Nonlinear response of dense colloidal suspensions under oscillatory shear:
Mode-coupling theory and FT-rheology experiments

J.M. Brader1, M. Siebenb"{u}rger2, M. Ballauff2 K. Reinheimer3, M. Wilhelm3, S.J. Frey4, F. Weysser5 and M. Fuchs5

1Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
2Helmholtz Zentrum für Materialien und Energie, D-14109 Berlin, Germany
3Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany
4Institut Charles Sadron, Université de Strasbourg, CNRS UPR 22, 29 rue du Loess, 67034 Strasbourg, France and
5Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany

Using a combination of theory, experiment and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the non linearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory (LAOS) experiments with FT-rheology analysis on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disc mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in excellent agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves and large amplitude oscillatory spectroscopy.

PACS numbers: 82.70.Dd, 64.70.Pf, 83.60.Df, 83.10.Gr

I. INTRODUCTION

A standard method to probe the viscoelastic character of a material is to measure the time dependent stress response to an externally applied oscillatory shear field \cite{1}. The simplicity of oscillatory shearing experiments presents distinct practical advantages when compared to other flow protocols and thus makes desirable a systematic method for the rheological characterization of a material on the basis of the periodic stress response alone. For small strain amplitudes the shear stress is a simple harmonic function, oscillating with the fundamental frequency dictated by the applied strain field. The details of the microscopic interactions underlying the macroscopic stress response are encoded in the familiar storage (G') and loss (G'') moduli of linear response. General aspects of the viscoelastic character of the material can thus be inferred from the magnitudes of the moduli as a function of frequency.

While, for many systems of interest, the linear response regime is well understood, for practical applications, such as the production and processing of materials in industry \cite{2}, it is necessary to consider deformations of finite, often large, amplitude. In the nonlinear regime, the stress response to a sinusoidal excitation contains higher harmonic contributions, which arise from the nonlinearity of the underlying constitutive relation expressing the stress as a functional of the strain \cite{3,4}. For many complex materials, consideration of the fundamental frequency alone proves insufficient for describing the physical mechanisms at work for finite strain amplitude. Analysis based purely on the linear complex modulus as a function of frequency can thus be expected to give only a partial mechanical characterization of the system under study (see e.g. \cite{6,8}). This failing is found to be particularly pronounced for yield stress materials such as aqueous foams \cite{9} and, as we will argue in the present work, colloidal suspensions close to, or beyond, the point of dynamical arrest. Although such systems are predominately elastic in character, they exhibit a complex transient response to oscillatory shear in which the viscous dissipation mechanism present at small strain amplitudes crosses over to a plastic flow as the amplitude is increased. The nonlinear stress response reflecting the onset of plastic flow gives rise to a strong increase in the amplitudes of the higher harmonics.

The emerging discipline of Fourier transform rheology (FT-rheology), originating in the work of Wilhelm and co-workers (see, e.g. \cite{10,11,12}), aims to quantify the nonlinear response of complex fluids by analyzing the harmonic structure of the stress signal measured in large amplitude oscillatory shear (LAOS) experiments (for recent developments see \cite{13}). Despite considerable progress on the experimental side, the theoretical description of the nonlinear regime remains unsatisfactory. Theoretical treatments capable of capturing higher harmonic contributions have been largely restricted to phenomenological models based on the ideas of continuum rheology.
A more refined description of the nonlinear response is provided by mesoscopic models in which the time evolution of explicit coarse-grained degrees of freedom is governed by specified dynamical rules. While such approaches are capable of capturing generic features of the response, they are not material specific and make no explicit reference to the underlying particle interactions.

Recently, progress in making the connection between microscopic and macroscopic levels of description has been made for the case of dense colloidal suspensions subject to time-dependent flow. The developments in classical nonequilibrium statistical mechanics presented in and extend earlier work focused on the simpler, but fundamental, case of steady shear flow. The mode-coupling-type approximations employed in capture the slow structural relaxation leading to dynamical arrest in strongly coupled systems (i.e. dispersions at high volume fraction or with a strongly attractive potential interaction), with the consequence that the macroscopic flow curves attain a finite value in the limit of vanishing rate, for states which would be glasses or gels in the absence of flow. The finite value of the stress in the slow flow limit identifies the dynamic yield stress. The relationship between the dynamic yield stress and its more familiar static counterpart is analogous to that between stick and slip friction in engineering applications. A prediction of particular importance made by the microscopic constitutive equation presented in is that the dynamic yield stress appears discontinuously as a function of coupling strength, in clear contrast to mesoscopic models which predict a continuous power law dependence. The notion of yield stress was considered in a more general and abstract sense in, in which a dynamic yield stress surface, describing yielding under more general non-shear deformations, was calculated (see also).

Although the closed, microscopic constitutive equation presented in is of considerable generality, the combined difficulties of a large time-scale separation between microscopic and structural relaxation times, spatial anisotropy, and lack of time-translational invariance presented by many problems of interest makes direct numerical solution of the equations impossible at the present time. In order to both facilitate numerical calculations and expose more transparently the essential physics captured by the fully microscopic theory a simplified ‘schematic’ model has been proposed. Schematic models have proved invaluable in the analysis and assessment of microscopic mode-coupling approaches, both for quiescent systems and under steady shear flow, in each case providing a simpler set of equations which aim to retain the essential mathematical structure of the fully microscopic theory. While the schematic model reduction performed in leads to loss of the ‘first principles’ character of the approach, the mathematical connections between full and schematic theory nevertheless serve to elevate the schematic model above purely phenomenological approaches.

In the present work we will consider application of the schematic model derived in to the problem of large amplitude oscillatory shear. Although the tensorial schematic model of is closely related to the earlier model derived in, application of the tensorial model to a simple shear flow geometry does not exactly reproduce the model. The study of time-dependent flows, not considered in earlier work, revealed that corrections to the original model were necessary to capture correctly the response to rapidly varying flows. The modifications thus introduced lead to small differences in the steady state rheological predictions. Nevertheless, the present schematic models describes the same phenomenology as the previous model when applied to steady shear.

Comparison of theoretical predictions with experimental data for thermosensitive core-shell particles, dispersed in water, has been performed using the model. These particles have the very convenient feature that the volume fraction of the system may be varied continuously over a considerable range, simply by tuning the temperature of the system. Moreover, the finite polydispersity in particle size effectively suppresses crystallization, such that studies of dense fluid and glassy states are not complicated by an intervening fluid-crystal transition. In a series of works, theory and experiment have been compared for the flow curves under steady shear and, more recently, for both flow curves and linear response moduli. A particular strength of the model (inherited by the more recent model of) is that both flow curves and linear viscoelastic moduli can be simultaneously and accurately fitted over many decades of shear rate and frequency, respectively, using a consistent and physically meaningful set of fit parameters. In a combination of experimental techniques were employed, which enabled measurement of the flow curves and linear response moduli over eight and nine orders of magnitude in shear rate and frequency, respectively. Although certain discrepancies between experiment and theory at low frequencies remain to be fully understood, the general level of agreement is impressive. Reassuring for the schematic models, the complete microscopic MCT calculations possible for the linear response moduli agree with the data from the monodisperse samples on the 40% error level.

The nonlinear rheology of thermosensitive microgel particles (identical to those considered in the present work) was addressed in a recent experimental study, focused on the stress response to steady and large amplitude oscillatory flow. In addition to a study of the stress overshoot following the onset of shear flow (see also), both the strain dependence of the storage and loss moduli and the higher harmonic contributions were analyzed. Despite employing the same thermosensitive particles and LAOS flow protocol, the study should be regarded as complementary to the present work. In volume fractions well above random close packing
were investigated \((\phi > 0.64)\), suggesting considerable deformation of the particles themselves, whereas we focus here on packing fractions around the glass transition. Moreover, emphasis in the present work is placed on assessing the MCT based schematic theory presented in \cite{24} for a nontrivial flow history, namely large amplitude oscillatory shear, and comparison of the theoretical predictions with experiment. This comparison provides the first truly time-dependent test of this recently developed schematic model beyond the simple case of step strain already considered in \cite{24}.

The paper will be organized as follows: In Section II we summarize the microscopic starting points underlying our theoretical approach, before proceeding to give a compact overview of the linear and nonlinear response of viscoelastic systems, relevant for the subsequent analysis. In Section III we introduce the schematic MCT model and discuss its relation to previous work. In Section IV we discuss the Brownian dynamics simulation algorithm used to generate results supplementary to those of theory and experiment. Section V contains the experimental details. In Section VI we first present purely theoretical results, in order to establish the phenomenology predicted by the schematic model. We then consider the results of our two-dimensional simulations before proceeding to analyze and fit the experimental data. Finally, in Section VII we discuss the significance of the present work and provide an outlook for future studies.

II. FUNDAMENTALS

A. Microscopic starting points

The shear stress resulting from a general time-dependent shear strain rate \(\dot{\gamma}(t)\) is given by a generalized Green-Kubo relation \cite{19, 20}

\[
\sigma(t) = \int_{-\infty}^{t} dt' \dot{\gamma}(t') G(t, t').
\]

Equation (1) is nonlinear in the shear rate due to the nonlinear functional dependence of the shear modulus \(G(t, t')\) on \(\dot{\gamma}(t)\). Within the microscopic framework developed in \cite{19, 20} the modulus is identified as the correlation function of fluctuating stresses

\[
G(t, t') = \frac{1}{k_B T V} \langle \sigma_{xy} e^t \int_0^t ds \Omega(s) \sigma_{xy} \rangle,
\]

where \(\sigma_{xy} \equiv -\sum_i F^i_{xy} y_i\) is a fluctuating stress tensor element, formed by a weighted sum of the forces acting on the particles for a given configuration, \(T\) is the temperature, \(V\) is the system volume and \(\langle \cdot \rangle\) indicates an equilibrium average. The particle dynamics to be considered in the present work are generated by the adjoint Smoluchowski operator \cite{21}

\[
\Omega^\dagger(t) = \sum_i D_0 \left(\partial_i + \beta \mathbf{F}_i \right) \cdot \partial_i + D_0 \dot{\gamma}(t) y_i \frac{\partial}{\partial x_i}
\]

where \(\beta = 1/k_B T\) and \(D_0\) is the short time diffusion coefficient at infinite dilution. The time-ordered exponential function in Eq. (2) arises because \(\Omega^\dagger(t)\) does not commute with itself for different times \cite{30}.

An important approximation underlying Eq. (3) (and thus (2)) is that solvent induced hydrodynamic interactions (HI) between the colloidal particles are neglected. The diffusion coefficient entering Eq. (3) is thus a scalar quantity and the external flow may be included using a prescribed (as opposed to self-consistently calculated) shear field \(\dot{\gamma}(t)\). While the omission of HI may be inappropriate at high shear rates, for which hydrodynamically induced shear thickening can occur in certain systems, it is expected to represent a reasonable approximation for slowly sheared states close to the glass transition. Nevertheless, when attempting to fit experimental data using theoretical models based on Eq. (3) it proves necessary to include an empirical hydrodynamic correction accounting for the high frequency viscosity. In addition to the neglect of HI we make two, potentially more dangerous, assumptions: (i) \(\dot{\gamma}(t)\) is taken to be spatially translationally invariant, which may become questionable when considering the flow response of dynamically arrested states. (ii) The shear field acts instantaneously. While this should be acceptable for certain flow histories the general status of this approximation is not clear.

B. Linear response

Following standard convention, we consider an externally applied shear strain of the form

\[
\dot{\gamma}(t) = \dot{\gamma}_0 \sin(\omega t).
\]

The time translational invariance of the shear field \(\dot{\gamma}(t)\) gives rise to an explicit dependence of the modulus \(\dot{\gamma}(t)\) upon two time arguments.

For small deformation amplitudes \((\dot{\gamma}_0 \ll 1)\) the strain dependence of the shear modulus may be neglected, such that Eq. (1) provides a linear relationship between \(\dot{\gamma}(t)\) and \(\sigma(t)\). This leads to the approximation

\[
G(t, t') = G_{eq}(t - t'),
\]

where \(G_{eq}(t)\) denotes the time translationally invariant equilibrium shear modulus. Substitution of (4) and (5) into Eq. (1) and employing trigonometric addition formulas leads directly to the familiar linear response result

\[
\sigma(t) = \dot{\gamma}_0 (G'(\omega) \sin(\omega t) + \dot{\gamma}_0 G''(\omega) \cos(\omega t)),
\]

where \(G'(\omega)\) and \(G''(\omega)\) are the storage and loss moduli, respectively, defined by

\[
G'(\omega) = \omega \int_0^\infty dt' \sin(\omega t') G_{eq}(t')
\]

\[
G''(\omega) = \omega \int_0^\infty dt' \cos(\omega t') G_{eq}(t').
\]
Furthermore, Eq. (6) can be rewritten as
\[\sigma(t) = \gamma_0 |G(\omega)| \sin(\omega t + \delta(\omega)), \] (9)
where the complex modulus is given by \(G = G' + iG'' \) and the phase shift by \(\delta = \arctan(G''/G') \). If \(G(\omega) = 0 \) the response is purely elastic, in phase with \(\dot{\gamma}(t) \) (\(\delta = 0 \)). In the case \(G'(\omega) = 0 \) dissipation dominates and the response is in phase with \(\dot{\gamma}(t) \) (\(\delta = 90^\circ \)).

C. Nonlinear response

It should be clear at this stage that the familiar linear response form (6) is a direct consequence of the convolution integral which results from inserting the time translationally invariant equilibrium function (3) into Eq. (2). For finite strain amplitudes, the dependence of the modulus upon two time arguments prevents the simple trigonometric manipulations leading to Eq. (6). Nevertheless, the non-sinusoidal stress response, \(\sigma(t) \), is periodic with period \(2\pi/\omega \), and may therefore be expressed as a Fourier series
\[\sigma(t) = \gamma_0 \sum_{n=1}^{\infty} G'_n(\omega) \sin(n\omega t) + \gamma_0 \sum_{n=0}^{\infty} G''_n(\omega) \cos(n\omega t), \] (10)
where \(G'_n \) and \(G''_n \) are frequency dependent Fourier coefficients given by [41]
\[G'_n(\omega) = \frac{\omega}{\pi} \int_{-\pi/\omega}^{\pi/\omega} dt \sigma(t) \sin(n\omega t), \] (11)
\[G''_n(\omega) = \frac{\omega}{\pi} \int_{-\pi/\omega}^{\pi/\omega} dt \sigma(t) \cos(n\omega t). \] (12)
In the limit \(\gamma_0 \to 0 \) the coefficients \(G'_1 \) and \(G''_n \) reduce to the familiar linear response moduli. It should be noted that we retain the \(n = 0 \) term in the second sum of (10) in order to leave open the possibility of a stress offset.

Employing manipulations analogous to those leading from (6) to (9) the Fourier series (10) may be expressed in the form
\[\sigma(t) = \gamma_0 \sum_{n=1}^{\infty} I_n(\omega) \sin(n\omega t + \delta_n(\omega)), \] (13)
where the amplitude is given by \(I_n = |G'_n + iG''_n| \) and the phase shifts by \(\delta_n(\omega) = \arctan(G''_n/G'_n) \). In analyzing our theoretical, experimental and simulation results we will focus on the behaviour of both the generalized moduli \(G'_n \) and \(G''_n \) and the amplitude and phase shift, \(I_n \) and \(\delta_n \), of the fundamental (\(n = 1 \)) and higher harmonics (\(n > 1 \)) as a function of the control parameters.

Following a period of transient response after initiation of the strain field (switching on the rheometer) the system enters a stationary state, demonstrating a periodic stress response. Although, to some extent, an issue of semantics, it is important that the ‘stationary’ state presently under consideration be distinguished from ‘steady’ states, of the kind achievable by application of a time-independent shear flow. The stationary state is simply a well characterized and periodic transient and is thus influenced by additional physical mechanisms (e.g. thixotropy) which are irrelevant for steady states. In a physical system the stationary response must be independent of the direction of shear, leading to a stress \(\sigma(t) \) symmetric in \(\dot{\gamma}(t) \). The mirror symmetry of the constitutive equation has the consequence that only odd terms contribute to the Fourier series (13). The appearance of even harmonics in the analysis of experimental data is often an indication of boundary effects, such as wall slip, or other inhomogeneities of the flow [10].

Important physical interpretation may be given to the coefficient \(G'_1 \) by considering the energy dissipated per unit volume of material per oscillation cycle
\[E_d = \int_{-\pi/\omega}^{\pi/\omega} dt \sigma(t) \dot{\gamma}(t). \] (14)
Substitution of the strain field (1) and the Fourier series (10) into Eq. (14) leads to
\[E_d = \gamma_0^2 \pi G'_1(\omega), \] (15)
(see also [42]). Thus, for a sinusoidal strain of the form (4), energy is dissipated only at the input frequency. The coefficient \(G'_1 \) therefore has the same interpretation in the non-linear regime as in the linear regime: it determines the dissipation of energy over an oscillation cycle. The remaining coefficients in the series, \(G'_n \) and \(G''_n \), thus collectively describe the reversible storage and recovery of elastic energy.

D. Lissajous plots

A standard way to graphically represent the relationship between \(\dot{\gamma}(t) \) and \(\sigma(t) \) is via the Lissajous representation, in which trajectories are shown in the \(\gamma^*, \sigma^* \) plane, where \(\gamma^* = \gamma/\gamma_{\max} \) and \(\sigma^* = \sigma/\sigma_{\max} \) are the strain and stress, normalized by their maximum values [37]. In this representation, a general linear viscoelastic response is characterized by an ellipse, symmetric about the line \(\gamma^* = \sigma^* \), point symmetric with respect to the origin plus two mirror planes. The two limiting cases of a purely elastic and a purely dissipative response are thus characterized by a line and a circle, respectively. In the nonlinear regime considerable deviations from ellipticity are observed. The specific character of these deviations can indicate whether a material is, for example, strain hardening or strain softening (an increase/decrease of \(G' \) with strain amplitude), and thus provides a useful, albeit qualitative, ‘rheological fingerprint’ of a given material [8]. For a general nonlinear response, the area enclosed within the closed loop trajectory of a Lissajous figure is directly related to the dissipated energy via the
integral in Eq. (14). This lends an appealing physical interpretation to the Lissajous representation and provides a direct visual impression of the dissipative character of the response.

III. THEORETICAL APPROACH

A. Schematic model

As noted in the introduction, the approximate microscopic constitutive theory developed in [19, 20] enables first-principles prediction of the rheological behaviour of dense colloidal dispersions. However, the simultaneous occurrence of spatial anisotropy and non-time translational invariance hinders numerical solution of the equations when addressing concrete problems. The schematic model presented in [24] provides a simplified set of equations which, it is hoped, capture the essential physics contained within the full equations, while remaining tractable for numerical implementation.

Within the schematic reduction, the modulus is expressed in terms of a single-mode transient density correlator

$$G(t, t') = \nu_2 \Phi^2(t, t')$$ \hspace{1cm} (16)

where \(\nu_2\) is a parameter measuring the strength of stress fluctuations. The approximation underlying (16) is that stress fluctuations relax as a result of relaxations in the density (viz. structural relaxation). The assumption that \(\nu_2\) is independent of strain is a simplifying assumption which could be relaxed if necessary. The microscopic theory of [20] predicts both the temporal and wavevector dependence of the transient density correlator under applied flow. The schematic, single mode, density correlator (normalized to \(\Phi(t, t) = 1\)) represents, in some non-specific sense, a ‘typical’ correlator of the microscopic theory. It is obtained from solution of a nonlinear integro-differential equation

$$\dot{\Phi}(t, t') + \Gamma \left(\Phi(t, t') + \int_{t'}^t ds \, m(t, s, t') \Phi(s, t') \right) = 0.$$ \hspace{1cm} (17)

The single decay rate \(\Gamma\) sets the time-scale and would, within a microscopically based theory, depend upon both structural and hydrodynamic correlations. The overdots in Eq. (17) imply differentiation with respect to the first time argument. The memory function \(m(t, s, t')\) appears in Eq. (17) as a generalized friction kernel, which can be formally identified as the correlation function of certain stress fluctuations. Making the assumption that these stress fluctuations may be expressed in terms of density fluctuations (both become slow close to the glass transition) leads to a tractable expression for \(m(t, s, t')\) as a quadratic functional of the transient density correlator and, thus, a closed theory. A somewhat surprising consequence of the formal calculations presented in [19, 20] is that the memory function possesses three time arguments. The presence of a third time argument, which would have been difficult to anticipate on the basis of quiescent MCT intuition, has important consequences for rapidly varying flows (e.g. step strain [19]). Within the schematic model the memory function is given by

$$m(t, s, t') = h(t, t') h(t, s) \left[\nu_1 \Phi(t, s) + \nu_2 \Phi^2(t, s) \right].$$ \hspace{1cm} (18)

Following conventional MCT practice the parameters \(\nu_1\) and \(\nu_2\) represent, in an unspecified way, the role of the static structure factor in the microscopic theory and are chosen as \(\nu_2 = 2\) and \(\nu_1 = 2(\sqrt{2} - 1) + \epsilon/\sqrt{2} - 1\). The separation parameter \(\epsilon\) is a crucial parameter within our approach and encodes the thermodynamic statepoint of the system by measuring the distance from the glass transition. Negative values of \(\epsilon\) correspond to fluid states and positive values to glass states. Setting \(h\) equal to unity in Eq. (18) recovers the well known \(F_{12}\) model, originally introduced by Götze [26, 43, 44]. The linear term in \(\Phi\) which appears in Eq. (18) is absent from the microscopic mode-coupling expression, but turns out to be necessary for a faithful reproduction of its asymptotic properties within a single-mode theory. Under simple shear flow, the \(h\)-functions in the memory kernel (18) serve to accelerate the loss of memory caused by the affine advection of density fluctuations. The assumption that the same function \(h\) may be used to incorporate both the strain accumulated between \(t\) and \(t'\) as well as that between \(t\) and \(s\) is an approximation, made to keep the theory as simple as possible. Taking account of the required invariance with respect to flow direction suggests the simple ansatz

$$h(t, t') = \frac{\gamma^2}{\gamma_c^2 + \gamma^2},$$ \hspace{1cm} (19)

where \(\gamma \equiv \gamma(t, t') = \int_{t'}^t ds \, \dot{\gamma}(s)\) and the parameter \(\gamma_c\) sets the scale of strain.

Eq. (1) and (16, 19) provide a closed constitutive theory which depends upon three adjustable parameters (\(\nu_2, \Gamma, \gamma_c\)) and two control parameters (\(\epsilon, \dot{\gamma}\)) representing the coupling strength and applied shear rate. As the schematic model under discussion is implicitly based on the Smoluchowski dynamics described by Eq. (3), the influence of HI is neglected. While this is not important for capturing correctly the qualitative features of the rheological response, quantitative comparison requires a simple hydrodynamic correction at high frequencies. The simplest approximation, which we will employ in the present work, is to empirically add an extra term to the shear modulus

$$G(t, t') \rightarrow G(t, t') + \eta_{\infty} \delta(t - t').$$ \hspace{1cm} (20)

The high frequency viscosity, \(\eta_{\infty}\), is thus introduced into the model, describing the viscous processes which occur on timescales much shorter than the structural relaxation
dependence of the strain-rate field \(\dot{\gamma} \) may be expressed by the following memory function of schematic mode-coupling equations, this assumption identifies as (21). Within the context of schematic mode-coupling equations, time-dependent shear rate \(\dot{\gamma} \) appears as a probe of structural relaxation in soft materials [45].

The essence of the Miyazaki et al. approach can be captured by a simple schematic model, which we will elaborate upon below. In [40] the authors took the theory which they had developed for steady shear flow [38–40] and replaced the steady shear rate \(\dot{\gamma} \) appearing in the equation of motion for the correlator, by the time-dependent shear rate \(\dot{\gamma}(t) = \gamma_0 \omega \cos(\omega t) \), describing oscillatory flow. This rather ad hoc treatment gives rise to equations with a mathematical structure appropriate for steady flows and ignores the more realistic, although more complicated, history dependence of theories developed to treat non-steady flows specifically [19, 20]. On the basis of the results obtained for the strain amplitude dependence of the storage and loss moduli (notated as \(G'_1, G''_1 \) in the present work) it was argued that the time-dependence of the strain-rate field \(\dot{\gamma}(t) = \gamma_0 \omega \cos(\omega t) \) is not essential for understanding the viscoelastic response, and that it is sufficient to consider the strain-rate amplitude \(\gamma_0 \omega \) alone. The relevant timescale is thus identified as \((\gamma_0 \omega)^{-1}\), rather than \(\omega^{-1}\). Within the context of schematic mode-coupling equations, this assumption may be expressed by the following memory function

\[
m(t) = \frac{n_1 \Phi(t) + n_2 \Phi^2(t)}{1 + (\gamma_0 \omega t)^2},
\]

(21)

which, together with the equation of motion

\[
\dot{\Phi}(t) + \Gamma \left(\Phi(t) + \int_0^t dt' m(t-t') \Phi(t') \right) = 0,
\]

(22)

the shear modulus

\[
G(t, t') = v_s \Phi^2(t-t'),
\]

(23)

and Eq. (1) provides a closed theory for \(\sigma(t) \). In fact, Eqs. (21), (23) are identical to the \(F_{12} \) model [26, 27], with a steady shear-rate \(\dot{\gamma} = \gamma_0 \omega \). An important consequence of assuming the dominance of the timescale \((\gamma_0 \omega)^{-1}\) is that all states, even those which would be glasses in the absence of flow, become fluidized by an applied oscillatory shear field, regardless of the amplitude \(\gamma_0 \). Whether or not a vanishingly small value of \(\gamma_0 \) is really sufficient to restore ergodicity to dynamically arrested states is unclear and presents a fundamental question, with important implications for the existence of a linear response regime.

Despite capturing approximately the amplitude dependence of \(G'_1, G''_1 \), describing the response at the fundamental frequency, higher harmonics are ignored in the approach of [40]. The absence of higher harmonic contributions within the theory of Miyazaki et al. can be traced back to the assumption that the time-dependence of \(\dot{\gamma}(t) \) is irrelevant and that this can be represented by the constant \(\gamma_0 \omega \). Within the present context this has the consequence that the memory function (21) and correlator, given by solution of (22), are constrained to be time-translationally invariant (viz. depend on a single correlation time only). While this assumption is clearly at odds with the underlying variations in the strain field (for which a dependence on the ‘waiting time’ is to be expected), it nevertheless serves to capture first-order corrections to linear response theory, while remaining relatively easy to implement numerically.

The theory developed in [40] is quasi-linear, in the sense that \(\sigma(t) \) remains a simple sinusoid, but with an amplitude and phase shift which depend non-linearly on \(\gamma_0 \). Attempts to justify the neglect of higher harmonics have been based on the fact that the ratio of the third harmonic amplitude to that of the fundamental remains smaller than approximately 20%, for a wide range of systems [40, 45]. However, in order to draw a fair conclusion, it is important to consider the sum \(\sum_{n \geq 1} I_n(\omega)/I_1 \), rather than \(I_3/I_1 \) alone, when assessing the physical relevance of higher harmonic contributions. Various experimental studies on colloidal dispersions (see e.g. [34]) show clearly that the higher harmonics can collectively account for up to half of the total signal, which is not a small effect. This observation serves to emphasize the importance of truly nonlinear theories, which confront directly the non-time translation invariance of the correlation functions, thus going beyond the convolution approximation to Eq. (1).
IV. COMPUTER SIMULATION

To provide a point of reference for our theoretical calculations we have performed two-dimensional simulations on a system hard discs undergoing Brownian motion in an external shear field. The simulations are designed to solve approximately the many-body problem of a system of interacting Brownian particles under shear flow. The same Smoluchowski dynamics [21] underlies the microscopic mode-coupling theories of [19] and [20] which form the basis of the schematic model employed in the present work [24]. We choose to simulate a two-dimensional system for two reasons: (i) The computational resources required are significantly reduced with respect to simulation of three-dimensional systems and thus enables improved statistics to be obtained. (ii) Recent microscopic studies of the quiescent mode-coupling theory in two-dimensions have revealed behaviour broadly similar to that found in three dimensional calculations [46]. We thus expect the reduced dimensionality of our simulation system to be of little consequence for qualitative comparison with the present theory and experimental data.

The basic concept of the algorithm has been described in detail in three dimensions in [55] and its adaptation to two dimensions can be found in [56]. We consider a binary mixture of hard discs with the diameters of \(D_x = 1.0 \) and \(D_y = 1.4 \) with equal particle number concentrations and a total amount of \(N = N_x + N_y = 1000 \) hard discs in a two-dimensional simulation box of volume \(V \) with periodic Lees Edwards boundary conditions. The total two-dimensional volume fraction is then given by \(\phi_{tot} = \frac{N_x}{V}(D_x^2 + D_y^2) \). We employ this system in order to suppress crystallisation effects. The mass \(m \) of the particles and \(k_B T \) is set equal to unity. We choose our coordinate axes such that flow is in the \(x \)-direction and the shear gradient is in the \(y \)-direction. The Brownian timestep was chosen to be \(\delta t = 0.01 \) as in [56]. This results in a short time diffusion constant of \(D_0 = 0.05 \). To implement a time-dependent, oscillatory shear rate, at each Brownian timestep the shear rate is set to its new value

\[
\dot{\gamma}(\tau_B) = \gamma_0 \omega \cos(\omega \tau_B),
\]

and all particle velocities are freshly drawn from the Gaussian distribution with \(\langle v^2 \rangle = 2 \) and \(\langle v \rangle = \dot{\gamma}(\tau_B) y(\tau_B) \). Between two Brownian timesteps the shear rate is kept constant. The strain \(\dot{\gamma}(t) \) can therefore be obtained using

\[
\dot{\gamma}(t) = \sum_{\tau_B \in [0,t]} \dot{\gamma}(t_B) \delta t ,
\]

which leads to \(\dot{\gamma}(t) = \int_0^t \dot{\gamma}(t) \) in the limit of \(\delta t \to 0 \). At every Brownian timestep the part \(\dot{\gamma}(\tau_B) y(\tau_B) \) guarantees a linear velocity profile as a linear shear flow is imposed on every particle, depending on its \(y \)-position. For all simulations the frequency was set to \(\omega = 0.001 \) which leads to \(\text{Pe}_w = \omega D^2/4D_0 = 0.05 \).

The average quantity of interest in the present work is the time dependent potential part of the shear stress \(\sigma_{xy}(t) = \frac{1}{b} \left(\sum_i \langle F(t)_{ij} \rangle_x \langle r(t)_{ij} \rangle_y \right) \), with the relative force components of particle \(i \) and \(j \) \(\langle F(t)_{ij} \rangle_x \) and the particles relative distance component \(\langle r(t)_{ij} \rangle_y \) for a given time \(t \). As we consider hard particles the forces must be calculated from the collision events. By observing the collisions within a certain time window \(\Delta \tau_c = \tau_c + \Delta \tau_c \) for a given time \(t \), forces may be extracted using the change of momentum which occurs during the observation time. This leads to the evaluation algorithm for the stress at time \(t \)

\[
\sigma(t_k) = \left\langle 1 \Delta \tau_c \sum_{t_c \in [t_k,t_k+\Delta \tau_c]} (\Delta v(t_c)_{ij} x \langle r(t_c)_{ij} \rangle_y) \right\rangle_s ,
\]

where summation is over all collisions after time \(t_c \) within the time window \(\Delta \tau_c \). The procedure effectively sums the momentum changes \(\Delta v(t_c)_{ij} \) in \(x \)- direction multiplied by the relative distance of the particles \(\langle r(t_c)_{ij} \rangle_y \) in \(y \)-direction. The brackets \(\langle \ldots \rangle_s \) denote the different simulation runs.

At a total volume fraction of \(\phi_{tot} = 0.81 \) which is slightly above the glass transition for this system (estimated to be at \(\varphi = 0.79 \) on the basis of simulated flow curves [56]) we prepared 400 independent sets for each amplitude \(\gamma_0 \in \{0.001, 0.003, 0.009, 0.01, \ldots, 0.09, 0.1, 0.2, 1.0, 10.0, 100.0\} \). As the system starts from a non stationary state it is necessary to wait for the system to reach its long time asymptote (which we found to be the case after undergoing two full oscillations) before meaningful averages can be taken.

V. EXPERIMENT

A. Characterization of the latex particles

The polydisperse latex particles consist of a solid core of poly(styrene) (PS) onto which a thermosensitive network of crosslinked poly(N-isopropylacrylamide) (PNI-PAM) is affixed [22]. The degree of crosslinking of the shell due to the crosslinker \(N,N' \)-methylenebisacrylamide is 2.5 Mol %. As exactly the same particles were used for this work as in [22], the latices have a temperature dependent size (hydrodynamic radius in nm \(R_H = -0.7796 \cdot T +102.4096 \) with \(T \) the temperature in °C below 25°C) and a polydispersity of 17% [22]. All experiments were done in an aqueous solution of 0.05M KCl to screen residual charges which emerge from the synthesis of the particles. The solid content of the suspension was determined by comparing the weight before and after drying and was found to be 8.35 wt%. Neither the MCR 301 measurements nor the FT-rheology measurements at 15.1°C lead to a significant change of the solid content (+0.02 wt%). However, the FT-rheology measurements at the remaining two temperatures (18.4°C and 20°C) had a slightly
B. Rheological Experiments

The rheological experiments cover the range from the linear to the strongly nonlinear regime. The rheological measurements were performed with two instruments a MCR 301 from Anton Paar with a Cone Plate geometry (diameter: 50 mm, cone angle: 0.991°) and the FT-rheological measurements with an ARES rheometer (Rheometrics Scientific) with a Cone Plate geometry (diameter: 50 mm, cone angle: 0.04 rad). All measurements were performed after a preshear of 100s⁻¹ lasting 200s and a waiting time of 10s. For the rheological measurements, a solvent trap (for the ARES instrument equipped with a sponge drawn with water) is used to prevent evaporation. A thin paraffin-layer covers additionally the solution to prevent an exchange with the atmosphere above. With the MCR 301 the measurements at 15, 18 and 20°C were done. The flowcurves were measured from 5⋅10⁻⁴ to 1000s⁻¹ with a time ramp of 2500s to 20s and then a waiting time of 10s followed by a flowcurve measured from 1000 to 5⋅10⁻⁴s⁻¹ with a time ramp of 20 to 2500s. For 15°C flowcurves in the shear rate range of 1⋅10⁻⁴s⁻¹ to 1000s⁻¹ with a timeramp of 10000s to 20s were performed. The frequency tests were performed at a deformation of 1% starting from 10Hz to 0.001Hz with a time ramp of 20s to 100s. All deformation tests were performed with a measurement time for each point of 100s. For the FT-rheology oscillatory time sweep measurements were performed at the ARES instrument at frequencies of 1, 0.1 and 0.01Hz at different deformation amplitudes. The FT-signal were always recorded after some oscillations, so that the suspension reached the oscillatory stationary state. The first measurements were done at 15.1°C and the frequency tests of the ARES and the MCR 301 coincided. For the two higher temperatures the measurements had to be performed for the same ARES instrument at a different room. Here an evaporation effect was observed, so that the temperature had to be adjusted to achieve the same behaviour in the frequency test. Instead of 18°C a temperature of 18.4°C and instead of 20°C a temperature of 20.9°C was used. Typically for the nonlinear FT-rheology measurements with the time sweep tests 40 oscillations for 1Hz excitation were applied, whereas 10 oscillations for 0.1Hz and 9 oscillations for 0.01Hz. To obtain a FT-spectrum from the raw time data we performed a discrete, complex, half-sided fast Fourier transformation [5, 12, 54].

For further information of the setup, the measuring principal and FT-analysis we would like to refer to [51, 52].

C. Fourier Transform Rheology Apparatus

The FT-rheological setup consists of a Rheometrics Scientific advanced rheometer expansion systems (ARES) and a computer which either controls the rheometer via a serial cable as well as detects the strain and torque force outputs via BNC cables (see Fig. 1). The ARES rheometer is a strain-controlled rheometer equipped with a dual range force rebalance transducer (100 FRT) capable of measuring torques ranging from 0.004mNm to 10mNm, specified by the manufacturer. It has a high resolution motor, applying frequencies from 10 – 5rad/s to 500rad/s and deformation amplitudes ranging from 0.005 to 500mrad. A water bath adjusts the temperature range from 5°C to 95°C. The analog raw data of the measurements are digitized with a 16-bit ADC. This ADC card has a maximum sampling rate of 50 kHz per channel. Due to the high sampling rate the time between consecutive data points is very small compared to the timescale of rheological experiments. The loss of information by sampling the torque transducer data is negligible [48]. To achieve best results with respect to the signal-to-noise ratio, oversampling is applied. The ADC-card acquires the time data at the highest possible sampling rate and then preaverages them on the fly to reduce random noise. With this method the noise is reduced by a factor of 3 to 5 which could only be achieved by averaging multiple measurements [49]. Within the set-up a 16-bit ADC card is implemented, which is able to discriminate steps. The quantification resolution of the ADC card limits the ratio. It determines the mini-
umn detectable intensity of weak signals by its ability to discriminate the intensity of the signal. The higher the bit number, the smaller the detectable intensity variation \(50\). After acquisition and digitization of the time data, they are handled with Matlab software \([51, 52]\).

VI. RESULTS

A. Theoretical predictions

1. Flow curves

For given values of the parameters \((v_d, \gamma_c, \Gamma, \epsilon)\) the schematic theory defined by \([4]\) and Eqs.\([16, 19]\) enables prediction of the flow curve expressing the steady shear stress \(\sigma\) as a function of shear-rate \(\dot{\gamma}\). Fig.2 shows a set of typical flow curves generated by the schematic MCT model for three fluid states \((\epsilon < 0)\), the critical state \((\epsilon = 0)\), and three states in the glass \((\epsilon > 0)\). The parameters employed for the theoretical calculations presented in Fig.2 (as well as for Figs.3-8) are \(v_d = 100\), \(\gamma_c = 0.15\), \(\Gamma = 100\) and \(\epsilon = 10^{-3}\). Experience with fitting the experimental data, to be considered in section VI.C, shows that these choices represent sensible physical values for the model parameters. In the fluid, there exists a linear (Newtonian) regime for small shear-rates \((P_{e0} \equiv \dot{\gamma}/\Gamma \ll 1)\), for which the standard \(F_{12}\) model result for the shear viscosity holds, \(\sigma = \dot{\gamma} \int_0^\infty dt \Phi_{\epsilon 0}(t) \equiv \dot{\gamma} \eta\). Increasing the separation parameter to less negative values (corresponding to, e.g. an increase in the volume fraction) gives rise to an increase in \(\eta\), reflecting the slowing of the structural relaxation time \(\tau\), which dominates all transport properties within our MCT approach. For \(\dot{\gamma} \tau > 1\) the effect of shear starts to dominate the structural relaxation and the stress increases sub-linearly as a function of shear-rate, corresponding to shear thinning of the viscosity \(\eta(\dot{\gamma}) = \sigma(\dot{\gamma})/\dot{\gamma}\). At high shear-rates \(\dot{\gamma} \tau \gg 1\) the present model yields \(\sigma = \dot{\gamma}/\Gamma\) and needs to be supplemented by corrections which account for the high shear limiting viscosity (and which, in the absence of HI, are determined by the solvent contribution \(\eta_\infty\)).

As \(\epsilon \rightarrow 0\) the regime of linear response shifts to increasingly lower values of the shear-rate and disappears entirely at the (ideal) glass transition, \(\epsilon = 0\). For states in the glass there exists a finite stress in the limit of vanishing shear rate, identified as the dynamical yield stress \((\lim_{\dot{\gamma} \rightarrow 0} \sigma(\dot{\gamma}) = \sigma_y)\). Within idealized MCT based treatments the dynamical yield stress emerges discontinuously as \(\epsilon\) is varied across the glass transition (shown in the inset of Fig.2). It should be mentioned that the flow curves shown in Fig.2 differ quantitatively from those of the extensively studied \(F_{12}^\gamma\) model \([27]\), due to the inclusion of an additional prefactor \(h(t, t')\) in the expression for the memory function \([18]\). Nevertheless, the qualitative predictions of the theory for the flow curves are in full agreement with those of the \(F_{12}^\gamma\) model.

FIG. 2: (Theory) The flow curves for fluid states \(\epsilon = -10^{-3}, -5 \times 10^{-4}, -10^{-4}\) (green), at the critical point \(\epsilon = 0\) (red) and for glassy states \(\epsilon = 10^{-4}, 5 \times 10^{-4}, 10^{-3}\) (blue). In the glass \((\epsilon > 0)\) there exists a finite stress in the limit of vanishing shear rate, identified with the dynamical yield stress \((\lim_{\dot{\gamma} \rightarrow 0} \sigma = \sigma_y)\). The cross indicates the yield stress value used in Figs.4 and 5. Inset (a) shows the discontinuous emergence of a dynamical yield stress as a function of \(\epsilon\). Inset (b) shows the viscosity \(\eta = \sigma/\dot{\gamma}\). Calculations were performed with \(\eta_\infty = 0\).

2. Linear response moduli

The linear storage and loss moduli, given by Eqs.\([7, 8]\) respectively, are shown in Fig.3 as a function of \(P_{e\omega} \equiv \omega/\Gamma\) for two fluid states \((\epsilon < 0)\) and two glassy states \((\epsilon > 0)\). In the fluid, the finite value of the structural relaxation timescale \(\tau\) is reflected in the maximum of \(G''\) and the crossing of \(G'\) and \(G''\) at low frequency. The fact that \(G'\) remains notably larger than \(G''\) at high frequencies is simply a result of neglecting the high frequency limiting viscosity \(\eta_\infty\) in presenting our theoretical predictions. Setting \(\eta_\infty = 0\) in presenting the theory highlights the contribution of structural processes to the viscoelasticity. In the glass, \(G''\) goes to zero at low frequencies \((G'' \sim \omega)\) and \(G'\) attains a finite low frequency value, identifying the transverse elastic constant \(G_\infty\). Within our MCT approach, the elastic constant appears discontinuously upon crossing the glass transition (i.e. \(\lim_{\epsilon \rightarrow 0} G'(\omega)\) jumps from zero for \(\epsilon \rightarrow 0^-\) to a finite value for \(\epsilon \rightarrow 0^+\)) thus demonstrating that the MCT indeed describes a transition to an amorphous solid.

3. Nonlinear stress response

By numerical solution of the equation of motion \([17]\) we obtain the non-time translational invariant density correlator \(\Phi(t, t')\) and, via Eqs.\([1]\) and \([16]\), the nonlinear stress response. The numerical algorithm requires the equation of motion to be discretized over the entire two-
FIG. 3: (Theory) The linear response moduli G'_1 (full lines) and G''_1 (broken lines) as a function of $P\epsilon_\omega$ for two statepoints in the fluid $\epsilon = -0.001$ (red), -0.0005 (green) and two in the glass $\epsilon = 0.0005$ (blue), 0.001 (black). For fluid states the finite value of the structural relaxation timescale is reflected in the maximum in G''_1 and the consequent crossing of G' and G'' at low frequency. The results presented here omit solvent hydrodynamics which may become relevant at $P\epsilon_\omega \approx 1$ (calculations were performed with $\eta_\infty = 0$). These will be included in a simple approximate fashion when fitting the experimental data. The two arrows indicate the values $P\epsilon_\omega = 0.001$ and 0.025 used to generate Figs. 4 and 5, respectively.

dimensional (t, t')-plane. While considerations of both causality ($t > t'$) and the periodicity of the correlator with respect to a translation in time ($\Phi(t + t_0, t' + t_0) = \Phi(t, t')$, where $t_0 = \pi / \omega$) enable certain simplifications to be made, calculation of the correlator over many decades in time remains a computationally demanding task.

Typical examples of the response $\sigma(t)$ for a glassy state ($\epsilon = 0.001$) are shown in Fig. 4 for various values of the strain amplitude γ_0 at a fixed frequency. Alongside each of the time series we show the corresponding Lissajous curves indicating the extent of the dissipation (via the area enclosed, see Eq. (14)) and the deviations from non-linearity (discernable from the non-ellipticity of the loop). The value of ϵ employed to generate this figure generates a dynamic yield stress $\sigma_y = 0.2763$, which is indicated in each panel of Fig. 4 by a broken red line. This can also be read-off from the appropriate flow curve in Fig. 2.

For small amplitudes $\gamma_0 \leq 0.01$ the system is almost linear and responds in a predominately elastic fashion at the considered frequency. As γ_0 is increased, clear deviations from a sinusoidal response are apparent and higher harmonics start to contribute to the signal. In this non-linear regime the stress response exhibits a characteristically flattened peak, with an asymmetry which increases as a function of γ_0. It is clear from the figure that the higher harmonics first become significant when the maximum value of the stress $\sigma(t)$ approaches the dynamic yield stress. An idealized yield stress material, subject to large amplitude oscillatory shear of vanishing frequency, would be expected to show a steady increase of the stress

FIG. 4: (Theory) The stress response of a glassy state to oscillatory strain calculated from our MCT based theory for strain amplitudes from $\gamma_0 = 0.01, 0.03, 0.05, 0.07, 0.10, 0.15$ and 0.20. The associated Lissajous figures illustrate the non-linear character of the response. The increase in dissipation with increasing γ_0 is reflected by the increasing area enclosed by the Lissajous curves. All calculations were performed at $P\epsilon_\omega = 0.025$ and $\epsilon = 0.001$. The red horizontal broken lines indicate the dynamic yield stress obtained from the flow curve in Figure 2 for $\epsilon = 0.001$ ($\sigma_y = 0.2763$). The response becomes clearly nonlinear when the maximum of $\sigma(t)$ approaches the dynamical yield stress. The blue horizontal dotted lines provide an upper bound for the maximum of the time-dependent stress and are taken from the corresponding flowcurve in Fig. 2.
up to the yield point, beyond which the system begins to flow, maintaining $\sigma(t) = \sigma_y$ until the reversal of strain enables relaxation back to zero. If this were the case, then $\sigma(t)$ would be represented by a ‘clipped’ signal, symmetric during loading and unloading of the sample.

The results presented in Fig. 4, however, have been generated for a low, but not vanishingly small, frequency. At finite frequency the maximum stress attainable in a system under steady shear is given by $\sigma_{\text{max}} = \sigma(\gamma_0 \omega)$, where $\sigma(\gamma)$ is the stress on the steady shear flow curve. This maximal stress under flow, σ_{max}, is indicated by a blue dotted line in Fig. 4 for the four largest strain amplitudes considered. In each case, once the stress exceeds the yield point the curve flattens, exhibiting a maximum which remains bounded from above by σ_{max}. In the low frequency limit the lower and upper bounds to the peak value of $\sigma(t)$ become equal, $\sigma_{\text{max}} = \sigma_y$, such that the signal becomes clipped at the yield point. In order to test this hypothesis further, we show in Fig. 5 stress responses generated using the same parameter set as employed in Fig. 4 but for a frequency one order of magnitude lower. At this reduced frequency, the clipping of $\sigma(t)$ at yield is quite clear, although the the peak stress still slightly exceeds σ_y, due to the fact that the values of the strain-rate amplitude are not sufficiently small that σ_{max} has saturated to σ_y.

Two additional comments are in order regarding the results shown in Figs. 4 and 5. Firstly, for low frequencies (e.g. the data shown in Fig. 6) the full time-dependent stress signal can be rather faithfully reproduced by the simple approximation

$$
\sigma(t) = \begin{cases}
\gamma_0 \left[G_1'(\omega) \sin(\omega t) + G_1''(\omega) \cos(\omega t) \right] & \sigma \leq \sigma_y \\
0 & \sigma > \sigma_y
\end{cases}
$$

(26)

where G_1' and G_1'' are the lowest order coefficients in the Fourier series (10). The naive picture sketched above is thus not completely correct. In order to describe correctly the sub-yield response, $\sigma(t) \leq \sigma_y$, it is necessary to incorporate the γ_0 dependence of the lowest order coefficients; linear response is insufficient. It is also noteworthy that it is the dynamic, yield stress, which plays

FIG. 5: (Theory) As in Figure 3 ($\epsilon = 0.001$) but for a lower frequency $Pe_\omega = 0.001$. At this value of Pe_ω the system is almost perfectly elastic in the linear regime ($G' \gg G''$ for $\gamma_0 \ll 1$, see Figure 5). As the time-dependent stress exceeds the dynamical yield stress the signal becomes clipped. At this frequency σ_{max} lies very close to σ_y and has thus been omitted for clarity.

FIG. 6: (Theory) The theoretical G_1' and G_1'' as a function of strain for $\epsilon = 0.001$ at frequencies $Pe_\omega = 0.025$ and $Pe_\omega = 0.001$. Points are the numerically calculated data points, lines are a guide for the eye. For large values of the strain the numerical data are well fitted by the power laws $G'' \sim \gamma_0^{-\nu}$ and $G' \sim \gamma_0^{-2\nu}$ with $\nu = 0.65$ (indicated by dotted lines).
the crucial role in determining the time-dependent $\sigma(t)$. While the importance of dynamic yield in determining the oscillatory response is clear within the present approach, it remains to be seen whether this is a constraint introduced by employing a prescribed strain or, more significantly, an indication that the dynamic and static yield stresses are identical within our approximate theory. The simple approximation (26) contains higher harmonic contributions as a result of the yield stress clipping criterion.

4. Fourier analysis

In order to provide a more systematic analysis of the time signal $\sigma(t)$, we now consider its decomposition into Fourier modes and investigate the behaviour of the coefficients entering the series (10) and (13) as a function of strain, for a given material. In Fig.3, we show typical results for the lowest order coefficients as a function of strain, for two different values of the excitation frequency.

For small values of γ_0 linear response is recovered and the values of G'_1 and G''_1 may be read-off from the data shown in Fig.3. The linear response regime persists up to around $\gamma_0 = 0.01$, beyond which G''_1 begins to increase gradually, reaching a maximum value at around $\gamma_0 = 0.1$. As noted in subsection II.C, the coefficient G'_1 is proportional to the amount of energy dissipated per oscillation cycle. The increase in dissipation observed over the range $\gamma_0 = 0.01 \rightarrow 0.1$ is probably connected to the increasing disruption of the microscopic ‘cage’ structure of dense glassy systems, induced by the externally applied strain field. However, such microscopic interpretations remain purely speculative within the present context of schematic model calculations, for which there is no explicit spatial resolution of correlated density fluctuations.

Deeper insight into the microscopic mechanisms underlying the observed macroscopic response would be provided by solution of the full equations presented in [20]. The increase in G''_1 is associated with a decrease in G'_1 as a function of γ_0. In contrast to G''_1, there exists no simple physical interpretation of the coefficient G'_1 in the nonlinear regime. For strain amplitudes exceeding $\gamma_0 = 0.01$ the recoverable elastic energy becomes distributed over G'_1 and the higher harmonics, such that G'_1 loses its special status as a ‘storage modulus’.

For $\gamma_0 > 0.1$ the dissipation G''_1 becomes larger than G'_1, indicating a crossover from predominately elastic to predominately viscous response, and both functions exhibit a monotonic decay. For values of the strain amplitude larger than unity a regime of asymptotic decay is entered, characterized by a well defined power law dependence. We find that the numerically generated data are well fitted by power laws $G''_1 \sim \gamma_0^{-\nu}$ and $G'_1 \sim \gamma_0^{-\nu'}$, with $\nu = 0.65(\pm 0.02)$ and $\nu' = 2\nu$. Moreover, calculations performed at various frequencies show that the exponent values are independent of ω and thus seem to represent a universal aspect of the asymptotic decay within the schematic model. While the numerical findings are suggestive of a universal exponent ν, analytical calculation of its precise value has so far proved elusive. The primary difficulty in extracting ν from the theory is that, even in the asymptotic regime, the correlator $\Phi(t,t')$ retains a residual dependence upon the waiting time t' which does not yield readily to analytic treatment. The integral for the stress (1) thus
consists of a complicated superposition of correlators for different values of ν^\prime.

An important numerical prediction of the schematic model is that the exponents dictating the decay of G' and G'' are related, to within numerical accuracy, by a factor of 2. The relation $\nu^\prime = 2\nu$ has been observed in experimental studies of a variety of soft materials (see subsection VI C for more details on this point) and it would therefore be of considerable interest to investigate this apparent prediction of our model in more depth. The relationship $\nu^\prime = 2\nu$ is found also in simple nonlinear Maxwell models \cite{27,10}, and is thus not particularly surprising. Such models inevitably predict the trivial exponents $\nu = 1$ and $\nu^\prime = 2$. The numerical data obtained by Miyazaki et al. \cite{10} from solving their microscopic MCT theory is consistent with the exponent relation $\nu^\prime = 2\nu$, but predicts a value of $\nu = 0.9$ (obtained by fitting the numerical data), which differs somewhat from the experimental value $\nu = 0.7$ for PMMA colloids presented in the same work. Whether the value $\nu = 0.9$ from the MCT calculations of \cite{10} is influenced by the additional isotropic approximations employed remains unclear.

The coefficients G_1' and G_2'' discussed above describe the response at the fundamental frequency. We now consider the contribution of the higher harmonic terms to the stress signal. Due to the $\dot{\gamma}(t) = -\dot{\gamma}(t)$ symmetry of $\sigma(t)$, even coefficients in the Fourier series \cite{13} are identically zero within the schematic theory (a condition which provides a useful check for our numerical algorithms). In Fig.7 we show the intensities of the odd harmonics (normalized by I_1) up to $n = 9$ for a glassy state, obtained by applying a discrete Fourier transform to the time series $\sigma(t)$. For very small amplitudes $\gamma_0 < 0.01$ the numerical solution of the equation of motion for $\Phi(t, t')$ becomes unreliable, as the structural relaxation time exceeds the range of the numerical grid upon which the oscillating function $\Phi(t, t')$ can be resolved. Data are thus presented for $\gamma_0 > 0.01$ where accurate converged solutions can be obtained. At strain amplitude $\gamma_0 = 0.01$, only I_3 contributes significantly to the signal (around 3%). As the γ_0 is increased beyond 0.01, the increasing influence of I_3 is accompanied by the appearance of terms I_5, I_7 (beyond $\gamma_0 = 0.03$) and I_9 (beyond $\gamma_0 = 0.07$). Although intuitive, it is not clear \textit{a priori} that the higher harmonics must necessarily appear in sequence $n = 3, 5, 7, \cdots$ upon increasing the amplitude. All of the $I_{n>3}$ exhibit a maximum in the range...
$0.3 < \gamma_0 < 1$ and by $\gamma_0 = 1$ contribute approximately half of the total signal, $\sum_{n>1} I_n/I_1 \sim 0.5$. The maximum and subsequent decay of the higher harmonics has also been observed in [53].

Complementary to the higher harmonic intensities are the phase shifts δ_n shown in Fig.8. It should be noted that the phases are only physically meaningful for amplitudes at which the corresponding intensity is significant. As γ_0 is increased towards unity the phases saturate to the asymptotic values $\delta_1 = \pi/2, \delta_3 = 3\pi/2$ and $\delta_5 = 5\pi/2$. The higher harmonic contributions I_n and δ_n, which contribute for $\gamma_0 > 0.01$, describe the distortion of $\sigma(t)$ close to the yield stress (c.f. Figs.4 and 5).

B. Simulation results

In Fig.9 we show the stress response measured in our Brownian dynamics simulations of a binary hard-disc mixture. As the strain amplitude is increased the simulated stress evolves from a linear to a nonlinear response for $\gamma_0 > 0.03$. Consistent with the theoretical results shown in Fig.4, the time dependent signal becomes distorted away from a pure sinusoid when the peak of $\sigma(t)$ encounters the dynamic yield stress. Although the Peclet number $Pe_0 = 0.05$ is close to that employed in the theoretical calculations used to generate Fig.4, the onset of the yield stress clipping effect, already manifest in Fig.4, is not clear in the form of $\sigma(t)$ shown in Fig.9. It would therefore seem likely that considerably smaller values of the Peclet number are required to observe this effect in our two-dimensional simulations. Nevertheless, the general form of the nonlinear stress is very similar, on a qualitative level, to that predicted by the schematic model in Fig.4. Both simulation and theory exhibit a flattened and asymmetric peak which is skewed to the left.

In order to analyze more closely the stress signal we show in Figs.10, 11 and 12 the fundamental coefficients, higher harmonic intensities and phase shifts, respectively. The dependence of G''_1 and G''_5 on γ_0 is strongly reminiscent of that predicted by the schematic model (Fig.6). Within the range $0.01 < \gamma_0 < 0.06$ the system begins to deform plastically leading to a reduction in G''_1 and an increase in G''_5 (and cross at $\gamma_0 = 0.05$), reflecting the increasing importance of dissipative processes. The height of the peak in G''_5 is rather less pronounced than that predicted by the schematic model. Beyond $\gamma_0 = 0.06$ both G''_1 and G''_5 decrease monotonically, exhibiting an asymptotic power law decay which is well described by the power laws $G''_1 \sim \gamma_0^{-0.68}$ and $G''_5 \sim \gamma_0^{-1.45}$. Although these values do not satisfy perfectly the empirical relation $\nu' = 2\nu$, the deviation of the simulation exponent ratio $\nu'/\nu = 2.13$ may well be attributable to numerical error. Despite this discrepancy, the absolute value of the exponents $\nu = 0.68$ and $\nu' = 1.45$ compare well with those emerging from the schematic model ($\nu = 0.65$ and $\nu' = 1.3$). The schematic model considered in the present work would thus seem to be more realistic than either a simple Maxwell model ($\nu = 1$ and $\nu' = 2$) or the microscopic MCT approach of Miyazaki et al. ($\nu = 0.9$ and $\nu' = 1.8$), at least on the basis of our simulation results.

In Fig.11 we show the intensities of the third and fifth harmonic as a function of γ_0. Higher order terms were found to be highly susceptible to the effects of statistical noise in the simulation data and have thus been omitted. Upon increasing the strain amplitude beyond $\gamma_0 = 0.03$ the system leaves the linear response regime and the contribution of the third harmonic grows. For strains exceeding around 0.1 the fifth harmonic also begins to play a significant role in determining the stress response. In keeping with the schematic models predictions, both I_3/I_1 and I_5/I_1 exhibit a maximum, albeit more sharply peaked and shifted to slightly larger strain values approaching unity. The corresponding phase shifts also share the general features of the schematic model predictions, in particular, for large values of γ_0 we find...
that δ_1, δ_3 and δ_5 saturate to $\pi/2, 3\pi/2$ and $5\pi/2$, respectively. These results suggest that the series (13) reduces to

$$\sigma(t) = \gamma_0 \sum_{n=1}^{\infty} I_{2n+1}(\omega) (-1)^n \cos((2n+1) \omega t), \quad (27)$$

for large values of γ_0.

C. Experimental results

1. **Flow curves and linear response moduli**

In Fig. 13 we show the experimentally measured flow curves and in Fig. 14 the linear response moduli for three different temperatures (corresponding to three different volume fractions). Reduced units are employed for both the control parameters

$$Pe_0 = \frac{\dot{\gamma} R_H}{D_0}, \quad Pe_\omega = \frac{\omega R_H}{D_0},$$

(where D_0 is obtained from the solvent viscosity using Stokes' law) as well as for the shear stress and the moduli

$$\sigma_{\text{red}} = \frac{\sigma R_H^3}{k_B T}, \quad G'_{\text{red}} = \frac{G' R_H^3}{k_B T}, \quad G''_{\text{red}} = \frac{G'' R_H^3}{k_B T}.$$

For small Peclet numbers the flow curve measured at 18°C (corresponding to $\phi_{\text{eff}} = 0.57$) shows a first Newtonian plateau. As Pe_0 is increased we observe a decrease in viscosity, followed by a second Newtonian plateau, both of which are typical for a shear thinning fluid. The viscoelastic character of the sample at 20°C is demonstrated by the linear response moduli shown in Fig. 14 for intermediate frequencies G' and G'' cross, indicating the presence of a structural α-relaxation process.

The flow curve measured at the lower temperature 18° C ($\phi_{\text{eff}} = 0.60$) displays a more pronounced plateau region. However, for the lowest frequencies investigated a slight decrease from the plateau is evident, suggesting the existence of an α relaxation time which has shifted out of the experimental frequency window. The corresponding linear moduli shown in Fig. 14 show a distinctive plateau region of G' at intermediate values of Pe_ω, followed by a decrease for small Pe_ω values, consistent with the existence of a crossover point and, therefore, a fluid relaxation. This is especially apparent in $G''(\omega)$ which continues to rise as the frequency is decreased. Extrapolation of the measured data to lower frequencies suggests $Pe_{\text{cross}} \approx 10^{-6} - 10^{-7}$, where G' and G'' cross. For the lowest temperature investigated, 15°C ($\phi_{\text{eff}} = 0.65$), the flow curve exhibits a constant plateau down to the lowest values of Pe and the storage moduli remains constant at low Pe_ω. The sample at 15°C may thus be considered as a glass for which additional ‘hopping’ processes lead to an increase in G'' at low frequencies.

The procedure by which experimental data may be fit using the schematic F_{12} model of [27] is already well documented [32]. Fitting the experimental data for the flow curve and linear moduli using the present schematic model proceeds analogously. For a given volume fraction, a fixed set of model parameters may be found which fit both the flow curve and the linear moduli. It is thus possible to determine the separation parameter ϵ, the vertex v_σ and the decay rate Γ. The parameter γ_Γ is obtained as an additional parameter for the description of the flow curve. The high frequency viscosity η_∞ is only important for the frequency spectrum (and is connected with the high shear viscosity η_σ via $\eta_\infty = \eta_\sigma + v_\sigma/(2\Gamma)$ [31]). Fixing the parameters by these two experiments
in the linear viscoelastic and the steady state determines all information needed to calculate the nonlinear oscillatory behaviour (parameters are summarized in table I). Therefore, the experimental data sets of the deformation sweeps (Figs. 15-17) and the oscillatory time tests (Figs. 18 and 19) are solely described by the theory of Section III and the fixed parameter sets obtained by fitting Figs. 14 and 13 without further modification. In this sense, the theoretical results to be presented for large amplitude oscillatory shear are predictions, as no further fitting is required.

2. Nonlinear response

The nonlinear regime has been tested using two different experiments: deformation sweeps at 1, 0.1 and 0.01 Hz (see Figs. 15-17) and oscillatory time series measured at 1, 0.1 and 0.01 Hz for various deformation amplitudes ranging from the linear to the non-linear regime (see Figs. 18 and 19). The complete set of nonlinear oscillatory data is solely described by the schematic MCT employing the parameter sets determined by the fitting procedure described above.

In Fig. 15 we show the results of strain sweep experiments at 15.0°C ($\phi_{eff} = 0.65$) for three different values of $P_e\omega$. For strains up to around 1% the system shows linear response behaviour, beyond which dissipation starts to increase, leading to a growth of G'' up to a maximum in the range 10-20% strain. The growing dissipation and eventual crossing of G' and G'' as a function of γ_0 indicate the breaking of microscopic particle cages.

For higher deformations G' and G'' display a power law decay. The exponents ν and ν' obtained at different temperatures and frequencies are given in table II

T [°C]	ϕ_{eff}	ϵ	ν_e	Γ	γ_0	η_∞
20.0	0.57	-2.45×10^{-3}	59	100	0.18	42
18.0	0.60	-2.2×10^{-4}	85	100	0.19	36
15.0	0.65	5×10^{-5}	115	105	0.28	24

TABLE I: Schematic model parameters obtained by fitting experimental data for the flow curves (Fig. 13) and linear response moduli (Fig. 14). These parameters are then used to make theoretical prediction for large strain amplitude oscillatory experiments.
The theoretical predictions shown in Fig. 18 are in excellent agreement with the experimental data and capture both the height and location of the maximum in G' rather well, although the departure from linear response appears to be less abrupt than in experiment, indicating a more gradual breaking of cages with increasing γ_0. We note that the discrepancy between theory and experiment in the linear response regime for the lowest frequency considered has its origins in the linear moduli fits presented in Fig. 14. For glassy states there occur additional physical relaxation processes at low frequency which are manifest in an upturn of the linear response $G''(\omega)$ at low frequencies and which are not captured by mode-coupling based theoretical approaches. Particularly significant is the excellent agreement between theory and experiment in the large strain regime for which the cage structure has been broken up by the applied flow. The power law decay of the experimental data is well described by the theoretical exponents $\nu = 0.65$ and $\nu' = 1.3$.

Both the numerically obtained theoretical results and experimental data shown here demonstrate the exponent relation $\nu' \approx 2\nu$ (as in the theory of [10]). It is interesting to note that although this relation does not appear to be truly universal, broadly similar behaviour has been found for a variety of different materials, all of which show the deformation behaviour classified by Hyun et al. [9] as type III (weak strain overshoot). A few examples are e.g. a Xanthan gum solution [7] with $\nu' = -1.53$, $\nu = 0.64$ and a ratio $\nu'/\nu = 2.4$, anchor spreadable butter and promise spread which yield exponents $-2.1 < \nu'/\nu < -2.0$ with $\nu = -0.9$ and a ratio of $\nu'/\nu = 2.3$, or the hard-sphere solution of Miyazaki et al. [10] (PMMA spheres of 197nm in a mixture of decaline and cycloheptylbromide) which show $\nu = 0.7$ and $\nu' = 1.4$.

In Figs. 16 and 17 we show further strain sweep measurements for temperatures $18^\circ C$ ($\phi_{eff} = 0.60$) and $20^\circ C$ ($\phi_{eff} = 0.57$). The overall level of agreement between theory and experiment is even better than that found for $T=15^\circ C$. In particular, the strain sweep measured at $20^\circ C$ is very well described by the theory and, taken together with the results shown in Figs. 13 and 14, demonstrate the accuracy with which the present schematic model may be used to describe the flow curve, linear moduli and strain sweep data of a dense colloidal fluid using a single fixed set of model parameters.

For the oscillatory time series the schematic model cal-
calculations and the simulation are in good agreement with the experimental data. The direct comparison of theory and experiment for two frequencies (1 Hz and 0.01 Hz) respectively the Peclet numbers ($P_{c\omega} = 0.025$ and 0.0025) is given in Figs. 18 and 19. For small deformations, a linear viscoelastic behaviour is indicated by the nearly perfect sinusoidal output signal, but becomes distorted as the strain amplitude is increased. For $P_{c\omega} = 0.025$ the stress signal displays flattened asymmetric peaks at intermediate values of γ_0, consistent with a regime of cage breaking around $\gamma_0 = \gamma_c$. In contrast to the MCT predictions, the data show a pronounced dip at the top of the asymmetric peak. For high deformations, the peak shape approaches a semi-spherical shape with a vanishing but still visible dip or overshoot at the beginning edge of the peak. For the smaller frequency at $P_{c\omega} = 0.0025$ indications of the effect of the merging σ_{max} and the yield stress are found. The peaks show in the intermediate and high deformation range a more cut off shape, although the dip still remains, in contradiction to the MCT. The peak shape for middle γ_0 drops faster in the experiment as for the more box-like shape of the MCT time signals.

However this shape is found in the experiment for high γ_0 as well. Altogether the experiments and the theory fit well for all compared Peclet numbers and amplitudes, although some small deviations of the shape exist. The predictive character of the schematic MCT model for the oscillatory time series is remarkable, due to the fact that the shapes are not fitted but calculated with the parameter set defined from the flow curves and the frequency test in the linear viscoelastic regime.

3. Fourier analysis

In order to provide a more detailed analysis of the time series shown in Figs. 18 and 19 we have calculated the intensities and phase shifts (see Eq. (13)). The phase shifts are calculated from the real and imaginary parts of the Fourier transformed signal. Representative FFT-spectra are shown in Fig. 20 for the measurements made at at 15.1°C, 1 Hz and for amplitudes $\gamma_0 = 0.03$ and 1. The spectrum demonstrates that at this low strain amplitude the higher harmonics do not contribute significantly and have an intensity only around 0.1% of the basic harmonic I_1. Although peaks for even and odd harmonics are visible, their low intensities are not far away from the noise level. We therefore consider this measurement to be within the linear viscoelastic range.

At the same conditions the MCT calculations show a rather different picture (see Fig. 20b). Although the time signals for this γ_0 do not deviate strongly from the experimental equivalent (see Fig. 20), the effect in the Fourier spectrum is noticeable. Up to the 11th harmonic all odd harmonics can be clearly separated from the base line, with I_3/I_1 around 1%. Furthermore, in the theoretical FFT-spectrum an exponential decay of the intensities is apparent, a feature which first becomes evident in the experimental data for $\gamma_0 \geq 0.158$. At the larger strain amplitude, $\gamma_0 = 1$, the MCT calculations and the ex-

T [°C]	ϕ_{eff}	ω [Hz]	ν	ν'	ν'/ν
15.0	0.65	1	-0.633	-1.262	1.99
15.0	0.65	0.1	-0.742	-1.404	1.89
15.0	0.65	0.01	-0.788	-1.555	1.97
18.0	0.60	1	-0.631	-1.297	2.06
18.0	0.60	0.1	-0.712	-1.424	2.00
18.0	0.60	0.01	-0.824	-1.630	1.98

| 20.0 | 0.57 | 1 | -0.630 | -1.250 | 1.98 |

TABLE II: Experimentally measured values of the exponents ν and ν' dictating the decay of G' and G'' as a function of γ_0 for large values of γ_0.

FIG. 19: (Experiment) As in Fig. 18 but at a frequency of 0.1 Hz (corresponding to $P_{c\omega} = 0.002533$). Full black lines: Experimental data. Broken blue lines: Theoretical results. The yield stress is indicated by the broken red lines.
spectra at $\gamma = 15.1$ Hz. The experiment was performed at a small excitation amplitude may be obtained by considering the theoretical predictions for the buildup of stress following the onset of steady shear flow (see also [35]). Within the elastic regime (i.e. well below the ‘stress overshoot’ identifying the yield strain) the system should display Hookian behaviour with a clearly defined elastic constant. However, schematic model calculations of the stress for this protocol (either using the present model or the F_{12} model of [27]) exhibit deviations from Hookian behaviour at small strains. This feature of the schematic models is related to the slowness of the β decay of the transient density correlator onto the plateau. We can thus speculate that the discrepancy between the Fourier spectra of theory and experiment at low values of γ_0 may be due to the excessively slow decay of the correlator to its plateau value, which is an inherent feature of any model based on the original schematic F_{12} model [26, 43, 44].

In Fig. 21b the amplitude dependence of the experimentally measured third harmonic is shown for three different frequencies in the glass (15.1$^\circ$C). It can be seen that as the frequency is reduced, the onset of the non-linear regime, indicated by increase of the normalized third harmonic intensity, moves to lower values of γ_0. In Fig. 21b we show the same quantity at a fixed frequency of 1Hz for three different temperatures. Surprisingly no strong influence of a change in the volume fraction is found, apart from a small deviation in the onset of the non-linear regime in the glassy state, which is shifted to higher deformations. The only significant deviation for the volume fractions considered occurs at intermediate deformations, as the starting and end values coincide.

The phase shifts are given for the measurement at 1 Hz ($\dot{\gamma}_0 = 0.025$) and 15°C in Fig. 21c. In the case of the fundamental δ_1 the phase shift is found as expected to start at 0$^\circ$ for small amplitudes and to end at 90$^\circ$ for high deformations, which corresponds to a cosine. The curve progression of the experimental data and the MCT calculation fits perfectly for δ_1. The theory deviates for the phase shifts of the higher harmonics due to the excessive contribution of non-linearities at lower γ_0. However, the limiting values for high deformations are found to coincide ($\frac{\pi}{2}$ for δ_1, $\frac{3\pi}{2}$ for δ_3 and $\frac{5\pi}{2}$ for δ_5).

We have also included the data from our two-dimensional simulations into Figs. 21c and d. In order to obtain a reasonable comparison we found it necessary to empirically multiply the strain employed in the simulations by a factor of three, $\gamma_0 = 3 \cdot \gamma_{0 \text{sim}}$. That such an empirical rescaling is necessary is not surprising, given that only qualitative comparison is to be expected when comparing three dimensional experimental results with those of two dimensional simulations. It is therefore gratifying that the phases of the rescaled $\gamma_{0 \text{sim}}$ are found to describe the experimental data very well, not only for δ_1 but also for δ_3 and δ_5.

The experimentally measured I_3/I_1 at 15.1$^\circ$C and 1 Hz is found to indicate the onset of the transition from linear to non-linear regime at around $\gamma_0 = 0.04 \pm 0.05$. This can be seen by comparing with the strain sweep

FIG. 20: (Experiment and Theory) FFT-spectra of the oscillatory time test signals. The experiment was performed at 15.1$^\circ$ and 1 Hz. a) (experiment) and b) (theory) are the FFT spectra at $\gamma_0 = 0.03$ and c) (experiment) and d) (theory) at an amplitude of $\gamma_0 = 1$.

Experimental FFT-spectra are very similar (see Fig. 20a and d). The present theory thus provides a qualitative description of the higher harmonics which becomes semi-quantitative as the strain amplitude becomes significant ($\gamma_0 \sim 1$). The theory provides a sensible interpolation between linear response and large amplitude regimes, both of which are captured accurately.

Some insight into the origin of the discrepancies at small excitation amplitude may be obtained by considering the theoretical predictions for the buildup of stress following the onset of steady shear flow (see also [35]). Within the elastic regime (i.e. well below the ‘stress overshoot’ identifying the yield strain) the system should display Hookian behaviour with a clearly defined elastic constant. However, schematic model calculations of the stress for this protocol (either using the present model or the F_{12} model of [27]) exhibit deviations from Hookian behaviour at small strains. This feature of the schematic models is related to the slowness of the β decay of the transient density correlator onto the plateau. We can thus speculate that the discrepancy between the Fourier spectra of theory and experiment at low values of γ_0 may be due to the excessively slow decay of the correlator to its plateau value, which is an inherent feature of any model based on the original schematic F_{12} model [26, 43, 44].
data. It shows the maximum of G'' at $\gamma_0 \approx 0.16$, which is connected with the breaking of the cages. This value could be correlated with the raising of I_3/I_1 above the ‘noise’ level of 0.1·I_1/I_1. The description of I_3/I_1 is possible with the formula obtained by Wilhelm ($I_3/I_1(\gamma_0) = A \left[1 - (1 + (B_0\gamma_0)^c)^{-1}\right]$) [5]. For all experimental data the exponent c or the slope of the increase is found to be in the range of 2.2 – 2.7. The rescaled simulation results for the harmonics describe the experiment rather closely, whereas the MCT calculations show to find a different behaviour. All odd harmonics start at low γ_0 at higher values, whereas for high deformations the intensities coincide with the experimental results. Thus, also the slope of I_3/I_1 in this diagram changed to $c \approx 1.7$ instead of the experimental $c = 2.7$. These discrepancies between experiment and theory may well be attributable to the slow decay of the correlator to the plateau, as discussed above.

Whereas the mode-coupling calculations show a very early transition from the linear to the nonlinear regime at $\gamma \approx 0.01$ (see Figs. 15 to 17), for reasons discussed above, the experiments for the frequencies and temperatures investigated show a deviation from linear behaviour at $\gamma \approx 0.04 - 0.05$. For the rescaled simulation results of Fig. 10 the deviation starts at $\gamma \approx 0.03$. The onset of the yielding process is correlated with the onset of higher harmonics, starting with the third harmonic (see Fig. 21d). Although the difference of the onset and intensity of the higher harmonics between theory and experiment is significant, the time signals are only slightly influenced (Fig. 18 and 19). The FFT is a very sensitive method to analyse the time signals, so very small deviations in the time signal can cause a remarkable difference in the spectra. Increasing the strain amplitude results in more asymmetric time signals with maxima and minima shifted to the left.

It was found in experimental, theoretical and simulation strain sweeps that the maximum of G'' lies very close to the crossing point of $G'_1(\gamma_0)$ and $G''_1(\gamma_0)$. For the glassy sample ($\phi = 0.65$) this point was located at $\gamma \approx 0.15$. Beyond this value, the fifth harmonic begins to increase, which can be seen in Fig. 21b for the experimental and rescaled simulation data. The theoretical time signals do not show such a sharp transition from the linear to the nonlinear regime. Furthermore, the simulation data starts at higher intensity ratios as the experiment; an effect even more pronounced for the theoretical data. The schematic model thus predicts a more gradual transition between solid and fluid. The onset of the fifth harmonic was also found for micrometer sized particles [61] to be correlated with the crossing point of G'_1 and G''_1. The view that the yield strain is indicated by the onset of the fifth harmonic is supported by the results of Petekidis [23]. For larger deformations, the time signals show a strain softening behaviour, which is typical for shear thinning fluids. The phase shifts of experiment, simulation and theory approach the limiting values of $n \cdot \pi/2$, where n is the index of the harmonic. In

FIG. 21: (Experiment and Theory) a) I_3/I_1 at 15.1°C for different frequencies (red circle: 1 Hz, black square: 0.1 Hz and blue triangles up: 0.01 Hz). b) Temperature dependence of I_3/I_1 at 1 Hz: 15.1°C (blue squares), 18.4°C (red circles) and 20.9°C (green triangles down). c) Experimental phase shifts (symbols) for 15.1°C at 1 Hz. The simulation data is plotted versus $\gamma_0 = 3\gamma_0^{\text{sim}}$ as thin lines. The MCT calculations are given in thick lines. The phase shifts are δ_1 (red triangles up and dotted lines), δ_3 (blue circles and dashed lines) and δ_5 (black squares and solid lines). d) Normalized intensities at 15.1°C and 1 Hz; symbols mark the experimental data, thick lines the FFT of the MCT time signals and thin lines the shifted simulation results: I_2/I_1 (green triangles down and solid line), I_3/I_1 (red triangles up and dotted lines), I_5/I_1 (blue circles and dashed lines) and I_7/I_1 (black squares and solid line).
addition, the harmonics for theory and experiment show the same limiting values at large \(\gamma_0 \) for each harmonic (21\% for \(I_3/I_1 \), 10\% for \(I_5/I_1 \), 6\% for \(I_7/I_1 \) and 4\% for \(I_9/I_1 \)). Furthermore the theoretical harmonics exhibit a slight decrease at the highest calculated strains, which is not observed in the experimental data, perhaps due to the choice of a too small measurement range. In the simulation the decrease of the intensities is much more pronounced for high deformations, as the intensities do not show a plateau but only a maximum (at 18\% for \(I_3/I_1 \) and at 8\% for \(I_5/I_1 \)).

VII. CONCLUSION AND OUTLOOK

We have used a combination of theory, experiment and simulation to investigate the nonlinear stress response of dense colloidal dispersions under large amplitude oscillatory shear flow. The theory employed is a recent extension [24] of the well studied Flory model [27]. A key physical mechanism captured by the theory is the yielding of local particle cages and the subsequent onset of nonlinearity. In contrast to a related approach presented by Miyazaki et al. [38, 40], the theory employed here makes predictions for the higher harmonic contributions to the stress signal and thus enables the extent of the linear response regime to be addressed. In order to make contact with experiment, the theory requires only the simultaneously determined parameters from the steady state flow curve and the frequency dependence of the linear moduli to make predictions for the nonlinear viscoelastic response. We have thus compared the theory with rheological experiments performed on concentrated suspensions of thermo-sensitive core-shell particles.

The first nonlinear experiment considered was a strain sweep, performed at three different volume fractions and frequencies. Here we found very good agreement between experiment and theory, although there are small deviations concerning the onset of the nonlinear viscoelastic regime. The values of \(G'_1 \) and \(G''_1 \) in the linear regime, the crossing point of \(G'_1 \) and \(G''_1 \), maximum of \(G''_1 \) and asymptotic large strain behaviour of \(G'_1 \) and \(G''_1 \) are all well described by the theory. Brownian simulation of a two-dimensional system of hard discs enable only a qualitative comparison, but show behaviour broadly consistent with our experimental data, indicating that the yielding process is not strongly dependent upon either the material details or dimensionality of the sample. Moreover, the simulations do not contain hydrodynamic interactions, suggesting that these are not of great importance for yielding. The ratio of the slopes of \(G'_1 \) and \(G''_1 \) for large \(\gamma_0 \) in the shear molten state yields the exponent ratio \(\nu' / \nu = 2.0 \pm 0.1 \) in theory simulation and experiment. The fact that various other materials (of type III in [39]) display similar asymptotic behaviour may suggest a universal mechanism underlying the oscillatory response of shear molten viscoelastic fluids.

The second type of experiment considered were oscillatory time sweeps. In this case the cage yielding is expressed by the deviation of the signal from a sinusoidal form, showing a characteristic asymmetric peak in the yielding regime, which is followed in the shear molten state by a typical strain softening semi-circular peak shape. The agreement of the time signals obtained from theory, simulation and experiments is good. However, small deviations in the time series obtained using the three methods lead to stronger deviations in the parameters of the Fourier transformed time signals. This serves to emphasize the fact that FT-rheology is a very sensitive method, sensitive on the logarithmic scale, capable of detecting e.g. the fifth harmonic, to an accuracy of less than 1 promille. This analysis has shown that the onset of the third harmonic heralds the start of the nonlinear regime and that the maximum in \(G''_1 \), which here approximately coincides with the both crossing point of \(G'_1 \) and \(G''_1 \) and the yield strain are correlated with the onset of the fifth harmonic. Moreover, the plateau values of the phase shifts at high deformations are found to follow \(n \cdot \pi/2 \) with \(n \) being the index of each harmonic.

Despite the good overall level of agreement between theory and experiment there remain aspects which could be improved. Firstly, the extent (in \(\gamma_0 \)) of the linear response regime is apparently too small within the present theory, with consequences for the variation of the higher harmonic intensities with amplitude. As noted, this failing has its origins in the quiescent transient density correlations predicted by the \(F_{12} \) model, upon which our more recent schematic model is based. It would thus be desirable to improve this fundamental aspect of the theory. Secondly, the stress response measured in experiment displays a more asymmetric waveform than that predicted by the schematic model. This aspect can potentially be connected to the fact that our model, when applied to calculate the buildup of stress upon the onset of shear, does not generate a stress overshoot. While a stress overshoot does occur in approximate solutions of the fully microscopic mode-coupling expressions [34], this aspect is lost in making the ansatz [16] for the shear modulus, as the strain dependent vertex functions appearing in the microscopic theory are replaced by a constant \(\nu_{\sigma} \). Empirically reincorporating a strain dependence into the theory via the replacement \(\nu_{\sigma} \rightarrow \nu_{\sigma}(\gamma_0) \), such that the overshoot is recovered, may also lead to an increased waveform asymmetry in the stress response and, thus, better agreement with experiment. However, when modifying the schematic model in this fashion, care must be taken not to destroy its existing positive features.

To summarize, it can be concluded that the schematic mode-coupling model [24] can make accurate predictions in the nonlinear viscoelastic regime, based purely on parameters fixed by the steady state stress and linear viscoelastic behaviour. This constitutes the first truly time-dependent test (other than step strain) of the schematic model proposed in [24]. Fourier transform analysis of time series obtained for various strain amplitudes and frequencies provides a wealth of experi-
mental information regarding the mechanical response of a material. As our present experimental setup enables the investigation of transient flows, we anticipate that the study of such flow protocols, in combination with the present results, should enable a complete rheological characterization of our colloidal system.

Acknowledgements

Thanks to M. Schwall, J. Grzanna and A. Salah for helping with the programming of the FT-programm. Financial support was provided by the SFB TR6 and Swiss National Science Foundation (JMB) and the SFB 481 (MS).

[1] R. G. Larson, *The structure and rheology of complex fluids* (Oxford, 1998).
[2] P. Coussot, *Rheometry of pastes, suspensions, and granular materials* (Wiley, 2005).
[3] R.G. Larson, *Constitutive equations for polymer melts and solutions* (Butterworths, 1988).
[4] M. Wilhelm, D. Maring and H-W. Spiess, Rheologica Acta 37 399 (1998).
[5] M. Wilhelm, Macromol.Mater.Eng. 287 83 (2002).
[6] R.H. Ewoldt, C. Clasen, A.E. Hosoi and G.H. McKinley, Soft Matter 3 634 (2007).
[7] R.H. Ewoldt and P. Winter and J. Maxey and G. H. McKinley, Rheol. Acta 49 191 (2010).
[8] R.H. Ewoldt, A.E. Hosoi and G.H. McKinley, J.Rheol. 52 1427 (2008).
[9] F. Rouyer, S. Cohen-Addad, R. H"ohler, P. Sollich and S.M. Fielding, Eur.Phys.J.E 27 309 (2008).
[10] C.O. Klein, H-W. Spiess, A. Calin, C. Balan and M.Wilhelm, Macromolecules 40 4250 (2007).
[11] K.A. Cho, K. Hyun, K.H. Ahn and S.J. Lee, J. Rheol. 49 747 (2005).
[12] M. Wilhelm, P. Reinheimer and M. Orteiseifer, Rheol Acta 38 349 (1999).
[13] S.A. Rogers and D. Vlassopoulos, J.Rheol. 54 859 (2010).
[14] R. B. Bird, R.C. Armstrong and O. Hassager *Dynamics of Polymeric Liquids* (Wiley, 1987).
[15] C. Truesdell and W. Noll, *The Nonlinear Field Theories of Mechanics* (Springer, Berlin, 1965).
[16] P. Sollich, F. Lequeux, P. Hebraud and M.E. Cates, Phys.Rev.Lett. 78 2020 (1997).
[17] S.M. Fielding, P. Sollich and M.E. Cates, J.Rheol. 44 323 (2000).
[18] C. Derec, G. Ducouret, A. Ajdari, and F. Lequeux, Phys.Rev.E 67, 061403 (2003).
[19] J.M. Brader, Th. Voigtmann, M.E. Cates and M.uchs, Phys.Rev.Lett. 98, 058301 (2007).
[20] J.M. Brader, M.E. Cates and M.uchs, Phys.Rev.Lett. 101 138301 (2008), see also the associated Viewpoint article online in Physics 1, 22 (2008).
[21] J. K. G. Dhont, *An Introduction to the Dynamics of Colloids* (Amsterdam, Elsevier, 1996).
[22] M.uchs and M.E. Cates, Phys. Rev. Lett. 89, 248304 (2002).
[23] M.uchs and M.E. Cates, J.Rheol. 53 957 (2009).
[24] J.M. Brader, Th. Voigtmann, M.uchs, R.G. Larson and M.E. Cates, Proc. Natl. Acad. Sci. U.S.A. 106 15186 (2009).
[25] J.M. Brader, J.Phys.:Condens.Matter 22 363101 (2010).
[26] W. G"otze, *Liquids, Freezing and Glass Transition* ed. J.-P. Hansen, D. Levesque and J. Zinn-Justin (Amsterdam: North-Holland, 1991) p287.
[27] M. Fuchs and M.E. Cates, Faraday Discussions 123, 267 (2003).
[28] D. Hajnal and M.uchs, Eur.Phys.J.E 28, 125 (2009).
[29] M.uchs and M. Ballauff, J.Chem.Phys. 122 094707 (2005).
[30] J.J. Crassous et al, J.Chem.Phys. 125 204906 (2006).
[31] J.J Crassous, M. Siebenb"urger, M. Ballauff, M. Drechsler, D. Hajnal, O. Henrich and M.uchs, J.Chem.Phys. 128 204902 (2008).
[32] M. Siebenb"urger, M.uchs, H. Winter and M. Ballauff, J.Rheol. 53 707 (2009).
[33] W. Sch"artl and H. Sillescu, J.Stat.Phys. 77 1007 (1994).
[34] V. Carrier and G. Petekidis, J.Rheology 53 245 (2009).
[35] J. Zausch, J. Horbach, M. Laurati, S.U. Egelhaaf, J.M. Brader, T. Voigtmann and M.uchs, J.Phys.:Condens.Matter 20 404210 (2008).
[36] N.G. van Kampen, Chapter XV Section 3, in *Stochastic Processes in Physics and Chemistry* (North-Holland, Amsterdam, New York, Oxford 1981).
[37] J.A. Lissajous, Ann.Chim.Phys. 51 147 (1857).
[38] K. Miyazaki and D.R. Reichman, Phys.Rev.E 70 050501 (2002).
[39] K. Miyazaki, D.R. Reichman and R. Yamamoto, Phys.Rev.E 70 011501 (2004).
[40] K. Miyazaki, H.M. Wyss, D.A. Weitz and D.R. Reichmann, Europhys.Lett. 75 915 (2006).
[41] See any standard text on Fourier series, e.g. M.L. Boas, *Mathematical methods in the physical sciences* (Wiley, 1983).
[42] K. Hyun and M. Wilhelm, Macromolecules 42 411 (2009).
[43] W. G"otze, Z.Phys.B: Condens. Matter 56 139 (1984).
[44] W. G"otze and L.Sj"ogren, Rep.Prog.Phys. 55, 241 (1992).
[45] H.M. Wyss et al, Phys.Rev.Lett. 98 238303 (2007).
[46] M. Bayer, J.M. Brader, F.Ebert, M.uchs, E. Lange, G. Maret, R. Schilling, M. Sperl and J.P. Wittmer, Phys.Rev.E 76 011508 (2007).
[47] N. Dingenouts, Ch. Norhausen and M. Ballauff, Macromolecules 31 8912 (1998).
[48] K. Schmidt-Rohr and H.W. Spiess, *Multidimensional solid state NMR and Polymers,* (Academic Press, 1994).
[49] D. van Dusschoten, M. Wilhelm, Rheol. Acta 40, 395 (2001).
[50] D.A. Skoog and J.J. Leary, Principle of Instrumental Analysis, (Harcourt Brace College Publishers, Orlando, 4th edition, 1992).
[51] C. Klein, Rheology and Fourier-Transform Rheology on water-based systems, Ph.D. thesis, Johannes-Gutenberg-Universität, Mainz, Germany (2005).
[52] T. Neidhöfer, Fourier-transformation rheology on anionically synthesized polymer melts and solutions of various topology, Ph.D. thesis, Johannes-Gutenberg-Universität, Mainz, Germany (2003).
[53] S. Kallus, N. Willenbacher, S. Kirsch, D. Distler, T. Neidhöfer, M. Wilhelm and H.W. Spiess, Rheol. Acta 40, 552 (2001).
[54] R.N. Bracewell, The Fourier transform and its application, (McGraw-Hill 2nd edition, New York, 1986).
[55] A. Scala, Th. Voigtmann and C. De Michele, J.Chem.Phys. 126 134109 (2007).
[56] O. Henrich, F. Weysser, M.E. Cates and M. Fuchs, Phil. Trans. R. Soc. A 367, 5033 (2009).
[57] G.G. Nair and S.K. Prasad and R. Bhargavi, V. Jayalakshmi and G. Shanker and C.V. Yelamaggad, J. Phys. Chem. B, 114, 697 (2010).
[58] M.E. Helgeson and N.J. Wagner and D. Vlassopoulos, J. Rheol. 51, 297 (2007).
[59] K. Hyun and S.H. Kim and K.H. Ahn and S.J. Lee, J. Non-Newtonian Fluid Mech. 107, 51 (2002).
[60] K.N. Pham and G. Petekidis and D. Vlassopoulos and S.U. Egelhaaf and W.C.K. Poon and P.N. Pusey, J. Rheol. 52, 649 (2008).
[61] L. Heymann and S. Peukert and N. Aksel, J. Rheol. 46, 93 (2002).
[62] A. Le Grand and G. Petekidis, Rheol. Acta 47, 579 (2008).