Research Article
iTRAQ-Based Proteomic Analysis of Ginsenoside F2 on Human Gastric Carcinoma Cells SGC7901

Qian Mao,1 Pin-Hu Zhang,2 Jie Yang,3 Jin-Di Xu,1 Ming Kong,1 Hong Shen,1 He Zhu,1 Min Bai,1 Li Zhou,1 Guang-Fu Li,4 Qiang Wang,3 and Song-Lin Li1

1Department of Pharmaceutical Analysis & Metabolomics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
2Jiangsu Center for New Drug Screening & National New Drug Screening Laboratory, China Pharmaceutical University, Nanjing 210009, China
3Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing 210009, China
4Department of Surgery, The Medical University of South Carolina, Charleston, SC 29466, USA

Correspondence should be addressed to Qiang Wang; qwang49@126.com and Song-Lin Li; songlinli64@126.com

Received 12 May 2016; Revised 4 August 2016; Accepted 25 August 2016

Academic Editor: Isabel Andújar

Copyright © 2016 Qian Mao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ginsenoside F2 (F2), a protopanaxadiol type of saponin, was reported to inhibit human gastric cancer cells SGC7901. To better understand the molecular mechanisms of F2, an iTRAQ-based proteomics approach was applied to define protein expression profiles in SGC7901 cells in response to lower dose (20 𝜇M) and shorter duration (12 hour) of F2 treatment, compared with previous study. 205 proteins were screened in terms of the change in their expression level which met our predefined criteria. Further bioinformatic and experiments demonstrated that F2 treatment downregulated PRR5 and RPS15 and upregulated RPL26, which are implicated in ribosomal protein-p53 signaling pathway. F2 also inhibited CISD2, Bcl-xl, and NLRX1, which are associated with autophagic pathway. Furthermore, it was demonstrated that F2 treatment increased Atg5, Atg7, Atg10, and PUMA, the critical downstream effectors of ribosomal protein-p53 signaling pathway, and Beclin-1, UVRAG, and AMBRA-1, the important molecules in Bcl-xl/Beclin-1 pathway. The 6 differentially abundant proteins, PRR5, CISD2, Bcl-xl, NLRX1, RPS15, and RPL26, were confirmed by western blot. Taken together, ribosomal protein-p53 signaling pathway and Bcl-xl/Beclin-1 pathway might be the most significantly regulated biological process by F2 treatment in SGC7901 cells, which provided valuable insights into the deep understanding of the molecular mechanisms of F2 for gastric cancer treatment.

1. Introduction

Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related death worldwide. Annually it results in approximately 700,000 deaths [1]. Currently, chemotherapy has proved to decrease the rate of recurrence and improve overall survival; however, the drug resistance and serious toxic side effects largely reduce therapeutic efficacy and quality of life in patients [2, 3]. In recent years, compounds of natural products have caught wide attention due to their promising anticancer effects and minimal side effects [4–7]. Therefore, it is very necessary to develop new optimal anticancer agent from natural resource [3].

Ginsenosides, the major bioactive constituents in ginseng, have been demonstrated to exert potential anticancer ability [4, 5]. Exploration of ginsenoside as a new anti-carcinogenic agent is of much interest [4–7]. Structural-function studies showed that the increased antitumor effect is implicated with the decrease of its sugar number [5]. Sugar moiety at C-6 significantly reduces the anticancer activities of ginsenosides. Ginsenoside F2 (see structure in Figure 1), a protopanaxadiol type ginsenoside with one sugar molecular at C-3 and one sugar molecular at C-20, has been shown to be potent in inhibiting tumorigenesis in several different cancers including gastric tumor and glioblastoma multiforme [6, 7]. Recently, our in vitro and in vivo studies demonstrated that...
ginsenoside F₂ possesses anticancer effects in human gastric carcinoma cells SGC7901 [6]. However, the involved exact mechanisms of ginsenoside F₂ on SGC7901 cancer cells at proteome level have not been systemically investigated.

Advancements in the field of proteomics have made it possible to accurately monitor and quantitatively detect the changes of protein expression in response to drug treatment. The achieved data provide valuable insights into the molecular mechanisms of disease and help to identify therapeutic targets [8]. Isobaric tag for relative and absolute quantification (iTRAQ) is a robust mass spectrometry technique that allows quantitative comparison of protein abundance by measuring peak intensities of reporter ions released from iTRAQ-tagged peptides by fragmentation. iTRAQ with multiplexing capability up to eight distinct samples in a single experiment and relatively higher sensitivity has gained significant interest in the field of quantitative proteomics. In the present study, SGC7901 cells treated by lower dose and a shorter duration than that in previous report were analyzed by iTRAQ-based proteomics integrated with bioinformatics using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Cluster of Orthologous Groups (COG) of proteins database. And network analysis was applied to identify critical molecules which are involved in anticancer mechanisms of ginsenoside F₂ in gastric SGC7901 cells. General molecular biological techniques such as western blot were utilized for validation.

2. Materials and Methods

2.1. Reagents and Antibodies. Ginsenoside F₂ was isolated previously from leaves of Panax ginseng by a series of chromatographic procedures [9]. Ginsenoside F₂ has a molecular mass of 784 Da and was isolated with 98% purity. Primary antibodies of PR5, CISD2, Bcl-2L, NLRX1, RPS15, RPL26, p53, PUMA, Beclin-1, UVRAG, AMBRA-1, mTOR, LC3-II, LC3-I, and β-actin together with all secondary antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA). The Atg5, Atg7, and Atg10 antibodies were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

2.2. Cell Culture and Treatment. SGC7901 cells were purchased from American Type Culture Collection and maintained in Dulbecco’s modified Eagle’s medium (Hyclone) supplemented with 10% fetal bovine serum (FBS), 100 μg/mL streptomycin, and 100 μg/mL penicillin and grown at 37°C in 5% carbon dioxide.

2.3. Protein Preparation. In one of our recent reports [6], we have shown that the IC₅₀ of ginsenoside F₂ is in <50 μM in 24 hours. In order to characterize ginsenoside F₂-related mechanism it is imperative to use samples that are at the early stages of ginsenoside F₂ treatment. So, a lower dose than the IC₅₀ (20 μM) and a shorter duration (12 hours in the study) were chosen in the study. The treated (20 μM) and untreated SGC7901 cells were suspended in the lysis buffer and sonicated in ice.

The proteins were reduced with 10 mM DTT (final concentration) at 56°C for 1 h and then alkylated by 55 mM iodoacetamide (IAM) (final concentration) in the darkroom for 1 h. The reduced and alkylated protein mixtures were precipitated by adding 4x volume of chilled acetone at −20°C overnight. After centrifugation at 4°C, 30 000 × g, the pellet was dissolved in 0.5 M triethylammonium bicarbonate (TEAB) (Applied Biosystems, Milan, Italy) and sonicated in ice. After centrifuging at 30 000 × g at 4°C, the supernatants were collected, and the total protein concentration was determined using a Bradford protein assay kit (BioRad, Hercules, CA, USA). The proteins in the supernatant were kept at −80°C for further analysis.

2.4. iTRAQ Labeling and SCX Fractionation. Total protein (100 μg) was taken out of each sample solution and then the protein was digested with Trypsin Gold (Promega, Madison, WI, USA) with the ratio of protein : trypsin = 30 : 1 at 37°C for 16 hours. iTRAQ labeling was performed according to the iTRAQ Reagents-8plex labeling manual (AB SCIEX, Madrid, Spain). Briefly, one unit of iTRAQ reagent was thawed and reconstituted in 24 μL isopropanol. iTRAQ labels 113 were used to label control sample separately, and 115 and 117 were used to label twice F₂-treated samples for duplicated experiment. The peptides were labeled with the isobaric tags, incubated at room temperature for 2 h. The labeled peptide mixtures were then pooled and dried by vacuum centrifugation.

The mixed peptides were fractionated by strong cation exchange (SCX) chromatography on a LC-20AB HPLC Pump system (Shimadzu, Kyoto, Japan). The iTRAQ labeled peptide mixtures were reconstituted with 4 mL buffer A (25 mM NaH₂PO₄ in 25% acetonitrile, pH 2.7) and loaded onto a 4.6 ×
2.5. LC-ESI-MS/MS Analysis Based on Q EXACTIVE. Each fraction was resuspended in buffer A (2% acetonitrile, 0.1% FA) and centrifuged at 20,000 g for 10 min. In each fraction, the final concentration of peptide was about 0.5 μg/μL. 10 μL supernatant was loaded on a LC-20AD nano-HPLC (Shimadzu, Kyoto, Japan) by the autosampler onto a 2 cm C18 trap column. Then, the peptides were eluted onto a 10 cm analytical C18 column (inner diameter 75 μm) packed in-house. The samples were loaded at 8 μL/min for 4 min; then the 44 min gradient was run at 300 nL/min starting from 2 to 35% B (98% acetonitrile, 0.1% FA), followed by 2-minute linear gradient to 80%, maintenance at 80% B for 4 min. Initial chromatographic conditions were restored in 1 min.

Data acquisition was performed with tandem mass spectrometry (MS/MS) in a Q EXACTIVE (Thermo Fisher Scientific, San Jose, CA) coupled online to the HPLC. Intact peptides were detected in the Orbitrap at a resolution of 70,000. Peptides were selected for MS/MS using high-energy collision dissociation (HCD) operating mode with a normalized collision energy setting of 27.0; ion fragments were detected in the Orbitrap at a resolution of 17,500. In the octopole collision cell, the ten most intense peptide ions (charge states ≥ 2) were sequentially isolated to a maximum target value of 5 × 10^6 by pAGC and fragmented HCD. A data-dependent procedure that alternated between one MS scan and 15 MS/MS scans was applied for the 15 most abundant precursor ions above a threshold ion count of 20,000 in the MS survey scan with a following Dynamic Exclusion duration of 15 s. The electrospray voltage applied was 1.6 kV. Automatic gain control (AGC) was used to optimize the spectra generated by the Orbitrap. A sweeping collision energy setting of 35 ± 5 eV was applied to all precursor ions for collision-induced dissociation. The AGC target for full MS was 3e6 and 1e5 for MS². For MS scans, the m/z scan range was 350 to 2000 Da. For MS² scans, the m/z scan range was 100–1800 Da. The iTRAQ experiments were performed as three technical replicates to gather reliable quantitative information.

2.6. Data Analysis. Raw data files acquired from the Orbitrap were converted into MGF files using Proteome Discoverer 1.2 (PD1.2, Thermo) [5600 msconvertor] and the MGF files were searched. Protein identifications were performed by using Mascot search engine (Matrix Science, London, UK; version 2.3.02) against database containing 143,397 sequences. For protein identification and quantification, a peptide mass tolerance of 20 ppm was allowed for intact peptide masses and 0.05 Da for fragmented ions, with allowance for one missed cleavage in the trypsin digests. Carboxamidomethylation of cysteine was considered a fixed modification, and the conversion of N-terminal glutamine to pyroglutamic acid and methionine oxidation were considered variable modifications. All identified peptides had an ion score above the Mascot peptide identity threshold, and a protein was considered identified if at least one such unique peptide match was apparent for the protein. To reduce the probability of false peptide identification, only peptides at the 95% confidence interval by a Mascot probability analysis greater than “identity” were counted as identified. The quantitative protein ratios were weighted and normalized by the median ratio in Mascot. We set a 1.2-fold change as the threshold and a p value must be below 0.05 to identify significant changes.

2.7. Function Method Description. Functional annotations of the proteins were conducted using Blast2 GO program against the nonredundant protein database (NR; NCBI). The KEGG database (http://www.genome.jp/kegg/) and the COG database (http://www.ncbi.nlm.nih.gov/COG/) were used to classify and group these identified proteins.

GO is an international standardization of gene function classification system. It provides a set of dynamic updating controlled vocabulary to describe genes and gene products attributes in the organism. GO has 3 ontologies which can describe molecular function, cellular component, and biological process, respectively.

COG is the database for protein orthologous classification. Every protein in COG is supposed to derive from a same protein ancestor.

KEGG PATHWAY is a collection of manually drawn pathway maps representing our knowledge on the molecular interaction and reaction networks. Molecules are represented as nodes, and the biological relationship between two nodes is represented as an edge (line).

2.8. Western Blot. Western blot analyses were performed to confirm the presence of differentially expressed proteins. After the treatment of the indicated concentration of ginsenoside F2 (10, 20, and 40 μM) for 12 h, cells were harvested, washed with cold PBS (pH 7.4), and lysed with ice-cold lysis buffer (50 μM Tris-HCl, 150 μM NaCl, 1 μM EGTA, 1 μM EDTA, 20 μM NaF, 100 μM Na3VO4, 1% NP40, 1 μM PMSF, 10 μg/mL aprotinin, and 10 μg/mL leupeptin, pH 7.4) for 30 min and centrifuged at 12,000 × g for 30 min at 4°C. The protein concentration of the clear supernatant was quantified using Bio-Rad Protein Assay Kit.

Approximately 30 μg of protein was loaded into a 10–15% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). Thereafter, proteins were electrophoretically transferred to nitrocellulose membrane and nonspecific sites were blocked with 5% skimmed milk in 1% Tween-20 (Sigma-Aldrich) in 20 μM TBS (pH 7.5) and reacted with a primary polyclonal antibody, PRR5, CISD2, Bcl-2L, NLRX1, RPS25, RPL26, p53, Atg5, Atg7, Atg10, LC3-II, LC3-I PUMA, Beclin-1, UVRAG, and β-actin.
for 4 h at room temperature. After washing with TBS three times (5 min each), the membrane was then incubated with alkaline phosphatase-conjugated goat anti-rabbit secondary antibody. The signal was observed and developed with Kodak film by exposure to enhanced chemiluminescence (ECL) plus western Blotting Detection Reagents (Amersham Biosciences, Piscataway, NJ, USA).

2.9. Statistical Analysis. For cell-based assay, experiments were performed in duplicate and three independent experiments were performed. Western blot analyses of differential protein expressions were validated on cell lysates from three biological replicates. Statistical significance was analyzed using Student’s t-test or ANOVA test by using GraphPad Prism v4.0 software (GraphPad Software, San Diego, CA, USA). Statistical significance is expressed as ∗∗∗ 𝑃 < 0.001; ∗∗ 𝑃 < 0.01; ∗ 𝑃 < 0.05.

3. Results

3.1. Proteome Analysis. Human gastric carcinoma cells (SGC7901) are treated with ginsenoside F2 at a dose of 20 μM for 12 hours. The harvested proteins are used to perform iTRAQ for quantifying the difference of total 31853 peptides and 5411 proteins in SGC7901 cells with or without treatment. Finally, 205 proteins were screened out in terms of the change in their expression level which meet our predefined criteria of 𝑝 < 0.05 with relative expression levels at least >1.2-fold (Table 1) or <0.83-fold (Table 2) (both 113/115 and 113/117) in ginsenoside F2-treated group compared with the control group. The protein properties, including pi, molecular weight (MW), and number of residues were calculated by Mascot. The results are highly reproducible in two individual experiments.

3.2. Classification of Differentially Expressed Proteins. Firstly, screened proteins were functionally catalogued with GO and WEGO to three different groups (Figures 2 and 3(a)): biological process (BP), cellular component (CC), and molecular function (MF). As shown in Figure 2, the proteins are involved in BP including cellular process (13.44%), metabolic process (11.16%), single-organism process (10.36%), biological regulation (8.06%), and regulation of biological process (7.59%). The identified proteins separated according to CC include cell (19.40%), cell part (19.40%), organelle (16.68%), organelle part (12.46%), membrane (7.97%), and macromolecular complex (7.94%). MF of the proteins was classified and large groups were found to be binding (50.59%), catalytic activity (27.97%), enzyme regulator activity (3.94%), transporter activity (3.84%), and structural molecular activity (3.43%).

Further COG function classification revealed that post-translational modification, protein turnover, and ribosomal structure biogenesis were major function of the screened 205 proteins (Figure 3(b)). In each category of BP, CC, and MF, top twenty proteins which generated bigger difference in response to ginsenoside F2 treatment are listed in Figure 4.

KEGG is a publicly available pathway database and could provide biologists excellent resources to attain a deeper understanding of biological mechanisms in response to different treatments. Protein analysis through KEGG indicated that 205 differentially expressed proteins were involved in 128 different pathways (data not shown). The connection degree between proteins is calculated by protein-protein interaction network analysis and the results are shown in Figure 5. Among these proteins, PRR5, RPS15, and RPL26 were found in ribosomal protein signaling pathway; CISD2, Bcl-xl, and NLRX1 were found in Beclin-1/Bcl-xl pathway. Therefore, PRR5, RPS15, RPL26, CISD2, Bcl-xl, and NLRX1 were selected for further validation and study in order to provide a comprehensive perspective for elucidating underlying molecular mechanisms of ginsenoside F2.

3.3. Western Blot Analysis

3.3.1. For Verification. To validate the information obtained from the iTRAQ-based quantitative proteomics study and bioinformatics analysis, the screened proteins with strong response to ginsenoside F2 treatment were further confirmed by western blot. As shown in Figure 6, ginsenoside F2 significantly reduced protein expressions of PRR5, CISD2, Bcl-xl, NLRX1, and RPS15 (𝑝 < 0.01) and enhanced the expression of the RPL26 (𝑝 < 0.01) in SGC7901 cells in comparison with the treatment with vehicle control.

3.3.2. For Determining the Expression of Apoptosis and Autophagic Proteins. As shown in Figure 6, ginsenoside F2 suppressed the expression of mTOR and upregulated the expression of p53 in a dose-dependent manner. Atg5, Atg7, Atg10, PUMA, Beclin-1, UVRAG, and AMBRA-1 are known to be modulated by p53 or Bcl-xl signaling, which may trigger apoptosis or autophagy. Therefore, we proceeded to check the expressions of Atg5, Atg7, Atg10, PUMA, Beclin-1, UVRAG, and AMBRA-1. As shown in Figure 7, ginsenoside F2 upregulated the expressions of these proteins in a dose-dependent manner. LC3 is now widely used to monitor autophagy. During autophagy, the cytoplasmic form LC3-I is processed and recruited to phagophores, where LC3-II is generated by site-specific proteolysis and lipidation at the C-terminus. Thus, the amount of LC3-II positively correlates with the number of autophagosomes [10]. We examined the effect of F2 on LC3 conversion in SGC7901 cells. Western blot analysis showed that F2 treatment resulted in dose-dependent accumulation of LC3-II and reduction of LC3-I (Figure 7). The conversion of LC3-I to LC3-II suggested F2 treatment induces autophagy.

In the present study, combination of iTRAQ-based proteomics method with bioinformatics was used to identify critical molecules in SGC7901 cancer cells in response to ginsenoside F2 treatment. Ginsenoside F2 generated significant change of protein profile in SGC7901 cells. Some of them have been demonstrated to participate in either apoptosis or autophagy responses, suggesting that the antitumor mechanisms of ginsenoside F2 in SGC7901 cells are involved in both apoptosis and autophagy. The current findings demonstrate that ginsenoside F2 impacts distinct signaling pathways and induces broad change in the protein profile of SGC7901 cells. Overall, 205
Rank #	Accession	Gene symbol (GN)	Definition (description)	Score	Mass	Cov%	Ratio	COG function-description	
Up 1	sp	P07305-2	H1F0	Isoform 2 of histone H1.0	51	35582	13	2.11	—
Up 2	sp	P20962	PTMS	Parathymosin	503	15782	23.5	1.32	—
Up 3	tr	B8ZW1D1	DBI	Diazepam binding inhibitor, splice form 1A(2)	121	15706	28.9	1.31	Acyl-CoA-binding protein
Up 4	sp	Q16576	RBBP7	Histone-binding protein RBBP7	877	55737	24.5	1.25	FOG: WD40 repeat
Up 5	sp	P46779-2	RPL28	Isoform 2 of 60S ribosomal protein L28	524	22107	27.6	1.35	—
Up 6	tr	B2RS14	—	cDNA, FLJ92300, Homo sapiens COP9 subunit 6 (MOV34 homolog, 34 kD) (COPS6), mRNA	74	39068	20.2	1.22	Predicted metal-dependent protease of the PAD1/JAB1 superfamily
Up 7	tr	B3KY12	—	cDNA FLJ46581 fos, done THYMU3043200, highly similar to splicing factor 3A subunit 3	527	71859	22	1.24	Splicing factor 3a, subunit 3
Up 8	sp	Q7ID13	HIST2H3A	Histone H3.2	617	19694	26.5	1.40	Histones H3 and H4
Up 9	tr	Q9P0H9	RER1	RER1 protein	118	28927	22	1.26	Golgi protein involved in Golgi-to-ER retrieval
Up 10	tr	A8K3Q9	—	cDNA FLJ76611, highly similar to Homo sapiens ribosomal protein L14 (RPL14), mRNA	781	35114	25.9	2.24	Ribosomal protein L4E/L6E/L7E
Up 11	sp	Q9V3A2	UTP11L	Probable U3 small nucleolar RNA-associated protein II	94	44174	21.7	1.30	Uncharacterized conserved protein
Up 12	tr	F2Z388	RPL35	60S ribosomal protein L35	99	15372	32.2	1.35	Ribosomal protein L29
Up 13	sp	Q9NZZ3	CHMP5	Charged multivesicular body protein 5	268	32218	21	1.42	—
Up 14	tr	R2RD48	—	60S ribosomal protein L27	398	23061	36	1.28	Ribosomal protein L4E/L6E/L7E
Up 15	tr	M0QXF7	C9orf10	UPF0556 protein C9orf10 (fragment)	265	11851	25	1.24	—
Up 16	tr	D3DV26	S100A10	S100 calcium binding protein A10 (annexin II ligand, calpactin I, light polypeptide (P11), isoform CRA_b (fragment)	134	27935	8.3	1.21	—
Up 17	tr	H7C2N1	PTMA	Thymosin alpha-1 (fragment)	117	18283	8.8	1.30	—
Up 18	tr	G2XKQ0	—	Suno13	60	14938	11.9	1.22	Ubiquitin-like protein (sentrin)
Up 19	tr	I3L1Y9	FLYWCH2	FLYWCH family member 2	99	19302	47.2	1.45	—
Up 20	tr	M0R210	RPS16	40S ribosomal protein S16	1105	19391	57.4	1.27	Ribosomal protein S9
Up 21	sp	O43715	TRIAP1	TP53-regulated inhibitor of apoptosis 1	82	12050	18.4	1.36	—
Up 22	sp	P49207	RPL34	60S ribosomal protein L34	187	18684	20.5	1.66	Ribosomal protein L34E
Up 23	sp	Q92525	H1FX	Histone H1x	342	35250	25.4	1.33	—
Up 24	tr	J3KRX5	RPL17	60S ribosomal protein L17 (fragment)	795	27382	38.5	1.26	Ribosomal protein L22
Up 25	sp	P02795	MT2A	Metallothionein-2	104	9905	52.5	1.42	—
Up 26	tr	Q6F1E5	PHP14	PHP14 protein	72	17301	8.8	1.27	—
Up 27	tr	A0P362	RPL14	RPL14 protein (fragment)	536	21409	43.5	2.85	Ribosomal protein L4E/L6E/L7E
Up 28	tr	G3XAA2	MAP4K4	Mitogen-activated protein kinase kinase kinase kinase 4	142	156989	2.7	1.24	Serine/threonine protein kinase
Rank #	Accession	Gene symbol (GN)	Definition (description)	Score	Mass	Cov%	Ration	COG function-description	
-------	-----------	-----------------	--	-------	------	------	--------	--	
Up 29	tr	C9JNW5	RPL24	60S ribosomal protein L24	666	2464	32	1.67	Ribosomal protein L24E
Up 30	sp	Q13951	CBFB	Core-binding factor subunit beta	197	2446	18.1	1.20	—
Up 31	tr	D3DUE6	N-PAC	Cytokine-like nuclear factor n-pac, isoform CRA_c	239	7672	14.5	1.24	3-Hydroxyisobutyrate dehydrogenase and related beta-hydroxy acid dehydrogenases
Up 32	tr	K7EKW4	ISOC2	Isocitrate dehydrogenase domain-containing protein 2, mitochondrial (fragment)	130	2102	17.4	1.34	Amides related to nicotinamide
Up 33	sp	Q9NQ55-2	PPAN	Isoform 2 of Suppressor of SWI4 1 homolog	73	6371	10.7	1.37	—
Up 34	tr	B3KMF8	—	cDNA FLJ10869 f5, clone NT2RP4001677	127	1239	27.7	1.28	—
Up 35	sp	P62424	RPL7A	60S ribosomal protein L7a	613	4231	27.1	1.78	Ribosomal protein HS6-type (Sl2/L30/L7a)
Up 36	tr	B4E0X1	—	Beta-2-microglobulin	185	1709	13.1	1.25	—
Up 37	tr	H0Y7A7	CALM2	Calmodulin (fragment)	735	2420	30.5	1.26	Ca\(^{2+}\)-binding protein (EF-Hand superfamily)
Up 38	tr	J3KTJ8	RPL26	60S ribosomal protein L26 (fragment)	363	1555	34	1.24	Ribosomal protein L24
Up 39	tr	B4DJM5	—	cDNA FLJ61294, highly similar to keratin, type I cytoskeletal 17	326	2129	24.9	1.46	—
Up 40	sp	Q9Y3C1	NOP16	Nucleolar protein 16	79	2792	20.8	1.24	—
Up 41	sp	Q16543	CDC37	Hsp90 co-chaperone Cdc37	384	5773	29.6	1.22	—
Up 42	sp	P16401	HIST1H1B	Histone H1.5	801	4264	17.3	2.38	—
Up 43	sp	Q07866-3	KLC1	Isoform G of kinesin light chain 1	642	8182	23.9	1.24	FOG: TPR repeat
Up 44	tr	B4DKJ4	—	cDNA FLJ57738, highly similar to translationally controlled tumor protein	344	1925	32.4	1.28	—
Table 2: Differentially downregulated (<0.83-fold) proteins identified by iTRAQ in \(F_2 \) treated SGC7901 cells.

Rank #	Accession	Gene symbol (GN)	Definition (description)	Score	Mass	Cov%	Ration	COG function-definition	
Down 1	tr	F5H740	VDAC3 Voltage-dependent anion-selective channel protein 3	114	39598	41.5	0.81	—	
Down 2	sp	Q9H845	ACAD9 Acyl-CoA dehydrogenase family member 9, mitochondrial	311	81512	21.9	0.69	Acyl-CoA dehydrogenases	
Down 3	sp	Q96959-2	GFM2 Isoform 2 of ribosome-releasing factor 2, mitochondrial	153	94059	5.1	0.80	Translation elongation factors (GTPases)	
Down 4	sp	P35908	KRT2 Keratin, type II cytoskeletal 2 epidermal	338	76630	18.2	0.67	Myosin heavy chain	
Down 5	tr	B7Z8A2	— cDNA FLJ51671, highly similar to prenylcytochrome oxidase (EC 1.8.3.5)	492	63740	23.8	0.83	—	
Down 6	sp	Q9Y512	SAMM50 Sorting and assembly machinery component 50 homolog	170	59339	18.6	0.76	Outer membrane protein/proteic antigen OMA87	
Down 7	sp	Q6ZNW5	GDPGP1 GDP-D-glucose phosphorylase 1	118	45302	8.6	0.78	—	
Down 8	sp	P51970	NDUF8 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8	72	25720	15.1	0.68	—	
Down 9	tr	B4DRW0	— cDNA FLJ58125, highly similar to copper-transporting ATPase 1 (EC 3.6.3.4)	102	61873	6.1	0.78	Cation transport ATPase	
Down 10	tr	Q8NBW7	KDELRI ER lumen protein retaining receptor	51	20327	12.7	0.73	ER lumen protein retaining receptor	
Down 11	tr	B2R6F5	cDNA, FLJ92928, highly similar to Homo sapiens retina pigmentosa 2 (X-linked recessive) (RP2), mRNA	59	47451	2.3	0.82	—	
Down 12	tr	Q2VIN3	RBM1 (fragment)	1232	45756	26.8	0.81	RNA-binding proteins (RRM domain)	
Down 13	sp	P14174	— cDNA, FLJ93089, highly similar to Homo sapiens morphoreceptor 1 (NCK1), mRNA	137	53755	18.3	0.83	—	
Down 14	tr	B2R6S4	PCK2 Phosphoenolpyruvate carboxykinase [GTP], mitochondrial	1795	78784	41.6	0.74	Phosphoenolpyruvate carboxykinase (GTP)	
Down 15	tr	E9PM12	TCIRG1 V-type proton ATPase 116kDa subunit a isoform 3 (fragment)	63	25815	13.3	0.74	Archaeal/vacuolar-type \(H^+ \)-ATPase subunit I	
Down 16	sp	Q91090	TYSND1 Isoform 2 of peroxisomal leader peptide-processing protease	96	43618	9.8	0.67	—	
Down 17	tr	J3KPX7	PHB2 Prohibitin-2	1543	39466	51.8	0.82	Membrane protease subunits, stomatin/prohibitin homologs	
Down 18	tr	Q8NCF7	— cDNA FLJ90278 ffs, clone NT2RP1000325, highly similar to phosphatidyl carrier protein, mitochondrial precursor	517	48576	26.9	0.81	—	
Down 19	tr	B4E0R0	— cDNA FLJ54220, highly similar to Long-chain-fatty-acid-CoA ligase 1 (EC 6.2.1.3)	100	88560	6.2	0.74	Long-chain acyl-CoA synthetases (AMP-forming)	
Down 20	tr	B3KRY3	— cDNA FLJ30797 ffs, clone PLACE6005283, highly similar to lysosome-associated membrane glycoprotein 1	319	48851	11.1	0.79	—	
Down 21	tr	B3KU09	— cDNA FLJ90304 ffs, clone NT2RP7008085, highly similar to Homo sapiens ring finger protein 123 (RNF123), mRNA	110	166029	2.4	0.78	—	
Down 22	sp	Q9BVV7	TIMM21 Mitochondrial import inner membrane translocon subunit Tim21	86	35219	13.7	0.82	—	
Rank #	Accession	Gene symbol (GN)	Definition (description)	Score	Mass	Cov%	Ration	COG function-description	
--------	-----------	-----------------	-------------------------	-------	------	------	--------	--------------------------	
Down 24	sp	Q9UMY1	NOL7	Nucleolar protein 7	148	39504	12.5	0.78	—
Down 25	sp	Q9UNN8	PROC	Endothelial protein C receptor	103	27909	15.1	0.80	—
Down 26	sp	Q86SF2	GALNT7	N-Acetylgalactosaminyltransferase 7	95	89410	9.9	0.81	—
Down 27	tr	I3LQ1U2	PRSS21	Testisin (fragment)	115	27083	14.7	0.82	Secreted trypsin-like serine protease
Down 28	tr	B7ZLP5	SAFB	SAFB protein	557	121835	13	0.83	—
Down 29	tr	F2Z3N7	TMEM106B	Transmembrane protein 106B	135	12975	12.5	0.82	—
Down 30	tr	B7Z361	—	Reticulin	166	27838	12.2	0.76	—
Down 31	tr	H0Y6F2	PRR5	Proline-rich protein 5 (fragment)	57	39929	2.3	0.78	—
Down 32	sp	Q7Z7E8	UBE2Q1	Ubiquitin-conjugating enzyme E2 Q1	92	54711	1.9	0.76	—
Down 33	tr	A8K4K9	—	cDNA FLJ76169	146	42007	8.8	0.83	—
Down 34	sp	P3645	KRT10	Keratin, type I cytoskeletal 10	382	66321	21.6	0.55	—
Down 35	sp	Q8NSK1	CISD2	CDGSH iron-sulfur domain-containing protein 2	167	20364	26.7	0.81	—
Down 36	sp	Q8N127	THOC2	THO complex subunit 2	282	241732	8.7	0.83	—
Down 37	tr	B4DEP8	—	cDNA FLJ56959, highly similar to Homo sapiens phosphatidylinositol 4-kinase type II (PI4KII), mRNA	127	61711	9.8	0.76	—
Down 38	sp	Q5BKZ1	ZNF326	DBIRD complex subunit ZNF326	145	78123	7.9	0.78	—
Down 39	tr	Q8W24	EXOC5	Exocyst complex component 5	108	99962	9.3	0.82	—
Down 40	tr	B3KM6	—	cDNA FLJ10939, is, clone OVARC1001065, highly similar to Homo sapiens MTERF domain containing 1 (MTERFD1), mRNA	117	43225	9.8	0.76	—
Down 41	sp	Q8NB4-2	UBAC2	Isoform 2 of ubiquitin-associated domain-containing protein 2	150	37306	18.1	0.83	—
Down 42	sp	Q8NGA1	ORM1	Olfactory receptor 1M1	76	39512	2.2	0.69	—
Down 43	tr	E9P1N7	ATP5L	ATP synthase subunit g, mitochondrial	366	11489	63.2	0.82	—
Down 44	tr	B2R686	TGDLN2	Trans-golgi network protein 2, isoform CRA_a	166	60993	13	0.79	—
Down 45	tr	B4D1R5	—	cDNA FLJ56026	51	143728	1.7	0.74	—
Down 46	tr	J3KS15	ICT1	Peptidyl-tRNA hydrolase ICT1, mitochondrial (fragment)	169	26740	26	0.82	Protein chain release factor B
Down 47	tr	F5H0F9	ANAPC5	Anaphase-promoting complex subunit 5	72	98300	7.5	0.82	—
Down 48	tr	C8C5A4	HBB	Beta-globin	1233	20056	29.9	0.21	—
Down 49	tr	B2R921	—	cDNA FLJ94171, highly similar to Homo sapiens solute carrier family 25 (mitochondrial carrier; ornithine transporter) member 15 (SLC25A15), nuclear gene encoding mitochondrial protein, mRNA	53	39308	9	0.77	—
Down 50	sp	Q9Y613	FHOD1	FHI/FH2 domain-containing protein 1	255	141625	8.8	0.81	Glycosylphosphatidylinositol transamidase (GPIT), subunit GPI8
Down 51	sp	Q92643	PIGK	GPI-anchor transamidase	110	51592	10.9	0.77	Pyruvate/2-oxoglutarate dehydrogenase complex, dihydrolipoamide dehydrogenase (E3) component, and related enzymes
Down 52	tr	A4FTY4	TXNRD2	TXNRD2 protein	331	41672	24.6	0.79	—
Rank #	Accession	Gene symbol (GN)	Definition (description)	Score	Mass	Cov%	Ration	COG function-description	
--------	-----------	-----------------	-------------------------	-------	------	------	--------	-------------------------	
Down 53	tr	D3DP46	SPCS3	Signal peptidase complex subunit 3 homolog (S. cerevisiae), isoform CRA-α	147	24007	18.9	0.82	—
Down 54	sp	Q9YSQ9	GTFC3	General transcription factor 3C polypeptide 3	154	117216	7.8	0.79	—
Down 55	sp	P60468	SEC61B	Protein transport protein Sec61 subunit beta	192	11546	37.5	0.72	—
Down 56	sp	Q5RII15-2	—	Isoform 2 of cytochrome c oxidase protein 20 homolog	106	17682	20	0.83	—
Down 57	sp	Q9P206-2	—	Isoform 2 of uncharacterized protein KIAA1522	146	128602	6.5	0.73	—
Down 58	sp	Q86YN1	DOLPP1	Dolichylphosphatase 1	64	28953	5.5	0.69	Membrane-associated phospholipid phosphatase
Down 59	sp	O00165-2	—	Isoform 2 of HCLS1-associated protein X-1	111	34281	16	0.81	—
Down 60	tr	B4E303	—	cDNA FLJ57449, highly similar to Notchless homolog 1	127	54134	16.5	0.82	FOG: WD40 repeat
Down 61	sp	O0094	RAB27B	Ras-related protein Rab-27B	56	29688	14.2	0.77	GTPase SAR1 and related small G proteins
Down 62	tr	B4DI41	MBDA	Methyl-CpG-binding domain protein 1	72	87409	1.8	0.80	—
Down 63	tr	B0UXB6	ABHD16A	Abhydrolase domain-containing protein 16A	129	73275	10.3	0.83	Hydrolases of the alpha/beta superfamily
Down 64	sp	QST8D3-2	—	Isoform 2 of Acyl-CoA-binding domain-containing protein 5	148	64353	11.6	0.72	Acyl-CoA-binding protein
Down 65	tr	B4DNZ6	GTF2H3	General transcription factor IIH subunit 3	48	37020	4.5	0.79	RNA polymerase II transcription initiation/nucleotide excision repair factor TFIIH, subunit TFB4
Down 66	sp	Q96FO6	SI00A16	Protein SI00-A16	346	15197	22.3	0.83	—
Down 67	tr	B4DSEI	—	cDNA FLJ53634, highly similar to CRSP complex subunit 6	55	84524	3.7	0.73	—
Down 68	tr	J3KNX9	MYO18A	Unconventional myosin-VIIIa	157	282257	3.5	0.72	Myosin heavy chain
Down 69	tr	B4DMK6	—	cDNA FLJ60055, highly similar to Rattus norvegicus Ssu72 RNA polymerase II CTD phosphatase homolog, mRNA	51	23745	13.5	0.82	RNA polymerase II-interacting protein involved in transcription start site selection
Down 70	tr	G3VI40	TRAPPC4	HCG38438, isoform CRA.b	51	14838	20.5	0.81	—
Down 71	tr	B1AHA8	HMOX1	Heme oxygenase 1 (fragment)	53	25525	15.5	0.83	Heme oxygenase
Down 72	sp	Q9Y3B3-2	TMED7	Isoform 2 of transmembrane emp24 domain-containing protein 7	193	24908	28.2	0.82	—
Down 73	tr	G3VU5	GOLT1B	Golgi transport 1 homolog B (S. cerevisiae), isoform CRA.c	167	9121	20.3	0.77	Membrane protein involved in Golgi transport
Down 74	tr	BIPBA3	—	SKNY protein	148	109440	8.4	0.81	—
Down 75	sp	Q15061	WDR43	WD repeat-containing protein 43	138	91327	5.6	0.83	FOG: WD40 repeat
Down 76	tr	D3DUJ0	AFG3L2	AFG3 ATPase family gene 3-like 2 (yeast), isoform CRA.a (fragment)	695	103842	21.2	0.83	ATP-dependent Zn proteases
Down 77	tr	B2RBL9	—	cDNA, FLJ95882, highly similar to Homo sapiens breast cancer antiestrogen resistance 1 (BCAR1), mRNA	204	104223	6	0.79	—
Down 78	sp	Q3SX5-2	—	Isoform 2 of inactive hydroxysteroid dehydrogenase-like protein 1	170	35499	13.5	0.83	Short-chain dehydrogenases of various substrate specificities
Rank	Accession	Gene Symbol (GN)	Definiton (description)	Score	Mass	CoV%	Ratio COG function description		
------	-----------	------------------	-------------------------	-------	------	------	--------------------------------		
Down 79	sp	O43920	NDUFS5	NADH dehydrogenase (ubiquinone) iron-sulfur protein	106	16388	11.3	0.74	
Down 80	tr	H0YG20	MAN1B1	Endoplasmic reticulum mannosyl-oligosaccharide 12-alpha-mannosidase (fragment)	155	98016	8.2	0.80	
Down 81	sp	p786244	RPS5A	40S ribosomal protein S5a	66	28559	8.2	0.80	
Down 82	tr	H8515A	—	cDNA F135355.1 highly similar to ATP-binding cassette subfamily D member 3	152	18594	66.2	0.82	
Down 83	sp	—	—	Glycophosphatidylinositol-anchored transporter (related to short-chain alcohol dehydrogenases)	398	98669	16.7	0.81	
Down 84	tr	H1B4R7	ALG5	Dolichyl-phosphate beta-glucosyltransferase	66	32213	10.9	0.81	
Down 85	tr	(p97)BT5	—	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9 (39kD) (fragment)	189	45725	4.8	0.74	
Down 86	sp	(p97)BY6	NOG9	Myelin protein zero-like 1	55	34725	4.8	0.74	
Down 87	sp	(p97)BY2	PGRMC2	Polynucleotide 5'-nucleotidase NOL9	109	97582	66.2	0.82	
Down 88	tr	(p97)BZ7	NDPFA13	Dehydrogenases with different specificity (related to short-chain alcohol dehydrogenases)	164	126875	10.1	0.79	
Down 89	sp	(p97)Z12	RDH1	RedBP dehydrogenase 11	494	42386	14.5	0.76	
Down 90	sp	(p97)C12	—	—	164	126875	10.1	0.79	
Down 91	tr	(p97)Z55	MTUS2	Microtubule-associated tumor suppressor candidate 2	164	126875	10.1	0.79	
Down 92	tr	(p97)BQ9	LCD12	Melanoma-associated antigen G1	164	126875	10.1	0.79	
Down 93	tr	(p97)BQ13	KIDDC1	Keratin domain-containing protein 2	164	126875	10.1	0.79	
Down 94	tr	(p97)BQ13	NDUF13	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 13	164	126875	10.1	0.79	
Down 95	sp	(p97)N37	LPCAT1	Lysophosphatidylcholine acyltransferase	708	67346	15.7	0.82	
Down 96	sp	(p97)AP3	COL1A3BP	—	708	67346	15.7	0.82	
Down 97	sp	(p97)P52	SURF4	—	708	67346	15.7	0.82	
Down 98	sp	(p97)P92	PTPPH1	—	708	67346	15.7	0.82	
Down 99	tr	(p97)Q91	GPD1	Glucose-6-phosphate 1-dehydrogenase	708	67346	15.7	0.82	
Down 100	tr	(p97)Q76	VDAC1	Voltage-dependent anion-selective channel protein 1	708	67346	15.7	0.82	
Down 101	tr	(p97)Q76	SENP3	Senso-specific protease 3	88	75986	77	0.80	
Down 102	tr	(p97)N17	SEM1	—	88	75986	77	0.80	
Down 103	tr	(p97)N17	SEM1	—	88	75986	77	0.80	
Table 2: Continued.

Rank #	Accession	Gene symbol (GN)	Definition (description)	Score	Mass	Cov%	Ration	COG function-description	
Down 104	sp	A6NHL2-2	TUBAL3	Isoform 2 of tubulin alpha chain-like 3	768	51287	11.8	0.79	Tubulin
Down 105	tr	B4DR71	—	cDNA FLJ57078, highly similar to Homo sapiens opioid receptor sigma 1 (OPRS1), transcript variant 1, mRNA	63	18151	8.4	0.83	—
Down 106	sp	Q5RA6-2	MIA3	Isoform 2 of melanoma inhibitory activity protein 3	415	249369	7.8	0.80	—
Down 107	tr	J9ZVQ3	APOE	Apolipoprotein E (fragment)	171	30543	12.2	0.79	—
Down 108	tr	G5E9Y5	MRPS22	28S ribosomal protein S22, mitochondrial	224	49264	17.3	0.77	—
Down 109	tr	B7Z7X8	ATL2	Atlastin-2	112	76668	10.8	0.82	—
Down 110	sp	P54709	ATP1B3	Sodium/potassium-transporting ATPase subunit beta-3	243	39135	17.9	0.83	—
Down 111	tr	Q6IBK3	SCAMP2	SCAMP2 protein	258	39155	9.7	0.81	—
Down 112	tr	A4LA3	ATRX	Alpha thalassemia/mental retardation syndrome X-linked	129	374604	2.5	0.81	Superfamily II DNA/RNA helicases, SNF2 family
Down 113	sp	Q9UK59	DRI	Lariat debranching enzyme	203	72182	14.5	0.80	—
Down 114	tr	B4DI61	—	cDNA FLJ58182, highly similar to protein CYR61	68	50414	6.4	0.70	—
Down 115	tr	H3BNF1	CLN6	Ceroid-lipofuscinosis neuronal protein 6	300	12918	20	0.80	—
Down 116	tr	E7ERK9	EIF2B4	Translation initiation factor eIF-2B subunit delta	170	71999	8.8	0.79	—
Down 117	tr	H0Y8C3	MTCH1	Mitochondrial carrier homolog 1 (fragment)	97	50964	12.9	0.81	—
Down 118	tr	B2RMV2	CYTSA	CYTSA protein	52	149539	2.5	0.79	—
Down 119	tr	I3L1P8	SLC25A11	Mitochondrial 2-oxoglutarate/malate carrier protein (fragment)	470	37200	35.5	0.83	—
Down 120	sp	Q8NB5U-2	ATAD1	Isoform 2 of ATPase family AAA domain-containing protein 1	124	40468	11.1	0.72	ATPases of the AAA+ class
Down 121	sp	Q9Y3E7	CHMP3	Charged multivesicular body protein 3	102	32415	14.4	0.83	—
Down 122	sp	P02763	ORM1	Alpha-1-acid glycoprotein 1	262	28288	20.4	0.80	—
Down 123	tr	Q53F51	—	FGF intracellular binding protein isoform b variant (fragment)	165	48798	12	0.83	—
Down 124	sp	Q3ZQAQ	VMA21	Vacuolar ATPase assembly integral membrane protein VMA21	241	12868	24.8	0.81	—
Down 125	tr	B2R6X8	—	cDNA, FLJ93169, highly similar to Homo sapiens GAPAIP anchor attachment protein 1 homolog (yeast) (GAPA1), mRNA	106	72151	7.6	0.80	—
Down 126	sp	Q9P059	TMEM14C	Transmembrane protein 14C	45	12774	8.9	0.70	—
Down 127	sp	P08779	KRT16	Keratin, type I cytoskeletal 16	630	57054	23.9	0.62	—
Down 128	sp	Q86UT6-2	NLRX1	Isoform 2 of NLR family member XI	75	110309	4.1	0.71	—
Down 129	tr	Q59E99	—	Thrombospondin 1 variant (fragment)	153	155789	3.4	0.68	—
Down 130	sp	Q8WXH0-2	SYNE2	Isoform 2 of nesprin-2	149	986758	11	0.82	Ca²⁺-binding actin-bundling protein fimbrin/plastin (EF-hand superfamily)
Rank #	Accession	Gene symbol (GN)	Definition (description)	Score	Mass	Cov%	Ration	COG function-description	
--------	-----------	----------------	--------------------------	-------	------	------	--------	-------------------------	
Down 131	sp	P78310-2	CXADR	Isoform 2 of coxsackievirus and adenovirus receptor	47	47491	3.8	0.74	—
Down 132	tr	B2R995	—	Malic enzyme	98	77738	5.8	0.83	Malic enzyme
Down 133	tr	Q5QP56	BCL2L1	Bcl-2-like protein 1 (fragment)	98	21810	23.2	0.82	—
Down 134	tr	H0YK72	SEC11A	SEC11-like 1 (S. cerevisiae), isoform CRA.a	247	22018	16.5	0.81	Signal peptidase I
Down 135	tr	B4DDH8	—	cDNA FLJ55814, highly similar to Homo sapiens leukocyte receptor cluster (LRC) member 4 (LENG4), mRNA	137	54865	8.8	0.79	Predicted membrane protein
Down 136	sp	Q9JS0-2	SLC25A13	Isoform 2 of calcium-binding mitochondrial carrier protein Aralar2	719	86824	17.5	0.82	—
Down 137	tr	A8KAK5	—	cDNA FLJ77399, highly similar to Homo sapiens cofactor required for Sp1 transcriptional activation, subunit 2, 150 kDa (CRSP2), mRNA	85	182987	3.4	0.82	—
Down 138	tr	H0YEF3	RNASEH2C	Ribonuclease H2 subunit C (fragment)	76	18856	25.3	0.77	—
Down 139	tr	QSQNZ2	ATP5Fi	ATP synthase F(0) complex subunit Bi, mitochondrial	406	27794	47.7	0.82	—
Down 140	sp	Q6UW68	TMEM205	Transmembrane protein 205	165	23294	15.9	0.82	—
Down 141	tr	B3KIP4	PHC2	Polyhomeotic-like protein 2	193	59764	9.3	0.79	—
Down 142	tr	H0Y4D4	ACAAI	3-Ketoacyl-CoA thiolase, peroxisomal (fragment)	131	30218	12.7	0.78	Acetyl-CoA acetyltransferase (Mitochondrial DNA-directed RNA polymerase)
Down 143	tr	Q4GF04	POLRMT	DNA-directed RNA polymerase	167	159664	4.6	0.81	Predicted hydrolases or acyltransferases (alpha/beta hydrolase superfamily)
Down 144	tr	Q6FGZ3	EPHX1	EPHX1 protein (fragment)	519	62281	14.9	0.77	DnaJ-class molecular chaperone with C-terminal Zn finger domain
Down 145	tr	B4DVN1	—	cDNA FLJ52214, highly similar to DnaJ homolog subfamily B member 6	90	37740	8.6	0.70	—
Down 146	sp	Q92667-2	AKAPl	A-kinase anchor protein 1, mitochondrial	66	111940	4.9	0.83	—
Down 147	sp	O00483	NDUFA4	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4	165	11855	46.9	0.83	—
Down 148	sp	Q9NTJ5	SACMIL	Phosphatidylinositide phosphatase SAC1	179	77476	18.2	0.83	Phosphoinositide polyphosphatase (Sac family)
Down 149	tr	B3KVC5	—	cDNA FLJ6380 fis, clone TLIVE2002882, weakly similar to imidazolonepropionase (EC 3.5.2.7)	41	53582	3.3	0.83	Imidazolonepropionase and related amidohydrolases
Down 150	tr	B7ZL15	FAM98C	Family with sequence similarity 98, member C	72	41696	9.5	0.68	—
Down 151	tr	B7Z6F5	YIPFI	Protein YIPF1	64	40866	2.7	0.61	Enol-CoA hydratase/carnitine racemase
Down 152	sp	Q6NVY1-2	HIBCH	Isoform 2 of 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial	101	46543	19.2	0.82	Uncharacterized protein affecting Mg²⁺/Co²⁺ transport
Down 153	tr	U3KQJ1	POLQIP2	Polymerase delta-interacting protein 2	282	46395	26.4	0.76	—
Down 154	tr	D6RGZ2	THOC3	THO complex subunit 3	172	12690	36.2	0.75	—
Down 155	tr	A0ST0	ATP6	ATP synthase subunit a	128	26896	4.4	0.78	FOF1-type ATP synthase, subunit a
Down 156	tr	G3V2U7	ACYP1	Acylphosphatase	85	17520	14.7	0.80	Acylphosphatases
Down 157	sp	Q9ULG6-2	CCPG1	Isoform 2 of cell cycle progression protein 1	79	93313	4.1	0.81	—
Rank #	Accession	Gene symbol (GN)	Definition (description)	Score	Mass	Cov%	Ration	COG function-description	
-------	-----------	------------------	--------------------------	-------	------	------	--------	-------------------------	
Down 158	tr	H7BXZ6	RHOT1	Mitochondrial Rho GTPase	142	81600	5.9	0.77	GTPase SARI and related small G proteins
Down 159	sp	Q14151	SAFB2	Scaffold attachment factor B2	461	129824	13	0.83	—
Down 160	sp	Q96LD4	TRIM47	Tripartite motif-containing protein 47	138	75838	7.8	0.81	—
Down 161	tr	A8K2K2	—	cDNA FLJ76494, highly similar to Homo sapiens GTPBP2 GTP-binding like protein 2	137	64767	11.7	0.83	GTPase
Figure 2: Classification of identified proteins. (a) The biological processes (BPs), (b) cellular components (CCs), and (c) molecular functions (MFs) of the total identified proteins classified by GO database.
Figure 3: WEGO (a) and COG (b) assay of the 205 differentially expressed proteins.
differentially expressed proteins were identified with ≥95% confidence in ginsenoside F₂ treated group. Application of a ratio of 1.2-fold change as criteria resulted in 44 and 161 differentially abundant proteins in SGC7901 cells.

In our study, some proteins that were significantly altered by ginsenoside F₂ show close relationship of protein-protein interaction (Figure 5). Ribosomal proteins, such as RPS15 and RPL26, exert critical roles in MDM2-p53 signal pathway [11, 12]. PRR5 [13], CISD2 [14], Bcl-xl [15], and NLRX1 [16, 17] have been reported to play a key role in the regulation of autophagy or apoptosis. The changes of these six potential proteins were verified by western blot analysis.

Ribosomal proteins (RPs) are considered to have diverse extra ribosomal functions, ranging from cell cycle progression to cell death and to malignant transformation and cellular metabolism [11]. Relevantly, a number of RPs have been shown to bind to MDM2, the inhibitor of p53 (murine double minute 2, and also HDM2 for its human ortholog), and inhibit MDM2 E3 ligase activity, leading to p53 stabilization and activation, then triggering apoptosis or autophagy [11]. Following the treatment of ginsenoside F₂ in SGC7901 cells, the levels of RPL28, RPL34, RPL35, RPS16, RPL17, RPL14, RPL24, RPL7A, and RPL26 were increased, whereas that of RPS15 reduced. Although the functions of RPL28, RPL34, RPL35, RPS16, RPL17, RPL14, RPL24, and RPL7A have not been well studied, RPL26, a positive regulator of p53, was found to increase the translational rate of p53 mRNA by binding to its 50 untranslated region [12] and, in this case, MDM2 acts as an ubiquitin E3 ligase for ubiquitylation and degradation of RPL26 [18]. Thus, under the treatment of ginsenoside F₂, the increased level of RPL26 indicated that RPL26 may inhibit MDM2 and subsequently activate p53.

Figure 4: GO annotation of the final selected differentially expressed proteins. The top 20 components for BP (a), CC (b), and MF (c) of the selected differentially expressed proteins are shown along with their enrichment score, represented as a p value.
RPS15, identified as a direct p53 transcriptional target, was thought to activate p53 by repressing MDM2 activity [19]. Interestingly, in our study, the level of RPS15 reduced in SGC7901 followed by ginsenoside F$_2$ treatment, suggesting that the roles of RPS15 and RPL26 involved in the anticancer mechanism of ginsenoside F$_2$ are different, which warrant further investigation.

mTOR, existing in two multiprotein complexes, mTORC1 and mTORC2, regulates cell growth in response to a variety of cellular signals derived from growth factors and environmental stress [20]. mTORC2 is a kinase complex comprised of mTOR, PRR5, Rictor, mSin1, and mLST8/GbL. The expression level of PRR5 is correlated with that of mTORC2. Recent study showed that mTORC2 is implicated...
FIGURE 6: Western blot validations of RPS15, RPL26, PRR5, CISD2, NLRX1, p53, PUMA, mTOR, and Bcl-xl in SGC7901 cells with different concentrations of ginsenoside F2. 1 × 10^6 SGC7901 cells are seeded in 6-well plate for overnight. On day 2, the cultured cells are treated with different concentration ginsenoside F2. 12 hours after treatment, the protein is prepared by lysating cells with RIPA buffer for performing western blot analysis. Left panel: the representative western blot analysis. β-actin was used as the loading control. Right panel: accumulated results show the relative protein density. Error bars represent means ± SEMs. Significant difference is expressed as **p < 0.01, *p < 0.05.
in actin cytoskeleton regulation, as well as phosphorylation of Akt [13]. Although TOR kinase has been largely attributed as a negative regulator of autophagy through TORC1, recent study indicated that mTORC2 was an independent positive regulator of autophagy during amino acid starvation [21]. In the present study, ginsenoside F2 decreased level of PPR5, indicated that ginsenoside F2 may inhibit the expression of PRR5, and consequently inhibited mTORC2.

Recent study indicated that p53 can be a positive or negative regulator of autophagy. In the nucleus, p53 may activate the AMPK pathway and inhibit the mTOR pathway, subsequently triggering autophagy. p53 may also transactivate multiple genes with proautophagic roles, including proapoptotic Bcl-2 proteins (Bax, PUMA) [22, 23]. In this network, PUMA induces the noncanonical autophagy pathway regulated via Atg5, Atg7, and Atg10. PUMA's initiation of autophagy promotes cytochrome c release, which then leads to apoptosis [22]. Interestingly, in our previous work, increasing level of cytochrome c and decreased mitochondrial transmembrane potential (MTP) were observed [6]. In present study, decreased expressions of PRR5 and RPL26 were found, which implied that ginsenoside F2 might inhibit p53 signal pathway. It was reported that western blot analyses tended to show greater differential abundance compared with iTRAQ analyses [24]. Thus, the expressions of p53, Atg5, Atg7, Atg10, and PUMA were validated by western blot analyses. The increased level of Atg5 Atg7, Atg10, and PUMA and reduced level of P53 and mTORC2 suggested that ginsenoside F2 may initiate autophagy by ribosomal protein-p53 signaling pathway.

CISD2, also known as NAF-1, Miner1, Eris, and Noxp70, is a member of the 2Fe-2S cluster NEET family [25]. Our results showed that CISD2 was significantly decreased in ginsenoside F2 treated group, confirmed by western blot analysis. Recent work identified CISD2 as a Bcl-xl binding partner at a branch point between autophagy and apoptosis, life and death, under nutrient-deprived and oxidative stress conditions in vivo cells [25, 26]. Bcl-xl, also called Bcl-2L1, is known to function through inhibition of the autophagy effector and tumor suppressor Beclin-1 [15]. CISD2 is required in this pathway for Bcl-xl to functionally antagonize Beclin-1-dependent autophagy. In our study, the expression of Bcl-xl decreased, confirmed by western blot analysis. Thus, CISD2 may be a Bcl-xl-associated cofactor that targets Bcl-2 for the autophagy pathway.
During initiation of autophagosome formation, after release from Bcl-xL, Beclin-1 functions as a platform by binding to class III PI3K/vacuolar protein sorting-34 (Vps34), UV-resistance-associated gene (UVRAG), activating molecule in Beclin-1-regulated autophagy (AMBRA-1) [15, 26, 27]. Previous studies have shown that binding of Beclin-1 to Bcl-2/Bcl-xL inhibits the autophagic function of Beclin-1, suggesting that Beclin-1 might have a role in the convergence between autophagy and apoptotic cell death [22]. For confirming the Beclin-1/Bcl-xL pathway, western blot was employed. The expressions of Beclin-1, UVRAG, and AMBRA-1 were increased, while Bcl-xl was decreased, which suggested that ginsenoside F2 may induce autophagy via Bcl-xL/Beclin-1 pathway.

NLRX1, a mitochondrial NOD-like receptor that amplifies apoptosis by inducing reactive oxygen species production, is an important component of TLR mediated inflammatory pathways [13, 16]. Recent evidence suggested that upregulated expression of NLRX1 may synergistically regulate metabolism and autophagy for highly invasive growth of the autophagy addicted MDA-MB-231 breast cancer cells [16]. And it acted as tumor suppressor by regulating TNF-α induced apoptosis and metabolism in cancer cells. In our iTRAQ results, expression of NLRX1 was significantly decreased in SGC7901 cells treated with ginsenoside F2. The phenomenon suggested different role of NLRX1 involved in the ginsenoside F2 treatment that may be different from that of published reports [16, 17], though the mechanism needs further research.

Mai et al. reported that F2 induces apoptotic cell death accompanied by protective autophagy in breast cancer stem cells [28]. In one of our previous studies, we found that F2 induces apoptosis by causing an accumulation of ROS and activating the apoptosis signaling pathway [6]. However, there was no report systematically comparing differently regulated proteins and building a network of F2-treated cancer cells at proteome level. In the current study, by the close look at cellular mechanisms at proteome level, we clearly identified the distinct pattern of cellular responses for the F2-treated cells, and 6 differentially regulated proteins were identified, which provide useful information on elucidating the anticancer mechanism of F2 to SGC7901 cells. Moreover, the integration of networks and pathway with the proteomic data enhanced our understanding of the functional relationship of proteome changes caused by the compound.

4. Conclusions

In conclusion, 44 upregulated proteins and 161 downregulated proteins were discovered by iTRAQ analysis in SGC7901 cells treated with lower dose and shorter duration of ginsenoside F2, compared with our previous study. 6 differentially abundant common proteins, PRR5, CISD2, Bcl-xL, NLRX1, RPS15, and RPL26, were confirmed by western blot analysis. Ribosomal protein-p53 signaling pathway and Bcl-xL/Beclin-1 pathway might be significantly regulated biological process by ginsenoside F2 treatment in SGC7901 cells. Although more work is required to find out the precise role of targeted proteins, our data lead to a better understanding of the molecular mechanisms of ginsenoside F2 for gastric cancer treatment.

Abbreviations

- iTRAQ: Isobaric tag for relative and absolute quantification
- KEGG: Kyoto Encyclopedia of Genes and Genomes
- COG: Cluster of orthologous groups of proteins
- GO: Gene Ontology
- FBS: Fetal bovine serum
- SCX: Strong cation exchange
- AGC: Automatic gain control
- SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis
- ECL: Enhanced chemiluminescence
- BP: Biological process
- CC: Cellular component
- MF: Molecular function
- RP: Ribosomal proteins
- MTP: Mitochondrial transmembrane potential
- Vps34: Vacuolar protein sorting-34
- UVRAG: UV-resistance-associated gene
- AMBRA-1: Activating molecule in Beclin-1-regulated autophagy

Competing Interests

The authors declare that there is no conflict of interests.

Acknowledgments

This work was supported by the Natural Science Foundation of China (nos. 81573596, 81503191, 81274018, 81373946, and 81303221) and National High Technology Research and Development Plan of China (863 Plan) (2014AA022204).

References

1. E. Van Cutsem, X. Sagaert, B. Topal et al., “Gastric cancer,” *The Lancet*, 2016.
2. E. Nicolai, A. Taddei, D. Prisco, and A. Amedei, “Gastric cancer and the epoch of immunotherapy approaches,” *World Journal of Gastroenterology*, vol. 21, no. 19, pp. 5778–5793, 2015.
3. P. van Hagen, M. C. M. Hulshof, J. J. B. van Lanschot et al., “Preoperative chemoradiotherapy for esophageal or junctional cancer,” *The New England Journal of Medicine*, vol. 366, no. 22, pp. 2074–2084, 2012.
4. S. Chen, Z. Wang, Y. Huang et al., “Ginseng and anticancer drug combination to improve cancer chemotherapy: a critical review,” *Evidence-Based Complementary and Alternative Medicine*, vol. 2014, Article ID 168940, 13 pages, 2014.
5. L.-W. Qi, C.-Z. Wang, and C.-S. Yuan, “American ginseng: potential structure-function relationship in cancer chemoprevention,” *Biochemical Pharmacology*, vol. 80, no. 7, pp. 947–954, 2010.
[6] Q. Mao, P.-H. Zhang, Q. Wang, and S.-L. Li, “Ginsenoside F₂ induces apoptosis in humor gastric carcinoma cells through reactive oxygen species-mitochondria pathway and modulation of ASK-1/JNK signaling cascade in vitro and in vivo,” Phytomedicine, vol. 21, no. 4, pp. 515–522, 2014.

[7] J.-Y. Shin, J.-M. Lee, H.-S. Shin et al., “Anti-cancer effect of ginsenoside F₂ against glioblastoma multiforme in xenograft model in SD rats,” Journal of Ginseng Research, vol. 36, no. 1, pp. 86–92, 2012.

[8] W. Cao, Y. Zhou, Y. Li et al., “iTRAQ-based proteomic analysis of combination therapy with taurine, epigallocatechin gallate, and genistein on carbon tetrachloride-induced liver fibrosis in rats,” Toxicology Letters, vol. 232, no. 1, pp. 233–245, 2015.

[9] D. Dou, Y. Wen, M. Weng et al., “Minor saponins from leaves of Panax ginseng C.A. Meyer,” Zhongguo Zhong Yao Za Zhi, vol. 22, no. 1, pp. 35–37, 1997.

[10] X. Hu, W. Han, and L. Li, “Targeting the weak point of cancer by induction of necroptosis,” Autophagy, vol. 3, no. 5, pp. 490–492, 2007.

[11] W. Wang, S. Nag, X. Zhang et al., “Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications,” Medicinal Research Reviews, vol. 35, no. 2, pp. 225–285, 2015.

[12] M. Takagi, M. J. Absalon, K. G. McLure, and M. B. Kastan, “Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin,” Cell, vol. 123, no. 1, pp. 49–63, 2005.

[13] S.-Y. Woo, D.-H. Kim, C.-B. Jun et al., “PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor β expression and signaling,” The Journal of Biological Chemistry, vol. 282, no. 35, pp. 25604–25612, 2007.

[14] N. C. Chang, M. Nguyen, M. Germain, and G. C. Shore, “Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1,” The EMBO Journal, vol. 29, no. 3, pp. 606–618, 2010.

[15] S.-Y. Kim, X. Song, L. Zhang, D. L. Bartlett, and Y. J. Lee, “Role of Bcl-xl/Beclin-1 in interplay between apoptosis and autophagy in oxaliplatin and bortezomib-induced cell death,” Biochemical Pharmacology, vol. 88, no. 2, pp. 178–188, 2014.

[16] I. Tatoli, L. A. Carneiro, M. Jéhanno et al., “NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production,” EMBO Reports, vol. 9, no. 3, pp. 293–300, 2008.

[17] X. Xia, J. Cui, H. Y. Wang et al., “NLRX1 negatively regulates TLR-induced NF-κB signaling by targeting TRAF6 and IKK,” Immunity, vol. 34, no. 6, pp. 843–853, 2011.

[18] Y. Ofir-Rosenfeld, K. Bogs, D. Michael, M. B. Kastan, and M. Oren, “Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26,” Molecular Cell, vol. 32, no. 2, pp. 180–189, 2008.

[19] L. Daftuar, Y. Zhu, X. Jacq, and C. Prives, “Ribosomal proteins RPL37, RPS15 and RPS20 regulate the Mdm2-p53-MdmX network,” PLoS ONE, vol. 8, no. 7, Article ID e68667, 2013.

[20] S. C. Johnson, P. S. Rabinovitch, and M. Kaebelmein, “mTOR is a key modulator of ageing and age-related disease,” Nature, vol. 493, no. 7432, pp. 338–345, 2013.

[21] A. Vlahakis and T. Powers, “A role for TOR complex 2 signaling in promoting autophagy,” Autophagy, vol. 10, no. 11, pp. 2085–2086, 2014.

[22] J. J. Tang, J. H. Di, H. Cao, J. Bai, and J. Zheng, “p53-Mediated autophagic regulation: a prospective strategy for cancer therapy,” Cancer Letters, vol. 363, no. 2, pp. 101–107, 2015.