Production of haploids and doubled haploids in oil palm
Dunwell, Jim M.; Wilkinson, Michael James; Nelson, Stephen; Wening, Sri; Sitorus, Andrew C.; Mienanti, Devi; Alfiko, Yuzer; Croxford, Adam E.; Ford, Caroline S.; Forster, Brian P.; Caligari, Peter D. S.

Published in:
BMC Plant Biology

DOI:
10.1186/1471-2229-10-218

Publication date:
2010

Citation for published version (APA):
Dunwell, J. M., Wilkinson, M. J., Nelson, S., Wening, S., Sitorus, A. C., Mienanti, D., ... Caligari, P. D. S. (2010). Production of haploids and doubled haploids in oil palm. BMC Plant Biology, 10, Paper 218. https://doi.org/10.1186/1471-2229-10-218
Production of haploids and doubled haploids in oil palm

Jim M Dunwell1*, Mike J Wilkinson2*, Stephen Nelson3, Sri Wening4, Andrew C Sitorus4, Devi Mienanti4, Yuzer Alfiko4, Adam E Croxford2, Caroline S Ford2, Brian P Forster5, Peter DS Caligari3,5,6

Abstract

Background: Oil palm is the world’s most productive oil-food crop despite yielding well below its theoretical maximum. This maximum could be approached with the introduction of elite F1 varieties. The development of such elite lines has thus far been prevented by difficulties in generating homozygous parental types for F1 generation.

Results: Here we present the first high-throughput screen to identify spontaneously-formed haploid (H) and doubled haploid (DH) palms. We secured over 1,000 Hs and one DH from genetically diverse material and derived further DH/mixoploid palms from Hs using colchicine. We demonstrated viability of pollen from H plants and expect to generate 100% homogeneous F1 seed from intercrosses between DH/mixoploids once they develop female inflorescences.

Conclusions: This study has generated genetically diverse H/DH palms from which parental clones can be selected in sufficient numbers to enable the commercial-scale breeding of F1 varieties. The anticipated step increase in productivity may help to relieve pressure to extend palm cultivation, and limit further expansion into biodiverse rainforest.

Background

Success of early F1 hybrid maize varieties exemplifies the advantages of heterosis [1]. The use of doubled haploids as parents for F1 variety production fully exploits this phenomenon and has enabled substantial yield improvements in several crops [2,3]. This strategy was outlined with the first DH crop variety [4] and has led to H/DH production systems being described for >250 species [5]. However, few of these protocols generate the large numbers of Hs/DHs needed for commercial breeding, with just three methods (androgeogenesis, wide crossing, gynogenesis [6]) routinely adopted for H/DH production in only 30 species [5]. The most important of these methods in widespread use in commercial breeding is the generation of haploids in maize via pollination with a haploid inducing line such as a ‘Stock 6’ derivative.

Desire for a more generic H/DH production system to improve agricultural yields is increasing as population growth, climate change, biofuel demand and other land-use pressures intensify. Clearly, in any species the production of F1 varieties depends not only on the production of homozygous lines to act as parents, but also it requires an efficient method to intercross the parents. This latter procedure is relatively simple in species with an outcrossing breeding system, like maize or oil palm, compared with those with an inbreeding system like rice or wheat. Production of F1 hybrids has been achieved successfully in this category of crops (for example hybrid rice in China) but often requires a male sterility system.

Annually, oil palm (Elaeis guineensis) yields eight to ten times more oil per hectare than rapeseed or soybean [7,8] and in 2008 generated 38.9 million tonnes of oil worldwide [9]. The area assigned to the crop expanded ~1.7 fold between 1997 (8.7 M ha) and 2007 (14.6 M ha) [9] with further increases forecast. Over this same period global production of palm oil increased ~2.2 fold from 18 to 38.9 Mt y⁻¹. Thus, yield increases have been...
achieved predominantly by expansion of cultivated area and not through yield enhancement. This trend raises concerns over the ecological impact of felling rainforest to accommodate oil palm cultivation [10,11] and has stimulated debate over strategies to limit further agricultural expansion [12-14]. One option explored here is to use market forces to help address the problem. If F₁ varieties could increase yields sufficiently to exceed demand, commodity prices would fall. This would discourage clear felling and simultaneously incentivise early replacement of existing plantations with high-yielding varieties. Feasibility of the approach clearly relies on the ability to gain marked improvements in yield. Current yields of oil palm (generally 4-10.5 t ha⁻¹) [15,16] are much lower than the most conservative estimates of the crop's potential (17 t ha⁻¹ [14] to 60 t ha⁻¹ [16]). Indeed, yields per hectare in the two largest producer countries (Indonesia and Malaysia) have remained static for 30 years [9]. It should be noted, however, that in both these countries there are examples of selected varieties with much higher yields, with the highest yields from commercial breeding trials already exceeding 10 t ha⁻¹.

To date, a H/DH-derived F₁ breeding approach has been precluded by the repeated failure to secure H/DHs via anther or microspore culture [17] and successful generation of H/DHs in oil palm is unreported in the literature. The report of a spontaneous H in the related coconut palm [18] and in other species [19] nevertheless gave hope that spontaneous Hs may also occur in oil palm. However, the characteristically rare occurrence of spontaneous H/DHs necessitates development of an effective high-throughput screening system. Phenotypic characteristics of H/DH (slow growth, altered flowering phenology, smaller stomata and smaller organs [5]) could be used for diagnosis but are difficult to score qualitatively on a large scale and require plants of a reasonable size. An alternative strategy is to seek undefined atypical phenotypic features that may arise from reduced cell size and/or the hemizygous state of haploid individuals (homozygous for DHs) and that are manifest at the seedling stage when high-throughput visual assessment is more plausible. A more directed approach is also possible. Spontaneous H/DH seedlings are often associated with aberrant germination features, such as twin embryos from the same carpel [20], providing a defined feature for phenotypic selection. Here, we combined a large-scale visual survey for undefined atypical palm seedling phenotypes coupled with active selection for seeds with twin embryos to assemble a sub-population of seedlings enriched for H/DHs.

Results

Over two years, we performed two large-scale screens for morphological 'off-types' among oil palm seedlings generated by the Bah Lias Research Station, Indonesia. The first screen utilised 10,900,000 seedlings from a wide range of crosses and identified 3,854 morphological 'off-types' (H/DH candidates), of which 53 had twin embryos and 3,801 were phenotypically abnormal (Figure 1). The second screen of approximately 10,000,000 seedlings from commercial seed production activities and approximately 1,000,000 seedlings from breeding experiments generated 5,704 H/DH candidates, of which 5,601 were phenotypically abnormal and 103

![Figure 1 Seed germination morphology for H/DH identification](image-url)
had twin embryos. More than 2,000 of these seedlings (including all those with twin embryos) were transferred to the nursery prior to further screening. Although Hs could be identified relatively easily on the basis of their reduced genome size, we initially wished to target the more difficult, but more valuable DHs to circumvent the need for chromosome doubling. For the second level screen, we exploited the fact that Hs and DHs would be either hemi- or homozygous across all loci; thus individuals exhibiting heterozygosity at any locus could be discarded. Applying this logic, we performed a sequential screen using 9-15 microsatellite markers (Table 1) on all individuals and found 117 seedlings that exhibited a single allele across all loci (Table 2). These individuals were retained as candidate H/DH, and subsequent flow cytometry of leaf samples identified 83 as H, and 34 as diploid (Table 2). The haploid status of six palms was further confirmed by cytological examination of intact cells from root squashes. Each contained the expected 16 chromosomes (Figure 2).

A larger-scale survey for heterozygosity was then performed using 97 additional microsatellites (Table 3) to confirm absolute hemizygosity of Hs and identify 'false' candidate DHs showing any heterozygosity. All Hs produced single-allele peak profiles across all microsatellites, thereby discounting fixed heterozygosity via locus duplication for all markers used. All diploids were heterozygous at several loci and so discarded. However, one diploid (0644-219/05049582C) identified from a later screen (see below) was homozygous across all 36 markers.

Table 1 Microsatellite primer pairs used to identify homozygous DH or hemizygous H candidates in the initial molecular screen

No.	Forward primer (5'-3')	Reverse primer (5'-3')
1	GAGATTACAAAGTCCCCAAC	TCAAATTTAGAAGAGGTATGC
2	ACCGATGACCTAGCTTTC	CGGGTGAAAGATATGAATCAAC
3	CACGCACGCAGTGTTTTT	GAGATGATGTTTACTTCAGGAT
4	CCCCCCAATCCCTCAATT	CTCCTCTTCCCCATCACAGA
5	GACACAAGCAAACAAAGGA	ATCTCGAGAGGGGGAAA
6	ATATGGGATGTGCGTGTG	TGCCCTCTGTTGTTAGTGG
7	TCTCTCTCTTCTCTATGTTGT	TGACCACGACACACATCT
8	GGCAGCTTCCTCAGGCTT	TGTGCTGTCTGAGAAGATG
9	TTTTCTTCTTTTCTCATATT	CCTCTCTTCCCCATCACAGA
10	TACCGGCACCTCTACAGG	CCAAGATCTACAGAGCGACAG
11	AGCTCTCATGCAAGTAAAC	TTAGATCTACAGGTCTGTA
12	CCTTACGAAAGAATCC	GGAACCACAAACACATG
13	GTAGCTGGAACCTCAGA	AGAACCCAGGAGGTAC
14	GCTCTTTTGTAGTTGGTGA	TTTTCCTCAGTATCGCGTAC
15	CTCCTGGATATCTTTTGTACC	TTGGCGCTCCTGCCTTAC

Markers 10-15 obtained from Billotte et al. [27].

Table 2 Results of ploidy analysis by flow cytometry of 117 candidate H/DH palms identified as both morphologically atypical and homozygous for the markers listed in Table 1

Candidate	DNA sample code	No. markers used	Ploidy
50-Mix5-7	11260406301	9	x
50-0306037C	072805101801	15	x
50-03060260C-2	072805101901	15	x
53-03080954C-2	09270500101	10	x
53-03090761C-5	09280504501	10	x
BATCH 51,03060318C-1	060728_0010_01_a	15	x
BATCH 53,03090761C-5	060728_0018_01_a	15	x
0623/17,050905508C-1	060728_0021_01_a	15	x
BATCH 50,03060260C-2	060728_0027_01_a	15	x
0611/52,05050248C-1	060728_0032_01_a	15	x
0611/16,05050228C-1	060728_0034_01_a	15	x
BATCH 53,03080954C-2	060728_0035_01_a	15	x
0641,04059061B-3	060728_0050_01_a	14	2x
0628/152,05100720C-1	060729_0021_01_a	15	x
0628/185,05100351C-1	060729_0063_01_a	15	x
BATCH 51,03060626C-1	060729_0127_02_a	15	x
BATCH 67,0409034MC-15	060729_0137_02_a	15	x
BATCH 67,0409034MC-35	060729_0138_02_a	15	x
BATCH 67,0409034MC-36	060729_0139_02_a	15	x
BATCH 67,0409034MC-50	060729_0140_02_a	15	x
BATCH 67,0409034MC-47	060729_0142_02_a	15	x
0628/53,050905595C-1	060731_0043_01_a	15	x
0627/125,05090717C-2	060731_0065_01_a	15	x
0627/12,05080220C-1	060731_0080_01_a	15	x
0627/6,05080095C-1	060731_0086_01_a	14	2x
0631/Normal,05039033B,31	060731_0265_01_a	14	x
64-0409021MC-34	02130604301	15	2x
64-0410040MC-1	02130604801	15	2x
51-03060626C	02130605301	15	x
64-0410040MC-20	02140600401	15	2x
64-0410040MC-16	02140600801	15	2x
64-0409021MC-2	02140601001	15	2x
06412-04059061B-3	02170605501	15	2x
06412-04129091B	02170605801	15	2x
0550-15,05010827C	02200602401	15	x
0550-11,05010424C-1	0220062601	15	x
0550-23,050500209C	02200630101	15	x
0550-33,050202568C	02200630401	15	x
0550-36,050502420C-2	02200630701	15	x
0550-40,05010880C	0220067501	14	x

Dunwell et al. BMC Plant Biology 2010, 10:218
http://www.biomedcentral.com/1471-2229/10/218
Page 3 of 25
mapped loci found to be heterozygous in the maternal parent (palm number BL013/12-06). Taking account of linkage between mapped markers, the probability of such an individual occurring by chance following selfing

Table 2: Results of ploidy analysis by flow cytometry of 117 candidate H/DH palms identified as both morphologically atypical and homozygous for the markers listed in Table 1 (Continued)

Palm Number	Cytotype	Chromosome Count
0551-36/05020511C	02200607601	15 x
0551-32/05020361C-1	02210600401	15 x
0552-4/05010836C-2	02210600901	15 x
0552-38/05020501C	02210603101	14 x
0552-39/05020415C	02210603201	15 x
0552-31/05020858C	02210603701	15 x
0552-91/05020375C	02210603901	15 x
0552-111/05020626C	02210607201	15 x
0552-128/05020558C-1	02210607701	15 x
0551-35/05020946C	02210608201	15 x
0551-42/05030201C-6	02220600201	15 x
0551-51/05030224C-2	02220600901	15 x
0551-71/05030417C-3	02220601801	14 x
0551-32/05040240C	02220606201	13 x
0551-77/05020961C	02230600701	15 x
0551-62/05030147C	02230601401	15 x
0551-54/05030462C	02230601901	15 x
0552-21/05020271C-1	02200605801	14 x
0551-9/05020843C-2	02200609501	15 x
0551-51/05030224C-2	02220602001	15 x
0552-71/05040578C-1	02300600501	15 x
0552-73/05040573C-1	02300605101	15 x
0552-79/05040748C-3	02300605501	15 x
0552-107/05050016C-2	03010600201	15 x
0552-12/05030419C-3	03010600601	15 x
0552-45/05040103C-1	03150603401	15 x
0552-60/05040124C-2	03150604401	15 x
0552-124/05050539C-1	03150604601	15 x
0552-94/05050289C-4	03150606701	15 x
0552-128/05050284C-4	03150609001	15 x
0552-124/05050539C-1	03150606901	15 x
0552-133/05050255C-1	03200600201	15 x
0552-82/05050099C-2	03200601401	15 x
0552-70/05050035C-1	03200602701	15 x
0552-107/05050016C-2	03200603301	15 x
0552-121/05050590C-1	03200606901	15 x
0552-114/05050099C-1	03200609501	15 x
0552-69/05050089C-2	03290600301	15 x
0552-112/05050539C-1	03290601101	15 x
0552-93/05050376C-3	03290602001	15 x
0552-108/05050344C-1	03290602201	15 x
0552-108/05050344C-1	03290603301	15 x
0552-114/05050351C-1	03290606901	15 x
0552-60/05050376C-2	04050600501	15 x
0552-108/05050344C-1	04050600901	15 x
0552-93/05050351C-1	04050602601	15 x
0552-114/05050351C-1	04050603601	15 x
0552-60/05050376C-2	04050609101	15 x

Table 2: Results of ploidy analysis by flow cytometry of 117 candidate H/DH palms identified as both morphologically atypical and homozygous for the markers listed in Table 1 (Continued)

Palm Number	Cytotype	Chromosome Count
0552-70/05050035C-1	04050602701	15 x
0552-121/05050590C-1	04050603301	15 x
0552-114/05050099C-1	04050609501	15 x
0552-69/05050089C-2	04050600301	15 x
0552-112/05050539C-1	04050601101	15 x
0552-93/05050376C-3	04050602001	15 x
0552-108/05050344C-1	04050602201	15 x
0552-108/05050344C-1	04050603301	15 x
0552-114/05050351C-1	04050606901	15 x
0552-60/05050376C-2	04050600501	15 x
0552-93/05050351C-1	04050602601	15 x
0552-114/05050351C-1	04050603601	15 x
0552-60/05050376C-2	04050609101	15 x

Note: in this initial round, no DH was found. The DH (0644-219/05049582C) was detected in a subsequent batch.

Figure 2 Chromosome spread of a haploid root cell from oil palm containing 16 C-metaphase chromosomes

Dunwell et al. BMC Plant Biology 2010, 10:218
http://www.biomedcentral.com/1471-2229/10/218
Table 3 Microsatellite markers (described by Billotte et al. [27]) used for a larger-scale survey for hemizygosity of Hs and homozygosity of DH candidates previously identified by the morphological screen, microsatellite pre-screen (15 markers) and flow cytometry screen

No.	Forward primer (5'-3')	Reverse primer (5'-3')
16	GACCCTTGTGACGACATGCTGCT	GCAGGCGTGAAATCCCAAT
17	ATGCTATTGTGGTTTTATTAGTGGA	CGACCCCTGAATCCAGTAAG
18	AACATGAGAACCTAGTATGGTTGGA	AAAAAAAGATTGCTACACCTTCC
19	CCCACCCACCTGACTTCTTCTC	ACCCCCGTCCAAAATAAGTC
20	AGGAGAGGAATGTGCTGTTGCTG	GTCCCTTTGCTGCTGGTTTC
21	GGCAAGAACTCCTTTTGATTATA	ACTCGCCATGTCTCTATATTCT
22	CGGAGGCAAAAGACCTCCT	GTTCGGCCATGCTCTGCTCC
23	TTGGGCGGCACTGATCAACA	TCCCTGCCAATGCTCTGCTC
24	AGCGAAGGAAGAAGAAAGAAG	CTGCTGACGCTGCTGCTGGTC
25	AGCAAGGACAGAGAGAGAG	CTGCTGACGCTGCTGCTGGTC
26	TACGCTCCTCCCTATATCCTACTC	CAATCCATTGAGCAGATGTCG
27	CCTACCCCGCTCTGCTTCCCTC	CGAATTGACCCCTCTCTCTCTCA
28	CTTATATGACCGCCACCTGCTCT	TTTTCTACGCTGCTGCTCC
29	GAACTGTCGCTGCTGCTGCT	AAAGCTCGCAGCACAGACAG
30	ACAGCTTGCGTGCTGCTGCTG	GTTGCTGCTGCTGCTGCTG
31	GATGACCACATTGCAATTGCA	TCCCTGCCAATGCTCTGCTC
32	GAATGCTGGGCGGCTGCTGCTG	GTTGCTGCTGCTGCTGCTG
33	ACAGCTTGCGTGCTGCTGCTG	GTTGCTGCTGCTGCTGCTG
34	AAGGCAAGAGAGAGAGAGAG	TCCCTGCCAATGCTCTGCTC
35	AGTGCAACGCTGCTGCTGCTG	TCCCTGCCAATGCTCTGCTC
36	CTCCCGTCTACGCTGCTGCT	TCCCTGCCAATGCTCTGCTC
37	GCCGTCACTGCTGCTGCTGCT	TCCCTGCCAATGCTCTGCTC
38	TGCCATCTGCTGCTGCTGCT	TCCCTGCCAATGCTCTGCTC
39	CACCATGACGACAGACAGAC	TCCCTGCCAATGCTCTGCTC
40	TTTATTTTGCCTTCTCCTTGTA	ATGTGCTGCTGCTGCTGCT
41	CATATGGAGCAGACAGAC	GCAATTGACCCCTCTCTCTCA
42	AGTGCGCTGTGCTGCTGCTG	GACCTGCTGCTGCTGCTGCT
43	GCTGGAAGAAGAAGAAGAAG	TCCCTGCCAATGCTCTGCTC
44	ATGAGGAAATAAAATAAATCATT	ACAGATCTGCTGCTGCTGCTC
45	GTGCAAGAAGAGAGAGAG	TCCCTGCCAATGCTCTGCTC
46	GTCCCGTCTACGCTGCTGCT	TCCCTGCCAATGCTCTGCTC
47	TTTTCTACGCTGCTGCTGCT	TCCCTGCCAATGCTCTGCTC
48	CGGAGGCGGAGGAGGAGG	CGCTGCTGCTGCTGCTGCT
49	CAACTGTCGCTGCTGCTGCT	CGCTGCTGCTGCTGCTGCT
50	GAGCTAGCGGCGGAGGAGG	GCAATTGACCCCTCTCTCTCA
51	TCCGTCTTAACTGCTGCTGCTG	GCAATTGACCCCTCTCTCTCA
52	GAAGGCGCGCTATTGCTGCTG	GCAATTGACCCCTCTCTCTCA
53	AAACCTCCTATGCTGCTGCTG	GCAATTGACCCCTCTCTCTCA
54	GATGCAACGCTGCTGCTGCT	GCAATTGACCCCTCTCTCTCA
55	TGGTGTGGTGGGAGTCTTCTC	GCAATTGACCCCTCTCTCTCA
56	TACGGCTACCTTCACTGAGAG	GCAATTGACCCCTCTCTCTCA
57	TCAAGAAGAGGCGGAGAAGAAG	GCAATTGACCCCTCTCTCTCA
58	GGGGATTGAGTGGTTGGTTTCTC	GCAATTGACCCCTCTCTCTCA
59	TCTATGCTGCTGCTGCTGCTG	GCAATTGACCCCTCTCTCTCA
60	AGCTCTCATGCTGAGTACAC	GCAATTGACCCCTCTCTCTCA
61	TCCCTATGCTGCTGCTGCTG	GCAATTGACCCCTCTCTCTCA
62	AGGGAGGAGGAGGAGGAGG	GCAATTGACCCCTCTCTCTCA
63	CTAAGAAGAGGCGGAGAAGAAG	GCAATTGACCCCTCTCTCTCA
64	GTGGTGTGGTGGGAGTCTGAG	GCAATTGACCCCTCTCTCTCA
Table 3: Microsatellite markers (described by Billotte et al. [27]) used for a larger-scale survey for hemizygosity of Hs and homozygosity of DH candidates previously identified by the morphological screen, microsatellite pre-screen (15 markers) and flow cytometry screen (Continued)

No.	Primer Sequence
65	AGGGCAAGTCATGTITTC
66	GAAACGTGACAGCGCATAGA
67	TTTCTATGGGCAAATCAGC
68	GTTTATCATTTTTTGGTTCAG
69	CATGCACCTAAAGAAGTTG
70	ATTCACAGTGCTTCTCAG
71	TGTAGGTTGTGGTATTGAG
72	AGCAAGACACCATGTAGTGC
73	AAAAGCCGATAGGTTTGAAAGA
74	GCTCATGTTGCAAGAGAGAG
75	AGCCATGAGAGGATAGAAGAG
76	CAATTCACGCTTCATATAGC
77	GGGCTTTCATTTTCCACTAT
78	GACAGCTTGCTGTTTTGAG
79	ACTGTAAGAAACCTCTCTCCTCA
80	CTTCTCAAGCAAGATATCC
81	CACCTGCTCTAAATTTACTAG
82	GGAGAGGAAAAAATAGAGAAG
83	AGGGAGCCAGAGCGCATAC
84	GCCCATTTTTCTCTTACTAG
85	CATCAGAGCTTCTAAACTAC
86	ATTCATGGCTTCTTCCTCA
87	ATGGCAGAGTGAGTGAGAGAG
88	TCTCCCAATCTATGTAGGC
89	ACCTGTTTGGCAACTCTC
90	TCCACTCCTGCACTTCTC
91	TTTAGGACAGGTAAAGATAAG
92	AGCAGGAGCAGAAACAGAGAG
93	GTACCTTGAACTCGTCAAAG
94	AAGCCAGCAGGATGTACATC
95	TTACTGCTAACTGCCTACG
96	TCTATTTTTGTTTGGCCTGTA
97	TGTACGTGCTGCTAATAA
98	CCTCACCCTTCCTCCTATT
99	GAATGCCGCGTGTGGTGTG
100	ATGCTCCACCAAGTATATGA
101	AAGCAGATAGTGCTCAGTCC
102	GGCTTGGTGGTGGTGGTGGTA
103	CAGGGCAACATAGAGCATC
104	CCAATCTCATCAGGCATATG
105	CCTGATTACCCCTCTATT
106	CTCCTTGGAAATATG
107	ATGGGAGAGCCTGAGATAGA
108	AGCCAGATGGAATAAACAC
109	TAGTTTTTCTCTACTCAGAGT
110	TGCCAGATGCGAGTATATG
111	ACAATTTCGACGACCAACAGA
112	GAACCTGCGTGTAACT
65	TATAAAGGCGAGGTATT
66	TTTGCGTATTGAGGTAGGAG
67	GAGGCGGAAAGCAAAAGAATG
68	CGGTGTCCCTGAGAGTGA
69	CCAAAGTCCATCTAAAGAG
70	CATGCGCTTCTCAGTCAA
71	TGCAGAAGCCACCTATTCA
72	GACAGCTTGGGGATCTAGAC
73	ATGCTGAGAGGTGGAATAGAG
74	CTCTTGGCAATTCTACAG
75	CAAGCTTAAACCTCTTTACTC
76	AGTGGCACTGGAAACACAGT
77	GCCTCACCTGACTCCAAACACAC
78	GTCTTGGGCGCTATCA
79	GTTTCTTGGCTCTCCTGA
80	GGCACCAAAACACATGAA
81	GCGTCAAAAAAAAATACCAC
82	CTCCTCCGAGTGGGAAGAG
83	CTCAGCAGAAGGAAAGATC
84	TCTCGAAGCGTACCAACTC
85	TGCACTACACAGCAAACAGA
86	AGTGGCACTGGAAACACAGT
87	GCCTCACCTGACTCCAAACACAC
88	GTCTTGGGCGCTATCA
89	ACTTTGCAATACACTGATGTC
90	ATCCTGAGGGCTTACATTCA
91	ACTCCCTCTTTTGGAACAT
92	GGTGTTGCTGAGAGATCATA
93	AGAACCCGGAGGATCAC
94	TCTCGAAGCGTACCAACTC
95	TGAGCTAACTGCTTGTGCA
96	GCTTCTCAGGTGCGTTAC
97	ATCTCAAGGGCTTACCA
98	AGTCCTGCTTCTCCTG
99	CATTCTCCTGTTTTTCTGT
100	CATCCTGACCCTCCTATT
101	ATGCTCAAGGGCTTACCA
102	TCTCCTCCTTCTCCTACTTG
103	GTGCGTAAAGAGGAGAGTAG
104	ACAATTTTGACCTTCTTCTGA
105	CCTTGAAGTGGCGCTATC
106	ATACATCCCTCTCTCTCTCTCT
107	TGGTAGGTCATATTGAGA
was 8.72×10^{-8} (see Methods). This palm was therefore deemed a spontaneous DH.

These initial screens collectively revealed 83 spontaneous Hs but no DHs (although one DH was discovered subsequently), with the undirected phenotypic ‘off-type’ selection proving substantially more effective than screening for twin embryos. This result suggests that our method could be used to secure large numbers of Hs but is less able to isolate DHs at useful frequencies. This finding, when coupled with the routine nature of H
chromosome doubling in other crops [21], suggested the most promising route for commercial DH production lay in the isolation of Hs followed by somatic doubling. In subsequent screening of abnormal seedlings, high-throughput flow cytometry therefore replaced molecular analysis for candidate H identification. Haploid identity was then supported using at least 15 microsatellite markers. Plants identified as diploid by flow cytometry continued to be screened for DHs as above. Using this amended screening procedure, we have identified over 1,100 H palms from approximately 60 million seedlings (to July 2009).

To have maximum utility this H/DH material should encompass as much genetic diversity from within the breeding germplasm as possible. A Principal Coordinates Analysis performed on H profiles using 28 microsatellite loci showed the first two axes accounted for 58% of the detected variation. While most Hs had a strong affinity to commercial duras, Hs have also been generated from pisifera types and overall variability amongst Hs encompassed that seen for the entire commercial palm material (Figure 3).

Effort then focussed on the creation of DHs from this rich germplasm of H genotypes (Figure 4). The most direct route to obtain DHs is to use chemical application to induce chromosome doubling. We applied a range of treatments to 50 H seedlings and screened leaves of the recovered material for evidence of chromosome doubling. Flow cytometry revealed that 48 seedlings contained substantial diploid sectors in their leaves; one palm was 100% doubled after exposure to 10 mM colchicine (Figure 5) and 100 ppm GA3. To date, 16 H genotypes have produced pollen. This finding demonstrates scope for securing fertile gametes from diploid inflorescences or inflorescence sectors for DH or F1 production. Indeed, seed set using pollen from DH material has now been achieved (data not shown). Whilst further optimization work is required, our results when combined with experience in other crops [21] suggest routine production of fertile DH oil palm lines will be a relatively simple task.

Discussion and Conclusions
The simple high-throughput phenotypic-genotypic seedling selection system used here provides a fourth practical approach to supplement androgenesis, wide crossing and gynogenesis [6] and has potential for many crops where H/DH production remains elusive. The prospect of adopting a similar untargeted approach more widely seems both plausible and attractive, and may be possible without experienced operators, especially as sophisticated phenomic screening systems [22] become more accessible.

In the case of oil palm, the efficacy of our H screening combined with the demonstrated ability to create DH palms, opens the way for the development of 100% true-breeding parental clones for F1 variety breeding. Thereafter, it is hoped that the potential genetic gain available from oil palm F1 hybrids will match that in other crops. If such a gain is achieved it could be beneficial in several ways. First, high-yielding F1 palms are likely to accelerate replacement of palms in existing plantations and cause a step-increase in production. Secondly, this breeding strategy provides greater flexibility for breeders to respond rapidly to emergent threats (e.g. climate change). Thirdly, using palm oil and its associated wastes for energy generation [7] could substantially reduce carbon-based emissions currently associated with the palm oil lifecycle [23]. Fourthly, DH oil palms could be exploited in combination with transgenic techniques that are now available for this crop [24]. Looking forward, the clear challenge is to maintain and improve oil palm productivity in the face of a changing climate...
sufficient to keep pace with growing demand [25]. However, it is important to point out that breeding is simply one stage in a long process from plantation to the eventual processed product and the economic realities of this international industry will finally determine the impact of any novel technology on the global agricultural system for this crop.

The provision here of a system for haploid-based F1 hybrid breeding in oil palm represents the first technological breakthrough likely to lead to step improvements in yield for this crop, and can also be applied to other crops recalcitrant to in vitro based H/DH systems. This methodology, in particular the application of high-throughput flow cytometry, has recently been applied successfully to two other tropical crops, namely rubber (Hevea brasiliensis L.) and cocoa (Theobroma cacao L.) (Nasution et al. unpublished).

Methods

Hs and DHs were identified using three methods: a morphological screen; homozygosity/hemizygosity assessment; and ploidy level measurement. Initial screens emphasized

Figure 6 Summary of stages for identification of haploid and doubled haploid palm.

Figure 7 PCR amplicons generated by microsatellite marker 10 fractionated in 2% w/v agarose. Lanes 1-11 & 12-20: candidate H/DH palm plants; lane L: Hyperladder (Bioline, UK); lane 21: heterozygote control; lane 22: homozygote control. Candidates in lanes 1, 3, 4, 7, 8, 10, 11, 13, 16, 17, 19, 20 were deemed heterozygous and discarded.
Table 4 Microsatellite markers used to screen for heterozygosity on the maternal parent (palm BL013/12-06) of DH candidate palm (0644-219/05049582C)

No	Marker	Forward Primer (5’-3’)	Reverse Primer (5’-3’)
1	VS1	GAGATTACAAAGTCCAAACC	TCAAAAATGAAGAAGATGTC
2	OPSSR 3	ACGCATGCAGCTAGTCTTTT	CGGCTGAAAGATGAATCAAC
3	OPSSR 7	CACGCAGGCTTTTACTCCTT	GGATGTATGCTTACTCCGAAT
4	OPSSR 8	CCCCCCTCCCCCTCTATT	CTATTCCCCCTCATCACAGA
5	OPSSR 9	GACACAGCAGAAACAAAAAC	ATTCGAAAGAGAGGGAAGAA
6	OPSSR 14	ATATGTGGGTCTTCCCTATTT	TGGCCCTGTTGTTAGTCTTG
7	OPSSR 19	TCTCCTCTCCTCTCTATGTTG	TGGGCAATGCACACACTC
8	OPSSR 29	GCAGCTCTTTCCACCTCCT	TGTTGCTCCTGAGAGATG
9	OPSSR 30	TTTTTTCCATCAGAATTG	CCCCTTTGCTTCCCTATT
10	OPSSR2	GAACAAAACGGGAAGAAGCA	CACCAATGGGAGAAACAG
11	mEgUWA32	CGGATAGAGGCAGCAAGACT	CTGGGATTTAACCCATT
12	mEgUWA44	TTAGAGACGCTGTCCTTCCC	AGCGGAGACCCAAATACCT
13	mEgUWA50	CCTGCAACTGCACAAATGAC	TCCAGACACAATACTACACC
14	mEgCIR0037	Published by Billotte et al. [27]	
15	mEgCIR0055	Published by Billotte et al. [27]	
16	mEgCIR0059	Published by Billotte et al. [27]	
17	mEgCIR0067	Published by Billotte et al. [28]	
18	mEgCIR0074	Published by Billotte et al. [27]	
19	mEgCIR0146	Published by Billotte et al. [27]	
20	mEgCIR0163	Published by Billotte et al. [27]	
21	mEgCIR0173	Published by Billotte et al. [27]	
22	mEgCIR0177	Published by Billotte et al. [27]	
23	mEgCIR0192	Published by Billotte et al. [27]	
24	mEgCIR0195	Published by Billotte et al. [27]	
25	mEgCIR0243	Published by Billotte et al. [27]	
26	mEgCIR0246	Published by Billotte et al. [27]	
27	mEgCIR0257	Published by Billotte et al. [27]	
28	mEgCIR0268	Published by Billotte et al. [27]	
29	mEgCIR0328	Published by Billotte et al. [27]	
30	mEgCIR0359	Published by Billotte et al. [27]	
31	mEgCIR0366	Published by Billotte et al. [27]	
32	mEgCIR0369	Published by Billotte et al. [27]	
33	mEgCIR0380	Published by Billotte et al. [27]	
34	mEgCIR0399	Published by Billotte et al. [27]	
35	mEgCIR0408	Published by Billotte et al. [27]	
36	mEgCIR0409	Published by Billotte et al. [27]	
37	mEgCIR0425	Published by Billotte et al. [27]	
38	mEgCIR0433	Published by Billotte et al. [27]	
39	mEgCIR0439	Published by Billotte et al. [27]	
40	mEgCIR0445	Published by Billotte et al. [27]	
41	mEgCIR0446	Published by Billotte et al. [27]	
42	mEgCIR0465	Published by Billotte et al. [27]	
43	mEgCIR0521	Published by Billotte et al. [27]	
44	mEgCIR0551	Published by Billotte et al. [27]	
45	mEgCIR0555	Published by Billotte et al. [27]	
46	mEgCIR0588	Published by Billotte et al. [27]	
47	mEgCIR0772	Published by Billotte et al. [27]	
48	mEgCIR0773	Published by Billotte et al. [27]	
49	mEgCIR0774	Published by Billotte et al. [27]	
50	mEgCIR0775	Published by Billotte et al. [27]	
Table 4: Microsatellite markers used to screen for heterozygosity on the maternal parent (palm BL013/12-06) of DH candidate palm (0644-219/05049582C) (Continued)

mEgCIR	Published by Billotte et al. [27]
51	mEgCIR0778
52	mEgCIR0779
53	mEgCIR0781
54	mEgCIR0786
55	mEgCIR0787
56	mEgCIR0788
57	mEgCIR0790
58	mEgCIR0793
59	mEgCIR0800
60	mEgCIR0801
61	mEgCIR0802
62	mEgCIR0803
63	mEgCIR0804
64	mEgCIR0825
65	mEgCIR0827
66	mEgCIR0844
67	mEgCIR0874
68	mEgCIR0878
69	mEgCIR0882
70	mEgCIR0886
71	mEgCIR0894
72	mEgCIR0905
73	mEgCIR0906
74	mEgCIR0910
75	mEgCIR0912
76	mEgCIR1729
77	mEgCIR1740
78	mEgCIR1753
79	mEgCIR1773
80	mEgCIR1917
81	mEgCIR1977
82	mEgCIR1996
83	mEgCIR2110
84	mEgCIR2144
85	mEgCIR2149
86	mEgCIR2188
87	mEgCIR2212
88	mEgCIR2215
89	mEgCIR2380
90	mEgCIR2387
91	mEgCIR2414
92	mEgCIR2417
93	mEgCIR2422
94	mEgCIR2423
95	mEgCIR2427
96	mEgCIR2436
97	mEgCIR2440
98	mEgCIR2492
99	mEgCIR2518
100	mEgCIR2525
101	mEgCIR2569
Table 4: Microsatellite markers used to screen for heterozygosity on the maternal parent (palm BL013/12-06) of DH candidate palm (0644-219/05049582C) (Continued)

Marker Code	Description	Source
102	mEgCIR2575	Published by Billotte et al. [27]
103	mEgCIR2577	Published by Billotte et al. [27]
104	mEgCIR2590	Published by Billotte et al. [27]
105	mEgCIR2595	Published by Billotte et al. [27]
106	mEgCIR2600	Published by Billotte et al. [27]
107	mEgCIR2621	Published by Billotte et al. [27]
108	mEgCIR2628	Published by Billotte et al. [27]
109	mEgCIR2763	Published by Billotte et al. [27]
110	mEgCIR2813	Published by Billotte et al. [27]
111	mEgCIR2860	Published by Billotte et al. [27]
112	mEgCIR2887	Published by Billotte et al. [27]
113	mEgCIR2893	Published by Billotte et al. [27]
114	mEgCIR3040	Published by Billotte et al. [27]
115	mEgCIR3111	Published by Billotte et al. [27]
116	mEgCIR3160	Published by Billotte et al. [27]
117	mEgCIR3194	Published by Billotte et al. [27]
118	mEgCIR3213	Published by Billotte et al. [27]
119	mEgCIR3232	Published by Billotte et al. [27]
120	mEgCIR3295	Published by Billotte et al. [27]
121	mEgCIR3296	Published by Billotte et al. [27]
122	mEgCIR3297	Published by Billotte et al. [27]
123	mEgCIR3298	Published by Billotte et al. [27]
124	mEgCIR3300	Published by Billotte et al. [27]
125	mEgCIR3301	Published by Billotte et al. [27]
126	mEgCIR3305	Published by Billotte et al. [27]
127	mEgCIR3307	Published by Billotte et al. [27]
128	mEgCIR3310	Published by Billotte et al. [27]
129	mEgCIR3311	Published by Billotte et al. [27]
130	mEgCIR3316	Published by Billotte et al. [27]
131	mEgCIR3321	Published by Billotte et al. [27]
132	mEgCIR3328	Published by Billotte et al. [27]
133	mEgCIR3350	Published by Billotte et al. [27]
134	mEgCIR3384	Published by Billotte et al. [27]
135	mEgCIR3389	Published by Billotte et al. [27]
136	mEgCIR3399	Published by Billotte et al. [27]
137	mEgCIR3400	Published by Billotte et al. [27]
138	mEgCIR3402	Published by Billotte et al. [27]
139	mEgCIR3427	Published by Billotte et al. [27]
140	mEgCIR3428	Published by Billotte et al. [27]
141	mEgCIR3433	Published by Billotte et al. [27]
142	mEgCIR3439	Published by Billotte et al. [27]
143	mEgCIR3477	Published by Billotte et al. [27]
144	mEgCIR3519	Published by Billotte et al. [27]
145	mEgCIR3526	Published by Billotte et al. [27]
146	mEgCIR3533	Published by Billotte et al. [27]
147	mEgCIR3534	Published by Billotte et al. [27]
148	mEgCIR3535	Published by Billotte et al. [27]
149	mEgCIR3538	Published by Billotte et al. [27]
150	mEgCIR3543	Published by Billotte et al. [27]
151	mEgCIR3544	Published by Billotte et al. [27]
152	mEgCIR3546	Published by Billotte et al. [27]
Table 4: Microsatellite markers used to screen for heterozygosity on the maternal parent (palm BL013/12-06) of DH candidate palm (0644-219/05049582C) (Continued)

Markers	Published by
mEgCIR3555	Billotte et al. [27]
mEgCIR3557	Billotte et al. [27]
mEgCIR3563	Billotte et al. [27]
mEgCIR3567	Billotte et al. [27]
mEgCIR3569	Billotte et al. [27]
mEgCIR3574	Billotte et al. [27]
mEgCIR3587	Billotte et al. [27]
mEgCIR3590	Billotte et al. [27]
mEgCIR3592	Billotte et al. [27]
mEgCIR3593	Billotte et al. [27]
mEgCIR3607	Billotte et al. [27]
mEgCIR3622	Billotte et al. [27]
mEgCIR3633	Billotte et al. [27]
mEgCIR3639	Billotte et al. [27]
mEgCIR3643	Billotte et al. [27]
mEgCIR3649	Billotte et al. [27]
mEgCIR3653	Billotte et al. [27]
mEgCIR3655	Billotte et al. [27]
mEgCIR3663	Billotte et al. [27]
mEgCIR3668	Billotte et al. [27]
mEgCIR3672	Billotte et al. [27]
mEgCIR3683	Billotte et al. [27]
mEgCIR3684	Billotte et al. [27]
mEgCIR3691	Billotte et al. [27]
mEgCIR3693	Billotte et al. [27]
mEgCIR3696	Billotte et al. [27]
mEgCIR3698	Billotte et al. [27]
mEgCIR3705	Billotte et al. [27]
mEgCIR3711	Billotte et al. [27]
mEgCIR3716	Billotte et al. [27]
mEgCIR3718	Billotte et al. [27]
mEgCIR3722	Billotte et al. [27]
mEgCIR3727	Billotte et al. [27]
mEgCIR3728	Billotte et al. [27]
mEgCIR3732	Billotte et al. [27]
mEgCIR3737	Billotte et al. [27]
mEgCIR3739	Billotte et al. [27]
mEgCIR3745	Billotte et al. [27]
mEgCIR3747	Billotte et al. [27]
mEgCIR3750	Billotte et al. [27]
mEgCIR3755	Billotte et al. [27]
mEgCIR3766	Billotte et al. [27]
mEgCIR3769	Billotte et al. [27]
mEgCIR3775	Billotte et al. [27]
mEgCIR3782	Billotte et al. [27]
mEgCIR3785	Billotte et al. [27]
mEgCIR3787	Billotte et al. [27]
mEgCIR3788	Billotte et al. [27]
mEgCIR3792	Billotte et al. [27]
mEgCIR3807	Billotte et al. [27]
mEgCIR3808	Billotte et al. [27]
identification of candidate DHs where seedling morphology screening was followed by homozygosity/hemizygosity assessment using microsatellites. H/DHs were then distinguished by flow cytometry and DHs subjected to an extensive homozygosity screen (Figure 6). As spontaneous DH frequency was low, later screens emphasized H recovery where the morphological screen was followed by flow cytometry; homozygosity of candidate Hs was thereafter confirmed with microsatellites.

Seed morphological screen
For seed storage, mesocarps were removed from freshly harvested seed, and seeds air-dried at ambient temperature (24 h). Seeds were thereafter stored at 25°C with 15-18% moisture content. To induce germination, stored seeds were re-hydrated over 3 d to 18-20% moisture content, followed by 38-40°C incubation (40-60 d). Seeds were then re-hydrated for a further 5 d to >22% moisture content, and air-dried at ambient temperature (4 h). Seeds were germinated at ambient temperature (7 d to 3 months after treatment) and examined for atypical germination morphology (Figure 1).

Molecular pre-screen to exclude heterozygotes
DNA was isolated from leaf tissue using DNeasy 96 Plant Kit (Qiagen, UK). Initial heterozygosity screens used 15 microsatellites (Table 1) yielding alleles readily distinguished by agarose gel electrophoresis (Figure 7). 10 μl PCR mixes comprised 1.0 μl 10x NH₄ buffer (Bioline), 0.3 μl MgCl₂ (10 mM), 0.4 μl dNTPs (10 mM), 0.2 μl each primer (10 mM), 1-5 ng DNA and 1U Taq polymerase (Bioline). Thermocycling conditions: 2 min at 94°C followed by 35 cycles of 94°C for 30 s, 52-58°C for 30 s and 72°C for 45 s, with a final extension of 72°C for 7 min. Candidates presenting two allelic bands after fractionation by (2-3%) w/v metaphor agarose gel electrophoresis were discarded.

Extended molecular screen
Candidate DHs and some Hs were subjected to an extensive assay for heterozygosity using 97 fluorescently-labelled microsatellites (Table 3) with 150 seedlings of normal phenotype and 24 heterozygous tenera palms as controls. PCR conditions were as described above and resultant products were fractionated on an ABI3730XL capillary sequencer (Applied Biosystems, USA) by Macrogen Inc (Korea). Allele size was determined (Genemapper v4.0) against a GS400HD standard. Individuals with two alleles at any locus were discarded.

DH candidate verification
To verify DH candidate 0644-219/05049582C we screened 212 microsatellites (Table 4) for heterozygosity in the maternal parent (BL013/12-06). 10 μl PCR mixes comprising: 5 μl BioMix™ (Bioline, UK), 0.05 μl forward primer plus M13 adaptor (10 μM), 0.2 μl labelled M13 (-29) (10 μM) (Sigma Genosys, UK), 0.2 μl reverse primer (10 μM) and 5-10 ng DNA were subjected to: 2 min at 94°C, followed by 35 cycles of 30 s at 94°C, 30 s at 52°C, 45 s at 72°C, with a final extension of 72°C for 7 min. Amplicons were surveyed for heterozygosity by high-resolution melt (HRM) analysis according to Croxford et al. [26] using the candidate as the reference comparator. Samples with amplicons variable between the maternal parent and candidate DH were fractionated by capillary electrophoresis as above. 48 markers identified as heterozygous in the maternal parent (Table 5) were applied to the DH candidate to assess homozygosity.

DH candidate 0644-219/05049582C was found to be homozygous across all 48 loci that were heterozygous in its maternal parent. Of these 48 loci, 36 have been mapped by Billotte et al. [27] (Table 5). We first considered the probability of obtaining the observed homozygosity levels via independent assortment using only the unlinked markers from this group. For unlinked loci, the probability of homozygous offspring arising by independent assortment is 0.5 per locus. Given that heterozygous loci were secured from 14 of the 16 linkage groups, with the addition of a further unlinked (unassigned) marker, the probability of these markers all becoming homozygous by chance is therefore:

\[P = 0.5^{15} = 0.000030517578125. \]
This figure was further reduced by the inclusion of the remaining 21 markers that had been assigned a map position [27]. Here, linkage was accommodated by multiplying by 1-\((\text{distance in cM}/100)\). Thus the inclusion of a new marker 10 cM from an existing marker would mean multiplying the cumulative total by 1-\((10/100) = 1-0.1 = 0.9\) (rather than 0.5 for an unlinked marker). This reduced the probability as follows:

\[
P = \times 0.00003 0.92 \times 0.92 \times (\text{extra markers from Linkage Group 1}) \times 0.95 \times 0.95 \times (\text{extra markers from LG3}) \times 0.93 \times 0.93 \times 0.87 \times 0.87 \times (\text{extra markers from LG4}) \times 0.95 \times (\text{extra markers from Linkage Group 1}) \times 0.51 = 0.0042 \times 10^{-4}.
\]

Flow Cytometry

Newly matured leaflets or radicles from candidate H/DH palms were subjected to flow cytometry according to Anumaganathan & Earle [29] to establish ploidy level. Commercial tenera palms were included as diploid controls. For high-throughput mass screening, tissue samples were bulked at a rate of five individual tissue samples per bulk. Bulked samples (about 0.5 cm\(^2\) for radicles and 1 cm\(^2\) for leaf material (per each individual) were sliced by chopping with a sharp clean razor-blade (20-30 chops), in a plastic 9 cm diameter Petri dish containing 1.5 ml of cold (5°C) CyStain® UV Ploidy solution (Partec, Germany) modified by addition of 6.48 mM dithiothreitol (DTT) and 1% (v/v) polyvinylpyrrolidone (PVP-40) (Sigma-Aldrich, USA). The addition of DTT and PVP-40 were found to reduce background counts (‘noise’) in output histograms of particle fluorescence in the analyte.

Confirmation of Hs by chromosome squashes

Harvested roots were pre-treated in iced water (24 h), then fixed in 3:1 v/v alcohol: glacial acetic acid at 4°C (24 h). They were then rinsed in water, softened in 1N HCl (20 min), rinsed in water (2 min) and stained in saturated aceto-orcein (1 min). The root tip was then squashed, mounted onto a glass slide, and examined using a compound photomicroscope.

Principal Coordinates Analysis

The genetic affinity of 270 Hs was compared with 95 representative diploids (Table 6) using 28 microsatellites (Table 7) by Principal Coordinates Analysis (PCoA). The PCoA was constructed using GenAlEx v6 [30]. Genetic distance option ‘codominant-genotypic’ was applied, where pairwise, individual-by-individual (\(N \times N\)) genetic distances are calculated for codominant data. For a single-locus analysis, with \(i\)-th, \(j\)-th, \(k\)-th and \(l\)-th different alleles, a set of squared distances is defined as \(d^2(ii, ii) = 0\), \(d^2(ii, jj) = 0\), \(d^2(jj, kk) = 1\), \(d^2(ii, jj) = 1\), \(d^2(jj, kl) = 2\), \(d^2(ii, kk) = 3\), and \(d^2(ii, jj) = 4\). The algorithm used in GenAlEx is based on Orloci
Table 6 Identification codes, oil palm type and ploidy level of oil palm genotypes used in the Principal Coordinates Analysis

No	Label no in PCO	Sample name in PCO	Palm Id	Ploidy level
1	1	haploid	05020771_0001	x
2	2	haploid	05050099_0001	x
3	3	haploid	05050099_0002	x
4	4	haploid	05020961_0001	x
5	5	haploid	05020511_0001	x
6	6	haploid	05020946_0001	x
7	8	haploid	05030147_0001	x
8	9	haploid	05030462_0001	x
9	10	haploid	05020420_0002	x
10	11	haploid	05020361_0001	x
11	12	haploid	05030060_0001	x
12	13	haploid	05020558_0001	x
13	14	haploid	05020631_0001	x
14	15	haploid	05040748_0003	x
15	16	haploid	05030308_0001	x
16	18	haploid	05080318_0003	x
17	19	haploid	06020186_0001	x
18	20	haploid	05110212_0001	x
19	21	haploid	05120555_0001	x
20	22	haploid	06010222_0001	x
21	23	haploid	09020099_0001	x
22	24	haploid	06020320_0004	x
23	25	haploid	06020571_0004	x
24	26	haploid	06020381_0001	x
25	27	haploid	06061119_0001	x
26	28	haploid	05090172_0001	x
27	30	haploid	05100321_0001	x
28	31	haploid	06010670_0006	x
29	32	haploid	06010842_0004	x
30	33	haploid	05050228_0001	x
31	34	haploid	05110260_0001	x
32	35	haploid	05110260_0002	x
33	36	haploid	05110162_0001	x
34	37	haploid	05101302_0001	x
35	38	haploid	05040273_0001	x
36	39	haploid	05110003_0001	x
37	40	haploid	05120002_0001	x
38	41	haploid	05080095_0001	x
39	43	haploid	06110122_0002	x
40	44	haploid	05110716_0001	x
41	45	haploid	05010836_0001	x
42	46	haploid	05120155_0001	x
43	47	haploid	05110875_0001	x
44	48	haploid	05070553_0001	x
45	49	haploid	05070466_0001	x
46	50	haploid	06010650_0001	x
Table 6: Identification codes, oil palm type and ploidy level of oil palm genotypes used in the Principal Coordinates Analysis (Continued)

No.	Identification Code	Type	Ploidy Level	Other Information
47	0510718_0001	haploid		
48	0510946_0001	haploid		
49	06010107_0001	haploid		
50	05120429_0002	haploid		
51	06010953_0001	haploid		
52	05030686_0001	haploid		
53	05060107_0001	haploid		
54	05030791_0001	haploid		
55	05080585_0001	haploid		
56	05020375_0001	haploid		
57	05120104_0001	haploid		
58	05050902_0001	haploid		
59	05120104_0002	haploid		
60	06030664_0001	haploid		
61	05120106_0004	haploid		
62	05060276_0001	haploid		
63	05100988_0001	haploid		
64	05060315_0001	haploid		
65	06030324_0003	haploid		
66	05080506_0001	haploid		
67	06010813_0001	haploid		
68	05110881_0001	haploid		
69	05100717_0001	haploid		
70	06020169_0009	haploid		
71	05110134_0001	haploid		
72	05030196_0001	haploid		
73	05050220_0001	haploid		
74	06011195_0001	haploid		
75	05120125_0001	haploid		
76	05100510_0001	haploid		
77	05060624_0001	haploid		
78	05060712_0001	haploid		
79	05030150_0001	haploid		
80	06030180_0001	haploid		
81	06020915_0001	haploid		
82	05101150_0001	haploid		
83	05101152_0001	haploid		
84	05020415_0001	haploid		
85	05040029_0002	haploid		
86	05040035_0003	haploid		
87	06020573_0001	haploid		
88	05121112_0008	haploid		
89	05090078_0001	haploid		
90	05060495_0001	haploid		
91	05070484_0001	haploid		
92	06020455_0001	haploid		
Table 6: Identification codes, oil palm type and ploidy level of oil palm genotypes used in the Principal Coordinates Analysis (Continued)

93	98	haploid	05075185_0001	x
94	99	haploid	05090522_0004	x
95	100	haploid	06020625_0002	x
96	101	haploid	05100812_0002	x
97	102	haploid	05100862_0001	x
98	103	haploid	05030224_0002	x
99	104	haploid	05040439_0001	x
100	105	haploid	05040317_0003	x
101	106	haploid	05080300_0001	x
102	107	haploid	05070703_0003	x
103	108	haploid	05080485_0001	x
104	109	haploid	05110470_0002	x
105	110	haploid	05100423_0001	x
106	111	haploid	05110423_0001	x
107	112	haploid	05080362_0003	x
108	113	haploid	05110625_0001	x
109	114	haploid	05120719_0001	x
110	115	haploid	05121073_0002	x
111	116	haploid	06050726_0002	x
112	117	haploid	06060663_0001	x
113	119	haploid	06121220_0001	x
114	120	haploid	06080516_0001	x
115	121	haploid	06090505_0002	x
116	122	haploid	06090407_0004	x
117	123	haploid	06051133_0002	x
118	124	haploid	06060740_0031	x
119	125	haploid	06060740_0077	x
120	126	haploid	06060740_0090	x
121	127	haploid	06120178_0001	x
122	128	haploid	06090960_0003	x
123	129	haploid	06090657_0001	x
124	130	haploid	06120377_0001	x
125	131	haploid	06070208_0001	x
126	132	haploid	07010308_0001	x
127	133	haploid	06121125_0001	x
128	134	haploid	06121125_0002	x
129	135	haploid	06121125_0002	x
130	136	haploid	06190505_0005	x
131	137	haploid	06129197_0001	x
132	138	haploid	06079077_0001	x
133	139	haploid	07019130_0003	x
134	140	haploid	06075474_0001	x
135	141	haploid	06075474_0003	x
136	142	haploid	06075544_0001	x
137	143	haploid	06045801_0001	x
138	144	haploid	06065285_0001	x
---	---	---	---	
139	145	haploid	06081027_00001 x	
140	146	haploid	06090264_00001 x	
141	147	haploid	06090264_00002 x	
142	148	haploid	06070430_00001 x	
143	149	haploid	06090886_00001 x	
144	150	haploid	06051245_00001 x	
145	151	haploid	06070716_00001 x	
146	152	haploid	06051468_00001 x	
147	153	haploid	06075617_00001 x	
148	154	haploid	06040273_00001 x	
149	155	haploid	06080584_00001 x	
150	156	haploid	06070825_00001 x	
151	158	haploid	06110390_00015 x	
152	159	haploid	06031385_00001 x	
153	160	haploid	06045657_00001 x	
154	161	haploid	06110204_00008 x	
155	162	haploid	06050161_00001 x	
156	163	haploid	06070168_00010 x	
157	164	haploid	06100785_00002 x	
158	165	haploid	06010987_00028 x	
159	166	haploid	07010166_00001 x	
160	167	haploid	06100730_00001 x	
161	168	haploid	06080868_00001 x	
162	169	haploid	06080532_00005 x	
163	170	haploid	06040024_00001 x	
164	172	haploid	06030217_00010 x	
165	173	haploid	06120975_00001 x	
166	174	haploid	06070581_00002 x	
167	175	haploid	06060477_00001 x	
168	176	haploid	06120852_00001 x	
169	177	haploid	06091392_00001 x	
170	178	haploid	06060844_00001 x	
171	179	haploid	06090211_00001 x	
172	180	haploid	06100858_00001 x	
173	181	haploid	06080272_00007 x	
174	182	haploid	06050493_00004 x	
175	183	haploid	06101033_00002 x	
176	184	haploid	06081043_00001 x	
177	185	haploid	07011057_00001 x	
178	186	haploid	06070921_00001 x	
179	187	haploid	06111210_00002 x	
180	188	haploid	06121495_00001 x	
181	189	haploid	06110610_00001 x	
182	190	haploid	06090772_00001 x	
183	191	haploid	06090318_00002 x	
184	192	haploid	06121313_00001 x	
Table 6: Identification codes, oil palm type and ploidy level of oil palm genotypes used in the Principal Coordinates Analysis (Continued)

	Identification code	Oil palm type	Ploidy level	Oil palm type	Ploidy level
185	06085027_0001	haploid	x		
186	06090109_0001	haploid	x		
187	06080157_0001	haploid	x		
188	06121316_0001	haploid	x		
189	06110900_0001	haploid	x		
190	06070228_0002	haploid	x		
191	06101174_0001	haploid	x		
192	06090805_0001	haploid	x		
193	06085063_0001	haploid	x		
194	06101037_0001	haploid	x		
195	06110444_0002	haploid	x		
196	06101487_0001	haploid	x		
197	06100937_0001	haploid	x		
198	06090820_0002	haploid	x		
199	06070039_0001	haploid	x		
200	06070772_0001	haploid	x		
201	07011408_0001	haploid	x		
202	07011408_0002	haploid	x		
203	06100319_0001	haploid	x		
204	06070468_0001	haploid	x		
205	06121385_0002	haploid	x		
206	06010537_0001	haploid	x		
207	06120726_0001	haploid	x		
208	06070883_0001	haploid	x		
209	06040041_0001	haploid	x		
210	06100263_0001	haploid	x		
211	06040043_0009	haploid	x		
212	06101232_0001	haploid	x		
213	06060189_0003	haploid	x		
214	06091275_0002	haploid	x		
215	06060097_0001	haploid	x		
216	06100873_0001	haploid	x		
217	06050038_0001	haploid	x		
218	06100025_0001	haploid	x		
219	06100940_0002	haploid	x		
220	06040800_0001	haploid	x		
221	06071007_0002	haploid	x		
222	06020043_0026	haploid	x		
223	06060811_0153	haploid	x		
224	06080751_0001	haploid	x		
225	06050178_0008	haploid	x		
226	06040287_0001	haploid	x		
227	06101496_0001	haploid	x		
228	06040563_0001	haploid	x		
229	06045788_0003	haploid	x		
230	06050326_0001	haploid	x		
Table 6: Identification codes, oil palm type and ploidy level of oil palm genotypes used in the Principal Coordinates Analysis (Continued)

231	240	haploid	06080649_0002	x
232	241	haploid	06080649_0003	x
233	242	haploid	06080601_0001	x
234	243	haploid	06101247_0001	x
235	244	haploid	06111271_0001	x
236	245	haploid	06090337_0001	x
237	246	haploid	06050125_0002	x
238	247	haploid	06050331_0001	x
239	248	haploid	06060728_0002	x
240	249	haploid	06080109_0001	x
241	250	haploid	06101048_0001	x
242	251	haploid	06051077_0001	x
243	252	haploid	06040106_0003	x
244	253	haploid	06040302_0002	x
245	254	haploid	06110121_0001	x
246	255	haploid	06090845_0001	x
247	256	haploid	06060375_0001	x
248	257	haploid	06070494_0001	x
249	258	haploid	06040938_0003	x
250	259	haploid	06081010_0001	x
251	260	haploid	06070415_0003	x
252	261	haploid	07010776_0001	x
253	262	haploid	06120900_0001	x
254	263	haploid	06120316_0001	x
255	264	haploid	06121413_0001	x
256	265	haploid	06090247_0001	x
257	266	haploid	06090247_0002	x
258	267	haploid	06090801_0001	x
259	268	haploid	06041160_0002	x
260	269	haploid	06031248_0001	x
261	270	haploid	07010075_0001	x
262	271	haploid	07011039_0001	x
263	272	haploid	06041232_0001	x
264	273	haploid	06101271_0002	x
265	274	haploid	06005066_0001	x
266	275	haploid	06006012_0001	x
267	276	haploid	07020168_0001	x
268	277	haploid	06090909_0002	x
269	278	haploid	06080869_0001	x
270	279	haploid	0605/39-04	2x
271	280	haploid	060791-10	2x
272	281	haploid	0612/84-05	2x
273	282	haploid	0612/75-07	2x
274	283	haploid	06143/04-10	2x
275	284	haploid	06147/21-05	2x
276	285	haploid	06147/21-05	2x

Dunwell et al. BMC Plant Biology 2010, 10:218
http://www.biomedcentral.com/1471-2229/10/218
277	7	commercial pisifera BL148/05-08 2x
278	8	commercial pisifera BL158/A2-13 2x
279	1	commercial tenera BL1042/207-02 2x
280	2	commercial tenera BL10523/104-06 2x
281	3	commercial tenera BL1177/184-09 2x
282	1	commercial dura BL10887/08-22 2x
283	2	commercial dura BL10885/08-27 2x
284	3	commercial dura BL1221/51-14 2x
285	4	commercial dura BL1222/32-02 2x
286	5	commercial dura BL1224/14-19 2x
287	6	commercial dura BL1231/02-01 2x
288	7	commercial dura BL1235/14-01 2x
289	8	commercial dura BL1125/03-02 2x
290	9	commercial dura BL1124/17-09 2x
291	10	commercial dura BL1136/01-02 2x
292	11	commercial dura BL10868/12-10 2x
293	12	commercial dura BL10868/12-11 2x
294	13	commercial dura BL10868/12-13 2x
295	14	commercial dura BL10879/08-06 2x
296	15	commercial dura BL10879/08-07 2x
297	16	commercial dura BL10879/08-09 2x
298	17	commercial dura BL10883/04-06 2x
299	18	commercial dura BL10883/04-08 2x
300	19	commercial dura BL10883/04-09 2x
301	20	commercial dura BL10883/05-06 2x
302	21	commercial dura BL10891/04-23 2x
303	22	commercial dura BL10891/04-24 2x
304	23	commercial dura BL10891/05-22 2x
305	24	commercial dura BL10891/05-23 2x
306	25	commercial dura BL10873/52-18 2x
307	26	commercial dura BL10873/52-19 2x
308	27	commercial dura BL10873/52-21 2x
309	28	commercial dura BL10873/53-19 2x
310	29	commercial dura BL1229/48-15 2x
311	30	commercial dura BL1230/42-15 2x
312	31	commercial dura A1122/04-01 2x
313	32	commercial dura A1122/12-05 2x
314	33	commercial dura A1122/12-08 2x
315	34	commercial dura A1122/36-02 2x
316	35	commercial dura A1123/01-02 2x
317	36	commercial dura A1123/01-06 2x
318	37	commercial dura A1123/01-07 2x
319	38	commercial dura A1123/01-12 2x
320	39	commercial dura A1130/02-02 2x
321	40	commercial dura A1130/02-06 2x
322	41	commercial dura A1130/02-10 2x
Table 6: Identification codes, oil palm type and ploidy level of oil palm genotypes used in the Principal Coordinates Analysis (Continued)

	Identification codes	Oil palm type	Ploidy level
323	A1130/02-16 2x	commercial dura	2x
324	A1127/08-16 2x	commercial dura	2x
325	A1127/08-06 2x	commercial dura	2x
326	A1127/05-11 2x	commercial dura	2x
327	A1127/05-03 2x	commercial dura	2x
328	B1134/35-09 2x	commercial dura	2x
329	B1133/07-10 2x	commercial dura	2x
330	B1136/21-11 2x	commercial dura	2x
331	B1136/21-12 2x	commercial dura	2x
332	C1128/07-14 2x	commercial dura	2x
333	C1121/13-08 2x	commercial dura	2x
334	BL11508/111-1 2x	commercial dura	2x
335	BL11396/11-21 2x	commercial dura	2x
336	K31-1/GHANA/1-1 2x	Ghana wild	2x
337	K31-1/GHANA/41-498 2x	Ghana wild	2x
338	K31-1/GHANA/39-875 2x	Ghana wild	2x
339	K31-1/GHANA/31-430 2x	Ghana wild	2x
340	K31-1/GHANA/26-629 2x	Ghana wild	2x
341	K31-1/GHANA/24-1164 2x	Ghana wild	2x
342	K31-1/GHANA/56-1185 2x	Ghana wild	2x
343	K31-1/GHANA/29-1087 2x	Ghana wild	2x
344	K31-1/GHANA/38-1193 2x	Ghana wild	2x
345	K31-1/GHANA/43-994 2x	Ghana wild	2x
346	K31-1/GHANA/8-1100 2x	Ghana wild	2x
347	K31-1/GHANA/11-1192 2x	Ghana wild	2x
348	K31-1/GHANA/35-1190 2x	Ghana wild	2x
349	K31-1/GHANA/3-46 2x	Ghana wild	2x
350	K31-1/GHANA/5-102 2x	Ghana wild	2x
351	K31-1/GHANA/7-121 2x	Ghana wild	2x
352	K31-1/GHANA/12-239 2x	Ghana wild	2x
353	K31-1/GHANA/14-350 2x	Ghana wild	2x
354	K31-1/GHANA/18-368 2x	Ghana wild	2x
355	K31-1/GHANA/19-245 2x	Ghana wild	2x
356	K31-1/GHANA/21-1180 2x	Ghana wild	2x
357	K31-1/GHANA/32-1141 2x	Ghana wild	2x
358	K31-1/GHANA/37-1124 2x	Ghana wild	2x
359	K31-1/GHANA/45-448 2x	Ghana wild	2x
360	K31-1/GHANA/47-1175 2x	Ghana wild	2x
361	K31-1/GHANA/50-1037 2x	Ghana wild	2x
362	K31-1/GHANA/52-547 2x	Ghana wild	2x
363	K31-1/GHANA/53-1167 2x	Ghana wild	2x
364	K31-1/GHANA/54-1196 2x	Ghana wild	2x
365	K31-1/GHANA/57-1153 2x	Ghana wild	2x
using distance matrix with standardization (by dividing the distance inputs by the square root of $n-1$). Here, Hs were treated as the DHs they were assumed to generate; thus genotypes were homozygous not hemizygous.

Colchicine treatment

Roots of confirmed haploid seedlings were washed and immersed in 2.5, 5.0, 7.5, or 10 mM aqueous colchicine for 5 h. Seedlings were then rinsed with water and planted (2:1:1 v/v compost, sand and soil).

Cross-fertilization using pollen from H plants

A developing male inflorescence of a confirmed H at the PMC stage was treated with 2.5 mM colchicine via injection into the spathe. This treatment was repeated at weekly intervals. The resultant pollen (0.03 g) was applied to a targeted section of the female inflorescence of a diploid dura palm. The inflorescence was then bagged to prevent inadvertent wind pollination.

In addition, some untreated H plants contained up to 30% fully stained pollen using Fluorescein diacetate (FDA) that was presumed to be viable. Pollen from these plants and from palms with apparently inviable pollen (unstained) was applied to targeted sections of a female inflorescence of diploid dura palms in the same way as above.

Acknowledgements

This work was funded by Sumatra Bioscience as part of their R&D programme in oil palm. The authors are grateful for the assistance of all staff of the Breeding Department and Seed Production Unit at Bah Lias Research Station, Indonesia.

Table 7 Primer pairs used in the Principal Coordinates Analysis to compare the genetic diversity and affinities of Hs compared with a representative sample of commercial and wild diploid palms (listed in Table 6)

No	Primer	Forward (5’-3’)	Reverse (5’-3’)
1	1996	CACTGGGTGATCCTCCTACCT	TGGTCTGGTCTCTTTTTGC
2	2215	GAAGTGCCGTCGTAACT	CAGGTGACCAAGTGATTT
3	2427	GAAGGGGCATTGGATTT	CCAGATCAGCCAGCAGAG
4	2569	CTAAGCGGAGCCACACAAAG	AATCTGGCGCTCTCTGAGCTTA
5	2600	GGGATGAGTTGTTGTTGTC	GGGCAACTAGAAAGT
6	3282	GATAACGATGACACACTTAC	GCAGGCGAGAGTAGGTAATG
7	3298	GACCTACCTCCCGTCCAG	TTATTAGGTTGTTTGAGAG
8	3311	AAAGAAGGAGGACGTAG	TCCCTACTAAAGCCCTC
9	3321	AAAGGCGGAGGTAAGTG	TGGGCGCTGTTGCTACAC
10	3399	AGCCAAATGGAAGGATAAAG	CCACATAGGGGAAACACAG
11	3400	GATTCCAGGCGTATATAG	AGTGGCACGAAAAAGG
12	3433	GGTTCAACGACATGACTAC	ACTCTCCAGTTGACAT
13	3538	TCAAGCCATCACCACACTAC	TCTAGAGGTTGTTGTG
14	3544	AGCAGGGAAGGACGAACACT	TTCAGGAGCAAGAAAACAT
15	3546	GCTACAGGCTGATATATG	TTGTTTGGGAAAGGACTAC
16	3574	AGAGACCATGCTGCTGAT	CAGAAAGGCTTGTGACAC
17	3711	GCTCATCAGGCTGACACTTC	GCTGTTGAAAAAAAGT
18	3819	CCAAACTGGGATATG	GGGGCGGAGAAACAAAGT
19	219	TGGTCTGGCGGATACAT	GAGGAGAGGAGAAAAGT
20	257	GCAGCAGTGCAGATCGAAC	GACGAGAAGGAAGATG
21	782	CGTGATCCACCCACCTTTG	GCTGGAGGCCCATGATA
22	783	GAATGTGGGTGAAGTGGTGT	AACCCGAGGGAAGCATCTAGAA
23	882	TGGTCTGGAGCATACATGTA	AAAGGGCGTAATCTCAGAT
24	894	TGGTCTGGTACGATACATA	CCAGCTTGCAAAGGATAA
25	3213	GCCTGTTGATTTTGGTCT	AGCCAGAACCCTCCTACTA
26	3791	GCATCTGAGCACTACACTAC	TTGTAACCGGAGAAGACTAC
27	3819	CCGATCACGAAGTCCCAAAC	TCAAAATAAGGAAAGTGC

All primers except VS1 were taken from Billotte et al. [27].
Author details

1 School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AS, UK. Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK. 2 Sumatra Bioscience Pte Ltd, 8 Eu Tong Sen Street, #16-94/95 The Central, 059818, Singapore. 3 PT Sumatra Bioscience, Bahl Lias Research Station, North Sumatra, Indonesia. 4 BioHybrids International Ltd, Earley, Reading, RG6 5FY, UK. 5 Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, 2 Norte 685, Talca, Chile.

Authors’ contributions

JMD, PDSC, SN and MJW conceived the project. SN, BPF and ACS supervised the phenotypic screen and flow cytometry. MJW supervised the molecular analysis conducted by SW, AEC, CSF and YA, and the cytology conducted by DM. JMD and MJW wrote the manuscript and all authors discussed the results and commented on the manuscript.

Competing interests

JMD, MJW, AEC and CSF have received research funding from BioHybrids International Ltd; SN, SW, ACS, DM and YA are employed fully or in part by Sumatra Bioscience; BPF is contracted to BioHybrids International Ltd; PDSC is Managing Director of BioHybrids International Ltd.

Received: 2 June 2010 Accepted: 7 October 2010 Published: 7 October 2010

References

1. Duvić DN: Biotechnology in the 1930s: the development of hybrid maize. Nature Rev Genet 2001, 2:69-73.
2. Hone T, Shiraia T, Hormna K, Katsura K, Maeda S, Yoshida H: Can yields of lowland rice resume the increases that they showed in the 1980s? Plant Prod Sci 2005, 8:259-274.
3. Forster BP, Thomas WTB: Doubled haploids in genetics and plant breeding. Plant Breeding Rev 2005, 25:57-88.
4. Cook RR: A haploid Marglobe tomato. J Hered 1936, 27:433-435.
5. Maluszynski M, Kashia KJ, Szarejko I: Published protocols for other crop plant species. In Doubled Haploid Production in Crop Plants: A Manual. Edited by: Maluszynski M, Kashia KJ, Forster BP, Szarejko I. Dordrecht: Kluwer; 2003:309-335.
6. Dunwell JM: Haploids in flowering plants: origins and exploitation. Plant Biotech J 2010, 8:377-424.
7. Kelly-Yong TL, Lee KT, Mohamed AR, Bhatia S: Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy 2007, 35:5692-5701.
8. Basiron Y: Palm oil production through sustainable plantations. Eur J Lipid Sci Technol 2007, 109:289-295.
9. Food and Agriculture Organization of the United Nations. Agricultural Production Statistics. [http://faostat.fao.org/].
10. Stone R: Ecology - Can palm oil plantations come clean? Science 2007, 317:1491.
11. Wilcove DS, Koh LP: Addressing the threats to biodiversity from oil-palm agriculture. Biodivers Conserv 2010, 19:999-1007.
12. Koh LP, Wilcove DS: Cashing in palm oil for conservation. Nature 2007, 448:993-994.
13. Clements R, Posa MRC: Conservationists could slip up in oil-palm enterprise. Nature 2007, 449:403.
14. Venter O, Meijaard E, Wilson K: Strategies and alliances needed to protect forest from palm-oil industry. Nature 2008, 451:16.
15. Carley RH: Potential productivity of tropical perennial crops. Exp Agric 1983, 19:217-237.
16. Murphy DJ: Oil palm: future prospects for yield and quality improvements. Lipid Technology 2009, 21:257-260.
17. Jones LH: Prospects for biotechnologoy in oil palm (Elaeis guineensis) and coconut (Cocos nucifera) improvement. Biotech Gen Eng Rev 1989, 7:281-296.
18. Whitehead RA, Chapman GP: Twinning and haploidy in Cocos nucifera. Nature 1962, 195:1228-1229.
19. Bouvier L, Zhang XY, Lespinasse Y: Two methods of haploidization in pear, Pyrus communis L.; greenhouse seedling selection and in situ parthenogenesis induced by irradiated pollen. Theor Appl Genet 1993, 87:229-232.
20. Germana MA: Haploids and doubled haploids in fruit trees. In Advances in Haploid Production in Higher Plants. Edited by: Touraev A, Forster BP, Jain SM. The Netherlands: Springer-Verlag, 2009:241-263.
21. Lim W, Earle ED: Enhanced recovery of doubled haploid lines from parthenogenetic plants of melon. Plant Cell Tiss Org 2009, 98:351-356.
22. Finkel E With ‘phonemics,’ plant scientists hope to shift plant breeding into overdrive. Science 2009, 325:380-381.
23. Rejniers L, Huijbrechts MAJ: Palm oil and the emission of carbon-based greenhouse gases. J Clean Product 2008, 16:477-482.
24. Parveez GIA: Biotic mediated production of transgenic oil palm. Method Mol Biol 2009, 477:301-320.
25. Persson UM, Azar C: Preserving the world’s tropical forests - a price on carbon may not do. Environ Sci Technol 2010, 44:210-215.
26. Crawford AE, Rogers T, Caligari PDS, Wilkinson MJ: High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (Lupinus albus) map as an exemplar. New Phytol 2008, 180:594-607.
27. Bilotte N, Marsellić N, Risterucci AM, Adon B, Rottier P, Baurens FC, Singh R, Herran A, Asmady H, Billot C, Ambland P, Durand-Gasselin T, Courtot B, Aronson D, Cheah SC, Rohde W, Ritter E, Charrier A: Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 2005, 110:759-765.
28. Bilotte N, Risterucci AM, Barcelos E, Noyer J-L, Ambland P, Baurens FC: Development, characterisation, and across-taxon utility of oil palm (Elaeis guineensis Jacq.) microsatellite markers. Genome 2001, 44:413-425.
29. Arumuganathan K, Earle ED: Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 1991, 9:221-231.
30. Peakall R, Smouse PE: GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 2006, 6:288-295.
31. Orloci L: Multivariate analysis in vegetation research. Boston: The Hague; 1978.

doi:10.1186/1471-2229-10-218

Cite this article as: Dunwell et al.: Production of haploids and doubled haploids in oil palm. BMC Plant Biology 2010 10:218.