Complete Genome Sequence of the Methicillin-Resistant Staphylococcus aureus Strain SQL1/USA300, Used for Testing the Antimicrobial Properties of Clay Phyllosilicates and Customized Aluminosilicates

Enrique G. Medrano, Shelley E. Haydel

Insect Control and Cotton Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, College Station, Texas, USA
School of Life Sciences, Arizona State University, Tempe, Arizona, USA
Biodesign Institute Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona, USA

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a Gram-positive bacterium that causes community-acquired and health care-acquired infections. We previously demonstrated that clay phyllosilicates and customized aluminosilicates display antimicrobial activity against the MRSA strain SQL1. The SQL1 annotated genome reveals a USA300 lineage and contributes critical knowledge of the MRSA virulence factors associated with tissue infection.

Methicillin-resistant Staphylococcus aureus (MRSA) infections are increasingly more difficult to treat due to broad antibiotic resistance (1–5). In continuity, our studies have incorporated the same MRSA strain (provided as a gift from Sonora Quest Laboratories, Tempe, AZ, USA [6]) to examine the utility of clay constituents as antimicrobials (6–9). The MRSA strain (MRSA SQL1) was sequenced to provide genetic insights into both the biology and infection paradigm employed by the disease agent.

MRSA SQL1 was grown in Trypticase soy broth (Becton-Dickson, Sparks, MD, USA) at 37°C for 16 to 20 h. Plasmid DNA and genomic DNA were isolated using a standard plasmid miniprep kit and genomic DNA isolation procedure, respectively, with lysostaphin and proteinase K added to the lysis buffers, and purified using silica spin columns (QiAprep miniprep kit and genomic DNA purification kit, respectively; Qiagen, Valencia, CA, USA). The strategy used to sequence and annotate the genome of MRSA SQL1 essentially followed that of Medrano et al. (10). A Pacific Biosciences Sequel instrument was used to perform sequencing with the SMRTbell Express template preparation kit v2.0 with >10-kb fragments. DNA shearing with a Covaris g-TUBE assembly (Woburn, MA, USA) preceded size selection on a BluePippin system (Sage Science, Beverly, MA, USA) following manufacturer protocols. The library was sequenced using a 10-h movie collection time with a single-molecule real-time (SMRT) cell 1M v8, producing 230,419 reads with a 2.1-Gb molecular yield and a mean subread length of 8.9 kb (N_{50} 9.7 kb). The genome was assembled using SMRT Link v9.0.0.92188, with the Microbial Assembly protocol standard settings, including the read quality control, error correction, and adapter trimming functions, were employed, with an expected genome size setting of 2 Mb. The genome completeness was based on mini-map2 v2.17 using standard PacBio recommended coding (i.e., ax map-pb) that mapped the reads back to the circularized genome and verified the reads that spanned the junction (11). The Microbial Assembly application of SMRT Link performs circularization and trimming and rotates the assembly to place the origin of replication at the beginning of the final linearized assembly. The finalized assembly included three circular contigs with a chromosome of 2.9 Mb (GC content, 32.7%) and extrachromosomal plasmids of 27.1 kb (GC content, 30.5%).

Editor Steven R. Gill, University of Rochester School of Medicine and Dentistry
Copyright © 2021 Medrano and Haydel. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
Address correspondence to Enrique G. Medrano, gino.medrano@usda.gov, or Shelley E. Haydel, Shelley.Haydel@asu.edu.
Received 30 August 2021
Accepted 23 October 2021
Published 11 November 2021
and 3.1 kb (GC content, 28.7%); the three contigs had approximately 520×, 864×, and 439× coverages, respectively. The Prokaryotic Genome Annotation Pipeline program v4.11 at the NCBI was used to computationally annotate the sequence data (12).

From a total of 2,919 computed genes, 2,837 had predicted coding DNA sequences for the genome, with 19 rRNA operons and 59 tRNAs. The annotation data identified a putative mecR1 fragment and the Pantón-Valentine leukocidins lukS and lukF, all evidence of a USA300 lineage. An extrachromosomal DNA profile provided further evidence of similarity between SQL1 and USA300 (Fig. 1), correlating with sequencing results revealing plasmids of 27.1 kb and 3.1 kb. Additional virulence determinants included open reading frames for the luxA/C siderophore, lysostaphin protein A, and msrA macrolide efflux pump genes. Generally, the strain SQL1/USA300 data presented advance our ongoing development of novel MRSA infection treatment strategies (13–16).

Data availability. The assembled whole-genome sequences were deposited at DDBJ/EMBL/GenBank (accession numbers CP081354.1, CP081355.1, and CP081356.1). The raw data are available in the SRA database (accession number SRX11799045) with general details available under BioProject accession number PRJNA751845.

ACKNOWLEDGMENTS
We acknowledge Sonora Quest Laboratories (Tempe, AZ, USA) for providing the MRSA bacterial strain designated SQL1/300 and Juliane Bubeck Wardenburg for providing the MRSA strains USA300/LAC and USA400/MW2. We thank John Popovich and Michelle McBride for performing the genomic and plasmid DNA isolations. We also thank Richard M. Hernandez for both technical and computational support. Marissa M. Forray assisted with the manual annotation of the genome.

This work was partially supported by National Institutes of Health grants AT004690 and AI121733 issued to S.E.H.
REFERENCES

1. Hafsat AG, Yakub AG, Galadima BG, James AA, Abubakar S. 2015. Methicillin resistant Staphylococcus aureus: a review. Adv Anim Vet Sci 3:79–98. https://doi.org/10.14737/journal.avaxs.2015.3.2.79.98.

2. García-Álvarez L, Holden MTG, Lindsay H, Webb CR, Brown DFJ, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kears M, Pichon B, Hill RLR, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA. 2011. Metcillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 11:595–603. https://doi.org/10.1016/S1473-3099(11)70126-8.

3. Wielders CLC, Fluit AC, Brisse S, Verhoef J, Schmitz FJ. 2002. mecA gene is widely disseminated in Staphylococcus aureus population. J Clin Microbiol 40:3970–3975. https://doi.org/10.1128/JCM.40.11.3970-3975.2002.

4. Walther B, Wieler LH, Vincze S, Antão E-M, Brandenburg A, Kopp PA, Kohn B, Semmler T, Lübbe-Becker A. 2012. MRSA variant in companion animals. Emerg Infect Dis 18:2017–2020. https://doi.org/10.3201/eid1812.120238.

5. Porrero MC, Valverde A, Fernández-Llario P, Díez-Guerrier A, Mateos A, Lavin S, Cantón R, Fernández-Garayzabal J-F, Domínguez M. 2014. Staphylococcus aureus carrying mecC gene in animals and urban wastewater, Spain. Emerg Infect Dis 20:899–901. https://doi.org/10.3201/eid2005.130426.

6. Haydel SE, Remenih CM, Williams LB. 2007. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic resistant bacterial pathogens. J Antimicrob Chemother 61:353–361. https://doi.org/10.1093/jac/dkm406.

7. Otto CC, Cunningham TM, Hansen MR, Haydel SE. 2010. Effects of antibacterial mineral leachates on the cellular ultrastructure, morphology, and membrane integrity of Escherichia coli and methicillin-resistant Staphylococcus aureus. Ann Clin Microbiol Antimicrob 9:26. https://doi.org/10.1186/1476-0711-9-26.

8. Otto CC, Haydel SE. 2013. Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLoS One 8:e64068. https://doi.org/10.1371/journal.pone.0064068.

9. Otto CC, Kilbourne J, Haydel SE. 2016. Natural and ion-exchanged illite clays reduce bacterial burden and inflammation in cutaneous methicillin-resistant Staphylococcus aureus infections in mice. J Med Microbiol 65:19–27. https://doi.org/10.1099/jmm.0.000195.

10. Medrano EG, Smith TPL, Glover JP, Bell AA, Brewer MJ. 2020. Complete genome sequence of Serratia sp. strain CC119, associated with inner cotton boll rot via insect vector transmission. Microbiol Resour Announc 9: e01077-20. https://doi.org/10.1128/MRA.01077-20.

11. Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3309–3310. https://doi.org/10.1093/bioinformatics/bty191.

12. Li W, ONeill KR, Haft DH, DiCuccio M, Chetvernin V, Badretdin A, Coulouris G, Chitsaz F, Derbyshire MK, Durkin AS, Gonzales NR, Gwadz M, Lanczycki CJ, Song JS, Thanki N, Wang J, Yamashita RA, Yang M, Zheng C, Marchler-Bauer A, Thibaud-Nissen F. 2021. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res 49: D1020–D1028. https://doi.org/10.1093/nar/gkaa1105.

13. Chen S, Popovich J, Iannuzo N, Haydel S, Seo D-K. 2017. Silver-ion-exchanged nanostructured zeolite X as antibacterial nanostructured silver zeolite X with superior ion release kinetics and efficacy against methicillin-resistant Staphylococcus aureus. ACS Appl Mater Interfaces 9:39271–39282. https://doi.org/10.1021/acsami.7b15001.

14. Chen S, Popovich J, Zhang W, Ganser C, Haydel S, Seo D-K. 2018. Superior ion release properties and antibacterial efficacy of nanostructured zeolites ion-exchanged with zinc, copper, and iron. RSC Adv 8:37949–37957. https://doi.org/10.1039/c8ra06556e.

15. Popovich J, Chen S, Iannuzo N, Ganser C, Seo D-K, Haydel SE. 2020. Synthesized geopolymers adsorb bacterial proteins, toxins, and cells. Front Bioeng Biotechnol 8:527. https://doi.org/10.3389/fbioe.2020.00527.

16. Urie R, McBride M, Ghosh D, Fattahi A, Nitiyanandan R, Popovich J, Heys JJ, Kilbourne J, Haydel SE, Rege K. 2021. Antimicrobial laser-activated sealants for combating surgical site infections. Biomater Sci 9:3791–3803. https://doi.org/10.1039/d0bm01438a.