Communication Complexity of Distributed Convex Learning and Optimization

Yossi Arjevani
Weizmann Institute of Science
yossi.arjevani@weizmann.ac.il

Ohad Shamir
Weizmann Institute of Science
ohad.shamir@weizmann.ac.il

Abstract

We study the fundamental limits to communication-efficient distributed methods for convex learning and optimization, under different assumptions on the information available to individual machines, and the types of functions considered. We identify cases where existing algorithms are already worst-case optimal, as well as cases where further improvement is still possible. Among other things, our results indicate that without similarity between the local objective functions (due to statistical data similarity or otherwise) many communication rounds may be required, even if the machines have unbounded computational power.

1 Introduction

We consider the problem of distributed convex learning and optimization, where a set of m machines, each with access to a different local convex function $F_i : \mathbb{R}^d \mapsto \mathbb{R}$ and a convex domain $\mathcal{W} \subseteq \mathbb{R}^d$, attempt to solve the optimization problem

$$\min_{w \in \mathcal{W}} F(w) \quad \text{where} \quad F(w) = \frac{1}{m} \sum_{i=1}^{m} F_i(w).$$

A prominent application is empirical risk minimization, where the goal is to minimize the average loss over some dataset, where each machine has access to a different subset of the data. Letting $\{z_1, \ldots, z_m\}$ be the dataset composed of N examples, and assuming the loss function $\ell(w, z)$ is convex in w, then the empirical risk minimization problem $\min_{w \in \mathcal{W}} \frac{1}{N} \sum_{i=1}^{N} \ell(w, z_i)$ can be written as in Eq. (1), where $F_i(w)$ is the average loss over the subset of examples to which machine i has access.

The main challenge in solving such problems is that communication between the different machines is usually slow and constrained, at least compared to the speed of local processing. On the other hand, the datasets involved in distributed learning are usually large and high-dimensional. Therefore, machines cannot simply communicate their entire data to each other, and the question is how well can we solve problems such as Eq. (1) using as little communication as possible.

As datasets continue to increase in size, and parallel computing platforms becoming more and more common (from multiple cores on a single CPU to large-scale and geographically distributed computing grids), distributed learning and optimization methods have been the focus of much research in recent years, with just a few examples including [23, 4, 25, 15, 12, 22, 15, 16, 8, 7, 9, 11, 19, 18, 3, 24]. Most of this work studied algorithms for this problem, which provide upper bounds on the time and communication complexity required.
In this paper, we take the opposite direction, and study what are the fundamental performance limitations in solving Eq. (1), under several different sets of assumptions. We identify cases where existing algorithms are already optimal (at least in the worst-case), as well as the cases where room for further improvement is still possible.

Since a major constraint in distributed learning is communication, we focus on studying the amount of communication required to optimize Eq. (1) up to some desired accuracy \(\epsilon \). More precisely, we consider the number of communication rounds that are required, where in each communication round the machines can generally broadcast to each other information linear in the problem’s dimension \(d \) (e.g. a point in \(\mathcal{W} \) or a gradient). This applies to virtually all algorithms for large-scale learning we are aware of, where sending vectors and gradients is feasible, but computing and sending larger objects, such as Hessians (\(d \times d \) matrices) is not.

Our results pertain to several possible settings (see Sec. 2 for precise definitions). First, we distinguish between the local functions being merely convex or strongly-convex, and whether they are smooth or not. These distinctions are standard in studying optimization algorithms for learning, and capture important properties such as the regularization and the type of loss function used. Second, we distinguish between a setting where the local functions are related – e.g., because they reflect the average loss of a dataset split uniformly at random between the machines – and a setting where no relationship is assumed. In the former case, one can show that quantities such as the values, gradients and Hessians of the local functions differ by \(\delta = \mathcal{O}(1/\sqrt{n}) \), where \(n \) is the sample size per machine, and this can be used to speed up the optimization/learning process (as was done in e.g. [19, 24]). Both of these settings can be studied in a unified way, by letting \(\delta \) be a parameter and studying the attainable lower bounds as a function of \(\delta \). Our results can be summarized as follows:

- First, we define a mild structural assumption on the algorithm (which is satisfied by reasonable approaches we are aware of), which allows us to provide the lower bounds described below on the number of communication rounds required to reach a given suboptimality \(\epsilon \).
 - When the local functions can be unrelated, we prove a lower bound of \(\Omega(\sqrt{1/\lambda \log(1/\epsilon)}) \) for smooth and \(\lambda \)-strongly convex functions, and \(\Omega(\sqrt{1/\epsilon}) \) for smooth convex functions. These lower bounds are matched by a straightforward distributed implementation of accelerated gradient descent. In particular, the results imply that many communication rounds may be required to get a high-accuracy solution, and moreover, that no algorithm satisfying our structural assumption would be better, even if we endow the local machines with unbounded computational power. For non-smooth functions, we show a lower bound of \(\Omega(\sqrt{1/\lambda \epsilon}) \) for \(\lambda \)-strongly convex functions, and \(\Omega(1/\epsilon) \) for general convex functions. We conjecture that the optimal algorithm in this case is again a straightforward distributed implementation of the subgradient method.
 - When the local functions are related (as quantified by the parameter \(\delta \)), we prove a communication round lower bound of \(\Omega(\sqrt{\delta/\lambda \log(1/\epsilon)}) \) for smooth and \(\lambda \)-strongly convex functions. For quadratics, this bound is matched by (up to constants and logarithmic factors) by the recently-proposed DISCO algorithm [24]. However, getting an optimal algorithm for general strongly convex and smooth functions in the \(\delta \)-related setting, let alone for non-smooth or non-strongly convex functions, remains open.

- We also study the attainable performance without posing any structural assumptions on the algorithm, but in the more restricted case where only a single round of communication is allowed. We prove that in a broad regime, the performance of any distributed algorithm may be no better than a “trivial” algorithm which returns the minimizer of one of the local functions, as long as the number of bits communicated is
Related Work

There have been several previous works which considered lower bounds in the context of distributed learning and optimization, but to the best of our knowledge, none of them provide a similar type of results. Perhaps the most closely-related paper is \cite{21}, which studies the communication complexity of distributed optimization, and showed that $\Omega(d \log(1/\epsilon))$ bits of communication are necessary between the machines, for d-dimensional convex problems. However, in our setting this does not lead to any non-trivial lower bound on the number of communication rounds (indeed, just specifying a d-dimensional vector up to accuracy ϵ required $O(d \log(1/\epsilon))$ bits). More recently, \cite{2} considered lower bounds for certain types of distributed learning problems, but not convex ones in an agnostic distribution-free framework. In the context of lower bounds for one-round algorithms, the results of \cite{6} imply that $\Omega(d^2)$ bits of communication are required to solve linear regression in one round of communication. However, that paper assumes a different model than ours, where the function to be optimized is not split as in Eq. (1), where each F_i is convex. Moreover, issues such as strong convexity and smoothness are not considered. \cite{19} proves an impossibility result for a one-round distributed learning scheme, even when the local functions are not merely related, but actually result from splitting data uniformly at random between machines. On the flip side, that result is for a particular algorithm, and doesn’t apply to any possible method.

Finally, we emphasize that distributed learning and optimization can be studied under many settings, including ones different than those studied here. For example, one can consider distributed learning on a stream of i.i.d. data \cite{18,7,10,8}, or settings where the computing architecture is different, e.g. where the machines have a shared memory, or the function to be optimized is not split as in Eq. (1). Studying lower bounds in such settings is an interesting topic for future work.

2 Notation and Framework

The only vector and matrix norms used in this paper are the Euclidean norm and the spectral norm, respectively. e_j denotes the j-th standard unit vector. We let $\nabla G(w)$ and $\nabla^2 G(w)$ denote the gradient and Hessians of a function G at w, if they exist. G is smooth (with parameter L) if it is differentiable and the gradient is L-Lipschitz. In particular, if $w^* = \arg\min_{w \in W} G(w)$, then $G(w) - G(w^*) \leq \frac{L}{2} \|w - w^*\|^2$. G is strongly convex (with parameter λ) if for any w, $w' \in W$, $G(w') \geq G(w) + \langle g, w' - w \rangle + \frac{\lambda}{2} \|w' - w\|^2$ where $g \in \partial G(w')$ is a subgradient of G at w. In particular, if $w^* = \arg\min_{w \in W} G(w)$, then $G(w) - G(w^*) \geq \frac{\lambda}{2} \|w - w^*\|^2$. Any convex function is also strongly-convex with $\lambda = 0$. A special case of smooth convex functions are quadratics, where $G(w) = w^\top A w + b^\top w + c$ for some positive semidefinite matrix A, vector b and scalar c. In this case, λ and L correspond to the smallest and largest eigenvalues of A.

We model the distributed learning algorithm as an iterative process, where in each round the machines may perform some local computations, followed by a communication round where each machine broadcasts a message to all other machines. We make no assumptions on the computational complexity of the local computations. After all communication rounds are completed, a designated machine provides the algorithm’s output (possibly after additional local computation).

Clearly, without any assumptions on the number of bits communicated, the problem can be trivially solved in one round of communication (e.g. each machine communicates the function F_i to the designated machine, which then solves Eq. (1)). However, in practical large-scale scenarios, this is non-feasible, and the
size of each message (measured by the number of bits) is typically on the order of $\tilde{O}(d)$, enough to send a d-dimensional real-valued vector, such as points in the optimization domain or gradients, but not larger objects such as $d \times d$ Hessians.

In this model, our main question is the following: How many rounds of communication are necessary in order to solve problems such as Eq. (1) to some given accuracy ϵ?

As discussed in the introduction, we first need to distinguish between different assumptions on the possible relation between the local functions. One natural situation is when no relationship whatsoever is assumed. In a learning context, this corresponds to a situation where data is arbitrarily split between the different machines, or when no statistical relationships can be assumed on the data at different machines. We denote this as the unrelated setting. However, this assumption is often unnecessarily pessimistic. For example, sometimes the data is assigned to machines randomly, or data at different machines are collected from statistically similar sources. In that case, the local functions aren’t arbitrary, and in fact, due to concentration of measure effects, they can be quite similar to each other. For example, in the context of quadratic functions, we can capture this similarity using the following definition:

Definition 1. We say that a set of quadratic functions

$$F_i(w) := w^\top A_i w + b_i w + c_i, \quad A_i \in \mathbb{R}^{d \times d}, \ b_i \in \mathbb{R}^d, \ c_i \in \mathbb{R}$$

are δ-related, if for any $i, j \in \{1 \ldots k\}$, it holds that

$$\|A_i - A_j\| \leq \delta, \ \|b_i - b_j\| \leq \delta, \ |c_i - c_j| \leq \delta$$

For example, in the context of linear regression with the squared loss over a bounded subset of \mathbb{R}^d, and assuming mn data points with bounded norm are randomly and equally split among m machines, it can be shown that the conditions above hold with $\delta = O(1/\sqrt{n})$ [19]. The choice of δ provides us with a spectrum of learning problems ranked by difficulty: When $\delta = \Omega(1)$, this generally corresponds to the unrelated setting discussed earlier. When $\delta = O(1/\sqrt{n})$, we get the situation typical of randomly partitioned data. When $\delta = 0$, then all the local functions have essentially the same minimizers, in which case Eq. (1) can be trivially solved with zero communication, just by letting one machine optimize its own local function. We note that although Definition 1 can be generalized to non-quadratic functions, we do not need it for the results presented here.

We end this section with an important remark. In this paper, we prove lower bounds for the δ-related setting, which also apply when $\delta = O(1/\sqrt{n})$, the typical regime for e.g. distributed learning on randomly partitioned data. However, we emphasize that our constructions do not actually correspond to some randomly partitioned datasets. Thus, the lower bounds apply to any algorithm for randomly-partitioned data, which works only by assuming that the difference in the gradients or Hessians of the local functions are bounded by some δ, such as [19, 24]. In fact, we are not aware of any existing method, using multiple communication rounds, which handles this setting in a different way, and we suspect this may be inevitable: After multiple communication rounds, the initial statistical independence between the data points (conditioned on the algorithm’s state) gets quickly destroyed, so it seems we are only left with deterministic assumptions on the similarity of the local functions.

1The \tilde{O} hides constants and factors logarithmic in the required accuracy of the solution. The idea is that we can represent real numbers up to some arbitrarily high machine precision, enough so that finite-precision issues are not a problem.
3 Lower Bounds Using a Structural Assumption

In this section, we present lower bounds on the number of communication rounds, where we impose a certain mild structural assumption on the operations performed by the algorithm. Roughly speaking, our lower bounds pertain to a very large class of algorithms, which are based on linear operations involving points, gradients, and vector products with local Hessians and their inverses, as well as solving local optimization problems involving such quantities. At each communication round, the machines can share any of the vectors they have computed so far. Formally, we consider algorithms which satisfy the assumption stated below. For convenience, we state it for smooth functions (which are differentiable) and discuss the case of non-smooth functions in Sec. 3.2.

Assumption 1. For each machine j, define a set $W_j \subset \mathbb{R}^d$, initially $W_j = \{0\}$. Between communication rounds, each machine j iteratively computes and adds to W_j some finite number of points w, each satisfying

$$
\gamma w + \nu \nabla F_j(w) \in \text{span}\left\{ w', \nabla F_j(w'), (\nabla^2 F_j(w') + D)w'', (\nabla^2 F_j(w') + D)^{-1}w'' \right\}
$$

for some $\gamma, \nu \geq 0$ such that $\gamma + \nu > 0$. After every communication round, let $W_j := \bigcup_{i=1}^m W_i$ for all j. The algorithm’s final output (provided by the designated machine j) is a point in the span of W_j.

This assumption requires several remarks:

• Note that W_j is not an explicit part of the algorithm: It simply includes all points computed by machine j so far, or communicated to it by other machines, and is used to define the set of new points which the machine is allowed to compute.

• The assumption bears some resemblance – but is far weaker – than standard assumptions used to provide lower bounds for iterative optimization algorithms. For example, a common assumption (see [13]) is that each computed point w must lie in the span of the previous gradients. This corresponds to a special case of Assumption 1 where $\gamma = 1, \nu = 0$, and the span is only over gradients of previously computed points. However, it also allows (for instance) exact optimization of each local function, which is a subroutine in some distributed algorithms (e.g. [25, 23]), by setting $\gamma = 0, \nu = 1$ and computing a point w satisfying $\gamma w + \nu \nabla F_j(w) = 0$. By allowing the span to include previous gradients, we also incorporate algorithms which perform optimization of the local function plus terms involving previous gradients and points, such as [19], as well as algorithms which rely on local Hessian information and preconditioning, such as [24]. In summary, the assumption is satisfied by most techniques for black-box convex optimization that we are aware of. Finally, we emphasize that we do not restrict the number or computational complexity of the operations performed between communication rounds.

• The requirement that $\gamma, \nu \geq 0$ is to exclude algorithms which solve non-convex local optimization problems of the form $\min_w F_j(w) + \gamma \|w\|^2 + \cdots$ with $\gamma < 0$, which are unreasonable in practice and can sometimes break our lower bounds.

• The assumption that W_j is initially $\{0\}$ (namely, that the algorithm starts from the origin) is purely for convenience, and our results can be easily adapted to any other starting point by shifting all functions accordingly.
The techniques we employ in this section are inspired by lower bounds on the iteration complexity of first-order methods for standard (non-distributed) optimization (see for example [13]). These are based on the construction of ‘hard’ functions, where each gradient (or subgradient) computation can only provide a small improvement in the objective value. In our setting, the dynamics are roughly similar, but the necessity of many gradient computations is replaced by many communication rounds. This is achieved by constructing suitable local functions, where at any time point no individual machine can ‘progress’ on its own, without information from other machines.

3.1 Smooth Local Functions

We begin by presenting a lower bound when the local functions \(F_i \) are strongly-convex and smooth:

Theorem 1. For any even number \(m \) of machines, any distributed algorithm which satisfies Assumption 1, and for any \(\lambda \in (0, 1), \delta \in (0, 1) \), there exist \(m \) local quadratic functions over \(\mathbb{R}^d \) (where \(d \) is sufficiently large) which are 1-smooth, \(\lambda \)-strongly convex, and \(\delta \)-related, such that if \(w^* = \arg \min_{w \in \mathbb{R}^d} F(w) \), then the number of communication rounds required to obtain \(\hat{w} \) satisfying \(F(\hat{w}) - F(w^*) \leq \epsilon \) (for any \(\epsilon > 0 \)) is at least

\[
\frac{1}{4} \left(\sqrt{1 + \delta \left(\frac{1}{\lambda} - 1 \right)} - 1 \right) \log \left(\frac{\lambda \| w^* \|^2}{4\epsilon} \right) - \frac{1}{2} = \Omega \left(\sqrt{\frac{\delta}{\lambda}} \log \left(\frac{\lambda \| w^* \|^2}{\epsilon} \right) \right)
\]

if \(\lambda > 0 \), and at least \(\sqrt{\frac{32}{32\epsilon}} \| w^* \| - 2 \) if \(\lambda = 0 \).

The assumption of \(m \) being even is purely for technical convenience, and can be discarded at the cost of making the proof slightly more complex. Also, note that \(m \) does not appear explicitly in the bound, but does appear implicitly, via \(\delta \): As discussed previously, in a statistical setting \(\delta \) decays with \(\sqrt{1/n} \), where \(n \) is the number of examples per machine. Hence, for the same total number of examples, more machines \(m \) implies that \(\delta \) is larger.

Let us contrast our lower bound with some existing algorithms and guarantees in the literature. First, regardless of whether the local functions are similar or not, we can always simulate any gradient-based method designed for a single machine, by iteratively computing gradients of the local functions, and performing a communication round to compute their average. Clearly, this will be a gradient of the objective function \(F(\cdot) = \frac{1}{m} \sum_{i=1}^{m} F_i(\cdot) \), which can be fed into any gradient-based method such as gradient descent or accelerated gradient descent [13]. The resulting number of required communication rounds is then equal to the number of iterations. In particular, using accelerated gradient descent for smooth and \(\lambda \)-strongly convex functions yields a round complexity of \(O(\sqrt{1/\lambda} \log(\| w^* \|^2 / \epsilon)) \), and \(O(\| w^* \|^2 \sqrt{1/\epsilon}) \) for smooth convex functions. This matches our lower bound (up to constants and log factors) when the local functions are unrelated (\(\delta = \Omega(1) \)).

When the functions are related, however, the upper bounds above are highly sub-optimal: Even if the local functions are completely identical, and \(\delta = 0 \), the number of communication rounds will remain the same as when \(\delta = \Omega(1) \). To utilize function similarity while guaranteeing arbitrary small \(\epsilon \), the two most relevant algorithms are DANE [19], and the more recent DISCO [24]. For smooth and \(\lambda \)-strongly convex functions, which are either quadratic or satisfy a certain self-concordance condition, DISCO achieves \(\tilde{O}(1 + \sqrt{\delta/\lambda}) \) round complexity ([24, Thm.2]), which matches our lower bound in terms of dependence on \(\delta, \lambda \). As discussed in those papers, in statistical learning problems, where each machine is given \(n \) random data points, \(\delta \) usually scales as \(1/\sqrt{n} \), and \(\lambda \) as \(1/\sqrt{mn} \), so with the bound above, the total number of
communication rounds is only $O(\sqrt{m})$. However, for non-quadratic losses, the round complexity bounds are somewhat worse, and there are no guarantees for strongly convex and smooth functions which are not self-concordant. Thus, the question of the optimal round complexity for such functions remains open.

The full proof of Thm. 1 appears in the appendix, and is based on the following idea: For simplicity, suppose we have two machines, with local functions F_1, F_2 defined as follows:

$$F_1(w) = \frac{\delta(1-\lambda)}{4} w^\top A_1 w - \frac{\delta(1-\lambda)}{2} e_1^\top w + \frac{\lambda}{2} \|w\|^2$$
$$F_2(w) = \frac{\delta(1-\lambda)}{4} w^\top A_2 w + \frac{\lambda}{2} \|w\|^2,$$

where $A_1 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & -1 & 0 & 0 & \cdots \\ 0 & -1 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 1 & -1 & 0 & \cdots \\ 0 & 0 & 0 & -1 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & \cdots \\ -1 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 1 & -1 & 0 & \cdots \\ 0 & 0 & -1 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 1 & -1 & \cdots \\ 0 & 0 & 0 & 0 & -1 & 1 & \cdots \end{bmatrix}$

It is easy to verify that for $\delta, \lambda \leq 1$, both $F_1(w)$ and $F_2(w)$ are 1-smooth and λ-strongly convex, as well as δ-related. Moreover, the optimum of their average is a point w^* with non-zero entries at all coordinates. However, since each local function has a block-diagonal quadratic term, it can be shown that for any algorithm satisfying Assumption 1 after T communication rounds, the points computed by the two machines can only have the first $T+1$ coordinates non-zero. No machine will be able to further 'progress' on its own, and cause additional coordinates to become non-zero, without another communication round. This leads to a lower bound on the optimization error which depends on T, resulting in the theorem statement after a few computations.

3.2 Non-smooth Local Functions

Remaining in the framework of algorithms satisfying Assumption 1, we now turn to discuss the situation where the local functions are not necessarily smooth or differentiable. For simplicity, our formal results here will be in the unrelated setting, and we only informally discuss their extension to a δ-related setting (in a sense relevant to non-smooth functions). Formally defining δ-related non-smooth functions is possible but not altogether trivial, and is therefore left to future work.

We adapt Assumption 1 to the non-smooth case, by allowing gradients to be replaced by arbitrary subgradients at the same points. Namely, we replace Eq. (2) by the requirement that for some $g \in \partial F_j(w)$, and $\gamma, \nu \geq 0, \gamma + \nu > 0$,

$$\gamma w + \nu g \in \text{span}\left\{w', g', (\nabla^2 F_j(w') + D)w'', (\nabla^2 F_j(w') + D)^{-1}w'' \right\}$$
$$w', w'' \in W_j, \quad g' \in \partial F_j(w'), \quad D \text{ diagonal}, \quad \nabla^2 F_j(w') \text{ exists}, \quad (\nabla^2 F_j(w') + D)^{-1} \text{ exists}.$$

The lower bound for this setting is stated in the following theorem.

Theorem 2. For any even number m of machines, any distributed optimization algorithm which satisfies Assumption 1 and for any $\lambda \geq 0$, there exist $(1 + \lambda)$-Lipschitz continuous convex local functions $F_1(w)$ and $F_2(w)$ over the unit Euclidean ball in \mathbb{R}^d (where d is sufficiently large), such that if
As in Thm.\ref{thm:unrelated}, we note that the assumption of even m is for technical convenience. This theorem, together with Thm.\ref{thm:related} implies that both strong convexity and smoothness are necessary for the number of communication rounds to scale logarithmically with the required accuracy ϵ. We emphasize that this is true even if we allow the machines unbounded computational power, to perform arbitrarily many operations satisfying Assumption\ref{assumption:1}. In terms of tightness, we are not aware of algorithms matching this lower bound. One natural candidate is a distributed implementation of the subgradient method\cite{13}, where each iteration we use a communication round to compute a subgradient with respect to the average function F. The number of communication rounds is then $O(1/\epsilon^2)$ in the general convex case\cite{13}, and $O(1/\lambda\epsilon)$ in the strongly convex case\cite{14}. We conjecture that this approach is actually optimal when the local functions are unrelated, and that it should be possible to strengthen our lower bounds. For the δ-related setting, and non-smooth functions, we are not aware of any relevant algorithms in the literature adapted to such a setting, and the question of attainable performance there remains wide open.

The full proof of Thm.\ref{thm:related} appears in the appendix. The proof idea relies on the following construction: Assume that we fix the number of communication rounds to be T, and (for simplicity) that T is even and the number of machines is 2. Then we use local functions of the form

\[
F_1(w) = \frac{1}{\sqrt{2}}|b - w_1| + \frac{1}{\sqrt{2(T + 2)}}(|w_2 - w_3| + |w_4 - w_5| + \cdots + |w_T - w_{T+1}|) + \frac{\lambda}{2} \|w\|^2
\]

\[
F_2(w) = \frac{1}{\sqrt{2(T + 2)}}(|w_1 - w_2| + |w_3 - w_4| + \cdots + |w_{T+1} - w_{T+2}|) + \frac{\lambda}{2} \|w\|^2,
\]

where b is a suitably chosen parameter. Being a sum of convex functions, both local functions are convex, and can be shown to be 1-Lipschitz. Similar to the smooth case, we argue that after T communication rounds, the resulting points w computed by machine 1 will be non-zero only on the first $T + 1$ coordinates, and the points w computed by machine 2 will be non-zero only on the first T coordinates. Intuitively, this is because for any such w, there exist subgradients of the local function which will be zero on the zero coordinates, and the Hessians of F_1, F_2 (where they exist) are always zero, so no algorithm satisfying Assumption\ref{assumption:1} will allow machines to ‘progress’ on their own without a communication round.

Finally, although the result is in the unrelated setting, it is straightforward to have a similar construction in a ‘δ-related’ setting, by multiplying F_1 and F_2 by δ. The resulting two functions have their gradients and subgradients at most δ-different from each other, and the construction above leads to a lower bound of $\Omega(\delta/\epsilon)$ for convex Lipschitz functions, and $\Omega(\delta \sqrt{T}/\lambda\epsilon)$ for λ-strongly convex Lipschitz functions.

4 One Round of Communication

In this section, we study what lower bounds are attainable without any kind of structural assumption (such as Assumption\ref{assumption:1}). This is a more challenging setting, and the result we present will be limited to algorithms using a single round of communication round. We note that this still captures a realistic non-interactive distributed computing scenario, where we want each machine to broadcast a single message, and a designated machine is then required to produce an output. In the context of distributed optimization, a natural example is a one-shot averaging algorithm, where each machine optimizes its own local data, and the resulting points are averaged (e.g.\cite{25,23}).
Intuitively, with only a single round of communication, getting an arbitrarily small error ϵ may be infeasible. The following theorem establishes a lower bound on the attainable error, depending on the strong convexity parameter λ and the similarity measure δ between the local functions, and compares this with a ‘trivial’ zero-communication algorithm, which just returns the optimum of a single local function:

Theorem 3. For any even number m of machines, any dimension d larger than some numerical constant, any $\delta \geq 3\lambda > 0$, and any (possibly randomized) algorithm which communicates at most $d^2/128$ bits in a single round of communication, there exist m quadratic functions over \mathbb{R}^d, which are δ-related, λ-strongly convex and 9λ-smooth, for which the following hold for some positive numerical constants c, c':

- The point \hat{w} returned by the algorithm satisfies
 $$
 \mathbb{E} \left[F(\hat{w}) - \min_{w \in \mathbb{R}^d} F(w) \right] \geq c\delta^2 / \lambda
 $$
 in expectation over the algorithm’s randomness.

- For any machine j, if $\hat{w}_j = \arg \min_{w \in \mathbb{R}^d} F_j(w)$, then
 $$
 F(\hat{w}_j) - \min_{w \in \mathbb{R}^d} F(w) \leq c'\delta^2 / \lambda.
 $$

The theorem shows that unless the communication budget is extremely large (quadratic in the dimension), there are functions which cannot be optimized to non-trivial accuracy in one round of communication, in the sense that the same accuracy (up to a universal constant) can be obtained with a ‘trivial’ solution where we just return the optimum of a single local function. This complements an earlier result in [19], which showed that a particular one-round algorithm is no better than returning the optimum of a local function, under the stronger assumption that the local functions are not merely δ-related, but are actually the average loss over some randomly partitioned data.

The full proof appears in the appendix, but we sketch the main ideas below. As before, focusing on the case of two machines, and assuming machine 2 is responsible for providing the output, we use

$$
F_1(w) = 3\lambda w^\top \left(\left(I + \frac{1}{2c\sqrt{d}} M \right)^{-1} - \frac{1}{2} I \right) w
$$

$$
F_2(w) = \frac{3\lambda}{2} \|w\|^2 - \delta e_j,
$$

where M is essentially a randomly chosen $\{-1, +1\}$-valued $d \times d$ symmetric matrix with spectral norm at most $c\sqrt{d}$, and c is a suitable constant. These functions can be shown to be δ-related as well as λ-strongly convex. Moreover, the optimum of $F(w) = \frac{1}{2}(F_1(w) + F_2(w))$ equals

$$
\hat{w} = \frac{\delta}{6\lambda} \left(I + \frac{1}{2c\sqrt{d}} M \right) e_j.
$$

Thus, we see that the optimal point \hat{w} depends on the j-th column of M. Intuitively, the machines need to approximate this column, and this is the source of hardness in this setting: Machine 1 knows M but not j, yet needs to communicate to machine 2 enough information to construct its j-th column. However, given a communication budget much smaller than the size of M (which is d^2), it is difficult to convey enough information on the j-th column without knowing what j is. Carefully formalizing this intuition, and using some information-theoretic tools, allows us to prove the first part of Thm.3. Proving the second part of Thm.3 is straightforward, using a few computations.
5 Summary and Open Questions

In this paper, we studied lower bounds on the number of communication rounds needed to solve distributed convex learning and optimization problems, under several different settings. Our results indicate that when the local functions are unrelated, then regardless of the local machines’ computational power, many communication rounds may be necessary (scaling polynomially with $1/\epsilon$ or $1/\lambda$), and that the worst-case optimal algorithm (at least for smooth functions) is just a straightforward distributed implementation of accelerated gradient descent. When the functions are related, we show that the optimal performance is achieved by the algorithm of [24] for quadratic and strongly convex functions, but designing optimal algorithms for more general functions remains open. Beside these results, which required a certain mild structural assumption on the algorithm employed, we also provided an assumption-free lower bound for one-round algorithms, which implies that even for strongly convex quadratic functions, such algorithms can sometimes only provide trivial performance.

Besides the question of designing optimal algorithms for the remaining settings, several additional questions remain open. First, it would be interesting to get assumption-free lower bounds for algorithms with multiple rounds of communication. Second, our work focused on communication complexity, but in practice the computational complexity of the local computations is no less important. Thus, it would be interesting to understand what is the attainable performance with simple, runtime-efficient algorithms. Finally, it would be interesting to study lower bounds for other distributed learning and optimization scenarios.

Acknowledgments

This research is supported by the Intel ICRI-CI Institute, Israel Science Foundation grant 425/13, and an FP7 Marie Curie CIG grant.

References

[1] A. Agarwal, O. Chapelle, M. Dudik, and J. Langford. A reliable effective terascale linear learning system. CoRR, abs/1110.4198, 2011.

[2] M.-F. Balcan, A. Blum, S. Fine, and Y. Mansour. Distributed learning, communication complexity and privacy. In COLT, 2012.

[3] M.-F. Balcan, V. Kanchanapally, Y. Liang, and D. Woodruff. Improved distributed principal component analysis. In NIPS, 2014.

[4] R. Bekkerman, M. Bilenko, and J. Langford. Scaling up machine learning: Parallel and distributed approaches. Cambridge University Press, 2011.

[5] S.P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

[6] K. Clarkson and D. Woodruff. Numerical linear algebra in the streaming model. In STOC, 2009.

[7] A. Cotter, O. Shamir, N. Srebro, and K. Sridharan. Better mini-batch algorithms via accelerated gradient methods. In NIPS, 2011.
[8] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction using mini-batches. *Journal of Machine Learning Research*, 13:165–202, 2012.

[9] J. Duchi, A. Agarwal, and M. Wainwright. Dual averaging for distributed optimization: Convergence analysis and network scaling. *IEEE Trans. Automat. Contr.*, 57(3):592–606, 2012.

[10] R. Frostig, R. Ge, S. Kakade, and A. Sidford. Competing with the empirical risk minimizer in a single pass. *arXiv preprint arXiv:1412.6606*, 2014.

[11] M. Jaggi, V. Smith, M. Takáč, J. Terhorst, S. Krishnan, T. Hofmann, and M. Jordan. Communication-efficient distributed dual coordinate ascent. In *NIPS*, 2014.

[12] D. Mahajan, S. Keerthy, S. Sundararajan, and L. Bottou. A parallel sgd method with strong convergence. *CoRR*, abs/1311.0636, 2013.

[13] Y. Nesterov. *Introductory lectures on convex optimization: A basic course*. Springer, 2004.

[14] A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly convex stochastic optimization. In *ICML*, 2012.

[15] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In *NIPS*, 2011.

[16] P. Richtárik and M. Takáč. Distributed coordinate descent method for learning with big data. *CoRR*, abs/1310.2059, 2013.

[17] O. Shamir. Fundamental limits of online and distributed algorithms for statistical learning and estimation. In *NIPS*, 2014.

[18] O. Shamir and N. Srebro. On distributed stochastic optimization and learning. In *Allerton Conference on Communication, Control, and Computing*, 2014.

[19] O. Shamir, N. Srebro, and T. Zhang. Communication-efficient distributed optimization using an approximate newton-type method. In *ICML*, 2014.

[20] T. Tao. *Topics in random matrix theory*, volume 132. American Mathematical Soc., 2012.

[21] J. Tsitsiklis and Z.-Q. Luo. Communication complexity of convex optimization. *J. Complexity*, 3(3):231–243, 1987.

[22] T. Yang. Trading computation for communication: Distributed stochastic dual coordinate ascent. In *NIPS*, 2013.

[23] Y. Zhang, J. Duchi, and M. Wainwright. Communication-efficient algorithms for statistical optimization. *Journal of Machine Learning Research*, 14:3321–3363, 2013.

[24] Y. Zhang and L. Xiao. Communication-efficient distributed optimization of self-concordant empirical loss. In *ICML*, 2015.

[25] M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent. In *NIPS*, 2010.
A Proofs

A.1 Proof of Thm. 1

The proof of the theorem is based on splitting the machines into two sub-groups of the same size, each of which is assigned with a finite dimensional restriction of F_1 and F_2 (see Eq. (3)), and tracing the maximal number of non-zero coordinates for vectors in W_j, the set of feasible points.

Recall that F_i are defined as follows:

$$F_1(w) = \frac{\delta(1 - \lambda)}{4} w^T A_1 w - \frac{\delta(1 - \lambda)}{2} e_1^T w + \frac{\lambda}{2} \|w\|^2$$

$$F_2(w) = \frac{\delta(1 - \lambda)}{4} w^T A_2 w + \frac{\lambda}{2} \|w\|^2,$$

where

$$A_1 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & -1 & 0 & 0 & 0 & \ldots \\
0 & -1 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & -1 & 0 & \ldots \\
0 & 0 & 0 & -1 & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}, \\
A_2 = \begin{bmatrix}
1 & -1 & 0 & 0 & 0 & 0 & \ldots \\
-1 & 1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & -1 & 0 & 0 & \ldots \\
0 & 0 & -1 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & -1 & \ldots \\
0 & 0 & 0 & 0 & -1 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}.$$

Formally speaking, we consider the matrices A_1, A_2 as infinite in size, so that each F_i is defined over $\ell^2(\mathbb{R})$, the space of square-summable sequences. To derive lower bounds in \mathbb{R}^d, we consider the following restrictions of F_i and F:

$$[F_1]_d(w) := F_i(w_1, w_2, \ldots, w_d, 0, 0, \ldots), \\ w \in \mathbb{R}^d$$

$$[F]_d(w) := \frac{[F_1]_d(w) + [F_2]_d(w)}{2}.$$

Note that $[F_i]_d(w)$ and $[F]_d(w)$ produce the same values as $F_i(w)$ and $F(w)$ do for vectors such that $w_i = 0$ for all $i \geq d$. Similarly, we define the $d \times d$ leading principal submatrices of A_i by $[A_i]_d$.

We assign half of the machines with $[F_1]_d$, and the other half with $[F_2]_d$. To prove the theorem, we need the following lemma, which formalizes the intuition described in the main paper. Let

$$E_{0,d} = \{0\}, \\ E_{T,d} = \text{span}\{e_{1,d}, \ldots, e_{T,d}\},$$

where $e_{i,d} \in \mathbb{R}^d$ denote the standard unit vectors. Then, the following holds:

Lemma 1. Suppose all the sets of feasible points satisfy $W_j \subseteq E_{T,d}$ for some $T \leq d - 1$, then under assumption (3) right after the next communication round we have $W_j \subseteq E_{T+1,d}$.

Proof. Recall that by Assumption 1, each machine can compute new points w that satisfy the following for some $\gamma, \nu \geq 0$ such that $\gamma + \nu > 0$:

$$\gamma w + \nu \nabla [F_i]_d(w) \in \text{span} \left\{ w', \nabla [F_i]_d(w'), \left(\nabla^2 [F_i]_d(w') + D \right) w'', \left(\nabla^2 [F_i]_d(w') + D \right)^{-1} w'' \right\}$$

$$w', w'' \in W_j, \ D \text{ diagonal}, \ \nabla^2 [F_i]_d(w') \text{ exists}, \ (\nabla^2 [F_i]_d(w') + D)^{-1} \text{ exists}.$$
We now analyze the state of the sets of feasible points prior to the next communication round. Assume that T is an odd number, i.e., assume $T = 2k + 1$ for some $k = 0, 1, \ldots$. The proof for the case where T is even follows similar lines. Note that for any $w', w'' \in W_j$, we have

$$\nabla [F_1]_d(w') = \frac{\delta(1 - \lambda)}{2} [A_1]_d w' - \frac{\delta(1 - \lambda)}{2} e_1 + \lambda \frac{w'}{2} \subseteq E_{2k+1,d}$$

$$(\nabla^2 [F_1]_d(w') + D)w'' = \left(\frac{\delta(1 - \lambda)}{2} [A_1]_d + D + \lambda I \right) w'' \subseteq E_{2k+1,d}$$

$$(\nabla^2 [F_1]_d(w') + D)^{-1} w'' = \left(\frac{\delta(1 - \lambda)}{2} [A_1]_d + D + \lambda I \right)^{-1} w'' \subseteq E_{2k+1,d}$$

For any viable diagonal matrix D. Therefore, since $W_j \subseteq E_{2k+1,d}$, we have that the first point generated by machines which hold $[F_1]_d(w)$ must satisfy

$$\gamma w + \nu \nabla [F_1]_d(w) \in E_{2k+1,d}$$

for γ, ν as stated in the assumption. That is,

$$\left(\frac{\delta(1 - \lambda)}{2} \nu [A_1]_d + (\gamma + \nu \lambda I) \right) w - \frac{\delta(1 - \lambda)}{2} e_1 \in E_{2k+1,d}$$

Which implies,

$$\left(\frac{\delta(1 - \lambda)}{2} \nu [A_1]_d + (\gamma + \nu \lambda I) \right) w \in E_{2k+1,d}$$

Since $[A_1]_d$ is positive semidefinite, it holds that H is invertible. Also, $[A_1]_d, H$ and H^{-1} admit the same partitions into 1×1 and 2×2 blocks on the diagonal, thus $H^{-1}E_{2k+1,d} \subseteq E_{2k+1,d}$, yielding $w \in E_{2k+1,d}$. Inductively extending the latter argument shows that, in the absence of any communication rounds, all the machines whose local function is $[F_1]_d(w)$ are ‘stuck’ in $E_{2k+1,d}$.

As for machines which contain $[F_2]_d(w)$, we have that for all $w', w'' \in W_j$

$$\nabla [F_2]_d(w') = \frac{\delta(1 - \lambda)}{2} [A_2]_d w' + \frac{\lambda}{2} w' \subseteq E_{2k+2,d}$$

$$(\nabla^2 [F_2]_d(w') + D)w'' = \left(\frac{\delta(1 - \lambda)}{2} [A_2]_d + D + \lambda I \right) w'' \subseteq E_{2k+2,d}$$

$$(\nabla^2 [F_2]_d(w') + D)^{-1} w'' = \left(\frac{\delta(1 - \lambda)}{2} [A_2]_d + D + \lambda I \right)^{-1} w'' \subseteq E_{2k+2,d}$$

For any viable diagonal matrix D. Therefore, the first generated point by these machines must satisfy,

$$\gamma w + \nu \nabla [F_1]_d(w) \in E_{2k+2,d}$$

for appropriate γ, ν. Hence,

$$\left(\frac{\delta(1 - \lambda)}{2} \nu [A_2]_d + (\gamma + \nu \lambda I) \right) w \in E_{2k+2,d}$$
Similarly to the previous case this implies that \(w \in E_{2k+2,d} \). It is now left to show that these machines cannot make further progress beyond \(E_{2k+2,d} \) without communicating. To see this, note that for all \(w', w'' \in \mathbb{E}_{2k+2,d} \) we have,

\[
\nabla [F_2]_{d} (w') = \frac{\delta (1 - \lambda)}{2} [A_2]_{d} w' + \frac{\lambda}{2} w' \subseteq E_{2k+2,d}
\]

\[
(\nabla^2 [F_2]_{d}(w') + D) w'' = \left(\frac{\delta (1 - \lambda)}{2} [A_2]_{d} + D + \lambda I \right) w'' \subseteq E_{2k+2,d}
\]

\[
(\nabla^2 [F_2]_{d}(w') + D)^{-1} w'' = \left(\frac{\delta (1 - \lambda)}{2} [A_2]_{d} + DI + \lambda I \right)^{-1} w'' \subseteq E_{2k+2,d}
\]

This means that all the points which are generated subsequently also lie in \(E_{2k+2,d} \), i.e., without communicating, machines whose local function is \([F_2]_{d}(w) \) are stuck in \(E_{2k+2,d} \). Finally, executing a communication round updates all the sets of feasible points to be \(W_j := E_{2k+2,d} \).

The following is a direct consequence of a recursive application of Lemma 1.

Corollary 1. Under assumption 1, after \(T \leq d - 1 \) communication rounds we have

\[W_j \subseteq E_{T+1}, \quad j \in \{1, \ldots, m\} \]

With this corollary in hand, we now turn to prove the main result. First, we compute the minimizer of the average function \(F(w) = \frac{m}{2} F_1(w) + \frac{m}{2} F_2(w) \) in \(\ell^2(\mathbb{R}) \), denoted by \(w^* \), whose form for even number of machines is simply:

\[
F(w) = \frac{\delta (1 - \lambda)}{8} w^\top (A_1 + A_2) w - \frac{\delta (1 - \lambda)}{4} e_1^\top w + \frac{\lambda}{2} \|w\|^2
\]

By first-order optimality condition for smooth convex functions, we have

\[
\left(\frac{\delta (1 - \lambda)}{4} (A_1 + A_2) + \lambda I \right) w^* - \frac{\delta (1 - \lambda)}{4} e_1 = 0,
\]

or equivalently,

\[
\left(A_1 + A_2 + \frac{4 \lambda}{\delta (1 - \lambda)} I \right) w^* = e_1
\]

whose coordinate form is as follows

\[
2 + \frac{4 \lambda}{\delta (1 - \lambda)} \right) w^*[1] - w^*[2] = 1 \quad \forall \ k, \ w^*_{[k+1]} - \left(2 + \frac{4 \lambda}{\delta (1 - \lambda)} \right) w^*_{[k]} + w^*_{[k-1]} = 0.
\]

The optimal solution can be now realized as a geometric sequence \((\zeta^k)_{k=1}^\infty \) for some \(\zeta \) as follows:

By Eq. (5), we must have

\[
\zeta^2 - \left(2 + \frac{4 \lambda}{\delta (1 - \lambda)} \right) \zeta + 1 = 0,
\]

14
with the smallest root being
\[
\zeta = 2 + 4\lambda \frac{\delta(1 - \lambda)}{2} - \sqrt{2 + 4\lambda \frac{\delta(1 - \lambda)}{2} - 4} = 1 + \frac{2\lambda}{\delta(1 - \lambda)} - \sqrt{1 + \frac{2\lambda}{\delta(1 - \lambda)} - 1}
\] (6)

Therefore, this choice of \(\zeta \) satisfies Eq. (5), and it is straightforward to verify that it also satisfies Eq. (4), hence \(w^* \) indeed equals \((\zeta)^k_{k=1} \). It will be convenient to denote a continuous range of coordinates of \((\zeta)^k_{k=1} \) by \(\zeta_{a:b} \) where \(a \in \mathbb{N} \) and \(b \in \mathbb{N} \cup \{\infty\} \). Also, using the following inequality which holds for \(x > 1 \)
\[x - \sqrt{x^2 - 1} \geq \exp\left(-\frac{2}{\sqrt{\frac{x+1}{x-1} - 1}}\right), \quad x > 1\]
together with Eq. (6) yields
\[
\zeta \geq \exp\left(-\frac{2}{\sqrt{\delta(1/\lambda - 1) + 1} - 1}\right)
\] (7)

We now use this computation (with respect to \(F_1, F_2 \)) to find the minimizer of \([F]_d \), defined as the average function of the finite-dimensional restrictions \([F_1]_d, [F_2]_d \) actually handed to the machines. Fix \(d \in \mathbb{N} \) and denote the corresponding minimizer by
\[w^*_d = \arg\min_{w \in \mathbb{R}^d} [F]_d(w)\]
Let \(w_T \) be some point which was obtained after \(T \leq d - 2 \) communication rounds. To bound the suboptimality of \(w_T \) from below, observe that
\[
[F]_d(w_T) - [F]_d(w^*_d) \geq [F]_d(w_T) - [F]_d(\zeta_{1:d-1}) = [F]_d(w_T) - F(w^*) + F(w^*) - [F]_d(\zeta_{1:d-1}) = \underbrace{F(w_T) - F(w^*)}_{A} + \underbrace{F(w^*) - F(\zeta_{1:d-1})}_{B}
\]
where the last equality follows from Corollary (1), according to which all the coordinates of \(w_T \), except for the first \(T + 1 \leq d - 1 \), must vanish. To bound the \(A \) term, note that
\[
\|w_T - w^*\|^2 \geq \sum_{t=T+2}^{\infty} \zeta^{2t} = \zeta^{2(T+1)} \sum_{t=1}^{\infty} \zeta^{2t} = \zeta^{2(T+1)} \|w^*\|^2
\]
The fact that \(F(w) \) is \(\lambda \)-strongly convex implies
\[
F(w_T) - F(w^*) \geq \frac{\lambda}{2} \|w_T - w^*\|^2 \geq \frac{\lambda}{2} \zeta^{2(T+1)} \|w^*\|^2.
\]
Inequality (7) yields
\[
F(w_T) - F(w^*) \geq \frac{\lambda}{2} \exp\left(-\frac{4T - 4}{\sqrt{\delta(1/\lambda - 1) + 1} - 1}\right) \|w^*\|^2
\]
To bound the B term from below, note that since F is 1-smooth we have

$$F(w^*) - F(\zeta_{1:d-1}) \geq -\frac{1}{2} \|w^* - \zeta_{1:d-1}\|^2 = -\frac{\zeta^2_{2(d-1)}}{2} \sum_{t=1}^{\infty} \zeta^{2t} = -\frac{\zeta^2_{2(d-1)}}{2} \|w^*\|^2$$

Combining both lower bounds for the terms A and B, we get for any $T \leq d - 2$

$$[F]_d(w_T) - [F]_d(w^*_d) \geq \left(\frac{\lambda}{2} \exp\left(-\frac{4T}{\delta(1/\lambda - 1)} - \frac{\zeta^2_{2(d-1)}}{2}\right)\right) \|w^*\|^2$$

Picking d sufficiently large, and considering how large the number of communication rounds T must be to make this lower bound less than ϵ, we get

$$T \geq \frac{\sqrt{\delta(1/\lambda - 1)} + 1 - 1}{4} \ln\left(\frac{\lambda \|w^*\|^2}{4\epsilon}\right) - 1.$$

It is worth mentioning that by computing the exact minimizers of $[F]_d$ one may derive a lower bound such that the choice of d does not depend on the parameters of the problem, except for the number of communication rounds. Nevertheless, such analysis requires a more involved reasoning which we find unnecessary for stating our results.

For the non-strongly convex case, where $\lambda = 0$, using Corollary 1 and a similar analysis (virtually identical to the proof of Theorem 2.1.7 in [13]), we have that if $T \leq \frac{1}{2}(d - 1)$, then

$$F(w_T) - F(w^*) \geq \frac{3\delta \|w^*\|^2}{32(T + 2)^2}$$

Therefore, to obtain an ϵ-suboptimal solution for this case, we must have at least

$$\sqrt{\frac{3\delta}{32\epsilon}} \|w^*\| - 2$$

communication rounds, for sufficiently small ϵ.

A.2 Proof of Thm. 2

We construct two types of local functions, and provide one of them to $m/2$ of the machines, and the other function to the other $m/2$ machines, in some arbitrary order. In this case, the average function is simply the average of the two types of local functions.

We will first prove the theorem statement in the strongly convex case, where $\lambda > 0$ is given, and then explain how to extract from it the result in the non strongly convex case.

Fix a natural number k and some $b \in [0, 1/\sqrt{k}]$, to be specified later. We define the following local function over the unit ball:

$$F_{1,k}(w) = \frac{1}{\sqrt{2}} |b - w[1]| + \frac{1}{\sqrt{2k}} (|w[2] - w[3]| + |w[4] - w[5]| + \cdots + |w[k-2] - w[k-1]|) + \frac{\lambda}{2} \|w\|^2$$

$$F_{2,k}(w) = \frac{1}{\sqrt{2k}} (|w[1] - w[2]| + |w[3] - w[4]| + \cdots + |w[k-1] - w[k]|) + \frac{\lambda}{2} \|w\|^2$$

(8)
For even \(k \leq d \), and
\[
F_{1,k}(w) = \frac{1}{\sqrt{2}} |b - w[1]| + \frac{1}{\sqrt{2k}} (|w[2] - w[3]| + |w[4] - w[5]| + \cdots + |w[k - 1] - w[k]|) + \frac{\lambda}{2} \|w\|^2
\]
\[
F_{2,k}(w) = \frac{1}{\sqrt{2k}} (|w[1] - w[2]| + |w[3] - w[4]| + \cdots + |w[k - 2] - w[k - 1]|) + \frac{\lambda}{2} \|w\|^2
\]
otherwise. Being a sum of convex functions, both local functions are convex, and in fact \(\lambda \)-strongly convex due to the \(\frac{\lambda}{2} \|w\|^2 \) term. Furthermore, both function are \((1 + \lambda)\)-Lipschitz continuous over the unit Euclidean ball. To see this, let \(\partial G(w) \) denote the subgradient set of a convex function \(G \) at a point \(w \), and note that
\[
ge \in \partial |b - w[1]| \implies \ g \in \conv \{ \sigma_0, -\sigma_0 \}
\]
\[
ge \in \partial |w[l] - w[l + 1]| \implies \ g \in \conv \{ \sigma_l, -\sigma_l \}
\]
where
\[
\sigma_0 = (1, 0, \ldots, 0)
\]
\[
\sigma_l = (0, \ldots, 0, \frac{1}{l}, \ldots, \frac{1}{l+1}, 0, \ldots, 0).
\]
Assume for the moment that \(\lambda = 0 \), then by the linearity of the sub-differential operator that
\[
\forall g \in \partial F_{1,k}(w), \ |g| \leq \sqrt{\frac{1}{2} + \frac{k - 1}{2k}} \leq 1
\]
\[
\forall g \in \partial F_{2,k}(w), \ |g| \leq \sqrt{\frac{1}{2}}
\]
which shows that, for \(\lambda = 0 \), both functions are \(1 \)-Lipschitz. For \(\lambda > 0 \), note that \(\frac{\lambda}{2} \|w\|^2 \) is \(\lambda \)-Lipschitz over the unit ball and \(\lambda \)-strongly convex. Therefore, using the linearity of the sub-differential operator again, we see that both \(F_i \) are \((1 + \lambda)\)-Lipschitz and \(\lambda \)-strongly convex functions over the unit ball.

Similar to the smooth case, the following lemma shows that, no matter how the subgradients are chosen, at each iteration at most one non-zero coordinate may be gained.

Lemma 2. Suppose all the sets of feasible points satisfy \(W_j \subseteq E_{T,d} \) for some \(T \leq d - 1 \). Then under assumption \(\mathbb{I} \) right after the next communication round we have \(W_j \subseteq E_{T+1,d} \).

Proof. Recall that by Assumption \(\mathbb{I} \) (modified for the non-differentiable case), each machine can compute new points \(w \) that satisfy the following for some \(\gamma, \nu \geq 0 \) such that \(\gamma + \nu > 0 \):
\[
\gamma w + \nu g_{i,k}(w) \in \text{span} \left\{ w', (\nabla^2 F_{i,k}(w') + D)w'', (\nabla^2 F_{i,k}(w') + D)^{-1}w'' \right\}
\]
\[
w', w'' \in W_j, \ g_{i,k}(w') \in \partial F_{i,k}(w'), \ D \text{ diagonal}, \ \nabla^2 F_{i,k}(w') \text{ exists}, \ (\nabla^2 F_{i,k}(w') + D)^{-1} \text{ exists}
\]
We now analyze the state of the sets of feasible points prior to the next communication round. Assume that \(T \) is an odd number, i.e., assume \(T = 2p + 1 \) for some \(p \in \mathbb{N} \cup \{0\} \). We show that as long as no communication round has been executed, it must hold that \(W_j \subseteq E_{T,d} \) for machines whose local function is \(F_1 \), and that \(W_j \subseteq E_{T+1,d} \) for machines whose local function is \(F_2 \). The case where \(T \) is even follows a similar line.
Let

\[E_{0,d} = \{0\}, \quad E_{T,d} = \text{span}\{e_{1,d}, \ldots, e_{T,d}\} \]

where \(e_{i,d} \in \mathbb{R}^d \) denote the standard unit vectors. First, we prove the claim for machines whose local function is \(F_{1,k} \). In which case, for any \(w', w'' \in E_{2p+1,d} \), it holds that

\[
\begin{align*}
\mathbf{g}_{1,k}(w') &\subseteq \text{conv}\{\pm \sigma_{2l} | l = 0, \ldots, p\} \subseteq E_{2p+1,d} \\
(\nabla^2 F_{1,k}(w') + D) w'' &= (\lambda I + D) w'' \subseteq E_{2p+1,d} \\
(\nabla^2 F_{1,k}(w') + D)^{-1} w'' &= (\lambda I + D)^{-1} w'' \subseteq E_{2p+1,d}
\end{align*}
\]

For any viable diagonal matrix \(D \). Therefore, we have that the first point generated by machines which hold \(F_{1,k} \) must satisfy

\[
\gamma w + \nu \mathbf{g}_{1,k}(w) \in E_{2p+1,d}
\]

(9)

for \(\gamma, \nu \) as stated in Assumption (1). Note that, if \(\nu = 0 \) (which by assumption means that \(\gamma > 0 \)) then clearly \(w \in E_{2p+1,d} \). As for \(\nu \neq 0 \), suppose by contradiction that \(w \notin E_{2p+1,d} \). That is, assume that there exists some \(j > 2p + 1 \) such that \(w[j] \neq 0 \). First, if \(j = d \) and \(d \) is even, then the absolute value terms in \(F_{1,k} \) do not involve \(w[j] \), and therefore \(\mathbf{g}_{1,k}(w)[j] = \lambda w[j] \). In this case, by Eq. (9) we have

\[
\gamma w[j] + \nu \lambda w[j] = (\gamma + \nu \lambda) w[j] = 0,
\]

and since \(\nu \lambda > 0 \), this implies that \(w[j] = 0 \) — a contradiction! Thus, it remains to consider the cases of either odd \(d \) or \(j \neq d \). In both of these cases, \(w[j] \) appears in one of the absolute value terms in \(F_{1,k} \), either as \(|w[j] - w[j]| \) or \(|w[j] - w[j+1]| \) (depending on whether \(j \) is odd or even).

Let \(l > p \) be such that either \(2l = j \) or \(2l + 1 = j \), depending on the parity of \(j \). We note that any valid subgradient must satisfy

\[
\begin{align*}
\mathbf{g}_{1,k}(w)[2l] &= \frac{2\alpha - 1}{\sqrt{2k}} + \lambda w[2l] \\
\mathbf{g}_{1,k}(w)[2l+1] &= \frac{1 - 2\alpha}{\sqrt{2k}} + \lambda w[2l+1]
\end{align*}
\]

for some \(\alpha \in [0,1] \), such that if \(w[2l] - w[2l+1] \neq 0 \) then

\[
\text{sgn} (w[2l] - w[2l+1]) = \text{sgn} \left(\frac{2\alpha - 1}{\sqrt{2k}} \right),
\]

(10)

where \(\text{sgn}(\cdot) \) is the sign function. Rearranging terms in Eq. (9) and using the facts that coordinates \(2l, 2l + 1 \) are always zero in \(E_{2p+1,d} \), as well as \(\gamma + \nu \lambda \geq \nu \lambda > 0 \), we get

\[
\begin{align*}
w[2l] &= -\frac{\nu(2\alpha - 1)}{\sqrt{2k}(\gamma + \nu \lambda)} \\
w[2l+1] &= \nu(2\alpha - 1) \sqrt{2k}(\gamma + \nu \lambda)
\end{align*}
\]

(11)

Therefore,

\[
w[2l] - w[2l+1] = -\frac{2\nu(2\alpha - 1)}{\sqrt{2k}(\gamma + \nu \lambda)}
\]

(12)
which implies
\[\text{sgn} \left(w[2l] - w[2l + 1] \right) = \text{sgn} \left(\frac{-(2\alpha - 1)}{\sqrt{2k}} \right) , \]
contradicting Eq. (10). Hence, we must have \(w[2l] - w[2l + 1] = 0 \), in which case Eq. (12) implies \(\alpha = 1/2 \).

Thus, by Eq. (11)
\[w[2l] = w[2l + 1] = 0, \]
which contradicts the assumption that either \(w[j] \) (and hence \(w[2l] \) or \(w[2l + 1] \)) is not zero. Thus, we have shown that \(w \in E_{2p+1,d} \), for the first point generated by machines holding \(F_{1,k} \). Repeating the argument, we get that any point generated by those machines, in the absence of any communication rounds, is ‘stuck’ in \(E_{2p+1,d} \).

We now turn to prove the claim for machines whose local function is \(F_{2,k} \), using an almost identical argument, which we provide below for completeness. For these functions, we assume that initially \(W_j \subseteq E_{2p+1,d} \), and will show any additional points computed locally by the machines must be in \(E_{2p+2,d} \). We begin by noting that for any \(w', w'' \in E_{2p+2,d} \) (and in particular \(E_{2p+1,d} \)), it holds that
\[
\begin{align*}
g_{2,k}(w') &\subseteq \text{conv}\{\pm\sigma_{2l+1} \mid l = 0, \ldots, p\} \subseteq E_{2p+2,d} \\
(\nabla^2 F_{2,k}(w') + D)w'' &= (\lambda I + D)w'' \subseteq E_{2p+2,d} \\
(\nabla^2 F_{2,k}(w') + D)^{-1}w'' &= (\lambda I + D)^{-1}w'' \subseteq E_{2p+2,d}
\end{align*}
\]
For any viable diagonal matrix \(D \). Therefore, we have that the first point generated by machines which hold \(F_{2,k} \) must satisfy
\[
\gamma w + \nu g_{2,k}(w) \in E_{2p+2,d} \tag{13}
\]
for \(\gamma, \nu \) as stated in the assumption. Note that, if \(\nu = 0 \) then clearly \(w \in E_{2p+2,d} \). As for \(\nu \neq 0 \), suppose by contradiction that \(w \notin E_{2p+2,d} \). That is, assume that there exists some \(j > 2p + 2 \) such that \(w[j] \neq 0 \). First, if \(j = d \) and \(d \) is odd, then the absolute value terms in \(F_{2,k} \) do not involve \(w[j] \), and therefore \(g_{2,k}(w)[j] = \lambda w[j] \). In this case, by Eq. (13) we have
\[
\gamma w[j] + \nu \lambda w[j] = (\gamma + \nu \lambda)w[j] = 0,
\]
and since \(\nu \lambda > 0 \), this implies that \(w[j] = 0 \) — a contradiction! Thus, it remains to consider the cases of either even \(d \) or \(j \neq d \). In both of these cases, \(w[j] \) appears in one of the absolute value terms in \(F_{2,k} \), either as \(|w[j] - w[j]| \) or \(|w[j] - w[j + 1]| \) (depending on whether \(j \) is odd or even).

Let \(l > p \) be such that either \(2l + 1 = j \) or \(2l + 2 = j \), depending on the parity of \(j \). We note that any valid subgradient must satisfy Any valid subgradient must satisfy
\[
\begin{align*}
g_{2,k}(w)[2l + 1] &= \frac{2\alpha - 1}{\sqrt{2k}} + \lambda w[2l + 1] \\
g_{2,k}(w)[2l + 2] &= \frac{1 - 2\alpha}{\sqrt{2k}} + \lambda w[2l + 2]
\end{align*}
\]
for some \(\alpha \in [0, 1] \), such that if \(w[2l + 1] - w[2l + 2] \neq 0 \) then
\[
\text{sgn} \left(w[2l + 1] - w[2l + 2] \right) = \text{sgn} \left(\frac{2\alpha - 1}{\sqrt{2k}} \right) \tag{14}
\]
Rearranging terms in Eq. (13) and using the fact that \(\gamma + \nu \lambda \geq \nu \lambda > 0 \), we get

\[
\begin{align*}
 w[2l + 1] &= \frac{-\nu(2\alpha - 1)}{\sqrt{2k(\gamma + \nu \lambda)}} \\
 w[2l + 2] &= \frac{\nu(2\alpha - 1)}{\sqrt{2k(\gamma + \nu \lambda)}}
\end{align*}
\]

Therefore,

\[
\begin{align*}
 w[2l + 1] - w[2l + 2] &= \frac{-2\nu(2\alpha - 1)}{\sqrt{2k(\gamma + \nu \lambda)}}
\end{align*}
\]

which implies

\[
\text{sgn} \left(w[2l + 1] - w[2l + 2] \right) = \text{sgn} \left(\frac{-(2\alpha - 1)}{\sqrt{2k}} \right)
\]

a contradiction to Eq. (14). Hence, we must have \(w[2l + 1] - w[2l + 2] = 0 \), in which case Eq. (16) implies \(\alpha = 1/2 \). Thus, by Eq. (15)

\[
\begin{align*}
 w[2l + 1] = w[2l + 2] = 0
\end{align*}
\]

which contradicts our assumption that \(w[j] \) (and hence either \(w[2l + 1] \) or \(w[2l + 2] \) is not zero). Thus, we have shown that \(w \in E_{2p+2,d} \). As before, repeating the argument together with the assumption that \(W_j \subseteq E_{2p+2,d} \) shows that, in the absence of any communication rounds, all the machines whose local function is \(F_{2,k} \) are 'stuck' in \(E_{2p+2,d} \). Therefore, before the next communication round, \(W_j \subseteq E_{2p+2,d} \) for all machines \(j \) holding \(F_{2,j} \). Moreover, as shown earlier, \(W_j \subseteq E_{2p+1,d} \) for all machines holding \(F_{1,k} \). Therefore, after the next communication round, \(W_j \subseteq E_{2p+2,d} \) for any machine \(j \).

Repeatedly applying Lemma 2, we get the following corollary:

Corollary 2. Under assumption 1, after \(T \leq d - 1 \) communication rounds we have

\[
W_j \subseteq E_{T+1}, \quad j \in \{1, \ldots, m\}
\]

With this corollary in hand, we now turn to establish the main result, namely, bounding from below the optimality of points in \(W_j \) after \(T \) communication rounds. Choosing the dimension \(d \) such that \(T \leq d - 2 \), we employ the local functions defined in Eq. (8) with \(k = T + 2 \). In which case, the average function is

\[
F(w) = \frac{1}{2} F_{1,T+2}(w) + \frac{1}{2} F_{2,T+2}(w) = \frac{1}{2} \sqrt{2} |b - w[1]| + \frac{1}{2} \sqrt{2(T + 2)} \sum_{i=1}^{T+1} |w[i] - w[i + 1]| + \frac{\lambda}{2} \|w\|^2
\]

The key ingredient in deriving the lower bound is Corollary 2, according to which after \(T \) communication rounds, all but the first \(T + 1 \) coordinates must be zero, in particular \(w[T + 2] = 0 \). Using this and the triangle inequality, we have

\[
F(w) \geq \frac{1}{2} \sqrt{2} |b - w[1]| + \frac{1}{2} \sqrt{2(T + 2)} |w[1] - w[T + 2]| + \frac{\lambda}{2} \|w\|^2
\]

\[
= \frac{1}{2} \sqrt{2} |b - w[1]| + \frac{1}{2} \sqrt{2(T + 2)} |w[1]| + \frac{\lambda |w[1]|^2}{2}
\]
for all w in W_j. Therefore, we can lower bound the objective value of the algorithm’s output by

$$\min_{w \in \mathbb{R}} \left(\frac{1}{2\sqrt{2}} |b - w| + \frac{1}{2\sqrt{2(T + 2)}} |w| + \frac{\lambda w^2}{2} \right).$$

On the flip side, the minimal value of $F(w)$ over the unit Euclidean ball can be upper bounded by $F(w_b)$ for some $b \leq \frac{1}{\sqrt{T + 2}}$, where

$$w_b = \left(b, \ldots, b, 0, \ldots, 0 \right) \text{ \scriptsize \begin{array}{l}
T + 2 \text{ times}
\end{array}}$$

Putting both bounds together yields,

$$\min_{w \in W_j} F(w) - \min_{\|w\| \leq 1} F(w) \geq \min_{w \in W_j} F(w) - F(w_b)$$

$$\geq \min_{w \in \mathbb{R}} \left(\frac{1}{2\sqrt{2}} |b - w| + \frac{1}{2\sqrt{2(T + 2)}} |w| + \frac{\lambda w^2}{2} \right) - \frac{\lambda(T + 2)b^2}{2} \tag{17}$$

Assuming $T \geq \frac{1}{2\lambda} - 2$ (so that $\lambda \geq \frac{1}{2(T + 2)}$), we take

$$b = \frac{1}{2\lambda(T + 2)\sqrt{2(T + 2)}}$$

(note again that w_b is indeed in the unit ball for this regime of λ and T). In this case, the minimal w in Eq. (17) is $\frac{1}{2\lambda(T + 2)\sqrt{2(T + 2)}}$, so we get a suboptimality lower bound of

$$\left(0 + \frac{1}{2\sqrt{2(T + 2)}} \right) \left(\frac{1}{2\lambda(T + 2)\sqrt{2(T + 2)}} \right) + \frac{1}{8\lambda((T + 2)\sqrt{2(T + 2)})} - \frac{1}{16\lambda(T + 2)^2}\right)$$

$$= \frac{1}{16\lambda(T + 2)^2}$$

This bound holds in particular for any $T \geq \left\lceil \frac{1}{2\lambda} - 2 \right\rceil$. If the number of communication rounds T is less than $\left\lceil \frac{1}{2\lambda} - 2 \right\rceil$, then clearly we cannot do better than with $\left\lceil \frac{1}{2\lambda} - 2 \right\rceil$ communication rounds. Therefore, for any number of communication rounds T, the suboptimality is at least

$$\min \left\{ \frac{1}{16\lambda \left(\left\lceil \frac{1}{2\lambda} - 2 \right\rceil + 2 \right)^2}, \frac{1}{16\lambda(T + 2)^2} \right\}.$$

Therefore, for any $\epsilon \in \left(0, \frac{1}{16\lambda \left(\left\lceil \frac{1}{2\lambda} - 2 \right\rceil + 2 \right)^2} \right]$, we would need at least $T \geq \sqrt{\frac{1}{16\lambda\epsilon} - 2}$ communication rounds to get an ϵ-suboptimal solution. This implies the theorem statement for λ-strongly convex functions.

Finally, we treat the case where the local functions are not required to be strongly convex. In this setting, for proving a lower bound, we can use the same construction as in Eq. (8), where we are free to choose any
λ. In particular, let us choose $\lambda = \frac{1}{2(T + 2)}$, and apply the lower bound derived above (note that in this case the condition $T \geq \frac{1}{2\lambda} - 2$ trivially holds). Plugging in it into (18), we establish that for any number of communication rounds T, the suboptimality is at least

$$\frac{1}{8(T + 2)}.$$

Considering how large T must be to make this smaller than some ϵ, we get that T must be at least $\frac{1}{8\epsilon} - 2$.

A.3 Proof of Thm. 3

As usual, we construct two functions F_1, F_2, and provide F_1 to $m/2$ of the machines, and F_2 to the other $m/2$ machines, in some arbitrary order, such that the machine designated to provide the output receives F_2. Note that the average function F is simply $\frac{1}{2}(F_1(w) + F_2(w))$.

Let c be a certain positive numerical constant (whose value corresponds to c in Lemma 6 below). Given some symmetric $M \in \{-1, +1\}^{d \times d}$, where $\|M\| \leq c\sqrt{d}$, and $j \in \{\lceil d/2 \rceil, \ldots, d\}$, define

$$F_1(w) = 3\lambda w^\top \left(\left(I + \frac{1}{2c\sqrt{d}} M \right)^{-1} - \frac{1}{2} I \right) w$$

$$F_2(w) = \frac{3\lambda}{2} \|w\|^2 - \delta e_j,$$

The average F of F_1, F_2 equals

$$F(w) = \frac{1}{2} (F_1(w) + F_2(w)) = \frac{3\lambda}{2} w^\top \left(I + \frac{1}{2c\sqrt{d}} M \right)^{-1} w - \frac{\delta}{2} e_j,$$

with an optimum at

$$w^* = \frac{\delta}{6\lambda} \left(I + \frac{1}{2c\sqrt{d}} M \right) e_j.$$

The following lemma establishes that the functions satisfy the strong convexity, smoothness and relatedness requirements of the theorem. The proof also establishes that the inverse in the definition of F_1 indeed exists.

Lemma 3. F_1 and F_2 are λ strongly-convex, 9λ smooth, and δ-related.

Proof. The Hessian of F_2 is $3\lambda I$, which implies that F_2 is 3λ smooth and strongly convex (and in particular, λ-strongly convex). As to F_1, note that since $\|M\| \leq c\sqrt{d}$, then

$$\left\| \frac{1}{2c\sqrt{d}} M \right\| \leq \frac{1}{2}.$$

The fact that the spectral radius and spectral norm of symmetric matrices coincide implies that the eigenvalues of the matrix $I + \frac{1}{2c\sqrt{d}} M$ lie between $1 - \frac{1}{2} = \frac{1}{2}$ and $1 + \frac{1}{2} = \frac{3}{2}$. Thus, all the eigenvalues are strictly positive, hence the matrix is indeed invertible as in the definition of F_1. Moreover, the eigenvalues of the inverse lie in $[\frac{1}{3/2}, \frac{1}{1/2}] = [\frac{2}{3}, 2]$, and therefore those of $3\lambda \left(I + \frac{1}{2c\sqrt{d}} M \right)^{-1} - \frac{1}{2} I$ lie in
Thus, the spectrum of the Hessian of F_1 lie in $[\lambda, 9\lambda]$, which implies that F_1 is λ-strongly convex and 9λ smooth.

To show δ-relatedness, the only non-trivial part is upper-bounding the norm of the difference of the quadratic terms, which equals the following:

$$\mathbb{E}\left(\left\| 3\lambda \left(\left(I + \frac{1}{2\sqrt{d}}M \right)^{-1} - \frac{1}{2}I \right) - \frac{3\lambda}{2} I \right\| \right).$$

Since $\|M\| \leq c\sqrt{d}$, the eigenvalues of $\left(I + \frac{1}{2\sqrt{d}}M \right)^{-1} - I$ lie between $\frac{1}{1+\frac{1}{2}} - 1 = -\frac{1}{3}$ and $\frac{1}{1-\frac{1}{2}} - 1 = 1$, which implies that Eq. (19) can be upper bounded by $3\lambda \leq \delta$.

The next lemma proves the second part of the theorem, namely an upper bound on the suboptimality of any local function optimizer.

Lemma 4. For any $\hat{w}_j = \arg\min_{w \in \mathbb{R}^d} F_j(w)$, it holds that $F(\hat{w}_j) - \min_{w \in \mathbb{R}^d} F(w) \leq c\delta^2 / \lambda$ for some numerical positive constant c.

Proof. The optimum of any quadratic and strongly-convex function $w^T A w + b^T w + c$ equals $\frac{1}{2} A^{-1} b$. Therefore, if w^* is the optimizer of F, and we denote the parameters of F and F_j by A, b, c and A_j, b_j, c_j respectively, then

$$\mathbb{E}\left(\left\| \hat{w}_j - w^* \right\| \right) = \frac{1}{2} \mathbb{E}\left(\left\| A_j^{-1} b_j - A^{-1} b \right\| \right).$$

By definition of F_1, F_2 and the average function F, this is at most

$$\frac{1}{2} \left(\left\| A_j^{-1} - A^{-1} \right\| \delta + \left\| A^{-1} \right\| \frac{\delta}{2} \right).$$

In Lemma 3 we showed that F_1, F_2 are λ-strongly convex and 9λ smooth, which implies that the eigenvalues of A_j as well as A lie in $\left[\frac{\lambda}{9}, \frac{\lambda}{3} \right]$. Therefore, the eigenvalues of A_j^{-1} and A^{-1} lie in $\left[\frac{\lambda}{3}, \frac{\lambda}{9} \right]$, so $\left\| A^{-1} \right\| \leq \frac{\lambda}{3}$ and $\left\| A_j^{-1} - A^{-1} \right\| \leq \frac{\lambda}{3}$. Substituting this back into Eq. (20), we get

$$\mathbb{E}\left(\left\| \hat{w}_j - w^* \right\| \right) \leq \frac{1}{\lambda} \left(\delta + \frac{\delta}{2} \right) = \frac{3\delta}{2\lambda}.$$
We now turn to derive the lower bound in the theorem statement. As discussed earlier, the intuition is that the optimal point w^* is a function of the j-th column of M, so the machines holding F_1 must broadcast enough information on M to the designated machine producing the algorithm’s output (the machine, by construction, holds F_2, and hence knows j but not M). As long as the communication budget is smaller than the size of M, this will be difficult to achieve. This intuition is formalized in the following lemma, which is based on information-theoretic tools:

Lemma 5. For any dimension $d \geq c$ (where c is the same constant as in Lemma 6 and the definition of F_1), and for any (possibly randomized) 1-round algorithm using at most $d^2/128$ bits of communication, there exists a valid choice of M, j for the functions F_1, F_2 defined above, such that the vector \hat{w} returned by the algorithm satisfies

$$E \left[\| \hat{w} - w^* \|^2 \right] \geq c' \left(\frac{\delta}{\lambda} \right)^2,$$

where the expectation is over the algorithm’s randomness, and c' is a positive numerical constant.

Using the lemma and the λ-strong convexity of F_1, F_2 (and hence their average F),

$$E[F(\hat{w}) - F(w^*)] \geq \frac{\lambda}{2} E[\|w - w^*\|^2] \geq \frac{c' \delta^2}{2 \lambda},$$

hence proving the theorem.

It now remains to prove Lemma 5.

Proof of Lemma 5. By definition of w^*, we have that the j-th column of M, designated as M_j, satisfies

$$M_j = 2c\sqrt{d} \left(\frac{6\lambda}{\delta} w^* - e_j \right).$$

Given the predictor \hat{w} returned by the algorithm, define

$$\hat{M}_j = 2c\sqrt{d} \left(\frac{6\lambda}{\delta} \hat{w} - e_j \right).$$

This can be thought of as the algorithm’s ‘estimate’ of the j-th column of M, based on the returned predictor.

Define $[w] = \min\{1, \max\{-1, w\}\}$ as the clipping operation of a scalar w to $[-1, +1]$, and for a vector $w = (w_1, \ldots, w_d)$, define $[w] = ([w_1], [w_2], \ldots, [w_d])$. By the expressions for M_j, \hat{M}_j above, we have

$$\left\| [M_j - \hat{M}_j] \right\|^2 = \left\| \left[2c\sqrt{d} \frac{6\lambda}{\delta} (\hat{w} - w^*) \right] \right\|^2 = \sum_{i=1}^{d} \left[\frac{12c\lambda\sqrt{d}}{\delta} (\hat{w}_i - w_i^*) \right]^2 \leq \left(\frac{12c\lambda\sqrt{d}}{\delta} \right)^2 \sum_{i=1}^{d} (\hat{w}_i - w_i^*)^2,$$

which implies that

$$\|\hat{w} - w^*\|^2 \geq \left(\frac{\delta}{12c\lambda\sqrt{d}} \right)^2 \left\| [M_j - \hat{M}_j] \right\|^2.$$

To get the lemma statement, it is enough to show that for some M, j, one can lower bound $E \left[\| [\hat{M}_j - M_j] \|^2 \right]$ (where the expectation is over the algorithm’s randomness) by some constant multiple of d.

24
Below, we will prove that if M (in the definition of F_1) is chosen uniformly at random from all \{-1, +1\}-valued $d \times d$ symmetric matrices, and j (in the definition of F_2) is chosen uniformly at random from $\{\lceil d/2 \rceil, \ldots, d\}$, then for any deterministic algorithm,

$$\mathbb{E}_{M,j} \left[\left\| \hat{M}_j - M_j \right\|^2 \right] \geq \frac{d}{8} \tag{22}$$

Let us first show how this can be used to prove the lemma. To do so, we will need the following lemma on the concentration of the spectral norm of random symmetric matrices.

Lemma 6 ([20], Corollary 2.3.6). There exist positive numerical constants c, c', such that if M is a $d \times d$ symmetric matrix, where each entry $M_{j,i}, j \geq i$ is chosen independently and uniformly from \{-1, +1\}, and $d \geq c$, then $\Pr(\|M\| > c\sqrt{d}) \leq c \exp(-c'd)$.

First, we note that the expectation in Eq. (22) is over all symmetric \{-1, +1\}-valued matrices, including those whose spectral norm may be larger than $c\sqrt{d}$. However, by Lemma 6 $\Pr(\|M\| > c\sqrt{d}) \leq c \exp(-c'd)$ for some absolute constant c'. Letting E be the event that $\|M\| > c\sqrt{d}$, and noting that $\|w\|^2 \leq d$ for any vector w, we have

$$\mathbb{E} \left[\left\| \hat{M}_j - M_j \right\|^2 \right] = \mathbb{E} \left[\left\| \hat{M}_j - M_j \right\|^2 | E \right] \Pr(E) + \mathbb{E} \left[\left\| \hat{M}_j - M_j \right\|^2 | \neg E \right] \Pr(\neg E) \leq d \Pr(E) + \mathbb{E} \left[\left\| \hat{M}_j - M_j \right\|^2 | \neg E \right] \leq cd \exp(-c'd) + \mathbb{E} \left[\left\| \hat{M}_j - M_j \right\|^2 | \neg E \right].$$

Plugging back into Eq. (22), we get that

$$\mathbb{E} \left[\left\| \hat{M}_j - M_j \right\|^2 | \neg E \right] \geq \frac{d}{8} - cd \exp(-c'd),$$

which is at least $d/16$ for any d larger than some constant. Combining with Eq. (21), we get

$$\mathbb{E} \left[\left\| \hat{w} - w^* \right\|^2 | \neg E \right] \geq \frac{1}{16} \left(\frac{\delta}{12c} \right)^2.$$

This inequality implies that for any deterministic algorithm, in expectation over the random draw of j and a \{-1, +1\}-valued matrix M with spectral norm at most $c\sqrt{d}$, $\|\hat{w} - w^*\|^2$ will be at least $c' \left(\frac{\delta}{\lambda} \right)^2$ for some suitable constant c'. By Yao’s minimax principle, this implies that for any (possibly randomized) algorithm, there will be some deterministic choice of M, j such that $\|M\| \leq c\sqrt{d}$, and for which

$$\mathbb{E} \left[\left\| \hat{w} - w^* \right\|^2 \right] \geq c' \left(\frac{\delta}{\lambda} \right)^2$$

(in expectation over the algorithm’s randomness), yielding the lemma’s statement.

It now remains to prove Eq. (22), assuming j is chosen uniformly at random from $\{\lceil d/2 \rceil, \ldots, d\}$, and M is chosen at random (i.e. each entry at or above the main diagonal is chosen independently and uniformly from \{-1, +1\}). Roughly speaking, the proof idea is to reduce this to an upper bound on how much information the machines holding M can send on M’s entries (and more particularly, on the entries
in the upper-right quadrant of M). Since this quadrant is composed of $\Theta(d^2)$ random variables, and the machines can send much less than d^2 bits, this information is necessarily restricted.

Let $\Pr(\cdot)$ denote probability with respect to the random choice of M, j, and let $\Pr_j(\cdot)$ denote probability conditioned on the choice of j. Recalling that any entry $M_{j,i}$ in the j-th column has values in $\{-1, +1\}$, it follows that either $M_{j,i}$ has the same sign as $\hat{M}_{j,i}$, or that $([M_{j,i} - \hat{M}_{j,i}]^2$ is at least 1. Therefore, we have the following:

$$
\mathbb{E} \left[\left\| \left[M_j - \hat{M}_j \right] \right\|^2 \right] = \sum_{i=1}^{d} \mathbb{E} \left[\left([M_{j,i} - \hat{M}_{j,i}]^2 \right) \right] \geq \sum_{i=1}^{[d/2]} \mathbb{E} \left[\left([M_{j,i} - \hat{M}_{j,i}]^2 \right) \right] \\
\geq \sum_{i=1}^{[d/2]} \Pr \left(M_{j,i} \hat{M}_{j,i} \leq 0 \right) = \sum_{i=1}^{[d/2]} \left(\frac{1}{1 + [d/2]} \sum_{j=[d/2]}^{d} \Pr_j \left(M_{j,i} \hat{M}_{j,i} \leq 0 \right) \right) \\
= \frac{1}{1 + [d/2]} \sum_{i=1}^{[d/2]} \sum_{j=[d/2]}^{d} \left(\frac{1}{2} \Pr_j \left(\hat{M}_{j,i} \leq 0 | M_{j,i} > 0 \right) + \frac{1}{2} \Pr_j \left(\hat{M}_{j,i} \geq 0 | M_{j,i} < 0 \right) \right) \\
\geq \frac{1}{1 + [d/2]} \sum_{i=1}^{[d/2]} \sum_{j=[d/2]}^{d} \left(1 - \left(\Pr_j \left(\hat{M}_{j,i} \geq 0 | M_{j,i} > 0 \right) - \Pr_j \left(\hat{M}_{j,i} \geq 0 | M_{j,i} < 0 \right) \right) \right) \\
\geq \frac{1}{1 + [d/2]} \sum_{i=1}^{[d/2]} \sum_{j=[d/2]}^{d} \left(1 - \left| \Pr_j \left(\hat{M}_{j,i} \geq 0 | M_{j,i} < 0 \right) - \Pr_j \left(\hat{M}_{j,i} \geq 0 | M_{j,i} > 0 \right) \right| \right) \\
= \frac{[d/2]}{2} - \frac{1}{1 + [d/2]} \sum_{i=1}^{[d/2]} \sum_{j=[d/2]}^{d} \left| \Pr_j \left(\hat{M}_{j,i} \geq 0 | M_{j,i} < 0 \right) - \Pr_j \left(\hat{M}_{j,i} \geq 0 | M_{j,i} > 0 \right) \right|. \tag{23}
$$

Let S be the vector of bits broadcasted by the machines holding F_1, and received by the machine designated with providing the output (recalling that it only holds F_2). Note that conditioned on S and j, the algorithm’s output (and hence $\hat{M}_{j,i}$) is independent of M. Therefore, we have

$$
\left| \Pr_j \left(\hat{M}_{j,i} \geq 0 | M_{j,i} < 0 \right) - \Pr_j \left(\hat{M}_{j,i} \geq 0 | M_{j,i} > 0 \right) \right| \\
= \sum_S \Pr_j \left(\hat{M}_{j,i} \geq 0 | S, M_{j,i} < 0 \right) \Pr(S | M_{j,i} < 0) - \sum_S \Pr_j \left(\hat{M}_{j,i} \geq 0 | S, M_{j,i} > 0 \right) \Pr(S | M_{j,i} > 0) \\
= \sum_S \Pr_j \left(\hat{M}_{j,i} \geq 0 | S \right) \Pr(S | M_{j,i} < 0) - \sum_S \Pr_j \left(\hat{M}_{j,i} \geq 0 | S \right) \Pr(S | M_{j,i} > 0) \\
\leq \sum_S \left| \Pr_j \left(\hat{M}_{j,i} \geq 0 | S \right) \left(\Pr(S | M_{j,i} < 0) - \Pr(S | M_{j,i} > 0) \right) \right| \\
\leq \sum_S \left| \Pr_j(S | M_{j,i} < 0) - \Pr_j(S | M_{j,i} > 0) \right| \\
\leq \sum_S \left| \Pr_j(S | M_{j,i} < 0) - \Pr_j(S) \right| + \sum_S \left| \Pr_j(S | M_{j,i} > 0) - \Pr_j(S) \right|.
$$

26
Since S is sent by the machines holding F_1 (and not F_2), it is independent of j. Therefore, we can write the above as
\[
\sum_S |\Pr(S|M_{j,i} < 0) - \Pr(S)| + \sum_S |\Pr(S|M_{j,i} > 0) - \Pr(S)|
\]
where j in the conditioning is a fixed index. Using Pinsker’s inequality, we can upper bound the above by
\[
\sqrt{2D_{kl} (p(S|M_{j,i} < 0)||p(S))} + \sqrt{2D_{kl} (p(S|M_{j,i} > 0)||p(S))}
\]
where p is the probability distribution of S, and D_{kl} is the Kullback-Leibler divergence. By the elementary inequality $\sqrt{a} + \sqrt{b} \leq \sqrt{2(a + b)}$ for all non-negative a, b, we can upper bound the above by
\[
\sqrt{\frac{1}{2} (D_{kl} (p(S|M_{j,i} < 0)||p(S)) + D_{kl} (p(S|M_{j,i} > 0)||p(S)))}
\]
Using the fact that $M_{j,i}$ (for some fixed j, i) is uniformly distributed in $\{-1, +1\}$, and that the mutual information $I(X; Y)$ between random variables X, Y equals $\mathbb{E}_Y [D_{kl}(p(X|Y = y)||p(X))]$, the above equals
\[
\sqrt{8} \sqrt{I(S; M_{j,i})}.
\]
Recalling that this is an upper bound on $|\Pr_j (M_{j,i} \geq 0|M_{j,i} < 0) - \Pr_j (M_{j,i} \geq 0|M_{j,i} > 0)|$, we have
\[
\frac{1/2}{1 + \lceil d/2 \rceil} \sum_{i=1}^{d} \sum_{j=\lceil d/2 \rceil}^{d} |\Pr_j (M_{j,i} \geq 0|M_{j,i} < 0) - \Pr_j (M_{j,i} \geq 0|M_{j,i} > 0)|
\]
\[
\leq \frac{\sqrt{2}}{1 + \lceil d/2 \rceil} \sum_{i=1}^{\lceil d/2 \rceil} \sum_{j=\lceil d/2 \rceil}^{d} \sqrt{I(S; M_{j,i})} = \frac{\sqrt{2} [d/2]}{[d/2] (1 + \lceil d/2 \rceil)} \sum_{i=1}^{\lceil d/2 \rceil} \sum_{j=\lceil d/2 \rceil}^{d} \sqrt{I(S; M_{j,i})}
\]
\[
\leq \sqrt{2} [d/2] \sqrt{\frac{1}{[d/2] (1 + \lceil d/2 \rceil)} \sum_{i=1}^{\lceil d/2 \rceil} \sum_{j=\lceil d/2 \rceil}^{d} I(S; M_{j,i})} \tag{24}
\]
where the last step is by Jensen’s inequality (i.e. the average of square roots is upper bounded by the square root of the average). The expression in the square root equals the average mutual information between a random variable S (composed of at most $d^2/128$ bits), and $\lceil d/2 \rceil (1 + \lceil d/2 \rceil)$ binary random variables $M_{j,i}$, where $i \in \{1, \ldots, \lceil d/2 \rceil\}, j \in \{\lceil d/2 \rceil, \ldots, d\}$, which are all independent by construction. By Lemma 6 in [17], it is at most $(d^2/128)/ (\lceil d/2 \rceil (1 + \lceil d/2 \rceil)) \leq 1/32$, so we have
\[
\sqrt{2} [d/2] \sqrt{\frac{1}{[d/2] (1 + \lceil d/2 \rceil)} \sum_{i=1}^{\lceil d/2 \rceil} \sum_{j=\lceil d/2 \rceil}^{d} I(S; M_{j,i})} \leq \sqrt{2} [d/2] \sqrt{\frac{1}{32}} = \frac{[d/2]}{4}.
\]
Recalling this is an upper bound on Eq. (24), which is the second term in Eq. (23), we get that
\[
\mathbb{E}_{M,j} [(M_j - \hat{M}_j)^2] \geq \frac{[d/2]}{2} - \frac{[d/2]}{4} = \frac{[d/2]}{4} \geq \frac{d}{8},
\]
therefore justifying Eq. (22).