Threat of *Xylella fastidiosa* and options for mitigation in infected plants

Lindsey P. Burbank

ORCID information: Lindsey P. Burbank (orcid: 0000-0002-9614-1259)

Address: USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 S Riverbend Ave, Parlier, CA 93648, United States.

Correspondence: Lindsey P. Burbank. Email: lindsey.burbank@usda.gov

Received: 10 May 2022
Accepted: 11 May 2022

doi: 10.1079/cabireviews202217021

The electronic version of this article is the definitive one. It is located here: http://www.cabi.org/cabireviews

Creative Commons Licence: © The Author(s) 2022. This article is published under a Creative Commons attribution 4.0 International License (cc by 4.0) (Online ISSN 1749-8848)

Abstract

The bacterial pathogen *Xylella fastidiosa* continues to threaten agricultural production of many different crops around the world, with significant economic burden from crop loss, disease management, and surveillance costs. In addition to direct economic consequences, plant diseases caused by *X. fastidiosa* have had significant societal impacts in the most affected regions. Although *X. fastidiosa* infects long-term perennial crops and landscape plants, there has never been a truly effective treatment for plants once they become infected. This review discusses the threat of *X. fastidiosa* to agriculture, landscapes, and global commerce, in addition to the most recent progress in treatment for *X. fastidiosa* in infected plants. Current disease mitigation options include nutritional, chemical, biocontrol, and plant resistance-based strategies, with the potential to develop combined management approaches. Overall, several strategies are promising for disease suppression but there is still opportunity for innovation, especially in treatment approaches that can be administered systemically by soil or foliar spray routes. Prevention of severe disease outcomes and crop loss, and the ability to suppress pathogen populations and reduce transmission without heavy reliance on insecticides would have significant economic and environmental benefits.

Keywords: *Xylella fastidiosa*, Pierce’s disease, citrus variegated chlorosis, almond leaf scorch, bacterial leaf scorch, olive quick decline syndrome

Review Methodology: This article discusses the recent developments in plant-focused strategies for *X. fastidiosa* management across its wide range of crop and ornamental host species. As the primary focus is on late-stage research for in planta control of the pathogen, innovations still in preliminary stages such as those tested *in vitro* or in model systems are not included. Literature reviewed for this article was obtained from searches of the Scopus and Web of Science databases using the following search terms: “*Xylella fastidiosa*,” “Pierce’s disease,” “citrus variegated chlorosis,” “almond leaf scorch,” “bacterial leaf scorch,” “olive quick decline syndrome.” From Scopus, this search returned approximately 1500 articles and from Web of Science approximately 2000 articles as of January 14, 2022. Additional research updates were included as appropriate from the publicly available proceedings of recent scientific meetings focused on *X. fastidiosa* in the United States (California Department of Food and Agriculture, Pierce’s Disease Research Symposium, December 14–15, 2021, https://www.cdfa.ca.gov/pdcp/) and Europe (3rd European Conference on *X. fastidiosa*, April 29–30, 2021, https://www.efsa.europa.eu/en/events/event/3rd-european-conference-xylella-fastidiosa-and-xf-actors-final-meeting). Articles were then curated manually for topic relevance, and with a focus on most recent findings. Several previous reviews cover other areas of *X. fastidiosa* research and earlier findings in more depth [1–9].

Threat of *Xylella fastidiosa*

Xylella fastidiosa is a bacterial species in the Xanthomonadaceae family, one of two species (*X. fastidiosa* and *Xylella taiwanensis*) in the genus *Xylella* [10, 11]. Three subspecies of *X. fastidiosa* have been formally described in bacterial taxonomy (subsp. *fastidiosa*, subsp. *multiplex*, and subsp. *pauca*) and additional subspecies (subsp. *sandyi*, subsp. *morus*) have been proposed as well [12–14]. The interactions of different *X. fastidiosa* subspecies, and different sequence types within a subspecies, with its wide range of host plants are complex. Some of the major *X.
Table 1. Major crop and ornamental plant diseases caused by *Xylella fastidiosa*.

Host species	Disease common name	*X. fastidiosa* subspecies	Key references
Vitis vinifera	Pierce’s disease (PD)	*fastidiosa*	[4, 11, 15]
Prunus dulcis	Almond leaf scorch	*fastidiosa, multiplex*	[16, 17]
Olea europaea	Olive quick decline syndrome (OQDS)	*paucia*	[18, 19]
Citrus sinensis	Citrus variegated chlorosis	*paucia*	[20, 21]
Vaccinium corymbosum	Bacterial leaf scorch of blueberry	*fastidiosa, multiplex*	[22, 23]
Prunus persica	Phony peach disease	*multiplex*	[1, 24]
Prunus domestica	Plum leaf scald	*multiplex*	[25, 26]
Nerium oleander	Oleander leaf scorch	*sandyi*	[12]
Polygala myrtifolia	Bacterial leaf scorch	*multiplex*	[27]
Platanus occidentalis	Bacterial leaf scorch	*multiplex*	[28]
Quercus sp.	Bacterial leaf scorch	*multiplex*	[29]
Coffee sp.	Coffee leaf scorch	*paucia, fastidiosa/sandyi*	[30, 31]
Morus alba	Mulberry leaf scorch	*morus*	[32]
Chitalpa tashkentensis	Bacterial leaf scorch	*taske*	[33]

1This list is not exhaustive but contains the host plants for which significant findings have been published regarding *X. fastidiosa* infection and/or quarantine risk.

fastidiosa subspecies–host interactions currently known to be associated with disease are listed in Table 1. However, this information is constantly evolving as new *X. fastidiosa* strains are identified and as genomic information provides additional insights into the genetic relationships of this pathogen. It is also important to note that within a host plant species, cultivar characteristics can influence susceptibility to different strains of *X. fastidiosa* as well.

Agricultural crops, landscape, and global commerce

Major diseases caused by *X. fastidiosa* affect several economically significant specialty crops including grapes, almond, citrus, olive, blueberry, coffee, and stone fruits (Table 1). Worldwide, losses in agricultural production caused by this pathogen have been severe. In the early 2000s, loss of citrus trees due to *X. fastidiosa* infection was estimated to cost the industry in Brazil over $120 million US dollars per year [34]. Control of *X. fastidiosa* in the California grape industry has also reached over $100 million per year, and projected costs in the Mediterranean region due to this pathogen could be in the billions of euros, with a significant portion of these costs passed on to consumers [35–37]. Significance of *X. fastidiosa* to agricultural production has driven substantial research investments from national and state governments, and from grower-funded research programs [38]. As a result, considerable advances in understanding *X. fastidiosa* epidemiology and disease biology have occurred (especially over the last 30 years), with citrus, grapevine, *Prunus* species, and olive as the most highly studied host plants [1, 3–5, 20, 25]. In addition to the major crop hosts, *X. fastidiosa* can cause infection with or without disease symptoms in hundreds of plant species [39]. In ornamentals and wild plants, *X. fastidiosa* is not as well studied but ornamental plant trade has been implicated in some *X. fastidiosa* introductions [40, 41]. Woody perennials and trees often used in landscaping including oleander (*Nerium oleander*), ornamental olive (*Olea* sp.), myrtle-leaf milkwort (*Polygala myrtifolia*), American elm (*Ulmus americana*), and sycamore (*Platanus* spp.) are known hosts of *X. fastidiosa* [12, 27, 28, 42, 43]. *X. fastidiosa* was also detected in ornamental coffee plants from Central America being imported into Europe [41]. The economic costs of managing and replacing diseased ornamental plants, and the impact on nursery trade are significant. In the southwestern United States, oleander is one of the most commonly used landscape plants in urban settings, including hedges along thousands of miles of roads and highways. Costs to cities and transportation authorities for plant removal and replacement are estimated in the millions of dollars [44, 45]. In the eastern United States, bacterial leaf scorch impacts a wide range of urban shade trees including in major cities such as Washington DC [46]. Because of the large size and value of trees in these settings, cost of replacing one tree can be thousands of dollars [47]. In areas where *X. fastidiosa* is not already established, eradication measures may be used if the pathogen is detected [48]. Propagation and transport of the infected plant material is an important risk factor for spread of *X. fastidiosa* both locally and globally [48]. Accordingly, detection and surveillance for *X. fastidiosa* in plant material is essential for reducing spread, but this comes with several challenges because of a long latent period (1–10 months, depending on host), and an extremely broad host range [39, 48]. Molecular detection protocols are typically the method of choice for *X. fastidiosa* in quarantine testing due to the difficulty and time required for culture-based methods. It is also important to identify the pathogen down to the level of subspecies or sequence type (based on multi-locus sequence typing) because not all sequence types of *X. fastidiosa* are virulent in all hosts, or restricted in the same areas [39, 49]. Improvements to molecular detection protocols for *X. fastidiosa* continue to be made with advances in molecular biology and sequencing technology [50–53]. However, as *X. fastidiosa* colonizes only the xylem tissue, sampling different plant organs and using different
extraction procedures may be necessary for optimal detection depending on the plant species [54]. For field scale surveillance in areas where X. fastidiosa is already established, remote sensing technology is being explored in some crops, such as olive and almond, to facilitate the testing efforts in combination with other methods [55, 56]. Plant functional traits associated with water stress and chlorophyll degradation detected by aerial remote sensing of olive trees could distinguish symptomatic from asymptomatic trees prior to visual observation of symptoms on the ground [55]. In almond as well, plant spectral traits provided insight into disease spread when combined with epidemiological models [56]. Of particular interest is the potential for these technologies to differentiate symptoms of X. fastidiosa infection from abiotic water stress and other xylem pathogens such as Verticillium [57].

Spread of X. fastidiosa between host plants is dependent on insect transmission [2, 58], so field management also relies on identification and management of vectors. Understanding vector dynamics in the specific crop and geographic region is crucial as these dynamics can be vastly different depending on the area [59, 60]. In olive groves in the Apulia region of Italy where the spittlebug Philaenus spumarius is the predominant vector, the highest vector populations occur in late spring through early summer, with resurgence in the herbaceous groundcover plants again in autumn [61]. In contrast, populations of glassy-winged sharpshooter (GWSS), the main vector of X. fastidiosa in vineyards in the southern San Joaquin Valley region of California USA, peak in late summer [60]. Several other species of xylem-feeding insects have been implicated in other epidemics, also with different seasonal and spatial patterns of vector populations [62, 63]. As high vector populations are directly connected to the rate of pathogen spread, it is important to understand the region-specific dynamics in order to design the optimal management and risk mitigation strategies [64]. Besides insect vector dynamics, climate also impacts likelihood of X. fastidiosa establishment, with colder winters believed to limit disease persistence [65]. Additional climate variables such as precipitation and seasonal high temperatures are also important considerations [66]. Overall, the threat of X. fastidiosa to global agriculture production is significant and will continue to evolve as the environment in which we produce crops changes.

Societal impacts

Many plant pathogens throughout history have had far-reaching impacts on societies around the world and X. fastidiosa is no different. Diseases caused by X. fastidiosa have altered land use and crop selection, policy, social movements, and ecosystems. In the 1880s in the region of California, USA, now known as Orange County, Pierce’s disease had a significant impact on the viability of growing grapes and viticulture was largely abandoned in the area for the pursuit of other industries [9]. Likewise, in the eastern United States, Pierce's disease pressure has been a limiting factor for the expansion of Vitis vinifera cultivation [67]. Crop substitutions and altered patterns of land use in response to pathogen pressure are a common consequence of plant disease, but the impact can be much greater in areas where the agriculture is directly tied to cultural identity.

The unforeseen epidemic of OQDS in southern Italy has had dramatic impacts not only on agricultural production, but also on cultural heritage and social dynamics. Olive trees in Apulia are often centuries old and hold great significance to the farmers and citizens of the region. Devastation brought on by the disease was not just in economic loss to the crops, but also in the less easily quantifiable value of some of the oldest olive trees in the Mediterranean basin, trees considered by many to be irreplaceable [68, 69]. Because of the cultural significance of the Apulian olive trees, X. fastidiosa eradication measures implemented by European authorities were met with resistance and social movements were formed in opposition [68–70]. Scientific uncertainty in the early stages of the OQDS outbreak in Italy was at times exploited to propagate misinformation about the pathogen, where it came from, and whether the containment policies were justified. This went as far as prosecution of several scientists who were actively working to find answers and solutions to the epidemic [71, 72]. As OQDS was first observed in olive trees in Italy around 2010, and X. fastidiosa was first detected in trees in the region in 2013, it demonstrates the unfolding of a major plant disease epidemic in the age of social media and rapid online communication [18, 69, 73]. It also highlights the importance of communicating effectively with agricultural stakeholders and the general public, and fully understanding the social context for emerging plant diseases just as for human diseases.

Social impacts of X. fastidiosa are not limited to rural agricultural regions. Trees and landscape plants in urban areas that provide significant health and environmental benefits are also threatened by this pathogen. Bacterial leaf scorch affects many of the shade tree species commonly planted in and around major eastern cities in the United States [29]. These trees provide important benefits to communities including atmospheric cooling, esthetic benefits, and mitigation of poor environmental conditions in urban areas [74]. Trees affected by X. fastidiosa can be found in parks, residential neighborhoods, and monuments such as the National Mall in Washington, DC. In some regions, it is estimated that up to 30% of urban landscape trees may be infected with X. fastidiosa [29]. However, in the United States the visible impacts on landscape outside of agriculture have not been as sudden or dramatic as what unfolded in Italy, and tree mortality from invasive diseases such as Dutch elm disease is typically more noticeable [29]. Like the olive trees of Apulia, ancient trees hold historical significance in other areas as well, such as the iconic oaks (Quercus robur) in England [75]. Although

http://www.cabi.org/cabireviews
X. fastidiosa has never been found in the United Kingdom, proactive research campaigns are ongoing to identify the potential native vectors and raise public awareness of the threat to English oak and other important plants should this pathogen arrive [76]. Preemptive risk mitigation efforts are not unwarranted given the dramatic impacts X. fastidiosa has had elsewhere in Europe over the last several years. Removal of olive groves leaving behind uncultivated land in the Apulia region of Italy led to loss of ecosystem services, particularly microclimate temperature regulation and habitat [68, 77]. Landscape restoration in peri-urban areas now requires consideration just as does the return of agriculture through re-planting either of X. fastidiosa-resistant olive varieties or of other crops.

Options for Control.
Host resistance as a foundation for disease management. Historically, plant-focused management strategies for diseases caused by X. fastidiosa revolved around identification of existing resistant or tolerant plant material and/or development of new commercially desirable cultivars with improved X. fastidiosa resistance. Considerable work in breeding Pierce’s disease resistant grapevines in the United States utilized genetic material from American wild Vitis species naturally resistant to X. fastidiosa infection [78, 79]. This work identified a resistance locus (PDR1) that has since been used extensively in breeding Pierce’s disease-resistant wine grapes in the California region [80–83]. Likewise, in other crops such as citrus, olive, almond, and plum, screening of germplasm material or hybrid crosses revealed genetic material highly resistant to X. fastidiosa infection, or with some level of tolerance. Although the most common commercial Citrus sinensis varieties are susceptible, many hybrids and other citrus varieties including some mandarins (C. reticulata), lemons (C. lemon), and grapefruits (C. paradisi) have fewer symptoms, lower bacterial titers, or both [84]. Gene expression studies using resistant citrus varieties and hybrid crosses found induction of a number of plant defense genes associated with X. fastidiosa resistance [84–86]. In olive as well, certain cultivars such as “Leccino” have some resistance to X. fastidiosa, supporting lower bacterial populations and showing differential expression of defense-related genes [87]. Ongoing research to identify genetic diversity and more potential sources of X. fastidiosa resistance is being conducted on a wide range of European olive germplasm [88–90].

Prunus crops present an interesting case in X. fastidiosa resistance because there are several different species in this genus that are susceptible to different strains of the pathogen (almond leaf scorch, phony peach, plum leaf scald, etc.). Early graft transmission studies found that X. fastidiosa could be transmitted from root segments with phony peach symptoms to healthy plum scions and vice versa [91]. In more recent work, peach (P. persica) and peach-almond hybrid (P. persica x P. dulcis) varieties used for almond rootstock in California demonstrated resistance to an almond leaf scorch strain of X. fastidiosa [92]. However, this resistance is likely strain specific as peach cultivar “Nemaguard,” which is resistant to almond leaf scorch strains of X. fastidiosa, can become infected with phony peach disease [91, 93]. Among commercial almond varieties grown in the United States and Spain, there is also a range of susceptibility to X. fastidiosa, some of which is dependent on the specific pathogen strain [94–96]. Plum germplasm screening in Brazil also identified a range of susceptibility to leaf scald disease, including some cultivars that appear to be completely resistant [97, 98]. Given the presence of resistant genotypes in other Prunus species, it is likely that varietal resistance to phony peach disease exists as well, but this has not been fully evaluated [1]. What becomes increasingly clear is that resistance, tolerance, or susceptibility to X. fastidiosa is dependent on the specific X. fastidiosa strain and plant species and cultivar involved. Beginning to understand these interactions has been greatly facilitated by advances in genetic and sequencing technology, but not all X. fastidiosa lineages and host species are equally represented in available genome sequences to date and this is an important area of research going forward.

In addition to the traditional breeding efforts, other approaches in the realm of plant resistance include transgenics and the use of resistant rootstocks. Several different transgenic strategies have been tested in grapevines and citrus [99–102]. These strategies target specific pathogenesis mechanisms such as bacterial quorum sensing and polygalacturonase activity and complement pathogen-focused research in unraveling the disease mechanisms employed by X. fastidiosa in susceptible host plants [4, 6]. Because of consumer preference and regulatory hurdles related to transgenic plants in agriculture, protection of unmodified scions through the use of transgenic rootstocks is also being explored [101]. Naturally resistant rootstocks can also reduce disease symptoms or persistence of X. fastidiosa in some host plants. Almond trees grafted on peach rootstock “Nemaguard” not only had reduced scorching symptoms but also higher rates of recovery from disease compared with trees grafted on susceptible almond rootstock “Nonpareil” [93]. In blueberry, bacterial leaf scorch symptoms were reduced in a susceptible cultivar grafted on Vaccinium arboretum rootstock compared with own-rooted plants [103]. Likewise, in citrus some rootstocks such as “Rangpur” lime are highly resistant to X. fastidiosa, and substitution of infected scions for clean ones delayed return of citrus variegated chlorosis symptoms in Brazilian orchards under high disease pressure [104, 105]. Although some variation in Pierce’s disease severity was found in susceptible grapevines on different rootstocks, many commonly used grape rootstock varieties are not completely resistant to X. fastidiosa infection and scions will still be infected [106, 107]. In crops where grafting is typical, choice
of resistant rootstock could mitigate some X. fastidiosa disease impacts but is unlikely to prevent infection altogether.

Biological control—harnessing endophytes and defense priming

One of the major challenges of targeting X. fastidiosa once infection is established in plants is the specific localization of the pathogen in xylem tissue. Consequently, endophytic microorganisms that already reside in this niche are ideal for use in targeting X. fastidiosa. Studies have been conducted in grapevine, citrus, and olive to identify endophytic microbes that could be antagonistic to X. fastidiosa or otherwise reduce disease by triggering plant immune responses [108–113]. Some of the earliest biocontrol organisms tested against X. fastidiosa in grapevine were non-virulent X. fastidiosa strains [114]. Several non-virulent or weakly virulent X. fastidiosa isolates from other host species (sycamore and elderberry) were inoculated into grapevines grown in vineyards under natural disease pressure in Florida, USA. Grapevines inoculated with X. fastidiosa strain EB92-1 originally isolated from elderberry were protected from severe Pierce’s disease for several years [114]. The mechanism of protection was believed to be an induced resistance response in the plant. More recent research found that X. fastidiosa does in fact induce an immune reaction in grapevine and that one of the elicitors of this response is the bacterial outer membrane component lipopolysaccharide (LPS) [115,116]. “Primbing” of the plant immune response by prior exposure to purified X. fastidiosa LPS leads to reduced disease symptoms in grapevine including both the externally visible scorching symptoms and tylose formation in the xylem vessels that is implicated in water obstruction in the plant [116]. While it is still unclear whether this type of defense induction operates universally in other X. fastidiosa-host plant interactions, host immune priming is a promising avenue for future research.

A similar approach has been explored using unrelated endophytic bacteria to trigger systemic protection from X. fastidiosa infection. A grapevine endophyte, *Paraburkholderia phytofirmans* PSJN, can reduce disease caused by X. fastidiosa both when the plants are inoculated with the biocontrol at the same time as infection challenge, and when the biocontrol is used up to 4 weeks after X. fastidiosa inoculation in grapevine [117]. Unlike the biocontrol strains of X. fastidiosa that need to be inoculated by needle puncture, PSJN can also be effectively established in host plants using a foliar spray of the bacterium in combination with an organo-silicon surfactant. The limiting factor in effectiveness of PSJN appears to be the length of time the biocontrol bacterial population is maintained in the plant. Preliminary tests of PSJN in olive found that durability of colonization may be limited, suggesting this species may not be as effective in all hosts of X. fastidiosa [118]. However, research is ongoing to identify other potential biocontrol agents specific to olive and other hosts.

In addition to biocontrol organisms that induce an immune response, substantial work has been done to identify organisms living in the endosphere that are directly antagonistic to X. fastidiosa through the production of secondary metabolites or competitive exclusion [108,110,111,119]. In grapevine and citrus, some bacterial species including *Pseudomonas fluorescens* (grapevine) and *Curtobacterium flaccumfaciens* (citrus) were identified as negatively correlated with X. fastidiosa infection symptoms [108,110]. *C. flaccumfaciens* also reduces the symptoms of X. fastidiosa in periwinkle when co-inoculated [120] and was found in the foregut of sharpshooter vectors suggesting it can be transported between plants in a similar manner to the pathogen [121]. A range of bacteria were also isolated from olive endosphere, but none were identified as directly antagonistic to X. fastidiosa [111]. Continued work to identify endophytes that can reduce X. fastidiosa populations in susceptible crop hosts is ongoing. Alternatively, isolated secondary metabolite compounds produced by bacterial and fungal antagonists are also being explored, but none of these have completed testing as standalone treatments in plants [112,122,123].

Chemical control—antibiotics, metals, and novel treatments

Due to the extremely large economic consequences of disease and the value of some host plants, a wide range of antibiotic molecules have been considered to disrupt X. fastidiosa infection. As with other methods, chemical treatments must target the xylem to be effective against X. fastidiosa. Early research in an urban landscape setting found that American elm (*U. americana*) with bacterial leaf scorch symptoms from X. fastidiosa could be treated with microinjection of oxytetracycline [124]. Antibiotic-treated trees had remission of bacterial leaf scorch symptoms; however, the infection was not completely eliminated and would return if treatment was stopped [124]. Similar results were found with oxytetracycline injection in landscape oak trees [125] and in almond [126]. As traditional antibiotic treatment by injection methods is expensive and labor intensive, and comes with environmental concerns, recent research has focused on identifying other materials that can suppress X. fastidiosa or mitigate symptoms. Due to the disruption of metal homeostasis in plants infected with X. fastidiosa and the common use of metals such as copper for control of bacterial pathogens in agriculture, several of the newer strategies include some form of copper or zinc [127]. Although not strictly bactericidal at concentrations that can be maintained in xylem fluid, copper and zinc can disrupt X. fastidiosa disease-related phenotypes such as...
exopolysaccharide production and biofilm development [128, 129]. It is worth noting, however, that different X. fastidiosa strains have varied tolerance to copper, and tolerance level can be further influenced by physiological state of the bacterial cells (biofilm vs. planktonic vs. persistent states) [130–133]. In olive trees in Italy, products containing copper, zinc, citric acid, and botanical extracts (Dentamet®, NuovOlivO) had some success at mitigation of OQDS symptoms in areas with high X. fastidiosa incidence [134, 135]. Specific disease suppression mechanisms of these products are not completely understood, but success could be associated with plant-induced defenses, plant nutrition, or influence on X. fastidiosa disease progression.

With technological improvements in chemical formulations, there is now possibility to deliver the bactericidal treatments to the vascular tissue more effectively via uptake from soil or as foliar spray. Nanoformulations of zinc oxide, which are effective in suppression of other bacterial plant diseases (such as citrus canker caused by Xanthomonas citri, [136]) have shown promising initial results against X. fastidiosa in blueberry [137]. These compounds are able to be taken up systemically by plants and treatment of X. fastidiosa-infected blueberry plants reduced bacterial populations and disease symptoms [137].

Due to the importance of biofilm development in X. fastidiosa pathogenesis and transmission, many chemical control strategies also target the biofilm process [138]. One such compound, the cysteine analog N-Acetylcysteine (NAC), was tested in citrus and olive with some success in reducing symptom progression [139, 140]. In some citrus plants treated with NAC, symptom remission was observed as well [140]. However, high disease pressure under field conditions and highly susceptible host varieties reduced the effectiveness of NAC in olive [139]. Overall, although none of the products tested so far are able to cure the infection completely, there is some success with disease symptom mitigation, and additional antimicrobial products are still being explored [123, 138].

Specific targeting with parasitic phages

Several bacteriophages that infect X. fastidiosa have been identified and tested for the management of Pierce’s disease of grapevine. Siphophages Sano and Salvo, and podophages Prado and Paz were originally isolated from plant material and are virulent on strains of X. fastidiosa, in addition to some Xanthamonas strains [141]. These four phages were tested for virulence on 50 X. fastidiosa isolates, mostly strains isolated from grapevine, but also several other isolates from different hosts [142]. Used in combination as a phage cocktail delivered into grapevines via trunk injection, Sano, Salvo, Prado, and Paz can reduce the symptoms of Pierce’s disease as well as bacterial populations within the plant. However, X. fastidiosa was not completely eliminated from the infected grapevines in this study [142]. Although phage-resistant X. fastidiosa mutants are able to develop in vitro, in the case of Sano, Salvo, Prado, and Paz, phage-resistant X. fastidiosa mutants were not virulent in planta likely due to the phage target (type IV pili) being important for plant colonization [142]. Several additional phages were identified more recently from insect vectors of X. fastidiosa and from environmental samples. These phages from the Podoviridae and Siphoviridae families are virulent on strains of X. fastidiosa found in the Mediterranean region [143]. Although these have not yet been tested for disease suppression in planta, it suggests that phages targeting X. fastidiosa can be found in a number of different environments and there is promise for developing this technology further in the future.

Conclusions

Although there is still no cure, the range of treatments in development for X. fastidiosa-infected plants is encouraging. In addition to direct applications, exploration of various treatment strategies also produced significant information about disease mechanisms to be used for more targeted future efforts. The substantial progress in X. fastidiosa research is a direct result of significant financial investment from federal, state, and private entities [38]. Although much of the existing research is focused in the Americas and Europe, X. fastidiosa also impacts other regions including the Middle East and parts of Asia [126, 144, 145]. It is important to consider solutions that can be adapted for specific regions, crops, local disease dynamics, and resource availability. There is continued need for research in plant-focused solutions as concern about insecticide resistance emerges in relation to reliance on vector control [146]. Although technological advances in genomics, molecular breeding, and germplasm screening will expedite generation of resistant plant material, this is still a lengthy task due to the wide range of perennial host plant species impacted by X. fastidiosa. Hopefully in the future, integrated management will be possible through combining cultivation of resistant or tolerant plants with defense priming, nutritional support, and bactericidal treatments in addition to the existing phytosanitary and vector control measures (Fig. 1).

Acknowledgements

I would like to acknowledge all my colleagues in the global Xylella research community for continued dedication to this complex issue. Although not all research could be covered here, it is all essential to forward progress. Funding support is from United States Department of Agriculture (USDA) Agricultural Research Service appropriated project 2034-22000-012-00D. Mention of trade names or
1. Starting with clean planting material, removal of infected plants, and resistant/tolerant varieties when possible

2. Using plant defense responses and durable biocontrols to reduce infections

3. Treatments to mitigate severe symptoms and yield loss

4. Goal to maintain agricultural production and landscape benefits

Figure 1. Layered strategy of Xylella fastidiosa control in plants. Success in mitigation of X. fastidiosa disease impacts will likely rely on combined approaches to prevent failure of a single strategy. Image created with BioRender.com.

commercial products in this publication is solely for the purpose of providing specific information and does not constitute endorsement by USDA. USDA is an equal opportunity provider and employer.

References

1. Johnson KA, Bock CH, Brannen PM. Phony peach disease: past and present impact on the peach industry in the southeastern U.S.A. CABI Agriculture and Bioscience 2021;2(1):29.

2. Krugner R, Sisterson MS, Backus EA, Burbank LP, Redak RA. Sharpshooters: a review of what moves Xylella fastidiosa. Austral Entomology 2019;58(2):248–67.

3. Sicard A, Zeilinger AR, Vanhove M, Schartel TE, Beal DJ, Daugherty MP, et al. Xylella fastidiosa: insights into an emerging plant pathogen. Annual Review of Phytopathology 2018;56(1):181–202.

4. Rapicavoli J, Ingel B, Blanco-Ulate B, Cantu D, Roper C. Xylella fastidiosa: an examination of a re-emerging plant pathogen. Molecular Plant Pathology 2018;19(4):786–800.

5. Morelli M, Garcia-Madero JM, Jos À, Saldarelli P, Dongiovanni C, Kovacova M, et al. Xylella fastidiosa in olive: a review of control attempts and current management. Microorganisms 2021;9(8):1771.

6. Kyrkou I, Pusa T, Elleegaard-Jensen L, Sagot MF, Hansen LH. Pierce’s Disease of grapevines: a review of control strategies and an outline of an epidemiological model. Frontiers in Microbiology 2018;9:2141.

7. Castro C, DiSalvo B, Roper MC. Xylella fastidiosa: a reemerging plant pathogen that threatens crops globally. PLoS Pathogens 2021;17(9):e1009813.

8. Chatterjee S, Almeida RPP, Lindow, S. Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Annual Review of Phytopathology 2008;46:243–71.

9. Hopkins DL, Purcell AH. Xylella fastidiosa: cause of Pierce’s Disease of grapevine and other emergent diseases. Plant Disease 2002;86(10):1056–66.

10. Su CC, Deng WL, Jan FJ, Chang CJ, Huang H, Shih HT, et al. Xylella taiwanensis sp. nov., causing pear leaf scorch disease. International Journal of Systematic and Evolutionary Microbiology 2016;66(11):4766–71.

11. Wells JM, Raju BC, Hung HY, Weisburg WG, Mandelco-Paul L, Brenner DJY. Xylella fastidiosa gen. nov., sp. nov: gram-negative, xylem limited, fastidious plant bacteria related to Xanthomonas spp. International Journal of Systematic and Evolutionary Microbiology 1987;37(2):136–43.

12. Purcell AH, Saunders SR, Hendson M, Grebus ME, Henry MJ. Causal role of Xylella fastidiosa in oleander leaf scorch disease. Phytopathology 1999;89(1):53–8.

13. Schaad NW, Postnikova E, Lacy G, Fatmi M, Chang CJ. Xylella fastidiosa subspecies: X. fastidiosa subsp. [correction]

http://www.cabi.org/cabireviews
Large-scale intersubspecific recombination in the plant-pathogenic bacterium *Xylella fastidiosa* is associated with the host shift to mulberry. Applied and Environmental Microbiology 2014;80(10):3025–33.

Simpson AJ, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R, et al. The genome sequence of the plant pathogen *Xylella fastidiosa*. The *Xylella fastidiosa* consortium of the organization for nucleotide sequencing and analysis. Nature 2000;406(6792):151–9.

Mircetic SM. Etiology of almond leaf scorch disease and transmission of the causal agent. Phytopathology 1976;66(1):17.

Greco D, Apriile A, De Bellis L, Luvisi A. Diseases caused by *Xylella fastidiosa* in Prunus genus: an overview of the research on an increasingly widespread pathogen. Frontiers in Plant Science 2021;12:712452. Available from: https://www.frontiersin.org/article/10.3389/fpls.2021.712452

Saponari M, Boscia D, Nigro F, Martelli GP. Identification of DNA sequences related to *Xylella fastidiosa* in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). Journal of Plant Pathology 2013;95(3):668.

Saponari M, Boscia D, Altamura G, Loconseto G, Zigza S, D’Attoma G, et al. Isolation and pathogenicity of *Xylella fastidiosa* associated to the olive quick decline syndrome in southern Italy. Scientific Reports 2017;7(1):17723.

Coletta-Filho HD, Castillo AI, Laranjeira FF, de Andrade EC, Miranda VS, Hartung JS, Brlansky RH. New coffee plant-infecting *Xylella fastidiosa* variants derived via homologous recombination. Applied and Environmental Microbiology 2016;82(5):1566–68.

Bové JM, Ayres AJ. Etiology of three recent diseases of citrus in São Paulo State: sudden death, variegated chlorosis and huanglongbing. IUBMB Life 2007;59(4–5):346–54.

Alston JM, Fuller KB, Kaplan JD, Tumber KP. Economic consequences of Pierce’s Disease and related policy in the California winegrape industry. Journal of Agricultural and Resource Economics 2013;38(2):269–97.

Schneider K, Mourits M, van der Werf W, Lansink AO. On consumer impact from *Xylella fastidiosa* subspecies *pauca*. Ecological Economics 2021;185:107024.

Schneider K, van der Werf W, Candoya M, Mourits M, Navas-Cortés JA, Vicent A, et al. Impact of *Xylella fastidiosa* subspecies *pauca* in European olives. Proceedings of the National Academy of Sciences 2020;117(17):9250–9.

Lindow S. Money matters: fueling rapid recent insight into *Xylella fastidiosa*—an important and expanding global pathogen. Phytopathology 2019;109(2):210–2.

European Food Safety Authority. Update of the *Xylella spp.* host plant database—systematic literature search up to 30 June 2021. EFSA Journal 2022;20(1):e07039.

Loconsole G, Saponari M, Boscia D, D’Attoma G, Morelli M, Martelli GP, et al. Interception isolates of *Xylella fastidiosa* in Europe reveal novel genetic diversity. European Journal of Plant Pathology 2016;146(1):85–94.

Bergsma-Vlami M, Bilt JJ, Tjou-Tam-Sin NNA, Wossenbelt BTLH van de, Westenberg M. *Xylella fastidiosa* in *Coffea arabica* ornamental plants imported from Costa Rica and Honduras in the Netherlands. Journal of Plant Pathology 2015;97(2):395.

Harris JL, Balci Y. Population structure of the bacterial pathogen *Xylella fastidiosa* among street trees in Washington D.C. PLoS One 2015;10(3):e0121297.

Krugner R, Sisterson MS, Chen J, Stenger DC, Johnson MW. Evaluation of olive as a host of *Xylella fastidiosa* and its potential significance to the urban forest. New Jersey: Rutgers University; 2001.

de Lima JEO, Miranda VS, Hartung JS, Briansky RH, Coutinho A, Roberto SR, et al. Coffee leaf scorch bacterium: axenic culture, pathogenicity, and comparison with *Xylella fastidiosa* of citrus. Plant Disease 1998;82(1):94–7.

Jacques MA, Denancé N, Legendre B, Morel E, Briand M, Mississipi S, et al. New coffee plant-infecting *Xylella fastidiosa* subspecies derived via homologous recombination. Applied and Environmental Microbiology 2016;82(5):1566–68.

Henneberger TSM, Stevenson KL, Britton KO, Chang CJ. Distribution of *Xylella fastidiosa* in sycamore associated with low temperature and host resistance. Plant Disease 2004;88(9):951–8.

Lashomb J, Gould A, Iskra A, Hamilton G. Bacterial leaf scorch of amenity trees: a wide-spread problem of economic significance to the urban forest. New Jersey: Rutgers University; 2001.
associated sharpshooter vectors. Plant Disease 2014;98(9):1186–93.

44. Blua MJ, Phillips PA, Redak RA. A new sharpshooter threatens both crops and ornamentals. Plant Health Progress 2000;1(1):4.

45. Costa HS, Blua MS, Bethke JA, Redak RA. Transmission of Xylella fastidiosa to oleander by the glassywinged sharpshooter, Homalodisca coagulata. HortScience 2000;35(7):1265–7.

46. Harris JL, Di Bello PL, Lear M, Balci Y. Bacterial leaf scorch in the District of Columbia: distribution, host range, and presence of Xylella fastidiosa among urban trees. Plant Disease 2014;98(12):1611–8.

47. Gould AB, Lashomb JH. Bacterial leaf scorch of shade trees. 2022. Available from: https://www.apsnet.org/edcenter/apsnetfeatures/Pages/BacterialLeafScorch.aspx

48. European Food Safety Authority. Update of the scientific opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory. 2022. Available from: https://www.efsa.europa.eu/en/efsajournal/pub/5665

49. Scally M, Schuenzel EL, Stouthamer R, Nunney L. Multilocus sequence type system for the plant pathogen Xylella fastidiosa and relative contributions of recombination and point mutation to clonal diversity. Applied Environmental Microbiology 2005;71(12):8491–9.

50. Dupas E, Briand M, Jacques MA, Cesbron S. Novel tetraplex quantitative PCR assays for simultaneous detection and identification of Xylella fastidiosa subspecies in plant tissues. Frontiers in Plant Science 2019;10:e01732.

51. Ito T, Chiaki Y. Two new superior primer pairs for universal detection of Xylella spp. in conventional PCR and TaqMan quantitative real-time PCR. Journal of Microbiological Methods 2021;189:106321.

52. Faino L, Scala V, Albanese A, Modesti V, Grottoli A, Pucci N, et al. Nanopore sequencing for the detection and identification of Xylella fastidiosa subspecies and sequence types from naturally infected plant material. Plant Pathology 2021;70(8):1860–70.

53. Román-Reyna V, Dupas E, Cesbron S, Marchi G, Campigli S, Hansen MA, et al. Metagenomic sequencing for identification of Xylella fastidiosa from leaf samples. mSystems 2021;6(5):e005912.

54. Loconsole G, Zicca S, Manco L, El Hatib O, Altamura G, Hansen MA, et al. Diagnostic procedures to detect Xylella fastidiosa in nursery stocks and consignments of plants for planting. Agriculture 2021;11(9):922.

55. Zárco-Tejada PJ, Camino C, Beck PSA, Calderón R, Homero A, Hernández-Clemente R, et al. Prevalent symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants 2018;4(7):432–9.

56. Camino C, Calderón R, Parnell S, Dierkes H, Chemin Y, Román-Écija M, et al. Detection of Xylella fastidiosa in almond orchards by synergic use of an epidemic spread model and remotely sensed plant traits. Remote Sensing of Environment 2021;260:112420.

57. Zárco-Tejada PJ, Poblete T, Camino C, González-Dugo V, Calderon R, Hornero A, et al. Divergent abiotic spectral pathways unravel pathogen stress signals across species. Nature Communications 2021;12(1):6088.

58. Corno D, Morente Díaz M, Markheiser A, Bodino N, Tsai CW, Fereres A, et al. An overview on the worldwide vectors of Xylella fastidiosa. Entomología Generalis 2019;39:157–181.

59. Bodino N, Cavalieri V, Pegróaro M, Altamura G, Canuto F, Zicca S, et al. Temporal dynamics of the transmission of Xylella fastidiosa subsp. pauca by Philaenus spumarius to olive plants. Entomología Generalis 2021;463–80.

60. Sisterson MS, Burbank LP, Krugner R, Haviland D, Stenger DC. Xylella fastidiosa and glassy-winged sharpshooter population dynamics in the Southern San Joaquin Valley of California. Plant Disease 2020;104(11):2994–3001.

61. Bodino N, Cavalieri V, Dongiovanni C, Plazio E, Saladini MA, Volani S, et al. Phenology, seasonal abundance and stage-structure of spittlebug (Hemiptera: Aphrophoridae) populations in olive groves in Italy. Scientific Reports 2019;9(1):17725.

62. Lopes JRS, Krugner R. Transmission ecology and epidemiology of the citrus variegated chlorosis strain of Xylella fastidiosa. In: Lopes JRS, Rodrigo K, editors. Vector-Mediated Transmission of Plant Pathogens. Minneapolis, MN USA: The American Phytopathological Society; 2016. p. 195–208.

63. Purcell AH. Spatial patterns of Pierce’s Disease in the Napa Valley. American Journal of Enology and Viticulture 1974;25(3):162–7.

64. Jeger M, Bragard C. The epidemiology of Xylella fastidiosa; a perspective on current knowledge and framework to investigate plant host–vector–pathogen interactions. Phytopathology 2019;109(2):200–9.

65. Feil H, Feil WS, Purcell AH. Effects of date of inoculation on the within-plant movement of Xylella fastidiosa and persistence of Pierce’s Disease within field grapevines. Phytopathology 2003;93(2):244–51.

66. Godefroid M, Cruaud A, Streito JC, Rasplu YJ, Rossi JP. Xylella fastidiosa: climate suitability of European continent. Scientific Reports 2019;9(1):8844.

67. Myers AL, Sutton TB, Abad JA, Kennedy GG. Pierce’s disease of grapevines: identification of the primary vectors in North Carolina. Phytopathology 2007;97(11):1440–50.

68. Ali BM, van der Werf W, Oude Lansink A. Assessment of the environmental impacts of Xylella fastidiosa subsp. pauca in Puglia. Crop Protection 2021;142:105519.

69. Almeida RPP. Emerging plant disease epidemics: biological research is key but not enough. PLoS Biology 2018;16(8):e2007020.

70. Coletta C, Carradori R, Cerroni A. Problem setting and problem solving in the case of olive quick decline syndrome in Apulia, Italy: a sociological approach. Phytopathology 2019;109:187–199.

71. Abbott A. Italian scientists under investigation after olive-tree ruin. Nature 2015. Available from: https://www.nature.com/articles/nature.2015.19078

72. Abbott A. Italian scientists under investigation after olive-tree ruin. Nature 2015;522(7554):13–4.

73. Saponari M, Giampetruzzi A, Loconsole G, Boscia D, Saldarelli P. Xylella fastidiosa in olive in Apulia: where we stand. Phytopathology 2019;109(2):175–86.

74. Pataki DE, Alberti M, Cadenasso ML, Felson AJ, McDonnell MJ, Pincetl S, et al. The benefits and limits of urban tree planting for environmental and human health. Frontiers in Ecology and Evolution 2021;9:603757. Available from: https://www.frontiersin.org/article/10.3389/fevo.2021.603757

http://www.cabi.org/cabireviews
10 CABI Reviews

75. Nolan V, Reader T, Gilbert F, Atkinson N. The Ancient Tree Inventory: a summary of the results of a 15 year citizen science project recording ancient, veteran and notable trees across the UK. Biodiversity and Conservation 2020;29(11):3103–29.

76. BRIGIT; Surveillance and response capacity for Xylella fastidiosa [Internet]. John Innes Centre. 2022. Available from: https://www.jic.ac.uk/brigit/

77. Semeraro T, Gatto E, Buccolieri R, Vergine M, Gao Z, De Bellis L, et al. Changes in olive urban forests infected by Xylella fastidiosa: impact on microclimate and social health. International Journal of Environmental Research and Public Health 2019;16(15):2642.

78. Ruel JJ, Walker MA. Resistance to Pierce’s Disease in Muscadinia rotundifolia and other native grape species. American Journal of Enology and Viticulture 2006;57(2):158–65.

79. Krivanek AF, Famula TR, Tenschcer A, Walker MA. Inheritance of resistance to Xylella fastidiosa within a Vitis rupestris × Vitis arizonica hybrid population. Theoretical and Applied Genetics 2005;111(1):110–9.

80. Krivanek AF, Riaz S, Walker MA. Identification and molecular mapping of Pdr1, a primary resistance gene to Pierce’s disease in Vitis. Theoretical and Applied Genetics 2006;112(6):1125–31.

81. Walker MA. Breeding Pierce’s Disease resistant wine grapes. In: 2021 Pierce’s Disease Research Symposium Proceedings [Internet]. 2022. p. 91–106. Available from: https://www.cdfa.ca.gov/pdcp/research.html

82. Riaz S, Tenschcer AC, Graziani R, Krivanek AF, Ramming DW, Walker MA. Using marker-assisted selection to breed Pierce’s disease-resistant grapes. American Journal of Enology and Viticulture 2009;60(2):199–207.

83. Riaz S, Huerta-Acosta K, Tenschcer AC, Walker MA. Genetic characterization of Vitis germplasm collected from the southwestern US and Mexico to expedite Pierce’s disease-resistance breeding. Theoretical and Applied Genetics 2018;131(7):1589–602.

84. Mauricio FN, Sorento AT, Diogo JB, Boscariol-Camargo RL, De Souza AA, Coletta-Filho HD, et al. Analysis of defense-related gene expression in citrus hybrids infected by Xylella fastidiosa. Phytopathology 2019;109(2):301–6.

85. Rodrigues CM, de Souza AA, Takita MA, Kishi LT, Machado MA. RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response. BMC Genomics 2013;14(1):676.

86. Souza AA de, Takita MA, Coletta-Filho HD, Campos MA, Teixeira JEC, Targon MLPN, et al. Comparative analysis of differentially expressed sequence tags of sweet orange and mandarin infected with Xylella fastidiosa. Genetics and Molecular Biology 2007;30:965–71.

87. Giampetruzzi A, Morelli M, Saponari M, Loconsole G, Chiumenti M, Boscia D, et al. Transcriptome profiling of two olive cultivars in response to infection by the CoDIRO strain of Xylella fastidiosa subsp. paucia. BMC Genomics 2016;17(1):475.

88. European Food Safety Authority. Susceptibility of Olea europaea L. varieties to Xylella fastidiosa subsp. paucia ST3: systematic literature search up to 24 March 2017. EFSA Journal 2017;15(4):e04772.

89. Girelli CR, Del Coco L, Angile F, Scortichini M, Fanizzi FP. Olive cultivars susceptible or tolerant to Xylella fastidiosa subsp. paucia exhibit mid-term different metabolomes upon natural infection or a curative treatment. Plants 2021;10(4):772.

90. Sion S, Taranto F, Montemurro C, Mangini G, Camposeo S, Falco V, et al. Genetic characterization of Apulian olive germplasm as potential source in new breeding programs. Plants 2019;8(8):268.

91. Davis MJ, French WJ, Schaad NW. Axenic culture of the bacteria associated with phytopath disease of peach and plum leaf scald. Current Microbiology 1981;6(5):309–14.

92. Ledbetter CA, Rogers EE. Differential susceptibility of Prunus germplasm (subgenus amygdalus) to a California isolate of Xylella fastidiosa. HortScience 2009;44(7):1928–31.

93. Krugner R, Ledbetter CA. Rootstock effects on almond leaf scorch disease incidence and severity. Plant Disease 2016;100(8):1617–21.

94. Baró A, Montesinos L, Badosa E, Montesinos E. Aggressiveness of Spanish isolates of Xylella fastidiosa to almond plants of different cultivars under greenhouse conditions. Phytopathology 2021;111(11):1994–2001.

95. Groves RL, Chen J, Civerolo EL, Freeman MW, Viveros MA. Spatial analysis of almond leaf scorch disease in the San Joaquin Valley of California: factors affecting pathogen distribution and spread. Plant Disease 2005;89(6):581–9.

96. Wilhelm M, Brodbeck BV, Andersen PC, Kasun GW, Kirkpatrick BC. Analysis of xylem fluid components in almond cultivars differing in resistance to almond leaf scorch disease. Plant Disease 2011;95(2):166–72.

97. Gabardo G, Silva CM da, Silva HL da, lauchowitz IM, Carvalho FC, Leite RP. Selection of plum genotypes for resistance to leaf scald. Summa Phytopathology 2021;46:305–7.

98. Dalbó MA, Bruna ED, Nodari RO, Saifert L. Plum selections with total resistance to leaf scald (Xylella fastidiosa) Acta Horticulturae 2016;1127:61-64.

99. Lindow S, Newman K, Chatterjee S, Baccari C, lavarone AT, Ionescu M. Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of Pierce’s Disease. Molecular Plant-Microbe Interactions 2014;27(3):244–54.

100. Caserta R, Souza-Neto RR, Takita MA, Lindow SE, De Souza AA. Ectopic expression of Xylella fastidiosa rpfF conferring production of diffusible signal factor in transgenic tobacco and citrus alters pathogen behavior and reduces disease severity. Molecular Plant-Microbe Interactions 2017;30(11):866–75.

101. Dandekar AM, Jacobson A, Ibáñez AM, Gouran H, Dolan DL, Agüero CB, et al. Trans-graft protection against Pierce’s disease mediated by transgenic grapevine rootstocks. Frontiers in Plant Science 2019;10:84.

102. de Souza-Neto RR, Carvalho IGB, Martins PMM, Picchi SC, Tomaz JP, Caserta R, et al. MsqR toxin as a biotechnological tool for plant pathogen bacterial control. Scientific Reports 2022;12(1):2794.

103. Darnell RL, Williamson JG, Bayo DC, Harmon PF. Impacts of Vaccinium arboresum rootstocks on vegetative growth and yield in two southern highbush blueberry cultivars. HortScience 2020;55(1):40–5.
104. Lopes SA. Scion substitution: a new strategy to control citrus variegated chlorosis disease. Plant Disease 2020;104(1):239–45.

105. García AL, Torres SCZ, Heredia M, Lopes SA. Citrus responses to Xylella fastidiosa infection. Plant Disease 2012;96(9):1245–9.

106. Lu J, Ren Z, Cousins P. Evaluation of grape rootstocks for resistance to Pierce’s Disease and adaptation to North Florida environment. Acta Horticulturae 2008;772:257–61.

107. Wallis C, Wallifong A, Chen J. Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce’s disease. Frontiers in Plant Science 2013;4:502.

108. Araújo WL, Marcon J, Maccheroni Jr W, Elsas JD van, Vuurde JWL van, Azevedo JL. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology 2002;68(10):4906–4914.

109. Lacava PT, Araújo WL, Marcon J, Maccheroni W, Azevedo JL. Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Letters in Applied Microbiology 2004;39(1):55–9.

110. Deyett E, Roper MC, Ruegger P, Yang JI, Borneman J, Deyett E, Rolshausen PE. Temporal dynamics of the sap endosphere in the context of Pierce’s Disease. Phytobiomes Journal 2017;1(3):138–49.

111. Zicca S, De Bellis P, Masiello M, Saponari M, Saldarelli P, Boscia D, et al. Antagonistic activity of olive endophytic bacteria and of Bacillus spp. strains against Xylella fastidiosa. Microbiological Research 2020;236:126467.

112. Aldrich TJ, Rolshausen PE, Roper MC, Reader JM, Steinhaus MJ, Rapicavoli J, et al. Radicin from Cochliobolus sp. inhibits Xylella fastidiosa, the causal agent of Pierce’s Disease of grapevine. Phytochemistry Journal 2017;133:1–14.

113. Giampetruzzi A, Baptista P, Morelli M, Cameirão C, Lino Neto T, Costa D, et al. Differences in the endophytic microbiome of olive cultivars infected by Xylella fastidiosa across seasons. Pathogens 2020;9(9):723.

114. Hopkins DL. Biological control of Pierce’s disease in the vineyard with strains of Xylella fastidiosa benign to grapevine. Plant Disease 2005;89(12):1348–52.

115. Rapicavoli JN, Blanco-Ullate B, Muszyński A, Figueroa-Baldarés R, Morales-Cruz A, Azadi P, et al. Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa. Nature Communications 2018;9(1):390.

116. Castro CA. Characterization of Xylella fastidiosa lipopolysaccharide-induced plant defense priming, endoglucanase-regulated exopolysaccharide production, and type IV pili [PhD Dissertation]. University of California, Riverside; 2021.

117. Baccari C, Antonova E, Lindow S. Biological control of Pierce’s disease of grape by an endophytic bacterium. Phytopathology 2019;109(2):248–56.

118. Morelli M Dongiovanni, C, D’Atoma, G, Giampetruzzi, A, Loconsole, G, Montilon, V, Altamura, G, Saponari, M, Saldarelli, P. Insights on Paraburkholderia phytofirmans PsJN behaviour as biocontrol agent of Xylella fastidiosa in olive [Internet]. Zenodo; 2019. Available from: https://zenodo.org-record/3465841

119. Deyett E, Rolshausen PE. Temporal dynamics of the sap microbiome of grapevine under high Pierce’s Disease pressure. Frontiers in Plant Science 2019;10:1246.

120. Lacava PT, Li W, Araújo WL, Azevedo JL, Hartung JS. The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. Journal of Microbiology 2007;45(5):388–93.

121. Gai CS, Dini-Andreote F, Andreote FD, Lopes JRS, Araújo WL. Endophytic bacteria associated to sharpshooters (Hemiptera: cicadellidae), insect vectors of Xylella fastidiosa subsp. pauca. Journal of Plant Pathology & Microbiology 2011;02(03):1000109.

122. Brandenburg CA, Castro CA, Blacutt AA, Costa EA, Brinton KC, Corral DW, et al. Synthesis of deoxyradicin, an inhibitor of Xylella fastidiosa and Liberibacter crescens, a cultivable surrogate for Candidatus Liberibacter asiaticus. Journal of Natural Products 2020;83(6):1810–6.

123. Bleve G, Gallo A, Altomare C, Vurro M, Maiorano G, Cardinale A, et al. In vitro activity of antimicrobial compounds against Xylella fastidiosa, the causal agent of the olive quick decline syndrome in Apulia (Italy). FEMS Microbiology Letters 2018;365(5): DOI:10.1093/femsle/fnx281

124. Kostka SJ, Tattar TA, Sherald JL. Suppression of bacterial leaf scorch symptoms in American Elm through oxytetracycline microinjection. Arboriculture and Urban Forestry 1985;11(2):54–8.

125. Hartman J, Dixon E, Bernick S. Evaluation of therapeutic treatments to manage oak bacterial leaf scorch. Arboriculture and Urban Forestry 2010;36(3):140–6.

126. Amanifar N, Taghavi M, Salehi M. Xylella fastidiosa from almond in Iran: overwinter recovery and effects of antibiotics. Phytopathologia Mediterranea 2016;55(3):337–45.

127. Fuente LDL, Parker JK, Oliver JE, Granger S, Brannen PM, Santen E van, et al. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection. PLoS One 2013;8(5):e62945.

128. Ge Q, Cobine PA, De La Fuente L, Granger S, Brannen PM, Santen E van, et al. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection. PLoS One 2013;8(5):e62945.

129. Muranaka LS, Takita MA, Olivato JC, Kishi LT, de Souza AA. Differences in the endophytic bacterial populations and their interaction with Xylella fastidiosa and Liberibacter crescens, a cultivable surrogate for Candidatus Liberibacter asiaticus. Journal of Natural Products 2020;83(6):1810–6.

130. Kostka SJ, Tattar TA, Sherald JL. Suppression of bacterial leaf scorch symptoms in American Elm through oxytetracycline microinjection. Arboriculture and Urban Forestry 1985;11(2):54–8.

131. Hartman J, Dixon E, Bernick S. Evaluation of therapeutic treatments to manage oak bacterial leaf scorch. Arboriculture and Urban Forestry 2010;36(3):140–6.

132. Amanifar N, Taghavi M, Salehi M. Xylella fastidiosa from almond in Iran: overwinter recovery and effects of antibiotics. Phytopathologia Mediterranea 2016;55(3):337–45.

133. Fuente LDL, Parker JK, Oliver JE, Granger S, Brannen PM, Santen E van, et al. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection. PLoS One 2013;8(5):e62945.

134. Ge Q, Cobine PA, De La Fuente L, Copper supplementation in watering solution reaches the xylem but does not protect tobacco plants against Xylella fastidiosa infection. Plant Disease 2020;104(3):724–30.

135. Navarrete F, Fuente LDL. Response of Xylella fastidiosa to zinc: decreased culturability, increased exopolysaccharide production, and formation of resilient biofilms under flow conditions. Applied and Environmental Microbiology 2014;80(3):1097–1107.

136. Ge Q, Liu R, Cobine PA, Potnis N, De La Fuente L. Phenotypic and phylogenetic characterization of Cu homeostasis among Xylella fastidiosa strains. Pathogens 2021;10(4):495.

137. Rodríguez CM, Takita MA, Coletta-Filho HD, Olivato JC, Caserta R, Machado MA, et al. Copper resistance of biofilm cells of the plant pathogen Xylella fastidiosa. Applied Microbiology Biotechnology 2008;77(5):1145–57.

138. Muranaka LS, Takita MA, Olivato JC, Kishi LT, de Souza AA. Global expression profile of biofilm resistance to antimicrobial compounds in the plant-pathogenic bacterium Xylella fastidiosa reveals evidence of persister cells. Journal of Bacteriology 2012;194(17):4561–9.

http://www.cabi.org/cabireviews
133. Carvalho IGB, Merfa MV, Teixeira-Silva NS, Martins PMM, Takita MA, de Souza AA. Overexpression of mqsR in Xylella fastidiosa Leads to a priming effect of cells to copper stress tolerance. Frontiers in Microbiology 2021;12:712564.

134. Scortichini M, Chen J, Caroli MD, Dalessandro G, Pucci N, Modesti V, et al. A zinc, copper and citric acid biocomplex shows promise for control of Xylella fastidiosa subsp. pauca in olive trees in Apulia region (southern Italy). Phytopathologia Mediterranea 2018;57(1):48–72.

135. Bruno GL, Cariddi C, Botrugno L. Exploring a sustainable solution to control Xylella fastidiosa subsp. pauca on olive in the Salento Peninsula, Southern Italy. Crop Protection 2021;139:105288.

136. Graham JH, Johnson EG, Myers ME, Young M, Rajasekaran P, Das S, et al. Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Disease 2016;100(12):2442–7.

137. Shantharaj D, Naranjo Eber F, Santra S, De La Fuente L. Zinkicide nanoformulation efficacy to mitigate xylem limited Xylella fastidiosa strains in tobacco and blueberry [Internet]. 2021. Available from: https://zenodo.org/record/4683082

138. Moll L, Badosa E, Planas M, Felu L, Montesinos E, Bonaterra A. Antimicrobial peptides with antibiofilm activity against Xylella fastidiosa. Frontiers in Microbiology 2021;12:753874. doi:10.3389/fmicb.2021.753874

139. Alessandra A, de Souza CFH Dongiovanni C, Saponari M. N-acetyl-cysteine for controlling Xylella fastidiosa in citrus and olive: understanding the differences to improve management [Internet]. Zenodo; 2019. Available from: https://zenodo.org/record/3564500

140. Muranaka LS, Giorgiano TE, Takita MA, Forim MR, Silva LFC, Coletta-Filho HD, et al. N-Acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant–pathogen Xylella fastidiosa. PLoS One 2013;8(8):e72937.

141. Ahern SJ, Das M, Bhownick TS, Young R, Gonzalez CF. Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas. Journal of Bacteriology 2014;196(2):459–71.

142. Das M, Bhowmick TS, Ahern SJ, Young R, Gonzalez CF. Control of Pierce’s disease by phage. PLoS One 2015;10(6):e0128902.

143. Clavijo-Coppens F, Ginet N, Cesbron S, Briand M, Jacques MA, Ansaldi M. Novel virulent bacteriophages infecting mediterranean isolates of the plant pest Xylella fastidiosa and Xanthomonas albilineans. Viruses 2021;13(5):725.

144. Bahar O, Dror O, Vakel L, Blank L. A survey in Israel reveals the presence of Xylella fastidiosa in almond trees in the northern part of the country [Internet]. Zenodo; 2019. Available from: https://zenodo.org/record/3566958

145. Su CC, Chang CJ, Chang CM, Shih HT, Tzeng KC, Jan FJ, et al. Pierce’s Disease of grapevines in Taiwan: isolation, cultivation and pathogenicity of Xylella fastidiosa. Journal of Phytopathology 2013;161(6):389–96.

146. Byrne FJ, Redak RA. Insecticide resistance in California populations of the glassy-winged sharpshooter Homalodisca vitripennis. Pest Management Science 2021;77(5):2315–23.