FREQUENCY OF CLOSE COMPANIONS AMONG KEPLER PLANETS—A TRANSIT TIME VARIATION STUDY

Ji-Wei Xie1,2, Yanqin Wu1, and Yoram Lithwick3

1 Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4, Canada; jwxie@astro.utoronto.ca, wu@astro.utoronto.ca
2 Department of Astronomy & Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210093, China
3 Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; y-lithwick@northwestern.edu

Received 2013 August 16; accepted 2014 May 30; published 2014 June 25

ABSTRACT

A transiting planet exhibits sinusoidal transit time variations (TTVs) if perturbed by a companion near a mean-motion resonance. We search for sinusoidal TTVs in more than 2600 Kepler candidates, using the publicly available Kepler light curves (Q0–Q12). We find that the TTV fractions rise strikingly with the transit multiplicity. Systems where four or more planets transit enjoy a TTV fraction that is roughly five times higher than those where a single planet transits, and about twice as high as those for doubles and triples. In contrast, models in which all transiting planets arise from similar dynamical configurations predict comparable TTV fractions among these different systems. One simple explanation for our results is that there are at least two different classes of Kepler systems, one closely packed and one more sparsely populated.

Key word: planetary systems

Online-only material: color figures

1. INTRODUCTION

Since its launch in 2009 March, the Kepler mission has discovered a few thousand planetary candidates, called Kepler Objects of Interests (KOIs), by detecting the flux deficit as a planet transits in front of its star (Borucki et al. 2011; Batalha et al. 2013; Ofr & Dreizler 2013; Huang et al. 2013; Burke et al. 2013). While some of the stars are observed to have one transiting planet, (referred to as “tranet” from now on, following Tremaine & Dong 2012), others show up to six (Lissauer et al. 2011a). A natural question to ask is whether all of these systems share the same intrinsic orbital structures. For observing transiting planets, the two most relevant orbital parameters are the dispersion in orbital inclinations and the typical spacing between adjacent planets.

A number of groups have studied the inclination dispersion of Kepler planets and reached the common conclusion that this must be small and is of the order of a few degrees (Lissauer et al. 2011b; Fang & Margot 2012; Tremaine & Dong 2012; Fabrycky et al. 2012a; Figueira et al. 2012; Johansen et al. 2012). However, it has been pointed out that models with a single inclination dispersion fall short when explaining the number of single tranets relative to higher multiples by a factor of three or more (Lissauer et al. 2011b). This suggests that all Kepler planets are not the same, and motivates models where the inclination dispersion itself is broadly distributed (“Rayleigh of Rayleigh”: Lissauer et al. 2011b; Fabrycky et al. 2012a). However, the relative occurrences of different Kepler multiples (denoted here as 1P, 2P, 3P... by the number of tranets seen in a system) are sensitive to both the inclination dispersion and the intrinsic planet spacing. Larger spacing between adjacent planets will raise the relative number of single tranet systems, as will larger inclination dispersion. It is difficult to disentangle the two without the aid of further information. Therefore, we turn to a new measure, the TTV fraction.

If a tranet is accompanied by another planet, then its transit times deviate from strict periodicity (transit time variation, TTV; Holman & Murray 2005; Agol et al. 2005). Many studies have used TTV to confirm the planetary nature of Kepler candidates (e.g., Holman et al. 2010; Lissauer et al. 2011a; Cochran et al. 2011; Ballard et al. 2011; Ford et al. 2012a; Steffen et al. 2012; Fabrycky et al. 2012b; Carter et al. 2012; Nesvorný et al. 2012; Xie 2013a, 2013b). Furthermore, it has been determined that when the companion is near a mean-motion resonance (MMR) with the tranet, the TTV is particularly strong and exhibits a characteristic sinusoidal form (Agol et al. 2005). The amplitude and phase of this sinusoid have been simply related to the perturber’s mass, as well as the orbital eccentricities (Lithwick et al. 2012), thereby allowing us to infer the interior composition and orbital parameters of these objects (Wu & Lithwick 2013; Hadden & Lithwick 2014).

Just as the TTV signal can be used to infer the presence of unseen (non-transiting) companions around specific candidates (e.g., Nesvorný et al. 2012; Nesvorný et al. 2013), the number of tranets that exhibit sinusoidal TTVs provides constraints on near-MMR companions. Since the period ratios of adjacent Kepler pairs do not much prefer MMRs (Fabrycky et al. 2012a), these near-MMR companions can be taken as a proxy for companions that lie close to and inward of the 2:1 MMR.

To be quantitative, we will define the “intrinsic TTV fraction” as half of the probability that a planet induces a sufficiently large TTV amplitude for detection4 in another planet in the system. The reason for the factor of one-half is that when one planet has a large TTV, then typically so does its TTV partner, and we do not wish to double count such a pair. When trying to measure this quantity observationally, we will first count the number of observed tranets with measured TTVs, and then subtract one each time two tranets are TTV partners. Dividing by the total number of tranets yields the “measured TTV fraction,” which is our estimate for the intrinsic fraction.

Our ability to measure TTV is affected by the noise level in the transit signals, which is in turn determined by a range of parameters including stellar brightness, the size of the planet relative to its host star, the orbital period, and the transit duration.

4 The TTV amplitudes for a pair of planets are determined by physical properties such as masses, eccentricities, and distance to resonance.
However, if we split the planet candidates into different groups, and if these groups share the same noise properties, then one can argue that the relative TTV fractions measured for different groups represent the relative differences in their intrinsic TTV fractions.

In this paper, we proceed to measure the relative TTV fractions among 1P, 2P, 3P, and 4P+systems, where 4P+ stands for systems that have four or more transiting planets. We carry out the analysis for all KOIs that have suitable light curves, which includes more than 2600 KOIs. We interpret the significance of our results in Section 3.

2. MEASURING TTV FRACTIONS

2.1. Transit Time Measurements

We use the publicly available Q0–Q12 long cadence (pre-search data conditioning) data for 2740 KOIs (Burke et al. 2013). Of these, 134 KOIs have fewer than seven transit time measurements, either because the transit periods are very long or the signal-to-noise ratios (S/Ns) are too small. These are spread evenly across all multiplicities. This leaves us with 2606 KOIs, of which there are 1488, 571, 320, and 227 systems that are designated as 1P, 2P, 3P, and 4P+, respectively. We refer to this sample of 2606 KOIs as the “full” sample.

We have also selected a “reduced” sample by excluding those KOIs for which timing measurements are less accurate. This sample includes those with large noise (S/N ≤ 15) and short transit duration (less than an hour). We only include KOIs with intermediate planet sizes (0.8 R_⊕ ≤ R_ p ≤ 8 R_⊕), as they likely have the lowest false positive rate (Fressin et al. 2013). This reduced sample contains a total of 1989 KOIs with 1097, 253, and 193 systems designated as 1P, 2P, 3P, and 4P+, respectively.

The pipeline used to measure the transit times has been developed and described in Xie (2013a). We compared our transit time measurements to the published ones (Ford et al. 2012a, 2012b; Steffen et al. 2012; Fabrycky et al. 2012a; Mazeh et al. 2013) and found good consistency (see, e.g., Figure 1).

2.2. Identification of Sinusoidal TTV

From the above transit time measurements, we derive TTV, which are the residuals after a best linear fit. We then search for a sinusoidal signal by obtaining a Lomb–Scargle (LS) periodogram (Scargle 1982; Zechmeister & Kürster 2009) of these residuals and identifying the highest peak, which has a period that is longer than twice the orbital period and > 100 days. The former threshold comes about because twice the orbital period is the Nyquist frequency for sampling TTV. The latter threshold is enforced because TTV at shorter periods can be significantly polluted by noise from chromospheric activities, as stellar rotation periods typically fall in the range from a few to a few tens of days (Szabó et al. 2013; Mazeh et al. 2013).

Sinusoidal TTV caused by a perturber near an MMR has a “super-period” (Agol et al. 2005; Lithwick et al. 2012):

\[P_{\text{ttv}} \equiv \frac{1}{j/P - (j - 1)/P} = \frac{P'}{j/|\Delta|}, \]

where P' and P' are the orbital periods of the two planets that are near a first-order (j : j − 1) MMR by a fractional distance Δ. For a planet pair with a period of P' = 10 days, j = 2, and |Δ| ∼ 5%, we find P_{\text{ttv}} ∼ 100 days. A planet pair with a larger |Δ| will have a shorter super-period, however, their TTVs also become increasingly difficult to detect as the TTV amplitudes scale inversely with |Δ| (Agol et al. 2005; Lithwick et al. 2012). All reported cases (Lithwick et al. 2012; Xie 2013a, 2013b; Wu & Lithwick 2013; Steffen et al. 2012; Ragozzine & Kepler Team 2012) have |Δ| falling between 1%–5%. This consideration, coupled with the above concern for chromospheric noise, leads us to discard sinusoids shorter than 100 days.

We also adopt an upper limit of P_{\text{ttv}} ≤ 1000 days. This comes about because the data (Q0–Q12) only stretch for ∼1100 days. However, some TTV systems show strong, identifiable sinusoids even before a full TTV cycle is observed. This constraint is later relaxed and is found not to impact the conclusion.

Many of the sinusoids thus identified are false, caused by random alignment of noisy data. It is important to exclude these. We adopt the following strategy from Cumming (2004), originally applied to detect planets from radial velocity data. For each KOI, we scramble the time stamps of the original TTV

5 Our measurements for the TTV candidates are publicly available at http://www.astro.utoronto.ca/~jwxie/TTV.
The Astrophysical Journal, 789:165 (6pp), 2014 July 10
Xie, Wu, & Lithwick

Figure 2. TTV periods and FAPs obtained for the full sample of 2606 KOIs. The left panel represents the original TTV data, while the right top panel pertains to a “scrambled” population: one which has the same TTV data as the observed ones but with randomly scrambled time stamps. This set is equivalent to pure noise and acts as a control sample. For the sake of clarity, all points with FAP < 10^{-4} are displayed just below that value, with a slight artificial dispersion. The red hatched region labeled as “S” illustrates our conservative criterion for identifying TTV candidates (Section 2.2), while more relaxed criteria include regions “F” or “P”. The bottom-right panel shows the cumulative distribution of FAPs for the original TTV data (solid) and for the scrambled data (dashed). The latter satisfies CDF = FAP, as should be the case for pure noise. The real data show an excess of small FAP objects, over that of noise, corresponding to genuine TTV candidates. For the scrambled data, small FAP cases occur preferentially at short TTV periods.

(A color version of this figure is available in the online journal.)

data for 10^4 times and perform an LS periodogram analysis on each set of data, obtaining the amplitude and frequency for the highest peak. The false alarm probability (FAP) of the original TTV peak is estimated to be the fraction of permutations that have higher sinusoids than the original TTV. We assign an FAP value of 10^{-4} if there is not a single random realization that exceeds the observed sinusoid amplitude. Our FAP estimates compare well with those from Mazeh et al. (2013).

Figure 2 shows the FAP and P_{ttv} for each of the KOIs in our full sample, as well as those using a scrambled time series for the same KOIs. The latter set is equivalent to random noise and so acts as a control sample. The true data show a significant excess of objects at very low FAPs when compared to those of the scrambled data. We adopt the following “standard” criterion (the region labeled “S” in Figure 2) for identifying our TTV candidates:

1. FAP < 10^{-3} and
2. TTV period between 100 and 1000 days.

Objects that have FAP ≤ 10^{-3} exhibit TTV amplitudes that range from one to hundreds of minutes, with TTV sensitivities that are higher for objects with larger S/N. Our above FAP criterion is on the conservative side: for an FAP of 10^{-3}, there should only be $2606 \times 10^{-3} \sim 3$ false positives among our TTV candidates, which is much fewer than the actual number of candidates (∼100). We experiment by relaxing the above criterion, either by raising the FAP threshold to 10^{-2} (adding the “F” region in Figure 2), or by removing the 1000 day upper limit (adding the “P” region). We report our results below.

2.3. TTV Fraction and Multiplicity

We observe a remarkable rise of the TTV fraction with transit multiplicity.

In Table 1, we list the number of TTV candidates for different transiting multiplicities for four different combinations of sample and TTV selection criteria. For ease of comparison against theory, we list the “measured” TTV fractions, obtained by removing one candidate from the raw count whenever both it and its TTV partner have observed TTVs. Such a method is justified in Section 3. From now on, we focus on these “measured” fractions (illustrated in Figure 3)—in fact, we focus on the relative “measured” fractions, that is, the TTV fractions normalized by those in 4P+ systems. The choice for the normalization is arbitrary. However, since the error bars for these relative fractions are taken to be quadratic sums of the individual error bars, the type of system one normalizes against does not affect the statistical conclusion. These results are presented in Figure 3.

Except for case 3, all other combinations give very similar results for the relative TTV fractions: 1P systems have about five times lower (values from case 1: 20% ± 9%) TTV fractions than 4P+ systems, and 2P and 3P systems are about twice as low.

6 TTV partners are two planets that are near MMR and share the same TTV super period.
(48% ± 23% and 58% ± 30%). The results from case 3 are less reliable as the TTV selection criterion is too relaxed and allows for too many false positives.

We have also used the TTV data from Mazeh et al. (2013), published while we were editing our final draft, to confirm the above results (Figure 3).7

2.4. Potential Bias

We first discuss what potential bias may affect the absolute TTV fractions that we obtain and then move on to discuss biases that may affect the relative TTV fractions among groups of different transit multiplicity. It becomes clear that by focusing only on the relative TTV fractions, we can eliminate most, if not all, observational bias.

We compare properties of the set of TTV candidates against the KOI sample. The top panels of Figure 4 display four transit properties: S/N, planet radius, orbital period, and transit duration. The members of the TTV sample generally have larger transit S/Ns, larger planet radii (disfavoring small planets), and slightly longer transit durations than the average KOIs. In addition, they are also concentrated around orbital periods ~10 days. These characteristics allow for optimum TTV detections, as is demonstrated in recent TTV studies by Ford et al. (2012b) and Mazeh et al. (2013). For instance, longer orbital periods generally lead to larger TTV amplitudes (Holman & Murray 2005; Agol et al. 2005; Lithwick et al. 2012; Mazeh et al. 2013), however, orbital periods that are too long permit only a small number of transits to be observed. As such, we expect that the intrinsic TTV fraction, quantified as half of the fraction of planets that may affect the relative TTV fractions among groups of different transit multiplicity. It becomes clear that by focusing only on the relative TTV fractions, we can eliminate most, if not all, observational bias.

We compare properties of the set of TTV candidates against the KOI sample. The top panels of Figure 4 display four transit properties: S/N, planet radius, orbital period, and transit duration. The members of the TTV sample generally have larger transit S/Ns, larger planet radii (disfavoring small planets), and slightly longer transit durations than the average KOIs. In addition, they are also concentrated around orbital periods ~10 days. These characteristics allow for optimum TTV detections, as is demonstrated in recent TTV studies by Ford et al. (2012b) and Mazeh et al. (2013). For instance, longer orbital periods generally lead to larger TTV amplitudes (Holman & Murray 2005; Agol et al. 2005; Lithwick et al. 2012; Mazeh et al. 2013), however, orbital periods that are too long permit only a small number of transits to be observed. As such, we expect that the intrinsic TTV fraction, quantified as half of the fraction of planets that may affect the relative TTV fractions among groups of different transit multiplicity. It becomes clear that by focusing only on the relative TTV fractions, we can eliminate most, if not all, observational bias.

We compare properties of the set of TTV candidates against the KOI sample. The top panels of Figure 4 display four transit properties: S/N, planet radius, orbital period, and transit duration. The members of the TTV sample generally have larger transit S/Ns, larger planet radii (disfavoring small planets), and slightly longer transit durations than the average KOIs. In addition, they are also concentrated around orbital periods ~10 days. These characteristics allow for optimum TTV detections, as is demonstrated in recent TTV studies by Ford et al. (2012b) and Mazeh et al. (2013). For instance, longer orbital periods generally lead to larger TTV amplitudes (Holman & Murray 2005; Agol et al. 2005; Lithwick et al. 2012; Mazeh et al. 2013), however, orbital periods that are too long permit only a small number of transits to be observed. As such, we expect that the intrinsic TTV fraction, quantified as half of the fraction of planets that have comparable TTV amplitudes as those detected here, should be higher than our reported values (Table 1).

On the other hand, we find no significant difference between the TTV and KOI samples in terms of stellar mass, effective
Xie, Wu, & Lithwick

Figure 4. Comparison of properties. The top panels compare those with sinusoidal TTV (red solid curve) to all KOIs (black dashed curve). The lower panels compare TTV candidates with different transit multiplicities. Here, we only display comparisons in transit S/N, planet radius (R_p), orbital period (Per), and transit duration, but we have performed a range of other comparisons (see text). TTV detection disfavors planets with small S/N and small radius ($\text{R}_p \leq \text{R}_\oplus$), and favors planets with intermediate orbital periods ($P \sim 10$ days). In contrast, TTV groups with different multiplicities are statistically indistinguishable from these transit parameters (p values from KS tests are listed).

(A color version of this figure is available in the online journal.)

temperature, metallicity, and stellar brightness (stellar parameters from Batalha et al. 2013). Kolmogorov–Smirnov (KS) tests performed to compare these two populations always return p values greater than 0.5. This suggests that TTV candidates live in all possible systems. However, this deserves further study as currently there are large uncertainties in the stellar parameters and our TTV sample is relatively small.

While the TTV sample as a whole is a biased representation of the KOI sample, we find that the different sub-samples, separated by their transiting multiplicity, share similar distributions in both the transit parameters (Figure 4) and the stellar parameters (not shown here). The large p values returned from the KS tests (Figure 4) do not support the hypothesis that the different subgroups experience different selection effects. Moreover, we have confirmed that our reduced KOI samples, when separated into groups of different transit multiplicities, are statistically similar in their transit and stellar parameters. Since the ability to detect TTVs above a certain threshold amplitude depends only on these transit and stellar parameters, these two results argue that the relative measured TTV fractions reflect the relative intrinsic TTV fractions. In other words, the significant correlation between TTV fraction and transit multiplicity that we observe (Figure 3) is unlikely to be caused by systematic biases on stellar/transit parameters.

Another potential bias could arise during transit detection—transiting planets with significant TTVs can be systematically missed or cataloged as false positives by the Kepler pipeline (García-Melendo & López-Morales 2011). To remove this bias, Carter & Agol (2013) designed an algorithm (QATS) that can simultaneously detect transits and measure their TTVs. Searches using QATS have only found a handful of new planetary candidates (J. A. Carter 2013, private communication), which might indicate that the Kepler catalog is not significantly impacted by this bias. Nevertheless, we caution that there could be another possibility, namely, the QATS may not fully remove the bias, which deserves further study but is out of the scope of this paper.

Last but not least, we note that the transit multiplicity of a given system evolves as the catalog updates. For example, a 1P system may become a 2P system when a new transit candidate is found, either due to accumulation of new data and/ or improvement of the pipeline/algorithm for planet detection. To see how these factors affect our results, we took an older version KOI catalog from Batalha et al. (2013) and performed the same analysis as in the standard case (case 1 in Table 1). We obtained similar results for the relative TTV fractions: (2.4 ± 0.5)% , (4.9 ± 1.1)% , (6.0 ± 1.7)% , and (10.3 ± 3.0)% for the 1P, 2P, 3P, and 4P systems, respectively. This suggests that the correlation between TTV fraction and transit multiplicity observed in Figure 3 may remain unaffected as more improved catalogs are published.

3. CONCLUSION

We discuss the significance of our results by comparing them to predictions from a simple toy model. Assume all KOIs, independent of transit multiplicity, are drawn from the same intrinsic distribution, with similar dispersions in mutual inclinations and planet spacing (with no preference for MMRs). In this case, single systems are those where the viewing angles
are less favorable and we miss most of the planets in the system, while the higher multiples are those where more planets are caught. One can estimate the TTV fraction for the theoretical population as half the fraction of planets that both transit and have companions within a certain distance from a first-order MMR. As one may naively expect and as is confirmed by Monte Carlo simulations (Figure 5), the relative TTV fractions cluster around 1 and are largely independent of the model parameters and transit multiplicities.

The observed sharp rise of TTV fraction with transit multiplicity is inconsistent with such a simple toy-model. What are the possible interpretations?

The lower TTV fraction observed for singles is unlikely to be completely explained by the higher false positive rates in KOI singles. The reported false positive rate is of the order of 10%–20% (Fressin et al. 2013). More importantly, our reduced sample, which is expected to have a lower false positive rate than the full sample, yields the same relative TTV fractions. Moreover, since TTV amplitudes are strongly boosted by eccentricities as small as a few percent (Holman & Murray 2005; Agol et al. 2005; Agol et al. 2005; Agol et al. 2005; Veras et al. 2011; Lithwick et al. 2012), the lower TTV fraction can be explained if higher multiple systems have higher eccentricities. However, this is likely excluded by the tight spacing observed among high multiples.

A simple explanation for our results is that the basic assumption in our toy model is not true, namely, all KOIs cannot be treated as the same intrinsic population (Lissauer et al. 2011b; Tremaine & Dong 2012; Johansen et al. 2012; Weissbein et al. 2012). For example, there could be at least two distinct populations of *Kepler* planets, different in their intrinsic frequencies of close companions. The high multiples (4P+) are dominated by a population that has a higher companion frequency, while the 1P systems may be dominated by a population that has a lower frequency of close companions. In other words, there are at least two populations of *Kepler* planets: one that is closely spaced and one that is sparsely spaced. In an upcoming publication, we will use TTV fractions obtained in this paper, together with a variety of other observational facts, to constrain the properties of these two populations of *Kepler* planets. This will yield important constraints on the process of planet formation.

J.W.X. and Y.W. acknowledge support from NSERC and the Ontario government. Y.L. acknowledges support from NSF grant AST-1109776 and NASA grant NNX14AD21G.

REFERENCES

Agol, E., Steffen, J., Sari, R., & Clarkson, W. 2005, MNRAS, 359, 567
Ballard, S., Fabrycky, D., Fressin, F., et al. 2011, ApJ, 743, 200
Batalha, N. M., Rowe, J. F., Bryson, S. T., et al. 2013, ApJS, 204, 24
Borucki, W. J., Koch, D. G., Basri, G., et al. 2011, ApJ, 736, 19
Burke, C. J., Bryson, S., Christiansen, J., et al. 2013, in American Astronomical Society Meeting Abstracts, Vol. 221, 216.02
Carter, J. A., & Agol, E. 2013, ApJ, 765, 132
Carter, J. A., Agol, E., Chaplin, W. J., et al. 2012, Sci, 337, 556
Cochran, W. D., Fabrycky, D. C., Torres, G., et al. 2011, ApJS, 197, 197
Cummings, A. 2004, MNRAS, 354, 1165
Fabrycky, D. C., Lissauer, J. J., Ragozzine, D., et al. 2012a, arXiv:1202.6328
Fabrycky, D. C., Ford, E. B., Steffen, J. H., et al. 2012b, ApJ, 750, 114
Fang, J., & Margot, J.-L. 2012, ApJ, 761, 92
Figueira, P., Marmier, M., Boué, G., et al. 2012, A&A, 541, A139
Ford, E. B., Fabrycky, D. C., Steffen, J. H., et al. 2012a, ApJ, 750, 113
Ford, E. B., Ragozzine, D., Rowe, J. E., et al. 2012b, ApJ, 756, 185
Fressin, F., Torres, G., Charbonneau, D., et al. 2013, ApJ, 766, 81
García-Melendo, E., & López-Morales, M. 2011, MNRAS, 417, L16
Hadden, S., & Lithwick, Y. 2014, ApJ, 787, 80
Holman, M. J., Fabrycky, D. C., Ragozzine, D., et al. 2010, Sci, 330, 51
Holman, M. J., & Murray, W. 2005, Sci, 307, 1288
Huang, X., Bakos, G. Á., & Hartman, J. D. 2013, MNRAS, 429, 2001
Johansen, A., Davies, M. B., Church, R. P., & Holmblin, V. 2012, ApJ, 758, 39
Lissauer, J. J., Fabrycky, D. C., Ford, E. B., et al. 2011a, Natur, 470, 53
Lissauer, J. J., Ragozzine, D., Fabrycky, D. C., et al. 2011b, ApJS, 197, 8
Lithwick, Y., Xie, J., & Wu, Y. 2012, ApJ, 761, 122
Mazeh, T., Nachmani, G., Holczer, T., et al. 2013, ApJS, 208, 16
Nesvorný, D., Kipping, D., Terrell, D., et al. 2013, ApJ, 777, 3
Nesvorný, D., Kipping, D. M., Buchhave, L. A., et al. 2012, Sci, 336, 1133
Ofir, A., & Dreizler, S. 2013, A&A, 555, A58
Ragozzine, D., & Kepler Team., 2012, in AAS Meeting Abstracts, Vol. 44, 216.02
Rodgers, J. L., & Nicewander, W. A. 1988, The American Statistician, 42, 59
Scargle, J. D. 1982, ApJ, 263, 835
Steffen, J. H. 2013, MNRAS, 433, 3246
Steffen, J. H., Fabrycky, D. C., Ford, E. B., et al. 2012, MNRAS, 421, 2342
Szabó, R., Szabó, G. M., Dálya, G., et al. 2013, A&A, 553, A17
Tremaine, S., & Dong, S. 2012, AJ, 143, 94
Veras, D., Ford, E. B., & Payne, M. J. 2011, ApJ, 727, 74
Weissbein, A., Steinberg, E., & Sari, R. 2012, arXiv:1203.6072
Wu, Y., & Lithwick, Y. 2013, ApJ, 772, 74
Xie, J.-W. 2013, ApJS, 208, 22
Xie, J.-W. 2014, ApJS, 210, 25
Zechmeister, M., & Kürster, M. 2009, A&A, 496, 577