A mathematical study of meteo and landslide tsunamis: The Proudman resonance
Benjamin Melinand

To cite this version:
Benjamin Melinand. A mathematical study of meteo and landslide tsunamis: The Proudman resonance. Nonlinearity, IOP Publishing, 2015, 28 (11). hal-01133467v2

HAL Id: hal-01133467
https://hal.archives-ouvertes.fr/hal-01133467v2
Submitted on 8 Sep 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A mathematical study of meteo and landslide tsunamis: The Proudman resonance

Benjamin MELINAND*

March 2015

Abstract

In this paper, we want to understand the Proudman resonance. It is a resonant respond in shallow waters of a water body on a traveling atmospheric disturbance when the speed of the disturbance is close to the typical water wave velocity. We show here that the same kind of resonance exists for landslide tsunamis and we propose a mathematical approach to investigate these phenomena based on the derivation, justification and analysis of relevant asymptotic models. This approach allows us to investigate more complex phenomena that are not dealt with in the physics literature such as the influence of a variable bottom or the generalization of the Proudman resonance in deeper waters. First, we prove a local well-posedness of the water waves equations with a moving bottom and a non constant pressure at the surface taking into account the dependence of small physical parameters and we show that these equations are a Hamiltonian system (which extend the result of Zakharov [33]). Then, we justify some linear asymptotic models in order to study the Proudman resonance and submarine landslide tsunamis; we study the linear water waves equations and dispersion estimates allow us to investigate the amplitude of the sea level. To complete these asymptotic models, we add some numerical simulations.

1 Introduction

1.1 Presentation of the problem

A tsunami is popularly an elevation of the sea level due to an earthquake. However, tsunamis induced by seismic sources represent only 80% of the tsunamis. 6% are due to landslides and 3% to meteorological effects (see the book of B. Levin and M. Nosov [20]). Big traveling storms for instance can give energy to the sea and lead to an elevation of the surface. In some cases, this amplification is important and this phenomenon is called the Proudman resonance in the physics literature. Similarly, submarine landslides can significantly increase the level of the sea and we talk about landslide tsunamis. In this paper, we study mathematically these two phenomena. We model the sea by an irrotational and incompressible ideal fluid bounded from below by the seabed and from above by a free surface. We suppose that the seabed and the surface are graphs above the still water level. We model an underwater landslide by a moving seabed (moving

*benjamin.melinand@math.u-bordeaux.fr
bottom) and the meteorological effects by a non constant pressure at the surface (air-pressure disturbance). Therefore, we suppose that $b(t, X) = b_0(X) + b_m(t, X)$, where $b_0$ represents a fixed bottom and $b_m$ the variation of the bottom because of the landslide. Similarly, the pressure at the surface is of the form $P + P_{\text{ref}}$, where $P_{\text{ref}}$ is a constant which represents the pressure far from the meteorological disturbance, and $P(t, X)$ models the meteorological disturbance (we assume that the pressure at the surface is known). We denote by $d$ the horizontal dimension, which is equal to 1 or 2. $X \in \mathbb{R}^d$ stands for the horizontal variable and $z \in \mathbb{R}$ is the vertical variable. $H$ is the typical water depth. The water occupies a moving domain $\Omega_t := \{(X, z) \in \mathbb{R}^{d+1}, \ -H + b(t, X) < z < \zeta(t, X)\}$. The water is homogeneous (constant density $\rho$), inviscid, irrotational with no surface tension. We denote by $U$ the velocity and $\Phi$ the velocity potential. We have $U = \nabla_X \Phi$. The law governing the irrotational fluids is the Bernoulli law

$$\frac{\partial_t \Phi}{2} + \frac{1}{2} |\nabla_{X,z} \Phi|^2 + gz = \frac{1}{\rho} (P_{\text{ref}} - P) \quad \text{in } \Omega_t,$$

where $P$ is the pressure in the fluid domain. Changing $\Phi$ if necessary, it is possible to assume that $P_{\text{ref}} = 0$. Furthermore, the incompressibility of the fluid implies that

$$\Delta_{X,z} \Phi = 0 \quad \text{in } \Omega_t. \quad (2)$$

We suppose also that the fluid particles do not cross the bottom or the surface. We denote by $n$ the unit normal vector, pointing upward and $\partial_n$ the upward normal derivative. Then, the boundary conditions are

$$\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2} \partial_n \Phi = 0 \quad \text{on } \{z = \zeta(t, X)\}, \quad (3)$$

and

$$\partial_t b - \sqrt{1 + |\nabla b|^2} \partial_n \Phi = 0 \quad \text{on } \{z = -H + b(t, X)\}. \quad (4)$$

In 1968, V. E. Zakharov (see [33]) showed that the water waves problem is a Hamiltonian system and that $\psi$, the trace of the velocity potential at the surface ($\psi = \Phi|_{z=\zeta}$), and the surface $\zeta$ are canonical variables. Then, W. Craig, C. Sulem and P.L. Sulem (see [11] and [12]) formulate this remark into a system of two non local equations. We follow their construction to formulate our problem. Using the fact that $\Phi$ satisfies (2) and (4), we can characterize $\Phi$ thanks to $\zeta$ and $\psi = \Phi|_{z=\zeta}$

$$\begin{cases} \Delta_{X,z} \Phi = 0 \quad \text{in } \Omega_t, \\
\Phi|_{z=\zeta} = \psi, \sqrt{1 + |\nabla b|^2} \partial_n \Phi|_{z=-H+b} = \partial_t b. \end{cases} \quad (5)$$

We decompose this equation in two parts, the surface contribution and the bottom contribution

$$\Phi = \Phi^S + \Phi^B,$$

such that
\[
\begin{align*}
\begin{cases}
\Delta_{X,z} \Phi^S = 0 \text{ in } \Omega_t,
\Phi^S|_{z=\zeta} = \psi, \sqrt{1 + |\nabla b|^2} \partial_n \Phi^S|_{z=-H+b} = 0,
\end{cases}
\end{align*}
\]
and
\[
\begin{align*}
\begin{cases}
\Delta_{X,z} \Phi^B = 0 \text{ in } \Omega_t,
\Phi^B|_{z=\zeta} = 0, \sqrt{1 + |\nabla b|^2} \partial_n \Phi^B|_{z=-H+b} = \partial_t b.
\end{cases}
\end{align*}
\]
In the purpose of expressing (3) with \(\zeta\) and \(\psi\), we introduce two operators. The first one is the Dirichlet-Neumann operator
\[
G[\zeta,b]: \psi \mapsto \sqrt{1 + |\nabla \zeta|^2} \partial_n \Phi^S|_{z=\zeta},
\]
where \(\Phi^S\) satisfies (6). The second one is the Neumann-Neumann operator
\[
G^{NN}[\zeta,b]: \partial_t b \mapsto \sqrt{1 + |\nabla \zeta|^2} \partial_n \Phi^B|_{z=\zeta},
\]
where \(\Phi^B\) satisfies (7). Then, we can reformulate (3) as
\[
\partial_t \zeta - G[\zeta,b](\psi) = G^{NN}[\zeta,b](\partial_t b).
\]
Furthermore thanks to the chain rule, we can express \((\partial_t \Phi)|_{z=\zeta}, (\nabla_{X,z} \Phi)|_{z=\zeta}\) and \((\partial \Phi)|_{z=\zeta}\) in terms of \(\psi, \zeta, G[\zeta,b](\psi)\) and \(G^{NN}[\zeta,b](\partial_t b)\). Then, we take the trace at the surface of (1) (since there is no surface tension we have \(P|_{z=\zeta} = P\)) and we obtain a system of two scalar equations that reduces to the standard Zakharov/Craig-Sulem formulation when \(\partial_t b = 0\) and \(P = 0\),
\[
\begin{align*}
\begin{cases}
\partial_t \zeta - G[\zeta,b](\psi) = G^{NN}[\zeta,b](\partial_t b),
\partial_t \psi + g \zeta + \frac{1}{2} |\nabla \psi|^2 - \frac{1}{2} \left( \frac{G[\zeta,b](\psi) + G^{NN}[\zeta,b](\partial_t b) + \nabla \zeta \cdot \nabla \psi}{1 + |\nabla \zeta|^2} \right)^2 &= -\frac{P}{\rho}.
\end{cases}
\end{align*}
\]
In the following, we work with a nondimensionalized version of the water waves equations with small parameters \(\varepsilon, \beta\) and \(\mu\) (see section 2.1). The wellposedness of the water waves problem with a constant pressure and a fixed bottom was studied by many people. S. Wu proved it in the case of an infinite depth without nondimensionalization ([31] and [32]). Then, D. Lannes treated the case of a finite bottom without nondimensionalization ([17]), T. Iguchi proved a local wellposedness result for \(\mu\) small enough in order to justify shallow water approximations for water waves ([15]), and D. Lannes and B. Alvarez-Samaniego showed, in the case of the nondimensionalized equations, that we can find an existence time \(T = \frac{T_0}{\max(\varepsilon,\beta)}\) where \(T_0\) does not depend on \(\varepsilon, \beta\) and \(\mu\) ([6]). More recently, B. Mésognon-Gireau improved the result of D. Lannes and B. Alvarez-Samaniego and proved that if we add enough surface tension we can find an existence time \(T = \frac{T_0}{2}\) where \(T_0\) does not depend on \(\varepsilon\) and \(\mu\) ([23]). T. Iguchi studied the case of a moving
bottom in order to justify asymptotic models for tsunamis ([16]). Finally, T. Alazard, N. Burq and C. Zuily study the optimal regularity for the initial data ([2]) and more recently, T. Alazard, P. Baldi and D. Han-Kwan show that a well-chosen non constant external pressure can create any small amplitude two-dimensional gravity-capillary water waves ([1]). We organize this paper in two part. Firstly in Section 2, we prove two local existence theorems for the water waves problem with a moving bottom and a non constant pressure at the surface by differentiating and ”quasilinearizing” the water waves equations and we pay attention to the dependence of the time of existence and the size of the solution with respect to the parameters $\varepsilon$, $\beta$, $\lambda$ and $\mu$. This theorem extends the result of T. Iguchi ([16]) and D. Lannes (Chapter 4 in [19]). We also prove that the water waves problem can be viewed as a Hamiltonian system. Secondly in Section 3, we justify some linear asymptotic models and study the Proudman resonance. First, in Section 3.1 we study the case of small topography variations in shallow waters, approximation used in the Physics literature to investigate the Proudman resonance; then in Section 3.2 we derive a model when the topography is not small in the shallow water approximation; and in Section 3.3 we study the linear water waves equations in order to extend the Proudman resonance in deep water with a small fixed topography. Finally, Appendix A contains results about the elliptic problem (17) and Appendix B contains results about the Dirichlet-Neumann and the Neumann-Neumann operators. Appendix C comprises standard estimates that we use in this paper.

1.2 Notations

A good framework for the velocity in the Euler equations is the Sobolev spaces $H^s$. But we do not work with $U$ but with $\psi$ the trace of $\Phi$, and $U = \nabla_{X,z}\Phi$. It will be too restrictive to take $\psi$ in a Sobolev space. A good idea is to work with the Beppo Levi spaces (see [13]). For $s \geq 0$, the Beppo Levi spaces are

$$\dot{H}^s(\mathbb{R}^d) := \left\{ \psi \in L^2_{\text{loc}}(\mathbb{R}^d), \nabla\psi \in H^{s-1}(\mathbb{R}^d) \right\}.$$ 

In this paper, $C$ is a constant and for a function $f$ in a normed space $(X,|\cdot|)$ or a parameter $\gamma$, $C(|\cdot|,\gamma)$ is a constant depending on $|\cdot|$ and $\gamma$ whose exact value has non importance. The norm $|\cdot|_{L^2}$ is the $L^2$-norm and $|\cdot|_{L^\infty}$ is the $L^\infty$-norm in $\mathbb{R}^d$. Let $f \in C^0(\mathbb{R}^d)$ and $m \in \mathbb{N}$ such that $\frac{f}{1+|\xi|^m} \in L^\infty(\mathbb{R}^d)$. We define the Fourier multiplier $f(D) : H^m(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ as

$$\forall u \in H^m(\mathbb{R}^d), \hat{f(D)}u(\xi) = f(\xi)\hat{u}(\xi).$$

In $\mathbb{R}^d$ we denote the gradient operator by $\nabla$ and in $\Omega$ or $S = \mathbb{R}^d \times (-1,0)$ the gradient operator is denoted $\nabla_{X,z}$. Finally, we denote by $\Lambda := \sqrt{1+|D|^2}$ with $D = -i\nabla$. 
2 Local existence of the water waves equations

This part is devoted to the wellposedness of the water waves equations (Theorems 2.3 and 2.4). We carefully study the dependence on the parameters $\varepsilon$, $\beta$, $\lambda$ and $\mu$ of the existence time and of the size of the solution. Contrary to [19] and [16], we exhibit the nonlinearities of the water waves equations in order to obtain a better existence time.

2.1 The model

In this part, we present a nondimensionalized version of the water waves equations. In order to derive some asymptotic models to the water waves equations we introduce some dimensionless parameters linked to the physical scales of the system. The first one is the ratio between the typical free surface amplitude $a$ and the water depth $H$. We define $\varepsilon := \frac{a}{H}$, called the nonlinearity parameter. The second one is the ratio between $H$ and the characteristic horizontal scale $L$. We define $\mu := \frac{H^2}{L^2}$, called the shallowness parameter. The third one is the ratio between the order of bottom bathymetry amplitude $a_{bott}$ and $H$. We define $\beta := \frac{a_{bott}}{H}$, called the bathymetric parameter. Finally, we denote by $\lambda$ the ratio of the typical landslide amplitude $a_{bott,m}$ and $a_{bott}$. We also nondimensionalize the variables and the unknowns. We introduce

\[
\begin{align*}
X' &= \frac{X}{L}, \quad z' = \frac{z}{H}, \quad \zeta' = \frac{\zeta}{a}, \quad b' = \frac{b}{a_{bott}}, b'_0 = \frac{b_0}{a_{bott}}, b'_m = \frac{b_m}{a_{bott,m}}, t' = \sqrt{\frac{gH}{L}} t, \\
(\Phi^S)' &= \frac{H}{aL\sqrt{gH}} \Phi^S, \quad (\Phi^B)' = \frac{L}{Ha_{bott,m}\sqrt{gH}} \Phi^B, \quad \psi' = \frac{H}{aL\sqrt{gH}} \psi, \quad P' = \frac{P}{a \rho g},
\end{align*}
\]

where

\[
\Omega'_t = \{(X', z') \in \mathbb{R}^{d+1}, \quad -1 + \beta b'(t', X') < z' < \varepsilon \zeta'(t', X')\}.
\]

Remark 2.1. It is worth noting that the nondimensionalization of $\Phi^S$, $\psi$ and $t$ comes from the linear wave theory (in shallow water regime, the characteristic speed is $\sqrt{gH}$). See paragraph 1.3.2 in [19]. Let us explain the nondimensionalization of $\Phi^B$. Consider the linear case

\[
\begin{align*}
\Delta_{X,z} \Phi^B &= 0, \quad -H < z < 0, \\
\Phi^B|_{z=0} &= 0, \quad \partial_z \Phi^B|_{z=-H} = \partial_t b.
\end{align*}
\]

A straightforward computation gives $\Phi^B = \frac{\sinh(z|D|)}{|D| \cosh(H|D|)} \partial_t b$. If the typical wavelength is $L$, the typical wave number is $\frac{2\pi}{L}$. Furthermore, the typical order of magnitude of $\partial_t b$ is $\frac{a_{bott,m} \sqrt{gH}}{L}$. Then, the order of magnitude of $\Phi^B$ in the shallow water case is

\[
\frac{L \sqrt{gH} a_{bott,m} \sinh(2\pi \frac{H}{L})}{2\pi \frac{L}{\cosh(2\pi \frac{H}{L})}} \sim \frac{\sqrt{gH} a_{bott,m} H}{L}.
\]
For the sake of clarity, we omit the primes. We can now nondimensionalize the water waves problem. Using the notation
\[ \nabla^\mu_{X,z} := (\sqrt{\mu} \nabla_X, \partial_z)^t \] and \[ \Delta^\mu_{X,z} := \mu \Delta_X + \partial_z^2, \]
the water waves equations (11) become in dimensionless form
\[
\begin{cases}
\partial_t \zeta - \frac{1}{\mu} G_\mu[\varepsilon \zeta, \beta b](\psi) = \frac{\beta \lambda}{\varepsilon} G_\mu^{\text{NN}}[\varepsilon \zeta, \beta b](\partial_t b), \\
\partial_t \psi + \zeta + \frac{\varepsilon}{2} |\nabla \psi|^2 - \frac{\varepsilon}{2\mu} \left( G_\mu[\varepsilon \zeta, \beta b](\psi) + \frac{\lambda \mu}{\varepsilon} G_\mu^{\text{NN}}[\varepsilon \zeta, \beta b](\partial_t b) + \mu \nabla (\varepsilon \zeta) \cdot \nabla \psi \right)^2 = -P.
\end{cases}
\]
In the following \( \partial_n \) is the upward conormal derivative
\[ \partial_n \Phi^S = n \cdot \left( \sqrt{\mu I_d} 0 \atop 0 1 \right) \nabla^\mu_{X,z} \Phi^S |_{\partial \Omega}. \]
Then, The Dirichlet-Neumann operator \( G_\mu[\varepsilon \zeta, \beta b] \) is
\[
G_\mu[\varepsilon \zeta, \beta b](\psi) := \sqrt{1 + \varepsilon^2 |\nabla \zeta|^2} \partial_n \Phi^S |_{z=\varepsilon \zeta} = -\mu \varepsilon \nabla \zeta \cdot \nabla_X \Phi^S |_{z=\varepsilon \zeta} + \partial_z \Phi^S |_{z=\varepsilon \zeta},
\]
where \( \Phi^S \) satisfies
\[
\begin{cases}
\Delta^\mu_{X,z} \Phi^S = 0 \text{ in } \Omega_t , \\
\Phi^S |_{z=\varepsilon \zeta} = \psi , \partial_n \Phi^S |_{z=-1+\beta b} = 0,
\end{cases}
\]
while the Neumann-Neumann operator \( G_\mu^{\text{NN}}[\varepsilon \zeta, \beta b] \) is
\[
G_\mu^{\text{NN}}[\varepsilon \zeta, \beta b](\partial_t b) := \sqrt{1 + \varepsilon^2 |\nabla b|^2} \partial_n \Phi^B |_{z=\varepsilon \zeta} = -\mu \nabla (\varepsilon \zeta) \cdot \nabla_X \Phi^B |_{z=\varepsilon \zeta} + \partial_z \Phi^B |_{z=\varepsilon \zeta},
\]
where \( \Phi^B \) satisfies
\[
\begin{cases}
\Delta^\mu_{X,z} \Phi^B = 0 \text{ in } \Omega_t , \\
\Phi^B |_{z=\varepsilon \zeta} = 0 , \sqrt{1 + \beta^2 |\nabla b|^2} \partial_n \Phi^B |_{z=-1+\beta b} = \partial_t b.
\end{cases}
\]
Remark 2.2. We have nondimensionalized the Dirichlet-Neumann and the Neumann-Neumann operators as follows
\[
G[\zeta, b](\psi) = \frac{a L \sqrt{gH}}{H^2} G_\mu[\varepsilon \zeta', \beta b'](\psi') , \quad G^{\text{NN}}[\zeta, b](\partial_t b) = \frac{a_{\text{bott,m}} \sqrt{gH}}{L} G_\mu^{\text{NN}}[\varepsilon \zeta', \beta b'](\partial_t b').
\]
We add two classical assumptions. First, we assume some constraints on the nondimensionalized parameters and we suppose there exist $\rho_{\max} > 0$ and $\mu_{\max} > 0$, such that

$$0 < \varepsilon, \beta, \beta \lambda \leq 1, \frac{\beta \lambda}{\varepsilon} \leq \rho_{\max} \text{ and } \mu \leq \mu_{\max}.$$  \hfill (18)

Furthermore, we assume that the water depth is bounded from below by a positive constant

$$\exists h_{\min} > 0, \varepsilon \zeta + 1 - \beta b \geq h_{\min}. \hfill (19)$$

In order to quasilinearize the water waves equations, we have to introduce the vertical speed at the surface $w$ and horizontal speed at the surface $V$. We define

$$w := w[\varepsilon \zeta, \beta b] \left( \psi, \frac{\beta \lambda}{\varepsilon} \partial_t b \right) = G_\mu [\varepsilon \zeta, \beta b] (\psi) + \frac{\beta \lambda}{\varepsilon} G_\mu^{NN} [\varepsilon \zeta, \beta b] (\partial_t b) + \varepsilon \mu \nabla \zeta \cdot \nabla \psi + \varepsilon^2 \mu |\nabla \zeta|^2, \hfill (20)$$

and

$$V := V[\varepsilon \zeta, \beta b] \left( \psi, \frac{\beta \lambda}{\varepsilon} \partial_t b \right) = \nabla \psi - \varepsilon w[\varepsilon \zeta, \beta b] \left( \psi, \frac{\beta \lambda}{\varepsilon} \partial_t b \right) \nabla \zeta. \hfill (21)$$

2.2 Notations and statement of the main results

In this paper, $d = 1$ or $2$, $t_0 > d^2$, $N \in \mathbb{N}$ and $s \geq 0$. The constant $T \geq 0$ represents a final time. The pressure $P$ and the bottom $b$ are given functions. We suppose that $b \in W^{3,\infty}(\mathbb{R}^+; H^N(\mathbb{R}^d))$ and $P \in W^{1,\infty}(\mathbb{R}^+; H^{N+1}(\mathbb{R}^d))$. We denote by $M_N$ a constant of the form

$$M_N = C \left( \frac{1}{h_{\min}}, \mu_{\max}, \varepsilon |\zeta|_{H^\max(t_0+2,N)}, \beta |b|_{L^\infty{H^\max(t_0+2,N)}} \right). \hfill (22)$$

We denote by $U := (\zeta, \psi)^t$ the unknowns of our problem. We want to express (11) as a quasilinear system. It is well-known that the good energy for the water waves problem is

$$E^N(U) = |\mathfrak{F} \psi|_{H^\frac{3}{2}}^2 + \sum_{\alpha \in \mathbb{N}^d, |\alpha| \leq N} \left( |\zeta_{(\alpha)}|^2_{L^2} + |\mathfrak{F} \psi_{(\alpha)}|^2_{L^2} \right), \hfill (23)$$

where $\zeta_{(\alpha)} := \partial^\alpha \zeta$, $\psi_{(\alpha)} := \partial^\alpha \psi - \varepsilon w \partial^\alpha \zeta$ and $\mathfrak{F} := \frac{|D|}{\sqrt{1 + |D|^2}}$. This energy is motivated by the linearization of the system around the rest state (see 4.1 in [19]). $\mathfrak{F}$ acts as the square root of the Dirichlet-Neumann operator (see [19]). Here, $\zeta_{(\alpha)}$ and $\psi_{(\alpha)}$ are the Alinhac’s good unknowns of the system (see [4] and [3] in the case of the standard water waves problem). We define $U_{(\alpha)} := (\zeta_{(\alpha)}, \psi_{(\alpha)})^t$. We can introduce an associated energy space. Considering a $T \geq 0$,
Our main results are the following theorems. We give two existence results. The first theorem extends the result of T. Iguchi (Theorem 2.4 in [16]) since we give a control of the dependence of the solution with respect to the parameters $\varepsilon, \beta, \mu, \lambda$ and we add a non constant pressure at the surface and a moving bottom. Notice that we explain later what is Condition (29) (it corresponds to the positivity of the so called Rayleigh-Taylor coefficient).

**Theorem 2.3.** Let $A > 0$, $t_0 > \frac{d}{2}$, $N \geq \max(1, t_0) + 3$, $U^0 \in E^N_0$, $b \in W^{3, \infty}(\mathbb{R}^+; H^N(\mathbb{R}^d))$ and $P \in W^{1, \infty}(\mathbb{R}^+; \dot{H}^{N+1}(\mathbb{R}^d))$ such that

$$
E^N(U^0) + \frac{\beta L}{\varepsilon} |\partial_t b|_{L^\infty_t H^N_X} + |\nabla P|_{L^\infty_t H^N_X} \leq A.
$$

We suppose that the parameters $\varepsilon, \beta, \mu, \lambda$ satisfy (18) and that (19) and (29) are satisfied initially. Then, there exists $T > 0$ and a unique solution $U \in E^N_T$ to (13) with initial data $U^0$. Moreover, we have

$$
T = \min \left( \frac{T_0}{\max(\varepsilon, \beta)}, \frac{T_0}{\frac{\beta L}{\varepsilon} |\partial_t b|_{L^\infty_t H^N_X} + |\nabla P|_{L^\infty_t H^N_X}} \right), \frac{1}{T_0} = c^1 \text{ and } \sup_{t \in [0, T]} E^N(U) = c^2,
$$

with $c^3 = C \left( A, \frac{1}{\eta_{\min}}, \frac{1}{\delta_{\min}}, \mu_{\max}, \rho_{\max}, |b|_{W^{3, \infty}_t H^N_X}, |\nabla P|_{W^{1, \infty}_t H^N_X} \right)$.

Notice that if $\partial_t b$ and $P$ are of size $\max(\varepsilon, \beta)$, we find the same existence time that in Theorem 4.16 in [19]. The second result shows that it is possible to go beyond the scale of the previous theorem; although the norm of the solution is not uniformly bounded in terms of $\varepsilon$ and $\beta$, we are able to make this dependence precise. This theorem will be used to justify some of the asymptotic models derived in Section 3 over large time scales when the pressure at the surface and the moving bottom are not supposed small. We introduce $\delta := \max(\varepsilon, \beta^2)$.

**Theorem 2.4.** Under the assumptions of the previous theorem, there exists $T_0 > 0$ such that $U \in E^N_{\frac{T_0}{\sqrt{\delta}}}$, Moreover, for all $\alpha \in \left[ 0, \frac{1}{2} \right]$, we have

$$
\frac{1}{T_0} = c^1, \sup_{t \in [0, \frac{T_0}{\sqrt{\delta}}]} E^N(U) \leq C \left( A, \frac{1}{\eta_{\min}}, \frac{1}{\delta_{\min}}, \mu_{\max}, \rho_{\max}, |b|_{W^{3, \infty}_t H^N_X}, |\nabla P|_{W^{1, \infty}_t H^N_X} \right).
$$

Notice that when $\partial_t b$ and $P$ are of size $\max(\varepsilon, \beta)$, the existence time of Theorem 2.3 is better than the one of Theorem 2.4. Theorem 2.4 is only useful when $\partial_t b$ and $P$ are not small. Notice finally, that Condition (29) is satisfied if $\varepsilon$ is small enough. Hence, since in the following, $\varepsilon$ is small, it is reasonable to assume it.
2.3 Quasilinearization

Firstly, we give some controls of $|\mathcal{P}\psi|_{H^s}$ and $|\mathcal{P}\psi(\alpha)|_{H^s}$ with respect to the energy $\mathcal{E}^N(U)$.

**Proposition 2.5.** Let $T > 0$, $t_0 > \frac{d}{2}$ and $N \geq 2 + \max(1, t_0)$. Consider $U \in E^N_T$, $b \in W^{1,\infty}(\mathbb{R}^+; H^N(\mathbb{R}^d))$, such that $\zeta$ and $b$ satisfy Condition (19) for all $0 \leq t \leq T$. We assume also that $\mu$ satisfies (18). Then, for $0 \leq t \leq T$, for $\alpha \in \mathbb{N}^d$ with $|\alpha| \leq N - 1$ and for $0 \leq s \leq N - \frac{1}{2}$,

$$|\partial^s \mathcal{P}\psi|_{L^2} + |\mathcal{P}\psi(\alpha)|_{H^1} + |\mathcal{P}\psi|_{H^s} \leq M_N \mathcal{E}^N(U)^{\frac{1}{2}} + \frac{\beta\lambda}{\varepsilon} M_N |\partial b|_{L^\infty H^N_X}.$$  

**Proof.** For the first inequality, we have thanks to Proposition C.1,

$$|\partial^s \mathcal{P}\psi|_{L^2} \leq |\mathcal{P}\psi(\alpha)|_{L^2} + \varepsilon |\mathcal{P}(w\partial^s \zeta)|_{L^2},$$

$$\leq |\mathcal{P}\psi(\alpha)|_{L^2} + \frac{\varepsilon}{\mu^2} |\partial^s \zeta|_{H^\frac{1}{2}}.$$ 

But $\psi \in \dot{H}^2(\mathbb{R}^d)$. Then by Proposition B.8, $w \in H^1(\mathbb{R}^d)$ and $\partial^s \zeta \in H^1(\mathbb{R}^d)$. Using Proposition C.2, we obtain

$$|\partial^s \mathcal{P}\psi|_{L^2} \leq |\mathcal{P}\psi(\alpha)|_{L^2} + C \varepsilon \left|\frac{w}{\mu^2}\right|_{H^1} |\zeta|_{H^N} \leq |\mathcal{P}\psi(\alpha)|_{L^2} + M_N \varepsilon |\zeta|_{H^N} \left( |\mathcal{P}\psi|_{H^\frac{1}{2}} + \frac{\beta\lambda}{\varepsilon} |\partial b|_{H^1} \right).$$

The other inequalities follow with the same arguments, see for instance Lemma 4.6 in [19].

The following statement is a first step to the quasilinearization of the water waves equations. It is essentially Proposition 4.5 in [19] and Lemma 6.2 in [16]. However, we improve the minimal regularity of $U$ (we decrease the minimal value of $N$ to 4 in dimension 1) and we provide the dependence in $\partial b$ which does not given in [16]. For those reasons, we give a proof of this Proposition.

**Proposition 2.6.** Let $t_0 > \frac{d}{2}$, $T > 0$, $N \geq \max(t_0, 1) + 3$, $b \in W^{1,\infty}(\mathbb{R}^+; H^N(\mathbb{R}^d))$ and $U \in E^N_T$, such that $\zeta$ and $b$ satisfy Condition (19) for all $0 \leq t \leq T$. We assume also that $\mu$ satisfies (18). Then, for all $\alpha \in \mathbb{N}^d$, $1 \leq |\alpha| \leq N$, we have,

$$\partial^\alpha \left( \frac{1}{\mu} G_\mu[\varepsilon \zeta, \beta b](\psi) + \frac{\lambda\beta}{\varepsilon} G^\mu_{NN}[\varepsilon \zeta, \beta b](\partial b) \right) = \frac{1}{\mu} G_\mu[\varepsilon \zeta, \beta b](\psi(\alpha)) + \frac{\beta\lambda}{\varepsilon} G^\mu_{NN}[\varepsilon \zeta, \beta b](\partial^\alpha \partial b)$$

$$- \varepsilon 1_{\{|\alpha| = N\}} \nabla \cdot (\zeta(\alpha) \nabla) + R_\alpha.$$  

Furthermore $R_\alpha$ is controlled

$$|R_\alpha|_{L^2} \leq M_N |(\varepsilon \zeta, \beta b)|_{H^N \mathcal{E}^N(U)^{\frac{1}{2}}} + \frac{\beta\lambda}{\varepsilon} M_N |\partial b|_{L^\infty H^N_X}.$$  

9
Proof. We adapt and follow the proof of Proposition 4.5 in [19]. See also Proposition 6.4 in [16]. Using Proposition B.13, we obtain

\[ \partial^\alpha \left( \frac{1}{\mu} G_\mu [\varepsilon \zeta, \beta b](\psi) + \frac{\lambda \beta}{\varepsilon} G_\mu^{NN}[\varepsilon \zeta, \beta b](\partial b) \right) = \frac{1}{\mu} G_\mu [\varepsilon \zeta, \beta b](\psi(\alpha)) + \frac{\beta \lambda}{\varepsilon} G_\mu^{NN}[\varepsilon \zeta, \beta b](\partial^\alpha \partial b) \]

\[ - \varepsilon \{ |\alpha| = N \} \nabla \cdot (\zeta(\alpha) \tilde{V}) + \beta G_\mu^{NN}[\varepsilon \zeta, \beta b] \left( \nabla \cdot (\partial^\alpha \partial b \tilde{V}) \right) \]

\[ = R_\alpha, \]

where \( \tilde{V} = \tilde{V}[\varepsilon \zeta, \beta b](\psi, B) \) is defined in Equation (72) and \( R_\alpha \) is a sum of terms of the form (we adopt the notation of Remark B.12 in Appendix B.3)

\[ A_{j,\iota,\nu} := d^j \left( \frac{1}{\mu} G_\mu(\partial^\nu \psi) + \frac{\beta \lambda}{\varepsilon} G_\mu^{NN}(\partial^\nu \partial b) \right) \left( \partial^{\iota_1} \zeta, ... , \partial^{\iota_l} \zeta ; \partial^{\nu_1} b, ... , \partial^{\nu_l} b \right), \]

where \( j \) is an integer and \( \iota_1, ... , \iota_l \) and \( \nu \) are multi-index, and

\[ \sum_{1 \leq l \leq j} |\iota_l| + |\nu| = N, \]

with \((j, |\iota^0|, |\nu|) \neq (1, N, 0) \) and \((0, 0, N) \). Here \( \iota^0 \) is such that \( \max_{1 \leq l \leq j} |\iota_l| = |\iota^0| \). In particular, \( 1 \leq |\iota^0| \leq N \). We distinguish several cases.

**a)** \(|\iota^0| + |\nu| \leq N - 2 \) and \(|\iota^0| \leq N - 3 \) or \(|\iota^0| + |\nu| \leq N, |\iota^0| \leq N - 3 \) and \(|\nu| \leq N - 2 \):

Applying the second point of Theorem 3.28 in [19] and the first point of Proposition B.15 with \( s = \frac{1}{2} \) and \( t_0 = \min(t_0, \frac{3}{2}) \), we get that

\[ |A_{j,\iota,\nu}|_{L^2} \leq M_N \prod_i |(\varepsilon \partial^{\iota_1} \zeta, \beta \partial^{\nu_1} b)|_{H^1} \left[ \frac{\beta \lambda}{\varepsilon} |\partial^\nu \partial b|_{L^2} \right], \]

and the result follows by Proposition 2.5.

**b)** \(|\iota^0| = N - 2 \) and \(|\nu| = 0, 1 \) or \(2\):

We apply the fourth point of Theorem 3.28 in [19] and the second point of Proposition B.15 with \( s = \frac{1}{2} \) and \( t_0 = \max(t_0, 1) \),

\[ |A_{j,\iota,\nu}|_{L^2} \leq M_N \prod_{l \neq 0} |(\varepsilon \partial^{\iota_1} \zeta, \beta \partial^{\nu_1} b)|_{H^{N-2}} \left[ \frac{\beta \lambda}{\varepsilon} |\partial^\nu \partial b|_{H^{N-2}} \right]. \]

Then, we get the result thanks to Proposition 2.5.
We proceed as in Proposition 4.5 in [19], using Theorem 3.15 in [19] and Propositions B.13, B.7, B.8.

d) $|l_0| = N - 1$ and $|\nu| = 0$:

Here $j = 2$ and $|\nu| = 1$. For instance we consider that $l_0 = 1$ and $|\nu| = 1$. Using the second inequality of Proposition B.15 we have

$$\left| d^2 G^N_{\mu} (\partial b, [\partial^1 \zeta, \partial^2 \zeta; \partial^1 b, \partial^2 b]) \right|_{L^2} \leq M_N \left| \left( \varepsilon \partial^1 \zeta, \beta \partial^1 b \right) \right|_{H^1} \left| \left( \varepsilon \partial^2 \zeta, \beta \partial^2 b \right) \right|_{H^1} |\partial b|_{H^2}.$$

Furthermore, using two times Proposition B.13, we get

$$\frac{1}{\mu} d^2 G_{\mu}(\psi).([\partial^1 \zeta, \partial^2 \zeta; \partial^1 b, \partial^2 b]) = -\frac{\varepsilon}{\sqrt{\mu}} d G_{\mu}[\varepsilon \zeta, \beta b] \left( \partial^1 \zeta , \frac{1}{\sqrt{\mu}} w(\psi, 0) \right) \cdot (\partial^2 \zeta, 0)$$

$$- \frac{\varepsilon}{\sqrt{\mu}} G_{\mu}[\varepsilon \zeta, \beta b] \left( \partial^1 \zeta , \frac{1}{\sqrt{\mu}} d w(\psi, 0) \cdot (\partial^2 \zeta, 0) \right)$$

$$- \varepsilon \nabla \cdot \left( \partial^1 \zeta d \widetilde{V}(\psi, 0) \cdot (\partial^2 \zeta, 0) \right)$$

$$+ \beta d G^N_{\mu} [\varepsilon \zeta, \beta b] \left( \partial^1 b \widetilde{V}(\psi, 0) \cdot (0, \partial^2 b) \right)$$

$$+ \beta G^N_{\mu} [\varepsilon \zeta, \beta b] \left( \partial^1 b d \widetilde{V}(\psi, 0) \cdot (0, \partial^2 b) \right).$$

The control follows from the first inequality of Theorem 3.15 and Proposition 4.4 in [19], and Propositions B.14, B.8 and B.11.

e) $|\nu| = N - 1$ and $|l_0| = 1$:

Here, $j = 1$. It is clear that

$$\left| \frac{\beta \lambda}{\varepsilon} d G^N_{\mu} (\partial^1 \zeta, \partial^1 b) \right|_{L^2} \leq \frac{\beta \lambda}{\varepsilon} M_N |\partial b|_{H^N}.$$

Furthermore,

$$\frac{1}{\mu} d G_{\mu}(\partial^1 \zeta; \partial^1 b) = \frac{1}{\mu} d G_{\mu}(\psi_{\nu}).([\partial^1 \zeta, \partial^1 b]) + \frac{1}{\sqrt{\mu}} d G_{\mu} \left( \frac{\varepsilon}{\sqrt{\mu}} w \partial^\nu \zeta \right) \cdot (\partial^1 \zeta, \partial^1 b).$$

Then, using Theorem 3.15 in [19] and Proposition 2.5, we get the result.
This Proposition enables to quasilinearize the first equation of the water waves equations. For the second equation, it is the purpose of the following proposition.

**Proposition 2.7.** Let $T > 0$, $N \geq \max(t_0, 1) + 3$, $b \in W^{1,\infty}(\mathbb{R}^+; H^N(\mathbb{R}^d))$ and $U \in E_T^N$, such that $\zeta$ and $b$ satisfy (19) for all $0 \leq t \leq T$. We assume also that $\mu$ satisfies (18). Then, for all $\alpha \in \mathbb{N}^d$, $1 \leq |\alpha| \leq N$, we have,

$$
\partial^\alpha \left[ \frac{\varepsilon}{2} |\nabla \psi|^2 - \frac{\varepsilon}{2\mu} (1 + \varepsilon^2 \mu |\nabla \zeta|^2) w^2 \right] = \varepsilon V \cdot (\nabla \psi(\alpha) + \varepsilon \partial^\alpha \zeta \nabla w) - \frac{\varepsilon}{\mu} w \partial^\alpha G_\mu(\psi) - \beta \lambda w \partial^\alpha G_{NN}^\mu (\partial_t b) + S_\alpha.
$$

Furthermore $S_\alpha$ is controlled

$$
|\mathcal{P} S_\alpha|_{L^2} \leq \varepsilon M N \mathcal{E}^N(U) + C \left( M_N, \frac{\beta \lambda}{\varepsilon} |\partial_t b|_{L^\infty H^N_R} \right) \varepsilon \mathcal{E}^N(U)^{\frac{1}{2}} + M_N \left( \frac{\beta \lambda}{\sqrt{\varepsilon}} |\partial_t b|_{L^\infty H^N_R} \right)^2.
$$

**Proof.** The proof of this Proposition is similar to the proof of Proposition 4.10 in [19] except we use Propositions B.8 and B.13. See also Proposition 6.4 in [16].

Thanks to this linearization, we can "quasilinearize" equations (13). It is the purpose of the next proposition. Let us introduce, the Rayleigh-Taylor coefficient

$$
a := a(U, \beta b) = 1 + \varepsilon \partial_t \left( w[\varepsilon \zeta, \beta b] \left( \psi, \frac{\beta \lambda}{\varepsilon} \partial_t b \right) \right) + \varepsilon^2 V[\varepsilon \zeta, \beta b] \left( \psi, \frac{\beta \lambda}{\varepsilon} \partial_t b \right) \cdot \nabla \left( w[\varepsilon \zeta, \beta b] \left( \psi, \frac{\beta \lambda}{\varepsilon} \partial_t b \right) \right).
$$

This quantity plays an important role. We also introduce two new operators,

$$
\mathcal{A}[U, \beta b] := \begin{pmatrix} 0 & -\frac{1}{\mu} G_{\alpha}[\varepsilon \zeta, \beta b] \\ a(U, \beta b) \end{pmatrix}
$$

and

$$
\mathcal{B}[U, \beta b] := \begin{pmatrix} \varepsilon \nabla \cdot (\bullet V) & 0 \\ 0 & \varepsilon V \cdot \nabla \end{pmatrix}.
$$

We can now quasilinearize the water waves equations. We use the same arguments as in Proposition 4.10 in [19] and part 6 in [16]. Notice that we give here a precise estimate with respect to $\partial_t b$ and $P$ of the residuals $R_\alpha$ and $S_\alpha$ and that the minimal value of $N$, regularity of $U$, is smaller than in Proposition 4.10 in [19].

**Proposition 2.8.** Let $T > 0$, $N \geq \max(t_0, 1) + 3$, $b \in W^{2,\infty}(\mathbb{R}^+; H^N(\mathbb{R}^d))$, $P \in L^\infty(\mathbb{R}^+; H^{N+1}(\mathbb{R}^d))$ and $U \in E_T^N$ satisfies (19) for all $0 \leq t \leq T$ and solving (13). We assume also that $\mu$ satisfies (18). Then, for all $\alpha \in \mathbb{N}^d$, $1 \leq |\alpha| \leq N$, we have,
\[ \partial_t U(\alpha) + \mathcal{A}[U, \beta b](U(\alpha)) + 1_{\{\alpha=0\}} \mathcal{B}[U, \beta b](U(\alpha)) = \left( \frac{\lambda \beta}{\varepsilon} G_N^{[\mu][0, 0]}(\partial^\alpha \partial b), -\partial^\alpha P \right) + \left( \tilde{R}_\alpha, S_\alpha \right) \quad \text{(28)} \]

Furthermore, \( \tilde{R}_\alpha \) and \( S_\alpha \) satisfy

\[
\begin{align*}
|\tilde{R}_\alpha|_{L^2} &\leq M_N |(\varepsilon \zeta, \beta b)|_{H^N(U)^{1/2}} + \frac{\beta \lambda}{\varepsilon} M_N |\partial b|_{L^\infty H^{N}} , \\
|\mathcal{P} S_\alpha|_{L^2} &\leq \varepsilon M_N E^N(U) + C \left( M_N, \frac{\beta \lambda}{\varepsilon} |\partial b|_{L^\infty H^N} \right) \varepsilon E^N(U)^{1/2} + M_N \left( \frac{\beta \lambda}{\sqrt{\varepsilon}} |\partial b|_{L^\infty H^{N}} \right)^2 .
\end{align*}
\]

Proof. Thanks to Proposition B.15, we get

\[
|G_N^{[\mu][\varepsilon \zeta, \beta b]}(\partial^\alpha \partial b) - G_N^{[\mu][0, 0]}(\partial^\alpha \partial b)|_{L^2} \leq \int_0^1 \left| dG_N^{[\mu][\varepsilon \zeta, \beta b]}(\partial^\alpha \partial b)|_{L^\infty H^N} \right| dz \\
\leq M_N |(\varepsilon \zeta, \beta b)|_{H^N} |\partial^\alpha \partial b|_{L^\infty H^N} .
\]

Then, denoting \( \tilde{R}_\alpha = R_\alpha + G_N^{[\mu][\varepsilon \zeta, \beta b]}(\partial^\alpha \partial b) - G_N^{[\mu][0, 0]}(\partial^\alpha \partial b) \), we obtain the first equation thanks to Proposition 2.6. For the second equation, using Proposition 2.7 and the first equation of the water waves problem, we have

\[
\partial_t \partial^\alpha \psi = -\partial^\alpha \varepsilon \mathbf{v} \cdot (\nabla \psi) + \varepsilon \partial^\alpha \psi \nabla \mathbf{w} + \frac{\varepsilon}{\mu} \mathbf{w} \cdot \partial^\alpha G_N^{[\mu]}(\psi) + \beta \mathbf{w} \cdot \partial^\alpha G_N^{[\mu]}(\partial b) - \partial^\alpha P + S_\alpha
\]

\[
= -\partial^\alpha \varepsilon \mathbf{v} \cdot (\nabla \psi) + \varepsilon \partial^\alpha \psi \nabla \mathbf{w} + \frac{\varepsilon}{\mu} \mathbf{w} \cdot \partial^\alpha \partial^\alpha \psi + \varepsilon \partial_t (\mathbf{w} \partial^\alpha \psi) - \partial^\alpha \psi + S_\alpha
\]

\[
= -\mathbf{g} \partial^\alpha \psi - \varepsilon \mathbf{v} \cdot \nabla \psi(-\partial^\alpha \psi) + \varepsilon \partial_t (\mathbf{w} \partial^\alpha \psi) - \partial^\alpha \psi + S_\alpha,
\]

and the result follows. \( \square \)

In the case of a constant pressure at the surface and a fixed bottom, it is well-known that system (28) is symmetrizable if

\[
\exists a_{\min} > 0 \quad a(U, \beta b) \geq a_{\min} . \quad \text{(29)}
\]

Then, we introduce the symmetrizer

\[
\mathcal{S}[U, \beta b] := \begin{pmatrix} a(U, \beta b) & 0 \\ 0 & 1 \mu G_N^{[\mu][\varepsilon \zeta, \beta b]} \end{pmatrix} . \quad \text{(30)}
\]
This symmetrization has an associated energy
\[
\mathcal{F}^\alpha(U) = \frac{1}{2} (S[U, \beta b](U(\alpha)), U(\alpha))_{L^2}, \text{ if } \alpha \neq 0,
\]
\[
\mathcal{F}^0(U) = \frac{1}{2} |\zeta|^2_{H^2} + \frac{1}{2} \left( \Lambda^2 \psi, \frac{1}{\mu} G_\mu [\varepsilon \zeta, \beta b] (\Lambda^2 \psi) \right)_{L^2},
\]
\[
\mathcal{F}^{[N]}(U) = \sum_{|\alpha| \leq N} \mathcal{F}^\alpha(U). \tag{31}
\]

As in Lemma 4.27 in [19], it can be shown that \( \mathcal{F}^{[N]} \) and \( \mathcal{E}^{[N]} \) are equivalent in the following sense.

**Proposition 2.9.** Let \( T > 0, N \in \mathbb{N}, U \in E_T^N \) satisfying (19) and (29) for all \( 0 \leq t \leq T \). Then, for all \( 0 \leq k \leq N \), \( \mathcal{F}^{[k]} \) is comparable to \( \mathcal{E}^k \)
\[
\frac{1}{|a(U, \beta b)|_{L^\infty} + M_N} \mathcal{F}^{[k]}(U, b) \leq \mathcal{E}^k(U) \leq \left( M_N + \frac{1}{a_{\min}} \right) \mathcal{F}^{[k]}(U, b). \tag{32}
\]

### 2.4 Local existence

The water wave equations can be written as follow:
\[
\partial_t U + \mathcal{N}(U) = (0, -P)^t, \tag{33}
\]
with \( \mathcal{N}(U) = (\mathcal{N}_1(U), \mathcal{N}_2(U))^t \) and
\[
\mathcal{N}_1(U) := -\frac{1}{\mu} G_\mu [\varepsilon \zeta, \beta b](\psi) - \frac{\beta \lambda}{\varepsilon} G_\mu^{NN} [\varepsilon \zeta, \beta b] (\partial_t b),
\]
\[
\mathcal{N}_2(U) := \zeta + \frac{\varepsilon}{2} |\nabla \psi|^2 - \frac{\varepsilon}{2\mu} (1 + \varepsilon^2 \mu |\nabla \zeta|^2) \left( w[\varepsilon \zeta, \beta b] \left( \psi, \frac{\beta \lambda}{\varepsilon} \partial_t b \right) \right)^2. \tag{34}
\]

According to our quasilinearization, we need that \( a \) be a positive real number. Therefore, we have to express \( a \) without partial derivative with respect to \( t \), particularly when \( t = 0 \). It is easy to check that (we adopt the notation of Remark B.12 in Appendix B.3)
\[
\mathfrak{a}(U, \beta b) = 1 + \varepsilon^2 V[\varepsilon \zeta, \beta b] \left( \psi, \frac{\beta \lambda}{\varepsilon} \partial_t b \right) \cdot \nabla \left( w[\varepsilon \zeta, \beta b] \left( \psi, \frac{\beta \lambda}{\varepsilon} \partial_t b \right) \right)
\]
\[
+ \varepsilon dw \left( \psi, \frac{\beta \lambda}{\varepsilon} \partial_t b \right) \cdot (\mathcal{N}_1(U), \partial_t b) + \varepsilon w[\varepsilon \zeta, \beta b] \left( -P - \mathcal{N}_2(U), \frac{\beta \lambda}{\varepsilon} \partial_t^2 b \right). \tag{35}
\]

The following Proposition gives estimates for \( \mathfrak{a}(U, \beta b) \). It is adapted from Proposition 6.6 in [16].

**Proposition 2.10.** Let \( T > 0, t_0 > \frac{d}{2}, N \geq \max(t_0, 1) + 3, (\zeta, \psi) \in E_T^N \) is a solution of the water waves equations (13), \( P \in L^\infty(\mathbb{R}^+; H^{N+1}(\mathbb{R}^d)) \) and \( b \in W^{2,\infty}(\mathbb{R}^+; H^N(\mathbb{R}^d)) \),
such that Condition (19) is satisfied. We assume also that $\mu$ satisfies (18). Then, for all $0 \leq t \leq T$,

$$
|a(U, \beta b) - 1|_{H^{10}} \leq C(M_N, \max(\beta \lambda, \beta) |\partial b|_{L^\infty H_N^X}, \varepsilon E^N(U)^{\frac{1}{2}}) \varepsilon E^N(U)^{\frac{1}{2}} + \varepsilon M_N \left( |\nabla P|_{L^\infty H_N^X} + \frac{\beta \lambda}{\varepsilon} |\partial^2 b|_{L^\infty H_N^X} \right).
$$

Furthermore, if $\partial_t^3 b \in L^\infty(\mathbb{R}^+; H^N(\mathbb{R}^d))$ and $\partial_t P \in L^\infty(\mathbb{R}^+; \dot{H}^N(\mathbb{R}^d))$, then,

$$
|\partial_t(a(U, \beta b))|_{H^{10}} \leq C(M_N, \max(\beta \lambda, \beta) |\partial b|_{L^\infty H_N^X}, |\nabla P|_{L^\infty H_N^X}, \varepsilon E^N(U)^{\frac{1}{2}}) \varepsilon E^N(U)^{\frac{1}{2}} + \varepsilon C(M_N, \max(\beta \lambda, \beta) |\partial b|_{L^\infty H_N^X}) \left( |\nabla P|_{W^{1, \infty} H_N^X} + \beta \lambda \frac{\varepsilon}{|\nabla P|_{W^{1, \infty} H_N^X}} \right).
$$

Proof. Using the first point of Proposition B.8 and Product estimate C.2 we have

$$
|V[\varepsilon \zeta, \beta b](\varepsilon \psi, \beta \partial_t b) \cdot \nabla [w[\varepsilon \zeta, \beta b](\varepsilon \psi, \beta \partial_t b)]|_{H^{10}} \leq M_N \left( |\Psi \varepsilon \psi|_{H^{10} + \frac{1}{2}} + \beta \lambda |\partial b|_{L^\infty H_N^X} \right)^2.
$$

Furthermore, thanks to the first point of Proposition B.15 and the first point of Theorem 3.28 in [19] we obtain

$$
|\varepsilon dw(\psi, \beta \varepsilon \partial_t b)(-N_1(U), \partial_t b)|_{H^{10}} \leq M_N |(\varepsilon N_1(U), \beta \partial_t b)|_{H^{10} + 1} \left( |\Psi \varepsilon \psi|_{H^{10} + \frac{1}{2}} + \beta \lambda |\partial b|_{L^\infty H_N^X} \right).
$$

Then, the first inequality follows easily from Proposition B.8, Proposition 2.5 and Product estimate C.2. The second inequality can be proved similarly.

We can now prove Theorems 2.3 and 2.4. We recall that $\delta := \max(\varepsilon, \beta^2)$.

Proof. We slice up this proof in three parts. First we regularize and symmetrize the equations, then we find some energy estimates and finally we conclude by convergence. We only give the energy estimates in this paper and a carefully study of the nonlinearities of the water waves equations is done. We refer to the proof of Theorem 4.16 in [19] for the regularization, the convergence and the uniqueness (see also part 7 in [16]). For Theorem 2.3 (respectively Theorem 2.4), we assume that $U$ solves (13) on $[0, T]$ (respectively on $\left[0, \frac{T}{\sqrt{\delta}}\right]$) and that (19) and (29) are satisfied for $h_{\min}^2$ and $a_{\min}^2$ on $[0, T]$ (respectively on $\left[0, \frac{T}{\sqrt{\delta}}\right]$) for some $T > 0$.

\textbf{a) $|\alpha| = 0$, The $0$ - energy}

We proceed as in Subsection 4.3.4.3 in [19] and part 6 in [16]. We have
\[
\frac{d}{dt} F^0(U) = \frac{1}{2\mu} \left( dG_\mu[\varepsilon \zeta, \beta b](\Lambda^2 \psi), (\partial_t \zeta, \partial_t b), \Lambda^2 \psi \right)_{L^2} + \frac{\beta \lambda}{\varepsilon} \left( \Lambda^2 G^{NN}_\mu[\varepsilon \zeta, \beta b](\partial_t b), \Lambda^2 \zeta \right)_{L^2} \\
- \left( \Lambda^2 (N_2(U) - \zeta), \frac{1}{\mu} G_\mu[\varepsilon \zeta, \beta b](\Lambda^3 \psi) \right)_{L^2} - \left( \frac{1}{\mu} G_\mu[\varepsilon \zeta, \beta b](\Lambda^3 \psi), \Lambda^2 P \right)_{L^2}.
\]

We have to control all the term in the r.h.s.

* Control of \( \frac{\beta \lambda}{\varepsilon} \left( \Lambda^2 G^{NN}_\mu[\varepsilon \zeta, \beta b](\partial_t b), \Lambda^2 \zeta \right)_{L^2} \).

Using Proposition B.7, we get

\[
\left| \frac{\beta \lambda}{\varepsilon} \left( \Lambda^2 G^{NN}_\mu[\varepsilon \zeta, \beta b](\partial_t b), \Lambda^2 \zeta \right)_{L^2} \right| \leq M_N \frac{\beta \lambda}{\varepsilon} |\partial_t b|_{L^{\infty} H^{\frac{3}{2}}} \varepsilon E^N(U)^{\frac{3}{2}}.
\]

* Control of \( \left( \Lambda^2 (N_2(U) - \zeta), \frac{1}{\mu} G_\mu[\varepsilon \zeta, \beta b](\Lambda^3 \psi) \right)_{L^2} \).

Using Proposition 2.5 and Proposition B.8, we get

\[
\left| \Lambda^2 (N_2(U) - \zeta), \frac{1}{\mu} G_\mu[\varepsilon \zeta, \beta b](\Lambda^3 \psi) \right|_{L^2} \leq |N_2(U) - \zeta|_{H^{\frac{3}{2}}} \left| \frac{1}{\mu} G_\mu[\varepsilon \zeta, \beta b](\Lambda^3 \psi) \right|_{L^2} \\
\leq \varepsilon M_N E^N(U)^{\frac{3}{2}} + M_N \left( \frac{\beta \lambda}{\varepsilon} |\partial_t b|_{L^{\infty} H^{\frac{3}{2}}} \right)^2 \varepsilon E^N(U).
\]

* Control of \( \left( \frac{1}{\mu} G_\mu[\varepsilon \zeta, \beta b](\Lambda^3 \psi), \Lambda^2 P \right)_{L^2} \).

We get, using Remark 3.13 in [19],

\[
\left| \left( \frac{1}{\mu} G_\mu[\varepsilon \zeta, \beta b](\Lambda^3 \psi), \Lambda^2 P \right) \right|_{L^2} \leq M_N E^N(U)^{\frac{3}{2}} |\nabla P|_{L^{\infty} H^{\frac{3}{2}}}.
\]

* Control of \( \frac{1}{2\mu} \left( dG_\mu[\varepsilon \zeta, \beta b](\Lambda^2 \psi), (\partial_t \zeta, \partial_t b), \Lambda^2 \psi \right)_{L^2} \).

Using Proposition 3.29 in [19], the second point of Theorem 3.15 in [19], Proposition B.7 and Proposition 2.5, we get

\[
\left| \left( \frac{1}{\mu} \left( dG_\mu[\varepsilon \zeta, \beta b](\Lambda^2 \psi), (\partial_t \zeta, \partial_t b), \Lambda^2 \psi \right) \right)_{L^2} \right| \leq M_N \left| (\varepsilon N_1(U), \beta \partial_t b) \right|_{H^{\frac{3}{2}}} |\nabla \psi|_{H^{\frac{3}{2}}}^2 \\
\leq M_N \varepsilon E^N(U)^{\frac{3}{2}} + \max(\beta, \beta \lambda) |\partial_t b|_{L^{\infty} H^{\frac{3}{2}}} E^N(U).
\]
Finally, gathering all the previous estimates, we get that
\[
\frac{d}{dt} E^0(U) \leq \varepsilon M_N E^N(U) + M_N C \left( \rho_{\text{max}}, |\partial_b b|_{L^\infty_t H^N_x}, |\nabla P|_{L^\infty_t H^N_x}, \sqrt{E^N(U)} \right) \varepsilon E^N(U) + M_N \sqrt{E^N(U)} \left( |\nabla P|_{L^\infty_t H^N_x} + \frac{\beta \lambda}{\varepsilon} \right) |\partial_b b|_{L^\infty_t H^N_x}.
\]
\[\text{(37)}\]

b) \(|\alpha| > 0\), the higher orders energies

We proceed as in Subsection 4.3.4.3 in [19] and part 6 in [16]. A simple computation gives

\[
\frac{d}{dt} (\mathcal{F}^\alpha(U)) = -\varepsilon 1_{\{|\alpha| = N\}} (\partial_t \mathcal{A}_\alpha, \partial_t (\mathcal{A}_\alpha V))_{L^2} + \left( \mathcal{A}_\alpha, \frac{\beta \lambda}{\varepsilon} G_{\mu}^{NN}[0, 0] (\partial_t \partial^\alpha b) + \tilde{R}_\alpha \right)_{L^2}
\]
\[-\varepsilon 1_{\{|\alpha| = N\}} \left( \frac{1}{\mu} G_{\mu} [\varepsilon \zeta, \beta b](\psi(\alpha)) - [\nabla \psi(\alpha)] \right)_{L^2} + \left( \frac{1}{\mu} G_{\mu} [\varepsilon \zeta, \beta b](\psi(\alpha)) - S_\alpha - \partial^\alpha P \right)_{L^2}
\]
\[+ \frac{1}{2} \left( \partial_t [\mathcal{A}_\alpha(\alpha), \mathcal{A}_\alpha(\alpha)]_{L^2} + \frac{1}{2} \left( \frac{1}{\mu} d G_{\mu} [\varepsilon \zeta, \beta b](\psi(\alpha)) \cdot (\partial_t \zeta, \partial_t b) \psi(\alpha) \right)_{L^2} \right).
\]
\[\text{(38)}\]

We have to control all the term in the r.h.s.

* Control of \((\partial_t \mathcal{A}_\alpha(\alpha), \mathcal{A}_\alpha(\alpha))_{L^2}\).

Using the second point of Proposition 2.10 we get

\[
\left| (\partial_t \mathcal{A}_\alpha(\alpha), \mathcal{A}_\alpha(\alpha))_{L^2} \right| \leq M_N C \left( \rho_{\text{max}}, |\partial_b b|_{W^{1,\infty}_t H^N_x}, |\nabla P|_{L^\infty_t H^N_x}, \varepsilon E^N(U) \right) \varepsilon E^N(U) \varepsilon E^N(U) + C(M_N, \beta \lambda |\partial_b b|_{L^\infty_t H^N_x}) \left( |\nabla P|_{W^{1,\infty}_t H^N_x} + \frac{\beta \lambda}{\varepsilon} |\partial_t^2 b|_{W^{1,\infty}_t H^N_x} \right) \varepsilon E^N(U).
\]

* Control of \((\mathcal{A}_\alpha(\alpha), \frac{\beta \lambda}{\varepsilon} G_{\mu}^{NN}[0, 0] (\partial_t \partial^\alpha b))_{L^2}\).

We get, thanks to Proposition 2.10 and B.7,

\[
\left| \mathcal{A}_\alpha(\alpha) \left( \frac{\beta \lambda}{\varepsilon} G_{\mu}^{NN}[0, 0] (\partial_t \partial^\alpha b) \right) \right| \leq C \left( \rho_{\text{max}}, |\partial_b b|_{W^{1,\infty}_t H^N_x}, |\nabla P|_{L^\infty_t H^N_x}, \varepsilon E^N(U) \right) \varepsilon E^N(U) \varepsilon E^N(U) \left( \frac{\beta \lambda}{\varepsilon} |\partial_b b|_{L^\infty_t H^N_x} \right) \varepsilon E^N(U).
\]

* Controls of \(\varepsilon 1_{\{|\alpha| = N\}} (\mathcal{A}_\alpha(\alpha), \partial_t (\mathcal{A}_\alpha V))_{L^2}\).

Inspired by Subsection 4.3.4.3 in [19], a simple computation gives
\[|\varepsilon (\zeta, \nabla \cdot (\zeta \psi))|_L^2 = |\varepsilon (\zeta, \nabla \cdot \psi, \zeta)|_L^2 \leq C(\rho_{\text{max}}, \mu_{\text{max}}, |b|_{W^{3,\infty}_X} |\nabla P|_{L^\infty X}, \varepsilon E^N(U)) \varepsilon [E^N(U) + E^N(U)].\]

using Proposition 2.10 and Proposition B.8.

\[\ast \text{ Controls of } \left( \frac{1}{\mu} G_\mu [\varepsilon \zeta, \beta b](\psi(\alpha), S_\alpha - \partial^\alpha P) \right)_{L^2}, \left( \frac{1}{\mu} dG_\mu [\varepsilon \zeta, \beta b](\psi(\alpha), (\partial \zeta, \partial b), \psi(\alpha)) \right)_{L^2} \text{ and } \left( \tilde{a}_\zeta(\alpha), \tilde{R}_\alpha \right)_{L^2}.\]

We can use the same arguments as in the third and the fourth point of part a) using Propositions 2.8 and 2.10.

\[\ast \text{ Control of } \varepsilon \left( \frac{1}{\mu} G_\mu [\varepsilon \zeta, \beta b](\psi(\alpha)), [V \cdot \nabla \psi(\alpha)] \right)_{L^2}.\]

We refer to the Subsection 4.3.4.3 and Proposition 3.30 in [19] for this control.

Gathering the previous estimates and using Proposition 2.9, we obtain that

\[
\frac{d}{dt} F^N(U) \leq C(\rho_{\text{max}}, \mu_{\text{max}}, |b|_{W^{3,\infty}_X} |\nabla P|_{W^{1,\infty}_X}, \varepsilon E^N(U))^\frac{2}{\varepsilon} \times \\
\left( \varepsilon E^N(U)^2 + \max(\varepsilon, \beta) F^N(U) + F^N(U) \left[ \frac{\beta \lambda}{\varepsilon} |\partial b|_{L^\infty X} + |\nabla P|_{L^\infty X} \right] \right). \quad (39)
\]

Then, we easily prove Theorem 2.3, using the same arguments as Subsection 4.3.4.4 in [19]. Furthermore, for \( \alpha \in [0, \frac{1}{2}] \), defining \( \bar{F}^N(U)(\tau) = \delta^{2\alpha} F^N(U) \left( \frac{\tau}{\varepsilon} \right) \), we get

\[
\frac{d}{d\tau} \bar{F}^N(U) \leq C(\rho_{\text{max}}, \mu_{\text{max}}, |b|_{W^{3,\infty}_X} |\nabla P|_{W^{1,\infty}_X}, \varepsilon E^N(U)).
\]

We can also apply the same arguments as Subsection 4.3.4.4 in [19] and Theorem 2.4 follows.

\[\square\]

### 2.5 Hamiltonian system

In this section we prove that the water waves problem (13) is a Hamiltonian system in the Sobolev framework. This extends the classical result of Zakharov ([33]) to the case where the bottom is moving and the atmospheric pressure is not constant (see also [10]). In the case of a moving bottom, P. Guyenne and D. P. Nicholls already pointed out it in [14] \(^1\). We have to introduce the Dirichlet-Dirichlet and the Neumann-Dirichlet operators

\[^1\text{It seems that there is a typo in their hamiltonian; }"-\zeta v" \text{ should read }"+\zeta v".\]
\[
\begin{align*}
G^{DD}_{\mu}[\varepsilon \zeta, \beta b](\psi) &= \left( \Phi^S \right)_{|z=-1+\beta b}, \\
G^{ND}_{\mu}[\varepsilon \zeta, \beta b](\partial_t b) &= \left( \Phi^B \right)_{|z=-1+\beta b},
\end{align*}
\]

where \( \Phi^S \) is defined in (15) and \( \Phi^B \) is defined in (17). We postpone the study of these operators to appendix B.

**Remark 2.11.** If we denote \( \Phi := \Phi^S + \frac{\beta \lambda \mu}{\varepsilon} \Phi^B \), \( \Phi \) satisfies

\[
\begin{cases}
\Delta_{\chi, z}^\varepsilon \Phi = 0 \text{ in } \Omega_t, \\
\Phi|_{z=\varepsilon} = \psi, \quad \sqrt{1 + \beta^2 |\nabla b|^2} \partial_n \Phi|_{z=-1+\beta b} = \frac{\beta \lambda \mu}{\varepsilon} \partial_t b.
\end{cases}
\]

Then

\[
\sqrt{1 + \varepsilon^2 |\nabla \zeta|^2} \partial_n \Phi|_{z=\varepsilon} = G^\mu_{\mu}[\varepsilon \zeta, \beta b](\psi) + \frac{\beta \mu}{\varepsilon} G^{\mu}_{\mu}[\varepsilon \zeta, \beta b](\partial_t b),
\]

and

\[
\Phi|_{z=-1+\beta b} = G^{DD}_{\mu}[\varepsilon \zeta, \beta b](\psi) + \frac{\beta \mu}{\varepsilon} G^{ND}_{\mu}[\varepsilon \zeta, \beta b](\partial_t b).
\]

**Theorem 2.12.** Let \( T > 0, t_0 > \frac{d}{2}, \zeta, b \in C^0([0,T]; H^{t_0+1}(\mathbb{R}^d)), \psi \in C^0([0,T]; H^2(\mathbb{R}^d)), \partial_t b \in C^0([0,T]; H^1(\mathbb{R}^d)), P \in C^0([0,T]; L^2(\mathbb{R}^d)) \) such that \((\zeta, \psi)\) is a solution of (13). Define \( H = H(\zeta, \psi) = T(\zeta, \psi) + U(\zeta, \psi) \), where \( T(\zeta, \psi) = \mathcal{T} \) is

\[
\mathcal{T} = \frac{1}{2 \mu} \int_{\Omega_t} \left| \nabla_{\chi, z}^\varepsilon \left( \Phi^S + \frac{\beta \lambda \mu}{\varepsilon} \Phi^B \right) \right|^2 + \int_{\mathbb{R}^d} \frac{\beta \lambda}{\varepsilon} \partial_t b \left( G^{DD}_{\mu}[\varepsilon \zeta, \beta b](\psi) + \frac{\beta \mu}{\varepsilon} G^{ND}_{\mu}[\varepsilon \zeta, \beta b](\partial_t b) \right),
\]

and \( U(\zeta, \psi) = U \) is

\[
U = \frac{1}{2} \int_{\mathbb{R}^d} \zeta^2 dX + \int_{\mathbb{R}^d} \zeta P dX.
\]

Then, the water waves equations (13) take the form

\[
\partial_t \begin{pmatrix} \zeta \\ \psi \end{pmatrix} = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \begin{pmatrix} \partial_\zeta H \\ \partial_\psi H \end{pmatrix}.
\]

**Remark 2.13.** \( \mathcal{T} \) is the sum of the kinetic energy and the moving bottom contribution and \( U \) the sum of the potential energy and the pressure contribution. Using Green’s formula and Remark 2.11 we obtain that

\[
\mathcal{T} = \frac{1}{2} \int_{\mathbb{R}^d} \psi \left( \frac{1}{\mu} G^\mu_{\mu}[\varepsilon \zeta, \beta b](\psi) + \frac{\beta \lambda}{\varepsilon} G^{\mu}_{\mu}[\varepsilon \zeta, \beta b](\partial_t b) \right) dX + \frac{1}{2} \int_{\mathbb{R}^d} \frac{\beta \lambda}{\varepsilon} \partial_t b \left( G^{DD}_{\mu}[\varepsilon \zeta, \beta b](\psi) + \frac{\beta \mu}{\varepsilon} G^{ND}_{\mu}[\varepsilon \zeta, \beta b](\partial_t b) \right) dX,
\]
Proof. Using the linearity of the Dirichlet-Neumann and the Dirichlet-Dirichlet operators with respect to $\psi$ and the fact that the adjoint of $G_{\mu}^{NN}[\varepsilon \zeta, \beta b]$ is $G_{\mu}^{DD}[\varepsilon \zeta, \beta b]$ (see Proposition B.5), we get that

$$\partial_\psi H = \frac{1}{\mu} G_{\mu}[\varepsilon \zeta, \beta b](\psi) + \frac{\beta \lambda}{\varepsilon} G_{\mu}^{NN}[\varepsilon \zeta, \beta b](\partial_t b).$$

Applying Proposition B.13 (which provides explicit expressions for shape derivatives) and remark 2.13, we obtain that

$$2\partial_\zeta H = -\varepsilon \frac{1}{\mu} G_{\mu}[\varepsilon \zeta, \beta b](\psi) w + \varepsilon \nabla \psi \cdot \nabla - \varepsilon \frac{\beta \lambda}{\varepsilon} G_{\mu}^{NN}[\varepsilon \zeta, \beta b](\partial_t b) w + 2P + 2\zeta,$$

$$= -\frac{1}{\mu} G_{\mu}[\varepsilon \zeta, \beta b](\psi) w + \varepsilon \nabla \psi \cdot \nabla - \varepsilon w \nabla \psi \cdot \nabla \zeta - \frac{\beta \lambda}{\varepsilon} G_{\mu}^{NN}[\varepsilon \zeta, \beta b](\partial_t b) w + 2P + 2\zeta,$$

$$= \varepsilon |\nabla \psi|^2 - \frac{\varepsilon}{\mu} w^2 \left(1 + \varepsilon^2 \mu |\nabla \zeta|^2\right) + 2P + 2\zeta,$$

which ends the proof. □

In fact, working in the Beppo Levi framework for $\psi$ requires that $\frac{1}{|\mu|} \partial_t b \in L^2(\mathbb{R}^d)$ and results that are not dealing with this paper.

3 Asymptotic models

In this part, we derive some asymptotic models in order to model two different types of tsunamis. The most important phenomenon that we want to catch is the Proudman resonance (see for instance [24] or [30] for an explanation of the Proudman resonance) and the submarine landslide tsunami phenomenon (see [20], [28] or [29]). These resonances occur in a linear case. The duration of the resonance depends on the phenomenon. For a meteotsunami, the duration of the resonance corresponds to the time the meteorological disturbance takes to reach the coast (see [24]). However, for a landslide tsunami, the duration of the resonance corresponds to the duration of the landslide (which depends on the size of the slope, see [20] or [28]). If the landslide is offshore, it is unreasonable to assume that the duration of the landslide is the time the water waves take to reach the coast. A variation of the pressure of 1 hPa creates a water wave of 1 cm whereas a moving bottom of 1 cm tends to create a water wave of 1 cm. Therefore we assume in the following that $a_{\text{bott,m}} = a$ (and hence $\beta \lambda = \varepsilon$). However, it is important to notice that even if for storms, a variation of the pressure of 100 hPa is very huge, it is quite ordinary that a submarine landslide have a thickness of 1 m. Typically, a storm makes a variation of few Hpa, and the thickness of a submarine landslide is few dm (we refer to [20]). In this part, we only study the propagation of such phenomena. Therefore, we take $d = 1$. In the following, we give three linear asymptotic models of the water waves equations and we give examples of pressures and moving bottoms that create a resonance. The pressure at the surface $P$ and the moving bottom $b_m$ move from the
left to the right. We consider that the system is initially at rest. We start this part by giving an asymptotic expansion with respect to $\mu$ and $\max(\varepsilon, \beta)$ of $G^{NN}_{\mu}[\varepsilon \zeta, \beta b]$.

**Proposition 3.1.** Let $t_0 > \frac{d}{2}$, $\zeta$ and $b \in H^{t_0+2}(\mathbb{R}^d)$ such that Condition (19) is satisfied. We suppose that the parameters $\varepsilon$, $\beta$ and $\mu$ satisfy (18). Then, for all $B \in H^{s-1}(\mathbb{R}^d)$ with $0 \leq s \leq t_0 + \frac{3}{2}$, we have

$$\left| G^{NN}_{\mu}[\varepsilon \zeta, \beta b](B) - G^{NN}_{\mu}[0, 0](B) \right|_{H^{s-\frac{1}{2}}} \leq M_0 \left( |\varepsilon \zeta, \beta b|_{H^{t_0+2}} |B| \right)_{H^{s-\frac{1}{2}}}$$

and

$$\left| G^{NN}_{\mu}[0, 0](B) - B \right|_{H^{s-\frac{1}{2}}} \leq C \mu |B|_{H^{s+\frac{1}{2}}}.$$  

**Proof.** The first inequality follows from Proposition B.15 and the second from Remark B.1.

**Remark 3.2.** In the same way and under the assumptions of the previous proposition, we can prove that (see Proposition 3.28 in [19]), for $0 \leq s \leq t_0 + \frac{3}{2}$,

$$\left| G_{\mu}[\varepsilon \zeta, \beta b](\psi) - G_{\mu}[0, 0](\psi) \right|_{H^{s-\frac{1}{2}}} \leq \mu M_0 \left( |\varepsilon \zeta, \beta b|_{H^{t_0+2}} |\nabla \psi| \right)_{H^{s+\frac{1}{2}}}$$

and

$$\left| \frac{1}{\mu} G_{\mu}[0, 0](\psi) + \Delta \psi \right|_{H^{s-\frac{1}{2}}} \leq C \mu \left( |\nabla \psi| \right)_{H^{s+\frac{5}{2}}}.$$  

We denote by $\nabla$ the vertically averaged horizontal component,

$$\nabla = \nabla[\varepsilon \zeta, \beta b](\psi, \partial_t b) = \frac{1}{1 + \varepsilon \zeta - \beta b} \int_{-1+\beta b}^{\varepsilon \zeta} \nabla_X (\Phi[\varepsilon \zeta, \beta b](\psi, \partial_t b)(\cdot, z)) \, dz,$$  

(45)

where $\Phi = \Phi[\varepsilon \zeta, \beta b](\psi, \partial_t b)$ satisfies

$$\begin{cases} \Delta_X^{\mu} \Phi = 0, & -1 + \beta b \leq z \leq \varepsilon \zeta, \\ \Phi_{z=-\varepsilon \zeta} = \psi, & \sqrt{1 + \beta^2} \nabla b \Phi_{z=-1+\beta b} = \mu \partial_t b. \end{cases}$$

The following Propostion is Remark 3.36 and a small adaptation of Proposition 3.37 and Lemma 5.4 in [19] (see also Subsection A.5.5 in [19]).

**Proposition 3.3.** Let $T > 0$, $t_0 > \frac{d}{2}$, $0 \leq s \leq t_0$ and $\zeta, b \in W^{1,\infty}(0, T; H^{t_0+2}(\mathbb{R}^d))$ such that Condition (19) is satisfied on $[0, T]$. We suppose that the parameters $\varepsilon$, $\beta$ and $\mu$ satisfy (18). We also assume that $\psi \in W^{1,\infty}(0, T; \dot{H}^{s+3}(\mathbb{R}^d))$. Then,

$$G_{\mu}[\varepsilon \zeta, \beta b](\psi) + \mu G^{NN}_{\mu}[\varepsilon \zeta, \beta b](\partial_t b) = -\mu \nabla \cdot \left( (1 + \varepsilon \zeta - \beta b) \nabla \right) + \mu \partial_t b,$$  

21
and

$$\left\{ \begin{array}{l} |V - \nabla \psi|_{H^s} \leq \mu C \left( \frac{1}{h_{\min}}, \mu_{\text{max}}, \varepsilon |H^{0+2}, \beta|_{L^1 H_N^{0+2}} \right) \max \left( |\nabla \psi|_{H^{s+2}}, |\partial_t b|_{L^\infty H_N^{s+1}} \right), \\
|\partial_t V - \nabla \partial_t \psi|_{H^s} \leq \mu C \left( \frac{1}{h_{\min}}, \mu_{\text{max}}, \varepsilon |H^{0+2}, |\partial_t \xi|_{H^{0+2}}, |b|_{W^2, H_N^{0+2}}, |\nabla \psi|_{H^{s+2}}, |\partial_t \nabla \psi|_{H^{s+2}} \right). \end{array} \right.$$

In this part, we will consider symmetrizable linear hyperbolic systems of the first order. We refer to [7] for more details about the wellposedness. In the following, we will only give the energy associated to the symmetrization.

### 3.1 A shallow water model when $\beta$ is small

#### 3.1.1 Linear asymptotic

We consider the case that $\varepsilon, \beta, \mu$ are small. Physically, this means that we consider small amplitudes for the surface and the bottom (compared to the mean depth) and waves with large wavelengths (compared to the mean depth). The asymptotic regime (in the sense of Definition 4.19 in [19]) is

$$\mathcal{A}_{LW} = \{(\varepsilon, \beta, \lambda, \mu), 0 < \mu, \varepsilon, \beta \leq \delta_0, \beta \lambda = \varepsilon\}, \quad (46)$$

with $\delta_0 \ll 1$.

**Proposition 3.4.** Let $t_0 > \frac{4}{3}, N \geq \max(1, t_0) + 3, U^0 \in \mathcal{E}^N_0, P \in W^{1,\infty}(\mathbb{R}^+; H_{\mathbb{R}^d}^{N+1}(\mathbb{R}^d))$ and $b \in W^{3,\infty}(\mathbb{R}^+; H_{\mathbb{R}^d}^N(\mathbb{R}^d))$. We suppose (19) and (29) are satisfied initially. Then, there exists $T > 0$, such that for all $(\varepsilon, \beta, \lambda, \mu) \in \mathcal{A}_{LW}$, there exists a solution $U = (\zeta, \psi) \in \mathcal{E}^N_{\mathbb{R}}$ to the water waves equations with initial data $U^0$ and this solution is unique. Furthermore, for all $\alpha \in \left[0, \frac{1}{3}\right)$,

$$\left| \zeta - \tilde{\zeta} \right|_{L^\infty \left( \left[0, \frac{T}{\delta_0} \right]; H^{N-4}(\mathbb{R}^d) \right)} + \left| \nabla \psi - \nabla \tilde{\psi} \right|_{L^\infty \left( \left[0, \frac{T}{\delta_0} \right]; H^{N-2}(\mathbb{R}^d) \right)} \leq T^{\frac{1}{3} - 3\alpha} \tilde{C},$$

where

$$\tilde{C} = C \left( \mathcal{E}^N(U^0), \frac{1}{h_{\min}}, \frac{1}{a_{\min}}, |b|_{W^3, H_N^N}, |\nabla P|_{W^{1,\infty} H_N^N} \right),$$

and with, $(\hat{\zeta}, \hat{\psi})$ solution of the waves equation

$$\left\{ \begin{array}{l} \partial_t \hat{\zeta} + \Delta \hat{\psi} = \partial_t b, \\
\partial_t \hat{\psi} + \hat{\zeta} = -P, \end{array} \right. \quad (47)$$

with initial data $U^0$.  

22
Proof. First, the system (47) is wellposed since it can be symmetrized thanks to the energy
\[ E(t) = \left| \tilde{\zeta} \right|_{L^2}^2 + \left| \nabla \tilde{\psi} \right|_{L^2}^2. \]
Using Theorem 2.4 we get a uniform time of existence \( T_{\bar{\delta}^N} > 0 \) for the water waves equation and for all parameters in \( \mathcal{A}_{LW} \). Then, using Proposition 3.1, Remark 3.2, Proposition B.8 and C.1 and standard controls we get that
\[
\begin{aligned}
\partial_t \zeta + \Delta_X \psi &= \partial_t b + R_1, \\
\partial_t \psi + \zeta &= -P + R_2,
\end{aligned}
\]
with
\[
\begin{aligned}
|R_1|_{H^{N-4}} &\leq C \left( \varepsilon |\zeta|_{H^N}, |b|_{L^\infty_t H^\frac{N}{2} X} \right) \max \left( |\Psi|_{H^{N-\frac{1}{2}}}, |\partial_t b|_{H^N} \right), \\
|R_2|_{H^{N-1}} &\leq \varepsilon C \left( \varepsilon |\zeta|_{H^N}, |b|_{L^\infty_t H^N X} \right) \max \left( |\Psi|_{H^{N-\frac{1}{2}}}, |\partial_t b|_{H^N} \right).
\end{aligned}
\]
If we denote \( \zeta_1 = \zeta - \tilde{\zeta} \) and \( \psi_1 = \psi - \tilde{\psi} \), we see that \((\zeta_1, \psi_1)\) satisfies
\[
\begin{aligned}
\partial_t \zeta_1 + \Delta_X \psi_1 &= R_1, \\
\partial_t \psi_1 + \zeta_1 &= R_2.
\end{aligned}
\]
Differentiating the energy
\[ E^N(t) = \frac{1}{2} |\zeta_1|_{H^{N-4}}^2 + \frac{1}{2} |\nabla \psi_1|_{H^{N-2}}^2, \]
we get the estimate thanks to Proposition 2.5 and energy estimate in Theorem 2.4. □

This model is well-known in the physics literature (see [25]).

### 3.1.2 Resonance in shallow waters when \( \beta \) is small

We consider the equation (47) for \( d = 1 \). We transform it in order to have a unique equation for \( h := \tilde{\zeta} - b \),
\[
\begin{aligned}
\partial_t^2 h - \partial_X^2 h &= \partial_X^2 (P + b), \\
h_{t=0} &= -b(0, \cdot), \\
\partial_t h_{t=0} &= 0.
\end{aligned}
\]
We denote \( f(t, X) := (P + b)(t, X) \), which represents a disturbance. We want to understand the resonance for landslide and meteo tsunamis. In both cases, it is a linear respond, in the shallow water case, of a body of water due to a moving pressure or a moving bottom, when the speed of the storm or the landslide is close to the typical wave celerity (here 1). We can compute \( h \) thanks to the d’Alembert’s formula.

23
\[ h(t, X) = -\frac{1}{2} (b(0, X - t) + b(0, X + t)) + \frac{1}{2} \int_0^t \partial_X f(\tau, X + t - \tau) d\tau + \frac{1}{2} \int_0^t \partial_X f(\tau, X - t + \tau) d\tau. \]

\[ h_T(t, X) := h_L(t, X) \]

\[ h_R(t, X) := h_R(t, X). \]

We are interested in disturbances \( f \) moving from the left to the right (propagation to a coast). Therefore, we study only \( h_R \). The following Proposition shows that a disturbance moving with a speed equal to 1 makes appear a resonance.

**Proposition 3.5.** Let \( f \in L^\infty(\mathbb{R}^+; H^1(\mathbb{R}^d)) \) and \( \partial_X f \in L^\infty_t(\mathbb{R} \times \mathbb{R}^d) \). Then, for all \( X \in \mathbb{R}, t > 0 \),

\[ |h_R(t, X)| \leq \frac{t}{2} |\partial_X f|_\infty. \]

Furthermore, if \( f(t, X) = f_0(X - t) \), \( f_0 \in H^1(\mathbb{R}^d) \) and \( |f_0'(X_0 - t_0)| = |f'|_\infty \) the equality holds for \((t_0, X_0)\). If \( f(t, X) = f_0(X - Ut) \) with \( f_0 \in H^1(\mathbb{R}^d) \) and \( U \neq 1 \),

\[ |h_R|_\infty \leq \min \left( \frac{|f_0|_\infty}{|1 - U|}, \frac{t}{2} |f_0'|_\infty \right). \]

Proof. If \( f(t, X) = f_0(X - Ut) \),

\[ h_R(t, X) = -\frac{1}{2} \int_0^t f_0'(X - t + (1 - U)\tau) d\tau, \]

and the result follows. \( \square \)

This Proposition corresponds to the historical work of J. Proudman ([25]). We rediscover the fact that the resonance occurs if the speed of the disturbance is 1. For a disturbance with a speed different from 1, we notice a saturation effect (also pointed out in [28]).

The graph in Figure 1, gives the typical evolution of \( |h(t, \cdot)|_\infty \) with respect to the time \( t \) for different values of the speed. We can see the saturation effect. We compute \( h \) with a finite difference method and we take \( f(t, X) = e^{-\frac{1}{2}(X-Ut)^2} \). We see also that the landslide resonance and the Proudman resonance have the same effects. There are however two important differences that we exposed in the introduction of this part. The first one is the duration of the resonance. A landslide is quicker than a meteorological effect. The second one, is the fact that the typical size of the landslide (few dm) is bigger than the size of a storm (few hPa). For instance, for a moving storm which creates a variation of the pressure of 3 hPa during \( 15t_0 \), the final wave can reach a amplitude of 13 cm (it is for example the case of the meteotsunami in Nagasaki in 1979, see [24]). Conversely, an offshore landslide with a thickness of 1 m that lasts \( t_0 \), can create a wave of 50 cm (which corresponds to the results in [28]). Therefore, we see that the principal difference between an offshore landslide and a moving storm is the size.
Figure 1: Evolution of the maximum of \( h \), solution of equation (49), with different values of the speed \( U \).

3.2 A shallow water model when \( \beta \) is large

3.2.1 Linear asymptotic

In this case, we suppose only that \( \varepsilon \) and \( \mu \) are small. We recall that \( \beta b(t, X) = \beta b_0(X) + \beta \lambda b_m(t, X) \). Then, we assume also that \( 1 - b_0 \geq h_{\min} > 0 \). In the following, we denote \( h_0 := 1 - \beta b_0 \). The asymptotic regime is

\[
\mathcal{A}_{LVW} = \{ (\varepsilon, \beta, \lambda, \mu), \ 0 < \varepsilon, \mu \leq \delta_0, \ 0 < \beta \leq 1, \ \beta \lambda = \varepsilon \}, \tag{50}
\]

with \( \delta_0 \ll 1 \). We can now give an asymptotic model.

**Proposition 3.6.** Let \( t_0 > \frac{d^2}{T}, \ N \geq \max(1, t_0) + 4, \ b \in W^{3,\infty}(\mathbb{R}^+; H^N(\mathbb{R}^d)), \ U^0 = (\zeta_0, \psi_0) \in E^N_0, \) and \( P \in W^{1,\infty}(\mathbb{R}^+; \dot{H}^{N+1}(\mathbb{R}^d)) \). We suppose that (19) and (29) are satisfied initially. We suppose also that \( b_0 \in H^N(\mathbb{R}^d) \) and that \( h_0 = 1 - \beta b_0 \geq h_{\min} \). Then, there exists \( T > 0 \), such that for all \( (\varepsilon, \beta, \lambda, \mu) \in \mathcal{A}_{LVW} \), there exists a unique solution \( U = (\zeta, \psi) \in E^N_T \) to the water waves equations with initial data \( U^0 \). Furthermore, for \( \nabla \) as in (45),

\[
|\zeta - \zeta_1|_{L^\infty([0,T];H^{N-4}(\mathbb{R}^d))} + |\nabla - \nabla_1|_{L^\infty([0,T];\dot{H}^{N-4}(\mathbb{R}^d))} \leq T\delta_0 \tilde{C},
\]

where

\[
\tilde{C} = C\left( E^N(U^0), \frac{1}{h_{\min}}, \frac{1}{a_{\text{min}}}, |b|_{W^{3,\infty}H^N}^1, |\nabla P|_{W^{1,\infty}H^N}^1 \right),
\]

and \( (\zeta_1, \nabla_1) \) solution of the waves equation.
\[
\begin{align*}
\partial_t \zeta_1 + \nabla \cdot (h_0 V_1) &= \partial_t b_m, \\
\partial_t V_1 + \nabla \zeta_1 &= -\nabla P, \\
(\zeta_1)|_{t=0} = \zeta_0, &\quad (V_1)|_{t=0} = \nabla [\varepsilon \zeta_0, \beta b_{|t=0}}] \left( \psi_0, (\partial b)_{|t=0} \right).
\end{align*}
\] (51)

**Proof.** The system (51) is wellposed since it can be symmetrized thanks to the energy
\[
E(t) = \frac{1}{2} ||\zeta_1||_{L^2}^2 + \frac{1}{2} (h_0 V_1, \nabla V_1)_{L^2}.
\]
For the inequality, we proceed as in Proposition 3.4, differentiating the energy
\[
E^N(t) = \frac{1}{2} ||\zeta_2||_{H^{N-4}}^2 + \frac{1}{2} (h_0 \Lambda^{N-4} V_2, \Lambda^{N-4} V_2)_{L^2},
\]
with \(\zeta_2 = \zeta - \zeta_1\) and \(\nabla_2 = \nabla - \nabla_1\). Using Gronwall’s Lemma, Proposition 3.3 and standard controls, we get result.

This model is well-known in the physics literature to investigate the landslide tsunami phenomenon (see [28]).

### 3.2.2 Amplification in shallow waters when \(\beta\) is large

In this part, \(d = 1\) and we suppose that \(P = 0\). The same study can be done for a non constant pressure. For the sake of simplicity, we assume also that initially the velocity of the landslide is zero and hence that \((\partial_t b_m)|_{t=0} = 0\) (the bottom does not move at the beginning). We transform the system (51) in order to get an equation for \(\zeta_1\) only. We obtain that \(\zeta_1\) satisfies
\[
\partial^2_t \zeta_1 - \partial_X (h_0 \partial_X \zeta_1) = \partial^2_t b_m,
\] (52)
with \((\zeta_1)|_{t=0} = 0\) and \((\partial_t \zeta_1)|_{t=0} = 0\). We wonder now if we can catch an elevation of the sea level with this asymptotic model. Therefore, we are looking for solutions of the form
\[
\zeta_2(t, X) = t \zeta_3(t, X).
\] (53)
The following proposition gives example of such solutions for bounded moving bottoms (with finite energy).

**Proposition 3.7.** Suppose that \(h_0 \geq h_{\text{min}} > 0\) with \(h_0 \in H^1(\mathbb{R})\). Let \((\zeta_3, \nabla_3)\) be a solution of
\[
\begin{align*}
\partial_t \zeta_3 + \partial_X (h_0 \nabla_3) &= 0, \\
\partial_t \nabla_3 + \partial_X \zeta_3 &= 0,
\end{align*}
\]
with \((\zeta_3, \nabla_3)|_{t=0} = (0, f')\) with \(f \in H^1(\mathbb{R})\). Then, \(\zeta_1(t, X) = t \zeta_3(t, X)\) is a non trivial solution of (52) with
\[ b_m(t, X) = 2 \int_0^t \zeta_3(s, X) ds, \]  
(54)

and \( b_m(t, \cdot) \) is bounded in \( L^2(\mathbb{R}^d) \) and in \( L^\infty(\mathbb{R}^d) \) uniformly with respect to \( t \)

\[ |b_m(t, \cdot)|_{L^2} + |b_m(t, \cdot)|_{L^\infty} \leq C, \]

where \( C \) is independent on \( t \).

**Proof.** Plugging the expression of \( \zeta \) and \( b_m \) in (52), we get the first result. We have to show that \( \zeta_3 \in L^1(\mathbb{R}^+; L^2(\mathbb{R}^d)) \). Consider the linear hyperbolic equation

\[
\begin{aligned}
\partial_t \eta + \partial_X (h_0 W) &= 0, \\
\partial_t W + \partial_X \eta &= 0,
\end{aligned}
\]

with \((\eta, W)_{|t=0} = (-f, 0)\). This system has a unique solution \((\eta, W) \in C^0(\mathbb{R}; H^1(\mathbb{R}))\). Furthermore, \((\partial_t \eta, \partial_t W) \in C^0(\mathbb{R}; L^2(\mathbb{R}))\), and \((\partial_t \eta, \partial_t W)\) satisfies the same linear hyperbolic system as \((\zeta_3, \nabla_3)\). By uniqueness, \( \zeta_3 = \partial_t \eta \) and

\[ b_m(t, X) = 2\eta(t, X) + 2f(X). \]

Since, for all \( t \),

\[ \int_{\mathbb{R}} \eta(t, X)^2 + h_0(X)W(t, X)^2 dX = \int_{\mathbb{R}} f(X)^2 dX, \]

and \( h_0 \geq h_{\text{min}} > 0 \), we get the control of \( |b_m(t, \cdot)|_{L^2} \). Finally, \( \eta \) satisfies the waves equation

\[ \partial_t^2 \eta - \partial_X (h_0 \partial_X \eta) = 0, \]

with \((\eta, \partial_t \eta)_{|t=0} = (-f, 0) \in H^1(\mathbb{R}^d)\). Then, for all \( t \),

\[ \int_{\mathbb{R}} |\partial_t \eta(t, X)|^2 + h_0(X) |\partial_X \eta(t, X)|^2 dX = \int_{\mathbb{R}} h_0(X) f'(X)^2 dX. \]

Therefore, \( |\eta|_{H^1} \) (and \( |\eta|_{L^\infty} \) by Sobolev embedding) is controlled uniformly with respect to \( t \).

In the following, we compute numerically some solutions of Equations (52) of the form (53) with a finite difference method. We take \( b_0(X) = -\tanh(X) \), \( \beta = \frac{1}{2} \) and \((\partial_t \zeta_3)_{|t=0} = (4X^2 - 2)e^{-X^2}\). The figure 2 is the evolution of the maximum of \( \zeta_1 \). The figure 3 is the graph at different times of the waves and the landslide. The dashed curves are the landslide, the solid curves are the waves and the dotted curve is the slope. Therefore, we see that an important elevation of the sea level is possible even if we do not consider that the seabed is flat.
Remark 3.8. In order to simplify, we consider that the system is initially at rest. But our study can easily be extended to waves with non trivial initial data. In particular, we can study a wave amplified by a landslide. This is what happened during the tsunami in Fukushima in 2011 (see [27]). We compute numerically this amplification. We consider a wave moving with a speed equal to 1 (typical speed in the sea after nondimensionalization) that is amplified by a landslide. Figure 4 represents the evolution of the maximum of this wave. We can see an amplification.

Figure 2: Evolution of the maximum of $\zeta_1$, solution of (52), for a non flat bottom $b_0$.

Figure 3: Evolution of the surface $\zeta_1$ (solid line), solution of (52), and the landslide $b_m$ (dashed line).

Figure 4: Evolution of the maximum of $h$, solution of (52), with non trivial initial data and with $b_m$ like in Figure 3.
3.3 Linear asymptotic and resonance in intermediate depths

In this case, we consider only that \(\varepsilon, \beta\) are small. Physically, this means that we consider small amplitudes for the surface and the bottom (compared to the mean depth) and that the depth is not small compared to wavelength of the waves. In this part, we generalize the Proudman resonance in deeper waters. The asymptotic regime is

\[
\mathcal{A}_{LWW} = \{(\varepsilon, \beta, \lambda, \mu), 0 < \varepsilon, \beta \leq \delta_0, \beta \lambda = \varepsilon \text{ and } 0 < \mu \leq \mu_{\max}\},
\]

with \(\delta_0 \ll 1\) and \(0 < \mu_{\max}\). Using the energy

\[
\mathcal{E}(t) = \frac{1}{2} |\zeta|_{L^2}^2 + \frac{1}{2} \left(\frac{1}{\mu} G[0, 0](\psi, \psi)\right)_{L^2},
\]

and proceeding as in Proposition 3.4 (we need also Proposition 3.12 in [19]), we get a new asymptotic model.

**Proposition 3.9.** Let \(t_0 > \frac{d}{2}\), \(N \geq \max(1, t_0) + 3\), \(b \in W^{3, \infty}(\mathbb{R}^+; H^N(\mathbb{R}^d))\), \(U^0 = (\zeta_0, \psi_0) \in E_0^N\) and \(P \in W^{1, \infty}(\mathbb{R}^+; H^{N+1}(\mathbb{R}^d))\). We suppose that (19) and (29) are satisfied initially. Then, there exists \(T > 0\), such that for all \((\varepsilon, \beta, \lambda, \mu) \in \mathcal{A}_{LWW}\), there exists a unique solution \(U = (\zeta, \psi) \in E_0^{\frac{N}{2}}\) to the water waves equations with initial data \(U^0\). Furthermore, for all \(\alpha \in \left[0, \frac{1}{3}\right]\),

\[
\left|\zeta - \tilde{\zeta}\right|_{L^\infty\left(\left[0, \frac{T}{\delta_0}\right]; H^{N-2}(\mathbb{R}^d)\right)} + \left|\frac{|D|}{\sqrt{1 + |D|}}\left(\psi - \tilde{\psi}\right)\right|_{L^\infty\left(\left[0, \frac{T}{\delta_0}\right]; H^{N-2}(\mathbb{R}^d)\right)} \leq T^{\delta_0^{1-3\alpha}} \tilde{C},
\]

where

\[
\tilde{C} = C \left(\mathcal{E}^{\mathcal{N}}(U^0), \frac{1}{h_{\min}}, \frac{1}{a_{\min}}, \mu_{\max}, |b|_{W^{3, \infty}H_N^N}, |\nabla P|_{W^{1, \infty}H_N^N}\right),
\]

where \((\tilde{\zeta}, \tilde{\psi})\) is a solution of the waves equation

\[
\begin{cases}
\partial_t \tilde{\zeta} - \frac{1}{\mu} G[0, 0](\tilde{\psi}) = G^N[0, 0](\partial_t b), \\
\partial_t \tilde{\psi} + \tilde{\zeta} = -P,
\end{cases}
\]

with initial data \(U^0\).

The Proudman resonance is a phenomenon which occurs in shallow water regime. We wonder if there is also a resonance in deeper waters. In this part, we only work with a non constant pressure and hence \(\partial_t b = 0\). The same study can be done for a moving bottom. We consider the equation (56) for \(d = 1\). Since, the initial data does not affect the possible resonance, we suppose in the following that \(U^0 = 0\). We transform the
system (56) in order to have a unique equation for \( \tilde{\zeta} \) (in the following we denote \( \tilde{\zeta} \) by \( \zeta \) to simplify the notation)

\[
\begin{aligned}
\left\{ \begin{array}{l}
\partial_t^2 \zeta + \frac{1}{\mu} G_{\mu}[0,0](\zeta) = -\frac{1}{\mu} G_{\mu}[0,0](P), \\
\zeta|_{t=0} = 0, \quad \partial_t \zeta|_{t=0} = 0.
\end{array} \right.
\end{aligned}
\]

We can solve explicitly the previous equation, we get that

\[
\hat{\zeta}(t,\xi) = \frac{i}{2} \int_0^t \xi \sqrt{\frac{\tanh(\sqrt{\mu}|\xi|)}{\sqrt{\mu}|\xi|}} \hat{P}(\tau,\xi) e^{i(t-\tau)\xi} \frac{\sqrt{\tanh(\sqrt{\mu}|\xi|)}}{\sqrt{\mu}|\xi|} d\tau.
\]

In order to find a resonant pressure, we suppose that \( P \) has the form \( e^{-ita(\xi)} P_0(\xi) \), where \( a \) is a real smooth odd function which is sublinear, there exists \( C > 0 \) such that \( |a(\xi)| \leq C|\xi| \). We also suppose that the phase velocity of the disturbance is positive, \( a(\xi) \xi \geq 0 \). \( P_0 \) is a smooth function in a Sobolev space with \( \hat{P}_0(0) \neq 0 \). We denote \( \omega(\xi) = \sqrt{\tanh(\xi)} \). A simple computation gives that

\[
|\zeta_L(t,\cdot)| \leq |\zeta_R(t,\cdot)| \leq |\hat{P}_0|_{L^1}.
\]

Furthermore, we have

\[
|\zeta_R(t,\xi)| = \frac{1}{2} \left| \int_0^t \xi \omega(\sqrt{\mu}\xi) \hat{P}_0(\xi) e^{i\tau(\xi \omega(\sqrt{\mu}\xi) - a(\xi))} d\tau \right| \\
\leq \frac{t}{2} \left| \xi \omega(\sqrt{\mu}\xi) \hat{P}_0(\xi) \right|,
\]

with an equality if and only if \( a(\xi) = \xi \omega(\sqrt{\mu}\xi) \). Hence, it is natural to consider that

\[
\hat{P}(t,\xi) = e^{-it\xi \omega(\sqrt{\mu}\xi)} P_0(\xi).
\]

A simple computation gives

\[
\zeta_R(t,\xi) = -\frac{it}{2} \int_{\mathbb{R}} \xi \omega(\sqrt{\mu}\xi) \hat{P}_0(\xi) e^{-it\xi \omega(\sqrt{\mu}\xi)} e^{iX\xi} d\xi.
\]

We wonder now if a resonance occurs. We need a dispersion estimate for the linear water waves equation.
Proposition 3.10. Let $f \in W^{1,1}(\mathbb{R})$ such that $\hat{f}(0) = 0$. Then,

$$
\left| \int_{\mathbb{R}} e^{-it\omega(\sqrt{\mu}\xi)} e^{iX\xi} \hat{f}(\xi) d\xi \right| \leq C \sqrt{t} \left( \frac{1}{\sqrt{\mu}} \left| \frac{\hat{f}}{\sqrt{\xi}} \right|'_{L^1(\mathbb{R})} + \mu^{\frac{1}{2}} \left| \frac{\hat{f}}{\sqrt{\xi}} \right|'_{L^1(\mathbb{R})} \right).
$$

Proof. We denote $I(t)$,

$$
I(t) := \int_{\mathbb{R}} e^{-it\omega(\sqrt{\mu}\xi)} e^{iX\xi} \hat{f}(\xi) d\xi = \frac{1}{\sqrt{\mu}} \int_{\mathbb{R}} e^{-it\sqrt{\mu}(\phi'(y) - X)} y \hat{f} \left( \frac{y}{\sqrt{\mu}} \right) dy.
$$

We denote $\phi$,

$$
\phi(y) = y\omega(y) - \frac{X}{t} y,
$$

and $y_0$ the unique minimum of $\phi''$. Figure 5 represents $\phi''$ on $[0, +\infty[$.

Figure 5: Profile of $\phi''$.

To estimate $I(t)$ we decompose $I(t)$ into four parts.

$$
I_1(t) = \frac{1}{\sqrt{\mu}} \int_{0}^{y_0} e^{-it\sqrt{\mu} \phi(y)} \hat{f} \left( \frac{y}{\sqrt{\mu}} \right) dy
$$

$$
= \frac{1}{\sqrt{\mu}} \int_{0}^{y_0} \frac{d}{dy} \left( \int_{y}^{y_0} e^{-it\sqrt{\mu} \phi(z)} dz \right) \hat{f} \left( \frac{y}{\sqrt{\mu}} \right) dy
$$

$$
= \frac{1}{\mu} \int_{0}^{y_0} \int_{y}^{y_0} e^{-it\sqrt{\mu} \phi(z)} dz \left( \hat{f} \right)' \left( \frac{y}{\sqrt{\mu}} \right) dy.
$$
Then, using Van der Corput’s Lemma (see [26]) and the fact that for \( z \in [y, y_0] \),
\(|\phi''(z)| \geq |\phi''(y)| \) and \(|\phi''(z)| \geq Cz\),
\[ |I_1(t)| \leq \frac{C}{\mu^{3/4} \sqrt{t}} \int_{y_0}^{y_0} \left| \frac{1}{\sqrt{y}} \left( \hat{f} \right)' \left( \frac{y}{\sqrt{\mu}} \right) \right| dy \]
\[ \leq \frac{C}{\sqrt{\mu} \sqrt{t}} \int_{y_0}^{+\infty} \left| \frac{1}{\sqrt{x}} \left( \hat{f} \right)'(\xi) \right| d\xi. \]

Furthermore, for \( M > y_0 \) large enough,
\[ I_2(t) = \frac{1}{\sqrt{\mu}} \int_{y_0}^{M} e^{-\frac{1}{\sqrt{\mu}} \phi(y)} \hat{f} \left( \frac{y}{\sqrt{\mu}} \right) dy \]
\[ = \frac{1}{\sqrt{\mu}} \int_{y_0}^{M} \frac{d}{dy} \left( \int_{y_0}^{y} e^{-\frac{1}{\sqrt{\mu}} \phi(z)} dz \right) \hat{f} \left( \frac{y}{\sqrt{\mu}} \right) dy \]
\[ = \int_{y_0}^{M} e^{-\frac{1}{\sqrt{\mu}} \phi(z)} \frac{dz}{\sqrt{\mu}} \hat{f} \left( \frac{M}{\sqrt{\mu}} \right) - \frac{1}{\mu} \int_{y_0}^{M} e^{-\frac{1}{\sqrt{\mu}} \phi(z)} dz \left( \hat{f} \right)' \left( \frac{y}{\sqrt{\mu}} \right) dy. \]

Then, using Van der Corput’s Lemma and the fact that for \( z \in [y_0, y] \),
\(|\phi''(z)| \geq |\phi''(y)| \) and \(|\phi''(z)| \geq Cz^{-\frac{3}{2}}\),
\[ |I_2(t)| \leq \left| \hat{f} \left( \frac{M}{\sqrt{\mu}} \right) \right| + \frac{C}{\mu^{3/4} \sqrt{t}} \int_{y_0}^{M} y^{\frac{3}{2}} \left( \hat{f} \right)' \left( \frac{y}{\sqrt{\mu}} \right) dy \]
\[ \leq \left| \hat{f} \left( \frac{M}{\sqrt{\mu}} \right) \right| + \frac{C \mu^{\frac{1}{2}}}{\sqrt{t}} \int_{0}^{+\infty} \xi^{\frac{3}{2}} \left( \hat{f} \right)'(\xi) d\xi. \]

Tending \( M \) to \(+\infty\) we get the result. The control for \( \xi < 0 \) is similar. \( \square \)

Therefore, in the linear case, we have also a resonance.

**Corollary 3.11.** Let \( P_0 \in H^3(\mathbb{R}) \cap W^{2,1}(\mathbb{R}) \) such that \( XP_0 \in H^3(\mathbb{R}) \) and let \( 0 < \mu \leq \mu_{\text{max}} \). Consider,
\[ \zeta_R(t, X) = -\frac{it}{2} \int_{\mathbb{R}} \xi \omega(\sqrt{\mu} \xi) \hat{P}_0(\xi) e^{-it\xi\omega(\sqrt{\mu} \xi)} e^{iX\xi} d\xi. \]

Then,
\[ |\zeta_R(t, \cdot)|_\infty \leq C(\mu_{\text{max}}) \sqrt{\frac{t}{\mu}} \left( |P_0|_{H^3} + |P_0|_{L^1} + |XP_0|_{H^3} \right), \]
and
\[ \lim_{t \to +\infty} \frac{1}{\sqrt{t}} \zeta_R(t, \cdot) \to C(P_0) > 0. \]
Proof. We take \( \hat{f}(\xi) = \xi \omega(\sqrt{\mu} \xi) \hat{P}_0(\xi) \). Then,
\[
\left| \left( \hat{f} \right)'(\xi) \right| \leq (1 + \sqrt{\mu} |\xi|) \left| \hat{P}_0(\xi) \right| + |\xi| \left| (\hat{P}_0)'(\xi) \right|,
\]
and the first inequality follows from the previous Proposition. For the second inequality, we use a stationary phase approximation. We denote \( \phi(\xi) = \xi \omega(\xi) \). Let \( \xi_0 > 0 \), such that \( |\xi_0 \hat{P}_0(\xi_0)| = |\xi \hat{P}_0|_{L^\infty} \), and \( X \mu < 0 \), such that \( \phi'(\sqrt{\mu} \xi_0) = X \mu \). Then, we have,
\[
\lim_{t \to +\infty} \frac{1}{\sqrt{t}} |\zeta_R(t, tX_\mu) + \frac{t}{2} P_0'(\cdot - t)|_{H^s} \leq \sqrt{\mu} t^2 |\nabla P_0|_{H^{s+2}}.
\]
Hence, by tending formally \( \mu \) to 0, we rediscover the result we get in the shallow water case (section 3.1).

Remark 3.12. Notice that for all \( s \in \mathbb{R} \),
\[
\left| \zeta_R(t, \cdot) + \frac{t}{2} P_0'(\cdot - t) \right|_{H^s} \leq C |\xi| |\phi''(\xi_0 \sqrt{\mu})| \sqrt{t} \mu |\xi_0 \hat{P}_0(\xi_0)| \sqrt{\mu} |\xi_0 \sqrt{\mu}|.
\]
Hence, contrary to the shallow water case, we can not hope a linear amplification with respect to the time \( t \). Corollary 3.11 also shows that the factor of amplification of \( \sqrt{t} \) is optimal.
Hence, we observe that in intermediate water depths, a resonance can occur but with a factor of amplification of $\sqrt{t}$ and not $t$. But we saw that in the shallow water case, the resonance occurs for a moving pressure with a speed equal to 1, $P(t, X) = P_0(X - t)$. We wonder if this pressure can create a resonance. The following Proposition shows that the previous pressure can create a resonance with a factor of amplification of $t^\frac{1}{3}$.

**Proposition 3.14.** Let $0 < \mu \leq \mu_{\text{max}}$. Let $P_0 \in L^1(\mathbb{R}) \cap H^1(\mathbb{R})$ such that $\widehat{P_0}(0) \neq 0$. Consider, the amplitude $\zeta_R$ created by $P(t, X) = P_0(X - t)$,

$$
\zeta_R(t, \xi) = -\frac{i}{2} \xi(\sqrt{\mu} \xi) \widehat{P_0}(\xi) e^{-it\xi} \int_{-t}^{0} e^{it\xi(\omega(\sqrt{\mu} \xi)-1)} ds.
$$

Then,

$$
|\zeta_R(t, \cdot)|_{\infty} \leq C(\mu_{\text{max}}) \left( \frac{t^{\frac{1}{3}}}{\mu} |P_0|_{L^1} + \mu^{\frac{1}{2}} |P_0|_{H^1} \right).
$$

Furthermore, if $XP_0 \in H^1(\mathbb{R})$,

$$
\lim_{t \to \infty} \frac{1}{t^{\frac{1}{4}}} |\zeta_R(t, \cdot)|_{\infty} \geq \frac{C}{\mu^{\frac{1}{2}}} |\widehat{P_0}(0)|.
$$

**Proof.** We have

$$
\zeta_R(t, X) = -\frac{i}{2} \int_{\mathbb{R}} \xi \omega(\sqrt{\mu} \xi) \widehat{P_0}(\xi) e^{-it\xi} \int_{-t}^{0} e^{it\xi(\omega(\sqrt{\mu} \xi)-1)} e^{iX \xi} dsd\xi
$$

$$
= -\frac{i}{2} \frac{1}{\mu} \int_{\mathbb{R}} \xi \omega(\xi) \widehat{P_0} \left( \frac{\xi}{\sqrt{\mu}} \right) e^{-i\frac{t}{\sqrt{\mu}} \xi} \int_{-t}^{0} e^{i\frac{t}{\sqrt{\mu}} \xi(\omega(\xi)-1)} e^{iX \xi} dsd\xi.
$$

We decompose this integral into 3 parts.

$$
|I_1(t)| = \left| \frac{1}{\mu} \int_{|\xi| \leq t^{-\frac{1}{3}}} \xi \omega(\xi) \widehat{P_0} \left( \frac{\xi}{\sqrt{\mu}} \right) e^{-i\frac{t}{\sqrt{\mu}} \xi} \int_{-t}^{0} e^{i\frac{t}{\sqrt{\mu}} \xi(\omega(\xi)-1)} e^{iX \xi} d\xi ds \right|
$$

$$
\leq \frac{t^{\frac{1}{3}}}{\mu} |\widehat{P_0}|_{\infty}.
$$

Furthermore, since $|\omega(\xi) - 1| \geq C\xi^2$ for $0 \leq |\xi| \leq 1$, we have

$$
|I_2(t)| = \left| \frac{1}{\sqrt{\mu}} \int_{t^{-\frac{1}{3}} \leq |\xi| \leq 1} \xi \omega(\xi) \widehat{P_0} \left( \frac{\xi}{\sqrt{\mu}} \right) e^{-i\frac{t}{\sqrt{\mu}} \xi} \int_{-t}^{0} e^{i\frac{t}{\sqrt{\mu}} \xi(\omega(\xi)-1)} e^{iX \xi} d\xi ds \right|
$$

$$
= \left| \frac{1}{\sqrt{\mu}} \int_{t^{-\frac{1}{3}} \leq |\xi| \leq 1} e^{iX \xi} \omega(\xi) \omega(\xi) - 1 \widehat{P_0} \left( \frac{\xi}{\sqrt{\mu}} \right) \left( e^{-i\frac{t}{\sqrt{\mu}} \xi} - e^{-i\frac{t}{\sqrt{\mu}} \omega(\xi)} \right) d\xi \right|
$$

$$
\leq C \frac{t^{\frac{1}{3}}}{\sqrt{\mu}} |\widehat{P_0}|_{\infty}.
$$
Finally,

\[
| I_3(t) | = \left| \frac{1}{\mu} \int_{|\xi| \geq 1} \xi \omega(\xi) \hat{P}_0 \left( \frac{\xi}{\sqrt{\mu}} \right) e^{-i \frac{\sqrt{\mu}}{2} \xi} \int_{-t}^{0} e^{i \frac{\sqrt{\mu}}{2} \xi (\omega(\sqrt{\mu} \xi) - 1)} e^{i \frac{\sqrt{\mu}}{2} \xi} \, d\xi \, ds \right|
\]

\[
= \left| \frac{1}{\sqrt{\mu}} \int_{|\xi| \geq 1} e^{i \frac{\sqrt{\mu}}{2} \xi} \omega(\xi) \hat{P}_0 \left( \frac{\xi}{\sqrt{\mu}} \right) \left( e^{-i \frac{\sqrt{\mu}}{2} \xi} - e^{-i \frac{\sqrt{\mu}}{2} \xi} \omega(\xi) \right) \, d\xi \right|
\]

\[
\leq C \int_{|\xi| \geq \frac{1}{\sqrt{\mu}}} \left| \hat{P}_0(\xi) \right| d\xi,
\]

\[
\leq C \mu^{\frac{1}{2}} |P_0|_{H^1},
\]

and the first inequality follows. For the second inequality, we use a stationary phase approximation. We denote \( \phi(\xi) := \xi (\omega(\xi) - 1) \). We recall that \( \phi(\xi) = -\frac{1}{6} \xi^3 + o(\xi^3) \). Using a generalization of Morse Lemma at the order 3, there exists \( a > 0 \) and \( \psi \in C^\infty([-a, a]) \), such that for all \(|y| \leq a|y| \leq a|y| \)

\[
\phi(\psi(y)) = \frac{1}{6} \phi'''(0) y^3, \psi(0) = 0 \text{ and } \psi'(0) = 1.
\]

Then,

\[
I(s) := \int_{\mathbb{R}} \omega(\xi) \xi \hat{P}_0 \left( \frac{\xi}{\sqrt{\mu}} \right) e^{i \frac{\sqrt{\mu}}{2} \xi (\omega(\xi) - 1)} \, d\xi
\]

\[
= \int_{-a}^{a} \psi'(y) \omega(\psi(y)) \psi(y) \hat{P}_0 \left( \frac{\psi(y)}{\sqrt{\mu}} \right) e^{i \frac{\sqrt{\mu}}{2} \psi(y)^3} \, dy + o(s^{-\frac{2}{3}})
\]

\[
= \left( \frac{6\sqrt{\mu}}{s} \right)^{\frac{3}{2}} \hat{P}_0(0) \int_{z \in \mathbb{R}} ze^{iz^3} \, dz + o(s^{-\frac{2}{3}}).
\]

Therefore,

\[
\lim_{t \to +\infty} \left| \frac{1}{t^\frac{3}{2}} \zeta_R(t, t) \right| = \frac{C}{\mu^{\frac{3}{2}}} \left| \hat{P}_0(0) \right|.
\]

Then, in intermediate water depths, a traveling pressure with a constant speed equal to 1 is also resonant, but it takes more time to obtain a significant elevation of the level of the sea. In the following, we compute numerically some solutions. We take \( P_0(X) = -e^{-X^2} \) and \( \mu = 1 \). The figure 6 is the evolution of a water wave because of a pressure of the form (57). The solid curve is the wave and the dashed curve is the moving pressure. The figure 7 is the evolution is a water wave when the pressure moves with a speed 1. The figure 8 compares the evolution of the maximum of the resonant case and the case when the speed is equal to 1.
Figure 6: Evolution of the surface elevation $\zeta_R$ in (58) (solid line) because of a resonant moving pressure $P$ in (57) (dashed line).

Figure 7: Evolution of the surface elevation $\zeta_R$ in (59) (solid line) because of a moving pressure $P$ with a speed of 1 (dashed line).

Figure 8: Evolution of the maximum of $\zeta_R$ in the resonant case (solid line) and the moving pressure with a speed of 1 (dashed line).

Remark 3.15. In our work, we neglect the Coriolis effect. However, in view of the duration of the meteotsunami phenomenon, it would be more realistic to consider it. It will be studied in a future work ([22]) based on the work of A. Castro and D. Lannes ([8] and [9]).
A The Laplace problem

A.1 Formulation of the problems

In this part, we recall some results of Chapter 2 in [19] and Section 4 of [16] and study the Laplace problem (17) in the Beppo Levi spaces. We suppose that the parameters \( \varepsilon, \mu \) and \( \beta \) satisfy Condition (18). The Laplace problem (17) is

\[
\begin{cases}
\Delta_{X,z}^\mu \Phi^B = 0 \text{ in } \Omega_t, \\
\Phi^B|_{z=\varepsilon\zeta} = 0, \quad \sqrt{1 + \beta^2|\nabla b|^2}\partial_n \Phi^B|_{z=-1+\beta b} = B,
\end{cases}
\]

where \( B = \partial_t b \). Notice that \( \partial_n \) is here the upward conormal derivative

\[
\partial_n \Phi^B = n \cdot \left( \begin{array}{c}
\sqrt{\mu I_d} \\
0
\end{array} \right) \nabla_{X,z}^\mu \Phi^B|_{z=-1+\beta b}.
\]

For the study of (15) we refer to [19]. We work with Beppo Levi spaces. We refer to [13] and Proposition 2.3 in [19] for general results about these spaces. We recall that, for \( s \geq 0 \),

\[
\dot{H}^s(\mathbb{R}^d) := \left\{ \psi \in L^2_{\text{loc}}(\mathbb{R}^d), \nabla \psi \in H^{s-1}(\mathbb{R}^d) \right\},
\]

that \( \dot{H}^1(\mathbb{R}^d \times (-1,0))/\mathbb{R} \) is a Hilbert space for the norm \( |\nabla_{X,z}\cdot|_{L^2} \) and that \( H^s(\mathbb{R}^d) \) is dense in \( \dot{H}^s(\mathbb{R}^d) \). In order to fix the domain, we transform the problem into variable coefficients elliptic problem on \( S := \mathbb{R}^d \times (-1,0) \) (the flat strip). We introduce a regularizing diffeomorphism. Let \( \theta : \mathbb{R} \to \mathbb{R} \) be a positive, compactly supported, smooth, even function equal to one near 0. For \( \delta > 0 \) we define

\[
\Sigma := S \quad \text{mapped to} \quad \Omega \quad \text{via} \quad (X,z) \mapsto (X,z + \sigma(X,z)),
\]

and

\[
\sigma(X,z) := [\theta(\delta z|D|)\varepsilon\zeta(X) - \theta(\delta(z + 1)|D|)\beta b(X)] z + \varepsilon\theta(\delta z|D|)\zeta(X).
\]

We omit the dependence on \( t \) here. In the following, we denote by \( M \) a constant of the form

\[
M = C \left( \frac{1}{h_{\text{min}}}, \mu_{\max}, \varepsilon |\zeta|_{H^{0+1}(\mathbb{R}^d)}, \beta |b|_{H^{0+1}(\mathbb{R}^d)} \right).
\]

In order to study the Laplace problems in \( S \), we have to treat the regularity in the direction \( X \) and in the direction \( z \) one at a time. We introduce the following spaces.

**Definition A.1.** Let \( s \in \mathbb{R} \). We define \( (H^{s,1}(S),|\cdot|_{s,1}) \) and \( (H^{s,0}(S),|\cdot|_{0,1}) \)

\[
H^{s,1}(S) := L^2_zH^s_X(S) \cap H^1_zH^{s-1}_X(S), \text{ and } |u|^2_{H^{s,1}} = |\Lambda^s u|^2_{L^2} + |\Lambda^{s-1}\partial_z u|^2_{L^2},
\]

37
and

\[ H^{s,0}(S) := L^2 H^s_X(S), \text{ and } |u|_{H^{s,0}} = |\Lambda^s u|_{L^2}. \]

**Remark A.2.** We have the following embedding (see Proposition 2.10 in [19]) for \( s \in \mathbb{R} \)

\[ H^{s+\frac{1}{2}, 1}(S) \subset L^\infty_z H^s_X(S). \]

In the following, we fix \( \delta > 0 \) small enough. Then, we can transform our equations. We denote \( \phi^B := \Phi^B \circ \Sigma \) and we get that

\[ \begin{cases}
\nabla_{X,z}^B \cdot P(\Sigma) \nabla_{X,z}^B \phi^B = 0 \text{ in } S, \\
\phi^B \big|_{z=0} = 0, \quad \partial_n \phi^B \big|_{z=-1} = B,
\end{cases} \quad (60) \]

with \( P(\Sigma) = I_{d+1 \times d+1} + Q(\Sigma) \) and

\[ Q(\Sigma) := \begin{pmatrix}
\partial_\sigma I_{d \times d} & -\sqrt{-\mu} \nabla_X \sigma \\
-\sqrt{-\mu} \nabla_X \sigma^t & -\partial_\sigma \sigma + \mu |\nabla X \sigma|^2 \end{pmatrix}. \quad (61) \]

Notice that \( P(\Sigma) \) is well defined if \( \delta \) is small enough and that \( \partial_n := e_z \cdot (P(\Sigma) \nabla_{X,z}^B \cdot) \).

We have to know the regularity of \( P(\Sigma) \). It is the subject of the next proposition (see Proposition 2.18 and Lemma 2.26 in [19]).

**Proposition A.3.** Let \( t_0 > \frac{d}{2}, \zeta, b \in H^{t_0+1}(\mathbb{R}^d) \) such that Condition (19) is satisfied. Then,

\[ |Q(\Sigma)|_{H^{t_0+\frac{1}{2}, 1} L^\infty_z L^\infty_X(S)}, |\Lambda^{t_0} Q(\Sigma)|_{L^\infty_z L^\infty_X(S)}, |\Lambda^{t_0-1} \partial_z Q(\Sigma)|_{L^\infty_z L^\infty_X(S)} \leq M. \]

Furthermore, \( P(\Sigma) \) is coercive. There exist a constant \( k(\Sigma) > 0 \) such that \( \frac{1}{k(\Sigma)} \leq M \) and

\[ \forall \Theta \in \mathbb{R}^{d+1}, \forall (X, z) \in S, P(\Sigma)(X, z) \Theta \cdot \Theta \geq k(\Sigma) |\Theta|^2. \]

We have a variational formulation of the Laplace problem (60). We introduce

\[ H^1_{0, surf}(S) := \overline{D(S \cup \{ z = -1 \})}^{1|H^1(S)} = \overline{D(S \cup \{ z = -1 \})}^{1|H^1(S)}. \]

See Proposition 2.3 (3) in [19] for a proof of the second equality.

**Definition A.4.** Let \( B \in H^{-\frac{1}{2}}(\mathbb{R}^d) \). We say that \( \phi \in H^1_{0, surf}(S) \) is a variational solution of (60) if for all \( \varphi \in H^1_{0, surf}(S) \),

\[ \int_S \nabla_{X,z}^B \phi \cdot P(\Sigma) \nabla_{X,z}^B \varphi = -\langle B, \varphi \big|_{z=-1} \rangle_{H^{-\frac{1}{2}} \rightarrow H^{\frac{1}{2}}}. \]

We have also the following trace result that we can prove easily using a density argument.

38
Lemma A.5. For all $\varphi \in H_{0,\text{surf}}^1(S)$ we have
\[
\left| \sqrt{1 + \sqrt{\mu|D|}} \varphi|_{z=-1} \right|_{L^2(\mathbb{R}^d)} \leq 2 \left| \nabla_{X,z}^\mu \varphi \right|_{L^2(S)}.
\]
We can now establish existence and uniqueness results.

Proposition A.6. Let $B \in H^{-\frac{1}{2}}(\mathbb{R}^d)$ and $\zeta, b \in H^{t_0+1}(\mathbb{R}^d)$ satisfying (19). Then, the problem (60) has a unique variational solution named $B^b \in H_{0,\text{surf}}^1(S)$.

Proof. Because $S$ is bounded in the direction $z$ and that $P(\Sigma)$ is uniformly coercive, the results follow from the Lax-Milgram theorem and Poincaré inequality in $H_{0,\text{surf}}^1(S)$. □

In this part, we study the Laplace problem (17), but the same work can be done for (15) (see Chapter 2 in [19]) and we can transform (17) as follows
\[
\begin{cases}
\nabla_{X,z} \cdot P(\Sigma) \nabla_{X,z} \phi^S = 0 \text{ in } S, \\
\phi^S|_{z=0} = \psi, \quad \partial_n \phi^S|_{z=-1} = 0.
\end{cases}
\]

(62)

In the following, we denote by $\psi^b$, the unique solution of (62).

A.2 Regularity estimates of the solutions

In this part, we give some regularity estimates.

Theorem A.7. Let $t_0 > \frac{d}{2}$ and $0 \leq s \leq t_0 + \frac{1}{2}$. Let $\zeta, b \in H^{t_0+1}(\mathbb{R}^d)$ be such that Condition (19) is satisfied. Then, for all $B \in H^{s-\frac{1}{2}}(\mathbb{R}^d)$, we have
\[
\left| \Lambda^s \nabla_{X,z}^\mu B^b \right|_{L^2(S)} \leq M \left| \frac{1}{\sqrt{1 + \sqrt{\mu|D|}}} B \right|_{H^s}.
\]

Futhermore, if $s \geq \max(0, 1 - t_0)$, we have
\[
\left| \Lambda^{s-1} \partial_z \nabla_{X,z}^\mu B^b \right|_{L^2(S)} \leq M \left| \frac{1}{\sqrt{1 + \sqrt{\mu|D|}}} B \right|_{H^s}.
\]

Proof. Let $\delta > 0$ and $\chi$ be a smooth compactly supported real function that is equal to 1 near 0. We introduce the smoothing operator $\Lambda_\delta^s := \chi(\delta \Lambda) \Lambda^s$. We know that $B^b \in H_{0,\text{surf}}^1(S)$. Therefore, using $\Lambda_\delta^{2s} B^b$ a test function, we have
\[
\int_S \nabla_{X,z}^\mu B^b \cdot P(\Sigma) \nabla_{X,z}^\mu \Lambda_\delta^{2s} B^b = - \int_{\mathbb{R}^d} B(\Lambda_\delta^{2s} B^b)|_{z=-1}.
\]

Since $P(\Sigma)$ is symmetric, $\Lambda_\delta^s$ commutes with $\nabla_{X,z}^\mu$ and is independent of $z$ we obtain that
\[
\int_{S} P(\Sigma) \Lambda_{\delta}^{s} \nabla_{X,z}^{\mu} B^{\delta} \cdot \nabla_{X,z}^{\mu} \Lambda_{\delta}^{s} B^{\delta} = - \int_{S} [\Lambda_{\delta}^{s}, Q(\Sigma)] \nabla_{X,z}^{\mu} B^{\delta} \cdot \nabla_{X,z}^{\mu} \Lambda_{\delta}^{s} B^{\delta}
\]

\[
- \int_{R^{d}} \frac{\Lambda_{\delta}^{s}}{\sqrt{1 + \sqrt{\mu}|D|}} B \left( \sqrt{1 + \sqrt{\mu}|D|} \Lambda_{\delta}^{s} B^{\delta} \right) |z = -1.
\]

Then by coercivity of \(P(\Sigma)\) and trace inequality A.5

\[
k(\Sigma) \left| \Lambda_{\delta}^{s} \nabla_{X,z}^{\mu} B^{\delta} \right|_{L^{2}(S)}^{2} \leq \left| [\Lambda_{\delta}^{s}, Q(\Sigma)] \nabla_{X,z}^{\mu} B^{\delta} \right|_{L^{2}(S)} \left| \Lambda_{\delta}^{s} \nabla_{X,z}^{\mu} B^{\delta} \right|_{L^{2}(S)} + 2 \left| \Lambda_{\delta}^{s} \nabla_{X,z}^{\mu} B^{\delta} \right|_{L^{2}(S)} \left| \frac{\Lambda_{\delta}^{s}}{\sqrt{1 + \sqrt{\mu}|D|}} B \right|_{L^{2}}.
\]

and

\[
k(\Sigma) \left| \Lambda_{\delta}^{s} \nabla_{X,z}^{\mu} B^{\delta} \right|_{L^{2}(S)} \leq \left| [\Lambda_{\delta}^{s}, Q(\Sigma)] \nabla_{X,z}^{\mu} B^{\delta} \right|_{L^{2}(S)} + 2 \left| \frac{\Lambda_{\delta}^{s}}{\sqrt{1 + \sqrt{\mu}|D|}} B \right|_{L^{2}}.
\]

We have to distinguish two cases.

**a) \(0 \leq s \leq t_{0}\):**

The commutator estimate C.6 (with \(T_{0} = t_{0}\)) and Proposition A.3 give

\[
k(\Sigma) \left| \Lambda_{\delta}^{s} \nabla_{X,z}^{\mu} B^{\delta} \right|_{L^{2}(S)} \leq C \left| Q(\Sigma) \right|_{L^{\infty}H^{q_{0}}(S)} \left| \Lambda_{\delta}^{s-q} \nabla_{X,z}^{\mu} B^{\delta} \right|_{L^{2}(S)} + 2 \left| \frac{\Lambda_{\delta}^{s}}{\sqrt{1 + \sqrt{\mu}|D|}} B \right|_{L^{2}}
\]

\[
\leq M \left| \Lambda_{\delta}^{s-q} \nabla_{X,z}^{\mu} B^{\delta} \right|_{L^{2}(S)} + 2 \left| \frac{\Lambda_{\delta}^{s}}{\sqrt{1 + \sqrt{\mu}|D|}} B \right|_{L^{2}}
\]

for some \(\varepsilon > 0\) small enough \((\varepsilon < t_{0} - \frac{d}{2})\). Using a finite induction on \(s\) and taking the limit when \(\delta\) goes to 0, the first inequality follows. For the second estimate, we only need to give a control of \(\partial_{\varepsilon}^{2} B^{\delta}\). We use Equation (60) satisfied by \(B^{\delta}\). We express \(P(\Sigma)\) as

\[
P(\Sigma) := \begin{pmatrix}
(1 + a(X, z))I_{d \times d} & q(X, z) \\
q^{t}(X, z) & 1 + q_{d+1}(X, z)
\end{pmatrix}.
\]

A simple computation gives

\[
(1 + q_{d+1}) \partial_{\varepsilon}^{2} B^{\delta} = - \sqrt{\mu} \nabla_{X} \cdot ((1 + a) \sqrt{\mu} \nabla_{X} B^{\delta}) - \sqrt{\mu} \nabla_{X} \cdot (\partial_{\varepsilon} B^{\delta} \cdot q) - \sqrt{\mu} \partial_{\varepsilon} q \cdot \nabla_{X} B^{\delta} - \sqrt{\mu} \partial_{\varepsilon} \nabla_{X} B^{\delta} \cdot q - \partial_{\varepsilon} q_{d+1} \partial_{\varepsilon} B^{\delta}.
\]
We have \( a, q, q_{d+1} \in L_\infty^\infty(S) \), \( \partial_z q, \partial_z q_{d+1} \in L_\infty^{s-1}(S) \) and \( 1 + q_{d+1} \geq k(\Sigma) \). Then, since \( s \geq 1 - t_0 \) and \( \nabla_x B^g \in H^{s-1}(S) \), by the product estimates C.3 and C.4 (with \( T_0 = t_0 \)), we obtain the result.

\( b) \ t_0 \leq s \leq t_0 + \frac{1}{2} : \)

The commutator estimate C.7 (with \( T_0 = t_0 + \frac{1}{2} \) and \( T_1 > \frac{1}{2} \)) and Proposition A.3 give

\[
\begin{align*}
\|k(\Sigma) |A^\delta \nabla_{X,z}^\mu B^g| \|_{L^2(S)} &\leq M \left[ \left| A^\delta^{s+\frac{1}{2}-t_1} \nabla_{X,z}^\mu B^g \right|_{L^2(S)} + \left| A^\delta^{s-1+\frac{1}{2}-t_1} \partial_z \nabla_{X,z}^\mu B^g \right|_{L^2(S)} + 2 \left| \frac{A^\delta}{\sqrt{1 + \mu |D|}} B^g \right|_{L^2} \right].
\end{align*}
\]

We denote \( \varepsilon := \frac{1}{2} - t_1 \). We obtain the first inequality for \( t_0 \leq s \leq t_0 + \varepsilon \) thanks to the previous case. Furthermore, we saw that

\[
(1 + q_{d+1}) \partial_z^2 B^g = -\sqrt{\mu} \nabla_X^\mu \cdot (1 + a) \sqrt{\mu} \nabla_X B^g - \sqrt{\mu} \partial_z q \cdot \nabla_X B^g \cdot \sqrt{\mu} - \partial_z^2 B^g.
\]

We have \( a, q, q_{d+1} \in L_\infty^\infty(S) \), \( \partial_z q, \partial_z q_{d+1} \in L_\infty^{s-1}(S) \) and \( 1 + q_{d+1} \geq k(\Sigma) \). Then, since \( s \geq 1 - t_0 \) and \( \nabla_x B^g \in L_\infty^{s-1}(S) \), by the product estimates C.3 and C.5 (with \( T_0 = t_0 \)), and we obtain the second inequality for \( t_0 \leq s \leq t_0 + \varepsilon \). Using a finite induction, we obtain the first and the second inequality.

\[ \Box \]

**B The Dirichlet-Neumann and the Neumann-Neumann operators**

We refers to Chapter 3 of [19] for more details about the Dirichlet-Neumann operator and Section 3 in [16] for the study of these operators.

**B.1 Main properties**

We can express the Neumann-Neumann operator with the formalism of the previous section. For \( \psi \in H^3_\#(\mathbb{R}^d) \) and \( B \in H^3_\#(\mathbb{R}^d) \) we have

\[
G_{\mu} [\varepsilon \zeta, \beta b](\psi) = \left( e_z \cdot P(\Sigma) \nabla_{X,z}^\mu \psi^b \right)_{|z=0},
\]

and

\[
G_{\mu}^{NN} [\varepsilon \zeta, \beta b](B) = \left( e_z \cdot P(\Sigma) \nabla_{X,z}^\mu B^g \right)_{|z=0}.
\]
Remark B.1. Notice that (see Proposition 3.2 in [16])

\[
\frac{1}{\mu} G_\mu[0, 0](\psi) = |D|^{2} \tanh(\sqrt{\mu}|D|) \psi \quad \text{and} \quad G_\mu^{\text{NN}}[0, 0](B) = \frac{1}{\cosh(\sqrt{\mu}|D|)} B.
\]

We recall that $G_\mu[\varepsilon \zeta, \beta b]$ is symmetric and maps continuously $\dot{H}^{\frac{1}{2}}(\mathbb{R}^d)$ into $\left(\dot{H}^{\frac{1}{2}}(\mathbb{R}^d)/\mathbb{R}\right)'$ (see Paragraph 3.1. in [19]). We need an extension result in $H^{-\frac{1}{2}}(\mathbb{R}^d)$ in order to give a dual formulation of the Neumann-Neumann operator.

Definition B.2. Let $\varphi \in H^{-\frac{1}{2}}(\mathbb{R}^d)$. We define $\varphi^\#$ as

\[
\varphi^\# = \frac{\sinh((z + 1)\sqrt{\mu}|D|)}{\sinh(\sqrt{\mu}|D|)} \varphi.
\]

Remark B.3. $\varphi^\#$ satisfies weakly

\[
\begin{aligned}
\Delta_{X,z}^\mu \varphi^\# &= 0 \quad \text{in } S, \\
\varphi^\#|_{z=0} &= \varphi, \quad \varphi^\#|_{z=-1} = 0.
\end{aligned}
\]

We can prove easily regularity results for $\varphi^\#$ similar to $\varphi^h$.

Proposition B.4. Let $s \geq 0$ and $\varphi \in H^{s-\frac{1}{2}}(\mathbb{R}^d)$. Then,

\[
\left| \Lambda^{s-1}\nabla_{X,z}^\mu \varphi^\# \right|_{L^2(S)} + \frac{1}{\sqrt{\mu}} \left| \Lambda^{s-2} \partial_z \nabla_{X,z}^\mu \varphi^\# \right|_{L^2(S)} \leq C \left| 1 + \sqrt{\mu}|D| \varphi \right|_{H^{s-1}}.
\]

We can now give a dual formulation of the Neumann-Neumann operator. We introduce the Dirichlet-Dirichlet operator, for $\psi \in \dot{H}^{\frac{1}{2}}(\mathbb{R}^d)$,

\[
G_{\mu}^{\text{DD}}[\varepsilon \zeta, \beta b](\psi) := \left(\psi^h\right)|_{z=-1}.
\]

The following result is Proposition 3.3 in [16].

Proposition B.5. Let $t_0 > \frac{d}{2}$, $B \in H^{-\frac{1}{2}}(\mathbb{R}^d)$ and $\zeta, b \in H^{t_0+1}(\mathbb{R}^d)$ such that (19) is satisfied. $G_{\mu}^{\text{NN}}[\varepsilon \zeta, \beta b](\cdot)$ can be extended to $H^{-\frac{1}{2}}(\mathbb{R}^d)$ with the dual formulation

\[
G_{\mu}^{\text{NN}}[\varepsilon \zeta, \beta b](B) = \left\{ H^{\frac{1}{2}}(\mathbb{R}^d) \rightarrow \mathbb{R}
\begin{array}{c}
\varphi \\
\rightarrow \int_S P(\Sigma) \nabla_{X,z}^\mu B^a \cdot \nabla_{X,z}^\mu \varphi^\#.
\end{array}
\right.
\]

Furthermore, the adjoint of $G_{\mu}^{\text{NN}}[\varepsilon \zeta, \beta b]$ is $G_{\mu}^{\text{DD}}[\varepsilon \zeta, \beta b]$. For all $B \in H^{-\frac{1}{2}}(\mathbb{R}^d)$ and $\varphi \in \dot{H}^{\frac{1}{2}}(\mathbb{R}^d)$,

\[
(G_{\mu}^{\text{NN}}[\varepsilon \zeta, \beta b](B), \varphi)_{H^{-\frac{1}{2}} - H^{\frac{1}{2}}} = (B, G_{\mu}^{\text{DD}}[\varepsilon \zeta, \beta b](\varphi))_{H^{-\frac{1}{2}} - H^{\frac{1}{2}}}.
\]
In order to study shape derivatives of the Dirichlet-Neumann and the Neumann-Neumann operators, we have to introduce the Neumann-Dirichlet operator. For \( B \in H^{-\frac{1}{2}}(\mathbb{R}^d) \), we define

\[
G_{\mu}^{ND}[\varepsilon \zeta, \beta b](B) := (B^2)|_{z=-1}.
\]  

The following result is a symmetry property and a dual formulation of the Neumann-Dirichlet operator.

**Proposition B.6.** Let \( B \in H^{-\frac{1}{2}}(\mathbb{R}^d) \) and \( \zeta, b \in H^{t_0+1}(\mathbb{R}^d) \) such that (19) is satisfied. \( G_{\mu}^{ND}[\varepsilon \zeta, \beta b](B) \) can be view as

\[
G_{\mu}^{ND}[\varepsilon \zeta, \beta b](\cdot) \quad \text{is a negative symmetric operator and, for all } B_1, B_2 \text{ in } H^{-\frac{1}{2}}(\mathbb{R}^d),
\]

\[
(G_{\mu}^{ND}[\varepsilon \zeta, \beta b](B_1), B_2)_{H^{-1/2}} = (G_{\mu}^{ND}[\varepsilon \zeta, \beta b](B_2), B_1)_{H^{-1/2}}.
\]

We refer to Proposition 3.3 in [16] for a proof of this result.

**B.2 Regularity Estimates**

In this part we give some controls the Neumann-Neumann operators.

**Proposition B.7.** Let \( t_0 > \frac{d}{2} \), \( 0 \leq s \leq t_0 + \frac{1}{2} \) and \( \zeta, b \in H^{t_0+1}(\mathbb{R}^d) \) such that Condition (19) is satisfied. Then, \( G_{\mu}^{NN}[\varepsilon \zeta, \beta b] \) maps continuously \( H^{s+\frac{1}{2}}(\mathbb{R}^d) \) into itself

\[
|G_{\mu}^{NN}[\varepsilon \zeta, \beta b](B)|_{H^{s+\frac{1}{2}}} \leq M |B|_{H^{s+\frac{1}{2}}}. \]

**Proof.** This Proposition follows by Theorem A.7 and by using the same arguments that Theorem 3.15 in [19].

We can extend these estimates to \( w[\varepsilon \zeta, \beta b] \), the vertical velocity at the surface and to \( V[\varepsilon \zeta, \beta b] \) the horizontal velocity at the surface. These operators appear naturally when we differentiate the Dirichlet-Neumann and the Neumann-Neumann operator with respect to the surface \( \zeta \). We define

\[
w[\varepsilon \zeta, \beta b] := \left\{ \begin{array}{l}
\hat{H}^{s+\frac{1}{2}}(\mathbb{R}^d) 	imes H^{-\frac{1}{2}}(\mathbb{R}^d) \to H^{s+\frac{1}{2}}(\mathbb{R}^d) \\
(\psi, B) \to G_{\mu}^{ND}[\varepsilon \zeta, \beta b](\psi) + \mu G_{\mu}^{NN}[\varepsilon \zeta, \beta b](B) + \varepsilon \mu \nabla \zeta \cdot \nabla \psi \\
+ \frac{1}{1 + \varepsilon^2 \mu |\nabla \zeta|^2},
\end{array} \right.
\]  

(69)
Let \( \tilde{\nu} \) be the bottom and to estimate \( \tilde{\nu} \) as well. In the same way, we can extend also these estimates to \( \tilde{\nu} \). Finally, we can give some regularity estimates for \( \tilde{\nu} \).

**Proposition B.8.** Let \( t_0 > \frac{d}{2} \), \( 0 \leq s \leq t_0 + \frac{1}{2} \) and \( \zeta, b \in H^{t_0+1}(\mathbb{R}^d) \) such that Condition (19) is satisfied. Then, \( w[\zeta, \beta b] \) maps continuously \( H^{s+\frac{1}{2}}(\mathbb{R}^d) \times H^{s-\frac{1}{2}}(\mathbb{R}^d) \) into \( H^{s-\frac{1}{2}}(\mathbb{R}^d) \)

\[
|w[\zeta, \beta b](\psi, B)|_{H^{s-\frac{1}{2}}} \leq M \left( \mu \frac{2}{\beta} |B|_{H^s} + \mu |B|_{H^{s-\frac{1}{2}}} \right).
\]

Furthermore, if \( 1 \leq s \leq t_0 \), \( w[\zeta, \beta b] \) maps continuously \( H^{s+\frac{1}{2}}(\mathbb{R}^d) \times H^{s-\frac{1}{2}}(\mathbb{R}^d) \) into \( H^{s-\frac{1}{2}}(\mathbb{R}^d) \)

\[
|w[\zeta, \beta b](\psi, B)|_{H^{s-\frac{1}{2}}} \leq M \mu \left( \frac{2}{\beta} |B|_{H^{s-\frac{1}{2}}} + |B|_{H^{s-\frac{1}{2}}} \right).
\]

Finally, we have the same continuity result for \( \tilde{\nu}[\zeta, \beta b] \).

We can also give some regularity estimates for \( G_{\mu}^{DD}[\zeta, \beta b] \) since it is the adjoint of \( G_{\mu}^{NN}[\zeta, \beta b] \).

**Proposition B.9.** Let \( t_0 > \frac{d}{2} \), \( 0 \leq s \leq t_0 + \frac{1}{2} \) and \( \zeta, b \in H^{t_0+1}(\mathbb{R}^d) \) such that Condition (19) is satisfied. Then, \( G_{\mu}^{DD}[\zeta, \beta b] \) maps continuously \( H^{s+\frac{1}{2}}(\mathbb{R}^d) \) into itself

\[
|\nabla G_{\mu}^{DD}[\zeta, \beta b](\psi)|_{H^{s-\frac{1}{2}}} \leq M |\nabla \psi|_{H^{s-\frac{1}{2}}}.
\]

Finally, we can give some regularity estimates for \( G_{\mu}^{ND}[\zeta, \beta b] \).

**Proposition B.10.** Let \( t_0 > \frac{d}{2} \), \( 0 \leq s \leq t_0 + \frac{1}{2} \) and \( \zeta, b \in H^{t_0+1}(\mathbb{R}^d) \) such that Condition (19) is satisfied. Then, \( G_{\mu}^{ND}[\zeta, \beta b] \) maps continuously \( H^{s+\frac{1}{2}}(\mathbb{R}^d) \) into \( H^{s+\frac{1}{2}}(\mathbb{R}^d) \)

\[
|G_{\mu}^{ND}[\zeta, \beta b](B)|_{H^{s+\frac{1}{2}}} \leq M |B|_{H^{s-\frac{1}{2}}}.
\]

In the same way, we can extend also these estimates to \( \tilde{\nu}[\zeta, \beta b] \), the vertical velocity at the bottom and to \( \tilde{\nu}[\zeta, \beta b] \) the horizontal velocity at the bottom. These operators appear naturally when we differentiate the Dirichlet-Neumann and the Neumann-Neumann operator with respect to the bottom \( b \)

\[
\tilde{\nu}[\zeta, \beta b](\psi, B) = \mu B + \beta \mu \nabla b \cdot \nabla \left( G_{\mu}^{DD}[\zeta, \beta b](\psi) + \mu G_{\mu}^{ND}[\zeta, \beta b](B) \right) \left( 1 + \beta^2 \mu |
\nabla b|^2 \right),
\]

and

\[
\tilde{\nu}[\zeta, \beta b](\psi, B) = \nabla \left( G_{\mu}^{DD}[\zeta, \beta b](\psi) + \mu G_{\mu}^{ND}[\zeta, \beta b](B) \right) - \beta \tilde{\nu}[\zeta, \beta b](\psi, B) \nabla b.
\]
Proposition B.11. Let $t_0 > \frac{d}{2}$, $0 \leq s \leq t_0 + \frac{1}{2}$ and $\zeta, b \in H^{t_0+1}(\mathbb{R}^d)$ such that Condition (19) is satisfied. Then, $\bar{w}[\varepsilon \zeta, \beta b]$ maps continuously $H^{s+\frac{1}{2}}(\mathbb{R}^d) \times H^{s-\frac{1}{2}}(\mathbb{R}^d)$ into $H^{s-\frac{1}{2}}(\mathbb{R}^d)$

$$|\bar{w}[\varepsilon \zeta, \beta b](\psi, B)|_{H^{s-\frac{1}{2}}} \leq M \left( |\nabla \psi|_{H^{s-\frac{1}{2}}} + \mu |B|_{H^{s-\frac{1}{2}}} \right).$$

Finally, we have the same continuity result for $\tilde{V}[\varepsilon \zeta, \beta b]$.

B.3 Shape derivatives

Let $t_0 > \frac{d}{2}$. Given $B \in H^{\frac{1}{2}}(\mathbb{R}^d)$. We denote by $\Gamma$ the set of functions $(\zeta, b)$ in $H^{t_0+1}(\mathbb{R}^d)$ satisfying (19). We introduce the map

$$G^\text{NN}_\mu(B) := \left\{ \begin{array}{c} \Gamma \rightarrow H^{\frac{1}{2}}(\mathbb{R}^d) \\ (\zeta, b) \mapsto G^\text{NN}_\mu[\varepsilon \zeta, \beta b](B), \end{array} \right. \quad (73)$$

which is the Neumann-Neumann operator. We can also define $G_\mu(\psi)$, $\bar{w}(\psi, B)$ and $\tilde{V}(\psi, B)$.

Remark B.12. When no confusion is possible and to the sake of simplicity, we write $G_\mu(\psi)$, $G^\text{NN}_\mu(B)$, $\bar{w}(\psi, B)$ and $\tilde{V}(\psi, B)$ instead of $G^\text{NN}_\mu[\varepsilon \zeta, \beta b](\psi)$, $G^\text{NN}_\mu[\varepsilon \zeta, \beta b](B)$, $\bar{w}[\varepsilon \zeta, \beta b](\psi, B)$ and $\tilde{V}[\varepsilon \zeta, \beta b](\psi, B)$.

In order to linearize the water waves equations, we need a shape derivative formula for the Dirichlet-Neumann and the Neumann-Neumann operators. The following proposition is a summarize of Theorems 3.5 and 3.6 in [16] and Theorem 3.21 in [19].

Proposition B.13. Let $t_0 > \frac{d}{2}$, $\zeta, b \in H^{t_0+1}(\mathbb{R}^d)$, $\psi \in H^{\frac{1}{2}}(\mathbb{R}^d)$ and $B \in H^{\frac{1}{2}}(\mathbb{R}^d)$. Then, $G_\mu(\psi)$ and $G^\text{NN}_\mu(B)$ are Fréchet differentiable. For $(h, k) \in H^{t_0+1}(\mathbb{R}^d)$, we have

$$dG_\mu(\psi).(h, 0) + \mu dG^\text{NN}_\mu(B).(h, 0) = -\varepsilon G_\mu[\varepsilon \zeta, \beta b](h \bar{w}[\varepsilon \zeta, \beta b](\psi, B)) - \varepsilon \mu \nabla \cdot (h \tilde{V}[\varepsilon \zeta, \beta b](\psi, B)),$$

and

$$dG_\mu(\psi).(0, k) + \mu dG^\text{NN}_\mu(B).(0, k) = \beta \mu G^\text{NN}_\mu[\varepsilon \zeta, \beta b] \left( \nabla \cdot \left( k \tilde{V}[\varepsilon \zeta, \beta b](\psi, B) \right) \right).$$

Furthermore,

$$dG^\text{DD}_\mu(\psi).(h, 0) + \mu dG^\text{ND}_\mu(B).(h, 0) = -\varepsilon G^\text{DD}_\mu[\varepsilon \zeta, \beta b](h \bar{w}[\varepsilon \zeta, \beta b](\psi, B)).$$

Thanks to these formulae we can give some controls to the first shape derivatives of the operators. For instance, we give an estimate for $d\bar{w}$ and $d\tilde{V}$.
Proposition B.14. Let $t_0 > \frac{d}{2}$ and $(\zeta, b) \in H^{t_0+1}(\mathbb{R}^d)$ such that Condition (19) is satisfied. Then, for $0 \leq s \leq t_0 + \frac{1}{2}$, for $\psi \in \dot{H}^{s+\frac{1}{2}}(\mathbb{R}^d)$ and $B \in \dot{H}^{s-\frac{1}{2}}(\mathbb{R}^d)$, we have

$$
\left|d\mathcal{V}(\psi, B) \cdot (h, k)\right|_{H^{s-\frac{1}{2}}} \leq M \max(1, \mu_0^2) \left(|\nabla \psi|_{H^{s-\frac{1}{2}}} + |B|_{H^{s-\frac{1}{2}}}\right).
$$

Proof. This result follows from Proposition B.13 and Proposition B.7.

We end this part by giving some controls of the shape derivatives of $G_\mu$ and $G_\mu^{NN}$. We do not use the previous method, we differentiate $j$ times directly the dual formulation of both operators. We refer to Proposition 3.28 in [19] for a control of $d^j G_\mu(h, k)(\psi)$.

Proposition B.15. Let $t_0 > \frac{d}{2}$ and $(\zeta, b) \in H^{t_0+1}(\mathbb{R}^d)$ such that Condition (19) is satisfied. Then for all $0 \leq s \leq t_0 + \frac{1}{2}$ and $B \in \dot{H}^{s-\frac{1}{2}}(\mathbb{R}^d)$, we have

$$
|d^j G_\mu^{NN}(h, k)(B)|_{H^{s-\frac{1}{2}}} \leq M \prod_{i \geq 1} |(\varepsilon h_i, \beta k_i)|_{H^{t_0+1}} |B|_{H^{s-\frac{1}{2}}}.
$$

Furthermore, if $0 \leq s \leq t_0$ and $B \in H^{t_0}(\mathbb{R}^d)$,

$$
|d^j G_\mu^{NN}(h, k)(B)|_{H^{s-\frac{1}{2}}} \leq M |(\varepsilon h_1, \beta k_1)|_{H^{t_0+1}} \prod_{i \geq 2} |(\varepsilon h_i, \beta k_i)|_{H^{t_0+1}} |B|_{H^{t_0}}.
$$

We do not prove this Proposition here (which is based on a shape derivative of $B^3$). We refer to [21].

C Useful Estimates

In this part, we give some useful estimates, product and commutator estimates. We refer to Appendix B in [19], [18] and Chapter II in [5] for the proofs. The first estimates are useful to control $\mathfrak{P} f$. We recall that $\mathfrak{P} = |D|^{-1/2} \sqrt{1 + \sqrt{|D|}}$.

Proposition C.1. Let $f \in H^1(\mathbb{R}^d)$ and $g \in H^{\frac{1}{2}}(\mathbb{R}^d)$. Then,

$$
|\mathfrak{P} g|_{L^2} \leq \mu^{-\frac{1}{2}}|g|_{H^{\frac{1}{2}}}, \ |\mathfrak{P} f|_{H^{\frac{1}{2}}} \leq \max(1, \mu^{-\frac{1}{2}}) |\nabla f|_{L^2} \text{ and } |\nabla f|_{L^2} \leq \max(1, \mu^\frac{1}{2}) |\mathfrak{P} f|_{H^{\frac{1}{2}}}.
$$

Proof. The first inequality follows from the fact that $1 + \sqrt{|\xi|} \geq \sqrt{|\xi|}$, the second inequality from $\frac{(1+|\xi|^2)^{\frac{1}{2}}}{\sqrt{1+\sqrt{|D|}}} \leq \max(1, \frac{1}{\mu^\frac{1}{2}})$ and the third from $\frac{(1+\sqrt{|D|})}{\sqrt{1+|\xi|}} \leq \max(1, \mu^\frac{1}{2})$.

We need some product estimates in $\mathbb{R}^d$. The following Proposition is Proposition 2.1.2 in [5].

46
Proposition C.2. Let $s, s_1, s_2 \in \mathbb{R}$ such that $s \leq s_1$, $s \leq s_2$, $s_1 + s_2 \geq 0$ and $s < s_1 + s_2 - \frac{d}{2}$. Then, there exists a constant $C > 0$ such that for all $f \in H^{s_1}(\mathbb{R}^d)$ and for all $g \in H^{s_2}(\mathbb{R}^d)$, we have $fg \in H^s(\mathbb{R}^d)$ and

$$|fg|_{H^s} \leq C|f|_{H^{s_1}}|g|_{H^{s_2}}.$$  

We also need some product estimates in $S := \mathbb{R}^d \times (-1,0)$. The following Proposition is the Corollary B.5 in [19].

Proposition C.3. Let $s, s_1, s_2 \in \mathbb{R}$ such that $s \leq s_1$, $s \leq s_2$, $s_1 + s_2 \geq 0$, $s < s_1 + s_2 - \frac{d}{2}$ and $p \in \{2, +\infty\}$. Then, there exists a constant $C > 0$ such that for all $f \in L^p_x H^{s_1}_X(S)$ and for all $g \in L^p_x H^{s_2}_X(S)$, we have $fg \in L^p_x H^s_X(S)$ and

$$|\Lambda^s (fg)|_{L^p_x L^2_x(S)} \leq C|\Lambda^{s_1} f|_{L^p_x H^{s_1}_X(S)}|\Lambda^{s_2} g|_{L^p_x L^2_x(S)}.$$  

The following propositions gives estimates for $1/(1 + g)$ in the flat strip $S$. We refer to Corollary B.6 in [19].

Proposition C.4. Let $T_0 > \frac{d}{2}$, $-T_0 \leq s \leq T_0$, $k_0 > 0$ and $p \in \{2, +\infty\}$. Then, for all $f \in L^p_x H^s_X(S)$ and $g \in L^\infty_x H^{k_0}_X(S)$ with $1 + g \geq k_0$, we have

$$\left| \Lambda^s \frac{f}{1 + g} \right|_{L^p_x L^2_x(S)} \leq C \left( \frac{1}{k_0} |g|_{L^\infty_x H^{k_0}_X(S)} \right) \left| \Lambda^s f \right|_{L^p_x L^2_x(S)}.$$  

Proposition C.5. Let $T_0 > \frac{d}{2}$, $s \geq -T_0$ and $k_0 > 0$. Then, for all $f, g \in L^\infty_x H^{T_0}_X(S) \cap H^{s,0}(S)$ with $1 + g \geq k_0$, we have

$$\left| \frac{f}{1 + g} \right|_{H^{s,0}} \leq C \left( \frac{1}{k_0} |g|_{L^\infty_x H^{T_0}_X(S)} \right) \left( |f|_{H^{s,0}} + 1_{\{s > T_0\}} |f|_{L^\infty_x H^{T_0}_X} |g|_{H^{s,0}} \right).$$  

Notice that if $s \leq T_0$, $f \in H^{s,0}(S)$ is enough.

We need some commutator estimates in $S$. The following Propositions are Corollary B.17 in [19].

Proposition C.6. Let $T_0 > \frac{d}{2}$, $\delta \geq 0$, $0 < t_1 \leq 1$ with $t_1 < T_0 - \frac{d}{2}$ and $-\frac{d}{2} < s \leq T_0 + t_1$. Then for all $u \in L^\infty_x H^{T_0}_X$ and $v \in H^{s-t_1,0}(S)$ we have

$$\left| [\Lambda^s, u] v \right|_{L^2(S)} \leq C \left| \Lambda^{T_0} u \right|_{L^\infty_x L^2_x(S)} \left| \Lambda^{s-t_1} v \right|_{L^2(S)}.$$  

Proposition C.7. Let $T_0 > \frac{d}{2}$, $\delta \geq 0$, $0 < t_1 \leq 1$ with $t_1 < T_0 - \frac{d}{2}$ and $-\frac{d}{2} < s \leq T_0 + t_1$. Then for all $u \in H^{T_0,0}$ and $v \in L^\infty_x H^{s-t_1}_X$ we have

$$\left| [\Lambda^s, u] v \right|_{L^2(S)} \leq C \left| \Lambda^{T_0} u \right|_{L^2(S)} \left| \Lambda^{s-t_1} v \right|_{L^\infty_x L^2_x(S)}.$$  

Acknowledgments

The author has been partially funded by the ANR project Dyficolti ANR-13-BS01-0003.
References

[1] T. Alazard, P. Baldi, and D. Han-Kwan. Control of the water waves. Preprint arXiv:1506.08520, 2015.

[2] T. Alazard, N. Burq, and C. Zuily. On the Cauchy problem for gravity water waves. Invent. Math., 198(1):71–163, 2014.

[3] T. Alazard and G. Métivier. Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves. Comm. Partial Differential Equations, 34(10-12):1632–1704, 2009.

[4] S. Alinhac. Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Comm. Partial Differential Equations, 14(2):173–230, 1989.

[5] S. Alinhac and P. Gérard. Opérateurs pseudo-différentiels et théorème de Nash-Moser. Savoirs Actuels. [Current Scholarship]. InterEditions, Paris; Éditions du Centre National de la Recherche Scientifique (CNRS), Meudon, 1991.

[6] B. Alvarez-Samaniego and D. Lannes. Large time existence for 3D water-waves and asymptotics. Invent. Math., 171(3):485–541, 2008.

[7] S. Benzoni-Gavage and D. Serre. Multidimensional hyperbolic partial differential equations. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. First-order systems and applications.

[8] A. Castro and D. Lannes. Fully nonlinear long-wave models in the presence of vorticity. Journal of Fluid Mechanics, 759:642–675, 11 2014.

[9] A. Castro and D. Lannes. Well-posedness and shallow-water stability for a new Hamiltonian formulation of the water waves equations with vorticity. Indiana Univ. Math. J., 64(4):1169–1270, 2015.

[10] W. Craig, P. Guyenne, D. P. Nicholls, and C. Sulem. Hamiltonian long-wave expansions for water waves over a rough bottom. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461(2055):839–873, 2005.

[11] W. Craig and C. Sulem. Numerical simulation of gravity waves. J. Comput. Phys., 108(1):73–83, 1993.

[12] W. Craig, C. Sulem, and P.-L. Sulem. Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity, 5(2):497–522, 1992.

[13] J. Deny and J. L. Lions. Les espaces du type de Beppo Levi. Ann. Inst. Fourier, Grenoble, 5:305–370 (1955), 1954.

[14] P. Guyenne and D. P. Nicholls. A high-order spectral method for nonlinear water waves moving bottom topography. SIAM J. Sci. Computer, no. 1:81–101, 2007-08.

[15] T. Iguchi. A shallow water approximation for water waves. J. Math. Kyoto Univ., 49(1):13–55, 2009.

[16] T. Iguchi. A mathematical analysis of tsunami generation in shallow water due to seabed deformation. Proc. Roy. Soc. Edinburgh Sect. A, 141(3):551–608, 2011.

[17] D. Lannes. Well-posedness of the water-waves equations. J. Amer. Math. Soc., 18(3):605–654 (electronic), 2005.
[18] D. Lannes. Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators. *J. Funct. Anal.*, 232(2):495–539, 2006.

[19] D. Lannes. *The water waves problem*, volume 188 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, 2013. Mathematical analysis and asymptotics.

[20] B. Levin and M. Nosov. *Physics of Tsunamis*, volume XI of *Earth Sciences and Geography*. Springer Science and Business Media, 2009.

[21] B. Méllinand. Phd dissertation: Météotsunamis, résonance de proudman et effet corioli pour les équations de vagues. *Available on my webpage*.

[22] B. Méllinand. Coriolis effect on water waves. *arXiv:1511.07407*, 2015.

[23] B. Méognon-Gireau. The cauchy problem on large time for the water waves equations with large topography variations. *Annales de l’Institut Henri Poincare (C) Non Linear Analysis*, 2015.

[24] S. Monserrat, I. Vilibić, and A. B. Rabinovich. Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. *Natural Hazards and Earth System Science*, 6(6):1035–1051, 2006.

[25] J Proudman. The effects on the sea of changes in atmospheric pressure. *Geophysical Journal International*, 3:197–209, 1929.

[26] E. M. Stein. *Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, volume 43 of *Princeton Mathematical Series*. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.

[27] D. R. Tappin, S. T. Grilli, J. C. Harris, R. J. Geller, Masterlark T., J.T. Kirby, F. Shi, G. Ma, K.K.S. Thingbaijam, and P. M. Mai. Did a submarine landslide contribute to the 2011 tohoku tsunami? *Marine Geology*, 357:344 – 361, 2014.

[28] S. Tinti and E. Bortolucci. Energy of water waves induced by submarine landslides. *Pure and Applied Geophysics*, 157:281–318, 2000.

[29] S. Tinti, E. Bortolucci, and A. Armigliato. Numerical simulation of the landslide-induced tsunami of 1988 on vulcano island, italy. *Bull Volcanol*, 61:121–137, 1999.

[30] I. Vilibic. Numerical simulations of the proudman resonance. *Continental Shelf Research*, 28:574–581, 2008.

[31] S. Wu. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. *Invent. Math.*, 130(1):39–72, 1997.

[32] S. Wu. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. *J. Amer. Math. Soc.*, 12(2):445–495, 1999.

[33] V.E Zakharov. Stability of periodic waves of finite amplitude on the surface of a deep fluid. *J. Applied Mech. Tech. Phys.*, 9:190–194, 1968.