Transcriptome Sequencing of the Endangered Species Elongate Loach (*Leptobotia elongata*) From the Yangtze River: *De novo* Transcriptome Assembly, Annotation, Identification and Validation of EST-SSR Markers

Yunbang Zhang¹, Jian Gao¹,², Yunhai Zhang³, Yuanchao Zou⁴* and Xiaojuan Cao¹,²*

¹ Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China, ² Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China, ³ Wuhan Sinoeco Ecological Science and Technology Co., Ltd., Wuhan, China, ⁴ Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Life Sciences, Neijiang Normal University, Neijiang, China

Elongate loach (*Leptobotia elongata*) is endemic to middle and upper reaches of the Yangtze River in China. Due to overfishing and habitat destruction, this loach has become an endangered species. So far, lack of reliable genetic information and molecular markers has hindered the conservation and utilization of elongate loach resources. Therefore, we here performed an Illumina sequencing and *de novo* transcriptome assembly in elongate loach, and then developed polymorphic simple sequence repeat markers (SSRs). After assembly, 51,185 unigenes were obtained, with an average length of 1,496 bp. A total of 23,901 expressed sequence tag-simple sequence repeats (EST-SSRs) were identified, distributing in 14,422 unigenes, with a distribution frequency of 28.18%. Out of 16,885 designed EST-SSR primers, 150 primers (3 or 4 base repetition-dominated) were synthesized for polymorphic EST-SSR development. Then, 52 polymorphic EST-SSRs were identified, with polymorphism information contents (PIC) ranging from 0.03 to 0.88 (average 0.54). In conclusion, this was the first report of transcriptome sequencing of elongate loach. Meanwhile, we developed a set of polymorphic EST-SSRs for the loach. This study will provide an important basis, namely genetic information and polymorphic SSRs, for further population genetics and breeding studies of this endangered and economic loach in China.

Keywords: *Leptobotia elongate*, transcriptome, SSRs, polymorphism, endangered species
INTRODUCTION

Elongate loach (Leptobotia elongata), also known as Queen loach, is the largest species in the Cobitidae family (Yuan et al., 2010). This loach is recorded in the middle and lower reaches of the Jinsha River, the upper reaches of the Yangtze River, the Minjiang River, the Jialing River, the Qijiang River and the Lancang River. It is endemic to the middle and upper reaches of the Yangtze River in China (Ding, 1994). Elongate loach contains rich nutrients (protein, fat and essential amino acids) and is diuretic, nourishing Yin and other medicinal values, and ornamental value as well (Liang et al., 2009), making it with high market price. Meanwhile, the loach grows fast. These advantages bring a bright future for elongate loach aquaculture. Due to over-fishing, pollution of the water environment and the construction of water conservancy projects, the resources and distribution area of elongate loach have been seriously reduced (Liang et al., 2009; Yuan et al., 2010). This loach is currently listed as a highly endangered fish in the “China Species Red List” (Yue and Chen, 1998). Therefore, protection and sustainable utilization of elongate loach resource are imperative, imminent and of great significance.

Nowadays, molecular methods and means, e.g., transcriptomics and molecular markers, are often applied in the conservation and utilization of fish resources. The RNA-seq technology combined with bioinformatics can generate extensive data in a very cost-effective way (Parchman et al., 2010; Ekblom and Galindo, 2011; Harkess et al., 2017; Mercati et al., 2019). It not only facilitates the acquisition of a large number of gene sequences, but is also conducive to develop expressed sequence tag (EST)-derived markers (Qiao et al., 2014; Weisberg et al., 2017; Penin et al., 2019). Simple sequence repeats (SSRs) are sequences formed by short tandem repeating of 1–6 nucleotide bases, also known as microsatellites, widely found in the nuclear genome of eukaryotes (Jarne and Lagoda, 1996). They were first discovered in the genomes of plant chloroplasts and mitochondria (Powell et al., 1995; Provan et al., 1996; Whithon et al., 1997; Procaccini and Mazzella, 1998). As a molecular marker, SSR has the advantages of high polymorphism, co-dominance, quantity and easy experimentation (Zhang et al., 2016). It is a powerful tool in researches on resource conservation, phylogeny and population genetics, and genetic breeding. Different from genomic SSRs, EST-SSRs are located in the coding regions and highly transferable to related taxa (Zhao et al., 2013). Thus, EST-SSRs are considered as effective functional markers (Li et al., 2004; Mercati et al., 2019).

There have been a few reports on SSR development of elongate loach. Liu et al. (2012) developed a total of 22 polymorphic SSRs in the loach by using the fast isolation by AFLP of sequences containing repeats protocol (FIASCO). 18 polymorphic SSRs were developed in the loach based on the method of triplex affinity capture (Lian et al., 2013). In addition, Liu et al. (2014) developed 14 polymorphic SSRs through 454 sequencing technology of elongate loach genomic DNA. In this study, RNA-seq analysis was conducted in elongate loach for the first time to enrich its genomic resources. Then, we mined sequences containing SSRs from the transcriptome dataset and 52 polymorphic EST-SSRs were validated. This study will benefit for studies of population genetics, gene functions and genetic breeding in elongate loach and other related species.

MATERIALS AND METHODS

Ethics Statement

This study was conducted in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of Huazhong Agricultural University. All efforts were made to minimize suffering of the loach.

Fish Samples

In October 2019, thirty elongate loach adults used here were collected from the waters of the Minjiang River (104°37′12″ N; 28°46′12″ E) in China. The heart, liver, brain and muscle tissues from each elongate loach adult (n = 4) were dissected. The samples were immediately frozen in liquid nitrogen for 24 h, and then stored at −80°C for RNA sequencing.

RNA Isolation, Library Preparation, and Sequencing

Total RNA was isolated from each sample by using TRIzol Reagent (TaKaRa, Dalian, China) according to the manufacturer’s protocol. RNA purity and concentration were determined by gel electrophoresis and Nanodrop 2,000 (Thermo Fisher Scientific, Waltham, MA, United States). The RNA integrity number (RIN) was examined using Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, United States). The isolated RNAs from the four different tissues of each loach, with RIN values greater than 9.0, were mixed with equivalent concentration as one biological sample. Since a RIN value of a live tissue was less than 9.0, three biological samples were finally obtained. The mixed RNA samples were then used for cDNA synthesis (Invitrogen, Carlsbad, CA, United States). Then the synthesized cDNA was subjected to end-repair, phosphorylation and “A” base addition according to Illumina's library construction protocol. Three cDNA libraries were constructed (namely LE1, LE2, and LE3) in this study. The cDNA libraries were sequenced on the Illumina sequencing platform (Illumina Hiseq xten/NovaSeq 6,000 sequencer Illumina, San Diego, CA, United States) by using paired-end technology. The Illumina GA pipeline (version 1.8.2, San Diego, CA, United States) was used to analyze the raw image and for base calling.

De novo Assembly and Annotations

The sequencing data was filtered with the Sickle1 and SeqPrep2 software to remove the linker and low-quality sequences. Then, all clean reads were de novo assembled into transcripts by Trinity (Version v2.8.5) software, and the details were described by Zhang et al. (2017). After assembly, the TGICL clustering software (Version 2.1, J. Craig Venter Institute, Rockville, MD, United States) was used to cluster and remove redundant

1https://github.com/najoshi/sickle
2https://github.com/jstjohn/SeqPrep
TABLE 1 | Sequencing details of each library for mixed-assembly in elongate loach.

Samples	Raw reads	Raw bases	Clean reads	Clean bases	Valid ratio (base)	Q30 (%)	GC content (%)
LE1	65810158	993733858	64867566	9598704746	97.34%	92.59%	44.86%
LE2	72354480	10925526480	71428902	1058695321	97.35%	92.68%	45.99%
LE3	66753186	10079731086	66000092	9792722894	97.34%	92.64%	46.46%

LE, elongate loach.

TABLE 2 | Summary of mixed-assembling of elongate loach.

Transcriptome type	Resource
Total number of clean reads	202,296,650
Total clean nucleotides (nt)	29,978,512,961
Total number of unigenes	51,185
Largest length of unigenes (nt)	48,658
Smallest length of unigenes (nt)	201
Mean length of unigenes (nt)	1,495.84
N50 of unigenes (nt)	2,785
TransRate score	0.36
BUSCO score	84.9%

Detection of EST-SSRs

The software MISA v1.0 was used to detect SSRs in the unigenes with the following parameters: the motif sizes ranged from one to six nucleotide repeat units (six for mono- and di-, five for tri-, tetra-, penta-, and hexa-nucleotides), and the maximum interruption distance between two SSRs was 100 bp. We used the program Premier 5.0 software (Premier Biosoft Inc., Palo Alto, CA, United States) to design SSR primers and the methods in details referred to Feng et al. (2017). In this study, out of 16,885 designed EST-SSR primers, 150 pairs of primers were randomly selected and synthesized for polymorphic EST-SSR (3 or 4 base repetition-dominated) development.

EST-SSRs Amplification and Genotyping

Thirty elongate loaches were used for DNA extractions. The genomic DNA was extracted from caudal fin by using ammonium acetate method (Richardson et al., 2001), diluted with deionized water, and then subjected to agarose gel electrophoresis to detect the quality.

Amplification and polymorphism of the 150 EST-SSRs were tested through polymerase chain reaction (PCR) and electrophoresis, respectively. DNA amplification was performed by using a T100 Gradient Thermal cycler (Bio-Rad Laboratories, Inc., Pleasanton, CA, United States) within a 10 µL final reaction volume: 3.5 µL of double distilled water, 0.5 µL of each primer

\[\text{http://hibberdlab.com/transrate/} \]
\[\text{http://weizhongli-lab.org/cd-hit/} \]
\[\text{http://pgrc.ipkgsatersleben.de/misa/} \]
(100 μmol/L), 0.5 μL of genomic DNA (70 ng/μL), and 5 μL of 2X DreamTaq Green PCR Master Mix. PCR amplification program was listed as following: an initial denaturation at 98°C for 5 min, then 35 cycles of 30 s at 96°C, 10–16 s at 60°C, 1 min at 72°C, and final extension at 72°C for 10 min. 2% agarose gel electrophoresis was used to evaluate the success of the PCR reaction and the polymorphisms of EST-SSRs.

Simple sequence repeat genotyping was determined by capillary electrophoresis on a 96-capillary Applied Biosystem 3730 Genetic Analyzer. Three different dyes including 6-carboxyfluorescein (FAM), hexachloro-6-carboxy-fluorescein (HEX) and 5-carboxy-X-rhodamine (ROX), were used to label forward primers. GeneScan 500 ROX size standard (Applied Biosystem, United States) was the internal lane size standard. The genotyping data were obtained by using GeneMapper v4.0.

The POPGENE32 (Yeh et al., 1999) software was used to assess the number of observed alleles (Na), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphic information content (PIC) of each EST-SSR.

RESULTS AND DISCUSSION

De novo Assembly and Functional Annotation of Elongate Loach Transcriptome

Before the 2000s, the annual catch of elongate loach was about 10,000 kg. By 2008, the annual catch had reduced to 2,000–3,000 kg (Duan et al., 2008). At present, elongate loach is an endangered fish species endemic to Yangtze River in China (Yuan et al., 2010). Like elongate loach, populations of many fish species in the Yangtze River are getting smaller (Zhang et al., 2020). That's why Chinese government has planned to
carry out a ten-year forbidden fishing in the Yangtze River, which will be fully implemented since January 1, 2021 (Huang, 2020). Along with the obviously continuous reduction in wild resources, elongate loach is getting more and more attention. Many studies of the loach have been done. However, they mainly focus on its ecological habits, morphological characteristics, artificial reproduction, etc (Ku and Wen, 1997; Li, 2014; Zhang et al., 2018). Although the sequencing technologies have developed rapidly, different from other endangered animal species (Magalhães et al., 2019; Chen et al., 2020; Grandjean et al., 2020; Wen et al., 2020), there were few researches on genetic information of elongate loach. In this study, we developed a reference transcriptome in elongate loach. This was the first report of transcriptome sequencing in elongate loach, which could provide useful information for its protection and effective utilization.

Sequencing details of each library of elongate loach are shown in Table 1. All of the sequenced libraries were mixed for de novo assembling. After cleaning and quality checks, 202,296,650 clean reads with a total length of 29.98 Gb were obtained, which assembled into 51,185 unigenes with a mean length of 1,495.84 bp and a N50 of 2,785 bp (Table 2). The assembled unigene lengths ranged from 201 to 48,765 bp. In addition, the TransRate score and BUSCO score were 0.36 and 84.9%, respectively. Supplementary Table 1 showed the comparison of sequencing data and assembly results by using Transdecoder, indicating that the reference transcriptome had a good quality. The length distribution of the assembled unigenes is shown in Figure 1.

All unigenes were annotated against the six functional databases: NCBI Nr, Swiss-Prot, Pfam, COG, GO, and KEGG. As indicated in Figure 2, 49.43% unigenes (25,303) were significantly matched with known genes in the Nr database, while 42.45% unigenes (21,726) matched with entries in the Swiss-Prot database, and 38.39% unigenes (19,651) matched with proteins in the Pfam database. Based on the E-value distribution, 17.21% of annotated sequences showed high scores for homology (E-value < 1×10^{-30}), and 82.80% showed homology with E-values ranging from 0 to 1×10^{-30} (Figure 3A). Figure 3B showed that 71.57% of sequences had similarities over 80%. These results reflected the high identities of the mapped sequences with known sequences, suggesting good assembly quality of the reference transcriptome in elongate loach. Species-based distribution analysis indicated that Simocyclocheilus rhinoceros (22.37%) provided most of the BLASTx hits for the elongate loach unigenes (Figure 3C).

Functional prediction and classification of all unigenes were performed using their annotations with COG, GO, and KEGG databases. A total of 11, 894 unigenes (23.24%) in elongate loach were annotated in COG and grouped into 24 COG classifications (Supplementary Figure 1A). Based on Nr annotation and 60,229 functional terms, 8,970 (14.89%) elongate loach unigenes were assigned to GO term (Supplementary Figure 1B). It is classified into 59 functional groups from three aspects: biological process, cellular component and molecular function. All unigenes were analyzed with the KEGG pathway database as well. Carrying significant matches in this present study, 16,257 (31.76%) unigenes were assigned to 43 predicted metabolic pathways (Supplementary Figure 1C).

Through the reference transcriptome, we calculated the relative abundance of the assembled unigenes from four tissues of elongate loach. Cytochrome c oxidase subunit genes (COX1/3) were the highest expressed, followed by some genes related to muscle growth, including GAPDH, TPM4, and ACTC1 (Supplementary Table 2). Moreover, many ribosomal genes including RPL37, RPL23, RPS2, RPL32, RPS19, RPS23, RPL27A, and RPL15, were highly expressed in elongate loach.

Identification and Classification of EST-SSRs

A total of 23,901 EST-SSRs in elongate loach were identified in elongate loach (Table 3), which provided foundation for further investigations of population genetics and breeding of this species. Among all the unigenes, 28.18% (14,422) of them contained SSRs. Meanwhile, 4,450 unigenes had more than one SSR. The EST-SSR type in elongate loach was abundant, with a total of 54 repeat types from mononucleotide to hexanucleotides (Supplementary Table 3). 96.36% of mononucleotide repeats was A/T motif, accounting for 49.99% of the total EST-SSRs. Dinucleotide was dominated by AC/GT and AG/CT, accounting for 22.73% and 11.76%, respectively. Trinucleotide was mainly AAT/ATT and ATC/ATG, accounting for 1.58 and 1.21% respectively. The proportion of the remaining motifs did not exceed 1%. AAAC/GTTT and AAAG/CTTT motif accounted for the highest proportion in tetranucleotide. Pentanucleotide and hexanucleotide were the least of all motifs, and their proportions were 0.04% (Supplementary Table 3). Among the perfect SSRs, mononucleotide repeats were the most abundant (51.87%), followed by dinucleotide (40.28%), tri- (6.06%), tetra- (1.69%), penta- (0.084%), and hexa- (0.013%) nucleotide repeats.

Occurrence of SSRs in the surveyed elongate loach transcriptome.

Item	Number
Total number of identified SSRs	23901
Number of unigenes containing SSRs	14422
Number of unigenes containing more than one SSR	4450

Simple sequence repeat marker.

Frequency distributions of SSRs in elongate loach transcriptome based on the number of repeat units.

SSR type	Number of repeats	Total				
	1–5	5–10	11–15	> 15	%	
Mononucleotide	–	3970	6496	1962	12398	51.87
Dinucleotide	–	7744	1361	522	9627	40.28
Trinucleotide	847	587	15	–	1449	6.06
Tetranucleotide	241	139	18	6	404	1.69
Pentanucleotide	13	3	2	2	20	0.08
Hexanucleotide	1	2	–	–	3	0.01
Total	1102	12445	7862	2492	23901	–

Simple sequence repeat marker.
TABLE 5 | Characteristics of 52 EST-SSRs that amplified successfully and exhibited polymorphism in elongate loach.

Locus	Accession No.	Primer sequence (5′–3′)	Repeat motif	Tm (°C)	N_a	Size range (bp)	H_o	H_e	PIC
LEC1	TRINITY_DN12535_c0_g1	F: CTGTGATGCCAGCCAATG (AAT)5	60	5	164–176	0.0357	0.2344	0.2239	
		R: GAGCAGGACAGCAGGAAACAGG	(CA)5	60	3	167–176	0.4000	0.5215	0.3973
LEC2	TRINITY_DN14931_c4_g2	F: TTGCTCGTCTGCTGCTGGAA	(ACA)5	60	3	177–183	0.2800	0.4024	0.3308
LEC3	TRINITY_DN12827_c5_g1	F: TTGCTCGTCTGCTGCTGGAA	(TAT)6	58	3	171–183	0.3103	0.4652	0.4132
LEC4	TRINITY_DN12949_c1_g4	F: CACTGCTTGGGAGAATACGCAAC	(CA)6	60	4	172–205	0.3103	0.3321	0.3041
LEC5	TRINITY_DN13684_c0_g1	F: AACAATGCGCCACTCGCAACCG	(CAG)5	60	3	167–176	0.4000	0.5215	0.3973
LEC6	TRINITY_DN14501_c0_g1	F: AAGGCAAAGGAGTATGGAAGGAGG	(CA)6	12	8	245–271	0.7000	0.8486	0.8131
LEC7	TRINITY_DN15670_c1_g3	F: GACTGATGCTGCTGCTGGAA	(GCA)6	70	3	170–197	0.1333	0.1288	0.1288
LEC8	TRINITY_DN131392_c1_g6	F: TCGGGAGAGGGAGTAGGGGAGG	(GCT)5	60	3	177–186	0.1667	0.1554	0.1411
LEC9	TRINITY_DN14118_c5_g4	F: TTTCGGATTTTCCAAAGATGG	(ATT)6	58	2	180–183	0.5714	0.4857	0.3622
LEC10	TRINITY_DN13399_c1_g5	F: AATGTGGATCAACACTGGCAAC	(TAA)8	40	5	160–176	0.0357	0.2344	0.2239
LEC11	TRINITY_DN12807_c3_g2	F: AGGGCCTGTACCCAAGTTGT	(AAAT)6	55	2	273–281	0.0690	0.0678	0.0644
LEC12	TRINITY_DN13057_c0_g2	F: CCTAAACCAATCTTCCAGACCA	(CGG)5	60	4	175–184	0.3000	0.5096	0.4520
LEC13	TRINITY_DN15771_c1_g3	F: AACCTGCTAAGCTGCAACACC	(ATA)7	55	3	195–205	0.4288	0.3776	
LEC14	TRINITY_DN15596_c2_g3	F: GCCATGACTTCAATGGGTAAA	(AC)15	60	8	253–271	0.8333	0.8684	0.8163
LEC15	TRINITY_DN13239_c0_g4	F: CTGGGAAGAACCAGCAGAAC	(TGG)5	60	3	204–214	0.3103	0.3321	0.3041
LEC16	TRINITY_DN13036_c0_g1	F: CCTCCTCTTCACACTTCAGACCA	(AAC)6	60	4	198–219	0.3333	0.4661	0.4290
LEC17	TRINITY_DN13402_c0_g2	F: GCAGCTTGCACAGAACGACCA	(AAA)7	55	3	273–281	0.4138	0.5426	0.4686
LEC18	TRINITY_DN13871_c0_g2	F: CTGCACCAACCCTAACATCAA	(GAA)6	60	2	204–214	0.4000	0.3638	0.2938
LEC19	TRINITY_DN13983_c1_g3	F: GACGTCCAGGGGGTAAGACT	(TATC)15	60	8	245–281	1.0000	0.1599	0.1530
LEC20	TRINITY_DN14006_c0_g3	F: GCCATGACTTCAATGGGTAAA	(AC)15	60	8	253–271	0.8333	0.8684	0.8163
LEC21	TRINITY_DN14031_c0_g1	F: GTTCGATGAGGGAGTAGGGGAGG	(AAAT)6	55	2	273–281	0.0690	0.0678	0.0644
LEC22	TRINITY_DN14401_c0_g1	F: GGCGATGAGGGAGTAGGGGAGG	(CA)12	60	3	245–271	0.1000	0.0977	0.0936
LEC23	TRINITY_DN13775_c2_g6	F: TTGTTAAGCTGCTGCTGGAA	(TA)17	55	11	251–283	0.5862	0.8669	0.8381
LEC24	TRINITY_DN13402_c0_g2	F: AATTACGCTGCTGCTGGAAACAG	(GTAT)6	60	8	239–271	0.5517	0.8524	0.8163

(Continued)
TABLE 5 | Continued

Locus	Accession No.	Primer sequence (5’–3’)	Repeat motif	Tm (°C)	\(N_a\)	Size range (bp)	\(H_o\)	\(H_e\)	PIC
LEC62	TRINITY_DN15633_c2_g1	F: CTGTATCACTCGGCTGCTCTTC	(TTTG)6	60	10	238–270	0.3333	0.8655	0.8343
LEC63	TRINITY_DN11924_c1_g1	F: ACCATGCCAACATTATTTGTA	(AAAT)6	60	7	242–266	0.1667	0.7322	0.6769
LEC64	TRINITY_DN13712_c0_g6	F: TACCTGACATCTCCTTTGTA	(TGTA)8	58	7	238–270	0.3667	0.7944	0.7491
LEC65	TRINITY_DN1973_c2_g3	F: TGGTGGAAGAAGCAAGACC	(GACA)6	80	6	243–271	0.4286	0.8487	0.8146
LEC66	TRINITY_DN14061_c0_g5	F: ATACAGAGACTGCTATCTGAC	(CTGA)6	60	6	246–266	0.2963	0.7617	0.7042
LEC67	TRINITY_DN12952_c2_g1	F: ACCAAAGCTGTTGCAAGGTA	(ACAT)12	60	9	238–270	0.5926	0.8211	0.7802
LEC69	TRINITY_DN14124_c5_g11	F: ATTATGGGGGAATGTTGGGT	(AAAG)6	60	9	243–271	0.4643	0.8305	0.7914
LEC70	TRINITY_DN15546_c3_g2	F: GGTCTCCAGGCAACAGGC	(GTCA)6	60	6	246–266	0.1600	0.7649	0.7055
LEC71	TRINITY_DN13815_c2_g1	F: CAAACACAAAACACCAACA	(AACC)6	60	5	243–275	0.2759	0.5233	0.4651
LEC72	TRINITY_DN13373_c1_g1	F: CGAGATCTGAGAGCTATGC	(AACT)7	60	12	213–289	0.5000	0.7288	0.6992
LEC74	TRINITY_DN14240_c2_g1	F: AGCTCAAGCTGCGTGGTCTC	(TTTG)6	60	4	235–247	0.3667	0.4910	0.4350
LEC75	TRINITY_DN11924_c1_g3	F: GAGACAAGGAAGAAACCAAA	(AAAT)7	60	4	240–252	0.3333	0.5915	0.5259
LEC76	TRINITY_DN12470_c0_g2	F: TTTTCTCGAAGGCTTTGC	(AAAT)6	60	11	212–264	0.6552	0.7241	0.6915
LEC77	TRINITY_DN14359_c0_g2	F: TAAATAGCTGAGCTGCTCC	(AAAC)6	60	4	234–246	0.5000	0.6119	0.5238
LEC78	TRINITY_DN12383_c3_g3	F: TGTGTGCTGCTGCTGCTTC	(TTTG)6	60	5	234–248	0.2667	0.5401	0.4360
LEC79	TRINITY_DN12777_c2_g1	F: CATTGGCAATCAAAACGCTT	(TGTC)14	60	10	200–260	0.3939	0.7888	0.7226
LEC80	TRINITY_DN13310_c3_g5	F: GACATTTGCAAGCCTCTATTA	(TTTG)6	60	4	234–248	0.2857	0.6448	0.5681
LEC81	TRINITY_DN14884_c2_g1	F: TTTAATGCTCCCAACCTGCA	(TTCT)6	60	10	228–268	0.4138	0.7985	0.7573
LEC82	TRINITY_DN15245_c3_g1	F: CCATCTGCTGTGTTGAAAAGGCT	(AAAG)6	60	14	170–250	0.8333	0.8757	0.8486
LEC83	TRINITY_DN15476_c1_g1	F: TCTGCGTCACACATGCACT	(ATCT)6	60	6	227–243	0.4000	0.6831	0.6122
LEC84	TRINITY_DN15563_c1_g3	F: ATGAGGCTGAAAACACCAACA	(AAAG)8	60	6	229–265	0.5000	0.7847	0.7390
LEC85	TRINITY_DN14097_c3_g1	F: TCAGAGAGTGAATCTCAGCA	(TTCT)6	60	11	171–243	0.7586	0.8300	0.7968
LEC86	TRINITY_DN13916_c3_g3	F: TAACTCTTACACAGTAGGG	(TCCA)7	60	7	229–269	0.4483	0.7381	0.6823
LEC87	TRINITY_DN13197_c0_g1	F: GGAGCTTCTCTTGTGAGGTGCT	(TGTT)7	60	8	210–280	0.3103	0.7653	0.7185
LEC88	TRINITY_DN13886_c3_g1	F: ACCATGCCTGAGTTGTGTTGA	(TTCT)6	60	10	173–249	0.6786	0.7903	0.7554
LEC89	TRINITY_DN14475_c1_g3	F: GAGAGAGGAGGAAACACGGG	(CCAT)6	60	7	230–250	0.5357	0.7883	0.7438

Total 318
Mean 6.1154
EST-SSR, expressed sequence tag- simple sequence repeat marker; \(N_a\), number of alleles; \(H_o\), observed heterozygosity; \(H_e\), expected heterozygosity; PIC, value of polymorphism information content.
In addition, we analyzed the numbers of repeat units and found that most EST-SSRs motifs had fewer than 15 repeats and accounted for 89.57% of all SSRs. 6–10 and 11–15 repeats harbored the most SSRs. In this study, we found that mononucleotide-repeat SSRs were the most abundant in elongate loach. This was consistent with the findings in *Acipenser dabryanus* (Chen et al., 2020). However, dinucleotide-repeat SSR was the main type in other fishes (Magalhães et al., 2019).

Development of Polymorphic EST-SSRs

Out of 23,901 EST-SSRs, 16,885 primer pairs were successfully designed, and 150 primers (3 or 4 base repetition-dominated) were randomly selected for amplification of genomic DNA from elongate loach. Among the 150 primer pairs, 96 pairs (64%) were able to generate clear bands by PCR, which implied a decent EST-SSR primer dataset. Considering the amplification and polymorphic results, 52 SSRs (including 4 dinucleotide-repeat SSRs, 16 trinucleotide-repeat SSRs, and 32 tetranucleotide-repeat SSRs) were selected to evaluate polymorphism levels within the elongate loach population (Table 5). Previously, a total of 54 polymorphic SSRs were developed in elongate loach (Liu et al., 2012, 2014; Lian et al., 2013). Among them, 29 were dinucleotide-repeat SSRs. Compared with mono- and dinucleotide-repeat SSRs, tri- and tetranucleotide-repeat SSRs were more efficient in genotyping researches (Tibihika et al., 2020). Therefore, it could be told that this study developed many efficient SSR marks to conserve and utilize the threaten and economic loach.

In October 2019, we collected an elongate loach population from the Yangtze River and found that a total of 318 alleles were detected in all the 52 polymorphic SSRs developed here. Meanwhile, the average number of alleles was 6.1. *Hø* varied from 0.0333 to 0.8333 with an average of 0.3986, while *He* from 0.3333 to 0.8757 with an average of 0.5870, were found. The value of *PIC* ranged from 0.0332 to 0.8381 with a mean value of 0.5414. Among the 52 SSRs obtained here, 30 SSRs were highly polymorphic (*PIC* > 0.5), and 14 were moderately polymorphic (0.25 < *PIC* < 0.5) (Botstein et al., 1980). Liu et al. (2017) reported that the average number of alleles and *Hø* for seven populations of elongate loach collected from July 2011 to December 2013, were respectively 11.5 and 0.74, which were obviously higher than those in our study. To a certain extent, it indicated an obvious reduction in population genetic diversity of elongate loach in the Yangtze River recently, which would be caused by over-fishing and habitat destruction. Therefore, it needs to pay more attention to the protection of elongate loach.

In this study, we found that the average number of alleles and *Hø* for seven populations of elongate loach collected from July 2011 to December 2013, were respectively 11.5 and 0.74, which were obviously higher than those in our study. To a certain extent, it indicated an obvious reduction in population genetic diversity of elongate loach in the Yangtze River recently, which would be caused by over-fishing and habitat destruction. Therefore, it needs to pay more attention to the protection of elongate loach.

In summary, this study provides a reference transcriptome of *Acipenser dabryanus* in the Yangtze River in China. These will benefit for the protection and sustainable utilization of elongate loach.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

ETHICS STATEMENT

The animal study was reviewed and approved by the Institutional Animal Ethics Committee and the Use of Laboratory Animals of Huazhong Agricultural University.

AUTHOR CONTRIBUTIONS

XC and YCZ designed and supervised the experiments. YBZ, JG, and YHZ carried out the experiments. YBZ analyzed the data and wrote the manuscript. XC revised the manuscript. All authors reviewed and approved the manuscript.

FUNDING

This study was financially supported by Ministry of Agriculture and Rural Affairs of the People’s Republic of China (Project Title: Investigations of the Wild Resources and Genetic Diversity of Elongate Loach in Yangtze River. Project Number: 81), Fundamental Research Funds for the Central Universities (Project Number: 2662020SCPY002), and Open Project Program of Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River Ministry of Agriculture (Project Number: FRES201901).

ACKNOWLEDGMENTS

Many thanks to the two reviewers for their comments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmars.2021.616727/full#supplementary-material

REFERENCES

Botstein, D., White, R. L., Skolnick, M., and Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. *Am. J. Hum. Genet.* 32, 314–331. doi: 10.1016/0002-9297(80)90274-0

Chen, Y. Y., Liu, Y., Du, J., Song, M. J., Lai, J. S., and Gong, Q. (2020). Isolation and characterization of 47 SNP markers in the critically endangered *Acipenser dabryanus*. *Conserv Genet Resour.* 12, 9–12. doi: 10.1007/s12686-018-1052-x

Ding, R. H. (1994). *Sichuan Fish Volunteers*. Chengdu: Sichuan Sci. Technol., 104–106.

Duan, X. B., Liu, S. P., Xiong, F., Chen, D. Q., Yang, R. H., Chi, C. G., et al. (2008). Analysis of fishing structure and biodiversity in the upper mainstream of the Yangtze River before and after 3 years spring fishing off. *Resour. Environ. Yangtze Basin* 17, 878–884.

Zhang et al. Elongate Loach Transcriptome and SSR-Development
Ekbloom, R., and Galindo, J. (2011). Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107, 1–15. doi: 10.1038/hdy.2010.152

Feng, S. J., Zhao, L. L., Liu, Z. S., Liu, Y. L., and Yang, T. X. (2017). De novo transcriptome assembly of Zanthoxylum bungeanum using illumina sequencing for evolutionary analysis and simple sequence repeat marker development. Sci. Rep. 7:16754, doi: 10.1038/s41598-017-15911-7

Grandjean, F., Gan, H. M., Mounen, B., Giraud, I., Hatira, S., Cordaux, R., et al. (2020). Dataset for sequencing and de novo assembly of the European endangered white-clawed crayfish (Astacopontambus pallipes) abdominal muscle transcriptome. Data Brief. 29:105166. doi: 10.1016/j.dib.2020.105166

Harkess, A., Zhou, J. S., Xu, C. Y., Bowers, J. E., Huist, R. V., Ayyampalayam, S., et al. (2017). The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun. 8, 1279–1286. doi: 10.1038/s41467-017-01064-8

Huang, Y. J. (2020). Forbidden fishing for ten years: the measures of promoting the development of Yangtze River economic zone. Study Times 7, 1–3.

Jarne, P., and Lagoda, P. J. L. (1996). Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11, 424–429. doi: 10.1016/1045-4875(96)00149-5

Ku, Y. M., and Wen, X. B. (1997). A preliminary study on the biological characteristics of Leptobotia elongata (Bleeker). J. Hubei Agric. College 17, 40–42.

Li, L. (2014). Studies on the Feeding Ecology of Dominant Fishes and Food Web Structure of Fishes in the Yibin Reach of Yangtze River. Doctoral thesis, Huazhong Agricultural University, Hongshan.

Li, Y. C., Korol, A. B., Fahima, T., and Nevo, E. (2004). Microsatellites within genes: structure, function, and evolution. Mol. Biol. Evol. 21, 991–1007. doi: 10.1093/molbev/msi073

Lian, H., Que, Y. F., Xu, D. M., Liang, Y. Q., and Zhu, B. (2013). Development and characterization of 18 microsatellite loci from the endemic elongate loach (Leptobotia elongata). Conserv Genet Resour. 5, 371–373. doi: 10.1007/s12686-012-9806-3

Liang, H. L., Zhang, X. Z., and Liang, Y. Q. (2009). Threatened fishes of the world: Leptobotia elongata (Bleeker, 1870) (Botiidae). Environ. Biol. Fish. 85, 287–288. doi: 10.1007/s10641-009-9500-9

Liu, D. Q., Wu, J. Y., Deng, L. J., Gan, W. X., Du, L. M., and Song, Z. B. (2014). Li, Y. C., Korol, A. B., Fahima, T., and Nevo, E. (2004). Microsatellites within genes: structure, function, and evolution. Mol. Biol. Evol. 21, 991–1007. doi: 10.1093/molbev/msi073

Lian, H., Que, Y. F., Xu, D. M., Liang, Y. Q., and Zhu, B. (2013). Development and characterization of 18 microsatellite loci from the endemic elongate loach (Leptobotia elongata). Conserv Genet Resour. 5, 371–373. doi: 10.1007/s12686-012-9806-3

M. D. (2019). Comparative analysis of developmental transcriptome maps of genes: structure, function, and evolution. Mol. Biol. Evol. 21, 991–1007. doi: 10.1093/molbev/msi073

Magalhães, M. G. P., Moreira, D. A., Furtado, C., and Parente, T. E. (2019). Transcriptome analysis and codominant markers development of the threatened Acrocephalus sechellensis transcriptome and genes related to paclitaxel biosynthesis. PLoS One 9:e106900. doi: 10.1371/journal. pone.0106900

Tihibika, P. D., Curto, M., Alemayehu, E., Waidbacher, H., Masembe, C., Akoll, P., et al. (2020). Molecular genetic diversity and differentiation of Nile tilapia (Oreochromis niloticus, L. 1758) in East African natural and stocked populations. BMC Evol. Biol. 20:16. doi: 10.21203/rs.2.11849/v4

Weisberg, A. J., Kim, G., Westwood, J. H., and Jelsko, J. G. (2017). Sequencing and de novo assembly of the Toxicodendron radicans (Poison ivy) transcriptome. Genes 8, 317–342. doi: 10.3390/genes8110317

Whitton, J., Rieseberg, L. H., and Ungerer, M. C. (1997). Microsatellite loci are not conserved across the asteraceae. Mol. Biol. Evol. 14, 204–209. doi: 10.1093/oxfordjournals.molbev.a025755

Yeh, F. C., Yang, R. C., and Boyle, T. B. J. (1999). POPGENE Ver. 1.31. Microsoft Windows-Based Free Ware for Population Genetic Analysis. Alberta: University of Alberta and Centre for International Forestry Research.

Zhao, Y. L., Williams, R., Prakash, C. S., and He, G. H. (2013). Identification and characterization of polymorphic microsatellite loci from elongate loach (Leptobotia elongata (Bleeker, 1870) (Botiidae). Environ. Biol. Fish. 87, 295–296. doi: 10.1007/s10641-010-9582-4

Zhang, Y., Li, Y., Liang, X., Cao, X. J., Huang, L. F., Yan, J., et al. (2017). Procaccini, G., and Mazzella, I. (1998). Population genetic structure and gene flow in the seagrass Posidonia oceanica assessed using microsatellite analysis. Mar. Ecol. Prog. Ser. 169, 133–141. doi: 10.1354/meps169133

Zhang, P. F., Zhao, X. R., Pang, B. P., Tan, Y., Chang, J., and Gao, L. J. (2016). High-throughput discovery of microsatellite markers in Galeruca daurica (Coleoptera: Chrysomelidae) from a transcriptome database. J. Appl. Entomol. 150, 1058–1064. doi: 10.1111/j.1439-0418.2015.13531.x

Zhang, Y., Li, Y., Liang, X., Cao, X. J., Huang, L. F., Yan, J., et al. (2017). Hepatic transcriptome analysis and identification of differentially expressed genes response to dietary oxidized fish oil in loach Misgurnus anguillicaudatus. PLoS One 12:e0172386. doi: 10.1371/journal.pone.0172386

Zhang, Y. H., Ding, Y., Gu, Z. X., Huang, X. Y., Yu, Z. W., and Shui, M. (2018). Artificial propagation and embryonic development observation of Leptobotia elongata from Jinsha River and Yangtze River. Hub Agric. Sci. 57, 104–107.

Zhao, Y. L., Williams, R., Prakash, C. S., and He, G. H. (2013). Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.). BMC Plant Biol. 12:237. doi: 10.1186/1471-2229-12-237

Conflict of Interest: YHZ was employed by Wuhan Sinoco Ecological Science and Technology Co., Ltd.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhang, Gao, Zhang, Zou and Cao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.