Photoelectric Characterization of Intended Source UTBB 1 T FDSOI Based Image Sensor

Nitu Rao 1 · Vimal Kumar Mishra 2

Received: 16 August 2021 / Accepted: 1 October 2021 / Published online: 26 October 2021
© Springer Nature B.V. 2021

Abstract
This paper presents the photoelectrical performance evaluation of proposed intended source Ultra Thin Body Bias (UTBB) 1 T-FDSOI based image sensor and also a comparative analysis has done with conventional 1 T-UTBB based image sensor [1]. The photoelectrical conversion in proposed image sensor is achieved by utilizing back biasing in intended source UTBBFDSOI based MOSFET. Inthe proposed intended source Ultra Thin Body Bias (UTBB) 1 T-FDSOI based image sensor, the photoelectrical conversion is done within the substrate region (well region) and that signal is read out by MOSFET placed on SOI substrate. The comparative analysis between proposed image sensor and conventional 1 T-UTBB based image sensor has performed on the basis of various parameters such as back-bias voltage, thickness of buried oxide (BOX) layer and doping concentration. In this investigation the proposed image sensor has found better light sensitivity in contrast with conventional image sensor. The performance evaluation of proposed image sensor has done by TCAD simulations.

Keywords Ultra-thin body and BOX image sensor · Light sensitivity · Back bias modulation · Electrostatic potential

1 Introduction

The advent of silicon-on-insulator (SOI) technology become an important revolution in semiconductor industry due to its proper isolation created by buried oxide (BOX) layer. Moreover, some of its important property like better immunity reduced latch-up issues, lower parasitic capacitances, reduced short channel-effect, higher switching speed, least hot carrier effect provides a better opportunity as compared with conventional MOSFET for higher electrical performances [2]. With addition of BOX layer in SOI MOSFET parasitic capacitances and leakage current is drastically reduced and this property of SOI devices makes its useful in high frequency and low power consumption circuitry. Since Si Waveguide have excellent confinement of optical signal and also have a low loss of optical signal, so important features of SOI substrate make it possible to be used in electronics and photonics circuitry [3]. On the basis of better electrical performance of SOI MOSFET, it is also find application in image sensor. Today image sensor become an essential needs and find application in space and navigation, consumer electronics (smart phone, digital camera, optical mouse, and in medical equipment) and also in biological inspection [4–6]. The performance of traditional image sensor are categorize in two types, first is charge coupled device based image sensror (CCD image sensor), second is complementary metal-oxide–semiconductor image sensor (CIS) [7, 8]. The thick depletion region is used in charge coupled device based image sensor (CCD image sensor), and this is complementary metal-oxide–semiconductor image sensor (CIS) [7, 8]. The thick depletion region is used in charge coupled device based image sensor for collection of light signal and also utilizes these region for conversion of photon to electron and then these converted electron transferred to the output terminal. CCD sensors are more advantageous than CIS sensor in terms of certain parameter like high fill factor and high quantum efficiency. These advantages comes because of structural change in CCD like in CCD one pixel cell is comprises of single MOS capacitor with semi-transparent gate, however CIS utilizes one single photodiode and three different transistor, one transistor for resetting the image sensor, one transistor for driving the source follower and one additional...
transistor for addressing. Because of structural complexity of CIS sensor cell CIS sensor is inferior in high fill factor and high quantum efficiency. Moreover, performance of CIS sensor is much better than CCD sensor since it have reduced noise performance, low power consumption, high speed and also its compatibility with peripheral logic circuit makes it low cost and adaptive for large scale production. There are various researcher proposed different traditional CIS sensor with three-dimensional integration technology so that problem of inferior fill factor and quantum efficiency of conventional CIS sensor has been overcome but this integrational technology has certain limitation like design and process complexity [9].

Another way to get rid of inferior fill factor and low quantum efficiency, a new active pixel image sensor using single transistor has been proposed where without transferring charge carrier to the output node, A MOSFET which is arranged on top silicon layer is used for sensing the photo generated electron [10]. Moreover various structures has been also proposed and presented where single transistor is used to sense the photo-generated carrier, and magnifying within same transistor and then read directly [11–12].

Today's, there is rapid progress in decreasing structure size in semiconductor technology. Therefore, miniaturized image sensor are more viable. Thus, in order to get a miniaturized image sensor, the pixel size of image sensor has been continuously scaled so that better performance of the image sensor is achieved [13–14]. With scaled pixel size of image sensor, it is easy to get high resolution of camera sensor and also the requirement of better image quality is achieved [15].

An ultra-thin body bias (UTBB) based SOI MOSFET has been continuously developing since its gate terminal has better ability to control the channel so it has least off-state current [16]. In order to achieve high performance in UTBB FDSOI MOSFET back biasing is used to change the threshold voltage of FDSOI MOSFET placed on top silicon layer above the buried oxide region [17, 18]. Again due to interface coupling effect, threshold voltage of the MOSFET is also affected by photo-generated electron gathering at BOX/Si substrate interface [19]. Various researcher demonstrate a new type of image sensor which is basically one transistor image sensor by integrating UTBB devices with photodiode, this photodiode built on SOI substrate is used to collect light flux and due to capacitive coupling effect photo-generated carrier causes threshold voltage shifting in both n-type and p-type field effect transistor [20].

In this paper we proposed and demonstrate an intended source UTBB 1 T FDSOI based image sensor and comparative analysis has been done between conventional 1 T-UTBB based image sensor and intended source UTBB 1 T FDSOI based image sensor (proposed) to evaluate the photoelectric characteristics of both devices. Moreover after finding better sensitivity in intended source UTBB 1 T FDSOI based image sensor (proposed) as compared to conventional 1 T-UTBB based image sensor, its performances dependency on various parameter such as by varying dimension parameter and also by varying terminal voltages again analyzed and simulated. In this proposed device when negative back voltage is applied on substrate terminal a depletion layer form below buried oxide (BOX) layer and upon illumination light photon is collected inside depletion region and these photon is converted in electron hole pair by electric field setup inside substrate region. These photo generated electrons are collected at BOX/Si substrate interface and because of interface coupling effect threshold voltage modulation will occur which will change the on-state current and threshold voltage of the n-MOSFET placed on the top Si layer. Now when voltage is applied on gate terminal of the n-MOSFET, drain current of n-MOSFET is read and hence, the intensity of the light signal is sensed and evaluation of light intensity will be done. Thus an intended source UTBB 1 T FDSOI based image sensor (proposed) is able to sense light signal, amplify it properly and then read out the amplified signal. TCAD tool Sentaurus [21] is used to simulate and analyze the performance of our intended source UTBB 1 T FDSOI based image sensor (proposed). 2D ray tracing method is opted for optical simulation. The analytic low field mobility model, parallel electric field dependency model, Lombardi CVT model, Shockley–Read–Hall (SRH) generation recombination model are used for electrical Simulation.

2 Proposed Device Structure and Characterization

The cross-sectional schematic for simulation and modeling of conventional 1 T-UTBB based image sensor and proposed intended source UTBB 1 T FDSOI based image sensor is illustrated in Fig. 1(a) and (b). The proposed device structure is constructed as conventional 1 T-UTBB FDSOI MOSFET which is placed on SOI substrate. The thickness of top silicon layer is 6 nm and the thickness of buried oxide (BOX) layer is 10 nm. The length of the source and drain region are taken as 200 nm out of which 100 nm (Lgap) length is used for the light exposure on the device which is helpful in collecting more photon within shorter time. Further, the length of the channel region is about 30 nm so the total pixel size of the proposed image sensor is about 430 nm and a p + back bias contact is taken at bottom of the p substrate region for improving the photo electrical performance of the proposed device. The main structure parameter of both conventional and proposed image sensor is depicted in Table I. In the proposed device the p-type substrate region is lightly doped so that a thick depletion layer is formed below the BOX region.

Further, in order to secure low loss of light intensity, light photons are passes only through the large gap region and upon
illumination through large gap region the photo-generated electron are collected below BOX/Si substrate interface. Due to this more photon collected inside the substrate region that leads to higher image sensor pixel area.

During light exposure on the device, drain terminal voltage (V_d) is set-up to 0.7 V and back bias terminal voltage (V_b) is setup to −0.7 V. On applying the negative biasing at lightly doped p-type substrate a thick depletion layer and an electric field formed below BOX/Si substrate interface and due to this the absorbed photons are converted into photo-generated carrier and under the influence of electric field the photo-generated electrons are move towards the interface of BOX/Si substrate. Further, the electrons are gathered under the BOX/Si substrate interface and due to this electrostatic potential under BOX/Si substrate interface becomes negative [1]. Moreover under light illumination condition the more negative charges are collected under BOX/Si substrate interface and because of electrostatic coupling [19] more positive charges are collected above the BOX/Si interface region. Furthure, these positive charges are nullified by applying more positive gate voltage and due to this the threshold voltage increases which increases the change in on-state (ΔI_on = |I_on − I_dark|) current with increasing light intensity. Fig. 2 shows the change in electrostatic potential under BOX/Si substrate interface region of proposed image sensor. As can be inferred from Fig. 2, under dark condition, the electrostatic potential under BOX/Si substrate interface (just below channel region) is positive whereas after illuminating the light intensity of 100mWatt/cm² the electrostatic potential is drop drastically under BOX/Si substrate interface from 0.45 V to −0.5 V. Moreover, with increasing light intensity the collection of photo-electron under BOX/Si substrate interface is increases.

Table 1

Device Specification	Proposed intended source UTBB 1 T FDSOI based image sensor	Conventional UTBB 1 T UTBB based sensor
Channel length (nm)	30	30
Si thickness (nm)	6	6
Oxide thickness (nm)	2	1
BOX thickness (nm)	10	10
Well depth (nm)	30	500
Exposer region width (nm)	100	200
Channel doping (cm⁻³)	5 × 10¹⁶	5 × 10¹⁶
Drain and n⁺source doping (cm⁻³)	1 × 10²⁰	1 × 10²⁰
n⁻ source doping (cm⁻³)	1 × 10¹⁷	–
p⁻ substrate region (Well) doping (cm⁻³)	5 × 10¹⁶	5 × 10¹⁶
P⁺ region doping (cm⁻³)	1 × 10²⁰	–
and due to this the electrostatic potential continuously reduces and become more and more negative. Therefore, with large variation in electrostatic potential the threshold voltage of MOSFET built on the top silicon layer is enhanced.

The transfer characteristic of proposed intended source UTBB 1 T FDSOI based image sensor is demonstrated in Fig. 3. This characteristic is obtained by taking device under dark and varying light intensity condition. The light intensity are varied from 100 μW/cm² to 1 W/cm². The wavelength of the light taken as 550 nm. As can be inferred from characteristic, the threshold voltage of proposed device increases after light illumination and this is continuously increases with increasing light intensity because of by applying light on proposed device, photo generated carrier in substrate region gets modulated (Enhanced) by back-bias voltage. However, after illumination the change in on-state current (|ΔI_on| = |I_on−I_{dark}|) of the proposed device is increases with increasing light intensity [1]. The variation in on-state current and threshold voltage with respect to varying light intensity is illustrated in Fig. 4(a and b). It is clearly observed from both the plots, the proposed device has increasing |ΔI_on| and |ΔV_{th}| with increasing light intensity. The reason behind this result is, the electrostatic potential under the BOX/Si substrate interface is drop drastically with increasing light intensity. Moreover, the |ΔI_on| value increases from 0.37 mA/μm to 0.49 mA/μm and |ΔV_{th}| increases from 78 mV to 94 mV with light intensity increasing from 100 μWatt/cm² to 1 W/cm². However, the Vth value is extracted at constant Id (drain current) of 10^{-8} A/μm. Therefore, it can be observed from the both plots, the change in |ΔI_on| and |ΔV_{th}| with varying light intensity demonstrate the light detection property of proposed image sensor [10]. Further, the variation in of proposed image sensor [10]. Further the variation in threshold voltage (|ΔV_{th}|) with light intensity and back biasing is specified as light induced voltage shift (LIVS) which is defined by following equation [22].

\[
LIVS = |ΔV_{th}| = |V_{th,light}|−|V_{th,dark}|
\] (1)

After investigating the light detection property of proposed image sensor, we decided to comprehensively survey the photo-electrical performance of both proposed and conventional image sensor. Therefore, the input characteristic of both the image sensor under dark and light illumination condition of 1 W/cm² is demonstrated in Fig. 5(a) and (b). It can be clearly seen from both plots, after illumination the threshold voltage is increases and drain current slightly decreases. The reason behind is, during light illumination upon the image sensor photon will be converted
into electron hole pair and all electron are get collected under BOX/Si substrate interface.

Further, the direction of electric field under the buried oxide layer is pointed downward due to negative back biasing and because of this electric field, photo-generated electron are collected under BOX/Si substrate interface. Therefore electrostatic potential decreases and threshold voltage of both image sensor increases and on-state current decreases slightly. Although, after evaluating the change in on-state current ($|\Delta I_{on}| = |I_{on} - I_{dark}|$) in both the plot it can be observed that change in on-state current ($|\Delta I_{on}| = |I_{on} - I_{dark}|$) for proposed device is higher than the conventional device which illustrates the better photoelectrical performance of the proposed device. Furthermore, the change in on-state current ($|\Delta I_{on}| = |I_{on} - I_{dark}|$) and change in threshold voltage ($|\Delta V_{th}|$) at various light intensity is also studied. The variation in on state current ($|\Delta I_{on}|$) and threshold voltage ($|\Delta V_{th}|$) for both image sensors under various light intensity condition illustrated in Fig. 6(a) and (b). For conventional image sensor $|\Delta V_{th}|$ increases from 99.5 mV to 129.5 mV and $|\Delta I_{on}|$ increases from 0.157 mA/μm to 0.215 mA/μm when light intensity increases from 100 μWatt/cm² to 1 W/cm² whereas for proposed image sensor $|\Delta V_{th}|$ increases from 78 mV to 94 mV and $|\Delta I_{on}|$ increases from 0.37 mA/μm to 0.495 mA/μm when light intensity increases from 100 μWatt/cm² to 1 W/cm².

Thus, it can be inferred from Fig. 6(a) and (b), for proposed device the change in on-state ($|\Delta I_{on}|$) current at each value of light intensity is also higher than the conventional image sensor which shows better sensitivity of proposed image sensor in contrast with conventional image sensor. Moreover the variation in threshold voltage for proposed device under different light illumination condition is least as compared to conventional image sensor.

Fig. 4 (a): $|\Delta V_{th}|$ variation with light intensity in proposed intended source UTBB 1T FDSOI based image sensor. (b): $|\Delta I_{on}|$ variation with light intensity in proposed intended source UTBB 1T FDSOI based image sensor.

Fig. 5 Transfer characteristic of (a) Conventional 1T UTBB based image sensor [1] (b) Proposed intended source UTBB 1T FDSOI based image sensor.
3 Impact of Various Parameter on the Performance of Proposed Image Sensor

After investigating photo electrical performance of the proposed device, we have discussed other parameter that affect the performance of the proposed image sensor. These parameter are drain to substrate (back bias) voltage, buried (BOX) oxide thickness and well doping concentration (substrate doping). The discussions are given in below section A, B and C.

3.1 Impact of Drain to Substrate (Back bias) Voltage on the Performance of Proposed Image Sensor

The impact of drain to substrate (back bias) voltage on the photo-electrical performance of the proposed image sensor is depicted in Fig. 7. This graph is plotted at a constant drain voltage i.e. 0.7 V and at a varying substrate voltage from 0 V to −1.4 V. The graph shows how the light induced voltage shift (variation in threshold voltage) gets modulated by varying substrate voltage at a constant light intensity of 10mWatt/cm². For Vds = 0.7 V (Vd = 0.7 V, Vsubstrate = 0 V) the...
threshold voltage under dark condition is about 38 mV but it have increases to 82 mV at light intensity of 10mWatt/cm². Moreover, for Vds (Vd = 0.7, Vsubstrate = −1.4 V) = 2.1 V the shift in threshold voltage is about 135 mV under dark condition and it is enhanced by 155 mV after illuminating the proposed image sensor by light intensity of 10mWatt/cm². It can be inferred from plot, the shift in threshold voltage under light illumination condition is higher in contrast with shift in threshold voltage under dark condition which explains the higher shift in threshold voltage that provides better sensitivity of the proposed image sensor.

3.2 Impact of Buried Oxide (BOX) Thickness on the Performance of Proposed Image Sensor

Another parameter that affect the photo-electrical performance of the proposed image sensor is buried oxide (BOX) thickness which is illustrated in Fig. 8. The evaluation is done at BOX thickness of 10 nm, 14 nm and 18 nm and the incident light intensity taken as constant i.e. 1 W/cm² for each value of BOX thickness. Therefore, the electrostatic potential under BOX/Si substrate interface does not varied with varying buried oxide thickness but it will provide more back bias modulation (shift in threshold voltage and on-state current) with thinner Buried oxide thickness [1]. The electrostatic potential under Box/Si substrate interface has illustrated in Fig. 8. It can be inferred from plot, for proposed device the electrostatic potential under BOX/Si substrate interface (just below channel region) is approximately constant i.e. −0.7 V at each value of BOX thickness. Furthermore, Figs. 9 and 10 described the variation in on-state current with varying BOX thickness. It can be clearly seen from Figs. 9 and 10, the variation in on-state current (|ΔIon|) and threshold voltage (|ΔVth|) is higher for least BOX thickness (10 nm) but the reduction of TBOX provides improved electrostatic potential and hence improve the shift in Ion and Vt but BOX Thicknesses below 10 nm results in quantum effects such as tunneling and the main function of isolation of the BOX is bypassed. Also, the parasitic capacitances increases and the performance of the transistor deteriorate hence both proposed and conventional devices provides better photo-electrical performance at least BOX thickness of 10 nm.

Further, the Fig. 9(a) and (b) demonstrates, the conventional image sensor have |ΔVth| value is 55.9 mV for 20nm BOX thickness and it is improved to 134.4 mV for reduced BOX thickness of 10 nm. Whereas, for proposed image sensor the |ΔVth| value shifted from 69.6 mV to 94 mV with reducing BOX thickness from 18 nm to 10 nm. Thus both plot depicted the change in threshold voltage is higher for 10 nm thickness of the BOX layer which explain the light sensitivity is better for 10 nm thickness of the BOX layer. Furthermore, this result also reveals the electrostatic potential under BOX/Si substrate interface has provide more back bias modulation (change in threshold voltage and on-state current) with thinner BOX thickness. Moreover, Fig. 10(a) and (b) describes the change in on-state current (|ΔIon|) for both conventional and proposed device which explain sensitivity performance of the both proposed and conventional devices. It can be clearly seen from Fig. 10(a), the conventional device have |ΔIon| is 0.078 mA/μm for 20 nm BOX thickness and it is improved to 0.215 mA/μm for reduced BOX thickness of 10 nm whereas Fig. 10(b) demonstrate, for proposed image sensor the |ΔIon| value
shifted from 0.292 mA/μm to 0.494 mA/μm with reducing BOX thickness from 18 nm to 10 nm. Therefore, it can be analyzed that, both plot shows the change in on-state current ($|\Delta I_{on}|$) is higher for 10 nm thickness of the BOX layer. Moreover, the comparative analysis reveals the proposed device have higher variation in on-sate current for each value of BOX thickness in contrast with conventional device thus proposed device have better reliability to be find application in higher sensitive image sensor. Further, the variation in threshold voltage is specified by body factor (BF) which is primarily depends on the thicknesses of gate oxide, BOX thickness, and top silicon thickness, hence for this reason, using a UTBB substrate improves the body factor that will affect the back bias modulation and thus performance of the device will improve defined by following equation [22].

$$BF = \frac{dV_t}{dV_b}$$ \hspace{1cm} (2)

$$BF \propto \frac{Tox}{Tsi \cdot (Tbox)}$$ \hspace{1cm} (3)

Here V_b and V_t is back bias (substrate bias voltage) and threshold voltage of proposed image sensor. It can be clearly observed from above equation, higher variation in threshold voltage (V_{th}) is achieved at least value of the buried oxide thickness (BOX) which is also analysed by Fig. 9(b).

Fig. 9: $|\Delta V_{th}|$ with different Box thickness for both (a) conventional and (b) proposed image sensor. The light intensity is 1 W/cm2 and wavelength is 550 nm.

Fig. 10: $|\Delta I_{on}|$ with different Box thickness for both (a) conventional and (b) proposed image sensor. The light intensity is 1 W/cm2 and wavelength is 550 nm.
3.3 Impact of Doping Concentration in P^- Substrate Region (Well Region) on the Performance of Proposed Image Sensor

The performance of proposed device also have a dependency upon doping concentration in P^- substrate region (well region). The P^- substrate region (well region) is mainly used by proposed device for light photon collection and also for conversion of these photon into photo-generated carrier. The performance of both image sensors also depends upon the doping concentration of P^- substrate region below the BOX region. The comparative plot for variation in on-state current with different doping concentration of P^- substrate region is illustrated in Fig. 11 for both image sensors.

It can be clearly observed from Fig. 11, after light illumination both conventional as well as proposed device shows the decreasing variation in on-state current with respect to increasing doping well concentration the reason behind is dependency of depletion layer thickness formed below the BOX/Si substrate interface and doping concentration of the P^- substrate region (well region) which is inversely proportional to doping concentration of the P^- substrate region (well region). Therefore, with a negative back biasing applied on image sensor a depletion layer formed below the BOX/Si substrate interface and after illuminating the image sensor the photo-generated electron gathered into this depletion layer. Thus, when doping concentration of well region increases the depletion layer thickness is decreases and hence reducing the count of photo-generated electron collection. Therefore it can be clearly analyzed that electron collecting efficiency of image sensor degraded and performance of the image sensor is also degraded. Moreover, From Fig 11 (a) and (b) a comparative analysis demonstrates, besides degrading the performance of both device, proposed device still have higher $|\Delta I_{on}|$ for each value of well doping concentration in contrast with conventional device which explains, higher on-state current variation in proposed device provides better sensitivity of light as compared to conventional image device.

4 Conclusion

Photo-electric characteristic of proposed image sensor is evaluated in this article. Photo-electric property of proposed device is based on biack-bias modulation caused by photogenerated carrier in well (substrate) region. The comparative analysis between proposed and conventional device is also evaluated. The impact of drain to substrate (back bias) voltage, buried oxide (BOX) thickness and well doping concentration (substrate doping) on the performance of both the proposed and conventional device is studied well. Photo-electric property of proposed image sensor based on light induced voltage shift is also shown in this article which is described by variation in threshold voltage shift ($|\Delta V_{th}|$) and variation in on-state current ($|\Delta I_{on}|$) which is continuously increases with increasing light intensity and back biasing. Comparative analysis presents higher sensitivity of proposed device in contrast with conventional device which is analysed by change in on-state current ($|\Delta I_{on}|$) with increasing light intensity thus the comparative result shows in proposed device, variation in on-state current ($|\Delta I_{on}|$) is higher with increasing light intensity in contrast with conventional device. Comparative performance analysis based on varying BOX thickness is also present in this article that reveals the proposed device have higher variation in on-state current for each value of BOX thickness in contrast with conventional device. Comparative analysis based on another parameter that is well doping concentration (substrate doping) reveals that proposed device still have higher $|\Delta I_{on}|$ for each value of well doping concentration (substrate doping) in contrast with conventional device. Thus proposed device have better reliability to be find application in higher sensitive image sensor.

Fig. 11: $|\Delta I_{on}|$ Variation with P^- well ($P-$ substrate region) doping concentration in (a)proposed and (b)Conventional image sensor. The light intensity is 10mWatt/ cm2 and wavelength is 550 nm.
Acknowledgements Not applicable.

Author Contribution Work based on optical sensor is suggested by Dr. Vimal Kumar Mishra. All simulation and analysis was completed by scholar Nitu Rao with the help of Dr. Vimal Kumar Mishra. Article writeup and correction is completed by both of us.

Funding We have not received support from any organization for this submitted work also we have not received any funding for conducting this study.

Data Availability The datasets generated and analysed during the current study are not publicly available due to privacy but we would like to available thesedata on reasonable request.

Declarations

Ethics Approval All procedures performed in our studies is in accordance with the ethical standards of the institutional and national research committee.

Consent to Participate We have individually consent to participate for this article.

Consent for Publication We have individual consent to publish this article, but we have objection to having their data published in a journal article.

Competing Interests We have certified that we have no affiliations or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

References

1. Liu L, Liu X, Du G (2019) UTBB-based single transistor image sensor of submicron pixel using back gate modulation. IEEE Journal of the Electron Devices Society 7:919–924. https://doi.org/10.1109/JEDS.2019.2937916
2. Mishra VK, Rao N (2020) Electrostatic Investigation of Intended Source Drain Ultra Thin Body FD-SOI MOSFET. Silicon 12:1–9. https://doi.org/10.1007/s12633-020-00377-6
3. M. Arsalan, XY. Cao, BR. Lu, YF. Chen, A. Zaslavsky, S. Cristoloveanu and J. Wan. “A highly sensitive photodetector based on deep-depletion effects in SOI transistors”, IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference, pp. 1–3, Oct. 2018. https://doi.org/10.1109/S3S.2018.8640150
4. Culurciello E, Etiene-Cummings R, Boahen KA (2003) A biomorphic digital image sensor. IEEE J Solid State Circuits 38(2): 281–294. https://doi.org/10.1109/JSSC.2002.807412
5. Mendis S, Kemeney SE, Fossum ER (2002) CMOS active pixel image sensor. IEEE Trans. Electron Devices 41(3):452–453. https://doi.org/10.1109/16.275235
6. Geary JC, Luppino GA, Bredthauer RA, Hlivak RJ, Robinson LB (1991) 4096× 4096 pixel CCD mosaic imager for astro-nomical applications. Proc SPIE 1447:264–273. https://doi.org/10.1117/12.45330
7. M.-W. Seo, T. Takasawa, K. Yasutomi, K. Kagawa, and S. Kawahito, “A low-noise high-sensitivity CMOS image sensor for scientific and industrial applications,” in Proc. IEEE Sensors, Nov. 2014, pp. 2163–2166. https://doi.org/10.1109/ICSENS.2014.6985467
8. N. Waltham, “CCD and CMOS sensors,” in Observing Photons in Space (ISSI Scientific Reports Series). New York, NY, USA: Springer, vol. 9, 2010, pp. 391–408. https://doi.org/10.1007/978-1-4614-7804-1_23
9. D. Zhang and J.-Q. Lu, “3D integration technologies: An overview,” in Materials for Advanced Packaging. Cham, Switzerland: Springer Int., 2017
10. Cao YF, Arsalan M, Liu J, Jiang YL, Wan J (2019) A novel one-transistor active pixel sensor with in-situ photoelectron sensing in 22 nm FD-SOI technology. IEEE Electron Device Letters 40(5): 738–774. https://doi.org/10.1109/LED.2019.2908632
11. L. Kadura et al., “Extending the functionality of FDSOI N- and P-FETs to light sensing,” in Proc. IEEE Int. Electron Devices Meeting (IEDM), 2016, pp. 1–4. https://doi.org/10.1109/IEDM.2016.7838530
12. T. Nirschel et al., “The 1T photo pixel cell using the tunneling field effect transistor (TFET),” in Proc. IEEE Int. Electron Devices Meeting, 2005, pp. 66–67. https://doi.org/10.1109/IEDM.2005.1469335
13. Fossum ER, Hondongwa DB (2014) A review of the pinned photodiode for CCD and CMOS image sensors. IEEE J Electron Devices Soc 2(3):33–43
14. Wong H-S (1996) Technology and device scaling considerations for CMOS imagers. IEEE Trans Electron Devices 43(12):2131–2142. https://doi.org/10.1109/16.544384
15. J. C. Ahn et al., “Advanced image sensor technology for pixel scaling down toward 1.0μm (Invited),” in Proc. IEEE Int. Electron Devices Meeting (IEDM), 2008, pp. 1–4. https://doi.org/10.1109/IEDM.2008.4976671
16. Q. Liu et al., “Ultra-thin-body and BOX (UTBB) fully depleted (FD) device integration for 22nm node and beyond,” in Proc. IEEE VLSI Technol., 2010, pp. 61–62. https://doi.org/10.1109/VLSIT.2010.5556120
17. V. Asthana, M. Kar, J. Jimenez, J.P. Noel, S. Haendler and P. Galy. “Circuit optimization of 4T, 6T, 8T, 10T SRAM bitcells in 28nm UTBB FD-SOI technology using back-gate bias control,” in European Solid-State Circuits Conference (ESSCIRC), 2013, p. 415–418. https://doi.org/10.1109/ESSCIRC.2013.6649161
18. J.B. Yau, J. Cai, L. Shi, R.H. Dennard, A. Kumar, K.L. Sacliger, A. Reznicek, P.M. Solomon, Q. Ouyang and S. Koester. FDSOI CMOS with dual backgate control for performance and power modulation. in International Symposium on VLSI Technology, System and application (VLSI-TSA),(2009, pp. 84–85. https://doi.org/10.1109/VTSA.2009.5159302
19. Deng J, Shao J, Lu B, Chen Y, Zaslavsky A, Cristoloveanu S, Wan J (2018) Interface coupled photodetector (ICPD) with high photoresponsivity based on silicon-on-insulator substrate (SOI). IEEE Journal of the Electron Devices Society 6:557–564. https://doi.org/10.1109/JEDS.2017.2788403
20. L. Grenouillet and M. Vinet., “UTBB CMOS IMAGER,” U.S. Patent 2013 110 133 066, May 9, 2013
21. Sentaurus Device Manual, Synopsys Inc. Mountain View, CA, USA, 2013
22. L. Kadura, “New FDSOI-based integrated circuit architectures sensitive to light for imaging application Ph.D. dissertation,Dept. Micro and nanotechnology/microelectronics., Grenoble Alpes Univ., France, 2019

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.