Research Article

X(1870) and \(\eta_2(1870) \): Which Can Be Assigned as a Hybrid State?

Bing Chen, 1 Ke-Wei Wei, 1 and Ailin Zhang 2

1 School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China
2 Department of Physics, Shanghai University, Shanghai 200444, China

Correspondence should be addressed to Bing Chen; chenbing@shu.edu.cn

Received 11 July 2013; Revised 15 September 2013; Accepted 23 September 2013

1 Introduction

An isoscalar resonant structure of X(1870) was observed by the BESIII Collaboration with a statistical significance of 7.2\(\sigma \) in the processes \(J/\psi \rightarrow \omega X(1870) \rightarrow \omega \eta \pi^+ \pi^- \) recently [1]. Its mass and width were given as

\[
M = 1877.3 \pm 6.3^{+13.4}_{-7.4} \text{ MeV}, \quad \Gamma = 57 \pm 12^{+19}_{-4} \text{ MeV}.
\]

Here the first errors are statistical and the second ones are systematic. The product branching fraction of \(B(J/\psi \rightarrow \omega X(1870)) \cdot B(X(1870) \rightarrow a_0^+(980)\pi^\pm \pi^\mp) \cdot B(a_0^+(980) \rightarrow \eta \pi^\pm) \approx [1.5 \pm 0.26(\text{stat})+0.72(\text{syst})] \times 10^{-4} \) was also presented [1]. But the quantum numbers of X(1870) are still unknown, then the partial wave analysis is required in future.

The mass of X(1870) is consistent with the \(\eta_2(1870) \), but the width is much narrower than the \(\eta_2(1870) \). In the tables of the Particle Data Group (PDG) [2], the available mass and width of \(\eta_2(1870) \) are

\[
M = 1842 \pm 8 \text{ MeV}, \quad \Gamma = 225 \pm 14 \text{ MeV}.
\]

The \(\eta_2(1870) \) has been observed in \(\gamma\gamma \) reactions [3, 4], \(p\bar{p} \) annihilation [5–8], and radiative \(J/\psi \) decays [9]. It should be stressed that radiative \(J/\psi \) decay channels (Figure I(a)) and \(p\bar{p} \) annihilation processes are the ideal glueball hunting grounds. But the glueball production is suppressed in \(\gamma\gamma \) reaction. By contrast, the hadronic \(J/\psi \) decay are considered “hybrid rich” (Figure I(b)).

Furthermore, the branching ratio \(\mathcal{B}_1 = \Gamma(\eta_2(1870) \rightarrow a_0^+(1320)\pi)/\Gamma(\eta_2(1870) \rightarrow a_0^+(980)\pi) = 32.6 \pm 12.6 \) reported by the WA102 Collaboration indicates that the decay channel of \(a_0^+(980)\pi \) is tiny for \(\eta_2(1870) \) [7]. This has been confirmed by an extensive reanalysis of the Crystal Barrel data [10]. Differently, the analysis of BESIII Collaboration indicates that the X(1870) primarily decays via the \(a_0^+(980)\pi \) channel [1]. Then the present measurements of the decay widths, productions, and decay properties suggest that \(\eta_2(1870) \) and X(1870) are two different isoscalar mesons.

If the production process \(J/\psi \rightarrow \omega X(1870) \) is mainly hadronic, the quantum numbers of X(1870) should be \(0^+0^- \), \(0^+1^+ \), or \(0^+2^- \). One notices that the predicted masses for the light \(0^+0^- \), \(0^+1^+ \) and \(0^+2^- \) hybrids overlap 1.8 GeV in the Bag model [11, 12], the flux tube model [13, 14], and the constituent gluon model [15]. In addition, the decay width of isoscalar \(2^- \) hybrid is expected to be narrow [16]. Therefore, X(1870) becomes a possible \(2^- \) hybrid candidate.

In addition, the predicted masses of \(0^- \) and \(2^- \) glueball are much higher than 1.8 GeV by lattice gauge theory [17–19]. Therefore, X(1870) is not likely to be a glueball state. Moreover, the molecule and four-quark states are not expected in this region [16]. Then the unclear structure X(1870) looks more like a good hybrid candidate. But the actual situation
is much complicated because the nature of $\eta_c(1870)$ is still ambiguous.

(i) Since no lines of evidence have been found in the decay mode of $K\bar{K}\pi$, the $\eta_c(1870)$ disfavors the $1^1D_2s\bar{s}$ quarkonium assignment. The mass of $\eta_c(1870)$ seems much smaller for the $2^3D_2n\bar{m}$ ($n\bar{m} = (u\bar{u} + d\bar{d})/\sqrt{2}$) state in the Godfrey-Isgur (GI) quark model [20]. Therefore the $\eta_c(1870)$ has been assigned as the $2^+\gamma$ hybrid state [10, 21–23].

(ii) However, Li and Wang pointed out that the mass, production, total decay width, and decay pattern of the $\eta_c(1870)$ do not appear to contradict with the picture of it as being the conventional $2^1D_2n\bar{m}$ state [24].

Therefore, systematical study of the mass spectrum and strong decay properties is urgently required for $X(1870)$ and $\eta_c(1870)$. Some valuable suggestions for the experiments in future are also needed.

The paper is organized as follows. In Section 2, the masses of $X(1870)$ and $\eta_c(1870)$ will be explored in the GI relativized quark model and the Regge trajectories (RTs) framework. In Section 3, the decay processes that an isoscalar meson decays into light scalar (below 1 GeV) and pseudoscalar mesons will be discussed. The two-body strong decays of $X(1870)$ and $\eta_c(1870)$ will be calculated within the 1^3P_0 model and the flux-tube model. Finally, our discussions and conclusions will be presented in Section 4.

2. Mass Spectrum

In the Godfrey-Isgur relativized potential model [20], the Hamiltonian H consists of a central potential and the kinetic term in a “relativized” form

$$H = \sqrt{p_q^2 + m_q^2} + \sqrt{p_{\bar{q}}^2 + m_{\bar{q}}^2} + V_{q\bar{q}}(r).$$

The funnel-shaped potentials which include a color coulomb term at short distances and a linear scalar confining term at large distances are usually incorporated as the zeroth-order potential. The typical funnel-shaped potential was proposed by the Cornell group (Cornell potential) with the form [29]

$$V_{q\bar{q}}(r) = -\frac{4}{3} \alpha_s r + \sigma r + C.$$ (4)

The strong coupling constant α_s, the string tension σ, and the constant C are the model parameters which can be fixed by the well-established experimental states. The remaining spin-dependent terms for mass shifts are usually treated as the leading-order perturbations which include the spin-spin contact hyperfine interaction, spin-orbit and tensor interactions, and a longer-ranged inverted spin-orbit term. They arise from one gluon exchange (OGE) forces and the assumed Lorentz scalar confinement. The expressions for these terms may be found in [20].

It should be pointed out that the nonperturbative contribution may dominate for the hyperfine splitting of light mesons, which is not like the heavy quarkonium [30]. For example, the hyperfine shift of the $h_1(1P)$ meson with respect to the center gravity of the $\chi_c(1P)$ mesons is much small: $M_{\chi_c}(1P) - M(h_1) = 0.02 \pm 0.19 \pm 0.13$ MeV [31]. However, for the light isovector mesons $a_0(1450), a_1(1260), a_2(1320)$, and $b_1(1235)$, the hyperfine shift is 76.7 ± 44.4 MeV. Here the masses of a_0, a_1, a_2, and b_1 are taken from PDG [2]. For the complexities of nonperturbative interactions, we are not going to calculate the hyperfine splitting.

Now, the spin-averaged mass, \overline{M}_{np}, of nL multiplet can be obtained by solving the spinless Salpeter equation:

$$\left[\sqrt{\beta_{\bar{q}}^2 + m_{\bar{q}}^2} + \sqrt{\beta_q^2 + m_q^2} + V_{q\bar{q}}(r) \right] \psi(r) = E \psi(r).$$ (5)

Here we employ a variational approach described in [32] to solve (5). This variational approach has been applied well in solving the Salpeter equation for $c\bar{s}$ [33], $c\bar{c}$ and $b\bar{b}$ [34] mass spectrum.

In the calculations, the basic simple harmonic oscillator (SHO) functions are taken as the trial wave functions. It is given by

$$\psi_n(r, \beta) = \beta^{3/2} \sqrt{\frac{2 (2n - 1)!}{\Gamma(n + 1/2)}} \left(\frac{\beta r}{\Gamma(n + 1/2)} \right) \psi_n(\beta^2 r^2),$$

where $n = 0, 1, 2, \ldots$.
in the position space. Here the SHO function scale β is the variational parameter.

By the Fourier transform, the SHO radial wave function in the momentum is

$$\psi_m(p, \beta) = \frac{(-1)^n}{\beta^{3/2}} \sqrt{\frac{2(2n-1)!}{\Gamma(n + l + (1/2))}} \left(\frac{p}{\beta}\right)^l e^{-p^2/2\beta^2} L_{n-1/2}^l \left(\frac{p^2}{\beta^2}\right).$$ (7)

The wave functions of $\psi_m(r, \beta)$ and $\psi_m(p, \beta)$ meet the normalization conditions:

$$\int_0^{\infty} \psi_m^2(r, \beta) r^2 dr = 1, \quad \int_0^{\infty} \psi_m^2(p, \beta) p^2 dp = 1.$$ (8)

In the variational approach, the corresponding \bar{M}_m are given by minimizing the expectation value of H

$$\frac{d}{d\beta} E_m(\beta) = 0,$$ (9)

where

$$E_m(\beta) \equiv \langle H \rangle_{n\ell} = \langle \psi_m | H | \psi_m \rangle.$$ (10)

When all the parameters of the potential model are known, the values of the harmonic oscillator parameter β can be fixed directly. With the values of β, all the spin-averaged masses \bar{M}_m will be obtained easily. \bar{M}_m obtained in this way trend to be better for the higher-excited states [35].

It is unreasonable to treat the spin-spin contact hyperfine interaction as a perturbation for the ground states, because the mass splitting between pseudoscalar mesons and vector mesons are much large. Then we consider the contributions of $V_{c3}(r)$ for the 1S mesons. The following Gaussian-smeared contact hyperfine interaction [36] is taken for convenience:

$$V_{c3}^{(r)}(r) = \frac{32\pi\alpha_s}{9m_n^2} \left(\frac{\kappa}{\sqrt{\pi}}\right)^3 e^{-\kappa R^2} S_{\pi}, S_{\eta}.$$ (11)

In this work, we choose the model parameters as follows: $m_u = m_d = 0.220$ GeV, $m_s = 0.428$ GeV, $\alpha_s = 0.6$, $\sigma = 0.143$ GeV2, $\kappa = 0.37$ GeV, and $C = -0.37$ GeV. We take the smaller value of σ here rather than the value in [20]. The smaller σ was obtained by the relation between the slope of the Regge trajectory for the Salpeter equation α' and the slope α'_0 in the string picture [30]. The Gaussian smearing parameter κ seems a little smaller than that in [20]. However, the κ is usually fitted by the hyperfine splitting of low-excited ns states in the works of literature with a certain arbitrariness.

The values of $\bar{M}_{m\ell}$ and β for the states 2S, 3S, 1P, 2P, 3P, 1D, 2D, 3D, 1F, 2F, 1G, and 1H are listed in Table 1. The experimental masses for the relative mesons are taken from PDG [2].

Table 1: The spin-averaged mass (unit: GeV) and the harmonic oscillator parameter $\bar{\beta}$ (unit: GeV$^{-1}$) of the states 2S, 3S, 1P, 2P, 3P, 1D, 2D, 3D, 1F, 2F, 1G, and 1H.

States	$\bar{M}_{m\ell}(\bar{n}\bar{p})$	$\bar{\beta}$	Expt. [2]	$\bar{M}_{m\ell}(\bar{s}\bar{s})$	$\bar{\beta}$	Expt. [2]
1S	0.44/0.34	—	—	0.42/0.39	—	—
2S	1.399	0.310	1.389	1.631	0.330	1.629
3S	1.859	0.295	2.069	0.310	—	—
4S	2.240	0.290	2.436	0.300	—	—
1P	1.252	0.310	1.257	1.460	0.340	1.478
2P	1.711	0.294	1.926	0.315	—	—
3P	2.110	0.290	2.308	0.300	—	—
1D	1.661	0.280	1.672	1.883	0.300	—
2D	2.067	0.276	2.272	0.292	—	—
3D	2.417	0.275	2.609	0.288	—	—
1F	1.924	0.277	2.128	0.295	—	—
2F	2.287	0.275	2.478	0.290	—	—
1G	2.161	0.275	2.350	0.292	—	—
1H	2.377	0.273	2.554	0.287	—	—

Here are also reasonable, for example, $a_\ell(2040)$ and $f_a(2050)$ are very possible the F-wave $\bar{n}\bar{p}$ isovector and isoscalar mesons with the masses of 1996^{+10}_{-9} MeV and 2018 ± 11 MeV, respectively [2]. The predicted spin-averaged mass of $1F$ is not incompatible with experiments. Our results are also overall in good agreement with the expectations from [37].

The trend that a higher excited state corresponds to a smaller $\bar{\beta}$ coincides with [38–40]. For considering the spin-spin contact hyperfine interaction, there are two $\bar{\beta}$s for the 1S mesons. The larger one corresponds to the 1^1S_0 state and the smaller one the 1^3S_1 state.

As shown in [37, 41], the confinement potential $V_{conf}(r)$ is determinant for the properties of higher excited states. In [37], the masses for higher excited states with $\sigma = 0.143$ GeV2 and $\alpha_s = 0$ are closer to experimental data than the results given in [20]. Then we ignored the Coulomb interaction for 1D, 2D, 1F, 1G, and 1H states. In this way, $\bar{M}_{m\ell}$ for these states increase about 100 MeV.

The masses of $\eta(3^1S_0)$, $f_\ell(2^3P_1)$, $\eta'_s(1^1D_2)$, and $\eta_s(2^1D_2)$ are usually within 1.8–2.1 GeV in various quark potential models [20, 25–27] (see in Table 2). The predicted spin-averaged masses of $3S(\bar{s}\bar{s})$, $2P(\bar{s}\bar{s})$, $1D(\bar{s}\bar{s})$, and $2D(\bar{n}\bar{m})$ are also within this mass region (bold ones in Table 1). Due to the uncertainty of the potential models, absolute deviation from experimental data are usually about 100–150 MeV for the higher excited states. Compared with these predicted masses, $X(1870)$ disfavors the $\eta(3^1S_0)$ assignment for its low mass. But the possibilities of $f_\ell(2^3P_1)$, $\eta'_s(1^1D_2)$, and $\eta_s(2^1D_2)$ still exist. Here we do not consider the possibility of $X(1870)$ as the 3^1S_0 state because $\eta(1760)$ looks more like a good 3^1S_0 candidate [42–44].

Regge trajectories (RTs) are another useful tool for studying the mass spectrum of the light flavor mesons. In [45], the
Table 2: The masses predicted for $3^3S_0(\eta')$, $2^3P_J(\eta')$, $1^1D_J(\eta')$, and $2^1D_J(\eta')$ in [20, 25–27]. The value denoted by -15 was predicted for the mass of isovector 2^1D_2 state in [20].

States	$\eta'(3S_0)$	$f_1(2^3P_1)$	$\eta'_0(1^1D_2)$	$\eta_0(2^1D_2)$
[20]		2030	1890	2130
[25]	2085	2016	1909	1960
[26]	2099	1988	1851	—
[27]			1853	1863

Table 3: $X(1870)$ calculated in RTs for different states. The masses of $\eta'(1475)$, $f_1(1420)$, $h_1(1380)$, and $\eta_2(1645)$ are taken from PDG [2].

Four possible states for $X(1870)$	$\eta'(3S_0)$	$f_1(2^3P_1)$	$\eta'_0(1^1D_2)$	$\eta_0(2^1D_2)$
$\eta'(1475)$				
$\mu^2 = 1.34^{+0.04}_{-0.03}$	$\mu^2 = 1.38^{+0.04}_{-0.03}$	$\beta^2 = 1.60^{+0.06}_{-0.06}$	$\mu^2 = 0.91^{+0.04}_{-0.03}$	

authors fitted the RTs for all light-quark meson states listed in the PDG tables. A global description was constructed as

$$M^2 = 1.38(4)n + 1.12(4)J - 1.25(4). \quad (12)$$

Here, n and J mean the radial and angular-momentum quantum number. Recently, the authors of [45] repeated their fits with the subset mesons of the paper [46]. They found a little smaller averaged slopes of $\mu^2 = 1.28(5)\text{GeV}^2$ and $\beta^2 = 1.09(6)\text{GeV}^2$ to be compared with $\mu^2 = 1.38(4)\text{GeV}^2$ and $\beta^2 = 1.12(4)\text{GeV}^2$ in (12). Here the μ^2 and β^2 are the weighted averaged slopes for radial and angular-momentum RTs [45, 47].

Now $h_1(1380)$, $f_1(1420)$, and $\eta'(1475)$ have been established as the 1^1P_1, 1^3P_1, and 2^3S_0 states in PDG [2]. With the differences between the mass squared of $X(1870)$ and these states (Table 3), $X(1870)$ could be assigned for the $\eta'(3S_0)$ and $f'_1(2^3P_1)$. The mass of $X(1870)$ is too large for the $h_0(1^1D_2)$ state in the RTs. $\eta_2(1645)$ has been assigned as the $1^1D_2\pi\pi$ meson [2]. Since $M^2(X(1870)) - M^2(h_1(1170)) = 2.16^{+0.06}_{-0.05}\text{GeV}^2$ matches the slopes 2.37(11) GeV2 well. Then the RTs cannot exclude the possibility of $X(1870)$ as the $2^1D_2\pi\pi$ state.

As mentioned in Section 1, $X(1870)$ is also a good hybrid candidate since its mass overlaps the predictions given by different models. The predicted masses for 0^+0^+, 0^+1^+, and 0^+2^+ $\pi\pi\eta$ states by these models are collected in Table 4.

In this section, the mass of $X(1870)$ has been studied in the G1 quark potential model and the RTs framework. In the G1 quark potential model, $X(1870)$ can be interpreted as the $f'_1(2^3P_1)$, $\eta'_0(1^1D_2)$, or $\eta_0(2^1D_2)$ state with a reasonable uncertainty. In the RTs, $X(1870)$ favors the $\eta'(3S_0)$ and $f'_1(2^3P_1)$ assignments. But the $\eta_0(2^1D_2)$ assignment cannot be excluded thoroughly. $X(1870)$ is also a good hybrid state candidate. Since the masses of $X(1870)$ and $\eta_2(1645)$ are nearly equal, the possible assignments of $X(1870)$ also suit $\eta_2(1645)$. The investigations of the strong decay properties will be more helpful to distinguish the $\eta_2(1870)$ and $X(1870)$.

3. The Strong Decay

3.1. The Final Mesons Include the Scalar Mesons below 1 GeV.

Despite many theoretical efforts, the scalar nonet of $q\bar{q}$ mesons has never established well. The lowest-lying scalar mesons including $\sigma(500)$ (or $f_0(600)$), $\kappa(800)$, $\alpha_0(980)$, and $f_0(980)$ are difficult to be described as $q\bar{q}$ states; for example, $\alpha_0(980)$ is associated with nonstrange quarks in the $q\bar{q}$ scheme. If this is true, its high mass and decay properties are difficult to be understood simultaneously. So interpretations as exotic states were triggered. For examples, two clusters of two quarks and two antiquarks [48], particular quasimolecular states [49–51], and uncorrelated four-quark states $qq\bar{q}\bar{q}$ [52–54] have been proposed.

Though the structures of these scalar mesons below 1 GeV are still in dispute, the viewpoint that these scalar mesons can constitute a complete nonet states has been reached in most works of the literature (as illustrated in Figure 2). In the following, we will denote this nonet as “δ” multiplet for convenience.

Due to the unclear nature of the δ mesons, it seems much difficult to study the decay processes when the final mesons include a δ member. As an approximation, $\alpha_0(980)$, $\sigma(500)$, and $f_0(980)$ were treated as 1^3P_0 $q\bar{q}$ mesons in [44, 55]. In

![Figure 2: The “δ” nonet below 1 GeV shown in Y-Iσ plane.](image-url)
In order to determine the relations between these coupling constants, we will assume the process that the $q\bar{q}$ or $q\bar{q}q$ meson decays into a δ and another $q\bar{q}$ mesons obey the OZI (Okubo-Zweig-Iizuka) rule; that is, the two quarks in the mother meson go into two daughter mesons, respectively. Therefore, there are four forbidden processes: $X((1/\sqrt{2})(u\bar{t}-d\bar{d})) \to a_0 + s\bar{s}$, $X((1/\sqrt{2})(u\bar{t}+d\bar{d})) \to a_0 + s\bar{s}$, $X(\pi \bar{\pi}) \to f_0(1/\sqrt{2})(u\bar{t}+d\bar{d})$ and $X(s\bar{s}) \to f_0 + 1/\sqrt{2}(u\bar{t}-d\bar{d})$ with the help of the SU(3) Clebsch-Gordan coefficients [59], the ratios between the five coupling constants are extracted as

$$
\begin{align*}
G_{A18} : G_{A18} : G_{B88} & : G_{B11} : G_{A88} \\
&= \sqrt{2} : -\sqrt{2} \mp \sqrt{2} : -2.05 : -2.05 : 1.00.
\end{align*}
$$

It is well known that the physical states, $\eta(548)$ and $\eta'(958)$, are the mixture of the SU(3) flavor octet and singlet. They can be written in terms of a mixing angle, θ, as follows:

$$
\begin{align*}
\eta(548) &= \frac{\cos \theta - \sin \theta}{\sin \theta} \left(\begin{array} {c} 1 \\ 1 \\ 1 \end{array} \right) \\
\eta'(958) &= \frac{\cos \theta + \sin \theta}{\sin \theta} \left(\begin{array} {c} 1 \\ 1 \\ 1 \end{array} \right).
\end{align*}
$$

In this scheme, the ideal mixing occurs with the choice of $\theta = 35.3^\circ$. When ξ and ξ' decay into a δ and pseudoscalar mesons, the relations of decay amplitudes are governed by the coefficients ξ^2 which are model-independent in the limitation of SU(3)$_f$ symmetry. With the coupling constants in hand, the coefficients ξ^2 of ξ and ξ' versus the mixing angle θ are shown in the Figures 3 and 4. When ξ and ξ' occur in the ideal mixing, the values of ξ^2 are presented in Table 5. In the factorization framework, the decay difference of a hybrid and excited $q\bar{q}$ mesons comes from the spatial contraction [60]. Then the coefficients ξ^2 for hybrid states are the same as those of $q\bar{q}$ quarkonia.

Here the mixing of $\eta(548)$ and $\eta'(958)$ has been considered. It is sure that the ξ^2 are zero for the processes $\xi \to q\bar{q}n$, $\xi' \to q\bar{q}n$, $\xi \to q\bar{q}n$, and $\xi' \to f_0\eta'$, since they are OZI-forbidden. ξ^2 of $\xi' \to f_0\eta'$ has not been considered in Table 5 since $X(1870)$ lies below the threshold of $f_0\eta'$. As illustrated in Figures 3 and 4, the primary decay channels of a δ or $q\bar{q}q$ predominant excitation are $f_0\eta'$.
since $X(1870)$ primarily decays via the $a_0(980)\pi$ channel. At present, only the ground 0^{-+} and the 0^{++} isoscalar mesons deviate from the ideal mixing distinctly. In addition, if the $X(1870)$ is produced via a diagram of Figure 1(b), it should also be $n\bar{n}$ or $n\bar{g}\bar{g}$ predominant state.

Of course, the SU(3)$_f$ symmetry breaking will affect the ratios of these channels listed in Table 5, because the three-momentum of these products are different. However, the coefficients ζ^2 have presented the valuable information for these specific decay channels. When $\eta_2(1870)$ occupies the $2^1D_{3/2}$ state, $X(1870)$ becomes a good $n\bar{g}\bar{g}$ candidate. In the following subsection, we will explore the two-body strong decays of $X(1870)$ within the 3P_0 model and the flux-tube model. Of course, the analysis of $X(1870)$ also suits $\eta_2(1870)$ for their nearly equal masses.

3.2. The Strong Decays of $\eta_2(1870)$ and $X(1870)$. In [24], the 3P_0 model [61–63] and the flux-tube model [64] were employed to study the two-body strong decays of $\eta_2(1870)$. There, the pair production (creation) strength γ and the simple harmonic oscillator (SHO) wave function scale parameter, β_s, were taken as constants.

However, a series of studies indicate that the strength γ may depend on both the flavor and the relative momentum of the produced quarks [28, 65], γ may also depend on the reduced mass of quark-antiquark pair of the decaying meson [66]. Firstly, the relations of the 3P_0 model to “microscopic” QCD decay mechanisms have been studied in [65]. There, the authors found that the constant γ corresponds approximately to the dimensionless combination, $\sigma/m_\gamma\beta$, where m_γ is the mass of produced quark, β means the meson wave function scale, and σ is the string tension. Secondly, the momentum dependent manner of γ has been studied in [28]. It was found that γ is dependent on the relative momentum of the created $q\bar{q}$ pair, and the form of $\gamma(k) = A + B \exp(-Ck^2)$ with $k = |\vec{k} - \vec{k}_p|$ was suggested. Thirdly, Segovia et al. proposed that γ is a function of the reduced mass of quark-antiquark pair of the decaying meson [66]. Based on the first and third points above, γ will depend on the flavors of both the decaying meson and produced pairs. In our calculations, we will treat the γ as a free parameter and fix it by the well-measured partial decay widths.

In addition, the amplitudes given by the 3P_0 model and the flux-tube model often contain the nodal-type Gaussian form factors which can lead to a dynamic suppression for some channels. Then the values of β are important to extract the decay width for the higher excited mesons in these two strong decay models.

In the following, the two-body strong decay of $X(1870)$ will be investigated in the 3P_0 model where the strength γ will be extracted by fitting the experimental data. The SHO wave function scale parameter, β_s, will be borrowed from Table 1 which are extracted by the GI relativized potential model. We will also check the possibility of $X(1870)$ as a possible hybrid state by the flux-tube model.

In the nonrelativistic limit, the transition operator $\widetilde{\gamma}$ of the 3P_0 model is depicted as

$$\widetilde{\gamma} = -3\gamma \sum_m \langle 1, m; 1, -m | 0, 0 \rangle \times \int d^3\vec{k}_2d^3\vec{k}_4 \delta^3(\vec{k}_3 + \vec{k}_4) \times \gamma^m \left(\frac{\vec{k}_3 - \vec{k}_4}{2}\right) \omega_0(3,4)\phi_0(3,4) \Lambda_{1,m} \alpha_3(\vec{k}_3)d_4(\vec{k}_4),$$

(20)

where the $\omega_0(3,4)$ and $\phi_0(3,4)$ are the color and flavor wave functions of the $q\bar{q}$ pair created from vacuum. Thus, $\omega_0(3,4) = (R\bar{R} + G\bar{G} + B\bar{B})/\sqrt{3}$, $\phi_0(3,4) = (u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3}$ are color and flavor singlets. The pair is also assumed to carry the quantum numbers of 0^{++}, suggesting that they are in a 3P_0 state. Then $\Lambda_{1,m}$ represents the pair production in a spin triplet state.
The solid harmonic polynomial $Y_{m_1}^{n_1}(\hat{k}) \equiv |\hat{k}| Y_{m_1}^{n_1}(\theta_{k}, \phi_{k})$ reflects the momentum-space distribution of the $q_{i}q_{i}$. The helicity amplitude $\mathcal{M}_{\text{LS}}^{J_A, M_A, M_L}(p)$ of $A \rightarrow B + C$ is given by
\[
\langle BC | \hat{\mathcal{F}} | A \rangle = \delta^3 \left(\vec{P}_A - \vec{P}_B - \vec{P}_C \right) \mathcal{M}_{\text{LS}}^{J_A, M_A, M_L}(p),
\]
where p represents the momentum of the outgoing meson in the rest frame of the meson A. When the mock state [67] is adopted to describe the spatial wave function of a meson, the helicity amplitude $\mathcal{M}_{\text{LS}}^{J_A, M_A, M_L}(p)$ can be constructed in the $L - S$ basis easily [62, 63]. The mock state for A meson is
\[
\left| A \left(n_A^{s}, n_A^{n} \right) \right\rangle = \sqrt{2E_A} \sum_{M_L, M_s} \left\langle L_A M_L A | J_A M_J A \right\rangle \omega_A^{12} \Phi_A^{12} \chi_{SM_A}^{M_s M_s A} \times \int d\vec{P}_A \Psi_{n_A}^{L_A M_L A} \left(\vec{k}_1, \vec{k}_2 \right) q_1 \left(\vec{k}_1 \right) q_2 \left(\vec{k}_2 \right). \tag{22}
\]

To obtain the analytical amplitudes, the SHO wave functions are usually employed for $\psi_{n_A}^{L_A M_L A}(\vec{k}_1, \vec{k}_2)$. For comparison with experiments, one obtains the partial decay width $\mathcal{M}^{11}(p)$ via the Jacob-Wick formula [68]:
\[
\mathcal{M}_{\text{LS}}(p) = \sqrt{2L + 1} \sum_{M_J} \left\langle L \right| J_A M_J A \left| J_A M_J A \right\rangle \times \left\langle J_B, M_J B \left| J_M C, M_L C \right| J_M A \right\rangle \mathcal{M}_{\text{LS}}^{J_A, M_J, M_L}(p). \tag{23}
\]

Finally, the decay width $\Gamma(A \rightarrow BC)$ is derived analytically in terms of the partial wave amplitudes
\[
\Gamma (A \rightarrow BC) = 2\pi E_B p E_C \rho_{\text{LS}} \mathcal{M}^{11}(p)^2. \tag{24}
\]

More technical details of the 3P_0 model can be found in [63]. The inherent uncertainties of the 3P_0 decay model itself have been discussed in [28, 69, 70].

The dimensionless parameter γ will be fixed by the 8 well-measured partial decay widths which are listed in Table 6. The \mathcal{M}_{LS} amplitudes of these decay channels are presented explicitly in Appendix A.

As mentioned before, γ may depend on the flavors of both the decaying meson and the produced pairs. Then we divide the 8 decay channels into two groups: one is $n\pi \rightarrow n\pi + n\pi$, and the other includes $s\pi \rightarrow n\pi + s\pi$ and $n\pi \rightarrow n\pi + s\pi$. The values of γ here are a little different from these given in [28] where an AL1 potential (for details of AL1 potential, see [35]) was selected to determine the meson wave functions. Of course, the meson wave function given by different potentials will influence the values of γ.

It is clear in Table 6 that γ decrease with p increase. In addition, our calculation indicates that γ depends on flavors of both the decaying meson and the produced quark pairs.

Table 6: Values of γ in different channels and comparison with the results given in [28].

Decay Channel	p (GeV)	γ (10$^{-3}$)	γ [28]
$p \rightarrow n\pi$	0.362	17.8	9.18
$\eta \rightarrow \pi\pi$	0.535	11.5	—
$f_2 \rightarrow n\pi$	0.622	7.8	7.13
$\rho_3 \rightarrow \pi\pi$	0.833	4.2	—
$f_0' \rightarrow K^+K^-$	0.158	4.9	—
$f_2 \rightarrow KK$	0.401	2.9	6.11
$a_2 \rightarrow KK$	0.434	2.3	3.91
$f_0' \rightarrow KK$	0.579	2.0	5.66

For example, values of γ fixed by $a_2 \rightarrow KK$ and $f_0' \rightarrow KK$ are roughly equal.

In the following calculations, we assume that the values of γ corresponding to the processes of $s\pi \rightarrow n\pi + s\pi$ and $n\pi \rightarrow n\pi + s\pi$ are determined by one function. Similarly, we take the function, $\gamma(p) = A + B \exp(-Cp^2)$, for the creation vertex. The function of the creation vertex here is different from the one used in [28]. With the four decay channels listed in the fifth column of Table 6, we fix the function as $\gamma(p) = 1.8 + 4 \exp(-10p^2)$. For the processes of $n\pi \rightarrow n\pi + n\pi$ (the first column of Table 6), we fix the creation vertex function as $\gamma(p) = 3.0 + 25 \exp(-4p^2)$. The dependence of γ on the momentum p is plotted in Figure 5. Obviously the functions can describe the dependence of γ and p well. The functions of creation vertex given here need further test.

Since we neglected the mass splitting within the isospin multiplet, the partial width into the specific charge channel should be multiplied by the flavor multiplicity factor \mathcal{F} (Table 7). This \mathcal{F} factor also incorporates the statistical factor 1/2 if the final state mesons B and C are identical (as illustrated in Figure 6). More details of \mathcal{F} can be found in the Appendix A of [71].

The partial decay widths of $X(1870)$ are shown in Table 8 except the channels of $\delta + P$ mesons. $a_1(1320)\pi$ and $f_2(1275)\eta$ are large channels for the $\eta_s(2\Delta D_2)n\pi$ state in our work and
Advances in High Energy Physics

TABLE 7: The second and third columns for the flavor weight factors corresponding to two topological diagrams shown in Figure 6. The last column for the flavor multiplicity factor F. Here, $\psi = (|n\rangle - |s\rangle)/\sqrt{2}$ and $\psi' = (|n\rangle + |s\rangle)/\sqrt{2}$ have been taken for simplicity.

Decay channels	$\mathcal{J}_{\text{flavo}}(d1)$	$\mathcal{J}_{\text{flavo}}(d1)$	\mathcal{F}
$\rho \to \pi\pi$	$+1/\sqrt{2}$	$-1/\sqrt{2}$	1
$f_2' \to KK$	0	$-1/\sqrt{2}$	2
$a_2 \to KK$	-1	1	1
$\eta_2 \to \omega\pi$	$-1/\sqrt{2}$	$-1/\sqrt{2}$	1/2
$\eta_2 \to a_2\pi$	$-1/\sqrt{2}$	$-1/\sqrt{2}$	3

Figure 6: Two topological diagrams for a $q\bar{q}$ meson decay in the 3P_0 decay model. We refer to the left one as $d1$ where the produced quark goes into meson C and $d2$ where it goes into B.

Figure 7: The diagram for the "$\delta + P$" channels through a virtual intermediate $^1P_0q\bar{q}$ meson.

[24], which are consistent with the experimental observations of the $\eta_2(1870)$. The partial widths of K^*K, $\rho\rho$, and $\omega\omega$ are narrower in our work than the expectations from [24]. The $\eta_2(1870)$ has been observed by the BES Collaboration in the radiative decay channel of $J/\psi \to \eta_2\pi\pi[24]$. However, no apparent $\eta_2(1870)$ signals were detected in the channels of $J/\psi \to \gamma\rho\rho[72]$ and $J/\psi \to \gamma\omega\omega[73, 74]$. Therefore, improved experimental measurements of the radiative J/ψ decay channels are needed for the $\eta_2(1870)$ in future.

Next, we will evaluate the partial widths of "$\delta + P$" channels which have not been listed in Table 8. The scheme is proposed as follows. As illustrated in Figure 7, we assume that $X(1870)$ decays into $a_0(980)\pi$ via a virtual intermediate $^1P_0q\bar{q}$ meson. We notice that the $\eta_2(1295)$ also dominantly decays into the $\eta_2\pi\pi$ [1]. Its three-body decay can occur via three intermediate processes: $\eta_2(1295) \to \eta\sigma/a_0(980)\pi/\eta\pi\pi S_{\text{wave}} \to \eta\pi\pi$ [2]. With the ratio $\Gamma(\eta(980)\pi)/\Gamma(\eta(1295)) = 0.65 \pm 0.10$ and $\Gamma(\eta(1295)) \approx 55 \pm 5$ MeV, the partial width of $\eta_2(1295)$ decaying into $a_0(980)\pi$ is estimated no more than 45 MeV. By the 3P_0 model, the ratio of $\Gamma(X(1870) \to a_0(1^3P_0)\pi)/\Gamma(\eta(1295)) \to a_0(1^3P_0)\pi)$ can be reached easily. If the uncertainty of the coupling vertex of $\epsilon(1^3P_0q\bar{q}) \to a_0(980))$ (see in Figure 7) is assumed to be canceled in the ratio of $\Gamma(X(1870) \to a_0(1^3P_0)\pi)/\Gamma(\eta(1295)) \to a_0(1^3P_0)\pi)$, the value of $\Gamma(X(1870) \to a_0(980)\pi)/\Gamma(\eta(1295)) \to a_0(980)\pi))$ can be extracted roughly. Although the assumption above seems a little rough, we just need to evaluate magnitudes of these decay channels.

$\eta(1295)$ is proposed to be the first radial excited state of $\eta(550)$. Then the total decay widths of $\Gamma(X(1870) \to \delta + P)$ are evaluated no more than 12.6 MeV and $\Gamma(X(1870) \to a_0(980)\pi) \approx 3.8$ MeV. The BESIII Collaboration claimed that $X(1870)$ can be reached by the $^1D_2\varphi\bar{q}$ state. In addition, our results do not support $X(1870)$ as the $\eta_2(2^1D_2)\eta \pi$ state since its observed decay width is much smaller than the theoretical estimate. The $a_0(1320)\pi$ is the largest decay channel in our numerical results and in [24] for the $\eta_2(2^1D_2)\eta \pi$ state (Table 8). If the partial width of $a_0(980)\pi$ channel is as large as $a_0(1320)\pi$, the predicted width of $X(1870)$ will be much larger than the observed value.

We adopt the flux tube model to check the possibility of $X(1870)$ as a hybrid meson. The partial widths are also listed in Table 8 for the comparison. Details of the flux model are collected in Appendix B.

Two groups of the partial widths predicted in [16] are quoted in the Table 8. The left column was given by the flux tube decay model of Isgur, Kokoski, and Paton (IKP) with
the "standard parameters" [75]. The right column was by the developed flux tube decay model of Swanson-Szczepaniak (SS). In [16], the masses are taken as 1.8 GeV for the 0−, 1++, and 2++ hybrid states.

For a hybrid meson, X(1870) seems most possible to be the h12(0′′′′) state because the total widths which exclude the channels of S + P are much narrow in our work and in [16]. It is consistent with the narrow width of X(1870).

As shown in Table 8, X(1870) is impossible to be the h12(0−1) hybrid state. The predicted width in both our work and in [16] is broader. In addition, η is a visible channel for both h12(1450). A week signal was found in the region of 1200–1400 MeV in the analysis of ηπ+ (Figure 2(b) of [1]), which contradicts the large h12(1450) channel of the h12(0−1) state. We can exclude the possibility of X(1870) as the h12(0−1) hybrid state preliminarily.

The assignment for X(1870) as the f12(01++) hybrid seems impossible since the theoretical width of a1(1260)π is rather broad in our results and in the IKP model. If the partial width of a1(980)π channel is as large as a1(1260)π, the total widths of X(1870) will be much broader than the experimental value. But the width given by the SS flux tube decay model for the f12(0′1++) hybrid is much small. So the possibility of X(1870) as a f12(0′1++) hybrid cannot be excluded. We suggest to detect the decay channel of a1(1260)π because this channel is forbidden for the h12(0′′′′) state in the IKP flux tube decay model and very small in the SS flux tube decay model (see Table 8). Then the channel of a1(1260)π can discriminate the states f12(0′1++) and h12(0′′′′) for X(1870).

Finally, if h12(1870) is the h12(21) state, its decay width is predicted about 100 MeV which is much smaller than the experiments. However, the difference can be explained by the remedy of mixing effect. If X(1870) and h12(1870) have the same quantum numbers, 0′′′′, they should mix with each other with a visible mixing angle. Then the interference enhancement will enlarge the width of h12(1870). The broad decay width of h12(1870) could be explained naturally. On the other hand, h12(1870) has been observed in the channel of a1(980)π. However, this channel seems much small if h12(1870) is a pure 212D2n̄n̄π− meson. The mixing effect will also enlarge this partial width. Here, we do not plan to discuss the mixing of X(1870) and h12(1870) further for the complex mechanism.

4. Discussions and Conclusions

A isoscalar resonant structure of X(1870) was observed by BESIII in the channels J/ψ → ωX(1870) → ωππ′π− recently. Although the mass of X(1870) is consistent with the η(1870), the production, decay width, and decay properties are much different. In this paper, the mass spectrum and strong decays of the X(1870) and h12(1870) are analyzed.

Firstly, the mass spectrum is studied in the GI potential model and the RTs framework. In the GI potential model, both X(1870) and h12(1870) could be the η(1′2D2), f12(2P1), and h12(2D2) states. In RTs, the possible assignments are the η(3′3S1), f12(2P1) and h12(2D2) states. For the mass spectrum, they are also good hybrid candidates since the masses overlap the predictions given by different models (see Table 4).

Secondly, the processes of a n̄n̄ quarkonium or a n̄n̄B hybrid meson decaying into the "S + P" mesons are studied under the SU(3)F symmetry and the diquark-antidiquark description of the S mesons. We assumed that the processes obey the OZI rule. We find that the channels of a1n̄π, ηn̄π, and f12n̄π are the dominant when a n̄n̄ quarkonium or a n̄n̄B hybrid meson decays primarily through this kind of processes. This result can explain why X(1870) has been first observed in the ηπn̄ channel.

Thirdly, the two-body strong decay of X(1870) is computed in the 3P0 model. As the h12(21) quarkonium, the predicted width of X(1870) looks much larger than the observations. The broad resonance, h12(1870), can be a natural candidate for the 212D2n̄n̄π0 meson. There, we fix the creation strength, γ, in two kinds of processes: (1) n̄n̄ → n̄n̄ + n̄n̄; (2) n̄n̄ → n̄S + S̄n̄ and S̄S → n̄S + S̄n̄. The functions of creation

Decay channels	η1(2′D2)	η1(0′−1)	f1(0′1++)	η1(0′2−)								
K+K	0.5	17.7	19.3	12.6	10	5	4.9	24.1	18.0	3.2	2.0	1
ρρ	12.9	52.2	56.8	×	×	×	×	×	×	×	×	1.0
ωω	4.2	16.9	18.4	×	×	×	×	×	×	×	×	1.0
K+K′	0.2	2.1	2.3	×	×	×	×	×	×	×	×	1.0
a1(1450)π	16.0	2.4	2.6	56.3	70	175	×	×	×	×	×	×
a1(1260)π	0.0	15.2	16.6	×	×	×	×	×	×	×	×	0.6
f1(1280)η	0.0	0.0	0.0	×	×	×	×	×	×	×	×	0.3
a1(1320)η	54.2	102.5	111.6	8.8	1	16	35.1	14	232	×	×	0.3
f1(1275)η	15.1	17.5	19.0	0.0	×	×	×	×	×	1.0	—	4.6
ΣΓi (MeV)	103.3	26.5	246.7	77.7	81	196	101.3	43.1	435.4	35.0	27.4	68.6
Expt (MeV)	225 ± 14 [2]	57 ± 12 [1]	19	54.2	102.5	111.6	8.8	1	16	35.1	14	232

The symbol "×" indicates that the decay modes are forbidden and "—" denotes that the decay channels can be ignored. Here, we collected the results given by the F0 model from [24] in the left column and the right column by the flux-tube model. In [16], the masses are taken as 1.8 GeV for the 0−, 1++, and 2++ hybrid states.
vertex are determined as \(\gamma(p) = 3.0 + 25 \exp(-4p^2) \) and \(\gamma(p) = 1.8 + 4 \exp(-10p^2) \), respectively. Meanwhile, the SHO wave function scale, \(b_8 \), is obtained by the GI potential model.

We have evaluated the magnitude of the partial widths of "\(S + P \)" channels by the ratio, \((\Gamma(X(1870) \rightarrow a_0(980)\pi))/(\Gamma(\eta(1295) \rightarrow a_0(980)\pi)) \), under a rather crude assumption that \(\gamma(1295)/X(1870) \rightarrow a_0(980)\pi \) through a virtual intermediate \(1^3P_0 q\bar{q} \) meson (see Figure 7). Then the uncertainties of the coupling vertex for \(1^3P_0 q\bar{q} \rightarrow a_0(980) \) are assumed to be canceled in the ratio. The total widths of "\(S + P \)" are evaluated no more than 12.6 MeV and \(\Gamma(X(1870) \rightarrow a_0(980)\pi) \leq 3.8 \) MeV. Since \(X(1870) \) primarily decays via \(a_0(980)\pi \), it also indicated that the \(X(1870) \) cannot be interpreted as the \(2^1D_2 q\bar{q} \) state.

We also study the \(X(1870) \) as a hybrid state in the flux tube model. Our results agree well with most of predictions given by [16]. \(X(1870) \) looks most like the \(\eta_{12}(0^−2+) \) state for the narrow predicted width, which is consistent with the experiments. But we cannot exclude the possibility of \(0^−1^+ \). A precise measurement of \(a_1(1260)\pi \) is suggested to pin down this uncertainty.

Finally, some important arguments and useful suggestions are given as follows. (1) If \(\eta_2(1800) \) is the \(\eta(1270)(2D_2) \) state, the broad \(\pi_2(1230) \) should be isovector partner of \(\eta_2(1800) \). \(\pi_2(1800) \) has been interpreted as the conventional \(2^1D_2 q\bar{q} \) meson in [76]. Indeed, the decay channel of \(\rho \) is large enough for \(\pi_2(1230) \) [77]. This observation disfavors the \(\pi_2(1800) \) as a \(2^+ \) hybrid candidate for the selection rule that a hybrid meson decaying into two \(S \)-wave mesons is strongly suppressed [78]. (2) If \(X(1870) \) is a hybrid meson, we suggest to search its isoscalar partner in the decay channels of \(J/\psi \rightarrow p\bar{f}_0(980)\pi \) and \(J/\psi \rightarrow p\bar{h}(1235)\pi \), which are accessible at BESIII, Belle, and BABAR Collaborations. The decay channel of \(b_1(1235)\pi \) is forbidden for the \(\pi_2(1235) \) quarkonium due to the "spin selection rule" [60, 79]. We also suggest to search the \(\eta_2(1870) \) in the decay channels of \(J/\psi \rightarrow \gamma\rho \) and \(J/\psi \rightarrow \gamma\omega \) since these channels are forbidden for the hybrid production.

Appendices

A. The Expressions of Amplitudes

We have omitted an exponential factor in the following decay amplitudes \(\mathcal{M}_{LS} \) for compactness:

\[
\exp \left(- \frac{2\mu - \nu}{4\mu} p^2 \right),
\]

where we defined

\[
\mu = \frac{1}{2} \left(\frac{1}{\beta_A^2} + \frac{1}{\beta_B^2} + \frac{1}{\beta_C^2} \right),
\]

\[
\nu = \frac{(m + m_1) \beta_B^2 + (m + m_2) \beta_C^2}{(m + m_1) \beta_B^2 + (m + m_2) \beta_C^2},
\]

\[
\lambda = \frac{m_1^2}{(m + m_1) \beta_B^2 + (m + m_2) \beta_C^2},
\]

\[
\eta = \frac{m_1}{m + m_1}.
\]

For \(1^3S_1 \rightarrow 1^3S_0 + 1^1S_0 \),

\[
\mathcal{M}_{10} = \frac{2\mu - \nu}{8 \sqrt{5} \pi^{5/4} \mu^{1/2} (\beta_A \beta_B \beta_C)^{3/2} p^2}.
\]

For \(1^3P_2 \rightarrow 1^3S_0 + 1^1S_0 \),

\[
\mathcal{M}_{20} = \frac{2\mu \beta_B^3}{8 \sqrt{5} \pi^{5/4} \mu^{1/2} \beta_A \beta_B \beta_C^3} \cdot \frac{1}{p^2}.
\]

For \(1^3P_2 \rightarrow 1^1S_1 + 1^3S_0 \),

\[
\mathcal{M}_{21} = -\frac{1}{\sqrt{2}} \mathcal{M}_{20}.
\]

For \(1^3P_1 \rightarrow 1^3S_0 + 1^1S_0 \),

\[
\mathcal{M}_{01} = \frac{4\mu \beta_B^3}{24 \pi^{5/4} \mu^{1/2} \beta_A \beta_B \beta_C^3} \cdot \frac{1}{p^2}.
\]

For \(2^1D_3 \rightarrow 1^3S_0 + 1^1S_0 \),

\[
\mathcal{M}_{30} = \frac{2\mu - \nu}{16 \sqrt{5} \pi^{5/4} \mu^{1/2} \beta_A \beta_B \beta_C^3} \cdot \frac{1}{p^2}.
\]

For \(2^1D_2 \rightarrow 1^3S_0 + 1^1S_0 \),

\[
\mathcal{M}_{11} = \frac{1}{96 \pi^{5/4} \mu^{1/2} \beta_A \beta_B \beta_C^3} \cdot \left(-24p^2 \eta^2 \frac{1}{4} + 2p^2 \mu \nu \right) \cdot \left(-10 + p^2 (1 + \eta) \nu \right)
\]

\[
\times \left(4p^2 \eta^2 \mu \nu + 2p^2 \mu \nu - 2(1 + \eta) \nu \right) + 6\mu^2.
\]

For \(2^1S_0 \rightarrow 1^3P_0 + 1^1S_0 \),

\[
\mathcal{M}_{31} = \left(-20\mu + \nu \right) \cdot \left(-2(1 + \eta) \nu \right)
\]

\[
\times \left(160 \sqrt{2} \pi^{5/4} \mu^{1/2} \beta_A \beta_B \beta_C^3 \right) - \nu^2 \cdot \left(-10 + p^2 (1 + \eta) \nu \right) + 6\mu^2.
\]

For \(2^1D_2 \rightarrow 1^3S_0 + 1^1S_0 \),

\[
\mathcal{M}_{11} = \left(2\nu \frac{1}{4} + 2p^2 \mu \nu \right) \left(-2(1 + \eta) \nu \right)
\]

\[
\times \left(160 \sqrt{2} \pi^{5/4} \mu^{1/2} \beta_A \beta_B \beta_C^3 \right) - \nu^2 \cdot \left(-10 + p^2 (1 + \eta) \nu \right) + 6\mu^2.
\]
For $^{21}D_2 \rightarrow 1^3P_0 + 1^1S_0$

\[
\mathcal{M}_{20} = -\frac{1}{192\sqrt{35\pi^5/4} \beta_A^{11/2} \beta_B^{5/2} \beta_C^{3/2}} \\
\times (p^4 \nu^5 - 2p^2 \mu^3 (18 + p^2 (1 + \eta)) \nu \\
+ 4\mu^2 \nu (63 - 11p^2 (1 + \eta)) \nu + p^4 \eta \nu^3) \\
+ 56\mu^3 (2 - \eta (2 + p^2 \nu)) \\
- 14\mu^2 (p^2 \nu^3 - 2p \nu (7 + p^2 (1 + \eta)) \nu) \\
+ 4\mu^2 (-2 + (2 - 2p^2 \nu)) \beta_A^2) \nu p^2.
\]

(A.9)

For $^{21}D_2 \rightarrow 1^3P_1 + 1^1S_0$,

\[
\mathcal{M}_{21} = -\frac{1}{160\sqrt{30\pi^5/4} \beta_A^{11/2} \beta_B^{5/2} \beta_C^{3/2}} \\
\times (\eta (2\nu - 28\eta) \nu) p^2,
\]

A.10

For $^{21}D_2 \rightarrow 1^3P_2 + 1^1S_0$,

\[
\mathcal{M}_{22} = -\frac{1}{480\sqrt{14\pi^5/4} \beta_A^{11/2} \beta_B^{5/2} \beta_C^{3/2}} \\
\times (p^6 \nu^6 - 2p^4 \nu^4 (p^2 (1 + \eta)) \nu - 21) \\
+ 4p^2 \mu^2 \nu^2 (105 - 14p^2 (1 + \eta)) \nu + p^4 \eta \nu^4) \\
+ 56\mu^3 (15 - 5p^2 (1 + \eta)) \nu + p^4 \eta \nu^3) \\
- 14\mu^2 (p^4 \nu^3 - 2p^2 \nu (10 - p^2 (1 + \eta)) \nu + 4\mu^2 (15 - 5p^2 (1 + \eta)) \nu + p^4 \eta \nu^2) \beta_A^2),
\]

A.11

\[
\mathcal{M}_{23} = -\frac{1}{672\sqrt{5\pi^5/4} \beta_A^{15/2} \beta_B^{15/2} \beta_C^{5/2}} \\
\times (p^4 \nu^5 - 2p^2 \mu^3 (18 + p^2 (1 + \eta)) \nu \\
+ 2\mu^2 \nu (126 - 25p^2 (1 + \eta) \nu + 2p^4 \eta \nu^3) \\
+ 28\mu^3 (18 + \eta (2 + 5p^2 \nu)) \\
- 14\mu^2 (p^2 \nu^3 - 2p \nu (7 + p^2 (1 + \eta)) \nu) \\
+ 4\mu^2 (7 + \eta (7 + 2p^2 \nu)) \beta_A^2) \nu p^2,
\]

A.12

\[
\mathcal{M}_{24} = -\frac{1}{1120\pi^5/4 \beta_A^{15/2} \beta_B^{15/2} \beta_C^{5/2}} \\
\times (\nu (p^2 \nu^3 - 36\mu^2 + 2\mu \nu (11 - p^2 \nu)) \\
+ 2\nu \mu (28\mu^2 - p^2 \nu + 2p \nu (p^2 \nu - 9)) \\
- 14\mu^2 (2\mu - \nu) (2\eta \mu - \nu) \beta_A^2) \nu^2 p^4.
\]

(A.11)

\[
\mathcal{M}_{25} = -\frac{1}{1120\pi^5/4 \beta_A^{15/2} \beta_B^{15/2} \beta_C^{5/2}} \\
\times (\nu (p^2 \nu^3 - 36\mu^2 + 2\mu \nu (11 - p^2 \nu)) \\
+ 2\nu \mu (28\mu^2 - p^2 \nu + 2p \nu (p^2 \nu - 9)) \\
- 14\mu^2 (2\mu - \nu) (2\eta \mu - \nu) \beta_A^2) \nu^2 p^4.
\]

(A.11)

\[
\Gamma_{LS} (H \rightarrow BC) = \frac{p}{(2J_A + 1) \pi} \sqrt{\mathcal{M}_{2A} \mathcal{M}_{2B} \mathcal{M}_{2C}} |\mathcal{M}_{2A} (H \rightarrow BC)|^2,
\]

(B.1)

where $\sqrt{\mathcal{M}_{2A} \mathcal{M}_{2B} \mathcal{M}_{2C}}$ are the “mock-meson” masses of A, B, C [64]. When a hybrid meson decays into P-wave and
Table 9: Partial wave amplitudes \(\mathcal{M}_L(H \rightarrow BC) \) for an initial hybrid \(H \) decaying into a \(P \)-wave and pseudoscalar mesons.

\(B \)	\(H(0^+)^* \)	\(H(0^+)^{1+} \)	\(H(0^+)^{2+} \)
\(0^+ \)	\(+\sqrt{2}\mathcal{M}_L/3\)	\(-\sqrt{2}\mathcal{M}_R/\sqrt{3}\)	\(+\mathcal{M}_R/3\)
\(1^+ \)	\(-\mathcal{M}_R/\sqrt{2}\)	\(-\mathcal{M}_R/\sqrt{3}\)	\(-\mathcal{M}_R/\sqrt{18}\)
\(2^+ \)	\(+\mathcal{M}_R/3\)	\(-\sqrt{5}\mathcal{M}_L/\sqrt{18}\)	\(+\sqrt{5}\mathcal{M}_R/3\)

The flavor matrix element \(\langle \phi \gamma | \phi \delta \rangle \) has been discussed before. The analytic expression of \(\mathcal{B}_L(H \rightarrow BC) \) is listed in Table 9 for the states of \(H(0^+)^* \), \(f_{12}(0^+)^{1+} \), and \(\eta_0(0^+)^{2+} \).

The flavor matrix element \(\langle \phi \gamma | \phi \delta \rangle \) is given as

\[
\mathcal{M}_L(H \rightarrow BC) = \langle \phi \gamma | \phi \delta \rangle \left(\frac{\alpha c}{9 \sqrt{3}} \frac{1}{2 A^0} \right) \frac{f b}{\pi} \left(1 + \frac{f b}{(2\beta^2)} \right)^2 \times \frac{2\pi}{3!} \frac{\beta_{A}^{2+\delta}}{\beta} \mathcal{M}_L(H \rightarrow BC). \tag{B.2}
\]

The analytic expressions of \(\tilde{g}_n \) and \(\tilde{h}_n \) are given as

\[
\tilde{g}_n = 2^{3+\delta} \frac{M^n}{(M + m)^{n+1}} \left(\frac{2\beta_A^2 + \beta^2}{2\beta_A + \beta} \right)^{-(n+4)/2} \frac{(n + \delta + 3)}{2} \frac{(n + \delta)}{2} \left(\frac{M}{M + m} \right)^2 \times F_1 \left[\frac{n + \delta + 3}{2}, n + 1, - \left(\frac{M}{M + m} \right)^2 \right] \times \frac{p^2}{2\beta_A^2 + \beta^2} \right] p^{s+1},
\]

\[
\tilde{h}_n = 2^{3+\delta} \frac{M^n}{(M + m)^{n+1}} \left(\frac{2\beta_A^2 + \beta^2}{2\beta_A + \beta} \right)^{-(n+4)/2} \frac{(n + \delta + 4)}{2} \frac{(n + \delta)}{2} \left(\frac{M}{M + m} \right)^2 \times F_1 \left[\frac{n + \delta + 4}{2}, n + 1, - \left(\frac{M}{M + m} \right)^2 \right] \frac{p^2}{2\beta_A^2 + \beta^2} \right] p^{s+1},
\]
[15] S. Ishida, H. Sawazaki, M. Oda, and K. Yamada, “Decay properties of hybrid mesons with a massive constituent gluon and search for their candidates,” Physical Review D, vol. 47, no. 1, pp. 179–198, 1993.

[16] P. R. Page, E. S. Swanson, and A. P. Szczepaniak, “Hybrid meson decay phenomenology,” Physical Review D, vol. 59, no. 3, pp. 1–19, 1999.

[17] C. J. Morningstar and M. Peardon, “Glueball spectrum from an anisotropic lattice study,” Physical Review D, vol. 60, no. 3, pp. 1–13, 1999.

[18] Y. Chen, A. Alexandru, S. J. Dong et al., “Glueball spectrum and matrix elements on anisotropic lattices,” Physical Review D, vol. 73, no. 1, 2006.

[19] E. Gregory, A. Irving, B. Lucini et al., “Towards the glueball spectrum from unquenched lattice QCD,” Journal of High Energy Physics, vol. 10, p. 170, 2012.

[20] S. Godfrey and N. Isgur, “Mesons in a relativized quark model,” Physical Review D, vol. 31, no. 1, pp. 189–231, 1985.

[21] D. V. Bugg, “Four sorts of meson,” Physics Reports, vol. 397, no. 5, pp. 257–358, 2004.

[22] E. Klempt and A. Zaitsev, “Glueballs, hybrids, multiquarks. Experimental facts versus QCD inspired concepts,” Physics Reports, vol. 454, no. 1–4, pp. 1–202, 2007.

[23] A. Ebert, V. O. Faustov, and V. O. Galkin, “Mass spectra and Regge trajectories of light mesons in the relativistic quark model,” Physical Review D, vol. 79, no. 11, Article ID 114029, 2009.

[24] R. Giachetti and E. Sorace, “Unified covariant treatment of hyperfine splitting for heavy and light mesons,” Physical Review D, vol. 87, no. 3, Article ID 034021, 2013.

[25] J. Vijande, F. Fernandez, and A. V. Valcarce, “Constituent quark model study of the meson spectra,” Journal of Physics G, vol. 31, no. 5, pp. 481–506, 2005.

[26] R. Bonnaz and B. Silvestre-Brac, “Discussion of the P_0 model applied to the decay of mesons into two mesons,” Few-Body Systems, vol. 27, no. 3–4, pp. 163–187, 1999.

[27] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T.-M. Yan, “Spectrum of charmed quark-antiquark bound states,” Physical Review Letters, vol. 34, no. 6, pp. 369–372, 1975.

[28] A. M. Badalian and B. L. G. Bakker, “Nonperturbative hyperfine contribution to the $b\bar{b}$ and $b\mu$ meson masses,” Physical Review D, vol. 64, no. 11, Article ID 114010, 2001.

[29] S. Dobbs, Z. Metreveli, K. K. Seth et al., “Precision measurement of the mass of the $h_1(1 P_1)$ state of charmonium,” Physical Review Letters, vol. 101, no. 18, Article ID 182003, 2008.

[30] D. S. Hwang, C. S. Kim, and W. Namgung, “Dependence of $|V_{ub}/V_{cb}|$ on Fermi momentum P_F in ACCM model,” Zeitschrift für Physik C, vol. 69, no. 1, pp. 107–112, 1995.

[31] S. S. Radford, W. W. Repko, and M. J. Saelim, “Potential model calculations and predictions for $c\bar{c}$ quarkonia,” Physical Review D, vol. 80, no. 3, Article ID 034012, 2009.

[32] S. S. Radford and W. W. Repko, “Potential model calculations and predictions for heavy quarkonium,” Physical Review D, vol. 75, no. 7, Article ID 074031, 2007.

[33] W. Roberts and B. Silvestre-Brac, “Meson decays in a quark model,” Physical Review D, vol. 57, no. 3, pp. 1694–1702, 1998.

[34] T. Barnes, S. Godfrey, and E. S. Swanson, “Higher charmonia,” Physical Review D, vol. 72, no. 5, Article ID 054026, 2005.

[35] A. M. Badalian, B. L. G. Bakker, and Y. A. Simonov, “Light meson radial Regge trajectories,” Physical Review D, vol. 66, no. 3, Article ID 034026, 2002.

[36] S. Godfrey and R. Kokoski, “Properties of P-wave mesons with one heavy quark,” Physical Review D, vol. 43, no. 5, pp. 1679–1687, 1991.

[37] F. E. Close and E. S. Swanson, “Dynamics and decay of heavy-light hadrons,” Physical Review D, vol. 72, no. 9, Article ID 094004, 2005.

[38] D.-M. Li, P.-F. Ji, and B. Ma, “The newly observed open-charm states in quark model,” The European Physical Journal C, vol. 71, no. 3, Article ID 1582, 2011.

[39] P. González, “Long-distance behavior of the quark-antiquark static potential. Application to light–quark mesons and heavy quarkonia,” Physical Review D, vol. 80, no. 5, Article ID 054010, 2009.

[40] D.-M. Li and B. Ma, “X(1835) and η(1760) observed by the BES Collaboration,” Physical Review D, vol. 77, no. 7, Article ID 074004, 2008.

[41] J.-F. Liu, G.-J. Ding, and M.-L. Yan, “X(1835) and the new resonances X(2120) and X(2370) observed by the BES collaboration,” Physical Review D, vol. 82, no. 7, Article ID 074026, 2010.

[42] J.-S. Yu, Z.-F. Sun, X. Liu, and Q. Zhao, “Categorizing resonances X(1835), X(2120), and X(2370) in the pseudoscalar meson family,” Physical Review D, vol. 83, no. 11, Article ID 114007, 2011.

[43] P. Masjuan, E. R. Arriola, and W. Broniowski, “Systematics of radial and angular-momentum Regge trajectories of light nonstrange $\bar{p}p$-states,” Physical Review D, vol. 85, no. 9, Article ID 094006, 2012.

[44] D. V. Bugg, “Comment on ‘Systematics of radial and angular-momentum Regge trajectories of light nonstrange $\bar{p}p$-states’,” Physical Review D, vol. 87, no. 11, Article ID 118501, 2013.

[45] P. Masjuan, E. R. Arriola, and W. Broniowski, “Reply to ‘Comment on ‘Systematics of radial and angular-momentum Regge trajectories of light nonstrange $\bar{p}p$-states’’,” Physical Review D, vol. 87, no. 11, Article ID 118502, 2013.

[46] L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquier, “New look at scalar mesons,” Physical Review Letters, vol. 93, no. 21, Article ID 212002, 2004.

[47] J. Weinstein and N. Isgur, “Do multiquark hadrons exist?” Physical Review Letters, vol. 48, no. 10, pp. 659–662, 1982.

[48] J. Weinstein and N. Isgur, “qqqq—system in a potential model,” Physical Review D, vol. 27, no. 3, pp. 588–599, 1983.

[49] J. Weinstein and N. Isgur, “KX molecules,” Physical Review D, vol. 41, no. 7, pp. 2236–2257, 1990.

[50] R. L. Jaffe, “Multiquark hadrons. II. Methods,” Physical Review D, vol. 15, no. 1, pp. 281–289, 1977.

[51] R. L. Jaffe and F. E. Low, “Connection between quark-model eigenstates and low-energy scattering,” Physical Review D, vol. 19, no. 7, pp. 2105–2118, 1979.

[52] M. Alford and R. L. Jaffe, “Insight into the scalar mesons from a lattice calculation,” Nuclear Physics B, vol. 578, no. 1-2, pp. 367–382, 2000.
[56] R. L. Jaffe, “Exotica,” *Physics Reports*, vol. 409, no. 1, pp. 1–45, 2005.

[57] A. Selem and F. Wilczek, “Hadron Systematics and Emergent Diquarks,” Talk by FW at a workshop at Schloss Ringberg, October 2005, http://arxiv.org/abs/hep-ph/0602128.

[58] E. Santopinto and G. Galatá, “Spectroscopy of tetraquark states,” *Physical Review C*, vol. 75, no. 4, Article ID 034008, 2008.

[59] J. J. De Swart, “The octet model and its clebsch-gordan coefficients,” *Reviews of Modern Physics*, vol. 35, no. 4, pp. 916–939, 1963.

[60] T. J. Burns, F. E. Close, and C. E. Thomas, “Dynamics of hadron strong production and decay,” *Physical Review D*, vol. 77, no. 3, Article ID 034008, 2008.

[61] L. Micu, “Decay rates of meson resonances in a quark model,” *Nuclear Physics B*, vol. 10, no. 3, pp. 521–526, 1969.

[62] A. Le Yaouanc, L. Oliver, O. Pène, and J.-C. Raynal, “‘naïve’ quark-pair-creation model of strong-interaction vertices,” *Physical Review D*, vol. 8, no. 7, pp. 2223–2234, 1973.

[63] A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, *Hadron Transition in the Quark Model*, Gordon and Breach, New York, NY, USA, 1988.

[64] R. Kokoski and N. Isgur, “Meson decays by flux-tube breaking,” *Physical Review D*, vol. 35, no. 3, pp. 907–933, 1987.

[65] E. S. Ackleh, T. Barnes, and E. S. Swanson, “On the mechanism of open-flavor strong decays,” *Physical Review D*, vol. 54, no. 11, pp. 6811–6829, 1996.

[66] J. Segovia, D. R. Entem, and E. Fernandez, “Scaling of the $3P_0$ strength in heavy meson strong decays,” *Physics Letters B*, vol. 715, no. 4, pp. 322–327, 2012.

[67] C. Hayne and N. Isgur, “Beyond the wave function at the origin: some momentum-dependent effects in the nonrelativistic quark model,” *Physical Review D*, vol. 25, no. 7, pp. 1944–1950, 1982.

[68] M. Jacob and G. C. Wick, “On the general theory of collisions for particles with spin,” *Annals of Physics*, vol. 7, no. 4, pp. 404–428, 1959.

[69] P. Geiger and E. S. Swanson, “Distinguishing among strong decay models,” *Physical Review D*, vol. 50, no. 11, pp. 6855–6862, 1994.

[70] H. G. Blundel, “Meson properties in the Quark model: a look at some outstanding problems,” http://arxiv.org/abs/hep-ph/9608473.

[71] T. Barnes, F. E. Close, P. R. Page, and E. S. Swanson, “Higher quarkonia,” *Physical Review D*, vol. 55, no. 7, pp. 4157–4188, 1997.

[72] R. M. Baltrusaitis, D. Coffman, J. Hauser et al., “Study of the radiative decay $J/\psi \rightarrow \gamma pp$,” *Physical Review D*, vol. 33, no. 5, pp. 1222–1232, 1986.

[73] R. M. Baltrusaitis, J. J. Becker, G. T. Blaylock et al., “Observation of J/ψ radiative decay to pseudoscalar $\eta\omega$,” *Physical Review Letters*, vol. 55, no. 17, pp. 1723–1726, 1985.

[74] M. Ablikim, J. Z. Bai, Y. Ban et al., “Pseudoscalar production at threshold in $J/\psi \rightarrow \gamma \omega \omega$,” *Physical Review D*, vol. 73, no. 11, Article ID 112007, 2006.

[75] N. Isgur, R. Kokoski, and J. Paton, “Gluonic excitations of mesons: why they are missing and where to find them,” *Physical Review Letters*, vol. 54, no. 9, pp. 869–872, 1985.

[76] D.-M. Li and S. Zhou, “Nature of the $\eta_c(1880)$,” *Physical Review D*, vol. 79, no. 1, Article ID 014014, 2009.

[77] M. Lu, G. S. Adams, T. Adams et al., “Exotic Meson decay to $\omega\pi^-$,” *Physical Review Letters*, vol. 94, no. 3, Article ID 032002, 2005.
