Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Viral Pneumonia in Patients with Hematologic Malignancy or Hematopoietic Stem Cell Transplantation

Erik Vakil, MDa,*, Scott E. Evans, MDb,*,

KEYWORDS
- Viral pneumonia
- Hematologic malignancy
- Stem cell transplant
- Immunocompromised host pneumonia

KEY POINTS
- Viral pneumonias in patients with hematologic malignancies and recipients of hematopoietic stem cell transplantation cause significant morbidity and mortality.
- Advances in diagnostic techniques have enabled rapid identification of respiratory viral pathogens from upper and lower respiratory tract samples.
- Lymphopenia, myeloablative and T-cell–depleting chemotherapy, graft-versus-host disease, and other factors increase the risk of developing life-threatening viral pneumonia.
- Chest imaging is often nonspecific but may aid in diagnoses. Bronchoscopy with bronchoalveolar lavage is recommended in those at high risk for viral pneumonia who have new infiltrates on chest imaging.
- Early initiation of antiviral therapy in patients with influenza or respiratory syncytial virus is recommended.

POPULATION AND DEFINITIONS
This review focuses on common community-acquired respiratory viruses transmitted via aerosolized droplets or direct contact to patients with hematologic malignancy (HM) and hematopoietic stem cell transplant (HSCT) recipients. These viruses include influenza virus, respiratory syncytial virus (RSV), parainfluenza virus (PIV), human enterovirus (HEV), human rhinovirus (HRV), coronavirus (CoV), and human metapneumovirus (hMPV). Cytomegalovirus (CMV) has also been included, because CMV pneumonia plays an important role among immunocompromised patients. Other latent endogenous viruses associated with viral pneumonia in this population are less prevalent and are beyond the scope of this article.

Disclosures: E. Vakil declares no relevant conflicts of interest. S.E. Evans is an author of US patent 8,883,174 entitled, “Stimulation of Innate Resistance of the Lungs to Infection with Synthetic Ligands.” S.E. Evans owns stock in Pulmotect, which holds the commercial options on these patent disclosures.
a Division of Internal Medicine, Department of Pulmonary, Critical Care and Sleep Medicine, The University of Texas Health Sciences Center, 6431 Fannin Street, MSB 1.434, Houston, TX 77030, USA; b Division of Internal Medicine, Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1100, Houston, TX 77030, USA
* Corresponding author.
E-mail addresses: erik.vakil@uth.tmc.edu; seevans@mdanderson.org

Clin Chest Med 38 (2017) 97–111
http://dx.doi.org/10.1016/j.ccm.2016.11.002
0272-5231/17/© 2016 Elsevier Inc. All rights reserved.
No standard definition for viral pneumonia is accepted. A distinction is generally made between viral upper respiratory tract infection (URTI) and lower respiratory tract infection (LRTI). Viral LRTI includes viral tracheitis, bronchitis, bronchiolitis, and alveolitis. Viral pneumonia is typically understood to describe an infectious syndrome with (1) symptoms consistent with a respiratory infection (e.g., cough, rhinorrhea, dyspnea); (2) isolation of a viral pathogen known to cause respiratory infections from either nasal, oropharyngeal, tracheal, or bronchoalveolar secretions; and (3) new infiltrates on chest radiograph (CXR) or computed tomography (CT).

CMV pneumonia is considered separately, but similarly lacks a uniform definition. In a recent review of CMV infection and disease, Ljungman and colleagues defined CMV pneumonia in HSCT patients as “the presence of signs and/or symptoms of pulmonary disease combined with the detection of CMV in bronchoalveolar lavage fluid or lung tissue sample.” However, the updated International Consensus Guidelines on the Management of Cytomegalovirus in Solid-Organ Transplantation published in 2013 recommends histologic or immunohistochemical demonstration of tissue invasive disease, because bronchoalveolar lavage (BAL) culture or quantitative polymerase chain reaction (PCR) may not consistently correlate with disease. CMV infection is an umbrella term to describe detection of CMV in a blood sample. CMV antigenemia indicates blood samples positive for CMV antigens (usually pp65). CMV disease refers to tissue-invasive disease.

SCOPE OF THE PROBLEM

Pneumonia is a major cause of morbidity and mortality in patients with HM/HSCT. Bacteria and fungi account for most of the documented pathogens, but advances in DNA-based diagnostic tools highlight the larger role of respiratory viruses as a cause of pneumonia. A recent epidemiologic study of community-acquired pneumonia in US adults, irrespective of immune status, isolated viral pathogens in 23% of patients. Studies of patients with HM/HSCT suggest that viral URTIs progress to pneumonia 35% to 58% of the time, depending on the center, virus, underlying condition, and transmission patterns. The incidence of respiratory viral infections among HM/HSCT patients mirrors the incidence observed among immunocompetent patients, although the HM/HSCT population frequently demonstrates more severe disease. The incidence of CMV pneumonia in allogeneic HSCT recipients has decreased following widespread use of posttransplant chemoprophylaxis but remains around 1% to 8% in both the early and the posttransplant periods and remains low in patients with autologous HSCT and HM without transplant.

RISK FACTORS

Patient Risk Factors

A limited number of characteristics have been identified as risk factors for developing viral pneumonia in HM/HSCT patients. The best established is severe lymphopenia (absolute lymphocyte count <200 cells/μL). Chemaly and colleagues retrospectively found that 52% of patients with HM/HSCT with a viral URTI and severe lymphopenia progressed to viral pneumonia compared with 31% for patients with absolute lymphocyte count greater than 200 cells/μL. Studies by Martino and colleagues and Ljungman and colleagues prospectively corroborated these findings, and similar observations were made in smaller studies involving influenza, PIV, and HEV/HRV. A single-center prospective HSCT case-control autopsy study also identified lymphopenia as an independent risk factor for CMV pneumonia.

Patients who receive more intensely myeloablative conditioning regimens before HSCT face higher risk of progression to viral pneumonia, although this is controversial for CMV. Data from a large retrospective study of HSCT recipients and a smaller case-control study failed to detect a difference in the incidence of CMV disease following myeloablative therapy. Patients receiving T-cell-depleting chemotherapeutic agents (e.g., alemtuzumab, fludarabine, or antithymocyte globulin) appear to remain at elevated risk both during treatment and, in some cases, for years after treatment has been completed. The use of these agents appears especially important for the risk of developing CMV disease in HSCT recipients. Furthermore, because infection with viruses such as influenza and RSV can directly impair lymphocyte function in previously healthy patients, even moderate chemotherapy-induced lymphopenia and/or lymphocyte dysfunction may place HM/HSCT patients at elevated risk of viral pneumonia. In a large single-center study, 44% of HSCT patients with acute graft-versus-host disease (GVHD) developed viral pneumonia, compared with 22% among patients without GVHD. Similar findings are described for HSCT patients who develop CMV disease and other individual respiratory viruses.

CMV pneumonia principally arises from disease reactivation. HSCT recipients who are seropositive for CMV (R+) before transplant, irrespective of
donor status, are at the highest risk for reactivation of latent virus.33 Alternately, as seronegative recipients (R−) face limited reactivation risk, their rate of CMV pneumonia is lower than R+ recipients, even with seropositive donors (D+).38 Additional risk factors for the progression of viral URTI to viral pneumonia identified by multivariate analyses include age greater than 65 years,39 hypoalbuminemia,39 and cumulative dose of corticosteroids.20,37,40,41

Environmental Risk Factors

Exposure to viruses is prominently driven by seasonal variation in viral carriage. In general, influenza, RSV, and hMPV infections peak in late autumn and continue through winter. HRV demonstrates biphase peaks in autumn and spring. Parainfluenza rates are highest in spring and summer, although certain subtypes are present all year. Pandemics and localized outbreaks further increase risk.

Although most viruses are acquired through community or household contacts, nosocomial outbreaks also result in significant morbidity and mortality due to intensive exposures to the healthcare environment coupled with disease-related susceptibility to viral infections. Careful molecular typing of viral isolates has demonstrated that nosocomial outbreaks persist in the outpatient and inpatient settings despite established infection control practices.42–49

CLINICAL PRESENTATION

Rhinorrhea, sore throat, cough, and fever are characteristic of most respiratory viral infections and thus cannot be used to reliably distinguish viral URTI, viral pneumonia, or other infections.

The acute febrile illness that typically characterizes influenza infections in the general population is less consistently observed in HM/HSCT patients.18 In a study by Claus and colleagues,50 the Centers for Disease Control and Prevention (CDC) influenza-like illness criteria (fever ≥100°F with cough and/or sore throat) was applied to patients with solid organ transplant or HSCT who presented with influenza. They found a positive predictive value of only 50% and a negative predictive value of 82% using these criteria. Ferguson and colleagues51 applied a clinical prediction score using URTI and LRTI symptoms to HSCT recipients and found a positive predictive value of 28.7% and a negative predictive value of 84.5%. These studies suggest that symptoms common to viral infections in immunocompetent patients are moderately sensitive but poorly specific in patients with HM/HSCT.

In RSV pneumonia, fever, cough, dyspnea, and wheezing are common, whereas rhinorrhea and sore throat are less frequently observed.52 In a large retrospective study of patients with HSCT and PIV, 87% of patients presented with upper respiratory tract symptoms and 6% presented with both upper and lower respiratory tract symptoms.53 HRV infections usually exacerbate symptoms associated with an underlying chronic lung disease and include dyspnea, chest tightness, and wheezing.54–57 HEV presents frequently with cough, even when lower respiratory involvement is not suspected.58 Limited information is available for hMPV, but cough, wheeze, and fever predominate.36,59 Symptoms of CMV pneumonia are nonspecific but are usually consistent with a non-suppurative pneumonitis, including nonproductive cough, dyspnea, and hypoxia. The presence of fever is variable.60 Because CMV pneumonia may also be coincident with CMV viremia, symptoms of fever, malaise, arthralgia, cytopenias, and elevation of liver associated enzymes may also occur.

DIAGNOSTIC CONSIDERATIONS

Patients with HM/HSCT have many potential causes of respiratory symptoms, pulmonary infiltrates, and fevers. Thus, a high degree of suspicion is essential for diagnosing viral pneumonia in a patient with nonspecific symptoms. The clinician must remain vigilant in consideration of patient risk factors, time of year, and exposure history, and those suspected of having a viral infection should be promptly referred for laboratory and radiographic evaluation. Fig. 1 presents an algorithmic approach to patients presenting with syndromes suggestive of viral respiratory infections.

Virus Isolation

Viral nucleic acid amplification techniques using PCR, microarray, or DNA chip technologies have largely supplanted direct fluorescent antibody stains and conventional viral culture for the diagnosis of respiratory viruses. These techniques have been specifically validated in patients with HM/HSCT.61–63 Samples for nucleic acid assays are commonly obtained from the nasopharynx using sterile swabs or washings. Similar test performance is observed when analyzing sputum samples, tracheal aspirates, and BAL fluid.

Radiographic Characteristics

Although plain CXR can demonstrate lower respiratory tract involvement of viral infections, they
are nonspecific and have a poor negative predictive value, particularly in HM/HSCT patients. In a study by Logan and colleagues,64 radiologist-interpreted CXR predicted the correct type of infection in immunocompromised patients with pneumonia only 34% of the time. Heussel and colleagues65 compared CXR with chest CT in adult patients presenting with febrile neutropenia. Forty-eight percent of patients whose chest CT was suggestive of pneumonia were found to have a CXR that was interpreted as normal.

As shown in Fig. 2, the CT patterns most commonly observed in viral pneumonias are ground glass opacities (GGOs), nodules, interlobular septal thickening, bronchial wall thickening, and subtle changes in attenuation. Although it is widely presumed that these distinct radiographic patterns relate to unique histopathologic injury caused by different viruses, there is considerable histopathologic and radiographic overlap between respiratory viruses, rendering the findings nonspecific.66 Furthermore, patients with HM/HSCT and...
Fig. 2. Radiographic presentations of BAL-documented viral pneumonia. (A) Mucus plugging and consolidative opacities in a patient with hMPV and multiple myeloma following autologous HSCT. (B) Mucus plugging and GGOs in a patient with RSV and acute myelogenous leukemia following allogeneic HSCT. (C) Bronchial wall thickening and consolidative opacities in a patient with rhinovirus and chronic lymphocytic leukemia following allogeneic HSCT. (D) Multifocal GGO and micronodules in a patient with PIV and acute myelogenous leukemia receiving clofarabine. (E) Focal consolidative opacity in a patient with influenza A and untreated acute myelogenous leukemia. (F) Diffuse GGOs and micronodules in a patient with CMV pneumonitis and acute myelogenous leukemia following matched-unrelated donor allogeneic HSCT.
viral pneumonia frequently have coinfection with bacterial or fungal pathogens, and their radiographic patterns may be further confounded by noninfectious conditions.

Influenza virus is associated with bronchial thickening, mucus plugging of the terminal bronchioles, GGOs, and nodules that may evolve into confluent opacities.67,68 Severe influenza may be associated with secondary infections and/or the acute respiratory distress syndrome, potentially presenting with consolidative opacities. In a case series of adult patients with HM/HSCT with RSV pneumonia, the most common patterns were centrilobular subcentimeter nodules, airspace consolidation, GGOs, and bronchial wall thickening.69 PIV manifests most often with multiple peribronchial subcentimeter nodules and GGOs.70 The predominant pattern in hMPV is a mixture of bilateral GGOs and subcentimeter nodular opacities without a predilection for lung zones.71 Little data are available for HRV viral pneumonia, but bilateral diffuse GGOs are described.72 CMV may present with a miliary pattern or a diffuse interstitial pneumonitis with GGOs, small centrilobular nodules, and air space opacities.73–75

Bronchoscopy

In order to assess progression to the lower respiratory tract and to detect additional pathogens, BAL is frequently recommended in HM/HSCT patients with respiratory symptoms and identified virus from an upper respiratory sample, particularly in the setting of an abnormal CXR or CT. A meta-analysis of BAL and lung biopsy in patients with cancer and HSCT demonstrated an overall yield of 43% for any infectious cause by BAL, with 13% of all samples containing identifiable virus.76 The diagnostic yield of BAL is reduced substantially in HSCT patients if bronchoscopy is delayed more than 4 days after presentation for any infectious cause.77

BAL diagnostic performance in CMV pneumonia depends on the analytical modality chosen. Shelling has high sensitivity but poor specificity for diagnosing tissue-invasive disease.78 Cytoplogic examination with demonstration of CMV intranuclear inclusions is highly specific but poorly sensitive.79 PCR is highly sensitive and specific if the pretest clinical suspicion for CMV pneumonia is high.80–82 In patients without respiratory symptoms, PCR-based results may result in false positives because pulmonary shedding of virus is common in patients with CMV infection without tissue-invasive disease.83,84 In theory, false positives could be mitigated with quantitative PCR techniques, but a viral DNA threshold has not been established.85–87

The prognostic value of isolating virus from the lower respiratory tract by BAL has been the subject of recent investigation. Seo and colleagues88 found that HSCT patients with new pulmonary infiltrates and BAL-detected PIV had worse 90-day survival than did patients with new infiltrates and PIV detected only in the upper respiratory tract (45% vs 85%). Alternatively, a study by Campbell and colleagues89 evaluated the prognostic value of quantitative PCR in BAL samples but found high viral copy numbers of PIV was not a predictor of outcome.

The role of lung biopsy, either surgical or endoscopic, is unclear. Although lung biopsy is superior to BAL in diagnosing noninfectious lung abnormality, it is associated with significant complications and procedure-related mortality.76 High clinical suspicion for a diagnosis other than viral pneumonia would be needed to justify tissue biopsy in HM/HSCT patients with new pulmonary infiltrates.

PREVENTION AND TREATMENT

Prevention

Three main principles of preventing respiratory virus infections in HM/HSCT patients are infection control, chemoprophylaxis, and vaccination. Given the high attendant mortality and the variable efficacy of antiviral treatments, effective prevention likely offers the greatest potential for a mortality benefit.

Standard infection control practices should be instituted for all patients with suspected respiratory viral infection. These infection control practices include the use of personal protective equipment, patient isolation, and frequent hand hygiene. A systemic review demonstrated that these practices are a low, cost-effective way of reducing transmission.90 The American Society for Blood and Marrow Transplant published extensive guidelines on infection prevention in transplant recipients.91 Additional measures include early and aggressive testing for respiratory viral infections with rapid diagnostic methods, reverse isolation with face mask, and strict policies for family members and health care staff with symptoms of a respiratory infection.

Despite these practices, nosocomial transmission remains high. A likely contributor is noncompliance with infection control practices by staff members, visitors, and patients. Maziarz and colleagues48 described successfully curtailing a nosocomial outbreak of PIV in the outpatient setting by establishing a rigorous 7-step protocol. During an RSV outbreak, Lehners and
patients were diagnosed with influenza. After mivir was provided to all residents after several denial facility while undergoing treatment, oseltamivir (oral), zanamivir (inhaled), and peramivir (intravenous) have activity against influenza A and B virus. Given high levels of resistance (in some series reported as >99%) to M2 inhibitors in influenza A H1N1 and H5N3, the CDC now recommends empiric therapy with an NA inhibitor in high-risk patients. All patients with HM/HSCT are considered high risk, and NA inhibitors should be started without delay in those with confirmed or suspected influenza infection, because this confers a mortality benefit in HM and HSCT in both inpatient and outpatient settings. For most studies, the average duration of NA therapy was 5 days; however, the optimal duration is unknown because patients with HM/HSCT frequently demonstrate prolonged viral shedding. Aerosolized ribavirin, delivered via facemask in a scavenging tent, is approved for the treatment of RSV infection in children and is used frequently in high-risk adults. Data supporting its use in adults with HM/HSCT are mainly from retrospective studies that demonstrate improved mortality but no reduction in the progression to pneumonia. Combination therapy with intravenous immunoglobulin (IVIG) or PVZ also seems to reduce mortality, but similarly does not clearly reduce progression to pneumonia. Duration of therapy is usually 5 to 7 days but may be longer in severe disease. Aerosolized ribavirin can cause bronchospasm in patients with asthma or chronic obstructive pulmonary disease (COPD). It is also associated with high treatment cost, especially when combined with IVIG or PVZ. Compassionate use of ribavirin and IVIG in patients with PIV and hMPV pneumonia has been described, but no mortality benefit or reduction in the rate of progression to pneumonia was demonstrated.

CMV pneumonia is generally treated with intravenous ganciclovir or foscarnet in combination with IVIG or CMV-specific immunoglobulin (CMV-Ig). with an intensive induction phase followed by maintenance therapy. Duration of

Approved Therapies

There are 2 classes of antiviral agents approved for the treatment of influenza. M2 proton channel inhibitors amantadine and rimantadine have antiviral activity against influenza A virus. NA inhibitors oseltamivir (oral), zanamivir (inhaled), and peramivir (intravenous) have activity against influenza A and B virus. Given high levels of resistance (in some series reported as >99%) to M2 inhibitors in influenza A H1N1 and H5N3, the CDC now recommends empiric therapy with an NA inhibitor in high-risk patients. All patients with HM/HSCT are considered high risk, and NA inhibitors should be started without delay in those with confirmed or suspected influenza infection, because this confers a mortality benefit in HM and HSCT in both inpatient and outpatient settings. For most studies, the average duration of NA therapy was 5 days; however, the optimal duration is unknown because patients with HM/HSCT frequently demonstrate prolonged viral shedding. Aerosolized ribavirin, delivered via facemask in a scavenging tent, is approved for the treatment of RSV infection in children and is used frequently in high-risk adults. Data supporting its use in adults with HM/HSCT are mainly from retrospective studies that demonstrate improved mortality but no reduction in the progression to pneumonia. Combination therapy with intravenous immunoglobulin (IVIG) or PVZ also seems to reduce mortality, but similarly does not clearly reduce progression to pneumonia. Duration of therapy is usually 5 to 7 days but may be longer in severe disease. Aerosolized ribavirin can cause bronchospasm in patients with asthma or chronic obstructive pulmonary disease (COPD). It is also associated with high treatment cost, especially when combined with IVIG or PVZ. Compassionate use of ribavirin and IVIG in patients with PIV and hMPV pneumonia has been described, but no mortality benefit or reduction in the rate of progression to pneumonia was demonstrated.
treatment depends on patient risk factors, viral burden, response to treatment, and institutional preference. Although generally considered the first-line agent, treatment with ganciclovir is limited by myelosuppression and is considered contraindicated in the pre-engraftment phase of transplant and in neutropenic patients. Ganciclovir resistance is also a significant concern. Foscarnet use is limited by nephrotoxicity. Combination therapy has been described in CMV-antigenemia and may play a role in select cases. The oral valine esters valganciclovir and valacyclovir are not recommended. No randomized trials comparing antiviral therapy with or without immunoglobulins are available, and the benefit of immunoglobulins is debatable. However, given the high mortality associated with CMV pneumonia and the limited toxicity profile of IVG and CMV-Ig, combination therapy is favored. The choice of immunoglobulin is based on cost, availability, and institutional preference.

Future Therapies

Several novel therapies are under development for a variety of respiratory viruses in HM/HSCT patients. Table 1 presents an annotated list of promising antiviral therapies.

Coinfection and Underlying Disease

Rates of bacterial, fungal, and viral copathogen infection are high in HM/HSCT patients with viral infections. Exact rates are difficult to estimate due to confounding elements of related studies, but when identified, prompt treatment of copathogens is imperative. Patients with HM/HSCT and comorbid

Name	Target	Mechanism of Action	Stage
DAS181	Parainfluenza	Sialidase fusion protein that enzymatically cleaves sialic acids on respiratory epithelium preventing viral binding	Phase II ongoing to determine efficacy in immunocompromised patients (NCT01644877)
BCX2798	Parainfluenza	Selective inhibitors of hemagglutinin-NA glycoprotein	Preclinical animals studies completed [140, 141]
BCX2855	Parainfluenza	Selective inhibitors of hemagglutinin-NA glycoprotein	
PUL-042	Broad antiviral	Toll-like receptor–mediated stimulation of lung epithelial cells to activate antiviral responses in target cells of respiratory viruses	Phase I completed in health volunteers (NCT02124278); phase II in HSCT recipients planned
Presatovir	RSV	Small molecule inhibitor of RSV F protein preventing viral-envelope fusion with host-cell membrane	Phase II ongoing to determine efficacy in HSCT recipients (NCT02254408, NCT02254421)
ALN-RSVO1	RSV	Small interfering RNA directed against nucleocapsid gene required for replication	Phase IIb completed for bronchiolitis obliterans (BO) in lung transplant recipients [142]
Maribavir	CMV	Selective inhibitor of viral encapsidation and nuclear egress of viral particles from infected cells through binding of CMV protein kinase UL97	Phase III completed for prophylaxis in HSCT recipients [143]
Brincidofovir	CMV	Lipid conjugate prodrug of cidofovir, which is a selective inhibitor of viral DNA polymerase	Phase II completed for prophylaxis in HSCT recipients [144]; Phase III ongoing for prophylaxis in HSCT recipients (NCT01769170)
Letermovir	CMV	Selective inhibitor of viral terminase subunit pUL56	Phase II completed for prophylaxis in HSCT recipients [145]; Phase III ongoing for prophylaxis in HSCT recipients (NCT02137772)
underlying lung disease, particularly asthma and COPD, are at increased risk of respiratory failure, especially with HRV infection. Appropriate therapy for bronchospasm and airway inflammation should be part of the treatment algorithm.

PROGNOSIS

There is significant heterogeneity reported for studies of mortality caused by respiratory viral infections in HM/HSCT patients, and most are based on single-center experience. Published mortalities for influenza pneumonia vary depending on the center, use of NA inhibitors, and influenza strain. Data from a large cancer center during the 1991 to 1992 influenza A epidemic demonstrated a 17% mortality from influenza A pneumonia in HSCT patients who had not received NA inhibitors or influenza prophylaxis. Prospective data from several European centers between 1997 and 1998 demonstrated an all-cause mortality in patients with HSCT and influenza of 25%. In a study with early initiation of oseltamivir in HSCT patients with influenza A or B in Brazil, mortality was 0% in 39 patients studied. During the 2009 H1N1 outbreak, a prospective survey of HSCT recipients at several European centers reported an H1N1-attributable mortality of 6.3%. Mortality from RSV pneumonia is high, with rates reported between 29% and 88%. Mortality from HRV-associated pneumonia is commonly associated with coinfection and is between 38% and 83%. Overall mortality in patients with PIV who developed pneumonia in 2 large retrospective studies was 17% and 35% at 30 days. Very limited data are available for hMPV but mortalities of 0%, 12.5%, and 43% have been reported. Mortality from HEV and nonepidemic CoV appears low, but more data are needed. Overall 6-month mortality from CMV-pneumonitis in patients with HSCT was 30% in a large transplant center.

Respiratory virus infection may also result in progressive loss of lung function, particularly in patients with HSCT. Erard and colleagues retrospectively studied 132 patients with HSCT over a 12-year period and found that 58% of patients developed airflow limitations that did not improve following resolution of their infection. Viral infections were also independently associated with bronchiolitis obliterans syndrome and idiopathic pulmonary syndrome in HSCT.

Viral infections may also impact graft function. Toupin and colleagues described 3 patients with HSCT and severe PIV pneumonia who developed engraftment failure. Grewal and colleagues described 2 patients with Hurler syndrome who underwent HSCT that had secondary marrow failure coincident with PIV infection. CMV has also been shown to alter gene expression in the stromal environment of bone marrow transplant recipient and inhibit engraftment.

SUMMARY

Respiratory viruses are increasingly recognized as a cause of pneumonia in patients with HM/HSCT and are associated with notable morbidity. Modern molecular diagnostic tools coupled with a high index of suspicion can assist identification of patients with viral pneumonia. CXR or CT scans should be considered in all patients with symptoms and signs of lower respiratory tract involvement, and referral to bronchoscopy should not be delayed. Prompt empiric antivirals followed by tailored therapy should be administered when treatments are available, and careful management of copathogens and comorbid pulmonary disease is critical. Patients with HM/HSCT should receive yearly influenza vaccination. Patients, families, and health care workers should be routinely educated on hand hygiene and isolation practices while institutional policies for infection control should be strictly enforced. Much remains under-studied and large prospective studies are needed to improve the understanding of the role respiratory virus play in patients with HM and HSCT.

REFERENCES

1. Ljungman P, Griffiths P, Paya C. Definitions of cytomegalovirus infection and disease in transplant recipients. Clin Infect Dis 2002;34:1094–7.
2. Ljungman P. Respiratory virus infections in bone marrow transplant recipients: the Fred Hutchinson Cancer Research Center experience. Am J Med 1997;102:27–30.
3. Jain S, Williams DJ, Arnold SR, et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med 2015;372:835–45.
4. Whimbey E, Champlin RE, Couch RB, et al. Community respiratory virus infections among hospitalized adult bone marrow transplant recipients. Clin Infect Dis 1996;22:778–82.
5. Ljungman P. Respiratory virus infections in bone marrow transplant recipients: the European perspective. Am J Med 1997;102:44–7.
6. Bowden RA. Respiratory virus infections after marrow transplant: the Fred Hutchinson Cancer Research Center experience. Am J Med 1997;102:27–30.
7. Martino R, Porras RP, Rabella N, et al. Prospective study of the incidence, clinical features, and outcome of symptomatic upper and lower respiratory tract...
infections by respiratory viruses in adult recipients of hematopoietic stem cell transplants for hematologic malignancies. Biol Blood Marrow Transplant 2005;11:781–96.

8. Chemaly RF, Ghosh S, Bodey GP, et al. Respiratory viral infections in adults with hematologic malignancies and human stem cell transplantation recipients: a retrospective study at a major cancer center. Medicine 2006;85:278–87.

9. Boeckh M. The challenge of respiratory virus infections in hematopoietic cell transplant recipients. Br J Haematol 2008;143:455–67.

10. Boeckh M, Nichols WG, Papanicolaou G, et al. Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies. Biol Blood Marrow Transplant 2003;9:543–58.

11. Boeckh M, Leisenring W, Riddell SR, et al. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood 2003;101:407–14.

12. Ljungman P, Perez-Bercoff L, Jonsson J, et al. Risk factors for the development of cytomegalovirus disease after allogeneic stem cell transplantation. Haematologica 2006;91:78–83.

13. Ljungman P, Biron P, Bosi A, et al. Cytomegalovirus interstitial pneumonia in autologous bone marrow transplant recipients. Infectious Disease Working Party of the European Group for Bone Marrow Transplantation. Bone Marrow Transplant 1994;13:209–12.

14. Fassas AB, Bolanos-Meade J, Buddharaju LN, et al. Cytomegalovirus infection and non-neutropenic fever after autologous stem cell transplantation: high rates of reactivation in patients with multiple myeloma and lymphoma. Br J Haematol 2001;112:237–41.

15. Marchesi F, Pimpinelli F, Gumenyuk S, et al. Cytomegalovirus reactivation after autologous stem cell transplantation in myeloma and lymphoma patients: a single-center study. World J Transplant 2015;5:129–36.

16. Chang H, Tang TC, Hung YS, et al. Cytomegalovirus infection in non-transplant patients with hematologic neoplasms: a case series. Chang Gung Med J 2011;34:65–74.

17. Ljungman P, Ward KN, Crooks BN, et al. Respiratory virus infections after stem cell transplantation: a prospective study from the infectious diseases working party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 2001;28:479–84.

18. Nichols WG, Guthrie KA, Corey L, et al. Influenza infections after hematopoietic stem cell transplantation: risk factors, mortality, and the effect of antiviral therapy. Clin Infect Dis 2004;39:1300–6.

19. Marcolini JA, Malik S, Suki D, et al. Respiratory disease due to parainfluenza virus in adult leukemia patients. Eur J Clin Microbiol Infect Dis 2003;22:79–84.

20. Chemaly RF, Hanmod SS, Rathod DB, et al. The characteristics and outcomes of parainfluenza virus infections in 200 patients with leukemia or recipients of hematopoietic stem cell transplantation. Blood 2012;119:2738–45.

21. Ferguson PE, Gilroy NM, Faux CE, et al. Human rhinovirus C in adult haematopoietic stem cell transplant recipients with respiratory illness. J Clin Virol 2013;56:339–43.

22. Torres HA, Aguilera E, Safdar A, et al. Fatal cytomegalovirus pneumonia in patients with haematological malignancies: an autopsy-based case-control study. Clin Microbiol Infect 2008;14:1160–6.

23. Jungheinss C, Boeckh M, Carter RA, et al. Incidence and outcome of cytomegalovirus infections following nonmyeloablative compared with myeloablative allogeneic stem cell transplantation, a matched control study. Blood 2002;99:1978–85.

24. Nakamene H, Kirby KA, Sandmaier BM, et al. Effect of conditioning regimen intensity on CMV infection in allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2009;15:694–703.

25. Schiffer JT, Kirby K, Sandmaier B, et al. Timing and severity of community acquired respiratory virus infections after myeloablative versus nonmyeloablative hematopoietic stem cell transplantation. Haematologica 2009;94(8):1101–8.

26. Chakrabarti S, Avivi I, Mackinnon S, et al. Respiratory virus infections in transplant recipients after reduced-intensity conditioning with Campath-1H: high incidence but low mortality. Br J Haematol 2002;119:1125–32.

27. Dodero A, Carrabba M, Milani R, et al. Reduced intensity conditioning containing low-dose alemtuzumab before allogeneic peripheral blood stem cell transplantation: graft-versus-host disease is decreased but T-cell reconstitution is delayed. Exp Hematol 2005;33:920–7.

28. van Burik J-AH, Carter SL, Freifeld AG, et al. Higher risk of cytomegalovirus and aspergillosis infections in recipients of T cell-depleted unrelated bone marrow: analysis of infectious complications in patients treated with T cell depletion versus immunosuppressive therapy to prevent graft-versus-host disease. Biol Blood Marrow Transplant 2007;13:1487–98.

29. Chakrabarti S, Mackinnon S, Chopra R, et al. High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of Campath-1H in delaying immune reconstitution. Blood 2002;99:4357–63.

30. Welliver TP, Garofalo RP, Hosakote Y, et al. Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is
characterized by the absence of pulmonary cytotoxic lymphocyte responses. J Infect Dis 2007; 195:1126–36.

31. Asano-Mori Y, Kanda Y, Oshima K, et al. Clinical features of late cytomegalovirus infection after hematopoietic stem cell transplantation. Int J Hematol 2008;87:310–8.

32. Miller W, Flynn P, McCullough J, et al. Cytomegalovirus infection after bone marrow transplantation: an association with acute graft-v-host disease. Blood 1986;67:1162–7.

33. George B, Pati N, Gilroy N, et al. Pre-transplant cytomegalovirus (CMV) serostatus remains the most important determinant of CMV reactivation after allogeneic hematopoietic stem cell transplantation in the era of surveillance and preemptive therapy. Transpl Infect Dis 2010;12:322–9.

34. Ustun C, Siabý J, Shanley RM, et al. The clinical impact of coronavirus infection in patients with hematologic malignancies and hematopoietic stem cell transplant recipients. J Clin Virol 2015;68:1–5.

35. Hakki M, Rattray RM, Press RD. The clinical impact of coronavirus infection in patients with hematologic malignancies and hematopoietic stem cell transplant recipients. J Clin Virol 2012;18:1580–8.

36. Nichols WG, Gooley T, Boeckh M. Prolonged cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation: risk factors, management, mortality, and changes over time. Biol Blood Marrow Transplant 2012;18:141–8.

37. Pergam SA, Xie H, Sandhu R, et al. Efficiency and risk factors for CMV transmission in seronegative hematopoietic stem cell recipients. Biol Blood Marrow Transplant 2012;18:1391–400.

38. Jacobs S, Soave R, Shore T, et al. Human rhinovirus infections of the lower respiratory tract in hematopoietic stem cell transplant recipients. Transpl Infect Dis 2013;15:474–86.

39. Nichols WG, Gooley T, Boeckh M. Community-acquired respiratory syncytial virus and parainfluenza virus infections after hematopoietic stem cell transplantation: the Fred Hutchinson Cancer Research Center experience. Biol Blood Marrow Transplant 2001;7:115–55.

40. Kim Y-J, Guthrie KA, Waghmare A, et al. Respiratory syncytial virus in hematopoietic cell transplant recipients: factors determining progression to lower respiratory tract disease. J Infect Dis 2014; 209:1195–204.

41. Jalal H, Bibby DF, Bennett J, et al. Molecular investigations of an outbreak of parainfluenza virus type 3 and respiratory syncytial virus infections in a hematologic unit. J Clin Microbiol 2007;45:1690–6.

42. Lee A, Bibby D, Oakervee H, et al. Nosocomial transmission of parainfluenza 3 virus in hematologic patients characterized by molecular epidemiology. Transpl Infect Dis 2011;13:433–7.

43. Harvala H, Gaunt E, McIntyre C, et al. Epidemiology and clinical characteristics of parainfluenza virus 3 outbreak in a Haemato-oncology unit. J Infect Dis 2012;65:246–54.

44. Lehners N, Schnitzler P, Geis S, et al. Risk factors and containment of respiratory syncytial virus outbreak in a hematology and transplant unit. Bone Marrow Transplant 2013;48:1548–53.

45. Nichols WG, Erdman DD, Han A, et al. Prophylactic and preemptive antiviral therapy, and effect on transplant outcome. Blood 1986;67:1162–7.

46. Chopra IJ, Desai A, Amalfitano A, et al. Treatment of herpes zoster in hematopoietic cell transplant recipients: a case for multiplex respiratory virus PCR testing. Clin Transplant 2015;29(10):938–43.

47. Ferguson P, Gilroy N, Sloots T, et al. Control of an outbreak of human parainfluenza virus 3 in hematopoietic stem cell transplant recipients. Biol Blood Marrow Transplant 2010;16:192–8.

48. Chu HY, Englund JA, Podczervinski S, et al. Nosocomial transmission of respiratory syncytial virus in an outpatient cancer center. Biol Blood Marrow Transplant 2014;20:844–51.

49. Ebbert JO, Limper AH. Respiratory syncytial virus in immunocompromised adults: clinical features and outcome. Respiration 2005;72:263–9.

50. Nichols WG, Erdman DD, Peret TC, et al. Outbreak of human parainfluenza virus 3 infections in a hematopoietic stem cell transplant population. J Infect Dis 2001;184:1093–7.

51. Maziarz RT, Sridharan P, Slater S, et al. Control of an outbreak of human parainfluenza virus 3 in hematopoietic stem cell transplant recipients. Biol Blood Marrow Transplant 2010;16:192–8.

52. Folkerts G, Busse WW, Nijkamp FP, et al. Virus-induced airway hyperresponsiveness and asthma. Am J Respir Crit Care Med 1998;157:1708–20.

53. Nicholson KG, Kent J, Ireland DC. Respiratory viruses and exacerbations of asthma in adults. BMJ 1993;307:982–6.

54. Nicholson KG, Kent J, Hammersley V, et al. Risk factors for lower respiratory complications of
rhinovirus infections in elderly people living in the community: prospective cohort study. BMJ 1996; 313:1119–23.

57. Papadopoulos NG, Bates PJ, Bardin PG, et al. Rhinoviruses infect the lower airways. J Infect Dis 2000;181:1875–84.

58. Waghmare A, Pergam SA, Jerome KR, et al. Clinical disease due to enterovirus D68 in adult hematologic malignancy patients and hematopoietic stem cell transplant recipients. Blood 2015;125:1724–9.

59. Debur M, Vidal L, Stroparo E, et al. Human metapneumovirus infection in hematopoietic stem cell transplant recipients. Transpl Infect Dis 2010;12:173–9.

60. Travi G, Pergam SA. Cytomegalovirus pneumonia in hematopoietic stem cell recipients. J Intensive Care Med 2014;29:200–12.

61. van Elden LJ, van Kraaij MGJ, Nijhuis M, et al. Polymerase chain reaction is more sensitive than viral culture and antigen testing for the detection of respiratory viruses in adults with hematological cancer and pneumonia. Clin Infect Dis 2002;34:177–83.

62. Murali S, Langston AA, Nolte FS, et al. Detection of respiratory viruses with a multiplex polymerase chain reaction assay (MultiCode-PLx Respiratory Virus Panel) in patients with hematologic malignancies. Leuk Lymphoma 2009;50:619–24.

63. van Kraaij MGJ, van Elden LJ, van Loon AM, et al. Frequent detection of respiratory viruses in adult recipients of stem cell transplants with the use of real-time polymerase chain reaction, compared with viral culture. Clin Infect Dis 2005;40:662–9.

64. Logan PM, Primack SL, Staples C, et al. Acute lung disease in the immunocompromised host: diagnostic accuracy of the chest radiograph. Chest 1996;108:1283–7.

65. Heussel CP, Kauczor HU, Heussel G, et al. Early detection of pneumonia in febrile neutropenic patients: use of thin-section CT. AJR Am J Roentgenol 1997;169:1347–53.

66. Franquet T. Imaging of pulmonary viral pneumonia. Radiology 2011;260(1):18–23.

67. Oikonomou A, Muller NL, Nantel S. Radiographic and high-resolution CT findings of influenza virus pneumonia in patients with hematologic malignancies. AJR Am J Roentgenol 2003;181:507–11.

68. Kim EA, Lee KS, Primack SL, et al. Viral pneumonias in adults: radiologic and pathologic findings. Radiographics 2002;22:S137–49.

69. Gasparetto EL, Escuissato DL, Marchiori E, et al. High-resolution CT findings of respiratory syncytial virus pneumonia after bone marrow transplantation. Am J Roentgenol 2004;182:1133–7.

70. Ferguson PE, Sorrell TC, Bradstock KF, et al. Parainfluenza virus type 3 pneumonia in bone marrow transplant recipients: multiple small nodules in high-resolution lung computed tomography scans provide a radiological clue to diagnosis. Clin Infect Dis 2009;48:905–9.

71. Franquet T, Rodriguez S, Martino R, et al. Human metapneumovirus infection in hematopoietic stem cell transplant recipients: high-resolution computed tomography findings. J Comput Assist Tomogr 2005;29:223–7.

72. Gutman JA, Peck AJ, Kuypers J, et al. Rhinovirus as a cause of fatal lower respiratory tract infection in adult stem cell transplantation patients: a report of two cases. Bone Marrow Transplant 2007;40:809–11.

73. Beschorner WE, Hutchins GM, Burns WH, et al. Cytomegalovirus pneumonia in bone marrow transplant recipients: miliary and diffuse patterns. Am Rev Respir Dis 1980;122:107–14.

74. Gasparetto EL, Ono SE, Escuissato D, et al. Cytomegalovirus pneumonia after bone marrow transplantation: high resolution CT findings. Br J Radiol 2004;77:724–7.

75. Franquet T, Lee KS, Muller NL. Thin-section CT findings in 32 immunocompromised patients with cytomegalovirus pneumonia who do not have AIDS. Am J Roentgenol 2003;181:1059–63.

76. Chellapandian D, Lehrnbecher T, Phillips B, et al. Bronchoalveolar lavage and lung biopsy in patients with cancer and hematopoietic stem-cell transplantation recipients: a systematic review and meta-analysis. J Clin Oncol 2015;33:501–9.

77. Shannon VR, Andersson BS, Lei X, et al. Utility of early versus late fiberoptic bronchoscopy in the evaluation of new pulmonary infiltrates following hematopoietic stem cell transplantation. Bone Marrow Transplant 2010;45:647–55.

78. Tamm M, Traenkle P, Soler M, et al. Pulmonary cytomegalovirus infection in immunocompromised patients. Chest 2001;119:838–43.

79. Paradis IL, Grgurich WF, Dummer JS, et al. Rapid detection of cytomegalovirus pneumonia from lung lavage cells. Am Rev Respir Dis 1980;122:107–14.

80. Bewig B, Haacke TC, Tiroke A, et al. Detection of CMV pneumonitis after lung transplantation using PCR of DNA from bronchoalveolar lavage cells. Respiration 2000;67:166–72.

81. Liesnard C, De Wit L, Motte S, et al. Rapid diagnosis of cytomegalovirus lung infection by DNA amplification in bronchoalveolar lavages. Mol Cell Probes 1994;8:273–83.

82. Honda J, Yonemitsu J, Kitajima H, et al. Clinical utility of capillary polymerase chain reaction for diagnosis of Cytomegalovirus pneumonia. Scand J Infect Dis 2001;33:702–5.

83. Schmidt GM, Horak DA, Niland JC, et al. A randomized, controlled trial of prophylactic ganciclovir for cytomegalovirus pulmonary infection in recipients of allogeneic bone marrow transplants;
the City of Hope-Stanford-Syntex CMV Study Group. N Engl J Med 1991;324:1005–11.

84. Lee HY, Choi JY, Lee HY, et al. Clinical utility of quantitative cytomegalovirus detection in bronchial washing fluid in patients with hematologic malignancies. Eur Respir J 2015;46(59):PA572.

85. Boivin G, Olson CA, Quirk MR, et al. Quantitation of cytomegalovirus DNA and characterization of viral gene expression in bronchoalveolar cells of infected patients with and without pneumonitis. J Infect Dis 1996;173:1304–12.

86. Westall GP, Michaelides A, Williams TJ, et al. Human cytomegalovirus load in plasma and bronchoalveolar lavage fluid: a longitudinal study of lung transplant recipients. J Infect Dis 2004;190:1076–83.

87. Chemaly RF, Yen-Lieberman B, Chapman J, et al. Parainfluenza virus lower respiratory tract disease after hematopoietic cell transplant: viral detection in the lung predicts outcome. Clin Infect Dis 2014;58:1357–68.

88. Campbell AP, Chien JW, Kuypers J, et al. Respiratory virus pneumonia after hematopoietic cell transplantation (HCT): associations between viral load in bronchoalveolar lavage in lung transplant recipients. Am J Transplant 2005;5:544–8.

89. Seo S, Xie H, Campbell AP, et al. Parainfluenza virus lower respiratory tract disease after hematopoietic cell transplant: viral detection in the lung predicts outcome. Clin Infect Dis 2014;58:1357–68.

90. Jefferson T, Foxlee R, Mar CD, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses: systematic review. BMJ 2009;339:b3675.

91. Tomblyn M, Chiller T, Einsele H, et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant 2009;15:1143–238.

92. Grohskopf LA, Sokolow LZ, Olsen SJ, et al. Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices, United States, 2015–16 influenza season. Am J Transplant 2015;15(10):2767–75.

93. Engelhard D, Nagler A, Hardan I, et al. Antibody response to a two-dose regimen of influenza vaccine in allogeneic T-cell-depleted and autologous BMT recipients. Bone Marrow Transplant 1993;11:1–5.

94. Avetisyan G, Aschan J, Hassan M, et al. Evaluation of immune responses to seasonal influenza vaccination in healthy volunteers and in patients after stem cell transplantation. Transplantation 2008;86:257–63.

95. Machado CM, Cardoso MR, da Rocha IF, et al. The benefit of influenza vaccination after bone marrow transplantation. Bone Marrow Transplant 2005;36:897–900.

96. Karras NA, Weeres M, Sessions W, et al. A randomized trial of one versus two doses of influenza vaccine after allogeneic transplantation. Biol Blood Marrow Transplant 2013;19:109–16.

97. Mazza JJ, Yale SH, Arrowood JR, et al. Efficacy of the influenza vaccine in patients with malignant lymphoma. Clin Med Res 2005;3:214–20.

98. Lo W, Whimbey E, Elting L, et al. Antibody response to a two-dose influenza vaccine regimen in adult lymphoma patients on chemotherapy. Eur J Clin Microbiol Infect Dis 1993;12:778–82.

99. Ljungman P, Nahi H, Linde A. Vaccination of patients with haematological malignancies with one or two doses of influenza vaccine: a randomised study. Br J Haematol 2005;130:96–8.

100. van der Velden AM, Mulder AH, Hartkamp A, et al. Influenza virus vaccination and booster in B-cell chronic lymphocytic leukaemia patients. Eur J Intern Med 2001;12:420–4.

101. Higa F, Tateyama M, Tomishima M, et al. Role of neuraminidase inhibitor chemoprophylaxis in controlling nosocomial influenza: an observational study. Influenza Other Respir Viruses 2012;6:299–303.

102. Vu D, Peck AJ, Nichols WG, et al. Safety and tolerability of oseltamivir prophylaxis in hematopoietic stem cell transplant recipients: a retrospective case-control study. Clin Infect Dis 2007;45:187–93.

103. Kassis C, Champlin RE, Hachem RY, et al. Detection and control of a nosocomial respiratory syncytial virus outbreak in a stem cell transplantation unit: the role of palivizumab. Biol Blood Marrow Transplant 2010;16:1265–71.

104. Cleaver JO, You D, Michaud DR, et al. Lung epithelial cells are essential effectors of inducible resistance to pneumonia. Mucosal Immunol 2014;7:78–88.

105. Duggan JM, You D, Cleaver JO, et al. Synergistic interactions of TLR2/6 and TLR9 induce a high level of resistance to lung infection in mice. J Immunol 2011;186:5916–26.

106. Shirey KA, Lai W, Scott AJ, et al. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 2013;497:498–502.

107. Wu CC, Hayashi T, Takabayashi K, et al. Immuno-therapeutic activity of a conjugate of a Toll-like receptor 7 ligand. Proc Natl Acad Sci U S A 2007;104:3990–5.

108. Wong JP, Christopher ME, Viswanathan S, et al. Activation of toll-like receptor signaling pathway for protection against influenza virus infection. Vaccine 2009;27:3481–3.

109. Fiore AE, Fry A, Shay D, et al. Antiviral agents for the treatment and chemoprophylaxis of influenza: recommendations of the advisory committee on immunization practices (ACIP). Atlanta (GA):
110. Chemaly RF, Torres HA, Aguilera EA, et al. Neuraminidase inhibitors improve outcome of patients with leukemia and influenza: an observational study. Clin Infect Dis 2007;44:964–7.

111. Machado CM, Boas LS, Mendes AV, et al. Use of Oseltamivir to control influenza complications after bone marrow transplantation. Bone Marrow Transplant 2004;34:111–4.

112. Khanna N, Steffen I, Studt JD, et al. Outcome of influenza infections in outpatients after allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 2009;11:100–5.

113. McColl MD, Corser RB, Bremner J, et al. Respiratory syncytial virus infection in adult BMT recipients: effective therapy with short duration nebulised ribavirin. Bone Marrow Transplant 1998;21:423–5.

114. Torres HA, Aguilera EA, Mattiuzzi GN, et al. Characteristics and outcome of respiratory syncytial virus infection in patients with leukemia. Haematologica 2007;92:1216–23.

115. Ghosh S, Champlin RE, Englund J, et al. Respiratory syncytial virus upper respiratory tract illnesses in adult blood and marrow transplant recipients: combination therapy with aerosolized ribavirin and intravenous immunoglobulin. Bone Marrow Transplant 2000;25:751–5.

116. Boeckh M, Berrey MM, Bowden RA, et al. Phase 1 evaluation of the respiratory syncytial virus-specific monoclonal antibody palivizumab in recipients of hematopoietic stem cell transplants. J Infect Dis 2001;184:350–4.

117. de Fontbrune FS, Robin M, Porcher R, et al. Palivizumab treatment of respiratory syncytial virus infection after allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 2007;45:1019–24.

118. Khanna N, Widmer AF, Decker M, et al. Respiratory syncytial virus infection in patients with hematological diseases: single-center study and review of the literature. Clin Infect Dis 2008;46:402–12.

119. Shah JN, Chemaly RF. Management of RSV infections in adult recipients of hematopoietic stem cell transplantation. Blood 2011;117:2755–63.

120. Shah DP, Shah PK, Azzi JM, et al. Parainfluenza virus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: a systematic review. Cancer Lett 2016;370:358–64.

121. Schmidt GM, Kovacs A, Zaia JA, et al. Ganciclovir/immunoglobulin combination therapy for the treatment of human cytomegalovirus-associated interstitial pneumonia in bone marrow allograft recipients. Transplantation 1988;46:905–7.

122. Reed EC, Bowden RA, Dandliker PS, et al. Treatment of cytomegalovirus pneumonia with ganciclovir and intravenous cytomegalovirus immunoglobulin in patients with bone marrow transplants. Ann Intern Med 1988;109:783–8.

123. Emanuel D, Cunningham I, Jules-Elysee K, et al. Cytomegalovirus pneumonia after bone marrow transplantation successfully treated with the combination of ganciclovir and high-dose intravenous immune globulin. Ann Intern Med 1988;109:777–82.

124. Boeckh M, Ljungman P. How we treat cytomegalovirus in hematopoietic cell transplant recipients. Blood 2009;113:5711–9.

125. Bacigalupo A, Bregante S, Tedone E, et al. Combined foscarnet-ganciclovir treatment for cytomegalovirus infections after allogeneic hematopoietic stem cell transplantation (Hsct). Bone Marrow Transplant 1996;18(Suppl 2):110–4.

126. Ljungman P, Engelhard D, Link H, et al. Treatment of interstitial pneumonitis due to cytomegalovirus with ganciclovir and intravenous immune globulin: experience of European Bone Marrow Transplant Group. Clin Infect Dis 1992;14:831–5.

127. Machado CM, Dulley FL, Boas LS, et al. CMV pneumonia in allogeneic BMT recipients undergoing early treatment of pre-emptive ganciclovir therapy. Bone Marrow Transplant 2000;26:413–7.

128. Whimbey E, Elting LS, Couch RB, et al. Influenza A virus infections among hospitalized adult bone marrow transplant recipients. Bone Marrow Transplant 1994;13:437–40.

129. Ljungman P, de la Camara R, Perez-Bercoff L, et al. Outcome of pandemic H1N1 infections in hematopoietic stem cell transplant recipients. Haematologica 2011;96:1231–5.

130. Harrington RD, Hooton TM, Hackman RC, et al. An outbreak of respiratory syncytial virus in a bone marrow transplant center. J Infect Dis 1992;165:987–93.

131. Ison MG, Hayden FG, Kaiser L, et al. Rhinovirus infections in hematopoietic stem cell transplant recipients with pneumonia. Clin Infect Dis 2003;36:1139–43.

132. Kamboj M, Gerbin M, Huang C-K, et al. Clinical characterization of human metapneumovirus infection among patients with cancer. J Infect 2008;57:464–71.

133. Williams JV, Martino R, Rabella N, et al. A prospective study comparing human metapneumovirus with other respiratory viruses in adults with hematologic malignancies and respiratory tract infections. J Infect Dis 2005;192:1061–5.

134. Erard V, Chien JW, Kim HW, et al. Airflow decline after myeloablative allogeneic hematopoietic cell transplantation: the role of community respiratory viruses. J Infect Dis 2006;193:1619–25.
135. Versluys AB, Rossen JWA, van Ewijk B, et al. Strong association between respiratory viral infection early after hematopoietic stem cell transplantation and the development of life-threatening acute and chronic alloimmune lung syndromes. Biol Blood Marrow Transplant 2010;16:782–91.

136. Xu J, Chen G, Song T, et al. Study on the correlation between CMV reactivation and bronchiolitis obliterans after allogeneic hematopoietic stem cell transplantation. Zhonghua Xue Ye Xue Za Zhi 2015;36:389–92 [in Chinese].

137. Toupin M, Hamadah A, Madore S, et al. Impact of parainfluenza virus type 3 infection on engraftment after hematopoietic SCT. Bone Marrow Transplant 2012;47:451–2.

138. Grewal S, van Burik JH, Peters C. Secondary graft failure associated with parainfluenza virus infection following hematopoietic cell transplantation. Bone Marrow Transplant 2005;35:425.

139. Steffens H-P, Podlech J, Kurz S, et al. Cytomegalovirus inhibits the engraftment of donor bone marrow cells by downregulation of hemopoietin gene expression in recipient stroma. J Virol 1998;72:5006–15.

140. Alymova IV, Taylor G, Takimoto T, et al. Efficacy of novel hemagglutinin-neuraminidase inhibitors BCX 2798 and BCX 2855 against human parainfluenza viruses in vitro and in vivo. Antimicrobial Agents Chemother 2004;48:1495–502.

141. Watanabe M, Mishin VP, Brown SA, et al. Effect of hemagglutinin-neuraminidase inhibitors BCX 2798 and BCX 2855 on growth and pathogenicity of Sendai/human parainfluenza type 3 chimera virus in mice. Antimicrobial Agents Chemother 2009;53:3942–51.

142. Clayton C. Alnylam presents complete results from Phase IIb trial with ALN-RSV01, an inhaled RnaI therapeutic for the treatment of respiratory syncytial virus (RSV) infection. Cambridge, MA: Alnylam Pharmaceuticals; 2012.

143. Marty FM, Ljungman P, Papanicolaou GA, et al. Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplants: a phase 3, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis 2011;11:284–92.

144. Marty FM, Winston DJ, Rowley SD, et al. CMX001 to prevent cytomegalovirus disease in hematopoietic-cell transplantation. N Engl J Med 2013;369:1227–36.

145. Chemaly RF, Ullmann AJ, Stoelben S, et al. Lertemovir for cytomegalovirus prophylaxis in hematopoietic-cell transplantation. N Engl J Med 2014;370:1781–9.