Identification of gut microbial species linked with disease variability in a widely used mouse model of colitis

Samuel C. Forster, Simon Clare, Benjamin S. Beresford-Jones, Katherine Harcourt, George Notley, Mark D. Stares, Nitin Kumar, Amelia T. Soderholm, Anne Adoum, Hannah Wong, Bélen Morón, Cordelia Brandt, Gordon Dougan, David J. Adams, Kevin J. Maloy, Virginia A. Pedicord and Trevor D. Lawley.

Experimental mouse models are central to basic biomedical research; however, variability exists across genetically identical mice and mouse facilities making comparisons difficult. Whether specific indigenous gut bacteria drive immunophenotypic variability in mouse models of human disease remains poorly understood. We performed a large-scale experiment using 579 genetically identical laboratory mice from a single animal facility, designed to identify the causes of disease variability in the widely used dextran sulphate sodium mouse model of inflammatory bowel disease. Commonly used treatment endpoint measures—weight loss and intestinal pathology—showed limited correlation and varied across mouse lineages. Analysis of the gut microbiome, coupled with machine learning and targeted anaerobic culturing, identified and isolated two previously undescribed species, Duncaniella muricolitica and Alistipes okayasuensis, and demonstrated that they exert dominant effects in the dextran sulphate sodium model leading to variable treatment endpoint measures. We show that the identified gut microbial species are common, but not ubiquitous, in mouse facilities around the world, and suggest that researchers monitor for these species to provide experimental design opportunities for improved mouse models of human intestinal diseases.

Experimental mouse models are central to basic biomedical research and serve as important preclinical models in drug discovery for a variety of human diseases, including autoimmune and metabolic disorders, cancers and infections. Unfortunately, there is tremendous variability in disease penetrance and reproducibility among genetically identical mice within and between mouse facilities, limiting the utility of many commonly used models.

Specific-pathogen-free (SPF) protocols have been successfully employed to control the confounding effects that can be caused by known bacterial pathogens, but we lack equivalent knowledge of the effects of the diverse, uncharacterized symbiotic bacteria within the indigenous gut microbiota of mice. While our knowledge of the human gut microbiota in health and disease has expanded extensively with large-scale microbiome studies, comprehensive computational bacterial discovery and extensive genome-sequenced bacterial collections, equivalent investigations in mouse models have remained limited. The vast differences in species type, composition and dispersal between human and mouse microbiotas highlight the importance of efforts to culture mouse-specific bacteria and to validate their functions during intestinal homeostasis and disease.

Inflammatory bowel disease (IBD) research relies heavily on laboratory mice to understand colitis and the role of host genetics in disease resistance and susceptibility. Detailed immune characterization shows colitis induction with specific microbial communities or species colonization with Helicobacter spp., Enterobacteriaceae, Bilophila wadsworthia or segmented filamentous bacteria. Potential genetic modulators of IBD are routinely assessed through administration of dextran sulphate sodium (DSS) at various concentrations in drinking water, which acts by damaging the gut epithelial barrier to trigger inflammatory disease. In germ-free mice, immune-mediated colitis is largely absent although reduced barrier function can introduce susceptibility at higher DSS concentrations. Similarly, dietary changes in both germ-free and SPF mice can determine DSS susceptibility in a microbiome-dependent and -independent manner, and highly specific protection is provided by the presence of Clostridium immununie. Despite these advances, the gut microbiota in these mouse models, including standard SPF models, is rarely profiles at the genomic level or cultured in the laboratory, nor robustly controlled to understand the contribution of general gut bacteria to experimental outcomes.

To quantify the variability of the widely used DSS model of IBD and to investigate primary factors contributing to this variability, we undertook a large-scale experiment using 579 genetically identical laboratory mice in a single animal facility. Incorporating standardized phenotyping, microbiome analysis and metadata collection, this approach was designed to identify and validate the causes of variability for standard experimental endpoints (weight loss and intestinal pathology). Using a data-driven approach we identified, from gut microbiome data, candidate bacterial taxa driving weight...
Disease severity is highly variable in the DSS mouse model. We administered 1.5% DSS through the drinking water for 7 days to 579 identically housed, SPF wild-type C57BL/6N mice (297 males, 282 females; median age 11 weeks; s.d. 12 days) from 14 distinct parental lineages (that is, founder matings derived from a single breeding pair). We observed extensive variability in experimental endpoints in these genetically identical mice at 10 days post DSS treatment, with histological assessment of intestinal pathology of the mid and distal colon ranging from severe inflammation, characterized by extensive crypt loss, leukocytic infiltration and edema, to no visible inflammation (Fig. 1a,b). Substantial variation was also observed in the weight change of mice treated with DSS, with the response ranging from 12% weight gain to 30% weight loss across the cohort (Fig. 1c). Regression analysis considering histology scores and weight loss demonstrated limited correlation ($R^2 = 0.27$), suggesting that weight loss and intestinal pathology outcomes, common experimental endpoint measures in the DSS model, may be partially independent responses to DSS (Fig. 1d). This relationship is consistent with systemic complications contributing to experimental endpoints in the DSS model.

Gut microbiota is major driver of variable response to DSS. To identify the primary factors determining disease outcome, we established a random forest classifier model incorporating mouse sex, age, lineage, parents, mouse room and experimental date to assess the relative importance of each of these factors (Extended Data Fig. 1). The strongest predictive factor for weight loss and histology score, both together and independently in these genetically identical C57BL/6N mice maintained under standardized SPF conditions within the same facility, was parental lineage, with correlation analysis confirming these associations ($P < 0.01$, Kruskal–Wallis; Extended Data Fig. 1).

Since all mice were derived from the same genetic founder stock, the most likely mediator of their DSS phenotype was an extrinsic lineage-specific factor. However, to exclude the role of host genetics or epigenetic differences between colonies, and to determine whether the microbiota alone could be responsible for the observed phenotypic variation, fecal samples were collected from SPF mice (without DSS treatment) from parental lineages that represented extremes of disease outcome and were used to colonize C57BL/6N germ-free mice. These colonized recipient mice were then subjected to DSS treatment involving daily weight measurements, with colon sections collected and analyzed histologically 10 days after the initiation of DSS treatment. Recipient mice exhibited both weight loss and pathology scores not statistically different from those observed in the respective donor mouse lineages, but differing significantly between disease- and non-associated lineages ($P = 0.0002$, paired t-test; Fig. 2a). From these results it is clear that, independent of other factors such as host genetics or epigenetic lineage-specific factors, the microbiota is sufficient to produce the observed variation in phenotypic response to DSS administration.

Discovery of bacteria that drive disease variability. Having established the importance of the microbiota in mediation of phenotypic outcomes to DSS in genetically identical mice, we next sought to understand the degree of variability in the mouse microbiota across a single facility, and to define changes in the microbiota that occur with DSS treatment. Fecal samples were collected before
An analysis of microbiota community composition following DSS treatment and 10 days after DSS exposure, and subjected to taxonomic profiling with 16S ribosomal RNA amplicon sequencing to determine microbiota community composition. Consistent with previous reports of gastrointestinal inflammation, this analysis demonstrated a clear separation of microbiome community between pre- and post-DSS samples (Fig. 2b,c and Extended Data Figs. 2 and 3) and a significant reduction in bacterial diversity (Shannon diversity index, $P = 0.0357$; Fig. 2d). Although expansion of Proteobacteria is often associated with gut microbiome dysbiosis, while an increase in Proteobacteria was observed post-DSS ($P < 0.05$, Kolmogorov–Smirnov test), limited association was observed between weight loss and Proteobacteria proportion either pre (Fig. 2e; Spearman correlation, 0.196) or post DSS treatment (Fig. 2e; Spearman correlation, -0.289). This suggests that other gut bacteria may be contributing to the observed variation in DSS resistance and susceptibility.

Fig. 2 | Discovery of candidate bacterial taxa associated with DSS disease variability.

a. Comparison of weight change observed in conventional SPF mice (lineages A, B, C and D, solid colors) and germ-free (GF) mice colonized by oral gavage (lineages A, B, C and D into GF, hatched colors) after 10-day DSS challenge ($P = 0.0002$, two-tailed t-test with Welch’s correction; data plotted as mean ± s.d.; $n = 4$ (lineages A, C, C + GF, D and D + GF) and $n = 3$ (lineages B, B + GF, A + GF)).

b. Distribution of Bacteroides (red), Firmicutes (green) and Proteobacteria (blue) in pre- and post-DSS samples exhibiting asymptomatic or >5% weight loss and inflammation.

c. Principal component analysis of 16S rRNA amplicon sequencing profiling identifies a clear difference between pre-DSS samples (blue) and post-DSS samples (red), regardless of lineage.

d. Alpha diversity using Shannon diversity index grouped by pre- and post-DSS samples (*$P = 0.0357$, paired t-test; $n = 77$).

e. Relationship between weight change and relative abundance of Proteobacteria pre-DSS challenge (blue; Spearman correlation, 0.196) and post DSS (red; Spearman correlation, -0.289).

f. Relative abundance of *A. faecis*, *A. okayasuensis*, *D. muricolitica* and *S. muris* before challenge with DSS amongst samples from mice that experienced >5% weight loss (red) or no weight loss (black) ($P = 0.0264, 0.0006, 0.0351, 0.0010$, two-tailed t-test; $n = 18$ and $n = 13$ independent animals, respectively. Minima (25th percentile) median (75th percentile) and maxima are shown. *$P < 0.05$; ***$P \leq 0.001$).
Given the transmissibility of disease phenotype we observed in the germ-free mouse experiments, we reasoned that the observed phenotypic variation was primarily dependent on baseline microbiota composition before DSS treatment. To understand the composition of microbiota associated with increased risk of disease outcome, we applied linear discriminant analysis to gut microbiota composition before and after DSS treatment. We show clear associations between specific bacterial taxa and DSS-mediated disease outcome using 16S ribosomal RNA gene sequencing, accurate taxonomic identification to strain level and experimental validation require the isolation and genome sequencing of pure clonal cultures of bacterial strains. To target and purify bacterial strains, we next performed broad-based culture of ~2,000 bacterial colonies from mouse fecal samples. The resulting isolates were predictive bacterial taxa were not identified within the microbiota of mice after DSS exposure. Our results suggest that the presence of specific gut bacterial taxa before DSS exposure may influence disease severity and outcome, possibly by either priming or protection from disease.

Isolation of bacterial species for functional validation. While we show clear associations between specific bacterial taxa and DSS-mediated disease outcome using 16S ribosomal RNA gene sequencing, accurate taxonomic identification to strain level and experimental validation require the isolation and genome sequencing of pure clonal cultures of bacterial strains. To target and purify bacterial strains, we next performed broad-based culture of ~2,000 bacterial colonies from mouse fecal samples. The resulting isolates were
identified by capillary 16S rRNA gene sequencing and included four previously identified bacterial taxa, two ‘disease associated’ and two ‘health associated’. These isolates were subjected to whole-genome sequencing and genomic analysis to aid in precise taxonomic and phylogenetic assignment (Extended Data Fig. 4). In addition, we performed extensive phenotypic characterization and comparative genome analyses of these four species (Methods) as a basis to provisionally name the health-associated bacteria Anaeroestipes faecis and Sangeribacter muris and the disease-associated bacteria Dunciannella muricolitica and Alistipes okayasuensis; of note, the last three species are mouse specific. Examination of the relative abundance of each of these species before DSS treatment identified significantly higher levels of A. faecis (P = 0.0264, t-test) and S. muris (P = 0.0010, t-test) in those mice without weight loss, and significantly higher levels of D. muricolitica (P = 0.0351, t-test) and A. okayasuensis (P = 0.0006, t-test) in mice that experienced >5% weight loss (Fig. 2f).

We next repeated the DSS experimental model in either germ-free mice or germ-free mice stably monocolonized for 4 weeks with one of these four bacterial strains (Extended Data Figs. 5a and 6). Control germ-free mice treated with DSS neither lost weight (Fig. 3a) nor experienced mortality (Fig. 3b) over the course of the experiment, suggesting that the presence of gut bacteria is important in triggering overt disease in our facility. Comparable experimental outcomes were observed in DSS-treated, germ-free mice monocolonized with either of the health-associated bacteria, which did not lose weight or develop intestinal pathology (Fig. 3a) nor experienced significant mortality (Fig. 3b). In contrast, when DSS-treated mice were monocolonized with either of the disease-associated bacteria, we observed more rapid and greater weight loss (Fig. 3a) and significantly reduced survival (Fig. 3b). Therefore, we identified and validated D. muricolitica and A. okayasuensis as mouse bacteria that can promote disease not observed in mice monocolonized with the commensal bacteria S. muris and A. faecis.

To understand inflammatory immune responses in the intestine potentially caused by disease-associated versus health-associated species, we next examined histology, immune cell populations and cytokine production. The human-colonizing A. faecis and the facility-prevalent D. muricolitica were chosen as exemplary disease- and health-associated bacteria, respectively, for these analyses. Flow cytometric analysis of intestinal lamina propria leukocytes isolated from germ-free mice monocolonized for 4 weeks with either A. faecis or D. muricolitica revealed that colonization with either strain did not significantly impact the composition of intestinal leukocyte and lymphocyte subsets (Extended Data Figs. 5c and 6). However, the perturbation and epithelial disruption induced by DSS led to significantly increased inflammatory CD64+CD11c+ monocytes/macrophages in the lamina propria compartment of the large intestine in D. muricolitica monocolonized mice, but not in A. faecis monocolonized mice (Extended Data Figs. 5c,d and 6). These monocytes have been shown to play a pathogenic role in the intestine in the context of Helicobacter-induced inflammation.24 This suggests that, although neither pathogenic nor immunogenic at homeostasis, D. muricolitica drives increased inflammatory responses in the wake of epithelial damage whereas health-associated A. faecis does not. Importantly, while histological samples taken after 7 days of DSS treatment from colons and caeca of D. muricolitica monocolonized mice occasionally exhibited features of severe inflammation, this was not statistically different from that of A. faecis monocolonized mice (Fig. 3c,d) and did not consistently correspond to the weight loss observed. This again suggests that weight loss in the DSS model may not always correlate with intestinal inflammation and pathology.

To determine whether the presence of D. muricolitica or A. faecis had a positive or negative correlation with weight change, we next examined 20 independent mice and assessed the relationship between bacterial levels using quantitative PCR (qPCR) before DSS treatment and weight change observed at day 10. This analysis identified a positive correlation between weight change and pre-DSS A. faecis abundance (R = 0.3679, P = 0.0046; Fig. 3e). Similarly, a negative correlation was observed between weight change and D. muricolitica abundance (R = 0.3626, P = 0.0050; Fig. 3e). This independent confirmation provides further validation of the relationship between these species and the severity of DSS colitis; however, additional work is needed to confirm their roles as pathobioms.

Global distribution and prevalence in other mouse facilities. Because D. muricolitica and A. okayasuensis affected the outcome of DSS colitis in our mouse facility, we next explored the presence and distribution of these bacteria in other mouse facilities around the world. To do so, we first generated a global representation of laboratory mouse intestinal microbiomes by curating 582 publicly available shotgun metagenome samples from ’control’, SPF mice. We combined this dataset with shotgun metagenomes from feces of 40 mice at the Wellcome Sanger Institute to yield a global mouse gut microbiome dataset covering 31 institutes across 12 countries. We then determined the prevalence and abundance of health-associated bacteria S. muris and A. faecis and disease-associated bacteria D. muricolitica and A. okayasuensis in this mouse microbiome dataset.

Dunciannella muricolitica and A. okayasuensis were both dominant members of the mouse microbiome, present in 54.5 and 47.9% of samples and with a mean abundance of 0.52 and 0.48% reads per sample, respectively. Importantly, D. muricolitica and A. okayasuensis were each detected in 86.6% (25/31) of the institutes included in the analyses (Fig. 4), and there were only three institutes that did not contain either of these species. For comparison, among health-associated species S. muris was the most dominant in the mouse gut microbiota, present in 96.5% of samples with a mean abundance of 6.2% reads, while A. faecis was a relatively minor species, present in 5.9% of samples with a mean abundance of 0.22% reads. S. muris was present in all (31/31) of the institutes included in the analyses, whereas A. faecis was detected in 25.8% (8/31). The abundance of each species also differed between institutes (Fig. 4).

Thus, we show that mouse-derived bacteria cultured from our institute are common mouse symbionts and, importantly, D. muricolitica and A. okayasuensis are common, but not ubiquitous, in animal facilities around the world.

Discussion

Despite experimental variability in the DSS mouse model, which limits the interpretation and translation of data, the model is increasingly used in basic research (>6,000 DSS model publications on PubMed) and by the pharmaceutical and biotechnology industries. Cohousing, heterozygote mating and other experimental procedures have been used in an attempt to normalize the microbiota within experiments and ensure direct measures of the effects of mouse genetic background on disease phenotype rather than indirect and unknown microbiota-associated effects.25 In our approach we leveraged this variability in DSS outcome, in combination with microbiome analysis, machine learning, anaerobic culturing and germ-free mouse validation experiments, to gain relevant biological insight into microbiota determinants of DSS disease. While this consideration of the microbiota did not completely eliminate the impact of multidimensionality in the DSS model, we identified and undertook experimental validation of D. muricolitica and A. okayasuensis, both of which have a dominant effect on DSS outcome.

Interestingly, D. muricolitica and A. okayasuensis are phylogenetically distinct from each other and neither had computationally predicted virulence factors within their genome. While it remains unclear how these isolates contribute to DSS disease, both exhibit a potential for polysaccharide utilization that may mediate this relationship through interaction with the mucus layer. We also noted that weight loss and intestinal pathology do not always correlate,
so they should not necessarily be used as surrogates for each other. Similarly, substantial weight loss was observed in monocolonized mice even in the absence of severe inflammation, suggesting that activation of key pathways alone can have a substantial impact on experimental outcome. Together, these insights raise the need for further experimental study of host interactions and the biology of these important mouse-specific bacteria.

We propose that researchers should consider monitoring for D. muricolitica and A. okayasuensis in their mouse facilities, as is undertaken for other immunophenotyped-affecting microbes such as segmented filamentous bacteria. In some cases, precolonization of animals with these bacteria, if they are not present in the facility, may yield better experimental control and increase confidence in this important and widely used mouse model of human disease. Overall, our work suggests that the application of metagenomics techniques to report microbiota composition, in addition to the genetic and disease phenotypes being described, should represent a standard minimum requirement for the DSS mouse model. We have deposited the D. muricolitica, A. okayasuensis, S. muris and A. faecis strains and genomes in public repositories to support this work.

Methods

Mouse models. Mice were maintained under either germ-free or SPF conditions at the Wellcome Sanger Institute Home Office-approved facility, with all procedures carried out in accordance with the United Kingdom Animals (Scientific Procedures) Act of 1986 under Home Office approval (PPL no. 80/2643). Germ-free mice were maintained in positive-pressure isolators (Bell), with feces tested by culture, microscopy and PCR to ensure sterility. Consumables were autoclaved at 121 °C for 15 min before introduction into the isolators. For experimentation, cages were opened in a vaporized hydrogen peroxide-sterilized, class II cabinet (Bioquell), with fecal transplant and monocolonized gnotobiotic lines generated by weekly oral gavage over a 3-week period. Materials were prepared in Dulbecco’s PBS at 100 mg ml⁻¹ immediately before administration under anaerobic conditions (10% H₂, 10% CO₂, 80% N) in a Whitley DG250 workstation at 37 °C (ref. 6). Mice were maintained in sterile ISOcages (Tecniplast) and housed on ISOrack for the period of the experiment.

DSS colitis challenge. Dextran sulphate sodium was administered at a concentration of 1.5% (w/v) (Affymetrix, Inc., average molecular weight 44 kDa) in drinking water for 7 days, followed by 3 days with regular drinking water, to C57BL/6J/N mice aged 7–16 weeks (297 male, 282 female; median age 11 weeks; s.d. 12 days). Mice were weighed every day and culled if weight loss reached 20% of starting weight. Average weight loss curves were censored for each group when the first member of the group reached this endpoint, to avoid misleading calculations of the average using the remaining members. No statistical methods were used to predetermine sample sizes in these experiments.
Histological assessment of intestinal inflammation. Dextran sulphate sodium-treated SPF mice were sacrificed at day 10 by cervical dislocation, and samples from mid and distal colon taken. Tissue sections were fixed in 10% formalin, paraffin embedded, cut and stained with hematoxylin and eosin (H&E). Colon and cecum histopathology was graded on a semi-quantitative scale by a pathologist blinded to the groups. The criteria scored were (1) degree of epithelial hyperplasia/damage and goblet cell depletion; (2) severity of leukocyte infiltration in lamina propria; (3) area of tissue affected; and (4) presence of markers of severe inflammation, including crypt abscesses, submucosal inflammation and edema. Scores for individual criteria were added for an overall inflammation score of between zero and 12 for each sample. Scores from mid and distal colon were then averaged to obtain inflammation scores for each mouse colon.

Monocolonized, germ-free mice were euthanized 7 days after DSS administration and samples taken from the cecum and midcolon. Tissue sections were fixed in neutral buffered formalin, dehydrated, embedded in paraffin, sectioned at 5 μm and stained with hematoxylin and eosin (H&E). Colon and cecum histopathology was graded on a semi-quantitative scale by a pathologist blinded to the groups. The criteria scored were (1) degree of epithelial hyperplasia/damage and goblet cell depletion; (2) severity of leukocyte infiltration in lamina propria; (3) extent of inflammation; and (4) presence of markers of severe inflammation, including crypt abscesses, submucosal inflammation and edema. Each criterion was scored on a scale of zero to three based on previously described thresholds and the sum of the individual scores was recorded as an indication of overall inflammation. For all animal experiments, treatments were randomized by cage by researchers blinded to treatment conditions. For statistical analysis, distribution was assumed to be normal but this was not formally tested.

Bacterial culture. Fecal samples and bacterial isolates were cultured for anaerobic gastrointestinal bacteria under anaerobic conditions (10% H₂, 10% CO₂, 80% N₂) in a Whitley DG250 workstation at 37°C (ref. 38). Fecal samples were homogenized in reduced PBS (0.1 g/ml PBS), serially diluted and plated directly onto YCFA agar supplemented with 0.002 g/ml 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) for isolation procedures for each of the cultures. Colonies were picked, restreaked to purity and identified using 16 S rRNA gene sequencing.

Metagenomic data analysis. Analysis of 16S rRNA amplicon sequences was performed with mothur MiSeq SOP v1.14.2 using Silva v132 (ref. 39). The 16S rRNA gene alignments were used to determine maximum likelihood phylogeny using FastTree v2.1.10 (ref. 40). Phylogenetic trees were visualized and edited using iTOL31. Shotgun metagenomic reads were characterized by flow cytometry. For intracellular cytokine staining, cells were incubated in 1 ml of PBS + 1 mM dithiothreitol for 10 min. Tissues were manually disrupted via shaking and then strained, with supernatant then collected. Tissues were incubated in 10 ml of PBS + 10 mM EDTA + 1 ml of HEPEs at 37°C and 200 r.p.m., before being shaken and strained. The supernatants from these two steps were pooled and filtered at 70 μm and the filtrate fractionated using a discontinuous Percoll gradient (80/40%). Epithelial cells were isolated from the surface of the Percoll, and intraepithelial immune cells isolated from the interface.

To access the lamina propria compartment, tissues were mechanically chopped and digested in HBSS + 25 mM HEPEs + 1 mM sodium pyruvate containing 0.05 mg/ml Collagenase VIII (Sigma) and 50 μg/ml Dnase I (Sigma) for 1 h at 37°C and 80 r.p.m. Samples were mechanically disrupted and filtered at 70 μm. The filtrate was fractionated using a discontinuous Percoll gradient (80/40%). Lamina propria immune cells were isolated from the interface.

Flow cytometry. Intestinal and mesenteric lymph node immune cell populations were characterized by flow cytometry. For intracellular cytokine staining, cells were incubated in 1 ml medium (RPMI, 10% FBS, 1 mM sodium pyruvate, 2 mM GLU; 10 mg/ml Penicillin-streptomycin) + 1x Cell Stimulation Cocktail with Proteoglycans (Sp00058985 (GCF_00058985.1: 98.76% ANI), A43 = CAG—G48 sp002362485 (GCF_003383075.1: 98.66% ANI), A60 = Dumcaniella sp001689573 (GCF_003762875.1: 99.16% ANI), A61 = Alitipes sp002362235 (GCA_002362235.1: 98.54% ANI)). These species have not yet been characterized, nor have these names been widely published according to the International Code for NCRi and ENA. These samples included mice from different genetic backgrounds and strains, but samples were excluded if mice were younger than 3 weeks, had received antimicrobial treatment or dietary intervention or had gene knockout. In total 582 fecal shotgun metagenomes were curated. qPCR of bacterial load. Anaerostipes faeicis and D. muricatia were quantified in the feces of SPF mice using qPCR with custom primers. Primers were designed using the taxon-linked gene catalog of MGBC. Briefly, we identified gene targets that were both unique to, and highly conserved in, the genome of each species. To ensure target specificity, we selected gene clusters that shared >50% sequence identity with all nontarget species sequences. Gene targets were defined as highly conserved if they were identified in 100% of high-quality target species genomes in the MGBC. Furthermore, only single-copy number gene targets were considered. Sequences for selected gene products were then clustered at 90% sequence identity and the most highly conserved set of PCR primers for each gene target were used for ensuring specificity against the NCBI nonredundant gene catalog. Two primers for each species were used in conjunction for qPCR.

Primers: A14_1 (gene target: MGBc0000029_00009), forward 5'-AGGTTGGTTCGTTGTGATT-3', reverse 5'-CGGTCACCTGCGATAGTA-3', product size 80 bp; A60_1 (gene target: MGBc0109741_00862), forward 5'-CCTATTTTGGACGGTGTTGGA-3', reverse 5'-GTCTTTTTGGCGGATGGG-3', product size 93 bp.

DNA was obtained from feces using FastDNA Spin Kit for Soil (MPBio) according to the manufacturer's instructions, and DNA eluted into 100 μl of double-distilled H₂O. Eluted DNA was then diluted 1:50 and qPCR performed using SYBR Green chemistry (Thermo Fisher). To approximate the relative abundance of target species, a standard curve was plotted using SYBR Green chemistry (Thermo Fisher). To approximate the relative abundance of target species, a standard curve was plotted using SYBR Green chemistry (Thermo Fisher).
Alistipes okayasuensis (KEGG) metabolic pathways (55.58% of 2,022 predicted open reading frames encodes 47 genes predicted to be carbohydrate-active enzymes (CAZymes), including four alpha-amylases (EC 3.2.1.1); three exohydrolytic alpha-glucosidases; and an alpha-l-fucosidase (EC 3.2.1.51).

The strain is predicted to encode enzymes for metabolism of L-histidine to l-glutamate via α-Imidazolone-5-phosphate (EC 4.3.3.3, EC 4.2.1.14, EC 5.3.2.7, EC 2.1.2.5). In support of these predictions, the strain is capable of utilizing urocanate as a sole carbon source. In keeping with other members of the genus Alistipes, this strain is predicted to encode a putative tryptophanase (EC 4.1.99.1) that would allow it to hydrolyze tryptophan to indole. The strain is also predicted to encode a butyrate biosynthetic gene cluster (EC 2.3.1.19) and a butyrate kinase (EC 2.7.7), indicating its potential to metabolize butyrate. The genome is 3,239,524 bp with a G+C content of 56.45 mol%. We propose the name ‘Alistipes okayasuensis’ for this previously undescribed species, in reference to the origins of the DSS colitis model and reflecting this species’ association with poor outcomes of this disease model. The type strain is A61+ (=CCUG 70587= = DSM 112997=).

Description of Anaerostipes faecis’ sp. nov. Anaerostipes faecis (faecis. L. gen. fem. n. faecis, of feces, referring to fecal origin). The closest phylogenomic neighbor of the type strain is A43T (=CCUG 70588= = DSM 112998=).

Description of Sangeribacter gen. nov. Sangeribacter (San.ge.ri.bac’ter. N.L. gen. n. Sangeribacter, in reference to the marine bacterium Sangeri, for which this genus was first described). The 16S rRNA gene sequence analyses place this strain in the Muribaculaceae family, and ‘Sangeribacter’ possesses all the features of this family. The pairwise sequence identity of the 16S rRNA gene of A43T with other species of the Muribaculaceae family is 87.19%, 86.76%, and 86.39%, respectively. The genome is 3,285,027 bp with a G+C content of 50.9 mol%. Together these analyses strongly indicate that ‘Sangeribacter’ is a separate genus. The type species, Sangeribacter muris, is one of the most dominant species in the mouse gut microbiota, representing up to 60% of classified reads in some mouse fecal shotgun metagenome samples. It is also highly prevalent, present in 77% of 1,926 samples.

Description of Sangeribacter str. nov. Sangeribacter muris (muri.s. L. gen. fem. n. muris, of the mouse, the species was first isolated from a mouse). The strain is a strict anaerobe. It is predicted to encode 66 KEGG metabolic pathways including two dolichyl-phosphate beta-d-mannosyltransferases (EC 2.4.1.82).

The strain is predicted to encode 36 glycosyltransferase enzymes, among which are several GT2 family enzymes including two dolichyl-phosphate beta-d-mannosyltransferases (EC 2.4.1.82).

The strain tested negative for utilization of alpha-d-lactose, alpha-d-fructose, lactulose, lactose, l-trehalose or D-glucose as sole carbon sources. The strain is predicted to encode the pathway for metabolism of l-histidine to l-glutamate via α-Imidazolone-5-phosphate (EC 4.3.1.3, EC 4.2.1.49, EC 5.3.2.7, EC 2.1.2.5), and tested positive for utilization of urocanate as a sole carbon source, even though it encodes seven beta-galactosidases (EC 3.2.1.23). The strain is predicted to encode 16 S gene sequence identity values between D. freteri and D. muris are 88.89, 88.67, and 87.57%, respectively. The strain is predicted to encode the pathway for metabolism of l-histidine to l-glutamate via α-Imidazolone-5-phosphate (EC 4.3.1.3, EC 4.2.1.49, EC 5.3.2.7, EC 2.1.2.5), and tested positive for utilization of urocanate. The genome is 4,055,027 bp with a G+C content of 50.17 mol%. Following functional and genomic characterization of this isolate, we propose the name ‘Duncaniella muricolitica’ for this species in reference to its association with poor prognosis in the mouse DSS model of colitis. The type strain is A60+ (=CCUG 70596= = DSM 112996=).

Description of Sangeribacter Duboisii’ gen. nov. Sangeribacter Duboisii (San.ge.ri.bac’ter. N.L. gen. n. Duboisii, in reference to the marine bacterium Duboisia, for which this genus was first described). The 16S rRNA gene sequence analyses place this strain in the Muribaculaceae family, and ‘Sangeribacter’ possesses all the features of this family. The pairwise sequence identity of the 16S rRNA gene sequence of A43T with other species of the Muribaculaceae family is 88.90, 88.52, and 87.89%, respectively. The strain is predicted to encode 36 glycosyltransferase enzymes, among which are several GT2 family enzymes including two dolichyl-phosphate beta-d-mannosyltransferases (EC 2.4.1.82).

The strain tested positive for utilization of alpha-d-lactose, alpha-d-fructose, lactulose, lactose, l-trehalose or D-glucose as sole carbon sources. The strain is predicted to encode the pathway for metabolism of l-histidine to l-glutamate via α-Imidazolone-5-phosphate (EC 4.3.1.3, EC 4.2.1.49, EC 5.3.2.7, EC 2.1.2.5), and tested positive for utilization of urocanate. The genome is 4,055,027 bp with a G+C content of 50.17 mol%. Following functional and genomic characterization of this isolate, we propose the name ‘Duncaniella muricolitica’ for this species in reference to its association with poor prognosis in the mouse DSS model of colitis. The type strain is A60+ (=CCUG 70596= = DSM 112996=).
The strain tested positive for its ability to utilize certain amino acids and their derivatives, including L-phenylalanine, L-asparagine, L-glutamate, L-glutamine, L-alanine and L-valine, as well as dipeptides including L-alanyl-L-threonine, L-alanyl-L-glutamine, L-alanyl-L-histidine, glycyl-L-aspartate, glycyl-L-glutamine and glycyl-L-proline. It tested negative for an ability to utilize glycyl-L-proline, L-serine, L-aspaprate or L-threonine as sole carbon sources. The strain is predicted to encode a tryptophanase (EC 4.1.99.1), indicating that it has potential to hydrolyze tryptophan to indole. The strain tested negative for utilization of propionate or hydroxybutyrate as sole carbon sources, indicating that it may not consume these short-chain fatty acids in vivo. The genome is 3,532,505 bp with a G+C content of 46.70 mol%. We propose the name 'Sangeribacter muris' for this new species, reflecting its high abundance and prevalence in mice and its initial isolation from a murine host. The type strain is A43T (=CCUG 75085).

BioLog analysis. Isolates were streaked on YCFA agar media and grown overnight. Cotton swabs were used to remove colonies that were then inoculated into AN-IF Inoculating Fluid (Technophat, no. 72007) to a turbidity of 65% using a turbidimeter. Then, 100 μl was pipetted into each well of Anaerobe AN Microplates (Technophat, no. 1007) containing 95 different carbon sources. The plates were sealed in PM Gas Bags (Technophat, no. 3032) and run on the Omnilog system for 24 h. For each isolate, between three and five replicates were run on different days from different starting colonies. Data were analyzed using the CarboLogR application. The quality-filtered CarboLogR output is provided in Supplementary Table 2.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
Metagenomic sequencing data were deposited in ENA under project no. PRJEB50449. Key strains were deposited in the University of Gothenburg Culture Collection (CCUG) or the DSMZ German Collection of Microorganisms (DSM) under the following identifiers: Alistipes okayasuensis (CCUG 75087/DSM 112987), Duncaniella maricoliota (CCUG 75086/DSM 112986), Sangeribacter muris (CCUG 75085) and Anaerostipes faecis (CCUG 75084T). Source data are provided with this paper.

Code availability
No custom code was used in this research.

Received: 2 March 2021; Accepted: 24 February 2022; Published online: 1 April 2022

References
1. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).
2. Lorupone, C. A. & Knight, R. Species divergence and the measurement of microbial diversity. FEMS Microbiol. Rev. 32, 557–578 (2008).
3. McCafferty, J. et al. Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model. ISME J. 7, 2116–2125 (2013).
4. Nielsen, H. R. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014).
5. Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 566, 499–504 (2019).
6. Human Microbiome Jumpstart Reference Strains Consortium A catalog of reference genomes from the human microbiome. Science 328, 994–999 (2010).
7. Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 553, 543–546 (2016).
8. Forster, S. C. et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37, 186–192 (2019).
9. Zou, Y. et al. 1,520 Reference genomes from cultivated human gut bacteria. Nat. Biotechnol. 37, 179–185 (2019).
10. Lagkouvardos, I. et al. The Mouse Intestinal Bacterial Collection (miBC) enables functional microbiome analyses. Nat. Biotechnol. 37, 186–192 (2019).
11. Liu, C. et al. The Mouse Gut Microbial Biobank expands the coverage of cultured bacteria. Nat. Commun. 11, 79 (2020).
12. Roy, U. et al. Distinct microbial communities trigger colitis development upon intestinal barrier damage via innate or adaptive immune cells. Cell Rep. 21, 994–1008 (2017).
13. Küllberg, M. C. et al. Helicobacter hepticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and gamma interferon-dependent mechanism. Infect. Immun. 66, 5157–5166 (1998).

Acknowledgements
This work was supported by the Wellcome Trust (no. 098051), the Australian National Health and Medical Research Council (nos. 1091097, 1159239 and 1141564 to S.C.E.) and the Victorian Government’s Operational Infrastructure Support Program (S.C.E.). V.A.P. is supported by a Sir Henry Dale Fellowship, jointly funded by the Wellcome Trust and the Royal Society (no. 206245/Z/17/Z). B.S.B.-J. is supported by a studentship from the Wellcome Trust and the Royal Society (no. 206245/Z/17/Z). B.S.B.-J. and A.T.S. were supported by the Victorian Government’s Operational Infrastructure Support Program (S.C.F.). This work was supported by the Wellcome Trust (no. 098051), the Australian National Health and Medical Research Council (nos. 1091097, 1159239 and 1141564 to S.C.E.) and the Victorian Government’s Operational Infrastructure Support Program (S.C.E.). V.A.P. is supported by a Sir Henry Dale Fellowship, jointly funded by the Wellcome Trust and the Royal Society (no. 206245/Z/17/Z). B.S.B.-J. is supported by a studentship from the Wellcome Trust and the Royal Society (no. 206245/Z/17/Z). B.S.B.-J. and A.T.S. were supported by the Victorian Government’s Operational Infrastructure Support Program (S.C.F.). This work was supported by the Wellcome Trust (no. 098051), the Australian National Health and Medical Research Council (nos. 1091097, 1159239 and 1141564 to S.C.E.) and the Victorian Government’s Operational Infrastructure Support Program (S.C.E.). V.A.P. is supported by a Sir Henry Dale Fellowship, jointly funded by the Wellcome Trust and the Royal Society (no. 206245/Z/17/Z). B.S.B.-J. is supported by a studentship from the Wellcome Trust and the Royal Society (no. 206245/Z/17/Z). B.S.B.-J. and A.T.S. were supported by the Victorian Government’s Operational Infrastructure Support Program (S.C.F.). This work was supported by the Wellcome Trust (no. 098051), the Australian National Health and Medical Research Council (nos. 1091097, 1159239 and 1141564 to S.C.E.) and the Victorian Government’s Operational Infrastructure Support Program (S.C.E.). V.A.P. is supported by a Sir Henry Dale Fellowship, jointly funded by the Wellcome Trust and the Royal Society (no. 206245/Z/17/Z). B.S.B.-J. is supported by a studentship from the Wellcome Trust and the Royal Society (no. 206245/Z/17/Z). B.S.B.-J. and A.T.S. were supported by the Victorian Government’s Operational Infrastructure Support Program (S.C.F.).
Extended Data Fig. 1 | Lineage specific variation across C57BL/6 mice.
Extended Data Fig. 2 | Phyla level microbiome composition Pre- and Post- DSS.
Extended Data Fig. 3 | Family level microbiome composition Pre- and Post- DSS.
Extended Data Fig. 4 | Genomic Characterisation of Bacterial Isolates.
Extended Data Fig. 5 | Mono-colonisation of germ-free mice.
Extended Data Fig. 6 | Flow cytometric gating strategy.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed
☐ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
☐ A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
☐ The statistical test(s) used AND whether they are one- or two-sided
☐ Only common tests should be described solely by name; describe more complex techniques in the Methods section.
☐ A description of all covariates tested
☐ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
☐ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
☐ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
☐ Give P values as exact values wherever suitable.
☐ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
☐ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
☐ Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on [statistics for biologists](#) contains articles on many of the points above.

Software and code

Policy information about [availability of computer code](#)

Data collection	Provide a description of all commercial, open source and custom code used to collect the data in this study, specifying the version used OR state that no software was used.
Data analysis	Software tools used for data analysis were as follows. Kraken2/Bracken, vegan v2.5-6 package, ggpubr package, mothur MiSeq SOP v.1.42.3, SILVA v.13217 and FastTree v.2.1.10

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research [guidelines for submitting code & software](#) for further information.

Data

Policy information about [availability of data](#)

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All sequencing data are being deposited with the ENA, and identifiers will be included prior to publication.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	579 genetically identical mice
Data exclusions	No data was excluded
Replication	All attempts at replication were successful with replicate numbers described for each experiment performed.
Randomization	Not relevant to this study design
Blinding	Not relevant to this study design

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
☒	Antibodies
☒	Eukaryotic cell lines
☒	Palaeontology and archaeology
☒	Animals and other organisms
☒	Human research participants
☒	Clinical data
☒	Dual use research of concern

Methods

n/a	Involved in the study
☒	ChIP-seq
☒	Flow cytometry
☒	MRI-based neuroimaging

Antibodies

All antibodies were purchased from eBioscience/Invitrogen/Thermo unless otherwise indicated. Antibodies used were CD45-SS600, TCRb-APC-Cy7, MHCIIFITC, CD4-PE-Cy7, CD8a-APC, CD8B-PE, IFNg-PerCP-Cy5.5, TNFα-APC, IL-17A-bv421 (BioLegend), CD3e-FITC, TCRg-FITC, B220-FITC, MHCIIFITC-eI780, CD11b-PerCP-Cy5.5, CD11c-APC, CD64-APC (BioLegend), SiglecF-PE (BD), Ly6G-Pe-Cy7 (BD) and F4/80-e450.

Validation

All antibodies were validated by their respective manufacturer.

Animals and other organisms

Policy information about studies involving animals: ARRIVE guidelines recommended for reporting animal research

Laboratory animals
SPF wild type C57BL/6N mice; 297 male, 282 female; median age 11 weeks; SD 12 days.

Wild animals
The study did not involve wild animals

Field-collected samples
The study did not involve field-collected samples

Ethics oversight
Mice were maintained under specific pathogen-free conditions at a Home Office-approved facility with all procedures carried out in accordance with the United Kingdom Animals (Scientific Procedures) Act of 1986.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
Flow Cytometry

Plots

- Confirm that:
 - The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
 - The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
 - All plots are contour plots with outliers or pseudocolor plots.
 - A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation	The large intestines were opened longitudinally, cleared of faeces, and then washed three times in cold PBS. To isolate the intraepithelial immune populations, the large intestines were cut into 1cm pieces, washed in cold PBS, and then incubated in 10 ml of PBS + 1 mM dithiothreitol for 10 minutes. Tissues were manually disrupted via shaking and then strained, collecting the supernatant. Tissues were then incubated in 10 ml of PBS + 30 mM EDTA + 10 ml HEPES at 37°C at 200 rpm, before being shaken and strained. The supernatants from these two steps were pooled, filtered at 70 µm and the filtrate fractionated using a discontinuous Percoll gradient (80%/40%). Epithelial cells were isolated from the surface of the Percoll, and the intraepithelial immune cells isolated from the interface.
Instrument	Attune NxT flow cytometer coupled with an Attune CytKick Max autosampler.
Software	Data were analysed using FlowJo v10.
Cell population abundance	Frequency of relevant populations shown on the plots.
Gating strategy	Viable hematopoietic cells were gated as singlets from FSC/SSC and then gated as CD45+, viability dye-. Further cell subtypes were gated on type-specific markers as indicated in the figure legends.

☐ Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.