Complete reconstitution of the diverse pathways of gentamicin B biosynthesis

Yeon Hee Ban, Myoung Chong Song, Jae-yeon Hwang, Hea-lyung Shin, Hak Joong Kim, Seung Kon Hong, Na Joon Lee, Je Won Park, Sun-Shin Cha, Hung-wen Liu and Yeo Joon Yoon

Gentamicin B (GB), a valuable starting material for the preparation of the semisynthetic aminoglycoside antibiotic isepamicin, is produced in trace amounts by the wild-type Micromonospora echinospora. Though the biosynthetic pathway to GB has remained obscure for decades, we have now identified three hidden pathways to GB production via seven hitherto unknown intermediates in M. echinospora. The narrow substrate specificity of a key glycosyltransferase and the C6′-amination enzymes, in combination with the weak and unsynchronized gene expression of the Z′-deamination enzymes, limits GB production in M. echinospora. The crystal structure of the aminotransferase involved in C6′-amination explains its substrate specificity. Some of the new intermediates displayed similar premature termination codon readthrough activity but with reduced toxicity compared to the natural aminoglycoside G418. This work not only led to the discovery of unknown biosynthetic routes to GB, but also demonstrated the potential to mine new aminoglycosides from nature for drug discovery.

Aminoglycosides are one of the oldest classes of antibiotics and have been widely used against mycobacteria, staphylococci, and Gram-negative bacteria. However, as with other classes of antibiotics, aminoglycoside resistance among microorganisms has emerged and spread rapidly. To address this challenge, chemically modified aminoglycosides have been developed to overcome deactivation by aminoglycoside-modifying enzymes. For example, dibekacin (1) is the first semisynthetic aminoglycoside derived from kanamycin B (2). Amikacin (3) was developed from kanamycin A (4) in the 1970s, and netilmicin (5) and isepamicin (6) were developed in the 1980s from sisomicin (7) and gentamicin B (GB, 8), respectively. Arbekacin (9) was derived from kanamycin B and marketed in 1990 (Fig. 1). Since then, no new aminoglycoside antibiotics have been approved despite the fact that multidrug-resistant (MDR) Gram-negative bacteria are on the rise at an alarming rate. Importantly, the potential for aminoglycosides in the treatment of viral infection and human genetic diseases caused by premature termination codons (PTCs) has been demonstrated, emphasizing the need for the development of more new aminoglycosides.

For generation of new aminoglycoside antibiotics or improvement of the production of valuable natural congeners for use in the synthesis of semisynthetic aminoglycosides, a detailed knowledge of the biosynthetic pathways and the involved enzymes is required. A good example is the recent characterization of the entire kanamycin biosynthetic pathway. Interestingly, manipulation of the kanamycin biosynthetic genes has permitted switching between the major products produced in Streptomyces kanamyceticus. As for gentamicin biosynthesis, gentamicin C congeners are the major products of the wild-type M. echinospora, with virtually no production of GB. Because GB is an important congener used in the preparation of isepamicin, a better understanding of the gentamicin biosynthetic pathways could allow engineering of bacterial strains to produce GB as the major product. Unfortunately, much less is known about the biosynthesis of gentamicins than that of kanamycins, even though both share a biosynthetic route from α-Glc-6-phosphate via 2-deoxystreptamine (DOS, 10) to the common pseudodisaccharide intermediate paromamine (PM, 11).

Previous studies of gentamicin biosynthesis have shown that the glycosyltransferase GenM1 of M. echinospora catalyzes the transfer of N-acetyl-d-glucosamine (GlcNAc) onto DOS to give 2′-N-acetyl-PM (AcPM, 12), which is converted to PM by the deacetylase GenD1. The second glycosyltransferase GenM2 catalyzes glycosylation of PM with xylose to give the pseudotrisaccharide gentamicin A2 (GA2, 13). Conventionally, the DOS ring is designated as ring II, and the sugar attached at C4 and C6 of DOS are labeled as rings I and III, respectively (Fig. 1). Subsequent amidation and N-methylation at C3′ of ring III of GA2 are catalyzed by the dehydrogenase GenD2, the aminotransferase GenS2, and the N-methyltransferase GenN in sequence to give gentamicin A (GA, 14). This is followed by C4′-methylation by the C-methyltransferase GenD1 to generate gentamicin X2 (GX2, 15) and C6′-methylation of GX2 by the C-methyltransferase GenK to give G418 (16) (Supplementary Fig. 1). Next, the dehydrogenase GenQ and the aminotransferase GenB catalyze the amidation at C6′ of GX2 and G418, yielding JI-20A (17) and JI-20B (18/II-20B, 19), respectively. In addition, the substrate-flexible GenB2 can catalyze the epimerization between both JI-20Ba and JI-20B, and gentamicin C2ba (20) and C2b (21). Recently, GenL has been identified to be responsible for 6′-N-methylation of gentamicin C2 and gentamicin C1a (22) to gentamicin C1 (23) and gentamicin C2b (24), respectively (Supplementary Fig. 1). Although substantial progress has been made, the biosynthetic pathway to GB remains elusive despite being first discovered in 1972. This is mainly because the general gene knockout approach to identify the biosynthetic genes and to detect the accumulated intermediates cannot be applied in this case because of the low production of GB by the wild-type...
M. echinospora. Moreover, GB cannot be biotransformed to gentamicin C components by M. echinospora13, indicating that GB is not an intermediate in the gentamicin C series pathway but rather a shunt metabolite of gentamicin biosynthesis.

To better understand gentamicin biosynthesis, we have completed, and report herein, the in vitro reconstitution of GB biosynthesis, revealing seven hitherto-unknown gentamicin biosynthetic intermediates and three enigmatic pathways leading to GB. We also identified the limiting factors contributing to the low production yield of GB. Among the new gentamicin intermediates, 2′-deamino-2′-hydroxy-GA2 (2′DGGA2, 25), 2′-deamino-2′-hydroxy-GA (2′DGA, 26), and 2′-deamino-2′-hydroxy-GX2 (2′DGX2, 27) exhibited reduced in vitro nephrotoxicity but similar PTC readthrough activity ex vivo compared to G418. Overall, our results uncover both the long-sought hidden biosynthetic pathways to GB and a number of bioactive aminoglycosides that had eluded detection in the past. This study demonstrates that the elucidation of minor biosynthetic pathways can be an alternative strategy to mine for new aminoglycosides that are difficult to access from nature.

Results

Discovery of GA2 analogs. We first reasoned that gentamicin biosynthesis may proceed in a fashion analogous to that of kanamycin. In kanamycin biosynthesis, the substrate-flexible glycosyltransferase KanM1 catalyzes the transfer of either UDP-GlcNAc or UDP-Glc onto DOS to generate PM (via AcPM by the deacetylase KanN13 and 2′-deamino-2′-hydroxy-PM (2′DPM, 28), respectively. These two intermediates, PM and 2′DPM, are further 6′-aminated to neamine (6′-amino-6′-deoxy-PM, NM, 29) and 2′-deamino-2′-hydroxy-NM (2′DNM, 30), respectively, by another flexible C6′-dehydrogenase–aminotransferase, KanQ–KanB13. Thus, it is conceivable that GB, which is a 2′-deaminated analog of JI-20A, may be generated in a similar manner from 2′DNM through xylosyl transfer by GenM2 (2′DNM → 6′-amino-2′-deamino-6′-deoxy-2′-hydroxy-GA2 (6′A2DGGA2, 31)), C3′-methylamination by GenD2–GenS2–GenN (6′A2DGGA2 → 6′-amino-6′-deoxy-2′-hydroxy-GA (6′A2DGGA2, 32)), and C4′-methylolation by GenD1 (6′A2DGGA2 → GB), assuming that these enzymes possess reasonable substrate promiscuity, typically observed for secondary metabolism enzymes (Figs. 2a and 3a). Therefore, we opted to examine the above hypothesis by in vitro reconstitution of the entire biosynthetic pathway of GB from DOS, whose biosynthesis is well known3. Soluble histidine-tagged GenM1 and GenM2 were obtained by expression of the corresponding genes in Escherichia coli and Streptomyces venezuelae, respectively (Supplementary Fig. 2). When the purified GenM1 was incubated overnight with DOS in the presence of UDP-GlcNAc or UDP-Glc, the products respectively predicted as AcPM and 2′DPM were separately produced (Fig. 2a–c). The identities of AcPM and 2′DPM were confirmed by comparing their UPLC-qTOF-HR-MS chromatograms and MS/MS fragmentations with those previously reported for AcPM13 and those of chemically synthesized authentic 2′DPM, respectively (see Supplementary Note 1 for the chemical synthesis and structural characterization of gentamicin intermediates). Under the same incubation conditions, the corresponding conversion yields of DOS to AcPM and 2′DPM were approximately 54% and 13%, respectively, suggesting that UDP-GlcNAc may be a better glycosyl donor compared to UDP-Glc in the GenM1-catalyzed reaction. If correct, this would stand in contrast to results for KanM1 of the kanamycin biosynthetic pathway, in which UDP-Glc appears to be the preferred substrate3. In the kanamycin pathway, the conversion of PM and 2′DPM to NM and 2′DNM is catalyzed by KanQ–KanB. It is thus likely that the KanQ–KanB counterparts in the gentamicin pathway GenQ–GenB1 have similar activities despite GenQ–GenB1 having only been shown to catalyze the C6′-amination of pseudodisaccharide GX2 in an early experiment9. If GenQ–GenB1 are indeed effective for generating NM and 2′DNM from PM and 2′DPM, it would be interesting to know whether these four pseudodisaccharides can all be recognized and processed by the glycosyltransferase GenM2. To probe this possibility, we expressed and purified GenM2 and acquired the four pseudodisaccharides: NM from a commercial source, PM by hydrolysis of paromomycin (33), and 2′DPM and 2′DNM by chemical synthesis (Supplementary Note 1). Incubation of GenM2 overnight with PM, NM, 2′DNM, and 2′DPM plus UDP-xylose (UDP-Xyl) led to the formation of new UPLC peaks corresponding to their respective 6-O-xylosylated products GA2, 6′-amino-6′-deoxy-GA2 (6′AGA2, 34), 6′A2DGGA2, and 2′DGGA2 at conversion yields of approximately 93%, 13%, 8%, and 9%, respectively (Fig. 2a,d–g). The structures of GA2, 6′AGA2, 6′A2DGGA2, and 2′DGGA2 were identified by UPLC and MS/MS analysis in comparison with the synthesized standards (Supplementary Note 1). These results showed that GenM2 accepts all four pseudodisaccharides as glycosyl acceptors and is apparently most active with PM. It is important to note that of the pseudodisaccharide products, 6′AGA2, 6′A2DGGA2, and 2′DGGA2 have not previously been identified as gentamicin biosynthetic intermediates.

The diverse pathways to analogs of GA and GX2. The C3′-methylolation catalyzed by GenD2–GenS2–GenN and the subsequent C4′-methylation catalyzed by GenD1 are required for the biosynthesis of GX2 via GA from GA2 (ref.13). The same set of enzymes could also catalyze the conversion of 6′AGA2,
Fig. 2 | Two glycosylation steps to GA2 and its new analogs. a, Biosynthetic pathways to GA2, 6′AGA2, 6′A2′DGA2, and 2′DGA2 catalyzed by the glycosyltransferases GenM1 and GenM2. Colors represent functional groups formed by the enzymes indicated by the same color. The predicted C6′-amination steps from PM and 2′DPM to NM and 2′DNM, respectively, are depicted by dashed lines. b,c, Chromatograms of the GenM1-catalyzed production of AcPM (selected for m/z = 366.1871) from DOS (selected for m/z = 163.1077) and UDP-GlcNAc (b) and 2′DPM (selected for m/z = 325.1605) from DOS and UDP-Glc (c). d,g, Chromatograms of the GenM2-catalyzed production of GA2 (selected for m/z = 456.2188) from PM (selected for m/z = 324.1765) and UDP-Xyl (d), 6′AGA2 (selected for m/z = 455.2348) from NM (selected for m/z = 323.1925) and UDP-Xyl (e), 6′A2′DGA2 (selected for m/z = 457.2028) from 2′DNM (selected for m/z = 324.1765) and UDP-Xyl (f), and 2′DGA2 (selected for m/z = 457.2028) from 2′DPM and UDP-Xyl (g). Lower chromatograms show the reactions without enzymes as controls. The dotted lines in the upper chromatograms indicate the remaining substrate. Chromatograms show representative results of n > 5 independent reactions.

6′A2′DGA2, and 2′DGA2 to JI-20A, GB, and 2′DGX2, respectively, via the intermediates 6′-amino-6′-deoxy-GA (6′AGA, 35), 6′A2′DGA, and 2′DGA (Fig. 3a). To assess this possibility, we expressed the histidine-tagged GenD2, GenS2, GenN, and GenD1 in E. coli (Supplementary Fig. 2). When GenD2, GenS2, and GenN were incubated overnight with GA2 in the presence of NAD+, 1,-glutamime, and 5-adenosyl-l-methionine (SAM), the complete conversion of GA2 to a new product was achieved (Fig. 3b). This product was consistent with GA based on UPLC retention time as well as HR-MS/MS analysis in comparison with an authentic standard (Supplementary Note 1). Because the product of GenD2–GenS2 (3′-amino-3′-deoxy-GA2) could inhibit the activities of GenD2
Fig. 3 | The diverse pathways to the analogs of GA and GX2. a, C3‴-methylamination steps to GA, 6′ AGA, 6′A2′DGA, and 2′DGA catalyzed by GenD2–GenS2–GenN (indicated by green), and C4″ methylation steps to GX2, JI-20A, GB, and 2′DGX2 catalyzed by GenD1 (indicated by pink). b–e, Chromatograms of GenD2–GenS2–GenN-catalyzed production of GA (selected for m/z = 469.2504) from GA2 (selected for m/z = 456.2188) (b), 6′ AGA (selected for m/z = 468.2664) from 6′AGA2 (selected for m/z = 455.2348) (c), 6′A2′DGA (selected for m/z = 469.2504) from 6′A2′DGA2 (selected for m/z = 456.2188) (d), and 2′DGA (selected for m/z = 470.2344) from 2′DGX2 (selected for m/z = 457.2028) (e). f–i, Chromatograms of GenD1-catalyzed production of GX2 (selected for m/z = 483.2661) from GA (f), JI-20A (selected for m/z = 482.2821) from 6′AGA (g), GB (selected for m/z = 483.2661) from 6′A2′DGA (h), and 2′DGX2 (selected for m/z = 484.2501) from 2′DGA (i). Lower chromatograms show the reactions without enzymes as controls. The dotted lines in the upper chromatograms indicate the remaining substrate. Chromatograms show representative results of n > 5 independent reactions.
and GenS2 at a very low concentration, these three enzymes need to be assayed together to drive the C3 ″ modification to complete. As expected, 6′AGA2, 6′A2′DGA2, and 2′DGA2 were respectively converted, in efficiencies equal to the turnover of GA2 to GA, to a series of new gentamicin derivatives, 6′AGA, 6′A2′DGA, and 2′DGA by GenD2–GenS2–GenN (Fig. 3a,c–e). These new compounds were isolated from large-scale enzyme reactions, and their structures were confirmed by NMR and UPLC-qTOF-HR-MS spectroscopy (Supplementary Note 1). Upon treatment with GenD1, GA, 6′AGA, 6′A2′DGA, and 2′DGA all underwent C4′-methylation, producing new peaks predicted to be GX2, JI-20A, GB, and 2′DGX2, respectively, in nearly quantitative yields (Fig. 3a,f–i). The UPLC retention times and MS/MS fragmentation patterns of these new products were identical to those of commercial GX2 and chemically synthesized JI-20A, GB, and 2′DGX2, respectively (Supplementary Note 1). These results demonstrate that GB can be generated by a new biosynthetic pathway via two newly identified intermediates, 6′A2′DGA2 and 6′A2′DGA. Moreover, although 2′DGX2 is a known synthetic product, it has not previously been noted as a gentamicin biosynthetic intermediate.

C6′-amination pathway interconnects the intermediates. To examine the C6′-amination activity of GenQ–GenB1 toward the two pseudosaccharides (PM and 2′DPM) and the five pseudotrisaccharides (GA2, GA, 2′DGX2, 2′DGA, and 2′DGX2), we expressed the histidine-tagged GenQ and GenB1 in _E. coli_ and purified (Supplementary Fig. 2). Upon overnight incubation of GenQ–GenB1 with 1-glutamine as an amino donor, the natural substrate GX2 was converted into JI-20A in ca. 80% yield. Conversions of GA2, GA, 2′DGX2, 2′DGA, and 2′DGX2 to their C6′-amination products 6′AGA2, 6′AGA, 6′A2′DGA2, 6′A2′DGA, and GB, respectively, by GenQ–GenB1 were also observed (Fig. 4a–g). However, the conversion yield for each substrate was low (GA2, 8%; GA, 14%; 2′DGX2, 2%; 2′DGA, 2%; 2′DGX2, 12%). These results suggest that the presence of the 2′-aminocyclohexyl group in the pseudotrisaccharides seems to be critical for C6′-amination activity of GenQ–GenB1. A similar trend was also observed upon incubation of PM and 2′DPM with GenQ–GenB1. The yields of NM and 2′DNM were 31% and 5%, respectively (Fig. 4a,h,i). The greater extent of conversion of PM compared to 2′DPM is similar to that reported for KanQ–KanB in kanamycin biosynthesis. Interestingly, amination of the pseudosaccharide PM was found to be more extensive compared to both GA2 and GA, which lack the 4″-methyl group. Likewise, 2′DPM was also consumed to a greater degree than 2′DGX2 and 2′DGA. These findings again suggest the importance of the 4″-methyl group for GenQ–GenB1 activity when the third sugar moiety (ring III) is present. All substrates carrying a 2′-amino group were more completely consumed in the presence of GenQ–GenB1 than their counterparts without a 2′-amino group, implying that the 2′-amino group may also be important for substrate recognition by GenQ–GenB1. Moreover, these results indicate that C6′-amination catalyzed by GenQ–GenB1 can serve to bridge those pathways involving 6″-hydroxylated intermediates with pathways involving 6′-aminated intermediates (Fig. 4a). A case in point is that GB may be derived from 2′DGX2 by GenQ–GenB1-catalyzed C6′-amination.

The diverse C2′-deamination pathways leading to GB. During the biosynthesis of kanamycin, an α-ketoglutarate-dependent dioxygenase KanJ and a NADPH-dependent reductase KanK act on kanamycin B to produce kanamycin A by C2′-deamination. Interestingly, heterologous expression of _kanJ–kanK_ in the _JI-20A_-accumulating _M. echinospora_ mutant resulted in the production of GB, indicating that GB could also be biosynthesized from _JI-20A_ through C2′-deamination. However, no homologs of the _kanJ–kanK_ genes can be found in the gentamicin gene cluster of _M. echinospora_. Yet, re-examining the draft genome sequence of _M. echinospora_ led to the identification of two adjacent genes outside of the gentamicin gene cluster that are homologous to _kanJ_ and _kanK_ (55% identity at translated sequence level). They are accordingly designated _genJ_ and _genK2_, respectively (Supplementary Figs 3 and 4). Overnight incubation of the histidine-tagged GenJ and GenK2 (Supplementary Fig. 2) with _JI-20A_, 6′AGA2, and

Fig. 4 The interconnecting C6′-amination and C2′-deamination pathways to GB. a, C6′-amination and C2′-deamination reactions catalyzed by GenQ–GenB1 (blue arrows) and GenJ–GenK2 (purple arrows), respectively, interconnects the intermediates to GB. The second glycosylation catalyzed by GenM2, C3″-methylation catalyzed by GenD2–GenS2–GenN, and C4″ methylation steps catalyzed by GenD1 are indicated by red, green, and pink arrows, respectively. b–i, Chromatograms of GenQ–GenB1-catalyzed production of _JI-20A_ from GX2 (b), 6′AGA2 from GA2 (c), 6′AGA from GA (d), 6′A2′DGA2 from 2′DGX2 (e), 6′A2′DGA from 2′DGA (f), GB from 2′DGX2 (g), NM from PM (h), and 2′DNM from 2′DPM (i). Lower chromatograms show the reactions without enzymes as controls. The dotted lines in the upper chromatograms indicate the remaining substrate. Chromatograms show representative results of _n_ > 5 independent reactions.
To address why the wild-type *M. echinospora* is a very poor producer of GB despite the high in vitro C2′-deamination activity of GenJ–GenK2 toward JI-20A, we performed transcriptional analysis using semiquantitative RT-PCR. The expression levels of *genJ*–*genK2* and six other gentamicin biosynthetic genes located in different operons in the cluster (*genM1*, *genM2*, *genP*, *genK+, genE, and genN*) were compared in *M. echinospora*. Transcripts of those genes encoded in the cluster were clearly observed at 60 h, increased up to 72–84 h, and maintained at 96 h. However, transcription of *genJ*–*genK2* was undetectable at 60 h, was slowly detected at 72–84 h, and disappeared at 96 h (Supplementary Fig. 10), indicating that the weak and unsynchronized expression of *genJ*–*genK2* in comparison with other genes in the gentamicin cluster could not support GB biosynthesis in *M. echinospora*.

Structure of GenB1. A greater substrate specificity for GenM2 and GenQ–GenB1 could explain the limited production of GB in the wild-type *M. echinospora* strain. As an effort to elucidate the structural basis for C6′-amination efficiency, crystal structures of GenB1 complexed with PLP, PLP/NM, and PLP/JI-20A were solved (Supplementary Table 2). GenB1 is a homodimer with monomers consisting of a PLP-binding domain (residues 55–281) and two flanking domains (residues 9–59 and 280–416). The loop (residues 257–262) between α9 and α10 in one monomer forms an edge of the active site in the other monomer (Fig. 6a; Supplementary Fig. 11). The active site of GenB1 harbors P, R1, R2, and R3 subsites for binding of PLP, ring I, ring II, and ring III of the substrates, respectively (Fig. 6b).

In the holo-GenB1, PLP is covalently bound to Lys232, and one magnesium ion in the R1 subsite occupies a negatively charged hole formed by Asp345, Asp395, and the C-terminal end of α11 (Supplementary Fig. 12). Upon binding of NM, an external aldimine formed between PLP and ring I of NM (Fig. 6c; Supplementary Fig. 13). Interestingly, the 2′-amino group of ring I in NM replaces the magnesium ion to form polar interactions with Asp345, Asp395, and the backbone oxygen of Ala393. Given that GenB1 prefers substrates carrying a 2′-amino group to those with a 2′-hydroxyl group (Fig. 4), the anchoring of the 2′-amino group to the negatively charged hole explains this bias. Tyr132 in the R2 subsite forms C–H/π stacking interactions with the DOS moiety (ring II) in NM (Fig. 6d).

The binding modes of PLP and ring I of JI-20A in the GenB1–PLP–JI-20A complex are virtually identical to those in the GenB1–PLP–NM complex. However, the GenB1–JI-20A complex structure revealed a semi-sphere-like R3 subsite that accommodates ring III of JI-20A (Fig. 6e; Supplementary Fig. 14). The methyl groups at C3′ and C4′ of ring III face the methyl pocket of the R3 subsite lined by Leu156, Trp391, Trp415, and the C-terminal region (Fig. 6e). The R3 methyl pocket may form favorable contacts with hydrophobic groups and is probably responsible for the enhanced amination efficiency of GenB1 toward substrates with methyl substituents including GX2 and 2′DGX2 over GA2 and 2′DG2 (Fig. 4). To study the importance of the R1 negatively charged hole and the R3 methyl pocket, we replaced Asp345 and Asp395 with leucine and mutated Trp391 and Trp415 to alanine. Indeed, an approximately 50% decrease in the C6′-amination activity toward GX2 was observed with the four mutant proteins (Supplementary Fig. 15).

Ring II in both JI-20A and NM is packed against Tyr132. The 3-amino group of NM forms an ion pair with Asp395, whereas ring II in JI-20A is flipped ~180°, losing the favorable interaction (Supplementary Fig. 16). If ring II of JI-20A holds the same conformation as that of NM, steric clash would occur between ring III of JI-20A and the active site. Hence, the presence of ring III in
Jl-20A affects the binding mode of ring II (Supplementary Fig. 16). The roughly 2–4-fold greater consumption of PM and 2’DPM compared to both GA2/GA and 2’DGA/2’DGA (Fig. 4) is consistent with the hypothesis that ring II of PM and 2’DPM binds to the R2 subsite in the favorable binding mode, whereas ring II of GA2/GA and 2’DGA/2’DGA is in the less favorable binding mode due to the presence of ring III. Binding between GenB1 and GA2/GA or 2’DGA/2’DGA may be further weakened by the absence of methyl groups on ring III, preventing favorable occupancy of the R3 methyl pocket. Together, the R1 negatively charged hole, the R3 methyl pocket, and the two distinct binding modes of ring II in the R2 subsite are all expected to be important for substrate recognition by GenB1.

In vitro toxicity and bioactivity of new intermediates. Because the major therapeutic disadvantages of aminoglycosides are their high nephrotoxicity and ototoxicity\(^1\), to assess the therapeutic potential of the newly identified GB derivatives we analyzed their toxicities using three mammalian kidney cell lines HEK-293, LCC-PK1, and COS-7. G418, which is one of the strongest readthrough inducers among natural aminoglycosides\(^2\), was used as a control. The half-maximal lethal concentration (LC\(_{50}\)) values for 2’DGA, 2’DGA, and 2’DGX2 were approximately 1.2–1.3-fold higher than that of G418 in the three cell lines tested. 6’AGA2, 6’AGA, and Jl-20A displayed approximately 1.2-fold lower LC\(_{50}\) compared to G418 in human HEK-293 cells (Supplementary Fig. 17). These results display a correlation of reduced toxicity to fewer amino groups, and are consistent with the structure–toxicity relationships observed previously for aminoglycosides\(^3\). It was also noted that only the number and not the position of the free amino groups in ring I is the key determinant for cell toxicity. The structure of ring III does not appear to substantially contribute to cell toxicity.

The antibiotic activities of the gentamicin biosynthetic intermediates were tested against four gentamicin-susceptible and -resistant bacteria (Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, and E. coli; Supplementary Table 3). All compounds tested (compounds 8, 13–15, 17, 25–27, 31, 32, 34, and 35) were inactive against the tested strains except that GB, GX2, Jl-20A, 6’A2’DGA, and 6’AGA exhibited weak activity against gentamicin-susceptible S. aureus and E. coli. The level of antibiotic activity follows the order Jl-20A > GB > 6’AGA > 6’A2’DGA > GX2, indicating the importance of the 2’-amino, 6’-amino, 3’-methylaminino, and 4’-methyl groups for antibacterial activity.
Next, we examined whether these new intermediates could induce PTC readthrough in human cells. Primary human cystic fibrosis bronchial epithelial cells (cystic fibrosis transmembrane conductance regulator (CFTR); AF508/W1282X) were exposed to 25 μM of compounds 8, 13–17, 25–27, 31, 32, 34, and 35 for up to 2 d, and the comparative ratio of full-length to truncated CFTR was quantitatively measured using HPLC-ESI–MS. All compounds induced similar levels of PTC readthrough compared to G418 except for JI-20A and GB, which exhibited relatively weak readthrough activity (Supplementary Fig. 18). These results showed that 2′DGA2, 2′DGA, and 2′DGX2 can induce substantial levels of readthrough but with evidently reduced toxicity compared to G418.

Discussion

Our in vitro results now establish that GB can be assembled via three independent biosynthetic routes involving seven newly identified intermediates: 25–27, 31, 32, 34, and 35 (Fig. 4a). The minor biosynthetic intermediates 2′DGA2, 6′A2′DGA2, and 6′AGA2 are generated through xylosylation of the pseudosidosaccharides 2′DPM, 2′DNM, and NM, respectively, by the not-so-promiscuous GenM2. These compounds can then be converted to their corresponding new GA analogs, 2′DGA, 6′A2′DGA, and 6′AGA, by the substrate-flexible GenD2–GenS2–GenN system. Subsequent reaction with the GenQ–GenB1 pair can produce small amounts of 6′A2′DGA2, 6′A2′DGA, 6′AGA2, and 6′AGA from 2′DGA2, 2′DGA, GA2, and GA, and the known product JI-20A from GX2 (ref. 39). From this point forward, three pathways can lead to GB production: C4′-methylation of 6′A2′DGA by the C-methyltransferase GenD1, C6′-amination by GenQ–GenB1 of 2′DGX2, which is derived from 2′DGA by GenD1, and C2′-deamination of JI-20A catalyzed by GenN–GenK2. In addition, GenJ–GenK2 could also deaminate GA2, GA, GX2, 6′AGA2, and 6′AGA to their 2′-deamminated products. These results uncovered an interwoven GB biosynthetic network showing that all 12 pseudosidosaccharide intermediates are interconnected by GenQ–GenB1, GenD2–GenS2, GenN, GenD1, and GenJ–GenK2 (Fig. 4a).

The present studies also suggest that the limited in vivo production of GB in the wild-type M. echinospora is due to the high substrate specificity with respect to both the GenQ–GenB1 pair involved in C6′-amination and the glycosyltransferase GenM2 involved in the attachment of xylose to the pseudosidosaccharide acceptor. GenM2 exhibits an increased catalytic preference for PM compared to 2′DPM, NM, and 2′DNM, resulting in decreased biosynthesis of the minor pseudosidosaccharides 2′DGA2, 6′AGA2, and 6′A2′DGA2. Furthermore, the C2′-amino and C4′-methyl groups are likely to be important for substrate recognition and subsequent C6′-amination by GenQ–GenB1. This makes GX2 the most abundant and the only productive biosynthetic intermediate for GB (Fig. 4a). The weak and unsynchronized expression of genJ–genK2 located outside the gentamicin cluster also restricts in vivo production of GB, although their translated products show sufficient in vitro 2′-deamination activity toward JI-20A and the other 6′-aminated pseudosidosaccharides, 6′AGA2 and 6′AGA.

The C6′-amination step is catalyzed by GenQ–GenB1. Although we could not determine the structure of GenQ and did not investigate whether the key determinant of substrate specificity is GenB1, GenQ, or both during C6′-amination, the structures of GenB1 provided important insights into the substrate preference of this aminotransferase. BtrR30 from Bacillus circulans and RbmB41 from Streptomyces ribosidicus involved in DOS biosynthesis are PLP-dependent sugar aminotransferases functionally relevant to GenB1. The structure of GenB1 is superimposed onto those of RbmB and BtrR with r.m.s. deviations of 3.6 and 3.5 Å, respectively (Supplementary Fig. 19). The large r.m.s. deviation values reflect the low sequence identities (~12%) between GenB1 and RbmB/BtrR (Supplementary Fig. 20). The active sites of RbmB and BtrR have space only for a single sugar ring (ring II) covalently attached to PLP (Supplementary Fig. 21), which is in contrast to the three subsites in GenB1 (Fig. 6). This disparity is related to the fact that the C-terminal extension of RbmB and BtrR covers the region corresponding to the R1 and R3 subsites of GenB1 (Supplementary Fig. 21). Accordingly, the unique subsite organization in the large active site of GenB1 is specifically tailored for its substrate promiscuity and preference. Although we did not perform a mechanistic study of GenB1, structural observations indicate that GenB1 shares a reaction mechanism with other PLP-dependent transaminases (Supplementary Fig. 22). Another structure of GenB1 was also reported independently during the revision of this article32.

Compared to G418, the new gentamicin analogs 2′DGA2, 2′DGA, and 2′DGX2 have a reduced toxicity profile while maintaining a similar PTC readthrough activity. It has been shown that installing the (S)-4-amino-2-hydroxybutyric acid (AHBA) moiety at the 1-N position43 and a methyl group at C6′ (refs. 33,34) are effective for improving the termination suppression activity and reducing the toxicity of aminoglycosides. In particular, it was recently reported that the minor component gentamicin B1 (6′-methyl-GB, 38) possesses greater PTC readthrough activity than the gentamicin C series38. Therefore, it is highly likely that these new analogs, such as 2′DGA2, 2′DGA, and 2′DGX2, could be candidates for future development of aminoglycosides with improved readthrough activity and reduced toxicity through the installation of a 1-N-AHBA moiety using the enzymes responsible for its construction in the butirosin biosynthetic pathway32,40–42 and a 6′-methyl group catalyzed by GenK′.

Taken together, results reported herein are important, as they provide detailed genetic and molecular insights into enhancing the production of GB. Possible in vivo strategies to increase the biosynthesis of GB include protein engineering of GenB1 (or GenQ) and GenM2 to broaden their substrate specificities, as well as construction of a genK–genP deletion mutant to accumulate the precursor JI-20A and overexpression of genJ–genK2 to increase 2′-deamination activity. In an early report, application of the latter strategy led to the substantially enhanced production of GB in the engineered M. echinospora strain30. Thus far, only 150 aminoglycosides, including structurally similar congeners33,39, have been identified since the discovery of the first aminoglycoside in 1943 (ref. 43). The scarcity of this class of compounds is partly due to the fact that aminoglycoside biosynthetic gene clusters are not commonly found in the genome of actinomycetes41, and their isolation is particularly challenging compared to many other types of natural products. Our successful efforts at mining the minor biosynthetic intermediates of GB demonstrate the usefulness of this method to discover new aminoglycosides. This alternate approach may be further exploited to expand the diversity of this important class of antibiotics.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and associated accession codes are available at https://doi.org/10.1038/s41589-018-0203-4.

Received: 6 February 2018; Accepted: 13 November 2018;
Published online: 14 January 2019

References

1. Park, S. R., Park, J. W., Ban, Y. H., Sohng, J. K. & Yoon, Y. J. 2-Deoxystreptamine-containing aminoglycoside antibiotics: recent advances in the characterization and manipulation of their biosynthetic pathways. Nat. Prod. Rep. 30, 11–20 (2013).
2. Magnet, S. & Blanchard, J. S. Molecular insights into aminoglycoside action and resistance. Chem. Rev. 105, 477–498 (2005).
3. Kondo, S. & Hotta, K. Semisynthetic aminoglycoside antibiotics: development and enzymatic modifications. J. Infect. Chemother. 5, 1–9 (1999).
Articles

Nature Chemical Biology

23. Wagman, G. H. et al. Chromatographic separation of some minor Kanamycin B active against kanamycin-resistant bacteria. J. Antibiot. (Tokyo) 25, 695–708 (1972).

24. Wright, J. J. Synthesis of 1-N-ethylsulfonimide: a broad-spectrum semisynthetic aminoglycoside antibiotic. J. Chem. Soc. Chem. Commun. 1976, 206–208 (1976).

25. Nagabhushan, T. L., Cooper, A. B., Tsai, H., Daniels, P. J. L. & Miller, G. H. The synthesis and biological properties of 1-N-(S-4-amino-2-hydroxybutyryl)-gentamicin B and 1-N-(S-3-amino-2-hydroxypropionyl)-gentamicin B. J. Antibiot. (Tokyo) 31, 681–687 (1978).

26. Kondo, S., Iinuma, K., Yamamoto, H., Maeda, K. & Umezawa, H. Syntheses of 1-N-[(S)-4-amino-2-hydroxybutyryl]-kanamycin B and -3′,4′-dideoxykanamycin B active against kanamycin-resistant bacteria. J. Antibiot. (Tokyo) 26, 412–415 (1973).

27. Becker, B. & Cooper, M. A. Aminoglycoside antibiotics in the 21st century. ACS Chem. Biol. 8, 105–115 (2013).

28. Stelzer, A. C. et al. Discovery of selective bioactive small molecules by targetting an RNA dynamic ensemble. Nat. Chem. Biol. 7, 553–559 (2011).

29. Prayle, A. & Smyth, A. R. Aminoglycoside use in cystic fibrosis: therapeutic strategies and toxicity. Curr. Opin. Pulm. Med. 16, 604–610 (2010).

30. Park, J. W., Han, T. H., Nam, S.-J., Cha, S.-S. & Yoon, Y. J. Biosynthetic pathways of aminoglycosides and their engineering. Curr. Opin. Biotechnol. 48, 33–41 (2017).

31. Park, J. W. et al. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7, 843–852 (2011).

32. Sucepto, H., Kudo, F. & Eguchi, T. The last step of kanamycin biosynthesis: unique deamination reaction catalyzed by the α-ketoglutarate-dependent nonheme iron dioxygenase KanK and the NADPH-dependent reductase KanK. Angew. Chem. Int. Ed. Engl. 51, 3428–3431 (2012).

33. Gao, W., Wu, Z., Sun, J., Ni, X. & Xia, H. Modulation of kanamycin B and kanamycin A biosynthesis in Streptomyces kanamyceticus via metabolic engineering. PLoS One 12, e0181971 (2017).

34. Park, J. W. et al. Analytical profiling of biosynthetic intermediates involved in the gentamicin pathway of Micromonospora echinospora by high-performance liquid chromatography using electrospray ionization mass spectrometric detection. Anal. Chem. 79, 4860–4869 (2007).

35. Park, J. W. et al. Genetic dissection of the biosynthetic route to gentamicin A2 by heterologous expression of its minimal gene set. Proc. Natl. Acad. Sci. USA 105, 8399–8404 (2008).

36. Huang, C. et al. Delineating the biosynthesis of gentamicinX2, the common precursor of the gentamicin C antibiotic complex. Chem. Biol. 22, 251–261 (2015).

37. Kim, H. J. et al. GenK-catalyzed C-6′ methylation in the biosynthesis of gentamicin: isolation and characterization of a cobalamin-dependent radical SAM enzyme. J. Am. Chem. Soc. 135, 8093–8096 (2013).

38. Guo, J. et al. Specificity and promiscuity at the branch point in gentamicin biosynthesis. Chem. Biol. 21, 608–618 (2014).

39. Gu, Y. et al. Biosynthesis of epimers C2 and C2a in the gentamicin C complex. ChemBioChem 16, 1933–1942 (2015).

40. Li, S. et al. Methyltransferases of gentamicin biosynthesis. Proc. Natl. Acad. Sci. USA 115, 1340–1345 (2018).

41. Wagman, G. H. et al. Chromatographic separation of some minor components of the gentamicin complex. J. Chromatogr. 70, 171–173 (1972).

42. Testa, R. T. & Tilley, B. C. Biotransformation, a new approach to aminoglycoside biosynthesis: II. Gentamicin. J. Antibiot. (Tokyo) 29, 140–146 (1976).

43. Kim, H. J., Liu, Y. N., McCarty, R. M. & Liu, H. W. Reaction catalyzed by GenK, a cobalamin-dependent radical S-adenosyl-l-methionine methyltransferase in the biosynthetic pathway of gentamicin, proceeds with retention of configuration. J. Am. Chem. Soc. 139, 16084–16087 (2017).

44. Ni, X., Sun, Z., Gu, Y., Cui, H. & Xia, H. Assembly of a novel biosynthetic pathway for gentamicin B production in Micromonospora echinospora. Microbiol. Cell Fact. 15, 1 (2016).

45. Chandrika, N. T. & Garneau-Todtikova, S. A review of patents (2011-2015) towards combating resistance to and toxicity of aminoglycosides. MedChemComm 7, 50–68 (2016).

46. Howard, M., Frizzell, R. A. & Bedwell, D. M. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat. Med. 2, 467–469 (1996).
Methods

Materials, bacterial strains, and culture conditions. DOS, UDP-GlcNAc, and NM were purchased from GeneChem Inc. (Daejeon, Republic of Korea). UDP-Glc, G418, NAD+, NADPH, L-glutamine, SAM, PLP, methylcobalamin, benzylation, Nε-ketogluconic acid (NεKG), and L-tyrosine (iron(II) sulfate hexahydrate (NIIH)), FeSO₄·6H₂O; iron(II) sulfate (Fe(SO₄)₂) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Heptanaphthyltrifluoroacetic acid (HFTA) and formic acid were purchased from Fluka (St Louis, MO, USA). UDP-Xyl was supplied by Complex Carbohydrate Research Center (Athens, GA, USA). GA and GX2 were obtained from Toku-E (Bellingham, WA, USA). PM was prepared from paromomycin (Sigma-Aldrich) by hydrolysis as described in the Supplementary Note 1. HPLC grade acetonitrile (MeCN), methanol (MeOH), chloroform (CHCl₃), and water were acquired from JT Baker (Phillipsburg, NJ, USA). Cationic solid-phase exchanger (OASIS MCX SPE, 3 ml/60 mg), Xselect G418, NADPH, l-glutamine, SAM, PLP, methylcobalamin, benzyl viologen, and vacuum manifold were products of Waters Inc. (Milford, MA, USA). Kromasil 100S18 column (4.6 x 250 mm, 5 μm) was supplied by Eka Chemicals AB (Bohus, Sweden). Restriction endonucleases and T4 DNA ligase were purchased from New England Biolabs (Ipswich, MA, USA). Polymerase chain reactions were carried out using PrimeSTAR GXL DNA polymerase from Takara Bio Inc. (Kusatsu, Shiga, Japan). All other chemicals were of the highest purity available.

Bacterial strains and plasmids used in this study are listed in Supplementary Table 4. The gentamicin-producing M. echinospora ATCC 15835 (ref. 2) was obtained from the American Type Culture Collection (Manassas, VA, USA). For genomic DNA isolation and cultivation, M. echinospora was grown for 5 d at 28 °C in ATCC 172 medium (1% glucose, 2% yeast extract, 2% sodium succinate, 0.5% N-Z amine, and 0.2% CaCl₂). E. coli DH5α and plasmid pGEM-T Easy Vector (Promega, Madison, WI, USA) were used for routine subcloning. The PET expression vectors, such as PET1b and PET28a, were purchased from Novagen (Madison, WI, USA). For the expression of the recombinant proteins (GenM1, GenD2, GenS2, GenN, GenD1, GenQ, GenB1, GenJ, and GenK2), the E. coli BL21(DE3) (Novagen), E. coli BL21(DE3)pLysS (Novagen), E. coli Rosetta gamI (DE3) (Novagen) and E. coli ArcticExpress (DE3) (Agilent technologies, Santa Clara, CA, USA) were used as heterologous hosts. The E. coli strains were grown in LB liquid medium. Ampicillin (50 μg/ml), chloramphenicol (25 μg/ml), gentamicin (20 μg/ml), and kanamycin (50 μg/ml) were selectively added to the growth media as required. For the recombinant GenM2, the high-copy-number E. coli Streptomyces shuttle vector pSE34 containing the constitutive ermE* promoter plus a thiostrepton resistance marker was used for expression3, 4. The S. venezueae ATCC 15439 (ref. 3, 13), which was used as a heterologous host for preparing recombinant GenM2, was grown in liquid RYE2. 5

Chemical synthesis. The chemical synthesis and structures of GB, GA2, JI-20A, 2'DGA2, 2'DGX2, 2'DPM, 2'DNM, 6'A2'DGA2, 6'AGA2, and [2'–H]-JI-20A are described in the Supplementary Note 1.

UPLC-QTOF-MS analysis and structural identification of gentamicin biosynthetic intermediates. UPLC-QTOF-MS analysis of the gentamicin biosynthetic intermediates generated by chemical and enzymatic synthesis was performed on a Waters XEVO G2S Q-TOF mass spectrometer coupled with a Waters Acquity UPLC system equipped with an Xselect CSH column (50 μm × 1.7 cm × 250 mm, 5 μm) was supplied by Eka Chemicals AB (Bohus, Sweden). Details regarding the characterization of gentamicin biosynthetic intermediates are described in Supplementary Note 1.

NATURE CHEMICAL BIOLOGY | www.nature.com/naturechemicalbiology
continued to grow at 18°C for another 16 h. Recombinant GenQ and GenB1 were also purified as described below. Typically, approximately 1.5 mg and 2 mg of purified GenQ and GenB1, respectively, were obtained from 1 L of culture (see Supplementary Fig. 2).

For the expression and purification of GenJ and GenK2, the expression plasmids pGENJ and pGENK2 were separately introduced into E. coli BL21(DE3). The recombinant BL21(DE3)/pGENJ and BL21(DE3)/pGENK2 strains (see Supplementary Table 4) were grown in LB medium supplemented with 50 μg/ml kanamycin. Each liter of culture was inoculated with 10 ml of overnight starter culture, and the culture was grown at 37°C to an OD₆₀₀ of 0.6. Overexpression of the proteins was induced by 1 mM IPTG at 16°C for another 20 h. Recombinant GenJ and GenK2 were purified as described below. Typically, approximately 7 mg and 4 mg of purified GenJ and GenK2 were obtained, respectively, from 1 L of culture (see Supplementary Fig. 2).

Protein purification. Cells were harvested by centrifugation (2 min at 20,000 r.p.m.), resuspended in lysis buffer (300 mM NaCl, 10 mM imidazole, 50 mM sodium phosphate, pH 8.0), and then lysed by sonication for 5 min using a 2 s on/2 s off cycle. The lysate was clarified by centrifugation (30 min at 20,000 r.p.m.), and then stored at −80°C. Sodium dodecyl sulfate–PAGE (SDS–PAGE) analysis was employed to ascertain the purity of protein. Protein concentration was determined by the Bradford protein assay using bovine serum albumin as the standard.

Enzyme assays. First glycosylation by GenM1 was performed in 50 mM sodium phosphate buffer (pH 8.0) containing 0.5 mM DMS, 20 mM glycosyl donor (UDP-Glc or UDP-GlcNAc), 50 μM purified GenM1, and 5 mM MgCl₂ at 30°C for 12 h. Second glycosylation by GenM2 was performed in 100 mM potassium phosphate buffer (pH 8.0) containing 5 mM glycosyl acceptor (PM, 2′DPM, or AGA) by large scale enzyme reactions. A2′DGA, and 6′DGA, or 6′DGA2, 2′DGA2, 2′-amination activity (PM, GA2, GA, 2′DPM), A2′-amination was performed in 50 mM Tris–HCl (pH 7.5) containing 0.1 mM substrate (GA2, GA, GX2, JI-20A, 6′DGA, or 6′A2GA), 1.8 mM UDP-Xyl, 0.2 mM purified GenM2, and 10 mM MgCl₂ at 37°C for 10 min. The resulting supernatant containing the product of interest was extracted using Oasis MCX SPE cleanup and then subjected to UPLC-qTOF-HRMS chromatography was calculated. Calibration curves of each gentamicin intermediate were generated using chemically synthesized, commercially available, or enzymatically synthesized compounds, and were used to convert AUC into the standard.

Production of 2′DGA, 6′A2DGA, and 6′AGA by large scale enzyme reactions. A series of genamycin biosynthetic intermediates, 2′DGA, 6′A2DGA, and 6′AGA were from the respective 2′DGA, 6′A2DGA, and 6′AGA by one-pot enzymatic reaction. Purified GenD2-GenS2-GenN (40 μM) was incubated with 11 mM substrate (2′DGA, 6′A2DGA, or 6′AGA), 2 mM NAD⁺, 2 mM L-glutamine, and 2 mM SAM in 50 mM Tris–HCl (pH 7.5) at 30°C for 12 h. The reaction was quenched with chloroform and centrifuged at 13,000 r.p.m. for 10 min. The resulting supernatant containing the product of interest was extracted using Oasis MCX SPE cleanup and then subjected to UPLC-qTOF-HRMS analysis.

To obtain these new intermediates (2′DGA, 6′A2DGA, and 6′AGA), HPLC purification was done using an analytical Kromasil 1005C18 column (4.6 × 250 mm, 5 μm) on an YL9100 HPLC system (YL Instrument Co. Ltd., Republic of Korea) gradient pump (Tosoh Biosystem, Aliso Viejo, CA, USA), in 72-well HLA plates (NUNC, Roskilde, Denmark). Intermediate metabolites and intermediates were purified by analytical HPLC employing 2% acetonitrile with 0.1% formic acid at 0.3 ml/min. The enzyme purification was done using an Oasis MCX SPE cleanup and then subjected to UPLC-qTOF-HRMS analysis. Further reaction was performed until substrate was converted completely.

GenJ-catalyzed deamination reaction for mechanistic study. Reactions to determine the activity of GenJ in the deamination of JI-20A to form a keto intermediate were performed by reduction of the product with NaBH₄, or NaBD₄, for 2 h before analysis, or by derivatization of the product with phenylhydrazine. Spectra of 40 μM GenJ were recorded with 1 mM [2′-H]JI-20A, 1 mM methylcobalamin, 1 mM benzyl viologen, 10 mM DTT, 4 mM NADPH, and 4 mM methionine (GE Healthcare, Piscataway, NJ, USA) with Tris buffer (20 mM Tris–HCl, 250 mM NaCl, 10% glycerol, pH 7.9). The purified proteins were concentrated using an Amicon Ultra 10 k molecular weight cut-off spin filter (Millipore, Bedford, MA, USA), and then stored at −80°C. Sodium dodecyl sulfate–PAGE (SDS–PAGE) analysis was employed to ascertain the purity of protein. Protein concentration was determined by the Bradford protein assay using bovine serum albumin as the standard.
A reasonable phase was obtained with a mean FOM of 0.371 to a resolution of 1.8 Å. Structure determination and refinement of GenB1.

Supplementary Table 2. Those mixtures were incubated on ice for 1 h. To secure crystals of these complexes, collecting diffraction data with crystals grown in precipitation solutions containing 15% polyethylene glycol 3350 and 150 mM magnesium formate. For data collection, Paratone-N or NVH oil was added to the precipitant solutions as a cryo-protectant. Crystals of holo-GenB1 and Se-Met substituted holo-GenB1 diffracted to 1.7 Å and 1.4 Å resolutions, respectively, at the beamline 5 C and 7 A of Pohang Light Source (PLS), Republic of Korea. Crystals of holo-GenB1 and Se-Met substituted holo-GenB1 were harvested by flash-frozen cold stream at -173 °C. Diffraction data were collected at beamlines 5 C and 7 A of Pohang Light Source (PLS), Republic of Korea.

All the crystals belonged to the space group P2₁2₁2₁ with two molecules in the asymmetric unit, which corresponds to a crystal volume per protein weight of ~2.10 Å³/Da and 41.5% solvent content (Matthews, 1968). All the data were processed and scaled with the program DENZO and SCALEPACK from HKL2000 program suite 8. The statistics of data collection are summarized in the Supplementary Table 2.

Structure determination and refinement of GenB1. The structure of holo-GenB1 was solved using single-wavelength anomalous dispersion (SAD) technique. A reasonable phase was obtained with a mean FOM of 0.371 to a resolution of 1.8 Å and all 10 potential selenium sites were found and refined using PHENIX 9. The resulting electron-density maps with a partial model revealed clear main chain density with substantial side-chain details. The GenB1/PLP/NM and GenB1/PLP/ JI-20A complex structures were solved by molecular replacement (MR) with holo-GenB1 as a search model. Rounds of manual model building and refinement were performed using COOT 10 and PHENIX, respectively. From the beginning of the refinement, 5% of the total reflections were set aside for monitoring Rmerge value. The final models of holo-GenB1, GenB1/PLP/NM, and GenB1/PLP/JI-20A include GenB1 residues 9–416 of two copies. The quality of the final models was judged using MolProbity 11. The Ramachandran plots indicate 99.0% (GenB1/PLP), 99.0% (GenB1/PLP/NM), and 99.0% (GenB1/PLP/JI-20A) of residues are in the most favored regions. Statistics on data collections and refinements are summarized in the Supplementary Table 2. Solvent accessible area and interaction area were calculated by PISA (http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html). Sequence alignment was generated using Espript 51, and figures were generated using PyMOL 2.

Mutational study of GenB1. For the D345L, D395L, W391A, and W415A substitutions in GenB1, site-directed mutagenesis was carried out using the QuickChange kit (Stratagene, La Jolla, CA, USA) according to the manufacturer’s protocols. All primers used for mutagenesis of the amplicons containing the mutated GenB1 are listed in Supplementary Table 1. The four mutant proteins were purified, and then examined the C6′-amidation activity toward GX2 (Supplementary Fig. 15).

Cytotoxicity of new gentamicin intermediates against mammalian renal cell lines. To examine the in vitro nephrotoxicity of the newly identified gentamicin intermediates (GA2, GA, and GX2 analogs), a series of cell toxicity assays were performed using primary human cystic fibrosis bronchial epithelial cells (Cystic fibrosis transmembrane conductance regulator [CFTR]; ATJFSW8128X, Asterand Bioscience, Detroit, MI, USA). After pre-culturing in RPMI-1640 medium (Invitrogen) supplemented with 10% FBS and 1% penicillin/streptomycin at 37 °C in a humidified 5% CO2 environment, the cells were rinsed with PBS and cultured in 5 d in T-flasks. On the third day of culturing, the new gentamicin intermediates were added to the culture to a final concentration of 25 μM, and the incubation was continued for another 2 d. Each treatment group from three independent experiments was compared with a positive control group treated by the same method with G418, for which readthrough activity had been reported 6. The treated cells were harvested as pellets, and nucleic proteins were prepared using Celllytic NuCLEAR extraction kit (Sigma-Aldrich). After being corrected into an equal concentration, 10 μl of each sample was subjected to HPLC-ESI-MS. The analysis of both truncated and full-length CFTR expressed in the treated cells was performed in denatured state using size exclusion chromatography with LCQ ion trap mass spectrometer (Thermo Fisher Scientific, Sunnyvale, CA, USA). MAbPac SEC-1 column (4 × 300 mm, 5 μm (Thermo Fisher Scientific)) was eluted with 20% acetonitrile containing 0.05% TFA and 0.1% formic acid at an isocratic flow rate of 0.2 ml/min for 30 min. MS spectra of truncated and full-length CFTR were analyzed using Thermo Scientific protein deconvolution 2.0 software, which employs the ReSpect algorithm for molecular mass deconvolution. Mass spectra for deconvolution were generated by averaging spectra across the most abundant portion of the elution profile for the target biomolecules. The average spectra were subsequently deconvoluted using an input range of m/z 2000 to 4000 for spectra acquired under denaturation state. On the other hand, an output mass range (160,000 to 180,000 Da for full-length CFTR, whereas 130,000 to 150,000 Da for truncated CFTR) and a minimum of at least five consecutive charge states from the input m/z spectrum were used to produce the deconvolution results. The amount of the target protein expressed was estimated based on the peak area shown in the resulting deconvoluted spectrum. The ratio of the full-length CFTR to truncated CFTR was determined as comparative readthrough activity (see Supplementary Fig. 18).

Data availability The sequences of genJ and genK2 genes have been deposited in the GenBank under accession numbers MG5879475 (genJ) and MG5879479 (genK2). Atomic coordinates and structure factors of the reported crystal structures have been deposited in the Protein Data Bank under the accession codes 5Z83 (GenB1/PLP); 5Z8A (GenB1/PLP/JI-20A); 5Z8K (GenB1/PLP/NM).
45. Song, J. Y. et al. Complete genome sequence of *Streptomyces venezuelae* ATCC 15439, a promising cell factory for production of secondary metabolites. *J. Biotechnol.* **219**, 57–58 (2016).
46. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. & Hopwood, D.A. *Practical Streptomyces Genetics* (John Innes Foundation, Norwich, England, 2000).
47. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol.* **276**, 307–326 (1997).
48. Zwart, P. H. et al. Automated structure solution with the PHENIX suite. *Methods Mol. Biol.* **426**, 419–435 (2008).
49. Emsley, P. & Cowtan, K. *Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.* **60**, 2126–2132 (2004).
50. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 12–21 (2010).
51. Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res.* **42**, W320–W324 (2014).
52. Schrödinger, L.L.C. The PyMOL Molecular Graphics System, Version 1.3r1 (2010).
53. Weinstein, M. P et al. *Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.* (Clinical Laboratory Standards Institute: Wayne, Pa, USA, 2018).
54. Patel, J. B. et al. *Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.*, (Clinical Laboratory Standards Institute, Wayne, Pa, USA, 2018).
55. Murphy, G. J., Mostoslavsky, G., Kotton, D. N. & Mulligan, R. C. Exogenous control of mammalian gene expression via modulation of translational termination. *Nat. Med.* **12**, 1093–1099 (2006).
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

☐ Confirmed

☐ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

☐ An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

☐ The statistical test(s) used AND whether they are one- or two-sided

☐ Only common tests should be described solely by name; describe more complex techniques in the Methods section.

☐ A description of all covariates tested

☐ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

☐ A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

☐ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted

☐ Give P values as exact values whenever suitable.

☐ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

☐ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

☐ Clearly defined error bars

☐ State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection

The following softwares were used: VnmrJ Software Revision 1.1C, Topspin 3.2, MassLynx commercial version 4.1, and Thermo Scientific MS protein deconvolution 2.0 commercial software bundle

Data analysis

The following softwares were used: PHENIX 1.11.1_2575, COOT version 0.8.7, MolProbity 4.3.1, PISA 1.48, ESPript 3.0, PyMOL 1.5.0.4, RNAmmer 1.2, tRNAscan-SE 2.0, Glimmer 3.0, AutoFACT, NewGAS™, MestReNova commercial version 6.1.0, MassLynx commercial version 4.1, and SigmaPlot commercial version 10.0.1

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The sequences of genJ and genK2 genes have been deposited in the GenBank under accession nos: MG879478 (genJ); MG879479 (genK2). Atomic coordinates and structure factors of the reported crystal structures have been deposited in the Protein Data Bank under the accession codes: 5Z83 (GenB1/PLP); 5Z8A (GenB1/PLP/JI-20A); 5Z8K (GenB1/PLP/NM).

Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

| ☒ Life sciences | ☐ Behavioural & social sciences | ☐ Ecological, evolutionary & environmental sciences |

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	No statistical method was used to predetermine sample size. Sample sizes employed for in vitro biological assays were generally determined based on at least three independent experiments or increased whenever possible (see Figures for exact n values). NMR measurements were performed once. X-ray data collected were from single crystals.
Data exclusions	No data were excluded.
Replication	We described a number of samples and independent replicate experiments in each figure legend. All attempts at replication were successful.
Randomization	Eukaryotic cell lines tested for in vitro biological assays were randomly distributed during their culture preparation; cells were allocated into wells in the same manner for each sample group. All other experiments conducted did not require any randomization.
Blinding	No human participants or animals were employed in our works, so there was no issue about blinding for group allocation.

Reporting for specific materials, systems and methods

Materials & experimental systems

n/a	Involved in the study
☐	Unique biological materials
☒	Antibodies
☒	Eukaryotic cell lines
☒	Palaeontology
☐	Animals and other organisms
☒	Human research participants

Methods

n/a	Involved in the study
☒	ChIP-seq
☒	Flow cytometry
☒	MRI-based neuroimaging

Unique biological materials

Policy information about availability of materials

Obtaining unique materials
All unique materials used can be available commercially or from the authors. However, access to some of intermediates may not be guaranteed due to laborious synthetic procedures.
Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)	American Type Culture Collection (HEK293, LLC-PK1, COS-7) & Asterand Bioscience (primary human fibrosis bronchial epithelial cell)

Authentication

Authentication	All cell lines were used as is from commercial providers.

Mycoplasma contamination

Mycoplasma contamination	All cell lines are tested quarterly for mycoplasma contamination using PCR method, resulting in all negative.

Commonly misidentified lines

Commonly misidentified lines (See ICLAC register)	No commonly misidentified cell lines were used.