Polyhedral Groups and Pencils of K3-Surfaces with Maximal Picard Number

W. Barth A. Sarti

November 21, 2021

Abstract

A K3-surface is a (smooth) surface which is simply connected and has trivial canonical bundle. In these notes we investigate three particular pencils of K3-surfaces with maximal Picard number. More precisely the general member in each pencil has Picard number 19 and each pencil contains four surfaces with Picard number 20. These surfaces are obtained as the minimal resolution of quotients X/G, where $G \subset SO(4, \mathbb{R})$ is some finite subgroup and $X \subset \mathbb{P}_3(\mathbb{Q})$ denotes a G-invariant surface. The singularities of X/G come from fix points of G on X or from singularities of X. In any case the singularities on X/G are $A-D-E$ surface singularities. The rational curves which resolve them and some extra 2-divisible sets, resp. 3-divisible sets of rational curves generate the Neron-Severi group of the minimal resolution.

Contents

0 Introduction 1
1 Notations and conventions 2
2 Fixpoints 3
3 Quotient singularities 6
4 Rational curves 10
 4.1 The general case 10
 4.2 The special cases 11
5 K3-surfaces 13
6 Picard-Lattices 17
 6.1 The general case 17
 6.2 The special cases 20
7 Comments 21
8 References 22

0 Introduction

The aim of this note is to present three particular pencils of K3-surfaces with Picard-number ≥ 19. These three pencils are related to the three polyhedral groups T, O, resp. I, (the rotation groups of the platonic solids tetrahedron, octahedron and icosahedron) as follows: It is classical
that the group $SO(4, \mathbb{R})$ contains central extensions

$$\begin{array}{ccc}
G_6 & G_8 & G_{12} \\
T \times T & O \times O & I \times I
\end{array}$$

by ± 1. Each group G_n, $n = 6, 8, 12$, has the obvious invariant $q := x_0^2 + x_1^2 + x_2^2 + x_3^2$. In [S] it is shown that each group G_n admits a second non-trivial invariant s_n of degree n. (The existence of these invariants seems to have been known before [Ra,C], but not their explicit form as computed in [S].) The pencil

$$X_\lambda \subset \mathbb{P}_3(\mathbb{C}) : \quad s_n + \lambda q^{n/2} = 0$$

therefore consists of degree-n surfaces admitting the symmetry group G_n. We consider here the pencil of quotient surfaces

$$Y_\lambda' := X_\lambda/G_n \subset \mathbb{P}_3/G_n.$$

It is - for us - quite unexpected that these (singular) surfaces have minimal resolutions Y_λ, which are K3-surfaces with Picard-number ≥ 19.

In [S] it is shown that the general surface X_λ is smooth and that for each $n = 6, 8, 12$ there are precisely four singular surfaces X_λ, $\lambda \in \mathbb{C}$. The singularities of these surfaces are ordinary nodes (double points A_1) forming one orbit under G_n. For a smooth surface X_λ the singularities on the quotient surface Y_λ' originate from fix-points of subgroups of G_n. Using [S, sect. 7] it is easy to enumerate these fix-points and to determine the corresponding quotient singularities. On the minimal resolution Y_λ of Y_λ' we find enough rational curves to generate a lattice in $NS(Y_\lambda)$ of rank 19. In sect. 5 we show that the minimal desingularisation Y_λ is K3 and that the structure of this surface varies with λ. This implies that the general surface Y_λ has Picard number 19. Then in sect. 6.1 we use even sets [N], resp. 3-divisible sets [B, T] of rational curves to determine completely the Picard-lattice of these surfaces Y_λ.

If X_λ is one of the four nodal surfaces in the pencil, there is an additional rational curve on Y_λ. This surface then has Picard-number 20. (Such K3-surfaces usually are called singular [SI].) We compute the Picard-lattice for the surfaces Y_λ in all twelve cases (sect. 6.2).

1 Notations and conventions

The base field always is \mathbb{C}. We abbreviate complex roots of unity as follows:

$$\omega = e^{2\pi i/3} = \frac{1}{2}(-1 + \sqrt{-3}), \quad \epsilon := e^{2\pi i/5}, \quad \gamma := e^{2\pi i/8} = \frac{1}{\sqrt{2}}(1 + i).$$

By $G \subset SO(3)$ we always denote one of the (ternary) polyhedral groups T, O or I, and by $\tilde{G} \subset SU(2)$ the corresponding binary group. By

$$\sigma : SU(2) \times SU(2) \to SO(4)$$

1. Notations and conventions
we denote the classical 2 : 1 covering. The group \(G_n \subset SO(4), n = 6, 8, 12 \), is the image \(\sigma(\tilde{G} \times \tilde{G}) \) for \(\tilde{G} = \tilde{T}, \tilde{O}, \tilde{I} \). Usually we are interested more in the group

\[
PG_n = G_n/\{\pm 1\} \subset PGL(4).
\]

For \(n = 6, 8, 12 \) it is isomorphic with \(T \times T, O \times O, I \times I \) having the order \(12^2 = 144, 24^2 = 576 \), resp. \(60^2 = 3600 \).

Definition 1.1

a) Let \(id \neq g \in PG_n \). A fix-line for \(g \) is a line \(L \subset \mathbb{P}^3 \) with \(gx = x \) for all \(x \in L \). The fix-group \(F_L \subset PG_n \) is the subgroup consisting of all \(h \in PG_n \) with \(hx = x \) for all \(x \in L \). The order \(o(L) \) of \(L \) is the order of this group \(F_L \).

b) The stabilizer group \(H_L \subset PG_n \) is the subgroup consisting of all \(h \in PG_n \) with \(hL = L \). The length \(\ell(L) \) is the length

\[
|PG_n|/|H_L|
\]

of the \(G_n \)-orbit of \(L \).

c) We shall encounter fix-lines of orders 2, 3, 4 and 5. We define their types by

order	2	3	4	5
type	\(M \)	\(N \)	\(R \)	\(S \)

We shall denote by \(X_\lambda : s_n + \lambda q^{n/2} = 0 \) the symmetric surface with parameter \(\lambda \in \mathbb{C} \). All these surfaces are smooth, but for four parameters \(\lambda_i \). These four singular parameters in the normalization of \([S, p.445, p.449]\) are

\[
\begin{array}{c|ccccc}
& \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \\
\hline
n = 6 & -1 & -\frac{7}{12} & -\frac{1}{4} \\
n = 8 & -1 & -\frac{9}{16} & -\frac{5}{9} \\
n = 12 & -\frac{3}{32} & -\frac{29}{243} & -\frac{2}{25} & 0
\end{array}
\]

Sometimes we call the surface \(X_\lambda \) of degree \(n \) and parameter \(\lambda_i \) just \(X_{n,i} \), or refer to it as the case \(n,i \).

2 Fixpoints

In this section we determine the fix-points for elements \(id \neq g \in PG_n \).

Recall that each \(\pm 1 \neq p \in \tilde{G} \) has precisely two eigen-spaces in \(\mathbb{C}^2 \) with the product of its eigen-values = \(det(p) = 1 \).

In coordinates \(x_0, ..., x_3 \) on \(\mathbb{R}^4 \) the morphism \(\sigma : \tilde{G} \times \tilde{G} \rightarrow SO(4, \mathbb{R}) \) is defined by \(\sigma(p_1, p_2) : (x_k) \mapsto (y_k) \) with

\[
\begin{pmatrix}
y_0 + iy_1 \\
y_2 + iy_3 \\
-y_2 + iy_3 \\
y_0 - iy_1
\end{pmatrix} = p_1 \cdot \begin{pmatrix}
x_0 + ix_1 \\
x_2 + ix_3 \\
-x_2 + ix_3 \\
x_0 - ix_1
\end{pmatrix} \cdot p_2^{-1}.
\]

The quadratic invariant

\[
q = x_0^2 + x_1^2 + x_2^2 + x_3^2 = det \begin{pmatrix}
x_0 + ix_1 \\
x_2 + ix_3 \\
-x_2 + ix_3 \\
x_0 - ix_1
\end{pmatrix}
\]

\[
\begin{pmatrix}
y_0 + iy_1 \\
y_2 + iy_3 \\
-y_2 + iy_3 \\
y_0 - iy_1
\end{pmatrix} = p_1 \cdot \begin{pmatrix}
x_0 + ix_1 \\
x_2 + ix_3 \\
-x_2 + ix_3 \\
x_0 - ix_1
\end{pmatrix} \cdot p_2^{-1}.
\]
vanishes on tensor-product matrices
\[
\begin{pmatrix}
 x_0 + ix_1 & x_2 + ix_3 \\
 -x_2 + ix_3 & x_0 - ix_1
\end{pmatrix}
= \begin{pmatrix}
v_0w_0 & v_0w_1 \\
v_1w_0 & v_1w_1
\end{pmatrix}
= v \otimes w.
\]

The action of $\tilde{G} \times \tilde{G}$ on the quadric
\[
Q := \{ q = 0 \} = \mathbb{P}_1 \times \mathbb{P}_1
\]
is induced by the actions of the group \tilde{G} on the tensor factors v and $w \in \mathbb{C}^2$,
\[
\sigma(p_1, p_2) : v \otimes w \mapsto (p_1v) \otimes (\bar{p}_2w).
\]

The fix-points for $\pm 1 \neq \sigma(p_1, p_2) \in G_n$ on \mathbb{P}_3 come in three kinds:

1) **Fix-points on the quadric:** $\pm 1 \neq p_1 \in \tilde{G}$ has two independent eigenvectors v, v'. The spaces $v \otimes \mathbb{C}^2$ and $v' \otimes \mathbb{C}^2$ determine on the quadric two fix-lines for $\sigma(p_1, \pm 1)$ belonging to the same ruling. In this way \tilde{G}-orbits of fix-points for elements $p_1 \in \tilde{G}$ determine G_n-orbits of fix-lines in the same ruling of the following lengths:

order of p	4	6	8	10
G_6	6	4	4	
G_8	12	8	6	
G_{12}	30	20	12	

In the same way fix-points for $p_2 \in \tilde{G}$ determine fix-lines for $\sigma(\pm 1, p_2) \in G_n$ in the other ruling. In [S, p.439] it is shown that the base locus of the pencil X_λ consists of $2n$ such fix-lines, n lines in each ruling, say $\Lambda_k, \Lambda'_k, k = 1, \ldots, n$. The fix-group F_{Λ_k} for the general point on each line Λ_k, Λ'_k then is cyclic of order $s := |G|/n$:

n	6	8	12
s	2	3	5

Where a fix-line for $\sigma(p_1, \pm 1)$ meets a fix-line for $\sigma(\pm 1, p_2)$ we obviously have an isolated fix-point x for the group generated by these two symmetries. We denote by t the order of the (cyclic) subgroup of $P(\sigma(\pm 1, \tilde{G}))$ fixing x. The number of H_{Λ_k}-orbits on each line Λ_k of such points is

n	6	8	12
s	2	3	4

2) **Fix-lines off the quadric:** Let $L \subset \mathbb{P}_3$ be a fix-line for $\sigma(p_1, p_2) \in G_n$ with $p_1, p_2 \neq \pm 1$. It meets the quadric in at least one fix-point defined by a tensor product $v \otimes w$ with v, w eigenvectors for p_1, p_2 respectively. The group $\langle \sigma(p_1, \pm 1) \rangle \leq H_L$ centralizes $\sigma(p_1, p_2)$. Therefore there
is a second fix-point on L for this group. Necessarily it lies on the quadric, being determined by a tensor-product $v' \otimes w'$ with v', w' eigenvectors for p_1, p_2 respectively. Let α, α' be the eigen-values for p_1 on v, v' and β, β' those for p_2 on w, w' respectively. Then

$$\alpha \cdot \alpha' = \beta \cdot \beta' = 1.$$

Since all points on L have the same eigen-value under $\sigma(p_1, p_2)$ we find

$$\alpha \cdot \beta = \alpha' \cdot \beta' = (\alpha \cdot \beta)^{-1}.$$

So $\alpha \cdot \beta = \pm 1$ and $g := \sigma(p_1, p_2)$ acts on this line by an eigen-value ± 1. In particular p_1 and $\pm p_2 \in \bar{G}$ have the same order.

We reproduce from [S, p. 443] the table of G_n-orbits of fix-lines off the quadric by specifying a generator $g \in G_n$ of F_L. For this generator we use the notation of [S]. There it is also given the length $\ell(L)$. This length determines the order $|H_L| = |PG_n|/\ell(L)$ of the stabilizer group and the length $|H_L|/|F_L|$ of the general H_L-orbit on L:

n	6	8	12				
g	σ_{24}, $\pi_3\pi_3'$, $\pi_3\pi_3'$	$\pi_3\pi_4\pi_4'$, $\pi_3\pi_4\pi_4'$, $\pi_3\pi_4\sigma_4$, $\sigma_2\pi_3\pi_4'$, $\pi_4\pi_4'$	σ_{24}, $\pi_3\pi_3'$, $\pi_3\pi_5'$				
F_L	\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_3	\mathbb{Z}_2, \mathbb{Z}_2, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4	\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_5				
type	M, N, N'	M, M', M'', N, R	M, N, S				
$\ell(L)$	18, 16, 16	72, 36, 36, 32, 18	450, 200, 72				
$	H_L	/	F_L	$	4, 3, 3	4, 8, 8, 6, 8	4, 6, 10

3) Intersections of fix-lines off the quadric: From [S, p.450] one can read off the G_n-orbits of intersections of these lines outside of the quadric and the value of the parameter λ for the surface X_λ passing through this intersection point. An intersection point is a fix-point for the group generated by the transformations leaving fixed the intersecting lines. In the following table we give these (projective) groups (D_n denoting the dihedral group of order $2n$), the orders of the fix-group of intersecting lines, the generators of these groups, as well as the numbers of lines meeting:

n	λ	group	orders	generators	numbers
6	λ_1	T	2, 3	$\sigma_{24}, \pi_3\pi_3'$	3, 4
	λ_4	T	2, 3	$\sigma_{24}, \pi_3\pi_3'$	3, 4
8	λ_1	O	2, 3, 4	$\pi_3\pi_4\pi_3', \pi_3\pi_3', \pi_3\pi_4'$	6, 4, 3
	λ_2	D_1	2, 2, 4	$\pi_3\pi_4\sigma_4, \pi_2\pi_3\pi_4', \pi_3\pi_4'$	2, 2, 1
	λ_3	$\mathbb{Z}_2 \times \mathbb{Z}_2$	2, 2, 2	$\pi_3\pi_4\sigma_4, \pi_2\pi_3\pi_4', \pi_3\pi_4\pi_3\pi_4'$	1, 1, 1
	λ_4	D_3	2, 3	$\pi_3\pi_4\pi_3', \pi_3\pi_3'$	3, 1
12	λ_1	T	2, 3	$\sigma_{24}, \pi_3\pi_3'$	3, 4
	λ_5	D_3	2, 3	$\sigma_{24}, \pi_3\pi_3'$	3, 1
	λ_3	D_3	2, 5	$\sigma_{24}, \pi_5\pi_5'$	5, 1
	λ_4	I	2, 3, 5	$\sigma_{24}, \pi_3\pi_3', \pi_5\pi_5'$	15, 10, 6

3 Quotient singularities

Singularities in the quotient surface $Y' = Y'_\lambda$ originate from fix-points of the group action (or from singularities on X, but the latter are included in the fix-points, see [S, (6.4)]). We distinguish four types of fix-points on $X = X_\lambda$ for elements of G_n:

1) Points of the base locus Λ of the pencil, n lines in each of the two rulings of the invariant quadric Q, the (projective) fix-group being \mathbb{Z}_s from section 1;

2) points on a line Λ_k or Λ'_k in the base locus, fixed by the group $\mathbb{Z}_s =< \sigma(p,1)>$ from section 1 and by some non-trivial subgroup $\mathbb{Z}_t \subset P(\sigma(1,G))$;

3) isolated fixed points on the intersection of a fix-line and a smooth surface X_λ;

4) nodes of a surface X_λ.

1) All points of Λ_i are fixed by the cyclic group \mathbb{Z}_s from section 1. The quotient map here is a cyclic covering of order s. The quotient by \mathbb{Z}_s is smooth.

2) Since G_n acts on Λ_i as the ternary polyhedral group G, there are orbits of points on Λ_i, fixed under some none-trivial subgroup of G. We have to distinguish two cases:

Case 1: The n points, where the line Λ_i meets some line $\Lambda'_k \subset \Lambda$. Here the stabilizer group is $\mathbb{Z}_s \times \mathbb{Z}_s$ acting on X by reflections in the two lines Λ_i, Λ'_k. In such points the quotient surface Y' is smooth.

Case 2: The fix-points of other non-trivial subgroups of G. The lengths of these orbits and their stabilizer subgroups $\mathbb{Z}_t \subset G$ are given in section 1:

t	2	3	4
G_6	4, 4	-	-
G_8	12	-	6
G_{12}	30	20	-

The total stabilizer is the direct product $\mathbb{Z}_s \times \mathbb{Z}_t$. Let v, v' be eigen-vectors for \mathbb{Z}_s and w, w' eigen-vectors for \mathbb{Z}_t. Let $v \otimes w$ determine the fix-point in question. The surface X is smooth there, containing the line $\mathbb{P}(v \otimes \mathbb{C}^2)$, and intersecting the quadric Q transversally. This implies that the tangent space of X is the plane

$$y_0 \cdot v \otimes w + y_1 \cdot v \otimes w' + y_2 \cdot v' \otimes w', \quad y_0, y_1, y_2 \in \mathbb{C}.$$

Let $\sigma(p_1, \pm 1) \in \mathbb{Z}_s$ and $\sigma(\pm 1, p_2) \in \mathbb{Z}_t$ be generators. Let them act by

$$\sigma(p_1, 1)v = \alpha v, \quad \sigma(p_1, 1)v' = \alpha^{-1}v', \quad \sigma(1, p_2)w = \beta w, \quad \sigma(1, p_2)w' = \beta^{-1}w'.$$

These transformations act on the coordinates y_0 of the tangent plane as

$$\begin{array}{c|cccc}
\sigma(p_1, 1) & y_0 & y_1 & y_2 & z_1 := y_1/y_0 \\
\sigma(1, p_2) & \alpha & \alpha^{-1} & \beta^{-1} & \alpha^{-2} \\
\end{array}$$
We introduce local coordinates on X in which the group acts as on z_1, z_2, and in fact use again z_1, z_2 to denote these local coordinates on X. We locally form the quotient $X/(\mathbb{Z}_s \times \mathbb{Z}_t)$ dividing first by the action of \mathbb{Z}_s

$$(z_1, z_2) \mapsto (z_1^s, z_2).$$

Then we trace the action of \mathbb{Z}_t on z_1^s and z_2. A generator $\sigma(1, p_2)$ of \mathbb{Z}_t acts by

$$y_0 \quad y_1 \quad y_2 \quad z_1 \quad z_2 \begin{pmatrix} \omega & \omega^2 & \omega & \omega \\ i & -i & -i & 1 & 1 \\ \gamma & \gamma^7 & \gamma^7 & i & -i \\ \end{pmatrix}$$

The resulting singularities on Y' are

n	s	z_1	z_2	z_1^s	z_2	quotient singularity
6	2	ω	ω	ω^2	ω	A_2
8	3	-1	-1	-1	-1	A_1
		$-i$	$-i$	i	$-i$	A_3
12	5	-1	-1	-1	-1	A_1
5	ω	ω	ω^2	ω	A_2	

3) Let $L \subset \mathbb{P}_3$ be a fix-line for $\sigma(p_1, p_2) \in G_n$, not lying on the quadric. Assume that $\sigma(p_1, p_2)$ is chosen as a generator for the group F_L. By sect. 1 there are eigen-vectors v, v' for p_1 with eigen-values α, α^{-1} and w, w' for p_2 with eigen-values β, β^{-1} satisfying

$$\alpha \beta = \pm 1, \quad \alpha \beta = \alpha^{-1} \beta^{-1} = \pm 1,$$

such that L is spanned by $v \otimes w$ and $v' \otimes w'$. The general surface X meets this line in n distinct points. If the line has order s, two of these points lie on the base locus Λ. So the number of points not in the quadric Q cut out on L by X is

n	s	z_1	z_2	z_1^s	z_2	quotient singularity
6	2	ω	ω	ω^2	ω	A_2
8	3	-1	-1	-1	-1	A_1
		$-i$	$-i$	i	$-i$	A_3
12	5	-1	-1	-1	-1	A_1
5	ω	ω	ω^2	ω	A_2	

These points fall into orbits under the stabilizer group H_L. The lengths of these orbits are given in sect. 1.

To identify the quotient singularity we have to trace the action of $\sigma(p_1, p_2)$ on the tangent plane $T_x(X)$. For general X this plane will be transversal to L. So it must be the plane spanned by $x, v \otimes w', v' \otimes w$. By continuity this then is the case also for all smooth X. In particular, all smooth X meet L in n distinct points, i.e., the intersections always are transversal. And by continuity again, the numbers and lengths of H_L-orbits in $X \cap L$ are the same for all smooth X. Since $\sigma(p_1, p_2)$ acts

$$\begin{pmatrix} v \otimes w' & v' \otimes w \\ \alpha \beta & \alpha^{-1} \beta, \end{pmatrix}$$

on $v \otimes w'$ and $v' \otimes w$, respectively.
the eigen-values for $\sigma(p_1, p_2)$ on $T_x(X)$ are

$$\frac{\alpha^{-1}\beta}{\alpha\beta} = \alpha^{-2} \quad \text{and} \quad \frac{\alpha\beta^{-1}}{\alpha\beta} = \beta^{-2} = \left(\frac{1}{\alpha}\right)^2 = \alpha^2.$$

The resulting quotient singularity on Y' therefore is of type A_r, where r is the order of L.

We collect the results in the following table. It shows in each case length and number of H_L-orbits, the number and type(s) of the quotient singularity(ies).

n	6	8	12								
$o(L)$	2	2	2	3	4	2	3	5			
type	M	N'	N''	M'	M''	M	N'	R	M	N'	S
length	4	3	3	8	8	4	6	8	4	6	10
number	1	2	2	1	1	2	1	1	3	2	1
singularities	A_1	$2A_2$	$2A_2$	A_1	A_1	$2A_1$	A_2	A_3	$3A_1$	$2A_2$	A_4

4) Finally we consider the nodal surfaces X. All the intersections of fix-lines considered in sect. 2 are nodes on the surfaces X. There are just two invariant surfaces with nodes not given there, because through their nodes passes just one fix-line. They are G_6-invariants. Their parameters are as follows:

λ	group	generator
λ_2	\mathbb{Z}_3	$\pi_3\pi_3$
λ_3	\mathbb{Z}_3	$\pi_3\pi^2$

We use this to collect the data for the twelve singular surfaces X in the next table. We include the number ns of nodes on the surface and specify the group $F \subset PSL(4)$ fixing the node. For each type we give the number of lines meeting in the node. So e.g. $3M$ means that there are three lines of type M meeting at the node.

n	6	8	12									
λ	λ_1	λ_2	λ_3	λ_4	λ_1	λ_2	λ_3	λ_4	λ_1	λ_2	λ_3	λ_4
ns	12	48	48	12	24	72	144	96	300	600	360	60
F	T	\mathbb{Z}_3	\mathbb{Z}_3	T	O	D_4	$\mathbb{Z}_2 \times \mathbb{Z}_2$	D_3	T	D_3	D_5	I
$3M$	$1N'$	$1N''$	$3M$	$6M$	$2M'$	$1M'$	$3M$	$3M$	$5M$	$15M$		
$4N'$	$4N''$	$4N'$	$2M''$	$1M''$	$1N$	$3M$	$1N$	$1S$	$10N$			
$3R$	$1R$	$1R$	$1M$	$3R$	$1R$	$1M$	$3R$	$1R$	$1M$	$6S$		

Lemma 3.1 Let $G \subset SO(3)$ be a finite subgroup of order ≥ 3.

a) Up to G-equivariant linear coordinate change, there is a unique G-invariant quadratic polynomial defining a non-degenerate cone with top at the origin.

b) If X is a G-invariant surface, having a node at the origin, then there is a G-equivariant change of local (analytic) coordinates, such that X is given in the new coordinates by $x^2 + y^2 + z^2 = 0$.
Proof. a) We distinguish two cases:
i) \(G = \mathbb{Z}_2 \times \mathbb{Z}_2 \) generated by the symmetries
\[
(x, y, z) \mapsto (x, -y, -z) \quad \text{and} \quad (x, y, z) \mapsto (-x, y, -z).
\]
The quadratic \(G \)-invariants are generated by the squares \(x^2, y^2 \) and \(z^2 \). The invariant polynomial then is of the form \(ax^2 + by^2 + cz^2 \) with \(a, b, c \neq 0 \). The coordinate change
\[
x' := \sqrt{a} x, \quad y' := \sqrt{b} y, \quad z' := \sqrt{c} z
\]
is \(G \)-equivariant and transforms the polynomial into \(x'^2 + y'^2 + z'^2 \).
ii) \(G \) contains an element \(g \) of order \(\geq 3 \). Let it act by
\[
(x, y, z) \mapsto (cx - sy, sx + cy, z)
\]
with \(c = \cos(\alpha), s = \sin(\alpha) \) and \(\alpha \neq 0, \pi \). The quadratic invariants of \(g \) are generated by \(x^2 + y^2 \) and \(z^2 \). The invariant polynomial must be of the form \(a(x^2 + y^2) + bz^2 \) with \(a, b \neq 0 \). The \(G \)-equivariant transformation \(x' := \sqrt{ax}, \quad y' := \sqrt{by}, \quad z' := \sqrt{cz} \) transforms it into the same normal form as in i). This proves the assertion if \(G = \langle g \rangle \) is cyclic or if \(G \) is dihedral.

In the three other cases \(G = T, O \) or \(I \), it is well-known that \(x^2 + y^2 + z^2 \), up to a constant factor, is the unique quadratic \(G \)-invariant.

b) Let \(X \) be given locally at the origin by an equation \(f(x, y, z) = 0 \) with \(f \) some power series. Since \(X \) is \(G \)-invariant, so is the tangent cone of \(X \) at the origin. By a) we therefore may assume
\[
f = x^2 + y^2 + z^2 + f_3(x, y, z)
\]
with a power series \(f_3 \) containing monomials of degrees \(\geq 3 \) only. It is well-known that there is a local biholomorphic map \(\varphi : (x, y, z) \mapsto (x', y', z') \) mapping \(X \) to its tangent cone, i.e., with the property \(\varphi^*(x'^2 + y'^2 + z'^2) = f \). For the derivative \(\varphi'(0) \) this implies \(\varphi'(0)^*(x'^2 + y'^2 + z'^2) = x^2 + y^2 + z^2 \). After replacing \(\varphi \) by \(\varphi'(0)^{-1} \circ \varphi \) we even may assume \(\varphi'(0) = \text{id} \).

Now consider the local \(G \)-equivariant holomorphic map
\[
\Phi : (x, y, z) \mapsto \frac{1}{|G|} \sum_{h \in G} h \circ \varphi \circ h^{-1}.
\]
Using the \(G \)-invariance of \(f \) and \(x'^2 + y'^2 + z'^2 \) one easily checks \(\Phi^*(x'^2 + y'^2 + z'^2) = f \). It remains to show, that \(\Phi \) locally at the origin is biholomorphic. But this follows from
\[
\Phi'(0) = \frac{1}{|G|} \sum_{h \in G} h \circ \varphi'(0) \circ h^{-1} = \text{id}.
\]
\[\square\]

Now consider the automorphism
\[
\Phi^2 \rightarrow \Phi^2, \quad v = (v_0, v_1) \mapsto v^\perp := (v_1, -v_0).
\]
For $q \in SU(2)$ it is easy to check that $(qv)^\perp = \bar{q}v^\perp$. Map $\mathfrak{q}^2 \to \mathfrak{q}^3$ via $v \mapsto v \otimes v^\perp$. Consider \mathfrak{q}^3 as the space of traceless complex matrices
\[
\begin{pmatrix}
ix & y + iz \\
-y + iz & -ix
\end{pmatrix}.
\]
Then
\[
v \otimes v^\perp = \begin{pmatrix} v_0 v_1 & -v_0^2 \\
v_1^2 & -v_0 v_1 \end{pmatrix}
\]
is a matrix of determinant $x^2 + y^2 + z^2 = 0$. One easily checks that the map $v \mapsto v \otimes v^\perp$ is 2 : 1 onto the cone of equation $x^2 + y^2 + z^2 = 0$, identifying this cone with the quotient $\mathfrak{q}^2/ < -id >$. And this map is $SU(2)$-equivariant with respect to the 2 : 1 cover $SU(2) \to SO(3)$. If $\tilde{G} \subset SU(2)$ is some finite group, then the quotient \mathfrak{q}^2/\tilde{G} via this map is identified with the quotient of the cone by the corresponding ternary group $G \subset SO(3)$.

Together with lemma 3.1 this shows:

Proposition 3.1 Let $X = X_\lambda$ be a nodal surface with G the fix-group G of the node. Then the image of this node on X/G_n is a quotient singularity locally isomorphic with \mathfrak{q}^2/\tilde{G}.

4 Rational curves

We denote by $X = X_\lambda \to Y' = Y'_\lambda$ the quotient map for G_n acting on X and by $Y = Y_\lambda \to Y'$ the minimal resolution of the quotient singularities on Y coming from the orbits of isolated fixed points in sect. 2. The n lines $\Lambda_i, \Lambda'_i \subset \mathcal{Q}$ in each ruling map to one smooth rational curve in Y'. We denote those by L, L'. Both these curves meet transversally in a smooth point of Y'. All quotient singularities are rational double points. Resolving them introduces more rational curves in Y. For each singularity A_k we get a chain of k smooth rational (-2)-curves. Since the group \mathbb{Z}_t from sect. 3 acts on X with Λ_i, resp. Λ'_i defining an eigen-space in the tangent space of X, the curves L, L' meet the A_{t-1}-string in an end curve of this string, avoiding the other curves of the string.

All lines L of the types $M, M', M'', N, N', N'', R, S$ form one orbit under G_n. We denote by M_i etc. the rational curves resolving the A_r-singularity on the image of $L \cap X$. If $L \cap X$ consists of more than one H_L-orbit we get in this way more than one A_r-configuration of rational curves coming from $L \cap X$.

4.1 The general case

First we consider the quotients of the smooth surfaces X: The striking fact is that the number of the additional rational curves is 17. We give the dual graphs of the collections of 19 rational curves on Y, changing the notation L, L' to L_3, L'_3 for $n = 6, 12$ and to L_4, L'_4 for $n = 8$:
Proposition 4.1 In each case the 19 rational curves specified generate a sub-lattice of \(NS(Y) \) of rank 19.

Proof. We compute the discriminant \(d \) of the lattice. The connected components of the dual graph define sub-lattices, the direct sum of which is the lattice in question. We compute the discriminant block-wise using the sub-lattices

\[
L := \langle L_i, L'_i \rangle, \quad M := \langle M_i \rangle, \quad N := \langle N_i \rangle, \quad R := \langle R_i \rangle, \quad S := \langle S_i \rangle
\]

and find

\(n \)	\(d(L) \)	\(d(M) \)	\(d(N) \)	\(d(R) \)	\(d(S) \)	\(d \)
6	45	-2	3^4	-4	2 \cdot 3^6 \cdot 5	
8	28	2^4	3	-4	2^8 \cdot 3 \cdot 7	
12	11	-2^3	3^2	5	2^3 \cdot 3^2 \cdot 5 \cdot 11	

\[\square \]

4.2 The special cases

Here we consider the desingularized quotients \(Y \) for the twelve singular surfaces \(X \). The image of the nodes on \(X \) will be on \(Y \) a quotient singularity for the binary group corresponding to the ternary group \(F \) from sect. 3. There we also gave the lines passing through this node on \(X \). The nodes of \(X \) on such a line fall into orbits under the group \(H \) fixing the line. If there is just one \(H \)-orbit of intersection points of the general surface \(X \) with this line, it is clear that this orbit converges to the orbit of nodes. We say: The quotient singularity swallows the orbit. If however there are more than one \(H \)-orbits, we have to analyze the situation more carefully. We use the map onto \(\mathbb{P}^1 \) of this line induced by the parameter \(\lambda \). Nodes of \(X \) on the given line will be branch points of this map.
Degree 6: On lines of type M there is just one orbit of four points. On lines of type N', N'' there are two orbits of length 3. The parameter λ induces on each N'- or N''-line some 6:1 cover over \mathbb{P}_1. Each fibre of six points decomposes into two orbits of three points. The total ramification degree is $-2 - 6 \cdot (-2) = 10$. The intersection with Q consists of two points of ramification order 2. So outside of the quadric Q we will have total ramification order six, hence it will happen twice, that two orbits of three points are swallowed by a quotient singularity. This must happen on the surfaces $X_{6,1}$ and $X_{6,2}$ for N', and for N'' on $X_{6,3}$ and $X_{6,4}$. We give the rational curves from 4.1 disappearing in Y, being replaced by rational curves in the minimal resolution of the quotient surface. Here we do not mean that e.g. the curve N_1 indeed converges to the curve denoted by N_1 in the dual graph of the resolution. We just mean that all the curves denoted by letters in the dual graph disappear:

6, 1 : $\bullet N_1 \bullet N_2 \bullet N_3 \bullet N_4$
$\bullet M_1$

6, 2 : $\bullet N_1 \bullet N_2 \bullet N_3 \bullet N_4$
$\bullet M_1$

6, 3 : $\bullet N_5 \bullet N_6 \bullet N_7 \bullet N_8$

6, 4 : $\bullet N_5 \bullet N_6 \bullet N_7 \bullet N_8$

Degree 8: The only lines with two H-orbits are those of type M. The map to \mathbb{P}_1 there has degree eight and total ramification order 14. The intersection with Q counts for two points with ramification order three each. So there will be total ramification of order eight off the quadric. The surface $X_{8,1}$ has $24 \cdot 6/72 = 2$ nodes on such a line, it swallows at least one orbit. The surface $X_{8,3}$ has $144/72 = 2$ nodes too and swallows at least one orbit too. The surface $X_{8,4}$ has $96 \cdot 3/72 = 4$ nodes and swallows at least two orbits. Since the total branching order adds up to at least $2 + 2 + 4 = 8$, the bounds for the numbers of orders in fact are exact numbers. The dual graphs for the resolution of quotient singularities and the curves swallowed are as follows:

8, 1 : $\bullet R_1 \bullet R_2 \bullet R_3 \bullet N_1 \bullet N_2$
$\bullet M_3$

8, 2 : $\bullet R_1 \bullet R_2 \bullet R_3$
$\bullet M_1$
$\bullet M_2$

8, 3 : $\bullet M_1 \bullet M_2 \bullet M_3$

8, 4 : $\bullet N_1 \bullet N_2$
$\bullet M_3$
$\bullet M_4$

Notice, that it is not necessary here to distinguish between M_3 and M_4. In fact it is even impossible, since the two corresponding orbits of intersections of the line M with the surface X_λ are interchanged by monodromy.
Degree 12: Now a line of type M contains three H-orbits of length four. The total branching order for the λ-map is 22 on such a line. The intersection with Q consists of two six-fold points and decreases the branching order by 10. So the total branching order off the quadric is 12. On such a line there are

on the surface	nodes \geq	orbits swallowed \geq
$X_{12,1}$	$300 \cdot 3/450 = 2$	1
$X_{12,2}$	$600 \cdot 3/450 = 4$	2
$X_{12,3}$	$360 \cdot 5/450 = 4$	2
$X_{12,4}$	$60 \cdot 15/450 = 2$	1

Since the total branching order must add up to twelve, the number given is indeed the number of swallowed orbits.

A line of type N contains two H-orbits of length six. Just as in the preceding case one computes the following numbers

on the surface	nodes \geq	orbits swallowed \geq
$X_{12,1}$	$300 \cdot 4/200 = 6$	2
$X_{12,2}$	$600 \cdot 1/200 = 3$	1
$X_{12,4}$	$60 \cdot 10/200 = 3$	1

Again the total branching order adds up to twelve. Therefore the estimates give the precise number of orbits swallowed.

Again, by monodromy it is impossible to distinguish between the curves M_1, M_2 and M_3, and likewise between the pairs $\{N_1, N_2\}$ and $\{N_3, N_4\}$.

5 K3-surfaces

In this section we show that the desingularized quotient surfaces Y_λ are K3 and that their structure is not constant in λ. We start with a crude but effective blow-up of \mathbb{P}_3. Let

$$\Xi := \{(x, \lambda) \in \mathbb{P}_3 \times \mathbb{C} : s_n(x) + \lambda q^{n/2}(x) = 0\}.$$

In addition we put:
• $\Xi \subset \mathbb{P}_3 \times \mathbb{P}_1$ the closure of Ξ. It is a divisor of bidegree $(n,1)$.

• $\tau : \Xi \to \mathbb{P}_3$ the natural projection onto the first factor;

• $f : \Xi \to \mathfrak{C}$ the projection onto the second factor. It is given by the function λ.

• $\tilde{\Lambda} := \tau^{-1}\Lambda$. This pull-back of the base-locus is the zero-set of τ^*q on Ξ;

• $\Xi^0 \subset \Xi$ the complement of the finitely many points in Ξ lying over the nodes of the four nodal surfaces X_λ.

• $\Upsilon' := \Xi/G_n$ the quotient threefold. Notice that the action of G_n on \mathbb{P}_3 lifts naturally to an action on Ξ.

• $h : \Upsilon' \to \mathfrak{C}$ the map induced by f;

• Υ^0 the image of Ξ^0.

Lemma 5.1

a) The threefold $\Xi \subset \mathbb{P}_3 \times \mathfrak{C}$ is smooth.

b) If $M \subset \mathbb{P}_3$, $M \not\subset Q$, is a fix-line for an element $\pm 1 \neq g \in G_n$ and $\tilde{M} \subset \Xi$ is its proper transform, then \tilde{M} does not meet $\tilde{\Lambda}$ in Ξ.

Proof. a) By $\partial_\lambda(s_n + \lambda q^{n/2}) = q^{n/2}$ singularities of Ξ can lie only on $\tau^{-1}\Lambda$. But there

$$\partial_{x_i}(s_n + \lambda q^{n/2}) = \partial_{x_i}s_n.$$

Since $s_n = 0$ is smooth along Λ, this proves that Ξ is smooth.

b) The assertion is obvious, if M does not meet the base locus Λ. If however $M \cap \Lambda = \{x_1, x_2\}$ is nonempty, we use the fact, observed in sect. 3, that the polynomial $s_n + t q^{n/2}|M$ vanishes in x_i to the first order for all smooth surfaces $X : s_n + t q^{n/2} = 0$. On \tilde{M} however we have $s_n = -\lambda q^{n/2}$ with $n/2 > 1$. So \tilde{M} will not meet $\tau^{-1}\{x_1, x_2\}$ in Ξ. \Box

The G_n-action on Ξ has the following kinds of fix-points:

1) Fix-points on $\tilde{\Lambda}$ for the group \mathbb{Z}_s;

2) Fix-points for the group $\mathbb{Z}_s \times \mathbb{Z}_s$ on the fibre $\tau^{-1}(x)$ over some intersection of lines Λ_i, Λ'_j in the base locus Λ;

3) Fix-points for a group $\mathbb{Z}_s \times \mathbb{Z}_t$ on the fibre $\tau^{-1}(x)$ over a point x, where a line in the base locus meets some line M of fix-points not in the base locus. By lemma 5.1 b) $\tau^{-1}(x)$ and \tilde{M} do not intersect in Ξ.

4) Fix-curves \tilde{L} away from $\tilde{\Lambda}$ lying over fix-lines L not contained in the base-locus. All these curves are disjoint, when considered in Ξ^0.

14
The quotient three-fold $\mathcal{Y}' = \Xi/G_n$ is smooth in the image points of fix-points of types 1) or 2). It has quotient singularities A_t in the image curves of the curves $\tau^{-1}(x)$ of type 3). To be precise: The singularities there locally are products of an A_t surface singularity with a copy of the complex unit disc. Additional such cyclic quotient singularities A_k occur on the image curves of curves \tilde{L} of type 4). Where two such curves meet we have higher singularities. But such points are removed in \mathcal{Y}^0. So \mathcal{Y}^0 is singular along finitely many smooth irreducible rational curves. The singularities along each curve are products with some cyclic quotient singularity A_k. Let $\mathcal{Y} \to \mathcal{Y}_0$ be the minimal desingularisation of \mathcal{Y}_0 along these singular curves. Locally this is the product of the unit disc with a minimal resolution of the surface singularity A_k. Since the surfaces \mathcal{Y}'_{λ} intersect the singular curves transversally, the proper transforms $\mathcal{Y}_\lambda \subset \mathcal{Y}$ are smooth, minimally desingularized. They are the fibres of the map induced by h. For $\lambda_i, i = 1, ..., 4$, we denote by Y_λ the minimal resolutions of the quotient surfaces X_λ/G_n. We do not (and cannot) consider them as surfaces in \mathcal{Y}.

Proposition 5.1 The surfaces Y_λ are (minimal) K3-surfaces.

Proof. All cyclic quotient singularities on \mathcal{Y}^0 are gorenstein. So there is a dualizing sheaf $\omega_{\mathcal{Y}^0}$ pulling back to the canonical bundle $K_\mathcal{Y}$ on \mathcal{Y}. Under the quotient map $\Xi^0 \to \mathcal{Y}^0$ it pulls back to the canonical bundle K_{Ξ^0}, except for points on the divisor $\tilde{\Lambda}$. There we form the quotient in two steps, as in sect. 3, first dividing by \mathcal{Z}_s and then by \mathcal{Z}_t. The pull-back via the quotient by \mathcal{Z}_t is the canonical bundle of Ξ/\mathcal{Z}_s. The quotient map for \mathcal{Z}_s is branched along $\tilde{\Lambda}$ to the order s. So the adjunction formula shows: The dualizing sheaf $\omega_{\mathcal{Y}^0}$ pulls back to

$$K_{\Xi^0} \otimes O_{\Xi^0}((1-s)\tilde{\Lambda}) = K_{\Xi^0} \otimes \tau^* (O_{\mathcal{P}_3}(2-2s)).$$

The divisor $\Xi \subset \mathbb{P}_3 \times \mathbb{P}_1$ is a divisor of bi-degree $(n, 1)$. Hence Ξ has a dualizing sheaf

$$\omega_{\Xi} = O_{\mathbb{P}_3 \times \mathbb{P}_1}(n-4, -2).$$

Now the miracle happens:

$$n - 4 = 2s - 2.$$

This implies: The pull-back of $\omega_{\mathcal{Y}^0}$ to Ξ^0 equals the restriction of $O_{\mathbb{P}_3 \times \mathbb{P}_1}(0, -2)$, i.e. it is trivial on Ξ^0.

We distinguish two cases:

a) $\lambda \neq \lambda_i, i = 1, ..., 4$: The adjunction formula for $Y' = Y'_\lambda = X_\lambda/G_n$ shows

$$\omega_{Y'} = \omega_{\mathcal{Y}^0}|Y'.$$

So the pull-back of $\omega_{Y'}$ to X is trivial. This implies: $deg(\omega_{Y'})|C = 0$ for all irreducible curves $C \subset Y'$ and then $deg(K_{Y'}|C) = 0$ for all irreducible curves $C \subset Y$. The surfaces Y have canonical bundles, which are numerically trivial. In particular those surfaces are all minimal. By the classification of algebraic surfaces [BPV p. 168] they are abelian, K3, hyper-elliptic or Enriques. Since we specified in sect. 6.1 rational curves on Y spanning a lattice of rank 19 in $NS(\mathcal{Y})$ the only possibility is K3.
\(\lambda = \lambda_i, \ i = 1, \ldots, 4 \): The proof of a) shows \(\deg(K_Y|C) = 0 \) for all irreducible curves \(C \subset Y \) not passing through the exceptional locus of the minimal desingularization \(Y \to Y' \). In particular this holds for all curves \(C \) which are proper transforms of ample curves \(D \subset Y' \). Now an arbitrary curve \(C \subset Y \) is linearly equivalent to \(E + C_1 - C_2 \) with \(E \) exceptional and \(C_i \) proper transforms of ample curves \(D_i \subset Y' \). Since all singularities on \(Y' \) are rational double points of type A, D, E, we have \(K_Y.E = 0 \). The method from a) then applies here too. \(\square \)

Proposition 5.2 The structure of the K3-surfaces \(Y_\lambda \) varies with \(\lambda \).

Proof. We restrict to surfaces near some surface \(Y \), with \(Y' \) the quotient of a smooth surface \(X \). Here we may assume that the total space \(\Upsilon \) is smooth. If all surfaces near \(Y \) were isomorphic, locally near \(Y \) the fibration would be trivial [FG]. I.e., there would be an isomorphism \(\Phi : Y \times D \to \Upsilon \) respecting the fibre structure. Here \(D \) is a copy of the complex unit disc. By the continuity of the induced map

\[
Y = Y \times \lambda \to Y_\lambda
\]

there is an isomorphism \(Y \to Y_\lambda \) mapping the 19 rational curves from sect. 4.1 on \(Y \) to the corresponding curves on \(Y_\lambda, \lambda \in D \). The covering \(X \to Y' \) is defined by a subgroup in the fundamental group of the complement in \(Y \) of these rational curves. This implies that the isomorphism \(Y \to Y_\lambda \) induces an isomorphism of the coverings \(X \to X_\lambda \) equivariant with respect to the \(G_n \)-action.

Now this isomorphism must map the canonical bundle \(\mathcal{O}_X(n - 4) \) to the canonical bundle \(\mathcal{O}_{X_\lambda}(n - 4) \). Since the surfaces \(X_\lambda \) are simply-connected, the isomorphism maps \(\mathcal{O}_X(1) \) to \(\mathcal{O}_{X_\lambda}(1) \), i.e., it is given by a projectivity. This is in conflict with the following. \(\square \)

Lemma 5.2 For general \(\lambda \neq \mu \) there is no projectivity \(\varphi : \mathbb{P}_3 \to \mathbb{P}_3 \) inducing some \(G_n \)-equivariant isomorphism \(X_\lambda \to X_\mu \).

Proof. Assume that such an isomorphism \(\varphi \) exists. Equivariance means for each \(g \in G_n \) and \(x \in X_\lambda \) that \(\varphi g(x) = g \varphi(x) \) or \(\varphi^{-1} g^{-1} \varphi g(x) = x \). Since \(X_\lambda \) spans \(\mathbb{P}_3 \) this implies the same property for all \(x \in \mathbb{P}_3 \), i.e., the map \(\varphi \) is \(G_n \)-equivariant on all of \(\mathbb{P}_3 \). In particular, if \(L \subseteq \mathbb{P}_3 \) is a fixline for \(g \in G_n \), then so is \(\varphi(L) \). Then we may as well assume \(\varphi(L) = L \). We obtain a contradiction by showing that the point sets \(X_\lambda \cap L \) and \(X_\mu \cap L \) in general are not projectively equivalent.

The cases \(n = 6 \) and 12: We use the fix-line \(L := \{x_0 = x_1 = 0\} \) of type \(M \), fixed under \(\sigma_{1,3} = \sigma(q_1, q_l) \) (notation of [S, p. 432]). The group \(H_L \) has order 8, containing in addition the symmetries \(\sigma(q_1, 1) \) and \(\sigma(q_1 q_2, q_1 q_2) \) sending a point \(x = (0 : 0 : x_2 : x_3) \in L \) to

\[
\sigma(q_1, 1)(x) = (0 : 0 : x_2 : -x_3), \quad \sigma(q_1 q_2, q_1 q_2)(x) = (0 : 0 : -x_3 : x_2).
\]

Omitting the first two coordinates and putting \(x_2 = 1, x_3 = u, \) we find that a general \(H_L \)-orbit on \(L \) consists of points

\[
(1 : u), (1 : 1/u), (1 : -u), (1 : -1/u).
\]
The cross-ratio of these four points

\[CR = \frac{2u}{u + 1/u} : \frac{u + 1}{2/u} = \frac{4u^2}{(1 + u^2)^2} \]

varies with \(u \). The intersection of \(X_{6,\lambda} \) with \(L \) consists of one such orbit, the intersection of \(X_{12,\lambda} \) of three orbits. This implies the assertion for \(n = 6 \) and 12.

The case \(n=8 \): Here we use the fix-line \(L := \{ x_1 = x_3, x_2 = 0 \} \) of type \(M \) for \(\pi_3\pi_4\pi'_3\pi'_4 \). Again \(H_L \) has order 8 containing in addition \(\pi_3\pi_4 \) and \(\sigma(q_1q_2, q_1q_2) \). They send a point \(x = (u : 1 : 0 : 1) \in L \) to

\[\pi_3\pi_4(x) = (-2 : u : 0 : u), \quad \sigma(q_1q_2, q_1q_2)(x) = (u : -1 : 0 : -1). \]

Omitting the coordinates \(x_3 \) and \(x_4 \) we find that a general \(H_L \)-orbit consists of \((u : 1), (u : -1), (2/u : 1), (-2/u : 1) \).

Their cross-ratio

\[CR = \frac{u - 2/u}{u + 2/u} : \frac{-u - 2/u}{-u + 2/u} = \frac{(u^2 - 2)^2}{(u^2 + 2)^2} \]

varies with \(u \). The intersection of \(X_{8,\lambda} \) consists of two such orbits.

\[\square \]

Corollary 5.1 The general K3-surface \(Y_\lambda \) has Picard-number 19.

6 Picard-Lattices

Here we compute the Picard lattices of our quotient K3-surfaces \(Y \).

6.1 The general case

Denote by \(V \subset H^2(X, \mathbb{Z}) \) the rank-19 lattice spanned (over \(\mathbb{Z} \)) by the rational curves from sect. 4.1. For \(n = 6 \) and 8 this lattice \(V \) is not the total Picard lattice:

Proposition 6.1 a) (\(n=6 \)) After perhaps interchanging curves \(N_{2i-1} \) and \(N_{2i} \) the two divisor-classes

\[
L := L_1 - L_3 + L_5 + N_1 - N_2 + N_3 - N_6 + N_7 - N_8,
\]

\[
L' := L'_1 - L'_2 + L'_5 + N_1 - N_2 + N_3 - N_4 - N_5 + N_6 - N_7 + N_8
\]

are divisible by 3 in \(\text{NS}(Y) \). Together with \(V \) they span a rank-19 lattice with discriminant \(2 \cdot 3^2 \cdot 5 \).

b) (\(n=8 \)) The two classes

\[
L := L_1 + L_3 + L_5 + M_1 + M_3 + M_4 + R_1 + R_3,
\]

\[
L' := L'_1 + L'_3 + L'_5 + M_2 + M_3 + M_4 + R_1 + R_3
\]

are divisible by 2 in \(\text{NS}(Y) \). Together with \(V \) they span a rank-19 lattice with discriminant \(2^4 \cdot 3 \cdot 7 \).
Exactly in the same way we find a class which is 3-divisible in NS. Assume ν has IF^λ coefficients of NS^μ and ν has dimension six. Since NS contains at least 12 curves. Hence we may assume the class is

$$L := \lambda_1(L_1 - L_2) + \lambda_4(L_4 - L_5) + \sum \nu_i(N_{2i-1} - N_{2i})$$

with $\lambda_j, \nu_i = \pm 1$ modulo 3. W.l.o.g. we put $\lambda_1 = 1$. Intersecting with L_3 we find $\lambda_4 = 1$ too. And after perhaps interchanging curves N_{2i-1} with N_{2i} we may assume $\nu_1 = \ldots = \nu_4 = 1$.

Exactly in the same way we find a class

$$L' := L_1' - L_2' + L_4' - L_5' + \sum \nu'_i(N_{2i-1} - N_{2i}), \quad \nu'_i = \pm 1 \text{ mod } 3,$$

which is 3-divisible in $\text{NS}(Y)$. Then $L + L'$ is 3-divisible too, and by $[T]$ contains precisely 12 curves. This implies that precisely two coefficients ν'_i cancel against the corresponding coefficients of L. If these are the coefficients ν'_3 and ν'_4, we are done. If this should not be the case, after perhaps interchanging $\{N_1, N_2\}$ with $\{N_3, N_4\}$, $\{N_5, N_6\}$ with $\{N_7, N_8\}$ we may assume $\nu'_1 = \nu'_3 = 1$ and $\nu'_2 = \nu'_4 = -1$. Denote by $T_2 : H^2(X, \mathbb{Z}) \to H^2(X, \mathbb{Z})$ the monodromy about $X_{6,2}$ (circling the parameter λ_2 in the parameter space) and by T_3 the monodromy about $X_{6,3}$. So T_2 interchanges $\{N_1, N_2\}$ with $\{N_3, N_4\}$, leaving fixed $\{N_5, N_6\}, \{N_7, N_8\}$ with T_3 doing just the opposite. $\text{NS}(X)$ contains the classes (coefficients modulo 3)

	$L_1 + L_3 + L_5$	$L_1' + L_3' + L_5'$	$N_1 - N_2$	$N_3 - N_4$	$N_5 - N_6$	$N_7 - N_8$
L	1	0	1	1	1	1
L'	0	1	1	-1	1	-1
$L + L'$	1	1	-1	0	-1	0
$T_2(L + L')$	1	1	0	± 1	-1	0
$T_3(L + L')$	1	1	-1	0	0	± 1
These classes would span in $NS(X)/V$ a subgroup of order 3^4, in conflict with $d(V) = 2 \cdot 3^6 \cdot 5$, contradiction.

b) Here we consider reduction modulo 2

$$\varphi_2 : \mathbb{Z}^{22} \rightarrow H^2(Y, \mathbb{Z}) \rightarrow H^2(Y, \mathbb{F}_2) = \mathbb{F}_2^{22}.$$

The subspace

$$C := \varphi_2 < L_1, L_3, L_5, M_1, M_2, M_3, M_4, R_1, R_3 > \subset H^2(Y, \mathbb{F}_2)$$

is totally isotropic. It is orthogonal to $D := \varphi_2 < L'_1, L'_2, L'_3, L'_4, N_1, N_2 >$. Because of

$$\det(L'_i, L'_j)_{i,j=1,...,4} = 5, \quad \det(N_i, N_j)_{i,j=1,2} = 3,$$

the intersection form on D is non-degenerate, and D^\perp is non-degenerate of rank 16. This implies $\dim C \leq 8$. So there is a class

$$L := \sum \lambda_i L_i + \mu_i M_i + \rho_i R_i$$

in the kernel of φ_2. By [N] it has precisely eight coefficients = 1. Intersecting

$$\begin{array}{c|c c c}
L_2 & L_4 & \lambda_1 = \lambda_3 = \lambda_5 =: \lambda \\
R_2 & \rho_1 = \rho_3 =: \rho \\
\end{array}$$

This implies that precisely one coefficient μ_i will vanish and $\lambda = \rho = 1$. In the same way one finds a class

$$L' := L'_1 + L'_3 + L'_5 + \sum \mu'_i M_i + R_1 + R_3$$

in the kernel of φ_2 with precisely one μ'_i vanishing. The class

$$L + L' = L_1 + L_3 + L_5 + L'_1 + L'_3 + L'_5 + \sum (\mu_i + \mu'_i) M_i$$

also is divisible by 2 and has precisely eight non-zero coefficients. It follows that precisely two of the non-zero coefficients from μ_i and μ'_i coincide. If $\mu_3 = \mu_4 = \mu_5 = \mu'_1 = 1$ we are done (perhaps after interchanging L and L'). If this is not the case, assume e.g. $\mu_1 = \mu_2 = \mu_4 = 1, \mu_3 = 0$. Denote by T the monodromy about the surface $X_{8,4}$ (circling the parameter λ_4 in the parameter space). It interchanges M_3 and M_4. So there are the three classes

$L_1 + L_3 + L_5$	$L'_1 + L'_3 + L'_5$	M_1	M_2	M_3	M_4
$L/2$	1	0	1	1	0
$T(L/2)$	1	0	1	1	0
$L'/2$	0	1	*	*	*

belonging to $NS(X)$. Together with V they span a lattice W with discriminant $2^2 \cdot 3 \cdot 7$ and $[NS(X)^\vee : W] \leq 2^2 \cdot 3 \cdot 5$. However there are the two classes

$$M := M_1 + M_2, \quad R := R_1 + 2R_2 + 3R_3.$$

The two classes $M/2$ and $R/4$ belong to $NS(X)^\vee$ spanning in $NS(X)^\vee/W$ a subgroup $\simeq \mathbb{Z}_2 \times \mathbb{Z}_4$ of order 2^3, contradiction.
Theorem 6.1 If the Neron-Severi group of Y has rank 19, it is generated by V and

n	$L/3, L'/3,$
6	
8	$L/2, L'/2,$
12	no other classes.

Proof a) $n = 6$: The 19 rational curves together with the classes $L/3$ and $M/3$ generate a rank-19 lattice W with discriminant $2 \cdot 3^2 \cdot 5$. If $W \neq NS(Y)$, the only possibility would be $|NS/W| = 3$. But then $|NS^\vee : NS| \leq 10$ and $|NS^\vee/W| \leq 3 \cdot 10$. However, there are the two independent classes

$$\frac{1}{3}(N_1 - N_2 - N_3 + N_4), \frac{1}{3}(N_5 - N_6 - N_7 + N_8) \in NS^\vee$$

generating in NS^\vee/W a subgroup isomorphic with $\mathbb{Z}_3 \times \mathbb{Z}_3$, contradiction.

b) $n = 8$: V together with the classes $L/2$ and $L'/2$ generates a rank-19 lattice W with discriminant $2^4 \cdot 3 \cdot 7$. Here we have the three independent classes

$$M := M_3 + M_4, \quad M' := M_1 + M_2 + M_3, \quad R := R_1 + 2R_2 + 3R_3$$

with $M/2, M'/2, R/4 \in NS^\vee$. They generate in NS^\vee/NS a subgroup isomorphic to $(\mathbb{Z}_2)^2 \times \mathbb{Z}_4$. This implies that NS/W does not have 2-torsion. We find $NS = W$.

c) $n = 12$: The lattice $V = W$ spanned by the 19 rational curves has discriminant $2^3 \cdot 3^2 \cdot 5 \cdot 11$. If $W \neq NS$, then NS/W would have 2-torsion or 3-torsion. However, the three classes $M_i/2$, $i = 1, 2, 3$, span NS^\vee generate a subgroup isomorphic to \mathbb{Z}_3^2 in NS^\vee/NS. This excludes 2-torsion in NS/W. And the two classes $(N_1 - N_2)/3, (N_3 - N_4)/3$ generate in NS^\vee/NS a subgroup isomorphic with \mathbb{Z}_3^2. This excludes 3-torsion in NS/W. We have shown: $NS(Y) = W$. \qed

6.2 The special cases

Just as before we denote by $V \subset NS(X)$ the sub-lattice spanned by the rational curves from sect. 4.1. Now it has rank 20. In the same way, as in sect. 6.1 we check, that for $n = 6$ the classes $L/3, L'/3$ and for $n = 8$ the classes $L/2, L'/2$ in $NS(X)$ exist. Intersecting with the twentieth rational curve we find, that the curves can be labelled as in the diagrams of sect. 4.2.

Theorem 6.2 In all cases $NS(X)$ is spanned by the classes from sect. 6.1 and the twentieth rational curve. The discriminants of the lattices are

case	d	6, 1	6, 2	6, 3	6, 4	8, 1	8, 2	8, 3	8, 4	12, 1	12, 2	12, 3	12, 4
		-15	-60	-60	-15	-28	-84	-168	-112	-660	-440	-792	-132

Proof. The discriminants in the above table are those of the lattice W spanned by the curves from 6.1 and by the twentieth rational curve.

The case $n = 6$: The discriminant $d = -15$ is square-free. So in these two cases $NS(X)$ does not contain a proper extension of W. The discriminant $d = -60$ in cases 6, 2 and 6, 3 contains
the square 2^2. However in these cases the class $M/2$ belongs to $NS(X)^\vee$, but not to $NS(X)$. Also in these cases $NS(X)$ cannot contain a proper extension of W.

The case $n = 8$: Possible extensions of $W \subset NS(X)$ correspond to quadratic factors in the discriminants of the table above. However, a possible extension in

case	of degree	contradicts
8,1	2	$(M_1 + M_2 + M_4)/2 \in NS(X)^\vee$
8,2	2	$(M_3 + M_4)/2 \in NS(X)^\vee$
8,3	2	$(R_1 + 2R_2 + 3R_3)/4 \in NS(X)^\vee$
8,4	2 or 4	$(M_3 + M_4)/2, (R_1 + 2R_2 + 3R_3)/4 \in NS(X)^\vee$

The case $n = 12$: The possible extensions in

case	of degree	contradicts
12,1	2	$M_2/2, M_3/2 \in NS(X)^\vee$
12,2	2	$(M_1 + M_2)/2, M_3/2 \in NS(X)^\vee$
12,3	6	$M_1/2, (M_2 + M_3)/2, (N_1 - N_2)/3 \in NS(X)^\vee$
12,4	2	$M_1/2, M_2/2 \in NS(X)^\vee$

7 Comments

1) Denote by M_k the moduli-space of abelian surfaces with level-(1,k) structure In [Mu] the quotients \mathbb{P}_3/G_6, resp. \mathbb{P}_3/G_8 are identified with the Satake-compactification of M_3, resp M_4, and \mathbb{P}_3/G_{12} is shown to be birationally equivalent with the Satake-compactification of M_5. However the proof there is not very explicit. It is desirable to have an explicit identification of the quotient \mathbb{P}_3/G_n with the corresponding moduli space. The pencil Y_λ' on \mathbb{P}_3/G_n might be useful.

2) We did not consider the quotient threefold \mathbb{P}_3/G_n. We just identified the minimal non-singular model Y_λ for each quotient Y_λ'. Of course it would be desirable to have a global resolution of \mathbb{P}_3/G_n and to view our K3-surfaces as a pencil on this smooth threefold. One would need a particular crepant resolution of the singularities of Υ. Such resolutions are given e.g. in [I, IR, Ro]. We would need a resolution, where the behaviour of the K3-surfaces can be controlled, to identify the partial resolutions of the four special surfaces.

3) Our quotient surfaces admit a natural involution induced by the symmetry C from [S, p. 433] normalizing G_n, but not belonging to $SL(4, \Phi)$. It would be interesting to identify the quotients.

4) By [Mo] each K3-surface with Picard number 19 admits a Nikulin-involution, an involution with eight isolated fix-points. We do not know how to identify it in our cases. It cannot be the involution from 3), because this has a curve of fix-points. It is also not clear to us, whether this Nikulin-involution exists globally, i.e. on the total space Υ of our fibration. This Nikulin-involution is related to the existence of a sub-lattice $E_8 \perp E_8 \subset NS(Y)$. We did not manage to identify such a sub-lattice.
5) It seems remarkable that the Picard group of the general surface in a pencil of K3-surfaces can be identified so explicitly, as it is done in sect. 6. It is also remarkable that the quotient K3-surfaces have Picard number ≥ 19. Such pencils have been studied in [Mo] and [STZ]. We expect our surfaces to have some arithmetical meaning. In particular the prime factor $n-1=5,7,11$ in the discriminant of the Picard lattices draws attention. In fact, the same prime factor appears in each polynomial s_n, $n = 6, 8, 12$ from [S]. It can be found too in the cross-ratio $CR(\lambda_1, ..., \lambda_4)$ of the four special parameters in each pencil X_λ and together with strange prime factors in the absolute invariant j:

n	6	8	12
CR	5^2	7^2	11^2
	3^2	$2^4 \cdot 3$	$2^5 \cdot 3$
j	$13^3 \cdot 37^3$	$13^3 \cdot 181^3$	$12 \cdot 241^3$
	$2^8 \cdot 3^4 \cdot 5^4$	$2^8 \cdot 3^2 \cdot 7^4$	$2^{10} \cdot 3^2 \cdot 5^4 \cdot 11^4$

8 References

B Barth, W.: K3-surfaces with nine cusps. Geom. Dedic. 72, 171-178 (1998)
BPV Barth, W., Peters, C., Van de Ven A.: Compact Complex Surfaces. Ergebn. Math (3), 4, Springer 1984
C Coxeter, H.S.M.: The product of the generators of a finite group generated by reflections. Duke Math. J. 18, 765-782 (1951)
FG Fischer, W., Grauert, H.: Lokal triviale Familien kompakter komplexer Mannigfaltigkeiten. Nachr. Akad. Wiss. Göttingen II Math. Phys. Kl. (1965), 89-94
I Ito, Y.: Crepant resolutions of trihedral singularities. Proc. J. Acad. Sci. 70, Ser A, 131-136 (1994)
IR Ito, Y., Reid, M.: The McKay correspondence for finite subgroups of $SL(3, \mathbb{F})$. In: Higher Dimensional Complex Varieties. Proc. Conf. Trento 1994, 221-240
Mu Mukai, S.: Moduli of abelian surfaces and regular polyhedral groups. In: Proc. of Moduli of Algebraic Varieties Symposium, Sapporo (1999)
Mo Morrison, D.: On K3-surfaces with large Picard number. Inv. math. 75, 105-121 (1984)
N Nikulin, V.: On Kummer surfaces. Izv. Akad. Nauk. SSSR, Ser. Math. 39, 1145-1170 (1975)
Ra Racah, G.: Sulla caratterizzazione delle rappresentazioni irriducibili dei gruppi semisemplici di Lie. Rend. Accad. Naz. Linc, Sci. Fis. Mat. Nat (8), 8, 108-112 (1950)
Ro Roan, S.S.: Minimal resolutions of gorenstein orbifolds in dimension three. Topology 35, 489-508 (1996)
S Sarti, A.: Pencils of symmetric surfaces in \mathbb{P}_3. J. of Alg. 246, 429-552 (2001)
SI Shioda, T., Inose H.: On singular K3-surfaces. In: Complex Analysis and Algebraic Geometry. Iwanami-Shoten, Tokyo (1977), 117-136

STZ Sun, X., Tan, S.-L., Zuo, K.: Families of K3-surfaces over curves satisfying the equality of Arakelov-Yau’s type and modularity. Preprint (2002)

T Tan, S.-L.: Cusps on some algebraic surfaces and plane curves. Preprint (1999)

Mathematisches Institut, Universität Erlangen, Bismarckstr. 1 1/2, 91054 Erlangen, Germany
 e-mail:barth@mi.uni-erlangen.de

FB 17 Mathematik, Universität Mainz, Staudingerweg 9, 55099 Mainz, Germany
 e-mail:sarti@mathematik.uni-mainz.de