Positivity of higher exterior powers of the tangent bundle

Cécile Gachet*

December 13, 2024

Abstract

We prove that a smooth projective variety X of dimension n with strictly nef third, fourth or $(n-1)$-th exterior power of the tangent bundle is a Fano variety. Moreover, in the first two cases, we provide a classification for X under the assumption that $\rho(X) \neq 1$.

1 Introduction

Positivity notions are numerous in algebraic geometry: a line bundle can be considered positive, e.g., if it is very ample, ample, strictly nef, nef, big, semiample, effective, pseudoeffective... Some of these notions relate: a very ample line bundle is ample, an ample line bundle is strictly nef and big, a strictly nef line bundle (i.e., a line bundle that has positive intersection with any curve) is nef, a nef line bundle and an effective line bundle are pseudoeffective. These positivity notions, as they tremendously matter in algebraic geometry, have been the subject of a lot of work, to which the books by Lazarsfeld [Laz04a, Laz04b] are a great introduction. Proving new relationships between these various positivity notions is however a rather naive ambition, if not under strong additional assumptions.

From this perspective, the conjecture by Campana and Peternell [CP91] is surprising: they predict that, if X is a smooth projective variety, and the anticanonical divisor $-K_X$ is strictly nef, then X is a Fano manifold. Their conjecture was in fact proven in dimension 2 and 3, by Maeda and Serrano [Mae93, Ser95]. As all Fano manifolds are rationally connected [Cam92, KMM92], an interesting update on the conjecture is the recent proof by Li, Ou and Yang [LOY19, Theorem 1.2] that if X is a smooth projective variety, and the anticanonical divisor $-K_X$ is strictly nef, then X is rationally connected. Their proof uses important results on the Albanese map of varieties with nef anticanonical bundle. Such varieties have been extensively studied too [DPS94, Zha96, PS98, Dem15, CH17, Cao19, CH19].

Positivity notions extend to vector bundles [Laz04b, Definition 6.1.1] in the following fashion: a vector bundle E is strictly nef if the associated line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)$ is strictly nef on $\mathbb{P}(E)$. Instead of asking about the positivity of the top exterior power of the tangent bundle, $-K_X = \bigwedge^{\dim(X)} T_X$, it makes sense to ask about the positivity of intermediate exterior powers $\bigwedge^r T_X$, for $1 \leq r \leq \dim(X)-1$.

For $r = 1$, it is known since Mori [Mor79] that projective spaces are the only smooth projective varieties with ample tangent bundle. They are also the only smooth projective varieties with strictly nef tangent bundle, by [LOY19, Theorem 1.4]. Varieties with nef tangent bundle are, on the other hand, governed by another conjecture of Campana and Peternell [CP91] which has received a lot of attention: see the survey [MnOSC+15], and inter alia [CP91, DPS94, Wat14, Kan17, Kan16, MnOSCW15, Yan, Li17, Dem18, Wat21a, KW].

For $r = 2$, it has been proven that varieties with ample second exterior power of the tangent bundle are projective spaces and quadric hypersurfaces [CS95], varieties with strictly nef second exterior power of the tangent bundle alike.

\textbf{Theorem 1.1.} [LOY19, Theorem 1.5] Let X be a smooth projective variety of dimension $n \geq 2$, such that $\bigwedge^2 T_X$ is strictly nef. Then X is isomorphic to the projective space \mathbb{P}^n, or to a smooth quadric hypersurface Q^n.

*Université Côte d’Azur, CNRS, LJAD, France; gachet@unice.fr
Partial results were obtained under the nef assumption [Wat21b, Sch]. These results lead us to the following questions.

Question 1. Let X be a smooth projective variety of dimension n. Suppose that $\Lambda^r T_X$ is strictly nef for some integer $1 \leq r \leq n$. Is X a Fano variety?

Question 2. Let X be a smooth projective variety of dimension n. Suppose that $\Lambda^r T_X$ is nef for some integer $1 \leq r < n$, and that X is rationally connected. Is X a Fano variety?

Note that an affirmative answer to the second question would imply an affirmative answer to the first question, by [LOY19, Theorem 1.2]. Also note that the second question is answered negatively for $r = n$, as there are smooth rationally connected threefolds with $-K_X$ nef but not semiample [Xie]. The first question is answered affirmatively for smooth toric varieties by [Sch]. In this paper, we answer the second question for $r = n - 1$.

Theorem 1.2. Let X be a smooth projective variety of dimension $n \geq 2$ such that the vector bundle $\Lambda^{n-1}T_X$ is nef and X is rationally connected. Then X is a Fano variety.

This theorem is reminiscent of [DPS94, Proposition 3.10], which states a dichotomy for varieties X with nef tangent bundle: either X is a Fano manifold, or $\chi(X, O_X) = 0$. The proof similarly involves Chern classes inequalities and the Hirzebruch-Riemann-Roch formula. Note that, building on this theorem, [Wat, Proposition 1.4] very recently gave an affirmative answer to Question 2 in general.

Theorem 1.1 is based on the results of [CMSB02] and [DH17], which instead of the assumption on $\Lambda^3 T_X$, feature a much weaker assumption on the length of rational curves. In a similar spirit, we provide the following partial characterizations and their corollaries.

Theorem 1.3. Let X be a smooth projective rationally connected variety of dimension $n \geq 4$ such that for each rational curve C in X, we have $-K_X \cdot C \geq n - 1$. Then either $X \cong \mathbb{P}^2 \times \mathbb{P}^2$, or X is a Fano variety of Picard rank $\rho(X) = 1$.

Corollary 1.4. Let X be a smooth projective variety of dimension at least 4 such that the vector bundle $\Lambda^3 T_X$ is strictly nef. Then either $X \cong \mathbb{P}^2 \times \mathbb{P}^2$, or X is a Fano variety of Picard rank $\rho(X) = 1$.

Let us briefly discuss the case when $\rho(X) = 1$. We know that, if X is a cubic or a complete intersection of two quadrics in \mathbb{P}^n, the vector bundle $\Lambda^3 T_X$ is ample. These are two examples of del Pezzo manifolds, i.e. Fano n-folds of Picard rank 1 and of index $n - 1$. However, we do not know whether other del Pezzo manifolds have strictly nef $\Lambda^3 T_X$, or whether varieties with strictly nef $\Lambda^3 T_X$ are in general del Pezzo manifolds. We can hardly hope for a characterization of Fano manifolds of Picard rank one on which $-K_X \cdot C \geq n - 1$ for every rational curve C, and it is moreover not clear how to use the positivity of $\Lambda^3 T_X$ beyond that length inequality, cf. Lemma 2.1.

Theorem 1.5. Let X be a smooth projective rationally connected variety of dimension $n \geq 6$ such that for each rational curve C in X, we have $-K_X \cdot C \geq n - 2$. Then either X is isomorphic to $\mathbb{P}^3 \times \mathbb{P}^3$ or X is a Fano variety of Picard rank $\rho(X) = 1$.

Studying the possibilities in dimension 5 by hand yields the following result.

Corollary 1.6. Let X be a smooth projective variety of dimension at least 5 such that the vector bundle $\Lambda^4 T_X$ is strictly nef. Then either X is isomorphic to one of the following Fano varieties

$$\mathbb{P}^2 \times Q^3; \; \mathbb{P}^2 \times \mathbb{P}^3; \; \mathbb{P}(T_{\mathbb{P}^3}); \; \mathbb{B}l_r(\mathbb{P}^5) = \mathbb{P}(\mathcal{O}_{\mathbb{P}^3} \oplus \mathcal{O}_{\mathbb{P}^3} \oplus \mathcal{O}_{\mathbb{P}^3}(1)); \; \mathbb{P}^3 \times \mathbb{P}^3$$

or X is a Fano variety of Picard rank $\rho(X) = 1$.

These two corollaries were to our knowledge unknown even under the stronger, more classical assumption that $\Lambda^3 T_X$ or $\Lambda^4 T_X$ is ample. The proof of both theorems goes by classifying possible Mori contractions for X. A delicate point is that, while we know that our varieties X with $\rho(X) \geq 2$ admit one Mori contraction by the Cone Theorem, we need to construct by hand a second Mori contraction, e.g., to control higher-dimensional fibres in case of a first fibred Mori contraction. Depending on circumstances, we use unsplit covering families of deformations of rational curves, and a result by Bonavero, Casagrande and Druel [BCD07], or, if X has the right dimension, Theorem 1.2, to produce this second Mori contraction.
Acknowledgments. I am grateful to my advisor A. Höring for regular helpful discussions, to S. Tanimoto for pointing out that the complete intersection of two quadrics in a projective space should satisfy Corollary 1.4, and to J. Cao for suggesting the second question in the introduction.

Conventions. We work over the field of complex numbers \(\mathbb{C} \). Varieties (and in particular curves) are always assumed irreducible and reduced. We use the expressions “smooth projective variety” and “projective manifold” interchangeably. We refer to [Deb01] for birational geometry, in particular Mori theory, [Laz04a, Laz04b] for positivity notions, [Ko96] for rational curves and their deformations. We write \(c_i(X) = c_i(T_X) \) for the Chern classes of the tangent bundle of \(X \).

2 A first lemma

We start with a simple lemma.

Lemma 2.1. Let \(X \) be a smooth projective variety of dimension \(n \) such that \(\bigwedge^r T_X \) is strictly nef, for some \(1 \leq r \leq n-1 \). Then any rational curve \(C \) in \(X \) satisfies

\[
-K_X \cdot C \geq n + 2 - r.
\]

Proof. The proof goes as [LOY19, Proof of Theorem 1.5]. Let \(f : \mathbb{P}^1 \to C \) be the normalization of the curve. Write

\[
f^* T_X \cong \mathcal{O}_{\mathbb{P}^1}(a_1) \oplus \ldots \oplus \mathcal{O}_{\mathbb{P}^1}(a_n),
\]

with \((a_i)_{1 \leq i \leq n} \) ordered increasingly. It holds \(a_n \geq 2 \), as \(T_{\mathbb{P}^1} \) maps non-trivially to \(f^* T_X \), and we have \(a_1 + \ldots + a_r > 0 \) because \(\mathcal{O}_{\mathbb{P}^1}(a_1 + \ldots + a_r) \) is a direct summand of the strictly nef vector bundle \(\bigwedge^r f^* T_X \). In particular, \(a_{r+1} \geq a_r \geq 1 \). Hence,

\[
-K_X \cdot C = \deg f^*(-K_X) = a_1 + \ldots + a_n \geq 1 + n - r - 1 + 2 = n + 2 - r.
\]

This result is all the more valuable as, by [LOY19, Theorem 1.2], if \(X \) is a smooth projective variety of dimension \(n \) such that \(\bigwedge^r T_X \) is strictly nef, then it is rationally connected, in particular, it contains numerous rational curves.

We will also need the following result.

Lemma 2.2. Let \(X \) be a smooth projective variety of dimension \(n \) such that \(\bigwedge^r T_X \) is nef, for some \(1 \leq r \leq n-1 \). Then any rational curve \(C \) in \(X \) satisfies \(-K_X \cdot C \geq 2 \).

Proof. Let \(f : \mathbb{P}^1 \to C \) be the normalization of the curve. Write

\[
f^* T_X \cong \mathcal{O}_{\mathbb{P}^1}(a_1) \oplus \ldots \oplus \mathcal{O}_{\mathbb{P}^1}(a_n),
\]

with \((a_i)_{1 \leq i \leq n} \) ordered increasingly. It holds \(a_n \geq 2 \), as \(T_{\mathbb{P}^1} \) maps non-trivially to \(f^* T_X \), and we have \(a_1 + \ldots + a_r \geq 0 \) because \(\mathcal{O}_{\mathbb{P}^1}(a_1 + \ldots + a_r) \) is a direct summand of the nef vector bundle \(\bigwedge^r f^* T_X \). Hence, \(a_{r+1} \geq a_r \geq 0 \), and summing up those inequalities, we obtain the estimate

\[
-K_X \cdot C = a_1 + \ldots + a_n \geq 2.
\]

3 Results on \(\bigwedge^{n-1} T_X \)

The following lemma is the main step in the proof of Theorem 1.2.

Lemma 3.1. Let \(X \) be a projective \(n \)-dimensional manifold such that \(\bigwedge^{n-1} T_X \) is nef and \(X \) is rationally connected. Then \(-K_X \) is nef and big.
Proof. By [Laz94b, Theorem 6.2.12(iv)], the anticanonical divisor $-K_X$ is nef. By the Hirzebruch-Riemann-Roch formula, there is a homogeneous polynomial P of degree n in $\mathbb{Q}[X_1, \ldots, X_n]$ with grading $\deg X_i = i$ such that

$$\chi(X, \mathcal{O}_X) = P(c_1(X), \ldots, c_n(X)).$$

Note that, as $\bigwedge^{n-1} T_X = \Omega^n_X \otimes \mathcal{O}_X(-K_X)$, and by [Ful98, Remark 3.2.3(b)], we have

$$c_i \left(\bigwedge^{n-1} T_X \right) = \sum_{j=0}^{i} (-1)^j \binom{n-j}{i-j} c_j(X) c_i(-K_X)^{i-j}.$$ \hfill (⋆)

Let us show by induction that $c_i(X)$ is a rational polynomial in the $c_j(\bigwedge^{n-1} T_X)$, for $0 \leq j \leq i$. Indeed, $c_1(X) = \frac{1}{n} c_1(\bigwedge^{n-1} T_X)$. Assume now that for some i, for all $0 \leq j \leq i$, there is a polynomial $P_j \in \mathbb{Q}[X_1, \ldots, X_j]$ such that $c_j(X) = P_j(c_1(\bigwedge^{n-1} T_X), \ldots, c_i(\bigwedge^{n-1} T_X))$. Then, setting

$$P_{i+1}(X_1, \ldots, X_{i+1}) = (-1)^{i+1} X_{i+1} - \sum_{j=0}^{i} (-1)^{i+j+1} \binom{n-j}{i+1-j} P_j(X_1, \ldots, X_j)(P_1(X_1))^{i+1-j},$$

we have $c_{i+1}(X) = P_{i+1}(c_1(\bigwedge^{n-1} T_X), \ldots, c_{i+1}(\bigwedge^{n-1} T_X))$ by (⋆). This perpetuates the induction.

In particular, we have

$$\chi(X, \mathcal{O}_X) = P \left(P_1 \left(c_1 \left(\bigwedge^{n-1} T_X \right) \right), \ldots, P_n \left(c_1 \left(\bigwedge^{n-1} T_X \right) \right) \right),$$

which is a homogeneous polynomial of degree n in $c_1(\bigwedge^{n-1} T_X), \ldots, c_n(\bigwedge^{n-1} T_X)$.

Now, if we suppose that $-K_X$ is not big, then $c_1(\bigwedge^{n-1} T_X)$ is not big. Thus, [DPS94, Corollary 2.7] implies $\chi(X, \mathcal{O}_X) = 0$. But on the other hand, X is rationally connected, so $\chi(X, \mathcal{O}_X) = 1$, a contradiction.

\textbf{Remark 3.2.} If $n = 4$, we cannot write $c_4(X)$ as a polynomial in

$$c_1 \left(\bigwedge^{n-2} T_X \right) = 3c_1(X),
$$

$$c_2 \left(\bigwedge^{n-2} T_X \right) = 3c_1(X)^2 + 2c_2(X),
$$

$$c_3 \left(\bigwedge^{n-2} T_X \right) = c_1(X)^3 + 4c_1(X)c_2(X),
$$

these formulas coming from [Ien, 4.5.2].

\textbf{Lemma 3.3.} Let X be a projective n-dimensional manifold such that $\bigwedge^{n-1} T_X$ is nef and X is rationally connected. Then $-K_X$ is ample.

\textbf{Proof of Theorem 1.2.} By Lemma 3.1, $-K_X$ is nef and big. By the base-point-free theorem [Deb01, Theorem 7.32], we dispose of an integer m such that $-mK_X$ is globally generated. Let $\varepsilon : X \to Z$ be the $[-mK_X]$-morphism.

Suppose that it is not finite. By [Kaw91, Theorem 2], any irreducible component E of the exceptional locus is covered by rational curves that are contracted by ε. Let C be one of them: we have $0 = -K_X \cdot C \geq 2$ by Lemma 2.2, a contradiction. So $-K_X$ is ample.

\section{4 Studying Mori contractions}

The strategy for proving Theorems 1.3 and 1.5 is to show that there are only few possible Mori contractions for X. In the following, if R is an extremal ray of the Mori cone $NE(X)$, its length denoted by $\ell(R)$ is defined to be the minimal value of $-K_X \cdot C$, for a rational curve C with class in R. A Mori contraction is said to be of length ℓ if it is a contraction of an extremal ray R with $\ell(R) = \ell$.

Note that here and throughout this paper, we exclusively work with elementary Mori contractions, and simply refer to them as Mori contractions.
4.1 Small contractions

Lemma 4.1. Let $1 \leq r \leq 4$. Let X be a smooth projective variety of dimension at least $r + 1$ such that $\Lambda^r T_X$ is strictly nef. Then X has no small contration.

Proof. Let n be the dimension of X. Let $\varphi : X \to Y$ be a birational contraction, E be an irreducible component of the exceptional locus, F an irreducible component of the general fibre of $\varphi|_E$, and R the corresponding extremal ray. Applying Ionescu-Wiśnewski inequality [Ion86, Theorem 0.4], [Wi91a, Theorem 1.1] together with Lemma 2.1 yields

$$\dim E + \dim F \geq n + l(R) - 1 \geq 2n + 1 - r.$$

Since $r \leq 4$, we have $\dim E \geq n - 1$, and thus φ is a divisorial contraction. \hfill \Box

4.2 Fibred Mori contractions

We move on to studying fibred Mori contractions.

4.2.1 Generalities about fibred Mori contractions

If X is a normal projective variety, and C is a rational curve in X, we may denote by V its family of deformations, that is an irreducible component of Chow(X) containing the point corresponding to C. Denoting by $\phi : \text{Univ}(X) \to \text{Chow}(X)$ the universal family and by $ev : \text{Univ}(X) \to X$ the evaluation map, we define

$$\text{Locus}(V) := ev(\phi^{-1}(V)) \subset X.$$

We say that V is covering if $\text{Locus}(V) = X$.

We say that V is unsplit if it only parametrizes irreducible cycles. For $x \in \text{Locus}(V)$, we define $V_x := \phi(ev^{-1}(x))$ the family of deformations of C through x. We finally define

$$\text{Locus}(V_x) := ev(\phi^{-1}(V_x)) \subset X.$$

We use families of deformations of rational curves to prove the following proposition.

Proposition 4.2. Let X be a smooth projective rationally connected variety of dimension n. Let r be an integer with $1 \leq r \leq n - 1$. Suppose that $-K_X \cdot C \geq n + 2 - r$ for any rational curve C in X. Suppose that there is a fibred Mori contraction $\pi : X \to Y$ with $\dim Y > 0$. Then the general fibre has dimension at most $r - 1$.

If equality holds, then there is a rational curve C in X, not contracted by π, whose family of deformations V is unsplit covering and satisfies $\dim \text{Locus}(V_x) = n + 1 - r$ for $x \in \text{Locus}(V)$ general.

The proof relies on the following lemmas.

Lemma 4.3. Let X be a smooth projective variety. Suppose that X has a fibred Mori contraction $\pi : X \to Y$ with $\dim Y > 0$, and let C be a rational curve such that $\pi(C) \neq \{\text{pt}\}$ and such that its family of deformations V is unsplit. Then, for any $x \in \text{Locus}(V)$,

$$\dim \text{Locus}(V_x) \leq \dim Y.$$

Proof of Lemma 4.3. We claim that $\pi|_{\text{Locus}(V_x)}$ is finite onto its image. If it is not, it contracts a curve B to a point: for some ample divisor H on Y, we have $B \cdot \pi^*H = 0$. By [AC09, Lemma 4.1], the numerical class of $B \subset \text{Locus}(V_x)$ is a multiple of $[C] \in N_1(X)_\mathbb{Q}$, whence $C \cdot \pi^*H = 0$, which is a contradiction. So $\pi|_{\text{Locus}(V_x)}$ is finite onto its image: this implies $\dim \text{Locus}(V_x) \leq \dim Y$. \hfill \Box

Lemma 4.4. Let X be a smooth projective variety. Suppose that $-K_X \cdot C > 0$ for every rational curve $C \subset X$. Suppose that X has a fibred Mori contraction $\pi : X \to Y$ with $\dim Y > 0$, and let C be a rational curve such that $\pi(C) \neq \{\text{pt}\}$ and such that

$$-K_X \cdot C = \min\{-K_X \cdot B \mid B \text{ rational curve in } X, \pi(B) \neq \{\text{pt}\}\}.$$

Then the family of deformations of C is unsplit.
Proof of Lemma 4.4. Let \(\mathcal{V} \) be the family of deformations of \(C \). Suppose that it is splitting. By [Kol96, Explanation IV.2.2], we have
\[
C \equiv \sum_i a_i C_i,
\]
with rational curves \(C_i \) and coefficients \(a_i \geq 1 \) such that \(\sum_i a_i \geq 2 \). Since \(-K_X\) is positive on rational curves, we have \(-K_X \cdot C_i < -K_X \cdot C \) for all \(i \). So, by minimality of \(-K_X \cdot C\), the fibration \(\pi \) contracts all curves \(C_i \). Let \(H \) be an ample divisor on \(Y \). We obtain \(\sum_i a_i C_i \cdot \pi^* H = 0 \), a contradiction. □

Proof of Proposition 4.2. Since \(X \) is rationally connected and \(-K_X\) is Cartier, we dispose of a rational curve \(C \) such that \(\pi(C) \neq \{pt\} \) and \(-K_X \cdot C \geq n+2-r \geq 3 \) is minimal with this condition. Let \(\mathcal{V} \) be the corresponding family of deformations. By Lemma 4.4, it is unsplit.

Fix \(x \in \text{Locus}(\mathcal{V}) \) general. By [Kol96, Proposition IV.2.6] and our assumption, we derive
\[
\dim \text{Locus}(\mathcal{V}) + \dim \text{Locus}(\mathcal{V}_x) \geq -K_X \cdot C + n - 1 \geq 2n + 1 - r.
\]
So \(\dim \text{Locus}(\mathcal{V}_x) \geq n+1-r \).

Let \(d \) denote the dimension of the general fibre of \(\pi \). Then, by Lemma 4.3,
\[
d \leq n - \dim \text{Locus}(\mathcal{V}_x) \leq r - 1.
\]
As for the equality case, if \(d = r - 1 \), then \(\dim \text{Locus}(\mathcal{V}_x) = n - r + 1 \), and so \(C \) is such a rational curve as we claimed existed in the equality case of the proposition. □

Proposition 4.2 has an important consequence.

Corollary 4.5. Let \(X \) be a smooth projective rationally connected variety of dimension \(n \) such that, for some integer \(r \) with \(1 \leq r \leq n-1 \), one has \(-K_X \cdot C \geq n+2-r \) for any rational curve \(C \subset X \). Suppose that there is a fibred Mori contraction \(\pi : X \to Y \) with \(\dim Y > 0 \). Then \(n \leq 2r - 2 \).

If equality holds, then a general fibre of \(\pi \) has dimension \(r - 1 \), and there is a rational curve \(C \) in \(X \), not contracted by \(\pi \), whose family of deformations \(\mathcal{V} \) is unsplit covering and satisfies \(\dim \text{Locus}(\mathcal{V}_x) = n+1-r \) for \(x \in \text{Locus}(\mathcal{V}) \) general.

Proof. Let \(F \) be a general fiber of \(\pi \). By Proposition 4.2, we have \(r - 1 \geq \dim F \). Adding \(n \) to both sides and applying Ionescu-Wiśniewski inequality (with the exceptional locus \(E = X \) of dimension \(n \)), it holds
\[
n + r - 1 \geq n + \dim F \geq n + \ell(R) - 1 \geq 2n + 1 - r.
\]
If there is an equality, then \(\dim F = r - 1 \), and so we are in the equality case of Proposition 4.2.

In particular, we can find a rational curve \(C \) in \(X \) that is not contracted by \(\pi \), whose family of deformations \(\mathcal{V} \) is unsplit and satisfies \(\dim \text{Locus}(\mathcal{V}_x) = n+1-r \) for \(x \in \text{Locus}(\mathcal{V}) \) general. By [Kol96, Proposition IV.2.6] and Lemma 2.1 again, we have
\[
\dim \text{Locus}(\mathcal{V}) \geq -K_X \cdot C + n - 1 \geq \dim \text{Locus}(\mathcal{V}_x) \geq 2n + 1 - r - n - 1 + r = n,
\]
so \(\mathcal{V} \) is indeed a covering family. □

4.2.2 Fibred Mori contractions for certain varieties of even dimension

The set-up for this paragraph is the following. Let \(r \geq 3 \) be an integer. Let \(X \) be a smooth projective rationally connected variety of dimension \(2r - 2 \) such that \(-K_X \cdot C \geq r \) for any rational curve \(C \subset X \). Suppose that there is a fibred Mori contraction \(\pi : X \to Y \) with \(\dim Y > 0 \). Let us classify what happens.

Lemma 4.6. Let \(r \geq 3 \) be an integer. Let \(X \) be a smooth projective rationally connected variety of dimension \(2r - 2 \) such that \(-K_X \cdot C \geq r \) for any rational curve \(C \subset X \). Suppose that there is a fibred Mori contraction \(\pi : X \to Y \) with \(\dim Y > 0 \). Then there is another equidimensional fibred Mori contraction \(\varphi : X \to Z \) with \(\dim Z = r - 1 \).

Proof. We are in the case of equality of Corollary 4.5. In particular, the general fibre \(F \) of \(\pi \) has dimension \(r - 1 \), and there is a rational curve \(C \) in \(X \) that is not contracted by \(\pi \) whose family of deformations \(\mathcal{V} \) is unsplit covering and satisfies \(\dim \text{Locus}(\mathcal{V}_x) = r - 1 \geq (2r - 2) - 3 = \dim X - 3 \).
By [BCD07, Theorem 2, Proposition 1(i)], there is a fibred Mori contraction $\varphi : X \to Z$ whose fibres exactly are the V-equivalence classes. By the equality case in Corollary 4.5, the general fibre of φ has dimension $r - 1$.

Let G be a fibre of φ. We claim that $\pi|_G$ is finite. Indeed, if it is not, then there is a curve $B \subset G$ that is contracted by π. The curve B lies in a V-equivalence class, so by [BCD07, Remark 1], as V is unsplit, B is numerically equivalent to a multiple of C, so it cannot be contracted by π, a contradiction! So $\pi|_G$ is finite onto its image, which is contained in Y, so $\dim G \leq \dim Y = r - 1$.

So φ is indeed equidimensional.

Proposition 4.7. Let $r \geq 3$ be an integer. Let X be a smooth projective rationally connected variety of dimension $2r - 2$ such that $-K_X \cdot C \geq r$ for any rational curve $C \subset X$. Suppose that there is an equidimensional fibred Mori contraction $\pi : X \to Y$ with $\dim Y = r - 1$. Then $X \simeq \mathbb{P}^{r-1} \times \mathbb{P}^{r-1}$.

This proposition relies on Lemma 4.10 below.

Definition 4.8. Let X and Y be normal projective varieties. We say that a map $\pi : X \to Y$ is a fibration if it is surjective, has connected fibers, and if we have $0 < \dim Y < \dim X$.

Let $\pi : X \to Y$ be a fibration whose general fibre is a projective space. Let $f : \mathbb{P}^1 \to C \subset Y$ be a rational curve whose image lies in the smooth locus of π. The fibre product π_C of π by f is the projectivization of a bundle $O_{\mathbb{P}^1}(a_1) \oplus \ldots \oplus O_{\mathbb{P}^1}(a_k)$, with the (a_i) ordered increasingly. A minimal section over C is the section $s : \mathbb{P}^1 \to X$ of π_C corresponding to a quotient $O_{\mathbb{P}^1}(a_1)$.

Remark 4.9. There may be several minimal sections as soon as $a_1 = a_2$.

Lemma 4.10. Let X be a smooth projective variety with a fibration $\pi : X \to Y$ whose general fiber is a projective space. Then for any rational curve $f : \mathbb{P}^1 \to C \subset Y$ whose image lies in the smooth locus of π, and for any minimal section s of it, it holds $-K_Y \cdot C \geq -K_X \cdot s(\mathbb{P}^1)$. In particular,

$$-K_Y \cdot C \geq \min\{-K_X \cdot C' \mid C' \text{ is a rational curve in } X\}. \quad (**)$$

If there is an equality in $(**)$, then the base change of π by f is isomorphic to $\mathbb{P}(O_{\mathbb{P}^1}(a \oplus k)) \to \mathbb{P}^1$. If there is almost an equality, i.e.,

$$-K_Y \cdot C = \min\{-K_X \cdot C' \mid C' \text{ is a rational curve in } X\} + 1,$$

then the base change of π by f is isomorphic to to $\mathbb{P}(O_{\mathbb{P}^1}(a \oplus k)) \to \mathbb{P}^1$ or to $\mathbb{P}(O_{\mathbb{P}^1}(a \oplus k-1) \oplus O_{\mathbb{P}^1}(1)) \to \mathbb{P}^1$.

Proof. By Tsun’s theorem, the base change π_C of π by f is the natural projection morphism of the projectivization of a vector bundle V on \mathbb{P}^1. We write $V \simeq O_{\mathbb{P}^1}(a_1) \oplus \ldots \oplus O_{\mathbb{P}^1}(a_k)$, with (a_i) ordered increasingly, and consider s the section of π_C satisfying $s^*O_{\pi(V)}(1) = O_{\mathbb{P}^1}(a_1)$. The degree of $\text{det}(s^*O_{\pi(V)}(1) \otimes V^*)$ is non-positive, equals zero if and only if $V \simeq O_{\mathbb{P}^1}(a_1)^{\oplus k-1}$, and equals -1 if and only if $V \simeq O_{\mathbb{P}^1}(a_1)^{\oplus k-1} \oplus O_{\mathbb{P}^1}(a_1+1)$.

Pulling-back the Euler exact sequence of π_C by s, we get

$$0 \to O_{\mathbb{P}^1} \to s^*O_{\pi(V)}(1) \otimes V^* \to s^*T_{X/Y} \to 0.$$

Thus, $s^*T_{X/Y}$ has non-positive degree. We also have the tangent bundle exact sequence:

$$0 \to s^*T_{X/Y} \to s^*T_X \to f^*T_Y \to 0,$$

Since $s^*T_{X/Y}$ has non-positive degree, we obtain

$$-K_Y \cdot C \geq -K_X \cdot s(C) \geq \min\{-K_X \cdot C' \mid C' \text{ is a rational curve in } X\}.$$

Moreover, if there is an equality, then we have $-K_Y \cdot C = -K_X \cdot s(C)$, and so $V \simeq O_{\mathbb{P}^1}(a_1)^{\oplus k}$.

If there is almost an equality, then $-K_Y \cdot C = -K_X \cdot s(C)$ or $-K_Y \cdot C = -K_X \cdot s(C) + 1$, so $V \simeq O_{\mathbb{P}^1}(a_1)^{\oplus k}$ or $V \simeq O_{\mathbb{P}^1}(a_1)^{\oplus k-1} \oplus O_{\mathbb{P}^1}(a_1+1)$. \hfill \qed

Proof of Proposition 4.7. By [HN13, Theorem 1.3], as $\pi : X \to Y$ is an equidimensional fibration with fibres of dimension $r - 1$, and as it is a Mori contraction of length at least r as well, it is a \mathbb{P}^{r-1}-bundle. Let us show that Y is isomorphic to \mathbb{P}^{r-1}. Since X is smooth and a projective bundle over Y, the variety Y is smooth. By Lemma 4.10, any rational curve C in Y satisfies $-K_Y \cdot C \geq r$. Moreover, X is rationally connected, so Y is too. By [CMSB02, Cor.0.4, 1 \implies 10], we get $Y \simeq \mathbb{P}^{r-1}$.
As \mathbb{P}^{r-1} has trivial Brauer group, there is a vector bundle V of rank r on Y such that π identifies with the natural projection $\mathbb{P}(V) \to \mathbb{P}^{r-1}$. Without loss of generality, we can twist V by a line bundle so that $0 \leq \deg_{\Delta} V|_{\Delta} \leq r-1$, for any line Δ in \mathbb{P}^{r-1}. Let Δ be a line in \mathbb{P}^{r-1}. Then $-K_{\mathbb{P}^{r-1}} \cdot \Delta = r$.

By the equality case in Lemma 4.10, the restriction $V|_{\Delta}$ is isomorphic to $L^{\otimes r}$ for some line bundle L on Δ. Hence $\deg L = 0$, so $L = \mathcal{O}_X$. By [OSS80, Theorem 3.2.1], the vector bundle V is globally trivial. Hence, $X \simeq \mathbb{P}^{r-1} \times \mathbb{P}^{r-1}$. □

4.2.3 Fibred Mori contractions for certain fivefolds

The goal in this section is prove the following result.

Proposition 4.11. Let X be a smooth projective fivefold such that $\bigwedge^1 T_X$ is strictly nef. Suppose that $\rho(X) > 1$, and that X admits a fibred Mori contraction. Then X is isomorphic to one of the following projective manifolds

\[
\mathbb{P}^2 \times \mathbb{P}^3; \mathbb{P}^2 \times \mathbb{P}^3; \mathbb{P}(T_{\mathbb{P}^3}); \mathbb{P}(\mathcal{O}_{\mathbb{P}^3} \oplus \mathcal{O}_{\mathbb{P}^3} \oplus \mathcal{O}_{\mathbb{P}^3}(1)).
\]

We first establish this classification under the simplifying assumption that X has a \mathbb{P}^2-bundle structure, instead of a fibred Mori contraction.

Lemma 4.12. Let X be a smooth projective rationally connected fivefold and such that, for any rational curve $C \subset X$, one has $-K_X \cdot C \geq 3$. Suppose that $p : X \to Y$ is a \mathbb{P}^2-bundle. Then Y is a smooth projective variety, and X is isomorphic to one of the following projective manifolds

\[
\mathbb{P}^2 \times \mathbb{P}^3; \mathbb{P}^2 \times \mathbb{P}^3; \mathbb{P}(T_{\mathbb{P}^3}); \mathbb{P}(\mathcal{O}_{\mathbb{P}^3} \oplus \mathcal{O}_{\mathbb{P}^3} \oplus \mathcal{O}_{\mathbb{P}^3}(1)).
\]

Among other things, the proof uses the following lemma.

Lemma 4.13. Let V be a vector bundle on a smooth quadric hypersurface Q^n. If V is trivial on all lines in Q^n, then V is trivial.

Proof. Note that by [Erm15, Theorem 7], it is enough to show that for any $x, z \in Q^n$, there exists a point $y \in Q^n$ such that the lines (xy) and (yz) belong to Q^n. Intersecting with $n - 2$ hyperplanes, we can reduce to $n = 2$, in which case $Q^2 \simeq \mathbb{P}^1 \times \mathbb{P}^1$ is covered by two family of lines corresponding to the two rulings. Hence, the point $y = (pr_1(x), pr_2(z))$ satisfies our requirement. □

Proof of Lemma 4.12. Since X is smooth and $X \to Y$ is a projective bundle, Y is smooth as well. Since X is rationally connected, Y is rationally connected and by Lemma 4.10, one has $-K_Y \cdot C \geq 3$ for any rational curve C in Y. By [DH17, Cor.1.4], Y is a quadric hypersurface Q^3 or the projective space \mathbb{P}^3. In either case, Y is rational and so it has trivial Brauer group. Hence, $X = \mathbb{P}(V)$ for some vector bundle V on Y.

Let us first assume that Y is a quadric hypersurface Q^3. Every line Δ in Y satisfies $-K_Y \cdot \Delta = 3$. Since $-K_Y$ has degree at least three on any rational curve, by Lemma 4.10 and by its equality case, we have $\mathbb{P}(V|_{\Delta}) \simeq \mathbb{P}^2 \times \Delta$. Hence, for every line Δ in Y, there is an integer δ such that $V|_{\Delta}$ is isomorphic to $\mathcal{O}_{\mathbb{P}^2}(\delta)^{\oplus 3}$ as a vector bundle on $\Delta \simeq \mathbb{P}^1$. Fixing a single line Δ_0 in Y, and noting that $\rho(\Delta_0) = 1$, we have

\[
3\delta - 3\delta_0 = c_1(V) \cdot \Delta - c_1(V) \cdot \Delta_0 = 0,
\]

so the twist $V_0 = V \otimes \mathcal{O}_Y(-\delta_0)$ satisfies $V_0|_{\Delta} = \mathcal{O}_{\Delta}^{\oplus 3}$ for any line Δ in Y. By Lemma 4.13, this vector bundle V_0 is trivial on Y, and thus $X \simeq \mathbb{P}(V) \simeq \mathbb{P}(V_0) \simeq \mathbb{P}^2 \times \mathbb{P}^3$.

Suppose now that Y is a projective space. By the almost-equality case in Lemma 4.10, for every line Δ in Y,

\[
V|_{\Delta} \simeq \bigoplus_{i=1}^{3} \mathcal{O}_{\mathbb{P}^1}(a_{i,\Delta}),
\]

with either $a_{1,\Delta} = a_{2,\Delta} = a_{3,\Delta}$ or $a_{1,\Delta} = a_{2,\Delta} = a_{3,\Delta} - 1$. Note that the sum $a_{1,\Delta} + a_{2,\Delta} + a_{3,\Delta} = c_1(V) \cdot \Delta$ is independent of the chosen line Δ. If it is divisible by 3, then we are in the first case, else it is congruent to 1 modulo 3 and we are in the second case. In both cases, the $a_{i,\Delta}$ are thus independent of the line Δ. We fix a line Δ_0 in \mathbb{P}^3. The twisted bundle $V_0 = V \otimes \mathcal{O}_{\mathbb{P}^3}(-a_{1,\Delta_0})$ now is a uniform bundle of type $(0,0,0)$ or $(0,0,1)$. In the first case, the bundle V_0 is globally trivial by [OSS80], and so $X \simeq \mathbb{P}^2 \times \mathbb{P}^3$. In the second case, by [Sat76], the vector bundle V_0 is either $\mathcal{O}_{\mathbb{P}^3} \oplus \mathcal{O}_{\mathbb{P}^3} \oplus \mathcal{O}_{\mathbb{P}^3}(1)$ or $T_{\mathbb{P}^3}(-1)$, which concludes the classification. □
Let us now study a more general fibred Mori contraction of X.

Lemma 4.14. Let X be a smooth projective rationally connected fivefold and such that, for any rational curve $C \subset X$, one has $-K_X \cdot C \geq 3$. Suppose that X has a fibred Mori contraction $\pi : X \to Y$. Then $\dim Y \leq 3$.

Proof. If $\dim(Y) = 4$, the general fibre of π is a smooth curve C with trivial normal bundle. By assumption,
\[
2 = -K_X \cdot C = \deg_C(-K_C) \geq 3,
\]
absurd. \[\square\]

Let us cover the case when X has a fibred Mori contraction $\pi : X \to Y$ with $1 \leq \dim(Y) \leq 2$.

Lemma 4.15. Let X be a smooth projective rationally connected fivefold and such that, for any rational curve $C \subset X$, one has $-K_X \cdot C \geq 3$. Suppose that X has a fibred Mori contraction $\pi : X \to Y$ with $1 \leq \dim Y \leq 2$. Then there is a fibred Mori contraction $p : X \to Z$ that is a \mathbb{P}^2-bundle.

Proof. We dispose of a rational curve C such that $\pi(C) \neq \{\text{pt}\}$ and $-K_X \cdot C \geq 3$ is minimal with this condition. Let V be the corresponding family of deformations. By Lemma 4.4, V is unsplit. Fix $x \in \text{Locus}(V)$ general. By [Kol96, Proposition IV.2.6] and by assumption, we derive
\[
\dim \text{Locus}(V) + \dim \text{Locus}(V_x) \geq -K_X \cdot C + 5 - 1 \geq 7.
\]
So $\dim \text{Locus}(V_x) \geq 2$. By Lemma 4.3, $\dim \text{Locus}(V_x) \leq \dim Y \leq 2$.

As equality holds, V is a covering family of rational 1-cycles with $\dim \text{Locus}(V_x) = 2 \geq 5 - 3$, so by [BCD07, Theorem 2, Proposition 1(i)], it admits a geometric quotient $p : X \to Z$, that is a fibred Mori contraction, with a general fibre of dimension 2. If a fibre F of p has dimension 3 or more, then since $\dim Y \leq 2$, $\pi|_F$ cannot be finite. So π contracts at least a curve B contained in F, which is numerically equivalent to a multiple of C as it lies in a V-equivalence class [BCD07, Remark 1], a contradiction.

So p is an equidimensional fibred Mori contraction with fibres of dimension 2, of length $-K_X \cdot C \geq 3$. By [HN13, Theorem 1.3], the morphism p is a \mathbb{P}^2-bundle. \[\square\]

We are left supposing that X has a fibred Mori contraction $\pi : X \to Y$ with $\dim(Y) = 3$ that is not a \mathbb{P}^2-bundle. Let us first prove a few generalities about its fibres.

Lemma 4.16. Let X be a smooth projective n-dimensional variety with a fibred Mori contraction π of length $n - k + 1$ onto a variety Y of dimension k. Then the general fibre is isomorphic to \mathbb{P}^{n-k}.

Proof. The general fibre is a smooth variety F of dimension $n - k$ such that $-K_F \cdot C \geq n - k + 1$ for any rational curve C in F, and $-K_F$ is ample. By [CMSB02, Keb02], [HN13, Theorem 2.1], we obtain $F \cong \mathbb{P}^{n-k}$. \[\square\]

We recall and prove a fact mentioned in [HN13, 1.C].

Lemma 4.17. Let X be a smooth projective variety of dimension $n \geq 4$ with a fibred Mori contraction π of length $n - 2$ onto a threefold Y. Suppose that π is not equidimensional. Then for any irreducible component F of a fibre of π of dimension $n - 2$, the normalization \tilde{F} of F is isomorphic to \mathbb{P}^{n-2}.

Proof. By the proof of [HN13, Theorem 1.3], and as $\text{Univ}_{n-3}(X/Y) \to \text{Chow}_{n-3}(X/Y)$ is a universal family for the $(n-3)$-cycles of X over Y, there is a commutative diagram:

\[
\begin{array}{ccc}
X' & \xrightarrow{\mu'} & X \\
\downarrow{\pi'} & & \downarrow{\pi} \\
Y' & \xrightarrow{\eta} & Y \\
\end{array}
\]

where \overline{Y} is the normalization of the closure of the π-equidimensional locus of Y in $\text{Chow}_{n-3}(X/Y)$, \overline{X} is the normalization of the universal family over it, ϵ' is the evaluation map, Y' is a resolution
of \overline{Y}, X' is the corresponding normalized fibred product, π' is a \mathbb{P}^{n-3} bundle. Note that since Y is \mathbb{Q}-factorial, the exceptional loci of μ and of ε are unions of surfaces, hence the exceptional locus of μ' is a union of \mathbb{P}^{n-3}-bundles on surfaces. Also note that π, as a fibred Mori contraction, does not contract any divisor; hence, the indeterminacy locus of ε^{-1} in Y has dimension zero.

Let F be an irreducible component of dimension $n-2$ of a fibre of π, let $\nu : \tilde{F} \to F$ be its normalization. Let $\Sigma \subset \overline{Y}$ be one of the surfaces that ε contracts onto $\pi(F)$, chosen such that $\Gamma := \pi^{-1}(2)$ dominates F. Let S be the strict transform of Σ by η, and let $P := \pi'^{-1}(S)$: it is a \mathbb{P}^{n-3}-bundle over S and it dominates Γ. By the universal property of the normalization, we have a map $f : P \to \tilde{F}$, that fits into the following commutative diagram.

$$
\begin{array}{c}
\begin{array}{ccc}
P & \xrightarrow{\eta'} & \Gamma \\
\downarrow & & \downarrow \\
S & \xrightarrow{\pi} & \Sigma \\
\downarrow & \simeq & \downarrow \\
\{\text{pt}\} & \xrightarrow{\pi'} & \pi
\end{array}
\end{array}
\begin{array}{c}
\xrightarrow{\nu} \\

f
\end{array}
$$

Let ℓ be a line contained in a fibre of $\pi'|_P$. Let \mathcal{V} be the family of deformation of $f_*\ell$ in \tilde{F}.

Let us show that this family satisfies the hypotheses of [HN13, Theorem 2.1]. First, note that $\nu^*(-K_X|_F)$ is ample. Since there is a line in X' numerically equivalent to ℓ that is disjoint from all exceptional divisors of μ', and since ℓ is contracted by π',

$$\nu^*(-K_X|_F) \cdot f_*\ell = -K_X \cdot \mu'_*\ell = -K_Y \cdot \ell = -K_{X'|\pi'} \cdot \ell = -K_{\mathbb{P}^{n-3}} \cdot \ell = n - 2,$$

Since for any rational curve C in \tilde{F}, it holds $\nu^*(-K_X|_F) \cdot C \geq n - 2$ by assumption, the family \mathcal{V} is unsplit. Moreover, it is a covering family, as ν is birational, μ' is surjective and the family of deformations of ℓ is covering. Hence, by [Kol96, Proposition IV.2.5], for a general point $x \in \tilde{F}$,

$$\dim \mathcal{V} = n - 2 + \dim \text{Locus}(\mathcal{V}_x) + 1 - 3,$$

so we are left to show that $\dim \text{Locus}(\mathcal{V}_x) = n - 2$ to conclude.

Let us take x and y general in \tilde{F}. It suffices to show that the image by $\mu'|_P$ of a certain fibre \mathbb{P}^{n-3} of $\pi'|_P$ contains both x and y, since then there is a line through any two points in \mathbb{P}^{n-3}.

Since x is general and Γ dominates F, it holds $\dim \varepsilon'^{-1}(x) = \dim \Gamma - \dim F = n - 3 + 2 = (n - 2) = 1$, so there is a one-dimensional family of cycles passing through x, parametrized by a curve in Σ. As there is a finite map $\Sigma \to \text{Chow}_{n-3}(F)$ (a composition of inclusions and a normalization), this is a non-trivial family of divisors. Hence, it must cover F, in particular there is one divisor passing through y and x. This divisor is dominated by a fibre of $\pi'|_P$, which concludes.

We now use the fact that π is not a \mathbb{P}^2-bundle (in fact, that π is not equidimensional) to construct covering families of rational curves on X. Before that, we prove a simple lemma.

Definition 4.18. Let $f : X \dasharrow Y$ be a rational map. We say that f is almost holomorphic if there are Zariski open subsets $U \subset X$ and $V \subset Y$ such that $f|_U : U \to V$ is a proper holomorphic map.

Lemma 4.19. Let $f : X \dasharrow Y$ be almost holomorphic map. If Y is a curve, then f is holomorphic.

Proof. Let $\varepsilon : X' \to X$ be a resolution of indeterminacies for f, let $f' : X' \to Y$ be the induced holomorphic map. As f is almost holomorphic, no component of the exceptional locus of ε is dominant onto Y. As Y is curve, this means that the exceptional locus of ε is sent onto finitely many points in Y. So f' factors through ε, i.e., f is holomorphic.

Lemma 4.20. Let X be a smooth projective rationally connected fivefold, such that $-K_X \cdot C \geq 3$ for any rational curve $C \subset X$. Suppose that X has a fibred Mori contraction $\pi : X \to Y$ with $\dim Y = 3$. If π is not a \mathbb{P}^2-bundle, then any rational curve $C \subset X$ such that $\pi(C) \neq \{\text{pt}\}$, and which deforms in an unsplit family, deforms in a family covering X.

10
Proof. Note that if \(\pi \) is equidimensional, by [HN13, Theorem 1.3] it is a \(\mathbb{P}^2 \)-bundle. Hence, we assume that a variety \(F \) of dimension 3 is contained in a fibre of \(\pi \). By contradiction, we consider a rational curve \(C \subset X \) such that \(\pi(C) \neq \{ \text{pt} \} \), and the family \(V \) of deformations of \(C \) is unsplit and not covering \(X \).

Fix \(x \in \text{Locus}(V) \) general. By Lemma 4.3, \(\dim \text{Locus}(V_x) \leq \dim Y \leq 3 \). Since the family \(V \) is unsplit, \[\dim \text{Locus}(V) + \dim \text{Locus}(V_x) \geq -K_X \cdot C + 5 - 1 \geq 7, \] in particular as \(V \) is not covering, \(\dim \text{Locus}(V) = 4 \) and \(\dim \text{Locus}(V_x) = 3 \).

Let \(n : \tilde{D} \to D \) denote the normalization of \(D = \text{Locus}(V) \), and let \(\tilde{V} \) be the covering family on \(\tilde{D} \). Note that \(\pi \) induces a fibration of \(\tilde{D} \) onto a variety of smaller dimension that is not a point, in particular \(\rho(\tilde{D}) \geq 2 \). Thus, by [AC09, Corollary 4.4], \(\tilde{D} \) cannot be \(V \)-chain-connected.

Considering the dominant almost holomorphic map \(r : \tilde{D} \to Z \) whose general fibre is a \(V \)-equivalence class [BCD07, Section 2], the variety \(Z \) is thus not a point. Since \(\dim \text{Locus}(\tilde{V}_x) = 3 \) for a general \(x \in \text{Locus}(V) \), the variety \(Z \) must be a curve, in particular, by Lemma 4.19, the map \(r \) is holomorphic.

Note that, as \(D \) is a relatively ample Cartier divisor with respect to \(\pi \), it intersects the three-dimensional variety \(F \) along a surface \(S \). Since \(\dim n^{-1}(S) = 2 > \dim Z = 1 \), the restriction \(r|_{n^{-1}(S)} : n^{-1}(S) \to Z \) cannot be finite. So it contracts a curve \(B \). Its image \(n(B) \) is in a \(V \)-equivalence class, so as \(V \) is unsplit, it is numerically equivalent to a multiple of \(C \). But \(n(B) \subset F \), so this curve is contracted by \(\pi \), a contradiction.

Definition 4.21. Let \(f : X \to Y \) be a morphism of normal varieties. We say that \(f \) is *quasiétale* if \(\dim X = \dim Y \), and there is a Zariski closed subset \(Z \) in \(X \) of codimension at least 2 such that \(f : X \setminus Z \to Y \setminus f(Z) \) is étale.

Remark 4.22. Note that if \(f : X \to Y \) is a finite quasiétale cover and \(Y \) is smooth, then by Zariski purity of the branch locus [Zar58, Proposition 2], \(f \) is étale.

Lemma 4.23. Let \(X \) be a smooth projective rationally connected fivefold, such that \(-K_X \cdot C \geq 3 \) for any rational curve \(C \subset X \). Suppose that \(X \) has a fibred Mori contraction \(\pi : X \to Y \) with \(\dim Y > 0 \). If \(X \) is not a \(\mathbb{P}^2 \)-bundle over any smooth projective base, then \(Y \simeq \mathbb{P}^3 \). Moreover, we have \(\rho(X) = 2 \), and if \(C \) is a line in the smooth locus of \(\pi \) in \(Y \) and \(s \) is a minimal section over \(C \) in \(X \), the class of \(s(\mathbb{P}^1) \) generates the other extremal ray in \(NE(X) \), induces a fibred Mori contraction to a positive dimensional variety too, and satisfies \(-K_X \cdot s(\mathbb{P}^1) = 3 \).

Proof. Note that \(\dim(Y) = 3 \), by Lemmas 4.14, 4.15. By the last lemma of [DP], let \(C \) be a minimal free rational curve in the smooth locus \(Y^0 \subset Y \) of \(\pi \). Let \(s \) be a minimal section over \(C \). Lemma 4.10 yields
\[4 \geq -K_Y \cdot C \geq -K_X \cdot s(\mathbb{P}^1). \]
The family \(V \) of deformations of \(s(\mathbb{P}^1) \) is unsplit. Indeed, suppose by contradiction that it is splitting. By [Kol96, Explanation IV.2.2] there is a cycle
\[\sum_i a_i C_i \equiv_{\text{num}} s(\mathbb{P}^1), \]
with \(C_i \) rational curves, \(a_i \geq 1 \) integers, and \(\sum_i a_i \geq 2 \). Then, intersecting with \(-K_X \) yields
\[4 \geq -K_X \cdot s(\mathbb{P}^1) \geq 6, \]
a contradiction.

By Lemma 4.20, \(V \) therefore is a covering family. By [Kol96, Proposition IV.2.6], it moreover holds
\[\dim \text{Locus}(V_x) \geq -K_X \cdot s(\mathbb{P}^1) - 1 \geq 2 = 5 - 3, \]
so by [BCD07, Theorem 2, Proposition 1(i)], there is a geometric quotient \(p : X \to Z \), that is a fibred Mori contraction, with general fibre of dimension at least \(-K_X \cdot s(\mathbb{P}^1) - 1 \). By Lemma 4.14, we have \(\dim Z \leq 3 \) and by Lemma 4.15, we have \(\dim(Z) = 3 \), or \(X \) is a \(\mathbb{P}^2 \)-bundle over some three-dimensional base. So \(\dim Z = 3 \), hence \(-K_X \cdot s(\mathbb{P}^1) = 3 \). It also follows that \(s(\mathbb{P}^1) \) is an extremal class in the Mori cone, as wished.

Again, \(X \) not being a \(\mathbb{P}^2 \)-bundle over any smooth base, \(p \) is not equidimensional by [HN13, Theorem 1.3], so a variety \(F \) of dimension 3 is contained in a fibre of \(p \). By Lemma 4.17, the normalization \(n : \tilde{F} \to F \) satisfies \(\tilde{F} \simeq \mathbb{P}^3 \).
Since π and p are distinct Mori contractions, they contract no common numerical class of curve, in particular $\pi|_F : F \to Y$ is finite onto its image, hence finite surjective for dimensional reasons. There is an effective ramification divisor $R \in \text{Pic}(\mathbb{P}^3)$ such that $-K_{\mathbb{P}^3} = n\pi|_F^*(-KY) - R$. As F is an irreducible component of a \sim-equivalence class, and as V is unsplit, F contains a deformation of $s(\mathbb{P}^4)$. Let \tilde{C} be the lift to \tilde{F} of a deformation of $s(\mathbb{P}^4)$ that is contained in F. Then $-K_{\mathbb{P}^3} \cdot \tilde{C} \geq 4$, and $\pi|_\tilde{F}^*(-KY) \cdot \tilde{C} = -KY \cdot \tilde{C} \leq 4$. So $R \cdot \tilde{C} \leq 0$, but $R \in \text{Pic}(\mathbb{P}^3)$ is effective, thus ample or trivial, so R is trivial. The finite map $\pi|_F \circ n : \mathbb{P}^3 \to Y$ is thus quasiétale. So, its base change $\mathbb{P}^3 \times Y \to Y$ is also quasiétale, as $\pi : X \to Y$ contracts no divisor. But X is rationally connected, hence simply connected, and smooth, so $\mathbb{P}^3 \times Y \to Y$ is an isomorphism. Hence $\pi|_F \circ n : \mathbb{P}^3 \to Y$ is an isomorphism too.

Since $\rho(Y) = 1$, we have $\rho(X) = 2$. Since $Y \cong \mathbb{P}^3$ and $4 \geq -KY \cdot C$, the curve C is a line. \qed

Lemma 4.24. Let X be a smooth projective rationally connected fivefold, such that $-K_X \cdot C \geq 3$ for any rational curve $C \subset X$. Suppose that X has a fibred Mori contraction $\pi : X \to Y$ with $\dim(Y) > 0$. If X is not a \mathbb{P}^2-bundle over any smooth projective base, then $\rho(X) = 2$ and X has two distinct fibred Mori contractions onto \mathbb{P}^3, with corresponding extremal rays generated by the minimal sections $s(\mathbb{P}^4)$, $\sigma(\mathbb{P}^4)$ above lines that lie in each \mathbb{P}^3 in the smooth loci of the fibration. Moreover,

$$-K_X \cdot s(\mathbb{P}^4) = -K_X \cdot \sigma(\mathbb{P}^4) = 3.$$

Proof. Apply Lemma 4.23 twice. \qed

Proof of Proposition 4.11. If X has a \mathbb{P}^2-bundle structure, then Lemma 4.12 concludes. Suppose that X is not a \mathbb{P}^2-bundle. By Lemma 4.24, X admits exactly two fibred Mori contractions π and p, both onto \mathbb{P}^3. Given the intersection number of $-K_X$ with both extremal rays, and as $\pi_* s(\mathbb{P}^4)$ is a line in \mathbb{P}^3 and as $p_* s(\mathbb{P}^4) = 0$, we have

$$-K_X \cdot s(\mathbb{P}^4) = 3 = \pi_* \mathcal{O}_{\mathbb{P}^3}(3) \cdot s(\mathbb{P}^4) = (\pi_* \mathcal{O}_{\mathbb{P}^3}(3) \otimes p_* \mathcal{O}_{\mathbb{P}^3}(3)) \cdot s(\mathbb{P}^4),$$

and similarly

$$-K_X \cdot \sigma(\mathbb{P}^4) = (\pi_* \mathcal{O}_{\mathbb{P}^3}(3) \otimes p_* \mathcal{O}_{\mathbb{P}^3}(3)) \cdot \sigma(\mathbb{P}^4).$$

Hence, as $\rho(X) = 2$, and $s(\mathbb{P}^4)$ and $\sigma(\mathbb{P}^4)$ are independent,

$$\omega_X^* = \pi^* \mathcal{O}_{\mathbb{P}^3}(3) \otimes p^* \mathcal{O}_{\mathbb{P}^3}(3).$$

By Theorem 1.2, $-K_X$ is ample. So X is a Fano fivefold, and we just showed that it has index 3. By the classification in [Wi91b], X must then be a \mathbb{P}^2-bundle, which is a contradiction. \qed

4.3 Divisorial contractions

Let us classify divisorial Mori contraction of large length.

Proposition 4.25. Let X be a smooth projective rationally connected variety of dimension n such that $-K_X \cdot C \geq 3$ for every rational curve C. Then X admits no divisorial Mori contraction of length greater or equal to $n - 1$.

Remark 4.26. In particular, the assumptions are fulfilled if there is $1 \leq r \leq n - 1$ such that $\bigwedge^r T_X$ is strictly nef, by [LOY19, Theorem 1.2] and Lemma 2.1.

The proof uses the following lemma, that excludes some special contractions of length $n - 1$.

Lemma 4.27. Let X be a smooth projective rationally connected variety of dimension n such that $-K_X \cdot C \geq 3$ for every rational curve C. Then there is no morphism $X \to Y$ that is a blow-up of a smooth point in a smooth variety.

Proof of Lemma 4.27. By contradiction, consider such a smooth blow-up:

$$f : E \subset X \to p \in Y.$$

Note that since X is rationally connected, so Y is too. Let C be a rational curve through p.

Since $-f^*KY = -K_X + (n - 1)E$ and since no curve is contained in the blown-up locus p, the anticanonical divisor $-KY$ is strictly nef. By bend-and-break [Deb01, Proposition 3.2] on the smooth
Let $−K_Y \cdot C \leq n + 1$. The strict transform $C' \subset X$ of C satisfies $E \cdot C' > 0$. Since $K_X = f^*K_Y + (n-1)E$, we have
\[3 \leq -K_X \cdot C' \leq -K_Y \cdot C - (n-1) \leq 2, \]
a contradiction!

Proof of Proposition 4.25. By Ionescu-Wiśnewski inequality, if X admits a divisorial Mori contraction of length $\ell \geq n - 1$, the exceptional divisor E and the general fibre $F \subset E$ satisfy:
\[\dim E + \dim F \geq n + \ell - 1 \geq 2n - 2, \]
i.e., $\ell = n - 1$ and $E = F$ is contracted onto a point. So [AO02, Theorem 5.2] applies and shows that this divisorial Mori contraction of X corresponds to a blow-up of a smooth point in a smooth variety, which contradicts Lemma 4.27.

We now consider divisorial Mori contractions of length $n - 2$.

Proposition 4.28. Let X be a smooth projective variety of dimension $n \geq 5$, that is rationally connected and such that $-K_X \cdot C \geq n - 2$ for any rational curve $C \subset X$. Then X has no divisorial Mori contraction contracting the exceptional divisor to a point.

Remark 4.29. These assumptions are fulfilled if \mathbb{A}^4T_X is strictly nef, by [LOY19, Theorem 1.2] and Lemma 2.1.

Proof. Assume that $\varepsilon : X \to Y$ is a divisorial Mori contraction contracting the exceptional divisor E to a point. Note that as X is rationally connected, there exists a rational curve C that intersects E without being contained in E. In particular, $E \cdot C > 0$. Among all such curves, let actually C be one such that $-K_X \cdot C$ is minimal. Then we claim that the family ν of deformations of C is unsplit. Indeed, suppose by contradiction that it is splitting. By [Kol96, Explanation IV.2.2], we have
\[C \equiv \sum a_i C_i, \]
with rational curves C_i and coefficients $a_i \geq 1$ such that $\sum a_i \geq 2$. Then $E \cdot C > 0$, so without loss of generality, $E \cdot C_1 > 0$. In particular, C_1 intersects E and is not contracted by ε, hence not contained in E. Since $-K_X$ has positive degree on all rational curves in X, we have $-K_X \cdot C_1 < -K_X \cdot C$, which contradicts the minimality of $-K_X \cdot C$.

By [Kol96, Proposition IV.2.6.1], for a general $x \in \text{Locus}(\nu)$,
\[\dim \text{Locus}(\nu) + \dim \text{Locus}(\nu_x) \geq n + n - 2 - 1. \]
In particular, $\dim \text{Locus}(\nu_x) \geq n - 3$, and as X is smooth, E is Cartier, hence intersects $\text{Locus}(\nu_x)$ along a subscheme of dimension at least $n - 4 \geq 1$. Let B be a curve in this intersection. It is contained in E, hence contracted by ε, hence satisfies $E \cdot B < 0$. On the other hand, it is contained in $\text{Locus}(\nu_x)$, hence is numerically equivalent to a multiple of C by [ACO09, Lemma 4.1]. It has to be a positive multiple, as one sees when intersecting with any ample divisor. But $E \cdot C > 0$, a contradiction.

Corollary 4.30. Let X be a smooth projective variety of dimension $n \geq 5$, that is rationally connected and such that $-K_X \cdot C \geq n - 2$ for any rational curve $C \subset X$. Suppose that $\varepsilon : X \to Y$ is a divisorial Mori contraction. Then Y is smooth and ε is the blow-up of a smooth curve in Y.

Proof. Recall [Deb01, Proposition 6.10(b)] that the divisorial Mori contraction ε has a unique exceptional divisor E as its exceptional locus. By [KM98, Lemma 2.62], a ray $\mathbb{R}_+[C]$ associated to ε satisfies $E \cdot C < 0$, so such C has negative intersection with at least one effective divisor. Moreover, ε is a Mori contraction of length $n - 2$. So [AO02, Theorem 5.3] applies, showing that ε either contracts a divisor to a point, or is a blow-up of a smooth curve in a smooth variety Y. By Proposition 4.28, only the latter can occur.

Let us finally describe more precisely what happens in the occurrence of Corollary 4.30.

Lemma 4.31. Let X be a smooth projective variety of dimension $n \geq 3$, that is rationally connected and such that for some $1 \leq r \leq n - 1$, for any rational curve $C \subset X$, it holds $-K_X \cdot C \geq n + 2 - r$. If there is a morphism $\varepsilon : X \to Y$ that is a blow-up of a smooth curve in the smooth variety Y, then $r = n - 1$.

13
Proof. Consider such a smooth blow-up:
\[f : E \subset X \to \ell \subset Y \]

As \(X \) is rationally connected, so is \(Y \). Fix \(H \) an ample divisor on \(Y \). Let \(C \subset Y \) be a rational curve other than \(\ell \) passing through a point \(p \in \ell \), with \(H \cdot C \) minimal among the degrees of all rational curves intersecting \(\ell \) other than \(\ell \). Fix another point \(q \in C \setminus C \cap \ell \). By bend-and-break [Deb01, Proposition 7.3], as \(Y \) is smooth, if \(-K_Y \cdot C \geq n + 2 \), then there is a connected non-integral 1-cycle that is a deformation of \(C \) passing through \(p \) and \(q \). In particular,
\[
\sum_{i=1}^{k} a_i C_i \equiv \min C,
\]
with rational curves \(C_i \) such that \(p \in C_1, q \in C_{i_0} \) for some \(i_0 \), coefficients \(a_i \geq 1 \), and \(\sum_{i=1}^{k} a_i \geq 2 \). As \(q \notin \ell \), we have that \(C_{i_0} \neq \ell \), so either \(C_1 \neq \ell \), or \(C_1 = \ell \) and \(k \geq 2 \). Intersecting with \(H \), we see that \(H \cdot C_i < H \cdot C \) for all \(i \), in particular for \(C_1 \). If \(C_1 \neq \ell \), then \(H \cdot C_1 \) contradicts the minimality of \(H \cdot C \). If \(C_1 = \ell \), then \(k \geq 2 \) and by connectedness of the rational cycle, there is a curve \(C_i \neq \ell \) that intersects \(C_1 = \ell \). So \(C_{i_1} \neq \ell \) intersects \(\ell \) and contradicts the minimality, as \(H \cdot C_{i_1} < H \cdot C \) again. So \(-K_Y \cdot C \leq n + 1 \).

The strict transform \(C' \subset X \) of \(C \) satisfies \(E \cdot C' > 0 \). Since \(K_X = f^*K_Y + (n - 2)E \), and by assumption,
\[
n + 2 - r \leq -K_X \cdot C' \leq -K_Y \cdot C - (n - 2) \leq 3,
\]
so \(r = n - 1 \).

Proposition 4.32. Let \(X \) be a smooth projective variety of dimension \(n \geq 5 \), that is rationally connected and such that \(\bigwedge^3 T_X \) is strictly nef. If there is a morphism \(\epsilon : X \to Y \) that is a blow-up of a smooth curve in the smooth variety \(Y \), then \(X \) is a fivefold and there is a fibred Mori contraction \(\pi : X \to Z \) with \(\dim(Z) > 0 \).

Proof. By Lemma 4.31, we have \(n = 5 \). So by Theorem 1.2, \(-K_X \) is ample. The Mori cone \(NE(X) \) is closed, generated by finitely many classes of rational curves. Let \(E \) be the exceptional divisor of \(\epsilon \). Note that there exists an extremal ray \(R = \mathbb{R}_+[C] \) of \(NE(X) \) on which \(E \cdot C < 0 \). Indeed, if there were not such a ray, then \(E \) would be non-positive on all curves in \(X \), which is absurd for an effective divisor. So, let \(R = \mathbb{R}_+[C] \) be an extremal ray on which \(E \cdot C > 0 \).

Denote the associated Mori contraction by \(\pi : X \to Z \). Since \(X \) already had a non-trivial Mori contraction \(\epsilon \), we have \(\dim(Z) > 0 \). Let us prove that \(\pi \) is a fibred Mori contraction.

By Lemma 4.1, \(\pi \) cannot be a small contraction. Assume by contradiction that it is a divisorial contraction. By Corollary 4.30, the variety \(Z \) is smooth and \(\pi \) is a blow-up along a smooth curve of \(Z \). Let \(E' \) be the \(\pi \)-exceptional divisor. Let \(\ell \), respectively \(\ell' \), be the image of \(E \), respectively \(E' \), in \(Y \), respectively \(Z \). Let \(F' \) be a general fibre of \(\pi'|_{E'} \). It has dimension \(n - 2 \). Note that \(F' \) and \(E \) intersect, since \(E \cdot C > 0 \). Hence, \(E \cap F' \) is a subscheme of \(X \) of dimension at least \(n - 3 \). Since \(\epsilon \) and \(\pi \) are distinct Mori contractions, the restriction \(\epsilon|_{E \cap F'} \) must be finite onto its image, which is contained in \(\ell \). So \(n - 3 \leq 1 \), a contradiction!

So \(\pi \) is a fibred Mori contraction.

Proposition 4.33. Let \(X \) be a smooth projective variety of dimension \(n \geq 5 \), that is rationally connected and such that \(\bigwedge^3 T_X \) is strictly nef. If there is a morphism \(\epsilon : X \to Y \) that is a blow-up of a smooth curve, then \(Y \cong \mathbb{P}^5 \) and \(\epsilon \) is the blow-up of a line.

Proof. By Proposition 4.32, \(X \) is a fivefold and admits a fibred Mori contraction onto a positive dimensional base. So Proposition 4.11 applies, showing that \(X \) belongs to a list of certain varieties of Picard number two. Only one of them has a divisorial Mori contraction, namely \(\text{Bl}_q(\mathbb{P}^5) = \mathbb{P}(\mathcal{O}_{\mathbb{P}^5} \oplus \mathcal{O}_{\mathbb{P}^5} \oplus \mathcal{O}_{\mathbb{P}^5}(1)) \).

5 Results on \(\bigwedge^3 T_X \)

Proof of Theorem 1.3. Note that \(-K_X \) is nef, and non-trivial (as it is positive on rational curves, and \(X \) is rationally connected). If \(\rho(X) = 1 \), \(-K_X \) is ample and \(X \) is thus a Fano variety. If \(\rho(X) \geq 2 \), by the Cone Theorem, \(X \) admits a Mori contraction, which by Lemma 4.1 and Proposition 4.25 is a fibred Mori contraction. Corollary 4.5 implies that \(X \) is a fourfold. By Lemma 4.6, \(X \) has an equidimensional fibred Mori contraction to a surface, so by Proposition 4.7, we have \(X \cong \mathbb{P}^2 \times \mathbb{P}^2 \).
Proof of Corollary 1.4. It is straightforward from Lemma 2.1, [LOY19, Theorem 1.2], and Theorem 1.3.

Remark 5.1. It is easy to check that $\Lambda^3 T_{P^n,p}$ is in fact ample.

Example 5.2. Let X be a cubic in \mathbb{P}^n with $n \geq 5$. From the tangent exact sequence

$$0 \to T_X \to T_{P^n}|_X \to \mathcal{O}_X(3) \to 0,$$

we can use [Har77, II.Ex.5.16(d)] to derive the existence of a surjection

$$0 \to F_4 \to \bigwedge^4 T_{P^n}|_X \to \bigwedge^3 T_X \otimes \mathcal{O}_X(3) \to 0.$$

As $T_{P^n}|_X \otimes \mathcal{O}_X(-1)$ is nef, the quotient of its fourth exterior power $\Lambda^3 T_X \otimes \mathcal{O}_X(-1)$ is also nef, and thus $\Lambda^4 T_X$ is ample.

Example 5.3. Let X be the complete intersection of two quadrics in \mathbb{P}^n with $n \geq 6$. From the tangent exact sequence

$$0 \to T_X \to T_{P^n}|_X \to \mathcal{O}_X(2) \oplus \mathcal{O}_X(2) \to 0,$$

we can use [Har77, II.Ex.5.16(d)] to derive the existence of a surjection

$$0 \to F_4 \to \bigwedge^5 T_{P^n}|_X \to \bigwedge^3 T_X \otimes \mathcal{O}_X(4) \to 0.$$

As $T_{P^n}|_X \otimes \mathcal{O}_X(-1)$ is nef, the quotient of its fifth exterior power $\Lambda^3 T_X \otimes \mathcal{O}_X(-1)$ is also nef, and thus $\Lambda^4 T_X$ is ample.

6 Results on $\Lambda^4 T_X$

6.1 Examples

Lemma 6.1. Let X be the fivefold $\mathbb{P}(T_{P^3})$. Then $\Lambda^4 T_X$ is ample.

Proof. Denote the natural projection by $p : X \to \mathbb{P}^3$, the tautological line bundle on X by $\mathcal{O}_X(1)$. By [Har77, II.Ex.5.16(d)], there is an exact sequence

$$0 \to \bigwedge^2 T_X \otimes p^* \bigwedge^2 T_{P^3} \to \bigwedge^4 T_X \to T_{X/\mathbb{P}^3} \otimes p^* \mathcal{O}_{P^3}(-K_{P^3}) \to 0.$$

Let us prove that $E_1 = T_{X/\mathbb{P}^3} \otimes p^* \mathcal{O}_{P^3}(-K_{P^3})$ is ample. We have the relative Euler sequence

$$0 \to \mathcal{O}_X \to p^* \Omega^1_{\mathbb{P}^3} \otimes \mathcal{O}_X(1) \to T_{X/\mathbb{P}^3} \to 0.$$

The bundle E_1 is a quotient of $p^* \Omega^1_{\mathbb{P}^3}(4) \otimes \mathcal{O}_X(1)$. But as T_{P^3} is ample, $\mathcal{O}_X(1)$ is ample. Moreover, $\Omega^1_{\mathbb{P}^3}(4) \simeq \bigwedge^2 T_{P^3}$ is ample too, which concludes by [Laz04b, 6.1.16].

Let us prove that $E_2 = \bigwedge^2 T_{X/\mathbb{P}^3} \otimes p^* \bigwedge^2 T_{P^3}$ is ample. This would settle the ampleness of $\Lambda^4 T_X$ by [Laz04b, 6.1.13(ii)]. From [Har77, II.Ex.5.16(d)] and the relative Euler sequence, we derive

$$0 \to T_{X/\mathbb{P}^3} \to p^* T_{P^3}(-4) \otimes \mathcal{O}_X(2) \to \bigwedge^2 T_{X/\mathbb{P}^3} \to 0.$$

Since E_2 is a quotient of $p^* (T_{P^3}(-4) \otimes \bigwedge^2 T_{P^3}) \otimes \mathcal{O}_X(2)$, we are left proving that the latter is ample. Notice that $T_{P^3}(-1)$ is globally generated and thus nef. So the bundle $T_{P^3}(-3) \otimes \bigwedge^2 T_{P^3} = T_{P^3}(-1) \otimes \bigwedge^2 T_{P^3}(-1)$ is nef as well. Finally, $\mathcal{O}_X(1)$ is ample, and we see that $\mathcal{O}_X(1) \otimes p^* \mathcal{O}_{P^3}(-1)$ is a quotient of $p^* T_{P^3}(-1)$ (dualizing the relative Euler exact sequence and twisting by $\mathcal{O}_X(1)$), hence it is nef. We conclude by [Laz04b, 6.2.12(iv)].

Lemma 6.2. Let X be the fivefold $\mathbb{P}(\mathcal{O}_{P^3} \oplus \mathcal{O}_{P^3} \oplus \mathcal{O}_{P^3}(1))$. Then $\Lambda^4 T_X$ is ample.

Remark 6.3. Note that $\mathbb{P}(\mathcal{O}_{P^3} \oplus \mathcal{O}_{P^3} \oplus \mathcal{O}_{P^3}(1))$ is isomorphic to the blow-up of line in \mathbb{P}^5 [EH16, Section 9.3.2].
Proof. Denote the natural projection by $p : X \to \mathbb{P}^3$, the tautological line bundle on X by $\mathcal{O}_X(1)$. By [Har77, II.Ex.5.16(d)], there is an exact sequence

$$0 \to \bigwedge^2 T_{X/\mathbb{P}^3} \otimes p^* T_{\mathbb{P}^3} \to \bigwedge^4 T_X \to T_{X/\mathbb{P}^3} \otimes p^* \mathcal{O}_{\mathbb{P}^3}(-K_{\mathbb{P}^3}) \to 0.$$

Let us prove that $E_1 = T_{X/\mathbb{P}^3} \otimes p^* \mathcal{O}_{\mathbb{P}^3}(-K_{\mathbb{P}^3})$ is ample. We have the relative Euler sequence

$$0 \to \mathcal{O}_X \to p^*(\mathcal{O}_{\mathbb{P}^3} \otimes \mathcal{O}_{\mathbb{P}^3} \otimes \mathcal{O}_{\mathbb{P}^3}(-1)) \to \mathcal{O}_X(1) \to T_{X/\mathbb{P}^3} \to 0.$$

The bundle E_1 is a quotient of $p^*(\mathcal{O}_{\mathbb{P}^3} \otimes \mathcal{O}_{\mathbb{P}^3}(4) \otimes \mathcal{O}_{\mathbb{P}^3}(4)) \otimes \mathcal{O}_X(1)$. Since $\mathcal{O}_{\mathbb{P}^3}(3) \otimes \mathcal{O}_{\mathbb{P}^3}(4) \otimes \mathcal{O}_{\mathbb{P}^3}(4)$ is ample and $\mathcal{O}_X(1)$ is nef and p-ample, the bundle E_1 is thus ample.

Let us prove that $E_2 = \bigwedge^2 T_{X/\mathbb{P}^3} \otimes p^* \bigwedge^2 T_{\mathbb{P}^3}$ is ample. From [Har77, II.Ex.5.16(d)] and the relative Euler sequence, we derive

$$0 \to T_{X/\mathbb{P}^3} \to p^*(\mathcal{O}_{\mathbb{P}^3}(-1) \otimes \mathcal{O}_{\mathbb{P}^3}(-1) \otimes \mathcal{O}_{\mathbb{P}^3}) \otimes \mathcal{O}_X(2) \to \bigwedge^2 T_{X/\mathbb{P}^3} \to 0.$$

It is thus enough to prove that $p^* \bigwedge^2 T_{\mathbb{P}^3} \otimes \mathcal{O}_{\mathbb{P}^3}(-1) \otimes \mathcal{O}_X(2)$ is ample, which is clear since $\bigwedge^2 T_{\mathbb{P}^3}(-1) = (\bigwedge^2 T_{\mathbb{P}^3})(-2)$ is globally generated and thus nef, and since $p^* \mathcal{O}_{\mathbb{P}^3}(1) \otimes \mathcal{O}_X(2)$ is ample.

\[\blacksquare\]

Remark 6.4. It is easy check to that $\bigwedge^4 T_{\mathbb{P}^2 \times \mathbb{P}^3}$, $\bigwedge^4 T_{\mathbb{P}^2 \times \mathbb{Q}^3}$, $\bigwedge^4 T_{\mathbb{P}^2 \times \mathbb{P}^3}$ are ample.

6.2 Proof of Theorem 1.5 and Corollary 1.6

Proof of Theorem 1.5. Note that $-K_X$ is nef, and non-trivial (as it is positive on rational curves, and X is rationally connected). If $\rho(X) = 1$, $-K_X$ is ample and X is thus a Fano variety. If $\rho(X) \geq 2$, by the Cone Theorem, X admits a Mori contraction. By Lemma 4.1, it cannot be a small contraction.

Suppose that it is a divisorial contraction. By Corollary 4.30 and Lemma 4.31, it is a smooth blow-up of a smooth curve in a fivefold, but we are assuming that X has dimension at least six, a contradiction!

So X has no divisorial contraction. Thus, it has a fibred Mori contraction onto a positive dimensional variety. Corollary 4.5 implies that X is a fivefold or a sixfold. By assumption, X is thus a sixfold. By Lemma 4.6, X has an equidimensional fibred Mori contraction to a threefold, so by Proposition 4.7, we have $X \simeq \mathbb{P}^3 \times \mathbb{P}^3$, which concludes.

\[\blacksquare\]

Proof of Corollary 1.6. By Theorem 1.5, is is enough to consider the case when X is a fivefold. In particular, by Theorem 1.2, X is a Fano variety. Again, if $\rho(X) = 1$, there is nothing to prove.

If $\rho(X) \geq 2$, by the Cone Theorem, X admits a Mori contraction. By Lemma 4.1, it cannot be a small contraction.

Suppose that it is a divisorial contraction. By Corollary 4.30, it is a smooth blow-up of a smooth curve, and by Proposition 4.33, $X \simeq \text{Bl}_Y \mathbb{P}^3$.

Otherwise, it is a fibred Mori contraction onto a positive dimensional variety. Since X is a fivefold such that $\bigwedge^4 T_X$ is strictly nef, Proposition 4.11 applies and concludes.

\[\blacksquare\]

References

[ACO09] M. Andreatta, E. Chierici, and G. Occhetta. Generalized Mukai conjecture for special Fano varieties. Central European Journal of Mathematics, 2(2):272–293, 2009.

[AO02] M. Andreatta and G. Occhetta. Special rays in the Mori cone of a projective variety. Nagoya Mathematical Journal, 168:127–137, 2002.

[BCD07] L. Bonavero, C. Casagrande, and S. Drul. On covering and quasi-covering families of curves. Journal of the European Mathematical Society, 9:45–57, 2007.

[Cam92] F. Campana. Connexité rationnelle des variétés de Fano. Ann. Sci. École Norm. Sup. (4), 25(5):539–545, 1992.

[Cao19] J. Cao. Albanese maps of projective manifolds with nef anticanonical bundles. Ann. Sci. Éc. Norm. Supér. (4), 52(5):1137–1154, 2019.
[CH17] J. Cao and A. Höring. Manifolds with nef anticanonical bundle. *J. Reine Angew. Math.*, 724:203–244, 2017.

[CH19] J. Cao and A. Höring. A decomposition theorem for projective manifolds with nef anticanonical bundle. *J. Algebraic Geom.*, 28(3):567–597, 2019.

[CMSB02] K. Cho, Y. Miyaoka, and N.I. Shepherd-Barron. Characterizations of projective space and applications to complex symplectic manifolds. In *Higher dimensional birational geometry*, volume 35 of *Higher dimensional birational geometry*, pages 1–88. Advanced Studies in Pure Mathematics, Tokyo, 2002.

[CP91] F. Campana and T. Peternell. Projective manifolds whose tangent bundles are numerically effective. *Mathematische Annalen*, 289(1):1–33, 1991.

[CS95] K. Cho and E. Sato. Smooth projective varieties with the ample vector bundle $\bigwedge^2 T_X$ in any characteristic. *J. Math. Kyoto Univ.*, 35(1):1–33, 1995.

[Deb01] Olivier Debarre. *Higher-dimensional algebraic geometry*. Universitext. Springer-Verlag, New York, 2001.

[Dem15] J.-P. Demailly. Structure theorems for compact Kähler manifolds with nef anticanonical bundles. In *Complex analysis and geometry*, volume 144 of *Springer Proc. Math. Stat.*, pages 119–133. Springer, Tokyo, 2015.

[Dem18] J.-P. Demailly. Fano manifolds with nef tangent bundles are weakly almost Kähler-Einstein. *Asian J. Math.*, 22(2):285–290, 2018.

[DH17] T. Dedieu and A. Höring. Numerical characterisation of quadrics. *Algebraic Geometry*, 4(1):120–135, 2017.

[DP] S. Druel and M. Paris. Erratum to “characterizations of projective spaces and hyperquadrics”. https://druel.perso.math.cnrs.fr/textes/epq2_erratum.pdf.

[DPS94] J.-P. Demailly, T. Peternell, and M. Schneider. Compact complex manifolds with numerically effective tangent bundles. *J. Algebraic Geom.*, 3(2):295–345, 1994.

[EH16] D. Eisenbud and J. Harris. *3264 and all that—a second course in algebraic geometry*. Cambridge University Press, Cambridge, 2016.

[Erm15] S. Ermakova. Vector bundles of finite rank on complete intersections of finite codimension in ind-Grassmannians. *Complex Manifolds*, 2(1):78–88, 2015.

[Ful98] W. Fulton. *Intersection theory*, volume 2 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics*. Springer-Verlag, Berlin, second edition, 1998.

[Har77] R. Hartshorne. *Algebraic Geometry*, volume 52 of *Graduate Texts in Mathematics*. Springer, 1977.

[HN13] A. Höring and C. Novelli. Mori contractions of maximal length. *Publ. Res. Inst. Math. Sci.*, 49(1):215–228, 2013.

[Ien] O. Iena. On symbolic computations with Chern classes: Remarks on the library chern.lib for singular. https://orbilu.uni.lu/bitstream/10993/21949/2/ChernLib.pdf.

[Ion86] P. Ionescu. Generalized adjunction and applications. *Mathematical Proceedings of the Cambridge Philosophical Society*, 99(3):457–472, 1986.

[Kan16] A. Kanemitsu. Fano n-folds with nef tangent bundle and Picard number greater than $n-5$. *Math. Z.*, 284:195–208, 2016.

[Kan17] A. Kanemitsu. Fano 5-folds with nef tangent bundles. *Math. Res. Lett.*, 24(5):1453–1475, 2017.
[Kaw91] Y. Kawamata. On the length of an extremal rational curve. *Invent. Math.*, 105(3):609–611, 1991.

[Keb02] S. Kebekus. Characterizing the projective space after Cho, Miyaoka and Shepherd-Barron. In *Complex geometry (Göttingen, 2000)*, pages 147–155. Springer, Berlin, 2002.

[KM98] J. Kollár and S. Mori. *Birational geometry of algebraic varieties*, volume 134 of *Cambridge Tracts in Mathematics*. Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original.

[KMM92] János Kollár, Yoichi Miyaoka, and Shigefumi Mori. Rational connectedness and boundedness of Fano manifolds. *J. Differential Geom.*, 36(3):765–779, 1992.

[Kol96] J. Kollár. *Rational curves on algebraic varieties*, volume 32 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics*. Springer-Verlag, Berlin, 1996.

[KW] A. Kanemitsu and K. Watanabe. Projective varieties with nef tangent bundles in positive characteristics. arXiv:2012.09419.

[Laz04a] R. Lazarsfeld. *Positivity in algebraic geometry. I*, volume 48 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics*. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series.

[Laz04b] R. Lazarsfeld. *Positivity in algebraic geometry. II*, volume 49 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics*. Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals.

[Li17] Q. Li. Smooth projective horospherical varieties with nef tangent bundles. *Indiana Univ. Math. J.*, 66(6):1879–1893, 2017.

[LOY19] D. Li, W. Ou, and X. Yang. On projective varieties with strictly nef tangent bundles. *J. Math. Pures Appl. (9)*, 128:140–151, 2019.

[Mae93] H. Maeda. A criterion for a smooth surface to be Del Pezzo. *Math. Proc. Cambridge Philos. Soc.*, 113(1):1–3, 1993.

[MnOSC+15] R. Muñoz, G. Occhetta, L. E. Solá Conde, K. Watanabe, and J. A. Wiśniewski. A survey on the Campana-Peternell conjecture. *EUT Edizioni Università di Trieste*, 47:127–185, 2015.

[MnOSCW15] R. Muñoz, G. Occhetta, L. E. Solá Conde, and K. Watanabe. Rational curves, Dynkin diagrams and Fano manifolds with nef tangent bundle. *Math. Ann.*, 361(3):583–609, 2015.

[Mor79] S. Mori. Projective manifolds with ample tangent bundle. *Annals of Mathematics*, 110:593–606, 1979.

[OSS80] C. Okonek, M. Schneider, and H. Spindler. *Vector Bundles on Complex Projective Spaces*. Progress in Mathematics. Birkhäuser, 1980.

[PS98] T. Peternell and F. Serrano. Threefolds with nef anticanonical bundles. volume 49, pages 465–517. 1998. Dedicated to the memory of Fernando Serrano.

[Sat76] E. Sato. Uniform vector bundles on a projective space. *J. Math. Soc. Japan*, 28(1):123–132, 1976.

[Sch] D. Schmitz. On exterior powers of the tangent bundle on toric varieties. arXiv:1811.02603.

[Ser95] F. Serrano. Strictly nef divisors and Fano threefolds. *Journal für die reine und angewandte Mathematik*, 464:187–206, 1995.
[Wat] K. Watanabe. Positivity of the exterior power of the tangent bundles. arXiv:2208.06735.

[Wat14] K. Watanabe. Fano 5–folds with nef tangent bundles and Picard numbers greater than one. *Math. Z.*, 276:39–49, 2014.

[Wat21a] K. Watanabe. Fano manifolds of coindex three admitting nef tangent bundle. *Geom. Dedicata*, 210:165–178, 2021.

[Wat21b] K. Watanabe. Positivity of the second exterior power of the tangent bundles. *Adv. Math.*, 385:Paper No. 107757, 27, 2021.

[Wiś91a] J.A. Wiśniewski. On contractions of extremal rays of Fano manifolds. *Journal für die reine und angewandte Mathematik*, 417:141–157, 1991.

[Wiś91b] J.A. Wiśniewski. On Fano manifolds of large index. *Manuscripta Math.*, 70(2):145–152, 1991.

[Xie] Z. Xie. Rationally connected threefolds with nef and bad anticanonical divisor. Preprint arXiv:2006.08234.

[Yan] Q. Yang. Toric Fano manifolds with nef tangent bundles. arXiv:1506.05565.

[Zar58] O. Zariski. On the Purity of the Branch Locus of Algebraic Functions. *Proc. Natl. Acad. Sci. USA*, 44(8):791–796, 1958.

[Zha96] Q. Zhang. On projective manifolds with nef anticanonical bundles. *J. Reine Angew. Math.*, 478:57–60, 1996.