Chemical Communication of Antibiotic Resistance by a Highly Resistant Subpopulation of Bacterial Cells

El-Halfawy, O. M., & Valvano, M. A. (2013). Chemical Communication of Antibiotic Resistance by a Highly Resistant Subpopulation of Bacterial Cells. *PloS one, 8*(7), [e68874]. https://doi.org/10.1371/journal.pone.0068874

Published in:
PloS one

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2013 El-Halfawy, Valvano. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen’s institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Chemical Communication of Antibiotic Resistance by a Highly Resistant Subpopulation of Bacterial Cells

Omar M. El-Halfawy1,2, Miguel A. Valvano1,3*

1 Centre for Human Immunology and Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada, 2 Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt, 3 Centre for Infection and Immunity, Queen’s University Belfast, Belfast, United Kingdom

Abstract
The overall antibiotic resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the mechanism of heteroresistance is unclear. We use *Burkholderia cenocepacia* as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB) and also other bactericidal antibiotics. Here, we report that *B. cenocepacia* is heteroresistant to PmB. Population analysis profiling also identified *B. cenocepacia* subpopulations arising from a seemingly homogenous culture that are resistant to higher levels of polymyxin B than the rest of the cells in the culture, and can protect the more sensitive cells from killing, as well as sensitive bacteria from other species, such as *Pseudomonas aeruginosa* and *Escherichia coli*. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes for the synthesis of putrescine and YceI abrogated protection, while pharmacologic inhibition of putrescine synthesis reduced resistance to polymyxin B. Polyamines and YceI were also required for heteroresistance of *B. cenocepacia* to various bactericidal antibiotics. We propose that putrescine and YceI resemble “danger” infochemicals whose increased production by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of the population of the same or different species.

Introduction
Treating infection caused by multidrug resistant bacteria is challenging, especially in immunocompromised patients. These individuals often succumb from infections by opportunistic bacteria that display intrinsic, high-level resistance to virtually all antimicrobials available for clinical use. Reduced permeability of the bacterial cell envelope in conjunction with multidrug efflux pumps are considered major determinants of intrinsic multidrug resistance [1]. However, the overall resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several pathogenic bacteria, but the mechanism of heteroresistance is not always clear. Here, we use *Burkholderia cenocepacia* as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB) and also other antibiotics. *B. cenocepacia* is an environmental, opportunistic pathogen that causes serious infections in patients with cystic fibrosis and expresses high-level multidrug resistance [2]. Using the prototypic *B. cenocepacia* K56-2 strain, we observed a population-wide variation in the response to PmB and more importantly, that the more resistant members communicate higher level of resistance to less resistant members of the same population, and to other bacterial species in co-culture, such as *Pseudomonas aeruginosa* and *Escherichia coli*. Communication of increased resistance depended on overproduction by the more resistant subpopulations of the polyamine putrescine and increased secretion of YceI, a highly conserved small protein of unknown function. This rather general multifactorial mechanism of communication of antibiotic resistance is distinct from previously reported population-based resistance involving production of indole [3,4], biogenic ammonia [5], and intercellular nanotubes [6]. Our findings uncover a novel, non-genetic and cooperative mechanism of transient increase in resistance that can be chemically communicated from more resistant members of a heterogeneous population to less resistant bacterial cells of the same or other species.

Results and Discussion
Heteroresistance of *B. cenocepacia* to PmB
The prototypic *B. cenocepacia* clinical strain K56-2 was assessed for heteroresistance by performing population analysis profiling (PAP) of cultures exposed to serial dilutions of PmB. The percent growth inhibition increased gradually at high concentrations of
A More Resistant Subpopulation of \textit{B. cenocepacia} Protects Naïve Bacteria from PmB

We investigated whether the more resistant subpopulations of \textit{B. cenocepacia} could influence the overall level of antibiotic resistance of naïve cells in mixed cultures. To test this hypothesis we chose to focus on the K56-2ΔrpoE mutant, as this bacterium has a PmB resistance profile that is similar to the parental strain but sufficiently less resistant to reach higher levels of growth inhibition at testable concentrations of PmB (Figure 1A). Based on the K56-2ΔrpoE PAP, we selected the subpopulation of K56-2ΔrpoE exposed to 500 µg/ml [Figure 1A, ΔrpoE/500], which arose at a frequency of 4.8×10^{-6} and demonstrated uniform high-level resistance when re-exposed to PmB (Figure 1A). ΔrpoE/500 cells passed for up to five days in the absence of PmB displayed PAP identical to that of cells grown overnight in the presence of 500 µg/ml PmB, indicating that the high-level resistance of ΔrpoE/500 was stable without selective pressure, likely as a result of one or more mutations that confer increased PmB resistance. No differences were found between ΔrpoE/500 and naïve ΔrpoE cells in LPS electrophoretic profiles (Figure S1A). Furthermore, the increased resistance of ΔrpoE/500 was not due to an increase in the Ara4N LPS modification, since the differential expression of \textit{arn} and \textit{arnB} genes, representing the 2 transcriptional units of the \textit{arn} cluster [11], was 1.08 ± 0.09 and $−1.73 \pm 0.04$ respectively, as determined by qRT-PCR. This was expected since we have

![Figure 1. Heterogeneous response of \textit{B. cenocepacia} to PmB. Population analysis profiling (PAP) of \textit{B. cenocepacia} strains K56-2, K56-2ΔrpoE, K56-2ΔarnBC, CF706-J, K56-2ΔhldA, and K56-2ΔhldA, and \textit{P. aeruginosa} PAO1 by agar dilution at 24 h except for CF706-J by broth dilution at 18 h. n = 6. Panels (B) and (C), E-test showing discrete colonies at otherwise clear zones of inhibition, indicating heterogeneous response to PmB. doi:10.1371/journal.pone.0068874.g001](image)
previously shown that the \(\text{arn}\) cluster in \(B.\ cenocepacia\) is not regulated by PmB challenge [11]. \(\Delta\text{poE}\) of 500 cells treated with PmB also displayed reduced metabolic activity at 24 h relative to naive \(\Delta\text{poE}\) and K56-2 with or without exposure to PmB, as revealed in the resazurin metabolic assay (Figure S1B), suggesting that increased PmB resistance in the \(\Delta\text{poE}/500\) subpopulation is associated with reduced metabolic fitness.

Since \(\Delta\text{poE}/500\) represents \(~1\%\) of the \(\Delta\text{poE}\) population in the turbidimetric PAP experiments (not shown), \(\Delta\text{poE}/500\) was co-cultured in a 1:100 ratio with \(P.\ aeruginosa\) in the presence of 2 \(\mu g/ml\) of PmB. This concentration of PmB was based on the current clinical guidelines for \(P.\ aeruginosa\) therapy for the closely related antibiotic polymyxin E (colistin), which is set at 2 \(\mu g/ml\) [12] and is equivalent to the MIC of PmB against \(P.\ aeruginosa\). Co-culture under these conditions resulted in more than a 3- to 5-log survival of \(P.\ aeruginosa\) at 6 and 24 h, respectively, compared to \(P.\ aeruginosa\) grown alone (Figure 2). There was no effect of \(P.\ aeruginosa\) on the growth of \(B.\ cenocepacia\) cells in co-culture (Figure S2). Protection by \(\Delta\text{poE}/500\) did not depend on secreted extracellular proteases since no differences were found between \(\Delta\text{poE}/500\) and naive \(\Delta\text{poE}\) cells in the amount of these proteases (Figure S1C). Similarly, protection did not depend on quorum sensing molecules, as mutants defective in the various quorum systems of \(B.\ cenocepacia\) also showed heteroresistance to PmB and could protect \(P.\ aeruginosa\) from PmB (Figure S3A and B). Also, it could not be due to production of indole [3,4] since \(B.\ cenocepacia\) and \(B.\ aerugino\)sa in general are indole negative [13].

Furthermore, the filtered supernatant of an overnight culture of \(\Delta\text{poE}/500\) in PmB communicated higher-level resistance in a volatile-mediated manner to physically separated \(K56-2\Delta\arnBC\) and several \(E.\ coli\) strains. The MIC of the \(PmB\)-sensitive strains doubled due to volatiles emitted from the supernatant of \(\Delta\text{poE}/500\) (Table S1), with the exception of \(E.\ coli\) GT115, which only showed slight enhancement in the growth in the presence of PmB (not shown). These results were consistent and reproducible. The protective effect of \(\Delta\text{poE}/500\) was therefore not limited to the same species and could be communicated by one or more volatile compounds in the bacterial supernatant.

The More Resistant Subpopulation Releases Higher Amounts of a Subset of Proteins upon Exposure to PmB

To gain clues on the secreted molecules mediating the protective effects of \(B.\ cenocepacia\) from PmB, we compared the profile of proteins released into the supernatant of PmB-treated \(\Delta\text{poE}/500\) with naive K56-2\(\Delta\text{poE}\) and parental K56-2 treated or untreated with PmB. The \(\Delta\text{poE}/500\) subpopulation and K56-2 treated with PmB showed a similar pattern of overexpression of several polypeptide bands (Figure 3), which were identified by mass spectrometry. One of these bands corresponded to BCAM2827, which is a predicted periplasmic component of an ABC transporter involved in the biosynthesis of hopanoids. Hopanoids, bacterial substitutes of eukaryotic cholesterol that stabilize membranes and regulate membrane fluidity and permeability, have been recently shown to be required for PmB resistance in \(B.\ cenocepacia\) [14]. Another protein band was identified as YcE1, a conserved protein of unknown function proposed to bind amphiphilic molecules and sequester toxic fatty acids or amides [15]. Two highly related YcE1 homologues, BCAL3310 and BCAL3311, are present in K56-2. Other polypeptides were identified as flagellin, in agreement with the reported effects of PmB on the flagellar assembly apparatus at the transcriptional level [16], and with the reduced motility in parental K56-2 and \(\Delta\text{poE}/500\) upon exposure to PmB (not shown).

Three other polypeptide bands were identified as lysine-arginine-ornithine-binding periplasmic proteins, which are involved in the import of these amino acids. We hypothesized that increased import of lysine, arginine and ornithine could be utilized in the modification of the membranes through the formation of lysophosphatidylglycerol and ornithine-lipid derivatives, since modification of bacterial membranes with cationic molecules reducing their overall negative charge is one of the common mechanisms of increasing resistance to antimicrobial peptides [17]. However, deletion of \(BCAM1679\) encoding a putative lysophosphatidylglycerol synthetase and \(\delta B\) (BCAL1281), previously shown to render the cells incapable of synthesizing the ornithine-lipid under low phosphate conditions [18], did not affect the resistance to PmB when tested in LB medium or in low-phosphate containing medium in K56-2 background (not shown).

A Role for Putrescine in PmB Resistance

The increased import of lysine, arginine and ornithine suggested by the overexpression of their periplasmic binding proteins in \(\Delta\text{poE}/500\) exposed to PmB could be also utilized for synthesis of polyamines (Figure 4A). Therefore, we tested the involvement of polyamines as possible candidate molecules conferring increased PmB resistance. Spermidine, at concentrations ranging from submicromolar to millimolar levels, had negligible effect on resistance of \(B.\ cenocepacia\) to PmB (not shown). However, treatment of the parental K56-2 with 50 mM putrescine increased the resistance to PmB since putrescine-treated cells survived better at 2,048 \(\mu g/ml\) PmB compared to control cells (Figure 4B). Putrescine treatment of K56-2\(\Delta\arnBC\) also resulted in a 2-fold increase in the MIC of PmB, suggesting that putrescine plays a role in the increased resistance to PmB and its transfer among the bacterial population.

To test this notion, we depleted the genes encoding key enzymes for polyamines biosynthesis (Figure 4A). Mutants with double deletions of both genes encoding spermidine synthases (BCAL3390 and BCAM2086) showed a slight reduction in resistance to PmB and no changes in growth rate (Figure S4). However, the mutant lacking \(BCAL2641\), which encodes an ornithine decarboxylase, had a marked reduction in resistance to PmB and no growth rate defects (Figure 4C). PmB resistance was

Figure 2. Protective effects of \(B.\ cenocepacia\) \(\Delta\text{poE}/500\) on \(P.\ aeruginosa\) PAO1, exposed to PmB, in co-culture. The dotted line represents the limit of detection (50 cfu/ml). Three independent experiments each done in duplicate. doi:10.17371/journal.pone.0068874.g002
restored to parental level by single-copy complementation of BCAL2641 (Figure 4D). To further confirm these findings we used two polyamines synthesis inhibitors, dicyclohexylamine and 3-(Methylthio)propylamine (Figure 4E and Figure S5). Dicyclohexylamine, originally reported as a spermidine synthase inhibitor but also capable of inhibiting the ornithine decarboxylase enzyme (Figure S6), reduced resistance to PmB in K56-2 and ΔapoE/500 cells in a concentration dependent manner (Figure 4E and Figure S5, respectively). However, 3-(Methylthio)propylamine, which is more specific for spermidine synthase and lacks any detectable inhibitory effect on the ornithine decarboxylase reaction (Figure S6) had no effect on resistance of ΔapoE (Figure S5) and only caused a lower reduction of resistance of K56-2 to PmB (Figure 4E). Exogenous putrescine increased the resistance of K56-2 ΔBCAL2641 to PmB in a concentration-dependent manner; full restoration of the level of resistance of the parental strain was achieved at 50 mM putrescine (Figure 4F). A comparison of the level of transcription of BCAL2641 in both naive ΔapoE and ΔapoE/500 bacteria treated with PmB, demonstrated that the expression of this gene is upregulated by 2.9±0.9 in ΔapoE/500 in response to PmB. Moreover, higher levels of putrescine released in the supernatant of ΔapoE/500 treated with PmB were observed relative to ΔapoE naive population (Figure S7).

Putrescine is the most abundant polyamine secreted from B. cenocepacia, while much less amounts of spermidine and cadaverine are secreted from K56-2 (Figure 4F). The release of putrescine was significantly reduced in the ΔBCAL2641 compared to the wild type K56-2 (Figure 4G). However, B. cenocepacia possesses another predicted ornithine decarboxylase, BCAM1111 and a putative arginine decarboxylase, BCAM1112. Deletion of genes encoding both enzymes did not have an effect on resistance to PmB in K56-2 (not shown), and only a small effect in the release of putrescine (Figure 4G). In contrast, cadaverine was not detected in the supernatant of ΔBCAL2641 and ΔBCAM1111ΔBCAM1112 precluding the involvement of cadaverine in increased PmB resistance (Figure 4F). By qRT-PCR, BCAM1111 and BCAM1112 were 2000-fold less transcribed relative to BCAL2641 in naive ΔapoE and ΔapoE/500 bacteria; they were also not differentially transcribed in the more resistant subpopulation (ΔapoE/500) relative to the naive population, suggesting that their gene products are not preferentially used in polyamines biosynthesis. In agreement, the ornithine decarboxylase (ODC) activity of ΔBCAL2641 was much more reduced relative to ΔBCAL2641 in naive ΔapoE and ΔapoE/500 population, suggesting that their gene products are not preferentially used in polyamines biosynthesis. In agreement, the ornithine decarboxylase (ODC) activity of ΔBCAL2641 was much more reduced relative to ΔBCAM1111ΔBCAM1112 (Figure S8). The pattern of ODC activity corresponded to the levels of secretion of putrescine in the different mutants relative to the wild type (Figure 4G). Together, this shows that BCAL2641 is the primary contributor of putrescine in B. cenocepacia explaining the phenotype observed upon its deletion. K56-2 ΔBCAL2641 also lost the protective effects from PmB in co-culture with P. aeruginosa PAO1 (Figure 5A). These results implicated putrescine as a critical polyamine conferring protection from PmB and communicating resistance to neighbouring bacterial cells.

The initial binding of antimicrobial peptides to the bacterial surfaces is crucial for their subsequent antibacterial effects [17]. Putrescine competed with PmB for binding to the surface of B.

Figure 3. Proteins released into the supernatant of B. cenocepacia K56-2 and ΔapoE500 treated with 500 μg/ml of PmB compared to those released from untreated K56-2 and naive ΔapoE. Proteins were run on 14% SDS-PAGE and detected by silver staining and those that were differentially expressed were further identified by LC-MS.

doi:10.1371/journal.pone.0068874.g003
cenocepacia K56-2, where treatment of cells with both putrescine and the fluorescent PmB - Oregon green 514 conjugate showed reduced binding of the fluorescent PmB derivative relative to control cells (Figure 5B). Putrescine also replaced already bound fluorescent PmB conjugate (Figure 5B). This agrees with previous findings showing that polyamines provide protection of the outer membrane of P. aeruginosa from PmB damage [19]. However, this does not preclude other mechanisms mediated by putrescine to protect against the effects of PmB. For example, polyamines can reduce oxidative stress in E. coli exposed to bactericidal antibiotics [20] and protect from membrane lipid peroxidation in P. aeruginosa [19]. These additional mechanisms of protection by polyamines are consistent with the notion that bactericidal antibiotics at sublethal concentrations stimulate the production of hydroxyl radicals, which in turn may induce mutations leading to various levels of antibiotic resistance [21].

The Role of YceI Protein

We also tested the involvement of YceI in heteroresistance. Mutants with a double deletion of BCAL3310 and BCAL3311 had increased sensitivity to PmB, but no differences in growth rate relative to K56-2 (Figure 6A). Complementing the double deletion mutant ΔBCAL3310ΔBCAL3311 (K56-2ΔyceI) with both genes restored resistance to PmB to the parental level (Figure 6B). Moreover, YceI contributed to the protective effects of B. cenocepacia towards P. aeruginosa PAO1 cells exposed to 1.5 μg/ml PmB (Figure 6C). The level of transcription of BCAL3310, determined by qRT-PCR in both naive ΔyceI and the more resistant subpopulation ΔyceI/500 treated with PmB, indicated that this gene was upregulated by 2.5±0.6 in the more resistant subpopulation in response to PmB. Together, these experiments reveal that the YceI homologues contribute to the increased resistance to PmB in ΔyceI/500 and the protective effects on other cells against PmB. Purified YceI BCAL3310 and BCAL3311 (Figure 6D), were both capable of binding PmB-Oregon green 514 conjugate, although BCAL3311 being more potent than BCAL3310 (Figure 6E). This supports their role in sequestering PmB thus protecting other cells from the toxic effects of the antibiotic.

B. cenocepacia is Heteroresistant to other Bactericidal Antibiotics

We determined whether heteroresistance in K56-2 is exclusive to PmB. Turbidimetric PAP using various antibiotics indicated that K56-2 is heteroresistant to gentamicin (protein synthesis inhibitor), norfloxacin (DNA replication inhibitor), rifampicin (mRNA transcription inhibitor) and ceftazidime (cell wall peptidoglycan synthesis inhibitor), all of which belong to different classes of bactericidal antibiotics (Figure 7). In contrast, the response of K56-2 was homogeneous to tetracycline, chloramphenicol, novobiocin, trimethoprim, which are all bacteriostatic antibiotics (Figure 8). Polyamines play a role in the heterogeneity of response to the bactericidal antibiotics. ABCAL2641 displayed a more homogeneous response to the different bactericidal antibiotics, except for gentamicin (Figure 7). Similarly, YceI was involved in the heterogeneous response to the bactericidal antibiotics ABCAL2641 displayed a more homogeneous response to the different bactericidal antibiotics, except for gentamicin (Figure 7).

Conclusions

We show that (i) B. cenocepacia is heteroresistant to PmB and different classes of bactericidal antibiotics; (ii) a more resistant subpopulation of B. cenocepacia communicates high-level resistance.
(i) the protection extends to other bacterial species and is chemically mediated by putrescine, a polyamine, and the secretion of YceI. Since putrescine is volatile [22], resistance can also be communicated to physically separated bacteria in a volatile-mediated manner. Natural polyamines, discovered more than 300 years ago, occur in almost all living organisms; they are involved in growth, development, and other important functions related to modulation of defence responses to diverse environmental stresses and modulation of immune responses in plants and humans respectively [23,24]. Polyamines

Figure 5. Role of putrescine in the protective effects of *B. cenocepacia* against PmB. (A) Involvement of putrescine in the protective effects of *B. cenocepacia* on *P. aeruginosa* PAO1 at 24 h. The dotted line represents the limit of detection (50 cfu/ml). Three independent experiments each done in duplicate. (B) Putrescine protects the bacterial surface from binding to PmB; 50 mM of putrescine reduced binding of PmB-Oregon green 514 conjugate (25 μg/ml) when both added together, whereas it could replace already bound PmB; n = 6.

doi:10.1371/journal.pone.0068874.g005

Figure 6. Contribution of YceI in the response to PmB and its role in protection against PmB. (A) The deletion of BCAL3310 and BCAL3311 (∆yceI) leads to reduced resistance to PmB relative to the parental K56-2. (B) PAP by agar dilution showing complementation of the reduced resistance in ∆yceI mutant by yceI under the control of the rhamnose promoter on pSCrhaB2 to the parental level at 0.4% rhamnose. (C) Involvement of YceI in the protective effects of *B. cenocepacia* on *P. aeruginosa* PAO1 at 24 h. Three independent experiments each done in duplicate. (D) Purified YceI homologues, BCAL3310 and BCAL3311. (E) Binding of BCAL3310 and BCAL3311 to PmB-Oregon green 514 conjugate. BSA was used as a control for binding. n = 6.

doi:10.1371/journal.pone.0068874.g006
Figure 7. Heterogeneous response of *B. cenocepacia* K56-2 to bactericidal antibiotics. *n* = 6. doi:10.1371/journal.pone.0068874.g007

Figure 8. Homogenous response of *B. cenocepacia* K56-2 to bacteriostatic antibiotics. *n* = 6. doi:10.1371/journal.pone.0068874.g008
are significantly increased at inflammatory sites of infection or injury [25,26]; they are also produced by a wide range of bacteria, playing roles in growth and other functions including incorporation into the cell wall, biosynthesis of siderophores, acid resistance, scavenging free radical ion, signaling cellular differentiation and biofilm formation [27]. The two most common bacterial polyamines are putrescine and spermidine [27]. We show here that the most abundant polyamine in B. cenocepacia is putrescine, while spermidine and cadaverine are produced in much lower amounts. Polyamines were previously shown to increase the amount into the cell wall, biosynthesis of siderophores, acid resistance, scavenging free radical ion, signaling cellular differentiation and biofilm formation [27]. The two most common bacterial classes of bactericidal antibiotics and of YceI in the response to amphiphilic bactericidal antimicrobials leads us to propose that these mediators serve as "danger" infochemicals. These chemical signals may be employed in the non-genetic communication of resistance among members of heterogeneous bacterial populations against the different bactericidal antibiotics. The action of YceI on amphiphilic antibiotics fits with its proposed mechanism sequencing toxic amphiphiles with acyl fatty chains, such as PmB, as we have shown in this study. However, this does not preclude other mechanisms in the response of B. cenocepacia to bactericidal antibiotics, especially the aminoglycoside gentamicin, which still requires further investigation. The proposed danger infochemicals can serve as a general mechanism of protection of other bacterial species in a polymicrobial infection such as that found in patients with cystic fibrosis. YceI would reduce available amphiphilic antibiotics from the medium thus protecting any organism; whereas putrescine could interact with most of the bacterial species, since polyamines are produced by most bacteria, with rare exceptions such as Staphylococcus aureus strains, which do not tolerate polyamines as they lack polyamines detoxifying enzymes [30].

In conclusion, we show that antibiotic heteroresistance leads to a cooperative behaviour such that the more antibiotic-resistant members of the population protect the less resistant ones as well as less resistant members of other species. A similar observation has been made previously with indole production by E. coli strains [3]. However, indole production in the more resistant cells was at the exact same level as in naive cells with no antibiotic treatment and unlike putrescine, indole was neither induced by antibiotics nor over-secreted by the more resistant cells. We believe our findings are relevant in the clinical setting, particularly for intrinsically resistant opportunistic Gram-negative bacteria. Attempts to modulate these interactions using polyamine synthesis inhibitors may contribute to disrupting heteroresistance so the bacterial population will have a more uniform response to the antibiotic, reducing the window of therapeutic failure.

Materials and Methods

Strains and Reagents

Table S2 lists bacteria and plasmids used in this work. Bacteria grew in LB at 37°C. Antibiotics (Sigma, St Louis, MO, USA) were diluted in water except for PmB, which was diluted in 0.2% bovine serum albumin/0.01% glacial acetic acid buffer. For growth analyses, overnight cultures were diluted to an optical density at 600 nm (OD600) of 0.0008 and incubated at 37°C with medium continuous shaking in a Bioscreen C automated growth curve analyzer (MTX Lab Systems, Vienna, VA, USA). Medium 121 containing 83 μM phosphate was used to test low phosphate conditions [31]. Extracellular protease production was determined by dialyzed Brain-Heart infusion milk agar plates [32]. Lipopolysaccharide was extracted and visualized by silver staining [33]. Etest strips (AB bioMérieux, Solna, Sweden) were applied to agar plates inoculated with test bacteria by swabbing overnight cultures diluted to OD600 of 0.04; plates were then incubated at 37°C for 24 h. Unmarked non-polar deletions were performed as described previously [34]. Unmarked chromosomal single copy complementation of BCAL2641 was performed using pMH447 [10]. Complementation of yceI (BCAL3310 and BCAL3311) was performed using pSSCRhAb2 [35].

Population Analysis Profiling (PAP)

This involved treating bacterial cultures with doubling increments of antibiotic concentrations and determining growth at each concentration by turbidimetry in LB broth (PAP by broth dilution) or PmB. Controls with the pure cultures at the same inoculum size were included in the experiment. The mixtures were incubated at 37°C at 200 rpm and cfu of each species was determined by using differential antibiotic selection on LB agar plates at 6 and 24 h. B. cenocepacia was selected with PmB (50 μg/ml) and PAO1 was selected with trimethoprim (100 μg/ml). The total count was determined on LB agar plates.

Volatile-mediated Protection

Overnight culture of B. cenocepacia was diluted 1 in 200 in LB containing 500 μg/ml PmB and incubated at 37°C for 17 h at 200 rpm. The supernatant was collected at 4°C, filtered using 0.2 μm nylon membrane filters, and 10 ml aliquots were placed at one side of the septum in septate Petri dishes. MIC by broth dilution was performed on test bacteria (B. cenocepacia K56-2ΔarnBC, E. coli DH5α, HB101, and GT115) at the other side of the septum by spotting (10 μl) of their overnight cultures diluted to OD600 of 0.004 on LB agar containing PmB at doubling increments. The plates were then incubated at 37°C for 24 h.

RNA Extraction

ΔpolyE/500 and ΔpolyE cells were grown overnight and then diluted to OD600 of 0.05 in 50 ml of LB with 500 μg/ml PmB or vehicle control respectively. Cells were grown at 37°C for 30 min at 200 rpm then collected by centrifugation at 39,000 xg for 30 min at 4°C. RNA was prepared from approximately 5 x 10^8 cfu using the Ribopure-Bacteria kit (Ambion, Inc., Austin, TX, USA) and treated with DNase I (Ambion), followed by treatment with DNase I (Qiagen Inc., Mississauga, ON, Canada) following the manufacturer’s protocol. Integrity of the RNA was assessed by agarose gel electrophoresis and by measuring the ratio of absorbance at 260 nm to 280 nm (values obtained between 2.0 and 2.2).
qRT-PCR

RNA was converted to cDNA and real-time PCR was performed as previously described [36]. Fold changes in gene expression were calculated using the Pfaffl Method [37] relative to BCAS0175, an internal control used for microarray and real-time PCR analysis [38]. Data were calculated from 3 independent experiments each done in triplicate.

Ornithine Decarboxylase (ODC) Assay

Overnight cultures in LB broth were diluted to OD$_{600}$ of 0.004 in the rapid ornithine broth medium described by Fay and Barry [39] with or without PmB or the polyamine synthesis inhibitors adjusted at pH 5.5. Aliquots (300 µl each) were transferred to 100-well Bioscreen C plates and overlaid with 100 µl of mineral oil. The plates were incubated in the Bioscreen C automated growth curve analyzer at 37°C without shaking and the color was monitored at 420 nm.

Thin-layer Chromatography Analyses of Polyamines

Polyamine analysis was performed as previously described [40]. Overnight cultures (~20 h) in M9 medium with or without PmB were used. Supernatants, collected by centrifugation at 16,100 g for 5 min, corresponding to cultures of OD$_{600}$ of 0.1 were used. HClO$_4$ (4 N) was added to supernatants to reach a final normality of 0.4 N and incubated at 37°C for 1 h with shaking. HC1O$_4$ extracts were centrifuged at 16,100 g for 5 min. Fifty microlitres of the supernatants were mixed with 50 µl of 2 M Na$_2$CO$_3$ and 100 µl of 2.7-mg/ml dansyl chloride (Sigma, St Louis, MO, USA) solution in acetone and incubated in the dark at 37°C for 2 h with shaking. Standard solutions of putrescine, cadaverine, spermidine and spermine (0.2 mM each) were treated similarly. The mixtures were evaporated to dryness under Nitrogen gas and extracted with 200 µl benzene at 4°C for ~18 h with shaking. Fifty microlitres of the benzene extracts of each of the samples and 5 µl of each of the standards were applied onto TLC silica gel plates (20 x 20 cm, Merck, Darmstadt, Germany) and sequentially separated in two systems: I) benzene–triethylamine (20:2 v/v); II) benzene–methanol (10:9.45 v/v). The dried plates were photographed in ultraviolet light, which excites the green-blue fluorescence of dansyl polyamine spots. The size and intensity of these spots were used to quantify the polyamine concentration, which was quantified using Image J 1.46r software.

Competition between Putrescine and Fluorescent PmB on Surface Binding

Overnight culture of B. cenocepacia K56-2 was centrifuged at 16,100 g for 1 min, and cells were washed with PBS (3x) followed by dilution to OD$_{600}$ of 1 in PBS. Polymyxin B Oregen Green 514 conjugate, PmB-OG (Invitrogen) was added to 100 µl diluted cells at final concentration of 25 µg/ml and incubated at 37°C for 10 min. Then, cells were washed with PBS (3x), resuspended in 100 µl of PBS, and placed into 96-well white plates. Fluorescence was measured at $λ_{ex}$ of 480 nm and $λ_{em}$ of 535 nm. Data was reported as a ratio of Fluorescence to OD$_{600}$.

Cloning, Expression, and Purification of Ycel

Genes encoding the two Ycel homologues (BCAL3310 and BCAL3311) were individually amplified by PCR from K56-2 genomic DNA without the sequences encoding the signal peptides. The constructs were cloned into the pET28a expression vector. The positive pET28a–BCAL3310 or 3311 clones were verified by sequencing. The two Ycel homologues were overexpressed in E. coli (BL21 strain) using 0.05 mM isopropyl thio-β-D-galactoside, and the expression was prolonged for 3 h at 25°C. Bacterial cells were harvested and the cell pellet was resuspended in 50 mM phosphate buffer pH 7.8 and lysis was achieved using one shot cell disrupter (Constant Systems Ltd., Northants, UK) at 27 KPSI. The resulting supernatant was isolated from the insoluble fraction by centrifugation at 16,100 g for 60 min at 4°C. His-tag batch purification was performed using Ni$^{2+}$ coated beads. The purified proteins were detected by Coomasie blue staining following 16% SDS-PAGE and quantified by Bradford assay using bovine serum albumin (BSA) as standard.

Binding Assay of Ycel to PmB

Purified BCAL3310 and BCAL3311 proteins were diluted to 10 µg/ml, treated with PmB-OG at final concentration of 1 µg/ml in a total volume of 100 µl and incubated at 37°C for 10 min with rotation. The fluorescence was measured at $λ_{ex}$ of 480 nm and $λ_{em}$ of 535 nm. Background fluorescence of PmB-OG with the buffer control was subtracted. BSA was used as a control for non-specific binding.

Statistical Analyses

Unpaired student’s t-tests were conducted with GraphPad Prism 5.0.

Supporting Information

Figure S1 Characterization of the more resistant subpopulation $ΔrpoE/500$. (A) LPS profiles; (B) Metabolic activity. Overnight cultures were diluted to OD$_{600}$ of 0.02, treated with PmB or vehicle control, incubated at 37°C with continuous medium shaking for 24 h in a Bioscreen C automated growth curve analyzer. Cells were then collected, washed, resuspended in PBS, transferred to white 96-well plate, and treated with resazurin at final concentration 2.5 µg/ml. The plates were incubated in the dark at 37°C for 90 min, and the fluorescence was measured at $λ_{em}$ of 485 nm and $λ_{ex}$ of 600 nm; (C) Secreted protease activity. (TIF)

Figure S2 The growth of B. cenocepacia $ΔrpoE/500$ in co-culture with P. aeruginosa PAO1. The growth of B. cenocepacia $ΔrpoE/500$ subpopulation was not impaired in co-culture with P. aeruginosa PAO1 except at 24 h in co-culture without PmB where its ratio relative to PAO1 dropped 10 fold probably due to limiting nutrients as a result of the increased biomass of both bacteria in the absence of PmB. (TIF)

Figure S3 Quorum sensing systems of B. cenocepacia are neither involved in the heterogeneity of response to PmB nor in protection to naïve populations. (A) PAP by agar dilution of the quorum-sensing mutants, (B) Direct co-culture of subpopulations of the quorum-sensing mutants growing at 500 µg/ml with P. aeruginosa PAO1 in comparison with $ΔrpoE/500$ subpopulation treated with 2 µg/ml PmB for 24 h; the differences are not statistically significant. (TIF)

Figure S4 PmB resistance of the spermidine synthase double mutant K56-2 $ΔBCAL3309/ΔBCAM2086$. (A) Growth curves; (B) Effect of 2.048 µg/ml PmB. (TIF)

Figure S5 Effects of polyamine synthesis inhibitors on PmB resistance. The polyamine synthesis inhibitor dicyclohexylamine (blue) reduces the resistance of B. cenocepacia $ΔrpoE/500$...
subpopulation to PmB, with no effect of 3-(methylthio)propylamine (red), shown in a turbidimetric PAP at 18 h; n = 5.

Figure S6 Ornithine decarboxylase (ODC) activity of *B. cenocepacia* K56-2 either untreated or treated with 1 mM of dicyclohexylamine or 3-(methylthio)propylamine at 24 h. This concentration of the polyamine synthesis inhibitors did not affect the growth of the bacteria. n = 9.

Figure S7 Release of putrescine in the ΔrpoE/500 culture supernatant. Increased release of putrescine in the supernatant of ΔrpoE/500 subpopulation treated with 500 μg/ml PmB relative to naive ΔrpoE determined at 20 h from M9 cultures by TLC analysis.

Figure S8 ODC assay of the parental strain K56-2 and different PAs biosynthetic mutants at 6 h. n = 9.

References

1. Nikaido H (2001) Preventing drug access to target: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol 12: 215–223.

2. Louet SA, Valvano MA (2010) A decade of progress in Burkholderia cenocepacia virulence determinant research. Infec Immun 78: 4081–4100.

3. Lee HH, Molla MN, Cantor CR, Collins JJ (2010) Bacterial charity work leads to population-wide resistance. Nature 467: 82–85.

4. Vega NM, Allison KR, Khalil AS, Collins JJ (2012) Signaling-mediated bacterial persister formation. Nat Chem Biol 8: 431–433.

5. Bernier SP, Letoffe S, Delepierre M, Ghigo JM (2011) Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol Microbiol 81: 705–716.

6. Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144: 590–600.

7. Louet SA, Mussen LE, Flannagan RS, Valvano MA (2011) A two-tier model of polyamine B resistance in *Burkholderia cenocepacia*. Environmental Microbiology Reports 3: 278–285.

8. Rosales-Reyes R, Sallias MS, Aubert DF, El-Halfawy OM, Valvano MA (2012) The *salh* gene of *Burkholderia cenocepacia* is required for protein secretion, biofilm formation, and motility B resistance. Microbiology 158: 2313–2324.

9. Louet SA, Flannagan RS, Kooi C, Sokol PA, Valvano MA (2006) A complete lipopolysaccharide inner core oligosaccharide is required for resistance of *Burkholderia cenocepacia* to antimicrobial peptides and bacterial survival in vivo. J Bacteriol 188: 2073–2080.

10. Hamad MA, Di Lorenzo F, Molinaro A, Valvano MA (2012) Aminosarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in *Burkholderia cenocepacia*. Mol Microbiol 83: 962–974.

11. Oxman SP, Cardona ST, Brown AR, Louet SA, Flannagan RS, et al. (2007) A putative gene cluster for aminosarabinose biosynthesis is essential for *Burkholderia cenocepacia* viability. J Bacteriol 189: 3639–3644.

12. Andrews JM (2009) BSAC standardized disc susceptibility testing method version 8. J Antimicrob Chemother 64: 454–459.

13. Wright RM, Moore JE, Shaw A, Dunbar K, Dodd M, et al. (2001) Improved cultural detection of *Burkholderia cepacia* from sputum in patients with cystic fibrosis. J Clin Pathol 54: 803–805.

14. Schmerk CL, Bernards MA, Valvano MA (2011) Hepanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in *Burkholderia cenocepacia*. J Bacteriol 193: 6712–6723.

15. Susmi I, Cendron I, FavarV G, Zanott G (2010) *Helicobacter pylori* acidi stress response factor HP1296 is a Yczl homolog with new binding specificity. FEBS Lett 587: 1896–1905.

16. Louet SA, Di Lorenzo F, Clarke C, Molinaro A, Valvano MA (2011) Transcriptonal resposnes of *Burkholderia cenocepacia* to polyamines B in isogenic strains with diverse polymyxin B resistant phenotypes. BMC Genomics 12: 472.

17. Yeaman MR, Yount NY (2005) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55: 27–55.

18. Gao JL, Weissenmayer B, Taylor AM, Thomas-Oates J, Lopez-Lara IM, et al. (2004) Identification of a gene required for the formation of Lys–lysine, an intermediate in the biosynthesis of ornithine-containing lipids. Mol Microbiol 56: 1757–1770.

19. Johnson L, Mukday H, Kanetsu V, Shi Y, Levine S (2012) Surface-localized spermidine protects the *Pseudomonas aeruginosa* outer membrane from bacterial antibiotic and oxidative stress. J Bacteriol 194: 813–826.

20. Tkachenko AG, Akhova AV, Shumkov MS, Nesterova LY (2012) Polyamines reduce oxidative stress in *Escherichia coli* cells exposed to bactericidal antibiotics. Res Microbiol 163: 83–91.

21. Kohanski MA, DePristo MA, Collins JJ (2010) Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 37: 311–321.

22. Ross BM, Babay S, Ladouceur C (2009) The use of selected ion flow tube mass spectrometry to detect and quantify polyamines in headspace gas and oral air. Rapid Commun Mass Spectrom 23: 3973–3982.

23. Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5: 26–33.

24. Larque E, Sabater-Molina M, Zamora S (2007) Biological significance of dietary polyamines. Nutrition 23: 87–95.

25. Hirsch JG, Dubos RJ (1952) The effect of spermine on tubercle bacilli. J Exp Med 95: 191–200.

26. Zhang M, Wang H, Tracey KJ (2000) Regulation of macropage activation and inflammation by spermine: a new chapter in an old story. Crit Care Med 28: N60–66.

27. Wortham BW, Patel CN, Oliveira MA (2007) Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Adv Exp Med Biol 693: 106–115.

28. Kwon DH, Lu CD (2007) Polyamine effects on antibiotic susceptibility in bacteria. Antimicrob Agents Chemother 51: 2070–2077.

29. Kwon DH, Lu CD (2006) Polyamines induce resistance to cationic peptide, aminoglycoside, and quinolone antibiotics in *Pseudomonas aeruginosa* PAO1. Antimicrob Agents Chemother 50: 1615–1622.

30. Joshi GS, Spontak JS, Klapper DG, Richardson AR (2011) Arginine catabolic mobile element encoded sperG abrogates the unique hypersensitivity of *Staphylococcus aureus* to cationic polyamines. Mol Microbiol 82: 9–20.

31. Kreuzer K, Pratt C, Torriani A (1975) Genetic analysis of regulatory mutants of alkaline phosphatase of *E. coli*. Genetics 81: 459–468.

32. Sokol PA, Ohman DE, Iglewski BH (1979) A more sensitive plate assay for detection of protease production by *Pseudomonas aeruginosa*. J Clin Microbiol 9: 530–540.

33. Marolda CL, Lahiry P, Vines E, Saldias S, Valvano MA (2006) Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. Methods Mol Biol 347: 237–252.

34. Flannagan RS, Liu T, Valvano MA (2008) A system for the construction of targeted unmared gene deletions in the genus *Burkholderia*. Environ Microbiol 10: 1652–1660.

35. Cardona ST, Valvano MA (2005) An expression vector containing a rhomboide-trainable promoter provides tightly regulated gene expression in *Burkholderia cenocepacia*. Plasmid 54: 219–229.

36. Louet SA, Bartholdson SJ, Govan JR, Campopiano DJ, Valvano MA (2009) Contributions of two UDP-glucose dehydrogenases to viability and polyamine B resistance of *Burkholderia cenocepacia*. Microbiology 155: 2029–2039.

37. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e55.

38. Peeters E, Sass A, Mahenthiralingam E, Nelin H, Coenye T (2010) Transcriptional response of *Burkholderia cenocepacia* J2315 sessile cells to treatments with high doses of hydrogen peroxide and sodium hypochlorite. BMC Genomics 11: 90.

39. Fay GD, Barry AL (1972) Rapid ornithine decarboxylase test for the identification of enterobacteriaceae. Appl Microbiol 23: 710–713.

40. Tkachenko AG, Shumkov MS, Akhova AV (2006) Potresine as a modulator of the level of RNA polymerase sigma S subunit in *Escherichia coli* cells under acid stress. Biochemistry (Mosco) 71: 185–193.