Tidal Force in Metric-Affine Gravity

Aleks Kleyn

Abstract. Generalization of an idea may lead to very interesting result. Learning how torsion influences on tidal force reveals similarity between tidal equation for geodesic and the Killing equation of second type. The relationship between tidal acceleration, curvature and torsion gives an opportunity to measure torsion.

Paper [6] drew my attention. To explain anomalous acceleration of Pioneer 10 and Pioneer 11 ([4]) Antonio Ranada incorporated the old Einstein’s view on nature of gravitational field and considered Einstein’s idea about variability of speed of light. When Einstein started to study the gravitational field he tried to keep the Minkowski geometry, therefore he assumed that scale of space and time does not change. As result he had to accept the idea that speed of light should vary in gravitational field. When Grossman introduced Riemann geometry to Einstein, Einstein realized that the initial idea was wrong and Riemann geometry solves his problem better. Einstein never returned to idea about variable speed of light.

Indeed, three values: scale of length and time and speed of light are correlated in present theory and we cannot change one without changing another. The presence of gravitational field changes this relation. We have two choices. We keep a priory given geometry (here, Minkowski geometry) and we accept that the speed of light changes from point to point. The Riemann geometry gives us another option. Geometry becomes the result of observation and the measurement tool may change from point to point. In this case we can keep the speed of light constant. Geometry becomes a background which depends on physical processes. Physical laws become background independent.

1. Tidal Acceleration

Observations in Solar system and outside are very important. They give us an opportunity to see where general relativity is right and to find out its limitation. It is very important to be very careful with such observations. NASA provided very interesting observation of Pioneer 10 and Pioneer 11 and managed complicated calculation of their accelerations. However, one interesting question arises: what kind of acceleration did we measure?

Pioneer 10 and Pioneer 11 performed free movement in solar system. Therefore they move along their trajectory without acceleration. However, it is well known that two bodies moving along close geodesics have relative acceleration that we call tidal acceleration. Tidal acceleration in general relativity has form

\[\frac{D^2 \delta x^k}{ds^2} = R^k_{\text{lin}} \delta x^l v^n v^l \]
where \(v^i \) is the speed of body 1 and \(\delta x^k \) is the deviation of geodesic of body 2 from geodesic of body 1. We see from this expression that tidal acceleration depends on movement of body 1 and how the trajectory of body 2 deviates from the trajectory of body 1. But this means that even for two bodies that are at the same distance from a central body we can measure different acceleration relative an observer.

Section 2 is dedicated to the problem what kind of changes the tidal force experiences on metric affine manifolds.

Finally the question arises. Can we use equation (2.5) to measure torsion? We get tidal acceleration from direct measurement. There is a method to measure curvature (see for instance [3]). However, even if we know the acceleration and curvature we still have differential equation to find torsion. However, this way may give direct answer to the question of whether torsion exists or not.

Deviation from tidal acceleration (1.1) predicted by general relativity may have different reason. However we can find answer by combining different type of measurement.

2. Tidal Equation

I consider generalized connection [7]-[10.1]. We assume that considered bodyes perform not geodesic but arbitrary movement.

We assume that both observers start their travel from the same point\(^1\) and their speed satisfy to differential equations

\[
\frac{Dv^i}{ds_I} = a^i_I
\]

where \(I = 1, 2 \) is the number of the observer and \(ds_I \) is infinitesimal arc on geodesic \(I \). Observer \(I \) follows the geodesic of connection [7]-[10.1] when \(a^i_I = 0 \). We assume also that \(ds_1 = ds_2 = ds \).

Deviation of trajectories (2.1) \(\delta x^k \) is vector connecting observers. The lines are infinitesimally close in the neighborhood of the start point

\[
\begin{align*}
x^i_2(s_2) &= x^i_1(s_1) + \delta x^i(s_1) \\
v^i_2(s_2) &= v^i_1(s_1) + \delta v^i(s_1)
\end{align*}
\]

Derivative of vector \(\delta x^i \) has form

\[
\frac{d\delta x^i}{ds} = \frac{d(x^i_2 - x^i_1)}{ds} = v^i_2 - v^i_1 = \delta v^i
\]

Speed of deviation \(\delta x^i \) is covariant derivative

\[
\frac{\bar{D}\delta x^i}{ds} = \frac{d\delta x^i}{ds} + \Gamma^i_{kl} \delta x^k v^l_1
\]

From (2.2) it follows that

\[
\delta v^i = \frac{\bar{D}\delta x^i}{ds} - \Gamma^i_{kl} \delta x^k v^l_1
\]

\(^1\) follow [3], page 33
Finally we are ready to estimate second covariant of vector δx^i

\[
\frac{D^2 \delta x^i}{ds^2} = \frac{d^2 \delta x^i}{ds^2} + \Gamma^i_{kl} \frac{D \delta x^k}{ds} v^l_i \\
= d(\delta v^i + \Gamma^i_{kl} \delta x^k v^l_1) \frac{ds}{ds} + \Gamma^i_{kl} D \delta x^k \frac{ds}{ds} v^l_i \\
= \frac{d \delta v^i}{ds} + \frac{d \Gamma^i_{kl}}{ds} \delta x^k v^l_1 + \Gamma^i_{kl} \frac{d \delta x^k}{ds} v^l_1 + \Gamma^i_{kl} \frac{d \delta x^k}{ds} v^l_1 + \Gamma^i_{kl} D \delta x^k \frac{ds}{ds} v^l_i \\
(2.4)
\]

Theorem 2.1. Tidal acceleration of connection [7]-[10.1] has form

\[
\frac{D^2 \delta x^i}{ds^2} = T^i_{ln} \frac{ds}{ds} v^l_1 + (R^i_{klm} + T^i_{km;\langle l,>} \delta x^m v^k_1 v^l_1 + a^2_i - a^1_i + \Gamma^i_{m} \delta x^m a^1_i \\
Proof. The trajectory of observer 1 satisfies equation

\[
\frac{Dv^i_1}{ds} = \frac{dv^i_1}{ds} + \Gamma^i_{kl}(x_1) v^l_1 v^l_1 = a^1_i \\
(2.6)
\]

The same time the trajectory of observer 2 satisfies equation

\[
\frac{Dv^i_2}{ds} = \frac{dv^i_2}{ds} + \Gamma^i_{kl}(x_2) v^l_2 v^l_2 \\
= d(v^i_1 + \delta v^i) \frac{ds}{ds} + \Gamma^i_{kl}(v^k_1 + \delta v^k)(v^l_1 + \delta v^l) \\
= \frac{dv^i_2}{ds} + \frac{d \delta v^i}{ds} + (\Gamma^i_{kl} + \Gamma^i_{kl,m} \delta x^m)(v^k_1 v^l_1 + \delta v^k v^l_1 + v^k_1 \delta v^l + \delta v^k \delta v^l) \\
= a^2_i \\
(2.7)
\]

We can rewrite this equation up to order 1

\[
\frac{dv^i_1}{ds} + \frac{d \delta v^i}{ds} + \Gamma^i_{kl} v^k_1 v^l_1 + \Gamma^i_{kl} (\delta v^k v^l_1 + v^k_1 \delta v^l) + \Gamma^i_{kl,m} \delta x^m v^k_1 v^l_1 = a^2_i \\
(2.8)
\]

Using (2.6) we get

\[
a^1_i + \frac{d \delta v^i}{ds} + \Gamma^i_{kl} \delta v^k v^l_1 + \Gamma^i_{kl} v^k_1 \delta v^l + \Gamma^i_{kl,m} \delta x^m v^k_1 v^l_1 = a^2_i \\
\]

Using (2.8) we get

\[
\frac{d \delta v^i}{ds} = -\Gamma^i_{kl} \delta v^k v^l_1 - \Gamma^i_{kl} \delta v^k v^l_1 - \Gamma^i_{kl,m} \delta x^m v^k_1 v^l_1 + a^2_i - a^1_i \\
(2.8)
\]
We substitute (2.3), (2.7), and (2.8) into (2.4)

\[
\frac{D^2 \delta x^i}{ds^2} = -\Gamma_{ik,l}^m \delta x^m v^l v_1 - \Gamma_{in}^m \frac{D \delta x^n}{ds} - \Gamma_{mk}^n \frac{D \delta x^m v^k v_1}{v_1} - \Gamma_{kl,m}^i \delta x^m v^k v_1
\]

\[
+ a^i_2 - a^i_1
\]

\[
+ \Gamma_{mk,l}^i \delta x^m v_1 + \Gamma_{kl}^i \delta v^k v_1,
\]

\[
+ \Gamma_{mn}^i \delta x^m (a^n_1 - \Gamma_{kl}^i v^k v_1) + \Gamma_{in}^i \frac{D \delta x^n}{ds} v_1
\]

\[
\frac{D^2 \delta x^i}{ds^2} = \left(\Gamma_{mk,l}^i - \Gamma_{km,l}^i + \Gamma_{in}^m - \Gamma_{mn}^m - \Gamma_{km}^m \right) \delta x^m v^k v_1
\]

\[
+ T_{in}^m \frac{D \delta x^n}{ds} v_1 - a^i_2 - a^i_1 + \Gamma_{mn}^i \delta x^m a^n
\]

\[
\frac{D^2 \delta x^i}{ds^2} = T_{in}^m \frac{D \delta x^n}{ds} v_1
\]

\[
+ \left(\Gamma_{km,l}^i - \Gamma_{km,l}^i - \Gamma_{kl,m}^i \right) \delta x^m v^k v_1
\]

\[
+ T_{in}^m \frac{D \delta x^n}{ds} v_1 - a^i_2 - a^i_1 + \Gamma_{mn}^i \delta x^m a^n
\]

(2.9)

Terms underscored with symbol 1 are curvature and terms underscored with symbol 2 are covariant derivative of torsion. (2.5) follows from (2.9). □

Remark 2.2. The body 2 may be remote from body 1. In this case we can use procedure (like in [4]) based on parallel transfer. For this purpose we transport vector of speed of observer 2 to the start point of observer 1 and then estimate tidal acceleration. This procedure works in case of not strong gravitational field. □

Remark 2.3. If in central field observer 1 has orbital speed \(V_0 \), observer 2 moves in radial direction and both observers follow geodesic then tidal acceleration has form

\[
\frac{D^2 \delta x^i}{ds^2} = R_{ink}^l \delta x^k v^n v^l
\]

\[
= \left(R_{001}^1 v^0 v^0 + R_{221}^1 v^2 v^2 \right) \delta x^1
\]

\[
= \left(\frac{r_g}{v^2} \frac{1}{1 - \frac{v^2}{c^2}} - \left(-1 + \frac{r_g}{2r} - \frac{r - r_g}{r} \right) V_0^2 \right) \delta x^1
\]

□
Remark 2.4. If observer 2 follows geodesic in central field, but observer 1 fixed his position at distance r then
\[a^1 = \Gamma^1_{kl} v^k v^l = \frac{r g}{2 r^2 c^2} \]
Acceleration follows inverse square law as follows from (2.5).

Remark 2.5. Theorem 2.1 has one specific case. If observer 1 moves along an extreme line we can use Cartan connection. In this case $a^1_1 = 0$. If observer 2 moves along geodesic then
\[(2.10) \quad a^2_i = -\Gamma(C)^i_{kl} v^k v^l - 2\Gamma(C)^i_{kl} v^1 \frac{D \delta x^k}{ds} + 2\Gamma(C)_{mi}^l \Gamma^m_{kn} v^1 v^l \delta x^k \]
If we substitute (2.3) into (2.10) we get
\[a^2_i = -\Gamma(C)^i_{kl} v^k v^l - 2\Gamma(C)^i_{kl} v^1 \frac{D \delta x^k}{ds} + 2\Gamma(C)_{mi}^l \Gamma^m_{kn} v^1 v^l \delta x^k \]
In this case (2.5) gets form
\[(2.11) \quad D^2 \delta x^i = (\widehat{R}^{i}_{nk} + \nabla_n T^{i}_{lk}) v^l v^k \delta x^k + T^{i}_{lk} \frac{D \delta x^k}{ds} v^l \]
\[- \Gamma(C)^i_{kl} v^k v^l - 2\Gamma(C)^i_{kl} v^1 \frac{D \delta x^k}{ds} + 2\Gamma(C)_{mi}^l \Gamma^m_{kn} v^1 v^l \delta x^k \]
In case of initial conditions
\[\frac{D \delta x^k}{ds} = 0 \]
(2.11) is estimation of acceleration [7]-(11.1).

3. Tidal Acceleration and Lie Derivative

(2.5) reminds expression of Lie derivative [7]-(7.4). To see this similarity we need to write equation (2.5) different way.

By definition
\[\nabla^k = \left(\frac{da^k}{ds} + \Gamma^k_{ip} a^i \frac{dx^p}{ds} \right) \]
\[\frac{da^k}{ds} = a^k_{<p>} \frac{dx^p}{ds} \]

(3.1)

Because ∇^k is vector we can easy find second derivative
\[\frac{D^2 a^k}{ds^2} = \frac{D\nabla^k}{ds} = \frac{D(a^k_{<p>} v^p)}{ds} \]
\[= a^k_{<p>} v^p v^r + a^k_{<p>} v^r v^p \]
On the last step we used (3.1) when $a^k = v^k$. When v^p is tangent vector of trajectory of observer 1 from (2.1) it follows that
\[\frac{\nabla^i v^i}{ds} = v^i v^r = a^i_1 \]
and from (3.2) and (3.3) it follows that

\begin{equation}
\frac{D^2 a_k}{ds^2} = a^k_{p;v}v^p v^r + a^k_{;p} a^p_1
\end{equation}

Theorem 3.1. Speed of deviation of two trajectories (2.1) satisfies equation

\begin{equation}
L \nabla_{\kappa \lambda} v^{\kappa} v^{\lambda} = a^2 - a^1 + \Gamma^{i}_{m} \delta x^{m} a^1
\end{equation}

Proof. We substitute (3.1) and (3.4) into (2.5).

\[\delta x^i_{<kl>} v^k v^l + \delta x^k_{<p>} a^1_{p} = T^i_{ln} \delta x^l_{<k>} v^k v^l + (R^i_{klm} + T^i_{km};<t>) \delta x^m v^k v^l + a^2 - a^1 + \Gamma^{i}_{m} \delta x^{m} a^1
\]

\[0 = (T^i_{ln} \delta x^l_{<k>} - \delta x^l_{<kl>} + R^i_{klm} \delta x^m + T^i_{km};<t> \delta x^m) v^k v^l + a^2 - a^1 - \delta x^p a^1_p
\]

(3.6) follows from (3.5) and [7]-[7.4].

At a first glance one can tell that the speed of deviation of geodesics is the Killing vector of second type. This is an option, however equation

\[L \nabla_{\kappa \lambda} v^{\kappa} v^{\lambda} = 0
\]

does not follow from equation

\begin{equation}
L \nabla_{\kappa \lambda} v^{\kappa} v^{\lambda} = 0
\end{equation}

However equation (3.7) shows a close relationship between deep symmetry of space-time and gravitational field.

4. References

[1] F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester, General relativity with spin and torsion: Foundations and prospects, Rev. Mod. Phys. 48, 393 (1976)

[2] O. Megged, Post-Riemannian Merger of Yang-Mills Interactions with Gravity, eprint arXiv:hep-th/0008135 (2001)

[3] Ignazio Ciufolini, John Wheeler. Gravitation and Inertia. Princeton university press.

[4] J. D. Anderson, P. A. Laing, E. L. Lau, A. S. Liu, M. M. Nieto, and S. G. Turyshev, Study of the anomalous acceleration of Pioneer 10 and 11, Phys. Rev. D 65, 082004, 50 pp., (2002), eprint arXiv:gr-qc/0104064 (2001)

[5] J. D. Anderson, P. A. Laing, E. L. Lau, A. S. Liu, M. M. Nieto, and S. G. Turyshev, Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration, Phys. Rev. Lett. 81, 2858, (1998), eprint arXiv:gr-qc/9808081 (1998)

[6] Antonio F. Ranada, Pioneer acceleration and variation of light speed: experimental situation, eprint arXiv:gr-qc/0402120 (2004)

[7] Aleks Kleyn, Metric-Affine Manifold, eprint arXiv:gr-qc/0405028 (2004)
5. Index

deviation of trajectories 2

speed of deviation 2
6. Special Symbols and Notations

\[\frac{\partial \delta x^j}{\partial s} \] speed of deviation

\[\delta x^k \] deviation of trajectories
Приливная сила в метрико-аффинной гравитации

Александр Клейн

Аннотация. Обобщение идей может привести к очень интересному результату. Изучение, как кручення влияет на приливную силу обнаруживает сходство между приливным уравнением для геодезической и уравнением Киллигара второго типа.

Связь между приливным ускорением, кривизной и крученням даёт возможность измерять кручення.

Моё внимание привлекла статья [6]. Чтобы объяснить аномальное ускорение Pioneer 10 и Pioneer 11 ([4]), Антонио Ранада привлекает старую точку зрения Эйнштейна о природе гравитационного поля и используют идею Эйнштейна о переменной скорости света. Когда Эйнштейн начал изучать гравитационное поле, он старался сохранить геометрию Минковского и, следовательно, предполагал, что масштаб пространства и времени не меняются. В результате он был вынужден принять гипотезу, что скорость света может меняться в гравитационном поле. Когда Гроссман познакомил Эйнштейна с римановой геометрией, Эйнштейн понял, что начальная гипотеза была ошибочна и риманская геометрия лучше решит его задачу. Эйнштейн никогда не возвращался к идее о переменной скорости света.

Действительно, три значения: масштаб пространства и времени и скорость света являются связанными в современной теории и мы не можем изменить одну величину без изменения другой. Присутствие гравитационного поля меняет это соотношение. Мы имеем два выбора. Мы сохраняем исходно заданную геометрию (тут, геометрию Минковского) и мы согласны, что скорость света меняется от точки к точке. Риманова геометрия предлагает нам другой выбор. Геометрия становится результатом измерения и измерительный инструмент может меняться от точки к точке. В этом случае мы можем сохранить скорость света постоянной. Геометрия становится фоном, который зависит от физических процессов. Физические законы становятся независимыми от фона.

1. Приливное ускорение

Наблюдения в Солнечной системе и вне очень важны. Они дают нам возможность видеть, где общая теория относительности верна и найти её ограничения. Очень важно быть осторожным с такими наблюдениями. NASA выполнило очень интересные наблюдения Pioneer 10 и Pioneer 11 и выполнило сложные расчёты их ускорения. Однако, возникает один интересный вопрос: какого типа ускорения мы меряли?

Pioneer 10 и Pioneer 11 совершают свободное движение в солнечной системе. Следовательно, они движутся вдоль своей траектории без ускорения. Однако, хорошо известно, что два тела, двигаясь вдоль близких геодезических, имеют

Aleks_Kleyn@MailAPS.org
Александр Клейн

Приливная сила в метрико-аффинной гравитации

относительное ускорение, которое называется приливным ускорением. Приливное ускорение в общей теории относительности имеет вид

\[\frac{D^2 \delta x^k}{ds^2} = R_{lnl}^k \delta x^l v^n v^l \]

где \(v^i \) - скорость тела 1 и \(\delta x^k \) - отклонение геодезической тела 2 от геодезической тела 1. Мы видим из этого выражения, что приливное ускорение зависит от движения тела 1 и как траектория тела 2 отклоняется от траектории тела 1. Но это значит, что даже для двух тел, которые находятся на одном и том же расстоянии от центрального тела, мы можем измерить разное ускорение относительно наблюдателя.

Раздел 2 посвящён решению задачи, какие изменения испытывает приливная сила на метрико-аффинном многообразии.

Возникает вопрос: можем ли мы использовать уравнение (2.5), чтобы измерять крушение? Мы получим приливное ускорение из прямых измерений. Существует метод измерять кривизну (см. например [3]). Однако, даже если мы знаем ускорение и кривизну, мы по-прежнему имеем дифференциальное уравнение, чтобы найти крушение. Однако, этот путь может дать прямой ответ на вопрос существует ли крушение.

Отклонение от приливного ускорения (1.1), предсказанного общей теорией относительности может иметь различные причины. Однако мы можем найти ответ, комбинируя разные методы измерения.

2. ПРИЛИВНОЕ УРАВНЕНИЕ

Я рассматриваю обобщённую связность [7]-[10.1]. Мы полагаем, что рассматриваемые тела совершали произвольное, а не геодезическое движение.

Мы предполагаем, что оба наблюдателя начинают своё путешествие из одной и той же точки и их скорость удовлетворяет дифференциальным уравнениям

\[\frac{Dv^i}{ds_I} = a^I_i \]

где \(I = 1, 2 \) - номер наблюдателя и \(ds_I \) - инфинитезимальная дуга на геодезической \(I \). Наблюдатель \(I \) следует геодезической связности [7]-[10.1], когда \(a_I = 0 \). Мы полагаем так же, что \(ds_1 = ds_2 = ds \).

Отклонение траекторий (2.1) \(\delta x^k \) - это вектор, соединяющий наблюдателей. Кривые бесконечно мало близки в окрестности начальной точки

\[x^i_2(s_2) = x^i_1(s_1) + \delta x^i(s_1) \]

\[v^i_2(s_2) = v^i_1(s_1) + \delta v^i(s_1) \]

Производная вектора \(\delta x^i \) имеет вид

\[\frac{d\delta x^i}{ds} = \frac{d(x^i_2 - x^i_1)}{ds} = v^i_2 - v^i_1 = \delta v^i \]

Скорость отклонения \(\delta x^i \) - это ковариантная производная

\[\frac{D\delta x^i}{ds} = \frac{d\delta x^i}{ds} + \Gamma^i_{kl} \delta x^k v^l_1 \]

\[= \delta v^i + \Gamma^i_{kl} \delta x^k v^l_1 \]

1Я следую [3], page 33
Из (2.2) следует, что

\[\delta v^i = \frac{\mathbf{T} \delta x^i}{ds} - \Gamma^i_{k l} \delta x^k v^l_1 \]

Наконец мы готовы оценить вторую производную вектора \(\delta x^i \)

\[
\frac{D^2 \delta x^i}{ds^2} = \frac{d \mathbf{T} \delta x^i}{ds} + \Gamma^i_{k l} \frac{d \delta x^k}{ds} v^l_1
\]

\[
= \frac{d(\delta v^i + \Gamma^i_{k l} \delta x^k v^l_1)}{ds} + \Gamma^i_{k l} \frac{d \delta x^k}{ds} v^l_1
\]

\[
= \frac{d \delta v^i}{ds} + \frac{d \Gamma^i_{k l}}{ds} \delta x^k v^l_1 + \Gamma^i_{k l} \frac{d \delta x^k}{ds} v^l_1 + \Gamma^i_{k l} \delta x^k \frac{dv^l_1}{ds} + \Gamma^i_{k l} \frac{d \delta x^k}{ds} v^l_1
\]

(2.4) \[
\frac{D^2 \delta x^i}{ds^2} = \frac{d \delta v^i}{ds} + \Gamma^i_{k l, n} v^l_1 \delta x^k v^l_1 + \Gamma^i_{k l} \delta v^k v^l_1 + \Gamma^i_{k l} \delta x^k \frac{dv^l_1}{ds} + \Gamma^i_{k l} \frac{d \delta x^k}{ds} v^l_1
\]

Теорема 2.1. Прилипная ускорение связности [7]-[10.1] имеет вид

\[
\frac{D^2 \delta x^i}{ds^2} = T^i_{l n} \frac{d \delta x^m}{ds} v^l_1 + (R^i_{l k m l} + T^i_{k m, n}) \delta x^m v^l_1 v^l_1
\]

+ \(a^i_2 - a^i_1 + \Gamma^i_{m l} \delta x^m a^i_1 \)

Доказательство. Траектория наблюдателя 1 удовлетворяет уравнению

(2.6) \[
\frac{D v^i_1}{ds} = \frac{dv^i_1}{ds} + \Gamma^i_{k l}(x_1) v^l_1 v^l_1 = a^i_1
\]

(2.7) \[
\frac{dv^i_1}{ds} = a^i_1 - \Gamma^i_{k l} v^l_1 v^l_1
\]

В тоже время траектория наблюдателя 2 удовлетворяет уравнению

\[
\frac{D v^i_2}{ds} = \frac{dv^i_2}{ds} + \Gamma^i_{k l}(x_2) v^l_2 v^l_2
\]

\[
= \frac{d(v^i_1 + \delta v^i)}{ds} + \Gamma^i_{k l}(x_1 + \delta x)(v^l_k + \delta v^k)(v^l_1 + \delta v^l)
\]

\[
= \frac{dv^i_1}{ds} + \frac{d \delta v^i}{ds} + (\Gamma^i_{k l} + \Gamma^i_{k l, m} \delta x^m)(v^l_1 v^l_1 + \delta v^l v^l_1 + v^l_1 \delta v^l + \delta v^k \delta v^l)
\]

= \(a^i_2 \)

Мы можем переписать это уравнение с точностью до порядка 1

\[
\frac{dv^i_1}{ds} + \frac{d \delta v^i}{ds} + \Gamma^i_{k l} v^l_1 v^l_1 + \Gamma^i_{k l} (\delta v^k v^l_1 + v^l_1 \delta v^l) + \Gamma^i_{k l, m} \delta x^m v^l_1 v^l_1 = a^i_2
\]

Используя (2.6), мы получим

\[
a^i_1 + \frac{d \delta v^i}{ds} + \Gamma^i_{k l} v^l_1 v^l_1 + \Gamma^i_{k l} v^l_1 \delta v^l + \Gamma^i_{k l, m} \delta x^m v^l_1 v^l_1 = a^i_2
\]

(2.8) \[
\frac{d \delta v^i}{ds} = -\Gamma^i_{k l} \delta v^k v^l_1 - \Gamma^i_{l k} \delta v^l v^l_1 - \Gamma^i_{k l, m} \delta x^m v^l_1 v^l_1 + a^i_2 - a^i_1
\]
Мы подставим (2.3), (2.7), и (2.8) в (2.4)

\[
\frac{\mathcal{D}^2 \delta x^i}{ds^2} = -\Gamma^i_{mk} \delta v^k v_1^l - \Gamma^i_{ln} \frac{\mathcal{D} \delta x^n}{ds} - \Gamma^i_{mk} \delta x^m v_1^l v_1^t - \Gamma^i_{kl,m} \delta x^m v_1^l v_1^t + a_2^i - a_1^i
\]

\[
+ \Gamma^i_{mk,l} \delta x^m v_1^l + \Gamma^i_{kl,m} \delta x^m v_1^l + \Gamma^i_{mn} (a_1^i - \Gamma^i_{kl} v_1^l v_1^l) + \Gamma^i_{nl} \frac{\mathcal{D} \delta x^n}{ds} v_1^l
\]

\[
\frac{\mathcal{D}^2 \delta x^i}{ds^2} = \left(\Gamma^i_{mk,l} - \Gamma^i_{km,l} + \Gamma^i_{ln} \frac{\mathcal{D} \delta x^n}{ds} v_1^l - \Gamma^i_{ln} \frac{\mathcal{D} \delta x^n}{ds} v_1^l + a_2^i - a_1^i + \Gamma^i_{mn} \delta x^m a_1^m \right)
\]

\[
\frac{\mathcal{D}^2 \delta x^i}{ds^2} = \left(\Gamma^i_{mk,l} - \Gamma^i_{km,l} + \Gamma^i_{ln} \frac{\mathcal{D} \delta x^n}{ds} v_1^l + a_2^i - a_1^i + \Gamma^i_{mn} \delta x^m a_1^m \right)
\]

\[
(2.9)
\]

Следовательно, подчёркнутые символом 1, представляют кривизну, и слагаемые, подчёркнутые символом 2 представляют ковариантную производную кривизны (2.5) следует из (2.9).

Замечание 2.2. Тело 2 может быть удалено от тела 1. Тогда мы можем использовать процедуру (так же как в [4]), основанной на параллельном переносе. С этой целью мы перенесём вектор скорости наблюдателя 2 в начальную точку наблюдателя 1 и затем оценим приливное ускорение. Эта процедура работает в случае не сильного гравитационного поля.
Замечание 2.3. Если в центральном поле наблюдатель 1 имеет орбитальную скорость V_0, наблюдатель 2 движется в радиальном направлении, и оба наблюдателя следуют геодезической, то приливное ускорение имеет вид

$$
\frac{D^2 \delta x^1}{ds^2} = \frac{R_{1nk} \delta x^k v^n v^l}{c^2} = \frac{r_g}{r^3 c^2} \frac{1}{1 - \frac{V_r^2}{c^2}} - (\frac{1}{r} + \frac{r_g}{r}) V_0^2 \delta x^1
$$

Замечание 2.4. Если наблюдатель 2 следует геодезической в центральном поле, но наблюдатель 1 зафиксирует свою позицию на расстоянии r, то

$$
a^1 = \Gamma_{kl}^1 u^k u^l = \frac{r_g}{2r^2 c^2}
$$

Ускорение следует закону обратных квадратов, как следует из (2.5).

Замечание 2.5. У теоремы 2.1 есть один особый случай. Если наблюдатель 1 движется вдоль экстремальной кривой, мы можем исходный связностью Картана. В этом случае $a^1 = 0$. Если наблюдатель 2 движется вдоль геодезической, то

$$
a^2 = -\Gamma(C)^i_{kl} v^k_1 v^i_1 - 2 \Gamma(C)^i_{kl} v^1_1 \frac{D \delta x^k}{ds} + 2 \Gamma(C)^i_{ml} v^m_1 v^l_1 \delta x^k
$$

Если мы подставим (2.3) в (2.10), то мы получим

$$
a^2 = -\Gamma(C)^i_{kl} v^k_1 v^i_1 - 2 \Gamma(C)^i_{kl} v^1_1 \frac{D \delta x^k}{ds} + 2 \Gamma(C)^i_{ml} v^m_1 v^l_1 \delta x^k
$$

В этом случае (2.5) принимает вид

$$
\frac{\overrightarrow{D^2 \delta x^i}}{ds^2} = (R_{lnk} + \nabla_n T_{lk}^i v^j_1 v^i_1 \delta x^k + T^i_{lk} \frac{D \delta x^k}{ds} v^j_1
$$

$$
- \Gamma(C)^i_{kl} v^k_1 v^i_1 - 2 \Gamma(C)^i_{kl} v^1_1 \frac{D \delta x^k}{ds} + 2 \Gamma(C)^i_{ml} v^m_1 v^l_1 \delta x^k
$$

В случае начальных условий

$$
\delta x^k(0) = 0
$$

$$
\frac{D \delta x^k}{ds} = 0
$$

(2.11) является оценкой ускорения [7]-(11.1).

3. Приливное ускорение и производная Ли

(2.5) напоминает выражение производной Ли [7]-(7.4). Чтобы увидеть это сходство, мы должны записать уравнение (2.5) другим способом.

По определению

$$
\frac{\overrightarrow{D a^k}}{ds} = \frac{da^k}{ds} + \Gamma^k_{lj} a^l \frac{dx^p}{ds}
$$

$$
a^k_m v^p + \Gamma^k_{lj} a^l v^p
$$

5
Александр Клейн
Приливная сила в метрико-аффинной гравитации

(3.1) \[
\frac{D^k}{ds} = a_{<p>}^k v^p
\]
Так как \(\frac{D^k}{ds} \) - вектор, мы можем легко найти вторую производную

(3.2) \[
\frac{D^2 a^k}{ds^2} = \frac{D}{ds} \left(\frac{D^k}{ds} \right) = \frac{D}{ds} (a_{<p>}^k v^p)
\]
На последнем шаге мы используем (3.1), когда \(a^k = v^k \). Когдa \(v^p \) - касательный вектор траектории наблюдателя 1, из (2.1) следует, что

(3.3) \[
\frac{Dv^i}{ds} = v^i_r v^r = a_1^i
\]
и из (3.2) и (3.3) следует, что

(3.4) \[
\frac{D^2 a^k}{ds^2} = a_{<p>}^k v^p v^r + a_{<p>}^k a_1^p
\]

Теорема 3.1. Скорость отклонения двух траекторий (2.1) удовлетворяет уравнению

(3.5) \[
\mathcal{L}_{\mathcal{P}_{ab}^{\infty}} \Gamma_{kl}^i v^k v^l = a_2^i - a_1^i + \Gamma_{ml}^i \delta x^m a_1^l
\]

Доказательство. Мы подставим (3.1) и (3.4) в (2.5).

(3.6) \[
\delta x_{<kl>}^i v^k v^l + \delta x_{<p>}^k a_1^p = T_{ln}^i \delta x_{<k>}^m v^k v^l + (R_{klm}^i + T_{km;l<}) \delta x^m v_1^k v_1^l + a_2^i - a_1^i + \Gamma_{ml}^i \delta x^m a_1^l
\]

(3.5) следует из (3.6) и [7]-[7.4].

На первый взгляд можно предположить, что скорость отклонения геодезической является вектором Килинга второго типа. Это возможно, хотя уравнение

(3.7) \[
\mathcal{L}_{\mathcal{P}_{ab}^{\infty}} \Gamma_{kl}^i v^k v^l = 0
\]
не следует из уравнения

Однако уравнение (3.7) показывает тесную связь между глубокой симметрией пространства времени и гравитационным полем.

4. Список литературы

[1] F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester, General relativity with spin and torsion: Foundations and prospects, Rev. Mod. Phys. 48, 393 (1976)
[2] O. Megged, Post-Riemannanian Merger of Yang-Mills Interactions with Gravity, eprint arXiv:hep-th/0008135 (2001)
[3] Ignazio Ciufolini, John Wheeler. Gravitation and Inertia. Princeton university press.
[4] J. D. Anderson, P. A. Laing, E. L. Lau, A. S. Liu, M. M. Nieto, and S. G. Turyshev, Study of the anomalous acceleration of Pioneer 10 and 11, Phys. Rev. D 65, 082004, 50 pp., (2002), eprint arXiv:gr-qc/0104064 (2001)

[5] J. D. Anderson, P. A. Laing, E. L. Lau, A. S. Liu, M. M. Nieto, and S. G. Turyshev, Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration, Phys. Rev. Lett. 81, 2858, (1998), eprint arXiv:gr-qc/9808081 (1998)

[6] Antonio F. Ranada, Pioneer acceleration and variation of light speed: experimental situation, eprint arXiv:gr-qc/0402120 (2004)

[7] Aleks Kley, Metric-Affine Manifold, eprint arXiv:gr-qc/0405028 (2004)
5. ПРЕДMETНЫЙ УКАЗАТЕЛЬ

отклонение траекторий 2

скорость отклонения 2
6. Специальные символы и обозначения

\[\frac{\partial \delta x^i}{\partial a} \] скорость отклонения 2

\[\delta x^k \] отклонение траекторий 2