Review

Dopamine and Dopamine-Related Ligands Can Bind Not Only to Dopamine Receptors

Jaromír Myslivecek

Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00 Prague, Czech Republic; jmlys@lf1.cuni.cz; Tel.: +420-224-968-485

Abstract: The dopaminergic system is one of the most important neurotransmitter systems in the central nervous system (CNS). It acts mainly by activation of the D₁-like receptor family at the target cell. Additionally, fine-tuning of the signal is achieved via pre-synaptic modulation by the D₂-like receptor family. Some dopamine drugs (both agonists and antagonists) bind in addition to DRs also to α₂-ARs and 5-HT receptors. Unfortunately, these compounds are often considered subtype(s) specific. Thus, it is important to consider the presence of these receptor subtypes in specific CNS areas as the function virtually elicited by one receptor type could be an effect of other—or the co-effect of multiple receptors. However, there are enough molecules with adequate specificity. In this review, we want to give an overview of the most common off-targets for established dopamine receptor ligands. To give an overall picture, we included a discussion on subtype selectivity. Molecules used as antipsychotic drugs are reviewed too. Therefore, we will summarize reported affinities and give an outline of molecules sufficiently specific for one or more subtypes (i.e., for subfamily), the presence of DR, α₂-ARs, and 5-HT receptors in CNS areas, which could help avoid ambiguous results.

Keywords: dopamine receptors; subtype selectivity; alpha-adrenoceptors; 5-HT receptors; antipsychotic drugs

1. Introduction

The dopaminergic system is one of the most important neurotransmitter systems in the CNS. Dopamine receptors (DRs, see Abbreviations for abbreviation list) belong to G protein-coupled receptor (GPCR) family. According to their structural similarities, DRs are divided into two groups (for a review, see [1]): D₁-like (D₁ and D₅ subtypes) and D₂-like (D₂, D₃, and D₄ subtypes). The families of DRs differ in the coupling to G proteins and subsequent steps of intracellular signalization. While D₁-like DRs activate adenylyl cyclase via Gₛ protein, the D₂-like family (mainly pre-synaptic D₂ DRs) inhibits adenylyl cyclase via Gᵢ protein activation. However, in detail, D₁-like DRs activate not only adenylyl cyclase but also increase phosphoinositide metabolism [2]. Similarly, coupling with Gₛ protein allows D₂ DRs to activate phospholipase C (see note about receptor variants below). D₁-like receptors are characterized by non-simple interactions with various other mediators and receptor systems, which can be activity-dependent, comprise heterologous oligomerization, dynamic compartmentalization of signaling components, and system integration for exquisite functional regulation (see [2] for detail). The adenylyl cyclase response is associated with the D₁ subtype, while the phosphoinositide responses may be preferentially mediated through stimulation of the D₅ receptor [2].

The genes for D₁-like and D₂-like families differ in the presence of introns in their coding sequence. While the D₁-like family does not contain introns [3,4], the D₂-like family does [5–8]. This fact allows the generation of receptor variants, “long” and “short” D₂ receptor isoforms. These two isoforms exhibit largely similar pharmacological characteristics, but their differences in G protein coupling [9] suggest different functions [10].
1.1. D1-like Family

D1-like family is the main element of the dopamine post-synaptic action (despite its pre-synaptic localization). Its members, D1 and D5 DRs, are pharmacologically indistinguishable. However, the affinities of D2 DR to the agonists are up to 10 times higher than that of D1 ones [11]. This fact could be of importance when one transmitter is supposed to have two effects—one through the high-affinity sites and the second one through the low-affinity sites in tissue expressing both subtypes. This could explain the different functions of striatal D1 and D5 DRs in synaptic plasticity [12]. Another difference between these two subtypes that is interesting to mention is that the D5 dopamine receptor, unlike the D1 subtype, is constitutively (agonist-independently) active [13]. Moreover, D1 DRs couple preferentially to G protein heterotrimers that contain γ7 subunits [14]. D1 DRs can also couple to another G protein, Golf (which also stimulates adenylyl cyclase) that is highly expressed in some brain areas, such as the caudate nucleus, nucleus accumbens, and olfactory tubercle. Some coupling of D1 DR with Golf was even suggested to be preferential [15]. The generation of D5 DR knockout mouse uncovered possible involvement of this subtype in the pathology of hypertension, as the mutant mice were hypertensive [16].

1.2. D2-like Family

D2 DRs are as D1 DRs [17] localized both pre- and postsynaptically. D2 DR has a relatively low (nanomolar) affinity for dopamine, which supports its importance as a modulatory (pre-synaptic) receptor. D2 DR isoforms (long and short) are differently distributed and thus may possess distinct functions. The short isoform seems to serve as an autoreceptor, whereas the long isoform is primarily a post-synaptic receptor [18]. Using genetically targeted deletion of the D2 dopamine receptor gene in mice revealed that other members of the receptor family were not affected [19] and these mutants had reduced locomotion and less coordinated movement [19].

D3 subtype of DR appears to have similar distribution as the D2 dopamine receptor [1]. Similar to D2 DR, alternative splicing variants of D3 DR were observed. These variants were hypothesized to contribute to the availability of active D3 DRs in some psychiatric conditions [20]. This hypothesis suggests that inactive D3 DRs affect ligand binding to the active D3 DRs and thus influence their function.

The D4 DR has high densities in the cerebral cortex, amygdala, hypothalamus, and pituitary [21]. In the striatum, the occurrence of the D4 DR is much lower than the D1 and D2 subtypes [22].

1.3. DR Ligand Targets

We have described above that signaling through DRs is far from to be simple. What is more, some DR ligands bind not only to DRs, but the spectrum of targets is much wider. Surprisingly, this is valid for dopamine itself. This natural neurotransmitter binds not only to DRs (D1-D3 pKi,8 [see Abbreviations for abbreviation list and the elucidation of differences between pKi and pEC50 in the next paragraph] vary between 4.3–7.6 [7,8,23]), and dopamine transporter (DAT, pKi = 5.3 [24]) but also to other transporters (norepinephrine transporter—NET, pKi = 4.55 [25]), serotonin transporter—SERT, pKi = 4.53 [25]), to other receptors (α1-ARs (pKi = 5.6, [26]), α2-ARs (pKi = 6.01, [26]), β1, β2-ARs (pKi = 5.0, pKi = 4.3, respectively [27]) and to melatonin receptors MT1A,1B, pKi = 5.15, pKi = 5.04, respectively). Looking at these numbers, it is possible to conclude that dopamine is bound with a similar affinity to D1 and D2 DRs (pKi = 4.3–5.6, pKi = 5.3–6.4, respectively) and DAT, NET, SERT, α1-AR, and α2-AR, β1, β2-ARs, and to melatonin receptors MT1A,1B (see the pKi,8 above). Other DRs have to dopamine a higher affinity (pKi = 6.3–7.4, 7.6, 6.6, respectively, for D3, D4, and D5 DRs).

It is necessary to mention (please see the values in this review) that binding assessed parameters (i.e., pKi,8) differ from the values determined using functional studies (i.e., dose-response determined constants, pEC50,8 [28]). This is because in studies based on dose-response determined parameters; the ligand usually discards the presence of other
receptors on the studied effect by a combination of pharmacological means to attribute properly the receptor involved. Another possibility is that in dose-response studies, the formation of a ligand-receptor complex with activation of G protein and further with target second messenger producer activation is more complicated than the binding of ligand to the receptor in binding studies. The interesting correlation between pKi and pEC50 has been demonstrated for neurokinin NK1 receptors [29]. Although this is a specific example for specific receptors and specific ligands, we can assume that a similar correlation can be found for DRs and their ligands too. As reported here, the pKi's and pEC50's differ for D1-like DR to SKF 38393. With some methodological reservation, one could construct the correlation between these values reported in [13,23,30–34] in humans and rats.

A similar multitarget binding can be found for DR agonists and antagonists. This review will focus on such interactions that can broaden the physiological effects elicited by dopamine ligands in the central nervous system. Besides, these interactions could present the potential problem with results interpretation: the ligand activating more neurotransmitter receptors that have similar affinity to them can distort the conclusions made. With this point of view, this review could help with careful interpretation of the results obtained. We will focus on orthosteric binding sites only, although there are also described allosteric binding sites on D2 DR [35]. The allosteric binding sites [36,37] and their interaction with other molecules exceed the topics of this review. The inclusion criteria were the ability to bind to other targets with pKi ≥ 7.0, pIC50 ≥ 7.0 if the pKi for DRs is between 8 and 9. Interestingly, some papers report a surprisingly high concentration of drugs used as proof of specific dopamine subtype involvement even though the selectivity of such ligand is limited (e.g., SKF 38393 in concentration 100 μmol/L affects all dopamine receptor subtypes and also α2C-AR). If the ligand is sufficiently specific to dopamine receptors (i.e., the affinity differs at least two orders of magnitude), then it is not reviewed here.

The interested researcher should search available databases carefully for the ligands with well-documented selectivity to specific DR subtypes and not rely on the information from the manufacturer. The specific ligand should be at least two orders of magnitude more specific for the respective DR subtype than to the others. In other words: ΔpKis(pKi1, pKi2) ≥ 2. The examples of such ligands are shown in Table 1. On the other hand, the new research can bring new knowledge, and the supposed selectivity of the specific ligand could be doubted. Thus, it is necessary, before the choice of ligand, carefully check the present knowledge to avoid the use of non-specific ligands.

Table 1. Selective ligands to dopamine receptor subtypes. Listed are both subtype(s) and family-specific compounds.

	D1	D2	D3	D4	D5				
agonist	A77636	MLS1547	Rotigotine	Ropinirole	Pramipexole	Rotigotine	Ropinirole	Pramipexole	PD128907
	SKF-81297	Rotigotine	Ropinirole	Pramipexole	PD128907	PD168077	A412997		
	SKF-83959	PD168077	PD128907	A412997					
		[3H]PD128907							
Table 1. Cont.

antagonist	D₁	D₂	D₃	D₄	D₅
SKF-83566					
SCH-23390					
Ecopipam					
[¹²⁵]JSCH23982					
pipotiazine					
perospirone					
raclopride					
ML321					
Prochlorperazine					
Sulpiride					
NGB 2904					
SB 277011-A					
(+)-S-14297					
Perospirone					
Raclopride					
L745870					
A-381393					
L741742					
ML398					
SB 277011-A					
(+)-S-14297					
Perospirone					
Sulpiride					
NGB 2904					
S33084					
NGB 2904					
SB 277011-A					
(+)-S-14297					
Perospirone					
Sulpiride					
NGB 2904					
S33084					
NGB 2904					
SB 277011-A					
(+)-S-14297					

1 The selectivity is expressed to D₁-like DRs. 2 Biased D₂ DR agonist [38]: it antagonizes arrestin recruitment to D₂ DR but behaves as an agonist in its capacity to induce D₂ DR signaling. 3 D₂ DR and D₃ DR selective over D₄ DR. 4 D₂ DR and D₁ DR selective. 5 The selectivity is expressed to D₂-like DR. 6 D₃ DR selective over D₂ DR. 7 Slightly more selective to D₄ DR than to D₂ DR. 8 Selectivity D₁ DR > D₃ DR > D₂ DR. 9 Please note that this is a radioligand.

When using radioligand for receptor detection, one should be aware that a better option is to use an antagonist than an agonist because of stronger binding and lower possibility of dissociation of such ligand from the receptors.

2. DR Agonists

2.1. So-Called Selective Dopamine Receptor Agonists

The typical problem with dopamine ligand lies in the fact that manufacturers usually declare the ligand as selective, which could be, in some cases, far from reality. This could be misleading, and it could distort the conclusions made with such a “selective” drug. In the following paragraphs, we will describe the DR agonist in which the selectivity is limited. Other ligands that are selective according to present knowledge will not be mentioned.

We can generalize that dopamine drugs (both agonists and antagonists) bind in addition to DRs also to α₂-ARs and 5-HT receptors. Thus, it is important to consider the presence of these receptor subtypes in specific CNS areas as the function virtually elicited by one receptor type could be the effect of other—or the co-effect of multiple receptors. The presence of neurotransmitter receptors in the CNS is shown in Table 2. In addition to that, dopamine ligands often bind to H₁ histamine receptors. These receptors are present in many CNS structures [39]: cerebral cortex, hippocampal dentate gyrus, amygdaloid complex, basal forebrain, nucleus accumbens, islands of Calleja, septal nuclei, thalamus, hypothalamus (medial preoptic area, dorsomedial, ventromedial, and most posterior nuclei, including the tuberomammillary complex), nuclei of origin of most cranial nerves, and in the dorsal horn of spinal cord.

Table 2. The co-presence of receptor types in specific brain areas.

CNS Area	DR Presence	α₂-AR Presence	5-HT Presence	
Cerebral cortex	D₁-like	α₂C-AR	5-HT₂	5-HT₄
	D₁-like	α₂C-AR	5-HT₆	5-HT₁₅
	D₁-like	α₂C-AR	5-HT₁A	5-HT₁B₅
	D₁-like	α₂C-AR	5-HT₁E	5-HT₁F
	D₁-like	α₂C-AR	5-HT₁B₅	5-HT₁B²

| Amygdala | D₁-like | α₂C-AR | 5-HT₂C | 5-HT₁ |
| | D₁-like | α₂C-AR | 5-HT₁B₅ | 5-HT₁B² |
CNS Area	DR Presence	α₂-AR Presence	5-HT Presence
pars compacta Substantia nigra	D₂ DR	α₂C-AR	5-HT₁
			5-HT₁B
			5-HT₁D
pars reticularis			5-HT₁F
Striatum (Caudate-putamen)	D₁ DR	α₂C-AR	5-HT₁
	D₂ DR		5-HT₁B
	D₃ DR		5-HT₁D
			5-HT₁F
Globus pallidus	D₂-like	α₂C-AR	5-HT₁
			5-HT₁B
			5-HT₁D
Ncl. accumbens	D₁ DR		5-HT₁
			5-HT₁B
Hippocampus (without further specification)	D₃ DR	α₂C-AR	5-HT₁
	D₄ DR	α₂A-AR²	5-HT₁B
		α₂B-AR²	5-HT₁D
			5-HT₁F
			5-HT₁A
			5-HT₁E
			5-HT₁F
CA1	D₁-like		5-HT₁
	D₂-like		5-HT₁B
CA3	D₁-like		5-HT₁
	D₂-like		5-HT₁B
Thalamus	D₁ DR	α₂B-AR	5-HT₂A
		α₂C-AR²	5-HT₁
Ncl. subthalamicus	D₁ DR	α₂C-AR	5-HT₁B
Hypothalamus	D₃ DR	α₂A-AR²	5-HT₂C
	D₃ DR		5-HT₁
			5-HT₁B
			5-HT₁A
			5-HT₁E
			5-HT₁F
Olfactory tubercle	D₃ DR	α₂C-AR	5-HT₂A
			5-HT₁B
Midbrain	D₄ DR	α₂A-AR²	5-HT₁
		α₂C-AR²	5-HT₁B
			5-HT₁A
			5-HT₁E
			5-HT₁F
Table 2. Cont.

CNS Area	DR Presence	α2-AR Presence	5-HT Presence
Ventral tegmental area	D2 DR	α2A-AR	5-HT*
		α2B-AR	5-HT1B
			5-HT3A

The presence of specific receptor types was referred to by [1,40–44]. D1-like means the presence of D1 DRs and D2 DRs, D3 DRs, D2-like means the presence of D2 DRs, D3 DRs, and D1 DRs. The presence of receptors in the cerebral cortex can be more specific to layers, part of the cortex, etc. Please see [1,40–44] for detail. 1 Referenced as a presence of subtype in basal ganglia (no further specification). 2 mRNA expression only does not necessarily mean the presence of receptors binding sites. 3 Specifically in the dorsomedial hypothalamus and the paraventricular nucleus. 4 Generally in the hypothalamus, specifically in the suprachiasmatic nucleus. 5 Low autoradiography detected levels. 6 Referenced as a presence of subtype in substantia nigra (no further specification). 7 Specifically in the putamen.

As an example, we can use SKF 38393. One of the manufacturers claims that this is a prototypical D1-like DR selective partial agonist. The careful search for pKi values (pEC50 values, respectively, see the discounts in Section 1.3), however, can indicate pKi = 6.41–6.8 [13,23,30] in human, pKi = 7.19 in rat [31], pEC50 = 5.0–8.96 in human for D1 DR [32,34], pKi = 6.91–7.0 for D2 DR in human [23,33], and pKi = 5.16 for D2 DR in rat [31]. These values indicate selectivity to D1-like DRs, but still show some effect on D2 DR. More importantly, SKF 38393 is also bound by α2C-AR with pKi = 7.08 [45], i.e., in the rank in which D1 and D2 DRs are activated.

This is important in tissues in which are DRs and ARs co-expressed (see Table 2). D1-like DRs are present [40] together with α2C-ARs [41] in the following brain areas: the cerebral cortex and amygdala. In general, α2C-ARs presence is described in the basal ganglia, and D1 DRs are abundantly present in the subthalamic nucleus and caudate-putamen. The D2 DRs (although they have a lower affinity to SKF 38393) are simultaneously present in α2C-ARs in the substantia nigra pars compacta and the ventral tegmental area. In those brain areas, one should be careful when interpreting the results obtained with SKF 38393 as both effects on DRs and α2-ARs can be present. Ignoring the fact that SKF 38393 activates D1-like DRs and blocks α2C-ARs could lead to misinterpretation of the results.

Another “selective” D1 DR ligand is the partial agonist A68930, although also designated as sub-family selective. This compound was reported to have a similar effect on rat D1 and D3 DRs (pEC50 = 6.82 and 6.6, respectively, [46]). The other data showed higher pEC50 at D1 DRs in the rat (pEC50 = 8.71, when pKi = 8.8 [47]). This study also determined pKi = 6.09, and pEC50 = 4.99 at D2 DRs in the rat. This drug also binds to 5-HT1A, 5-HT2C serotonin receptors, and β1-ARs with pKᵢ = 5.59, 5.0, and 5.0, respectively [47]. Although the affinity of 5-HT1A, 5-HT2C serotonin receptors, and β1-ARs is lower than D1-like DRs (when considering the data from [47]), the data from [46] are quite similar, and one should be cautious with the interpretation of the results obtained with this drug.

Quinpirole is very often declared by manufacturers as a selective dopamine D2 DR (or D2-like) agonist. As an example, quinpirole sensitization was used as a model of obsessive-compulsive disorder [48], targeting the D2 and D3 DRs. However, the pKi values for D2, D3, D4, and D1 DRs, respectively (pKi = 4.9–7.7 [49], pKi = 7.3–7.7 [49], pKi = 7.5 [50], pKi = 4.06–7.2 [51,52], respectively) do not reveal the full selectivity. The spectrum of quinpirole action is much wider: 5-HT2B, 5-HT2A, and 5-HT2C receptors reveal pKi = 5.0–6.5 [50], and 5-HT1A receptor reveal pKi = 5.8 [53]. These values are apparently in the rank of DR action. Quinpirole also produces significant THC-like effects when metabolic degradation of anandamide is inhibited, supporting the hypothesis that these effects of quinpirole are mediated by cannabinoid CB1 receptors [54].

Sumanirrole (PNU-95,666) is assumed to be a highly selective D2 DR full agonist, the first of its kind to be discovered [55] with D2 DR pKi = 8.1 [56]. 5-HT1A receptor reveals pKi = 7.14 [57] to sumanirrole, which is too close to the pKi for D2 DR and co-effect should exist. There is also agonist activity of sumanirrole at human D2 DR transfected in HEK293T cells, revealing pKi = 6.73 [58], suggesting slightly limited selectivity of sumanirrole on D2...
It means that 50% of D2 DRs are occupied by approximately 8 nmol/L sumanirole and 50% of D3 DRs are occupied by approximately 189 nmol/L sumanirole. 20 nmol/L should completely block D2 DRs, but also 10% of D3 DRs.

2.2. Drugs–Dopamine Receptor Agonists with Multiple Targets of Action

Usually, the drugs used in the treatment have multiple targets of action, which can be an advantage as multiple targets are affected by one drug. In the following paragraphs, we will mention the drugs that: (1) also have DRs action, (2) are declared as a drug with multiple targets. This could help in the interpretation of the effects obtained with this drug that could be erroneously attributed to one target only.

An example of such a drug is fenoldopam, which causes arterial/arteriolar vasodilatation decreasing blood pressure. Fenoldopam is used for the in-hospital, short-term (up to 48 h) management of severe hypertension, including malignant hypertension. It is declared as an agonist for D1 DRs with moderate affinity to α2-ARs and no significant affinity for D2 DRs, α1 and β-ARs, 5-HT1 and 5-HT2 receptors, or muscarinic receptors.

However, fenoldopam is also bound with similar affinity to D3 DR (pKi = 9.1 for D1 DR, pKi = 9.2 for D3 DR, respectively) and D2 DR (pKi = 8.5), and with lower affinity to D4 DR (pKi = 6.8) [59]. Some data indicate pKi to D2 DR is lower (4.89–5.89, [60]). Early evidence showed that fenoldopam had no effect on β-ARs, but had antagonistic activity on α1-ARs [61] (pA2 = 8.36 ± 0.21), although in some papers characterized as weak (pKi = 5.41, [62], or modest pKi = 6.82 [26]) and α2-ARs [63] (pKi = 7.60–7.78, [62]). Fenoldopam thus represents the typical multiple targets drug. This is a disadvantage with respect to the specific effect of receptors when aiming to determine the subtype involved in the function but could be an advantage when targeting to specific therapeutic aim (e.g., acute severe hypertension treatment).

Another example of a drug with multitarget action is atypical antipsychotic aripiprazole. This drug acts as an atypical agonist on D2 DRs (pKi = 9.7 [64]) with expressed selectivity over D1 DRs (pKi = 7.3 [64]). However, on D4 DRs its action is antagonistic. The multitargeting of this ligand comprises partial agonism on 5-HT1A and 5-HT2A serotonin receptors with pKi = 8.2 [65], and pKi = 7.5–8.1 [65], respectively. On 5-HT1D aripiprazole reveals full agonism with pKi = 7.2 [65]. Other serotonin receptors affected by aripiprazole are 5-HT2 partial agonism, pKi = 7.8 [66]) and 5-HT2C (partial agonism, pKi = 7.6 [67]). H1 histamine receptors are antagonized by this ligand with pKi = 7.5 [67].

A wide spectrum of action also reveals cabergoline which is an ergot-derived, long-acting D2 DR agonist and prolactin inhibitor. However, the D2 DR selectivity is rather declared than it corresponds to the reality. This drug binds, besides to DRs, to other receptor proteins [50]: D2 DRs and D3 DRs bind this drug with similar affinity as a partial agonist (pKi = 9.0–9.2, and pKi = 9.1 for D2 DR and D3 DR, respectively), similar affinity reveal 5-HT2B receptors (pKi = 8.9, full agonist) and very close affinity show 5-HT2A and 5-HT1D (pKi = 8.2 and pKi = 8.1, respectively for 5-HT2A (full agonist) and 5-HT1D receptors [partial agonist]). On the other D2-like DRs (D4 DR) it also behaves as a partial agonist, but the affinity is lower (pKi = 7.3). Besides these effects cabergoline acts also as an antagonist on α2A-AR, α2C-AR, α2B-AR, and α1A-AR (with pKi = 7.9, pKi = 7.7, pKi = 7.1, and pKi = 7.1, respectively on α2A-AR, α2C-AR, α2B-AR, and α1A-AR) and as a full agonist on 5-HT1A receptor (pKi = 7.7) [50]. One should be cautious when thinking about the D2 DR or D2-like selectivity. Although about 1.5 order of magnitude difference (pKi about 9.0 for D2 DRs), the affinity of D1-like receptors could still play a role in the action of cabergoline: on D3 DR it behaves like a full agonist with pKi = 7.7, on the D1 DR it reveals a similar type of action (full agonism), but the pKi = 6.7 is significantly lower [50]. The affinity (full agonism) of 5-HT1B and 5-HT2C is much lower than the affinity of other receptors (pKi = 6.3 and pKi = 6.2, respectively) [50].

One of the typical drugs that has been used for almost 50 years for the treatment of pituitary tumors, Parkinson’s disease, hyperprolactinemia, neuroleptic malignant syndrome, and, as an adjunct, type 2 diabetes is an ergot derivative and dopamine agonist...
apomorphine. Typically, this drug has many targets of actions: 5-HT\textsubscript{1D} receptor (acts as partial agonist) with pK\textsubscript{i} = 8.0 [50], \(\alpha\textsubscript{2A}-AR\) (acts as antagonist) with pK\textsubscript{i} = 8.0 [50], 5-HT\textsubscript{1A} receptor (acts as partial agonist) with pK\textsubscript{i} = 7.9 [50], D\textsubscript{2} DR (acts as full agonist [50]; however, in rats it is a partial agonist [7]) with pK\textsubscript{i} = 7.3–8.3, 5-HT\textsubscript{7} receptor (acts as full agonist) with pK\textsubscript{i} = 7.3–8.0 [68], D\textsubscript{3} DR (acts as partial agonist [50]; however, in rats it is a full agonist [7]) with pK\textsubscript{i} = 7.1–8.2 [50], \(\alpha\textsubscript{2C}-AR\) (acts as antagonist) with pK\textsubscript{i} = 7.6, 5-HT\textsubscript{6} receptor (act as full agonist [69]; however, in rats it is a partial agonist [70]) with pK\textsubscript{i} = 7.5, \(\alpha\textsubscript{2B}-AR\) (acts as antagonist) with pK\textsubscript{i} = 7.5 [50], 5-HT\textsubscript{2B} receptor (act as antagonist) with pK\textsubscript{i} = 7.3 [50], 5-HT\textsubscript{2A} receptor (act as partial agonist [50]) with pK\textsubscript{i} = 7.0, Other receptors (5-HT\textsubscript{1B} receptor, D\textsubscript{4} DR, D\textsubscript{5} DR, D\textsubscript{1} DR, and 5-HT\textsubscript{2C} receptor reveal lower affinity with pK\textsubscript{i} < 7.0 [50]). When applied to experimental animals one should count all effects listed above.

The drug with declared multiple effects is apomorphine, historically used to relieve anxiety and craving in alcoholics, as an emetic, or in treating erectile dysfunction. Currently, apomorphine is used in the treatment of Parkinson’s disease but should be used together with antiemetics. Contrary to its name, apomorphine does not contain morphine or its skeleton, nor does it bind to opioid receptors. It is declared as a non-selective dopamine agonist which activates both D\textsubscript{2}-like and, to a much lesser extent, D\textsubscript{1}-like receptors, an antagonist of 5-HT\textsubscript{2} and \(\alpha\)-AR with high affinity. In detail, D\textsubscript{4} DR binds this compound as a partial agonist with pK\textsubscript{i} = 8.4 [50], rat and human D\textsubscript{3} DR binds this compound as a partial agonist with pK\textsubscript{i} = 7.7 [7], and with pK\textsubscript{i} = 6.1–7.6 [50], respectively. Rat and human D\textsubscript{2} DRs bind this compound as a partial agonist with pK\textsubscript{i} = 7.6 [7], and pK\textsubscript{i} = 5.7–7.5 [50], respectively. \(\alpha\textsubscript{2C}-AR\) binds this compound as an antagonist with pK\textsubscript{i} = 7.4 [50], \(\alpha\textsubscript{2B}-AR\) binds this compound as an antagonist with pK\textsubscript{i} = 7.2 [50], D\textsubscript{3} DR binds this compound as a partial agonist with pK\textsubscript{i} = 6.4–7.8 [50], 5-HT\textsubscript{2C} receptors bind this compound as an antagonist with pK\textsubscript{i} = 7.0 [50], 5-HT\textsubscript{1A} receptors bind this compound as a partial agonist with pK\textsubscript{i} = 6.9 [50], 5-HT\textsubscript{2A} receptor binds this compound as an antagonist with pK\textsubscript{i} = 6.9 [50], 5-HT\textsubscript{2B} receptor binds this compound as an antagonist with pK\textsubscript{i} = 6.9 [50], \(\alpha\textsubscript{2A}-AR\) binds this compound as a partial agonist with pK\textsubscript{i} = 6.9 [50]. All these values, except stated otherwise, come from human receptors.

Benzquinamide is more potent inhibitor of cyclooxygenase COX-2 (pIC\textsubscript{50} = 8.3) than agonist on D\textsubscript{2} DR (pK\textsubscript{i} = 5.4) [71].

3. DR Antagonists

3.1. So-Called Selective Dopamine Receptor Antagonists

An example of a drug declared as D\textsubscript{1} (or D\textsubscript{1}-like family, pK\textsubscript{i} = 8.4 for D\textsubscript{1} DR) selective antagonist is flupentixol [13]. However, this antagonist also affects \(\sigma\)-receptors [72] (pK\textsubscript{i} = 8.86). In addition to that, this ligand also antagonizes the D\textsubscript{2}-like family (pK\textsubscript{i} = 8.82 for D\textsubscript{2} DR, and pK\textsubscript{i} = 8.96 for D\textsubscript{3} DR, respectively) [73].

Another example of a drug, declared as specific, is L-741,626 which is usually marked as a potent D\textsubscript{2} DR selective antagonist over D\textsubscript{3} DR and D\textsubscript{4} DR, respectively (D\textsubscript{2} DR: pK\textsubscript{i} = 7.95–8.35 [74], D\textsubscript{3} DR: pK\textsubscript{i} = 6.79–7.04 [74], D\textsubscript{3} DR: pK\textsubscript{i} = 5.82 [74]). However, this compound also binds to the \(\sigma\)-1 receptor with pK\textsubscript{i} = 7.71 [75].

Domperidone, acting peripherally, as it is extensively metabolized in the liver, and has the low central nervous system penetration, is the next example of a declared specific D\textsubscript{2} and D\textsubscript{3} DR antagonist (pK\textsubscript{i} = 7.9–8.4, and pK\textsubscript{i} = 7.1–7.6, for D\textsubscript{2} and D\textsubscript{3} DRs, respectively [73]) is also able to bind to 5-HT\textsubscript{2A}/5-HT\textsubscript{2B} receptors with pK\textsubscript{i} = 7.0 [76].

Nafadotride is usually considered a highly potent and competitive, centrally active D\textsubscript{3} DR antagonist (pK\textsubscript{i} = 9.5 [77]) over D\textsubscript{2} DR (pK\textsubscript{i} = 8.8 [77]) and mainly over D\textsubscript{4} DR (pK\textsubscript{i} = 6.4 [64]). However, also 5-HT\textsubscript{1A} receptor can be activated (full agonisms exist here [78]) by this drug with pK\textsubscript{i} = 7.3.

PG01037 is considered as D\textsubscript{3} DR selective antagonist (pK\textsubscript{i} = 9.2 [79]). Some other papers indicate different affinity (from pK\textsubscript{i} = 8.68 [80] to pK\textsubscript{i} = 9.5 [81]), and some indicate signifi-
cant affinity to D2 DR (pK_i = 7.13 [81]), to 5-HT_2C (pK_i = 7.33 [79]), to 5-HT_2A (pK_i = 7.2 [79]), and to 5-HT_1A (pK_i = 7.07 [79]).

The specific situation comes with spiperone. Spiperone is considered a D2-like dopamine receptor-specific ligand (pK_i = 8.4–9.4 [82], 9.2 [83], and 9.3 [82] for D2, D3, and D4 DR, respectively) and is commercially available as a tritiated ligand. However, this ligand also exhibits similar affinities (pK_i = 7.8–9.4) for 5-HT_2A receptors [84], 5-HT_1B receptors (pK_i = 8.3) [85], and α1A, α1B, and α1D-ARs (pK_i = 8.3, 9.2, and 8.1, respectively) [86]. This is a very inconvenient feature as tritiated spiperone (³H-spiperone) is very often used as a specific ligand for binding of D2-like family: we found 1,156 results for ³H-spiperone in a Pubmed search (accessed on 21 March 2022). One should be cautious when interpreting the results obtained with ³H-spiperone in the cerebral cortex, striatum, olfactory tubercle, substantia nigra, globus pallidus, nucleus accumbens, CA1 region of hippocampus, hypothalamus, and cerebellum (see Table 2 for the presence of specific 5-HT subtypes).

Moreover, the pK_i's of D1 and D2 DRs are 6.7, and 5.4, respectively [23].

On the other hand, another radiolabeled ligand, raclopride is specific for DR and has a similar affinity to D2 DR (pK_i = 7.77 [87]) and D3 DR (pK_i = 7.82 [87]) but do not bind significantly to D4 DR (pK_i = 5.51 [87]) and also not to D1 DR (pK_i = 4.43 [87]).

Another radiolabeled ligand used in DR assays, 7-OH-DPAT, binds to D2 DR with pK_i = 5.85–9.6 [88,89]. It is necessary to say that the study with pK_i = 5.85 [88] is exceptional, and usually, the pK_i rank is between 8 and 9. The affinity to D2 DR is lower (pK_i = 6.51 [90]-8.73 [91], as well as to D4 DR (pK_i = 6.83 [92]). Besides these receptors, 7-OH-DPAT has also some affinity to 5-HT_1A receptors (pK_i = 7.33 [92]), and α1-receptors (pK_i = 7.63 [93]).

3.2. Drugs–Dopamine Receptor Antagonists with Multiple Targets of Action

Similar to agonists, there are some drugs used in the treatment of psychiatric/neurological disorders with multiple targets action. One of them is blonanserin, an atypical antipsychotic for the treatment of schizophrenia [94]. The spectrum of targets is relatively close, but in addition to D2 DRs (pK_i = 9.9 [95]) it also antagonize the action on 5-HT_2A receptors (pK_i = 9.1 [95]) and on D3 DRs (pK_i = 6.3 [96]). Blonanserin has a low affinity [97] for 5-HT_2C, α1-ARs, histamine H_1, and M_1 muscarinic receptors but displays a relatively high affinity for 5-HT_6 receptors (pK_i = 7.93) [97].

Another atypical antipsychotic drug, risperidone, binds to 5-HT_7 receptor in rat as an inverse agonist with pKd = 8.9–9.0 [98], to 5-HT_2A receptor as an inverse agonist with pK_i = 9.3–10.0 [67], to D2 DR as an antagonist with pK_i = 9.4 [99], to 5-HT_2A receptor in rat as an antagonist with pK_i = 8.5 [100], to 5-HT_7 receptor as an inverse agonist with pK_i = 8.3–8.7 [101], to α1A-AR as an antagonist with pK_i = 8.4 [86], to α1B-AR as an antagonist with pK_i = 8.0 [86], to α2C-AR as an antagonist with pK_i = 8.49 [102], to α2A-AR as an antagonist with pK_i = 8.0 [102], to 5-HT_1D receptor as an antagonist with pK_i = 7.8–8.0 [103], to H_1 histamine receptor as an antagonist with pK_i = 7.6–7.8 [67,103], to 5-HT_2C receptor as an inverse agonist with pK_i = 7.5–7.6 [67], to 5-HT_2B receptor as an antagonist with pK_i = 7.7 [104], to 5-HT_1A receptor as an antagonist with pK_i = 7.68 [105], to α1D-adrenocceptor as an antagonist with pK_i = 7.4 [86], to D3 DR as an antagonist with pK_i = 7.0 [106], and to 5-HT_1B receptor as antagonist with pK_i = 6.6–7.3 [103]. Other targets (5-HT_6, 5-HT_1F) have a lower affinity (pK_i less 7.0).

Perphenazine, a typical antipsychotic, binds to a set of receptors: to D2 DR as an antagonist with pK_i = 8.9–9.6 [67], to 5-HT_2A receptor as an antagonist with pK_i = 8.2 [67], to H_1 histamine receptor as an antagonist with pK_i = 8.1 [67], to other 5-HT receptors (5-HT_6, 5-HT_7, 5-HT_2C) the pK_i vary between 7.8 and 6.9 [67,98,107].

Trifluoperazine, a typical antipsychotic drug, binds to D2 DR as an antagonist with pK_i = 8.9–9.0 [67], to 5-HT_2A receptor as an antagonist with pK_i = 7.9 [67], to D3 DR as an antagonist with pK_i = 7.4 [108], and to H_1 histamine receptor as an antagonist with pK_i = 7.2 [67].
Quetiapine, an anti-psychotic drug, is bound with the highest affinity by the H\textsubscript{1} histamine receptor as an antagonist with pK\textsubscript{i} = 8.0–8.7 [67]. Lower affinity (antagonistic) is revealed by D\textsubscript{2} DR (pK\textsubscript{i} = 7.2) [99]. Similar affinity as in D\textsubscript{2} DR have 5-HT\textsubscript{2A} (pK\textsubscript{i} = 6.4–7.0, [67,103]) and 5-HT\textsubscript{1A} (pK\textsubscript{i} = 6.5–7.1, [103,104]) receptors. Interestingly, this drug can behave as an agonist [103] or as an antagonist [67] on 5-HT\textsubscript{2A} receptors. In addition to that, it also binds to \(\alpha\text{2C}-\)AR as an antagonist with pK\textsubscript{i} = 7.0 [109], to \(\alpha\text{1A}-\)AR, and \(\alpha\text{1B}-\)AR as an antagonist with pK\textsubscript{i} = 7.0 [109], and M\textsubscript{4} muscarinic receptors as an antagonist with pK\textsubscript{i} = 7.0–7.25 [105,110].

The typical antipsychotic drug, haloperidol, has a wide spectrum of actions, including antagonism on DRs (D\textsubscript{2} DR pK\textsubscript{i} = 8.7–8.8, D\textsubscript{2} DR pK\textsubscript{i} = 7.4–8.8, D\textsubscript{3} DR pK\textsubscript{i} = 7.5–8.6, D\textsubscript{1} DR pK\textsubscript{i} = 7.6–8.2) and antagonism on 5-HT receptors (5-HT\textsubscript{2A} receptor pK\textsubscript{i} = 6.7–7.3, other 5-HT receptors (5-HT\textsubscript{1A}, 5-HT\textsubscript{1D}, 5-HT\textsubscript{7}) have pK\textsubscript{i} < 7.0). Similarly, D\textsubscript{5} DR and H\textsubscript{1} histamine receptors reveal pK\textsubscript{i} < 7.0. Relatively high affinity to this drug also reveal \(\alpha\text{1A}-\)AR (antagonist, pK\textsubscript{i} = 7.89–8.55 [111,112]), \(\alpha\text{1B}-\)AR (antagonist, pK\textsubscript{i} = 8.00 [86]), \(\alpha\text{1D}-\)AR (antagonist, pK\textsubscript{i} = 7.4 [86]), \(\alpha\text{2A}-\)AR (antagonist, pK\textsubscript{i} = 7.6 [111]), and \(\alpha\text{2C}-\)AR (antagonist, pK\textsubscript{i} = 7.6 [109]).

Sertindole is a typical antipsychotic drug with high affinity to 5-HT\textsubscript{2A} receptor (antagonist, pK\textsubscript{i} = 9.2–9.4 [67]), to 5-HT\textsubscript{2C} receptor (inverse agonist, pK\textsubscript{i} = 9.0–9.2 [67]), to D\textsubscript{2} DR (antagonist, pK\textsubscript{i} = 8.0–8.9 [67]), to \(\alpha\text{1A}-\)AR (antagonist, pK\textsubscript{i} = 9.43 [113]), to \(\alpha\text{1B}-\)AR (antagonist, pK\textsubscript{i} = 9.48 [113]), to \(\alpha\text{1D}-\)AR (antagonist, pK\textsubscript{i} = 9.18 [113]), to H\textsubscript{1} histamine receptor (antagonist, pK\textsubscript{i} = 9.29 [114]), and to D\textsubscript{4} DR (antagonist, pK\textsubscript{i} = 7.8–9.1 [108]). Relatively high affinity reveal D\textsubscript{3} DR (antagonist, pK\textsubscript{i} = 8.0–8.8 [103]), Kv11.1/HERG kalium channels (antagonist, pK\textsubscript{IC50} = 8.57 [115]), 5-HT\textsubscript{6} (antagonist, pK\textsubscript{i} = 8.3 [116]), and D\textsubscript{1} DR (antagonist, pK\textsubscript{i} = 7.92 [117]). Possible targets are 5-HT\textsubscript{1D} receptor (antagonist, pK\textsubscript{i} = 7.2 [103]) and 5-HT\textsubscript{1B} receptor (antagonist, pK\textsubscript{i} = 7.0 [103]).

Loxapine is a typical antipsychotic drug that binds to a wide spectrum of targets: H\textsubscript{1} histamine receptor, where it acts as an antagonist with pK\textsubscript{i} = 8.2 [67], D\textsubscript{2} DR, where it acts as an antagonist with pK\textsubscript{i} = 7.9–8.3 [67], D\textsubscript{4} DR, where it acts as an antagonist with pK\textsubscript{i} = 8.1, 5-HT\textsubscript{2A} receptor [108], where it acts as an inverse agonist with pK\textsubscript{i} = 8.1 [67], 5-HT\textsubscript{2C} receptor, where it acts as an inverse agonist with pK\textsubscript{i} = 7.8–8.0 [67], D\textsubscript{3} DR, where it acts as an antagonist with pK\textsubscript{i} = 7.7 [118], 5-HT\textsubscript{6} receptor, where it acts as an inverse agonist with pK\textsubscript{i} = 7.4–7.6 [107], 5-HT\textsubscript{7} receptor, where it acts as an antagonist with pK\textsubscript{i} = 6.8–7.4 [98].

Domperidone is declared as an orally active, peripherally acting, and selective antagonist of dopamine D\textsubscript{2} and D\textsubscript{3} DR. Although the selectivity to these receptors is quite well (pK\textsubscript{i} = 7.9–8.4, pK\textsubscript{i} = 7.1–7.6, respectively [73]), domperidone can also antagonize 5-HT\textsubscript{3} receptors with pK\textsubscript{IC50} = 7.0 [76].

Promazine, a phenothiazine antipsychotic, binds not only to D\textsubscript{2} DR and D\textsubscript{3} DR (pK\textsubscript{i} = 6.5 and 6.8, respectively [119]) but also with similar, although not very high, affinity to H\textsubscript{1} histamine receptors (pK\textsubscript{i} = 5.9 [120]).

4. Discussion

The first thing that should be discussed is the similarity in the amino acid binding pocket of DRs with \(\alpha\text{2}-\)ARs and 5-HT receptors. It is possible to deduce this statement from apparently similar affinities (pK\textsubscript{s}) for dopamine as given in the Introduction. This is given by the similarity of neurotransmitter structures: noradrenaline, adrenaline, dopamine, and serotonin (see Figure 1). However, as mentioned above, the main role plays in the relationship between specific G protein-coupled receptors, i.e., the sequence homology in the binding pocket between dopamine, serotonin receptors, and adrenoceptors. These homologies have been well documented for the second extracellular loop, as discussed in [121].

A second fact that implies the similarities in binding pocket/amino acid homology is that other ligands that bind to the similar amino acid residues in DRs as dopamine would also affect 5-HT receptors and \(\alpha\text{2}-\)ARs. The examples of such ligands were listed above both for agonists and antagonists.

In general, the length, organization, and amino acid homology in the D\textsubscript{3}-like DR subfamily is quite high [122]. This is the reason for so far not synthesizing specific agonists
to D₃ DR (see below). The D₁-like DRs have a shorter third intracellular loop and a longer carboxy-terminus compared to the D₂-like DR subtypes [122]. The third intracellular loop and carboxy-terminus are not structures responsible for binding. The third intracellular loop and a carboxy-terminus play a role in the G protein binding. The receptor regions responsible for binding are transmembrane zones. More precisely, the predicted binding site of dopamine in D₂ DR is located in the top third of the 7-TM barrel involving TM domains 3–6 [123]. These authors also divided dopamine ligands into two groups according to their binding properties: first, clozapine-like bulky antagonists; and second, ligands with two aromatic or ring moieties connected by a flexible linker with a protonated amine group as in haloperidol [123]. The first group occupies the region between TM3, TM4, TM5, and TM6 (the agonist binding pocket), and the second group occupies the region between TM2, TM3, TM6, and TM7, with minimal contact with TM4 and TM5 [123]. The binding pocket of D₁ DR is slightly different comprising TM6, extracellular loop 2, TM5, and TM3 (the agonist binding pocket), and the second group occupies the region between TM2, TM3, TM6, and TM7, with minimal contact with TM4 and TM5 [123]. The binding pocket of D₁ DR is slightly different comprising TM6, extracellular loop 2, TM5, and TM3 [121].

Figure 1. Schematic structure of DR and above, potential ligands. Transmembrane zones important to dopamine binding are shown in orange (see text for details).

D₃ DR and D₂ DR subtypes have substantial amino acid sequence homology [122].

The main aim of this review is to show that drugs declared by manufacturers as specific could be, in some cases, able to bind to other targets than to DRs. This can produce ambiguous results. Importantly, there are enough ligands with sufficient specificity for DR subtypes (see Table 1). The interested researcher should search available databases carefully for the ligands with well-documented selectivity to specific DR subtypes and no to rely on the information from the manufacturer.

Nevertheless, one can experience different values for the same compound. As reported here, the affinities of 5-HT₁A, 5-HT₂C serotonin receptors, and β₁-ARs to A68930 are similar to those of D₁-like DRs (when considering the data from [47]), but the data from [46] are quite similar. Another example reported here is SKF 38393. The pKᵢ values differ according to specific references in humans [13,23,30], which also vary from this value in rats. This can originate from different experimental conditions (temperature, incubation time, tissue, cell culture properties, and others). In such a case, one should be cautious with the selection of this compound for subtype determination or interpretation of results obtained with this drug in the literature. If possible, it is recommended to avoid such ligands.

However, the nature of drug properties reviewed here could be more complex. One should also consider the anatomical relationship between the terminals that release dopamine and other receptors—this concerns both 5-HT receptors and α₂-ARs. Dopamine terminals are frequently localized in tight contact with other axons configuring a triad—a configuration in which a neuron is connected to both the pre-synaptic element and post-
synaptic (usually dendritic) target. Triads are common in the hippocampus, striatum, and medial frontal cortex (for a review, see [124]). These triads can contain both dopamine and serotonin or adrenergic terminals. The first point on how the interaction between DRs and 5-HT receptors can occur is the formation of the heteroreceptor complexes of D2 DR and 5-HT2A receptors [125]. The heterocomplexes could explain the effects of atypical antipsychotic drugs [125]. One of the possible mechanisms is based on blocking the allosteric enhancement of D2 DR protomer signaling by 5-HT2A receptor protomer activation. Another mechanism by which dopamine can interact with serotonin is the release of L-DOPA as a “false (or substitute)” neurotransmitter in the serotonin synapse [126]. “False neurotransmitter” is considered as an ectopic neurotransmitter in a neuron, which replaces the normal neurotransmitter in storage vesicles. When it is the case of L-DOPA it is then able to increase the dopamine levels as L-DOPA is a dopamine precursor. Moreover, dopamine can also act as a “false neurotransmitter” in noradrenergic neurons [126].

Another aspect is given by the presence (although sometimes doubted in dopaminergic synapse) of volume transmission [127–129]. This type of connection allows the spreading of the neurotransmitter to a higher distance (more than 10 µm in comparison to 30–40 nm in classical synapse), affecting 200 other dopamine synapses instead of only one post-synaptic membrane in the classical synapse. This can further be the factor of cross action of dopamine.

On the other hand, we cannot consider this a problem; this is most probably the physiological role of the transmitter.

It can be deduced from Table 1 that a D3 DR agonist does not exist to date and that the selectivity of the antagonist comprises the other member of D1-like family—D1 DR. However, specific agonists (A77636, SKF-81297, and SKF-83959) exist for D1 DR. Thus, it is possible to distinguish between D1 DR and D3 DR using the D1 DR agonists.

Specific subtypes in the D2-like family can be distinguished using specific agonists for D2 DR (pipotiazine, ML321), D3 DR (S33084, SB 277011-A, (+)-S-14297), and D4 DR (sonepiprazole, L745870, A-381393, L741742, ML398). One should also consider the presence of off-targets (Table 2) when evaluating the role of specific dopamine receptors, as some receptors have a lower affinity to relatively selective ligand, but if the density of off-target receptors is much higher than DR that the proportion of the binding could be shifted.

Even though the attribution of a drug to be DR agonist/antagonist can also be the result of the side effect on another receptor. Thus, some drugs can primarily bind to other receptors and also reveal dopaminergic action. Examples of such drugs are some antipsychotics listed above (bromocriptine acting mainly at 5-HT receptors [50], risperidone acting mainly at 5-HT receptors [67,98], quetiapine which is H1 histamine receptor antagonist [67], sertindole which has a high affinity to 5-HT receptors [67], and loxapine acting on H1 histamine receptors [67]). Other drugs that could bind to DRs as to “second target” are muscarinic receptor agonists AC-260584, 77-LH-28-1, and LY-593039, which bind similarly to M1 muscarinic receptors and to D2 DRs [130]. Another group of drugs binds primarily to 5-HT receptors. An example of such a drug is 8-OH-DPAT (the binding of related 7-OH-DPAT is mentioned above), which is used in the tritiated form as a radioligand for 5-HT receptors. [3H]8-OH-DPAT binds to 5-HT1A receptors with high affinity (pKi = 9.33 [131]). The affinity of 5-HT1B receptors is lower (pKi = 6.25 [132]) and corresponds to the affinity to DR (pKi = 7.07 [133]). Another compound acting on 5-HT receptors and with similar binding to DRs is iloperidone, an atypical antipsychotic drug. This compound binds to 5-HT1A, 5-HT6, and 5-HT7 receptors with pKi = 6.8–7.7 [134,135] and to D2 DR with pKi = 7.0 [136]. Another atypical antipsychotic drug zotepine has antagonistic activity at 5-HT receptors (5-HT1D pKi = 9.3 [103], 5-HT2A pKi = 8.6 [103]) and on D2 DR (pKi = 8.0 [103]), D3 DR (pKi = 8.2 [103]), D4 DR (pKi = 7.4 [103]). Besides that, zotepine also binds to H1 histamine receptors (pKi = 9.2 [103]) and to 5-HT6 and to 5-HT7 with pKi = 8.9, and pKi = 8.8, respectively [98]. These examples just illustrate the complexity of the cross bunding between
drugs suggested to be selective to specific receptors. The number of such interactions would increase with the increase in our knowledge on this topic.

This review can also help with the interpretation of results obtained with antipsychotic drugs as it critically reviews the real binding to different targets, and the reader can compare the affinities of specific target molecules to these ligands. In Table 2 it is possible to find the presence of other receptors (subtypes of α2-ARs and 5-HT receptors) that can help the interpretation of data obtained with antipsychotic drugs.

We can conclude that one should be very cautious when selecting the DR ligand with the aim to determine the role of a specific DR subtype in studied CNS function. This review can help in such selection. Not only the selectivity but also the presence of typical off-targets to dopamine ligands (subtypes of α2-ARs and 5-HT receptors) should be considered, and finally, the new research can bring new knowledge, and the supposed selectivity of the specific ligand could be doubted.

Funding: This research was funded by Charles University, Cooperation program in Pharmaceutical Sciences.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
List of abbreviations and a short explanation of the terms used.

Abbreviation	Explanation
DR(s)	Dopamine receptor(s)
ARs	Adrenoceptors
5-HT	Serotonin
TM	Transmembrane zone
pKi	The negative logarithm of the K_i value (the molar concentration of the competing ligand that would occupy 50% of the receptors)
pKd	The negative logarithm of K_D value (the equilibrium dissociation constant represents the concentration of radioligand occupying half of the maximum receptor population)
pA2	The measure of the potency of an antagonist, negative logarithm of the molar concentration of an antagonist that would produce a two-fold shift in the concentration-response curve for an agonist
pEC50	The negative logarithm of EC_{50} value (the molar concentration of an agonist that produces 50% of the maximum possible response for that agonist). This value can vary when comparing different activation pathways

References
1. Emilien, G.; Maloteaux, J.-M.; Geurts, M.; Hoogenberg, K.; Cragg, S. Dopamine receptors—Physiological understanding to therapeutic intervention potential. *Pharmacol. Ther.* 1999, 84, 133–156. [CrossRef]
2. Undieh, A.S. Pharmacology of signaling induced by dopamine D1-like receptor activation. *Pharmacol. Ther.* 2010, 128, 37–60. [CrossRef] [PubMed]
3. Civelli, O.; Bunzow, J.K.; Grandy, D.K. Molecular Diversity of the Dopamine Receptors. *Annu. Rev. Pharmacol. Toxicol.* 1993, 33, 281–307. [CrossRef] [PubMed]
4. O’Dowd, B.F. Structures of Dopamine Receptors. *J. Neurochem.* 1993, 60, 804–816. [CrossRef]
5. Giros, B.; Sokoloff, P.; Martres, M.P.; RioU, J.F.; Emorine, L.J.; Schwartz, J.C. Alternative splicing directs the expression of two D2 dopamine receptor isoforms. *Nature* 1989, 342, 923–926. [CrossRef]
6. Grandy, D.K.; Litt, M.; Allen, L.; Bunzow, J.R.; Marchionni, M.; Makam, H.; Reed, L.; Magenis, R.E.; Civelli, O. The human dopamine D2 receptor gene is located on chromosome 11 at q22–q23 and identifies a TaqI RFLP. *Am. J. Hum. Genet.* 1989, 45, 778–785.
7. Sokoloff, P.; Giro, B.; Martres, M.P.; Bouthenet, M.L.; Schwartz, J.C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. *Nature* 1990, **347**, 146–151. [CrossRef]

8. Van Tol, H.H.; Bunzow, J.R.; Guan, H.C.; Sunahara, R.K.; Seeman, P.; Niznik, H.B.; Civelli, O. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. *Nature* 1991, **350**, 610–614. [CrossRef]

9. Liu, L.X.; Monsma, F.J., Jr.; Sibley, D.R.; Chiiodo, L.A. D2L, D2S, and D3 dopamine receptors stably transfected into NG108-15 cells couple to a voltage-dependent potassium current via distinct G protein mechanisms. *Synapse* 1996, **24**, 156–164. [CrossRef]

10. Picetti, R.; Saiardi, A.; Abdel Samad, T.; Bozzi, Y.; Baik, J.H.; Borrelli, E. Dopamine D2 receptors in signal transduction and behavior. *Crit. Rev. Neurobiol.* 1997, **11**, 121–142. [CrossRef]

11. Weinshank, R.L.; Adham, N.; Macchi, M.; Olsen, M.A.; Branchek, T.A.; Hartig, P.R. Molecular cloning and characterization of a high affinity dopamine receptor (D1 beta) and its pseudogene. *J. Biol. Chem.* 1991, **266**, 22427–22435. [CrossRef]

12. Centonze, D.; Grande, C.; Saulle, E.; Martin, A.B.; Gubellini, P.; Pavon, N.; Pisani, A.; Bernardi, G.; Moratalla, R.; Calabresi, P. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. *J. Neurosci.* 2003, **23**, 8506–8512. [CrossRef]

13. Tiberi, M.; Caron, M.G. High agonist-independent activity is a distinguishing feature of the dopamine D1B receptor subtype. *J. Biol. Chem.* 1994, **269**, 27925–27931. [CrossRef]

14. Wang, Q.; Jolly, J.P.; Surmeier, J.D.; Mullah, B.M.; Lidow, M.S.; Bergson, C.M.; Robishaw, J.D. Differential dependence of the D1 and D5 dopamine receptors on the G protein gamma 7 subunit for activation of adenylylcyclase. *J. Biol. Chem.* 2001, **276**, 39386–39393. [CrossRef]

15. Herve, D.; Levi-Strauss, M.; Marey-Semper, I.; Verney, C.; Tassin, J.P.; Glowinski, J.; Girault, J.A. G(o)lf and Gs in rat basal ganglia: Possible involvement of G(o)(lf) in the coupling of dopamine D1 receptor with adenylylcyclase. *J. Neurosci.* 1993, **13**, 2237–2248. [CrossRef]

16. Rupniak, N.M.J.; Perdona, E.; Griffante, C.; Cavallini, P.; Sava, A.; Ricca, D.J.; Thor, K.B.; Burgard, E.C.; Corsi, M. Affinity, potency, efficacy, and selectivity of neurokinin A analogs at human recombinant NK2 and NK1 receptors. *PLoS ONE* 2018, **13**, e0205894. [CrossRef]

17. Sokoloff, P.; Giro, B.; Martres, M.P.; Bouthenet, M.L.; Schwartz, J.C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. *Nature* 1990, **347**, 146–151. [CrossRef]

18. Khan, Z.U.; Mrzljak, L.; Gutierrez, A.; de la Calle, A.; Goldman-Rakic, P.S. Prominence of the dopamine D2 short isoform in hypotensive and diuretic activity. *Adv. Pharmacol.* 1998, **42**, 521–524. [CrossRef]

19. Schwartz, J.C.; Levesque, D.; Martres, M.P.; Sokoloff, P. Dopamine D3 receptor: Basic and clinical aspects. *Clin. Neuropharmacol.* 1993, **16**, 295–314. [CrossRef]

20. Dziedzicka-Wasylewska, M. Brain dopamine receptors—Research perspectives and potential sites of regulation. *Pol. J. Pharmacol.* 2003, **55**, 1535–1542. [CrossRef]

21. Meltzer, P.C.; McPhee, M.; Madras, B.K. Synthesis and biological activity of 2-Carbomethoxy-3- (4-chlorophenyl) tropanes: Potential Dopamine Reuptake Site Imaging Agents. *J. Med. Chem.* 1994, **37**, 1355–1542. [CrossRef]

22. Patel, S.; Patel, S.; Marwood, K.; Emm, F.; Marston, D.; Leeson, P.D.; Curtis, N.R.; Kulagowski, J.J.; Freedman, S.B. Identification and pharmacological characterization of [125I]-750,667, a novel radioligand for the dopamine D4 receptor. *Mol. Pharmacol.* 1996, **50**, 1658–1664. [PubMed]

23. Dowd, B.F.; Seeman, P.; Laurier, L.G.; Ng, G.; George, S.R.; Torchia, J.; Van Tol, H.H.; Niznik, H.B. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. *Nature* 1991, **350**, 614–619. [CrossRef]

24. Goodman, M.M.; Kung, M.-P.; Kabalka, G.W.; Kung, H.F.; Switzer, R. Synthesis and Characterization of Radioiodinated N-(3-Iodopropen-1-yl)-2 β-carbomethoxy-3 β-(4-chlorophenyl) tropanes: Potential Dopamine Reuptake Site Imaging Agents. *J. Med. Chem.* 1994, **37**, 1355–1542. [CrossRef]

25. Meltzer, P.C.; McPhee, M.; Madras, B.K. Synthesis and biological activity of 2-Carbomethoxy-3-catechol-8-azacyclo[3.2.1]octanes. *Bioorg. Med. Chem. Lett.* 2003, **13**, 4133–4137. [CrossRef]

26. Fisher, L.E.; Rosenkranz, R.P.; Clark, R.D.; Muchداول, J.M.; McClelland, D.L.; Michel, A.; Caroon, J.M.; Galeazzi, E.; Eglen, R.; Whiting, R.L. N,N-6-bis-[2-(3,4-dihydroxybenzyl)pyrrolidinyl]hexane, a potent, selective, orally active dopamine analog with hypotensive and diuretic activity. *Bioorg. Med. Chem. Lett.* 1995, **5**, 2371–2376. [CrossRef]

27. Lu, S.-F.; Herbert, B.; Haue, G.; Laue, K.W.; Padgett, W.L.; Oshunleti, O.; Daly, J.W.; Kirk, K.L. Syntheses of (R)-and (S)-2- and 6-Fluoropropapinephrine and (R)- and (S)-2- and 6-Fluprocipinephrine: Effect of Stereochemistry on Fluorine-Induced Adrenergic Selectivities. *J. Med. Chem.* 2000, **43**, 1611–1619. [CrossRef]

28. Kenakin, T. What is pharmacological ‘affinity’? Relevance to biased agonism and antagonism. *Trends Pharmacol. Sci.* 2014, **35**, 434–441. [CrossRef]

29. Rupniak, N.M.J.; Perdona, E.; Griffante, C.; Cavallini, P.; Sava, A.; Ricca, D.J.; Thor, K.B.; Burgard, E.C.; Corsi, M. Affinity, potency, efficacy, and selectivity of neurokinin A analogs at human recombinant NK2 and NK1 receptors. *Plos ONE* 2018, **13**, e0205894. [CrossRef]

30. Zhang, J.; Zhang, H.; Cai, W.; Yu, L.; Zhen, X.; Zhang, A. ‘Click’ D1 receptor agonists with a 5-HT1A receptor pharmacophore producing D2 receptor activity. *Bioorg. Med. Chem.* 2009, **17**, 4873–4880. [CrossRef]
31. DeNinno, M.P.; Schoenleber, R.; Asin, K.E.; MacKenzie, R.; Kebabian, J.W. (1R,3S)-1-(Aminomethyl)-3,4-dihydro-5,6-dihydroxy-3-phenyl-1H-2-benzopyran: A potent and selective D1 agonist. J. Med. Chem. 1990, 33, 2948–2950. [CrossRef] [PubMed]

32. Ge, H.; Zhang, Y.; Yang, Z.; Qiang, K.; Chen, C.; Sun, L.; Chen, M.; Zhang, J. Chemical synthesis, microbial transformation and biological evaluation of tetrahydroprotoberines as dopamine D1/D2 receptor ligands. Bioorg. Med. Chem. 2019, 27, 2100–2111. [CrossRef] [PubMed]

33. Lebar, M.D.; Hahn, K.N.; Mutka, T.; Maignan, P.; McClintock, J.B.; Amsler, C.D.; van Olphen, A.; Kyle, D.E.; Baker, B.J. CNS and antimalarial activity of synthetic meridianin and psammopemmin analogs. Bioorg. Med. Chem. 2011, 19, 5756–5762. [CrossRef] [PubMed]

34. Tan, L.; Yan, W.; McCorvy, J.D.; Cheng, J. Biased Ligands of G Protein-Coupled Receptors (GPCRs): Structure-Functional Selectivity Relationships (SFSRs) and Therapeutic Potential. J. Med. Chem. 2018, 61, 9841–9878. [CrossRef] [PubMed]

35. Kopinathan, A.; Scammells, P.J.; Lane, J.R.; Capuano, B. Multivalent approaches and beyond: Novel tools for the investigation of dopamine D2 receptor pharmacology. Future Med. Chem. 2016, 8, 1349–1372. [CrossRef] [PubMed]

36. Zuk, J.; Bartusi, D.; Miszta, P.; Kaczor, A.A. The Role of Lipids in Allosteric Modulation of Dopamine D(2) Receptor-In Silico Study. Molecules 2022, 27, 1355. [CrossRef]

37. Jones-Tabah, J.; Mohammad, H.; Paulus, E.G.; Clarke, P.B.S.; Hébert, T.E. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front. Cell. Neurosci. 2021, 15, 806618. [CrossRef] [PubMed]

38. Free, R.B.; Chun, L.S.; Moritz, A.E.; Miller, B.N.; Doyle, T.B.; Conroy, J.L.; Padron, A.; Meade, J.A.; Xiao, J.; Hu, X.; et al. Discovery and characterization of a G protein-biased agonist that inhibits β-arrestin recruitment to the D2 dopamine receptor. Mol. Pharmacol. 2014, 86, 96–105. [CrossRef]

39. Bouthenet, M.L.; Ruat, M.; Sales, N.; Garbarg, M.; Schwartz, J.C. A detailed mapping of hist amine H1-receptors in guinea-pig central nervous system established by autoradiography with [125I]iodobolpyramine. Neuroscience 1988, 26, 553–600. [CrossRef]

40. Vallone, D.; Picetti, R.; Borrelli, E. Structure and function of dopamine receptors. Neurosci. Biobehav. Rev. 2000, 24, 125–132. [CrossRef]

41. Saunders, C.; Limbird, L.E. Localization and trafficking of α2-adrenergic receptor subtypes in cells and tissues. Pharmacol. Ther. 1999, 84, 193–205. [CrossRef]

42. Nichols, D.E.; Nichols, C.D. Serotonin Receptors. Chem. Rev. 2008, 108, 1614–1641. [CrossRef] [PubMed]

43. Stark, A.J.; Smith, C.T.; Petersen, K.J.; Trujillo, P.; van Wouwe, N.C.; Donahue, M.J.; Kessler, R.M.; Deutch, A.Y.; Zald, D.H.; Kopin, A.S. The Role of Lipids in Allosteric Modulation of Dopamine D(2) Receptor-In Silico Study. Molecules 2022, 27, 1355. [CrossRef]

44. Free, R.B.; Chun, L.S.; Moritz, A.E.; Miller, B.N.; Doyle, T.B.; Conroy, J.L.; Padron, A.; Meade, J.A.; Xiao, J.; Hu, X.; et al. Discovery and characterization of a G protein-biased agonist that inhibits β-arrestin recruitment to the D2 dopamine receptor. Mol. Pharmacol. 2014, 86, 96–105. [CrossRef]

45. Szöllösi, E.; Bobok, A.; Kiss, L.; Vass, M.; Kurkó, D.; Kolók, S.; Visegrády, A.; Keserű, G.M. Cell-based and virtual fragment screening for adrenergic α2C receptor agonists. Bioorg. Med. Chem. 2015, 23, 3991–3999. [CrossRef]

46. Nergårdh, R.; Oertel, H.; Fredholm, B.B. Differences between A 68930 and SKF 82958 could suggest synergistic roles of D1 and D5 receptors. Bioorg. Med. Chem. 2005, 13, 2561–2569. [CrossRef]

47. Stuchlik, A.; Radostova, D.; Hatalova, H.; Vales, K.; Nekovarova, T.; Koprivova, J.; Svoboda, J.; Horacek, J. Validity of Quinpirole Sensitization Rat Model of OCD: Linking Evidence from Animal and Clinical Studies. Front. Behav. Neurosci. 2016, 10, 209. [CrossRef]

48. Burris, K.D.; Pacheco, M.A.; Filtz, T.M.; Kung, M.P.; Kung, H.F.; Molinoff, P.B. Lack of discrimination by agonists for D2 and D3 dopamine receptors. Neuropsychopharmacology 1995, 12, 335–345. [CrossRef]

49. Millan, M.J.; Maiossi, L.; Cussac, D.; Audinot, V.; Boutin, J.A.; Newman-Tancredi, A. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J. Pharmacol. Exp. Ther. 2002, 303, 791–804. [CrossRef]

50. Möller, D.; Kling, R.C.; Skultety, M.; Leuner, K.; Hübner, H.; Gmeiner, P. Functionally selective dopamine D2, D3 receptor partial agonists. J. Med. Chem. 2014, 57, 4861–4875. [CrossRef]

51. Elsner, J.; Boeckler, F.; Heinemann, F.W.; Hübner, H.; Gmeiner, P. Pharmacophore-guided drug discovery investigations leading to bioactive 5-aminotetrahydropyrazolo[1,5-a]pyridazines. Implications for the binding mode of heterocyclic dopamine D3 receptor agonists. J. Med. Chem. 2005, 48, 5771–5779. [CrossRef] [PubMed]

52. Newman-Tancredi, A.; Cussac, D.; Audinot, V.; Millan, M.J. Actions of roxindole at recombinant human dopamine D2, D3 and D4 and serotonin 5-HT1A, 5-HT1B and 5-HT1D receptors. Naunyn Schmiedebers Arch. Pharmacol. 1999, 359, 477–483. [CrossRef] [PubMed]

53. Solinas, M.; Tanda, G.; Wertheim, C.E.; Goldberg, S.R. Dopaminergic augmentation of delta-9-tetrahydrocannabinol (THC) discrimination: Possible involvement of D2(2)-induced formation of anandamide. Psychopharmacology 2010, 209, 191–202. [CrossRef] [PubMed]
79. Grundt, P.; Prevatt, K.M.; Cao, J.; Taylor, M.; Floresca, C.Z.; Choi, J.K.; Jenkins, B.G.; Luedtke, R.R.; Newman, A.H. Heterocyclic analogues of N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)arylcarboxamides with functionalized linking chains as novel dopamine D3 receptor ligands: Potential substance abuse therapeutic agents. J. Med. Chem. 2007, 50, 4135–4146. [CrossRef]

80. Newman, A.H.; Grundt, P.; Nader, M.A. Dopamine D3 receptor partial agonists and antagonists as potential drug abuse therapeutic agents. J. Med. Chem. 2005, 48, 3663–3679. [CrossRef]

81. Keck, T.M.; John, W.S.; Czoty, P.W.; Nader, M.A.; Newman, A.H. Identifying Medication Targets for Psychostimulant Addiction: Unraveling the Dopamine D3 Receptor Hypothesis. J. Med. Chem. 2015, 58, 5361–5380. [CrossRef]

82. Tang, L.; Todd, R.D.; Heller, A.; O’Malley, K.L. Pharmacological and functional characterization of D2, D3 and D4 dopamine receptors in fibroblast and dopaminergic cell lines. J. Pharmacol. Exp. Ther. 1994, 268, 495–502. [PubMed]

83. MacKenzie, R.G.; VanLeeuwen, D.; Pugsley, T.A.; Shih, Y.H.; Demattos, S.; Tang, L.; Todd, R.D.; O’Malley, K.L. Characterization of the human dopamine D3 receptor expressed in transfected cell lines. Eur. J. Pharmacol. 1994, 266, 79–85. [CrossRef]

84. Sleight, A.J.; Stam, N.J.; Metel, V.; Vanderheyden, P.M. Radiolabelling of the human 5-HT2A receptor with an agonist, a partial agonist and an antagonist: Effects on apparent agonist affinities. Biochem. Pharmacol. 1996, 51, 71–76. [CrossRef]

85. Maroteaux, L.; Saudou, F.; Amlaiky, N.; Boschert, U.; Plassat, J.L.; Hen, R. Mouse 5HT1B serotonin receptor: Cloning, functional expression, and localization in motor control centers. Proc. Natl. Acad. Sci. USA 1992, 89, 3020–3024. [CrossRef]

86. Yoshio, R.; Taniguchi, T.; Itoh, H.; Muramatsu, I. Affinity of serotonin receptor antagonists and agonists to recombinant and native alpha1-adrenoceptor subtypes. Jpn. J. Pharmacol. 2001, 86, 189–195. [CrossRef]

87. Stark, D.; Piel, M.; Hübner, H.; Gmeiner, P.; Gründer, G.; Rösch, F. In vitro affinities of various halogenated benzamide derivatives as potential radioligands for non-invasive quantification of D2-like dopamine receptors. Bioorg. Med. Chem. 2007, 15, 6819–6829. [CrossRef]

88. Dörfler, M.; Tschammer, N.; Hamperl, K.; Hübner, H.; Gmeiner, P. Novel D3 selective dopaminergics incorporating enyne units as nonaromatic catechol bioisosteres: Synthesis, bioactivity, and mutagenesis studies. J. Med. Chem. 2008, 51, 6829–6838. [CrossRef]

89. Ricci, A.; Veglio, F.; Amenta, F. Radioligand binding characterization of putative dopamine D3 receptor in human peripheral blood lymphocytes with [3H]-7-OH-DPAT. J. Neuroimmunol. 1995, 58, 139–144. [CrossRef]

90. Brown, D.A.; Mishra, M.; Zhang, S.; Biswas, S.; Harrington, L.; Antonio, T.; Reith, M.E.; Dutta, A.K. Investigation of various N-heterocyclic substituted piperazine versions of 5/7-[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-aminol-5,6,7,8-tetrahydro-naphthalene-2-ol: Effect on affinity and selectivity for dopamine D3 receptor. Bioorg. Med. Chem. 2009, 17, 3923–3933. [CrossRef]

91. Maggio, R.; Scarselli, M.; Novi, F.; Corsini, G.U. Heterodimerization of G-Protein-Coupled Receptors Reveals an Unexpected Level of Pharmacological Diversity. Med. Chem. Res. 2004, 13, 25–33. [CrossRef]

92. Stjernlöf, P.; Lin, C.-H.; Sonesson, C.; Svensson, K.; Smith, M.W. (Dipropylamino)-tetrahydronaphthofurans: Centrally acting serotonin agonists and dopamine agonists-antagonists. Bioorg. Med. Chem. Lett. 1997, 7, 2759–2764. [CrossRef]

93. Chumpradit, S.; Kung, M.P.; Vessotskie, J.; Foulon, C.; Mu, M.; Kung, H.F. Iodinated 2-amino-tetralins and 3-amino-1-benzopyrans: Ligands for dopamine D2 and D3 receptors. J. Med. Chem. 1994, 37, 4245–4250. [PubMed]

94. Deeks, E.D.; Keating, G.M. Blonanserin: A review of its use in the management of schizophrenia. CNS Drugs 2010, 24, 65–84. [CrossRef] [PubMed]

95. Ochi, T.; Sakamoto, M.; Minamida, A.; Suzuki, K.; Ueda, T.; Une, T.; Toda, H.; Matsumoto, K.; Terauchi, Y. Syntheses and properties of the major hydroxy metabolites in humans of blonanserin AD-5423, a novel antipsychotic agent. Bioorg. Med. Chem. Lett. 2006, 16, 795–798. [CrossRef] [PubMed]

96. Hida, H.; Mouri, A.; Mori, K.; Matsumoto, Y.; Seki, T.; Taniguchi, M.; Yamada, K.; Iwamoto, K.; Ozaki, N.; Nabeshima, T.; et al. Blonanserin ameliorates phencyclidine-induced visual-recognition memory deficits: The complex mechanism of blonanserin action involving D3. J. Pharmacol. Exp. Ther. 2015, 350, 268–277. [CrossRef] [PubMed]

97. Roth, B.L.; Craigo, S.C.; Choudhary, M.S.; Uluer, A.; Monsma, F.J., Jr.; Shen, Y.; Meltzer, H.Y.; Sibley, D.R. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J. Pharmacol. Exp. Ther. 1994, 268, 1403–1410. [PubMed]
103. Schotte, A.; Janssen, P.F.; Gommeren, W.; Luyten, W.H.; Van Gompel, P.; Lesage, A.S.; De Loore, K.; Leysen, J.E. Risperidone compared with new and reference antipsychotic drugs: In vitro and in vivo receptor binding. Psychopharmacology 1996, 124, 57–73. [CrossRef]

104. Lange, J.H.; Reinders, J.H.; Tolboom, J.T.; Glennon, J.C.; Coolen, H.K.; Kruse, C.G. Principal component analysis differentiates the receptor binding profiles of three antipsychotic drug candidates from current antipsychotic drugs. J. Med. Chem. 2007, 50, 5103–5108. [CrossRef] [PubMed]

105. Rowley, M.; Bristow, L.J.; Hutson, P.H. Current and novel approaches to the drug treatment of schizophrenia. J. Med. Chem. 2001, 44, 477–501. [CrossRef]

106. Millan, M.J.; Peglion, J.L.; Vian, J.; Rivet, J.M.; Brocco, M.; Gobert, A.; Newman-Tancredi, A.; Dacquet, C.; Bervoets, K.; Girardon, S.; et al. Functional correlates of dopamine D3 receptor activation in the rat in vivo and their modulation by the selective antagonist, (+)-S 14297: 1. Activation of postsynaptic D3 receptors mediates hypothermia, whereas blockade of D2 receptors elicits prolactin secretion and catalepsy. J. Pharmacol. Exp. Ther. 1995, 275, 885–898.

107. Purohit, A.; Smith, C.; Herrick-Davis, K.; Teitler, M. Stable expression of constitutively activated mutant hSHT6 and hSHT7 serotonin receptors: Inverse agonist activity of antipsychotic drugs. Psychopharmacology 2005, 179, 461–469. [CrossRef]

108. Seeman, P.; Corbett, R.; Van Tol, H.H. Atypical neuroleptics have low affinity for dopamine D2 receptors or are selective for D4 receptors. Neuropsychopharmacology 1997, 16, 93–110; discussion 111–135. [CrossRef]

109. Bandyopadhyaya, A.; Rajagopalan, D.R.; Rath, N.P.; Herrold, A.; Rajagopalan, R.; Napier, T.C.; Tedford, C.E.; Rajagopalan, P. The synthesis and receptor binding affinities of DDD-016, a novel, potential, atypical antipsychotic. MedChemComm 2012, 3, 580–583. [CrossRef]

110. Ablordeppey, S.Y.; Altundas, R.; Bricker, B.; Zhu, X.Y.; Kumar, E.V.; Jackson, T.; Khan, A.; Roth, B.L. Identification of a butyrophenone analog as a potential atypical antipsychotic agent: 4-[4-(4-chlorophenyl)-1,4-diazepan-1-yl]-1-(4-fluorophenyl)butan-1-one. Bioorg. Med. Chem. 2008, 16, 7291–7301. [CrossRef] [PubMed]

111. Bolös, J.; Anglada, L.; Gubert, S.; Planas, J.M.; Princep, J.; De la Fuente, N.; Sacristán, A.; Ortiz, J.A. 7-[3-(1-piperidinyl)propoxy]chromones as potential atypical antipsychotics. 2. Pharmacological profile of 7-[3-[4-(6-fluoro-1,2-benzisoxazol-3-yl)piperidin-1-yl]propoxy]-3-(hydroxymethyl)chromen-4-one (abaperidone, FI-8602). J. Med. Chem. 1998, 41, 5402–5409. [CrossRef] [PubMed]

112. Li, M.Y.; Tsai, K.C.; Xia, L. Pharmacophore identification of alpha(1A)-adrenoceptor antagonists. Bioorg. Med. Chem. Lett. 2005, 15, 657–664. [CrossRef]

113. Jørgensen, M.; Jørgensen, P.N.; Christoffersen, C.T.; Jensen, K.G.; Balle, T.; Bang-Andersen, B. Discovery of novel alpha1-adrenoceptor ligands based on the antipsychotic sertindole suitable for labeling as PET ligands. Bioorg. Med. Chem. 2013, 21, 196–204. [CrossRef]

114. Kristensen, J.L.; Püschl, A.; Jensen, M.; Risgaard, R.; Christoffersen, C.T.; Bang-Andersen, B.; Balle, T. Exploring the neuroleptic substituent in octoclohepane: Potential ligands for positron emission tomography with subnanomolar affinity for alpha(1)-adrenoceptors. J. Med. Chem. 2010, 53, 7021–7034. [CrossRef]

115. Kołaczkowski, M.; Marcinkowska, M.; Bucki, A.; Pawłowski, M.; Mitka, K.; Jasińska, J.; Kowalski, P.; Kazek, G.; Siwek, A.; Wasik, A.; et al. Novel arylsulfonylamine derivatives with 5-HT6/5-HT7 receptor antagonist targeting behavioral and psychomotor symptoms of dementia. J. Med. Chem. 2014, 57, 4543–4557. [CrossRef] [PubMed]

116. Krogsgaard-Larsen, N.; Jensen, A.A.; Kehler, J. Novel 7-phenylsulfonyl-1,2,3,4,10,10a-hexahydro-pyrazino[1,2-a]indoles as dual serotonin 5-HT2C and 5-HT6 receptor antagonists. Bioorg. Med. Chem. Lett. 2010, 20, 5431–5433. [CrossRef]

117. Balle, T.; Perregaard, J.; Ramirez, M.T.; Larsen, A.K.; Seby, K.K.; Liljefors, T.; Andersen, K. Synthesis and structure-affinity relationship investigations of 5-heteroaryl-substituted analogues of the antipsychotic sertindole. A new class of highly selective alpha1-adrenoceptor antagonists. J. Med. Chem. 2003, 46, 265–283. [CrossRef]

118. Seeman, P. Antipsychotic drugs, dopamine receptors, and schizophrenia. Clin. Neurosci. Res. 2001, I, 53–60. [CrossRef]

119. Burstein, E.S.; Ma, J.; Wong, S.; Gao, Y.; Pham, E.; Knapp, A.E.; Nash, N.R.; Olsson, R.; Davis, R.E.; Hacksell, U.; et al. Intrinsic efficacy of antipsychotics at human D2, D3, and D4 dopamine receptors: Identification of the clozapine metabolite N-desmethylclozapine as a D2/D3 partial agonist. J. Pharmacol. Exp. Ther. 2005, 315, 1278–1287. [CrossRef] [PubMed]

120. Vasudevan, S.R.; Moore, J.B.; Schymura, Y.; Churchill, G.C. Shape-based reprofiling of FDA-approved drugs for the H1 histamine receptor. J. Med. Chem. 2012, 55, 7054–7060. [CrossRef]

121. Sun, B.; Feng, D.; Chu, M.L.-H.; Fish, I.; Lovera, S.; Sands, Z.A.; Kelm, S.; Valade, A.; Wood, M.; Ceska, T.; et al. Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist. Nat. Commun. 2021, 12, 3305. [CrossRef] [PubMed]

122. Lee, B.; Taylor, M.; Griffin, S.A.; Melnis, T.; Sumien, N.; Mach, R.H.; Luedtke, R.R. Evaluation of Substituted N-Phenylpiperazine Analogs as D3 vs. D2 Dopamine Receptor Subtype Selective Ligands. Molecules 2021, 26, 3182. [CrossRef] [PubMed]

123. Kalani, M.Y.S.; Vaidehi, N.; Hall, S.E.; Trabanino, R.J.; Freedolino, P.L.; Kalani, M.A.; Floriano, W.B.; Kam, V.W.T.; Goddard, W.A., 3rd. The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proc. Natl. Acad. Sci. USA 2004, 101, 3815–3820. [CrossRef] [PubMed]

124. Cover, K.K.; Mathur, B.N. Axo-axonic synapses: Diversity in neural circuit function. J. Comp. Neurol. 2021, 529, 2391–2401. [CrossRef]

125. Borroto-Escuela, D.O.; Ambrogini, P.; Narvaez, M.; Di Liberto, V.; Beggio, S.; Ferraro, L.; Fores-Pons, R.; Alvarez-Contino, J.E.; Lopez-Salas, A.; Mudo, G.; et al. Serotonin Heteroreceptor Complexes and Their Integration of Signals in Neurons and Astroglia—Relevance for Mental Diseases. Cells 2021, 10, 1902. [CrossRef]
126. Chagraoui, A.; Boulain, M.; Juvin, L.; Anouar, Y.; Barrière, G.; Deurwaerdere, P.D. L-DOPA in Parkinson’s Disease: Looking at the “False” Neurotransmitters and Their Meaning. *Int. J. Mol. Sci.* 2020, 21, 294. [CrossRef]

127. Cachope, R.; Cheer, J.F. Local control of striatal dopamine release. *Front. Behav. Neurosci.* 2014, 8, 188. [CrossRef]

128. Fuxe, K.; Borroto-Escuela, D.; Romero-Fernandez, W.; Zhang, W.-B.; Agnati, L. Volume transmission and its different forms in the central nervous system. *Chin. J. Integr. Med.* 2013, 19, 323–329. [CrossRef]

129. Zoli, M.; Torri, C.; Ferraro, R.; Jansson, A.; Zini, I.; Fuxe, K.; Agnati, L.F. The emergence of the volume transmission concept. *Brain Res. Rev.* 1998, 26, 136–147. [CrossRef]

130. Heinrich, J.N.; Butera, J.A.; Carrick, T.; Kramer, A.; Kowal, D.; Lock, T.; Marquis, K.L.; Pausch, M.H.; Popiolek, M.; Sun, S.-C.; et al. Pharmacological comparison of muscarinic ligands: Historical versus more recent muscarinic M1-preferring receptor agonists. *Eur. J. Pharmacol.* 2009, 605, 53–56. [CrossRef]

131. Fujio, M.; Togo, Y.; Tomozane, H.; Kuroita, T.; Morio, Y.; Katayama, J.; Matsumoto, Y. N-[[1-(2-phenylethyl)pyrrolidin-2-yl]methyl]cyclohexanecarboxamides as selective 5-HT1A receptor agonists. *Bioorg. Med. Chem. Lett.* 2000, 10, 509–512. [CrossRef]

132. Perez, M.; Jorand-Lebrun, C.; Pauwels, P.J.; Pallard, I.; Halazy, S. Dimers of 5HT1 ligands preferentially bind to 5HT1B/1D receptor subtypes. *Bioorg. Med. Chem. Lett.* 1998, 8, 1407–1412. [CrossRef]

133. Haadsma-Svensson, S.R.; Svensson, K.; Duncan, N.; Smith, M.W.; Lin, C.H. C-9 and N-substituted analogs of cis-(3aR)-(−)-2,3,3a,4,5,9b-hexahydro-3-propyl-1H-benz[e]indole-9-carboxamide: 5-HT1A receptor agonists with various degrees of metabolic stability. *J. Med. Chem.* 1995, 38, 725–734. [CrossRef]

134. Kalkman, H.O.; Subramanian, N.; Hoyer, D. Extended radioligand binding profile of iloperidone: A broad spectrum dopamine-serotonin/norepinephrine receptor antagonist for the management of psychotic disorders. *Neuropsychopharmacology* 2001, 25, 904–914. [CrossRef]

135. Kongsamut, S.; Roehr, J.E.; Cai, J.; Hartman, H.B.; Weissensee, P.; Kerman, L.L.; Tang, L.; Sandrasagra, A. Iloperidone binding to human and rat dopamine and 5-HT receptors. *Eur. J. Pharmacol.* 1996, 317, 417–423. [CrossRef]

136. Strupczewski, J.T.; Bordeau, K.J.; Chiang, Y.; Głąskowski, E.J.; Conway, P.G.; Corbett, R.; Hartman, H.B.; Szweczak, M.R.; Wilmot, C.A.; Helsley, G.C. 3-[[((Aryloxy)alkyl)piperidinyl]-1,2-benzisoxazoles as D2/5-HT2 antagonists with potential atypical antipsychotic activity: Antipsychotic profile of iloperidone (HP 873). *J. Med. Chem.* 1995, 38, 1119–1131. [CrossRef]