“BDNF and Neurodegeneration: The Rise of the Exercise as a Preventive Care”

Gilmara Gomes de Assis1,2*

1Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
2Mossakowski Medical Research Centre, PAS, Poland

*Corresponding author: Gilmara Gomes De Assis, Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Mossakowski Medical Research Centre, PAS, Poland

ARTICLE INFO

Received: February 13, 2020
Published: February 20, 2020

ABSTRACT

Citation: Gilmara Gomes de Assis. “BDNF and Neurodegeneration: The Rise of the Exercise as a Preventive Care”. Biomed J Sci & Tech Res 25(5)-2020. BJSTR. MS.ID.004265.

Mini Review

Since early 90’s, the protein named brain-derived neurotrophic factor (BDNF) structure, functioning, gene code, location and specificities, as one of the most abundantly expressed growth factors of the Neurotrophins’ family, have been massively explored in neuroscience fields [1,2]. With multiple functions in the formation and function of the central nervous system, all of which are lethal, the gene encoding for BDNF (named BDNF) abides highly stable throughout all vertebrates, including human [3]. From an evolution perspective, BDNF is reported as one of the key neurobiological molecule portraying the urge in the homo sapiens brain’s grow after their needs for conquering new territories, acquiring memory, and navigation skills that implied in changes in the metabolism profile [4]. Nowadays, as the accumulated scientific knowledge on BDNF has fairly explained the association between brain and metabolism, the concept of neuroplasticity has so crossed boundaries from the molecular through clinical research fields, reaching the everyday conversation of individuals engaged into physical activity and healthy life style [5]. The sense that the brain is built of plastic matter and in so doing it is to a certain point “healable” comes together with an immediate preoccupation of how to protect the brain from malfunctions or else, how to preserve the brain from the losses of neurological diseases progress. Here I will elucidate the importance of BDNF for mechanisms involved in the functional brain’s health and introduce the aerobic exercise, more specifically the aerobic energy metabolism, as main player in this scenario.

BDNF and the Brain’s Health

Expressed mainly by neural tissue, BDNF participates in orientating cells differentiation into neurons during development processes and also in the adult brain processes as synaptogenesis, dendrite genesis, long-term potentiation and depreciation (memory formation) [6-8]. Corroborant, impairments in brain functions such as in Mild Cognitive Disorder disorders, Parkinson’s, Alzheimer’s, Levy’s Body’s and less frequent types of dementia are accompanied by lowered BDNF levels [9]. The very neuronal ability of functional regeneration which is based on the construction and strengthening of connections between neurons is compulsorily supported by BDNF in a vary of ways [10]. The release of BDNF occur after a multi-stage processing that primarily produces a precursor form of the neurotrophin (named pro-BDNF) which is later cleaved into the mature BDNF both before or during the release process. Binding of either the mature BDNF with its high-affinity Tyrosine kinase receptors B or of the released pro-BDNF form with low-affinity to p75 neurotrophin receptors mediate either pro-survival or pro-apoptotic processes, respectively, in different neuronal cell populations, in a highly coordinate dynamics of lethal importance [11].

In blood, the levels of BDNF are believed to be a plausible report of changes in the brain’s cognitive performance associated with aging and natural neurodegeneration or neurodegenerative
disorders [12-14]. While reports of studies involving older individuals show a natural decrease in BDNF levels in time; a noticeable reduction in BDNF levels is observed in those individuals with neurodegenerative disorders. Moreover, decreases in BDNF levels appear to be associated with disease progress and cognitive impairment degrees [15]. Although a great effort has been spent into experimental attempts of finding an exogenous manner of manipulating BDNF in the past decades [16,17], the precise dynamics of BDNF release and reuptake differentially orchestrated in different brain regions and cell populations has led the pharmacological research to exhaust the possibilities, before advances to human studies.

The Exercise as a Preventive Care

At a physiological level, regulation of BDNF expression under the hub of a main energy metabolism regulator – peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) [18,19] – is thus highly responsive to challenges in aerobic energy demands [see more at De Assis GG, 2018 5]. In compliance, studies in healthy populations have revealed that individuals with higher fitness conditions display higher circulating BDNF levels [20,21]. In the same sense, clinical approaches using the aerobic exercise as intervention show an exercise effect on blood levels of BDNF increase even in aging individuals at the course of cognitive disorders [22]. Likewise, physically active individuals show off better results in executive tasks when compared to sedentary individuals in same social environment [23]. Additionally, the BDNF increases related to exercise have been confirmed to exert a positive impact on the benefits observed in cognition. Furthermore, such BDNF-mediated improvement in cognitive processes can be found in individuals of all ages, when submitted to exercise [24]. Regarding the world’s populations are aging as a result of the enhancement in the quality of life which, among other factors, contributes to increases in the prevalence of dementia, the aerobic exercise shall be considered not only as a healthy practice but, and more importantly, as an affordable long-term preventive Health care support, with potential for reducing public expenses.

References

1. Sara VR, Stuart MC, Rutherford R, Moore S, Lazarus L (1978) Brain growth-promoting activity in human serum: Relationship to growth hormone and somatomedin. J Clin Endocrinol Metab 47(5): 1129-1131.
2. Bird SP, Macan S, Pryde M, Feehery S, Cannon J (2013) Triphasic multinutrient supplementation during acute resistance exercise improves session volume load and reduces muscle damage in strength-trained athletes. Nutr Res 33(5): 376-387.
3. Rafieva LM, Gasanov EV (2016) Neurotrophin Propetopes: Biological Functions and Molecular Mechanisms. Curr Protein Pept Sci 17(4): 298-305.
4. Raichlen DA, Polk JD (2012) Linking brains and brawn: exercise and the evolution of human neurobiology. Proc R Soc B Biol Sci 280(1750): 20122250.
5. De Assis GG, Gasanov EV, De Sousa MBC, Kozacz A, Murawska Ciałowicz E (2018) Brain-derived neurotrophic factor, a link of aerobic metabolism to neuroplasticity. J Physiol Pharmacol 69(3): 351-359.
6. Kononen J, Soinila S, Persson H, Honkanieni J, Hökfelt T, et al. (1994) Neurotrophins and their receptors in the rat pituitary gland: regulation of BDNF and trkB mRNA levels by adrenal hormones. Brain Res Mol Brain Res 27(2): 347-354.
7. Bae S, Yoo M, Kim Y, Hong IK, Kim MH, et al. (2020) Brain-derived neurotrophic factor mediates macrophage migration inhibitory factor to protect neurons against oxygen-glucose deprivation. Neural Regen Res 15(8): 1483.
8. Esvald EE, Tuvikene J, Sirp A, Patil S, Bramham CR, et al. (2020) CREB Family Transcription Factors Are Major Mediators of BDNF Transcriptional Autoregulation in Cortical Neurons. J Neurosci 40(7): 1405-1426.
9. Numakawa T, Odaka H, Adachi N (2018) Actions of Brain-Derived Neurotrophin Factor in the Neurogenesis and Neuronal Function, and Its Involvement in the Pathophysiology of Brain Diseases. Int J Mol Sci 19(11): 3650.
10. Sasi M, Vignoli B, Canossa M, Blum R (2017) Neurobiology of local and intercellular BDNF signaling. Pflugers Arch Eur J Physiol 469(5-6): 1-18.
11. Song M, Martinowich K, Lee FS (2017) BDNF at the synapse: Why location matters. Mol Psychiatry 22(10): 1370-1375.
12. Herold F, Müller P, Gmnwold T, Müller NG (2019) Dose–Response Matters! – A Perspective on the Exercise Prescription in Exercise-Cognition Research. Front Psychol 10: 1-17.
13. HongEJ, Mc Cord AE, Greenberg ME (2008) A Biological Function for the Neuronal Activity-Dependent Component of Bdnf Transcription in the Development of Cortical Inhibition. Neuroon 60(4): 610-624.
14. Panja D, Bramham CR (2014) BDNF mechanisms in late LTP formation: A synthesis and breakdown. Neuropharmacology 76: 664-676.
15. Ventriglia M, Zanardini R, Bononimi C, Zanetti O, Volpe D, et al. (2013) Serum brain-derived neurotrophic factor levels in different neurological diseases. J Neurosci Res 101: 901082.
16. Wu D, Partridge WM (1999) Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc Natl Acad Sci USA 96(1): 254-259.
17. Partridge WM, Kang YS, Buciak JL (1994) Transport of Human Recombinant Brain-Derived Neurotrophic Factor (BDNF) Through the Rat Blood–Brain Barrier in Vivo Using Vector-Mediated Peptide Drug Delivery. Pharm Res an Off J Am Assoc Pharm Sci 11(5): 738-746.
18. Nair B, Wong Riley MT (2016) Transcriptional Regulation of brain-derived neurotrophic factor coding exon IX role of nuclear respiratory factor 2. J Biol Chem 291(43): 22585-22593.
19. Abbasian S, Ashgar Ravasi A (2020) The effect of antecedent-conditioning high-intensity interval training on BDNF regulation through PGC-1α pathway following cerebral ischemia. Brain Res 1729: 146618.
20. Whiteman AS, Young DE, He X, Chen TC, Wagenaar RC, et al. (2014) Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults. Behav Brain Res 259: 302-312.
21. Bath KG, Lee FS (2006) Variant BDNF (Val66Met) impact on brain structure and function. Cogn Affect Behav Neurosci 6(1): 79-85.
22. De Assis GG, De Almondes KM (2017) Exercise-dependent BDNF as a modulatory factor for the executive processing of individuals in course of cognitive decline. A systematic review. Front Psychol 8: 1-8.
23. Knaepen K, Goekint M, Heyman EM, Meeusen R (2010) Neuroplasticity and Exercise: the role of exercise in the development of intracellular BDNF signaling. Pflugers Arch Eur J Physiol 469(5-6): 1-18.
24. Herold F, Müller P, Gmnwold T, Müller NG (2019) Dose–Response Matters! – A Perspective on the Exercise Prescription in Exercise-Cognition Research. Front Psychol 10: 1-17.
