Phantom structure: A representational account of floating tone association

Nicholas Rolle (ZAS) & Florian Lionnet (Princeton)

Princeton Phonology Forum (PɸF 2021)

2021 Mar 19-21
A micro-typology of floating tone
Three types of floating tone (FT)

1. “Phonological association” → associates to phonologically-prominent/default position

2. “Adjacent association” → associates to TBU immediately before/after the sponsor

3. “Targeted association” → some nth TBU within a string, with respect to a morpho-prosodic edge
Phonological association

• Tone system – Makonde (Bantu): Penultimate σ word
 ◦ Penultimate lengthening indicates prominent position
 ◦ /kú-lúmúl-a/ → [kúlúmúlà] ‘cut’
 ◦ /kú-lúmúl-áng-a/ → [kúlúmúlángà] ‘cut into small pieces’

• Makonde grammatical tone melodies
 ◦ ⨁ CONSECUTIVE/POTENTIAL ni-ka-takatuk[ií]la ‘and/if I stood up’
 ◦ ⌒ NON-PAST NEGATIVE a-ngu-takatuk[iì]la ‘I do/will not stand up’
 ◦ ⌒⨁ IMPERATIVE takatuk[ií]la ‘stand up!’
 ◦ ⌒⨁⨁REMOTE PAST ní-ndí-takatuk[ií]la ‘I stood up’
Phonological association

- Standard in intonational systems

Gussenhoven 2004:23
Adjacent association

• Chichewa (Bantu)
 ◦ Floating ⵜ – **Post-sponsor** docking
 ◦ Recent past:
 ◦ mu-na⩬-sokonez-a → mu-na-sókonez-a [mu-na-sókóoneez-a]
 ◦ you-T-root-FV ‘you messed up (recently)’
 ◦ Floating ⵜ – **Pre-sponsor** docking
 ◦ Remote past:
 ◦ mu-⪞naa-sokonez-a → mú-naa-sokonez-a [mú-náa-sokonéez-a]
 ◦ you-T-root-FV ‘you messed up’
 ◦ Floating ⵜ’s – **Pre- & post-sponsor** docking simultaneously
 ◦ Sequential perfect:
 ◦ mu-⪞ta⪞tembenuz-a → mú-ta-témbenuz-a [mú-tá-témbénuuz-a]
 ◦ you-T-root-FV ‘after you had turned over’

Downing & Mtenje 2017
Targeted association

- Kuria (Bantu)
 - (a): PAST PROGRESSIVE has several co-exponents
 - the prefix oka- PST.PROG
 - the perfective suffix -ey PFV
 - the shape of the final vowel -e FV
 - a floating \hat{H} which targets the second mora (TBU) of the macro-stem
 - (b): REMOTE FUTURE – the H sub-exponent targets the third mora
 - (c): INCEPTIVE – the H targets the fourth mora

Odden, 1987; Cammenga, 2004; Mwita, 2008; Marlo et al., 2015; Paster, 2019
Why isn’t FT always phonological association?
(Or, what prevents floating tones from simply ‘floating away’?)

• Floating tones are often bounded on both sides
 ◦ Zilacayotitlán Tlapanec: \text{nì}^\text{H}-\text{xtāa} \rightarrow \text{nì}-\text{xtāa} \ ‘\text{CMP.2PL-caress’}
Why isn’t FT always phonological association?
(Or, what prevents floating tones from simply ‘floating away’?)

- Cf. Chichewa: mu-na\(\text{\textcircled{H}}\)-sokonez-a \rightarrow mu-na-sókoneez-a
 - What prevents the floating tone to going to least marked position? (→ TETU)
 - If the floating tone is unassociated in the input, it is not subject to faithfulness
Phantom structure
Components of phantom structure

- Components of phantom structure (Rolle & Lionnet 2020):
 - Phonological units of contrast (segments, features, tones, etc.) on a **SUBSTANTIVE PLANE**
 - Counterpart units of contrast which exist on a (parallel) **PHANTOM PLANE**

Image: Andy Fulcher, Solid Solutions Management Ltd (https://www.solidsolutions.co.uk/blog/2014/05/creating-multiple-angular-planes-as-reference-geometry-in-SOLIDWORKS/#.YFMHB51Kjb0)
Components of phantom structure

• Kuria:
 ◦ **HORTATORY IMPERATIVE**: pre-associated
 a-tá-βereker-a → [a-tá-βereker-a]
 ‘let him call’
 ◦ **REMOTE FUTURE**: third mora
 n-to-reوها-hootooter-a → [n-to-re-hootőoter-a]
 ‘we will reassure’
 ◦ **INCEPTIVE**: fourth mora
 to-raوها-hootooter-a → [to-ra-hootőter-a]
 ‘we are about to reassure’
Components of phantom structure

• The parallel PHANTOM PLANE
 ◦ “Phantom structure is phonological structure that is needed for the full realization of the lexical entry, but which the lexical entry cannot provide itself – it is a ‘desire’ for missing structure, so to speak.” (Rolle & Lionnet 2020)
 ◦ Transplanar linear precedence relations, transplanar links, and transplanar constituents
Components of phantom structure

• Kuria:
 ◦ INCEPTIVE: fourth mora
io-®-hootooter-a → [to-ra-hootoôter-a]
 ‘we are about to reassure’
Components of phantom structure

- Kuria:
 - **Inceptive:**
 - to-ra®-hootooter-a → [to-ra-hootoóter-a]
 - ‘we are about to reassure’

transplanar association
Phantom structure in context

- Kuria: to-raH-hootoster-a \rightarrow to-ra-hooto\text{t}er-a (4th mora)

- Standard concatenation of phonological substance
Phantom structure in context

- Kuria: to-ra\(^\text{H}\) - hootooter-a \rightarrow to-ra-hootoo\(\text{ö}\)ter-a (4\(^{\text{th}}\) mora)
- Underlying representations of morphs (SUBSTANTIVE + PHANTOM)
Phantom structure in context

- Multiplane concatenation
Phantom structure in context

- Multiplane correspondence strings
Phantom structure in context

- Kuria: to-ra\(\text{H}\)-hootooter-a \(\rightarrow\) to-ra-hootoóter-a (4\(^{th}\) mora)
Targeted association via phantom structure

	Id-PHO(μ)	INTEG-PHO(μ)	UNIF-PHO(μ)	*FLOAT	MAX(T)	H/Hd	Id-SUBO(μ)
a. to_{1,a-ra_{2,b}} [ho_{3,0,4,0,5,0,6,0,7,0,8}]_{MS}				*			*
b. to_{1,a-ra_{2,b}} [ho_{3,0,4,0,5,0,6,0,7,0,8}]_{MS}				*!		*	*
c. to_{1,a-ra_{2,b}} [ho_{3,0,4,0,5,0,6,0,7,0,8}]_{MS}				*!		*	
d. to_{1,a-ra_{2,b}} [ho_{3,0,4,0,5,0,6,0,7,0,8}]_{MS}				*!		*	*
e. to_{1,a-ra_{2,b}} [ho_{3,0,4,0,5,0,6,0,7,0,8}]_{MS} (H)				*!			*
f. to_{1,a-ra_{2,b}} [ho_{3,0,4,0,5,0,6,0,7,0,8}]_{MS}				*!		*	
g. to_{1,a-ra_{2,b}} [ho_{3,0,4,0,5,0,6,0,7,0,8}]_{MS}				*!		*	
h. to_{1,a-ra_{2,b}} [ho_{3,0,4,0,5,0,6,0,7,0,8}]_{MS}				*!		*	*
Targeted association via phantom structure

	/to\textsubscript{1,a}-ra\textsubscript{2,b} · $\{[\mu\text{c} \mu\text{d} \mu\text{e} \mu\text{f}]_{\text{MS}}\}$ ho\textsubscript{3}o\textsubscript{4}to\textsubscript{5}o\textsubscript{6}te\textsubscript{7}ra\textsubscript{8}	Id-PHO(μ)	INTEG-PHO(μ)	UNIF-PHO(μ)	*FLOAT	MAX(T)	H/HD	Id-SUBO(μ)
a.	to\textsubscript{1,a}-ra\textsubscript{2,b} · [ho\textsubscript{3}c,o\textsubscript{4},d,to\textsubscript{5},e,o\textsubscript{6},fte7,ra\textsubscript{8}]_{\text{MS}}							
b.	to\textsubscript{1,a}-ra\textsubscript{2,b} · [ho\textsubscript{3},c,o\textsubscript{4},d,to\textsubscript{5},e,o\textsubscript{6},fte7,ra\textsubscript{8}]_{\text{MS}}	*!						
c.	to\textsubscript{1,a}-ra\textsubscript{2,b} · [ho\textsubscript{3},c,o\textsubscript{4},d,to\textsubscript{5},e,o\textsubscript{6},fte7,ra\textsubscript{8}]_{\text{MS}}	*!						
d.	to\textsubscript{1,a}-ra\textsubscript{2,b} · [ho\textsubscript{3},c,o\textsubscript{4},d,to\textsubscript{5},e,o\textsubscript{6},fte7,ra\textsubscript{8}]_{\text{MS}}	*!						
e.	to\textsubscript{1,a}-ra\textsubscript{2,b} · [ho\textsubscript{3},c,o\textsubscript{4},d,to\textsubscript{5},e,o\textsubscript{6},fte7,ra\textsubscript{8}]_{\text{MS}} (H)	*!						
f.	to\textsubscript{1,a}-ra\textsubscript{2,b} · [ho\textsubscript{3},c,o\textsubscript{4},d,to\textsubscript{5},e,o\textsubscript{6},fte7,ra\textsubscript{8}]_{\text{MS}}	*!						
g.	to\textsubscript{1,a}-ra\textsubscript{2,b} · [ho\textsubscript{3},c,o\textsubscript{4},e,to\textsubscript{5},d,o\textsubscript{6},te7,ra\textsubscript{8}]_{\text{MS}}	*!						
h.	to\textsubscript{1,a}-ra\textsubscript{2,b} · [ho\textsubscript{3},c,d,o\textsubscript{4},e,to\textsubscript{5},d,o\textsubscript{6},te7,ra\textsubscript{8}]_{\text{MS}}							
Targeted association via phantom structure

- **IDENT-SUBO(μ)**

Corresponding TBUs in the substantive plane (of the input) and output have identical tonal associations

(≈ Ident-IO (μ))

Case	Input	Output	Id-PHO(μ)	INTEG-PHO(μ)	UNIF-PHO(μ)	*FLOAT	MAX(T)	H/HD	ID-SUBO(μ)
a.	to1-ra2,b-[ho3,co4,td5,ce6,te7,ra8]	to1a-ra2,b-[ho3,co4,td5,ce6,te7,ra8]	*	*	*	*	*	*	*
b.	to1-ra2,b-[ho3,co4,td5,ce6,te7,ra8]	*	*	*	*				*
c.	to1-ra2,b-[ho3,co4,td5,ce6,te7,ra8]	*	*	*	*				*
d.	to1-ra2,b-[ho3,co4,td5,ce6,te7,ra8]	*	*	*	*				*
e.	to1-ra2,b-[ho3,co4,td5,ce6,te7,ra8]	*	*	*	*				*
f.	to1-ra2,b-[ho3,co4,td5,ce6,te7,ra8]	*	*	*	*				*
g.	to1-ra2,b-[ho3,co4,td5,ce6,te7,ra8]	*	*	*	*				*
h.	to1-ra2,b-[ho3,co4,td5,ce6,te7,ra8]	*	*	*	*				*
Targeted association via phantom structure

- **IDENT-PHO(μ)**

 Corresponding TBUs in the **phantom plane** (of the input) and output have identical tonal associations.

	/to1, a-ra2,b/ [μ_c μ_d μ_e μ_f] MS \{ho₃o₄to₅o₆te₇ra₈\} /	H	Id-PHO(μ)	UNIF-PHO(μ)	*FLOAT	MAX(T)	H/Hd	Id-SUBO(μ)
a.	to₁ a-ra₂ b [ho₃o₄to₅o₆te₇ra₈] MS	H						
b.	to₁ a-ra₂ b [ho₃o₄to₅o₆te₇ra₈] MS	*!						
c.	to₁ a-ra₂ b [ho₃o₄to₅o₆te₇ra₈] MS	*!						
d.	to₁ a-rá₂ b [ho₃o₄to₅o₆te₇ra₈] MS	*!						
e.	to₁ a-ra₂ b [ho₃o₄to₅o₆te₇ra₈] MS (H)	*!						
f.	to₁ a-ra₂ b [ho₃o₄to₅o₆te₇ra₈] MS	*!						
g.	to₁ a-ra₂ b [ho₃o₄to₅o₆te₇ra₈] MS	*!						
h.	to₁ a-ra₂ b [ho₃o₄to₅o₆te₇ra₈] MS	*!						
Targeted association via phantom structure

- **IDENT-SUBO(µ)**

Tone mismatch between output µ and corresponding substantive µ

- Violation
Targeted association via phantom structure

/to₁,a-ra₂,b-{[µₚ µ_d µ_e µ_f]_MS} ho₃o₄to₅o₆te₇ra₈\{H							

- **IDENT-SUBO(µ)**

No mismatch
- No violation
Targeted association via phantom structure

- **IDENT-PHO(μ)**

Tone mismatch between an input phantom μ and a corresponding output μ

- Violation
Targeted association via phantom structure

Case	Expression	ID-PHO(μ)	INTEG-PHO(μ)	UNIF-PHO(μ)	*FLOAT	MAX(T)	H/Hd	ID-SUBO(μ)
a.	/to₁,a-ra₂,b-[ho₃,œ₄,œ₅,œ₆,œ₇,œ₈]MS /							
b.	to₁,a-ra₂,b-[ho₃,œ₄,œ₅,œ₆,œ₇,œ₈]MS	*!						
c.	to₁,a-ra₂,b-[ho₃,œ₄,œ₅,œ₆,œ₇,œ₈]MS	*!						
d.	to₁,a-ra₂,b-[ho₃,œ₄,œ₅,œ₆,œ₇,œ₈]MS	*!						
e.	to₁,a-ra₂,b-[ho₃,œ₄,œ₅,œ₆,œ₇,œ₈]MS (H)	*!						
f.	to₁,a-ra₂,b-[ho₃,œ₄,œ₅,œ₆,œ₇,œ₈]MS	*!						
g.	to₁,a-ra₂,b-[ho₃,œ₄,œ₅,œ₆,œ₇,œ₈]MS	*!						
h.	to₁,a-ra₂,b-[ho₃,œ₄,œ₅,œ₆,œ₇,œ₈]MS	*!						

- **IDENT-PHO(μ)**
- No mismatch
- No violation

\[\text{TARGETED ASSOCIATION VIA PHANTOM STRUCTURE} \]

\[/to₁,a-ra₂,b-\{[μ_e \, μ_d \, μ_e \, μ_d]_{MS} \} / \]
Targeted association via phantom structure

- **INTEGRITY-PHO(μ)**

No TBU in the phantom plane has multiple correspondents in the output

(no splitting)
Targeted association via phantom structure

/to\textsubscript{1,a}-ra\textsubscript{2,b} \{ [\mu\textsubscript{c}, \mu\textsubscript{d}, \mu\textsubscript{e}, \mu\textsubscript{f}] \textsubscript{MS} \} /ho\textsubscript{03}o\textsubscript{04}to\textsubscript{05}o\textsubscript{06}te\textsubscript{07}ra\textsubscript{08}	ID-PHO(\mu)	INTEG-PHO(\mu)	UNIF-PHO(\mu)	*FLOAT	MAX(T)	H/Hd	ID-SUBQ(\mu)
a. to\textsubscript{1,a}-ra\textsubscript{2,b}^{-}[ho\textsubscript{03}o\textsubscript{04},dto\textsubscript{05}o\textsubscript{06},fte\textsubscript{07}ra\textsubscript{08}]\textsubscript{MS}							
b. to\textsubscript{1,a}-ra\textsubscript{2,b}^{-}[ho\textsubscript{03}o\textsubscript{04},dto\textsubscript{05}o\textsubscript{06},fte\textsubscript{07}ra\textsubscript{08}]\textsubscript{MS}	*!						
c. to\textsubscript{1,a}-ra\textsubscript{2,b}^{-}[ho\textsubscript{03}o\textsubscript{04},dto\textsubscript{05}o\textsubscript{06},fte\textsubscript{07}ra\textsubscript{08}]\textsubscript{MS}	*!						
d. to\textsubscript{1,a}-ra\textsubscript{2,b}^{-}[ho\textsubscript{03}o\textsubscript{04},dto\textsubscript{05}o\textsubscript{06},fte\textsubscript{07}ra\textsubscript{08}]\textsubscript{MS}	*!						
e. to\textsubscript{1,a}-ra\textsubscript{2,b}^{-}[ho\textsubscript{03}o\textsubscript{04},dto\textsubscript{05}o\textsubscript{06},fte\textsubscript{07}ra\textsubscript{08}]\textsubscript{MS} (H)	*!						
f. to\textsubscript{1,a}-ra\textsubscript{2,b}^{-}[ho\textsubscript{03}o\textsubscript{04},dto\textsubscript{05}o\textsubscript{06},fte\textsubscript{07}ra\textsubscript{08}]\textsubscript{MS}	*!						
g. to\textsubscript{1,a}-ra\textsubscript{2,b}^{-}[ho\textsubscript{03}o\textsubscript{04},dto\textsubscript{05}o\textsubscript{06},fte\textsubscript{07}ra\textsubscript{08}]\textsubscript{MS}							*

- **INTEGRITY-PHO(\mu)**

No TBU in the phantom plane has multiple correspondents in the output (no splitting)
Targeted association via phantom structure

\(\text{to}_{1,a}-\text{ra}_{2,b} \cdot \) \[\{ \text{ho}_{5,04t05,06t7,08} \} \]	H	\(\text{Id-PHO}(\mu) \)	\(\text{INTEG-PHO}(\mu) \)	\(\text{UNIF-PHO}(\mu) \)	实习生	\(\text{H/HD} \)	\(\text{H-QN} \)
a.	to\(_{1,a}-\text{ra}_{2,b} \cdot [\text{ho}_{3,04t05,06t7,08}]_{\text{MS}} \)				*	*	
b.	to\(_{1,a}-\text{ra}_{2,b} \cdot [\text{ho}_{3,04t05,06t7,08}]_{\text{MS}} \)	*!			*	*	*
c.	to\(_{1,a}-\text{ra}_{2,b} \cdot [\text{ho}_{3,04t05,06t7,08}]_{\text{MS}} \)	*!			*	*	
d.	to\(_{1,a}-\text{ra}_{2,b} \cdot [\text{ho}_{3,04t05,06t7,08}]_{\text{MS}} \)	*!			*	*	
e.	to\(_{1,a}-\text{ra}_{2,b} \cdot [\text{ho}_{3,04t05,06t7,08}]_{\text{MS}} \)		*!	*			
f.	to\(_{1,a}-\text{ra}_{2,b} \cdot [\text{ho}_{3,04t05,06t7,08}]_{\text{MS}} \)		*!		*		
g.	to\(_{1,a}-\text{ra}_{2,b} \cdot [\text{ho}_{3,04t05,06t7,08}]_{\text{MS}} \)		*!		*		
h.	to\(_{1,a}-\text{ra}_{2,b} \cdot [\text{ho}_{3,04t05,06t7,08}]_{\text{MS}} \)				*!	*	

- **Uniformity-** \(\text{PHO}(\mu) \)

No TBU in the output has multiple correspondents in the phantom plane (no merging/coalescing)
Targeted association via phantom structure

Step	Formula	Id-PHO(μ)	Integ-PHO(μ)	UNIF-PHO(μ)	FLOAT	MAX(T)	H/Hd	Id-SUBO(μ)
a.	to_{1,a} - ra_{2,b} - [ho_{3,co_{4,dto_{5,co_{6,fe_{7,te_{8}r_{a}}}}]}_{MS}	*						
b.	to_{1,a} - ra_{2,b} - [ho_{3,co_{4,dto_{5,co_{6,fe_{7,te_{8}r_{a}}}}]}_{MS}	*						
c.	to_{1,a} - ra_{2,b} - [ho_{3,co_{4,dto_{5,co_{6,fe_{7,te_{8}r_{a}}}}]}_{MS}	*						
d.	to_{1,a} - ra_{2,b} - [ho_{3,co_{4,dto_{5,co_{6,fe_{7,te_{8}r_{a}}}}]}_{MS}	*						
e.	to_{1,a} - ra_{2,b} - [ho_{3,co_{4,dto_{5,co_{6,fe_{7,te_{8}r_{a}}}}]}_{MS}	*						
f.	to_{1,a} - ra_{2,b} - [ho_{3,co_{4,dto_{5,co_{6,fe_{7,te_{8}r_{a}}}}]}_{MS}	*						
g.	to_{1,a} - ra_{2,b} - [ho_{3,co_{4,dto_{5,co_{6,fe_{7,te_{8}r_{a}}}}]}_{MS}	*						
h.	to_{1,a} - ra_{2,b} - [ho_{3,co_{4,dto_{5,co_{6,fe_{7,te_{8}r_{a}}}}]}_{MS}	*						
Phonological association if no phantom struct.

- **Example** (based on Lamba)

	/ta₁-ᵣ₁₂-[ka₃-k₀₄m₅]ₚₛₜṛss/	ID-PhO(τ)	FLOAT	MAX(T)	H/Hd	ID-SUBO(τ)
a.	tá₁-tu₂-[ka₃-k₀₄m₅]ₚₛₜṛss				*!	*
b.	ta₁-tú₂-[ka₃-k₀₄m₅]ₚₛₜṛss				*!	*
c.	ta₁-tu₂-[ká₃-k₀₄m₅]ₚₛₜṛss				*!	*
d.	ta₁-tu₂-[ka₃-kó₄m₅]ₚₛₜṛss				*!	*
e.	ta₁-tu₂-[ka₃-k₀₄m₅]ₚₛₜṛss				*!	*
f.	ta₁-tu₂-[ka₃-k₀₄m₅]ₚₛₜṛss				*!	*
Phonological association if no phantom struct.

- **Example** (based on Lamba)

ID-PhO(τ)	FLOAT	MAX(T)	H/Hd	ID-SUBO(τ)
/ta₁-tu₂-[ka₃-k₀₄ma₅]STR				
a. tá₁-tu₂-[ka₃-k₀₄ma₅]STR			* !	*
b. ta₁-tú₂-[ka₃-k₀₄ma₅]STR			* !	*
c. ta₁-tu₂-[ká₃-k₀₄ma₅]STR			* !	*
d. ta₁-tu₂-[ka₃-k₀₄ma₅]STR			* !	*
e. ta₁-tu₂-[ka₃-k₀₄ma₅]STR			* !	*
f. ta₁-tu₂-[ka₃-k₀₄ma₅]STR			* !	*

Bickmore 1995
Phonological association if no phantom struct.

- **Example** (based on Lamba)

	ID-PhO(τ)	MAX(T)	H/Hd	ID-SUBO(τ)
a. tá₁-tu₂-[ka₃-kO₄ma₅]STRESS				
b. ta₁-tú₂-[ka₃-kO₄ma₅]STRESS				
c. ta₁-tu₂-[ká₃-kO₄ma₅]STRESS			*!	*
d. ta₁-tu₂-[ka₃-kó₄ma₅]STRESS				
e. ta₁-tu₂-[ka₃-kO₄ma₅]STRESS				
f. ta₁-tu₂-[ka₃-kO₄ma₅]STRESS				*!

Bickmore 1995
Multiple correspondence (competing faithfulness)

- Standard Input-Output Correspondence (IO-Corr) [McCarthy & Prince 1995]
- Base-Reduplicant Correspondence (BR-Corr) [McCarthy & Prince 1995, Ussishkin 1999]
- Agreement By Correspondence (ABC) [Rose & Walker 2004]
- Aggressive reduplication [Zuraw 2002]
- Output-Output Correspondence (OO-Corr) [Benua 1997, Alderete 2001a, 2001b, Rolle 2018a,b]
- Matrix-Basemap Correspondence (Mx-Bm-C) [Rolle 2018c]
- Sympathy Theory (Candidate–Candidate Correspondence) [McCarthy 1999]
- Output-Variant Correspondence [Kawahara 2002]
- Template-Text Correspondence [Blumenfeld 2015]
- Output-Underlying representation correspondence [Hauser & Hughto 2020]
Multiple correspondence (competing faithfulness)

- Standard Input-Output Correspondence (IO-Corr) [McCarthy & Prince 1995]
- Base-Reduplicant Correspondence (BR-Corr) [McCarthy & Prince 1995, Ussishkin 1999]
- Agreement By Correspondence (ABC) [Rose & Walker 2004]
- Agreement By Correspondence (ABC) [Rose & Walker 2004]
- Aggressive reduplication [Zuraw 2002]
- Output-Output Correspondence (OO-Corr) [Benua 1997, Alderete 2001a, 2001b, Rolle 2018a,b]
- Matrix-Basemap Correspondence (Mx-Bm-C) [Rolle 2018c]
- Sympathy Theory (Candidate–Candidate Correspondence) [McCarthy 1999]
- Output-Variant Correspondence [Kawahara 2002]
- Template-Text Correspondence [Blumenfeld 2015]
- Output-Underlying representation correspondence [Hauser & Hughto 2020]
Alternatives to phantom structure
Targeted association via a counting constraint

• A new possibility: are constraints with counting also permissible?
 ◦ [ASIDE: What we need is a comprehensive theory of constraints]
• “μ4: Assign one violation for each floating tone that does not surface four moras from its input location.”
 (a ‘counting constraint’)
(Sande, Jenks, Inkelas 2020 – underlining ours)

/to-raH-[\textomega \text{roma}] [\textomega \text{eyetők̈e}]	μ4	H, R	ID-T	H	Obs	Pred
	9	9	1	9	0	0
a. [([\textomega \text{toraroma}] [\textomega \text{eyetők̈e}]])	1					
b. \textup{\textcircled{f}} [([\textomega \text{toraroma}] [\textomega \text{eyetők̈e}]])	1	1	1	1		
Targeted association via a counting constraint

- Floating tone has **no input position** relative to mora/segmental tier
- Kuria: to-H-ra-hootooter-a \rightarrow to-ra-hooto\text{ö}ter-a
Targeted association via a counting constraint

- Floating tone has **no input position** relative to mora/segmental tier
- Kuria: to-ra\(\text{H}\)-hootooter-a \(\rightarrow\) to-ra-hootoóter-a
Targeted association via a counting constraint

• Could we state instead that “...each floating tone that does not surface four moras from its sponsor.” (still a ‘counting constraint’)
Proper anchoring in phantom structure

- Phantom substance must be properly anchored
Proper anchoring in phantom structure

- Phantom substance must be properly anchored

- “Adjacent association”: associates to TBU immediately before/after the sponsor

 vs.

- “Targeted association”: some n^{th} TBU within a string, with respect to a morpho-prosodic edge
Proper anchoring in phantom structure

- Phantom substance must be properly anchored

- A major typological gap: there are no floating tones which (unambiguously) use their sponsor as their anchor, outside of immediate adjacency

- This doesn’t exist (unambiguously):
 - “Place a H two mora away from some prefix’s final mora” (or three, or four, ...)

Diagram: Sponsor anchoring
Counting in grammar generally

• Moreover, many claims that human grammar cannot count, based on a variety of data and arguments (however, cf. Paster 2019)

• Smith & Tsimpli (1995:312ff.)
 ◦ An emphatic element would be positioned “arithmetically rather than structurally” after the third (orthographic) word in a clause
 ◦ Pattern not learned in an artificial language setting
 ◦ neither by a polyglot savant “Christopher”
 ◦ nor by the control group (undergraduate students of linguistics)

• Based on Paster (2019), the best case thus far for this kind of counting in grammar is actually Kuria floating tone!

Grammar can’t count: Kenstowicz 1994:372; Smith & Tsimpli 1995; Hayes 1995:307; Counting falls under “Structure Independent Operations” – Chomsky 2006:54; Isac & Reiss 2008:65; Graf 2017; Cf. Paster 2019 (many more references found therein, as well)
Counting in grammar generally

- Phantom structure does **not** involve counting

cf. itʃiimbáɣo ‘hedges’ – H on 4th mora

Mwita 2008:29
Targeted association via hidden structure

- to-ra®-hootooter-a \(\rightarrow\) to-ra-hootoóter-a

Hidden structure alternative:
ra\(®\)

Cammenga 2004, Trommer 2019
Targeted association via hidden structure

- Argument against $\underbrace{\text{LLLH}}$ (Marlo et al. 2015)
 - Additional H tone spreading operations would spread into this hypothetical $\underbrace{\text{LLLH}}$ sequence.
 - Expect spreading here to be blocked if there were bona fide L tones in the representation.

(12) $/\text{o-}\text{yo-tó-ko}^\text{H}_2^\text{H}_2^-[\text{βereker-a}]_\text{MS}/ \rightarrow \text{o-}\text{yo-tó-kó-[βéreker-á]}_\text{MS} \quad \text{‘to not call’}
Targeted association via hidden structure

• One possibility (suggested by J. Trommer): Add floating ➊ at one stratum, but delete L’s at later stratum (Duke-of-York, A→B→A)

• Evidence against this:
 ◦ There may exist a few grammatical tone melodies which have real floating ➊
 ◦ *These* do not delete at the later stratum where H-tone spread happens
Targeted association via hidden structure

• Behavior of these (potential) L differs from “LLLLHH” alternative

• **First data point:** These other L’s block regular rightward H-spreading rule (cf. previous slide)
 - HORTATORY IMPERATIVE TYPE 1 (H tone on prefix)
 - [a-tá-βereker-a] (*[a-tá-βérēkēr-a]) ‘let him call’
 - [a-tá-ry-a] ‘let him eat’

Marlo et al. 2014:287
Targeted association via hidden structure

• Behavior of these (potential) ⬤ differs from “钆钆钆钆” alternative

• **Second data point:** if there are a sub-minimal number of target moras, tone on the final mora is L, not H
 - HORTATORY IMPERATIVE TYPE 2 (H tone on first mora)
 - [ta-βérèker-a] ‘call!’
 - [tá-ry-à] ‘eat!’

Marlo et al. 2014:280,287; ⬤ to first mora of stem in ntoo-ryá ‘indeed, we have already eaten’ (Untimed past anterior focused)
Targeted association via hidden structure

- Behavior of these (potential) \(\L \) differs from “\(\L \L \L \H \)” alternative

- **Third data point:** With sub-minimal number of target moras, final tone can be either H or L
 - MANDATORY IMPERATIVE (H tone on third mora)
 - \[turuúngàn-a\] ‘welcome!’
 - \[ry-à\] ‘eat!’

Marlo et al. 2014:288-289
Targeted association via hidden structure

• Behavior of these (potential) \(\square \) differs from “\(\square \square \square \square \square \)” alternative

• **Third data point**: With sub-minimal number of target moras, final tone can be either H or L (variation)
 - MANDATORY IMPERATIVE (H tone on third mora)
 - \([\text{tɛrɛká}]\) ‘brew!’ ~ \([\text{tɛrɛkà}]\)

\[\text{Cf. } \square \text{ alone} \]
\[\text{[ntore-tɛrɛká] only}\]

Marlo *et al.* 2014:282,288; \(\square \) to third mora of stem in *ntore-tɛrɛká* ‘we will brew (then)’ (Remote future focused)
Conclusion

1. **Issue**: ‘Targeted association’, where floating tone must associate to some n^{th} TBU within a string, w.r.t. a morpho-prosodic edge (i.e. place a H tone on 4th mora of stem)

2. Initially, suggests a role for counting / counting constraints in grammar

3. **Our counter-proposal**: a representation ‘Phantom Structure’ – splits an input into a substantive plane and a phantom plane

4. Floating tone is associated to a phantom mora on the phantom plane (called ‘transplanar association’)

5. Association to 4th mora in output is due to faithfulness to the association on the phantom plane, via \textsc{ID-PHO}(\mu)

Acknowledgments: Huge thanks to Larry Hyman, Sharon Inkelas, Myriam Lapierre, Laura Kalin, Byron Ahn, Sam Zukoff, Sunwoo Jeong, 2021 UCSC Phlunch, audience and reviewers of AMP 2019, and to viewers like you!
• References: https://nicholasrolle.com/output