the manuscript. NDM and VAU helped with study design and protocol, data collection and analysis, table and figure preparation, literature review, and manuscript preparation. JK helped create study design and protocol and manuscript preparation. RMS analyzed data, produced graphs, and helped with manuscript preparation. All authors read and approved the final version of the paper.

Funding

The study was funded by ResMed Science Center, San Diego, California, USA.

Role of Funding Source

The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all study data and had final responsibility for the decision to submit for publication.

Declaration of Competing Interest

Authors NDM, VAU, JK, and RMS report grants from ResMed Sciences during the conduct of the study. Additionally, author JK is the CEO of the commercial sleep center, Maimonides Sleep Arts & Sciences, where the study was conducted in part; Barry and Jessica Krakow are married.

Author BK reports: 6 main activities related to his work in sleep medicine.

For websites, Dr. Krakow owns and operates 6 sites that provide education and offer products and services for sleep disorders patients: www.nightmaretreatment.com, www.ptsdsleepclinic.com, www.sleeptreatment.com, www.sleepdynamichemotherapy.com, www.soundsleepsoundmind.com, and www.nocturiacures.com.

For other professional services, he is the medical director of a national DME company Classic SleepCare for which his sole functions are consultation and QA; he has neither patient encounters nor does he benefit from the sale of any DME equipment. For intellectual property, Dr. Krakow markets and sells 3 books for sleep disorders patients: Insomnia Cures, Turning Nightmares into Dreams, and Sound Sleep, Sound Mind. For clinical services, he owns and operates one commercial sleep center: Maimonides Sleep Arts & Sciences, Ltd. For educational and consulting services; Dr. Krakow conducts CME/CEU educational programs for medical and mental health providers to learn about sleep disorders. Sometimes these programs involve the attendee paying a fee directly to Maimonides Sleep Arts & Sciences. Other times, he conducts the workshops at other locations, which may be paid for by vendors such as Respiricon and ResMed or other institutions such as the AMEDD&CS, VAMC, and regional sleep center conferences. He is also president and principal investigator of a non-profit sleep research center, the Sleep & Human Health Institute (www.sleepingresearch.org, www.shhi.org) that occasionally provides consultation services or receives grants for pilot studies, the most recent: ResMed –$400,000 January 2015 (funding for this randomized control trial of treatment in insomnia patients). Recently, and after this research had been conducted, he provided a brief consultation to ASOCorp, a medical supply company that manufactures nasal strips.

Acknowledgements

We thank the following practitioners for their dedication in referring to our protocol: David Leech, DO; Lewis Nemes, PhD; James Tryon, MD; and Jana Weisborn, CNP. And, we are grateful to Dominic Melendrez, RPSGT for his independent and masked scoring of all sleep studies.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eclinm.2019.06.011.

References

[1] Morin CM, Benca R. Chronic insomnia. Lancet 2012;379(9821):1129–41 March 24.
[2] Riemann D, Nissen C, Palagini L, Otte A, Perlis ML, Spiegelhalter K. The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurology 2015;14(5):547–58 May.
[3] Schutte-Rodin S, Broch L, Buysse D, Dorsey C, Sateia M. Clinical guideline for the evaluation and management of chronic insomnia in adults. J Clin Sleep Med 2008; 4(5):487–504 October 15.
[4] Morgenthaler T, Kramer M, Alessi C, Friedman L, Boehlecke B, Brown T, et al. Practice parameters for the psychological and behavioral treatment of insomnia: an update. An American academy of sleep medicine report. Sleep 2006;29(11):1415–9 November.
[5] Bramoweth AD, Germain A, Youk AO, Rodriguez KL, Chinman MJ. A hybrid type I trial to increase veterans’ access to insomnia care: study protocol for a randomized controlled trial. Trials 2018;19(1):73 January 26.
[6] Mander R, Carney C, Edinger J, Epstein D, Friedman L, Haynes PL, et al. Dissemination of CBT-I to the non-sleep specialist: protocol development and training issues. J Clin Sleep Med 2012;8(2):209–18 April 15.
[7] Christensen H, Batterham PJ, Godin JA, Ritterband LM, Griffiths KM, Thordurik FP, et al. Effectiveness of an online insomnia program (SHUTi) for prevention of depressive episodes (the GoodNight Study); a randomised controlled trial. Lancet Psychiatry 2016;3(4):333–41 April.
[8] Kyle SD, Miller CE, Rogers Z, Siriwatdan A, Macmahon K, Espie CA. Sleep restriction therapy for insomnia is associated with reduced objective total sleep time, increased daytime somnolence, and objectively impaired vigilance: implications for the clinical management of insomnia disorder. Sleep 2014;37(2):229–37 February 1.
[65] Harrell FE Jr. Regression modeling strategies with applications to linear models, logistic and ordinal regression, and survival analysis. 2 ed. Switzerland: Springer International Publishing; 2015.
[66] R Core Team. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.
[67] Harrell FE Jr. Regression modeling strategies: R package version 5.1–2. 2018.
[68] Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. Linear and nonlinear mixed-effects models. R package version 3; 2018; 1–137.
[69] Hollander M, Wolfe DA. Nonparametric statistical inference. New York: John Wiley & Sons; 1973.
[70] Exact rank tests: exact distributions for rank and permutation tests. R package version 0; 2017; 8–29 computer program.
[71] Sweetman A, Lack L, Lambert S, Gradisar M, Harris J. Does comorbid obstructive sleep apnea impair the effectiveness of cognitive and behavioral therapy for insomnia? Sleep Med 2017;39:38–46 November.
[72] Brock MS, Mysliwiec V. Comorbid insomnia and sleep apnea: a prevalent but overlooked disorder. Sleep Breath 2018;22(1):1–3 March.
[73] Palmer CA, Alfano CA. Sleep and emotion regulation: an organizing, integrative review. Sleep Med Rev 2017;31:6–16 February.
[74] Svibergs B, Lallukka T, Salo P, Pallesen S, Hysing M, Kroksdat S, et al. Insomnia as a risk factor for ill health: results from the large population-based prospective HUNT study in Norway. J Sleep Res 2014;23(2):124–52 April.
[75] Wu JQ, Appleman ER, Salazar BD, Ong JC. Cognitive behavioral therapy for insomnia comorbid with psychiatric and medical conditions: a meta-analysis. JAMA Intern Med 2015;175(9):1461–72 September.
[76] Littner M, Hirshkowitz M, Kramer M, Kepen S, Anderson WM, Bailey D, et al. Practice parameters for using polysomnography to evaluate insomnia: an update. Sleep 2003;26(6):754–60 September.
[77] Insomnia Clinical Trials. https://www.centerwatch.com/clinical-trials/listings/condition/189/insomnia/; 2018.
[78] McCall WV, Erman M, Krystal AD, Rosenberg R, Scharf M, Zammitt GK, et al. A polysomnography study of eszopiclone in elderly patients with insomnia. Curr Med Res Opin 2006;22(9):1633–42 September.
[79] Hosselet J, Ayappa I, Norman RG, Krieger AC, Rapoport DM. Classification of sleep-disordered breathing. Am J Respir Crit Care Med 2001;163(2):398–405 February.
[80] Crawford MR, Turner AD, Wyatt JK, Fogg LF, Ong JC. Evaluating the treatment of obstructive sleep apnea comorbid with insomnia disorder using an incomplete factorial design. Contemp Clin Trials 2016;47:146–52 March.
[81] Ong JC, Crawford MR, Kong A, Park M, Cvetnjos JA, Crisostomo MI, et al. Management of obstructive sleep apnea and comorbid insomnia: a mixed-methods evaluation. Behav Sleep Med 2017;15(3):180–97 March.
[82] Riemann D, Baglioni C, Bassetti C, Borjesson B, Dolevs GL, Ellis JC, et al. European guideline for the diagnosis and treatment of insomnia. J Sleep Res 2017;26(6):675–700 December.
[83] FDA adds boxed warning for risk of serious injuries caused by sleepwalking with certain prescription insomnia medicines: FDA Drug Safety Communication. [4-30-2019].
[84] Gay PC, Selectky PA. Are sleep studies appropriately done in the home? Respir Care 2010;55(1):86–75 January.
[85] Malhotra RR, Kirsch DR, Kristo DA, Olson EJ, Aurora RN, Carden KA, et al. Polysomnography for obstructive sleep apnea should include arousal-based scoring: an American academy of sleep medicine position statement. J Clin Sleep Med 2018;14(7):1245–7 July 6.
[86] Arora N, Meslii C, Guilleminault C. The role of flow limitation as an important diagnostic tool and clinical finding in mild sleep-disordered breathing. Sleep Sci 2015;8:134–42.
[87] Baglioni C, Spiegelhalder K, Lombardo C, Riemann D. Sleep and emotions: a focus on insomnia. Sleep Med Rev 2010;14(4):227–38 August.
[88] Svibergs B, Salo P, Myklesten A, Hysing M, Pallesen S, Kroksdat S, et al. The bidirectional association between depression and insomnia: the HUNT study. Psychosom Med 2012;74(7):758–65 September.
[89] Crawford MR, Turner AD, Wyatt JK, Fogg LF, Ong JC. The link between suicide and insomnia: theoretical mechanisms. Curr Psychiatry Rep 2013;15(9):389 September.
[90] Pigeon WR. Diagnosis, prevalence, pathways, consequences & treatment of insomnia. Indian J Med Res 2010;131:321–32 February.
[91] Trockel M, Karlin BE, Taylor CB, Brown GK, Manber R. Effects of cognitive behavioral therapy for insomnia on suicidal ideation in veterans. Sleep 2015;38(2):259–65 February 1.
[92] Kessler RC, Berglund PA, Costouvat C, Hajak G, Roth T, Shahly V, et al. Insomnia and the performance of US workers: results from the America insomnia survey. Sleep 2011;34(9):1161–71 September 1.
[93] Vozoris NT. Sleep apnea-plus: prevalence, risk factors, and association with cardiovascular diseases using United States population-level data. Sleep Med 2012;13(6):637–44 June.
[94] Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 2005;365(9464):1046–53 March 19.