Uncovering the Pharmacological of Xiaochaihu Decoction in the Treatment of Pancreatitis Based on the Network Pharmacology

Lianghui Zhan (✉ 1164118257@qq.com)
Tongde Hospital Of Zhejiang Province
https://orcid.org/0000-0002-7938-8444

Jinbao Pu
Tongde Hospital Of Zhejiang Province

Yijuan Hu
Tongde Hospital Of Zhejiang Province

Pan Xu
Tongde Hospital Of Zhejiang Province

Weiqing Liang
Tongde Hospital Of Zhejiang Province

Chunlian Ji
Tongde Hospital Of Zhejiang Province

Research

Keywords: Xiaochaihu Decoction (XD), pancreatitis, network pharmacology

DOI: https://doi.org/10.21203/rs.3.rs-90020/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Xiaochaihu Decoction (XD) was a traditional prescription, has been demonstrated the pharmacodynamic on pancreatitis. But the underline mechanism remained to be explored. Therefore, this study was aimed to combined network pharmacology method and molecular docking technology to demonstrate the potential mechanism of XD treated with pancreatitis.

Methods

Firstly, compounds of seven herbs containing XD were collected from TCMSP Database and the putative targets of Pancreatitis were obtained from OMIM, TTD, Genecards Database. Then PPI network was constructed according to the matching results between XD potential targets and pancreatic neoplasms targets. Furthermore, enrichment analysis on GO and KEGG by DAVID utilized bioinformatics resources. Finally, Molecular Docking was performed to simulate the interaction between the active compound of XD and putative targets.

Results

A total of 196 active ingredients and 91 putative targets were selected out. The PPI interaction network analysis demonstrated that Quercetin was the candidate agents and MAPK3, IL-6 and TP53 were the potential targets for the XD treatment of pancreatitis. The KEGG analysis revealed that pathways in cancers, TNF signaling way, MAPK signaling way might play an important role in pancreatitis therapy. And Molecular Docking results showed that Quercetin combined well with MAPK3, IL-6 and TP53.

Conclusion

This study illustrated that Quercetin containing in XD might played an important role in pancreatitis therapy by acting the key genes of MPAK3, IL-6 and TP53. And it also provided a strategy to elucidate the mechanisms of Traditional Chinese Medicine (TCM) at the level of network pharmacology.

Background

Pancreatitis is highly variable disease characterized by acute inflammation and necrosis of the pancreatic parenchyma which associated with a high mortality of about 20%-30% [1-3]. And it bought on mainly some factors that were gallstones, chronic alcohol and obesity [4-6]. Pancreatitis could divide into local complications including ascites, acute fluid collections, as well as infected necrosis and systemic complications including single organ failure or multiple organ dysfunction syndrome (MODS) [7, 8]. At present, the major therapeutic measures for pancreatitis was symptomatic treatment such as easement of pain, the correction of fluid, electrolyte, and pH balances [9]. Currently, there is lack of effective therapeutic strategy for pancreatitis, so valid drug needed to be developed. Due to the widespread
application of Traditional Chinese Medicine (TCM), it had been testified that Chinese decoctions had significant curative effect on the treatment of Pancreatitis [10, 11].

Xiaochaihu Decoction (XD) was chronic in Shanghan Lun, a famous Chinese ancient book, which was composed of Chaihu (Radix Bupleuri), Banxia (Arum Ternatum Thunb), Renshen (Panax ginseng C. A. Mey.), Gancao (licorice), Huangqin (Scutellariae Radix), Shengjiang (Zingiber officinale Roscoe) and Dazao (Jujubae Fructus), and in recent years experiments showed that XD was beneficial to prevention and cure of Pancreatitis [12, 13]. Shugen Zhang et al indicated that XD could protect pancreas against chronic injury and improve pancreatic exocrine function in DBTC induced rat CP model [14]. This hinted that XD might be a potential alternative medicine for treatment of Pancreatitis, but its pharmacological mechanism is not well understood.

With the rapid development of Network pharmacology in systems biology, it frequently used in systematically investigate the interaction between Chinese medicine and the complicated human body [15]. Network pharmacology was combined with systems biology, pharmacology and computer technology to explore the complex mechanism by which Chinese formulations treat complex diseases [16]. Furthermore, Network pharmacology applied to the research of TCM could be analysis the rationality of pharmacodynamics mechanism [17].

In the study, we aimed to use a comprehensive network pharmacology-based approach to investigate the mechanisms of how XD exerts the therapeutic effects on Pancreatitis.

Materials And Methods

Data collection of 7 herbs contained in XD

We collected the chemical ingredients of 7 herbs contained in Xiaohaihu Decoction by Traditional Chinese Medicine Systems Pharmacology Database (TCMSP, https://tcmspw.com/tcmsp.php) [18]. Then screening the requested ingredients according to conditions that oral bioavailability (OB) ≥ 30%, drug likeness (DL) ≥ 0.18. The putative targets of 7 herbs contained in Xiaochaihu Decoction were searched in Drugbank (https://www.drugbank.ca/unearth/advanced/bio_entities)

The putative targets of Pancreatitis collection

By “Pancreatitis” in order to search words, search out the putative targets in GeneCards database (https://auth.lifemapsc.com/) , OMIM database (https://www.omim.org/) and TTD database (http://db.idrblab.net/ttd/) with the with the species limited as “Homo sapiens”. Then removed the duplicate value to get the relative putative.

Gene name correction and common targets screening
Firstly, Gene name of Xiaochaihu Decoction and Pancreatitis were adjusted by Uniprot database (https://www.uniprot.org/) and then make the intersection map of component targets and disease targets by Venn map to obtain the intersection targets, and further to get the potential therapeutic targets of XD on the treatment of Pancreatitis.

TCM-Compound-Target-Disease Network construction

Intersection targets obtained from Venn map were reverse screening for corresponding chemical ingredients and herbs. And then TCM-Compound-Target-Disease Network could be constructed which was also visualized by Cytoscape 3.6.1.

Protein protein interaction (PPI) network

Targets obtained from Venn map was uploaded to STRING Database (http://string-db.org/) and the PPI network was generated with the species limited as “Homo sapiens” and medium confidence as “0.4”. And acquired PPI network was imported into Cytoscape 3.6.1 to visually analyze.

Pathway enrichment performance

The intersection targets were imported into DAVID Database (https://david.ncifcrf.gov/) and then obtained the gene function as well as the effects in the pathway. Gene ontology (GO) and pathway enrichment analyses were performed, setting list type to gene list and limiting species to Homo sapiens, and sorted the top 20 term to draw histogram by Graphpad Prism. Kyoto Encyclopedia of Genes and Genomes database (KEGG, http://www.genome.jp/kegg/) analysis was visualization by ggplot2 database.

Molecular docking method

Active compounds owed the most targets and targets closely related with Pancreatitis were imported into Discovery Studio 4 software, and then molecular docking was performed by using CDOCKER model.

Results

Active ingredients of Xiaochaihu Decoction

There were 196 active ingredients of 7 herbs containing in Xiaochaihu Decoction which were collected from TCMSP Database with the limited lists “OB≥30%, OL≥0.18”. As is shown in Table.1, the active composition included 17 in Chaihu, 13 in Banxia, 36 in Huangqin, 22 in Renshen, 29 in Daozao, 5 in shenjiang, 94 in Gancao.
Table 1: Active ingredients information of Xiaochaihu Decoction
Mol ID	Molecule Name	OB (%)	DL	Herb
MOL000073	ent-Epicatechin	48.96	0.24	*Scutellariae Radix*
MOL000096	(-)-catechin	49.68	0.24	*Jujubae Fructus*
MOL000098	quercetin	46.43	0.28	*Radix Bupleuri*licorice*Jujubae Fructus*
MOL00173	wogonin	30.68	0.23	*Scutellariae Radix*
MOL00211	Mairin	55.38	0.78	licoriceJujubae Fructus
MOL00228	(2R)-7-hydroxy-5-methoxy-2-phenylchroman-4-one	55.23	0.2	*Scutellariae Radix*
MOL00239	Jaranol	50.83	0.29	licorice
MOL00354	isorhamnetin	49.6	0.31	*Radix Bupleuri*licorice
MOL00358	beta-sitosterol	36.91	0.75	*Arum Ternatum Thunb*Panax ginseng C. A. Mey.licoriceScutellariae RadixZingiber officinaleRoscoellicoriceJujubae Fructus
MOL00359	sitosterol	36.91	0.75	*Scutellariae Radix*licorice
MOL00392	formononetin	69.67	0.21	licorice
MOL00417	Calycosin	47.75	0.24	licorice
MOL00422	kaempferol	41.88	0.24	*Radix Bupleuri*Panax ginseng C. A. Mey.licorice
MOL00449	Stigmasterol	43.83	0.76	*Arum Ternatum Thunb*Panax ginseng C. A. Mey.licoriceScutellariae RadixZingiber officinaleRoscoellicoriceJujubae FructusRadix Bupleuri
MOL00490	petunidin	30.05	0.31	*Radix Bupleuri*
MOL00492	(+)-catechin	54.83	0.24	*Jujubae Fructus*
MOL00497	licochalcone a	40.79	0.29	licorice
MOL00500	licochalcone a	40.79	0.29	licorice
MOL00500	Vestitol	74.66	0.21	licorice
MOL00519	coniferin	31.11	0.32	*Arun Ternatum Thunb*
MOL00525	Norwogonin	39.4	0.21	*Scutellariae Radix*
Code	Compound	Value 1	Value 2	Source
-----------	---	---------	---------	---
MOL000552	5,2'-Dihydroxy-6,7,8-trimethoxyflavone	31.71	0.35	Scutellariae Radix
MOL000627	Stepholidine	33.11	0.54	Jujubae Fructus
MOL000783	Protoporphyrin	30.86	0.56	Jujubae Fructus
MOL000787	Fumarine	59.26	0.83	Panax ginseng C. A. Mey. & Jujubae Fructus
MOL001454	berberine	36.86	0.78	Jujubae Fructus
MOL001458	coptisine	30.67	0.86	Scutellariae Radix
MOL001484	Inermine	75.18	0.54	licorice
MOL001490	bis[(2S)-2-ethylhexyl] benzene-1,2-dicarboxylate	43.59	0.35	Scutellariae Radix
MOL001506	Supraene	33.55	0.42	Scutellariae Radix
MOL001522	(S)-Coclaurine	42.35	0.24	Jujubae Fructus
MOL001645	Linoleyl acetate	42.1	0.2	Radix Bupleuri
MOL001698	acacetin	34.97	0.24	Scutellariae Radix
MOL001755	24-Ethylcholest-4-en-3-one	36.08	0.76	Arum Ternatum Thunb
MOL001771	poriferast-5-en-3beta-ol	36.91	0.75	Zingiber officinale Roscoe
MOL001792	DFV	32.76	0.18	licorice
MOL002311	Glycyrol	90.78	0.67	licorice
MOL002565	Medicarpin	49.22	0.34	licorice
MOL002670	Cavidine	35.64	0.81	Arum Ternatum Thunb
MOL002714	baikalein	33.52	0.21	Arum Ternatum Thunb Scutellariae Radix
MOL002773	beta-carotene	37.18	0.58	Jujubae Fructus
MOL002776	Baicalin	40.12	0.75	Arum Ternatum Thunb & Radix Bupleuri
MOL002844	Pinocembrin	64.72	0.18	licorice
MOL002879	Diop	43.59	0.39	Panax ginseng C. A. Mey. & Scutellariae Radix
MOL002897	epiberberine	43.09	0.78	Scutellariae Radix
MOL002908	5,8,2'-Trihydroxy-7-methoxyflavone	37.01	0.27	Scutellariae Radix
MOL002909	5,7,2,5-tetrahydroxy-8,6-dimethoxyflavone	33.82	0.45	Scutellariae Radix
MOL002910	Carthamidin	41.15	0.24	Scutellariae Radix
-----------	-----------------------------	-------	------	--------------------
MOL002911	2,6,2',4'-tetrahydroxy-6' -methoxychaleone	69.04	0.22	Scutellariae Radix
MOL002913	Dihydrobaicalin_qt	40.04	0.21	Scutellariae Radix
MOL002914	Eriodyctiol (flavanone)	41.35	0.24	Scutellariae Radix
MOL002915	Salvigenin	49.07	0.33	Scutellariae Radix
MOL002917	5,2',6'-Trihydroxy-7,8-dimethoxyflavone	45.05	0.33	Scutellariae Radix
MOL002925	5,7,2',6'-Tetrahydroxyflavone	37.01	0.24	Scutellariae Radix
MOL002926	dihydroorxylin A	38.72	0.23	Scutellariae Radix
MOL002927	Skullcapflavone II	69.51	0.44	Scutellariae Radix
MOL002928	oroxylin a	41.37	0.23	Scutellariae Radix
MOL002932	Panicolin	76.26	0.29	Scutellariae Radix
MOL002933	5,7,4'-Trihydroxy-8-methoxyflavone	36.56	0.27	Scutellariae Radix
MOL002934	NEOBAICALEIN	104.34	0.44	Scutellariae Radix
MOL002937	DIHYDROOROXYLIN	66.06	0.23	Scutellariae Radix
MOL003410	Ziziphin_qt	66.95	0.62	Jujubae Fructus
MOL003578	Cycloartenol	38.69	0.78	Arum Ternatum Thunb
MOL003648	Inermin	65.83	0.54	Panax ginseng C. A. Mey.
MOL003656	Lupiwighteone	51.64	0.37	licorice
MOL003896	7-Methoxy-2-methyl isoflavone	42.56	0.2	licorice
MOL004328	naringenin	59.29	0.21	licorice
MOL004350	Ruvoside_qt	36.12	0.76	Jujubae Fructus
MOL004492	Chrysanthemaxanthin	38.72	0.58	Panax ginseng C. A. Mey.
MOL004598	3,5,6,7-tetramethoxy-2-(3,4,5-trimethoxyphenyl)chromone	31.97	0.59	Radix Bupleuri
MOL004609	Areapillin	48.96	0.41	Radix Bupleuri
MOL004624	Longikaurin A	47.72	0.53	Radix Bupleuri
MOL004628	Octalupine	47.82	0.28	Radix Bupleuri
MOL004644	Sainfuran	79.91	0.23	Radix Bupleuri
ID	Compound	Amount	p.p.m.	Plant
---------	---	--------	--------	------------------
MOL004648	Troxerutin	31.6	0.28	Radix Bupleuri
MOL004653	(+)-Anomalin	46.06	0.66	Radix Bupleuri
MOL004702	saikosaponin c_qt	30.5	0.63	Radix Bupleuri
MOL004718	α-spinasterol	42.98	0.76	Radix Bupleuri
MOL004805	(2S)-2-[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]-8,8-dimethyl-2,3-dihydropyrano[2,3-f]chromen-4-one	31.79	0.72	licorice
MOL004806	euchrenone	30.29	0.57	licorice
MOL004808	glyasperin B	65.22	0.44	licorice
MOL004810	glyasperin F	75.84	0.54	licorice
MOL004811	Glyasperin C	45.56	0.4	licorice
MOL004814	Isotrifoliol	31.94	0.42	licorice
MOL004815	(E)-1-(2,4-dihydroxyphenyl)-3-(2,2-dimethylchromen-6-yl)prop-2-en-1-one	39.62	0.35	licorice
MOL004820	kanzonols W	50.48	0.52	licorice
MOL004824	(2S)-6-(2,4-dihydroxyphenyl)-2-(2-hydroxypropan-2-yl)-4-methoxy-2,3-dihydrofuro[3,2-g]chromen-7-one	60.25	0.63	licorice
MOL004827	Semilicoisoavone B	48.78	0.55	licorice
MOL004828	Glepidotin A	44.72	0.35	licorice
MOL004829	Glepidotin B	64.46	0.34	licorice
MOL004833	Phaseolinisoflavan	32.01	0.45	licorice
MOL004835	Glypallichalcone	61.6	0.19	licorice
MOL004838	8-(6-hydroxy-2-benzofuranyl)-2,2-dimethyl-5-chromenol	58.44	0.38	licorice
MOL004841	Licochalcone B	76.76	0.19	licorice
MOL004848	licochalcone G	49.25	0.32	licorice
MOL004849	3-(2,4-dihydroxyphenyl)-8-(1,1-dimethylprop-2-enyl)-7-hydroxy-5-methoxy-coumarin	59.62	0.43	licorice
MOL004855	Licoricone	63.58	0.47	licorice
MOL004856	Gancaonin A	51.08	0.4	licorice
MOL004857	Gancaonin B	48.79	0.45	licorice
MOL004860	licorice glycoside E	32.89	0.27	licorice
MOL004863	3-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-(3-methylbut-2-enyl)chromone	66.37	0.41	licorice
MOL004864	5,7-dihydroxy-3-(4-methoxyphenyl)-8-(3-methylbut-2-enyl)chromone	30.49	0.41	licorice
MOL004866	2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-(3-methylbut-2-enyl)chromone	44.15	0.41	licorice
MOL004879	Glycyrrhizin	52.61	0.47	licorice
MOL004882	Licocoumarone	33.21	0.36	licorice
MOL004883	Licoisoflavone	41.61	0.42	licorice
MOL004884	Licoisoflavone B	38.93	0.55	licorice
MOL004885	licoisoflavanone	52.47	0.54	licorice
MOL004891	shinpterocarpin	80.3	0.73	licorice
MOL004898	(E)-3-[3,4-dihydroxy-5-(3-methylbut-2-enyl)phenyl]-1-(2,4-dihydroxyphenyl)prop-2-en-1-one	46.27	0.31	licorice
MOL004903	liquiritin	65.69	0.74	licorice
MOL004904	licopyranocoumarin	80.36	0.65	licorice
MOL004905	3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid	34.32	0.55	licorice
MOL004907	Glyzaglabrin	61.07	0.35	licorice
MOL004908	Glabridin	53.25	0.47	licorice
MOL004910	Glabranin	52.9	0.31	licorice
MOL004911	Glabrene	46.27	0.44	licorice
MOL004912	Glabrone	52.51	0.5	licorice
MOL004913	1,3-dihydroxy-9-methoxy-6-benzofurano[3,2-c]chromenone	48.14	0.43	licorice
MOL004914	1,3-dihydroxy-8,9-dimethoxy-6-benzofurano[3,2-c]chromenone	62.9	0.53	licorice
MOL004915	Eurycarpin A	43.28	0.37	licorice
MOL004917	glycyroside	37.25	0.79	licorice
MOL004924	(-)-Medicocarpin	40.99	0.95	licorice
MOL004935	Sigmoidin-B	34.88	0.41	licorice
MOL004941	(2R)-7-hydroxy-2-(4-	71.12	0.18	licorice
MOL004945	(2S)-7-hydroxy-2-(4-hydroxyphenyl)-8-(3-methylbut-2-enyl)chroman-4-one	36.57	0.32	licorice
MOL004948	Isoglycyrol	44.7	0.84	licorice
MOL004949	Isolicoaflavonol	45.17	0.42	licorice
MOL004957	HMO	38.37	0.21	licorice
MOL004959	1-Methoxyphaseollidin	69.98	0.64	licorice
MOL004961	Quercetin der.	46.45	0.33	licorice
MOL004966	3’- Hydroxy-4’-O-Methylglabridin	43.71	0.57	licorice
MOL004974	3’- Methoxyglabridin	46.16	0.57	licorice
MOL004978	2-[(3R)-8,8-dimethyl-3,4-dihydro-2H-pyrano[6,5-f]chromen-3-yl]-5-methoxyphenol	36.21	0.52	licorice
MOL004980	Inflacoumarin A	39.71	0.33	licorice
MOL004985	Icos-5-enoic acid	30.7	0.2	licorice
MOL004988	Kanzonol F	32.47	0.89	licorice
MOL004989	6-prenylated eriodictyol	39.22	0.41	licorice
MOL004990	7,2’,4’- trihydroxy[5-methoxy-3-arylcoumarin	83.71	0.27	licorice
MOL004991	7-Acetoxy-2-methylisoflavone	38.92	0.26	licorice
MOL004993	8-prenylated eriodictyol	53.79	0.4	licorice
MOL004996	gadelaidic acid	30.7	0.2	licorice
MOL005000	Gancaonin G	60.44	0.39	licorice
MOL005001	Gancaonin H	50.1	0.78	licorice
MOL005003	Licoagrocarpin	58.81	0.58	licorice
MOL005007	Glyasperins M	72.67	0.59	licorice
MOL005008	Glycyrhriza flavonol A	41.28	0.6	licorice
MOL005012	Licoagroisoﬂavone	57.28	0.49	licorice
MOL005013	18α-hydroxyglycyrrhetic acid	41.16	0.71	licorice
MOL005016	Odoratin	49.95	0.3	licorice
MOL005017	Phaseol	78.77	0.58	licorice
MOL005018	Xambioona	54.85	0.87	licorice
MOL005020	dehydroglyasperins C	53.82	0.37	licorice
MOL005030	gondoic acid	30.7	0.2	Arum Ternatum Thunb
MOL00508	Aposiopolamine	66.65	0.22	Panax ginseng C. A. Mey.
MOL005314	Celabenzine	101.88	0.49	Panax ginseng C. A. Mey.
MOL005317	Deoxyharringtonine	39.27	0.81	Panax ginseng C. A. Mey.
MOL005318	Dianthramine	40.45	0.2	Panax ginseng C. A. Mey.
MOL005320	arachidonate	45.57	0.2	Panax ginseng C. A. Mey.
MOL005321	Frutinone A	65.9	0.34	Panax ginseng C. A. Mey.
MOL005344	ginsenoside rh2	36.32	0.56	Panax ginseng C. A. Mey.
MOL005348	Ginsenoside-Rh4_qt	31.11	0.78	Panax ginseng C. A. Mey.
MOL005356	Girinimbin	61.22	0.31	Panax ginseng C. A. Mey.
MOL005357	Gomisin B	31.99	0.83	Panax ginseng C. A. Mey.
MOL005360	malkangunin	57.71	0.63	Panax ginseng C. A. Mey.
MOL005360	malkangunin	57.71	0.63	Jujubae Fructus
MOL005376	Panaxadiol	33.09	0.79	Panax ginseng C. A. Mey.
MOL005384	suchilactone	57.52	0.56	Panax ginseng C. A. Mey.
MOL005399	alexandrin_qt	36.91	0.75	Panax ginseng C. A. Mey.
MOL005401	ginsenoside Rg5_qt	39.56	0.79	Panax ginseng C. A. Mey.
MOL006129	6-methylgingediacetate2	48.73	0.32	Zingiber officinale Roscoe
MOL006936	10,13-eicosadienoic	39.99	0.2	Arum Ternatum Thunb
MOL006937	12,13-epoxy-9-hydroxynonadeca-7,10-	42.15	0.24	Arum Ternatum Thunb
Compound ID	Chemical Name	MW	Purity	
---------------	---	------	--------	
MOL006957	dienoic acid (3S,6S)-3-(benzyl)-6-(4-hydroxybenzyl)piperazine-2,5-quinone	46.89	0.27	
MOL006967	beta-D-Ribofuranoside, xanthine-9	44.72	0.21	
MOL007213	Nuciferin	34.43	0.4	
MOL008034	21302-79-4	73.52	0.77	
MOL008206	Moslosooflavone	44.09	0.25	
MOL008647	Moupinamide	86.71	0.26	
MOL008698	Dihydrocapsaicin	47.07	0.19	
MOL010415	11,13-Eicosadienoic acid, methyl ester	39.28	0.23	
MOL012245	5,7,4'-trihydroxy-6-methoxyflavanone	36.63	0.27	
MOL012246	5,7,4'-trihydroxy-8-methoxyflavanone	74.24	0.26	
MOL012266	rivularin	37.94	0.37	
MOL012921	stepharine	31.55	0.33	
MOL012940	Spiradine A	113.52	0.61	
MOL012946	zizyphus saponin Iₗₜ	32.69	0.62	
MOL012961	jujuboside Aₗₜ	36.67	0.62	
MOL012976	coumestrol	32.49	0.34	
MOL012980	Daechuine S6	46.48	0.79	
MOL012981	Daechuine S7	44.82	0.83	
MOL012986	Jujubasaponin Vₗₜ	36.99	0.63	
MOL012989	Jujuboside Cₗₜ	40.26	0.62	
MOL012992	Mauritine D	89.13	0.45	
MOL013187	Cubebin	57.13	0.64	
MOL013357	(3S,6R,8S,9S,10R,13R,14S,17R)-17-[(1R,4R)-4-ethyl-1,5-dimethylhexyl]-10,13-dimethyl-2,3,6,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-3,6-diol	34.37	0.78	
Intersection targets of Xiaochaihu Decoction and Pancreatitis

Xiaochaihu Decoction had 169 targets obtained from Drugbank Database and Pancreatitis had 2344 targets collected from OMIM, GeneCards and TTD Databases. Then, Venn map showed that it had 91 intersection targets on Xiaochaihu Decoction and Pancreatitis (Fig.1).

Herb-Compound-Target-Disease Network analysis

To clarify the relationship between herb of Xiaochaihu Decoction, compound target and pancreatitis targets, the herb-compound-target-disease network was constructed by Cytoscape software. The network had 293 nodes consisted of 1 disease, 7 herbs, 194 compounds and 91 putative targets. In the terms of the relationship between compounds and targets, there were 12 compounds having targets greater than 30, and they were MOL000098 (Quercetin), MOL000422 (Kaempferol), MOL003896 (7-Methoxy-2-methyl isoflavone), MOL000787 (Fumarine), MOL000354 (Isorhamnetin), MOL000392 (formononetin), MOL002565 (Medicarpin), MOL000358 (Beta-sitosterol), MOL000449 (Stigmasterol), MOL004978(2-[(3R)-8,8-dimethyl-3,4-dihydro-2H-pyrano[6,5-f]chromen-3-yl]-5-methoxyphenol), MOL000500 (Vestitol), MOL004891 (Shinpterocarpin) acting on 75, 44, 43, 38, 34, 34, 34, 32, 31, 31, 30, 30 targets respectively. And PTGS2, HSP90A, CAMKK2, ESR1, AR, PTGS1, NOS2, NCOA2, PRSS1, F10 and SCN5A were interact with 138, 100, 97, 90, 89, 86, 83, 74, 73 and 71 compounds (Fig.2).

PPI interaction network analysis

The common targets of compounds and pancreatitis were putted into STRING database to obtain the PPI interaction network in order to provide an intuitive understand of the mechanism of Xiaochaihu Decoction acting on pancreatitis. By the analysis of STRING, it was showed that the network was composed with 91 nodes as well as 1015 edges and the average node degree was 22.3. Furthermore, network topological analysis indicated that the top 3 degrees were Mitogen-activated protein kinase 3 (MAPK3, degree=58), Interleukin - 6 (IL-6, degree=57), Tumor Protein (TP53, degree=56) which involving with the cell growth, cell apoptosis as well as inflammatory response, had the greater node degree value than other targets (Fig.3).

Enrichment of functions analysis

To clarified the mechanism of Xiaochaihu Decoction on pancreatitis in detail, the Go enrichment analysis was performed by DAVID Bioinformatics Resources. Go enrichment analysis got 484 items including 363 items of Biological process (BP), 53 items of Cell Component (CC) and 68 items of Molecular Function (MF) \(P<0.05\) and the items which Gene count proportion greater than 10 were showed as Fig.4. Biological process was mainly related to positive regulation of transcription from RNA polymerase II promoter and Molecular Function was closely in connection with protein binding.
KEGG pathway analysis indicated that Xiaochaihu Decoction exerted its pharmacological effects on pancreatitis was closely associated with pathways in cancers (fold enrichment=5.4, \(P<0.001 \)), TNF signaling way (fold enrichment=12.2, \(P<0.001 \)), PI3K-Akt signaling pathway (fold enrichment=3.7, \(P<0.001 \)), Influenza A (fold enrichment=7.1, \(P<0.001 \)), Chagas disease (fold enrichment=11.0, \(P<0.001 \)) and MAPK signaling pathway (fold enrichment=4.5, \(P<0.001 \)) which were involving with MAPK3, TP53, TNF and so on (Fig.5).

Molecular docking to determine the potential targets

Three targets (IL-6, MAPK3, TP53) were selected according to the results of PPI network as the core targets of Xiaochaihu Decoction treated pancreatitis. And Herb-compound-Target-Disease network indicated Quercetin could not only interacted with 75 targets but also closely related with the three targets. Therefore, Molecular Docking technology was used to simulate the interaction between Quercetin and the three targets. The results showed that Quercetin interacted with the IL-6, MAPK3, TP53, forming Vander Waals, Carbon hydrogen bond, Pi-sulfur, Salt Bridge and so on. Moreover, TP53 had the most abundant bonds with Quercetin among the three targets (Fig.6).

Discussion

Xiaochaihu Decoction was an ancient herbal formula which had been as the therapeutic agents for the treatment of pancreatitis in clinical [19]. In this study, a network pharmacology approach was applied to construct the “Herb-Compound-Target-Disease Network” in order to explore the underlying mechanism of Xichaihu Decoction in pancreatitis. Results of the study described herein revealed that Xiaochaihu Decoction exerted on the pancreatitis by multiple pathways, target points.

According to the results of Network pharmacology analysis, Quercetin (OB=46.43%, DL=0.28), Kaempferol (OB=41.88%, DL=0.24) and so on became the potential bioactive compounds. Quercetin is a flavonoid found which could attenuated pancreatic and ileal pathological damages through reduced the production of IL-6, TNF-\(\alpha \), IL-1\(\beta \) [20]. Besides, In vitro active experiment shows that, Quercetin had a significant anti-pancreatitis activity through reducing the intracellular ROS production and enhancing apoptotic cell death[21]. Kaempferol, a kind of polyphenol, ameliorated acute inflammatory and nociceptive symptoms in pancreatitis [22]. Yun Jung Lee et al had been demonstrated that kaempferol could protect pancreatic cells from dRib-induced associated oxidative damage by inhibiting the intracellular ROS and apoptosis [23].

KEGG analysis revealed that pathways in cancers, TNF signaling way, PI3K-Akt signaling pathway and MAPK signaling pathway had linkage with Xiaochaihu Decoction treatment for pancreatitis. As we all known, TNF was mainly generated by activated mononuclear macrophages and involved in inducing the production of Inflammatory cytokines such as IL-6 causing the necrosis of pancreatic tissue [24]. Thus, TNF signaling way might be the important proinflammatory cytokine for the occurrence and development of pancreatitis.
PPI network analysis showed that the degree of MAPK3 (degree=58), IL-6 (degree=57), TP53 (degree=56) were higher than others. MAPK was an important transmitter of signals from the cell surface to the inside of the nucleus and MAPK 3 acted as an essential component of the MAPK signal transduction pathway [25]. The MAPK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements [26]. It had been reported that pancreatitis could be alleviated via reducing the production of TNF-α, IL-6, IL-1β which was associated with regulating the MAPK signaling way [27]. Xiang-Peng Zeng et al found that inhibiting the MAPK cascade including MAPK3 might be a potential anti-inflammatory strategy for pancreatitis [28]. IL-6 was one of the most biologically active cytokines, had many biological functions and was considered as the reliable marker for severity in acute pancreatitis [29]. IL-6 promoted the neutrophil function p-regulation, cytokine section and inflammatory mediator production leading the development of pancreatitis [30]. Besides, IL-6 triggered the strong STAT3 phosphorylation in the pancreas and high circulating levels of neutrophil attractant CXCL1 which resulting in the severity of pancreatitis [31]. TP53, the regulatory factor of apoptosis, could interact with Bcl2 family proteins in the cytoplasm that causing mitochondrial outer membrane permeability increased and cell apoptosis [32]. In clinical, pancreatic tissues from patients with pancreatitis exhibited apoptotic nuclei, and increased p53 expression [33]. Consistently, Lei Zhou et al found that TP53 suppressed on mouse pancreatitis model obviously inhibited pancreatic acinar cell apoptosis and the inflammation [34]. Given that inflammation and apoptosis were closely related with pancreatitis, they were likely to be the molecules regulated by Xiaochaihu Decoction in the treatment of pancreatitis.

Molecular docking was the widely use technology for calculating protein-ligand interactions [35]. And the results also showed that Quercetin could docked well with MAPK3, IL-6 and TP53. Besides, Quercetin formed Vander Waals with THRA150, CYSA229, THRA230, LEUA145, TRPA146, PHEA109, VALA157 of TP53, Carbon Hydrogen with PROA223 of TP53, Pi-Sigma with VALA147 of TP53 and so on. In other words, Xiaochaihu Decoction exerted pharmacodynamic actions on pancreatitis via the interaction between active ingredients and key proteins.

Conclusion

In general, this study combined network pharmacology method and molecular docking technology to demonstrate the potential mechanism of Xiaochaihu Decoction treated with pancreatitis that Quercetin might played an important role in pancreatitis therapy by acting the key genes of MPAK3, IL-6 and TP53. Although our findings were needed further experiment to support, it still revealed the potential mechanism of Xiaochaihu Decoction in the treatment of Pancreatitis.

Abbreviations

XD = Xiaochaihu Decoction

TCM = Traditional Chinese Medicine
TCMSP = Traditional Chinese Medicine Systems Pharmacology
BP = Biological process
CC = Cell Component
MF = Molecular Function
GO = Gene ontology
KEGG = Kyoto Encyclopedia of Genes and Genomes

Declarations

Acknowledgments
Not applicable.

Author’s contribution
Lianghui Zhan and Chunlian Ji conceived and designed the experiments. Lianghui Zhan and Jinbao Pu contributed significantly to analysis and manuscript preparation. Yijuan Hu, Pan Xu and Weiqing Liang helped perform the analysis with constructive discussions.

Funding
No

Availability of data and materials
All data generated or analyzed during this study are included in this published article. Please contact the author for the code of the software and the documentation.

Ethics approval and consent to participate

Consent for publication
Not applicable.
Conflict of interest

The authors declare no conflicts of interest in association with this manuscript.

References

1 M. Bhatia, F.L. Wong, Y. Cao, H.Y. Lau, J. Huang, P. Puneet, L. Chevali, Pathophysiology of acute pancreatitis, Panreatology 5(2-3) (2005) 132-44.

2 J.L. Saloman, K.M. Albers, Z. Cruz-Monserrate, B.M. Davis, M. Edderkaoui, G. Eibl, A.Y. Epouhe, J.Y. Gedeon, F.S. Gorelick, P.J. Gripp, G.E. Groblewski, S.Z. Husain, K.K.Y. Lai, S.J. Pandol, A. Uc, L. Wen, D.C. Whitcomb, Animal Models: Challenges and Opportunities to Determine Optimal Experimental Models of Pancreatitis and Pancreatic Cancer, Panreas 48(6) (2019) 759-779.

3 C. Shi, C. Hou, X. Zhu, D. Huang, Y. Peng, M. Tu, Q. Li, Y. Mia, SRT1720 ameliorates sodium taurocholate-induced severe acute pancreatitis in rats by suppressing NF-kappaB signalling, Biomed Pharmacother 108 (2018) 50-57.

4 S.L. McIlwrath, K.N. Westlund, Pharmacological attenuation of chronic alcoholic pancreatitis induced hypersensitivity in rats, World J Gastroenterol 21(3) (2015) 836-53.

5 B. Khatua, B. El-Kurdi, V.P. Singh, Obesity and pancreatitis, Curr Opin Gastroenterol 33(5) (2017) 374-382.

6 S.J. McPherson, D.A. O'Reilly, M.T. Sinclair, N. Smith, The use of imaging in acute pancreatitis in United Kingdom hospitals: findings from a national quality of care study, Br J Radiol 90(1080) (2017) 20170224.

7 P.A. Banks, M.L. Freeman, G. Practice Parameters Committee of the American College of, Practice guidelines in acute pancreatitis, Am J Gastroenterol 101(10) (2006) 2379-400.

8 M. Nesvaderani, G.D. Eslick, D. Vagg, S. Faraj, M.R. Cox, Epidemiology, aetiology and outcomes of acute pancreatitis: A retrospective cohort study, Int J Surg 23(Pt A) (2015) 68-74.

9 A.P. Rijkers, C.H. van Eijck, Acute Pancreatitis, N Engl J Med 376(6) (2017) 596-7.

10 J. Li, S. Zhang, R. Zhou, J. Zhang, Z.F. Li, Perspectives of traditional Chinese medicine in pancreas protection for acute pancreatitis, World J Gastroenterol 23(20) (2017) 3615-3623.

11 L. Zhu, J.Y. Li, Y.M. Zhang, H.X. Kang, H. Chen, H. Su, J. Li, W.F. Tang, Pharmacokinetics and pharmacodynamics of Shengjiang decoction in rats with acute pancreatitis for protecting against multiple organ injury, World J Gastroenterol 23(46) (2017) 8169-8181.

12 Q. Hu, S. Wei, J. Wen, W. Zhang, Y. Jiang, C. Qu, J. Xiang, Y. Zhao, X. Peng, X. Ma, Network pharmacology reveals the multiple mechanisms of Xiaochaihu decoction in the treatment of non-
alcoholic fatty liver disease, BioData Min 13 (2020) 11.

13 S.B. Su, Y.Q. Li, H.Y. Shen, Y. Motoo, Effects of Chinese herbal medicines on spontaneous chronic pancreatitis in rats and the pathological relationships between formulas and syndromes, Zhong Xi Yi Jie He Xue Bao 4(4) (2006) 358-62.

14 S.K. Zhang, N.Q. Cui, Y.Z. Zhuo, D.H. Li, J.H. Liu, Modified Xiaochaihu Decoction () prevents the progression of chronic pancreatitis in rats possibly by inhibiting transforming growth factor-beta1/Sma- and mad-related proteins signaling pathway, Chin J Integr Med 19(12) (2013) 935-9.

15 J.F. Liu, A.N. Hu, J.F. Zan, P. Wang, Q.Y. You, A.H. Tan, Network Pharmacology Deciphering Mechanisms of Volatiles of Wendan Granule for the Treatment of Alzheimer's Disease, Evid Based Complement Alternat Med 2019 (2019) 7826769.

16 L. Zeng, K. Yang, H. Liu, G. Zhang, A network pharmacology approach to investigate the pharmacological effects of Guizhi Fuling Wan on uterine fibroids, Exp Ther Med 14(5) (2017) 4697-4710.

17 G. Yu, W. Wang, X. Wang, M. Xu, L. Zhang, L. Ding, R. Guo, Y. Shi, Network pharmacology-based strategy to investigate pharmacological mechanisms of Zuojinwan for treatment of gastritis, BMC Complement Alternat Med 18(1) (2018) 292.

18 C.H. Wang, Y. Zhong, Y. Zhang, J.P. Liu, Y.F. Wang, W.N. Jia, G.C. Wang, Z. Li, Y. Zhu, X.M. Gao, A network analysis of the Chinese medicine Lianhua-Qingwen formula to identify its main effective components, Mol Biosyst 12(2) (2016) 606-13.

19 S.M. Li, S.J. Xu, S.M. Li, W.X. Hong, Study on clinical experience of using xiaochaihu decoction, Zhongguo Zhong Xi Yi Jie He Za Zhi 34(10) (2014) 1264-6.

20 Z. Junyuan, X. Hui, H. Chunlan, F. Junjie, M. Qixiang, L. Yingying, L. Lihong, W. Xingpeng, Z. Yue, Quercetin protects against intestinal barrier disruption and inflammation in acute necrotizing pancreatitis through TLR4/MyD88/p38MAPK and ERS inhibition, Pancreatology 18(7) (2018) 742-752.

21 J.Y. Seo, R.P. Pandey, J. Lee, J.K. Sohng, W. Namkung, Y.I. Park, Quercetin 3-O-xyloside ameliorates acute pancreatitis in vitro via the reduction of ER stress and enhancement of apoptosis, Phytomedicine 55 (2019) 40-49.

22 S.H. Kim, J.G. Park, G.H. Sung, S. Yang, W.S. Yang, E. Kim, J.H. Kim, V.T. Ha, H.G. Kim, Y.S. Yi, J.H. Kim, K.S. Baek, N.Y. Sung, M.N. Lee, J.H. Kim, J.Y. Cho, Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain, Mol Nutr Food Res 59(7) (2015) 1400-5.

23 Y.J. Lee, K.S. Suh, M.C. Choi, S. Chon, S. Oh, J.T. Woo, S.W. Kim, J.W. Kim, Y.S. Kim, Kaempferol protects HIT-T15 pancreatic beta cells from 2-deoxy-D-ribose-induced oxidative damage, Phytother Res 24(3) (2010) 419-23.
24 M. Scotece, J. Conde, V. Abella, V. Lopez, V. Francisco, C. Ruiz, V. Campos, F. Lago, R. Gomez, J. Pino, O. Gualillo, Oleocanthal Inhibits Catabolic and Inflammatory Mediators in LPS-Activated Human Primary Osteoarthritis (OA) Chondrocytes Through MAPKs/NF-kappaB Pathways, Cell Physiol Biochem 49(6) (2018) 2414-2426.

25 M. Drosten, M. Barbacid, Targeting the MAPK Pathway in KRAS-Driven Tumors, Cancer Cell 37(4) (2020) 543-550.

26 M.H. Cao, J. Xu, H.D. Cai, Z.W. Lv, Y.J. Feng, K. Li, C.Q. Chen, Y.Y. Li, p38 MAPK inhibition alleviates experimental acute pancreatitis in mice, Hepatobiliary Pancreat Dis Int 14(1) (2015) 101-6.

27 Z. Zhang, Q. Liu, H. Zang, Q. Shao, T. Sun, Oxymatrine protects against l-arginine-induced acute pancreatitis and intestine injury involving Th1/Th17 cytokines and MAPK/NF-kappaB signalling, Pharm Biol 57(1) (2019) 595-603.

28 X.P. Zeng, L.J. Wang, H.L. Guo, L. He, Y.W. Bi, Z.L. Xu, Z.S. Li, L.H. Hu, Dasatinib ameliorates chronic pancreatitis induced by caerulein via anti-fibrotic and anti-inflammatory mechanism, Pharmacol Res 147 (2019) 104357.

29 S. Perez, S. Rius-Perez, I. Finamor, P. Marti-Andres, I. Prieto, R. Garcia, M. Monsalve, J. Sastre, Obesity causes PGC-1alpha deficiency in the pancreas leading to marked IL-6 upregulation via NF-kappaB in acute pancreatitis, J Pathol 247(1) (2019) 48-59.

30 Y. Wang, C. Bu, K. Wu, R. Wang, J. Wang, Curcumin protects the pancreas from acute pancreatitis via the mitogenactivated protein kinase signaling pathway, Mol Med Rep 20(4) (2019) 3027-3034.

31 H. Zhang, P. Neuhofer, L. Song, B. Rabe, M. Lesina, M.U. Kurkowski, M. Treiber, T. Wartmann, S. Regner, H. Thorlacius, D. Saur, G. Weirich, A. Yoshimura, W. Halangk, J.P. Mizgerd, R.M. Schmid, S. Rose-John, H. Algul, IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality, J Clin Invest 123(3) (2013) 1019-31.

32 W.M. Kamp, P.Y. Wang, P.M. Hwang, TP53 mutation, mitochondria and cancer, Curr Opin Genet Dev 38 (2016) 16-22.

33 L. Singh, D.K. Bakshi, S. Majumdar, S.K. Arora, R.K. Vasishta, J.D. Wig, Mitochondrial dysfunction and apoptosis of acinar cells in chronic pancreatitis, J Gastroenterol 43(6) (2008) 473-83.

34 L. Zhou, J.H. Tan, R.C. Cao, J. Xu, X.M. Chen, Z.C. Qi, S.Y. Zhou, S.B. Li, Q.X. Mo, Z.W. Li, G.W. Zhang, ATF6 regulates the development of chronic pancreatitis by inducing p53-mediated apoptosis, Cell Death Dis 10(9) (2019) 662.

35 J. Li, X. Ma, C. Liu, H. Li, J. Zhuang, C. Gao, C. Zhou, L. Liu, K. Wang, C. Sun, Exploring the Mechanism of Danshen against Myelofibrosis by Network Pharmacology and Molecular Docking, Evid Based Complement Alternat Med 2018 (2018) 8363295.