Retrospective Study

Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence

In Woong Han, Kyeongwon Cho, Youngju Ryu, Sang Hyun Shin, Jin Seok Heo, Dong Wook Choi, Myung Jin Chung, Oh Chul Kwon, Baek Hwan Cho

ORCID number: In Woong Han 0000-0001-7093-2469; Kyeongwon Cho 0000-0001-8155-1688; Youngju Ryu 0000-0002-3523-0776; Sang Hyun Shin 0000-0002-2533-4491; Jin Seok Heo 0000-0001-6767-2790; Dong Wook Choi 0000-0002-0751-7841; Myung Jin Chung 0000-0002-6271-3343; Oh Chul Kwon 0000-0001-6036-0676; Back Hwan Cho 0000-0001-7722-5660.

Author contributions: Han IW and Cho K contributed equally to this work; Han IW and Cho BH designed the research and wrote the paper; Han IW, Cho K, and Kwon OC performed the research and wrote the paper; Ryu Y, Shin SH, Heo JS, and Choi DW contributed to the analysis and provided clinical advice; Chung MJ and Cho BH supervised the report.

Supported by the National Research Foundation of Korea grant funded by the Korea government (Ministry of Science and ICT), No. NRF-2019R1F1A1042156; and the Bio & Medical Technology Development Program, No. NRF-2017M3A9E1064784.

In Woong Han, Youngju Ryu, Sang Hyun Shin, Jin Seok Heo, Dong Wook Choi, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea

Kyeongwon Cho, Myung Jin Chung, Baek Hwan Cho, Medical Artificial Intelligence Research Center, Department of Medical Device Management and Research, SAIHST, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea

Myung Jin Chung, Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea

Oh Chul Kwon, Artificial Intelligence Research Center, Medical DataBase Incorporated, Seoul 06048, South Korea

Corresponding author: Baek Hwan Cho, PhD, Assistant Professor, Medical AI Research Center, Department of Medical Device Management and Research, SAIHST, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea. baekhwan.cho@samsung.com

Abstract

BACKGROUND

Despite advancements in operative technique and improvements in postoperative managements, postoperative pancreatic fistula (POPF) is a life-threatening complication following pancreatoduodenectomy (PD). There are some reports to predict POPF preoperatively or intraoperatively, but the accuracy of those is questionable. Artificial intelligence (AI) technology is being actively used in the medical field, but few studies have reported applying it to outcomes after PD.

AIM

To develop a risk prediction platform for POPF using an AI model.

METHODS

Medical records were reviewed from 1769 patients at Samsung Medical Center who underwent PD from 2007 to 2016. A total of 38 variables were inserted into AI-driven algorithms. The algorithms tested to make the risk prediction platform were random forest (RF) and a neural network (NN) with or without recursive feature elimination (RFE). The median imputation method was used for missing
INTRODUCTION

Despite advancements in surgical technique and operative management, postoperative pancreatic fistula (POPF) is still widely considered to be the greatest contributor to major morbidity and mortality after pancreatoduodenectomy (PD), with an incidence of 10%–30%.[11–12] Furthermore, it frequently delays the timely delivery of adjuvant therapies, and reduces overall patient survival.[13] The indications of PD have been widening, and the procedure is offered to an increasing number of elderly patients with multiple comorbidities[14–15], prompting the need to accurately define which patients are fit for PD and could tolerate a potentially life-threatening POPF.

Recently, the management of POPF has undergone a paradigm shift from a standardized and uniform approach that could not reflect an individual’s characteristics to a proactive mitigation strategy. The new strategy uses various predictive systems to enable early prediction and prevention and optimize individual treatment decisions.[16–18] Previous predictive systems[16–18] might reflect POPF incidence and had the merit of simplicity, but their predictive accuracy is somewhat questionable.[17–19] Therefore, to more accurately predict POPF, further research is needed.

Machine-learning (ML) is an artificial intelligence (AI) technology that has been values. The area under the curve (AUC) was calculated to examine the discriminative power of algorithm for POPF prediction.

RESULTS

The number of POPFs was 221 (12.5%) according to the International Study Group of Pancreatic Fistula definition 2016. After median imputation, AUCs using 38 variables were 0.68 ± 0.02 with RF and 0.71 ± 0.02 with NN. The maximal AUC using NN with RFE was 0.74. Sixteen risk factors for POPF were identified by AI algorithm: Pancreatic duct diameter, body mass index, preoperative serum albumin, lipase level, amount of intraoperative fluid infusion, age, platelet count, extrapancreatic location of tumor, combined venous resection, co-existing pancreatitis, neoadjuvant radiotherapy, American Society of Anesthesiologists’ score, sex, soft texture of the pancreas, underlying heart disease, and preoperative endoscopic biliary decompression. We developed a web-based POPF prediction platform, and this application is freely available at http://popfrisk.smchbp.org.

CONCLUSION

This study is the first to predict POPF with multiple risk factors using AI. This platform is reliable (AUC 0.74), so it could be used to select patients who need especially intense therapy and to preoperatively establish an effective treatment strategy.

Key words: Postoperative pancreatic fistula; Pancreatoduodenectomy; Neural networks; Recursive feature elimination

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Postoperative pancreatic fistula (POPF) is a life-threatening complication following pancreatoduodenectomy. This is a retrospective study to develop a risk prediction platform for POPF using an Artificial intelligence (AI) model. Compared with established POPF risk prediction methods, this machine learning algorithms better predict the POPF risk correctly (AUC 0.74). This AI-driven platform can identify patients who need especially intense therapy and aid in the establishment of an effective treatment strategy.

Citation: Han IW, Cho K, Ryu Y, Shin SH, Heo JS, Choi DW, Chung MJ, Kwon OC, Cho BH. Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence. World J Gastroenterol 2020; 26(30): 4453-4464

URL: https://www.wjgnet.com/1007-9327/full/v26/i30/4453.htm

DOI: https://dx.doi.org/10.3748/wjg.v26.i30.4453
adopted in many areas of modern society, including medical science. In ML, computational models composed of multiple processing layers learn various data representations with multiple levels of abstraction[19]. ML is currently being used in not only surgery[20-22] but also other areas, such as, pharmacogenomics, image classification, and medical decision support systems[23-25]. Therefore, for this study we aimed to develop a new risk prediction platform for POPF after PD using ML algorithms. If so, we expected that a patient’s predicted POPF risk could direct their clinical management and prevent or mitigate untoward outcomes.

MATERIALS AND METHODS

Patient selection

Under institutional review board approval (No. SMC 2017-01-017), we retrospectively collected clinicopathological variables for 1846 patients who underwent PD to treat various perianpillary tumors at Samsung Medical Center (Seoul, Republic of Korea) between January 2007 and December 2016. Among them, we excluded 77 (4.2%) patients who had metastasis from sites other than the primary tumor origin, had direct invasion from the primary tumor into adjacent organs, underwent surgery for a recurrence, or lacked medical information about POPF. We analyzed the remaining 1769 patients (1079 men and 690 women).

Definition and Selection of pre- and intraoperative input variables

Data on preoperative, intraoperative, and postoperative outcomes were collected and maintained on a web-based database (MDB, Seoul, Korea). We originally analyzed 38 preoperative and intraoperative variables that could be associated with POPF. Preoperative laboratory data, such as serum C-reactive protein, amylase, lipase, and carbohydrate antigen (CA) 19-9 level just before the operation was entered to algorithms. Co-existing pancreatitis was defined as classic feature of pancreatitis on preoperative Computed Tomography (CT) scan or intraoperative findings. Underlying heart diseases included hypertension on medication, coronary or valvular heart disease, or various arrhythmic diseases. The location of tumors and pancreatic duct (p-duct) diameter were determined or measured by preoperative CT scan. Total intraoperative fluid infusion consisted of total amount of intravenous crystalloid, colloid, volume expanders, or blood transfusion. The pancreatic texture was determined as soft or hard by the surgeon during the operation.

Among the continuous variables, there was some level of missing data. Median imputation[26], which is a common approach for dealing with missing values in ML algorithms, was used. None of the categorical variables had missing values. We used the one-hot encoding technique to encode the categorical variables when only one of the categories was assigned. When a categorical variable had three exclusive choices, then we transformed the categorical variable into three individual binary variables. When the choices within a categorical variable are not exclusive (e.g., “A”, “B”, “both A and B”, and “none”), binary encoding was used by splitting each choice into separate columns and converting to binary codes[21,22]. As a result, 44 encoded variables were input in the ML models (Table 1).

Surgical techniques and perioperative management

In cases of cholangitis or jaundice, preoperative endoscopic or percutaneous biliary drainage was performed. After the introduction of a definition of borderline resectable pancreatic cancer, 24 (1.4%) patients received neoadjuvant treatment using various regimens. All surgical procedures were performed by experienced 5 pancreatic surgeons at Samsung Medical Center who underwent more than 50 PDs annually. To create pancreatic anastomosis, 1761 (99.5%) patients underwent pancreatojejunosotomy (PJ) and 8 (0.5%) patients underwent pancreatecogastrostomy. Pancreatoenteric anastomosis with stents was conducted in 1185 patients (70.0%) (Table 1). At the end of each surgical procedure, two or three drains were placed adjacent to the PJ anastomosis and on the right side of the superior mesenteric arterial resection margin. Serum and drain fluid amylase levels were routinely measured on postoperative days 1-3 and 5, 6, or 7, if the drains were maintained. In this study, we used “the definition of POPF in the 2016 update of the International Study Group (ISGPS) definition and grading of POPF[23]. As a result, the grade A fistula has been removed from the POPF classification in this study. Drains adjacent to the PJ anastomosis were removed if no evidence of a leak was found in an abdominal CT scan on postoperative days 5-7. Patients who experienced POPF received proper
Table 1 Clinicopathologic variables included in the machine learning algorithms

Variables	Values	Variables	Values
Age (yr)	67.7 ± 10.1	Preoperative ERBD/ENBD (n, %)	470 (26.6)
Sex (male/female)	1079: 690	Preoperative PTBD (n, %)	254 (14.4)
Body mass index (kg/m²)	22.5 ± 3.8	Preoperative ERPD (n, %)	19 (1.1)
Heart disease including hypertension (n, %)	735 (41.5)	Neoadjuvant therapy (RT/chemotherapy/CCRT/No)	2: 6: 16: 1745
Diabetes mellitus (n, %)	472 (26.7)	Operative time (min)	443.2 ± 90.1
Pulmonary disease (n, %)	153 (8.6)	Intraoperative fluid infusion (mL)	3129 ± 3495
Liver disease (n, %)	99 (5.6)	Intraoperative transfusion (n, %)	171 (9.7)
Cerebrovascular disease (n, %)	73 (4.1)	Estimated blood loss (ml)	962.4 ± 665.1
Chronic kidney disease (n, %)	17 (1.0)	Soft pancreas (n, %)	750 (43.2)
ASA score (1-4)	372:1267: 128: 2	Pancreatic duct diameter (mm)	4.2 ± 2.8
White blood cell count (x10³/μL)	6.6 ± 2.3	Type of surgery (PPPD/PRPD/PD)	1254: 244: 271
Hemoglobin (g/dL)	10.9 ± 1.5	Combined organ resection (n, %)	67 (3.8)
Platelet count (x10³/μL)	280.2 ± 52.7	Combined vascular resection (n, %)	188 (10.6)
Albumin (d/dL)	3.5 ± 0.4	C-reactive protein (mg/dL)	1.9 ± 10.9
Total bilirubin level (mg/dL)	3.5 ± 4.3	CA 19-9 (U/mL)	1786.5 ± 7141.5
Combined portal vein resection (n, %)	175 (9.9)	P-duct stent (Internal/external/none)	1051: 134: 584
Amylase (U/L)	94.5 ± 5586.9	Co-existing pancreatitis (n, %)	370 (20.9)
Lipase (U/L)	160.5 ± 277.0	Location of tumor (Pancreas/others)	856: 913
Anastomotic methods (1) (Duct-to-mucosa/Dunkin)	1756: 13	Anastomotic methods (2) (P-J/P-G/Others)	1761: 8: 0

Total fluid infusion consisted of total amount of intravenous crystalloid, colloid, transfusion. 377 ampulla of Vater cancers, 446 bile duct cancers, 90 duodenal cancers. Pancreatic cystic tumors and neuroendocrine tumors belonged to pancreas. RBD: Endoscopic retrograde biliary drainage; ENBD: Endoscopic nasogastric biliary drainage; PTBD: Percutaneous transhepatic biliary drainage; ERPD: Endoscopic retrograde pancreatic drainage; RT: Radiotherapy; CCRT: Concomitant chemo- and radiotherapy; PP- or PRPD: Pylorus-preserving or pylorus-resecting pancreaticoduodenectomy; CA: Carbohydrate antigen; P-J: Pancreaticojejunostomy; P-G: Pancreaticogastrostomy.

Machine learning algorithms as artificial intelligence

Two ML algorithms, random forest (RF) and neural network (NN), were used to predict POPF. RF method is a kind of ensemble learning algorithm that builds multiple decision trees expecting better performance by taking mode or mean of individual trees\(^2\). An NN is a ML algorithm that emulates the synaptic structure of the brain\(^1\). It contains singular or multiple hidden layers, between the input and output layers\(^2\). Recursive feature elimination (RFE), which is a feature selection method that removes the weakest features until the maximum area under the curve (AUC) is reached\(^3\), was used to identify the subset of features used in the final NN model. We tuned hyperparameters of NN (such as number of hidden layers, number of nodes, learning rates, batch size, dropout rate, and so on) to maximize the performance by grid search algorithm on each RFE step\(^4\). These AI-driven POPF prediction algorithms were developed using MATLAB Release 2017 band Python software with Tensorflow library.

Data analysis and statistical methods

The characteristics of the study population were described for each dataset, including the mean and standard deviation for each variable. For the development of the ML algorithms, the total dataset was split into a training set and a test set. The training set was used to derive the POPF prediction algorithms, and the test set was used to evaluate the derived algorithms. In order to evaluate our ML approaches, we used a
stratified 5-fold cross-validation test. This randomly divides all the data into 5 partitions (folds) keeping each one with similar positive and negative data distribution. Then, we train a model with four of the partitions and test the model with the remaining fold. By changing the folds for training and testing, this process is performed 5 times. Also, the whole cross-validation was repeated 10 times by random split of the dataset, evaluating the performance of the models at the end. These processes ensure the generalized performance of a model by preventing overfitting to the samples. Because the outputs from the ML-driven POPF prediction algorithms are probabilistic estimates of risk, the performance for the test data was evaluated using AUC. The clinical meaning of the AI-driven risk factors for POPF was identified by sliding window approach28. All statistical and mechanical analyses assessing algorithm performance were done by Cho K and Cho BH from Medical AI Research Center, Samsung Medical Center using GraphPad Prism version 5.00 for Windows (GraphPad Software, SD, CA) and MATLAB Release 2017b (MathWorks, Inc., Natick, MA) software.

RESULTS

Clinicopathological characteristics and outcomes

Table 1 provides the clinicopathologic details of the 1769 patients. Among them, grade B or C POPF occurred in 221 (12.5%) patients according to the ISGPF 2016 definition, and 130 (7.3%) patients had an American Society of Anesthesiologists’ (ASA) score ≥ 3. The mean value of body mass index (BMI) was 22.5 kg/m\(^2\), and the mean albumin level was 4.0 g/dl. The mean operating time was 443.2 min. The mean total fluid input and estimated blood loss during the operation were 3129.5 and 962.4 mL, respectively. A soft pancreas was observed in 750 (42.4%) patients. The mean diameter of the pancreatic duct was 4.2 mm. The most common tumor location was the pancreas, which occurred in 568 (32.1%) patients. Presumed pancreatitis was observed in 370 (20.9%) patients (Table 1). 30-d postoperative mortality was observed in 23 (1.3%) patients.

Development of machine learning models using random forest and neural network

Table 2 summarizes the results from each algorithm using three different configurations of the dataset. Firstly, the data with complete values for the 38 original variables were input into the two ML algorithms. The average AUCs over the 5-fold cross validation with 10 repetition were 0.67 with the RF and 0.74 with the NN, respectively. When complete data for 34 original variables (without serum C-reactive protein, amylase, lipase, and CA 19-9 level) were input into the algorithms, the 5-fold average AUCs were 0.67 with the RF and 0.72 with the NN. For the configuration of missing values treatment, we input data from 1769 patients into the ML algorithms. Those 5-fold average AUCs increased to 0.68 with the RF and 0.71 with the NN. All those AUCs are summarized in Table 2.

Machine learning models using neural network with recursive feature elimination

Using all 1769 data samples after missing data treatment, we could further improve the AUC from 0.71 to 0.74 using NN with RFE method (Table 2). Sixteen risk factors for POPF were identified using NN with RFE method: Pancreatic duct diameter, BMI, preoperative serum albumin, lipase level, amount of intraoperative fluid infusion, age, platelet count, extrapancreatic location of tumor, combined venous resection, co-existing pancreatitis, neoadjuvant radiotherapy, ASA score, sex, soft texture of the pancreas, underlying heart disease, and preoperative endoscopic biliary decompression. (Figure 1). The post hoc analysis revealed a nonlinear relationship by showing the response of NN model to each input variable at every RFE step. Ten discrete points cover the observed range of variation for each corresponding variable. We found several patterns of NN output response, in which the predicted POPF risk seemed to have a positive, negative, or biphasic relationship with each variable. The contribution profiles of the top 16 variables are shown in Supplement Figure 1. Based on these multiple and complex relationships among the risk factors for POPF after PD, we made a network connections illustration to improve understanding (Figure 2).

Establishment of risk prediction platform for postoperative pancreatic fistula using artificial intelligence

NN algorithm using RFE that had the best performance across the metrics of
Table 2 Prediction performance of the various dataset for postoperative pancreatic fistula

Dataset and algorithm	Number of original variables	Number of encoded variables	Number of samples	Area under curve
Random forest with complete cases	38	44	889	0.670.02
Neural network with complete cases				0.740.02
Random forest with complete variables	34	40	1769	0.720.02
Neural network with complete variables				0.670.01
Random forest with missing data treatment	38	44	1769	0.710.02
Neural network with missing data treatment				

Figure 1 Performance of the neural network models optimized within each recursive feature elimination step. 1: Pancreatic duct diameter; 2: Body mass index; 3: Serum albumin; 4: Amount of intraoperative fluid infusion; 5: Age; 6: Platelet count; 7: Extrapancreatic location of tumor; 8: Combined venous resection; 9: Co-existing pancreatitis; 10: Serum lipase; 11: Neoadjuvant radiotherapy; 12: ASA score; 13: Sex; 14: Soft texture of pancreas; 15: Underlying heart disease; 16: Preoperative endoscopic biliary decompression; 17: Hemoglobin; 18: Serum total bilirubin; 19: Operative time; 20: Intraoperative transfusion; 21: Neoadjuvant chemotherapy; 22: Anastomotic methods (1); 23: Serum amylase; 24: Anastomotic methods (2-1); 25: Pancreatic duct stent (1); 26: White blood cell count; 27: Type of surgery (1); 28: Serum carbohydrate antigen 19-9; 29: Serum C-reactive protein; 30: Estimated blood loss; 31: Combined vascular resection; 32: Pancreatic duct stent (2); 33: Preoperative percutaneous biliary drainage; 34: Underlying cerebrovascular disease; 35: Combined organ resection; 36: Type of surgery (2); 37: Type of surgery (3); 38: Anastomotic methods (2-2); 39: Underlying liver disease; 40: Underlying chronic kidney disease; 41: Underlying pulmonary disease; 42: Underlying cerebrovascular disease; 43: Diabetes mellitus; 44: Preoperative endoscopic pancreatic drainage; ASA: American Society of Anesthesiologists; AUC: Area under the curve.

DISCUSSION

POPF is a serious inherent risk of a pancreatic resection. The best option for managing POPF is undoubtedly prevention using a preoperative and intraoperative POPF risk assessment that guides response measures postoperatively. Theoretically, ML could offer an opportunity to improve the accuracy of risk assessment by exploiting the complex interactions among risk factors that affect POPF. To the best of our knowledge, this study presents the first ML algorithm for predicting POPF using multiple pre- and intraoperative variables derived from a large, single-institutional dataset. The maximum AUC of this model was considerable: 0.74 with NN with RFE method (Figure 1). Ultimately, a patient’s predicted POPF risk could direct their discrimination, calibration, and overall performance was integrated into an interactive interface. We designed our clinical decision tool to collect values entered by a clinician, feed those values into the pre-trained algorithm, retrieve the result, and output that result to the clinician in real time. This POPF prediction platform is available as an open-access, web-based application programmed to be accessible and adaptable for use on desktops, tablets, and smartphones. It is freely available at https://popfrisk.smchbp.org/.
clinical management and prevent or mitigate untoward outcomes.

AI in the form of ML discovers intricate structures in large datasets by using a backpropagation algorithm to indicate how a machine should change the internal parameters it uses to compute the representation in each layer based on the representation in the previous layer\(^1\). ML can identify latent variables that are unlikely to be observed but might be inferred from other variables\(^18,19,24\). For example, NN with RFE algorithm found many pre- and perioperative predictors for POPF that we used in our final modeling (Figure 1). Previously developed risk assessment models\(^6,9,10\) implicitly assume that the risk factors are related to POPF in a linear fashion. Those models could thus oversimplify complex, nonlinear relationships among many risk factors. Even if it might be cumbersome to calculate the risk of POPF using 16 variables in actual clinical care, our AI-driven risk platform better incorporates multiple risk factors and can account for more nuanced relationships between the risk factors and POPF (Figure 2). An example of nonlinearity is shown in Supplement Figure 1, and note that each variable has a variable effect.

This ML algorithms found 16 risk factors for POPF (Figure 1). These risk factors can be categorized into 3 groups: The technically demanding group, intraoperative volume status–related group, and poor general condition group (Figure 2). The risk factors in the technically demanding group (soft pancreas\(^2,5,6,9\), small pancreatic duct\(^6,9,29\), extrapancreatic lesion\(^6\), absence of preoperative pancreatitis or low lipase level\(^30\), absence of preoperative endoscopic biliary decompression, absence of neoadjuvant radiotherapy, and high BMI\(^7\)) indicate potential difficulty in reconstructing the pancreatic-enteric anastomosis, which could cause POPF. Patients with pancreatic cancer, chronic pancreatitis, or neoadjuvant treatment have increased pancreatic fibrosis and a lower incidence of POPF than other PD patients\(^30,31\). Also, it is well-known that preoperative endoscopic biliary drainage is frequently associated with procedure-related pancreatitis\(^32\). As a result, those procedures might reduce the risk of POPF. The risk factors in the intraoperative volume status–related group (large intraoperative fluid administration, concomitant portal vein-superior mesenteric vein resection, and low platelet count) could cause ischemia and poor healing of the pancreatic-enteric anastomosis, which is compounded by tissue edema from aggressive volume replacement in a rebound fashion\(^6,21\). The resultant swelling of the

Figure 2 Illustration of artificial intelligence algorithm for 16 risk factors affecting postoperative pancreatic fistula. PV-SMV: Portal vein-superior mesenteric vein; ASA: American Society of Anesthesiologists; ERBD: Endoscopic retrograde biliary drainage; ENBD: Endoscopic nasobiliary drainage; POPF: Postoperative pancreatic fistula.
anastomosis can cause duct occlusion or suture disruption. The risk factors in the poor
general condition group (old age, underlying heart disease, low preoperative serum
albumin level, and low ASA score) could be related to poor nutritional status, which is
considered to correlate with a high risk of POPF[6,9].

Notably, a high probability of POPF in patients characterized by only 1 or 2 classical
fistula risk factors could not be determined. In this study, we found 16 risk factors by
using AI algorithms (Figure 1), but controversy remains about the true risk factors for
POPF. The varying results from different studies could be influenced by study design,
the composition of the patient populations, or statistical methods. For example, there is
still debate about whether intraoperative volume status, such as intraoperative blood
loss, transfusion, or the amount of fluid administration, are risk factors for
POPF[6,9-10]. Some reports suggest intraoperative volume status as an independent risk
factor for POPF[6,9] because of pancreatic parenchymal and intestinal edema from
aggressive volume replacement, but other studies have denied its adverse effect
because estimation of blood loss during surgery is unreliable and inaccurate[3,16]. We
think this discrepancy about the prognostic value of different risk factors for POPF
could be a fundamental interpretation error caused by the assumption of linearity and
an attempt to simplify what isn’t actually simple. Therefore, ML algorithms such as
those used in the study will be an important tool for POPF risk assessments.

Other recently proposed risk prediction models[6,9-10] have the advantage of being
easily performed because they use only 3-6 variables. However, previously unknown
risk factors for POPF are still being newly identified. For example, preoperative
sarcopenia, an age-related decrease in muscle mass, has been identified as a risk factor
for POPF[3,11]. Existing models cannot reflect new factors as they emerge but
must be re-analyzed and developed from scratch. To make matters worse, as the
number of potential risk factors increases, the complexity of the conventional models
can cause over-fitting, yielding implausible results. However, we addressed that
possibility by using active and appropriate choices in pre-training, hyper-parameter
selection, and regularization in our AI-driven algorithms[19]. Because AI is scalable,
there is no need to develop a new model; even if many new variables affecting POPF
are introduced, it is possible to just continue adding them to the original model. As the
amount of pancreatobiliary data continues to grow, the creation and deployment of
learning systems as accessible tools could significantly enhance the prognosis and
management of POPF. New learning algorithms and architectures that are currently
being developed, such as convolution[20] or recurrent[21] NNs, will accelerate this
progress.

This AI-driven risk prediction platform for POPF could assist the drive toward
personalized medicine by better tailoring risk management to individual patients. For
example, after a risk evaluation, high-risk patients could be selected for a multi-

 This study has several limitations. First, Co-existing pancreatitis, which is bound to
be subjective, was defined as classic feature of pancreatitis on preoperative CT scan or
intraoperative findings. Also, the input data used to develop risk prediction platform
was pre- and intraoperative variables. In practice, it is important for both pre- and
intraoperative variables to enter the algorithms in order to improve the predictability
of POPF, but clinically, it may be helpful for only preoperative variables to enter the
algorithms. Therefore, we will sooner or later conduct modeling for only preoperative
variables using multivariable data. Second, the NN’s output response to changing each
input variable partially revealed the variables’ nonlinear relationships to POPF risk.
Therefore, the pattern of the output response should not be understood as a direct
relationship between an input variable and POPF risk. Nevertheless, this process could
help inform further explorations of diverse predictive risk factors and the future
development of new risk prediction approaches and algorithms. Finally, the study,
though a large institution, was not only conducted on patients in single center but also
had the disadvantage of not performing external validation. As a result, the follow-up
study will be conducted by performing an external validation on patients in multiple
institutions. In conclusion, ML algorithms are promising tools for the prediction of POPF that can be integrated into clinically useful decision tools. Compared with established POPF risk prediction methods, our ML algorithms better predict the POPF risk correctly. After external validation, this new platform could be used to select patients who need more intense therapy and to preoperatively establish an effective treatment strategy.

ARTICLE HIGHLIGHTS

Research background
Despite advancements in operative technique and improvements in postoperative managements, postoperative pancreatic fistula (POPF) is a life-threatening complication following pancreatectoduodenectomy (PD). Artificial intelligence (AI) technology is being actively used in the medical field, but few studies have reported applying it to outcomes after PD.

Research motivation
There are some reports to predict POPF preoperatively or intraoperatively, but the accuracy of those is questionable. Compared with established POPF risk prediction methods, we expect that our ML algorithms can better predict the POPF risk correctly.

Research objectives
This study aimed to develop a risk prediction platform for POPF with single center dataset using an AI model.

Research methods
A total of 38 variables from 1769 patients who underwent PD from 2007 to 2016 at Samsung Medical Center were inserted into AI-driven algorithms. The algorithms tested to make the risk prediction platform were random forest (RF) and a neural network (NN) with or without recursive feature elimination (RFE). These algorithms can better incorporate multiple risk factors and account for more nuanced relationships between the risk factors and POPF. The median imputation method was used for missing values.

Research results
The number of POPFs was 221 (12.5%) according to the International Study Group of Pancreatic Fistula definition 2016. The maximal AUC using NN with RFE was 0.74. Sixteen risk factors for POPF were identified by AI algorithm: Pancreatic duct diameter, body mass index, preoperative serum albumin, lipase level, amount of intraoperative fluid infusion, age, platelet count, extrapancreatic location of tumor, combined venous resection, co-existing pancreatitis, neoadjuvant radiotherapy, American Society of Anesthesiologists’ score, sex, soft texture of the pancreas, underlying heart disease, and preoperative endoscopic biliary decompression. We developed a web-based POPF prediction platform available at https://popfrisk.smchbp.org.

Research conclusions
This study is the first to predict POPF with multiple risk factors using AI. This platform is reliable (AUC 0.74), so it could be used to select patients who need especially intense therapy and to preoperatively establish an effective treatment strategy.

Research perspectives
This study developed a risk prediction platform for POPF with single center dataset using an AI model. The follow-up study will be conducted by performing an external validation on patients in multiple institutions. Also, future prospective studies could stratify treatments based on the outcome of this platform and provide comprehensive treatment algorithms.
ACKNOWLEDGEMENTS

We thank the study research nurse, Hyemin Kim, for her tremendous work in the acquisition of data, and we thank Sang Eun Lee for dedicated support with medical illustration at Samsung Medical Information & Media Services at Samsung Medical Center.

REFERENCES

1. Lyu Y, Li T, Wang B, Cheng Y, Zhao S. Selection of pancreaticojejunostomy technique after pancreaticoduodenectomy: duct-to-mucosa anastomosis is not better than invagination anastomosis: A meta-analysis. Medicine (Baltimore) 2018; 97: e12621 [PMID: 30290634 DOI: 10.1097/MD.00000000000012621]

2. Lyu Y, Li T, Cheng Y, Wang B, Chen L, Zhao S. Pancreaticojejunostomy Versus Pancreaticogastrostomy After Pancreaticoduodenectomy: An Up-to-date Meta-analysis of RCTs Applying the ISGSG (2016) Criteria. Surg Laparosc Endosc Percutan Tech 2018; 28: 139-146 [PMID: 29683997 DOI: 10.1097/SLE.0000000000000530]

3. Chen BP, Chen M, Bennett S, Lemon K, Bertens KA, Balan FK, Martel G. Systematic Review and Meta-analysis of Restrictive Perioperative Fluid Management in Pancreaticoduodenectomy. World J Surg 2018; 42: 2938-2950 [PMID: 29464346 DOI: 10.1007/s00268-018-4545-6]

4. Garg PK, Sharma J, Jakheta A, Chishi N. The Role of Prophylactic Octreotide Following Pancreaticoduodenectomy to Prevent Postoperative Pancreatic Fistula: A Meta-Analysis of the Randomized Controlled Trials. Surg J (N Y) 2018; 4: e182-e187 [PMID: 30474064 DOI: 10.1055/s-0038-1675359]

5. Kambakamba P, Manni M, Herrera PE, Müller PC, Kuenemeri C, Linecker M, von Spiczak J, Hüllner MW, Rapits DA, Petrowsky H, Clavien PA, Alkadhi H. The potential of machine learning to predict postoperative pancreatic fistula based on preoperative, non-contrast-enhanced CT: A proof-of-principle study. Surgery 2020; 167: 448-454 [PMID: 31773235 DOI: 10.1016/j.surg.2019.09.019]

6. Callery MP, Pratt WB, Kent TS, Chaiikof EL, Vollmer CM Jr. A prospectively validated clinical risk score accurately predicts pancreatic fistula after pancreaticoduodenectomy. J Am Coll Surg 2013; 216: 1-14 [PMID: 23122535 DOI: 10.1016/j.jamcollsurg.2012.09.002]

7. Belyaev O, Herzog T, Kaya G, Chromik AM, Meurer K, Uhl W, Müller CA. Pancreatic surgery in the very old: face to face with the challenge of the near future. World J Surg 2013; 37: 1013-1029 [PMID: 2343699]

8. Pezotelli N, Capretti G, Sandini M, Datasceseli A, Cristel G, De Cobelli F, Giannoti L, Zebri A, Braga M. Impact of Sarcopenic Obesity on Failure to Rescue from Major Complications Following Pancreaticoduodenectomy for Cancer: Results from a Multicenter Study. Ann Surg Oncol 2018; 25: 308-317 [PMID: 29116490 DOI: 10.1245/s10434-017-6216-5]

9. Mungroop TH, van Rijssen LB, van Klaveren D, Smits FJ, van Woerden V, Linnenmann RJ, de Pastena M, Klomp maker S, Marchegiani G, Ecker BL, van der Harst E, de Hingh IH, de Jong KP, Kazermin G, Luyer M, Shamali A, Barbaro S, Armstrong T, Takhar A, Hamady Z, Klaase J, Lips DJ, Molenaar IQ, Nieuwenhuijs VB, Rupert C, van Santvoort HC, Scheepers JJ, van der Schelling GP, Bassi C, Vollmer CM, Steyerberg EW, Abu Hilal M, Groothoorman B, Besselink MG, Dutch Pancreatic Cancer Group. Alternative Fistula Risk Score for Pancreaticoduodenectomy (a-FRS): Design and International External Validation. Ann Surg 2019; 269: 937-943 [PMID: 29240007 DOI: 10.1097/SLA.0000000000002896]

10. You Y, Han IW, Choi DW, Heo JS, Ryu Y, Park DJ, Choi SH, Han S. Nomogram for predicting postoperative pancreatic fistula. HPB (Oxford) 2019; 21: 1436-1445 [PMID: 30987279 DOI: 10.1016/j.hpb.2019.03.331]

11. Ryu Y, Shin SH, Park DJ, Kim N, Heo JS, Choi DW, Han IW. Validation of original and alternative fistula risk scores in postoperative pancreatic fistula. J Hepatobiliary Pancreat Sci 2019; 26: 354-359 [PMID: 31215494 DOI: 10.1002/jhbp.2020]

12. Kang JS, Park T, Han Y, Lee S, Kim JR, Kim H, Kwon W, Kim SW, Heo JS, Choi SH, Choi DW, Kim SC, Hong TH, Yoon DO, Park JS, Park SJ, Han SS, Choi SB, Kim JS, Lim CS, Jang JY. Clinical validation of scoring systems of postoperative pancreatic fistula after pancreaticoduodenectomy: applicability to Eastern cohorts? Hepatobiliary Surg Nutr 2019; 8: 211-218 [PMID: 31245401 DOI: 10.21037/hbsn.2019.03.17]

13. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436-444 [PMID: 26017442 DOI: 10.1038/nature14539]

14. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial Intelligence in Surgery: Promises and Perils. Ann Surg 2018; 268: 70-76 [PMID: 29380679 DOI: 10.1097/SLA.0000000000002896]

15. Bihorac A, Ozrazat-Haslanli T, Ebadi A, Motaee A, Maldour M, Pardakam PM, Lipori G, Hogan WR, Efron PA, Moore F, Maldowar LL, Wang DZ, Holson CE, Rashidi P, Li X, Momcilovic P. MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery. Ann Surg 2019; 269: 652-662 [PMID: 29489489 DOI: 10.1097/SLA.0000000000002923]

16. Karahade AV, Thio QCBS, Ogink PT, Shah AA, Saylor PJ, Schoenfeld AJ, Shin JH, Harris MB, Schwab JH. Development of Machine Learning Algorithms for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis. Neurosurgery 2019; 85: E83-E91 [PMID: 30476188 DOI: 10.1093/neuros/nyy469]

17. Menden MP, Iorio F, Garnett M, McDermott U, Benes CH, Ballester PJ, Saez-Rodriguez J. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One 2013; 8: e61318 [PMID: 23646105 DOI: 10.1371/journal.pone.0061318]

18. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 2002; 35: 352-359 [PMID: 12907874 DOI: 10.1016/S1532-0464(03)00034-0]

19. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk...
Neuroimage
BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.

Nishida Y, patients.

El Amrani M, acquired CT and MRI.

visceral obesity for postoperative pancreatic fistula after pancreaticoduodenectomy analyzed on clinically

Jang M, HPB practices.

F, Visser B, Wolf RF, Hansen PD. Validation of Fistula Risk Score calculator in diverse North American

29887259

doi:10.1016/j.surg.2011.03.001

2018; 20: e12076 doi:10.1371/journal.pone.0206006

Cho BH, Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artif Intell Med 2008; 42: 37-53 [PMID: 17997291 doi:10.1016/j.artmed.2007.09.005]

Cho BH, Yu H, Lee J, Cho EJ, Kim IY, Kim SI. Nonlinear support vector machine visualization for risk factor analysis using nomograms and localized radial basis function kernels. IEEE Trans Inf Technol Biomed 2008; 12: 247-256 [PMID: 18348954 doi:10.1109/TITB.2007.902300]

Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y. An empirical evaluation of deep architectures on problems with many factors of variation. Proceedings of the 24th international conference on Machine learning. 2007: 473-480 Available from: https://doi.org/10.1145/1273496.1273556

Dias FM, Antunes A, Vieira J. On-line Training of Neural Networks: A Sliding Window Approach for the Levenberg-Marquardt Algorithm. Springer, Berlin, Heidelberg, 2005

Zheng W, He S, Cheng Y, Xia J, Lai M, Chen G, Liu Z. Prophylactic abdominal drainage for pancreatic surgery. Cochrane Database Syst Rev 2018; 6: CD010583 [PMID: 29928755 doi:10.1002/14651858.CD010583.pub4]

Mathur A, Pitt HA, Marine M, Szczesa R, Schmidt CM, Howard TJ, Nakeeb A, Zyzromski NJ, Lillenmoe KD. Fatty pancreas: a factor in postoperative pancreatic fistula. Ann Surg 2007; 246: 1058-1064 [PMID: 18043111 doi:10.1097/01.sla.0000255431.93050.85]

Takahashi H, Ogawa H, Ohiigashi H, Gotoh K, Yamada T, Ohue M, Miyashita I, Noura S, Kishi M, Motoori M, Shingii T, Nakamura S, Nishiyama K, Yano M, Ishikawa O. Preoperative chemoradiation reduces the risk of pancreatic fistula after distal pancreatectomy for pancreatic adenocarcinoma. Surgery 2011; 150: 547-556 [PMID: 21261236 doi:10.1016/j.surg.2011.03.001]

Mine T, Morizane T, Kawaguchi Y, Akashi R, Hanada K, Ito T, Kanno A, Kida M, Miyagawa H, Yamaguchi T, Mayumi T, Takeyama Y, Shimosegawa T. Excess intraoperative fluid volume administration is associated with pancreatic fistula after pancreaticoduodenectomy: A retrospective multicenter study. Medicine (Baltimore) 2017; 96: e6893 [PMID: 28562540 doi:10.1097/md.0000000000006893]

Gianotti L, Besselin MG, Sandini M, Hackert T, Conlon K, Gerritsen A, Griffin O, Fingerhut A, Probst P, Abu Hilal M, Marchegiani G, Nappo G, Aizawa H, Okubo S, Takahashi D, Nakayama Y, Kida M, Miyagawa H, Yamauchi T, Cuadros J, Kim R, Raman R, Nelson PC, Ogawa H, Ohigashi H, Gotoh K, Yamada T, Ohue M, Miyashiro I, Noura S, Kishi K, Motoori M, Shingii T, Nakamura S, Nishiyama K, Yano M, Ishikawa O. Preoperative chemoradiation reduces the risk of pancreatic fistula after distal pancreatectomy for pancreatic adenocarcinoma. Surgery 2011; 150: 547-556 [PMID: 21261236 doi:10.1016/j.surg.2011.03.001]

Han IW, Kim H, Heo J, Oh MG, Choi YS, Lee SE, Lim CS. Excess intraoperative fluid volume administration is associated with pancreatic fistula after pancreaticoduodenectomy: A retrospective multicenter study. Medicine (Baltimore) 2017; 96: e6893 [PMID: 28562540 doi:10.1097/md.0000000000006893]

Kim E, Kang JS, Han Y, Kim H, Kwon W, Kim JR, Kim SW, Jang JY. Influence of preoperative nutritional status on clinical outcomes after pancreaticoduodenectomy. HPB (Oxford) 2018; 20: 1051-1061 [PMID: 29887259 doi:10.1016/j.hpb.2018.05.004]

Greendel J, Juttre Z, Lead JN, Ball CG, Bertens K, Dixon E, Hammill CW, Kastenberg Z, Newell PH, Rocha F, Vissers B, Wolf RF, Hansen PD. Validation of Fistula Risk Score calculator in diverse North American HPB practices. HPB (Oxford) 2017; 19: 508-514 [PMID: 28233672 doi:10.1016/j.hpb.2017.01.021]

Jang M, Park HW, Huh J, Lee JH, Jeong YK, Nah YW, Park J, Kim KW. Predictive value of saccopenia and visceral obesity for postoperative pancreatic fistula after pancreaticoduodenectomy analyzed on clinically acquired CT and MRI. Eur Radiol 2019; 29: 2417-2425 [PMID: 30460311 doi:10.1007/s00330-018-5796-7]

El Amraoui M, Vermeersch M, Fulbert M, Prodeau M, Leocolle K, Hebhar M, Ernst O, Pruvot FR, Traasen S. Impact of sarcopenia on outcomes of patients undergoing pancreatectomy: A retrospective analysis of 107 patients. Medicine (Baltimore) 2018; 97: e12076 [PMID: 30278487 doi:10.1097/md.00000000000012076]

Nishiida Y, Kato Y, Kudo M, Aizawa H, Okubo S, Takahashi D, Nakayama Y, Kitaguchi K, Gotohda N, Takahashi S, Konishi M. Preoperative Sarcopenia Strongly Influences the Risk of Postoperative Pancreatic Fistula Formation After Pancreaticoduodenectomy. J Gastrointest Surg 2016; 20: 1586-1594 [PMID: 27126054 doi:10.1007/s11605-016-3146-7]

Kawahara J, Brown CJ, Miller SP, Booth BG, Chau V, Grunew RE, Zwicker JG, Hammarneh G. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage 2017; 146: 1038-1049 [PMID: 27693612 doi:10.1016/j.neuroimage.2016.09.046]
41 Beiroti A, Aghasadeghi MR, Hosseini SN, Norouzian D. Application of recurrent neural network for online prediction of cell density of recombinant Pichia pastoris producing HBsAg. *Prep Biochem Biotechnol* 2019; 49: 352-359 [PMID: 30707051 DOI: 10.1080/10826068.2019.1566153]

42 Topal B, Ficew S, Aerts R, Weerts J, Feyen T, Roeyen G, Bertrand C, Hubert C, Janssens M, Closset J, Belgian Section of Hepatobiliary and Pancreatic Surgery. Pancreatectojunostomy versus pancreaticogastrostomy reconstruction after pancreaticoduodenectomy for pancreatic or periampullary tumours: a multicentre randomised trial. *Lancet Oncol* 2013; 14: 655-662 [PMID: 23643139 DOI: 10.1016/S1470-2045(13)70126-8]

43 Berger AC, Howard TJ, Kennedy EP, Sauter PK, Bower-Cherry M, Dutkevitch S, Hyslop T, Schmidt CM, Rosato EL, Lazu H, Nakeeb A, Pitt HA, Lillenroe KD, Yeo CJ. Does type of pancreatectojunostomy after pancreaticoduodenectomy decrease rate of pancreatic fistula? A randomized, prospective, dual-institution trial. *J Am Coll Surg* 2009; 208: 738-47; discussion 747-9 [PMID: 19476827 DOI: 10.1016/j.jamcollsurg.2008.12.031]

44 El Nakeeb A, El Hemaly M, Askr W, Abd Ellatif M, Hamed H, Elghawalby A, Attia M, Abdallah T, Abd ElWahab M. Comparative study between duct to mucosa and invagination pancreatectojunostomy after pancreaticoduodenectomy: a prospective randomized study. *Int J Surg* 2015; 16: 1-6 [PMID: 25682724 DOI: 10.1016/j.ijsu.2015.02.002]

45 Jang JY, Shin YC, Han Y, Park JS, Han HS, Hwang HK, Yoon DS, Kim JK, Yoon YS, Hwang DW, Kang CM, Lee WJ, Heo JS, Kang MJ, Chang YR, Chang J, Jung W, Kim SW. Effect of Polyglycolic Acid Mesh for Prevention of Pancreatic Fistula Following Distal Pancreatectomy: A Randomized Clinical Trial. *JAMA Surg* 2017; 152: 150-155 [PMID: 27784046 DOI: 10.1001/jamasurg.2016.3644]

46 Kang JS, Han Y, Kim H, Kwon W, Kim SW, Jang JY. Prevention of pancreatic fistula using polyethylene glycolic acid mesh reinforcement around pancreatectojunostomy: the propensity score-matched analysis. *J Hepatobiliary Pancreat Sci* 2017; 24: 169-175 [PMID: 28054751 DOI: 10.1002/jhbp.428]

47 Jang JY, Chang YR, Kim SW, Choi SH, Park SJ, Lee SE, Lim CS, Kang MJ, Lee H, Heo JS. Randomized multicentre trial comparing external and internal pancreatic stenting during pancreaticoduodenectomy. *Br J Surg* 2016; 103: 668-675 [PMID: 27040594 DOI: 10.1002/bjs.10160]

48 Gurusamy KS, Koti R, Fusai G, Davidson BR. Somatostatin analogues for pancreatic surgery. *Cochrane Database Syst Rev* 2013; 4: CD008370 [PMID: 23633353 DOI: 10.1002/14651858.CD008370.pub3]

49 Allen PJ, Gönen M, Brennan MF, Bucknor AA, Robinson LM, Pappas MM, Carlucci KE, D'Angelica MI, DeMatteo RP, Kington TP, Fong Y, Jarnagin WR. Pasireotide for postoperative pancreatic fistula. *N Engl J Med* 2014; 370: 2014-2022 [PMID: 24849084 DOI: 10.1056/NEJMoa1313688]
