Age-Related Loss of GABA-Positive and GABA-Negative Neurons in Neocortical Transplants

A. Bragin*, J, Takács**, O. Vinogradova*, Kh. Gogelia*** and J. Hámori**

*Institute of Biophysics of the Russian Academy of Sciences, Moscow-Puschino, Russia
**1st Department of Anatomy, Semmelweis Medical University, Budapest, Hungary
***Borisashvili Institute of Physiology, Georgian Academy of Science, Tbilisi, Georgia

SUMMARY

The numerical density of GABA immunopositive and GABA immunonegative neurons was quantitatively determined in 0, 12, 30 and 90 day-old neocortical transplants, derived from E17 rat embryos and transplanted into adult hosts. It was found that the original, very high neuronal density in the fetal transplant declined steadily after transplantation to the somatosensory cortex of adult rat. The decline in numerical density of GABA-positive neurons, however, was disproportionately larger than that of GABA-negative nerve cells: At 90 days the proportion of GABA-positive cells was 2.3% (in contrast to the 11.8% in the adult host cortex). The density of GABA-negative neurons, on the other hand, remained slightly higher than comparable values in the control cortex. The decline in density of GABA-positive neurons was continuous until the 90th post-transplantation day, while final, close to normal density values of GABA-negative nerve cells were already reached in 30 day-old grafts, with no significant change afterwards.

KEY WORDS

transplantation, neocortex, GABA-immunostaining, numerical density

INTRODUCTION

We have demonstrated in previous studies /2,3,13/ that in long-term neocortical grafts the proportion of GABA-immunopositive neurons was significantly lower (2.9% of all nerve cells) than in normal cortex (11.8% on average). This decline of GABAergic interneurons in grafts was in strong contrast to the number of GABA-negative neurons which showed a normal or slightly increased density even in 6 month-old intracortical grafts /2/. A similar numerical decrease of the two main GABAergic neuronal classes, the parvalbumin and calbindin-containing nerve cells, has also been found in long-term neocortical grafts /6/. The relevance of these findings is closely related to the observation of the importance of GABAergic inhibitory systems in the normal functioning of neocortical networks /9,11/. Any numerical abnormalities of GABA-cells in neocortical grafts should, therefore, influence the potential of transplanted tissue to restore the function of the damaged area.

Several hypotheses were put forward to explain the selective loss of GABAergic neurons in long-term grafts. Imperfect integration of the graft with host cortex, leading to decreased afferent (and efferent) connectivity is one of the possible factors /1,2; see also 5,7/. A second alternative explanation is that, either due to unfavorable external conditions (i.e. hypoxia) during transplantation /10/ or because some GABAergic cells normally are expressed only postnatally, i.e. after the grafting process /4/, the number of GABA positive neurons is "ab ovo" lower than in the normally differentiating cortex. It is equally possible that the loss of GABA-positive nerve cells is not abrupt, but is a gradual process, affected both by selective
embryonic sensitivity and subsequent deficiency in normal afferentation. The aim of this study was, therefore, to determine numerical densities of GABA-positive and GABA-negative neurons in neocortical transplants at various intervals after grafting.

MATERIALS AND METHODS

Neocortical tissue for grafting was taken from embryos of Wistar rats of gestational age 16 to 17 days. A piece of tissue (1.5-2.0 mm³) was dissected from the cortical anlage, including the provisory somatosensory cortex, and rinsed in cooled Eagle’s solution. Altogether, 15 young adult Wistar rats (body weight 150-190 g) were used as recipients. All surgery was performed under pentobarbital (40 mg/kg, i.p.) anesthesia. After opening the skull, the barrel field (ca. 12 mm³) was removed by aspiration. Subsequently, the embryonic tissue was placed through a slit in the dura into the acutely prepared cortical cavity.

The recipient animals were sacrificed for immunocytochemical examination by overdose of pentobarbital (40 mg/kg, i.p.) anesthesia. After opening the skull, the barrel field (ca. 12 mm³) was removed by aspiration. Subsequently, the embryonic tissue was placed through a slit in the dura into the acutely prepared cortical cavity.

The recipient animals were sacrificed for immunocytochemical examination by overdose of pentobarbital (40 mg/kg, i.p.) anesthesia. After opening the skull, the barrel field (ca. 12 mm³) was removed by aspiration. Subsequently, the embryonic tissue was placed through a slit in the dura into the acutely prepared cortical cavity.

The recipient animals were sacrificed for immunocytochemical examination by overdose of pentobarbital (40 mg/kg, i.p.) anesthesia. After opening the skull, the barrel field (ca. 12 mm³) was removed by aspiration. Subsequently, the embryonic tissue was placed through a slit in the dura into the acutely prepared cortical cavity.

The recipient animals were sacrificed for immunocytochemical examination by overdose of pentobarbital (40 mg/kg, i.p.) anesthesia. After opening the skull, the barrel field (ca. 12 mm³) was removed by aspiration. Subsequently, the embryonic tissue was placed through a slit in the dura into the acutely prepared cortical cavity.
Table 1

Numerical density (No./mm³) of GABA(+) and GABA(-) neurons in the grafted embryonic, control (adult host SI) cortex and in grafts 12, 30 and 90 days after transplantation.

Age (origin) of tissue (transplants)	Density of GABA(+) neurons	Density of GABA(-) neurons	%* of GABA(+) neurons
E-17 embryos	**62542 ± 25010**	**710526 ± 185260**	**8.1**
Mean ± S.D.	**5605 ± 1353**	**41708 ± 7816**	**1.8**
Control cortex	**3740**	**88475**	**4.1**
Mean ± S.D.	**6623**	**95553**	**6.5**
12 day-old transplants			
1	**9614**	**101429**	**8.7**
2	**2528**	**90617**	**2.7**
3	**3731**	**97569**	**3.7**
Mean ± S.D.	**5247 ± 2869**	**94729 ± 5236**	**5.2**
30 day-old transplants			
6	**840**	**48539**	**1.7**
7	**2768**	**62629**	**4.2**
8	**4749**	**49862**	**8.7**
9	**1752**	**45168**	**3.7**
10	**3117**	**61678**	**4.8**
Mean ± S.D.	**2645 ± 1467**	**53575 ± 8023**	**4.7**
90 day-old transplants			
11	**1912**	**54287**	**3.4**
12	**765**	**51049**	**1.5**
13	**1893**	**48082**	**3.8**
14	**509**	**51139**	**1.0**
15	**897**	**51945**	**1.7**
Mean ± S.D.	**1195 ± 661**	**51300 ± 2224**	**2.3**

* \(N_v \text{GABA}(+) \times 100 \)
(N_v GABA(-) + N_v GABA(+))

**5 animals in each group [Bragin et al. /3/]

The magnitude (GABA(-): 710526 ± 185260 / mm³; GABA(+) : 62542 ± 25010 / mm³) compared to the control, adult host cortex (GABA(-): 41708 ± 7816 / mm³; GABA(+) : 5605 ± 1353 / mm³). The GABA-ir neurons constituted 8.1% of all nerve cells.

In the 12 day-old cortical graft, which did not show the characteristic cortical lamination (Fig. 1), the density of GABA-ir neurons was visibly lower than that in the control cortex. However, the GABA-positive neuronal perikarya appeared to be larger than those in the host cortex. Quantitative measurements clearly showed that, although the density of GABA-ir neurons in 12 day-old grafts was comparable to the control values (5247 ± 2869 versus 5605 ± 1353 / mm³), due to the still high density of GABA-negative neurons (94729 ± 5236
TABLE 2

Statistical comparison* of differences in the numerical densities of GABA(+) and GABA(-) neurons in the grafted embryonic, control (adult host SI) cortex and in 12, 30 and 90 day-old transplants

	Control	12 days o.	30 days o.	90 days o.
GABA(+) neurons				
E17	0.0001 < p < 0.001			
Control	p > 0.5 (N.S.)	0.01 < p < 0.02	0.01 < p < 0.02	0.05 < p < 0.1
12 days o.		0.1 < p < 0.2	0.02 < p < 0.05	0.02 < p < 0.05
30 days o.			0.05 < p < 0.1	
GABA(-) neurons				
E17	p < 0.0001	p < 0.0001	p < 0.0001	p < 0.0001
Control	p < 0.0001	0.02 < p < 0.05	0.02 < p < 0.05	p < 0.0001
12 days o.			p < 0.0001	
30 days o.				p > 0.5 (N.S.)

*Two-sample analyses. The significance levels were calculated by the two-tailed Student's t-test.

Fig. 1: GABA-immunoreactive neurons in 12 day-old cortico-cortical graft. The grafted tissue (G) can be distinguished from the host cortex (H). The GABA-ir cells are intensively labeled in the graft; GABA-positive cells in the cortex near to the border are stained somewhat weaker (arrows). Scale bar: 100 µm.
At 30 days the density of both GABA-ir (2645 ± 1476 / mm³) and particularly of GABA-negative (53575 ± 8023 / mm³) nerve cells further decreased. The numerical density of GABAergic neurons dropped to less than half of the control value, while the concentration of GABA-negative neurons, in spite of a conspicuous numerical decline in density, exhibited a significantly (0.02 < p < 0.05; Table 2) higher \(N_v \) than the control values.

At 90 days (Fig. 2) a further decline in the numerical density of GABA-ir neurons (1195 ± 661 / mm³) and a stabilization of the density values of GABA-negative nerve cells (51300 ± 2224 / mm³), which were still slightly higher than the control values, was observed. The calculated 2.3% for GABA-ir cells of all neurons was only about one fifth of the comparable control value.
DISCUSSION

These observations demonstrate a significant drop in both GABA-positive and GABA-negative neuronal densities in the differentiating intracavity neocortical grafts. This decrease in the numerical densities is obvious (and statistically highly significant) when comparing the \(N_v \) data of the E17 embryonal cortices with the \(N_v \) values of the grafts. One factor, in fact, which might lead to the observed decline in numerical density of neurons during and/or after transplantation might be hypoxia/anoxia, which is probably also effective during the early period after transplantation, when conditions (e.g. vascularization) are still not optimal for survival of the grafted neuronal population. (This transient period may persist for several days, since in the 6 day-old transplants there was a high number of degenerating nerve cells and cell debris, which made it impossible to evaluate the \(N_v \) data at this age in the grafts.) The observed decline in the numerical densities — mainly in the density of the GABA-positive neuronal population — is, most probably, the result of the loss of these cells. At the same time, the ongoing differentiation of the graft as connections are made by the newly formed processes of the surviving nerve cells, results in the enlargement of the neuropil region. This is clearly shown by the increased volume of the grafts, which also contributed to the dilution of cells in the differentiating grafts. The steady decrease of the density of GABA-negative neurons in the graft could be observed until 30 days after transplantation. In the case of the GABA-ir neurons, however, the decline in \(N_v \) continued until 90 days. Although this numerical decline of GABA-ir cells occurred simultaneously with the dilution of density of GABA-negative neurons, the loss of GABAergic interneurons was disproportionately larger. In fact, while the density of GABA-negative neurons remained somewhat higher than comparable values in the host cortex, both at 90 days, as observed in the present study, as well as in the 6-8 month grafts/2/, the numerical density of GABA-ir cells was only one fourth to one fifth of the control values. Statistically, this decrease in the numerical densities of GABA-ir cells was not (host cortex compared to 12 day-old transplant) or was only moderately (12 day-old graft compared to 30 day-old and 30 day-old compared to 90 day-old) significant because of the high variability within the age groups. The decrease was highly significant (12 day-old graft compared to 90 day-old) between younger (12 day) and older (90 day) transplants. The decline in \(N_v \) of GABA-negative neurons proved to be highly significant in each comparison between the different age groups of the transplants. The decline in density, however, did not occur synchronously in the two neuronal classes: GABA-ir cell number exhibited a steady and continuous decline between 0 day and 90 days, whereas the final density values for GABA-negative neurons were already established at 30 days, with no significant changes afterwards.

Further density changes in older grafts were not examined in the present investigation. In previous studies /2,3/, however, it was observed that the proportion of GABA-positive cells is maintained between 2-3% in 6-8 month grafts.

Another factor which might contribute to the decrease of the GABA-ir neuronal population could be a moderate or missing expression and/or activity of glutamate decarboxylase (GAD), since the development of the GABA synthesizing enzyme is known to depend on the normal innervation of the cortex /7/. The lack of neuronal activity or lack of extrinsic innervation may, therefore, result in reduced levels of GAD and GABA in the transplants at longer survival times. This would mean that the cells are not actually absent, but express low levels of GABA and are consequently counted among the unlabeled cells (the density of which decreases for a shorter period of time).

In conclusion, the present observations demonstrate that in differentiating neocortical transplanted tissue the decline in the density of GABAergic neurons is a time-dependent process, which in long-term transplants results in a relatively low, but stabilized number of GABAergic cells.
REFERENCES

1. Bragin AG, Bohne A, Vinogradova OS. Transplants of the embryonal rat somatosensory neocortex in the barrel field of the adult rat: responses of the grafted neurons to sensory stimulation. Neuroscience 1988; 25: 751-758.

2. Bragin A, Takács J, Vinogradova O, Hámori J. Quantitative estimation of the ratio of GABA-immunoreactive cells in neocortical grafts. J Neurotransplant Plast 1991; 2: 235-242.

3. Bragin A, Takács J, Vinogradova O, Zhuravleva Z, Hámori J. Number of GABA-immunopositive and GABA-immunonegative neurons in various types of neocortical transplants. Exp Brain Res 1991; 85:114-128.

4. Endo T, Kobayashi S, Onaya T. Parvalbumin in rat cerebrum, cerebellum and retina during postnatal development. Neurosci Lett 1985; 60: 279-282.

5. Eriksdotter-Nilsson M, Meister B, Hökfelt T, Elde R, Fahrenkrug J, Frey P, Oertel W, Rehfeld JF, Terniess L, Olson L. Glutamate decarboxylase- and peptide-immunoreactive neurons in cortex cerebri following development in isolation: evidence of homotypic and disturbed patterns in intraocular grafts. Synapse 1987; 1: 539-551.

6. Gogelia K, Hámori J. Differential effects of long term transplantation on the growth of cortical neurons containing parvalbumin or calbindin. Exp Brain Res 1992; 91: 477-483.

7. Hendry SHC, Jones EG. Reduction in number of immunostained GABAergic neurons in deprived eye dominance columns of monkey area 17. Nature 1986; 320: 750-753.

8. Hepler JR, Petrusz P, Rustioni A. Antiserum to GABA, glutamate and aspartate: characterization by immunoabsorption and immunocytochemistry. J Histochem Cytochem 1986; 34: 110.

9. Ramon AS, Paradiso MA, Freeman RD. Blockade of intracortical inhibition in kitten striate cortex: effects on receptive field properties and associated loss of ocular dominance plasticity. Exp Brain Res 1988; 73: 285-296.

10. Romijn HJ, de Jong BM. Unlike hypoxia, hypoglycemia does not preferentially destroy GABAergic neurons in developing rat neocortex explants in culture. Brain Res 1989; 480: 58-64.

11. Somogyi P, Cowey A, HaláSZ N, Freund TF. Vertical organisation of neurones accumulating 3H-GABA in visual cortex of rhesus monkey. Nature 1981; 294: 761-763.

12. Somogyi P, Hodgson AJ, Chubb IW, Penke B, Erdei A. Antiserum to y-aminobutyric acid. II. Immunocytochemical application to the central nervous system. J Histochem Cytochem 1985; 33: 240-248.

13. Takács J, Bragin A, Gogelia K, Hámori J. Selective loss of GABA-immunoreactive cells in neocortical grafts. Eur J Neurosci 1990; Suppl. 3 1337: 78.

14. Weibel ER, Gomes DM. A principle for counting tissue structures on random sections. J Appl Physiol 1962; 17: 343-348.