Supplemental Materials

Materials and Methods

Genome analysis of the methanotrophic endosymbionts of B. japonicus and “B.” platifrons

Genome sequencing for the methanotrophic endosymbionts of B. japonicus and “B.” platifrons was performed using DNA extracted from the gill tissues of the mussels. For long-read sequencing, DNA fragments larger than 5 kb were prepared using a BluePippin system (Sage Sciences), and a PacBio SMRTbell library was then constructed according to the manufacturer’s instruction. Sequencing on the PacBio Sequel platform (Pacific Biosciences) yielded a total of 13.62 Gb sequences with an N50 length of 7.2 Kb for the B. japonicus symbiont, while a total of 10.64 Gb sequences with an N50 length of 8.9 Kb for the “B.” platifrons symbiont. The PacBio subreads were assembled using the HGAP4 (2) pipeline from the PacBio SMRT toolkit (SMRT Link v6.0.0) and Flye v2.5 assembler (3), independently. The genome was re-sequenced using the Illumina MiSeq platform to resolve the error found in SMRT sequencing. A paired-end library (insert size: 350 bp) was constructed with the KAPA library prep kit (Kapa Biosystems). MiSeq sequencing yielded a total of 0.53 Gb sequences for the B. japonicus symbiont and 8.9 Gb sequences for the “B.” platifrons symbiont. The Illumina raw reads were subjected to adaptor clipping and quality trimming using TRIMMOMATIC v0.36 (4) and error correction using Pilon v1.18 (5).

For the B. japonicus symbiont, two de novo assemblies, HGAP4 and Flye, reconstructed 631 contigs (total length: 15.7 Mb, and N50 size: 27.6 Kb) and 752 contigs (total length: 14.9 Mb, and N50 size: 37.8 Kb), respectively. For the “B.” platifrons symbiont, two de novo assemblies, HGAP4 and Flye, reconstructed 711 contigs (total length: 18.4 Mb, and N50 size: 31.3 Kb) and 1,832 contigs (total length: 27.5 Mb, and N50 size: 22.9 Kb), respectively. Due to larger N50 sizes, Flye assembly for the B. japonicus symbiont and HGAP4
assembly for the “B.” platifrons symbiont were selected as the respective primary assemblies. The final contigs were generated from the primary assembly and unique sequences that were included in the secondary assembly but not in the primary assembly. The contigs were error-corrected using Pilon v1.18 with Illumina reads. Redundant contigs in each assembly were removed using the only reduction step in the Redundans pipeline (6).

Subsequently, metagenomic binning of the assemblies from both symbionts was performed using MyCC (7) with default parameters. Low-quality contigs with <3 kb length, or <30× average coverage were discarded from the binning. The two-dimensional scatter plots in MyCC binning showed that non-redundant contigs were mainly separated into two genomic bins, BIN1 and BIN2. BIN1 contained many genes affiliated to the order Methylococcales, whereas BIN2 contained genes from the order Campylobacterales. Although it was inferred that BIN1 was composed of contigs from the methanotrophic endosymbiont, the contigs showed high structural heterogeneity, including variations in gene copy number, and the presence/absence of genes and insertion sequence elements. Then, redundant contigs with similar gene arrangements were manually removed, and the remaining contigs were manually combined to create a single contig that spans the genome of the endosymbiont as far as possible.

The above process was performed in four successive steps. First, the non-redundant gene catalog was obtained by clustering the coding sequences at 97% identity with CD-HIT v4.6.8 (8). Second, redundant contigs with similar gene arrangements were manually detected, and their sequence similarity was checked by pairwise alignment using MUMmer v3.23 (9). Third, the redundant contigs with a shorter length or lower coverage were removed. Finally, a composite genome of the methanotrophic endosymbiont of each of B. japonicus and “B.” platifrons was obtained (Table S1). The completeness and contamination of the genomes were calculated with CheckM (10) using a set of lineage-specific genes of Gammaproteobacteria.
Supplementary Tables S1–S3, S5–S8

TABLE S1 Genome sequence information of the *Methyloprofundus* species

Data	INp10	*M. sedimenti* WF1	Endosymbiont of *B. japonicus*	Endosymbiont of “*B.* platifrons”
BacBio Sequel sequencing data				
Total subreads (Million)	1.73	2.30	1.62	
Total size (Gp)	9.55	13.62	10.64	
Assembly data				
Status	Complete	Draft	Draft	Draft
Genome size (bp)	4,386,347 (+42,044)*	4,290,526	4,971,076	6,592,405
Number of contigs	Chromosome, 1 Plasmid, 1	6	109	327
Maximum contig length (Mb)	4.39	2.90	0.49	0.14
N50 (Mb)	4.39	2.90	0.10	0.03
CheckM_completeness (%)	99.7	98.9	96.0	98.5
CheckM_contamination (%)	1.21	2.67	1.38	4.14
Coverage (×)	483	10	880	120
G+C content (mol %)	39.9	41.0	41.8	40.3
Gene data				
Protein coding genes	3,774	3,699	2,869	4,160
Pseudogene	95	52	1,117	1,465
rRNA	9	9	9	9
tRNA	43	42	43	45
ncRNA	3	3	3	3
tmRNA	1	2	1	1
Gene coding density (%)	86.3	80.7	53.4	54.8
GeneBank accession	AP023240, AP023241	LPUF01000001–LPUF01000006	BLYC01000001–BLYC010000109	BLYD01000001–BLYD010000327
Reference	This study (11)	This study	This study	This study

*Plasmid size is shown in parentheses.

Gene coding density does not contain pseudogenes.
No.	KEGG Orthology ID	Gene	Description
1	K00927	pgk	phosphoglycerate kinase
2	K01937	pyrG	CTP synthase
3	K02316	dnaG	DNA primase
4	K02357	tsf	elongation factor Ts
5	K02600	nusA	transcription termination/antitermination protein NusA
6	K02838	frr	ribosome recycling factor
7	K02863	rplA	large subunit ribosomal protein L1
8	K02867	rplK	large subunit ribosomal protein L11
9	K02871	rplM	large subunit ribosomal protein L13
10	K02874	rplN	large subunit ribosomal protein L14
11	K02878	rplP	large subunit ribosomal protein L16
12	K02884	rplS	large subunit ribosomal protein L19
13	K02886	rplB	large subunit ribosomal protein L2
14	K02887	rplT	large subunit ribosomal protein L20
15	K02899	rpmA	large subunit ribosomal protein L27
16	K02906	rplC	large subunit ribosomal protein L3
17	K02926	rplD	large subunit ribosomal protein L4
18	K02931	rplE	large subunit ribosomal protein L5
19	K02933	rplF	large subunit ribosomal protein L6
20	K02935	rplL	large subunit ribosomal protein L7/L12
21	K02946	rpsJ	small subunit ribosomal protein S10
22	K02948	rpsK	small subunit ribosomal protein S11
23	K02952	rpsM	small subunit ribosomal protein S13
24	K02965	rpsS	small subunit ribosomal protein S19
25	K02967	rpsB	small subunit ribosomal protein S2
26	K02982	rpsC	subunit ribosomal protein S3
27	K02988	rpsE	small subunit ribosomal protein S5
28	K02996	rpsI	small subunit ribosomal protein S9
29	K03043	rpoB	DNA-directed RNA polymerase subunit beta
30	K03664	smpB	SsrA-binding protein
TABLE S3 Summary of transcriptome data for the biofilms and the gill tissues of bathymodiolin mussels

Data	Biofilm sample	B. japonicus gill tissue	“B.” platifrons gill tissue						
	methR-17d	methR-40d	methR-88d	methR-17d	methR-40d	methR-88d	methR-17d	methR-40d	methR-88d
Ion S5XL sequencing data									
Total number of raw reads	23,641,628	20,566,640	19,855,762	78,935,274	79,992,771				
Total number of clean reads	22,722,258	19,785,140	18,744,452	74,019,616	73,967,455				
% of clean reads to raw reads	96.1%	96.2%	94.4%	93.8%	92.5%				
Average length of reads (bp)	119	141	140	167	163				
Alignment to a reference methanotroph genome									
Total number of aligned reads	8,706,351	9,231,461	11,714,248	7,386,319	6,033,089				
% of aligned reads to clean reads	38.3%	46.7%	62.5%	10.0%	8.2%				
Percentage of each gene in the aligned reads (%)									
rRNA	0.5	0.3	0.1	<0.1	<0.1				
tmRNA	51.3	64.9	68.3	27.8	38.4				
ncRNA	8.1	8.0	3.2	21.7	23.3				
Coding regions	33.5	22.9	24.0	32.6	25.3				
Others	5.5	3.6	4.1	13.2	9.7				

TABLE S5 Classification of gene transcriptions presented by TPM values

Transcription level	The minimum TPM value for each ranking category in:								
	InP10 in biofilm of:	B. japonicus symbiont	“B.” platifrons symbiont						
	methR-17d	methR-40d	methR-88d	methR-17d	methR-40d	methR-88d	methR-17d	methR-40d	methR-88d
Extremely high	Top >1%	2,834	2,472	2,204	4,008	2,526			
Very high	Top >3%	1,001	787	744	1,577	1,170			
	Top >5%	628	504	451	1,113	775			
High	Top >10%	306	252	243	627	422			
	Top >15%	204	167	164	462	308			
Moderate	Top >30%	108	88	88	243	154			
Low	Top >50%	63	50	50	120	76			
Very low	Bottom ≤50%	1	1	0	0	0			
TABLE S6 Summary of samples and experiments performed in this study

Sample type	Sample ID	Cultivation	16S rRNA gene amplicon	rRNA composition	pmoA amplicon	Meta-Genome	Meta-Transcriptome	FISH	SEM	TEM	PCFMb	Depth (m)	Sampling fieldd	Cruise ID (Dive No.)
ISCS	ISCS-1	✔	(DRR155417)									1.058	Iheya North, MOT	NT13-22 (HPD#1592), KY14-01 (HPD#1613)
ISCS	ISCS-2	✔	(DRR155418)									1.061	Iheya North, MOT	NT13-22 (HPD#1593), KY14-01 (HPD#1619)
ISCS	ISCS-3	✔	(DRR155419)									994	Iheya North, MOT	NT13-22 (HPD#1593), KY14-01 (HPD#1610)
ISCS	ISCS-4	✔	(DRR155420)									986	Iheya North, MOT	NT13-22 (HPD#1593), KY14-01 (HPD#1610)
B. japonicus, gill tissue		✔	(DRR155421, DRR308206, DRR308207)									1,023	Iheya North, MOT	NT10-E01 (HPD#1178)
B. japonicus, gill tissue													Off Hatsushima, Sagami Bay	NT13-07 (HPD#1508)
B. japonicus, gill tissue													Off Hatsushima, Sagami Bay	NT13-07 (HPD#1508)
B. japonicus, gill tissue													Off Hatsushima, Sagami Bay	NT14-05 (HPD#1643)
B. japonicus, gill tissue													Off Hatsushima, Sagami Bay	NT14-05 (HPD#1643)

a Run accession numbers for sequence data are shown in parentheses.
bPCFM, phase contrast/fluorescence microscopy
cMOT, mid-Okinawa Trough

6
TABLE S7 Mp731 probe specificity to the taxonomic groups within the order *Methylococcales*

Taxonomic group* or strain	Sequence data	Match/Mismatch to Mp731b
Methyloprofundus	SILVA database	100% match, 93% (53/57)f
Methyloprofundus	ASVs from 16S rRNA gene amplicon analysis	100% match, 100% (17/17)
MMG2	SILVA database	1-base mismatch, 7% (5/71)
		≧2-base mismatch, 93% (66/71)
MMG2	ASVs from 16S rRNA gene amplicon analysis	1-base mismatch, 23% (5/22)
		≧2-base mismatch, 77% (17/22)
pLW-20	SILVA database	≧2-base mismatch, 100% (21/21)
pLW-20	ASVs from 16S rRNA gene amplicon analysis	≧2-base mismatch, 100% (10/10)
Milano-WF1B-42	SILVA database	100% match, 100% (3/3)f
Methylobacter marinus MR1	Sequence obtained in our laboratory	2-base mismatch

*Taxonomic group names used in the SILVA database

bThe number of corresponding sequences to the total number of sequences is shown in parentheses.

cThe sequences of INp10 and the "B." platifrons endosymbiont, which are not included in the SILVA database, are included.

dMilano-WF1B-42 is not involved in this study, but it was the sole group showing 100% match with Mp731 other than *Methyloprofundus* in the SILVA database.
Primer and Probe	Sequence (5’ to 3’) : (mix ratio)	Target (positions*)	Reference
PCR primer			
MPFpmo-F mix			
MPFpmo-F1	ACTGTAGCCGCAATCTATTC: (1)	pmoA (184–203)	This study
MPFpmo-F2	ACTGTAGCCGCCGATCTATTC: (1)		
MPFpmo-R	ACTGAGCCACCTCTCTCTCTAC	pmoA (625–644)	This study
F515	GTGCCAGCMCGCGCGGTAA	16S rRNA gene (515–533)	(12)
R806	GGACTACHVGGGTWTCTTAAT	16S rRNA gene (787–806)	(12)
U530F mix			
Bac 530F	GTGCCAGCCGGCGG: (30)	16S rRNA gene (515–530)	(13)
Arch 530F			
Arch2 530F			
Bac2 530F			
Bac3 530F			
Bac4 530F			
Nano 530F			
U907R mix		16S rRNA gene (907–926)	(13)
Uni 907R	CCGYCAATTCTTTGTTAGTTT: (20)		
DeepAB 907R	CCGYCATTTCTTCTAGTTT: (1)		
SAG-Del 907R	CCGYCAATTCTTTGTTAGTTT: (1)		
DeepAB2 907R	CCGYCAATTCTTCTAGTTT: (1)		
Arch2 907R	CCGYCAATTCTTCTAGTTT: (1)		
OP11 907R	CCGYCAATTCTTCTAGTTT: (1)		
Sequences added to primers for Illumina amplicon sequencing			
Illumina adaptor sequence	ACACCTTTTCTCACACGGCTTCCTCCTGCTCT		
Illumina Multiplexing PCR Primer 2.0 sequence	GTGACTTGGATTCAGACGCTGTCCTCTGCTGATCT		
FISH probe			
Probe Mp731	CATTTTAGCCAGGAGAGTGC	16S rRNA (731–752)	This study
Eub338	GCTGCCCTCGCTAGGAT	16S rRNA (338–355)	(14)
NonEub	ACTTTAGGAGGAGGAGC	16S rRNA	(15)

*The target positions are indicated by those in *M. sedimenti* WF1 for the pmoA genes, and those in *E. coli* for the 16S rRNA (genes).
References

1. Kuwahara H, Yoshida T, Takaki Y, Shimamura S, Nishi S, Harada M, Matsuyama K, Takishita K, Kawato M, Uematsu K, Fujiwara Y, Sato T, Kato C, Kitagawa M, Kato I, Maruyama T. 2007. Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, *Calyptogena okutanii*. Curr Biol 17:881-886.

2. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563-569.

3. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 37:540-546.

4. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.

5. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963.

6. Przybylski LP, Gabaldón T. 2016. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res 44:e113.

7. Lin H-H, Liao Y-C. 2016. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep 6:24175.

8. Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658-1659.

9. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol 5:R12.

10. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043-1055.

11. Tavormina PL, Kellermann MY, Antony CP, Tocheva EI, Dalleska NF, Jensen AJ, Valentine DL, Hinrichs K-U, Jensen GJ, Dubilier N, Orphan VJ. 2017. Starvation and recovery in the deep-sea methanotroph *Methyloprofundus sedimenti*. Mol Microbiol 103:242-252.

12. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516-4522.

13. Nunoura T, Takaki Y, Kazama H, Hirai M, Ashi J, Imachi H, Takai K. 2012. Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes Environ 27:382-390.
14. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919-1925.

15. Wallner G, Amann R, Beisker W. 1993. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136-143.

Supplementary Figures S1–S6
FIG. S1

FIB-SEM micrographs of ceramic particles. Panel 1 shows a ceramic particle before deployment, and panels 2 and 3 show the particles in the ISCS-3 examined as a representative. To determine the thickness of biofilms formed on the particle surface, sample milling was performed with a gallium ion beam at 30 kV with a current of 1.2 to 9.1 nA.

FIG. S2

Heatmap showing the species-like group composition of the *Methyloprofundus* population in each sample of the ISCSs. A total of 161 species-like groups were identified by analyzing 50,000 reads of the *pmoA* amplicons of *Methyloprofundus* in each sample.
FIG. S3

Rank-abundance curves based on both ASVs of *pmoA* (A) and species-like groups (B) in the *Methyloprofundus* populations. Abundance shows the number of sequence reads. Different samples are shown in different colors.
Whole-cell FISH images of *Methyloprofundus*-like bacteria colonized on ceramic particles of ISCS-1 and ISCS-3. The Mp731 probe was designed to detect the *Methyloprofundus* clade. The three images, DAPI staining and FISH with the EUB338 and Mp731 probes, were merged as Merged 1. The image by DIC microscopy was further merged as Merged 2. The MP731 and Eub338 probes were labeled with Alexa Flour 488 and 555, respectively.
FIG. S5

(A) The origin of all RNA-seq reads obtained from biofilms (methR-17d, methR-40d, and methR-88d) and gill tissues of *B. japonicus* and “*B.*” *platifrons*. (B) Properties of the RNA-seq reads mapped to the respective target methanotroph genomes. (C) A histogram showing gene distribution (left axis) and a line plot showing inverse percentile (1 – percentile) rank (right axis) based on TPM. Additional vertical lines indicate the points of inverse percentile rank to separate the transcriptional level categories (1%, 3%, 5%, 10%, 15%, 30%, and 50%).
FIG. S6

Transcript abundance (A) and top percentage (inverse percentile rank) among coding genes in the transcription level (B) for genes encoding ribosomal proteins and aminoacyl-tRNA synthetases in the target methanotroph genomes. To infer the metabolic activity change in INp10, the transcription rankings of ribosomal protein genes (53 genes) were compared between the biofilms using the Friedman test (a significant level, 0.05), and a statistically significant change ($P = 2.24\times10^{-6}$) was observed. The following pairwise comparisons using a one-sided Wilcoxon signed-rank test with Bonferroni correction indicated that the rankings in methR-17d biofilm were significantly higher than in the other two biofilms (P values are indicated in the graph).