Vertical Sleeve Gastrectomy Attenuates Hedonic Feeding Without Impacting Alcohol Drinking in Rats

Sunil Sirohi1, Elena Skripnikova1, and Jon F. Davis2

Objective: Roux-en-Y gastric bypass surgery and vertical sleeve gastrectomy (VSG) are the most commonly performed bariatric procedures. Whereas studies report new-onset alcohol misuse following Roux-en-Y gastric bypass, the impact of VSG on alcohol intake is less clear. Hedonic feeding, alcohol drinking, and hypothalamic obesity-related gene expression following VSG were evaluated.

Methods: Male Long-Evans rats underwent VSG or sham surgery. To evaluate hedonic feeding, rats received a high-fat diet following behavioral satiation on chow. Alcohol (5%-10% v/v) drinking was assessed in a two-bottle choice paradigm. Finally, polymerase chain reaction array evaluated gene expression.

Results: VSG induced moderate but significant weight loss. Sham rats significantly escalated high-fat diet intake following behavioral satiation, an effect significantly reduced in VSG rats. A moderate decrease in alcohol intake was observed in VSG rats at low (5%) alcohol concentration. However, overall, no significant between-group differences were evident. Key hypothalamic orexigenic transcripts linked to stimulation of food and alcohol intake were significantly decreased in VSG rats.

Conclusions: VSG attenuated hedonic feeding without impacting alcohol drinking, an effect potentially mediated by alterations in genetic information flow within the hypothalamus. Importantly, these data highlight VSG as an effective bariatric procedure with a potentially reduced risk of developing alcohol use disorder.

Introduction

Bariatric surgery is a well-documented treatment option for obesity. In this context, vertical sleeve gastrectomy (VSG), a procedure in which the fundus is surgically reduced to create a tubular gastric sleeve, has emerged as a prevalent surgical manipulation (1). In addition to a significant reduction in appetite and body weight, VSG patients experience improved metabolic profile. Specifically, decreased consumption of palatable or energy-dense foods, weight loss, decreased hepatic glucose production, and improvement in glucose homeostasis and dyslipidemia have been reported following VSG (2-4). One possibility explaining these observations is that VSG reduces appetite by mitigating hedonic hunger to restore metabolic homeostasis. In the central nervous system, the hypothalamus is a brain region that integrates metabolic signals with an internal need to direct behaviors that maintain homeostasis (5). The hypothalamus contains both orexigenic neuropeptides and anorectic neuropeptides, the release of which is coordinated to control energy balance and feeding behavior (6). In this regard, genetic events control the quality of a feeding event, whereas physiological mechanisms initiate or terminate a particular meal. Notably, genetic expression changes within the hypothalamus are sensitive to fluctuations in metabolic status (7) and feeding behavior (8). Currently, the behavioral and genetic mechanisms that contribute to reduced appetite and body weight loss after VSG are unresolved.

The current study tested corollaries of the central hypothesis that adaptations in feeding behavior and hypothalamic gene expression contribute to body weight loss following VSG. Separate from feeding behavior, other bariatric techniques, namely Roux-en-Y gastric bypass (RYGB) surgery, stimulate new-onset alcohol intake (9-12). We recently discovered that RYGB rats increased alcohol intake at the expense of palatable food intake, suggesting that surgery-induced changes in appetite and alcohol intake may be causal (11). Thus, a separate goal of the current work was to determine whether VSG impacts alcohol intake in rats that are otherwise nonpreferring prior to surgery. To address these issues, we utilized a rodent model of VSG in which male Long-Evans rats characterized for body weight loss underwent a battery of behavioral tests designed to assess feeding in the absence of caloric need and new-onset alcohol intake. Following behavioral characterization, polymerase chain reaction (PCR) array analysis was conducted to elucidate alterations in the obesity-related gene expression within the hypothalamus of VSG and control rats.

1 Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA. Correspondence: Sunil Sirohi (ssirohi@xula.edu; sirohilab@outlook.com) 2 Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA. Correspondence: Jon F. Davis (davisjo@vetmed.wsu.edu)

Funding agencies: This project was supported, in part, by the Alcohol and Drug Abuse Program (ADARP) at Washington State University grant number 2550-1324 (to JFD). This publication was also made possible by funding, in part, from the NIMHD-RCMI grant number 5G12MD007595-10 from the National Institute on Minority Health and Health Disparities and the NIGMS-BUILD grant numbers 5UL1GM118967 and 5TL4GM118968-04 (to SS).

Disclosure: The authors declared no conflict of interest.

Received: 6 September 2018; Accepted: 13 November 2018; Published online 10 February 2019. doi:10.1002/oby.22415
Methods

Animals

Male Long-Evans rats (Harlan, Indiana) housed in an environmentally controlled vivarium on a reverse light cycle (lights off at 7 AM) were used with food and water available ad libitum, except when indicated. All procedures were approved by Institutional Animal Care and Use Committee guidelines at Washington State University. Rats (age = 14 weeks) were initially exposed to the high-fat diet (HFD; Research Diets, New Brunswick, New Jersey; 4.41 kcal/g [1.71 kcal/g from fat]) for ~8 weeks. Subsequently, rats (n = 10/group) received sham or VSG surgery. Out of this group, nine sham and eight VSG rats completed the study. Following surgery, all rats were maintained on OSMOLITE (Abbott, Lake Forest, Illinois) and water for the first 5 to 8 days and were then slowly returned to and maintained on standard rodent chow (Teklad; Envigo, South Kent, Washington; 3.41 kcal/g [0.51 kcal/g from fat]) throughout the remainder of the study.

Surgery

All rats were fasted at least 24 hours before surgery as described previously (11). On the day of surgery, rats in the VSG surgery group were anesthetized and received an incision in the abdominal wall. The stomach was gently removed from the abdomen, and the lateral stomach (70%-80% of total stomach volume) was excised using a stapler (Ethicon, Inc., New Jersey), creating a tubular gastric piece connecting esophagus and duodenum. The newly created gastric sleeve was gently placed back, and the abdominal cavity was closed. Rats in the sham surgery group were anesthetized and received an incision in the abdominal wall, and the stomach was gently removed from the cavity and placed back before closing the abdominal cavity. All rats received appropriate postoperative care and were allowed to recover until their body weight was stable. Subsequently, a subset of rats was tested in hedonic feeding or alcohol drinking paradigms.

Hedonic food intake

To assess hedonic food intake, rats were food deprived overnight as described previously (11,13). Following 21 hours, all rats received preweighed rodent chow. Food was weighed each hour for 2 hours. Following the second hour of chow access, a preweighed HFD was presented to both sham and VSG groups of rats, and food was weighed 1 hour later. The HFD intake after satisfying homeostatic caloric needs constituted the hedonic portion of this test.

Alcohol intake

Unsweetened alcohol (5%, 8%, or 10% v/v) bottles were presented on alternating days in a counterbalanced fashion in the rat home cages using a two-bottle choice paradigm (one bottle water and another alcohol). Alcohol was introduced 4 hours into the rat’s subjective dark cycle, and alcohol and water intake was evaluated 24 hours later. All animals had ad libitum access to water and food, and no water or food deprivation occurred during testing. The position of the alcohol and water bottles was switched at each testing session. Bottles were weighed, gently placed in the cages, and reweighed manually following each session to evaluate alcohol intake (grams per kilogram body weight).

PCR array

Following behavioral assessment, all rats were euthanized, and brain tissues were snap frozen and stored at ~80°C until further analysis. Hypothalamus from sham and VSG (n = 3/group) was microdissected and placed in RNA later Stabilization Solution (Ambion, Foster City, California). TissueRuptor (Qiagen, Germantown, Maryland), QIAshredder (Qiagen catalog number 79654), and RNeasy Plus Mini Kit (Qiagen catalog number 74134) were used for total RNA extraction and isolation as described in the manufacturer’s protocol. The concentration and purity of RNA samples were determined by NanoDrop spectrophotometer (Thermo Fisher, Waltham, Massachusetts). The degradation and integrity were assessed by Experion Automated Electrophoresis System (Bio-Rad, Hercules, California). All RNA samples were of high quality and passed all necessary requirements. Complementary DNA was synthesized from 350 ng of total RNA for each sample using RT² First Strand Kit (Qiagen catalog number 330401) following the manufacturer’s protocol. PCR amplification was conducted using MyiQ Real-Time PCR Detection System (Bio-Rad). Baseline threshold was manually set to 100 relative fluorescence units in primary data analysis for all arrays. The rat obesity RT² Profiler PCR Array (Qiagen catalog number PARN-017Z) was used to profile expression of a total of 84 genes (Table 1), which included orexigenic genes, anorectic genes, and genes involved in energy expenditure. All arrays passed quality control tests (PCR array

Category of gene	Gene name
Orexigenic genes	Adra2b, Agpr, Cnr1, Gal, Galr1, Mechr1, Hcrt, Hcrt1, Npy, Npy1r, Nr3c1 (Grl), Oprk1, Opm1, Sigmar1 (Opn1)
Neuropeptides and receptors	Ghr (Ghrelin, Obestatin), Ghhr
Gut hormones and receptors	Atm, Bdnf, Bns3, Calca, Calcrl, Cartpt, Cntf, Cntr, Chh, Cntr1, Drd1, Drd2, Gh1, Ghr, Pfrhr (Gpr10), Grp, Grpr, Hrh1, Hrh2c, I1la, I1lb, I1lr1, I1lr2, I1lr3, I1lr4, I1lr5, Mc3r, Nmb, Nmbr, Nmur1 (Gpr66), Ntrk1, Nts, Ntsr1, Pnoc, Sort1, Thr, Thr1, Ucn
Anorectic genes	Apoa4, Cck, Cckar, Glpr1r, Pyy
Neuropeptides and receptors	Lep (Leptin), Lepf, Tnf
Gut hormones and receptors	Calcrl, Cips, Gcg, Gcgr, Glpr1r, Iapp, Ins1, Ins2, Insr, Ramp3, Sst, Sst1
Adipocyte-derived peptides and receptors	Adipoq (Acrp30), Adipor1, Adipor2, Add1, C3, Ppara, Pparg, Ppargc1a (Ppargc1), Ptpr1 (Ptp), Ucp1
Pancreas-derived peptides and receptors	Adcyap1, Adcyap1r1, Thrb
Energy expenditure	
Adipocyte-derived peptides and receptors	
CNS-derived peptides and receptors	

CNS, central nervous system.
reproducibility, reverse transcription efficiency, and genomic DNA contamination. A Web-based data analysis tool (Qiagen) was used to calculate fold-change and P values. Two housekeeping genes (Hprt1 and Rplp1) were used for quantitative PCR data normalization. The cycle threshold (CT) cutoff was set to 35, and any gene with measurements > 35 was excluded from further analysis. Fold-change \((2^\Delta \text{CT})\) is the normalized gene expression \((2^\Delta \text{CT})\) in the VSG samples divided by the normalized gene expression \((2^\Delta \text{CT})\) in the sham samples. Fold-regulation represents fold-change results in a biologically meaningful way. Fold-change values greater than 1 indicate a positive or upregulation, and the fold-regulation is equal to the fold-change. Fold-change values less than 1 indicate a negative or downregulation, and the fold-regulation is the negative inverse of the fold-change.

Statistical analysis

Body weight, food intake, and alcohol intake data over a period of time were analyzed by a mixed-model two-way analysis of variance (ANOVA), with post hoc tests to compare within-group effects. The within-subject variable was time interval (time or conditions of measurements), and the between-group variable was surgical procedure (sham or VSG surgery). HFD intake data were analyzed using unpaired t test. PCR array data were analyzed using unpaired t test only as per the manufacturer-recommended Web-based RT² Profiler PCR Array data analysis software and others using this method to evaluate gene expression. All statistical comparisons were conducted at 0.05 α level.

Results

VSG surgery: body weight

No statistically significant between-group (P>0.05) differences existed before surgery (Figure 1A). Sham rats lost an average of 10 g (~2.0%) of their initial body weight, whereas VSG rats lost an average of 55.0 g (~10%) of their initial body weight over the first 30 days following surgery (Figure 1B). A mixed-model ANOVA identified a main effect of time \((F_{2.5,37.5}=52.255; P=0.000)\), a significant time and treatment interaction \((F_{2.5,37.5}=7.970, P=0.001)\), and a significant between-group difference \((F_{1.0,15.0}=15.420; P=0.001)\) in body weight. In addition, these significant between-group differences persisted across time during hedonic feeding \((P=0.0065)\) and alcohol drinking \((P=0.0047)\) testing (Figure 1C).

VSG surgery: hedonic feeding

A mixed-model ANOVA identified a significant effect of time \((F_{2.0,0.0}=10.21; P=0.004)\), but no significant \((P>0.05)\) interaction or between-group differences were evident, suggesting that chow intake in both groups decreased over the duration, but chow intake was not significantly \((P>0.05)\) different between sham and VSG rats following overnight fasting (a homeostatic-driven refeeding; Figure 2A). However, palatable (HFD) food intake following a chow preload was significantly reduced in VSG rats compared with sham controls (Figure 2B).

VSG surgery: alcohol drinking

Alcohol drinking at lower alcohol (5%) but not higher alcohol (8%-10%) concentrations appeared to be reduced in VSG rats compared with sham controls. However, mixed-model ANOVA did not identify any statistically significant within- or between-group differences (Figure 3). Water intake was not significantly different between sham and VSG groups.

VSG surgery: obesity-related gene expression in hypothalamus

A rat obesity RT² Profiler PCR Array examined the expression of 84 obesity-related genes (i.e., orexigenic, anorectic, and energy expenditure) in the hypothalamus following sham and VSG surgery. Several of these genes were significantly impacted following VSG as shown in the scatterplot (Figure 4A). A total of 71 genes were expressed in detectable amounts, whereas 13 genes (Adipoq, Agrp, Agrp2, Gcg, Gh1, Iapp, Ins1, Lep, Nmur1, Ntrk1, Pparγ, and Ucp1) were deemed undetectable (based on CT values). Table 2 provides a list of these 71 genes and their corresponding PCR array data. Of these 71 genes, 8 genes (Adipor1, Agrp, Carpt, Glp1r, Hcrt, Ilb, Lepr, and...
Mc3r) were significantly (P < 0.05) downregulated, and 1 gene (Grp) was significantly (P < 0.05) upregulated in the hypothalamus of VSG rats compared with sham controls. Furthermore, ≥ 2-fold statistical decrease were evident in Agrp, Cartpt, Gip1r, HcRt, Il1b, Lepr, and Mc3r mRNA, whereas a significant increase was apparent for Grp mRNA (Figure 4B).

Discussion

The present study was designed to test corollaries of the central hypothesis that VSG surgery stimulates body weight loss through genetic adaptations within the hypothalamus. From these efforts, we discovered that VSG in male rodents led to anticipated reductions in body weight that were sustained throughout the study period. In addition, VSG attenuated palatable food intake following a caloric preload but spared deprivation-induced refeeding behavior. This observation supports the contention that VSG is not a restrictive surgery but rather limits excess intake in the absence of a caloric need. Although alcohol drinking was moderately impacted at a lower alcohol concentration, this effect diminished as the concentration of alcohol was escalated. Behaviorally characterized VSG rats displayed decreased expression of key orexigenic hypothalamic transcripts linked to stimulation of both food and alcohol intake. Collectively, these results suggest that weight loss after VSG is accompanied by behavioral and neurobiological events that signify a reduced drive for palatable food.

RYGB surgery and VSG are the most widely performed surgical procedures to induce sustained weight loss for the treatment of obesity and related metabolic complications (1). VSG has emerged as a popular and frequently performed surgical procedure for obesity treatment given its efficiency (several metabolic benefits even at ~20% mean reduction in body weight) and allowance of revisional procedures (1). Furthermore, a significant reduction in fat and fat-free mass has been reported following VSG (14). However, a large variability was shown in body weight reduction following VSG (15), and both preclinical and clinical studies have reported body weight regain following bariatric procedures, including VSG (16-18). It is important to note that marked variability in the maximal weight loss following bariatric surgeries could be attributed to several factors, including age at which the surgical procedure is performed, preoperative BMI, percentage early weight loss following surgery, poor diet quality, incompatibility with postoperative dietary recommendations, emotional eating, increased food craving, and/or preoperative food preferences (17-22).

In this context, hedonic feeding (consumption of a palatable food in the absence of a caloric need) could be a major contributor to the individual difference in weight regain after VSG. Notably, preclinical evidence has
Figure 4 Alterations in the hypothalamic obesity-related gene expression following VSG surgery in rats. (A) Scatterplot analysis of differential expression of obesity-related genes in the hypothalamus following VSG compared with sham controls, using the rat obesity RT² Profiler PCR Array. Each dot represents one gene, and the top and bottom genes outside the dotted lines represent a twofold increase and decrease, respectively. (B) Fold-regulation (≥2-fold) is plotted for only statistically significant \(P < 0.05 \) increased or decreased gene expression following VSG compared with sham controls. **\(P < 0.01 \) and *\(P < 0.05 \), compared with sham controls.

Table 2
Impact of vertical sleeve gastrectomy on obesity-related gene expression in hypothalamus using rat obesity RT² Profiler PCR Array

#	Unigene	Refseq	Symbol	Description	Fold-regulation	\(P \) value
1	Rn.202559	NM_016989	Adcyap1	Adenylate cyclase-activating polypeptide 1	-2.0	0.192
2	Rn.234543	NM_133511	Adcyap1r1	Adenylate cyclase-activating polypeptide 1 receptor 1	-1.4	0.174
3	Rn.104556	NM_207587	Adipor1	Adiponectin receptor 1	-1.3	0.021*
4	Rn.101984	NM_001037979	Adipor2	Adiponectin receptor 2	-1.2	0.122
5	Rn.87064	NM_012701	Adrb1	Adrenergic, beta-1-, receptor	-1.2	0.715
6	Rn.137597	NM_033650	Agrp	Agouti-related protein homolog (mouse)	-27.1	0.024*
7	Rn.53846	NM_031351	Atn	Attractin	-1.4	0.226
8	Rn.11266	NM_012513	Bdnf	Brain-derived neurotrophic factor	-1.9	0.230
9	Rn.86415	NM_152845	Brs3	Bombesin-like receptor 3	-2.1	0.127
10	Rn.11378	NM_016994	C3	Complement component 3	-4.5	0.300
11	Rn.90085	NM_017338	Calca	Calcitonin-related polypeptide alpha	-1.6	0.188
12	Rn.10062	NM_053816	Calcr	Calcitonin receptor	-1.0	0.928
13	Rn.89164	NM_017110	Cartpt	CART prepropeptide	-3.0	0.004**
14	Rn.9781	NM_012829	Cck	Cholecystokinin	-1.7	0.547
15	Rn.10184	NM_012688	Cckar	Cholecystokinin A receptor	-1.3	0.145
16	Rn.89774	NM_012784	Cnr1	Cannabinoid receptor 1 (brain)	1.4	0.408
17	Rn.6067	NM_013166	Cntf	Ciliary neurotrophic factor	-1.1	0.603
18	Rn.55036	NM_00103929	Cntfr	Ciliary neurotrophic factor receptor	-1.1	0.595
19	Rn.10349	NM_031019	Cth	Corticotropin-releasing hormone	2.2	0.100
20	Rn.10499	NM_030999	Cth1	Corticotropin-releasing hormone receptor 1	-1.0	0.905
TABLE 2. (continued).

#	Unigene	Refseq	Symbol	Description	Fold-regulation	P value
21	Rn.24039	NM_012546	Drd1	Dopamine receptor D1A	2.2	0.286
22	Rn.57299	NM_012547	Drd2	Dopamine receptor D2	1.1	0.826
23	Rn.8929	NM_033237	Gal	Galanin prepropeptide	−1.4	0.234
24	Rn.10213	NM_012958	Ghr1	Galanin receptor 1	1.0	0.955
25	Rn.54383	NM_012707	Gcg	Glucagon	−1.2	0.490
26	Rn.2178	NM_017094	Ghr	Growth hormone receptor	−1.2	0.628
27	Rn.42103	NM_021669	Ghrl	Ghrelin/obestatin prepropeptide	−1.2	0.544
28	Rn.74241	NM_032075	Ghrs	Growth hormone secretagogue receptor	−2.3	0.054
29	Rn.11408	NM_012728	Glp1r	Glucagon-like peptide 1 receptor	−2.1	0.023*
30	Rn.10930	NM_133570	Gpr	Gastrin-releasing peptide	4.6	0.006**
31	Rn.10316	NM_012706	Gpr	Gastrin-releasing peptide receptor	−1.0	0.860
32	Rn.7628	NM_013179	HcrT	Hypocretin	−10.5	0.039*
33	Rn.88262	NM_013064	Hcrt1	Hypocretin (orexin) receptor 1	−1.5	0.191
34	Rn.81032	NM_017018	Hhr1	Histamine receptor H 1	−1.8	0.149
35	Rn.9935	NM_012765	Htr2c	5-hydroxytryptamine (serotonin) receptor 2C	1.0	0.800
36	Rn.12300	NM_017019	Il1a	Interleukin 1 alpha	1.1	0.512
37	Rn.9869	NM_031512	Il1b	Interleukin 1 beta	−2.9	0.016*
38	Rn.9758	NM_013123	Il1r1	Interleukin 1 receptor, type I	−1.2	0.341
39	Rn.9673	NM_012589	Il6	Interleukin 6	−1.1	0.457
40	Rn.1716	NM_017020	Il6r	Interleukin 6 receptor	−1.2	0.435
41	Rn.989	NM_019130	Ins2	Insulin 2	−1.7	0.193
42	Rn.9876	NM_017071	Insr	Insulin receptor	−1.1	0.436
43	Rn.9891	NM_012596	Lepr	Leptin receptor	−2.4	0.014*
44	Rn.215838	NM_001025270	Mc3r	Melanocortin 3 receptor	−2.3	0.023*
45	Rn.10822	NM_031758	Mchr1	Melanin-concentrating hormone receptor 1	1.1	0.120
46	Rn.18763	NM_001109149	Nmb	Neuromedin B	1.1	0.715
47	Rn.89709	NM_012799	Nmbr	Neuromedin B receptor	2.4	0.064
48	Rn.47720	NM_022239	Nmu	Neuromedin U	−5.0	0.076
49	Rn.9714	NM_012614	Npy	Neuropeptide Y	−1.4	0.088
50	Rn.11642	NM_00113357	Npy1r	Neuropeptide Y receptor Y1	−1.0	0.984
51	Rn.90070	NM_012576	Nc3c1	Nuclear receptor subfamily 3, group C, member 1	−1.3	0.082
52	Rn.60814	NM_001102381	Nts	Neurotensin	3.2	0.089
53	Rn.200149	NM_001108967	Ntsr1	Neurotensin receptor 1	−1.1	0.708
54	Rn.89571	NM_017167	Oprk1	Opioid receptor, kappa 1	1.2	0.206
55	Rn.10118	NM_013071	Opm1	Opioid receptor, mu 1	1.3	0.255
56	Rn.108195	NM_139326	Pomc	Proopiomelanocortin	−10.3	0.327
57	Rn.9753	NM_013196	Ppara	Peroxisome proliferator-activated receptor alpha	−1.1	0.584
58	Rn.19172	NM_031347	Pparc1a	Peroxisome proliferator-activated receptor gamma, coactivator 1 alpha	1.2	0.396
59	Rn.138127	NM_139193	Pthr	Prolactin-releasing hormone receptor	1.8	0.137
60	Rn.11317	NM_012637	Ptpn1	Protein tyrosine phosphatase, nonreceptor type 1	−1.1	0.834
61	Rn.13173	NM_001034080	Ppy	Peptide YY (mapped)	−1.9	0.143
62	Rn.48672	NM_020100	Ramp3	Receptor (G protein-coupled) activity modifying protein 3	−1.4	0.147
indicated that preoperative food preference for palatable food is maintained after VSG (18,23), highlighting perseverance for unhealthy food as a means to stimulate body weight regain. However, it is unknown whether palatable food intake is impacted in the absence of caloric need following VSG. The data we present here indicate, for the first time, that VSG rats selectively reduced intake of palatable food when offered an HFD after consuming a caloric preload. Supporting this finding, preclinical studies indicated that VSG rats decreased preference for high-fat foods despite displaying persistence of food-motivated behavior (24). Importantly, refeeding on low-fat food after deprivation did not differ between VSG rats and sham controls, suggesting that VSG is not a restrictive surgical procedure. Instead, relative to controls, VSG rats selectively reduced intake when offered a palatable HFD after consuming a caloric preload. Consistent with this, clinical evidence has indicated that VSG reduces preference and liking for high-calorie foods (rich in fat and sugar) (3,25). Taken together, these results suggest that VSG selectively abrogates hedonic feeding in the absence of a caloric need.

Previous work from our group and others has indicated that RYGB surgery increases alcohol intake in rodents. Specifically, RYGB surgery increases sensitivity, consumption, and motivation to obtain alcohol (9-11) in rats that are nonalcohol preferring at baseline. Moreover, we recently discovered that this phenomenon occurred at the expense of reduced hedonic feeding (11), i.e., RYGB rats that displayed increased alcohol intake also selectively reduced hedonic intake of palatable food after a caloric preload. To determine whether surgical effects on alcohol extend to the VSG procedure, we examined alcohol intake over a range of alcohol concentrations. Our data indicate that VSG reduced intake of alcohol at low concentration and that this phenomenon was diminished as the concentration of alcohol was escalated. These data are in agreement with a recent preclinical study that found reduced alcohol intake after VSG (26). However, in that study, VSG rats and mice consumed significantly less alcohol at all concentrations tested. It is important to note that VSG rats were directly compared with nonsurgical controls in that study, whereas in the current study, sham rats that served as controls experienced the same degree of perioperative stress but did not undergo surgical reduction of the fundus. Thus, these differences in alcohol consumption among control groups may have contributed to the disparity in results between the two studies. In either case, we conclude that, if anything, VSG reduces alcohol intake, as opposed to RYGB, which stimulates new-onset alcohol intake in both patients (12) and rodents (9,10).

It is important to note that anatomical and resultant physiological alterations following surgeries that restructure the gastrointestinal (GI) tract can impact alcohol pharmacokinetics. For example, rapid absorption, higher blood alcohol concentration, and delayed alcohol elimination have been reported following RYGB, which may contribute to the development of alcohol use disorder (AUD) in these patients, nicely reviewed elsewhere (27). On the other hand, studies that examined alcohol pharmacokinetics and alcohol intoxication following VSG have generated conflicting results. For example, a prospective study (N=10) that compared alcohol metabolism, peak blood alcohol concentration, alcohol elimination, and intoxication before and after (3 and 12 months) VSG found no significant changes (28). Similar results were obtained by an additional study that examined the impact of VSG (n=7) or gastric banding (n=9) on alcohol pharmacokinetics and intoxication 3 and 6 months after surgery (29). These data are consistent with our preclinical finding demonstrating no change in alcohol drinking following VSG. In contrast, Maluenda et al. (30) reported increased blood alcohol levels and delayed alcohol clearance 2 months following VSG. In females. In this context, a clinical study of primarily female patients undergoing these surgeries. Because the current study examined the impact of VSG on hedonic feeding and alcohol drinking in male rats only, future studies are needed to determine whether similar effects persist in females. In this context, a clinical study of primarily female patients reported no significant changes in alcohol pharmacokinetics (examined using a Breathalyzer) or intoxication levels 3 and 12 months following VSG (28). However, a recent study argued that the Breathalyzer method may be unreliable and that more robust analytical methods (e.g., gas chromatography) are needed to assess alcohol pharmacokinetics following bariatric surgery (31). For example, Acevedo et al. found faster absorption, higher peak blood alcohol levels, and heightened intoxications in 11 women ~2.0 years following VSG using this method (31). Interestingly, a recent, large, multi-institutional study (32) based on

TABLE 2. (continued).

#	Unigene	Refseq	Symbol	Description	Fold-regulation	P value
63	Rn.1129	NM_030996	Sigmar1	Sigma nonopiod intracellular receptor 1	1.1	0.455
64	Rn.11286	NM_031767	Sort1	Sortilin 1	−1.1	0.543
65	Rn.34418	NM_012659	Sst	Somatostatin	2.1	0.138
66	Rn.42915	NM_012719	Sotr1	Somatostatin receptor 1	−1.0	0.975
67	Rn.34019	NM_012672	Thrb	Thyroid hormone receptor beta	−1.6	0.101
68	Rn.2275	NM_012675	Tnf	Tumor necrosis factor	−1.1	0.442
69	Rn.22	NM_013046	Tph	Thyrotropin-releasing hormone	1.7	0.241
70	Rn.9962	NM_013047	Tthr	Thyrotropin-releasing hormone receptor	1.2	0.368
71	Rn.10190	NM_019150	Ucn	Urocortin	−2.1	0.156

Bold text highlights statistically significant changes. CART, cocaine- and amphetamine-regulated transcript; Refseq, reference sequence.

*P<0.05, compared with sham controls.

**P<0.01, compared with sham controls.
self-reported alcohol consumption found similar pre- and postoperative (1 and 2 years) AUD prevalence following RYGB (n=1,006; 78.4% female) and VSG (n=4,718; 78.4% female). In this study, AUD was detected 2 years following RYGB or VSG. Notably, income, education, baseline alcohol consumption, or alcohol misuse were predictive for AUD after surgery (32). Collectively, these data highlight the importance of method, time following surgery, and history of alcohol misuse as critical factors that should be considered when evaluating the impact of VSG on new onset of AUD.

The hypothalamus integrates metabolic information with the internal need to adapt behavioral responses. Specifically, GI-derived peptides target the hypothalamus to regulate energy balance through modulation of feeding behavior (5). To examine potential mechanisms for the observed reduced hedonic feeding, we measured mRNA changes in the hypothalamus of VSG rats that were behaviorally characterized by reduced hedonic feeding and low-concentration alcohol intake. Our results indicate that VSG dramatically reduced expression of key orexigenic peptides known to stimulate food intake. For example, Agouti-related protein (AgRP) is a neuropeptide with well-established effects on appetite stimulation (33). Activation of AgRP neurons was shown to drive feeding in untrained rodents (34), demonstrating that these neurons are necessary and sufficient to initiate feeding. We found that Agrp mRNA was significantly decreased after VSG relative to sham control rats. Pharmacologic AgRP selectively promotes preferences for fat and stimulates mesocortical dopamine release (35). Thus, reduced hedonic feeding in VSG may derive from reduced Agrp expression. We also detected decreased Hcrt (orexin) mRNA in the hypothalamus of VSG rats. Notably, orexin signaling was shown to be required for hedonic feeding behavior in rodents (36). In addition, orexin stimulates alcohol intake in rodents (37). Thus, decreased orexin expression may also contribute to the reduction in hedonic feeding and/or low-concentration alcohol intake observed after VSG. We also detected decreased expression (a strong trend [P = 0.05]) of ghrelin receptor-1a (GHSR), the central target of the appetite hormone ghrelin (38). In addition to promoting appetite, ghrelin promotes alcohol intake (39). VSG reduces circulating ghrelin in humans (40) and rodents (41), indicating that hypothalamic reduction in GHSR mRNA expression may derive from reduced circulating ghrelin. In support of this contention, we recently discovered that RYGB rats with reduced circulating ghrelin had diminished GHSR control of dopamine neuronal firing (11), suggesting that reduced plasma ghrelin may lead to reductions in central GHSR function. A significant decrease in leptin receptor mRNA expression was also observed in the hypothalamus of VSG rats, an observation in agreement with decreased circulating leptin hormone following VSG (42). It is important to note that leptin concentration and sensitivity closely correlate with body weight as obesity increases, whereas weight loss decreases plasma leptin levels (43). Therefore, decreased leptin receptor expression in the present study could be a consequence of reduced body weight following VSG. Interestingly, leptin was shown to positively regulate hypothalamic cocaine- and amphetamine-regulated transcript protein mRNA levels (44). We observed a significant decrease in the cocaine- and amphetamine-regulated transcript prepropeptide mRNA expression in the hypothalamus of VSG rats, which is in agreement with the decreased leptin functional activity following VSG. We also discovered that VSG led to upregulation of gastrin-releasing peptide, a peptide produced in the GI tract and hypothalamus that inhibits food intake (45). Collectively, these results indicate that VSG surgery exerts dramatic genetic programming changes in the brain’s endogenous appetite center, which potentially contribute to a reduced drive to feed.

It is important to note that it is unclear whether similar changes could be attributed to the weight loss itself, independent of surgery, which requires further investigation.

To summarize, the current data indicate that VSG surgery may exert positive benefits on body weight loss through reductions in hedonic intake of palatable food, an effect that occurs without risk of new-onset alcohol misuse and is potentially explained by alterations in genetic information flow within the hypothalamus. These data can inform the development of new therapies designed to reduce body weight with a reduced risk of developing AUD.

Acknowledgments

We thank Arriel Van Cleef and Research Centers in Minority Institutions/Louisiana Cancer Research Center/Louisiana Biomedical Research Network Cell and Molecular Biology Core services, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, for providing technical assistance.

© 2019 The Obesity Society

References

1. Angrisani L, Vitiello A, Santonocita A, Hasani A, De Luca M, Iovino P. Roux-en-Y gastric bypass versus sleeve gastrectomy as revisional procedures after adjustable gastric band: 5-year outcomes. Obes Surg 2017;27:1430-1436.
2. Colussi I, Raparelli L, Guaracci L, et al. Food intake and changes in eating behavior after laparoscopic sleeve gastrectomy. Obes Surg 2016;26:2059-2067.
3. Ammon BS, Bellanger DE, Geiselman PJ, Primeaux SD, Yu Y, Greenway FL. Short-term pilot study of the effect of sleeve gastrectomy on food preference. Obes Surg 2015;25:1094-1097.
4. Bužga M, Holčécy P, Švagera Z, Švorc P. Zavadilova V. Effects of sleeve gastrectomy on parameters of lid and glucose metabolism in obese women - 6 months after operation. Wideochir Inne Tech Maloleczne 2013;8:22-28.
5. Blouet C, Schwartz GJ. Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res 2010;209:1-12.
6. Leibowitz SF, Wortley KE. Hypothalamic control of energy balance: different peptides, different functions. Peptides 2004;25:473-504.
7. Schaffhauer AO, Madehe AM, Braymer HD, Bray GA, York DA. Effects of a high-fat diet and strain on hypothalamic gene expression in rats. Obes Res 2002;10:1188-1196.
8. Sirohi S, Van Cleef A, Davis JF. Binge-like intake of HF diets attenuates alcohol intake in rats. Physiol Behav 2017;178:187-195.
9. Davis JF, Tracy AL, Schurkad JD, et al. Roux en Y gastric bypass increases ethanol intake in the rat. Obes Surg 2013;23:920-930.
10. Hajnal A, Zharikov A, Polston JE, et al. Alcohol reward is increased after Roux-en-Y gastric bypass in obese rats with differential effects following ghrelin antagonism. PLoS One 2012;7:e49121. doi:10.1371/journal.pone.0049121
11. Sirohi S, Richardson BD, Lugo JM, Rossi DJ, Davis JF. Impact of Roux-en-Y gastric bypass surgery on appetite, alcohol intake behaviors, and midbrain ghrelin signaling in the rat. Obesity (Silver Spring) 2017;25:1426.
12. King WC, Chen J-Y, Mitchell J, et al. Prevalence of alcohol use disorders before and after bariatric surgery. JAMA 2012;307:2516-2525.
13. Sirohi S, Schurkad JD, Seeley RJ, Benoit SC, Davis JF. Central & peripheral glucon-like peptide-1 receptor signaling differentially regulate addictive behaviors. Physiol Behav 2016;161:140-144.
14. Golzarand M, Toolabi K, Djafari-Kazemian K. Changes in body composition, dietary intake, and substrate oxidation in patients underwent laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a comparative prospective study [published online September 25, 2018]. Obes Surg. doi:10.1007/s11695-018-3528-x
15. Manning S, Pucci A, Carter NC, et al. Early postoperative weight loss predicts maximal weight loss after sleeve gastrectomy and Roux-en-Y gastric bypass. Surg Endosc 2015;29:1484-1491.
16. Braghetto I, Csendes A, Lanzarini E, Papapietro K, Cárcamo C, Molina JC. Is laparoscopic sleeve gastrectomy an acceptable primary bariatric procedure in obese patients? Early and 5-year postoperative results. Surg Laporasc Endosc Percutan Tech 2012;22:479-486.
17. Sarwer DB, Wadden TA, Moore RH, et al. Preoperative eating behavior, postoperative dietary adherence, and weight loss after gastric bypass surgery. Surg Obes Relat Dis 2008;4:640-646.
18. Hao Z, Townsend RL, Humphrey MB, Morrison CD, Münzelburg H, Berthoud HR. RYGB produces more sustained body weight loss and improvement of glycemic

610 Obesity | VOLUME 27 | NUMBER 4 | APRIL 2019 www.obesityjournal.org
control compared with VSG in the diet-induced obese mouse model. *Obes Surg* 2017;27:2424-2433.

19. Freire RH, Borges MC, Alvarez-Leite JI, Toulson Davison Correia MI. Food quality, physical activity, and nutritional follow-up as determinant of weight regain after Roux-en-Y gastric bypass. *Nutrition* 2012;28:53-58.

20. Janse Van Vuuren MA, Strodl E, White KM, Lockie PD. Emotional food cravings predicts poor short-term weight loss following laparoscopic sleeve gastrectomy. *Br J Health Psychol* 2018;23:532-543.

21. Peacock JC, Schmidt CE, Barry K. A qualitative analysis of post-operative nutritional barriers and useful dietary services reported by bariatric surgical patients. *Obes Surg* 2016;26:2331-2339.

22. Rossell J, González M, Mestres N, et al. Diet change after sleeve gastrectomy is more effective for weight loss than surgery only. *Obes Surg* 2017;27:2566-2574.

23. Saeidi N, Nestoridi E, Kucharczyk J, Uygun M, Yarmush M, Stylopoulos N. Sleeve gastrectomy and Roux-en-Y gastric bypass exhibit differential effects on food preferences, nutrient absorption and energy expenditure in obese rats. *Int J Obes (Lond)* 2012;36:1396-1402.

24. Wilson-Pérez HE, Chambers AP, Sandoval DA, et al. The effect of vertical sleeve gastrectomy on food choice in rats. *Int J Obes (Lond)* 2013;37:288-295.

25. Primeaux SD, Tseng TH, Allerton TD, et al. Differences in short-term food preferences following vertical sleeve gastrectomy and Roux-en-Y gastric bypass surgery. *Obes Res Clin Pract* 2015;9:628-632.

26. Orellana ER, Jamis C, Horvath N, Hajnal A. Effect of vertical sleeve gastrectomy on alcohol consumption and preferences in dietary obese rats and mice: a plausible role for altered ghrelin signaling. *Brain Res Bull* 2018;138:26-36.

27. Blackburn AN, Hajnal A, Leggio L. The gut in the brain: the effects of bariatric surgery on alcohol consumption. *Addict Biol* 2017;22:1540-1553.

28. Gallo AS, Berducci MA, Nijhawan S, et al. Alcohol metabolism is not affected by sleeve gastrectomy and Roux-en-Y gastric bypass. *Surg Obes Relat Dis* 2015;20:50-52.e5.

29. Changchien EM, Woodard GA, Hernandez-Boussard T, Morton JM. Normal alcohol metabolism after gastric banding and sleeve gastrectomy: a case-cross-over trial. *J Am Coll Surg* 2012;215:475-479.

30. Maluenda F, Csendes A, De Aretxabala X, et al. Alcohol absorption modification after a laparoscopic sleeve gastrectomy due to obesity. *Obes Surg* 2010;20:744-748.

31. Acevedo MB, Eagon JC, Bartholow BD, Klein S, Bucholz KK, Pepino MY. Sleeve gastrectomy surgery: when 2 alcoholic drinks are converted to 4. *Surg Obes Relat Dis* 2018;14:277-283.

32. Ibrahim N, Alameddine M, Brennan J, Sessine M, Holliday C, Ghaferi AA. New onset alcohol use disorder following bariatric surgery [published online October 22, 2018]. *Surg Endosc*. doi:10.1007/s00464-018-6545-x.

33. Ilnytska O, Argyropoulos G. The role of the Agouti-Related Protein in energy balance regulation. *Cell Mol Life Sci* 2008;65:2721-2731.

34. Aponte Y, Atasoy D, Sternson SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. *Nat Neurosci* 2011;14:351-355.

35. Davis JP, Choi DL, Shurdak JD, et al. Central melanocortins modulate mesocorticolimbic activity and food seeking behavior in the rat. *Physiol Behav* 2011;102:491-495.

36. Choi DL, Davis JF, Fitzgerald ME, Benoit SC. The role of orexin-A in food motivation, reward-based feeding behavior and food-induced neuronal activation in rats. *Neuroscience* 2010;167:11-20.

37. Lawrence AJ, Cowen MS, Yang HJ, Chen F, Oldfield B. The orexin system regulates alcohol-seeking in rats. *Br J Pharmacol* 2006;148:752-759.

38. Zigan JM, Nakano Y, Coppa R, et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. *J Clin Invest* 2005;115:3564-3572.

39. Jerlhag E, Egecioglu E, Landgren S, et al. Requirement of central ghrelin signaling for alcohol reward. *Proc Natl Acad Sci USA* 2009;106:11318-11323.

40. Langer FB, Reza Hoda MA, Bobdualian A, et al. Sleeve gastrectomy and gastric banding: effects on plasma ghrelin levels. *Obes Surg* 2005;15:1024-1029.

41. Chambers AP, Kirchner H, Wilson–PerezHE, et al. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent. *Gastroenterology* 2013:144:50-52.e5.

42. Bužga M, Zavadilová V, Holčzy P, et al. Dietary intake and ghrelin and leptin changes after sleeve gastrectomy in rodents are ghrelin independent. *Gastroenterology* 2013:144:50-52.e5.

43. Friedman JM. The function of leptin in nutrition, weight, and physiology. *Nutr Rev* 2002;60(10 Pt 2):S1-S14; discussion S68-S84, 85-87.

44. Aponte Y, Atasoy D, Sternson SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. *Nat Neurosci* 2011;14:351-355.

45. Gutzwiller JP, Drewe J, Hildebrand P, Rossi L, Lauper JZ, Beglinger C. Effect of intra-venous human gastrin-releasing peptide on food intake in humans. *Obesity* 2004;12:491-495.