Exploring the Capability of Indonesia Natural Medicine Secondary Metabolite as Potential Inhibitors of SARS-CoV-2 Proteins to Prevent Virulence of COVID-19: In silico and Bioinformatic Approach

Bambang Cahyono1*, Nur Dina Amalina2, Meiny Suzery1, Damar Nurwahyu Bima1

1Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Semarang, Indonesia; 2Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Semarang State University, Semarang, Indonesia.

Introduction

The spread of coronavirus SARS-CoV-2 (COVID-19) has attracted massive concern around the world, due to its progressive implementation in more than 100 countries since December 2019 [1]. The endemic of this virus invites the challenge rapidly to design and discover any therapeutic drug candidates in concordance with the finding of virus-molecular characteristic [2]. Molecular docking and bioinformatic approach have become successful methods for drug discovery and production [3], [4], [5]. Therefore, to search for potential and specific inhibitors of COVID-19, we carried out the virtual screening to identify novel phytochemicals against COVID-19 from Indonesian medicine plants. In this study, we used spike glycoprotein, the 3CLprotease SARS-CoV-2 and 2019-nCoV PLpro of virus and PD-ACE2 of a host cell target as molecular targets against COVID-19. Using molecular docking tools, we evaluated the interaction of drug ligand molecules inside the binding pocket of the target protein [6]. A previous study reported that several proteins that play an important role of the SARS-CoV-2 infection, including the spike glycoprotein, the 3CLprotease SARS-CoV-2 active target, PD-ACE2, and 2019-nCoV PLpro [2], [7], [8]. However, exploring the drugs that have binding potential to protein that associated with COVID-19 replication remain unclear. Therefore, in this study, we evaluate the potential target and molecular mechanism of the major compound on Alpinia galanga extract and Citrus sinensis (L.) extract in circumventing COVID-19 using a bioinformatics approach and in silico molecular docking.

Abstract

BACKGROUND: SARS-CoV-2 was causing COVID-19 disease resulting in many deaths and being a significant concern in the world today. There is an emergent need to search for possible medications for COVID-19 treatment. The key point to halt SARS-CoV-2 infection through inhibition of the virus-receptor interaction and stimulates the immune system. Utilization of the bioinformatic and in silico molecular docking a number of available medications might be proven to be effective in inhibiting SARS-CoV-2 main drug targets including the SARS-CoV2 spike glycoprotein, the 3CLprotease SARS-CoV-2 active target, PD-ACE2, 2019-nCoV PLpro, and NF-κB.

AIM: This present study was conducted to identify the potential target and molecular mechanism of the major compound on Alpinia galanga extract and Citrus sinensis (L.) extract in circumventing COVID-19 using a bioinformatics approach and in silico molecular docking.

RESULTS: Direct protein target of all secondary metabolite and the gene list from PubMed “Severe acute respiratory syndrome coronavirus 2” generated 2 genes (CCL2 and VEGFA) as potential therapeutics target genes (PTTG). The molecular docking was conducted by the Protein-Ligand Ant System (PLANTS) software. The results show that hesperidin, naringenin, and galangin have lower docking score for all five-protein target receptor compared with chloroquine and remdesivir. The lower docking score suggests a high affinity to bind the protein. Moreover, these compounds have a strong affinity in their inhibitory capacity for viral infection.

CONCLUSION: In general, this study’s findings show that the compound of Alpinia galanga extract and Citrus sinensis (L.) extract exhibit the best potential as an inhibitor to the development of the SARS-CoV-2 and inhibited cytokine storm through inactivation NF-κB pathway.
replication processes, which make it the perfect target for drug growth [12]. On the other hand, nonstructural protein (NP) is functional protein of high importance to COVID-19. They also take part in the virus replication and human infection through RNA transcription and translation. NP is formed by proteolytic cleavage of replicate polyprotein 1a (pp1a) and replicate polyprotein 1ab (pp1ab) by the action of viral papain-like protease (PLpro) on N-terminus resulting in three products and 3 chymotrypsin-like proteases (3CLpro) [13].

All of these proteins (spike, protease, and receptor) are important to the virus transmission and virulence. Through inhibiting anyone of several protein for a higher active therapy, the severity of the infection will be decreased [14], [15], [16]. Therefore, the inhibitory effect of some compounds to these proteins suggests to give protection of the virus recognition. Recently, the research on finding the best protease inhibitor for SARS-CoV-2 treatment has become more comprehensive in silico model using the crystal structure of the protease-domain inhibitor complex. This approach of in silico study is still challenging to find more accurate candidates efficiently with minimal adverse effects.

Natural plant medicine has been rich source of active secondary metabolite that has had a pivotal role in treating and preventing some diseases [17]. In addition, the use of natural plant medicine also could be more easily utilized by the people [18]. Therefore, we evaluated the docking interaction of several Indonesia natural plant medicine such as Alpinia galanga and Citrus sinensis (L.) against five target protein, spike glycoprotein, the 3CL protease SARS-CoV-2 active target, PD-ACE2, and 2019-nCoV PLpro is needed. Hopefully, these findings can be used as a guide in the developing of new drug candidates in the COVID-19 prevention with daily consumption without any side effects.

Materials and Methods

Molecular docking

The Protein Data Bank (PDB) was utilized to retrieve the crystal structure of the five SARS-CoV-2 viral proteins; main protease or chymotrypsin-like protease (3CLpro, PDB ID:6LU7), papain-like protease (PLpro, PDB ID:4OVZ), spike glycoprotein (s-glycoprotein PDB ID:6VSB), and PD-ACE-2 (PDB ID:6VV1) having resolution < 2 Å, R-Value Free < 0.30, R-Value Work < 0.25. Before testing the ligands against SARS-CoV-2 target proteins, the structures of the small molecules were optimized using the classical MM2 force field. The YASARA software was used to prepare the protein before docking simulation (www.yasara.org/viewdl.htm). The chemical structure of all compounds was obtained from PubChem and prepared using ChemAxon (www.chemaxon.com/marvin/download-user.html). AutoDock Vina program was used for simulation of molecular docking. Furthermore, the visualization of docking simulation in this study was determined under PyMol www.pymol.org (Figure 1).
Results and Discussion

Molecular docking study of secondary metabolite of Alpinia galanga and Citrus sinensis peels extract

Alpinia galanga and Citrus sinensis have various metabolite compounds that are supposed to have bioactivity to inhibit the spreading of SARS-CoV-2. They are Galangin, Kaempferitrin, and ACA for Alpinia galanga and for Citrus sinensis they are Hesperidin, Hesperitin, Naringenin, Nobiletin, and Tangeretin. All ligands from Alpinia galanga and Citrus sinensis metabolite compounds have been targeted to the SARS-CoV-2 protein using docking studies to combat SARS-CoV-2 protein interaction with other cells in human body. The Docking score between the four SARS-CoV-2 proteins...
The docking score from metabolite compounds of Alpinia galanga and Citrus sinensis compared to Chloroquine and Remdesivir used as standard compounds because they are well known that have bioactivity to inhibit SARS-CoV-2 spreading. From the data docking score, Hesperidin has the lowest docking score compared all compounds except in 2019nCov PLPro protein, which mean the more negative the docking score, the easier interaction between the ligand and the SARS-CoV-2 protein target happen. Hesperidin has docking score of -18.077, -25.3755, and -20.3862 to the Spike glycoprotein, SARS Cov-2 PD-ACE2 and 2019nCov PLPro protein.

Table 1: Binding energy of representative compound with four SARS-CoV-2 pivotal protein

Compound	Formula	Docking score (Kcal/mol)	Spike glycoprotein	SARS Cov-2 PD-ACE2	2019nCov PLPro
Alpinia galanga					
Galangin	C₁₅H₁₀O₅	-13.6435	-17.8989	-13.1661	-9.6039
ACA	C₁₃H₁₄O₄	-8.7356	-18.5500	-12.1135	-18.3345
Citrus sinensis					
Hesperidin	C₁₅H₁₀O₅	-10.7967	-19.0874	-13.8868	-10.9538
Naringenin	C₁₅H₁O₅	-10.6489	-20.1127	-14.1507	-15.3689
Nobiletin	C₂₁H₂₂O₈	-14.1871	-23.1904	-18.1176	-9.7388
Tangeretin	C₂₀H₂₀O₇	-13.1613	-21.2513	-17.3559	-14.7756
Chloroquine	C₁₈H₂₆CIN	-17.6572	-19.2622	-14.8980	-14.8952
Remdesivir	C₂₇H₃₅N₆O₈	-12.5798	-23.1358	-20.3354	-16.7460

Figure 3: Direct protein target of (a) naringenin (b) nobiletin (c) tangeretin (d) hesperidin (e) Hesperetin (f) 1’-acetoxychavicol acetate (g) galangin and (h) kaempferitin
respected receptor of spike glycoprotein, 3CL protease Sars Cov-2, and PD-ACE2, respectively. In addition, ACA have the lowest docking score of -18.3345 toward 2019nCov PLPro. The lower of the docking score indicated that the lower energy required for a compound to bind/interact with another compounds [19]. Hesperidin also has lower docking score compared to Chloroquine and Remdesivir. RMSD calculation was used to determine how well specific docking/scoring combination pose and score ligand in the pterin site. In this study, all off docking scores have RMSD value under 2 Å depending on ligand size. The RMSD value 1.5–2 Å are considered the good performed of docking [20]. From the docking studies, Hesperidin can have great ability to interact with SARS-Cov-2 protein, so it is a potential candidate to inhibit the spreading of SARS-Cov-2 (Figure 2 and Table 2).

Direct protein target and network analysis of Alpinia galanga and Citrus sinensis (L.) secondary metabolite and COVID-19 regulatory genes

The molecular target that regulated between secondary metabolite of Alpinia galanga and Citrus

![Figure 4: (a) Venn diagram of Alpinia galanga and Citrus sinensis (L.) secondary metabolite protein targets towards COVID-19. (b) Interaction of 2 genes that were regulated by Alpinia galanga and Citrus sinensis (L.) secondary metabolite and related to COVID-19](image)

![Figure 5: Protein network of genes that regulate of isolate compound Alpinia galanga dan Citrus sinensis (L.)](image)
Table 2: RMSD score of representative compound with four SARS-CoV-2 pivotal protein

Compound	Formula	RSDM (Å)				
		Spike glycoprotein	3CL protease	PD-ACE2	2019nCoV	PLPro
Alpinia galanga	C_{19}H_{24}O_{7}	1.8745	1.6453	1.7607	1.6308	
Galangin	C_{19}H_{24}O_{7}	0.9899	1.3783	1.6238	1.0760	
Kaempferitin	C_{14}H_{10}O_{5}	1.7858	1.9183	1.7923	1.7199	
Citrus sinensis	C_{14}H_{10}O_{5}	1.6869	1.7676	1.4388	1.5290	
Hesperitin	C_{14}H_{10}O_{5}	1.8633	0.7263	1.6810	1.4458	
Naringenin	C_{14}H_{10}O_{5}	1.3104	1.6419	1.4508	1.8059	
Nobiletin	C_{14}H_{10}O_{5}	1.6980	1.7968	1.8444	1.5433	
Tanggeterin	C_{14}H_{10}O_{5}	1.2411	0.9760	1.0197	1.4599	

C. sinensis (L.) and gene related COVID-19 was analyzed using bioinformatic approach. The direct target protein of all secondary metabolite was collected using STITCH. From STITCH analyses, we obtained 57 direct target protein of secondary metabolite (Figure 3). Thus, the use of A PubMed (keyword "Severe acute respiratory syndrome coronavirus 2") resulted in 23 genes associated with COVID-19. Interestingly, under venn 2.1. analyses, we obtained 2 genes including C-C motif chemokine 2 (CCL2) and Vascular endothelial growth factor A (VEGFA) that was regulated by Alpinia galanga and Citrus sinensis (L.) and related to COVID-19 (Figure 4a and b). VEGFA is genes that play important role for viral infection and its associated with promotion of SARS-CoV viral entry [21], [22], [23]. In addition, CCL2 significantly enhances the pathogenesis and replication of viruses [24], [25]. Based on bioinformatic study indicated that secondary metabolite of Alpinia galanga and Citrus sinensis (L.) can prevent from SARS-CoV-2 infection through VEGFA and CCL2 regulation (Figure 5).

Conclusion

In summary, all the ten secondary metabolite compounds showed better binding affinity than the positive standard. Form the bioinformatic study conducted, it could be understood that in most of compounds the interaction of the VEGFA and CCL-2 gene that regulates the viral infection and viral replication. Furthermore, the most effective hesperadin, naringenin, and galangin as an antiviral agent could be tested against COVID-19.

References

1. Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281-6.
14. Salvatori G, Luberto L, Maffei M, Aurisicchio L, Aurisicchio L, Roscilli G, et al. SARS-CoV-2 spike protein: An optimal immunological target for vaccines. J Transl Med. 2020;18(1):222. https://doi.org/10.1186/s12967-020-02392-y

15. Muhammed Y. Molecular targets for COVID-19 drug development: Enlightening Nigerians about the pandemic and future treatment. Biosaf Heal. 2020;2(4):210-6. https://doi.org/10.1016/j.bsheal.2020.07.002
PMid:32838282

16. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459-68. PMid:32353859

17. Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites. 2019;9(11):258. https://doi.org/10.3390/metabo9110258
PMid:31683833

18. Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Neurol. 2014;4(1):1777. https://doi.org/10.3389/fnhar.2013.00177
PMid:24454289

19. Pantsar T, Poso A. Binding affinity via docking: Fact and fiction. Molecules. 2018;23(8):1899. https://doi.org/10.3390/molecules23081899
PMid:30061498

20. Sambantham S, Radha M, Paramasivam A, Anandan B, Malathi R, Chandra SR, et al. Molecular mechanism underlying hesperetin-induced apoptosis by in silico analysis and in prostate cancer PC-3 cells. Asian Pac J Cancer Prev. 2013;14(7):4347-52. https://doi.org/10.7314/apjcp.2013.14.7.4347
PMid:23992001

21. Mee CJ, Farquhar MJ, Harris HJ, Ramma W, Ahmed A, Maurel P, et al. Hepatitis C virus infection reduces hepatocellular polarity in a vascular endothelial growth factor-dependent manner. Gastroenterology. 2016;138(3):1134-42. https://doi.org/10.1053/j.gastro.2009.11.047
PMid:19944696

22. Alkharasah KR. VEGF upregulation in viral infections and its possible therapeutic implications. Int J Mol Sci. 2018;19(6):1642. https://doi.org/10.3390/ijms19061642
PMid:29865171

23. Turkia M. COVID-19 as an endothelial disease and its relationship to vascular endothelial growth factor (VEGF) and iodide. SSRN Electron J. 2020; Jun (03). https://doi.org/10.2139/ssrn.3604987

24. Sabbatucci M, Covino AA, Purificato C, Mallano A, Federico M, Lu J, et al. Endogenous CCL2 neutralization restricts HIV-1 replication in primary human macrophages by inhibiting viral DNA accumulation. Retrovirology. 2015;12(1):4. https://doi.org/10.1186/s12977-014-0132-6
PMid:25608886

25. Angela Covino D, Sabbatucci M, Fantuzzi L. The CCL2/CCR2 axis in the pathogenesis of HIV-1 infection: A new cellular target for therapy? Curr Drug Targets. 2015;17(1):76-110. https://doi.org/10.2174/138945011701151217110917
PMid:26687605