Overview of suspension system dynamics analysis

H Y Zhang1,*, Z G Cheng1 and B H Han1

1Department of Vehicle and Electrical engineering, Shijiazhuang, Army Engineering University Shijiazhuang campus, Hebei 050003, China

E-mail: 1802118423@qq.com

Abstract. The control strategy of vehicle suspension system model has been gradually transferred to the modern control optimization algorithm, and the traditional suspension has gradually been unable to meet the vehicle's pursuit of high performance. Starting from vehicle modal analysis, the development status of suspension model building method, category and control strategy is described respectively. On this basis, the current development difficulties and trends are analyzed.

1. Introduction

In the process of vehicle driving, vibration will inevitably occur due to road excitation and engine vibration, which will affect the riding comfort of passengers. For transport vehicles, the goods will be damaged due to excessive vibration during moving forward. For example, in a certain place in 2000, the main cause of ammunition explosion accident was the excessive vibration during ammunition transportation, which led to the failure and explosion of abandoned Ammunition Fuze. The accident caused more than 300 casualties. Therefore, it is of practical significance to optimize the control strategy and suspension structure of vehicle suspension system to reduce the vibration energy of vehicle body. In other words, when the excitation can not be changed or difficult to change, it is an effective method to reduce the vibration response of transport vehicles by studying the control strategy of vehicle suspension system and optimizing the suspension structure.

2. Modal analysis of vehicle vibration

Road roughness and body response caused by powertrain seriously affect people's requirements for comfort and safety [1]. Therefore, it is the basis of vehicle modal analysis and dynamic analysis. Some scholars use the finite element method to analyze the natural frequencies and modes of vehicle components, and carry out structural optimization [2-8]. Finite element method can make complex engineering problems simple and clear and has been widely used. Although the finite element method has high accuracy and floating degree, it has higher requirements for modeling level, boundary conditions and load conditions. Therefore, some scholars analyze vehicle mode through theoretical modeling and simulation [9-11]. Generally, theoretical modeling can only solve relatively simple models. For complex models, the workload is heavy and difficult to model. Some scholars directly use sensors to collect data from actual vehicles, and then carry out pattern recognition [12-16].

Vehicle pattern recognition is the basis of vehicle vibration control. There are two common vibration reduction methods. One is a passive damping structure composed of spring, shock absorber (shock absorber) and guide mechanism [17-22]. The other is damping materials, which rely on the characteristics of polymer materials such as rubber and polyurethane to absorb the response energy.
generated during vehicle driving [23-27]. There is a certain relationship between damping structure and damping material, but the emphasis is different.

Generally speaking, passive vibration absorption by dynamic absorber only depends on the response mode of transfer function to excitation, and there is no feedback, so the vibration reduction effect of active suspension is poor. Active suspension with adjustable control strategy has energy consumption problem [28-30]. For the research of vehicle suspension system, the appropriate model should be selected according to the research purpose. At present, there are three suspension system models: 1/4, 1/2 and full vehicle model.

3. Suspension model
Vehicle suspension model can be divided into 1/4, 1/2 and whole vehicle. The 1/4 model does not consider the pitch and roll motion of the vehicle, while the 1/2 model considers the pitching motion in the process of vehicle forward, while the whole vehicle suspension system model considers both the pitch and roll motions [31].

The 1/4 suspension system model includes two degrees of freedom, one is the body degree of freedom, the biggest advantage of the model is simple structure, easy to carry out mathematical modeling and simulation analysis; based on the 1/4 suspension system model, the semi vehicle suspension system's degree of freedom is extended by four degrees of freedom, and the body's two degrees of freedom. The model further improves the description of the actual situation of vehicles. The suspension system model of the whole vehicle is the most complex. The model contains eight degrees of freedom, which provides three degrees of freedom for the body.

The above three models are the most basic models of vehicle vibration reduction, most of the current research is based on the simplification or improvement of the above three models. At the same time, Zhang [31] and others found that under the same excitation conditions, the frequency of the highest peak in the frequency domain is the same. However, the quarter suspension system model does not consider the energy offset caused by vehicle pitching motion, so when the peak value appears in the frequency domain, the simulation results of body response power are higher than those of the latter two models (half vehicle suspension system model and vehicle suspension system model), and the response power of frame system model is equal, because it usually does not reflect the lateral response under given road excitation Road roughness. Therefore, if it is necessary to improve the control strategy or suspension structure, the first two models have little effect on the results; if the response energy received is studied, such as fatigue strength, energy acquisition, etc. the vehicle suspension system model should be used.

4. Suspension type
Suspension refers to the sum of all parts between the body and the wheel, which is mainly composed of spring, shock absorber and steering mechanism. It has two functions: one is to transfer the force and torque from the tire, which is usually connected with the knowledge of power spectrum [30]; the other is to mitigate the impact load from the ground [32] At present, suspension system can be divided into active suspension, semi-active suspension and passive suspension.

4.1. Active suspension
Active suspension means that it can dynamically adjust the suspension parameters according to the driving conditions of the vehicle to make it in the best damping state and improve the driving comfort and handling stability.

For example, it depends on the control of magnetorheological damper [33], electro- magnetic damper [34], piezoelectric damper [34].

4.2. Semi active suspension
As active suspension controls the actuators that produce force, it consumes external energy. As a result, the semi-active suspension model has attracted more and more attention for its relatively excellent performance and no energy input. Semi-active suspension can adjust suspension damping according to
road spectrum information and body state, and then improve vehicle ride comfort. Therefore, the improvement of semi-active suspension is mainly the improvement of control strategy, and some scholars have modified the structure of semi-active suspension Good [35-36].

4.3. Passive suspension
Traditional passive suspension, relying on its simple structure and strong robustness, still has great practical value. The current research on passive suspension mainly focuses on the improvement of material or structure [37-39].

5. Control strategy
At present, the basic idea to solve the optimal control problem of active suspension is to adopt control strategies to improve the ride comfort of the vehicle. On this basis, some scholars proposed the evaluation function of the optimal control signal [40], and on this basis, designed a series of optimal train controllers. There are two main control methods for vehicle suspension problems: one is a rule-based control strategy; the other is an optimized control strategy [41]. The rule-based control strategy is to monitor the effectiveness of the rules in the driving process. The formulation of these rules does not necessarily require prior knowledge of driving knowledge. These methods can be divided into deterministic methods and methods based on fuzzy rules [42]. The rule-based control method mainly relies on the idea of balancing the load, that is, at a specific engine speed, every moment the vehicle is driving will force the vehicle to return to the best efficiency point.

5.1. Method based on fuzzy rules
Regarding the suspension system as a multi domain, nonlinear and time-varying object, fuzzy logic seems to be the most reasonable method to solve this problem. In fact, the decision-making characteristics of fuzzy logic can be used instead of deterministic rules to realize real-time suboptimal vibration reduction and energy absorption strategy and improve the fault tolerance of the system [43]. In other words, fuzzy logic controller is an extension of the traditional rule-based controller [44]. The main advantages of the methods based on fuzzy rules are as follows: (1) robustness, because they can tolerate imprecise measurements and component changes [45]; (2) adaptability, because the fuzzy rules can be easily adjusted if necessary [46]. At the same time, because the self-adaptability of fuzzy rules is the same as that of intelligent algorithms such as neural network algorithm, the two are often used together [47-48]. The method based on fuzzy rules is composed of traditional fuzzy strategy [49-52], fuzzy adaptive strategy [53-55] and fuzzy prediction strategy [56-57].

5.2. Rule based deterministic approach
The representative of the rule-based deterministic method is the modern control theory [58-60]. The root locus method or the frequency response function method are used to design the adjustment controller to realize the active control of the vehicle suspension system. The representative of the method is PID control [61], which also evolves various improved PID control algorithms [62-65]. But fuzzy PID controller is better than PID controller with fixed gain parameters. In addition, there are LQG optimization algorithm [66], strategy iterative control [67], adaptive control [68], practical static feedback control [63], etc.

5.3. Control strategy based on Optimization
5.3.1. Global optimization. Based on the Hamilton Jacobi Bellman optimization principle, a theory for solving the optimal control of vehicle suspension is proposed. Compared with the classical LQR theory, the control effect of the suspension system with uncertain parameters is improved [69]. The purpose of global optimization is to make the whole suspension system rely on the cost function to achieve the performance goal, so as to obtain the global optimal operation point under specific external excitation
It can be divided into linear programming [54, 70], control theory and method [71], dynamic programming [72], random DP [73], game theory [74] and genetic algorithm [75].

5.3.2. Real time optimization. Global optimization techniques are not directly applied to real-time optimization because they are accidental solutions. However, real-time optimization can be rapidly adjusted to the changes of external states. Real time optimization strategies can be divided into decoupling control [76] and robust control method [77].

6. Conclusion
In this paper, aiming at the practical problems of improving vehicle safety and transportation, consulting a large number of literatures, this paper analyzes the suspension type, model establishment and control strategy method of suspension vibration reduction. The performance of active suspension is very good, but it consumes energy. Based on this, some scholars rely on energy feedback suspension to solve this problem, but on the one hand, it is difficult to realize the whole process of active control and passive energy feedback at the same time; on the other hand, the power conversion between motor and generator is difficult to achieve completely seamless and efficient, and there will be a certain delay in the actual application process, which is not conducive to the efficient operation of energy feedback suspension [78]. In addition, the damping effect of traditional passive suspension cannot meet people's requirements for comfort and riding comfort, while the semi-active suspension between the two can meet the requirements of many people for vibration reduction performance and economy. At present, the research on semi-active suspension system mainly includes two aspects. One is the improvement of materials, such as the optimization of magnetorheological materials [79-80], or the use of water-based materials with superior performance and environmental protection; the other is the improvement of control algorithm, such as the introduction of Udwadia kalaba method [81]. Considering the nonlinear relationship of suspension system, the traditional linear model cannot meet its needs. Therefore, modern control strategies such as fuzzy control, adaptive control and other nonlinear control methods have been developed rapidly. The suspension control strategy combining adaptive fuzzy controller and magnetorheological damper has also achieved good ride comfort and vehicle handling in practical application. However, the traditional linear control model and the modern nonlinear control model have some errors. In recent years, neural network algorithm and genetic algorithm have been introduced into the control model to realize the nonlinear infinite approximation. Therefore, in the era of artificial intelligence, whether the self-learning ability of control system can be further improved, and the sensitivity and response speed of suspension system to external changes will become the development trend of future suspension control strategy. In addition, some scholars have improved the control strategy by using the delayed feedback model, but the experimental results are prone to produce chaos, so how to optimize the gain function to avoid chaos remains to be further studied.

References
[1] Dai Y, Cui S, Song L 2011 Finite Element Method Modal Analysis of Driving Motor for Electric Vehicle Pr. Csee 31(9) 100-4
[2] Faria M T C D, Silva F M A D, Duarte F P and Valle R M 2004 Modal Analysis of a Tubular Structure Vehicle Chassis XIII Congresso e Exposio Internacionais de Tecnologia da Mobilidade - SAE Brasil.
[3] Zare H G, Maleki A, Rahaghi M I and Lashgari M 2019 Vibration modelling and structural modification of combine harvester thresher using operational modal analysis and finite element method. Str. Mon. M. 6(1) 33-46.
[4] Moisescu A R, Anghelache G and Cristea G 2018 Investigation of radial modal behaviour using finite element analysis for truck tyres without road contact. Pro. Man. 22 99-106.
[5] Li S and Feng X 2020 Study of structural optimization design on a certain vehicle body-in-white based on static performance and modal analysis Mech. Syst. Signal Pr. 135 106405.
[6] Zhang J, Chen K and Dai Y 2019 Design and modal analysis of electric vehicle frame for modern
agricultural manor J. Chin. Agr. Mech. 2 109-112
[7] Rao D S 2019 Design and analysis of a truck chassis frame (Germany: LAP LAMBERT Academic Publishing)
[8] Cao H, Liang N and Zhao J 2019 Stress calculation method of railway vehicle car body based on
strain mode Journal of Chengdu Technological University 3 16-20
[9] Ren K, Chen J, Xiao J, Wang L and Xiang G 2018 Analysis of vibration performance of BDU in
new energy vehicle Mach. Bu. Aut. 3 85-87
[10] Feng Y and Jun X 2018 Modal analysis and improvement of the frame for all-terrain vehicle. Noise
& Vibration Worldwide 49(12) 095745651880114
[11] Kim H, Kang Y and Park H 2018 Experimental modal analysis for analyzing the dynamic
characteristics of vehicle components KAEA 1434-6
[12] Edwige S 2019 Modal analysis and flow control for drag reduction on a Sport Utility Vehicle NNT: 2019 CNAM1233
[13] Xu J L, Ren Z Y, Ke Y H and Liu Q H 2019 A theoretical and experimental investigation for the
modal analysis on the rear axle housing of the crossover vehicle Machinery Design & Manufacture 2 34-37
[14] Fang X D and Wang X M 2019 Modal analysis and experimental optimization of the header of rape
combine harvester Journal of Gansu Agricultural University 5 232-240
[15] Gong S Q, Wang H, Zhu J, Guo F C and Shi C H 2019 The experimental study on tire modal analysis N Vibr Contr. 1 99-102
[16] Xue L P, Li W B, Si Q Y, Ye C and Sun S X 2019 Engineering analysis on launch vehicle structural
vibration fatigue damage M. Sp. Veh. 2 35-38
[17] Zhou H, Liu H, Gao P and Xiang C L 2018 Optimization design and performance analysis of
vehicle powertrain mounting system Chin. J. Mech. Eng. 31(01) 1-13
[18] Han Z, Hui L, Pu G and Chang L X 2018 Optimization Design and Performance Analysis of Vehicle Powertrain Mounting System Chinese Journal of Mechanical Engineering, 31(1), 1-13.
[19] Qin Y, He C, Shao X, Du H, Xiang C and Dong M 2018 Vibration mitigation for in wheel switched reluctance motor driven electric vehicle with dynamic vibration absorbing structures J. Sound Vib. 419 249-267 .
[20] Love J S and Tait M J 2018 The performance characteristics of misaligned bidirectional dynamic vibration absorbers Struct. Ctrl. Health Monit. 25(1) e2055.
[21] Shui C, Kou d, Min Y 2018 On the Reciprocity of a Transfer Function in a Damped Primary System With a Series Type Double Mass Dynamic Vibration Absorber Proc. Conf. Kansai Branch (Japan: The Japan Society of Mechanical Engineers)
[22] Büyük M, Atahan O A and Kurucuoglu K 2018 Impact performance evaluation of a crash cushion
design using finite element simulation and full scale crash testing Safety 4(4) 48
[23] Kim H K, Lee H J, Jung J M, Yoo J J, Lee S J and Park C H 2019 Resin Composition for An Exterior Material of Vehicle And Molded Product For Vehicle Including the Same.
[24] Yang J K, Jiang H L, Tian X L and Yang X Q 2018 Research progress of magnetorheological fluids
and its application in military field Ordnance Material Science and Engineering 2 103-108
[25] Kurzina E G, Kolmakov A G, Aksenov Y N, Kurzina A M, Bogachev A Y and Semak A V 2019 Comparison of the composite materials intended for damping elements for the infrastructure of rail transport and rolling stock Russian Metallurgy (4) 48-52
[26] Kim H, Kim B and Han W 2017 Noise reduction of electric vehicle using passive damping material Journal of the Institute of Electronics and Information Engineers 54(6), 117-122.
[27] Deng P, Lu X Y and Li H 2018 Overview of energy saving and consumption reduction technology for motor J. Wuhan Eng. Inst. 1 1-6
[28] Conneely K and Connolly C 2009 Vibration isolation theory and practice Ass. Aut. 29(1) 8-13.
[29] Du R, Qiu G, Gao K, Hu L and Liu L 2020 Abnormal road surface recognition based on smartphone acceleration sensor Sensor 20(2) 451
[30] Zhang R, Wang X and John S 2018 A comprehensive review of the techniques on regenerative
shock absorber systems Energies 11(5) 1167.

[31] Dutta D 2020 Semi active suspension system of car model design: a comparative study Aust. J. Mech. Eng. 18(1) 16-25.

[32] Krauze P, Kasprzyk J, Kozyra A and Rzepecki J 2018 Experimental analysis of vibration control algorithms applied for an off road vehicle with magnetorheological dampers J Low. Freq. Noise V. A. 37(3) 619-39

[33] Peng H, Zhang J, Wang X, Sun Y and Yao J 2018 Influence of Inertia Mass on Electromagnetic Suspension Damping and Amplitude Frequency Characteristics Proc. Int. Symp. Big Data and Artificial Intelligence (Association for Computing Machinery: New York) 161-166

[34] Wang W, Song Y L, Wang T C and Cui L 2012 Intelligent control of automotive semi active suspension with uncertain factors Eng. Mech. 9 337-342

[35] Min C Q, Dahlmann M and Sattel T 2017 A concept for semi active vibration control with a serial stiffness switch system J. Sound Vib. 405 234-250

[36] Acharya S, Saini T R S and Kumar H 2019 Determination of optimal magnetorheological fluid particle loading and size for shear mode monotube damper J Braz. Soc. Mech. Sci. Eng. 41 392.

[37] Xin C J, Cai Y W and Ren W 2017 Compensation system design of disturbing torques for a magnetically suspended sensitive gyroscope with double spherical envelope surfaces P. I. Mech. Eng. C-J. Mech. 231(11) 2124-34

[38] Sharp R S 2005 Wheelbase filtering and automobile suspension tuning for minimizing motions in pitch P. I. Mech. Eng. D-J. Aut. Eng. 261(12) 933-46

[39] Wang R 2015 Dynamic performance analysis of hydraulic isd suspension based on virtual prototype model J. Mech. Eng. 51(10) 137

[40] Wei J H, Song H Y, Zhao Y Y and Chang X R 2018 Research on resonance suppression strategy of t sapf filtering system based on virtual damping control Electr. P. Eng. Tech. (3) 48-54

[41] Salmasi F R 2007 Control strategies for hybrid electric vehicles: evolution, classification, comparison, and future trends IEEE T Veh. T, 56, 2393-2404.

[42] Zou Y, Shi J H, Dong G L, Wei G and Hu X S 2013 Optimal energy control strategy design for a hybrid electric vehicle Disc. Dyn. Nat. Soc. 292-297.

[43] Pang H, Yang J J and Liu X 2019 Sliding mode fault tolerant controller design for vehicle active suspension systems based on t s fuzzy model Eng. Mech. (2) 229-238

[44] Chen X W, Cao X Z and Ren Z 2016 Research on fuzzy controller design and simulink simulation of a half automobile active suspension J. Liaoning University of Technology (Natural Science Edition) 2 117-121

[45] Zhou C Y, Zhao X, and Yu Q 2018 Adaptive robust control for active suspension system using TS fuzzy model approach Mech Syst Ctrl (formerly Control and Intelligent Systems) 46(2).

[46] Mustafa G I Y, Wang H and Tian Y 2019 Model free adaptive fuzzy logic control for a half car active suspension system St. Inf. Ctrl. 28(1) 13-24.

[47] Pang H, Liu F, X and Ze R 2018 Variable universe fuzzy control for vehicle semi active suspension system with mr damper combining fuzzy neural network and particle swarm optimization Neurocomputing

[48] Sha S J, Wang Z N, Du H P 2020 Research on performance of vehicle semi active suspension applied magnetorheological damper based on linear quadratic gaussian control Noise & Vibration Worldwide 51(7-9) 8.

[49] Sun L Y and Wang J Y 2018 Design of semi active air suspension systems based on fuzzy sliding mode back stepping N. Vib. Ctrl. 38(1) 109-113.

[50] Zhang Z, Liang H, Ma H and Pan Y 2019 Reliable fuzzy control for uncertain vehicle suspension systems with random incomplete transmission signals and sensor failure Mechanical Systems and Signal Processing (130) 776-789.

[51] Deshpande V S, Mohan B, Shendge P D and Phadke S B 2014 Disturbance observer based sliding mode control of active suspension systems J So & Vib. 333(11) 2281-2296.

[52] Wang X P, Wu C M, Huang D J 2017 A simulation research on 1/2 vehicle semi active suspension
based on the fuzzy PID controller. *Journal of Hunan University of Technology* (06) 54-59.

[53] Pang H, Liang H, Wang J P and Liu F 2018 Adaptive fuzzy sliding mode control for vehicle active suspension systems considering system uncertainty. *J. Vib. and Shock* 37(15) 261-269.

[54] P J Y, Wang Y and Dai W L 2014 The research of automobile suspension system performance based on one half body with four freedoms. *Traffic Energy Saving and Environmental Protection* 10(05) 47-50.

[55] Wu J, Zhou H L and Liu Z Y 2019 Practical Static Output Feedback Control Methods for Constrained Piecewise Affine Systems: An Application in Vehicle Suspension Control. *2019 IEEE International Symposium on Circuits and Systems (ISCAS)* (New York: IEEE).

[56] Bakht M J and Mahmoodabadi M J 2018 Moving least square online predictive model for two degrees of freedom suspension system using optimal adaptive fuzzy controller. *Mod Mech Eng* 18(3) 19-28.

[57] Hu Y L, Chen M Z Q and Sun Y H 2017 Comfort oriented vehicle suspension design with skyhook inerter configuration. *Journal of Sound & Vibration* 405 34-47.

[58] Guo L C, Wang X, Fang R L and Bi F R 2020 Review on development of high static-low dynamic stiffness seat cushion mattress for vibration control of seating suspension system. *Applences* 10(8) 2887.

[59] Zhu K, Ren C B, Wang F and Qu Y W 2016 Research on vibration reduction of 1/4 car model with time delay feedback control. *Journal of Shandong University of Technology* 30(02)31-35

[60] Ekoru J, E D, Dahungi O A and Pedro J O 2011 PID control of a nonlinear half car active suspension system via force feedback. *IEEE Africon '11* (New York: IEEE).

[61] Zheng S, Zhu L L, Cheng L, He J L and Lu B F 2014 Comparison between LQG control and fuzzy PID control of active suspension. *Journal of Anhui University of Science and Technology (Natural Science)* 34(03) 67-72.

[62] Xie Y D and Jie M 2020 PID Control for the Vehicle Suspension Optimized by the PSO Algorithm. *The Third International Conference on electromechanical control technology and transportation*.

[63] Yan G H, Wang S H, Guan Z W and Liu C F 2013 PID control strategy of vehicle active suspension based on considering time delay and stability. *Adv. Mat. Res.* 706-708(1) 901-6.

[64] Esmaeili J S, Akbari A and Karimi H R 2015 Load dependent lpv/h2 output feedback control of semi active suspension systems equipped with mr damper. *Int. J. Vehicle Des.* 68(1/2/3) 119.

[65] Likaj R and Shala A 2018 Optimisation and control of vehicle suspension using linear quadratic gaussian control. *Stranjicky Casopis – Journal of Mechanical Engineering* 68(1).

[66] Kou F 2016 Design and energy regenerative study on vehicle semi active suspension with electro hydrostatic actuator. *Transactions of the Chinese Society for Agricultural Machinery* 47(05) 352-9.

[67] Wang X L 2018 Semi active adaptive optimal control of vehicle suspension with a magnetorheological damper based on policy iteration. *J. Intel. Mat. Syst. Str.* 29(2).

[68] Sun W, Gao H and Kaynak O 2013 Adaptive backstepping control for active suspension systems with hard constraints. *IEEE-ASME T. Mech.* 18(3) 1072-1079

[69] Xie W D, Fu Z J, Li B and Lin X B 2017 Online adaptive optimal control of vehicle active suspension systems using single network approximate dynamic programming. *Mathematical Problems in Engineering Theory Methods & Applications* 2017 4575926.

[70] Zhang Z D, Li S H and Zhang B 2017 Simulation analysis for lqg control based on quarter vehicle model with semi active suspension. *Automobile Applied Technology* (21) 171-4

[71] John D, Nathan B and Hamid L 2016 Semi-Active Suspension Suboptimal Control Using Dynamic Programming of a Quarter Car Suspension System. *Asme International Design Engineering Technical Conferences & Computers & Information in Engineering Conference*.

[72] Zhu K, Ren C B, Wang F and Qu Y W 2016 Research on vibration reduction of 1/4 car model with time delay feedback control. *Journal of Shandong University of Technology* 30(02) 31-5

[73] Zhang Y H, Wang W and Ouyang H J 2019 Dynamic reliability evaluation of vehicle "track coupled systems considering the randomness of suspension and wheel" rail parameters. *P I Mech. Eng. O-J. Ris.* 233(6) 1748006X1986364
[74] Wang H B 2018 Enhancing vehicle suspension system control performance based on the improved extension control Adv. Mech. Eng. 10(7)

[75] Michiel H, Stijn D, Clara M L, Kurt S and Florian V 2018 Proportional integral state feedback controller optimization for a full car active suspension setup using a genetic algorithm IFAC PapersOnLine 51(4) 1-6

[76] Xia Z H, Gong D, Zhou J S, Sun W J and Sun Y 2018 Decoupling optimization design of under chassis equipment suspension system in high speed trains Shock and Vibration 2018(9)1-12

[77] Hui J, W R R, Li C and Bao J D 2019 Robust finite frequency H∞ control of full car active suspension J. Sound Vib. 441 221-39

[78] Dai J G, Wang C, Liu Z F, Zhu J H and Hu X M 2018 Review of energy reclaiming suspension technology Sci. Technol. Eng. 30(18) 131-9

[79] Yoon D, Kim G W and Choi S B 2020 Response time of magnetorheological dampers to current inputs in a semi active suspension system: modeling, control and sensitivity analysis Mech. Syst. Signal. Pr. 146 106999

[80] Van N M, Dal S Y, Seung B C and Gi W K 2020 Explicit model predictive control of semi active suspension systems with magneto rheological dampers subject to input constraints J. Intel. Mat. Syst. Str. 31(9) 1157-70

[81] Huang K, Xian Y J, Li C M and Qiu M M 2019 Application of udwadia–kalaba approach to semi active suspension control of a heavy duty truck P. I. Mech. Eng. D-J. Aut. 234(1) 245-57