Establishment of a transient transfection system for Babesia sp. Xinjiang with the use of homologous promoters

Xiaoxing Wang
Lanzhou Veterinary Research Institute

Jinming Wang
Lanzhou Veterinary Research Institute

Junlong Liu
Lanzhou Veterinary Research Institute

Jifei Yang
Lanzhou Veterinary Research Institute

LV Zhaoyong
Lanzhou Veterinary Research Institute

Aihong Liu
Lanzhou Veterinary Research Institute

Youquan Li
Lanzhou Veterinary Research Institute

Yubin Li
Lanzhou Veterinary Research Institute

Haiou Lan
Lanzhou Veterinary Research Institute

Guangyuan Liu
Lanzhou Veterinary Research Institute

Jianxun Luo
Lanzhou Veterinary Research Institute

Guiquan Guan (✉ guanguiquan@caas.cn)
Lanzhou Veterinary Research Institute

Hong Yin
Lanzhou Veterinary Research Institute

Short Report

Keywords: Babesia sp. Xinjiang, transient transfection, promoter activity, genetic manipulation
Abstract

Background

Babesia species, the agentic pathogens of human and animal babesiosis, are spread worldwide. Over the last decade, genetic manipulation approaches have been applied with many protozoan parasites, including *Plasmodium falciparum*, *Trypanosoma cruzi*, *Cryptosporidium parvum*, *Theileria annulata*, *Theileria parva*, *Babesia bovis*, *Babesia bigemina*, *Babesia ovata*, *Babesia gibsoni*, and *Babesia ovis*. For *Babesia* sp. Xinjiang (*Bxj*), which is the causative pathogen of ovine babesiosis mainly in China, the efficiency of these techniques remain unclear.

Methods

First, a plasmid bearing the elongation factor-1 alpha promoter, as well as the firefly luciferase reporter gene and rap stop region were transfected into *Bxj* by electroporation and nucleoporation to determine the most suitable transfection solution. Then, six program setting were evaluated to confirm the best for *Bxj* transient transfection and a series of different amounts of plasmid DNA were applied to generate relatively high luminescence values. Finally, the activities of four promoters derived from *Bxj* were evaluated using the developed transient transfection system.

Conclusions

In this study, a transient transfection system for *Bxj* was optimized. These findings provided critical information for *Bxj* genetic manipulation, as an essential tool to identify virulence factors and to further elucidate the basic biology of pathogens.

Background

Babesiosis, caused by apicomplexan intraerythrocytic protozoan pathogens of the genus *Babesia* infective to humans, as well as domestic and wild animals, is a re-emerging tick-borne disease in tropical and subtropical regions worldwide [1]. Since the first documented *Babesia* species was reported in 1888, more than 100 others have been identified globally, although few (*Babesia ovis*, *Babesia motasi*, and *Babesia crassa*) have been confirmed as causative agents of ovine babesiosis. This group of *Babesia* spp. has received much attention since *B. ovis* is the main etiological agent of ovine babesiosis, while *B. motasi* and *B. crassa* have been implicated in human cases of babesiosis throughout Asia [2–6]. Additionally, a novel *Babesia* species, named *Babesia* sp. Xinjiang (*Bxj*), experimentally transmitted by *Hyalomma anatolicum anatolicum* (Koch, 1844), was first isolated from a sheep bitten by *Rhipicephalus sanguineus* and *H. anatolicum anatolicum* [7]. Epidemiological investigations revealed that the seropositivity rate of *Bxj* ranged from 0 to 68.13% in 22 provinces across China [8]. Ovine babesiosis is an important socioeconomic factor, particularly in animal mortality, costs of livestock treatment, and productivity loss [9].
The difficulty in controlling ovine babesiosis is due to the lack of effective vaccines, limited choices of therapeutic drugs, and the emergence of several drug-resistant Babesia strains. Understanding the basic biology of Babesia species is pivotal to the development of effective therapeutic drugs and preventive vaccines to control this disease [10]. Genetic manipulation tools are considered as effective measures to identify virulence factors of particular agents, understand host-parasite interactions, and elucidate the mechanisms underlying drug resistance [11]. Such techniques have been described in several protozoan parasites, including Plasmodium falciparum, Toxoplasma gondii, Cryptosporidium parvum, Theileria annulata, Babesia bovis, Babesia bigemina, Babesia ovata, Babesia gibsoni, and Babesia ovis [12–21].

Mapping and sequencing of the Bxj genome were completed by our laboratory (Vector and Vector-Borne Diseases Laboratory, Lanzhou Veterinary Research Institute) in 2006. In this study, a suitable transfection system for Bxj merozoites was developed using electroporation and nucleofactor technologies.

Methods

In vitro culture of Babesia sp. Xinjiang

A monoclonal line (G5) of Bxj was cultured in vitro as reported previously [22]. Briefly, when parasitemia reached 20%–30%, 4 mL of a suspension of infected red blood cells (RBCs) were cultured in a T75 flask supplemented with 5% fresh sheep erythrocytes and 20% fetal bovine serum (Gibco, Carlsbad, CA, USA) in Roswell Park Memorial Institute 1640 medium (Lonza Biologics, Portsmouth, NH, USA) at 37°C under an atmosphere of 5% CO₂/95% air.

Plasmid constructs

Schematic diagrams of the transient transfection plasmids used in this study are presented in Fig. 1a and 1b. Five distinct plasmids were generated, named as phosphate-buffered saline (PBS)-LuRaA, PBS-LuRaB, PBS-LuRaAc, and PBS-LuRaRa. Initially, the plasmid PBS-LuRa was constructed by amplifying the firefly luciferase gene and Bxj rhoptry-associated protein-1 3’-flanking region (rap3’) by PCR from the plasmid pENT12luc and genomic DNA of Bxj, respectively, using specific primer pairs (Table 1). The PCR products were inserted into the XhoI restriction site of the plasmid pBluescript SK(+) (provided by Carlos E. Suarez) using the MultiS One Step Cloning Kit (Vazyme Biotech Co., Ltd., Nanjing, China). Then, the promoters of Bxj ef1α IG-A, ef-1α IG-B, actin 5’-untranslated region (UTR), and rap 5’-UTR were amplified by PCR and cloned into the SalI restriction site of PBS-LuRa, respectively. A free-promoter plasmid (PBS-LuRa) was used as a negative control. The constructed plasmids were confirmed by sequencing and purified using the QIAGEN Plasmid Maxi Kit (Qiagen, Hilden, Germany) in accordance with the manufacturer’s instructions.

Optimization of parasite transfection

When parasitemia of Bxj-infected RBCs reached 25%–30%, the cultures were centrifuged at 800 × g for 10 min. Then, the supernatant was discarded and pellets of Bxj-infected RBCs were washed twice in PBS and once in cytomix buffer (120 mM KCl, 0.15 mM CaCl₂, 10 mM K₂HPO₄/KH₂PO₄, pH 7.6, 25 mM
HEPES. pH 7.6, 2 mM EGTA, 5 mM MgCl₂, final pH 7.6) [14]. Parasite transfections were performed with the use of a Gene Pulser Xcell™ Electroporation System (Bio-Rad Laboratories, Hercules, CA, USA) and 0.2-cm cuvettes containing 50 μL of sterilized cytomix buffer or 20 μg of plasmids and 1 × 10⁸ infected RBCs to a final volume of 100 μL. Initially, two types of nucleofection buffer (human T cell Nucleofector solution and Basic Parasite Nucleofector® Solution) were used to screen the optimization buffer with the program settings U-033, V-024, X-001, D-023, T-023, and T-020. Cytomix buffer was used for electrotransfection at 1200 V and 25 μF. Subsequently, optimized parameters for Bxj transfection were employed to determine the amounts of plasmid, which varied from 5 to 150 μg. After transfection, the mixtures were transferred into the wells of a 24-well culture plate containing 7.5% fresh sheep RBCs and 10% fetal bovine serum. The luciferase activities and percentage of parasitized erythrocytes (PPEs) were determined at 24, 48, and 72 h post-transfection. Then, 20 μg of each constructed plasmid (PBS-LuRaA, PBS-LuRaB, PBS-LuRaAc, and PBS-LuRaRa) were transfected into infected RBCs using the optimized Bxj transfection conditions. Promoter activity was evaluated with the use of a ONE-Glo™ Luciferase Assay System (Promega Corporation, Madison, WI, USA) at 24, 48, and 72 h post-transfection. Briefly, 100 μL of ONE-Glo™ Luciferase Assay Reagent was mixed with 100 μL of transfected Bxj culture in the wells of white 96-well plates and then incubated for 5 min at room temperature. Afterward, the chemiluminescence values were determined at 10-s integration intervals using a GloMax®-Multi Detection System (Promega Corporation).

Results And Discussion

Optimization of Bxj merozoite transfection parameters

Experimental conditions for transit transfection of Bxj merozoites were determined using a Gene Pulser Xcell™ Electroporation System and a Nucleofector™ II/2b Transfection Device (Lonza). To confirm the suitability of the transient transfection solution, luciferase activity and PPEs were determined at 24, 48, and 72 h, when 20 μg of plasmid DNA with each buffer (human T cell nucleofector solution and Basic parasite nucleofector solution) were transfected with the V-024 program setting, and while the cytomix buffer was electrotransfected with 20 μg of PBS-LuRaB at 1200 V and 25 μF (Fig. 1c). As compared to the other two solutions, the luciferase activity of the transfection system with human T cell nucleofector solution was relatively high (***p < 0.001), indicating that this solution was suitable for Bxj transient transfection. With the exception of the cytomix buffer, there was no decrease in relative luciferase activity in the human T cell nucleofector solution or basic parasite nucleofector solution over a period of 72 h. In previous reports, there was a downward trend in relative luciferase activity during transfection of B. bovis, B. ovis, and Babesia microti. One possible explanation for this exceptional situation was that human T cell nucleofector solution and basic parasite nucleofector solution were more capable of conveying protective effects to the ovine erythrocyte membrane.

In terms of the impact of each transfection buffer to PPEs, a significant high figures using basic parasite nucleofector solution can be obtained at 72 h post-transfection compared to other transfection solutions (Fig. 1d), while the highest level of relative luminescence units observed in human T cell nucleofector
solution group instead of cytomix and basic parasite nucleofector solution groups (Fig. 1c). These data provide additional evidence that human T cell nucleofector solution was more effective and suitable for transient transfection of \textit{Bxj}.

Furthermore, as compared to the other five program settings (U-033, X-001, D-023, T-023, and T-020), luciferase activity was significantly greater with V-024 (**** \(p < 0.0001 \)). Relative luciferase activities at 24, 48, and 72 h post-transfection are presented in Fig. 2e. Subsequently, human T cell Nucleofector solution and V-024 program were used as transient transfection parameters to determine the amount of plasmid DNA. With an increase in the amount of plasmid DNA, relative luminescence units tended to increase, while almost similar values were observed with 20, 50, and 100 \(\mu \text{g} \) (\(p > 0.05 \)) (Fig. 1f). As compared to the use of 10 \(\mu \text{g} \), 20 \(\mu \text{g} \) generated a relatively high relative light unit value (" \(p < 0.05 \)). Taken together, these results, including relative light units and PPEs, showed that human T-cell solution, the program V-024, and 20 \(\mu \text{g} \) of plasmid DNA were the most favorable conditions for transient transfection in subsequent studies.

Evaluation of promoter activity

To determine promoter activity, the optimal transfection conditions mentioned above, including the transfection program, buffer, and amount of plasmid DNA, were employed to transfect \textit{Bxj} merozoites with five types of plasmids (PBS-LuRaA, PBS-LuRaB, PBS-LuRaAc, PBS-LuRaRa and PBS-LuRa). The time courses of luciferase activities in the transfected \textit{Bxj} culture are presented in Fig. 2a. Although four of the promoters tested in this study were able to promote luciferase expression, a significantly higher level of luciferase activity was observed with transfection of the \textit{Bxj} merozoites with either plasmid PBS-LuRaAc or PBS-LuRaB after electroporation. According to values of luciferase activity post-transfection, the extent of promoter activity can be classified as strong (actin 5' UTR), medium (ef1\(\alpha \) IG-B), or low (ef1\(\alpha \) IG-A and rap 5'-UTR). The PPEs of each group at 24, 48, and 72 h post-transfection were determined by calculating the proportion of infected RBCs out of 2000 cells under a light microscope. There were no obvious difference in PPE values among the four groups at 24, 48, and 72 h post-transfection (\(p > 0.05 \)) (Fig. 2b).

Conclusions

In conclusion, the conditions for transient transfection of \textit{Bxj}, including the transfection solution, program settings, and quality of plasmid DNA, were optimized. In addition, promoter activity was systematically evaluated. This study is the first effort to create a platform for transient transfection of \textit{Bxj} and provides basic information for the development of a stable transfection method for \textit{Bxj} and to further elucidate the biology of this parasite, as well as the parasite-vector and parasite-host interactions.

Abbreviations

\textit{Bxj}: Babesia sp. Xinjiang

RBCs: Red blood cells
Declarations

Ethical Approval and Consent to participate

The study was approved by the Animal Ethics Committee of the Lanzhou Veterinary Research Institute, CAAS (Permit No. LVRIAEC-2018-001). All the procedures were conducted according to the Animal Ethics Procedures and Guidelines of the People's Republic of China.

Consent for publication

All authors consent to be published.

Availability of supporting data

All data are available upon request.

Competing interests

The authors declare no conflict of interest.

Funding

This study was financially supported by the National Science Foundation of China (grant nos. 31972701 and 31972706), National Key Research and Development Program of China (grant no. 2017YFD0501200), the 973 Program (grant no. 2015CB150300), ASTIP (grant no. CAAS-ASTIP-2016-LVRI), NBCIS (grant no. CARS-37), and the Jiangsu Co-innovation Center Program for the Prevention and Control of Important Animal Infectious Disease and Zoonoses.

Authors' contributions

XW and JW carried out the experiments. JW wrote the draft of the manuscript. JL, JY, ZL, AL, YL, YuL and HL participate plasmid construction. GG corrected the manuscript. GL, JLuo and HY supervised all parts of the study. All authors have read and approved the final version of this manuscript.

Acknowledgements

We acknowledge Carlos E. Suarez for technical support and providing pBluescript SK(+) plasmid.

Authors' information

Xiaoxing Wang, 1317212955@qq.com

Jinming Wang, wjm0403@caas.cn;
Junlong Liu, liujunlong@caas.cn
Jifei Yang, yangjifei@caas.cn
Zhaoyong Lv, 807960565@qq.com
Aihong Liu, liuaihong@caas.cn
You-quan Li, liyouquan@caas.cn
Yubin Li, 3213447783@qq.com
Haiou Lan, 1327633849@qq.com
Guangyuan Liu, liuguangyuan@caas.cn
Jianxun Luo, luojianxun@caas.cn
Gui-quan Guan, guanguiquan@caas.cn;
Hong Yin, yinhong@caas.cn

References

1 Uilenberg G. International collaborative research: Significance of tick-borne hemoparasitic diseases to world animal health. Vet Parasitol 1995;57(1-3):19-41.

2 Kim JY, Cho SH, Joo HN, Tsuji M, Cho SR, Park IJ et al. First case of human babesiosis in korea: Detection and characterization of a novel type of babesia sp. (ko1) similar to ovine babesia. J Clin Microbiol 2007;45(6):2084-7.

3 Hong SH, Kim SY, Song BG, Rho JR, Cho CR, Kim CN et al. Detection and characterization of an emerging type of babesia sp. Similar to babesia motasi for the first case of human babesiosis and ticks in korea. Emerg Microbes Infect 2019;8(1):869-78.

4 Man SQ, Qiao K, Cui J, Feng M, Fu YF and Cheng XJ. A case of human infection with a novel babesia species in china. Infect Dis Poverty 2016;5(28.

5 Jiang JF, Zheng YC, Jiang RR, Li H, Huo QB, Jiang BG et al. Epidemiological, clinical, and laboratory characteristics of 48 cases of "babesia venatorum" infection in china: A descriptive study. Lancet Infect Dis 2015;15(2):196-203.

6 Wang J, Zhang S, Yang J, Liu J, Zhang D, Li Y et al. Babesia divergens in human in gansu province, china. Emerg Microbes Infect 2019;8(1):959-61.
7 Guan G, Ma M, Moreau E, Liu J, Lu B, Bai Q et al. A new ovine babesia species transmitted by hyalomma anatolicum anatolicum. Exp Parasitol 2009;122(4):261-7.

8 Guan G, Ma M, Liu A, Ren Q, Wang J, Yang J et al. A recently identified ovine babesia in china: Serology and sero-epidemiology. Parasitol Int 2012;61(4):532-7.

9 Aouadi A, Leulmi H, Boucheikhchoukh M, Benakhla A, Raoult D and Parola P. Molecular evidence of tick-borne hemoprotozoan-parasites (theileria ovis and babesia ovis) and bacteria in ticks and blood from small ruminants in northern algeria. Comp Immunol Microbiol Infect Dis 2017;50(34-39.

10 Antunes S, Rosa C, Couto J, Ferrolho J and Domingos A. Deciphering babesia-vector interactions. Front Cell Infect Microbiol 2017;7(429.

11 Suarez CE, Bishop RP, Alzan HF, Poole WA and Cooke BM. Advances in the application of genetic manipulation methods to apicomplexan parasites. Int J Parasitol 2017;47(12):701-10.

12 Padmanabhan PK, Polidoro RB, Barteneva NS, Gazzinelli RT and Burleigh BA. Transient transfection and expression of foreign and endogenous genes in the intracellular stages of trypanosoma cruzi. Mol Biochem Parasitol 2014;198(2):100-3.

13 Suarez CE and McElwain TF. Stable expression of a gfp-bsd fusion protein in babesia bovis merozoites. Int J Parasitol 2009;39(3):289-97.

14 Asada M, Tanaka M, Goto Y, Yokoyama N, Inoue N and Kawazu S. Stable expression of green fluorescent protein and targeted disruption of thioredoxin peroxidase-1 gene in babesia bovis with the wr99210/dhfr selection system. Mol Biochem Parasitol 2012;181(2):162-70.

15 Vinayak S, Pawlowic MC, Sateriale A, Brooks CF, Studstill CJ, Bar-Peled Y et al. Genetic modification of the diarrhoeal pathogen cryptosporidium parvum. Nature 2015;523(7561):477-80.

16 Adamson R, Lyons K, Sharrard M, Kinnaird J, Swan D, Graham S et al. Transient transfection of theileria annulata. Mol Biochem Parasitol 2001;114(1):53-61.

17 De Goeyse I, Jansen F, Madder M, Hayashida K, Berkvens D, Dobbelaere D et al. Transfection of live, tick derived sporozoites of the protozoan apicomplexan parasite theileria parva. Vet Parasitol 2015;208(3-4):238-41.

18 Hakimi H, Yamagishi J, Kegawa Y, Kaneko O, Kawazu S and Asada M. Establishment of transient and stable transfection systems for babesia ovata. Parasit Vectors 2016;9(171.

19 Silva MG, Knowles DP and Suarez CE. Identification of interchangeable cross-species function of elongation factor-1 alpha promoters in babesia bigemina and babesia bovis. Parasit Vectors 2016;9(1):576.
20 Liu M, Asada M, Cao S, Adjou Moumouni PF, Vudrisko P, Efstratiou A et al. Transient transfection of intraerythrocytic babesia gibsoni using elongation factor-1 alpha promoter. Mol Biochem Parasitol 2017;216:56-59.

21 Rosa C, Asada M, Hakimi H, Domingos A, Pimentel M and Antunes S. Transient transfection of babesia ovis using heterologous promoters. Ticks Tick Borne Dis 2019;10(6):101279.

22 Guan GQ, Ma ML, Liu AH, Du PF, Ren QY, Li YQ et al. Continuous in vitro cultivation of a recently identified babesia that infects small ruminants in china. Veterinary Parasitology 2012;187(3-4):371-78.

Tables

Table 1. The information of primers used in this study

Element	Primers	Sequence (5'-3')	Size (bp)
firefly luciferase gene	luc-F	GGTACCGGGCCCCCCTCGAGatggaagatgcaaaaaag	1653
	luc-R	TCGATACCGTCGACCTCGAGttacacggcgtcttgccg	
Promoter	ef1a IG A-F	CGAATTGGGTACCGGGCCCGATAATACTAGGGTTATTG	897
	ef1a IG A-R	CCATCTCGAGGGGGGGCCCTTTCTGGGAGTTTTAACTAG	
	ef1a IG B-F	GCGAATTGGGTACCGGGCCCGAAAGGAAGGTACCGGC	958
	ef1a IG B-R	CCATCTCGAGGGGGGGCCCTTTCTGGGAGTTTTAACTAG	
rap 5' URT-F	rap 5' URT-F	GCGAATTGGGTACCGGGCCCGAGGATGAGGTATCTCAG	1386
	rap 5' URT-R	CCATCTCGAGGGGGGGCCCTTTCTAAACCCAGGCATGAA	
actin 5' UTR-F	actin 5' UTR-F	GCGAATTGGGTACCGGGCCCGAAGTGTCCAGTTGCTC	2489
	actin 5' UTR-R	CCATCTCGAGGGGGGGCCCTTTCTAAACCCAGGCATGAA	
Terminator	rap3' UTR-F	GCTTATCGATACCGGTGCAGCAGCTTCACAAGGCAGCAT	1362
	rap3' UTR-R	GGGCCCCCCTCGAGGTGCAGCAGCTTCACAAGGCAGCATGA	

Restriction enzyme sites are underlined