Bisphenol A increases hydrogen peroxide generation by thyrocytes both *in vivo* and *in vitro*

Maurício Martins da Silva¹, Lueni Lopes Felix Xavier¹, Carlos Frederico Lima Gonçalves¹, Ana Paula Santos-Silva¹,², Francisca Diana Paiva-Melo¹, Mariana Lopes de Freitas¹, Rodrigo Soares Fortunato³, Leandro Miranda-Alves¹ and Andrea Claudia Freitas Ferreira¹,²

¹Laboratory of Endocrine Physiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
²NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
³Laboratory of Molecular Radiobiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil

Correspondence should be addressed to A C F Ferreira: andclauf@yahoo.com.br

Abstract

Bisphenol A (BPA) is the most common monomer in polycarbonate plastics and an endocrine disruptor. Though some effects of BPA on thyroid hormone (TH) synthesis and action have been described, the impact of this compound on thyroid H_2O_2 generation remains elusive. H_2O_2 is a reactive oxygen species (ROS), which could have deleterious effect on thyrocytes if in excess. Therefore, herein we aimed at evaluating the effect of BPA exposition both *in vivo* and *in vitro* on H_2O_2 generation in thyrocytes, besides other essential steps for TH synthesis. Female Wistar rats were treated with vehicle (control) or BPA 40 mg/kg BW for 15 days, by gavage. We then evaluated thyroid iodide uptake, mediated by sodium-iodide symporter (NIS), thyroperoxidase (TPO) and dual oxidase (DOUX) activities (H_2O_2 generation). Hydrogen peroxide generation was increased, while iodide uptake and TPO activity were reduced by BPA exposition. We have also incubated the rat thyroid cell line PCCL3 with 10^{-9}M BPA and evaluated Nis and $Duox$ mRNA levels, besides H_2O_2 generation. Similar to that found *in vivo*, BPA treatment also led to increased H_2O_2 generation in PCCL3. Nis mRNA levels were reduced and $Duox2$ mRNA levels were increased in BPA-exposed cells. To evaluate the importance of oxidative stress on BPA-induced Nis reduction, PCCL3 was treated with BPA in association to N-acetylcysteine, an antioxidant, which reversed the effect of BPA on Nis. Our data suggest that BPA increases ROS production in thyrocytes, what could lead to oxidative damage thus possibly predisposing to thyroid disease.

Introduction

Bisphenol A (BPA) is the most common monomer in polycarbonate plastic composition. It is used not only in the manufacture of polycarbonate-made products, such as beverage and food containers, but also in the synthesis of epoxy resins, found in the covering of canned food (1). When submitted to acidic pH or high temperature, the polymer undergoes breakdown of the ester bonds and BPA can be released from the matrix, contaminating food, beverages and environment (2, 3).

BPA is an endocrine disruptor, being considered a selective estrogen receptor modulator (SERM) (4, 5), with important effects on reproductive function (4, 6). Besides that, BPA was shown to have positive association with serum TSH (7) and negative association with free T4. The most plausible mechanism is explained by an oxidative stress generation, which could impair several thyroid functions. The mechanism of BPA influence on the thyroid is still under investigation.

Key Words

- bisphenol A
- endocrine disruptor
- reactive oxygen species
- hydrogen peroxide
- dual oxidase
- thyroperoxidase
- sodium-iodide symporter
- iodide
- thyroid
levels (8), thus suggesting an impact also in thyroid axis. Furthermore, BPA has been shown to increase oxidative stress, leading to oxidative damage of proteins, lipids and nucleic acids in liver, central nervous system, reproductive system and kidney (9, 10).

For thyroid hormone (TH) synthesis, thyrocytes require iodide, which is transported through the basolateral plasma membrane by Na⁺/I⁻ symporter (NIS) (11, 12, 13). Thyroperoxidase (TPO), the key enzyme in TH biosynthesis, oxidizes iodide in the presence of H₂O₂, produced by dual oxidases (DUOX1 and DUOX2) (14, 15, 16, 17). However, an excessive production of hydrogen peroxide could lead to oxidative stress, since H₂O₂ is a reactive oxygen species (ROS) and thyroid gland damage (18, 19, 20).

Since BPA has been shown to increase oxidative damage in several tissues and since thyrocytes are exposed to high levels of ROS due to TH biosynthesis, herein we hypothesized that BPA exposure could lead to an increased ROS production in thyrocytes thus affecting thyroid function. Therefore, our aim was to investigate the effect of BPA exposure on thyroid H₂O₂ production both in vivo and in vitro, besides the effect of BPA treatment on two proteins essential for TH synthesis: NIS and TPO.

Materials and methods

Animals

In all experiments, adult (4–5 months old) female Wistar rats were kept in controlled temperature (22–25°C) animal room, with a 12-h light:12-h darkness cycle. We have chosen to study female rats since the prevalence of thyroid diseases is higher in women than in men (20, 21). Pelleted commercial chow (Paulinea, São Paulo, Brazil) and water were available ad libitum. The Institutional Committee for Use of Animals in Research approved the study (number: IBCCF167), and the procedures were in compliance with the International Guiding Principles for Biomedical Research Involving Animals of the Council for International Organizations of Medical Sciences (Geneva, Switzerland), and the guiding principles for care and use of animals from the American Physiological Society.

Experimental design

Animals were divided into two groups: Control (C) and bisphenol A (BPA). Control rats received vehicle (corn oil:isopropanol 20% v/v) and BPA group received bisphenol A in the dose of 40 mg/kg body weight (BW) (22, 23, 24), dissolved in vehicle. Both were administered daily by gavage. After 15 days of treatment, animals were weighed and killed. The dose of BPA was chosen based on the non-observable adverse effect level (NOAEL) for BPA, established in 50 mg/kg BW (25, 26). Thus, we decided to use a dose lower than NOAEL.

Histological analysis

The thyroids were collected and fixed in 10% formaldehyde (pH 7.4) for 48 h, followed by dehyedation in ethanol (Vetc, Rio de Janeiro, Brazil) and clarification in xylene (Vetc, Rio de Janeiro, Brazil). Tissues were embedded in paraffin and cut at the thickness of 5 μm. Sections were stained with hematoxylin and eosin for topographic analysis according to Andrade et al. (27). High-resolution images (1600 × 1200 pixels) were obtained using digital camera (QImaging Retigar-2000R Fast 1394 Mono, Surrey BC, Canada) coupled to light microscope (Olympus BX50). High-quality images were captured with the QCapture Pro7 (QImaging).

Radioiodide uptake

We have previously shown that the measurement of radioiodide uptake 15 min after ¹²⁵I–NaI administration (short term iodide uptake) reflects iodide transport through the sodium-iodide symporter without the influence of in vivo thyroid iodine organification activity (28). Thus, in order to evaluate the in vivo NIS function using thyroid radiiodine uptake measurements, the animals received Na¹²⁵I (3700 Bq i.p., Amersham, Buckinghamshire, England) 15 min before decapitation. Thyroids were removed and weighed. The radioactivity of the thyroid glands was measured using a gamma counter (LKB), and the percentage of the ¹²⁵I in the gland relative to the total ¹²⁵I injected was calculated. Results were expressed as relative to control.

Thyroid peroxidase activity

TPO extraction and activity measurement were performed as previously described (28, 29). Rat thyroids were minced and homogenized in 0.5 mL of 50 mM Tris–HCl buffer, pH 7.2, containing 1 mM KI, using an Ultra-Turrax homogenizer (Staufen, Germany). The homogenate was centrifuged at 100,000 g, 4°C for 1 h. The pellet was suspended in 0.5 mL triton (0.1% v/v) and incubated at 4°C for 24 h to solubilize TPO. The suspension was
centrifuged at 100,000 g, 4°C for 1 h, and the supernatant containing solubilized TPO was used for the assays.

The assay mixture contained: 1.0 mL of freshly prepared 50 mmol/L sodium phosphate buffer, pH 7.4, containing 24 mmol/L KI and 11 mmol/L glucose, and increasing amounts of solubilized TPO. The final volume was adjusted to 2.0 mL with 50 mmol/L sodium phosphate buffer, pH 7.4, and the reaction was started by the addition of 10 µL of 0.1% w/v glucose oxidase (Boehringer Grade I). The increase in absorbance at 353 nm (tri-iodide production) was registered for 3 min on a Hitachi spectrophotometer (U-3300). The ΔA353 nm/minute was determined from the linear portion of the reaction curve and related to protein concentration. Protein concentration was determined by the Bradford assay (30). Results were expressed as relative to control.

Thyroid H$_2$O$_2$ production

H$_2$O$_2$ generation was quantified in thyroid particulate fractions by the Amplex red/horseradish peroxidase assay (Molecular Probes, Invitrogen), which detects the accumulation of a fluorescent oxidized product, as previously described (18, 31). To measure H$_2$O$_2$ production from particulate fraction, the excised thyroid glands remained at 4°C for 24 h in 50 mmol/L sodium phosphate buffer (pH 7.2) containing 0.25 mol/L sucrose, 0.5 mmol/L dithiothreitol (DTT), 1 mmol/L EGTA, 5 mg/mL aprotinin and 34.8 mg/mL phenylmethylsulphonyl fluoride (PMSF) before homogenization. Then, the homogenate was centrifuged at 100,000 g for 35 min at 4°C and suspended in 0.25 mL of 50 mmol/L sodium phosphate buffer (pH 7.2) containing 0.25 mol/L sucrose, 2 mmol/L MgCl$_2$, 5 mg/mL aprotinin and 34.8 mg/mL PMSF (32). This particulate fraction was incubated in 150 mmol/L sodium phosphate buffer (pH 7.4) containing 100 U/mL superoxide dismutase (SOD) (Sigma), 0.5 U/mL horseradish peroxidase (HRP) (Roche), 50 µmol/L Amplex red (Molecular Probes), 1 mmol/L EGTA, with or without 1.5 mmol/L CaCl$_2$. Then, 0.1 mg/mL NADPH was added to start the reaction and the fluorescence was immediately measured in a microplate reader (Victor X4; PerkinElmer, Norwalk, CT) at 30°C, using excitation wavelength at 530 nm and emission wavelength at 595 nm. H$_2$O$_2$ production was quantified using standard calibration curves (31).

The specific enzymatic activity was obtained as nmol of H$_2$O$_2$ per hour per milligram of protein (nmol/h/mg protein) and calcium-dependent H$_2$O$_2$ generation was obtained by subtracting H$_2$O$_2$ generation in the absence of calcium from that obtained in the presence of calcium. Then, the results were expressed as relative to control. Protein concentration was determined by the Bradford assay (30).

Radioimmunoassays

Serum T3 and T4 were determined by specific coated tube RIA kits (MP Biomedicals, Orangeburg, NY, USA). Intra- and interassay coefficients of variation for T3 were 4.4–5.6% and 5.3–7.5%, respectively, and sensitivity was 6.7 ng/dL. For T4 intra-and interassay coefficients of variation were 3.3–8.1% and 5.3–11.4%, respectively, and sensitivity was 0.76 µg/dL. All procedures were performed following the fabricant recommendations.

Cell culture

Rat thyroid cell line PCCL3 (donated by Prof. Roberto Di Lauro, Stazione Zoologica Anton Dohrn) was maintained in Coon’s modified Ham’s F-12 medium (HiMedia Laboratories, Mumbai, India), which contains 10 mM glucose, supplemented with 5% v/v fetal bovine serum and a six-hormone mixture (1 mLU/mL TSH, 10 mg/mL insulin, 5 mg/mL transferrin, 10 nM hydrocortisone, 10 ng/mL somatostatin, and 10 ng/mL glycyl-l-histidyl-l-lysine acetate) and maintained in a humidified 5% v/v CO$_2$ incubator at 37°C.

Cell treatment and cell viability assay

In order to evaluate the possible toxic effect of bisphenol A on PCCL3 cells, we treated the cells with different concentrations of BPA (10$^{-9}$, 10$^{-7}$, 10$^{-5}$ and 10$^{-3}$ mol/L BPA) or vehicle (ethanol 0.1% v/v) for 24 h. As an index of cell viability, we used the commercially available MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay (Sigma–Aldrich), according to the manufacturer’s recommendations. This is a colorimetric assay to determine the number of viable cells. The assay is based on the cellular conversion of the tetrazolium salt into formazan that is soluble in tissue culture medium, and it is measured directly at 490 nm in 96-well assay plates. Absorbance is directly proportional to the number of living cells in culture. After treatment, cells were stained with MTT (0.5 mg/mL) for 3 h at 37°C in a humidified 5% CO$_2$ atmosphere. Then, cells were lysed with DMSO (P A). All determinations were done in triplicates. Since we did not find reduction of cell viability with 10$^{-3}$ mol/L BPA, suggesting that BPA is not toxic for...
PCCL3 cells at this concentration, we decided to perform the next experiments using this concentration. Moreover, literature data suggest that the concentration of BPA in the serum is in nmol/L range in humans (33, 34). Results were expressed as relative to control.

In order to evaluate the involvement of the prooxidant effect of BPA on Nis and Tpo mRNA regulation, PCCL3 cells were incubated for 24 h with or 10^-3 mol/L BPA in association or not with 1 mmol/L N-acetylcysteine (NAC), which was added 30 min before BPA addition (35).

Real-time PCR

Total RNA was extracted using the RNeasy Plus Mini Kit (Qiagen), following the manufacturer’s instructions. After DNase treatment, reverse transcription was followed by real-time PCR, as previously described (36). Specific oligonucleotides, as described in Table 1, were purchased from Applied Biosystems (Foster City, California, USA). GAPDH was used as internal control. Results were expressed as relative to control.

H₂O₂ production in intact cells

Extracellular H₂O₂ generation was quantified by the Amplex red/horseradish peroxidase assay, which detects the accumulation of a fluorescent oxidized product, as previously described (18, 31). Cells (1 × 10⁵) in Dulbecco’s PBS (D-PBS) containing CaCl₂ and MgCl₂ were incubated with n-glucose (1 mg/mL), superoxide dismutase (100 U/mL), horseradish peroxidase (0.5 U/mL), and Amplex red (50 μmol/L), in the presence or absence of 1 μmol/L ionomycin, a calcium ionophore, since DUOX, the enzyme responsible for H₂O₂ generation associated to TH synthesis, is a calcium-dependent NADPH oxidase (19). The fluorescence was immediately measured in a microplate reader (Victor3, Perkin Elmer) for 30 min (excitation wavelength = 530 nm and emission wavelength = 595 nm). H₂O₂ generation was determined using standard calibration curves. Results were obtained as nmols of H₂O₂ per hour per 10⁵ cells. In order to obtain calcium-dependent H₂O₂ generation, which is associated to DUOX activity, H₂O₂ generation obtained in the presence of ionomycin was subtracted by that found in the absence of ionomycin. Then, results were expressed as relative to control.

Statistical analyses

All the results are expressed as mean ± s.e.m. and were analyzed by Unpaired t-test. Experiments were performed at least twice and at least two animals/cell replicates per group per experiment were used. Results of cell viability assay were analyzed by One-way ANOVA followed by the Newman–Keuls multiple comparison test, since there were more than two groups. Statistical analyses were conducted using the software GraphPad Prism (version 5, GraphPad Software Inc, San Diego, California), and the level of significance was established at P<0.05.

Results

Body and thyroid weight

BPA treatment led to a slight though significant increase in BW, as shown in Table 2. This result suggest that the energetic homeostasis was affected by BPA what is in accordance with the well-known obesogenic effect of BPA (37). On the other hand, absolute and relative thyroid weight remained unchanged (Table 2).

Histological analysis

The thyroid glands from control rats showed a normal tissue organization: follicles with simple cuboidal epithelial cells surrounding a cavity rich in eosinophilic material or colloid, besides a rich vascular stroma (Fig. 1). In BPA-treated group, we observed many hypoactive follicles, with squamous epithelium surrounded by interfollicular connective tissue.
Since iodide is an essential element for TH biosynthesis (12), we have evaluated the effect of BPA on in vivo thyroid radioiodide uptake. In fact, BPA treatment significantly decreased thyroid iodide uptake (Fig. 2A).

TH synthesis requires not only iodide uptake, but also iodide oxidation and organification, reactions catalyzed by thyroperoxidase, in the presence of H2O2 (38). We have thus evaluated TPO activity and H2O2 generation. BPA led to a significant reduction of TPO activity (Fig. 2B), similarly to that found for NIS. Therefore, two fundamental steps for TH biosynthesis

Table 2 Effect of BPA treatment on body weight, absolute and relative thyroid weight of female rats.

Group	Body weight (g)	Absolute thyroid weight (mg)	Relative thyroid weight (mg/100g BW)
Control	218.6 ± 3.4	17.3 ± 0.9	7.8 ± 0.4
BPA	228.0 ± 3.1*	16.9 ± 0.8	7.7 ± 0.3

Female Wistar rats were treated with vehicle (Control, corn oil:isopropanol 20% v/v) or bisphenol A (BPA, 40 mg/kg BW), orally by gavage, daily for 15 days (n=16 per group, *P<0.05 vs control group).

Figure 1
Photomicrographs of thyroid gland histological sections of rats exposed to BPA. Hematoxylin and eosin staining. Female Wistar rats were treated with vehicle (Control, corn oil:isopropanol 20%) or bisphenol A (BPA, 40 mg/kg BW), orally by gavage, daily for 15 days. (A) Control: lobe of the thyroid showing follicles of different size and activity status (normo, hypo and hyperactive). (B) BPA: lobe showing large number of hypoactive follicles. (C) Control: note the predominantly follicular structures, circled by a simple epithelium (arrow), containing eosinophilic material (colloid, asterisk), areas of colloid reabsorption (arrowhead) and interfollicular rich vascularized stroma (star). (D) BPA: note many hypoactive follicles with squamous epithelium (asterisk) and interfollicular connective tissue (star). Magnification of A and B =20× and C and D =200×. N=3 per group.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
BPA increases thyroid ROS production

Thyroid H$_2$O$_2$ generation in the absence of calcium remained unchanged (Fig. 3A), while thyroid H$_2$O$_2$ generation in the presence of calcium was increased in BPA-treated group (Fig. 3B). Thus, calcium-dependent H$_2$O$_2$ generation was significantly increased in the thyroid of rats treated with BPA (Fig. 3C). Since H$_2$O$_2$ is a ROS, the increment in H$_2$O$_2$ levels could lead to an enhancement of oxidative stress in the gland, especially because TPO activity, which consumes H$_2$O$_2$, is reduced.

Serum total T4 and T3 and pituitary β-Tsh mRNA

Since thyroid iodide uptake and thyroperoxidase activity were reduced by BPA treatment, we next evaluated TH levels. Surprisingly, we have found an increment in T4 levels in the serum of BPA-exposed rats, while T3 remained unchanged (Table 3). Thus, despite the reduction of TPO activity found in the dosage in vitro, it is possible that, in vivo, the greater availability of the TPO cofactor, H$_2$O$_2$, has led to the increased T4 synthesis. In accordance to the increased serum T4, we have found a significant reduction of Tsh beta chain mRNA levels in the pituitary of the rats treated with BPA (Table 3).

PCCL3 cell viability

Since the changes in proteins involved in TH synthesis observed in vivo could be due to a direct effect of BPA or...
could be related to hormonal changes caused by BPA, we next evaluated the direct effect of BPA on thyrocytes, using the non-tumor rat thyroid cell line PCCL3 as a model. However, since BPA could be toxic for PCCL3, we have first evaluated the effect of BPA on cell viability. In fact, at the concentration 10^{-3} mol/L, BPA seems to be toxic for PCCL3, significantly reducing its viability (Fig. 4A).

Surprisingly, 10^{-7} mol/L BPA significantly increased cell viability, suggesting that this compound could increase cell proliferation, reduce cell death or both. Since 10^{-9} mol/L BPA did not affect cell viability and since this concentration is in the range of BPA concentration found in human serum (33, 34), we decided to use 10^{-9} mol/L BPA for the next experiments.

Nis mRNA levels in PCCL3

Since in vivo data have shown an inhibitory effect of BPA on thyroid iodide uptake, which is mediated by NIS, we have next evaluated Nis mRNA levels in PCCL3 cells treated with BPA. We have found a reduction of Nis mRNA levels in BPA-treated cells (Fig. 4B). Thus, BPA seems to act by transcriptional mechanism to regulate Nis mRNA levels.

H$_2$O$_2$ generation and Duox and Duoxa mRNA levels in PCCL3

Since in vivo data found herein showed an increment of thyroid H$_2$O$_2$ generation and since it has been shown that ROS have an inhibitory effect on NIS (39), we have then evaluated the effect of BPA on H$_2$O$_2$ generation and on Duox1, Duox2, Duoxa1 and Duoxa2 mRNA levels. DUOX1 and DUOX2 are calcium-dependent NADPH oxidases responsible for H$_2$O$_2$ generation associated to TH

Table 3 Effect of BPA treatment on serum total T4 and T3 concentrations and mRNA levels of TSH beta chain in pituitary of female rats.

Group	Total T4 (µg/dL)	Total T3 (ng/dL)	Pituitary mRNA levels of β-TSH (relative to control)
Control	3.6 ± 0.2	50.7 ± 3.4	1.0 ± 0.2
BPA	4.8 ± 0.3*	59.0 ± 5.3	0.5 ± 0.1*

Female Wistar rats were treated with vehicle (Control, corn oil/isopropanol 20% v/v) or bisphenol A (BPA, 40 mg/kg BW), orally by gavage, daily for 15 days ($n=10$ per group for serum total T4 and total T3 and $n=4$ per group for pituitary β-TSH mRNA levels, *$P<0.05$ vs control group).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

https://doi.org/10.1530/EC-18-0348

© 2018 The authors

Published by Bioscientifica Ltd

Downloaded from Bioscientifica.com at 06/08/2024 03:38:04PM via Open Access. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/
biosynthesis (15, 16) and DUOXA1 and DUOXA2 are the maturation factors necessary for full DUOX1 and DUOX2 activities, respectively (40). In fact, mutations in Duox2 have been associated to dysshormonogenesis and goiter (16, 41). Duox2 mRNA levels showed a significant increase in BPA-treated cells, (Fig. 5B), while Duox1 mRNA levels remained unchanged (Fig. 5A). Moreover, mRNA levels of both Duoxa1 (Fig. 5C) and Duoxa2 (Fig. 5D) were not altered by BPA treatment.

H$_2$O$_2$ generation in the absence of ionomycin remained unchanged (Fig. 6A), while H$_2$O$_2$ generation in the presence of ionomycin was increased by BPA (Fig. 6B).

Figure 6
Effect of BPA on extracellular H$_2$O$_2$ generation in PCCL3 cells. PCCL3 cells were incubated with vehicle (control, 0.1% ethanol) or 10^{-9}mol/L BPA and 24h later, extracellular H$_2$O$_2$ generation was measured by Amplex red method, as described in methods. Activity was measured in the absence (A) and in the presence (B) of ionomycin, a calcium ionophore, since dual oxidase is a calcium-dependent NADPH oxidase, and calcium-dependent H$_2$O$_2$ generation (C) was obtained subtracting the activity in the presence of calcium by that obtained in the absence of calcium. Results are expressed as relative to control (control, n=9; BPA, n=9; *P<0.05 vs control).

Figure 7
Effect of BPA and NAC on Nis and Tpo mRNA levels in PCCL3 cells. PCCL3 cells were incubated with vehicle (control, 0.1% ethanol) or 10^{-9}mol/L BPA, with or without 1mmol/L NAC, and 24h later mRNA levels of (A) Nis and (B) Tpo were evaluated by qRT-PCR, as described in methods. Results are expressed as relative to control (NIS: control, n=5; BPA, n=5; NAC, n=6; NAC + BPA, n=6; TPO: control, n=6; BPA, n=5; NAC, n=6; NAC + BPA, n=6; *P<0.05 vs control).

Calcium-dependent extracellular H$_2$O$_2$ generation was significantly increased in BPA-treated cells (Fig. 6C), thus suggesting that the stimulatory effect of BPA on thyrocyte H$_2$O$_2$ generation occurs not only in vivo but also in vitro, what could be deleterious to the thyroid gland since H$_2$O$_2$ is a ROS.

Effect of BPA on Nis and Tpo mRNA levels is reversed by NAC

Since BPA seems to have an inhibitory effect on NIS and TPO, besides increasing ROS production, we have next evaluated the involvement of oxidative stress in the
effect of BPA. As shown in Fig. 7A, co-incubation of BPA-treated cells with N-acetylcysteine (NAC), an antioxidant, prevented the inhibitory effect of BPA on Nis expression. In a similar way, NAC also prevented the reduction of Tpo mRNA levels by BPA (Fig. 7B). Thus, our result suggests that the inhibitory effect of BPA on Nis and Tpo expression might involve increased oxidative stress.

Discussion

BPA has been shown to be a widespread environmental contaminant and can be found in the serum and urine of both wildlife (42) and humans (43). This exposition affects many organs and systems, including reproductive system (44), nervous system (45) and thyroid (46). Despite that, data regarding the impact of BPA on thyroid redox homeostasis and its consequences on proteins involved in TH synthesis remains elusive.

TH synthesis requires hydrogen peroxide generation, since H₂O₂ is the essential cofactor for TPO (47). In vivo, DUOX is the enzyme responsible for H₂O₂ generation associated to TH biosynthesis (16). Since DUOX is a calcium-dependent NADPH oxidase (48), herein we have evaluated thyroid H₂O₂ generation both in the presence and in the absence of calcium. In fact, thyroid calcium-dependent H₂O₂ generation was increased in BPA-treated group, suggesting that the gland could be exposed to an increased oxidative stress. The reduction in TPO activity reinforces the idea of an unbalance in redox homeostasis, since TPO is an important consumer of the H₂O₂ generated by DUOX (49). Moreover, TPO has been shown to be sensitive to the oxidative stress induced in conditions of high DUOX activity (31). Besides, there is a negative correlation between DUOX and TPO in human thyroid nodular lesions and in experimental model of type 1 diabetes mellitus (18, 50). Therefore, increased H₂O₂ generation in the thyroid of rats exposed to BPA, due to a higher DUOX activity, might have induced a decrease in TPO activity through the oxidation of this enzyme.

In zebrafish embryo–larvae, tpo mRNA levels remained unchanged after BPA exposition (51), and TPO activity from rat thyroid microsomes was shown to be unaffected by incubation with BPA in vitro (52). On the other hand, in the rat thyroid cell line FRTL-5, BPA reduced Tpo mRNA levels (52). Therefore, besides the oxidation of TPO protein due to increased ROS production, BPA treatment could also reduce TPO activity due to the downregulation of Tpo gene expression.

Despite the reduced in vitro TPO activity found in rats treated with BPA, T4 levels were not reduced in this group, in fact T4 was increased. The greater availability of TPO cofactor H₂O₂ in the thyroid gland of BPA-treated animals might have contributed to the increment in serum T4 levels in this group.

BPA has been shown to increase oxidative stress in some tissues, such as testis (53), liver (54) and heart (55). However, to our knowledge, this is the first report describing the effect of BPA increasing thyroid H₂O₂ generation. It was previously shown that the thyroid gland is exposed to a higher risk of oxidative DNA damage when compared to other tissues, due to the necessity of H₂O₂ generation during TH biosynthesis (56). Therefore, the increment in ROS generation due to BPA exposure could predispose the gland to oxidative stress and thus to thyroid diseases.

NIS has been shown to be sensitive to ROS (57, 58, 59). Since BPA induced an increment in H₂O₂ generation, we have also evaluated NIS-mediated thyroid iodide uptake. In fact, in vivo thyroid iodide uptake was reduced by BPA treatment, which could be related to an increased oxidative stress or could be related to a direct effect of BPA regulating NIS expression. Then, we have evaluated BPA effect on Nis mRNA levels. In fact, the treatment of the rat thyroid cell line PCCL3 cells with 10⁻⁹M BPA led to a significant reduction of Nis expression.

In zebrafish embryo–larvae, the treatment with BPA did not affect nis mRNA levels (51), while in rat thyroid cell line FRTL5, BPA was shown to reduce iodide uptake, besides reducing Nis expression (52). Therefore, at least in rats, BPA seems to be able to reduce both NIS expression and function, what is in accordance to our data. Since BPA is a xenoestrogen (60), it is possible that the effect of BPA downregulating NIS is due to its estrogenic activity, since estrogen has been shown to downregulate NIS in FRTL-5 cells (61). On the other hand, the possible estrogenic effect of BPA regulating NIS expression does not exclude the possibility that the increased ROS production could also affect NIS expression and function, so we have also evaluated H₂O₂ generation in PCCL3 exposed to BPA.

We have observed that, similarly to that found in vivo, BPA treatment has also increased calcium-dependent extracellular H₂O₂ generation in vitro. This effect could be related to the increased Duox2 expression found herein, which has been shown to be the DUOX isoform essential to hormonogenesis, since mutation in this enzyme leads to hypothyroidism (41, 62). On the other hand, it is known that the main isoform responsible
for H₂O₂ generation in PCCL3 cells is DUOX1 (63). Another possibility is the regulation of DUOX activity at post-transcriptional level by BPA. Both DUOX1 and DUOX2 have been described to be regulated by cascades of phosphorylation (64). Even though BPA can activate nuclear estrogen receptor, this endocrine disruptor is known to be more potent acting by non-nuclear estrogen receptors (65). Therefore, BPA could act at membrane estrogen receptors, activating phosphorylation cascades and thus activating DUOX and increasing H₂O₂ generation in PCCL3. In fact, estrogen has been shown to increase ROS production in PCCL3 cells, which express both nuclear and membrane estrogen receptors (66). However, future studies are needed to elucidate the mechanism of BPA action regulating ROS production by thyrocytes.

The effect of BPA downregulating Nis and Tpo requires increased oxidative stress, since NAC was able to prevent the reduction of Nis and Tpo mRNA levels induced by BPA in PCCL3. NAC has previously been shown to prevent oxidative damage induced by BPA in Sertoli cells (67) and rat brain (68). Thus, BPA seem to cause a redox imbalance in the thyrocytes, disrupting the normal functioning of the thyroid gland.

Conclusion

The present study showed that the exposition of thyrocytes to the endocrine disruptor bisphenol A can increase ROS production, both in vivo and in vitro. Moreover, BPA decreased thyroid iodide uptake and thyroperoxidase activity, two essential steps for TH synthesis. This effect might be related to an increased oxidative stress since NAC could prevent the reduction of Tpo and Nis mRNA levels induced by BPA in PCCL3. The enhancement of ROS production by thyrocytes related to the exposition to BPA could lead to oxidative damage of the gland, thus predisposing individuals exposed to BPA to thyroid diseases.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

References

1 Krishnan AV, Stathis P, Permutt SF, Tokes I & Feldman D. Bisphenol A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 1993 132 2279.e2286–2286.e2286. (https://doi.org/10.1210/endo.132.6.850731)
2 Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hausner R, Prins GS, Soto AM, Zoeller RT & Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocrine Reviews 2009 30 293–342. (https://doi.org/10.1210/er.2009-0002)
3 Vom Saal FS & Welschons WV. Evidence that bisphenol A (BPA) can be accurately measured without contamination in human serum and urine, and that BPA causes numerous hazards from multiple routes of exposure. Molecular and Cellular Endocrinology 2014 398 101–113. (https://doi.org/10.1016/j.mce.2014.09.028)
4 Richter CA, Taylor JA, Ruhlen RL, Welschons WV & Vom Saal FS. Estradiol and bisphenol-A stimulate androgen receptor and estrogen receptor gene expression in fetal mouse prostate mesenchyme cells. Environmental Health Perspectives 2007 115 902–908. (https://doi.org/10.1289/ehp.9004)
5 Nagel SC, Hagelbarter JL & McDonnell DP. Development of an ER action indicator mouse for the study of estrogens, selective ER modulators (SERMs), and Xenobiotics. Endocrinology 2001 142 4721–4728. (https://doi.org/10.1210/endo.142.11.8471)
6 Adewale HB, Jefferson WN, Newbold RR & Patiashul HB. Neonatal bisphenol-A exposure alters rat reproductive development and ovarian morphology without impairing activation of gonadotropin-releasing hormone neurons. Biology of Reproduction 2009 81 690–699. (https://doi.org/10.1095/biolreprod.109.078261)
7 Geens T, Diritz AC, Dirmack E, Malarvannan G, Van Gaal L, Jorens PG & Covaci A. Daily intake of bisphenol A and tricosan and their association with anthropometric data, thyroid hormones and weight loss in overweight and obese individuals. Environmental International 2015 76 98–105. (https://doi.org/10.1016/j.envint.2014.12.003)
8 Sripurapandit C, Chalukriti L, Akplakom W & Ongphiphadhanakul B. Association between bisphenol A and abnormal free thyroxine level in men. Endocrine 2013 44 441–447. (https://doi.org/10.1007/s12020-013-9889-y)
9 Chitra KC, Latchoumycandane C & Mathur PP. Induction of oxidative stress by bisphenol-A in the epididymal sperm of rats. Toxicology 2003 185 119–127. (https://doi.org/10.1016/S0300-483X(02)00597-8)
10 Kovacic P. How safe is bisphenol-A? Fundamentals of toxicity: metabolism, electron transfer and oxidative stress. Medical Hypotheses 2010 75 1–4. (https://doi.org/10.1016/j.mehy.2010.03.002)
11 Smanik PA, Liu Q, Furminger TL, Ryu K, Xing S, Mazzaferri EL & Jhian SM. Cloning of the human sodium iodide symporter. Biochemical and Biophysical Research Communications 1996 226 339–345. (https://doi.org/10.1006/bbrc.1996.1358)
12 Carvalho DP & Ferreira AC. The importance of sodium/iodide symporter (NIS) for thyroid cancer management. Arquivos Brasileiros de Endocrinologia e Metabologia 2007 51 672–682. (https://doi.org/10.1590/s0004-27302007000600004)
13 Ravera S, Reyna-Neyra A, Ferrandino G, Amzel LM & Carrasco N. The sodium/iodide symporter (NIS): molecular physiology and preclinical and clinical applications. Annual Review of Physiology 2017 79 261–289. (https://doi.org/10.1146/annurev-physiol-022516-034125)
BPA increases thyroid ROS production activity by thyrotropin and iodine. *Journal of Endocrinology* 2005 1 69–76. (https://doi.org/10.1677/joe.1.10584)

29 Moura EG, Rosenhall D & Carvalho-Guimarães DP. Thyroid peroxidase activity in human nodular goiters. *Brazilian Journal of Medical and Biological Research* 1989 22 31–39.

30 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry* 1976 72 248–254. (https://doi.org/10.1016/0003-2697(76)90527-3)

31 Fortunato RS, Lima de Souza AC, Ameziane-el Hassan R, Bouraçque M, Weyemi U, Talbot M, Lagente-Chevalier O, de Carvalho DP, Bidart JM, Schlumberger M, et al. Functional consequences of dual oxidase-thyroperoxidase interaction at the plasma membrane. *Journal of Clinical Endocrinology and Metabolism* 2010 95 5403–5411. (https://doi.org/10.1210/jc.2010-1085)

32 Mühbauer M, da Silva AL, Menzo MP, Lourenço AL, Ferreira AC & de Carvalho DP. Retinoic acid modulation of thyroid dual oxidase activity in rats and its impact on thyroid iodine organisation. *Journal of Endocrinology* 2010 205 271–277. (https://doi.org/10.1677/JOE-09-0421)

33 Hu J, Yang S, Wang Y, Goswami R, Peng C, Gao R, Zhou H, Zhang Y, Cheng Q, Zheng Q, et al. Serum bisphenol A and progression of type 2 diabetic nephropathy: a 6-year prospective study. *Acta Diabetologica* 2015 52 1135–1141. (https://doi.org/10.1007/s00592-015-0801-5)

34 Hu J, Wang Y, Xiang Z, Peng C, Gao R, Goswami R, Zhou H, Zhang Y, Zheng Q, Cheng Q, et al. Serum bisphenol A as a predictor of chronic kidney disease progression in primary hypertension: a 6-year prospective study. *Journal of Hypertension* 2016 34 332–337. (https://doi.org/10.1097/JHJ.0000000000000780)

35 Fierro-Nascimento C, da Silva Teixeira S, Nicola JP, Nachbar RT, Masini-Repiso AM & Nunes MT. The acute inhibitory effect of iodide excess on sodium/iodide symporter expression and activity involves the PI3K/Akt signaling pathway. *Endocrinology* 2014 155 1145–1156. (https://doi.org/10.1210/en.2013-1665)

36 Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS & Chen C. Real-time PCR quantification of precursor and mature microRNA. *Methods* 2008 44 31–38. (https://doi.org/10.1016/j.meth.2007.09.006)

37 Bertoli S, Leone A & Battezzati A. Human bisphenol A exposure and the ‘diabesity phenotype’. *Dose Response* 2015 13 15953285815599173. (https://doi.org/10.1177/15593285815599173)

38 Ferreira AC, Neto JC, da Silva AC, Kuster RM & Carvalho DP. Inhibition of thyroid peroxidase by Myrcia uniflora flavonoids. *Chemical Research in Toxicology* 2006 19 351–355. (https://doi.org/10.1021/tx0501684)

39 Aozumi N, Cailloux J, Cazarin JM, Knauf JA, Cracchiolo J, Al Ghuzlan A, Harl D, Polak M, Careá A, El Mejri B, et al. NADPH oxidase NOX4 is a critical mediator of BRAFV600E-induced downregulation of the sodium/iodide symporter in papillary thyroid carcinomas. *Antioxidants and Redox Signaling* 2017 26 864–877. (https://doi.org/10.1089/ars.2015.6616)

40 Grasberger H & Retefoff S. Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. *Journal of Biological Chemistry* 2006 281 18269–18272. (https://doi.org/10.1074/jbc.C600095200)

41 De Marco G, Aggetti P, Montanelli I, Di Cosmo C, Bagattini B, De Servi M, Ferrari E, Dimida A, Fretas Ferreira AC, Molinara A, et al. Identification and functional analysis of novel dual oxidase 2 (DUOX2) mutations in children with congenital or subclinical hypothyroidism. *Journal of Clinical Endocrinology and Metabolism* 2011 96 E1335. (https://doi.org/10.1210/jc.2010-2467)

42 Corrales J, Kristofco LA, Steele WB, Yates BS, Breed CS, Williams ES & Brooks BW. Global assessment of bisphenol A exposure and its occurrence in bioaccumulation. *Dose Response* 2015 13 1559325815598308. (https://doi.org/10.1177/1559325815598308)
BPA increases thyroid ROS production

1207

Received in final form 19 September 2018
Accepted 25 September 2018
Accepted Preprint published online 25 September 2018

43 Choi J, Knudsen LE, Mizraik S & Joas A. Identification of exposure to environmental chemicals in children and older adults using human biomonitoring data sorted by age: results from a literature review. International Journal of Hygiene and Environmental Health 2017 220 282–298. (https://doi.org/10.1016/j.ijeh.2016.12.006)

44 Tomza-Marciniak A, Stepkowska P, Kuba J & Pilarczyk B. Effect of bisphenol A on reproductive processes: a review of in vitro, in vivo and epidemiological studies. Journal of Applied Toxicology 2018 38 51–80. (https://doi.org/10.1002/jat.3480)

45 Inadera H. Neurological effects of bisphenol A and its analogues. International Journal of Medical Sciences 2015 12 926–936. (https://doi.org/10.7150/ijms.13267)

46 Andra SS & Makris KC. Thyroid disrupting chemicals in plastic additives and thyroid health. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews 2012 30 167–151. (https://doi.org/10.1080/10590501.2012.681487)

47 Taurog A. Hormone synthesis: thyroid iodine metabolism. In: Hormone synthesis: thyroid iodine metabolism. In: Andra SS & Makris KC. Thyroid disrupting chemicals in plastic additives and thyroid health. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews 2012 30 167–151. (https://doi.org/10.1080/10590501.2012.681487)

48 Dupuy C, Dème D, Kaniewski J, Pommier J & Virion A. Ca2+-dependent protein kinase and protein kinase C-dependent phosphorylation. European Journal of Endocrinology 1999 140 877–884. (https://doi.org/10.1530/eje.0.14031050)

49 Kizys MML, Louzada RA, Mitne-Neto M, Jara JR, Furuzawa GK, de Carvalho DP, Dias-da-Silva MR, Nesi-França S, Dupuy C & Maciel RBM. DUOX2 mutations are associated with congenital hypothyroidism with ectopic thyroid gland. Journal of Clinical Endocrinology and Metabolism 2017 102 4060–4071. (https://doi.org/10.1210/jc.2017-00832)

50 Ginabreda MG, Cardoso LC, Nobrega FM, Ferreira AC, Gonçalves MD, Vaisman M & Carvalho DP. Sexual dimorphism of thyroid reactive oxygen species due to higher NADPH oxidase 4 expression in female rats. Experimental Cell Research 2013 319 210–217. (https://doi.org/10.1016/j.yexcr.2013.05.009)

51 Chan WK & Chan KM. Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA. Aquatic Toxicology 2012 108 106–111. (https://doi.org/10.1016/j.aquatox.2011.10.013)

52 Wu Y, Beland FA & Fang JL. Effect of triclosan, triclocarban, 2,2,4,4′-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicology in Vitro 2016 32 310–319. (https://doi.org/10.1016/j.tiv.2016.01.014)

53 Kaur S, Saluja M & Bansal MP. Bisphenol A induced oxidative stress and apoptosis in mice testes: modulation by selenium. Andrologia 2017 50 e12834. (https://doi.org/10.1111/and.12834)

54 Elswey SE, Abdallah FR, Attea HH, Walha AS & Hasan RA. Inflammation, oxidative stress and apoptosis cascade implications in bisphenol A-induced liver fibrosis in male rats. International Journal of Experimental Pathology 2016 97 369–379. (https://doi.org/10.1111/iep.12207)

55 Aboul Ezz HS, Khadrawy YA & Mourad IM. The effect of bisphenol A on some oxidative stress parameters and acetylcholinesterase activity in the heart of male albino rats. Cytotoxicology 2015 67 145–155. (https://doi.org/10.1007/s10616-013-9672-1)

56 Maier J, van Steeg H, van Oostrom C, Karger S, Paschke R & Krohn K. Deoxyribonucleic acid damage and spontaneous mutagenesis in the thyroid gland of rats and mice. Endocrinology 2006 147 3391–3397. (https://doi.org/10.1207/s15327965en2006-1669)

57 Leoni SG, Kimura ET, Santisteban P & De la Vieja A. Regulation of thyroid oxidative state by thioredoxin reductase has a crucial role in thyroid responses to iodide excess. Molecular Endocrinology 2011 25 1924–1935. (https://doi.org/10.1210/me.2011-0038)

58 Serrano-Nascimento C, Nicola JP, da Teixeira S, Poyares LL, Lelis-Santos C, Bordini S, Masini-Repisio AM & Nunes MT. Excess iodide downregulates Nac′(+)/I− symporter gene transcription through activation of PI3K/Akt pathway. Molecular and Cellular Endocrinology 2016 426 73–90. (https://doi.org/10.1016/j.mce.2016.02.006)

59 Matos LPL, Cortez-Caroso R, Caruso-Weide LC, Freitas ML, Silva DLSG & Ferreira ACF. Regulation of thyroid sodium-iodide symporter in different stages of goiter: possible involvement of ROS. Clinical and Experimental Pharmacology and Physiology 2018 45 326–334.

60 Ben-Jonathan N & Steinmetz R. Xenosterogens: the emerging story of bisphenol A. Trends in Endocrinology and Metabolism 1998 9 124–128. (https://doi.org/10.1016/S1043-2760(98)00029-0)

61 Furlanetto TW, Nguyen LQ & Jameson JL. Estradiol increases proliferation and down-regulates the sodium/iodide symporter gene in FRTL-5 cells. Endocrinology 1999 140 5705–5711. (https://doi.org/10.1210/endo.140.12.7197)

62 Ben-Jonathan N & Steinmetz R. Xenosterogens: the emerging story of bisphenol A. Trends in Endocrinology and Metabolism 1998 9 124–128. (https://doi.org/10.1016/S1043-2760(98)00029-0)

63 Kizys MML, Louzada RA, Mitne-Neto M, Jara JR, Furuzawa GK, de Carvalho DP, Dias-da-Silva MR, Nesi-França S, Dupuy C & Maciel RBM. DUOX2 mutations are associated with congenital hypothyroidism with ectopic thyroid gland. Journal of Clinical Endocrinology and Metabolism 2017 102 4060–4071. (https://doi.org/10.1210/jc.2017-00832)

64 Rigotto S, Hoste C, Dumont JE, Corvilain B, Miot F & De Deken X. Duox1 is the main source of hydrogen peroxide in the rat thyroid cell line PCC3. Experimental Cell Research 2007 313 3892–3901. (https://doi.org/10.1016/j.yexcr.2007.06.011)

65 Viñas R, Jeng YJ & Watson CS. Non-genomic effects of xenosterogens. International Journal of Environmental Research and Public Health 2012 9 2694–2714. (https://doi.org/10.3390/ijerph9082694)

66 Fortunato RS, Braga WM, Ortenzi VH, Rodrigues DC, Andrade BM, de Carvalho DP, Dias-da-Silva MR, Nesi-França S, Dupuy C & Maciel RBM. DUOX2 mutations are associated with congenital hypothyroidism with ectopic thyroid gland. Journal of Clinical Endocrinology and Metabolism 2017 102 4060–4071. (https://doi.org/10.1210/jc.2017-00832)

67 Wang C, Qi S, Liu C, Yang A, Fu W, Quan C, Duan P, Yu T & Yang K. Effects of environmental chemicals in children and older adults using human biomonitoring data sorted by age: results from a literature review. International Journal of Hygiene and Environmental Health 2017 220 282–298. (https://doi.org/10.1016/j.ijeh.2016.12.006)