Introduction

Due to the aging and growth of population as well as an increasing adoption of cancer-related lifestyle such as smoking and “westernized” diets, cancer has been a major public health problem all around the world [1]. Almost one in four deaths in the United States is related with cancer in 2012 [2]. Lack of efficiently diagnostic and prognostic biomarkers is responsible for the high mortality rates caused by cancer [3].

MicroRNAs (miRNAs), approximately 22 nucleotides in length, are a class of highly conserved RNAs that negatively regulate gene expression at post-transcriptional level by base pairing with the 3’-untranslated region of target mRNAs, resulting in either mRNA degradation or translational inhibition [4-5]. Many studies have demonstrated that miRNAs play important roles in various biological processes, such as cellular development, differentiation, proliferation, cell death, angiogenesis and metabolism [6-9]. The success of utilizing miRNAs as diagnostic or prognostic markers from expression profiling has been reported in many studies.

MiR-21 was one of the most frequently studied cancer-related miRNAs and dysregulated in most cancers by acting as oncogene [10-14]. Up-regulated miR-21 could increase tumor growth, metastasis and invasion and reduce sensitivity to chemotherapy by its various targets [15-18]. Cancer patients with higher expression of miR-21 always had a worse prognostic outcome. But some studies represented inconsistent or even opposite results, such as the study of Valladares-Ayerbes et al. [19]. So we performed this meta-analysis to reveal the prognostic value of miR-21 in various cancers.

Material and Methods

Publication search and inclusion criteria

Medical subheading (Mesh) terms relating to miR-21 (e.g. “miR-21” or “microRNA-21”) in combination with words related to cancer (e.g. “cancer”, “tumor”, “carcinoma” or “neoplasm”) and terms to prognosis (e.g. “prognosis”, “survival”, “outcome” or “prognostic”) were searched on PubMed, EMBASE and WEB of science to retrieve eligible studies till December, 2013.

We also carefully examined the references of articles and reviews to explore potentially additional studies. Studies were eligible if they met the following criteria: (a) studied patients with any type of cancers; (b) expression of miR-21 was measured; (c) the association between expression of miR-21 and clinical outcome was investigated; (d) full text articles in English. Studies were excluded based on the following criteria: (a) reviews, letters or laboratory studies; (b) studies had overlapping or duplicate data; (c) absence of key information for further analysis [20].
Data extraction
Data were evaluated and extracted independently from the eligible studies by two investigators (Zhou and Wang) under the guidelines of a critical review checklist of the Dutch Cochrane Centre proposed by Meta-analysis of Observational Studies in Epidemiology (MOOSE) [21]. The following items were recorded: first author’s name, year of publication, country or area of origin, ethnicity, cancer type, sample type, TNM stage, method, total number of patients, cut-off value, follow ups and HRs of miR-21 for overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS) or cancer specific survival (CSS) with their 95% confidence intervals (CIs) and P value. If not available, data were extracted by the method of Tierney et al. [20]. When discrepancies existed between the two investigators, another investigator (Huang) was invited to discuss until a consensus was reached.

Statistical analysis
All the HRs with their 95% CIs were used to calculate pooled HRs. Cochran’s Q test and Higgins I-squared statistic were used to check the heterogeneity of pooled results. A P<0.10 for Q-test suggested significant heterogeneity among studies, and the random-effects model (DerSimonian-Laird method) was applied to calculate the pooled HRs [22]. Otherwise, the fixed-effects model (Mantel-Haenszel method) was used [23]. Begg’s funnel plot and the Egger’s linear regression test were conducted to evaluate publication bias of literatures and a p<0.05 was considered significant [24]. Trim and fill method was applied to assess potential asymmetry in the funnel plot. Statistical analyses were performed in STATA software version 12.0 (STATA Corporation, College Station, TX, USA). All P values were two-sided.

Figure 1. Methodological flow diagram of the review.
doi:10.1371/journal.pone.0102413.g001
Author	Year	Country	Ethnicity	Type	Sample	Stage	Number	Method	Endogenous control	cut-off	Results
Schetter	2008	USA/HK	Caucasian/Asian	Colon	Frozen tissue	I-IV	197	qRT-PCR	U6	Highest tertile	OS
Dillhoff	2008	USA	Caucasian	Pancreatic	FFPE	NR	80	In Situ Hybridization	U6	Highest score	OS
Markou	2008	Greece	Caucasian	NSCLC	Frozen tissue	I-IV	48	qRT-PCR	U6	2-fold	OS and DFS
Yan	2008	China	Asian	Breast	FFPE	I-III	113	qRT-PCR	U6	Mean	OS
Qian	2009	Italy	Caucasian	Breast	Frozen tissue	I-IV	301	qRT-PCR	U6	NR	OS and DFS
Busacca	2010	Italy	Caucasian	Malignant mesothelioma	FFPE	NR	24	qRT-PCR	U6	Median	OS
Li	2009	China	Asian	Tongue	Frozen tissue	I-IV	103	qRT-PCR	U6	Median	OS
Schetter	2009	HK/USA	Caucasian/Asian	Colon	Frozen tissue	I-IV	196	qRT-PCR	U6	Highest tertile	CSS
Mathe	2009	USA, Canada/ Japan	Caucasian/Asian	Esophageal	Tissue	I-IV	170	qRT-PCR	U66	Median	OS
Avisser	2009	USA	Caucasian	HNSCC	Frozen tissue	I-IV	169	qRT-PCR	U48	Highest quarter	OS
Zhi	2010	China	Asian	Astrocystoma	Frozen tissue	I-IV	124	qRT-PCR	miR-16	Median	OS
Hu	2011	USA	Caucasian	Esophageal	FFPE	I-IV	158	In situ hybridization	NR	1–3+/0–0.5	OS and DFS
Gao	2010	China	Asian	NSCLC	Frozen tissue	I-III	47	qRT-PCR	U6	Median	OS
Rossi	2010	USA	Caucasian	CLL	Blood	NR	99	qRT-PCR	U6	Median	OS
Giovannetti	2010	Netherlands	Caucasian	Pancreatic	Tissue	I-IV	59	qRT-PCR	U43	Median	OS and DFS
Hwang	2010	Korea/Italy	Asian/Caucasian	Pancreatic	Frozen tissue	II-IV	82/45	qRT-PCR	U66/U43	Median	OS, DFS and RFS
Gao	2011	China	Asian	SCLC	Frozen tissue	I-III	30	qRT-PCR	U6	Median	OS
Kulda	2010	Czech Republic	Caucasian	CRC	Frozen tissue	I-IV	44	qRT-PCR	U6	NR	DFS
Voortman	2010	14 countries	Mixed	NSCLC	FFPE	I-III	631	qRT-PCR	U66/U6	Median	OS
Nielsen	2011	Denmark	Caucasian	Colon/rectum	FFPE	II	129/67	In Situ Hybridization	NR	2-fold	DFS
Hamano	2011	Japan	Asian	Esophageal	FFPE	I-IV	98	qRT-PCR	U48	Median	OS
Radojicic	2011	Greece	Caucasian	Breast	FFPE	NR	49	qRT-PCR	RNU5A/U6	Median	OS and DFS
Ota	2011	Japan	Asian	Breast	Bone marrow	NR	207	qRT-PCR	U6	5.84	OS and DFS
Walter	2011	USA	Caucasian	Breast	FFPE	NR	25	qRT-PCR	U6	Median	OS
Saito	2011	USA/Norway/Japan	Caucasian/Asian	NSCLC	Frozen tissue	I-I	126/191	qRT-PCR	U66	Median	CSS/RFS
Shibuya	2010	Japan	Asian	CRC	Frozen tissue	Dukes:A-D	156	qRT-PCR	U6	Mean	OS and DFS
Liu	2012	China	Asian	NSCLC	Frozen tissue	I-IV	70	qRT-PCR	U6	2-fold	OS
Wang	2011	China	Asian	NSCLC	Serum	I-III	88	qRT-PCR	U6	5-fold	OS
Ayerbes	2011	Spain	Caucasian	Colon or rectum/gastric/pancreas	FFPE	I-IV	32	qRT-PCR	U6	Mean	OS
Jiang	2011	China	Asian	Gastric	FFPE	III/IV	55	qRT-PCR	U44	NR	OS
Author	Year	Country	Ethnicity	Type	Sample	Stage	Number	Method	Endogenous control	cut-off	Results
-----------------	------	------------	-----------	------------	--------------	-------	--------	-------------	--------------------	---------	------------------
Nagao	2012	Japan	Asian	Pancreatic	FFPE	I-IV	65	qRT-PCR	U6	Mean	OS
Jamieson	2012	UK	Caucasian	Pancreatic	Frozen tissue	II-III	72	qRT-PCR	U6	Median	OS
Jiang	2012	China	Asian	Melanoma	Frozen tissue	I-IV	86	qRT-PCR	U6	Median	OS and DFS
Liu	2012	China	Asian	Pancreatic	Serum	I-IV	38	qRT-PCR	NR	NR	OS
Karakatsanis	2013	Greece	Caucasian	Hepatocellular	FFPE	I-IV	60	qRT-PCR	U6	Mean	OS
Gao	2012	China	Asian	NSCLC	Frozen tissue	I-III	58	qRT-PCR	U6	Median	DFS
Lee	2011	Korea	Asian	Breast	FFPE	I-III	109	qRT-PCR	U6	Mean	OS and DFS
Li	2012	China	Asian	Prostate	FFPE	II-III	168	in situ hybridization	NR	Score > 1	RFS
Faltejs kova	2012	Czech Republic	Caucasian	CRC	Frozen tissue	I-IV	44	qRT-PCR	U6	Median	OS
Faragalla	2012	Canada	Caucasian	Renal	FFPE	I-III	89	qRT-PCR	U44	NR	OS and DFS
Zaravinos	2012	Greece	Caucasian	Bladder	Tissue	NR	77	qRT-PCR	RNU1A1, 5A and U6	Median	OS and RFS
Jung	2012	USA	Caucasian	Oral	Frozen tissue	NR	17	qRT-PCR	U6	Median	OS
Le	2012	China	Asian	Lung	Serum	I-IV	82	qRT-PCR	miR-16	NR	OS
Xu	2012	China	Asian	Gastric	Frozen tissue	I-IV	86	qRT-PCR	Let-7a	ROC curve (AUC)	OS
Osawa	2011	Japan	Asian	Gastric	FFPE	I-IV	37	qRT-PCR	NR	T/N ratio > 1.40	OS
Papaconstantinou	2013	Greece	Caucasian	Pancreatic	FFPE	I-IV	88	qRT-PCR	U6	Mean	OS
Frielfdt	2012	Denmark	Caucasian	Colon	FFPE	II	520	in situ hybridization	NR	Tertiles	OS and RFS
Hermansen	2013	Denmark	Caucasian	Gliomas	FFPE	NR	189	in situ hybridization	NR	NR	OS
Caponi	2013	UK/Italy	Caucasian	Pancreatic	FFPE	II-III	81	qRT-PCR	U6	Median	OS and DFS
Wang	2013	China	Asian	Pancreatic	Serum	III-IV	177	qRT-PCR	U6	Median	OS
Komatsu	2013	Japan	Asian	Gastric	Plasma	I-IV	69	qRT-PCR	NR	Median	CSS
Amankwah	2013	USA	Caucasian	Prostate	FFPE	I-IV	65	qRT-PCR	U6	median	RFS
Chusom	2013	Thailand	Asian	Cholangiocarcinoma	Frozen tissue	NR	23	qRT-PCR	U6	Mean	OS
Huang	2013	China	Asian	Cholangiocarcinoma	FFPE	NR	41	qRT-PCR	U6	NR	OS and RFS
Liu	2013	China	Asian	CRC	Serum	I-IV	166	qRT-PCR	miR-16	0.0043	OS
Akagi	2013	USA, Norway/Japan	Caucasian/Asian	Lung	Frozen tissue	I-II	92/198	qRT-PCR	NR	Median	OS and RFS
Toiyama	2013	Japan	Asian	CRC	FFPE/serum	I-IV	166/188	qRT-PCR	miR-16/Cel-miR-39	Youden's index	OS
Bovell	2013	USA	Mixed	CRC	FFPE	IV	55	qRT-PCR	U6	NR	OS
Markou	2013	Greece	Caucasian	NSCLC	FFPE/plasma	I-IV	40/37	qRT-PCR	miR-191/miR-16	Median	OS and DFS
Chen	2013	Taiwan	Asian	CRC	Tissue	I-IV	195	qRT-PCR	U6	Mean	OS
Ferrajoli	2013	USA	Caucasian	CLL	Blood	NR	93	qRT-PCR	miR-16	44th percentile	OS
Results

Study characteristics

After careful read and selection, a total of 63 articles [19,25–86] were retrieved according to the inclusion and exclusion criteria. 55 of 63 articles investigated the prognostic role of miR-21 for OS, 17 for DFS and 3 for CSS. Schetter et al. [25], Hwang et al. [40] and Akagi et al. [79] presented separate HR by different ethnic background; Mathe et al. [33]_{ENREF_34}, Liu et al. [51], Toiyama et al. [80], Nielsen et al. [44] and Markou et al. [82] investigated the role of miR-21 in different type of samples; Voortman et al. [43] reported results from two centers. So the data from these studies were considered separately in our analysis. As there were only 3 studies for CSS, we combined the results for CSS and RFS together as RFS/CSS. Thus, a total of 63 studies including 6720 patients evaluating OS, 19 studies including 1965 cases for DFS and 11 studies including 1696 patients for RFS/CSS were considered in this analysis. The detailed screening process was shown in Figure 1.

The main characteristics of eligible studies were listed in Table 1. Ethnicity background of patients were classified as Asian, Caucasian and mixed populations. Cancer types of cases were various, among which lung cancer, pancreatic cancer and gastrointestinal (GI) cancers were mostly investigated. Tissue samples including Frozen or formalin-fixed and paraffin-embedded (FFPE) tissues were used in 53 studies, while 11 studies used circulation samples (plasma, serum or blood) and one study by Ota et al. [47] applied bone marrow samples. Quantitative real-time PCR (qRT-PCR) was widely used in 57 studies and in situ hybridisation (ISH) assay was used in the other 6 studies. The most frequently used cut-off value was the median which was applied in 26 studies and the other values ranged from the mean to the highest quarter value.

Outcomes from eligible studies

The main results of this meta-analysis are shown in Table 2. For 63 studies evaluating OS for miR-21, we found high expression of miR-21 predicting a worse outcome with the combined HR of 1.91 (95%CI: 1.66–2.19; \(P_{\text{heterogeneity}} = 0.001\); Figure 2). Similarly predictive roles of miR-21 for DFS and RFS/CSS were also investigated with pooled HR of 1.42 (95% CI: 1.16–1.74; \(P_{\text{heterogeneity}} = 0.001\)) and 2.2 (95% CI: 1.64–2.96; \(P_{\text{heterogeneity}} = 0.022\)), respectively.

Subgroup analyses by cancer type showed that elevated miR-21 yielded a worse OS in GI cancers (HR = 1.68, 95%CI: 1.12–2.52; \(P_{\text{heterogeneity}} = 0.001\)), lung cancer (HR = 1.59, 95%CI: 1.2–2.1; \(P_{\text{heterogeneity}} = 0.001\)), breast cancer (HR = 2.55, 95%CI: 1.04–6.29; \(P_{\text{heterogeneity}} = 0.002\)), pancreatic cancer (HR = 2.53, 95%CI: 1.82–3.51; \(P_{\text{heterogeneity}} = 0.003\)) and liver cancer (HR = 1.93, 95%CI: 1.39–2.69; \(P_{\text{heterogeneity}} = 0.003\); a worse DFS in lung cancer (HR = 2.05, 95%CI: 1.32–3.18; \(P_{\text{heterogeneity}} = 0.001\)) and pancreatic cancer (HR = 2.04, 95%CI: 1.17–3.54; \(P_{\text{heterogeneity}} = 0.002\)).

In the subgroup analyses by ethnicity, we found that no matter the cases were Asian or Caucasian, the high expression of miR-21 was still a significantly poor predictor for OS (Asian: HR = 2.19, 95%CI: 1.76–2.73; \(P_{\text{heterogeneity}} = 0.001\); Caucasian: HR = 1.86, 95%CI: 1.46–2.37; \(P_{\text{heterogeneity}} = 0.001\)) and DFS (Asian: HR = 1.62, 95%CI: 1.06–2.47; \(P_{\text{heterogeneity}} = 0.001\); Caucasian: HR = 1.37, 95%CI: 1.07–1.76; \(P_{\text{heterogeneity}} = 0.001\)) and RFS/CSS (Asian: HR = 1.72, 95%CI: 1.36–2.16; \(P_{\text{heterogeneity}} = 0.874\); Caucasian: HR = 1.46, 95%CI: 1.06–2.01; \(P_{\text{heterogeneity}} = 0.035\)).
Figure 2. Forrest plots of studies evaluating hazard ratios (HRs) of miR-21 for overall survival.
doi:10.1371/journal.pone.0102413.g002
Further analyses of studies evaluating OS by sample type also revealed that high expression of miR-21 remained to be a worse prognostic marker regardless of sample source (tissue sample: HR = 1.87, 95% CI: 1.61–2.16; $P_{\text{heterogeneity}} < 0.001$; circulation sample: HR = 2.06, 95% CI: 1.42–2.99; $P_{\text{heterogeneity}} = 0.008$). In addition, high miR-21 in FFPE (HR = 1.68, 95% CI: 1.29–2.18; $P_{\text{heterogeneity}} < 0.001$) and frozen tissue (HR = 1.99, 95% CI: 1.59–2.49; $P_{\text{heterogeneity}} < 0.001$) showed consistent results. Pooled results of 8 studies that explored serum miR-21 also revealed negative prognostic role of increased miR-21 (HR = 1.94, 95% CI: 1.25–3.03; $P_{\text{heterogeneity}} = 0.003$).

A total of seven studies [27,39,40,43,53,82] investigated the prognostic role of miR-21 in the patients who received adjuvant therapy which yielded a significantly pooled HR of 2.4 (95% CI: 1.18–4.9; $P_{\text{heterogeneity}} < 0.001$).

Table 2. Meta-analysis results.

Outcome	Variables	Number of studies	Model	HR (95% CI)	$P_{\text{heterogeneity}}$
OS	ALL	63	Random	1.91 (1.66, 2.19)	< 0.001
Cancer type					
GI	15	Random		1.68 (1.12, 2.55)	< 0.001
Pancreas	11	Random		2.53 (1.82, 3.51)	0.003
Lung	13	Random		1.59 (1.22, 2.1)	< 0.001
Breast	6	Random		2.55 (1.04, 6.29)	0.002
Oral	2	Random		2.02 (0.41, 9.88)	0.016
Esophagus	4	Random		1.53 (0.74, 3.15)	0.018
Liver	3	Random		1.93 (1.39, 2.69)	0.688
Ethnicity					
Asian	29	Random		2.19 (1.76, 2.73)	< 0.001
Caucasian	29	Random		1.86 (1.46, 2.37)	< 0.001
Sample					
Tissue	51	Random		1.87 (1.61, 2.16)	< 0.001
FFPE	25	Random		1.68 (1.29, 2.18)	< 0.001
Frozen tissue	23	Random		1.99 (1.59, 2.49)	< 0.001
Circulation	11	Random		2.06 (1.42, 2.99)	0.008
Serum	8	Random		1.94 (1.25, 3.03)	0.003
Therapy					
Adjuvant therapy	7	Random		2.41 (1.18, 4.9)	< 0.001
Mixed	56	Random		1.85 (1.61, 2.13)	< 0.001
DFS	ALL	19	Random	1.42 (1.16, 1.74)	0.001
Cancer type					
GI	5	Random		1.12 (0.81, 1.55)	0.01
Pancreas	3	Fixed		2.87 (1.89, 4.35)	0.524
Lung	4	Fixed		2.05 (1.32, 3.18)	0.839
Breast	4	Fixed		1.10 (0.82, 1.49)	0.919
Ethnicity					
Asian	6	Random		1.62 (1.06, 2.47)	0.008
Caucasian	14	Random		1.37 (1.07, 1.76)	0.006
RFS/CSS	ALL	11	Random	2.21 (1.64, 2.96)	0.022
Cancer type					
GI	3	Random		2.51 (1.57, 4.07)	0.005
Lung	3	Fixed		2.23 (1.57, 3.23)	0.605
Prostate	2	Fixed		2.04 (1.17, 3.54)	0.957
Ethnicity					
Asian	5	Fixed		2.17 (1.52, 3.09)	0.322
Caucasian	5	Random		2.11 (1.34, 3.27)	0.065

OS: overall survival; DFS: disease-free survival; RFS: recurrence-free survival; CSS: cancer-specific survival; GI: gastrointestinal; FFPE: formalin-fixed and paraffin-embedded.

doi:10.1371/journal.pone.0102413.t002
Publication bias

Begg’s funnel plot and the Egger’s linear regression test were used to assess publication bias. However, the funnel plots were asymmetric and the P values of Egger’s test for OS, DFS and RFS/CSS were <0.001, 0.011 and 0.003, respectively. Thus, a trim and fill method was conducted and pooled HRs were recalculated with hypothetically non-published studies to evaluate the asymmetry in the funnel plots. The recalculated HRs did not change significantly for OS (HR = 1.61, 95%CI: 1.41–1.83; P_{heterogeneity}=0.001; Figure 3) and RFS/CSS (HR = 2.01, 95%CI: 1.54–2.77; P_{heterogeneity}=0.018). But the prognostic role of high expression of miR-21 for DFS was weaken with a recalculated HR of 1.11 (95%CI: 0.9–1.38; P_{heterogeneity}=0.001).

Discussion

MiR-21, a well-known onco-miR, is up-regulated in most malignancies. Acting on various target genes such as PTEN [87] and PDCD4 [18], miR-21 plays an important role in the process of cell proliferation, migration, invasion, drug resistance [88] and so on. It has been reported that miR-21 could regulate Ras/MEK/ERK pathway so to influence the tumor formation. Moreover the incidence of lung tumors is higher in miR-21 overexpression mice, while lower in miR-21 knockout mice [89]. Additionally, miR-21 has been proposed as a marker of cancers for diagnosis in circulation [90,91], stool [92] and sputum [93], prediction in therapy response [59] and prognosis of patients.

Nair et al. [94] systematically reviewed and synthesized that miRNAs showed promising associations with outcomes of various cancers. As the first meta-analysis [95] of miR-21 related to outcomes of various cancers, Fu et al. retrieved 17 studies and found higher level of miR-21 might be associated with poorer clinical outcome, especially in subgroup of head and neck squamous cell carcinoma and digestive carcinoma. Recently, Wang et al. [96] analyzed the value of circulating miR-21 and yielded a conclusion that circulating miR-21 might act as a significantly prognostic biomarker but not be suitable for a sensitive diagnostic biomarker. However, the number of studies included in these analyses was relatively small and the obtained results might not be powerful. In terms of this, we performed this updated meta-analysis including 63 articles and demonstrated that high expression of miR-21 was a significant marker for predicting worse outcomes of various cancers (HR was 1.91, 2.2 and 1.42 for OS, RFS/CSS and DFS, respectively). Subgroup analyses revealed that high expression of miR-21 could predict a worse OS in GI tumors, pancreatic cancer, lung cancer, breast cancer and liver cancer, a worse DFS in pancreatic cancer and lung cancer and poor RFS/CSS in GI tumors, lung cancer and prostate cancer. Regardless of the ethnicity background or sample source, high expression level of miR-21 was a significantly negative prognostic marker for various malignancies. As publication bias was observed, a trim and fill method was adopted to calculate the adjusted HRs. The results for OS and RFS/CSS did not change, but the results for DFS were altered.

Recently, many studies demonstrated that miRNAs including miR-21 had great potential as biomarkers for various cancers. However, several problems should be well solved before utilizing them as diagnostic or prognostic biomarkers in the clinical. As is
known, non-invasive circulation sample (plasma/serum) or body fluid sample could be obtained more conveniently than tissue sample. However, studies using different types of samples may yield different results [51]. Tajjura et al. [91] found that some individuals might even have opposite tendency of the expression levels of miRNAs in tumor tissue and plasma. Now, many studies have investigated the clinical impact of miRNAs from exosomes which were small membrane vesicles containing proteins and nucleotides [97]. In our study, it is pleasing that high expression of miR-21 in the tissue (FFPE/frozen tissue) or circulation both predicted poor outcomes. Thus, we might assume that patients with high expression of miR-21 from any type of sample might suffer worse clinical outcomes. Yet, normalization among different studies was not consistent. The internal controls used for tissue samples are relatively consistent ranging from U6 to U44, while there is no consensus on suitable small RNA reference genes for circulation or body fluid sample. MiR-16 was used as a reference gene in some studies [66,78]. But the optimal way for miRNA normalization in circulation or body fluid sample is probably the spiked-in normalization method [98]. Therefore, future studies focusing on the consistent normalization are warranted. In addition, as biomarkers, a panel of miRNAs might be more sensitive and specific than a single miRNA [99,100]. The combination of miR-21 and some specific miRNAs might elevate its predictive power. Finally, methods for detecting miRNAs were diverse, among which RT-PCR was one of the most widely used approaches. Nevertheless many new methodologies emerged, such as the next-generation sequencing approach [101] and the electrochemical approach [102]. In short, a proper method for clinical application should be less expensive, reproducible, stable and with high sensitivity and specificity. Accordingly, great efforts should be made in the future to apply miRNAs including miR-21 as reliable biomarkers in the clinical.

Several limitations of this study should be considered. First, the studies retrieved in our study were limited in English, which might partially contribute to the observed publication bias. By conducting the trim and fill method, we found that the pooled results did not change significantly except for DFS. Thus, attention should be paid to the prognostic role of miR-21 for DFS. Second, different countries, cancer types, methods and other variables might contribute to the relatively large heterogeneity in this study. Third, the number of studies investigating some special types of cancer was small. For instance, there was only one study focusing on mesothelioma [30]. More studies on these cancers are needed in the future.

In conclusion, the evidence from the meta-analysis revealed that high expression level of miR-21 was a negative predictor for survival in various cancers, especially for OS and RFS/CSS. However, our results should be considered with caution due to the limitations listed above. To better understand and use miRNAs as biomarkers in the clinical, more large-scale and standard investigations are worth conducting.

Supporting Information

Checklist S1 PRISMA Checklist. (DOC)

Author Contributions

Conceived and designed the experiments: YQS PL. Performed the experiments: XZ ZBH. Analyzed the data: XWP. Contributed reagents/materials/analysis tools: JW WZ. Wrote the paper: XZ.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90.
2. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62: 10–29.
3. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4: 143–159.
4. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.
5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.
6. Carrington JC, Ambros V (2012) MicroRNAs in plant development. Science 301: 336–338.
7. Suarez Y, Nessa WC (2009) MicroRNAs as novel regulators of angiogenesis. Circ Res 104: 492–504.
8. Xu P, Guo M, Hay BA (2004) MicroRNAs and the regulation of cell death. Trends Genet 20: 617–624.
9. Bartel DP, Chen CZ (2004) MicroRNAs: new regulators of gene expression. Cell 116: 281–297.
10. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4: 143–159.
11. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.
12. Schae K, Lozenz S, Warren MM, Gunther CC, Holden M, et al. (2013) Deep Sequencing the MicroRNA Transcriptome in Colorectal Cancer. PLoS One 8: e61663.
13. Capodanno A, Boldrini L, Proietti A, Ali G, Pelliccioni S, et al. (2013) Let-7g and miR-21 expression in non-small cell lung cancer: Correlation with clinicopathological and molecular features. Int J Oncol 43: 765–774.
14. Gombos K, Hoveath R, Szele E, Juhasz K, Gocze K, et al. (2013) miRNA expression profiles of oral squamous cell carcinomas. Anticancer Res 33: 1511–1517.
15. Li T, Li D, Sha J, Sun P, Huang Y (2009) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383: 280–285.
16. Kumarawany R, Vollmann I, Thum T (2011) Regulation and function of miRNA-21 in health and disease. RNA Biol 8: 706–713.
17. Soria-Valles C, Gutierrez-Fernandez A, Guiu M, Mari B, Fueyo A, et al. (2013) The anti-metastatic activity of collagenase-2 in breast cancer cells is mediated by a signaling pathway involving decorin and miR-21. Oncogene.
18. Seca H, Lima RT, Lopes-Rodrigues V, Guimaraes JE, Almeida GM, et al. (2013) Targeting miR-21 Induces Autophagy and Chemosensitivity of Leukemia Cells. Curr Drug Targets.
19. Liu S, Fang Y, Shen H, Xi W, Li H (2013) Berberine sensitizes ovarian cancer cells to cisplatin through miR-21/PDCD4 axis. Acta Biochim Biophys Sin (Shanghai).
20. Zhou L, Yang ZX, Song WJ, Li QJ, Yang F, et al. (2013) MicroRNA-21 regulates the migration and invasion of a stem-like population in hepatocellular carcinoma. Int J Oncol 43: 661–669.
21. Valladares-Ayerbes M, Blanco M, Haz M, Medina V, Iglesias-Diaz P, et al. (2011) Prognostic impact of disseminated tumor cells and microRNA-17-92 cluster deregulation in gastrointestinal cancer. Int J Oncol 39: 1253–1264.
22. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8: 16.
23. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, et al. (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283: 2008–2012.
24. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177–188.
25. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22: 719–748.
26. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634.
27. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, et al. (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299: 425–436.
28. Dillhoff M, Liu J, Frankel W, Croce C, Bloomston M (2008) MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg 12: 2171–2176.
29. Markowska A, Tsrassou EG, Kaldamakis I, Fotinou M, Georgoulias V, et al. (2008) Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small lung cancer by quantitative real-time RT-PCR. Clin Chim Acta 386: 1696–1704.
30. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, et al. (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14: 2349–2360.
31. Qian B, Katsaros D, Lu L, Preti M, Durando A, et al. (2009) High miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14: 2349–2360.
52. Wang ZX, Bian HB, Wang JR, Cheng ZX, Wang KM, et al. (2011) Prognostic significance of miR-21 in the prognosis of cancer.

40. Shibuya H, Iinuma H, Shimada R, Horiuchi A, Watanabe T (2010) Prognostic significance of serum miR-21 expression in terms of survival. Clin Cancer Res 16: 6192-6200.

33. Mathe EA, Nguyen GH, Bowman ED, Zhao Y, Budhu A, et al. (2009) Overexpression of miR-21 in triple-negative breast cancer. Cell Cycle 10: 507–517.

30. Busacca S, Germano S, De Cecco L, Rinaldi M, Comoglio F, et al. (2010) Relevance of miR-21, miR-143 and miR-181a in prostate cancer. J Cell Biochem 110: 345-358.

28. Akagi I, Okayama H, Schetter AJ, Robles AI, Kohno T, et al. (2013) Expression of microRNAs in patients with pancreatic cancer and its clinical utility. J Cancer 4: 550-558.

26. Le HB, Zhu WY, Chen DD, He JY, Huang YY, et al. (2012) Evaluation of miR-21 expression in correlation with clinical outcomes in patients with gastric cancer. J Gastroenterol 47: 1401–1408.

24. Papaconstantinou IG, Manta A, Gazouli M, Lyberopoulou A, Lykoudis PM, et al. (2013) Expression of microRNAs in patients with pancreatic cancer and its prognostic significance. Pancreas 42: 67–71.

22. Kjer-Nielsen R, Nielsen BS, Jorgensen S, Fug JU, Skaklde R, Christensen JH, et al. (2011) High levels of miR-21 in the stroma of colorectal cancer predicts short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis 28: 117-126.

20. Komatsu S, Ichikawa D, Tsujiura M, Konishi H, Takeshita H, et al. (2013) Serum miR-21 levels serve as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Carcinog 52: 297–303.

18. Xu Y, Sun J, Xu J, Li Q, Guo Y, et al. (2012) miR-21 is a Promising Novel Biomarker for Lymph Node Metastasis in Patients with Gastric Cancer. Gastroenterol Res Pract 2012: e610645.

16. Osawa S, Shimada Y, Sekine S, Okumura T, Nagata T, et al. (2011) MicroRNA profiling of gastric cancer patients from formalin-fixed paraffin-embedded samples. Oncol Lett 2: 613-619.

14. Papapantoniou RG, Manta A, Gazouli M, Lyberopoulos A, Lykoudis PM, et al. (2013) Expression of microRNAs in patients with pancreatic cancer and its clinical utility. J Gastroenterol 48: 632-645.

12. Kjer-Nielsen R, Nielsen BS, Jorgensen S, Fug JU, Skaklde R, Christensen JH, et al. (2011) High levels of miR-21 in the stroma of colorectal cancer predicts short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis 28: 117-126.

10. Komatsu S, Ichikawa D, Tsujiura M, Konishi H, Takeshita H, et al. (2013) Serum miR-21 levels serve as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Carcinog 52: 297–303.

8. Xu Y, Sun J, Xu J, Li Q, Guo Y, et al. (2012) miR-21 is a Promising Novel Biomarker for Lymph Node Metastasis in Patients with Gastric Cancer. Gastroenterol Res Pract 2012: e610645.

6. Osawa S, Shimada Y, Sekine S, Okumura T, Nagata T, et al. (2011) MicroRNA profiling of gastric cancer patients from formalin-fixed paraffin-embedded samples. Oncol Lett 2: 613-619.

4. Papapantoniou RG, Manta A, Gazouli M, Lyberopoulos A, Lykoudis PM, et al. (2013) Expression of microRNAs in patients with pancreatic cancer and its clinical utility. J Gastroenterol 48: 632-645.
80. Toiyama Y, Takahashi M, Hur K, Nagasaka T, Tanaka K, et al. (2013) Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst 105: 849–859.

81. Bovell LC, Shanmugam C, Putha BD, Katkooi VR, Zhang B, et al. (2013) The Prognostic Value of MicroRNAs Varies with Patient Race/Ethnicity and Stage of Colorectal Cancer. Clin Cancer Res 19: 3953–3965.

82. Markou A, Sourvinou I, Yorbas PA, Youssef GM, Lianditou E (2013) Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer 81: 388–396.

83. Chen TH, Chang SW, Huang CC, Wang KL, Yeh KT, et al. (2013) The prognostic significance of APC gene mutation and miR-21 expression in advanced stage colorectal cancer. Colorectal Dis.

84. Ferrajoli A, Shanafelt TD, Ivan C, Shainiz M, Rabe KG, et al. (2013) Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood 122: 1891–1899.

85. Menendez P, Padilla D, Villarejo P, Palomino T, Nieto P, et al. (2013) Prognostic implications of serum microRNA-21 in colorectal cancer. J Surg Oncol.

86. Kadera BE, Li L, Toste PA, Wu N, Adams C, et al. (2013) MicroRNA-21 in Pancreatic Ductal Adenocarcinoma Tumor-Associated Fibroblasts Promotes Metastasis. PLoS One 8: e71978.

87. Bao L, Yan Y, Xu C, Ji W, Shen S, et al. (2013) MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett 337: 226–236.

88. Roy S, Yu Y, Padhye SB, Sarkar FH, Majumdar AP (2013) Differentiated-Curcumin (CDP) Restores PTEN Expression in Colon Cancer Cells by Down-Regulating miR-21. PLoS One 8: e68543.

89. Hadley ME, Patrick DM, Garcia MR, Richardson JA, Basel-Duby R, et al. (2010) Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 18: 202–209.

90. Li X, Zhang Y, Ding J, Wu K, Fan D (2010) Survival prediction of gastric cancer by a seven-microRNA signature. Gut 59: 579–585.

91. Yang Q, Liu J, Wang S, Li H, Ge Q, et al. (2011) Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women. Clin Chim Acta 412: 2167–2173.

92. Lusi EA, Passamano M, Guarascio P, Scarpa A, Schiavo I, et al. (2009) Innovative electrochemical approach for an early detection of microRNAs. Anal Chem 81: 2019–2022.