ABSTRACT

The effect of caraway (CEO) and anise (AEO) essential oils as well as vacuum packaging (VP) in extending the shelf life of fresh chicken breast meat stored at 4 °C was investigated. CEO and AEO were used at concentrations 0.2% v/w with and without VP. Microbiological properties of chicken breast meat were monitored over a 16 day period. The microbiological parameters as the anaerobic plate count (AC), Enterobacteraceae, lactic acid bacteria and Pseudomonas spp. counts were detected. The anaerobic plate counts ranged from 2.77 log CFU.g⁻¹ in all tested group on 0 day to 5.45 log CFU.g⁻¹ on 16 day in control group stored in air condition. The number of lactic acid bacteria ranged from 3.20 log CFU.g⁻¹ in all tested group on 0 day to 4.75 log CFU.g⁻¹ on 16 day in control group stored in air condition. Enterobacteriaceae counts ranged from 0.00 to 4.25 log CFU.g⁻¹ on 16 day in control group stored in air condition. The number of Pseudomonas spp. ranged from 0.00 log CFU.g⁻¹ in all tested group on 0 day to 2.65 log CFU.g⁻¹ on 16 day in control group stored in air condition. Statistically significant differences (p ≤0.001) were found among tested group in all tested microorganisms. Among the antimicrobial combination treatments were examined in the study, the as application of vacuum packaging, EDTA, and essential oils were the most effective against the growth of lactic acid bacteria and Enterobacteriaceae and to a less extent on anaerobic plate count. The results of this present study suggest the possibility of using the essential oil of caraway and anise as natural food preservatives and potential source of antimicrobial ingredients for chicken breast meat.

Keywords: bacteria; caraway and anise essential oils; vacuum; EDTA; chicken breast

INTRODUCTION

Special attention in poultry meat production is paid to the fact that live animals are hosts of a large number of different microorganisms residing on their skin, feathers or in the alimentary tract. Majority of these microorganisms are eliminated during the slaughter, but subsequent contamination is possible at any stage of the production process. Contamination may occur from feather plucking and evisceration equipment, washing prior to storage as cooling, or during the freezing. Microorganisms from the environment, equipment and operators’ hands can contaminate meat. During the slaughter, the changes in composition of microflora occur from, in general, Gram-positive rods and micrococi to, most frequently, Gram-negative bacteria, including Enterobacteriaceae, Pseudomonas spp. Industrial poultry slaughterhouses have a particular technological process, the individual stages of which are not in conformity with modern principles of hygienic meat production and processing so there are various possibilities for contamination of chicken meat (Kozačiński et al., 2006). Poultry meat is a highly perishable food commodity providing an almost perfect medium for microbial growth including both spoilage and pathogenic microorganisms (Jay et al., 2005) therefore the microbial contamination during the poultry meat processing is very crucial.

Meat production is one of the major activities in Europe. The main type of meat produced is pork (48.7%) followed by poultry (23.6%) and bovine (23.3%). Meat and meat products present an ideal substrate supporting the growth of several spoilage and pathogenic bacteria. Moreover, meat and poultry products have frequently been found to be contaminated with pathogens (Mor-Mur and Yuste, 2010). The pathogens ability to grow at refrigerator temperatures helps the organism to evolve from a low initial to an infective dose level during the storage of refrigerated foods, including those originally harbouring the pathogen and those, post-heat treatment, contaminated (Ray, 2001).

It is well known that packaging makes food more convenient and gives the food greater safety assurance from microorganisms, biological and chemical changes so that the packaged foods may have a longer shelf life. As a result, packaging has become an indispensable element in the food manufacturing process. In order to meet the huge demand of the food industry, there has been a remarkable growth in the development of food packaging in the past decades (Tsagarida and Nychas, 2001).
Aromatic plants and herbal products have been used worldwide as natural additives for medicinal purposes because they have been accepted by consumers. Various biological active compounds sharing antioxidative, anticoccidial, immunostimulating or antimicrobial properties have been identified in these plants (Ivanišová et al., 2013; Ivanišová et al., 2015 a,b).

Carum carvi, which is also known as caraway, is one of the oldest spices cultivated in Europe. Nowadays, it is cultivated from northern temperate to tropical climates, including countries such as Jamaica, India, Canada, the United States of America and Australia. In India, this spice is known as *Kashmiri jeera*. The dried ripe fruits (schizocarp) of *C. carvi* L. family *Apiaceae* (*Umbelliferae*) are extensively used being used in folk medicine as a carminative, found to be effective against spasmodic gastrointestinal complaints, irritable stomach, indigestion, lack of appetite and dyspepsia in adults, and in relieving flatulent colic of infants. The volatile oils from *C. carvi* have also been used as an anti ulcerogenic, antitumor, antiproliferative and antihyperglycemic agent. The seeds of *C. carvi* have been used in alternative medicine as a laxative, in colic treatment, and as a mouth freshener (Thiippinesamy et al., 2013).

Anise (*Pimpinella anisum* L.) a member of the *Apiaceae* family, is an annual aromatic plant, native to Iran, India, Turkey and many other warm region in the world. Anise seed possesses eugenol trans-anethole, methylchavicol, anisaldehyde, estragole, coumarins, scopoletin, umbelliferone, estrols, terpene hydrocarbons, polyenes, and polycytylenes. Most of the plant parts such as fruits, seeds, and essential oil contain compounds with proven parasiticidal properties and digestion stimulating, antifungal and antimycotic, antioxidant, antimicrobial, anthelmintic and hypcholesterolemic properties (Yazdi et al., 2014).

The present study was undertaken to determine the effect of vacuum packaging combined with caraway or anise essential oil treatment on microbiological properties of chicken breast meat stored at 4 °C.

MATERIAL AND METHODOLOGY

Preparation of samples

Chicken breast samples (totally 30) for microbiological analysis were used in this study. To evaluate the antimicrobial activity of essential oils the chicken breast with skin of each experimental group was taken. The chicken breast fresh samples were prepared as follow: for air-packaging (AC, control samples) chicken breast fresh meat was packaged to polyethylene bags and stored aerobically at 4 °C; for vacuum-packaged (VC, control samples) chicken breast fresh meat was packaged to polyethylene bags and stored anaerobically in vacuum at 4 °C; for vacuum-packed samples with EDTA solution 1.5% w/w (VPEC, control samples) chicken breast fresh meat was treated with EDTA for 1 min and packaged to polyethylene bags and stored anaerobically in vacuum at 4 °C; for vacuum-packed samples with *Carum carvi* 0.20% v/w (VP+CEO) chicken breast fresh meat was treated with caraway oil for 1 min and packaged to polyethylene bags and stored anaerobically in vacuum at 4 °C; for vacuum-packed samples with *Pimpinella anisum* L. 0.20% v/w, (VP+AE0) chicken breast fresh meat was treated with anise oil for 1 min and packaged to polyethylene bags and stored anaerobically in vacuum at 4 °C. For sample packaging a vacuum packing machine type VB-6 (RM Gastro, Czech Republic) was used and each sample was packed immediately after treatment. EDTA solution (pH 8.0, 99.5% purity, analytical grade, Invitrogen, USA) was prepared at final concentration of 50 mM Caraway and anise essential oils (Calendula, Nová Lúbovňa, Slovakia) was added to coat chicken breast surface (both sides) of each sample using a micropipette.

Microbiological analysis

An amount of 10 g (10 cm²) of the chicken breast was sampled using sterile scalpels and forceps, immediately transferred into a sterile stomacher bag, containing 90 mL of 0.1% peptone water (pH 7.0), and homogenized for 60 s in a stomacher at room temperature. Sampling was carried out on 0, 4, 8, 12 and 16 days of experiment. Microbiological analyses were conducted by using standard microbiological methods. Anaerobic plate count (AC) was determined using Plate Count Agar (PCA, Oxoid, UK) after incubation for 48 h at 35 °C under anaerobically condition. For *Pseudomonas* spp., 0.1 mL from serial dilutions of chicken homogenates was spread onto the surface of *Pseudomonas* Isolation agar (PIA, Oxoid, UK). *Pseudomonas* spp, enumerated after incubation for 48 h at 25 °C. For lactic acid bacteria, Rogosa and Sharpe agar (MRS, Oxoid, UK) was inoculated with a 1.0 mL of sample suspension. Inoculated plates were incubated for 48-78 h at 37 °C in an aerobic atmosphere supplemented with carbon dioxide (5% CO₂). For *Enterobacteriaceae*, a 1.0 mL of sample was transferred into 10 mL of molten (45 °C) Violet Red Bile Glucose agar (VRBL, Oxoid, UK). Inoculated plates were incubated at 37 °C for 24 h. All plates were examined for typical colony types and morphology characteristics associated with each medium applied for incubation. Enumeration of all tested groups of bacteria was performed in triplicate.

Figures were created Microsoft® EXCEL 2013. Data for the mean from each replication was calculated and all data were log transformed. Statistical analysis was done with STATGRAPHICS 5 software (UMEX GmbH Dresden, Germany). Confectionary Student’s Tukey HSD test was calculated for differences in numbers of bacteria and samples were accepted as significantly different at p ≤0.001.

RESULTS AND DISCUSSION

Food contamination by microorganisms and their development and, hence, the food decontamination possibilities represent a serious problem. Chemical agents to prevent microbial growth and various additives that are used in food industries are considered to be potentially harmful to human health. In seeking of possible alternatives, the antimicrobial compounds of natural origin sharing antibacterial activities originated from plants currently are studied intensively worldwide.

Spices are aromatic plants that are widely used in the food industry and culinary food preparation for flavouring. However, their essential oils and extracts can contribute to control of the growth of harmful microorganisms. It is
necessary the spice to be effective enough to ensure that the product is safe and also have acceptable sensory characteristics (Dimić et al., 2012). The primary objective of chilling poultry safety assurance is to reduce microbial growth to a level that will improve both food safety and shelf life (Popelka et al., 2014). The anaerobic plate count ranged from 2.77 log CFU·g⁻¹ in all tested group on 0 day to 5.45 log CFU·g⁻¹ on 16 day in control group stored in air condition. In control group stored vacuum packaged AC ranged from 2.77 log CFU·g⁻¹ on 0 day to 5.25 log CFU·g⁻¹ on 16 day. In control group stored vacuum packaged after EDTA treatment, AC ranged from 2.77 log CFU·g⁻¹ on 0 day to 5.21 log CFU·g⁻¹ on 16 day. After treatment with caraway essential oil, AC ranged from 2.77 log CFU·g⁻¹ on 0 day to 4.20 log CFU·g⁻¹ on 16 day and after treatment with anise essential oil ranged from 2.77 log CFU·g⁻¹ on 0 day to 4.15 log CFU·g⁻¹ on 16 day. Statistically significant differences (p ≤0.001) of anaerobic plate count were found among all tested group at all tested days except AC and VP+CEO, VC and VP+AEO, VP+CEO and VP+AEO on 4th day; VC and VPEC on 8th and 16th day; VP+CEO and VP+AEO on 16th day. Anaerobic plate count (AC) values for the tested groups of chicken breast are showed in Figure 1.

Many herbs and spices have been recognized for their preservative or medicinal properties for millennia. Essential oils present in plant matter have been attributed as principal sources of compounds exhibiting antimicrobial activity, which has been illustrated against bacteria and fungi. The understanding of antimicrobial mechanisms of action of EO has led to increased interest to the specific compounds responsible for this activity, specifically those phenolic in nature (Davidson et al., 2013).

The initial LAB value of chicken breast was 3.20 log CFU·g⁻¹ on 0 day. In AC samples the LAB counts ranged from 3.20 log CFU·g⁻¹ to 4.75 log CFU·g⁻¹ on 16 day. In control group VC samples LAB count ranged from 3.20 log CFU·g⁻¹ on 0 day to 4.52 log CFU·g⁻¹ on 16 day. In VPEC samples LAB ranged from 3.20 log CFU·g⁻¹ on 0 day to 4.38 log CFU·g⁻¹ on 16 day. In VP+CEO samples the counts of LAC ranged from 3.20 log CFU·g⁻¹ on 0 day to 3.05 log CFU·g⁻¹ on 16 day and in VP+AEO ranged from 3.20 log CFU·g⁻¹ on 0 day to 3.00 log CFU·g⁻¹ on 16 day. Lactic acid bacteria (LAB) values for the tested groups of chicken breast are showed in Figure 2. Statistically significant differences (p ≤0.001) of lactic acid bacteria numbers were found among all tested group at all tested days except VP+CEO and VP+AEO on 16th day.

Lactic acid bacteria are found to be more resistant to the cytotoxic effects of essential oils. Rodriguez et al., (2009) suggest that a fact that LAB are present and grow on phenol containing plants, and therefore have adapted in order to successfully colonize such antagonistic substrates like one of the reason of LAB resistance to phenolics is because. Degradation capabilities of phenolic compounds by LAB have also been described, although the number of studies is still limited.

The use of spices and spice blends in many food products that already contain high levels of similar seasonings has also been examined. Ideally, reengineering of food formulations that contain high levels of spices such as oregano or thyme seasonings could take advantage of the already present sources of essential oils. Unfortunately, some work has shown that spices stimulate the growth and acid production of LAB (Shelef, 1983).

![Figure 1](image-url) Changes (log CFU·g⁻¹) in population of anaerobic plate count in chicken breast stored in air (AC); stored in vacuum (VC); stored vacuum packaged with EDTA (VPEC); stored under vacuum packaged with Carum carvi 0.20% v/w (VP+CEO); stored vacuum packaged with Pimpinella anisum L. 0.20% v/w (VP+AEO).
The chemical composition and physical characteristics of meat make it a suitable environment for bacterial growth, which includes bacteria such as LAB, *Pseudomonas*, and foodborne pathogens. LAB spoilage in meats is a relevant problem as they are facultative anaerobes that can grow and continue to spoil foods under chilled conditions (Fratianni et al., 2010; Pyrgotou et al., 2010).

Fratianni et al. (2010) treated fresh strips of chicken breast meat with an agar slurry solution containing 0.5% thyme and balm essential oils for 15 min. Samples were stored for 21 days at 4 °C. Thyme was incredibly effective to control the LAB growth for the period of 16 days; 21-day counts were only 0.8×10^3 CFU.mL$^{-1}$, which was consistent throughout the entire 3 weeks of experiment. The antibacterial effect of balm oil was much less evident until the day 21, with balm oil closely matching the untreated control until that point. *Salmonella* on the treated chicken was very sensitive to balm oil, while thyme oil very effectively reduced the growth of *E. coli*.

Figure 2 Changes (log CFU.g$^{-1}$) of lactic acid bacteria in chicken breast stored in air (AC); stored in vacuum (VC); stored vacuum packaged with EDTA (VPEC); stored vacuum packaged with *Carvum carvi* 0.20% v/w (VP+CEO); stored vacuum packaged with *Pimpinella anisum* L. 0.20% v/w (VP+AEO).

Figure 3 Changes (log CFU.g$^{-1}$) in Enterobacteriaceae counts in chicken breast stored in air (AC); stored in vacuum (VC); stored vacuum packaged with EDTA (VPEC); stored vacuum packaged with *Carvum carvi* 0.20% v/w (VP+CEO); stored vacuum packaged with *Pimpinella anisum* L. 0.20% v/w (VP+AEO).
Enterobacteriaceae counts ranged from 0.0 log CFU.g⁻¹ in all tested group on 0 day to 4.25 log CFU.g⁻¹ on 16 day in AC group. In VP group Enterobacteriaceae counts ranged from 0.00 log CFU.g⁻¹ on 0 day to 3.78 log CFU.g⁻¹ on 16 day. In VPEC group Enterobacteriaceae counts ranged from 0.00 log CFU.g⁻¹ on 0 day to 2.45 log CFU.g⁻¹ on 16 day. In the group with caraway essential oil treatment Enterobacteriaceae counts ranged from 0.00 log CFU.g⁻¹ on 0 day to 2.35 log CFU.g⁻¹ on 16 day and in group treated with anise essential oil from 0.00 log CFU.g⁻¹ on 0 day to 2.22 log CFU.g⁻¹ on 16 day. Statistically significant differences (p ≤0.001) of Enterobacteriaceae genera number were found among all tested group at all tested days except VPEC and VP+CEO, VPEC and VP+CEO, VP+CEO and VP+AEO on 4th day; AC and VC, VPEC and VP+CEO, VPEC and VP+CEO, VP+CEO and VP+AEO on 8th; VPEC and VP+CEO on 12th day. Enterobacteriaceae genera values for the tested groups of chicken breast are showed in Figure 3.

Generally, the Gram-positive bacteria were more sensitive to essential oils or antibacterial compounds than Gram-negative bacteria, which is in agreement with previous reports (Dorman and Deans, 2000; Burt, 2004; Shan et al., 2007). This resistance could be ascribed to the cellular walls of Gram-negative bacteria, mainly with regard to the presence of lipopolysaccharides that form a barrier to restrict entry of hydrophobic compounds (Cox and Markham, 2007). Pseudomonas spp. counts ranged from 0.00 log CFU.g⁻¹ in all tested group on 0 day to 2.65 log CFU.g⁻¹ on 16 day in AC group. In VC group Pseudomonas spp. ranged from 0.00 log CFU.g⁻¹ on 0 day to 2.56 log CFU.g⁻¹ on 16 day. In another tested groups on 16 day Pseudomonas spp. were not found. Statistically significant differences (p ≤0.001) of anaerobic plate count were found among all tested group at all tested days except AC and VC on 4th, 8th, 12th day; VPEC and VP+CEO, VPEC and VP+CEO on 8th, 12th, 16th day; VP+CEO and VP+AEO on 4th, 8th, 12th, 16th day. Pseudomonas spp. values for the tested groups of chicken breast are showed in Figure 4.

Numerous studies documented the inhibitory effects of some essential oils and extracts of spices, plants, or their major active constituents on the bacteria - Escherichia coli, Aeromonas spp., Enterococcus faecalis, Salmonella enterica Typhimurium, Staphylococcus aureus, Shigella spp., Bacillus spp., Listeria monocyctogenes, Micrococcus spp., Yersinia enterocolitica, Pseudomonas aeruginosa, Proteus vulgaris, Streptococcus spp., Lactobacillus spp., Enterobacter spp. with Gram-positive bacteria as generally more sensitive than Gram-negative bacteria (Amensour et al., 2010; Bagamboula et al., 2003; Baidar et al., 2004; Celiktas et al., 2007; Faleiro et al., 2003; Moreira et al., 2003; Skočibušić et al., 2006; Sokmen et al., 2004; Veldhuizen et al., 2007; Viuda-Martos et al., 2008).

CONCLUSION

Caraway and anise essential oils exhibited good antimicrobial properties against anaerobic bacteria, lactic acid bacteria and Enterobacteriaceae at 0.2% concentration. Essential oils and their components may provide a solution for the growing demand of natural preservation methods that require minimal processing of meat. Even more exciting is the fact that these essential oils are already approved for use in foods, meaning that once the issues of application and concentration are resolved and food producers can almost immediately begin using essential oils in their food formulations. Future work must comprise studies that determine which essential oils are most appropriate for preservation, what concentrations and delivery methods are most appropriate and effective, and what foods or packaging methods are most ideal for reformulation or reengineering to take advantage of the antimicrobial activity of essential oils.
REFERENCES

Amensour, M., Bouhidid, S., Fernandez-Lopez, J., Idoumar, M., Senhaji, N. S., Abrini, M. 2010. Antibacterial activity of extracts of Myrtus communis against food-borne pathogenic and spoilage bacteria. *International Journal of Food Properties*, vol. 13, p. 1215-1224. http://dx.doi.org/10.1080/1094291090313399

Bagamboula, C. F., Uyttendaele, M., Debevere, J. 2003. Antimicrobial effect of spices on Shigella sonnei and Shigella flexneri. *Journal of Food Protection*, vol. 66, no. 4, p. 668-673. PMID:12696694

Baidar, H., Sagdik, O., Tahsin, Oskan, G., Karadogan, T. 2004. Antibacterial activity and composition of essential oils from *Origanum, Thymbra* and *Satureja* species with commercial importance in Turkey. *Food Control*, vol. 15, p. 169-172. http://dx.doi.org/10.1016/j.foodcont.2003.03.008

Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods – a review. *International Journal of Food Microbiology*, vol. 94, no. 3, p. 223-253. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022

Celiktas, Y. O., Kocabas, E. E. H., Bedir, E., Sukan, F. V., Ozek, T., Baser, K. H. C. 2007. Antimicrobial activities of methanol extracts and essential oils of *Rosmarinus officinalis*, depending on location and seasonal variations. *Food Chemistry*, vol. 100, no. 2, p. 553-559. http://dx.doi.org/10.1016/j.foodchem.2005.10.011

Cox, S. D., Markham, J. L. 2007. Susceptibility and intrinsic tolerance of *Pseudomonas aeruginosa* to selected plant volatile compounds. *Journal of Applied Microbiology*, vol. 103, p. 930-936. http://dx.doi.org/10.1111/j.1365-2672.2007.03353.x

Davidson, P. M., Critzer, F. J., Taylor, T. M. 2013. Naturally occurring antimicrobials for minimally processed foods. *Annual Review of Food Science and Technology*, vol. 4, p. 163-190. http://dx.doi.org/10.1146/annurev-food-030212-182535

Dimić, G. R., Kocić-Tanackova, S. D., Jovanov, O. O., Cvetković, D. D., Markova, S. L., Velićanskia, A. S. 2012. Antibacterial activity of lemon, caraway and basil extracts on *Listeria* spp. *Acta Periodica Technologica*, vol. 43, p. 239-246. http://dx.doi.org/10.2298/apj1432339d

Dorman, H. J. D., Deans, S. G. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. *Journal of Applied Microbiology*, vol. 88, p. 308-316. http://dx.doi.org/10.1046/j.1365-2672.2000.00969.x

Faleiro, M. L., Miguel, M. G., Ladeiro, F., Venacio, F., Tavares, R., Bruto, J. C., Figueiredo, A. C., Barroso, J. G., Pedro, L. G. 2003. Antimicrobial activity of essential oils from Potuguese endemic species of *Thymus*. *Letters in Applied Microbiology*, vol. 36, no. 1, p. 35-40. http://dx.doi.org/10.1046/j.1472-765x.2003.01259.x

Fratianni, F., De Martino, L., Melone, A., De Feo, V., Coppola, R., Nazzaro, F. 2010. Preservation of chicken breast meat treated with thyme and balm essential oils. *Journal of Food Science*, vol. 75, no. 8, p. M528-M535. http://dx.doi.org/10.1111/j.1750-3841.2010.01791.x

Ivanisová, E., Tokár, M., Mocko, K., Mendelová, A., Bojhanská, T., Mareček, J. 2013. Antioxidant activity of selected plant products. *Journal of Microbiology Biotechnology and Food Sciences*, vol. 2, Special issue 1, p. 1692-1703.

Ivanisová, E., Frančaková, H., Ritschlová, P., Dráb, Š., Solgajová, M., Tokár, M. 2015a. Biological activity of apple juice enriched by herbal extracts. *Journal of Microbiology Biotechnology and Food Sciences*, vol. 4, special issue 3, p. 69-73. http://dx.doi.org/10.1111/j.1750-3841.2010.01791.x

Ivanisová, E., Frančaková, H., Dráb, Š., Benčová, S. 2015b. Elderberry as important source of antioxidant and biologically active compounds. *Proceedings International Scientific and Professional Conference 15th Ružička Days, Today Science Tomorrow Industry*, Vukovar, Croatia. p. 212. ISBN 978-953-7005-36-8.

Jay, J. M., Loessner, M. J., Golden, David, A. 2005. *Modern food microbiology* 7th ed. Springer Science Inc.: New York, NY, USA. ISBN 978-0-387-23413-7

Kozačinská, L., Hadžišmanović, M., Zdolec, N. 2006. Microbiological quality of poultry meat on the Croatian market. *Veterinarski Arhiv*, vol. 76, p. 305-313.

Moreira, M. R., Ponce, A. G., del Walle, C. E., Rouza, S. I. 2005. Inhibitory parameters of essential oils to reduce a food borne pathogen. *LWT – Food Science and Technology*, vol. 38, no. 5, p. 565-570. http://dx.doi.org/10.1016/j.lwt.2004.07.012

Mor-Mur, M., Yuste, J. 2010. Emerging bacterial pathogens. Meat and Poultry: An Overview. *Food Bioprocess and Technology*, vol. 3, p. 24-35. http://dx.doi.org/10.1007/s11947-009-0189-8

Popelka, P., Pipová, M., Nagy, J., Nagyová, A., Fečkaninová, A., Figel', J. 2014. The impact of chilling methods on microbiological quality of broiler carcasses. *Potravinarstvo*, vol. 8, 2014, no. 1, p. 67-71. http://dx.doi.org/10.5219/327

Pyrgotou, N., Giatrakou, V., Ntzimani, A., Savvaidis, I. N. 2010. Quality assessment of salted, modified atmosphere packaged rainbow trout under treatment with oregano essential oil. *Journal of Food Science*, vol. 75, no. 7, p. M406-M411. http://dx.doi.org/10.1111/j.1750-3841.2010.01724.x

Ray, B. 2001. *Fundamental food microbiology* (2nd ed.). CRC Press : Boca Raton, FL, USA.

Rodriguez, H., Curiel, J. A., Landete, J. M., de las Rivas, B., de Felipe, F. L., Gómez-Cordovés, C., Mancheño, J. M., Muñoz, R. 2009. Food phenolics and lactic acid bacteria. *International Journal of Food Microbiology*, vol. 132, no. 2-3, p. 79-90. http://dx.doi.org/10.1016/j.ijfoodmicro.2009.03.025

Shan, B., Cai, Y. Z., Brooks, J. D., Corke, H. 2007. Antibacterial properties and major bioactive components of cinnamon stick (*Cinnamomum burmannii*): activity against foodborne pathogenic bacteria. *Journal of Agriculture and Food Chemistry*, vol. 55, p. 5484-5490. http://dx.doi.org/10.1021/jf070424d

Shlef, L. A. 1983. Antimicrobial effects of spices. *Journal of Food Safety*, vol. 6, p. 29-44. http://dx.doi.org/10.1111/j.1745-4565.1984.tb00477.x

Skočibušić, M., Bezić, N., Dunkić, V. 2006. Phytochemical composition and antimicrobial activities of the essential oils from *Satureja subspicata* Vis. growing in Croatia. *Food Chemistry*, vol. 96, p. 20-28. http://dx.doi.org/10.1016/j.foodchem.2005.01.051

Sokmen, A., Gulluce, M., Akpulat, H. A., Deferera, D., Tepe, B., Polission, M., Sokmen, M., Sahin, F. 2004. *In vitro* antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic *Thymus spathulifolius*. *Food Control*, vol. 15, p. 627-634. http://dx.doi.org/10.1016/j.foodcont.2003.10.005

Thippeswamy, N. B. Akhilender Naidu, K., Achur, R. N. 2013. Antioxidant and antibacterial properties of phenolic extract from *Carum carvi* L. *Journal of Pharmacy
Research, vol. 7, no. 4, p. 352-357. http://dx.doi.org/10.1016/j.jopr.2013.03.028

Tsigarida, E., Nychas, G. J. E. 2001. Ecophysiological attributes of Lactobacillus sp. and Pseudomonas sp. on sterile beef fillets in relation to storage temperature and film permeability. Journal of Applied Microbiology, vol. 90, p. 696-705. http://dx.doi.org/10.1046/j.1365-2672.2001.01292.x

Veldhuizen, E. J. A., Creutzberg, T. O., Burt, S. A., Haagsman, H. P. 2007. Low temperature and binding to food components inhibit the antibacterial activity of carvacrol against Listeria monocytogenes in steak tartare. Journal of Food Protection, vol. 70, no. 9, p. 2127-2132. PMID:17900092

Viuda-Martos, M., Ruiz-Navajas, Y., Fernandez-Lopez, J., Perez-Alvarez, J. 2008. Antibacterial activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Journal of Food Safety, vol. 28, no. 4, p. 567-576. http://dx.doi.org/10.1111/j.1745-4565.2008.00131.x

Yazdi, F. F., Ghalamkari, G., Toghiani, M., Modaresi, M., Landy, N. 2014. Anise seed (Pimpinella anisum L.) as an alternative to antibiotic growth promoters on performance, carcass traits and immune responses in broiler chicks. Asian Pacific Journal of Tropical Disease, vol. 4, no. 6, p. 447-451. http://dx.doi.org/10.1016/s2222-1808(14)60604-6

Acknowledgments:
This work was supported by grant VEGA 1/0611/14.

Contact address:
Maciej Kluz, Faculty of Biology and Agriculture, University of Rzeszow, Department of Biotechnology and Microbiology, Zelwerowicza St. 4, 35-601 Rzeszow, Poland, E-mail: kluczyk82@op.pl.

Margarita Terentjeva, Latvia University of Agriculture, Faculty of Veterinary Medicine Institute of Food and Environmental Hygiene, K. Helmaņa iela 8, LV-3004, Jelgava, Latvia, E-mail: margarita.terentjeva@llu.lv.

Czeslaw Puchalski, Faculty of Biology and Agriculture, University of Rzeszow, Department of Bioenergy Technologies, Zelwerowicza St. 4, 35-601 Rzeszow, Poland, E-mail: cpuchal@univ.rzeszow.pl.

Jana Huykova, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: jana.huykova@uniag.sk.

Attila Kaszturz, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: attila.kaszturz@uniag.sk.

Jana Petrova, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: jana.petrova@uniag.sk.

Martin Mellen, Hydina Slovakia, s.r.o., Nová Ľubovňa 505, 065 11 Nová Ľubovňa, Slovakia, E-mail: martin.mellen@gmail.com.

Juraj Čuboň, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Evaluation and Processing of Animal Products, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: juraj.cubon@uniag.sk.

Peter Haščík, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Evaluation and Processing of Animal Products, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: peter.hasvik@uniag.sk.

Rafal Kordiaka, Faculty of Biology and Agriculture, University of Rzeszow, Department of Biotechnology and Microbiology, Zelwerowicza St. 4, 35-601 Rzeszow, Poland, E-mail: rafal.kordiaka@wp.pl.

Simona Kunova, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: simona.kunova@uniag.sk.

Miroslava Kačanová, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: miroslava.kacanova@uniag.sk.