QUANTUM CODES FROM SUPERELLIPTIC CURVES

A. Elezi
Department of Mathematics and Statistics,
American University,
Washington DC, 20016, USA.
Email: aelezi@american.edu

T. Shaska
Department of Mathematics and Statistics,
Oakland University,
Rochester, MI, 48309, USA.
Email: shaska@oakland.edu

Abstract. Let X be an algebraic curve of genus $g \geq 2$ defined over a field F_q of characteristic $p > 0$. From X, under certain conditions, we can construct an algebraic geometry code C_X. When this code (or its dual) is self-orthogonal under the symplectic product, a quantum algebraic geometry code Q_X is constructed. In this paper we study the construction of such codes from curves with automorphisms and the relation between the automorphism group of the curve X and the codes C_X and Q_X.

1. Introduction

In recent years there is an increased interest on the use of algebraic geometry in the theory of quantum cryptography and quantum coding.

Let X denote a genus g irreducible, algebraic curve defined over a finite field F_q. Under certain conditions, starting with X one can construct an algebraic geometry code which we denote by C_X. If C_X (or its dual) is self-orthogonal under an appropriate symplectic form, then from C_X we can construct a quantum code Q_X, which will be called a QAG-code. In classical coding theory, AG-codes with a large group of automorphisms have good error-correcting properties. Under certain conditions the automorphism group of the curve is embedded in the automorphism group of the corresponding code. Hence, AG-codes which come from algebraic...
curves with a large group of automorphisms are interesting. Very little is known how the automorphism group of the quantum code \(Q_X \) relates to the automorphism group of \(X \) and \(C_X \).

In this paper we explain (a) how to construct quantum codes from algebraic geometry codes (quantum algebraic geometry codes), and (b) the relations between the automorphism group of the algebraic curve, the automorphism group of the AG-code, and the automorphism group of the corresponding quantum code.

It is interesting to note that our method of constructing QAG-codes is based on the existence of an automorphism of the curve \(X \). We focus on the algebraic curves with cyclic automorphism group, but other curves may be used as well. Hence, curves with non-trivial automorphism groups are interesting in this construction. In the last section we give a complete table of groups which occur as automorphism groups of curves of genus 3 and 4 over a field of characteristic 2.

Notation: Throughout this paper \(\mathbb{F}_q \) denotes a finite field of \(q \) elements where \(q \) is a prime power. The notation \([n, k, d]\) denotes a classical code of length \(n \), dimension \(k \), and minimum distance \(d \). \([n, k, d] \) will denote a quantum code of the same parameters. A cyclic group of order \(n \) is denoted by \(C_n \). In general, given a genus \(g \geq 2 \) algebraic curve \(X \) defined over \(\mathbb{F} \), the automorphism group of \(X \) is denoted by \(\text{Aut} (X) \) and is defined to be the group of automorphisms of \(X \) defined over the algebraic closure of \(\mathbb{F} \). The group of automorphisms defined over \(\mathbb{F} \) is denoted by \(\text{Aut}_\mathbb{F} (X) \).

The permutation automorphism group of the code \(C \subseteq \mathbb{F}_q^n \) is the subgroup of \(S_n \) (acting on \(\mathbb{F}_q^n \) by coordinate permutation) which preserves \(C \). We denote such group by \(\text{PAut} (C) \). The set of monomial matrices that map \(C \) to itself forms the monomial automorphism group, denoted by \(\text{MAut} (C) \). Every monomial matrix \(M \) can be written as \(M = DP \) where \(D \) is a diagonal matrix and \(P \) a permutation matrix. Let \(\gamma \) be a field automorphism of \(\mathbb{F}_q \) and \(M \) a monomial matrix. Denote by \(M_\gamma \) the map \(M_\gamma : C \to C \) such that \(\forall x \in C \) we have \(M_\gamma (x) = \gamma (Mx) \). The set of all maps \(M_\gamma \) forms the automorphism group of \(C \), denoted by \(\Gamma \text{Aut} (C) \).

2. Linear Codes, Algebraic Geometry Codes and Quantum Stabilizer Codes

2.1. Linear Codes.

A linear code \(C \) of length \(n \) and dimension \(k \) over a finite field \(\mathbb{F}_q \) is a \(k \)-dimensional subspace of \(V = \mathbb{F}_q^n \). A \(k \)-bit codeword of \(C \) is encoded into an \(n \)-bit word of \(V \) to protect the information and recover errors during transmission. The Hamming distance \(d \) of the linear code \(C \) is the minimum of the weights of the vectors in \(C \). Here the weight of a vector is the number of nonzero coordinates. Such a linear code is denoted by \([n, k, d]\). It detects up to \(d - 1 \) errors and corrects up to \((d - 1)/2 \) errors.

2.2. Algebraic geometry codes.

Let \(\mathcal{X} \) be a genus \(g \) algebraic curve defined over a finite field \(\mathbb{F}_q \) with characteristic \(p > 0 \) and \(\mathbb{F} = \mathbb{F}_q(\mathcal{X}) \) its function field. Let \(P_1, \ldots, P_n \) be places of degree one, \(D = P_1 + \cdots + P_n \) and \(G \) a divisor with \(\text{supp}(G) \cap \text{supp}(D) = \emptyset \). The following two algebraic geometry codes have been introduced by Goppa:
A) $C_L(D,G) := \{ (f(P_1), \ldots, f(P_n)) \mid f \in \mathcal{L}(G) \} \subseteq \mathbb{F}_q^n$. To compute its parameters consider the following evaluation map

$$\varphi : \mathcal{L}(G) \to \mathbb{F}_q^n$$

$$f \mapsto (f(P_1), \ldots, f(P_n)),$$

Since P_1, \ldots, P_n are places of degree one and $\text{supp}(G) \cap \text{supp}(D) = \emptyset$, φ is a well-defined map with kernel $L(G - D)$. Clearly

$$C_L(D,G) = \varphi(\mathcal{L}(G)),$$

a linear $[n, k, d]$ code with parameters

$$k = \dim G - \dim(G - D), \quad d \geq n - \deg G.$$

One can easily see that

1. If we assume $\deg G < n = \deg D$ then $\deg(G - D) < 0$ hence $\dim(G - D) = 0$. It follows that $\varphi : \mathcal{L}(G) \to C_L(D,G)$ is injective and $C_L(D,G)$ is an $[n, k, d]$ code with

 $$k = \dim G + 1 - g,$$

 $$d \geq n - \deg G.$$

2. If in addition $2g - 2 < \deg G < n$, then

 $$k = \deg G + 1 - g.$$

3. If (f_1, \ldots, f_k) is a basis of $\mathcal{L}(G)$, then

 $$M = \begin{pmatrix}
 f_1(P_1) & \cdots & f_1(P_n) \\
 \vdots & \ddots & \vdots \\
 f_k(P_1) & \cdots & f_k(P_n)
 \end{pmatrix}$$

 is a generator matrix for $C_L(D,G)$.

4. Let $\text{Aut}_{D,G}(\mathcal{X}) := \{ \sigma \in \text{Aut}(\mathcal{X}) \mid \sigma(D) = D \text{ and } \sigma(G) = G \}$. This group acts on $C_L(D,G)$ via

 $$\sigma(f(P_1) \ldots f(P_n)) = (f(\sigma(P_1)) \ldots f(\sigma(P_n))).$$

If $n > 2g + 2$, then this action is faithful.

B) The second algebraic geometry code $C_{\Omega}(D,G)$ is defined by

$$C_{\Omega}(D,G) := \{ (\text{res}_{P_1} \omega, \ldots, \text{res}_{P_n} \omega) \mid \omega \in \Omega_{F}(G - D) \} \subseteq \mathbb{F}_q^n.$$

The following result is well known:

Lemma 1. If D and G are as above then:

1. $C_L(D,G)^\perp = C_{\Omega}(D,G)$ under the standard pairing in \mathbb{F}_q^n.
2. Let η be any differential with $\nu_P(\eta) = -1$ for $i = 1, \ldots, n$. (Notice that by the approximation theorem such differentials exist.) Let $H = D + G + (\eta)$. Then $C_{\Omega}(D,G) = a \cdot C_L(D,H)$ where $a = (\text{res}_{P_1} \eta, \ldots, \text{res}_{P_n} \eta)$.
3. $C_L(D,G)^\perp = a \cdot C_L(D,H)$.

©2011 Albanian J. Math.
2.3. One point codes and their automorphism groups. Let D be a divisor as above, $P \not\in \text{sup}(D)$, and m an integer. The one point codes of level m are defined to be algebraic geometry codes of the form

$$C_L(D,mP)$$

\textbf{Definition 1.} A genus $g \geq 1$ curve \mathcal{X}/F_q is called \textbf{admissible} if it satisfies:

i) there exists a rational $g \geq 1$ curve P_∞ and two functions x, $y \in F(\mathcal{X})$ such that $(x)_\infty = kP_\infty$, $(y)_\infty = lP_\infty$, and $k \geq l$;

ii) for $m \geq 0$, the elements x^iy^j with $0 \leq i, 0 \leq j \leq k-1$, and $ki + lj \leq m$ form a basis of the space $L(mP_\infty)$.

\textbf{Lemma 2.} Let \mathcal{X}/F_q be an admissible curve over F_q of genus g where $l > k$. Assume that $m \geq 1$. If

$$n > \max\{2g + 2, 2m, k(l + \frac{k-1}{\beta}), lk(1 + \frac{k-1}{m-k+1})\},$$

where $n = |J|$, $\beta = \min\{k-1, r| y^r \in L(mP_\infty)\}$ then

$$\text{Aut}(C_L(D,mP_\infty)) \cong \text{Aut}_{D,mP_\infty}(\mathcal{X}).$$

\textbf{Proof.} See [16] for details.

\textbf{2.4. Quantum codes, stabilizer codes and connection with classical codes.} Let $q = p^m$ be a prime power and V_q a q-dimensional complex vector space. A q-\textbf{ary quantum code of length} n and \textbf{dimension} k is a k-dimensional subspace Q of $V := V_q^{\otimes n}$. V_q is the quantum counterpart of \mathbb{F}_q. Its elements are called quantum states. A codeword of k quantum states in Q is encoded into a word of n quantum states in V for protection and error correction.

A general quantum error of a q-ary quantum system is a linear transformation of the space V_q. Let e_1,e_2,\ldots,e_q be a basis for the space of quantum errors of such a system, where e_1 is the identity linear transformation. A quantum error of an n q-ary system is a linear transformation of V. A basis for the space of general quantum errors is formed by $E := \sigma_1 \otimes \sigma_2 \otimes \cdots \otimes \sigma_n$ with $\sigma_i \in \{e_1, e_2, \ldots, e_q\}$. Define the weight of such E as

$$\text{wt}(W) = |\{\sigma_i \neq e_1\}|.$$

Recall that if a code can correct a set of errors then it can correct their linear span.

For a quantum code Q, we let P be the projection $P : V \rightarrow Q$. It can be shown that a quantum error E is detectable iff

$$PEP = c_E P$$

for some scalar c_E. The minimum distance of a quantum code Q is the largest integer d such that every error of weight $d - 1$ can be detected by Q.

Stabilizer codes are a general class of quantum codes that can be constructed from classical codes. We review briefly this construction here, see [1] for more details.

First, we construct a special error basis. Let T, R be $p \times p$ matrices defined by $T_{i,j} = \delta_{i,j-1} (mod p)$ and $R_{i,j} = \omega^i \delta_{i,j}$ where ω is a p-th root of unity. For $a \in F_q$, let (a_1, \ldots, a_m) be the coordinates of a in some fixed basis of F_q as an F_p-vector space. Define

$$T_a := T^{a_1} \otimes \cdots \otimes T^{a_m}, \quad R_a := R^{a_1} \otimes \cdots \otimes R^{a_m}.$$
Finally, for \(a = (a_1, a_2, \ldots, a^n) \in F_q^n \) and \(b = (b_1, b_2, \ldots, b^n) \in F_q^n \), let
\[
E_{a,b} := T_{a_1} R_{b_1} \otimes \cdots \otimes T_{a_n} R_{b_n}.
\]

It is shown in [1] that \(E_{a,b} \) form a basis for quantum errors of an \(n \)-q-ary system.

Let \(S \) be an abelian subgroup of \(\Omega = \{ \omega^i E_{a,b}, i = 0, 1, \ldots, p-1; a, b \in F_q^n \} \) and \(\mu \) an \(S \) linear character that satisfies \(\mu(\omega I) = \omega \). The eigenspace \(Q_{S,\mu} \) of \(S \) associated with \(\mu \), i.e.
\[
Q_{S,\mu} := \{ v \in V : E(v) = \mu(E)v, \forall E \in S \},
\]
is called a quantum stabilizer code. If the order of \(S \) is \(p^{r+1} \), then the dimension of \(Q_{S,\mu} \) is \(p^{mn-r} \).

Quantum stabilizer codes constructed above are related to classical codes in \(F_q^{2n} \). First some preliminaries. Let \(tr: F_q \to F_p \) the trace map. Elements of \(F_q^{2n} \) will be denoted by \(v = (a, b) \) where \(a = (a_1, a_2, \ldots, a_n), b = (b_1, b_2, \ldots, b_n) \in F_q^n \). The (symplectic) weight of such an element is
\[
wt(v) = |\{ i : (a_i, b_i) \neq (0, 0) \}|.
\]

For \(x = (x_1, \ldots, x_n); y = (y_1, \ldots, y_n) \) we let
\[
\langle x, y \rangle := x_1 y_1 + \cdots + x_n y_n
\]
be the standard pairing in \(F_q^n \). Define two symplectic products on \(F_q^{2n} \) as follows:
\[
\langle (a, b), (a', b') \rangle_s := \langle a, b' \rangle - \langle a', b \rangle
\]
and
\[
tr_s((a, b), (a', b')) := tr(\langle a, b' \rangle - \langle a', b \rangle).
\]

The quantum stabilizer code \(Q_{S,\mu} \) yields a classical code \(C := \{ (a, b) : E_{a,b} \in S \} \subset F_q^{2n} \). It is a \(F_p \)-linear code of length \(2n \) and size \(p^r \). The commutativity of \(S \) implies that the code \(C \) is self-orthogonal relative to the symplectic product \(tr_s \), i.e. \(C \subset C^\perp \) where \(C^\perp \) be the dual of the code \(C \). The minimum distance of the quantum stabilizer code \(Q_{S,\mu} \) is related to the classical minimum distance of \(C^\perp \setminus C \). In fact, if \(S^{\perp} \), denotes the centralizer of \(S \), it is shown in [1] that an error \(E \) is detectable by \(Q_{S,\mu} \) iff \(E \in S^{\perp} \setminus S \). It follows that the minimum distance of \(Q_{S,\mu} \) is the \(\min \{ wt(v) : v \in C^\perp \setminus C \} \). It is clear that this process is reversible, i.e. a \(tr_s \) self-orthogonal code \(C \) in \(F_q^{2n} \) with \(p^r \) codewords determines a quantum stabilizer code \(Q \) of dimension \(p^{mn-r} \).

Remark: We note that if \(C \) is an \(F_q \)-linear code then the duals of \(C \) relative to the two symplectic forms are the same (this not true, however, for general \(F_p \)-linear codes.) From now on, we will be interested only in \(F_q \)-linear codes and the symplectic form \(\langle (a, b), (a', b') \rangle_s \). The dual of a linear code \(C \) relative to this symplectic form will be denoted by \(C^\perp \).

The following proposition will be used in constructing AG-quantum stabilizers codes from AG-classical self-orthogonal codes.

Proposition 1. Let \(C \subset F_q^{2n} \) be a \((n+k)\)-dimensional \(F_q \)-subspace such that such that \(C^\perp \subset C \) (i.e. \(C^\perp \) is self orthogonal). Then, there exist a quantum code \(Q \subset V \) of dimension \(q^k \) and minimum distance \(d = \min \{ wt(x) \mid x \in C \setminus C^\perp \} \).
Proof. The F_q-code $C_{\perp \eta}$ is self-orthogonal and has dimension $n - k$, so it has p^r codewords with $r = m(n - k)$. From the above construction we get a quantum stabilizer code of dimension $p^{rn - r} = p^{mn - m(n - k)} = p^{mk} = q^k$.

\[\square\]

Hence, in order to construct quantum AG-codes we need to construct self-orthogonal AG-codes.

3. QUANTUM ALGEBRAIC GEOMETRY CODES FROM ALGEBRAIC CURVES WITH AUTOMORPHISMS

We continue with the notation of the previous session; X is a genus g curve defined over a finite field \mathbb{F}_q and F is its function field. The following lemma is cited from [15, Prop. VII.1.2]. It allows for the construction of differentials with special properties that help to construct a self-orthogonal code.

Lemma 3. Let x and y be elements of F such that $v_{P_i}(y) = 1$, $v_{P_i}(x) = 0$ and $x(P_i) = 1$ for $i = 1, \ldots, n$. Then the differential $\eta := x \cdot \frac{dy}{y}$ satisfies $v_{P_i}(\eta) = -1$ and $\text{res}_{P_i}(\eta) = 1$ for $i = 1, \ldots, n$.

A quantum stabilizer code can be obtained from an algebraic geometric construction related to curves with an involution.

Theorem 1. Let X be a genus g irreducible algebraic curve defined over \mathbb{F}_q and P_1, \ldots, P_n degree one rational points on X. Let $\sigma \in \text{Aut}_Y(X)$ be an involution such that $\sigma P_i \neq P_j$, $\forall i, j = 1, \ldots, n$. Further assume that we have a divisor G such that $\sigma G = G$, $v_{P_i}(G) = v_{\sigma P_i}(G) = 0$ for all i. Then, there exists a quantum code $Q_X = [[n, k, d]]$ such that

$$k = \dim G - \dim (G - P_1 - \cdots - P_n - \sigma(P_1) - \cdots - \sigma(P_n)) - n, \quad d \geq n - \left\lfloor \frac{\deg G}{2} \right\rfloor$$

Proof. Let $D = P_1 + \cdots + P_n + \sigma P_1 + \cdots + \sigma P_n$. By the strong approximation theorem, there is a differential η such that

$$v_{P_i}(\eta) = v_{\sigma P_i}(\eta) = -1, \quad \text{res}_{P_i}(\eta) = 1, \quad \text{res}_{\sigma P_i}(\eta) = 1.$$

(2)

It follows that $H := D - G + (\eta) \leq G$. Consider the algebraic geometry code

$$C_L(D, G) = \{ (f(P_1), \ldots, f(P_n), f(\sigma P_1), \ldots, f(\sigma P_n)) \mid f \in L(G) \} \subseteq \mathbb{F}_q^{2n}.$$

One can easily see that

$$(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{2n}) \in C_L(D, G) \iff (x_{n+1}, \ldots, x_{2n}, x_1, \ldots, x_n) \in C_L(D, G),$$

which implies that $C_L(D, G)^{\perp_\eta} = C_L(D, H)$.

Notice that $L(H) \subset L(G)$ since $H \leq G$. It follows that $C(D, G)^{\perp_\eta} = C(D, H) \subset C(D, G)$. Now apply the last proposition with $k = \dim C(D, G) - n$.

To show the inequality of the distance, let $f \in L(G)$ such that

$$\text{wt} \ (f(P_1), \ldots, f(\sigma P_n)) = \delta \neq 0.$$
Hence, there exists a set of \(n - \delta \) pairs \((f(P_j), f(\sigma P_j)), j = 1, 2, \ldots, n - \delta\) which are all zero. Thus, we have \(f \in \mathcal{L}\left(G - \sum_{j=1}^{n-\delta}(P_j + \sigma P_j)\right)\). Hence

\[
\dim \mathcal{L}\left(G - \sum_{j=1}^{n-\delta}(P_j + \sigma P_j)\right) > 0,
\]

which implies the result.

From this theorem we see that curves with an involution and many rational points are useful in generating quantum codes. These are also the typical curves used in constructing AG-codes. Clearly hyperelliptic curves have an involution but there are others. It is however unknown how the choice of the involution affects the parameters of the code - this remains an open question.

Curves which have a cyclic group embedded in their automorphism group may also be used to produce quantum stabilizer codes. We deal with them in the next section.

3.1. **Quantum codes from superelliptic curves.** A genus \(g \geq 2 \) superelliptic curve of level \(n \) is given by an equation of the form \(y^n = f(x) \) for some degree \(d > 4 \) polynomial \(f(x) \) and \(n \geq 2 \). Let us assume that

\[
y^n = f(x) = \prod_{i=1}^{s}(x - \alpha_i)^{d_i}, \quad 0 < d_i < d.
\]

Then, \(\sum_{i=1}^{s}d_i = d \). We call this the **standard form** of the superelliptic curve. Superelliptic curves of level \(n \) are studied in detail in [2]. They are interesting from the point of view of this article because they have extra automorphisms and we can determine their automorphism groups and their equations; see [7, 8]

Let \(k \) be an algebraic closed field of characteristic \(p \geq 0 \). Let \(F_0 = k(x) \) be the function field of the projective line \(\mathbb{P}^1(k) \) and \(F := k(x,y) \). If \(d := \sum_{i=1}^{s}d_i \equiv 0 \mod n \) then the place at infinity does not ramify at the above extension. The only places at \(F_0 \) that are ramified are the places \(P_i \) that correspond to the points \(x = \alpha_i \) and the corresponding ramification indices are given by

\[
e_i = \frac{n}{(n,d_i)}.
\]

Moreover if \((n,d_i) = 1 \) then the places \(P_i \) are ramified completely and the Riemann-Hurwitz formula implies that the function field \(F \) has genus

\[
g = \frac{(n-1)(s-2)}{2}.
\]

Notice that the condition \(g \geq 2 \) is equivalent to \(s \geq 2 \frac{n+1}{n-1} \). In particular, \(s > 2 \).

For the proof of the following Lemmas see [2].

Lemma 4. Let \(G = \text{Aut}(F) \). Suppose that a cyclic extension \(F/F_0 \) of the rational function field \(F_0 \) is ramified completely at \(s \) places and \(n := |\text{Gal}(F/F_0)| \). If \(2n < s \) then \(\text{Gal}(F/F_0) \triangleleft G \).
Lemma 5. Suppose that τ is an extra automorphism of F, and let s be the number of ramified places at the extension F/F_0 and let d be the degree of the defining polynomial. Then $\delta|s,\delta|d$ and the defining equation of F can be written as

$$y^n = \sum_{i=0}^{d/\delta} a_i x^{\delta i},$$

where $a_0 = 1$.

We will say that the superelliptic curve is in normal form if and only if it is given by an equation:

$$y^n = x^s + \sum_{i=1}^{\frac{d}{\delta}} a_i x^{\delta i} + 1.$$

Parametrizing superelliptic curves that admit an extra automorphism of order δ, is the set of coefficients $\{a_{s/\delta-1}, \cdots, a_1\}$ of a normal form up to a change of coordinate in x. The condition $\tau(x) = \zeta x$, implies that $\bar{\tau}$ fixes the places $0, \infty$. Moreover we can change the defining equation by a morphism $\gamma \in \text{PGL}(2,k)$ of the form $\gamma : x \rightarrow mx$ or $\gamma : x \rightarrow \frac{mx}{1}$ so that the new equation is again in normal form. Substituting $a_0 = (-1)^{d/s} \prod_{i=1}^{s/\delta} \beta_i^{\delta}$ we have

$$(-1)^{s/\delta} \prod_{i=1}^{s/\delta} \gamma(\beta_i)^\delta = 1$$

and this gives $m^s = (-1)^{s/\delta}$. Then, x is determined up to a coordinate change by the subgroup $D_{s/\delta}$ generated by

$$\tau_1 : x \rightarrow \epsilon x, \tau_2 : x \rightarrow \frac{1}{x}$$

where ϵ is a primitive s/δ-root of one, see [2] for details.

The action of $D_{s/\delta}$ on the parameter space $k(a_1, \ldots, a_{s/\delta})$ is given by

$$\tau_1 : a_i \rightarrow \epsilon^{\delta i} a_i, \text{ for } i = 1, \ldots s/\delta$$

$$\tau_2 : a_i \rightarrow a_{d/\delta-i}, \text{ for } i = 1, \ldots [s/\delta]$$

Notice that if $s/\delta = 1$ then the above actions are trivial, therefore the normal form determines the equivalence class. If $s/\delta = 2$ then

$$\tau_1(a_1) = -a_1, \tau_1(a_2) = a_2, \tau_2 = 1$$

and the action is not dihedral but cyclic on the first vector.

Lemma 6. Let $r := s/\delta > 2$ The elements

$$s_i := a_{r-i}^{-1} a_1 + a_{r-i}^{r-i} a_{r-i}, \text{ for } i = 1, \ldots, r$$

are invariants under the action of the group $D_{s/\delta}$ defined as above.

See [2] for details. The elements s_i are called the dihedral invariants or s-invariants of $D_{s/\delta}$. Two superelliptic curves are isomorphic if and only if they have the same s-invariants.

Let X be a genus g superelliptic curve of level $r > 2$ and σ the automorphism of order r of X. The corresponding projection $\psi_\sigma : X \rightarrow \mathbb{P}^1$ has d branch points. Let \mathcal{B} be the branch set. For a given rational point $P \in X$ we define $\text{Orb}_\sigma(P) = \{\sigma(P) \in X\}$. If $\psi(P) \notin \mathcal{B}$ then $|\text{Orb}_\sigma(P)| = r$.

©2011 Albanian J. Math.
Let \(P_1, \ldots, P_n \) rational points on \(X \) such that \(\psi(P_i) \notin B \) for all \(i = 1, \ldots, n \) and let
\[
D = \sum_{i=1}^{n} (P_i + \sigma(P_i) + \cdots + \sigma^{r-1}(P_i)) = \sum_{i=1}^{n} \text{Orb}(P_i)
\]
Then \(\deg D = rn \). For some \(P \in X \) such that \(\psi(P) \in B \) we define \(G = mP \) for some integer \(m \). Then \(\sigma(G) = G \). We can take infinity to be one of the branch points in \(B \). In that case the point \(P \) in the fiber is denoted by \(P_\infty \). It is common in coding theory to take \(G = mP_\infty \).

Again we work with \(C_X = C_L(G, D) \). The proof of the following theorem should go through like in Thm. 1.

Theorem 2. Let \(X \) be an algebraic curve defined over a field \(\mathbb{F}_q \) of characteristic \(p > 0 \) such that \(C_r = \langle \sigma \rangle \hookrightarrow \text{Aut}(X) \). Let \(P_1, \ldots, P_n \) rational points on \(X \) such that \(|\text{Orb}_r(P_i)| = r \) and \(\text{Orb}_r(P_i) \cap \text{Orb}_r(P_j) = \emptyset \) for all \(i, j \). Further assume that we have a divisor \(G \) such that \(\sigma G = G \), \(v_{P_i}(G) = v_{\sigma P_i}(G) = 0 \) for all \(i \). Then, there exists a quantum code \(Q_X = [[nr, k, d]] \) such that
\[
k = \dim G - \dim(G - D) - nr, \quad d \geq nr - \left\lfloor \frac{\deg G}{2} \right\rfloor
\]

As in the case of curves with involutions, it is unclear how the cyclic group or the automorphism group of the curve affects the parameters of the quantum code. This remains an open question.

Example 1. Let \(X \) be the curve
\[
y^3 - y = x^4
\]
defined over \(\mathbb{F}_q \). For characteristic \(p > 7 \), \(\text{Aut}(X) \) is a group of order 96 with Gap identity (96, 64). Denote the set of affine rational points of \(X \) over \(\mathbb{F}_q \) by \(\{P_1, \ldots, P_n\} \). Let \(C = C_L(D, G) \), where \(n + 1 \) is the number of rational points of \(X \) and
\[
G = mP_\infty, \quad D = P_1 + \cdots + P_n
\]
The permutation automorphism group \(\text{PAut}(C) \) is as follows:

i) If \(0 \leq m < 3 \) or \(m > n + 4 \) then \(\text{PAut}(C) \cong S_n \).

ii) If \(n > 24 \) and \(4 \leq m < n/2 \) then \(\text{PAut}(C) \cong \text{Aut}_{D, mP_\infty}(X) \).

For a proof of the above statements see [11].

Let \(X \) be defined over \(F_4 \). Take \(m = 6 \). By computation using GAP, we find that \(C_L(D, G) \) is a \([4, 4, 1]\) code with a generator matrix
\[
\begin{pmatrix}
\alpha & \alpha^2 & 0 & 0 \\
\alpha^2 & \alpha & 0 & 0 \\
\alpha & \alpha^2 & 1 & 0 \\
1 & 1 & 1 & 1
\end{pmatrix},
\]
where \(\alpha \) is a primitive element of \(F_4 \). The permutation automorphism group is isomorphic to the group with GAP identity \([24, 12]\). In this case
\[
\text{PAut}(C) \hookrightarrow \text{Aut}(X).
\]
This code is clearly an MDS code. The automorphism group \(\Gamma\text{Aut}(C) \) has Gap identity \([1944, 3876]\). One can check that this code is self-orthogonal with respect
to the inner product, hence there is a quantum code Q which has parameters $[[4, 4]]$. Its automorphism group has order 31104 and is a degree 2 extension of $\Gamma \text{Aut} (C)$.

In the next section we see how the hyperelliptic involution can be used to construct quantum algebraic geometry codes. However, other involutions can be used as well.

4. Hyperelliptic Quantum Codes

The goal of this section is to construct quantum stabilizer codes starting with AG-codes which come from hyperelliptic curves. We focus on odd characteristic. Let X_g a genus g hyperelliptic curve given by the equation $y^2 = f(x)$, $F := K(x, y)$ its function field and σ the hyperelliptic involution of X_g. Then F has a set of rational places which are not fixed by the hyperelliptic involution. Choose a set of distinct places in $F \{ P_1, \ldots, P_n, \sigma(P_1), \ldots, \sigma(P_n) \}$, such that $\pi(P_i) = \alpha_i$, where π is the hyperelliptic projection.

Let P_∞ denote the place at infinity and $D, G \in \text{Jac}(X_g)$ be as follows

\[D := \sum_{i=1}^{n} P_i + \sum_{i=1}^{n} \sigma(P_i) \quad \text{and} \quad G := (n + g - 1 - r)P_\infty, \]

where $0 \leq r \leq n - g$. Then D has degree $2n$. By the Riemann’s theorem there exists $\eta \in F$ such that

\[\eta = \frac{1}{y \prod_{i=1}^{n}(x - \alpha_i)} \text{d}x \]

Hence, $(\eta) = (2n + 2g - 2)P_\infty - D$. We denote

\[W := (\eta) = (2n + 2g - 2)P_\infty - D, \quad \text{and} \quad H := D - G + W. \]

Then W is a canonical divisor. and the residues of η at the places P_1, \ldots, P_n, $\sigma(P_1), \ldots, \sigma(P_n)$ satisfy

\[a_i := \text{res}_{P_i}(\eta) = -\text{res}_{\sigma(P_i)}(\eta). \]

for $i = 1, \ldots, n$.

Now we can construct algebraic geometry codes $C_L(D, G)$ and $C_L(D, H)$. The weighted symplectic inner product is defined as below

\[\langle x, y \rangle^a_s = \sum_{i=0}^{C} 4na_i (x_iy_{n+i} - x_{n+i}y_i). \]

for all $x, y \in C$ and all $a_i \neq 0$.

Lemma 7. Let $C_L(D, G)$ and $C_L(D, H)$ be as above. Then

\[C_L(D, G)^{+, -} = C_L(D, H) \cdot \text{diag}(a_1, \ldots, a_n, 1, \ldots, 1) \]

Moreover, $C_L(D, G) \subseteq C_L(D, G)^{+, -}$ with respect to the symplectic inner product $\langle \cdot, \cdot \rangle^a_s$.

©2011 Albanian J. Math.
Elezi, Shaska Quantum codes from superelliptic curves

We transform $C_L(D,G)\to C'_L(D,G)$ which has the same parameters as $C_L(G,D)$ and is self-orthogonal with respect to the standard symplectic inner product by multiplying each component x_i of every codeword by the corresponding a_i, for $1 \leq i \leq n$.

Then, we have the following:

Proposition 2. $C'_L(D,G)$ yields a stabilizer code with parameters $[[n, k, d]]$, where $k = g + r - 1$ and $d \geq \frac{n-k}{2}$.

4.1. **Explicit construction of quantum AG-codes.** Here is an algorithm which would create a hyperelliptic quantum code.

Algorithm 1. Hyperelliptic quantum codes

Input: A genus g hyperelliptic curve over a finite field \mathbb{F}_q.

Output: A quantum code Q

i) Find all rational places of degree 1 of X_g which are not fixed by the hyperelliptic involution, say $S = \{P_1, \ldots, P_n, \sigma(P_1), \ldots, \sigma(P_n)\}$.

ii) Let

\[
D := \sum_{P \in S} (P + \sigma(P)) \\
G := (n + g - 1 - r)P_\infty \\
(\eta) := -D + (2n + 2g - 2)P_\infty
\]

iii) Create a list $A = [a_1, \ldots, a_n]$, where

\[
a_i := res_{P_1}(\eta) = -res_{\sigma(P_1)}(\eta)
\]

iv) Construct the AG code $C = L(D,G)$ and let the generator matrix of C, to be G.

v) Transform C to a self-orthogonal symplectic code Q by multiplying each coordinate x_i by a_i,

\[
(\ldots, x_i, \ldots) \to (\ldots, a_i x_i, \ldots)
\]

vi) Return Q.

5. **Automorphism groups**

In this section we give a brief survey of automorphism groups of curves over finite fields, automorphism groups of codes, and automorphism groups of quantum codes.

5.1. **Automorphism groups of curves.** It has been known since Hurwitz (1892) that a Riemann surface of genus $g > 1$ has at most $84(g - 1)$ automorphisms. This estimate is optimal; there are Riemann surfaces of arbitrarily high genus with $84(g - 1)$ automorphisms (Hurwitz’ bound in characteristic 0), the Klein curve
Quantum codes from superelliptic curves

Elezi, Shaska

most notable of them. The Hurwitz estimate is not valid in prime characteristic. Roquette (1970) found that the estimate
\[|G| \leq 84(g - 1), \]
on the order of the automorphism group \(G \), holds under the additional assumption \(p > g + 1 \), with one exception: the function field \(F = K(x, y) \) with \(y^p - y = x^2 \) has genus \(g = \frac{1}{2}(p - 1) \) and \(8g(g + 1)(2g + 1) \) automorphisms. Stichtenoth (1973) gives a general estimate for the number of automorphisms of a smooth projective curve in characteristic \(p > 0 \). He proves the inequality
\[|G| < 16 \cdot g^4, \]
but also with one series of exceptions: the function field \(F = K(x, y) \) with
\[y^p^n + y = x^{p^n+1} \]
has genus \(g = \frac{1}{2}p^n(p^n - 1) \) and \(|G| = p^{3n}(p^{3n} + 1)(p^{2n} - 1) \) automorphisms, so \(|G| \) is in this case slightly larger than \(16g^4 \).

Let \(X \) denote a smooth, genus \(g \) algebraic curve defined over \(k \), char \(k = p > 0 \). A theorem of Blichfeld on invariants (in char 0) of subgroups of \(PGL_n(k) \) implies that the genus \(g \) curve lifts to characteristic 0 for \(p > 2g + 1 \); see [4, pg. 236-254]. Hence, for large enough \(p \) (i.e., \(p > 2g + 1 \)) methods described in [7] can be used to determine such groups. Thus, to determine the list of groups that occur as automorphism groups of genus \(g \) curves we have to classify the groups that occur for all primes \(p \leq 2g + 1 \).

5.1.1. Automorphism groups of superelliptic curves. The automorphism groups of superelliptic curves for every characteristic \(p \neq 2 \) were determined in [8]. For genus 3 and 4 the following theorem are simply an application of Sanjeewa’s results.

Lemma 8. Let \(X_g \) be a genus 3 superelliptic curve defined over a field of characteristic \(p \). Then the automorphism groups of \(X_g \) are as follows.

i): \(p = 0 \) : \((2, 1), (4, 2), (3, 1), (4, 1), (8, 2), (8, 3), (7, 1), (21, 1), (14, 2), (6, 2), (12, 2), (9, 1), (8, 1), (8, 5), (16, 11), (16, 10), (32, 9), (30, 2), (42, 3), (12, 4), (16, 7), (24, 5), (18, 3), (16, 8), (48, 33), (48, 48).

ii): \(p = 3 \) : \((2, 1), (4, 2), (3, 1), (4, 1), (8, 2), (8, 3), (7, 1), (14, 2), (6, 2), (8, 1), (8, 5), (16, 11), (16, 10), (32, 9), (30, 2), (16, 7), (16, 8), (6, 2).

iii): \(p = 5 \) : \((2, 1), (4, 2), (3, 1), (4, 1), (8, 2), (8, 3), (7, 1), (21, 1), (14, 2), (6, 2), (12, 2), (9, 1), (8, 1), (8, 5), (16, 11), (16, 10), (32, 9), (42, 3), (12, 4), (16, 7), (24, 5), (18, 3), (16, 8), (48, 33), (48, 48).

iv): \(p = 7 \) : \((2, 1), (4, 2), (3, 1), (4, 1), (8, 2), (8, 3), (7, 1), (21, 1), (6, 2), (12, 2), (9, 1), (8, 1), (8, 5), (16, 11), (16, 10), (32, 9), (42, 3), (12, 4), (16, 7), (24, 5), (18, 3), (16, 8), (48, 33), (48, 48).

v): \(p > 7 \) : \((2, 1), (4, 2), (3, 1), (4, 1), (8, 2), (8, 3), (7, 1), (21, 1), (14, 2), (6, 2), (12, 2), (9, 1), (8, 1), (8, 5), (16, 11), (16, 10), (32, 9), (30, 2), (42, 3), (12, 4), (16, 7), (24, 5), (18, 3), (16, 8), (48, 33), (48, 48).

We obtain the following groups as automorphism groups of a genus 4 cyclic curve defined over algebraically closed field of characteristic 0,3,5,7 and bigger than 7. We listed GAP group ID of those groups in following theorem.

Lemma 9. Let \(X_g \) be a genus 4 superelliptic curve defined over a field of characteristic \(p \). Then the automorphism groups of \(X_g \) are as follows.
i): $p = 0$: $(2, 1), (4, 2), (3, 1), (6, 2), (9, 2), (5, 1), (10, 2), (20, 1), (9, 1), (27, 4), (18, 2), (15, 1), (4, 1), (20, 4), (18, 3), (8, 3), (40, 8), (12, 5), (36, 12), (54, 4), (16, 7), (20, 5), (32, 19), (24, 10), (8, 4), (60, 9), (36, 11), (24, 3), (72, 42).

ii): $p = 3$: $(2, 1), (4, 2), (3, 1), (6, 2), (5, 1), (10, 2), (20, 1), (9, 1), (18, 2), (15, 1), (4, 1), (20, 4), (8, 3), (40, 8), (12, 5), (16, 7), (20, 5), (32, 19), (24, 10), (8, 4), (9, 2), (18, 5).

iii): $p = 5$: $(2, 1), (4, 2), (3, 1), (6, 2), (9, 2), (5, 1), (10, 2), (20, 1), (9, 1), (27, 4), (18, 2), (4, 1), (18, 3), (8, 3), (36, 12), (54, 4), (16, 7), (20, 5), (32, 19), (24, 10), (8, 4), (60, 9), (36, 11), (24, 3), (72, 42), (10, 2), (18, 5).

iv): $p = 7$: $(2, 1), (4, 2), (3, 1), (6, 2), (9, 2), (5, 1), (10, 2), (20, 1), (9, 1), (27, 4), (18, 2), (15, 1), (4, 1), (20, 4), (18, 3), (8, 3), (40, 8), (12, 5), (36, 12), (54, 4), (16, 7), (20, 5), (32, 19), (24, 10), (8, 4), (60, 9), (36, 11), (24, 3), (72, 42).

v): $p > 7$: $(2, 1), (4, 2), (3, 1), (6, 2), (9, 2), (5, 1), (10, 2), (20, 1), (9, 1), (27, 4), (18, 2), (15, 1), (4, 1), (20, 4), (18, 3), (8, 3), (40, 8), (12, 5), (36, 12), (54, 4), (16, 7), (20, 5), (32, 19), (24, 10), (8, 4), (60, 9), (36, 11), (24, 3), (72, 42).

Remark 1. Note that these lists contain all groups and not just the full automorphism groups.

5.1.2. **Automorphisms groups over finite fields of characteristic 2.** Let C be a hyperelliptic curve of genus g over an algebraically closed field K of characteristic 2. We use an Artin-Schreier generation $y^2 + y = g(x)$ such that $g(x) \in K(x)$. We can find a rational function $h(x) \in K(x)$ such that the rational function $g(x) + h(x) + h(x)^2$ has no poles of even order. Let $f(x) := g(x) + h(x) + h(x)^2$ and use the normalized form $y^2 + y = f(x)$. Then, y is unique up to transformations of the form $y \mapsto y + B(x)$, where $B(x)$ is a rational function of x.

Let $\Omega_{n_a}(a)$ be the polar divisor of $f(x)$ on the projective line, \mathbb{P}^1. C is ramified at each a and if P_a is the unique point of C over a then the curve $y^2 + y = f(x)$ has the different

$$Diff(C/\mathbb{P}^1) = \Sigma(n_a + 1)P_a$$

where the n_a are odd ([14], Prop III.7.8)

$$2g - 2 = -2[F : K(x)] + deg(Diff(C/\mathbb{P}^1)) \implies deg(Diff(C/\mathbb{P}^1)) = 2g + 2$$

Take two hyperelliptic curves, $C: y^2 + y = f(x)$ and $C': y^2 + y = h(x)$. Then there are finite morphisms $f_1 : C \longrightarrow \mathbb{P}^1$, and $f_2 : C' \longrightarrow \mathbb{P}^1$ of degree 2, and there exists a unique automorphism σ of \mathbb{P}^1 such that $f_2 = \sigma \circ f_1$. Any isomorphism between these curves has the form

$$(x, y) \mapsto \left(\frac{ax + b}{cx + d}, y + B(x)\right)$$

for some $B(x) \in K(x)$. Hence, these curves are isomorphic if and only if

$$h(x) = f(\frac{ax + b}{cx + d}) + s(x) + s(x)^2$$

for some $s(x) \in K(x)$. The ramification types determine the isomorphism classes of the hyperelliptic curves. The solutions of the equation $\Sigma(n_a + 1) = 2g + 2$ in the
unknown odd positive integers give us the following ramification types:

\[(1, 1, 1, 1), (3, 1, 1), (3, 3), (5, 1), (7) \quad \text{for genus 3}\]

\[(1, 1, 1, 1), (3, 1, 1, 1), (3, 3, 1), (5, 1, 1), (5, 3), (7, 1), (9) \quad \text{for genus 4}\]

Therefore we get the following normal forms for genus 3 and 4 respectively.

\[y^2 + y = \begin{cases}
\alpha_1 x + \alpha_2 x^{-1} + \alpha_3 (x - 1)^{-1} + \alpha_4 (x - \lambda)^{-1} \\
x^3 + \alpha x + \beta x^{-1} + \gamma (x - 1)^{-1} \\
x^3 + \alpha x + \beta x^{-3} + \gamma x^{-1} \\
x^5 + \alpha x^3 + \beta x^{-1} \\
x^7 + \alpha x^5 + \beta x^3
\end{cases}\]

\[y^2 + y = \begin{cases}
\alpha_1 x + \alpha_2 x^{-1} + \alpha_3 (x - 1)^{-1} + \alpha_4 (x - \lambda)^{-1} + \alpha_5 (x - \mu)^{-1} \\
x^3 + \alpha x + \beta_1 x^{-1} + \beta_2 (x - 1)^{-1} + \beta_3 (x - \lambda)^{-1} \\
x^3 + \alpha x + \beta_1 x^{-3} + \gamma x^{-1} + \sigma (x - 1)^{-1} \\
x^5 + \alpha x^3 + \beta_3 x^{-3} + \gamma x^{-1} \\
x^7 + \alpha x^5 + \beta_3 x^3 + \gamma x^{-1} \\
x^9 + \alpha x^7 + \alpha x^5 + \alpha_3 x^3
\end{cases}\]

These are plane curves given in inhomogeneous form, birational to the given nonsingular curves (i.e. the function fields are isomorphic). We will use the above normal forms to determine \(\bar{G}\), the reduced group of automorphisms, namely the quotient of the group of automorphisms, \(G\) by \(\langle \iota \rangle\) which is contained in the center of \(G\). And then we will compute \(G\).

Proposition 3. Let \(C\) be a genus \(g\) hyperelliptic curve defined over an algebraically closed field \(K\) of characteristic 2.

i) If \(g = 3\) then the automorphism group of \(C\) is one of the following: \(C_2\), \(C_4\), \(V_4\), \(C_2 \times C_2 \times C_2\), \(C_6\), \(C_{14}\), \(D_{12}\).

ii) If \(g = 4\) then the automorphism group of \(C\) is one of the following: \(C_2\), \(V_4\), \(C_4\), \(C_2 \times C_2 \times C_2\), \(C_6\), \(C_{18}\), \(D_{20}\).

Proof. See [3] for details.

Furthermore, the parametric equation of the curve in each case is given by equation in Table 1. Determining complete lists of full automorphism groups for a given genus \(g > 3\) is still an open problem with many applications in theoretical mathematics, computer science, and electrical engineering.

5.2. Automorphism groups of codes.

The permutation automorphism group of the code \(C \subseteq \mathbb{F}_q^n\) is the subgroup of \(S_n\) (acting on \(\mathbb{F}_q^n\) by coordinate permutation) which preserves \(C\). We denote such group by \(\text{PAut}(C)\). The set of monomial matrices that map \(C\) to itself forms the monomial automorphism group, denoted by \(\text{MAut}(C)\). Every monomial matrix \(M\) can be written as \(M = DP\) where \(D\) is a diagonal matrix and \(P\) a permutation matrix. Let \(\gamma\) be a field automorphism of \(\mathbb{F}_q\) and \(M\) a monomial matrix. Denote by \(M_{\gamma}\) the map \(M_{\gamma}: C \rightarrow C\) such that \(\forall x \in C\) we have \(M_{\gamma}(x) = \gamma(Mx)\). The set of all maps \(M_{\gamma}\) forms the automorphism group of \(C\), denoted by \(\Gamma\text{Aut}(C)\). It is well known that

\[\text{PAut}(C) \leq \text{MAut}(C) \leq \Gamma\text{Aut}(C)\]
Curve	Condition	G	
$g=3$	$y^2 + y = \alpha_1 x + \alpha_2 x^{-1} + \alpha_3 (x - 1)^{-1} + \alpha_4 (x - \lambda)^{-1}$	$\alpha_1 = \alpha_2 \lambda^{-1}, \alpha_3 = \alpha_4 \lambda^{-1}, \alpha_1 \neq \alpha_3 \lambda$	V_4
		$\alpha_1 = \alpha_3 \lambda, \alpha_2 = \alpha_4 \lambda, \alpha_1 \neq \alpha_3 \lambda^{-1}$	V_4
		$\alpha_1 = \alpha_4, \alpha_2 = \alpha_3 \lambda^2, \alpha_1 \neq \alpha_2 \lambda^{-1}$	V_4
		$\alpha_1 = \alpha_2 \lambda^{-1}, \alpha_3 = \alpha_4 \lambda^{-1}, \alpha_1 = \alpha_3 \lambda$	C_2^*
	$y^2 + y = x^3 + \alpha x + \beta x^{-1} + \gamma (x - 1)^{-1}$	$\alpha \neq 0$, or $\beta \neq \gamma$	C_2
		$\alpha = 0$, and $\beta = \gamma$	V_4
	$y^2 + y = x^3 + \alpha x + x^{-3} + \beta x^{-1}$	none	C_6
		$\beta \neq 1, \alpha = \gamma = 0$	C_6
		$\beta = 1, \alpha = \gamma \neq 0$	V_4
		$\beta = 1, \alpha = \gamma \neq 0$	V_4
		$\beta = 1, \alpha = \gamma \neq 0$	D_{12}
	$y^2 + y = x^3 + \alpha x^3 + \beta x^{-1}$	none	C_2
	$y^2 + y = x^3 + \alpha x^3 + \beta x^4$	$\alpha = \beta = 0$	C_{14}
		$\alpha = 0, \beta \neq 0$	C_2
		$\alpha \neq 0, \beta = c_3 = 0$	C_2
		$\alpha \neq 0, \beta = 0, c_3 \neq 0$	C_{14}
		$\alpha \neq 0, \beta \neq 0, c_3 = 0$	C_2
		$\alpha \neq 0, \beta \neq 0, c_3 \neq 0$	C_{14}
$g=4$	$y^2 + y = \alpha_1 x + \alpha_2 x^{-1} + \alpha_3 (x - 1)^{-1} + \alpha_4 (x - \lambda_1)^{-1} + \alpha_5 (x - \lambda_2)^{-1}$	$\alpha_2 = \alpha_3, \alpha_4 = \alpha_5, \alpha_2 \neq \alpha_4$	V_4
		$\alpha_2 = \alpha_4, \alpha_3 = \alpha_5, \alpha_2 \neq \alpha_3$	V_4
		$\alpha_2 = \alpha_5, \alpha_3 = \alpha_4, \alpha_2 \neq \alpha_3$	V_4
		$\alpha_2 = \alpha_3 = \alpha_4 = \alpha_5$	C_2^*
		$\alpha_1 = \alpha_2 = \alpha_3 \lambda = \alpha_4 \lambda = \alpha_5$	D_{20}
		$\alpha_1 = \alpha_2 = \alpha_3 \lambda^{-1} = \alpha_4 = \alpha_5 \lambda^{-1}$	D_{20}
	$y^2 + y = x^3 + \alpha x + \beta_1 x^{-1} + \beta_2 (x - 1)^{-1} + \beta_3 (x - \lambda)^{-1}$	$\alpha \neq 0$	C_2
		$\alpha = 0, \beta = \gamma, \gamma = \sigma \lambda, \sigma = \beta \lambda$	C_6
	$y^2 + y = x^3 + \alpha x + x^{-3} + \beta x^{-1} + \gamma (x - 1)^{-1}$	none	C_2
		$\beta = 1, \alpha = \gamma$	V_4
	$y^2 + y = x^3 + \alpha x^3 + \beta x^{-1} + \gamma (x - 1)^{-1}$	$\alpha \neq 0, \text{or } 1$	C_2
		$\alpha = 0$	V_4
		$\alpha = 1$	C_4
	$y^2 + y = x^3 + \alpha x^3 + x^{-3} + \beta x^{-1}$	none	C_2
	$y^2 + y = x^3 + \alpha x^3 + \beta x^3 + \gamma x^{-1}$	none	C_2
	$y^2 + y = x^3 + \alpha_1 x^3 + \alpha_2 x^3 + \alpha_3 x^3$	$\alpha_1 \neq 0$	C_2
		$\alpha_1 = 0$	C_{18}

Table 1. Automorphism groups of hyperelliptic curves of genus 3 and 4 over fields of characteristic 2
Recall that for binary codes $\text{PAut} (C) = \text{MAut} (C) = \Gamma \text{Aut} (C)$, which we simply denote by $\text{Aut} (C)$. If the code C is defined over a prime field then $\text{MAut} (C) = \Gamma \text{Aut} (C)$. Two codes C and C' are called permutation equivalent, monomially equivalent, or equivalent if there is an element σ in the respective automorphism group such that $\sigma (C) = C'$. In classical coding theory these automorphism groups of codes play an important role in classifying codes. There is a weight preserving linear transformation between $[n, k]$ codes C and C' over \mathbb{F}_q if and only if C and C' are monomially equivalent. Furthermore, the linear transformation agrees with the associated monomial transformation on every codeword in C; see [?, Thm. 7.9.4].

If \mathcal{X} is a genus $g \geq 2$ algebraic curve defined over \mathbb{F}_q then $\text{Aut} (\mathcal{X})$ the group of automorphisms of \mathcal{X} over the algebraic closure of \mathbb{F}_q. There have been many papers studying the relation between the automorphism group of the algebraic curve \mathcal{X} and the automorphism groups as defined above of the corresponding AG-code $C_\mathcal{X}$; see [11] among others. Let us assume that $C_\mathcal{X}$ is a self-orthogonal code such that we can construct a quantum code $Q_\mathcal{X}$ as in the previous section. If Q is a symplectic quantum code then the group of equivalences of the code is the complex Clifford group.

5.3. Some computational remarks on the automorphism groups of codes.

In this section we want to make a few remarks on the efficiency of computing the automorphism group of a given code. There are several open questions related to automorphism groups of algebraic curves, AG-codes, and naturally quantum codes. We suggest some problems and point some inefficiencies on some existing programs.

Problem 1. Let \mathcal{X} be a genus g curve defined over a finite field \mathbb{F}_q. Determine the list of groups that occur as full groups of automorphisms of \mathcal{X} over the algebraic closure of \mathbb{F}_q.

Problem 2. Let \mathcal{X} be a genus g curve defined over a finite field \mathbb{F}_q. Design and implement a program that computes the automorphism group of \mathcal{X} over \mathbb{F}_q.

Let $C_\mathcal{X}$ and $Q_\mathcal{X}$ be the codes constructed as in sections 2 and 3. In GAP, the package GUAVA which is specifically written for coding theory, creates such codes (with some simple implementations of our algorithms) and computes groups of such codes using an algorithm of Leon. Similar capabilities are available also in Magma. Both MAGMA and GAP come short when it comes to computing the automorphism group of a code over a relatively large size field \mathbb{F}_q. Magma only computes automorphism groups of codes over a field \mathbb{F}_q where $q = p$ or p^2.

Problem 3. Design and implement an algorithm which computes the automorphism groups $\text{PAut} (C), \text{MAut} (C), \Gamma \text{Aut} (C)$ of a given code C (including quantum codes) over any field \mathbb{F}_q.

References

[1] Ashikhmin, A; Knill,E; Nonbinary quantum stabilizer codes, IEEE Transactions on Information Theory Vol. 47 No. 7, pp. 3065-3072, November 2001.
[2] Beshaj, Lubjana; Hoxha, Valmira; Shaska, Tony; On superelliptic curves of level n and their quotients, I. Albanian J. Math. 5 (2011), no. 3, 115–137.
[3] Demirbas, Y; Automorphism groups of hyperelliptic curves of genus 3 in characteristic 2, Computational aspects of algebraic curves, T. Shaska (Edt), Lect. Notes in Comp., World Scientific, 2005.
[4] Miller, G. A.; Blichfeldt, H. F.; Dickson, L. E. Theory and applications of finite groups. (English) 2. ed. XVII + 390 p. New York, Stechert. Published: 1938
Elezi, Shaska
Quantum codes from superelliptic curves

[5] Advances in coding theory and cryptography. Papers from the Conference on Coding Theory and Cryptography held in Vlora, May 26–27, 2007 and from the Conference on Applications of Computer Algebra held at Oakland University, Rochester, MI, July 19–22, 2007. Edited by T. Shaska, W. C. Huffman, D. Joyner and V. Ustimenko. Series on Coding Theory and Cryptology, 3. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. xii+256 pp. ISBN: 978-981-270-701-7; 981-270-701-8

[6] Algebraic aspects of digital communications. Papers from the Conference "New Challenges in Digital Communications" held at the University of Vlora, Vlora, April 27–May 9, 2008. Edited by Tanush Shaska and Engjell Hasimaj. NATO Science for Peace and Security Series D: Information and Communication Security, 24. IOS Press, Amsterdam, 2009. viii+285 pp. ISBN: 978-1-60750-019-3

[7] Sanjeeva, R.; Shaska, T. Determining equations of families of cyclic curves. Albanian J. Math. 2 (2008), no. 3, 199–213.

[8] Sanjeeva, R. Automorphism groups of cyclic curves defined over finite fields of any characteristic. Albanian J. Math. 3 (2009), no. 4, 131–160.

[9] Shaska, T.; Shor, C.; Codes over F_{p^2} and $F_p \times F_p$, lattices, and theta functions. Advances in coding theory and cryptography, 70–80, Ser. Coding Theory Cryptol., 3, World Sci. Publ., Hackensack, NJ, 2007.

[10] Shaska, T.; Shor, C.; Wijesiri, S.; Codes over rings of size p^2 and lattices over imaginary quadratic fields. Finite Fields Appl. 16 (2010), no. 2, 75–87.

[11] Shaska, Tanush; Wang, Quanlong; On the automorphism groups of some AG-codes based on $C_{a,b}$ curves. Serdica J. Comput. 1 (2007), no. 2, 193–206.

[12] Shaska, T.; Wijesiri, G. S.; Codes over rings of size four, Hermitian lattices, and corresponding theta functions. Proc. Amer. Math. Soc. 136 (2008), no. 3, 849–857.

[13] Shaska, T.; Wijesiri, G. S.; Theta functions and algebraic curves with automorphisms. Algebraic aspects of digital communications, 193–237, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 24, IOS, Amsterdam, 2009.

[14] Stichtenoth, H; Self-dual Goppa Codes, Journal of Pure and Applied Algebra, vol. 55, pp. 199-211, 1988.

[15] Stichtenoth, H; Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993.

[16] Wesemeyer, S; On the automorphism group of various Goppa codes, IEEE Trans. Inform. Theory, vol. 44, pp. 630C643, Mar. 1998.