Case-Deletion Diagnostics for Quantile Regression Using the Asymmetric Laplace Distribution

Luis E. Benites\(^a\) Victor H. Lachos\(^b\)*
Filidor E. Vilca\(^b\)

\(^{(a)}\) Departamento de Estatística, Universidade de São Paulo, Brazil
\(^{(b)}\) Departamento de Estatística, Universidade Estadual de Campinas, Brazil

Abstract

To make inferences about the shape of a population distribution, the widely popular mean regression model, for example, is inadequate if the distribution is not approximately Gaussian (or symmetric). Compared to conventional mean regression (MR), quantile regression (QR) can characterize the entire conditional distribution of the outcome variable, and is more robust to outliers and misspecification of the error distribution. We present a likelihood-based approach to the estimation of the regression quantiles based on the asymmetric Laplace distribution (ALD), which has a hierarchical representation that facilitates the implementation of the EM algorithm for the maximum-likelihood estimation. We develop a case-deletion diagnostic analysis for QR models based on the conditional expectation of the complete-data log-likelihood function related to the EM algorithm. The techniques are illustrated with both simulated and real data sets, showing that our approach out-performed other common classic estimators. The proposed algorithm and methods are implemented in the R package \texttt{ALDqr()}.

Keywords: Quantile regression model; EM algorithm; Case-deletion model; Asymmetric Laplace distribution.

1 Introduction

QR models have become increasingly popular since the seminal work of Koenker & G Bassett (1978). In contrast to the mean regression model, QR belongs to a robust model family, which can give an overall assessment of the covariate effects at different quantiles of the outcome (Koenker, 2005). In particular, we can model the lower or higher quantiles of the outcome to provide a natural assessment of covariate effects specific for those regression quantiles. Unlike conventional models, which only address the conditional mean or the central effects of the covariates, QR models quantify the entire conditional distribution of the outcome variable. In addition, QR does not impose any distributional assumption on the error, except requiring the error to have a zero conditional quantile. The foundations of the methods for independent data are now consolidated, and

\(^*\)Corresponding author. Address for correspondence: Departamento de Estatística, Rua Sérgio Buarque de Holanda, 651, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil. CEP 13083-859. E-mail: hlachos@ime.unicamp.br
some statistical methods for estimating and drawing inferences about conditional quantiles are provided by most of the available statistical programs (e.g., R, SAS, Matlab and Stata). For instance, just to name a few, in the well-known R package `quantreg()` is implemented a variant of the Barrodale & Roberts (1977) simplex (BR) for linear programming problems described in Koenker & d’Orey (1987), where the standard errors are computed by the rank inversion method (Koenker, 2005). Another method implemented in this popular package is Lasso Penalized Quantile Regression (LPQR), introduced by Tibshirani (1996), where a penalty parameter is specified to determine how much shrinkage occurs in the estimation process. QR can be implemented in a range of different ways. Koenker (2005) provided an overview of some commonly used quantile regression techniques from a "classical" framework.

Kottas & Gelfand (2001) considered median regression from a Bayesian point of view, which is a special case of quantile regression, and discussed non-parametric modeling for the error distribution based on either Pólya tree or Dirichlet process priors. Regarding general quantile regression, Yu & Moyeed (2001) proposed a Bayesian modeling approach by using the ALD, Kottas & Krnjajić (2009) developed Bayesian semi-parametric models for quantile regression using Dirichlet process mixtures for the error distribution. Geraci & Bottai (2007) studied quantile regression for longitudinal data using the ALD. Recently, Kozumi & Kobayashi (2011) developed a simple and efficient Gibbs sampling algorithm for fitting the quantile regression model based on a location-scale mixture representation of the ALD.

An interesting aspect to be considered in statistical modeling is the diagnostic analysis. This can be carried out by conducting an influence analysis for detecting influential observations. One of the most techniques to detect influential observations is the case-deletion approach. The famous approach of Cook (1977) has been applied extensively to assess the influence of an observation in fitting a statistical model; see Cook & Weisberg (1982) and the references therein. It is difficult to apply this approach directly to the QR model because the underlying observed-data likelihood function is not differentiable at zero. Zhu et al. (2001) presents an approach to perform diagnostic analysis for general statistical models that is based on the Q-displacement function. This approach has been applied successfully to perform influence analysis in several regression models, for example, Xie et al. (2007) considered in multivariate t distribution, Matos et al. (2013) obtained case-deletion measures for mixed-effects models following the Zhu et al. (2001)’s approach and in Zeller et al. (2010) we can see some results about local influence for mixed-effects models obtained by using the Q-displacement function.

Taking advantage of the likelihood structure imposed by the ALD, the hierarchical representation of the ALD, we develop here an EM-type algorithm for obtaining the ML estimates at the pth level, and by simulation studies our EM algorithm outperformed the competing BR and LPQR algorithms, where the standard error is obtained as a by-product. Moreover, we obtain case-deletion measures for the QR model. Since QR methods complement and improve established means regression models, we feel that the assessment of robustness aspects of the parameter estimates in QR is also an important concern at a given quantile level \(p \in (0, 1) \).

The rest of the paper is organized as follows. Section 2 introduces the connection between QR and ALD as well as outlining the main results related to ALD. Section 3 presents an EM-type algorithm to proceed with ML estimation for the parameters at the pth level. Moreover, the observed information matrix is derived. Section 4 provides a brief sketch of the case-deletion method for the model with incomplete data, and also develop a methodology pertinent to the ALD. Sections 5 and 6 are dedicated to the analysis of real and simulated data sets, respectively. Section 6 concludes with a short discussion of issues raised by our study and some possible directions for the future research.
2 The quantile regression model

Even though considerable amount of work has been done on regression models and their extensions, regression models by using asymmetric Laplace distribution have received little attention in the literature. Only recently, the a study on quantile regression model based on asymmetric Laplace distribution was presented by Tian et al. (2014) who derived several interesting and attractive properties and presented an EM algorithm. Before presenting our derivation, let us recall firstly the definition of the asymmetric Laplace distribution and after this, we will present the quantile regression model.

2.1 Asymmetric Laplace distribution

As discussed in Yu & Moyeed (2001), we say that a random variable Y is distributed as an ALD with location parameter μ, scale parameter $\sigma > 0$ and skewness parameter $p \in (0, 1)$, if its probability density function (pdf) is given by

$$f(y|\mu, \sigma, p) = \frac{p(1-p)}{\sigma} \exp\left\{ -\rho_p\left(\frac{y-\mu}{\sigma}\right) \right\},$$

(1)

where $\rho_p(.)$ is the so called check (or loss) function defined by $\rho_p(u) = u(p - I\{u < 0\})$, with $I\{\cdot\}$ denoting the usual indicator function. This distribution is denoted by $ALD(\mu, \sigma, p)$. It is easy to see that $W = \rho_p\left(\frac{Y-\mu}{\sigma}\right)$ follows an exponential distribution $exp(1)$.

A stochastic representation is useful to obtain some properties of the distribution, as for example, the moments, moment generating function (mgf), and estimation algorithm. For the ALD, Kotz et al. (2001), Kuzobowski & Podgorski (2000) and Zhou et al. (2013) presented the following stochastic representation: Let $U \sim exp(\sigma)$ and $Z \sim N(0, 1)$ be two independent random variables. Then, $Y \sim ALD(\mu, \sigma, p)$ can be represented as

$$Y \overset{d}{=} \mu + \vartheta p U + \tau p \sqrt{\sigma} U Z,$$

(2)

where $\vartheta p = \frac{1-2p}{p(1-p)}$ and $\tau^2 p = \frac{2}{p(1-p)}$, and $\overset{d}{=}$ denotes equality in distribution. Figure 1 shows how the skewness of the ALD changes with altering values for p. For example, for $p = 0.1$ almost all the mass of the ALD is situated in the right tail. For $p = 0.5$, both tails of the ALD have equal mass and the distribution then equals the more common double exponential distribution. In contrast to the normal distribution with a quadratic term in the exponent, the ALD is linear in the exponent. This results in a more peaked mode for the ALD together with thicker tails. On the other hand, the normal distribution has heavier shoulders compared to the ALD. From (2), we have the hierarchical representation of the ALD, see Lum & Gelfand (2012), given by

$$Y|U = u \sim N(\mu + \vartheta p u, \tau^2 p \sigma u),$$

(3)

$$U \sim exp(\sigma).$$

(4)

This representation will be useful for the implementation of the EM algorithm. Moreover, since $Y|U = u \sim N(\mu + \vartheta p u, \tau^2 p \sigma u)$, then one can derive easily the pdf of Y. That is, the pdf in (1) can be expressed as

$$f(y|\mu, \sigma, p) = \frac{1}{\sqrt{2\pi}} \frac{1}{\tau \sigma^3} \exp\left(\frac{\delta(y)}{\gamma} \right) A(y),$$

(5)
where $\delta(y) = \frac{|y-\mu|}{\tau_p \sqrt{\sigma}}$, $\gamma = \sqrt{\frac{1}{\sigma} \left(2 + \frac{\tau_p^2}{\sigma^2}\right)} = \frac{\tau_p}{2\sqrt{\sigma}}$ and $A(y) = 2\left(\frac{\delta(y)}{\gamma}\right)^{1/2} K_{1/2}(\delta(y)\gamma)$, with $K_v(.)$ being the modified Bessel function of the third kind. It easy to see that the conditional distribution of U, given $Y = y$, is $U|Y = y \sim GIG(\frac{1}{2}, \delta, \gamma)$. Here, $GIG(\nu, a, b)$ denotes the Generalized Inverse Gaussian (GIG) distribution; see Barndorff-Nielsen & Shephard (2001) for more details.

The pdf of GIG distribution is given by

$$h(u|\nu, a, b) = \frac{(b/a)^{\nu} u^{\nu-1}}{2K_\nu(ab)} \exp\left\{ -\frac{1}{2} \left(\frac{a^2}{u} + \frac{b^2}{u}\right) \right\}, \quad u > 0, \ \nu \in \mathbb{R}, a, b > 0.$$

The moments of U can be expressed as

$$E[U^k] = \left(\frac{a}{b}\right)^k \frac{K_{\nu+k}(ab)}{K_\nu(ab)}, \quad k \in \mathbb{R}.$$

Some properties of the Bessel function of the third kind $K_\lambda(u)$ that will be useful for the developments here are: (i) $K_\nu(u) = K_{-\nu}(u)$; (ii) $K_{\nu+1}(u) = \frac{2u}{\nu} K_\nu(u) + K_{\nu-1}(u)$; (iii) for non-negative integer r, $K_{r+1/2}(u) = \sqrt{\frac{2}{\pi u}} \exp(-u) \sum_{k=0}^{r} \frac{(r+k)!}{(2u)^{-k}}$. A special case is $K_{1/2}(u) = \sqrt{\frac{2}{\pi u}} \exp(-u)$.

2.2 Linear quantile regression

Let y_i be a response variable and x_i a $k \times 1$ vector of covariates for the ith observation, and let $Q_{y_i}(p|x_i)$ be the pth ($0 < p < 1$) quantile regression function of y_i given x_i, $i = 1, \ldots, n$. Suppose that the relationship between $Q_{y_i}(p|x_i)$ and x_i can be modeled as $Q_{y_i}(p|x_i) = x_i^\top \beta_p$, where β_p is a vector ($k \times 1$) of unknown parameters of interest. Then, we consider the quantile regression model given by

$$y_i = x_i^\top \beta_p + \varepsilon_i, \quad i = 1, \ldots, n,$$
where \(\varepsilon_i \) is the error term whose distribution (with density, say, \(f_p(\cdot) \)) is restricted to have the \(p \)th quantile equal to zero, that is, \(\int_0^\infty f_p(\varepsilon_i) d\varepsilon_i = p \). The error density \(f_p(\cdot) \) is often left unspecified in the classical literature. Thus, quantile regression estimation for \(\beta_p \) proceeds by minimizing

\[
\hat{\beta}_p = \arg \min_{\beta_p} \beta_p \sum_{i=1}^n \rho_p(\varepsilon_i - \beta_p^\top x_i),
\]

(7)

where \(\rho_p(\cdot) \) is as in (1) and \(\hat{\beta}_p \) is the quantile regression estimate for \(\beta_p \) at the \(p \)th quantile. The special case \(p = 0.5 \) corresponds to median regression. As the check function is not differentiable at zero, we cannot derive explicit solutions to the minimization problem. Therefore, linear programming methods are commonly applied to obtain quantile regression estimates for \(\beta_p \). A connection between the minimization of the sum in (7) and the maximum-likelihood theory is provided by the ALD; see Geraci & Bottai (2007). It is also true that under the quantile regression model, we have

\[
W_i = \frac{1}{\sigma} \rho_p(y_i - x_i^\top \beta_p) \sim \exp(1).
\]

(8)

The above result is useful to check the model in practice, as will be seen in the Application Section.

Now, suppose \(y_1, \ldots, y_n \) are independent observations such as \(Y_i \sim ALD(x_i^\top \beta_p, \sigma, p) \), \(i = 1, \ldots, n \).
Then, from (5) the log–likelihood function for \(\theta = (\beta_p^\top, \sigma)^\top \) can be expressed as

\[
\ell(\theta) = \sum_{i=1}^n \ell_i(\theta),
\]

(9)

where \(\ell_i(\theta) = -\frac{3}{2} \log \sigma + \frac{\partial_p}{\sigma} (y_i - x_i^\top \beta_p) + \log(A_i) \), with \(c \) is a constant does not depend on \(\theta \)

and \(A_i = 2 (\delta_i^2)^{1/2} K_1(2 \lambda_i) = \sqrt{2\pi} \gamma \exp(-\lambda_i) \), with \(\delta_i = \delta(y_i) = |y_i - x_i^\top \beta_p|/\tau_p \sqrt{\sigma} \) and \(\lambda_i = \delta_i \gamma \).

Note that if we consider \(\sigma \) as a nuisance parameter, then the maximization of the likelihood in (7) with respect to the parameter \(\beta_p \) is equivalent to the minimization of the objective function in (7), and hence the relationship between the check function and ALD can be used to reformulate the QR method in the likelihood framework.

The log–likelihood function is not differentiable at zero. Therefore, standard procedures the estimation can not be developed following the usual way. Specifically, the standard errors for the maximum likelihood estimates is not based on the genuine information matrix. To overcome this problem we consider the empirical information matrix as will be described in the next Subsection.

2.3 Parameter estimation via the EM algorithm

In this section, we discuss an estimation method for QR based on the EM algorithm to obtain ML estimates. Also, we consider the method of moments (MM) estimators, which can be effectively used as starting values in the EM algorithm. Here, we show how to employ the EM algorithm for ML estimation in QR model under the ALD. From the hierarchical representation (3)–(4), the QR model in (6) can be presented as

\[
Y_i|U_i = u_i \sim N(x_i^\top \beta_p + \vartheta_p u_i, \tau_p^2 \sigma u_i),
\]

(10)

\[
U_i \sim \exp(\sigma), \quad i = 1, \ldots, n,
\]

(11)

where \(\vartheta_p \) and \(\tau_p^2 \) are as in (2). This hierarchical representation of the QR model is convenient to describe the steps of the EM algorithm. Let \(y = (y_1, \ldots, y_n) \) and \(u = (u_1, \ldots, u_n) \) be the observed
data and the missing data, respectively. Then, the complete data log-likelihood function of \(\theta = (\beta_p^\top, \sigma)^\top \), given \((y, u)\), ignoring additive constant terms, is given by \(\ell_c(\theta | y, u) = \sum_{i=1}^n \ell_c(\theta | y_i, u_i) \), where

\[
\ell_c(\theta | y_i, u_i) = -\frac{1}{2} \log(2\pi \tau_p^2) - \frac{3}{2} \log(\sigma) - \frac{1}{2} \log(u_i) - \frac{1}{2\sigma \tau_p^2} u_i^{-1} (y_i - x_i^\top \beta_p - \vartheta_p u_i)^2 - \frac{1}{\sigma} u_i,
\]

for \(i = 1, \ldots, n \). In what follows the superscript \((k)\) indicates the estimate of the related parameter at the stage \(k \) of the algorithm. The E-step of the EM algorithm requires evaluation of the so-called Q-function \(Q(\theta | \theta^{(k)}) = E_{\theta^{(k)}}[\ell_c(\theta | y, u) | y, \theta^{(k)}] \), where \(E_{\theta^{(k)}}[.] \) means that the expectation is being effected using \(\theta^{(k)} \) for \(\theta \). Observe that the expression of the Q-function is completely determined by the knowledge of the expectations

\[
\ell_s(\theta^{(k)}) = E[U_i^s | y_i, \theta^{(k)}], \quad s = -1, 1,
\]

that are obtained of properties of the GIG(0.5, \(a, b \)) distribution. Let \(\xi^{(k)}_s = (\ell_s(\theta^{(k)}), \ldots, \ell_s(n, \theta^{(k)}))^\top \) be the vector that contains all quantities defined in \((12)\). Thus, dropping unimportant constants, the Q-function can be written in a synthetic form as

\[
Q(\theta | \theta) = \sum_{i=1}^n Q_i(\theta | \theta),
\]

where

\[
Q_i(\theta | \theta) = -\frac{3}{2} \log \sigma - \frac{1}{2\sigma \tau_p^2} \left[\ell_s(\theta^{(k)}) (y_i - x_i^\top \beta_p)^2 - 2(y_i - x_i^\top \beta_p) \vartheta_p + \frac{1}{4} \ell_s(\theta^{(k)}) \tau_p^4 \right].
\]

This quite useful expression to implement the M-step, which consists of maximizing it over \(\theta \). So the EM algorithm can be summarized as follows:

E-step: Given \(\theta = \theta^{(k)} \), compute \(\ell_s(\theta^{(k)}) \) through of the relation

\[
\ell_s(\theta^{(k)}) = E[U_i^s | y_i, \theta^{(k)}] = \left(\frac{\delta_i^{(k)}}{\gamma^{(k)}} \right)^s \frac{K_{1/2+s}(\lambda_i^{(k)})}{K_{1/2}(\lambda_i^{(k)})}, \quad s = -1, 1,
\]

where \(\delta_i^{(k)} = \frac{|y_i - x_i^\top \beta_p^{(k)}}{\tau_p \sqrt{\sigma^{(k)}}} \), \(\gamma^{(k)} = \frac{\tau_p}{2\sqrt{\sigma^{(k)}}} \) and \(\lambda_i^{(k)} = \delta_i^{(k)} \gamma^{(k)} \).

M-step: Update \(\theta^{(k)} \) by maximizing \(Q(\theta | \theta^{(k)}) \) over \(\theta \), which leads to the following expressions

\[
\beta_p^{(k+1)} = \left(X^\top D(\xi^{(k)}_{-1}) X \right)^{-1} X^\top D(\xi^{(k)}_{-1}) (Y - \vartheta_p 1_n),
\]

\[
\sigma^{(k+1)} = \frac{1}{3n \tau_p^2} \left[Q(\beta^{(k+1)}_{-1}, \xi^{(k)}_{-1}) - 21n^2 (Y - X \beta^{(k+1)}_{-1}) \vartheta_p + \frac{\tau_p^4}{4} 1_n \xi^{(k)}_{-1} \right],
\]

where \(D(a) \) denotes the diagonal matrix, with the diagonal elements given by \(a = (a_1, \ldots, a_p)^\top \) and \(Q(\beta, \xi_{-1}) = (Y - X \beta)^\top D(\xi_{-1}) (Y - X \beta) \). A similar expression for \(\beta_p^{(k+1)} \) is obtained in Tian et al. (2013). This process is iterated until some distance involving two successive evaluations of the actual log-likelihood \(\ell(\theta) \), like \(||\ell(\theta^{(k+1)}) - \ell(\theta^{(k)})|| \) or \(||\ell(\theta^{(k+1)})/\ell(\theta^{(k)}) - 1|| \), is small enough. This algorithm is implemented as part of the R package ALDqr (), which can be downloaded at not cost from the repository CRAN. Furthermore, following the results given in Yu & Zhang (2005), the MM estimators for \(\beta_p \) and \(\sigma \) are solutions of the following equations:

\[
\widetilde{\beta}_{pM} = (X^\top X)^{-1} X^\top (Y - \widetilde{\sigma}_M \vartheta_p 1_n) \quad \text{and} \quad \widetilde{\sigma}_M = \frac{1}{n} \sum_{i=1}^n \rho_p (y_i - x_i^\top \widetilde{\beta}_{pM}),
\]
where $\hat{\theta}_p$ is as (2). Note that the MM estimators do not have explicit closed form and numerical procedures are needed to solve these non-linear equations. They can be used as initial values in the iterative procedure for computing the ML estimates based on the EM-algorithm. Standard errors for the maximum likelihood estimates is based on the empirical information matrix, that according to Meilijson (1989) formula, is defined as

$$L(\theta) = \sum_{j=1}^{n} s(y_j|\theta)s^\top(y_j|\theta) - n^{-1}S(y_j|\theta)S^\top(y_j|\theta),$$ \hspace{1cm} (16)$$

where $S(y_j|\theta) = \sum_{i=1}^{n} s(y_j|\theta)$. It is noted from the result of Louis (1982) that the individual score can be determined as $s(y_j|\theta) = \partial \log f(y_j|\theta)/\partial \theta = E\left(\partial s_c(y_j|\theta,u_j)/\partial \theta|y_j,\theta\right)$. Asymptotic conﬁdence intervals and tests of the parameters at the pth level can be obtained assuming that the ML estimator $\hat{\theta}$ has approximately a normal multivariate distribution.

From the EM algorithm, we can see that $\mathcal{E}_{-i}^{\ell}(\theta^{(k)})$ is inversely proportional to $d_i = |y_i - x_i^\top \hat{\beta}_{p}^{(k)}|/\sigma$. Hence, $u_i(\theta^{(k)}) = \mathcal{E}_{-i}^{\ell}(\theta^{(k)})$ can be interpreted as a type of weight for the ith case in the estimates of $\hat{\beta}_{p}^{(k)}$, which tends to be small for outlying observations. The behavior of these weights can be used as tools for identifying outlying observations as well as for showing that we are considering a robust approach, as will be seen in Sections 4 and 5.

3 Case-deletion measures

Case-deletion is a classical approach to study the effects of dropping the ith case from the data set. Let $y_c = (y,u)$ be the augmented data set, and a quantity with a subscript “[i]” denotes the original one with the ith observation deleted. Thus, the complete-data log-likelihood function based on the data with the ith case deleted will be denoted by $\ell_c(\theta|y_{c[i]})$. Let $\hat{\theta}_{[i]} = (\hat{\beta}_{p[i]},\hat{\sigma}^2_{[i]})^\top$ be the maximizer of the function $Q_{[i]}(\theta|\bar{\theta}) = E_{\bar{\theta}}\left[\ell_c(\theta|y_{c[i]})|y\right]$, where $\bar{\theta} = (\hat{\beta}^\top,\hat{\sigma}^2)^\top$ is the ML estimate of θ. To assess the influence of the ith case on $\bar{\theta}$, we compare the difference between $\hat{\theta}_{[i]}$ and $\bar{\theta}$. If the deletion of a case seriously influences the estimates, more attention needs to be paid to that case. Hence, if $\hat{\theta}_{[i]}$ is far from $\bar{\theta}$ in some sense, then the ith case is regarded as influential. As $\hat{\theta}_{[i]}$ is needed for every case, the required computational effort can be quite heavy, especially when the sample size is large. Hence, To calculate the case-deletion estimate $\hat{\theta}_{[i]}^1$ of θ, (see Zhu et al., 2001) proposed the following one-step approximation based on the Q-function,

$$\hat{\theta}_{[i]}^1 = \bar{\theta} + \left(-Q(\bar{\theta}|\bar{\theta})\right)^{-1}Q_{[i]}(\bar{\theta}|\bar{\theta}),$$ \hspace{1cm} (17)$$

where

$$\hat{Q}(\bar{\theta}|\bar{\theta}) = \frac{\partial^2 Q(\bar{\theta}|\bar{\theta})}{\partial \theta \partial \theta} \bigg|_{\theta = \bar{\theta}}$$

and

$$\hat{Q}_{[i]}(\bar{\theta}|\bar{\theta}) = \frac{\partial Q_{[i]}(\theta|\bar{\theta})}{\partial \theta} \bigg|_{\theta = \bar{\theta}};$$ \hspace{1cm} (18)$$

are the Hessian matrix and the gradient vector evaluated at $\bar{\theta}$, respectively. The Hessian matrix is an essential element in the method developed by Zhu et al. (2001) to obtain the measures for case-deletion diagnosis. For developing the case-deletion measures, we have to obtain the elements in $\hat{Q}_{[i]}(\bar{\theta}|\bar{\theta})$ and $\hat{Q}(\bar{\theta}|\bar{\theta})$. These formulas can be obtained quite easily from (13):
1. The components of \(\hat{Q}_{[i]}(\hat{\theta} \mid \hat{\theta}) \) are

\[
\hat{Q}_{[i]}^\beta(\hat{\theta} \mid \hat{\theta}) = \frac{\partial Q_{[i]}(\theta \mid \theta)}{\partial \beta} \bigg|_{\theta = \hat{\theta}} = \frac{1}{\sigma} E_{1[i]}
\]

and

\[
\hat{Q}_{[i]}^\sigma(\hat{\theta} \mid \hat{\theta}) = \frac{\partial Q_{[i]}(\theta \mid \theta)}{\partial \sigma} \bigg|_{\theta = \hat{\theta}} = -\frac{1}{2\sigma^2} E_{2[i]},
\]

where

\[
E_{1[i]} = \frac{1}{\tau_p} \sum_{j \neq i} \left[\varepsilon_{-1j}(\hat{\theta}^{(k)}) (y_j - x_j^T \hat{\beta}) x_j - x_j \vartheta_p \right]
\]

\[
E_{2[i]} = \sum_{j \neq i} \left[3\hat{\sigma} - \frac{1}{\tau_p^2} \varepsilon_{-1j}(\hat{\theta}^{(k)}) (y_j - x_j^T \hat{\beta})^2 - 2(y_j - x_j^T \hat{\beta}) \vartheta_p + \frac{1}{4} \varepsilon_{1j}(\hat{\theta}^{(k)}) \tau_p^4 \right].
\]

2. The elements of the second order partial derivatives of \(Q(\theta \mid \hat{\theta}) \) evaluated at \(\hat{\theta} \) are

\[
\hat{Q}_\beta(\hat{\theta} \mid \hat{\theta}) = -\frac{1}{\sigma \tau_p^2} X^T D(\bar{\xi}_{-1}) X,
\]

\[
\hat{Q}_\sigma(\hat{\theta} \mid \hat{\theta}) = \frac{3}{4 \sigma^4} - \frac{1}{2 \sigma^3 \tau_p} \left[Q(\beta, \bar{\xi}_{-1}) - 21_n (Y - X\beta) \vartheta_p + \frac{\tau_p^4}{4} 1_n^T \bar{\xi}_{-1} \right]
\]

and \(\hat{Q}_{\beta \sigma}(\hat{\theta} \mid \hat{\theta}) \) = 0.

In the following result, we will obtain the one-step approximation of \(\hat{\theta}_{[i]} = (\hat{\beta}^T_{[i]}, \hat{\sigma}^T_{[i]})^T, \ i = 1, \ldots, n \) based on (17), viz., the relationships between the parameter estimates for the full data set and the data with the \(i \)th case deleted.

Theorem 3.1. For the QR model defined in (10) and (11), the relationships between the parameter estimates for full data set and the data with the \(i \)th case deleted are as follows:

\[
\hat{\beta}^1_{p[i]} = \hat{\beta} + \tau_p^2 (X^T D(\bar{\xi}_{-1}) X)^{-1} E_{1[i]} \quad \text{and} \quad \hat{\sigma}^1_{[i]} = \sigma^2 - \frac{1}{2\sigma^2} \left(\hat{Q}_\sigma(\hat{\theta} \mid \hat{\theta}) \right)^{-1} E_{2[i]},
\]

where \(E_{1[i]} \) and \(E_{2[i]} \) are as in (19) and (20), respectively.

To assess the influence of the \(i \)th case on the ML estimate \(\hat{\theta} \), we compare \(\hat{\theta}_{[i]} \) and \(\hat{\theta} \) based on metrics, proposed by [Zhu et al. (2001)], for measuring the distance between \(\hat{\theta}_{[i]} \) and \(\hat{\theta} \). For that, we consider here the following:

1. **Generalized Cook distance**:

\[
GD_i = (\hat{\theta}_{[i]} - \hat{\theta})^T \{ -\hat{Q}(\hat{\theta} \mid \hat{\theta}) \} (\hat{\theta}_{[i]} - \hat{\theta}), \quad i = 1, \ldots, n.
\]

Upon substituting (17) into (21), we obtain the approximation

\[
GD_i^1 = \hat{Q}_{[i]}(\hat{\theta} \mid \hat{\theta})^T \{ -\hat{Q}(\hat{\theta} \mid \hat{\theta}) \}^{-1} \hat{Q}_{[i]}(\hat{\theta} \mid \hat{\theta}), \quad i = 1, \ldots, n.
\]
As \(\hat{Q}(\hat{\theta}|\hat{\theta}) \) is a diagonal matrix, one can obtain easily a type of Generalized Cook distance for parameters \(\beta \) and \(\sigma \), respectively, as follows

\[
GD_i^1(\beta) = \hat{Q}_{[i]}|\beta(\hat{\theta}|\hat{\theta})^\top \left\{-\hat{Q}_{\beta}(\hat{\theta}|\hat{\theta})\right\}^{-1}\hat{Q}_{[i]}|\beta(\hat{\theta}|\hat{\theta}), \quad i = 1, \ldots, n.
\]

\[
GD_i^1(\sigma) = \hat{Q}_{[i]}|\sigma(\hat{\theta}|\hat{\theta})^\top \left\{-\hat{Q}_{\sigma}(\hat{\theta}|\hat{\theta})\right\}^{-1}\hat{Q}_{[i]}|\sigma(\hat{\theta}|\hat{\theta}), \quad i = 1, \ldots, n.
\]

2. **Q-distance:** This measure of the influence of the \(i \)th case is based on the Q-distance function, similar to the likelihood distance \(LD_i \) (Cook & Weisberg, 1982), defined as

\[
QD_i = 2\{Q(\hat{\theta}|\hat{\theta}) - Q(\hat{\theta}_{[i]}|\hat{\theta})\}.
\]

We can calculate an approximation of the likelihood displacement \(QD_i \) by substituting (17) into (22), resulting in the following approximation \(QD_i^1 \) of \(QD_i \):

\[
QD_i^1 = 2\{Q(\hat{\theta}|\hat{\theta}) - Q(\hat{\theta}_{[i]}^1|\hat{\theta})\}.
\]

4 Application

We illustrate the proposed methods by applying them to the Australian Institute of Sport (AIS) data, analyzed by Cook and Weisberg (1994) in a normal regression setting. The data set consists of several variables measured in \(n = 202 \) athletes (102 males and 100 females). Here, we focus on body mass index (BMI), which is assumed to be explained by lean body mass (LBM) and gender (SEX). Thus, we consider the following QR model:

\[
BMI_i = \beta_0 + \beta_1LBM_i + \beta_2SEX_i + \varepsilon_i, \quad i = 1, \ldots, 202,
\]

where \(\varepsilon_i \) is a zero \(p \) quantile. This model can be fitted in the R software by using the package `quantreg()`, where one can arbitrarily use the BR or the LPQR algorithms. In order to compare with our proposed EM algorithm, we carry out quantile regression at three different quantiles, namely \(p = \{0.1, 0.5, 0.9\} \) by using the ALD distribution as described in Section 2. The ML estimates and associated standard errors were obtained by using the EM algorithm and the observed information matrix described in Subsections 2.3, respectively. Table 1 compares the results of our EM, BR and the LPQR estimates under the three selected quantiles. The standard error of the LPQR estimates are not provided in the R package `quantreg()` and are not shown in Table 1. From this table we can see that estimates under the three methods only exhibit slight differences, as expected. However, the standard errors of our EM estimates are smaller than those via the BR algorithm. This suggests that the EM algorithm seems to produce more accurate estimates of the regression parameters at the \(p \)th level. To obtain a more complete picture of the effects, a series of QR models over the grid \(p = \{0.1, 0.15, \ldots, 0.95\} \) is estimated. Figure 2 gives a graphical summary of this analysis. The shaded area depicts the 95% confidence interval from all the parameters. From Figure 2 we can observe some interesting evidences which cannot be detected by mean regression. For example, the effect of the two variables (LBM and gender) become stronger for the higher conditional quantiles, indicating that the BMI are positively correlated with the quantiles. The robustness of the median regression \((p = 0.5) \) can be assessed by considering the influence of a single outlying observation on the EM estimate of \(\theta \). In particular, we can assess how much the EM estimate of \(\theta \) is influenced by a change of \(\delta \) units in a single observation \(y_i \). Replacing \(y_i \) by
Table 1: AIS data. Results of the parameter estimation via EM, Barrodale and Roberts (BR) and Lasso Penalized Quantile Regression (LPQR) algorithms for three selected quantiles.

p	Parameter	EM MLE	SE	Estimative MLE	SE	BR Estimative	SE	LPQR Estimative
0.1	β_0	9.3913	0.7196	9.3915	1.2631	9.8573	1.2631	9.5281
	β_1	0.1705	0.0091	0.1705	0.0160	0.1647	0.0160	0.1647
	β_2	0.8312	0.2729	0.8209	0.4432	0.6684	0.4432	0.6684
	σ	0.2617	0.0252	1.0991	——	1.0959	——	1.0959
0.5	β_0	7.6480	0.8717	7.6480	1.1120	7.6480	1.1120	7.6480
	β_1	0.2160	0.0116	0.2160	0.0159	0.2160	0.0159	0.2160
	β_2	2.2499	0.3009	2.2226	0.4032	2.2226	0.4032	2.2226
	σ	0.6894	0.0590	0.6894	——	0.6894	——	0.6894
0.9	β_0	5.8000	0.5887	5.8000	1.6461	6.0292	1.6461	6.0292
	β_1	0.2700	0.0084	0.2700	0.0256	0.2678	0.0256	0.2678
	β_2	3.9596	0.1937	3.9658	0.6203	3.8271	0.6203	3.8271
	σ	0.3391	0.0258	1.2677	——	1.2767	——	1.2767

Figure 2: AIS data: ML estimates and 95% confidence intervals for various values of p.

$y_i(\delta) = y_i + \delta sd(y)$, where $sd(.)$ denotes the standard deviation. Let $\hat{\beta}_j(\delta)$ be the EM estimates of
Figure 3: Percentage of change in the estimation of β_0, β_1 and β_2 in comparison with the true value, for median ($p = 0.5$) and mean regression, for different contaminations δ.

Figure 4: AIS data: Q–Q plots and simulated envelopes for mean and median regression.

β_j after contamination, $j = 1, 2, 3$. We are particularly interested in the relative changes $|\left(\hat{\beta}_j(\delta) - \hat{\beta}_j\right) / \hat{\beta}_j|$. In this study we contaminated the observation corresponding to individual {#146} and for δ between 0 and 10. Figure 3 displays the results of the relative changes of the estimates for different values of δ. As expected, the estimates from the median regression model are less affected by variations on δ than those of the mean regression. Moreover, Figure 4 shows the Q-Q plot and envelopes for mean and median regression, which are obtained based on the distribution of W_i, given in (8), that follows $\text{exp}(1)$ distribution. The lines in these figures represent the 5th percentile, the mean and the 95th percentile of 100 simulated points for each observation. These figures clearly show that the median regression distribution provides a better-fit than the standard mean regression to the AIS data set.

As discussed at the end of Section 2.3 the estimated distance $\hat{d}_i = |y_i - x_i^\top \hat{\beta}_p| / \hat{\sigma}$ can be used efficiently as a measure to identify possible outlying observations. Figure 5(left panel) displays
the index plot of the distance d_i for the median regression model ($p = 0.5$). We see from this figure that observations #75, #162, #178 and #179 appear as possible outliers. From the EM-algorithm, the estimated weights $u_i(\hat{\theta}) = \hat{e}_{st}(\hat{\theta})$ for these observations are the smallest ones (see right panel in Figure 5), confirming the robustness aspects of the maximum likelihood estimates against outlying observations of the QR models. Thus, larger d_i implies a smaller $u_i(\hat{\theta})$, and the estimation of θ tends to give smaller weight to outlying observations in the sense of the distance d_i.

Figure 5 shows the estimated quartiles of two levels of gender at each LBM point from our EM algorithm along with the estimates obtained via mean regression. From this figure we can see clear attenuation in β_1 due to the use of the median regression related to the mean regression. It is possible to observe in this figure some atypical individuals that could have an influence on the ML estimates for different values of quantiles. In this figure, the individuals #75, #130, #140 #162, #160 and #178 were marked since they were detected as potentially influential.

In order to identify influential observations at different quantiles when some observation is eliminated, we can generate graphs of the generalized Cook distance GD^j_i, as explained in Section 3. A high value for GD^j_i indicates that the ith observation has a high impact on the maximum likelihood estimate of the parameters. Following Barros et al. (2010), we can use $2(p+1)/n$ as benchmark for the GD^j_i at different quantiles. Figure 7 (first row) presents the index plots of GD^j_i. We note from this figure that, only observation #140 appears as influential in the ML estimates at $p = 0.1$ and observations #75, #178 as influential at $p = 0.5$, whereas observations #75, #162, #178 and #179 appear as influential in the ML estimates at $p = 0.9$. Figure 7 (second row) presents the index plots of QD^j_i. From this figure, it can be noted that observations #76, #130, #140 appear to be influential at $p = 0.1$, whereas observations #75, #162 and #178 seem to be influential in the ML estimates at $p = 0.1$, and in addition observation #179 appears to be influential at $p = 0.9$.
Figure 6: AIS data: Fitted regression lines for the three selected quantiles along with the mean regression line. The influential observations are numbered.

Figure 7: Index plot of (first row) approximate likelihood distance GD_1^i. (second row). Index plot of approximate likelihood displacement QD_1^i. The influential observations are numbered.
5 Simulation studies

In this section, the results from two simulation studies are presented to illustrate the performance of the proposed method.

5.1 Robustness of the EM estimates (Simulation study 1)

We conducted a simulation study to assess the performance of the proposed EM algorithm, by mimicking the setting of the AIS data by taking the sample size $n = 202$. We simulated data from the model

$$y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i, \quad i = 1, \ldots, 202,$$

where the x_{ij}'s are simulated from a uniform distribution $(U(0,1))$ and the errors ε_{ij} are simulated from four different distributions: (i) the standard normal distribution $N(0,1)$, (ii) a Student-t distribution with three degrees of freedom, $t_3(0,1)$, (iii) a heteroscedastic normal distribution, $(1+x_{i2})N(0,1)$ and, (iv) a bimodal mixture distribution $0.6t_3(-20,1) + 0.4t_3(15,1)$. The true values of the regression parameters were taken as $\beta_1 = \beta_2 = \beta_3 = 1$. In this way, we had four settings and for each setting we generated 10000 data sets.

Once the simulated data were generated, we fit a QR model, with γ obtained in replica p. We simulated data from four different distributions: (i) the standard normal distribution $N(0,1)$, (ii) a Student-t distribution with three degrees of freedom, $t_3(0,1)$, (iii) a heteroscedastic normal distribution, $(1+x_{i2})N(0,1)$ and, (iv) a bimodal mixture distribution $0.6t_3(-20,1) + 0.4t_3(15,1)$. The true values of the regression parameters were taken as $\beta_1 = \beta_2 = \beta_3 = 1$. In this way, we had four settings and for each setting we generated 10000 data sets.

For each combination of parameters and sample sizes, 10000 samples were generated under the model

$$\gamma = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i, \quad i = 1, \ldots, 202,$$

and our AMDqr() package, from the R language, respectively. For the four scenarios, we computed $\text{Bias}(\gamma) = \bar{\gamma} - \gamma$ and $\text{RMSE}(\gamma) = \sqrt{SE(\gamma)^2 + \text{Bias}(\gamma)^2}$

where $\bar{\gamma} = \frac{1}{M} \sum_{i=1}^{M} \hat{\gamma}_i$ and $SE(\gamma)^2 = \frac{1}{M-1} \sum_{i=1}^{M} \left(\hat{\gamma}_i - \bar{\gamma} \right)^2$, with $\gamma = \beta_1, \beta_2, \beta_3$ or σ, $\hat{\gamma}_i$ is the estimate of γ obtained in replica i and γ is the true value. Table 2 reports the simulation results for $p = 0.1, 0.5$ and 0.9. We observe that the EM yields lower biases and RMSE than the other two estimation methods under all the distributional scenarios. This finding suggests that the EM would produce better results than other alternative methods typically used in the literature of QR models.

5.2 Asymptotic properties (Simulation study 2)

We also conducted a simulation study to evaluate the finite-sample performance of the parameter estimates. We generated artificial samples from the regression model (23) with $\beta_1 = \beta_2 = \beta_3 = 1$ and $x_{ij} \sim U(0,1)$. We chose several distributions for the random term ε_i a little different than the simulation study 1, say, (i) normal distribution $N(0,2)$ (N1), (ii) a Student-t distribution $t_3(0,2)$ (T1), (iii) a heteroscedastic normal distribution, $(1+x_{i2})N(0,2)$ (N2) and, (iv) a bimodal mixture distribution $0.6t_3(-20,2) + 0.4t_3(15,2)$ (T2). Finally, the sample sizes were fixed at $n = 50, 100, 150, 200, 300, 400, 500, 700$ and 800.

For each combination of parameters and sample sizes, 10000 samples were generated under the four different situations of error distributions (N1, T1, N2, T2). Therefore, 36 different simulation runs are performed. Once all the data were simulated, we fit the QR model with $p = 0.5$ and the bias (24) and the square root of the mean square error (24) were recorded. The results are shown in Figure 8. We can see a pattern of convergence to zero of the bias and MSE when n increases.
Table 2: Simulation study. Bias and root mean-squared error (RMSE) of β under different error distributions. The estimates under Barrodale and Roberts (BR) and Lasso (Lasso) algorithms were obtained by the "quantreg()" package from the R language.

Method	$\varepsilon \sim \mathcal{N}(0,1)$	β_1	β_2	β_3			
	p	Bias	RMSE	Bias	RMSE	Bias	RMSE
BR	0.1	1.2639	1.3444	0.0076	0.5961	-0.0030	0.5934
	0.5	0.0064	0.3376	-0.0048	0.4390	-0.0051	0.4453
	0.9	1.2640	1.3460	0.0030	0.6051	0.0069	0.6039
LPQR	0.1	-0.9664	1.0464	-0.3072	0.6165	-0.3110	0.6187
	0.5	0.1474	0.3628	-0.1463	0.4534	-0.1462	0.4576
	0.9	1.5901	1.6460	-0.3164	0.6173	-0.3076	0.6179
EM	0.1	-1.2551	1.3362	-0.0055	0.6051	0.0069	0.6039
	0.5	0.0040	0.3286	-0.0050	0.4332	-0.0031	0.4363
	0.9	1.2694	1.3484	-0.0071	0.6019	-0.0120	0.5955
$\varepsilon \sim t_3(0,1)$	0.1	-1.2446	1.3364	-0.0290	0.6274	-0.0313	0.6259
	0.5	0.1049	0.4870	0.1213	0.6714	0.1123	0.6708
	0.9	2.3618	2.8408	1.0056	2.4928	0.9459	2.4332
LPQR	0.1	-0.9315	1.0219	-0.3478	0.6422	-0.3412	0.6354
	0.5	0.3007	0.5410	-0.0928	0.6310	-0.0831	0.6237
	0.9	3.0443	3.2880	0.1911	1.6375	0.2231	1.6601
EM	0.1	-1.2287	1.3213	-0.0402	0.6160	-0.0396	0.6192
	0.5	0.0965	0.4866	0.1352	0.6724	0.1304	0.6758
	0.9	2.3781	2.8459	0.9464	2.4082	0.9264	2.4167
$\varepsilon \sim (1+x^2)\mathcal{N}(0,1)$	0.1	-1.2869	1.4256	0.0130	0.8706	-1.2554	1.5381
	0.5	0.0051	0.4468	0.0049	0.6336	0.0061	0.6509
	0.9	1.2868	1.4259	0.0018	0.8686	1.2307	1.5256
LPQR	0.1	-1.1393	1.2272	-0.3694	0.7773	-1.1450	1.2756
	0.5	0.1834	0.4520	-0.1906	0.6193	-0.1963	0.6304
	0.9	1.6972	1.7933	-0.3621	0.7925	0.7494	1.1587
EM	0.1	-1.2772	1.4140	0.0051	0.8646	-1.2341	1.5195
	0.5	0.0954	0.4892	0.1289	0.6724	0.1316	0.6694
	0.9	1.2599	1.3987	0.0076	0.8723	1.2488	1.5315
$\varepsilon \sim 0.6t_3(-20,1) + 0.4t_3(15,1)$	0.1	-1.2350	1.3268	-0.0395	0.6160	-0.0396	0.6192
	0.5	0.1029	0.4896	0.1214	0.6780	0.1212	0.6741
	0.9	2.3857	2.8737	0.9657	2.4574	0.9558	2.4855
LPQR	0.1	-0.9664	1.0464	-0.3072	0.6165	-0.3110	0.6187
	0.5	0.1474	0.3628	-0.1463	0.4534	-0.1462	0.4576
	0.9	1.5901	1.6460	-0.3164	0.6173	-0.3076	0.6179
EM	0.1	-0.9327	1.0201	-0.3491	0.6433	-0.3355	0.6372
	0.5	0.2880	0.5343	-0.0745	0.6216	-0.0717	0.6159
	0.9	3.0624	3.3102	0.1702	1.6627	0.2221	1.6575
Figure 8: Simulation study 2. Average bias (first column) and average MSE (second column) of the estimates of $\beta_1, \beta_2, \beta_3$ with $p = 0.5$ (median regression), where $N_1 = N(0, 2)$, $T_1 = t_3(0, 2)$, $N_2 = (1 + x_2)N(0, 2)$ and $T_2 = 0.6t_3(-20, 2) + 0.4t_3(15, 2)$.

As a general rule, we can say that bias and MSE tend to approach to zero when the sample size increases, indicating that the estimates based on the proposed EM-type algorithm do provide good asymptotic properties. This same pattern of convergence to zero is repeated considering different levels of the quantile p.

6 Conclusion

We have studied a likelihood-based approach to the estimation of the QR based on the asymmetric Laplace distribution (ALD). By utilizing the relationship between the QR check function and the ALD, we cast the QR problem into the usual likelihood framework. The mixture represen-
tation of the ALD allows us to express a QR model as a normal regression model, facilitating the implementation of an EM algorithm, which naturally provides the ML estimates of the model parameters with the observed information matrix as a by product. The EM algorithm was implemented as part of the R package ALDqr(). We hope that by making the code of our method available, we will lower the barrier for other researchers to use the EM algorithm in their studies of quantile regression. Further, we presented diagnostic analysis in QR models, which was based on the case-deletion technique suggested by Zhu et al. (2001) and Zhu & Lee (2001), which are the counterparts for missing data models of the well-known ones proposed by Cook (1977) and Cook (1986). The simulation studies demonstrated the superiority of the proposed methods to the existing methods, implemented in the package quantreg(). We applied our methods to a real data set (freely downloadable from R) in order to illustrate how the procedures can be used to identify outliers and to obtain robust ML parameter estimates. From these results, it is encouraging that the use of ALD offers a better alternative in the analysis of QR models.

Finally, the proposed methods can be extended to a more general framework, such as, censored (Tobit) regression models, measurement error models, nonlinear regression models, stochastic volatility models, etc and should yield satisfactory results at the expense of additional complexity in implementation. An in-depth investigation of such extensions is beyond the scope of the present paper, but these are interesting topics for further research.

Acknowledgements

The research of V. H. Lachos was supported by Grant 305054/2011-2 from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) and by Grant 2014/02938-9 from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-Brazil).

References

Barndorff-Nielsen, O. E. & Shephard, N. (2001). Non-gaussian ornstein–uhlenbeck-based models and some of their uses in financial economics. Journal of the Royal Statistical Society, Series B, 63, 167–241.

Barrodale, I. & Roberts, F. (1977). Algorithms for restricted least absolute value estimation. Communications in Statistics-Simulation and Computation, 6, 353–363.

Barros, M., Galea, M., González, M. & Leiva, V. (2010). Influence diagnostics in the tobit censored response model. Statistical Methods & Applications, 19, 716–723.

Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics, 19, 15–18.

Cook, R. D. (1986). Assessment of local influence. Journal of the Royal Statistical Society, Series B, 48, 133–169.

Cook, R. D. & Weisberg, S. (1982). Residuals and Influence in Regression. Chapman & Hall/CRC.

Geraci, M. & Bottai, M. (2007). Quantile regression for longitudinal data using the asymmetric laplace distribution. Biostatistics, 8, 140–154.
Koenker, R. (2005). *Quantile regression*, volume 38. Cambridge University Press.

Koenker, R. & G Bassett, J. (1978). Regression quantiles. *Econometrica: Journal of the Econometric Society*, 46, 33–50.

Koenker, R. W. & d’Orey, V. (1987). Algorithm as 229: Computing regression quantiles. *Journal of the Royal Statistical Society. Series C (Applied Statistics)*, 36, 383–393.

Kottas, A. & Gelfand, A. E. (2001). Bayesian semiparametric median regression modeling. *Journal of the American Statistical Association*, 96, 1458–1468.

Kottas, A. & Krnjajić, M. (2009). Bayesian semiparametric modelling in quantile regression. *Scandinavian Journal of Statistics*, 36, 297–319.

Kotz, S., Kozubowski, T. & Podgorski, K. (2001). *The laplace distribution and generalizations: A revisit with applications to communications, economics, engineering, and finance*. Number 183. Birkhauser.

Kozumi, H. & Kobayashi, G. (2011). Gibbs sampling methods for bayesian quantile regression. *Journal of Statistical Computation and Simulation*, 81, 1565–1578.

Kuzobowski, T. J. & Podgorski, K. (2000). A multivariate and asymmetric generalization of laplace distribution. *Computational Statistics*, 15(4), 531–540.

Louis, T. (1982). Finding the observed information when using the em algorithm. *Journal of the Royal Statistical Society, Series B*, 44, 226–232.

Lum, K. & Gelfand, A. (2012). Spatial quantile multiple regression using the asymmetric laplace process. *Computational Statistics*, 81(11), 1565–1578.

Matos, L. A., Lachos, V. H., Balakrishnan, N. & Labra, F. V. (2013). Influence diagnostics in linear and nonlinear mixed-effects models with censored data. *Computational Statistics & Data Analysis*, 57, 450–464.

Meilijison, I. (1989). A fast improvement to the em algorithm to its own terms. *Journal of the Royal Statistical Society, Series B*, 51, 127–138.

Tian, Y., Tian, M. & Zhu, Q. (2013). Linear quantile regression based on em algorithm. *Communications in Statistics - Theory and Methods*, 43:16, 3464–3484.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society, Series B*, pages 267–288.

Xie, F., Wei, B. & Lin, J. (2007). Case-deletion influence measures for the data from multivariate t distributions. *Journal of Applied Statistics*, 34, 907–921.

Yu, K. & Moyeed, R. (2001). Bayesian quantile regression. *Statistics & Probability Letters*, 54, 437–447.

Yu, K. & Zhang, J. (2005). A three-parameter asymmetric laplace distribution and its extension. *Communications in Statistics-Theory and Methods*, 34, 1867–1879.
Zeller, C. B., Labra, F. V., Lachos, V. H. & Balakrishnan, N. (2010). Influence analyses of skew-normal/independent linear mixed models. *Computational Statistics & Data Analysis*, **54**, 1266–1280.

Zhou, Y., Ni, Z. & Li, Y. (2013). Quantile regression via the em algorithm. *Communications in Statistics - Simulation and Computation*, **43**, 2161–2014.

Zhu, H. & Lee, S. (2001). Local influence for incomplete-data models. *Journal of the Royal Statistical Society, Series B*, **63**, 111–126.

Zhu, H., Lee, S.-Y., Wei, B.-C. & Zhou, J. (2001). Case-deletion measures for models with incomplete data. *Biometrika*, **88**, 727–737.