Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity

Psoriasis is a chronic, potentially disfiguring immune-mediated inflammatory disease of the skin with a prevalence of 0.2–2%, depending on the population of origin. Approximately one-quarter of individuals with psoriasis develop painful and debilitating arthritis, and there is increasing awareness of comorbidities, including metabolic syndromes and cardiovascular disease. Current evidence suggests that a dysregulated cutaneous immune response, characterized by tumor necrosis factor (TNF)-α dependence and exaggerated helper T cell 1 (T H1) and 17 (T H17) activation, occurs in genetically susceptible individuals. Recent large-scale association studies have identified 26 loci that are associated with psoriasis, 21 of which overlap with those identified as being associated with other autoimmune diseases (for example, Crohn’s disease, ankylosing spondylitis and celiac disease), particularly those near genes whose products are involved in innate host defense, including interferon-mediated antiviral responses (DDX58), macrophage activation (ZC3H12C) and nuclear factor (NF)-κB signaling (CARD14 and CARM1). These results portend a better understanding of shared and distinctive genetic determinants of immune-mediated inflammatory disorders and emphasize the importance of the skin in innate and acquired host defense.

We combined three existing GWAS data sets (referred to as Kiel, the Collaborative Association Study of Psoriasis (CASP) and the Wellcome Trust Case Control Consortium 2 (WTCCC2) with two independent case-control data sets of individuals of European descent genotyped on the Immunochip: the Psoriasis Association Genetics Extension (PAGE: 3,580 cases and 5,902 controls) and the Genetic Analysis of Psoriasis Consortium (GAPC: 2,997 cases and 9,183 controls) (data sets are described in Supplementary Tables 1 and 2). After quality control, the combined data set consisted of 10,588 individuals with psoriasis and 22,806 healthy controls. For each GWAS, we increased the SNP density through imputation, using European haplotype sequences generated by the 1000 Genomes Project (20100804 release) as templates. Overall, our analysis included 111,236 SNPs that were genotyped in both Immunochip data sets that also had good imputation quality in at least 2 of the 3 GWAS (Online Methods).

From meta-analysis of all five data sets, we confirmed associations at genome-wide significance for SNPs at 19 of the 21 known loci involved in psoriasis (Table 1, Supplementary Fig. 1 and Supplementary Table 3). We found nominal evidence of association for the remaining two loci in the combined analysis (ZMIZ1 and PRDX5, each with P < 3 × 10−8), as well as nominal evidence of association for all loci in separate analyses including only GWAS (all with P < 5 × 10−8) or Immunochip data (all with P < 4 × 10−6). In addition, we identified 15 new risk loci associated at P < 5 × 10−8 (Table 1, Supplementary Fig. 1 and Supplementary Table 3). Nine of the new signals were submitted, during design of the Immunochip, as genome-wide significant Immunochip loci by at least one other disease consortium (Supplementary Table 4, disease overlap), although we also submitted three of these (rs11121129, rs10865331 and rs9504361) on the basis of a preliminary meta-analysis of our GWAS data sets. Notably, of the remaining six signals, four were submitted for psoriasis (rs11795343, rs4561177, rs11652075 and rs545979). The strongest new association was observed for rs892085 at 19p13.2 near the ILF3 and CARM1 genes (combined P value (P combined) = 3.0 × 10−17; odds ratio (OR) = 1.17). Despite its proximity (< 500 kb away) to TYK2, conditional analysis showed that this SNP represents an independent signal (Supplementary Table 5). Other associated loci included 1p36.11 near RUNX3, 6p25.3 near EXOC2 and IRF4, 9p21.1 near DDX58, 11q22.3 near ZC3H12C, 11q24.3 in the ETS1 gene and 17q21.2 near STAT3, STAT5A and STAT5B. The functional characteristics of notable genes from the newly identified loci are summarized in Box 1, and regional association plots are shown in Supplementary Figure 2.

To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of 3 genome-wide association studies (GWAS) and 2 independent data sets genotyped on the Immunochip, including 10,588 cases and 22,806 controls. We identified 15 new susceptibility loci, increasing to 36 the number associated with psoriasis in European individuals. We also identified, using conditional analyses, five independent signals within previously known loci. The newly identified loci shared with other autoimmune diseases include candidate genes with roles in regulating T-cell function (such as RUNX3, TAGAP and STAT3). Notably, they included candidate genes whose products are involved in innate host defense, including interferon-mediated antiviral responses (DDX58), macrophage activation (ZC3H12C) and nuclear factor (NF)-κB signaling (CARD14 and CARM1). These results portend a better understanding of shared and distinctive genetic determinants of immune-mediated inflammatory disorders and emphasize the importance of the skin in innate and acquired host defense. We identified 15 new susceptibility loci for psoriasis using Immunochip data to identify new susceptibility loci for psoriasis of SNPs representing additional promising signals. In this study, we used Immunochip data to identify new susceptibility loci for psoriasis and to consider their association to other autoimmune disorders.

A full list of authors and affiliations appears at the end of the paper.

Received 7 May; accepted 17 October; published online 11 November 2012; doi:10.1038/ng.2467
To identify independent secondary signals, we performed conditional analysis, using as covariates the strongest signals from the 34 loci achieving genome-wide significance in this study. We identified secondary signals in five loci: 2q24.2, 5q15, 5q33.3, 6p21.33 and 19q13.2 (Supplementary Figs. 3 and 4 and Supplementary Tables 6 and 7). The strongest signal from the conditional analysis mapped to the major histocompatibility (MHC) region near the MICA gene (rs13437088: \(P = 3.1 \times 10^{-40}\); OR = 1.32), in agreement with a previous conditional analysis. The conditional signal at 5q15 was in the ERAP2 gene (rs2910686: \(P = 2.0 \times 10^{-8}\)), which did not show any evidence of association in the unconditioned analysis (\(P = 0.46\)). Further investigation showed that the risk-increasing alleles at ERAP1 and the risk-decreasing alleles at ERAP2 preferentially appear on the same haplotype, and the signal near ERAP2 was thus masked by ERAP1 before conditional analysis (Supplementary Note).

The strongest conditional signal in the 19q13.2 region was rs12720356 in the TYK2 gene (OR = 1.25; minor allele frequency (MAF) in controls = 0.09; \(P = 3.2 \times 10^{-10}\)). The association of this SNP with psoriasis has been previously reported and is independent of the strongest signal in TYK2 identified by our meta-analysis (rs34536443: \(P = 1.88\); MAF in cases = 0.03; \(P = 1.5 \times 10^{-19}\)). Because rs34536443 was a low-frequency imputed SNP and manifested the greatest effect outside of the MHC region, we directly genotyped this SNP in 3,390 independent samples from Michigan (1,844 cases and 1,546 controls), robustly replicating the association (OR = 2.80; MAF in cases = 0.02; \(P = 7.8 \times 10^{-14}\)) and experimentally confirming the validity of our imputation procedures.

We next tested for statistical interaction among the top SNPs in the 34 significantly associated loci (Supplementary Table 8 and Supplementary Note). We identified two significant pairwise interactions after
These interactions confirm the results of previous studies5,15,16.

\section*{Box 1 Annotated functions of notable candidate genes within newly identified psoriasis susceptibility loci}

\begin{tabular}{|l|}
\hline
\textbf{RERE, SLC45A1, ERRF11 and TNFRSF9 (1p36.23):} The signal falls between the RERE, SLC45A1, ERRF11 and TNFRSF9 genes. RERE encodes an arginine-glutamic acid dipeptide repeat-containing protein that controls retinoic acid signaling38. ERRF11 encodes a feedback inhibitor of the epidermal growth factor (EGF) receptor39. SLC45A1 encodes a solute carrier protein that mediates the uptake of glucose40. The TNFRSF9 gene encodes a costimulatory molecule that has a role in the generation of memory CD8+ T cells. \\
\textbf{RUNX3 (1p36.11):} RUNX3 encodes a member of the Runt-domain-containing family of transcription factors and has an essential role in T-cell biology, particularly in the generation of CD8+ T cells. RUNX3 also has a role in promoting Th1 differentiation through binding to T-bet41. \\
\textbf{B3GNT2 (2p15):} B3GNT2 is a member of the β1,3-N-acetylglucosaminyltransferase family. It catalyzes the initiation and elongation of poly-N-acetyllactosamine chains42. Deficiency for it has been shown to result in hyperactivation of lymphocytes43. \\
\textbf{EXOC2 and IRF4 (6p25.3):} EXOC2 encodes a component of the multicomponent complex that mediates the docking of exocytic vesicles to the plasma membrane44. IRF4 encodes a transcription factor that regulates IL17A promoter activity and controls RORyt-dependent Th17-mediated colitis in vivo45,46. IRF4 also has a role in the stabilization of the Th17 phenotype through IL-21 (ref. 47) and may regulate CD4 and/or CD8 T-cell differentiation through regulation of RUNX3 expression48. \\
\textbf{TAGAP (6q25.3):} TAGAP encodes a RhoGTPase-activating protein that is involved in T-cell activation49. \\
\textbf{ELMO1 (7p14.2-7p14.1):} ELMO1 encodes a member of the engulfment and cell motility protein family, which binds to DOCK2 and is essential for Toll-like receptor (TLR7 and TLR9)-mediated interferon (IFN)-x induction by plasmacytoid dendritic cells50 and plasmacytoid dendritic cell migration51. DOCK2 also has a role in antigen uptake and presentation and lymphocyte trafficking52. \\
\textbf{DDX58 (9p21.1):} DDX58 encodes the RIG-I innate antiviral receptor, which recognizes cytosolic double-stranded RNA52. It is induced by IFN-γ (ref. 53) and regulates the production of type I and II IFN54. \\
\textbf{KLF4 (9p31.2):} KLF4 encodes a Krüppel-like transcription factor, which is required for the establishment of skin barrier function55 and regulates key signaling pathways related to macrophage activation56. The KLF4 protein also binds to the promoter of IL17A and positively regulates its expression. \\
\textbf{ZC3H12C (11q22.3):} ZC3H12C encodes a zinc-finger protein regulating macrophage activation57. \\
\textbf{ETS1 (11q24.3):} ETS1 encodes a transcription factor activated downstream of the Ras–mitogen-activated protein kinase (MAPK) pathway and is involved in the homeostasis of squamous epithelia58. It is involved in CD8 T-cell differentiation and acts, in part, by promoting RUNX3 expression59. It is also a negative regulator of Th17 differentiation60. \\
\textbf{SOCS1 (16p13.13):} SOCS1 is a member of the suppressor of cytokine signaling family of proteins and inhibits signaling events downstream of IFN-γ (ref. 61). It regulates Th17 differentiation by maintaining STAT3 transcriptional activity62 and interacts with TFK2 in cytokine signaling63. \\
\textbf{STAT3, STAT5A and STAT5B (17q21.2):} STAT3, STAT5A and STAT5B encode members of the STAT family of transcriptional activators. STAT3 participates in signaling downstream of multiple cytokine receptors implicated in psoriasis, such as IL-6, IL-10, IL-20, IL-22 and IL-23, and may have a role in mediating the innate immune response in psoriatic epidermis64. STAT3 is required for the differentiation of Th17 cells65. STAT5A and STAT5B participate in signaling downstream of the IL-2 family of cytokines, including IL-2, IL-7, IL-15 and IL-21. Both proteins contribute to the development of regulatory T (Treg) cells and inhibit the differentiation of Th17 cells66. \\
\textbf{CARD14 (17q25.3):} CARD14 encodes a member of the caspase recruitment domain–containing scaffold proteins, known as CARD- and membrane-associated guanylate kinase–like domain–containing protein (CARMA). CARD14 (also known as CARDM2) is primarily expressed in epithelial tissues and mediates recruitment and activation of the NF-κB pathway67. \\
\textbf{MBD2, POLI and STAR6D (18q21.2):} MBD2 encodes a transcriptional repressor that binds to methylated DNA and has a role in the generation of memory CD8+ T cells68. POLI encodes an error-prone DNA polymerase, which contributes to the hypermutation of immunoglobulin genes69. Sterol transport is mediated by vesicles or by soluble protein carriers such as steroidogenic acute regulatory protein (STAR; MIM 600617). STAR is homologous to a family of proteins containing a STAR-related lipid transfer (START) domain of 200–210 amino acids in length, including STAR6D. \\
\textbf{ILF3 and CARM1 (19p13.2):} ILF3 encodes a double-stranded RNA–binding protein that complexes with other proteins, double-stranded RNAs, small noncoding RNAs and mRNAs to regulate gene expression and stabilize mRNA. It is a subunit of the nuclear factor of activated T cells (NFAT), a transcription factor required for the expression in T cells of IL-2. CARM1 encodes a transcriptional coactivator of NF-κB and functions as a promoter-specific regulator of NF-κB recruitment to chromatin. \\
\hline
\end{tabular}
Supplementary Table 9. The number of differentially expressed genes (false discovery rate (FDR) of <0.05; fold change of >1.5 or <0.67; corrected significance threshold (P) of <0.05) identified by conditional analysis, was a cis-eQTL for IL23R versus normal skin. We caution that the statistical significance of these findings has not been formally tested by a meta-analysis.

Using the results of a large-scale study of gene expression in psoriatic versus normal skin, we found 14 upregulated genes (IL1R2B, LCE3D, REL, PUS10, CSN5, PRSS53, PRSS8, NOS2, DDX58, ZC3H12C, SOCS1, STAT3, CARD14 and IFIH1) and 4 downregulated genes (MICA, RNF114, PTRF and POLL) in the 34 associated regions (false discovery rate (FDR) of <0.05; fold change of >1.5 or <0.67; Supplementary Table 9). The number of differentially expressed genes in psoriasis susceptibility loci was not greater than expected by chance ($P = 0.39$). None of the 34 top SNPs met the Bonferroni-corrected significance threshold ($P < 1 \times 10^{-7}$) for expression quantitative trait loci (eQTLs) in skin tissue, as assessed by microarray analysis of mRNA levels. However, rs2910686, one of the five SNPs identified by conditional analysis, was a cis-eQTL for ERAP2 in both normal and psoriatic skin (Supplementary Note). Genetic control of ERAP2 expression has been noted previously and has been suggested as a determinant of balancing selection at this locus.

This study increases the number of psoriasis-associated regions in individuals of European ancestry to 36, with conditional analysis increasing the number of independent signals to 41. The 39 independent signals associated at $P < 5 \times 10^{-8}$ in the current study collectively account for 14.3% of the total variance in psoriasis risk or approximately 22% of its estimated heritability (Supplementary Table 10), indicating that further genetic studies, including fine-mapping studies and searches for uncommon susceptibility variants, are in order.

Sharing of susceptibility loci between autoimmune diseases has been demonstrated previously, and we found similar patterns of overlap in this study. Notably, ten of the psoriasis susceptibility loci reported here overlapped with those reported in Crohn’s disease and ten others associated with celiac disease, diseases that occur at higher frequencies in individuals with psoriasis (Supplementary Fig. 5 and Supplementary Table 4). We caution that the statistical significance of these overlapping loci is hard to assess given the ongoing process of gene discovery for many autoimmune disorders and biases in the list of SNPs evaluated for association in this experiment.

As the primary interface with the external environment, the skin provides a critical first line of host defense to microbial pathogens. Consistent with this function, it possesses a diverse and well-conserved set of innate immune mechanisms that emerged long before the development of adaptive immunity. In this context, we found it noteworthy that five of the six newly identified loci that are thus far uniquely associated with psoriasis are involved in innate immune responses (DDX58, KLIF4, ZC3H12C, CARD14 and CARM1; Box 1 and Supplementary Table 4). Among all confirmed psoriasis susceptibility loci, 11 out of 14 psoriasis-specific loci (the 5 new loci involved in the innate immune response along with IL23RA, LCE3D, NOS2, FBXL19, NFKBIA and RNF114) encode plausible regulators of innate immune responses (REL, IFIH1, TNI1P, TNFAP3, IRF4 and ELMO1). These provisional comparisons further illustrate the insights that can be gained by developing and comparing complete and well-annotated sets of risk loci for autoimmune disorders.

The known and newly identified psoriasis susceptibility loci implicated by this study encode several proteins engaged in the TNF, IL-23 and IL-17 signaling pathways, which are targeted by highly effective biological therapies. Notably, our strongest non-MHC signal directly implicates TYK2, a druggable target that contributes to several autoimmune diseases. Agents targeting the closely related JAK kinases are showing encouraging results in clinical trials. Our findings will help prioritize and interpret the results of sequencing and gene expression studies. Further genomic studies are needed to identify the underlying causal variants in these psoriasis susceptibility loci and to bring increased understanding of pathogenetic mechanisms.

Methods

Methods and any associated references are available in the online version of the paper.

Acknowledgments

Major support for this study was provided by the US National Institutes of Health, the Wellcome Trust and the German Research Foundation. We thank J.C. Barrett for contribution to the design of the Immunochip and helpful analytical discussion, as well as E. Gray, S. Bumpstead, D. Simpkin and the staff of the Wellcome Trust Sanger Institute Sample Management and Genotyping teams for their genotyping and analytical contributions. We acknowledge use of the British 1958 Birth Cohort DNA collection, funded by the UK Medical Research Council (G0000934) and the UK Technology Strategy Board (G0000934).

Supplementary Information

Supplementary Information is available in the online version of the paper.

URLs

WTCCC common controls, http://www.wtccc.org.uk/; 1000 Genomes Project data, ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20100804/; Catalog of Published Genome-Wide Association Studies, http://www.genome.gov/gwastudies/; eQTL database, http://www.sph.umich.edu/csg/brga/eQTL/TableDownload/.

Methods

Methods and any associated references are available in the online version of the paper.

Acknowledgments

Major support for this study was provided by the US National Institutes of Health, the Wellcome Trust and the German Research Foundation. We thank J.C. Barrett for contribution to the design of the Immunochip and helpful analytical discussion, as well as E. Gray, S. Bumpstead, D. Simpkin and the staff of the Wellcome Trust Sanger Institute Sample Management and Genotyping teams for their genotyping and analytical contributions. We acknowledge use of the British 1958 Birth Cohort DNA collection, funded by the UK Medical Research Council (G0000934) and the UK Technology Strategy Board (G0000934).

Supplementary Information

Supplementary Information is available in the online version of the paper.
The authors declare no competing financial interests.
LETTERS

51. Ippagunta, S.K. et al. The inflammasome adaptor ASC regulates the function of adaptive immune cells by controlling Dock2-mediated Rac activation and actin polymerization. Nat. Immunol. 12, 1010–1016 (2011).
52. Loo, Y.M. & Gale, M. Immune signaling by RIG-I-like receptors. Immunity 34, 680–692 (2011).
53. Duan, X.F., Inagami, T., Yoshida, H., Borden, E.C. & Satoh, K. Retinoic acid–inducible gene-1 is induced by interferon-γ and regulates the expression of interferon-γ-stimulated gene 15 in MCF-7 cells. Biochem. Cell Biol. 82, 401–405 (2004).
54. Negishi, H. et al. A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proc. Natl. Acad. Sci. USA 105, 20446–20451 (2008).
55. Patel, S., Xi, Z.F., Seo, E.Y., McGaughey, D. & Segre, J.A. Klf4 and corticosteroids activate an overlapping set of transcriptional regulators to accelerate testosterone production. Proc. Natl. Acad. Sci. USA 103, 18668–18673 (2006).
56. Feinberg, M.W. et al. Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J. Biol. Chem. 280, 38247–38258 (2005).
57. Liang, J. et al. A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J. Biol. Chem. 283, 6337–6346 (2008).
58. Nagarajan, P. et al. Ets1 blocks terminal differentiation of keratinocytes and induces expression of matrix metalloproteinases and innate immune mediators. J. Cell Sci. 123, 3566–3575 (2010).
59. Zamisch, M. et al. The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. J. Exp. Med. 206, 2685–2699 (2009).
60. Moisan, J., Genningslof, R., Bettelli, E., Oukka, M. & Ho, I.C. Ets-1 is a negative regulator of Th17 differentiation. J. Exp. Med. 204, 2825–2835 (2007).
61. Sakamoto, H. et al. A Janus kinase inhibitor, JAB, is an interferon-γ-inducible gene and confers resistance to interferons. Blood 92, 1668–1676 (1998).
62. Tanaka, K. et al. Loss of suppressor of cytokine signaling 1 in helper T cells leads to defective Th17 differentiation by enhancing antagonistic effects of IFN-γ on STAT3 and Smads. J. Immunol. 180, 3746–3756 (2008).
63. Piganis, R.A. et al. Suppressor of cytokine signaling (SOCS) 1 inhibits type I interferon (IFN) signaling via the interferon α receptor (IFNAR1)-associated lysosome kinase Tyk2. J. Biol. Chem. 286, 33811–33818 (2011).
64. Sano, S. et al. Stat3 links activated keratinocytes and immune cells required for development of psoriasis in a novel transgenic mouse model. Nat. Med. 11, 43–49 (2005).
65. Harris, T.J. et al. Cutting edge: an in vivo requirement for STAT3 signaling in T(17) development and T(17)-dependent autoimmunity. J. Immunol. 179, 4313–4317 (2007).
66. Wei, L., Laurence, A. & O’Shea, J.J. New insights into the roles of Stat5a/b and Stat3 in T cell development and differentiation. Semin. Cell Dev. Biol. 19, 384–400 (2008).
67. Blonska, M. & Lin, X. NF-κB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res. 21, 55–70 (2011).
68. Keshk, E.N. Impaired memory CD8 T cell development in the absence of methyl-CpG-binding domain protein 2. J. Immunol. 177, 3821–3826 (2006).
69. Faiil, A. et al. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota. Nature 419, 944–947 (2002).

Collaborative Association Study of Psoriasis (CASP);

Kristina Callis Duffin19, Cindy Helms18, David Goldgar19, Yun Li1, Justin Paschall52, Mary J Malloy53,54, Clive R Pullinger53,54, John P Kane53,54, Werner Kurrat66, Wolfgang Küster67, Jesús Lascorz12, Rajan P Nair6, Andreas Ruether13, Judith Fischer61, Wilson Liao62, Pui Kwok62, Alan Menter63, G Mark Lathrop61, C Wise64 & Ann B Begovich57

Collaborative Association Study of Psoriasis (CASP):

Kristina Callis Duffin19, Cindy Helms18, David Goldgar19, Yun Li1, Justin Paschall52, Mary J Malloy53,54, Clive R Pullinger53,54, John P Kane53,54, Werner Kurrat66, Wolfgang Küster67, Jesús Lascorz12, Rajan P Nair6, Andreas Ruether13, Judith Fischer61, Wilson Liao62, Pui Kwok62, Alan Menter63, G Mark Lathrop61, C Wise64 & Ann B Begovich57

Genetic Analysis of Psoriasis Consortium (CASP):

Kristina Callis Duffin19, Cindy Helms18, David Goldgar19, Yun Li1, Justin Paschall52, Mary J Malloy53,54, Clive R Pullinger53,54, John P Kane53,54, Werner Kurrat66, Wolfgang Küster67, Jesús Lascorz12, Rajan P Nair6, Andreas Ruether13, Judith Fischer61, Wilson Liao62, Pui Kwok62, Alan Menter63, G Mark Lathrop61, C Wise64 & Ann B Begovich57

Genetic Analysis of Psoriasis Consortium:

Alexandros Onoufriadis2, Michael E Weale2, Angelika Hofer20, Wolfgang Salmhofer20, Peter Wolf20, Kati Kainu65, Ulpu Saarialho-Kere65, Sari Suomela65, Petra Badorff44, Ulrike Hüffmeier44, Werner Kurrat66, Wolfgang Küster67, Jesús Lascorz68, Rosa M Pujol78, Eva Riveira-Munoz79, Anica J Erner79, Åsa T Nalau11, Lotus Mallbris13, Katarina Wolk13, Joyce Leman14, Anne Barton21, Richard B Warren43, Helen S Young43, Isis Ricano-Ponce28 & Gosia Trynka28

© 2012 Nature America, Inc. All rights reserved.
Psoriasis Association Genetics Extension:
Fawnda J Pellett10, Andrew Henschel80, Marin Aurand80, Bruce Bebo80, Christian Giege81, Thomas Illig82, Susanne Moebus83, Karl-Heinz Jocke83 & Raimund Erbel84

Wellcome Trust Case Control Consortium 2:
Peter Donnelly30,85, Leena Peltonen29, Jenefer M Blackwell86,87, Elvira Bramon88,89, Matthew A Brown90, Juan P Casas91, Aiden Corvin92, Nicholas Craddock93, Audrey Duncanson94, Janusz Jankowski95, Hugh S Markus96, Christopher G Mathew9, Mark I McCarthy97, Colin N A Palmer98, Robert Plomin99, Anna Rautanen30, Stephen J Sawyer100, Nilesh Samani101, Ananth C Viswanathan102,103, Nicholas W Wood104, Céline Bellenguez30, Colin Freeman30, Garrett Helloworld10, Eleni Giannoulatou30, Matti Pirinen30, Zhan Su40, Sarah E Hun9, Rhian Gwilliam99, Suzannah J Bumpstead99, Serge Dronov99, Matthew Gillman99, Emma Gray99, Naomi Hammond99, Alagurevathi Jayakumar99, Owen T McCann99, Jennifer Liddle99, Marc L Perez99, Simon C Potter99, Radhi Ravindrarajah99, Michelle Ricketts99, Matthew Waller99, Paul Weston99, Sara Win99 & Pamela Whittaker99

1Department of Biostatistics, Center for Statistical Genetics, University of Michigan Ann Arbor, Michigan, USA. 2Division of Genetics and Molecular Medicine, King's College London, London, UK. 3Neuroscience Research Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada. 4National Institute for Health Research (NIHR), Biomedical Research Centre, Guy's and St. Thomas' National Health Service (NHS) Foundation Trust, London, UK. 5Institute of Clinical Molecular Biology, Christian-Albrechts-Universität, Kiel, Germany. 6Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA. 7Department of Medical and Clinical Genetics, Division of Human Genetics, Washington University School of Medicine, St. Louis, Missouri, USA. 8Department of Medicine and Clinical Genetics, Institute of Biomedicine, Sahlgrensa Academy, University of Gothenburg, Gothenburg, Sweden. 9Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands. 10Dermatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden. 11Department of Dermatology, Western Infirmary, Glasgow, UK. 12John's Institute of Dermatology, King's College London, London, UK. 13Academic Unit of Dermatology Research, Department of Infection and Immunity, The University of Sheffield, Sheffield, UK. 14Genes and Disease Programme, Centre for Genomic Regulation (CRG) and Pompeu Fabra University, Hospital del Mar Research Institute and Public Health and Epidemiology Network, Biomolecular Research Centre (ₒBEBESP), Barcelona, Spain. 15Department of Genetics, Division of Human Genetics, Washington University School of Medicine, St. Louis, Missouri, USA. 16Department of Dermatology, University of Utah, Salt Lake City, Utah, USA. 17Department of Dermatology, Medical School of Graz, Graz, Austria. 18Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. 19Division of Immunology, Infection and Inflammatory Disease, King's College London, London, UK. 20Institute of Human Genetics, University of Bonn, Bonn, Germany. 21Department of Dermatology, University of Tartu, Tartu, Estonia. 22Department of Dermatology, Center for Human Genetics, University of Tartu, Tartu, Estonia. 23Institute of Human Genetics, University of Tartu, Tartu, Estonia. 24Department of Dermatology, Henry Ford Hospital, Detroit, Michigan, USA. 25Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. 26Department of Dermatology and Venerology, University of Tartu, Tartu, Estonia. 27Institute of Epidemiology, Ludwig-Maximilians-University, Munich, Germany. 28Department of Preventive Medicine, University School of Medicine, Buenos Aires, Argentina. 29Department of Dermatology, University Hospital Schleswig-Holstein-Christian-Albrechts-Universität, Kiel, Germany. 30PopGen Biobank, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität, Kiel, Germany. 31Department of Physiology, Centre for Translational Medicine and Centre for Translational Genomics, University of Tartu, Tartu, Estonia. 32Department of Dermatology and Venerology, University of Tartu, Tartu, Estonia. 33Estonian Genome Center, University of Tartu, Tartu, Estonia. 34Department of Dermatology and Venerology, University of Tartu, Tartu, Estonia. 35Estonian Genome Center, University of Tartu, Tartu, Estonia. 36Department of Dermatology, Henry Ford Hospital, Detroit, Michigan, USA. 37Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. 38Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany. 39Klinikum Grosshadern, Munich, Germany. 40Department of Medicine, Division of Rheumatology, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada. 41Department of Medicine, Division of Dermatology, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada. 42Department of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada. 43Department of Dermatological Sciences, Salford Royal NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. 44Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany. 45Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden. 46Pulkaläinen Institute of Genetics, Helsinki, Finland. 47Department of Medical Genetics, University of Helsinki, Helsinki, Finland. 48A list of members and affiliations appears at the end of the paper. 49Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA. 50Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK. 51These authors contributed equally to this work. 52National Center for Biotechnology Information, National Library of Medicine, US National Institutes of Health, Bethesda, Maryland, USA. 53Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. 54Center for Human Genetics, University of California, San Francisco, San Francisco, California, USA. 55Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA. 56Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA. 57Celeria, Alameda, California, USA. 58Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA. 59Department of Rheumatology, University of Utah, Salt Lake City, Utah, USA. 60Department of Gastroenterology, University of Utah, Salt Lake City, Utah, USA. 61Centre National de Génotypage, Institut Génomique, Commissariat à l'Energie Atomique, Evry, France. 62Department of Dermatology, University of California, San Francisco, San Francisco, California, USA. 63Department of Dermatology, Baylor University Medical Center, Dallas, Texas, USA. 64Kay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA. 65Department of Dermatology and Venerology, University of Helsinki, Helsinki, Finland. 66Asklepios Nordseeklinik, Westerland/Sylt, Germany. 67TOMESA Clinics, Bad Salzschlirf, Germany. 68Research Unit Molecular Epidemiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands. 69University of Dundee, Dundee, UK. 70Department of Dermatology, Dermatology Unit College Hospital Galway, Galway, Ireland. 71Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland. 72Department of Clinical Medicine, Trinity College Dublin, Our Lady's Children's Hospital Crumlin, Dublin, Ireland. 73Department of Dermatology, University Hospital of Tartu, Tartu, Estonia. 74Department of Medical Genetics, Department of Dermatology, University College Hospital Galway, Galway, Ireland. 75Department of Dermatology, University College Hospital Galway, Galway, Ireland. 76Department of Dermatology, University of Tartu, Tartu, Estonia. 77Department of Dermatology, University School of Medicine, Buenos Aires, Argentina. 78Dermatology Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA. 79Department of Dermatology, Baylor University Medical Center, Dallas, Texas, USA. 80Department of Genetics, Division of Human Genetics, Washington University School of Medicine, St. Louis, Missouri, USA. 81Department of Dermatology, University of Helsinki, Helsinki, Finland. 82Department of Dermatology and Venerology, University of Tartu, Tartu, Estonia. 83Institute of Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Essen, Germany. 84Clinic of Dermatology, West German Heart Centre, University Hospital of Essen, University Duisburg-Essen, Essen, Germany. 85Department of Statistics, University of Oxford, Oxford, UK. 86Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Suiciaco, Western Australia, Australia. 87Genetics and Infection Laboratory, Cambridge Institute of Medical Research, Addenbrooke's Hospital, Cambridge, UK. 88Division of Psychological Medicine and Psychiatry, Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, London, UK. 89The South London and Maudsley NHS Foundation Trust, Denmark Hill, London, UK. 90Diamantina Institute of Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia. 91Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine,
Sample collections. The samples used in the three GWAS data sets (Kiel, CASP and WTCCC2) were previously described3–5. Samples in the PAGE and GAPC data sets (Supplementary Tables 1 and 2) were collected from subjects of European descent at the participating institutions after obtaining informed consent. Enrollment of human subjects for this study was approved by the ethics boards of the participating institutions in adherence with the Declaration of Helsinki Principles. DNA was isolated from blood or Epstein-Barr virus (EBV)-immortalized lymphoblastoid cell lines using standard methods.

The collections used in the GAPC and PAGE Immunochip studies are described in Supplementary Table 2.

The samples from GAPC substantially overlapped with those described as replication data sets in Strange et al.3. All cases had been diagnosed as having psoriasis vulgaris. The GAPC cases and the Irish and Spanish controls were genotyped at the Wellcome Trust Sanger Institute, and all samples were provided by the relevant groups listed in Supplementary Table 2 and by the members of the GAP Consortium listed in the Supplementary Note. The UK controls were the WTCCC common control samples that did not overlap with the samples included in the original GWAS (the data set consisted of 6,740 1958 British Birth cohort and 2,900 UK Blood Service samples genotyped at the Wellcome Trust Sanger Institute and the University of Virginia). The German controls were obtained from the PopGen Biobank and genotyped at the Institute of Clinical Molecular Biology at Christian-Albrechts-University of Kiel. The Finland control data were from the DILGOM collection70. The Irish controls were provided by the Irish Blood Transfusion Service/Trinity College Dublin Biobank, and Irish cases were collected with the aid of the Dublin Centre for Clinical Research. We did not include specific controls from Austria or Sweden, but principal-components analysis suggested that the cases from these cohorts were well matched to the controls from The Netherlands and Germany.

For the PAGE Immunochip study, samples also substantially overlapped with previously published replication data sets. The German cases (described as a replication data set in Ellinghaus et al.) and all samples from the United States and Canada, as well as 439 Estonian cases from the University of Tartu, were genotyped at the Institute of Clinical Molecular Biology at Christian-Albrechts-University of Kiel. The respective samples were provided by the groups listed in Supplementary Table 2 and by the members of PAGE listed in the Supplementary Note. The German controls were obtained from a population-based sample from the general population living in the region of Augsburg in southern Germany (KORA S4/F4)71, which was genotyped at the Helmholtz Zentrum Munich, and from the population-based epidemiological HNR study, for which genotyping was performed at the Life and Brain Center at the University Clinic in Bonn. The remaining Estonian samples were obtained from and genotyped at the Estonian Genome Center University of Tartu (EGCUT).

Genotyping panel and SNPs. The Immunochip is a custom Illumina Infinium high-density array consisting of 196,524 variants (after Illumina quality control) compiled largely from variants identified in previous GWAS of 12 different immune-mediated inflammatory diseases, including psoriasis31. The main aims of the Immunochip were deeper replication and fine mapping of genome-wide significant loci, as well as increasing power to promote promising but less significant SNPs to genome-wide significance. For fine mapping, SNPs within 0.2 cM on either side of the GWAS top SNPs at 186 loci were selected from 1000 Genomes Project72 low-coverange pilot Utah residents of Northern and Western European ancestry (CEU) sequencing data as well as additional variants identified by resequencing from groups involved in the chip design. For promotion of promising signals and those not quite reaching genome-wide significance, each disease-focused group was allowed to submit approximately 3,000 additional SNPs. We submitted 17 of the 19 confirmed regions associated with psoriasis at genome-wide significance (Table 1) for fine mapping on the basis of a preliminary meta-analysis of our data, and 1 of the confirmed signals (IL28RA) and 9 of the new psoriasis-associated signals (Supplementary Table 5, disease overlap) were submitted for fine mapping by groups studying other diseases (although we also submitted 3 of these as part of our additional SNP allocation: rs11121129, rs10865331 and rs9504361). Six additional signals were detected on the basis of additional SNPs allocation in individual groups; four of these (rs11795343, rs4561177, rs11652075 and rs545979) were submitted by our group. All Immunochip samples were genotyped as described in Illumina’s protocols.

Genotype calling. For the PAGE data set, genotype calling was performed using Illumina’s GenoStudio Data Analysis software and the custom-generated cluster file of Trynka et al.33 (which was generated by initial clustering of 2,000 UK samples with the GenTrain2.0 algorithm and subsequent manual readjustment and quality control). Genotype calling for the GAPC data set was performed using GenoSNP73 from allele intensities, except for the German, Italian, Dutch and Finnish controls, which were called using the same method described for the PAGE data set.

Imputation. To increase the number of overlapping SNPs between data sets, we performed imputation on the 3 GWAS data sets using minimac24 (Kiel and CASP) and IMPUTE2 (refs. 75,76) (WTCCC2) using data from CEU reference haplotypes from the 1000 Genomes Project72 (December 2010 version of the 10/08/04 sequence and alignment release containing 629 individuals of European descent). SNPs with low imputation quality ($r^2 \leq 0.3$ for minimac and info score < 0.5 for IMPUTE2) were removed. For all 3 data sets, cases and controls were imputed together.

Sample and genotype quality control. For the Immunochip data sets, we first excluded SNPs with a call rate below 95% or with a Hardy-Weinberg equilibrium P value of $< 1 \times 10^{-6}$. Samples with less than SNP call rates below 98% were then excluded. Because the Immunochip includes a large proportion of fine-mapping SNPs that are associated with autoimmune disease, we used a set of independent SNPs that have P values > 0.5 from the meta-analysis of the three GWAS data sets as a quality control tool for each individual Immunochip data set. Using the HapMap 3 samples as reference72, we performed principal-component analysis to identify and remove samples with non-European ancestry. We also removed samples with extreme inbreeding coefficients or heterozygosity values computed by PLINK78.

To assess possible stratification in the data sets, principal-components analysis was also performed in each of the Immunochip data sets separately (excluding HapMap). There was no evidence of stratification between the cases and controls of each sample group. However, as expected, the top principal components did separate the samples well by country of origin. The use of the top ten eigenvectors as covariates in the analysis did not completely correct for stratification, and, therefore, a linear mixed-model method (efficient mixed-model association expeditoried (EMMAX)) was instead used for the association analysis. These methods have been shown to outperform principal components in correcting for this type of population stratification and cryptic relatedness79, which is becoming more common as sample sizes increase and studies comprise more collaborative efforts.

To identify duplicate pairs or highly related individuals among data sets, we used a panel of 873 independent SNPs that were genotyped in both the GWAS and Immunochip samples and performed pairwise comparisons using the genome function in PLINK79, requiring Pi-HAT of 20.5. We identified 1,142 (885 from GAPC and 257 from PAGE) related sample pairs (mostly duplicates) and removed one sample from each pair. We also removed 4,828 controls from the UK common Immunochip controls because of duplication in the WTCCC2 GWAS sample. For GWAS samples that were duplicated in the Immunochip data sets (the majority of duplicates), we removed the samples from the Immunochip data sets to keep the previously published data sets intact.

The GWAS data sets underwent quality control as previously described and were analyzed for association using the top principal components from the previous analyses as covariates3–5.

We visually inspected the signal intensity cluster plots for all SNPs with associations reaching genome-wide significance to confirm high-quality genotype calling.

Genomic control. Genomic control inflation factors for the five data sets were 1.09 (Kiel), 1.06 (CASP), 1.04 (WTCCC2), 0.99 (PAGE) and 0.96 (GAPC), indicating that population structure and cryptic relatedness were adequately controlled for in these data sets. Because the Immunochip was designed for deep replication and fine mapping of loci associated with autoimmune disease, we further verified that population structure and relatedness were adequately controlled. We used the FastSimScan algorithm50,51, which is designed specifically for capturing population structure and relatedness, and, therefore, provides an appropriate control for the Immunochip data sets, and found that the inflation factors were reduced to 1.04 (Kiel), 1.04 (CASP), 1.03 (WTCCC2), 0.97 (PAGE) and 0.97 (GAPC).
diseases12, using all independent SNPs from the chip would not give an accurate estimate of the genomic control80 value (λ_{GC}). Therefore, we selected common SNPs (with minor allele frequency (MAF) of >0.05) from the Immunochip that had association P values of >0.5 on the basis of a meta-analysis combining the Kiel, CASP and WTCCC2 GWAS, and then performed LD pruning to identify an independent SNP set to compute λ_{GC} for the association results from the Immunochip data sets. As a result of SNP selection bias, the genomic control value for the final meta-analysis was computed using a set of independent SNPs associated with reading and writing ability (J.C. Barrett, personal communication). We further removed SNPs that were within 500 kb of previously detected psoriasis-associated loci (within 3 Mb in the MHC region), and the remaining 1,426 SNPs yielded λ_{GC} of 1.11 for the meta-analysis overall. Using λ_{1000} (ref. 81), the genomic control inflation factor for an equivalent study of 1,000 cases and 1,000 controls, the rescaled λ equaled 1.01.

70. Inouye, M. et al. An immune response network associated with blood lipid levels. PLoS Genet. \textbf{6}, pii e1001113 (2010).
71. Wichmann, H.E., Gieger, C. & Illig, T. KORA-gen—resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen \textbf{67} suppl 1, S26–S30 (2005).
72. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature \textbf{467}, 1061–1073 (2010).
73. Giannoulatou, E., Yau, C., Colella, S., Ragoussis, J. & Holmes, C.C. GenoSNP: a variational Bayes within-sample SNP genotyping algorithm that does not require a reference population. Bioinformatics \textbf{24}, 2209–2214 (2008).
74. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. \textbf{44}, 955–959 (2012).
75. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. \textbf{39}, 906–913 (2007).
76. Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. \textbf{5}, e1000529 (2009).
77. Altshuler, D.M. et al. Integrating common and rare genetic variation in diverse human populations. Nature \textbf{467}, 52–58 (2010).
78. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. \textbf{81}, 559–575 (2007).
79. Kang, H.M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. \textbf{42}, 348–354 (2010).
80. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics \textbf{55}, 997–1004 (1999).
81. Freedman, M.L. et al. Assessing the impact of population stratification on genetic association studies. Nat. Genet. \textbf{36}, 388–393 (2004).