1. Introduction

In their search for a natural q-analogue of the MacMahon Master Theorem Garoufalidis et al. [3] have introduced the right quantum algebra \(\mathcal{R}_q \) defined to be the associative algebra over a commutative ring \(K \), generated by \(r^2 \) elements \(X_{xa} \) \((1 \leq x, a \leq r)\) \((r \geq 2)\) subject to the following commutation relations:

\[
X_{xb}X_{xa} - X_{xa}X_{yb} = q^{-1}X_{xb}X_{ya} - qX_{ya}X_{xb}, \quad (x > y, a > b);
\]
\[
X_{ya}X_{xa} = q^{-1}X_{xa}X_{ya}, \quad (x > y, \text{ all } a);
\]

with \(q \) belonging to \(K \). The right quantum algebra in the case \(r = 2 \) has already been studied by Rodriguez-Romo and Taft [10], who set up an explicit basis for it. On the other hand, a basis for the full quantum algebra has been duly constructed (see [9, Theorem 3.5.1, p. 38]) for an arbitrary \(r \geq 2 \). It then seems natural to do the same with the right quantum algebra for each \(r \geq 2 \). This is the first goal of the paper.

In fact, the paper originated from a discussion with Doron Zeilberger, when he explained to the first author how he verified the quantum MacMahon Master identity for each fixed \(r \) by computer code. His computer program uses the fact, as he is perfectly aware, that the set of irreducible biwords—which will be introduced in the sequel—generates the right quantum algebra. For a better understanding of his joint paper [3] and also for deriving the “1 = \(q^{-1} \)” principle, it seems essential to see whether the set of irreducible biwords has the further property of being a basis and it does. Thanks to this result, a strong quantum MacMahon Master Theorem can be further derived.

When manipulating the above relations, the visible part of the commutations is made within the subscripts of the \(X_{xa} \)’s, written as such. It is then important to magnify them by having an adequate notation. To that end we replace each \(X_{xa} \) by the biletter \((x^a) \), so that, in further computations, products \(X_{x_1,a_1}X_{x_2,a_2} \cdots X_{x_\ell,a_\ell} \) become biwords \((x_1^a_1 \cdots x_\ell^a_\ell) \), objects that have been efficiently used in combinatorial contexts [6, 7]. Accordingly, the commutation rules for the right quantum algebra reread:

\[
\begin{align*}
\left(y^x_{ba} \right) - \left(x^y_{ab} \right) &= q^{-1} \left(x^y_{ba} \right) - q \left(y^x_{ab} \right), \quad (x > y, \ a > b); \\
\left(y^x_{aa} \right) &= q^{-1} \left(x^y_{aa} \right), \quad (x > y, \ \text{all } a).
\end{align*}
\]
We shall use the following notations. The positive integer \(r \) will be kept fixed throughout and \(\mathbb{A} \) will designate the alphabet \(\{1, 2, \ldots, r\} \). A biword on \(\mathbb{A} \) is a \(2 \times n \) matrix \(\alpha = (x_1, \ldots, x_n) \) \((n \geq 0)\), whose entries are in \(\mathbb{A} \), the first (resp. second) row being called the top word (resp. bottom word) of the biword \(\alpha \). The number \(n \) is the length of \(\alpha \); we write \(\ell(\alpha) = n \). The biword \(\alpha \) can also be viewed as a word of biletters \((x_1, \ldots, x_n)\), where \(x_i, a_i \in \mathbb{A} \) for all \(i = 1, \ldots, n \). The product of two biwords is their concatenation.

Let \(\mathbb{B} \) denote the set of biletters and \(\mathcal{B} \) the set of all biwords. Let \(\alpha \in \mathcal{B} \) such that \(\ell(\alpha) \geq 2 \) and \(1 \leq i \leq \ell(\alpha) - 1 \) be a positive integer. The biword \(\alpha \) can be factorized as \(\alpha = \beta(\frac{a_i}{b_i})\gamma \), where \(x, y, a, b \in \mathbb{A} \) and \(\beta, \gamma \in \mathcal{B} \) with \(\ell(\beta) = i - 1 \). Say that \(\alpha \) has a double descent at position \(i \) if \(x > y \) and \(a \geq b \). Notice the discrepancy in the inequalities on the top word and the bottom one. A biword \(\alpha \) without any double descent is said to be irreducible. The set of all irreducible biwords is denoted by \(\mathcal{B}_{\text{irr}} \).

Let \(\mathbb{Z} \) be the ring of all integers and \(\mathbb{Z}[q, q^{-1}] \) the ring of the polynomials in the variables \(q, q^{-1} \) submitted to the rule \(qq^{-1} = 1 \) with integral coefficients. The set \(\mathcal{A} = \mathbb{Z}[[\mathcal{B}]] \) of the formal sums \(\sum_{\alpha} c(\alpha)\alpha \), where \(\alpha \in \mathcal{B} \) and \(c(\alpha) \in \mathbb{Z} \), together with the above biword multiplication, the free addition and the free scalar product forms an algebra over \(\mathbb{Z} \), called the free biword large \(\mathbb{Z} \)-algebra. The formal sums \(\sum_{\alpha} c(\alpha)\alpha \) will be called expressions. An expression \(\sum_{\alpha} c(\alpha)\alpha \) is said to be irreducible if \(c(\alpha) = 0 \) for all \(\alpha \notin \mathcal{B}_{\text{irr}} \). The set of all irreducible expressions is denoted by \(\mathcal{A}_{\text{irr}} \).

Similarly, let \(\mathcal{A}_q = \mathbb{Z}[q, q^{-1}][[\mathcal{B}]] \) denote the large \(\mathbb{Z}[q, q^{-1}] \)-algebra of the formal sums \(\sum_{\alpha} c(\alpha)\alpha \), where \(c(\alpha) \in \mathbb{Z}[q, q^{-1}] \) for all \(\alpha \in \mathcal{B} \). Following Bergman’s method [1] we introduce two reduction systems \((S)\) and \((S_q)\) as being the sets of pairs \((\alpha, [\alpha]) \in \mathcal{B} \times \mathcal{A} \) and \((\alpha, [\alpha]_q) \in \mathcal{B} \times \mathcal{A}_q \), respectively, defined by

\[
\begin{align*}
(S) & \\
(\frac{x}{y}, \frac{x}{a}) & \text{with } [\frac{x}{y}, \frac{x}{a}] = (\frac{y}{a}) - (\frac{x}{b}) \quad (x > y, a > b); \\
(\frac{x}{y}, \frac{y}{a}) & \text{with } [\frac{x}{y}, \frac{y}{a}] = (\frac{y}{a}) - (\frac{x}{b}) \quad (x > y, \text{ all } a).
\end{align*}
\]

\[
\begin{align*}
(S_q) & \\
(\frac{x}{y}, \frac{x}{a}) & \text{with } [\frac{x}{a} \frac{b q}{a}] q = (\frac{y}{b a}) + q(\frac{y}{a}) - q^{-1}(\frac{x}{a}) q \quad (x > y, a > b); \\
(\frac{x}{y}, \frac{y}{a}) & \text{with } [\frac{x}{a} \frac{q}{a}] q = q(\frac{y}{a}) \quad (x > y, \text{ all } a).
\end{align*}
\]

Notice that the equations \((\frac{x}{y}, \frac{x}{a}) = [\frac{x}{a} \frac{b q}{a}] q = 0,(\frac{x}{y}, \frac{y}{a}) - [\frac{x}{a} \frac{q}{a}] q = 0\) are simple rewritings of the commutation rules of the right quantum algebra and that \((S)\) is deduced from \((S_q)\) by letting \(q = 1 \).

Let \(\mathcal{I} \) (resp. \(\mathcal{I}_q \)) be the two-sided ideal of \(\mathcal{A} \) (resp. \(\mathcal{A}_q \)) generated by the elements \(\gamma - [\gamma] \) (resp. \(\gamma - [\gamma]_q \)) such that \((\gamma, [\gamma]) \in (S) \) (resp. \((\gamma, [\gamma]_q) \in (S_q) \)). The quotient algebras \(\mathcal{R} = \mathcal{A}/\mathcal{I} \) and \(\mathcal{R}_q = \mathcal{A}_q/\mathcal{I}_q \) are called the 1-quantum right algebra and the \(q \)-right quantum algebra, respectively.

In Section 2 we define a \(\mathbb{Z} \)-linear mapping \(E \mapsto [E] \) of \(\mathcal{A} \) onto the \(\mathbb{Z} \)-module \(\mathcal{A}_{\text{irr}} \) of the irreducible expressions, called itself reduction. Using Bergman’s “Diamond Lemma” [1] this reduction will serve to obtain a model for the algebra \(\mathcal{R} \), as stated in the next theorem.
Theorem 1. A set of representatives in \mathcal{A} for \mathcal{R} is given by the \mathbb{Z}-module \mathcal{A}_{irr}. The algebra \mathcal{R} may be identified with the \mathbb{Z}-module \mathcal{A}_{irr}, the multiplication being given by $E \times F = [E \times F]$ for any two irreducible expressions E, F. With this identification \mathcal{B}_{irr} is a basis for \mathcal{R}.

Four statistics counting various kinds of inversions will be needed. If $\alpha = (u) = (a_1 a_2 \ldots a_n)$ is a biword, let

$$\begin{align*}
\text{inv } u &= \# \{(i, j) \mid 1 \leq i < j \leq n, x_i > x_j\}; \\
\text{inv } v &= \# \{(i, j) \mid 1 \leq i < j \leq n, a_i > a_j\}; \\
\text{inv}^{-}(\alpha) &= \text{inv } v - \text{inv } u; \\
\text{inv}^{+}(\alpha) &= \text{inv } v + \text{inv } u.
\end{align*}$$

The first (resp. second) statistic "inv" (resp. "imv") is the usual number of inversions (resp. of inversions) of a word. Notice that "inv" may be negative. The weight function ϕ defined for each biword α by $\phi(\alpha) = q^{\text{inv}^{-}(\alpha)} \alpha$ can be extended to all of \mathcal{A}_q by linearity. Clearly it is a $\mathbb{Z}[q, q^{-1}]$-module isomorphism of \mathcal{A}_q onto itself. The second result of the paper is stated next.

Theorem 2. The $\mathbb{Z}[q, q^{-1}]$-module isomorphism of \mathcal{A}_q onto itself ϕ induces a $\mathbb{Z}[q, q^{-1}]$-module isomorphism ϕ of \mathcal{A}_q/I onto \mathcal{A}_q/I_q. In particular, \mathcal{R}_q has the same basis as \mathcal{R}.

Now, a circuit is defined to be a biword whose top word is a rearrangement of the letters of its bottom word. The set of all circuits is denoted by C. It is clearly a submonoid of \mathcal{B}. An expression $E = \sum c(\alpha) \alpha$ is said to be circular if $c(\alpha) = 0$ for all $\alpha \notin C$. Clearly, the sum and the product of two circular expressions is a circular expression, so that the set of circular expressions in \mathcal{A} (resp. in \mathcal{A}_q) is a subalgebra of \mathcal{A} (resp. of \mathcal{A}_q), which will be denoted by \mathcal{A}_{cir} (resp. by $\mathcal{A}_{q\text{cir}}$).

Theorem 3. The restriction of the $\mathbb{Z}[q, q^{-1}]$-module isomorphism ϕ of Theorem 2 to $\mathcal{A}_{q\text{cir}}/I$ is a $\mathbb{Z}[q, q^{-1}]$-algebra isomorphism onto $\mathcal{A}_{q\text{cir}}/I_q$.

Accordingly, each identity holding in $\mathcal{A}_{q\text{cir}}/I$ has an equivalent counterpart in $\mathcal{A}_{q\text{cir}}/I_q$. This is the “1 = q” principle. An illustration of this principle is given with the qMM Theorem derived by Garoufalidis et al. (op. cit.). Those authors have introduced the q-Fermion and the q-Boson as being the sums

$$\begin{align*}
\text{Ferm}(q) &= \sum_{J \subseteq \Lambda} (-1)^{|J|} \sum_{\sigma \in \Sigma_J} (-q)^{-\text{inv } \sigma} \left(\sigma(i_1) \sigma(i_2) \cdots \sigma(i_l) \right) \\
\text{Bos}(q) &= \sum_{w} q^{\text{inv } w} \left(\frac{\overline{w}}{w} \right);
\end{align*}$$

and

$$\begin{align*}
\text{Ferm}(q) &= \sum_{J \subseteq \Lambda} (-1)^{|J|} \sum_{\sigma \in \Sigma_J} (-q)^{-\text{inv } \sigma} \left(\sigma(i_1) \sigma(i_2) \cdots \sigma(i_l) \right) \\
\text{Bos}(q) &= \sum_{w} q^{\text{inv } w} \left(\frac{\overline{w}}{w} \right);
\end{align*}$$

and
where \mathcal{S}_J is the permutation group acting on the set $J = \{i_1 < i_2 < \cdots < i_l\}$ and where π stands for the nondecreasing rearrangement of the word w. The q-Fermion and q-Boson belong to \mathcal{A}_q. Garoufalidis et al. have proved ([3], see also [2] for another proof) the following identity

$$\text{Ferm}(q) \times \text{Bos}(q) \equiv 1 \pmod{\mathcal{I}_q}.$$

This identity may a priori be regarded as a q-version of the MacMahon Master Theorem, as it reduces to the classical MacMahon’s identity [8, p. 93–98], when $q = 1$ and the biletters are supposed to commute. By the “$1 = q$” principle (Theorem 3), we obtain the following result, which shows that the variable q is in fact superfluous.

Corollary 4. The identity $\text{Ferm}(q) \times \text{Bos}(q) \equiv 1 \pmod{\mathcal{I}_q}$ holds if and only if $\text{Ferm}(1) \times \text{Bos}(1) \equiv 1 \pmod{\mathcal{I}}$ holds.

When applying Theorem 1 to the quantum MacMahon Master Theorem, we obtain the following result, which can be regarded as a strong quantum MacMahon Master Theorem.

Corollary 5. The following identity holds:

$$[\text{Ferm}(1) \times \text{Bos}(1)] = 1.$$

The proof of Theorem 1, given in section 2, is based on Bergman’s “Diamond Lemma” ([1], Theorem 1.2). It consists of verifying that the conditions required by the “Diamond Lemma” hold in the present situation. Theorem 2 and 3 are proved in section 3 and Corollaries 4 and 5 in the last section.
Although the reduction is recursively defined, it is well defined. Every time condition (C3) is applied, the running biword \(\alpha \) is transformed into either three new biwords (C3.1), or a new biword (C3.2). The important property is the fact that the statistic \(\text{inv}^\alpha \) of each of the new biwords is \emph{strictly less} than \(\text{inv}^\alpha \). Thus, after \emph{finitely} many successive applications of (C3), an irreducible expression is derived. When the biword \(\alpha \) has more than one double descent, condition (C4) says that condition (C3) must be applied at the first double descent position. Consequently, the final irreducible expression is unique.

There are several other ways to map each expression onto an irreducible expression, using relations (C3.1) and (C3.2). The reduction defined above is only one of those mappings. The important feature is the fact such a mapping involves \emph{finitely} many applications of relations (C3.1) and (C3.2). Following Bergman we say that condition (1) (the descending chain condition) holds for the pair \((\mathbb{Z}(B), S)\).

Now an expression \(E \) is said to be \emph{reduction-unique under} \(S \) if the irreducible expression derived from \(E \) does not depend on \emph{where} the applications of (C3.1) and (C3.2) take place. More formally, each expression is reduction-unique under \(S \) if for every biword \(\alpha \) and every factorization \(\alpha = \beta \alpha' \gamma \) \((\beta, \alpha', \gamma \in B)\) we have

\[\text{(Reduction-unique)} \quad [\alpha] = [\beta \alpha' \gamma].\]

Now examine the second condition required by the "Diamond Lemma." There is an \emph{ambiguity} in \(S \) if there are two pairs \((\alpha, [\alpha])\) and \((\alpha', [\alpha'])\) in \(S \) such that \(\alpha = \beta \gamma, \alpha' = \gamma \delta \) for some nonempty biwords \(\beta, \gamma, \delta \in B \). This ambiguity is said to be \emph{resolvable} if \([\alpha, \beta] = [\beta, \alpha']\), i.e. \([\beta \gamma \delta] = [\beta \gamma \delta] \). In our case this means that \(\beta = (\frac{a}{x}), \gamma = (\frac{y}{z}), \delta = (\frac{c}{b}) \) with \(x > y > z \) and \(a \geq b \geq c \). Using the first three integers instead of the letters \(x, y, z, a, b, c \) there are four cases to study:

(i) \(\beta = (\frac{3}{2}), \gamma = (\frac{2}{1}), \delta = (\frac{1}{1}) \);
(ii) \(\beta = (\frac{3}{2}), \gamma = (\frac{2}{1}), \delta = (\frac{1}{1}) \);
(iii) \(\beta = (\frac{2}{1}), \gamma = (\frac{1}{1}), \delta = (\frac{1}{1}) \);
(iv) \(\beta = (\frac{1}{1}), \gamma = (\frac{1}{1}), \delta = (\frac{1}{1}) \).

Accordingly, the ambiguities in \(S \) are \emph{resolvable} if the following four identities hold:

1. \([[\frac{32}{21}] (\frac{1}{1})] = [\frac{3}{2}] [\frac{2}{1}] \);
2. \([[\frac{22}{21}] (\frac{1}{1})] = [\frac{2}{1}] [\frac{2}{1}] \);
3. \([[\frac{22}{21}] (\frac{1}{1})] = [\frac{2}{1}] [\frac{2}{1}] \);
4. \([[\frac{32}{11}] (\frac{1}{1})] = [\frac{3}{2}] [\frac{1}{1}] \).

Let us prove these four identities.

Proof of (2.1). For an easy reading of the coming calculations we have added subscripts \(A, B, \ldots, J \) to certain brackets, which should help spot the subscripted brackets in the various equations. The left-hand side is evaluated as follows:

\[[[\frac{32}{21}] (\frac{1}{1})]_A = [[\frac{32}{21}] (\frac{1}{1})]_B + [[\frac{32}{21}] (\frac{1}{1})]_C; \]
\[[[\frac{22}{21}] (\frac{1}{1})]_A = [[\frac{22}{21}] (\frac{1}{1})]_B + [[\frac{32}{21}] (\frac{1}{1})]_D; \]
\[[[\frac{32}{21}] (\frac{1}{1})]_B = [[\frac{32}{21}] (\frac{1}{1})]_A + [[\frac{22}{21}] (\frac{1}{1})]_E; \]
\[[[\frac{22}{21}] (\frac{1}{1})]_C = -[[\frac{22}{21}] (\frac{1}{1})]_A - [[\frac{22}{21}] (\frac{1}{1})]_G + [[\frac{22}{21}] (\frac{1}{1})]_H; \]
\[[[\frac{22}{21}] (\frac{1}{1})]_D = [[\frac{22}{21}] (\frac{1}{1})]_A + [[\frac{22}{21}] (\frac{1}{1})]_I - \frac{3}{2} [[\frac{21}{21}] (\frac{1}{1})]_J; \]
\[[[\frac{32}{21}] (\frac{1}{1})]_D = [[\frac{32}{21}] (\frac{1}{1})]_A + [[\frac{32}{21}] (\frac{1}{1})]_E - \frac{3}{2} [[\frac{21}{21}] (\frac{1}{1})]; \]
$[(\tilde{3}) [\tilde{12}]]_F = [(\tilde{3}) (\tilde{3})] = [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})];$
$[(\tilde{3}) [\tilde{12}]]_P = [(\tilde{3}) (\tilde{3})] = [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})];$
$-[(\tilde{3}) [\tilde{12}]]_C = -[(\tilde{3}) (\tilde{3})] = -[(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})];$
$[(\tilde{3}) [\tilde{12}]]_H = [(\tilde{3}) (\tilde{3})] = [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})].$

The sum of the above nine equalities yields:

$$
[(\tilde{3}) (\tilde{1})] = -\left(\frac{31}{132}\right) - \left(\frac{31}{213}\right) + \left(\frac{31}{123}\right) - \left(\frac{31}{123}\right) + \left(\frac{21}{133}\right) + \left(\frac{21}{231}\right) - \left(\frac{21}{231}\right)
$$

As for the right-hand side we have:

$$
[(\tilde{3}) [\tilde{31}]] = [(\tilde{3}) [\tilde{31}]]_A + [(\tilde{3}) [\tilde{31}]]_B - [(\tilde{3}) [\tilde{31}]]_C;
[(\tilde{3}) (\tilde{3})]_A = [(\tilde{3}) (\tilde{3})]_D + [(\tilde{3}) (\tilde{3})]_I - [(\tilde{3}) (\tilde{3})]_J;
[(\tilde{3}) (\tilde{3})]_B = [(\tilde{3}) (\tilde{3})]_E + [(\tilde{3}) (\tilde{3})]_F - [(\tilde{3}) (\tilde{3})];
-[(\tilde{3}) (\tilde{3})]_C = -[(\tilde{3}) (\tilde{3})]_G - [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})]_H;
[(\tilde{3}) (\tilde{3})]_D = [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})];
[(\tilde{3}) (\tilde{3})]_E = [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})];
[(\tilde{3}) (\tilde{3})]_F = [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})];
-[(\tilde{3}) (\tilde{3})]_G = -[(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})];
[(\tilde{3}) (\tilde{3})]_H = [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})].
$$

The sum of the above nine equalities yields:

$$
[(\tilde{3}) [\tilde{31}]] = -\left(\frac{313}{231}\right) - \left(\frac{313}{231}\right) + \left(\frac{313}{132}\right) - \left(\frac{313}{132}\right) + \left(\frac{132}{123}\right) + \left(\frac{132}{213}\right) - \left(\frac{132}{213}\right)
$$

$Proof$ of (2.2). We have:

$$
[(\tilde{3}) (\tilde{1})] = [(\tilde{3}) (\tilde{31})] = [(\tilde{3}) (\tilde{31})] + [(\tilde{3}) (\tilde{31})] - [(\tilde{3}) (\tilde{31})]
$$

$$
= [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})]

= (\frac{132}{123}) + (\frac{132}{123}) + (\frac{132}{213}) - (\frac{132}{213})
$$

On the other hand,

$$
[(\tilde{3}) [\tilde{31}]] = [(\tilde{3}) [\tilde{31}]]_A + [(\tilde{3}) [\tilde{31}]]_B - [(\tilde{3}) [\tilde{31}]]_C
$$

$$
[(\tilde{3}) (\tilde{3})]_A = [(\tilde{3}) (\tilde{3})]_D + [(\tilde{3}) (\tilde{3})]_I - [(\tilde{3}) (\tilde{3})]_J
$$

$$
[(\tilde{3}) (\tilde{3})]_B = [(\tilde{3}) (\tilde{3})]_E + [(\tilde{3}) (\tilde{3})]_F - [(\tilde{3}) (\tilde{3})]
$$

$$
-[(\tilde{3}) (\tilde{3})]_C = -[(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})]_H
$$

$$
[(\tilde{3}) (\tilde{3})]_D = [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})];
[(\tilde{3}) (\tilde{3})]_E = [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})];
[(\tilde{3}) (\tilde{3})]_F = [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})];
-[(\tilde{3}) (\tilde{3})]_G = -[(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})];
[(\tilde{3}) (\tilde{3})]_H = [(\tilde{3}) (\tilde{3})] + [(\tilde{3}) (\tilde{3})] - [(\tilde{3}) (\tilde{3})].
$$
The sum of the above four equalities yields:

\[
[(\bar{2} \bar{3} \bar{1})] = [(\bar{1} \bar{2} \bar{3})] + [(\bar{1} \bar{2} \bar{3})] + [(\bar{1} \bar{3} \bar{2})] - [(\bar{1} \bar{2} \bar{3})] - [(\bar{2} \bar{3} \bar{1})]
\]

\[= [(\bar{2} \bar{3} \bar{1})] \text{ (left-hand side).} \]

Proof of (2.3). We form

\[
\begin{align*}
[(\bar{1} \bar{2} \bar{3})] &= [(\bar{1} \bar{2} \bar{3})]_A + [(\bar{1} \bar{2} \bar{3})]_B - [(\bar{1} \bar{2} \bar{3})]_C; \\
((\bar{1} \bar{2} \bar{3}))_A &= [(\bar{1} \bar{2} \bar{3})]_A + [(\bar{1} \bar{2} \bar{3})]_D - [(\bar{1} \bar{2} \bar{3})]_E; \\
((\bar{1} \bar{2} \bar{3}))_B &= [(\bar{1} \bar{2} \bar{3})]_B + [(\bar{1} \bar{2} \bar{3})]_D - [(\bar{1} \bar{2} \bar{3})]_E; \\
-[(\bar{1} \bar{2} \bar{3})]_C &= -[(\bar{1} \bar{2} \bar{3})] - [(\bar{1} \bar{2} \bar{3})] + [(\bar{1} \bar{2} \bar{3})]_E;
\end{align*}
\]

so that

\[
[(\bar{1} \bar{2} \bar{3})] = ((\bar{1} \bar{2} \bar{3}) + ((\bar{1} \bar{2} \bar{3}) - (\bar{1} \bar{2} \bar{3}) - (\bar{1} \bar{2} \bar{3})).
\]

On the other hand,

\[
\begin{align*}
[(\bar{1} \bar{2} \bar{3})] &= [(\bar{1} \bar{2} \bar{3})]_A + [(\bar{1} \bar{2} \bar{3})]_D - [(\bar{1} \bar{2} \bar{3})]_E \\
&= [(\bar{1} \bar{2} \bar{3})] + [(\bar{1} \bar{2} \bar{3})] - [(\bar{1} \bar{2} \bar{3})] + [(\bar{1} \bar{2} \bar{3})] - [(\bar{1} \bar{2} \bar{3})]
\end{align*}
\]

\[= [(\bar{1} \bar{2} \bar{3})] \text{ (left-hand side).} \]

Finally, the proof of (2.4) \([(\bar{1} \bar{2} \bar{3})] = [(\bar{1}) (\bar{2}) (\bar{3})] \) is straightforward. \(\square \)

Let \(\mathcal{I}' \) be the two-sided ideal of \(\mathbb{Z}(B) \) generated by the elements \(\gamma - [\gamma] \) such that \((\gamma, [\gamma]) \in (S) \) and let \(\mathcal{R}' \) be the quotient \(\mathbb{Z}(B)/\mathcal{I}' \). The pair \((\mathbb{Z}(B), S) \) having the descending chain condition and the ambiguities being resolvable, Bergman’s “Diamond Lemma” implies the following theorem.

Theorem 6. A set of representatives in \(\mathbb{Z}(B) \) for \(\mathcal{R}' \) is given by the \(\mathbb{Z} \)-module \(\mathbb{Z}(B)_{\text{irr}} \). The algebra \(\mathcal{R}' \) may be identified with \(\mathbb{Z}(B)_{\text{irr}} \), the multiplication being given by \(E \times F = [E \times F] \) for any two finite irreducible expressions \(E, F \). With this identification \(B_{\text{irr}} \) is a basis for \(\mathcal{R}' \).

For the proof of Theorem 1 we use the following argument. For each \(n \geq 0 \) let \(A^{(n)} \) be the \(n \)-th degree homogeneous subspace of \(A \) consisting of all expressions \(\sum_{\alpha} c(\alpha)\alpha \) such that \(\ell(\alpha) = 0 \) if \(\ell(\alpha) \neq n \) ([4], I.6). As the starting alphabet \(A \) is finite, all expressions in \(A^{(n)} \) are finite sums, so that \(A^{(n)} \subset \mathbb{Z}(B) \) for all \(n \). Now, let each expression \(E \) from \(A \) be written as a sum

\[E = \sum_{n \geq 0} E^{(n)} \text{ with } E^{(n)} \in A^{(n)}. \]

As both ideals \(\mathcal{I} \) and \(\mathcal{I}' \) are generated by expressions from the second degree homogeneous space \(A^{(2)} \), we have \(E \equiv 0(\text{mod } \mathcal{I}) \) if and only if for every \(n \geq 0 \) we have \(E^{(n)} \equiv 0(\text{mod } \mathcal{I}') \). In particular, \([E^{(n)}] \) also belongs to \(A^{(n)} \). Theorem 1 follows from Theorem 6 by taking the definition

\[[E] = \sum_{n \geq 0} [E^{(n)}]. \]
3. The “1 = q” principle

Let E be an expression in \(A_q \). Theorem 2 is equivalent to saying that the identity \(E \in I \) holds if and only if \(\phi(E) \in I_q \) holds. First we prove the “only if” part. Because \(\phi \) is linear, it suffices to consider all linear generators of \(I \), which have the following form:

\[
E_1 = \alpha_{(i_j^r)} \beta - \alpha_{(i_j^s)} \beta
\]

and

\[
E_2 = \alpha_{(r_j^s)} \beta - \alpha_{(s_j^r)} \beta - \alpha_{(i_j^s)} \beta + \alpha_{(r_j^i)} \beta,
\]

where \(\alpha, \beta \) are biwords and \(r, s, i, j \) integers such that \(r < s \), \(i < j \). Let \(k = \text{inv}^{-} \left(\alpha_{(r_j^i)} \beta \right) \), then

\[
\text{inv}^{-} \left(\alpha_{(r_j^i)} \beta \right) = k, \quad \text{inv}^{-} \left(\alpha_{(s_j^i)} \beta \right) = k - 1, \quad \text{inv}^{-} \left(\alpha_{(r_j^i)} \beta \right) = k + 1,
\]

so that

\[
\phi(E_2) = q^k \left(\alpha_{(r_j^i)} \beta - \alpha_{(s_j^i)} \beta - \alpha_{(r_j^i)} \beta + \alpha_{(r_j^i)} \beta \right) \in I_q.
\]

In the same way \(\phi(E_1) \in I_q \). The “if” part can be proved in the same manner.

For Theorem 3 it suffices to prove the identity \(\phi(EF) = \phi(E)\phi(F) \) for any two circular expressions \(E \) and \(F \). As \(\phi \) is linear, it suffices to do it when \(E = (u_v) \), \(F = (u'_{v'}) \) are two circuits. Let \(\text{inv}(u, u') \) denote the number of pairs \((x, y)\) such that \(x \) (resp. \(y \)) is a letter of \(u \) (resp. of \(u' \)) and \(x > y \). As \((u_v') \) is a circuit, we have

\[
\text{inv} uu' = \text{inv} u + \text{inv} u' + \text{inv}(u, u');
\]

\[
\text{inv} vv' = \text{inv} v + \text{inv} v' + \text{inv}(v, v');
\]

\[
\text{inv}(u, u') = \text{inv}(v, v');
\]

so that

\[
\text{inv}^{-} (EF) = \text{inv} vv' - \text{inv} uu'
\]

\[
= \text{inv} v + \text{inv} v' - \text{inv} u - \text{inv} u'
\]

\[
= \text{inv}^{-} (E) + \text{inv}^{-} (F).
\]

4. The quantum MacMahon Master Theorem

For proving Corollary 4 we apply Theorem 3 to Ferm(1) \(\times \) Bos(1). As Ferm(1) and Bos(1) are both circular expressions, the relation

\[
\text{Ferm}(1) \times \text{Bos}(1) \equiv 1 \text{(mod } I)\]

is equivalent to

\[
\phi(\text{Ferm}(1)) \times \phi(\text{Bos}(1)) \equiv 1 \text{(mod } I_q)\]

Finally, it is straightforward to verify

\[
\text{Ferm}(q) = \phi(\text{Ferm}(1)) \quad \text{and} \quad \text{Bos}(q) = \phi(\text{Bos}(1)).
\]

Now to prove Corollary 5 we start with Garoufalidis et al.’s result (for \(q = 1 \), which says that \(\text{Ferm}(1) \times \text{Bos}(1) \equiv 1 \text{(mod } I) \). But by Theorem 1 we have \(E \equiv F \pmod{I} \) if and only if \([E] = [F] \). Hence \([\text{Ferm}(1) \times \text{Bos}(1)] = [1] = 1 \).
5. Concluding Remarks

It is worth noticing that Rodríguez and Taft have introduced two explicit left quantum groups for \(r = 2 \) in [10] and [11]. As mentioned in the introduction, the former one has been extended to an arbitrary dimension \(r \geq 2 \) by Garoufalidis et al. [3] and been given an explicit basis in the present paper, while the latter one has been recently modeled after \(SL_q(r) \) by Lauve and Taft [5] also for each \(r \geq 2 \).

We should like to thank Doron Zeilberger and Stavros Garoufalidis for several fruitful discussions, orally and also by email. We are grateful to Christian Kassel, who gave us the references to the book by Parshall and Wang [9], the two papers by Rodríguez and Taft [10, 11] and the fundamental paper by Bergman [1]. Finally, we have greatly benefited from Jean-Pierre Jouanolou’s ever-lasting mathematical expertise.

REFERENCES

1. George M. Bergman, The Diamond Lemma for Ring Theory, Adv. Math. 29 (1978), 178–218.
2. Dominique Foata and Guo-Niu Han, A new proof of the Garoufalidis-Lê-Zeilberger Quantum MacMahon Master Theorem, (preprint) (2005).
3. S. Garoufalidis, T. QL Lê, D. Zeilberger, The quantum MacMahon Master Theorem, Proc. Natl. Acad. of Sci. USA (2005).
4. C. Kassel, Quantum groups, Graduate texts in math., vol. 155, Springer-Verlag, New York, 1995.
5. A. Lauve and E.J. Taft, A class of left quantum groups modeled after \(SL_q(r) \), (preprint) (2005).
6. M. Lothaire, Combinatorics on Words, Addison-Wesley, London, (Encyclopedia of Math. and its Appl., 17), 1983.
7. M. Lothaire, Algebraic Combinatorics on Words, Cambridge Univ. Press, (Encyclopedia of Math. and its Appl., 90), 2002.
8. P. A. MacMahon, Combinatory Analysis, 1, Cambridge Univ. Press, (reprinted by Chelsea Publ. Co., New York, 1960), 1915.
9. B. Parshall, J.-P. Wang, Quantum linear groups, Memoirs Amer. Math. Soc., 89, 1991.
10. Suemi Rodríguez-Romo, Earl Taft, Some quantum-like Hopf algebras which remain noncommutative when \(q = 1 \), Lett. Math. Phys. 61 (2002), 41–50.
11. Suemi Rodríguez-Romo, Earl Taft, A left quantum group, J. Algebra 286 (2005), 154–160.

Abstract. We construct a basis for the right quantum algebra introduced by Garoufalidis, Lê and Zeilberger and give a method making it possible to go from an algebra submitted to commutation relations (without the variable \(q \)) to the right quantum algebra by means of an appropriate weight-function. As a consequence, a strong quantum MacMahon Master Theorem is derived. Besides, the algebra of biwords is systematically in use.

Institut Lothaire, 1 rue Murner, F-67000 Strasbourg, France
E-mail address: foata@math.u-strasbg.fr

I.R.M.A. UMR 7501, Université Louis Pasteur et CNRS, 7 rue René-Descartes, F-67084 Strasbourg, France
E-mail address: guoniu@math.u-strasbg.fr