Enhanced valley splitting of WSe$_2$ in twisted van der Waals WSe$_2$/CrI$_3$ heterostructures

Mei Ge1, Han Wang2, Jizheng Wu3, Chen Si3, Junfeng Zhang45 and Shengbai Zhang45

Van der Waals (vdW) heterostructures composed of different two-dimensional (2D) materials offer an easily accessible way to combine properties of individual materials for applications. Owing to the discovery of a set of unanticipated physical phenomena, the twisted 2D vdW heterostructures have gained considerable attention recently. Here, we report enhanced valley splitting in twisted 2D vdW WSe$_2$/CrI$_3$ heterostructures. In particular, the splitting can be 1200% (or 5.18 meV) of the value for a non-twisted heterostructure. According to the $k\cdot p$ model, this value is equivalent to a ~20 T external magnetic field applied perpendicular to the 2D sheet. The thermodynamic stability of 2D vdW WSe$_2$/CrI$_3$ heterostructures, on the other hand, depends linearly on the interlayer twisting angle.

INTRODUCTION
Since the discovery of graphene1, some other atomically thin 2D materials, such as transition metal dichalcogenides (TMDs)$^{2-6}$ and 2D magnetic chromium triiodide (CrI$_3$)7,8, have gained attention because of their fascinating properties for applications. As a matter of fact, TMDs have a long historical standing as semiconductors with layered structures9. Early in 2010, Mak et al.3 and Splendiani et al.3 have revealed independently, that a strong photoluminescence emerges when MoS$_2$ crystal is thinned down to a monolayer, indicating an indirect to direct bandgap transition. Henceforth, there is a strong resurgence of interest in 2D TMDs, owing to the challenges and opportunities for applications in electronics10, optoelectronics11,12, and spintronics1,13. Beyond individual materials, stacking different 2D materials into vdW heterostructures can give us more room to achieve improved functions14,15. Except for AA or AB stacking, 2D vdW twisted heterostructures16, in which one layer is rotated with respect to the other by an angle θ, are also interesting owing to their unexpectedly physical properties. For instance, Cao et al.17 reported unconventional superconductivity emerging in 2D twisted bilayer graphene, and Wu et al.18 showed topological insulators in 2D twisted TMDs homostructures. Similarly, Liao et al.19 experimentally confirmed a ~5 times enhancement of vertical conductivity in twisted MoS$_2$/graphene heterostructures. These emerging twistronics merging spintronics could pave the way for future 2D material design and applications20.

In monolayer TMDs, a pair of degenerate but inequivalent energy valleys (K, K') in momentum space, protected by time-reversal symmetry, become the third degree of freedom for information storage, other than charge and electron spin21. To break the time-reversal symmetry, one of the effective approaches is applying an external perpendicular magnetic field (B) on TMDs, which can induce valley polarization through the Zeeman effect. Li et al.22 obtained the magnitude of valley splitting of 0.12 meV/T$^{-1}$ in monolayer MoSe$_2$ with B ranging from -10 to 10 T. Similarly, in monolayer WSe$_2$, the valley splitting up to 0.25 meV/T$^{-1}$ is obtained23,24. However, a large external magnetic field is impractical for devices. Therefore, incorporating intrinsic 2D magnetic materials into vdW heterostructures, utilizing the large magnetic proximity effect (MPE), is an attractive alternative. It has been shown that MPE originating from 2D substrate can enhance the valley splitting25,26. The recently fabricated magnetic monolayer CrI$_3$ with an out-of-plane easy axis is a suitable candidate to generate MPE when forming 2D vdW heterostructures with TMDs$^{27-29}$. Zhong et al.29 experimentally demonstrated that up to 3.5 meV valley splitting (which is equivalent to ~10 T external B in single-layer WSe$_2$) has been achieved. Furthermore, this MPE can be tuned optically, which in turn alters the valley splitting of WSe$_2$.30 Theoretical investigations also demonstrated that the valley degeneracy of WSe$_2$ can be lifted in a vdW WSe$_2$/CrI$_3$ heterostructure because the time-reversal symmetry is broken by magnetic Cr ions$^{31-33}$. Zhang et al.34 showed a modulated energy splitting from 0.31 to 1.04 meV, which is determined by interlayer distance and/or atom arrangement. Hu et al.32 confirmed that the valley splitting is sensitive to interlayer distance, increasing from 2.0 to 4.5 meV when the distance was decreased by 0.3 Å from its equilibrium value. In other words, in TMD/CrI$_3$ heterostructures, MPE is sensitive to interlayer vdW interaction. So far, however, the role θ played in 2D vdW WSe$_2$/CrI$_3$ heterostructures is still unclear. How does the valley splitting depends on θ needs to be clarified.

In this work, we investigate a set of 2D vdW WSe$_2$/CrI$_3$ heterostructures with different θ and stacking patterns with an emphasis on the magnetic properties, such as the magnetic moment and magnetic anisotropy energy (MAE). After that, we studied the electronic properties of 2D vdW WSe$_2$/CrI$_3$ heterostructures by using a band unfolding method. The enhanced K' valley splitting of WSe$_2$, having strong dependence on θ, is obtained. Finally, we analyzed the MPE effects through the difference of partial charge density, and deduced the equivalent B by a $k\cdot p$ model34.

RESULTS

Structural models and stability
Pristine WSe$_2$ has a (hexagonal) sandwiched structure, in which one W layer is sandwiched between two S layers. Pristine CrI$_3$ also has a sandwiched structure, with Cr layer being sandwiched...
between two 1 layers. We obtain the vdW WSe2/CrI3 heterostructure by placing a WSe2 layer on a CrI3 sheet, with θ ranging between 0 and 30°. To find stable configurations, we slide the WSe2 layer relative to the CrI3 layer. Figure 1a, b shows an example of the atomic structures with a 0° twist angle. Here, we use ten points within a unit cell along with the zigzag (ZZ) and armchair (AC) directions, respectively. Figure 1c shows the energies along with the ZZ and AC directions, both suggesting that the starting structure is most stable. Here, the Cr atom is at the hexagonal center (HC) of WSe2, named Cr-HC hereinafter. In the following, we consider mainly the Cr-HC configurations for twisted WSe2/CrI3. However, we also consider other configurations, in particular, the less-stable Se-HC configurations where the Se atom is at the hexagonal center (HC) of CrI3 layer. The WSe2 (CrI3) monolayer belongs to the space group of P-6m2 (P-31m), which is reduced to P3 after stacking into the twisted heterostructures for either Cr-HC or Se-HC. The detailed atomic structures for the twisted Cr-HC structures can be found in the Supplementary Information.

For twisting, there are, in principle, many possibilities. Owing to the lattice constant difference (3.321 Å of WSe2 vs 7.002 Å of CrI3), most of them will result in huge supercells, making DFT calculations impossible. The lattice constant mismatch (δ) is defined as

$$\delta = \left(\frac{a^{\text{M}} - a^{\text{H}}}{a^{\text{H}}} \right) \times 100\%$$

(1)

in which a^{M} and a^{H} are the lattice constants of the heterostructure and WSe2 (or CrI3) monolayer, respectively. Here, we select heterostructures with a mismatch threshold of 5.5% and have considered supercells up to 20 Å in lateral size. This leads to four heterostructures with θ = 0, 16.1, 23.4, and 28.1° (see Figs. 1 and 2). Detailed supercell parameters for the WSe2/CrI3 heterostructures are $2 \times 2/1 \times 1$ (θ = 0°), $\sqrt{13} \times \sqrt{13}/3 \times \sqrt{3}$ (θ = 16.1°), $\sqrt{19} \times \sqrt{19}/2 \times 2$ (θ = 23.4°), and $\sqrt{31} \times \sqrt{31}/7 \times \sqrt{7}$ (θ = 28.1°). Details for the heterostructures are given in Table 1. It should be noted that both electronic structure of WSe2 and magnetic properties of CrI3 are sensitive to the lattice constant. For this reason, in this work we mainly have performed two limited sets of calculations: first using the lattice parameter of WSe2 and second using that of CrI3 for the heterostructure. Furthermore, we investigated the strain effects on the thermodynamic stability and electronic properties for the heterostructures with the relaxed lattice parameter.

![Fig. 1](image1.png)

Fig. 1 Structural model and stability of non-twisted WSe2/CrI3 heterostructure. a Top and b side views of 2D WSe2/CrI3 with θ = 0°. Dashed lines indicate the unit cell. Blue arrows in panel a indicate sliding directions. c Energy as a function of sliding the WSe2 with respect to CrI3, along the ZZ and AC directions, respectively.

![Fig. 2](image2.png)

Fig. 2 Structure models of twisted WSe2/CrI3 heterostructures. a θ = 16.1, b θ = 23.4, and c θ = 28.1°.

Adopted lattice	Twist angle (°)	Lattice constant (Å)	Lattice mismatch (%)	Interlayer distance (Å)	Formation energy (meV Å⁻²)	MAE (meVCr⁻¹)	Valley splitting (meV)
WSe2	0	6.642	–5.14	3.53 (3.56)	37.19 (36.02)	–0.93 (–0.96)	–0.43 (–0.27)
	16.1	6.642	–1.06	3.58 (3.59)	44.91 (44.85)	–0.57 (–0.56)	1.64 (1.74)
	23.4	6.642	3.36	3.51 (3.57)	44.68 (40.00)	–0.34 (–0.38)	5.18 (2.07)
	28.1	6.642	0.0	3.51 (3.50)	45.02 (45.05)	–0.48 (–0.49)	3.69 (3.61)
CrI3	0	7.002	5.4	3.47 (3.67)	19.13 (17.66)	–0.54 (–0.54)	—
	16.1	7.002	1.07	3.56 (3.56)	19.30 (19.22)	–0.51 (0.27)	1.97 (0)
	23.4	7.002	–3.25	3.55 (3.56)	21.32 (21.31)	–0.76 (–0.50)	—
	28.1	7.002	0.19	3.51 (3.50)	25.23 (25.26)	–0.48 (–0.49)	3.69 (3.61)
The stability of WSe2/CrI3 is determined by their formation energy defined as

\[E_f (\text{meV} \cdot \text{Å}^{-2}) = \left(E_{\text{CrI3}} + E_{\text{WSe2}} - E_{\text{CrI3/WSe2}} \right) / S \]

(2)

where \(S \) is the cross-section of the supercell, \(E_{\text{CrI3}}, E_{\text{WSe2}}, \) and \(E_{\text{CrI3/WSe2}} \) are total energies of respective systems. Table 1 below and Supplementary Fig. 1 show that twisted WSe2/CrI3 have larger \(E_f \) than that of non-twisted ones, indicating that the twisted heterostructures are more stable. Noteworthy, by using the same lattice parameters for individual and heterostructure systems, the strain energy owing to lattice mismatch have been excluded here.

The energy differences between the Cr-HC and Se-HC configurations with the same twist angle \(\theta \) range between 0.01 and 4.68 meV Å\(^{-2}\), showing a high lubricity of 2D WSe2/CrI3 similar to that of layered graphene\(^{37}\). Also noted is that the spin-orbit coupling (SOC) part of the formation energy also depends on \(\theta \). Taking the Cr-HC with WSe2 lattice constant as an example, we obtain \(E_f, \text{SOC} = 0.37 \) (0°), 0.67 (16.1°), 0.61 (23.4°), and 0.75 (28.1°) meV Å\(^{-2}\), which is in line with the trend observed for \(E_f \).

Magnetic properties and valley splitting

Table 1 also lists the magnetic anisotropy energies (MAE), defined as the energy difference between out-of-plane (\(E_L \)) and in-plane (\(E_J \)) easy-axis per Cr atom, i.e.,

\[\text{MAE} = (E_L - E_J) / N_{\text{Cr}} \]

(3)

For WSe2/CrI3 with WSe2 lattice constant, MAE decreases with increasing \(\delta \) from −5.14% of compressive strain to 3.36% of tensile strain), which is similar to monolayer CrI3\(^{38}\) but it is independent of sliding between WSe2 and CrI3. For WSe2/CrI3 with a CrI3 lattice constant, on the other hand, only a slight fluctuation of MAE is observed.

Next, we consider the valley splitting, schematically shown in Fig. 3. With SOC, both the (high-lying) valence band (VB) and (low-lying) conduction band (CB) of WSe2 split into two subbands: one spin up and one spin down. In particular, the VB (CB) in the K valley will split into VB1 and VB2 (CB1 and CB2) and the VB’ (CB’) in the K’ valley will split into VB’1 and VB’2 (CB’1 and CB’2), denoted by dashed lines in Fig. 3b. When WSe2 is put on a magnetic CrI3 substrate, the spin-up bands (red) are shifted downward and the spin-down bands (blue) are shifted upward. The VB (CB) at K and K’ with different spins will split by \(\Delta_{\text{VB}} \) (\(\Delta_{\text{CB}} \)), shown in Fig. 3b.

The effective K’ valley splitting (\(\Delta_{\text{KK’}} \)) is defined as

\[\Delta_{\text{KK’}} = \Delta_{\text{CB}} - \Delta_{\text{VB}} \]

(4)

Note that to calculate the KK’ splitting, requires the calculation of energy levels at K (K’) in the unfolded Brillouin zone. This is done as follows: the wavefunction of the supercell (Ψ) can be mapped on to those of the primitive cell (Ψ\(_j\))\(^{39-41}\) by

\[\Psi_j = \frac{1}{N} \sum_k \chi_k (R) \hat{T}_R \Psi_j \]

(5)

where \(N \) is the number of primitive cells contained in the supercell, \(\hat{T}_R \) is the reduced wave vector inside the first Brillouin zone,

\[\mathbf{R} = \sum_j n_j \mathbf{a}_j \]

(6)

is the integral multiple of lattice vectors \(\mathbf{a}_j \), \(\hat{T}_R \) is the translational operator for a translation \(\mathbf{R} \), and

\[\chi_k (R) = e^{i \mathbf{k} \cdot \mathbf{R}} \]

(7)

For a given region in WSe2/CrI3 such as WSe2 layer in the heterostructure, the relative weight (\(\rho \)) of layer projection in the range between Z and \(Z_2 \) is given by

\[\rho = \int_{Z_2}^{Z_1} \Psi_j^* \Psi_k \mathbf{d} \mathbf{r} \]

(8)

as proposed by Chen and Weinert\(^{42}\). Figure 4 shows, for WSe2/CrI3 with WSe2 lattice parameter, the band structures for \(\theta = 0° \) and 16.1°, (a, c) before and (b, d) after band unfolding. We see that although there is interaction between WSe2 and CrI3, the unfolded band structures of WSe2 look similar with a band gap of 1.24 ± 0.01 eV, close to that of monolayer WSe2.

Table 2 lists the components for valley splitting in WSe2. For monolayer WSe2, both \(\Delta_{\text{VB}} \) and \(\Delta_{\text{CB}} \) are zero due to time reversal symmetry. When placed on CrI3, this symmetry is broken so valley splitting is generally observed. Consistent with previous calculations\(^{41,42}\), at \(\theta = 0° \), \(|\Delta_{\text{KK}}| = 0.43 \) and 0.27 meV for Cr-HC and Se-HC, respectively. We find the enhanced valley splitting of twisted heterostructures, for either Cr-HC or Se-HC. Compared with \(\theta = 0° \), the magnitude can also be magnitude larger (e.g., 0.43 meV vs. 5.18 meV). With the parameter relaxation, as presented in Supplementary Table 1, the valley splitting of twisted WSe2/CrI3 heterostructure with Cr-HC is still larger than that of the non-twisted ones. We notice that the valley splitting without the twisting arises mainly from CB states, while for twisted ones, VB states also play an important role.

The enhanced valley splitting in heterostructures may be understood in terms of an MPE. This can be seen in Table 2, which shows that for both K and K’, \(E_f, \text{CB} \) decreases, but \(E_f, \text{VB} \) is nearly a constant, with an increasing \(\theta \). One may note that both the VB and CB states of WSe2 are made of predominantly W d orbitals: \(d_{x^2} - y^2 \) for VB, and \(d_{z^2} \) for CB. Figure 5a–d shows the differences in the partial charge density \(\Delta \rho \) of the valence band maximum (VBM) states at K and K’. An obvious \(\theta \)-dependence of \(\Delta \rho \) is observed near Cr atoms. Figure 5c shows the planar averaged \(\Delta \rho \) along z, \(\Delta \rho (z) \). It reveals how the states of WSe2 is affected by the proximity of Cr atoms inside CrI3. This analysis suggests that the VBM states are responsible for the enhanced valley splitting. Indeed, results in Table 2 support such a conclusion as it shows that valley splitting is mainly a result of a \(\theta \)-dependent \(\Delta_{\text{VB}} \).

Figure 5f plots the sum of \(\Delta \rho \) of CB layer (\(\Sigma \Delta \rho \)) as a function of \(\Delta_{\text{KK’}} \). A nearly linear dependence is observed. Since \(\Delta \rho \) is a measure of proximity effect, Fig. 5f thus suggests that MPE is the reason for enhanced \(\Delta_{\text{KK’}} \). Figure 5f also shows that with an increase in valley splitting, the total magnetic moment of Cr also increases from 3.011 to 3.204 \(\mu_B \). Hence, the enhanced magnetic

Fig. 3 Schematic diagrams of irreducible Brillouin zone and split of degeneracy at the KK’ valleys of WSe2. a Irreducible Brillouin zone of WSe2. b Split of degeneracy at the KK’ valleys. In (b), \(\sigma \)- and \(\sigma’ \)- denote the right-hand and left-hand circularly polarized light under optical selection rules at the KK’ valleys. The dashed lines denote the \(\mathbf{B} = 0 \) bands. Red and blue arrows denote spin up and spin down states, respectively. CB1 (CB2) and VB1 (VB2) denote the first (second) conduction and valence band at the K valley, while CB1’ (CB2’2) and VB1’ (VB2’) denote the corresponding bands at the K’ valley. \(\Delta_{\text{CB}} \) and \(\Delta_{\text{VB}} \) are the energy shifts of the conduction and valence band, respectively.

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

npj Computational Materials (2022) 32

M. Ge et al.
Table 2. Band splitting in WSe$_2$ and WSe$_2$/CrI$_3$ heterostructures for Cr-HC and Se-HC (bracket) configurations with WSe$_2$ lattice constant.

Adopted lattice	Twist angle ($^\circ$)	CB shifting E_{CB} (meV)	VB shifting E_{VBK} (meV)	CB splitting Δ_{CB} (meV)	VB splitting Δ_{VB} (meV)	Valley splitting (meV)
WSe$_2$	—	18.51	501.59	0	0	0
WSe$_2$/CrI$_3$	0	35.71 (36.52)	466.77 (466.99)	-0.40 (0.45)	0.03 (0.72)	-0.43 (-0.27)
	16.1	34.31 (34.33)	467.83 (468)	0.21 (0.23)	-1.43 (-1.51)	1.64 (1.74)
	23.4	36.57 (36.03)	433.48 (434.43)	1.26 (0.34)	-3.92 (-1.73)	5.18 (2.07)
	28.1	34.49 (33.96)	298.81 (298.65)	0.40 (0.18)	-3.29 (-3.43)	3.69 (3.61)

Fig. 4 Band structures of WSe$_2$/CrI$_3$ heterostructures. (a, c) are the projected ones, in which green and blue denote CrI$_3$ and WSe$_2$ states, respectively. (b, d) are the unfolded ones for WSe$_2$, in which red and blue arrows denote spin up and down states.

Fig. 5 Partial charge density differences of the VBM states between K and K’ for different θ. (a) $\theta = 0$, (b) 16.1, (c) 23.4, and (d) 28.1$. Isosurface is set at 5×10^{-5} eÅ$^{-3}$. Planar averaged partial charge density differences along z for states in (a–d). Inset is a zoom-in of the framed region at around $z = 8$ Å. (e) $\Sigma \Delta \rho$ and average magnetic moment of Cr atom M as functions of valley splitting $\Delta_{KK’}$.

Table 2. Band splitting in WSe$_2$ and WSe$_2$/CrI$_3$ heterostructures for Cr-HC and Se-HC (bracket) configurations with WSe$_2$ lattice constant.
field is also a direct consequence of MPE via an enhanced valley splitting.

In the discussion above, we have chosen a lattice parameter, e.g., that of WSe2, to construct the supercells. It is desirable to consider the effect of strain. For this reason, Table 1 also shows the results when the lattice parameter is that of CrI3. In line with above results, Δ_{KC} for the Cr-HC configuration shows an increase with θ, e.g., 1.97 meV ($\theta = 16.1^\circ$) < 3.69 meV ($\theta = 28.1^\circ$).

There are two important consequences due to strain: (1) a direct-to-indirect gap crossover between $\theta = 0^\circ$ and 23.4°. To this end, recall that monolayer TMDs are direct gap semiconductors, in which both the VBM and conduction band minimum (CBM) are at the K (K') valley of the Brillouin zone (see Fig. 3a)3,5. Previous experiments13,44 and theory35 also showed that the various physical properties of TMDs, including band gap and band edge positions in the Brillouin zone, can be tuned by applying an in-plane strain. In our calculations, the strain in the WSe2 changes from 5.4% (tensile) at $\theta = 0^\circ$ to -3.25% (compressive) at $\theta = 23.4^\circ$. In the former case, the CBM position is unchanged, but the VBM position moves from K (K') to Γ. In the latter case, the CBM position is unchanged, but the CBM position moves to the Q (Q') valley, which is about halfway between K (K') and Γ, as shown in Fig. 3a. (2) The valley splitting for the Se-HC configuration vanishes at $\theta = 16.1^\circ$. This is shown in Table 1 where for $\theta = 16.1^\circ$, MAE is 0.27 meV Cr$^{-1}$ is positive with an in-plane easy axis. The corresponding in-plane magnetic field can neither generate a Zeeman splitting nor lift the valley degeneracy. However, in this case, it is possible to obtain an easy axis component perpendicular to the 2D sheet by applying an external electric field (E-field). In the absence of the E-field, a small dipole of -0.016 eA is obtained, which is in line with a 0.0037 eC$^-1$ transfer from WSe2 to CrI3 by a Bader analysis36. Figure 6 shows the results for both dipole moment and KK' valley splitting. A good linear relationship of the dipole moment with applied E-field is observed, and Δ_{KC} can be tuned obviously by applying the external electric field. Taking E-field $= \Delta V$ Å$^{-1}$ as an example, we find that MAE changes from 0.27 to -0.56 meV Cr$^{-1}$, and Δ_{KC} changed from 0 to -5.84 meV. This magnetoelectric effect here is reminiscent of what has been observed in bilayer CrI336, explaining the twist-induced enhancement of valley splitting in WSe2/CrI3 heterostructures.

The k-p model

To estimate the magnitude of the equivalent B and understand the Zeeman effect induced by CrI3, we use a k-p model34, in which the interaction energy is divided into spin and orbital contributions:

$$H_B = g_0 \mu_B B \cdot S + \mu_B \mu_B \cdot L$$ \hspace{1cm} (9)

where $g_0 = 2$ is the Landé factor, $\mu_B = e\hbar/2m_0$ is the Bohr magneton, m_0 is the electron mass, $S = \sigma/2$ is the spin operator with σ being the Pauli matrices, and L is the orbital angular momentum operator. As mentioned earlier, in the K (K') valley the CBM state mainly consists of W d_{xy} orbital with $L_z = 0$, whereas the VBM state mainly consists of W d_{xy} orbital with $L_z = 2$. From the DFT computation, the spin projection around CB and VB band edges remains mostly out of plane with little in-plane tilting as shown in Supplementary Table 2. Therefore, the Rashba interaction is neglected in the present k-p model. The value $\sum_{ij} V_{ij}/g_B \mu_B \cdot L_{ij}$, where i and j run over the four levels near the Fermi level as shown in Fig. 3b, can be directly calculated via DFT, from which we deduce the equivalent B. For WSe2/CrI3 heterostructures with the Cr-HC configuration and WSe2 lattice parameter, we obtain $B = 2.1$ T for $\theta = 0^\circ$, 7.4 T for $\theta = 16.1^\circ$, and 20.9 T for $\theta = 23.4^\circ$. It shows that not only the magnetic field strength is sufficiently strong but also twisting can be an effective way to amplify the MPE at interfaces.

DISCUSSION

In summary, using first-principles calculation, we perform a systematic study on the structural stability, electronic and magnetic properties of 2D vdW WSe2/CrI3 heterostructures. We show that, compared to the non-twisted structure, the twisted ones are more stable, as evidenced by their higher interfacial binding energies. Our study also reveals an MAE of the heterostructures, which is controlled by strains of the CrI3 layer. The MPE can be understood in terms of the charge density difference of the VBM states at K and K'. More importantly, in twisted heterostructures, there is an order of magnitude enhancement of K-K' valley splitting, which can also be tuned by applying an external electric field. With the help of a k-p model, we determine the equivalent B field due to twisting as the origin of an enhanced MPE.

METHODS

First-principles calculations were performed using the Vienna ab initio simulation package (VASP) based on the density functional theory (DFT)47. We employed the Perdew–Burke–Ernzerhof (PBE)48 functional, within the projector augmented wave (PAW)49 approach, for exchange-correlation potential and energy. The plane-wave energy cutoff was set at 500 eV. vdW interactions between CrI3 and WSe2 were included by employing Grimme’s semiempirical DFT-D3 scheme50. To avoid interaction between periodic images in the supercell approach, we used a vacuum space larger than 30 Å. The atomic structures were fully relaxed until the Feynman–Hellman force on each atom is less than 0.02 eV Å$^{-1}$. The electronic self-consistent convergence criterion was set at 10$^{-5}$ eV. The K-point mesh51 in the Brillouin zone was sampled with the density of 0.03 Å. To determine the magnetic anisotropy, the spin-orbit coupling (SOC) was included in our DFT calculations. In addition, we performed electronic structure calculations with GGA + U methods52 described by Dudarev, in which the on-site Coulomb parameter U and the moderate exchange parameter J were set to 2.7 and 0.7 eV53, respectively. The k-projection method54 for interfaces modeled by supercells within the framework of the first-principles method was used to obtain the unfolded electronic band structures.

DATA AVAILABILITY

Data that support this work are available in the article and Supplementary Information file. Further raw data are available from the corresponding author (J.Z.) on reasonable request.

Received: 2 September 2021; Accepted: 23 January 2022; Published online: 15 February 2022

REFERENCES

1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. *Science* **306**, 666–669 (2004).
2. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. *Nat. Rev. Mater.* **2**, 17033 (2017).
3. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. *Nan Lett.* **10**, 1271–1275 (2010).
4. Wang, M. et al. Robust memristors based on layered two-dimensional materials. *Nat. Electron.* **1**, 130–136 (2018).
5. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. *Phys. Rev. Lett.* **105**, 136805 (2010).
6. Chen, S. et al. Origin of ultrafast growth of monolayer WSe2 via chemical vapor deposition. *npj Comput. Mater.* **5**, 28 (2019).
7. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. *Nature* **546**, 270–274 (2017).
8. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. *Science* **363**, 706 (2019).
9. Wilson, J. A. & Yao, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. *Adv. Phys.* **18**, 193–335 (1969).
10. Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. *Nan Lett.* **12**, 3788–3792 (2012).
11. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. *Nat. Nanotechnol.* **9**, 268–272 (2014).
12. Mak, K. F. & Shan, J. Photons and optoelectronics of 2D semiconductor transition metal dichalcogenides. *Nat. Photon.* **10**, 216–226 (2016).
13. Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. *Nature* **563**, 47–52 (2018).
14. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. *Nature* **499**, 419–423 (2013).
15. Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. *Nat. Nanotechnol.* **11**, 218–230 (2016).
16. Szendrő, M., Süle, P., Dobrik, G. & Tapasztó, L. Ultra-flat twisted superlattices in 2D heterostructures. *npj Comput. Mater.* **6**, 91 (2020).
17. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. *Nature* **565**, 43–50 (2018).
18. Wu, W., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. *Phys. Rev. Lett.* **122**, 086402 (2019).
19. Liao, M. et al. Twist angle-dependent conductivities across MoS2/graphene heterostructures. *Nat. Commun.* **9**, 4068 (2018).
20. Sierra, J. F., Fabian, J., Kawakami, R. K., Roche, S. & Valenzuela, S. O. Van der Waals heterostructures for spintronics and opto-spintronics. *Nat. Nanotechnol.* **16**, 856–868 (2021).
21. Xiao, D., Liu, G. B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group VI dichalcogenides. *Phys. Rev. Lett.* **108**, 196802 (2012).
22. Li, Y. et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. *Phys. Rev. Lett.* **113**, 266804 (2014).
23. Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2. *Nat. Phys.* **11**, 148–152 (2015).
24. Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer MoSe2. *Nat. Phys.* **11**, 141–147 (2015).
25. Qi, J., Li, X., Niu, Q. & Feng, J. Giant and tunable valley degeneracy splitting in MoTe2. *Phys. Rev. B* **92**, 121403 (2015).
26. Zhao, C. et al. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. *Nat. Nanotechnol.* **12**, 757–762 (2017).
27. Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. *2D Mater.* **4**, 035002 (2017).
28. Zhong, D. et al. Valley resolved magnetic proximity effect in van der Waals heterostructures. *Nat. Nanotechnol.* **15**, 187–191 (2020).
29. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. *Sci. Adv.* **3**, 1–6 (2017).
30. Seyler, K. L. et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. *Nan Lett.* **18**, 3823–3828 (2018).
31. Zhang, Z., Ni, X., Huang, H., Hu, L. & Liu, F. Valley splitting in the van der Waals heterostructure WSe2/CrI3: the role of atom superposition. *Phys. Rev. B* **99**, 115441 (2019).
32. Hu, T. et al. Manipulation of valley pseudospin in WSe2/CrI3 heterostructures by the magnetic proximity effect. *Phys. Rev. B* **101**, 125401 (2020).
33. Zollner, K., Junior, P. E. F. & Fabian, J. Proximity exchange effects in MoSe2 and WSe2 heterostructures with CrI3 twist angle, layer, and gate dependence. *Phys. Rev. B* **100**, 055128 (2019).
34. Wang, G. et al. Magneto-optics in transition metal diselenide monolayers. *2D Mater.* **2**, 034002 (2015).
35. Deng, S., Li, L. & Li, M. Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2. *Phys. E Low. Dimens. Syst. Nonat* **101**, 44–49 (2018).
36. Wang, Y. et al. Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WSe2. *Nano Res.* **8**, 2562–2572 (2015).

ACKNOWLEDGEMENTS

Work in China was supported by the National Natural Science Foundation of China (12074235). S.Z. acknowledges the support by the U.S. Department of Energy (DOE) under Grant no. DESC0002623. C.S. also acknowledges support by the open research fund program of the state key laboratory of low dimensional quantum physics (KF202103).

AUTHOR CONTRIBUTIONS

J.Z. and S.Z. supervised the project. M.G. and H.W. designed and performed the DFT calculations. M.G. and H.W. carried out the experiments. M.G. and H.W. wrote the manuscript. All authors discussed the results and reviewed the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.
