Acetylation Modification During Autophagy and Vascular Aging

Jiaxing Sun†, Shi Tai, Liang Tang, Hui Yang, Mingxian Chen, Yichao Xiao, Xuping Li, Zhaowei Zhu and Shenghua Zhou*

Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China

Vascular aging plays a pivotal role in the morbidity and mortality of elderly people. Decrease in autophagy leads to acceleration of vascular aging, while increase in autophagy leads to deceleration of vascular aging. And emerging evidence indicates that acetylation plays an important role in autophagy regulation; therefore, recent research has focused on an in-depth analysis of the mechanisms underlying this regulation. In this review, current knowledge on the role of acetylation of autophagy-related proteins and the mechanisms by which acetylation including non-autophagy-related acetylation and autophagy related acetylation regulate vascular aging have been discussed. We conclude that the occurrence of acetylation modification during autophagy is a fundamental mechanism underlying autophagy regulation and provides promising targets to retard vascular aging.

Keywords: autophagy, acetylation, FOXO1, SIRT1, vascular aging

INTRODUCTION

Aging is a process of functional decline of life and is associated with an increase in age-related diseases (Lopez-Otin et al., 2013). With increase in the life expectancy of humans, the incidence of age-related pathologies is also increasing and exceeds the sustainability of economy and society. As a matter of result, it is urgent to find effective interventions to prevent the deterioration of age-associated conditions. Therefore, research is being performed on identifying potential mechanisms underlying aging and effective ways to retard aging.

Post-translational modifications (PTMs) play a pivotal role in determining the structure, destination, activity, and function of proteins. PTMs includes phosphorylation, glycosylation, ubiquitination, lipidation, methylation, and acetylation (Wani et al., 2015). Various factors, for example, nutrient availability, and proper organellar function determine the kind of PTMs that a protein undergoes, and different PTMs are tightly regulated (Wani et al., 2015; Xie et al., 2015).

Abbreviations: Ac-CoA, acetyl-CoA; AD, Alzheimer's disease; AMPK, Adenosine 5′-monophosphate-activated protein kinase; ATG, autophagy-related gene; Ang II, Angiotensin II; α7nAChR, α7 nicotinic acetylcholine receptor; aPWV, brachial-ankle pulse wave velocity; BAT3, HLA-B–associated transcript 3; BECN1, beclin1; CMA, chaperone-mediated autophagy; ECs, endothelium cells; eNOS, endothelial nitric oxide synthase; EDD, endothelium-dependent diastole; EP300, E1A binding protein p300; ER, endoplasmic reticulum; FIP200, FAK family kinase-interacting protein of 200 kDa; FOXO, fork head box O; GCN5, general control non-derepressible 5; GSK3β, glycogen synthase kinase-3β; HATs, histone acetylases; HDACs, histone deacetylases; hnRNPK, heterogeneous nuclear ribonucleoprotein K; HSP, heat shock protein; KAT, lysine acetyltransferase; KAP1, KRAB-ZFP-associated protein 1; LC3, microtubule-associated light chain; LKB1, liver kinase B1; mTOR, mammalian target of rapamycin; MMP, matrix metalloproteinase; NMN, nicotinamide mononucleotide; NO, nitric oxide; PI3K, phosphoinositide-3-kinase; PPAR α, peroxisome proliferator-activated receptor α; PGC-1α, peroxisome proliferator-activated receptor gamma coactivator-1 alpha; PTMs, post translational modifications; SIRT, sirtuins; TGF, transforming growth factor; TIP60, Tat-interactive protein 60 kDa; TRIM, tripartite motif; TMAO, trimethylamine-N-oxide; ULK1, unc-51-like kinase 1; VPS, vascular protein sorin; VSMCs, vascular smooth muscle cells
An increasing number of recent studies have indicated that acetylation, a kind of PTMs, is an important regulator of autophagy. Autophagy is a predominantly cytoprotective process, and the autophagic rate decreases with increase in age (Rubinsztein et al., 2011). Emerging evidence shows that autophagy plays a prominent role in life span determination and age-related conditions, including those involving the respiratory system (Kuwano et al., 2016) or the immune system (Zhang et al., 2016) and conditions such as cardiovascular diseases (Stern et al., 2003; Shirakabe et al., 2016; Humphrey and Milewicz, 2017; Ren and Zhang, 2018), neurodegeneration (Fivenson et al., 2017; Plaza-Zabal et al., 2017), and bone aging (Ma et al., 2018). Autophagy is a multistep process involving autophagosome formation and content degradation by lysosomes. Researchers are focusing on whether regulating the acetylation of autophagy-related proteins can enhance autophagy, thereby partly reverting aging and age-related conditions including vascular aging.

Bánréti et al. (2013) has summarize how previously identified histone acetylases (HATs) and deacetylases (HDACs) modify key autophagic effector proteins, and discussed how they play a role in neurodegenerative diseases and cancer. In the current article, we have added the research of acetylation modification during the multistep process of autophagy in the recent years, discussed the existed researches about acetylation in vascular aging, and suggested regulating the acetylation of autophagy may be a potential way to retard vascular aging.

AUTOGRAPHY AND VASCULAR AGING: AN OVERVIEW

Autophagy is a cytoprotective process and includes three different types, which are macro-autophagy, micro-autophagy, and chaperone-mediated autophagy (CMA). Macro-autophagy is the principal and most commonly studied type of autophagy, and is commonly referred as autophagy (Ktistakis and Tooze, 2016). Classical autophagy involves five steps: initiation, nucleation, vesicle elongation, autophagosome maturation and lysosome infusion, degradation, the detailed processes have been shown in these literatures (Khan et al., 2016; Leidal et al., 2018; Dossou and Basu, 2019). In the recent years, the effects of autophagy in vascular aging have been extensively studied. A growing number of studies have provided evidence that autophagy is a fundamental process to ensure vascular health during aging, and compromised autophagic functions may be important in the development of aging (Jiang, 2016; Abdellatif et al., 2018). Thus, regulating autophagy in vessels is a promising way to prevent vascular aging and age-related vascular diseases.

ACETYLATION MODIFICATION DURING THE DIFFERENT PROCESSES OF AUTOGRAPHY

Acetyl-CoA (Ac-CoA), acetyltransferases, deacetyl transferases, and targeted protein sites are the three main elements of acetylation modification. Ac-CoA is the only source of acetyl (Pietrocola et al., 2015), and acetyltransferases and deacetyl transferases transfer or remove the acetyl to or from the targeted proteins. HATs and HDACs comprise acetyl–deacetyl transferase pairs (Persico and Simone, 2011). Acetylation was first detected nearly 50 years ago, histones containing lysine were the first and extensively studied target proteins of acetylation modification, while some non-histones including transcription factors and cytoplasmic proteins were also targeted proteins (N-termini of target proteins), which regulate energy metabolism, endocytosis, and cytoskeleton (Deribe et al., 2010). Bánréti et al. (2013) reviewed different classes of HATs and HDACs. HATs fall into three major classes: lysine acetyltransferase (KAT)2/general control non-derepressible 5 (GCN5)-related N-acetyltransferases (GNAT family), E1A-binding protein p300 (EP300; CREBBP family), and the MYST family. Deacetylases are also divided into several classes: class I, IIa, IIb, and zinc-dependent class IV enzymes; class III family, which uses NAD$^+$ to complete deacetylation reactions. Class I consists of HDAC1-3 and HDAC8; class IIa includes HDAC4, HDAC5, HDAC7, and HDAC9; class IIb includes HDAC6 and HDAC10; class IV includes HDAC11; and the class III family comprises sirtuins (SIRT), including SIRT1–7 (Sadoul et al., 2011; Narita et al., 2019).

Acetylation and Autophagy Initiation

In mammalian cells, autophagy is induced by unc-51-like kinase 1 (ULK1) [Autophagy-related gene 1 (ATG1), yeast homolog], which interacts with ATG13, FAK family kinase-interacting protein of 200 kDa [FIP200 (ATG17, yeast homolog)], and ATG101 (no known yeast homolog) (Hosokawa et al., 2009; Zachari and Ganley, 2017; Mercer et al., 2018). ULK1 is mainly regulated by mammalian target of rapamycin (mTOR) (Dossou and Basu, 2019). Under growth factor deprivation, human immunodeficiency virus (HIV) Tat-interactive protein 60 kDa (TIP60), an acetyltransferase can regulate autophagy by activating ULK1 (Lin et al., 2012a,b). Under endoplasmic reticulum (ER) stress, autophagy can also be modulated through the same way (Nie et al., 2016). Under both growth factor deprivation and ER stress, the glycogen synthase kinase-3β (GSK3β)/TIP60/ULK1 pathway is engaged to increase autophagy. In these studies, it was found that GSK3β first phosphorylated TIP60-Ser86 and activated TIP60. Then, the activated TIP60 directly acetylated ULK1 and activated the protein kinase. The acetylation sites on ULK1 are located at K162 and K606. Researchers found that in ULK1−/− mouse embryonic fibroblasts, the acetylation-defective mutant ULK1 showed decreased kinase activity and failed to rescue autophagy, which further proved that acetylation is vital to ULK1 activation (Lin et al., 2012b). These studies revealed that induction of autophagy on ULK1 activation integrates phosphorylation and acetylation modification.

Acetylation During Nucleation in Autophagy

On specific membranes, phosphoinositide-3-kinase class 3 (PIK3C3) or vacuolar protein sorting 34 (VPS34) combines with its regulatory proteins to form the PIK3C3/VPS34-Beclin1...
Acetylation Modification During Autophagy Vesicle Elongation

In yeast, researchers found that ATG3 is deacetylated by HDAC Rpd3, which controls its interaction with ATG8 and regulate autophagy by affecting the dynamics, flux, and duration of autophagy shortly after induction of starvation; KAT5/TIP60 (mammalian homolog of Esa1) can also regulate autophagy by ATG3 acetylation (Yi and Yu, 2012). Under the condition of nutrient deprivation, nuclear microtubule-associated proteins light chain 3 (LC3); LC3 deacetylation by SIRT1 deepens its communication with the nuclear factor TP53INP2/DOR; As a result, It causes the distribution of nuclear LC3 to the cytoplasm, LC3 then interacts with ATG7, leading to LC3 lipidation and autophagosome biogenesis (Liu and Klionsky, 2015). This process referred above is highly regulated by the nuclear deacetylase SIRT1 (deacetylation at K49 and K51), which helps LC3 translocated from nuclear to cytoplasm (Huang et al., 2015). In HepG2 cells, enhanced binding of SIRT1-LC3 reduces the endogenous LC3 acetylation and SIRT1 inactivation inhibits autophagy (Li X. et al., 2016). Increased SIRT1 expression decreases ATG5 acetylation on lysine residues and increases autophagy (Jiang et al., 2016). While preventing p300 autoinhibition and promoting LC3 acetylation impedes LC3 lipidation (Wan et al., 2017). HLA-B–associated transcript 3 (BAT3) increases p53 acetylation and the expression of its target gene; while it limits p300-dependent acetylation of ATG7; Thus, we conclude that BAT3 highly regulate autophagy by modulating the localization of intracellular p300, thereby affecting the p300 targeted on its substrates, p53 and ATG7 (Sebti et al., 2014). In summary, SIRT1 and p300 comprise a key pair of regulators in acetylation modification during autophagy vesicle elongation. During this stage, protein deacetylation activates autophagy, whereas acetylation inhibits autophagy.

Acetylation Modification During Autophagosome Maturation

Acetylation occurring upstream of autophagy also affects the later stages of autophagy. BECN1 acetylation negatively regulates autophagosome maturation by inhibiting Rubicon recruitment (Matsunaga et al., 2009; Zhong et al., 2009). Although lysosomal biogenesis seems to be triggered as a compensatory response when BECN1 acetylation impairs autophagic flux, autophagosome fusion with lysosomes is compromised, contributing to Alzheimer’s disease (AD) neurodegeneration (Esteves et al., 2019). The GSK3-TIP60 pathway (Lin et al., 2012a,b; Nie et al., 2016), involved in an early stage of autophagy, also regulates autophagosome maturation mediated by autophagy regulator–RUBCNL/pacer acetylation (Cheng and Sun, 2019; Cheng et al., 2019), which is the opposite of the regulating results for RUBCN/Rubicon. RUBCNL and RUBCN compose a dual molecular switch model controlling autophagosome maturation (Cheng and Sun, 2019). Furthermore, LC3B–II deacetylation, which is partly mediated by HDAC6, increases the degradation of p62/SQSTM1 and is involved in autophagic degradation during serum starvation (Liu et al., 2013).

Researches have proven that HDAC6 deacetylase domain is also required for aggresomal formation, autophagosome–lysosome fusion, and autophagic turnover (Kawaguchi et al., 2003; Iwata et al., 2005; Pandey et al., 2007). And researchers also found that SIRT1 may compensate for the function of HDAC6. Cortactin deacylation mediated by cytosolic HDAC6 is required for autophagosome–lysosome fusion (Lee et al., 2010). SIRT1 is predominantly located in the cytosol (Li et al., 2008), where SIRT1 interacts with cortactin and deacylates it.
Both HDAC6 and SIRT1 have been found that they can bind and deacetylate cortactin independently. However, depending on specific cell types or tissues, HDAC6 and SIRT1 can also work cooperatively or competitively (Zhang et al., 2009). For example, in HeLa cells, either HDAC6 or SIRT1 can bind and deacetylate cortactin independently, and they can also work cooperatively toward cortactin (Zhang et al., 2007). Either SIRT1 or HDAC6 binds to the same domain of cortactin, thus, researchers speculate that SIRT1 and HDAC6 may compete for the domain to bind cortactin in OV2008 cells (Zhang et al., 2009). Moreover, ATP13A2 can recruit HDAC6 to lysosomes to deacetylate cortactin, thereby promoting autophagosome–lysosome fusion and autophagy (Wang et al., 2019).

There is evidence that reversible acetylation of α-tubulin can regulate microtubule stability and function, which is also essential for the fusion of autophagosomes to lysosomes (Kochl et al., 2006; Xie et al., 2010). In acidic pH–dependent autophagy in cardiomyocytes, decreasing α-tubulin acetylation impairs autophagy maturation and causes cardiomyocyte injury while increasing α-tubulin acetylation can revert the process (Yang et al., 2019). Reactive oxygen species (ROS)–mediated hyperacetylation of microtubule was reported to stimulate autophagy under stress and nutrient starvation (Geeraert et al., 2010; Mackeh et al., 2014). Hyperacetylation of microtubule is mediated by acetylttransferase MEC17 at the residue of lys40 (Mackeh et al., 2014). Spermine increases microtubule acetylation and facilitates selective autophagic degradation of prion aggregates by binding to the microtubule protein Tubb6A (Phadwal et al., 2018). A recent study reported that zinc oxide nanoparticles (a nanomaterial) inhibited autophagy by blocking autophagosome–lysosome fusion, while microtubule acetylation helped promote the autophagic degradation process (Liu J. et al., 2019). Chen et al. (2015) found that potassium bisperoxo (1,10-phenanthroline)oxovanadate [bpV(phen)] suppresses acetylated microtubule–dependent degradation of autophagosomes by disrupting the HDAC6 complex with p62.

Other researchers have obtained contrasting results. They found that HDAC6-mediated α-tubulin deacetylation was also important for autophagosome maturation. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) deficiency was found to decrease α-tubulin K40 acetylation by HDAC6, consequently enhancing autophagosome–lysosome fusion in the 293-cell line (human renal epithelial cell line) (Li et al., 2018). The ROS pathway has also been reported to reduce the fusion of autophagosomes and lysosomes by increasing tubulin acetylation (Bonet-Ponce et al., 2016). These findings show that tubulin acetylation does not always enhance autophagy and hyperacetylation of tubulin might impair autophagy flux. The factors leading to the differences in findings between these studies are still not clear. Autophagosomes are usually delivered along the microtubule tracks by dynein to the centrosomes where lysosomes are usually gathered (Geeraert et al., 2010). Since the acetylation during this stage is complex, we speculate that no matter tubulin is acetylated or deacetylated, decreased autophagosome–lysosome formation is due to the disturbed stability of the microtubule system. Thus, balancing the acetylation/deacetylation of tubulin is a key aspect to be considered for autophagy regulation during this phase. Based on these findings, we can conclude that acetylation participates in the entire process of autophagy, from the initial step to the completion of autophagosome degradation.

During the early stages, p300/SIRT1 seems to be the major regulator pair, while HDAC6 seems to be the major regulator in the later stages. Therefore, if an p300/SIRT1/HDAC6 inhibitor or activator is used to regulate autophagy, the acetylation condition of the entire process of autophagy will be affected. Because autophagy is a constant process, blocking or activation of any key protein in the process will influence the effective autophagy flux, further indicating that acetylation modification is an important mechanism for regulating autophagy (Figure 1).

Acetylated FOXO1 and Autophagy Flux

The autophagy process is affected not only by direct acetylation but also by the acetylation of some transcription factors. Fullgrabe et al. (2014) reported several transcription factors related to the transcriptional control of autophagy. Of these, acetylation of transcription factors is best illustrated in the case of forkhead box O (FOXO) family members. FOXO1 is frequently reported to be closely associated with autophagy. Activated FOXO1 enhances autophagy by increasing the expression of numerous autophagy-related genes in various cells (Zhao et al., 2007, 2008; Sengupta et al., 2009; Xu et al., 2011; Warr et al., 2013; Chi et al., 2016; Wang et al., 2018; Liu Y. et al., 2019). Activation of the FOXO family is regulated by complex mechanisms in various cells and tissues, while acetylation is one of them. SIRT1 directly influences autophagy by deacetylating key components of autophagy-related proteins, including the products of ATG5, ATG7, and ATG8 (Lan et al., 2008). SIRT1 localizes in the nucleus and activates transcription factor from FOXO family, which is also a classic way to induce the expression of autophagy-related proteins (Xiong et al., 2013). Under glucose deprivation conditions, SIRT1 increases FOXO1 deacetylation, thereby increasing the expression of Rab7, which is a small GTP-binding protein that mediates autophagosome–lysosome fusion in the later stages (Hariharan et al., 2010). This is also the mechanism by which resveratrol reverses myocardial oxidative stress injury in diabetic mice (Wang et al., 2014), and by which curcumin protects HUVEC survival from oxidative stress damage (Han J. et al., 2012). The SIRT1/FOXO1/Rab7 axis is also important for maintaining left ventricular function during starvation (Hariharan et al., 2010) and preventing podocyte injury (Majumder and Advani, 2015; Wang et al., 2016) in the same manner. Researchers have found that autophagy induced by cytosolic FOXO1 is capable of suppressing tumor (Zhao et al., 2010) and that, in pancreatic cancer, miR-138-5p inhibits autophagy by blocking the SIRT1/FOX01/Rab7 axis (Tian et al., 2017). The SIRT1/FOXO1/Rab7 axis comprises a classical pathway that is targeted by researchers to modulate autophagy and to attenuate diseases. Acetylated FOXO1 was found to mediate high glucose induced autophagy in H9C2 cardiomyoblasts as well (Liu et al., 2014).

Another study reported that in QBC939 cells, FOXO1 acetylation and its subsequent interaction with ATG7 regulate basal and serum starvation–induced autophagy, as evidenced by

Sun et al. Acetylation Modification During Autophagy
FIGURE 1 | Acetylation modification during the process of autophagy. ATG, autophagy-related protein; BECN1, beclin 1; EP300, E1A binding protein p300; FIP200, FAK family kinase-interacting protein of 200 kDa; GSK3β, glycogen synthase kinase-3β; HDAC, histone deacetylase; KAT, lysine acetyltransferase; LC3, microtubule-associated protein light chain 3; PKC/3, phosphoinositide-3-kinase class 3; RB1CC1, RB1-inducible coiled-coil protein 1; TIP60, Tat-interactive protein 60 kDa; ULK1, unc-51-like kinase 1; VPS, vacuolar protein sorting.

LC3 accumulation and p62 degradation. These findings identify FOXO1 as a potential therapeutic target for treating human cholangiocarcinoma via regulating autophagy (He et al., 2018). In the case of myocardial infarction, total cardiac FOXO1 expression is downregulated at first and partly recovers after 7 days, which is accompanied by fundamental PTMs in FOXO1, particularly acetylation, suggesting that FOXO1 acetylation contributes to cardiac remodeling in post-ischemic heart failure (Kappel et al., 2016). Moreover, Akt2 ablation can protect against cardiac aging through restoring FOXO1-related autophagy (Ren et al., 2017). Liver-specific knockout of glucose-6-phosphatase-α (G6Pase-α; L-G6pc-/-) causes downregulation of SIRT1 signaling and deacetylation of the FOXO family, leading to inactivation of autophagy, which in turn transactivates autophagy genes (Cho et al., 2017). Li J. et al. (2016) found that SIRT3 activation is also essential for reducing the acetylation modification on FOXO1, which in turn alleviates myocardial hypertrophy with chronic angiotensin II (Ang II) infusion through improving autophagy flux.

Targets for Regulating the Acetylation Modification in Vascular Aging

Vascular aging is one of the main aspects of aging. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main structure of blood vessels. The properties of ECs and VSMCs change greatly during vascular aging, gradually leading to compromised vascular function and progressive vascular diseases. Mistriotis and Andreadis (2017) performed an in-depth analysis of the molecular mechanism underlying vascular aging concerning two categories, that is, extrinsic and intrinsic changes. The former category includes chronic inflammation, atherosclerosis, hypertension, vascular wall stiffness, and vascular cell communication. The latter includes telomere attrition, mitochondrial dysfunction, DNA damage, epigenetic changes, nuclear organization loss, and cellular senescence. The role of acetylation in vascular aging, which is the focus of the current review, was not specifically discussed in that study.

From the literature that we reviewed, the existing research on acetylation modification in vascular aging focused on SIRT1. Decreased SIRT1 activity leads to increased lysine acetylation of important targets including p53, endothelial nitric oxide synthase (eNOS), peroxisome proliferator–activated receptor gamma coactivator (PGC)-1α, and matrix metalloproteinase (MMP)-14 at gene or protein level (Cencioni et al., 2015).

Ameliorating EC Senescence Through Non-autophagy Acetylation Regulation

In H2O2 induced senescence models of human umbilical vein endothelial cells (HUVECs), 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside increases blood flow and partly reverse vascular senescence by increasing SIRT1 activity and eNOS expression, thereby decreasing p53 acetylation at the K373 site (Han X. et al.,...
Ginsenoside Rb1 protects against endothelial senescence and dysfunction through stimulating the expression of SIRT1, which decreases eNOS acetylation and promotes NO production; Furthermore, when SIRT1 is knocked down, the effect of Rb1 on endothelial senescence decreases (Song et al., 2014). On the contrary, elevated trimethylamine-N-oxide (TMAO) levels may induce the EC senescence through decreased SIRT1, which promotes acetylation of eNOS and decreases the level of NO (Ke et al., 2018).

A study using aorta segments isolated from young Wistar rats assessed three different kinds of inhibitors of SIRT1: nicotinamide, sirtinol, and EX527 (Zarzuelo et al., 2013). Inhibitors causes endothelial dysfunction and increases NADPH oxidase-derived ROS in the vascular wall by impairing activities of SIRT1, leading to vascular aging. Moreover, SIRT1 activation decreases PGC-1α acetylation and subsequent PPARα activation, both NADPH oxidase–driven ROS production and NO inactivation decreases, and endothelial function is improved as a result (Zarzuelo et al., 2013). Supplementation with nicotinamide mononucleotide (NMN) in old mice restores endothelium-dependent diastole (EDD) and NO-mediated EDD, reduces brachial-ankle pulse wave velocity (aPWV), normalizes O2 production, decreases nitro tyrosine levels, reverses collagen-I deposition, increases elastin levels, and restores vascular SIRT1 activity. And (-)-epicatechin partially restores NO to the levels as in young cells by stimulating SIRT1 binding to the eNOS and decreasing synthase acetylation levels (Ramirez-Sanchez et al., 2018). These findings further prove that SIRT1-mediated deacetylation plays a protective role in vascular aging (de Picciotto et al., 2016).

SIRT1 and liver kinase B1 (LKB1)/AMPK are the two key molecules for regulating the function of EC. In high glucose-induced senescence in mouse microvascular ECs, SIRT1 downregulation plays a crucial role. Reduction of SIRT1 increased FOXO-1 and P53 acetylation, P21 expression. Metformin can protect HG-induced endothelial dysfunction through regulating SIRT1 expression/activity directly or partly via LKB1/AMPK pathway (Arunachalam et al., 2014). What’s more, the protective activities of SIRT1 may also be achieved partly by regulating the acetylation/deacetylation status and stability of LKB1 protein (Zu et al., 2010). In another study, selective overexpression of SIRT1 in the endothelium prevents hypertension and age-related adverse arterial remodeling in mice without eNOS; knockdown of HERC2 abolishes the protective effects by increasing the interaction between LKB1 and transforming growth factor (TGF)-β1 (Bai et al., 2016). From all above, SIRT1 cannot only regulate EC senescence through eNOS/NO pathway but also via LKB1/HERC2 pathway.

TABLE 1 | The acetylation modification in vascular aging.

Interventions	Senescence induction	HAT/HDAC	Acetylation substrate	Senescence regulation	References
EC senescence					
2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside	H2O2	SIRT1	pS3	Ameliorates senescence	Han X. et al., 2012
Ginsenoside Rb1	H2O2	SIRT1	eNOS	Ameliorates senescence	Song et al., 2014
SIRT1 inhibitors (nicotinamide, sirtinol, and EX527)	SIRT1 inhibition	SIRT1	PGC-1α	Ameliorates EC dysfunction	Zarzuelo et al., 2013
(-)-epicatechin	Replicative	SIRT1	eNOS	Ameliorates senescence	Ramirez-Sanchez et al., 2018
Metformin	Hyperglycemia	SIRT1	FOXO1 and P53	Ameliorates senescence	Arunachalam et al., 2014
–	MCM	SIRT3	ATG5	Induces dysfunction	Liu et al., 2018
–	–	HDAC4	FOXO3a	Induces inflammation	Yang et al., 2018
Ginsenoside Rb1	Ox-LDL	SIRT1	BECN1	Ameliorates senescence	Shi et al., 2020
VSMC senescence					
–	Ang II	GCN5	PGC-1α	Increases senescence	Xiong et al., 2013
–	Ang II	SIRT1	pS3	Ameliorates senescence	Li D.J. et al., 2016
Neuregulin-1/Erb4	H2O2	unknown	PS3	Ameliorates senescence	Shakeri et al., 2018
Exendin-4	Ang II	EP300	Nrf2	Ameliorates senescence	Chen et al., 2016
–	–	KAT2A/GCN5	α-Tubulin	Inhibits VSMC migration	Ouyang et al., 2020

EC, endothelial cell; VSMC, vascular smooth muscle cell; HAT, histone acetylases; HDAC, histone deacetylases; TMAO, Trimethylamine-N-oxide accelerates; Ang II, Angiotensin II; MCM, macrophage-conditioned medium.
targets the acetylation modification during autophagy may be a promising approach for preventing aging and aging-related conditions, such as vascular aging.

The existing research on acetylation modification in vascular aging mainly focuses on SIRT1-mediated non-autophagy–related acetylation of proteins, including acetylation of p53, eNOS, PGC-1α, and Nrf2. Several studies indicate that regulating acetylation of autophagy can also ameliorate vascular aging. Thus, our review aims to provide an integrated view of acetylation modification during the multistep process of autophagy and provide evidence for that regulating autophagy acetylation may be potential therapeutic targets for vascular aging. Finding a way to attenuate vascular aging by modulating autophagy acetylation can provide a bright future (e.g., by helping in increasing their life span, health span, or quality of life) for aging individuals, including prematurely aging people.

AUTHOR CONTRIBUTIONS

SZ defined the study theme and methods. JS collected the references and wrote the article. ST, LT, HY, MC, YX, XL, and ZZ were responsible for revising the article and providing valuable suggestions. All authors contributed to the article and approved the submitted version.

FUNDING

This research was supported by the National Natural Science Foundation of China (81670269 to SZ) and (81801394 to ST).

CONCLUSION AND FUTURE PERSPECTIVES

Autophagy is a classical pathway involved in many physiological processes, including the elimination of cellular organelles, stimulation of different stress factors, and remodeling of tissues during development. Decreased autophagy creates diverse cellular dysfunctions that exacerbate the aging process, whereas enhanced autophagy generally promotes cellular homeostasis and function to prolong life span and improve health span. Acetylation acts as a novel regulator of autophagy and participates in the whole process of autophagy. Therefore, targeting the acetylation modification during autophagy may be a promising approach for preventing aging and aging-related conditions, such as vascular aging.

REFERENCES

Abdellatif, M., Sedej, S., Carmona-Gutierrez, D., Madeo, F., and Kroemer, G. (2018). Autophagy in Cardiovascular Aging. Circulat. Res. 123, 803–824. doi: 10.1161/CIRCRESAHA.118.312208

Arunachalam, G., Samuel, S. M., Marei, I., Ding, H., and Triggle, C. R. (2014). Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br. J. Pharmacol. 171, 523–535. doi: 10.1111/bph.12496

Bai, B., Man, A. W., Yang, K., Guo, Y., Xu, C., Tie, H. F., et al. (2016). Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1. Oncotarget 7, 39065–39081. doi: 10.18632/oncotarget.9687

Bánréti, A., Sass, M., and Graba, Y. (2013). The emerging role of acetylation in the regulation of autophagy. Autophagy 9, 819–829. doi: 10.4161/auto.23908

Bonet-Ponce, L., Saez-Atienezar, S., da Casa, C., Sancho-Pelluz, J., Barcia, J. M., Martinez-Gil, N., et al. (2016). Rotenone Induces The Formation of 4-Hydroxynonenal Aggresomes. Role of ROS-Mediated Tubulin Hypercetylation and Autophagic Flux Disruption. Mole. Neurobiol. 53, 6194–6208. doi: 10.1007/s12035-015-9509-3

Boutouja, F., Brinkmeier, R., Mastalski, T., El Magraoui, F., and Platta, H. W. (2017). Regulation of the Tumor-Suppressor BECLIN 1 by Distinct Ubiquitination Cascades. Int. J. Mole. Sci. 18:ijms18122541. doi: 10.3390/ijms18122541

Cencioni, C., Spallotta, F., Mai, A., Martelli, F., Farsetti, A., Zeiher, A. M., et al. (2016). Rotenone Induces the Formation of 4-Hydroxynonenal Aggresomes. Role of ROS-Mediated Tubulin Hypercetylation and Autophagic Flux Disruption. Mole. Neurobiol. 53, 6194–6208. doi: 10.1007/s12035-015-9509-3

Cenci, C., Spallotta, F., Mai, A., Martelli, F., Farsetti, A., Zeiher, A. M., et al. (2015). Sirtuin function in aging heart and vessels. J. Mole. Cell. Cardiol. 83, 55–61. doi: 10.1016/j.yjmcc.2014.12.023

Chen, M., Zhou, X., Yu, L., Liu, Q., Sheng, X., Wang, Z., et al. (2016). Low-Level Vagus Nerve Stimulation Attenuates Myocardial Ischemic Reperfusion Injury by Antioxidative Stress and Antiapoptosis Reactions in Canines. J. Cardiovasc. Electrophysiol. 27, 224–231. doi: 10.1111/jce.12850

CONCLUSION AND FUTURE PERSPECTIVES

Autophagy is a classical pathway involved in many physiological processes, including the elimination of cellular organelles, stimulation of different stress factors, and remodeling of tissues during development. Decreased autophagy creates diverse cellular dysfunctions that exacerbate the aging process, whereas enhanced autophagy generally promotes cellular homeostasis and function to prolong life span and improve health span. Acetylation acts as a novel regulator of autophagy and participates in the whole process of autophagy. Therefore, targeting the acetylation modification during autophagy may be a promising approach for preventing aging and aging-related conditions, such as vascular aging.

The existing research on acetylation modification in vascular aging mainly focuses on SIRT1-mediated non-autophagy–related acetylation of proteins, including acetylation of p53, eNOS, PGC-1α, and Nrf2. Several studies indicate that regulating acetylation of autophagy can also ameliorate vascular aging. Thus, our review aims to provide an integrated view of acetylation modification during the multistep process of autophagy and provide evidence for that regulating autophagy acetylation may be potential therapeutic targets for vascular aging. Finding a way to attenuate vascular aging by modulating autophagy acetylation can provide a bright future (e.g., by helping in increasing their life span, health span, or quality of life) for aging individuals, including prematurely aging people.
Lin, S. Y., Li, T. Y., Liu, Q., Zhang, C., Li, X., Chen, Y., et al. (2012a). GSK3-TIP60-Liu, K. P., Zhou, D., Ouyang, D. Y., Xu, L. H., Wang, Y., Wang, L. X., et al. (2014). Acetylated FoxO1 Liu, J., Kang, Y., Yin, S., Chen, A., Wu, J., Liang, H., et al. (2019). Key Role Mackeh, R., Lorin, S., Ratier, A., Mejdoubi-Charef, N., Baillet, A., Bruneel, Ma, Y., Qi, M., An, Y., Zhang, L., Yang, R., Doro, D. H., et al. (2018). Autophagy Matsunaga, K., Saitoh, T., Tabata, K., Omori, H., Satoh, T., Kurotori, N., et al. Liu, Y., Li, J., Shang, Y., Guo, Y., and Li, Z. (2019). CARM1 contributes to Liu, X., and Klionsky, D. J. (2015). TP53INP2/DOR protein chaperones Majumder, S., and Advani, A. (2015). The epigenetic regulation of podocyte Pandey, U. B., Nie, Z., Batlevi, Y., McCray, B. A., Ritson, G. P., Nedelsky, N. B., Narita, T., Weinert, B. T., and Choudhary, C. (2019). Functions and mechanisms Peserico, A., and Simone, C. (2011). Physical and functional HAT/HDAC interplay Phadwal, K., Kurian, D., Salamat, M. K. F., MacRae, V. E., Diack, A. B., and Manson, J. C. (2018). Spermine increases acetylation of tubulins and facilitates autophagic degradation of prion aggregates. Sci. Rep. 8:10004. doi: 10.1038/s41598-018-28296-y Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F., and Kroemer, G. (2015). Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821. doi: 10.1016/j.cmet.2015.05.014 Plaza-Zabala, A., Sierra-Torre, V., and Sierra, A. (2017). Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging. Int. J. Mole. Sci. 18:598. doi: 10.3390/ijms18030598 Ramirez-Sanchez, I., Mansour, C., Navarrete-Yanez, V., Ayala-Hernandez, M., Guevara, G., Castillo, C., et al. (2018). (-)-Epicatechin induced reversal of endothelial cell aging and improved vascular function: underlying mechanisms. Food Funct. 9, 4802–4813. Ren, J., and Zhang, Y. (2018). Targeting Autophagy in Aging and Aging-Related Cardiovascular Diseases. Trends Pharmacol. Sci. 39, 1064–1076. doi: 10.1039/C8Fo00483H Ren, J., Yang, L., Zhu, L., Xu, X., Ceylan, A. F., Guo, W., et al. (2017). Akt2 ablation prolongs life span and improves myocardial contractile function with adaptive cardiac remodeling: role of Sirt1-mediated autophagy regulation. Aging Cell 16, 976–987. doi: 10.1111/tips.2018.10.005 Rubinstein, D. C., Marino, G., and Kroemer, G. (2011). Autophagy and aging. Cell 146, 682–695. doi: 10.1111/jacc.12616 Sadouk, K., Wang, J., Dragouraga, B., and Khochbin, S. (2011). The tale of protein lysine acetylation in the cytoplasm. J. Biomed. Biotechnol. 2011:970382. doi: 10.1016/j.cell.2011.07.030 Salazar, G., Cullen, A., Huang, J., Zhao, Y., Serino, A., Hilenski, L., et al. (2020). SQSTM1/p62 and PARP1CA/PGC-1alpha at the interface of autophagy and vascular senescence. Autophagy 16, 1092–1110. doi: 10.1016/j.autophagy.2020.08.012 Sebit, S., Prebois, C., Perez-Gracia, E., Baury, C., Desmots, F., Pirot, N., et al. (2014). BAT3 modulates p300-dependent acetylation of p53 and autophagy-related protein 7 (ATG7) during autophagy. Proc. Natl. Acad. Sci. U S A 111, 4115–4120. doi: 10.1073/pnas.1403767111 Sengupta, A., Molkentin, J. D., and Yutzey, K. E. (2009). FoxO transcription factors promote autophagy in cardiomyocytes. J. Biol. Chem. 284, 28319–28331. doi: 10.1074/jbc.M903611200 Shakeri, H., Gevaert, A. B., Schrijvers, D. M., De Meyer, G. R. Y., De Keulenaer, G. W., Guns, P. D. F., et al. (2018). Neuregulin-1 attenuates stress-induced vascular senescence. Cardiovasc. Res. 114, 1041–1051. doi: 10.1097/jc.0000000000000735 Shi, G., Liu, D., Zhou, B., Liu, Y., Hao, B., Yu, S., et al. (2020). Ginsenoside Rb1 Alleviates Oxidative Low-Density Lipoprotein-Induced Vascular Endothelial Senescence via the SIRT1/Beclin-1/Autophagy Axis. J. Cardiovasc. Pharmacol. 75, 155–167. doi: 10.1093/jcp/czy097 Shirakabe, A., Ikeda, Y., Sciarretta, S., Zablocki, D. K., and Sadowsima, J. (2016). Aging and Autophagy in the Heart. Circulat. Res. 118, 1563–1576. doi: 10.1097/ FJC.0000000000000775 Song, Z., Liu, Y., Hao, B., Yu, S., Zhang, H., Liu, D., et al. (2014). Ginsenoside Rb1 prevents H2O2-induced HUVEC senescence by stimulating sirtuin-1 pathway. PLoS One 9:e112699. doi: 10.1371/journal.pone.0112699 Stern, S., Behar, S., and Gottlieb, S. (2003). Cardiology patient pages. Aging and diseases of the heart. Circulation 108, e99–e101. doi: 10.1531/journal.pone.0112699 Su, H., and Liu, W. (2018). PI3K/C3/PVS34 control by autophagy. Antioxidation 14, 1086–1087. doi: 10.1007/s10006889.96021.B9 Su, H., Yang, F., Wang, Q., Shen, Q., Huang, J., Peng, C., et al. (2017). PVS34 Autophagy Controls Its Lipid Kinase Activity and the Initiation of Canonical and Non-canonical Autophagy. Molec. Cell 67, 907.e-921.e. doi: 10.1080/ 15548627.2017.1385676 Sun, T., Li, X., Zhang, P., Chen, W. D., Zhang, H. L., Li, D. D., et al. (2015). Autophagy of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat. Commun. 6:7215. doi: 10.1038/ncomms8215 Sun, T., Ming, L., Yan, Y., Zhang, Y., and Xue, H. (2017). Beclin 1 acetylation impairs the anticancer effect of aspirin in colorectal cancer cells. Oncotarget 8, 74781–74790. doi: 10.1038/ncomms8215
