Functional diversification enabled grassy biomes to fill global climate space

Caroline E. R. Lehmann1,2,*, Daniel M. Griffith3, Kimberley J. Simpson4, T. Michael Anderson5, Sally Archibald2, David J. Beerling4, William J. Bond6, Elsie Denton7, Erika J. Edwards8, Elisabeth J. Forrestel9, David L. Fox10, Damien Georges11, William A. Hoffmann12, Thomas Kluyver13, Ladislav Mucina14,15, Stephanie Pau16, Jayashree Ratnam17, Nicolas Salamin18, Bianca Santini4, Melinda D. Smith7, Elizabeth L. Spriggs8, Rebecca Westley4, Christopher J. Still3, Caroline A.E. Strömberg19 and Colin P. Osborne4,*

1School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF, UK

2Centre for African Ecology, School of Animal and Plant Sciences, University of Witwatersrand, Johannesburg

3Dept. Forest Ecosystems & Society, Oregon State University, Corvallis, OR 97331, USA

4Dept. Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK

5Dept. Biology, Wake Forest University, Winston-Salem, NC 27109, USA

6Dept. Botany, University of Cape Town, Cape Town, ZA-7701, South Africa

7Dept. Biology, Colorado State University, Ft Collins, CO, 80523, USA

8Dept. Ecology & Evolutionary Biology, Yale University, 165 Prospect St., New Haven, CT 06520, USA

9Dept. Viticulture & Enology, University of California, Davis, CA 95616, USA

10Dept. Earth Sciences, University of Minnesota, Minneapolis MN 55455, USA

11Laboratoire d’Ecologie Alpine (LECA), Univ. Grenoble Alpes, CNRS, F-38000 Grenoble, France

12Dept. Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
13Computational Modelling Group, Faculty of Engineering & the Environment, University of Southampton, Southampton SO17 1BJ, UK

14Harry Butler Institute, Murdoch University, 90 South Street, Murdoch WA 6150, Perth, Australia

15Dept. Geography & Environmental Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa

16Dept. Geography, Florida State University, Tallahassee, FL 32306-2190, USA

17National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vignana Kendra, Bellary Road, Bangalore 560 065, India.

18Dept. Ecology & Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland

19Dept. Biology & the Burke Museum of Natural History & Culture, University of Washington, Seattle, WA 98195, USA

* Corresponding Authors
Abstract: Global change impacts on the Earth System are typically evaluated using biome classifications based on trees and forests. However, during the Cenozoic, many terrestrial biomes were transformed through the displacement of trees and shrubs by grasses. While grasses comprise 3% of vascular plant species, they are responsible for more than 25% of terrestrial photosynthesis. Critically, grass dominance alters ecosystem dynamics and function by introducing new ecological processes, especially surface fires and grazing. However, the large grassy component of many global biomes is often neglected in their descriptions, thereby ignoring these important ecosystem processes. Furthermore, the functional diversity of grasses in vegetation models is usually reduced to C$_3$ and C$_4$ photosynthetic plant functional types, omitting other relevant traits. Here, we compile available data to determine the global distribution of grassy vegetation and key traits related to grass dominance. Grassy biomes (where > 50% of the ground layer is covered by grasses) occupy almost every part of Earth’s vegetated climate space, characterising over 40% of the land surface. Major evolutionary lineages of grasses have specialised in different environments, but species from only three grass lineages occupy 88% of the land area of grassy vegetation, segregating along gradients of temperature, rainfall and fire. The environment occupied by each lineage is associated with unique plant trait combinations, including C$_3$ and C$_4$ photosynthesis, maximum plant height, and adaptations to fire and aridity. There is no single global climatic limit where C$_4$ grasses replace C$_3$ grasses. Instead this ecological transition varies biogeographically, with continental disjunctions arising through contrasting evolutionary histories.
Significance statement: Worldviews of vegetation generally focus on trees and forests but grasses characterize the ground layer over 40% of the Earth’s vegetated land surface. This omission is important because grasses transform surface-atmosphere exchanges, biodiversity and disturbance regimes. We looked beneath the trees to produce the first global map of grass-dominated biomes. Grassy biomes occur in virtually every climate on Earth. However, three lineages of grasses are much more successful than others, characterizing 88% of the land area of grassy biomes. Each of these grass lineages evolved ecological specializations related to aridity, freezing and fire. Recognizing the extent and causes of grass dominance beneath trees is important because grassy vegetation plays vital roles in the dynamics of our biosphere and human wellbeing.
Introduction

The global distribution of terrestrial biomes determines global patterns of carbon storage and biodiversity (1). Delineation of biome distributions is crucial because it underpins evaluations of vegetation feedbacks on climate (2), extinction threats for biodiversity (3), and strategies for monitoring and reversing land-use change and degradation (4). Global studies of biome distributions typically focus on forests and trees (4-6), following the long-established paradigm in modern ecology of deterministic relationships between forest distributions and environment (7). Within this paradigm, there is a widely held perception that grassy vegetation only occupies semi-arid climates. However, it is increasingly recognized that biome limits are not deterministically linked to climate but arise from multi-directional feedbacks between plant functional traits, environment, and disturbance. These processes operate over evolutionary and ecological timescales (8) creating biogeographic contingencies in biome-environment relationships (9).

Grassy biomes require open-canopied tree layers (or no tree layer) to permit enough light to penetrate for grass photosynthesis. As a result, grasses dominate the ground layer when the rate of woody plant recruitment and growth is limited by climate, soil, drainage, disturbance conditions or light competition (10-12). “Grassy biomes” defined in this way include tropical savannas, montane grasslands, grassy deserts, temperate steppe grasslands, boreal parklands, and many temperate woodlands. The distinction of whether the ground layer is dominated by grasses (Poaceae) is fundamental to understanding global relationships among plants, climate, and disturbance (13). While, both trees and grasses are clearly important in driving vegetation dynamics, grass dominance causes a fundamental shift in disturbance regimes, whereby the consumption of ground layer biomass by fire and grazing reinforces grass dominance and maintains open tree canopies (10). Grass cover and biomass
in the ground layer also affects surface energy, carbon, nutrient and water cycling by, for example, altering rates of decomposition, water infiltration and absorption of sunlight. Grass dominance therefore leads to novel ecological processes and properties in the Earth System, including frequent fire and grazing by mammals (14).

During the Cenozoic grasses displaced forests and shrublands by altering disturbance regimes at large scales across tropical and temperate regions (14, 15). The global expansion of grassy vegetation enabled major faunal and floral radiations (14, 16), and is linked to events in human behavioral evolution (17, 18). Today, natural grassy biomes provide grazing lands, water resources and numerous ecosystem services that directly support over a billion people (19). Yet, despite this social and economic significance, and the profound disturbance feedbacks engendered by grassy vegetation (20), understanding of grassy biomes is geographically biased towards few regions (e.g., South and East African savannas, North American grasslands), with the global limits of grassy biomes poorly defined.

When considering the limits to grassy biomes, the grass diversity present in a system is generally reduced to a distinction between species using the C_3 or C_4 photosynthetic pathways. If all else is equal, C_4 grasses should outcompete C_3 grasses under conditions of high light and temperature as well as low CO_2 (21-23). This physiologically based model explains, in general terms, how C_4 grasses dominate tropical regions and C_3 grasses dominate temperate and high-altitude environments under current atmospheric CO_2 levels [ppm = 408]. The physiological mechanisms underpinning this model have critical impacts for predicting vegetation trajectories with global climate and atmospheric CO_2 changes (22) yet attempts to parse the consequences of grass physiology for global vegetation is often reliant on sparsely validated modelling (24). Further, a focus on photosynthetic type belies the rich phylogenetic diversity within grasses independent of photosynthetic pathway (14). Grasses are unusual
among vascular plants because C_4 photosynthesis evolved in up to 24 independent lineages (25), conferring unique ecological characters to each C_4 lineage inherited from its C_3 ancestors (26). Photosynthetic type therefore interacts with different combinations of other functional traits to determine plant performance under varied environmental conditions (27, 28), but the influence of these interactions on the global biogeography of grassy biomes is unknown.

Here, we focus on grass-dominated systems to address three questions. First, what are the global limits of grassy biomes? Second, to what extent is grassy biome structure contingent on evolutionary history, whereby independent phylogenetic lineages characterize grassy biomes on each continent? Finally, how do functional traits of the descendant species of each lineage relate to climate and fire? Our findings have significant implications for the representation of terrestrial vegetation processes in Earth System Models.

Identifying grassy biomes. Our dataset provides the first spatially explicit, functional classification of grassy vegetation at the global scale (Figs. 1 and S1). Necessarily, our approach that focusses on the ground layer contrasts with efforts to map biomes using remotely sensed tree cover or biomass (4, 29). Such studies generally misclassify extensive areas of tropical savanna as forest or degraded forest (30, 31). Global synthesis of grassy biomes has been prohibited as satellite remote sensing does not see through a tree canopy. Therefore, we mapped grassy formations by integrating and re-classifying 20 existing national and regional vegetation maps produced using botanical data and detailed vegetation descriptions (see Methods and SI).

What is a grassy biome? We defined vegetation units as grassy where the ground layer is characterized by Poaceae and where grasses comprised $> 50\%$ of ground layer cover based on descriptions within vegetation maps and associated literature (see Methods and SI). A
relatively small set of species often accounts for the majority of biomass in plant communities, whether these are communities dominated by trees or grasses, and these species exert major controls over ecosystem processes (32) and ecosystem services (33). Focusing on dominant and characteristic species provides one way to explore links between evolutionary history and ecosystem ecology at large scales (14). Through this process we identified 1,154 grass species (~10% of the total grass flora) characterizing grassy vegetation.

Results and Discussion

Global limits of grassy biomes. Grasses can dominate ground layer vegetation in all but the coldest and driest climates on Earth (Figs. 1 - 2). We estimate that vegetation with a grass-dominated ground layer originally covered ~ 41% of the vegetated land surface, although much is now under cultivation. Critically, grasses can dominate the ground layer in every climate where woody vegetation can persist (Figs. 1 - 2). While steppe grasslands and prairies occupy a large fraction of the global land area in dry temperate climates (Figs. 2, S2-S3), and savannas and grasslands occupy most of the tropics, grass-dominated ground layers occupy extensive areas in any other part of the vegetated global climate space (Fig. 2 and Fig. S4).

Members of 16 independently derived C₄ grass lineages dominate within at least one vegetation unit worldwide (Fig. 1). However, two C₄ lineages and one C₃ lineage dominate over 88% of the land area of grassy vegetation: C₄ Andropogoneae, 37% (1189 species in the lineage); C₄ Chloridoideae, 14% (1601 species in the lineage); and C₃ BEP, 38% (Fig. 1). The vast majority of C₃ BEP taxa belong to Pooideae (4234 species in the lineage). In contrast, C₃ species of the PACMAD clade dominate only 2% of grassy biomes (Fig. 1); these are the closest relatives of C₄ grasses and are restricted to warm, wet areas (Figs. S2-S4). Of the remaining
area of grassy vegetation, 6.6% is characterised by a mix of lineages, and the rest dominated by 13 other, independently derived, C₄ lineages (Fig. 1 and Table S1).

The three dominant lineages sort in climate space. C₃ Pooideae dominate cooler, drier climates, whereas C₄ Andropogoneae and Chloridoideae dominate grassy biomes in warmer climates (Figs. 3, S3-S6). However, precipitation sorts the C₄ lineages, with peak dominance of Andropogoneae occurring at ~1200mm MAP (Figs. 4, S3-S5), coinciding almost precisely with the global peak in fire frequency (Fig. 4). This is also the climate space where disturbance-driven feedbacks are considered to play a major role in maintaining open (i.e., grassy) or closed (i.e., woody) vegetation (34). In contrast, the peak dominance of Chloridoideae occurs at ~350mm MAP (Figs. 4, S3-S4), within semi-arid climate zones occupied by both dry savannas and shrublands/thickets e.g., (35). Temperature seasonality also differs among the C₄ lineages, with Chloridoideae dominating in regions with strong seasonality, and Andropogoneae dominating in more aseasonal environments (Fig. S5).

Continental disjunctions in C₃ and C₄ lineage distributions. Globally, the mean growing season temperature where dominance of grasses transitions from C₃ to C₄ types varies starkly among continents, from 8.5-26.1 °C, with a global mean of 17.2 °C (Fig. 3). Lineages using C₃ and C₄ photosynthetic pathways are clearly sorted by growing season temperature and mean annual temperature (Figs. 3 and S3-6). The C₃ Pooideae lineage has specialized and radiated in cold environments by evolving physiological cold acclimation to protect tissues from freezing damage, and vernalization to synchronize flowering with the growing season (36, 37).

Conversely, in tropical regions, the repeated evolution of C₄ photosynthesis appears vital in expanding the range of grassy biomes, by enabling colonization of hot, high light, and seasonally dry habitats across a wide span of rainfall (38, 39).
The C₃ Pooideae occupy regions with lower winter temperatures and shorter droughts than the C₄ lineages (Fig. S7). C₃ Pooideae dominate grassy biomes to much higher temperatures in the Palearctic than the Nearctic realm, although distributions of C₄ Andropogoneae and Chloridoideae in these realms are similar (Fig. 3). Conversely, C₃ Pooideae are confined to the geographically restricted colder parts of the Afrotropics and Indo-Malay realms, and C₄ Andropogoneae dominate at much lower temperatures in these regions (Fig. 3). The sorting of C₃ and C₄ grass species along local and regional temperature gradients is well established (40, 41), and the crossover temperature can be modified by ecosystem factors (e.g., tree cover) (42). However, our observations are broadly consistent with model predictions of carbon assimilation (22, 23, 43), as modeled crossover temperatures under low light conditions and modern CO₂ levels occurs at ~20-22 °C.

In our data, some species of both Andropogoneae and Chloridoideae lineages have adapted to low mean annual temperatures and may persist in grassy vegetation within cool parts of each realm (e.g. Fig. 3). Given equal investment in the carbon-fixing enzyme Rubisco, a relatively low canopy leaf area and sunny conditions, a C₄ canopy can theoretically achieve higher total daily rates of photosynthesis than a C₃ at any temperature (37). In this case, the primary limitation on canopy carbon uptake becomes light-mediated damage during low temperature extremes (44), although C₄ photosynthesis is energetically expensive. Low temperature tolerance may be absent from most C₄ species as C₄ photosynthesis evolved in the tropics (38).

Trait combinations of each lineage. Chloridoideae are distinguished from Andropogoneae in their occupation of regions with lower precipitation, higher daily variation in temperatures and longer droughts (Fig. S7). Further, these lineages are differentially associated with fire
where Andropogoneae has the shortest fire return interval of 2 years, the peak occurrence of
Chloridoideae is at an interval of 8 years, while in Pooideae the modal fire return interval
exceeds 20 years (Fig. S7). Maximum plant heights of each lineage sort similarly, with values
peaking at 1.5 m for Andropogoneae and 0.6 m for both Chloridoideae and Pooideae (Fig. S7).
However, annual versus perennial life history is not globally relevant. The only significant areas
dominated by annual grasses occurring at the margins of the Sahara Desert and West Africa,
regions commonly considered as over-grazed.

80% of burned area globally occurs in the regions we see dominated by
Andropogoneae (20) and differs from other C₄ grass lineages with its greater average height
and consequent rapid growth rates. Where rainfall exceeds 800 mm MAP in the tropics, soils
are typically leached and infertile (45). Andropogoneae produce leaves with relatively high
C:N ratios (46, 47), which resist rapid decomposition. The tall, erect architecture of these
grasses produces a flammable well-connected fuelbed (48) and productive tropical
environments, with an annual dry season of > 5 months (13), are primed to burn as the grass
layer senesces. Experimental manipulations demonstrate that fire promotes dominance by
Andropogoneae (46) and we see this mirrored at a global scale. Grass persistence in these
competitive environments relies on the annual production of a new canopy and, in the
absence of woody investment, dead biomass must either rapidly decompose, burn or be
consumed by herbivores to avoid self-shading (11, 49). Andropogoneae are known to have
morphological adaptations enabling tolerances and persistence to fire that are not commonly
present in other grass lineages (49). Fire and other forms of repeated disturbance, such as
grazing, are therefore crucial for grass-dominated systems to persist in high rainfall
environments. While Andropogoneae appears to be the C₄ lineage most closely associated
with disturbance by fire, multiple lineages in the semi-arid African tropics appear linked to
grazing tolerance (Fig S8, (50, 51)), and this may be due to the strength and form of
environmental filtering associated with fire versus grazing, as well as the antiquity and
biogeography of grazing pressure relative to fire.

Implications. The Andropogoneae, Chloridoideae and Pooideae grass lineages dominate
globally, via mechanisms encompassing plant production and competition, resilience to
drought, freezing and disturbance. Why do three of the most diverse grass lineages
characterise grassy biomes? Does diversity beget ecological success or does success beget
diversity? Early diversification may have enabled ecological success, such that ecological
speciation allowed each lineage to radiate across broad environmental envelopes (an
ecological mechanism). Alternatively, a neutral mechanism of a long history of diversification
may have led to high diversity as Andropogoneae and Chloridoideae are the oldest C₄ lineages.

Across our dataset, evidence for this is equivocal. We list 8.8% of all grass species and within
lineages: Andropogoneae, 14.5%; Chloridoideae, 6.5%; Pooideae, 10.8%. Perhaps ecological
success facilitated diversification, such that large geographical ranges enabled by unique
adaptations made the isolation of populations and allopatric speciation more likely (a
geographic mechanism). The rapid spread of the cosmopolitan *Themeda triandra* from Asia to
Africa in < 500,000 years supports this idea (52). Resolving the relative role of these
mechanisms requires comparative phylogenetic analyses of the relationships among ecology,
functional traits, range sizes and diversification rates.

The biogeographic contingencies described here in crossover temperatures align with
emerging evidence that regional evolutionary and environmental histories have been
important modifiers of biome-climate relationships (9, 53). However, the rapid rates of
dispersal observed in grasses (52), along with their short generation times (49), raises critical
questions about whether the biogeographic contingencies observed in woody plants should
be mirrored in grassy communities.

Global change will rapidly modify the existing global distribution of grassy biomes.
First, environmental change can alter feedbacks between grasses and woody plants via
changes in the processes limiting the growth and mortality of woody plants. For example,
rising CO\textsubscript{2} is hypothesised to increase tree recruitment in savannas and forest margins (54,
55), while extreme drought events and warming may cause forest dieback on large scales (56),
where each process has feedbacks with fire leading to ongoing biome shifts (57). Second,
environmental changes will shift the community composition of grass communities. Our
analysis points to globally important ecotones between C\textsubscript{3} and C\textsubscript{4} likely to be influenced by
rising CO\textsubscript{2} and temperature (58), but these are better conceptualised as the boundary
between Pooideae and Chloridoideae in arid and semi-arid regions or regions of high grazing
pressure, and Pooideae and Andropogoneae in wetter regions. An experimental CO\textsubscript{2}
manipulation in dry mixed prairie found elevated CO\textsubscript{2} favoured a Pooideae dominant over a
Chloridoideae dominant, with rising temperature having the opposing effect (59). Conversely,
in a mesic tallgrass prairie, an Andropogoneae dominant displaced a Pooideae dominant in
competition under elevated CO\textsubscript{2} via improved water relations (60). In each case, C\textsubscript{4}
photosynthesis was one trait among many that influenced dynamic environmental responses.
Finally, the boundary between Andropogoneae and Chloridoideae is more likely to be
influenced by changes in rainfall amount and seasonality, along with shifting fire and grazing
regimes that can be directly altered by people at small and large scales.
Conclusions. The previous lack of synthesis in biome limits between grasses and woody plants constrains our understanding of how ecological and evolutionary processes determine the sensitivity of vegetation to global change. We have shown that divergent evolutionary histories and unique functional trait combinations have enabled three major grass lineages to dominate grassy biomes across global climate space. Local dominance by each lineage brings differing sensitivities to alternative global change drivers.

Acknowledgements. This research is a product of the National Evolutionary Synthesis Center (NESCent) working group led by CPO, CAES, and CJS. DG was supported by a NESCent graduate fellowship and NSF award 1342703. CPO was supported during the preparation of this manuscript by Natural Environment Research Council grant (NE/I014322/1). Zhiyao Tang helped to obtain the China map. Nikolai Ermakov and Daoud Rafikpoor provided shape files of mapping data for Russia and Afghanistan, respectively. Anita Smyth assisted in obtaining the Aekos data. Les Powrie, and Mike Rutherford assisted in obtaining the plot data from South Africa. The South African National Biodiversity Institute and the South African Biodiversity Facility are thanked for the use of data/information supplied by SANBI from digitized collections. This work forms part of the “The National Vegetation Map” coordinated by the South African National Biodiversity Institute.

Author Contributions. CERL, DMG, KJS, TMA, WB, ED, EJF, WH, LM, SP, JR, BS, MS, ES, RW, and CPO compiled the data. CERL, DMG, KS, DG and TK analysed the data. SA contributed fire data. CERL and CPO designed the study and wrote the paper with text contributions from DMG and KJS. All authors contributed comments on a draft of the paper. DMG and CERL perfected the figures.
Methods

Classifying grassy biomes. Data from 20 vegetation maps derived from botanical information, or a combination of botanical and geographic information, were integrated to delineate grassy biomes (references for these maps are listed in the Supplementary Information). The result was a global map of grassy biomes resolved into 1,635 discrete vegetation units, each defined by its characteristic grass species, which formed a list of 1,154 species (accounting for synonymy) found commonly across global grassy biomes.

Vegetation maps are generally based on botanical survey and geographic analysis, combined with expert input, that cluster species composition and vegetation structure to define unique vegetation units. We compiled the ground layer information for the vegetation units in each map to identify the grass species considered to characterize a vegetation unit. To determine whether vegetation units were naturally dominated by grasses, we developed a set of criteria. First, artificial vegetation units were defined as those plowed or sown for agriculture and where humans are planting species that would not otherwise occur. We retained data for this analysis of only natural formations. Second, based on the vegetation descriptions we determined whether > 50% of the relative ground cover or biomass was derived from grasses. We used this definition in place of ‘Is there a continuous grassy ground layer?’ because low herbaceous cover in predominantly grassy vegetation would present a problem with the classification of desertic and arid environments. Vegetation units were considered grassy deserts where the total above-ground biomass was considered <50 g m², or where total ground cover <25%, throughout the year. Finally, we retained all formations where grasses were the dominant component of the ground layer, irrespective of tree cover. Numerous grassy biomes, such as tropical savannas and woodlands, may be characterised by up to 80% tree cover, but behave functionally as savannas due to a contiguous grassy ground
layer (13, 35). Where necessary, we sourced additional information from published vegetation
descriptions and analyses to attribute key grass species to a grassy vegetation unit.
Additionally, vegetation units could be classified as mosaics with patches of closed canopy
vegetation intermingled with open vegetation, e.g. across the Steppe region of Russia.

Mapping grassy biomes. The vegetation maps we used as sources were developed
throughout the 20th century. While this method provides an incomplete global coverage, we
integrated available state-, country- and continent-level mapping to assemble what we
consider to be the most robust map possible of the limits of grassy vegetation, where both
vegetation characteristics and key constituent species could be identified. We were obliged
to use the WWF Ecoregions map (61) where no other mapping was available. We re-assessed
this global map to re-define units as grassy or not based on the criteria outlined above.

To quantify the global limits of grassy vegetation according to grass lineage, we gridded
the mapped data compilation at 0.5 degrees resolution. We calculated the proportion of each
0.5-degree grid cell occupied by grassy polygons. Using the grass phylogenetic and trait
information compiled, we then calculated the occupancy of grassy polygons by photosynthetic
type, annual/perennial life history, grass lineage, and mean maximum grass height. These data
are not the same as a classic concept of abundance or dominance but are a relative measure
of the likelihood of occupancy measured from zero to unity. We undertook a validation of our
map compilation described in the Supplementary Information and in Figure S9.

Phylogenetic and plant trait information. We cross-referenced our species list to a taxonomy
of accepted scientific names (GrassBase, http://www.kew.org/data/grasses-syn/cite.htm)
and a recent accepted phylogeny from the Grass Phylogeny Working Group (25) to eliminate
synonymy and link species to descriptions of evolutionary history and functional traits.
Functional traits considered were: C3/C4 photosynthetic pathway, maximum plant height,
annual/perennial life history, and tolerance of climatic extremes and fire frequency. C_3 species were divided amongst two groups: a polyphyletic group belonging to the PACMAD clade (including the C_3 sister groups for all C_4 lineages); and the monophyletic BEP clade, a C_3 outgroup to PACMAD, including bamboos, rice relatives and Pooideae species. C_4 grass species were attributed to one of 24 independently evolved grass lineages. Maximum plant size is a major axis of plant trait variation at a global scale (62), with maximum culm height in herbaceous grasses reflecting annual rates of height growth, as most grasses annually senesce their canopy (49). Height also describes differences in life history strategies related to light competition and flammability and grazing tolerance (49). We included annual/perennial as while most grasses reach sexual maturity in <1 growing season, perennial grasses can be long-lived. Plant longevity is an effective strategy for occupying space in competitive environments (63). We summarized these data for each grassy vegetation unit based on the grass species listed as characteristic of each unit.

For the Poaceae species that we listed, we extracted all available georeferenced occurrence records from the Global Biodiversity Information Facility (GBIF) web portal (http://www.gbif.org/; accessed January 2014) and cleaned these data to ensure longitude and latitude values were viable and to two decimal places. Species distributions were standardised against descriptions of distributions in Grassbase using TDWG regions. For this subset of species produced via distribution records, median fire return intervals were calculated at a species level following the methods of Archibald et al. 2010 (64). Information on fire date was extracted for each GBIF location from the MODIS global monthly burnt area (MCD45A1) satellite data product. To calculate climatic extremes for these same species, the WorldClim dataset (www.worldclim.org) was used to obtain species median values of minimum temperature (BIO6 variable) and seasonal drought length (calculated as the number.
of successive months where mean annual precipitation was below 30mm). These species level
data were used to construct frequency histograms to examine lineage level variation in fire
regimes and climate extremes (Fig S7).

Environmental data used in global analyses. Our analysis aimed to elucidate lineage, climate
and disturbance relationships, and whether biogeography impacts the C₃-C₄ crossover
temperature. We used the WorldClim dataset at a 0.5 degree resolution to match the
vegetation map, and extracted mean annual precipitation (MAP), rainfall seasonality, mean
annual temperature (MAT) and temperature seasonality (www.worldclim.org). We used a
rainfall concentration index to describe rainfall seasonality based on (35). Growing season
temperature (GST) was calculated for each grid cell to quantify regional and global C₃-C₄
crossover temperatures. GST was calculated as the mean temperature across months with a
greater than or equal to 5 degree mean temperature and at least 25 mm rainfall, and was
calculated using WorldClim monthly climate normals (65).

A median fire return interval (FRI) is the number of years between fire events that
represents the time period available for plants to grow. We used fire interval data from the
16 year MODIS fire datasets to fit Weibull distributions to 0.5° gridded data for the globe by
using the method outlined in Archibald *et al.* 2010 (64). Tropical grasslands and savannas have
the world’s shortest fire return times, due to rapid rates of fuel accumulation and a climate
that supports frequent fire (annual dry seasons, warm climate and reliably seasonal rainfall)
(20). Our dataset of estimated fire return times, while spatially biased, is therefore robust for
grassy biomes.

Globally consistent data on present or past herbivore pressures are simply not
available. We were obliged to restrict our analyses to Africa where efforts have been made to
map mammalian herbivore pressures of both wildlife and livestock (66). We combined
herbivore and fire data to assess links between lineage composition and disturbance. Soils data are not of sufficient quality to be meaningfully incorporated in analyses of this scale, despite being known to mediate local scale vegetation patterns (35). In our global analyses, we excluded grassy vegetation units defined as flooded, saline or edaphic, where the limits of these units are generally decoupled from climate.

Analyses. First, we mapped the distribution of grassy biomes in geographic space according to lineage and photosynthetic type to calculate the land area occupied by different grass lineages in a “rank-abundance” style (Fig. 1). Grassy biome distributions were aligned with MAT (in 1°C intervals) and MAP (in 100 mm intervals) to construct “Whittaker” style plots of the limits of grassy biomes and of C3 and C4 photosynthetic types (Figure 2). These data were further decomposed to represent the climate space of 17 grass lineages including Pooideae that dominate grasslands (Figure S4). Data were also analysed by climate intervals of MAT and MAP to calculate the proportion of grassy land area occupied by each grass lineage within each climate interval, to consider the potential for deterministic links between climate and biomes (Figs. S3-S4).

Generalised additive models relating the distribution of lineages to growing season temperature, MAT and MAP across continents were fitted using the mgcv R package and the function predict.gam (67). Crossover temperatures plus standard deviations were calculated based on the temperature at which the predicted abundance of C4 dominance reached 50%.

Random forest regressions (https://cran.r-project.org/web/packages/randomForest/randomForest.pdf) were used to examine the climate niche of key grass lineages and to infer correlations between four key climate predictors (MAP, MAT, temperature seasonality and rainfall seasonality). Models were constructed for six groups of interest: the C3 BEP, PACMAD and Pooideae lineages; and the
independent C₄ lineages Andropogoneae, Chloridoideae and MPC (Melinidinae + Panicinae + Cenchrinae) (25). Model fit was checked via a mean of squared residual test. The relative importance of each environmental correlate was computed with a mean decrease of accuracy test. The computed coverage response plots for each grass group was an adaptation of the evaluation strip method developed by (68). These plots demonstrate the non-linear relationships between environmental gradients and the various grass lineages. To produce these plots, an environmental dataset was simulated where the focal environmental variable is varied over its full environmental range and where, for each interval, the observed median of each of other environmental variables (median over areas where the focus environmental variable is within the interval) is returned. The displayed curve in each case is the prediction of our Regression Random Forest model over this simulated dataset. The process used bi-variate response curves, where two variables rather than one vary simultaneously. The 90th quantile of a kernel density function (function kde2d from the R package ade4) was used to plot limits of grass lineages relative to herbivore abundance and fire frequency.
List of figures in main text

Figure 1. Global distributions of grassy biomes and dominant grass lineages.

Figure 2. Grassy biomes in global climate space.

Figure 3. Continental disjunctions in lineage-growing season temperature relations.

Figure 4. Global relationships between rainfall, fire and height.
Figure 1: Global distributions of grassy biomes and dominant grass lineages. A. Grassy biomes coded by the C₄ and C₃ grass lineages dominating each vegetation formation. B. Relationships among the dominant C₄ grass lineages, with colours matching those used on the map. The phylogeny is based on (25) and for simplicity excludes C₃ PACMAD sister clades. C. Rank-abundance curve for C₄ and C₃ grass lineages at the global scale, ordered by the proportion of the terrestrial surface dominated by each lineage.
Figure 2: Grassy biomes in global climate space. Based on data at a 0.5-degree resolution, where data has been binned in 1° mean annual temperature (MAT) and 100 mm mean annual precipitation (MAP) intervals. Colour ramp shows the relative proportion of the global climate space for that MAP x MAT bin occupied by grassy biomes. Grey shading represents the vegetated land area. Data shown here link to Figure S1 showing the total vegetated land area within each climate interval.
Fig. 3. Continental disjunctions in lineage-growing season temperature relationships. The distribution of grass lineages relative to growing season temperature (GST) in degrees Celsius globally (top panel) and then showing the variation in estimated C$_3$-C$_4$ crossover temperatures by geographic realm. Distributions was fitted using generalized additive models and the crossover temperature calculated as the point where modelled C$_4$ grass abundance is 50%, based on the mapping in Figure 1. The fitted lines and confidence intervals are shown in different colours for each lineage, with the legend on the figure.
Figure 4. Global relationships between rainfall, fire and grass lineages. The global relationships of grass lineage abundance relative to MAP using a generalised additive model, showing 95% confidence intervals. The right-hand axis is the global relationship between fire return interval and MAP for grassy biomes and is inverted to reflect the inverse relationship with MAP. The global peak in fire activity coincides with the global peak in dominance of Andropogoneae grassy biomes. In contrast longer fire return times are associated with dominance by Pooideae and Chloridoideae.
References

1. Carvalhais N, et al. (2014) Global covariation of carbon turnover times with climate in terrestrial ecosystems. *Nature* 514(7521):213-217.

2. Randerson JT, et al. (2015) Multicentury changes in ocean and land contributions to the climate-carbon feedback. *Global Biogeochemical Cycles* 29(6):744-759.

3. Searchinger TD, et al. (2015) High carbon and biodiversity costs from converting Africa's wet savannas to cropland. *Nature Clim. Change* 5(5):481-486.

4. Bastin J-F, et al. (2017) The extent of forest in dryland biomes. *Science* 356(6338):635-638.

5. Dexter KG, et al. (2015) Floristics and Biogeography of Vegetation in Seasonally Dry Tropical Regions. *International Forestry Review* 17(S2):10-32.

6. Slik JWF, et al. (2018) Phylogenetic classification of the world's tropical forests. *PNAS* 115(8):1837-1842.

7. Pausas JG & Bond WJ (2018) Humboldt and the reinvention of nature. *J. Ecology* doi.org/10.1111/1365-2745.13109.

8. Archibald S, et al. (2018) Biological and geophysical feedbacks with fire in the Earth system. *Environmental Research Letters* 13(3):033003.

9. Lehmann CER, et al. (2014) Savanna Vegetation-Fire-Climate Relationships Differ Among Continents. *Science* 343(6170):548-552.

10. Hoffmann WA, et al. (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. *Ecology Letters* 15(7):759-768.

11. Bond WJ (2008) What Limits Trees in C4 Grasslands and Savannas? *Annual Review of Ecology, Evolution, and Systematics* 39(1):641-659.

12. Lloyd J, et al. (2008) Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. *Tree Physiology* 28(3):451-468.

13. Ratnam J, et al. (2011) When is a ‘forest’ a savanna, and why does it matter? *Global Ecology and Biogeography* 20(5):653-660.

14. Edwards EJ, Osborne CP, Stromberg CAE, Smith SA, & C4 Grasses Consortium (2010) The Origins of C4 Grasslands: Integrating Evolutionary and Ecosystem Science. *Science* 328(5978):587-591.

15. Strömberg CAE (2011) Evolution of Grasses and Grassland Ecosystems. *Annual Review of Earth and Planetary Sciences* 39(1):517-544.

16. Cerling TE (1997) Global vegetation change through the Miocene/Pliocene boundary. *Nature* 389:153-158.

17. Cerling TE, et al. (2011) Woody cover and hominin environments in the past 6[thinsp]million years. *Nature* 476(7358):51-56.

18. Wynn JG, et al. (2013) Diet of Australopithecus afarensis from the Pliocene Hadar Formation, Ethiopia. *PNAS* 110(26):10495-10500.

19. Lehmann CER & Parr CL (2016) Tropical grassy biomes: linking ecology, human use and conservation. *Phil. Trans. R. Soc. B* 371(1703).

20. Archibald S, Lehmann CER, Gomez-Dans J, & Bradstock RA (2013) Defining pyromes and global syndromes of fire. *PNAS* 10(16):6442 - 6447.
21. Ehleringer JR, Cerling TE, & Helliker BR (1997) C4 photosynthesis, Atmospheric CO2, and climate. *Oecologia* 112(3):285-299.

22. Collatz GJ, Berry JA, & Clark JS (1998) Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. *Oecologia* V114(4):441-454.

23. Still CJ, Berry JA, Collatz GJ, & DeFries RS (2003) Global distribution of C3 and C4 vegetation: Carbon cycle implications. *Global Biogeochem. Cycles* 17(1).

24. Woodward F, Lomas M, & Kelly C (2004) Global climate and the distribution of plant biomes. *Phil. Trans. R. Soc. B* 359(1450):1465-1476.

25. Grass Phenylogy Working G, II (2012) New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. *New Phytologist* 193(2):304-312.

26. Christin P-A & Osborne CP (2013) The recurrent assembly of C4 photosynthesis, an evolutionary tale. *Photosynthesis Research* 117(1):163-175.

27. Taub DR (2000) Climate and the US distribution of C4 grass subfamilies and decarboxylation variants of C4 photosynthesis. *American Journal of Botany* 87(8):1211-1215.

28. Liu H, Edwards EJ, Freckleton RP, & Osborne CP (2012) Phylogenetic niche conservatism in C4 grasses. *Oecologia* 170(3):835-845.

29. Dixon AP, Faber-Langendoen D, Josse C, Morrison J, & Loucks CJ (2014) Distribution mapping of world grassland types. *J. Biogeog.* 41(11):2003-2019.

30. Griffith DM, et al. (2017) Comment on “The extent of forest in dryland biomes”. *Science* 358(6365):eaao1309.

31. Solofondranohatra CL, et al. (2018) Grass Functional Traits Differentiate Forest and Savanna in the Madagascar Central Highlands. *Frontiers in Ecology and Evolution* 6(184).

32. Smith MD & Knapp AK (2003) Dominant species maintain ecosystem function with non-random species loss. *Ecology Letters* 6(6):509-517.

33. Winfree R, W. Fox J, Williams NM, Reilly JR, & Cariveau DP (2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. *Ecology Letters* 18(7):626-635.

34. Staver AC, Archibald S, & Levin SA (2011) The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. *Science* 334(6053):230-232.

35. Lehmann CER, Archibald SA, Hoffmann WA, & Bond WJ (2011) Deciphering the distribution of the savanna biome. *New Phytologist* 191(1):197-209.

36. Sandve SR & Fjellheim S (2010) Did gene family expansions during the Eocene–Oligocene boundary climate cooling play a role in Pooideae adaptation to cool climates? *Molecular Ecology* 19(10):2075-2088.

37. McKeown M, Schubert M, Marcussen T, Fjellheim S, & Preston JC (2016) Evidence for an early origin of vernalization responsiveness in temperate Pooideae grasses. *Plant physiology* 172(1):416-426.

38. Edwards EJ & Smith SA (2010) Phylogenetic analyses reveal the shady history of C4 grasses. *PNAS* 107(6):2532-2537.

39. Osborne CP & Freckleton RP (2009) Ecological selection pressures for C4 photosynthesis in the grasses. *Proceedings of the Royal Society B: Biological Sciences* 276(1663):1753-1760.

40. Teeri J & Stowe L (1976) Climatic patterns and the distribution of C4 grasses in North America. *Oecologia* 23(1):1-12.
41. Young HJ & Young TP (1983) Local distribution of C\textsubscript{3} and C\textsubscript{4} grasses in sites of overlap on Mount Kenya. Oecologia 58(3):373-377.

42. Griffith DM, \textit{et al.} (2015) Biogeographically distinct controls on C\textsubscript{3} and C\textsubscript{4} grass distributions: merging community and physiological ecology. \textit{Global Ecology and Biogeography} 24(3):304-313.

43. Ehleringer JR (1978) Implications of quantum yield differences on the distributions of C\textsubscript{3} and C\textsubscript{4} grasses. Oecologia 31(3):255-267.

44. Griffith DM, \textit{et al.} (2015) Biogeographically distinct controls on C\textsubscript{3} and C\textsubscript{4} grass distributions: merging community and physiological ecology. \textit{Global Ecology and Biogeography} 24(3):304-313.

45. Högberg P (1982) Mycorrhizal associations in some woodland and forest trees and shrubs in Tanzania. New Phytologist 92(3):407-415.

46. Forrestel EJ, Donoghue MJ, & Smith MD (2014) Convergent phylogenetic and functional responses to altered fire regimes in mesic savanna grasslands of North America and South Africa. \textit{New Phytologist} 203(3):1000-1011.

47. Taylor SH, \textit{et al.} (2010) Ecophysiological traits in C\textsubscript{3} and C\textsubscript{4} grasses: a phylogenetically controlled screening experiment. \textit{New Phytologist} 185(3):780-791.

48. Simpson KJ, \textit{et al.} (2016) Determinants of flammability in savanna grass species. \textit{J. Ecology} 104(1):138-148.

49. Linder H, Lehmann CE, Archibald S, Osborne CP, & Richardson DM (2018) Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. \textit{Biological Reviews} 93(2):1125-1144.

50. Forrestel EJ, \textit{et al.} (2017) Different clades and traits yield similar grassland functional responses. \textit{PNAS} 201(6):129-09.

51. Anderson TM, Shaw J, & Olff H (2011) Ecology’s cruel dilemma, phylogenetic trait evolution and the assembly of Serengeti plant communities. \textit{J. Ecology} 99(3):797-806.

52. Dunning LT, \textit{et al.} (2017) The recent and rapid spread of Themeda triandra. \textit{Botany Letters}.

53. Rogers BM, Soja AJ, Goulden ML, & Randerson JT (2015) Influence of tree species on continental differences in boreal fires and climate feedbacks. \textit{Nature Geoscience} 8(3):228.

54. Bond WJ & Midgley GF (2000) A proposed CO\textsubscript{2}-controlled mechanism of woody plant invasion in grasslands and savannas. \textit{Global Change Biology} 6(8):865-869.

55. Stevens N, Lehmann CER, Murphy BP, & Durigan G (2017) Savanna woody encroachment is widespread across three continents. \textit{Glob. Change Biol} 23(1):235-244.

56. Van Mantgem PJ, \textit{et al.} (2009) Widespread increase of tree mortality rates in the western United States. \textit{Science} 323(5913):521-524.

57. Osborne CP, \textit{et al.} (2018) Human impacts in African savannas are mediated by plant functional traits. \textit{New Phytologist}.

58. Ehleringer JR (2005) The influence of atmospheric CO\textsubscript{2}, temperature, and water on the abundance of C\textsubscript{3}/C\textsubscript{4} taxa. A \textit{history of atmospheric CO\textsubscript{2} and its effects on plants, animals, and ecosystems} (Springer), pp 214-231.

59. Morgan JA, \textit{et al.} (2011) C\textsubscript{4} grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. \textit{Nature} 476(7359):202.

60. Owensby CE, Ham JM, Knapp AK, & Auen LM (1999) Biomass production and species composition change in a tall grass prairie ecosystem after long-term exposure to elevated atmospheric CO\textsubscript{2}. \textit{Glob. Change Biol} 5:497.
61. Olson DM, et al. (2001) Terrestrial Ecoregions of the World: A New Map of Life on Earth
 A new global map of terrestrial ecoregions provides an innovative tool for conserving
 biodiversity. *BioScience* 51(11):933-938.

62. Díaz S, et al. (2016) The global spectrum of plant form and function. *Nature*
 529(7585):167.

63. Raven J & Thomas H (2010) Grasses. *Current Biology* 20(19):R837-R839.

64. Archibald S, Scholes R, Roy DP, Roberts G, & Boschetti L (2010) Southern African fire
 regimes as revealed by remote sensing. *Int. J. Wildland Fire* 19(7):861-878.

65. Fick SE & Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces
 for global land areas. *Int. J. Climatology* 37(12):4302-4315.

66. Hempson GP, Archibald S, & Bond WJ (2015) A continent-wide assessment of the form
 and intensity of large mammal herbivory in Africa. *Science* 350(6264):1056-1061.

67. Wood S (2011) Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness
 estimation and GAMMs by REML/PQL.

68. Elith J, Ferrier S, Huettmann F, & Leathwick J (2005) The evaluation strip: a new and
 robust method for plotting predicted responses from species distribution models.
 Ecological modelling 186(3):280-289.
Supplementary Figures, Tables and Information for:

Functional diversification enabled grassy biomes to fill global climate space

Authored by: Caroline E. R. Lehmann, Daniel M. Griffith, Kimberley J. Simpson, T. Michael Anderson, Sally Archibald, David J. Beerling, William J. Bond, Elsie Denton, Erika J. Edwards, Elisabeth J. Forrestel, David L. Fox, Damien Georges, William A. Hoffmann, Thomas Kluyver, Ladislav Mucina, Stephanie Pau, Jayashree Ratnam, Nicolas Salamin, Bianca Santini, Melinda D. Smith, Elizabeth L. Spriggs, Rebecca Westley, Christopher J. Still, Caroline A.E. Strömberg and Colin P. Osborne

Contents

1. Description of map compilation validation
2. Supplementary Figures 1 - 9
3. Table of land area of different lineages according to different projections
4. References to dataset development
 a. References to vegetation maps and associated information
 b. References for plot data for map validation

31
Development and validation of map compilation

Rarely, if ever, has this rich body of vegetation mapping research been integrated with Earth system science or evolutionary studies. This is perhaps because vegetation mapping is considered a descriptive natural science in an age of big data. The contiguous land mass covering the countries of China, Mongolia, the former Soviet Union, Afghanistan, Turkey and Europe are represented by detailed botanical data. The regions of Africa, North America, Mexico, Panama, Venezuela, Brazil, Argentina, Papua New Guinea, Indonesia, northern and western Australia are also well documented by botanical data. However, there is a general paucity of adequate vegetation mapping available across India, South-East Asia (Burma, Thailand, Laos, and Vietnam), Central America, and parts of South America (Chile, Peru, Bolivia, Uruguay, Paraguay, Ecuador, and Columbia). It is worth noting that given anticipated impacts of global change on the distribution and dynamics of vegetation, an absence of publicly available vegetation mapping for key regions such as South East Asia and the Andes should be of concern to many.

We undertook a validation process between plot data describing in situ grass abundance and our global species list. Using publicly available data that intersected with vegetation unit descriptions we found that, at the level of independent evolutionary lineages of grasses (i.e., subfamily), we had strong confidence in the geographic and environmental relationships we elucidate here (Fig. S9). To validate the classification of common grass species across regions, we compared the species list in each vegetation unit to a plot level database developed for validation purposes (Fig. S9). Plot data were sourced from the literature and vegetation databases and assembled by the authors (see references in the Supplementary Information).
110 vegetation units contained enough plot level data for validation analyses. To determine what taxonomic levels agree with plot data, the comparison was conducted at the species and subfamily levels. We also examined the agreement of our map and plot datasets at a functional level by comparing the attribution of photosynthetic type. From the 507 common grass species across these vegetation units, 88% of these species were present in the plot dataset of those appropriate vegetation types. This is a very high degree of overlap in species in our mapping classifications and plot data, especially considering the difference in scale between local species plots and large vegetation units. Furthermore, we found that vegetation types generally had similar percentages of characteristic grass species represented in their plot datasets, although the agreement was worse for particularly large and broadscale vegetation units. To validate the higher taxonomic classifications and plant functional type classifications of our map units, we compared the proportion each classification in plots (weighted by abundance) to the proportion of that classification in our map. Because these data are on the interval (0,1) we used beta regression to model this relationship. Beta regression can be interpreted much like logistic regression, except that it allows continuous values in the dependent variable. Proportions of Poaceae subfamilies and functional types showed that plot values were strongly predictive of classified values in our map (Fig. S9).
Figure S1: Global distribution of grassy biomes. The global map was derived as a composite from national and regional maps of vegetation that was gap-filled using the Ecoregions map (see Methods in the main text and references for all maps at the end of the Supplementary Information). Coloured areas show the extent of grassy biomes globally and dominance of these by C₃ grasses and C₄ grasses mapped at the scale of identified vegetation units (i.e., polygons). Red = High proportion of C₄ grasses. Blue = High proportion C₃ grasses. Datum: WGS84.
Figure S2. Global vegetated land area as related to Mean annual temperature and mean annual precipitation. Mean annual precipitation is in 100 mm bins, while temperature is in 1°C bins. The color ramp represents the number of 0.5 degree points in 100mm x 1°C unit of climate space. Note the grey background that highlights the global extent of climate space where these temperature–precipitation combinations are essentially rare on the vegetated land surface. The color ramp from dark blue to purple represents an increasing density of points in a given climate bin.
Figure S3: Global abundance of the main grass lineages by temperature and rainfall. Colour scale indicates the proportion of 0.5° grid squares dominated by each lineage at the global scale for each of (A) mean annual temperature and (B) Mean annual precipitation. These plots demonstrate that, in cool, dry regions where the C3 Pooideae lineage is concentrated, it tends to be the only grass lineage present, and this lineage dominates that climate space. These can be considered as deterministic grasslands. In contrast, the heterogeneity of the dominance of C₄ Andropogoneae and C₄ Chloridoideae lineages across climate space could suggest that the grassy biomes where these lineages are found are not deterministic, and dominance may be driven by processes other than climate.

A. Dominance by mean annual temperature
B. Dominance by mean annual precipitation

![Graphs showing dominance by mean annual precipitation for different plant families and species.](image-url)

- **Andropogoneae**
- **Chloridoideae**
- **C3_BEP**
- **C3_PACMAO**
- **MPC**
- **Aristida**
- **Pangalum**
Figure S4: Concentration of 17 grass lineages in climate space. This figure builds on S1 – S2 by again highlighting the climate space characterised by different grass lineages. It is very clear that C3 PACMAD dominance is highly restricted to warmer wetter parts of climate and we know from S1 that geographically these combinations of temperature and precipitation are limited. These figures also again highlight the wide distribution of Pooideae, Andropogoneae and Chloridoideae.
Figure S5: Plots from Random Forest analyses of the relative importance of mean temperature, mean precipitation, temperature seasonality and rainfall seasonality in the limits of the three key lineages of grasses. A) C3 BEP, B) C4 Andropogoneae, and C) C4 Chloridoideae. Model fits against data are shown for the land area over which each lineage dominates against each climate variable.

A. C3 BEP
B. C. Andropogoneae

species: Ip7_And
% Var explain: 68.24
C. C₄ Chloridoideae

species: Ip3_Chl

% Var explain: 69.35
Figure S6. Lineage – temperature associations.
Fig. S7: Trait-environment associations. Density plots of traits that characterise the realised ecological niche of dominant grass lineages: A) Median minimum annual temperature (°C) across the range of each species; B) Median drought length (months); and C) Median fire return interval (years), calculated by mapping GBIF occurrence data for each species onto Earth Observation data layers (see Methods). D) Maximum height of the culm (flowering stem) for each species, as a measure of plant size at maturity (see Methods). In each case, species from each lineage recorded within vegetation units in our dataset were mapped across their whole range (i.e. beyond the area over which they dominate ground cover).
Figure S8. Ordination of fire frequency and herbivore biomass with the 90th quantile of lineage distributions shown via different colours. This ordination shows the limits of five grass lineages relative to the prevalence of fire and modelled herbivore biomass. Colours representing lineages are consistent with figures in the main text. Key here is that one lineage stretches into environments of more frequent fire (Andropogoneae = orange), while a number of lineages are clustered and overlapping with respect to variation in herbivore biomass. However, it is worth noting the globally poor data on herbivore biomass in contrast to fire that is relatively easily quantified by satellites as changes in surface reflectance and heat.
Figure S9. Validation of mapping approach to determine function and lineage level distributions of grassy biomes. Shown are figures relating plot level versus map level estimates of different grass groups (as shown on each plot). Logistic regression was used to quantify relationships and the deviance explained of the analyses are shown on each plot.
Table S1: Land area occupied by each grass lineage. Each column represents a slightly different way to calculate the relative coverage of grassy biomes by different grass lineages. Polygon calculations are based on the mapped polygons while grid cells represent the conversion of data from both calculations use a WGS84 projection.

LINEAGE	Percentage of grassy (from polygons)	Percentage of grassy (from grid cells)
Andropogoneae	38.99	36.66
C3 BEP	32.51	37.57
Chloridoideae	13.93	13.51
Mixed	10.66	6.56
MPC	1.38	1.48
C3 PACMAD	0.92	2.06
Aristida	0.64	0.73
Stipagrostis	0.62	0.53
Paspalum	0.18	0.64
Tristachyideae	0.09	0.09
Axonopus	0.07	0.17
Appendix S1: Supplemental Data References

References to vegetation maps and associated descriptions

Barbour, M. G. and Major, J. 2007. Terrestrial vegetation of California, 3rd ed. University of California Press, Los Angeles.

BirdLife International 2004. Important Birds Areas in Asia: key sites for conservation. Cambridge, UK: BirdLife International. (BirdLife Conservation Series No. 13).

Blair, G. J. and Rudolf, W., 1984. Grasslands of Indonesia and the effect of animals on their stability. on land evaluation for extensive grazing (LEEG), p.153.

Blasco, F., Bellan, M. F. and Aizpuru, M., 1996. A vegetation map of tropical continental Asia at scale 1: 5 million. Journal of Vegetation Science, 7(5), pp.623-634.

Bohn U, Neuhäusl R, Gollub G, Hettwer C, Neuhäuslová Z, Schlüter H, Weber H. 2003. Karte der natürlichen Vegetation Europas. Maßstab 1:2.500.000 / Map of the Natural Vegetation of Europe. Maßstab / Scale 1:2.500.000. Münster, Germany: Landwirtschaftsverlag. 3 volumes + CD.

Breckle, S.-W., Ditman, A. & Rafiqpoor, M. D. 2010. Field guide Afghanistan. Flora and vegetation. Scientia Bonnensis, Bonn, Germany. Map: GIS raster (shape files) supplied by Daoud Rafiqpoor and these data correspond to the map in Breckle et al. 2010, Fig. 2.01: natural vegetation of Afghanistan. Description of vegetation types: Breckle et al. 2010, pp 91-115

Comer, P., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, M. Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2003. Ecological Systems of the United States: A Working Classification of U.S. Terrestrial Systems. NatureServe, Arlington, Virginia.

Comision Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), 1999. “Uso de suelo y vegetación modificado por CONABIO”. Escala 1: 1000 000. Comision Nacional para el Conocimiento y Uso de la Biodiversidad. Ciudad de Mexico, Mexico.

Djooeroesmana, S. and Myers, B., 2000. Fire and sustainable agricultural and forestry development in eastern Indonesia and northern Australia. In International workshop on Fire and Sustainable Agricultural and Forestry Development in Eastern Indonesia and Northern Australia. Australian Centre for International Agricultural Research, Canberra.

Editorial Committee of Vegetation Map of China, 2007. Vegetation map of the People's Republic of China (1:1000,000). Geological Publishing House, Beijing, CN.

European Environmental Agency. 2010. Manual for the European Environment Agency’s Land accounts data viewer 2000-2006 version 1 – 17/11/2010.
http://www.eea.europa.eu/data-and-maps/figures/corine-land-cover-2006-by-country-1

Fox, I.D., Neldner, V.J., Wilson, G.W. & Bannink, P.J. 2001. The vegetation of the Australian tropical savannas. Brisbane: Environment Protection Agency.

Garrity, D.P., Soekardi, M., Van Noordwijk, M., De La Cruz, R., Pathak, P.S., Gunasena, H.P.M., Van So, N., Hujun, G. and Majid, N.M., 1996. The Imperata grasslands of tropical Asia: area, distribution, and typology. Agroforestry Systems, 36(1-3), pp.3-29.

Griffith, G.E., Omernik, J.M., Johnson, C.B., and Turner, D.S., In prep., Ecoregions of Arizona (color poster with map, descriptive text, summary tables, and photographs): Menlo Park, California, U.S. Geological Survey (map scale 1:1,325,000).

Hannibal, L.W., 1950. Vegetation Map of Indonesia. Planning Department, Forest Service, Jakarta. Forest Policies in Indonesia: The Sustainable Development of Forest Lands, 3.Brookfield, H. and Byron, Y., 1993. South-East Asia’s environmental future: the search for sustainability.

Harris, S and Kitchener, A 2005. From Forest to Fjaeldmark: Descriptions of Tasmania’s Vegetation. Department of Primary Industries, Water and Environment, Printing Authority of Tasmania. Hobart.

Huber, O., 1988. Mapa de vegetación de Venezuela. República de Venezuela, Ministerio del Ambiente y de los Recursos Naturales Renovables, Dirección General de Información e Investigación del Ambiente, Dirección de Suelos, Vegetación y Fauna, División de Vegetación.

Huber, O., Gharbarran, G. and Funk, V.A., 1995. Vegetation map of Guyana. Centre for the Study of Biological Diversity, University of Guyana.

IBGE, D., 1993. Vegetation Map of Brazil. Rio de Janeiro: IBGE.

Isachenko, T. I. (ed.) 1990. Vegetation of the Soviet Union. Scale 1:4,000,000. Institute of Geography, Siberian Dept. of the USSR Academy of Sciences. Novosibirsk.

Karamysheva ZV, Khramtsov VN. 1995. The steppes of Mongolia. Braun-Blanquetia 17:1–79.

Kuchler, A.W. 1964. Potential natural vegetation of the conterminous United States. American Geographical Society, University of Minnesota.

Navarro, G. and Ferreira, W., 2007. Mapa de vegetación de Bolivia a escala 1: 250.000. On CD-ROM. The Nature Conservancy (TNC), RUMBOL. Cochabamba, Bolivia.

Maxwell, A. L. 2004. Fire regimes in north-eastern Cambodian monsoonal forests, with a 9300-year sediment charcoal record. Journal of Biogeography, 31, 225-239.

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E. & Morrison, J. C. 2001. Terrestrial Ecoregions
of the World: A New Map of Life on Earth A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience, 51, 933-938.

Otsamo, A., Ådjers, G., Hadi, T.S., Kuusipalo, J. and Vuokko, R., 1997. Evaluation of reforestation potential of 83 tree species planted on Imperata cylindrica dominated grassland—A case study from South Kalimantan, Indonesia. New Forests, 14(2), pp.127-143.

Paijmans K, CSIRO, 1975. Explanatory Notes to the Vegetation map of Papua New Guinea. CSIRO, Melbourne, AU.

Pattiselanno, F. and Arobaya, A.Y.S., 2009. Grazing Habitat of the Rusa Deer (Cervus timorensis) in the Upland Kebar, Manokwari. Biodiversitas Journal of Biological Diversity, 10(3).

Shepherd, D.P. 2003. Implementation of the National Vegetation Information System model in Western Australia. Milestone 6 Report. Final report on the implementation of the National Vegetation System model in Western Australia. Department of Agriculture, Perth. Unpublished Report to the Bureau of Rural Sciences, Canberra. Which was later replaced by publication of: Beard JS, Beeston GR, Harvey JM, Hopkins AJM, Shepherd DP. 2013. The Vegetation of Western Australia at the 1:3,000,000 Scale. Explanatory Memoir. 2nd ed. Conservation Science Western Australia 9: 1–152.

Stone, T.A. and Schlesinger, P. 1993. Digitization of the Map "Vegetation of the Soviet Union, 1990." A Report to the Northeast Forest Experiment Station, USDA Forest Service, Global Change Research Program, Radnor, Pennsylvania. See companion file http://daac.ornl.gov/daacdata/russian_land_cover/vegetation_1990/comp/vmap90_method.pdf.

Stone, T.A. and Schlesinger, P. 2003. RLC Vegetative Cover of the Former Soviet Union, 1990. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. doi:10.3334/ORNLDAAC/700.

Stott, P. 1988. The Forest as Phoenix: Towards a Biogeography of Fire in Mainland South East Asia. The Geographical Journal, 154, 337-350.

Tang Z, Fang J, Chi X, Yang Y, Ma W, Mohhamot A, Guo Z, Liu Y, Gaston KJ. (2012) Geography, environment, and spatial turnover of species in China's grasslands. Ecography 35:1103–1109. doi: 10.1111/j.1600-0587.2012.07713.x

White, F. 1983. The vegetation of Africa, a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa.

Wilson, B. A., Brocklehurst, P. S., Clark, M. J. & Dickinson, K. J. M. 1990. Vegetation survey of the Northern Territory, Australia. Darwin: Conservation Commission of the Northern Territory.
Plot data references for validation of map

ABARES. (2012) Ground Cover Reference Sites Database, Version 9 /2014. ÆKOS Data Portal (http://www.portal.aekos.org.au/). Accessed: 16 July 2014.

Abule E, Smit GN, Snyman HA. (2005) The influence of woody plants and livestock grazing on grass species composition, yield and soil nutrients in the Middle Awash Valley of Ethiopia. J Arid Environ 60:343–358. doi:10.1016/j.jaridenv.2004.04.006.

Alberti J, Canepuccia A, Pascual J, Pérez C, Iribarne O. (2011) Joint control by rodent herbivory and nutrient availability of plant diversity in a salt marsh–salty steppe transition zone. J Veg Sci 22:216–224. doi:10.1111/j.1654-1103.2010.01240.x.

Alhamad MN, Alrababah MA, Gharaibeh MA (2012) Impact of burning and fertilization on dry Mediterranean grassland productivity and diversity. Acta Oecol 40:19–26. doi:10.1016/j.actao.2012.02.005.

Ao M, Ito M, Ito K, Yun JF, Miura R, Tominaga T. (2008) Floristic compositions of Inner Mongolian grasslands under different land-use conditions. Grassl Sci 54:173–178. doi:10.1111/j.1744-697X.2008.00121.x.

Asebrook J. (2003) Grasslands of Glacier National Park. (GRAS) National Park Service Mapping Project in Montana. http://vegbank.org/cite/VB.Ob.6325.GRAS00005. Accessed: 09 January 2013.

Banyikwa FF, Feoli E, Zuccarello V. (1990) Fuzzy set ordination and classification of Serengeti short grasslands, Tanzania. J Veg Sci 1:97–104.

Barnes DL, Rethman NFG, Beukes BH, Kotzé GD. (1984) Veld composition in relation to grazing capacity. J Grassl Soc Southern Afr 1:16–19. doi:10.1080/02566702.1984.9647960.

Beckley A. (2012). Honey Hill Vegetation Data. http://vegbank.org/cite/VB.ob.78830.126010504. Accessed: 09 January 2013.

Belachew G, Demissew S, Woldu Z. (2012) Floristic Composition and Structure of Riverine Vegetation. The Case of Beschillo and Abay (Blue Nile). Lambert Academic Publishing.

Bell J, Cogan D, Erixson J, Von Loh J. (2009) Vegetation Inventory Project Report. Craters of the Moon National Monument and Preserve. Natural Resource Technical Report NPS/UCBN/NRTR—2009/277. National Park Service, Fort Collins, CO.
Belsky AJ. (1992) Effects of grazing, competition, disturbance and fire on species composition and diversity in grassland communities. J Veg Sci 3:187–200. doi:10.2307/3235679.

Berliner D, Kioko J. (1999) The effect of long-term mowing and ungulate exclusion on grass species composition and soil nutrient status on the Athi-Kapiti Plains, Central Kenya. Afr J Range Forage Sci 16:62–70. doi:10.2989/10220119909485720.

Bonyongo MC, Veenendaal E, Bredenkamp GJ. (2000) Floodplain vegetation in the Nxaraga Lagoon Area, Okavango Delta, Botswana. S Afr J Bot 66:15–21.

Boyer M, Dellinger B. (2012) Longleaf – Southeastern NC Vegetation Data.

http://vegbank.org/cite/urn:lsid:cvs.bio.unc.edu:observation:1054-%7BF477A5F3-D04B-44AC-ADD-6B15EB709D8F%7D. Accessed: 09/01/2013.

Brockett B. (2001) Sampling efficiency for species composition assessments using the wheel-point method in a semi-arid savanna. Afr J Range Forage Sci 18:93–101. doi:10.2989/10220110109485761.

Brookman-Amissah J, Hall JB, Swaine MD, Attakorah JY. (1980) A re-assessment of a fire protection experiment in north-eastern Ghana savanna. J Appl Ecol 17:85–99. doi:10.2307/2402965.

Burns CE, Collins SL, Smith MD. (2009) Plant community response to loss of large herbivores: Comparing consequences in a South African and a North American grassland. Biodivers Conserv 18:2327–2342. doi:10.1007/s10531-009-9590-x.

Carr S. (2007) Floristic and Environmental Variation of Pyrogenic Pinelands in the Southeastern Coastal Plain: Description, Classification, and Restoration. PhD Thesis, University of Florida, Gainesville, FL.

Carr SC, Robertson KM, Peet RK. (2010) A vegetation classification of fire-dependent pinelands of Florida. Castanea 75:153–189.

Carter AJ, O’Connor TG. (1991) A two-phase mosaic in a savanna grassland. J Veg Sci 2:231–236.

Cecil F (2012) Longleaf – Fall-line Sandhills Vegetation Data.

http://vegbank.org/cite/urn:lsid:cvs.bio.unc.edu:observation:792-%7BB0F4BECC-1771-4A27-89A5-8BFFFFD26D232%7D. Accessed: 09/01/2013.

Chastain RA, Struckhoff MA, Grabner KW, Stroth ED, He H, Larsen DR, Nigh TA, Drake J. (2006) Mapping Vegetation Communities in Ozark National Scenic Riverways. Final Technical
Cogan D. (2007) Vegetation Classification and Mapping Project Report, Lyndon B. Johnson National Historical Park. Natural Resource Technical Report NPS/SOPN/NRTR—2007/073. National Park Service, Fort Collins, CO.

Cogan D. (2007) Vegetation Classification and Mapping Project Report, San Antonio Missions National Historical Park. Natural Resource Technical Report NPS/GULN/NRTR—2007/074. National Park Service, Fort Collins, CO.

Cogan D. (2007) Vegetation Classification and Mapping Project Report, Washita Battlefield National Historic Site. Natural Resource Technical Report NPS/SOPN/NRTR—2007/075. National Park Service, Fort Collins, CO.

Cogan D, Varga K, Kittel G, McCloskey K, Gremer J, Abendroth D, Bolen C. (2005) USGS-NPS-USGS Vegetation Mapping Program: Grand Teton National Park 2002–2005. Vegetation Mapping Project Report. U.S. Geological Survey.

Cogan D, Walker L, Loring H, Jog S, Delisle J. (2007) Vegetation Classification and Mapping Project Report. Fort Larned National Historic Site. Natural Resource Technical Report NPS/SOPN/NRTR—2007/072. National Park Service, Fort Collins, CO.

Cogan D, Reid M, Schulz K, Pucherelli M. (2003) USGS-NPS Vegetation Mapping Program: Zion National Park, Utah. Project Report. U.S. Geological Survey.

Cogan D, Marriot H, Von Loh J, Pucherelli MJ. (1999) USGS-NPS Vegetation Mapping Program: Wind Cave National Park, South Dakota. Project Report. U.S. Geological Survey.

Dad JM, Khan AB. (2010) Floristic composition of an alpine grassland in Bandipora, Kashmir. Grassl Sci 56:87–94. doi:10.1111/j.1744-697X.2010.00179.x.

Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH. (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28:2031–2064.

de Abreu RCR, Durigan G. (2011) Changes in the plant community of a Brazilian grassland savannah after 22 years of invasion by Pinus elliottii Engelm. Plant Ecol Divers 4:269–278. doi:10.1080/17550874.2011.594101.
De Sanctis M, Adeeb A, Farcomeni A, Patriarca C, Saed A, Attorre F. (2012) Classification and distribution patterns of plant communities on Socotra Island, Yemen. *Appl Veg Sci* 16:148–165. doi:10.1111/j.1654-109X.2012.01212.x.

Department of Environment, Water and Natural Resources. (2012) *Biological Survey of South Australia. Vegetation Survey, Biological Database of South Australia, Version 11 /2014*. ÆKOS Data Portal (http://www.portal.aekos.org.au/). Accessed: 16 July 2014.

Department of Parks and Wildlife, Biogeography Program (2012) *Biological Survey of the Ravensthorpe Range (Phase 1), Version 1 /2013*. ÆKOS Data Portal (http://www.portal.aekos.org.au/). Accessed: 16 July 2014.

Department of Primary Industries, Parks, Water and Environment. (2015) *Platypus Survey Data, Tasmania (1901–2009), Version 4 /2015*. ÆKOS Data Portal (http://www.aekos.org.au/home). Accessed: 16 July 2014.

Deshmukh I. (1986) Primary production of a grassland in Nairobi National Park, Kenya. *J Appl Ecol* 23:115–123.

Dhaou SO, Abdallah F, Belgacem, AO, Chaieb M. (2010) The protection effect on floristic diversity in a North African pseudo-savanna. *Pak J Bot* 42:1501–1510.

Downing BH, Robinson ER, Trollope WSW, Morris JM. (1978) Influence of macchia eradication techniques on botanical composition of grasses in the Döhne Sourveld of the Amatole Mountains. *Proc Annual Congr Grassl Soc Southern Afr* 13:111–115. doi:10.1080/00725560.1978.9648844.

du Toit PF, Aucamp AJ. (1985) Effect of continuous grazing in the Döhne Sourveld on species composition and basal cover. *J Grassl Soc Southern Afr* 2:41–45. doi:10.1080/02566702.1985.9648018.

Dunham KM. (1989) Vegetation-environment relations of a Middle Zambezi floodplain. *Plant Ecol* 82:13–24.

El-Ghareeb RM. (1991) Suppression of annuals by *Tribulus terrestris* in an abandoned field in the sandy desert of Kuwait. *J Veg Sci* 2: 147–154.

Ellery WN, Ellery K, Rogers KH, McCarthy TS, Walker BH. (1990) Vegetation of channels of the northeastern Okavango Delta, Botswana. *Afr J Ecol* 28:276–290. doi:10.1111/j.1365-2028.1990.tb01162.x.
Enright NJ, Miller BP, Akhter R. (2005) Desert vegetation and vegetation-environment relationships in Kirthar National Park, Sindh, Pakistan. *J Arid Environ* 61:397–418.

Erixson JA, Cogan D. (2009) *Vegetation Classification and Mapping of Hagerman Fossil Beds National Monument*. Natural Resource Technical Report NPS/UCBN/NRTR—2009/212. National Park Service, Fort Collins, CO.

Erixson JA, Cogan D, Von Loh J. (2011) *Vegetation Inventory Project Report: John Day Fossil Beds National Monument*. Natural Resource Technical Report NPS/UCBN/NRTR—2011/419. National Park Service, Fort Collins, CO.

Erixson JA, Cogan D, Von Loh J. (2011) *Vegetation Inventory Project Report: Lake Roosevelt National Recreation Area*. Natural Resource Report NPS/UCBN/NRR—2011/434 National Park Service, Fort Collins, CO.

Evans R, Pyne M. (2012) *Angelina National Forest Vegetation Data*. http://vegbank.org/cite/VB.ob.26846.ANGE10. Accessed: 09 January 2013.

Evans R, Wiseland R. (2012) *Mississippi Vegetation Survey Vegetation Data*. http://vegbank.org/cite/VB.ob.26967.MSVS4. Accessed: 09 January 2013.

Evans R, Teague J. (2012) *Sam Houston National Forest Vegetation Data*. http://vegbank.org/cite/VB.ob.27063.SAMH13. Accessed: 09 January 2013.

Farris, E, Filighedd, R, Deiana P, Farris GA, Garau G. (2010) Short-term effects on sheep pastureland due to grazing abandonment in a Western Mediterranean island ecosystem: A multidisciplinary approach. *J Nat Conserv* 18:258–267. doi:10.1016/j.jnc.2009.11.003.

Felífill JM, Filgueiras TS, Haridasan M, Silva Júnior MC, Mendonça RC, Resende A. (1994) Projeto biogeografia do bioma cerrado: vegetação e solos. *Cadernos de Geociências* 12:75–166.

Fenton K, Bell JR, Wegner D. (2006) *USGS-NPS Vegetation Mapping Program: Lake Meredith National Recreation Area and Alibates Flint Quarries National Monument, Texas*. Project Report. U.S. Geological Survey.

Ferreira PMA, Müller SC, Boldrini II, Eggers L. (2010) Floristic and vegetation structure of a granitic grassland in southern Brazil. *Rev Brasil Bot* 33:21–36.
Fidelis A. (2008) *Fire in Subtropical Grasslands in Southern Brazil: Effects on Plant Strategies and Vegetation Dynamics*. Technische Universität München, Wissenschaftszentrum Weihenstephan. http://d-nb.info/991968948/34.

Forrestel EJ. (2013) *Vegetation Cover Data from 10 Sites in the Great Plains, North America*. Unpublished data.

Gaddy C. (2012) *Congaree Swamp National Monument Vegetation Data*. http://vegbank.org/cite/urn:lsid:cvs.bio.unc.edu:observation:4538-%7BA7C85EE9-4726-401A-B482-82254469D858%7D. Accessed: 09 January 2013.

Galal TM, Fahmy AG. (2012) Plant diversity and community structure of Wadi Gimal Protected Area, Red Sea coast of Egypt. *Afr J Ecol* 50:266–276.

Gallimore J. (2012) *McCall Outdoor Science School Vegetation Data*. http://vegbank.org/cite/VB.ob.78625.JG01. Accessed: 09 January 2013.

Glitzenstein J. (2012) *St. Francis National Forest Vegetation Data*. http://vegbank.org/cite/urn:lsid:cvs.bio.unc.edu:observation:8996-{A6D80FD4-5777-4B17-A778-08703107E334}. Accessed: 09 January 2013.

Grace P. (2010) A *Vegetation Survey of the Samford Ecological Research Facility (SERF)*. https://researchdata.ands.org.au/vegetation-survey-samford-facility-serf/663523.

Hall M. (2012) *Short Mountain Wildlife Management Area Vegetation Data*. http://vegbank.org/cite/VB.ob.27561.SHMO14. Accessed: 09 January 2013.

Harkel MJ, van der Meulen F. (1996) Impact of grazing and atmospheric nitrogen deposition on the vegetation of dry coastal dune grasslands. *J Veg Sci* 7: 445–452.

Hayashi I, Kawada K, Akimova A, Nakamura T. (2006) Floristic composition and plant biomass of the grasslands in the vicinity of Pavlodar, Kazakhstan. *Grassl Sci* 52:141–146. doi:10.1111/j.1744-697X.2006.00059.x.

Hejcmánová P, Hejcman M, Camara AA, Antonínová M. (2010) Exclusion of livestock grazing and wood collection in dryland savannah: An effect on long-term vegetation succession. *Afr J Ecol* 48:408–417.

Hop K, Faber-Langendoen D, Lew-Smith M, Aaseng N, Lubinski S. (2001) *USGS-NPS Vegetation Mapping Program: Voyageurs National Park*. Project Report. U.S. Geological Survey.
Hop K, Drake J, Lubinski S, Dieck J, Menard S. (2009) *National Park Service Vegetation Inventory Program: Indiana Dunes National Lakeshore, Indiana.* U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI.

Hop K, Drake J, Lubinski S, Menard S, Dieck J. (2012) *National Park Service Vegetation Inventory Program: Saint Croix National Scenic Riverway, Minnesota/Wisconsin.* Natural Resource Report NPS/GLKN/NRR—2012/547. National Park Service, Fort Collins, CO.

Hop K, Pyne M, Foti T, Lubinski S, White R, Dieck J. (2012) *National Park Service Vegetation Inventory Program: Buffalo National River, Arkansas.* Natural Resource Report NPS/HTLN/NRR—2012/526. National Park Service, Fort Collins, CO.

Hop K, Reid M, Dieck J, Lubinski S, Cooper S. (2007) *USGS-NPS Vegetation Mapping Program: Waterton-Glacier International Peace Park.* U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI.

Hop K, Lubinski S, Menard S. (2005) *USGS-NPS Vegetation Mapping Program: Effigy Mounds National Monument, Iowa.* U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI.

Hop K, Menard S, Drake J, Lubinski S, Dieck J. (2010) *National Park Service Vegetation Inventory Program: Apostle Islands National Lakeshore, Wisconsin.* Natural Resource Report NPS/GLKN/NRR—2010/199. National Park Service, Fort Collins, CO.

Hop K, Menard S, Drake J, Lubinski S, Dieck J. (2010) *National Park Service Vegetation Inventory Program: Pictured Rocks National Lakeshore, Michigan.* Natural Resource Report NPS/GLKN/NRR—2010/201. National Park Service, Fort Collins, CO.

Hop K, Menard S, Drake J, Lubinski S, Faber-Langendoen D, Dieck J. (2010) *National Park Service Vegetation Inventory Program: Grand Portage National Monument, Minnesota.* Natural Resource Report NPS/GLKN/NRR—2010/200. National Park Service, Fort Collins, CO.

Jauffret S, Lavorel S. (2003) Are plant functional types relevant to describe degradation in arid, southern Tunisian steppes? *J Veg Sci* 14:399–408.

Jennings M. (2012) *Composition and Function of Vegetation Alliances in the Interior Northwest, USA.* http://vegbank.org/cite/VB.Ob.10774.INW10717. Accessed: 09 January 2013.
Johnson A. (2012) *Apalachicola National Forest Vegetation Data.*
http://vegbank.org/cite/VB.ob.26905.APAL74. Accessed: 09 January 2013.

Joint Remote Sensing Research Program. (2013) *AusCover Supersites SLATS Star Transects, Version 2 /2013. ÆKOS Data Portal* (http://www.portal.aekos.org.au/). Accessed: 16 July 2014.

Jones E, Pyne M. (2008) *Vascular Plant Inventory and Plant Community Classification for Abraham Lincoln National Historic Site.* NatureServe, Durham, NC.

Kawada K, Vovk AG, Filatova OV, Araki M, Nakamura T, Hayashi I. (2005) Floristic composition and plant biomass production of steppe communities in the vicinity of Kharkiv, Ukraine. *Grassl Sci* 51:205–213. doi:10.1111/j.1744-697X.2005.00026.x.

Keeler-Wolf T, Moore PE, Reyes ET, Menke JM, Johnson DN, Karavidas DL. (2012) *Yosemite National Park Vegetation Classification and Mapping Project Report.* Natural Resource Technical Report NPS/YOSE/NRTR—2012/598. National Park Service, Fort Collins, CO.

Kelly M, Allen-Diaz B, Kobzina N. (2005) Digitization of a historic dataset: The Wieslander California Vegetation Type Mapping Project. *Madroño* 52:191–201.

Kindscher K, Kilroy H, Delisle J, Long Q, Loring H, Dobbs K, Drake J. (2011a) *Vegetation Mapping and Classification of Homestead National Monument of America.* Natural Resource Report NPS/HTLN/NRR—2011/345. National Park Service, Fort Collins, CO.

Kindscher K, Kilroy H, Delisle J, Long Q, Loring H, Dobbs K, Drake J. (2011b) *Vegetation Mapping and Classification of Tallgrass Prairie National Preserve.* Natural Resource Report NRR/HTLN/NRR—2011/346. National Park Service, Fort Collins, CO.

Kittel G, Reyes E, Evens J, Buck J, Johnson D. (2012) *Vegetation Classification and Mapping Project Report. Pinnacles National Monument.* Natural Resource Report NPS/SFAN/NRR—2012/574. National Park Service, Fort Collins, CO.

Kittel G, VanWie E, Damm M, Rondeau R, Kettler S, McMullen A, Sanderson J. (1999) A *Classification of Riparian Wetland Plant Associations of Colorado: User Guide to the Classification Project.* Colorado Natural Heritage Program, Colorado State University, Fort Collins, CO.

Klopfer SD, Olivero A, Sneddon L, Lundgren J. (2002) *USGS-NPS Vegetation Mapping Project at Fire Island National Seashore.* Project Report. U.S. Geological Survey.
Koonamore Research Group. (2015) *Kangaroo Transects. Koonamore Vegetation Monitoring Project (1925–Present), Version 12 /2014. ÆKOS Data Portal*
(http://www.aekos.org.au/home). Accessed: 16 July 2014.

Koonamore Research Group. (2015) *Photopoints. Koonamore Vegetation Monitoring Project (1925–Present), Version 12 /2014. ÆKOS Data Portal*
(http://www.aekos.org.au/home). Accessed: 16 July 2014.

Koonamore Research Group. (2015) *Myoporum platycarpum Survey. Koonamore Vegetation Monitoring Project (1925–Present), Version 12 /2014. ÆKOS Data Portal*
(http://www.aekos.org.au/home). Accessed: 16 July 2014.

Koonamore Research Group. (2015) *Rabbit Activity Monitoring and Control. Koonamore Vegetation Monitoring Project (1925–Present), Version 12 /2014. ÆKOS Data Portal*
(http://www.aekos.org.au/home). Accessed 16 July 2014.

Koonamore Research Group. (2015) *Saltbush Transects. Koonamore Vegetation Monitoring Project (1925–Present), Version 12 /2014. ÆKOS Data Portal*
(http://www.aekos.org.au/home). Accessed: 16 July 2014.

Koonamore Research Group. (2015) *Senna Populations. Koonamore Vegetation Monitoring Project (1925–Present), Version 12 /2014. ÆKOS Data Portal*
(http://www.aekos.org.au/home). Accessed: 16 July 2014.

Koonamore Research Group. (2015) *Senna Quadrat (Cassia Corner). Koonamore Vegetation Monitoring Project (1925–Present), Version 12 /2014. ÆKOS Data Portal*
(http://www.aekos.org.au/home). Accessed: 16 July 2014.

Kotze DC, O’Connor TG. (2000) Vegetation variation within and among palustrine wetlands along an altitudinal gradient in KwaZulu-Natal, South Africa. *Plant Ecol* 146:77–96.

Krueger E, Nordman C. (2012) *Francis Marion National Forest Vegetation Data.*
http://vegbank.org/cite/VB.ob.78771.068FRMA16. Accessed: 09 January 2013.

Kunz D, Baker G, Peet R. (2012) *Croatan National Forest Vegetation Data.*
http://vegbank.org/cite/urn:lsid:cvs.bio.unc.edu:observation:7642-{EB625604-8404-4635-8B89-507E699C31E8}. Accessed: 09 January 2013.
Lubinski S, Hop K, Grawler S. (2003) USGS-NPS Vegetation Mapping Program: Acadia National Park, Maine. Project Report. U.S. Geological Survey.

Madden M, Welch R, Jordan T, Jackson P, Seavey R, Seavey J. (2004) Digital Vegetation Maps for the Great Smoky Mountains National Park. Project Report.

Marriot H, Drake J, Curtis A, Grossman D. (1998) USGS-NPS Vegetation Mapping Program: Classification of the vegetation of Fort Laramie National Historic Site. The Nature Conservancy, Minneapolis, MN.

Marriot H, McAdams A, Stutzman D, Drake J, Grossman D. (1998) USGS-NPS Vegetation Mapping Program: Classification of the vegetation of Mount Rushmore National Memorial. Project Report. U.S. Geological Survey.

Marriot H, McAdams A, Stutzman D, Drake J, Grossman D. (2012a) USGS-NPS Vegetation Mapping Program: Classification of the vegetation of Jewel Cave National Monument. Project Report. U.S. Geological Survey.

Marriot H, McAdams A, Stutzman D, Drake J, Grossman D. (2012b) USGS-NPS Vegetation Mapping Program: Classification of the vegetation of Devils Tower National Monument. Project Report. U.S. Geological Survey.

Matthews L. (2012) Cape Fear Riparian Vegetation Data. http://vegbank.org/cite/urn:lsid:cvs.bio.unc.edu:observation:7350-{46DDE438-83DC-4C25-8F03-07CFE23450EE}. Accessed: 09/01/2013.

Matthews L. (2012) Yadkin-Pee Dee & Catawba Riparian Vegetation Data. http://vegbank.org/cite/urn:lsid:cvs.bio.unc.edu:observation:8207-%7B52904CDF-10AC-486D-A492-8CF16BC51CD9%7D. Accessed: 09/01/2013.

McKenzie B. (1987) Composition, pattern and diversity of some Transkeian grasslands. J Grassl Soc Southern Afr 4:135–138. doi:10.1080/02566702.1987.9648091.
McMillan P, Kjellmark E. (2012) Longleaf – Coastal SC & GA Vegetation Data. http://vegbank.org/cite/urn:lsid:cvs.bio.unc.edu:observation:2708-%7B72B2B40D-41FE-4436-ABE5-CE4B753C2898%7D. Accessed: 09 January 2013.

Michiels B, Babatounde S, Dahouda M, Chabi SLW, Buldgen A. (2000) Botanical composition and nutritive value of forage consumed by sheep during the rainy season in a Sudano-Guinean savanna (central Benin). Trop Grassl Soc 34:43–47.

Miehe G, Bach K, Miehe S, Kluge J, Yang Y, Duo L, Co S, Wesche K. (2011) Alpine steppe plant communities of the Tibetan Highlands. Appl Veg Sci 14:547–560. doi:10.1111/j.1654-109X.2011.01147.x.

Morgan JW. (1998) Composition and seasonal flux of the soil seed bank of species-rich Themeda triandra grasslands in relation to burning history. J Veg Sci 9:145–156.

Moyo CS, Campbell BM. (1998) Grass species composition, yield and quality under and outside tree crowns in a semi-arid rangeland in south-western Zimbabwe. Afr J Range Forage Sci 15:23–34. doi:10.1080/10220119.1998.9647937.

Mucina L, Rutherford MC. (eds) (2010) The Vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria, ZA. (CD Set).

Mucina L, Rutherford MC. (eds) (2006) The Vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria, ZA.

Mucina L, Rutherford MC, Powrie LW. (eds) (2007) Vegetation Map of South Africa, Lesotho and Swaziland, edn 2. 1:1 000 000 Scale Sheet Maps. South African National Biodiversity Institute, Pretoria, ZA.

Mucina L, Rutherford MC, Powrie LW, van Niekerk A, van der Merwe JH. (eds) (2014) Vegetation Field Atlas of Continental South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria, ZA.

Müller SC, Waechter JL. (2001) Estrutura sinusal dos componentes herbáceo e arbustivo de uma floresta costeira subtropical. Rev Brasil Bot 24:395–406.

Nachtergaele F, Batjes N. (2012) Harmonized World Soil Database. FAO, Rome, IT.

NatureServe. (2004) International Ecological Classification Standard: Terrestrial Ecological Classifications. NatureServe, Arlington, VA.
Neid S, Stevens JE, Forest K, Fink M. (2007) *Sand Creek Massacre National Historic Site: Vegetation Classification and Mapping*. Natural Resource Technical Report

NPS/SOPN/NRTR—2007/050. National Park Service, Fort Collins, CO.

New South Wales Office of Environment and Heritage. (2014) *Data from the Atlas of NSW Database: VIS Flora Survey Module, Version 11 /2013. ÆKOS Data Portal* (http://www.portal.aekos.org.au/). Accessed: 16 July 2014.

Ngwenya P. (2012) Herbaceous plant species richness and composition in Moist Midlands Mistbelt Grasslands in KwaZulu-Natal: Is there a relationship to veld condition? *Afr J Range Forage Sci* 29:75–83. doi:10.2989/10220119.2012.705324.

Noor Alhamad M. (2006) Ecological and species diversity of arid Mediterranean grazing land vegetation. *J Arid Environ* 66:698–715.

Nordman C. (2012) *Holly Springs National Forest Vegetation Data*. http://vegbank.org/cite/VB.ob.27092.HOLL1. Accessed: 09 January 2013.

Nordman C, Anglin G. (2012) *Osceola National Forest Vegetation Data*. http://vegbank.org/cite/VB.ob.27002.OSCE27. Accessed: 09 January 2013.

Nordman C, Schultz G. (2012) *Osceola National Forest Vegetation Data*. http://vegbank.org/cite/VB.ob.26974.OCAL32. Accessed: 09 January 2013.

Nordman C, Pierce R. (2012) *Delta National Forest Vegetation Data*. http://vegbank.org/cite/VB.ob.27106.DELT9. Accessed: 09 January 2013.

O’Connor TG. (1994) Composition and population responses of an African avanna grassland to rainfall and grazing. *J Appl Ecol* 31:155–171.

O’Connor TG, Martindale G, Morris CD, Short A, Witkowski ETF, Scott-Shaw R. (2011) Influence of grazing management on plant diversity of Highland Sourveld Grassland, KwaZulu-Natal, South Africa. *Rangel Ecol Manage* 64:196–207. doi:10.2111/REM-D-10-00062.1.

Ode D. (2012) *LaFramboise Island Management Plan Vegetation Data*. http://vegbank.org/cite/VB.ob.28253.LFIPLLOT1. Accessed: 09 January 2013.

Pandey CB, Singh JS. (1991) Influence of grazing and soil conditions on secondary savanna vegetation in India. *J Veg Sci* 2:95–102.
Parsons DAB, Shackleton CM, Scholes RJ. (1997) Changes in herbaceous layer condition under contrasting land use systems in the semi-arid Lowveld, South Africa. *J Arid Environ* 37:319–329. doi:10.1006/jare.1997.0283.

Patterson K, Pyne M. (2012) *Bankhead National Forest Vegetation Data.*

http://vegbank.org/cite/VB.ob.26740.BANK24. Accessed: 09 January 2013.

Pattiselanno F, Arobaya AYS. (2009) Grazing habitat of the Rusa Deer (*Cervus timorensis*) in the Upland Kebar, Manokwari. *Biodiversitas* 10:134–138.

Peet R, Lee M, Boyle F, Wentworth T, Schafale M, Weakley A. (2012) Vegetation-plot database of the Carolina Vegetation Survey. *Biodivers Ecol* 4:243–253.

Peet RK. (1975) *Forest Vegetation of the East Slope of the Northern Colorado Front Range.* PhD thesis, Cornell University, Ithaca, NY.

Peet RK. (2012) *Maritime Forests Vegetation Data.*

http://vegbank.org/cite/urn:lsid:cvs.bio.unc.edu:observation:714-%7B5C325A03-C818-430F-B4C9-EB2272AF0%7D. Accessed: 09 January 2013.

Peet RK, Lee MT, Jennings MD, Faber-Langendoen D. (2012) VegBank – A permanent, open-access archive for vegetation-plot data. *Biodivers Ecol* 4:233–241

Peet RK, Lee MT, Jennings MD, Faber-Langendoen D. (eds) (2013) *VegBank: The vegetation plot archive of the Ecological Society of America.* Accessed: 09 January 2013.

Podniesinski GS, Sneddon LA, Lundgren J, Devine H, Slocumb B, Koch F. (2005) *Vegetation classification and mapping of Valley Forge National Historical Park.* Technical Report NPS/NER/NRTR—2005/028. National Park Service, Philadelphia, PA.

Poilecot P, Gaidet N. (2011) A quantitative study of the grass and woody layers of a mopane (*Colophospermum mopane*) savannah in the mid-Zambezi Valley, Zimbabwe. *Afr J Ecol* 49:150–164.

Powrie L, Rutherford MC, Mucina L, Mangwale K. (2012) National Vegetation Database of South Africa. *Biodivers Ecol* 4:299–299.

Pyne M, Schmidt J. (2012) *Oconee National Forest Vegetation Data.*

http://vegbank.org/cite/VB.ob.26571.OCON46. Accessed: 09 January 2013.

Pyne M, Evans R. (2012) *Sabine National Forest Vegetation Data.*

http://vegbank.org/cite/VB.ob.26862.SABI8. Accessed: 09 January 2013.
Pyne M, Stewart R. (2012) Tuskegee National Forest Vegetation Data. http://vegbank.org/cite/VB.ob.26949.TUSK3. Accessed: 09 January 2013.

Pyne M, Weakley A, Donaldson J. (2012) Cherokee National Forest Vegetation Data. http://vegbank.org/cite/VB.ob.26485.CHER29. Accessed: 09 January 2013.

Pyne M, Evans R, Spaulding D, Garland B. (2012) Talladega National Forest Vegetation Data. http://vegbank.org/cite/VB.ob.26732.TALT38. Accessed: 09 January 2013.

Queensland Herbarium. (2012) Queensland CORVEG Database, Version 9/2013. ÆKOS Data Portal (http://www.portal.aekos.org.au. Accessed: 16 July 2014.

Reemts C. (2012) Fort Hood Vegetation Map. http://vegbank.org/cite/VB.ob.27632.FTHD225. Accessed: 09 January 2013.

Regass, T. (2005) An Ecological Study of Vegetation Around Lake Abijata. PhD Thesis, Addis Ababa University, Addis Ababa, ET.

http://localhost:80/xmlui/handle/123456789/8502

Reis AMS., Araújo EL, Ferraz EM, Moura AN. (2006) Inter-annual variations in the floristic and population structure of an herbaceous community of ‘caatinga’ vegetation in Pernambuco, Brazil. Rev Brasil Bot 29:497–508.

Reschke C, Reid R, Jones J, Feeney T, Potter H. (1999) Conserving Great Lakes Alvars: Final Technical Report of the International Alvar Conservation Initiative. The Nature Conservancy, Chicago, IL.

Rolfsmeier S, Drake J, Grossman D. (1998) USGS-NPS Vegetation Mapping Program: Classification of the Vegetation of Agate Fossil Beds National Monument. Project Report. U.S. Geological Survey.

Rolfsmeier S, Steinauer G, Schneider R, Drake J, Aldrich J, Faber-Langendoen D, Goodin K, Swinehart C, Grossman D. (1998) USGS-NPS/BRD Vegetation Mapping Program: Classification of the Vegetation of Scotts Bluff National Monument. Project Report. U.S. Geological Survey.

Roy DP, Boschetti L, Justice CO, Ju J. (2008) The collection 5 MODIS burned area product– Global evaluation by comparison with the MODIS active fire product. Rem Sens Environ 112:3690–3707.

Salama FM, Ahmed MK, El-Tayeh NA, Hammad SA. (2012) Vegetation analysis, phenological patterns and chorological affinities in Wadi Qena, Eastern Desert, Egypt. Afr J Ecol
Salas DE, Folts-Zettner T, Sanders RW, Drake J. (2010) Vegetation Classification and Mapping at Chickasaw National Recreation Area. National Park Service, Natural Resource Program Center Fort Collins, CO.

Sasaki T, Okayasu T, Takeuchi T, Jamsran U, Jadambaa S. (2005) Patterns of floristic composition under different grazing intensities in Bulgan, South Gobi, Mongolia. Grassl Sci 51:235–242. doi:10.1111/j.1744-697X.2005.00029.x.

Savadogo P, Sawadogo L, Tiveau D. (2007) Effects of grazing intensity and prescribed fire on soil physical and hydrological properties and pasture yield in the savanna woodlands of Burkina Faso. Agric Ecosyst Environ 118:80–92. doi:10.1016/j.agee.2006.05.002.

Savadogo L, Tiveau D, Nygård R. (2005) Influence of selective tree cutting, livestock and prescribed fire on herbaceous biomass in the savannah woodlands of Burkina Faso, West Africa. Agric Ecosyst Environ 105:335–345. doi:10.1016/j.agee.2004.02.004.

Schiebout M. (2012) Pawnee Grassland Classification. http://vegbank.org/cite/VB.ob.78868.001SCHIEB43A. Accessed: 09 January 2013.

Schirokauer D, Keeler-Wolf T, Meinke J, van der Leeden P. (2003) Plant Community Classification and Mapping Project: Point Reyes National Seashore, Golden Gate National Recreation Area. San Francisco Water Department Watershed Lands, Mount Tamalpais, Tomales Bay, and Samuel P. Taylor State Parks. Project Report.

Schmidt M, Janssen T, Dressler S, Hahn-Hadjali K, Hien M, Konaté S, Lykke AM, Mahamane A, Sambou B, Sinsin B, Thiombiano A, Wittig R, Zizka G. (2012) The West African Vegetation Database. Biodivers Ecol 4:105–110.

Scott, K, Setterfield S, Douglas M, Andersen A. (2010) Soil seed banks confer resilience to savanna grass-layer plants during seasonal disturbance. Acta Oecol 36:202–210. doi:10.1016/j.actao.2009.12.007.

Sexton JO, Song X-P, Feng M, Noojipady P, Anand A, Huang C. (2013) Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int J Digit Earth 6:427–448.
Seymour S. (2012) Piedmont Nonalluvials Vegetation Data.
http://vegbank.org/cite/urn:lsid:cvs.bio.unc.edu:observation:8902-%7BE5FEBB4-39FE-4565-BFA6-8DB75DF9B44E%7D. Accessed: 09 January 2013.

Shelton L, Evans R. (2012) Davy Crockett National Forest Vegetation Data.
http://vegbank.org/cite/VB.ob.27046.DAVY17. Accessed: 09 January 2013.

Shonhiwa FF. (1998) The Effects of Land-use History on Plant Species Diversity and Abundance in Dambo Wetlands of Zimbabwe. PhD Thesis, West Virginia University, Morgantown, WV. http://wvuscholar.wvu.edu:8881/R/?func=dbin-jump-full&object_id=6697

Short AD, O’Connor TG, Hurt CR. (2003) Medium-term changes in grass composition and diversity of Highland Sourveld Grassland in the Southern Drakensberg in response to fire and grazing management. Afr J Range Forage Sci 20:1–10.
doi:10.2989/10220110309485792.

Sisay A, Baars RMT. (2002) Grass composition and rangeland condition of the major grazing areas in the Mid Rift Valley, Ethiopia. Afr J Range Forage Sci 19:161–166.
doi:10.2989/10220110209485789.

Sneddon L, Lundgren J, Crane E, Salmons S. (1998) USGS-NBS/NPS Vegetation Mapping Program: Vegetation Classification of Rock Creek Park. Project Report. U.S. Geological Survey.

Soromessa T, Teketay D, Demissew S. (2004) Ecological study of the vegetation in Gamo Gofa Zone, Southern Ethiopia. Trop Ecol 45:209–221.

Sugiyama S, Zabed HM, Okubo A. (2008) Relationships between soil microbial diversity and plant community structure in seminatural grasslands. Grassl Sci 54:117–124.
doi:10.1111/j.1744-697X.2008.00113.x.

Tanimoto T. (1981) Vegetation of the Alang-alang grassland and its succession in the Benakat District of South Sumatra Indonesia. Bull For & For Prod Res Inst 314:11–19.

TERN AusPlots. (2013) AusPlots Rangelands, Version 6 /2014. ÆKOS Data Portal (http://www.aekos.org.au/). Accessed: 16 July 2014.

TERN Australian Transect Network. (2013) South West Australian Transitional Transect (SWATT), Version 11 /2014. ÆKOS Data Portal (http://www.portal.aekos.org.au/). Accessed: 16 July 2014.
TERN Australian Transects. (2013) Transect for Environmental Monitoring and Decision Making (TREND), Version 6 /2014. AEkOS Data Portal (http://www.aekos.org.au/). Accessed: 16 July 2014.

The Association for Biodiversity Information. (2001) International Classification of Ecological Communities: Terrestrial Vegetation. The Association for Biodiversity Information, Arlington, VA.

The Nature Conservancy. (1999) USGS-NPS Vegetation Mapping Program: Classification of the Vegetation of Isle Royale National Park. Project Report. U.S. Geological Survey.

Thompson J. (2012) New York Natural Heritage Program.

http://vegbank.org/cite/VB.Ob.24379.MINNREGPLT47. Accessed: 09 January 2013.

USGS National Gap Analysis Program. (2004) Southwest Regional Gap Analysis Project Field Sample Database. Version 1.1. RS/GIS Laboratory, College of Natural Resources, Utah State University.

USGS. (2010) Sequoia and Kings Canyon National Parks Vegetation Mapping Project. http://www.usgs.gov/core_science_systems/csas/vip/parks/seki.html. Accessed: 09 January 2013.

Verlinden A, Dayot B. (2005) A comparison between indigenous environmental knowledge and a conventional vegetation analysis in North Central Namibia. J Arid Environ 62:143–175.

Von Loh J, Cogan D, Butler J, Faber-Langendoen D, Crawford D, Pucherelli MJ. (2000) USGS-NPS Vegetation Mapping Program: Theodore Roosevelt National Park, North Dakota. Project Report. U.S. Geological Survey.

Von Loh J, Cogan D, Faber-Langendoen D, Crawford D, Pucherelli MJ. (1999) USGS-NPS Vegetation Mapping Program: Badlands National Park, South Dakota. Project Report. U.S. Geological Survey.

Walton D. (2012) Shenandoah National Park Vegetation Data.

http://vegbank.org/cite/VB.Ob.25621.SHNP530. Accessed: 09 January 2013.

Weakley A, Patterson K. (2012) Chattahoochee National Forest Vegetation Data.

http://vegbank.org/cite/VB.ob.26587.CHAT135. Accessed: 09 January 2013.

Weakley A, Stewart R. (2012) Oakmulgee National Forest Vegetation Data.

http://vegbank.org/cite/VB.ob.26642.TALO31. Accessed: 09 January 2013.
Whelan KRT, Sudalter E, Patterson JM, Vargas RM, Atkinson AJ, Witcher B. (2009) The 2009 Vegetation Map of De Soto National Memorial. Natural Resource Technical Report NPS/SFCN/NRTR—2009/240. National Park Service, Fort Collins, CO.

White R. (2005) Vascular Plant Inventory and Plant Community Classification for Fort