Abstract

This paper presents an active approach for part-based object detection, which optimizes the order of part filter evaluations and the time at which to stop and make a prediction. Statistics, describing the part responses, are learned from training data and are used to formalize the part scheduling problem as an offline optimization. Dynamic programming is applied to obtain a policy, which balances the number of part evaluations with the classification accuracy. During inference, the policy is used as a look-up table to choose the part order and the stopping time based on the observed filter responses. The method is faster than cascade detection with deformable part models (which does not optimize the part order) with negligible loss in accuracy when evaluated on the PASCAL VOC 2007 and 2010 datasets.

1. Introduction

Part-based models such as deformable part models (DPM) [7] have become the state of the art in today’s object detection methods. They offer powerful representations which can be learned from annotated datasets and capture both the appearance and the configuration of the parts. DPM-based detectors achieve unrivaled accuracy on standard datasets but their computational demand is high since it is proportional to the number of parts in the model and the number of locations at which to evaluate the part filters. Approaches for speeding-up the DPM inference such as cascades, branch-and-bound, and multi-resolution schemes, use the responses obtained from initial part-location evaluations to reduce the future computation. This paper introduces two novel ideas, which are missing in the state-of-the-art methods for speeding up DPM inference.

First, at each location in the image pyramid, a part-based detector has to make a decision: whether to evaluate more parts and in what order or to stop and predict a label. This decision can be regarded as a planning problem, whose state space consists of the set of previously used parts and the confidence of whether an object is present or not. While existing approaches rely on a predetermined sequence of parts, our approach optimizes the order in which to apply the part filters so that a minimal number of part evaluations provides maximal classification accuracy at each location. Our second idea is to use a decision loss in the optimization, which quantifies the trade-off between false positive and false negative mistakes, instead of the threshold-based stopping criterion utilized by most other approaches. These ideas have enabled us to propose a novel object detector, Active Deformable Part Models, named so because of the active part selection. The detection procedure consists of two phases: an off-line phase, which learns a part scheduling policy from the training data and an online phase (inference), which uses the policy to optimize the detection task on test images. During inference, each image location starts with equal probabilities for object and background. The probabilities are updated sequentially based on the responses of the part filters suggested by the policy. At any time, depending on the probabilities, the policy might terminate predicting either a background label (which is what most cascaded methods take advantage of) or a positive label, in which case all unused part filters are evaluated in order to obtain the complete DPM score. Fig. 1 exemplifies the inference process.

We evaluated our approach on the PASCAL VOC 2007 and 2010 datasets [5] and achieved state of the art accuracy but with a 7 times reduction in the number of part-location evaluations and an average speed-up of 3 times compared to the cascade DPM [6]. This paper makes the following contributions to the state of the art in part-based object detection:
Figure 1: **Active DPM Overview**: A deformable part model trained on the PASCAL VOC 2007 horse class is shown with colored root and parts in the first column. The second column contains an input image and the original DPM scores as a baseline. The rest of the columns illustrate the inference process of the Active DPM, which proceeds in rounds. The foreground probability (of a horse being present) is maintained at each image location (top row) and is updated sequentially based on the responses of the part filters (high values are red; low values are blue). A policy (learned off-line) is used to select the best sequence of parts to apply at different locations. The bottom row shows the part filters applied at consecutive rounds with colors corresponding to the parts on the left. The policy decides to stop the inference at each location based on the confidence of foreground. As a result, the complete sequence of part filters is evaluated at very few locations, leading to a significant speed-up versus the traditional DPM inference. Our experiments show that the accuracy remains unaffected.

1. We obtain an active part selection policy which optimizes the order of the filter evaluations and balances number of evaluations used with the classification accuracy based on the scores obtained during inference.

2. The proposed detector achieves a significant speed-up versus the cascade DPM without sacrificing accuracy.

3. The approach can be generalized to any detection problem, which involves a linear additive score and uses several parts (stages) even if they are just SIFT points.

2. Related Work

We will refer to work on object detection that optimizes the inference stage rather than the representations since our representation is identical with DPM [7]. Our method is inspired by an acceleration of the DPM object detector, the cascade DPM [6]. However, while the sequence of parts evaluated in the cascade DPM is pre-defined and a set of thresholds has to be determined empirically, our approach selects the part order and the stopping time at each location based on an optimization criterion. We find the next closest approach to be [19], which maintains a foreground probability at each stage of a multi-stage ensemble classifier and determines a stopping time based on the corresponding entropy. The difference of our approach is that it jointly optimizes the stage order and the stopping criterion. Kokkinos [11] uses Branch-and-Bound (BB) to prioritize the search over image locations driven by an upper bound on the classification score. It is related to our approach in that object-less locations are easily detected and the search is guided in location space but with the difference that our policy proposes the next part to be tested in cases that no label can yet be given to a particular location. Earlier approaches [13, 15, 12] relied on BB to constrain the search space of object detectors based on a sliding window or a Hough transform but without deformable parts. Another related group of approaches focuses on learning a sequence of object template tests in position, scale, and orientation space that minimizes the total computation time through a coarse-to-fine evaluation [8, 16].

The classic work by Viola and Jones [20] introduced a cascade of classifiers whose order was determined by importance weights learned by AdaBoost. The approach was studied extensively in [3, 22, 14, 9, 2]. Recently, Dollar et al. [4] introduced cross-talk cascades which allow detector responses to trigger or suppress the evaluation of weak classifiers in their neighborhood by exploiting the correlation of the classifier responses in the neighboring positions and scales. Weiss et al. [21] used structured prediction cas-
cades to optimize a function with two objectives: pose refinement and minimum filter evaluation cost. Sapp et al. [18] learn a cascade of pictorial structures with increasing pose resolution by progressively filtering the pose state space. Its emphasis is on pre-filtering structures through max-margin scoring rather than part locations so that human poses with weak individual part appearances can still be recovered. Rahtu et al. [17] use general “objectness” filters to produce location proposals which are fed into a cascade, designed to maximize the quality of the locations that advance to the next stage. Our approach is also related to and could be combined with active learning using Gaussian processes for classification [10].

Similarly to the closest approaches above [6, 11, 19], our method aims to balance the number of part filter evaluations with the classification accuracy in part-based object detection. The novelty and the main advantage of our approach is that in addition it optimizes the part filter ordering. Since our “cascades” still run only on parts, we do not expect the approach to show higher accuracy than structured prediction cascades [18] which consider more sophisticated representations that the pictorial structures in the DPM.

3. Technical approach

The state-of-the-art performance in object detection is obtained by star-structured models such as DPM [7]. A star-structured model of an object with n parts is formally defined by a (n + 2)−tuple (F0, P1, . . . , Pn, b), where F0 is a root filter, b is a real-valued bias term, and Pk are the part models. Each part model Pk = (Fk, vk, dk) consists of a filter Fk, a position vk of the part relative to the root, and the deformation coefficients dk of a quadratic function specifying a deformation cost for placing the part away from vk.

The object detector is applied in a sliding window fashion and outputs a prediction, score(x), at each location x in an image pyramid, where x = (r, c, l) specifies a position (r, c) in the l-th level (scale) of the pyramid. The space of all possible locations (position-scale tuples) in the image pyramid is denoted by X. The response of the detector at a given root location x = (r, c, l) ∈ X is:

\[
score(x) = F'_0 \cdot \phi(H, x) + \sum_{k=1}^{n} \max_{x_k} \left(F'_k \cdot \phi(H, x_k) - d_k \cdot \phi_d(\delta_k) \right) + b,
\]

where \(\phi(H, x) \) is the histogram of oriented gradients (HOG) feature vector at location x and \(\delta_k := (r_k, c_k) - (2r, c) + v_k \) is the displacement of the k-th part from its anchor position \(v_k \) relative to the root location x. Each term in the above sum implicitly depends on x since the part locations \(x_k \) are chosen relative to root location at x. The score can be written as:

\[
score(x) = \sum_{k=0}^{n} m_k(x) + b,
\]

where \(m_0(x) := F'_0 \cdot \phi(H, x) \) and for \(k > 0 \), \(m_k(x) := \max_{x_k} (F'_k \cdot \phi(H, x_k) - d_k \cdot \phi_d(\delta_k)) \). From this perspective, there is no difference between the root and the parts and we can think of the model as one consisting of \(n + 1 \) parts.

3.1. Score Likelihoods for the Parts

The object detection task requires labeling every \(x \in X \) with a label \(y(x) \in \{\varnothing, \oplus\} \). The traditional approach is to compute the complete score in (1) at every position-scale tuple \(x \in X \). In this paper, we argue that it is not necessary to obtain all \(n + 1 \) part responses in order to label a location \(x \) correctly. Treating the part scores as noisy observations of the true label \(y(x) \), we choose an effective order in which to receive observations and an optimal time to stop. The stopping criterion is based on a trade-off between the cost of obtaining more observations and the cost of labeling the location \(x \) incorrectly.

Formally, the part scores \(m_0, \ldots, m_n \) at a fixed location \(x \) are random variables, which depend on the input image, i.e. the true label \(y(x) \). To emphasize this we denote them with upper-case letters \(M_k \) and their realizations with lower-case letters \(m_k \). In order to predict an effective part order and stopping time, we need statistics which describe the part responses. Let \(h_{\oplus}(m_0, m_1, \ldots, m_n) \) and \(h_{\ominus}(m_0, m_1, \ldots, m_n) \) denote the joint probability density functions (pdf) of the part scores conditioned on the true label being positive \(y = \oplus \) and negative \(y = \ominus \), respectively. We make the following assumption.

Assumption. The responses of the parts of a star-structured model with a given root location \(x \in X \) are independent conditioned on the the true label \(y(x) \), i.e.

\[
\begin{align*}
 h_{\oplus}(m_0, m_1, \ldots, m_n) &= \prod_{k=0}^{n} h_{\oplus}^{\oplus}(m_k), \\
 h_{\ominus}(m_0, m_1, \ldots, m_n) &= \prod_{k=0}^{n} h_{\ominus}^{\ominus}(m_k),
\end{align*}
\]

where \(h_{\oplus}^{\oplus}(m_k) \) is the pdf of \(M_k \mid y = \oplus \) and \(h_{\ominus}^{\ominus}(m_k) \) is the pdf of \(M_k \mid y = \ominus \).

We learn non-parametric representations for the \(2(n + 1) \) pdfs \(\{h_{\oplus}^{\oplus}, h_{\ominus}^{\ominus}\} \) from an annotated set \(D \) of training images. We emphasize that the above assumption does not always hold in practice but simplifies the representation of the score likelihoods significantly\(^1\). Our algorithm for choosing a part order and stopping time can be used without the independence assumption. However, we expect the performance to be similar while an unreasonable amount of training data would be required to learn a good representation of the joint pdfs. To evaluate the fidelity of the decoupled representation in (2) we computed correlation coefficients between all

\(^1\) Removing the independence assumption would require learning the 2 joint \((n + 1) \) dimensional pdfs of the part scores in (2) and extracting the 2(\(n + 1 \)) marginals and the 2(\(n + 1 \))(\(2^n - 1 \)) conditionals of the form \(h(m_k \mid m_l) \), where \(I \subseteq \{0, \ldots, n\} \setminus \{k\} \).
pairs of part responses (Table 1) for the classes in the PASCAL 2007 dataset. The mean over all classes, 0.23, indicates a weak correlation. We observed that the few highly correlated parts have identical appearances (e.g. car wheels) or a spatial overlap.

To learn representations for the score likelihoods, \(\{h_k^\oplus, h_k^\ominus\} \), we collected a set of scores for each part from the training set \(D \). Given a positive example \(x^* \in D \) of a particular DPM component, the root was placed at the scale and position \(x^* \) of the top score within the ground-truth bounding box. The response \(m_k^0 \) of the root filter was recorded. The parts were placed at their optimal locations relative to the root location \(x^* \) and their scores \(m_k^i \), \(k > 0 \) were recorded as well. This procedure was repeated for all positive examples in \(D \). For negative examples, \(x^* \) was selected randomly over all locations in the image pyramid and the same procedure was used to obtain the set \(\{m_k^i \mid \ominus\} \). Kernel density estimation was applied to the score collections in order to obtain smooth approximations to \(h_k^\oplus \) and \(h_k^\ominus \). Fig. 2 shows several examples of the score likelihoods obtained from the part responses of a car model.

3.2. Active Part Selection

This section discusses how to select an ordered subset of the \(n + 1 \) parts, which when applied at a given location \(x \in \mathcal{X} \) has a small probability of mislabeling \(x \). The detection at \(x \) proceeds in rounds \(t = 0, \ldots, n + 1 \). The DPM inference applies the root and parts in a predefined topological ordering of the model structure. Here, we do not fix the order of the parts a priori. Instead, we select which part to run next sequentially, depending on the part responses obtained in the past. The part chosen at round \(t \) is denoted by \(k(t) \) and can be any of the parts that have not been applied yet. We take a Bayesian approach and maintain a probability \(p_t := \mathbb{P}(y = \ominus \mid m_{k(0)}, \ldots, m_{k(t-1)}) \) of a positive label at location \(x \) conditioned on the part scores from the previous rounds. The state at time \(t \) consists of a binary vector \(s_t \in \{0, 1\}^{n+1} \) indicating which parts have already been used and the information state \(p_t \in [0, 1] \). Let \(S_t := \{s \in \{0, 1\}^{n+1} \mid 1^T s = t\} \) be the set of possible values for \(s_t \). At the start of a detection, \(s_0 = 0 \) and \(p_0 = 1/2 \), since no parts have been used and we have an uninformative prior for the true label.

Suppose that part \(k(t) \) is applied at time \(t \) and its score is \(m_{k(t)} \). The indicator vector \(s_t \) of used parts is updated as:

\[
s_{t+1} = s_t + e_{k(t)}. \tag{3}
\]

Due to the independence of the score likelihoods (2), the posterior label distribution is computed using Bayes rule:

\[
p_{t+1} = \frac{h_k^\oplus(m_{k(t)})}{h_k^\oplus(m_{k(t)}) + h_k^\ominus(m_{k(t)})} p_t. \tag{4}
\]

In this setting, we seek a conditional plan \(\pi \), which chooses which part to run next or stops and decides on a label for \(x \). Formally, such a plan is called a policy and is a function \(\pi(s, p) : \{0, 1\}^{n+1} \times [0, 1] \rightarrow \{\ominus, \oplus, 0, \ldots, n\} \), which depends on the previously used parts \(s \) and the label distribution \(p \). An admissible policy does not allow part repetitions and satisfies \(\pi(1, p) \in \{\ominus, \oplus\} \) for all \(p \in [0, 1] \), i.e. has to choose a label after all parts have been used. The set of admissible policies is denoted by \(\Pi \).

Let \(\tau(\pi) := \inf\{t \geq 0 \mid \pi(s_t, p_t) \in \{\ominus, \oplus\}\} \leq n + 1 \) denote the stopping time of policy \(\pi \in \Pi \). Let \(\tilde{\gamma}_x \in \{\ominus, \oplus\} \) denote the label guessed by policy \(\pi \) after its termination. We would like to choose a policy, which decides quickly and correctly. To formalize this, define the probability of making an error as \(P_e(\pi) := \mathbb{P}(\tilde{\gamma}_x \neq y) \), where \(y \) is the hidden correct label of \(x \).

Problem (Active Part Selection). Given \(\epsilon > 0 \), choose an admissible part policy \(\pi \) with minimum expected stopping time and probability of error bounded by \(\epsilon \):

\[
\min_{\pi \in \Pi} \mathbb{E}[\tau(\pi)] \tag{5}
\]

\[\text{s.t. } P_e(\pi) \leq \epsilon,\]

where the expectation is over the hidden label \(y \) and the part scores \(M_{k(0)}, \ldots, M_{k(\tau-1)} \).

Note that if \(\epsilon \) is chosen too small, (5) might be infeasible. In other words, even the best sequencing of the parts might not reduce the probability of error sufficiently. To avoid

\(^2\)Notation: \(1 \) denotes a vector with all elements equal to one, \(0 \) denotes a vector with all elements equal to zero, and \(e_i \) denotes a vector with one in the \(i \)-th element and zero everywhere else.
The intermediate stage values for $t = n, \ldots, 0$, $s_t \in S_t$, and $p_t \in [0, 1]$ are:

$$V^*(s_t, p_t) = \min \left\{ \lambda f_n p_t, \lambda f_p (1 - p_t) \right\},$$

$$1 + \min_{k \in A(s_t)} \mathbb{E}_{M_k} V^* \left(s_t + e_k, \frac{h_k^p (M_k) p_t}{h_k^p (M_k) + h_k^p (M_k)} \right),$$

where $A(s) := \{ i \in \{0, \ldots, n \} | s_i = 0 \}$ is the set of available (unused) parts. The optimal policy is readily obtained from the optimal value function. At stage t, if the first term in (9) is smallest, the policy stops and chooses $\hat{y} = \emptyset$; if the second term is smallest, the policy stops and chooses $\hat{y} = \emptyset$; otherwise, the policy chooses to run the part k, which minimizes the expectation.

Alg. 1 summarizes the steps necessary to compute the optimal policy π^* using the score likelihoods $\{h_k^p, h_k^p\}$ from Sec. 3.1. The one dimensional space $[0, 1]$ of label probabilities p can be discretized into d bins in order to store the function π returned by Alg. 1. The memory required is $O(d2^n + 1)$ since the space $\{0, 1\}^n + 1$ of used-part indicator vectors grows exponentially with the number of parts. Nevertheless, in practice the number of parts in a DPM is rarely more than 20 and Alg. 1 can be executed.

3.3. Active DPM Inference

A policy π is obtained offline using Alg. 1. In the online phase, π is used to select a sequence of parts to apply at each location $x \in X$ in the image pyramid. Note that the labeling of each location is treated as an independent problem and proceeds in parallel. Alg. 2 summarizes the Active DPM inference process.

At the start of a detection at location x, $s_0 = 0$ since no parts have been used and $p_0 = 1/2$ since we have an uninformative label prior (Line 5). At each round t, the policy is queried to obtain either the next part to run or a predicted label for x (Line 7). Note that querying the policy is an $O(1)$ operation since it is stored as a lookup table. If the policy terminates and labels $y(x)$ as foreground (Line 8), all unused part filters are applied in order to obtain the final discriminative score in (1). On the other hand, if the policy terminates and labels $y(x)$ as background, no additional part filters are evaluated and the final score is set to $-\infty$ (Line 18).

In this case, our algorithm makes computational

Table 1: Average correlation coefficients among pairs of part responses for all 20 classes in the PASCAL 2007 dataset

aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mean
0.36	0.37	0.14	0.18	0.24	0.29	0.40	0.16	0.13	0.17	0.44	0.11	0.23	0.21	0.14	0.26	0.22	0.24	0.20	0.23	
Algorithm 1 Active Part Selection

1: Input: Score likelihoods \(\{ h_k^p, h_k^b \} \) for all parts, false positive cost \(\lambda_{fp} \), false negative cost \(\lambda_{fn} \).
2: Output: Policy \(\pi : \{0,1\}^{n+1} \times \{0,1\} \rightarrow \{\emptyset, \emptyset, 0, \ldots, n\} \).
3: \(S_t := \{ s \in \{0,1\}^{n+1} \mid 1^T s = 0 \} \)
4: \(A(s) := \{ i \in \{0, \ldots, n\} \mid s_i = 0 \} \) for \(s \in \{0,1\}^{n+1} \).
5: \(V(1,p) := \min \{ \lambda_{fp} p, \lambda_{fp}(1-p) \} \), \(\forall p \in [0,1] \).
6: \(V(x, p) := \min \{ \lambda_{fp} p, \lambda_{fp}(1-p) \} \).
7: \(\pi_t(1,p) := \{ \emptyset, \emptyset \} \).
8: \(\pi_t(x, p) := \{ \emptyset, \emptyset \} \).
9: \(\forall t = n, n-1, \ldots, 0 \) do
10: \(for s \in S_t \) do
11: \(for k \in A(s) \) do
12: \(Q(s, p, k) := B_k V \left(s + e_k, \frac{h_k^b(M_k) p}{h_k^b(M_k) + h_k^b(M_k)} \right) \).
13: \(\pi_t(x,p) := \min \{ \lambda_{fp} p, \lambda_{fp}(1-p) \} \).
14: \(V(s,p) := \min \{ \lambda_{fp} p, \lambda_{fp}(1-p) \} \).
15: \(\forall t = n, n-1, \ldots, 0 \) do
16: \(return \pi \).

Algorithm 2 Active DPM Inference

1: Input: Image pyramid, model \((F_0, F_1, \ldots, F_n, b) \), score likelihoods \(\{ h_k^p, h_k^b \} \) for all parts, policy \(\pi \).
2: Output: score \((x) \) at all locations \(x \in \mathcal{X} \) in the image pyramid
3: \(for x \in \{0,1\}^{|\mathcal{X}|} \) do \(\triangleright \) All image pyramid locations
4: \(s_0 := 0; p_0 = 0.5; score(x) := 0 \).
5: \(for t = 0, 1, \ldots, n \) do
6: \(k := \pi(s_t, p_t) \triangleright \) Lookup next best part
7: \(if k = \emptyset \) then \(\triangleright \) Labeled as foreground
8: \(\forall t = 0, 1, \ldots, n \) do
9: \(if s_t(i) = 0 \) then
10: \(Compute score m_k(x) for part k \triangleright O(|\Delta|) \).
11: \(score(x) := score(x) + m_k(x) \).
12: \(end if \).
13: \(end for \).
14: \(if k = \emptyset \) then \(\triangleright \) Labeled as background
15: \(score(x) := -\infty \).
16: \(break; \).
17: \(else if k > 0 \) then \(\triangleright \) Update probability and score
18: \(Compute score m_k(x) for part k \triangleright O(|\Delta|) \).
19: \(score(x) := score(x) + m_k(x) \).
20: \(p_{t+1} := \left(h_k^b(m_k(x)) \right) \).
21: \(s_{t+1} := s_t + e_k \).
22: \(end if \).
23: \(end for \).
24: \(return \pi \).

The potential speed-up and the effect on accuracy are discussed in the Sec. 4. Finally, if the policy returns a part index \(k \), the corresponding score \(m_k(x) \) is computed by applying the part filter (Line 21). This operation is \(O(|\Delta|) \), where \(\Delta \) is the space of possible displacements for part \(k \) with respect to the root location \(x \). Following the analysis in [6], searching over the possible locations for part \(k \) is usually no more expensive than evaluating its linear filter \(F_k \) once because the spatial extent of the filter is of similar size as its range of displacement.

This is the case because once \(F_k \) is applied at some location \(x_k \), the resulting response \(\Phi_k(x_k) = F_k \cdot \phi(H, x_k) \) is cached to avoid recomputing it later. The use of a memo- rized version \(\Phi_k(x_k) \) of \(\Phi_k(x_k) \) amortizes the complexity of the search over \(\Delta \). The score \(m_k \) of part \(k \) is used to update the total score at \(x \) (Line 22). Then, the dynamics in (3) and (4) are used to update the state \((s_t, p_t) \) (Line 23 - 24).

Since the policy lookups and the state updates are all of \(O(1) \) complexity, the worst-case complexity of Alg. 2 is \(O(n|\mathcal{X}|) \). The worst-case complexity is the same as that of the DPM and the cascade DPM. The average running time of our algorithm depends on the total number of score \(m_k \) evaluations, which in turn depends on the choice of the parameters \(\lambda_{fn} \) and \(\lambda_{fp} \), and is the subject of the next section.

4. Experiments

4.1. Speed-Accuracy Trade-Off

The two parameters of the Active DPM (ADPM) method are the penalty, \(\lambda_{fp} \), for incorrectly predicting background as foreground and the penalty, \(\lambda_{fn} \), for incorrectly predicting foreground as background. The accuracy and the speed of the ADPM inference depend on these parameters. To get an intuition, consider making both \(\lambda_{fp} \) and \(\lambda_{fn} \) very small. The cost of an incorrect prediction will be negligible, thus encouraging the policy to sacrifice accuracy and stop immediately. In the other extreme, when both parameters are very large, the policy will delay the prediction as much as possible in order to obtain more information.

To evaluate the effect of the parameters, we compared the average precision (AP) and the number of part evaluations of Alg. 2 to those of the traditional DPM as a baseline. Let \(R_M \) be the total number of score \(m_k(x) \) evaluations for \(k > 0 \) (excluding the root) over all locations \(x \in \mathcal{X} \) performed by method M. For example, \(R_{DPM} = n|\mathcal{X}| \) since the DPM evaluates all parts at all locations in \(\mathcal{X} \). We define the relative number of part evaluations (RNPE) of our method (ADPM) versus method M as the ratio of \(R_M \) to \(R_{ADPM} \). The AP and the RNPE versus DPM of APDM were evaluated on several classes from the PASCAL VOC 2007 training set. Fig. 3 shows the performance as the parameter \(\lambda = \lambda_{fn} = \lambda_{fp} \) is varied. As expected, the AP increases while the RNPE decreases as the penalty of an incorrect declaration \(\lambda \) grows because ADPM evaluates more parts. The dip in RNPE for very low \(\lambda \) values is due to fact
Figure 3: Average precision and relative number of part evaluations versus DPM as a function of the parameter $\lambda = \lambda_{fp} = \lambda_{fn}$ on a log scale. The curves are reported on the bus class from the VOC 2007 training set.

Table 2: Average precision and relative number of part evaluations versus DPM obtained on the bus class from PASCAL VOC 2007 training set. A grid search over the parameter space $(\lambda_{fp}, \lambda_{fn}) \in \{4, 8, \ldots, 64\} \times \{4, 8, \ldots, 64\}$ with $\lambda_{fp} \geq \lambda_{fn}$ is shown.

Table 3 shows that ADPM achieves a significant decrease (about 90 times on average) in the number of evaluated parts compared to DPM, while the loss in accuracy is negligible. The precision-recall curves of the two methods are shown for several classes in Fig. 5.

ADPM was compared to DPM in terms of AP and RNPE to demonstrate the ability of ADPM to reduce the number of necessary part evaluations with minimal loss in accuracy irrespective of the features used. The ADPM parameters were set to $\lambda_{fp} = 20$ and $\lambda_{fn} = 5$ based on the analysis in Sec. 4.1. Table 3 shows that ADPM achieves a significant decrease (about 90 times on average) in the number of evaluated parts compared to DPM, while the loss in accuracy is negligible. The precision-recall curves of the two methods are shown for several classes in Fig. 5.

ADPM was compared to Cascade in terms of AP, RNPE, and wall-clock time (in seconds). Note that Cascade’s implementation makes use of PCA-projected (top five dimensions) HOG features, which are very fast to compute. During inference, Cascade prunes the image locations in two passes. In the first pass, the locations are filtered using the PCA-projections and the low-scoring ones are discarded. In the second pass, the remaining locations are filtered using the full-dimensional features. To make a fair comparison, we adopted a similar two-stage approach for the active part selection. An additional policy was learned using PCA score likelihoods and was used to schedule PCA filters during the first pass. The locations, which were selected as foreground in the first stage, were filtered again, using the original policy to select the order of the full-dimensional filters. The parameters λ_{fp} and λ_{fn} were set to 20 and 5 for the PCA policy and to 50 and 5 for the full-dimensional policy. A higher λ_{fp} was chosen to make the prediction more precise (albeit slower) during the second stage. Deformation pruning was not used for either method. Table 4 summarizes the results.

A discrepancy in the speedup of ADPM versus Cascade is observed in Table 4. On average, ADPM is 7 times faster than Cascade in terms of RNPE but only 3 times faster in seconds. A breakdown of the computational time during inference on a single image is shown in Table 5. We observe that the ratios of part evaluations and of seconds are consistent within individual stages (PCA and full). How-
ever, a single filter evaluation during the full-filter stage is significantly slower than one during the PCA stage. This does not affect the cumulative RNPE but lowers the combined seconds ratio. While ADPM is significantly faster than Cascade during the PCA stage, the speedup (in seconds) does not affect the cumulative RNPE but lowers the computational time breakdown during inference with pictorial structures independent of caching. The total times are not equal to the sum of the two stages because of the additional but minimal time spent in I/O operations.

5. Conclusion

This paper presents an active part selection approach which substantially speeds up inference with pictorial structures without sacrificing accuracy. Statistics learned from training data are used to pose an optimization problem, which balances the number of part filter convolution with the classification accuracy. Unlike existing approaches, which use a pre-specified part order and hard stopping thresholds, the resulting part scheduling policy selects the part order and the stopping criterion adaptively based on the filter responses obtained during inference. Potential future extensions include optimizing the part selection across scales and image positions and detecting multiple classes simultaneously.

References

[1] D. P. Bertsekas. Dynamic Programming and Optimal Control. Number 1. Athena Scientific, 1995.
[2] L. Bourdev and J. Brandt. Robust object detection via soft cascade. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 236–243. IEEE, 2005.
[3] S. C. Brubaker, J. Wu, J. Sun, M. D. Mullin, and J. M. Rehg. On the design of cascades of boosted ensembles for face detection. IJCV, 77(1-3):65–86, 2008.
[4] P. Dollár, R. Appel, and W. Kienzle. Crosstalk cascades for frame-rate pedestrian detection. In ECCV. Springer, 2012.
[5] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The Pascal Visual Object Classes (VOC) Challenge. IJCV, 88(2):303–338, 2010.
Figure 4: Illustration of the ADPM inference process on a car example. The DPM model with colored root and parts is shown on the left. The top row on the right consists of the input image and the evolution of the positive label probability (p_t) for $t \in \{1, 2, 3, 4\}$ (high values are red; low values are blue). The bottom row consists of the full DPM score (x) and a visualization of the parts applied at different locations at time t. The pixel colors correspond to the part colors on the left. In this example, despite the car being heavily occluded, ADPM converges to the correct location after four iterations.

Figure 5: Precision recall curves for bicycle, car, person, and horse classes from PASCAL 2007. Our method’s accuracy ties with the baselines.

[6] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Cascade object detection with deformable part models. In CVPR, pages 2241–2248. IEEE, 2010.

[7] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. PAMI, 32(9):1627–1645, 2010.

[8] F. Fleuret and D. Geman. Coarse-to-fine face detection. IJCV, 2001.

[9] G. Gualdi, A. Prati, and R. Cucchiara. Multistage particle windows for fast and accurate object detection. PAMI, 34(8):1589–1604, 2012.

[10] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Gaussian processes for object categorization. IJCV, 2010.

[11] I. Kokkinos. Rapid deformable object detection using dual-tree branch-and-bound. In NIPS, 2011.

[12] C. H. Lampert. An efficient divide-and-conquer cascade for nonlinear object detection. In CVPR. IEEE, 2010.

[13] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond sliding windows: Object localization by efficient subwindow search. In CVPR, pages 1–8. IEEE, 2008.

[14] A. Lehmann, P. V. Gehler, and L. J. Van Gool. Branch&rank: Non-linear object detection. In BMVC, 2011.

[15] A. Lehmann, B. Leibe, and L. Van Gool. Fast prism: Branch and bound hough transform for object class detection. IJCV, 94(2):175–197, 2011.

[16] M. Pedersoli, A. Vedaldi, and J. Gonzalez. A coarse-to-fine approach for fast deformable object detection. In CVPR, pages 1353–1360. IEEE, 2011.

[17] E. Rahtu, J. Kannala, and M. Blaschko. Learning a category independent object detection cascade. In ICCV, 2011.

[18] B. Sapp, A. Toshev, and B. Taskar. Cascaded models for articulated pose estimation. In ECCV. Springer, 2010.

[19] R. Sznitman, C. Becker, F. Fleuret, and P. Fua. Fast object detection with entropy-driven evaluation. In CVPR, June 2013.

[20] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR. IEEE, 2001.

[21] D. Weiss, B. Sapp, and B. Taskar. Structured prediction cascades. arXiv preprint arXiv:1208.3279, 2012.

[22] Z. Zhang, J. Warrell, and P. H. Torr. Proposal generation for object detection using cascaded ranking svms. In CVPR, pages 1497–1504. IEEE, 2011.