Original Article

Intra- and inter-breed variation in immune response to acute and sub-chronic *Salmonella* infection and commercial immune-stimulant in two-layer breeds

Shymaa A. Khatab¹ | Shabaan A. Hemeda¹ | Abeer F. El-Nahas¹ | Walaa S.H. Abd El Naby¹ | Sabry Hassan² | Jamal A. Alorabi² | Mahmoud A.O. Dawood³

¹ Genetics Laboratory, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
² Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
³ Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt

Correspondence
Mahmoud A.O. Dawood, Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
Abeer F. El-Nahas, Genetics Laboratory, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
Email: mahmouddawood55@gmail.com; abeer.elnahas@alexu.edu.eg

Funding information
Taif University, Grant/Award Number: TURSP-2020/142

Abstract

Salmonella is one of the most hazardous diseases in poultry farms. Markedly, the application of active immunostimulants is illustrated as potential protective agents against infection in poultry farms. Thus, this work aimed to explore inter- and intra-breed variation in response to acute and subchronic *Salmonella enteritidis* infection in two-layer breeds (one commercial [Hy-line strain] and another native [Fayoumi breed]). Besides exploring the possible protective effect of a commercial immune modulator (STIMULAN) on the two breeds during the acute infection. The ELISA antibody titer in subchronic infections and the expression analysis of some selected genes (*IL-1β*, *LITAF*, *TGF-β*, *HSP90* and *HSP70*) are used as the clinical signs for acute infections to assess the possible protective role of a commercial immunomodulator (STIMULAN). Five groups were used during the acute experiment: G1—control; G2a—susceptible; G2b—resistant birds, G3—which received STIMULAN and G4—which received the infection + STIMULAN. The groups with sub-chronic infections include G1 (control), G2 (high antibody titer) and G3 (low antibody titer). The gene expressions among the susceptible birds during acute infection of both breeds are nearly similar. They only differ in the expression of *HSP90* in the Fayoumi breed. However, the resistant birds vary in their gene expression profile. The effect of STIMULAN as a feed additive in non-infected birds was an up-regulation of *LITAF*, *TGF-β*, *HSP90* in Fayoumi. Moreover, a powerful stimulatory role was observed when both breeds were infected. Both breeds were asymptomatic during the sub-chronic infection. Although, the increased expression of inflammatory-related genes in the Hy-line was considered as an indication of infection persistence. Fayoumi is capable of immune clearance for this infection. Thus, the Fayoumi breed is more resistant to acute *Salmonella* infection. *HSP90* plays a vital role in its resistance. We recommend the use of STIMULAN as an immunomodulator during *Salmonella* infection.

Keywords

breed effect, gene expression, immune response, immunomodulator, *Salmonella enteritidis*
Salmonella enterica can infect chickens at any time during their lives, and also it is one of the most common causes of food poisoning in humans through contaminated meat, eggs and egg products, causing severe economic and public health problems (Afshari et al., 2018).

Chickens’ genetic variation in their resistance to Salmonella infection was reported among breeds and individuals within the same breeds; also, the genetic basis of the host determines the level of bacterial pathogenesis and the severity of the disease (Tohidi et al., 2018). Salmonella enteritidis caused acute systemic disease in susceptible chickens (Withanage et al., 2005). Some other birds do not show any clinical signs, and their response to the infection occurred in the form of mild cecum inflammation, with infiltration of heterophil and monocyte/macrophage in its mucosa. Furthermore, they have increased expression of pro-inflammatory cytokines, interferon-gamma (IFN-γ) and nitric oxide synthase (iNOS) in their intestine (Matulova et al., 2013), and other internal organs like the spleen, liver and cecal tonsils at 6–48-hr post-infection (Withanage et al., 2005).

The chronic, asymptomatic Salmonella carrier is thought to be a cause of maintenance of infection in the poultry house and also possible contamination of eggs by laying hens as the intestinal carriage may occur for several months after the infection depending on the bird adaptive immune response’s ability for immune clearance of Salmonella infection (Withanage et al., 2005).

The characterizations of the immune response to acute and chronic Salmonella infection were reported in previous studies; including the expression of genes coding for chemokines, cytokines such as interleukin 1β (IL-1β), Lipopolysaccharide-induced TNF-α factor (LITAF), or antimicrobial peptides in the lymphatic organs and at the cecum (Chranova et al., 2011). The role of the expression of heat shock proteins during infection was reported; they conferred powerful effects on the stimulation of innate immune responses, mediate phagocytosis and provide protection against inflammation by suppressing the production of inflammatory mediators (Malago et al., 2005). The transforming growth factor-β1 (TGF-β1) gene is a well-known component of regulatory cytokines, which have pleiotropic effects in immune defense systems against bacterial infection; it also regulates the expression of chicken HSP70 and HSP90 (Takenaka & Hightower, 1992).

Preventing Salmonella in chicken flocks is one of the significant challenges, and many feed additives as essential oil, acetic acid, prebiotic and others were used for this purpose. They are used to reduce pathogenic effects of bacteria, improve bird’s performance, decrease the cost of treatment of the infected flock, improve intestinal health and minimize the shedding of Salmonella in feces (Attia et al., 2012; Lee et al., 2018).

This work aimed to explore inter- and inbreed variation in response to acute and subchronic Salmonella infection in two-layer breeds (one commercial [Hy-line strain] and another native [Fayoumi breed]). By using the clinical signs in acute infection, ELISA antibody titer in sub-chronic infection and the expression analysis of some selected genes as IL-1β, LITAF, TGF-β, heat shock protein 90 (HSP90) and heat shock protein 70 (HSP70). Also, explore the possible protective effect of a commercial immune modulator (STIMULAN) on the two breeds during the acute infection.

2.1 | Birds

Two-layer breeds were used, one commercial (Hy-line strain) and another native (Fayoumi breed). The Fayoumi chicks were obtained from an integrated poultry project in Fayoumi Governorate, Egypt, and Hy-line chicks were obtained from a private farm at Borg El Arab city in Egypt. One hundred and twenty birds of 1-day-old male chicks for each breed were used in this study. The birds were housed in concrete floor rooms covered with wood shavings, and wooden partitions were used to separate the different groups. The birds were fed a starter feed from 1–7 days old and grower feed from 8–45 days old. The chicks received a regular vaccination regime; optimum housing conditions include the availability of food, water, ventilation and 12 h light/dark system.

2.2 | Feed additives

The immunostimulant (STIMULAN) was added in a dose of 1 ml/L liter drinking water (Arabcomed-Egypt, Obour City, Cairo, Egypt). Each 1 L contains vitamin E (100 g), selenium (0.540 g), zinc (0.2835 g), iron (0.580 g), propylene glycol (100 ml) and water (carrier) up to 1 L.

2.3 | Experimental design and sample collection

2.3.1 | Bacteria

Salmonella enteritidis used for inducing experimental infection was obtained from the Animal Health Research Institute, Cairo, Egypt, in the form of slope and stored on glycerol at –20°C until use. They were dissolved in the nutrient broth for 48 h and were cultured on MacConkey agar media. The confirmatory test for S. enteritidis was done as a urease test, and a triple sugar test and serotyping to one slope was performed using PCR in a private diagnostic laboratory in Alexandria, Egypt. The colonies from nutrient agar media were used to make titration by Mackfirland reaction to estimate the LD50 (10⁸ CFU) and 1/2 LD₉₀ (5 × 10⁷ CFU), which were used in this study (Ishola et al., 2008).

2.3.2 | Acute Salmonella infection

The birds of each breed were allocated into four groups: Group 1: Control group (G1) (20 birds). Group 2 (60 birds): Infected intra-esophageal at the age of 2 weeks with 10⁸ CFU /bird of S. enteritidis according to Ishola et al. (2008), 48 h post-challenge, the birds in this group were divided into two subgroups depending on their clinical signs,
2.4 | ELISA

ELISA was used to classify birds into high and low immune responses according to antibody titer in the subchronic infected group. High antibody titer ranged from 1.80 to 2.78, and low titer ranged from 0.97 to 1.79 (Table 1).

2.5 | Haematological parameters

The total leukocytic count was determined using the haemocytometer. Differential leukocyte count (basophils, eosinophils, monocytes, heterophils and lymphocytes) was performed.

2.6 | Isolation of RNA and cDNA synthesis

Total RNA was extracted using (Trisure reagent)® according to the manufacturer’s instructions (Intron, Korea). Extracted RNA was stored at −80°C. Total RNA was reverse transcribed into cDNA by using a power first-strand cDNA synthesis kit (Intron, Korea) according to the manufacturer protocol. The obtained cDNA was stored at −20°C until further use. The cDNA was checked by the housekeeping gene (18s rRNA), then the product was then checked on 2% agarose gel electrophoresis.

2.7 | Quantitative Real-time polymerase chain reaction

Quantitative real-time PCR for the inflammatory-related genes (IL-1β, LITAF), TGF-β, HSP90 and HSP70 were done in the qPCR machine (3000 × Stratagene, USA). The qRT-PCR reaction was performed by using SensiFastTM SYPER Low-Rox kit (Enzynomic, USA). Primers annealing temperature and PCR products are listed in Table 2. In 0.2 ml PCR tubes, the following ingredients were included, 0.8 μl of each forward and reverse primer, 2 μl of cDNA, 6.4 μl RNAas free water and 10 μl

TABLE 1 Antibody titer of high and low immune response in Fayoumi and Hy-line using ELISA

Breed	Immune status	ELISA- level
Fayoumi breed	High	2.38 ± 0.05a
	Low	1.86 ± 0.04c
Hy-line strain	High	2.19 ± 0.09b
	Low	1.26 ± 0.06d

*All values are expressed as Mean ± SE. The number of birds in each group = 20. Values with different letters within the same column are significant at (p < 0.01).

TABLE 2 Sequences of primers used in real-time PCR

Genes	Primer sequence (5′–3′)	Annealing temperature (°C)	Amplicon size (bp)	Acc. Number	Reference
IL-1β	F: CAGCCTCACGGAAGAGACCTT R: CACTGTGGTGTCGCTCAGAATCC	60°C	166	XM_015297469.1	Ghareeb et al. (2013)
HSP90	F: GAGTTTATGACCCCGAGCA R: TCCCTATGCCGATCCCA	60°C	107	NM_001109785.1	Xie et al. (2014)
HSP70	F: CCAAAGACAAGTGCAATGGA R: CATACTGGGGCGATGAG	60°C	72	NM_001006685.1	Rimoldi et al. (2015)
LITAF	F: CCCCTACCTGTCCCAAA R: TGAGTCTGGGAGGGTTCAT	63°C	67	XM_015294125.1	Ghareeb et al. (2013)
TGF-β	F: ACCAGTGCTACTCCAGGAAGAC R: AAAGCACAGGGGTCACAA	63°C	82	XM_015275817.1	Ghareeb et al. (2013)
18s	F: CGAAAGCATTGCCAAGAGA R: GCCATCGTATGCTCGG	60°C	98	XM_015288030.1	Primer 3
TABLE 3 Differential leukocytic count in Fayoumi breed and Hy-line strain

Breed	Immune status	Lymphocytes Mean ± SE	Basophils Mean ± SE*	Eosinophils Mean ± SE	Monocytes Mean ± SE	Heterophils Mean ± SE
Fayoumi	High	60.27 ± 3.83b	0.67 ± 0.13a	2.93 ± 0.25c	4.93 ± 0.28d	60.27 ± 3.83b
	Low	55.50 ± 4.86d	0.38 ± 0.18c	4.00 ± 0.38a	6.63 ± 0.38b	55.50 ± 4.86d
Hy-line	High	56.82 ± 5.26c	0.45 ± 0.16b	3.27 ± 0.36b	5.82 ± 0.52b	56.82 ± 5.26c
	Low	64.00 ± 4.18a	0.22 ± 0.15d	2.22 ± 0.22d	5.56 ± 0.56c	64.00 ± 4.18a

*All values are expressed as Mean ± SE. The number of birds in each group = 20. Values with different letters within the same column are significant at (p < 0.01).

SYPER green. The thermal cycler condition was one cycle of denaturation at 95°C for 10 min, followed by 40 cycles of 95°C for 15 s and annealing temperature of 60°C for 1 min. To ensure that a signal product was amplified, a melting curve analysis was performed on the PCR products at the end of each PCR run. The 18s rRNA was used as a housekeeping gene.

2.8 Statistical analysis

Data analysis was done by one-way ANOVA. Statistical analysis was done using GraphPad Prism software version 6 (Graphprism Software, La Jolla, California, USA). The results were obtained as mean ± standard error (SE). The analysis of gene expression was performed by comparative threshold cycle method 2^−ΔΔCt (Rao et al., 2013).

3 RESULTS

3.1 Differential leukocytic count of high and low immune response

Differential leukocytic count; in Fayoumi breed, acute Salmonella infection induces a significant increase in lymphocytes, basophils and heterophils in high immune response birds than low immune response, which have a significant increase in eosinophils and monocytes (Table 3).

Hy-line strain showed a significant increase in basophils, eosinophils and monocytes in high immune response birds compared with low immune response, which has a significant increase in lymphocytes and heterophil.

3.2 Gene expression

3.2.1 Acute infection of Salmonella

Acute Salmonella infection in susceptible Fayoumi birds (G2a) was associated with a significant up-regulation of inflammatory-related genes IL-1β to ninefolds, and mild up-regulation of LITAF gene to twofolds was recorded (Figure 1A and B), meanwhile; it is associated with a significant decrease of TGF-β and HSP90 to −0.2 and −0.3 folds (Figure 2A and B). In resistant birds (G2b) (without clinical sign), they showed a significant up-regulation of inflammatory-related genes (IL-1β and LITAF) to 2- and 87-folds; no change was observed in the expression of TGF-β. Significant up-regulation of HSP90 to eightfolds was observed.

Regarding the effect of STIMULAN (immune-modulator) alone (G3) in Fayoumi, no effect on IL-1β gene expression was observed; meanwhile, significant up-regulation of both LITAF, TGF-β and HSP90 to 8-, 1.8- and 30-folds, respectively were observed. The combined
3.2.2 | Sub-chronic infection of *Salmonella*

Sub-chronic *Salmonella* infection induced different gene expression profiles three-week post-challenge in both breeds (Figure 3 A, B, C, D and E). In Fayoumi, no change was observed in the expression of IL-1β and HSP90 among the G2 (high immune response birds) and G3 (low immune response birds). An increase in LITAF and HSP70 gene expression to 6.5- and 28-folds and significant down-regulation of TGF-β gene expression in high immune response birds (G2) was observed. In contrast, in the Hy-line strain, both IL-1β and HSP90 had a significant up-regulation in their expression in G2 (high immune response birds) to 6.8- and 4.5-folds and additionally, both genes were increased at G3 (low immune response birds) to 5- and 2.8-fold (Figure 3). *LITAF* gene expression was increased to 4.8-folds in G2, and TGF-β gene expression increase to 6.2-folds in the G3 group, and no change was observed in HSP70.

4 | DISCUSSION

Acute inflammatory disease is usually associated with a change in white blood cell count. The inter- and intra-breed variation in the differential leukocytic count was observed in our study in Fayoumi and Hy-line breeds. Bílková et al. (2017) demonstrated varying leukocytic count among different chicken breeds, which reflect variable immunological adaptations based on their original need to control the infections. Hence the comparison of differential leukocytes between the two studied breeds may be of no value. However, within each breed, the distribution of WBCs between the resistance and susceptible birds differed significantly, and also, the types of cells present in the resistant bird in Fayoumi are varied from that present in the resistant Hy-line. Neto et al. (2007) demonstrated differences in blood parameters and the intensity of the organ lesions among three susceptible and three resistance lines of commercial layers infected with *Salmonella gallinarum*.

Inter- and intra-breed variation in response to acute *Salmonella* infection in the two studied layer breeds (Hy-line and Fayoumi) are definite. The performances of the susceptible birds of both breeds are nearly similar; the expression of the IL-1β gene is high, and the TGF-β and LITAF gene expressions are low compared with the resistant birds, and the only difference between the two susceptible breeds is the more expression of HSP90 in Fayoumi breed. Although the resistant birds of both breeds showed mild up-regulation of IL-1β, the expressions of the other genes are variable. Fayoumi showed significant expression of LITAF and HSP90; meanwhile, TGF-β gene expression is unchanged, in Hy-line, significant up-regulation of TGF-β, mild up-regulation of IL-1β, LITAF and unchanged expression of HSP90 were observed. Arici et al. (2010) found that the genetic background between the most susceptible layer-types and the less susceptible broiler chickens influences the pathogenesis of the infectious bursal disease virus (IBDV). They demonstrated significant variation between circulating cytokine between the two breeds. Moreover, Swaggerty et al. (2004) demonstrated that chemokines and interleukins play a vital role during...
Figure 3 Relative expression of the studied genes in Fayoumi breed and Hy-line strain groups in different treatment of subchronic infection. All values are expressed as Mean±SE. Values with different letters within the same breed are significant at (p < 0.01). Asterisks mean intra-breed significant. Groups: G1 (control), G2 (high immune response birds-high antibody titer) and G3 (low immune response birds-low antibody titer)
Salmonella infections, they compared the mRNA level of different interleukins in heterophile between the resistant and susceptible chickens, and they demonstrated an increased expression of IL-6, IL-8 and IL-18 in resistant chicken as compared to the susceptible chicken. Additionally, they found a decrease in the transcripts’ level of heterophile transforming growth factor (TGF-β4) of the resistant chicken, which is a coincidence within unchanged level of TGF-β in Fayoumi, which enables these chickens to quickly and efficiently initiate an acute pro-inflammatory response and the resistant state as observed by Withanage et al. (2005). The production of these cytokines such as IL-1β, IL-6, IL-8, IL-12, IL-17, IFN-γ, LITAF or iNOS in response to Salmonella infection of chickens have been reported in many studies (Berndt et al., 2005; Van Immerseel et al., 2002; Xie et al., 2018). The primary functions of these genes (IL-1β, IL-8 and IL-17) are to attract leukocytes to the site of infection (Ivanov et al., 2008).

Variation in the expression of HSP90 during the acute Salmonella infection between Hy-line and Fayoumi was observed. The induction of HSP by several stresses, including infection, was recorded by Malago et al. (2005) and Hassan et al. (2017). Furthermore, the breeds variation in HSP expression was recorded (Abdo et al., 2017; Xie et al., 2014).

When cells increase their HSP content, they protect themselves from lethal assaults, as the HSP interferes with the uncontrolled protein unfolding associated with stress (Bolhassani et al., 2019). We suggested that the more expression of HSP90 during acute infection in Fayoumi breed in the resistant bird to ninefolds and also its elevation in response to STIMULAN (immune-modulator) to 30-folds are associated with increased resistance status to Salmonella infection and provide more protection to these birds compared with the Hy-line strain. Wallin et al. (2002) suggested that HSP60, HSP70, HSP90 and GP96, have a role in stimulating innate immune-system cells directly and act as ‘danger’-signaling molecules.

The effect of STIMULAN alone as a feed additive in non-infected birds is potent in Fayoumi breeds compared with Hy-line; it induced up-regulation of LITAF, TGF-β and HSP90. No effect was observed on the studied genes of the Hy-line strain. During infection, the expressions of these genes are changed in the groups received by the STIMULAN of both breeds. The more powerful role of STIMULAN in Hy-line strain in the form of significant up-regulation of IL-1β, TGF-β mild up-regulation of LITAF and significant downregulation of HSP90. Meanwhile, only significant up-regulation of IL-1β was observed in Fayoumi, while the other genes were maintained within the control level. The STIMULAN alone as a feed additive provided a significant immunomodulatory effect in Fayoumi, and during infection in both breeds, this may be due to its contents of the vitamins-mineral mix (vitamin E, selenium, zinc and iron) as each of them was recorded to have an immunomodulatory effect (Kaiser et al., 2012; Naz et al., 2016; Adedokun et al., 2019).

Additionally, Sanda (2019) reported a significant increase in antibody titer to Newcastle Disease vaccine in chickens supplemented with vitamin-mineral mix compared with the control, and the group received the supplement only without a vaccine. Redmond et al. (2010) and El Nahas et al. (2019) suggested that different genetic backgrounds of chicken affect their response to immune enhancing.

The results of subchronic Salmonella infection three-week post-challenge revealed no change in IL-1β gene expression in both high and low immune response birds in the Fayoumi breed. Beal et al. (2005) reported a significant increase in the IL-1β mRNA level at 6-day post-infection in the spleen of the Salmonella infected birds followed by dropped in its expression to the control level at 13 and 20-day post-infection. Also, Chaussé et al. (2011) observed the absence of the expression of IL-1β in infected birds with Salmonella at 3-week post-infection.

In our study, the sub chronically infected Hy-line, and Fayoumi breeds were asymptomatic, Withanage et al. (2005) suggested that the resistant bird may carry Salmonella infection for weeks without showing clinical signs. However, the gene expression profiles of both breeds under study are different. In Fayoumi, no change was observed in the expression of IL-1β and HSP90 in both high and low immune response birds. An increase in the expression of the LITAF gene to sixfolds and significant down-regulation of TGF-β gene expression in high immune response birds were observed. Reverse in Hy-line strain both IL-1β and HSP90 had significant up-regulation in their expression in high immune response birds to 7- and 4.5-folds. Additionally, both genes were increased at the low immune response birds. LITAF gene expression was also increased to fivefold in G2, and TGF-β gene expression increase to 6.2-folds in the resistant group. Ruby et al. (2012) revealed that chronically infected hosts who are asymptomatic could transmit disease through fecal shedding of bacteria. Additionally, Gast et al. (2019) suggested that the regulation of the inflammatory response could affect the persistent Salmonella infection. Furthermore, Chaussé et al. (2014) compared resistant and susceptible chicken lines to Salmonella enteritidis carrier-state, they identified 271 differentially expressed genes; no difference was observed in the expression of regulatory cytokines in both lines, including IL-10 and TGF-β and enhanced expression of cytokines, including IL-4 and IL-13 and other genes which supports the immune clearance of avian salmonellosis in resistance birds, and a carrier states in susceptible birds.

We suggest that the immune clearance of Salmonella infection in Fayoumi breed (both high and low immune response) is better than Hy-line strain, which had a high inflammatory response of IL-1β, LITAF, TGF-β and also HSP90 3-week post-infection.

Conclusion

In conclusion, intra and inter-breed variation in the immune response to acute and sub-chronic Salmonella infection in Hy-line and Fayoumi layers was observed. Fayoumi breed is more resistant to acute Salmonella infection; HSP90 plays a vital role in this resistance. We recommend the use of STIMULAN as immunomodulatory during Salmonella infection.

Conflicts of Interest

The authors declare no conflict of interest.
ACKNOWLEDGEMENT
The authors extend their appreciation to Taif University for funding current work by Taif University Researchers Supporting Project number (TURSP - 2020/142), Taif University, Taif, Saudi Arabia.

AUTHOR CONTRIBUTION
Shymaa A. Khatab: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software; Shabaan A. Hemeda: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software; Abeer F. El-Nahas: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software; Saleh S.H. Abd El Naby: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software; S.H. Abd El Naby: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software; Saleh S.H. Abd El Naby: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software; Sabry Hassan: Investigation, Visualization, Writing-review & editing; Mahmoud Dawood: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Resources, Software; Jamal A. Alorabi: Funding acquisition, Investigation, Methodology, Resources, Software; Shabaan A. Shymaa A. Khatab: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software; Shabaan A. Shymaa A. Khatab: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software; Shabaan A. Shymaa A. Khatab: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software; Shabaan A. Shymaa A. Khatab: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software; Shabaan A. Shymaa A. Khatab: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software; Shabaan A.

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1002/vms3.621

ORCID
Mahmoud A.O. Dawood https://orcid.org/0000-0002-4887-8838

REFERENCES
Abdo, S. E., El-Kassas, S., El-Nahas, A. F., & Mahmoud, S. (2017). Modulatory effect of monochromatic blue light on heat stress response in commercial broilers. Oxidative Medicine and Cellular Longevity, https://doi.org/10.1155/2017/1351945
Adedokun, S. A., & Olojede, O. C. (2019). Optimizing gastrointestinal integrity in poultry: The role of nutrients and feed additives. Frontiers in Veterinary Science, 5, 348.
Afshari, A., Varatpour, S., & Jamshid, O. (2018). Salmonella enteritidis and Salmonella typhimurium identification in poultry carcasses. Iranian Journal of Microbiology, 10, 45–50.
Aricibasi, M. A., Jung, E. D., & Rautenschlein, S. (2010). Differences in genetic background influence the induction of innate and acquired immune responses in chickens depending on the virulence of the infecting infectious bursal disease virus (IBDV) strain. Veterinary Immunology and Immunopathology, 35(1-2), 79–92.
Attia, Y. A., Elkahky, H., Abd El-Hamid, A., & Ghazaly, A. (2012). Control of Salmonella enteritidis infection in male layer chickens by acetic acid and/or probiotics, probiotics and antibiotics. Arch Geflügelk. 76(4), 239-245.
Beal, R. K., Powers, N., Wigley, P., Barrow, P. A., & Smith, A. L. (2005). A strong antigen-specific T-cell response is associated with age and genetically dependent resistance to avian enteric salmonellosis. Infection and Immunity, 73, 7509–7516.
Berndt, A., Wilhelm, A., Jugert, C., Pieper, J., & Sachse, K. (2007). Chicken cecum immune response to Salmonella enterica serovars of different levels of invasiveness. Infection and Immunity, 75, 5993–6007.
Bilková, B., Bainová, Z., Janda, J., Zitac, L., & Vinkler, M. (2017). Different breeds, different blood: Cytometric analysis of whole blood cellular composition in chicken breeds. Veterinary Immunology and Immunopathology, 188, 71–77.
Bolhassani, A., & Elnaz, A. (2019). Heat shock proteins in infection. Clinica Chimica Acta, 498, 90–100.
Chaussé, A. M., Grépinet, O., Bottreau, E., Robert, V., Hennequet-Antier, C., Laimanach, A. C., Lecardonnel, J., & Velgé, J. (2014). Susceptibility to Salmonella carrier-state: A possible Th2 response in susceptible chicks. Veterinary Immunology and Immunopathology, 159(1-2): 16–28.
Chausses, A. M., Pinet, O. G., Bottreau, E., & Vern, Y. L. (2011). Expression of toll-Like Receptor 4 and downstream effectors in selected cecal cell subpopulations of chicks resistant or susceptible to salmonella carrier stat. Infection and Immunity, 79(8), 3445–3454.
Crhanova, M., Hradecky, H., Faldynova, M., Matulova, M., Havlickova, H., & Rychlik, I. (2011). Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar enteritidis infection. Infection and Immunity, 79(7), 2755–2763.
El Nahas, A. F., Belal, S. S., Mahmoud, S., Helal, M. A., & Yonis, A. E. (2019). Survey on the presence of the Mx and MHC resistance alleles to avian influenza virus infection compared with its outbreaks among chicken breeds in Egypt. Kafkas University of Veterinary Fakultesi Dergisi, 25(1), 99–104.
Gast, R. K., Regmi, P., Guraya, R., Jones, D. R., Anderson, K. E., & Karcher, D. M. (2019). Colonization of internal organs by Salmonella enteritidis in experimentally infected laying hens of four commercial genetic lines in conventional cages and enriched colony housing. Poultry Science, 98, 1785–1179.
Ghareeb, K., Awad, W. A., Soodoi, C., Sasgary, S., Strasser, A., & Böhm, J. (2013). Effects of feed contaminant deoxynivalenol on plasma cytokines and mRNA expression of immune genes in the intestine of broiler chickens. PLoS One, 8(8), p. e71492.
Hassan, A. M., El Nahas, A. F., Mahmoud, S., Barakat, M. E., & Ammar, A. Y. (2017). Thermal stress of ambient temperature modulate expression of stress and immune-related genes and DNA fragmentation in Nile tilapia (Oreochromis niloticus (Linnaeus, 1758)). Applied Ecology and Environmental Research, 15(3), 1343–1354.
Ishola, S., Obaisi, O., & Peters, S. (2008). Salmonella enteritidis experimental infection in chickens: Effects of challenge dose on serum immunoglobulin G antibody response. African Journal of Biotechnology, 7(20), 3783–3787.
Ivanov, I. I., de Llanos Frutos, R., Manel, N., Yoshinaga, K., Rifkin, D. B., & Littman, D. R. (2008). Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe, 4(4), 337–349.
Kaiser, M. G., Block, S. S., Ciraci, C., Fang, W., & Lamont, S. J. (2012). Effects of dietary vitamin E type and level on lipopolysaccharide-induced cytokine mRNA expression in broiler chickens. Poultry Science, 91, 1893–1898.
Lee, Y. S., Lee, S. H., Gadde, U. D., Gadde, U. D., Oh, S. T., Lee, S. J., & Lillehoj, H. S. (2018). Allium hookeri supplementation improves intestinal immune response against necrotic enteritis in young broiler chickens. Poultry Science, 97(6), 1899–1908.
Malago, J. J., Koninkx, J. F., Tooten, P. C. J., van Liere, E. A., & van Dijk, J. E. (2005). Anti-inflammatory properties of heat shock protein 70 and butyrate on salmonella-induced interleukin-8 secretion in enterocyte-like Caco-2 cells. Clinical and Experimental Immunology, 141, 62–71.
Matulova, M., Varmuzova, K., Sisak, F., Havlickova, H., Babak, V., Stejskal, K., Zdrahal, Z., & Rychlik, I. (2013). Chicken innate immune response to oral infection with Salmonella enteritidis Enteritidis. Veterinary Research, 44(1), 37.
Nas, S., Idris, M., Khalique, M. A., Alhidayi, I. A., Abdelrahman, M. M., Khan, R. U., Chand, N., Farooq, U., & Ahmad, S. (2016). The activity and use of zinc in poultry diets. World’s Poultry Science Journal, 72, 159–167.
Neto, O. D. F., Arroyave, W., Alessi, A. C., Fagliri, J. J., & Berchiari, A. (2007). Infection of commercial layer hens with Salmonella gallinarum: Clinical, anatomico pathological and haematological studies. Brazilian Journal of Poultry Science, 9(2), 133-141.
Rao, X., Huang, X., Zhou, Z., & Lin, X. (2013). An improvement of the 2− (delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath, 3(3), 71–85.
Redmond, S. B., Tell, R. M., Coble, D., Mueller, C., & Lamont, S. J. (2010). Differential splenic cytokine responses to dietary immune modulation by diverse chicken lines. *Poultry Science, 89*, 1635–411.

Rimoldi, S., Lasagna, E., Sarti, F.M., Marelli, S.P., Cozzi, M.C., Bernardini, G., & Terova, G. (2015). Expression profile of six stress-related genes and productive performances of fast and slow growing broiler strains reared under heat stress conditions. *Meta Gene, 6*, 17–25.

Ruby, T., McLaughlin, L., Gopinath, S., & Monack, D. (2012). Salmonella’s long-term relationship with its host. *FEMS Microbiology Reviews, 36*(3), 600–615.

Sanda, M. E. (2019). Effects of vitamin: Mineral supplement on the immune response of broilers to Newcastle disease vaccination. *International Journal of Agricultural Veterinary Science, 1*(1), 10–13.

Swaggerty, C. L., Kogut, M. H., Ferro, P. J., Rothwell, L., Pevzner, I. Y., & Kaiser, P. (2004). Differential cytokine mRNA expression in heterophils isolated from Salmonella-resistant and -susceptible chickens. *Immunology, 113*, 139–148.

Takenaka, I. M., & Hightower, L. E. (1992). Transforming growth factor-β1 rapidly induces Hsp70 and Hsp90 molecular chaperones in cultured chicken embryo cells. *Journal of Cellular Physiology, 152*, 568–577.

Tang, Y., Foster, N., Jones, M. A., & Barrow, P. A. (2018). Model of persistent salmonella infection: salmonella enterica serovar pullorum modulates the immune response of the chicken from a Th17-type response towards a Th2-type response. *Infection and Immunity, 86*(8), e00307–18.

Tohidi, R., Javanmard, A., & Idbris, I., (2018). Immunogenetics applied to control salmonellosis in chicken: A review. *Journal of Applied Animal Research, 46*(1), 331-339.

Van Immerseel, F., De Buck, J., De, S. I., Mast, J., Haesebrouck, F., & Ducatelle, R. (2002). Dynamics of immune cell infiltration in the caecal lamina propria of chickens after neonatal infection with a Salmonella enteritidis strain. *Developmental and Comparative Immunology, 26*, 355–364.

Wallin, R. P., Lundqvist, A., Moré, S. H., von Bonin, A., Kiessling, R., & Ljunggren, H. G. (2002). Heat-shock proteins as activators of the innate immune system. *Trends in Immunology, 23*(3), 130–135.

Withanage, G. S., Wigley, P., Kaiser, P., Mastroeni, P., Brooks, H., Powers, C., Beal, R., Barrow, P., Maskell, D., & McConnell, L. (2005). Cytokine and chemokine responses associated with clearance of a primary *Salmonella enterica serovar* Typhimurium infection in the chicken and in protective immunity to rechallenge. *Infection and Immunity, 73*, 5173–5182.

Xie, J. J., Tang, L., Lu, L., Zhang, L., Xi, L., Liu, H. C., Odle, J., & Luo, X., (2014). Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens. *PLoS One, 9*, 112–119.