Case Report

Metal allergy hypersensitivity after posterior thoracic spinal fusion: A case report and review of the literature

Harleen Saini1, Andy Y. Wang1, Jacob J. Kosarchuk1, Furkan Yigitbilek2, Laleh Montaser Kouhsari2, Knarik Arkun2, Ron I. Riesenburger1, Mina G. Safain1

Departments of 1Neurosurgery and 2Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts, United States.

#These authors are co-first authors and contributed equally.

E-mail: Harleen Saini - harleen.saini@tufts.edu; Andy Y. Wang - andy.wang@tufts.edu; Jacob J. Kosarchuk - jkosarchuck@tuftsmedicalcenter.org; Furkan Yigitbilek - fyigitbilek@tuftsmedicalcenter.org; Laleh Montaser Kouhsari - lmontaserkouhsa@tuftsmedicalcenter.org; Knarik Arkun - karkun@tuftsmedicalcenter.org; Ron I. Riesenburger - rriesenburger@tuftsmedicalcenter.org; *Mina G. Safain - msafain@tuftsmedicalcenter.org

ABSTRACT

Background: Spine surgeons rarely consider metal allergies when placing hardware, as implants are thought to be inert.

Case Description: A 32-year-old male presented with a skin rash attributed to the trace metal in his spinal fusion instrumentation. Patch testing revealed sensitivities to cobalt, manganese, and chromium. He underwent hardware removal and replacement with constructs of commercially pure titanium. His skin findings resolved at 2 weeks after surgery and were stable at 6 weeks.

Conclusion: Hypersensitivity to metal (i.e., metal allergy) should be considered before performing instrumented spinal fusions.

Keywords: Hypersensitivity, Instrumentation, Metal allergy, Spinal fusion, Thoracic

BACKGROUND

Instrumentation used during spinal fusions is traditionally thought to be inert, and thus, spine surgeons rarely consider metal hypersensitivities. Metal allergies have been described in other surgeries such as total hip and knee arthroplasties, with an allergy to nickel reported as the most common, followed by palladium, cobalt, potassium dichromate, and vanadium. [9] Here, we present a case of metal hypersensitivity/allergy in a patient 2 years after thoracic pedicle screws/rods were placed for a traumatic thoracic spinal fracture. Within 2 weeks of removing the instrumentation and replacing it with commercially pure titanium, his skin findings resolved, with stable resolution at 6 weeks postoperatively.

CASE PRESENTATION

A 32-year-old male presented with a rash 2 years after a thoracic spinal fusion for a T5-T6 fracture-dislocation with complete spinal cord injury (T5 sensory level, ASIA A). He had undergone an uncomplicated T4-T8 posterior pedicle screw and rod fusion. The instrumentation consisted mainly of titanium with small quantities of other metals (i.e., including aluminum,
vanadium, and cobalt chrome) [Table 1]. Three weeks postoperatively, the patient developed a rash with an epicenter near the surgical site; it would intermittently wax and wane. He did not have local or systemic signs of infection. Two years later, he presented with multiple oval patches measuring 6 × 6 cm–8 × 8 cm on his posterior trunk/thoracic area extending into his right axilla [Figure 1a]. An allergist was consulted, and skin patch testing demonstrated hypersensitivities to cobalt (II) chloride hexahydrate 1%, manganese (II) chloride 0.5%, and chromium (III) chloride 2%; there was no sensitivity to titanium.

Removal and replacement of instrumentation

As the patient had not formed a complete arthrodesis at T5-T6 and had the presence of metal allergies, he had the prior instrumentation removed and replaced with commercially pure titanium [Figure 2]. No steroids or prolonged antibiotics were used, eliminating these as possibilities for the resolution of the rash. The patient demonstrated full resolution of the rash within 6 weeks after surgery [Figure 1b and Figure 1c].

Pathology

Pathological findings compatible with an allergic eczematous dermatitis on hematoxylin and eosin staining of skin plaques demonstrated spongiotic dermatitis with multifocal parakeratosis scale crust and superficial to mid-dermal perivascular lymphocytic infiltrate with occasional eosinophils [Figure 3a]. In addition, muscle sections demonstrated chronic inflammation, occasional eosinophils, basophilic fibers, atrophy, nuclear clumping, and increased internal nuclei [Figure 3b].

DISCUSSION

Pedicle screw and rod constructs are often placed without consideration of metal hypersensitivity. These sensitivities are often attributed to trace metals that result in a delayed-type IV immune reaction, although a type III reaction may also play a role. Symptoms most frequently included localized dermatitis, delayed wound healing, recurrent pain, swelling, and erythema around the implant and/or instrumentation insertion area.

Screening for metal allergies before instrumented spinal fusions

Spine surgeons should consider the risk of metal hypersensitivity before implanting spinal instrumentation. In elective cases, the patient's medical history should be scrutinized for past metal hypersensitivity or occupational exposure to metals. Of the 15 case reports of allergy to spinal implants, the majority (87%) were due to disc arthroplasty (most commonly containing cobalt and chromium), with only two cases of pedicle screw instrumentation [Table 2].

Testing for metal allergy

Patients with hypersensitivity reactions may be difficult to differentiate from the much more common wound infection complications. Where allergy to an implant is considered, patch testing should be performed. If hypersensitivity

Instrumentation part	Composition material	Percentage of material
Tulip head	Cobalt chrome (Chromalloy)	26.0–30.0% Cr
		66.0% Co
		5.0–7.0% Mo
		1% Ni<1% C, N
Crown	Commercially pure titanium	98.9% Ti<1.1% C, H, Fe, N, O
Inner ring (within head)	Cobalt chrome (chromalloy)	26.0–30.0% Cr
		66.0% Co
		5.0–7.0% Mo
		1% Ni<1% C, N
Bone screw	Titanium alloy	5.50–6.50% Al
		88.1–91.0% Ti
		3.50–4.50% V<1% C, H, Fe, N, O
Rod	Titanium alloy	5.50–6.50% Al
		88.1–91.0% Ti
		3.50–4.50% V<1% C, H, Fe, N, O

Cr: Chromium, Co: Cobalt, Mo: Molybdenum, Ni: Nickel, C: Carbon, N: Nitrogen, Ti: Titanium, H: Hydrogen, Fe: Iron, O: Oxygen, Al: Aluminum, V: Vanadium
Author	Type of spine surgery	Age, gender	Hardware removal (Y/N)	Metal allergy (suspected or confirmed)	Allergy testing (Y/N)	Allergy test result	Histology findings	Drug allergies	Notable medical history
Cavanaugh et al., 2009	Artificial cervical disc replacement from C5 to C6	38, F	Y	Cobalt-chrome (suspected)	n/a	n/a	Amorphous eosinophilic tissue, chronic inflammation consisting of lymphocytes, and vascular proliferation	n/a	n/a
Berry et al., 2010	Previous Maverick TDR at L4-5	35, F	n/a	Cobalt-chrome (suspected)	n/a	n/a	Benign, reactive, large granuloma	n/a	No known allergy to metals
Guyer et al., 2011	Case 1: L5-S1 TDR with Kineflex Spinal Motion Inc. Prosthesis	41, M	Y	Chromium (suspected)	n/a	n/a	Extensive areas of necrotic fibroconnective, adipose tissue with chronic inflammation on margins, lymphocytes, and macrophage infiltrate, focal accumulations of degranulating eosinophils	n/a	n/a
Guyer et al., 2011	Case 2: L4-5 TDR – Kineflex Spinal Motion Inc. implant	56, F	Y	Chromium (suspected)	n/a	n/a	Necrotic adipose, fibroconnective tissue chronic inflammation on borders, inflammatory cells (lymphocytes, macrophages, eosinophils)	n/a	n/a
Guyer et al., 2011	Case 3: C5-C6 TDR – Kineflex Spinal Motion Inc.	45, F	Y	Chromium (suspected)	n/a	n/a	Fibroconnective tissue with small viable areas showing chronic inflammation, inflammatory cells (lymphocytes, macrophages, some degranulating eosinophils)	n/a	n/a
Guyer et al., 2011	Case 4: L5-S1 TDR – Maverick (Medtronic) prosthesis	45, M	Y	Chromium (suspected)	n/a	n/a	Necrotic nonvascular tissue predominant necrotic fibrous and adipose tissue, focal, poorly defined histiocytic palisades, scattered foreign body, giant cells with surrounding lymphocytic infiltrate	n/a	Occupational exposure to cobalt chromium

(Contd...)
Author	Type of spine surgery	Age, gender	Hardware removal (Y/N)	Metal allergy (suspected or confirmed)	Allergy testing (Y/N)	Allergy test result	Histology findings	Drug allergies	Notable medical history
Zairi et al., 2013	Metal-on-metal L5-S1 TDR – Maverick (Medtronic) prosthesis	53, F	Y	Cobalt-chloride and chromium (confirmed)	Y	Positive reaction for 1% cobalt chloride and chromium on testing – type IV hypersensitivity	Granulomatous mass with diffuse metallic wear debris particles		n/a
Zielinski et al., 2013	Placement of bilateral posterior VEPTRs – Synthes Inc.	6, M	Y	Titanium, niobium, molybdenum, iron, aluminum, and others (confirmed)	Y	Hypersensitive to titanium, niobium, molybdenum, iron, aluminum, and others not listed	n/a	n/a	No known hx to metals
Shang et al., 2014	Spine – PLDF bilaterally for lumbar disc herniation	52, F	Y	Suspected allergy but not specified	N	N	n/a	n/a	Metal skin allergy of many years
Lagier et al., 2015	C5-6 Total cervical disc arthroplasty	52, F	Y	Chromium, nickel sulfate (confirmed)	Y	Sensitization to contact with chromium and nickel sulfate on testing, not sensitive to cobalt, titanium, and molybdenum	n/a	n/a	No known hx of allergies
Goodwin et al., 2018	Case 1: wide laminectomy with facet resection and AFRS, L4-5	59, M	Y	Cobalt (confirmed)	Y	Severe cobalt allergy	n/a	Drug reaction with eosinophilia postoperative	n/a
Goodwin et al., 2018	Case 2: laminectomy facet resection, AFRS, L4-5	69, F	Y	Cobalt (confirmed)	Y	Cobalt allergy (delayed reaction)	n/a	n/a	n/a
Table 2: (Continued).

Author	Type of spine surgery	Age, gender	Hardware removal (Y/N)	Metal allergy (suspected or confirmed)	Allergy testing (Y/N)	Allergy test result	Histology findings	Drug allergies	Notable medical history
Towers and Kurtom, 2020	Spine – bilateral pedicle screws fixation, T9-L1	67, F	Y	Suspected allergy but not specified – possibly titanium	n/a	n/a	No biopsy sample taken	Clonazepam	Bee venom, nickel allergy (childhood) Crohn’s disease like symptoms postoperative, peri-incisional dermatitis postoperative
Curley et al., 2020	Spine – ALIF – Titan sports interbody, L5-S1	41, F	Y	Nickel sulfate hexahydrate, iridium chloride trihydrate, sodium tetrachloropalladate hydrate, iridium chloride, stannous chloride, palladium chloride, and gold sodium thiosulfate dihydrate (confirmed)	Y	Broad spectrum of metals, 3+ to nickel sulfate hexahydrate	n/a	n/a	n/a
Kim, 2020	Spinal arthrodesis with rods and pedicle screws, remnant screw fragment at L3	38, n/a	Y	Nickel (confirmed)	Y	Nickel	n/a	n/a	No previous metal contact listed

TDR: Total disc replacement, PLDF: Posterior lumbar decompression and fusion, VEPTR: Vertical expandable prosthetic titanium rib, AFRS: Anatomic facet replacement system, ALIF: Anterior lumbar interbody fusion, ALVAL: Aseptic lymphocyte-dominated vasculitis-associated lesion
as commercially pure titanium, hydroxyapatite, stainless steel, calcium phosphate, polymethylmethacrylate bone cement, carbon fiber-reinforced polyetheretherketone, and tantalum.\cite{13} The pathological specimens as well as resolution of the rash after hardware removal and replacement with a commercially pure titanium implant support the conclusion that the reaction was most likely due to a hypersensitivity reaction.

CONCLUSION

Before instrumented fusions, patients should be screened for a history of metal allergies, and allergy patch tested if necessary. For those with symptoms/signs of a metal allergy to spinal instrumentation, removal of the construct is a key, with or without replacement if a pseudoarthrosis is present.

ACKNOWLEDGMENTS

We would like to thank Walter C. Dent for helping to obtain the photos used in the figures.

Declaration of patient consent

Institutional Review Board (IRB) permission obtained for the study.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.
REFERENCES

1. Berry MR, Peterson BG, Alander DH. A granulomatous mass surrounding a Maverick total disc replacement causing iliac vein occlusion and spinal stenosis: A case report. J Bone Joint Surg Am 2010;92:1242-5.
2. Cavanaugh DA, Nunley PD, Kerr EJ 3rd, Werner DJ, Jawahar A. Delayed hyper-reactivity to metal ions after cervical disc arthroplasty: A case report and literature review. Spine (Phila Pa 1976) 2009;34:E262-5.
3. Curley KL, Krishna C, Maiti TK, McClendon J Jr., Bendok BR. Metal hypersensitivity after spinal instrumentation: When to suspect and how to treat. World Neurosurg 2020;139:471-7.
4. Fage SW, Muris J, Jakobsen SS, Thyssen JP. Titanium: A review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis 2016;74:323-45.
5. Goodwin ML, Spiker WR, Brodke DS, Lawrence BD. Failure of facet replacement system with metal-on-metal bearing surface and subsequent discovery of cobalt allergy: Report of 2 cases. J Neurosurg Spine 2018;29:81-4.
6. Guyer RD, Shellock J, MacLennan B, Hanscom D, Knight RQ, McCombe P, et al. Early failure of metal-on-metal artificial disc prostheses associated with lymphocytic reaction: Diagnosis and treatment experience in four cases. Spine (Phila Pa 1976) 2011;36:E492-7.
7. Hallab NJ, Jacobs JJ. Biologic effects of implant debris. Bull NYU Hosp Jt Dis 2009;67:182-8.
8. Kim J. A rare case of delayed hypersensitivity reaction to metal ions secondary to a remnant pedicle screw fragment after spinal arthrodesis. Acta Orthop Traumatol Turc 2020;54:461-4.
9. Kręcisz B, Kieć-Świerczyńska M, Chomiczewska-Skóra D. Allergy to orthopedic metal implants: a prospective study. Int J Occup Med Environ Health 2012;25:463-9.
10. Lagier M, Briere M, Giorgi H, Fuentes S, Blondel B, Tropiano P. Delayed hypersensitivity reaction after cervical disc replacement: A case report. Orthop Traumatol Surg Res 2015;101:643-5.
11. Shang X, Wang L, Kou D, Jia X, Yang X, Zhang M, et al. Metal hypersensitivity in patient with posterior lumbar spine fusion: A case report and its literature review. BMC Musculoskelet Disord 2014;15:314.
12. Towers WS, Kurtom K. Rare systemic response to titanium spinal fusion implant: Case report. Cureus 2020;12:e7109.
13. Warburton A, Girdler SJ, Mikhail CM, Ahn A, Cho SK. Biomaterials in spinal implants: A review. Neurop spine 2020;17:101-10.
14. Zairi F, Remacle JM, Allaoui M, Assaker R. Delayed hypersensitivity reaction caused by metal-on-metal total disc replacement. J Neurosurg Spine 2013;19:389-91.
15. Zielinski J, Lacy TA, Phillips JH. Carbon coated implants as a new solution for metal allergy in early-onset scoliosis: A case report and review of the literature. Spine Deform 2014;2:76-80.

How to cite this article: Saini H, Wang AY, Kosarchuk JJ, Yigitbilek F, Kouhsari LM, Arkun K, et al. Metal allergy hypersensitivity after posterior thoracic spinal fusion: A case report and review of the literature. Surg Neurol Int 2021;12:635.