Semienzymatic Cyclization of Disulfide-rich Peptides Using Sortase A*§

Xinying Jia§1, Soohyun Kwon§1, Ching-I Anderson Wang§, Yen-Hua Huang§, Lai Y. Chan¶, Chia Chia Tan§, K. Johan Rosengren‡, Jason P. Mulvenna‡, Christina I. Schroeder§3, and David J. Craik§4

From *QIMR Berghofer Medical Research, Brisbane 4000, Queensland, Australia, the ‡Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia, and the §School of Biomedical Sciences, University of Queensland, Brisbane 4072, Queensland, Australia

Disulfide-rich cyclic peptides have generated great interest in the development of peptide-based therapeutics due to their exceptional stability toward chemical, enzymatic, or thermal attack. In particular, they have been used as scaffolds onto which bioactive epitopes can be grafted to take advantage of the favorable biophysical properties of disulfide-rich cyclic peptides. To date, the most commonly used method for the head-to-tail cyclization of peptides has been native chemical ligation. In recent years, however, enzyme-mediated cyclization has become a promising new technology due to its efficiency, safety, and cost-effectiveness. Sortase A (SrtA) is a bacterial enzyme with transpeptidase activity. It recognizes a C-terminal penta-amino acid motif, LPXTG, and cleaves the amide bond between Thr and Gly to form a thioacetyl-linked intermediate. This intermediate undergoes nucleophilic attack by an N-terminal poly-Gly sequence to form an amide bond between the Thr and N-terminal Gly. Here, we demonstrate that sortase A can successfully be used to cyclize a variety of small disulfide-rich peptides, including the cyclotide kalata B1, α-conotoxin Vc1.1, and sunflower trypsin inhibitor 1. These peptides range in size from 14 to 29 amino acids and contain three, two, or one disulfide bond, respectively, within their head-to-tail cyclic backbones. Our findings provide proof of concept for the potential broad applicability of enzymatic cyclization of disulfide-rich peptides with therapeutic potential.

Significance: SrtA-mediated cyclization is an alternative to native chemical ligation for the cyclization of small peptides of therapeutic interest.

Disulfide-rich cyclic peptides are generating great interest in the field of drug design because of their remarkable stability toward enzymatic, thermal, or chemical attack (1). Additionally, anecdotal evidence of some of them being orally bioavailable in indigenous medicine applications (2) has recently received support from studies demonstrating oral activity of engineered cyclic peptides in animal pain models (3, 4). Several classes of cyclic peptides, including the sunflower trypsin inhibitors and cyclotides, have now been discovered in a variety of plant species (5). In addition to the plant-derived cyclic peptides, disulfide-rich peptides isolated from cone snails, including α-conotoxins, have successfully been cyclized (3, 6) and are showing promise as potential treatments for neuropathic pain (3).

Sunflower trypsin inhibitor 1 (SFTI-1)§ comprises 14 amino acids with a head-to-tail cyclized backbone. It was isolated from sunflower seeds and specifically inhibits trypsin activity at 0.1 nM (7), which makes it the smallest and most potent serine proteinase inhibitor known. It was also reported to have inhibition activity against the epithelial serine protease matriptase at subnanomolar concentration (8). Its structure consists of two antiparallel β-strands connected by an extended loop and a sharp hairpin turn containing a cis-proline residue. The β-strands are constrained by a single disulfide bond, which stabilizes the molecule and divides it into two regions: the active site loop and the cyclization loop (7) (Fig. 1A).

Cyclotides are characterized by the combination of head-to-tail backbone cyclization and six conserved Cys residues forming a distinctive disulfide linkage pattern in which one disulfide bond passes through a ring formed by two other disulfide bonds (9, 10) (Fig. 1B). The combination of a cyclic backbone and a knotted arrangement of three disulfide bonds is known as the...
Sortase A as a Tool for Cyclizing Disulfide-rich Peptides

cyclic cystine knot motif, and this motif is believed to be responsible for the exceptional stability of cyclotides toward chemical, enzymatic, or thermal degradation (1). Although thought to have a natural function as defense molecules in plants via their pesticidal activities (11–13), cyclotides possess a range of pharmaceutically interesting biological activities, including utoertonic (2), anti-HIV (14), antimicrobial (15), and insecticidal (11, 16) activities, and are cytotoxic to tumor cells (17, 18). Thousands of cyclotides are thought to exist in nature, and more than 250 sequences have been described so far (see the CyBase Web site) (19), making them one of the most abundant plant protein families discovered.

Cyclotides are able to accommodate the synthetic introduction of a range of biologically active sequence motifs in the backbone loops between the conserved Cys residues while retaining thermal, chemical, and enzymatic stability. This tolerance to sequence substitutions makes them ideal scaffolds for the development of stable peptide-based drugs incorporating epitopes of therapeutic value. For example, a kB1 hybrid, with an anti-angiogenic epitope incorporated into loop 3, combined anti-angiogenic activity with the native stability of kB1 (20). Likewise, molecules possessing activity against foot-and-mouth disease (21), inhibitory activity against β-trypptase and human leukocyte elastase (22), angiogenic activity (23), and the ability to antagonize intracellular p53 degradation (24) have also been achieved by grafting relevant bioactive epitopes into the cyclotide MCoTI-I or MCoTI-II. The capacity to target intracellular sites is consistent with a range of recent biophysical studies demonstrating the ability of disulfide-rich cyclic peptides to internalize into cells (24–28).

As well as being valuable scaffolds, naturally occurring cyclic peptides, such as cyclotides and SFTI-1, have inspired the concept of using artificial head-to-tail backbone cyclization as a stabilizing strategy for peptides and proteins of therapeutic interest (3, 6). For example, Clark et al. (3) showed that cyclization of α-conotoxin Vc1.1, a potential neuropathic pain treatment, endowed it with oral activity. Thus, great interest has been shown in the development of cost-effective and efficient methods for the N- to C-terminal backbone cyclization of synthetic peptides, such as cyclotides and SFTI-1, containing one, two, or three disulfide bonds, respectively, by SrtA without the need for a thioester linker and using Fmoc chemistry. This study provides a proof of concept that SrtA-mediated ligation can be utilized to cyclize disulfide-rich peptides ranging from the simple one-disulfide-containing SFTI-1 to the complex cyclic cystine knot-containing cyclotide structure of kB1 while retaining the native disulfide bond connectivity that is vital for the stability of these proteins. Fig. 1D summarizes the cyclization strategy for kB1.

EXPERIMENTAL PROCEDURES

Peptide Synthesis—The linear peptides [GGG]kB1[TGG], [G]Vc1.1[GLPETGGS], and [GG]SFTI-1[LPETGG] were synthesized by solid-phase peptide synthesis using an automatic peptide synthesizer (Symphony®, Protein Technologies, Inc.) following standard Fmoc chemistry on a 2-chlorotrityl chloride resin. Acetamidomethyl (Acm) protecting groups were used on the N- to C-terminal backbone cyclization of synthesized or expressed proteins (29, 30). In the case of cyclic Vc1.1 (cVc1.1), the termini of the naturally occurring 16-residue peptide were covalently linked using a 6-amino acid linker, as illustrated in Fig. 1C (3).

Currently, the most widely used strategy for backbone cyclization of synthetic peptides is native chemical ligation (NCL) (31, 32), which utilizes an N-terminal cysteine and a functionalized C terminus to form a thioester-linked intermediate that undergoes an acyl migration to form a native peptide bond (32). In general, peptides are synthesized using solid phase peptide synthesis, using either t-butoxycarbonyl or Fmoc protection. Despite the usefulness of NCL for splicing or cyclizing protein, there is still a demand for alternative methods of amide bond formation that are chemoselective, rapid, cheap, safe, and waste-free (30). Moreover, the requirement for an N-terminal cysteine and a C-terminal thioester in NCL is not always compatible with Fmoc solid phase peptide synthesis or recombinant expression. Accordingly, a number of different approaches to backbone cyclization have been developed (29), including expressed protein ligation (33, 34), intein-mediated protein trans-splicing (35), and genetic code reprogramming (36).

Recently, a family of thiol-containing transpeptidases, known as the sortases, were found to successfully cyclize linear proteins (37–40). Sortases are found in most Gram-positive bacteria, where their primary function is to attach surface proteins to the bacterial cell wall (41). This ligation reaction has been exploited for a variety of protein engineering purposes, in most cases utilizing sortase A (SrtA) from Staphylococcus aureus (42). SrtA recognizes a 5-residue sequence motif, LPXTG, and cleaves the peptide bond between the Thr and Gly residues, forming an acyl enzyme intermediate between a cysteine at the active site of SrtA and the carboxylate at the truncated C terminus of the substrate (43, 44). Although in a natural system, this covalent intermediate is resolved by nucleophilic attack from a pentaglycine side chain in a peptidoglycan precursor, a variety of glycine-based nucleophiles can activate SrtA-catalyzed transpeptidation (38). The result is the efficient attachment of various moieties to the protein substrates, and this process has been applied to site-specific protein labeling (45), PEGylation (46), protein thioester generation (47), and protein-protein fusion (48). When such glycine-based nucleophiles originate from the N terminus of the substrate, intramolecular transpeptidation reactions occur to yield covalently closed (circular) polypeptides by amide bond formation between the two termini (38–40). So far, this approach has been examined only for a limited number of possible substrates and has not been explored for disulfide-rich peptides.

In the current study, we demonstrate the efficient enzymatic cyclization of disulfide-rich peptides, including SFTI-1, cVc1.1, and kalata B1 (kB1), containing one, two, or three disulfide bonds, respectively, by SrtA without the need for a thioester linker and using Fmoc chemistry. This study provides a proof of concept that SrtA-mediated ligation can be utilized to cyclize disulfide-rich peptides ranging from the simple one-disulfide-containing SFTI-1 to the complex cyclic cystine knot-containing cyclotide structure of kB1 while retaining the native disulfide bond connectivity that is vital for the stability of these proteins. Fig. 1D summarizes the cyclization strategy for kB1.
Sortase A as a Tool for Cyclizing Disulfide-rich Peptides

JOURNAL OF BIOLOGICAL CHEMISTRY

resuspended in ice-cold lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, and 10% glycerol) and concentrated by using a centrifugal concentrator (10 kDa). The SrtA was then stored at −80 °C until further use. The protein concentration was calculated by its extinction coefficient at 280 nm.

Oxidative Folding—The linear precursor [GGG]kB1[TGG] was oxidized in 50% isopropyl alcohol (v/v), 0.1 M NH₄HCO₃ with 1 mM reduced glutathione at pH 8 for 20 h at room temperature (51). The progress of oxidation was monitored by analytical reversed-phase high performance liquid chromatography (RP-HPLC) with a gradient from 0 to 50% ACN (0.05% TFA) in 50 min at a flow rate of 0.3 ml/min using an analytical C18 column (Agilent ZORBAX 300SB-C18, 5 μm, 2.1 × 150 mm). The oxidation yield was calculated based on HPLC profile. The mixture was then purified by RP-HPLC using a 0.5% gradient, and the molecular weight was confirmed by mass spectrometry. Native kB1 was isolated from Oldenlandia affinis as described previously (9, 52).

Both linear precursor [G][Vc1.1][GLPETGG5] and cyclic reduced [G][Vc1.1][GLPET] were oxidized in 0.1 M NH₄HCO₃ at 0.1 mg/ml concentration for 24 h to form disulfide bond Cys₁—Cys₃. Purified Vc1.1 (both linear and cyclic) with one disulfide bond was then dissolved in 50% acetic acid to a final concentration of 0.5 mg/ml under N₂. Excess iodine dissolved (10 eq with respect to the Acm-protected Cys) in 50% acetic acid was added until the color of the reaction became yellow, and the reaction was left at room temperature for 24 h. The reaction was quenched by the addition of ascorbic acid until the solution became colorless, followed by RP-HPLC purification using a gradient of 0–60% acetonitrile in 60 min.

Cyclization—The concentration of modified kB1 was determined by its molar extinction coefficient at 280 nm using NanoDrop2000c (Thermo Scientific). Linear oxidized [GGG]kB1[TGG] and linear precursor [GGG]SF1-TI-[LPETGG] (150 μM) were incubated with SrtA (50 μM) in the reaction buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 10 mM CaCl₂) at 37 °C until the reaction was completed. The cyclization progress was monitored using RP-HPLC with a gradient from 0 to 50% ACN (0.05% TFA) in 50 min at a flow rate of 1 ml/min using an analytical C18 column (GraceSmart™ RP18, 5 μm, 4.6 × 150 mm). After completion of cyclization, the reaction was loaded to a semipreparative C18 column (Phenomenex, Jupiter 5UC18, 300 Å, 250 × 10.0 nm, 5 μm), eluted with a gradient from 36 to 45% ACN (0.05% TFA) in 30 min at a flow rate of 3 ml/min. The molecular mass of purified cyclic [GGG]kB1[T] was confirmed by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF). The fractions showing the correct mass were lyophilized for further assays. The concentration of Vc1.1 was also determined as described above. 10 μM linear precursor [G][Vc1.1][GLPETGG5] was incubated with 0.2 μM SrtA in the reaction buffer containing 10 mM TCEP for 24 h at 4 °C. SrtA was then removed from the sample using a 5-ml nickel-nitrioltriacetic acid FF column (GE Healthcare), and the flow-through containing cyclic reduced [G][Vc1.1][GLPET] was collected and purified by RP-HPLC for oxidation.

Because there were no aromatic residues present, the concentration of SFTI-I was determined at 214 nm using the NanoDrop2000c (Thermo Scientific) UV-visible function with the extinction coefficient calculated based on the equation, 

\[ \varepsilon_{214 \text{ nm}} = (n_{AA} - 1 + n_N + n_Q)2846 + n_F 7200 + n_H 6309 + \]

FIGURE 1. A, representation of the sequence and structure (PDB code 1JBL) of native SFTI-1; B, native kB1 (PDB code 1NBI), which is the prototypic cyclotide; C, native linear Vc1.1 (PDB code 2H8S), which has been cyclized by a 6-amino acid linker native SFTI-1; [D], native kB1 (PDB code 1NB1), which has been cyclized by a 6-amino acid linker, was as described by Popp et al. (50). Briefly, an overnight culture of Escherichia coli BL21 (DE3) transformed with SrtA plasmid was cultured in the presence of kanamycin (50 µg/ml) until A₆₀₀, reached −0.7. The protein expression was induced by adding isopropyl β-D-thiogalactopyranoside to a final concentration of 1 mM for 3 h at 37 °C. The cells were then harvested by centrifugation at 7000 × g at 4 °C for 10 min. Cells were then resuspended in ice-cold lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 25 mM imidazole, and 10% glycerol) and lysed by passing through a cell disrupter (TS Series Bench Top) operating at 26,000 p.s.i. The cell debris was removed by centrifugation at 12,000 × g at 4 °C for 30 min. The lysate was subjected to immobilized metal ion affinity chromatography using a 5-ml nickel-nitrioltriacetic acid FF column (GE Healthcare). The column was washed extensively with lysis buffer after sample loading, and SrtA was eluted with a linear gradient over 10 column volumes using elution buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, and 500 mM imidazole). Fractions containing SrtA were buffer-exchanged (50 mM Tris-HCl, 150 mM NaCl, and 10% glycerol) and concentrated by using a centrifugal concentrator (&lt;10 kDa). The SrtA was then stored at −80 °C until
Sortase A as a Tool for Cyclizing Disulfide-rich Peptides

$V_{w}22735 + V_{s}5755$ (53). $150 \mu M$ [GGG]SFT1-1[LPETGG] and 50 $\mu M$ SrtA were incubated in the reaction buffer at $37 ^\circ C$ with pH adjusted to 8.5 to form a disulfide bond at the same time. The progress of cyclization was monitored using analytical RP-HPLC with a gradient from 0 to 50% ACN (0.05% TFA) in 50 min at a flow rate of 1 ml/min using an analytical C18 column (GraceSmart™ RP18, 5 $\mu m$, 4.6 $\times$ 150 mm).

**Nuclear Magnetic Resonance Analysis**—Cyclo-[GGG]kB1[T] was dissolved in 90% H$_2$O, 10% D$_2$O (v/v) or 100% D$_2$O to a final concentration of 1 mM and pH 6.1 (54). Cyclo-[G]Vc1.1[GLPET] and cyclo-[GG]SFT1-1[LPET] were dissolved in 90% H$_2$O, 10% D$_2$O (v/v) to a final concentration of $\sim$1 mM and pH 3.1. All two-dimensional nuclear magnetic resonance (NMR) spectra were acquired at 298 K. Spectra recorded for assignments and Ho secondary chemical shift analysis included TOCSY with an 80-ms mixing time and NOESY with a 200-ms mixing time. All spectra were acquired on a Bruker Avance 600-MHz NMR spectrometer equipped with a cryogenically cooled probe (Bruker, Karlsruhe, Germany). Water suppression for two-dimensional TOCSY and two-dimensional NOESY spectra were achieved by using excitation sculpting (55). Spectra were recorded with 2048 data points in the direct $F_2$ dimension and 600 increments in the indirect $F_1$ dimension. Additional spectra recorded for cyclo-[GGG]kB1[T] to be used in full structure calculations were NOESY with a 100-ms mixing time as well as E.COSY (56), DQF-COSY, and $^{13}$C HSQC to produce the carbon chemical shifts. All spectra were processed using Topspin (Bruker) and analyzed by CCPNMR (57) and Xeasy (58). The temperature coefficients were determined from recording TOCSY spectra from 283 to 303 K in steps of 10 K. Chemical shifts were referenced to internal 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) at 0.0 ppm (59). The peaks in the NOESY spectra with mixing times of 100 and 200 ms were manually picked, intrresidual and sequential NOEIs were assigned, and a full list of interproton distances was generated using the AUTO function in CYANA (tolerances used for CYANA were set to 0.02 ppm for both indirect and direct $^1$H dimension) (60). Several rounds of AUTO, including additional restraints, such as disulfide bonds, hydrogen bonds, and dihedral angle restraints derived from TALOS+, were run to ensure correct peak assignment. H$_\alpha$, HN, Ca, and C$\beta$ chemical shifts derived from $^1$H-$^1$H NOESY and $^1$H-$^1$C HSQC were used to generate $\phi$ and $\psi$ backbone dihedral angles using TALOS+ (61). The ANNEAL function in CYANA was used to perform 10,000-step torsion angle dynamics to generate an ensemble from which 20 with the lowest penalty function were chosen for further analysis. Several rounds of ANNEAL were run to resolve distance and dihedral constraint violations. Using protocols from the RECOORD database (62), 50 structures were calculated using CNS (63) with force fields distributed with Haddock version 2.0 (64) and refined in a water shell (65) as described previously (66). A set of 20 structures with no NOE violations of greater than 0.3 $\&$ and dihedral violations greater than 3.0° was chosen for MolProbity analysis (67). MOLMOL (68) was used for generating figures and final superimposition.

**Hemolytic Activity Assay on [GGG]kB1[T]**—The hemolytic assay was conducted as described previously (69). Briefly, erythrocytes were isolated from human blood and washed in phosphate-buffered saline (PBS, pH 7.4) with repeated centrifugation at 1500 $\times$ g. The hemolytic activities of cyclo-[GGG]kB1[T], linear oxidized [GGG]kB1[TGG], and kB1 were determined with eight concentration points from 300 to 1.17 $\mu M$ by serial dilution with a 2-fold interval with a final volume of 20 $\mu l$ well in a 96-well plate. Triton X-100 solution (1% (v/v), 20 $\mu l$ was used as a positive control to achieve the 100% lysis, and PBS solution (20 $\mu l$) was used as a negative control. 100 $\mu l$ of erythrocyte stock solution was added to each well and incubated at 37 $^\circ C$ for 1 h. After centrifugation of intact cells from the 96-well plate, the supernatant of each well was measured by visual absorption spectroscopy at 415 nm. Each experiment was performed in triplicate.

**Serum Stability Assay on [GGG]kB1[T]**—The stability of cyclo-[GGG]kB1[T] in human serum was evaluated using a method described previously (23). Briefly, human serum from male AB plasma (Sigma-Aldrich) was centrifuged at 17,000 $\times$ g for 10 min to remove the lipid component. The resultant supernatant was collected and incubated for 15 min at 37 $^\circ C$ before the assay. Cyclo-[GGG]kB1[T], linear oxidized [GGG]kB1[TGG], and kB1 were tested at a final concentration of 20 $\mu M$. Stock solutions of peptides were diluted 1:10 with human serum, whereas the dilution with PBS was a negative control and a linear 12-mer peptide tested in parallel was a positive control of the peptidase activity of the serum. Controls and test peptides were incubated at 37 $^\circ C$, and 40 $\mu l$ of samples was taken for measurements at time points of 0, 1, 2, 3, 5, 8, 11, and 24 h. Serum proteins in samples were denatured with 40 $\mu l$ of 6 M urea at 4 $^\circ C$ for 10 min and precipitated with an additional 40 $\mu l$ of 20% trichloroacetic acid at 4 $^\circ C$ for 10 min. The supernatant containing peptides was recovered by centrifugation at 17,000 $\times$ g for 10 min. 100 $\mu l$ of supernatant from each time point of the serum-treated and PBS-treated (control) peptides was injected and analyzed in triplicate on an analytical RP-HPLC column (Phenomenex) at a flow rate of 0.3 ml/min with a gradient of 0–50% ACN over 50 min. The retention time for each peptide was determined by PBS control at the zero time point. The stability of each peptide at each time point was calculated as the percentage of the integrated peak area of the serum-treated peptide over that of the 0-h serum-treated peptide on RP-HPLC at 215 nm.

**RESULTS**

**Protein Production and Purification**—Linear precursors, with a SrtA recognition motif (LPXTG) at the C terminus and an oligoglycine motif at the N terminus (full sequences as follows: [GGG]kB1[TGG], GGGGETCVGTTNPGCTC-SWYPVCRTNGLPVTGG; [G]Vc1.1[GLPETGS], GCSSD-DPRCNYDHPEICGLPETGGS; [GG]SFT1-1[LPETG], GGG-RCTKSIPPICFPDLPETG (with the native sequences in boldface type)), were assembled using automated Fmoc chemistry, cleaved from the resin with TFA, and purified using RP-HPLC. No oxidation of cysteine residues was observed during the purification process, as determined using mass spectrometry. The molecular mass and purity were confirmed using mass spectrometry and analytical RP-HPLC, respectively.

**Oxidation and Cyclization of [GGG]kB1[TGG]**—In preliminary experiments two approaches were used to obtain oxidized,
cyclic kB1 using SrtA-mediated cyclization. First, linear reduced [GGG]kB1[TGG] was cyclized using the SrtA reaction buffer but with the addition of a 2 mM concentration of the reducing agent TCEP. The peptide was then oxidized after completion of the cyclization reaction. Second, the linear peptide [GGG]kB1[TGG] was oxidized prior to cyclization with SrtA, which proceeded without the addition of reducing agent to the reaction buffer. Cyclization prior to oxidation resulted in higher yields of cyclic reduced peptide as determined by RP-HPLC (80%; data not shown), but subsequent oxidative refolding yielded several isomers (10% yield for each isomer; data not shown), presumably due to misfolding during the oxidation reaction. Oxidation prior to cyclization resulted in a predominance of correctly folded peptide, and this approach was therefore used for subsequent experiments.

The oxidative folding of the linear precursor [GGG]kB1[TGG] was monitored by RP-HPLC (Fig. 2A), and the yield of correctly folded product was ~27% based on RP-HPLC peak integration. Following oxidative folding, linear [GGG]kB1[TGG] was purified by RP-HPLC, and the correct folding was confirmed by NMR analysis (data not shown).

Cyclization of 150 μM linear oxidized [GGG]kB1[TGG] with 50 μM SrtA was monitored over 24 h using RP-HPLC (Fig. 2B). The reaction was not extended beyond 24 h due to the possibility of a competing hydrolysis reaction in which SrtA irreversibly hydrolyzes the LPVTG motif (70). After 24 h, ~49% of linear, oxidized [GGG]kB1[TGG] was converted to the cyclic product (highlighted in Fig. 2B). MALDI-TOF analysis of the highlighted peak fraction showed a monoisotopic mass (3162.92 Da) corresponding to that of cyclo-[GGG]kB1[T] (Fig. 2C), which was purified to >95% purity. Interestingly, the elution time of this peak (40.8 min) was similar to that of native kB1 (Fig. 2D) despite the additional amino acids in the sequence. Apart from this peak, two other peaks, at ~37 and 40 min, appeared to be intermediate species in the cyclization reaction because their abundance over time was negatively correlated with the abundance of correctly folded cyclo-[GGG]kB1[T] (Fig. 2B). A small peak appearing at ~42.8 min contained a
Sortase A as a Tool for Cyclizing Disulfide-rich Peptides

Characterization of the Cyclo-[GGG]kB1[T] by NMR—The NMR signals of cyclo-[GGG]kB1[T] were well dispersed in the amide proton region, indicating that the peptide is folded and has a well-defined structure. The individual amino acid spin systems were readily assigned using the sequential assignment procedure based on TOCSY and NOESY spectra (71). Cyclization was confirmed based on observation of a sequential αH-HNj+1 NOE between Thr30 and Gly31, indicative of the amide linkage of the C-terminal LPVT and N-terminal GGG motif (Fig. 3).

Chemical shifts are extremely sensitive to the local chemical environment, and Hα chemical shifts were thus used to compare the structure of cyclo-[GGG]kB1[T] with that of native kB1. Overall, the chemical shift differences between the two molecules are minimal (Fig. 3). With the exception of residues 1 and 27–33 (numbering system in Fig. 3), which are in loop 6 and very close to or part of the SrtA sorting motif, no other cyclo-[GGG]kB1[T] residue exhibited significant deviations from the corresponding residue in native kB1. The very small shifts from random coil values for residues 1 and 27–33 of cyclo-[GGG]kB1[T] indicate that this region is disordered, and this was confirmed in the three-dimensional structure of cyclo-[GGG]kB1[T] (Fig. 4A). The solution structure was calculated using CYANA (60) followed by refinement in a water shell using CNS (63) based on 388 NOE distance restraints; 53 dihedral angle restraints; and five hydrogen bonds derived from temperature coefficient data (Table 1). The 20 conformers with the lowest energy superimposed with a backbone root mean square deviation of 0.53 ± 0.14 Å across residues 1–24 (Fig. 4A). Comparison of the cyclo-[GGG]kB1[T] structure with that of native kB1 (PDB code 1NB1) shows them to be very similar except for the more flexible loop 6 of cyclo-[GGG]kB1[T] (Fig. 4B).

Figure 3. Hα secondary shift comparison of native kB1 (empty squares with dashed line) and cyclo-[GGG]kB1[T] (filled squares with solid line). The Hα secondary shifts were calculated by subtracting random coil shifts (8) from the experimental Hα shifts. The box highlights loop 6, where the extra residues TGGG were introduced by the SrtA-mediated cyclization.

To assess the effects of SrtA cyclization on the novel kB1 analog, the hemolytic activity of cyclo-[GGG]kB1[T] and linear oxidized [GGG]kB1[TGG] was determined and compared with that of the native peptide. Compared with native kB1, both peptides exhibited significantly less hemolytic activity (Fig. 5A). After 24 h of incubation, 50 μM native kB1 lysed 64% of human erythrocytes, whereas in the same time period, only 6 or 2% of erythrocytes were lysed by the same concentration of cyclo-[GGG]kB1[T] or linear oxidized [GGG]kB1[TGG], respectively. The reduced hemolytic activity is consistent with previous mutagenesis studies on kB1, which showed that linearization or strategic replacement of certain residues can abrogate hemolytic activity (72, 73).

To determine the effects of SrtA-mediated cyclization on the stability of the peptide, cyclo-[GGG]kB1[T] was incubated in human serum. Encouragingly, its stability was comparable with that of native kB1, with only a slight reduction in peptide survival observed. After a 24-h incubation, 77.4 and 95.9% of the starting concentration of cyclo-[GGG]kB1[T] and kB1, respectively, was still present (Fig. 5B). Interestingly, 71% of linear oxidized [GGG]kB1[TGG] also remained in human serum after 24 h. In contrast, a linear 12-mer control peptide, without any disulfide bond, was completely degraded within the first 1 h.

**Oxidation and Cyclization of [G]Vc1.1[GLPETGGS]**—α-Conotoxin Vc1.1 was successfully synthesized with a SrtA sorting motif at the C terminus and an additional Gly residue at the N terminus. Acm protecting groups on Cys4 and Cys17 were used for selective disulfide bond formation of Cys11–Cys14 (Fig. 6A). As for cyclo-[GGG]kB1[T], two approaches, namely oxidation prior to cyclization and cyclization prior to oxidation, were attempted to obtain the cyclo-[G]Vc1.1[GLPET]. The former approach gave rise to only a low yield (∼1%) of oxidized product following Acm removal. In contrast, isomerization during oxidative folding was averted by cyclizing the linear precursor [G]Vc1.1[GLPETGGS] prior to oxidation. The cyclization performed in the presence of 10 mM TCEP resulted in one major product with ∼50% yield. The two disulfide bonds in the cyclic reduced [G]Vc1.1[GLPET] were then successfully formed via a two-step oxidation process with ∼15% yield. The linear precursor [G]Vc1.1[GLPETGGS], cyclic reduced [G]Vc1.1[GLPET], and cyclic oxidized [G]Vc1.1[GLPET] (hereafter named cyclo-[G]Vc1.1[GLPET]) showed a change in retention time after each reaction (Fig. 6B). The molecular mass and purity of the desired products for each step were confirmed by MALDI-TOF and RP-HPLC (Fig. 6B).

**NMR Analysis of Cyclo-[G]Vc1.1[GLPET]**—The structure of cyclo-[G]Vc1.1[GLPET] was deduced using secondary Hα chemical shifts determined from TOCSY and NOESY spectra. A comparison of the secondary shifts of cyclo-[G]Vc1.1[GLPET] with both native and chemically cyclized Vc1.1 (3) suggested no significant difference in the overall structure. Cyclization of cyclo-[G]Vc1.1[GLPET] was confirmed by observation of a sequential Hα-HNj+1 NOE between the C and N termini (supplemental Fig. 2).

**SrtA Reaction for SFTI-1**—For this single disulfide-bonded peptide, the SrtA reaction was performed at pH 8.5 to achieve cyclization and oxidation in a one-pot reaction. After 9 h, ∼70% of the linear precursor had been converted to the cyclic oxi-
Sortase A as a Tool for Cyclizing Disulfide-rich Peptides

Stefan P. Forster, Ana R. Demitrijevic, Maria V. Gesi, and Christian W. Simon

FIGURE 4. A, superimposition of the 20 lowest energy structures of cyclo-[GGG]kB1[T] shown in blue with disulfide bonds shown in orange. B, comparison of cyclo-[GGG]kB1[T] in blue with native kB1 in red (PDB code 1NB1) by superimposition of residues 1–24 of cyclo-[GGG]kB1[T] against residues 1–24 of the native kB1 structure. Disulfide bonds are shown in orange, highlighting the similarities between the two structures across loop 1–5 and the increased flexibility of loop 6 by insertion of the SrtA sorting motif. Root mean square deviation across heavy backbone atoms for residues 1–24 of cyclo-[GGG]kB1[T]/1–24 of kB1 is 0.461.

DISCUSSION

Disulfide-rich cyclic peptides offer an attractive framework for the development of stable bioactive peptides with pharmaceutical potential. They display a remarkable degree of functional plasticity and high stability. Accordingly, interest has been shown both in the cyclization of linear disulfide-rich peptides (especially those isolated from venoms) and the development of native cyclotides as therapeutics and in their use as scaffolds for the grafting of pharmacologically relevant epitopes onto the native cyclotide framework (74, 75). A bottleneck in the development of these peptides as potential therapeutics, however, is the production of linear precursors and their subsequent cyclization and folding. NCL (using β-butoxycarbonyl chemistry) has been the preferred strategy for the production of disulfide-rich cyclic peptides, but this approach requires reaction conditions that cannot always be achieved using Fmoc chemistry or recombinantly expressed proteins. We therefore investigated SrtA-mediated cyclization as a mechanism for the increased efficiency of one of the steps in cyclic peptide production, namely head-to-tail cyclization of synthetically produced peptides. Specifically, we explored the possibility of using SrtA to enzymatically cyclize SFTI-1, Vc1.1 (with a linker), and kB1 and showed that SrtA offers an efficient, safe, and cost-effective method for the cyclization of disulfide-rich peptides ranging in size from 14 to 29 amino acids with 1–3 disulfide bonds.

The presence of a native Leu-Pro-Val in loop 6 of kB1 made this peptide an ideal model for cyclization using SrtA. These three residues fortuitously form a part of the penta-amino acid sorting motif, LPXTG, and cyclization was achieved with minimal disruption to the native sequence of kB1. In NCL-based synthesis of kB1, the cyclization and oxidation is carried out in a one-pot fashion. However, the reaction requires a two-step procedure when using SrtA for cyclization, with oxidation occurring either after or before SrtA-mediated cyclization. In our hands, the order of the reaction (i.e. oxidation/cyclization versus cyclization/oxidation) had a significant effect on the yield of correctly folded peptide. Despite the minimal changes introduced in kB1 by SrtA cyclization, no correctly folded peptide was produced when oxidation occurred after cyclization. Small changes in the amino acid composition of cyclotides can have profound effects on the refolding of synthetic forms (6, 20), and it is possible that the introduction of the TGGG amino acid sequence in loop 6 of kB1 had a negative effect on the oxidative refolding of the cyclic form. The proximity of the cyclization point to Cys1 (Fig. 1) might also have adversely affected oxidative folding. The only region of significant structural perturbation in cyclo-[GGG]kB1[T] was for the Leu-Pro-Val residues immediately preceding Cys1, and, when combined with restraints imposed by cyclization, conformational variations in this region of the reduced, cyclized peptide might have prevented correct disulfide formation.

Production of correctly folded cyclo-[GGG]kB1[T] was achieved by oxidative refolding prior to cyclization with SrtA. Monitoring of the cyclization reaction showed what appeared to be intermediates at various stages of the reaction (Fig. 2B), but by 24 h, the reaction had efficiently converted the linear peptides to the cyclic form in ~49% yield.

Several pieces of NMR evidence suggest that cyclo-[GGG]kB1[T] adopts the fold of native kB1: (i) Pro20 adopts a...
cys-conformation as in native kB1; (ii) The HN of Trp<sup>19</sup> is not observed in TOCSY spectra but is observed in NOESY spectra, as characterizedly applies to kB1; (iii) The HB of Pro<sup>20</sup> is shifted upfield to −0.26 ppm; (iv) the protonation/deprotonation of Glu<sup>3</sup> significantly affects the chemical shifts of HN of Cys<sub>15</sub>, Cys<sub>1</sub>–Cys<sub>22</sub>, and Cys<sub>15</sub>–Cys<sub>22</sub>, were also observed, but the effects of single point mutations on the hemolytic activity of kB1 have also been extensively studied (73). The hemolytic activity of kB1 was dramatically reduced by Ala substitution on the primary sequence; for example, the grafting of the vascular endothelial growth factor sequence (RRKRRR) into loop 2, 3, 5, 6 significantly reduced the hemolytic activity of kB1 (20).

The effects of the residues introduced into loop 6 suggest the abrogation of hemolytic activity after relatively minor changes to the primary sequence; for example, the grafting of the vascular endothelial growth factor sequence (RRKRRR) into loop 2, 3, 5, or 6 significantly reduced the hemolytic activity of kB1 (20). The introduction of additional residues to loop 6 also noted the complete loss of hemolytic activity of linearized kB1 with the RNGLP sequence deletion. All of the studies suggest that the hemolytic activity of kB1 can be diminished when a less hydrophobic residue is introduced into the last three residues of loop 6 (Leu<sup>27</sup>, Pro<sup>28</sup>, and Val<sup>29</sup>). Similar results were observed during Lys substitution at the same positions (69).

In kalata B2, a close homolog of kB1, the loss of hemolytic activity is presumably due to the effects of the residues introduced into loop 6 upon cyclization. Previous grafting experiments utilizing kB1 have also shown the abrogation of hemolytic activity after relatively minor changes to the primary sequence; for example, the grafting of the vascular endothelial growth factor sequence (RRKRRR) into loop 2, 3, 5, or 6 significantly reduced the hemolytic activity of kB1 (20).

The effects of the residues introduced into loop 6 suggests the abrogation of hemolytic activity after relatively minor changes to the primary sequence; for example, the grafting of the vascular endothelial growth factor sequence (RRKRRR) into loop 2, 3, 5, or 6 significantly reduced the hemolytic activity of kB1 (20). The introduction of additional residues to loop 6 also noted the complete loss of hemolytic activity of linearized kB1 with the RNGLP sequence deletion. All of the studies suggest that the hemolytic activity of kB1 can be diminished when a less hydrophobic residue is introduced into the last three residues of loop 6 (Leu<sup>27</sup>, Pro<sup>28</sup>, and Val<sup>29</sup>). Similar results were observed during Lys substitution at the same positions (69).

Barry et al. (72) also noted the complete loss of hemolytic activity of linearized kB1 with the RNGLP sequence deletion. All of the studies suggest that the hemolytic activity of kB1 can be diminished when a less hydrophobic residue is introduced into the last three residues of loop 6 (Leu<sup>27</sup>, Pro<sup>28</sup>, and Val<sup>29</sup>). Similar results were observed during Lys substitution at the same positions (69). This context, the loss of hemolytic activity after the introduction of additional residues to loop 6 suggests the interruption of critical membrane/peptide interactions in this region of the peptide.
The residues introduced into loop 6 might have also contributed to the slight reduction in stability of cyclo-[GGG]kB1[T] relative to the native peptide. Chemical shifts for these residues differed little from random coil values, suggesting that structural disorder at the cyclization point made the peptide slightly more susceptible to plasma proteases than native kB1. This disorder was also confirmed in the NMR solution structure of [GGG]kB1[T], with loop 6 displaying markedly increased disorder compared with native kB1. The serum stability results show that the cystine knot formation is crucial for stability because linear oxidized [GGG]kB1[GG] was largely (71%) intact after 24 h.

The sortase-catalyzed process requires modest modifications in order to render peptides amenable to cyclization. In this work, the cyclization point was chosen on the basis of a pre-existing Leu-Pro-Val motif in loop 6, which overlapped with the SrtA recognition motif. This fortuitous coincidence resulted in the introduction of three fewer non-native amino acids than would be required using a different cyclization point. Analysis of chemical shifts showed that apart from differences of -0.5 ppm in the Leu-Pro-Val residues of the cyclization point, the remainder of the SrtA cyclized peptide exhibited very little structural perturbation. Loop 6 of cyclotides exhibits the greatest diversity in structure, sequence, and length (77), and the lack of structural perturbation in this case reflects the ability of this loop to accommodate a range of structural motifs without affecting the overall fold of the peptide. Accordingly, the use of this loop for cyclization should provide a convenient and simple mechanism for production of synthetic cyclotides for a variety of applications.

To test the generality of SrtA-mediated cyclization, we investigated if it could be applied to other small disulfide-rich peptides, such as -conotoxin Vc1.1 and SFTI-1. MALDI-TOF and NMR analysis confirmed that their cyclized and oxidized structures were similar to the native structures. In contrast to kB1, 9 h of SrtA reaction appeared to be sufficient to obtain the

![Sortase A as a Tool for Cyclizing Disulfide-rich Peptides](image-url)

**FIGURE 6.** A, cyclization strategy for [G]Vc1.1[GLPETGG] and [GG]SFTI-1[LPETGG] by SrtA. B, retention time and MALDI-TOF analysis of linear precursor [G]Vc1.1[GLPETGG], cyclic reduced, and cyclic oxidized [G]Vc1.1[LPET]. The peptide status is shown with schematic representations. C, one-pot reaction of oxidation and cyclization of [GG]SFTI-1[LPETGG]. Shown is a time course analysis of the SrtA reaction by RP-HPLC (left) and MALDI-TOF data (right) of linear precursor [GG]SFTI-1[LPETGG] and cyclo-[GG]SFTI-1[LPET]. D, H secondary shift comparison of cyclo-[GG]SFTI-1[LPET] and wild type SFTI-1. E, H secondary shift comparison of cyclo-[G]Vc1.1[LPET], wild type Vc1.1, and the orally active analgesic peptide cVc1.1 (3). The sorting motif is shown in a dashed box.
maximum yield for cyclo-[GG]SFTI-1[LPET], presumably due to its smaller size. Beyond this incubation time, some hydrolysis of the peptide was found to occur, resulting in linearization because the final product still contains a LPETG motif. Interestingly, introduction of the sortase motif in SFTI-1 (cyclo-[GG]SFTI-1[LPET]) gave rise to cis-trans isomerization of Pro\(^8\), as highlighted by the observation of strong NOEs between both Ile\(^7\) H\(^\alpha\) to Pro\(^8\) H\(^\alpha\), Ile\(^7\) H\(^\alpha\) to Pro\(^8\) H\(^\alpha\), and Asp\(^{14}\) important for structural integrity (49). In that study, when Asp\(^{14}\) replaced with Ala, the turn region was destabilized, resulting in cis-trans isomerization of Pro\(^{13}\) (49). Although the isomerization site is different, introduction of the SrtA sorting motif appears to have destabilized the turn region, giving rise to the minor conformation observed by NMR.

The work described here demonstrates the applicability of the SrtA method for the cyclization of different classes of disulfide-rich peptides without significant structural perturbation to the overall peptide fold. We have shown that this method is applicable whether the peptides are cyclic in their native form, such as SFTI-1 containing one disulfide bond or kB1 with a three-disulfide bond cyclic cystine knot motif, or whether the peptide is linear in its native form and the cyclization site is introduced by the addition of a linker, such as for cvC1.1. SrtA-mediated head-to-tail cyclization works optimally with peptides larger than 12-mers, excluding the SrtA sorting signal loop of SFTI-1, presumably placing the motif next to the wild type. This is consistent with a previous study showing that Ile\(^7\), Pro\(^8\), Pro\(^9\), and Asp\(^{14}\) are also within this size range, making SrtA-mediated cyclization a possibility for a wide range of peptides of defensins (79, 80) are also within this size range, making SrtA-mediated cyclization a possibility for a wide range of peptides of disulfide-rich peptides. (e.g. conotoxins (78) or e.g. defensins (79, 80)) are also within this size range, making SrtA-mediated cyclization a possibility for a wide range of peptides of such as SFTI-1 containing one disulfide bond or kB1 with a three-disulfide bond cyclic cystine knot motif, or whether the peptides are cyclic in their native form, such as SFTI-1 containing one disulfide bond or kB1 with a three-disulfide bond cyclic cystine knot motif, or whether the peptide is linear in its native form and the cyclization site is introduced by the addition of a linker, such as for cvC1.1. SrtA-mediated head-to-tail cyclization works optimally with peptides larger than 12-mers, excluding the SrtA sorting signal loop of SFTI-1, presumably placing the motif next to the wild type. This is consistent with a previous study showing that Ile\(^7\), Pro\(^8\), Pro\(^9\), and Asp\(^{14}\) are also within this size range, making SrtA-mediated cyclization a possibility for a wide range of peptides of defensins (79, 80) are also within this size range, making SrtA-mediated cyclization a possibility for a wide range of peptides of disulfide-rich peptides. (e.g. conotoxins (78) or e.g. defensins (79, 80)) are also within this size range, making SrtA-mediated cyclization a possibility for a wide range of peptides of}
Sortase A as a Tool for Cyclizing Disulfide-rich Peptides

Antos, J. M., Guerra, G. L., Gruenar, C. P., Yoder, N. C., and Grotenbreg, R. M. (2009) Site-specific N- and C-terminal labeling of a single polypeptide using sortases of different specificity. J. Am. Chem. Soc. 131, 10800–10801

Popp, M. W., Douglas, S. K., Chuang, T. Y., Spooner, E., and Ploegh, H. L. (2011) Sortase-catalyzed transformations that improve the properties of cytokines. Proc. Natl. Acad. Sci. U.S.A. 108, 3169–3174

Ling, J. J., Policarpo, R. L., Rabideau, A. H., Liao, X., and Pentelute, B. L. (2012) Protein thioester synthesis enabled by sortase. J. Am. Chem. Soc. 134, 10749–10752

Witte, M. D., Cragnolin, J. J., Douglas, S. K., Yoder, N. C., Popp, M. W., and Ploegh, H. L. (2012) Preparation of unnatural N-to-N and C-to-C protein fusions. Proc. Natl. Acad. Sci. U.S.A. 109, 11993–11998

Daly, N. L., Chen, Y. K., Foley, F. M., Bansal, P. S., Bharathi, R., Clark, R. J., Sommerhoff, C. P., and Craik, D. I. (2006) The absolute structural requirement for a proline in the P3‘-position of Bowman-Birk protease inhibitors is surmounted in the minimized SFTI-1 scaffold. J. Biol. Chem. 281, 23668–23675

Popp, M. W., Antos, J. M., and Ploegh, H. L. (2009) Site-specific protein labeling via sortase-mediated transpeptidation. Curr. Protoc. Protein Sci. Unit 15.13

Daly, N. L., Love, S., Alewop, P. F., and Craik, D. I. (1999) Chemical synthesis and folding pathways of large cyclic polypeptide. Studies of the cystine knot polypeptide cyclase B1. Biochemistry 38, 10606–10614

Huang, Y. H., Colgrave, M. L., Daly, N. L., Keleshian, A., Martinac, B., and Craik, D. I. (2009) The biological activity of the prototypic cyclotide cyclase B1 is modulated by the formation of multimeric pores. J. Biol. Chem. 284, 20699–20707

Moffatt, F., Senkans, P., and Ricketts, D. (2000) Approaches towards the quantitative analysis of peptides and proteins by reversed-phase high-performance liquid chromatography in the absence of a pure reference sample. J. Chromatogr. 919, 235–242

Rosengren, K. J., Daly, N. L., Plan, M. R., Waine, C., and Craik, D. I. (2003) Twists, knots, and rings in proteins. Structural definition of the cyclotide framework. J. Biol. Chem. 278, 8606–8616

Hwang, T. L., and Shaka, A. J. (1995) Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Reson. 112, 275–279

Griesinger, C., Sörensen, O. W., and Ernst, R. R. (1987) Practical aspects of the E.COSY technique. Measurement of scalar spin-spin coupling constants in peptides. J. Magn. Reson. 75, 474–492

Vranken, W. F., Boucher, W., Stevens, T. I., Fogh, R. H., Pajon, A., Llinas, M., Ulrich, E. L., Markley, J. L., Ionides, I., and Laue, E. D. (2005) The CCPN data model for NMR spectroscopy. Development of a software pipeline. Proteins 59, 687–696

Bartels, C., Xia, T. H., Billiter, M., Güntert, P., and Wüthrich, K. (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 6, 1–10

Wishart, D. S., Bigam, C. G., Yao, J., Aalsted, C. W., Dyson, H. J., Oldfield, E., Markley, J. L., and Sykes, B. D. (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 6, 135–140

Güntert, P. (2004) Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378

Shen, Y., Delaglio, F., Cornilescu, G., and Bax, A. (2009) TALOS+. A hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223

Nederveen, A. J., Doreleijers, J. F., Vranken, W. F., Müller, Z., Zopron, C. A., Naburs, B. S., Güntert, P., Livny, M., Markley, J. L., and Nilges, M., Ulrich, E. L., Kaptein, R., and Bonvin, A. M. (2005) RECOORD. A recalculated coordinate database of 500+ proteins from the PDB using restraints from the BiocadMagResBank. Proteins 59, 662–672

Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Grosse-Kunstleve, R. W., Jiang, S. K., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Crystallography & NMR system. A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921

Domínguez, C., Boelens, R., and Bonvin, A. M. (2003) Haddock. A...
protein-protein docking approach based on biochemical or biophysical information. *J. Am. Chem. Soc.* **125**, 1731–1737

65. Linge, J. P., and Nilges, M. (1999) Influence of non-bonded parameters on the quality of NMR structures. A new force field for NMR structure calculation. *J. Biomol. NMR* **13**, 51–59

66. Conibear, A. C., Rosengren, K. J., Harvey, P. J., and Craik, D. J. (2012) Structural characterization of the cyclic cystine ladder motif of θ-defensins. *Biochemistry* **51**, 9718–9726

67. Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. (2010) MolProbity. All-atom structure validation for macromolecular crystallography. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 12–21

68. Koradi, R., Billeter, M., and Wüthrich, K. (1996) MOLMOL. A program for display and analysis of macromolecular structures. *J. Mol. Graph.* **14**, 51–55, 29–32

69. Huang, Y. H., Colgrave, M. L., Clark, R. J., Kotze, A. C., and Craik, D. J. (2010) Lysine-scanning mutagenesis reveals an amendable face of the cyclotide kalata B1 for the optimization of nematocidal activity. *J. Biol. Chem.* **285**, 10797–10805

70. Levary, D. A., Parthasarathy, R., Boder, E. T., and Ackerman, M. E. (2011) Protein–protein fusion catalyzed by sortase A. *PLoS One* **6**, e18342

71. Wüthrich, K. (1986) *NMR of Proteins and Nucleic Acids*, pp. 16–157, Wiley-Interscience, New York

72. Barry, D. G., Daly, N. L., Clark, R. J., Sando, L., and Craik, D. J. (2003) Linearization of a naturally occurring circular protein maintains structure but eliminates hemolytic activity. *Biochemistry* **42**, 6688–6695

73. Simonsen, S. M., Sando, L., Rosengren, K. J., Wang, C. K., Colgrave, M. L., Daly, N. L., and Craik, D. J. (2008) Alanine scanning mutagenesis of the prototypic cyclotide reveals a cluster of residues essential for bioactivity. *J. Biol. Chem.* **283**, 9805–9813

74. Craik, D. J., Swedberg, J. E., Mylne, J. S., and Cemazar, M. (2012) Cyclotides as a basis for drug design. *Expert Opin. Drug Discov.* **7**, 179–194

75. Gould, A., Li, Y., Aboye, T. L., and Camarero, J. A. (2011) Cyclotides, a novel ultrafast polypeptide scaffold for drug discovery. *Curr. Pharm. Des.* **17**, 4294–4307

76. Wang, C. K., Colgrave, M. L., Ireland, D. C., Kaas, Q., and Craik, D. J. (2009) Despite a conserved cystine knot motif, different cyclotides have different membrane binding modes. *Biophys. J.* **97**, 1471–1481

77. Mulvenna, J. P., Sando, L., and Craik, D. J. (2005) Processing of a 22 kDa precursor protein to produce the circular protein tricyclon A. *Structure* **13**, 691–701

78. Terlau, H., and Olivera, B. M. (2004) Conus venoms. A rich source of novel ion channel-targeted peptides. *Physiol. Rev.* **84**, 41–68

79. Ganz, T. (2003) Defensins. Antimicrobial peptides of innate immunity. *Nat. Rev. Immunol.* **3**, 710–720

80. Wong, J. H., Xia, L., and Ng, T. B. (2007) A review of defensins of diverse origins. *Curr. Protein Pept. Sci.* **8**, 446–459

81. Wishart, D. S., Bigam, C. G., Holm, A., Hodges, R. S., and Sykes, B. D. (1995) H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. *J. Biomol. NMR* **5**, 67–81

82. Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., Murray, L. W., Arendall, W. B., 3rd, Snoeyink, J., Richardson, J. S., and Richardson, D. C. (2007) MolProbity. All-atom contacts and structure validation for proteins and nucleic acids. *Nucleic Acids Res.* **35**, W375–W383