The application of Greenberg’s Model Modification for Estimating the Evacuation Time of People from Public Utility Buildings

Zastosowanie modyfikacji modelu Greenberga do szacowania czasu ewakuacji ludzi z budynków użyteczności publicznej

ABSTRACT

Objective: The article presents a proposition of a model for estimating people’s evacuation time from public utility buildings of category ZL III (not containing rooms designed for the simultaneous presence of more than 50 people who are not their regular users, not primarily intended for use by people with limited mobility). The model is based on the analogy between the theory of road traffic and the process of people’s movement during evacuation.

Design and methods: In order to develop the model, a series of trial evacuations of people from public utility category ZL III buildings of varied geometry and number of users was conducted. A comparative analysis was performed concerning the evacuation times calculated with the use of models available in literature – a critical model of evacuation time, models designed by Togawa, Melenik and Booth, Galbreath, Pauls, methodology of the British Standard, and those derived from computer simulations performed with the use of the Pathfinder software. Based on the analysis of the conducted research and model considerations, an equation for the estimation of evacuation time was proposed based on a modified Greenberg’s equation derived from the road traffic theory. In the model modification, the concept of replacement length of evacuation route elements was applied, significantly slowing down people’s movement velocity, and a method for calculating them was proposed.

Results: The evacuation times obtained in experimental research were compared to the model time values calculated from the models published in literature. A considerable dispersion of the achieved results was shown, ranging from −65.0% to +425.8% with respect to the evacuation times obtained experimentally. The performance of computer simulations brought evacuation times with a bias ranging from −54.4% to +26.0% with respect to the experiments conducted. Evacuation times calculated with the use of the proposed equation were in line with the experimental results with an error ranging from −12.3% to +13.8%. However, in comparison to the times obtained from additional computer simulations, representing the description of evacuation from buildings with highly varied geometry and various numbers of evacuees, the deviation of the calculated evacuation time from the proposed model was from −16.7% to +23.1%. In the vast majority of cases, the deviation of the result oscillated around ± 15% for a wide range of buildings’ geometry and the number of evacuees.

Conclusions: The proposed model makes it possible to determine with sufficient accuracy the evacuation time of people from public utility buildings of category ZL III and can serve as a reliable source of comparative information.

Keywords: experiment, evacuation, transition time, evacuation time

Type of article: original scientific article

Received: 18.03.2019; Reviewed: 12.04.2019; Accepted: 30.06.2019;
Authors’ ORCID IDs: I. Orłowska – 0000-0002-7134-0542; M. Dziubiński – 0000-0002-0208-3570;
Percentage contribution: I. Orłowska – 75%; M. Dziubiński – 25%;
Please cite as: SFT Vol. 53 Issue 1, 2019, pp. 88–105, https://dx.doi.org/10.12845/sft.53.1.209.5;
This is an open access article under the CC BY-SA 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/).
Introduction

The basic fire safety requirement for buildings is to provide people staying in them with evacuation options [4]. Safe evacuation from a building in case of fire is the priority fire protection measure [5]. It is described on the basis of ASET (Available Safe Evacuation Time) and RSET (Required Safe Escape Time) [6–8]. Various tools can be applied in order to determine ASET and RSET, including empirical data (obtained, e.g., on the basis of real-scale tests, laboratory tests or practice evacuations), normative data specified in fire regulations and technical standards, computational models of evacuation time, computational models of temperature increase in a room as well as an increase in fogging, and simulation software based on the aforementioned models. Literature on the subject contains a considerable number of computational models of the transition time of people during evacuation. They differ in the complexity of computations and, primarily, in the accuracy of the obtained evacuation times [1].

In order to develop a proprietary model, a number of practice evacuations were arranged from public utility buildings of category ZL III with varying geometries and number of users. A comparative analysis was performed of evacuation times

Wstęp

Podstawowym wymaganiem odnoszącym się do bezpieczeństwa pożarowego budynków jest zapewnienie przebywającym w nich ludziom możliwości ewakuacji [4]. Bezpieczna ewakuacja z obiektu w przypadku pożaru jest priorytetowym działaniem w zakresie ochrony przeciwpowżarowej [5]. Opisuje się ją na podstawie dostępnego czasu bezpiecznej ewakuacji (ASET) oraz wymaganego go czasu bezpiecznej ewakuacji (RSET) [6–8]. Do ich wyznaczenia można stosować różne narzędzia, takie jak: dane empiryczne (uzyskane np. na podstawie przeprowadzonych testów w skali rzeczywistej), badań laboratoryjnych lub ćwiczeń praktycznych – próbną ewakuację), dane normatywne określone w przepisach przeciwpowżarowych i standardach technicznych, modele obliczeniowe czasu ewakuacji, przyrostu temperatury w pomieszczeniu i wzrostu zadymienia oraz komputerowe programy symulacyjne oparte na wspomnianych powyżej modelach. W literaturze przedmiotu znaleźć można znaczną liczbę modeli obliczeniowych czasu przejścia ewakuujących się ludzi. Różnią się one między sobą złożonością prowadzonych obliczeń oraz – przede wszystkim – dokładnością uzyskanych czasów ewakuacji [1].

W celu opracowania własnego modelu przeprowadzono sześć próbnych ewakuacji z budynków użyteczności publicznej
calculated with the models available in literature: the critical evacuation time, the Togawa, Melenik and Booth, Galbreath, Pauls models, the British Standard methodology and models obtained from computer simulations performed with the Pathfinder software [1]. The evacuation times obtained in experiments were compared with the model time values calculated on the basis of models available in literature. A high dispersion of the results was identified from −65.0% to as many as +425.8% in comparison to evacuation times obtained in experiments. In the computer simulation with a bias ranging from −54.4% to +26.0% as compared to the experiments [2].

Due to the above, a proprietary equation was proposed for estimating the transition time of evacuated people that would describe the analysed process with a higher accuracy.

The traffic theory and the movement of evacuated people

The analysis of literature on traffic theory makes it possible to draw an analogy between the description of vehicles moving in traffic and the process of people’s evacuation from buildings [3]. The originator of the hydrodynamic theory, also referred to as the continuity theory, was Greenberg [3]. He suggested equation (1), which is correct if the differentiability condition of intensity q and traffic density k is satisfied.

\[q = k \cdot \bar{v}_{opt} \cdot \ln \left(\frac{k_{\text{max}}}{k} \right) \]

where:
- \(\bar{v}_{opt} \) – optimum momentary velocity of traffic;
- \(k_{\text{max}} \) – traffic density in a traffic jam.

The analysis of the traffic theory bears considerable resemblance to the process of evacuating people from buildings and can be applied for this purpose for the following reasons:
1) in order for movement to start, an impulse must occur – in the case of vehicles this is usually a change of traffic lights, and in the case of people – a sound signal or voice message alarming of the fire;
2) velocity of vehicles changes depending on their density, similarly to people in motion: when their density increases, their velocity drops, and conversely, when the density of people on escape routes decreases, people move at a higher velocity;
3) similarly to vehicles in traffic, people move, collide with each other, pass obstacles, accelerate on straight road passages, when their density is low, and slow down especially when changing direction;
4) the trajectory of vehicles and evacuees is not straightforward. In both cases it depends on people’s decisions and behaviour, which are difficult to predict;

...
5) moving vehicles and people evacuated from fire are influenced by a number of variables, such as people’s behaviour, road conditions, people’s decisions such as the choice of velocity, distance from other persons or obstacles, changes in road geometry, changes in direction of movement affecting velocity. Vehicles in traffic, similar as people during evacuation, constantly interact with each other. Thus, in correspondence to the traffic theory, the state of the stream of moving people can be described with three variables:

1) people’s movement intensity F_2 – the number of people passing through a specific section of the escape route in time, number of persons/m · s;
2) the density of evacuees D is the number of people in an area of a specific section of the escape route, number of persons/sq. m;
3) average momentary velocity v_{opt} – the average velocity of people in motion, m/s.

Proposal of an equation for estimating the evacuation time of people from public utility buildings ZL III

In order to determine the evacuation time of people from a building, a model equation was derived (2), which, with an assumption that corresponds to the velocity of the evacuated person, specifies that people’s evacuation time T is equal to:

$$ T = \frac{\Delta x}{v \cdot \ln \left(\frac{k_{\max}}{k} \right)} $$

(2)

where:

- T – people’s evacuation time, s;
- Δx – length of escape route, m;
- v – velocity of an evacuated person, m/s;
- k_{\max} – maximum density of people on the escape route, congestion, number of persons/sq. m;
- k – density of people on the escape route, number of persons/sq. m.

Equation (2), forming a basis for the proposed proprietary computational model of evacuation time, was expanded with the following elements:

1) the entire escape route was divided into horizontal (x) and vertical (y) sections, for which people’s velocity is determined depending on their density according to table 1 [7] and equation (3):

$$ V_s = k - a \cdot k \cdot D $$

(3)

where:

- V_s – velocity of a stream of people moving along a motion axis, m/s;
- D – density of people on the escape route’s area, number of persons/sq. m;

Proposition of an equation for estimating the transition time of people evicted from public utility buildings ZL III

Due to the above, a proprietary equation was proposed for estimating the transition time of evacuated people that would describe the analysed process with a higher accuracy. A high dispersion of the results was identified from experiments performed with the Pathfinder software [1]. The evacuation times obtained in experiments were compared with the model time values calculated on the basis of models available in literature: the critical evacuation time, the Togawa, Melenik and Booth, Galbreath, Pauls evacuation options [4]. Safe evacuation from a building in case of fire is the priority fire protection task, especially when changing direction;

5) na przemieszczające się pojazdy i ewakuujących się z pożaru ludzi wpływ ma wiele zmiennych, w tym: zachowanie się ludzi, warunki panujące na drogach, podejmowane decyzje np. dobór prędkości, odstępów od innych osób czy przeszkód, zmiany geometrii drogi, zmiany kierunku ruchu wpływające na prędkość poruszania się. Pojazdy w ruchu drogowym, podobnie jak ludzie w trakcie ewakuacji, znajdują się w ciągłych wzajemnych interakcjach. Dlatego analogicznie do teorii ruchu drogowego, stan strumienia ruchu przemieszczających się ludzi określić można przez trzy zmienne:

1) intensywność przemieszczania się ludzi F_2 – liczba osób przechodzących przez określony przekrój drogi ewakuacyjnej w jednostce czasu, osoby/m · s;
2) gęstość ewakuujących się ludzi D jest to liczba osób znajdujących się na powierzchni odcinka drogi ewakuacyjnej, osoby/m²;
3) średnią prędkość chwilową v_{opt} – średnia prędkość poruszających się ludzi, m/s.

W celu wyznaczenia czasu ewakuacji ludzi z budynku wykonywano równe modele ewakuacyjne (2), które – przy założeniu, że odpowiada prędkości ewakuującej się osoby – określa, że czas ewakuacji ludzi T wynosi:

$$ T = \frac{\Delta x}{v \cdot \ln \left(\frac{k_{\max}}{k} \right)} $$

gде:

- T – время эвакуации, с;
- Δx – длина проезжей части, м;
- v – скорость перемещения эвакуирующихся, м/с;
- k_{\max} – максимальная густота людей на дороге эвакуационной, осoby/м²;
- k – густота людей на дороге эвакуационной, особы/м².

Равнение (2) становится базой запропонованого нами модели облицовки времени эвакуации, разработанной на следующих элементах:

1) всю дорогу эвакуационную подсчитали на постоппере и привдное, что расстояние между двумя автомобилями изменяется по табл. 1 [7] и равнением (3):

$$ V_s = k - a \cdot k \cdot D $$

gде:

- V_s – скорость движения людей в направлении движения, м/с;
- D – густота людей на дороге эвакуационной, особы/м²;
Table 1. The value of constant k in equation (3) for various elements of the escape route [7]

Elements of the escape route / Elementy drogi ewakuacyjnej	k		
Corridor / Korytarz	1		
Staircase / Klatka schodowa	0		
Stage height [mm] / Wysokość stopnia [mm]			
190.5	254.0	1.0	
177.8	279.4	1.08	
165.1	304.8	1.16	
165.1	330.2	1.23	

The idea of the replacement length of an escape route elements which impedes the motion of people is to replace each such element with a simple section with a length of L_z covered by evacuees in the same time as in the actual evacuation in the presence of an impeding element.

Below is the presentation of methods of calculating the replacement length of escape route elements which cause the slowing down of the evacuation process.

Pinch point of a horizontal escape route (doors, structural pinch points of the corridor)

The elements having an impact on the total evacuation time are pinch points found along the evacuation route, e.g. doors, narrow sections caused by obstacles such as elements of interior design, structural poles, etc.

In order to determine the replacement length of a pinch point of a horizontal escape route, the performed experiments were analysed and numerous computer simulations in the Pathfinder.
software were carried out. After adopting certain simplifications of the studied issue, a statement was formulated that in the least favourable evacuation variant, i.e. a situation when before a local pinch point, as a result of a delay in launching evacuation, the highest accumulation of people occurs at a specific time.

In line with the assumption, the value of the replacement length of the pinch point on horizontal escape route x_o is determined with equation (4):

$$ x_o = v_x \cdot \ln \left(\frac{k_{max}}{k_x} \right) \cdot \frac{P}{F_d \cdot W} \tag{4} $$

where:

- x_o – replacement length of the pinch point on the horizontal escape route, m;
- v_x – velocity of the evacuated people along the horizontal escape route, m/s;
- k_{max} – maximum density of people on the escape route, congestion, number of persons/sq. m;
- k_x – density of people on the horizontal escape route, number of persons/sq. m;
- F_d – stream intensity, the number of evacuated people passing through a pinch point per metre of its effective width, number of persons/m · s;
- P – the number of evacuees passing through the local pinch point, number of persons;
- W – width of the local pinch point, m.

Change in direction of movement on a horizontal escape route (a turn at the corridor)

Another element with an impact on the total evacuation time are changes in the direction of movement on a horizon-

rowy w programie Pathfinder. Po założeniu pewnych uproszeń badanego zagadnienia określono, że dla najmniej korzystnego wariantu ewakuacji, to jest sytuacji, gdy przed lokalnym przewężeniem – na skutek opóźnień rozpoczęcia ewakuacji – tworzą się najliczniejsze na dany moment zgrupowania ludzi.

Zgodnie z założoną ideą wartość długości zastępczej przewężenia na poziomej drodze ewakuacyjnej x_o jest wyznaczana zgodnie z równaniem (4):

$$ x_o = v_x \cdot \ln \left(\frac{k_{max}}{k_x} \right) \cdot \frac{P}{F_d \cdot W} \tag{4} $$

gdzie:

- x_o – długość zastępcza przewężenia poziomej drogi ewakuacyjnej, m;
- v_x – prędkość ewakuujących się osób po poziomej drodze ewakuacyjnej, m/s;
- k_{max} – maksymalne zagęszczenie ludzi na drodze ewakuacyjnej, powstanie zatoru, osoby/m²;
- k_x – zagęszczenie ludzi na poziomej drodze ewakuacyjnej, osoby/m²;
- F_d – intensywność strumienia, liczba ewakuujących się osób przez przewężenie na metr efektywnej jego szerokości, osoby/m · s;
- P – liczba osób ewakuujących się przez lokalne przewężenie, osoby;
- W – szerokość lokalnego przewężenia, m.

Zmiana kierunku ruchu na poziomej drodze ewakuacyjnej (np. zakręt na korytarzu)

Kolejnym elementem mającym wpływ na całkowity czas ewakuacji są zmiany kierunku ruchu na poziomej drodze ewa-
tal escape route, i.e. corridor turns, flights of stairs where the evacuees naturally decrease their velocity, thus extending the evacuation time.

On the basis of the observations, the replacement length x_d of the route with a change in the direction of movement at the meeting point of the stairs and the horizontal escape route and at a 90 degrees turn of the escape route it was assumed that it will amount to one fourth of the circumference of a circle with a radius of half the width of corridor d_i in line with figure 2 and equation (5).

$$x_d = \frac{\pi}{4} \cdot d_i$$

where:
- x_d – replacement length of the route with a change in direction on the horizontal escape route, m;
- d_i – the higher of the widths of escape routes at the confluence of which a change in the direction of movement occurs, m.

In the case of other geometry of the building, e.g. when a turn on a horizontal escape route takes the form of an arc, the replacement length of the route with such change in direction will equal the arc’s length. Thus, each spatial arrangement of the analysed building should be considered separately.

Change in direction of movement during movement along a staircase (landings)

The replacement length of the route with a change in the direction of movement on horizontal escape route y_d is determined for such locations as landings, where the velocity of evacuees

Zgodnie z przyjętym założeniem długość zastępczą drogi przy zmianie kierunku ruchu na poziomej drodze ewakuacyjnej oblicza się zgodnie z poniższym równaniem (5):

$$x_d = \frac{\pi}{4} \cdot d_i$$

gdzie:
- x_d – długość zastępcza drogi przy zmianie kierunku ruchu na poziomej drodze ewakuacyjnej, m;
- d_i – większa z szerokości dróg ewakuacyjnych, przy których zbieg następuje zmiana kierunku ruchu, m.

W przypadku innej geometrii budynku, np. gdy zakręt na poziomej drodze ewakuacyjnej wystąpił będzie w postaci łuku, wartość długości zastępczej drogi przy takiej zmianie kierunku ruchu będzie równa długości łuku. Tak więc każdy układ przestrzenny analizowanego budynku należy rozpatrywać indywidualnie.

Zmiana kierunku ruchu podczas przemieszczania się w obrębie klatki schodowej (spoczniki)

Długość zastępczą drogi przy zmianie kierunku ruchu na pionowej drodze ewakuacyjnej y_d wyznacza się dla miejsc takich jak spoczniki, gdzie prędkość ewakujących się ludzi maleje pra-
The replacement length of the route with a change in the direction of movement on horizontal escape route y_d is half the length of the circumference of a circle with a radius of half the width of the staircase on which people move, in line with figure 3 and equation (6).

In line with the adopted principle, the replacement length of the route with a change of direction on the vertical escape route along which people move is calculated in line with the following equation (6):

$$y_d = \frac{\pi}{2} \cdot e_i$$ \hspace{1cm} (6)

where:
- y_d – replacement length of the route with a change in direction on the vertical escape route, m;
- e_i – width of the ith flight of stairs, m.

Zgodnie z przyjętą zasadą długość zastępczą drogi przy zmianie kierunku ruchu na pionowej drodze ewakuacyjnej, po której przemieszczają się ludzie, oblicza się zgodnie z poniższym równaniem (6):

$$y_d = \frac{\pi}{2} \cdot e_i$$ \hspace{1cm} (6)

gdzie:
- y_d – długość zastępcza drogi przy zmianie kierunku ruchu na pionowej drodze ewakuacyjnej, m;
- e_i – szerokość i-tego biegu schodów, m.

Proposal of a model equation for estimating the evacuation time of people from public utility buildings

On the basis of the performed experiments and computer simulations an assumption was made to divide the escape route into horizontal and vertical sections depending on their density. Combined spaces (rooms with access to the corridor from which another space can be accessed, such as a staircase) with a permanent number of users are regarded as a single section of a horizontal escape route with one impeding element. Fire-rated vestibules in front of staircases and halls through which escape routes lead outside the building are also considered elements of vertical escape routes.

The proposed equation for determining the evacuation time (7) is a total passage time through horizontal and vertical escape routes increased with replacement length of the route with a change of direction on the horizontal escape route y_d:

$$t_{evac} = t_{horizontal} + t_{vertical} + y_d$$ \hspace{1cm} (7)

Zaproponowane równanie modelowe szacowania czasu ewakuacji ludzi z budynków użyteczności publicznej

Na podstawie wykonanych eksperymentów i symulacji komputerowych założono, że drogę ewakuacyjną dzielimy na odcinki poziomej i pionowej drog ekwakuacyjnych w zależności od tworzącego się na nich zagęszczenia. Połączone ze sobą pomieszczenia (pomieszczenia z wyjściem na korytarz, z którego można dostać się do innej kondygnacji – np. klatki schodowej), ze stałą liczbą użytkowników, z której dojdzie jednemu odcinkowi poziomej drogi ewakuacyjnej z jednym elementem spowalniającym. Przedziałem się więc zbudową pionowej drogi ewakuacyjnej, z której dojdzie jednemu odcinkowi poziomej drogi ewakuacyjnej.

Zaproponowane równanie na wyznaczanie czasu ewakuacji (7) to suma czasu przejścia poziomymi i pionowymi drogami

Figure 3. A typical representation of the landing of the stairs, where the evacuees progress along the circumference of a circle with the radius of half the width of flight of stairs e_i

Rycina 3. Przykładowy widok spocznika klatki schodowej: przemieszczający się ludzie idą po obwodzie koła o promieniu połowy szerokości biegu klatki schodowej e_i

Source: Own elaboration.

Zdroj: Opracowanie własne.
resulting from changing directions of movement and local obstacles found along the escape route (e.g. doors).

On the basis of the above assumptions, a general model was put forward to estimate people’s evacuation time from buildings, which is a modified version of Greenberg’s equation (1):

\[
T = \frac{1}{v} \cdot \sum_{l=1}^{m} \left(\frac{1}{k_{\text{max}}} \left(\sum_{i=1}^{n} x_{di} + \sum_{i=1}^{f} x_{oi} \right) \right) + \frac{1}{v_{l}} \cdot \sum_{l=1}^{g} \left(\frac{1}{k_{\text{max}}} \left(\sum_{i=1}^{h} y_{li} + \sum_{i=1}^{e} y_{ci} \right) \right)
\]

where:

- \(T\) – passage time of people during evacuation from the moment until exiting the building or the neighbouring fire zone, \(s\);
- \(v_{l}\) – velocity of people moving along the \(l\)th horizontal escape route, \(l = 1,\ldots,m, \text{ m/s} \);
- \(m\) – the number of horizontal sections of escape routes, ;
- \(k_{\text{max}}\) – maximum density of people on the escape route, congestion, number of persons/sq. m;
- \(k_{l}\) – density of people on the \(l\)th horizontal escape route, \(l = 1,\ldots,m, \text{ number of persons } / \text{ sq. m} \);
- \(n\) – number of movement direction changes on the \(l\)th horizontal escape route, \(l = 1,\ldots,m, ;\)
- \(f\) – number of pinch points on the \(l\)th horizontal escape route, \(l = 1,\ldots,m, ;\)
- \(x_{di}\) – replacement length of the route with a change in direction on the \(l\)th horizontal escape route, \(l = 1,\ldots,m, i = 1,\ldots,n, ;\)
- \(x_{oi}\) – replacement length of the pinch point on the \(l\)th horizontal escape route, \(l = 1,\ldots,m, i = 1,\ldots,f, ;\)
- \(g\) – the number of vertical sections of escape routes, ;
- \(k_{l}\) – density of people on the \(l\)th vertical escape route, \(l = 1,\ldots,m, \text{ number of persons } / \text{ sq. m} \);
- \(y_{l}\) – length of the \(l\)th vertical escape route, \(l = 1,\ldots,m, \text{ m} \);
- \(h\) – number of movement direction changes on the \(l\)th vertical escape route, \(l = 1,\ldots,g, ;\)
- \(Y_{di}\) – replacement length of the route with a change in direction on the \(l\)th vertical escape route, \(l = 1,\ldots,g, m;\)
- \(e\) – number of pinch points on the \(l\)th vertical escape route, \(l = 1,\ldots,g, ;\)
- \(x_{ci}\) – replacement length of the pinch point on the \(l\)th vertical escape route, \(l = 1,\ldots,g, i = 1,\ldots,e, m;\)

In line with literature data [9] the assumption made in the model put forward was that the density of evacuees (person/ sq. m) at which the movement stops (\(k_{\text{max}}\)) is 5 people per sq. m. The velocity on horizontal and vertical sections of escape routes should be calculated with equation (2).

Na podstawie powyższych założeń zaproponowano ogólny model do szacowania czasu ewakuacji ludzi z budynków, będący modyfikacją równania Greenberga (1):

\[
T = \frac{1}{v} \cdot \sum_{l=1}^{m} \left(\frac{1}{k_{\text{max}}} \left(\sum_{i=1}^{n} x_{di} + \sum_{i=1}^{f} x_{oi} \right) \right) + \frac{1}{v_{l}} \cdot \sum_{l=1}^{g} \left(\frac{1}{k_{\text{max}}} \left(\sum_{i=1}^{h} y_{li} + \sum_{i=1}^{e} y_{ci} \right) \right)
\]

where:

- \(T\) – czas przejścia ludzi podczas ewakuacji od momentu rozpoczęcia ruchu do momentu wyjścia na zewnątrz budynku lub sąsiedniej strefy pożarowej, \(s\);
- \(v_{l}\) – prędkość przemieszczających się osób na \(l\)tej poziomej drodze ewakuacyjnej, \(l = 1,\ldots,m, \text{ m/s} \);
- \(m\) – liczba poziomych odcinków dróg ewakuacyjnych, ;
- \(k_{\text{max}}\) – maksymalne zagęszczenie ludzi na drodze ewakuacyjnej, powstanie zatoru, osób/m²;
- \(k_{l}\) – zagęszczenie ludzi na \(l\)tej poziomej drodze ewakuacyjnej, \(l = 1,\ldots,m, \text{ osoby/m²} \);
- \(n\) – liczba zmian kierunków ruchu na \(l\)tej poziomej drodze ewakuacyjnej, \(l = 1,\ldots,m, \) -;
- \(f\) – liczba przewężeń występujących na \(l\)tej poziomej drodze ewakuacyjnej, \(l = 1,\ldots,m, \) -;
- \(g\) – liczba pionowych odcinków dróg ewakuacyjnych, -;
- \(y_{l}\) – długość \(l\)tej pionowej drogi ewakuacyjnej, \(l = 1,\ldots,m, \text{ osoby/m²} \);
- \(h\) – liczba zmian kierunków ruchu na \(l\)tej pionowej drodze ewakuacyjnej, \(l = 1,\ldots,m, \) -;
- \(Y_{di}\) – długość zastępcza drogi przy zmianie kierunku ruchu na \(l\)tej poziomej drodze ewakuacyjnej, \(l = 1,\ldots,m, \text{ m} \);
- \(e\) – liczba przewężeń występujących na \(l\)tej pionowej drodze ewakuacyjnej, \(l = 1,\ldots,m, \) -;
- \(x_{ci}\) – długość zastępcza przewężenia na \(l\)tej poziomej drodze ewakuacyjnej, \(l = 1,\ldots,m, \text{ m} \);

In line with literature data [9] the assumption made in the model put forward was that the density of evacuees (person/ sq. m) at which the movement stops (\(k_{\text{max}}\)) is 5 people per sq. m. The velocity on horizontal and vertical sections of escape routes should be calculated with equation (2).

Zgodnie z danymi literaturowymi [9] w zaproponowanym modelu przyjęto, że gęstość ewakuujących się ludzi \([\text{osoba/m²}]\), przy której następuje zatrzymanie ruchu (\(k_{\text{max}}\)) wynosi 5 osób/m². Prędkość na poziomych i pionowych odcinkach dróg ewakuacyjnych należy wyznaczyć zgodnie z równaniem (2).
Comparison of the evacuation times obtained with the proposed model equation with times of experimental evacuations and computer simulations

In order to verify the accuracy of estimation of the evacuation time of people from public utility buildings with the model put forward, the evacuation times derived from the model were compared with experimental times obtained from tests performed during the evacuation of the following buildings: the Industrial Chemistry Research Institute in Warsaw, TVP (Polish Television) in Łódź, Marshal’s Office in Łódź, the District Fire Department Headquarters in Pabianice and independent evacuation carried out in one of Wrocław’s high-rise buildings (with results presented in table 2 with determining deviation from the performed practice evacuations [2], [10].

Analysing the results of computations presented in table 2, it must be concluded that despite many simplifying assumptions made in the proposed model arising from the complexity of the evacuation process, the accuracy of the description of experimental data achieved with the model put forward is satisfactory. The largest computational errors of the proposed model concerned cases in which the density of evacuees was very low.

Table 2. The juxtaposition of results obtained during real-life evacuation testing and the results obtained theoretically

Location of the experiment	Evacuation time calculated from the proposed equation (7)	Time value discrepancy [%]
Miejsce eksperymentu	Czas ewakuacji obliczony z zaproponowanego równania (7)	Odchylenie wyniku [%]
	Czas ewakuacji – eksperymenty	
	Czas ewakuacji [s]	
	Odchylenie wyniku [%]	
Industrial Chemistry in Warsaw (experiment 1)	67.0	−6.2
Instytut Chemii Przemysłowej (eksperyment 1)	62.8	
Industrial Chemistry in Warsaw (experiment 2)	61.0	+11.7
Instytut Chemii Przemysłowej (eksperyment 2)	66.1	
Industrial Chemistry in Warsaw (experiment 3)	60.0	+42.6
Instytut Chemii Przemysłowej (eksperyment 3)	85.8	
Industrial Chemistry in Warsaw (experiment 4)	51.0	+84.4
Instytut Chemii Przemysłowej (eksperyment 4)	94.0	
Public Television Building in Lodz	292.0	+52.9
Budynek TVP w Łodzi	446.5	
The Marshall’s Office Building in Lodz	434.0	−35.7
Urząd Marszałkowski w Łodzi	279.1	
The District Fire Department Headquarters in Pabianice	41.5	−35.4
KP PSP Pabianice	26.8	
Wroclaw’s tower	1260	−30.0
Budynek wysokościowy we Wrocławiu	882.5	

Source: Own elaboration.

Porównanie otrzymanych czasów ewakuacji za pomocą zaproponowanego modelowego równania z czasami przeprowadzonych eksperymentalnie ewakuacji oraz symulacjami komputerowymi

W celu sprawdzenia poprawności szacowania czasu ewakuacji ludzi z budynków użyteczności publicznej przy zastosowaniu zaproponowanego modelu, otrzymane za jego pomocą czasy ewakuacji porównano z czasami eksperymentalnymi, uzyskanymi podczas badań przeprowadzonych podczas ewakuacji z budynków: Instytutu Chemii Przemysłowej w Warszawie, TVP w Łodzi, Urzędu Marszałkowskiego w Łodzi, Komendy Powiatowej PSP w Pabianicach i niezależnej ewakuacji przeprowadzonej w jednym z wrocławskich budynków wysokościowych (co przedstawiono w tabeli 2 wraz z określeniem wielkości odchylenia wyniku w stosunku do przeprowadzonych prób ewakuacji) [2], [10].

Analizując wyniki obliczeń przedstawione w tabeli 2, należy stwierdzić, że mimo poczynionych w zaproponowanym modelu wielu założeń upraszczających, wynikających ze złożoności procesu ewakuacji ludzi, dokładność opisu danych doświadczalnych za pomocą zaproponowanego modelu jest zadowalająca. Największe błędy obliczeniowe zaproponowanego modelu dotyczyły przypadków, w których gęstość ewakuujących się ludzi była
below 0.2 person per sq. m on a vertical escape route. A similar situation was observed for a high density of people above 2.5 person per sq. m. The highest bias of as many as +84.4% was observed during the experiment in which the initial density of evacuees was 4 persons per sq. m. Such a large bias results from using the original form of Greenberg’s model, which was the basis for the proposed model for the evacuation of people which makes use of the analogy method. In that model, the velocity of evacuees depends on their density. Thus, the general principle was confirmed that even for the original Greenberg’s model [3] the highest bias in the description of vehicles’ motion occurs with the highest and lowest traffic densities.

In addition, there is a major controversy in the literature regarding velocity values of people moving along horizontal and vertical escape routes for the highest and lowest densities of evacuees, which has an impact on the accuracy of the computed evacuation time models.

In order to improve the accuracy of calculations of evacuation time obtained from the proposed model with a number of simplifying assumptions as compared to the actual stochastic evacuation process, adjustment coefficient A was introduced. Thus, the modified form of the model takes the form of equation (8):

$$
T = \frac{1}{v} \cdot \sum_{l=1}^{m} \left(\frac{1}{\ln k_{\max}^{l}} \cdot \left(A'X_{l} + A' \sum_{i=1}^{n} \lambda d_{i} + \frac{g}{f} \right) \right) + \frac{1}{v} \cdot \sum_{l=1}^{g} \left(\frac{1}{\ln k_{\max}^{l}} \cdot \left(A'X_{l} + A' \sum_{i=1}^{h} \lambda d_{i} + \frac{e}{f} \right) \right)
$$

where:
- T – passage time of people during evacuation from the moment until exiting the building or the neighbouring fire zone, s;
- $v_{x_{l}}$ – velocity of people moving along the lth horizontal escape route, $l = 1,...,m$, m/s;
- m – the number of horizontal sections of escape routes, ·;
- A – adjustment coefficient, ·;
- X_{l} – length of the lth horizontal escape route, $l = 1,...,m$, m;
- k_{\max} – maximum density of people on the escape route, congestion, number of persons/sq. m;
- $k_{x_{l}}$ – density of people on the lth horizontal escape route, $l = 1,...,m$, ·;
- n – number of movement direction changes on the lth horizontal escape route, $l = 1,...,m$, ·;
- $X_{o_{1}}$ – replacement length of the route with a change in direction on the lth horizontal escape route, $l = 1,...,m$, ·;
- f – number of pinch points on the lth horizontal escape route, $l = 1,...,m$, ·;
- $X_{o_{1}}$ – replacement length of the pinch point on the lth horizontal escape route, $l = 1,...,m$, ·;
- $v_{y_{l}}$ – velocity of people moving along the lth vertical escape route, $l = 1,...,g$, m/s;
- g – the number of vertical sections of escape routes, ·;
- x_{l} – velocity of people moving along the lth horizontal escape route, $l = 1,...,m$, m/s;
- k_{\max} – maximum density of people on the escape route, congestion, number of persons/sq. m;
- n – number of movement direction changes on the lth horizontal escape route, $l = 1,...,m$, ·;
- $X_{o_{1}}$ – replacement length of the route with a change in direction on the lth horizontal escape route, $l = 1,...,m$, ·;
- f – number of pinch points on the lth horizontal escape route, $l = 1,...,m$, ·;
- $X_{o_{1}}$ – replacement length of the pinch point on the lth horizontal escape route, $l = 1,...,m$, ·;
- $v_{y_{l}}$ – velocity of people moving along the lth vertical escape route, $l = 1,...,g$, m/s;
- g – the number of vertical sections of escape routes, ·;
- A – adjustment coefficient, ·;
- X_{l} – length of the lth horizontal escape route, $l = 1,...,m$, m;
- λ – maximum density of people on the escape route, congestion, number of persons/sq. m;
- $v_{y_{l}}$ – velocity of people moving along the lth vertical escape route, $l = 1,...,g$, m/s;

where:
- T – czas przejścia ludzi podczas ewakuacji od momentu rozpozucia ruchu do momentu wyjścia na zewnątrz budynku lub sąsiedniej strefy pożarowej, s;
- $v_{x_{l}}$ – prędkość przemieszczających się osób na l-tej poziomej drodze ewakuacyjnej, $l = 1,...,m$, m/s;
- m – liczba poziomych odcinków drog ewakuacyjnych, ·;
- A – współczynnik korekcyjny, ·;
- X_{l} – długość l-tej poziomej drogi ewakuacyjnej, $l = 1,...,m$, m;
- k_{\max} – maksymalna zagęszczenie ludzi na drodze ewakuacyjnej, powstanie zatoru, osoby/m2;
- $k_{x_{l}}$ – zagęszczenie ludzi na l-tej poziomej drodze ewakuacyjnej, $l = 1,...,m$, ·;
- n – liczba zmian kierunków ruchu na l-tej poziomej drodze ewakuacyjnej, $l = 1,...,m$, ·;
- $X_{o_{1}}$ – długość zastępcza drogi przy zmianie kierunku ruchu na l-tej poziomej drodze ewakuacyjnej, $l = 1,...,m$, ·;
- f – liczba przewężeń występujących na l-tej poziomej drodze ewakuacyjnej, $l = 1,...,m$, ·;
- $X_{o_{1}}$ – długość zastępcza przewężenia na l-tej poziomej drodze ewakuacyjnej, $l = 1,...,m$, ·;
- $v_{y_{l}}$ – prędkość przemieszczających się osób na l-tej pionowej drodze ewakuacyjnej, $l = 1,...,g$, m/s;
- g – liczba pionowych odcinków drog ewakuacyjnych, ·;

In order to improve the accuracy of calculations of evacuation time obtained from the proposed model with a number of simplifying assumptions as compared to the actual stochastic evacuation process, adjustment coefficient A was introduced. Thus, the modified form of the model takes the form of equation (8):
k_{y_l} – density of people on the lth vertical escape route, $l = 1,...,m$, number of persons / sq. m,

y_l – length of the lth vertical escape route, $l = 1,...,g$, m;

h – number of movement direction changes on the lth vertical escape route, $l = 1,...,g$, -;

γ_{d_l} – replacement length of the route with a change in direction on the lth vertical escape route, $l = 1,...,g$, m;

e – number of pinch points on the lth vertical escape route, $l = 1,...,g$, i = 1,...,e, m.

Adjustment coefficient A, as a result of the analysis of experimental data, assumed the following values for a horizontal escape route:

- for $0.3 \leq k_{y_l} < 0.8$, $A = 1.7$;
- for $0.8 \leq k_{y_l} < 2.5$, $A = 1.2$;
- for $2.5 \leq k_{y_l} < 3.2$, $A = 0.4$.

(8a)

Adjustment coefficient A, as a result of the analysis of experimental data, assumed the following values for a vertical escape route:

- for $0.3 \leq k_{y_l} < 0.8$, $A = 1.7$;
- for $0.8 \leq k_{y_l} < 1$, $A = 1.2$;
- for $1 \leq k_{y_l} < 2.2$, $A = 0.7$;
- for $2.2 \leq k_{y_l} < 3.2$, $A = 0.4$.

(8b)

Table 3. The juxtaposition of results obtained during real-life evacuation testing and the results obtained theoretically.

Location of the experiment	Evacuation time experiments [s]	Equation use estimate of evacuation time (8)	Time value discrepancy [%]
	Czas ewakuacji – eksperymenty [s]	Czas ewakuacji obliczony z zaproponowanego równania (8)	Odchylenie wyniku [%]
Industrial Chemistry in Warsaw (experiment 1)	67.0	72.0	+7.5
Institut Chemii Przemysłowej (eksperyment 1)			
Industrial Chemistry in Warsaw (experiment 2)	61.0	63.0	+3.3
Institut Chemii Przemysłowej (eksperyment 2)			
Industrial Chemistry in Warsaw (experiment 3)	60.0	64.9	+8.2
Institut Chemii Przemysłowej (eksperyment 3)			
Industrial Chemistry in Warsaw (experiment 4)	51.0	55.3	+8.4
Institut Chemii Przemysłowej (eksperyment 4)			
Public Television Building in Lodz	292.0	320.3	+9.7
Budynek TVP w Łodzi			
The Marshall’s Office Building in Łódź	434.0	380.6	12.3
Urząd Marszałkowski w Łodzi			
The District Fire Department Headquarters in Pabianice	41.5	47.2	+13.8
KP PSP Pabianice			
Wrocław’s tower	1260	1114.8	11.5
Budynek wysokościowy we Wrocławiu			

Source: Own elaboration.

Zdroje: Opracowanie własne.
The model can be applied for a density of people on escape routes from 0.3 to 3.2 persons per sq. m. The value results from literature data [7] and proprietary experimental data. This range covers a considerable majority of real evacuations of people from buildings. After the inclusion of the adjustment coefficient A values mentioned above in the proposed model (8), table 3 contains a comparison of experimental times and those calculated on the basis of the modified model.

The analysis of the results included in table 3 makes it possible to state that the evacuation times calculated from the modified model put forward (8) are subject to a bias ranging from −12.3% to +13.8% as compared to the experimental times. This forms a basis for a conclusion that the proposed equation (8) for calculating evacuation times of people from buildings gives very similar results to those obtained in real experiments carried out for the purposes of this study. The comparisons confirmed that equation (8) is suitable for calculating evacuation times for building with varying geometries and number of users. Most importantly, also in comparison with an independent research performed in one of high-rise public utility and residential buildings (evacuation of 286 people from storey +49 and 50), the deviation of the evacuation time computed from the model was subject to a −11.5% bias. In most cases the obtained evacuation times are slightly overestimated, which is favourable from the fire protection perspective.

Equation (8) also provides a good description of experimental data even in cases very rarely occurring in practice, when the density of evacuees is very low, below 0.3 person per sq. m on horizontal escape routes and 0.2 person per sq. m on vertical routes. In such case the value of adjustment coefficient A is 5. However, in very rare cases of a very high density of evacuated people higher than 3 persons per sq. m on a horizontal escape route, adjustment coefficient A is 0.3, and for a vertical escape route with a density exceeding 3.2 persons per sq. m it amounts 0.1. However, this was confirmed for few experimental data. Thus, the model proposed in the study was confirmed for numerous evacuation situations for densities of evacuees from 0.3 to 3.2 persons per sq. m.

Based to the above, it can be assumed that equation (8) is a universal tool possible to be applied for determining evacuation times of people from various ZL III public utility buildings with satisfactory accuracy.

For the additional verification of the proposed model equation (8) as suitable for determining the evacuation time of people, a series of computer simulations was carried out with the Pathfinder software applying the variable-control model. Computer simulations were performed for 20 various geometries of public utility buildings with varying height from 3 to 27.3 m. The buildings had a varying arrangement of escape routes and rooms, and obstacles on escape routes, such as doors or local pinch points. They differed in the length and width of escape routes and the number of users. For each building model an evacuation simulation was prepared in three variants, providing a total of 60 computer simulations. In the first variant of the simulation, e.g. simulation No. 1, an assumption was made that in each office room there is 1 persons, in the second
variant there were 3 people, and in the third – 6 people. The described arrangement of building users made it possible to achieve various densities of people on horizontal and vertical escape routes. Figure 4 presents an example of a model made with the Pathfinder software for the simulation identified in table 4 (number 38).

Table 4 contains a list of evacuation times obtained with the Pathfinder software and with the proposed model equation for estimating evacuation times (8) arrived at by modifying Greenberg's model and determining deviations of the results from the ones from computer simulations.

Summary

The experimental part included the analysis of the performed tests consisting in practice evacuations of people from buildings. The tests participants were users of public utility buildings assigned to human hazard category ZL III, their employees and customers. These were people aged 20–65, of both genders, which makes the obtained results reliable and accurately reflecting actual evacuation conditions [8].

Figure 3. The commencement of the No. 38 computer simulation, in which it was assumed that there were 3 people occupying each office room

Source: Own elaboration.

Podsumowanie

W części doświadczalnej poddano analizie przeprowadzone badania polegające na obserwacji próbnych ewakuacji ludzi z budynków. W badaniach brały udział osoby będące użytkownikami obiektów użyteczności publicznej, kwalifikowanych do kategorii zagrożenia ludzi ZL III, ich pracownicy i petenci. Były to osoby w wieku od 20 do 65 lat, różnej płci, co czyni uzyskane wyniki wiarygodnymi, dobrze reprezentującymi rzeczywiste warunki ewakuacji [8].
Table 4. The juxtaposition of time values obtained from computer simulations and the estimates of evacuees’ movement time established with the proposed model equation (8)

Simulation number	Simulation time [s]	Equation use estimate of evacuation time (8)	Deviation [%] / Odchylenie wyniku [%]
	Czas symulacji [s]	Czas ewakuacji obliczony z zaproponowanego równania (8)	
1	30.1	27.3	−9.2
2	31.1	33.0	+9.5
3	38.5	38.4	−0.1
4	26.2	25.6	−2.3
5	38.9	40.9	+5.0
6	44.5	53.6	+20.5
7	73.4	72	−1.9
8	94.3	100.8	+6.9
9	137.7	141.8	+3.0
10	78.0	85.9	+10.2
11	154.3	158.2	+2.5
12	315.3	349.7	+10.9
13	33.5	30.4	−9.3
14	40.5	45.8	+13.1
15	49.3	57.3	+16.3
16	55.4	65.9	+18.9
17	95.7	118.6	+12.2
18	123.4	137.1	+11.1
19	65.5	67.5	+3.1
20	126.9	119.9	−5.5
21	176.9	201.1	+13.7
22	77.0	79.0	+2.6
23	154.0	137.1	−11.0
24	233.0	286.6	+23.1
25	88.3	91.4	+3.5
26	193.5	175.0	−9.6
27	294.3	342.1	+16.2
28	95.3	109.5	+14.9
29	223.2	195.5	−12.4
30	341.6	403.4	+18.1
31	105.9	121.7	+15.0
32	253.0	216.0	−14.6
33	408.1	430.0	+5.4
34	118.9	134.0	+12.7
Wykorzystując analogię pomiędzy teorią ruchu drogowego pojazdów a przemieszczającymi się ludźmi w trakcie ewakuacji, zaproponowano zastosowanie modyfikacji modelu Greenberga – równania (8) jako prostego narzędzia do szacowania czasu ewakuacji ludzi w budynkach użyteczności publicznej ZL III. Uwzględnia ono zróżnicowanie prędkości przemieszczających się ludzi po pionowych i poziomych drogach ewakuacyjnych, tendencję do zwalniania przy zmianie kierunku ruchu, a także wpływ utrudnień występujących na drogach ewakuacyjnych na czas ewakuacji.

Obliczone czasy ewakuacji za pomocą zaproponowanego równania (8) zgadzały się z wynikami eksperymentalnymi.

Table: Equation use estimate of evacuation time (8)

Simulation number	Simulation time [s]	Equation use estimate of evacuation time (8)
	Czas symulacji [s]	Czas ewakuacji obliczony z zaproponowanego równania [s]
		Deviation [%] / Odchylenie wyniku [%]
35	286.1	238.3 / −16.7
36	478.8	459.4 / −4.1
37	132.5	146.2 / +10.4
38	328.8	257.3 / −15.4
39	518.5	490.5 / −5.4
40	20.7	19.4 / −6.1
41	25.5	29.1 / +14.1
42	34.2	41.3 / +20.9
43	52.1	61.3 / +17.6
44	66.7	59.3 / −11.0
45	95.5	102.4 / +7.3
46	61.0	61.4 / +0.6
47	92.2	91.7 / −0.6
48	140.7	146.1 / +3.8
49	74.0	71.9 / −2.9
50	115.7	129.3 / +11.8
51	191.5	204.2 / +6.6
52	87.0	86.9 / −0.1
53	144.4	160.6 / +11.2
54	245.2	242.7 / −1.0
55	99.6	102.2 / +2.7
56	168.7	169.2 / +0.3
57	293.8	303.0 / +3.1
58	112.0	115.9 / +3.5
59	197.6	196.8 / −0.4
60	348.1	361.2 / +3.8

Source: Own elaboration.

Zdroj: Opracowanie własne.
−12.3% to +13.8% (see table 2). However, in comparison with times obtained in additional computer simulations representing evacuation from buildings with varying geometries and number of evacuees (see table 3), deviation of the evacuation time calculated from the proposed model was from −16.7% to +23.1%. In a considerable majority of cases the result’s deviation was around ±15% for a broad range of building geometries and various numbers of evacuees.

The authors’ experiments on the basis of which the suitability of the proposed model for estimating people’s evacuation time from public utility buildings was verified confirm its universality. It can be applied to determine the duration of single-stage evacuation of the whole building as well as multi-stage evacuation (of the respective storeys) in buildings in which the density of people on the evacuation path is lower than 3.2 persons per sq. m.

Taking into consideration the diversity of selected research objects and the stochastic nature of evacuation, it is possible to state that the evacuation times determined with the proposed model equation (8) which contains a number of simplifications reflect in a satisfactory manner actual evacuation times specified for buildings with varying geometries, and numbers of users varying in terms of age, gender and physical abilities.

z blędem od −12.3% do +13.8% (patrz tabela 2). Natomiast w porównaniu z czasami uzyskanymi z dodatkowych symulacji komputerowych, reprezentujących opis ewakuacji z budynków o bardzo różnej geometrii i różnej liczbie ewakuujących się ludzi (patrz tabela 3), odchylenie wyniku obliczanego czasu ewakuacji z zaproponowanego modelu wyniosło od −16,7% do +23,1%. W zdecydowanej większości przypadków odchylenie wyniku oscylowało w granicach około ±15% dla szerokiej góry geometrii budynków oraz różnej liczby ewakuujących się osób.

Przeprowadzone własne eksperymenty, w oparciu o które zweryfikowano przydatność zaproponowanego modelu do szacowania czasu ewakuacji ludzi z budynków użyteczności publicznej, potwierdzają jego uniwersalność. Można go zastosować do wyznaczania czasu ewakuacji jednoetapowej – całego budynku, jak również w przypadku ewakuacji etapowej (poszczególnych kondygnacji) w obiektach, w których zagęszczenie ludzi na drodze ewakuacyjnej jest mniejsze od 3,2 osoby/m².

Mając na uwadze różnorodność wybranych obiektów badawczych oraz stochastyczny charakter ewakuacji, można uznać, że otrzymane czasy ewakuacji wyznaczone za pomocą zaproponowanego modelowego równania (8) zawierającego wiele uproszczeń – w zadowalając sposób odzwierciedlają rzeczywiste czasy ewakuacji określone dla budynków o zróżnicowanej geometrii, liczbie i różnorodności co do wieku, płci, sprawności fizycznej użytkowników.

Literature / Literatura

[1] Cłapa I., Porowski R., Dziubiński M., Wybrane modele obliczeniowe czasów ewakuacji. BITP Vol. Issue 4, 2011, pp. 71–79.
[2] Orłowska I., Dziubiński M., Porównanie modelowych czasów ewakuacji z przeprowadzonymi eksperymentami, BITP Vol. 50, Issue 2, 2018, pp. 108–119, https://doi.org/10.12845/bitp.50.2.2018.8.
[3] Datka S., Suchorzewski W., Tracz M., Inżynieria ruchu, WKiŁ, Warszawa 1989.
[4] Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. z 2015 r. poz. 1422 ze zm.).
[5] Procedury organizacyjno-techniczne w sprawie spełnienia wymagań w zakresie bezpieczeństwa pożarowego w inny sposób niż to określono w przepisach techniczno-budowlanych, w przypadkach wskazanych w tych przepisach, oraz stosowania rozwiązań zamiennych, Komenda Główna PSP, Warszawa 2008.
[6] Małolepszy R., Wymagany i dostępny czas bezpiecznej ewakuacji – metodyka obliczania, Materiały konferencyjne: Ochrona przeciwpożarowa, Zakopane 2010.
[7] BS 7974:2001 – załącznik PD 7974-6:2004, The application of fire safety engineering principles to fire safety design of buildings. Part 6. Human factors: Life safety strategies – Occupant evacuation, behaviour and condition (Sub-system 6).
[8] Gwynne S.M.V., Purser D., Boswell D.L., Pre-warning staff delay: A forgotten Component in ASET/RSET calculations, in: Pedestrian and Evacuation Dynamics, Springer, London 2010, 243–253.
[9] Cote A.E., Fire Protection Handbook, National Fire Protection Association, 2003.
[10] Paliszek-Saładyga J., Smardz P., Weryfikacja koncepcji bezpieczeństwa pożarowego budynku wysokościowego – połączona próba dymowa i ewakuacyjna, Materiały konferencyjne: Ochrona przeciwpożarowa, Zakopane 2016.

IWONA ORŁOWSKA, PH.D. ENG. – she graduated from the Faculty of Fire Safety Engineering at the Main School of Fire Service in Warsaw. She is an officer of the State Fire Service. Currently a Ph.D. student at the Faculty of Process and Environmental Engineering of the Lodz University of Technology. Her principal research interests involve the numerical modelling of evacuation processes and fire safety engineering.

DR INż. IWONA ORŁOWSKA – funkcjonariusz PSP, absolwentka Wydziału Inżynierii Bezpieczeństwa Pożarowego Szkoły Głównej Służby Pożarnej w Warszawie. Obecnie doktorantka na Wydziale Inżynierii Procesowej i Ochrony Środowiska. Obszar zainteresowań naukowych to modelowanie numeryczne procesów ewakuacji oraz inżynieria bezpieczeństwa pożarowego.
PROF. MAREK DZIUBIŃSKI, D.SC. ENG. — a research fellow at the Lodz University of Technology, currently serves as the Head of the Department of Chemical Engineering at the Faculty of Process Engineering and Environmental Protection. His scientific interests revolve around multiphase flows, with particular emphasis on Newtonian and non-Newtonian liquid-gas liquid flows, rheology and technical rheometry, risk and process safety elements (single- and two-phase outflows from pipelines and reservoirs), and the maintenance of emulsions and their properties.

PROF. DR HAB. INŻ. MAREK DZIUBIŃSKI — pracownik naukowy Politechniki Łódzkiej. Na tej uczelni obecnie pełni funkcję kierownika Katedry Inżynierii Chemicznej na Wydziale Inżynierii Procesowej i Ochrony Środowiska. Naukowo interesuje się przepływami wielofazowymi ze szczególnym uwzględnieniem przepływów dwufazowych ciecz – gaz cieczy newtonowskich i nienewtonowskich, rheologią i reometrią techniczną, elementami ryzyka i bezpieczeństwa procesowego (wypływy jedno- i dwufazowe z rurociągów i zbiorników) oraz utrzymywaniem emulsji i ich właściwościami.

Stworzenie anglojęzycznych wersji oryginalnych artykułów naukowych wydawanych w kwartalniku „BITP. Bezpieczeństwo i Technika Pożarna” — zadanie finansowane w ramach umowy 658/P-DUN/2018 ze środków Ministra Nauki i Szkolnictwa Wyższego przeznaczonych na działalność upowszechniającą naukę.