Epigenetic landscape of testis specific histone H2B variant and its influence on sperm function

Aniket Patankar1, Rahul Gajbhiye2, Suchitra Surve2 and Priyanka Parte1*

Abstract

Background: Biological relevance of the major testis specific histone H2B variant (TH2B) in sperm is not fully understood. Studies in TH2A/TH2B double knockout male mice indicate its role in chromatin compaction and male fertility. Additionally, the presence of TH2B and TH2A reportedly generates more dynamic nucleosomes, leading to an open chromatin structure characteristic of transcriptionally active genome. Given that mature human sperm are transcriptionally and translationally inactive, the presence of TH2B in mature sperm is intriguing. To address its role in sperm, we investigated the genome-wide localization of TH2B in sperm of fertile men.

Results: We have identified the genomic loci associated with TH2B in fertile human sperm by ChIP-seq analysis. Bioinformatic analysis revealed ~5% sperm genome and 5527 genes to be associated with TH2B. Out of these 105 (1.9%) and 144 (2.6%) genes showed direct involvement in sperm function and early embryogenesis, respectively. Chromosome wide analysis for TH2B distribution indicated its least distribution on X and Y chromosomes and varied distribution on autosomes. TH2B showed relatively higher percentage of gene association on chromosome 4, 18, 3 and 2. TH2B enrichment was more in promoter and gene body region. Gene Ontology (GO) analysis revealed signal transduction and associated kinase activity as the most enriched biological and molecular function, respectively. We also observed the enrichment of TH2B at developmentally important loci, such as HOXA and HOXD and on genes required for normal sperm function, few of which were validated by ChIP-qPCR. The relative expression of these genes was altered in particular subgroup of infertile men showing abnormal chromatin packaging. Chromatin compaction positively correlated with sperm motility, concentration, viability and with transcript levels of PRKAG2 and CATSPER B.

Conclusion: ChIP-seq analysis of TH2B revealed a putative role of TH2B in sperm function and embryo development. Altered expression of TH2B associated genes in infertile individuals with sperm chromatin compaction defects indicates involvement of TH2B in transcriptional regulation of these genes in post meiotic male germ cells. This altered transcriptome may be a consequence or cause of abnormal nuclear remodeling during spermiogenesis.

Keywords: TH2B, Chromatin remodeling, Sperm chromatin compaction, ChIP-seq, Testis specific Histone Variant, IVF/ICSI, Sperm function, Sperm RNA

Introduction

Spermatogenesis is a well synchronized and tightly regulated process by which male germ cells are formed. It is broadly divided into 3 phases, namely, mitotic proliferation, meiotic division and spermiogenesis. Chromatin remodeling is a landmark event in spermiogenesis during which nucleohistone to nucleoprotamine transition...
takes place in male germ cells. It initiates with histone hyperacetylation followed by replacement of somatic histones with testis specific histone variants. Knockout studies with these variants testify their essential role in male infertility [1, 2]. Most of these variants are found to be involved in open chromatin structure formation. This uncondensed state of sperm genome may be related to two biological events, which occur during spermiogenesis, (1) Active transcription of genes which may be required during spermiogenesis and or early embryo development, and (2) Replacement of the variants by transition proteins and protamines leading to genome compaction.

Replacement of histones by protamines is not 100% and about 5–15% histones are retained in mature human spermatozoa [3, 4]. The repertoire of retained histones comprise of canonical as well as testis specific histone variants along with several modified histones like H3K4me3, H3K27me3, etc. Several studies have demonstrated altered chromatin compaction and increased histone retention in the sperm of fertile men [5–9]. The altered chromatin compaction in sperm has also been correlated with adverse IVF and ICSI outcomes [10, 11]. These studies suggest that nucleosomal retention in sperm is programmed and any imbalance in this retention hampers chromatin compaction and consequently fertility.

Previous sperm nucleosome mapping studies employing either comparative genome hybridization or MNase-sequencing approach, have shown the enrichment of retained nucleosomes at gene regulatory elements [4, 12, 13]. Contrary to this, Carone et al. [14] and Samans et al. [15] observed even distribution of nucleosomes within distal intergenic regions, introns, centromere repeats and retro transposons with poor occupancy at gene regulatory elements like 5′ UTR, 3′ UTR, TSS, and TTS region. These contradictory observations can be attributed to alternate bioinformatics analysis, as suggested by Royo’s group [16]. Whilst the information on genome-wide distribution is available for the histone H3 and its modified forms H3K4me3/H3K27me3 [4, 17], no such information is available for TH2B, which is the major testis specific histone variant present in mature human spermatozoa. TH2B differs from H2B mainly at its N-terminus, which in H2B has been shown to be associated with chromosome condensation in meiotic cells [18]. Nucleosomal core particles containing TH2A/TH2B reportedly show fewer histone–DNA contacts, suggesting that their presence promotes an open chromatin structure [19].

Spermatozoa of male mice lacking TH2A and TH2B show increased histone retention during spermiogenesis consequently leading to infertility in these mice [20]. However, there is very little information available on the presence of testis specific histone variants in sperm of fertile men, and their retention status in infertile men. Whether this would have an implication on the status of genes in proximity of these testis specific histones, is not known.

In the present study, we have identified genomic loci associated with TH2B in the sperm of fertile men by high-throughput sequencing, and association of a few genes was confirmed using ChIP-qPCR. qRT-PCR analysis was done to determine the relative abundance of transcripts of genes associated with TH2B in sperm from fertile- and infertile men and the observations corroborated with their chromatin compaction status.

Results
Specific immunoprecipitation of TH2B from fertile human sperm
Sperm from four healthy and proven fertile individuals were processed as described in ‘Materials and Methods’ and Chromatin immunoprecipitation (ChIP) was done to isolate TH2B bearing nucleosomes. ChIP was performed using either anti-TH2B antibody or its Isotype control (IgG). 1.2 million sperm (1/10th of the cells used for ChIP) were MNase digested, proteins were precipitated and used as positive control (Input). TH2B immunoprecipitation was confirmed by ChIP-Western analysis. ChIP-Western blot detected a band at approx. 15 kDa in immunoprecipitation product of TH2B but not of IgG, confirming specific immunoprecipitation of TH2B (Fig. 1a).

The mononucleosomal DNA from Input, TH2B-ChIP and IgG-ChIP was visualized on 5% polyacrylamide gel (Fig. 1b). The mononucleosomal DNA bands were excised, DNA was extracted out and subjected to high-throughput sequencing.

Semen parameters of the fertile individuals enrolled for the ChIP-seq analysis and values of their percent aniline blue positive and Chromomycin A3 (CMA3) positive sperm are listed in Table 1.

Genome-wide distribution of TH2B and gene ontology (GO) analysis of TH2B associated genes
Enrichment of TH2B was visualized across the human chromosomes using Cistrome tool in Galaxy genome browser [21]. TH2B distribution was noted on all autosomes in varying amount. In all, 5% of the total genome was observed to be associated with TH2B. Interestingly, sex chromosomes i.e. Chromosome X and Y showed least distribution of TH2B (Fig. 2a). When percentage of genes occupied by TH2B relative to total number of genes on a particular chromosome was considered, TH2B was found to be more enriched on genes of chromosome 4, 18, 3 and 2. In case of sex chromosome
TH2B was observed to be present on regulatory RNAs (miRNAs) on X chromosome while none of the Y chromosome genes were found to be associated with TH2B (Fig. 2b). The chromosome wise distribution of TH2B associated genes is provided as Additional file 1.

The exhaustive list of TH2B associated genes is provided as Additional file 2. TH2B localization analyzed using ChIPseek [22] tool indicated that TH2B is present mainly in the intergenic and intronic regions, with modest enrichment at promoter, exon and TTS (Fig. 3a). Interestingly, significant number of peaks (representing TH2B enriched regions) were found to be distributed around TSS of genes (Fig. 3b). Regions observed to be enriched upstream and downstream relative to TSS are presented as Fig. S1 in Additional file 3.

GO analysis using Genecodis 3 and EnrichR [23, 24] was performed for the genes associated with TH2B. Signal transduction \(p^* = 7.02 \times 10^{-65} \), regulation of transcription \(p^* = 4.42 \times 10^{-26} \) and multicellular organism development \(p^* = 3.97 \times 10^{-36} \) were found to be the most enriched biological function and Kinase activity was observed as a major molecular function (Fig. 3c, d). \(p^* \) indicates corrected hypergeometric \(p \) value. The GO analysis raw data is provided as Additional files 4 and 5.

Pathway analysis featured pathways in cancer, MAPK signaling pathway, focal adhesion, and regulation of actin cytoskeleton amongst the most enriched pathway (Fig. 3e). Motif analysis using MEME ChIP [25] revealed several conserved DNA motifs to be associated with TH2B. The most enriched motifs observed to be associated with TH2B were similar to those reported to be associated with zinc finger proteins like ZNF770, ZNF554 and ZNF250 which are implicated in regulation of transcription (Fig. 3f). However, their role in testis remains unexplored as yet.

TH2B enrichment at developmentally important loci and at genes involved in sperm function

Enrichment of TH2B was observed at developmentally important loci like HOXA and HOXD (Fig. 4).

TH2B was found to be enriched on 5527 genes, out of which 105 (1.9%) and 144 (2.6%) genes showed a direct involvement in sperm function, and early embryogenesis, respectively. We shortlisted few of the genes from

Table 1 Semen parameters and chromatin compaction status of fertile individuals enrolled for ChIP-seq

Sample No	% Progressive Motility	Concentration × 10^6/ml	% Viability	% Aniline blue positive sperm	% CMA3 positive sperm
1	74	74	85	43	33
2	71	47.43	78	49	33
3	65	60.12	68	46	30
4	62	26.06	70	41	43

GO analysis using Genecodis 3 and EnrichR [23, 24] was performed for the genes associated with TH2B. Signal transduction \(p^* = 7.02 \times 10^{-65} \), regulation of transcription \(p^* = 4.42 \times 10^{-26} \) and multicellular organism development \(p^* = 3.97 \times 10^{-36} \) were found to be the most enriched biological function and Kinase activity was observed as a major molecular function (Fig. 3c, d). \(p^* \) indicates corrected hypergeometric \(p \) value. The GO analysis raw data is provided as Additional files 4 and 5.

Pathway analysis featured pathways in cancer, MAPK signaling pathway, focal adhesion, and regulation of actin cytoskeleton amongst the most enriched pathway (Fig. 3e). Motif analysis using MEME ChIP [25] revealed several conserved DNA motifs to be associated with TH2B. The most enriched motifs observed to be associated with TH2B were similar to those reported to be associated with zinc finger proteins like ZNF770, ZNF554 and ZNF250 which are implicated in regulation of transcription (Fig. 3f). However, their role in testis remains unexplored as yet.

TH2B enrichment at developmentally important loci and at genes involved in sperm function

Enrichment of TH2B was observed at developmentally important loci like HOXA and HOXD (Fig. 4).

TH2B was found to be enriched on 5527 genes, out of which 105 (1.9%) and 144 (2.6%) genes showed a direct involvement in sperm function, and early embryogenesis, respectively. We shortlisted few of the genes from
these, on the basis of their importance in sperm function (Table 2). These were subsequently validated by ChIP-qPCR towards which primers were designed for the peak sequences associated with each gene (Table 4). The primers were designed such that the PCR product was less than 147 bp. TH2B-ChIP with sperm from a separate set of four fertile individuals was carried out and the immunoprecipitated DNA was used as template for PCR amplification of each gene (Fig. 5).

Chromatin compaction in infertile individuals
The sperm chromatin compaction status of each fertile and infertile individual enrolled in this study was assessed by Acidic aniline blue dye staining (Histone status) and Chromomycin A3 detection (Protamine status). Semen characteristics of fertile and infertile individuals are summarized in Table 3 and the individual semen characteristics are detailed as Additional file 6.

Aniline blue binds lysine rich histones preferentially over arginine rich protamines. Darkly stained sperm nuclei indicate higher histone retention and thus chromatin immaturity while lightly stained sperm nuclei indicates normal histone retention and thus chromatin maturity. Percentage of aniline blue positive sperm was significantly higher ($p^{***} < 0.0001$) in infertile men with Asthenozoospermia, Oligozoospermia and Oligoasthenozoospermia, as compared to that in the fertile individuals (Fig. 6a).

CMA3 competes with protamine to bind to the minor groove of DNA, hence more binding of CMA3 represents lower protamine levels and vice versa. CMA3 positive, bright fluorescing, sperm nuclei represent immature chromatin condensation while CMA3 negative represent mature chromatin state. Percent CMA3 positive sperm were significantly higher in all subcategories of infertile individuals as compared to that in the fertile individuals (Fig. 6b).

Expression profile of TH2B associated genes in sperm of fertile and infertile men
The relative abundance in transcripts of few TH2B associated genes- CREM, CDYL, PRKAG2, CATSPERB, TSGA10 and TSSK1B was studied in sperm of fertile and infertile men with asthenozoospermia-, oligozoospermia- or oligoasthenozoospermia. The results indicated subgroup specific alteration in transcripts of some of the genes. Relative expression of CREM was found to be significantly lower in men with asthenozoospermia ($p=0.047$) while it was comparable in men with oligozoospermia ($p=0.46$) and oligoasthenozoospermia ($p=0.85$) to that of fertile men. CDYL expression was found to be significantly higher in men with oligoasthenozoospermia ($p=0.009$), while it was not altered in the
other two subgroups of infertile men. PRKAG2 expression was significantly reduced in men with asthenozoospermia \((p = 0.007)\), oligozoospermia \((p = 0.009)\), and oligoasthenozoospermia \((p = 0.02)\). CATSPERB expression was observed to be reduced in men with oligoasthenozoospermia \((p = 0.02)\). CATSPERB expression was apparently reduced in sperm of men with asthenozoospermia, but it was not statistically significant \((p = 0.14)\) while in men with oligozoospermia it was unaltered. Relative expressions of TSGA10 and TSSK1B did not differ in any of the infertile subgroups as compared to that in the fertile group (Fig. 7).

Correlation analysis

Spearman correlation analysis was carried out between percent aniline blue positive sperm \((%\text{AB}+)\), percent
CMA3 positive sperm (%CMA3+), sperm motility-, concentration-, viability and transcript levels of CREM, CDYL, PRKAG2, CATSPERB, TSGA10, and TSSK1B. A significant negative correlation was observed for percentages of AB+ and CMA3+ sperm with sperm motility and concentration. Transcript levels of PRKAG2 and CATSPERB negatively correlated with %CMA3+ sperm while for CREM, CDYL, TSGA10, and TSSK1B no significant correlation was noted. Transcript levels of CREM positively correlated with transcript levels of CDYL, PRKAG2, CATSPERB, TSGA10, and TSSK1B. PRKAG2 expression positively correlated with sperm motility (Fig. 8).

Discussion

The genome-wide localization of TH2B in primary spermatocyte (of mouse), was recently published [26]. However the biological relevance of the presence of this major histone variant in sperm is not fully understood. From studies of TH2A/TH2B double knockout mice, we know that male mice are sterile and chromatin compaction is drastically altered, thus implying the importance of these testis specific histone variants in male fertility [20]. Studies by Padavattan et al. [19] indicate that presence of TH2B and TH2A generates more dynamic nucleosomes, leading to an open chromatin structure, which is characteristic of a transcriptionally active genome. Hence, the presence of TH2B in mature sperm is intriguing given that mature human sperm are transcriptionally and translationally silent. To address its role in sperm, we investigated the genome-wide localization of TH2B in sperm of fertile men. This is important to know as most of the canonical H2B is replaced by TH2B during spermiogenesis [27].

Histone variants are non-canonical variants of histones with only few amino acid differences from their canonical counterparts. TH2B differs from somatic H2B at its N-terminal (S2A in Additional file 3). Using chromatin immunoprecipitation followed by high-throughput sequencing approach, we identified the genomic loci associated with TH2B in fertile human sperm. TH2B was found to be mostly in intergenic and intronic regions (Fig. 3a, b). Similar observations were made by
Yamaguchi et al. for Histone H4 wherein H4 localization was observed majorly to intergenic regions [28]. A landmark study by Hammoud et al., in 2009 showed for the first time by MNase-seq, the enrichment of retained nucleosomes at developmentally important loci, suggesting their probable role post fertilization. When the same approach was adopted by different investigators, contradictory observations were noted. These may be due to variation in two critical steps 1) Micrococcal nuclease digestion and 2) Bioinformatics pipeline used for data analysis. As sperm DNA compaction is unique and complex, we first optimized conditions to get a precise mononucleosomal pool while avoiding digestion of protamine bound DNA. Immunoprecipitation of a specific histone variant can be challenging due to high similarity with its canonical counterpart. In our study, establishment of the

![Fig. 5 TH2B enrichment at genes involved in sperm function: IGB view of CREM, PRKAG2, CDYL, TSGA10, TSSK1B and CATSPERB identified to be associated with TH2B (left panel) and dot plot indicating fold enrichment of TH2B on the respective gene (right panel). The raw Cq values for genes associated with TH2B- or IgG-immunoprecipitated DNA were normalized to that of Input mononucleosomal DNA and then enrichment of the gene in TH2B immunoprecipitation over that in IgG immunoprecipitation, was calculated considering enrichment in IgG as one.
Gene name	Protein name	Fold enrichment	p value	GO biological process	GO molecular function
CREM	cAMP-responsive element modulator	6.74	6 × 10⁻⁴	DNA-binding transcription factor activity, Regulation of transcription, Signal transduction, Multicellular organism development, Spermatogenesis	DNA binding, RNA polymerase II transcription factor activity, Transcriptional repressor activity, RNA polymerase II transcription regulatory region sequence-specific DNA binding
PRKAG2	5′-AMP-activated protein kinase subunit gamma-2 (AMPK gamma2)	5.9	7 × 10⁻⁴	ATP biosynthetic process, Fatty acid biosynthetic process, Intracellular signal transduction, Positive regulation of protein kinase activity, Regulation of glycolytic process, regulation of signal transduction	AMP-activated protein kinase activity, AMP binding, ATP binding, cAMP-dependent protein kinase regulator activity, Phosphorylase kinase regulator activity [GO:0008607], protein kinase activator activity
CDYL	Chromodomain Y-like protein (CDY-like) (Crotonyl-CoA hydratase)	29.5	1 × 10⁻⁵	Negative regulation of peptidyl-lysine crotonylation, Random inactivation of X chromosome, Regulation of transcription, Spermatid development, Spermatogenesis	Chromatin binding, Crotonyl-CoA hydratase activity, Methylated histone binding, Protein binding, Transcription corepressor activity
CATSPERB	Cation channel sperm-associated protein subunit beta (CatSper-beta)	5.06	7 × 10⁻⁴	Multicellular organism development, Response to progesterone, Sperm capacitation, Sperm-egg recognition	CatSpercomplex, Integral component of sperm membrane
TSGA10	Testis-specific gene 10 protein (Testis development protein NYD-SP7)	5.9	3 × 10⁻⁴	Cell projection assembly, Spermatogenesis	Protein binding
TSSK1B	Testis-specific serine/threonine-protein kinase 1	5.9	3 × 10⁻⁴	Intracellular signal transduction, Multicellular organism development, Protein phosphorylation, Spermatid development	ATP binding, Magnesium ion binding, Protein serine/threonine kinase activity
antibody specificity followed by ChIP-Western validation confirmed the specific immunoprecipitation of TH2B (S2B in Additional file 3).

The retained histones are generally observed with the genes or gene clusters involved in early embryogenesis. Data from ChIP on chip analysis with TH2B suggested promoters of genes involved in sperm function to be

Table 3 Semen characteristics and chromatin compaction status of fertile and infertile men

Group	% Progressive Motility	Concentration (x 10^6)/ml	% Viability	% Aniline blue positive sperm	% CMA3 positive sperm
Fertile* (n = 14)	64 ± 10.4	43 ± 24.3	80 ± 7.5	17 ± 11.3	23 ± 11
Infertile					
Asthenozoospermia (n = 10)	14 ± 6.9^a	18 ± 7.4^ab	69 ± 8.7^a	69 ± 11.2^a	70 ± 16.3^a
Oligozoospermia (n = 10)	43 ± 8.2^ab	6 ± 2.7^a	75 ± 8.0^b	58 ± 16.2^a	67 ± 19.3^a
Oligoasthenozoospermia (n = 10)	17 ± 7.5^a	4 ± 2.0^a	60 ± 11.7^a	69 ± 16.6^a	77 ± 16.6^a

*Fertile group (n = 14) encompasses men enrolled for the experiments involving ChIP-qPCR (n = 4) and qRT-PCR (n = 10)

^a Significantly different as compared to fertile group

^b Significantly different as compared to oligoasthenozoospermia group

Fig. 6 Chromatin condensation in sperm of fertile and infertile men: Histone status of sperm was assessed by Aniline blue staining. Representative picture showing darkly stained immature sperm nuclei and light stained mature nuclei in fertile and infertile semen sample (a-left panel). Protamine status was assessed by Chromomycin A3 staining. Representative picture of sperm from fertile and infertile semen samples shows bright fluorescing sperm nuclei which are CMA3 positive and dull fluorescing which are CMA3 negative (b-left panel). Dot plot shows percentage of aniline blue (a-right panel) and CMA3 positive sperm (b-right panel) in the fertile (n = 18) and infertile individuals, namely, men with Asthenozoospermia (n = 10), Oligoasthenozoospermia (n = 10) and Oligozoospermia (n = 10); p**** < 0.0001
associated with TH2B. However, this interesting observation was not explored further [4]. We observed TH2B retention on developmentally important loci like HOXA and HOXD (Fig. 4) as well as on genes involved in sperm function. The entire data with all the genes and their respective ontologies is provided as Additional file 2. This includes the TH2B associated genes involved in early embryo development as well as those involved in sperm function. In this paper, we discuss our observations on the genes involved in sperm function. We validated the TH2B enrichment on CREM, CDYL, PRKAG2, CATSPERB, TSGA10, and TSSK1B by ChIP-qPCR (Fig. 5).

Histones are the key epigenetic players and regulate chromatin function. Histone variants and modifications occurring on them are found to be associated with specific biological processes like DNA strand repair, meiotic sex chromosome inactivation, and transcription. TH2A and TH2B are implicated in active transcription, and H3K4me3 and H3K27me3 are found to be associated with active and repressed state of the genome, respectively. Even loss of function of chromatin remodeling factors or enzymes carrying out particular histone modifications can lead to altered transcriptome in sperm [29–33]. This implies a relationship between chromatin state during spermiogenesis and timely transcription activity.

To investigate this possibility, we studied the relative expression of few TH2B associated genes in infertile men with abnormal chromatin packaging. We hypothesized that alteration in either incorporation or eviction of TH2B during the course of spermiogenesis may lead

Fig. 7 Expression profile of TH2B associated genes in sperm of fertile and infertile men. Normalized fold change in transcript of CREM, CDYL, PRKAG2, CATSPERB, TSGA10, and TSSK1B in fertile and infertile groups (AS—Asthenozoospermia, OS—Oligozoospermia and OAS—Oligoasthenozoospermia). *p* and **p** indicate *p* < 0.05, and *p* < 0.01, respectively; ‘ns’ denotes no significant difference. Data are plotted as mean ± SEM. Dot represents fold enrichment of a transcript in an individual. The numbers in parenthesis indicates number of samples included in the analysis for that particular group for a given gene.
to abnormal chromatin packaging and transcription. This hypothesis was based on the observations by Sendler et al. [34], wherein a strong correlation was noted between H3K4me3 bearing genes and their cognate transcripts in mature sperm. This suggests that these genes, at the time of spermiogenesis, may be bearing the histone activation mark which was retained in mature sperm.

Subgroup specific altered expression in infertile men was observed for few TH2B associated genes (Fig. 7). Transcripts for CREM, which is the major transcription factor involved in the expression of a number of genes during the post meiotic stage of sperm development, was found to be significantly low in sperm of men with asthenozoospermia, suggesting that proteins required for sperm motility may be under the control of CREM or its associated transcriptional network. Correlation analysis of our data revealed a positive correlation of transcript levels of CREM with transcript levels of CDYL, PRKAG2, CATSPER1, TSGA10, and TSSK1B suggesting regulation of these genes by CREM (Fig. 8). This is further substantiated by the transcriptome data from Crem deficient mice, which shows altered expression of CDYL, CATSPER1 and TSSK1 [35]. Though CREM occupies more than 9000 loci in the developing spermatid, only a subset of genes were altered in Crem deficient mice, which suggests that alternative factors may be controlling expression of these unaltered genes [36]. Apart from CREM, several other proteins are now reported in the regulation of transcription in sperm [1].

Studies with human CDY and mouse CDYL proteins demonstrate their histone acetyltransferase activity, especially on histone H4. The expression and localization of CDYL coincides with H4 hyperacetylation during spermatogenesis which suggested that Cdyl may be involved in histone to protamine transition via H4 hyperacetylation [37]. This was also supported by the observation that lack of Cdyl leads to dysregulated histone replacement in the testis of Cdyl transgenic mice. A recent study demonstrated that CDYL regulates the expression of sex chromosome-linked escaped genes

%AB+	%CMA3+	CREM	CDYL	PRKAG2	CATSPER1	TSGA10	TSSK1B	Motility	Concentration
1.00	0.87	0.18	0.06	-0.29	-0.25	-0.15	-0.12	-0.67	-0.45
0.18	1.00	0.20	0.07	-0.34	-0.34	-0.14	-0.23	-0.58	-0.59
0.18	0.18	1.00	0.46	0.76	0.62	0.59	0.40	0.14	-0.05
0.06	0.07	0.46	1.00	0.28	0.19	0.10	0.25	-0.11	-0.23
-0.29	-0.34	0.76	0.28	1.00	0.64	0.57	0.33	0.42	0.25
-0.25	-0.34	0.62	0.19	0.64	1.00	0.53	0.34	0.22	0.22
-0.15	-0.14	0.59	0.10	0.57	0.53	1.00	0.37	0.16	0.01
-0.12	-0.23	0.40	0.25	0.33	0.34	0.37	1.00	-0.03	0.14
-0.67	-0.58	0.14	-0.11	0.42	0.22	0.16	-0.03	1.00	0.32
-0.45	-0.59	-0.05	-0.23	0.25	0.22	0.01	0.14	0.32	1.00
-0.41	-0.44	-0.04	-0.21	0.25	0.11	0.01	-0.13	0.62	0.44

Fig. 8 Correlation analysis between sperm chromatin compaction, various semen parameters and transcript levels of TH2B associated genes. Heatmap showing Spearman correlation analysis between percent aniline blue positive (%AB+), percent CMA3 positive (%CMA3+), sperm motility, concentration, viability and transcript levels of CREM, CDYL, PRKAG2, CATSPER1, TSGA10 and TSSK1B. \(p^* < 0.05 \), \(p^{**} < 0.01 \), \(p^{***} < 0.001 \) and \(p^{****} < 0.0001 \)
in postmeiotic spermatogenic cells by acting as a crotonyl-CoA hydratase [30]. In a cell-based model of transcriptional activation, increasing or decreasing the cellular concentration of crotonyl-CoA led to enhanced or diminished gene expression, respectively, and these crotonylated histones were present in regulatory region of active genes, which again suggest involvement of histone crotonylation in active transcription [38]. We have previously reported Cdyl to be potential tubulin acetyltransferase in rat sperm [39]. Recently, we have reported HDAC6, the tubulin specific deacetylase to be reduced in sperm of men with asthenozoospermia [40]. In light of this information, increased expression of CDYL observed in all the subgroups of infertile men with significantly increased expression in men with oligoasthenozoospermia group where both motility and sperm numbers are affected, is noteworthy (Fig. 7). The synergistic effect of histone deacetylase and histone acetyl transferase may influence microtubule dynamics and consequently sperm function.

AMP activated protein kinase (AMPK) has been reported to be essential for sperm motility in boar spermatozoaa [41]. AMPKα1 knockout mice sperm showed asthenozoospermia characteristics and structural abnormalities, however their chromatin compaction status was not reported [42]. Under stress conditions, AMPK is known to directly phosphorylate H2B in cells and facilitate expression of stress related proteins implying AMPK to be a phosphorylating kinase for H2B [43]. We observed Protein Kinase AMP-Activated Non-Catalytic Subunit Gamma 2 (PRKAG2) to be reduced in sperm of men with asthenozoospermia (Fig. 7). Correlation analysis revealed a positive correlation of PRKAG2 with sperm motility (Fig. 8). In metabolic stress condition, gamma subunit of AMPK binds to AMP and regulates activity of catalytic alpha subunit to bring out the phosphorylation of its substrate [44]. In light of this knowledge and our previous observation of reduced pTH2B in men with poor sperm motility [45], we believe that AMPK may be the putative kinase for TH2B phosphorylation in sperm and there may likely be a link between TH2B phosphorylation and sperm motility. Functional implications of this altered phosphoswitch need to be explored.

CatSper channel plays a pivotal role in attaining hyperactivated motility during sperm capacitation [46]. CatSper channel is made up of 10 subunits of which six are pore forming CatSper alpha while CatSperbeta is one of the remaining auxiliary subunits. CatSper is absent in sperm from mice lacking CatSper1, suggesting that the expression of CatSperb and CatSper1 is linked [47]. CatSper knockout males show poor sperm motility and are sterile [48]. At transcript level we observed Catsperb to be reduced in all the subgroups of infertile men, with significant reduction seen in men with oligoasthenozoospermia.

Distinct set of genes in sperm chromatin retain specific histone marks which decide fate of that gene. The genes involved in sperm function bear the activation histone mark H3K4me3 and those required during early embryogenesis retain repressing histone mark H3K27me3. Most of the genes retaining nucleosomal structure contain bivalent promoters which signify presence of both activation and repressing mark at the same promoter. Such types of promoters are frequently found in embryonic stem cells. Classically, it was thought that bivalency imposes repressive state on gene which gets activated in the presence of a signal when the gene expression is needed. However, very recently, it was suggested that such promoters may protect the gene from irreversible silencing through inhibition of hypermethylation of the gene [49]. The role of TH2B in mature sperm is not clear but can be speculated by investigating its coexistence with histone activating and/or repressing marks. Towards this, we retrieved the ChIP-seq BED files of H3K4me3 and H3K27me3 in mature sperm from Hamoud et al., 2009. The genome coordinates were uplifted to hg19 using UCSC genome browser and then gene annotation was carried out. Venny [50] was used to know the gene overlap between the datasets studied. Most of the TH2B associated genes appeared to have bivalent histone modifications (Fig. 9a, b). Out of the six genes which were investigated in this study, four genes namely CREM, CDYL, PRKAG2 and CATSPERB were investigated in this study, four genes namely CREM, CDYL, PRKAG2 and CATSPERB were found to be associated with both histone activation (H3K4me3) and repression marks (H3K27me3) in human sperm. TSGA10 bears H3K27me3 mark while TSSK1B has not been reported to be associated with any mark. Interestingly, a significant number of TH2B associated genes were identified to be hypomethylated and their RNA were also present in sperm (Fig. 9c, d). Hypomethylation of a gene is generally associated with its transcriptionally active state. Mature sperm is regarded as transcriptionally and translationally inactive. It thus appears that the genes which retain nucleosomal structure in sperm may be epigenetically programmed during the course of spermatogenesis and these marks are retained in mature sperm.

Spearman correlation analysis revealed a positive correlation between chromatin compaction and sperm motility, as well as concentration as also evident from Fig. 6 (Fig. 8).

Unlike rodent sperm, the human sperm population is highly heterogeneous. Consequently, high standard deviations due to inter sample variation with respect to sperm chromatin compaction status were observed. This is an inherent limitation with all studies employing human sperm. Additionally, enrichment of mononucleosomal
DNA from individual samples does not provide sufficient DNA for high-throughput sequencing hence the mononucleosomal DNA from spermatozoa of four fertile men had to be pooled.

Abnormal chromatin packaging during spermiogenesis may reflect as altered transcriptome in sperm. Given that sperm are transcriptionally and translationally inactive, the sperm transcriptome can provide an insight about the transcriptional events occurred during spermatogenesis. Recent evidences also suggest that sperm RNAs get transferred to the oocyte during fertilization and influence early embryo development [53]. Hence a qRT-PCR approach was employed by us to quantify the transcript abundance, as it is the most widely used technique to study relative abundance of sperm transcripts [54–57]. All precautions were taken during real time PCR quantification. Firstly, oligo-dT along with random primers in 3:1 proportion were used during cDNA synthesis, thus ensuring that any transcript which is not full length still get detected during real time amplification. Further to eliminate the chances of non-specific amplification and real time sensitivity issues, TaqMan chemistry was employed for transcript quantification. It is possible that sperm RNA may be degraded depending on the duration of their storage in the epididymis and this could influence detection of transcripts on qRT-PCR. To minimize this possibility, in the present study, it has been ensured that all semen samples were collected following a strict abstinence period of 3–4 days, as per WHO criteria. In this context, there is a recent evidence of the presence of full length transcripts in sperm [58].

Whilst the present study explored the TH2B associated genes involved in sperm function, it will be interesting to investigate significance of TH2B associated genes in the development of the early embryo. The effect of abnormal sperm chromatin packaging on transcription of these genes during early embryo development may reveal the importance of nucleosome retention on these genes in sperm. Studies in this direction have been initiated.

In conclusion, we studied the genome-wide distribution of TH2B in fertile sperm and found that TH2B was present on loci important for early embryogenesis and sperm function. TH2B was associated with ~5% of the total genome. All chromosomes except sex chromosomes

Fig. 9 Comparative analysis of TH2B associated genes for histone methylation marks, transcripts and hypomethylated regions (HMRs) in human sperm. Number of TH2B associated genes bearing activating mark (a) and repressing mark (b), the presence of their cognate transcript (c) and HMRs (d) in human sperm were determined by analyzing our TH2B ChIP dataset against datasets from H3K4me3- and H3K27me3 ChIP-seq data sets of Hammoud et al. [4], sperm RNA data set of Shami et al. [51], and sperm HMR data set of Molaro et al. [52]
showed varied distribution of TH2B. TH2B was found to be more enriched on genes of chromosome 4, 18, 3 and 2. Positive correlation between AMPK and sperm motility emphasizes a possible link between phosphorylated TH2B and sperm motility. Sperm chromatin compaction positively correlated with sperm motility, and concentration. Infertile individuals having defective sperm chromatin compaction showed altered expression of TH2B associated genes indicating involvement of TH2B in transcriptional regulation of these genes in post meiotic male germ cells.

Material and methods
Processing of Human semen samples
Human spermatozoa from fertile and infertile individuals were used for this study. The use of human semen samples was approved by ICMR- National Institute for Research in Reproductive Health Clinical Ethics Committee, Mumbai, India (Project No. 305/2017). Semen samples from fertile and infertile individuals (men with Asthenozoospermia, Oligozoospermia and Oligoasthenozoospermia) were collected following 3–4 days of abstinence. In the fertile group, men who had fathered a child in the preceding one year and had normal semen parameters were included. In the infertile group, men who suffered from primary infertility or secondary infertility and were having asthenozoospermia, oligozoospermia (but count not less than 1 × 10⁹/ml) or oligoasthenozoospermia were included. Semen samples showing hyper viscosity, or infection as indicated by the presence of pus cells, were not included in the study. Semen analysis was carried out as per the WHO 2010 guidelines for semen analysis [59]. Briefly, Semen samples were allowed to liquefy for 30–45 min at RT following which spermatozoa motility, count and viability were noted. A small fraction of each sample was used to study the chromatin condensation status by Aniline blue and CMA3 staining. For experiments involving ChIP-seq and validation of high-throughput data, Puresperm density gradient purification of spermatozoa was done for the semen samples of fertile men. Briefly, 2-3 ml of semen sample was diluted in HTF medium (Merk-millipore, Darmstadt, Germany) containing 5% human albumin (Sigma-aldrich, St. Louis, MO, USA: HTF-albuman medium), overlaid on 80% Puresperm density gradient (Nidacon, Molndal, Sweden) prepared using HTF- albuman medium and centrifuged at 350 g for 20 min. The pellet fraction containing motile spermatozoa was washed thrice with 0.1 M PBS to eliminate any traces of puresperm solution.

Semen samples used to study gene transcript abundance in sperm of fertile- and infertile men, were not subjected to puresperm gradient.

Aniline blue staining
Sperm histones were stained with Acidic aniline blue stain (Himedia, Mumbai, Maharashtra, India) as described by Sellami et al. [60]. Briefly, sperm smears were fixed with 3% Glutaraldehyde for 30 min, stained with 5% Acidic Aniline blue solution for 5 min at RT and observed under an oil immersion objective on Axio Observer Carl Zeiss microscope system (Carl zeiss, Oberkochen, Germany). 200 spermatozoa were counted and categorized as darkly stained (Aniline blue positive) and lightly stained (Aniline blue negative).

CMA3 Staining
The Chromomycin A3 (CMA3) staining for protamine status was carried out using a published protocol [61] with modifications. Briefly, the sperm smears were fixed using Carnoy’s solution (Methanol: Acetic acid, in 3:1 v/v ratio) for 30 min at 4 °C. Slides were incubated with Acid detergent solution, pH 1.2 containing 0.08 N HCl, 0.15 M NaCl, 0.5% Triton X100 for 30 min at RT followed by staining with 0.25 mg/ml CMA3 (Enzo, Farmingdale, NY, USA) prepared in 0.1 M Citric acid, pH 7 containing 0.2 M Na₂HPO₄ and 0.025 M MgCl₂ (McIlvaine buffer) for 30 min at RT in dark conditions. The slides were washed using McIlvaine buffer, mounted with ProLong gold antifade reagent (Life technologies, Carlsbad, California, USA) and observed at 630X magnification at excitation wavelength of 488 nm. 200 spermatozoa were counted; the brightly fluorescing sperm were categorized as CMA3 positive and dimly fluorescing as CMA3 negative.

Isolation of mononucleosomes
Chromatin preparation of sperm DNA to yield pure mononucleosomal fraction was carried out as per the protocol described by Hisano et al. [62]. Briefly, Puresperm purified spermatozoa were resuspended in 15 mM Tris–HCl buffer (pH 7.5) containing 60 mM KCl, 5 mM MgCl₂, 0.1 mM EGTA, 0.3 M sucrose and 10 mM DTT. Cells were lysed for 30 min. using NP-40 and Sodium deoxycholate (DOC) at a final concentration of 0.5% (vol/vol) and 1% (wt/vol), respectively. Sperm chromatin was subjected to 5, 15, or 30 Units of micrococcal nuclease (MNase; New England Biolab, MA, USA) per 2 million sperm, at 37 °C for 5 min. Reactions were terminated using 0.5 M EDTA, DNA was isolated using Exgene ™ cell SV mini kit (GeneAll, Dongnam, Songpa, Seoul, Korea), electrophoresed on 12% PAGE, stained with EtBr and visualized using Gel documentation system (Syngene, Cambridge, UK). The reaction containing 5 U MNase showed prominent mononucleosomal band at around 147 bp as compared to digestions using 15 or 30 U MNase (S2C of
Additional file 3). The lower intensity of mononucleosomal DNA band seen with 15 Units of MNase may represent over digestion of mononucleosomal DNA while presence of partially digested higher molecular weight DNA seen with 30 Units may indicate digestion of protamine bound DNA. Thus for the subsequent experiments, 5 Units of MNase was used per 2 million sperm to isolate mononucleosomes.

Chromatin immunoprecipitation of TH2B and processing of high-throughput data
A pure preparation of human spermatozoa was obtained to avoid contamination of any other cell type by Puresperm density gradient centrifugation. Chromatin immunoprecipitation of TH2B from sperm of four fertile individuals was carried out as per the protocol described by Hisano et al. [62] with minor modifications. Briefly, sperm DNA was digested using 5 Units of MNase per 2 million sperm. Mononucleosomes from 12 million cells were used for immunoprecipitation using 4 μg of Anti-TH2B antibody (Merck-millipore, Darmstadt, Germany, 07–680). An equivalent amount of IgG (Merck-millipore, Darmstadt, Germany, 12–370) was used as Isotype control for immunoprecipitation. Mononucleosomal DNA isolated from 2 million sperm cells served as input. A small fraction of immunoprecipitation complex was subjected to protein elution in 2X Laemmli solution by heating at 95 °C for 10 min followed by western blot detection (ChIP-Western) of TH2B and immunoprecipitated DNA was isolated from the rest. DNA was electrophoresed on 5% PAGE and stained with ethidium bromide. The band at ~147 bp corresponding to mononucleosomal DNA was excised and DNA was precipitated. 5 ng of DNA each from Input, TH2B-ChIP and IgG-ChIP was used for library preparation. High-throughput paired end sequencing was carried out on Illumina NextSeq500 platform at Sandor Lifesciences Pvt. Ltd. Hyderabad, India. Processing and quality control of raw reads was performed using NGSqctoolkit. Bowtie-0.12.9 was used for ungapped alignment of processed reads to the reference genome hg19. The resulting SAM files (Alignment files) and their binary version (BAM files) were processed by Samtools-0.2.7a and BED Tools Version 2.17.0, respectively. MACS-1.4.2 was used for calling peaks and identification of enriched regions. Finally, PeakAnalyzer-1.4 was used for annotation of peaks.

ChIP-qPCR
The peaks sequences corresponding to a few genes were retrieved from the BED file. These sequences were used to design gene specific primers using Primer 3 tool. The primers were designed such that the corresponding amplicon should be less than 147 bp, which is the size of mononucleosomal DNA. The sequences of the primers used and annealing temperature for each gene is specified in Table 4.

Table 4 Sequences of the primers used and annealing temperature for each gene

Gene	Forward primer	Reverse primer	Annealing temp. (°C)
CREM	CCACATTACCTGAATATGGGTGCT	TTTCTAAGTGCAGAAGCACATGCCT	58
CDYL	GGACTTCAGAGTTGAGGAGCA	GAGGGTCTGTACGCTTGGTA	60
PRKAG2	TGAGCTCCAGAGTGATGGTA	CCATCCAACCTTACAGAAGCAGCA	60
CATSPERB	GCACCAGTTAGTGCTGACTA	CCCCAGCAGAAGACACCAT	60
TSGA10	GGAGTCTCAGTATGCGAGGT	GATAGGAGTGGTTGGCGACAG	60
TSSK1B	CCAACGGGATCTTGGCTGAAC	AGCATATCCCATCAGCAGAACC	62

SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western blot analysis
Immunoprecipitation complexes obtained from ChIP-TH2B/ChIP-IgG were eluted in 2X Laemmli buffer and electrophoresed on 15% SDS-PAGE at 100 V for 2.5 h. Proteins were transblotted on Nitrocellulose membrane (Pall bioscience, Pensacola, FL, USA) at 100 V for 1 h 15 min. Non-specific binding to the membrane was
Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13148-021-01088-4.

Additional file 1. Chromosome-wise distribution of TH2B associated genes.

Additional file 2. Gene ontology analysis of TH2B associated genes; TH2B associated genes involved in sperm function and embryo development.

Additional file 3. Location of TH2B enriched regions from TSS (S1); Specificity of TH2B antibody and MNase digestion of sperm DNA (S2).

Additional file 4. GO- Biological process of TH2B associated genes.

Additional file 5. GO- Molecular function of TH2B associated genes.

Additional file 6. Semen parameters of fertile and infertile samples.

Acknowledgements
The authors wish to acknowledge all the study participants for their contributions and Dr. Vijay Kulkarni for his involvement in recruitment of these participants. The assistance of Ms. Sunita Kharat, Ms. Sharmila Kamat, Mr. Manish Ghosalkar, Ms. Ishu Singh and Ms. Veena Chawan with sample collection is gratefully acknowledged. We acknowledge the assistance provided by Sandor Lifesciences Pvt. Ltd., Hyderabad, India for high-throughput sequencing and raw data analysis. We also thank the Department of Biotechnology (DBT) for Junior Research Fellowship (JRF) and Senior Research Fellowship (SRF) and Indian Council of Medical Research (ICMR) for SRF to A.P.

Authors’ contributions
The study was conceptualized by PP and experimental design was developed by AP and PP. AP collected and processed the semen samples, carried out all the experiments. Data analysis, interpretation and manuscript writing was done by AP and PP. Clinical Collaborators RG and SS were involved in participent recruitment, counseling and taking their written informed consent. All authors have read and approved the final manuscript.

Funding
The work is funded by Indian Council of Medical Research (ICMR), RA/1009/12–2020 and Department of Biotechnology (DBT), India.

Availability of data and materials
The processed data is provided as additional files with this article and raw datasets generated and/or analysed during the current study are available in the NCBI-SRA repository, https://www.ncbi.nlm.nih.gov/sra/PRJNA715579.

Declarations
Ethics approval and consent to participate
Study participants for the fertile group were recruited from the ICMR-NIRRH peripheral clinic at Wadia Hospital, Parel, Mumbai and those for the infertile group were recruited from the ICMR-NIRRH Male Infertility Clinic, Parel, Mumbai. All participants were recruited after taking their written informed consent. The research ethics protocol was approved by ICMR-NIRRH Clinical Ethics Committee (Project No. 305/2017).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Gamete Immunobiology, ICMR- National Institute for Reproductive Health, Parel, Mumbai 400012, India. 2 Department of Clinical Research, ICMR- National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India.

Abbreviations
H2B: Histone 2B; H4: Histone 4; IVF: In-vitro Fertilization; ICSI: Intracytoplasmic Sperm Injection; TH2B: Testis Specific Histone H2B; TH2A: Testis Specific Histone H2A; pTH2B: Phosphorylated Testis Specific Histone H2B; CHIP: Chromatin Immunoprecipitation; GO: Gene Ontology; PCR: Polymerase Chain Reaction; qPCR: Quantitative real time PCR; qRT-PCR: Quantitative Reverse transcriptase real time PCR; Hg19: Human Genome 19, Genome Reference Consortium Human Build 37 (GRCh37); MNase: Micrococcal Nuclease; UTR: Untranslated Region; TSS: Transcription Start Site; TTS: Transcription Termination Site; HTF: Human Tubular Fluid; HS3Kme3: Histone H3 tri-methylated at Lysine 3; HS3Kme2: Histone H3 tri-methylated at Lysine 2; HS3Kme1: Histone H3 tri-methylated at Lysine 1; LNG: Uriac-N- glycosylase; FAM: Fluorescence; amides; IgG: Immunoglobulin G; AB: Aniline Blue; CMA3: Chromomycin A3; miRNA: Micro RNA; MAPK: Mitogen-activated protein kinase (MAPK); ZNF: Zinc finger protein; AS: Asthenozoospermia; OS: Oligozoospermia; OAS: Oligoasthenozoospermia; HMR: Hypomethylated regions; HOXA: Homeobox A Cluster, HOXD: Homeobox D Cluster; CREM: CAMP Response Element Modulator; CCYL: Chromodomain Y-like; PKAAG2: 5‘-AMP-activated protein kinase subunit gamma-2 (AMPK gamma2); CATSPERB: Cation channel sperm-associated protein subunit beta (CatSper-beta); TSGA10: Testis-specific gene 10; TSSK18: Testis-specific serine/threonine-protein kinase 1; NP40: Nonylphenoxypolyethoxyethanol; DOC: Sodium salt of Deoxycholic acid.
References

1. Singh I, Patankar AG, Parte P. Chapter 3—Chromatin remodeling of the male genome during spermiogenesis and embryo development. In: Tollervey TD and RH editor. Translational epigenetics. Academic Press, New York, 2021. p. 47–67.

2. Wang T, Gao H, Li W, Liu C. Essential role of histone replacement and modifications in fetal male. Front Genet. 2019;10:962.

3. Gatewood JM, Cook GR, Balhorn R, Bradbury EM, Schmid CW. Sequence-specific packaging of DNA in human sperm chromatin. Science. 1987;263(4804):962–4.

4. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.

5. Morris ID, Iott S, Dixon L, Brison DR. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum Reprod. 2002;17(4):990–8.

6. Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod. 2005;20(5):1298–306.

7. Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27:890–8.

8. Zhang X, San Gabriel M, Zini A. Sperm nuclear histone to protamine ratio in the human testis-specific histone variants, hTh2a and hTh2b. Biophys Chem. 2012;166:106–9.

9. Matsuura K, Kato M, Yamauchi S, Inoue E. Effect of histone H2B substitution on the efficiency of transgenesis in mouse oocytes. Dev Cell. 2001;20(22):6383–93.

10. Tarozzi N, Nadalin M, Sarode GV, Blum H, Reichenbach M, et al. Novel insights into context-dependent stage-specific male genome programming by the histone H2B variant TH2BS11 histone mark is enriched in the unsynapsed axes of the XY body and predominantly associates with H3K4me3-containing genomic regions in mammalian spermatoocytes. Epigenetics Chromatin. 2019;12:53.

11. Montellier E, Boussofay F, Rousseaux S, Zhang X, Buchou T, Fenaule F, et al. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev. 2013;27(15):1680–92.

12. Yamauchi S, Goto M, Fukuda Y, Inoue E, Makino Y, Katou Y, et al. Re-evaluating the localization of sperm-retained histones revealed the modification-dependent accumulation in specific genome regions. Cell Rep. 2018;23(13):3920–32.

13. Gaucher J, Boussofay F, Montellier E, Battet S, Buchou T, Bertrand S, et al. Chromodomain-dependent stage-specific male genome programming by Brdt. EMBO J. 2012;31(19):3809–20.

14. Liu S, Yu H, Liu Y, Liu X, Zhang Y, Bu C, et al. Chromodomain protein CDYL acts as a crotonyl-CoA hydratase to regulate histone crotonylation and spermatogenesis. Mol Cell. 2017;58:853–66.

15. Okada Y, Scott G, Ray MK, Mishina Y, Zhang X. Histone demethylase JHM2A is critical for Trnp1 and Prm1 transcription and spermatogenesis. Nature. 2007;450(7166):119–23.

16. Zuo X, Rong B, Li L, Li R, Lan F, Tong MH. The histone methyltransferase SETD2 is required for expression of acrossin-binding protein 1 and protamines and essential for spermiogenesis in mice. J Biol Chem. 2018;293(24):19888–98.

17. Sikklenka K, Erkek S, Godschalm M, Lambert R, McGraw S, Lafleur C, et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Sci. 2015;350(6261):aab2006.

18. Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, et al. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res. 2013;41(7):4104–17.

19. Kosi R, Juwan P, Perse M, Budefeld T, Majdic G, Fink M, et al. Novel insights into the downstream pathways and targets controlled by transcription factors cerm in the testis. PLOS ONE. 2012;7:e31798.

20. Martinov I, Choukrollah MA, Krebs A, Ye T, Legras S, Rijers E, et al. Cell-specific occupancy of an extended repertoire of CREM and CREB binding loci in male germ cells. BMC Genomics. 2010;11:530.

21. Lahn BT, Tang ZL, Zhou J, Barndt RJ, Parvinen M, Allis CD, et al. Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc Natl Acad Sci USA. 2002;99(13):8707–12.

22. Sabari BR, Tang Z, Huang H, Young-Gonzalez V, Molina H, Kong HE, et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell. 2015;58(2):203–15.

23. Parabi S, Dalvi V, Mylavouram S, Kishore A, Idicula-Thomas S, Sonawane S, et al. Tubulin acetylation: a novel functional target for CDYL in sperm. Cytoskeleton. 2017;74:331–42.

24. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrich: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.

25. Machニック P, Bailey TL. MEME-ChIP: Motif analysis of large DNA datasets. Bioinformatics. 2011;27:1696–7.

26. Mahadevan IA, Pentakota S, Roy R, Bharduri U, Satyanarayana Rao MR. TH2BS11 histone mark is enriched in the unsynapsed axes of the XY body and predominantly associates with H3K4me3-containing genomic regions in mammalian spermatoocytes. Epigenetics Chromatin. 2019;12:53.

27. Montellier E, Boussofay F, Rousseaux S, Zhang X, Buchou T, Fenaule F, et al. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev. 2013;27(15):1680–92.

28. Yamauchi S, Goto M, Fukuda Y, Inoue E, Makino Y, Katou Y, et al. Re-evaluating the localization of sperm-retained histones revealed the modification-dependent accumulation in specific genome regions. Cell Rep. 2018;23(13):3920–32.

29. Gaucher J, Boussofay F, Montellier E, Battet S, Buchou T, Bertrand S, et al. Chromodomain-dependent stage-specific male genome programming by Brdt. EMBO J. 2012;31(19):3809–20.

30. Liu S, Yu H, Liu Y, Liu X, Zhang Y, Bu C, et al. Chromodomain protein CDYL acts as a crotonyl-CoA hydratase to regulate histone crotonylation and spermatogenesis. Mol Cell. 2017;58:853–66.

31. Okada Y, Scott G, Ray MK, Mishina Y, Zhang X. Histone demethylase JHM2A is critical for Trnp1 and Prm1 transcription and spermatogenesis. Nature. 2007;450(7166):119–23.

32. Zuo X, Rong B, Li L, Li R, Lan F, Tong MH. The histone methyltransferase SETD2 is required for expression of acrossin-binding protein 1 and protamines and essential for spermiogenesis in mice. J Biol Chem. 2018;293(24):19888–98.

33. Sikklenka K, Erkek S, Godschalm M, Lambert R, McGraw S, Lafleur C, et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Sci. 2015;350(6261):aab2006.

34. Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, et al. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res. 2013;41(7):4104–17.

35. Kosi R, Juwan P, Perse M, Budefeld T, Majdic G, Fink M, et al. Novel insights into the downstream pathways and targets controlled by transcription factors cerm in the testis. PLOS ONE. 2012;7:e31798.

36. Martinov I, Choukrollah MA, Krebs A, Ye T, Legras S, Rijers E, et al. Cell-specific occupancy of an extended repertoire of CREM and CREB binding loci in male germ cells. BMC Genomics. 2010;11:530.

37. Lahn BT, Tang ZL, Zhou J, Barndt RJ, Parvinen M, Allis CD, et al. Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc Natl Acad Sci USA. 2002;99(13):8707–12.

38. Sabari BR, Tang Z, Huang H, Young-Gonzalez V, Molina H, Kong HE, et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell. 2015;58(2):203–15.

39. Parabi S, Dalvi V, Mylavouram S, Kishore A, Idicula-Thomas S, Sonawane S, et al. Tubulin acetylation: a novel functional target for CDYL in sperm. Cytoskeleton. 2017;74:331–42.

40. Chawan V, Yevate S, Gajbhiye R, Kulkarni V, Parte P. Acetylation/deacetylation and microtubule and proteasome associated proteins influence flagellar axonemal structure and function. Mol Biol Cell. 2017;28(2):414–20.
43. Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Violett B, et al. Signaling
 kinase AMPK activates stress-promoted transcription via histone H2B
 phosphorylation. Science (80-). 2010;329(5996):1201–5.
44. Martin-Hidalgo D, Hurtado de Llera A, Calle-Guisado V, Gonzalez-
 Fernandez L, Garcia-Marin L, Bragado MJ. AMPK function in Mammalian
 Spermatogenesis. Int J Mol Sci. 2018;19(1):3293.
45. Parte PP, Rao P, Redi J, Lobo V, D’Souza SJ, Gajbiye R, et al. Sperm phos-
 phoproteome profiling by ultra performance liquid chromatography fol-
 lowed by data independent analysis (LC-MS(E)) reveals altered proteomic
 signatures in asthenozoospermia. J Proteomics. 2012;75(18):5861–71.
46. Rahban R, Nef S. CatSper: the complex main gate of calcium entry in
 mammalian spermatozoa. Mol Cell Endocrinol. 2020;518:110951.
47. Liu J, Xia J, Cho KH, Clapham DE, Ren D. CatSperβ, a novel trans-
 membrane protein in the CatSper channel complex. J Biol Chem.
 2007;282:18945–52.
48. Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, et al. A sperm
 ion channel required for sperm motility and male fertility. Nature.
 2001;413(6856):603–9.
49. Kumar D, Jothi R. Bivalent chromatin protects reversibly repressed genes
 from irreversible silencing. bioRxiv 2020. Available from: http://biorxiv.
 org/content/early/2020/12/03/2020.12.02.406751.abstract
50. Oliveros JC. VENNY. An interactive tool for comparing lists with Venn
 Diagrams. http://bioinfgp.cnbc.csic.es/tools/venny/index.html. bioinfgp.
 cnbc.csic.es/tools/venny/index.html. 2007.
51. Shami AN, Zheng X, Munyoki SK, Ma Q, Manske GL, Green CD, et al. Sin-
 gle-cell rna sequencing of human, macaque, and mouse testes uncovers
 conserved and divergent features of mammalian spermatogenesis. Dev
 Cell. 2020;54:529–47.
52. Molaro A, Hodges E, Fang F, Song Q, McCombie WR, Hannon GJ, et al. Sperm
 methylation profiles reveal features of epigenetic inheritance and
 evolution in primates. Cell. 2011;146:1029–41.
53. Jodar M. Sperm and seminal plasma RNAs: what roles do they play
 beyond fertilization? Reproduction. 2019;158(4):R113–23.
54. Zhou Q, Xu M, Wang X, Yu M, Chen X, Lu J, et al. Deficiency of TBL1XR1
 causes asthenozoospermia. Andrologia. 2021;53:e13980.
55. Gianzo M, Nuñoa-Hoyos I, Urizar-Arenaza L, Larreategui Z, Quintana F, Gar-
 rido N, et al. Angiotensin II type 2 receptor is expressed in human sperm
 cells and is involved in sperm motility. Fertil Steril. 2016;105:608–16.
56. Heidary Z, Zaki-Dizaji M, Saliminejad K, Khoram Khorshid HR. MicroRNA
 profiling in spermatozoa of men with unexplained asthenozoospermia.
 Andrologia. 2019;51:e13284.
57. Luo B, He W, Wang S-H, Xiong H-P, Liang X, Shan X-D, et al. Expressions of
 ODF2 mRNA and protein are down-regulated in the sperm of astheno-
 spermia patients. Zhonghua Nan Ke Xue. 2017;23(1):1002–6.
58. Sun YH, Wang A, Song C, Shankar G, Srivastava RK, Au KF, et al. Single-
 molecule long-read sequencing reveals a conserved intact long RNA
 profile in sperm. Nat Commun. 2021;12(1):1361.
59. World Health Organization. Laboratory manual for the examination and
 processing of human semen. Cambridge: Cambridge University Press;
 2010.
60. Selami A, Chakroun N, Ben Zarrouk S, Sellami H, Kebaili S, Rebai T, et al.
 Assessment of chromatin maturity in human spermatozoa: useful
 aniline blue assay for routine diagnosis of male infertility. Adv Urol.
 2013;2013:578631.
61. Iranpour FG, Nasr-Esfahani MH, Valojerdi MR, Taki Al-Taihai TM. Chromo-
 mycin A3 staining as a useful tool for evaluation of male fertility. J Assist
 Reprod Genet. 2000;17(1):60–6.
62. Hisano M, Erkek S, Dessus-Babus S, Ramos L, Stadler MB, Peters AHFM.
 Genome-wide chromatin analysis in mature mouse and human sperma-
 tozoa. Nat Protoc. 2013;8(12):2449–70.
63. Kumar A, Dumasia K, Deshpande S, Balasiner NH. Direct regulation of
 genes involved in sperm release by estrogen and androgen through their
 receptors and coregulators. J Steroid Biochem Mol Biol. 2017;171:66–74.
 https://doi.org/10.1016/j.jsbmb.2017.02.017.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.