Yu, Jize

The integral geometric Satake equivalence in mixed characteristic. (English) [Zbl 07586676]
Represent. Theory 26, 874-905 (2022)

Summary: Let k be an algebraically closed field of characteristic p. Denote by $W(k)$ the ring of Witt vectors of k. Let F denote a totally ramified finite extension of $W(k)[1/p]$ and O its ring of integers. For a connected reductive group scheme G over O, we study the category $P_{L^+G}(Gr_G, \Lambda)$ of L^+G-equivariant perverse sheaves in Λ-coefficient on the Witt vector affine Grassmannian Gr_G where $\Lambda = \mathbb{Z}_\ell$ and F_ℓ ($\ell \neq p$), and prove that it is equivalent as a tensor category to the category of finitely generated Λ-representations of the Langlands dual group of G.

MSC:
22E57 Geometric Langlands program: representation-theoretic aspects
14F06 Sheaves in algebraic geometry
20G05 Representation theory for linear algebraic groups
14D24 Geometric Langlands program (algebro-geometric aspects)

Full Text: DOI arXiv

References:
[1] Baumann, Pierre, Relative aspects in representation theory, Langlands functoriality and automorphic forms. Notes on the geometric Satake equivalence, Lecture Notes in Math., 1-134 (2018), Springer, Cham - Zbl 1450.22009
[2] A. Beilinson and V. Drinfeld, Quantization of hitchin’s integrable system and hecke eigensheaves, Preprint, available at http://math.uchicago.edu/~drinfeld/langlands.html, 1991.
[3] Bhatt, Bhargav, Projectivity of the Witt vector affine Grassmannian, Invent. Math., 329-423 (2017) - Zbl 1397.14064
[4] P. Deligne and J. S. Milne, Tannakian categories. In Hodge cycles, motives, and Shimura varieties, pages 101-228. Springer, 1982 - Zbl 0477.14004
[5] Drinfeld, V., On a theorem of Braden, Transform. Groups, 313-358 (2014) - Zbl 1314.14039
[6] L. Fargues and P. Scholze, Geometric Langlands duality and representations of algebraic groups over commutative rings, Preprint, 2012.13459, 2021.
[7] Ginzburg, V. A., Sheaves on a loop group, and Langlands duality, Funct. Anal. Appl., Funktsional. Anal. i Prilozhen., 76-77 (1990) - Zbl 0736.22009
[8] Lafforgue, Vincent, Choucas pour les groupes réductifs et paramétrisation de Langlands globale, J. Amer. Math. Soc., 719-891 (2018) - Zbl 1395.14017
[9] Lusztig, George, Analysis and topology on singular spaces, II, III. Singularities, character formulas, and a (q)-analogue of weight multiplicities, Astérisque, 208-229 (1981), Soc. Math. France, Paris
[10] MacPherson, Robert, Elementary construction of perverse sheaves, Invent. Math., 403-435 (1986) - Zbl 0597.18005
[11] Mirković, I., Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), 95-143 (2007) - Zbl 1138.22005
[12] Mirković, I., Erratum for “Geometric Langlands duality and representations of algebraic groups over commutative rings” [MR2342092], Ann. of Math. (2), 1017-1018 (2018) - Zbl 1400.22015
[13] Prasad, Gopal, On quasi-reductive group schemes, J. Algebraic Geom., 507-549 (2006) - Zbl 1112.14053
[14] Vilonen, K., Perverse sheaves and finite-dimensional algebras, Trans. Amer. Math. Soc., 665-676 (1994) - Zbl 0811.14016
[15] L. Xiao and X. Zhu, Cycles on shimura varieties via geometric satake, Preprint, 1707.05700, 2017.
[16] Zhu, Xinwen, Geometry of moduli spaces and representation theory. An introduction to affine Grassmannians and the geometric Satake equivalence, IAS/Park City Math. Ser., 59-154 (2017), Amer. Math. Soc., Providence, RI - Zbl 1453.14112
[17] Zhu, Xinwen, Affine Grassmannians and the geometric Satake in mixed characteristic, Ann. of Math. (2), 403-492 (2017) - Zbl 1390.14072

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.