Differences in Cadmium Accumulation and Root Morphology in Seedlings of Japanese Wheat Varieties with Distinctive Grain Cadmium Concentration

Katashi Kubo\(^1\), Yoshiaki Watanabe\(^2\), Hitoshi Matsunaka\(^1\), Masako Seki\(^1\), Masaya Fujita\(^1\), Naoyuki Kawada\(^1\), Koichi Hatta\(^1\) and Takashi Nakajima\(^4\)

\(^1\)National Agricultural Center for Kyushu Okinawa Region (KONARC), 496 Izumi, Chikugo, Fukuoka 833-0041 Japan; \(^2\)National Agricultural Research Center (NARC), 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8518 Japan; \(^3\)National Institute of Crop Science (NICS), 2-1-18 Kannondai, Tsukuba, Ibaraki, 305-8518 Japan; \(^4\)KONARC, 2421 Suya, Koshi, Kumamoto, 861-1192 Japan

Abstract: A low cadmium (Cd) concentration in wheat grain is desirable because of Cd toxicity to humans. Grain Cd concentrations in Japanese wheat differed among the varieties in previous study. In this study, we hypothesized that the varieties with a low concentration of Cd in grain have (1) low Cd uptake from the soil through the roots during early growth and/or (2) low Cd translocation from the roots to shoots, and also, that (3) Cd uptake from soil is affected by root morphology. These hypotheses were verified by investigating the concentration and quantity of Cd in root, shoot and leaf tissues, and examining the root morphology of young seedlings of wheat varieties with high and low grain Cd concentrations. Seedlings of ‘Kitahonami’ and ‘Nanbukomugi’ which had low grain Cd concentration (low Cd/G varieties) had a lower Cd quantity in whole plant tissues than ‘Nishikazekomugi’ and ‘Kitakamikomugi’ which had high grain Cd concentration (high Cd/G varieties) during early growth. Low Cd/G varieties also showed lower root to shoot (aerial parts) translocation of Cd than high Cd/G varieties. Seedlings of low Cd/G varieties showed less root branching than high Cd/G varieties. Root frequency showed a significant positive correlation with Cd quantity in whole plant tissues. These results suggest that low Cd/G varieties used in this study have low Cd uptake and translocation from the roots to shoots during early growth, and furthermore, that low Cd uptake at the seedling stage may relate to slow and/or limited development of branching roots.

Key words: Cadmium, Root, Seedling, Translocation, *Triticum aestivum*, Uptake, Wheat.
among varieties with different grain Cd concentration may have occurred since early growth stage. Detection of the differences can contribute to the efficient analysis of morpho-physiological mechanisms of Cd accumulation and the breeding of low Cd accumulation in wheat. In this study, we hypothesized that the varietal difference in Cd concentration in grain is affected by (1) the amount of Cd absorbed from the soil through the roots during early growth and (2) translocation of Cd from the roots to shoots, and moreover, that (3) Cd uptake from soil is affected by root morphology. These hypotheses were verified through field, pot and root box experiments aimed at investigating the concentration and amount of Cd in root, shoot and leaf tissues, and the root distribution in young seedlings of wheat varieties with high and low grain Cd concentrations.

Materials and Methods

1. Plant materials

Four Japanese wheat (*Triticum aestivum* L.) varieties, ‘Nisikazekomugi’ (grain Cd concentration: high), ‘Kitakamikomugi’ (high), ‘Kitahonami’ (low) and ‘Nanbukomugi’ (low) were used for the field, pot and/or root box experiments. Our previous study reveals a varietal difference in grain Cd concentration in Japanese common wheat using diverse materials (Kubo et al., 2008a). Grain Cd concentration in Nishikazekomugi, Kitakamikomugi and Nanbukomugi was 54.5, 43.9 and 29.2 ng g$^{-1}$, respectively. Grain Cd concentration in Kitahonami was evaluated as approximately half compared with that of Nishikazekomugi in subsequent experiments. We defined Nishikazekomugi and Kitakamikomugi as ‘High Cd/G varieties’, and Kitahonami and Nanbukomugi as ‘Low Cd/G varieties’.

2. Field experiment

The four wheat varieties were grown in a drained lowland field with alluvial soil at the National Agricultural Research Center (NARC; Ibaraki, Japan, 36.03°N, 140.10°E). The sowing date was November 7, 2006. The plots were single rows 1.0 m long and 70 cm apart. Sowing density was 10.1 g m$^{-2}$. Fertilizer was applied just before sowing at 40, 60 and 40 kg ha$^{-1}$ of N, P$_2$O$_5$ and K$_2$O, respectively. The experimental design was a randomized block design with two replications. After measurement of plant height and stem number, leaf, stem and root tissues were sampled from 30 cm length row which show normal growth in each plot at 62 days after sowing (DAS) for measurement of dry weight (DW), Cd concentration and quantity. The leaf sheath was included as stem tissue. Root samples were collected from a soil depth of 30 cm and 10 cm away from the seedlings. Roots were separated from the soil in a water tank by rinsing moderately with distilled water.

3. Pot experiment

Nishikazekomugi and Kitahonami were used for the pot experiments in a glasshouse under natural light conditions at NARC. Wagner pots (15000a$^{-1}$) were filled with alluvial soil at a soil density of 0.79 g cm$^{-3}$ and fertilized with 0.15, 0.23 and 0.15 g of N, P$_2$O$_5$ and K$_2$O per pot, respectively. On November 28, 2006, three seeds were sown in each pot with 1 cm depth. The experimental design was a randomized block design with four replications. Plant height and stem number were measured, and aerial parts (shoot: leaf + stem) and root tissues were collected at 37 DAS.

4. Root box experiment

The root box experiment was conducted in a glasshouse under natural light conditions at the National Agricultural Research Center for Kyushu Okinawa Region (KONARC: Chikugo, Fukuoka, Japan, 33.21°N, 130.49°E) from December 8, 2007 to March 14, 2008, using all four varieties. The structure of the root box was similar to that used by Kubo et al. (2008b). Briefly, a filmed rubber tube

Fig. 1. Root box experiment employed in this study. (a), Arrows show the positions of sowing. (b), Boxes were placed in the pool and supported by a frame.

Fig. 2. Root distribution of Kitahonami (a) and Nishikazekomugi (b) at 73 DAS in the root box experiment. Kitahonami had a long seminal root with few branching roots, while Nishikazekomugi had a short seminal root with abundant branching roots. The differences were particularly apparent at 97 DAS.
Plant Production Science Vol.14, 2011

(15 mm wide, 15 mm thick; Product No. 10239-0030-12-5, Fuso Rubber Co., Ltd., Hiroshima, Japan) was fastened between two transparent acrylic boards (50 cm wide, 50 cm long and 3 mm thick) using clips at three points on each side (Fig. 1a). The root box was filled with approximately 3.0 L of soil (alluvial soil: sand = 3 : 2) mixed with 0.70 g of N, 0.90 g of P₂O₅ and 0.70 g of K₂O at a soil density of 0.90 g cm⁻³. Two seeds of each variety germinated on wet filter paper were sown at a depth of 1 cm. The boxes were placed in the pool and supported by a frame (Fig. 1b). Irrigation was conducted from holes on the bottom of the boxes using water stored in the pool. The water level was maintained at a depth of 3−5 cm. The experimental design was a randomized block design with three replications. The length of the deepest seminal root and total number of root tips were measured through the acrylic boards at 39 DAS. At 73 DAS, the length of the deepest seminal root and density of the lateral roots on the seminal root were measured. At 73 and 97 DAS, root distribution was evaluated using a method similar to the profile wall method of Böhm (1976). After dividing the acrylic boards into 1.0 × 1.0 cm grids, the number of visible roots in each grid was counted and the root frequency (root number cm⁻² soil surface) was calculated. Shoot and root samples were collected after evaluation of root frequency. At 73 DAS, the density of lateral roots on the

Field experiment	Concentration (ng g⁻¹)	Quantity (ng)								
	Whole plant	Leaf	Stem	Root	Shoot/Root	Whole plant	Leaf	Stem	Root	Shoot/Root
High Cd/G varieties										
Nishikazekomugi	152 b)	62 b	181 ab	545	0.196	39.5 ab	9.5 ab	15.1	14.9	1.651
Kitakamikomugi	186 a	76 a	229 a	662	0.197	48.3 a	10.7 a	19.3	18.3	1.639
Low Cd/G varieties										
Kitahonami	120 c	42 c	91 c	482	0.132	24.1 b	4.2 b	6.6	13.3	0.812
Ananbukomugi	134 bc	47 c	155 b	490	0.175	34.7 ab	6.5 b	13.2	15.1	1.305
ANOVA	**	**	*		ns	*	*	ns	ns	
Pot experiment										
Nishikazekomugi	908	401 b	2049	0.196	145.2	47.5	97.7	0.486		
Kitahonami	736	215	1908	0.113	103.0	23.3	79.7	0.203		
ANOVA	ns	*	ns			*	*	ns	ns	
Root Box experiment										
73DAS										
High Cd/G varieties										
Nishikazekomugi	1317 b	297 b	1322 a	0.224	3622 a	514 a	1348 a	0.381		
Kitakamikomugi	2044 a	432 a	1816 a	0.238	3822 a	514 a	1235 a	0.416		
Low Cd/G varieties										
Kitahonami	1331 b	213 b	1687 a	0.126	2396 ab	262 ab	962 a	0.272		
Ananbukomugi	1291 b	226 b	1496 a	0.151	1704 b	190 b	718 a	0.265		
ANOVA	**	**	*		ns	*	*	ns	ns	
97DAS										
High Cd/G varieties										
Nishikazekomugi	504 b	186 b	1312 a	0.142	6270	833 a	2283 a	0.365		
Kitakamikomugi	750 a	262 a	1461 a	0.179	7202	749 a	2835 a	0.264		
Low Cd/G varieties										
Kitahonami	785 a	172 b	1889 a	0.092	5357	377 b	2905 a	0.164		
Ananbukomugi	768 a	172 b	1902 a	0.091	5239	380 b	2922 a	0.166		
ANOVA	*	**	*		ns	*	*	ns	ns	

1) Means followed by common letters under each trait were not significantly different according to the multiple test of Ryan-Einot-Gabriel-Welsch (P < 0.05).
2) ** and * show significance at P < 0.01 and 0.01 ≤ P < 0.05, respectively, and ns is not significant according to ANOVA.
3) Values of aerial parts (shoot: leaf + stem).
1. Semiconductor root was also measured. Plant height and stem number were obtained at 39, 73 and 97 DAS. Shoot and root tissues were collected at 73 and 97 DAS. The plants at 39, 73 and 97 DAS were around seedling stage (Zadoks growth stage (ZGS) 15–16) (Zadoks et al., 1974), tillering stage (ZGS 29) and tillering stage (ZGS 29), respectively, in Kitakamikomugi, Kitahonami and Nanbukomugi. In Nishikazekomugi, plants were at seedling stage (ZGS 16), stem elongation stage (ZGS 30) and stem elongation stage (ZGS 31–32) at 39, 73 and 97 DAS, respectively.

5. **Analysis of Cd concentration and quantity**

The DW of each plant tissue was measured after drying at 80°C for seven days. They were then ground using a laboratory mill with stainless steel blades, and 0.1 g was digested in 20 mL of HNO₃ (0.1 M) for 1 hr at room temperature. The samples were then strained through filter paper (Grade 2, Toyo Roshi Kaisha, Ltd.). A reagent blank was processed with each set of 40 samples. Cd concentration was determined with an ELAN6100DRC (Perkin Elmer, Inc.) inductively coupled plasma mass spectrometer. Watanabe et al. (2006) showed that Cd concentration in wheat grain extracted according to this method corresponds with that digested in an acid mixture in a microwave oven (analysis by Nittech Research, Co., Hyogo, Japan). Cd quantity was calculated as the product of Cd concentration multiplied by the DW of each plant tissue for each replication.

6. **Data analysis**

Analysis of variance was conducted using a linear regression model with computer software SPSS (Ver. 13.0 J for Windows, SPSS Japan Inc.).

Results

Cd concentration in whole plant tissues showed significant differences among varieties in field and root box experiments (73 and 97 DAS) (Table 1). In the field experiment, low Cd/G varieties showed lower values than high Cd/G varieties. Cd quantity in whole plant tissues showed significant varietal differences in field, pot and root box experiments (73 DAS). High Cd/G varieties had 1.5 times (field experiment), 1.4 times (pot experiment) and 1.8 times (root box experiment) higher values, respectively than low Cd/G varieties on average.

The Cd concentration and quantity in the leaf, stem and root tissues, and the shoot / root ratio are shown in Table 1. Cd concentration and quantity in the root tissues did not show significant differences among varieties in any experiments. The shoot / root ratio of Cd concentration and quantity were lower in low Cd/G varieties than high Cd/G varieties on average.

At 39 DAS, the number of root tips significantly differed among varieties, ranging from 81 (Nanbukomugi) to 161 (Nishikazekomugi) (Table 2). The number of root tips was about two times greater in Nishikazekomugi than in Kitahonami and Nanbukomugi (low Cd/G varieties). At 73 DAS, a significant difference in the length of the longest primary root was found among varieties, and the primary root was longer in Nishikazekomugi and Kitahonami than

Table 1. Length of the longest primary root, number of root tips and the density of secondary roots on the primary root in the root box experiment.

Variety	39DAS Length of the longest primary root (cm)	39DAS Number of root tips	73DAS Length of the longest primary root (cm)	73DAS Density of secondary root on primary root (cm⁻¹)
High Cd/G varieties				
Nishikazekomugi	14.8 a	161 a	47.2 a	3.05 a
Kitakamikomugi	13.3 a	110 b	38.5 b	3.12 a
Low Cd/G varieties				
Kitahonami	15.2 a	85 bc	53.1 a	2.37 a
Nanbukomugi	11.0 a	81 c	37.5 b	3.05 a
ANOVA	ns	**	**	ns

1) Means followed by common letters under each trait were not significantly different according to the multiple test of Ryan-Einot-Gabriel-Welsch (P < 0.05).

2) ** shows significance at P < 0.01 and ns is not significant according to ANOVA.
in Kitakamikomugi and Nanbukomugi. Root frequency at a soil depth of 0−25 cm significantly differed among varieties at 73 DAS and 97 DAS, ranging from 0.79 cm
\(^{-2}\) (Nanbukomugi) to 2.12 cm
\(^{-2}\) (Nishikazekomugi) and from 1.70 cm
\(^{-2}\) (Kitahonami) to 2.97 cm
\(^{-2}\) (Nishikazekomugi), respectively (Table 3). Low Cd/G varieties showed lower values than high Cd/G varieties at 73 DAS and 97 DAS. At a soil depth of 25−50 cm, the varietal difference was significant at 97 DAS, with values ranging from 0.78 cm
\(^{-2}\) (Nanbukomugi) to 1.81 cm
\(^{-2}\) (Kitakamikomugi). Root frequency in the total depth (0−50 cm) was lower in low Cd/G varieties than in high Cd/G varieties. The root profiles of Kitahonami and Nishikazekomugi are shown in Fig. 2. Higher root frequency significantly related to accumulate a larger quantity of Cd (Fig. 3).

Table 3. Root frequency (cm
\(^{-2}\)) in the root box experiment.

Soil depth (cm)	0−25	25−50	0−50
73DAS			
High Cd/G varieties			
Nishikazekomugi	2.12 \(^{a1}\)	0.36 \(^{a}\)	0.61 \(^{a}\)
Kitakamikomugi	1.72 \(^{a}\)	0.21 \(^{a}\)	0.48 \(^{ab}\)
Low Cd/G varieties			
Kitahonami	0.84 \(^{b}\)	0.16 \(^{a}\)	0.25 \(^{bc}\)
Nanbukomugi	0.79 \(^{a}\)	0.07 \(^{a}\)	0.21 \(^{c}\)
ANOVA \(^{2}\)	******	ns	*
97DAS			
High Cd/G varieties			
Nishikazekomugi	2.97 \(^{a}\)	1.09 \(^{bc}\)	1.02 \(^{ab}\)
Kitakamikomugi	2.91 \(^{a}\)	1.81 \(^{a}\)	1.18 \(^{a}\)
Low Cd/G varieties			
Kitahonami	1.70 \(^{b}\)	1.36 \(^{ab}\)	0.77 \(^{bc}\)
Nanbukomugi	1.78 \(^{b}\)	0.78 \(^{c}\)	0.64 \(^{c}\)
ANOVA \(^{2}\)	******	ns	*

1) Means followed by common letters under each trait were not significantly different according to the multiple test of Ryan-Einot-Gabriel-Welsch (P < 0.05).
2) ** and * show significance at P < 0.01 and 0.01 \(\leq P < 0.05\), respectively, and ns is not significant according to ANOVA.

Fig. 3. Relationships between root frequency and Cd quantity in whole plant tissues in the root box experiment.

Kitahonami, Kitakamikomugi and Nanbukomugi showed intermediate values compared to Nishikazekomugi and Kitahonami. Shoot DW was larger in Nishikazekomugi than in other varieties. Kitahonami and Nanbukomugi (low Cd/G varieties) had a smaller root DW than Nishikazekomugi and Kitakamikomugi (high Cd/G varieties).

Discussion

We examined the concentration and quantity of Cd in seedlings of four Japanese wheat varieties with a high or low grain Cd concentration. These varieties were selected from 237 varieties and used in field, pot and/or root box experiments. The varietal differences in tested traits had a similar tendency among the three experiments. Stolt et al. (2006) reported that genetic variation in shoot and grain Cd concentration remains consistent, regardless of soil type or growing season. The results obtained in this study therefore appear reliable. Cd concentration of soil used in the experiments ranged from 0.170 to 0.210 ug g
\(^{-1}\) (n=16).

Asami et al. (1988) reported that Cd concentration of natural non-contaminated soil in Japan was 0.295 ug g
\(^{-1}\) (0.056−0.801 ug g
\(^{-1}\)). Soil used in this study is considered to be non-contaminated soil.

We firstly hypothesized that low Cd/G varieties had a small amount of Cd absorbed from the soil through the roots during early growth. This was confirmed by the experiments shown in Table 1. The amount of Cd absorbed during the early growth stage may affect to the grain Cd accumulation. Stolt et al. (2006) also showed that it is possible to identify the genotypes that accumulate the most Cd in the grain at an early plant development stage in common wheat and durum wheat. The knowledge should contribute to the research on Cd absorption in wheat seedlings and efficient selection of low Cd/G lines in breeding programs decreasing Cd concentration in wheat grain.
Second, we hypothesized that low Cd/G varieties had a low translocation of Cd from the roots to shoots. While Cd concentration and quantity in root tissues showed no differences among varieties, aerial parts (shoot: leaf + stem) values were lower in low Cd/G varieties than in high Cd/G varieties (Table 1). In fact, the shoot / root ratio of

Table 4. Plant height, stem number, and DW of leaf, stem and root samples.

Plant height (cm)	Stem number (plant⁻¹)	Leaf DW (g plant⁻¹)	Stem DW (g plant⁻¹)	Root DW (g plant⁻¹)
Field experiment				
High Cd/G varieties				
Nishikazekomugi	19.2 a²)	4.3	0.15	0.08
Kitakamikomugi	16.9 ab	4.4	0.14	0.09
Low Cd/G varieties				
Kitahonami	12.1 b	3.5	0.10	0.07
Nanbukomugi	13.2 b	3.5	0.14	0.09
ANOVA³)	**	ns	ns	ns
Pot experiment				
Nishikazekomugi	21.1	2.3	0.11 b	0.05
Kitahonami	18.7	2.4	0.10	0.04
ANOVA	ns	ns	ns	ns
Root Box experiment				
39DAS				
High Cd/G varieties				
Nishikazekomugi	21.0 a	3.8 a	1.73 a	1.02 a
Kitakamikomugi	20.0 a	3.3 b	1.19 ab	0.68 ab
Low Cd/G varieties				
Kitahonami	16.8 b	3.0 b	1.23 ab	0.57 ab
Nanbukomugi	16.4 c	3.0 b	0.84 b	0.48 b
ANOVA	**	**	*	*
73DAS				
High Cd/G varieties				
Nishikazekomugi	32.3 a	8.5 a	4.48 a	1.74 ab
Kitakamikomugi	19.6 b	11.5 a	2.86 b	1.94 a
Low Cd/G varieties				
Kitahonami	17.7 b	15.7 b	1.23 ab	0.57 ab
Nanbukomugi	16.4 b	10.3 a	0.84 b	0.48 b
ANOVA	**	**	*	*
97DAS				
High Cd/G varieties				
Nishikazekomugi	51.3 a	8.5 c	4.48 a	1.74 ab
Kitakamikomugi	26.7 b	14.8 b	2.86 b	1.94 a
Low Cd/G varieties				
Kitahonami	20.6 c	29.0 a	2.19 b	1.22 b
Nanbukomugi	26.1 b	11.8 bc	2.21 b	1.21 b
ANOVA	**	**	*	*

¹) Means followed by common letters under each trait were not significantly different according to the multiple test of Ryan-Einot-Gabriel-Weich (P < 0.05).

²) ** and * show significance at P < 0.01 and 0.01 ≦ P < 0.05, respectively, and ns is not significant according to ANOVA.

³) Total leaf DW and stem DW.

⁴) No measurements obtained.
the concentration and quantity of Cd was also lower in low Cd/G varieties than in high Cd/G varieties (Table 1). Significant relationships between restricted root to shoot translocation of Cd and a low Cd concentration in grain has also been reported in durum wheat cultivars (Berkelaar and Hale, 2000) and in near isogenic lines (Archambault et al., 2001; Harris and Taylor, 2004). Our results indicate that the root to shoot translocation of Cd in the vegetative growth stage may relate to grain Cd concentration in wheat varieties at least used in this study. Mechanisms for restriction of root to shoot translocation of Cd have been studied in the past. In response to Cd, for example, higher plants synthesize sulphur-rich peptides and phytochelatins (PCs), and PC-heavy metal complexes accumulate in the vacuole (Vogeli-Lange and Wagner, 1990; Stolt et al., 2003). Chen and Hale (2004) also reported the translocation of Cd from the shoot to root. Pineros et al. (1998) and Page et al. (2006) further showed an efflux of Cd from the root. These factors may be related to the difference in root to shoot translocation of Cd in the wheat varieties used in this study, and these varieties can be useful materials to investigate Cd translocation in wheat. To clarify detailed mechanisms on absorption and translocation of Cd in plants, serial assessment will be needed over plant growth including stable isotope analyses.

The third hypothesis that the amount of Cd absorption from soil is related to root morphology was investigated with a root box experiment. Root DW was smaller in low Cd/G varieties than in high Cd/G varieties at 73 DAS and 97 DAS (Table 4). The small root DW of low Cd/G varieties was related to the development of lateral roots (Table 2). That is, the low density of lateral roots could have resulted in a low root frequency in these varieties (Table 3), and varieties with a low root frequency had a smaller quantity of Cd in the seedlings (Fig. 3). Kubo et al. (2008b) showed that root frequency had significant positive correlation with root length in wheat. From these results, it is suggested that slow and/or restricted root branching is related to low Cd uptake from soil at the seedling stage in these varieties. Pineros et al. (1998) showed that an influx of Cd\(^{2+}\) into the roots mainly occurs at the root apex. Cieslinski et al. (1998) also reported that low-molecular-weight organic acids, which are mainly released from the root apex to rhizosphere soil, play an important role in the solubilization of particulate-bound Cd in soil solution and its subsequent phytoaccumulation in durum wheat cultivars. Such phenomena may support our suggestion since increased root branching will also result in an increased number of root apaxes. On the other hand, screening and analysis of the difference in Cd absorption by individual roots among wheat varieties may be another groundbreaking research.

Variatel differences were found in shoot morphological traits (Table 4). However, the relationship between shoot growth pattern and Cd accumulation at the seedling stage was not close. At the maturity stage in wheat, Kubo et al. (2008a) reported negative correlations of stem number and plant height with grain Cd concentration. Harris and Taylor (2001) also reported that the size of the shoot as Cd pools may control the remobilization of Cd to the grain. Further investigation may be needed to analyze the correlation of shoot growth and traits with Cd accumulation in grain.

This study revealed the differences in root morphology, Cd uptake and Cd translocation in wheat seedlings with low and high Cd/G varieties. Cd concentration and quantity in shoot parts at the seedling stage appeared to be a useful indicator of grain Cd concentration for selecting lines with a low grain Cd concentration from the progenies of low Cd/G varieties. However, mechanisms of Cd uptake and translocation should also be studied from micro-morphological and physiological aspects based on these varieties. Understanding on Cd mobilization at a later growth stage after stem elongation in these wheat varieties is also needed in the future. Overall, the findings of this study will contribute to further morpho-physiological analyses, genetic improvement and establishment of efficient cropping systems to decrease the Cd concentration in wheat.

Acknowledgements

We are grateful to T. Matsunaga and S. Ito of NARC, and S. Komae of NICS for valuable advice. We would like to thank T. Miike of KONARC for constructing the root boxes and for experimental management.

References

Archambault, D.J., Marentes, E., Buckley, W., Clarke, J. and Taylor, G. J. 2001. A rapid seedling-based bioassay for identifying low cadmium-accumulating individuals of Durum wheat (Triticum turgidum L.). Euphytica 117: 175-182.

Asami, T., Kubota, M. and Minamisawa, K. 1998. Natural abundance of cadmium, antimony, bismuth and some other heavy metals in Japanese soils. *Ipn. J. Soil Sci. Plant Nuct.* 59: 197-199*.

Berkelaar, E. and Hale, B. 2000. The relationship between root morphology and cadmium accumulation in seedlings of two durum wheat cultivars. *Can. J. Bot.* 78: 381-387.

Böhm, W. 1976. *In situ* estimation of root length at natural soil profiles. *J. Agric. Sci.* 87: 365-368.

Chen, D.Y. and Hale B.A. 2004. Differential accumulation of Cd in durum wheat cultivars: uptake and translocation as sources of variation. *J. Exp. Bot.* 55: 2571-2579.

Cieslinski, G., Van Rees, K.C.J., Szmgieelska, A.M., Krishnamurti, G.S.R. and Huang, P.M. 1998. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. *Plant Soil* 203: 109-117.

Codex Alimentarius Commission 2005. Report of the 37th session of the Codex Committee on Food Additives and Contaminants,
Clarke, J.M., Leisle, D., DePauw, R.M. and Thiessen, L.L. 1997. Registration of five pairs of durum wheat genetic stocks near-isogenic for cadmium concentration. *Crop Sci.* 37: 297.

Harris, N.S. and Taylor, G.J. 2001. Remobilization of cadmium in maturing shoots of near isogenic lines durum wheat that differ in grain cadmium accumulation. *J. Exp. Bot.* 52: 1473-1481.

Harris, N.S. and Taylor, G.J. 2004. Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation. *BMC Plant Biol.* 4: 4.

Kubo, K., Watanabe, Y., Oyanagi, A., Kaneko, S., Chono, M., Matsunaka, H., Seki, M. and Fujita, M. 2008a. Cadmium concentration in grains of Japanese wheat cultivars: genotypic difference and relationship with agronomic characteristics. *Plant Prod. Sci.* 11: 243-249.

Kubo, K., Uchino, H., Jitsuyama, Y. and Iwama K. 2008b. Relationship between deep root distribution and root penetration capacity estimated by pot experiments with a paraffin and Vaseline layer for landraces and recent cultivars of wheat. *Plant Prod. Sci.* 11: 487-497.

Page, V., Le Bayon, R-C., Feller, R. 2006. Partitioning of zinc, cadmium, manganese and cobalt in wheat (*Triticum aestivum*) and lupin (*Lupinus albus*) and further release into the soil. *Environ. Exp. Bot.* 58: 269-278.

Pineros, M.A., Shaff, J.E. and Kochian, L.V. 1998. Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of *Thlaspi species* and wheat. *Plant Physiol.* 116: 1393-1401.

Ryan, J.A., Pahren, H.R. and Lucas, J.B. 1982. Controlling cadmium in the human food chain: A review and rationale based on health effects. *Environ. Res.* 28: 251-302.

Stolt, P., Sneller, F.E.C., Bryngelson, T., Lundborg, T. and Schat, H. 2003. Phytochelatin and cadmium accumulation in wheat. *Environ. Exp. Bot.* 49: 21-28.

Stolt, P., Asp, H. and Hultin, S. 2006. Genetic variation in wheat cadmium accumulation on soils with different cadmium concentrations. *J. Agron. Crop Sci.* 192: 201-208.

Vogeli-Lange, R. and Wagner, G.J. 1990. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: Implication of a transport function for cadmium-binding peptides. *Plant Physiol.* 92: 1086-1093.

Wagner, G. J. 1993. Cadmium in crops and effects on human health. *Adv. Agron.* 51: 173-212.

Watanabe, Y., Kubo, K., Ohmori, S., Itoh, S., Kaneko, S., Chono, M., Nakamura, S. and Abe, F. 2006. Effects of nitrogen and phosphorus fertilization on cadmium concentration of wheat grain. *Jpn. J. Crop Sci.* 75 (Extra issue 1): 258-259*.

WHO. 1992. Environmental Health Criteria 134, Cadmium, WHO. Geneva. 1-280.

Zadoks, J.C., Chang, T.T. and Konzak, C.F. 1974. A decimal code for the growth stages of cereals. *Weed Res.* 14: 415-421.

* In Japanese with English title.