Nuts as a Replacement for Carbohydrates in the Diabetic Diet

David J.A. Jenkins, MD1,2,3,4 Cyril W.C. Kendall, PhD1,3,5 Monica S. Banach, MSC1 Korbu Srichaikul, MSC1,3 Edward Vidgen, BSC1,3 Sandy Mitchell, RD1 Tina Parker, RD1 Stephanie Nishii, BSC1,3 Balachandran Bashyam, PhD1,3 Russell de Souza, SD, RD1,3 Christopher Ireland, BSC1 Robert G. Josse, MB, BS1,2,3,4

OBJECTIVE—Fat intake, especially monounsaturated fatty acid (MUFA), has been liberalized in diabetic diets to preserve HDL cholesterol and improve glycemic control, yet the exact sources have not been clearly defined. Therefore, we assessed the effect of mixed nut consumption as a source of vegetable fat on serum lipids and HbA1c in type 2 diabetes.

RESEARCH DESIGN AND METHODS—A total of 117 type 2 diabetic subjects were randomized to one of three treatments for 3 months. Supplements were provided at 475 kcal per day (75 g/day, mufa-containing supplements, 47 g/day, mufa-containing peanuts, or 19 g/day, mufa-containing nuts, half portions of both). The primary outcome measures were changes in HbA1c between treatments.

RESULTS—The relative increase in MUFAs was 8.7% energy on the full-nut dose compared with mufa-containing peanuts, due to the combined impact of the full-nut dose (3.8% absolute increase) and the mufa-containing peanuts (4.9% absolute increase) compared with mufa-containing nuts. The LDL cholesterol reduction after half-nut dose was intermediate and not significantly different from the full-nut dose or mufa-containing peanuts. Apolipoprotein (apo) B and the apoB:apoA1 ratio behaved similarly. The LDL cholesterol reduction after half-nut dose was intermediate and not significantly different from the full-nut dose or mufa-containing peanuts. Apolipoprotein (apo) B and the apoB:apoA1 ratio behaved similarly. The LDL cholesterol reduction after half-nut dose was intermediate and not significantly different from the full-nut dose or mufa-containing peanuts. Apolipoprotein (apo) B and the apoB:apoA1 ratio behaved similarly.

CONCLUSIONS—Two ounces of nuts daily as a replacement for carbohydrate foods improved both glycemic control and serum lipids in type 2 diabetes.

RESEARCH DESIGN AND METHODS—Subjects were recruited by a newspaper advertisement and from previous studies. A total of 117 subjects were eligible and randomized (Supplementary Fig. 1). Recruitment took place from April 2007 to September 2008, with the last follow-up visit on 18 December 2008. Eligible participants were men or postmenopausal women with type 2 diabetes who were taking antidiabetic agents other than acarbose, with medications stable for the previous 3 months and who had HbA1c values at screening between 6.5 and 8.0% (Table 1). No participants had clinically significant cardiovascular, renal, or liver disease (alanine aminotransferase more than three times the upper limit of normal) or a history of cancer. Subjects were accepted after surgery or myocardial infarction if they had an event-free 6-month period before the study. One subject had changed medications within 3 months before the start of the study. Nevertheless, all randomized subjects were retained for the intention-to-treat analyses.

Protocol
The study was a 3-month randomized parallel study with two supplements and three treatments consisting of the following: a full portion of mixed nuts, a half portion of both nuts and mufa-containing peanuts, or a full portion of mufa-containing peanuts. After stratification by sex and HbA1c (<=7.1%), randomization was carried out using subject identification by a statistician who was geographically separate from the center.
Table 1—Baseline characteristics of study participants

Number (%) of participants	Nuts	Half dose	Muffins	P
n	40	38	30	
Age (years)*	63 (9)	62 (9)	61 (10)	0.61†
Sex				
Male	26 (65)	26 (68)	26 (67)	0.97‡
Female	14 (35)	12 (32)	13 (33)	
Race/ethnicity				
European	23 (58)	25 (66)	18 (46)	0.83‡
Indian	10 (25)	8 (21)	13 (33)	
Far Eastern	4 (10)	3 (8)	3 (8)	
African	3 (8)	2 (5)	3 (8)	
Hispanic	0 (0)	0 (0)	1 (3)	
Native American	0 (0)	0 (0)	1 (3)	
Weight (kg)*	80 (15)	86 (16)	83 (15)	0.20†
BMI (kg/m²)*	29 (5)	30 (5)	29 (4)	0.37†
Current smokers	2 (5)	4 (11)	3 (8)	0.57‡
HbA1c (%)				
<7.0	20 (50)	20 (53)	22 (56)	0.84‡
≥7.0	20 (50)	18 (47)	17 (44)	
Duration of diabetes (years)*	7 (6)	8 (6)	8 (6)	0.57‡
Medication use				
Hypoglycemic medications	40 (100)	38 (100)	39 (100)	1.00‡
Thiazolidinedione	12 (30)	11 (29)	11 (28)	1.00‡
Biguanide	35 (88)	36 (95)	35 (90)	0.62‡
Sulfonylurea	14 (35)	13 (34)	17 (44)	0.64‡
Meglitinides (nonsulfonylurea)	2 (5)	3 (8)	2 (5)	0.79‡
α-Glucosidase inhibitors	0 (0)	0 (0)	0 (0)	1.00
Dipetidyl peptide-4 inhibitor	0 (0)	0 (0)	1 (3)	0.66‡
Cholesterol-lowering medications	25 (58)	31 (82)	30 (77)b	0.046b
Blood pressure medications	25 (58)	29 (76)	28 (72)	0.12‡

Data are n (%) or *mean (SD). †P value is for overall F test for between-groups differences using the generalized linear model ANOVA. ‡P values for Fisher exact test where appropriate calculated separately for distribution of each medication, since participants were from multiple nationalities or on multiple medications. A difference in superscript letters signifies a significant difference in percentage changes using the Q statistic.

Dietary interventions
Participants were counseled to substitute the supplement calories where possible for the carbohydrate foods in their original diets. General dietary advice conforming to the National Cholesterol Education Program Adult Treatment Panel III guidelines to reduce saturated fat and cholesterol intakes (Supplementary Table 1). Of the participants, 43% were obese (50/117, BMI >30 kg/m²) and wished to lose weight. They were informed that this was not a weight-loss study but were given advice on portion size and fat intake to help them meet their weight-reduction objectives. Compliance was assessed from the mean of the five 7-day diet records per treatment (weeks 2, 4, 8, 10, and 12).

Supplements
The nuts supplied consisted of a mixture of unsalted and mostly raw almonds, pistachios, walnuts, pecans, hazelnuts, peanuts, cashews, and macadamias. The muffin was developed to be a healthy whole-wheat product, sweetened with apple concentrate, with no sugar added. The muffin had similar protein content to the nuts, by the inclusion of egg white and skim milk powder. The calories from MUFAs in the muffins were the same by design as the carbohydrate calories in the muffin (Supplementary Table 2).

Energy requirements
Energy requirements were calculated for each participant as referenced previously (3), using the Harris-Benedict equation, with allowance for physical activity. Those participants with energy requirements of
Nuts and diabetes

>2,400 calories received supplements of 630 kcal (100 g nuts [n = 0]); four muffins [n = 1]; or 50 g nuts and two muffins [n = 1]); individuals whose requirements were 1,600–2,400 kcal received supplements of 475 kcal (75 g nuts [n = 38]; 37.5 g nuts plus one and a half muffins [n = 36]; or three muffins [n = 36]); and individuals whose requirements were <1,600 kcal received supplements of 315 kcal (50 g nuts [n = 2]; 25 g nuts and one muffin [n = 1]; or two muffins [n = 2]) (Supplementary Table 2).

Biochemical analyses

HbA1c was analyzed within 2 days of collection on whole blood collected in EDTA Vacutainer tubes and measured by a designated high-performance liquid chromatography (HPLC) method (Tosoh G7 Automated HPLC Analyzer; Tosoh Bioscience, Grove City, OH) (CV 1.7%). Blood glucose was measured in the hospital routine analytical laboratory by a glucose oxidase method. Serum samples stored at -70°C were analyzed for lipids, and apolipoproteins (apo) and oxidative products were analyzed at the end of the study. LDL cholesterol was calculated by the method of Friedwald et al. (3). C-reactive protein (CRP) was measured by end point nephelometry. Oxidized products were measured on participants who completed the study. Oxidized LDL was measured chemically as conjugated dienes and thiobarbituric acid–reactive substances in the LDL fraction (11,12), and oxidized serum proteins were measured as protein thiols (13).

Diets were analyzed in 115 participants with baseline data using a computer program based on the data from the U.S. Department of Agriculture (3) and international glycemic index tables (14), with additional measurements made on local foods.

Power calculations

The initial power calculation was based on an assumption of a 20% dropout and an effect size of 0.8% HbA1c units with an SD of effect of 1.235% (α = 0.05, 1-β = 0.8), for which 30 subjects per group were required. This calculation was revised after publication of a low glycemic index trial. The effect size of the change in HbA1c was adjusted to 0.45% HbA1c units, similar to a modest effect of acarbose with an SD of effect of 0.60% HbA1c units (15). These values were also in line with the HbA1c data of the completer and intention-to-treat groups, respectively, from the recent low glycemic index study. For the comparison of nuts with muffins, 40 subjects would be required per group (α = 0.05, 1-β = 0.8). No prior adjustment was made for the multiple comparisons necessary for assessment of a dose response. To establish significance for the three comparisons using the Bonferroni correction, P < 0.0175 was required. The power was, therefore, designed to assess the primary outcome of the difference in change in HbA1c between full-nut dose versus muffins.

Statistical analyses

Results are expressed as means ± SD or 95% CIs. The significance of treatment differences was assessed by the CONTRAST statement in SAS version 9.2 (16), which allows comparisons of repeated measures over time based on a t test statistic with equal weighting for each value. In this study, the three values for the last month (end of weeks 8, 10, and 12) were expressed individually as changes from the mean baseline (mean of weeks –1 and 0). The model also used baseline as a covariate. The primary analysis was an intention-to-treat analysis, including all randomized subjects (n = 117) with the baseline observation carried forward for subjects who did not have at least one value in the last month (i.e., end of weeks 8, 10, and 12) (n = 14). Subjects who were randomized but did not start (n = 1) had their screening value used as baseline, and this value was carried forward (Supplementary Fig. 1). Unadjusted significance levels are given in the text, tables, and figures. Using the Bonferroni correction, for three-way comparisons, these differences were significant when the P value was <0.0175. Where only start and end values were available (diet, markers of oxidative stress, and body weight), significance was assessed by the least square means procedure in SAS with a Tukey adjustment for multiplicity of comparisons. Pearson correlations were used to examine the relation of nut intake to changes in HbA1c, lipids, and apolipoproteins. Nut consumption was defined as the difference in total tree nut, peanut, and nut butter intake in grams per day between the pretreatment and end of treatment week assessed from the 7-day diet records. The dose-response analyses on nut and MUFA intakes (% energy) and change in study outcome were performed by regression analyses pooling the responses across the three treatment groups.

RESULTS—Of the participants, 39 of 40 (97.5%) completed the full-nut dose (i.e., provided a blood sample in the final month), compared with 32 of 38 (84%) of those taking the half-nut dose and 32 of 39 (82%) on muffins. In the half-nut dose group, one subject dropped out after randomization but was unaware of his treatment allocation, and one participant was withdrawn because of two consecutive HbA1c levels >8.5%. In the muffin group, one participant developed allergic symptoms. In the full-nut dose group, one participant developed a nut allergy. These subjects’ data were retained for the intention-to-treat analyses.

No treatment differences were seen at baseline in diet, blood pressure, or anthropometric measurements (Tables 1 and 2 and Supplementary Table 1). During the study, MUFA intake, expressed as percent of total energy, increased significantly after full-nut dose consumption (Supplementary Tables 1 and 2) compared with muffins (8.7%, 95% CI 7.1–10.4, P < 0.001). There was good compliance with all treatments (90.6–97.3).

Glycemic control and body weight

In the intention-to-treatment analysis, oral hypoglycemic medication dosages increased in one participant in the half-nut dose group, with reductions for two participants. Three participants (one in each group) had their Avandia switched to Actos after media alerts.

The mean HbA1c fell –0.21% absolute HbA1c units (95% CI −0.30 to −0.11, P < 0.001) on the full-nut supplement; –0.07% absolute HbA1c units (−0.19 to 0.05, P = 0.270) on the half-nut dose supplement; and –0.05% absolute HbA1c units (−0.16 to 0.06, P = 0.355) on the muffin supplement (Fig. 1). The reduction in HbA1c on full-nut dose was significantly different from the half-nut dose (P = 0.004) and muffins dose (P = 0.001) (Fig. 1). The significance of the difference between full-nut dose and muffins in HbA1c remained after adjustment for duration of diabetes or body weight using an ANCOVA model (P = 0.023 and P = 0.004, respectively). No significant changes from baseline were seen in blood glucose or body weight, and there were no significant differences in responses between treatments (Table 2 and Supplementary Tables 1 and 3). Nut intake related negatively to change in HbA1c (r = −0.20, n = 115, P = 0.033). Through regression analysis, the full-dose (of 100 g/day) nut intake corresponded
Table 2—Mean (95% CI) value ± standard deviation for plasma lipids and apolipoproteins.

Lipid Fraction	Full-nut Dose	Half-nut Dose	Difference	P Value
HDL cholesterol (mmol/L)	0.9 (0.8–1.1)	0.7 (0.6–0.8)	0.2 (0.1–0.3)	0.001
LDL cholesterol (mmol/L)	3.7 (3.5–3.9)	3.5 (3.4–3.7)	0.2 (0.1–0.3)	0.001
Triglycerides (mmol/L)	1.5 (1.4–1.6)	1.4 (1.3–1.5)	0.1 (0.0–0.2)	0.001

CONCLUSIONS—Increased mixed-nut consumption (cornstarch as a source of unprocessed carbohydrates and polynsaturated fat) may replace daily starch consumption favorably affected both glucose and serum parameters. Oxidized LDL, cholesterol, and blood pressure.

No significant differences were seen between treatments for LDL (Table 3) or measures of oxidative damage (data not shown). Blood pressure measurements were not significant with or without adjustment for blood pressure medication use.

Through a regression analysis, the changes in lipids were related to a reduction in apoB (−0.24 mmol/L; Table 2) and a reduction in apoA1 (−0.22 mmol/L; Table 3). All three differences were significantly raised with the full-nut dose compared with the half-nut dose (full-nut dose: −0.24 mmol/L, 95% CI −0.22 to −0.26; half-nut dose: −0.22 mmol/L, 95% CI −0.20 to −0.24; p < 0.001).

The changes in lipids were related to a reduction in apoB (−0.24 mmol/L; Table 2) and a reduction in apoA1 (−0.22 mmol/L; Table 3). All three differences were significantly raised with the full-nut dose compared with the half-nut dose (full-nut dose: −0.24 mmol/L, 95% CI −0.22 to −0.26; half-nut dose: −0.22 mmol/L, 95% CI −0.20 to −0.24; p < 0.001).

The changes in lipids were related to a reduction in apoB (−0.24 mmol/L; Table 2) and a reduction in apoA1 (−0.22 mmol/L; Table 3). All three differences were significantly raised with the full-nut dose compared with the half-nut dose (full-nut dose: −0.24 mmol/L, 95% CI −0.22 to −0.26; half-nut dose: −0.22 mmol/L, 95% CI −0.20 to −0.24; p < 0.001).
Figure 1—Mean HbA1c measurements in participants with type 2 diabetes consuming full-nut dose, half-nut dose, or muffins.

The reduction in HbA1c was achieved despite baseline HbA1c concentrations, which on entry were close to the target of <7.0% in participants who were already treated with one or more (average 1.5) antihyperglycemic medications. Furthermore, a reduction in LDL cholesterol was achieved even though the majority of subjects (84/117, or 72%) were already taking statins and had low mean baseline LDL cholesterol concentrations of 2.03 mmol/L (95% CI 1.90–2.16).

The full-nut dose reduced HbA1c by two-thirds of the reduction recognized as clinically meaningful by the U.S. Food and Drug Administration (>0.3% absolute HbA1c units) in the development of antihyperglycemic drugs (23). In addition, the number of participants who achieved an HbA1c concentration of >7% (19 prestudy participants, down to 13 poststudy participants) was significantly greater on the nut treatment than on the muffin treatment (20 prestudy participants, remaining at 20 poststudy participants, Mantel-Haenszel test, P = 0.040). Based on data from the UK Prospective Diabetes Study and the ADVANCE study (24), the HbA1c reduction for the full-nut dose would translate into a predicted 7–8% reduction in microvascular complications.

Methodological weaknesses included use of a 7-day diet history with the errors and inaccurateness associated with self-reported data, lack of binding for participants and dietitians, and the attempt to demonstrate a dose response to nuts when the primary objective of establishing whether nuts improved glycemic control had not first been demonstrated. In addition, in the current study, nut consumption was substantial (37.5 g for the full-nut dose and 75 g/2,000 kcal) for the full-nut dose. However, the baseline nut intake was 12 g/day, and the compliance levels were high (i.e., 95.7 and 97.3% for the full-nut and half-nut groups, respectively). Therefore, we believe that, with the appropriate advice, nut intake at these levels can be achieved and maintained. Furthermore, the resulting relative increase in MUFA intake was modest at 8.7% of total calories for the full-nut dose.

The strengths of the study include its novelty as one of the first studies to assess nuts in type 2 diabetes coupled with measurement of HbA1c and blood lipids at three time points in the last month to increase the validity of the assessment of blood lipids and glycemic control. The study length was adequate to see an HbA1c effect. There was good compliance with the supplement and a dropout rate of 12%, which was lower than that seen in many other longer-term diet trials (25). Finally, there is a requirement for pharmacological interventions aimed at improving glycemic control to demonstrate that they have no negative impact on CHD (23). In this respect, nut consumption not only improved glycemic control but also lipid risk factors for CHD.

We have no explanation for the lack of antioxidant effects of nuts seen with previous studies but may relate to antioxidants in wheat bran and apple concentrate used in the muffins.

We conclude that mixed, unsalted, raw, or dry-roasted nuts have benefits for both blood glucose control and blood lipids and may be used to increase vegetable oil and protein intake in the diets of type 2 diabetic patients as part of a strategy to improve diabetes control without weight gain.

Acknowledgments—This work was supported by the Canada Research Chair Endowment of the Federal Government of Canada, the International Tree Nut Council Nutrition Research & Education Foundation (representing almonds, Brazil nuts, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios, and walnuts), and the Peanut Institute. None of the funding organizations or sponsors played any role in the design and conduct of the study, in the collection, management, analysis, and interpretation of the data; or in the preparation, review, or approval of the manuscript.
D.J.A.J. has served on scientific advisory boards of Unilever, the Sanitarium Company, and the California Strawberry Commission. D.J.A.J. and C.W.C.K. have received honoraria from the Almond Board of California, the International Tree Nut Council Nutrition Research & Education Foundation, Barilla, and Unilever Canada; have been on the speaker’s panel for the Almond Board of California; and have received research grants from Loblaw, Unilever, Barilla, and the Almond Board of California. No other potential conflicts of interest relevant to this article were reported.

C.W.C.K. and D.J.A.J. are responsible for the study concept and design and for acquiring funding. D.J.A.J., C.W.C.K., and E.V. had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. D.J.A.J. researched data, wrote the manuscript, reviewed and edited the manuscript, and contributed to the discussion. C.W.C.K. reviewed and edited the manuscript and contributed to the discussion. M.S.B. researched data. K.S. wrote the manuscript and contributed to the discussion. R.G.J. reviewed and edited the manuscript and contributed to the discussion.

References

1. Franz MJ, Bantle JP, Beece CA, et al. Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care 2002;25:148–198
2. Halton TL, Willett WC, Liu S, et al. Low-carbohydrate-diet score and the risk of coronary heart disease in women. N Engl J Med 2006;355:1991–2002
3. Jenkins DJ, Wong JM, Kendall CW, et al. The effect of a plant-based low-carbohydrate (‘Eco-Atkins’) diet on body weight and blood lipid concentrations in hyperlipidemic subjects. Arch Intern Med 2009;169:1046–1054
4. Sabate J, Oda K, Ros E. Nut consumption and blood lipid levels: a pooled analysis of 25 intervention trials. Arch Intern Med 2010;170:821–827
5. Fraser GE, Sabate J, Beece WS, Strahan TM. A possible protective effect of nut consumption on risk of coronary heart disease: The Adventist Health Study. Arch Intern Med 1992;152:1416–1424
6. Hu FB, Stampler MJ. Nut consumption and risk of coronary heart disease: a review of epidemiologic evidence. J Atheroscler Rep 1999;1:204–209
7. Tapsell LC, Gillen LJ, Patch CS, et al. Including walnuts in a low-fat/moderate-fat diet improves HDL cholesterol-to-total cholesterol ratios in patients with type 2 diabetes. Diabetes Care 2004;27:2777–2783
8. Lovejoy JC, Most MM, Leferve M, Greenway FL, Rood JC. Effect of diets enriched in almonds on insulin action and serum lipids in adults with normal glucose tolerance or type 2 diabetes. Am J Clin Nutr 2002;76:1000–1006
9. Scott LW, Balasubramanayam A, Kimball KT, Aherns AK, Fordis CM Jr, Ballantyne CM. Long-term, randomized clinical trial of two diets in the metabolic syndrome and type 2 diabetes. Diabetes Care 2003;26:2481–2482
10. Ma Y, Njike VY, Millet J, et al. Effects of walnut consumption on endothelial function in type 2 diabetic subjects: a randomized controlled crossover trial. Diabetes Care 2010;33:227–232
11. Jenness AM, Buchmann H, Furst P, Bisalski HK. Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 1996;20:251–256
12. Jenkins DJ, Chiavaroli L, Wong JM, et al. Adding monounsaturated fatty acids to a dietary portfolio of cholesterol-lowering foods in hypercholesterolemia. CMAJ 2010;182:1961–1967
13. Hu ML. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol 1994;233:380–385
14. Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008;31:2281–2283
15. Coniff RF, Shapiro JA, Seaton TB, Hoogwerf BJ, Hunt JA. A double-blind placebo-controlled trial evaluating the safety and efficacy of acarbose for the treatment of patients with insulin-requiring type II diabetes. Diabetes Care 1995;18:928–932
16. SAS Institute Inc. 2008. SAS/STAT 9.2 User’s Guide. Cary, NC, SAS Institute Inc.
17. Garg A, Bantle JP, Henry RR, et al. Effects of varying carbohydrate content of diet in patients with non-insulin-dependent diabetes mellitus. JAMA 1994;271:1421–1428
18. Jenkins DJ, Horton ES Sr, Bantle JP, et al. Nutrition principles for the management of diabetes and related complications. Diabetes Care 1994;17:490–518
19. Vessby B, Uusitupa M, Hermansen K, et al. Substituting dietary saturated for mono-unsaturated fat improves insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia 2001;44:312–319
20. American Heart Association. AHA Committee Report. Diet and coronary heart disease. Circulation 1978;58:762A–766A
21. Anderson JW, Randles KM, Kendall CW, Jenkins DJ. Carbohydrate and fiber recommendations for individuals with diabetes: a quantitative assessment and meta-analysis of the evidence. J Am Coll Nutr 2005;24:3–17
22. Sabaté J. Nut consumption and body weight. Am J Clin Nutr 2003;78(Suppl.): 647S–650S
23. U.S. Food and Drug Administration. Guidance for industry: diabetes mellitus: developing drugs and therapeutic biologics for treatment and prevention. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071624.pdf. Released 13 February 2008. Accessed 18 November 2010
24. Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560–2572
25. Dansinger ML, Gleason JA, Griffith JL, Selker HP, Scharf EJ. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA 2005;293:43–53