Protein Modifications as Manifestations of Hyperglycemic Glucotoxicity in Diabetes and Its Complications

Hong Zheng¹,², Jinzi Wu¹, Zhen Jin¹ and Liang-Jun Yan¹

¹Department of Pharmaceutical Sciences, UNT System College of Pharmacy, UNT Health Science Center, Fort Worth, TX, USA. ²Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.

ABSTRACT: Diabetes and its complications are hyperglycemic toxicity diseases. Many metabolic pathways in this array of diseases become aberrant, which is accompanied with a variety of posttranslational protein modifications that in turn reflect diabetic glucotoxicity. In this review, we summarize some of the most widely studied protein modifications in diabetes and its complications. These modifications include glycation, carbonylation, nitration, cysteine S-nitrosylation, acetylation, sumoylation, ADP-ribosylation, O-GlcNAcylation, and succination. All these posttranslational modifications can be significantly attributed to oxidative stress and/or carbon stress induced by diabetic redox imbalance that is driven by activation of pathways, such as the polyol pathway and the ADP-ribosylation pathway. Exploring the nature of these modifications should facilitate our understanding of the pathological mechanisms of diabetes and its associated complications.

KEYWORDS: diabetes, hyperglycemia, redox imbalance, glucotoxicity, NAD⁺, posttranslational modifications, oxidative stress, carbon stress

Introduction

Glucose is a fundamental molecule for life, and its combustion is exploited in all ways to sustain life. While glucose is essential for cellular survival, too much of it is detrimental.¹⁻³ This is the case in diabetes that either originates from or manifests the dysregulation of glucose metabolism.⁴ In type 1 diabetes, pancreatic β-cells are destroyed by autoimmune response, and hence no insulin would be available for stimulating glucose metabolism, leading to diabetic hyperglycemia.⁴⁻⁶ In type 2 diabetes, insulin resistance usually precedes β-cell dysfunction via a failure of compensation mechanism.⁷⁻⁹ Initially, insulin resistance would aggravate more insulin secretion by increasing β-cell mass.¹⁰⁻¹² However, such an increase has a limit and will eventually fail to meet the needs for more insulin secretion.⁹,¹³,¹⁴ Under this circumstance, β-cells die, insulin levels decrease, and frank type 2 diabetes mellitus develops and progresses.¹⁵⁻¹⁸ Regardless of the types of diabetes, it is the persistent level of hyperglycemia that causes all the metabolic problems manifested by diabetic complications, such as blindness, peripheral neuropathy, and chronic kidney disease.⁶,¹⁹,²⁰ Indeed, all the metabolic problems can be attributed to hyperglycemic glucotoxicity.¹,²,¹¹,²¹⁻²⁵

Therefore, how glucotoxicity is attained in diabetes? Protein modifications induced directly or indirectly by hyperglycemia manifest glucotoxicity. In this review, we attempt to summarize a variety of protein modifications in diabetes. We believe that many of these protein modification processes could serve as therapeutic targets or have therapeutic values. We focus on diabetic protein modifications, including glycation, carbonylation, nitration, nitrosylation, acetylation, ADP-ribosylation, and succination. But before expanding on these modifications, we would like to briefly overview the dysregulated glucose metabolic pathways in diabetes.

Glucose Metabolism and Redox Imbalance in Diabetes

When blood glucose level is persistently high, the body will attempt to mobilize all the possible pathways involved in glucose clearance. One such significant pathway is the polyol pathway.²⁶⁻²⁹ This pathway is usually dormant in nondiabetic state but can be activated to metabolize up to 30% of the glucose pool in diabetes.³⁰ The pathway involves two reactions, catalyzed by aldose reductase and sorbitol dehydrogenase, respectively. As shown in Figure 1A, the pathway makes excess NADH by consuming NADPH, hence breaking the redox balance between NADH and NAD⁺. As the aldose reductase reaction is rate limiting, inhibition of aldose reductase has been shown to prevent the occurrence of diabetes and diabetic complications.³¹⁻³⁴ Additionally, glucose is converted into fructose, a sugar molecule whose metabolism bypasses...
glucokinase and phosphorfructokinase-1 in the glycolytic pathway and thus is less regulated, thereby inducing metabolic stress. Excess NADH can overload the mitochondrial electron transport chain and drive overproduction of reactive oxygen species (ROS), which can attack proteins and induce protein modifications. Additionally, consumption of NADPH by the polyol pathway can impair the function of glutathione reductase that uses NADPH to regenerate the reduced form of glutathione (GSH), thus further aggravating cellular redox imbalance.

Also in diabetes, chronic production of ROS can cause DNA damage. This damage will activate poly-ADP-ribose polymerase that is evolved to repair the damaged DNA molecules. As poly-ADP-ribose polymerase uses NAD⁺ as its substrate (Fig. 1B) and is often overactivated, its activation usually can deplete NAD⁺ and leads to the further accentuation of redox imbalance, thereby, causing cell death. It should be pointed out that while activation of both the polyol pathway and the ADP-ribosylation pathway by diabetic hyperglycemia initially appears to be defensive and adaptive, the eventual consequences are lethal. Therefore, diabetes and its complications could be considered as a failure of compensation diseases.

Moreover, diabetic hyperglycemia can also activate other metabolic or signaling pathways. These are summarized in Figure 2, which, in addition to the polyol pathway and the ADP-ribosylation pathway mentioned earlier, also include the glycation pathway, the hexosamine pathway, and the PKC activation pathway. All these aberrant pathways have been shown to eventually elevate cellular ROS levels, hence further aggravating cellular redox imbalance and oxidative stress. This redox imbalance is probably the driving force for diabetic ROS production and oxidative stress, which are involved in a variety of protein posttranslational modifications.

Protein Modifications in Diabetes

Protein modifications are strategies routinely used by cells to expand their function but can also reflect the status quo of struggled cellular functions under stressed conditions. Figure 3 summarizes the types of posttranslational protein modifications in diabetes that are covered in this review. The modifications can be classified into two categories: irreversible and reversible. Irreversible protein modifications include carbonylation, nitration, and glycation, and reversible protein modifications include nitrosylation, acetylation, sumoylation, O-GlcNAcylation, ADP-ribosylation, and succination.

Advanced glycation end products. Glucose, in its reduced form, can directly react with proteins. The reaction usually takes place between the glucose’s aldehyde group and the side chain of lysine residues as well as the N-terminal amino groups for given proteins. The initial species is a Schiff base that can rearrange to form an Amadori...
intermediate. This intermediate can further rearrange to form varying forms of advanced glycation end products (AGEs).\(^{72,73}\)

Glucose can also undergo oxidation to form ketoaldehyde and hydrogen peroxide in the presence of transition metals.\(^{58,74,75}\) The resulting ketoaldehyde can further react with the amino groups in proteins. This is followed by the formation of ketoimine via Schiff’s base. The ketoimine is then involved in the formation of protein-linked AGEs.\(^{58,75,76}\) It should be noted that fructose can also induce protein glycation.\(^{77}\)

Protein can also be modified by methylglyoxal (MGO), a reactive product in the glycolytic pathway.\(^{78-81}\) MGO is a carbonyl-containing compound and mainly reacts with lysine, arginine, and cysteine residues.\(^{79,80,82}\) The eventual protein adducts are a variety of AGEs that could be structurally distinct.\(^{53,84}\) It has also been reported that MGO can have profound detrimental effects in diabetes.\(^{79,85}\) For example, MGO can impair mitochondrial function in diabetes via modifications of a variety of mitochondrial proteins.\(^{83}\)
Protein carbonylation. Protein carbonylation is an irreversible process.99,100 Protein carbonyls can be formed directly by ROS attack or indirectly by conjugating to lipid peroxidation byproducts, such as hydroxynonenal.20,87,88 Protein carbonylation can be formed on a variety of amino acid residues, including histidine, cysteine, lysine, arginine, proline, and threonine.87 Protein carbonyls not only have been used as a biomarker for protein oxidation in aging and disease89 but have also been shown to impair protein structure and function.90,91 In diabetes, it has been shown that protein carbonylation is increased in red blood cell membranes in diabetic retinopathy.92 It has also been reported that more plasma proteins show elevated protein carbonyl content in type 2 diabetes.93 In our own studies, we have shown that mitochondrial complex I isolated from diabetic kidneys exhibited selective protein carbonylation via the conjugation with lipid peroxidation product hydroxynonenal that contains a carbonyl group.20 As protein carbonyls are toxic protein adducts impairing protein function and carbonylation can occur to proteins involved in insulin signaling,94 insulin signaling pathways can be disrupted.94 Indeed, protein carbonylation has been suggested to be implicated in insulin resistance,94–96 which is an early event in the development of type 2 diabetes.95–99

Protein nitration. Protein nitration is also an irreversible protein modification. It occurs on protein tyrosine residues due to attack by peroxynitrite.100,101 As peroxynitrite is formed by reaction between superoxide and nitric oxide,102,103 this modification is related to both ROS and reactive nitrogen species. Glucose is known to be implicated in the formation of nitrotyrosine.104,105 Elegant studies by Koeck et al104,105 have demonstrated that glucose can mediate tyrosine nitration in both adipocytes and \(\beta\)-cells, suggesting a role of glucose-modulated nitration in obesity, insulin resistance, and \(\beta\)-cell dysfunction. Importantly, in both adipocytes and \(\beta\)-cells, specific proteins that underwent nitration have been identified; many of them are involved in glucose metabolism and bioenergetics.104,105

\(\text{O-GlcNAcylation}\). This posttranslational modification is a reversible modification occurring on serine or threonine residues.106 The substrate for this modification is uridine diphospho-\(N\)-acetylglucosamine, the end product of the hexosamine pathway.59,60,107,108 As glucose level becomes higher in diabetes, more glucose is fluxed into the hexosamine pathway, resulting in elevated levels of uridine diphospho-\(N\)-acetylglucosamine that can attach to proteins.107,109 Protein \(\text{O-GlcNAcylation}\) has been found to be involved in numerous biological processes, such as transcription, redox signaling, apoptosis, autophagy, and protein degradation.110–112 Many proteins involved in insulin signaling can undergo this modification. Moreover, \(\text{O-GlcNAcylation}\) can worsen glucotoxicity in the liver. For example, \(\text{O-GlcNAcylation}\) of FoxO1 in hepatocytes can increase its transcriptional activity that then upregulates the expression of glucose 6-phosphotase, leading to hyperglycemia by increasing hepatic glucose production.113 Therefore, protein \(\text{O-GlcNAcylation}\) has been regarded as a major factor in the development of insulin resistance and diabetes and diabetic complications.109,114,115

\(\text{Protein S-nitrosylation}\). This modification occurs on cysteine residues and is also a reversible modification.71 As cysteine oxidation status can reflect cellular redox status, this modification is tightly linked to oxidative stress and glutathione content.65 As the modification is reversible, it can regulate protein function either beneficially or detrimentally.55,116 In fact, many studies are now being conducted to explore the beneficial role of this modification in aging and disease.117–121 Nonetheless, S-nitrosylation can play a deleterious role in diabetes.122 For example, it has been reported that in the early phase of diabetes, the level of protein S-nitrosylation is increased that might lead to mitochondrial dysfunction.123 It has also been reported that S-nitrosylation is involved in insulin resistance via the modification and inactivation of protein kinase B.124 It should be mentioned that, similar to this modification, other types of cysteine modifications, such as S-glutathionylation, have also been shown to be involved in the pathogenesis of diabetes and its complications.125,126 For example, hemoglobin shows increased levels of glutathionylation in type 2 diabetes.127

\(\text{Protein acetylation}\). Protein acetylation is the attachment of an acetyl group onto a lysine side chain in a target protein, and the acetyl group usually comes from acetyl-CoA,128,129 which is a central molecule in metabolism. As shown in Figure 4, acetyl-CoA can be derived from combustion of glucose, fatty acids, alcohol, and amino acids. Under normal condition, acetyl-CoA is channeled into the Krebs cycle for ATP production and is also used for the synthesis of cholesterol and fatty acids. Excess acetyl-CoA usually leads to ketone body production130–132 and nonenzymatic protein acetylation.133 This modification often occurs on lysine residues134,135 and has been referred to as carbon stress.108,136–138 Except histone acetylation and enzyme-catalyzed acetylation that are well-regulated processes,139 protein acetylation occurring in cytosol and mitochondria has been widely considered as a pure chemical, nonenzymatic reaction,128,129,133,140,141 although the removal of the lysine-conjugated acetyl groups requires deacetylating enzymes, such as sirtuins.142–144 When the glucose level is high, so is acetyl-CoA that is used as the substrate of acetylation. Hence, proteins can be highly acetylated under hyperglycemic or overnutritional conditions.145,146 When cells switch to use fatty acids as their major energy source, such as under the condition of insulin resistance, whereby glucose cannot enter the cells,147 the levels of acetyl-CoA can increase dramatically (Fig. 5) and protein acetylation can concomitantly increase.148 Thus, it has been reported that increased fatty acid oxidation leads to elevation in protein acetylation in the diabetic heart.148 Additionally, over consumption of alcohol that fuels the production of acetyl-CoA can also elevate protein acetylation.133,149 It should be
Protein modifications and diabetic glucotoxicity

noted that removal of the acetyl group by enzymes, such as sirtuins, requires the presence of NAD$^+$, which is used as the substrate for deacetylases.150,151 Therefore, a lower level of NAD$^+$ would inhibit protein deacetylation and increase protein acetylation.152 Hence, protein acetylation is a modification that is highly governed by the availability of fuels and NAD$^+$, the latter being tightly linked to cellular redox balance.$^{153-155}$ In this regard, it is no surprising that aldose reductase can increase protein acetylation via diminishing the NAD$^+$ levels.156

Protein succination. This modification, along with protein acetylation, has also been categorized under carbon stress.138 Protein succination is due to a conjugation reaction between fumerate and proteins and often occurs on protein cysteine residues.157,158 Any fuel source that would elevate the level of fumerate, an intermediate in the Krebs cycle, would theoretically facilitate protein succination.$^{158-161}$ Similar to S-nitrosylation, protein succination has been shown to increase in diabetes and its complications.161,162 Protein succination can also impair protein function and cellular redox

Figure 4. Fates of acetyl-CoA, a central molecule in fuel metabolism. Acetyl-CoA can be derived by combustion of glucose, fatty acids, proteins or amino acids, and alcohol. In normal condition, acetyl-CoA is mainly channeled into the Krebs cycle for energy production. In overnutrition state, acetyl-CoA can be used to store excess energy by forming fatty acids. Acetyl-CoA is also the source for cholesterol synthesis. In starved state, acetyl-CoA is converted into ketone bodies. Acetyl-CoA is also the substrate used for protein acetylation.

Figure 5. Excess acetyl-CoA drives nonenzymatic protein acetylation. For noninsulin-dependent cells, diabetic hyperglycemia can overload them with glucose, causing the oversupply of acetyl-CoA. For insulin-dependent tissues in diabetes, the cell cannot get enough glucose and will have to use fatty acids as the source of energy. Because oxaloacetate cannot be continuously formed due to lack of glucose, the level of acetyl-CoA could be extremely high, leading to ketone body production and protein acetylation.
Protein sumoylation. This posttranslational modification refers to the attachment of a small protein, called small ubiquitin-like modifier (SUMO) protein, to the target protein. SUMOs are covalently attached onto target proteins and can also be detached. Hence, sumoylation is also a reversible process. Protein sumoylation is known to be involved in protein translocation, protein stabilization, inflammation, redox imbalance, and oxidative stress. In diabetes, SUMO-4 has been implicated in the development of diabetes. The target proteins of SUMO-4 include IKKα, STAT, AP-1, and heat shock transcription factors. Moreover, SUMO-4 seems to restrict its action in pancreas and immune systems as well as in kidneys. With respect to regulation of blood glucose levels, sumoylation is known to occur in Glut4, thereby facilitating its translocation onto cell membranes. Sumoylation is also known to occur in protein tyrosine phosphatase 1B (PTP1B), whereby PTP1B function is inhibited. As PTP1B is involved in a negative regulation of insulin receptor, PTP1B sumoylation is considered to positively regulate insulin signaling. While some of these studies indicate the beneficial role of protein sumoylation, the modification has also been shown to be involved in diabetic pathogenesis. For example, high glucose has been shown to induce sumoylation of Smad4 in mesangial cells, a process likely involved in renal fibrosis in diabetic kidney. Additionally, protein sumoylation has been linked to increased endothelial inflammation, a process known to occur in diabetes and its complications.

Protein ADP-ribosylation. This posttranslational modification occurring in several amino acid residues, such as cysteine, arginine, and asparagine, is the transfer of the ADP-ribose moiety of the NAD⁺ molecule onto a target protein, and either mono-ADP-ribosylation or poly-ADP-ribosylation can occur. Because NAD⁺ is used as a substrate for ADP-ribosylases, the process is highly dependent on NAD⁺ availability, and activation of ADP-ribosylases can actually deplete NAD⁺. This is indeed the case in diabetes as overactivation of poly-ADP-ribosylases and NAD⁺ depletion have been observed. Accordingly, inhibition of poly-ADP-ribosylases has been demonstrated to prevent the development of diabetes and its complications. As ROS-induced DNA damage can activate poly-ADP-ribosylases, ADP-ribosylation is thought to be deeply involved in oxidative stress and glucotoxicity.

Conclusion
In this review, we have summarized the evidence that posttranslational protein modifications can manifest glucotoxicity in diabetes. We have discussed the types of protein modifications that have been, and are still being, intensively investigated in the field of diabetes research. These modifications, including carbonylation, nitration, glycation, O-GlcNAcylation, nitrosylation, succination, acetylation, and ADP-ribosylation, can affect or modulate the function of the modified proteins, with consequences that are more often detrimental than beneficial. Importantly, the driving force behind all these modifications is dysregulation of glucose metabolism in diabetes that results in persistent hyperglycemia. Further studies on these protein modifications in diabetes will continue to help our understanding of the pathogenic mechanisms of diabetes and its complications.

Author Contributions
Conceived the idea and wrote the first draft of the article: L.-JY. Contributed to the preparation and design of the article and reviewed and approved the final form of the article: HZ, JW, ZJ, L.-JY. All authors reviewed and approved of the final manuscript.

REFERENCES
1. Kaiser N, Leibowitz G, Nesher R. Glucotoxicity and beta-cell failure in type 2 diabetes mellitus. J Pediatr Endocrinol Metab. 2003;16(1):1–22.
2. Del Prato S. Role of glucotoxicity and lipotoxicity in the pathophysiology of Type 2 diabetes mellitus and emerging treatment strategies. Diabetes Metab. 2009;26(12):1185–1192.
3. Brunner Y, Schwarts D, Priegro-Capote F, Coute Y, Sanchez JC. Glucotoxicity and pancreatic proteomes. J Proteomics. 2009;71(6):576–591.
4. Tuch B, Dunlop M. Projecto: J Diabetes Research: A Guide for Postgraduates. Harwood Academic Publishers, Amsterdam, The Netherlands. 2000.
5. Funk SD, Yurdagul A Jr, Orr AW. Hyperglycemia and endothelial dysfunction in atherosclerosis: lessons from type 1 diabetes. Int J Vasam. 2012;56:9654.
6. Eiselle L, Schwartz HJ, Rutledge JC. The challenge of type 1 diabetes mellitus. ILAR J. 2004;45(3):318–326.
7. Leibowitz G, Kaiser N, Cerasi E. Beta-cell failure in type 2 diabetes. J Diabetes Invest. 2011;2(2):82–91.
8. Butler AE, Janison J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(10):102–110.
9. Chang-Chen KJ, Mullur R, Bernal-Mizrachi E. Beta-cell failure as a complication of diabetes. Rev Endocr Metab Disord. 2008;9(4):329–343.
10. Larsen MO. Beta-cell function and mass in type 2 diabetes. Dan Med Bull. 2009;56(3):153–164.
11. Abdul-Ghani MA, DeFronzo RA. Oxidative stress in type 2 diabetes. In: Miwa S, Beckman KB, Muller FL, eds. Oxidative Stress in Aging. Humana Press, Totowa, New Jersey, USA; 2008:191–212.
12. DeFronzo RA. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia and atherosclerosis. Neth J Med. 1997;50(5):191–197.
13. Maedler K, Donath MY. Beta-cells in type 2 diabetes: a loss of function and mass. Horm Res. 2004;62(suppl 3):67–73.
14. Muosio DM, Newgard CB. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9(3):193–205.
15. Lee SA, Lee WJ, Kim EH, et al. Progression to insulin deficiency in Korean patients with type 2 diabetes mellitus positive for anti-GAD antibody. Diabet Med. 2011;28(3):319–324.
16. Gallwitz B, Kazda C, Kraus P, Nicolay C, Schernthaner G. Contribution of insulin deficiency and insulin resistance to the development of type 2 diabetes: nature of early stage diabetes. Acta Diabetol. 2011;50(1):39–45.
17. Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes. 2005;54(suppl 2):S97–S107.
18. Szendroedi J, Pheliex E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(2):92–103.
19. Gholap NN, Davies MJ, Mostafa SA, Khunti K. Diagnosing type 2 diabetes and its complications. Brit J Gen Pract. 2013;63(607):e165–e167.
44. Szabo C. Roles of poly(ADP-ribose) polymerase activation in the pathogenesis of diabetes.

42. Ying W. NAD metabolism in normal and diabetic conditions.

38. Yan LJ. Positive oxidative stress in aging and aging-related disease tolerance.

37. Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic complications.

33. Reddy AB, Ramana KV. Aldose reductase inhibition: emerging drug target for the treatment of diabetic complications.

30. Fantus IG. The pathogenesis of the chronic complications of diabetes mellitus.

25. Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic beta cell glucotoxicity.

24. Wu J, Luo X, Yan LJ. Two-dimensional blue native/SDS-PAGE to identify mitochondrial proteins of rho(0) cells without a functional respiratory chain.

22. Poitout V, Robertson RP. Minireview: secondary beta-cell failure in type 2 diabetes—a convergence of glucotoxicity and lipotoxicity. Endocrinology, 2002;143(2):339–342.

20. Kornegren O, Jansson L, Sandler S, Andersson A. Hyperglycemia-induced B cell toxicity. The fate of pancreatic islets transplanted into diabetic mice is dependent on their genetic background. J Clin Invest. 1999;106(6):2161–2168.

19. Picon V, Robertson RP. Mini-review: secondary beta-cell failure in type 2 diabetes—a convergence of glucotoxicity and lipotoxicity. Endocrinology. 2002;143(2):339–342.

18. Devaraj S, Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

17. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

16. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

15. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

14. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

13. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

12. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

11. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

10. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

9. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

8. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

7. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

6. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

5. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

4. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

3. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.

2. Devaraj S, Grundy SM. Oxidative stress and aging. J Am Coll Nutr. 2007;26(3):179–206.
105. Koeck T, Willard B, Crabb JW, Kinter M, Stuehr DJ, Aulak KS. Glucose-modulated glucotoxicity.

104. Koeck T, Corbett JA, Crabb JW, Stuehr DJ, Aulak KS. Glucose-modulated glucotoxicity.

98. Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes.

97. Taganis T. Reactive oxygen species and insulin resistance: the good, the bad and the ugly.

96. Mendez L, Pazos M, Molinar-Toribio E, et al. Protein carbonylation associated with protein S-nitrosylation during aging.

91. Fedorova M, Bollineni RC, Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev. 2013;32(7):97–109.

89. Yan LJ, Levine RL, Sohal RS. Oxidative damage during aging targets mitochondrial complex I. J Physiol. 1998;510(5):993–999.

88. Queisser MA, Yao D, Geisler S, et al. Hyperglycemia impairs proteasome function by methylglyoxal.

87. Zheng et al. Increased glutathionylated hemoglobin (HbSSG) in type 2 diabetes: relevance in diabetes and potential role as a biomarker.

86. Sampathkumar R, Balaram P. Increased glutathionylated hemoglobin (HbSSG) in type 2 diabetes: relevance in diabetes and potential role as a biomarker.

85. Kaneki M, Shimizu N, Yamada D, Chang K. Nitrosative stress and pathogenesis of insulin resistance. Antioxid Redox Signal. 2007;9(3):319–329.

84. Noriega-Cisneros R, Cortez-Rojo C, Manzano-Avalos S, et al. Mitochondrial response to oxidative and nitrosative stress in early stages of diabetes. Mitochon- dria. 2013;13(6):835–840.

83. Sanchez-Gomez FJ, Espinoza-Diez C, Dubey M, Dikshit M, Lamas S. S-glutathionylation: relevance in diabetes and potential role as a biomarker. Biol Chem. 2013;394(10):1263–1270.

82. Sampathkumar R, Balasubramanyam M, Sudarsal S, Rama M, Mohan V, Balamur P. Increased glutathionylated hemoglobin (HbSSG) in type 2 diabetes subjects with microangiopathy. Clin Biochem. 2005;38(10):892–899.

81. Queisser MA, Yao D, Geisler S, et al. Hyperglycemia impairs proteasome function by methylglyoxal.

80. Massey EH, Greger S, McNulty SM, et al. Protein S-nitrosylation and mitochondrial complex I function.

79. Fardini Y, Masson E, Boudah O, et al. O-GlcNAcylation of FoxO1 in pancreatic beta cells promotes Akt inhibition through an IGBP1–mediated autocrine mechanism.

78. Tong G, Aponte AM, Kohr MJ, Steenbergen C, Murphy E. Sun Postconditioning leads to an increase in protein S-nitrosylation. Am J Physiol Heart Circ Physiol. 2014;306(6):H825–H832.

77. Sun J, Murphy E. Protein S-nitrosylation and cardioprotection. Circ Res. 2010;106(2):283–296.

76. Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E. Preconditioning results in S-nitrosolation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res. 2007;101(11):1155–1163.

75. Lima B, Forrester MT, Hess DT, Stamler JS. S-nitrosylation in cardiovascular signaling. Circ Res. 2006;98(4):633–646.

74. Nakamura T, Lipton SA. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases. Trends Pharmacol Sci. 2016;37(1):73–84.

73. ChouChou ET, Menter C, Nadchotri SM, et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med. 2013;19(16):753–759.

72. Kaneki M, Shimizu N, Yamada D, Chang K. Nitrosative stress and pathogenesis of insulin resistance. Antioxid Redox Signal. 2007;9(3):319–329.

71. Noriega-Cisneros R, Cortes-Rojo C, Manzano-Avalos S, et al. Mitochondrial response to oxidative and nitrosative stress in early stages of diabetes. Mitochon- dria. 2013;13(6):835–840.

70. Yasukawa T, Tokuwaga E, Ota H, Sugita H, Martyan JN, Kaneki M. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resis- tance. J Biol Chem. 2005;280(9):7511–7518.

69. Mieyal JJ, Galligan SJ, Player G, Erekles A, Shelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal. 2008;10(11):1941–1988.

68. Sanchez-Gomez FJ, Espinoza-Diez C, Dubey M, Dikshit M, Lamas S. S-glutathionylation: relevance in diabetes and potential role as a biomarker. Biol Chem. 2013;394(10):1263–1270.

67. Sampathkumar R, Balasubramanyam M, Sudarsal S, Rama M, Mohan V, Balamur P. Increased glutathionylated hemoglobin (HbSSG) in type 2 diabetes subjects with microangiopathy. Clin Biochem. 2005;38(10):892–899.

66. Wagner GR, Payne RM. Widespread and enzyme-independent N-acetylation and N-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem. 2013;288(40):39206–39245.

65. Baeza J, Smalligan MJ, Denu JM. Site-specific reactivity of nonenzymic lysine acetylation. ACS Chem Biol. 2015;10(1):122–128.

64. Prins ML. Cerebral metabolic adaptation and ketone metabolism after brain injury. J Cereb Blood Flow Metab. 2008;28(1):1–16.

63. White H, Venkatesh B. Clinical review: ketones and brain injury. Crit Care. 2011;15(2):219.

62. Cotter DG, Schugur RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol. 2013;304(8):H1060–H1076.

61. Fritz KS, Galligan JJ, Hirschy MD, Verdin E, Peterson DR. Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice. J Proteome Res. 2012;11(3):1633–1643.

60. Iyer A, Fairlie DP, Brown L. Lysine acetylation in obesity, diabetes and meta- bolic disease. Immunol Cell Biol. 2012;90(3):39–46.

59. Kosanam H, Thai K, Zhang Y, et al. Diabetes induces lysine acetylation of intermediary metabolism enzymes in the kidney. Diabetes. 2014;63(7): 2432–2439.

58. Fernandez J, Weddle A, Kinter CS, et al. Lysine acetylation activates mitochondrial β-oxidation by switching deacetylases. Mol Cell. 2014;54(1):5–16.

57. Pham TX, Lee J. Dietary regulation of histone acetylases and deacetylases for the prevention of metabolic diseases. Nutrients. 2012;4(2):1886–1886.

56. Paik WK, Pearson D, Lee HW, Kim S. Nonenzymic acetylation of histones with acetyl-CoA. Biochim Biophys Acta. 1970;213(2):513–522.
161. Ramponi G, Manao G, Camici G. Nonenzymatic acetylation of histones with acetyl phosphate and acetyl adenylate. Biochemistry. 1975;14(12):2681–2685.
162. Wang Y. Molecular links between caloric restriction andSir2/SIRT1 activation. Diabetes Metab J. 2014;38(5):321–329.
163. Ramir MR, Esteban S, Miralles A, Tan DX, Reiter RJ. Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related diseases. Mech Ageing Dev. 2015;146-148C:28–41.
164. Kincade B, Bossy-Wetzel E. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci. 2013;5:48.
165. Verdin E, Ott M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol. 2015;16(4):258–264.
166. Seely L, Olefsky JM. Potential cellular and genetic mechanisms for insulin resistance in the common disorders of diabetes and obesity. In: Moller DE, ed. Insulin resistance. New York: Wiley; 1993:187–252.
167. Lugaro M, McGuire AD. Basic Medical Biochemistry. A Clinical Approach. 4th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2013.
168. Vazquez EJ, Berthiaume JM, Kamath V, et al. Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart. Cardiovasc Res. 2015;107(4):453–465.
169. Fritz KS, Green MF, Petersen DR, Hirschy MD. Ethanol metabolism modifies hepatic protein acylation in mice. PLoS One. 2013;8(9):e75586.
170. Huynh FK, Hershberger KA, Hirschy MD. Targeting sirtuins for the treatment of diabetes. Diabetes Metab (Lond). 2013;3(1):245–257.
171. Jung E, Emanuelli B, Hirschy MD, et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci U S A. 2011;108(35):14608–14613.
172. Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radiol Biol Med. 2013;56:133–171.
173. Nikiforov A, Kolikova V, Ziegler M. The human NAD metabolism: functions, metabolism and compartmentalization. Cric Res Bioch Mol Biol. 2015;50(4):284–297.
174. Turkmen K, Karagöz A, Kucuk A. Sirtuins as novel players in the pathogenesis of diabetes mellitus. World J Diabetes. 2014;5(6):894–900.
175. Yang T, Suave AA. NAD metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity. JAPB. 2006;8(4):E632–E643.
176. Vedantham S, Thaigarajan D, Ananthakrishnan R, et al. Aldose reductase drives hyperacetylation of Egr-1 in hyperglycemia and consequent upregulation of pro-inflammatory and prothrombotic signals. Diabetes. 2014;63(6):761–774.
177. Nair N, Brolin RE, Dinniwell J, et al. Multiple acetylation sites on deacetylase 5: substrate diversity and implications on protein acetylation. Biochemistry. 2012;51(2):439–445.
178. Frizzell N, Thomas SA, Carson JA, Baynes JW. Mitochondrial stress causes succination of proteins in diabetes. Proc Natl Acad Sci U S A. 2011;108(35):14608–14613.
179. Wang CY, She JX. SUMO4 and its role in type 1 diabetes pathogenesis. Diabetes Metab Res Rev. 2008;24(2):93–102.
180. Lin HY, Wang CL, Hisaj P, et al. SUMO4 M55V variant is associated with diabetic nephropathy in type 2 diabetes. Diabetes. 2007;56(4):1177–1180.
181. Zhou X, Gao C, Huang W, et al. High glucose induces sumoylation of Smad4 via SUMO2/3 in mesangial cells. Biomed Res Int. 2014;2014:782625.
182. Le NT, Corsetti JP, Dehoff-Sparls JK, Sparks CE, Fujikawa K, Abe J. Reactive oxygen species, SUMOylation, and endothelial inflammation. Int J Inflamm. 2015;2015:62199.
183. Mueller-Dieckmann C, Kernstock S, Lisurek M, et al. The structure of human poly(ADP-ribose) polymerase and its role in the protection of DNA from oxidative damage. Proc Natl Acad Sci U S A. 2011;108(35):14608–14613.
184. Heo KS, Chang E, Le NT, et al. De-SUMOylation enzyme of sentrin/SUMO-homologous proteins regulates SUMOylation of ERK5 and p53 that leads to endothelial dysfunction and atherosclerosis. Circ Res. 2013;112(6):911–923.
185. Huang CJ, Wu D, Khan FA, Hsu LJ. De-SUMOylation: an important therapeutic target and protein regulatory event. DNA Cell Biol. 2015;34(11):652–660.
186. Zhao J. Sumoylation regulates diverse biological processes. Cell Mol Life Sci. 2007;64(23):3017–3033.
187. Guo D, Li M, Zhang Y, et al. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet. 2004;36(8):837–841.
188. Guo D, Han J, Adam BL, et al. Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress. Biochem Biophys Res Commun. 2005;337(4):1308–1318.
189. Li M, Guo D, Isales CM, et al. SUMO wrestling with type 1 diabetes. J Mol Med (Berl). 2005;83(7):504–513.
190. Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase (PARP) inhibitors. J Cell Mol Med. 2011;15(6):939–951.
191. Daniels CM, Ong SE, Leung AK. The promise of proteomics for the study of human cancer. Protein J. 2007;9(1):80–85.
192. Yang CY, She JX. SUMO4 and its role in type 1 diabetes pathogenesis. Diabetes Metab Res Rev. 2008;24(2):93–102.
193. Lin HY, Wang CL, Hisaj P, et al. SUMO4 M55V variant is associated with diabetic nephropathy in type 2 diabetes. Diabetes. 2007;56(4):1177–1180.
194. Zhou X, Gao C, Huang W, et al. High glucose induces sumoylation of Smad4 via SUMO2/3 in mesangial cells. Biomed Res Int. 2014;2014:782625.
195. Feligioni M, Kernstock S, Lisurek M, et al. The structure of human poly(ADP-ribose) polymerase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation. Proc Natl Acad Sci U S A. 2006;103(41):15026–15031.
196. Hassa PO, Henni SS, Elser M, Hottiger MO. Nuclear ADP-ribosylation reactions in mammalian cells where are we today and where are we going? Microb Mol Biol Rev. 2006;70(3):789–829.
197. Buttage M, Ecke L, Verheugt P, Luscher B. Intracellular mono-ADP-ribosylation in signaling and disease. Cells. 2015;4(4):569–595.
198. Horvath EM, Magenheim R, Koger E, et al. Nitrative stress and poly(ADP-ribosyl) polymerase activation in healthy and gestational diabetic pregnancies. Diabetologia. 2009;52(9):1935–1943.
199. Du X, Matsuruma T, Edelstein D, et al. Inhibition of GADPH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest. 2003;112(7):1049–1057.
200. Masutani T, Suzuki H, Kamada N, et al. Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci U S A. 1999;96(5):2301–2304.
201. Pieper AA, Brat DJ, Krog DK, et al. Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc Natl Acad Sci U S A. 1999;96(6):3099–3104.
202. Wirag L., Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev. 2002;54(3):375–429.
203. Daniels CM, Ong SE, Leung AK. The promise of proteomics for the study of ADP-ribosylation. Mol Cell. 2015;58(6):911–924.
204. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–820.
205. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–1625.