Твердые конечные точки у пациентов с хронической сердечной недостаточностью с низкой фракцией выброса левого желудочка на фоне модуляции сердечной сократимости в течение двух лет наблюдения

Вандер М. А.1, Ляснинкова Е. А.1, Белякова Л. А.2, Трушкина М. А.1, Галенко В. Л.1, Ким И. М.1, Лелявина Т. А.1, Ситникова М. Ю.1, Абрамов М. Л.1, Лебедев Д. С.1, Михайлов Е. Н.1.

Цель. Оценить 2-годичный прогноз пациентов с хронической сердечной недостаточностью с низкой фракцией выброса левого желудочка (СНнФВ) на фоне модуляции сердечной сократимости (МСС).

Материал и методы. В исследование включено 55 пациентов с СНнФВ II и III функционального класса (ФК) (46 мужчин, средний возраст 53±11 лет), синусовым ритмом, QRS <130 мс или QRS <150 мс при наличии неспецифической внутритромудовой блокады, на оптимальной медикаментозной терапии. СНнФВ II и III ФК диагностировалась в 76% и 24% случаев, соответственно. Ишемическая атетология СН была у 73% пациентов. Всем пациентам были имплантированы устройства МСС в период с октября 2016 — сентябрь 2017гг. Контрольные визиты осуществлялись каждые 3 мес. на протяжении первого года и каждые 6 мес. на протяжении второго года наблюдения. Оценивались первичная комбинационная конечная точка (ККТ) — летальность и трансплантация сердца, и вторичная ККТ — смертельный исход, трансплантация сердца, срабатывания кардиовертера-дефибриллятора по причине пароксизмальных желудочковых нарушений ритма сердца, госпитализации по причине декомпенсации хронической сердечной недостаточности (ХСН).

Результаты. Выживаемость в течение 1-го года и 2-х лет составила 95% и 80%, соответственно. Первичной ККТ достигли 20% больных в течение 2-х лет. Предикторами неблагоприятного прогноза были III ФК ХСН до начала МСС (p=0,014) и более высокий уровень NTproBNP (p=0,026). Выявлен независимый предиктор выживаемости в течение 2-х лет — NTproBNP (p=0,018).

МСС способствовала значительному уменьшению госпитализаций по причине декомпенсации ХСН (p<0,0001). Вторичной ККТ в течение 1-го года достигли 18 (33%) больных. Выявлен предиктор наступления вторичной ККТ: NTproBNP (p=0,047).

Заключение. МСС ассоциирована со значимым уменьшением количества госпитализаций по причине декомпенсации ХСН. Выживаемость пациентов с ХСН II и III ФК в течение 2 лет на фоне МСС составляла 80%. Независимым предиктором выживаемости на фоне МСС в течение 2 лет являлся уровень NTproBNP. Требуются дальнейшие более длительные исследования эффективности МСС в отношении влияния на твердые конечные точки с учетом группы сравнения.

Ключевые слова: модуляция сердечной сократимости, хроническая сердечная недостаточность, низкая фракция выброса.

Отношения и деятельность: нет.

1 ФГБУ Национальный медицинский исследовательский центр им. В. А. Алмазова Минздрава России, Санкт-Петербург; 2 ФГБОУ ВО Первый Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова Минздрава России, Санкт-Петербург; Россия.

Рукопись получена 21.04.2020
Рецензия получена 04.05.2020
Принята к публикации 20.05.2020

Для цитирования: Вандер М. А., Ляснинкова Е. А., Белякова Л. А., Трушкина М. А., Галенко В. Л., Ким И. М., Лелявина Т. А., Ситникова М. Ю., Абрамов М. Л., Лебедев Д. С., Михайлов Е. Н. Твердые конечные точки у пациентов с хронической сердечной недостаточностью с низкой фракцией выброса левого желудочка на фоне модуляции сердечной сократимости в течение двух лет наблюдения. Российский кардиологический журнал. 2020;25(7):3853. doi:10.15829/1560-4071-2020-3853
Two-year follow-up of patients with heart failure with reduced ejection fraction receiving cardiac contractility modulation

Vander M. A.¹, Lyasnikova E. A.¹, Belyakova L. A.², Trukshina M. A.¹, Galenko V. L.¹, Kim I. M.¹, Lelyavina T. A.¹, Sitnikova M. Yu.¹, Abramov M. L.¹, Lebedev D. S.¹, Mikhaylov E. N.¹

Aim. To assess the 2-year prognosis of patients with heart failure with reduced ejection fraction (HFrEF) receiving cardiac contractility modulation (CCM).

Material and methods. This single-center observational study included 55 patients (46 men, mean age 53±11 years) with NYHA class II-III HFrEF receiving optimal medical therapy, with sinus rhythm, QRS <130 ms or QRS>150 ms with nonspecific intraventricular conduction delay. NYHA class II and III were established in 76% and 24% of patients, respectively. All patients were implanted with CCM devices between October 2016 and September 2017. Follow-up visits were carried out every 3 months during the 1st year and every 6 months during the 2nd year of observation. The primary composite endpoint was mortality and heart transplantation. Secondary composite endpoints included death, heart transplantation, paroxysmal ventricular tachycardia/ventricular fibrillation, hospitalizations due decompensated HF.

Results. The one-year and two-year survival rate was 95% and 80%, respectively. Primary endpoint was observed in 20% of patients. NYHA class III and higher levels of N-terminal pro-brain natriuretic peptide (NTproBNP) were associated with unfavorable prognosis (p<0.014 and p<0.026, respectively). NTproBNP was an independent predictor of survival in patients receiving CMM for 2 years. Further longer-term studies of the CCM efficacy are required.

Key words: cardiac contractility modulation, heart failure, reduced ejection fraction, long-term results, prognosis.

Relationships and Activities: none.

¹Almazov National Medical Research Center, St. Petersburg; ²First Pavlov State Medical University, St. Petersburg, Russia.

Vander M. A. ORCID: 0000-0001-9708-7541, Lyasnikova E. A. ORCID: 0000-0003-0615-829X, Belyakova L. A. ORCID: 0000-0003-2457-1169, Trukshina M. A. ORCID: 0000-0003-3597-6794, Galenko V. L. ORCID: 0000-0002-0503-167X, Kim I. M. ORCID: 0000-0002-0438-0499, Lelyavina T. A. ORCID: 0000-0001-6796-4064, Sitnikova M. Yu. ORCID: 0000-0002-0139-5177, Abramov M. L. ORCID: 0000-0001-5391-0006, Lebedev D. S. ORCID: 0000-0002-2334-1663, Mikhaylov E. N. ORCID: 0000-0002-6553-9141.

*Corresponding author: marianna.vander@gmail.com

Received: 21.04.2020 Revision Received: 04.05.2020 Accepted: 20.05.2020
For citation: Vander M. A., Lyasnikova E. A., Belyakova L. A., Trukshina M. A., Galenko V. L., Kim I. M., Lelyavina T. A., Sitnikova M. Yu., Abramov M. L., Lebedev D. S., Mikhaylov E. N. Two-year follow-up of patients with heart failure with reduced ejection fraction receiving cardiac contractility modulation. Russian Journal of Cardiology. 2020;25(7):3853. (In Russ.) doi:10.15829/1560-4071-2020-3853

В течение последних десятилетий активно разрабатываются и внедряются в клиническую практику новые электрофизиологические методы лечения больных хронической сердечной недостаточностью с низкой фракцией выброса левого желудочка (СНнФВ). Доказана эффективность сердечной ресинхронизирующей терапии (СРТ) в лечении больных с СНнФВ и электрической диссинхронией миокарда на фоне полной блокады левой ножки пучка Гиса с шириной QRS >150 мс и пациентов с неспецифической внутрижелудочковой блокадой с шириной QRS >150 мс. Однако большинство больных СНнФВ имеют QRS <130 мс и не могут рассматриваться как кандидаты на СРТ, а у больных с полной блокадой правой ножки пучка Гиса и неспецифической внутрижелудочковой блокадой с QRS <150 мс положительный ответ на СРТ сомнителен [1]. В связи с этим большой интерес представляет новый метод лечения пациентов с СНнФВ — модуляция сердечной сократимости (МСС) [2]. При МСС нанесение высокоамплитудных электрических импульсов, генерируемых имплантированным устройством на миокард, происходит в период их абсолютной рефрактерности. Эти импульсы не вызывают собственного сокращения миокарда, но изменяют последовательность сокращения кардиомиоцитов во время систолы желудочков, что способствует увеличению силы и длительнос

Материал и методы

С октября 2016 по сентябрь 2017 гг в ФГБУ НМИЦ им. В.А. Алмазова в рамках протокола клинической апробации Минздрава России 55 пациентам были...
имплантированы 50 устройств МСС Optimizer IV поколения и 5 устройств Optimizer Smart (Impulse Dynamics, Германия). Критериями включения пациентов были СНнФВ II и III функционального класса (ФК) (NYHA), синусовый ритм, QRS <150 мс или наличие неспецифической внутрижелудочковой блокады при QRS <150 мс, оптимальная медикаментозная терапия хронической сердечной недостаточности (XCH) в течение не менее 3 мес., подписанная форма информированного согласия. Критериями исключения в исследование являлись постоянная форма фибрилляции предсердий, желудочковая экстрасистолия высоких градаций; острый инфаркт миокарда или обширная операция на сердце, чрескожное коронарное вмешательство, вальвулопластика в рамках 12 мес. и госпитализация по причине декомпенсации XCH в течение 3 мес. до включения в исследование. Протокол клинической апробации был одобрен этическим комитетом НМИЦ им. В. А. Алмазова.

Исходно на фоне оптимальной медикаментозной терапии пациентам было проведено обследование, включающее оценку клинического статуса, тест с шестиминутной ходьбой, рутинные параметры клинического и биохимического анализа крови, определение концентрации N-концевого предшественника мозгового натрийуретического пептида (NTproBNP) в сыворотке крови, электрокардиография, холтеровское мониторирование, вариабельность сердечных ритмов, которые потенциально могли повлиять на выживаемость и время смерти, использовали логистическую регрессию. Прогностическую оценку показателей с помощью метода Шеймана-Уитни. Анализ выживаемости пациентов проводили с помощью метода каплан-мейера. Для сравнительного анализа отдельных факторов, которые потенциально могли повлиять на выживаемость и время смерти, использовали лог-ранг тест и модели регрессии. Вероятность наступления вторичной ККТ оценивали методом бинарной логистической регрессии. Прогностическую оценку показателей и моделей проводили при помощи ROC-анализа. Критическое значение уровня значимости принимали равным 0,05.

Клиническая характеристика пациентов. Исследуемая группа включала 106 пациентов в возрасте от 27 до 73 лет, из них 96 мужчин (84%) и 9 женщин (16%) в возрасте от 27 до 73 лет, их клинические характеристики представлены в таблице 1. Фракция выброса (ФВ) левого желудочка (ЛЖ) (Simpson) составила 14-38%, СН II ФК и III ФК диагностировалась в 76% и 24% случаев, соответственно. Большинство пациентов имели ишемическую форму ХСН, статистически значимую с
p<0,05. Категориальные данные были представлены в виде среднего значения ± стандартное отклонение (М±SD) в случае нормального распределения; медианы (Ме) 25% и 75% квартилей; наблюдаемых значений min, max. Для сравнения использовались критерии Манна-Уитни. Динамика ФК ХСН и ЭхоКГ-параметров в данном фрагменте работы не оценивалась.

СТАТИСТИЧЕСКИЙ АНАЛИЗ. База данных включала >200 параметров. Все первичные показатели подвергались статистическому анализу с использованием пакета программ “IBM SPSS Statistic 23” и “STATISTICA 10”. Категориальные данные были представлены частотами и процентами от общего числа наблюдений, для анализа применялся метод таблиц сопряженности и точный критерий Фишера. Данные представлены в виде среднего значения ± стандартное отклонение (М±SD) в случае нормального распределения; медианы (Ме) 25% и 75% квартилей; наблюдаемых значений min, max. Для сравнения использовались t-test Стьюдента для независимых выборок (в случае нормально распределенных показателей) или непараметрический критерий Манна-Уитни. Анализ выживаемости пациентов проводили с помощью метода Каплан-Мейера. Для сравнительного анализа отдельных факторов, которые потенциально могли повлиять на выживаемость и время смерти, использовали лог-ранг тест и модели регрессии. Вероятность наступления вторичной ККТ оценивали методом бинарной логистической регрессии. Прогностическую оценку показателей и моделей проводили при помощи ROC-анализа. Критическое значение уровня значимости принимали равным 0,05.
диуретические препараты. Ингибиторы ангиотензиных н новных рецепторов и неприлизина в данной группе пациентов не применялись. Низкие критериальные значения кардиореспираторного теста (peakVO₂ <13 мл/кг/мин) имели 15% пациентов с ХСН III ФК, но в силу возраста и сопутствующих заболеваний не рассматривались как кандидаты на ТС. Имплантация ИКД для первичной профилактики ВСС была выполнена 21 (38%) пациенту в течение первого года и 3 (4%) пациентам в течение второго года наблюдения. Целевой процент терапевтической стимуляции исходно и в течение двухгодичного периода наблюдения составил 92-94%.

Результаты

Неблагоприятные события, ассоциированные с имплантацией устройства

При проведении имплантации системы МСС интраоперационных осложнений не было. В раннем послеоперационном периоде у 1 пациента выявлено инфицирование ложа МСС устройства, потребовавшее его деимплантации на 6 сутки. К 3 мес. после имплантации были выявлены непрогнозируемые явления в виде выраженной стимуляции ложа устройства МСС по причине нарушения изоляции желудочковых электродов. В период с 12-го по 18-й мес. необходимость отключения одного из желудочковых электродов возникла
у 48% больных. У 11 (20%) пациентов выполнена реви‑
зия и замена обоих желудочковых электродов и под‑
тверждено нарушение изоляции электродов.

Анализ конечных точек исследования
За 2 года наблюдения выжило 44 (80%) пациента. Первичной ККТ (смерть и ТС) достигли 11 (20%) больных, в 91% случаев это были мужчины: 5 (9,1%) летальных исходов было зарегистрировано по причине декомпенсации ХСН, 4 (7,3%) — по причине ВСС (пациенты без имплантированных ИКД); 1 (1,8%) пациенту выполнена ТС, у 1 (1,8%) пациента зафиксирован летальный исход по причине выявленного спустя 6 мес. после имплантации МСС онкологического заболевания (рис. 1).

При анализе базы данных, включая хорошо известные предикторы неблагоприятного прогноза при ХСН, значимыми в отношении летальности факторами оказались III ФК ХСН в сравнении с II ФК (р=0,014) и количественный показатель NTproBNP (р=0,026). Распределение групп пациентов по ФК ХСН и NTproBNP представлены в таблице 2.

При сравнении выживаемости с применением лог‑ранг теста было показано, что пациенты различались в зависимости от исходного ФК ХСН (р=0,007). Худший прогноз имели пациенты с III ФК ХСН. За 2 года наблюдения среди имеющих ХСН II ФК и III ФК на момент включения, умерло 12% и 46% человек, соответственно (рис. 2, табл. 3).

Для анализа прогностической ценности ФК ХСН и NTproBNP был проведен ROC‑анализ (рис. 3). Площадь под кривой составила 0,69 (чувствительность 55%; специфичность 84%) и 0,73 (чувствительность 91%; специфичность 50%) для моделей, основанных на ФК ХСН и NTproBNP, соответственно, что говорит о "среднем" и "хорошем" качестве моделей на экспертной шкале AUC [10].

Для оценки взаимосвязей между выживаемостью и предикторами, которые показали свою значимость в унивариантном анализе (р<0,001 для NTproBNP и р=0,009 для ФК ХСН), применялся мультивариант‑ный регрессионный анализ Кокса, результаты которого представлены в таблице 4.
Было показано, что исходная концентрация NTproBNP в крови являлась значимым независимым предиктором выживаемости, и при повышении исходного показателя NTproBNP на дополнительные 100 единиц, риск смерти у пациентов СНнФВ, получающих терапию МСС, повышался в течение 2 лет на 2% (р=0,018).

Прогноз неблагоприятного исхода у пациентов, получавших МСС, не зависел от таких часто используемых в различных прогностических моделях параметров, как пол (р=0,67), возраст (р=0,14), этиология заболевания (р=0,25), ФВ ЛЖ (р=0,91). Так, выживаемость не различалась в подгруппах пациентов, имевших на момент имплантации устройства ФВ ЛЖ >25% и ФВ ЛЖ ≤25% (р=0,99). Отключение одного из желудочковых электродов также не повлияло на смертность и/или госпитализации в течение двухлетнего периода наблюдения (р=0,31 и р=0,44, 12 и 24 мес., соответственно).

Вторичной ККТ в течение 24 мес. наблюдения достигли 18 (33%) пациентов. Госпитализации по причине декомпенсации ХСН в первые 6 мес. после имплантации устройств были зарегистрированы у 5 (9%) пациентов по сравнению с 38 (69%) пациентами до имплантации МСС устройств (р<0,0001), данный эффект сохранялся в течение 2 лет наблюдения.

Таблица 6

Показатель	Коэффициент множественной регрессии	p	Отношение шансов	ДИ (95%)
КСО ЛЖ	0,017	0,019	1,017	1,001-1,034
NTproBNP	0,00049	0,046	1,0005	1,000-1,001

Сокращения: КСО ЛЖ — конечно-систолический объем левого желудочка, NTproBNP — N-концевой предшественник мозгового натрийуретического пептида.

Рис. 1. Кривая выживаемости, рассчитанная по методу Каплан-Майера для общей смертности и ТС пациентов во всей группе.

Рис. 2. Кривые выживаемости пациентов, рассчитанные по методу Каплан-Майера для общей смертности и ТС в зависимости от ФК ХСН на момент включения.

Таблица 5

Показатель	Срок наблюдения	До имплантации	Наблюдение			
II ФК NYHA		(-) 6 мес.	6 мес.	12 мес.	18 мес.	24 мес.
Количество госпитализаций, n	32	4	2	2	5	
Количество госпитализированных пациентов, % (n)	64% (27)	7% (3)	5% (2)	5% (2)	8% (3)	
III ФК NYHA						
Количество госпитализаций, n	19	2	2	7	3	
Количество госпитализированных пациентов, % (n)	100% (11)	18% (2)	20% (2)	38% (3)	16% (1)	

Сокращения: ФК — функциональный класс, NYHA — Нью-Йоркская Ассоциация кардиологов (New York Heart Association).
Каждые последующие 6 мес. количество госпитализированных пациентов по причине декомпенсации ХСН не увеличивалось и составило 8%, 10% и 9% на период 12, 18 и 24 мес. наблюдения, соответственно (рис. 4, табл. 5).

Пароксизмов желудочковых нарушений ритма сердца в течение 2 лет наблюдения зарегистрировано не было.

Для оценки вероятности наступления вторичной ККТ пациентов был применен метод бинарной логистической регрессии с применением пошагового регрессионного анализа. В течение 2 лет наблюдения выявлен 1 фактор, ассоциированный с наступлением вторичной ККТ: концентрация NTproBNP (хи-квадрат для предиктора равен 7,3 при 1 степени свободы, p=0,007, что означает, что предиктор связан с наступлением вторичной ККТ. Отношение шансов 1,001 означает, что риск наступления вторичной ККТ увеличивается на 0,1% при росте показателя NTproBNP на 1 единицу (табл. 6).
Для исследования прогностической ценности NTproBNP и поиска оптимального порога классификации был проведен ROC-анализ. Площадь под кривой составила 0,716, что определяется как “хорошее” качество модели на экспертной шкале AUC (рис. 5). По данным ROC-кривой определен оптимальный порог классификации, р=0,302, при котором чувствительность была 73,7%, а специфичность 65,7%.

До имплантации МСС устройств у всех пациентов оценивали прогноз выживаемости по шкале Seattle Heart Failure Model (SHFM). Средняя годичная и 2-годичная выживаемость по шкале SHFM составила 97,7±1,2% и 93,8±11,9%, соответственно. Реальная выживаемость в течение 1 года и 2 лет в группе исследуемых пациентов составила 94,5% и 80%, соответственно (при исключении пациента, умершего от онкологического заболевания). Сиэттская модель прогнозирования завышала выживаемость на 3,2% и 13,8% в исследуемых точках, соответственно.

При построении логистической регрессии с факторами, включенными в SHFM: пол; возраст; вес; ФК ХСН; этиология ХСН; ФВ ЛЖ на момент включения; систолическое артериальное давление; измеренное на 3-5 минуте ортостаза; прием ингибиторов антагонистов рецепторов ангиотензина, блокаторов АРА, β-блокаторов, антагонистов минералокортикOIDных рецепторов, статинов, аллопуринола, мочегонных; наличие ИКД; гемоглобин, лимфоциты, мочевая кислота, общий холестерин, натрий. При построении логистической регрессии с факторами, включенными в SHFM: пол; возраст; вес; ФК ХСН; этиология ХСН; ФВ ЛЖ на момент включения; систолическое артериальное давление; измеренное на 3-5 минуте ортостаза; прием ингибиторов антагонистов рецепторов ангиотензина, блокаторов АРА, β-блокаторов, антагонистов минералокортикOIDных рецепторов, статинов, аллопуринола, мочегонных; наличие ИКД; гемоглобин, лимфоциты, мочевая кислота, общий холестерин, натрий, была получена значимая модель прогнозирования (р<0,001, специфичность 95,5%, чувствительность 81,8%). Выделены 4 фактора, ассоциированные с плохим исходом: мужской пол (р=0,045), ФК ХСН (р=0,002), систолическое артериальное давление, измеренное на 3-5 минуте ортостаза (р=0,017), холестерин в сыворотке крови (р=0,010). При оценке влияния каждого параметра по отдельности (логистическая регрессия) только ФК ХСН был значимо ассоциирован с неблагоприятным прогнозом (р=0,012).

Обсуждение

Выживаемость пациентов с СНнФВ II-III ФК, синусовым ритмом и имплантированными устройствами МСС в представленном одноцентровом проективном нерандомизированном наблюдательном исследовании за первый и второй год составила 95% и 80%, соответственно, а вторичной ККТ за 2 года достигла треть пациентов. На фоне МСС уже с 6-го мес. отмечалось значимое уменьшение количества госпитализаций и не было выявлено жизнеугрожающих желудочковых нарушений ритма сердца.

Рандомизированные и регистровые исследования демонстрируют положительное влияние МСС на качество жизни и увеличение физической выносливости, оцениваемой по вентиляционному анаэробному порогу и/или пиковому потреблению кислорода, в то же время, данные о влиянии МСС терапии на твердые конечные точки неоднозначны. Надо отметить, что рандомизированные клинические исследования серии FIX-HF, на которых основывается большинство анализов, были ограничены короткими периодами наблюдений от 3 до 12 мес. [5, 6]. В исследовании FIX-FH-5C композитная конечная точка (кардиоваскулярная смертность и госпитализация, связанные с ХСН) на 24 нед. наблюдения была значительно ниже в группе МСС терапии в сочетании с оптимальной медикаментозной терапией при сравнении с пациентами, получающими только медикаментозную терапию ХСН, составив 2,9% vs 10,8% (р=0,048) [6]. Аналогичные данные были получены в европейском регистре CCM-REG, включающем 140 пациентов ХСН III-IV ФК с ФВ ЛЖ 25-45% [11]. В течение 24 мес. по сравнению с годичными данным до имплантации устройства МСС частота госпитализаций по любым причинам и по причине ХСН достоверно снижалась как во всей группе, так и в подгруппе пациентов с ФВ ЛЖ 25-34% (подгруппа 83 пациента CCM-REG25-34). Выживаемость в течение 1 года, 2 и 3 лет в CCM-REG25-34 составила 93,6%, 82% и 79,4%, соответственно, и существенно не отличалась от прогнозируемой выживаемости по шкале SHFM (91,8%, 84,6% и 78% для соответствующих временных отрезков). В подгруппе CCM-REG с ФВ ЛЖ 35-45% 3-летняя смертность была достоверно меньше прогнозируемой, составив 94,5% и 91,7% и 88,0%. Причем, как и в нашем исследовании, этиология заболевания и ФВ ЛЖ в регистре CCM-REG не оказали влияния на прогноз больных, а SHFM завышала выживаемость в группе пациентов с ФВ ЛЖ <35%, не достигнув порога значимости. Невлияние ишемической этиологии ХСН на исходы в течение двухгодичного периода наблюдения, вероятно, обусловлено большим процентом реваскуляризации и отсутствием показаний к данной процедуре на момент имплантации МСС устройств в исследуемой выборке. По данным Кюпре А, et al. (2016), Сиэттская модель значимо занижала выживаемость у пациентов CНнФВ II-III ФК [9]. Шкала SHFM была разработана на американской популяции и основана на простых клинико-лабораторных и терапевтических характеристиках для применения на амбулаторном этапе прогнозирования. В нашем протоколе важным независимым предиктором, влияющим на прогноз, оказался уровень NTproBNP. Наряду с этим показателем на реальную и прогнозируемую выживаемость в исследуемой группе существенно влияла тяжесть ХСН. Так, ранее было показано, что наиболее неблагоприятный прогноз имеют пациенты с ХСН III ФК даже при динамическом наблюдении в условиях специализированной клиники СН [12]. Очевидно, что такие пациенты требуют более при-
Ограничения исследования. Исследование носило наблюдательный характер и не имело группы сравнения, что согласуется с требованиями к протоколам клинических апробаций Минздрава России 2016-2018гг. У части пациентов не был имплантирован ИКД и при наступлении смерти вне стационара не исключен вклад нарушений ритма сердца. Медикаментозная терапия XCH в течение 2 лет претерпевала изменения в соответствии с динамикой статуса больных, анализ ее влияния на конечные точки не проводился.

Заключение

МСС ассоциирована со значимым уменьшением количества госпитализаций по причине декомпенсации XCH. У пациентов с ХСН II и III ФК выживаемость в течение одного и двух лет на фоне МСС составляет 95% и 80%, соответственно. Выявлены предикторы неблагоприятного прогноза в течение 2 лет (смерть/ТС): наличие до МСС терапии III ФК XCH (NYHA) и более высокого уровня NTproBNP. Единственным независимым предиктором выживаемости, а также наступления вторичной комбинированной конечной точки в течение 2 лет наблюдения оказался уровень NTproBNP.

Отношения и деятельность: авторы заявляют об отсутствии потенциального конфликта интересов, требующего раскрытия в данной статье.

Литература/References

1. Ponikowski P, Voors AA, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal. 2016;37 (27):2129-200. doi:10.1093/eurheartj/ehw128.
2. Borggrefe M, Mann DL. Cardiac Contractility Modulation in 2018. Circulation. 2018;138 (24):2738-40. doi:10.1161/CIRCULATIONAHA.118.036460.
3. Yu CM, Chan JY, Zhang Q, et al. Impact of cardiac contractility modulation on left ventricular global and regional function and remodeling. JACC Cardiovasc Imaging. 2009;2 (12):1341-9. doi:10.1016/j.jcmg.2009.07.011.
4. Vander MA, Lyasnikova EA, Kim IM, et al. Significant improvement of clinical course and reverse myocardial remodeling in young patients with chronic heart failure using cardiac contractility modulation. Russian Journal of Cardiology. 2019; 7(99-102).
5. Kuschny J, Roeger S, Schneider R, et al. Efficacy and survival in patients with cardiac contractility modulation: long-term single center experience in 81 patients. Int J Cardiol. 2015;183:76-81. doi:10.1016/j.ijcard.2014.12.178.
6. Kloppe A, Lawo T, Mjic D, et al. Long-term survival with cardiac contractility modulation in patients with NYHA II or III symptoms and normal QRS duration. Int J Cardiol. 2016;205:291-5. doi:10.1016/j.ijcard.2016.02.001.
7. Trukhacheva NV. Mathematical statistics in biomedical research using the Statistica package. Moscow: GEOTAR-Media. 2013. (In Russ.) Трухачева Н. В. Математическая статистика в медико-биологических исследованиях с применением пакета Statistica. М.: ГЭОТАР-Медиа. 2013. ISBN: 978-5-7970-2587-1.
8. Kuschny J, Roeger S, Schneider R, et al. Efficacy and survival in patients with cardiac contractility modulation: long-term single center experience in 81 patients. Int J Cardiol. 2015;183:76-81. doi:10.1016/j.ijcard.2014.12.178.
9. Kloppe A, Lawo T, Mjic D, et al. Long-term survival with cardiac contractility modulation in patients with NYHA II or III symptoms and normal QRS duration. Int J Cardiol. 2016;205:291-5. doi:10.1016/j.ijcard.2016.02.001.
10. Anker SD, Borggrefe M, Neuser H, et al. Cardiac contractility modulation improves long-term survival and hospitalizations in heart failure with reduced ejection fraction. Eur J Heart Fail. 2019;21 (9):1103-13. doi:10.1002/ejhf.1374.
11. Sinikova MV, Lyasnikova EA, Yurchenko AV, et al. Results of 3 years of operation of the Russian hospital heart failure registry (RUS-HFR): the relationship between management and outcomes in patients with chronic heart failure. Cardiologia. 2018;58 (10):9-19. Синикова М. В., Лясникова Е. А., Юрченко А. В. и др. Результаты 3 лет работы Российского госпитального регистра хронической сердечной недостаточности (Russian hospItal Heart Failure Registry — RUS-HFR): взаимосвязь менеджмента и исходов у больных хронической сердечной недостаточностью. 2018;58 (10):9-19. doi:10.18087/cardio.24836.