A Simple Isothermal DNA Amplification Method to Screen Black Flies for *Onchocerca volvulus* Infection

Andy Alhassan¹, Benjamin L. Makepeace², Elwyn James LaCourse³, Mike Y. Osei-Atweneboana⁴, Clotilde K. S. Carlow¹*

¹Division of Genome Biology, New England Biolabs, Ipswich, Massachusetts, United States of America, ²Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom, ³Liverpool School of Tropical Medicine, Liverpool, United Kingdom, ⁴Council for Scientific and Industrial Research, Water Research Institute, Accra, Ghana

Abstract

Onchocerciasis is a debilitating neglected tropical disease caused by infection with the filarial parasite *Onchocerca volvulus*. Adult worms live in subcutaneous tissues and produce large numbers of microfilariae that migrate to the skin and eyes. The disease is spread by black flies of the genus *Simulium* following ingestion of microfilariae that develop into infective stage larvae in the insect. Currently, transmission is monitored by capture and dissection of black flies and microscopic examination of parasites, or using the polymerase chain reaction to determine the presence of parasite DNA in pools of black flies. In this study we identified a new DNA biomarker, encoding *O. volvulus* glutathione S-transferase 1a (OvGST1a), to detect *O. volvulus* infection in vector black flies. We developed an OvGST1a-based loop-mediated isothermal amplification (LAMP) assay where amplification of specific target DNA is detectable using turbidity or by a hydroxy naphthol blue color change. The results indicated that the assay is sensitive and rapid, capable of detecting DNA equivalent to less than one microfilaria within 60 minutes. The test is highly specific for the human parasite, as no cross-reaction was detected using DNA from the closely related and sympatric cattle parasite *Onchocerca ochengi*. The test has the potential to be developed further as a field tool for use in the surveillance of transmission before and after implementation of mass drug administration programs for onchocerciasis.

Introduction

Onchocerciasis, or River Blindness, is a neglected tropical disease caused by the parasitic worm *Onchocerca volvulus*. The parasite is transmitted to humans through exposure to repeated bites of infected black flies of the genus *Simulium*. The disease is a major public health concern, and has severe social and economic impact. Recent estimates indicate that, more than 30.4 million people are infected, mostly in sub-Saharan Africa [1,2]. Over 700,000 people are visually impaired and another 265,000 are blinded by the disease [3]. There is no vaccine against infection or suitable macrofilaricidal drug that kills the adult stage of *O. volvulus*. Current control is based on annual or semi-annual distribution of the larvicide compound ivermectin (Mectizan, Merck) to the population irrespective of infection status [4–6]. In the absence of an adulticide, it is recommended that these mass drug administration (MDA) campaigns should be continued for 10–15 years [7].

MDA programs have now progressed for several years in many areas, and careful monitoring of infection levels in human populations, as well as vectors, is required to evaluate their success, certify elimination and guide the decision to stop MDA.

Definitive diagnosis of infection with *O. volvulus* in humans involves identification of subcutaneous nodules or observation of microfilariae in skin snips using microscopy. The detection of microfilariae in skin can be a challenge when parasite densities are low, which is often the case when MDA programs are underway. Several serological methods exist involving antibody detection to *O. volvulus*-specific antigens. The most widely used assays are based on the detection of IgG4 responses to the Ov-16 antigen in children [8–11]. Of all the methods developed thus far for diagnosis of infection in humans, the highest levels of sensitivity have been achieved in skin snip/scratch analyses using the polymerase chain reaction (PCR) targeting the O-150 repeat sequence [12–14]. Infection rates in black flies are rapid and sensitive indicators of the change in community microfilarial load that results from ivermectin distribution, and correlate well with the percentage coverage of the community [7]. Importantly, they are also an important indicator of when MDA is succeeding in breaking transmission of *O. volvulus*. In addition, from logistical and ethical perspectives, monitoring infections in the vector offers some advantages over repeated blood examinations of the human population [15,16]. For detection of *O. volvulus* infection in black...
flies, the World Health Organization (WHO) recommends the use of PCR-based methods [7]. To date, these assays have been performed using the O-150 repeat sequence identified more than 20 years ago [17–22], where the amplification products are subsequently detected by several methods including an enzyme-linked immunosorbent assay (PCR-ELISA) [23–26].

In sub-Saharan Africa, cattle are frequently infected with *Onchocerca ochengi*, a species that exclusively parasitizes Bovidae. This is the closest extant relative of *O. volvulus* and is transmitted in West Africa by the same species complex of black fly vectors, *Simulium damnosum sensu lato* [27]. Discrimination between these two species requires an additional step of hybridization of the PCR amplified products with an *O. volvulus*-specific DNA probe [17,19,28,29]. Since the complexity of a test can be a technical barrier, a simpler method for the specific detection of human parasites in the vector would be a significant advance. In addition for low-resource settings, PCR can be a challenge as it requires skilled personnel and expensive equipment [30]. Therefore a new molecular method for the detection of *O. volvulus* that circumvents some of the current limitations would be a useful tool to aid onchocerciasis control and elimination efforts [31].

Loop-mediated isothermal amplification (LAMP) is an alternative technique which amplifies DNA with high specificity, sensitivity and rapidity under isothermal conditions [32]. The LAMP reaction includes two sets of primers that hybridize to six sites on the target DNA, and a third set of primers (loop primers) to accelerate the reaction [33]. The mixture of stem-loops containing alternately inverted repeats of the target sequence and cauliflower-like structures that are generated result in exponential amplification of the target sequence (>10 µg, >50× PCR yield) [32–34]. Using three primer sets recognizing eight sites in the target DNA engenders the specificity to discriminate between genomic DNA at both genus and species specific levels [35,36]. In recent years this technology has been explored for the diagnosis of several infectious diseases including those caused by parasitic protozoa [37,38] and the filarial parasites *Brugia malayi* [39], *Wuchereria bancrofti* [40] and *Loa loa* [41,42]. The simplicity, rapidity, and versatility in readout options available for LAMP, offer a distinct advantage over other molecular diagnostic methods. LAMP test kits for use in resource-limited settings are now commercially available for the detection of *Mycobacterium tuberculosis* complex [43,44] and human African trypanosomiasis [45].

In the present study we report on the identification of a new DNA biomarker, encoding *O. volvulus* glutathione S-transferase 1a (*OvGST1a*), and the development of a simple, single-step, LAMP assay that easily distinguishes between *O. volvulus* and *O. ochengi* DNA. Our results demonstrate that the test represents a significant technical advance, and has the potential to be used as a new field tool for surveillance of parasite transmission and evaluation of MDA programs for onchocerciasis.

Materials and Methods

Reagents

O. ochengi DNA was extracted from adult worms obtained from cattle skin nodules after normal processing at the Ngaoundéré abattoir, Adamawa Region, Cameroon. *L. loa* DNA was prepared from infective stage larvae isolated from *Chrysops silacea* collected in the Southwest Region of Cameroon. Genomic DNA was extracted using DNAzol reagent (Invitrogen) according to the manufacturer’s instructions. *Onchocerca volvulus* genomic DNA was prepared from adult female worms as described [46]. Bovine DNA and human DNAs were obtained from Millipore, USA.

Black flies

Uninfected, laboratory reared female *Simulium vittatum* were obtained from the Black fly Rearing and Bioassay Laboratory, University of Georgia, USA. Pools containing varying numbers of black flies (50, 100, 150 and 200 each) were prepared according to established protocols [21,23].

Spiking and DNA extraction

Each pool of black flies was placed in a 1.5 mL micro centrifuge tube and the insects were crushed in 500 µL extraction buffer (100 mM NaCl, 10 mM Tris-HCl, pH 8.0, 1 mM EDTA, 0.1% sodium dodecyl sulfate, 100 µg/mL of proteinase K) using a blunted glass pipette. An additional 500 µL extraction buffer containing either no DNA, or purified *O. volvulus* genomic DNA (1.0 ng, 0.1 ng, or 0.01 ng) was added to the homogenized pool. DNAs were then purified from the individual pool preparations using the Qiagen Tissue and Blood Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions, or by extracted by boiling at 95°C for 15 min and used directly as template in both PCR and LAMP reactions. DNA extracted from non-spiked pools of black flies and purified *O. ochengi* DNA were included as negative controls. Purified *O. volvulus* genomic DNA was used as a positive control. All experiments were performed in duplicate at least three times.

Sequence analysis

O. ochengi sigma-class GST sequences were obtained from predicted coding nucleotide sequences available at http://www.nematodes.org/genomes/onchoerca_ochengi (Nematode genomes from the Blaxter lab, University of Edinburgh). Putative homologous protein sequences to *O. ochengi* sigma-class GSTs with relevant predicted domains [cd03039 (GST_N_Sigma_like) and cd03192 (GST_C_Sigma_like)], available at the Conserved Domain Database at NCBI [http://www.ncbi.nlm.nih.gov/cdd/] [47] were identified via BLAST analysis [http://blast.ncbi.nlm.nih.gov/Blast.cgi] [48,49] using the non-redundant database at NCBI [http://www.ncbi.nlm.nih.gov/; non-redundant GenBank CDS translations + PDB + SwissProt + PIR + PRF, excluding those in env_nr]. Organisms for GST sequence comparison were selected using the following rationale: (a) nematode taxonomy – including ‘shared family Filariae’ [Onchoerca volvulus {AAG44966.1, AAG4965.1}, Brugia malayi {XP_001901855.1} and Loa loa {003149663.1}]; ‘shared nematode Clade III’ [Ascaris suum {ERG38373.1, ERG39413.1}]; ‘different nematode Clade IV’ [Caenorhabditis elegans {NP_508625.1, NP_509632.2}]; (b) mammalian definitive host-relatedness [Homo sapiens {NP_0635300.1}, Bos taurus {XP_002688181.1}, Rattus norvegicus {NP_113832.1} and Mus musculus {NP_002328.3}]; (c) insect intermediate host-relatedness [Musca domestica {NP_00123927.1}, Drosophila melanogaster {NP_725653.1}, Pediculus humanus corporis {XP_00242687.1} and Tribolium castaneum {NP_97014.1}]. BLAST hits of putative GST sigma-class protein homologues were subjected to multiple sequence alignment using ClustalX Version 2.1 [50,51]. Phylogenetic bootstrap neighbor-joining trees were produced using PHYLIP output files according to the neighbour-joining method [52]. ClustalX default settings for alignments were accepted using the GONNET protein weight matrices with PHYLIP tree format files viewed within the TREEVIEW program [53].

For comparative analysis of sigma GST genomic sequences, *OvGST1a* and *OvGST1b* and the *O. ochengi* homologue g09064 were aligned over the complete gene sequence (total distance, 3,870 bp) using Kalign [54,55] at http://www.ebi.ac.uk/Tools/msa/kalign/ with ClustalW output. Parameters comprised a gap open
The key for protein sequence accession numbers and organisms shown alongside branches are bootstrap values of 1,000 replications.

Numbers shown alongside branches are bootstrap values of 1,000 replications. The key for protein sequence accession numbers and organisms displayed in the tree is as follows: Nematodes: Oo_GST_t09064, Oo_GST_t06414, Oo_GST_t03844 and Oo_GST_t06414 glutathione S-transferase [Oo. ochengi]; Ov_GST_1b AAG44696.1 glutathione S-transferase 1 [O. volvulus]; Ov_GST_1a AAG44695.1 glutathione S-transferase 1a [O. ochengi]; Ll_GST XP_003139665.1 hypothetical protein LOAG_04080 [Loa loa]; Bm_GST_4 XP_001901855.1 glutathione S-transferase 4 [B. malayi]; As_GST_4 ERG83753.1 glutathione S-transferase 1 [A. suum]; As_GST_1 ERG83754.1 glutathione S-transferase 1 [A. suum]; Ph_GST XP_002426887.1 glutathione S-transferase 4 [D. melanogaster]; Ce_GST-36 NP_509652.2 protein GST-36 [C. elegans]; Ce_GST-11 NP_508625.1 protein GST-11 [C. elegans]; Tc_GST 1a AAG44697.1 glutathione S-transferase-1 gene, sequences from Onchocerca volvulus [GenBank: AF265556.1, OvGST1a, GenBank: AF265557.1] and O. ochengi [locus tag: nOo.2.0.1.go9064, http://www.nematodes.org/genomes/onchocerca_ochengi/] were aligned using ClustalW [50]. Regions specific for O. volvulus were identified in OvGST1a and LAMP primers were designed to target the gene using Primer Explorer V4 [http://primerexplorer.jp/e/]. Two sets of primers comprising two outer (F3 and B3), and two inner (FIP and BIP) were selected. FIP contained F1c (complementary to F1), and the F2 sequence. BIP contained the B1c sequence (complementary to B1) and the B2 sequence. Additional loop primers, forward loop primer (FLP) and backward loop primer (BLP) were included in the reaction.

The outer LAMP primer pair F3 and B3 was also used for specific amplification of OvGST1a by PCR. PCR primers for amplification of actin were as previously described [39]. The forward and reverse primer sequences are (5'- GCCTAGCTCBAAGAGGTAT 3') and (5'-ACAGCTTGGAAGACGTACAGGTATA 3'), respectively, where B = C, G or T; Y = C or T, and D = A, G or T. PCR and LAMP primers were synthesized by Integrated DNA Technologies (Coralville, IA, USA).

Primer design

To design specific primers for O. volvulus, glutathione S-transferase-1 gene, sequences from O. volvulus [OvGST1a, GenBank: AF265556.1; OvGST1b, GenBank: AF265557.1] and O. ochengi [locus tag: nOo.2.0.1.go9064, http://www.nematodes.org/genomes/onchocerca_ochengi/] were aligned using ClustalW [50]. Regions specific for O. volvulus were identified in OvGST1a and LAMP primers were designed to target the gene using Primer Explorer V4 [http://primerexplorer.jp/e/]. Two sets of primers comprising two outer (F3 and B3), and two inner (FIP and BIP) were selected. FIP contained F1c (complementary to F1), and the F2 sequence. BIP contained the B1c sequence (complementary to B1) and the B2 sequence. Additional loop primers, forward loop primer (FLP) and backward loop primer (BLP) were included in the reaction.

The outer LAMP primer pair F3 and B3 was also used for specific amplification of OvGST1a by PCR. PCR primers for amplification of actin were as previously described [39]. The forward and reverse primer sequences are (5'- GCCTAGCTCBAAGAGGTAT 3') and (5'-ACAGCTTGGAAGACGTACAGGTATA 3'), respectively, where B = C, G or T; Y = C or T, and D = A, G or T. PCR and LAMP primers were synthesized by Integrated DNA Technologies (Coralville, IA, USA).

LAMP assay

LAMP reactions were performed in a final volume of 25 µL reaction buffer [10 mM Tris–HCl (pH 8.8), 50 mM KCl, 10 mM (NH₄)₂SO₄, 8 mM MgSO₄, and 0.1% Tween 20], 8 U Bst 2.0 DNA polymerase (New England Biolabs, Ipswich, MA, USA), (1.4 mM) of each deoxynucleoside triphosphate (dNTP), 1.6 mM of each FIP and BIP primer, 0.2 mM of each F3 and B3 primer, 0.4 mM of FLP and BLP, and 2 µL of target DNA. The mixture was incubated at 63°C for 60 min, then heated at 80°C for 2 min to terminate the reaction. Reactions were carried out using either a Loop Amp Realtime Turbidimeter (LA-320c, Eiken Chemical Co., Japan) or a 2720 Thermocycler (Applied Biosystems, USA) set at a constant temperature for colorimetric detection. A positive reaction was defined as a threshold value greater than 0.1. Turbidity data were analyzed using the LA-320c software package that reports when the change in turbidity over time (ΔT/dt) reaches a value of 0.1, which we then assigned to be the threshold time (Tt). For determination of amplification measured by color change (purple to sky blue), 0.15 µL of 120 µM hydroxy naphthol blue (HNB, Sigma-Aldrich Inc, St. Louis, MO, USA) was added to the reaction mixture. All experiments were performed in duplicate at least 3 times.

PCR assay

PCR primers B3 and F3 were used to PCR amplify OvGST1a in 25 µL reactions containing 3 µL DNA template, 0.2 µM of each primer, and 1.25 U of Taq DNA polymerase in 1 x standard buffer (New England Biolabs) containing 3.5 mM MgCl₂, 0.2 mM and 0.2 mM dNTP each. All reactions were denatured once at 94°C for 5 min followed by 35 cycles of the following cycling conditions: 30 s at 94°C, 1 min at 53°C, 1 min at 72°C, and a final extension for 5 min at 72°C using a GeneAmp PCR system 9700 (Applied Biosystems). PCR products were visualized by UV transillumination in a 1.5% agarose gel after electrophoresis and staining with ethidium bromide. As a positive control for the presence of intact DNA, a 244 bp actin fragment was PCR amplified as described [40].

Figure 1. Phylogenetic neighbour-joining tree showing the relationship of the sigma-class GSTs of Onchocerca ochengi to similar enzymes of nematodes, mammals and insects. Numbers shown alongside branches are bootstrap values of 1,000 replications.

Detection of O. volvulus in Black Flies Using LAMP

penalty of 11, a gap extension penalty of 0.85, terminal gap penalties of 0.45, and a bonus score of zero.
Figure 2. Diagrammatic view of the similarity of *Onchocerca* sigma-class GST gene models for *O. volvulus* GSTs 1a and 1b and the homologous *O. ochengi* sigma-class GST t09064. Gene models were aligned over the full-length sequence (total distance, 3,870 bp). Numbers associated with gene model exons (I–VII shaded blocks) and introns (1–8 non-shaded blocks) display the number of base-pairs within those sections over which the alignment is spaced. The three major differences between the genes (all insertions in *O. volvulus* GST1a intron 3) are highlighted in the diagram.

doi:10.1371/journal.pone.0108927.g002

Figure 3. Alignment of partial gene sequences of glutathione S-transferases (GSTs) from *O. volvulus* (OvGST1a, OvGST1b) and *O. ochengi* (OoGST1i) (A) and primer sets targeting OvGST1a (B). Primers are indicated by solid black arrows and dash arrows represent the binding regions of the loop forward (LFP) and loop back (LBP) primers respectively.

doi:10.1371/journal.pone.0108927.g003
Results

During manual curation of gene predictions in the *O. ochengi* genome (http://www.nematodes.org/genomes/onchocerca_ochengi), it was noted that this species has one copy of the glutathione S-transferase-1 gene (*OoGST1*), whereas *O. volvulus* has two copies [56]. Phylogenetic analysis using protein sequences demonstrated that although two additional gene models containing GST sigma-like domains are present in the *O. ochengi* genome, these are unrelated to the two *OvGST1* paralogues and cluster at different branches of the tree (Fig. 1). Indeed, the “GST1” group [comprising *OvGST1a*, *OvGST1b* and *OoGST1* (CDS t09064)] form a highly distinctive clade, which is distant not only from insect and mammalian sigma GSTs, but also from those of other nematodes, including filarial representatives and *Ascaris suum* (an additional clade III nematode) (Fig. 1). Intron/exon sequence and gene structure were found to be highly conserved within the “GST1” group (Fig. 2). Overall nucleotide identity was >90% for all exons and introns between *OvGST1* and both of the *O. volvulus* GST1 genes. However, *OvGST1b* is most similar to *OoGST1* at 98% overall identity, in comparison to *OvGST1a* at 96% identity (Fig. 1 and Fig. 2). The three major differences between the genes comprised insertions in intron 3 of *OvGST1a*.

Based on the phylogenetic tree and comparative sequence analyses, several primer sets targeting *OvGST1a* and/or *OvGST1b* were evaluated (data not shown). Assays were performed in the temperature range 60–65°C for up to 90 minutes using various concentrations of MgSO4 (4, 6, 8, and 10 mM) and primers (0.1, 0.2, and 0.4 μM F3 and B3; 1, 1.5, 2, and 4 μM FIP and BIP; and 0.5, 1, and 2 μM FLP and BLP), as well as varying the primer sequences. The optimum incubation condition was established as 63°C for 60 min in a buffer containing 4 mM MgSO4, followed by heating at 80°C for 2 min to terminate the reaction. In accordance with the sequence analysis, *OvGST1a* was revealed as the best target (data not shown). Primer sets (Fig. 3A and Fig. 3B) targeting *OvGST1a* were designed after optimization and used for specificity and sensitivity studies.

Specificity of this primer set was determined in LAMP, using a real time turbidimeter (Fig. 4A) and colorimetric detection (Fig. 4B), to monitor amplification of genomic DNA from *O. volvulus*, *O. ochengi*, or a related human filarial parasite, *Loa loa*. Bovine, human, and black fly genomic DNAs, and non-template controls were also included for comparison. Turbidity reached a threshold value of 0.1 in approximately 45 minutes when 1 ng *O. volvulus* DNA was added to the reaction, whereas no turbidity was observed within the time interval examined (90 minutes) when the
same amount of heterologous DNAs from *O. ochengi, L. loa*, mammal or black fly was used (Fig. 4A). Similar results were observed using the more simplified colorimetric detection method, where a color change (purple to blue) was only evident when *O. volvulus* genomic DNA was present (Fig. 4B). Conversely, in the absence of template or primers, no reactions were observed when using either turbidity or color change as the readout (Fig. 4A and 4B).

Specificity studies were also performed by PCR amplification of *OvGST1a* using primers F3 and B3 (Fig. 4C). A 200 bp fragment of the expected size was obtained when *O. volvulus* genomic DNA was used as a template, whereas no product was observed from samples containing heterologous DNA or no template. The integrity of the various DNAs was confirmed in PCR experiments using primers designed to amplify a conserved actin gene. A single amplification product of the correct size (244 bp) was observed in all cases (Fig. 4D).

To determine and compare the detection limits of LAMP and PCR, ten-fold serial dilutions of *O. volvulus* genomic DNA ranging from 0.001–1.0 ng were amplified (Fig. 5A–C). Both amplification methods were able to detect levels as low as 0.01 ng, which is equivalent to 1/10th of a single microfilaria. In the case of LAMP a positive result was evident within one hour (Fig. 5A).

Since the goal is to use the LAMP assay to evaluate infection in the vector, pools of uninfected, laboratory-reared black flies were spiked with 0.001–1.0 ng *O. volvulus* genomic DNA, and total genomic DNA was then isolated using a commercially available DNA extraction kit or by boiling. Samples from each pool and extraction method were then used as templates for amplification of *OvGST1a* in LAMP and PCR reactions (Table 1). Consistent with previous results using highly purified DNA as template, LAMP was positive in samples prepared from an insect pool containing 50–200 black flies spiked with 0.1 ng *O. volvulus* DNA (equivalent to a single microfilaria) when DNA was purified using a commercially available kit, or extracted in a more crude fashion by boiling. PCR was less effective following crude extraction with a pool size limit of 150 black flies. At the 0.01 ng level using kit purified material, LAMP efficiently amplified *OvGST1a* in pool sizes up to 150 black flies, whereas for PCR the pool size limit was 50 insects. When boiling was used to extract DNA, a positive signal was obtained for LAMP at a ratio of 0.01 ng target DNA in 100 insects, while the limit for PCR was 0.01 ng DNA in 50 insects. These results demonstrate the ability of the LAMP assay to withstand the inhibitory effects of components present in the purified or crude black fly extracts without severely affecting sensitivity.

Discussion

In recent years there has been significant progress in the control of onchocerciasis by treating whole populations with repeated, semi-annual (Latin America) or yearly (most African foci) cycles of ivermectin [57]. Several agencies are involved in these activities for example, the African Programme for Onchocerciasis Control (APOCH), and the Onchocerciasis Elimination Program for the Americas (OEPA). Surveys of *Simulium* vectors are recommended by WHO to determine if transmission has been interrupted and to certify that elimination of the parasite has been achieved [7]. Previous studies have shown the value of molecular xenodiagnosis (detection of parasite DNA in insects by DNA amplification methodologies) as a tool for assessing changes in parasite prevalence rates in endemic populations after MDA [12,17,21,23,58]. This method requires collection of representative samples of insects, isolation of total DNA from insect pools, amplification of parasite-specific DNA sequences, and detection of the amplified product. Currently, PCR pool screening of large numbers of flies is employed since infection levels are likely to be low or non-existent in treated areas. There is a limit to the number of flies in each pool, since the DNA polymerases used in PCR reactions are highly sensitive to inhibitors present in insect extracts. Currently, either silica-purified DNA or oligonucleotide capture of *O. volvulus* genomic DNA from homogenates of insects is used to reduce the amount of inhibitors carried over into the reaction [23]. Another approach involves reducing the insect
Table 1. A comparison of LAMP and PCR methods to detect varying amounts of genomic DNA isolated from pools of black flies using different methods.

Pool size	LAMP	PCR	
	LAMP	PCR	
	Kit purified (ng/reaction)	Boiled (ng/reaction)	LAMP/PCR
	1	0.01	-/+
50	0.1	0.01	+/+
100	0.1	0.01	+/+
150	0.1	0.01	+/+
200	0.1	0.01	+/+

b doi:10.1371/journal.pone.0108927.t001

sensitivity (0.01 ng), equivalent to 1/100 of the template, can be achieved in LAMP because the amplification reaction involves four specific primers that amplify OvGST1a when highly purified DNA was used as template. We would therefore predict that the assays would permit detection of a single infective-stage larva given that they are considerably larger in size. However, LAMP was more efficient than PCR in detecting O. volvulus DNA recovered from black fly material (0.01 ng in 150 insects within 60 minutes). This is likely due to the fact that black flies contain a number of biological substances that inhibit the polymerases used in PCR which cannot be removed completely during classical extraction protocols. The most efficient method used to circumvent this problem involves paramagnetic bead...
purification, but it is expensive [25]. Other studies have also shown superior tolerance of LAMP tests for biological substances [72–74]. Furthermore unlike PCR, LAMP proved effective even when DNA was extracted using a simple boiling method, rather than using commercially available kits that add a significant cost to the process as well as time and effort. This is a significant trait representing an important technical advance, and emphasizes the usefulness of the LAMP technique as a surveillance tool for mass screening of infected vectors. In addition, recent estimates suggest that diagnostic LAMP tests are significantly cheaper than PCR. The estimated cost of a W. bancrofti LAMP test is $0.82 compared with more than $2.20 for PCR [40]. Other distinct advantages of LAMP over PCR include its operational simplicity and isothermal nature. In PCR, thermal cycling is required to denature the template, anneal primers and extend the amplicon. LAMP employs Bst DNA polymerase, which provides both strand displacement and target amplification at a single temperature in a simple heat block or water bath at 60–65°C [32]. Rapidity and versatility in readout options also make LAMP a particularly appealing technology. In the present study, real-time turbidity was used for assay design and optimization yielding positive results within 60 minutes, and results were confirmed using the more field-friendly hydroxy naphthol blue [75,76].

All the data on detecting O. volvulus-specific OvgSTa DNA were derived from pools of laboratory reared S. vitatum spiked with purified O. volvulus gDNA. Further work is required to demonstrate that the extraction techniques employed are able to release sufficient template for detection from at least one infected fly in a pool of insects. The current recommendation for the number of flies in a pool, limited by the DNA purification process, is 50 flies for Latin American vectors and 100 flies for African vectors [23]. We anticipate that the OvgSTa LAMP assay will accommodate these pool sizes since the data from DNA-seeded pools (up to 200 insects) indicates that the method is robust and the extraction protocol employed will likely suffice to release measurable DNA target from a single infected black fly.

In summary, we describe a simple OvgSTa-based LAMP diagnostic assay for O. volvulus infection that generates a robust read-out within 60 minutes. The assay has considerable potential as a new field tool for implementation and management of MDA programs for onchocerciasis.

Acknowledgments
We gratefully acknowledge support from Don Combs and Jim Ellard. We thank Germanus Bah and Vincent Tanya (Institut de Recherche Agricole pour le Développement, Ngouerderé, Cameroon) for providing O. ochengi material, Samuel Wanjir (Research Foundation in Tropical Diseases and the Environment, Buea, Cameroon) for provision of L. loa L3, and Catherine Hartley (University of Liverpool, UK) for performing the DNA extractions on these samples. We are grateful to Gagantaj Kaur, Alex Marshall and Mark Baxler (University of Edinburgh) for assembly, annotation and public release of the O. ochengi genome, without which this study would not have been possible. We also thank Catherine Poole, Liz Li, Nathan Tanner and Yinhua Zhang for useful discussions. We are grateful to Bill Jack, Barton Slatko, and Jeremy Foster for critical reading of this manuscript.

Author Contributions
Conceived and designed the experiments: AA BLM EJL MYOA. Performed the experiments: AA BLM EJL. Analyzed the data: AA BLM EJL. Contributed reagents/materials/analysis tools: BLM MYOA. Wrote the paper: AA BLM EJL MYOA.

References
1. Hotez PJ, Kamath A (2009) Neglected tropical diseases in sub-saharan Africa: review of their prevalence, distribution, and disease burden. PLoS Negl Trop Dis 3: e412.
2. Coffeng LE, Stolk WA, Zoure HG, Veerman JL, Agbleweou KB, et al. (2014) African programme for onchocerciasis control 1995-2015: updated health impact estimates based on new disability weights. PLoS Negl Trop Dis 8: e2759.
3. World Health Organization (WHO) (2010) Report “Working to overcome the global impact of neglected tropical diseases”. Available: http://www.who.int/neglected_diseases/2010report/en/
4. African Programme for Onchocerciasis Control APOC (2009) Informal Consultation on elimination of onchocerciasis transmission with current tools in Africa “Shrinking the map”; 2009 25–27; Ouagadougou, Burkina Faso: African Programme for Onchocerciasis Control.
5. Diasora L, Traore MO, Badji A, Bissan Y, Doumbia K, et al. (2009) Feasibility of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: first evidence from studies in Mali and Senegal. PLoS Negl Trop Dis 3: e497.
6. Traore MO, Sarr MD, Badji A, Bissan Y, Diasora L, et al. (2012) Proof-of-principle of ivermectin coverage as a primary treatment in endemic foci in Africa: final results of a study in Mali and Senegal. PLoS Negl Trop Dis 6: e1825.
7. World Health Organization (WHO) (2001) Certification of elimination of human onchocerciasis: criteria and procedures. Available: http://apps.who.int/iris/handle/10665/66889
8. Chandrashekar R,欧阳仁 AF, Wel GJ (1996) Use of recombinant Onchocerca volvulus antigens for diagnosis and surveillance of human onchocerciasis. Trop Med Int Health 1: 573–580.
9. Wel GJ, Steel C, Lilis F, Li BW, Mearns G, et al. (2000) A rapid-format antibody card test for diagnosis of onchocerciasis. J Infect Dis 182: 1796–1799.
10. Rodríguez-Pereza MA, Domínguez-Vázquez A, Méndez-Gálvan J, Sánchez-Ríos AM, Larralde-Corona P, et al. (2005) Antibody detection tests for Onchocerca volvulus: comparison of the sensitivity of a cocktail of recombinant antigens used in the indirect enzyme-linked immunosorbent assay with a rapid-format antibody card test. Trans R Soc Trop Med Hyg 97: 539–541.
11. Goldin A, Steel C, Yokohe L, Jackson E, Barney R, et al. (2013) Extended result reading window in lateral flow tests detecting exposure to Onchocerca volvulus: a new technology to improve epidemiological surveillance tools. PLoS One 8: e69231.
Onchocerca volvulus transmission in Ecuador following mass Mectizan distribution. Am J Trop Med Hyg 68: 222–227.

Rodriguez-Pérez MA, Gopal H, Adeleke MA, De Luna-Santillana EJ, Gurrola-Reyes JN, et al. (2013) Detection of Onchocerca volvulus in Latin American black flies for pool screening PCR, using high-throughput automated DNA isolation for transmission surveillance. Parasitol Res 112: 3925–3931.

Rodriguez-Pérez MA, Alley BG, Domínguez-Vázquez A, Segura-Arenas R, Lizarazo-Ortega C, et al. (2004) Polymerase chain reaction monitoring of transmission of Onchocerca volvulus in two endemic states in Mexico. Am J Trop Med Hyg 70: 38–43.

Wahl G, Ekale D, Schmitz A (1998) Onchocerca ochengi: assessment of the Simulium vectors in north Cameroon. Parasitology 116 (Pt 4): 327–336.

Toe L, Merrinthera A, Unnasch TR (1994) DNA probe-based classification of Simulium damnosum s. l.-borne and human-derived filarial parasites in the onchocerciasis control program area. Am J Trop Med Hyg 51: 671–673.

Zimmerman PA, Toe L, Unnasch TR (1995) Design of Onchocerca DNA probes based upon analysis of a repeated sequence family. Mol Biochem Parasitol 68: 259–267.

Pachke S, Butterm DW, Liebau E, Fischer P (2002) An internal control for the detection of Onchocerca volvulus DNA by PCR-ELISA and rapid detection of specific PCR products by DNA Detection Test Strips. Trop Med Int Health 7: 526–531.

McCarthy JS, Lustigman S, Yang GJ, Barakat RM, Garcia HH, et al. (2012) A research agenda for helminth diseases of humans: diagnostics for control and elimination programmes. PLoS Negl Trop Dis 6: e1601.

Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, et al. (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28: E63.

Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Biotechnol 16: 223–229.

Nagamine K, Watanabe K, Ohtsuka K, Hase T, Notomi T (2001) Loop-mediated isothermal amplification reaction using a nonadenatured template. Clin Biochem 34: 474–478.

Han ET, Watanabe R, Sattabongkot J, Khuntrirat B, Sirichaisitphop J, et al. (2007) Detection of four Plasmodium species by genus- and species-specific loop-mediated isothermal amplification for clinical diagnosis. J Clin Microbiol 45: 2521–2528.

Ishii H, Alhassan A, Ohta N, Thiekhoe OM, Yokoyama N, et al. (2007) Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simultaneous detection of bovine Babesia parasites. J Microbiol Methods 71: 291–294.

Alhassan A, Thiekhoe OM, Yokoyama N, Inoue N, Mochiyo MY, et al. (2007) Development of loop-mediated isothermal amplification (LAMP) method for diagnosis of equine piroplasmosis. Vet Parasitol 143: 153–160.

Hopkins H, Gonzalez JI, Polley SD, Angelito P, Aregka J, et al. (2019) Highly sensitive detection of malaria parasitaemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. J Infect Dis 209: 645–652.

Poole CB, Tanner NA, Zhang X, Evans TC Jr, Carroll CW (2012) Diagnosis of brugian filariasis by loop-mediated isothermal amplification. PLoS Negl Trop Dis 6: e1948.

Takagi H, Ikoh M, Kasai S, Yahatahiguda TC, Weersaouriba MV, et al. (2011) Development of loop-mediated isothermal amplification (LAMP) method for detecting Wuchereria bancrofti DNA in human blood and vector mosquitoes. Parasitol Int 60: 493–497.

Dramer PM, Fink DI, Kangjuo J, Herrick JA, Nunnman TB (2014) Loop-mediated isothermal amplification for rapid and semiquantitative detection of Loa loa infection. J Clin Microbiol 52: 2071–2077.

Fernandez-Soto P, Mvoulouga PO, Akue JP, Aban JL, Santiago BV, et al. (2014) Development of a highly sensitive loop-mediated isothermal amplification LAMP method for the detection of Loa loa. PLoS One 9: e109664.

Bohme CC, Naetha P, Hemestroa G, Raqib R, Rahman Z, et al. (2007) Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopists centers of developing countries. J Clin Microbiol 45: 1936–1940.

Mitarai S, Okumura M, Toyoda E, Yoshitomi T, Asano A, et al. (2011) Evaluation of a simple loop-mediated isothermal amplification test kit for the diagnosis of tuberculosis. Int J Tuberc Lung Dis 15: 1211–1217, i.

McWilliam H, Li W, Uludag M, Squizzato S, Park YM, et al. (2013) Analysis of a repeated sequence family. Mol Biochem Parasitol 58: 259–267.

Yang BY, Liu XL, Wei YM, Wang JQ, He XQ, et al. (2014) Rapid and sensitive detection of human astrovirus in water samples by loop-mediated isothermal amplification with hydroxyapatite blue dye. BMC Microbiol 14: 38.

Detection of O. volvulus in Black Flies Using LAMP