High-energy excited states in 98Cd

A Blazhev1, N Braun1, H Grawe2, P Boutachkov2, B S Nara Singh3, T Brock3, Zh Liu4, R Wadsworth3, M Górska2, J Jolie1, F Nowacki5, S Pietri2, C Domingo-Pardo2, I Kojouharov2, L Cáceres2, T Engert2, F Farinon2, J Gerli2, N Goel2, J Grębosz6, R Hoischen2,7, N Kurz2, C Nociforo2, A Prochazka2, H Schaffner4, S Steer8, H Weick2, H-J Wollersheim2, A Ata¸c9, L Bettermann1, K Eppinger10, T Faestermann10, F Finke1, K Geibel1, C Hinke10, A Gottardo4, G Ilie1, H Iwasaki1, R Krücken10, E Merchant11, J Nyberg12, M Pfützner13, Zs Podolyák8, P Regan8, P Reiter1, S Rinta-Antila14, D Rudolph7, C Scholl1, P-A Söderström12, N Warr1, P Woods4

1Universität zu Köln, Cologne, Germany
2GSI, Darmstadt, Germany
3University of York, York, UK
4University of Edinburgh, Edinburgh, UK
5IPHC, Strasbourg, France
6IFJ PAN, Krakow, Poland
7Lund University, Lund, Sweden
8University of Surrey, Guildford, UK
9Ankara University, Ankara, Turkey
10Technische Universität München, Garching, Germany
11Universidad Nacional de Colombia, Bogota, Colombia
12Uppsala University, Uppsala, Sweden
13Warsaw University, Warsaw, Poland
14University of Liverpool, Liverpool, UK

E-mail: a.blazhev@ikp.uni-koeln.de

Abstract. In 98Cd a new high-energy isomeric γ-ray transition was identified, which confirms previous spin-parity assignments and enables for the first time the measurement of the $E2$ and $E4$ strength for the two decay branches of the isomer. Preliminary results on the 98Cd high-excitation level scheme are presented. A comparison to shell-model calculations as well as implications for the nuclear structure around 100Sn are discussed.

1. Introduction

Studies of isomerism in the neutron-deficient $N \simeq Z$ nuclei around 100Sn give important insights into the role of proton-neutron pairing, serve as testing grounds for nuclear models and give input for understanding the astrophysical rp-process [1, 2]. Previous studies of 98Cd [3, 4] have revealed the existence of a high-energy core-excited state of (12^+) decaying by a 4207 keV $E4$ transition to the (8^+) state [4]. Large-scale shell-model (LSSM) calculations done in the gds-model space could reproduce the energy of the (12^+) state [4]. The LSSM calculations have also suggested the existence of a 14^+ state below the 12^+ state resulting in a spin-gap isomer, which
is supposed to decay by β or proton emission, and a 10^+ state lying above the 12^+ isomer [4]. These predictions together with the long-standing prediction of the 16^+ and $25/2^+$ spin-gap isomeric states in ^{96}Cd and ^{97}Cd, respectively, [5] have been motivation to continue studies in this very exotic region of the nuclidic chart.

2. Experimental details
In summer 2008 an experiment on $^{96,97,98}\text{Cd}$ was performed at the GSI Darmstadt using the FRS fragment separator [6] and the RISING germanium array in the “Stopped Beam” configuration [7]. These exotic nuclei of interest were produced using fragmentation of a 850 MeV/u ^{124}Xe beam on a 4 g/cm2 ^9Be target and finally implanted into an active stopper consisting of nine double-sided silicon strip detectors [8]. The active stopper was surrounded by the RISING Ge-array with a photopeak efficiency of \sim10% at 1.3MeV [7], which collected γ rays correlated with ion implantation and/or particle decays registered in the active stopper. Using the FRS detectors all ions were identified on an event-by-event basis allowing for a clean selection of the fragment of interest.

3. First results
While the analysis of this complex experiment is still in progress first results are already available. In several isotopes like ^{98}Cd, ^{96}Ag [9] and ^{94}Pd [10] new γ-ray sub-μs isomeric transitions were discovered. This work reports preliminary results in ^{98}Cd where a new high-energy isomeric transition was identified.

In the γ-ray spectrum sorted in delayed coincidence with implanted ^{98}Cd ions, beside the known transitions [3, 4] with energies 4207(2), 147, 198, 688 and 1395 keV representing the cascade $(12^+) \rightarrow (8^+) \rightarrow (6^+) \rightarrow (4^+) \rightarrow (2^+) \rightarrow 0^+$ in ^{98}Cd, a new transition with an energy of 4157(3) keV was identified. Figure 1 presents a spectrum gated on the new γ-ray, showing that this transition is in coincidence with the $(8^+) \rightarrow (6^+) \rightarrow (4^+) \rightarrow (2^+) \rightarrow 0^+$ cascade in ^{98}Cd. A time spectrum of the 4157 keV γ-ray transition is shown in Fig. 2. A least-squares fit was performed using a single exponential decay plus a constant background (see Fig. 2). The preliminary result for the half-life is $T_{1/2} = 0.23(8)$ μs, which agrees with the known halflife $T_{1/2} = 0.23(\pm 3)$ μs of the (12^+) isomeric state [4].

In our previous work [4] the assignment of the $E4$ character to the 4207 keV transition as well as the (12^+) spin and parity to the 6635 keV state was discussed at length. Also in that work [4]
the lower observational limit for $E2$ transitions was 80 keV, and consequently we concluded that a hypothetical (10^+) state would lie less than 80 keV below or above the (12^+) state not changing the $E4$ assignment to the 4207 keV transition.

Both the $\gamma-\gamma$-coincidence relations as well as the halflife suggest that the new transition is part of an alternative cascade connecting the (12^+) state with the (8^+) state. Therefore, we suggest the existence of a state with an energy of 6585 keV, tentatively assign spin and parity of (10^+) to this new state, and suggest an $E2$ character to this new 4157 keV high-energy
transition (see Fig. 3 column “EXP”). This also implies an experimentally non-observed 50 keV E2 isomeric transition depopulating the (12\(^+\)) state and feeding the (10\(^+\)) state. With this assignment from the measured half-life and the observed branching the preliminary transition strengths \(B(E2; 12^+ \rightarrow 10^+) = 2.1(13)\) W.u. and \(B(E4; 12^+ \rightarrow 8^+) = 3.0(10)\) W.u. are inferred.

4. Shell-model calculations

On the basis of the above discussed experimental evidence for a (10\(^+\)) state lying 50 keV below the excited (12\(^+\)) state in \(^{98}\)Cd the deficiencies of the previous SM calculations [4] became obvious (see Fig. 3, column “LSSM t=5”). Therefore, new SM calculations have been performed in order to account for the experimental level scheme. Figure 3 shows the new experimental level scheme of \(^{98}\)Cd (EXP) compared to two revised SM calculations, “3n-ph” and “pgdg”, which reproduce the correct ordering of the 10\(^+\) and 12\(^+\) states.

The 12\(^+\) is a core-excited state with a main component of the neutron configuration \(\nu (t_5/2, d_{5/2})\). On the other hand the leading configuration of the 10\(^+\) state is the \(\nu (t_9/2, g_{7/2})\). Thus changing the relative position of the neutron \(d_{5/2}\) and \(g_{7/2}\) orbitals with respect to each other may help in reproducing the experimental observation. The absolute single particle energies of the \(d_{5/2}\) and \(g_{7/2}\) orbitals relative to \(^{100}\)Sn are unknown and up to now their values have only been extrapolated. According to Ref. [11] in \(^{101}\)Sn the \(\nu d_{5/2}\) orbital is 80 keV lower than \(\nu g_{7/2}\). Therefore, a small variation in these single-particle energies can result in the reversal of the order of these two orbitals. A recent experiment on \(^{101}\)Sn has reported a \(\gamma\)-ray transition of 172 keV [12], which most probably connects the 5/2\(^+\) and 7/2\(^+\) states. The authors discuss and give good arguments that the 5/2\(^+\) state should be the ground state of \(^{101}\)Sn [12]. In the extreme single-particle shell-model this would mean that \(\nu d_{5/2}\) is 172 keV lower than \(\nu g_{7/2}\), but when accounting for the configuration mixing, in this case especially core-excitations, the situation changes.

The SM calculation labeled “3n-ph” (see Fig. 3) is performed with the m-scheme code NuShell@MSU [13, 14] in the SNE model space \(\pi \nu (f_{5/2}, p_{3/2}, p_{1/2}, g_{9/2}, g_{7/2}, d_{5/2}, s_{1/2}) + \nu (h_{11/2})\) using the SNET interaction [14, 15]. The following truncation was used: \(\pi (f_{5/2}, p_{3/2})\) and \(\nu (f_{5/2}, p_{3/2}, p_{1/2})\) were considered fully occupied, allowing for proton \(\pi (p_{1/2}, g_{9/2})\) configurations and up to 3 neutron particle-hole excitations (“3n-ph”) from the \(\nu g_{9/2}\) to \(\nu (d_{5/2}, g_{7/2})\) orbitals. As shown in Fig. 3 the “3n-ph” calculation reproduces the experimental ordering of the 10\(^+\) and 12\(^+\) states in \(^{98}\)Cd and their close position relative to each other. The calculation “3n-ph” presents a case where the single-particle orbital \(\nu d_{5/2}\) is 50 keV higher than \(\nu g_{7/2}\), i.e. “reversed” order. That means that in the case of \(^{101}\)Sn, one neutron outside the closed N=50 shell, and no core-excitations, i.e. the “On-ph” calculation, the 5/2\(^+\) state is 50 keV above the 7/2\(^+\). But once the neutron \(ph\)-excitations are taken into account the ordering of the calculated levels 5/2\(^+\) and 7/2\(^+\) in \(^{101}\)Sn is again “normal”. At “1n-ph” the calculated 7/2\(^+\) state is about 50 keV above the 5/2\(^+\), at “2n-ph” - 110 keV, and at “3n-ph” - 112 keV above the 5/2\(^+\) state, showing a converging trend and fairly reproducing what is believed to be experimentally observed [12]. Calculations with higher number of neutron \(ph\) core-excitations were not performed due to computational limitations.

The calculation labeled “pgdg” (see Fig. 3) is performed with another m-scheme code OXBASH [15] in the SN model space \(\pi \nu (f_{5/2}, p_{3/2}, p_{1/2}, g_{9/2}, g_{7/2}, d_{5/2}, s_{1/2}) + \nu (h_{11/2})\) using the GF interaction [16] for \(\pi \nu (p_{1/2}, g_{9/2})\) and the SNA interaction [15] for the rest. The calculation was truncated to \(\pi (p_{1/2}, g_{9/2})\) and \(1p1h \pi g_{9/2}^{-1} \nu d_{5/2}, g_{7/2} + \nu g_{9/2}^{-1} \nu d_{5/2}, g_{7/2}\) excitations across Z, N = 50 shell gaps. A “normal” sequence of the neutron \(d_{5/2}\) and \(g_{7/2}\) orbitals was assumed, i.e. \(d_{5/2}\) below the \(g_{7/2}\), and the proton-proton monopole part of the interaction was tuned to reproduce proton separation energies in \(^{88}\)Sr, \(^{90}\)Zr and \(^{100}\)Sn. Meaning that in the “pgdg” stronger proton particle-hole excitations across the shell gap are allowed and as shown in
Fig. 3(right) this calculation also reproduces the relative position of the 10^+ state below the 12^+, although currently the calculated splitting considerably exceeds the experimentally observed one. The existence of stronger proton-core excitations across the $Z = 50$ shell gap has been discussed also in the work of Vaman et al. [17] when trying to explain the increased $B(E2)$ strength in the yrast $2^+ \rightarrow 0^+$ transitions in the very neutron-deficient Sn isotopes. Therefore, the experimental $B(E2)$ and $B(E4)$ strengths from the core-excited state in 98Cd provide a crucial test of the SM calculations.

A detailed assessment of the level scheme and transition rates will be given in a forthcoming paper after the experimental analysis and the universal shell-model interaction tuning are completed.

Acknowledgments
The excellent work of the GSI accelerator division is acknowledged. The support under grants 06KY205I and 06MT238 of the BMBF (Germany), and support by STFC(UK) and the Swedish Science Council is acknowledged.

References
[1] Grawe H et al. 2006 Eur. Phys. J A 27(S01) 257
[2] Schatz H et al. 1998 Phys. Rep. 294 167
[3] Górska M et al. 1997 Phys. Rev. Lett. 79 2415
[4] Blazhev A et al. 2004 Phys. Rev. C 69 064304
[5] Ogawa K 1983 Phys. Rev. C 28 958
[6] Geissel H et al. 1992 Nucl. Instr. and Meth. B 70 286
[7] Pietri S et al. 2007 Nucl. Instr. and Meth. B 261 1079
[8] Kumar R et al. 2009 Nucl. Instr. and Meth. A 598 754
[9] Boutachkov P et al. in preparation
[10] Wadsworth R et al. 2009 Acta Phys. Pol. B 40 611
[11] Grawe H and Lewitowicz M 2001 Nucl. Phys. A 693 116
[12] Seweryniak D et al. 2007 Phys. Rev. Lett. 99 022504
[13] Rae W D M 2007 Unpublished URL http://knollhouse.org/
[14] Brown B A and Rae W D M 2007 MSU-NSCL report
[15] Brown B A et al. 2004 MSU-NSCL report number 1289
[16] Gross R and Frenkel A 1976 Nucl. Phys. A 267 85
[17] Vaman C et al. 2007 Phys. Rev. Lett. 99 162501