Perfect Matchings in $O(n \log n)$ Time in Regular Bipartite Graphs

Ashish Goel∗ Michael Kapralov† Sanjeev Khanna‡

April 13, 2010

Abstract

In this paper we consider the well-studied problem of finding a perfect matching in a d-regular bipartite graph on $2n$ nodes with $m = nd$ edges. The best-known algorithm for general bipartite graphs (due to Hopcroft and Karp) takes time $O(m \sqrt{n})$. In regular bipartite graphs, however, a matching is known to be computable in $O(m)$ time (due to Cole, Ost, and Schirra). In a recent line of work by Goel, Kapralov, and Khanna the $O(m)$ time bound was improved first to $\tilde{O}(\min\{m, n^{2.5}/d\})$ and then to $\tilde{O}(\min\{m, n^2/d\})$.

In this paper, we give a randomized algorithm that finds a perfect matching in a d-regular graph and runs in $O(n \log n)$ time (both in expectation and with high probability). The algorithm performs an appropriately truncated alternating random walk to successively find augmenting paths. Our algorithm may be viewed as using adaptive uniform sampling, and is thus able to bypass the limitations of (non-adaptive) uniform sampling established in earlier work. Our techniques also give an algorithm that successively finds a matching in the support of a doubly stochastic matrix in expected time $O(n \log^2 n)$, with $O(m)$ pre-processing time; this gives a simple $O(m + mn \log^2 n)$ time algorithm for finding the Birkhoff-von Neumann decomposition of a doubly stochastic matrix.

We show that randomization is crucial for obtaining $o(nd)$ time algorithms by establishing an $\Omega(nd)$ lower bound for deterministic algorithms. We also show that there does not exist a randomized algorithm that finds a matching in a regular bipartite multigraph and takes $o(n \log n)$ time with high probability.

∗Departments of Management Science and Engineering and (by courtesy) Computer Science, Stanford University. Email: ashishg@stanford.edu. Research supported in part by NSF award IIS-0904325.
†Institute for Computational and Mathematical Engineering, Stanford University. Email: kapralov@stanford.edu. Research supported by a Stanford Graduate Fellowship.
‡Department of Computer and Information Science, University of Pennsylvania, Philadelphia PA. Email: sanjeev@cis.upenn.edu. Supported in part by NSF Awards CCF-0635084 and IIS-0904314.
1 Introduction

A bipartite graph $G = (P, Q, E)$ with vertex set $P \cup Q$ and edge set $E \subseteq P \times Q$ is said to be d-regular if every vertex has the same degree d. We use $m = nd$ to denote the number of edges in G and n to represent the number of vertices in P (as a consequence of regularity, P and Q have the same size). Regular bipartite graphs have been studied extensively, in particular in the context of expander constructions, scheduling, routing in switch fabrics, and task-assignment [13, 1, 6].

A regular bipartite graph of degree d can be decomposed into exactly d perfect matchings, a fact that is an easy consequence of Hall’s theorem [3] and is closely related to the Birkhoff-von Neumann decomposition of a doubly stochastic matrix [2, 15]. Finding a matching in a regular bipartite graph is a well-studied problem, easy consequence of Hall’s theorem [3] and is closely related to the Birkhoff-von Neumann decomposition of switch fabrics, and task-assignment [13, 1, 6].

Recently, Goel, Kapralov, and Khanna [10], gave a sampling-based algorithm that computes a perfect matching in regular bipartite graphs, where finding perfect matchings in regular bipartite graphs is an important subroutine.

For sub-linear (in m) running time algorithms, the exact data model is important. In this paper, as well as in the sub-linear running time algorithms mentioned above, we assume that the graph is presented in the adjacency array format, i.e., for each vertex, its d neighbors are stored in an array. This is the most natural input data structure for our problem. Our algorithms will not make any ordering assumptions within an adjacency array.

A bipartite graph $G = (P, Q, E)$ can be viewed as a random walk on \tilde{G} defined in Section 2, can be viewed as a random walk on

1.1 Our Results and Techniques

Our main result is the following theorem.

Theorem 1 There exists a randomized algorithm for finding a perfect matching in a d-regular bipartite graph $G = (P, Q, E)$ given in adjacency array representation, and takes time $O(n \log n)$ time both in expectation as well as with high probability.

The algorithm is very simple: the matching is constructed by performing one augmentation at a time, and new augmenting paths are found by performing an alternating random walk with respect to the current matching. The alternating random walk on G, defined in Section 2, can be viewed as a random walk on...
a modified graph that encodes the current matching. The random walk approach may still be viewed as repeatedly drawing a uniform sample from the adjacency array of some vertex \(v \); however this vertex \(v \) is now chosen adaptively, thus allowing us to bypass the \(\tilde{\Omega} \left(\min\{ nd, \frac{n^2}{d} \} \right) \) lower bound on non-adaptive uniform sampling established in [10]. Somewhat surprisingly, we show that the total time taken by these random augmentations can be bounded by \(O(n \log n) \) in expectation, only slightly worse than the \(\Omega(n) \) time needed to simply output a perfect matching. The proof involves analyzing the hitting time of the sink node in the random walk. We also establish that randomization is crucial to obtaining an \(o(nd) \) time algorithm.

Theorem 2 For any \(1 \leq d < n/12 \), there exists a family of \(d \)-regular graphs on which any deterministic algorithm for finding a perfect matching requires \(\Omega(nd) \) time.

We also give a lower bound on the running time of any randomized algorithm for finding a perfect matching in \(d \)-regular bipartite multigraphs, even with edge multiplicities bounded above by \(d/2 \):

Theorem 3 Let \(A \) be any randomized algorithm that finds a matching in a \(d \)-regular bipartite multigraph with \(n \) nodes and edge multiplicities bounded above by \(d/2 \). Then there exists a family of graphs for which \(A \) probes at least \((\gamma/64) n \ln n \) locations in the input adjacency arrays with probability at least \(n^{-\gamma} \).

We note that the algorithm of Theorem [1] takes \(O(n \log n) \) time with high probability on multigraphs with edge multiplicities less than \(d/2 \) and hence, the lower and upper bounds are tight in this particular case. It is also interesting to contrast Theorem [3] with the result of [16], which shows that sampling a constant number of edges incident to every vertex of a complete bipartite graph yields a subgraph that contains a perfect matching with high probability, i.e. the sampling complexity is \(O(n) \) even if a high probability result is desired. The lower bound on the randomized algorithm is not as comprehensive as the deterministic lower bound: it holds only for very specific values of \(d \) (specifically, \(d = \Theta(n) \)), it bounds the “with high probability”-running time as opposed to the expected running time, and it works for multi-graphs. Obtaining tight upper and lower bounds for the entire range of parameters and for expected running time remains an interesting open problem.

Our techniques also extend to the problem of finding a perfect matching in the support of a doubly-stochastic matrix, as well as to efficiently compute the Birkhoff-von-Neumann decomposition of a doubly stochastic matrix.

Theorem 4 Given an \(n \times n \) doubly-stochastic matrix \(M \) with \(m \) non-zero entries, one can find a perfect matching in the support of \(M \) in \(O(n \log^2 n) \) expected time with \(O(m) \) preprocessing time.

In many applications of Birkhoff von Neumann decompositions (e.g. routing in network switches [4]), we need to find one perfect matching in a single iteration, and then update the weights of the matched edges. In such applications, each iteration can be implemented in \(O(n \log^2 n) \) time (after initial \(O(m) \) preprocessing time), improving upon the previous best known bound of \(O(mb) \) where \(b \) is the bit precision.

Corollary 5 For any \(k \geq 1 \), there exists an \(O(m + kn \log^2 n) \) expected time algorithm for finding \(k \) distinct matchings (if they exist) in the Birkhoff-von-Neumann decomposition of an \(n \times n \) doubly stochastic matrix with \(m \) non-zero entries.

Finally, we note that an application of Yao’s min-max theorem (see, for instance, [13]) to Theorem [1] immediately yields the following corollary:

Corollary 6 For any distribution on regular bipartite graphs with \(2n \) nodes, there exists a deterministic algorithm that runs in average time \(O(n \log n) \) on graphs drawn from this distribution.

A similar corollary also follows for doubly stochastic matrices.
1.2 Organization

Section 2 gives the \(O(n \log n) \) time algorithm to find a perfect matching, and establishes Theorem 1. Building on the ideas developed in Section 2, we present in Section 3.1 algorithms for finding matchings in doubly-stochastic matrices, and computing a Birkhoff-von-Neumann decomposition, establishing Theorem 4 and Corollary 5. In Section 4, we present an \(\Omega(nd) \) lower bound for any deterministic algorithm that finds a perfect matching in a \(d \)-regular graph. Finally, in Section 5 we present an \(\Omega(n \log n) \) lower bound for any algorithm that finds a matching in a regular bipartite multigraph with high probability.

2 Matchings in \(d \)-Regular Bipartite Graphs

2.1 The Basic Algorithm

Let \(G = (P, Q, E) \) denote the input \(d \)-regular graph and let \(M \) be a partial matching in \(G \). We first describe the alternating random walk on \(G \) with respect to \(M \). We assume that the algorithm has access to the function \(\text{SAMPLE-OUT-EDGE} \) that takes a vertex \(u \in P \) and returns a uniformly random unmatched edge going out of \(u \). The implementation and runtime of \(\text{SAMPLE-OUT-EDGE} \) depend on the representation of the graph. It is assumed in Theorem 1 and in this section that the graph \(G \) does not have parallel edges and is represented in adjacency array format, in which case \(\text{SAMPLE-OUT-EDGE} \) can be implemented to run in expected constant time. In Theorem 4 however, a preprocessing step will be required to convert the matrix to an augmented binary search tree, in which case \(\text{SAMPLE-OUT-EDGE} \) can be implemented to run in \(O(\log n) \) time.

The alternating random walk starts at a uniformly random unmatched vertex \(u_0 \in P \) and proceeds as follows:

1. Set \(v := \text{SAMPLE-OUT-EDGE}(u_j); \)
2. If \(v \) is matched, set \(u_{j+1} := M(v) \), otherwise terminate.

Note that an augmenting path with respect to \(M \) can be obtained from the sequence of steps taken by the alternating random walk by removing possible loops.

We now state a basic version of our algorithm:

Algorithm 1

Input: A \(d \)-regular bipartite graph \(G = (P, Q, E) \) in adjacency array format.

Output: A perfect matching of \(G \).

1. Set \(j := 0, M_0 := \emptyset. \)
2. Run the alternating random walk starting from a random unmatched vertex in \(P \) until it hits an unmatched vertex in \(Q \).
3. Denote the augmenting path obtained by removing possible loops from the sequence of steps taken by the walk by \(p \). Set \(M_{j+1} := M_j \Delta p. \)
4. Set \(j := j + 1 \) and go to step 2.

We prove in the next section that this algorithm takes \(O(n \log n) \) time in expectation. The high probability result is obtained in section 2.3 by performing appropriately truncated random walks in step 2 instead of a single untruncated walk.
2.2 Expected Running Time Analysis

The core of our analysis is the following lemma, which bounds the time that it takes an alternating random walk in G with respect to a partial matching M that leaves $2k$ vertices unmatched to reach an unmatched vertex.

Lemma 7 Let $G = (P, Q, E)$ be a d-regular bipartite graph and let M be a partial matching that leaves $2k$ vertices unmatched. Then the expected number of steps before the alternating random walk in G reaches an unmatched vertex is at most $1 + n/k$.

Proof:

It will be convenient to use the auxiliary notion of a matching graph $H(G, M)$ which will allow us to view alternating random walks in G with respect to M as random walks in $H(G, M)$ starting from a special source node s and hitting a special sink node t. We then get the result by bounding the hitting time from s to t in $H(G, M)$.

The matching graph corresponding to the matching M is defined to be the directed graph H obtained by transforming G as follows:

1. Orient edges of G from P to Q;
2. Contract each pair $(u, v) \in M$ into a supernode;
3. Add a vertex s connected by d parallel edges to each unmatched node in P, directed out of s;
4. Add a vertex t connected by d parallel edges to each unmatched node in Q, directed into t.

We now state some properties of the graph H. The graph H has $n + k + 2$ nodes and $n(d - 1) + k(2d + 1)$ edges. Note that for every vertex $v \in H$, $v \neq s, t$ the in-degree of v is equal to its out-degree. The out-degree of s equals dk, as is the in-degree of t. Finally, a random walk in H starting from s reaches t with probability 1, and, most importantly, such a walk corresponds to an alternating random walk in G with respect to M.

We now prove that the expected time that it takes a random walk in $H(G)$ starting from s to reach t is at most $1 + n/k$.

For a vertex $i \in V(H)$, we denote its out-degree by $\deg(i)$. Also, let P denote the transition matrix of the random walk, that is:

$$P_{ij} = \begin{cases} 1/\deg(i) & \text{when } (i, j) \in E(H) \\ 0 & \text{otherwise.} \end{cases}$$

Denote the vector of out-degrees by $\deg(\cdot)$, the standard basis vector corresponding to a vertex j by e_j. Note that in fact the out-degree of the nodes of H can only assume 4 values: (1) the starting vertex s has $\deg(s) = dk$, (2) all unmatched nodes u have $\deg(u) = d$, (3) all supernodes v have $\deg(v) = d - 1$, and (4) $\deg(t) = 0$.

We assume wlog that all vertices are reachable from s since those that are not do not influence the runtime of the algorithm. It then follows that t is reachable from any vertex of H in at most $n + 3$ steps, i.e. $\| (P^T)^{n+4} \|_{\infty} < 1$, so $(I - P^T)^{-1}$ exists. The expected number of visits to a vertex $j \in V(H)$ during the random walk is given by

$$e_j^T \left[\sum_{k \geq 0} (P^T)^k \right] e_s = e_j^T (I - P^T)^{-1} e_s. \quad (1)$$

Hence, the expected number of steps before reaching t is

$$\sum_{j \in V(H), j \neq s, t} e_j^T (I - P^T)^{-1} e_s.$$
Note that for all $j \neq t$ we have
\[
e^T_j \left(\sum_{k \geq 0} (P^T)^k \right) e_t = e^T_j e_t + e^T_j \left(\sum_{k \geq 0} (P^T)^k \right) P^T e_t = 0
\] (2)
since $e^T_i P^T e_t = P_{ti} = 0$ for all i.
Hence, we can rewrite (1) as
\[
e^T_j \left(\sum_{k \geq 0} (P^T)^k \right) e_s = e^T_j \left(\sum_{k \geq 0} (P^T)^k \right) (e_s - e_t)
= e^T_j [I - P^T]^{-1} (e_s - e_t).
\] (3)
However, we have that
\[
(I - P)^{-1}(e_s - e_t) = \frac{\deg(\cdot)}{dk}.
\] (4)
To verify equation (4), we calculate
\[
(I - P)^{-1} \frac{\deg(\cdot)}{dk} = \frac{\deg(\cdot)}{dk} - P^T \frac{\deg(\cdot)}{dk} = e_s - e_t,
\]
which follows from the following case analysis:

Case (1): $j \neq s, t$ Then
\[
e^T_j P^T \frac{\deg(\cdot)}{dk} = \sum_t P_{tj} \frac{\deg(\cdot)}{dk}
= \sum_{l \in V(H): (l,j) \in E(H)} \frac{1}{\deg(l)} \deg(l) = \deg(j)
\]
since the in-degree of every $j \in V(H), j \neq s, t$, is equal to its out-degree.

Case (2): $j = s$ Then
\[
e^T_s P^T \frac{\deg(\cdot)}{dk} = \sum_t P_{ts} \frac{\deg(\cdot)}{dk} = 0.
\]

Case (3): $j = t$ Then
\[
e^T_t P^T \frac{\deg(\cdot)}{dk} = \sum_t P_{tt} \frac{\deg(\cdot)}{dk}
= \sum_{l \in V(H): (l,t) \in E(H)} \frac{1}{\deg(l)} \deg(l) = dk
\]
since the in-degree of t is dk.
Hence, the contribution from vertex j is
\[
e^T_j [I - P^T]^{-1} (e_s - e_t) = \frac{\deg(j)}{dk},
\]
so the expected number of steps before the random walk reaches t is at most
\[
\sum_{j \in V(H), j \neq s,t} \frac{\deg(j)}{dk} \leq \frac{(n - k) + 2k}{k} = 1 + \frac{n}{k}.
\]
We can now prove
Theorem 8 Algorithm 1 finds a matching in a d-regular bipartite graph $G = (P, Q, E)$ in expected time $O(n \log n)$.

Proof: By Lemma 7 it takes at most $1 + n/(n - j)$ expected time to find an augmenting path with respect to partial matching M_j. Hence, the expected runtime of the algorithm is bounded by

$$
\sum_{j=0}^{n-1} 1 + n/(n - j) = n + nH_n = O(n \log n),
$$

where $H(n) := 1 + 1/2 + 1/3 + \ldots + 1/n$ is the n-th Harmonic number.

2.3 Truncated Random Walks and High Probability Analysis

In this section we show how Algorithm 1 can be modified by introducing truncated random walks to obtain a running time of $O(n \log n)$ whp.

Algorithm 2

Input: A d-regular bipartite graph $G = (P, Q, E)$ in adjacency array format.

Output: A perfect matching of G.

1. Set $j := 0$, $M_0 := \emptyset$.
2. Repeatedly run alternating random walks for $2 \left(1 + \frac{n}{n-j}\right)$ steps until a successful run is obtained.
3. Denote the augmenting path obtained by removing possible loops from the sequence of steps taken by the walk by p. Set $M_{j+1} := M_j \Delta p$.
4. Set $j := j + 1$ and go to step 2.

We now analyze the running time of our algorithm, and prove Theorem 1.

Proof of Theorem 1:

We now show that Algorithm 2 takes time $O(n \log n)$ whp. First note that by Lemma 7 and Markov’s inequality, a truncated alternating random walk in step 2 succeeds with probability at least 1/2. Let X_j denote the time taken by the j-th augmentation. Let Y_j be independent exponentially distributed with mean $\mu_j := \frac{b_j \ln 2}{n-j}$. Note that

$$
\Pr[X_j \geq qb_j] \leq 2^{-q} = \exp \left[-\frac{qb_j \ln 2}{b_j}\right] = \Pr[Y_j \geq qb_j]
$$

for all $q > 1$, so

$$
\Pr[X_j \geq x] \leq \Pr[Y_j \geq x] \tag{5}
$$

for all $x > b_j$. We now prove that $Y := \sum_{0 \leq j \leq n-1} Y_j \leq cn \log n$ w.h.p. for a suitably large positive constant c. Denote $\mu := E[Y]$. By Markov’s inequality, for any $t, \delta > 0$

$$
\Pr[Y \geq (1 + \delta)\mu] \leq \frac{E[e^{tY}]}{e^{t(1+\delta)\mu}}.
$$

Also, for any j, and for $t < 1/\mu_j$, we have

$$
E[e^{tY_j}] = \frac{1}{\mu_j} \int_0^\infty e^{tx} e^{-x/\mu_j} dx = \frac{1}{1 - t\mu_j}.
$$
The two expressions above, along with the fact that the \(Y_j \)’s are independent, combine to give:

\[
\Pr[Y \geq (1 + \delta)\mu] \leq \frac{e^{-t(1+\delta)\mu}}{\prod_{j=0}^{n-1} (1 - t\mu_j)}. \tag{6}
\]

Observe that \(\mu_{n-1} \) is the largest of the \(\mu_j \)’s. Assume that \(t = \frac{1}{2\mu_{n-1}} \), which implies that \((1 - t\mu_j) \geq e^{-t\mu_j\ln 4} \). Plugging this into equation \(\text{(6)} \) we get:

\[
\Pr[Y \geq (1 + \delta)\mu] \leq e^{-(1+\delta-\ln 4)\mu/(2\mu_{n-1})}. \tag{7}
\]

Further observe that \(\mu = 2n/\ln 2 + (\mu_{n-1} - 2/\ln 2)H(n) \geq \mu_{n-1}H(n) \), where \(H(n) := 1 + 1/2 + 1/3 + \ldots + 1/n \) is the \(n \)-th Harmonic number. Since \(H(n) \geq \ln n \), we get our high probability result:

\[
\Pr[Y \geq (1 + \delta)\mu] \leq n^{-(1+\delta-\ln 4)/2}. \tag{8}
\]

Since \(\mu = O(n \log n) \), this completes the proof of Theorem 1. \(\blacksquare \)

3 Matchings in Doubly-Stochastic Matrices and Regular Bipartite Multigraphs

3.1 Doubly-Stochastic Matrices

We now apply techniques of the previous section to the problem of finding a perfect matching in the support of an \(n \times n \) doubly stochastic matrix \(M \) with \(m \) non-zero entries. A doubly-stochastic matrix can be viewed as a regular graph, possibly with parallel edges, and we can thus use the same algorithm and analysis as above, provided that SAMPLE-OUT-EDGE can be implemented efficiently. We start by describing a simple data structure for implementing SAMPLE-OUT-EDGE. For each vertex \(v \), we store all the outgoing edges from \(v \) in a balanced binary search tree, augmented so that each node in the search tree also stores the weight of all the edges in its subtree. Since inserts into, deletes from, and random samples from this augmented tree all take time \(O(\log n) \) \([7] \), we obtain a running time of \(O(n \log^2 n) \) for finding a matching in the support of a doubly stochastic matrix.

Superficially, it might seem that initializing the balanced binary search trees for each vertex takes total time \(\Theta(m \log n) \). However, note that there is no natural ordering on the outgoing edges from a vertex, and we can simply superimpose the initial balanced search tree for a vertex on the adjacency array for that vertex, assuming that the underlying keys are in accordance with the (arbitrary) order in which the edges occur in the adjacency array.

The complete Birkhoff-von Neumann decomposition can be computed by subtracting an appropriately weighted matching matrix from \(M \) every time a matching is found, thus decreasing the number of nonzero entries of \(M \). Note that the augmented binary search tree can be maintained in \(O(\log n) \) time per deletion. This yields the algorithm claimed in Corollary \(5 \).

3.2 Regular Bipartite Multigraphs

For regular bipartite multigraphs with edge multiplicities at most \(d/2 \), Algorithm 2 still takes time at most \(O(n \log n) \) with high probability, since SAMPLE-OUT-EDGE can be implemented by sampling the adjacency list of the appropriate vertex in \(G \) until we find an unmatched edge. Each sample succeeds with probability at least \(1/2 \) since the matched edge can have multiplicity at most \(d/2 \). Here, we assume that an edge with multiplicity \(k \) occurs \(k \) times in the adjacency arrays of its endpoints.

We also note that our algorithm can be implemented to run in \(O(n \log n) \) time without any assumptions on multiplicities if the data layout is as follows. For each vertex we have an adjacency array with edges of multiplicity \(k \) appearing as contiguous blocks of length \(k \). Also, each element in the adjacency array is
augmented with the index of the beginning of the block corresponding to its edge and the index of the end of the block. Assuming this data layout, SAMPLE-OUT-EDGE can be implemented in $O(1)$ expected time regardless of edge multiplicities: it is sufficient to sample locations outside the block corresponding to the currently matched edge.

It remains to note that when the size of the support of the set of edges, which we denote by m_s, is small, then the data representation used in finding a matching in a doubly-stochastic matrix can be used to find a matching in time $O(m_s + n \log^2 n)$. It is interesting to compare this runtime to the result of [6]. The runtime of their matching algorithm is stated as $O(m + n \log^3 d) = O(m)$, but it is easy to see that it can be implemented to run in $O(m_s + n \log^3 d)$ time.

Remark 9 Our algorithm can be used to obtain a simple algorithm for edge-coloring bipartite graphs with maximum degree d in time $O(m \log n)$ (slightly worse than the best known $O(m \log d)$ dependence obtained in [6]). In the first step one reduces the problem to that on a regular graph with $O(m)$ edges as described in [6]. The lists of neighbors of every vertex of the graph can then be arranged in a data structure that supports sampling and deletion in $O(1)$ amortized time. It remains to find matchings repeatedly, taking $O(n \log n)$ time per matching. This takes $O(nd \log n) = O(m \log n)$ time overall.

4 An $\Omega(nd)$ Lower Bound for Deterministic Algorithms

In this section, we will prove Theorem 2. We will show that for any positive integer d, any deterministic algorithm to find a perfect matching in a d-regular bipartite graph requires $\Omega(nd)$ probes, even in the adjacency array representation, where the ordering of edges in an array is decided by an adversary. Specifically, for any positive integer d, we construct a family $G(d)$ of simple d-regular bipartite graphs with $O(d)$ vertices each that we refer to as canonical graphs. A canonical bipartite graph $G(P \cup \{t\}, Q \cup \{s\}, E) \in G(d)$ is defined as follows. The vertex set $P = P_1 \cup P_2$ and $Q = Q_1 \cup Q_2$ where $|P_i| = |Q_i| = 3d$ for $i \in \{1, 2\}$. The vertex s is connected to an arbitrary set of d distinct vertices in P_1 while the vertex t is connected to an arbitrary set of d distinct vertices in Q_2. In addition, G contains a matching M' of size d that connects a subset $Q'_1 \subseteq Q_1$ to a subset $P'_2 \subseteq P_2$, where $|Q'_1| = |P'_2| = d$. The remaining edges in E connect vertices in P_i to Q_i for $i \in \{1, 2\}$ so as to satisfy the property that the degree of each vertex in G is exactly d. It suffices to show an $\Omega(d^2)$ lower bound for graphs drawn from $G(d)$ since we can take $\Theta(n/d)$ disjoint copies of canonical graphs to create a d-regular graph on n vertices.

Overview: Let D be a deterministic algorithm for finding a perfect matching in graphs drawn from $G(d)$. We will analyze a game between the algorithm D and an adaptive adversary A whose goal is to maximize the number of edges that D needs to examine in order to find a perfect matching. In order to find a perfect matching, the algorithm D must find an edge in M', since s must be matched to a vertex in P_1, and thus in turn, some vertex in Q_1 must be matched to a vertex in P_2. We will show that the adversary A can always force D to examine $\Omega(d^2)$ edges in G before revealing an edge in M'. The specific graph $G \in G(d)$ presented to the algorithm depends on the queries made by the algorithm D. The adversary adaptively answers these queries while maintaining at all times the invariant that the partially revealed graph is a subgraph of some graph $G \in G(d)$. The cost of the algorithm is the number of edge locations probed by it before A reveals an edge in M' to D.

In what follows, we assume that the adversary reveals s,t and the partition of remaining vertices into P_i, Q_i for $1 \leq i \leq 2$, along with all edges from s to P_1 and all edges from t to Q_2, to the deterministic algorithm D at the beginning. The algorithm pays no cost for this step.

Queries: Whenever the algorithm D probes a new location in the adjacency array of some vertex $u \in P \cup Q$, we will equivalently view D as making a query $Q(u)$ to the adversary A, in response to which the adversary outputs a vertex v that had not been yet revealed as being adjacent to u.

Subgraphs consistent with canonical graphs: Given a bipartite graph $G'(P \cup \{t\}, Q \cup \{s\}, E')$, we say that a vertex $u \in P \cup Q$ is *free* if its degree in G' is strictly smaller than d. We now identify sufficient conditions for a partially revealed graph to be a subgraph of some canonical graph in $\mathcal{G}(d)$.

Lemma 10 Let $G_r(P \cup \{t\}, Q \cup \{s\}, E_r)$ be any simple bipartite graph such that

(a) the vertex s is connected to d distinct vertices in P_1 and the vertex t is connected to d distinct vertices in Q_2,

(b) all other edges in G_r connect a vertex in P_i to a vertex in Q_i for some $i \in \{1, 2\}$,

(c) degree of each vertex in G_r is at most d, and

(d) at least $\frac{5d}{2}$ vertices each in both Q_1 and P_2 have degree strictly less than $\frac{d}{3}$.

Then for any pair u, v of free vertices such that $u \in P_i$ and $v \in Q_i$, for some $i \in \{1, 2\}$, and $(u, v) \notin E_r$, there exists a canonical graph $G(P \cup \{t\}, Q \cup \{s\}, E) \in \mathcal{G}(d)$ such that $E_r \cup (u, v) \subseteq E$.

Proof: Let $G'(P \cup \{t\}, Q \cup \{s\}, E')$ be the graph obtained by adding edge (u, v) to G_r, that is, $E' = E_r \cup \{(u, v)\}$. Since u and v are free vertices, all vertex degrees in G' remain bounded by d. We now show how G' can be extended to a d-regular canonical graph.

We first add to G' a perfect matching M' of size d connecting an arbitrary set of d free vertices in Q_1 to an arbitrary set of d free vertices in P_2. This is feasible since G' has at least $\frac{5d}{2}$ free vertices each in both Q_1 and P_2. In the resulting graph, since the total degree of all vertices in P_1 is same as the total degree of all vertices in Q_1, we can repeatedly pair together a vertex of degree less than d in P_i with a vertex of degree less than d in Q_i until degree of each vertex becomes exactly d, for $i \in \{1, 2\}$. Let E'' be the set of edges added to $G' \cup M'$ in this manner, and let G'' be the final graph. The graph G'' satisfies all properties of a canonical graph in the family $\mathcal{G}(d)$ except that it may not be a simple graph. We next transform G'' into a simple d-regular graph by suitably modifying edges in E''.

Given any graph $H(V_H, E_H)$, we define

$$\Phi(H) = \max_{(x, y) \in V_H \times V_H} \{0, \eta(x, y) - 1\},$$

where $\eta(x, y)$ denotes the number of times the edge (x, y) appears in H. Note that $\Phi(H) = 0$ iff H is a simple graph. Consider any edge (u, v) that has multiplicity more than one in G''. It must be that $(u, v) \in E''$ since G'' is a simple graph. Assume w.l.o.g. that $u \in P_1$ and $v \in Q_1$. Let $X \subset P_1$ and $Y \subset Q_1$ respectively denote the set of vertices adjacent to v and u in G''. Using condition (d) on the graph G_r, we know that

$$|E'' \cap (P_1 \times Q_1)| \geq \left(\frac{5d}{2}\right) \left(\frac{4d}{5} + 1\right) - (d + 1) > 2d^2.$$

Since $|X| < d$ and $|Y| < d$, it follows that there must exist an edge $(u', v') \in E'' \cap (P_1 \times Q_1)$ such that $u' \notin X$ and $v' \notin Y$. We can thus replace edges $\{(u, v), (u', v')\}$ in E'' with edges $\{(u, v'), (u', v)\}$ without violating the d-regularity condition. It is easy to verify that the exchange reduces $\Phi(G'')$ by at least one, and that all edges involved in the exchange belong to the set E''. We can thus repeat this process until the graph G'' becomes simple, and hence a member of the family $\mathcal{G}(d)$.

Adversary strategy: For each vertex $u \in P \cup \{t\}, Q \cup \{s\}$, the adversary A maintains a list $N(u)$ of vertices adjacent to u that have been so far revealed to the algorithm D. Wlog we can assume that the algorithm D never queries a vertex u for which $|N(u)| = d$. At any step of the game, we denote by G_r the graph formed by the edges revealed thus far. We say the game is in *evasive* mode if the graph G_r satisfies the condition

9
(a) through (d) of Lemma10 and is in non-evasive mode otherwise. Note that the game always starts in the evasive mode, and then switches to non-evasive mode.

When the game is in the evasive mode, in response to a query \(Q(u) \) by \(D \) for some free vertex \(u \in P_i \) (\(i \in \{1, 2\} \)), \(A \) returns an arbitrary free vertex \(v \in Q_i \) such that \(v \not\in N(u) \). The adversary then adds \(v \) to \(N(u) \) and \(u \) to \(N(v) \). Similarly, when \(D \) asks a query \(Q(u) \) for some free vertex \(u \in Q_i \) (\(i \in \{1, 2\} \)), \(A \) returns an arbitrary free vertex \(v \in P_i \) such that \(v \not\in N(u) \). It then adds \(v \) to \(N(u) \) and \(u \) to \(N(v) \) as above.

As the game transitions from evasive to non-evasive mode, Lemma10 ensures existence of a canonical graph \(G \in \mathcal{G}(d) \) that contains the graph revealed by the adversary thus far as a subgraph. The adversary answers all subsequent queries by \(D \) in a manner that is consistent with the edges of \(G \). The lemma below shows that the simple adversary strategy above forces \(\Omega(d^2) \) queries before the evasive mode terminates.

Lemma11 The algorithm makes \(\Omega(d^2) \) queries before the game enters non-evasive mode.

Proof: The adversary strategy ensures that conditions (a) through (c) in Lemma10 are maintained at all times as long as the game is in the evasive mode. So we consider the first time that condition (d) is violated. Since each query answered by the adversary in the evasive mode contributes \(1 \) to the degree of exactly one vertex in \(Q_1 \cup P_2 \), \(A \) always answers at least \(\Omega(d^2) \) queries before the number of vertices with degree less than \(\frac{5d}{2} \) falls below \(\frac{5d}{2} \) in either \(Q_1 \) or \(P_2 \). The lemma follows.

Since \(A \) cannot discover an edge in \(M' \) until the game enters the non-evasive mode, we obtain the desired lower bound of \(\Omega(d^2) \).

5 An \(\Omega(n \log n) \) High Probability Lower Bound

In this section we prove the lower bound on the running time of a randomized algorithm for finding a matching in a regular bipartite multigraph stated in Theorem3. We first reiterate that even though the algorithm obtained in section2 is stated for simple graphs, the same runtime analysis applies for multigraphs as long as edge multiplicities are bounded above by \(d/2 \). The restriction on maximum edge multiplicity is necessary to ensure that SAMPLE-OUT-EDGE takes \(O(1) \) time in expectation. In this section we show that every algorithm that finds a matching in a \(d \)-regular multigraph (even with edge multiplicities bounded above by \(d/2 \)) probes at least \((\gamma/64)n \ln n \) locations in the input adjacency arrays with probability at least \(n^{-\gamma} \) (on some fixed family of distributions). The lower bound instances use \(d = \Theta(n) \).

We first introduce the following problem, which we will refer to as \textsc{Bipartite-Discovery}(\(d \)).

Definition12 (\textsc{Bipartite-Discovery}(\(d \))) Let \(G = (P, Q, E) \) be a bipartite multigraph with \(|P| = 4d \) and \(|Q| = d \). The set of edges \(E(G) \) is constructed as follows. For each \(u \in Q \) choose \(d \) neighbors in \(P \) uniformly at random with replacement. A node \(u^* \in Q \) is then marked as special, and edges incident to the special node are referred to as special. The graph \(G \) is presented in adjacency array format with edges appearing in random order in adjacency lists. When an algorithm \(A \) queries a neighbor of a vertex \(v \in Q \) or \(v \in P \), an incident edge is returned uniformly at random among the yet undiscovered edges. The location of the edge in the adjacency arrays of both endpoints is revealed to \(A \), i.e. it is no longer considered undiscovered when any of its endpoints is queried. The algorithm is not allowed to query the special node directly.

Algorithm \(A \) solves \textsc{Bipartite-Discovery}(\(d \)) if it finds an edge incident to the special node. The cost of \(A \) is defined as the number of queries that it makes before discovering an edge to the special node.

We show the following:

Lemma13 Any algorithm that solves \textsc{Bipartite-Discovery}(\(d \)) makes at least \((\gamma/2)d \ln d \) queries with probability at least \(d^{-\gamma} \) for any \(\gamma > 0 \).
Proof: Suppose that the algorithm has discovered J edges of G. Then the probability of the next query not yielding a special edge is at least $\frac{d^2 - d - J}{d^2 - J}$, independent of the actual set of edges of G that have already been discovered. Hence, the probability of not discovering a special edge after $J < \frac{d^2}{3}$ queries is at least

$$\prod_{j=0}^{J} \frac{d^2 - d - j}{d^2 - j} \geq \prod_{j=0}^{J} \frac{2d^2/3 - d}{2d^2/3} \geq e^{-2d/J}$$

for sufficiently large d. Hence, we have that the probability of not finding a special edge after $(\gamma/2)d \ln d$ queries is at least $d^{-\gamma}$.

We now give a reduction from BIPARTITE-DISCOVERY(d) to the problem of finding a matching in a regular bipartite multigraph with edge multiplicities bounded by $d/2$:

Proof of Theorem [3]:

Let A be an algorithm that finds a matching in a regular bipartite multigraph with edge multiplicities bounded above by $d/2$ and makes fewer than $(\gamma/64)n \ln n$ queries with probability at least $1 - n^{-\gamma}$ on every such graph. We will give an algorithm A' that solves BIPARTITE-DISCOVERY(d) and makes fewer than $(\gamma/2)d \ln d$ queries with probability strictly larger than $1 - d^{-\gamma}$.

Consider an instance $G = (P, Q, E)$ of BIPARTITE-DISCOVERY(d). Algorithm A' first checks if the degrees of all nodes in P are smaller than $d/2$. If there exists a node with degree strictly larger than $d/2$, A' queries all edges of all vertices in P and thus finds a special edge in at most $2d^2$ queries. Note that since the expected degree of vertices in P is $d/4$, the probability of this happening is at most e^{-d} for sufficiently large d by an application of the Chernoff bound with a union bound over vertices of P.

Now suppose that degrees of all nodes in P are at most $d/2$. A' adds a set of $3d$ vertices Q' to the Q side of the partition of G and connects nodes in Q' to nodes in P to ensure that the degree of every vertex in P and Q' is exactly d (it can be shown using an argument similar to the one in the proof of Lemma [10] that this can be done without introducing double edges). Denote the resulting regular multigraph by $G^+ = (P, Q \cup Q', E \cup E')$. Note that G^+ has $4d$ vertices in each part, and one vertex in the Q part of the bipartition is marked special together with its d adjacent edges. Now A' constructs the final graph by putting together two copies of G^+. In particular, we denote by G^- a mirrored copy of G^+, i.e. $G^- = (Q \cup Q', P, E \cup E')$, and finally denote by G^* the graph obtained by taking the union of G^+ and G^-, removing the two special nodes and identifying special edges in G^+ with special edges in G^-. Note that any matching in G^* contains a special edge, so algorithm A necessarily finds a special edge. Note that a query to an adjacency list in G^+ or G^- can be answered by doing at most one query on G. The number of vertices in each bipartition of G^* is $8d - 1$ and the degree of each node is d.

By assumption, algorithm A does not make more than $(\gamma'/64)n \ln n$ queries with probability at least $1 - n^{-\gamma'}$ for any $\gamma' > 0$. Setting $n = 8d - 1$ and $\gamma' = 2\gamma$, we get that A does not need more than $(2\gamma/64)8d \ln (8d) \leq (\gamma/2)d \ln d$ queries with probability at least $1 - (8d - 1)^{-2\gamma} \geq 1 - d^{-2\gamma}$ for sufficiently large d. Hence, we conclude that A' probes at most $(\gamma/2)d \ln d$ locations with probability at least $1 - d^{-2\gamma} + e^{-d} > 1 - d^{-\gamma}$, contradicting Lemma [13].
References

[1] G. Aggarwal, R. Motwani, D. Shah, and A. Zhu. Switch scheduling via randomized edge coloring. FOCS, 2003.

[2] G. Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev. Ser. A, 5:147–151, 1946.

[3] B. Bollobas. Modern graph theory. Springer, 1998.

[4] C. Chang, D. Lee, and Y. Jou. Load balanced birkhoff-von neumann switches, part i: one-stage buffering. Computer Communications, 25(6):611–622, 2002.

[5] R. Cole and J. Hopcroft. On edge coloring bipartite graphs. SIAM J. Comput., 11(3):540–546, 1982.

[6] R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in $O(E \log D)$ time. Combinatorica, 21(1):5–12, 2001.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms (3rd Ed). MIT Press, 2009.

[8] H. Gabow and O. Kariv. Algorithms for edge coloring bipartite graphs and multigraphs. SIAM J. Comput., 11(1):117–129, 1982.

[9] A. Goel, M. Kapralov, and S. Khanna. Perfect matchings in $\tilde{O}(n^{1.5})$ time in regular bipartite graphs. http://arxiv.org/abs/0902.1617v2, 2009.

[10] A. Goel, M. Kapralov, and S. Khanna. Perfect matchings via uniform sampling in regular bipartite graphs. Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages 11–17, 2009.

[11] J. Hopcroft and R. Karp. An $\frac{n^2}{2}$ algorithm for maximum matchings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[12] D. König. Uber graphen und ihre anwendung auf determinententheorie und mengenlehre. Math. Annalen, 77:453–465, 1916.

[13] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[14] A. Schrijver. Bipartite edge coloring in $O(\Delta m)$ time. SIAM J. on Comput., 28:841–846, 1999.

[15] J. von Neumann. A certain zero-sum two-person game equivalent to the optimal assignment problem. Contributions to the optimal assignment problem to the Theory of Games, 2:5–12, 1953.

[16] D. W. Walkup. Matchings in random regular bipartite graphs. Discrete Math, 31:59–64, 1980.