An Analytical Appraisal for Supervised Classifiers’ Performance on Facial Expression Recognition Based on Relief-F Feature Selection

Maiwan B. Abdulrazaq1, Mayyadah R. Mahmood1, Subhi R. M. Zeebaree2, Mohammad H. Abdulwahab1, Rizgar R. Zebari2, Amira B. Sallow3.

1Department of Computer Science, University of Zakho, Duhok, Kurdistan Region – Iraq.
2Information Technology Dept., Duhok Polytechnic University, Duhok, Kurdistan Region – Iraq.
3Computer Science Department, Nawroz University, Duhok, Kurdistan Region – Iraq.
maiwan.abdulrazzaq@uoz.edu.krd

Abstract. Face expression recognition technology is one of the most recently developed fields in machine learning and has profoundly helped its users through forensic, security, and biometric applications. Many researchers and program developers have allocated their time and energy to figure out various techniques which would add to the technology’s functionality and accuracy. Face expression recognition is a complicated computational process in which is implemented via analyzing changes in facial traits that follow different emotional reactions. This paper endeavors to inspect accuracy ratio of six classifiers based on Relief-F feature selection method, relying on the utilization of the minimum quantity of attributes. The classifiers in which the paper attempts to inspect are Multi-Layer Perceptron, Random Forest, Decision Tree, Support Vector Machine, K-Nearest Neighbor, and Radial Basis Function. The experiment illustrates that K-Nearest Neighbor is the most accurate classifier with the total accuracy ratio of 94.93% amongst the rest when applied on CK+ Dataset.

1. Introduction
As a promising field in data science and computer vision, Facial Expression Recognition has achieved special attention universally during the last decade [1]. It has instantly being applied in many professional arenas such as education, social marketing, and health-care systems [2]. Several methods are being suggested to carry out face expression recognition tasks from both cluster and single images [3]. As far as it is concerned with EFR in applied and educational systems, during the last decade, various researches are implemented. These educational travails are being implemented in the fields of facial expression classification, feature extraction, and face tracing and detection [4].

Peng and Yin [5] suggested a facial expression recognition approach via the combination of the photorealistic expression manifolds in order to expand the exhibition set. More inside subject could be acquired through blending neutral faces. Eigen transformation has been used for producing the details of expression and form for new subjects. Face Recognition and the classification of the extracted instances functioned on the expanded training dataset. The approach applied MMI, MUG, JAFFE,
Sporous, AR, and CK+. The approach managed to achieve the total accuracy rate of 90% of face expression recognition. Munir et al. [6] suggests a new methodology in which combines Contrast Limited Adaptive Histogram Equalization with Fast Fourier Transform to make up the weak illumination factor. After that for each pixel a merged code for binary pattern is issued. For each neighborhood two bits are generated in order to make a sixteen-bit code for each pixel. This operation would capture the changes along the edges and iconic facial traits in front head, cheeks, lips, chin, and face wrinkles. The outcomes of the suggested approach are compared with various LGC and LBP methods for both zoned and holistic images. The experiment, applying SFEW dataset, illustrates that the MBPC outshines other methods in term of accuracy with the total percentage of 67.2% and 96.5% respectively for division-based and holistic approaches.

Applying Cascade Regression Tree for feature extraction, Bilkhu et al. [7] introduced a novel Facial Expression Recognition approach to detect the 6 major facial emotions. The method applies three classifiers including Logistic Regression (LR), Support Vector Machine (SVM), and Neural Network (NN). The study continued with a detailed comparison of the applied classifiers in terms of accuracy ratio via implementing the CK+ dataset. The research's study concludes with 89 percent of accuracy for SVM as the most accurate classifier in this regard. Respectively, 80 percent of accuracy rate for Neural Network, and the total ratio of 77.06 percent of accuracy rate for Logistic Regression are achieved. Li, D., et al. [8] suggested a new ensemble pruning method depending on clustering and ordering (RTCRelief-F) based on three datasets, including CK+, FER2013, and JAFFE. The system applies a new pairwise scale in the process of feature selection. The experiment on the three datasets illustrates that the proposed method enhances the quality and performance of facial expression recognition. Pk, A.M.N., X. Ding, and T. Page [9] proposed an approach for feature extraction called Histogram Oriented Gradients. The method applies Multi-Layer Support Vector Machine for facial recognition. The system is designed a one-to-one process to achieve multi-classification. YALE ORL, and a self-created dataset are utilized to carry out the experiment. The study demonstrates that the face recognition accuracy rates for these datasets are above 96%.

This paper provides an effective method to feature selection and classification for Facial Expression Recognition from sequence facial images. To achieve this goal, six classifiers are being applied and their performances are compared to distinguish the most accurate one.

Facial Expression Recognition fundamentally goes through 3 basic steps that are face-detection, feature-extraction, and classification, consequently [10]. Feature selection could be summarized as the procedure of selecting the most relevant attributes in order to illustrate the training data instances [11] that the computational recitals and the classification aptitude are manipulated by [12]. It is important to note that through the training and testing operation, what makes the process kind of time-consuming is processing of the unwanted features big amount. Depended approach of feature assortment which fair enough towards different configurations partition consuming residence through different classes fail. Hence progressively composite distribution methods [13]. This research attempts to offer a method in which feature selection is implemented as a Relief F approach that scores the attributes based on their values that make them significant within the process. The first 6 attributes are elicited after the process of try and test to produce the most accurate characteristic features of facial images. The elicited attributes are applied for training and testing the classifiers: KNN [14], J48 [15], RBF [16], SVM [17], MLP, and RF classifiers.

2. Dataset

Approving the suggested approach, it implements CK+ dataset that consist of 593 image sequences of 123 adults [18]. The images include the 8 basic emotional traits that are normal, surprised, sad, scared, happy, disgusted, angry, contempt, and scared [19]. From the ultimate participants whose facial expressions are being archived in the dataset, 31% are males and 69% are females and of 18-50 years old [20]. When 13% of the participated models are Americans of African race, 81% are of European-American ethnicity, and the rest 6% are from other racial ethnicities. In the appointed dataset, 20 models express two facial emotional indicators, 28 share five facial expression indicators, 8 people share three
indicators, 26 share four facial emotional features, and the remaining 22 individuals share all the indicators in projecting their emotional stance. The captured images are implemented in various light instances with 640x490 or 640x480 of resolution. This study has implemented 4090 models from the dataset arbitrarily to experiment and validate the suggested approach. Samples from the dataset are demonstrated in Figure 1[21]. Table 1 illustrates the randomly selected number of the samples adopted for each expression from the CK+ dataset.

![Sample expressions from CK+ dataset](image)

Table 1. The number of random selected expression on instances from CK+ dataset.

No.	Expressions	No. of Instances
1	Angry	527
2	Contempt	47
3	Disgust	389
4	Fear	458
5	Happy	614
6	Normal	913
7	Sad	540

3. Methodology
The paper suggests a method to recognize the expression of human faces with the face’s eight emotional expressions. The procedure of this approach goes through four fundamental stages, which are (Data Processing, Face Detection, Feature Selection and Classification), as demonstrated in Figure 2.

![Block diagram for main steps](image)
3.1. Data processing
FER process triggers with the calibration of the images which are noisy. It exceeds with the elimination of the noisy sections, resizing, besides input images modification. Images-set that are espoused from CK+ dataset been modified to black and white then nourished to Viola-Jones classifier for facial expression detection.

3.2. Face detection
Viola-Jones approach [23] considered as one of greatest fruitful face detection approaches and is widely used for face detection purposes due to its robustness in face detection rate and being outstandingly accurate among other techniques [24]. Add to this, it is a real time detection tool [25]. This method consists of the following steps: Haar feature selection, integral image creation, and Adaboost training and cascading classifiers. The detected faces from Viola-Jones picked then resized to 28x28. Seven hundreds eighty four attributes nourished in Relief-F feature selection method for features ranking based on their positional importance. Then, the most distinctively high ranked features will be elicited from the rest in order to be used in six classifiers to distinguish the most accurate one.

3.3. Feature selection
Relief-F is considered as a supervised feature selection method [26]. Each feature’s weight is calculated based on its relevance to other features. The weight of a learning feature is estimated depending on the probability that is assumed as the nearest hits and misses [27]. Since this algorithm relies on the feedback received from the nearest neighbor classifier, it is considered as one of the most accurate feature selection methods [28]. Applying convex optimization puts the algorithm in an efficient position in weighting features to solve problems. Despite of all the advantages this algorithm possesses, acquisition of the samples in a random manner and high frequency of sampling places this algorithm in a vulnerable position. Such defects can reduce accuracy to some extent [29].

\[W_i = W_i - (x_i - \text{nearHit}_i)^2 + (x_i - \text{nearMiss}_i)^2 \]

The nearest x sample chosen by the Euclidian distance in each class depends on the weight vector \((W_i) \). The nearMiss is the difference in class instance and the nearHit resembles the closest sample [14]. Relief-F feature selection method is implemented on CK+ dataset and the highest ranks six features for each facial expression are being selected as illustrated in Table 2.

Table 2. The highest ranked six feature from Relief-F feature selection for each expression

Feature Numbers	Anger	Contempt	Disgust	Fear	Happy	Normal	Sad	Surprise
1	93	64	121	120	526	543	93	571
2	94	65	149	568	539	570	104	572
3	103	431	150	569	540	571	121	577
4	104	436	151	580	541	572	132	579
5	121	564	159	581	553	573	133	599
6	131	784	160	757	554	574	404	600

3.4. Classification
In order carry out facial expression recognition from the face images, six classification methods are utilized to compare the classifiers performance. To achieve higher performance, the minimum number of the features are used. The highest six ranked features from Relief-F are selected. Ten-fold-cross authentication approach is utilized for the purpose of training and testing. The supervised methods are briefly explained.

3.4.1. Decision Tree (J48)
J48 is a more developed offshoot of C4.5 to deal with continuous data [30]. The method utilizing the training data, initially builds a tree via a training stage. An instance from the testing data is tested on the built tree in order to identify its class [31]. Due to the shape and form of the technique as a tree, it tends to be one of the most accurate and time-efficient classifiers. The anxious subdivision considered as emblem for closure conceivable feature standards through without uncertainty [32]. Actuality broadly applied through several scholars, Decision Tree is believed to be as one of the simplest classifiers to get benefit from. It is designed and created with data entropy foundation [33]. This one works with manner individually data could feature applied via separating them into minor elements including wanted nodes. Individually tree contains 3 nodes-kinds consisting of the root node, internal node, and the leaves. The classifier ensures satisfactory conditions through all the edges of the tree.

3.4.2. K-Nearest Neighbor (KNN)

KNN is one of the most applied classifiers which its performance is based on the concept of distance measure [34]. Euclidian distance is used to determine the nearest K neighbor instance from the training samples [35]. K is usually a positive integer number of neighbors [36]. The production is class-labeled. Instantly the classification done via major election to a neighboring one via feature presence located toward class neighboring of K adjacent neighbors. As an example, doubt a tested sample closer to a specific class, based on its distance, then the feature will be classified to that class [37]. The following equation is used to calculate the Euclidian distance.

\[d(x, y) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2} \]

3.4.3. Radial Basis Function (RBF)

RBF system considered as best linkage on behalf of I/O planning purpose as feed-forward organization [38], as quick meeting rapidity besides great precision [39]. RBF tends to be kind of artificial neural network [40]. This approach is utilized for multi-classification issues consist of three-layer classifiers [41]. RBF’s consist of a two-layer neural network, while individual buried part functions rounded motivated task. Output elements adopt biased amount hidden element outputs. However, production in RBF grid scheme considered undeviating, and input nonlinear [42].

3.4.4. Support Vector Machine (SVM)

It is clear that SVM simplest and supreme functional classifiers that is used to carry out machine learning problems [43] like: pattern recognition plus computer visualization [44] typically anxious through handling gigantic amounts of information [30]. Extensively accepted procedure via various investigators. SVM objects to build the optimal hyper planes named boundary to maximize distance commencing adjacent keeping fit set information sample for hyper plane [45].

3.4.5. Multi-Layer Perceptron (MLP)

Agreeing MLP, neurons should agree to one-track-guiding style. Data broadcasting via this process participating in three layers. Data process initiates from the first layer (input layer) which depends on the number of the selected features. The classified output balance depends on the second layer (hidden layer) [46]. The number of the classes are equal to the number of the output nodes [47]. Classification stands for the duty of assigning an attribute vector or a set of attributes in the dataset applied for facial expression recognition. Connection amongst layers should labelled thru several heaviness. In MLP, nodes be able to function 2 jobs: instigation and aggregation. Prejudice result, heaviness, besides inputs accumulated implementing accumulation job in Equation (3).

\[S_j = \sum_{i=1}^{n} w_{ij} l_i + \beta_j \]

Where: n is I/P quantity, li I/P variable i, βj bias span, wij considers linking heaviness. Instigation job should observed exploiting Eq. (3) O/P. Different types of initiation roles might be useful with MLP procedure, as illustrated in Equation (4) [48].
\[f_j(x) = \frac{1}{1+e^{-x_j}} \]

3.4.6. Random Forest (RF)
This method creates a forest via merging multiple decision trees to achieve high classification rate [49]. The ultimate purpose behind utilization of this supervised classifier machine is to prevent mere dependence upon only one learning model [50]. The important distinction between this inventive technique and the normal decision tree classifier is that the root nodes feature divided nodes connected superfluously [51].

4. Performance evaluation and results
In order appraise the accuracy of each classifier, which are utilized confusion matrix. The experimental outcome illustrates that when the applying 6 attributes from Relief-F method, KNN archives the optimum recognition ratio with 94.93%, while RF’s accuracy ratio is 93.95%. Meanwhile, J48 gets 92.27% of recognition ratio, MLP gets 89.89% of recognition ratio, RBF gets 89.65% of recognition ratio, and SVM provides us with the lowest recognition ratio as 89.43%, as shown in Table 3, 4, 5, 6, 7, and 8.

Table 3. System Assessment using J48 Classifier and Relief-F Feature Selection

Expressions	TP Rate	FP Rate	Precision	Recall	F-Measure	Accuracy
Anger	0.97	0.33	1.00	0.97	0.96	93.35
Contempt	1.00	0.75	1.00	1.00	1.00	99.14
Disgust	0.98	0.47	1.00	0.98	0.97	93.72
Fear	0.98	0.53	1.00	0.98	0.96	92.18
Happy	0.97	0.19	1.00	0.97	0.97	94.67
Normal	0.94	0.68	1.00	0.94	0.88	80.42
Sad	0.96	0.55	1.00	0.96	0.94	89.61
Surprise	0.98	0.23	1.00	0.98	0.97	95.06
Avg. Rate	**0.97**	**0.47**	**1.00**	**0.97**	**0.96**	**92.27**

Table 4. System Assessment using KNN and Relief-F

Expressions	TP Rate	FP Rate	Precision	Recall	F-Measure	Accuracy
Anger	0.99	0.12	0.98	0.99	0.99	97.58
Contempt	1.00	0.75	0.99	1.00	1.00	99.14
Disgust	1.00	0.31	0.97	1.00	0.98	96.77
Fear	0.99	0.46	0.95	0.99	0.97	94.25
Happy	0.77	0.01	0.96	0.77	0.85	96.04
Normal	0.96	0.47	0.88	0.96	0.91	85.92
Sad	0.98	0.26	0.96	0.98	0.97	94.96
Surprise	1.00	0.33	0.95	1.00	0.97	94.74
Avg. Rate	**0.96**	**0.34**	**0.95**	**0.96**	**0.96**	**94.93**

Table 5. System Assessment using RBF and Relief-F
Table 6. System Assessment using SVM and Relief-F

Expressions	TP Rate	FP Rate	Precision	Recall	F-Measure	Accuracy
Anger	0.98	0.83	0.89	0.98	0.93	87.75
Contempt	1.00	0.75	0.99	1.00	1.00	99.14
Disgust	0.98	0.77	0.92	0.98	0.95	91.10
Fear	1.00	1.00	0.89	1.00	0.94	88.80
Happy	0.96	0.38	0.93	0.96	0.95	91.20
Normal	0.95	0.74	0.82	0.95	0.88	79.24
Sad	1.00	0.97	0.87	1.00	0.93	87.04
Surprise	0.99	0.40	0.94	0.99	0.96	92.91
Avg. Rate	**0.98**	**0.73**	**0.91**	**0.98**	**0.94**	**89.65**

Table 7. System Assessment using MLP and Relief-F

Expressions	TP Rate	FP Rate	Precision	Recall	F-Measure	Accuracy
Anger	1.00	1.00	0.871	1.00	0.93	87.12
Contempt	1.00	0.79	0.991	1.00	1.00	99.71
Disgust	1.00	1.00	0.905	1.00	0.95	90.49
Fear	1.00	1.00	0.888	1.00	0.94	88.80
Happy	0.97	0.38	0.935	0.98	0.95	91.96
Normal	1.00	1.00	0.777	1.00	0.87	77.68
Sad	1.00	1.00	0.868	1.00	0.93	86.80
Surprise	0.99	0.40	0.935	0.99	0.96	92.91
Avg. Rate	**0.99**	**0.82**	**0.90**	**1.00**	**0.94**	**89.43**

Table 8. System Assessment using RF and Relief-F

Expressions	TP Rate	FP Rate	Precision	Recall	F-Measure	Accuracy
Anger	0.96	0.59	0.92	0.96	0.94	89.10
Contempt	1.00	0.75	0.99	1.00	1.00	99.14
Disgust	0.98	0.60	0.94	0.98	0.96	92.81
Fear	0.99	0.69	0.92	0.99	0.95	90.98
Happy	0.97	0.25	0.96	0.97	0.96	93.40
Normal	0.86	0.66	0.82	0.86	0.84	74.40
Sad	0.98	0.92	0.88	0.98	0.93	86.36
Surprise	0.99	0.40	0.94	0.99	0.96	92.91
Avg. Rate	**0.97**	**0.61**	**0.92**	**0.97**	**0.94**	**89.89**
Table 1. Highest and Lowest Performance Accuracy ratio for each Expression.

Expressions	TP Rate	FP Rate	Precision	Recall	F-Measure	Accuracy
Anger	0.98	0.18	1.00	0.98	0.98	96.19
Contempt	1.00	0.51	1.00	1.00	1.00	99.22
Disgust	0.99	0.40	1.00	0.99	0.98	95.57
Fear	0.99	0.47	1.00	0.99	0.97	93.91
Happy	0.99	0.16	1.00	0.99	0.98	96.43
Normal	0.95	0.49	1.00	0.95	0.91	84.89
Sad	0.99	0.50	1.00	0.99	0.96	92.47
Surprise	0.99	0.40	1.00	0.99	0.96	92.91
Avg. Rate	0.98	0.39	1.00	0.98	0.97	93.95

Figure 3. Highest and Lowest Performance Accuracy ratio for each Expression.

Based on previous demonstrations, when utilizing the classifiers on the attributes selected from the Relief-F feature selection approach, the expression result sequentially starts with Anger as the highest accuracy ratio 97.58% by KNN, and the lowest accuracy ratio by RBF of 87.75%. Contempt with the highest accuracy ratio 99.71% by SVM, and the lowest accuracy ratio by J48, KNN, RBF and MLP 99.14%. Disgust with the highest accuracy ratio 96.77% by KNN, and the lowest accuracy ratio by SVM 90.49%. Fear with the highest accuracy ratio 94.25% by KNN, and the lowest accuracy ratio by RBF and SVM 88.8%. Happy with the highest accuracy ratio 96.43% by RF, and the lowest accuracy ratio by RBF 91.20%. Normal with the highest accuracy ratio 85.92% by KNN, and the lowest accuracy ratio by MLP 74.40%. Sad with the highest accuracy ratio 94.96% by KNN, and the lowest accuracy ratio by...
MLP 86.36%. Surprise with the highest accuracy ratio 95.06% by J48, and the lowest accuracy ratio by RBF, SVM, MLP and RF 92.91% as shown in Figure 3.

Table 9. Comparison of Related Works

Reference	Dataset	Emotion No.	Feature No.	Feature Selection	Classifier	Result	
[5]	CK+, AR, Bosphons, JAFFE, MUG, MMI	7	AU 29	Correlation Coefficient and Normalized Distance	EMS	MMD & MDA, PCA 90%	
[6]	SFEW	7	40, 60, 80, 100, 120	MSBC	Holistic division	SVM, Logistic Regression, NN	SVM 89% Logistic Regression 80% NN 77.06%
[7]	CK+	5	68	FER			
[8]	Fer2013 JAFFE CK+	7	28,9, Pyleam2 (16,32,48,6, 4,80,96) 510 -Keras (32,64,128, 256)	CNN	RTCRelief-F	Fer2013 73.36% JAFFE 50.23% CK+ 78.13%	
[9]	ORL YALE Self-created database	6	-	HOG	Multi-Class SVM	ORL 96.5% YALE 96.67% Self 96.92%	
This work	CK+	8	6	Relief-F	J48, KNN, RBF, SVM, MLP, RF	48 92.27% KNN 94.93% RBF 89.65% SVM 89.43% MLP 89.88% RF 93.95%	

Table 9 shows the comparison summary of the related works. From this table, it is clear that the researchers in the related papers used various methods of feature selection and classification and different datasets with different numbers of facial expressions. Compared to the related works, the provided method acquires a good recognition rate with fewer attributes and more recognized facial expressions. However, researcher in [5] obtained (90%) by using different datasets, feature selection methods and classifiers. Researcher in [6] obtained a good recognition rate ranged (96.5%-67.2%) but using various number of attributes (40, 60, 80, 100, 120) respectively with several classifiers. Also, researcher in [7] could gain a high accuracy (89%) from SVM, (80%) from regression, and (77.06%) from NN classifiers using large number of features (68) but with the ability to recognize fewer expressions from CK+ dataset. Researcher [8] uses several datasets with different feature selection methods to reach (73.36%) for Fer2013 dataset, (50.23%) for JAFFE and (78.13%) for CK+. Researcher in [9] has managed to gain high accuracy (96.5%) for ORL dataset, (96.67%) for YALE and (96.92%) for self-created dataset, using HOG feature selection. This work uses fewest features with several classifiers to reach (94.93%) of accuracy via KNN.
5. Conclusion

During the last decade, Relief-F feature selection has been used by many researchers. This method ranks the features in sequential order depending on their variance values. The highest ranked detected was six features of Relief-F presence used with the 6 classifiers. Investigational results show that greatest precise classifier is KNN with 94.93% of accuracy ratio in facial expression recognition according to CK+ dataset. Meanwhile, RF could be considered as the nearest classifier to KNN with the accuracy ratio of 93.95%. J48 with the accuracy ratio of 92.27% is in the middle among the other classifiers. The last three classifiers respectively are MLP, RBF, and SVM with the accuracy ratios of 89.89%, 89.65%, and 89.43%.

References

[1] Huang, Y., et al., Facial expression recognition: A survey. Symmetry, 2019. 11(10): p. 1189.
[2] Dino, H., Abdulrazzaq, M.B., Zeebaree, S.R., Sallow, A.B., Zebari, R.R., Shukur, H.M. and Haji, L.M., Facial Expression Recognition based on Hybrid Feature Extraction Techniques with Different Classifiers. TEST Engineering & Management, 2020, 83, pp.22319-22329.
[3] Anil, J. and L.P. Suresh. Literature survey on face and face expression recognition. in 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT). 2016. IEEE.
[4] Dino, H.I. and M.B. Abdulrazzaq. Facial Expression Classification Based on SVM, KNN and MLP Classifiers. in 2019 International Conference on Advanced Science and Engineering (ICOASE). 2019. IEEE.
[5] Peng, Y. and H. Yin, Facial expression analysis and expression-invariant face recognition by manifold-based synthesis. Machine Vision and Applications, 2018. 29(2): p. 263-284.
[6] Munir, A., et al., Illumination invariant facial expression recognition using selected merged binary patterns for real world images. Optik, 2018. 158: p. 1016-1025.
[7] Bilkhu, M.S., S. Gupta, and V.K. Srivastava, Emotion Classification from Facial Expressions Using Cascaded Regression Trees and SVM, in Computational Intelligence: Theories, Applications and Future Directions-Volume II. 2019, Springer. p. 585-594.
[8] Li, D., et al., RTCRelief-F: an effective clustering and ordering-based ensemble pruning algorithm for facial expression recognition. Knowledge and Information Systems, 2019. 59(1): p. 219-250.
[9] Pk, A.M.N., X. Ding, and T. Page. An Integrated Approach for Face Recognition Using Multiclass SVM. in 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). 2020. IEEE.
[10] Wei, P., et al., Research on face feature extraction based on K-mean algorithm. EURASIP Journal on Image and Video Processing, 2018. 2018(1): p. 83.
[11] Zebari, R., et al., A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction. Journal of Applied Science and Technology Trends, 2020. 1(2): p. 56-70.
[12] Mahmood, M.R. and A.M. Abdulazeez. Different Model for Hand Gesture Recognition with a Novel Line Feature Extraction. in 2019 International Conference on Advanced Science and Engineering (ICOASE). 2019. IEEE.
[13] Li, P., et al. Feature selection for facial expression recognition. in 2010 2nd European Workshop on Visual Information Processing (EUVIP). 2010. IEEE.
[14] Abdulrazzaq, M.B. and K.I. Khalaf. Handwritten Numerals’ Recognition in Kurdish Language Using Double Feature Selection. in 2019 2nd International Conference on Engineering Technology and its Applications (ICICTA). 2019. IEEE.
[15] Aashkaar, M., P. Sharma, and N. Garg. Performance analysis using J48 decision tree for Indian corporate world. in 2016 International Conference on Research Advances in Integrated Navigation Systems (RAINS). 2016. IEEE.
[16] Shetty, R.P., A. Sathyabhama, and A.A. Rai. Optimized radial basis function neural network
model for wind power prediction. in 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP). 2016. IEEE.

[17] Mahmood, M.R. and A.M. Abdulazeez. A Comparative Study of a New Hand Recognition Model Based on Line of Features and Other Techniques. in International Conference of Reliable Information and Communication Technology. 2017. Springer.

[18] Ji, C., S. Song, and H. Xia. Research and Analysis of Learning Rate on Face Expression Recognition. in 2019 International Conference on Electronic Engineering and Informatics (EEI). 2019. IEEE.

[19] Smith, F.W. and S. Rossit, Identifying and detecting facial expressions of emotion in peripheral vision. PloS one, 2018. 13(5).

[20] Kanade, T., J.F. Cohn, and Y. Tian. Comprehensive database for facial expression analysis. in Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580). 2000. IEEE.

[21] Lucey, P., et al. The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. in 2010 ieee computer society conference on computer vision and pattern recognition-workshops. 2010. IEEE.

[22] Liliana, D. Emotion recognition from facial expression using deep convolutional neural network. in Journal of Physics: Conference Series. 2019. IOP Publishing.

[23] Kasetty Lakshminarasimha, V.P.S., Face Spoofing Detection using Hybrid Kernel Approach with CNN, SVM Classifiers. International Journal of Advanced Science and Technology. Vol. 28, No. 16, (2019), pp. 946-95.

[24] PAUL, T., et al., A Study on Face Detection Using Viola-Jones Algorithm in Various Backgrounds, Angles and Distances. International Journal of Biomedical Soft Computing and Human Sciences: the official journal of the Biomedical Fuzzy Systems Association, 2018. 23(1): p. 27-36.

[25] Mahmood, M.R., A.M. Abdulazeez, and Z. Orman. Dynamic Hand Gesture Recognition System for Kurdish Sign Language Using Two Lines of Features. in 2018 International Conference on Advanced Science and Engineering (ICOASE). 2018. IEEE.

[26] Chen, R., et al., Supervised feature selection with a stratified feature weighting method. IEEE Access, 2018. 6: p. 15087-15098.

[27] Urbanowicz, R.J., et al., Relief-based feature selection: Introduction and review. Journal of biomedical informatics, 2018. 85: p. 189-203.

[28] Raj, D.D. and R. Mohanasundaram, An Efficient Filter-Based Feature Selection Model to Identify Significant Features from High-Dimensional Microarray Data. Arabian Journal for Science and Engineering, 2020: p. 1-12.

[29] Durgabai, R. and Y.R. Bhushan, Feature selection using ReliefF algorithm. International Journal of Advanced Research in Computer and Communication Engineering, 2014. 3(10): p. 8215-8218.

[30] Aljawarneh, S., M.B. Yassein, and M. Aljundi, An enhanced J48 classification algorithm for the anomaly intrusion detection systems. Cluster Computing, 2019. 22(5): p. 10549-10565.

[31] Dogra, A.K. and T. Wala, A comparative study of selected classification algorithms of data mining. International Journal of Computer Science and Mobile Computing, 2015. 4(6): p. 220-229.

[32] Panigrahi, R. and S. Borah, Rank allocation to J48 group of decision tree classifiers using binary and multiclass intrusion detection datasets. Procedia computer science, 2018. 132: p. 323-332.

[33] Bhargava, N., et al., Decision tree analysis on j48 algorithm for data mining. Proceedings of International Journal of Advanced Research in Computer Science and Software Engineering, 2013. 3(6).

[34] Baldini, G. and D. Geneiatakis. A Performance Evaluation on Distance Measures in KNN for Mobile Malware Detection. in 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). 2019. IEEE.
[35] Ali, N., D. Neagu, and P. Trundle, Evaluation of k-nearest neighbour classifier performance for heterogeneous data sets. SN Applied Sciences, 2019. 1(12): p. 1559.

[36] Rajaguru, H. and S.C. SR, Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer. Asian Pacific Journal of Cancer Prevention: APJCP, 2019. 20(12): p. 3777.

[37] Salih, A.A. and M.B. Abdulrazaq. Combining best features selection using three classifiers in intrusion detection system. in 2019 International Conference on Advanced Science and Engineering (ICOASE). 2019. IEEE.

[38] Lu, J., H. Hu, and Y. Bai. Radial basis function neural network based on an improved exponential decreasing inertia weight-particle swarm optimization algorithm for AQI prediction. in Abstract and Applied Analysis. 2014. Hindawi.

[39] Chen, J., et al., A machine learning ensemble approach based on random forest and radial basis function neural network for risk evaluation of regional flood disaster: a case study of the Yangtze River Delta, China. International journal of environmental research and public health, 2020. 17(1): p. 49.

[40] Venkateswarlu, R., R.V. Kumari, and G.V. Jayasri. Speech recognition using radial basis function neural network. in 2011 3rd International Conference on Electronics Computer Technology. 2011. IEEE.

[41] Jiang, C. and Y. Li, Health Big Data Classification Using Improved Radial Basis Function Neural Network and Nearest Neighbor Propagation Algorithm. IEEE Access, 2019. 7: p. 176782-176789.

[42] Rani, H.R. and A.T. Victoire, Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer. PloS one, 2018. 13(5): p. e0196871-e0196871.

[43] Alamdar, F., F.S. Mohammadi, and A. Amiri, Twin bounded weighted relaxed support vector machines. Ieee Access, 2019. 7: p. 22260-22275.

[44] Li, Z., et al., Classification of peanut images based on multi-features and SVM. IFAC-PapersOnLine, 2018. 51(17): p. 726-731.

[45] Le, T., et al. Robust support vector machine. in 2014 International Joint Conference on Neural Networks (IJCNN). 2014. IEEE.

[46] Madhiarasan, M. and S. Deepa, Comparative analysis on hidden neurons estimation in multi layer perceptron neural networks for wind speed forecasting. Artificial Intelligence Review, 2017. 48(4): p. 449-471.

[47] Khan, F.A., et al., A novel two-stage deep learning model for efficient network intrusion detection. IEEE Access, 2019. 7: p. 30373-30385.

[48] Heidari, A.A., et al., An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Computing, 2019. 23(17): p. 7941-7958.

[49] Ye, Y., et al., Stratified sampling for feature subspace selection in random forests for high dimensional data. Pattern Recognition, 2013. 46(3): p. 769-787.

[50] Johansson, U., C. Sönströd, and T. Löfström. One tree to explain them all. in 2011 IEEE Congress of Evolutionary Computation (CEC). 2011. IEEE.

[51] Elyusufi, Y. and Z. Elyusufi. Social Networks Fake Profiles Detection Using Machine Learning Algorithms. in The Proceedings of the Third International Conference on Smart City Applications. 2019. Springer.