Liver Transplantation Does Not Increase Morbidity or Mortality in Women Undergoing Surgery for Breast Cancer

Gregory Veillette
Westchester Medical Center

Maria Castaldi (Maria.Castaldi@wmchealth.org)
Westchester Medical Center https://orcid.org/0000-0002-2019-3802

Sacha Roberts
Westchester Medical Center

Afshin Parsikia
Albert Einstein Healthcare Network

Ankur Choubey
The University of Toledo Medical Center

Kenji Okumura
Westchester Medical Center

Rifat Latifi
Westchester Medical Center

Jorge Ortiz
Albany Medical Center

Research Article

Keywords: breast cancer, breast surgery, liver transplant, solid organ transplant

Posted Date: November 11th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-928737/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Purpose

The incidence of breast cancer (BC) in solid organ transplant recipients is comparable to the age-matched general population. The rate of reported de novo breast cancer following liver transplantation (LT) varies. Further, there is limited information on the management and outcomes of breast cancer in liver transplant recipients (LTR). We aim to evaluate the impact of LT on breast cancer surgery outcomes. Further we compare the outcomes after breast cancer surgery in LTR in transplant versus non-transplant centers.

Methods

National Inpatient Sample (NIS) database was accessed to identify LTR with BC. Mortality, complications, hospital charges and total length of stay (LOS) were evaluated with multivariate logistic regression testing. Weighted multivariate regression models were employed to compare outcomes at transplant and non-transplant centers.

Results

Ninety-nine women met inclusion criteria for LT + BC and were compared against a cohort of women with BC without LT (n=736,527). LT + BC had lower performance status as confirmed via higher Elixhauser Comorbidity Index (20.5% vs.10.2%, p < 0001). There were significantly more complications in the LT cohort when compared to the non-LTR (15.0% vs. 8.2%, p=0.012). However, on multivariate analysis, LT was not an independent risk factor for post-operative complications following breast cancer surgery (OR 1.223, p=0.480). Cost associated with breast cancer care was significantly higher in those with LT (2.621, p<0.001). Breast conservation surgery in LT had shorter LOS as compared to BC alone (OR 0.568, p 0.027) in all hospitals.

Conclusion

LT does not increase short-term mortality when undergoing breast cancer surgery. Although there were significantly more complications in the LT cohort when compared to the non-LTR (15.0% vs. 8.2%, p=0.012), on multivariate analysis, LT was not an independent risk factor for postoperative complications following breast cancer surgery. Additionally, breast cancer treatment is more costly in LTR. Breast cancer management in LTR at non-transplant centers incurred higher charges but no difference in complication rate, nor LOS when compared to breast cancer management in LTR at transplant centers.

Introduction:
Liver transplantation (LT) is the standard treatment for those with acute and chronic liver disease, as well as those with various types of liver neoplasms. Livers are the second most commonly transplanted organ in the United States. The number of liver transplants performed in the United States has steadily increased over the past twenty years. Almost 9,000 liver transplants were performed in 2020. The one, three, and five-year survival rate for women over the age of 40 following liver transplantation is 88.2%, 81.4%, 76.7%, respectively.

Chronic immunosuppressive therapy, essential for allograft survival, remains the most important long-term risk factor contributing to morbidity following LT. Both infectious and neoplastic complications are much more common in the immunosuppressed host. Malignancies in transplant recipients often have a more rapid progression, an unfavorable prognosis, and a poor response to standard treatment. Therefore, as both the number of liver transplants performed and survival increases, identification and management of complications in these patients is paramount.

Breast carcinoma (BC) is the leading cause of new cancer diagnosis in women. Approximately 13% of women in the United States will develop breast cancer during their lifetime. Treatment for breast cancer is individualized. However, the current mainstay of curative BC treatment is breast surgery. While the outcomes of those undergoing breast surgery are well documented in the general population, little is known regarding how patients fare if they have previously undergone a liver transplant.

The rate of reported de novo breast cancer following liver transplantation varies. There is a general consensus that the risk of BC does not appear to be increased in those having undergone solid organ transplant. Nonetheless, once cancer develops in transplant recipients, the post-treatment outcomes may be worse than expected in the general population. Despite this, little is known regarding the outcomes of breast surgery in LTR. Koonce et al reported no significant complications following reconstructive surgery in those who previously underwent a solid organ transplant. However, this cohort consisted of only 17 women, two of whom underwent a LT. Similarly, in a case report by Nakakimura et al., no severe adverse events were observed in one woman who underwent breast surgery and chemotherapy following a LT. Others observed higher mortality when diagnosed with higher stage breast cancer after liver transplantation.

Breast cancer surgery outcomes data following solid organ transplantation has largely focused on those with kidney transplantation. Consequently, little attention has been afforded to LTR subsequently treated for BC. Since liver transplantation has become a common procedure and recipients live with allografts, it is imperative to develop a greater understanding of the outcomes of breast cancer surgery in this cohort. Our purpose is to evaluate the influence of LT on the short-term outcomes of breast cancer surgery in women at transplant and non-transplant centers.

Methods:

Data from the National Inpatient Sample (NIS), between 2005 to 2014 on Breast Lumpectomy and Mastectomy were isolated. The NIS is the largest publicly available all-payer inpatient healthcare
A database designed to produce U.S. regional and national estimates of inpatient utilization, access, charges, quality, and outcomes[21]. A history of liver transplant was determined within this subset. As such, the cohort was breast surgery patients that had a history of prior liver transplant. Exclusion criteria included concomitant history of prior organ transplant, complications related to prior organ transplants, benign breast tumor, age younger than 18, and male gender. Hospital and patient-level characteristics between breast cancer with and without liver transplant were compared with t-test, Mann-Whitney test and chi-squared test.

The Elixhauser Comorbidity Index (1988) categorized and scored comorbidities. The Elixhauser Comorbidity Index is a method of categorizing comorbidities of patients based on the International Classification of Diseases (ICD) diagnosis codes found in administrative data[22]. A greater score is associated with worse prognosis[23]. The influence of LT on mortality and morbidity was evaluated with logistic regression testing. Total hospital charge and length of stay were converted to a binary variable based on their median. The role of LT on the total hospital charge and length of stay was evaluated with logistic regression testing, where the dependent variable was length of stay or total hospital charge below or above median. Similarly, the effect of LT on total hospital charge and length of stay (LOS) was measured with linear regression. Total charges were adjusted based on consumer price index (CPI) 2020. Since there was no mortality in the LT cohort, only three of the outcomes were assessed in a multivariate fashion.

Multivariate logistic regressions were performed to compare outcomes sorted by transplant center (TC), teaching centers, and patients who underwent reconstruction following breast cancer surgery. The selected co-variates were standard patient and hospital characteristics in NIS which were statistically significant between LT and no LT. These include race, co-morbidity, primary expected payer, zip code income quartile, hospital ownership, location/teaching status, and region. Missing values are reported in Table I and Table II and were coded for the covariates. There was no exclusion in the result of multivariate logistic regression. We identified TC as hospitals with at least one liver transplant performed during the timeframe. All results were calculated after applying the sampling weight built in NIS.

Results:

A total of 736,626 women underwent surgery for breast cancer. Of these, 99 received liver transplantation. There was no statistical difference in terms of age at the time of diagnosis of breast cancer. The majority of women in each cohort were white, with a significantly higher percentage of women in the LT group being white (65.3% vs. 62.1%, p <0.001). Of the 99 LTR, 69.7% had an Elixhauser comorbidity score of 3 or greater (median score of 4), while only 21.5% of non-LT patients had a score of 3 or greater (median score of 0) (p<0.001, Table I). Socioeconomic status for the LTR cohort was higher than the non-LTR cohort, as these women belonged mostly to the higher income quartile (third quartile 35.8% vs. 24.3%, p 0.017). There was no statistical difference in the frequency or type of surgical procedure, lumpectomy or mastectomy (Table I).
The dominant payment method was private insurance (50.8%). However, Medicare was a more common method of payment for the LTR group compared to the non-LTR group (65.0 vs. 36.6%, p<0.001). Most centers were public hospitals, with large bed size, and urban teaching affiliates. Although there were some statistical differences in the components of these variables, overall, these hospitals were comparable (Table II).

The rate of complication was significantly higher in the LTR group compared to the non-LTR group (15.0 vs. 8.2%, p=0.012); the most common complication was acute renal failure in the LTR group (9.9 vs. 0.6%, p<0.001). Other complications were comparable (Table III).

Liver transplant recipients underwent breast cancer surgery predominantly in transplant centers when compared to non-LTR (35.0% vs. 23.2%, p=0.004). There were no deaths in the 99 liver transplant recipients. There were significantly more complications in the LT cohort when compared to the non-LTR (15.0% vs. 8.2%, p=0.012). However, on multivariate analysis, undergoing LT was not an independent risk factor for post-operative complications followed breast cancer surgery (OR 1.223 p 0.480) (Table IV). Total hospital charges for breast cancer surgery were higher in the liver transplant group ($63,724 vs. $43,003, p<0.001). (Table III) LOS for breast cancer surgery in the reconstructed group was significantly shorter in the liver transplant group (LOS> 2 days OR 0.170, p 0.002) (Table IV).

Discussion:

Organ transplantation has significant survival and quality of life benefits compared to best medical (non-transplant) management. One of the most important factors that has allowed for prolonged allograft survival has been the advances in immunosuppressive regimens. Although de novo malignancies are known long-term complications of organ transplantation, breast cancer is not increased in the transplant population when compared against age-matched SEER general population data. Incidencrates in published literature show age-specific breast cancer incidence after 50 years old in those with liver transplantation similar to that of the general population. Our sample size is small when compared to the overall incidence in the literature of de novo breast cancers in those with liver transplants. Nonetheless, after weighting, our results reflect a realistic appraisal of patients with breast cancer and liver transplantation.

The care of the liver transplant recipient requires a lifelong multidisciplinary effort by a wide range of specialists. Clinicians must not only consider all of the transplant-related complications, but also typical age-related comorbidities. Moreover, chronic immunosuppressive therapy can induce or accelerate some conditions that the non-transplant patient may not be routinely monitored for, specifically malignancy.

Centralized and specialized management of breast cancer in the liver transplant recipient is paramount. On univariate analysis, the complication rate, especially in acute renal failure was higher in LTR group. Currently most of breast surgery was performed in the outpatient setting. LTR might show the elevation of creatinine in perioperative workup since LTR require immunosuppression drugs and adjustment of the doses frequently according to serum creatinine levels. However, after adjustment and on multivariate
analysis, LTR was not an independent risk factor for developing a post-operative complication (OR 1.223 p 0.480) (Table IV). This suggests that factors other than liver transplantation are associated with development of post-operative complications.

A significantly higher proportion of LTR had an Elixhauser comorbidity score of ≥ 3 (69.7% vs.21.5%, p<0.001, Table I), indicating that LT patients suffered from a higher degree of co-morbidity. However, our data shows that despite the LTR having significantly more comorbidities, there were no differences in mortality, complication rate, total charge, or length of stay when these patients were managed at a transplant center (Table IV). Breast cancer management in LTR at non-transplant centers incurred higher charges but no difference in complication rate nor LOS when compared to breast cancer management in LTR at transplant centers.

Of women who received a liver transplant, length of stay following breast cancer surgery was significantly shorter in the group which underwent breast reconstruction. (OR <1, p 0.002) (Table IV). This may be due to the fact that, in general, immediate breast reconstruction is performed by careful selection of those patients who are possibly overall healthier. We do not have knowledge of pre- and posttransplant performance status, immunosuppressive regimens, or pretransplant health that may overall lend to healthier LTR and thus ability to withstand an immediate breast reconstruction with acceptable outcomes and LOS. We have found a significantly shorter LOS after reconstruction in the liver transplant cohort compared to the non-liver transplant cohort most likely explained by better selection of appropriate candidates. The liver transplant patients underwent probably simpler implant-based reconstruction as opposed to non-liver transplant patients who underwent autologous tissue based reconstructions usually associated with more than double the LOS.

Our analyses revealed no statistical difference when comparing the overall survival of the two cohorts. This mirrors previous reports. Jeong et al. compared the prognosis of post-transplant breast cancer patients receiving immunosuppressants to general breast cancer survivors. All individuals had previously undergone either a liver or kidney transplant. They discovered that after matching by tumor size, lymph node metastasis, and age, disease-free survival, breast-cancer specific survival, and overall survival were not significantly different between the two cohorts[24].

A final, notable point is the fact that total hospital charges for breast cancer surgery were higher in the liver transplant group, even after controlling for other variables (OR 2.621, p <0.001) (Table IV). This may be explained by LTR suffer from a higher degree of co-morbidity. An analysis of 126,664 individuals with breast cancer, revealed the average medical cost per patient with comorbidity was higher compared to the average medical cost per person without comorbidity (p<0.05)[25]. We hypothesize that increased comorbidities in the LT cohort may have played a role in these women incurring higher costs for breast cancer surgery.

This analysis is not without limitations, as there is inherent weakness of large database analysis. Time between liver transplantation and breast cancer surgery was not known. Prolonged periods of immunosuppressive treatment may induce DNA damage and inhibit immune surveillance mechanisms,
thus increasing risk of lymph node metastases which would require more extensive BC surgery, possibly axillary node dissection, with locally advanced disease at presentation24. Additionally, immunosuppressive medications are unknown. This prevented us from stratifying outcomes based on type of immunosuppressive agent. Further, information on the breast cancer stage and neoadjuvant chemotherapy treatment prior to surgery is unknown. Thus, we were unable to assess outcomes on early versus advanced disease. Similarly, long term patient outcomes are not available due to database limitations, and could not be assessed, and may differ from the reported short-term outcomes in our analyses. Further, there is no data available on cancer stage distribution or method of breast cancer detection or screening rates in those with liver transplantation.

Additional research is needed to more comprehensively understand the difficulties that post-livertransplant breast cancer survivors face following breast cancer surgery compared to the general breast cancer population. Future analyses should consider factors such as breast cancer stage, type of immunosuppressive therapy, and time since LT.

The strengths of this manuscript are reflected in this being the largest and first reported analysis that determines that prior liver transplantation does not increase morbidity nor mortality in women undergoing surgery for breast cancer. However, we found total hospital charges for breast surgery were significantly higher in LTR. These results may be used to guide clinical practice when treating women for breast cancer who have undergone a liver transplant.

Declarations

Acknowledgements and Funding Information: All authors contributed to the study conception and design. All authors read and approved the final manuscript. Funding: not applicable.

Funding: Not applicable

Conflicts of interest/Competing interests: None

Availability of data and material: Data from the National Inpatient Sample (NIS), between 2005 to 2014 on Breast Lumpectomy and Mastectomy were isolated (ICD 9 code: 85.20-85.23 and 85.33-85.36 and 85.41 – 85.48).

Code availability: Data and coding available upon request.

Ethics approval: Not applicable

Consent to participate: Not applicable

Consent for publication: Not applicable

References
1. Key Facts | Overview | Transplant Safety | CDC. https://www.cdc.gov/transplantsafety/overview/key-facts.html. Accessed March 31, 2021.

2. Organ transplant trends | More transplants than ever | UNOS. https://unos.org/data/transplanttrends/. Accessed March 31, 2021.

3. Definition & Facts of Liver Transplant | NIDDK. https://www.niddk.nih.gov/healthinformation/liver-disease/liver-transplant/definition-facts#survival. Accessed March 31, 2021.

4. Navarro MD, López-Andréu M, Rodríguez-Benot A, Agüera ML, Del Castillo D, Aljama P. Cancer Incidence and Survival in Kidney Transplant Patients. Transplant Proc. 2008;40(9):2936-2940. doi:10.1016/j.transproceed.2008.09.025

5. Végso G, Tóth M, Hidvégi M, et al. Malignancies after renal transplantation during 33 years at a single center. Pathol Oncol Res. 2007;13(1):63-69. doi:10.1007/BF02893443

6. Haberal AN, Süren D, Demirhan B, Bilezikçi B, Celasun B, Haberal M. Evaluation of Posttransplantation Malignancies Compared With De Novo Tumors. Transplant Proc. 2007;39(4):1057-1062. doi:10.1016/j.transproceed.2007.02.036

7. American Cancer Society: Breast Cancer Facts & Figures. 2017-2018. https://www.cancer.org/research/cancer-facts-statistics/breast-cancer-facts-figures.html.

8. Adami J, Gäbel H, Lindelöf B, et al. Cancer risk following organ transplantation: A nationwide cohort study in Sweden. Br J Cancer. 2003;89(7):1221-1227. doi:10.1038/sj.bjc.6601219

9. Collett D, Mumford L, Banner NR, Neuberger J, Watson C. Comparison of the incidence of malignancy in recipients of different types of organ: A UK registry audit. Am J Transplant. 2010;10(8):1889-1896. doi:10.1111/j.1600-6143.2010.03181.x

10. Engels EA, Pfeiffer RM, Fraumeni JF, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA - J Am Med Assoc. 2011;306(17):1891-1901. doi:10.1001/jama.2011.1592

11. Kasiskie BL, Snyder JJ, Gilbertson DT, Wang C. Cancer after kidney transplantation in the United States. Am J Transplant. 2004;4(6):905-913. doi:10.1111/j.1600-6143.2004.00450.x

12. Stewart T, Tsai SC, Grayson H, Henderson R, Opelz G. Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet. 1995;346(8978):796-798. doi:10.1016/S0140-6736(95)91618-0

13. Oruc MT, Soran A, Jain AK, Wilson JW, Fung J. De novo breast cancer in patients with liver transplantation: University of Pittsburgh’s experience and review of the literature. Liver Transplant. 2004;10(1):1-6. doi:10.1002/lt.20025

14. Park B, Yoon J, Choi D, et al. De novo cancer incidence after kidney and liver transplantation: Results from a nationwide population based data. Sci Rep. 2019;9(1):1-9. doi:10.1038/s41598-019-53163-9

15. Wong G, Au E, Badve S V, Lim WH. Comprehensive Review Breast Cancer and Transplantation. 2017. doi:10.1111/ajt.14368

16. Miao Y, Everly JJ, Gross TG, et al. De novo cancers arising in organ transplant recipients are associated with adverse outcomes compared with the general population. Transplantation.
17. Koonce SL, Giles B, Mclaughlin SA, et al. Breast reconstruction after solid organ transplant. Ann Plast Surg. 2015;75(3):343-347. doi:10.1097/SAP.0000000000000583

18. Nakakimura T, Kotake T, Torii M, Lin X, Yoshibayashi H. A case of breast cancer treated with adjuvant chemotherapy in a patient receiving tacrolimus medication after liver transplantation. Japanese J Cancer Chemother. 2020;47(1):83-85. https://pubmed.ncbi.nlm.nih.gov/32381868/. Accessed April 1, 2021.

19. D'Arcy ME, Coghill AE, Lynch CF, et al. Survival after a cancer diagnosis among solid organ transplant recipients in the United States. Cancer. 2019;125(6):933-942. doi:10.1002/cncr.31782

20. Choubey AP, Parsikia A, Dubchuk C, Castaldi M, Latifi R, Ortiz J. Renal transplant recipient suffers significantly more complications but not mortality after breast cancer surgery and benefit from treatment at transplant centers. Ann Breast Surg. 0(0). doi:10.21037/ABS-20-56

21. HCUP-US NIS Overview. https://www.hcup-us.ahrq.gov/nisoverview.jsp. Accessed April 25, 2021.

22. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity Measures for Use with Administrative Data. Med Care. 1998;36(1):8-27. doi:10.1097/00005650-199801000-00004

23. Sharma N, Schwendimann R, Endrich O, Ausserhofer D, Simon M. Comparing Charlson and Elixhauser comorbidity indices with different weightings to predict in-hospital mortality: an analysis of national inpatient data. BMC Health Serv Res. 2021;21(1):13. doi:10.1186/s12913-020-05999-5

24. Jeong IJ, Lee SG, Kim YH, et al. Characteristics and prognosis of breast cancer after liver or kidney transplantation. Breast Cancer Res Treat. 2018;167(1):101-106. doi:10.1007/s10549-017-4504-1

25. Numanoglu Tekin R, Saygili M. Determining Breast Cancer Treatment Costs Using the Top Down Cost Approach. Eur J Breast Heal. 2019;15(4):242-248. doi:10.5152/ejbh.2019.4909

Tables
Table I: Patient Characteristics	No LT (n=736,527)	LT (n=99)	TOTAL (n=736,626)	p-value			
	Number	%	Number	%	Number	%	
Age > 65 y	273,841	37.2	34	34.7	273,876	37.2	0.559
Age, mean (SD), year	59.8 (14.3)	59.7 (11.2)	59.8 (14.3)	0.945			
Race							
White	457,621	62.1	65	65.3	457,685	62.1	<0.001
Black	74,295	10.1	15	15.2	74,310	10.1	<0.001
Hispanic	48,565	6.6	5	5.0	48,570	6.6	<0.001
Asian or pacific islander	22,562	3.1	5	4.6	22,567	3.1	<0.001
Native American	2,882	0.4	0	0.0	2,882	0.4	<0.001
Other	17,956	2.4	10	9.9	17,966	2.4	<0.001
Race unknown	112,645	15.3	0	0.0	112,645	15.3	N/A
Elixhauser co-morbidity category							
≤-1	258,101	35.0	20	20.2	258,121	35.0	0.002
0-2	319,982	43.4	10	10.1	319,992	43.4	<0.001
3-10	83,208	11.3	49	49.2	83,256	11.3	<0.001
>10	75,237	10.2	20	20.5	75,257	10.2	0.001
Elixhauser co-morbidity index, median (IQR)	0 (-1.0 – 1.0)	4.0 (1.0 – 8.0)	0 (-1.0 – 1.0)	<0.001			
Zip code income quartile							
First quartile	154,371	21.0	10	10.6	154,381	21.0	0.008
Second quartile	165,913	22.5	19	19.4	165,932	22.5	0.235
Third quartile	178,762	24.3	35	35.8	178,798	24.3	0.017
Forth quart	222,375	30.2	34	34.2	222,409	30.2	0.264
Zip code unknown	15,107	2.1	0	0.0	15,107	2.1	N/A
Carcinoma insitu of breast	132850	18.0	21	21.0	132871	18.0	0.441
Procedures							
Unilateral mastectomy	494,188	67.1	69	69.7	494,257	67.1	0.582
	Count	Rate	Age	100	Count	Rate	Age
--------------------------	-------	------	-----	-----	-------	------	-----
Bilateral mastectomy	161,699	22.0	15	15.2	161,714	22.0	0.102
Lumpectomy	91,137	12.4	15	15.2	91,152	12.4	0.401
Reconstruction	76,159	10.3	15	15.2	76,174	10.3	0.116
Immediate reconstruction	64,343	97.1	15	100	64,358	97.1	0.501
Table II: Hospital Characteristics

	No LT (n=736,527)	LT (n=99)	TOTAL (n=736,626)	p-value									
Primary expected payer													
Medicare	269,300	64	65.0	269,364	36.6	<0.001							
Medicaid	63,848	10	10.1	63,858	8.7	0.830							
Private insurance	373,971	25	24.9	373,995	50.8	<0.001							
Self-pay	10,957	0	0.0	10,957	1.5	0.445							
No charge	2,542	0	0.0	2,542	0.3	0.0794							
Other	15,027	2.0	2.0	15,027	2.0	0.335							
Payer unknown	883	0.1	0.1	883	0.1	N/A							
Hospital ownership													
Government or private	205,257	27.9	27.9	205,282	27.9	0.637							
Public	60,805	8.3	8.3	60,820	8.3	0.036							
Private, non for profit	384,870	52.3	52.3	384,919	52.3	0.640							
Private, investor owned	70,272	9.5	9.5	70,282	9.5	0.758							
Private	11,439	1.6	1.6	11,439	1.6	0.349							
Ownership unknown	3,884	0.5	0.5	3,894	0.5	N/A							
Hospital bed size													
Small	99,611	13.5	13.5	99,626	13.5	0.694							
Medium	174,011	23.6	23.6	174,026	23.6	0.061							
Large	459,020	62.3	62.3	459,090	62.3	0.194							
Bed size unknown	3,884	0.5	0.5	3,894	0.5	N/A							
Location/teaching status													
Rural	64,412	8.7	8.7	64,412	8.7	0.006							
Urban, non-teaching	268,225	36.4	36.4	268,275	36.4	0.012							
Urban, teaching	400,005	54.3	54.3	400,055	54.3	0.456							
Teaching status unknown	3,884	0.5	0.5	3,894	0.5	N/A							
Region													
	Acute adults				Acute adults				Acute adults				Acute adults
------------	--------------	---	---	---	--------------	---	---	------------	--------------	---	---	---	--------------
Northeast	180,178	24.5	11	10.6	180,189	24.5	0.002						
Midwest	151,372	20.6	20	20.6	151,393	20.6	0.931						
South	249,991	33.9	45	45.3	250,036	33.9	0.016						
West	154,986	21.0	23	23.5	155,009	21.0	0.593						
Transplant center	99,260	13.5	30	35.3	99,290	13.5	0.004						
Table III: Outcomes

	No LT (n=736,527)	LT (n=99)	TOTAL (n=736,626)	\(p\)-value
Number	599	0	599	0.776
%	0.1%	0.0%	0.1%	
Death				
Disposition of patient				
Home Health Care	148,568	16	148,584	0.747
(uniform)	20.2%	16.0%	20.2%	
Transfer to SNF, ICF, or				
other	24,187	0	24,187	
Transfer to short term				
hospital	839	0	839	
Routine	561,498	83	561,581	0.747
Unknown	66	0	66	
Other	770	0	770	
Any complication				0.012
Cardiovascular	3,567	0	3,567	0.488
Respiratory	2,435	0	2,435	0.567
Peripheral vascular				0.863
complication	223	0	223	
Central nervous system				0.833
complication	329	0	329	
Hematomas	23,670	5	23,675	0.300
Accidental cut, puncture				0.732
or hemorrhage during a	871	0	871	
procedure				
Complications of operative				0.657
wound	1,467	0	1,467	
Post-operative infection				0.507
Other	2,489	0	2,489	0.562
Acute renal failure				<0.001
Urinary complications				0.664
Digestive system				0.616

Note: The \(p\)-values are calculated using appropriate statistical tests to compare the outcomes between the No LT and LT groups.
complications	30	0	0	0	30	0	1.000
Acute vascular insufficiency-intestine							
Platelet transfusion	990	0.1%	0	0.0%	990	0.1%	0.715
Fresh frozen plasma transfusion	1,458	0.2%	0	0.0%	1,458	0.2%	0.658
pRBC transfusion	24,280	3.3%	5	5.0%	24,285	3.3%	0.328
SIRS	1,339	0.2%	0	0.0%	1,339	0.2%	0.671
Complication of graft	3,263	0.4%	0	0.0%	3,263	0.4%	0.507
Length of stay, day, median (IQR)	2.0 (1.0-2.0)	2.0 (1.0-2.0)	2.0 (1.0-2.0)	0.493			
Total charges associated with breast cancer surgery, $, median (IQR)	43,002 (26,952-71,027)	63,724 (33,068-91,809)	43,003 (26,953-71,032)	<0.001			

CPH: cut, puncture, hemorrhage, SNF: skilled nursing facility, ICF: intermediate care facility, pRBC: packed red blood cells, SIRS: systemic inflammatory response syndrome

IQR: interquartile range

Total charges were adjusted based on inflation price index 2020.
Table IV: Weighted Multivariate Adjusted Outcome for Liver Transplant Patients Based on Type of Center

	All centers	Transplant Centers	Non-liver transplant center	Teaching centers	Reconstruction		
		P-value	OR	P-value	OR	P-value	OR
Any complication	.480	1.223		.651	1.254	.732	1.126
Total charge>43,000 USD	<0.001	2.621		.146	1.782	<0.001	2.802
Length of stay>2 days	.027	.568		.186	.516	.078	.590

Note:
1. N/A, not applicable because of zero mortality and zero complications in only reconstructed patients
2. Total charges were adjusted based on consumer price index 2020.
3. The multivariable analyses were adjusted for race, co-morbidity, primary expected payer, zip code income quartile, hospital ownership, location/teaching status, region.