Glycoalkaloids in commercial potato varieties traded in Nairobi, Kenya [version 1; peer review: awaiting peer review]

Consolata Nolega Musita, Duke Gekonge Omayio, George Ooko Abong', Michael Wandayi Okoth

Department of Food Science, Nutrition and Technology, University of Nairobi, Nairobi, Kenya

Abstract

Background: Glycoalkaloids are naturally occurring toxins in potatoes which, at high levels, pose food safety concerns to consumers. Their concentrations in potatoes are dependent on postharvest handling, variety and stress factors tubers are exposed to. Limited information, however, exists on levels of glycoalkaloids in commercially traded potato tubers in Kenya. The current study sought to determine the glycoalkaloid levels in potatoes traded in Nairobi, Kenya.

Methods: Three potato varieties, *Shangi*, *Dutch Robijn* and *Royal* sold in open-air markets and supermarkets were randomly sampled and their glycoalkaloid levels determined by high-performance liquid chromatography.

Results: The levels varied significantly (*p*<0.05). The *Shangi* variety had the highest glycoalkaloids with a mean of 410.35 mg kg⁻¹ dry weight with samples from supermarkets having the highest levels (550.8 mg kg⁻¹ dry weight). The same variety from open air markets averaged 382.26 mg kg⁻¹ dry weight compared to the *Dutch Robijn* (129.2 mg kg⁻¹ dry weight) and *Royal* variety (98.2 mg kg⁻¹ dry weight) which had the least levels of glycoalkaloids.

Conclusions: The levels in sampled tubers did not exceed the recommended levels of 1000 mg/kg on dry weight basis and, therefore, consumption of these potatoes would not raise safety concerns. There is, however, a need to ensure that marketing of tubers is carried out under conditions that minimize occurrence of glycoalkaloids, especially for the *Shangi* variety, which is the most common in the markets but had relatively high levels of these toxins. There is also a need to educate marketers on the need for proper storage and handling of potatoes during marketing to avoid risk of accumulation of glycoalkaloids.

Keywords
Glycoalkaloids, Commercial potato varieties, Nairobi
Corresponding authors: Duke Gekonge Omayio (dukegekonge@yahoo.com), George Ooko Abong' (georkoyo@yahoo.com), Michael Wandayi Okoth (mwokoth@uonbi.ac.ke)

Author roles: Musita CN: Investigation, Writing – Original Draft Preparation, Writing – Review & Editing; Omayio DG: Data Curation, Investigation, Writing – Review & Editing; Abong' GO: Conceptualization, Funding Acquisition, Supervision, Writing – Review & Editing; Okoth MW: Conceptualization, Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The authors would like to acknowledge the University of Nairobi Dean's committee for partial funding of this research as well as the International Potato Centre (CIP-Nairobi) for facilitating this project through provision of laboratory reagents used in this study.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2020 Musita CN et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Musita CN, Omayio DG, Abong’ GO and Okoth MW. Glycoalkaloids in commercial potato varieties traded in Nairobi, Kenya [version 1; peer review: awaiting peer review] F1000Research 2020, 9:423 https://doi.org/10.12688/f1000research.23783.1

First published: 22 May 2020, 9:423 https://doi.org/10.12688/f1000research.23783.1
Introduction

Potatoes are an important food crop in sub-Saharan Africa (SSA). The estimated annual production of potatoes in SSA in 2016 was 11.6 million tonnes (FAOSTAT, 2018). Potatoes are ranked among the four most important and largely consumed food crops globally, the others being rice, wheat and maize (King & Slavin, 2013). Potatoes provide the consumers with nutrients such as carbohydrates, vitamins and minerals (Furrer et al., 2016) and improve the nutrient density of diets when incorporated into other foods (Gibson & Kurilich, 2013).

Glycoalkaloids, which naturally occur in potato tubers, compromise their safety at higher levels and can render the tubers or the derivative products unsuitable for consumption, with levels beyond 200 mg kg\(^{-1}\) fresh weight being considered unsafe for human consumption (Smith et al., 1996a). The most common glycoalkaloids in potatoes are α-solanine and α-chaconine. α-chaconine occurs in a somewhat higher proportion and is the most potent of the two, being twice as toxic as α-solanine (Friedman, 2006).

Glycoalkaloid levels in potatoes traded in the market may be influenced by transportation and storage conditions (Chuda et al., 2004). Potatoes that are sprouting or subjected to light exposure, inappropriate storage, extreme temperature, wounding, and mechanical injury accumulate glycoalkaloids at a faster rate (Cantwell, 1996). In addition, the level of accumulation of glycoalkaloids in potatoes subjected to these stress factors varies among tuber varieties (Furrer et al., 2016).

Ware potatoes are made available to consumers through different marketing systems and handling of these potatoes may influence the formation and accumulation of glycoalkaloids. In Kenya, the potato forms a major part of the diet of many consumers. It is incorporated into local Kenyan dishes or may be eaten boiled, baked or fried. Furthermore, processed potato products such as crisps and French fries (locally known as chips) are in high demand among urban consumers and hence are a great part of menus in restaurants and hotels in major urban centers (Abong’ et al., 2009). Of interest to food safety, however, is that in Kenyan markets, it is not uncommon to find potatoes exposed to stress factors thus exposing consumers to the dangers of glycoalkaloids. However, the exposure of Kenyan consumers to these toxins as a result of consuming potatoes and potato products is not supported by adequate data. Furthermore, not much has been done to quantify the levels of glycoalkaloids in tubers traded in Kenyan markets, meaning that the level of risk to consumers has not been adequately documented. The current study, therefore, sought to establish the glycoalkaloid levels of potatoes traded in various markets and supermarkets in Nairobi, Kenya.

Methods

Study area

The study was carried out in Nairobi County, Kenya in February and March 2018. The county hosts the capital city of Kenya and has nine sub-counties: Makadara, Embakasi, Starehe, Langata, Kasarani, Westlands, Kamukunji, Dagoretti and Njiru. The county’s population is estimated to be over 3 million (KNBS, 2009). Most of the people are low income earners hence live in slums. The county has many markets dealing in food stuffs with most of these food markets being open air markets. Five sub-counties were purposively selected for this study: Dagoretti, Westlands, Embakasi, Kamukunji and Starehe. These were purposively selected because most of Nairobi’s population is concentrated in these areas. From these five sub-counties, five major markets were purposively selected from which samples (from both open-air markets and supermarkets) were obtained. The five markets were Kawangware (Dagoretti), Kangemi (Westlands), Wakulima (Starehe), Kona (Embakasi) and Gikomba (Kamukunji).

Sampling

Sample size determination. A total of 48 potato samples were used for the study; this figure was obtained using the formula of Fisher et al. (1991). From the 48 samples, 31 samples were collected from supermarkets and 17 samples were obtained from open-air markets.

Sample collection. Three potato varieties were used in the study: Shangi, Dutch Robijn and Royal. These were purchased from open air markets (Shangi only) and supermarkets (all three varieties). Only Shangi variety was obtained from the open-air markets since it was the most common and easily available variety in the markets during the sampling period.

Sample analysis

Determination of moisture content. Moisture content of different potato varieties was determined in triplicate on fresh weight basis as per AOAC (2005) method number 930.15. The oven used was memmert 40500-IP20 (Schutzart, Germany).

Determination of glycoalkaloids. The levels of glycoalkaloids were determined by high pressure liquid chromatographic (HPLC) methods using Waters HPLC (Waters 2695- Waters Corporation, USA) and detection set at a wavelength of 202 nm using photodiode array detector (Waters 2996, USA).

Sample preparation

Potato samples obtained from each market were mixed thoroughly into one batch, from which a single sample was picked randomly for analysis. Randomness was ensured by picking tubers from the top section, middle section and bottom section of the mixed batch. This was done for all the samples from all the five markets thus resulting into five open-air market Shangi samples for analysis (representing the five study sub-counties). The same procedure was followed for the supermarket samples, resulting in five Shangi supermarket samples, two Dutch Robijn samples and two Royal samples for analysis.

Tubers were washed under running water, dried using cloth towel, peeled and chopped into 5mm pieces. Next, 20 g of each set were oven dried to a constant weight at 105°C. The dry samples were ground and packaged in sealed plastic bottles and stored for chemical analysis.
Extraction of glycoalkaloids. A 2-g sample was mixed with 20 ml extraction solution comprising of water, acetic acid and sodium hydrogen bisulfite at 100 ml/5 ml/0.5 g, respectively and shaken for 15 minutes by Burrell vertical shaker (Burrell Corp, Pittsburgh, UK). Clarification of the mixture was then done by centrifugation for 30 minutes at 800g using Labofuge A (Heraeus, Germany).

Cleaning of extract. Acetonitrile (5 ml) followed by 5 ml extraction solution were used in conditioning solid phase extraction (SPE) columns (Strata Phenomenex). Into these columns, 10 ml of the supernatants were passed through the SPE columns at a controlled pressure after which SPE 4 ml wash solution (15% acetonitrile) was used to wash the glycoalkaloids. This was followed by elution with 4 ml LC mobile phase (60% acetonitrile in 0.01 M phosphate buffer) at a rate of 1–2 drops/s. The final volume collected was adjusted to 5 ml with LC mobile phase filtered through a 0.45-µm filter into vials and frozen ready for injection.

Chromatographic analysis
The HPLC instrument (Waters-2595, USA) was fitted with stainless steel LC column—250 x4.6 mm, packed with Hypersil ODS (Shandon Southern Products Ltd., Astmoor, UK), 5-µm particle size, C18 phase. The operating conditions included a flow rate of 1.5 ml/min, injection volume of 50 µl, run time of 15 minutes, column temperature of 40°C and wavelength detection set at 202 nm. Glycoalkaloids were calculated based on external calibration curves generated from standards stock solutions and expressed as mg GAS/kg on dry weight basis.

Statistical analysis
The data were analyzed using GenStat version 15 software. Descriptive statistics in terms of mean and standard deviation were generated for moisture content and glycoalkaloids levels. Test for significant differences in the means was performed using one-way ANOVA at p<0.05. Means that were statistically different were separated using Fisher’s LSD test (p≤0.05).

Results and discussion

Moisture content of potato varieties
The moisture content between the samples varied significantly (p≤0.05) (Table 1). However, there were no significant differences (p>0.05) in the moisture content for the sampled potato varieties obtained from supermarkets and open-air markets. The

Royal variety had the highest moisture content (77.08%), while Shangi had 76.56% and Dutch Robijn had the least with 76.42%. These findings are lower than those reported by other researchers (Elbatawi et al., 2008; Zhang et al., 2018). However, these values are in agreement with other studies where similar findings have been reported (Hafezi et al., 2015; Sablani & Mujumdar, 2006; Xiao et al., 2011). These variations may be attributed to transpiration due to exposure of potatoes to sunlight and higher temperatures during marketing as well as the high relative humidity and long period on shelves before marketing (Chourasia et al., 2005). Moisture content of all potatoes analyzed, alongside glycoalkaloid content, is available as Underlying data (Musita et al., 2020).

Glycoalkaloid levels in traded potato varieties
The total glycoalkaloid levels varied significantly (p<0.05) among the samples (Table 2 and Table 3). The Royal potato variety had the lowest glycoalkaloids levels (104.8 mg kg⁻¹), then the Dutch Robijn (136.1 mg kg⁻¹); the Shangi (483.6 mg kg⁻¹) variety had the highest levels of glycoalkaloids on dry weight basis. The values for Dutch Robijn and Shangi varieties were,
Table 2. Glycoalkaloid levels (mg kg⁻¹ dw) in potato varieties traded in Nairobi.

Sample	α-solanine (a) (mg kg⁻¹)	α-chaconine (b) (mg kg⁻¹)	Total (a+b) (mg kg⁻¹)	Ratio (b/a)
D1	59.5±4.03a	69.8±2.12bcde	129.3±6.15abc	1:1.2
D2	76.45±0.94a	54.5±2.86ab	103.3±1.92a	1:0.7
D3	61.9±2.31i	93.1±5.18bcde	154.9±2.87abc	1:1.5
D4	72.9±4.76abc	83.7±7.52abcde	156.6±12.28abc	1:1.1
R1	51.3±1.48a	50.6±1.63abc	102±0.14a	1:1.0
R2	44.1±0.6a	50.3±0.93ab	94.4±0.33a	1:1.1
R3	55.9±2.84a	56.2±7.06abc	112±9.9ab	1:1.0
R4	47.7±2.73a	49.7±0.83a	97.4±3.56a	1:1.0
R5	57.3±1.36a	60.6±1.68abc	117.9±0.32a	1:1.1
CN1	255.1±13.06jk	255.9±78.42km	480.9±91.48jk	1:1.0
CN2	299.4±1.39pq	389.6±15.61st	689±16.99pq	1:1.3
CN3	177.6±4.33gfh	187.4±3.56gfh	365±7.89gfh	1:1.1
GK1	134.2±1.63cd	233±17.54hij	367.1±15.91hij	1:1.7
GK2	325.7±20.58bce	409.8±2.25f	735.5±22.83f	1:1.3
GK3	206.8±29.77km	244.6±10.25ghijk	453.2±19.52hl	1:1.2
KN1	109.8±9.81cd	122.6±1.56abcd	232.4±11.37bcd	1:1.1
KN2	178.1±2.67ghi	405.5±38.42hi	583.6±41.09g	1:2.3
KN3	128.2±11.98cd	166.2±10.11ghi	294±1.87kg	1:1.3
KW1	53.8±3.94cd	140.8±8.63abcd	194.6±12.59abcd	1:2.6
KW2	215.8±16.77hi	522.1±61.15i	737.9±77.92i	1:2.4
KW3	257.1±6.71hij	338.2±19.29im	595.3±26.33	1:1.3
WK1	383.4±11.38a	366.7±19.37p	750±30.76p	1:1.0
WK2	108.2±26.35bce	196.2±147.67ghjk	304.4±174.02efghjk	1:1.8
WK3	143.8±7.43def	223.4±121.55ghijk	367.1±128.98ghijk	1:1.6
WK4	192±8.49hi	180.7±1.91ghi	372.6±10.39ghi	1:0.9
WK5	206.4±5.77hi	194.4±7fhijk	400.8±12.77ghi	1:0.9
SD1	291.5±16.78mph	260.4±38.11bmn	551.9±21.33hi	1:0.9
SD2	285.2±6.42mnop	301±15.04mpq	586.3±21.48km	1:1.1
SD3	281.5±2.64mn	269.5±33.45kmen	551.1±30.82kl	1:1.0
SD4	279.2±14.98mnen	301.2±20.52mnop	580.4±35.55kmnen	1:1.1
SE1	125.8±14.35cde	144.8±6.87hcdde	270.6±21.23cde	1:1.2
SE2	350.9±25.39rs	378.7±13.64mnt	729.5±39.03np	1:1.1
SE3	157.1±20.33hi	152.8±0.25kcd	309.9±20.05skd	1:0.0
SE4	339.6±25.1nr	299.6±8.06mnop	639.8±17.04lnn	1:0.9
SK1	271.8±66.31lnm	272.7±84.43km	544.5±150.73kl	1:1.0
SK2	239.6±41.41kji	282.5±116.12lnm	522.1±157.53kji	1:1.2
SK3	305.4±27.65oupon	329.8±51.12nop	635.1±78.77mnop	1:1.1
SK4	230.8±19.73jk	310.1±100.88np	540.9±120.61jk	1:1.3
SS1	239.1±26.52jk	379.4±78.51nij	618.5±105.3mnop	1:1.6
SS2	181.6±0.21mqq	311±15.21mqq	492.1±75.39k	1:1.7
SS3	296.8±39.38npq	294.9±7.71lopq	591.8±31.59em	1:1.0
SS4	256.7±0.25kmn	358.4±65.63gprn	615.1±61.65kmn	1:1.4
however, higher than those reported in a similar study, where the values ranged from 55.6 to 122.3 mg kg\(^{-1}\) (Bejarano et al., 2000). The values in the current study may be indicative of poor postharvest handling of potatoes during marketing as well as the varietal influence on glycoalkaloid levels. Since the *Shangi* variety had higher levels of glycoalkaloids than the other varieties, it is possible that many Kenyan consumers are exposed to these toxins, given this variety is the most common on the market.

The levels of glycoalkaloids in potato tubers from the *Shangi* varieties procured from supermarkets and open air markets did not have significant differences (p>0.05) with the former having the highest levels of glycoalkaloids at 497.2 mg kg\(^{-1}\) compared to levels in *Shangi* samples obtained from open air markets which averaged 466.1 mg kg\(^{-1}\) (Table 3). The high levels of glycoalkaloids in the supermarket samples may be an indication of long periods of exposure to fluorescent light and longer periods before sales from the supermarket shelves. During these periods, the tubers accumulate chlorophyll and subsequently have increased levels of glycoalkaloids. Light plays a significant role in chlorophyll formation, resulting in “greening” on the surface of the potato. This “greening” has been associated with a rise in the concentration of glycoalkaloids, especially \(\alpha\)-solanine (Pavlista, 2001). There is need for the local supermarkets and other retail shops to make use of greening scales that have been developed for discarding greened potatoes from retail displays so as to

Table 3. Average glycoalkaloid levels (mg kg\(^{-1}\) dw) in potato varieties traded in Nairobi.

Sample	\(\alpha\)-solanine (a) (mg kg\(^{-1}\))	\(\alpha\)-chaconine (b) (mg kg\(^{-1}\))	Total (a+b) (mg kg\(^{-1}\))	Ratio (b/a)
SS5	137.8±22.78 \(^{a\text{def}}\)	296.1±29.92 \(^{a\text{def}}\)	433.9±7.13 \(^{a\text{e}}\)	1:1.2
SS6	183.9±2.71 \(^{a\text{egf}}\)	205.9±9.18 \(^{a\text{ghf}}\)	389.8±6.47 \(^{a\text{ghi}}\)	1:1.1
SW1	194.2±13.22 \(^{a\text{ghf}}\)	158.8±62.3 \(^{a\text{ghi}}\)	278.8±57.76 \(^{a\text{ghf}}\)	1:1.3
SW2	194.2±13.22 \(^{a\text{ghi}}\)	197.5±25.88 \(^{a\text{ghi}}\)	391.8±39.11 \(^{a\text{ghi}}\)	1:1.0
SW3	119.9±4.54 \(^{a\text{ghi}}\)	153.7±54.99 \(^{a\text{ghi}}\)	276.3±50.45 \(^{a\text{ghi}}\)	1:1.3
SW4	194.2±13.22 \(^{a\text{ghi}}\)	197.5±25.88 \(^{a\text{ghi}}\)	391.8±39.11 \(^{a\text{ghi}}\)	1:1.0

Values are given as mean of duplicate samples ± SD (standard deviation), n = 48. Means with different superscript letters in the same column are significantly different (Tukey’s test, p ≤ 0.05). D, Dutch Robijn; R, Royal; CN, Shangi from Kona market; GK, Shangi from Gikomba market; KN, Shangi from Kangemi market; KW, Shangi from Kawangware market; WK, Shangi from Wakulima.
ensure that the potatoes sold in wholesale and retail shops are safe for consumption (Grunenfelder et al., 2006a; Grunenfelder et al., 2006b). These retail outlets could also substitute the fluorescent lighting in the display shelves with mercury lighting since studies have shown the rate of glycoalkaloids accumulation can be reduced by using mercury lighting instead of fluorescent lighting during display (Percival, 1999). This is attributed to the fact that mercury illumination contains few spectral lines (ultraviolet and infrared), which are less likely to enhance synthesis of glycoalkaloids and chlorophyll, unlike fluorescent light which contains ultraviolet spectra (Nema et al., 2008).

The concentrations of α-solanine and α-chaconine for the samples varied significantly (p<0.05) and ranged from 47.7 to 206.6 mg kg⁻¹ and 50.5 mg kg⁻¹ to 283.1 mg kg⁻¹, respectively (Table 2). The ratio of α-solanine to α-chaconine ranged from 1.0:7 to 1.2:6. Glycoalkaloid intoxication is relative to this ratio and the ratio should, therefore, be as low as possible since these toxins occur simultaneously in potato tubers (Friedman, 2006). The ratios reported in this study are in agreement with other studies, which have reported variations from 1:0.5 to 1:7 (Kozukue et al., 2008; Lisińska et al., 2009; Tajner-Czopek et al., 2008; Valcarcel et al., 2014).

None of the sampled potato tubers exceeded the recommended safety levels of 1000 mg kg⁻¹ dry weight, assuming a water content of 80% (Valcarcel et al., 2014) which is equivalent to 200 mg kg⁻¹ on fresh weight basis (Smith et al., 1996b). Therefore, consumption of these varieties would result in insignificant glycoalkaloids intoxication to consumers. However, it is important to note that these toxicants have been found to bioaccumulate in the body, especially if daily consumption of foods containing the glycoalkaloids occurs (Omayio et al., 2016).

Disparities in the levels of glycoalkaloids reported could also be a result of varietal effect. Studies have shown that some potato varieties tend to accumulate higher levels of glycoalkaloids compared to others. These findings are, therefore, in agreement with other studies (Aziz et al., 2012; Bejarano et al., 2000; Friedman et al., 2003; Valcarcel et al., 2014). The Shangi variety has also been shown to sprout easily when exposed to stressful conditions which is an indication of elevated levels glycoalkaloids (Abong’ et al., 2015).

The rate of glycoalkaloids accumulation is also dependent on the storage conditions. Light and temperature have been shown to be stress factors that lead to accumulation of the toxins (Griffiths et al., 1998; Grunenfelder et al., 2006a). The rate of glycoalkaloid accumulation is about 20% higher when potatoes are exposed to light and direct sunlight as compared to storage in dark conditions. Synthesis and accumulation of glycoalkaloids when potatoes are stored at 24°C has also been shown to be about twice the rate at 7°C (Cantwell, 1996; Griffiths et al., 1998; Şengül et al., 2004). It has been reported that generally, there is poor handling of potatoes by traders in Kenya, which continues to increase the risk of consumer exposure to glycoalkaloids (Musita et al., 2019). Differences in storage conditions for the potatoes from both open-air markets and supermarkets could have contributed to the levels of glycoalkaloids reported.

Conclusions and recommendations

The glycoalkaloids levels of the marketed potatoes did not exceed the recommended safety levels. Therefore, minimal intoxication would occur to consumers. However, it would be of interest for future studies to be conducted to assess the effect of long-term exposure to low levels of these toxins, a common occurrence among Kenyan consumers. The supermarkets samples had higher levels of glycoalkaloids and there is a need for the traders to be sensitized on appropriate handling of potatoes during marketing.

It is also essential that consumers and potato handlers select potato cultivars with minimal glycoalkaloid occurrence to ensure that there is minimum glycoalkaloid intoxication. Additionally, consumers are advised to peel potatoes before cooking to reduce the amount of glycoalkaloids since most of the toxins are concentrated in the peel.

Moreover, postharvest practices that will reduce occurrence of glycoalkaloids are paramount. Relevant authorities should, therefore, be involved in raising awareness and implementation of post-harvest handling policies among potato vendors. These include storage of potatoes at lower temperatures, of about 5°C–10°C, keeping potatoes away from direct sunlight and marketing in opaque plastic films and bags that minimize effect of light on tubers. Furthermore, supermarket vendors need to be sensitized to ensure regular rotations of potatoes in retail shops exhibits and replace fluorescent lighting with mercury lighting for potatoes on display.

Data availability

Figshare: Sample and data_glycoalkaloids in potatoes_ConsolataMusita.xls. https://doi.org/10.6084/m9.figshare.12301424.v1 (Musita et al., 2020).

This file contains the moisture and glycoalkaloid content of each sample analysed in this study.

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgements

The Food and Nutrition Evaluation Laboratory (FANEL) team at BecA-ILRI Hub is highly acknowledged for providing a platform for HPLC analysis.
References

Abong GO, Okoth MW, Kabira JN, et al.: Physico-Chemical Changes in Popular Kenyan Processing Potato Varieties as influenced by Storage Condition. Curr Res Nutr Food Sci 2015; 3(2): 112–120. Publisher Full Text

Abong GO, Okoth MW, Karuri EG, et al.: Nutrient contents of raw and processed products from Kenyan potato cultivars. J Appl Biol 2009; 16: 877–886. Reference Source

AOAC: Official Methods of Analysis of AOAC International (Arlington,). AOAC International. 2005. Reference Source

Aziz A, Randhawa MA, Butt MS, et al.: Glycoalkaloids (α-chaconine and α-solanine) contents of selected Pakistani potato cultivars and their dietary intake assessment. J Food Sci Technol 2012; 47(3): 58–61. Publisher Abstract | Publisher Full Text

Bejarano L, Mignolet E, Devaux A, et al.: Glycoalkaloids in potato tubers: the effect of variety and drought stress on the α-solanine and α-chaconine contents of potatoes. J Sci Food Agr 2000; 80(14): 2096–2100. Publisher Full Text

Cantwell M: A Review of Important Facts about Potato Glycoalkaloids. Perishables Handling Newsletter. 1996; 87(87): 2–27. Reference Source

Chourasia MK, Maj P, Baskey A, et al.: Estimation of moisture loss from the cooling data of potatoes. J Food Process Eng 2005; 28(4): 397–416. Publisher Full Text

Chuda Y, Tsuda S, Ohara-takada A, et al.: Quantification of Light-Induced Glycoalkaloids, α-Solamine and α-Chaconine, in Four Potato Cultivars (Solanum tuberosum L.) Distributed in Japan by LC/MS. Food Sci Technol Res. 2004; 10(3): 341–345. Publisher Full Text

Elbatwi IE, Ebad MT, Hermeda BE: Determination of potato water content using nir diffuse reflection method. Mar J Agr Eng 2008; 28(4): 1279–1292. Reference Source

FAOSTAT: FAOSTAT. FAOSTAT. 2018. Reference Source

Fisher AA, Laing JE, Stoeckel JE, et al.: Handbook for family planning operations research (2nd Ed.), Population Council. New York, USA. 1991; 1–77. Publisher Full Text

Friedman M: Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agric Food Chem. 2006; 54(23): 8655–8681. Publisher Abstract | Publisher Full Text

Friedman M, Reitman JN, Kozukue N: Glycoalkaloid and calystegine contents of eight potato cultivars. J Agric Food Chem. 2003; 51(10): 2064–2073. Publisher Abstract | Publisher Full Text

Furrer AN, Chegeni M, Ferruzzi MG: Impact of potato processing on nutrients, phytochemicals, and human health. Crit Rev Food Sci Nutr. 2016; 56(1): 146–169. Publisher Abstract | Publisher Full Text

Gibson S, Kurlich AC: The nutritional value of potatoes and potato products in the UK diet. Nutr Bus. 2013; 38(4): 389–399. Publisher Full Text

Griffiths DW, Bain H, Dale MF: Effect of Storage Temperature on Potato (Solanum tuberosum L) Tuber Glycoalkaloid Content and the Subsequent Accumulation of Glycoalkaloids and Chlorophyll in Response to Light Exposure. J Agric Food Chem. 1998; 46(12): 5262–5268. Publisher Full Text

Guntherfelder LA, Knowles LO, Hiller LK, et al.: Glycoalkaloid development during greening of fresh market potatoes (Solanum tuberosum L.). J Agric Food Chem. 2006a; 54(16): 5847–5854. Publisher Abstract | Publisher Full Text

Guntherfelder L, Hiller LK, Knowles NR: Color indices for the assessment of chlorophyll development and greening of fresh market potatoes. Postharvest Biol Tec. 2006b; 40(1): 73–81. Publisher Full Text

Hafezi N, Sheikhdavoodi MJ, Sajadieh SM: Evaluation of Quality Characteristics of Potato Slices during Drying by Infrared Radiation Heating Method under Vacuum. 2015; 4(3): 1–8. Publisher Full Text

Kenya National Bureau of Statistics: Population Distribution by Sex, Number of Households, Area and Density by County and District. 2009. Reference Source

King JC, Slavin JL: White potatoes, human health, and dietary guidance. Adv Nutr 2013; 4(3): 393S–401S. PubMed Abstract | Publisher Full Text | Free Full Text

Kozukue N, Yoon KS, Byun GI, et al.: Distribution of glycoalkaloids in potato tubers of 59 accessions of two wild and five cultivated Solanum species. J Agric Food Chem. 2008; 56(24): 11920–11928. PubMed Abstract | Publisher Full Text

Lisitsa G, Pokuša A, Kita A, et al.: The Quality of Potato for Processing and Consumption, 2009. Reference Source

Mustía CN, Okoth MW, Abong GO: Postharvest handling practices and perception of potato safety among potato traders in Nairobi, Kenya. Int J Food Sci 2019; 2019: 2346219. PubMed Abstract | Publisher Full Text | Free Full Text

Nema PK, Ramaya N, Duncan E, et al.: Potato glycoalkaloids: formation and strategies for mitigation. J Sci Food Agric. 2008; 88(11): 1869–1881. Publisher Full Text

Omayio DG, Abong GO, Okoth MW: A review of occurrence of glycoalkaloids in potato and potato products. Curr Res Nutr Food Sci. 2016; 4(3): 195–202. PubMed Abstract | Publisher Full Text | Free Full Text

Pavlista AD: Green potatoes: The problem and the solution. Agriculture. 2001; 1–4. Reference Source

Percival GC: The influence of light upon glycoalkaloid and chlorophyll accumulation in potato tubers (Solanum tuberosum L.). Plant Sci. 1999; 145(2): 99–107. Publisher Full Text

Sahani S, Mujumdar A: Drying of potato, sweet potato, and other roots. In: A. S. Mujumdar (Ed.), Handbook of Industrial Drying, Third Edition (Issue September 2015). CRC Press. 2006; 647–662. Publisher Full Text

Şengül, M, Keleş F, Keleş MS: The effect of storage conditions (temperature, light, time) and variety on the glycoalkaloid content of potato tubers and sprouts. Food Control. 2004; 15(4): 281–286. Publisher Full Text

Smith OD, Roddick JG, Jones JL: Potato glycoalkaloids: Some unanswered questions. Trends Food Sci Tech. 1996a; 7(4): 126–131. Publisher Full Text

Smith OD, Roddick JG, Jones JL: Potato glycoalkaloids: Some unanswered questions. Trends Food Sci Tech. 1996b; 7(4): 126–131. Publisher Full Text

Tajer-Czepak A, Jarzych-Szyzewska M, Lisitsa G: Changes in glycoalkaloids content of potatoes destined for consumption. Food Chem. 2008; 106(2): 706–711. Publisher Full Text

Valcarcel J, Reilly K, Gaffney M, et al.: Effect of Genotype and Environment on the Glycoalkaloid Content of Rare, Heritage, and Commercial Potato Varieties. J Food Sci. 2014; 79(5): T1039–48. PubMed Abstract | Publisher Full Text

Xiao J, Zhang H, Niu L, et al.: Evaluation of detoxification methods on toxic and antinutritional composition and nutritional quality of proteins in jatropha curcas meal. J Agric Food Chem. 2011; 59(8): 4040–4044. PubMed Abstract | Publisher Full Text

Zhang Z, Guo C, Gao T, et al.: Pilot-scale radiofrequency blanching of potato cuboids: heating uniformity. J Sci Food Agric. 2018; 98(1): 312–320. PubMed Abstract | Publisher Full Text
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com