Transbilayer phospholipids molecular imaging

Tarik Z Belhocine¹* and Frank S Prato¹,²

Abstract
Nuclear medicine has become a key part of molecular imaging. In the present review article, we focus on the transbilayer phospholipids as exquisite targets for radiolabelled probes in molecular imaging. Asymmetry of phospholipid distribution is a characteristic of mammalian cell membranes. Phosphatidylcholine and sphingomyelin cholinophospholipids are primarily located within the external leaflet of the cell membrane. Phosphatidylserine and phosphatidylethanolamine aminophospholipids, and also phosphatidylinositol are primarily located within the internal leaflet of the cell membrane. New radiolabelled tracers have been designed in preclinical and clinical research for PET-CT and SPECT-CT molecular imaging of transbilayer phospholipids.

Keywords: phospholipids, molecular imaging, PET-CT, SPECT-CT

Introduction
In this beginning of the twenty-first century, personalized molecular medicine is the objective of molecular diagnosis, molecular imaging, and molecular therapy [1,2]. Molecular imaging (MI) includes a number of morphological imaging techniques (i.e. ultrasound, computed tomography and magnetic resonance imaging), and optical imaging techniques (i.e. bioluminescence and fluorescence imaging) [3,4]. In addition, nuclear medicine with radiolabelled probes has become a key part of MI, especially with ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) metabolic imaging [5]. New radiolabelled tracers have been designed for positron emission tomography-computed tomography (PET-CT) and single-photon emission computed tomography-computed tomography (SPECT-CT) molecular imaging [6]. In this review article, we focus on the transbilayer phospholipids as exquisite targets for radiolabelled probes in molecular imaging.
as radiolabelled annexin V or C2A synaptotagmin domain I or beta 2 glycoprotein I, radiolabelled duramycin, radiolabelled hypericin, radiolabelled lactadherin, radiolabelled choline or fluorocholesterol, radiolabelled dicyglycerols, radiolabelled sphingomyelin for visualization, characterization and measurement of key biological functions (i.e. apoptosis, necrosis, thrombosis, vasculature endothelium, choline metabolism, myocardial and neuronal phosphoinositide turnover) or for assessing specific diseases (i.e. cancers, immune diseases, inflammatory diseases, infectious diseases, cardiac diseases and neurological diseases).

Membrane bilayer

The membrane bilayer is composed of 40% lipids and glycolipids, and 60% integral proteins and glycoproteins [13]. The lipids in the membrane bilayer are composed of phospholipids (75% to 88%), glycosphingolipids (2% to 5%) and cholesterol (10% to 20%) [13]. The phospholipids include phosphatidylcholine (45% to 55%), phosphatidylethanolamine (15% to 25%), phosphatidylinositol (10% to 15%), phosphatidylserine (2% to 10%), phosphatidic acid (1% to 2%), sphingomyelin (5% to 10%) and cardiolipin (2% to 5%). Liposomes are artificial lipid vesicles encapsulating drugs (e.g. chemotherapy drugs, antibiotics, fungicides), enzymes, biological material (e.g. antigens, antibodies) and tracers (e.g. radiolabelled products, contrast agents) [14]. Liposomes are nanoparticles with a diameter < 100 nm characterised by the composition of lipids, the number of membrane bilayers, and the surface charges [7]. The material encapsulated is either dissolved in an aqueous phase or in a lipid phase. Radioactive phospholipid liposomes have been designed for molecular imaging [15].

Phospholipid bilayer

In 1972, Singer and Nicolson developed the fluid mosaic model to explain the composition of the cell membrane bilayer with randomly oriented globular proteins and lipids [16]. According to this thermodynamic model, the phospholipid membrane bilayer is composed of hydrophilic heads and hydrophobic tails. The polar hydrophilic heads are in contact with water (see Figure 1). Recent refinements of the Singer-Nicolson mosaic model suggest a structured dynamic organisation of the membrane bilayer with genetically predefined non-randomly oriented globular proteins into the lipid matrix [17,18]. In mammalians, the asymmetry of phospholipid distribution is a characteristic of cell membranes (see Figure 2). Phosphatidycholine (PC) and sphingomyelin (SM) cholesterolipids are primarily located in the extracellular membrane. Phosphatidylethanolamine (PE) and phosphatidylserine (PS) aminophospholipids as well as phosphatidylinositol (PI) phospholipid are primarily located in the intracellular membrane [19]. Two ATP-dependent translocase enzymes (i.e. cholinophospholipid-specific translocase or flopase, and aminophospholipid-specific translocase or flippase) and a Mg²⁺-ATPase (i.e. aminophospholipid translocase) maintain the aminophospholipids in the inner leaflet of the membrane bilayer. PE and PS are externalised to the outer leaflet of the cell membrane after inactivation of aminophospholipid translocase or flippase and activation of scramblase, another Ca²⁺-dependent ATP-independent enzyme [19,20].

Phospholipid targets

Phospholipids are composed of a phosphatidyl tail including a free fatty acid, glycerol and phosphate [21]. In the phospholipid polar head, choline, serine, ethanolamine and inositol bind to the phosphatidyl non-polar tail. Sphingomyelin is the only one cell membrane phospholipid not derived from a glycerol but from an aminoalcohol sphingosine; SM is composed of a core ceramide (i.e. spingosine and free fatty acid tail) and contains a polar head group composed of phosphocholine or phosphoethanolamine [22].

In preclinical and clinical research, phospholipids are used as targets for molecular imaging with radiolabelled probes as illustrated in Figure 3 [23,24].

PS target

PS is an aminophospholipid located in the inner leaflet of the cell membrane. In pathophysiological conditions including apoptosis, thrombosis and tumour vasculature, PS is externalised from the inner leaflet to the outer leaflet of the cell membrane [25]. In necrosis, PS is exposed in the inner leaflet of damaged cells. For SPECT-CT and PET-CT imaging, radiolabelled probes have been designed to target exposed PS with or without the breakdown of cell membrane asymmetry.

Annexin V, a 36-kDa serum protein first isolated from human placenta, has been radiolabelled with 99mTc, 111In, 67Ga, 123I, 124I, 11C, 64Cu, 68Ga, 94mTc and 18F for imaging of apoptosis or necrosis, and thrombosis [26-29]. Annexin V binds specifically to PS in presence of Ca²⁺ ions. Spontaneous and induced apoptotic changes may be assessed qualitatively and quantitatively with radiolabelled annexin V-targeted to PS [30,31]. In preclinical research, 99mTc-HYNIC-annexin V imaging has been used to evaluate cardiovascular models (e.g. heart transplantation, myocarditis and mural thrombus), oncology models (e.g. cyclophosphamide induced intramedullary and splenic apoptosis in lymphoma), neurology models (e.g. neonatal brain ischemia), inflammatory/infectious models (e.g. fulminant hepatitis, subacute and acute infection) and immune models (e.g. rheumatoid arthritis treated by corticosteroids). In clinical research, 99mTc-HYNIC-annexin V imaging using a recombinant human form of annexin V...
has been used to assess myocardial infarction, heart transplant rejection, atherosclerosis, ischemic pre-conditioning and chemotherapy/radiation therapy-induced apoptosis in head and neck cancers, lymphomas, lung cancers, breast cancers, leukaemia and soft tissue sarcomas. 99mTc-HYNIC-annexin V imaging has also been used in patients with dementia and stroke, and in patients with rheumatoid arthritis and Crohn’s disease for evaluation of early apoptotic response to Infliximab® therapy (i.e. anti-TNFα monoclonal antibody) [24,26]. Figures 4 and 5 illustrate PS targeting 99mTc-HYNIC-annexin V molecular imaging probe in a patient with a non-small cell lung cancer (NSCLC). PS targeting 99mTc-annexin V-128 with an N-terminal site specific for endogenous binding of technetium-99m has been designed in order to improve the sensitivity of detection of apoptosis or necrosis (i.e. twofold higher than that of 99mTc-HYNIC-annexin V) [32].

> **C2A domain of synaptotagmin I** (C2A) is a 12-kDa protein predominantly located within the synaptic vesicles binding to PS. It has been fused with glutathione-s-transferase (GST) and radiolabelled with 99mTc for imaging of apoptosis or necrosis [33]. In a rat and pig model of acute myocardial infarction, increased 99mTc-C2A-GST uptake was seen in the myocardial infarct area at risk, and was associated with wall dysfunction [34-36]. In a mouse model of NSCLC, increased 99mTc-C2A-GST tumour uptake was noted after paclitaxel chemotherapy-induced apoptosis [37]. Also, C2A-GST has been easily labelled with 18F for early imaging of apoptosis after chemotherapy [38]. In a rabbit model of lung cancer, increased 18F-C2A-GST tumour uptake was detected 72 h after paclitaxel chemotherapy with increased apoptotic index and caspase-3 activity.

Recently, the C2A domain of synaptotagmin I has been labelled with a $[^{99m}$Tc(CO)$_3^+$] core by using an efficient C-terminal site-specific radiolabelling method for the imaging of cell death [39].

PS is not exposed in normal endothelium, but increased exposure of PS is seen on the tumour endothelium vasculature [40,41]. **Bavituximab**, a chimeric monoclonal antibody (MW = 145.3 kDa) binding to the beta-2 glycoprotein I domain of PS, has been radiolabelled with the β + emitter arsenicum-74 (74As, $T_{1/2} = 17.8$ days) for tumour vasculature PET imaging, and with the β-γ emitter 77As ($T_{1/2} = 38.8$ h) for SPECT imaging and potential tumour vasculature
endothelium therapy [42-44]. Increased 74As-bavituximab uptake was seen in a rat model of prostate cancer with the highest tumour-to-background activity ratio at 72 h post-i.v injection (at 72 h p.i., tumour-to-liver ratio = 22, and tumour-to-muscle ratio = 470). Using autoradiography and immunohistochemical studies, 74As-bavituximab was found to specifically bind to the tumour endothelium vasculature. Bavituximab radiolabelled with 77As or 76As (β-, $T_{1/2} = 26.3$ h) may be used for dosimetry and immunotherapy.

Hypericin, a non-porphyrin necrosis agent (MW = 504 Da) extracted from St John’s wort, has been labelled with 64Cu (β+, $T_{1/2} = 12.7$ h) for PET imaging of necrosis. In a female mouse model of BT474 breast xenograft tumour, 64Cu-bis-DOTA-hypericin demonstrated increased uptake at 24 h post-i.v. injection in necrotic injured tissues treated with near infrared photothermal ablation therapy. PET distribution also showed higher uptake in the liver and the kidneys. Bis-DOTA-hypericin had a selective binding affinity for PS and PE phospholipids [45]. In necrosis, PS and PE are exposed to 64Cu-labelled hypericin probe in the inner leaflet of damaged cell membrane. Hypericin derivatives are efficient and yield reproducible results when radiolabelled with 123I (i.e. mono-123I-iodohypericin and mono-123I-iodohypericin monocarboxylic acid). They have been also used in preclinical models of liver necrosis and myocardial infarction as well as in clinical correlates of these pathophysiological states [46,47]. In a preclinical rat model of liver rhabdomyosarcoma, 131I-labelled hypericin was successfully used in theragnostics with a vascular disrupting agent (i.e. combretastatin A4 phosphate or CA4P); high radiolabelling efficiency was noted with minimum deiodination. 131I-hypericin uptake colocalised tumour necrosis within 24 h post-i.v. injection on co-registered planar γ scintigraphy with CT, MRI, histology and autoradiography [48]. Hypericin has also been labelled with 99mTc (i.e. 99mTc-hypericin or 99mTc-mercaptoacetyldiglycyl-1,5-diaminopentylene hypericin-carboxamide) for visualisation of necrotic tissues in rats with reperfused liver infarct [49]. 99mTc-hypericin, however, was found to be not suitable for imaging of necrosis compared to 123I-hypericin derivatives [50]. Although the mechanism of target uptake is unknown, it may be hypothesised that the PS and PE phospholipid targets are involved for 123I-, 131I- and 99mTc-labelled hypericin derivatives, but this is still to be definitely proven.

Figure 2 Asymmetry of phospholipid distribution. Phosphatidylcholine (PC) and sphingomyelin (SM) cholinophospholipids are primarily located in the external leaflet of the cell membrane (ECM). Phosphatidylserine (PS) and phosphatidylethanolamine (PE) aminophospholipids as well as phosphatidylinositol (PI) phospholipids are primarily located in the internal leaflet of the cell membrane (ICM). In mammals, the asymmetry of phospholipid distribution is maintained by the flip/flop movement of phospholipids. PS and PE are maintained to the inner leaflet of the membrane bilayer by the Mg$^{2+}$-ATPase (i.e. aminophospholipid translocase), and the ATP-dependent aminophospholipid-specific flippase and cholinophospholipid-specific fopppase (i.e. multidrug resistance proteins). In pathophysiological conditions, PS and PE are shuttled to the outer leaflet after inactivation of the aminophospholipid translocase or flippase, and activation of the Ca$^{2+}$-dependent ATP-independent scramblase.
Lactadherin, a glycoprotein secreted by mammary epithelium, epididymal epithelium, vascular cells and activated macrophages, has been shown to bind in a Ca²⁺-independent manner and specifically to the C2 domain of PS [51-53]. *In vitro*, FITC-labelled bovine lactadherin has been used for early detection of apoptosis in leukaemia cell lines treated by etoposide, and also in HeLa cervical cancer lines treated by staurosporine [54,55]. HYNIC-lactadherin has also been successfully labelled with ⁹⁹mTc (i.e. ⁹⁹mTc-HYNIC-lactadherin). *In vivo*, in a mouse model, ⁹⁹mTc-HYNIC-lactadherin had a lower uptake in the kidneys compared to ⁹⁹mTc-HYNIC annexin V. However, this new PS-targeting probe had a higher uptake in the liver, which is a disadvantage for imaging of liver and myocardial apoptosis [56].

PSBP-6 or PS-binding peptide-6, a synthetic 14 amino acid sequence (MW = 1.623 kDa; Kd = 100 nM) where Gln is replaced by Ala screened through a peptide library, showed the highest relative binding affinity and stability; a single amino acid chelator (SAAC) was introduced at the N-terminus position of PSBP-6 to form a stable complex with ⁹⁹mTc (i.e. SAAC-⁹⁹mTc-PSBP-6), and to improve the labelling efficiency. Unlike annexin V, SAAC-PSBP-6 binding to PS is Ca²⁺ independent [57]. In DLD1 human colon carcinoma cells pretreated with increased TRAIL doses and also in murine melanoma B16/F10 cells treated with poly(L-glutamic acid) paclitaxel (PG-TXL), SAAC-⁹⁹mTc-PSBP-6 showed selective binding to apoptotic cells *in vitro*; confirmation was obtained with TUNEL staining and autoradiography. In treated and untreated nude mice, biodistribution data showed increased SAAC-⁹⁹mTc-PSBP-6 uptake in the liver and the kidney *in vivo*. Preclinical studies are required to assess the sensitivity and specificity of this new PS binding molecular imaging probe. Table 1 summarises radiolabelled PS-based molecular imaging probes.

PC target

Choline is a main component of biomembranes targeted by the choline kinase enzyme, and is phosphorylated to intracellular phosphocholine and extracellular phosphatidylcholine [58]. Choline has been labelled with ¹¹C (i.e. ¹¹C-choline) and more recently with ¹⁸F (i.e. ¹⁸F-fluorocholine) for PET-CT imaging [59,60]. With a longer physical half-life, ¹⁸F-fluorocholine (¹⁸F-FCH; ¹⁸F, T₁/₂ = 109 min) is more suitable than ¹¹C-choline (¹¹C, T₁/₂ = 20 min) for PET-CT imaging. In human subjects, ¹⁸F-FCH showed a fast blood pool clearance with a peak ≤ 5 min post-i.v. injection, a fast tissue uptake and a predominantly renal excretion. Additionally, ¹⁸F-FCH biodistribution changes very slowly later than 10 min after i.v. injection [61].

Figure 3 Phospholipid targets are composed of a phosphatidyl tail including free fatty acid, glycerol, and phosphate. In the phospholipid polar head, choline, serine, ethanolamine, and inositol bind to the phosphatidyl non-polar tail. Sphingomyelin is the only cell membrane phospholipid not derived from a glycerol but from an aminoacohol sphingosine; SM is composed of a core ceramide (i.e. sphingosine and free fatty acid tail) and contains a polar head group composed of phosphocholine or phosphoethanolamine.
18F-fluorocholine (18F-FCH) and **11C-choline** are incorporated into the membrane phospholipids, and are predominantly used for prostate cancer imaging and brain tumour imaging [62,63]. In prostate cancer patients, 18F-FCH is a promising tracer for detection of primary prostate cancer, staging of lymph node and bone metastases, and detection of recurrence after definitive therapy [62-64]. In brain tumours, this agent may be useful to detect glioblastoma multiforme, to distinguish high-grade gliomas with a characteristic peri-tumoural uptake from metastases and benign lesions, to guide a stereotactic biopsy, and also to differentiate post-radiation necrosis from recurrence [65-68]. Also, 11C-choline and 18F-FCH have been used for hepatocellular carcinoma (HCC) imaging [69-71]. In a woodchuck model, 11C-choline sensitivity for detection of well-differentiated HCCs was higher than that of 18F-FDG, and in 12 patients with moderately differentiated HCCs, the 11C-choline detection rate was better than that of 18F-FDG. 18F-FCH imaging has also successfully been performed for detection of well-differentiated HCC in patients with liver nodules or cirrhosis or chronic liver disease, and for detection of recurrences from HCC [72,73].

Under normal glucose conditions, acetate free fatty acid is metabolised into acetyl-CoA by acetyl-CoA synthetase in both the cytosol and mitochondria for synthesis of cholesterol and fatty acids [74]. In tumours, acetate is metabolised into fatty acids by fatty acid synthetase, which is overexpressed in cancer cells [75]. Acetate is mainly incorporated in the PC microdomains that play a major role for growth and metastasis [76]. Acetoacetate ketone body is metabolised to acetoacetyl-CoA and to acetyl-CoA, and then incorporated into the metabolic pathway for lipid synthesis [77]. Like acetate, acetoacetate could be incorporated into the PC membrane. Acetate and acetoacetate have been labelled with...
A patient with a left para-hilar NSCLC on pre-chemotherapy CT (upper right: simple white arrow) who presented with 99mTc-HYNIC-annexin V uptake post-chemotherapy in the primary lung tumour (upper left: simple white arrow) and the right upper humerus bone metastasis (upper left: yellow arrow). After the first course of chemotherapy, diagnostic CTs showed a decrease in the primary lung tumour greatest diameter, which was consistent with an apoptotic tumour response to chemotherapy (lower left and lower right: simple white arrows). Upper left (A): post-chemotherapy 99mTc-HYNIC-annexin V scan; upper right (B) and lower left (C): pre-chemotherapy diagnostic CTs; lower right (D): post-chemotherapy diagnostic CT.

Table 1 Phosphatidylserine-based radiolabelled molecular imaging probes

Molecular target	Molecular probes	AA	MW (kDa)	Affinity (M)	Biological functions	Isotopes	Imaging techniques
PS a	annexin V	319	36	10⁻⁹	apoptosis, necrosis, thrombosis	⁹⁹mTc, ¹³¹I, ⁶⁷Ga, ¹⁸F, ⁶⁸Ga, ¹²⁴I, ⁶⁴Cu, ⁹⁹mTc	SPECT(CT), PET(CT)
PS	C2A domain of synaptotagmin I	128	12	10⁻⁹	apoptosis, necrosis	⁹⁹mTc	SPECT(CT)
PS b	bavituximab chimeric antibody	-	145.3	10⁻⁹	tumour endothelium, vasculature imaging	¹⁸F	PET(CT)
					tumour endothelium, vasculature therapy	⁷⁷As c	PET(CT)
					necrosis	⁷⁷As d	SPECT(CT)
PS	hypericin	-	0.504	-	apoptosis	⁹⁹mTc, ¹³¹I, ⁶⁴Cu, ⁹⁹mTc	SPECT(CT), PET(CT)
PS	PSBP-6	364	47 - 50	10⁻⁹	apoptosis, necrosis	⁹⁹mTc, ¹³¹I	SPECT(CT)

a Various linkers have been used for the radiolabelling of annexin V [26]. HYNIC is the most used bifunctional chelating agent in preclinical and clinical research.
b ² glycoprotein I domain of phosphatidylserine. c, d ⁷⁷As, beta-emitter (T₁/₂ = 17.8 days). e ⁷⁷As, beta-emitter (T₁/₂ = 1.6 days). f Bis-DOTA has been used as a bifunctional chelating agent for radiolabelling of hypericin. g HYNIC has been used as a bifunctional chelating agent for radiolabelling of lactadherin. h SAAC has been used as a single amino acid chelator for radiolabelling of PSBP-6. AA, amino acids; MW, molecular weight; PET(CT), positron emission tomography (computed tomography); PS, phosphatidylserine; PSBP-6, PS-binding peptide-6; SPECT(CT), single-photon emission computed tomography (computed tomography).
11C (i.e. 11C-acetate and 11C-acetoacetate) [74,77]. Acetate has also been labelled with 18F (i.e. 18F-fluoroacetate) [78]. 11C-acetate has a rapid blood clearance with a high accumulation in liver and myocardium. In normal physiology, 18F-fluoroacetate is not a functional analogue of 11C-acetate; 18F-fluoroacetate has a longer blood half-life, a rapid liver clearance and low myocardial uptake, extensive excretion into bile and urine, and suffers from skeletal defluorination resulting in skeletal uptake of the formed 18F-fluoride [79]. In preclinical and clinical research, 11C-acetate PET imaging has been successfully used for tumour imaging in cancers of the prostate, kidney, pancreas, as well as gliomas, meningiomas and HCC [80,81]. In preclinical research, 18F-fluoroacetate has been used for imaging of gliosis in glioblastoma, stroke, and ischemia-hypoxia associated with neuroinflammation [82]. In CWR22 tumour-bearing male nu/nu mice, 18F-fluoroacetate has been successfully used for prostate cancer imaging with a higher tumour-to-prostate activity ratio compared to 11C-acetate at 30 min and 2 h post-i.v. injection. In a patient with prostate cancer, 18F-fluoroacetate was also able to detect several but not all bone metastases [83,84]. In other preclinical research models of breast and prostate cancers, 11C-acetoacetate uptake tended to be higher than that of 11C-acetate [85]. Assessment of brain ketone metabolism in rats indicated a 7 to 8 fold increase in 11C-acetoacetate uptake under ketogenic dietary treatment [86,87]. Table 2 summarises the radiolabelled PC-based molecular imaging probes.

PE target

PE is primarily located in the inner leaflet of the membrane bilayer [88]. Like PS, this major aminophospholipid is externalised from the inner leaflet to the outer leaflet of the cell membrane during apoptosis and tumour vascular endothelium [89,90]. In necrosis, PE is exposed in the inner leaflet of disintegrated cell membrane.

Duramycin, a 2-kDa small protein produced by *Streptovercillium cinnamoneus*, has been designed in order to target PE for imaging of apoptosis or necrosis [91]. 99mTc-HYNIC-duramycin has been successfully used in a rat model of ischemia-reperfusion for imaging of myocardial infarction cell death [92]. 99mTc-duramycin is highly stable *in vivo*, and has favourable pharmacokinetics for early imaging of acute cardiac cell death at 10 min post-i.v. injection with a fast blood clearance, a low liver uptake and a high uptake in apoptotic and necrotic myocardium. Figure 6 illustrates the PE targeting 99mTc-duramycin molecular imaging probe in a rat model of myocardial infarction with correlation by autoradiography.

In addition to this, radiolabelled ethanolamine (i.e. ethanolamine labelled with 11C or 18F) is a potential new probe in oncology PET-CT imaging for assessment of tumour proliferation [93]. 11C-ethanolamine has been used in a variety of tumour cell types (i.e. melanoma, prostate cancer, glioblastoma multiforme, diffuse large B-cell lymphoma, colorectal adenocarcinoma). 14C-ethanolamine is incorporated into PE and has a two- to sevenfold significantly better uptake into tumour cell types than 11C-choline. In an *in vitro* model of cultured prostate cancer cells, 14C-ethanolamine and 14C-N,N'-dimethyl-ethanolamine uptake was two- to fourfold better in androgen-dependent and proliferating PC3 cells compared to androgen-independent and growth-arrested LnCap cells.

Hypericin, a PE- and PS-targeting probe, has been radiolabelled with 64Cu (i.e. 64Cu-bis-DOTA-hypericin), 125I (i.e. mono-125I-iodohypericin and mono-125I-iodohy- pericin monooxycarbonylic acid), 131I (i.e. 131I-hypericin) and 99mTc (i.e. 99mTc-hypericin) for imaging of necrosis in preclinical and clinical research as described above in the PS target section [45-50]. Table 3 summarises the PE-based radiolabelled molecular probes.

PI target

PI phospholipid is located in the inner leaflet of the membrane bilayer [94]. 1,2 Diacylglycerol (DAG) is metabolised to intermediate phosphoinositide metabolites (i.e. PA, PIP, PIP$_2$, PIP$_3$) including phosphatidylinositol (PI) [95]. DAG activates the intracellular protein kinase C (PKC) transduction signalling pathway, which is involved in higher cortical functions (e.g. memory, learning) and cardiac functions (e.g. hypertrophic growth, ventricular remodelling).

Intact 11C-inositol (i.e. non-acetylated inositol) has been suggested as a diagnostic agent in PET imaging for evaluation of PI brain metabolism and its role as second

Table 2 Phosphatidylcholine-based radiolabelled molecular imaging probes

Molecular target	Molecular probes	Biological functions	Isotopes	Imaging techniques
PC	choline	choline metabolism	11C	PET(CT)
PC	fluorocholepine	choline metabolism	18F	PET(CT)
PC	acetate	acetate metabolism	11C	PET(CT)
PC	fluoroacetate	acetate metabolism	18F	PET(CT)
PC	acetoacetate	acetoacetate metabolism	11C	PET(CT)

PC, phosphatidylcholine; PET(CT), positron emission tomography (computed tomography).
messenger [96]. In a rat and monkey model, 1-\([\text{-}^{11}C]\)-butyryl-2-palmitoyl-\(\text{rac}\)-glycerol or \(^{11}C\)-\(\text{DAG}\) has been designed as a PI-targeting probe in PET brain imaging to visualise neuronal PI turnover [97,98]. \(^{11}C\)-\(\text{DAG}\) levels are low in the brain, and thus it may be appropriately used to visualise PI metabolism in the central nervous system. Dynamic PET imaging showed increased \(^{11}C\)-\(\text{DAG}\) uptake in the first 15 min with an equilibrium at 16 min in pre-stimulation and post-stimulation conditions, which is suggestive of a membrane trapping mechanism. \(^{11}C\)-\(\text{DAG}\) uptake increased 20% to 30% after arecoline stimulation (i.e. acetylcholine muscarinic receptor stimulation), which suggests that \(^{11}C\)-\(\text{DAG}\) is a tracer of the transduction signalling PI-mediated pathway. In resting conditions, \(^{11}C\)-\(\text{DAG}\) uptake was observed in the visual association area, and increased in the whole brain and the occipital areas after arecoline stimulation. In C6 glioma cells implanted in the rat brain, \(^{11}C\)-\(\text{DAG}\) was rapidly incorporated in the PI turnover within 5 min post-i.v injection; in a patient with astrocytoma grade III, \(^{11}C\)-\(\text{DAG}\) was gradually incorporated in the leading PI turnover and the PE-PC

Table 3 Phosphatidylethanolamine-based radiolabelled molecular imaging probes

Molecular target	Molecular probes	AA	MW (kDa)	Affinity (M)	Biological functions	Isotopes	Imaging techniques
PE	duramycin	19	2	\(10^{-9}\)	apoptosis necrosis	\(^{99m}\)Tc	SPECT(CT)
PE	ethanolamine N'-dimethyl ethanolamine	-	-	-	ethanolamine metabolism (tumour proliferation)	\(^{14}C\)	PET(CT)
PE	hypericin	-	0.504	-	necrosis	\(^{125}\)I, \(^{131}\)I, \(^{99m}\)Tc	SPECT(CT)

\(^a\) HYNIC has been used as a bifunctional chelating agent for the radiolabelling of duramycin. \(^b\) ethanolamine or N,N'-dimethyl ethanolamine labelled with \(^{14}C\) in preclinical in vitro research may be labelled with \(^{11}C\) or \(^{18}F\) for PET(CT) in vivo imaging. \(^c\) \(^{64}\)Cu-bis-DOTA-hypericin has a selective binding affinity for PS and PE (ref45); it may be hypothesised that \(^{125}\)I, \(^{131}\)I- and \(^{99m}\)Tc-labelled hypericin derivatives bind to PS and PE. \(^d\) bis-DOTA has been used as a bifunctional chelating agent for the radiolabelling of hypericin. AA, amino acids; MW, molecular weight; PE, phosphatidylethanolamine; PET(CT), positron emission tomography (computed tomography); SPECT(CT), single-photon emission computed tomography (computed tomography).
secondary pool with an equilibrium period at 32-40 min post-iv. injection [99]. In patients with Alzheimer’s disease and ischemic stroke, 11C-DAG evaluated the PI cortical function and neural viability, respectively. In eight patients with Alzheimer’s disease, 18F-FDG PET imaging showed bilateral hypometabolism in the parieto-temporal association areas, while 11C-DAG imaging showed spotty uptake in the frontal lobes of the brain suggestive of compensatory plastic process in non-damaged neural circuits to degenerative cognitive impairment [100]. In five patients with cerebral infarction, dynamic PET brain imaging showed decreased 11C-DAG uptake in comparison to normal cortex [101]. 11C-DAG pharmacokinetics demonstrated rapid decrease in the plasma with a peak at 40 s post-i.v. injection, and gradual increase in the brain to reach a plateau at 15 to 20 min post-i.v. injection. Reflecting neural signal transduction activity, the incorporation constant of 11C-DAG (k^*DAG) was best correlated with the cerebral metabolic rate of O_2 (CMRO$_2$). Maintained PI metabolism suggested preservation of neural viability in the peri-infarct area of the ischemic stroke. Patients with subacute local brain injury, either ischemic stroke or brain tumour, also exhibited 11C-DAG spots located in the associative areas distant from the lesion between 2 weeks and 1 month after injury; one of the possible features of neural recovery in the intact brain related to PI metabolism in PET imaging [102].

In a rat model, 11C-DAG has also been used for assessing the myocardial PI turnover [103]. 11C-DAG incorporation into intermediate PI metabolites was seen both in the infarcted and the non-infarcted myocardium at 7 days after myocardial infarction. Furthermore, 11C-DAG has been used to evaluate the PI-mediated angiotensin II signalling pathway. In a rat model of infarcted myocardium, 11C-DAG assessed the effect of angiotensin-converting enzyme inhibitor (i.e. captopril) on activated PI metabolism in order to reduce left ventricular remodelling in the early phase of myocardial infarction [104]. After 3 weeks of treatment with captopril, a significant decrease of 11C-DAG uptake was seen in the infarcted myocardium compared to the non-infarcted myocardium, while 201TI imaging showed decreased uptake in the infarcted myocardium with and without captopril treatment. In patients with myocardial infarction, 11C-DAG has been used to evaluate the PI myocardial turnover and the left ventricular remodelling [105]. In 13 patients with myocardial infarction, 11C-DAG was significantly correlated with the myocardium-to-left atrium chamber ratio, the left ventricle ejection fraction, and the brain natriuretic peptide concentration. Significant increase of 11C-DAG uptake was seen in the remote viable region of myocardial infarction patients compared to healthy subjects. DAG has also been labelled with 18F to trace the PI metabolism into the ventricular myocardium [106]. 18F has a longer half-life, and 18F-DAG may be more useful for clinical routine than 11C-DAG. In the rat myocardium, 3, 5, 10, and 30 min after i.v. injection of 1-[4-18F]fluorobutyryl]-2-palmitoylglycerol (C4, C16), 18F-DAG reflected the myocardial PI metabolism in the early phase (3 to 5 min); in the late phase (≥30 min) after i.v. injection, 18F-DAG may also reflect the PE metabolism. Quantification of PI metabolism requires further optimization with a 18F-radiolabelled DAG compound closer to the PI metabolism than 18F-DAG (C4, C16) [106]. Table 4 summarises the PI-based radiolabelled molecular imaging probes.

Molecular target	Molecular probes	Biological functions	Isotopes	Imaging techniques
PI	inositol *	PI brain metabolism	11C	PET(CT)
PI	DAG	PI myocardial turnover	11C, 18F	PET(CT)
PI	DAG	PI neuronal turnover	11C	PET(CT)

* intact inositol: no acetylated analogues. DAG, diacylglycerol; PET(CT), positron emission tomography (computed tomography); PI, phosphatidylinositol.
Table 5 Sphingomyelin-based radiolabelled molecular imaging probes

Molecular target	Molecular probes	Biological functions	Isotopes	Imaging techniques
SM liposomes a	tumour imaging	67Ga	SPECT(CT)	

a nanocarrier SM liposomes encapsulating 67Ga in lipid phase or aqueous phase. SM, sphingomyelin; SPECT(CT), single-photon emission computed tomography (computed tomography).

or 18F-labelled C2A domain of synaptotagmin I and the 99mTc-labelled HYNIC-lactadherin; 99mTc-labelled synthetic PSBP-6-SAAC probe has been designed for molecular imaging of cell death. PStargeting probes may also imaging of tumour endothelium vasculature with 74As-bavituximab. 77/76As-bavituximab may also serve for β-radioimmunotherapy of tumours with PS exposed endothelium tumour vasculature.

2. the PE target allows imaging of apoptosis or necrosis with 99mTc-HYNIC-duramycin. It may also allow imaging with liposomes encapsulating 67Ga for imaging purposes.

3. the PS and PE targets allow imaging of necrosis with the radiolabelled 64Cu-bis-DOTA hypericin.

4. the PC target allows assessment of choline metabolism with 11C-choline or 18F-fluorocholine, and also the evaluation of the acetate and acetoacetate metabolism with 11C-acetate or 18F-fluoroacetate and 11C-acetoacetate.

5. the PI target allows evaluation of the neuronal and myocardial PI turnover with 11C or 18F-labelled DAG, and also with 11C-inositol.

6. the SM target may be used with liposomes encapsulating 67Ga for imaging purposes.

7. Translation of preclinical research to clinical research will be necessary to optimally assess the pharmacokinetics of radiolabelled probes for molecular imaging of transbilayer phospholipids.

Abbreviations
AA: amino acids; ATP: adenosine triphosphate; CT: computed tomography; C2A-GST: C2A SYNaptotagmin domain I glutathione-S-transferase; C4P: combretastatin A4 phosphate; DAG: diacylglycerol; DOTA: 1,4,7,10-tetraazacyclododecane-N,N,N,N′,N′-pentamethylene terpyridine; DOTA: 1,4,7,10-tetraazacyclododecane-N,N,N′,N′-pentamethylene terpyridine; EC: external leaflet of the cell membrane; ECN: external leaflet of the cell membrane; IEC: internal leaflet of the cell membrane; M: molar; MW: molecular weight; N: nanomolar; nM: nanomolar; N: normal cell; NCL: non-small cell lung cancer; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PET-CT: positron emission tomography–computed tomography; pM: picomolar; PET: positron emission tomography; PS: phosphatidylserine; SAAC: single amino acid chelator; SM: sphingomyelin; SPECT-CT: single-photon emission computed tomography–computed tomography; TRAIL: tumour necrosis factor-related apoptosis-inducing ligand; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling.

Acknowledgements
The authors would like to acknowledge the contribution of Dr. Kimberley J. Blackwood (PhD), post-doctoral associate at The University of Western Ontario and The Lawson Health Research Institute, for her valuable assistance in the manuscript editing.

Author details
1Department of Medical Imaging, The University of Western Ontario, London, ON, Canada 2Departments of Medical BioPhysics and Physics, Lawson Health Research Institute, The University of Western Ontario, London, ON, Canada

Authors’ contributions
TB has made substantial contribution in drafting the manuscript. FP has made substantial contribution in reviewing the manuscript. All authors read and approved the final manuscript.

Authors’ information
TB is nuclear medicine physician (MD, PhD) and Adjunct Professor at The University of Western Ontario in the department of Medical Imaging (London, ON, Canada). FP is imaging program leader (PhD), Assistant Scientific Director at The Lawson Health Research Institute (LHRI), Professor at The University of Western Ontario in the departments of Medical Imaging, Medical BioPhysics and Physics, and Chief Medical Physicist at St. Joseph’s Health Care and London Health Sciences Centre (London, ON, Canada).

Competing interests
The authors declare that they have no competing interests.

Received: 20 May 2011 Accepted: 22 August 2011
Published: 22 August 2011

References
1. Jain KK: Personalized medicine. Curr Opin Mol Ther 2002, 4:548-558, Review.
2. Basu S: Personalized versus evidence-based medicine with PET-based imaging. Nat Rev Clin Oncol 2010, 7:665-668.
3. Hoffman JM, Gambhir SS: Molecular imaging: the vision and opportunity for radiology in the future. Radiology 2007, 244:39-47, Review.
4. Anderson CJ: A new vision for the MiCoE. J Nucl Med 2010, 51, 19N, 24N.
5. Hnatowich DJ: Observations on the role of nuclear medicine in molecular imaging. J Cell Biochem Suppl 2002, 39:18-24, Review.
6. Pappas V: Renewed energy for nuclear medicine and molecular imaging. J Nucl Med 2011, 52:20N.
7. Pomper MG, Gelovani JG: Molecular Imaging in Oncology Informa Healthcare USA, Inc; 2008.
8. Mankoff ADavid: A definition of molecular imaging. J Nucl Med 2007, 48:1BN, 2BN.
9. Reubi JC, Maeteke HR: Design of targeted cardiovascular molecular imaging probes. J Nucl Med 2008, 49:1735-1738, Review.
10. Tait JF: Imaging of Apoptosis. J Nucl Med 2008, 49:1573-1576.
11. Anderson CJ, Bulke JW, Chen K, Khaw BA, Shoeken M, Wooley KL, VanBrocklin HF: Design of targeted cardiovascular molecular imaging probes. J Nucl Med 2010, 51(Suppl 1):S5-S75.
12. Eckelman WC, Reba RC, Kelloff GJ: Targeted imaging: an important biomarker for understanding disease progression in the era of personalized medicine. Drug Discov Today 2008, 13:748-759.
13. Vance JE, Steenbergen R: Metabolism and functions of phosphatidylserine. Prog Lipid Res 2005, 44:207-234, Review.
14. Ulrich AS: Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 2002, 22:129-150, Review.
15. Phillips WT, Gains BA, Bao A: Radioactive liposomes, Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009, 1:69-83, Review.
16. Singer SJ, Nicolson GL: The fluid mosaic model of the structure of cell membranes. Science 1972, 175:720-731.
17. Bagotalli LA, Ipen JS, Simonsen AC, Mortensen OG: An outlook on organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes. Prog Lipid Res 2010, 49:376-389.

18. Vereb G, Szollosi J, Matko J, Nagy P, Farkas T, Vigh L, Mátusy L, Waldmann TA, Damjanovich S: Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci USA 2003, 100:8053-8058.

19. Yamaji-Hasegawa A, Tsutsumoto M: Asymmetric distribution of phospholipids in biomembranes. Biol Pharm Bull 2006, 29:1547-1553.

Review.

20. Balasubramanian K, Scoot AJ: Aminophospholipid asymmetry: a matter of life and death. Annu Rev Physiol 2003, 65:701-734.

21. Garcia-Manyes S, Redondo-Morata L, Oncins G, Sanz F: Nanomechanics of lipid bilayers: heads or tails? J Am Chem Soc 2010, 132:12874-12886.

22. van Meer G, Voelker DR, Feigenson GW: Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 2008, 9:12-14.

23. Graves AM, Win T, Haim SB, Eil PJ: Non-[18F]FDG PET in clinical oncology. Lancet Oncol 2006, 7:822-830.

24. Belhocine TZ, Blankenberg FG: Improved detection of cell death in vivo: a new tool in translational research. Curr Clin Pharmacol 2006, 1:129-137.

25. Zwaal RF, Scoet AJ: Pathophysiological implications of membrane phospholipid asymmetry in blood cells. Blood 1997, 89:1121-1132.

26. Lahorte CM, Vanderheyden JL, Steinmetz N, Van de Wiele C, Seidel L, Rigo F, Green A: Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 2002, 8:2766-2774.

27. Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A, Hofstra L, Narula J, Slegers G, Non-[18F]FDG PET in clinical oncology. Eur J Nucl Med 2004, 31:887-919.

28. Belhocine T, Steinmetz N, Hustruv R, Bartsch P, Jerusalem G, Seidel L, Lahorte CM, Vanderheyden JL, Rigo F, Green A: Increased uptake of the apoptosis-imaging agent (99m)Tc as a predictor of tumor response and patient prognosis. Clin Cancer Res 2002, 8:2766-2774.

29. Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A, Hofstra L, Narula J, Slegers G, Non-[18F]FDG PET in clinical oncology. Eur J Nucl Med 2004, 31:887-919.

30. Kartachova MS, Valdes Olmos RA, Haas RL, Hoebers FJ, van Herk M, Belhocine and Prato SPECT imaging of myocardial infarction using 99mTc-labelled (chemotherapy)-induced tumor apoptosis with 99mTc C2A, a domain of annexin-V: a preliminary study. Nucl Med Biol 2008, 35:359-364.

31. Tavares R, Torres Martin De Rosales R, Blower PJ, Mullin GE: Efficient site-specific radiolabeling of a modified C2A domain synaptogamin i with [99mTc(CO)3]+: a new radiopharmaceutical for imaging cancer cells. Bioconjug Chem 2009, 20:2071-2081.

32. Ran S, Donwes A, Thorpe PE: Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 2002, 62:6132-6140.

33. Ran S, He J, Huang X, Soares M, Sclothor D, Thorpe PE: Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice. Clin Cancer Res 2005, 11:1551-1562.

34. Jennewein M, Lewis MA, Zhao D, Tsygankov E, Slavine N, He J, Watkins L, Kodisagaur BD, O'Kelly S, Kulkarni P, Antich PP, Hermante A, Rosch F, Mason RP, Thorpe PE: Vascular imaging of solid tumors in rats with a radioactively-labeled antibody that binds exposed phosphatidylserine. Clin Cancer Res 2008, 14:1377-1385.

35. Chapra A: [74]Tc-labelled monoclonal antibody against anionic phospholipids. Molecular Imaging and Contrast Agent Database (MICAD) [Internet Bethesda (MD): National Center for Biotechnology Information, (US), 2004-2010.

36. Song S, Xiong C, Zhou M, Lu W, Huang Q, Ku G, Zhao J, Flores LG Jr, Ni Y, Li C: Small-animal PET of tumor damage induced by photothermal ablation with 64Cu-bis-dota-hypericin. J Nucl Med 2011, 52:792-799.

37. Ni Y, Hyughe D, Verbeeke K, de Witte PA, Nuys J, Mortelmans L, Chen F, Marchal G, Verbruggen AM, Bormans GM: First preclinical evaluation of mono-[123]iodohypericin as a necrosis-avid tracer agent. Eur J Nucl Mol Imaging 2006, 33:595-601.

38. Fonge H, Runck K, Wang H, Feng Y, Mortelmans L, Niys J, Birgans G, Verbruggen A, Ni Y: Non-invasive detection and quantification of acute myocardial infarction in rabbits using mono-[123]iodohypericin microSPECT, Eur Heart J 2008, 29:260-269.

39. Li J, Sun Z, Zhang J, Shiao H, Miranda Cona M, Wang H, Marysal T, Chen F, Prinsen K, Zhou L, Huang D, Nuys J, Yu J, Meng B, Bormans G, Fang Z, de Witte P, Li Y, Verbruggen A, Wang X, Mortelmans L, Xu K, Marchal G, Ni Y: A dual-targeting anticancer approach: soil and seed principle. Radiology 2011, 260:799-807.

40. Chapra A. [99mTc]-Mercaptoacetyldiglycyl-1,5-diaminopentylene hypericincarboxamide. Molecular Imaging and Contrast Agent Database (MICAD) [Internet Bethesda (MD): National Center for Biotechnology Information, (US), 2004-2010.

41. Fonge H, Jin L, Wang H, Birgans G, Ni Y, Verbruggen A: Synthesis and preliminary biological evaluation of a 99mTc-labelled hypericin derivative as a necrosis avid imaging agent. J Label Comp Radiopharm 2008, 51:33-40.

42. Håggqvist B, Nilslund J, Sletten K, Westermark GT, Muccigiano G, Tjernberg LO, Nordstedt C, Enström U, Westermark P: Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid. Proc Natl Acad Sci USA 1999, 26:6669-6674.

43. Hou J, Fu Y, Zhou J, Li W, Xie R, Cao F, Gilbert GE, Shi J: Lactadherin functions as a probe for phosphatidylserine exposure and as an anticoagulant in the study of stored platelets. Vox Sang 2011, 100:187-195.

44. Schutters K, Reutelingsperger CP: Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 2010, 15:1072-1082.

45. Shi J, Sh Y, Waehrens LN, Rasmussen JT, Heegaard CW, Gilbert GE: Lactadherin detects early phosphatidylserine exposure on immortalized leukemia cells undergoing programmed cell death. Cytometry A 2006, 69:1193-1201.

46. Waehrens LN, Heegaard CW, Gilbert GE, Rasmussen JT: Bovine lactadherin as a calcium-independent imaging agent of phosphatidylserine expressed on the surface of apoptotic HeLa cells. J Histochem Cytochem 2009, 57:907-914.

47. Falborg L, Waehrens LN, Aldner J, Bluhme H, Frakke J, Heegaard CW, Horsman MR, Rasmussen JT, Relling H: Biodistribution of 99mTc-HYNIC-
lactadherin in mice—a potential tracer for visualizing apoptosis in vivo. Scand J Clin Lab Invest 2010, 70:209-216.

57. Xiong C, Brewer K, Song S, Zhang R, Lu W, Wen X, Li C. Peptide-based imaging agents targeting phosphatidylinerine for the detection of apoptosis. J Med Chem 2011, 54:1825-1835.

58. Price DT, Coleman RE, Liao RP, Robertson CN, Polascik TJ, DeGrado TR. Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002, 168:273-280.

59. Leung K. [11C]Choline. Molecular Imaging and Contrast Agent Database (MICAD) [Internet] Bethesda (MD): National Center for Biotechnology Information (US); 2004-2011.

60. Leung K. [18F]Fluorocholine. Molecular Imaging and Contrast Agent Database (MICAD) [Internet] Bethesda (MD): National Center for Biotechnology Information (US); 2004-2011.

61. DeGrado TR, Reiman RE, Price DT, Wang S, Coleman RE. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med 2002, 43:92-96.

62. Mertens K, Slaets D, Lambert B, Acou M, De Vos F, Goethals I. PET with (18)F-labelled choline-based tracers for tumour imaging: a review of the literature. Eur J Nucl Med Mol Imaging 2010, 37:2188-2193.

63. Chiti A, Picchio M. The rising PET: the increasing use of choline PET/CT in prostate cancer. Eur J Nucl Med Mol Imaging 2011, 38:53-54.

64. Picchio M, Fanti S, Tedeschi C, Montorsio F, Respke SN, Thalhimann GN. The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur Urol 2011, 59:1-60.

65. Kwee SA, Coel MN, Lim J, Ko JP. Combined use of F-18 fluorocholine positron emission tomography and magnetic resonance spectroscopy for brain tumor evaluation. J Neuroimaging 2004, 14:285-289.

66. Hara T, Kondo T, Hara T, Kosaka N. Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for PET imaging of prostate cancer metastases. Eur J Nucl Med Mol Imaging 2009, 36:420-428.

67. Matthes A, Ezziddin S, Ulrich EM, Biersack HJ, Bender H, Guhlke S. Imaging of prostate cancer metastases with 18F-fluorocholine for PET/CT. Eur J Nucl Med Mol Imaging 2004, 31:797.

68. Authier S, Tremblay M, Dumulon V, Dubuc C, Queralt R, Lecomte R, Cunnnane SC, Benard F. [11C] Acetate utilization by breast and prostate tumors: a PET and biodistribution study in mice. Mol Imaging Biol 2008, 10:217-223.

69. Pifferi F, Tremblay M, Plourde M, Tremblay-Mercier J, Bentourkia M, Belhocine and Prato 11C-acetate. J Nucl Med 2011, 52:81-89.

70. Lu RS. Clinical applications of C-11-acetate in oncology [abstract]. Clin Positron Imaging 2000, 3:185.

71. Mark J, Ogawa K, Martin-McNulty B, Ross J, Flores JE, Gill HS, Tinianov JN, Vanderbilt AN, Ishimura M, Peale F, Pastuskovas C, Greve JM, van Bruggen N, Williams SP. PET of glial metabolism using 2-[18F]fluoroacetate. J Nucl Med 2009, 50:982-989.

72. Ponde DE, Dence CS, Oyama N, Kim J, Tai YC, Laforet R, Siegel BA, Wele F. [18F]-fluorocholine: a potential acetate analog for prostate tumor imaging—in vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med 2007, 48:420-428.

73. Sauher T, Tremblay S, Dumulon V, Dubuc C, Queralt R, Lecomte R, Cunnnane SC, Benard F. [11C] Acetate utilization by breast and prostate tumors: a PET and biodistribution study in mice. Mol Imaging Biol 2008, 10:217-223.

74. Verhoeven G. Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 2003, 302:988-903.

75. Leung K. [11C]Acetate. Molecular Imaging and Contrast Agent Database (MICAD) [Internet] Bethesda (MD): National Center for Biotechnology Information (US); 2004-2010.

76. Leung K. 2-[18F]Fluorocholine. Molecular Imaging and Contrast Agent Database (MICAD) [Internet] Bethesda (MD): National Center for Biotechnology Information (US); 2004-2010, 2007 Mar 22 [updated 2008 Jun 24].

77. Linde O, Sun A, Uliv J, Rahman O, Ljungström B, Sörensen J. [18F] Fluorocholine is not a functional analogue of [11C]acetate in normal physiology. Eur J Nucl Med Mol Imaging 2009, 36:1453-1459.

78. Juda H. Prostate cancer: PET with 18F-FDG, 18F. or 11C-Acetate, and 18F. or 11C-choline. J Nucl Med 2011, 52:81-89.

79. Cunnane SC. Ketones and brain function: possible link to polyunsaturated fatty acids and availability of a new brain PET tracer, 11C-acetate. Epilepsia 2003, 44(Suppl 8):76-79, Review.

80. Bentourkia M, Tremblay M, Rouissant R, Lecomte R, Cunnnane SC. Peptide-based 18F-fluorocholine as a novel 18F-labeled choline analog for PET imaging of prostate cancer. J Nucl Med 2009, 50:1397-1403.

81. Haris S, Kawamata T, Tanaka G, Ohkawa M. Radiolabeled choline and radiation dosimetry of 18F-fluorocholine. J Nucl Med 2009, 50:982-989.
98. Imahori Y, Fuji R, Ueda S, Ohmori Y, Wakita K, Matsumoto K: Phosphoinositide turnover imaging linked to muscarinic cholinergic receptor in the central nervous system by positron emission tomography. J Nucl Med 1993, 34:1543-1551.

99. Imahori Y, Ohmori Y, Fuji R, Matsumoto K, Ueda S: Rapid incorporation of carbon-11-labeled diacylglycerol as a probe of signal transduction in glioma. Cancer Res 1995, 55:4225-4229.

100. Kondo M, Imahori Y, Mori S, Ueda Y, Fuji R, Nakajima K: Aberrant plasticity in Alzheimer’s disease. Neuroreport 1999, 10:1481-1484.

101. Matsumoto K, Imahori Y, Fuji R, Ohmori Y, Sekimoto T, Ueda S, Mineura K: Evaluation of phosphoinositides turnover on ischemic human brain with 1-[11C]-butyryl-2-palmitoyl-rac-glycerol using PET. J Nucl Med 1999, 40:1590-1594.

102. Imahori Y, Fuji R, Kondo M, Ohmori Y, Nakajima K: Neural features of recovery from CNS injury revealed by PET in human brain. Neuroreport 1999, 10:117-121.

103. Chida M, Kagaya Y, Imahori Y, Namuchi S, Fuji R, Fukuchi M, Takahashi C, Tezuka F, Ido T, Shirato K: Visualization of myocardial phosphoinositide turn over with 1-[1-(11)C]-butyryl-2-palmitoyl-rac-glycerol in rats with myocardial infarction. J Nucl Med 2000, 41:2063-2068.

104. Kagaya Y, Chida M, Imahori Y, Fuji R, Namuchi S, Takeda M, Yamane Y, Otani H, Watanabe J, Fukuchi M, Tezuka F, Ido T, Shirato K: Effect of angiotensin converting enzyme inhibition on myocardial phosphoinositides metabolism visualised with 1-[11C]-butyryl-2-palmitoyl-rac-glycerol in myocardial infarction in the rat. Eur J Nucl Mol Imaging 2002, 29:1516-1522.

105. Otani H, Kagaya Y, Imahori Y, Yasuda S, Fuji R, Chida M, Namuchi S, Takeda M, Sakuma M, Watanabe J, Ido T, Nonogi H, Shirato K: Myocardial 11C-diacylglycerol accumulation and left ventricular remodelling in patients after myocardial infarction. J Nucl Med 2005, 46:533-539.

106. Chida M, Kagaya Y, Nagata S, Mukoyoshi M, Namuchi S, Yamane Y, Ishide N, Watanabe J, Takahashi T, Ido T, Shirato K: [18F] labelled diacylglycerol analogue as a potential agent to trace myocardial phosphoinositide metabolism. Nucl Med Biol 2001, 28:813-819.

107. Ogihara-Umeda I, Kojima S: Increased delivery of gallium-67 to tumors using serum-stable liposomes. J Nucl Med 1988, 29:516-523.

108. Kastenkov NA, Fadeev NP, Serzhanova VA, Koreakova LN, Rozenberg OA: [An experimental study of the tumor affinity of gallium-67-labelled sphingomyelin liposomes]. Vopr Onkol 1992, 38:1080-1084, Russian.

doi:10.1186/2191-219X-1-17
Cite this article as: Belhocine and Prato: Transbilayer phospholipids molecular imaging. EJNMMI Research 2011 1:17.