Actin-Based Cell Protrusion in a 3D Matrix

Patrick T. Caswell1,* and Tobias Zech2,*

Cell migration controls developmental processes (gastrulation and tissue patterning), tissue homeostasis (wound repair and inflammatory responses), and the pathobiology of diseases (cancer metastasis and inflammation). Understanding how cells move in physiologically relevant environments is of major importance, and the molecular machinery behind cell movement has been well studied on 2D substrates, beginning over half a century ago. Studies over the past decade have begun to reveal the mechanisms that control cell motility within 3D microenvironments – some similar to, and some highly divergent from those found in 2D. In this review we focus on migration and invasion of cells powered by actin, including formation of actin-rich protrusions at the leading edge, and the mechanisms that control nuclear movement in cells moving in a 3D matrix.

Cell Migration: On or in Extracellular Matrix?

Cell migration on 2D surfaces, including tissue culture plastic and glass, has been formalised into a cascade of steps that starts with the establishment of polarity and formation of protrusions at the front of cells, with retrograde flow of actin providing traction force for forward movement and completion of the cycle by retraction of the trailing edge [1]. Cell culture has historically been performed in 2D plates as they are more accessible to microscopy and biochemical isolation. In vivo, migrating cells can encounter 2D surfaces (e.g., lining of body cavities, as experienced by migrating haemocytes in Drosophila). The suitability of 2D plastic/glass surfaces as representative biological models has been questioned in recent years due to their incredibly high rigidity compared to any surface in vivo (other than bone), and the simplicity of extracellular matrix (ECM) presentation when compared to complex fibrillar interstitial matrix (see Glossary), for example, the connective tissue of vertebrates. In this review, we focus on the functions of actin in cell motility within a 3D matrix, with particular attention on the migration of cancer cells through an interstitial matrix (a key step in metastasis). Because the unrestricted movement of cells on 2D surfaces has enabled a detailed understanding of the basic machinery that cells use to achieve progressive motion, we first introduce this fundamental machinery and highlight recent advances that might be relevant to future studies in 3D systems. We outline the key mechanisms that underpin different modes of actin-based protrusion in 3D matrices, and where these reflect movement in 2D systems. Finally, we discuss the function of actin polymerisation in coordinating movement of the nucleus, considered the key step in translocation of the cell.

Understanding Actin in Migration: Lessons from 2D

The most iconic form of protrusion formed by cells is the large fan-like structures called lamellipodia, whose formation is regulated by small GTPases of the Rho family and an interconnected network of WASP, Ena/VASP, and formin families of actin regulators [1,2]. Arp2/3 mediates the assembly of a dendritic F-actin network in lamellipodia (Figure 1), and is activated by members of the WASP family. The WASP family member WAVE can act in a complex with Ena/VASP family proteins, which bind the polymerising barbed end of actin.
filaments to prevent capping and support optimal actin polymerisation efficiency [2]. Arp2/3-mediated actin polymerisation and actomyosin contractility generate retrograde flow of F-actin, which when engaged by a ‘clutch’ (focal adhesions) promotes traction force [3]. Formins can act as direct RhoGTPase effectors to polymerise and/or bundle F-actin from the barbed end [2], and generate actin cables supporting the lamellipodial area and force generation [4–6]. Polymerisation and bundling of a subset of linear actin filaments within needle-like protrusions (rather than fan-like lamellipodia) forms a class of F-actin-based protrusions broadly termed filopodia, and numerous pathways can lead to their formation. These include convergent elongation from Arp2/3-generated dendritic actin networks, and direct polymerisation of actin from the barbed ends by formins, with critical supporting roles for Ena/VASP family members and actin-bundling proteins also identified [7,8]. Filopodia can align with focal adhesions, but it is not clear if the filopodial actin structure is force generating/bearing, or if the role is more closely linked to direction sensing. Emerging evidence suggests that a number of subtypes of filopodia exist that could fulfil each of these functions [9].

Emerging Features of Actin-Based Protrusion in 2D
Recent studies have supported the notion that an as-yet-unexplored level of complexity and coordination exists within actin networks formed in cells migrating on 2D surfaces. The isoforms of the basic building blocks of actomyosin networks were long thought to be randomly incorporated but have been shown to have much more isoform specificity than previously thought. α-, β-, and γ-Actins show distinct distribution in fibroblasts [10] and neurons [11] and are thus likely to support specific functions. The heptameric Arp2/3 actin nucleation complex has intrinsic mechanisms to change its efficiency in actin polymerisation with the utilisation of ARPC1, 3, and 5 isoforms [12,13], adding further intricacy to the migratory machinery. In addition, non-muscle myosin IIA and IIB, the key motor proteins in the contractile actin cytoskeleton which generates F-actin retrograde flow, are distributed in a potentially self-organising front–rear gradient in polarised migrating cells [14,15].

Once established, the dynamics of 2D actin-based protrusions are controlled by feedback mechanisms that control the establishment of novel protrusions or the properties of existing ones [16]. Feedback loops can result from signalling networks within conventional Rho GTPase networks [17]. More recently, actin networks have been shown to adjust to mechanical challenges by increasing network density resulting in higher force generation [18] and changes in geometry [19]. Feedback into existing actin structures can be both positive and negative, and more dedicated negative regulators of Arp2/3-mediated actin polymerisation, including GADkin and Arpin, have been uncovered, which are able to influence protrusion behaviour [20,21]. These feedback mechanisms will be even more significant when superimposed on the restricted environment of confined migration in 3D matrices.

Given the macromolecular arrangements in lamellipodia, one might expect coordinated recruitment of regulatory factors, and recent evidence indicates that the recruitment of such factors can either be driven by diffusion and/or directed recruitment. In support of the latter, microtube persistence was recently shown to be required for pseudopod maintenance [22]. Microtubule-based transport in turn is influenced by distribution of the membrane tethering exocyst complex [23] and the exocyst complex can influence the recruitment/retention of Arp2/3 [24] and interact with the WAVE and WASH complexes [25,26].

Mechanisms of Migration in 3D Microenvironments
On 2D substrates, cells encounter, adhere to, and generate force against a single surface. In 3D microenvironments the terrain, in terms of the topology, rigidity, and uniformity
encountered, is vastly different (Figure 1). Basement membranes form thin sheet like structures that provide anchorage for epithelial and endothelial cells (among others) and separate tissues/organs from underlying interstitial matrix, a complex 3D structure dominated by fibrillar collagens that contains pores of varying sizes that can allow egress/entry of migrating cells. Hence, it is perhaps unsurprising that cells can adopt a variety of migratory modes in a 3D matrix, which describe the morphological appearance and/or mechanism of protrusion propulsion [27]. Moreover, cells within 3D-ECMs show a remarkable degree of plasticity and are able to switch migration mode depending on both intrinsic and extrinsic factors [27]. The ability of cells to move in collective sheets or strands adds further complexity to migratory behaviours [28]. Here we focus on single cell migration and mechanisms of actin-based protrusion (Figure 2); however, it is likely that the mechanisms of protrusion at the leading edge are shared by leader cells in collectively migrating groups of cells.

Generating Protrusive Force through Hydrostatic Pressure

Cells can move in 3D without initial polymerisation of actin at the leading edge to generate protrusions. Membrane blebbing as a means of protrusion in motile cells in 3D ECMs [29,30] is most likely related to migratory strategies used by leukocytes, which can move independently of conventional adhesion mechanisms [31]. Actomyosin-based contractility toward the rear of the cell generates hydrostatic pressure and flow of cytoplasm to form spherical membrane expansions (blebs), a consistent feature of amoeboid migration that facilitates forward movement [32,33]. Such amoeboid cells are generally less dependent on cell-matrix adhesion and protease activity, and importantly, many cancer cells show remarkable plasticity, switching between amoeboid and mesenchymal motility dependent on cell intrinsic and extrinsic factors [27,34,35]. Stable bleb formation has been shown to drive motility of physically confined cells both in vitro and in vivo, and stable blebs and hydrostatic pressure are maintained by rearward cortical actin flow [36,37]. Cortical actomyosin contractility and nuclear pistoning in fibroblasts and cancer cells can also drive formation of blunt protrusions, termed lobopodia [38–40]. These modes of motility in 3D-ECMs and in vivo are not defined by F-actin-based protrusions, rather by actomyosin contractility, and have been reviewed expertly elsewhere [34,41].

Lamellipodium-Based Protrusion in 3D-ECMs

Actin polymerisation is key to migration in 2D, and the mechanisms identified in such systems were long thought to parallel processes which occur in mesenchymal cells moving in more complex 3D environments such as those found in vivo, including cancer cells (post epithelial–mesenchymal transition) and fibroblasts (during wound healing; Figure 1). In support of this, use of photoactivatable Rac in zebrafish neutrophils to induce WAVE/Arp2/3 activity demonstrated that acute induction of Rac activity can promote leading edge protrusion in vivo [42]. Regulators of Arp2/3 and lamellipodia formation have also been implicated in cancer metastasis in human patients and mouse models; for example, overexpression of WASP family members is associated with poor outcomes [43–48], and decreased expression of the Arp2/3 negative regulator Arpin is associated with poor prognosis in breast cancer [45]. Furthermore, a splice variant of the actin regulator Mena, Mena1

Invadopodia: actin-rich protrusions that direct matrix degradation, mostly clearly observed beneath cells and perhaps contributing to basement membrane degradation.

lamellipodia: fan- or wave-like protrusions assembled by Arp2/3-mediated actin polymerisation into branched networks.

Matrix pore size: gaps between collagen fibres (or within basement membranes), which vary dependent on tissue/matrix density.

Mesenchymal mode of migration characterised by elongated morphology in 2D and 3D, and requirement for proteases in 3D migration and invasion.

Myosin X: unconventional myosin that binds to and bundles actin filaments. Plays a role in filopodia formation, found at the tips of filopodia.

Rho GTPases: family of GTPases considered to be master regulators of the cytoskeleton.

WASP: family of Arp2/3-activating proteins that are often effectors for RhoGTPases.
endocytosis and invadopodia formation [53–56]. Hence, in many cases the direct contribution to leading edge actin reorganisation is not known.

Rac activity is clearly implicated in the migration of mesenchymal cancer cells in 3D and in vivo [35,57]. Rac1 knockout melanoblasts show defects in extension of pseudopodial protrusions and
cell motility, which contribute to aberrant melanoblast patterning and pigmentation in mice, but long-term in vivo migration experiments also reveal the requirement for Rac1 in cell cycle progression, complicating simple interpretation \[58\]. Inhibition of actin polymerisation or Arp2/3 prevents wild-type melanoblast motility in dermal explants \[58\], which suggests a direct

Figure 2. Actin-Based Protrusion in 3D Migration. Mesenchymal cells in 3D matrices use actin to protrude by generating lamellipodia (smaller in scale to those seen in 2D), filopodia, and by anchoring matrix proteases at the cell surface within ‘actin hotspots’. The signalling network upstream of lamellipodia (blue box) is analogous to that in 2D, whereby Rac (or Cdc42) can activate WASP family members to promote Arp2/3 (brown complex) activity and formation of a branched actin network. Cortactin (orange) can play a key role in coordinating Arp2/3 nucleated actin polymerisation, and MenaINV supports filament elongation to promote 3D migration. Filopodia (green box) can be generated via alternate pathways, including through formins (blue) that dimerise to polymerise actin from the barbed end. Cdc42-mediated activation of FMNL3, RhoA/ROCK-mediated phosphorylation and activation of FHOD3, and Rif-mediated activation of mDia2 have each been shown to promote migration in 3D contexts. Other factors [e.g., fascin (brown), MyoX (pink)] play key roles in bundling actin filaments within filopodia. The WASH complex promotes actin-dependent trafficking (green arrow) of MT1-MMP to N-WASP-Arp2/3 nucleated ‘actin hotspots’ (orange box and circle) within pseudopods, where MT1-MMP can degrade matrix to promote invasion. Abbreviations: FMNL3, formin-like 3; MyoX, myosin X.
link between Rac-Arp2/3-driven actin polymerisation and melanoblast migration in vivo. Lamellipodin can act as a platform to deliver active Rac to Arp2/3, activating the SCAR/WAVE complex at the leading edge of migrating cells, and is also required for melanoblast motility and correct pigmentation in mice [59]. The lamellipodin–SCAR/WAVE interaction is crucial for neural crest cell migration in Xenopus embryos [59], suggesting that lamellipodin indeed controls the Arp2/3-mediated generation of dendritic actin networks to control motility in vivo. Cdc42 also plays a key role in melanoblast migration in mouse skin, and while Cdc42 null melanoblasts are able to elongate and adopt a mesenchymal morphology, they are unable to efficiently move [60]. This is due to defects in formin and Arp2/3-mediated actin assembly, adhesion complex dynamics, and active myosin localisation, reflecting the broad effecter pathways downstream of this Rho GTPase.

In 3D collagen gels, cancer cells generate pseudopodial protrusions that are reliant on Arp2/3, N-WASP, WAVE1, cortactin, and Cdc42, although broad lamellipodial protrusions were not identifiable in that study [61]. High-resolution, spinning disk confocal imaging within collagen gels has revealed the presence of cell–matrix adhesion complexes within small lamellipodia-like protrusions of fibroblasts [62], and small lamellipodial protrusions are readily detectable, and retrograde flow of actin is observed, in cancer cells within cell-derived matrices [63].

Filopodia: Forging the Way

While increased lamellipodial activity has been suggested to promote 3D migration, invasion, and metastasis, there is evidence that lamellipodial regulators (including the Rac activator Tiam-1 and WAVE complex components) are downregulated in metastatic cancer [64–67], and it is therefore likely that other forms of F-actin-based protrusion can complement or compensate to effect migration in 3D. Filopodia have been reported to serve numerous purposes in migrating cells, including sensing the chemical and physical environment, facilitating cell–cell adhesion in zippering epithelial sheets, and forming protrusions [7]. Filopodia formation has also been implicated in cancer invasion and metastasis; fascin, an actin-bundling protein that promotes filopodial formation, is upregulated in numerous metastatic mouse and human tumour contexts [68–72]. Furthermore, myosin X expression is induced by expression of gain-of-function mutant p53 to promote metastasis in mouse models of pancreatic cancer, and is linked to poor outcome in breast cancer [73].

The properties of filopodia and the mechanisms that form them have been studied during migration in 3D-ECMs in development and cancer, and have revealed important context-specific differences. In migrating primordial germ cells (PGCs) of the zebrafish embryo, filopodia appear to play a role in sensing chemokines, rather than providing a mechanism for protrusion, ECM adhesion and/or force generation. Filopodia extend toward gradients of CXCL12a, and promote increased pH and Rac activation at the cell front to determine polarised PGC migration in the embryo [74]. However, during sprouting angiogenesis in the zebrafish embryo, formation of filopodia facilitates motility of endothelial tip cells, but is not required for guidance [75]; this suggests that in this context filopodia do not respond directly to chemotactic cues. A more recent study demonstrated that bone morphogenetic protein (BMP) signalling induces expression of ARHGEF9b in endothelial tips cells to activate Cdc42 and generate filopodia via formin like 3 (FMNL3) [76]. FMNL3 has also been implicated in angiogenesis in mammalian systems, suggesting a conserved mechanism. However, while fascin plays a role in F-actin bundling in filopodia in cancer and promotes filopodia formation in endothelial tip cells, its influence on angiogenesis is moderate [77], indicating that this filopodial regulator serves a more redundant role in this cell type.

Filopodia have also been directly observed in invasive and metastatic cancer cells, and their morphology and density may reflect the specific roles they play. A small number of long
filopodia-like protrusions (FLPs) are generated around the periphery of mammary carcinoma cells as they enter lung parenchyma and interstitium-like environments [78]. FLPs initiate ECM contact in metastatic breast cancer cells via the combined action of RhoGTPase-formin (Rif-mDia2) and integrin signalling (ILK-Parvin-Pix-Cdc42-PAK-cofilin) axes to increase FLP lifetime, facilitating adhesion formation and proliferative signals via FAK–ERK, promoting tumourigenesis [78, 79].

Filopodia can also support invasive migration of cancer cells; the local co-trafficking of α5β1 and receptor tyrosine kinases (RTKs, including epidermal growth factor receptor 1) facilitates crosstalk between adhesion receptors and RTKs [80] and suppresses Rac activity, but activates RhoA at the leading edge to generate actin-spike protrusions at the front of invading carcinoma cells [81]. Actin-spike protrusions are also formed in response to RhoA activation in breast and lung carcinoma cell lines which express gain-of-function mutant p53, and are clearly distinct from lamellipodia, lacking dendritic actin veils and consisting of numerous short filopodia emanating in the direction of migration in cells moving in 3D-ECMs and in vivo [63]. Filopodial actin spikes require the formin FHOD3, which is activated by phosphorylation downstream of RhoA–ROCK, and the density and organisation of filopodia within these protrusions could suggest that they play a role in generating protrusive force.

Actin Regulators in ECM Remodelling
The ECM acts as a physical barrier to cells, whether presented as a basement membrane surrounding tissues or as fibrillar collagen-based interstitial matrix [82], and although leukocytes (and amoeboid cancer cells which use hydrostatic pressure and membrane blebs to move) appear to move through the ECM in a protease-independent fashion, mesenchymal cancer cells must clear their path by focalising degradative activity. MT1-MMP is a membrane-anchored matrix metalloprotease that plays a particularly significant, nonredundant role in the invasion of a range of cancer cell types [83], and while the leading protrusion of invasive cancer cells may have the capacity to recruit and align ECM fibres (without large-scale degradation), an integrin and actin-rich zone of collagen degradation posterior to this (in front of the nucleus) has been described [84].

A prominent role for the Arp2/3 activator N-WASP in focal proteolysis has been described; N-WASP mediated actin polymerisation promotes the recruitment of MT1-MMP to ‘actin hotspots’, accumulations of F-actin at sites of ECM contact. MT1-MMP is tethered to these actin hotspot foci through an actin-binding domain within the cytoplasmic tail, and thus N-WASP mediated actin polymerisation directs protease activity by generating actin hotspots in close proximity to matrix fibrils destined for degradation in invasive cells [85]. Interestingly, the WASP family member WASH promotes Arp2/3-mediated actin polymerisation on late endosomes, and generates tubules that fuse with the plasma membrane at sites of cell matrix adhesion [26]. Thus, distinct Arp2/3 nucleation promoting factors, acting at different subcellular locations, might coordinate a matrix degradation programme at sites of ECM contact to remove the ECM barrier and facilitate protrusion. Given that matrix pore size is a major constraint to translocation of migrating cells [86], it is interesting to speculate that sites of cell–matrix contact in front of the nucleus may act as a constriction band released by such focal proteolysis mechanisms in invasive cancer cells.

Moving the Nucleus in 3D Matrix
Translocation of the nucleus is often the measure by which cell biologists determine the repositioning of migrating cells, and the nucleus shows a characteristic rearward movement in fibroblasts as they polarise in the direction of migration [87], suggesting that direct
mechanisms exist to move the nucleus in migrating cells. Disrupting the LINC (linkers of the nucleoskeleton to the cytoskeleton) complex between the nuclear envelope and cytoskeleton alters microtubule organising centre (MTOC) positioning [88] and inhibits the polarity of fibroblasts [89]. Reorientation of the nucleus in fibroblasts is considered to precede Golgi reorientation [90], an important indicator of polarity in migrating cells. Moreover, in cells migrating within confined spaces (mimicking matrix pores), the nucleus is squeezed and can rupture, suggesting that forces are exerted directly on the nucleus [91,92].

Bringing up the Rear: Force Coupling and the Nucleus
In order to enable cell movement in 3D, intracellular organelles have to morphologically adapt. The role of cytoplasm-spanning organelles like endoplasmic reticulum (ER) and mitochondria is largely unexplored, although plasma membrane–ER contact sites have been described to respond to matrix interactions and cell migration [93], and mitochondria seem to preferentially localize to protrusions where energy demand is increased [94]. The biggest obstacle to effective 3D migration, however, is the nucleus. The nucleus is subject to direct actomyosin-mediated forces [95], confirming the central connective role for the nucleus [96] within cytoskeletal rearrangements predicted by modelling and that actin has an active role in transmitting force directly to the nucleus.

In a landmark study, Wolf et al. showed that cell movement in a 3D matrix is limited by pore size due to the restrictive dimensions of the nucleus [86]. Specialised cells like neutrophils and dendritic cells have flexible nuclei that are capable of deforming into thin cables through their adaptable lamin networks [86] and perinuclear actin accumulation [97], allowing them to move through small pores in the ECM. However, nuclei of invading carcinoma cells have different mechanical properties due to the composition of their nuclear lamina, especially lamin A/C, and deform to a lesser extent. In a matrix with pore cross sections below ~7 μm², cancer cells must digest matrices with proteinases to move [86].

Nuclear shape and structure vary greatly – within its spherical constrains – between tissues and is often used in pathological tissue assessments [98]. The viscosity of the nucleus differs from the surrounding cytoplasm [99,100], and interphase nuclei respond in several ways to migration and the ECM. Inside the nuclear envelope, a network of short lamin filaments [101,102] supports the membrane and has a direct protein–protein interaction network to the cytoplasm via the LINC complexes, consisting of KASH, like Nesprin 1–4, and SUN domain family proteins (reviewed in [103–106]).

The nucleus itself and perinuclear actin respond to compressive force [107] and this can lead to changes in gene expression. Nuclear lamin expression can adapt to the stiffness of the ECM [108] and chromatin is attached to nuclear lamins [109] and thus has a potential connection to the cytoskeleton and with it changes in force applied to the nucleus. In addition, transcription is sensitive to the stiffness of the environment; specialised transcription factors like TWIST, YAP/TAZ, and SRF react to changes in the actomyosin cytoskeleton and mechanical forces translated from the ECM [110–112] and factors influencing actin dynamics (e.g., Zyxin and Rac) are mechanosensitive and can play roles in the nucleus [113,114]. Thus, the nucleus may act as a brake on cells migrating in 3D, but physical stimuli can influence nuclear mechanics and gene expression to promote cell movement.

Cell Motility, Polarity, and the Nucleus in the ECM
Disruption of the nucleocytoplasmic linkage results in impaired migration in restrictive 3D environments, indicating that movement of the nucleus is an active process [89,115]. The
force applied to the nuclear membrane has to be able to move the nucleus in the direction of migration: the nucleus could be pushed, pulled or – in a 3D environment – moved along like on a conveyor belt through connections or friction with the plasma-membrane-associated cytoskeleton. Observations of lymphocytes suggest an accumulation of actin behind the nucleus in these cells, which is required for forward pushing of the nucleus, although direct force measurements are lacking [31]. By contrast, experiments with migrating fibroblasts in a nonrestrictive 2D environment, which were unable to detach their trailing edge, were still able to move the nucleus forward, indicating that such nuclei were – at least partially – pulled forward by actomyosin [116].

The emergence of de novo actin networks around the nucleus when cells squeeze through tunnels, or during squashing of cells, suggest that the nuclear envelope has an active role in responding to mechanical stimuli [97,107] and that friction with the cellular surroundings can influence nuclear movement.

Regulation of Nuclear Dynamics by Actin Regulators
TAN lines are stress fibres crossing the nuclear envelope as part of a perinuclear actin cap that is also present in cells in 3D cultures [115,117,118]. Actin regulators associated with the nuclear envelope are able to change the characteristics of existing actin filaments to support nuclear movement and force transduction. The Rac GEF STEF/TIAM2 localises to the nuclear envelope, and controls perinuclear Rac activity to regulate actin dynamics and contractility at this subcellular region [119]. Furthermore, the actin-bundling activity of FHOD1 [120] and fascin [121] can support the formation of thick actin fibres associated with the nucleus. FHOD1 is a member of the diaphanous-related formins, but no actin polymerisation ability has been observed to date; by contrast, mDia2, another member of the formin family, is also able to associate with the nuclear envelope and polymerise actin [122]. In elegant experiments using a bead attached to an AFM cantilever to push the cell in a directional manner, INF2 (inverted formin 2) was shown to induce a perinuclear actin network that was not only prominent on the nuclear envelope but also extended to regions of ER accumulation and is dependent on Ca²⁺ but not on classical mechanostimuli like non-muscle myosin IIA [107]. Non-muscle myosin IIIB activity, by contrast, is required for physical translocation of the nucleus [123,124] and the unconventional myosin 18A associates with stress fibres stretching across the nucleus [125], suggesting active regulation of actomyosin contractility from the nucleus. Additional actin regulators, like IQGAP1, have been described on the cytoplasmic face of the nuclear envelope without describing a potential function yet [126].

Concluding Remarks and Future Perspectives
It is clear that while great strides have been made in our understanding of the multifaceted roles of actin in cell migration in 3D, there are still many open questions (see Outstanding Questions). In particular, the nuances of isoform specificity (non-muscle myosin II, actin, and Arp2/3) and emergent properties arising from macromolecular cytoskeletal organisation have not been investigated in 3D migration. Many issues will potentially be answered in the near future through advances in imaging at high spatial and temporal resolution in complex 3D environments and in vivo, including lattice light-sheet and super-resolution techniques. It is crucial that the context of 2D migration is better understood in 3D; for instance, the force bearing properties of bundled collagen fibres and basement membranes as migratory surfaces are not well appreciated, and whether these are fundamentally linked to specific types of cell–matrix adhesion (e.g., integrin versus non-integrin) is not clear. Our more detailed knowledge of actin polymerisation networks now makes it possible to infer the dynamic responses of cells to challenge, through forces and/or changes in the topology of the environment. Furthermore, the emerging central role of
the nucleus adds a further dimension to the regulation of motility in physiological environments by actin structures. Understanding the mechanisms that govern cell migration in 3D matrices will provide insight into this crucial aspect of development. Manipulating cell migration may also prove useful in regenerative medicine, by targeting stem cells to specific niches (and arresting them there), but also in generation of antimetastatic therapies, which is of paramount importance because metastatic dissemination is the leading cause of death in 90% of cancer patients [127].

Acknowledgments

The Wellcome Trust Centre for Cell-Matrix Research is supported by grant 203128/Z/16/Z.

References

1. Ridley, A.J. et al. (2003) Cell migration: integrating signals from front to back. Science 302, 1704–1709
2. Krause, M. and Gautreau, A. (2014) Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat. Rev. Mol. Cell Biol. 15, 577–590
3. Elisegegui-Arólta, A. et al. (2018) Control of mechanotransduction by molecular clutch dynamics. Trends Cell Biol. 28, 356–367
4. Block, J. et al. (2012) FMN1 drives actin-based protrusion and migration downstream of Cdc42. Curr. Biol. 22, 1005–1012
5. Kage, F. et al. (2017) FMNL forms boost lamellipodial force generation. Nat. Commun. 8, 14832
6. Kuhn, S. et al. (2015) The structure of FMNL2-Cdc42 yields insights into the mechanism of lamellipodia and filopodia formation. Nat. Commun. 6, 7088
7. Mathila, P.K. and Lappalainen, P. (2008) Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446–454
8. Mellor, H. (2015) The role of forms in filopodia formation. Biochim. Biophys. Acta 1803, 191–200
9. Jacquemet, G. et al. (2015) Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr. Opin. Cell Biol. 36, 23–31
10. Dugina, V. et al. (2009) Beta and gamma-cytosplastic actins display distinct distribution and functional diversity. J. Cell Sci. 122, 2960–2968
11. Morish, M. et al. (2017) Differential roles of α-, β-, and γ-actin in axon growth and collateral branch formation in motoneurons. J. Cell Biol. 216, 790–814
12. Abella, J.V. et al. (2016) Isoform diversity in the Arp2/3 complex determines actin filament dynamics. Nat. Cell Biol. 18, 76–86
13. Kahr, W.H. et al. (2017) Loss of the Arp2/3 complex component ARP2/1B causes platelet abnormalities and predisposes to inflammatory disease. Nat. Commun. 8, 14816
14. Vicente-Manzanares, M. et al. (2011) Myosin IA/IB restrict adhesive and protrusive signaling to generate front-back polarity in migrating cells. J. Cell Biol. 193, 381–396
15. Shuto, M.S. et al. (2017) Self-sorting of nonmuscle myosin IIA and IIB polarizes the cytoskeleton and modulates cell motility. J. Cell Biol. 216, 2877–2889
16. Nelson, M.P. et al. (2013) Use of the parameterised finite element method to robustly and efficiently evolve the edge of a moving cell. Integr. Biol. 5(2), 607–615
17. Hetmarsi, J.H. et al. (2016) A MAPK-driven feedback loop suppresses Rac activity to promote RhoA-driven cancer cell invasion. PLoS Comput. Biol. 12, e1004990
18. Bieling, P. et al. (2016) Force feedback controls motor activity and mechanical properties of self-assembling branched actin networks. Cell 164, 115–127
19. Mueller, J. et al. (2017) Load adaptation of lamellipodial actin networks. Cell 171, 88–200
20. Maritzen, T. et al. (2012) Gaiα negatively regulates cell spreading and motility via sequestration of the actin-nucleating ARP2/3 complex. Proc. Natl. Acad. Sci. U. S. A. 109, 10382–10387
21. Dang, I. et al. (2015) Inhibitory signalling to the Arp2/3 complex steers cell migration. Nature 503, 281–284
22. Bouchet, B.P. et al. (2016) Mesenchymal cell invasion requires cooperative regulation of persistent microtubule growth by SLAN2 and CIASP1. Dev. Cell 39, 708–723
23. Vega, I.E. and Hsu, S.C. (2001) The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth. J. Neurosci. 21, 3839–3848
24. Zuo, X. et al. (2006) Eas70 interacts with the Arp2/3 complex and regulates cell migration. Nat. Cell Biol. 8, 1383–1388
25. Biondini, M. et al. (2016) Direct interaction between Exocyst and Wave complexes promotes cell protrusions and motility. J. Cell Sci. 129, 3756–3769
26. Monteiro, P. et al. (2013) Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at invadopodia. J. Cell Biol. 203, 1063–1079
27. Friedl, P. and Alexander, S. (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147, 962–1009
28. Mayor, R. and Etienne-Manneville, S. (2016) The front and rear of collective cell migration. Nat. Rev. Mol. Cell Biol. 17, 97–109
29. Sahai, E. and Marshall, C.J. (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell Biol. 5, 711–719
30. Wolf, K. et al. (2003) Compensation mechanism in tumor cell migration: mesenchymal-amphiboid transition after blocking of peripheral proteolysis. J. Cell Biol. 160, 267–277
31. Lammermann, T. et al. (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453 (7191), 51–55
32. Charras, G. and Paluch, E. (2008) Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9 (9), 730–736
33. Pinardoux, R. et al. (2011) Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. Proc. Natl. Acad. Sci. U. S. A. 108 (5), 1943–1948
34. Petrie, R.J. and Yamada, K.M. (2015) Fibroblasts lead the way: a unified view of 3D cell motility. Trends Cell Biol. 25 (11), 666–674
35. Sanz-Moreno, V. et al. (2008) Rac activation and inactivation control plasticity of tumor cell movement. Cell 135 (3), 510–523
36. Liu, Y.J.A. (2015) Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160 (4), 659–672
37. Ruprecht, V. et al. (2015) Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160, 673–685
38. Petrie, R.J. et al. (2012) Nonpolarized signaling reveals two distinct modes of 3D cell migration. J. Cell Biol. 197 (2), 439–455
39. Petrie, R.J. et al. (2017) Activating the nuclear piston mechanism of 3D migration in tumor cells. J. Cell Biol. 216 (1), 93–100
40. Petrie, R.J. et al. (2014) Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345 (6200), 1062–1065
41. Paluch, E.K. and Raz, E. (2013) The role and regulation of blebs in cell migration. Cur. Opin. Cell Biol. 25 (5), 582–590
42. Yoo, S.K. et al. (2010) Differential regulation of protrusion and polarity by Pi(3)K during neutrophil motility in live zebrafish. Dev. Cell 19 (2), 208–219.
43. Iwasa, K. et al. (2007) Coexpression of Arp2/3 and WAVE2 predicts poor outcome in invasive breast carcinoma. Modern Pathol. 20 (3), 338–343
44. Kulkarni, S. et al. (2012) Increased expression levels of WAVE3 are associated with the progression and metastasis of triple negative breast cancer. PLoS One 7 (8), e1–14
45. Lomakina, M.E. et al. (2014) Arp2/3 complex in breast cancer is associated with poor prognosis. Br. J. Cancer 114 (5), 545–553
46. Otsuka, T. et al. (2004) Involvement of Arp2/3 complex in the process of colorectal carcinogenesis. Modern Pathol. 17 (4), 461–477
47. Semba, S. et al. (2006) Coexpression of actin-related protein 2 and Wiskott-Aldrich syndrome family verproline-homologous protein 2 in adenocarcinoma of the lung. Clin. Cancer Res. 12 (8), 2449–2454.
48. Sossey-Alaoui, K. et al. (2007) Down-regulation of WAVE3, a metastasis promoter gene, inhibits invasion and metastasis of breast cancer cells. Am. J. Pathol. 170 (8), 2112–2121
49. Philippas, U. et al. (2008) A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis. Dev. Cell 15 (6), 813–826
50. Roussos, E.T. et al. (2010) Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors. Breast Cancer Res. 12 (8), R101
51. Oudin, M.J. et al. (2016) Mena/MVH mediates synergistic cross-talk between signaling pathways driving chemotaxis and haptotaxis. Mol. Cell Biol. 27 (20), 3065–3094
52. Oudin, M.J. et al. (2016) Tumor cell-derived extracellular matrix remodeling drives haptotaxis during metastatic progression. Cancer Discov. 6 (8), 516–531
53. Carmona, G. et al. (2016) Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and Scar/WAVE. Oncogene 35, 5155–5169
54. Tang, H. et al. (2013) Loss of Scar/WAVE complex promotes N-WASP- and FAK-dependent invasion. Cur. Biol. 23 (2), 107–117
55. Bocoum, E. et al. (2015) Endophilin marks and controls a catrinin-independent endocytic pathway. Nature 517 (7535), 465–468
56. Vehlow, A. et al. (2013) Endophilin, lamellipodin, and Mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis. EMBO J. 32 (20), 2722–2734
57. Yang, W.-H. et al. (2012) RAC1 activation mediates Twist1-induced cancer cell migration. Nat. Cell Biol. 14 (6), 366–374
58. Li, A. et al. (2011) Rac1 drives metastasis organization during mouse development by orchestrating pseudopod-driven motility and cell-cycle progression. Dev. Cell 21 (4), 722–734.
59. Law, A.-L. et al. (2013) Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo. Cell Biol. 203 (6), 638–649.
60. Woodham, E.F. et al. (2017) Coordination by Cdc42 of actin, contractility, and adhesion for melanoblast movement in mouse skin. Curr. Biol. 27 (5), 624–637
60. Giri, A. et al. (2013) The Arp2/3 complex mediates multigenera- tion dynamic protrusions for efficient 3-dimensional cancer cell migration. PASEB J. 27 (10), 4038–4039
62. Doyle, A.D. et al. (2015) Local 3D matrix environment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nat. Commun. 6, 8720
63. Paul, N.R. et al. (2015) v5p1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3. J. Cell Biol. 210 (6), 1013–1031
64. Mahli, A. et al. (2002) Mice deficient in the Rac activator Tiam1 are resistant to Rac-induced skin tumours. Nature 417 (6854), 867–871
65. Silva, J.J.M. et al. (2009) Cypf1 is a putative invasion suppressor in epithelial cancers. Cell 137 (6), 1047–1061
66. Swowlesky, A.G. et al. (2015) Loss of Wave1 gene defines a subtype of lethal prostate cancer. Oncotarget 6, 12383–12391
67. Vaughan, L. et al. (2015) HUWE1 ubiquilinates and degrades the RAC activator Tiam1 promoting cell-cell adhesion disassembly, migration, and invasion. Cell Rep. 10 (1), 88–102
68. Huang, F.-K. et al. (2015) Targeted inhibition of fascin function blocks tumour invasion and metastatic colonization. Nat. Commun. 6 (May), 1–14
69. Li, A. et al. (2014) Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology 146 (5), 1396–1396.e17
70. Schoumaker, M. et al. (2014) Conditional expression of fascin increases tumor progression in a mouse model of intestinal cancer. Eur. J. Cell Biol. 93 (10–12), 398–395
71. Tan, V.Y. et al. (2013) Association of fascin-1 with mortality, disease progression and metastasis in carcinomas: a systematic review and meta-analysis. BMC Med. 11 (1), 52
72. Vignjevic, D. et al. (2007) Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res. 67 (14), 6844–6863
73. Arjonen, A. et al. (2014) Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. J. Clin. Invest. 124, 1069–1082
74. Meyer, D. et al. (2015) Dynamic filopodia are required for che- mo-sensitive metastasis during intravascular guided cell migration in vivo. eLife 4, 1–25
75. Phng, L.-K. et al. (2013) Filopodia are dispensable for endothelial tip cell guidance. Development 140 (19), 4031–4040
76. Wakayama, Y. et al. (2015) Cdc42 mediates Bmp-induced sprouting angiogenesis through FrmD3-driven assembly of endothelial filopodia in zebrafish. Dev. Cell 32 (1), 109–122
77. Ma, Y. et al. (2013) Fascin 1 is dispensable for developmental and tumour angiogenesis. Biol. Open 2 (11), 1187–1191
78. Shibue, T. et al. (2012) The outgrowth of micrometastases is enabled by the formation of filopodium-like protrusions. Cancer Discov. 2 (8), 706–721.
79. Shibue, T. et al. (2013) An integrin-linked machinery of cyto- skeletal regulation that enables experimental tumor initiation and metastatic colonization. Cancer Cell 24 (4), 481–498
80. Paul, N.R. et al. (2015) Endocytic trafficking of integrins in cell migration. Curr. Biol. 25, R1058–R1065
81. Jacquetem, G. et al. (2015) RCP-driven alpha5beta1 recycling suppresses Rac and promotes Rhino activity via the RacGAP1–IQGAP1 complex. J. Cell Biol. 202 (9), 917–935
82. Willis, A.L. et al. (2013) Extracellular matrix determinants and the regulation of cancer cell invasion strategies. J. Microsc. 251 (3), 295–303
83. Sabeh, F. et al. (2009) Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoe- boid movement revisited. J. Cell Biol. 185 (1), 11–19
84. Wolf, K. et al. (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9 (8), 893–904
85. Yu, X. et al. (2012) N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. J. Cell Biol. 199 (3), 527–544
86. Wolf, K. et al. (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201 (7), 1089–1094
87. Gunderson, G.G. and Worman, H.J. (2013) Nuclear positioning. Cell 152 (6), 1376–1389
88. Schneider, M. et al. (2011) Molecular mechanisms of centri- some and cytoskeleton anchorage at the nuclear envelope. Cell Mol. Life Sci. 68 (9), 1593–1610.
89. Lombardi, M.L. et al. (2011) The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem. 286 (30), 26743–26753

90. Gomes, E.R. et al. (2005) Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121 (3), 451–463

91. Denais, C.M. et al. (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352 (6288), 353–358

92. Raab, M. et al. (2016) ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352 (6290), 359–362

93. Tsai, F.C. et al. (2016) A polarized Ca2+, diacyglycerol and STIM1 signaling system regulates directed cell migration. Nat. Cell Biol. 16 (2), 133–144

94. Zhao, J. et al. (2013) Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32 (40), 4814–4824

95. Arsenovic, P.T. et al. (2016) Nespri-2G, a component of the nuclear LINC complex, is subject to myosin-dependent tension. Biophys. J. 110 (1), 34–43

96. Zemel, A. (2015) Active mechanical coupling between the nucleus, cytoskeleton and the extracellular matrix, and the implications for perinuclear actomyosin organization. Soft Matter 11 (22), 2353–2363

97. Thiam, H.R. et al. (2016) Perinuclear Ap2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat. Commun. 7, 10967

98. Zink, D. et al. (2004) Nuclear structure in cancer cells. Nat. Rev. Cancer 4 (9), 677–687

99. Dahl, K.N. et al. (2004) The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117 (Pt 20), 4779–4786

100. Tseng, Y. et al. (2004) Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotrackin. J. Cell Sci. 117 (Pt 10), 2159–2167

101. Shimi, T. et al. (2013) Structural organization of nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy. Mol. Biol. Cell 26 (22), 4075–4086

102. Araki, U. et al. (1986) The nuclear lamina is a meshwork of intermediate-type filaments. Nature 320 (6086), 560–564

103. Isenmann, P. and Lammertding, J. (2013) Nuclear mechanics and mechanotransduction in health and disease. Curr. Biol. 23 (24), R1113–21

104. Cartwright, S. and Karakessoglou, I. (2014) Nesprins in health and disease. Semin. Cell Dev. Biol. 29, 169–173

105. Rothballer, A. et al. (2013) LINCor complex functions at the nuclear envelope: what the molecular architecture of the LINC complex can reveal about its function. nucleus 4 (1), 29–36

106. Rothballer, A. and Kutay, U. (2013) The diverse functional LINCs of the nuclear envelope to the cytoskeleton and chromatin. Chromosoma 122 (5), 415–429

107. Shao, X. et al. (2015) Mechanical stimulation induces formin-dependent assembly of a perinuclear actin rim. Proc. Natl. Acad. Sci. U. S. A. 112 (20), E2596–E601

108. Swift, J. et al. (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341 (6149), 1240104

109. Doshi, T. et al. (2008) Nuclear lamina: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 22 (7), 832–853

110. Dupont, S. et al. (2011) Role of YAP/TAZ in mechanotransduction. Nature 474 (7350), 179–183

111. Somogyi, K. and Roth, P. (2004) Evidence for tension-based regulation of Drosophila MAL and SPF during invasive cell migration. Dev. Cell 7 (1), 85–93

112. Wes, S.C. et al. (2015) Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1- G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17 (5), 679–689

113. Navarro-Lerida, I. et al. (2015) Rac1 nucleocyttoplasmic shuttling drives nuclear shape changes and tumor invasion. Dev. Cell 32 (3), 318–334

114. Nix, D.A. and Beckerle, M.C. (1997) Nuclear cytoskeletal shuttling of the focal contact protein, zyxin: a potential mechanism for communication between sites of cell adhesion and the nucleus. J. Cell Biol. 138 (5), 1139–1147

115. Khatau, S.B. et al. (2012) The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration. Sci. Rep. 2, 488

116. Wu, J. et al. (2014) Actomyosin pulls to advance the nucleus in a migrating tissue cell. Biophys. J. 106 (1), 7–15

117. Khatau, S.B. et al. (2009) A peri-nuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. U. S. A. 106 (45), 19017–19022

118. Luxion, G.W. et al. (2013) Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329 (6094), 956–959

119. Woroniuk, A. et al. (2018) STEF/TIAM2-mediated Rac1 activity at the nuclear envelope regulates the perinuclear actin cap. Nat. Commun. 9 (1), 2124

120. Kutscheid, S. et al. (2014) FHD1 interaction with nespri-2G mediates TAN line formation and nuclear movement. Nat. Cell Biol. 16 (7), 708–715

121. Jayo, A. et al. (2016) Fascin regulates nuclear movement and deformation in migrating cells. Dev. Cell 38 (4), 371–383

122. Shao, X. et al. (2015) Novel localization of formin MIDAZ: importin beta-mediated delivery to and retention at the cytoplasmic side of the nuclear envelope. Biol. Open 4 (11), 1569–1575

123. Thomas, D.G. et al. (2015) Non-muscle myosin IIβ is critical for nuclear translocation during 3D invasion. J. Cell Biol. 210 (4), 583–594

124. Kubow, K.E. et al. (2013) Matrix microarchitecture and myosin II determine adhesion in 3D matrices. Curr. Biol. 23 (17), 1607–1619

125. Tan, I. et al. (2008) A tripartite complex containing MRCK mediates lamellar actomyosin retrograde flow. Cell 135 (1), 129–136

126. Johnson, M.A. and Henderson, B.R. (2012) The scaffolding protein IQGAP1 co-localizes with actin at the cytoplasmic face of the nuclear envelope: implications for cytoskeletal regulation. Bioarchitecture 2 (4), 138–142

127. Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell 100 (1), 57–70