T-type Ca2+ and persistent Na+ currents synergistically elevate ventral, not dorsal, entorhinal cortical stellate cell excitability

Graphical abstract

Highlights
- T-type Ca\textsubscript{v}3.2 Ca2+ currents are 3-fold larger in ventral than dorsal mEC stellate neurons
- T-type Ca2+ and persistent Na+ currents boost membrane depolarization in ventral neurons
- Consequently, firing frequency is elevated in ventral neurons compared with dorsal neurons
- T-type Ca2+ currents enhance EPSP-spike coupling in ventral, not dorsal, stellate neurons

Authors
Aleksandra Topczewska, Elisabetta Giacalone, Wendy S. Pratt, Michele Migliore, Annette C. Dolphin, Mala M. Shah

Correspondence
mala.shah@ucl.ac.uk

In brief
Topczewska et al. show that there is a three-times-greater T-type Ca2+ current amplitude in ventral medial entorhinal cortical layer II stellate neurons compared with their dorsal counterparts. These currents interact with persistent Na+ currents to elevate action potential firing frequency and EPSP-spike coupling in ventral stellate neurons only.

Topczewska et al., 2023, Cell Reports 42, 112699
July 25, 2023 © 2023 The Author(s).
https://doi.org/10.1016/j.celrep.2023.112699
T-type Ca\(^{2+}\) and persistent Na\(^{+}\) currents synergistically elevate ventral, not dorsal, entorhinal cortical stellate cell excitability

Aleksandra Topczewska,1 Elisabetta Giacalone,2 Wendy S. Pratt,3 Michele Migliore,2 Annette C. Dolphin,3 and Mala M. Shah1,4,*

1Pharmacology, School of Pharmacy, University College London, London WC1N 4AX, UK
2Institute of Biophysics, National Research Council, 90146 Palermo, Italy
3Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
4Lead contact
*Correspondence: mala.shah@ucl.ac.uk
https://doi.org/10.1016/j.celrep.2023.112699

SUMMARY

Dorsal and ventral medial entorhinal cortex (mEC) regions have distinct neural network firing patterns to differentially support functions such as spatial memory. Accordingly, mEC layer II dorsal stellate neurons are less excitable than ventral neurons. This is partly because the densities of inhibitory conductances are higher in dorsal than ventral neurons. Here, we report that T-type Ca\(^{2+}\) currents increase 3-fold along the dorsal-ventral axis in mEC layer II stellate neurons, with twice as much Ca\(_V3.2\) mRNA in ventral mEC compared with dorsal mEC. Long depolarizing stimuli trigger T-type Ca\(^{2+}\) currents, which interact with persistent Na\(^{+}\) currents to elevate the membrane voltage and spike firing in ventral, not dorsal, neurons. T-type Ca\(^{2+}\) currents themselves prolong excitatory postsynaptic potentials (EPSPs) to enhance their summation and spike coupling in ventral neurons only. These findings indicate that T-type Ca\(^{2+}\) currents critically influence the dorsal-ventral mEC stellate neuron excitability gradient and, thereby, mEC dorsal-ventral circuit activity.

INTRODUCTION

The medial entorhinal cortex (mEC) forms a significant component of the hippocampal formation and critically influences episodic memory formation, spatial memory, and spatial navigation.1 There is mounting evidence that the mEC, like the hippocampus proper, can support diverse functions by having within-cell-type heterogeneity, which enables distinct computations to be executed.7 Certainly, mEC stellate layer II neuron membrane properties and, consequently, firing frequency vary along the dorsal-ventral axis, with dorsal neurons displaying fewer action potentials than ventral neurons in response to depolarizing stimuli. Accordingly, there is a dorsal-ventral expansion of the size and spacing of neuronal ensembles, grid cells, that encode information about our location within the environment.7 Since dorsal and ventral mEC layer II stellate neurons connect to dorsal and ventral hippocampal neurons respectively, altered dorsal-ventral mEC neuron activity and grid cell firing patterns will influence the corresponding hippocampal neurons and place cell firing, neural network activity associated with spatial navigation and memory.1,3,4 Hence, understanding the cellular mechanisms regulating spike firing rates in dorsal and ventral mEC stellate neurons will enhance our knowledge of the factors contributing to the generation and properties of grid cells, which in turn will lead to a better understanding of processes such as spatial memory formation.

Voltage-gated ion channels are critically involved in the generation and propagation of action potentials and synaptic potentials.5,6 Their expression varies along the mEC dorsal-ventral axis7,27 and is correlated with differences in ion channel currents observed in mEC layer II stellate neurons. Voltage-gated K\(^{+}\) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channel densities are higher in dorsal neurons than their ventral counterparts.9–10 Remarkably, there is a similar variation in these channel densities in hippocampal CA1 pyramids.11–13 As in hippocampal CA1 pyramids, the elevated K\(^{+}\) and HCN channel presence in dorsal mEC stellate neurons renders them less excitable compared with their ventral counterparts.8,11,12,14,15 It is, though, unknown whether ventral mEC stellate neurons express particular ion channel conductances that preferentially and actively enhance their intrinsic and synaptic activity compared with dorsal neurons.

T-type Ca\(^{2+}\) channels are of interest as they influence neuronal activity and synaptic plasticity.16,17 These channels activate at voltages above the resting membrane potential (RMP) and inactive within tens of milliseconds.17–19 Consistent with their biophysical properties, T-type Ca\(^{2+}\) currents promote low threshold Ca\(^{2+}\) spikes and so-called burst firing (i.e., a brief clustering of action potential) in many neurons, including hippocampal CA1 pyramids and thalamic neurons.16–20 T-type Ca\(^{2+}\) currents are present in mEC layer II stellate neurons,21,22 although little is known about how they affect their intrinsic membrane and action
potential properties. It is also unknown if the density of these currents varies along the mEC dorsal-ventral axis.

Here, we report that T-type Ca\(^{2+}\) current amplitudes were three times larger in mEC ventral stellate neurons compared with dorsal neurons. The expression of the T-type Ca\(^{2+}\) channel subunit, Ca\(_{V}3.2\), in ventral mEC was also twice that in dorsal mEC. T-type Ca\(^{2+}\) currents probed EPSPs, thereby enhancing the summation of EPSP trains and EPSP-spike coupling in ventral, and not dorsal, stellate neurons. Additionally, these currents acted in concert with subthreshold Na\(^{+}\) currents enhancing the summation of EPSP trains and EPSP-spike coupling in ventral, and not dorsal, stellate neurons. As T-type Ca\(_{V}3.2\) Ca\(^{2+}\) currents are predominantly located in ventral neurons, these findings suggest that manipulation of their activity will yield insights into the role of ventral stellate neurons in mEC circuit activity and functions.

RESULTS

T-type Ca\(_{V}3.2\) Ca\(^{2+}\) currents enhance wildtype ventral, not dorsal, stellate neuron action potential firing propensity

T-type Ca\(^{2+}\) channels are encoded by 3 x 1 subunits: Ca\(_{V}3.1\), Ca\(_{V}3.2\), and Ca\(_{V}3.3\). Ca\(_{V}3.2\) is predominantly expressed in the mEC. To determine how T-type Ca\(^{2+}\) currents influence dorsal and ventral mEC layer II stellate neuron activity, we made electrophysiological recordings from neurons present in parasagittal wildtype and Ca\(_{V}3.2\)–/– brain slices (see STAR Methods). Neurons were ascertained as being dorsal or ventral if they were located within 0%–30% or 70%–100% of the mEC-parasubiculum border respectively (Figures 1A(i), 1B(i), and S1; see STAR Methods). Stellate neurons were visually identified as having a polygonal or ovoid soma with multiple radiating dendrites (Figures 1A(i), 1B(i), and S2A). Full morphological analysis revealed no differences between dorsal and ventral wildtype and Ca\(_{V}3.2\)-/- neuron dendrite numbers (Figure S2B). Consistent with previous reports, the cell body area, though, was greater in dorsal than ventral wild-type and Ca\(_{V}3.2\)-/- neurons (Figure S2C).

Whole-cell current-clamp recordings showed that depolarizing steps induced significantly lower numbers of action potentials in ventral Ca\(_{V}3.2\)-/- neurons compared with wild types (Figures 1A(iii), 1C, and 1D). Both wild-type and Ca\(_{V}3.2\)-/- neurons, though, exhibited similar firing patterns (Figure 1A), with clusters of spikes being elicited. Further, 20-min application of the T-type Ca\(^{2+}\) channel inhibitors, 100 mM TTA-P2 or 50 μM NiCl\(_2\), onto ventral wild-type, but not Ca\(_{V}3.2\)-/-, neurons significantly reduced the number of action potentials induced by depolarizing pulses (Figure 1A(ii) and S3). This effect was partially reversible upon 20-min washout of NiCl\(_2\) (Figure S3), but not TTA-P2 (Figure 1A(ii)). This accords with the slow reversal of the effects of TTA-P2 on T-type Ca\(^{2+}\) current in other neurons. In contrast to ventral neurons, neither the loss of Ca\(_{V}3.2\) subunit expression nor T-type Ca\(^{2+}\) channel inhibitors affected dorsal stellate neuron action potential numbers elicited with depolarizing pulses (Figure 1B(ii), 1C, 1D, and S3). Altogether, these findings indicated that T-type Ca\(_{V}3.2\) Ca\(^{2+}\) currents preferentially promote tonic, long-lasting action potential firing in ventral neurons and these currents influence the spike firing gradient along the dorsal-ventral axis in mEC stellate neurons.

Ca\(_{V}3.2\) currents mask the membrane potential sag and increase R\(_{m}\) measured with depolarizing potentials in ventral wild-type stellate neurons to enhance excitability

As Ca\(_{V}3.2\) Ca\(^{2+}\) currents are fast inactivating, we asked how these currents might enhance action potential firing in ventral neurons. Neither abolition of Ca\(_{V}3.2\) subunits nor T-type Ca\(^{2+}\) channel inhibitors altered the RMP in ventral neurons, suggesting that these currents are not active at rest (Tables S1 and S2). Further, loss of Ca\(_{V}3.2\) subunits or application of T-type Ca\(^{2+}\) channel blockers did not alter the time taken for the first spike to be initiated with a depolarizing step, the afterhyperpolarization amplitude following a spike (Tables S1 and S2), or the shape or threshold of a single spike (Figure S4; Table S3). Increases in input resistance (R\(_{m}\)) enhance action potential firing in stellate neurons. We therefore explored whether T-type Ca\(^{2+}\) currents affect R\(_{m}\) in ventral neurons. R\(_{m}\) measured with hyperpolarizing steps and the sag potential amplitude elicited with hyperpolarizing pulses (due to HCN channel activation) were not different between wild-type and Ca\(_{V}3.2\)-/- neurons (Figure 2A; Table S1). In contrast, R\(_{m}\) measured with +50 pA and +100 pA steps was significantly greater in wild types compared with Ca\(_{V}3.2\)-/- neurons (Figure 2; Table S1). The difference in R\(_{m}\) between wild-type and Ca\(_{V}3.2\)-/- neurons was less with +50 pA than +100 pA steps (Figure 2), which is consistent with greater Ca\(_{V}3.2\) Ca\(^{2+}\) current activation with increasing depolarization. The initial peak voltage change produced by subthreshold depolarizing pulses was similar in wild-type and Ca\(_{V}3.2\)-/- neurons (Figure 2).
A Ventral Neurons

- **Wt**
 - Sustained membrane potential depolarization
 - Initial peak

- **Ca\textsubscript{v,2}−/−**
 - sag at +100 pA

B

- Initial Peak AV (mV)
 - Ca\textsubscript{v,2}−/− vs. Wt
 - p = 0.07
 - (39 vs. 27)

- Sag Amp (mV)
 - Ca\textsubscript{v,2}−/− vs. Wt
 - p = 0.58
 - (39 vs. 27)

- R\textsubscript{m} (MΩ)
 - Ca\textsubscript{v,2}−/− vs. Wt
 - p = 0.0021
 - (39 vs. 27)

C

- Initial Peak AV (mV)
 - Ca\textsubscript{v,2}−/− vs. Wt
 - p < 0.0001
 - (39 vs. 27)

- Sag Amp (mV)
 - Ca\textsubscript{v,2}−/− vs. Wt
 - p < 0.0001
 - (39 vs. 27)

- R\textsubscript{m} (MΩ)
 - Ca\textsubscript{v,2}−/− vs. Wt
 - p < 0.0001
 - (39 vs. 27)

D Ventral Wt Stellate Neurons

- Con
 - Sag +100 pA
 - Wash

- Sag Amp (mV)
 - p = 0.0035
 - n = 7

- R\textsubscript{m} (MΩ)
 - p = 0.0004
 - n = 7

E Ventral Ca\textsubscript{v,2}−/− Stellate Neurons

- Sag Amp (mV)
 - p = 0.66
 - n = 6

- R\textsubscript{m} (MΩ)
 - p = 0.39
 - n = 6

(legend on next page)
sag potential amplitude elicited with +100 pA steps, and not +50 pA steps, was significantly reduced in wild-types compared with Ca$_{3.2}^{-/-}$ neurons (Figure 2; Table S1). This suggests that the initial voltage jump generated with large (+100 pA) subthreshold depolarizing steps activated T-type Ca$_{3.2}$ Ca$^{2+}$ currents in ventral wild-type neurons to mask the sag and instigate a prolonged membrane potential depolarization to enhance R_N (Figure 2A).

Further, TTA-P2 or NiCl$_2$ applied onto wild-type, but not Ca$_{3.2}^{-/-}$, neurons reduced R_N measured using depolarizing steps (Figures 2 and S3; Table S2). Neither compound had any effect on the initial peak voltage in wild-type or Ca$_{3.2}^{-/-}$ neurons (Table S2). Moreover, TTA-P2 or NiCl$_2$ application revealed a distinct sag with subthreshold depolarizing steps in wild-type, but not Ca$_{3.2}^{-/-}$, neurons (Figures 2D, 2E, and S3). The sag amplitude change in wild-type neurons with +50 pA steps (0.56 ± 0.14 pA, n = 13) was significantly less than with +100 pA (2.28 ± 0.47 pA, n = 13, p = 0.0006, two-tailed paired t test), as expected with the voltage-dependent activation of T-type Ca$^{2+}$ currents. The sag amplitude and R_N measured using hyperpolarizing potentials were unaffected by T-type Ca$^{2+}$ channel inhibitors in wild-type or Ca$_{3.2}^{-/-}$ neurons (Table S2). These findings, therefore, reinforce the notion that Ca$_{3.2}$ Ca$^{2+}$ channels are activated with subthreshold depolarizing potentials in ventral wild-type neurons to mask the membrane potential sag, cause a prolonged depolarization, and enhance R_N.

Ca$_{3.2}$ currents significantly influence the mEC stellate neuron R_N dorsal-ventral gradient at positive potentials

Next, we asked if Ca$_{3.2}$ Ca$^{2+}$ current activation in dorsal neurons alters R_N, even though these currents had little effect on spike numbers elicited by depolarizing potentials. There was no difference in dorsal wild-type and Ca$_{3.2}^{-/-}$ neuron R_N, initial peak voltage, or membrane potential sag measured with depolarizing or hyperpolarizing steps (Figure 3; Table S1). Moreover, neither TTA-P2 nor NiCl$_2$ had any effect on these parameters in wild-type and Ca$_{3.2}^{-/-}$ neurons (Figures 3 and S3; Table S2). Thus, these results suggest that Ca$_{3.2}$ currents have no effect on dorsal neuron membrane properties.

Consistent with the biophysical properties of Ca$_{3.2}$ currents, R_N measured using subthreshold depolarizing steps was significantly greater in ventral than dorsal wild-type neurons (Figure 3; Table S1). This variation in R_N correlated with stellate neuron location along the dorsal-ventral axis (Pearson’s constant for correlation, $r = 0.58$ and 0.71 for R_N measured with +50 pA; Figure 3A(iii) and +100 pA Figure 3B(iii), respectively). This concurs with previously published results.

Ca$_{3.2}$Ca$^{2+}$ currents are predominantly located in ventral wild-type stellate neurons

Since T-type Ca$^{2+}$ currents primarily affected ventral wild-type neuron activity only, we investigated whether T-type Ca$_{3.2}$ Ca$^{2+}$ current amplitudes were greater in ventral versus dorsal neurons. T-type Ca$_{3.2}^{+}$ currents were recorded using whole-cell voltage-clamp conditions and the protocols shown in Figure S5 (see STAR Methods). The peak T-type Ca$^{2+}$ current was three times larger in ventral wild-type neurons compared with their dorsal counterparts (Figure 4). The peak T-type Ca$^{2+}$ current amplitude in dorsal wild-type neurons was similar to that in dorsal and ventral Ca$_{3.2}^{-/-}$ neurons, implying that the dorsal wild-type neuron Ca$_{3.2}$ Ca$^{2+}$ current density is minimal. As small T-type Ca$^{2+}$ currents were present in dorsal and ventral Ca$_{3.2}^{-/-}$ neurons, this indicated that Ca$_{3.1}$/Ca$_{3.3}$ subunits might be expressed in these neurons too. These results robustly support the notion that T-type Ca$_{3.2}$ Ca$^{2+}$ currents are predominantly located in ventral wild-type neurons.

We examined whether T-type Ca$^{2+}$ current amplitudes vary in a location-dependent manner along the dorsal-ventral axis. T-type Ca$^{2+}$ current amplitudes in stellate neurons situated at different positions within the dorsal-ventral axis became larger from dorsal to ventral mEC regions in a distance-dependent manner (Pearson’s correlation coefficient = 0.83; Figure 4D), substantiating our notion that T-type Ca$^{2+}$ current amplitudes increase in mEC stellate neurons along the dorsal-ventral axis.

We also assessed the T-type Ca$^{2+}$ current biophysical properties in stellate neurons, particularly as the currents had voltage-dependent effects on R_N (Figures 2, 3, and S5; Tables S1 and S2). The small T-type Ca$^{2+}$ currents in dorsal neurons precluded us from investigating their biophysical characteristics. In ventral wild-type neurons, T-type Ca$^{2+}$ currents had an average rise time constant of 11.9 ± 0.91 ms (n = 7) and decay time constant of 77.5 ± 10.91 ms (n = 7) at −45 mV (Figure S5). The activation and inactivation curves had half-maximal voltages ($V_{1/2}$) of $-20.3 ± 3.42$ mV and $42.0 ± 5.14$ mV respectively.
Figure 3. Ca$_{v3}$ currents significantly influence the depolarizing R_n dorsal-ventral gradient in mEC stellate neurons

(A and B) (i) Representative traces from WT and Ca$_{v3.2}^{-/-}$ neurons when subthreshold depolarizing current steps were applied. The scale shown applies to all traces within the panel. (A(ii) and B(ii)) Individual (open squares) and mean ± SEM (closed squares) R_n values from 39 WT (black) and 27 Ca$_{v3.2}^{-/-}$ (red) neurons. Statistical significance for comparison of ventral and dorsal neurons was determined using a two-way ANOVA corrected for multiple comparisons using a Bonferroni constant. (A(iii) and B(iii)) Individual WT (black) or Ca$_{v3.2}^{-/-}$ (red) R_n values plotted against their locations from the dorsal border (i.e., mEC-parasubiculum border). Linear regression analysis was carried out to obtain the Pearson's correlation coefficients.

(C and D) (i) Example traces obtained from WT and Ca$_{v3.2}^{-/-}$ neurons respectively in the absence (control) and presence of TTA-P2. The scale shown in each panel applies to both traces. (C(ii), D(ii), C(iii), and D(iii)) Individual (open squares) and mean ± SEM (closed squares) R_n values obtained under control conditions (black) and with TTA-P2 (red) from seven WT and six Ca$_{v3.2}^{-/-}$ neurons. Unpaired t tests were employed to determine significance values.
−53.9 ± 1.9 mV and −79.7 ± 1.3 mV respectively (Figure S5), consistent with those reported previously. The slope (k) values of the activation and inactivation curves were 7.9 ± 1.0 mV⁻¹ and 7.5 ± 0.9 mV⁻¹ respectively (Figure S6C). These values agree with those of expressed CaV3.2 Ca²⁺ channels in heterologous systems, providing additional evidence that CaV3.2 channels predominantly underlie the T-type Ca²⁺ current in ventral wild-type neurons.

To test whether CaV3.2 expression differs between dorsal and ventral wild-type neurons, we performed quantitative reverse-transcriptase (RT) PCR using micro-dissected adult mEC layer II–III dorsal or ventral tissue (see STAR Methods). The mRNA level for CaV3.2 was greater in ventral compared with dorsal mEC in eight out of wild-type mice examined. Using ΔΔC_T values, the fold increase in ventral relative to dorsal tissue was 1.82 ± 0.27 (p = 0.0173; Figure 4E). These results further support the notion that ventral stellate neurons have a greater CaV3.2-mediated T-type Ca²⁺ current than dorsal stellate neurons.

Computational modeling indicates that T-type Ca²⁺ currents act in concert with subthreshold Na⁺ currents to enhance ventral wild-type stellate neuron R_N

As T-type CaV3.2 Ca²⁺ currents are fast inactivating in stellate neurons, how might these currents cause long-lasting depolarizations with subthreshold depolarizing stimuli in ventral neurons? To understand this, we generated a computational model of a ventral stellate neuron that incorporated known ion channel conductances as well as our experimental T-type Ca²⁺ current kinetics and density measurements obtained from the soma (Table S4; STAR Methods). A caveat of this approach is that the ion channel conductances and their distribution in our...
model neuron might not fully represent the native conditions. Nonetheless, this approach is informative as a first step in understanding how T-type Ca2+ channels influence ventral neuron R_N and action potential firing. Using this model, subthreshold depolarizing pulses resulted in a sag but no sustained depolarization (Figure 5A). The R_N measured with +50 pA and +100 pA steps was 40 M\textOmega2 and 45 M\textOmega3, which was substantially lower than that obtained experimentally (Figure 2; Table S1). This suggests

Figure 5. Computational modeling indicates that Ca\textsubscript{v}3 currents act together with subthreshold Na+ currents to enhance ventral stellate neuron R_N and excitability
(A) Simulations obtained when HCN, K+, the transient Na+, and T-type Ca\textsubscript{v}3 Ca2+ currents were only included.
(B) Traces acquired with +100 pA (i) and +50 pA (ii) steps when the model incorporated persistent Na+ currents (INaP) in addition to the currents in (A). Simulations in red were obtained when Ca\textsubscript{v}3 currents were removed.
(C) Simulations attained in the presence (i) and absence (ii) of T-type Ca2+ currents when depolarizing steps were applied as shown in the schematic in (i). The simulation obtained with +150 pA current injection is highlighted in red.
(D) Simulations obtained in the absence of INaP (i) and INaP together with Ca\textsubscript{v}3 currents (ii) when depolarizing steps were applied as shown in the schematic in (i). The simulation obtained with +250 pA current injection is highlighted in red. The scale shown in (C(i)) applies to all simulations in (C) and (D).
T-type Ca\(^{2+}\) currents alone were unlikely to sustain a depolarization in ventral neurons and indicate that, for this purpose, they need to act in concert with other subthreshold-activated voltage-gated currents.

Ventral neurons possess axo-somatic subthreshold-activated persistent Na\(^{+}\) currents.\(^{28-30}\) We asked whether this conductance together with the somatic T-type Ca\(^{2+}\) conductance would reproduce the characteristic sustained depolarization with subthreshold current pulses in ventral neurons in our model (Figures 2, 3, and S3). Including the persistent Na\(^{+}\) conductance in soma and axons together with a somatic T-type Ca\(^{2+}\) conductance resulted in a prolonged depolarization with +100 pA steps (Figure 5B). The R\(_{N}\) values measured under these conditions using +50 pA and +100 pA steps were 60 M\(\Omega\) and 100 M\(\Omega\) respectively and concur with our experimental findings (Figure 2).

We next tested whether T-type Ca\(^{2+}\) conductance removal altered R\(_{N}\) under these conditions. T-type Ca\(^{2+}\) conductance deletion no longer produced a sag and no sustained depolarization with +100 pA steps (Figure 5B(iii)). R\(_{N}\) values measured with +50 pA and +100 pA steps were reduced to 45 M\(\Omega\) and 55 M\(\Omega\) respectively. These values were similar to those obtained when the persistent Na\(^{+}\) conductance was not incorporated in the model. Indeed, with no T-type Ca\(^{2+}\) conductance, further removal of the persistent Na\(^{+}\) conductance had little effect on R\(_{N}\). Hence, the model suggests that T-type Ca\(^{2+}\) currents activate persistent Na\(^{+}\) currents to exert their effects in ventral neurons.

Our experimental results also indicate that T-type Ca\(^{2+}\) currents enhance spike firing by elevating R\(_{N}\) at positive voltages. In agreement with our experimental findings (Figures 1 and S3), T-type Ca\(^{2+}\) current removal reduced spike numbers elicited by depolarizing pulses \(\geq+150\) pA compared with controls (Figure 5C), providing additional evidence that T-type Ca\(^{2+}\) currents enhance ventral neuron action potential firing rates.

As the model predicts that T-type Ca\(^{2+}\) conductance requires, at least, a persistent Na\(^{+}\) conductance to be present to have sustained effects on R\(_{N}\), we investigated how T-type Ca\(^{2+}\) conductance would affect action potential firing when there was no persistent Na\(^{+}\) conductance. Persistent Na\(^{+}\) conductance removal significantly reduced action potential firing (Figure 5D(i)), consistent with the reduced R\(_{N}\) under these conditions. Subsequent abolition of the T-type Ca\(^{2+}\) conductance had little further effect on spike numbers under these conditions (Figure 5D(ii)), indicating that T-type Ca\(^{2+}\) currents and persistent Na\(^{+}\) currents act in conjunction to modulate ventral neuron firing.

Figure 6. Subthreshold Na\(^{+}\) current inhibition prevents the effects of T-type Ca\(^{2+}\) channel inhibitors on ventral, and not dorsal, WT intrinsic excitability

(A–C) Representative recordings from (A(i)) ventral WT, (B(i)) ventral CaV3.2\(^{−/−}\), and (C(i)) dorsal WT stellate neurons in the absence or presence of riluzole (Ril) and subsequent co-application of riluzole and TTA-P2 when the protocol shown was applied. The minimum and maximum current injections are indicated next to the trace. The scale associated with the first trace applies to all traces within the panel. (A(ii), B(ii), and C(ii)) Average ± SEM action potential numbers in the absence (con), presence of riluzole and subsequent co-application of riluzole and TTA-P2 obtained from six ventral WT, six ventral CaV3.2\(^{−/−}\), and six dorsal WT neurons respectively. Paired t tests were performed to obtain significance (p) values. Asterisks indicate significance at p < 0.05 (exact p values are stated in Table S7). (A(iii), B(iii), and C(iii)) Superimposed typical traces obtained when a +100 pA step was applied under control conditions (black), with riluzole (red), and following co-application of riluzole and TTA-P2 (green). (A(iv), A(v), A(vi), B(v), B(vi), C(v), C(vi), and C(vii)) Individual (open squares) and mean ± SEM (filled red square) initial peak voltage change (ΔV), sag amplitude (amp), and R\(_{N}\) values under control conditions, following application of riluzole and after subsequent co-application of riluzole and TTA-P2 from six ventral WT, six ventral CaV3.2\(^{−/−}\), and six dorsal WT neurons respectively. Significance (p) values indicated on graphs were determined using paired t tests.
for these steps were similar between wild-type and Ca$_{3.2}^{-/-}$ neurons (Figures 6A and 6B; Table S5), even though R_N measured with +50 pA or +100 pA steps was significantly reduced in Ca$_{3.2}^{-/-}$ neurons compared with wild-types (Ca$_{3.2}^{-/-}$ R_N for +50 pA and +100 pA = 65.07 ± 8.3 MΩ [$n = 6$] and 79.78 ± 10.4 MΩ [$n = 6$] respectively; wild-type R_N for +50 pA and +100 pA = 100.00 ± 9.9 MΩ [$n = 6$, $p = 0.025$] and 132.44 ± 13.4 MΩ [$n = 6$, $p = 0.001$] respectively). These findings suggest that larger depolarizing stimuli might be required to evoke persistent Na$^+$ currents in Ca$_{3.2}^{-/-}$ neurons. Since the initial peak voltage change with +150 pA step (15.13 ± 2.8 mV, $n = 6$) was greater than for +100 pA step (9.99 ± 1.4 mV, $p = 0.02$, paired t test), we tested the effects of riluzole on +150 pA steps. While the initial peak voltage and sag amplitudes were unaffected by riluzole, R_N was reduced from 260.0 ± 49.2 MΩ ($n = 6$) under control conditions to 216.27 ± 31.4 mΩ ($n = 6$; $p = 0.036$, paired t test) with riluzole. Hence, ventral Ca$_{3.2}^{-/-}$ neurons possess persistent Na$^+$ currents but a greater depolarizing current is required to activate these currents. These findings support the notion that T-type Ca$^{2+}$ currents amplify persistent Na$^+$ currents in ventral wild-type neurons that facilitate the activation of persistent Na$^+$ currents.

Persistent Na$^+$ current activation requires larger depolarizing currents in dorsal wild-type neurons compared with ventral wild-type neurons

Dorsal wild-type neurons have larger persistent Na$^+$ currents than ventral neurons, although it is unknown if their biophysical properties differ along the dorsal-ventral axis. Dorsal neurons have at least 3-fold lower T-type Ca$^{2+}$ current amplitudes than ventral neurons (Figure 4C), we asked how persistent Na$^+$ current inhibition affects their excitability. 10 μM riluzole or subsequent co-application of riluzole and TTA-P2 had little effect on the RMP, firing rates, or R_N and sag amplitude due to hyperpolarizing or subthreshold depolarizing (+50 pA and +100 pA) current pulses in dorsal neurons (Figure 6C; Table S5). The depolarization induced by these subthreshold steps in dorsal neurons is less than in ventral neurons as the initial peak voltage change due to +50 pA and +100 pA steps was significantly smaller in dorsal neurons compared with ventral neurons (Figure 6C; Tables S1 and S5). The initial peak voltage change, though, with +150 pA (8.10 ± 0.4 mV, $n = 6$) and +200 pA (11.28 ± 1.21 mV, $n = 6$) steps in dorsal neurons was similar to that produced by +100 pA steps (14.94 ± 1.7 mV, $n = 6$) in ventral neurons. Since dorsal wild-type neurons rarely fire action potentials with current injections up to +200 pA (Figure 1), we investigated whether riluzole affected R_N when these larger steps were applied. While riluzole and subsequent co-application of riluzole with TTA-P2 had little effect on R_N, initial peak voltage change, or sag amplitude measured using +150 pA steps (Figure S7A), riluzole reduced R_N measured with +200 pA by 11.5% ± 2.7% ($n = 6$) in these neurons and enhanced the sag amplitude (Figure S7B). It is worth noting that riluzole had a much smaller effect on R_N measured with +200 pA in dorsal neurons than in ventral neurons when R_N was measured with smaller current pulses. Riluzole also inhibited subthreshold oscillations in these neurons generated by >+200 pA depolarizing steps, consistent with previous reports. Altogether these findings suggest that activation of persistent Na$^+$ currents requires larger depolarizing currents in dorsal wild-type neurons compared with ventral neurons. This is likely to be due to dorsal neurons having higher densities of K$^+$ and HCN currents and a low density of T-type Ca$_{3.2}$ Ca$^{2+}$ currents compared with ventral neurons.

Ca$_{3.2}$ channels enhance summation of EPSPs and augment EPSP-spike coupling in ventral wild-type mEC stellate neurons

In vivo, neuronal activity is strongly influenced by EPSP generation and integration. Thus, we investigated whether Ca$_{3.2}$ Ca$^{2+}$ currents influenced EPSP shapes in stellate neurons and thereby modulate their activity. Ca$_{3.2}$ Ca$^{2+}$ channels are present presynaptically in the mEC and influence synaptic release under certain conditions. To avoid the additional complexity caused by possible differences in endogenous synaptic release onto neurons, we generated EPSPs by injecting current waveforms using a defined α function (αEPSPs; see STAR Methods). The rise time of αEPSPs was set to be 1 ms under control conditions. The current injection was adjusted so that the αEPSP amplitude was between 1 and 5 mV, with no difference in the αEPSP amplitudes between all groups (ventral wild-type, ventral Ca$_{3.2}^{-/-}$, dorsal wild-type, and dorsal Ca$_{3.2}^{-/-}$). αEPSP amplitudes were 3.77 ± 0.35 mV [$n = 19$], 2.79 ± 0.70 mV [$n = 5$], 3.55 ± 0.35 mV [$n = 16$], and 2.38 ± 0.34 mV [$n = 9$] respectively. The αEPSP decay time constant, though, was significantly greater in ventral wild-type neurons compared with the other groups (Figure 7A). Further, TTA-P2 decreased αEPSP decay time constants in ventral, but not dorsal, wild-type neurons (Figure 7A). Certainly, 50- or 20-Hz trains of αEPSPs summed significantly more in ventral wild-type neurons compared with ventral Ca$_{3.2}^{-/-}$ neurons or dorsal neurons (Figure 7B). Consistent with these findings, TTA-P2 applied onto ventral, but not dorsal, wild-type stellate neurons reduced the summation of a 50-Hz EPSP decay time constants and summation in ventral WT stellate neurons alone

(A(i), A(ii)) Example single αEPSP recordings under control conditions and in the presence of TTA-P2. The scale shown in (A(ii)) applies to (A(i)). (A(iii)) Individual (black squares) and average ± SEM (red squares) αEPSP decay time constants (r) under control conditions and following TTA-P2 obtained from 6 ventral and 6 dorsal WT neurons, respectively. Significance (p) values were determined using paired t tests. (B(i), B(ii), C(i), and D(i)) Example recordings of a 50-Hz train of five αEPSPs in WT, Ca$_{3.2}^{-/-}$ neurons, or in the presence of TTA-P2. (B(iii) and B(iv)) Summation ratios obtained from 9 dorsal Ca$_{3.2}^{-/-}$, 16 dorsal WT, 19 ventral WT, and 5 ventral Ca$_{3.2}^{-/-}$ neurons when trains of five αEPSPs at 50 Hz and 20 Hz were applied respectively. Data from all groups were compared using a two-way ANOVA with Fisher’s LSD post hoc test to ascertain the p values. (C(ii) and D(ii)) Summation ratio values obtained from 6 ventral and 6 dorsal WT neurons when trains of 50 Hz αEPSPs were applied in the absence (con) and presence of TTA-P2. Paired t tests were used to obtain p values. (E(i) and E(ii)) Representative traces showing αEPSP-spike coupling under control conditions (black) and after TTA-P2 (red). The graphs on the right show the first αEPSP amplitude values in a 50-Hz train of five αEPSPs that produced a spike in 6 ventral and 3 dorsal WT neurons. Paired t tests were performed to obtain p values.

Figure 7. Ca$_{3.2}$ Ca$^{2+}$ currents regulate αEPSP decay time constants and summation in ventral WT stellate neurons alone
train of five \(\varepsilon \)EPSPs (Figures 7C and 7D). These findings suggest that \(\text{Ca}_{\text{V}3.2} \text{Ca}^{2+} \) channels influence EPSP integration in ventral, but not dorsal, neurons.

We also tested whether \(\varepsilon \)EPSP-spike coupling differed between these neurons by eliciting five \(\varepsilon \)EPSPs at gamma frequency (50 Hz) as synaptic input to these neurons has been suggested to cause intrinsic gamma oscillations in these neurons, which may resemble their activity during spatial exploration.\(^{25}\) In ventral wild-type neurons, a train of five \(\varepsilon \)EPSPs at 50 Hz summed sufficiently to produce a single spike with the fourth or fifth \(\varepsilon \)EPSP when the first \(\varepsilon \)EPSP amplitude was 11.74 ± 1.68 mV (\(n = 6; \) Figure 7E(i)). The summation ratio was 2.00 ± 0.16 (\(n = 6; \) i.e., similar to when the first \(\varepsilon \)EPSP amplitude was 1–5 mV (Figure 7B(iii)). TTA-P2 reduced the summation ratio to 1.49 ± 0.09 (\(n = 6, \) \(p = 0.022)\). Consequently, the first \(\varepsilon \)EPSP amplitude of the 50-Hz train required to elicit a single spike was 22.12 ± 4.05 mV (\(n = 6, \) \(p = 0.013)\). In dorsal wild-type neurons, the average first \(\varepsilon \)EPSP amplitude in a train of five \(\varepsilon \)EPSPs at 50 Hz required to elicit spikes was 21.71 ± 3.55 mV (\(n = 7)\), i.e., significantly (\(p = 0.033)\) greater than in ventral neurons. Moreover, the summation ratio (1.07 ± 0.14, \(n = 7)\) of these trains in dorsal neurons was substantially (\(p = 0.001)\) less than that in ventral neurons. As expected, the summation ratios of five \(\varepsilon \)EPSPs at 50 Hz in dorsal neurons were similar before (0.81 ± 0.35, \(n = 3)\) and after TTA-P2 application (1.21 ± 0.01, \(n = 3, \) \(p = 0.18)\). TTA-P2, therefore, did not affect the first \(\varepsilon \)EPSP amplitude required to elicit EPSP-spike coupling in dorsal neurons (Figure 7E(ii)). In five out of seven dorsal neurons, though, five \(\varepsilon \)EPSPs at 50 Hz generated two or three consecutive spikes (see Figure 7E(ii)) and not single spikes, analogous to that observed by Bant et al.\(^{26}\). This supports the notion that the higher density of Na\(^+\) currents in these neurons enables multiple spikes to be elicited with trains of large-amplitude EPSPs.\(^{25}\)

A further question is whether the increase in \(\varepsilon \)EPSP-spike coupling by T-type \(\text{Ca}^{2+} \) channels in ventral wild-type neurons is frequency dependent. Given that five \(\varepsilon \)EPSPs of 1–5 mV summate less at 20 Hz (1.2 ± 0.05, \(n = 13)\) than 50 Hz (2.0 ± 0.07, \(n = 19, \) \(p < 0.10)\) (Figure 7B), we tested whether TTA-P2 affected \(\varepsilon \)EPSP-spike coupling elicited at 20 Hz. The first \(\varepsilon \)EPSP amplitude for inducing spikes in a train of five \(\varepsilon \)EPSPs at 20 Hz was approximately double (20.1 ± 3.8 mV, \(n = 6)\) that at 50 Hz, with \(\varepsilon \)EPSP summation at 20 Hz (1.3 ± 0.2, \(n = 6)\) being very similar to that produced with \(\varepsilon \)EPSPs of 1–5 mV (Figure 7B(iv)). TTA-P2 application reduced \(\varepsilon \)EPSP summation (1.05 ± 0.1, \(n = 6, \) \(p = 0.046)\) so that the first \(\varepsilon \)EPSP amplitude for \(\varepsilon \)EPSP-spike coupling was significantly greater (32.8 ± 4.7 mV, \(n = 6, \) \(p = 0.004)\). These findings suggest that T-type \(\text{Ca}^{2+} \) channels influence \(\varepsilon \)EPSP spike coupling even with lower-frequency \(\varepsilon \)EPSP trains. Hence, T-type \(\text{Ca}^{2+} \) currents play a critical role in modulating ventral stellate neuron synaptic and intrinsic excitability.

DISCUSSION

There is increasing evidence that the mEC supports a variety of functions by having within-cell-type heterogeneity to allow implementation of discrete computations.\(^{1}\) Certainly, ventral mEC layer II stellate neuron action potential firing rates are significantly higher compared with their dorsal counterparts, as ventral neurons have a greater \(R_N \) than dorsal neurons. Here, we show that this greater \(R_N \) is, at least partly, due to a 3-fold greater density of T-type \(\text{Ca}^{2+} \) currents in ventral neurons compared with dorsal neurons. These currents act in concert with persistent Na\(^+\) currents in ventral, but not dorsal, neurons to elevate their firing frequency. T-type \(\text{Ca}_{\text{V}3.2} \text{Ca}^{2+} \) currents themselves also prolonged \(\varepsilon \)EPSP decay and enhanced \(\varepsilon \)EPSP summation in ventral neurons. Consequently, a smaller-amplitude first \(\varepsilon \)EPSP caused \(\varepsilon \)EPSP-spike coupling in ventral neurons compared with dorsal neurons, suggesting that T-type \(\text{Ca}^{2+} \) currents in ventral neurons promote spike-timing synaptic plasticity. Thus, our findings imply that the greater T-type \(\text{Ca}_{\text{V}3.2} \text{Ca}^{2+} \) subunit expression in ventral versus dorsal neurons may be used as a tool for discerning how ventral neurons influence mEC neural network activity and associated diverse functions.

T-type \(\text{Ca}^{2+} \) channels facilitate persistent Na\(^+\) current activation in mEC ventral stellate neurons

T-type \(\text{Ca}^{2+} \) currents exerted their effects in ventral neurons by activating persistent Na\(^+\) currents. Large depolarizing stimuli activated T-type \(\text{Ca}^{2+} \) currents to cause the membrane to remain depolarized longer and thereby mask the sag due to HCN channel de-activation. Our results suggest that this triggered persistent Na\(^+\) currents to produce a sustained membrane potential depolarization. Consequently, ventral neuron \(R_N \) was enhanced and action potential firing increased. Certainly, if persistent Na\(^+\) currents were inhibited, T-type \(\text{Ca}^{2+} \) currents were unable to affect ventral neuron \(R_N \). Further, in the absence of \(\text{Ca}_{\text{V}3.2} \text{Ca}^{2+} \) currents, greater depolarizing pulses were required for persistent Na\(^+\) currents to be stimulated in ventral neurons and persistent Na\(^+\) current inhibition had little effect on action potential firing. Thus, our findings point to a distinct mechanism by which T-type \(\text{Ca}^{2+} \) channels and persistent Na\(^+\) currents act in concert to enhance ventral wild-type neuron firing.

The interaction between T-type \(\text{Ca}^{2+} \) channels and persistent Na\(^+\) channels is likely to be voltage dependent as this effect was reproducible in a simple ventral neuron computational model in which the persistent Na\(^+\) current biophysical characteristics were not altered following T-type \(\text{Ca}^{2+} \) current activation. Interestingly, though, in hippocampal and cerebellar neurons, \(\text{Ca}^{2+} \) entry via \(\text{Ca}^{2+} \) channels rapidly phosphorylates Na\(^+\) channels to enhance the persistent Na\(^+\) current.\(^{30,33–35}\) Moreover, \(\text{Ca}^{2+}/\text{calmodulin-dependent kinase (CaMKII)} \) phosphorylates Na\(^+\)-1.2 channels, which predominantly underlies transient Na\(^+\) currents, to generate a persistent Na\(^+\) current in heterologous systems.\(^{36}\) Thus, while we cannot exclude the possibility that \(\text{Ca}^{2+} \) entry via T-type \(\text{Ca}^{2+} \) channels may have altered Na\(^+\) channel biophysical properties in ventral neurons, this is unlikely as T-type \(\text{Ca}^{2+} \) currents were not active at RMP. Indeed, unlike in thalamic neurons,\(^{25}\) there is only a small window T-type \(\text{Ca}^{2+} \) current in ventral neurons (Figure S6C), which did not alter the RMP, the initial voltage jump caused by depolarizing stimuli, or the ability to generate intrinsic oscillations. However, the window T-type \(\text{Ca}^{2+} \) current might be enhanced under particular conditions as in mEC synaptic terminals\(^{23}\) and may then influence ventral neuron activity.

In many neurons, the rebound potential following a hyperpolarizing pulse activates T-type \(\text{Ca}^{2+} \) channels and facilitates action
potential generation. While there was a rebound potential following a hyperpolarizing pulse in ventral wild-type neurons, the amplitude of this was similar irrespective of CaV3.2 Ca2+ currents and no action potentials were generated with rebound potentials under control conditions. Hence, T-type Ca2+ currents influence activity in an unusual manner in stellate neurons compared with other neurons such as thalamic neurons.

As our electrophysiological recordings were all performed at the soma, our work strongly suggests that somatic T-type Ca2+ channels interact with axo-somatic persistent Na+ currents to influence ventral stellate wild-type neuron Rm and excitability. This interaction, though, may also be present in other neuronal compartments such as axons and dendrites, as both T-type Ca2+ and persistent Na+ channels are localized in these compartments in other neurons, including those within the mEC. The co-existence of T-type Ca2+ and persistent Na+ currents in these compartments might serve to facilitate EPSP integration and/or action potential generation as in the soma.

T-type Ca2+ currents and ventral mEC circuit activity

In vivo, mEC layer II stellate neuron firing activity is associated with grid cell patterns. Interestingly, the grid cell firing fields get larger along the dorsal-ventral mEC axis, corresponding to the increase in mEC layer II stellate neuron firing along the dorsal-ventral axis. As ventral mEC neuron axons project to ventral hippocampus, changes in ventral mEC grid spacing are predicted to alter ventral place cell activity. Certainly, selectively reducing HCN1 activity in mEC stellate neurons, which enhances their firing rate, expanded grid cell size and spacing in mEC along the dorsal-ventral axis and decreased place cell stability in hippocampal CA1 area. By analogy, as T-type CaV3.2 Ca2+ channels predominantly increase ventral mEC stellate neuron firing, their presence in these neurons might contribute to the increased grid cell size and spacing in ventral mEC compared with dorsal mEC. This in turn may affect place cell stability in the hippocampus, which may influence the brain’s ability to code information related to spatial awareness. It should be noted, though, that grid cells are produced by coherent neural network activity and their patterns are strongly influenced by excitatory and inhibitory synaptic connectivity. As T-type CaV3.2 Ca2+ currents are present in other cell types within the mEC and are also present presynaptically where they influence synaptic transmission under certain conditions, the overall impact of modified expression of these channels on grid cell activity will be complex. Nonetheless, targeted alteration of CaV3.2 subunit expression in ventral stellate neurons alone may be beneficial for testing the impact of selectively modulating their activity on grid cell size and spacing.

In addition to a physiological role in spatial memory formation, mEC neurons may significantly contribute to seizure generation and propagation during temporal lobe epilepsy. In animal models, mEC stellate neurons are hyperexcitable following initiation of seizures, which has been, in part, attributed to increased expression of T-type CaV3.1 Ca2+ channel subunits. Persistent Na+ currents have also been suggested to be enhanced in these neurons post seizures in rodents. While it is unknown if these augmentations in T-type Ca2+ currents and persistent Na+ currents occur across the dorsal-ventral axis in these neurons after seizure activity, our findings support the notion that these currents will act in concert to substantially enhance stellate neuron excitability following seizures. Given that stellate neuron axons project to the hippocampus, their augmented excitability mediated by T-type Ca2+ and persistent Na+ currents may serve to facilitate hippocampal hyperexcitability following seizures.

In summary, we have shown that the enhanced intrinsic excitability of ventral mEC stellate neurons compared with dorsal stellate neurons is at least partly due to the high expression of T-type CaV3.2 Ca2+ currents in ventral neurons. These currents act in concert with persistent Na+ currents to elevate ventral stellate neuron activity. As ventral and dorsal mEC layer II circuit connections are distinctive, the increased T-type Ca2+ currents in ventral mEC layer II neurons compared with dorsal mEC layer II neurons may contribute to diversely influencing neural circuit activity such as grid cells and functions such as spatial memory.

Limitations of the study

While we found that T-type Ca2+ currents and persistent Na+ currents act in concert at the soma, it is possible that this interaction may occur in other neuronal compartments, such as axons and dendrites. This needs to be further assessed. Moreover, the consequences of the high T-type Ca2+ current in ventral mEC stellate neurons on grid cell size and spacing in this region requires investigation. Finally, it will be fascinating to ascertain whether our findings in mEC stellate neurons might also be applicable to other brain regions where there is known within-cell-type heterogeneity.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead contact
 - Materials availability
 - Data and code availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
- **METHOD DETAILS**
 - Acute slice preparation
 - Electrophysiological recordings
 - A = (t/τ) * exp(1-t/τ)
 - Neurobiotin staining
 - Quantitative PCR
 - Computational modeling
- **QUANTIFICATION AND STATISTICAL ANALYSIS**
 - Sholl analysis, cell soma size measurements and estimation of cell location
 - Whole-cell current clamp recording analysis
 - T-type Ca2+ current measurements
 - y = a + b * x
 - Statistical analysis

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cebrep.2023.112699.
ACKNOWLEDGMENTS

This work was supported by a European Research Council Starter Independent Grant (GA 260725 IRPHRCSTTP, M.M.S.), a UCL IMPACT studentship (A.T., M.M.S., A.C.D.), European Union’s Horizon 2020 Framework Programme for Research and Innovation (Specific Grant Agreement 945539, Human Brain Project SGA3), and by the Italian National Recovery and Resilience Plan (NRRP), M4C2 (project IR0000011, CUP B51E2200150006, EBRAIN-S-Italy). This research was also funded in part by the Wellcome Trust (grant no. 208279/Z/17/Z, A.C.D.). For the purpose of open access, the author has applied a CC BY public copyright license to any author-accepted manuscript version arising from this submission. In addition, we thank Mr. S. Wang (UCL SoP) for assistance with preparation of brain slices, Mr. S. Martin (Biosciences, UCL) for genotyping services, Ms. K. Chan (UCL SoP) for aiding with immunohistochemistry and morphological analysis, and Dr. T. Evans and Prof. N. Burgess (UCL Institute of Neurology, UCL) for initial analysis of subthreshold oscillation frequency and discussions.

AUTHOR CONTRIBUTIONS

Electrophysiological experiments and analysis, A.T. and M.M.S. Computational modeling, E.G. and M.M. RT PCR experiments and analysis, W.S.P. Electrophysiological experiments and analysis, A.T. and M.M.S. Computational modeling, E.G. and M.M. RT PCR experiments and analysis, W.S.P. Electrophysiological experiments and analysis, A.T. and M.M.S. Manuscript writing, M.M.S., with contributions from A.C.D. and M.M.

DECLARATION OF INTERESTS

The authors declare no competing interests.

INCLUSION AND DIVERSITY

The authors declare no competing interests.

INCLUSION AND DIVERSITY

We support inclusive, diverse, and equitable conduct of research.

REFERENCES

1. Rowland, D.C., Roudi, Y., Moser, M.B., and Moser, E.I. (2016). Ten years of grid cells. Annu. Rev. Neurosci. 39, 19–40. https://doi.org/10.1146/annurev-neuro-070815-013854.
2. Cembrowski, M.S., and Spruston, N. (2019). Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramid neurons. Nat. Rev. Neurosci. 20, 193–204. https://doi.org/10.1038/s41583-019-0125-5.
3. Witter, M.P., Doan, T.P., Jacobsen, B., Nilsson, E.S., and Ohara, S. (2017). Architecture of the entorhinal cortex A review of entorhinal anatomy in rodents with some comparative notes. Front. Syst. Neurosci. 11, 46. https://doi.org/10.3389/fnsys.2017.00046.
4. Mallory, C.S., Hardcastle, K., Bant, J.S., and Giocomo, L.M. (2018). Grid scale drives the scale and long-term stability of place maps. Nat. Neurosci. 21, 270–282. https://doi.org/10.1038/s41593-017-0055-3.
5. Lai, H.C., and Jan, L.Y. (2006). The distribution and targeting of neuronal voltage-gated ion channels. Nat. Rev. Neurosci. 7, 548–562.
6. Bean, B.P. (2007). The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465. https://doi.org/10.1038/nrn2148.
7. Ramsden, H.L., Surmeli, G., McDonagh, S.G., and Nolan, M.F. (2015). Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression. PLoS Comput. Biol. 11, e1004302. https://doi.org/10.1371/journal.pcbi.1004302.
8. Garden, D.L.F., Dodson, P.D., O’Donnell, C., White, M.D., and Nolan, M.F. (2008). Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields. Neuron 60, 875–889. https://doi.org/10.1016/j.neuron.2008.10.044.
9. Giocomo, L.M., and Hasselmo, M.E. (2008). Time constants of h current in layer ii stellate cells differ along the dorsal to ventral axis of medial entorhinal cortex. J. Neurosci. 28, 9414–9425. https://doi.org/10.1523/JNEURO-SCI.3196-08.2008.
10. Giocomo, L.M., and Hasselmo, M.E. (2009). Knock-out of HCN1 subunit flattens dorsal-ventral frequency gradient of medial entorhinal neurons in adult mice. J. Neurosci. 29, 7625–7630. https://doi.org/10.1523/JNEURO-SCI.0609-09.2009.
11. Malik, R., Dougherty, K.A., Parikh, K., Byrne, C., and Johnston, D. (2016). Mapping the electrophysiological and morphological properties of CA1 pyramidal neurons along the longitudinal hippocampal axis. Hippocampus 26, 341–361. https://doi.org/10.1002/hipo.22526.
12. Malik, R., and Johnston, D. (2017). Dendritic GIRK channels gate the integration window, plateau potentials, and induction of synaptic plasticity in dorsal but not ventral CA1 neurons. J. Neurosci. 37, 3940–3955. https://doi.org/10.1523/JNEUROSCI.2784-16.2017.
13. Marcelin, B., Lugo, J.N., Brewster, A.L., Liu, Z., Lewis, A.S., McClelland, S., Chetkovich, D.M., Baram, T.Z., Anderson, A.E., Becker, A., et al. (2012). Differential dorso-ventral distributions of Kv4.2 and HCN proteins confer distinct integrative properties to hippocampal CA1 pyramidal cell distal dendrites. J. Biol. Chem. 287, 17656–17661. https://doi.org/10.1074/jbc.C112.367110.
14. Pastoll, H., Ramsden, H.L., and Nolan, M.F. (2012). Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. Front. Neural Circ. 6, 17. https://doi.org/10.3389/fncel.2012.00017.
15. Marcelin, B., Lugo, J.N., Brewster, A.L., Liu, Z., Lewis, A.S., McClelland, S., Chetkovich, D.M., Baram, T.Z., Anderson, A.E., Becker, A., et al. (2012). Differential dorso-ventral distributions of Kv4.2 and HCN proteins confer distinct integrative properties to hippocampal CA1 pyramidal cell distal dendrites. J. Biol. Chem. 287, 17656–17661. https://doi.org/10.1074/jbc.C112.367110.
16. Weiss, N., and Zamponi, G.W. (2019). T-type calcium channels: from molecule to therapeutic opportunities. Int. J. Biochem. Cell Biol. 108, 34–39. https://doi.org/10.1016/j.biocel.2019.01.008.
17. Zamponi, G.W., Stiessenig, J., Koschak, A., and Dolphin, A.C. (2015). The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev. 67, 821–870. https://doi.org/10.1124/pr.114.009654.
18. Cain, S.M., and Snutch, T.P. (2010). Contributions of T-type channel isoforms to neuronal firing. Channels 4, 475–482. https://doi.org/10.1089/chann.4.6.14106.
19. Leresche, N., and Lambert, R.C. (2017). T-type calcium channels in synaptic plasticity. Channels 11, 121–139. https://doi.org/10.1089/chenc.2016.1238992.
20. Crunelli, V., Lörrincz, M.L., Connelly, W.M., David, F., Hughes, S.W., Lambert, R.C., Leresche, N., and Errington, A.C. (2018). Dual function of thalamic low-vigilance state oscillations: rhythm-regulation and plasticity. Nat. Rev. Neurosci. 19, 107–118. https://doi.org/10.1038/nrn.2017.151.
21. Brueli, C., and Wadman, W.J. (1999). Calcium currents in acutely isolated stellate and pyramidial neurons of rat entorhinal cortex. Brain Res. 816, 554–562. https://doi.org/10.1016/s0006-8993(98)01234-7.
22. Jin, X., Chen, Q., Song, Y., Zheng, J., Xiao, K., Shao, S., Fu, Z., Yi, M., Yang, Y., and Huang, Z. (2019). Dopamine D2 receptors regulate the action potential threshold by modulating T-type calcium channels in stellate cells of the medial entorhinal cortex. J. Physiol. 597, 3383–3387. https://doi.org/10.1113/JP277976.
23. Huang, Z., Lujan, R., Kadarin, I., Uebelé, V.N., Renger, J.J., Dolphin, A.C., and Shah, M.M. (2011). Presynaptic HCN1 channels regulate Cav3.2 activity and neurotransmission at select cortical synapses. Nat. Neurosci. 14, 478–486. https://doi.org/10.1038/nmn.2757.
24. Pastoll, H., White, M., and Nolan, M. (2012). Preparation of parasagittal slices for the investigation of dorsal-ventral organization of the rodent medial entorhinal cortex. J. Vis. Exp. 10, 3791.

25. Dreyfus, F.M., Tischerter, A., Errington, A.C., Renger, J.J., Shin, H.S., Ubel, V.N., Crumelli, V., Lambert, R.C., and Leresche, N. (2010). Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of If(T)window. J. Neurosci. 30, 99–109.

26. Choe, W., Messinger, R.B., Leach, E., Eckle, V.S., Obradovic, A., Salajegheh, R., Jevtovic-Todorovic, V., and Todorovic, S.M. (2011). TTA-P2 is a potent and selective blocker of T-type calcium channels in rat sensory neurons and a novel antinociceptive agent. Mol. Pharmacol. 80, 900–910. https://doi.org/10.1124/mol.111.072305.

27. Chemin, J., Monteil, A., Perez-Reyes, E., Bourinet, E., Nargeot, J., and Lory, P. (2002). Specific contribution of human T-type calcium channel isoforms (alpha1G, alpha1H, and alpha1I) to neuronal excitability. J. Physiol. 540, 3–14. https://doi.org/10.1113/jphysiol.2001.012629.

28. Bant, J.S., Hardcastle, K., Ocko, S.A., and Giocomo, L.M. (2020). Topography in the bursting dynamics of entorhinal neurons. Cell Rep. 30, 2349–2359.e7. https://doi.org/10.1016/j.celrep.2020.01.057.

29. Klink, R., and Alonso, A. (1993). Ionic mechanisms for the subthreshold osmolarity and physiological impact of I(T)window. J. Neurosci. 13, 3791.

30. Katz, E., Stoler, O., Scheller, A., Khrapunsky, Y., Goebbels, S., Kirchhoff, R., Jevtovic-Todorovic, V., and Todorovic, S.M. (2011). TTA-P2 enhances axonal function plasticity in adult hippocampal granule cells. Neuron 85, 346–363. https://doi.org/10.1016/j.neuron.2014.12.030.

31. Thompson, C.H., Hawkins, N.A., Kearney, J.A., and George, A.L., Jr. (2017). CaMKII modulates sodium current in neurons from epileptic Scn2a mutant mice. Proc. Natl. Acad. Sci. USA 114, 1696–1701. https://doi.org/10.1073/pnas.1702493115.

32. Magistretti, J., and Alonso, A. (1999). Biophysical properties and slow dendritic excitability in the entorhinal cortex layer II neurons. J. Neurophysiol. 80, 199–212. https://doi.org/10.1152/jn.1999.80.1.144.

33. Pastoll, H., Solanka, L., van Rossum, M.C.W., and Nolan, M.F. (2013). T-Type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of If(T)window. J. Neurosci. 33, 3791–3797. https://doi.org/10.1523/JNEUROSCI.0082(02)00077-1.

34. D’Arcangelo, G., and Tancredi, V. (2002). Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog. Neurobiol. 68, 167–207. https://doi.org/10.1016/s0301-0082(01)00075-1.

35. Domnisoru, C., Kinkhabwala, A.A., and Tank, D.W. (2013). Membrane potential dynamics of grid cells. Nature 495, 199–204. https://doi.org/10.1038/nature11973.

36. Avoli, M., D’Antuono, M., Louvel, J., Köhling, R., Biagini, G., Pumain, R., D’Arcangelo, G., and Tancredi, V. (2002). Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog. Neurobiol. 68, 167–207. https://doi.org/10.1016/s0301-0082(01)00075-1.

37. Strange, B.A., Witter, M.P., Lein, E.S., and Moser, E.I. (2014). Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655–669. https://doi.org/10.1038/nrn3785.

38. Chen, C.C., Lamping, K.G., Nuno, D.W., Barresi, R., Prouty, S.J., Lavoie, D.L., Cribs, L.L., England, S.K., Sigmund, C.D., Weiss, R.M., et al. (2003). Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 302, 1416–1418.

39. Huang, Z., Lujan, R., Martínez-Hernandez, J., Lewis, A.S., Chetkovich, D.M., and Shah, M.M. (2012). TRIP8b-independent trafficking and plasticity of adult cortical presynaptic HCN1 channels. J. Neurosci. 32, 14835–14848. https://doi.org/10.1523/JNEUROSCI.1544-12.2012.

40. Hines, M.L., and Carnevale, N.T. (1997). The NEURON simulation environment. Neural Comput. 9, 1179–1209. https://doi.org/10.1162/neco.1997.9.6.1179.

41. Hargus, N.J., Merrick, E.C., Nigam, A., Baheti, A.R., Bertram, E.H., 3rd, Perez-Reyes, E., and Patel, M.K. (2019). Inhibition of T-Type calcium channels in mEC layer II stellate neurons reduces neuronal hyperexcitability associated with epilepsy. Epilepsy Res. 154, 132–138. https://doi.org/10.1016/j.eplepsyres.2019.05.006.

42. Avoli, M., D’Antuono, M., Louvel, J., Köhling, R., Biagini, G., Pumain, R., D’Arcangelo, G., and Tancredi, V. (2002). Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog. Neurobiol. 68, 167–207. https://doi.org/10.1016/s0301-0082(01)00075-1.

43. Strange, B.A., Witter, M.P., Lein, E.S., and Moser, E.I. (2014). Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655–669. https://doi.org/10.1038/nrn3785.

44. Chang, C.C., Lamping, K.G., Nuno, D.W., Barresi, R., Prouty, S.J., Lavoie, D.L., Cribs, L.L., England, S.K., Sigmund, C.D., Weiss, R.M., et al. (2003). Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 302, 1416–1418.

45. Huang, Z., Lujan, R., Martínez-Hernandez, J., Lewis, A.S., Chetkovich, D.M., and Shah, M.M. (2012). TRIP8b-independent trafficking and plasticity of adult cortical presynaptic HCN1 channels. J. Neurosci. 32, 14835–14848. https://doi.org/10.1523/JNEUROSCI.1544-12.2012.
STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Alexa Fluor 488 streptavidin conjugate antibody	ThermoFisher Scientific	S11223
Chemicals, peptides, and recombinant proteins		
Ketamine/Xylazine mixture	Sigma-Aldrich UK	K113
Choline Chloride	Sigma-Aldrich UK	C7527
Sodium Chloride	Fisher Scientific UK	10092740
Potassium Chloride	Fisher Scientific UK	10730492
Sodium phosphate	Sigma-Aldrich UK	S9638
Sodium bicarbonate	Sigma-Aldrich UK	S6014
Calcium chloride 1M solution	Sigma-Aldrich UK	21115
Magnesium chloride hexahydrate	Sigma-Aldrich UK	M2393
D-glucose	VWR UK	24379.294
Potassium Methyl Sulfate	Fisher Scientific UK	0342333
HEPES	Sigma-Aldrich UK	H4034
EGTA	Sigma-Aldrich UK	324626
Na$_2$ATP	Sigma-Aldrich UK	A7699
Tris-GTP	Sigma-Aldrich UK	G1009
Tris-phosphocreatinine	Sigma-Aldrich UK	P1937
Neurobiotin	Vector Labs UK	SP110
CNQX disodium salt	Abcam UK	ab120044
DL-AP5 sodium salt	Abcam UK	ab120271
Bicuculline	Abcam UK	ab120107
CGP 55845	Tocris UK	1248/10
Tetrodotoxin citrate	Abcam UK	ab120055
Cesium chloride	Sigma-Aldrich UK	C3139
Tetraethylammonium chloride	Tocris	3068
4-aminopyridine	Sigma-Aldrich UK	A78403
Nifedipine	Sigma-Aldrich UK	N7634
ω-agatoxin IVA	Tebu Bio	11AGA001-00100
ω-conotoxin GVIA	Tebu Bio	08CON001-00500
TTA-P2	Gift from Merck Research Laboratories	N/A
NiCl$_2$	Sigma-Aldrich UK	N6136
Riluzole	Sigma-Aldrich UK	R116
Paraformaldehyde	Electron Microscopy Services	30525-89-4
Phosphate Buffer Solution Tablets	Fisher Scientific UK	12821680
Critical commercial assays		
RNAasy Lipid Tissue Kit	Qiagen	74004
High capacity RNA-to-cDNA kit	Applied Biosciences	4387406
TaqMan Gene Expression Master Mix	ThermoFisher Scientific	4369016
Experimental models: Organisms/strains		
CaV3.2 mouse heterozygotes	Prof. K. Campbell (University of Iowa)	N/A
Software and algorithms		
pClamp 10.4	Molecular Devices	N/A

(Continued on next page)
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and fulfilled by the lead contact, Mala shah (mala.shah@ucl.ac.uk).

Materials availability
The study did not generate new unique reagents.

Data and code availability
- All data reported in this paper will be shared by the lead contact upon request.
- All original code has been deposited at ModelDB and is publicly available as of the date of publication. DOIs are listed in the key resources table.
- Any additional information required to re-analyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal experiments were approved by the UCL animal welfare and ethics review body (AWERB) and were performed with approved UK Home Office personal and project licenses. All animals were housed under 12 h dark/light cycles and were provided with ad libitum food and water. CaV3.2 heterozygotes (CaV3.2+/−) breeding pairs were used to generate adult (5–8 week old) male and female wildtype and CaV3.2 null (CaV3.2−/−) littermates for experiments (see 23, 49 for Methods).

METHOD DETAILS

Acute slice preparation
5-8 week old wildtype and CaV3.2−/− mice were terminally anesthetized using a ketamine/xylazine mixture. For initial experiments for Figures 1, 2, 3, 4, S3, and S4, the experimenter was blind to the mouse genotype until data analysis had been completed. Intra-cardiac perfusion was then carried out using an ice-cold modified artificial cerebral spinal fluid (ACSF) of the following composition (mM): 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 0.5 CaCl2, 7 MgCl2, 7 dextrose, 110 choline chloride. 300 μm thick parasagittal slices were obtained using an LT 1200S vibratome (Leica Microsystems, UK). Slices containing the mEC were identified and selected as described in ref. 24. These slices were transferred to a chamber maintained at 35°C and containing ACSF (mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 2 CaCl2, 2 MgCl2, 10 dextrose, pH 7.3 maintained with 95% O2/5% CO2 mixture. Slices were stored at 35°C for 25 min, after which they were kept at room temperature for 40 min.

Electrophysiological recordings
For patch-clamp recordings, the slices were transferred to a submerged chamber perfused at 3–5 mL/min with ACSF supplemented with 10 μM CNQX, 50 μM DL-AP5, 10 μM biccuculline and 1 μM CGP 55845 and maintained at 32–36°C. The dorsal and ventral mEC were initially identified under low magnification (x10) using an Olympus BX51W1 microscope (Microscope Service and Sales, UK). The parasubicular/dorsal mEC border could be visualized using low magnification ×10 objectives under a microscope (Olympus B x 51W1) equipped with differential infrared contrast optics and was readily visible as a dark band. The ventral mEC border was estimated from position of the CA1/subicular border.17 Stellate neurons located within 30% of the mEC dorsal border were classified as dorsal (Figures S1 and 1A). Correspondingly, those situated within 30% of the ventral border were categorized as ventral (Figures S1 and 1B).

Current-clamp recordings
Whole-cell current-clamp recordings were obtained from visually-identified stellate neurons present in either dorsal or ventral regions of the slice. Patch pipettes had a resistance of 5–8 MΩ when filled with the following solution (mM): 120 KMeSO4, 15 KCl, 10 HEPES, 0.2 EGTA, 2 MgCl2, 4 Na2ATP, 0.3 Tris-GTP, 14 Tris – phosphocreatinine, 0.2% neurobiotin, pH adjusted to 7.3 with 1 M KOH (295 mOsml). Recordings were made using an Axoclamp 200B amplifier (Molecular Devices Ltd) and acquired using pClamp 10.4 (Molecular Devices Ltd). Data were filtered at 10 kHz and sampled at 50 kHz. 5 s long, hyperpolarizing and depolarizing square pulses
were injected every 10 s either at the resting membrane potential or at a fixed potential of −70 mV to determine the intrinsic membrane characteristics and action potentials elicited in response to depolarizing stimuli. To record action potential characteristics, short 10 ms square pulses were applied. α-EPSPs were generated using the equation:

\[A = (t/t_0)^a \exp(1-t/t_0) \]

where A and τ represent the amplitude and rise time constant respectively. τ was set to be 1 ms. In all whole-cell current-clamp experiments, series resistance was in the order of 10–20 MΩ and recordings were discarded if this changed by > 20%.

Voltage-clamp recordings

Whole-cell voltage-clamp recordings were obtained stellate neuron somata. The ACSF was supplemented with 1 μM tetrodotoxin, 2 mM CsCl₂, 10 mM tetraethylammonium chloride, 0.1 mM 4-aminopyridine, 20 μM nifedipine, 0.2 μM ω-agatoxin IVA, 0.2 μM ω-conotoxin GVIA, 0.2 μM SNX-482 and maintained at 32–36°C. Patch pipettes were filled with an intracellular solution consisting of (mM): 120 CsCl₂, 1 CaCl₂, 5 MgCl₂, 10 EGTA, 10 HEPES, 4 Na₂ATP, 0.3 Tris-GTP, 14 Tris−phosphocreatin, 0.2% neurobiotin and pH adjusted to 7.3 with 1 mM CsOH (295–300 mOsm/l). Recordings were obtained using an Axopatch 200 B (Molecular Devices Ltd) and acquired using pClamp 10.4 (Molecular Devices Ltd) and were corrected for liquid junction potentials. Data were filtered at 10 kHz and sampled at 50 kHz. Cells were voltage-clamped at −70 mV. To activate the T-type Ca²⁺ current, a 1 s pre-pulse to −100 mV followed by 1 s pulses ranging from −90 mV to −45 mV were applied every 10 s (see Figure S5A). The inactivation protocol consisted of applying 1 s pulses from −100 mV to −55 mV followed by a 1 s step to −50 mV every 10 s (Figure S5B). A leak subtraction step consisting of a 1 s step to −100 mV followed by a 1 s step to −110 mV was applied between each protocol. Each protocol was repeated at least three times in the absence and after 20 min application of 100 nM TTA-P2 (Figure S5). Series resistance was in the order of 10 MΩ−30 MΩ and compensated for by a minimum of 70%. Recordings were discarded if series resistance altered by more than 10%.

Neurobiotin staining

Following electrophysiological recordings, all slices were fixed in 0.4% paraformaldehyde solution for a minimum of 20 min followed by a three separate washes with phosphate buffered solution (PBS). The slices were then stained with Alexa Fluor 488 streptavidin by a three separate washes with phosphate buffered solution. The slices were then mounted on microscope slides and stored at least overnight at 4°C. The slices were subsequently viewed under low magnification using a confocal microscope (Zeiss LSM 710) to confirm if the neuron recorded from was located in the dorsal or ventral mEC as in Figure S1.

Quantitative PCR

400 μm mEC parasagittal slices were prepared from 6 to 8 week old wildtype mice as described above. The dorsal and ventral mEC layer II/III was micro-dissected from the slices and immediately frozen on dry ice. Tissue samples were disrupted using a rotor-stator homogenizer (Disperser T10, IKA, Staufen, Germany). Total RNA was extracted from the tissue using the RNeasy Lipid Tissue Kit (Qiagen) including an on-column DNase step. Reverse transcription (RT) was performed on matched amounts of RNA from Dorsal and Ventral samples from the same animal, using High capacity RNA-to-cDNA kit (Applied Biosystems). RT-negative controls were included. TaqMan qRT-PCR (40 cycles) performed with an Applied Biosystems 7500/7500 Fast Real-Time PCR system was used to determine the relative abundance of the CaV3.2 subunit in pair-matched samples (between 17 and 50 ng cDNA). The following TaqMan assays with TaqMan Gene Expression Master Mix were used in accordance to the manufacturer’s protocol (gene name: assay ID): Hypoxanthine guanine phosphoribosyltransferase (Hprt1) (Mm00446968_m1), cacna1h (Ca₃.2) (Mm00445382_m1). Measurements were performed in triplicate on independent RNA preparations from nine mice, and Ca₃.2 mRNA levels were normalised for expression of Hprt1 mRNA. The experimenter was blind to the mouse genotype until data analysis had been completed. Sample size was determined by previous experience of similar experiments. Comparison between dorsal and ventral tissue from each mouse was made by calculating ∆∆Ct.

Computational modeling

All simulations were carried out using the NEURON simulation environment (v7.7.2). For all simulations we used a reconstructed morphology of a stellate cell (courtesy of Prof. M. F. Nolan (University of Edinburgh, UK)) with uniform passive properties (Cm = 1 μF/cm², Rm = 50 kΩ/μm², Ra = 150 Ω cm). Temperature was set at 34°C. Active properties included a transient Na⁺ conductance, two types of K⁺ currents (a delayed rectifier and a Ca²⁺-dependent K⁺ conductance), a non-specific Iₗ current, a Ca²⁺ conductance modeling T-type Ca²⁺ currents, and a simple Ca²⁺-extrusion mechanism with a 500 ms time constant. Kinetics for the Ca²⁺-dependent K⁺ current was taken from a previously published model (ModelDB accession no. 112546). Parameters for the other currents are reported in Table S4. All model and simulation files will be uploaded to the ModelDB database (https://senselab.med.yale.edu/modeldb/266797). Because the scope of this model was to test a specific hypothesis on the role of the interaction between T-type Ca²⁺ and persistent Na⁺ currents, rather than implement a full model for these cells, a more extensive parameter search was not performed. The peak conductance for all channels was manually adjusted following a trial-and-error procedure to reproduce the main effects observed in the experimental traces at 100 and 150pA. The effects of TTA-P2 application were modeled with a complete block of the T-type Ca²⁺ conductance.
QUANTIFICATION AND STATISTICAL ANALYSIS

Sholl analysis, cell soma size measurements and estimation of cell location
Low magnification and high magnification acquired confocal images were uploaded into ImageJ. The total mEC length was measured from the parasubicular border (i.e. the dorsal border) to the ventral border. 30% of this was calculated and cells located within the distance from either the dorsal or ventral borders were classified as dorsal or ventral respectively.

To estimate the cell soma area using ImageJ macros, high magnification (×60) were uploaded into ImageJ. For cells that had full-length dendrites extending to the edge of the slice, Sholl analysis was carried out using high magnification images as previously described.39,50 Concentric circles that were 10 μm apart were constructed around the soma. The number of dendrites crossing each circle were counted for each cell (Figure S2B).

Whole-cell current clamp recording analysis
Clampfit 10.4 (Molecular Devices Ltd) was used. The initial peak voltage (Figure 3A) was the voltage change between the baseline and peak amplitude value for a given current pulse. Sag amplitude was measured as the difference between the peak amplitude and the steady state potential for a given current pulse (Figure 2A). \(R_N\) was calculated by dividing the difference in steady state voltage in the last 25 ms of a 5 s, step at −70 mV or RMP with the current injection applied. The dorsal-ventral location dependent effects of \(R_N\) were fitted using the following equation with OriginPro 2021 software (OriginLab):

\[y = a + b \times x \]

where \(a\) is the y intercept and \(b\) is the slope of the fit. The Pearson’s correlation coefficient (\(r\)) was obtained from the fit using OriginPro software.

Action potentials elicited by 5 s depolarizing steps were counted. The latency to spike was computed as the time for the first action potential to be initiated at the smallest depolarizing step applied. The amplitude of the afterhyperpolarization following the first single action potential to be generated by the smallest positive step applied was measured as the difference between the action potential threshold and the maximal voltage deflection generated during the afterhyperpolarization.

To measure the action potential threshold of an action potential generated by a small 10 ms step, a phase plane plot was constructed (Figure S4).39 For this, the voltage was differentiated with respect to time (dV/dt) and plotted against voltage. The threshold was defined as the voltage at the point of deflection for dV/dt to be greater than zero. The spike amplitude was the voltage difference between the threshold and the peak. The action potential half-width was then estimated at half the spike amplitude.

The \(\alpha\)EPSP decay time constant (\(\tau\)) was estimated by fitting the decay phase with a single exponential.

\[I(t) = A \times \exp(-t/\tau) \]

where \(I\) is the current amplitude, \(A\) is the peak amplitude, \(\tau\) is the decay time constant.53 The summation ratio for a train of 5 \(\alpha\)EPSPs at either 20 Hz or 50 Hz was the ratio of the amplitude of the fifth \(\alpha\)EPSP and the first \(\alpha\)EPSP. To estimate the summation ratio following \(\alpha\)EPSP-spike coupling, the action potential threshold of the first spike elicited with an \(\alpha\)EPSP was expressed as a ratio of the amplitude of the first \(\alpha\)EPSP in the train.

T-type Ca\(^{2+}\) current measurements
Currents generated by the activation and inactivation protocols were first leak subtracted in Clampfit 10.4. The resulting currents in the absence of TTA-P2 were then subtracted from those obtained in the presence of TTA-P2 to obtain isolated T-type Ca\(^{2+}\) currents (Figure S5). The peak amplitudes of these were measured at all voltages. The distance from the dorsal border of a subset of neurons was estimated and plotted against the current amplitude. Linear regression analysis was carried out using OriginPro 2021 software by fitting the data to the following equation.

\[y = a + b \times x \]

where \(a\) is the y intercept and \(b\) is the slope of the fit. The Pearson’s correlation coefficient (\(r\)) was obtained from the fit using OriginPro software.

To generate the activation and inactivation curve, the peak amplitudes at different voltages were expressed as a ratio of the maximal current amplitude produced by the protocol at any given voltage (\(I/I_{\text{Max}}\)). This ratio was then plotted against the voltage (Figure S6C). The curves were then fitted using OriginPro10 (OriginLab) with a Boltzmann equation:

\[y = A_2 + (A_1 - A_2) / (1 + \exp(-x - x_0 / k)) \]

where \(A_1\) and \(A_2\) are the initial and final yvalues, \(x_0\) represents the half-maximal voltage (\(V_{1/2}\)) and \(k\) is the slope of the curve. In addition, the rise and decay time constants were estimated by fitting the currents obtained with activation protocol with a single exponential function as described. These were plotted against voltages and fitted in OriginPro 2021 using a second order polynomial function of the order.
where A is an offset value and B and C are coefficients.

Statistical analysis

Group data are expressed as mean ± SEM. Sample size was based on our previous experience for doing similar types of electrophysiology experiments. To determine statistical significance at $p < 0.05$ between the four groups, a two-way ANOVA with Fisher’s Least Significance Difference (LSD) post hoc test were performed using GraphPad Prism 8.0. In some cases, a two-way ANOVA adjusted for multiple comparisons using a Bonferroni Constant was performed to avoid false positives, as specified in the figure legends. To determine if there were significant differences between control conditions and following application of a T-type Ca$^{2+}$ channel inhibitor, paired t-tests were used. Significance (p values) are stated on figures or [Table S7](#).