A survey on set-membership filtering for networked control systems under communication protocols

Xuerong Li, Hongli Dong, Fei Han and Jiahui Li
Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control, Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing, People’s Republic of China

ABSTRACT
In recent years, the set-membership filtering problem has received extensive research interests due to its engineering significance to estimate a set which includes the true state of the system rather than a single vector. What’s more, the communication protocol has been widely applied in the control systems because of its ability to prevent from data collisions and reduce the burden of the network. From the engineering practice, it is of vital importance to investigate the set-membership filtering under communication protocols. In this paper, a bibliographical review is provided on the set-membership filtering for networked control systems (NCSs) under communication protocols. Next, the concept of the NCS is briefly introduced. Some recent advances on the set-membership filtering problem for NCSs are summarized. Then, some well-known scheduling schemes are presented and the results of the set-membership filtering for NCSs under communication protocols are reviewed. Finally, some concluding remarks are given and some potential future research directions are pointed out.

1. Introduction
The past decades have witnessed that the filtering problem has been a seductive research focus attracting constant attention in the field of control communities and signal processing. Some common filtering methods include Kalman filtering (Li, Kar, Alsaadi, Dobaie, & Cui, 2015; Safarinejad & Yousefi, 2015), extended Kalman filtering (Ahmada & Namerikawa, 2013; Chatterjee, Fournier, Nait-Ali, & Siarry, 2010; Hu, Wang, Gao, & Stergioulias, 2012; Kluge, Reif, & Brokate, 2010), H_∞ filtering (Dong, Wang, Ding, & Gao, 2016; Dong, Wang, & Gao, 2013; Dong, Wang, Shen, & Ding, 2016; Shen, Wang, Hung, & Chesi, 2011), H_2 filtering (Gao, Lam, Xie, & Wang, 2005; Liu, Liu, Shi, & Wang, 2014; Sahebsara, Chen, & Shah, 2007) and so on. Most of these filtering methods require the system noise including process noise and measurement noise to be in a random framework and provide a probabilistic state estimation. The probability properties of the estimation results are used to describe the state spreads (distributions) by means of mean and variance. These filtering algorithms do not guarantee that states are contained in the certain region because they are not hard bounds. Nevertheless, in many practical applications, such as system guidance and navigation, target tracking and attack, they require a confidence level of 100% to estimate. This leads to the state estimation of the ellipsoid. The idea of the ellipsoidal state estimation is to give a set of state estimates by assuming hard bounds in state space instead of stochastic descriptions on the system noises which always affect the true state of the system. These methods are therefore known as set-membership or set-valued state estimation (filtering) (Bertsekas & Rhodes, 1971; Morrell & Stirling, 1991). The origin of set-membership filtering can be traced back to 1960s (Witsenhausen, 1968) and the corresponding problems have attracted the growing interest of many researchers.

On the other hand, the networked control systems (NCSs) have become more and more prevalent due primarily to their extensive applications in many practical areas such as environmental monitoring, industrial automation, smart grids and distributed/mobile communications. It is the main characteristic of the NCSs to realize the connection of the system components through the shared communication networks. NCSs possess many advantages including low cost, simple installation, reduced system wiring and high reliability. However, the utilization of communication networks has made the analysis and design of the system more complicated (Krtolica, Ozguner, Chan, & Goktas, 1994;
Zhivoglyadov & Middleton, 2003) and has led to rich yet complex network-induced behaviours such as signal quantization, missing/fading measurements, communication delays, sensor saturations and out-of-sequence-measurement updates. These behaviours have gained considerable research attention as introduced in Bahreini and Zarei (2016), Hassani and Zarei (2016), Li, Dong, Han, Hou and Li (2017), Gholami and Binazadeh (2018), Yu, Dong, Wang, Ren, and Alsaaadi (2016), Yang, Dong, Wang, Ren, and Alsaaadi (2016), Li and Bao (2017), Dong, Wang, Ding, and Gao (2014) and Shen, Song, Zhu, and Luo (2009). Hence, it has important practical significance to discuss the set-membership filtering problem for the NCSs.

Many existing literatures usually assume that all the sensor nodes could get access to the network to transmit signals at the same time, but this is impossible in the real world due to the limited network bandwidth. The communication protocol has been introduced to prevent the data from collisions where all the sensor nodes transmit signals according to the scheduling of the employed protocol. Due to the difficulties in dealing with the coupling issues between the set-membership filtering and the protocol scheduling, the set-membership filtering problems for the NCSs under communication protocols have gained growing research interests.

The set-membership filtering problems for the NCSs under communication protocols have been mainly investigated in this paper and the latest progresses in this field have been reviewed. Several common protocols include stochastic communication protocol (Tabbara & Nesic, 2008), Round-Robin (RR) protocol (Ugri novskii & Fridman, 2014) and Weighted Try-Once-Discard (WTOD) protocol (Donkers, Heemels, van de Wouw, & Hetel, 2011). First of all, the modelling issues are first discussed to reflect the characteristics of the NCSs. Based on the establishment of the model, the set-membership filtering problems for the NCSs are discussed in detail. Then, the system models are processed according to the scheduling of different communication protocols. This paper first introduces the features of the NCSs. Subsequently, the set-membership filtering problems for the NCSs under communication protocols have been given a particular attention through summarizing recent results in this field. Finally, some conclusions are drawn and some related research directions are pointed out.

The remainder of this paper is organized as follows. The concept of the NCSs is briefly introduced in Section 2. Section 3 reviews the set-membership filtering problems for NCSs and applications. Various kinds of communication protocols are discussed and the corresponding results are summarized in Section 4. The conclusions and future work are given in Section 5. The concrete structure of this paper can be seen in Figure 1.

2. Networked control systems

In the last several years, with the popularity of the Internet and the booming phenomenon of network technology, the utilization of the network in control systems has dramatically increased (Ding, 2011) and (Luo & Chen, 2012). Control loops that are closed connected
by the communication network have become more and more common because the hardware devices for the network and network nodes have become cheaper. A control system communicating with sensors and actuators via a communication network is called an NCS, see Figure 2 for a typical NCS setup and its information flows (Zhang, Branicky, & Phillips, 2001). The traditional communication architecture used in industry is point-to-point, in which a central control computer is connected to each sensor or actuator point by a single line. However, as physical settings and functions continue to expand, point-to-point approaches no longer meet new requirements, such as modularization, decentralized control, integrated diagnostics, easy maintenance and low cost. Hence, the NCS has attracted increasing attention from many researchers because it has a relatively new structure where sensors, controllers and plants are often connected over a shared bandlimited digital communication network (Hespanha, Naghshtabrizi, & Xu, 2007). Using multipurpose shared network to connect spatial distribution elements makes the NCS have some advantages such as flexible architecture, low cost of installation and maintenance and so on. Meanwhile, the NCS is widely used in a broad range of areas like remote surgery (Meng et al., 2004), automated highway systems, unmanned aerial vehicles (Seiler & Sengupta, 2001) and mobile sensor networks (Ogren, Fiorelli, & Leonard, 2004). However, the use of the shared network brings convenience, but also adds new challenges to the research of system performance. Obviously, the tasks in traditional systems, such as the control problem and signal estimation problem should be reconsidered due to the introduction of the network.

As is well known, due to the introduction of the communication network with limited communication capacity, the network-induced phenomena arise inevitably. Such network-induced phenomena include, but are not limited to, signal quantization (Dong, Wang, Ding, & Gao, 2015; Wang, Dong, Shen, & Gao, 2013), missing/fading measurements (Ding, Wang, Lam, & Shen, 2015; Ding, Wang, Shen, & Dong, 2015a,1; Wang, Ding, Dong, & Shu, 2013), communication delays (Hu, Chen, & Du, 2014; Shen, Wang, & Tan, 2017; Wang, Liu, Shen, Alsaadi, & Abdullah, 2017), variable sampling/transmission intervals, sensor saturations and out-of-sequence-measurement updates (Hu, Wang, Chen, & Alsaadi, 2016; Shen et al., 2009). In particular, a class of emerging network-induced phenomenon (randomly occurring incomplete information) has obtained preliminary research interest in the field of signal processing and control. It is noted that network-induced phenomena can greatly deteriorate the performance of the NCSs and can even lead to instability of the control system. Therefore, it is not surprising that the analysis and synthesis of the NCSs in the past decade have attracted considerable interests.

3. Set-membership filtering for networked control systems

It is well known that the filtering plays an important role in signal processing (Anderson & Moore, 1979). The famous Kalman filtering requires the process and measurement noises to be white Gaussian processes (Kalman, 1960). The H_∞ filtering provides an energy gain for the estimation error in the worst case without the need of noise statistical knowledge (Zames, 1981). However, the Kalman filtering may cause poor performance for non-Gaussian noises (Yang, Wang, & Hung, 2002) and the H_∞ filtering
does not specify that the variance of the state estimation error is within an acceptable range (Yang & Hung, 2002). Bearing this in mind, it is natural to regard process noise and measurement noise as unknown but bounded noises belonging to a given set in the appropriate vector space (Morrell & Stirling, 1991; Schwepe, 1968). All possible state estimates can be described in terms of a set of state estimates that match both the received measurements and the constraints on the unknown but bounded noises whose norm is less than the specified scalar, and the real state is included in the set of state estimates. Such an estimation problem is called a set-membership (set-valued) filtering problem.

The set-membership filtering problem was first presented by Witsenhausen (1968) and Schwepe (1968). The set of all possible values for all states which are compatible with output measurements is described by their support functions. Then, the concept of set-membership estimation has been developed rapidly at the end of the 1960s and the beginning of 1970s, see (Bertsekas & Rhodes, 1971; Schwepe, 1968). Compared with other filtering methods, the set-membership filtering approach has two significant advantages: (1) it requires a hard bound constraint rather than the statistical description on the system noises; and (2) it is capable of providing a set of ellipsoidal sets that contain all possible actual states with 100% confidence. In fact, the statistical information of noise is not available due to unpredictable environmental changes and can only give boundedness. In addition, in the engineering practice, it is usually necessary to estimate the upper limit of estimation error accurately and try to be as small as necessary. Therefore, the estimation method derived in the mean square sense may not meet the actual needs at times, and the set-membership filtering method shows its advantages under such circumstances. In the past decades, scholars have done a lot of work which was mainly about computing the set of states that contains a given disturbance and noise. From a technical point of view, such a set can be a convex polyhedron which is usually described as a variety of simple shapes, such as ellipsoids (El. Ghaoui & Calafiore, 2001; Polyak, Nazin, Durieu, & Walter, 2004; Wei, Liu, Song, & Liu, 2015; Wei, Liu, Wang, & Wang, 2016), parallelotopes (Chisci, Garulli, & Zappa, 1996; Vicino & Zappa, 1996) or zonotopes (Alamo, Bravo, & Camacho, 2005; Alamo, Bravo, Redondo, & Camacho, 2008). The specific descriptions of these methods are listed in Table 1. Many systematic methods have been developed to deal with the issue of set-membership filtering including interval analysis method, convex optimization method and so on.

It is worth mentioning that, besides the commonly used ellipsoidal state bounding region, the parallelotopic state bounding region is also an important set-membership performance index. Moreover, many relevant results have been published. For example, a novel approach based on minimum-volume bounding parallelotopes has been introduced in Chisci et al. (1996), where an algorithm of polynomial complexity has been derived. In Bemporad and Garulli (2000), a minimum-volume parallelotopic approximation has been designed for the worst situation compatible with the available information, where the constraint fulfilment is guaranteed and the asymptotic stability properties of the system are preserved. A recursive procedure has been presented in Vicino and Zappa (1996) for providing an approximation of the parameter set of interest through parallelotopes.

3.1. Set-membership filtering for networked control systems

In recent years, the set-membership filtering problem for NCS has attracted considerable research interests and the correlative results have been published. According to the linear system and nonlinear system, we review the results of the set-membership filtering as follows.

3.1.1. Set-membership filtering for a linear system

Due to the low difficulty in the linear system, scholars have done a lot of research on the set-membership filtering problems for linear systems, and many related literatures have been published. In Gollamudi, Nagaraj, Kapoor, and Huang (1998), a new formulation for linear-in-parameter filtering has been introduced, which represents a specified constraint to estimate a set of feasible filter parameters to meet the estimation error, a toolbox of adaptive algorithms for set-membership filtering, called SMART, also has been presented. The set-membership filtering methods have been used to solve the problem for estimating the state of a continuous-time linear system in Bertsekas and Rhodes (1971) and a discrete-time linear system in Poljak, Nazin, Durieu, and Walter (2002), respectively. In El. Ghaoui and Calafiore (2001), the convex optimization method has been employed to deal with the set-membership filtering for a class of norm bounded uncertainty system. In Ra, Jin, and Park (2004) and Savkin and Petersen (1995, 9), a recursive method for

Table 1. Description methods.

Types	Mathematical description
Ellipsoid	$E(c, P) = x : (x - c) \parallel P(x - c) \leq 1$
Parallelootope	$\mathcal{T}(\tau, x) = x, x = x + T \alpha \parallel \| \alpha \|_\infty \leq 1$
Zonotope	$p \in H B^m = p + Hz, z \in B^m$

* $P \geq 0 \quad T = \left[t_1, t_2, \ldots, t_b \right] \in \mathbb{R}^{n \times N}, \quad \hat{x}, c, p \in \mathbb{R}^n$ and $H \in \mathbb{R}^{n \times m}$* ** The vector c and \hat{x} are the centres of the above shapes, respectively. A unitary box in \mathbb{R}^n, denoted as B^m, is a box composed by m unitary intervals.
constructing an ellipsoid state estimation set which is consistent with the measured output and the given noise has been proposed. The set-membership filtering problems have been investigated in Xia, Yang, and Han (2016) and Wei et al. (2015) for a class of discrete time-varying systems with partial information transmission or with incomplete measurements.

3.1.2. Set-membership filtering for nonlinear system
Compared with linear set-membership filtering method, the set-membership filtering method of a nonlinear system is difficult to calculate, mainly due to the complexity of feasible set under nonlinear transformation. It is this complexity that attracts many scholars to study the set-membership filtering for nonlinear systems. Some results also have been reported in the literatures. The set-membership filtering problems have been addressed in Yang and Li (2009b), Ma, Wang, Lam, and Kyriakoulis (2017), Wei et al. (2016), Wu, Wang, and Ye (2013) and Yang and Li (2009a) for a class of nonlinear discrete-time systems with saturation effects or equality constraints in the presence of unknown but bounded process and measurement noises. In Yang and Li (2010), a new nonlinear set-membership filtering estimation method by using the fuzzy modelling approach and the S-procedure technique has been developed to determine a state estimation ellipsoid that is a set of states compatible with the measurements, the modelling approximation errors and the unknown-but-bounded process and measurement noises. The new approaches have been presented to guaranteed state estimation in Alamo et al. (2005) and Alamo et al. (2008) for nonlinear discrete-time systems with a bounded description of noise and parameters, where the sets that contain the states consistent with the measured output and the given noise and parameters are represented by zonotopes.

3.2. Set-membership filtering for applications
As the guaranteed estimation characteristics of set-membership filtering can greatly improve the stability, robustness and reliability of the whole system, it can be widely applied in many control fields, such as robot location and map building, neural network training, fault diagnosis and many other fields. For example, the simultaneous localization and map building (SLAM) problem has been solved in Calafiore (2005), Jaulin (2009) and Marco, Garulli, Lacroix, and Vicino (2001) by a set-membership method. A diagnostic methodology has been presented in Fagalaras, Ploix, and Gentil (2004) relying on a set-membership approach for fault detection and on a causal model for fault isolation. In Yu and de J. Rubio (2009), an ellipsoid propagation algorithm has been proposed to train the weights of recurrent neural networks for nonlinear systems identification.

4. Set-membership filtering under communication protocols

4.1. Communication protocols
The resource constraint problems are often encountered in the design of practical systems. For instant, when detecting hazardous and non accessible environments, the energy used for data collection and transmission is always limited due to the fact that the sensor is battery powered. On the other hand, the network-induced phenomena inevitably emerge due to the communication among the large-scale distributed devices via networks, which may affect the performance of the networked control systems. In order to mitigate the side effects from the network-induced phenomena, one of the most widely used methods in the industry is to introduce some data scheduling strategies that allow only one node to transmit data at each transmission time. The utilization of communication protocols would bring in certain fundamental challenges to the dynamics analysis and synthesis issues. Therefore, it is not surprising that the filtering and control problems for NCs under communication protocols will attract increasing attention by many researchers. In this section, several well-known scheduling protocols are introduced and some recent corresponding results are given.

4.1.1. Round-Robin protocol
The RR protocol is commonly used in token ring networks and it belongs to static scheduling. The rights of the network nodes to access communication networks are assigned according to a fixed circular order and determined by the ‘Access Token’ under the protocol scheduling. Only one network node that holds the token can use the communication network at the current moment. Many scholars have done plenty of researches on the impact of RR protocol on different systems (see Fridman & Liu, 2014; Liu, Fridman, & Hetel, 2012; Liu, Fridman, Hetel, & Richard, 2011; Liu, Fridman, Johansson, & Xia, 2016; Liu, Zhao, & Wu, 2016; Xu, Lu, Shi, Li, & Xie, 2018; Xu, Su, Pan, Wu, & Xu, 2013; Zou, Wang, Gao, & Liu, 2017) and the references therein. Different processing approaches have been proposed to characterize the influence of the scheduling rules of RR protocol on the system. For example, in Donkers et al. (2011) and Donkers, Heemels, Bernardini, Bemporad, and Shneer (2012), the research framework has been proposed based on discrete switching model. The scheduling function of the protocol to the node communication process has been described.
as a function with different switching rules. A research framework has been established for the delay switched systems under RR protocol in Liu et al. (2011) and Liu, Fridman, and Hetel (2012). Compared with the framework based on discrete switching model, this framework could avoid the augment of the state of the original system. In Dacic and Nesic (2007), a research framework based on impulsive switching systems has been established under the framework of continuous system research.

4.1.2. Weighted try-once-discard protocol
Different from the RR protocol, WTOD protocol is a dynamic scheduling protocol. Communication nodes obtain the network access rights through competition under the WTOD protocol and it embodies the ‘on-demand distribution’ idea. The protocol is based on the difference between the last sent data and the present data of a communication node to determine which node needs for data transmission. The node with the greatest weighted error from the last reported value can win the competition for the network resource. The WTOD protocol has been firstly proposed in Walsh, Ye, and Bushnell (2002) and the scheduling principle of the WTOD protocol has been expounded in detail. Since then, the WTOD protocol has been studied by more and more scholars and many important results have been reported in Zou, Wang, Han, and Zhou (2017), Liu, Pan, Xia, Fridman, and Lam (2016), Wakaiki (2017), Walsh and Ye (2001), Zhang, Yu, and Feng (2015), Wang (2015), Niu, Liang, and Yang (2017) and Nesic and Teel (2004). In Zou, Wang, and Gao (2016a), the set-membership filtering problem has been investigated for a class of time-varying systems with mixed time-delays under the WTOD protocol. A time-delay approach has been introduced in Liu et al. (2012) and Liu et al. (2016) for continuous-time networked control system under the WTOD protocol, but the actuator saturation was not taken into account.

4.1.3. Stochastic communication protocol
Stochastic communication protocol is also called as random access protocol and it is an abstract model of protocols which are used in several classes of industrial networks such as the Carrier Sense Multiple Access protocol of the Ethernet, p-persistent CSMA protocol and ALOHA protocol of the wireless LAN. The protocol is characterized by the fact that all nodes can choose at any time whether or not they need access to the network. When the network is idle, the priority access network node can obtain the permissions of accessing the network. When the network is occupied by other nodes, the node which prepares to access the network will detect the conflict and wait for the next access to the network according to the conflict rule. Stochastic communication protocol has become one of the most widely used protocols in local area networks, satellite networks and wireless networks and has been extensively studied by scholars (Guo & Wang, 2015; Liu, Fridman, & Johansson, 2014; Liu, Pan, Liu, & Yia, 2016; Muller, Gherardini, & Caruso, 2017; Rezaee & Abdollahi, 2017; Zhang, Peng, Fei, & Tian, 2017; Zou, Wang, Hu, & Gao, 2017). In Tabbara and Nesic (2007), the stability problem has been first proposed and in Tabbara and Nesic (2008) and Donkers et al. (2012) for networked control systems under stochastic communication protocol scheduling, a detailed analysis framework based on stochastic communication protocol scheduling has been given. The stability has been discussed for the system under two classes of stochastic communication protocol scheduling models in Liu, Fridman, and Johansson (2015). In Zou, Wang, and Gao (2016b), a control problem has been considered for a class of linear time-varying networked control system with stochastic communication protocol where the stochastic communication protocol was applied to determine which sensor (actuator) should be given the access to the network at a certain instant.

4.2. Networked control systems under communication protocols
In networked control systems, due to the limited communication bandwidth, all nodes transmit data at the same time often cause data collisions and network-induced phenomena. In order to avoid these situations, the most common method is to introduce some data scheduling strategies. Many related results have been published in recent years. In Zou, Wang, Gao, et al. (2017), Xu et al. (2018) and Luo, Wang, Wei, Alsaadi, and Hayat (2016), the state estimation problems for a class of nonlinear systems or artificial neural networks have been addressed, respectively, with time-varying delays, fading channels and stochastically corrupted measurements under the RR protocol. The exponential stabilities have been analysed in Xu et al. (2013) and Liu et al. (2012) for networked control systems with packets dropouts or time-varying transmission intervals, time-varying and transmission delays. The robust H_{∞} fault detection problem has been presented in Luo, Wang, Wei, and Alsaadi (2017) for a class of uncertain discrete-time nonlinear 2-D systems subject to RR scheduling protocol, where the Takagi-Sugeno fuzzy model has been used to approximate the nonlinearities. A time-delay approach has been developed in Liu and Fridman (2014) for the stability analysis of discrete-time NCs under the WTOD protocol in the presence of actuator saturation, and a Lyapunov-based method has been presented for finding the domain of attraction under the WTOD protocol. A stochastic communication protocol has been developed.
in Zhang et al. (2017) for the NCSs with non-ideal network conditions, where the protocol has been described by a Markov jump process with a partly unknown transition probability matrix.

4.3. Set-membership filtering under communication protocols

Due to the challenges of coping with the coupling issues between the set-membership filtering and the communication protocols, this issue has attracted initial research interests of scholars and a few literatures have been published in recent years. In Zou et al. (2016a), the set-membership filtering problem has been discussed for time-varying systems with mixed time-delays under RR protocol and WTOD protocol, respectively. The purpose of this paper is to design conditional filters, respectively, which are capable of confining the state estimate of the system to a certain ellipsoidal region subject to the bounded non-Gaussian noises under these two protocols. In Liu, Wei, Song, and Ding (2017), the set-membership state estimation problem has been studied for a class of discrete time-varying nonlinear systems with uniform quantization effects under the Maximum-Error-First (MEF) protocol. A leader-following consensus col has been proposed to provide a set-membership estimation of each follower’s state. Two types of consensus algorithms have been analysed in Garulli and Giannitrapani (2008) in presence of bounded measurement errors and the protocols considered in the literature adopt an updating rule based either on constant or vanishing weights.

It is worthwhile noting that the introduction of network and communication protocols will make the analysis of set-membership filtering problem more complicated, which need to consider both the influence of network on the system and the updating of communication protocol to the system at the same time. Thus, it can be seen that the results of set-membership filtering for networked control systems under communication protocols are rarely reported and it provides guiding references for future research. At the same time, set-membership filtering problem with protocol scheduling is also of great practical significance and can deal with many practical applications associated with the networked systems, such as target tracking, environment monitoring and fault diagnosis. For example, a remote estimator is developed to track the target, which deliberately performs circumvention manoeuvre to try to escape. The acceleration of the target used to circumvent manoeuvring corresponds to the input of the power system. As such, when there is no prior knowledge of the actual evasion mode used for the target, the set-membership filtering method can be ideally used to reasonably assume that the tracker knows the limit of the maximum acceleration. Meanwhile, the measurement data are transmitted to the estimator through the shared network. However, due to the limited bandwidth, it is generally unpractical to access the network channels to transmit all signals. Based on this consideration, the communication protocols are needed to schedule the transmission order of data packets.

5. Conclusion and future work

In this paper, we have reviewed some recent advances in set-membership filtering for NCSs under communication protocols. First of all, a brief introduction for NCS has been given. Subsequently, we have paid particular attention to the set-membership filtering problems for NCSs as well as applications and given the relevant results. Then, several common communication protocols have been described and the results about the set-membership filtering under communication protocols have been reviewed. Finally, we give some related topics for the future research work based on the literature review as follows.

(i) There still exists many more complexes yet important network-induced phenomena which have not been studied in practical engineering. Therefore, the set-membership filtering problems with these new phenomena under communication protocols should be paid much more attention and the mathematical models for these problems have not yet to be established.

(ii) The communication protocol has now become a hot research issue. Nevertheless, due to the challenges of dealing with the coupling issues between the set-membership filtering and the scheduling protocols, the corresponding literature is very scarce. Meanwhile, it is still unclear the quantified relations between the communication protocols and the performance index of the set-membership filtering. Therefore, this aspect deserves further study.

(iii) The problem of set-membership filtering has attracted much attention in recent years. The existing results on set-membership filtering problem for networked control systems can be extended to more general systems such as complex networks, sensor networks (Wang, Hu, & Ma, 2018) and neural networks (Hou, Dong, Wang, Ren & Alsaadi, 2016).
(iv) An additional trend for future research is to discuss the applications of the established set-membership filtering theories and methodologies concerning some practical problems such as target tracking, fault detection and attack detection (Ding, Han, Xiang, Ge, & Zhang, 2018; Ding, Wang, Han, & Wei, 2018).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported in part by the National Natural Science Foundation of China [grant number 61329301], [grant number 61422301], [grant number 61374127], the Northeast Petroleum University Innovation Foundation For Postgraduate YJSCX2017-026NEPU and the Alexander von Humboldt Foundation of Germany.

References

Ahmada, H., & Namerikawa, T. (2013). Extended Kalman filter-based mobile robot localization with intermittent measurements. *Systems Science & Control Engineering: An Open Access Journal, 1*(1), 113–126.

Alamo, T., Bravo, J. M., & Camacho, E. F. (2005). Guaranteed state estimation by zonotopes. *Automatica, 41*(6), 1035–1043.

Alamo, T., Bravo, J. M., Redondo, M. J., & Camacho, E. F. (2008). A set-membership state estimation algorithm based on DC programming. *Automatica, 44*(1), 216–224.

Anderson, B. D. O., & Moore, J. B. (1979). Optimal filtering. Englewood Cliffs, 21, 22–95.

Bahreini, M., & Zarei, J. (2016). Static-output feedback controller design for a class of nonlinear networked control systems with random delay and data packet dropout. *Systems Science & Control Engineering: An Open Access Journal, 4*(1), 192–198.

Bemporad, A., & Garulli, A. (2000). Output-feedback predictive control of constrained linear systems via set-membership state estimation. *International Journal of Control, 73*(8), 655–665.

Bertsekas, D., & Rhodes, I. (1971). Recursive state estimation for a set-membership description of uncertainty. *IEEE Transactions on Automatic Control, 16*(2), 117–128.

Calafiore, G. (2005). Reliable localization using set-valued nonlinear filters. *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 35*(2), 189–197.

Chatterjee, A., Fournier, R., Nait-Ali, A., & Siarry, P. (2010). A postural information-based biometric authentication system employing s-transform, radial basis function network, and extended Kalman filtering. *IEEE Transactions on Instrumentation and Measurement, 59*(12), 3131–3138.

Chisci, L., Garulli, A., & Zappa, G. (1996). Recursive state bounding by parallelotopes. *Automatica, 32*(7), 1049–1055.

Dacic, D. B., & Nesic, D. (2007). Quadratic stabilization of linear networked control systems via simultaneous protocol and controller design. *Automatica, 43*(7), 1145–1155.

Ding, B. (2011). Stabilization of linear systems over networks with bounded packet loss and its use in model predictive control. *Automatica, 47*(11), 2526–2533.

Ding, D., Han, Q., Xiang, Y., Ge, X., & Zhang, X. (2018). A survey on security control and attack detection for industrial cyber-physical systems. *Neurocomputing, 275*, 1674–1683.

Ding, D., Wang, Z., Han, Q., & Wei, G. (2018). Security control for a class of discrete-time stochastic nonlinear systems subject to deception attacks. *IEEE Transactions on Systems, Man and Cybernetics: Systems, 48*(5), 779–789.

Ding, D., Wang, Z., Lam, J., & Shen, B. (2015). Finite-horizon H_{∞} control for discrete time-varying systems with randomly occurring nonlinearities and fading measurements. *IEEE Transactions on Automatic Control, 60*(9), 2488–2493.

Ding, D., Wang, Z., Shen, B., & Dong, H. (2015a). Event-triggered distributed H_{∞} state estimation with packet dropouts through sensor networks. *IET Control Theory & Applications, 9*(13), 1948–1955.

Ding, D., Wang, Z., Shen, B., & Dong, H. (2015b). Envelope-constrained H_{∞} filtering with fading measurements and randomly occurring nonlinearities: The finite horizon case. *Automatica, 55*, 37–45.

Dong, H., Wang, Z., Ding, S. X., & Gao, H. (2014). Finite-horizon estimation of randomly occurring faults for a class of nonlinear time-varying systems. *Automatica, 50*(12), 3182–3189.

Dong, H., Wang, Z., Ding, S. X., & Gao, H. (2015). Finite-horizon reliable control with randomly occurring uncertainties and nonlinearities subject to output quantization. *Automatica, 52*, 355–362.

Dong, H., Wang, Z., Ding, S. X., & Gao, H. (2016). On H_{∞} estimation of randomly occurring faults for a class of nonlinear time-varying systems with fading channels. *IEEE Transactions on Automatic Control, 61*(2), 479–484.

Dong, H., Wang, Z., & Gao, H. (2013). Distributed H_{∞} filtering for a class of Markovian jump nonlinear time-delay systems over lossy sensor networks. *IEEE Transactions on Industrial Electronics, 60*(10), 4665–4672.

Dong, H., Wang, Z., Shen, B., & Ding, D. (2016). Variance-constrained H_{∞} control for a class of nonlinear stochastic discrete time-varying systems: The event-triggered design. *Automatica, 72*, 28–36.

Donkers, M. C. F., Heemels, W. P. M. H., Bernardini, D., Bemporad, A., & Shneer, V. (2012). Stability analysis of stochastic networked control systems. *Automatica, 48*(5), 917–925.

Donkers, M. C. F., Heemels, W. P. M. H., van de Wouw, N., & Hetel, L. (2011). Stability analysis of networked control systems using a switched linear systems approach. *IEEE Transactions on Automatic Control, 56*(9), 2101–2115.

El Ghaoui, L., & Calafiore, G. (2001). Robust filtering for discrete-time systems with bounded noise and parametric uncertainty. *IEEE Transactions on Automatic Control, 46*(7), 1084–1089.

Fagarasian, I., Ploix, S. P., & Gentil, S. (2004). Causal fault detection and isolation based on a set-membership approach. *Automatica, 40*(12), 2099–2110.

Fridman, E., & Liu, K. (2014). Networked control under round-robin protocol: Multiple sensors and non-small communication delays. 2014 IEEE 53rd annual conference on decision and control (CDC) (pp. 6062–6067). Los Angeles, California, USA.
Gao, H., Lam, J., Xie, L., & Wang, C. (2005). New approach to mixed H_2/H_{∞} filtering for polytopic discrete-time systems. *IEEE Transactions on Signal Processing*, 53(8), 3183–3192.

Garulli, A., & Giannitrapani, A. (2008). A set-membership approach to consensus problems with bounded measurement errors. 2008 IEEE 47th conference on decision and control (CDC) (pp. 2276–2281). Cancun, Mexico.

Ge, X., Han, Q. L., & Yang, F. (2017). Event-based set-membership leader-following consensus of networked multi-agent systems subject to limited communication resources and unknown but bounded noise. *IEEE Transactions on Industrial Electronics*, 64(6), 5045–5054.

Gholami, H., & Binazadeh, T. (2018). Design finite-time output feedback controller for nonlinear discrete-time systems with time-delay and exogenous disturbances. *Systems Science & Control Engineering: An Open Access Journal*, 6(1), 20–27.

Gollamudi, S., Nagaraj, S., Kapoor, S., & Huang, Y. (1998). Set-membership filtering and a set-membership normalized LMS algorithm with an adaptive step size. *IEEE Signal Processing Letters*, 5(5), 111–114.

Guo, G., & Wang, L. (2015). Control over medium-constrained vehicular networks with fading channels and random access protocol: A networked systems approach. *IEEE Transactions on Vehicular Technology*, 64(8), 3347–3358.

Hassani, H., & Zarei, J. (2016). Robust unknown input observer design for uncertain interval type-2 T-S fuzzy systems subject to time-varying delays. *Systems Science & Control Engineering: An Open Access Journal*, 4(1), 247–258.

Hespanha, J. P., Naghshtabrizi, P., & Xu, Y. (2007). A survey of recent results in networked control systems. *Proceedings of the IEEE*, 95(1), 138–162.

Hou, N., Dong, H., Wang, Z., Ren, W., & Alsaadi, F. E. (2016). Non-fragile state estimation for discrete Markovian jumping neural networks. *Neurocomputing*, 179, 238–245.

Hu, J., Chen, D., & Du, J. (2014). State estimation for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed sensor delays. *International Journal of General Systems*, 43(3–4), 387–401.

Hu, J., Wang, Z., Chen, D., & Alsaadi, F. E. (2016). Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects. *Information Fusion*, 31, 65–75.

Hu, J., Wang, Z., Gao, H., & Stergioulas, L. K. (2012). Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements. *Automatica*, 48(9), 2007–2015.

Jaulin, L. (2009). A nonlinear set-membership approach for the localization and map building of underwater robots. *IEEE Transactions on Robotics*, 25(1), 88–98.

Kalmn, R. E. (1960). A new approach to linear filtering and prediction problems. *Journal of Basic Engineering*, 82(1), 35–45.

Kluge, S., Reif, K., & Brokate, M. (2010). Stochastic stability of the extended Kalman filter with intermittent observations. *IEEE Transactions on Automatic Control*, 55(2), 514–518.

Krtolica, R., Ozguner, U., Chan, H., & Goktas, H. (1994). Stability of linear feedback systems with random communication delays. *International Journal of Control*, 59(4), 925–953.

Li, R., & Bao, J. (2017). Robust simultaneous H_{∞} control for singular systems with time delay. *Control Engineering of China*, 3, 31.

Li, J., Dong, H., Han, F., Hou, N., & Li, X. (2017). Filter design, fault estimation and reliable control for networked time-varying systems: A survey. *Systems Science & Control Engineering: An Open Access Journal*, 5(1), 331–341.

Li, D., Kar, S., Alsaadi, F. E., Dobaie, A. M., & Cui, S. (2015). Distributed Kalman filtering with quantized sensing state. *IEEE Transactions on Signal Processing*, 63(19), 5180–5193.

Liu, K., & Fridman, E. (2014). Discrete-time network-based control under try-once-discard protocol and actuator constraints. 2014 European control conference (ECC) (pp. 442–447). Strasbourg, France.

Liu, K., Fridman, E., & Hetel, L. (2012). Network-based control via a novel analysis of hybrid systems with time-varying delays. *Proceedings of the 51th IEEE conference on decision and control* (pp. 3886–3891). Hawaii, USA.

Liu, K., Fridman, E., & Hetel, L. (2012). Stability and L_2-gain analysis of networked control systems under round-robin scheduling: A time-delay approach. *Systems & Control Letters*, 61(5), 666–675.

Liu, K., Fridman, E., Hetel, L., & Richard, J. P. (2011). Sampled-data stabilization via round-robin scheduling: A direct Lyapunov-Krasovskii approach. *IFAC Proceedings Volumes*, 44(1), 1459–1464.

Liu, K., Fridman, E., & Johansson, K. H. (2014). Networked control with a stochastic scheduling: A time-delay approach. *IFAC Proceedings Volumes*, 47(3), 6484–6489.

Liu, K., Fridman, E., & Johansson, K. H. (2015). Networked control with stochastic scheduling. *IEEE Transactions on Automatic Control*, 60(11), 3071–3076.

Liu, K., Fridman, E., Johansson, K. H., & Xia, Y. (2016). Quantized control under round-robin communication protocol. *IEEE Transactions on Industrial Electronics*, 63(7), 4461–4471.

Liu, M., Liu, X., Shi, Y., & Wang, S. (2014). T-S fuzzy-model-based H_2 and H_{∞} filtering for networked control systems with two-channel Markovian random delays. *Digital Signal Processing*, 27, 167–174.

Liu, K., Pan, X., Liu, Y., & Yia, X. (2016). Discrete-time networked control systems under stochastic scheduling constraints. 2016 35th Chinese control conference (CCC) (pp. 7369–7374). Chengdu, China.

Liu, K., Pan, X., Xia, Y., Fridman, E., & Lam, J. (2016). Networked control under communication constraints: The discrete-time case. 2016 IEEE 55th conference on decision and control (CDC) (pp. 991–996). Las Vegas, NV, USA.

Liu, S., Wei, G., Song, Y., & Ding, D. (2017). Set-membership state estimation subject to uniform quantization effects and communication constraints. *Journal of the Franklin Institute*, 354(15), 7012–7027.

Liu, Y., Zhao, Y., & Wu, F. (2016). Ellipsoidal state-bounding-based set-membership estimation for linear system with unknown but bounded disturbances. *IET Control Theory & Applications*, 10(4), 431–442.

Luo, R. C., & Chen, O. (2012). Mobile sensor node deployment and asynchronous power management for wireless sensor networks. *IEEE Transactions on Industrial Electronics*, 59(5), 2377–2385.

Luo, Y., Wang, Z., Wei, G., Alsaadi, F. E., & Hayat, T. (2016). State estimation for a class of artificial neural networks with stochastically corrupted measurements under round-robin protocol. *Neural Networks*, 77, 70–79.

Luo, Y., Wang, Z., Wei, G., & Alsaadi, F. E. (2017). H_{∞} fuzzy fault detection for uncertain 2-D systems under round-robin scheduling protocol. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 47(8), 2172–2184.
Ma, L., Wang, Z., Lam, H. K., & Kyriakou, N. (2017). Distributed event-based set-membership filtering for a class of nonlinear systems with sensor saturations over sensor networks. *IEEE Transactions on Cybernetics*, 47(11), 1–12.

Marco, M. D., Garulli, A., Lacroix, S., & Vicino, A. (2001). Set-membership localization and mapping for autonomous navigation. *International Journal of Robust and Nonlinear Control*, 11(7), 709–734.

Meng, C., Wang, T., Chou, W., Luan, S., Zhang, Y., & Tian, Z. (2004). Remote surgery case: Robot-assisted tele-neurosurgery: Robotics and automation, Proceedings. 2004 IEEE international conference on ICRA’04 (Vol. 1, pp. 819–823). New Orleans, LA, USA.

Morrell, D. R., & Stirling, W. C. (1991). Set-values filtering and smoothing. *IEEE Transactions on Systems, Man, and Cybernetics*, 21(1), 184–193.

Muller, M. M., Gherardini, S., & Caruso, F. (2017). Quantum zeno dynamics through stochastic protocols. *Annalen der Physik*, 529(9), 1600206.

Nesic, D., & Teel, A. R. (2004). Input-output stability properties of networked control systems. *IEEE Transactions on Automatic Control*, 49(10), 1650–1667.

Niu, Y., Liang, Y., & Yang, H. (2017). Event-triggered robust control and dynamic scheduling co-design for networked control system. 2017 14th International bhurban conference on applied sciences and technology (IBCAST) (pp. 237–243). Islamabad, Pakistan.

Ogren, P., Fiorelli, E., & Leonard, N. E. (2004). Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment. *IEEE Transactions on Automatic Control*, 49(8), 1292–1302.

Polyak, B. T., Nazin, S. A., Durieu, C., & Walter, E. (2002). Ellipsoidal estimation under model uncertainty. *IFAC Proceedings Volumes*, 35(1), 25–30.

Polyak, B. T., Nazin, S. A., Durieu, C., & Walter, E. (2004). Ellipsoidal parameter or state estimation under model uncertainty. *Automatica*, 40(7), 1171–1179.

Ra, W. S., Jin, S. H., & Park, J. B. (2004). Set-valorized estimation approach to recursive robust H_{∞} filtering. *IEEE Proceedings-Control Theory and Applications*, 151(6), 773–782.

Rezaee, H., & Abdollahi, F. (2017). Discrete-time consensus strategy for a class of high-order linear multiagent systems under stochastic communication topologies. *Journal of the Franklin Institute*, 354(9), 3690–3705.

Safarinejadian, B., & Yousefi, M. (2015). Static alignment of inertial navigation systems using an adaptive multiple fading factors Kalman filter. *Systems Science & Control Engineering*, 3(1), 351–359.

Sahebsara, M., Chen, T., & Shah, S. L. (2007). Optimal H_2 filtering in networked control systems with multiple packet dropout. *IEEE Transactions on Automatic Control*, 52(8), 1508–1513.

Savkin, A. V., & Petersen, I. R. (1995). Recursive state estimation for uncertain systems with an integral quadratic constraint. *IEEE Transactions on Automatic Control*, 40(6), 1080–1083.

Savkin, A. V., & Petersen, I. R. (1998). Robust state estimation and model validation for discrete-time uncertain systems with a deterministic description of noise and uncertainty. *Automatica*, 34(2), 271–274.

Schwepe, F. (1968). Recursive state estimation: Unknown but bounded errors and system inputs. *IEEE Transactions on Automatic Control*, 13(1), 22–28.

Seller, P., & Sengupta, R. (2001). Analysis of communication losses in vehicle control problems. Proceedings of the 2001 american control conference (Vol. 2, pp. 1491–1496). Arlington, VA.

Shen, X., Song, E., Zhu, Y., & Luo, Y. (2009). Globally optimal distributed Kalman fusion with local out-of-sequence-measurement updates. *IEEE Transactions on Automatic Control*, 54(8), 1928–1934.

Shen, B., Wang, Z., Hung, Y. S., & Chesi, G. (2011). Distributed H_{∞} filtering for polynomial nonlinear stochastic systems in sensor networks. *IEEE Transactions on Industrial Electronics*, 58(5), 1971–1979.

Shen, B., Wang, Z., & Tan, H. (2017). Guaranteed cost control for uncertain nonlinear systems with mixed time-delays: The discrete-time case. *European Journal of Control*, 40, 62–67.

Tabbara, M., & Nesic, D. (2007). Stability of networked control systems with stochastic protocols. 2007 ACC’07 American control conference (pp. 1717–1722). Seattle, WA.

Tabbara, M., & Nesic, D. (2008). Input-output stability of networked control systems with stochastic protocols and channels. *IEEE Transactions on Automatic Control*, 53(5), 1160–1175.

Ugrinovskii, V., & Fridman, E. (2014). A round-robins type protocol for distributed estimation with H_{∞} consensus. *Systems & Control Letters*, 69, 103–110.

Vicino, A., & Zappa, G. (1996). Sequential approximation of feasible parameter sets for identification with set membership uncertainty. *IEEE Transactions on Automatic Control*, 41(6), 774–785.

Wakaiki, M. (2017). Stability analysis of adaptive control systems with event-triggered try-once-discard protocol. *arXiv preprint arXiv:1705.05995*.

Walsh, G. C., & Ye, H. (2001). Scheduling of networked control systems. *IEEE Control Systems*, 21(1), 57–65.

Walsh, G. C., Ye, H., & Bushnell, L. G. (2002). Stability analysis of networked control systems. *IEEE Transactions on Control Systems Technology*, 10(3), 438–446.

Wang, J. (2015). A brief survey on networked control systems. 2015 IEEE international conference on mechatronics and automation (ICMA) (pp. 212–216). Beijing, China.

Wang, Z., Ding, D., Dong, H., & Shu, H. (2013). H_{∞} consensus control for multi-agent systems with stochastic protocols: The finite-horizon case. *Systems & Control Letters*, 62(10), 827–836.

Wang, Z., Dong, H., Shen, B., & Gao, H. (2013). Finite-horizon H_{∞} filtering with missing measurements and quantization effects. *IEEE Transactions on Automatic Control*, 58(7), 1707–1718.

Wang, Z., Hu, J., & Ma, L. (2018). Event-based distributed information fusion over sensor networks. *Information Fusion*, 39, 53–55.

Wang, Z., Liu, H., Shen, B., Alsaeedi, F. E., & Abdullah, M. D. (2017). H_{∞} state estimation for discrete-time stochastic memristive BAM neural networks with mixed time-delays. *International Journal of Machine Learning and Cybernetics*, 1–15.

Wei, G., Liu, S., Song, Y., & Liu, Y. (2015). Probability-guaranteed set-membership filtering for systems with incomplete measurements. *Automatica*, 60, 12–16.

Wei, G., Liu, S., Wang, L., & Wang, Y. (2016). Event-based distributed set-membership filtering for a class of time-varying nonlinear systems over sensor networks with saturation effects. *International Journal of General Systems*, 45(5), 532–547.
Witsenhausen, H. (1968). Sets of possible states of linear systems given perturbed observations. *IEEE Transactions on Automatic Control, 13*(5), 556–558.

Wu, H., Wang, W., & Ye, H. (2013). Model reduction based set-membership filtering with linear state equality constraints. *IEEE Transactions on Aerospace and Electronic Systems, 49*(2), 1391–1399.

Xia, N., Yang, F., & Han, Q. L. (2016). Distributed event-triggered networked set-membership filtering with partial information transmission. *IET Control Theory & Applications, 11*(2), 155–163.

Xu, Y., Lu, R., Shi, P., Li, H., & Xie, S. (2018). Finite-time distributed state estimation over sensor networks with round-robin protocol and fading channels. *IEEE Transactions on Cybernetics, 48*(1), 336–345.

Xu, Y., Su, H., Pan, Y., Wu, Z., & Xu, W. (2013). Stability analysis of networked control systems with round-robin scheduling and packet dropouts. *Journal of The Franklin Institute, 350*(8), 2013–2027.

Yang, F., Dong, H., Wang, Z., Ren, W., & Alsaadi, F. E. (2016). A new approach to non-fragile state estimation for continuous neural networks with time-delays. *Neurocomputing, 197*, 205–211.

Yang, F., & Hung, Y. S. (2002). Robust mixed H_2/H_∞ filtering with regional pole assignment for uncertain discrete-time systems. *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49*(8), 1236–1241.

Yang, F., & Li, Y. (2009a). Set-membership filtering for discrete-time systems with nonlinear equality constraints. *IEEE Transactions on Automatic Control, 54*(10), 2480–2486.

Yang, F., & Li, Y. (2009b). Set-membership filtering for systems with sensor saturation. *Automatica, 45*(8), 1896–1902.

Yang, F., & Li, Y. (2010). Set-membership fuzzy filtering for nonlinear discrete-time systems. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40*(1), 116–124.

Yang, F., Wang, Z., & Hung, Y. S. (2002). Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises. *IEEE Transactions on Automatic Control, 47*(7), 1179–1183.

Yu, W., & de J. Rubio, J. (2009). Recurrent neural networks training with stable bounding ellipsoid algorithm. *IEEE Transactions on Neural Networks, 20*(6), 983–991.

Yu, Y., Dong, H., Wang, Z., Ren, W., & Alsaadi, F. E. (2016). Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties. *Neurocomputing, 182*, 18–24.

Zames, G. (1981). Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. *IEEE Transactions on Automatic Control, 26*(2), 301–320.

Zhang, W., Branicky, M. S., & Phillips, S. M. (2001). Stability of networked control systems. *IEEE Control Systems, 21*(1), 84–99.

Zhang, J., Peng, C., Fei, M. R., & Tian, Y. C. (2017). Output feedback control of networked systems with a stochastic communication protocol. *Journal of the Franklin Institute, 354*(9), 3838–3853.

Zhang, W. A., Yu, L., & Feng, G. (2015). Stabilization of linear discrete-time networked control systems via protocol and controller co-design. *International Journal of Robust and Nonlinear Control, 25*(16), 3072–3085.

Zhivoglyadov, P. V., & Middleton, R. H. (2003). Networked control design for linear systems. *Automatica, 39*(4), 743–750.

Zou, L., Wang, Z., & Gao, H. (2016a). Set-membership filtering for time-varying systems with mixed time-delays under round-robin and weighted try-once-discard protocols. *Automatica, 74*, 341–348.

Zou, L., Wang, Z., & Gao, H. (2016b). Observer-based H_∞ control of networked systems with stochastic communication protocol: The finite-horizon case. *Automatica, 63*, 366–373.

Zou, L., Wang, Z., Gao, H., & Liu, X. (2017). State estimation for discrete-time dynamical networks with time-varying delays and stochastic disturbances under the round-robin protocol. *IEEE Transactions on Neural Networks and Learning Systems, 28*(5), 1139–1151.

Zou, L., Wang, Z., Han, Q. L., & Zhou, D. (2017). Ultimate boundedness control for networked systems with try-once-discard protocol and uniform quantization effects. *IEEE Transactions on Automatic Control, 62*(12), 6582–6588.

Zou, L., Wang, Z., Hu, J., & Gao, H. (2017). On H_∞ finite-horizon filtering under stochastic protocol: Dealing with high-rate communication networks. *IEEE Transactions on Automatic Control, 62*(9), 4884–4890.