Ileke Kayode David and Adesina Femi Peter*
Department of Biology, School of Science, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria

Received: 19 November, 2018
Accepted: 27 November, 2018
Published: 28 November, 2018

*Corresponding author: Adesina Femi Peter, Department of Biology Federal University of Technology Akure, Ondo State, Nigeria,
Tel: +2347033028164;
E-mail: femi.adesina@outlook.com

Keywords: Clerodendrum; Anopheles gambiae; Plant extract; Larvae; Pupae

https://www.peertechz.com

Research Article

Bioefficacy of Larvicidal and Pupicidal properties of Clerodendrum capitatum and Bridelia machrantha leaves extracts against Malaria Vector, Anopheles gambiae giles [Diptera: Culicidae]

Abstract

Studies were conducted under ambient condition to assess the bio-efficacy of Clerodendrum capitatum and Bridelia machrantha leaves against developmental stages (larva and pupa) of malaria vector, Anopheles gambiae. One hundred millimeter (100mm) of aqueous solutions of the various plant extracts at various concentrations of 25mg/L, 50mg/L, 100mg/L, 150mg/L and 200mg/L were each put in a labelled transparent bowl. Twenty (20) 3rd/4th larval instar were introduced separately into the C. capitatum and B. machrantha extracts along with a set of control containing rain water without any test solution and all tested concentrations were replicated four times. Similarly, Twenty- two days old pupae of Anopheles mosquito were introduced separately into the various plant extracts. The number of dead larvae and pupae were counted and recorded accordingly after 24 hours of treatment. The results showed that Larvae and pupae mortality of An. gambiae occurred in a dosage-dependent manner. There was no significant differences (p>0.05) in toxicity level of the two plant extracts on An. gambiae larvae at concentrations 25mg/L, 50mg/L, 100mg/L, 150mg/L and 200mg/L. Clerodendrum capitatum at concentrations 25mg/L, 50mg/L, 100mg/L, 150mg/L and 200mg/L caused 30%, 47.5%, 60%, 90% and 100% mortality of An. gambiae larvae after 24 hours of exposure, respectively. Bridelia machrantha extract caused 22.5%, 35%, 50%, 77.5% and 92.5% mortality of An. gambiae larvae after 24 hours of exposure at rates 25mg/L, 50mg/L, 100mg/L, 150mg/L and 200mg/L, respectively. Similar trend of results were recorded on the pupae. C. capitatum had lower LC 50 and LC 90 recorded when compared to B. machrantha that had the higher value on both larvae and pupae. The use of natural insecticide in the implementation of national policy for the control of malaria vectors should be promoted as they are easily degradable, medicinal and eco-friendly.

Introduction

One of the insects that are of medical importance is mosquito, it is more predominant in tropical countries, thereby putting up to 3.2 billion people at risk of malaria [1]. It abhors parasite (Plasmodium spp.) that can cause diseases like malaria, filariasis, yellow fever and denque on human [2] and it has resulted to 445000 deaths out of 216 million malaria cases reported in the world [1]. This disease is transmitted only by the Anopheles mosquitoes from the order Diptera. Out of 400 species of Anopheles described, 40 species are important vectors of human malaria worldwide [3]. Many species has been identified to transmit malaria in Nigeria and Anopheles gambiae was reported as a primary vector of malaria among other species in the southern Nigeria [4-10].

Mosquito net, repellent cream and paint, insecticide and mosquito coil among others are well known as mosquito control methods in Nigeria. Over the decades, synthetic insecticide has been the most used because of its effectiveness. Nevertheless, its negative effects on human health, non target organisms (including aquatic animals) and environment are a major concern. It has also make mosquito population develop resistance against its application [5,9-13].

Searching for new compounds that are highly effective against mosquito and at the same time that are eco-friendly, degradable, not toxic to humans and non target organisms, and inexpensive has been a current trend in research. Several researchers have suggested aromatic plants and their essential oils as natural insecticides for pest control because they have few harmful effects on ecosystem structure and function [14].
Eggs, larvae, pupae and adults of different species of mosquito had been subjected to different plant extracts and volatile oils to assess the insecticide ability of botanicals [8,10,15-18]. Therefore, the present study investigates the toxicity of Clerodendrum capitatum and Bridelia machrantha extract on the larvae and pupae of Anopheles gambiae.

Materials and Methods

Collection and rearing of larva and pupa mosquito

Mosquito baits, consisting of shallow containers with a large surface area were established under a partial shade in an open field. The clean transparent white bucket was filled with rain water to mimic mosquito natural breeding environment and to attract adult female for oviposition. Ten grams (10g) of yeast (Bakers’ yeast) were sprinkled on the surface of the water and allowed to decompose slowly to nourish the developing larvae. Wild mosquitoes were allowed to freely visit the baits and to lay eggs. The water was monitored for 3–5 days for the development of the egg and first instar larva. These larvae were taken into the laboratory. In the laboratory, the larvae were identified into species level using the morphological keys [19]. The Anopheles larvae were separated from the mixed culture and transferred into another plastic container containing rain water. Some of the larvae were used for the larvicidal tests. The Anopheles larvae were further nurtured to pupae for 3–5 days for pupicidal tests.

Collection of plant materials

The plants evaluated in this work were Clerodendrum capitatum and Bridelia machrantha leaves. The fully developed leaves of C. capitatum and B. machrantha, free of insecticides were obtained in fresh form a farm at Ibule Soro, Akure, Ondo State, Nigeria. They were taken to the Crop, Soil and Pest management Department, Federal University of Technology, Akure, Ondo State for authentication by Plant Taxonomist.

Extraction of plant materials

The leaves of C. capitatum and B. machrantha were washed with distilled water, shade dried, cut into small pieces and air dried for 14 days in the laboratory. The seeds of M. myristica were also air dried for 21 days before pulverized into fine powders using an industrial electric pulverizing machine at the Department of Animal Production and Health Laboratory of the Federal University of Technology Akure. The powders were further sieved to pass through 1mm² perforations and kept in air-tight plastic containers for storage before use at ambient temperature (28 ± 2) °C.

About 400g of C. capitatum and B. machrantha powders were soaked separately in an extraction bottle containing 500ml of absolute n–hexane for 3 days. The mixture was stirred occasionally with a glass rod and extraction was terminated after 3 days. Filtration was carried out using a double layer of Whatman No. 1 filter papers and solvent evaporated using a rotary evaporator at 30 to 40°C with rotary speed of 3 to 6 rpm for 8 hours [20]. The resulting extracts were air dried in order to remove traces of solvent. The extracts were kept in labeled plastic bottles till when needed.

Preparation of standard stock solution

Standard stock solutions were prepared by dissolving 4g of the crude extracts in 1Litre of water. From these stock solutions, different concentrations of 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L and 200 mg/L were prepared and these aqueous solutions were used for the various experiments.

Bioassy

Toxicity of Extracts on Larvae of Mosquito: One hundred millimeter (100mm) of aqueous solutions of the various plant extracts at various concentrations of 25mg/L, 50mg/L, 100mg/L, 150mg/L and 200mg/L were each put in a labelled transparent bowl. Twenty (20) 3rd/4th larval instar obtained from the culture were introduced separately into the various plant extracts along with a set of control containing rain water without any test solution and all tested concentrations were replicated four times. The number of dead larvae were counted and recorded accordingly after 24 hours of treatment.

Dead larvae were those incapable of rising to the surface or without the characteristic diving reaction when the water was disturbed [21].

\[
\text{% Larval Mortality} = \frac{\text{Number of dead larvae}}{\text{Number of larvae introduced}} \times 100
\]

The LC50 and LC90 were carried out by Probit analysis.

Toxicity of extracts on pupae of mosquito

Also, similar experiment as described above was carried out for pupae of Anopheles gambiae. One hundred millimeter (100mm) of aqueous solutions of the various plant extracts at various concentrations of 25mg/L, 50mg/L, 100mg/L, 150mg/L and 200mg/L were each put in a labelled transparent bowl. Twenty (20) two (2) days old pupae of Anopheles mosquito were introduced separately into the various plant extracts. They were replicated four times and rain water was used as control. The number of dead pupae were counted and recorded accordingly after 24 hours of treatment.

\[
\text{% Pupal Mortality} = \frac{\text{Number of dead pupae}}{\text{Number of pupae introduced}} \times 100
\]

Phytochemical Screening of C. Capitatum and B. Machrantha Leaves

Chemical tests were carried out on the aqueous and methanol extracts of C. capitatum and B. machrantha leaves for the qualitative determination of phytochemical constituents using standard procedures as described by Harborne [22]. Trease and Evans [23], Sofowora [24].

Statistical analysis of data

Data were subjected to analysis of variance (ANOVA), and means were separated using the new Duncan’s multiple Range test. The log–Probit model analysis was done to the data recorded in the larvicidal and pupicidal bioassay to assess the 50% lethal concentration \(\text{LC}_{50}\), the 90% lethal concentration \(\text{LC}_{90}\) and their 95% confidence limits.
Results

Contact toxicity of *C. capitatum* and *B. machrantha* Extracts on *An. gambiae* Larvae

Effects of *C. capitatum* and *B. machrantha* extracts on percentage mortality of *An. gambiae* larvae is presented in Table 1. Larvae mortality of *An. gambiae* occurred in a dosage-dependent manner. There was no significant differences (p>0.05) in toxicity level of the two plant extracts on *An. gambiae* larvae at concentrations 25mg/L, 50mg/L, 100mg/L, 150mg/L and 200mg/L. *Clerodendrum capitatum* at concentrations 25mg/L, 50mg/L, 100mg/L, 150mg/L and 200mg/L caused 30%, 47.5%, 60%, 90% and 100% mortality of *An. gambiae* larvae after 24 hours of exposure, respectively. *Bridelia machrantha* extract caused 22.5%, 35%, 50%, 77.5% and 92.5% mortality of *An. gambiae* larvae after 24 hours of exposure at rates 25mg/L, 50mg/L, 100mg/L, 150mg/L and 200mg/L, respectively. Generally, *An. gambiae* larvae mortality increased with increase in hours of exposure.

Contact toxicity of *C. capitatum* and *B. machrantha* Extracts on *An. gambiae* Pupae

Table 2 shows the contact toxicity of *C. capitatum* and *B. machrantha* extracts on percentage mortality of *An. gambiae* larvae after 24 hours of exposure. Mortality of *An. gambiae* pupae occurred in a dosage-dependent manner. There was no significant differences (p>0.05) in toxicity level of the *C. capitatum* and *B. machrantha* extracts on *An. gambiae* pupae at concentrations tested (62.5mg/L, 125mg/L, 250mg/L, 500mg/L and 1000mg/L). *Clerodendrum capitatum* caused 30%, 35%, 57.5%, 72.5% and 97.5% mortality of *An. gambiae* larvae after 24 hours of exposure at concentrations 62.5mg/L, 125mg/L, 250mg/L, 500mg/L and 1000mg/L respectively. *Bridelia machrantha* extract at concentrations 62.5mg/L, 125mg/L, 250mg/L, 500mg/L and 1000mg/L caused 15%, 30%, 47.5%, 65% and 90% mortality of *An. gambiae* larvae after 24 hours of exposure, respectively. Generally, *An. gambiae* pupae mortality increased with increase in hours of exposure.

LC50 and LC90 of *C. capitatum* and *B. machrantha* Extracts on *An. gambiae* larva and pupae

LC50 and LC90 of *C. capitatum* and *B. machrantha* Extracts on larvae and pupae of *An. gambiae* is shown on Table 3. *C. capitatum* had lower LC50 and LC90 recorded when compared to *B. machrantha* that had the higher value on both larvae and pupae. LC50 and LC90 of *C. capitatum* on larvae were 50.14 mg/L and 172.30 mg/L respectively while that of *B. machrantha* had 190.87 mg/L and 854.02 mg/L respectively. On pupae, LC50 and LC90 of *C. capitatum* was 190.87 mg/L and 854.02 mg/L respectively while *B. machrantha* had 253.76 mg/L and 1305.47 mg/L respectively.

Phytochemicals screening of *C. capitatum* and *B. machrantha* Leaves

Table 4 presented the result of the phytochemical screening of the methanol and aqueous extracts of *C. capitatum* and *B. machrantha* leaves. The phytochemicals present in then-hexane, and aqueous extracts of *C. capitatum* and *B. machrantha* were identical. Alkaloids, saponins, tannins, phlobatAnnins, anthraquinones, flavonoids and cardiac glycosides were detected in both aqueous and n-hexane extracts of *C. capitatum* and *B. machrantha* leaves.

Discussion

This study revealed that botanicals extract can be alternatives to the use of synthetic insecticide in the control of *An. gambiae* malaria vector. *Anopheles gambiae* s.l [Diptera: Culicidae]. J Biol Med 2(1): 007-011. DOI: http://dx.doi.org/10.17352/jbm.000004
of insect vector. The two plants assessed had proven high insecticide ability against mosquito and this was in agreement with Ileke et al. [6], who reported the insecticidal potential of botanicals like Anacardium occidentale, Aframomum melegueta, Garcina kola and Citrus sinensis plants against malaria vector, mosquito, Anopheles gambiae. Akinerurolere et al. [15] found plant oils to be effective against mosquito larvae and pupae.

The high toxicity of these plants on mosquito larvae and pupae may be attributed to the active compounds present in these plants. The preliminary phytochemical analysis of extracts from the plants leaves was found to have presence of alkaloids, flavonoids, cardiac glycosides, tannins, anthtraquinones and sapronins. Flavonoid was present in the two plants tested which may be responsible for its larvicidal and pupicidal potentials [5,7]. Also, the swimming ability of the mosquito’s larvae and pupae could have been affected, thereby hinder their swimming to the surface for oxygen [5,25].

Nevertheless, C. capitatum caused high mortality than B. machrantha leaves on Anopheles mosquito larvae and pupae. This result is in agreement with the findings of Morya et al., [26] who tested the powder leave of some plants including Clerodendrum against Coryya cephalonica and among the plants, Clerodendrum sp was reported to have the highest biopesticide activity. Adesina et al. [27] on Bio-efficacy of Clerodendrum capitatum against Dermeses maculates larval infestation on smoked catfish Claria gariepinus, found that the plant powder cause significantly (p < 0.05) larval mortality compared to the untreated fish at 24 h, 48 h and 72 h post infestation. Clerodendrom genus had been widely study for it bioactivities toward medicinal benefits as well as its insecticidal ability [28].

It took more concentration for both plants to achieved higher mortality on pupae than on larvae. This means that larvae is more susceptible to these plants than pupae and this could be attributed to the active feeding stage of the larvae since pupae stages of the insect are not feeding [5,29,30]. Related observations were reported by Ileke and Ogungbile [5], who worked on the effectiveness of Altonia boonei on malaria vector. The strong choky odour of the plants may have also disrupted respiratory activity of the insect [31], blocking the spiracles thereby hinder the larvae breathe [32]. This could result into asphyxiation and death of the larvae [5,33,34] (Akinerurolere et al., 2006, Ileke and Oni, 2011; Ileke and Ogungbile, 2015).

Conclusion

Ultimately, due to the efficiency of C. capitatum and B. machrantha leaves extracts against Anopheles mosquitoes in the study, natural insecticide proved to be an alternative approach to the control of mosquito and to the use of synthetic insecticides whose cost, phenomenon of resistance developed in mosquitoes treated and proven action on non-target organisms are challenges in malaria controls.

References

1. (2017) World malaria report. Geneva: World Health Organization (WHO). Link: https://goo.gl/sGZUvK
2. (2016) WHO - World malaria report. WHO Press, Geneva, Switzerland. Link: https://goo.gl/RxaV4W
3. Becker N, Petric D, Boase C, Lane J, Zgomba M, et al. (2010) Mosquitoes And Their Control. Springer, Berlin. Link: https://goo.gl/Lg8zcf
4. Adesina JM, Jose AR, Rajashkekar Y, Afolabi LA (2015) Entomotoxicity of Xylophia aethiopica and Aframomum melegueta in suppressing oviposition and adult emergence of Callabosochrus maculatus (Fabricius) (Coleoptera: Chrysomelidae) infesting stored cowpea seeds. Jordan Journal of Biological Sciences 8: 263-268. Link: https://goo.gl/q2BF4
5. Ileke KD, Ogungbile OC (2015) Alstonia boonei De Wild oil extract in the management of mosquito (Anopheles gambiae), a vector of malaria disease. Journal of Coast Life Medicine 3: 557-563. Link: https://goo.gl/9dpGHe
6. Ileke KD, Afolabi OJ, Ogungbile OC, Olagunju JO, Akanbi OM (2014) Mosquitoicidal activity of Anacardium occidentale, Aframomum melegueta, Garcina kola and Citrus sinensis against the developmental stages of mosquito, Anopheles gambiae Giles. Journal of Mosquito Research 4: 21-26. Link: https://goo.gl/HlRlb
7. Ileke KD, Oyeniyi EA Ogungbile CO, Adesina JM (2015) Nicotianatobacum; a prospective mosquitoicide in the management of Anopheles gambiae (Giles). International Journal of Mosquitoes Research 2: 19-23. Link: https://goo.gl/Hf5SQ6
8. Ileke KD, Adesina JM, Okulola OG (2017) Larvicidal and Pupicidal Potential of Aframomum melegueta K. Schum Extracts Against Mosquito, Anopheles Species. Entomol.Res Soc 19: 121-127. Link: https://goo.gl/RUKJHw
9. Afolabi OJ, Simon-Oke I, Adepeju EO, Oniyo MA (2018) Adultrict and repellent activities of some botanical oils against malaria mosquito Anopheles gambiae (Diptera: Culicidae). Beni-Suef University Journal of Basic and Applied Sciences 7: 134-138. Link: https://goo.gl/27umSN
10. Awasolu O, Adesina F, Iweagu M (2018) Larvicidal effects of croton (Codiaeum variegatum) and Neem (Azadirachta indica) aqueous extract against Culex mosquito. International Journal of Mosquito Research 5: 15-18. Link: https://goo.gl/gNhSNP
11. Georgihoou GP (2012) Pest Resistance to Pesticides. Springer Science and Business Media, Berlin. Link: https://goo.gl/Nyr9Nc
12. Edwards C (2013) Environmental Pollution by Pesticides.Vol. 3. Springer Science and Business Media, Berlin.
13. Shayeghi M, Vatandoost H, Gorouhi A, Sanei-Dehkordi AR, Salim-Abadi Y, et al. (2014) Biodiversity of aquatic insects of ZayandehRoud River and its branches, Isfahan Province, Iranian Journal of Arthropod Borne Disease 8: 197–203. Link: https://goo.gl/gMaF4s
14. Isman MB (2000) Plant essential oils for pest and disease management. Crop Protection 19: 603–608. Link: https://goo.gl/1Fb3QH
15. Akinerurolere RO, Adedire CO, Odeyemi OO, Raji J, Owoeye JA (2011) Bioactivity of Extracts of some Indigenous Nigerian Plants on the developmental stages of mosquito (Anopheles gambiae). Jordan Journal of Biological Science 4: 237-242. Link: https://goo.gl/h56EPE
16. Avraki S, Ravindran KJ, Tenyson S (2012) Larvicidal Efficacy of Plant Extracts against the Malarial Vector Anopheles stephensi Liston (Diptera: Culicidae). World Journal of Medical Sciences 7: 77-80. Link: https://goo.gl/F3akMR
17. Kehail MAA, Bashir NHH, Abdelrahman EE, Abdelrahim AM (2017) Larvicidal activity of three plants powders and aqueous extracts on Anopheles and Culex mosquito larvae (Diptera: Culicidae). International Journal of Mosquito Research 4:37-41. Link: https://goo.gl/RIRDEY
18. Sanei-Dehkordi A, Gholami S, Abai MR, Sedaghat MM (2018) Essential Oil Composition and Larvicidal Evaluation of Platyclus orientalis against Two Mosquito Vectors, Anopheles stephensi and Culex pipiens, Journal of Arthropod-Borne Diseases 12: 101-107. Link: https://goo.gl/jWTM2Z

19. Gillies MT, De Meillon B (1968) The anophelinea of Africa South of the Sahara. South African Institute for Medicinal Research 54: 1-343. Link: https://goo.gl/ScQhwY

20. Udo IO (2011) Potentials of Zanthoxylum xanthoxyloides (LAM.) for the control of stored product insect pests. Journal Stored Products and Postharvest Research 2: 40-44. Link: https://goo.gl/11zmqn

21. (2005) World Health Organization. Guidelines for Laboratory and Field Testing of Mosquito Larvicides. WHO/CDS/WHOPES/GCDPP/2005:13. Link: https://goo.gl/ONj62U

22. Harborne JB (1973) Phytochemical methods. Chapman and Hall, London. 113. Link: https://goo.gl/3teYqB

23. Trease GE, Evans WC (1989) Pharmacognosy: a physicians guide to herbal medicine, 13th ed. Bailliere Tindall, London 176-180.

24. Sofowora A (1993) Medicinal plants and traditional medicine in Africa. Spectrum books Ltd. Ibadan, Nigerian 289-289. Link: https://goo.gl/tcPxx4

25. Bhattacharya K, Chandra G (2014) Phagodeterrence, larvicidal and oviposition deterrence activity of Tragia involucrata L. (Euphorbiaceae) root extractives against vector of lymphatic filariasis Culex quinquefasciatus (Diptera: Culicidae). Asian. Pac. J. of Trop. Dis 4: 226-232. Link: https://goo.gl/aPDtTx

26. Morya K, Pillai S, Patel P (2010) Effect of powdered leaves of Lantana camara, Clerodendrum inerme and Citrus lemon on the rice moth. Corcyra cephalonica. Bull Insectology 63:183-189. Link: https://goo.gl/4EdcRV

27. Adesina JM, Jose AR, Rajashekar Y (2016) Bio-efficacy of Clerodendrum capitatum (Willd) Schumachet. Thonn. (Lamiales: Verbenaceae) against Dermestes maculatus De Geer (1774) (Coleoptera: Dermestidae) larvae infestation on smoked catfish Claria gariepinus (Burchell, 1822) (Siluriformes: Claridae). Brazilian Journal of Biological Sciences 3: 37-44. Link: https://goo.gl/ZJVqH9

28. Shakeel AK, Sammia S, Waqar A, Sami U (2017) Pharmacological Importance of Clerodendrum Genus: A Current Review. International Journal of Pharmaceutical Science and Research 2: 22-30. Link: https://goo.gl/ARFK15

29. El – Bokl MM (2003) Latent toxicity of azadirachtin treatment on C. pipiens (Diptera: Culicidae). J. Egypt. Acad. Soc. Environ. Develop 3: 63-74.

30. Nathan SS, Kalaivani K, Murugan k (2008) Effects of neem limonoids on the malaria vector An. stephensi Liston (Diptera: Culicidae). Acta Trop. 96: 47-55. Link: https://goo.gl/pSvoA2

31. Ileke KD, Odeyemi OO Ashamo MO (2013) Response of Cowpea Bruchid, Callosobruchus aculatus (Fab r.) [Coleoptera: Chrysomelidae] to Cheese Wood, Alstonia boonei De Wild Stem Bark oil extracted with different solvents. Archives Phytopathol. Plant Protect 46: 1357-1370. Link: https://goo.gl/b8ZNMk

32. Kaufmann C, Briegel H (2004) Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus. Journal of Vector Ecology 29:140-53. Link: https://goo.gl/6VKP0r

33. Akinkurolere RO, Adedire CO, Odeyemi OO (2006) Laboratory evaluation of the toxic properties of forest Anchomenes, Anchomenes difformis against pulse beetles Callosobruchus maculatus (Coleoptera: Bruchidae). Insect Sci 13: 25-29. Link: https://goo.gl/se2SXR

34. Ileke KD, Oni MO (2011) Toxicity of some plant powders to maize weevil, Sitophilus zeamais (Coleoptera: Curculionidae) on stored wheat grains, African Journal of Agricultural Research 6: 3043-3048. Link: https://goo.gl/27ks9S