Adding boundary terms to Anderson localized Hamiltonians leads to unbounded growth of entanglement

Yichen Huang (黄溢辰)*

Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

March 21, 2023

Abstract

It is well known that in Anderson localized systems, starting from a random product state the entanglement entropy remains bounded at all times. However, we show that adding a single boundary term to an Anderson localized Hamiltonian leads to unbounded growth of entanglement. Our results imply that Anderson localization is not a local property. One cannot conclude that a subsystem has Anderson localized behavior without looking at the whole system, as a term that is arbitrarily far from the subsystem can affect the dynamics of the subsystem in such a way that the features of Anderson localization are lost.

Preprint number: MIT-CTP/5326

1 Introduction

In the presence of quenched disorder, the phenomenon of localization can occur not only in single-particle systems, but also in interacting many-body systems. The former is known as Anderson localization (AL) [1], and the latter is called many-body localization (MBL) [2–7]. In the past decade, significant progress has been made towards understanding AL and especially MBL.

A characteristic feature that distinguishes MBL from AL lies in the dynamics of entanglement. Initialized in a random product state, the entanglement entropy remains bounded at all times in AL systems [8], but grows logarithmically with time in MBL systems [9–12]. The logarithmic growth of entanglement can be understood heuristically [13–15] from the strong-disorder renormalization group [16–21] or a phenomenological model of MBL [22–23].

* yichenhuang@fas.harvard.edu
Recently, it was rigorously proved that in MBL systems, the entanglement entropy obeys a volume law at long times \[24\].

Consider the random-field XXZ chain with open boundary conditions

$$H_{XXZ} = \sum_{j=1}^{N-1} (\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z) + \sum_{j=1}^{N} h_j \sigma_j^z,$$

where $\sigma_j^x, \sigma_j^y, \sigma_j^z$ are the Pauli matrices at site j, and h_j's are independent and identically distributed uniform random variables on the interval $[-h, h]$. For $\Delta = 0$, this model reduces to the random-field XX chain

$$H_{XX} = \sum_{j=1}^{N-1} (\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y) + \sum_{j=1}^{N} h_j \sigma_j^z.$$

Using the Jordan–Wigner transformation, H_{XX} is equivalent to a model of free fermions hopping in a random potential. It is AL for any $h > 0$. The Δ term in Eq. (1) introduces interactions between fermions. H_{XXZ} is MBL for any $\Delta \neq 0$ and sufficiently large h \[25–27\].

In H_{XXZ}, the Δ term representing interactions between fermions is extensive in that it is the sum of $N - 1$ local terms between adjacent qubits. Let

$$H_{XXb} = H_{XX} + \Delta \sigma_{N-1}^z \sigma_N^z = \sum_{j=1}^{N-1} (\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y) + \sum_{j=1}^{N} h_j \sigma_j^z + \Delta \sigma_{N-1}^z \sigma_N^z.$$

Without the last term, H_{XXb} is AL. In this paper, we show that in the dynamics generated by H_{XXb}, the effect of this boundary term invades into the bulk: Starting from a random product state the entanglement entropy obeys a volume law at long times. For large h, the coefficient of the volume law is almost the same as that in the dynamics generated by H_{XXZ}.

Our results imply that AL is not a local property. One cannot conclude that a subsystem has AL behavior without looking at the whole system, as a term that is arbitrarily far from the subsystem can affect the dynamics of the subsystem in such a way that the features of AL are lost.

We briefly discuss related works. Khemani et al. \[28\] showed nonlocal response to local manipulations in localized systems. Lezama and Bar Lev \[29\] studied the dynamics of an AL system with local noise. These works consider time-dependent Hamiltonians, and are thus different from ours. Vasseur et al. \[30\] studied the revival of a qubit coupled to one end of an AL system, but the coupling is chosen such that the whole system (including the additional qubit) is a model of free fermions. This is in contrast to H_{XXb}.

2 Results

Definition 1 (entanglement entropy). The entanglement entropy of a bipartite pure state ρ_{AB} is defined as the von Neumann entropy

$$S(\rho_A) := -\text{tr}(\rho_A \ln \rho_A)$$

of the reduced density matrix $\rho_A = \text{tr}_B \rho_{AB}$.
Figure 1: Dynamics of the half-chain entanglement entropy for \(H_{XXb} \) (blue circle, random-field \(XX \) chain with an additional boundary term), \(H_{XXZ} \) (red plus, random-field \(XXZ \) chain), and \(H_{XX} \) (green x-mark, random-field \(XX \) chain).

We initialize the system in a Haar-random product state \([31–34\).]

Definition 2 (Haar-random product state). In a system of \(N \) qubits, let \(|\Psi\rangle = \bigotimes_{j=1}^{N} |\Psi_j\rangle \) be a Haar-random product state, where each \(|\Psi_j\rangle \) is chosen independently and uniformly at random with respect to the Haar measure.

For all numerical results in the main text, we choose \(h = 16 \) and \(\Delta = 0.1 \), and average over 1000 samples (a sample consists of a random Hamiltonian and a random initial state). We choose \(N = 10 \) in Figure 1 and in the left panel of Figure 2. We use the Multiprecision Computing Toolbox for MATLAB (https://www.advanpix.com).

Figure 1 shows the dynamics of the entanglement entropy between the left and right halves of the system for \(H_{XXb} \) and \(H_{XXZ} \). We clearly see that the last term in Eq. (3) leads to slow entanglement growth.

Figure 2 shows that the entanglement entropy at long times obeys a volume law for \(H_{XXb} \) and \(H_{XXZ} \), and the coefficient of the volume law is very close to \(1/2 \). This is consistent with the analytical prediction of Ref. [24]. Specifically, Theorem 3 in Ref. [24] states that the coefficient is upper bounded by \(1/2 \) in the limit \(h \to +\infty \). In our numerical study, \(h = 16 \) is finite but very large (so that the models are deep in the localized regime). Therefore, we expect \(1/2 \) to be an approximate upper bound. On the other hand, Theorem 1 in Ref. [24] states that the coefficient is lower bounded by \(1/2 \) if the spectrum of the Hamiltonian has non-degenerate gaps.

Definition 3 (non-degenerate gap). The spectrum \(\{E_j\} \) of a Hamiltonian has non-degenerate
Figure 2: Left panel: The entanglement entropy between the first \(j \) and the last \(N - j \) qubits at long times for \(H_{XXb} \) (blue circle, random-field \(XX \) chain with an additional boundary term), \(H_{XXZ} \) (red plus, random-field \(XXZ \) chain), and \(H_{XX} \) (green x-mark, random-field \(XX \) chain). The black lines are \(S = \min\{j, N - j\}/2 \). Right panel: Finite-size scaling of the half-chain entanglement entropy at long times for \(H_{XXb} \) (blue), \(H_{XXZ} \) (red), and \(H_{XX} \) (green). The black line is \(S = 0.4709(N/2) - 0.4087 \). Both panels show that the entanglement entropy at long times obeys a volume law for \(H_{XXb} \) and \(H_{XXZ} \).

Gaps if the differences \(\{E_j - E_k\}_{j \neq k} \) are all distinct, i.e., for any \(j \neq k \),

\[
E_j - E_k = E_{j'} - E_{k'} \implies (j = j') \text{ and } (k = k').
\] (5)

Indeed, we have numerically verified (up to \(N = 12 \)) that the spectra of both \(H_{XXb} \) and \(H_{XXZ} \) almost surely have non-degenerate gaps.

In the right panel of Figure 2, we observe a constant correction to the volume law. This is expected, for such corrections also exist in many other contexts [35–45].

3 Summary and outlook

We have numerically shown that adding a single boundary term to an AL Hamiltonian leads to entanglement growth. Starting from a random product state the entanglement entropy obeys a volume law at long times, and the coefficient of the volume law is consistent with the analytical prediction of Ref. [24]. Our results imply that AL is not a local property. One cannot conclude that a subsystem has AL behavior without looking at the whole system, as a term that is arbitrarily far from the subsystem can affect the dynamics of the subsystem in such a way that the features of AL are lost.

Here are some interesting problems that deserve further study.

- Can we prove that the spectrum of \(H_{XXb} \) almost surely has non-degenerate gaps? A positive answer to this question would allow us to rigorously prove the title of this paper using Theorem 1 in Ref. [24].
• Can we develop an analytical understanding of how the entanglement entropy grows with time for H_{XXb} by adapting the phenomenological model of MBL [22, 23]?

• How does H_{XXb} scramble local information as measured by the out-of-time-ordered correlator [46–52]?

• It was argued that MBL is less stable in two and higher spatial dimensions [53, 54]. To what extent does an additional boundary term delocalize an AL system in higher dimensions?

Notes
The MIT-CTP preprint number of this paper was assigned on 9 Sep 2021 at 14:16 ET. Less than 10 minutes before submitting the arXiv version 1 of this paper, I became aware of a related work [55]. It studies the dynamics of a model that is different from but arguably conceptually similar to H_{XXb} (3).

Acknowledgments
This work was supported by NSF grant PHY-1818914 and a Samsung Advanced Institute of Technology Global Research Partnership.

Data availability statement
All data that support the findings of this study are included within the article.

A Additional numerical results
All numerical results in the main text are for $h = 16$ and $\Delta = 0.1$. Figure A.1 shows the numerical results for a different set of (h, Δ).

References
[1] P. W. Anderson. Absence of diffusion in certain random lattices. Physical Review, 109(5):1492–1505, 1958.
[2] R. Nandkishore and D. A. Huse. Many-body localization and thermalization in quantum statistical mechanics. Annual Review of Condensed Matter Physics, 6(1):15–38, 2015.
[3] E. Altman and R. Vosk. Universal dynamics and renormalization in many-body-localized systems. Annual Review of Condensed Matter Physics, 6(1):383–409, 2015.
[4] R. Vasseur and J. E. Moore. Nonequilibrium quantum dynamics and transport: from integrability to many-body localization. Journal of Statistical Mechanics: Theory and Experiment, 2016(6):064010, 2016.
Figure A.1: Numerical results for $h = 10$ and $\Delta = 1$. The blue circles and red pluses have the same meaning as in Figure 2. The black lines in the left and right panels are $S = \min\{j, N - j\}/2$ and $S = 0.4854(N/2) - 0.3886$, respectively.

[5] D. A. Abanin and Z. Papić. Recent progress in many-body localization. *Annalen der Physik*, 529(7):1700169, 2017.

[6] F. Alet and N. Laflorencie. Many-body localization: An introduction and selected topics. *Comptes Rendus Physique*, 19(6):498–525, 2018.

[7] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn. Colloquium: Many-body localization, thermalization, and entanglement. *Reviews of Modern Physics*, 91(2):021001, 2019.

[8] H. Abdul-Rahman, B. Nachtergaele, R. Sims, and G. Stolz. Entanglement dynamics of disordered quantum XY chains. *Letters in Mathematical Physics*, 106(5):649–674, 2016.

[9] M. Žnidarič, T. Prosen, and P. Prelovšek. Many-body localization in the Heisenberg XXZ magnet in a random field. *Physical Review B*, 77(6):064426, 2008.

[10] J. H. Bardarson, F. Pollmann, and J. E. Moore. Unbounded growth of entanglement in models of many-body localization. *Physical Review Letters*, 109(1):017202, 2012.

[11] A. Nanduri, H. Kim, and D. A. Huse. Entanglement spreading in a many-body localized system. *Physical Review B*, 90(6):064201, 2014.

[12] Y. Huang. Entanglement dynamics in critical random quantum Ising chain with perturbations. *Annals of Physics*, 380:224–227, 2017.

[13] R. Vosk and E. Altman. Many-body localization in one dimension as a dynamical renormalization group fixed point. *Physical Review Letters*, 110(6):067204, 2013.

[14] M. Serbyn, Z. Papić, and D. A. Abanin. Universal slow growth of entanglement in interacting strongly disordered systems. *Physical Review Letters*, 110(26):260601, 2013.

[15] R. Vosk and E. Altman. Dynamical quantum phase transitions in random spin chains. *Physical Review Letters*, 112(21):217204, 2014.

[16] C. Dasgupta and S.-k. Ma. Low-temperature properties of the random Heisenberg antiferromagnetic chain. *Physical Review B*, 22(3):1305–1319, 1980.
[17] D. S. Fisher. Random antiferromagnetic quantum spin chains. *Physical Review B*, 50(6):3799–3821, 1994.

[18] D. S. Fisher. Critical behavior of random transverse-field Ising spin chains. *Physical Review B*, 51(10):6411–6461, 1995.

[19] G. Refael and J. E. Moore. Entanglement entropy of random quantum critical points in one dimension. *Physical Review Letters*, 93(26):260602, 2004.

[20] D. Pekker, G. Refael, E. Altman, E. Demler, and V. Oganesyan. Hilbert-glass transition: New universality of temperature-tuned many-body dynamical quantum criticality. *Physical Review X*, 4(1):011052, 2014.

[21] Y. Huang and J. E. Moore. Excited-state entanglement and thermal mutual information in random spin chains. *Physical Review B*, 90(22):220202, 2014.

[22] M. Serbyn, Z. Papić, and D. A. Abanin. Local conservation laws and the structure of the many-body localized states. *Physical Review Letters*, 111(12):127201, 2013.

[23] D. A. Huse, R. Nandkishore, and V. Oganesyan. Phenomenology of fully many-body-localized systems. *Physical Review B*, 90(17):174202, 2014.

[24] Y. Huang. Extensive entropy from unitary evolution. *Preprints*, 2021:2021040254.

[25] A. Pal and D. A. Huse. Many-body localization phase transition. *Physical Review B*, 82(17):174411, 2010.

[26] D. J. Luitz, N. Laflorencie, and F. Alet. Many-body localization edge in the random-field Heisenberg chain. *Physical Review B*, 91(8):081103, 2015.

[27] M. Serbyn, Z. Papić, and D. A. Abanin. Criterion for many-body localization-delocalization phase transition. *Physical Review X*, 5(4):041047, 2015.

[28] V. Khemani, R. Nandkishore, and S. L. Sondhi. Nonlocal adiabatic response of a localized system to local manipulations. *Nature Physics*, 11(7):560–565, 2015.

[29] T. L. M. Lezama and Y. Bar Lev. Logarithmic, noise-induced dynamics in the Anderson insulator. *SciPost Physics*, 12(5):174, 2022.

[30] R. Vasseur, S. A. Parameswaran, and J. E. Moore. Quantum revivals and many-body localization. *Physical Review B*, 91(14):140202, 2015.

[31] Y. D. Lensky and X.-L. Qi. Chaos and high temperature pure state thermalization. *Journal of High Energy Physics*, 2019(6):25, 2019.

[32] Y. Huang. Entanglement dynamics from random product states at long times. In *2021 IEEE International Symposium on Information Theory*, pages 1332–1337.

[33] Y. Huang. Entanglement dynamics from random product states: Deviation from maximal entanglement. *IEEE Transactions on Information Theory*, 68(5):3200–3207, 2022.

[34] Y. Huang and A. W. Harrow. Scrambling and thermalization in translation-invariant systems. arXiv:1907.13392.

[35] D. N. Page. Average entropy of a subsystem. *Physical Review Letters*, 71(9):1291–1294, 1993.

[36] L. Vidmar and M. Rigol. Entanglement entropy of eigenstates of quantum chaotic Hamiltonians. *Physical Review Letters*, 119(22):220603, 2017.

[37] Y. O. Nakagawa, M. Watanabe, H. Fujita, and S. Sugiura. Universality in volume-law entanglement of scrambled pure quantum states. *Nature Communications*, 9:1635, 2018.
[38] C. Liu, X. Chen, and L. Balents. Quantum entanglement of the Sachdev-Ye-Kitaev models. *Physical Review B*, 97(24):245126, 2018.

[39] Y. Huang. Universal eigenstate entanglement of chaotic local Hamiltonians. *Nuclear Physics B*, 938:594–604, 2019.

[40] Y. Huang and Y. Gu. Eigenstate entanglement in the Sachdev-Ye-Kitaev model. *Physical Review D*, 100(4):041901, 2019.

[41] Y. Huang. Universal entanglement of mid-spectrum eigenstates of chaotic local Hamiltonians. *Nuclear Physics B*, 966:115373, 2021.

[42] M. Haque, P. A. McClarty, and I. M. Khaymovich. Entanglement of midspectrum eigenstates of chaotic many-body systems: Reasons for deviation from random ensembles. *Physical Review E*, 105(1):014109, 2022.

[43] E. Bianchi, L. Hackl, M. Kieburg, M. Rigol, and L. Vidmar. Volume-law entanglement entropy of typical pure quantum states. *PRX Quantum*, 3(3):030201, 2022.

[44] Y. Huang. Deviation from maximal entanglement for mid-spectrum eigenstates of local Hamiltonians. arXiv:2202.01173.

[45] Y. Huang and A. W. Harrow. Quantum entropy thermalization. arXiv:2302.10165.

[46] Y. Huang, Y.-L. Zhang, and X. Chen. Out-of-time-ordered correlators in many-body localized systems. *Annalen der Physik*, 529(7):1600318, 2017.

[47] R. Fan, P. Zhang, H. Shen, and H. Zhai. Out-of-time-order correlation for many-body localization. *Science Bulletin*, 62(10):707–711, 2017.

[48] Y. Chen. Universal logarithmic scrambling in many-body localization. arXiv:1608.02765.

[49] B. Swingle and D. Chowdhury. Slow scrambling in disordered quantum systems. *Physical Review B*, 95(6):060201, 2017.

[50] R.-Q. He and Z.-Y. Lu. Characterizing many-body localization by out-of-time-ordered correlation. *Physical Review B*, 95(5):054201, 2017.

[51] X. Chen, T. Zhou, D. A. Huse, and E. Fradkin. Out-of-time-order correlations in many-body localized and thermal phases. *Annalen der Physik*, 529(7):1600332, 2017.

[52] K. Slagle, Z. Bi, Y.-Z. You, and C. Xu. Out-of-time-order correlation in marginal many-body localized systems. *Physical Review B*, 95(16):165136, 2017.

[53] W. De Roeck and F. Huveneers. Stability and instability towards delocalization in many-body localization systems. *Physical Review B*, 95(15):155129, 2017.

[54] W. De Roeck and J. Z. Imbrie. Many-body localization: stability and instability. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 375(2108):20160422, 2017.

[55] P. Brighi, A. A. Michailidis, D. A. Abanin, and M. Serbyn. Propagation of many-body localization in an Anderson insulator. *Physical Review B*, 105(22):L220203, 2022.