Energy spectra and passive tracer cascades in turbulent flows
M. S. Jolly, and D. Wirosoetisno

Citation: Journal of Mathematical Physics 59, 073104 (2018); doi: 10.1063/1.5046773
View online: https://doi.org/10.1063/1.5046773
View Table of Contents: http://aip.scitation.org/toc/jmp/59/7
Published by the American Institute of Physics

Articles you may be interested in
The dimensionless dissipation rate and the Kolmogorov (1941) hypothesis of local stationarity in freely decaying isotropic turbulence
Journal of Mathematical Physics 59, 073103 (2018); 10.1063/1.5019925

An infinite dimensional KAM theorem with application to two dimensional completely resonant beam equation
Journal of Mathematical Physics 59, 072702 (2018); 10.1063/1.5045780

Stability of non-constant equilibrium solutions for two-fluid non-isentropic Euler-Maxwell systems arising in plasmas
Journal of Mathematical Physics 59, 073105 (2018); 10.1063/1.5047656

Coarse-grained entanglement classification through orthogonal arrays
Journal of Mathematical Physics 59, 072203 (2018); 10.1063/1.5006890

On exact discretization of cubic-quintic Duffing oscillator
Journal of Mathematical Physics 59, 072703 (2018); 10.1063/1.5034381

Application of renormalization group analysis to two-phase turbulent flows with solid dust particles
Journal of Mathematical Physics 59, 073101 (2018); 10.1063/1.4990493
Energy spectra and passive tracer cascades in turbulent flows

M. S. Jolly and D. Wirosoetisno

1Department of Mathematics, Indiana University, Bloomington, Indiana 47405, USA
2Department of Mathematics Sciences, Durham University, Durham DH1 3LE, United Kingdom

(Received 1 March 2017; accepted 29 June 2018; published online 19 July 2018)

We study the influence of the energy spectrum on the extent of the cascade range of a passive tracer in turbulent flows. The interesting cases are when there are two different spectra over the potential range of the tracer cascade (in 2D when the tracer source is in the inverse energy cascade range and in 3D when the Schmidt number Sc is large). The extent of the tracer cascade range is then limited by the width of the range for the shallower of the two energy spectra. Nevertheless, we show that in dimension \(d = 2, 3\), the tracer cascade range extends (up to a logarithm) to \(\kappa_d D\), where \(\kappa_d D\) is the wavenumber beyond which diffusion should dominate and \(p\) is arbitrarily close to 1, provided Sc is larger than a certain power (depending on \(p\)) of the Grashof number. We also derive estimates which suggest that in 2D, for Sc \(\sim 1\), a wide tracer cascade can coexist with a significant inverse energy cascade at Grashof numbers large enough to produce a turbulent flow. Published by AIP Publishing.

https://doi.org/10.1063/1.5046773

I. INTRODUCTION

Passive tracers play an important role in the study of fluid motion. On the one hand, the experimental and observational studies of fluid flows rely heavily on passive tracers to deduce the advecting velocity field. On the other hand, knowledge of the underlying fluid flows is essential to predict the future dispersion of tracers (particularly, but not exclusively, harmful ones).

It is natural to believe that if the advecting fluid flow is turbulent (however this is defined), the evolution of the tracer will be turbulent as well. Following the pioneering work by Kolmogorov, Obukhov\(^{14}\) and Corrsin\(^4\) argued that if the energy spectrum of the fluid is \(\mathcal{E}(\kappa) = K\kappa^{-n}\), a passive tracer whose dissipation rate is \(\chi\) should have the spectrum \(\mathcal{T}(\kappa) \sim \chi K^{-1/2} \kappa^{(n-5)/2}\) between the injection and dissipation scales (see also Ref. 1). Thus, in the inertial range in 3D, both the energy and tracer spectra scale as \(\kappa^{5/3}\). Following Kraichnan,\(^{13}\) over the direct enstrophy cascade range in 2D, the energy spectrum should scale as \(\kappa^{-3}\), giving a \(\kappa^{-1}\) tracer spectrum. Although these scaling arguments were derived with little reference to the governing equations, they have been supported to a surprising extent by experimental and numerical studies (cf. Refs. 7 and 17), primarily in 3D, slightly less so for 2D and still less so for tracers.

In 3D and 2D, respectively, dissipative effects are expected to dominate beyond the Kolmogorov and Kraichnan wavenumbers \(\kappa_\epsilon\) and \(\kappa_\eta\). The corresponding scales for our tracer depend in addition on the Schmidt number Sc, i.e., the ratio of the viscosity to the tracer dissipativity. Another lengthscale of great importance is the Taylor microscale \(\kappa_\tau^{-1}\). Initially (and to this day among experimentalists) defined using the velocity correlation, mathematicians prefer to use an alternate definition for \(\kappa_\tau\) in terms of the energy and its dissipation rate (7); the two definitions can be shown to be nearly (formally) equivalent under some assumptions (Ref. 7, 6.44b). Assuming that \(\kappa_\tau\) is much greater than the forcing scale, it has been proved rigorously that a direct energy cascade exists for solutions

a)Author to whom correspondence should be addressed: msjolly@indiana.edu
b)djoko.wirosoetisno@durham.ac.uk

0022-2488/2018/59(7)/073104/16/$30.00 59, 073104-1 Published by AIP Publishing.
of 3D Navier-Stokes equations (NSE). Similarly, in 2D, one defines in terms of the enstrophy and its dissipation rate a wavenumber \(\kappa_\nu \), which if sufficiently larger than the forcing scale rigorously implies the existence of the direct enstrophy cascade. In Sec. IV B, we derive an analogous result for tracers in terms of a corresponding wavenumber \(\kappa_\theta \).

While it is plausible that \(\kappa_\tau, \kappa_\nu, \) and \(\kappa_\theta \) are large for turbulent solutions of the NSE and the advected tracers, these remain unproved (directly from the NS and the tracer equations) to this day. If one were to assume the expected spectra, namely, \(e^{2/3} \kappa^{-5/3} \) and \(\eta^{2/3} \kappa^{-5} \), however, it has been shown that \(\kappa_\tau \sim \kappa_\nu^{2/3} \kappa_\theta^{1/3} \) in 3D and \(\kappa_\nu \sim \kappa_\theta \) up to a logarithm in 2D, where \(\kappa_\theta = 2\pi/L \), in a periodic domain of length \(L \) in each direction. Following this approach, we prove the tracer analogs in Secs. V and VI. There are a number of qualitatively distinct cases here, depending on the viscosity \(\nu \) and tracer dissipativity \(\mu \) respectively. An analogous estimate for the tracer transfer rate in terms of a corresponding wavenumber \(\kappa_\wedge \) implies the existence of the direct enstrophy cascade.

The phase space \(\theta \wedge \) is the closure in \(\mathbb{L}^2(\Omega)^d \) of all \(\mathbb{R}^d \)-valued trigonometric polynomials \(u \) such that
\[
\nabla \cdot u = 0 \quad \text{and} \quad \int_\Omega u^2(x) \, dx = 0.
\]
We write (2) as a differential equation in a certain Hilbert space \(H \) (see Refs. 2 and 16),
\[
\frac{d}{dt} u(t) + \nu A u(t) + B(u(t), u(t)) = f,
\]
where \(u(t) \in H \), \(t \geq t_0 \), and \(u(t_0) = u_0 \).

The phase space \(H \) is the closure in \(\mathbb{L}^2(\Omega)^d \) of all \(\mathbb{R}^d \)-valued trigonometric polynomials \(u \) such that
\[
\nabla \cdot u = 0 \quad \text{and} \quad \int_\Omega u^2(x) \, dx = 0.
\]
The bilinear operator \(B \) is defined as
\[
B(u, v) = \mathcal{P}(u \cdot \nabla v),
\]
where \(\mathcal{P} \) is the projection onto \(\mathbb{R}^d \).
where \(\mathcal{P} \) is the Helmholtz–Leray orthogonal projector of \(L^2(\Omega)^d \) onto \(H \) and \(f = \mathcal{P} f \). The scalar product in \(H \) is taken to be

\[
(u, v) = \int_{\Omega} u(x) \cdot v(x) \, dx,
\]

with the associated norm

\[
|u| = (u, u)^{1/2} = \left(\int_{\Omega} u(x) \cdot u(x) \, dx \right)^{1/2}.
\]

The operator \(A = -\Delta \) is self-adjoint with compact inverse and a complete set of eigenfunctions associated with eigenvalues of the form

\[
(2\pi/L)^2 k \cdot k, \quad \text{where } k \in \mathbb{Z}^d \setminus \{0\}.
\]

We denote these eigenvalues by

\[
0 < \lambda_0 = (2\pi/L)^2 \leq \lambda_1 \leq \lambda_2 \leq \cdots
\]

arranged in non-decreasing order (counting multiplicities) and write \(u_0, u_1, u_2, \ldots \), for the corresponding normalized eigenvectors (i.e., \(|u_j| = 1 \) and \(Aw_j = \lambda_j w_j \) for \(j = 0, 1, 2, \ldots \)).

For \(\alpha \in \mathbb{R} \), the positive roots of \(A^{\alpha} \) are defined by linearity from

\[
A^{\alpha} w_j = \lambda_j^{\alpha} w_j, \quad \text{for } j = 0, 1, 2, \ldots
\]

on the domain

\[
D(A^{\alpha}) = \{ u \in H : \sum_{j=0}^{\infty} \lambda_j^{2\alpha} (u, w_j)^2 < \infty \}.
\]

We take the natural norm on \(V = D(A^{1/2}) \) to be

\[
||u|| = |A^{1/2} u| = \left(\int_{\Omega} \sum_{j=1}^{d} \frac{\partial}{\partial x_j} u(x) \cdot \frac{\partial}{\partial x_j} u(x) \, dx \right)^{1/2} = \left(\sum_{j=0}^{\infty} \lambda_j (u, w_j)^2 \right)^{1/2}.
\]

Since the boundary conditions are periodic, we may express an element in \(H \) as a Fourier series

\[
u(x) = \sum_{k \in \mathbb{Z}^d} \hat{u}_k e^{i\kappa \cdot x}, \quad (4)
\]

where

\[
\kappa_0 = \lambda_0^{1/2} = \frac{2\pi}{L}, \quad \hat{u}_0 = 0, \quad \hat{u}_k^* = \hat{u}_{-k},
\]

and due to incompressibility, \(k \cdot \hat{u}_k = 0 \). We associate to each term in (4) a wavenumber \(\kappa_0 k \). Parseval’s identity reads as

\[
|u|^2 = L^d \sum_{k \in \mathbb{Z}^d} |\hat{u}_k|^2 = L^d \sum_{k \in \mathbb{Z}^d} |\hat{u}_k|^2.
\]

Two important dimensionless parameters are the Grashof and Schmidt numbers,

\[
G := \frac{|f|}{\nu^2 \kappa_0^{3-d/2}} \quad \text{and} \quad \text{Sc} := \frac{\nu}{\mu}.
\]

The former indicates the complexity of the (velocity) flow, and the latter indicates the importance of (momentum) viscosity relative to tracer dissipativity.

Since the infinite time limit is not known to exist, for each solution \(u(t) \) of the 2D NSE (Leray–Hopf weak solution in the 3D case), we work with the average

\[
\langle \Phi \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \Phi(u(t)) \, dt \quad \text{for any } \Phi \text{ weakly continuous in } H,
\]

where \(\text{Lim} \) is a Hahn–Banach extension of the classical time limit. The average \(\langle \cdot \rangle \) is the mathematical equivalent of the ensemble average in the statistical theory of turbulence; see Refs. 11 and 10 for more details. Using this, we define the average energy, enstrophy, and tracer variance as
and the resulting downscale energy transfer rate is
\[\epsilon = \frac{1}{L^d} \langle |u|^2 \rangle, \quad E = \frac{1}{L^d} \langle |u|^2 \rangle, \quad \text{and} \quad \frac{1}{L^d} \langle |\theta|^2 \rangle, \quad (5) \]
as well as their dissipation (diffusion) rates
\[\epsilon := \frac{\nu}{L^d} \langle |u|^2 \rangle, \quad \eta := \frac{\nu}{L^d} \langle |u|^2 \rangle, \quad \text{and} \quad \chi := \frac{\mu}{L^d} \langle |\nabla \theta|^2 \rangle. \quad (6) \]

By classical dimensional arguments, the dissipation range is expected to start at
\[\kappa_\epsilon = \left(\frac{\epsilon}{\nu^3} \right)^{1/4} \quad \text{and} \quad \kappa_\eta = \left(\frac{\eta}{\nu^3} \right)^{1/6} \]
in 3D and 2D, respectively; these are sometimes known as the Kolmogorov and Kraichnan wavenumbers. Their analogs for the tracer cascade are more complicated and depend on the advecting velocity; see \(\kappa_{2D} \) and \(\kappa_{3D} \) in Secs. V and VI below. Another set of important wavenumbers are
\[\kappa_\tau := \frac{\langle |u|^2 \rangle}{\langle |u|^2 \rangle}, \quad \kappa_\Delta := \frac{\langle |\Delta u|^2 \rangle}{\langle |u|^2 \rangle}, \quad \text{and} \quad \kappa_\theta := \frac{\langle |\theta|^2 \rangle}{\langle |\theta|^2 \rangle}. \quad (7) \]

In 3D turbulence, \(\kappa_\tau \) is closely related to the Taylor wavenumber, the scale at which the velocity correlation is lost; it has been shown that direct energy cascade takes place within the range \((\kappa, \kappa_\tau)\). Its analogs in 2D and tracer turbulence are \(\kappa_\alpha \) and \(\kappa_\theta \), with corresponding results on enstrophy\(^{11}\) and tracer [(25) below] cascades.

We make use of the following notation: \(a \leq b \) means \(a \leq \ell b \) for a nondimensional universal constant \(c \), independent of \(G \) and \(Sc \) (as well as \(\kappa_0, \nu, \) and \(\mu \)), under the condition that \(G \geq G_* \), where \(G_* \) may be different for each inequality and similarly for \(\geq \). By \(a \sim b \), we mean that both \(a \leq b \) and \(b \leq a \) hold. We write \(a \ll b \) if \(ab < \delta \) for some small \(\delta \) (in \(0, 1 \)), and \(ab \) is nondimensional provided the ranges of \(a, b \) are a priori specified (e.g., for large values of \(a, b \)). The value of \(\delta \) shall remain unspecified and may vary from one statement involving \(\ll \) to the next.

III. INFLUENCE OF ENERGY SPECTRUM

A. Classical theory

We recall briefly from Ref. 17, Ch. 8 some elements of the Kolmogorov–Obukhov theory for 3D turbulence in a form suitable for its extension to passive tracers. Suppose that a parcel ("eddy") of size 1/\(\kappa \) has velocity \(U_\kappa \sim [\kappa \tilde{E}(\kappa)]^{1/2} \). Assuming that such an eddy breaks up in the time \(\tau_\kappa \), it takes to travel its own size, i.e.,
\[\tau_\kappa U_\kappa = 1/\kappa \quad \text{so that} \quad \tau_\kappa \sim [\kappa^3 \tilde{E}(\kappa)]^{-1/2}, \quad (8) \]
and the resulting downscale energy transfer rate is
\[\frac{U_\kappa^2}{\tau_\kappa} \sim \frac{\kappa \tilde{E}(\kappa)}{\tau_\kappa}. \]
Assuming that this transfer rate is a constant \(\epsilon \) for \(\kappa \) in the so-called inertial range and solving for \(\tilde{E} \), we arrive at the Kolmogorov spectrum
\[\tilde{E}_{3D}(\kappa) \sim \epsilon^{2/3} \kappa^{-5/3}. \]
The situation in 2D is more complicated in that, for scales smaller than the forcing, we expect the enstrophy to undergo a direct cascade to smaller scales, while energy is mainly transferred to larger scales in an inverse cascade for scales larger than the forcing. Yet a similar dimensional argument in the enstrophy inertial range leads to the Kraichnan spectrum
\[\tilde{E}_{2D}(\kappa) \sim \eta^{2/3} \kappa^{-3}. \]
An analogous cascade mechanism for the tracer suggests a connection between its spectrum \(T(\kappa) \) and the energy spectrum. Taking the amount of tracer (variance) at wavenumber \(\kappa \) to be \(\kappa T(\kappa) \), assuming that it is transferred to wavenumber 2\(\kappa \) by the advecting velocity over a time \(\tau_\kappa \) given by (8), and setting the transfer rate to a constant \(\chi \), we find
\(\chi \sim \frac{k \mathcal{T}(k)}{\tau_k}. \)

If we take \(\mathcal{E}(k) \sim K k^{-n} \) in (8) and solve for \(\mathcal{T} \) in (9), we have
\[
\mathcal{T}(k) \sim \chi K^{-1/2} k^{(n-5)/2}.
\]

B. Mathematical formulation

These spectral relations can be reformulated in terms of partial sums
\[
e_{k,2k} := \frac{1}{L^d} \sum_{k \leq k_0} \langle |\hat{u}_k|^2 \rangle \quad \text{and} \quad \vartheta_{k,2k} := \frac{1}{L^d} \sum_{k \leq k_0} \langle |\hat{\theta}_k|^2 \rangle.
\]

As \(L \) increases (so \(k_0 \) decreases), each quantity in (10) can be viewed as a Riemann sum approximation of the integral of the corresponding spectrum (this assumes smoothness of the summands, but below we will use this approximation only for explicit functions of \(\kappa \)). For instance, for the energy in 3D, we have
\[
\int_k^{2k} \mathcal{E}_3(\tilde{k}) d\tilde{k} \sim \int_k^{2k} \eta^{2/3} \tilde{k}^{-5/3} d\tilde{k} = \frac{3}{2} \frac{2}{3} \eta^{2/3} \left(1 - 2^{2/3} \right) \kappa^{-2/3} \sim \eta^{2/3} \kappa^{-2/3}.
\]

In the inertial range, this leads to the energy power law
\[
e_{k,2k} \sim \eta^{2/3} \kappa^{-2/3} \quad \text{in 3D}
\]
and similarly
\[
\vartheta_{k,2k} \sim \eta^{2/3} \kappa^{-2} \quad \text{in 2D}.
\]

We gather the expected spectra according to classical theory in Table I.

We conclude this section with a brief calculation regarding the summation of the tracer variance over the relevant wavenumber range assuming that a certain power law holds. It will be used repeatedly.

Lemma 1. Suppose \(\vartheta_{k,2k} \sim \alpha \kappa^{-p} \) for \(\kappa_1 \leq \kappa \leq \kappa_2 \), with \(4 \kappa_1 \leq \kappa_2 \) and \(p \geq 0 \). Then
\[
\vartheta_{k,2k} \sim \begin{cases}
\alpha \left(\kappa_1^p - \kappa_2^p \right), & \text{if } p > 0, \\
\alpha \ln(\kappa_2/\kappa_1), & \text{if } p = 0.
\end{cases}
\]

Proof. As in Refs. 5 and 6, let \(J = \lfloor \log_2(\kappa_2/\kappa_1) \rfloor - 1 \). If \(p > 0 \), then
\[
\vartheta_{k,2k} \sim \sum_{k=2/\kappa_1}^J \vartheta_{k,2k} \sim \alpha \sum_{j=0}^J \left(2^p \right)^{-j} \frac{1}{k_1^p} \left[1 - \left(\frac{k_1}{k_2} \right)^p \right] = \alpha \frac{1}{k_1^p} \left[1 - \left(\frac{k_1}{k_2} \right)^p \right],
\]
If \(p = 0 \),
\[
\vartheta_{k,2k} \sim \alpha \sum_{j=0}^J 1 = \alpha \log_2(\kappa_2/\kappa_1) \sim \alpha \ln(\kappa_2/\kappa_1).
\]

Table I. Spectra according to classical theory.

dir.	\(d \)	\(\mathcal{E}(k) \)	\(\vartheta_{k,2k} \)	\(\mathcal{T}(k) \)	\(\vartheta_{k,2k} \)
fwd	3	\(\eta^{2/3} \kappa^{-5/3} \)	\(\eta^{2/3} \kappa^{-2/3} \)	\(\chi \eta^{1/3} \kappa^{-5/3} \)	\(\chi \eta^{1/3} \kappa^{-2/3} \)
fwd	2	\(\eta^{2/3} \kappa^{-3} \)	\(\eta^{2/3} \kappa^{-2} \)	\(\chi \eta^{1/3} \kappa^{-1} \)	\(\chi \eta^{1/3} \kappa^{-1} \)
bkwd	2	\(\eta^{2/3} \kappa^{-5/3} \)	\(\eta^{2/3} \kappa^{-2/3} \)	\(\chi \eta^{1/3} \kappa^{-5/3} \)	\(\chi \eta^{1/3} \kappa^{-2/3} \)
IV. INDICATORS FOR CASCADES

Returning to the Navier–Stokes (3) and tracer equations (1), we henceforth assume that the forcing \(F \) and source \(g \) are spectrally-bounded, i.e., there exist \(\kappa_0 < \kappa_g < \infty \) and \(\kappa_0 \leq \kappa \leq \kappa_g < \infty \) such that

\[
g = g_{\kappa_0, \kappa_g} \quad \text{and} \quad f = \hat{f}_{\kappa, \bar{\kappa}}.
\]

Given a fixed \(\kappa \), we define

\[
u^{-} := u_{\kappa_0, \kappa}, \quad u^{+} := u_{\kappa, \infty} \quad \text{and} \quad \theta^{-} := \theta_{\kappa_0, \kappa}, \quad \theta^{+} := \theta_{\kappa, \infty}.
\]

The notation here, unlike in (10), does not involve the average and factor of \(L^d \), e.g.,

\[
u_{\kappa_1, \kappa_2} = \sum_{\kappa \leq \kappa_0 |k| < 2\kappa} \hat{u}_k e^{i(k\cdot x)}.
\]

A. Navier–Stokes equations

We start by giving sufficient conditions for enstrophy and energy cascades. In terms of the solution of the 2D NSE, the net rate of enstrophy transfer (flux) is given by

\[
\mathcal{E}_{\kappa} = \mathcal{E}_{\kappa}^{-} - \mathcal{E}_{\kappa}^{+},
\]

where

\[
\mathcal{E}_{\kappa}^{-}(u) = -\frac{1}{L^2}(B(u^{-}, u^{-}), Au^{+}) \quad \text{and} \quad \mathcal{E}_{\kappa}^{+}(u) = -\frac{1}{L^2}(B(u^{+}, u^{+}), Au^{-})
\]

are the rates of enstrophy transfer (low to high) and (high to low), respectively. It was shown in Ref. 11 that

\[
1 - \left(\frac{\kappa}{\kappa_{\epsilon \tau}} \right)^2 \leq \langle \mathcal{E}_{\kappa} \rangle \eta \leq 1 \quad \text{if} \quad \tilde{\kappa} \leq \kappa \leq \kappa_{\epsilon \tau}, \quad (12)
\]

It follows that if

\[
k_{\epsilon \tau} \gg \tilde{\kappa}, \quad \text{(13)}
\]

then there exists an enstrophy cascade

\[
\langle \mathcal{E}_{\kappa} \rangle \approx \eta \quad \text{for} \quad \tilde{\kappa} \leq \kappa \ll k_{\epsilon \tau}.
\]

Similarly, the transfer of energy \(\epsilon_{\kappa} = \epsilon_{\kappa}^{-} - \epsilon_{\kappa}^{+} \) is shown in Refs. 11 and 9 to satisfy

\[
1 - \left(\frac{\kappa}{k_{\epsilon \tau}} \right)^2 \leq \langle \epsilon_{\kappa} \rangle \epsilon \leq 1 \quad \text{for} \quad \tilde{\kappa} \leq \kappa \leq k_{\epsilon \tau}, \quad (14)
\]

where

\[
\epsilon_{\kappa}^{-}(u) = -\frac{1}{L^d}(B(u^{-}, u^{-}), u^{+}) \quad \text{and} \quad \epsilon_{\kappa}^{+}(u) = -\frac{1}{L^d}(B(u^{+}, u^{+}), u^{-}).
\]

It is shown in Ref. 9 that (14) holds as well in 3D for sufficiently regular solutions and for weak solutions with \(\epsilon_{\kappa} \) replaced by

\[
\epsilon_{\kappa}^{\ast} = \epsilon_{\kappa} - \lim_{k \to \infty} \langle \epsilon_{\kappa} \rangle \quad \text{(15)}
\]

to account for a possible loss of energy. Thus if

\[
k_{\epsilon \tau} \gg \tilde{\kappa}, \quad \text{(16)}
\]

there is a direct energy cascade

\[
\langle \epsilon_{\kappa} \rangle \approx \epsilon \quad \text{for} \quad \tilde{\kappa} \leq \kappa \ll k_{\epsilon \tau}.
\]

It is easy to show that \(k_{\tau} \leq k_{\epsilon \tau} \), which is consistent with the expectation that for a 2D flow, a direct enstrophy cascade be more pronounced than a direct energy cascade.

We note a couple of useful bounds for \(k_{\eta} \) and \(k_{\epsilon} \). For the 2D NSE (regardless of whether the flow is turbulent), it was shown in Ref. 8 that

\[
G^{1/6} \leq k_{\eta} / k_0 \leq G^{1/3}. \quad (17)
\]

While for the 3D NSE, Ref. 6 showed that

\[
(k_0 / \tilde{k})^{5/8} G^{1/4} \leq \frac{k_{\epsilon}}{k_0} \quad \text{(18)}
\]
If, however, one assumes the power spectrum (which \textit{a priori} says nothing about energy transfer) one does obtain lower bounds on κ_{σ} and κ_{η}, or equivalently by (13) and (16), one obtains sufficient conditions for the enstrophy and energy cascades. In 2D, we have the following estimate from Ref. 5.

\textbf{Theorem 1.} If for the 2D NSE we have
\begin{equation}
\epsilon_{k_{i}} \sim \eta^{2/3} \frac{k_{i}^{-2}}{k_{i}^{2}} \quad \text{for} \quad k_{i} \leq k \leq k_{\eta},
\end{equation}
with $4k_{i} \leq k_{\eta}$ and
\begin{equation}
\langle |u_{k_{i}}|^{2} \rangle \leq \langle |u_{k_{\eta}}|^{2} \rangle,
\end{equation}
then
\begin{equation}
\kappa_{\sigma}^{2} \sim \kappa_{\sigma}^{2} \ln(k_{\eta} / k_{i}).
\end{equation}
The wavenumber k_{i} marks the start of the inertial range. Based on (12) and (14), we expect that $k_{i} \sim \bar{k}$.

Thanks to (17), the dissipation wavenumber k_{η} can be controlled by the Grashof number. Thus, under (19), κ_{σ} can indeed be made large by increasing G. It is shown in Ref. 12 that if conversely (20) holds, then one side of the power law holds (up to a log)
\begin{equation}
\epsilon_{k_{i}} \sim \eta^{2/3} \kappa_{i}^{-2} \ln(k_{\eta} / k_{i})
\end{equation}
for $k_{i} \leq k \leq k_{\eta}$.

Moreover, under (20), it is shown in Ref. 5 that (17) is sharpened to
\begin{equation}
\left(\frac{k_{0}}{k} \right)^{1/4} \left(\frac{G^{1/4}}{(\ln G)^{1/4}} \right) \leq \left(\frac{k_{\eta}}{k_{0}} \right)^{1/4} \leq \left(\frac{k_{\eta}}{k_{0}} \right)^{1/4} \left(\frac{G^{1/4}}{(\ln G)^{1/4}} \right).
\end{equation}
The following 3D analog of Theorem 1 is proved in Ref. 6.

\textbf{Theorem 2.} If for a Leray–Hopf solution to the 3D NSE we have
\begin{equation}
\epsilon_{k_{i}} \sim \epsilon^{2/3} \kappa_{i}^{-2/3} \quad \text{for} \quad \bar{k} \leq k \leq \kappa_{\epsilon},
\end{equation}
with $4\bar{k} \leq \kappa_{\epsilon}$ and
\begin{equation}
\langle |u|^{2} \rangle \sim \langle |u_{k_{\epsilon}}|^{2} \rangle,
\end{equation}
then
\begin{equation}
\kappa_{\tau}^{3} \sim \kappa_{\tau}^{3} \bar{k}.
\end{equation}
Assuming (22), the bound (18) can be sharpened to
\begin{equation}
\left(\frac{k_{0}}{k} \right)^{11/16} \frac{G^{3/8}}{(\ln G)^{1/8}} \leq \left(\frac{k_{\sigma}}{k_{\epsilon}} \right)^{1/8} \frac{k_{\eta}}{k_{0}} \leq \left(\frac{k_{\eta}}{k_{0}} \right)^{1/8} \frac{G^{3/8}}{(\ln G)^{1/8}} \quad \text{for} \quad G \geq \left(\frac{k_{\sigma}}{k_{\epsilon}} \right)^{3/2}.
\end{equation}
The powers in (20) and (22) are suggestive of the extent to which the corresponding fluxes are constant over a given range, or alternatively, the width of the inertial range in each case.

\textbf{B. Passive tracer}

A condition for a cascade of the tracer is derived just as those for the NSE. Let κ and κ_{g} be fixed with $\kappa > \kappa_{g}$. Multiply (1) by θ^{\ast} in L^{2} to get (the inequality is to account for possible lack of regularity)
\begin{equation}
\frac{1}{2} \frac{d}{dt} |\theta^{\ast}|^{2} + \mu |\nabla \theta^{\ast}|^{2} \leq -(u \cdot \nabla \theta^{\ast}, \theta^{\ast}) + (g^{\ast}, \theta^{\ast})
= -(u^{\ast} \cdot \nabla \theta^{\ast}, \theta^{\ast}) + (u^{\ast} \cdot \nabla \theta^{\ast}, \theta^{\ast}) + (g^{\ast}, \theta^{\ast})
= L^{d} \Theta_{k} + (g^{\ast}, \theta^{\ast}),
\end{equation}
where
\begin{equation}
\Theta_{k} := \frac{1}{L^{d}} \left[-(u^{\ast} \cdot \nabla \theta^{\ast}, \theta^{\ast}) + (u^{\ast} \cdot \nabla \theta^{\ast}, \theta^{\ast}) \right].
\end{equation}
is the downscale (i.e., toward larger $|k|$) flux of θ through wavenumber κ. Now $g^\perp = 0$ since $\kappa > \kappa_g$, so upon taking average, the time derivative disappears and we get

$$\mu \langle |\nabla \theta|^2 \rangle = L_d \langle \Theta_\kappa \rangle. \quad (24)$$

If θ is not (known to be) sufficiently regular, we replace Θ_κ by $\Theta^*_\kappa B \Theta_\kappa - \lim_{\kappa \to \infty} \langle \Theta_\kappa \rangle$ in analogy with (15).

The tracer “energy” cascade mechanism requires that $\langle \Theta_\kappa \rangle$ is (nearly) constant for $\kappa \in [\kappa_\epsilon, \kappa^*] \subset [\bar{\kappa}, \kappa_\theta]$. Noting that $\chi \geq \langle \Theta_\kappa \rangle = \frac{\mu}{L_d} \langle |\nabla \theta|^2 \rangle = \frac{\mu}{L_d} \langle |\nabla \theta|^2 \rangle - \frac{\mu}{L_d} \langle |\nabla \theta^\perp|^2 \rangle \geq \chi - \kappa^2 \frac{\mu}{L_d} \langle |\theta^\perp|^2 \rangle \geq \chi - \kappa^2 \frac{\mu}{L_d} \langle |\theta|^2 \rangle = \chi \left[1 - \left(\frac{\kappa}{\kappa_B} \right)^2 \right],$

we obtain the tracer analog of (12) and (14),

$$1 - \left(\frac{\kappa}{\kappa_B} \right)^2 \leq \frac{\langle \Theta_\kappa \rangle}{\chi} \leq 1 \quad \text{for} \quad \kappa_g \leq \kappa \leq \kappa_\theta. \quad (25)$$

The relations (12), (14), and (25) all imply cascades (more precisely, constancy of fluxes) provided that the indicator wavenumbers κ_σ, κ_τ, and κ_θ are sufficiently large. Criteria on the forcing f and source g that would give these conditions, directly from the NSE without further assumptions, so far remain elusive.

V. 2D CASE EFFECT OF ENERGY SPECTRUM ON κ_θ

In this section, we prove tracer analogs of Theorem 1, relating the indicator wavenumber κ_θ to κ_η. The interesting cases are where there are two spectra for the tracer, which in 2D is expected when the injection wavenumbers for tracer are below those for the fluid.

A. Large Schmidt number

For large Schmidt number $Sc = \nu/\mu$, there is a range $[\kappa_\eta, \kappa_{2D}]$ where the tracer is advected by a viscous fluid flow (Fig. 1). According to the classical theory (Ref. 17, pp. 367–369), here we expect a k^{-1} tracer spectrum over the full range $[\kappa, \kappa_{2D}]$: First, the time scale for this range is determined by substituting κ_η into (8), which gives

$$\tau_{\kappa_\eta} = \eta^{-1/3}. \quad (26)$$

One then sets τ_{κ_η} equal to the diffusive time scale $(\mu k^2)^{-1}$ to find

$$k_{2D} := \left(\frac{\eta}{\mu^3} \right)^{1/6} = Sc^{1/2} \kappa_\eta, \quad (27)$$

so $k_{2D} \gg \kappa_\eta$. Using (26) in (9) and solving for $\mathcal{T}(k)$ gives

$$\mathcal{T}(k) \sim \chi^{1/3} \kappa^{-1} \quad \text{for} \quad \kappa_\eta \leq k \leq k_{2D}. \quad (28)$$

FIG. 1. Expected tracer spectra for the case of inverse cascade with a large Schmidt number.
Note that in the enstrophy cascade range $\bar{k} \leq \kappa \leq \kappa_\eta$, we expect $\mathcal{E}(\kappa) \sim \eta^{2/3} \kappa^{-3}$, giving rise to the same tracer spectrum, so in fact, (28) should hold for the extended range $\bar{k} \leq \kappa \leq \kappa_{2D}$.

Assuming power laws corresponding to the tracer spectra, we relate κ_θ to κ_η and show that asymptotically $\kappa_\theta \sim \kappa_{2D}$ for large Sc:

Theorem 3. Suppose that $\kappa_g < \bar{k}$ holds along with

$$k_\theta^2 \sim \kappa_\eta^2/\ln(\kappa_\eta/\bar{k}), \quad \text{(29)}$$

and

$$\langle |\theta|^2 \rangle \sim \langle |\theta_{\kappa,\bar{k}}|^2 \rangle + \langle |\theta_{\kappa,\kappa_{2D}}|^2 \rangle, \quad \text{(30)}$$

We then have

$$k_\theta^2 \sim \frac{1}{a + b},$$

where

$$a = \kappa_{2D}^{-4/3} \text{Sc}^{-1/3} (\kappa_g^{-2/3} - \kappa^{2/3}) \ln(\kappa_\eta/\bar{k})^{-1/3} \quad \text{and} \quad b = \kappa_{2D}^2 \ln(\kappa_{2D}/\bar{k}).$$

If, moreover,

$$\kappa_g \sim \kappa_0 \quad \text{and} \quad \bar{k} \sim \bar{k},$$

along with

$$\bar{k}/\kappa_0 \leq (G \ln G)^{1/2}/e^{1/5} \quad \text{(33)}$$

and

$$\text{Sc} \gtrsim (G \ln G \bar{k}/\kappa_0)^{3r-4}/(12-6r), \quad \text{(34)}$$

for some $r \in [4/3, 2)$, we have

$$\kappa_{2D}^2 \kappa_0^{-2r}/\ln(\kappa_{2D}/\bar{k}) \lesssim k_\theta^2 \lesssim \kappa_{2D}^2 \ln(\kappa_{2D}/\bar{k}). \quad \text{(35)}$$

Note that by Theorem 1, condition (29) could be replaced by the more natural (e.g., from the computational point of view) but stronger assumptions

$$\theta_{\kappa,\bar{k}} \sim \eta^{2/3} \kappa^{-2} \quad \text{for} \quad \bar{k} \leq \kappa \leq \kappa_\eta,$$

$$\langle ||u_{k,\bar{k}}||^2 \rangle \lesssim \langle ||u_{k,\kappa_\eta}||^2 \rangle,$$

$$2 \bar{k} \leq \kappa_\eta,$$

which are consistent with the discrete tracer spectrum (31b). Note also that if $\kappa_\eta \sim \bar{k}$, one can neglect the contribution of a so that

$$k_\theta^2 \sim \kappa_{2D}^2/\ln(\kappa_{2D}/\bar{k}).$$

Proof. First we estimate over the inverse cascade as follows:

$$\theta_{\kappa,\bar{k}} \sim \frac{X}{\mu} \left(\frac{\mu^3}{e} \right)^{1/3} (\kappa_g^{-2/3} - \kappa^{-2/3}) \quad \text{by (11a) and (27)},$$

$$= \frac{X}{\mu} \kappa_{2D}^{-2/3} \kappa_\eta^{-2/3} (\kappa_g^{-2/3} - \kappa^{2/3}),$$

$$\sim \frac{X}{\mu} \kappa_{2D}^{-2/3} \kappa_\eta^{-2/3} (\kappa_g^{-2/3} - \kappa^{2/3}) \ln(\kappa_\eta/\bar{k})^{-1/3},$$

$$= \frac{X}{\mu} \kappa_{2D}^{-4/3} \text{Sc}^{-1/3} (\kappa_g^{-2/3} - \kappa^{2/3}) \ln(\kappa_\eta/\bar{k})^{-1/3} \quad \text{by (29)},$$

$$= \frac{X}{\mu} \kappa_{2D}^{-4/3} \text{Sc}^{-1/3} (\kappa_g^{-2/3} - \kappa^{2/3}) \ln(\kappa_\eta/\bar{k})^{-1/3} \quad \text{by (27)}.$$

Then, over the range beyond \bar{k}, we find

$$\theta_{\kappa,\kappa_{2D}} \sim \frac{X}{\mu \kappa_{2D}^3} \ln(\kappa_{2D}/\bar{k}). \quad \text{(36)}$$
It follows from (30) that
\[\frac{d}{dx} \phi_{k_0} \sim \frac{d}{dx} \phi_{k_0} + \frac{d}{dx} \phi_{k_2} \sim \frac{X}{\mu} (a + b) \]
and hence
\[\frac{d^2}{dx^2} \phi = \left(\frac{\mu/L^2}{(\mu/L^2) \langle |\theta|^2 \rangle} \right) = \frac{X}{\mu \phi_{k_0}} \sim \frac{1}{a + b}. \]

For the second part of the theorem, we seek to majorise \(a \) as
\[a \leq \kappa_2^r \kappa_0^{-2} \ln(\kappa_2 D), \]
which, by (27), is equivalent to
\[\left(\frac{\kappa_2}{\kappa_0} \right)^{r - \delta/3} \left[\left(\frac{\kappa_2}{\kappa_0} \right)^{-2/3} - \left(\frac{\kappa_2}{\kappa_0} \right)^{-2/3} \right] \leq Sc^{1/3} \left(\ln \frac{\kappa_2}{\kappa} \right)^{1/3} \left(\ln \frac{\kappa_2}{\kappa} + \ln Sc \right). \]

From the upper bound in (21), we have, with \(\zeta := \kappa/k_0 \),
\[\kappa_2 / \kappa_0 \leq (\zeta G)^{1/4} \ln G \]
Using this to bound the left-hand side of (37), we have
\[(\kappa_2 / \kappa_0)^{r - \delta/3} \leq (\zeta G)^{r/4 - 1/3} (\ln G)^{r/2 - 1/6}. \]

Now the lower bound in (21) implies
\[\zeta^{-5/4} (\ln G)^{1/4} \leq \kappa_2 / \kappa, \]
which we then apply to the right-hand side of (37) to obtain
\[\left(\ln \frac{\kappa_2}{\kappa} \right)^{1/3} \left(\ln \frac{\kappa_2}{\kappa} + \ln Sc \right) \geq \left(\ln \frac{G}{\zeta^5 \ln G} \right)^{1/3} \left[\ln \left(\frac{G}{\zeta^5 \ln G} \right) + \ln Sc \right] \geq \left(\ln \frac{G}{\zeta^5 \ln G} \right)^{4/3}. \]

Putting this together with (38), we find that (37) is implied by
\[(\zeta G (\ln G)^{1/2})^{r/4 - 1/3} \leq Sc^{1 - r/2} \left(\ln \frac{G}{\zeta^5 \ln G} \right)^{4/3}. \]

Now for \(G \geq 1 \), we have
\[(G (\ln G)^{1/2})^{1/2} \leq G / \ln G, \]
so assuming this and writing \(\gamma := G (\ln G)^{1/2} \), (39) is implied by
\[(\zeta \gamma)^{r/4 - 1/3} \leq Sc^{1 - r/2} (\ln \zeta^5 \gamma)^{4/3}. \]

Applying (33), we see that (34) implies (35). \(\square \)

B. Moderate Schmidt number

For moderate Schmidt numbers, i.e., \(\nu / \mu \sim 1 \), we have from (27) that \(\kappa_2 \sim \kappa_2 \) (Fig. 2). In the simplest case, where \(\kappa \sim \kappa_2 \), the tracer cascade occurs in the enstrophy cascade range, viz,
\[\langle |\theta|^2 \rangle \sim \langle |\theta_{\kappa_2}|^2 \rangle, \]
\[\phi_{\kappa_2} \sim \kappa \eta^{-1/3} \quad \text{for} \ k \leq \kappa \leq \kappa_2. \]
FIG. 2. Expected tracer spectra for the case of inverse cascade with a moderate Schmidt number.

We then have
\[
\vartheta_{k, \eta} \sim \chi \eta^{-1/3} \ln (\kappa_\eta / \bar{k})
\]
\[
= \frac{\chi}{\mu} \left(\frac{\mu^3}{\eta} \right)^{1/3} \ln (\kappa_\eta / \bar{k})
\]
by (41) and (11b),

which by (40) implies
\[
\vartheta_{k_0, \eta} \sim \vartheta_{k, \eta} \sim \frac{\chi}{\mu \kappa_\eta^2} \ln (\kappa_\eta / \bar{k}).
\]

Thus, \(\kappa_\theta \sim \kappa_\eta \sim \kappa_{2D} \) up to logarithm,
\[
k_\eta^2 = \left(\frac{\langle |\nabla \theta|^2 \rangle}{\langle |\theta|^2 \rangle} \right) = \frac{\chi}{\mu \theta_{k_0, \eta}} \sim \kappa_\eta^2 / \ln (\kappa_\eta / \bar{k}) \sim k_{2D}^2 / \ln (k_{2D} / \bar{k}).
\]

If the energy injection scale is small compared to the tracer injection scale, i.e., \(\kappa_R \ll \kappa \), we again expect to have two tracer cascade ranges (both downscale). In the gap between \(\kappa_R \) and \(\kappa \), the energy spectrum is expected to take the form \(\mathcal{E}(k) \sim k^{2/3} \eta^{-5/3} \) so that the tracer spectrum should be \(\mathcal{T}(k) \sim \chi k^{-1} \eta^{-1/3} \). Recall that in the enstrophy cascade range \(\bar{k} \leq k \leq \kappa_\eta \), we expect \(\mathcal{E}(k) \sim \eta^{2/3} k^{-3} \) so that \(\mathcal{T}(k) \sim \chi \eta^{-1/3} k^{-1} \). This case is virtually identical to that treated in Theorem 3, except since \(\text{Sc} = vl/\mu \sim 1 \), we have
\[
k_\theta^2 \leq k_{2D}^{4/3} \kappa_R^{2/3} \left(\ln (k_{2D} / \bar{k}) \right)^{-1/3}.
\]

Under the assumptions of Theorem 3, we have \(\kappa_\theta \leq k_{2D} \) up to a logarithm. If those assumptions are dropped, though it is not expected that \(\kappa_\theta \) exceeds \(k_{2D} \), one may ask if \(\kappa_\theta \sim k_{2D} \) implies \(\vartheta_{k,2k} \sim \chi \eta^{1/3} \). The following is then a partial converse to Theorem 3.

Theorem 4. If \(\kappa_\theta \geq k_{2D} \), then \(\vartheta_{k,2k} \leq \chi \eta^{1/3} \).

Proof. We can rewrite the assumption as
\[
k_\theta^2 = \frac{\langle |\nabla \theta|^2 \rangle}{\langle |\theta|^2 \rangle} \geq \left(\frac{\eta}{\mu^3} \right)^{1/3} = k_{2D}^2
\]
or as
\[
\frac{\mu}{L^2} \langle |\nabla \theta|^2 \rangle \geq \frac{\eta^{1/3}}{L^2} \langle |\theta|^2 \rangle
\]
so that
\[
\chi \eta^{-1/3} \geq \frac{1}{L^2} \langle |\theta|^2 \rangle \geq \frac{1}{L^2} \langle |\theta_{k,2k}|^2 \rangle = \vartheta_{k,2k}.
\]

Theorem 3 (with \(k_{2D} \sim \kappa_\eta \)) imposes a restriction on the ranges of the forcing/source terms and the Grashof number. The indicator \(\kappa_\theta \) would achieve its maximum value, \(\kappa_\eta \sim k_{2D} \) (up to a log), if one could choose \(\kappa_\eta, \bar{k}, \) and \(\kappa \) in such a way that \(a \sim b \). To investigate this, we seek an \(r \) such that
\[
a \leq c_0 \kappa_\eta^{-r} k_0^{-2} \ln \left(\frac{k_\eta}{\bar{k}} \right), \quad \text{where} \quad \frac{4}{3} \leq r \leq 2,
\]
for some \(c_0 \), which is equivalent to
\[
\left(\frac{k_\eta}{k_0} \right)^{-r/2} \left(\frac{k_\eta}{\bar{k}} \right)^{-2/3} \leq c_0 \left(\ln \frac{k_\eta}{\bar{k}} \right)^{4/3}.
\]
(42)
We now derive a sufficient condition for (42). Rewriting the lower bound in (21) as
\[c_1 \left(\frac{K_0}{k} \right)^{5/4} \frac{G^{1/4}}{(\ln G)^{1/4}} \leq \frac{\eta}{\bar{k}} \] (43)
and the upper bound in (21) as
\[\frac{\eta}{k_0} \leq c_2 \left(\frac{\bar{k}}{k_0} G (\ln G)^{1/2} \right)^{1/4}, \] (44)
we use (43) on the right and (44) on the left in (42), and we obtain a sufficient condition for (42), with
\[p_B = \frac{3r^4}{12} \in [0, 1/6], \quad \bar{\zeta} = \bar{k}/k_0, \quad \text{and} \quad c_3 = c_0c_1/c_2, \]
\[\frac{1}{c_3} \leq \frac{\ln(\bar{\zeta}^{-5}G/\ln G)^{4/3}}{[\zeta G(\ln G)^{1/2}]^p (1 - \zeta^{-2/3})}. \] (45)
Putting \(G = \zeta \), this in turn is equivalent to
\[\frac{1}{c_3} \leq \frac{(\zeta - 6 \ln \zeta)^{1/3}}{\zeta^{b/2} \zeta^{c} (1 - \zeta^{-2/3})} =: \varphi_p(\zeta). \] (46)

In Fig. 3, we plot \(\varphi_{1/6}, \varphi_{1/9}, \) and \(\varphi_{1/12} \) against \(\zeta \). It is clear that, at least for these values of \(p \), there is a range of \(\zeta = \bar{k}/k_0 \) such that (46), and thus (42), is satisfied, provided that \(c_3 \) is sufficiently large. (Since we are seeking a sufficient condition for (42), we can take \(c_3 \) smaller but not larger.) While a good estimate for \(c_3 \) is not known, this plot suggests that even in the presence of a significant inverse cascade \((10 \leq \zeta \leq 20)\), a wide tracer cascade range can be achieved,
\[k_\theta^2 \sim k_{2D}^2 k_0^{2-r} / \ln (k_{2D}/k), \] (47)
with \(r = 2, 16/9, \) and 5/3 for \(p = 1/6, 1/9, \) and 1/12 respectively, for large enough Grashof number \(G \sim \zeta^5 \) to sustain turbulent fluid flow.

C. Effect of log corrected energy spectrum

In order to enforce constant enstrophy flux, Kraichnan\(^ {13} \) proposed a log correction to the energy spectrum in the inertial range for 2D turbulence
\[\tilde{E}(k) \sim \eta^{2/3} k^{-3} (\ln k)^{-1/3}, \]
which leads to a turnover time of
\[\tau_k \sim \eta^{-1/3} (\ln k)^{-1/3}. \] (48)
This correction was shown in Ref. 15 to be consistent with an upper bound on the dimension of the global attractor in Ref. 3.

If (48) is used in (9) and the lower end of the inertial range is $\kappa = \bar{\kappa}$, the tracer spectrum takes the form
\[
\mathcal{T}(\kappa) \sim \chi \eta^{-1/3} \kappa^{-1} (\ln \kappa / \bar{\kappa})^{-1/3}
\]
for $\bar{\kappa} \leq \kappa \leq \kappa_\eta$ and
\[
\vartheta_{\kappa,2\kappa} \sim \int_{\kappa}^{2\kappa} \mathcal{T}(s) \, ds \sim \chi \eta^{-1/3} \left[(\ln 2\kappa / \bar{\kappa})^{2/3} - (\ln \kappa / \bar{\kappa})^{2/3} \right].
\]
Summing as in Lemma 1, the terms telescope so that
\[
\vartheta_{\kappa_\eta,\kappa_0} \sim \frac{\chi}{\mu} \left(\frac{\mu^4}{\eta} \right)^{1/3} \left(\ln \frac{\kappa_\eta / \bar{\kappa}}{\kappa_0 / \bar{\kappa}} \right)^{2/3} \sim \frac{\chi}{\mu \kappa_\eta^2} \left(\ln \frac{\kappa_\eta / \bar{\kappa}}{\kappa_0 / \bar{\kappa}} \right)^{2/3}.
\]
Using this instead of (36) in the proof of Theorem 3 yields
\[
\kappa_\theta^2 - \frac{1}{a + b'} = \kappa_\eta^2 - \frac{1}{a + b'} \sim \kappa_\eta^2 - \frac{1}{a + b'} (\ln \kappa_\eta / \bar{\kappa})^{2/3}.
\]
We now seek r such that
\[
a \leq \kappa_\eta^{-r} \kappa_0^{-2-r} (\ln \frac{\kappa_\eta / \bar{\kappa}}{\kappa_0 / \bar{\kappa}})^{2/3}, \quad \text{where} \quad \frac{4}{3} \leq r \leq 2,
\]
which is equivalent to the analog of (42),
\[
\left(\frac{\kappa_\eta}{\kappa_0} \right)^{-r/3} \left[\frac{\kappa_g}{\kappa_0} \right]^{-2/3} \left(\frac{\kappa}{\kappa_0} \right)^{-2/3} \leq \ln \frac{\kappa_\eta}{\bar{\kappa}},
\]
the only change being the power of the log on the right.

Proceeding as before, with $\zeta = \bar{\kappa} / \kappa_0$ and $p = (3r - 4)/12$, and putting $G = e^\xi$, this is implied by
\[
\frac{1}{c_4} \leq \frac{\zeta - 6 \ln \zeta}{\zeta^{3p/2} e^{\rho \zeta} (1 - \zeta^{-2/3})} =: \bar{\varphi}_p(\zeta).
\]

In Fig. 4, we plot $\tilde{\varphi}_{1/9}$, $\tilde{\varphi}_{1/12}$ and $\tilde{\varphi}_{1/24}$ against ζ. Again, we need c_4 sufficiently large for (49) to hold.

D. Tracer injection scales below energy injection scales

In case the injection scales are reversed so that $\bar{\kappa} < \kappa_g$, then the analysis for both moderate and large Schmidt number proceeds as before, except the term a is dropped in both cases, so the conclusion is that $\kappa_\theta \sim \kappa_{2D}$ (up to a log).
VI. 3D CASE

The large Schmidt number case is also interesting in 3D, as then we expect two ranges with distinct tracer spectra (Ref. 17, p. 368): For \(\kappa \in (\bar{\kappa}, \kappa_e) \), we have the classical spectrum \(T(\kappa) \sim \kappa^{-5/3} \).

For \(\kappa \) beyond \(\kappa_e \), substituting \(\kappa = \kappa_e \) in (8) gives a turnover time of

\[
\tau_{\kappa_e} = (v/\epsilon)^{1/2}.
\]

Putting this equal to the diffusive time scale \((\mu \kappa^2)^{-1}\) then yields

\[
\kappa_{3D} = \left(\frac{\epsilon}{\sqrt{\mu}} \right)^{1/4} = Sc^{1/2} \kappa_e,
\]

the wavenumber where diffusion becomes important. Using (50) in (9) and solving for \(T(\kappa) \) gives

\[
T(\kappa) \sim \chi \left(\frac{v}{\epsilon} \right)^{1/2} \kappa^{-1} \quad \text{for} \quad \kappa_e \leq \kappa \leq \kappa_{3D}.
\]

We have the following analog of Theorem 3:

Theorem 5. Suppose that (22) holds along with \(4\kappa_g \leq \kappa_e, Sc > 2 \),

\[
\langle |\theta|^2 \rangle \sim \langle |\theta_{\kappa_e,\kappa_{3D}}|^2 \rangle,
\]

and

\[
\theta_{\kappa,2x} \sim \begin{cases}
\chi \epsilon^{-1/3} \kappa^{-2/3} & \text{for} \quad \kappa_g \leq \kappa \leq \kappa_e, \\
\chi (v/\epsilon)^{1/2} & \text{for} \quad \kappa_e \leq \kappa \leq \kappa_{3D}.
\end{cases}
\]

We then have

\[
\kappa_\theta^2 \sim \frac{1}{a + b},
\]

where

\[
a = \kappa_{3D}^{-4/3} Sc^{-1/3} (\kappa_g^{-2/3} - \kappa_e^{-2/3}) \quad \text{and} \quad b = \kappa_{3D}^{-2} \ln(Sc).
\]

If, moreover, \(\kappa_g \sim \kappa_0 \) and \(\kappa \sim \bar{\kappa} \), along with

\[
Sc \gtrsim G^{(3r-4)/(8-4r)},
\]

then

\[
\kappa_\theta^2 \sim \kappa_{3D}^{2-r} \ln(\kappa_{3D}/\kappa_e) \quad \text{for} \quad 4/3 \leq r < 2.
\]

Proof. As in the 2D case, we first compute

\[
\theta_{\kappa,\kappa_{3D}} \sim \frac{\chi}{\mu} \left(\frac{\mu}{\epsilon} \right)^{1/3} \left(\kappa_g^{-2/3} - \kappa_e^{-2/3} \right) \approx \frac{\chi}{\mu} \kappa_{3D}^{-4/3} Sc^{-1/3} (\kappa_g^{-2/3} - \kappa_e^{-2/3}),
\]

\[
\theta_{\kappa,\kappa_{3D}} \sim \frac{\chi}{\mu} \left(\frac{\sqrt{\mu}}{\epsilon} \right)^{1/2} \ln(\kappa_{3D}/\kappa_e) \sim \frac{\chi}{\mu} \kappa_{3D}^{-2} \ln(Sc).
\]

By hypothesis, \(\langle |\theta|^2 \rangle \sim \theta_{\kappa,\kappa_{3D}} + \theta_{\kappa_{e},\kappa_{3D}} \), giving us (52),

\[
\kappa_\theta^2 = \frac{\chi}{\mu \theta_{\kappa_{0},\infty}} = \frac{1}{a + b}.
\]

For the second part of the theorem, we note that

\[
a \leq \kappa_{3D}^{2-r} \ln(Sc)
\]

is equivalent to

\[
(k_{3D}/k_0)^{r-4/3} \left[(k_0/k_g)^{2/3} - (k_0/k_e)^{2/3} \right] \leq Sc^{1/3} \ln(Sc),
\]

\[
\Leftrightarrow (k_{e}/k_0)^{r-4/3} \leq Sc^{1-r/2} \ln(Sc).
\]

Arguing as in the 2D case, we bound the left-hand side by the upper bound in (23) and using \(\ln(Sc) > 1 \) on the right-hand side, this is implied by
which gives us (53).

\[G^{(3r-4)/8} \leq \text{Sc}^{1-r/2}, \]

Remark 1. The decay rate of the energy spectrum in the \((\kappa_g, \kappa_e)\)-inertial range is not crucial here. It is the prefactor in the tracer spectrum that produces the helpful Schmidt number effect in the estimate in Theorem 5. In fact, we would achieve the same estimate for \(\kappa_0\) if we consider a dimensionally correct energy spectrum with a different decay rate

\[\mathcal{E}_{3D}(k) \sim c^{2/3} k_0^{-5/3} k^{-p} \quad \text{for any} \quad p \in (1, 3). \]

Note that this would violate Kolmogorov’s assumption that \(\mathcal{E}_{3D}\) depend on only \(c\) and \(k\), as it would now also depend on \(L\). Nevertheless, an energy spectrum of this form would result in a tracer spectrum [Ref. 17 (8.94)],

\[\mathcal{T}(k) \sim c^{-1/3} k_0^{-q} k^{-q} \quad \text{with} \quad q = (p - 3)/2 \quad \text{and} \quad q' = (5 - 3p)/6, \]

corresponding to a discrete dyadic tracer spectrum

\[\vartheta_{k,2k} \sim c^{-1/3} k_0^{-q} k^{-q} \quad \text{for} \quad k_0 \leq k \leq k_e. \]

Assuming again, that \(k_0 \sim k_g \ll k_e\), we have

\[\vartheta_{k_g,k_e} \sim c^{-1/3} k_0^{-q} \left(k_g - k_e \right) \sim c^{-1/3} k_0^{-2/3}, \]

\[= \frac{c}{\mu} \left(\frac{\mu}{c} \right)^{1/3} \left(\frac{\mu}{c} \right)^{1/3} k_0^{-2/3}, \]

\[= \frac{c}{\mu} k_{3D}^{-4/3} \text{Sc}^{-1} k_0^{-2/3}. \]

The rest of the estimate for \(\kappa_0\) follows as in the proof of Theorem 5.

A. Moderate Schmidt number case, 3D

If in 3D, \(\text{Sc} \sim 1\), we have just the single steeper tracer spectrum and \(\kappa_0^2 \sim 1/a\) with \(a\) as in Theorem 5. This can be expressed as \(\kappa_0 \sim k_{3D}^{2/3} k_0^{1/3}\), which gives the same fractional power for the tracer cascade range width as for the energy cascade in Proposition 2.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation Grant No. DMS-1418911 and Leverhulme Trust Grant No. VP1-2015-036.

1 Batchelor, G. K., “Small-scale variation of convected quantities like temperature in turbulent fluid,” J. Fluid Mech. 5, 113–133 (1959).
2 Constantin, P. and Foias, C., Navier-Stokes Equations, Chicago Lectures in Mathematics (University of Chicago Press, Chicago, IL, 1998).
3 Constantin, P., Foias, C., and Temam, R., “On the dimension of the attractors in two-dimensional turbulence,” Phys. D 30, 284–296 (1988).
4 Corrsin, S., “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22, 469–473 (1951).
5 Dascaliuc, R., Foias, C., and Jolly, M. S., “Some specific mathematical constraints on 2-D turbulence,” Phys. D 237, 3020–3029 (2008).
6 Dascaliuc, R., Foias, C., and Jolly, M. S., “On the asymptotic behavior of average energy and enstrophy in 3D turbulent flows,” Phys. D 238, 725–736 (2009).
7 Davidson, P. A., Turbulence: An Introduction for Scientists and Engineers, 2nd ed. (Oxford University Press, 2015).
8 Foias, C., Manley, O. P., and Temam, R., “Bounds for the mean dissipation of 2-D enstrophy and 3-D energy in turbulent flows,” J. Fluid Mech. 174, 210–215 (1993).
9 Foias, C., Manley, O., Rosa, R., and Temam, R., “Estimates for the energy cascade in three-dimensional turbulent flows,” C. R. Acad. Sci. Paris 333, 499–504 (2001).
10 Foias, C., Manley, O., Rosa, R., and Temam, R., Navier-Stokes Equations and Turbulence, Volume 83 of Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 2001).
11 Foias, C., Jolly, M. S., Manley, O. P., and Rosa, R., “Statistical estimates for the Navier-Stokes equations and the Kraichnan theory of 2-D fully developed turbulence,” J. Stat. Phys. 108, 591–645 (2002).
12 Foias, C., Jolly, M. S., and Manley, O. P., “Kraichnan turbulence via finite time averages,” Commun. Math. Phys. 255, 329–361 (2005).
13 Kraichnan, R. H., “Inertial range transfer in two- and three-dimensional turbulence,” J. Fluid Mech. 47, 525–535 (1971).
14 Obukhov, A. M., “Structure of the temperature field in turbulent flows,” Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 13, 58–69 (1949).
15 Ohkitani, K., “Log-corrected energy spectrum and dimension of attractor in two-dimensional turbulence,” Phys. Fluids A 1, 451–452 (1989).
16 Temam, R., *Infinite-Dimensional Dynamical Systems in Mechanics and Physics*, Volume 68 of Applied Mathematical Sciences, 2nd ed. (Springer-Verlag, New York, 1997).
17 Vallis, G. K., *Atmospheric and Oceanic Fluid Dynamics* (Cambridge University Press, Cambridge, 2006).