Magnetic field control of the Franck-Condon coupling of few-electron quantum states

Peter L. Stiller, a Daniel R. Schmid, a Alois Dirnaichner, a Andreas K. Hütte b, *
a Institute for Exp. and Applied Physics, University of Regensburg, 93040 Regensburg, Germany b Low Temperature Lab., Dept. of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland Email: andreas.huettel@ur.de

Abstract:
The longitudinal vibration of a suspended carbon nanotube has been observed many times in low temperature transport spectra via distinct harmonic Franck-Condon sidebands. 1-5 Typically, strong Franck-Condon coupling has been attributed to disorder-induced or deliberately targetted charge localization. Here, we present the observation of a strong, tunable coupling in an ultra-clean carbon nanotube with \(N = 1 \) or \(N = 2 \) electrons in the conduction band.

The clean transport spectrum allows a tentative identification of the electronic base quantum states according to their valley quantum number. Interestingly, the Franck-Condon coupling strength \(g \), as extracted from our data, both depends on the magnetic field and on the precise electronic quantum states participating in transport. While spin-dependent Franck-Condon phenomena have already been observed, 6 our results clearly point towards a valley-dependent origin.

As possible cause of this phenomenon, re-shaping of the electronic wavefunction envelope by the magnetic field 7-9 is discussed. A simple calculation demonstrates that variations of \(g \) as observed in the experiment can be reproduced by the theory, paving the way towards more realistic and detailed quantum-mechanical modelling.

References:
1. P. L. Stiller et al., “Magnetic field control of the Franck-Condon coupling of few-electron quantum states”, Phys. Rev. B 102, 115408 (2020).
2. S. Sapmaz et al., Phys. Rev. Lett. 96, 026801 (2006).
3. S. Braig and K. Flensberg, Phys. Rev. B 68, 205324 (2003).
4. J. Koch and F. von Oppen, Phys. Rev. Lett. 94, 206804 (2005).
5. A. K. Hütte et al., Phys. Rev. Lett. 102, 225501 (2009).
6. P. Weber et al., Nano Lett. 15, 4417 (2015).
7. M. Margńska et al., Phys. Rev. Lett. 122, 086802 (2019).
8. E. Mariani and F. von Oppen, Phys. Rev. B 80, 155411 (2009).
9. A. Donarini et al., New J. Phys. 14, 023045 (2012).

Franck-Condon sidebands in the two-electron excitation spectrum. From Ref. 1.