Abstract— Localization is widely used in Wireless Sensor Networks (WSNs) to identify the current location of the sensor nodes. A WSN consist of thousands of nodes that make the installation of GPS on each sensor node expensive and moreover GPS may not provide exact localization results in an indoor environment. Manually configuring location reference on each sensor node is also not possible for dense network. This gives rise to a problem where the sensor nodes must identify its current location without using any special hardware like GPS and without the help of manual configuration. In this paper we review the localization techniques used by wireless sensor nodes to identify their current location.

Index Terms--- Range Measurement, Wireless Sensor Networks, Anchor Nodes, Localization

I. INTRODUCTION

Wireless sensor devices have a wide range of application in surveillance, monitoring etc. Most of the devices in wireless sensor network are made up of off-the shelf materials and deployed in the area of surveillance and monitoring. The responsibility of each sensor node is to identify the changes in its particular region or area. The changes are as movement of animals, decrease or increase in temperature, rainfall etc., and these changes are periodically reported to the aggregation point or the central server. The central server or the aggregation server identifies the area with the help of the location reference sent by the sensor node. Initially during deployment each sensor nodes are given their location reference. This is done either manually or the sensor nodes automatically calculate the distance with the help of GPS devices attached to it. Installing a GPS device or manually calculating the location cannot be possible in the context of large network because of the excessive cost and workforce involved respectively. To overcome this, sensor nodes are made to identify their locations with the help of neighboring nodes. This paper focuses on the localization techniques used by the sensor nodes to identify their location. Several researches are going on in the field of localization to identify the exact location.

Jeril Kuriakose, Research Scholar, School of Computing and Information Technology (SCIT), Manipal University Jaipur, Jaipur. E-mail: kuriakosejeril@gmail.com
Sandeep Joshi, Associate Professor, School of Computing and Information Technology (SCIT), Manipal University Jaipur, Jaipur – 303007.
V.I. George, Director, School of Electrical, Electronics & Communication Engineering (SEEC), Manipal University Jaipur, Jaipur – 303007.
C. Angle based localization

Angle based localization uses the received signals angle or Angle of Arrival [14 - 16] to identify the distance. This method requires special antenna’s that are expensive. Because of this reason AOA is mostly used in Base Station’s (BS).

D. Range based localization

This localization is carried out based on the range. The range is calculated using the Received Signal Strength (RSSI) [17] or Time of Arrival (ToA) [18, 19] or Time Difference of Arrival (TDoA) [13, 20]. In RSSI based localization the receiver sends the signal strength with respect to the sender, and sender calculates the distance based on the signal strength. ToA and TDoA use timing to calculate the range. Time synchronization is an important factor when using ToA and TDoA.

E. Distance based localization

Distance based localization technique uses hop distance among each node to localize the node. It uses DV-hop propagation method [21, 22] or DV-distance [22] propagation method for localization.

III. LOCALIZATION TECHNIQUES

The localization techniques can be grouped into two types namely range based and range free approach. Fig. 2 shows the localization techniques grouped into different types.

\[d_{xy} = \frac{1}{2}[(\tau_{\text{trans}}^x - \tau_{\text{trans}}^y) - (\tau_{\text{recv}}^x - \tau_{\text{recv}}^y)] \]

where,

- \(d_{xy}\) is the distance between node X and node Y,
- \(\tau_{\text{recv}}^x\) is the received power of node X,
- \(\tau_{\text{trans}}^x\) is the transmitted power of node X,
- \(\tau_{\text{recv}}^y\) is the received power of node Y,
- \(\tau_{\text{trans}}^y\) is the transmitted power of node Y.

Fig. 3: Range Estimation using ToA

Once the distance is discovered, multilateration is implemented to find out the location reference of the node. RF signal travel at the speed of light, this make the RF propagation to get varied in indoor environments. This made a high localization overhead. In order to overcome the RF propagation in indoor environment, in [13], a combination of RF signals with Ultrasound was proposed. The speed of Ultrasound is lesser when compared to the speed of light. Based on the TDoA of the two signals the distance is calculated. Another method for locating a node using TDoA is done by observing the time for a signal to reach two or more receivers. It is made sure that all the receiver nodes are time synchronized. The TDoA is calculated as follows: [23]

\[\tau = \frac{(r_2 - r_1)}{c} \]

where,

- \(\tau\) is the TDoA,
- \(r_2\) & \(r_1\) are the range from the transmitter to the two receivers,
- \(c\) is the speed of propagation.

ii. Without using anchor nodes

A device that has GPS attached need not require a support from anchor nodes for localization. Triangulation [24] technique is used in GPS to identify the location of the node. The assistance of satellites is required for finding out the location of the sensor node that has GPS device.

B. Range free approach

There are few localization techniques that do not require special hardware for localization. They compute their distance based on DV hop or DV distance. The range free approach can be broadly classified into two types as follows,

i. Using anchor nodes

Techniques, namely Probability Grid [21] and Kcdlocation [24] works on DV based distance localization. In these
techniques few nodes act as anchor nodes, which in turn are used by other nodes for localizing themselves.

ii. Without using anchor nodes

Convex Position Estimation technique [28] works without an anchor node. The network is modeled by a central sever giving equations for revealing the distance between the nodes. It uses a good optimization technique to find out the location of the nodes based on the equations.

IV. PERFORMANCE OF LOCALIZATION SCHEMES

Table 1 shows the performance comparison of different localization schemes. Each localization technique serves different purposes. More the number of anchor nodes less the localization error. In dense environment the location error tends to increase. This can be controlled by making the network dense.

Localization Techniques used	Accuracy
GPS	2 to 15 meters
Angle based approach	1 to 6 meters
Range based approach	4 to 8 meters
DV based approach	10 to 20 meters

Table 1: Comparison of Localization Techniques

V. CONCLUSION

This paper covered the different localization techniques used and their problems. The scalability of range free approach is more when compared with range based approach. The localization techniques help by reducing the deployment cost of wireless sensor networks. Currently, there is a trade-off between the localization accuracy and algorithm runtime. Many security and energy issues related to localization that can be considered for future work.

REFERENCES

[1] Tracy Camp, Jeff Boleng, Brad Williams, Lucas Wilcox and William Navidi, “Performance Comparison of Two Location Based Routing Protocols for Ad Hoc Networks,” IEEE Infocom, 2002.
[2] LjubicaBlazevic, Jean-Yves Le Boudec and Silvia Giordano, “A Location-Based Routing Method for Mobile Ad Hoc Networks,” IEEE Transactions on Mobile Computing, 2005.
[3] HolgerFußler, Martin Mauve, et al., “Location Based Routing for Vehicular AdHoc Networks,” Proceedings of ACM MOBICOM, 2002.
[4] H. Qu, S. B. Wicke, “Co-designed anchor-free localization and location-based routing algorithm for rapidly-deployed wireless sensor networks,” Information Fusion, 2008.
[5] F. Kuhn, R. Wattenhofer, A. Zollinger, “Worst-case optimal and average-case efficient geometric ad-hoc routing,” Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking & Computing, 2003.
[6] Harren J. Whitehouse, Anna M. Leese de Escobar, et al., “A GPS Sonobuoy Localization System,” Position Location and Navigation Symposium, 2004.
[7] Panzieri Stefano, Pascucci, F., Ullivi, G., “An outdoor navigation system using GPS and inertial platform,” IEEE/ASME Transactions on Mechatronics, 2002.
[8] B. Parkinson et al., “Global Positioning System: Theory and Application,” Progress in Astronautics and Aeronautics, Volume 163, 1996
[9] Harper J. Whitehouse, Anna M. Leese de Escobar, et al., “A New Approach of Automobile Localization System Using GPS and GSM/GPRS Transmission,” International Spring Seminar on Electronics Technology, 2006.
[10] RaduStoleru, Tian He, John A. Stankovic, “Walking GPS: A Practical Solution for Localization in Manually Deployed Wireless Sensor Networks,” IEEE International Conference on Local Computer Networks, 2004.
[11] Panzieri Stefano, Pascucci, F., Ullivi, G., “An outdoor navigation system using GPS and inertial platform,” IEEE/ASME Transactions on Mechatronics, 2002.
[12] B. Parkinson et al., “Global Positioning System: Theory and Application," Progress in Astronautics and Aeronautics, Volume 163, 1996
[13] Harper J. Whitehouse, Anna M. Leese de Escobar, et al., “A New Approach of Automobile Localization System Using GPS and GSM/GPRS Transmission,” International Spring Seminar on Electronics Technology, 2006.
[14] R. Peng, M. L. Sichitiu, “Angle of Arrival Localization for Wireless Sensor Networks,” Third Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2006.
[15] D. Niculescu and B. Nath, “Ad hoc positioning system (APS) using AOA,” IEEE INFOCOM, 2003.
[16] A. Nasipuri and K. Li, “A directionality based location discovery scheme for wireless sensor networks,” ACM International Workshop on Wireless Sensor Networks and Applications, 2002.
[17] G. Mao, B.D.O. Anderson, and B. Fidan, “Path Loss Exponent Estimation for Wireless Sensor Network Localization,” Computer Networks, vol. 51, pp. 2467-2483, 2007.
[18] R. Moses, D. Krishnamurthy, and R. Patterson, “A Self-Localization Method for Wireless Sensor Networks,” Eurasip J. Applied Signal Processing, special issue on sensor networks, vol. 2003, pp. 348-358, 2003.
[19] G. Sarigianiadis, “Localization for Ad Hoc Wireless Sensor Networks,” M.S. thesis, Technical University Delft, The Netherlands, August 2006.
[20] J. Xiao, L. Ren, and J. Tan, “Research of TDOA Based Self-Localization Approach in Wireless Sensor Network,” Proc. IEEE/RSJ Int’l Conf. Intelligent Robots and Systems, 2006.
[21] R. Stoleru and J. Stankovic. Probability grid: A location estimation scheme for wireless sensor networks, Proceedings of Sensor and Ad-Hoc Communications and Networks Conference (SECON), 2004.
[22] D. Niculescu, B. Nath, “Ad hoc positioning system (APS),” Proceedings of the IEEE Global Telecommunications Conference, 2001: 2926 – 2931.
[23] P. C. Chestnut, “Emitter location accuracy using TDOA and differential Doppler,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-18, no. 2, pp.214-218 1982.
[24] Zhen Fang, Zhan Zhao, et al., “Localization in Wireless Sensor Networks with Known Coordinate Database,” EURASIP Journal on Wireless Communications and Networking, Volume 2010, Article ID 901283, 2010.
[25] Suresh P, Shekeela N, et al., “Feature Level Image Fusion,” Elsevier/Emerging Research in Computing, Information, Communication and Applications, ERCICA 2013, Page No 566-574, 2013.
[26] B J Shivprasad, V Amruth, et al., “Feature Level Image Fusion,” Elsevier/Emerging Research in Computing, Information, Communication and Applications, ERCICA 2013, Page No 566-574, 2013.
[27] L. Doherty, K. Pister, and L. Ghaoui, “Convex Position Estimation in Wireless Sensor Networks,” Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2001), Apr 25-26, 2001.
[28] D. Manolakis, “Efficient Solution and Performance Analysis of 3-D Position Estimation by Trilateration,” IEEE Trans. on Aerospace and Electronic Systems, 1996.
[29] http://www.libelium.com/products/waspmote/