Inhaled Corticosteroids and Adult Asthma

To the Editor:

We read with interest the concise review by Beasley and colleagues on inhaled corticosteroids (ICS) in adult asthma (1). We agree that the definition of low, moderate, and high doses of ICS is arbitrary, as stated in the Global Initiative for Asthma report, although the Global Initiative for Asthma makes clear that it is simply an assessment of estimated clinical comparability based on available studies and product information, and that a large number of patients with asthma need only a low dose of ICS (www.ginasthma.org).

However, with regard to the statement that the maximum obtainable patient benefit is with low-dose ICS, we would like to emphasize that the evidence provided to support this statement is from studies on nonphenotyped asthma, a significant proportion of which probably have no or low levels of airway eosinophilia. The main therapeutic target of ICS is the eosinophil, and the degree of airway eosinophilia varies significantly from one patient to another, so that the dose of ICS needed to reduce such eosinophilia significantly varies greatly. It is likely that the “classical” benefit/systemic effects curve differs significantly in eosinophilic asthma, and that the observed plateau is shifted to the right in this population. The reason for the reported lack of efficacy of doubling and quadrupling of doses of ICS is likely that the nature of airway inflammation was not considered in those clinical trials. Furthermore, studies that have looked at sputum eosinophils have demonstrated that high doses of corticosteroids are as effective as prednisone in moderate to severe exacerbations (2, 3). Another study showed that high-dose ICS is also effective in treating exacerbations of asthma (4).

The best way to show an ICS dose response and compare ICS products is therefore not to use unselected patients but, rather, to choose patients with either high sputum eosinophils or high FeNO and then perform dose escalation studies (5). Furthermore, ICS dose response also depends on the outcome measured, with airway hyperresponsiveness showing the best dose-dependent improvement over time (6).

As stated in all guidelines, we should always consider using the lowest possible dose of ICS (or oral corticosteroids [OCS], and ideally no OCS) to control asthma while avoiding the risks for rehabilitation: a randomised non-inferiority trial. Thorax 2018;73: 29–36.

12. Pinto-Plata VM, Cote C, Cabral H, Taylor J, Celli BR. The 6-min walk distance: change over time and value as a predictor of survival in severe COPD. Eur Respir J 2004;23:29–33.

Copyright © 2019 by the American Thoracic Society

References

1. Nici L, Singh SJ, Holland AE, ZuWallack RL. Opportunities and challenges to expanding pulmonary rehabilitation into the home and community. Am J Respir Crit Care Med 2019;200: 822–827.

2. McCarthy B, Casey D, Devane D, Murphy K, Murphy E, Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2015;(2):CD003793.

3. Griffiths TL, Burr ML, Campbell IA, Lewis-Jenkins V, Mullins J, Shielis K, et al. Results at 1 year of outpatient multidisciplinary pulmonary rehabilitation: a randomised controlled trial. Lancet 2000;355:362–368.

4. Jenkins AR, Gowler H, Curtis F, Holden NS, Bridle C, Jones AW. Efficacy of supervised maintenance exercise following pulmonary rehabilitation on health care use: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 2018;13:257–273.

5. Guell MR, Cezudo P, Ortega F, Puy MC, Rodríguez-Trigo G, Pijoan JI, et al. Benefits of long-term pulmonary rehabilitation maintenance program in patients with severe chronic obstructive pulmonary disease: three-year follow-up. Am J Respir Crit Care Med 2017;195:622–629.

6. Ringbaek T, Brondum E, Martinez G, Thogersen J, Lange P. Long-term effects of 1-year maintenance training on physical functioning and health status in patients with COPD: a randomised controlled study. J Cardiopulm Rehabil Prev 2010;30:47–52.

7. Waterhouse JC, Walters SJ, Oluboyede Y, Lawson RA. A randomised 2 x 2 trial of community versus hospital pulmonary rehabilitation, followed by telephone or conventional follow-up. Health Technol Assess 2010;14:i-v, vii-xi, 1–140.

8. Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med 2013;46:81–95.

9. Maltais F, Bourbeau J, Shapiro S, Lacasse Y, Perrault H, Baltzan M, et al.; Chronic Obstructive Pulmonary Disease Axis of Respiratory Health Network, Fonds de Recherche en Santé du Québec, Effects of home-based pulmonary rehabilitation in patients with chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med 2008;149:869–878.

10. Holland AE, Mahal A, Hill CJ, Lee AL, Burge AT, Cox NS, et al. Home-based rehabilitation for COPD using minimal resources: a randomised, controlled equivalence trial. Thorax 2017;72: 57–65.

11. Horton EJ, Mitchell KE, Johnson-Warrington V, Apps LD, Sewell L, Morgan M, et al. Comparison of a structured home-based rehabilitation programme with conventional supervised pulmonary rehabilitation: a randomised non-inferiority trial. Thorax 2018;73: 29–36.
We therefore agree with Beasley and colleagues that we should prevent overdosing with ICS when not necessary, and that in this regard, there is a significant care gap in asthma management with an underutilization of noninvasive measurements of airway inflammation, particularly in moderate to severe asthma. We endorse the need for rigorous dose–response studies of ICS to be conducted in patients who are well characterized on the basis of their inflammatory endotypes.

References

1. Beasley R, Harper J, Bird G, Maijers I, Weatherall M, Pavord ID. Inhaled corticosteroid therapy in adult asthma: time for a new therapeutic dose terminology. Am J Respir Crit Care Med 2019;199:1471–1477.

2. Bela´ı J, Margarit G, Martínez C, Bello´i-Casado J, Casan P, Torrejón M, et al. Anti-inflammatory effects of high-dose inhaled fluticasone versus oral prednisone in asthma exacerbations. Eur Respir J 2007;30:1143–1149.

3. Di Franco A, Bacci E, Bartoli ML, Cianchetti S, Dente FL, Taccola M, et al. Anti-inflammatory effects of high-dose inhaled fluticasone propionate is effective as well as oral prednisone in reducing sputum eosinophilia during exacerbations of asthma which do not require hospitalization. Pulm Pharmacol Ther 2006;19:353–360.

4. Gibson PG, Saltos N, Fakes K. Acute anti-inflammatory effects of inhaled budesonide in asthma: a randomized controlled trial. Am J Respir Crit Care Med 2001;163:32–36.

5. Health Canada. Guidance document: data requirements for safety and effectiveness of subsequent entry inhaled corticosteroid products used for the treatment of asthma [updated 2018 Oct 31; accessed 2019 Nov 4]. Available from: https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/applications-submissions/guidance-documents/inhaled-corticosteroid-profile/inhaled-corticosteroid-guidance.html.

6. Kelly MM, Leigh R, Jayaram L, Goldsmith CH, Parameswaran K, Hargrave FE. Eosinophilic bronchitis in asthma: a model for establishing dose-response and relative potency of inhaled corticosteroids. J Allergy Clin Immunol 2006;117:989–994.

7. Aziz-Ur-Rehman A, Dasgupta A, Kjarsgaard M, Hargrave FE, Nair P. Sputum cell counts to manage prednisone-dependent asthma: effects on FEV1 and eosinophilic exacerbations. Allergy Asthma Clin Immunol 2017;13:17.

Copyright © 2019 by the American Thoracic Society

Reply to Boulet and Nair

From the Authors:

We read with interest the comments of Louis-Philippe Boulet and Parameswaran Nair regarding our review on inhaled corticosteroids (ICS) in adult asthma (1). We appreciate their agreement with our view that titration of maintenance ICS doses in accordance with changes in biomarkers of responsiveness may represent the optimal approach to ICS dosing in individual patients, particularly with biomarkers of type 2 inflammation. We also concur regarding priorities for research. As we recommend in our conclusion, a research priority is to determine the dose–response relationship of ICS in phenotypes defined by clinical characteristics such as type 2 biomarker status, and to better define how to titrate the ICS dose in accordance with changes in type 2 biomarkers in asthma. Two important goals would be to determine which patients require relatively higher doses and to establish whether any benefit of higher-dose ICS is a result of the systemically available fraction.