Glycosylation of Twisted gastrulation is required for BMP binding and activity during craniofacial development

Charles J. Billington Jr.1,2,3†, Juliane E. Fiebig4†, Cynthia L. Forsman1,2, Lan Pham5, Nathan Burbach1, Mu Sun6, Tina Jaskoll7, Kim Mansky8, Rajaram Gopalakrishnan9, Michael B. O’Connor2, Thomas D. Mueller4 and Anna Petryk1,2*

1 Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
2 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
3 Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, USA
4 Department for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, Würzburg, Germany
5 Diagnostic/Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
6 Neurodegeneration Discovery Performance Unit, GlaxoSmithKline Research & Development, Shanghai, China
7 Laboratory for Developmental Genetics, University of Southern California, Los Angeles, CA, USA
8 Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA

*Correspondence: Anna Petryk, Pediatric Endocrinology, University of Minnesota, East Building Room MB671, 2450 Riverside Avenue, Minneapolis, MN 55454, USA. e-mail: petry005@umn.edu
† Charles J. Billington Jr. and Juliane E. Fiebig have contributed equally to this work.

INTRODUCTION

Twisted gastrulation (TWSG1 in mammals, Tsg in non-mammals) is one of several key regulators of bone morphogenetic proteins (BMPs), including BMP2, BMP4, BMP7, in the extracellular space (Chang et al., 2001; Ross et al., 2001; Scott et al., 2001; Blitz et al., 2003; Zakin et al., 2005). TWSG1 is highly evolutionarily conserved and mutations in Drosophila, Xenopus, and Danio rerio Tsg disrupt normal dorsal–ventral patterning (Mason et al., 1994; Oelgeschlager et al., 2000; Ross et al., 2001; Scott et al., 2001). In mice, mutations in TWSG1 result in a range of craniofacial defects, including micrognathia, agnathia, cyclopia, and other midline facial defects due to abnormal development of the first branchial (mandibular) arch (Petryk et al., 2004; Zakin and De Robertis, 2004; Mackenzie et al., 2009; Billington et al., 2011).

The presumed biochemical basis of these craniofacial defects is impaired binding of TWSG1 to BMPs. Previous work in Xenopus has identified the importance of a set of conserved cysteines and a conserved tryptophan within the N-terminus of xTsg for binding (and inhibiting) BMPs. The C-terminus was shown to play a role in xTsg’s interaction with chordin and BMP-promoting activity (Oelgeschlager et al., 2000, 2003), most likely through facilitation of Chordin (CHRD) cleavage (Larrain et al., 2001). Deletion of exon 4 (coding exon 3), which removes neither the cysteine-rich domain nor the C-terminus, produces similar craniofacial phenotypes to those resulting from targeting exons 2 and 3 (coding exons 1 and 2; Nosaka et al., 2003; Zakin and De Robertis, 2004; Gazzarro et al., 2006), raising the possibility that exon 4 encodes a region of the TWSG1 protein with important biochemical properties.

That Tsg is a glycoprotein has been known since the early stages of characterization of this protein (Mason et al., 1994). Despite this history, little research has actually investigated the role of glycosylation in TWSG1 function. There are two common types of glycosylation, N- and O-linked. In N-linked glycosylation, sugar chains are linked to asparagine residues and are generally seen in an Asn-X-Ser/Thr triplet (where X is not proline; Neuberger and Marshall, 1968; Gavel and Von Heijne, 1990; Spiro, 2002). In O-glycosylation sugar modifications occur on serines or threonines (Spiro, 2002). In this report we demonstrate a role for exon 4-encoded sequences as the exclusive site of N-glycosylation of mTWSG1 and show that the glycosylation of mTWSG1 is critical for mediating BMP binding and activity of mTWSG1.
MATERIALS AND METHODS

ANIMAL CARE

Use and care of the mice in this study were approved by the University of Minnesota Institutional Animal Care and Use Committee. Wild-type mice were in the C57BL/6 background.

PROTEIN SEQUENCE ANALYSIS

Twisted gastrulation homolog protein sequences were downloaded from NCBI for *Mus musculus*, *Rattus norvegicus*, *Homo sapiens*, *Bos taurus*, *Canis lupus familiaris*, *Monodelphis domestica*, *Gallus gallus*, and *Xenopus laevis*. Protein sequences were aligned using ClustalW in the MacVector (MacVector, Cary, NC, USA) program. Protein phylogeny was calculated using MacVector’s phylogeny tool. Glycosylation sites were predicted in each protein using EnsemblGly

1

(Caragea et al., 2007) and confirmed using NetNGlyc

2

(1.0).

PLASMIDS

All plasmids for expression of mTWSG1 in HEK 293 cells were constructed in the C-terminal FLAG-tagged expression vector pCMVTag4c (Stratagene, Santa Clara, CA, USA). A full-length wild-type Twsgl ORF and a Twsgl ORF lacking exon 4 were each cloned into this vector using EcoRI and Xhol to create pCMVTag-TwsglWT and pCMVTag-TwsglΔex4. Constructs with glycosylation site mutations (pCMVTag-TwsglN80Q, pCMVTag-TwsglN146Q) were generated from the wild-type construct using the QuickChange site-directed mutagenesis kit (Stratagene) employing the following primers N80Q-F: 5′-atgtcaacctccgctcgcat acagcagacccgg, N80Q-R: 5′-ccggcttcagctttcaagttagttgacat, N146Q-F: 5′-ccagctgcccaacacagtgtcgtcctggcag, N146Q-R: 5′-ccggggacaaaacctgctgtcctgtgcctgtgc. The double glycosylation site mutant was generated from the N80Q plasmid, adding the N146Q mutation to generate pCMVTag-TwsglN80Q. A glycosylation site at Asn51 was restored into mouse TWSG1 using the primers P53S-F: 5′-tttgtgctagctctgaagaggtgtctgactgacag, P53S-R: 5′-ccgttggcagacctgctgtcctgctgtacag. The glycosylation site mutation was restored into the wild-type construct using the QuickChange site-directed mutagenesis kit (Stratagene, Santa Clara, CA, USA) via the restriction sites NdeI and BamHI, resulting in proteins carrying an N-terminal His6-Tag, which can be proteolytically removed using thrombin proteolysis. The cDNAs encoding for mTWSG1 and xTsg were obtained from imaGenes encoding for mTWSG1 and xTsg were obtained from imaGenes (Berlin) and the correctness of all cloned cDNAs was verified by sequencing.

1 http://turing.cs.iastate.edu/EnsembleGly/
2 http://www.cbs.dtu.dk/services/NetNGlyc/

RECOMBINANT PROTEIN PREPARATIONS

The *E. coli* strain BL21(DE3) was used for bacterial protein expression. Transformed cells were grown in shaking flasks in LB-Medium (Melford, Chelsworth) at 37°C and 130 rpm, selection of transformed cells was achieved using 30 μg/ml kanamycin. Gene expression was induced at an optical density of OD600 = 0.6 by adding isopropyl-1-thio-β-D-galactopyranoside (IPTG) to a final concentration of 1 mM and protein expression was continued for 4 h and 37°C. Cells were harvested by centrifugation (6000 × g, 15 min, 4°C) and the pellet was resuspended in TBSE buffer (10 mM Tris–HCl pH 8.0, 150 mM NaCl, 1 mM EDTA). The recombinant proteins mTWSG1 and xTsg were expressed in insoluble form as so-called inclusion bodies. To isolate the proteins, 10 g bacterial cells were lysed on ice by sonication (Bandelin Sonopuls HD3200, 10 min, 150 W). The suspension was centrifuged to harvest the insoluble protein fraction. Inclusion bodies were purified by mechanical washing and centrifugation using TBS buffer (10 mM Tris–HCl pH 8.0, 150 mM NaCl) with and without 1% Triton X-100. To extract the recombinant Tsg proteins the inclusion bodies were dissolved in 20 volumes (v/w) 100 mM Na-Phosphate, 10 mM Tris–HCl pH 8.0, 6 M Guanidinium chloride (GuCl) and the mixture was stirred for 12 h at 20°C. After centrifugation to remove insoluble impurities the supernatant was subjected to metal affinity chromatography (IMAC) using Ni2+-NTA resin (Amocol Bioprocedures Ltd., Telford). Tsg protein was eluted employing a step gradient and 100 mM Na-Phosphate, 10 mM Tris pH 8.0, 6 M GuCl, 300 mM imidazole. Tsg-containing fractions were pooled, dialyzed against 50 mM Tris–HCl pH 8.0, 6 M GuCl, 5 mM EDTA and concentrated to a protein concentration of 5 mg/ml. Refolding of Tsg was carried out by rapid dilution using the conditions reported for preparation of BMP2 from *E. coli* (Ruppert et al., 1996). The solution containing refolded Tsg was dialyzed against 50 volumes 20 mM HEPES pH 8.0, 300 mM NaCl and Tsg was purified first by IMAC chromatography step under non-denaturing conditions. Tsg-containing fractions were pooled and dialyzed against 50 volumes 20 mM HEPES pH 7.4, 500 mM NaCl. As a final purification step, size exclusion chromatography was performed to separate monomeric Tsg protein from accompanying dimeric and oligomeric species (Superdex 75 16/60 prep grade, GE Healthcare, Freiburg).

Recombinant xTsg protein from a eukaryotic source was generated by transient expression in baculovirus-transfected insect cells. The virus was prepared by co-transfection of the transfer vector pBAC3 containing the mature part of xTsg along with linearized virus DNA, using the BacVector-3000 DNA Kit (Merck KGaA, Darmstadt) into Sf21 insect cells according to the manufacturer’s instructions. Recombinant virus was identified and picked by a plaque-assay and protein expression was tested from six clones during virus amplification. A high-expression virus clone was then amplified in Sf21 insect cells to a titer of ≥10^7–10^8 pfu/ml.

For protein production, HighFive insect cells (BTI-TN-5B1-4, gift of R. Grabherr, VIBT, Vienna, Austria) were used, which were grown as adherent cell cultures in IPL-41 medium supplemented with 1% Penicillin/Streptomycin (LONZA, Köln) and 1% Lipid Medium Supplement (Sigma-Aldrich, München) at
27°C. For large-scale expression HighFive cells were transferred to RollerBottles (Greiner Bio-One, Frickenhausen) and adapted to suspension culture. 8 × 10^5 cells/ml were infected with recombinant baculovirus at a multiplicity of infection of 5 and protein expression was continued for additional 4–5 days. The cell suspension was clarified by centrifugation (6000 × g, 20 min, 4°C) and the protein-containing supernatant was dialyzed against 20 mM Tris–HCl pH 7.9, 500 mM NaCl, 20 mM imidazole for IMAC purification. Pure xTsg was eluted in a step gradient using 20 mM Tris–HCl pH 7.9, 500 mM NaCl, 300 mM imidazole. Tsg-containing fractions were pooled, dialyzed twice against 50 volumes 20 mM HEPES pH 7.4, 500 mM NaCl and frozen at −20°C until further use.

CELL CULTURE, PROTEIN ISOLATION, AND DEGLYCOSYLATION

HEK293 cells were cultured in Dulbecco’s minimum essential media supplemented with 10% fetal bovine serum and 1% 100× Anti-Anti antibiotic–antimycotic (GIBCO, Carlsbad, CA, USA). Cells were transfected using Lipofectamine with PLUS reagent (Invitrogen, Carlsbad, CA, USA) in media without serum or antibiotics and lysed to isolate proteins after 16 h. Proteins from transfected cells were isolated in lysis buffer (50 mM Tris–HCl, 125 mM NaCl, 1% NP40 Substitute (BioChemika #74385), and 0.5% sodium deoxycholate) with the addition of Complete protease inhibitor (Roche, Indianapolis, IN, USA). Lysates were spun for 10 min at 10000 × g to pellet cell debris. Supernatant fractions were analyzed using SDS-PAGE with and without deglycosylation. Transfection product proteins, insect cell xTsg, *E. coli* mTSG1 and were deglycosylated using PNGase F (New England Biolabs, Ipswich, MA, USA) according to manufacturer’s instructions. Recombinant mouse TWSG1 from murine myeloma cells (R&D systems, Minneapolis, MN, USA) was deglycosylated using PNGase F or protein deglycosylation mix (NEB) according to manufacturer’s instructions. Blots of FLAG-tagged proteins were probed with 1:1000 Rabbit Anti-DYKDDDDK in 0.1% casein/PBS (Cell Signaling, Danvers, MA, USA). Untagged recombinant proteins were visualized using a rabbit antibody custom generated (Open Biosystems, Thermo Fisher Scientific) against the peptide EGDTQLNWNIVSFPV AEE (mTWSG1 aa.108–125) at 1:250 in 0.1% casein/PBS. All blots were pre-blocked in 0.1% casein/PBS.

IMMUNOCREPECITATION

HEK293 cells were transfected with FLAG-tagged WT, QQ or Δex4 constructs while one plate was left untransfected. Cells were lysed after 16 h in 250 μl of 140 mM NaCl, 0.4 mM Tris–HCl pH 8.0, 1% Glycerol, 1% NP40 Substitute, 2% BSA with protease inhibitor cocktail. Lysates were spun at 10000 × g for 10 min and supernatant was combined with EZview anti-FLAG M2 affinity beads (Sigma, St. Louis, MO, USA) as well as 100 ng recombinant BMP2 (R&D). IP beads, BMP ligand, and lysate were allowed to interact for 6 h at 4°C in a rotary shaker. IP beads were washed four times in 280 mM NaCl, 0.4 mM Tris–HCl pH 8.0, 1% Glycerol, 1% NP40 Substitute. Samples were eluted by boiling 5 min in sample loading buffer (62.5 mM Tris–HCl pH6.8, 2% SDS, 10% glycerol 0.002% bromophenol blue) and analyzed by SDS-PAGE immunoblotting. Duplicate blots of immunoprecipitated samples were probed with Rabbit Anti-DYKDDDDK (Cell Signaling; 1:5000) or with anti-BMP2 (R&D; 1:5000). Blots were blocked in 5% BSA and primary antibodies were probed in 5% dry milk.

SURFACE PLASMON RESONANCE ANALYSIS

In vitro interaction analysis employing surface plasmon resonance (SPR) was performed using a ProteOn XPR36 system (Bio-Rad Laboratories Inc., Technion, Haifa, Israel). Recombinant BMP2 derived from *E. coli* expression was immobilized onto a ProteOn GLC-chip (Bio-Rad Laboratories Inc., Technion, Haifa, Israel) via amino coupling. The alginate polymer surface was first activated with a freshly prepared mixture of 100 mM 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) and 25 mM N-hydroxysulfosuccinimide (Sulfo-NHS). Then recombinant human BMP2 was immobilized on flow cells 1 and 2 by perfusing a solution of 200 nM BMP2 in 10 mM sodium acetate pH 4.0 over the activated alginate surface until protein densities of 100–200 (low density coating) and 400–500 RU (medium density coating) on the biosensor surface were obtained. Non-glycosylated xTsg and mTsg from *E. coli* as well as glycosylated xTsg from insect cells were perfused as analytes over the biosensor surface. Six different analyte concentrations were used in a one-shot kinetic measurement setup. All measurements were performed at 25°C in HBST buffer (10 mM HEPES pH 7.4, 500 mM NaCl, 0.005% Tween20, Sigma) using a flow rate of 100 μl/min. The association phase was set to 240 s, the dissociation phase was measured for 660 s. The BMP2 biosensor surface was regenerated using a short pulse 30 s of perfusion with 10 mM glycine pH 1.5. The correct function of the BMP2 biosensor was tested using perfusion with the BMP type I receptor BMPRIA and the values obtained were compared to reported binding affinities in the literature (Heinecke et al., 2009).

To account for bulk face effects a control flow cell (without BMP2 coating) was subtracted from all measurement flow cells. Interaction data were evaluated using the software ProteOn Manager 2.1.2 Version 2.1.2.05. Apparent equilibrium binding constants *K*D were derived from the kinetic rate constants for association *k*a and dissociation *k*d by the equation *K*D = *k*d/*k*a. All measurements were performed in duplicate.

MANDIBULAR EXPLANTS

Embryos were collected at embryonic day 10.5 (E10.5). Organ culture of mandibular processes was performed according to previously reported protocols (Jaskoll et al., 2005; Melnick et al., 2005). Briefly, the mandibular arch was isolated by microdissection and explanted into a culture system using serum-free chemically defined BGJb medium supplemented with 0.1 mg/ml ascorbic acid (Sigma) and 1% penicillin/streptomycin (Cellgro, Manassa, VA, USA). Explants were allowed to develop at 37°C and 5% CO2 for 1 h before bead placement. Beads were soaked in either 1% BSA/PBS, 100 ng/μl BMP4 (R&D systems), 50 ng/μl mTWSG1 (R&D Systems), 50 ng/μl xTsg derived from insect cell expression or 50 ng/μl mTWSG1 produced by bacterial expression in *E. coli* and placed in the distal region of the explant with microforceps. Explants were cultured for additional 24 h following bead placement. *In situ* hybridization for Msx2 was performed as previously published (Mackenzie et al., 1992; Sasaki and Hogan, 1993).
RESULTS
TWISTED GASTRULATION PROTEINS HAVE EVOLUTIONARILY
CONSERVED GLYCOSYLATION SITES, MAPPING IN RODENTS TO EXON 4

Analysis of the mouse TWSG1 protein sequence using the EnsemblGly software predicts two putative \(N\)-linked glycosylation sites, at asparagines Asn80 and Asn146. No \(O\)-linked glycosylation sites were predicted (Caragea et al., 2007). Other vertebrate TWSG1/Tsg protein sequences were also analyzed. All other tetrapods also have the two putative glycosylation sites corresponding to those predicted in mice (Figure 1). A third putative glycosylation site at Asn51 is widely conserved in other organisms (Vilmos et al., 2001; Oelgeschlager et al., 2004) and has been shown in Xenopus to be an active site of \textit{in vivo} glycosylation (Oelgeschlager et al., 2003). This site is not present in either mice or rats, where a consensus serine is substituted by proline, altering the N-X-S/T glycosylation sequon. Given that this site is widely conserved throughout other tetrapods, we infer that a mutation specifically in the rodent lineage led to a loss of this site. Interestingly, phylogenetic analysis of the protein sequences for these selected tetrapods recapitulated the expected species phylogeny with the rodents grouping together, the marsupial as an outgroup to the other mammals and avian and amphibian representatives on a more distant branch.

Most notably, both predicted glycosylation sites in mouse TWSG1 (Asn80 and Asn146) are in the region encoded by exon 4, suggesting that deletion of this exon in rodents would completely ablate the glycosylation of any truncated protein product.

MUTATIONAL ANALYSIS CONFIRMS PUTATIVE GLYCOSYLATION SITES

Our analysis of mTWSG1 sequences suggested that mTWSG1 is exclusively \(N\)-glycosylated. We tested this by first deglycosylating the protein using a cocktail of endoglycosidases that is able to remove both \(N\)- and \(O\)-linked glycosylation from recombinant mTWSG1 (data not shown). We also deglycosylated the protein using PNGase F, which specifically removes \(N\)-glycosylation directly at the asparagine–carbohydrate linkage, and observed an equivalent increase in electrophoretic mobility (Figure 2A). This indicated that, as predicted, mTWSG1 is solely \(N\)-glycosylated.

Although two \(N\)-glycosylation sites are predicted in mTWSG1, they have not been previously confirmed experimentally. The only mutational analysis performed to confirm a glycosylation site on a Tsg molecule had been done in xTsg at the site not conserved in rodents. Therefore, we mutated each of the putative rodent glycosylation sites, replacing asparagine with glutamine as had been done on other glycoproteins (Barbosa et al., 1987; Yamaguchi et al., 1991; Buller et al., 1994), reasoning that this would prevent glycosylation without disrupting the overall protein structure (Figure 2).

As expected, expression of an exon 4 deletion mutant construct (TWSG1\(\Delta\text{ex4}\)) showed no change in protein mobility with PNGase F treatment, indicating the expected lack of glycosylation (Figure 2B). Mutating either Asn80 or Asn146 alone to glutamine increased electrophoretic mobility compared to the wild type protein (Figures 2C,D). Notably, whereas the wild type protein runs on SDS-PAGE as a doublet of roughly 27 and 30 kD, the mutant forms no longer show the 30-kD band and instead run as doublets of \(\sim\)25 and 27 kD. These single mutant proteins showed further increased mobility, to a single band at \(\sim\)25 kD, the molecular weight predicted for the unmodified amino acid sequence, when treated with PNGase F, suggesting that they were still glycosylated, although to a lesser degree than the wild type protein. When both mutations were combined, no change in mobility with PNGase treatment was observed and a single band was observed at \(\sim\)25 kD, indicating a complete lack of glycosylation in the double mutant (Figure 2E).

FIGURE 1 | Twisted gastrulation is a conserved glycoprotein with predicted conserved and non-conserved glycosylation sites. ClustalW aligned proteins from various tetrapods are shown to highlight the high degree of conservation of the Twisted gastrulation protein and to show the locations of conserved and non-conserved glycosylation sites. A protein phylogenetic tree is shown at left, which also correlates with species phylogeny. The alignment of the protein sequences to the mouse is shown at the top. The forth exon deleted in a mouse knockout with craniofacial defects (Petryk et al., 2004) is indicated by a dashed line. The N\-glycosylation sequons are indicated in context below with brackets at the bottom indicating the N-X-S sequons, while arrows in yellow or blue at the top indicate the asparagines to which sugars can be linked.
As predicted, when Pro53 was mutated in the mouse sequence to data not shown. Also performed using BMP4 protein and showed similar results bind BMP2 (mutant, indicates that neither of these mutant proteins is able to actually did prevent binding of TWSG1 to BMPs. The exon 4 deletion, presumed to be defective for BMP binding, activity in the extracellular space, we tested if glycosylation affected Since TWSG1’s primary known function is to modulate BMP LACK OF GLYCOSYLATION LIMITS BMP BINDING. Based on data for xTsg in which glycosylation at Asn52 has been shown to occur (Oelgeschlager et al., 2003), we hypothesized that if the consensus serine at position 53 were restored in rodent TWSG1, Asn51 of mTWSG1 would also be a glycosylation site. As predicted, when Pro53 was mutated in the mouse sequence to serine, a decrease in electrophoretic mobility was observed, and a triplet of bands appeared on SDS-PAGE analysis at 27, 30, and 33 kD (Figure 2F). The glycosylation ability of this restored site strongly suggests that other tetrapods, including humans, have three active glycosylation sites on TWSG1. The observation that the number of bands in SDS-PAGE analysis roughly correlates with the number of glycosylation sites suggests that, at least in this in vitro system, there can be an equilibrium between fully and partially or non-glycosylated forms of the protein.

GLYCOSYLATION OF TWSG1 RECOMBINANT PROTEINS VARIES MARKEDLY BY CELLULAR SOURCE. Cells derived from different species have variable abilities to glycosylate proteins. For example, in Gram-negative bacteria glycosylation is an extremely rare event, with E. coli only having two glycoproteins, AIDA-I, and the TibA adhesin, both of which are potential virulence factors (Lindenthal and Elsinghorst, 1999; Benz and Schmidt, 2001). To allow for the heterologous expression of O- or N-glycosylated proteins from bacteria, a very complex setup is required using either coexpression of certain UDP-GlcNac epimerase and transferase enzymes (Henderson et al., 2011) or the transfer of the glycosylation machinery of another bacterium, i.e., from the e-proteobacterium Campylobacter jejuni into E. coli (Wacker et al., 2002). Thus mammalian glycoproteins are usually obtained in unglycosylated form when expressed in E. coli. On the other hand, insect cells are able to glycosylate these proteins although they may do so with slightly different sugar moieties and generally reduced saccharide chain complexity (Jarvis et al., 1998; Tomiya et al., 2004). Here N-glycosylation usually displays a high-mannose type unless engineered insect cells are used, which can mimic mammalian-type glycosylation. Following a common approach for investigating the role of sugar modifications on proteins (Walsh and Jefferis, 2006), we exploited this naturally occurring variation in glycosylation modification to test the biochemical and biological properties of mTWSG1.

We expressed TWSG1/Tsg in E. coli, which do not glycosylate the protein, as well as in HighFive insect cells, which should glycosylate the protein, and also used a commercially available preparation of mTWSG1 produced in murine myeloma cells for comparison. When we treated TWSG1/Tsg proteins with PNGase F and analyzed them by electrophoresis, we were able to confirm differences in glycosylation (Figure 4). Murine TWSG1 made in murine cells was fully glycosylated. Xenopus Tsg made in the HighFive insect cell line was also N-glycosylated, although this glycosylation may differ in the kinds or size of sugar moieties compared to mammalian glycosylation, since the shift in electrophoretic mobility was less than the apparent mobility shift observed upon deglycosylation of mTWSG1 from murine cells.
Mature TWSG1 made in E. coli was not glycosylated and hence showed no change in mobility with PNGase F treatment.

LACK OF GLYCOSYLATION DECREASES THE AFFINITY OF THE BMP–TWSG1 INTERACTION

Our immunoprecipitation data suggest that TWSG1 can bind BMP2/4 only when glycosylated. However, SPR analysis allows for a more precise quantification of this change in affinity. To measure the affinity of the Tsg proteins for BMP2, the ligand BMP2 was immobilized on a biosensor chip surface by amino coupling. Varying concentrations of xTsg or mTWSG1 proteins made in insect cells or E. coli, respectively, were allowed to perfuse over the BMP2 biosensor surface and association and dissociation kinetics were measured (Figure 5). Quantitative analysis of the sensogram reveals that glycosylated xTsg has a three to four-fold slower dissociation rate compared to non-glycosylated xTsg derived from E. coli (Table 1; Figures 5A,B) and also a three-fold faster association. The change in association and dissociation kinetics results in an approximately 10-fold increased affinity of N-glycosylated xTsg compared to the non-glycosylated form for BMP2. The difference in affinity and binding kinetics becomes most apparent by a overlay of two SPR sensograms of insect cell derived xTsg and E. coli derived xTsg at identical protein concentrations (Figure 5C).

Despite large efforts mTWSG1 could not be obtained from insect cell expression, however mTWSG1 could be produced in sufficient quantities in E. coli using the same expression and purification scheme as used for the production of xTsg. Measuring the interaction of BMP2 and mTWSG1 from E. coli via SPR also revealed a fast dissociation rate constant. In contrast to the interaction of xTsg and BMP2 the binding of mTWSG1 to BMP2 exhibited a biphasic binding kinetics, which could not be analyzed by a simple 1:1 Langmuir type interaction model (Figure 5D). Instead one interaction showed a fast association (on-rate) and a fast dissociation (off-rate) whereas the other interaction exhibited a slow on- and a slow off-rate. From the latter kinetics binding parameters could be deduced that were very similar to the ones determined for xTsg derived from E. coli (Table 1). Although we have no explanation why mTWSG1 shows two different binding kinetics for binding to BMP2 the comparison of mTWSG1 and xTsg produced in E. coli clearly suggests that the presence of the carbohydrate leads to a significant increase in binding affinity for BMP2.

DISCUSSION

Although mTWSG1 protein has been presumed to be glycosylated since its initial characterization, the role of glycosylation in mTWSG1 activity has not been studied in much detail. We report here, for the first time, that TWSG1 binding to BMPs is dependent on N-glycosylation. We also show that reduced BMP binding correlates with diminished TWSG1 BMP inhibitory activity.

Our data complement those previously published (Oelgeschlager et al., 2003) in which mutation of a glycosylation site in xTsg led to a stronger biological effect than that of the wild type protein. When serine 54 of xTsg (corresponding to proline 53 in mice) was mutated to alanine, the electrophoretic mobility of the protein was increased. In addition, this S54A mutant showed enhanced centralization activity compared to wild type xTsg, which the authors attributed to increased diffusibility of the protein in the tissue. Based on our results, it is also possible that BMP binding may have been compromised by reduced glycosylation. We predict that this would limit BMP binding but may not interfere with the ability of Tsg to stimulate CHRD cleavage. This model is consistent with other results reported by Oelgeschlager et al. (2003), in which

Ligand	k_{on} [M^{-1}s^{-1}]	k_{off} [s^{-1}]	K_D [nM]
xTsg from insect cells	11 ± 0.8 × 10^{4}	2 ± 0.5 × 10^{-4}	2.5
xTsg from E. coli	3.8 ± 1 × 10^{4}	7 ± 0.5 × 10^{-4}	20.2
mTWSG from E. coli	4.4 ± 0.3 × 10^{4}	76 ± 1.3 × 10^{-4}	39.6 (301)
	(10.7 ± 3 × 10^{4})_A	(20.3 ± 0.3 × 10^{-2})	

*Values in parenthesis denote low affinity interaction of the biphasic interaction between mTWSG1 and BMP2.
they showed that N-terminal mutations of xTsg that were unable to bind BMPs still retained BMP-promoting activity via the C-terminus of the protein, which resulted in enhanced ventralization. These explanations are not mutually exclusive and diffusibility differences of variable TWSG1 glycoforms could represent an exciting new line of investigation.

Our findings raise the possibility that TWSG1’s BMP modulatory activity may be dependent on, or regulated by, glycosylation and highlight the importance of sugar modifications in extracellular signaling interactions. Given that several other extracellular BMP modulating proteins are also predicted glycoproteins, for example CHRD (Gumienny and Padgett, 2002), CV2/BMPER (Kamimura et al., 2004), Noggin (Groppe et al., 2002), and the DAN family of BMP binding proteins (Stanley et al., 1998; Avsian-Kretchmer and Hsueh, 2004), glycosylation may play a wider role in extracellular BMP regulation than presently recognized. The role of glycosylation in interactions of other proteins will have to be verified however. For example, Xenopus Lefty, which plays a role in Nodal signaling analogous to the role of TWSG1 in BMP signaling, is also a glycoprotein but does not require glycosylation for normal function (Westmoreland et al., 2007). In addition to the BMP binding proteins, glycosylation of the ligand itself is also likely to play a role in regulation of extracellular signaling as illustrated by the absolute requirement of N-glycosylation for normal function of BMP6 with its BMP type I receptor Alk2 (Saremba et al., 2008). Likewise, given the important role of the metalloproteinase Tolloid/Xolloid/BMP1 in regulating BMP action in combination with TWSG/Tsg and CHRD (Larrain et al., 2001), it is interesting that glycosylation has been identified as regulating the activity of the metalloproteinase MT1-MMP (Wu et al., 2004).
Twisted gastrulation made in cells of various species may have differential glycosylation or complete lack of glycosylation. Given the correlation reported here between protein source, glycosylation, BMP binding activity, and biological activity, we suggest that experiments using recombinant BMP modulating proteins should carefully consider the source and glycosylation status of these proteins. It is also interesting to speculate whether glycosylation of TWSG1 or other proteins may be regulated at a tissue specific level, allowing fine-tuning of protein activity in various contexts.

The exon 4 deletion mutant, which led us to this line of inquiry, is deficient for normal TWSG1 activity and a lack of glycosylation may contribute to this deficiency and the ensuing craniofacial phenotypes. In the mandibular explant system, application of exogenous glycosylated mTWSG1 resulted in a reduction of Msx2 expression, consistent with TWSG1’s role as a BMP antagonist. The interactions between TWSG1 and BMPs in vivo, however, are more complex. Functional TWSG1 serves to establish a BMP signaling gradient in the developing mandibular arch. Deletion of exon 4 disrupts the interactions between TWSG1 and BMPs, which, in affected embryos, results in loss of the BMP gradient, more diffuse BMP signaling, and ectopic apoptosis (Mackenzie et al., 2009). Correspondingly, the expression of BMP target gene Msx2 is shifted ventrally at E9.5 and then mostly lost by E10.5 (Mackenzie et al., 2009; Billington et al., 2011). We believe that loss of expression of Msx2 as well as other BMP target genes by E10.5 is due to the loss of a proper BMP gradient and the resultant apoptosis of the distal tissues of the mandibular arch. While TWSG1 antagonizes BMP signaling within the mandibular arch in the explant culture system, we suggest that in vivo the BMP limiting action of TWSG1 can act to actually maintain proper BMP signaling levels in mandibular development and that this action is dependent on glycosylation of TWSG1.

Our results highlight the importance of a better understanding of both the various signaling molecules in craniofacial development as well as their potential post-translational modifications. The complex extracellular regulation of BMPs has been compared to a baroque “court of intrigue” (Bier, 2008) based on all the surprising and nuanced interactions of the many players in BMP signaling. Our study adds to this complexity by highlighting the role of post-translational modifications.

ACKNOWLEDGMENTS
We would like to acknowledge BreAnne MacKenzie for assistance with mandibular explants, Brian Schmidt and Taylor Sulerud for technical assistance as well as Dr. Eric Jensen and Dr. Hiroshi Nakato for helpful advice and stimulating discussion. We would also like to thank Dr. Reinhard Grabherr from the Vienna Institute for Biotechnology, Austria for the kind gift of suspension-adapted HighFive insect cells and his support. This work was supported by the NIH grant R01 DE016601 to Anna Petryk, R01 GM095746 to Michael B. O’Connor, R01 AR056642 to Rajaram Gopalakrishnan, and Deutsche Forschungsgemeinschaft grant MU1095/3-2 to Thomas D. Mueller. Charles J. Billington was supported by the University of Minnesota Musculoskeletal Research Training Program T32 AR050938 and the Medical Scientist Training Program T32 GM008244.

REFERENCES
Avsian-Kretchmer, O., and Hsueh, A. J. (2004). Comparative genomic analysis of the eight-membered ring cystine knot-containing bone morphogenetic protein antagonists. Mol. Endocrinol. 18, 1–12.
Barbosa, J. A., Santos-Aguado, J., Mentzer, S. J., Strominger, J. L., Burakoff, S. J., and Biro, P. A. (1987). Site-directed mutagenesis of class I HLA genes. Role of glycosylation in surface expression and functional recognition. J. Exp. Med. 166, 1329–1350.
Benz, I., and Schmidt, M. A. (2001). Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol. Microbiol. 40, 1403–1413.
Bier, E. (2008). Intriguing extracellular regulation of BMP signaling. Dev. Cell 15, 176–177.
Billington, C. J. Jr., Ng, B., Forsman, C., Schmidt, B., Bagchi, A., Syner, D. E., Schotta, G., Gopalakrishnan, R., Sarver, A. L., and Petryk, A. (2011). The molecular and cellular basis of variable craniofacial phenotypes and their genetic rescue in Twisted gastrulation mutant mice. Dev. Biol. 355, 21–31.
Blitz, I. L., Cho, K. W., and Chang, C. (2003). Twisted gastrulation loss-of-function analyses support its role as a BMP inhibitor during early Xenopus embryogenesis. Development 130, 4973–4988.
Buller, A. L., Hastings, G. A., Kirkness, E. F., and Fraser, C. M. (1994). Site-directed mutagenesis of N-linked glycosylation sites on the gamma1/cysteinylaromatic acid type A receptor alpha 1 subunit. Mol. Pharmacol. 46, 858–865.
Caragea, C., Sinapov, J., Silvescu, A., Dobbs, D., and Honavar, V. (2007). Glycosylation site prediction using ensembles of support vector machine classifiers. BMC Bioinformatics 8, 438. doi: 10.1186/1471-2105-8-438
Chang, C., Holtzman, D. A., Chau, S., Chickering, T., Woolf, E. A., Holmgren, L. M., Bodorova, J., Gearing, D. P., Holmes, W. E., and Brivanlou, A. H. (2001). Twisted gastrulation can function as a BMP antagonist. Nature 410, 483–487.
Ekanayake, S., and Hall, B. K. (1997). The in vivo and in vitro effects of bone morphogenetic protein-2 on the development of the chick mandible. Int. J. Dev. Biol. 41, 67–81.
Gavel, Y., and Von Heijne, G. (1990). Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 3, 433–442.
Gazzero, E., Deregowski, V., Stadtmeyer, L., Gale, N. W., Economides, A. N., and Canalis, E. (2006). Twisted gastrulation, a bone morphogenetic protein agonist/antagonist, is not required for post-natal skeletal function. Bone 39, 1252–1260.
Groppe, J., Greenwald, J., Wiater, E., Rodriguez-Leon, J., Economides, A. N., Kwiatkowski, W., Affolter, M., Vale, W. W., Belmonte, J. C., and Chos, S. (2002). Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature 420, 636–642.
Gumienny, T. L., and Padgett, R. W. (2002). The other side of TGF-beta superfamily signal regulation: thinking outside the cell. Trends Endocrinol. Metab. 13, 295–299.
Heinecz, K., Seher, A., Schmitz, W., Mueller, T. D., Sebald, W., and Nickel, J. (2009). Receptor oligomerization and beyond: a case study in bone morphogenetic proteins. BMC Biol. 7, 59. doi: 10.1186/1741-7007-7-59
Henderson, G. E., Isett, K. D., and Gerngross, T. U. (2011). Site-specific modification of recombinant proteins: a novel platform for modifying glycoproteins expressed in E. coli. Biocong. Chem. 22, 903–912.
Jarvis, D. L., Kawar, Z. S., and Holister, J. R. (1998). Engineering N-glycosylation pathways in the baculovirus-insect cell system.Curr. Opin. Biotechnol. 9, 528–533.
Jaskoll, T., Abichaker, G., Witcher, D., Sala, F. G., Bellusci, S., Hajhosseini, M. K., and Melnick, M. (2005). FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis. BMC Dev. Biol. 5, 11. doi: 10.1186/1471-213X-5-11
Kamimura, M., Matsumoto, K., Koshiba-Takeuchi, K., and Ogura, T. (2004). Vertebrate crosven2 is secreted and acts as an extracellular modulator of the BMP signaling cascade. Dev. Dyn. 230, 434–445.
Larrain, J., Oelgeschlager, M., Kepurva, N. I., Reversade, B., Zakin, L., and De Robertis, E. M. (2001). Protein engineering: thinking outside the cell. Development 25, 29–39.
Lindenthal, C., and Elsinghorst, E. A. (1999). Identification of a glyco-
protein produced by enterotoxigenic Escherichia coli. Infect. Immun. 67,
4084–4091.

Mackenzie, A., Ferguson, M. W., and Sharpe, P. T. (1992). Expression pat-
terns of the homeobox gene, Hox-8, in the mouse embryo suggest a role in
spaying tooth initiation and shape. Development 115, 403–420.

Mackenzie, B., Wolff, R., Lowe, N., Billington, C. J., Peterson, A., Schmidt, B., Graf, D., Mina, M., Gopalakrishnan, R., and Petryk, A.
(2009). Twisted gastrulation limits apoptosis in the distal region of the
mandibular arch in mice. Dev. Biol. 328, 13–23.

Mason, E. D., Konrad, K. D., Webb, C. D., and De Robertis, E. M. (1994).
Dorsal midline fate in Drosophila embryos requires Twisted gastrula-
ion, a gene encoding a secreted protein related to human connective
tissue growth factor. Genes Dev. 8, 1489–1501.

Melnick, M., Witcher, D., Bringas, P. Jr., Carlsson, P., and Jaskoll, T. (2003).
Mec4's cartilage differentiation is dependent on hedgehog signaling.
Cells Tissues Organs 179, 146–157.

Mina, M., Wang, Y. H., Ivanisevic, A. M., Upholt, W. B., and Rodgers, B.
(2002). Region- and stage-specific effects of FGFs and BMPs in chick
mandibular morphogenesis. Dev. Dyn. 223, 333–352.

Neuberger, A., and Marshall, R. D. (1968). “Aspects of the structure of
glycoproteins,” in Symposion on Foods – Carbohydrates and their
Roles, eds H. W. Schultz, R. F. Cain, and R. W. Wrolstad (Westport, CT:
Avi Publishing Co.), 115–132.

Noukawa, K., Morita, S., Kitamura, H., Nakajima, H., Shibata, F., Morikawa, Y., Kataoka, Y., Ebihara, Y., Kawashima, T., Ichikawa, K., Otsuki, K., Senba, E., Tsuji, K., Makishima, K., Yoshida, N., and Kitamura, T. (2003).
Mammalian Twisted gastrulation is essential for skeletal-limphogenesis.
Mol. Cell. Biol. 23, 2969–2980.

Oelgeschlager, M., Larraz, J., Geisert, D., and De Robertis, E. M. (1999).
The evolutionarily conserved BMP-binding protein Twisted gastrulation
promotes BMP signalling. Nature 405, 757–763.

Oelgeschlager, M., Reversade, B., Lar-
rain, J., Little, S., Mullins, M. C., and De Robertis, E. M. (2003). The pro-
BMP activity of Twisted gastrulation is independent of BMP binding.
Development 130, 4047–4056.

Oelgeschlager, M., Tran, U., Grubisic, K., and De Robertis, E. M. (2004).
Identification of a second Xenopus Twisted gastrulation gene. Int. J. Dev.
Biol. 48, 57–61.

Petryk, A., Anderson, R., Jarcho, M. P., Leaf, H., Carlson, C. S., Klin-
gensmith, J., Shawlot, W., and O’connor, M. B. (2004). The mam-
nalian Twisted gastrulation gene functions in foregut and craniofa-
acial development. Dev. Biol. 267, 325–335.

Ross, J. L., Shimm, O., Vilmos, P., Petryk, A., Kim, H., Gaudenz, K., Herman-
son, S. K., Sanger, S. C., O’connor, M. B., and Marsh, J. L. (2001).
Twisted gastrulation is a conserved extracel-
lular BMP antagonist. Nature 410, 479–483.

Ruppert, R., Hoffmann, E., and Sebald, W. (1996). Human bone morpho-
genic protein 2 contains a heparin-
binding site which modifies its bio-
logic activity. Eur. J. Biochem. 237, 295–302.

Saremba, T., Nickel, J., Seher, A., Kotsch, A., Sebald, W., and Mueller, T. D. (2008). Type I receptor binding of bone morphogenetic protein 6 is
dependent on N-glycosylation of the signal. FEBS J. 275, 172–183.

Sasaki, H., and Hogan, B. L. (1993). Dif-
erential expression of multiple fork head related genes during gastru-
lation and axial pattern formation in the mouse embryo. Development
118, 47–59.

Scott, I. C., Blitz, J. L., Pappano, W.
N., Maas, S. A., Cho, K. W., and Greenspan, D. S. (2001). Homo-
logues of Twisted gastrulation are extracellular cofactors in angio-
genesis of BMP signaling. Nature 410, 475–478.

Semba, I., Nonaka, K., Takahashi, L., Takahashi, K., Dashner, R., Shum, L., Nuckolls, G. H., and Slavkin, H.
C. (2000). Positionally-dependent chondrogenesis induced by BMP4 is
co-regulated by Sox9 and Max2. Dev. Dyn. 217, 401–414.

Sipior, R. G. (2002). Protein glycosyla-
tion: nature, distribution, enzymatic
formation, and disease implications of glycopeptide bonds. Glycolobiology
12, 43R–56R.

Stanley, E., Biben, C., Kotecha, S., Fabri, L., Tajbakhsh, S., Wang, C.
C., Hatzistavrou, T., Roberts, B., Drinkwater, C., Lah, M., Bucking-
ham, M., Hilton, D., Nash, A., Molten, T., and Harvey, R. P. (1998).
DAN is a secreted glycoprotein related to Xenopus cerberus. Mech.
Dev. 77, 173–184.

Tomiyama, N., Nonaka, K., Lee, Y. C., and Betenbaugh, M. J. (2004).
Comparing N-glycan processing in mamma-
nal cell lines to native and engi-
neered lepidopteran insect cell lines. Glycobiology 21, 343–360.

Tucker, A. S., Matthews, K. L., and Sharpe, P. T. (1998). Transforma-
tion of tooth type induced by inhibi-
tion of BMP signaling. Science 282, 1136–1138.

Vilmos, P., Gaudenz, K., Hegedus, Z., and Marsh, J. L. (2001). The Twisted gastrulation family of pro-
teins, together with the IGFBP and CCN families, comprise the TIC superfamily of cysteine rich
secreted factors. Mol. Pathol. 54, 317–323.

Wacker, M., Linton, B., Hitchen, P.
G., Nita-Lazar, M., Haslam, S. M., North, S. J., Panico, M., Morris, H.
R., Dell, A., Wren, B. W., and Asbi, M. (2002). N-linked glycosylation in
Camptothecin: development and its func-
tional transfer into E. coli. Science
298, 1790–1793.

Walsh, G., and Jefferis, R. (2006). Post-
translational modifications in the context of therapeutic proteins. Nat.
Biotechnol. 24, 1241–1252.

Westmoreland, J. J., Takahashi, S., and Wright, C. V. (2007). Xenopus lefty
requires proprotein cleavage but not N-linked glycosylation to inhibit
nodal signaling. Dev. Dyn. 236, 2050–2061.

Wu, Y. I., Munshi, H. G., Sen, R., Sni-
pas, S. J., Selvanes, G. S., Fridman, R., and Stack, M. S. (2004). Gly-
coylation broadens the substrate
profile of membrane type 1 matrix
metalloproteinase. J. Biol. Chem.
279, 8278–8289.

Yamaguchi, K., Akai, K., Kawanishi, G., Ueda, M., Masuda, S., and Sasaki,
R. (1991). Effects of site-directed removal of N-glycosylation sites in
human erythropoietin on its pro-
duction and biological properties. J.
Biomed. Chem. 266, 20434–20439.

Zakian, L., and De Robertis, E. M. (2004).
Inactivation of mouse Twisted gas-
trulation reveals its role in pro-
moting Bmpa activity during fore-
brain development. Development
131, 413–424.

Zakian, L., Reversade, B., Kuroda,
H., Lyons, K. M., and De Robertis, E.
M. (2005). Sirenomelia in Bmp7 and Tsg compound mutant mice: require-
ment for Bmp signaling in the develop-
ment of ventral poster-
ior mesoderm. Development
132, 2489–2499.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest.

Received: 02 July 2011; paper pending published: 31 July 2011; accepted: 23 August 2011; published online: 12 Sep-
tember 2011.

Citation: Billington CJ Jr., Fiebig JE,
Forssman CL, Pham L, Burbach N, Sun M, Jaskoll T, Mansky K, Gopalakrish-
nan R, O’Connor MB, Mueller TD and Petryk A (2011) Glycosylation of
Twisted gastrulation is required for BMP binding and activity during craniofa-
cial development. Front. Physio. 2:59. doi: 10.3389/fphys.2011.00059

This article was submitted to Frontiers in Craniofacial Biology, a specialty of Frontiers in Physiology.
Copyright © 2011 Billington Jr., Fiebig, Forssman, Pham, Burbach, Sun, Mansky, Mansky, Gopalakrishnan, O’Connor, Mueller and Petryk. This is an open-
access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribu-
tion and reproduction in other forums, provided the original authors and source
are credited and other Frontiers condi-
tions are complied with.