Search for New Heavy Particles Decaying to $ZZ \to \ell\ell\ell\ell, \ell\ell jj$ in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

T. Aaltonen,21 B. Álvarez González,9 S. Amerio,41 D. Amidei,32 A. Anastassov,36 A. Anno,17 J. Antos,12 G. Apollinari,15 J.A. Appel,15 A. Apresyan,46 T. Arisawa,56 A. Artikov,13 J. Asaadi,51 W. Ashmanskas,15 B. Auerbach,59 A. Aurisano,51 F. Azfar,40 W. Badgett,15 A. Barbaro-Galtieri,26 V.E. Barnes,46 B.A. Barnett,23 P. Barrie,41 P. Bartos,12 M. Bauer,41 G. Bauer,30 F. Bedeschi,44 D. Beecher,28 S. Behari,23 G. Bellettini,46 J. Bellinger,58 D. Benjamin,14 A. Beretvas,15 A. Bhatti,48 M. Binkley,15 D. Bisello,41 I. Bizjak,28 K.R. Bland,5 B. Blumenfeld,23 A. Bocci,14 A. Bodek,47 D. Bortoletto,46 J. Boudreau,45 A. Boveia,11 B. Brau,15 L. Bridiadi,6 A. Brisuda,12 C. Bromberg,33 E. Brucken,21 M. Bucciantonio,66,44 J. Budagov,13 H.S. Budd,47 S. Budd,22 K. Burkett,15 G. Busetto,41 P. Bussey,19 A. Buzatu,31 C. Calancha,29 S. Camarda,4 M. Campaelli,33 M. Campbell,32 F. Canelli,12,15 A. Canepa,43 B. Carls,22 D. Carlsmith,58 R. Carosi,44 S. Carrillo,16 S. Carron,14 B. Casal,9 M. Casarsa,15 A. Castro,6 P. Castanini,15 D. Cauz,52 V. Cavaliere,44 M. Cavalli-Sforza,4 A. Cerri,26 L. Cerri,28 Y.C. Chen,1 M. Chertok,7 G. Chiacelli,44 G. Chlachidze,15 F. Chlebana,15 K. Cho,25 D. Chokheli,13 J.P. Chou,20 W.H. Chung,58 Y.S. Chung,47 C.I. Ciocanu,42 M.A. Ciocci,44 A. Clark,18 G. Compostella,41 M.E. Convery,15 J. Conway,7 M. Corbo,52 M. Cordelli,17 C.A. Cox,7 D.J. Cox,7 F. Crescioli,14,44 C. Cuena Almenar,29 J. Cuevas,10 R. Culbertson,15 D. Dagenhart,15 N. D’Ascanzo,42 M. Datta,15 P. de Barbaro,47 S. De Cecco,49 G. De Lorenzo,4 M. Dell’Orso,66,44 C. Deluca,4 L. Demortier,48 J. Deng,14 M. Deninno,6 F. Devoto,21 M. d’Errico,41 A. Di Canto,66,44 B. Di Ruza,44 J.R. Dittmann,5 M. D’Onofrio,27 S. Donati,44,44 P. Dong,15 M. Dorigo,52 T. Dorigo,41 K. Ebina,56 A. Eling,51 A. Eppig,32 R. erbacher,7 D. Errede,22 S. Errede,22 N. Ershaidat,42 R. Eusebi,51 H.C. Fang,26 S. Farrington,40 M. Feindt,24 J.P. Fernandez,29 C. Ferrarazzi,14,44 R. Field,16 G. Flanagan,46 R. Forrest,7 M.J. Frank,5 M. Franklin,26 J.C. Freeman,15 Y. Funakoshi,15 I. Furic,16 M. Gallinaro,48 J. Galyardt,10 J.E. Garcia,18 A.F. Garfinkel,46 P. Garosi,44 H. Gerberich,22 E. Gerchtein,15 S. Giagu,49 V. Giakoumopoulou,3 P. Gianotti,44 K. Gibson,45 C.M. Ginsburg,15 N. Giokaris,3 P. Giromini,17 M. Giunta,44 G. Giurini,23 V. Glagolev,13 D. Glenzinski,15 M. Gold,35 D. Goldin,51 N. Goldschmidt,16 A. Golossanov,15 G. Gomez,9 G. Gomez-Ceballos,30 M. Goucharov,30 O. Gonzalez,29 I. Gorelov,35 A.T. Goshaw,14 K. Goulianos,48 A. Gresele,41 S. Grinstein,4 C. Grosso-Pilcher,11 R.C. Group,55 J. Guimaraes da Costa,20 Z. Gunay-Unalan,33 C. Haber,26 S.R. Hahn,15 E. Halkiadakis,56 A. Hamaguchi,39 J.Y. Han,47 F. Happacher,17 K. Hara,53 D. Hare,54 R.F. Harr,57 K. Hatakewayama,5 C. Hayes,40 M. Heck,24 J. Heinrich,43 M. Herrndorf,58 S. Hewmanage,5 D. Hidas,50 A. Hocker,15 W. Hopkins,9,15 D. Horn,24 S. Hou,1 R.E. Hughes,37 M. Hurwitz,11 U. Husemann,59 N. Hussain,31 M. Hussein,53 J. Huston,33 G. Introzzi,44 M. Iori,44 A. Ivanov,47 E. James,15 D. Jiang,10 B. Jayatilaka,14 E.J. Jean,25 M.K. Jha,6 S. Jindariani,15 W. Johnson,7 M. Jones,46 K.K. Joo,25 S.Y. Jun,16 T.R. Junk,15 T. Kamon,51 P.E. Karchin,57 Y. Kato,39 W. Ketchum,11 J. Keung,43 V. Khotilovich,51 B. Kilminster,15 D.H. Kim,25 H.S. Kim,25 H.W. Kim,25 J.E. Kim,25 M.J. Kim,17 S.B. Kim,25 S.H. Kim,53 Y.K. Kim,11 N. Kimura,56 M. Kirby,15 S. Klimenko,16 K. Kondo,56 D.J. Kong,25 J. Konigsberg,16 A.V. Kotwal,14 M. Kreps,24 J. Kroll,43 D. Krop,11 N. Krummuack,5 M. Kruse,14 V. Krutelyov,41 T. Kuhr,24 M. Kurata,53 S. Kwang,11 A.T. Laasanen,46 S. Lami,44 S. Lammel,15 M. Lancaster,28 R.L. Lauder,7 K. Lannon,17 A. Lath,50 G. Latine,44 I. Lazzizzera,41 T. LeCompte,2 E. Lee,51 H.S. Lee,11 J.S. Lee,25 S.W. Lee,11

arXiv:1102.4566v2 [hep-ex] 18 May 2011
We report on a search for anomalous production of Z boson pairs through a massive resonance decay in data corresponding to $2.5-2.9$ fb$^{-1}$ of integrated luminosity in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV using the CDF II detector at the Fermilab Tevatron. This analysis, with more data and channels where the Z bosons decay to muons or jets, supersedes the 1.1 fb$^{-1}$ four-electron channel result previously published by CDF. In order to maintain high efficiency for muons, we use a new forward tracking algorithm and muon identification requirements optimized for these high signal-to-background channels. Predicting the dominant backgrounds in each channel entirely from sideband data samples, we observe four-body invariant mass spectra above 300 GeV/c^2 that are consistent with background. We set limits using the acceptance for a massive graviton resonance that are 7–20 times stronger than the previously published direct limits on resonant ZZ diboson production.

PACS numbers: 12.60.Cn,13.85.Rm,14.70.Hp

I. INTRODUCTION

The standard model of particle physics (SM) has been enormously successful, but many key questions remain to be answered by a more complete theory. New theoretical ideas can be tested with collider experiments, but it is also worthwhile for experiments to search broadly for anomalous “signatures”. One common tactic is to look where experiments are keenly sensitive. The consummate example of this method is the Z' boson search, in which a low-background, well-understood observable (the dilepton invariant mass) is used to constrain the new physics models that predict a dilepton resonance. Diboson resonance searches are an attractive analog of the Z' boson searches, involving higher multiplicities of the same outgoing particles and additional mass constraints, both of which serve to further suppress experimental backgrounds. Dibosons are the dominant channels for high mass higgs searches, and new physics scenarios predict particles such as Randall-Sundrum gravitons which would decay into dibosons [1]. The irreducible SM diboson background processes occur at such a low rate that they have only recently been observed at the Tevatron [2, 3] at low diboson mass ($M_{ZZ} < 300$ GeV/c^2). At high diboson mass ($M_{ZZ} > 300$ GeV/c^2) the total backgrounds are tiny.

This article presents a search for a diboson resonance in data corresponding to $2.5-2.9$ fb$^{-1}$ of integrated luminosity in $\sqrt{s} = 1.96$ TeV $p\bar{p}$ collisions at the CDF II detector at the Fermilab Tevatron, in the decay channel $X \rightarrow ZZ$. These ZZ diboson processes have been well-studied at the LEP experiments, which observed no significant deviation from the standard model expectation up to an e^+e^- center-of-mass energy of 207 GeV [4–7]. The LEP data place only indirect constraints on heavier, resonant ZZ diboson production [8], however, and direct production constraints at high ZZ diboson masses must be probed at hadron colliders. To the pre-
viously published CDF search for four-electron production via \(X \rightarrow ZZ \rightarrow eee e\) with data corresponding to 1.1 fb\(^{-1}\) of integrated luminosity [9], we now add the dijet channels \(eejj\) and \(\mu\mu jj\), which improve sensitivity at very high \(X\) masses where their background is negligible, and the four-electron or -muon channels \(ee\mu\mu\) and \(\mu\mu\mu\mu\), which contribute sensitivity to new physics at intermediate masses where the \(Z + \text{jet(s)}\) backgrounds are larger.

Because there are four or more outgoing leptons or quarks, the analysis is sensitive to single lepton and jet reconstruction efficiencies to approximately the fourth power. In particular, events may often have one or more leptons with \(|\eta| > 1\) where muon acceptance and tracking efficiency are lower than for \(|\eta| < 1\). Consequently the four-lepton channels motivate development and use of techniques to improve electron and muon reconstruction and identification efficiencies while exploiting the kinematics of the signature to keep backgrounds low. To augment forward muon coverage, the present analysis also employs, for the first time, a new method of reconstructing charged particles in the silicon detectors using constraints from particle traces in forward regions with partial wire tracker coverage.

The aim of the search is sensitivity to any massive particle that could decay to \(ZZ\). Though we avoid focus on any one specific model, we choose a benchmark process that is implemented in several popular Monte Carlo generation programs, the virtual production of gravitons in a simple Randall-Sundrum RS1 scenario [1, 10], to fix acceptance for the search and quantify its sensitivity. The geometry of the model consists of a single extra dimension. Boundary conditions of discrete, massive gravitons. In RS1 scenarios a single extra dimension, leading to a Kaluza-Klein tower of intermediate masses where the \(Z + \text{jet(s)}\) backgrounds are larger.

Outside the tracking volume, segmented electromagnetic (EM) lead-scintillator and hadronic (HAD) iron-scintillator sampling calorimeters measure particle energies [16]. The central \(|\eta| < 1.1\) calorimeters are arranged around the interaction point in a projective-tower cylindrical geometry, divided azimuthally into 15\(^\circ\) wedges. This calorimeter measures electron energies with a resolution of \(\sigma(E)/E = (13.5\%)^2/E_T + (2\%)^2\). The forward calorimeters \((1.1 < |\eta| < 3.6)\) are arranged in an azimuthally-symmetric disk geometry and measure electron energies with a resolution of \(\sigma(E)/E = (16.0\%)^2/E + (1\%)^2\).

Wire chambers (scintillator strips) embedded in the central (forward) EM calorimeters at \(\sim 6\lambda_0\).

II. THE CDF II DETECTOR

The CDF II detector is a general purpose magnetic spectrometer surrounded by electromagnetic and hadronic calorimeters and muon detectors designed to record Tevatron \(p\bar{p}\) collisions. We briefly describe the components of the detector relevant to this search. A complete description can be found elsewhere [13].

A combination of tracking systems reconstructs the trajectories and measures momenta of charged particles in a 1.4 T solenoidal magnetic field. Trajectories of charged particles are reconstructed using an eight-layer silicon microstrip vertex tracker [14] at radii 1.3 < \(r\) < 29 cm from the nominal beamline\(^1\) and a 96-layer open-cell drift chamber (COT) providing eight superlayers of alternating stereo and axial position measurements [15] at large radii 43 < \(r\) < 132 cm. The COT provides full geometric coverage for \(|\eta| < 1.0\). The average radius of the lowest radius axial (stereo) COT superlayer is 58 (46) cm, providing partial coverage for \(|\eta| < 1.7(1.9)\). The silicon tracker provides full coverage for \(|\eta| < 1.8\).

\(^1\) CDF uses a cylindrical coordinate system in which \(\theta\) (\(\phi\)) is the polar (azimuthal) angle, \(r\) is the radius from the nominal beam axis, and \(z\) points along the proton beam direction and is zero at the center of the detector. The pseudorapidity is defined as \(\eta \equiv -\ln \tan(\theta/2)\). Energy (momentum) transverse to the beam is defined \(E_T \equiv E \sin\theta\) (\(p_T \equiv p \sin\theta\)), where \(E\) is energy and \(p\) is momentum.
the average depth of shower maximum, provide position and lateral shower development measurements for \(|\eta| < 2.5\).

Beyond the calorimeters, muon drift chambers and scintillators measure particles that traverse the entire inner and outer detectors and reject the instrumental backgrounds of the central muon triggers. The central muon chambers (CMU) lie just outside the central hadronic calorimeter with \(\phi\)-dependent coverage for 0.03 < \(|\eta| < 0.63\).

The central muon upgrade (CMP) augments the CMU coverage in \(\phi\) and lies behind another approximately 3 interaction lengths of steel. The central muon extension (CMX) extends coverage into the region 0.65 < \(|\eta| < 1.0\).

The beam luminosity is determined by measuring the inelastic \(p\bar{p}\) collision rate with gas Cherenkov detectors [17], located in the region 3.7 < \(|\eta| < 4.7\).

At each bunch crossing, a three-level trigger system [13] scans the detector output for \(|\eta| < 1.1\) electrons or \(|\eta| < 1.0\) muons with at least 18 GeV/c of transverse momentum. We accept events that satisfy one of four trigger paths: one that requires a deposition of at least 18 GeV transverse energy in the calorimeter consistent with an electron and a matching COT track with at least 9 GeV/c of transverse momentum; another with fewer electron identification requirements intended to ensure high efficiency for very energetic electrons; a muon path requiring a COT track with at least 18 GeV/c of transverse momentum pointing toward signals in both the CMU and CMP chambers (a CMUP trigger) and traversing the calorimeter consistent with a minimum-ionizing particle; or a similar muon path with signals in the CMX chamber instead of the CMU and CMP chambers.

III. DATA COLLECTION

We use data corresponding to an integrated luminosity of 2.5–2.9 fb\(^{-1}\) depending on the data quality criteria applicable to the relevant ZZ diboson decay channel. We separately analyze six channels: \(eeee, e\mu\mu, \mu\mu\mu, \mu\mu\bar{e}, \mu\epsilon\bar{j}, \) and \(\mu\mu\bar{j}\). Events are divided into the six categories based on the trigger, where the first lepton denotes the required trigger path, and the presence of lepton and jet candidates identified using the criteria listed in Tables I through IV. The trigger lepton criteria are the most stringent; subsequent kinematic signature selections yield very low backgrounds, allowing very efficient identification criteria to be used for the other lepton candidates. Events accepted by either electron trigger path and containing at least one electron candidate that fired the electron trigger and satisfied the offline selection criteria are excluded from the muon-triggered categories. There are no events that satisfy the requirements of more than one category.

During this selection we identify the events containing at least two leptons (including the trigger lepton) using the nominal CDF event reconstruction software. We reprocess these events using a revision of the software with improved tracking, including more efficient forward tracking algorithms, and then select all final particles from the reprocessed data. In this way, we avoid CPU-intensive reconstruction of a 96.6% subset of the sample that has no chance to pass our final selection. Nevertheless, two subsets of the data corresponding to 200 pb\(^{-1}\) of integrated luminosity each were fully reprocessed without the initial two-lepton selection and analyzed to confirm that the procedure used for the full dataset is fully efficient for events of interest to the analysis.

The electron criteria listed in Tables I through II are nearly identical to the previous \(eeee\) analysis [9]. The double Z boson mass peak signature admits little background, allowing appreciably more efficient electron criteria than those used for many other CDF analyses (for example, Ref.

Table I: Calorimeter electron identification criteria.

Criteria	Trigger	Central	Forward		
\(E_T\) (GeV)	> 20	> 5	> 5		
\(\text{Track} z_0	\) (cm)	< 60	< 60	
\(\text{Had/EM}\)	\(< f(E) < f(E)\)	< 0.05			
\(\text{Iso_cal}/E_{cal}\)	< 0.2	< 0.2	< 0.2		
\(\eta_{det}	\)			< 2.5
\(LshrTrk\)	< 0.4				
\(p_T\) (GeV/c)	> 10				
age and to recover efficiency lost due to pointing acceptance lost due to gaps in chamber cover-
formation in the muon chambers, but to recover Muon candidate tracks may be matched to in-

sres so as to increase our acceptance and efficiency.

The transverse energy threshold for non-trigger electrons is 5 GeV. As the mass of the signal resonance $X \rightarrow ZZ$ increases, the energies of the two Z boson decay products become asymmetric in the detector frame, and thus our criteria must efficiently select leptons with transverse momentum of order 10 GeV/c as well as leptons with p_T of hundreds of GeV/c.

The muon criteria listed in Table III require an isolated track satisfying basic track quality criteria and depositing minimal energy in the calorimeter. We make use of a new track reconstruction algorithm, described in the Appendix, and apply less stringent energy and isolation requirements than typical for CDF high p_T analyses so as to increase our acceptance and efficiency. Muon candidate tracks may be matched to information in the muon chambers, but to recover acceptance lost due to gaps in chamber coverage and to recover efficiency lost due to pointing requirements, chamber matching is not required except for the trigger muon.

Jets must satisfy the criteria listed in Table IV and jet energies are corrected for instrumental ef-

fects [20]. Before relying on the jet energy measurements for the two-lepton two-jet analysis, we have verified that these corrections balance transverse momentum in the $Z + \text{jets}$ events considered here. We choose kinematic requirements on individual jet energies, on dijet invariant masses, and on four-body masses involving jets so that the systematic uncertainties on $X \rightarrow ZZ$ signal acceptances and efficiencies from mis-modeling of QCD radiation or jet reconstruction effects are small.

Figs. 1 and 2 show comparisons of the peaking and background components of the dilepton and dimuon yield. The combination of our changes to the identification criteria and to the tracking algorithms increases the peak yield by factors of 1.8 and 4.3, respectively.

Measurements of the $p\bar{p} \rightarrow \gamma^*/Z \rightarrow ee$ and $p\bar{p} \rightarrow \gamma^*/Z \rightarrow \mu\mu$ cross-sections provide an im-

TABLE II: Track electron identification criteria. Tracks must consist of measurements in several COT superlayers. Silicon measurements are not required. Iso_{trk} is the scalar sum of the momenta of all tracks measured within a circle of $\Delta R = 0.4$ centered on the electron track direction. ΔR_{EM} is the separation in the $\eta - \phi$ plane between the electron track and the nearest calorimeter electron cluster, as defined in Table I.

Criteria	CMUP	CMX	Non-trigger		
p_T (GeV/c)	> 10	> 10	> 2, 10		
Axial Superlayers	> 3	> 3	> 3		
Stereo Superlayers	> 2	> 2	> 2		
$	\text{Track } \eta	$ (cm)	< 60	< 60	< 60
$p_{\text{trk}} / (Iso_{\text{trk}} + p_{\text{trk}})$	> 0.9	> 0.9	> 0.9		
$	d_0	$	< 200 μm silicon	< 200 μm silicon	< 200 μm silicon
ΔR_{EM}	> 0.2	> 0.2	> 0.2		

TABLE III: Muon identification criteria. The CMU, CMP, and CMX match variables compare the track position extrapolated to the relevant muon chambers with the chamber position measurements. The non-trigger p_T requirement is lower for tracks with muon chamber information attached. Iso_{cal} is the sum of calorimeter energies measured in towers within a circle of $\Delta R = 0.4$ centered on the muon tower. E_{EM} and E_{HAD} are the electromagnetic and hadronic calorimeter energies recorded in towers intersected by the muon track, and $f_{EM}(p_{\text{trk}}) = 4 + \max(0, 0.0115 + (p_{\text{trk}}^2 - 100))$ and $f_{HAD}(p_{\text{trk}}) = 12 + \max(0, 0.028 + (p_{\text{trk}}^2 - 100))$ are functions of the track momentum. The cuts on track curvature κ, its uncertainty σ_κ, and the χ^2 probability of the fit $\text{Prob}(\chi^2, n_{\text{dof}})$ reject poorly measured tracks.

Criteria	CMUP	CMX	Non-trigger
p_{trk}(GeV/c)	> 20	> 20	> 2, 10
CMU match	< 10 cm	< 10 cm	< 10 cm
CMP match	< 20 cm	< 20 cm	< 20 cm
CMX match	< 10 cm	< 10 cm	< 10 cm

Common to all categories

Criteria	CMUP	CMX	Non-trigger		
E_{EM}(GeV)	< $f_{EM}(p_{\text{trk}})$	< $f_{EM}(p_{\text{trk}})$	< $f_{EM}(p_{\text{trk}})$		
E_{HAD}(GeV)	< $f_{HAD}(p_{\text{trk}})$	< $f_{HAD}(p_{\text{trk}})$	< $f_{HAD}(p_{\text{trk}})$		
κ/σ_κ	> 2.5	> 2.5	> 2.5		
$\text{Prob}(\chi^2, n_{\text{dof}})$	> 10^{-10}	> 10^{-10}	> 10^{-10}		
$	\text{z}_0	$ (cm)	< 60	< 60	< 60
$	d_0	$	< 200 μm silicon	< 200 μm silicon	< 200 μm silicon
2 mm no silicon					

We require either an isolated calorimeter cluster with electron-like energy deposition or, to recover acceptance, an isolated track pointing at uninstrumented regions of the calorimeters. Such regions constitute approximately 17% of the solid angle for $|\eta| < 1.2$ and would otherwise reduce our four-electron acceptance by a factor of two.
TABLE IV: Jet identification criteria. The JETCLU algorithm is discussed in Ref. [19]. ΔR_{EM} is the separation in the $\eta - \phi$ plane between centroids of the jet cluster and the nearest electron cluster.

Selection Criteria	Algorithm	JETCLU 0.4 Cone		
E_{T}^{raw} (GeV)	> 10			
$	\eta_{\text{centroid}}	$	< 3.64	
E_{EM}/E_{tot}	< 0.95			
ΔR_{EM}	> 0.4			

FIG. 1: $Z \rightarrow ee$ yield and background comparison between dielectron candidates consisting of a trigger electron and an electron candidate satisfying either (lower set of points) the CDF standard electron criteria or (upper set of points) the criteria employed in the present analysis. The peak yield increases from about 146,000 with the standard criteria to 256,000 candidates with our optimized criteria. The corresponding increase in continuum background is modest, a factor of 2.0 for 81–101 GeV/c2. This background is later suppressed by the four-body kinematic selection.

FIG. 2: $Z \rightarrow \mu\mu$ yield and background comparison between dimuon candidates consisting of a trigger muon and an muon candidate satisfying either (lower set of points) the CDF standard muon criteria or (upper set of points) the criteria employed in the present analysis. The peak yield increases from about 35,000 candidates with the standard criteria and tracking to 150,000 candidates with our optimized criteria and tracking. The continuum background increases by a factor of 14 for 81–101 GeV/c2. This background is later suppressed by the four-body kinematic selection.

FIG. 3: $Z \rightarrow ee$ cross-sections (and averaged cross-sections) for $66 < M_{\ell\ell} < 116$ GeV/c2 and various selections. The horizontal axis indicates the 18 periods for five selections in succession: two trigger electrons (252.1 \pm 1.2 pb), a trigger electron and a central calorimeter electron (TRIG+CEM, 248 \pm 1.1 pb), a trigger electron and a forward calorimeter electron (TRIG+PEM, 246.2 \pm 0.9 pb), a trigger electron and a track electron (TRIG+TRACK, 262.1 \pm 2.3 pb), and, calculated separately, the combination of a trigger electron and any electron selected using the analysis criteria (249.4 \pm 1.6 pb). The averaged cross sections are indicated by horizontal lines. Uncertainties are statistical only with the correlated luminosity uncertainty not shown.

A significant test of our understanding of the trigger, reconstruction, and identification efficiencies and Monte Carlo modeling for this new lepton selection. We divide the data into 18 data-taking periods and measure each of the above efficiencies for each period. For each period, we then compute the Drell-Yan cross-section for all combinations of trigger and lepton type using a signal plus background fit to the data and Drell-Yan Monte Carlo. The average instantaneous luminosity tends to increase with data-taking period as Tevatron upgrades were brought online. Figs. 3 and 4 show the resultant cross-sections and their dependence on time.

For the cases where both electron energy measurements come from the calorimeters, the fit sig-
FIG. 4: $Z \to \mu\mu$ cross-sections (and averaged cross-sections) for $66 < M_{\ell\ell} < 116$ GeV/c2 and various selections. The horizontal axis indicates the 18 periods for two selections in succession: a CMUP trigger muon and another muon satisfying the analysis criteria $(250.0 \pm 1.2$ pb) and a CMX trigger muon combined with another selected muon $(263.4 \pm 1.8$ pb). The averaged cross sections are indicated by horizontal lines. Errors are statistical only with the correlated luminosity uncertainty not shown.

IV. KINEMATIC ANALYSIS

After selecting electrons, muons, and jets, we consider all possible four-lepton $\ell\ell\ell\ell$ or two-lepton $\ell\ell jj$ combinations for each event that contains a trigger lepton. No requirement is made on the mass or charge of dilepton pairs. Any two particles must have a minimum separation $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$ of 0.2. Dilepton pairs with tracks present for both leptons must point back to the same z_0 production location in order to suppress background from additional pileup interactions. Track timing information is used for a very pure veto of muon and track electron pairs consistent with cosmic rays. There are no events that appear in more than one ZZ diboson decay channel.

For the four-lepton channels, we consider all possible combinations of leptons for each event and select the one that minimizes a χ^2 variable quantifying consistency between the dilepton masses and the Z boson pole mass:

$$\chi^2_{ZZ} = \sum_{i=1,2} \frac{(M_{Z(i)} - 91.187 \text{ GeV/c}^2)^2}{\sigma_{M(i)}^2 + \sigma_T^2},$$

where $\sigma_{M(i)}$ is the detector mass resolution computed from the individual lepton calorimeter or tracking measurements for the dilepton mass $M_{Z(i)}$ and a Gaussian approximation with $\sigma_T = 3.25$ GeV/c2 allows for the nonzero width of the Z boson resonance.

For the $\ell\ell jj$ channels, we consider all possible combinations of leptons and jets. We select the two highest E_T jets and the dilepton pairing that minimizes the first term of the equation above. This explicitly avoids possible Z boson mass bias in the dijet mass spectrum that would complicate the background estimate discussed in the following section. We then require $M_Z > 20$ GeV/c2 for each pairing and, for the dijet channels, $\chi^2_{ZZ} < 25$.

of the six channels. In part because much of the data were collected with the CMUP trigger and during periods with measured cross-sections in good agreement with expectation, and because two of the six analysis channels do not involve muons, this systematic uncertainty over-covers the observed variation in cross section and is the dominant uncertainty for the analysis. Nevertheless, the final sensitivity of the analysis improves substantially on the earlier $eeee$ search [9].
for the leptonic Z boson.

A priori we define our signal region to be $M_X > 300 \text{ GeV}/c^2$ so as to avoid most standard model backgrounds. For the $\ell\ell\ell\ell$ modes we further require $\chi^2_{ZZ} < 50$ and for the $\ell\ell jj$ modes we require $65 < M_{jj} < 120 \text{ GeV}/c^2$. Each event may contain additional leptons, jets, or other particles beyond the four that contribute to the signal candidate.

V. BACKGROUND ESTIMATES

For both the four-lepton and the dijet channels, the dominant backgrounds at high M_X are a mixture of $Z + \text{jets}$, $W^\pm + \text{jets}$, multi-jets, and various lower-rate processes resulting in one or more hadrons that mimic an electron or muon. The diboson processes $W^\pm Z \rightarrow jj\ell\ell$, $ZZ \rightarrow \ell\ell\ell\ell$, and $ZZ \rightarrow \ell\ell jj$ peak at $\chi^2_{ZZ} < 50$ or $65 < M_{jj} < 120 \text{ GeV}/c^2$, while all other backgrounds do not peak in both Z boson masses simultaneously. We use a PYTHIA Monte Carlo model [21] with the CDF detector simulation to estimate the small contribution from resonant diboson processes and fit sideband data to collectively estimate all backgrounds that do not contain two bosons, collectively referred to as non-resonant background.

We estimate the $\ell\ell\ell\ell$ background by extrapolating the yield in the $185 < M_X < 300 \text{ GeV}/c^2$ region to the signal region ($M_X > 300 \text{ GeV}/c^2$ and $\chi^2_{ZZ} < 50$) using a shape determined from a sample enhanced in non-resonant background. In order to construct samples enriched in this background, four-lepton candidates are selected in which some of the reconstructed leptons are “anti-selected” to fail one or more lepton identification criteria. Anti-selected electrons must fail the HAD/EM energy selection and anti-selected muons must fail the minimum-ionizing energy selection. To further increase available statistics, the isolation requirement is removed for both categories. Events reconstructed with the standard CDF processing that contain at least one trigger lepton and one anti-selected lepton are included in the reprocessing discussed in Section III. The χ^2_{ZZ} vs. M_X distributions for the resultant samples are shown in Figs. 7 and 8.

Figs. 5 and 6 show the invariant mass distributions of trigger lepton plus anti-selected lepton pairings for electrons and muons, respectively. The absence of an appreciable peak indicates few resonant Z boson events survive the anti-selection.

The two samples of four-body candidates that consist of a trigger lepton and either two- or three-anti-selected leptons with $M_X > 185 \text{ GeV}/c^2$ and $\chi^2_{ZZ} < 500$ are then fit simultaneously to the empirical form

$$f(\chi^2_{ZZ}, M_X) = M_X^\gamma \cdot e^{\tau \chi^2_{ZZ}}$$

to determine the falling shape of the $M_{\ell\ell\ell\ell}$ distribution (the power law parameter γ) and the relationship of the number of events in the $\chi^2_{ZZ} < 50$ ZZ window to the number in the off-mass sidebands (the exponential decay parameter τ). As background composition and fake rate kinematic dependence varies with trigger and lepton type, we fit these sidebands separately for the $eeee$, $ee\mu\mu$, $\mu\mu ee$, and $\mu\mu\mu\mu$ background shapes. Figs. 9 through 12 show one-dimensional projections of the fit result for each channel against the fitted two- and three-anti-selected lepton χ^2_{ZZ} and $M_{\ell\ell\ell\ell}$ data as well as the one anti-selected sample, which is not used in the fit. Table V lists the fit parameters obtained with their statistical
FIG. 7: χ^2_{ZZ} vs. M_X distributions for the four-electron and electron-triggered two-electron two-muon sideband samples with 1, 2, and 3 anti-selected leptons.

TABLE V: Four-lepton background fit results.

Channel	γ	τ
$eeee$	-4.39 ± 0.09	-0.0184 ± 0.0005
$ee\mu\mu$	-5.4 ± 0.2	-0.0161 ± 0.0005
$\mu\mu ee$	-5.3 ± 0.3	-0.020 ± 0.002
$\mu\mu\mu\mu$	-6.5 ± 0.6	-0.030 ± 0.003

The background shapes obtained from these fits are normalized so that the sums of the integrals for $185 < M_X < 300 \text{ GeV}/c^2$ and the simulation-derived diboson predictions match the number of events observed with $185 < M_X < 300 \text{ GeV}/c^2$ in the four-lepton samples. The shapes are then extrapolated into the low χ^2_{ZZ}, high $M_X \ell\ell\ell\ell$ signal regions. The statistical uncertainty on the normalization is the dominant source of uncertainty for the four-lepton non-resonant background prediction.

As one test of the independence of the non-resonant predictions to the number of selected/anti-selected leptons, Tables VI and VII show the parameters and yield predictions obtained by fitting γ for each sample independently of the others. All of the yield predictions for a given signal mass and decay channel are consis-
FIG. 8: χ^2_{ZZ} vs. M_X distributions for the muon-triggered two-electron two-muon and four-muon sideband samples with 1, 2, and 3 anti-selected leptons.

The sideband data fit for the $\ell\ell jj$ non-resonant background estimates consist of events containing a dilepton pair with $\chi^2_Z < 25$ and a dijet pair with either $40 < M_{jj} < 65 \text{ GeV}/c^2$ or $120 < M_{jj} < 200 \text{ GeV}/c^2$. The M_{jj} spectrum near the Z boson pole mass is exponentially falling before imposing any requirement on M_X but linear for events with $M_X > 300 \text{ GeV}/c^2$, where the effect of the four-body mass cut is to sculpt a peak in the dijet mass at $M_{jj} > 200 \text{ GeV}/c^2$ (see Fig. 13). We linearly interpolate the background expectation for $65 < M_{jj} < 120 \text{ GeV}/c^2$ from the lower and higher M_{jj} sideband data.

To avoid underestimating the background at very high M_X where these sidebands are empty, we model the population of either sideband vs M_X with an exponential fit to the available data to obtain the numbers used in the interpolation. Fig. 14 shows the numbers of events in the two dijet mass sidebands as a function of the requirement on minimum four-body mass and the exponential fits. Exponential functions model the data well.

As one unbiased test of the prediction of the dijet mass spectrum, we repeat the selection and fit procedure on samples consisting of events containing a trigger lepton plus an anti-selected lepton and at least two jets. Comparison of the fit

tent with each other within the statistical uncertainty.
FIG. 9: M_{eeee} and χ^2_{ZZ} for the one-, two-, and three-anti-selected (A-S) four-electron samples, and the results of the simultaneous non-resonant background shape fit to the two- and three-anti-selected electron samples.

FIG. 10: $M_{ee\mu\mu}$ and χ^2_{ZZ} for the one-, two-, and three-anti-selected (A-S) lepton samples for the electron-triggered two-electron two-muon channel, and the results of the simultaneous non-resonant background shape fit to the two- and three-anti-selected lepton samples.

predictions against these $65 < M_{ij} < 120 \text{ GeV}/c^2$ data, which are depleted of signal, show the method performs well (Tables VIII and IX). The disagreement in the lowest M_{eejj} bin for this and other control samples is a result of a slight deviation from an exponential distribution. This residual variation is taken as an extra systematic uncertainty in the lowest mass bin.

We determine the backgrounds resonant in both Z boson masses with Monte Carlo models normalized to the cross-sections predicted by MCFM [22]. In the $\ell\ell jj$ channels, our dijet mass resolution and analysis selection does not distinguish between the $W^\pm Z \rightarrow jj\ell\ell$ and $ZZ \rightarrow jj\ell\ell$, and so the background from both processes is present.

Tables X through XV show the total prediction for each analysis channel. At each signal mass, the predictions are integrated over the four-body mass range listed in Table XVI. The uncertainties listed for the diboson predictions consist of the error on the MCFM cross-section ($\approx 7\%$), the uncertainty on the luminosity (6%), and the statistical uncertainty due to finite Monte Carlo statistics, which is the dominant uncertainty on the diboson prediction at high four-body mass, though a negligible component of the total background uncertainty. The uncertainties listed for the non-resonant backgrounds consist of the statistical uncertainty from the shape parameters and the
normalization uncertainty due to the small number of events in the $185 < M_X < 300 \text{GeV/c}^2$ four-lepton control regions. The non-resonant and diboson background systematic uncertainties are negligible compared to the statistical uncertainty on the total background.

VI. RESULTS

We optimized all selections and estimated all backgrounds before examining the data with $M_{\ell\ell\ell} > 300 \text{GeV/c}^2$ or with a dilepton pair hav-
FIG. 13: Dijet mass spectra for two-electron two-jet candidates with \(\chi^2_{ee} < 25 \) and three \(M_{eejj} \) requirements: no requirement, \(M_{eejj} > 185 \text{ GeV/c}^2 \), and \(300 < M_{eejj} < 350 \text{ GeV/c}^2 \), beyond which the shape of the dijet mass in the Z boson region is linear.

TABLE XI: Total \(ee\mu\mu \) backgrounds with \(\chi^2_{ZZ} < 50 \) for each signal mass \(M_X \). The uncertainty includes the ZZ diboson production cross-section uncertainty, the luminosity uncertainty, the statistical uncertainty from the simulation, and the statistical uncertainty from the non-resonant background fit.

\(M_X \) (GeV/c\(^2\))	SM ZZ	Non-resonant
400	0.19 ± 0.02	0.33 ± 0.13
500	0.067 ± 0.007	0.128 ± 0.064
600	0.035 ± 0.004	0.075 ± 0.047
700	0.014 ± 0.002	0.041 ± 0.029
800	0.004 ± 0.001	0.019 ± 0.013
900	0.003 ± 0.001	0.016 ± 0.013
1000	0.0013 ± 0.0006	0.012 ± 0.011

FIG. 14: Number of two-lepton two-jet events with \(40 < M_{jj} < 65 \text{ GeV/c}^2 \) and \(120 < M_{jj} < 200 \text{ GeV/c}^2 \) as a function of the minimum \(M_{lljj} \) mass requirement, along with the exponential fit to each that is used to interpolate the background prediction for the \(65 < M_{jj} < 120 \text{ GeV/c}^2 \) region.

TABLE XII: Total \(\mu\mu ee \) backgrounds with \(\chi^2_{ZZ} < 50 \) for each signal mass \(M_X \). The uncertainty includes the ZZ diboson production cross-section uncertainty, the luminosity uncertainty, the statistical uncertainty from the simulation, and the statistical uncertainty from the non-resonant background fit.

\(M_X \) (GeV/c\(^2\))	SM ZZ	Non-resonant
400	0.077 ± 0.008	0.32 ± 0.16
500	0.027 ± 0.003	0.130 ± 0.077
600	0.014 ± 0.002	0.078 ± 0.055
700	0.0065 ± 0.0010	0.044 ± 0.034
800	0.0018 ± 0.0007	0.021 ± 0.017
900	0.0014 ± 0.0006	0.018 ± 0.017
1000	0.0011 ± 0.0005	0.014 ± 0.013

ing \(\chi^2_Z < 25 \) and a dijet pair with \(65 < M_{jj} < 120 \text{ GeV/c}^2 \). Figs. 15 and 16 show the data in these regions and the combined resonant and non-resonant background predictions for all four-lepton channels and for both dijet channels. In all cases the data agree with the total background prediction and provide no compelling evidence for resonant ZZ diboson production. The highest-mass \(\ell\ell\ell\ell \) event (577 GeV/c\(^2\)) consists of four muons. For this event, one Z boson candi-
TABLE XIII: Total $\mu\mu\mu\mu$ backgrounds with $\chi^2_{ZZ} < 50$ for each signal mass M_X. The uncertainty includes the ZZ diboson production cross-section uncertainty, the luminosity uncertainty, the statistical uncertainty from the simulation, and the statistical uncertainty from the non-resonant background fit.

M_X (GeV/c2)	SM ZZ	Non-resonant
400	0.090 ± 0.010	0.21 ± 0.11
500	0.036 ± 0.005	0.063 ± 0.040
600	0.018 ± 0.002	0.031 ± 0.023
700	0.0082 ± 0.0015	0.015 ± 0.013
800	0.0018 ± 0.0007	0.0056 ± 0.0049
900	0.00011 ± 0.00005	0.0046 ± 0.0042
1000	0.0009 ± 0.0005	0.0031 ± 0.0030

FIG. 15: Prediction and data for all four-lepton channels combined. The background prediction for each bin consists of the integral of the non-resonant background functions and diboson Monte Carlo determined in Section V. The background predictions agree with the data.

The combined effect of the lepton reconstruction and identification improvements on graviton signal is demonstrated in Figs. 18 and 19 for the four-electron and four-muon channels. We compute data yields and estimates of signal and background by integrating the Monte Carlo predictions and fitted non-resonant background shapes over a set of overlapping, variable-width bins for signal masses from 400 GeV/c2 to 1 TeV/c2 (Table XVI). Each signal bin width is chosen to be large enough to fully contain the four-body mass distribution expected for an intrinsically narrow signal and the broadening from systematic effects. Table XVII shows the total background prediction and observed data yields in each of these bins.

We calculate 95%-credibility upper limits as a function of signal mass using a six-channel product of Bayesian likelihoods and a uniform prior for the (non-negative) $X \rightarrow ZZ$ cross-section. We use marginalized truncated-Gaussian nuisance parameters for the luminosity, background predictions, and signal efficiencies, and we account for systematic uncertainties correlated amongst the six channels when appropriate. As discussed earlier, we assign a 20% uncorrelated...
TABLE XIV: Total $eejj$ backgrounds with $65 < M_{jj} < 120\, \text{GeV}/c^2$ for each signal mass M_X. The uncertainty includes diboson cross-section uncertainties, the uncertainty on the luminosity, the statistical uncertainty from the simulation, and the uncertainties from the non-resonant background fits.

M_X (GeV/c^2)	SM ZZ	SM $W^\pm Z$	Non-resonant
400	5.72 ± 0.97	9.4 ± 1.1	483 ± 18
500	2.43 ± 0.58	3.25 ± 0.46	128.0 ± 8.2
600	0.99 ± 0.36	1.10 ± 0.22	47.4 ± 4.1
700	0.19 ± 0.18	0.60 ± 0.16	14.9 ± 1.7
800	0$^{+0.11}$	0.158 ± 0.083	2.86 ± 0.46
900	0$^{+0.11}$	0.095 ± 0.067	1.75 ± 0.31
1000	0$^{+0.11}$	0$^{+0.067}$	0.77 ± 0.16

TABLE XV: Total $\mu\mujj$ backgrounds with $65 < M_{jj} < 120\, \text{GeV}/c^2$ for each signal mass M_X. The uncertainty includes diboson cross-section uncertainties, the uncertainty on the luminosity, the statistical uncertainty from the simulation, and the uncertainties from the non-resonant background fits.

M_X (GeV/c^2)	SM ZZ	SM $W^\pm Z$	Non-resonant
400	2.90 ± 0.57	6.04 ± 0.73	162 ± 11
500	1.30 ± 0.38	2.06 ± 0.32	37.7 ± 4.4
600	0.57 ± 0.26	0.73 ± 0.17	12.6 ± 2.0
700	0.26 ± 0.19	0.229 ± 0.93	3.53 ± 0.72
800	0.09 ± 0.13	0.023 ± 0.040	0.57 ± 0.16
900	0$^{+0.10}$	0$^{+0.032}$	0.33 ± 0.10
1000	0$^{+0.10}$	0$^{+0.032}$	0.133 ± 0.045

FIG. 17: Products of acceptance times efficiency for each of the graviton analysis channels and their dependence on graviton mass. These do not include ZZ diboson branching ratios, which for each $ZZ \rightarrow \ell\ell jj$ mode are approximately 40 times the branching ratios for $ZZ \rightarrow eeee$ or $ZZ \rightarrow \mu\mu\mu\mu$. The $ee\mu\mu$ and $\mu\mu ee$ acceptances have been summed.

FIG. 18: Four-electron yield comparison for a 500 GeV/c^2 graviton between (lower histogram) the CDF standard electron selection criteria and (upper histogram) the criteria employed in the present analysis.
FIG. 19: Four-muon yield comparison for a 500 GeV/c² graviton between (lower histogram) a CDF standard muon selection criteria and (upper histogram) the criteria employed in the present analysis.

TABLE XVI: Signal binning used for limit-setting.

Signal Mass (GeV/c²)	Bin Half Width (GeV/c²)
400 ±	70
500 ±	90
600 ±	130
700 ±	160
800 ±	160
900 ±	230
1000 ±	280

section, conservatively covering the sum of individual systematic uncertainties such as signal acceptance uncertainties in order to simplify the combination. Studies of the individual uncertainties indicate the largest contribution after the uncertainty due to the $Z \rightarrow \mu\mu$ cross section variation is the 5.9% uncertainty on the luminosity. In addition to the observed limit, we compute expected limits from 10,000 pseudo-experiments at each candidate X mass. Fig. 20 shows the resultant limits along with the $k/M_{Pl} = 0.1$ Randall-Sundrum (RS1) graviton cross-section from HERWIG. The present search improves the $\mathcal{O}(4 \text{ pb})$ limit of the earlier $eeee$ search [9] by an order of magnitude.

VII. CONCLUSIONS

We have reported on an improved search for a massive resonance decaying to ZZ dibosons via the $eeee$, $e\mu\mu$, $\mu\mu\mu$, $eejj$, and $\mu\mu jj$ channels. We find that the four-body invariant mass spectrum above $300 \text{ GeV}/c^2$ is consistent with background estimates derived from sideband data samples and electroweak Monte Carlo models. To quantify our sensitivity, we set limits using the acceptance for a Randall-Sundrum graviton model that are 7–20 times stronger than the previously published direct limits on resonant ZZ diboson production.

Acknowledgments

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucléaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.
TABLE XVII: Total background prediction and observed data yields for each of the limit-setting bins in Table XVI. Successive bins are partially correlated. The uncertainty (quoted as the least two significant figures in parentheses) is the systematic uncertainty on the mean background prediction and does not include statistical fluctuation about the mean.

Channel	400	500	600	700	800	900	1000
eee	1.53(44)	0.73(29)	0.49(18)	0.30(20)	0.16(12)	0.15(11)	0.11(10)
eemm	0.52(13)	0.195(64)	0.110(47)	0.055(29)	0.023(13)	0.019(13)	0.013(11)
mmm	0.397(16)	0.157(77)	0.092(55)	0.050(34)	0.023(17)	0.019(17)	0.015(13)
mjj	0.30(11)	0.099(40)	0.049(23)	0.023(13)	0.0074(49)	0.0047(42)	0.0040(30)
ejj	498(18)	133.7(82)	49.5(41)	15.7(17)	3.02(48)	1.84(34)	0.77(21)
jj	456	142	69	28	7	5	2

APPENDIX

The standard CDF reconstruction software uses two main approaches to reconstruct tracks. High quality central tracking ($|\eta| < 1$) starts in the COT and assembles piecewise segments of up to 12 hits in each superlayer, fits them, and groups them into tracks to which any available silicon hits are then attached in an outside-in search. Afterward, “silicon standalone” tracking starts with all possible combinations of three unused silicon hits, searches the remaining silicon layers, and projects successful tracks into the COT to attach any compatible hits in order to improve the track momentum resolution and lower the fake rate.

The combination of these approaches results in low efficiency in the $1 < |\eta| < 2$ region. Tracks originating from $z = 0$ with $|\eta| < 1.7$ will leave traces of their passage in the lowest-radii superlayers of the COT. Though very efficient when full COT coverage is available, for $|\eta| > 1$ the central tracking algorithms lose efficiency nearly linearly with $|\eta|$ reaching zero efficiency at about $|\eta| = 1.6$. The silicon fully covers $|\eta| < 1.8$ to compensate for the falling COT efficiency, but the existing silicon-driven tracking algorithms reconstruct tracks with low efficiency and produce low-quality or spurious tracks with poor pointing resolution into the COT. Thus the COT information for forward tracks is rarely exploited.

This analysis employs a thorough revision of the forward and central tracking algorithms in order to reconstruct tracks with better efficiency and resolution, including a new “Backward” algorithm that makes full use of the partial COT coverage. The Backward algorithm, illustrated in Fig. 21 for a simple case, starts by searching the COT for hits unused by the central COT algorithm and constructing segments in one of the inner axial superlayers consisting of no more than 12 hits. At this stage, the position measurements contain a drift sign ambiguity and important drift time corrections, such as large time of flight and sense wire signal propagation times, are unknown and cannot be approximated by the constant corrections assumed for the central segment pattern recognition. The Backward algorithm solves this problem with a variant of the central segment pattern recognition that resolves the drift sign ambiguity and drift time corrections during the search and is optimized for tracking in the low radius, high hit density inner superlayers and near the COT endplates. Once unused COT hit segments are found consistent with a forward track, the algorithm then fits the segments with a beamline constraint to obtain five-parameter helices that intersect the z position of the highest sum p_T z vertex identified using central algorithm tracks. In most cases, the fits do not conclusively identify stereo COT measurements in the innermost stereo superlayer, and so multiple helices are obtained correspond-
FIG. 21: A simple example of the Backward tracking algorithm in low luminosity data. In a stretched and rotated $r-\phi$ view of the relevant section of the tracking volume, COT pulses in a single 12-layer axial superlayer indicating two possible hit locations corresponding to $-\phi$ and $+\phi$ drift are processed to identify trajectory segments and fitted to obtain drift time corrections and an initial trajectory with large uncertainties. An iterative Kalman filter search through possible η values for silicon charge clusters consistent with the initial trajectory produces a tree of track possibilities, from which the single best candidate, shown with a projection of the final 3σ uncertainties, is chosen. Also shown is an independent measurement from the forward calorimeter shower maximum scintillator.

The Backward algorithm has been validated on a variety of samples, with emphasis on large samples of $Z \to ee$ and $Z \to \mu\mu$ simulation and data. Fig. 22 shows the improvement in $Z \to \mu\mu$ yield in muon-triggered data involving higher-quality forward tracks with COT hits in a subset of the data, demonstrating the increase in muon acceptance due to the new software. The lower curve represents the dimuon mass spectrum for the combination of a trigger muon tracked with the central algorithm and a forward muon tracked in the combination of the COT and the silicon detectors with the silicon-driven algorithm in the standard software. The upper curve shows the same spectrum in the new software, where the Backward algorithm has largely superseded the other silicon-driven algorithm. With a modest increase in background, the peak yield has improved by about 260%, corresponding to an approximately 10% increase in the total $Z \to \mu\mu$ yield over the entire detector. The distributions of all forward muon identification variables are qualitatively the same as those of muons found with the central COT-driven algorithm, indicating that we have selected a sample of forward muons with purity comparable to the central muons.

[1] L. Randall and R. Sundrum, Phys. Rev. Lett. 83 4690 (1999).
[2] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100 201801 (2008).
[3] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101 171803 (2008).
[4] ALEPH Collaboration, Phys. Lett. B 469 287 (1999).
[5] DELPHI Collaboration, Eur. Phys. J. C 30 447 (2003).
[6] L3 Collaboration, Phys. Lett. B 572 133 (2003).
[7] OPAL Collaboration, Eur. Phys. J. C 32 303 (2003).
[8] H. Davoudiasl, J. L. Hewett, and T. G. Rizzo,
FIG. 22: $Z \rightarrow \mu\mu$ yield and background comparison in 0.2 fb$^{-1}$ of data for candidates combining a trigger muon with another muon reconstructed by any dedicated forward tracking algorithm for (lower curve) the standard CDF reconstruction and (upper curve) the reconstruction used for the present analysis. The gray curves indicate the shapes and normalization of the signal (Breit-Wigner distribution convolved with a Gaussian resolution function) and background (exponential distribution) components used in the fit. In both cases, attached COT hits and the muon identification criteria listed in Table III are applied.

Phys. Rev. Lett. 84 2080 (2000).
[9] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 78 12008 (2008).
[10] L. Randall and R. Sundrum, Phys. Rev. Lett. 83 3370 (1999).
[11] K. Agashe, H. Davoudiasl, G. Perez, and A. Soni, Phys. Rev. D 76 36006 (2007).
[12] L. Fitzpatrick, J. Kaplan, L. Randall, and L.-T. Wang, J. High Energy Phys. 09 013 (2007).
[13] A. Abulencia et al. (CDF Collaboration), J. Phys. G 34 2457 (2007).
[14] A. Sill et al., Nucl. Instrum. Methods A 447 1 (2000).
[15] T. Affolder et al., Nucl. Instrum. Methods A 526 249 (2004).
[16] L. Balka et al., Nucl. Instrum. Methods A 267 272 (1988).
[17] D. Acosta et al., Nucl. Instrum. Methods A 461 540 (2001).
[18] F. Abe et al. (CDF Collaboration), Phys. Rev. D 44 29 (1991).
[19] F. Abe et al. (CDF Collaboration), Phys. Rev. D 45 1448 (1992).
[20] A. Bhatti et al., Nucl. Instrum. Methods A 566 375 (2006).
[21] T. Sjostrand et al., Comput. Phys. Commun. 135 238 (2001).
[22] J. M. Campbell and R. K. Ellis, Phys. Rev. D 60 113006 (1999).
[23] G. Corcella et al., JHEP 01 010 (2001).