Plasmas Created in the Interaction of Antiprotons with Atomic and Ionized Hydrogen Isotopes. Suggested Fuels for Space Engines

Mohamed Assaad Abdel-Raouf1*, Abdelfattah T. Elgendy1, Amr Abd Al-Rahman Youssef2

1Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
2Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Email: *assaad@sci.asu.edu.eg, abdelfattah.elgendy@sci.asu.edu.eg, amraay2003@gmail.com

Abstract

The main objective of the present work is to investigate the properties of plasmas created by injecting a thermalized beam of antiprotons in two types of media. The first is hydrogen, deuterium, or tritium atoms localized in palladium crystals. The second medium is composed of protons, deuterons, or tritons localized in a magnetic cavity. Particularly, it is demonstrated that huge amounts of energy are released in both cases which could be used as fuels for space shuttle engines. A novel mathematical scheme is employed to calculate the energy yields in real space at different incident energies of the antiprotons.

Keywords

Antiprotons, Antiprotonic Hydrogens, Antiprotonic Plasma, Fuel for Space Engines, Plasmas in Molecular Crystals, Palladium as Host for Neutral Plasma, Antiprotons-Ionized Hydrogen Isotopes Plasma

1. Introduction

With the discovery of antiprotons (p) by Chamberlain et al. [1] at Fermilab in the fifties of the preceding century, the ultimate proof of possible formation of antiparticles in laboratory was rigorously confirmed. Consequently, Dirac’s theory of holes [2] was acknowledged [3] as one of the fundamental theories of particle physics. The interest in the formation of cold antiprotons was demonstrated through the development of the “Low Energy Antiproton Ring (LEAR)” at CERN [4], in the early eighties of the preceding century which led in 1995 to the forma-
formation of the first antiatom in laboratory, namely the ANTIHYDROGEN by the
ATHEN experiment [5] [6] (For more study about Antihydrogen see [7] [8] [9]).
Other interesting experiments were performed after the development of the ATRAP
machine at CERN ([10] [11] [12]) most of them seeking on the one hand, the
production of large number of antihydrogen atoms, protonium and protonium
ions [13]. On the other hand, efforts were made to test the behavior of antimatter
from the gravity point of view [14]. Recently, several applications of matter-
antimatter interactions at low energy were explored ([15] [16] [17]).

Experimental investigations of plasmas involving antiprotons were carried out
at the AEgIS, (for a review see [18] [19]). In this case nonneutral plasmas were
studied in detail [20]. Formation of Matter-antimatter plasma, particularly high
energetic electron-positron plasms, was also proposed as plausible explanation
for the mysterious radiation emitted from pulsers. The motive of the present
work is the experimentally confirmed fact that matter-antimatter annihilation
occurring by magnetically confined plasma releases much higher energy per unit
mass comparative to any other source of propulsion [20] (For a comprehensive
account on plasma theory and applications see [21]-[28]).

Our present work is concerned with two problems. The first is the formation
of plasma through the interaction of antiprotons with highly populated hydro-
gen, deuterium or tritium atoms localized in a material host (e.g., palladium
crystal). The second problem is to study plasmas formed by injecting a beam of
antiprotons in a magnetic trap filled with protons, deuterons, or tritons.

The main objective of our investigations is to show that huge number of en-
ergies could be released from the plasmas created in both cases. Particularly, the
employment of this plasma as fuel for engines of space shuttles is strongly em-
phasized.

The present paper falls in other three sections followed by a complete list of
references mentioned in the text. The next section deals with the mathematical
formalism of our problems. In Section 3 the results of our calculations are dis-
played and discussed. In Section 4 the main conclusions drawn from our inves-
tigations are presented. The paper concludes with the list of references men-
tioned in the text.

2. Mathematical Formalism

The present section is split into two parts, the first is devoted to the treatment of
antiproton-atom plasmas and the second deals with the antiproton-nucleon
plasmas.

2.1. Antiproton-Atom Plasmas

Consider a plasma which is composed of antiprotons (P−), electrons (e−) and
hydrogen ions (H+), (deuteron ions or triton ions, i.e., D+ or T+, respectively).
For simplicity, it is assumed that the fluid of particles is forming an ideal gas.

Hence, the pressure of each stream is defined by $p_a = \frac{3}{2} k_B T_a n$, where p_a, T_a,
are, respectively, pressure, the temperature, and density of the particle gas, whilst \(k_B \) is Boltzmann constant. The model is explained by the fluid equations.

The continuity equation for particles is given by

\[
\frac{\partial n_a}{\partial t} + \frac{\partial}{\partial x} (n_a u_a) = 0.
\]

(1)

The equation of motion for particle has the form

\[
\frac{\partial u_a}{\partial t} + u_a \frac{\partial u_a}{\partial x} + \frac{1}{m_a n_a} \frac{\partial p_a}{\partial x} + \frac{q_a}{m_a} \frac{\partial \phi}{\partial x} = 0,
\]

(2)

where \(\alpha \) stands for e\(^-\); P\(\pm\); H\(^+\); D\(^+\); or T\(^+\).

Poisson’s equation is expressed by

\[
\frac{\partial^2 \phi}{\partial x^2} = \frac{\epsilon}{\epsilon} \left(n_{p_\alpha} + n_{e_\alpha} - n_i \right)
\]

(3)

where \(m_\alpha \), \(u_\alpha \) and \(q_\alpha \) denote, respectively, the mass, velocity and charge of the particle \(\alpha \) in the stream. \(\phi \) is the electrostatic potential and the index \(i \) refers to H\(^+\); D\(^+\); or T\(^+\). The fluid system of Equations (1)-(3) are normalized by the dimensionless variables \(x \rightarrow \omega x / C_s \); \(t \rightarrow \omega x / C_s \); \(N = n / n_0 \); \(U_a = u_a / C_s \) and \(\phi = e\phi / 2k_B T_e \); where \(\omega_i \) is the plasma frequency of particle and \(n_i \) is the equilibrium density, and \(C_s = \sqrt{2k_B T_e / m_i} \) is the acoustic wave speed and \(T_e \) is the electron temperature respectively. Thus, the normalized system is described by the equations.

\[
\frac{\partial N_a}{\partial t} + \frac{\partial}{\partial x} \left(N_a U_a \right) = 0
\]

(4)

\[
\frac{\partial U_a}{\partial t} + U_a \frac{\partial U_a}{\partial x} + \nu_{a_0} N_1 \frac{\partial N_a}{\partial x} + \nu_{a_1} \frac{\partial \Phi}{\partial x} = 0
\]

(5)

\[
\frac{\partial^2 \Phi}{\partial x^2} = N_{p_\alpha} + N_{e_\alpha} - N_i
\]

where \(\nu_{a_0} = \frac{3}{4} M_{a_\alpha} \tau_{a_\alpha} \), \(\nu_{a_1} = Q_a M_{a_\alpha} \), \(M_{a_\alpha} = m_\alpha / m_\alpha \), \(\tau_{a_\alpha} = T_a / T_e \) and \(Q_a = q_a / e \) with \(Q_{e_\alpha} = -1 \); and \(Q_{p_\alpha} = 1 \). Stretching coordinates are defined by \(\xi = e^{\nu_2} (x - vt) \); \(\tau = e^{\nu_2} vt \); and

\[
N_a = N_{a_0} + e N_{a_1} + e^2 N_{a_2} + \cdots, \quad U_a = U_{a_0} + e U_{a_1} + e^2 U_{a_2} + \cdots
\]

(6)

and \(\Phi = e \Phi_1 + e^2 \Phi_2 + \cdots \)

\[
N_{a_0} = N_{p_\alpha} + N_{e_\alpha}
\]

(7)

\[
\frac{\partial \Phi_1}{\partial \tau} + \frac{\partial \Phi_1}{\partial \xi} + B_1 \frac{\partial^2 \Phi_1}{\partial \xi^2} = 0
\]

(8)

and

\[
h_{p_\alpha} + h_{e_\alpha} - h_{i_\alpha} = 0.
\]

(9)

Hence, the solution of kdv Equation (8) and the first order perturbation of velocity and density of particle are given by
\[
\Phi_i = \frac{3v_i}{2A_i} \sech^2 \left(\sqrt{\frac{\gamma}{4B_i}} Y \right)
\]
\[
U_{a1} = \frac{3v_{a1}}{2A_1} (v - U_{a0}) \eta_{a0} \sech^2 \left(\sqrt{\frac{\gamma}{4B_1}} Y \right)
\]
\[
N_{a1} = \frac{3v_{a1}}{2A_1} N_{a0} \eta_{a0} \sech^2 \left(\sqrt{\frac{\gamma}{4B_1}} Y \right)
\]

where, \(A_i = \frac{h_{i2} - h_{i1} - h_{i0}}{h_{i1} - h_{i0} - h_{i2}} \), \(B_i = \frac{1}{h_{i1} - h_{i0} - h_{i1}} \), \(h_{a1} = 2v_{a1} \eta_{a0} (v - U_{a0}) h_{a0} \),
\[
h_{a2} = v_{a1}^2 \eta_{a0} h_{a0} \left(3(v - U_{a0})^2 - v_{a0} \right), \quad h_{a0} = \frac{v_{a1} \eta_{a0} N_{a0}}{(v - U_{a0})^2 - v_{a0} N_{a0}^2},
\]
\[
n_{a0} = \frac{1}{(v - U_{a0})^2 - v_{a0}} \quad \text{and} \quad Y = \xi - \nu \tau. \]

The normalized plasma kinetic energy of zero and first perturbations for velocities and densities is.
\[
KE_0 = \frac{1}{2} \sum_a (N_{a0} + N_{a1}) (U_{a0} + U_{a1})^2
\]
\[
KE_1 = \frac{1}{2} \sum_a m_a (n_{a0} + n_{a1}) (u_{a0} + u_{a1})^2
\]

2.2. Antiproton-Nucleon Plasma

Consider a system of fluid plasma consisting of two kinds of oppositely charged particles, namely negatively charged antiprotons (\(P^- \)) and positively charged Protons (\(P \)), Deuterons (\(D \)) or Tritons (\(T \)). Furthermore, assume that all plasmas are ideal gases. Consequently, the pressure of each plasma is calculated by
\[
p_a = \frac{3}{2} k_B T_a n_a \quad \text{where} \quad p_a, \quad T_a, \quad \text{and} \quad n_a \quad \text{stand, respectively, for the pressure, temperature, and density of particle stream, whilst} \quad k_B \quad \text{is Boltzmann constant.}
\]

The model is explained by the following system of equations.

The continuity equation
\[
\frac{\partial n_a}{\partial t} + \frac{\partial (n_a u_a)}{\partial x} = 0,
\]

the equation of motion
\[
\frac{\partial u_a}{\partial t} + u_a \frac{\partial u_a}{\partial x} + \frac{1}{m_a n_a} \frac{\partial p_a}{\partial x} + q_a \frac{\partial \phi}{\partial x} = 0,
\]

with \(a = P^-, P, D, T \) and

Poisson’s equation
\[
\frac{\partial^2 \phi}{\partial x^2} = \frac{e}{\epsilon} (n_{P^+} - n_i)
\]

where \(m_a, u_a, \) and \(q_a \) are the mass, velocity, and charge of the particle \(a \). \(\phi \) is the electrostatic potential and the index \(i \) refers to \(P, D, \) or \(T \).

The Plasma system of Equations (1)-(3) are normalized by the dimensionless variables \(x \rightarrow \omega_x x / C_s, \quad t \rightarrow \omega_x t / C_s, \quad N = n / n_b, \quad U_a = u_a / C_s \) and \(\phi = e\phi / 2 k_B T_e \), where \(\omega_x \) is the plasma frequency of the particle \(i \) and \(n_b \) is the
equilibrium density, and
\(C_a = \sqrt{\frac{2k_B T_e}{m_e}} \)

is the acoustic wave speed and \(T_e \) is the
electron temperature respectively. Thus, the normalized system is described by.

\[
\frac{\partial N_a}{\partial t} + \frac{\partial}{\partial x} (N_a U_a) = 0
\]
\[
\frac{\partial U_a}{\partial t} + U_a \frac{\partial U_a}{\partial x} + \nu_a a N_a \frac{\partial N_a}{\partial x} + \nu_a a \frac{\partial \Phi}{\partial x} = 0
\]
\[
\frac{\partial^2 \Phi}{\partial x^2} = N_{p-} - N_{i}
\]

where \(\nu_a = 3 \frac{3}{4} M_{ia} \tau_{e} \), \(\nu_{a1} = Q_{a} M_{i0} \); \(M_{ia} = m_{i}/m_{a} \), \(\tau_{ea} = T_{a}/T_{e} \) and
\(Q_{a} = q_{e}/e \) with \(Q_{e,p} = -1 \), and \(Q_{i} = 1 \). The stretching coordinates are de-
defined by.
\[
\xi = \epsilon^{1/2} (x - \nu t),
\]
and
\[
\tau = \epsilon^{1/2} v t ,
\]
and
\[
N_{a} = N_{a0} + \epsilon N_{a1} + \epsilon^2 N_{a2} + \cdots , \quad U_{a} = U_{a0} + \epsilon U_{a1} + \epsilon^2 U_{a2} + \cdots
\]
and \(\Phi = \sigma \Phi_{1} + \epsilon \Phi_{2} + \cdots \)
\[
N_{00} = N_{p-0}
\]
\[
\frac{\partial^2 \Phi}{\partial \tau^2} + 2A_{i} \frac{\partial \Phi}{\partial \xi} + B_{i} \frac{\partial^3 \Phi}{\partial \xi^3} = 0
\]

and
\[
h_{p-0} - h_{0} = 0.
\]

Hence, the solution of kdv Equation (8) and the first order perturbation of the
velocity and density of the particle are given by
\[
\Phi_{1} = \frac{3v}{2A_{i}} \text{sech}^2 \left(\sqrt{v/4B_{i}} Y \right)
\]
\[
U_{a1} = \frac{3v_{a1} y}{2A_{i}} (v - U_{a0}) \eta_{a0} \text{sech}^2 \left(\sqrt{v/4B_{i}} Y \right)
\]
\[
N_{a1} = \frac{3v_{a1} y}{2A_{i}} N_{a0} \eta_{a0} \text{sech}^2 \left(\sqrt{v/4B_{i}} Y \right)
\]
\[
A_{i} = \frac{h_{2} - h_{p-2}}{h_{1} - h_{p-1}}, \quad B_{i} = \frac{1}{h_{1} - h_{p-1}}, \quad h_{a1} = 2v_{a0} (v - U_{a0}) h_{a0},
\]
\[
h_{a2} = \frac{v_{a1} y}{2} \eta_{a0} h_{a0} \left(3 (v - U_{a0})^2 - v_{a0} \right), \quad h_{a0} = \frac{v_{a1} N_{a0}}{(v - U_{a0})^2 - v_{a0} N_{a1}^2},
\]
\[
\eta_{a0} = \frac{1}{(v - U_{a0})^2 - v_{a0}^2} \quad \text{and} \quad Y = \xi - \nu t.
\]

The normalized kinetic energies of the plasma corresponding to the zero and
first order perturbations of the velocities and densities are determined by

\[KE = \frac{1}{2} \sum \alpha \left(N_{u_0} + N_{u_1} \right) (U_{u_0} + U_{u_1})^2 \]

\[KE = \frac{1}{2} \sum m_\alpha \left(n_{u_0} + n_{u_1} \right) (u_{u_0} + u_{u_1})^2 . \]

3. Results and Discussion

As shown in tables. The following values of particle masses have been employed in the present work.

Proton mass \(m_P = 1.6726231 \times 10^{-27} \) kg, Deuteron mass \(m_D = 3.3476 \times 10^{-27} \) kg; and triton mass \(m_T = 5.0225 \times 10^{-27} \) kg, \(M_P = M_T = 1.0073 \times 10^{-6} \) g, \(M_D = 2.0160 \times 10^{-6} \) g, \(M_T = 3.0246 \times 10^{-6} \) g, \(M_{pP} = 5.4858 \times 10^{-2} \) g, \(M_{pD} = 3.02245 \times 10^{-6} \) g, \(M_{pT} = 7.05705 \times 10^{-6} \) g.

Normalized kinetic energy (KE) against \(Y \) for electrons, antiprotons and hydrogen, deuterium, or tritium are demonstrated in Figures 1-3 and for antiprotons and protons, deuterons, and tritons are displayed in Figures 4-6.

Data Availability Statements

The data of the calculated energy that support the findings of this study are derivative in at https://doi.org/10.1016/j.physleta.2014.10.006, reference number [22] [23].

Table 1. Stretching velocity for protons, deuterons, or tritons with electrons and antiprotons for different velocities of antiprotons, \(u_e = C_s \), \(u_i = 9 \times 10^7 C_s \); \(N_e = 1 \), \(N_P = 1 \), and \(N_i = 2 \).

\(u_P \)	0.9\(C_s \)	0.09\(C_s \)	0.009\(C_s \)
\(v_H \)	1.2243118163856073	1.181085869585997	0.2761483671130386
\(v_D \)	1.2243118376157038	1.1834150339194047	0.33189855601735063
\(v_T \)	1.2243118459019127	1.1841406167744444	0.35936943838330293

Table 2. Frame stretching velocity for protons, deuterons, or tritons with electrons and for different velocities of antiprotons \(u_i = 9 \times 10^7 C_s \); \(N_P = 1 \); and \(N_i = 1 \).

\(u_P \)	0.9\(C_s \)	0.09\(C_s \)	0.009\(C_s \)
\(v_H \)	1.2243118163856073	1.181085869585997	0.2761483671130386
\(v_D \)	1.2243118376157038	1.1834150339194047	0.33189855601735063
\(v_T \)	1.2243118459019127	1.1841406167744444	0.35936943838330293

Table 3. The non-normalized kinetic energy \(KE \) (J) of Plasma in Palladium for \(n = 6.0221367 \times 10^{23} \) mol\(^{-1} \); \(\varepsilon = 13.7 \); \(u_e = 9 \times 10^7 C_s \); \(u_i = C_n \) \((H, D, \) or \(T, \) with \(P, e) Y = 0 \) at \(T_e (K) = 273 \).

\(u_P \)	\(KE_H \)	\(KE_D \)	\(KE_T \)
0.9\(C_s \)	3.043700	3.042580	3.042210
0.09\(C_s \)	13.571500	13.924800	14.041600
0.009\(C_s \)	0.000672722	0.00146563	0.00220382
Figure 1. $u_p = 0.9c_0, P = 1487.2$.

Figure 2. $u_p = 0.09c_0, P = 14.872$.

Figure 3. $u_p = 0.009c_0, P = 0.14872$.

Table 4. For (P, D, or T, with P) $Y = 0$.

u_p	KE_P	KE_D	KE_T
$0.9c_0$	1.02086×10^6	1.49712×10^6	1.75179×10^6
$0.09c_0$	11.4938	$1.6.6024$	$1.9.3171$
$0.009c_0$	0.000249961	0.000333362	0.000376228
Figure 4. \(u_p = 0.9C_s \); \(P = 1487.2 \).

Figure 5. \(u_p = 0.09C_s \); \(P = 14.87 \).

Table 5. For \(T_e (K) = 300, 320, 340, 360 \).

\(T_e (K) \) = 300	\((H, D, \text{ or } T, \text{ with } P, \varepsilon) \) \(Y = 0 \)	\((P, D, \text{ or } T, \text{ with } P) \) \(Y = 0 \)				
\(u_p \)	\(KE_H \)	\(KE_D \)	\(KE_T \)	\(KE_P \)	\(KE_D \)	\(KE_T \)
0.9 \(C_s \)	3.344720	3.343500	3.343090	\(1.1218 \times 10^6 \)	\(1.64518 \times 10^6 \)	\(1.92504 \times 10^6 \)
0.09 \(C_s \)	1.491380	1.530200	1.543030	12.6305	18.2444	21.2276
0.009 \(C_s \)	0.000739254	0.00161059	0.00242178	0.000274682	0.000366332	0.000413437
\(T_e (K) = 320 \)						
0.9 \(C_s \)	3.567700	3.566400	3.565970	\(1.1967 \times 10^6 \)	\(1.7549 \times 10^6 \)	\(2.05338 \times 10^6 \)
0.09 \(C_s \)	1590800	1632210	1645900	11.9661	19.461	21.26423
0.009 \(C_s \)	788.538	1717.96	2583.23	0.000292995	0.000390754	0.000441
\(T_e (K) = 340 \)						
0.9 \(C_s \)	4.013670	4.012200	4.011710	\(1.3462 \times 10^6 \)	\(1.9742 \times 10^6 \)	\(2.31 \times 10^6 \)
0.09 \(C_s \)	1.789650	1.836240	1.851640	1.5156	2.18	2.547
0.009 \(C_s \)	887.105	1932.7	2906.14	0.000329	0.000439	0.0004961
4. Conclusion

The one-dimensional hydrodynamic model of linear and nonlinear analyses in the term of electron-positron and proton-antiproton are studied. The linear analyses show a positive root that indicates ion-acoustic waves in the system and the possibility of existing soliton waves. Also, we obtain the calculations of the nonlinear analysis of the deformed kdv equation and the energy released of the formed plasma. The results, see Tables 1-5 and Figures 1-6, show that the lifetime of formed plasma increases inside the palladium crystal 13.7 times concerning the free space. We have the same energy of formed plasma in the case of free space and palladium crystal. The renormalized example study assumes that when the velocity of the antiproton is around the ion-acoustic wave the released energy of the plasma could be reached to 1.15723×10^6 J/mole. On the other hand, if the velocity of the antiproton decreases, the total energy of the plasma system decreases. This result supports very much the conclusion that we suggested model for obtaining huge amount of energy by constructing a plasma state between thermalized hydrogen and antihydrogen in molecular crystals with approximate velocity less than the velocity of ion acoustic wave of the system. This energy could find interesting application in cold fusion and building up engines for space shuttles.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Chamberlain, O., Segré, E., Wiegand, C. and Ypsilantis, T. (1955) Observation of Antiprotons. Physical Review Journals Archive, 100, 947-950. https://doi.org/10.1103/PhysRev.100.947

[2] Dirac, P.A.M. (1930) A Theory of Electrons and Protons. Proceedings of the Royal Society A, 126, 360-365. https://doi.org/10.1098/rspa.1930.0013

[3] Dirac, P.A.M. (1931) Quantized Singularities in the Electromagnetic Field. Proceed-
ings of the Royal Society A, 133, 60-72. https://doi.org/10.1098/rspa.1931.0130

[4] Hardt, W., Lefevre, P., Mohl, D. and Plass, G. (1980) The CERN Low Energy Antiproton Ring (LEAR) Project. 11th International Conference on High-Energy Accelerators, Geneva, 7-11 July 1980, 819-824. https://doi.org/10.1007/978-3-0348-5540-2_119

[5] Baur, G., et al. (1996) Production of Antihydrogen. Physics Letters B, 368, 251-258. https://doi.org/10.1016/0370-2693(96)00005-6

[6] Blanford, G., et al. (1998) Observation of Atomic Antihydrogen. Physical Review Letters, 80, 3037-3040. https://doi.org/10.1103/PhysRevLett.80.3037

[7] Amoretti, M., et al. (2002) Production and Detection of Cold Antihydrogen Atoms. Nature, 419, 456-459. https://doi.org/10.1038/nature01096

[8] Gabrielse, G., et al. (2002) Background-Free Observation of Cold Antihydrogen with Field-Ionization Analysis of Its States. Physical Review Letters, 89, Article ID: 213401. https://doi.org/10.1103/PhysRevLett.89.213401

[9] Amoretti, M., et al. (2002) Positron Plasma Diagnostics and Temperature Control for Antihydrogen Production. Physical Review Letters, 91, Article ID: 055001. https://doi.org/10.1103/PhysRevLett.91.055001

[10] Gabrielse, G., et al. (2002) Stacking of Cold Antiprotons. Physics Letters B, 548(3-4), 140-145. https://doi.org/10.1016/S0370-2693(02)02850-2

[11] Bonomi, G., et al. (2005) Antihydrogen Production Mechanisms in ATHENA. Nuclear Physics A, 752, 97-100.

[12] Amoretti, M., et al. (2004) Antihydrogen Production Temperature Dependence. Physics Letters B, 583(1-2), 59-67.

[13] Zurlo, N., et al. (2002) Production of Slow Protonium in Vacuum. Hyperfine Interactions, 172, 97-105. https://doi.org/10.1007/s10751-007-9529-0

[14] Rizzini, L. (2012) Further Evidence for Low Energy Protonium Production in Vacuum. The European Physical Journal Plus, 127, Article No. 124. https://doi.org/10.1140/epjp/i2012-12124-9

[15] Alpha Collaboration (2020) Investigation of the Fine Structure of Antihydrogen. Nature, 578, 375-380. https://doi.org/10.1038/s41586-020-2006-5

[16] Abdel-Raouf, M.A. (2009) Matter-Antimatter Physics at Low Energy. Journal of Physics: Conference Series, 1253, Article ID: 12006.

[17] Abdel-Raouf, M.A. (2020) Novel Consequences of Coexistence of Matter and Antimatter in Nature. Journal of High Energy Physics, Gravitation and Cosmology, 6, 251-258. https://doi.org/10.4236/jhepgc.2020.62019

[18] Aghion, S., et al. (2018) Compression of a Mixed Antiproton and Electron Non-Neutral Plasma to High Densities. The European Physical Journal D, 72, Article No. 76.

[19] Higaki, H. (2005) On the Possibility of Non-Neutral Antiproton Plasmas and Antiproton-Positron Plasmas. AIP Conference Proceedings, 793, Article No. 351. https://doi.org/10.1063/1.2121997

[20] Lapointe, M. (1991) Antiproton Powered Propulsion with Magnetically Confined Plasma Engines. Journal of Propulsion and Power, 7, 749-759. https://doi.org/10.2514/3.23388

[21] Elgendy, A.T. (2021) A Global Model of the Collisional Plasma Boundary Sheath Using Step Model. IEEE Transactions on Plasma Science, 49, 711-717. https://doi.org/10.1109/TPS.2021.3049302
[22] El-Tantawy, S.A., Elgendy, A.T. and Ismail, S. (2017) Cylindrical Freak Waves in a Non-Maxwellian Dusty Bulk-Sheath Plasma. An Approximate Solution for the Cylindrical Nonlinear Schrödinger Equation. *Physics Letters A*, **381**, 3465-3471. https://doi.org/10.1016/j.physleta.2017.08.054

[23] El-Tantawy, S.A., Ali Shan, S., Akhtar, N. and Elgendy, A.T. (2018) Impact of Electron Trapping in Degenerate Quantum Plasma on the Ion-Acoustic Breathers and Super Freak Waves. *Chaos, Solitons & Fractals*, **113**, 356-364. https://doi.org/10.1016/j.chaos.2018.04.037

[24] Elgendy, A.T. (2019) Plasma Boundary of Nonlinear Sheath Dynamics for Arbitrary Waveforms in Capacitive Discharge. *Journal of Physics: Conference Series*, **1253**, Article ID: 012010. https://doi.org/10.1088/1742-6596/1253/1/012010

[25] Kouser, S., Shah, K.H., Qureshi, M.N.S. and Shah, H.A. (2020) Nonlinear Ion-Acoustic Waves in e-p-i Plasmas with (r, q) Distributed Electrons and Positrons. *AIP Advances*, **10**, Article ID: 55123. https://doi.org/10.1063/5.0011128

[26] Malik, H.K., Singh, S. and Dahiya, R.P. (1994) Kadomtsev-Petviashvili Solitons in Inhomogeneous Plasmas with Finite Temperature Drifting Ions. *Physics Letters A*, **195**, 369-372. https://doi.org/10.1016/0375-9601(94)90044-2

[27] Singh, S. and Honzawa, T. (1993) Kadomtsev-Petviashvili Equation for an Ion-Acoustic Soliton in a Collisionless Weakly Relativistic Plasma with Finite Ion Temperature. *Physics of Fluids B: Plasma Physics*, **5**, 2093-2097. https://doi.org/10.1063/1.860745

[28] Petrov, A.E., Sarksyan, K.A., Skvortsova, N.N. and Kharchev, N.K. (2001) Observation of Nonlinear Coupling between Drift and Ion-Acoustic Oscillations in Low-Frequency Plasma Turbulence. *Plasma Physics Reports*, **27**, 56-61. https://doi.org/10.1134/1.1339484