Paediatric COVID-19 mortality: a database analysis of the impact of health resource disparity

Eva Miranda Marwali,1,2 Aria Kekalih,3 Saptadi Yuliarto,4 Dyah Kanya Wati,5 Muhammad Rayhan,1 Ivy Cerelia Valerie,5 Hwa Jin Cho,6 Waasila Jassat,7 Lucille Blumberg,7 Maureen Masha,7 Calum Semple,2,8 Olivia V Swann,9 Malte Kohns Vasconcelos,10 Jolanta Popiel ska,11 Srinivas Murthy,12 Robert A Fowler,13 Anne-Marie Guerguerian,14 Anca Streinu-Cercel,15 Mohan Dass Pathmanathan,16 Amanda Rojek,2,17 Christiana Kartsonaki,2 Bronner P Gonçalves,2 Barbara Wanjiru Citarella,2, Laura Merson,2 Piero L Olliaro,2 Heidi Jean Dalton,18 on behalf of International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) Clinical Characterization Group Investigators

ABSTRACT

Background The impact of the COVID-19 pandemic on paediatric populations varied between high-income countries (HICs) versus low-income to middle-income countries (LMICs). We sought to investigate differences in paediatric clinical outcomes and identify factors contributing to disparity between countries.

Methods The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) COVID-19 database was queried to include children under 19 years of age admitted to hospital from January 2020 to April 2021 with suspected or confirmed COVID-19 diagnosis. Univariate and multivariable analysis of contributing factors for mortality were assessed by country group (HICs vs LMICs) as defined by the World Bank criteria.

Results A total of 12,860 children (3819 from 21 HICs and 9041 from 15 LMICs) participated in this study. Of these, 8961 were laboratory-confirmed and 3899 suspected COVID-19 cases. About 52% of LMICs children were black, and more than 40% were infants and adolescent. Overall in-hospital mortality rate (95% CI) was 3.3% (=3.0% to 3.6%), higher in LMICs than HICs (4.0% (3.6% to 4.4%) and 1.7% (1.3% to 2.1%), respectively). There were significant differences between country income groups in intervention profile, with higher use of antibiotics, antivirals, corticosteroids, prone positioning, high flow nasal cannula, non-invasive and invasive mechanical ventilation in HICs. Out of the 439 mechanically ventilated children, mortality occurred in 106 (24.1%) subjects, which was higher in LMICs than HICs (89 (43.6%) vs 17 (7.2%) respectively). Pre-existing infectious comorbidities (tuberculosis and HIV) and some complications (bacterial pneumonia, acute respiratory distress syndrome and myocarditis) were significantly higher in LMICs compared with HICs. On multivariable analysis, LMIC as country income group was associated with increased risk of mortality (adjusted HR 4.73 (3.16 to 7.10)).

WHAT IS ALREADY KNOWN ON THIS TOPIC

⇒ Recent systematic reviews identified a potential- ly higher paediatric mortality per population from COVID-19 in low-income to middle-income countries (LMICs) compared with high-income countries (HICs) but concluded that heterogeneity of published studies limits firm conclusions. Correspondingly, lethality of other acute respiratory infections has been shown to be higher in LMIC.

WHAT THIS STUDY ADDS

⇒ By using harmonised data collection tools of a study population of over 12,000 children, this study can directly compare inpatient management and outcomes in HIC and LMIC. Analysis finds higher mortality in LMIC, although a lower proportion receive intensive care unit admission and ventilation prior to death. Disparity in access to care and lack of available advanced medical therapies are highlighted and provide areas for collaborative efforts between clinicians, administrators and likely government groups to improve outcomes in LMIC.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

⇒ While intensified by the pandemic, a lack of adequate resources to care for children with acute respiratory infections in LMIC is likely a general concern that requires allocation of resources. Reducing the gap in our ability to care for sick children in LMICs versus HICs will inevitably improve global outcomes during both pandemic and interpandemic periods.

Conclusion Mortality and morbidities were higher in LMICs than HICs, and it may be attributable to differences in patient demographics, complications and access to supportive and treatment modalities.
INTRODUCTION

The clinical presentation, severity and outcomes of acute COVID-19 are different in children compared with adults. While a higher proportion of children are asymptomatic or less severely ill than in many adult reports, severe manifestations do occur. While cardiac compromise in the form of multisystem inflammatory syndrome in children (MIS-C) is often described, acute respiratory distress syndrome (ARDS) and other organ dysfunction also occurs in children. The risk factors for severe disease in in paediatrics are incompletely understood. Furthermore, there is a lack of global data to improve understanding of the COVID-19 burden in children who live in low-income to middle-income countries (LMICs) versus those in high-income countries (HICs) sites.

One systematic review that summarised the difference in paediatric COVID-19 morbidity and mortality in HICs and LMICs has been published. However, most studies' samples analysed fewer than 100 patients, and over half the data came from the USA and China. Furthermore, due to heterogeneous reporting of data in the included studies, the authors were limited in their ability to pool the data. Nearly all studies were conducted in one region or only presented data of children admitted to institutions across the globe contributing to the International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) database according to ISARIC/WHO Clinical Characterisation Protocol for Severe Emerging Infection. Fields for analysis were extracted from the complete dataset gathered from Research Electronic Data Capture (V.8.11.11, Vanderbilt University, Nashville, Tennessee, USA). Variables of interest were classified into four domains: comorbidities, presenting signs and symptoms, complications and treatments. Comorbidity was defined as any history of pre-existing medical conditions that were not otherwise related to COVID-19 natural history and reported at admission date. Complications referred to any medical condition detected during patients' stay that was not present at admission. Therapies included were drugs, oxygen and use of other treatments such as invasive mechanical ventilation (IMV). Ethnicity was collapsed into five categories (black or African American, white, Asian, mixed/others and missing/unknown) following the Centers for Disease Control and Prevention National Health Interview Survey glossary.

METHODS

Data were collected from hospitalised patients under 19 years of age with confirmed or clinically suspected COVID-19 between 1 January 2020 and 31 March 2021 admitted to institutions across the globe contributing to the International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) database according to ISARIC/WHO Clinical Characterisation Protocol for Severe Emerging Infection. Fields for analysis were extracted from the complete dataset gathered from Research Electronic Data Capture (V.8.11.11, Vanderbilt University, Nashville, Tennessee, USA).

Variables of interest were classified into four domains: comorbidities, presenting signs and symptoms, complications and treatments. Comorbidity was defined as any history of pre-existing medical conditions that were not otherwise related to COVID-19 natural history and reported at admission date. Complications referred to any medical condition detected during patients' stay that was not present at admission. Therapies included were drugs, oxygen and use of other treatments such as invasive mechanical ventilation (IMV). Ethnicity was collapsed into five categories (black or African American, white, Asian, mixed/others and missing/unknown) following the Centers for Disease Control and Prevention National Health Interview Survey glossary.

Income group	Country name	n	%
High-income country	UK	3099	24.1
High-income country	Poland	304	2.4
High-income country	Canada	164	1.3
High-income country	Spain	87	0.7
High-income country	Germany	25	0.2
High-income country	USA	22	0.2
High-income country	Ireland	21	0.2
High-income country	France	18	0.1
High-income country	Australia	17	0.1
High-income country	Chile	16	0.1
High-income country	Israel	12	0.1
High-income country	Netherlands	11	0.1
High-income country	Italy	8	0.1
High-income country	Greece	4	0.0
High-income country	Belgium	3	0.0
High-income country	Portugal	3	0.0
High-income country	Bolivia	1	0.0
High-income country	Kuwait	1	0.0
High-income country	Norway	1	0.0
High-income country	New Zealand	1	0.0
High-income country	Saudi Arabia	1	0.0
Lower-middle income country	South Africa	7621	59.3
Lower-middle income country	Malaysia	627	4.9
Lower-middle income country	Malawi	296	2.3
Lower-middle income country	Romania	135	1.0
Lower-middle income country	Colombia	112	0.9
Lower-middle income country	Indonesia	73	0.6
Lower-middle income country	Peru	49	0.4
Lower-middle income country	Pakistan	35	0.3
Lower-middle income country	India	24	0.2
Lower-middle income country	Honduras	21	0.2
Lower-middle income country	Argentina	18	0.1
Lower-middle income country	Mexico	11	0.1
Lower-middle income country	Brazil	10	0.1
Lower-middle income country	Nepal	6	0.0
Lower-middle income country	Russia	3	0.0
income groups were dichotomised into HICs and LMICs according to the latest World Bank classification.

Date of admission was defined as the date of hospitalisation. Descriptive statistics were described as frequencies (n) and proportions for categorical data, mean±SD or median (IQR) for continuous data, and number of available data (N) for each variable. Demographic characteristics, comorbidities, complications and treatments were compared between country income groups using χ² or Fisher’s exact test as indicated. Kaplan-Meier survival curves were plotted and compared using the log-rank test. Multivariable Cox proportional hazards regression models were fitted to identify mortality predictors. In-hospital survival analysis was performed to obtain 28-day and 90-day survival rates. Intensive care unit (ICU) admission and IMV requirement served as proxies for morbidity. Time-to-event analyses were performed to identify morbidity and mortality defining periods: (1) from hospital admission until ICU admission, (2) ICU admission to first intubation, (3) ICU admission to ICU discharge or death, (4) ICU discharge to hospital discharge or death. A p value of <0.05 was considered statistically significant. Statistical analyses were performed using SPSS V.25 (IBM Corp).

RESULTS
There were 12 860 children, originating from 36 countries, 15 of which (41.7%) were LMICs and 21 (58.3%) HICs (table 1). Seventy per cent (n=9041) of participants were from LMICs and 29.7% (n=3819) cases were from HICs. The majority of participants were contributed from 670 cites in South Africa (59.3%) and 346 sites in the UK (24.1%), followed by Malaysia (4.9%), Poland (2.4%) and Malawi (2.3%) (figure 1 and table 1). COVID-19 status was laboratory confirmed in 69.7%; this rate was higher in HICs (73.0%) in comparison with that in LMICs (68.3%) (table 2).

Adolescents aged between 12 and 17 years were the largest age group in LMICs (25.6%) and overall (24.0%), followed by infants younger than 1 year of age (21%). Infants were the largest group in HICs (29.4%). Males (50.8%) and females (49.2%) were similarly represented. Black or African-American participants formed more than one-third of the study population and 52% of LMICs children (table 2).

In total, 425 (3.3%) participants died. The mortality rate was higher in LMICs compared with HICs (4% vs 1.7%) (table 2). Reported mortality in the UK was 52 children (1.2%), which does not differ significantly (p=0.98) from the rest of HICs. Mortality in South Africa, numbering 268 children (3.5%), differed significantly (p=0.001) from 93 (6.5%) mortality in the rest of LMICs. The total admissions and mortality rates across the study period based on country groups (UK, South Africa and other countries) were presented in figure 2. The curves showed bimodal with peaks of mortality rates coinciding with admissions during July 2020 and January 2021. Available case data in early 2020 was limited compared with later time points. In contrast to South Africa and other countries, mortality rate in the UK did not rise significantly with the first and second wave of case admissions during April–May 2020 and October 2020–January 2021.

Children in LMICs had significantly greater and earlier mortality (adjusted HR (aHR) (95% CI) 4.73 (3.16 to 7.10), p<0.001). The 28-day and 90-days survival among all participants were 96.7% (10 339/10 692) and 96.5% (9 642/11 024), respectively. Survival was higher at both 28 (98.3% (3049/3101)) and 90 days (98.1% (3137/3199)) in HICs than LMICs (96.0% (7290/7591) and 95% (7505/7825), respectively).

The availability of information on comorbidities varied between countries of origin. The prevalence of several comorbidities was significantly higher in HICs including chronic neurological disease, seizures, diabetes and chronic cardiac disease. Infectious diseases such as tuberculosis and HIV/AIDS were significantly higher in LMICs (table 3).

The most common presenting symptoms overall include fever (20%), cough (16.1%) and shortness of breath (10.5%). Between-group’s comparisons showed that cough (HIC 14.0% vs LMIC 26.1%), shortness of breath (9.2% vs 16.4%), runny nose (4.2% vs 8.6%), loss of smell or taste (0.7% vs 2.9%), anorexia (0.1% vs 0.8%) and inability to walk (0.1% vs 0.2%) were more common among patients in LMICs.

Complications during hospitalisation are shown in table 4. Patients in LMICs had more bacterial and cryptocogenic pneumonia and ARDS, as well as other organ involvement such as brain with stroke or heart with cardiac arrest. The rates of complications were generally higher than that of HICs, except for cardiac arrhythmia and disseminated intravascular coagulation in which HICs rates were statistically higher.

The two most commonly administered therapies were antibiotics in 41.2% of participants, followed by corticosteroids in 11.4%. Antivirus was administered in 5.3% of subjects, with higher percentage observed in HIC, especially of remdesivir, which is more than twice that of LMIC. Adjunctive and supportive treatments were generally performed more often in HICs. No participants in LMICs were treated with extracorporeal membrane
oxygenation, as compared with 10 participants in HICs (table 5).

Participants in LMICs were most often admitted to the ICU within the first day of admission, with those who died being admitted earlier than survivors (LMICs vs HICs: 0 (0–1) vs 0 (0–2.5) day respectively, p=0.03) . While time to IMV was not significantly different for survivors versus non-surgeons, although non-surgeons in HICs had longer stays than in LMIC (3 (1–6) vs 9.5 (4.5–19.2) days respectively in HIC and 0 (0–4) vs 4 (0.7–7.2) days respectively in LMIC, p<0.05). Mortality was significantly higher (p<0.001) in LMICs compared with HICs for participants who received IMV (43.6% vs 7.3%) or who required ICU admission (16.7% vs 3.5). Nearly 2.3% and 6.1% participants died without ICU and/or IMV support in LMIC in comparison with the respective 1.3% and 1.4% in HICs (table 6).

Multivariable analysis was done to evaluate factors associated with mortality. Significant risk factors found were: aged <1 year (aHR (95% CI)=1.80 (1.01 to 3.22)), low-middle income group (4.73 (3.16 to 7.10)), comorbidities such as chronic kidney disease (3.74 (2.20 to 6.35)) or cardiac disease (2.42 (1.50 to 3.91)) and invasive mechanical ventilator requirement (3.46 (2.27 to 5.28)) or exposure to antibiotics (2.07 (1.34 to 3.22)). The use of antiviral agents (aHR=0.55 (0.32 to 0.96)) was the only factor inversely associated with mortality (figure 3).
DISCUSSION

We present a large international cohort of children hospitalised with COVID-19. We found that mortality was significantly higher in LMICs in comparison with HICs. Disparate care patterns were also observed, with patients in LMICs reported to receive most adjunctive and supportive therapies less frequently than patients in HICs. While these findings may represent differences in practice, they may also represent variation in available supports for children based on income status of the country. Such disparities have been described in adult COVID-19 patients, but limited data exist for children. 11–20

Prior reports have focused on specific aspects of illness such as infection or cardiac dysfunction, have included small cohorts of children or are limited to certain countries or regions. 11–20

While the findings may be criticised as mainly representing data from two countries, the UK and South Africa (SA), these countries are good examples of HICs and LMICs. Statistical analysis showed no significant difference of mortality between UK and the rest of HICs. Although mortality in SA was significantly lower than the rest of LMICs, both mortalities from SA and non-SA LMICs were significantly higher than HICs group. Low number of subjects from non-SA LMICs was disproportionate to that of SA, thus conclusion can not be drawn from observed difference in mortality between them. Furthermore, as data supplied from the UK and South Africa comes from national COVID-19 research databases recruiting from a high number of sites in the UK and South Africa, and in this sense may be more representative of country income differences, as opposed to enrolment of single sites (eg, a national referral centre) in different countries. The inclusion of children from many other countries, although relatively small cohorts form each country in comparison, does allow understanding of care patterns in areas around the world.

More participants from HICs could be admitted to ICU and received IMV than LMICs patients. While the small numbers available for analysis in some categories limit our confidence in these findings, in LMICs they do give IMV and dying within shorter periods of time than HICs. Not only were children in LMICs hospitalised with COVID-19 more likely to die, they were also shown to die earlier in their hospitalisation. Despite possible confounding effects from missing data relating to severity of illness at presentation (vital signs, organ failure scores), a positive association between LMICs and mortality were consistently observed in analysis of children admitted to the ICU and those receiving IMV.

Several independent risk factors for mortality were identified in addition to country economic group. Mortality was lowest for patients aged between 1 and 5 years and higher among patients of age <1 or >5 years. This finding confirmed the U-shaped mortality pattern shown in several other reports, although infancy is not always recognised as a risk factor in small studies. 11–20 Comorbidities such as chronic kidney and cardiac diseases were also shown to be independent risk factors as reported by others. 19 23 24

Country income	HICs	LMICs	Total							
	N	n	%	N	n	%	N	n	%	P value
Chronic neurological disorder*	2588	191	7.4	902	14	1.6	3490	205	5.9	0.001
Seizure*	2490	111	4.5	899	16	1.8	3389	127	3.7	0.001
Smoking	2091	82	3.9	1509	46	3.0	3600	128	3.6	0.215
Diabetes*	2592	95	3.7	4468	149	3.3	7060	244	3.5	0.001
Chronic cardiac disease*	2587	141	5.5	3578	48	1.3	6165	189	3.1	0.001
Obesity*	2438	90	3.7	1736	39	2.2	4174	129	3.1	0.001
Tuberculosis*	290	–	–	3649	102	2.8	3939	102	2.6	0.001
Chronic haematological disease*	2475	77	3.1	899	9	1.0	3374	86	2.5	0.001
HIV/AIDS*	2562	1	<0.01	4382	142	3.2	6944	143	2.1	0.001
Rare diseases and inborn errors of metabolism	1823	36	2.0	0	–	–	1823	36	2.0%	0.715
Malnutrition	2539	35	1.4	901	26	2.9%	3440	61	1.8%	0.412
Malignant neoplasm*	2571	64	2.5	4164	27	0.8%	6735	91	1.4%	0.001
Rheumatological disorder*	2491	45	1.8	898	2	0.2%	3389	47	1.4%	0.001
Chronic kidney disease*	2596	59	2.3	4147	28	0.7	6743	87	1.3	0.001
Liver disease	2623	12	0.5	902	–	–	3525	12	0.3	0.866

*Significant with p-value <0.05 using Chi-square test.

HICs, high-income countries; LMICs, low-income to middle-income countries; N, denominators; n, total patients with comorbidities.
infectious in nature, is another possible cause of the relationship between LMICs and mortality. Chronic respiratory failure has been associated with death in COVID-19 adult patients, with some evidence that this occurs in paediatric cases as well. Our data also provided information on tuberculosis, which has not specifically identified as comorbidity in children with COVID-19 in other reports. Similarly, data on the impact of HIV in children is sparse, and our review finds this to be an important risk factor and more prevalent in LMICs.

More patients receiving antiviral therapy were found in HICs versus LMICS. In fact, remdesivir, which is recommended for severe hospitalised COVID-19, was used in exceptionally lower percentage of LMIC subjects. We can only speculate that period of this study occurred when evidence based on antiviral efficacy was still scarce especially in children, or it may indicate lack of access to drug or lack familiarity with recommendations. The recommendations for antiviral use in children with severe COVID-19 from the National Institutes of Health have suggested use for patients over the age of 12 years; this recommendation would not have applied to infants who had a higher risk of mortality in our study. Further investigation of the impact of antivirals in children of all ages should be considered. The efficacy and the cost benefit of these expensive medications in resource-limited sites are needed; if valuable, improving access should then be at the core of discussions.

Table 4 Comparison of complications between country income groups

Country income	HICs	LMICs	Total								
	N	n	%	N	n	%	N	n	%	P value	
Bacterial pneumonia*	3497	11	3.3	1107	10	9.2	4604	21	4.7	<0.001	
ARDS*	3153	31	1.0	4972	26	7	8125	29	8	3.7	<0.001
AKI	3624	11	3.0	1410	49	3.5	5034	15	9	3.2	0.477
Seizure	3627	10	2.8	1412	39	2.8	5039	14	2	2.8	0.958
Pleural effusion	3511	82	2.3	1110	36	3.2	4621	11	8	2.6	0.118
Myocarditis and pericarditis*	2858	42	1.5	427	22	5.2	3285	64	1.9	<0.001	
Bronchiolitis	3620	57	1.6	1412	21	1.5	5032	78	1.6	0.922	
Cardiac arrhythmia*	3635	70	1.9	1407	13	0.9	5042	83	1.6	0.017	
Endocarditis*	692	5	0.7	487	14	2.9	1179	19	1.6	0.008	
Cardiac arrest*	3535	19	0.5	1412	55	3.9	4947	74	1.5	<0.001	
DIC*	3498	48	1.3	4668	58	1.2	8166	10	4	1.3	0.850
Meningitis and encephalitis*	3621	16	0.4	1413	20	1.4	5034	36	0.7	<0.001	
Pneumothorax	3530	15	0.4	1109	9	0.8	4639	24	0.5	0.185	
Stroke/cerebrovascular complication†	3527	7	0.2	1109	11	1.0	4636	18	0.4	0.001	
Pulmonary embolism	1928	4	0.2	293	2	0.7	2221	6	0.3	0.182	
Cardiac ischaemia	3510	7	0.2	1110	4	0.4	4620	11	0.2	0.309	
Myocardial infarction	312	1	0.3	298	–	–	610	1	0.2	1.000	
Sepsis	–	–	–	3862	8	0.2	3862	8	0.2	–	
DVT	1606	1	0.1	3	–	–	1609	1	0.1	1.000	
COP†	3398	–	–	1110	5	0.5	4508	5	0.1	0.001	

*Significant with p-value <0.05 using χ² test.
†Fisher’s exact test.
AKI, acute kidney injury; ARDS, acute respiratory distress syndrome; COP, cryptogenic organising pneumonia; DIC, disseminated intravascular coagulation; DVT, deep vein thrombosis; HICs, high-income countries; LMICs, low-income to middle-income countries; n, total patients with complications; N, denominators.
The higher prevalence of complications of respiratory disease such as ARDS, bacterial and cryptogenic organising pneumonia, and the impact of organ dysfunction outside the lung such as increased rates of myocarditis, pericarditis, endocarditis, meningitis, encephalitis, stroke and cardiac arrest observed in LMICs are also likely factors in the high death rates. Patients with MIS-C were not specifically reported in the time period of this report.

Our study has the strength of a common reporting format in participating centres around the world. We describe a relatively large number of children and are able to provide both comparisons of patient characteristics and outcomes and evaluate risk factors for outcomes using common definitions. Limitation of this study includes a predominance of patients from one LMICs and one HICs, South Africa and UK, potentially limiting the generalisability of our findings to all countries. In addition, we did not adjust for pandemic era. Inevitably, we have missing data for a number of variables, including comorbidities, which limits the effective sample size of analyses examining relationships with patient characteristics and outcomes. Lack of data on nutritional status of children on each group, which may explain disparity between country income groups, was another limitation of the study. Moreover, considerable proportion of non-confirmed cases also limits the impact of this study on public health policy.

In conclusion, we found many differences in characteristics, treatments and outcomes among children from LMICs and HICs with infants had higher death rates than other children. Patients less frequently receive IMV and other supportive therapies in LMICs, which likely represents disparities in access to healthcare that influence outcomes. Reducing the gap in our ability to care

Table 5	Treatment profile of study participants									
Country income	**HICs**	**LMICs**	**Total**							
	N	n	%	N	n	%	N	n	%	P value
Antibiotics*	3685	2189	59.4	4349	1122	25.8	8034	3311	41.2	<0.001
Corticosteroid*	3663	564	15.4	4905	417	8.5	8568	981	11.4	<0.001
HFNC*	3380	282	8.3	3967	147	3.7	7347	429	5.8	<0.001
IMV*	3620	235	6.5	4684	204	4.3	8304	439	5.3	<0.001
Antivirus*	3672	271	7.4	4341	172	4.0	8013	443	5.5	<0.001
Remdesivir	3672	96	2.6	4341	17	0.4	8013	113	1.4	
Neuraminidase inhibitor	3672	32	0.9	4341	17	0.4	8013	113	1.4	
Inotropic/vasopressor*	3451	201	5.8	4961	174	3.5	8412	375	4.4	<0.001
Prone positioning*	3532	64	1.8	4647	39	0.8	8179	103	1.2	<0.001
Anticoagulant	3819	50	1.3	9041	88	1.0	12860	138	1.1	0.091
NIV*	3627	53	1.5	4966	17	0.3	8593	70	0.8	<0.001
RRT	3573	19	0.5	4334	27	0.6	7907	46	0.6	0.084
ECMO†	3608	10	0.3	1086	–	–	4694	10	0.2	<0.001

*Significant with p value <0.05 using χ² test.
†Fisher’s exact test.

Table 6	Mortality based on ICU admission and IMV use									
Mortality based on country income	**HICs**	**LMICs**	**Total**							
	N	n	%	N	n	%	N	n	%	
ICU*	Yes	679	24	3.5	1037	173	16.7	1716	197	11.5
No	3140	40	1.3	8004	188	2.3	11144	228	2.0	
IMV*	Yes	235	17	7.2	204	89	43.6	439	106	24.1
No	3385	47	1.4	4480	272	6.1	7865	319	4.0	

*Significant with p value <0.05 using χ² test.

HICs, high-income countries; ICU, intensive care unit; IMV, invasive mechanical ventilation; LMICs, low-income to middle-income countries; N, denominator (total patients with or without ICU/IMV); n, total mortality.
for sick children in LMICs versus HICs will inevitably improve global outcomes during both pandemic and interpandemic periods.

Figure 3 Adjusted HR and 95% CI of mortality risk factors in all participants.
Ventzislava Petrov-Sanchez, Giles Peytavin, Scott Parhard, Walter Picard, Olivier Picone, Carola Plierobum, Djura Piersam, Carlos Pimentel, Raquel Pinto, Catarina Pires, Isabelle Pironneau, Lionel Piroth, Rinus Pius, Laurent Plantier, Hon Shen Png, Julien Poissy, Ryadh Poorekht, Maria Polskova-Spiekwa, Georgios Pollaris, Diane Ponscarame, Jolanta Polipsieja, Douwe F Postma, Diana Povas, Sebastien Prent, Jean-Claire Preiser, Mark G Pritchard, Gamagne Dona Dilanthi Priyadashani, Oriane Pucchial, Vilmaris Quinones-Cardona, Victor Quiros Gonzalez, Mohammed Qarashi, Christian Rabaud, Marie Rafiq, Rozanah Ab Rahman, Ahmad Kashfi Haji Ab Rahman, Giri Shahn Rajanram, Nagaranar Ramakrishnan, Jose Ramirez, Ahmad Afao Ramil, Blandine Rammeaert, Grazielle Viana Ramos, Christophe Raige, Assiyah Rashan, Thalha Rashan, Malendi Rasmin, Cornelius Ravi, Tharmnani Ravi, Stanislas Rebaudet, Sarah Redi, Brenda Renee, Attar Rehan, Jonathan Remppis, Martine Remy, Hung Ron, Hanna Rek, Anne-Sophie Resseauier, Matthieu Reveut, Oleksa Rewa, Luis Felipe Reyes, David Richardson, Laurent Richer, Sithi Nurali Atikah Ahmad Ridzuad, Ana L Rios, Aisar Rishu, Patrick Rispal, Karine Risso, Stephanie Roberts, David L Robertson, Olivier Robinoune, Paola Rodari, Pierre-Marie Roger, Emmanuel Rolilides, Amanda Rojek, Juliette Romanar, Melanie Ronz, Manuel Rosa-Caltrava, Michael Rose, Andrea Rossanese, Benedincone Rossignon, Patrick Rossignon, Stella Rouset, Carine Roy, Benoit Roze, Desy Rusmaawatningtyas, Dark D Russell, Mushfarad Sadat, Valla Sahraei, Maximilien Saint-Gilles, Stephane Sallaberry, Charlotte Salmon Gondondiere, Helene Salvador, Olivier Sanchez, Vanessa Sancho-Shimizu, Zulfiquar Sandhu, Pierre-Francois Sandrine, Oana Sandulescu, Shirley Sarfo-Mensah, Benjaminne Sarton, Egle Savitchne, Particka Savvidou, Yen Tsen Saw, Arnau Scherperele, Marion Schneider, Janet T Scott, James Scott-Brown, Nicholas Seddillot, Jaganathan Selvanayagam, Magteswar Selvarajoo, Caroline Semaille, Malcolm G Semp, Rashaid Bt Senian, Eric Senneville, Tania Sequiera, Ary Serpa Neto, Pablo Serrano Balazote, Ellen Showdortoczy, Syyamahah Shafidian, Mohammad Shamsah, Shabik Shariel, Catherine A Shaw, Victoria Shaw, Asrash Hesharshy, Salai Shrapnel, Nassima Si Mohammed, Ng Yong Shang, Jeane Sibбудe, Louise Sigfrid, Benedict Sim Lim Heng, Karisha Sivam, Sue Smith, Morgane Snacken, Tze Vee Soh, Joshua Solomon, Tom Solomon, Agnes Sommet, Rima Song, Tae Song, Azlan Mat Soom, Albert Soo, Edouard Soum, B P Sankru Wan Dr Sharzana, Shirene Ssridkanand, Sarah Stabler, Ymke Stienstra, Adrian Streniu-Cerell, Anca Strinu-Cerell, David Stuart, Jacky Y Suen, Charlotte Summers, Deepshankar Suppiah, Andrew Stvistunov, Sara Syahrin, Jazms Szaqbtan, Shiniz Tabrizi, Fabio S Taccone, Lyza Tagheresit, Shahidatlatt Mawarni Taib, Ewa Talek, Kim Keat Tan, Yan Chi Tan, Coralie Tardvov, Pierre Tattevin, M Arazha Tautik, Richard S Tedder, Tze Yuan Tee, Janet Teixeira, Marie-Capucine Teller, Sze Kye Teoh, Francois Teoule, Olivier Terrier, Nicolas Terzi, Hubert Tesser-Grenier, Alyf Adin Mohammad Thabit, Zhang DuanTham, Suvinthatrane Thangavele, Vincent Thibault, Simon-Djamel Thibeilvne, Benoit Thill, Jananeane Thirumaran, David Thomas, Emma C Thompson, Surun Raaj Thang Thurai, Ryan S Thwaites, Paul Tierney, Peter S Timashe, Jean Francois Timits, Noemie Tissot, Jordan Zhen Yang Toh, Sia Loong Tonnii, Marta Torre, Margaretta Torres, Tony Tranapi, Theo Treux, Clecia Tremeur, Tiffany Troulsson, Jeaneu Truong, Christuelle Tue, Sarah Tubiana, Jean-Marie Turmel, Lance C W Turtle, PG Ishara Turmora, Andrew Udy, Timothy M Uyeki, Luis Val-Flores, Amelie Valren, Marcel van den Berge, Job van der Paal, Van van der Valk, Vincent Van Der Werf, Jarne van Hattem, Carolien van Netten, Ilona van Veek, Noemie Vanel, Shoban Raj Vasudayan, Charles Preiser, Chapman Chee-Keong, Dmitry Pudimak, Faustina Veins, Dominique Vorkovich, Yavindu Voes, Obada Yousif, Saptadi Yuliarto, Marion Zabbe, Masliza Zahid, Maram Zahran, Nor Xian, Kuan Pei Xuan, Siti Rohani Binti Mohd Yakop, Yazdan Yazdanpanah, Nicholas Emmanuel Roilides, Amanda Rojek, Juliette Romaru, Mélanie Roriz, Manuel Rosa-Ca, Eva Miranda Marwali

http://doi.org/10.1136/bmjpo-2022-001657

None.

EMC, AK, SY, DKW, MR, ICV, HJC, WJ, LB, MM, CS, OS, MKV, JP, SM, RAF, A-MG, AS-C, MDP, AR, CB, BPG, BWC, LM, PLO, and JHUD; coordination and approved the final version. Furthermore, all authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. The corresponding author confirmed that all authors meet authorship criteria according to ICJME.

Funding National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)Emerging Epidemics, NIHR Health Protection Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, NIHR HPRU in Respiratory Infections at Imperial College London.

Map disclaimer The depiction of boundaries on this map does not imply the expression of any opinion whatsoever on the part of BMJ (or any member of its group) concerning the legal status of any country, territory, jurisdiction or area of its territories. This map is provided without any warranty of any kind, either express or implied.

Competing interests None.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Ethics approval This study was approved by all Ethical Committees for all sites that participated with this study. For Indonesian sites, this study was approved by Ministry of Health of Indonesia with ethical clearance letter number LB 02/22/KE.418/2020. Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available on reasonable request.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of change was made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID ids Eva Miranda Marwali http://doi.org/0000-0002-0135-536X Malte Kolms Vasconcelos http://doi.org/0000-0002-6207-9442 Barbara Warini Citterale http://doi.org/0000-0001-8968-0708

REFERENCES

1. Dockery AB, Harrison EM, Green CA. Features of 2013 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ; 2020;418.
2. Han X, Li X, Xiao Y, et al. Distinct characteristics of COVID-19 infection in children. Front Pediatr 2021;9:617938.
3. Borrelli M, Coricane A, Castelano F. Coronavirus disease 2019 in children. Front Pediatr 2019;7:668484.
4. Fialkowski A, Gerner Y, Aria P, et al. Insight into the pediatric and adult dichotomy of COVID-19: age-related differences in the immune response to SARS-CoV-2 infection. Pediatr Pulmonol 2020;55:2566-64.
5. Shadmi E, Chen Y, Dourado I. Health equity and COVID-19: global perspectives. J equity health 2020;19:104.
6. Khane K, Kitanato M, Knugger C, et al. The differential impact of pediatric COVID-19 between high-income countries and low- and middle-income countries: a systematic review of fatality and ICU admission in children worldwide. PLoS One 2021;16:e0246326.
7. Bernardo FBS, Alencastro LCoS, Silva RAda, et al. Epidemiological profiles of children and adolescents with COVID-19: a scoping review. Rev Bras Enferm 2021;74Suppl i:1e0200624.
8. Abdukahil SA, AbeR, AbelL, et al. Scoping r...
11 Marwali EM, et al. BMJ Paediatrics Open 2022;6:e001657. doi:10.1136/bmjpo-2022-001657

12 Ghisolfi S, Ålmås I, Sandefur JC, et al. Predicted COVID-19 fatality rates based on age, sex, comorbidities and health system capacity. BMJ Glob Health 2020;5:e003094.

13 Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr 2020;109:1088–95.

14 Chhibber-Goel J, Malhotra S, Krishnan NMA, et al. The profiles of first and second SARS-CoV-2 waves in the top ten COVID-19 affected countries. J Glob Health Rep 2021;5:e2021082.

15 Delahoy MJ, Ujamaa D, Whitaker M, et al. Hospitalizations Associated with COVID-19 Among Children and Adolescents - COVID-NET, 14 States, March 1, 2020-August 14, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1255–60.

16 Thelwall S, Aiano F, Harman K, et al. Risk of hospitalisation and death in children with SARS-CoV-2 delta (B.1.612.2) infection. Lancet Child Adolesc Health 2022;6:e16–17.

17 Liu X, Huang J, Li C, et al. The role of seasonality in the spread of COVID-19 pandemic. Environ Res 2021;195:110874.

18 Nachega JB, Sam-Agudu NA, Machekano RN, et al. Assessment of clinical outcomes among children and adolescents hospitalized with COVID-19 in 6 sub-Saharan African countries. JAMA Pediatr 2022;176:e216436.

19 Gonzalez-Dambrauskas S, Vasquez-Hoyos P, Camporesi A, et al. Paediatric critical COVID-19 and mortality in a multinational prospective cohort. Lancet Reg Health Am 2022;12:100272.

20 Oliveira EA, Colosimo EA, Simões E Silva AC, et al. Clinical characteristics and risk factors for death among hospitalised children and adolescents with COVID-19 in Brazil: an analysis of a nationwide database. Lancet Child Adolesc Health 2021;5:559–68.

21 Khera N, Santesmasses D, Kerepesi C, et al. COVID-19 mortality rate in children is U-shaped. Aging 2021;13:19954–62.

22 O’Driscoll M, Ribeiro Dos Santos G, Wang L, et al. Age-Specific mortality and immunity patterns of SARS-CoV-2. Nature 2021;590:140–5.

23 Tsankov BK, Aliare JM, Irvine MA, et al. Severe COVID-19 infection and pediatric comorbidities: a systematic review and meta-analysis. Int J Infect Dis 2021;103:246–56. –.

24 Gallo Marin B, Aghagoli G, Livine K, et al. Predictors of COVID-19 severity: a literature review. Rev Med Virol 2021;31:1–10.

25 Song W-M, Zhao J-Y, Zhang Q-Y, et al. COVID-19 and tuberculosis coinfection: an overview of case Reports/Case series and meta-analysis. Front Med 2021;8:657006.

26 Panda PK, Sharawat IK, Natarajan V, et al. COVID-19 treatment in children: a systematic review and meta-analysis. J Family Med Prim Care 2021;10:3292–302.

27 COVID-19 Treatment Guidelines Panel. Coronavirus disease 2019 (COVID-19) treatment guidelines. National Institutes of health. Available: https://www.covid19treatmentguidelines.nih.gov/ [Accessed 1 Apr 2022].

28 La Tessa A, Motisi MA, Marseglia GL, et al. Use of remdesivir in children with COVID-19 infection: a quick narrative review. Acta Biomed 2021;92:e2021524.

29 Austin S, Murthy S, Wunsch H, et al. Access to urban acute care services in high- vs. middle-income countries: an analysis of seven cities. Intensive Care Med 2014;40:342–52.

30 Murthy S, Ledigdowicz A, Adhilkar NKJ. Intensive care unit capacity in low-income countries: a systematic review. PLoS One 2015;10:e0116949.