Spatial Distribution and Determinants of Household Iodized Salt Utilization in Ethiopia: A Spatial and Multilevel Analysis of Ethiopian Demographic and Health Survey

Yigizie Yeshaw (yigizieyeshaw29@gmail.com)
University of Gondar
https://orcid.org/0000-0003-4587-7925

Adugnaw Zeleke Alem
University of Gondar College of Medicine and Health Sciences

Getayeneh Antehunegn Tesema
University of Gondar College of Medicine and Health Sciences

Achamyeleh Birhanu Teshale
University of Gondar College of Medicine and Health Sciences

Alemneh Mekuriaw Liyew
University of Gondar College of Medicine and Health Sciences

Ayeneh Kassie Tesema
University of Gondar College of Medicine and Health Sciences

Research article

Keywords: iodized salt utilization, spatial analysis, multilevel analysis, Ethiopia

DOI: https://doi.org/10.21203/rs.3.rs-30436/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Iodine deficiency disorder is a significant public health problem, affecting both developed and developing nations worldwide. It is associated with poor body growth and irreversible mental retardation. However, little is known about the spatial distribution and determinants of household iodized salt utilization in Ethiopia. Therefore, this study aimed to explore the spatial distribution and determinants of iodized salt utilization at national level.

Methods: Ethiopian Demographic and Health Survey 2016 data was used to investigate the spatial distribution and determinants of household iodized salt utilization in Ethiopia. ArcGIS 10.6 and SaTScan™ version 9.6 software were used to explore the spatial distribution and detect significant clusters, respectively. We used STATA version 14 software to analyze the determinants of household iodized salt utilization. The odds ratio with its 95% confidence interval (CI) was determined for potential determinants included in the multivariable multilevel logistic regression model and the corresponding p-value ≤ 0.05 was employed to declare the statistically significant variables.

Results: Household iodized salt utilization was spatially clustered in Ethiopia (Moran’s Index = 0.076, p-value= 0.01). The significant hotspot areas with high iodized salt utilization were located in Benishangul, Amhara, Gambella, Tigray and Northwest Oromia regions. Those households with higher education level (Adjusted Odds Ratio [AOR]=1.49, 95% CI=1.14-1.93), high community level education (AOR=1.51, 95% CI=1.03-2.20), middle wealth index (AOR=1.31, 95% CI=1.04-1.65) and high community media exposure (AOR=1.52, 95% CI=1.07-2.17) had higher odds of iodized salt utilization.

Conclusions: Household iodized salt utilization had significant spatial variation across the country. The significant hotspot areas with high iodized salt utilization were located in Benishangul, Amhara, Gambella, Tigray and Northwest Oromia regions. Households with higher education level, high community level education and high community media exposure and middle wealth index had higher odds of iodized salt utilization. Increasing education level, wealth status and community media exposure is recommended to increase iodized salt utilization. A targeted intervention is also needed for those regions with low household iodized salt utilization.

Background

Iodine is an essential micronutrient used for the synthesis of thyroid hormones, which are vital for body growth, development and control of metabolic processes in the body (1, 2). Inadequate iodine utilization results in iodine deficiency disorder(IDD)(3), the most important preventable cause of brain damage worldwide (4–6). The problem is pronounced for pregnant women and young children that creates a threat to the social and economic development of countries (6). Iodine deficiency disorder can start before birth; threaten children's mental health and their very survival. It affects body growth and mental development leading to learning disability, irreversible mental retardation, reduce school performance, poor productivity, unemployment and an increased risk of mortality(7). Even mild iodine deficiency during pregnancy can have long-term adverse impacts on fetal cognition that are not improved by sufficient iodine intake during childhood (8–12).

Although substantial progress has been made over the last decades, worldwide, iodine deficiency remains a significant health problem; affecting both developed and developing nations (13). Globally more than 1.88 billion people have insufficient iodine intake (14). In Africa, over 330 million people remain at continued risk of IDD (15) and the problem is more pronounced in sub-Saharan Africa including Ethiopia (16). In Ethiopia, the prevalence of household iodized salt utilization is 15% in 2011(17) and 89% in 2016(18). Several factors are known to affect iodized salt utilization. Most importantly, being female, married (19, 20), having knowledge on IDD and iodized salt (19, 21–25), higher educational status (24, 26–28), and higher monthly income(26, 27, 29) are significantly associated with iodized salt utilization.

Iodization of salt has been proven to be the most effective strategy to provide populations with iodine and prevent IDD (30). In this regard, Ethiopia has notable progress as many efforts have made towards universal salt iodization (31). However, still it is under the recommendation of World Health Organization (90%) (4). Moreover, this coverage and utilization of iodized salt varies from region to region (31, 32). However, to the best of our knowledge, there is no study that investigates the spatial distribution and determinant factors of iodized salt utilization in Ethiopia at the national level. This research is important for both policy makers and health professionals to implement targeted intervention for the problem; by identifying areas which are more affected by the problem.

Methods And Materials

Study area and data source

This study was conducted in Ethiopia, a country found in East Africa (3°–14° N and 33°– 48° E), with 9 regional states (Oromia, Afar, Gambella, Benishangul-Gumuz, Amhara, Harari, Southern Nations, Nationalities and People’s (SNNP), Somali and Tigray), and two city administrations (Addis Ababa and Dire Dawa). Each region is divided into zones and the zones are again divided into Woredas. Woredas are further divided into kebeles, the smallest administrative units of the country.
The present study used the recent Ethiopian Demographic and Health Survey 2016 (EDHS 2016) to determine the spatial distribution and determinants of iodized salt utilization in Ethiopia. Ethiopia Demographic Health Survey (EDHS) is a survey collected every five years to provide population and health indicators at the national and regional levels (18).

Sample Size, Sampling Procedure And Data Collection

The EDHS used a two-stage stratified cluster sampling method. Stratification was done by separating the nine regional states and the two city administrations of Ethiopia, into urban and rural areas, with the exception of Addis Ababa (entirely urban). Each stratum was further divided into smaller units called enumeration areas or clusters (a geographic area consisting of 200–300 households), using the list of all clusters prepared by the 2007 Population and Housing Census (PHC) as a sampling frame. A total of 645 enumeration areas (EAs) were selected in the first stage. Of which, 202 were from urban areas. In the second stage, a fixed number of 28 households per cluster were selected randomly from the household listing. Data were collected by trained data collectors using a pretested structured, interviewer-administered questionnaire (18). Households having salts in their house and tested for iodine were included. Accordingly, total weighted samples of 15891 households were included.

Variables of the study

The outcome variable for this study was household iodized salt utilization. To assess the use of iodized salt, households were asked to provide a teaspoon of salt used for cooking and the salt was tested for iodine using the iodine rapid test kit (18).

The independent variables for this study include both individual and community level factors. The individual level variables were: age of the household head, marital status, education level, wealth index, media exposure, and residence; whereas community education level, community poverty level and community media exposure were the community level variables. The last three community-level factors were not directly found in the EDHS data; created by aggregating the selected individual level factors at the cluster level and categorized as high and low based on the median value; their value was skewed.

Data analysis procedure

We used ArcGIS version 10.6 and Spatial Scan Statistics (SaTScan™ version 9.6) software’s to perform the spatial data analysis. Global Moran’s index (Moran’s I) was used to determine the presence of spatial autocorrelation. Hot-spot analysis was done using Getis-Ord Gi* statistics. Spatial interpolation was also done to predict the iodized salt utilization in unmeasured areas based on the values from sampled data. Spatial scan statistics was done to identify significant primary (most likely) and secondary clusters. SaTScan™ works with a moving window and requires fixing of the window size that moves across the study area. The outcome variable has Bernoulli distribution so Bernoulli model was used by applying the Kulldorff method for purely spatial analysis. Households who were utilized iodized salt were taken as cases and those who did not take were taken as controls to fit the Bernoulli model. The default maximum spatial cluster size of < 50% of the population was used as an upper limit, which allowed both small and large clusters to be detected and ignored clusters that contained more than the maximum limit. Areas with high Log Likelihood Ratio and significant p value were considered as areas with high iodized salt utilization compared to areas outside of the window.

To identify the determinant factors of household iodized salt utilization, STATA 14 software was used. Sampling weight was done before any statistical analysis to adjust for the non-proportional allocation of the sample to different regions and the possible differences in response rates. Since the EDHS data has hierarchical nature, measures of community variation/random-effects (Intraclass Correlation Coefficient, Median Odds Ratio and Proportional Change in Variance) were estimated. The values of these measures were significant, indicating the use of multilevel logistic regression model than ordinary logistic regression. Model comparison was done using deviance between the null-model (a model with no independent variable), model I (a model with only individual-level factors), model II (a model with community-level factors) and model III (a model that contain both individual and community level independent variables). A model with the lowest Deviance (model III) was the best fitted model. Both bivariable and multivariable multilevel logistic regression was performed to identify the determinant factors of household iodized salt utilization in Ethiopia. All variables with a p value < 0.25 at bi-variable multilevel logistic model analysis were entered into the multivariable multilevel logistic regression model. P value ≤ 0.05 was used to declare statistically significant variables in the final model.

Results

Sociodemographic characteristics

Weighted sample of 15,891 households were included in this study. The majority, 12731(80%) of the households were rural. The mean age of household head was 44.38 years (± 16.10 SD). More than half, 8,703(54.77%) of the households had no education. The majority (71.53%) of the households had no radio. Regarding marital status, more than three fourth (77.33%) of the households were currently married. Eight
thousand three hundred and four (52.25%) of them were from low community education. Eight thousand three hundred and eleven (52.30%) of them were from community with high poverty level (Table 1).
Variables	Weighted frequency	Percent
Residence		
Urban	12,731	80.00
Rural	3,160	20.00
Age (years)		
< 25	3,957	24.90
25–34	3,747	23.58
35–44	2,594	16.33
45–54	2,352	14.80
55–64	2,336	14.70
65 and above		
Sex of household head		
Male	4,070	25.61
Female	11,821	74.39
Marital status		
Never married	12,288	77.33
Currently married	2,954	18.59
Formerly married		
Educational status		
No education	4,849	30.52
Primary education	1,250	7.87
Secondary education	1,089	6.85
Higher education		
Wealth index		
Poorest	3,067	19.30
Poorer	3,032	18.83
Richer	2,992	18.89
Richest	3,799	23.91
Media exposure		
Yes	11,366	71.53
No	4,525	28.47
Community education level		
Low	7,587	47.75
High	8,304	52.25
Community poverty level		
Low	8,311	52.30
High	7,580	47.70
Variables

Variables	Weighted frequency	Percent
Community media exposure level	8,151	51.29
Low	7,740	48.71
High		

Spatial Analysis Of Household Iodized Salt Utilization

The overall iodized salt utilization in Ethiopia was 89.27% (95% CI = 88.78%-89.74%). Among regions, Benishangul had the highest prevalence of household iodized salt utilization (94.14%), whereas the lowest was in Somali region (62.45%). The spatial distribution of household iodized salt utilization in Ethiopia was non-random (Global Moran’s I = 0.076, p value = 0.01) (Fig. 1). The highest prevalence of household iodized salt utilization was identified in the Amhara, Tigray, Benishangul Gumuz, Gambela, Oromia and central SNNPRs regions whereas low iodized salt utilization was located in the entire Afar and Somali regions (Fig. 2).

The Getis Ord Gi statistical analysis shows the hotspot and cold spot areas of household iodized salt utilization in Ethiopia. The red colors indicate the significant hotspot areas (higher rates of household iodized salt utilization), which was found in the central and southern parts of Amhara, Northeast part of Benishangul-Gumuz, Addis Ababa, Southwest Oromia and West Gambella regions. In contrast, the blue color indicates significant cold spot areas (areas with low iodized salt utilization), found in Somali, and East Afar regions (Fig. 3). In the SaTScan analysis, a total of 364 significant clusters were identified. Of these, 304 were primary clusters. The primary clusters were located in the entire Benishangul, Amhara, Gambella, Tigray and Northwest Oromia regions, centered at 11.340042 N, 35.126734 E with 509.53 km radius, a Relative Risk (RR) of 1.15, and Log-Likelihood Ratio (LRR) of 225.9, at p-value < 0.001. Households within the spatial window had 1.15 times higher odds of utilizing iodized salt compared to those households outside the spatial window (Table 2). The secondary clusters were located in Southwest Oromia, eastern SNNPR, Dire Dawa, Harari, and Southwest Somali regions (Fig. 4).
Table 2
Significant SaTScan clusters of areas with high proportion of household iodized salt use in Ethiopia, 2016

Clusters	Enumeration areas (EAs)/clusters detected	Coordinates/radius	Population	Cases	RR	LLR	P-value
1 (number of clusters)	256, 457, 35, 364, 137, 324, 244, 386, 415, 285, 183, 569, 409, 209, 36, 548, 407, 533, 559, 541, 563, 246, 150, 615, 65, 595, 602, 515, 498, 581, 259, 335, 508, 433, 203, 317, 6, 165, 184, 52, 124, 416, 88, 621, 17, 320, 361, 374, 109, 349, 395, 462, 494, 70, 516, 3, 275, 292, 431, 304, 193, 279, 382, 169, 643, 73, 175, 161, 429, 167, 248, 375, 158, 474, 403, 294, 24, 163, 640, 512, 456, 638, 558, 132, 280, 504, 531, 120, 327, 218, 296, 312, 399, 152, 612, 63, 411, 549, 47, 291, 469, 114, 221, 322, 482, 229, 206, 231, 315, 234, 350, 346, 105, 106, 69, 38, 426, 555, 343, 567, 603, 448, 104, 260, 592, 253, 199, 627, 233, 370, 507, 265, 628, 80, 309, 62, 258, 517, 536, 176, 118, 435, 266, 593, 545, 219, 485, 10, 23, 618, 510, 586, 119, 460, 425, 267, 177, 446, 13, 270, 188, 284, 326, 417, 583, 432, 340, 66, 554, 423, 46, 262, 268, 591, 572, 489, 299, 542, 551, 401, 354, 98, 526, 142, 243, 617, 459, 552, 616, 465, 168, 255, 181, 371, 197, 174, 478, 528, 274, 78, 486, 154, 76, 11, 339, 463, 147, 477, 107, 145, 91, 31, 532, 100, 447, 369, 626, 584, 487,	(11.340042 N, 35.126734 E) / 509.53 km	7522	6923	1.15	225.9	p < 0.001
Clusters	Enumeration areas(EAs)/clusters detected	Coordinates/Radius	Population	Cases	RR	LLR	P-value
----------	--	--------------------	------------	-------	----	-----	---------
2	608,112, 314, 108, 144, 645, 207, 59, 195, 300, 635, 170, 305, 153, 464, 414, 582, 15, 159, 110, 227, 247, 639, 302, 225, 293, 579, 156, 19, 61, 264, 261, 437, 475, 428, 155, 451, 509, 539, 287, 560, 330, 502, 575, 211, 139, 90, 577, 402, 252, 136, 236, 410, 636, 83, 597, 353, 392, 204, 400, 217, 325, 18, 399, 538, 200, 303, 310, 496, 590, 97, 424, 143, 455, 81, 351, 223, 271, 449, 611, 331, 345, 442, 40, 376	(5.844300 N, 39.182881 E) / 170.92 km	790	759	1.12	45.6	p < 0.001
3	610, 383, 329, 238, 495, 381, 443, 173, 396, 60, 393, 288, 614, 28, 228, 157, 397, 56, 387, 257, 419, 357, 534, 44, 473, 179, 58, 289, 589, 578, 50	(9.370004 N, 42.102751 E) / 7.94 km	698	661	1.1	28.1	p < 0.001
4	341, 226	(14.041828 N, 39.537923 E) / 14.42 km	53	53	1.16	7.9	P = 0.166
5	208, 520	(4.006703 N, 41.599741 E) / 53.81 km	46	46	1.16	6.1	P = 0.397
6	1, 566	(9.505470 N, 42.438628 E) / 5.85 km	54	53	1.14	4.9	P = 0.893
7	166, 311	(9.510583 N, 41.89978 E) / 5.60 km	51	50	1.14	4.5	P = 0.966
8	476, 506, 412, 122, 333, 245, 372	(8.888553 N, 40.744565 E) / 62.70 km	174	162	1.08	4.3	P = 0.983

In the Kriging interpolation, central, eastern and Southern parts of Amhara, north and southwest parts of Oromia and eastern part of Benishangul have predicted areas of high household iodized salt utilization compared to other regions. In contrast, predicted lower household...
iodized salt utilization areas were found in eastern Afar and Somali regions (Fig. 5)

Random Effect Analysis

The results of the random-effects model indicated that there was significant clustering of household iodized salt utilization across the communities (OR of community level variance = 3.442, 95% CI = 2.905–4.078). The intra-class correlation (ICC) in the null model indicated that 51.1% of the overall variability of household iodized salt utilization was attributed to cluster variability. The median odds ratio (MOR) for household iodized salt utilization was 5.82 in the null model, which indicates that there was a variation in iodized salt utilization between clusters. This means if we randomly select households from different clusters, households at the cluster with higher household iodized salt utilization had 5.82 times higher odds of iodized salt use as compared with those households at cluster with lower iodized salt use. The Proportional Change in Variance (PCV) also increases from 6.3% from model I to 9.4% in model III (a model with individual and community level variables), which indicates the last model (model III) best explains the variability of household iodized salt utilization. Besides, model fitness was checked using deviance and the model with the lowest deviance (model III) were the best fitted model (Table 3).

Parameters	Null model	Model I	Model II	Model III
ICC	51.1%	49.5%	49.1%	48.7%
MOR	5.82	5.53	5.43	5.36
PCV	Ref	6.3%	7.8%	9.4%
Log likelihood	-5023.507	-5003.621	-5006.784	-4995.235
LR test	$X^2 = 2629.15; P < 0.001$	$X^2 = 2389.61; P < 0.001$	$X^2 = 2419.65; P < 0.001$	$X^2 = 2334.39; P < 0.001$
Deviance	10047.01	10007.242	10013.568	9990.470

Determinants Of Household Iodized Salt Utilization In Ethiopia

On bivariable multilevel logistic regression analysis, education level, wealth index, media exposure, residence, community education level, community poverty level, and community media exposure level were associated with household iodized salt utilization ($p < 0.25$). Therefore, these variables were eligible for the multivariable multilevel logistic regression/final model. Accordingly, wealth index, education level, community media exposure level and community education level were significantly associated with household iodized salt utilization in Ethiopia ($p \leq 0.05$).

The odds of iodized salt utilization among the households with higher education level were 1.5 times higher compared with those who had no education ($AOR = 1.49, 95\% CI = 1.14–1.93$). Those households who were from high community education level had 1.5 times higher chance of iodized salt utilization compared with households of low community education level ($AOR = 1.51, 95\% CI = 1.03–2.20$). The odds of household iodized salt utilization was 1.3 times higher among households with middle wealth index compared with the poorest once ($AOR = 1.31, 95\% CI = 1.04–1.65$). The odds of iodized salt utilization among households with high community media exposure level was 1.5 times higher compared with households from low community media exposure level ($AOR = 1.52, 95\% CI = 1.07–2.17$) (Table 4).
Table 4
Multilevel logistic regression analysis of household iodized salt utilization in Ethiopia, 2016

Variables	Use of iodized salt	Odds ratio			
	Yes	No	COR (95% CI)	AOR (95% CI)	
	N (%)	N (%)			
Community media exposure level	low	7,127(50.24)	1,024(60.08)	2.14(1.57–2.91)	1.52(1.07–2.17)*
	High	7,059(49.76)	681(39.92)		
Residence	Rural	11,284(88.63)	1,447(11.37)	1	1
	Urban	2,902(91.84)	258(8.16)	1.81(1.29–2.55)	0.82(0.50–1.35)
Media exposure	Yes	4,120(91.06)	405(8.94)	1.21(1.10–1.38)	1.10(0.95–1.26)
	No	10,066(88.56)	1,300(11.44)	1	1
Education level	No education	7,734(88.87)	969(11.13)	1	1
	1st education	4,312(88.92)	537(11.08)	1.10(0.95–1.24)	1.02(0.89–1.17)
	2nd education	1,119(89.56)	131(10.44)	1.39(1.12–1.74)	1.25(0.99–1.57)
	Higher education	1,021(93.73)	68(6.27)	1.68(1.30–2.16)	1.49(1.14–1.93)*
Community education level	Low	7,419(89.35)	885(10.65)	1	1
	High	6,767(89.19)	820(10.81)	2.16(1.59–2.94)	1.51(1.03–2.20)*
Community poverty level	High	7,455(89.71)	855(10.29)	1.99(1.46–2.71)	1.20(0.78–1.84)
	Low	6,731(88.79)	850(11.21)	1	1
Wealth index	Poorest	2,577(85.86)	424(14.14)	1	1
	Poorer	2,762(90.07)	305(9.93)	1.22(0.99–1.49)	1.15(0.94–1.41)
	Middle	2,711(89.40)	321(10.60)	1.45(1.16–1.81)	1.31(1.04–1.65)*
	Richer	2,672(89.29)	320(10.71)	1.49(1.18–1.88)	1.26(0.99–1.62)
	Richest	3,465(91.21)	334(8.79)	1.79(1.39–2.29)	1.26(0.92–1.73)

*p ≤ 0.05

Discussion

This study aimed to explore the spatial distribution and determinant factors of household iodized salt utilization in Ethiopia. Accordingly, we found that household iodized salt utilization in Ethiopia was clustered and affected by different factors.
The spatial distribution of household iodized salt utilization in Ethiopia was none random. The significant hotspot areas with high iodized salt utilization were located in entire Benishangul, Amhara, Gambella, Tigray and Northwest Oromia regions. In contrast, lower household iodized salt utilization was observed in Somali, and Afar regions. The possible reason for this difference might be the difference in education level of the households. In this study, only 106 (22.94%) of Somali, and 37 (27.94%) of Afar households have primary and above education, which is lower than other regional states. This low educational status of the two regions might lead to low prevalence of household iodized salt utilization in these regions. This is because low education level is usually associated with low level of community awareness on prevention of IDD, the benefits of iodized salt and its utilization (26, 27). Moreover, the salt content of drinking water in Afar and Somali regions is high compared to other regions (33). This might lead to a decrease in intention of the households to buy and use iodized salt for cooking.

In this study, wealth index, education level, community education level and community media exposure level were significantly associated with higher odds of household iodized salt utilization in Ethiopia (\(p \leq 0.05 \)). The odds of iodized salt utilization among households with higher education level were 1.5 times higher compared with those who had no education. Similarly, those households who were from high community education level had higher chance of iodized salt use compared with households from low community education level. This finding is similar with the result of other pocket studies in Ethiopia (24, 26–28). This could be due to participants who had education are more likely to be knowledgeable on the use of iodized salt than those who did not have education (26, 34–36). Moreover, households who had education usually had employment opportunities that might lead to relatively better socioeconomic status to purchase and use iodized salt compared to those households with no education.

Respondents’ wealth index status is also associated with household iodized salt utilization in Ethiopia. The odds of iodized salt utilization among households with middle wealth index were higher compared with the poorest once. Our finding is consistent with the finding of many other studies in Ethiopia (19, 26, 27, 29). This might be due to the reason that those households with poorest wealth index are facing economic constraint for buying iodized salt; iodized salt is less likely to be found in poor households due to its relatively higher cost (37).

Another factor associated with households iodized salt utilization in this study is level of community media exposure. The odds of iodized salt utilization among households with high community media exposure level were 1.52 times higher compared with households from low community media exposure level. The current finding is in line with a study in Turkey (35). This is due to those households who had media exposure usually have more information about their health including the importance of iodized salt compared to households without media exposure. This finding implies that health education through mass media such as radio has been effective in promoting the use of iodized salt especially in rural communities (38). This would be more effective for countries like Ethiopia, a country where more than 80% of its population is rural in resident and had no access to use latest mass media types.

This study has the following strengths. Firstly, we used multilevel model, a model that accounts the hierarchical nature of the data to get reliable estimates. The second strength of this study is the use of nationally representative data which can have greater power of generalizability. As limitation, this study uses rapid test kits (RTKs) essential only to determine the presence or absence of iodine, are non-quantitative. Therefore, we are unable to determine the quality of salt iodization. Due to the cross-sectional nature of the survey, we cannot show the cause-and-effect relationship between independent variables and household iodized salt utilization.

Conclusions

Household iodized salt utilization had significant spatial variation across the country. The significant hotspot areas with high iodized salt utilization were located in Benishangul, Amhara, Gambella, Tigray and Northwest Oromia regions. Households with higher education level, from high community education level and high community media exposure level and middle wealth index had higher odds of iodized salt utilization. Therefore, increasing education level, wealth status and community media exposure is recommended to increase iodized salt utilization. Moreover, targeted intervention is needed for Afar and Somali regions, areas with low iodized salt utilization.

Abbreviations

AOR
Adjusted Odds Ratio, CI:Confidence Interval, COR:Crude odds ratio, EDHS:Ethiopian Demographic and Health Survey, ICC:Intraclass Correlation Coefficient, IDD:Iodine Deficiency Disorder, MOR:Median Odds Ratio, PCV:Proportional Change in Variance

Declarations

Ethics approval and consent to participate

Permission to use the data was obtained from DHS Program. Procedures for DHS public-use datasets was approved by the Institution Review Board (IRB).
Consent for publication

Not applicable

Availability of data and materials

All relevant data are included in the article. Datasets used for the analysis of the study can be given with a reasonable request of the corresponding author.

Competing interests

The authors declare that they have no competing interests.

Funding

No specific funding.

Authors’ contributions

YY conceived and designed the study, conducted data analysis, interpret the data and drafted the manuscript for publication. GAT, ABT, AZA, AML, and AKT analyze and interpret the data, and reviewed the manuscript. All authors read and approved the final manuscript and agree to be accountable for all aspects of the work.

Acknowledgments

We would like to thank the MEAUSRE DHS for providing the data set for the study. We appreciate the scientific writing information provided by Baye Dagnew, and his critical review of this manuscript.

References

1. National Institute of Health. Iodine Fact Sheet for Consumers [Internet]. 2020. Available from: https://ods.od.nih.gov/pdf/factsheets/Iodine-Consumer.pdf.
2. FAO. Vitamin and mineral requirements in human nutrition. WHO, FAO. 2004.
3. WHO. Iodine deficiency in Europe A continuing public health problem. 2007.
4. WHO, ICCIDD U. Assessment of iodine deficiency disorders and monitoring their elimination 3rd edn. Geneva: World Health Organisation. [Internet]. 2007. Available from: https://apps.who.int/iris/bitstream/handle/10665/43781/9789241595827_eng.pdf;jsessionid=C62D6F03EEF16C2F521055CA5B1EB1D4?sequence=1.
5. Chung HR. Iodine and thyroid function. Ann Pediatr Endocrinol Metab. 2014;19:8–12.
6. Andersson M. Iodine status worldwide. WHO Glob Database Iodine Deficiency. 2004;1–58.
7. Zerfu D, October E. National salt iodization coverage towards Prevention of Iodine Deficiency Disorder in Ethiopia. Ethiop Public Heal Inst. 2014;1–30.
8. Hynes KL, Otahal P, Hay I, Burgess J. JR. the Offspring: 9-Year Follow-up of the Gestational. 2013;98(May):1954–62.
9. Parameswaran GG, Yadav K. Iodine status of pregnant women and cognitive outcomes of their children. Natl Med J India . 2017;27(3):1–3.
10. Bath SC, Steer CD, Golding J, Emmett P, Rayman MP. Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Lancet [Internet]. 2013;6736(13):1–7. Available from: http://dx.doi.org/10.1016/S0140-6736(13)60436-5.
11. Zhou SJ, Anderson AJ, Gibson RA, Makrides M. Effect of iodine supplementation in pregnancy on child development and other clinical outcomes: a systematic review of randomized. Am J Clin Nutr. 2013;98(2):1241–54.
12. Caron P. Neurocognitive outcomes of children secondary to mild iodine deficiency in pregnant women. Ann Endocrinol (Paris) [Internet]. 2015,76(3):248–52. Available from: http://dx.doi.org/10.1016/j.ando.2015.01.001.
13. Pearce EN, Andersson M, Zimmermann MB. Global Iodine Nutrition: Where Do We Stand in 2013? 2013;23(5):1–6.
14. Andersson M, Karumbunathan V, Zimmermann MB. Global Iodine Status in 2011 and Trends over the Past Decade. J Nutr. 2012;142:744–50.
15. Universal Salt Iodisation in Africa: Road to overcoming the last Universal Salt Iodisation in Africa [Internet]. 2005. Available from: https://www.nutritionintl.org/content/user_files/2017/06/Universal-Salt-Iodisation-in-Africa-Road-to-overcoming-the-last-hurdles.pdf.
16. Zimmermann MB, Jooste PL, Pandav CS. Iodine-deficiency disorders. Lancet. 2008;372:1251–62.
17. Survey H. Ethiopia Demographic and Health Survey 2011. 2011.
18. Survey H. Demographic and Health Survey. 2016.
19. Hawas SB, Lemma S, Mengesha STDH, and SM. Proper Utilization of Adequately Iodized Salt at Household Level and Associated Factors in Asella Town Arsi Zone Ethiopia: A Community based Cross Sectional Study. J Food Process Technol. 2016;7(4):1–8.
20. Alemu BM, Sciences M, Roba KT. Household Salt Iodine Level and Associated Factors in Dire Dawa City. East African J Heal Biomed Sci. 2018;2(2):35–44.
21. East African Journal of Sciences
 Roba EH. and KT. East African Journal of Sciences (2019) Utilization of iodized salt and Associated Factor in Zuway Dagda District, Arsi Zone, Oromia Regional State, South East Ethiopia. East African J Sci. 2019;13(1):75–80.
22. Abebe Z, Tariku A, Gebeye E. Availability of adequately iodized in Northwest Ethiopia: a cross-sectional study. Arch Public Health. 2017;75(33):1–9.
23. Gebremariam HG, Yesuf ME, Koye DN. Availability of Adequately Iodized Salt at Household Level and Associated Factors in Gondar Town, Northwest Ethiopia. ISRN Public Health. 2013;2013:1–7.
24. Dida N, Legese A, Aman A, Muhamed B, Damise T, Birhanu T, et al. Availability of adequately iodised salt at household level and its associated factors in Robe town, Bale Zone, South East Ethiopia: community- based cross-sectional study Availability of adequately iodised salt at household level and its associated fac. South African J Clin Nutr ISSN. 2018;1–6.
25. Berhane A, Baraki N, Endale BS. Availability of Adequately Iodized Salt at Household Level and Associated Factors in Dire Dawa, Eastern. Int J ofPublic Heal Sci. 2016;5(4):392–9.
26. Tariku WB, Mazengia AL. Knowledge and Utilization of Iodized Salt and Its Associated Factors at Household Level in Mecha District, Northwest Ethiopia. J Nutr Metab. 2019;2019:1–9.
27. Bazezew MM, Yallew WW, Belew AK. Knowledge and practice of iodized salt utilization among reproductive women in Addis Ababa City. BMC Res Notes. 2018 Oct;11(1):734.
28. Kumma WP, Haji Y, Abdurahmen J, Adinew YM, Mehretie Adinew Y. Factors Affecting the Presence of Adequately Iodized Salt at Home in Wolaita, Southern Ethiopia: Community Based Study. Int J food Sci. 2018;2018:4394908.
29. Mekonnen TC, Eshete S, Wasihun Y. MA and NC. Availability of adequately iodized salt at household level in Dessie and Combolcha Towns, South Wollo, Ethiopia. BMC Public Health. 2018;18(1152):1–9.
30. Nancy J, Aburto M, Abudou, Vanessa Candeias TW. Effect and safety of salt iodization to prevent iodine deficiency disorders: a systematic review with meta-analyses. 2014.
31. Knowles JM, Garrett GS, Gorstein J, Kupka R, Situma R, Yadav K, et al. Household Coverage with Adequately Iodized Salt Varies Greatly between Countries and by Residence Type and Socioeconomic Status within Countries: Results from 10 National Coverage Surveys 1–3. J Nutr. 2017;(2):1004S–14S.
32. March B, Initiative M. Remarkable progress against iodine deficiency in Ethiopia. 2016;8–9. Available from: https://www.ign.org/newsletter/idd_aug17_ethiopia.pdf.
33. Aleme ZA, Teklu KT, Alemayehu TA, Balcha KH. Physicochemical quality of drinking water sources in Ethiopia and its health impact: a retrospective study. Environ Syst Res. 2015;4(22):1–8.
34. Buxton C, Baguune B. Knowledge and practices of people in Bia District, Ghana, with regard to iodine deficiency disorders and intake of iodized salt. Arch Public Heal [Internet]. 2012;70(1):5. Available from: http://www.archpublichealth.com/content/70/1/5.
35. Green J. The role of local mass media in promoting the consumption of iodized table salt. Health Educ Res. 2001;16(5):603–7.
36. Lowe N, Westaway E, Munir A, Tahir S, Dykes F, LHussier M, et al. Increasing Awareness and Use of Iodised Salt in a Marginalised Community Setting in. Nutrients. 2015;7:9672–82.
37. Khan JR, Biswas RK, Sheikh T, Huq M. Factors associated with the availability of iodized salt at household level: a case study in Bangladesh Public Health Nutrition. Public Health Nutr. 2019;1–9.
38. Khoja S, Luby S, Ahmed Z, Akber A, Health C, Khan TA. Effectiveness of Health Education in promoting the use of iodized salt in Lotkoh, Tehsil Chitralt. Pakistan JPMA. 2004;50(9):1–6.
Figure 1

Global spatial autocorrelation of household iodized salt utilization in Ethiopia, 2016

Given the z-score of 2.57158259529, there is a less than 5% likelihood that this clustered pattern could be the result of random chance.
Figure 2

Spatial distribution of household iodized salt utilization across regions in Ethiopia, 2016
Figure 3

Getis Ord Gi statistical analysis of hotspot areas of household iodized salt utilization in Ethiopia, 2016
Figure 4

SaTScan analysis of primary and secondary hotspot clusters of household iodized salt utilization in Ethiopia 2016.
Figure 5

Kriging Interpolation of household iodized salt utilization in Ethiopia, 2016