Quantifying the water soil erosion hazard using RUSLE, GIS, and RS approach: A case study of Al-Qshish River Basin, Lattakia, Syria.

Hazem Ghassan Abdo (hazemabdo@tartous-univ.edu.sy)
University of Tartous
https://orcid.org/0000-0001-9283-3947

Research Article

Keywords: Soil erosion, RUSLE, GIS, RS, Conservation, Syria

DOI: https://doi.org/10.21203/rs.3.rs-264124/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Soil erosion is one of the most prominent geomorphological hazards threatening environmental sustainability in the coastal region of western Syria. The current war conditions in Syria has led to a lack of field data and measurements related to assessing soil erosion. Mapping the spatial distribution of potential soil erosion is a basic step in implementing soil preservation procedures mainly in the river catchments. The present paper aims to conduct a comprehensive assessment of soil erosion severity using revised universal soil loss equation (RUSLE) and remote sensing (RS) data in geographic information system (GIS) environment across the whole Al-Qshish river basin. Quantitatively, the annual rate of soil erosion in the study basin was 81.13 t ha$^{-1}$ year$^{-1}$ with a spatial average reaching 55.18 t ha$^{-1}$ year$^{-1}$. Spatially, the soil erosion hazard map was produced with classification into five susceptible-zones: very low (40.99%), low (40.49%), moderate (8.90%), high (5.41%) and very high (4.21%). The current study presented a reliable assessment of soil loss rates and classification of erosion-susceptible areas within the study basin. These outputs can be relied upon to create measures for maintaining areas with high and very high soil erosion susceptibility under the current war conditions.

1. Introduction

Soil is an important and vital non-renewable resource that gives a broad set of ecological services and goods (Pal, 2016; Brevik et al. 2017; Saleem et al. 2020). However, current scientific literature indicates that soil erosion is responsible for about 85% of the degradation of the agricultural lands, and hence a decrease in productivity by 17% (Lal, 2001; Jie et al. 2002; Wijesundara et al. 2018; Nyesheja et al. 2018; AbdelRahman and Arafat, 2020). Soil erosion by water (SEW) is one of the most severe environmental challenges influencing human sustainability and welfare throughout the world (Zika and Erb, 2009; Abdo HG, 2019). SEW is dynamically created as an output of spatial interaction between physical and human factors. SEW, in this context, produced a total reduction in the quality of soil health, water resources pollution, and perturbation of the global carbon cycle, therefore a decrease in ecosystem quality and productivity (Van Oost et al. 2007; García-Ruiz, 2010; Ibrahim et al. 2014). Mitigation of soil erosion is an essential matter in the context of agricultural productivity that influenced by soil erosion in many ways (FAO, 2019). Moreover, humans gain more than 99.7% of their nourishment from the soil, while 0.3% from the oceans and other water ecosystems (Pimentel, 2006).

In the context, Syrian soils, as part of the Mediterranean basin soils, are prone to a remarkable water soil erosion hazard due to climate, terrains, soil features, vegetation and human activity motivating water erosional cycle, especially in the coast region of Syria (Mohammed et al. 2020a). Moreover, about 18% of the agricultural land in Syria is exposed to soil erosion risk which exceeds 100 t/ha/y in some western mountainous areas (ACSAD, 2007; Husein and Kalkha, 2019). SEW in the coastal region of Syria in general and in Al-Qshish river basin in particular is the fundamental risk that threatens agricultural, feed, and secure sustainability. The heavy pattern of rainfall intensities, runoff, flash flood, rugged topography, shallow soil profiles, and degraded vegetation are the main physical factors that cause SEW. Simultaneously, SEW can be fostered by the expansion of human intensifications such as deforestation,
overcrossing, urbanization, landuse/landcover change, intensive cultivation on steep slopes, excessive soil ploughing, land abandonment, poor maintenance procedures, military infrastructure, and armed conflicts (Dewan et al. 2007; Dewan and Yamaguchi, 2009; Emadodin et al. 2012; Jafari and Bakhshandehmehr, 2016; Nabiollahi et al. 2017; Abdo HG 2018; Barakat et al. 2019; Mohammed et al. 2020b,c).

Hence, the issue of SEW modeling was the core of many studies in the Syrian coastal region. Barakat et al. (2014) and Husein and Kalkha, (2019) used the Coordination of Information on the Environment (CORINE) method to model the hazard of SWE for some rainy coastal mountains of Syria. Mohammed et al. (2016) simulated SEW by using the Water Erosion Prediction Project (WEPP) model for Lattakia governorate in the temporal dimension of 2016 to 2039. The Revised Universal Soil Loss Equation (RUSLE) method was implemented in the GIS software to assess the SEW in many catchments in Syrian coastal region (Abdo and Salloum, 2017a, b; Klewinghaus, 2018).

Investigating the spatial distribution of SEW rates is a critical stage for the conservation of soil and water resources at the catchments scale. Meanwhile, using the experimental models is the most common methods of SEW modeling, especially in areas with limited data. In details, the integration of remote sensing (RS) data, geographic information system (GIS) environment and RUSLE model is a useful, reliable and accurate manner in generating the spatial distribution of SEW (Phinzi and Ngetar, 2019). The war in Syria has contributed to increasing pressure on natural resources in the coastal region of Syria (Abdo HG, 2018; Ghanem and Rukia, 2020). The lack of relevant data also plays a major role in impeding the creation of post-war environmental rehabilitation measures. For several decades, studies have used USLE/RUSLE, therefore, providing reliable results in assessing soil erosion, especially in light of the lack of relevant data under the conditions of war in Syria. For the prior issue discussed, the present paper will reveal the quantities and spatial distribution of SEW in a Al-Qshish river basin by utilizing the RS data in calculating RUSLE parameters in a GIS environment, and thus the possibility of proposing the better spatial conservation strategies with appropriate implementations.

2. Materials And Methods

2.1 Study area

Al-Qshish river basin is one of the coastal river basins in Lattakia governorate in the west of Syria (Fig. 1). The study basin occupies an area of roughly 165 km² and lies between the latitudes of 35°57¢ and 35°55¢ N and longitudes of 35°58¢ and 35°13¢ E with altitude varying from 0 to 1267 m above sea level. This basin boarded Al-Kabeer alshamali river basin and Wadi-Qandil river basin to the east, the Mediterranean to the west, Wadi-Qandil river basin to the south, Turkey to the north. The lithological formations include the rocks of the Archean (Jurassic and Cretaceous eras), Proterozoic (Pliocene era) and Phanerozoic (Pleistocene and Holocene eras) eons. The limestone and dolomitic rocks of the second eones are concentrated in some mountains and plateaus in the north and east of the basin. While the rocks of the third eon distributed in the central region. The sandy formations of the fourth eon
concentrated along with the stream beds and close to the coastline (Salloum, 2012). The basin primarily subjects to the Mediterranean climate pattern: mild and rainy winter and long, dry, and hot summer (Mohammed and Fallah, 2019). The average annual rainfall in the basin varies from 835 to 906 mm (Fig. 2), and most precipitation is concentrated in the winter months (68%). Additionally, the annual mean summer temperature is 23° and in winter 14°. The warmest month is August and the coldest is January. High relative humidity prevails throughout the year due to the effects of the Mediterranean water mass. The annual average of humidity is 72%. Agriculture and tourism are the basic economic pivots of the population. Olives, citrus and field crops are among the most important crops in the basin (Ülker et al. 2018; Abdo HG, 2020).

2.2 RUSLE model parameters

The universal equation of soil loss RUSLE (Wischmeier and Smith, 1978; Renard et al. 1997) has been commonly utilized to evaluate the spatial dimension of soil erosion rates in order to create the preservation aims, with an efficient scale of validity (Balasubraman et al. 2015; Phinzi and Ngetar, 2019). RUSLE as a geo-mathematical method consists of five geo-factors which represent the following inputs: rainfall erosivity, soil susceptibility to erode based on its physical-chemical properties, relief, flora, and conservation, respectively. However, RUSLE model has been implemented in areas with various cases worldwide generally and in the Mediterranean basin environment in particular: Kefi et al. (2012), in Tunisia; Demirci and Karaburun, (2012), in Turkey; Chadli, (2016), in Morocco; Fagnano et al. (2012), in Italy; Benkadja et al. (2015), in Algeria, etc. The average annual soil erosion per unit area is given by the following equation (Eq. 1) of RUSLE (Wischmeier and Smith, 1978):

\[A = R \times K \times LS \times C \times P \]

where \(A \) is the average annual soil erosion (t/ha/year), \(R \) is the rainfall erosivity, \(K \) is the soil erodibility, \(LS \) is the hill slope length and steepness, \(C \) is the vegetation factor, and \(P \) is the support practice. In order to standardize pixel resolution DEM and Landsat imageries resolution, all inputs and outputs for the calculation of erosion risks is in 30-pixel resolution for each sub-factors of RUSLE model.

2.2.1 Rainfall erosivity factor (R)

The rainfall erosivity (\(R \)) factor reflects the impact of rainfall kinetic energy and produced runoff on the erosion cycle (Wischmeier and Smith, 1978; Xu et al. 2009; Demirci and Karaburun, 2012). \(R \) factor, however, is significantly influenced by the pattern, volume, intensity, duration of precipitation events (Farhan et al. 2013). \(R \) factor index should be acquired by multiplying the total rainstorm energy (\(E \)) and the maximum 30-min rainfall intensity (\(I_{30} \)) (Renard et al. 1997). The calculation of the \(R \) factor values by the prior approach can implement only in regions that are equipped by recording gauging stations that record the rains instantaneously. To overcome this issue, available monthly rainfall data (1989 – 2019)
of climatic stations established in and around the study basin the map of R-value was prepared by using the following Eq. (2) developed by Wischmeier and Smith, (1978):

$$R = \sum_{i=1}^{12} 1.735 \times 10^{(1.5 \log_{10}(P_i/P) - 0.08188)}$$

where \(R\) is a rainfall erosivity factor (MJ mm ha\(^{-1}\) h\(^{-1}\) per year); \(P_i\) is monthly rainfall (mm); \(P\) is an annual rainfall (mm).

2.2.2 Soil erodibility factor (K)

\(K\) factor characterizes the strength of topsoil particle against the rainfall storms events, which is commonly obtained by assessing the physical-chemical topsoil attributes of a specific area (Das et al. 2018). \(K\) factor is an estimate of the sensitivity of topsoil to detachment and transport by rainfall and runoff. It represents the soil loss rate motivated by rainfall erosivity factor \((R)\) in each point of study area (Koirala et al. 2019). In the study basin, soil properties were assessed based on the analysis of soil samples carried out by the National Center for Agricultural Research in Al-Hanadi region. \(K\) factor map was designed by using the following equation introduced by (Wischmeier et al. 1978; Renard et al. 1997; Panagos et al. 2014):

$$K = \frac{2.1 \times 10^{-4} (12 - OM) \times M^{1.14} + 3.25 (s - 2) + 2.5(p - 3)}{100}$$

where \(OM\) is the organic matter (%), \(s\) is soil structure class, \(p\) is permeability class, and \(M\) is aggregated variable derived from the granular soil texture: \(M = (%Msilt) \times (%silt + %sand)\), and the modified silt (Msilt) is a percentage of grain size between 0.002 and 0.1 mm. However, this Eq.3 was used based on its compatibility with the topsoil characteristics in the Mediterranean region (Abdo HG, 2018).

2.2.3 Slope length and steepness (LS) factor

Slope Length and Steepness Factors \((LS)\) assess the effect of the topography on the acceleration of soil loss (Lu et al. 2004). \(LS\) factor was produced from two sub-parameters: a slope degree parameter \((S)\) and a slope-length parameter \((L)\); which are extracted from the Digital Elevation Model (DEM) (Hickey, 2000; Boggs et al. 2001). In this regard, the \(LS\) factor is the most important causative factor of overland flow which considers the main cause of soil erosion. The nexus of soil erosion to slope degrees of hill and mountains area is affected by the vegetation density and soil properties (Koirala et al. 2019). The relief of the study area is characterized by steep slopes which reach more than 70 degrees, as Fig.5 indicates. By using the digital elevation model (DEM) with 30 m resolution (ASTER GDEM Validation Team, 2009). \(LS\) factor map was generated according to the following equation Eq.4
\[LS = (\text{FlowAccumulation} \times \frac{\text{CellSize}}{22.13})^{0.5} \times \left(\frac{\sin \text{slope}}{0.0896} \right)^{1.3} \]

(4)

where FlowAccumulation is the grid layer of flow accumulation expressed as the number of grid cells, and CellSize is the length of a cell side. The previous method of calculating \(LS \) factor values is considered reliable and accurate, and it has been used in many relevant studies in the Mediterranean region (Zhang et al. 2013; Bhandari et al. 2015; Abdo and Hassan, 2018; Durães et al. 2020).

2.2.4 Vegetation factor (C)

Vegetation cover represents a complex criterion in soil erosion control, because of dissipating the kinetic energy of raindrops, delaying the surface runoff, and enhancing the infiltration capacity (Hu et al. 2015; Salloum and Abdo, 2016; Sujatha and Sridhar, 2018). In this regard, \(C \) factor represents the vegetation case which can be swiftly varied than other RUSLE factors (Beskow et al. 2009). Landuse/landcover and Normal Difference Vegetation Index (NDVI) are two methods which soil erosion modelling scholars use in calculating \(C \) values (Abdo and Salloum, 2017b). In the present evaluation, the \(C \) values were calculated using the NDVI index which is given by Eq.5

\[\text{NDVI} = (\text{NIR} - \text{RED}) / (\text{NIR} + \text{RED}) \]

(5)

where NIR is the near-infrared band (band 4, 0.76–0.90 µm), and RED is the red band (band 3, 0.63–0.69 µm). Landsat 8 OLI image taken in January 2019 was considered in calculating NDVI values which ranged between -0.3 to 0.83 (Fig. 7). The values of \(C \) factor was calculated using the Eq.6

\[C_{\text{factor}} = \exp \left[-\alpha \frac{\text{NDVI}}{(\beta - \text{NDVI})} \right] \]

(6)

where \(\alpha \) and \(\beta \) parameters determine the shape of the NDVI curve. Reasonable results are produced using values of \(\alpha = 2 \) and \(\beta = 1 \). The NDVI values were relied upon in calculating the spatial distribution of the \(C \) factor due to its accuracy and reliability compared to other methods (Vatandaşlar and Yavuz, 2017).

2.2.5 Conservation support practice factor (P)

Maintenance practice factor (\(P \)) is the proportion of soil erosion after a selective support exercise to the corresponding soil loss after up and down farming (Samanta et al. 2016). However, \(P \) factor fundamentally affects soil loss by modifying the streaming pattern, degree or orientation of overland flow, and decreasing the runoff potentials (Ozsoy and Aksoy, 2015). For cultivated land, the conservation practices included contouring, terracing, strip cropping, and subsurface drainage (Renard et al. 1997). \(P \) factor values range from 0 to 1, the value 0 suggests good conservation support practices and the value
suggests poor conservation support practices (Wischmeier and Smith, 1978; Das et al. 2018). Field monitoring indicates the loss of prevention support procedures in the study area. Consequently, P factor value for the entire study basin is 1 as proposed by Wischmeier and Smith, (1978).

3. Results And Discussion

Based on the data entered into the GIS environment (Fig. 10), four thematic raster maps were accurately produced representing the spatial parameters of RUSLE. R, K, LS, and C raster factors. Figure 3 illustrates the spatial distribution of rainfall erosivity. On value, R factor values ranged from 634.53 to 1512.54 MJ mm ha$^{-1}$ h$^{-1}$ year$^{-1}$. High values of R factor are concentrated in the northern and eastern regions of the study area. This result can be explained by the topographic elevation which enhances the rainfall intensities, and thus greater rainfall erosivity. In the case of soil erodibility, Fig. 4 indicates the spatial distribution of the K values, which ranged from 0.021 to 0.032 ton. ha. MJ$^{-1}$.mm$^{-1}$. However, it can be seen that the study area is divided into three sectors according to the susceptibility of soil erosion, which was the highest in the far north. Referring to the impact of slope factor, LS values of the study area are in the range of 0–33.9 as Fig. 6 illustrated. The higher values of LS factor were distributed mainly in the northern and eastern regions. These areas show a high erosion susceptibility due to the terrain roughness and the slope steepness. As regards the vegetation influence, C factor values ranged between 0.02–1 (Fig. 8). The spatial distributions of C factor values showed that the southern and western regions showed high values due to the pressure of human activity, particularly urban sprawl and dense agriculture. Meanwhile, low values of factor C are concentrated in the northern and eastern regions due to the density of vegetation and grass cover, which enhances the biological protection of the soil profile.

Prior RUSEL factor rasters were spatially multiplied in order to generate the spatial distribution of potential soil erosion per hectare per year at cell level as Fig. 9 represents. In the context of present findings, the annual rate of soil erosion in the study basin ranged from 0 to 81.13 t ha$^{-1}$ year$^{-1}$, with spatial mean reached 55.18 t ha$^{-1}$ year$^{-1}$. Using the Natural Breaks method, the resulting soil loss map was categorized into five risk classes: very low (40.99%), low (40.49%), moderate (8.9%), high (5.41%), and very high (4.21%) as Table. 1 illustrates.
Table 1
Classification of soil erosion in study basin

Soil erosion classes	Rate of soil loss class in ton ha\(^{-1}\) year\(^{-1}\)	Area (k.m\(^2\))	Percentage (%)
Very low	< 10	67.63	40.99
Low	10–20	66.81	40.49
Moderate	20–30	14.69	8.90
High	30–40	8.92	5.41
Very high	40–80.13	6.95	4.21

Although the current results were not subject to direct field evaluation, hence some limitations, it constitutes an important step with promising results in clarifying the spatial distributions of soil erosion sensitivity degrees and thus the possibility of applying conservation and maintenance procedures. Meanwhile, resulting soil erosion rate is spatially consistent with the estimates provided by scholars in river basins environment in the eastern Mediterranean as Table. 2 shown. Also, the results of previous literature give the current results sufficient validity to be used in proposing measures for spatial maintenance of areas with boundaries and critical soil erosion. In this regard, Nearing et al. (1990); Ivem et al. (2007); Trabucchi et al. (2012); and Farhan and Nawaiseh, (2015) suggested that 2 to 12 ton ha\(^{-1}\) year\(^{-1}\) is the acceptable soil loss tolerances limits for the purposes of agricultural and economic sustainability in the Mediterranean environment. Moreover, Ibrahiem, (1986) and Kbibo and Nesafi, (1997) stated that the tolerable limit of soil loss ranged between 1 to 2.5 t h\(^{-1}\)y\(^{-1}\) for the coastal region of Syria, owing to the many geo-factors influences the soil formation. Consequently, in light of these limits, it can be emphasized that most of the study area lands need integrated spatial management of erosion.
Table 2
Some erosion assessments in different parts of Mediterranean areas using RUSLE model

Location	Study area	Total soil erosion in ton ha\(^{-1}\) year\(^{-1}\)	aerial extent (km\(^2\))	Reference
Syria	Southern part of Syria	350	515.3	Mohammed et al. (2020b)
Syria	Northern Al-Kabeer river basin	55	845	Almohamad, (2020)
Jordan	Wadi Kerak basin	64	191	Farhan and Nawaiseh, (2015)
Morocco	Tensift basin	44.03	20.4	Meliho et al. (2020)
Algeria	Wadi Mina basin	100	4800	Benchettouh et al. (2017)
Tunisia	Lebna basin	150	2840	Gaubial et al. (2016)
Italy	Portofino promontory area	225	18	Rellini et al. (2019)
Portugal	Foupana basin	99	145	Panagopoulos and Ferreira, (2010)
Turkey	Alaca basin	150	1656.4	Imamoglu and Dengiz, (2016)

In addition, the spatial distributions of high and very high erosion risk hazards are mainly concentrated in the north, northeast and northwest slopes of the study area. Importantly, these areas are prone to high risk of soil erosion as a result of the spatial integration between the kinetic energy of raindrops, runoff and steep slopes. The field investigation revealed that areas with high and very high values of soil erosion are sloping areas with dense vegetation cover. Importantly, vegetation did not reduce the soil erosion amounts in these areas according to the produced map. This finding can be explained by the intense spatial competition between slope and vegetation factors in favor of the slope factor. Moreover, the slope degrees in these areas reaches more than 70 degrees as Fig. 5 shown. These results are consistent with many studies that have indicated the effect of slopes on soil stability (Thomas et al. 2018; Kayet et al. 2018). Thus, it can be stated that the slope is a critical factor in the acceleration of soil erosion and sediment yield in the study area.

The results presented in this study, that assessed the spatial distribution of potential soil erosion in study basin, are spatial estimates, and thus are still questionable. In this regard, due to the absence of sufficient data, information and field measurements throughout the basin due to several influencing factors, especially the consequences of the current war, a RUSLE model provides reliable spatial estimates of soil erosion quantities. These mapped estimates can be useful for decision-makers in creating strategies for
conserving soils and mitigating the erosion. The RUSLE application could also be expanded at the regional and national levels as part of the spatial management plans for river basins.

4. Conclusions

Soil erosion is considered as one of the most geo-environmental challenges threats to agricultural and economic sustainability in the coastal region of Syria. In light of the paucity of spatial data associated with soil erosion, this study has provided an objective assessment of the spatial distribution of soil erosion susceptibility in one of the coastal river basins most vulnerable to soil erosion. The aim of this research was achieved by feeding the GIS environment with multi-source data, especially RS data, in the calculation of RUSLE parameters. In the context of current outcomes, the produced soil erosion map illustrates a maximum rate of erosion $81.13\, t\, h^{-1}\, y^{-1}$. Further, the soil erosion amount exceeded the tolerable threshold of soil loss for the coastal region of Syria (1 to $2.5\, t\, h^{-1}\, y^{-1}$). These estimates are closely related to the estimates computed in Syria and the Mediterranean countries using the RUSLE model. Additionally, it was concluded the high effect of slope factor in accelerating soil erosion, especially in the north, northeast and northwest slopes of study area. The spatial integration process between GIS and RS data provided an objective platform for estimating annual rates of soil erosion in study basin, especially in light of the ongoing war conditions in Syria. Thus, it is possible to build on the present outcomes to provide a solid foundation for starting the creation of conservation and maintenance strategies with related spatial applications.

Declarations

Acknowledgments

The author expresses his deep and sincere thanks to the anonymous reviewers and the editor for their valuable comments, suggestions, assistance, and constructive criticism in the improvement of the earlier version of the manuscript.

Conflict of Interest: The author declares that they have no conflict of interest.

References

1. AbdelRahman, M. A., & Arafat, S. M. (2020). An Approach of Agricultural Courses for Soil Conservation Based on Crop Soil Suitability Using Geomatics. Earth Systems and Environment, 1-13.

2. Abdo, H. G (2019). Geo-modeling approach to predicting of erosion risks utilizing RS and GIS data: a case study of Al-Hussain Basin, Tartous, Syria, J Environ Geol, 1, (1), 1-4

3. Abdo, H. G. (2018). Impacts of war in Syria on vegetation dynamics and erosion risks in Safita area, Tartous, Syria. Regional Environmental Change, 18(6), 1707-1719.

4. Abdo, H. G. (2020). Evolving a total-evaluation map of flash flood hazard for hydro-prioritization based on geohydromorphometric parameters and GIS–RS manner in Al-Hussain river basin, Tartous,
5. Abdo, H. G., & Hassan, R. M. (2018). Tartous, Syria. Journal of Environmental Geology, 2(2), 68-74.
6. Abdo, H., & Salloum, J. (2017a). Mapping the soil loss in Marqya basin: Syria using RUSLE model in GIS and RS techniques. Environmental Earth Sciences, 76(3), 114.
7. Abdo, H., & Salloum, J. (2017b). Spatial assessment of soil erosion in Alqerdaha basin (Syria). Modeling Earth Systems and Environment, 3(1), 26.
8. ACSAD (2007). Soil Degradation in Syria. Damascus. (2007).
9. Almohamad, H. (2020). Impact of Land Cover Change Due to Armed Conflicts on Soil Erosion in the Basin of the Northern Al-Kabeer River in Syria Using the RUSLE Model. Water, 12(12), 3323.
10. Balasubramani, K. Veena, M. Kumaraswamy, K. & Saravanabavan, V. (2015). Estimation of soil erosion in a semi-arid watershed of Tamil Nadu (India) using revised universal soil loss equation (r usle) model through GIS. Model. Earth Syst. Environ 1: 10.
11. Barakat, A., Ouargaf, Z., Khellouk, R., El Jazouli, A., & Touhami, F. (2019). Land use/land cover change and environmental impact assessment in b éni-mellal district (morocco) using remote sensing and gis. Earth Systems and Environment, 3(1), 113-125.
12. Barakat, M., Mahfoud, I., & Kwyes, A. A. (2014). Study of soil erosion risk in the basin of Northern Al-Kabeer river at Lattakia-Syria using remote sensing and GIS techniques. Mesopotamian Journal of Marine Science, 29(1), 29-44.
13. Benchettouh, A., Kouri, L., & J ebari, S. (2017). Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arabian Journal of Geosciences, 10(4), 79.
14. Benkadja, R., Hattab, A., Mahdaoui, N., & Zehar, C. (2013). Assessment of soil losses and siltation of the K’ Soxob hydrological system (semiarid area—East Algeria). Arabian Journal of Geosciences, 6(10), 3959-3968.
15. Beskow, S. Mello, C.R. Norton, L.D. Curi, N. Viola, M.R. Avanzi, J.C (2009) Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena, 79(1): 49-59.
16. Bhandari, K. P., Aryal, J., & Damsawasdi, R. (2015). A geospatial approach to assessing soil erosion in a watershed by integrating socio-economic determinants and the RUSLE model. Natural Hazards, 75(1), 321-342.
17. Boggs, G., Devonport, C., Evans, K., & Puig, P. (2001). GIS-based rapid assessment of erosion risk in a small catchment in the wet/dry tropics of Australia. Land Degradation & Development, 12(5), 417-434.
18. Brevik, E. C., Steffan, J. J., Burgess, L. C., & Cerdà, A. (2017). Links between soil security and the influence of soil on human health. In Global soil security (pp. 261-274). Springer, Cham.
19. Das, B., Paul, A., Bordoloi, R., Tripathi, O. P., & Pandey, P K. (2018). Soil erosion risk assessment of hilly terrain through integrated approach of RUSLE and geospatial technology: a case study of Tirap District, Arunachal Pradesh. Modeling Earth Systems and Environment, 4(1), 373-381.
20. Demirci, A., & Karaburun, A. (2012). Estimation of soil erosion using RUSLE in a GIS framework: a case study in the Buyukcekmece Lake watershed, northwest Turkey. Environmental Earth Sciences, 66(3), 903-913.

21. Dewan, A. M., & Yamaguchi, Y. (2009). Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environmental monitoring and assessment, 150(1), 237-249.

22. Dewan, A. M., Islam, M. M., Kumamoto, T., & Nishigaki, M. (2007). Evaluating flood hazard for land-use planning in greater Dhaka of Bangladesh using remote sensing and GIS techniques. Water resources management, 21(9), 1601-1612.

23. Durães, M. F., Sirtoli, A. E., & dos Santos, J. S. (2020). Effects of DEM resolution on the RUSLE-LS factor and its implications on soil and water management policies through the land cover seasonality. African Journal of Agricultural Research, 16(12), 1755-1765.

24. Emadodin, I., & Bork, H. R. (2012). Degradation of soils as a result of long-term human-induced transformation of the environment in Iran: an overview. Journal of land use science, 7(2), 203-219.

25. FAO (2019) Soil erosion: The greatest challenge for sustainable soil management (http://www.fao.org/3/ca4395en/ca4395en.pdf)

26. Farhan, Y., & Nawaiseh, S. (2015). Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environmental Earth Sciences, 74(6), 4649-4669.

27. García-Ruiz, J. M. (2010). The effects of land uses on soil erosion in Spain: a review. Catena, 81(1), 1-11.

28. Gaubi, I., Chaabani, A., Mammou, A. B., & Hamza, M. H. (2017). A GIS-based soil erosion prediction using the revised universal soil loss equation (RUSLE)(Lebna watershed, Cap Bon, Tunisia). Natural Hazards, 86(1), 219-239.

29. Ghanem, S., & Rukia, A. (2020). Distribution of soil organic matter in the coastal region of Syria: a case study. DYSONA-Applied Science, 1(2), 57-63.

30. Hickey, R. (2000). Slope angle and slope length solutions for GIS. Cartography, 29(1), 1-8.

31. Hu Y, Tian G, Mayer A, Ruiahen, He (2015) Risk assessment of soil erosion by application of remote sensing and GIS in Yanshan Reservoir catchment, China. Nat Hazards 79(1):277–289.

32. Husein, H. H., & Kalkha, M. (2019). Soil Erosion Risk in the Rainy Mountainous Area of Eastern Mediterranean. In GLOBAL SYMPOSIUM ON SOIL EROSION (p. 260).

33. Ibrahiem, N., (1986). Soil Water Erosion and Soil Conservation in Syrian Arab Republic. University of Aleppo Journal, 6 (1), 79-110 (in Arabic).

34. Ibrahim, W. Y., Batzli, S. A., & Menzel, W. P. (2014). Agricultural policy effects on land cover and land use over 30 years in Tartous, Syria, as seen in Landsat imagery. Journal of Applied Remote Sensing, 8(1), 083506.

35. Imamoglu, A., & Dengiz, O. (2017). Determination of soil erosion risk using RUSLE model and soil organic carbon loss in Alaca catchment (Central Black Sea region, Turkey). Rendiconti Lincei, 28(1),
36. Jafari, R., & Bakhshandehmehr, L. (2016). Quantitative Mapping and Assessment of Environmentally Sensitive Areas to Desertification in Central Iran: MAPPING ESAs TO DESERTIFICATION. Land Degradation & Development, 27(2), 108–119. https://doi.org/10.1002/ldr.2227

37. Jie, C., Jing-Zhang, C., Man-Zhi, T., & Zi-tong, G. (2002). Soil degradation: a global problem endangering sustainable development. Journal of Geographical Sciences, 12(2), 243-252.

38. Kayet, N., Pathak, K., Chakrabarty, A., & Sahoo, S. (2018). Evaluation of soil loss estimation using the RUSLE model and SCS-CN method in hillslope mining areas. International Soil and Water Conservation Research, 6(1), 31-42.

39. Kbibo, I. & Nesafi, I. (1997). Water erosion and impacts on the coastal area in the Syrian Arab Republic. Tishreen University Journal for Studies and Scientific Research, 18, 59-76 (in Arabic).

40. Koirala, P., Thakuri, S., Joshi, S., & Chauhan, R. (2019). Estimation of soil erosion in Nepal using a RUSLE modeling and geospatial tool. Geosciences, 9(4), 147.

41. Lal, R., (2001). Soil degradation by erosion. Land Degrad Develop 12:519–539

42. Lu, D., Li, G., Valladares, G. S., & Batistella, M. (2004). Mapping soil erosion risk in Rondonia, Brazilian Amazonia: using RUSLE, remote sensing and GIS. Land degradation & development, 15(5), 499-512.

43. Meliho, M., Khattabi, A., & Mhammdi, N. (2020). Spatial assessment of soil erosion risk by integrating remote sensing and GIS techniques: a case of Tensift watershed in Morocco. Environmental Earth Sciences, 79(10).

44. Mohammed, S. A., & Fallah, R. Q. (2019). Climate change indicators in Alsheikh-Badr Basin (Syria). Geography, Environment, Sustainability, 12(2), 87-96.

45. Mohammed, S., Abdo, H. G., Szabo, S., Pham, Q. B., Holb, I. J., Linh, N. T. T., ... & Ibrahim, J. (2020a). Estimating Human Impacts on Soil Erosion Considering Different Hillslope Inclinations and Land Uses in the Coastal Region of Syria. Water, 12(10), 2786.

46. Mohammed, S., Alsafadi, K., Talukdar, S., Kiwan, S., Hennawi, S., Alshihabi, O., ... & Harsanyie, E. (2020b). Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geoinformatics approach. Remote Sensing Applications: Society and Environment, 20, 100375.

47. Mohammed, S., Hassan, E., Abdo, H. G., Szabo, S., Mokhtar, A., Alsafadi, K., ... & Rodrigo-Comino, J. (2020c). Impacts of rainstorms on soil erosion and organic matter for different cover crop systems in the western coast agricultural region of Syria. Soil Use and Management, 37(1), 196-213.

48. Mohammed, S., Kbibo, I., Alshihabi, O., & Mahfoud, E. (2016). Studying rainfall changes and water erosion of soil by using the WEPP model in Lattakia, Syria. Journal of Agricultural Sciences, Belgrade, 61(4), 375-386.

49. Nabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R., & Moradian, S. (2017). Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological indicators, 83, 482-494.
50. Nyesheja, E. M., Chen, X., El-Tantawi, A. M., Karamage, F., Mupenzi, C., & Nsengiyumva, J. B. (2019). Soil erosion assessment using RUSLE model in the Congo Nile Ridge region of Rwanda. Physical Geography, 40(4), 339-360.

51. Ozsoy, G., & Aksoy, E. (2015). Estimation of soil erosion risk within an important agricultural sub-watershed in Bursa, Turkey, in relation to rapid urbanization. Environmental Monitoring and Assessment, 187(7), 419.

52. Pal, S. (2016). Identification of soil erosion vulnerable areas in Chandrabhaga river basin: a multi-criteria decision approach. Modeling Earth Systems and Environment, 2(1), 5.

53. Panagopoulos, T. H. O. M. A. S., & Ferreira, V. E. R. A. (2010). Erosion risk map of a Foupana river watershed in algarve, Portugal. WSEAS Transactions on Environment and Development, 6(9), 635-644.

54. Phinzi, K., & Ngetar, N. S. (2019). The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review. International Soil and Water Conservation Research, 7(1), 27-46.

55. Pimentel, D. (2006). Soil erosion: a food and environmental threat. Environment, development and sustainability, 8(1), 119-137.

56. Rellini, I., Scopesi, C., Olivari, S., Firpo, M., & Maerker, M. (2019). Assessment of soil erosion risk in a typical Mediterranean environment using a high resolution RUSLE approach (Portofino promontory, NW-Italy). Journal of Maps, 15(2), 356-362.

57. Renard K G, Foster G R, Weesies G A, McCool D K, Yoder D C (1997). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. Department of Agriculture, Agriculture Handbook No 703 p 404

58. Saleem, A., Dewan, A., Rahman, M. M., Nawfee, S. M., Karim, R., & Lu, X. X. (2020). Spatial and temporal variations of erosion and accretion: A case of a large Tropical River. Earth Systems and Environment, 4(1), 167-181.

59. Salloum, J. (2012). Structure and Climate of AL Kash Basin. Tishreen University Journal for Research and Scientific Studies - Arts and Humanities Series, 34(4): 55 – 74 (in Arabic).

60. Salloum, J. Abdo, H (2016). Statistical modeling of conservation the vegetation of the land in Alqadmous area from rainfall erosion. Tishreen University Journal for Research and Scientific Studies - Arts and Humanities Series, 38(3): 667 – 683 (in Arabic).

61. Samanta, S., Koloa, C., Pal, D. K., & Palsamanta, B. (2016). Estimation of potential soil erosion rate using RUSLE and E30 model. Modeling Earth Systems and Environment, 2(3), 149. https://doi.org/10.1007/s40808-016-0206-7

62. Sujatha, E., & Sridhar, V. (2018). Spatial Prediction of Erosion Risk of a Small Mountainous Watershed Using RUSLE: A Case-Study of the Palar Sub-Watershed in Kodaikanal, South India. Water, 10(11), 1608.

63. Tang, Q., Xu, Y., Bennett, S. J., & Li, Y. (2015). Assessment of soil erosion using RUSLE and GIS: a case study of the Yangou watershed in the Loess Plateau, China. Environmental Earth Sciences,
64. Thomas, J., Joseph, S., & Thrivikramji, K. P. (2018). Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers, 9(3), 893-906. Trans Am Geophys Union 39:285–291

65. Ülker, D., Ergüven, O., & Gazioğlu, C. (2018). Socio-economic impacts in a Changing Climate: Case Study Syria. International Journal of Environment and Geoinformatics, 5(1), 84-93.

66. Van Oost, K., Quine, T. A., Govers, G., De Gryze, S., Six, J., Harden, J. W., ... & Giraldez, J. V. (2007). The impact of agricultural soil erosion on the global carbon cycle. Science, 318(5850), 626-629.

67. Vatandashlar, C., & Yavuz, M. (2017). Modeling cover management factor of RUSLE using very high-resolution satellite imagery in a semiarid watershed. Environmental Earth Sciences, 76(2), 65.

68. Wijesundara, N. C., Abeysingha, N. S., & Dissanayake, D. M. S. L. B. (2018). GIS-based soil loss estimation using RUSLE model: A case of Kirindi Oya river basin, Sri Lanka. Modeling Earth Systems and Environment, 4(1), 251-262.

69. Wischmeier WH, Johnson CB, Cross BV (1971) A soil erodibility nomograph for farmland and construction sites. J Soil Water Conserv 26:189–192

70. Wischmeier WH, Smith DD (1958) Rainfall energy and its relationship to soil loss.

71. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses, a guide to conservation planning. USDA Handb. 537. U.S. Gov. Print. Off., Washington, DC

72. Zhang, H., Yang, Q., Li, R., Liu, Q., Moore, D., He, P., ... & Geissen, V. (2013). Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers & Geosciences, 52, 177-188.

73. Zika, M., & Erb, K. H. (2009). The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecological Economics, 69(2), 310-318.

Figures
Figure 1

Site of Al-Qshish river basin. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 2

Spatial distribution of rainfall values
Figure 3

Spatial distribution of R factor values
Figure 4

Spatial distribution of K factor values
Figure 5

Spatial distribution of slope values
Figure 6

Spatial distribution of LS factor values

LS_factor

High : 33.9

Low : 0
Figure 7

Spatial distribution of NDVI values
Figure 8

Spatial distribution of C factor values
Figure 9

Spatial distribution of annual soil erosion values in Al-Qshish river basin (ton ha$^{-1}$ year$^{-1}$)
Figure 10

Data and information used in spatial modeling of annual soil erosion hazard in Al-Qshish river basin