KÄHLER-RICCI SOLITONS ON HOROSPHERICAL VARIETY

DELGOVE FRANÇOIS

1. INTRODUCTION

The founding article on the Kähler-Ricci solitons is Hamilton’s article [Ham88]. The Kähler-Ricci solitons are natural generalizations of the Kähler-Einstein metrics and appear as fixed points of the Kähler-Ricci flow. On a Fano compact Kähler manifold M, a Kähler metric g is a Kähler-Ricci soliton if its Kähler form ω_g satisfies:

$$\text{Ric}(\omega_g) - \omega_g = \mathcal{L}_X \omega_g,$$

where $\text{Ric}(\omega_g)$ is the Ricci form of g and $\mathcal{L}_X \omega_g$ is the Lie derivative of ω_g along a holomorphic vector field X on M. Usually, we denote the Kähler-Ricci soliton by the pair (g, X) and X is called the solitonic vector field. We immediately note that if $X = 0$ then g is a Kähler-Einstein metric. Moreover, if $X \neq 0$ then we say the Kähler-Ricci soliton is non-trivial.

Firstly, the study of the solitonic vector field X was done in the article [TZ00, TZ02]. Thanks to the Futaki function, the authors discovered an obstruction to the existence of Kähler-Ricci soliton and proved that X is in the center of a reductive Lie subalgebra $\eta_r(M)$ of $\eta(M)$, which is the set of all holomorphic vector fields. This study also gives us a result about the Kähler-Ricci soliton’s unicity (theorem 0.1 in [TZ00]).

Subsequently, the study was supplemented by Wang, Zhu in [WZ04] where they show the existence of Kähler-Ricci solitons on toric varieties using the continuity method. This work was supplemented by a study of the Ricci flow by Zhu in [Zhu12] on the toric varieties which showed that the Kähler-Ricci flow converges to the Kähler-Ricci soliton of the toric variety. The result about existence of Kähler-Ricci solitons has been extended to cases of toric fibrations by Podesta and Spiro in [PS10]. Recently, the result concerning the convergence of the Ricci flow has been also extended in [Hua17].

In 2015, Delcroix used the approach of Zhu and Wang in the case of Kähler-Einstein metrics on some compactifications of reductive groups. In his paper [Del15], the main result is a necessary and sufficient condition for the existence of a Kähler-Einstein metric in some group compactifications. The condition is that the barycenter of the polytope associated to the group compactification must lie in a particular zone of the polytope. The first tool used in the proof is a study of the $K \times K$-invariant functions (for the KAK decomposition), in particular he computes the complex Hessian of a $K \times K$-invariant function. And the second tool is an estimate of the convex potential associated to a $K \times K$-invariant metric on ample line bundles. Then he proves the main result by reducing the problem to a real Monge-Ampère equation and by obtaining C^0 estimates along the continuity method. In our paper, we extend this approach to smooth horospherical variety in the following way:
Theorem 1.1. Assume M is a smooth horospherical variety. There is a Kähler-Ricci soliton (X, g) on M.

This result was already proved in [Del16] in a more general case. But in our article, we focus on the case of smooth horospherical varieties and give a direct proof in this case. And so to prove this, we don’t use the K-stability to get the result (as used [Del16]) and we prefer using analytic methods such that the continuity method. So, in a first step, we compute the Futaki invariant and use the results of [TZ02] to get the expression of the solitonic vector field. And in a second step, we compute the Monge Ampere solitonic equation in the horospherical case and use the continuity method to conclude as in the toric case following the approach of [WZ04].

An important corollary that comes directly from the article [Pas09] is that there exist horospherical varieties which admit a non-trivial Kähler-Ricci soliton and therefore do not admit Kähler-Einstein metrics. Indeed, Matsushima theorem say that if the Fano variety has a non-reductive group of automorphisms then it does not admit Kähler-Einstein metrics. In the article [Pas09], Pasquier shows that there exists an infinity of horospherical varieties whose group of automorphisms is non-reductive, so by using the previous theorem, the only possibility is that the soliton must be non trivial. This is summarized in the following corollary:

Corollary 1.2. There exists an infinity of (smooth) horospherical varieties admitting a non trivial Kähler-Ricci soliton.

2. Horospherical Variety

In this section, we introduce the notions and the setup of [Del115] which are needed for our proof.

2.1. Reductive Group. Let G a complex connected reductive linear algebraic group. Hence if we denote by \mathfrak{g} this Lie algebra of G then

$$\mathfrak{g} = Z(\mathfrak{g}) \oplus [\mathfrak{g}, \mathfrak{g}],$$

where $[\mathfrak{g}, \mathfrak{g}]$ is the Lie algebra of the derived subgroup $D(G)$ of G and $Z(\mathfrak{g})$ is the center of \mathfrak{g}. We recall the Killing form B is nondegenerate on $[\mathfrak{g}, \mathfrak{g}]$ and zero on $Z(\mathfrak{g})$. If we denote by K a maximal compact subgroup of G and θ the Cartan involution such that K is the set of fixed point of θ then under the identification of complex conjugaison with the Cartan involution, we get that G is the complexification of K. Hence if we denote the Lie algebra of K by \mathfrak{k}, we obtain

$$\mathfrak{g} = \mathfrak{k} \oplus J\mathfrak{k},$$

where J is the complex structure of \mathfrak{g}.

Let T a maximal torus G stable under θ. We denote by $\Phi \subset \mathfrak{x}(T)$ the root system of (G, T) where $\mathfrak{x}(T)$ is the group of algebraic character of T, so we have the root decomposition :

$$\mathfrak{g} = \mathfrak{t} \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha},$$

where \mathfrak{t} is the Lie algebra of T and \mathfrak{g}_{α} is a complex line defined by $\mathfrak{g}_{\alpha} := \{ x \in \mathfrak{g} / \text{ad}(h)(x) = \alpha(h)x, \forall h \in \mathfrak{t} \}$. Now if we take a Borel subgroup B of G containing T then we denote by Φ^{+} the set of positive root defined by B. Moreover, we denote by B^{-} the unique Borel subgroup of G such that $B \cap B^{-} = T$ and B^{-} is called the opposite Borel subgroup with respect to T.
If P is a parabolic subgroup of G containing B. We denote by Φ_P the set of roots of P with respect to T and by Φ^P_T the set of roots of the unipotent radical of P.

We define $a = t \cap J_{\mathfrak{p}}$. We have then a identification between a with $\mathfrak{N}(T) \otimes \mathbb{R}$ where $\mathfrak{N}(T)$ is the subgroup of one parameter subgroups. Moreover, the Killing form B define a scalar product (\cdot, \cdot) on $a \cap [\mathfrak{g}, \mathfrak{g}]$. We extend this scalar product on a by choosen a scalar product on $a \cap Z(\mathfrak{g})$ and assuming $a \cap Z(\mathfrak{g})$ and $a \cap [\mathfrak{g}, \mathfrak{g}]$ are orthogonal for (\cdot, \cdot).

Finally, we recall that there is a natural pairing (\cdot, \cdot) between $\mathfrak{N}(T)$ and $\mathfrak{X}(T)$ defined by $\chi \circ \lambda(z) = z^{(\lambda, \chi)}$. The natural paring between $\mathfrak{X}(T) \otimes \mathbb{R}$ and $\mathfrak{N}(T) \otimes \mathbb{R}$ can be view as $\langle \chi, a \rangle = \ln \chi(\exp a)$ for all $\chi \in \mathfrak{N}(T)$ and $a \in a \simeq \mathfrak{X}(T) \otimes \mathbb{R}$. For $\chi \in \mathfrak{X}(T)$, we define t_{χ} the unique element element of a such that $(t_{\chi}, a) = \langle \chi, a \rangle$ for all $a \in a$.

2.2. Horospheral variety.

2.2.1. Definitions.

Definition 2.1. A normal variety X equipped with an action of G is spherical if a Borel subgroup B acts on X with an open and dense orbit.

A homogeneous space G/H which is spherical under the action G is a spherical homogenous space and H is called a spherical subgroup.

Let X is a spherical variety and $x \in X$ a point in the open orbit of B. If we denote by H the isotropy group of x in G, the pair (X, x) is called a spherical embedding of the spherical homogenous space G/H and is equipped with a natural inclusion of G/H in X by the map $gH \mapsto g \cdot x$.

Now, we can define the notion of horospheral variety:

Definition 2.2. A closed subgroup H of a connected complex reductive group G is called horospheral if it contains the unipotent radical U of a Borel subgroup B of G. The homogeneous space G/H is called a horospheral homogeneous space.

Moreover, we can show a horospheral homogeneous space is spherical (see [Per]), so we have the following definition:

Definition 2.3. An embedding of a horospheral space is called a horospheral embedding of G/H or a horospheral variety.

2.2.2. Polar decomposition.

We begin with a useful lemma for the rest of the paper:

Proposition 2.4. [Pas06] Assume H is horospheral subgroup of a group G. If we set $P := N_G(H)$ then P is a parabolic subgroup containing B, and the quotient $P/H = T/T \cap H$ is a torus.

For the rest of the section, we fix a horospheral subgroup H. Because, we have the inclusion $T \cap H \subset T$, we get $\mathfrak{N}(T \cap H) \subset \mathfrak{N}(T)$ and via the identification $a \simeq \mathfrak{N}(T) \otimes \mathbb{R}$ we get a subspace $a_0 \simeq \mathfrak{N}(T \cap H) \otimes \mathbb{R}$. We define a_1 the orthogonal of a_0 for (\cdot, \cdot).

Proposition 2.5. [Del16] The image of a_1 in G under the exponential is a fundamental domain for the action of $K \times H$ on G where K acts by multiplication on the left and H by multiplication on the right by the inverse. As a consequence, the set $\{\exp(a)H \mid a \in a_1\} \subset G/H$ is a fundamental domain for the action of K on G/H.
2.2.3. Automorphisms of a horospherical variety. We fix a compact smooth Fano Kähler manifold M. Let $\text{Aut}^0(M)$ the connected component of the neutral element in $\text{Aut}(M)$ which is the group of automorphisms of M. It is a Lie group and we consider a maximal compact subgroup K. The complexification G of K is a reductive group of $\text{Aut}^0(M)$ and we choose a maximal complex torus T such that $K \cap T$ is the maximal compact torus of T.

Now, assume X is horospherical under G. Then we can show the group of automorphisms G-equivariant of X is isomorphic to P/H where P/H acting on G/H by multiplication on the right by the inverse (see [Tim] and [Kno91]). Moreover, by the proposition 2.4 we have P/H is a torus and we define b_1 as the subalgebra of the Lie algebra of P/H obtained as J times the Lie algebra of the maximal compact subtorus. We have $b_1 = \mathfrak{n}(P/H) \otimes \mathbb{R}$.

Moreover, because P/H is a complex torus, we have thanks to the proposition 2.5 that the Lie algebra of P/H is $\mathfrak{a}_1 \oplus J\mathfrak{a}_1$ and so we have $b_1 \simeq \mathfrak{a}_1$. The difference between a_1 and b_1 is that b_1 act on the right and not on the left.

2.3. Line Bundles.

Definition 2.6. A G-linearization of a line bundle L on a G-variety is a G-action on L such that the G-action on L lifts the G-action on X and the map between the fibers L_x and $L_{g \cdot x}$ defined by the action of $g \in G$ is linear.

2.3.1. Associated line bundle. Let G/H be a horospherical homogeneous space and L be a $G \times P/H$-linearized line bundle on G/H. We recall we can associate to this line bundle L a character χ such that $(p, pH) \cdot \xi = \chi(p) \xi$ for all $\xi \in L_{cH}$ ([Per]). If we consider the quotient map $\pi : G \to G/H$ and the inclusion map $\iota : PH \to G/H$. Hence we get a G-linearization on π^*L and $P \times P/H$-linearized on ι^*L.

On the bundle π^*L and ι^*L we can define a global trivialisation s on π^*L and two global trivialisation s_1 and s_3 on ι^*L. In particular, we define the global section s_τ by $s_\tau(pH) := (e, p^{-1}H) \cdot (\iota^{-1} \circ \pi)(s(e))$ where $s(e) \in (\pi^*L)_e$. For more details, we may read the section 2.2.1 in [Del16].

2.3.2. Hermitian metric on line bundles. Let X be a compact Kähler manifold and L a line bundle on X. Let’s recall that a hermitian metric is the data for all $x \in X$ of a hermitian metric h_x on the L_x fiber of L. Moreover, we say that the metric is smooth if the application $x \mapsto h_x$ is smooth.

Let’s now take a trivialization s above an open $U \subset X$. This means that for all $x \in X$ the vector $s(x)$ is a base of L_x and hermitian h_x is summarized to give itself a positive real a_x that will be equal to the squared norm of $s(x)$ with respect to the hermitian form h_x i.e. $a_x = |s(x)|^2_h$. We then define the local potential of h (with respect to the trivialization s) by $\varphi : x \in U \mapsto -\ln(|s(x)|^2_h) \in \mathbb{R}$. Let’s note that the metric h is entirely determined by all its local potentials and that h is smooth if and only if all its local potentials are smooth.

Let’s finish by saying that we can associate to a hermitian smooth metric a $(1, 1)$-form ω_h called curvature of h. To do this, we define locally $\omega_h|_U = \sqrt{-1} \partial \bar{\partial} \varphi$ where φ is the local potential associated with the trivialization s above U. We verify that $\omega_h|_U$ does not depend on the trivialization and thus define a global $(1, 1)$-form. Moreover, we can show that $\omega_h \in c_1(L)$. We will also say that L is positive curvature if there exists a metric h such that ω_h is a Kähler form ([Dem]).
There is also a notion of global potential. To define it, we set a reference hermitian metric h^0 and for any hermitian metric h we define the function ψ on X, called global potential of h with respect to h^0 by the following formula:

$$|\xi|^2_h = e^{-\psi(x)}|\xi|^2_{h^0}.$$

Note that the function ψ satisfies the following relation (thanks to the $\partial \overline{\partial}$-lemma):

$$\omega_{h^0} = \omega_h + \sqrt{-1}\partial \overline{\partial} \psi.$$

Now let G/H be a horospherical homogeneous space and L be a $G \times P/H$-linearized line bundle on G/H and q a K-invariant metric on L. We can define a global potential $u : a_1 \rightarrow \mathbb{R}$ associated to the restriction to $L|_{P/H}$:

$$u(x) = -2 \ln |s_r(\exp(x)H)|_{i^*q}.$$

2.4. Curvature. In this section, we compute the curvature on P/H in a basis adapted. The first step is to define this basis. For this purpose, we recall that we can identify the tangent space at eH to G/H with $\mathfrak{g}/\mathfrak{h} \cong \oplus_{\alpha \in \Phi^+_P} \mathbb{C}e_{-\alpha} \oplus a_1 \oplus J\mathfrak{a}_1$.

A complex basis of the tangent space $T_{eH}G/H$ is given by a basis (i_i) on a_1 with the $(e_{-\alpha})$. On P/H we can define for $\xi \in T_{eH}G/H$ the real holomorphic vector field : $R\xi : pH \rightarrow (H,p^{-1}H) \cdot \xi$. We have a complex basis of $T^{1,0}P/H$ given by $(R_{L_j} - iJR_{L_j})/2$ and $(Re_{-\alpha} - iJRe_{-\alpha})/2$ and we denote by (γ_j) and (γ_α) the dual bases. With this basis, we can compute the curvature :

Theorem 2.7. [Del16] Let ω be the K-invariant curvature form of K-invariant metric q on a $G \times P/H$ linearized line bundle L on G/H with associated character denote by χ. Then the form ω is determined by its restriction to P/H, given for $x \in a_1$ by

$$\omega_{\exp(x)H} = \sum_{1 \leq j_1, j_2 \leq r} \frac{1}{4} \frac{\partial^2 u}{\partial r_{j_1} \partial r_{j_2}}(x) \sqrt{-1} \gamma_{j_1} \wedge \overline{\gamma}_{j_2} + \sum_{\alpha \in \Phi^+_P} \langle \alpha, \nabla u(x) / 2 - t_{\chi} \rangle \sqrt{-1} \gamma_\alpha \wedge \overline{\gamma}_\alpha.$$

Moreover, we have hence

$$\omega^n_{\exp(x)H} = \frac{MA_G(u)(x)}{4^n 2^{\text{Card}(\Phi^+_P)}} \prod_{\alpha \in \Phi^+_P} \langle \alpha, \nabla u(x) + 4t_{\rho_P} \rangle \Omega,$$

where

$$\Omega := \bigwedge_{1 \leq j \leq r} \gamma_j \wedge \overline{\gamma}_j \bigwedge_{\alpha \in \Phi^+_P} \gamma_\alpha \wedge \overline{\gamma}_\alpha.$$

2.5. Polytope associated. Let X be horospherical variety i.e. there is a reductive group G and a point $x \in X$ such that the isotropy group H of x is a horospherical subgroup of G which contain the unipotent radical U of a Borel subgroup B and we set $P := N_G(H)$. Let also a $G \times P/H$-linearized ample line bundle L. We can build a polytope Δ^+ associated to the $G \times P/H$-linearized ample line bundle L with respect to the Borel subgroup B (see [Pas16] for more details). Now we set $\Delta := \chi + \Delta^+$ where χ est le character associated to the line bundle L.

Proposition 2.8. Let q be a K-invariant smooth and positive metric over L and let $u : a_1 \rightarrow \mathbb{R}$ the potential associated to the restriction on G/H. Then u is a smooth and strictly convex function such that $\nabla u(a_1) = 2\Delta$ and the function $u - v_{2\Delta}$ is bounded on a_1.
The important case for the rest of the paper is then \(L = K_X^{-1} \). In this case, we have \(\chi = -2\rho P := \sum_{\alpha \in \Phi^+_P} \alpha \). We can show \(\Phi^+_P \) contains the roots which are not orthogonal to \(\Delta^+ \) and \(0 \in \Delta^+ \) (see [Pas06]).

3. Futaki Invariant in the horospherical case

3.1. Definition and properties of the Futaki Invariant. In this section, a holomorphic invariant is defined and calculated in the case of some compactification. This invariant is an obstruction to the existence of a Kähler-Ricci Soliton.

Recall that \(\text{Aut}(M) \) is a Lie group which the set of holomorphic vector fields \(\eta(M) \) is its Lie algebra and if \(K(M) \) is a maximal compact subgroup of \(\text{Aut}^0(M) \) which is the identity component of \(\text{Aut}(M) \), then the decomposition of Chevalley gives us that

\[
\text{Aut}^0(M) = \text{Aut}_r(M) \times R_u,
\]

where \(\text{Aut}_r(M) \) is a reductive subgroup of \(\text{Aut}^0(M) \) and the complexification of \(K(M) \) and \(R_u(M) \) the unipotent radical of \(\text{Aut}^0(M) \). Moreover, if \(\eta(M), \eta_r(M), \eta_u(M) \) and \(\kappa(M) \) are the Lie algebras of \(\text{Aut}(M), \text{Aut}_r(M), R_u(M) \) and \(K(M) \) respectively, then we have

\[
\eta(M) = \eta_r(M) \oplus \eta_u(M).
\]

Definition 3.1. Let a \(n \)-dimensional compact Kähler manifold \((M, g)\) with positive first Chern class \(c_1(M) \) such that its Kähler form \(\omega_g \in c_1(M) \). Then, for any holomorphic vector field \(X \in \eta(M) \), we define the linear functional \(F_X \), called Futaki invariant, by

\[
F_X : v \in \eta(M) \mapsto \int_M v(h_g - \theta_X)e^{\theta_X} \omega^n_g \in \mathbb{C},
\]

where we denote :

- \(h_g \) is the unique function in \(C^\infty(M, \mathbb{R}) \) such that
 \[
 \text{Ric}(\omega_g) - \omega_g = \sqrt{-1} \partial \bar{\partial} h_g,
 \int_M e^{h_g} \omega^n_g = \int_M \omega^n_g,
 \]

- \(\theta_X \) is the unique function in \(C^\infty(M, \mathbb{R}) \) such that
 \[
 i_X \omega_g = \sqrt{-1} \partial \bar{\partial} \theta_X,
 \int_M e^{\theta_X} \omega^n_g = \int_M \omega^n_g.
 \]

A first remark is, by the Cartan formula, \(L_X \omega = \sqrt{-1} \partial \bar{\partial} \theta_X \). A second remark is that, according to proposition 1.1 of [TZ02], the invariant does not depend on the chosen metric \(g \). Moreover, if \((X, g)\) is a soliton then \(F_X = 0 \).

After these notations, we have this fundamental proposition :

Proposition 3.2. There exists a unique holomorphic vector field \(X \in \eta_r(M) \) with \(\text{Im}(X) \in \kappa(M) \) such that the holomorphic invariant \(F_X \) vanishes on \(\eta_r(M) \). Moreover, \(X \) is either zero or an element of the center of \(\eta_r(M) \) and

\[
F_X([u, v]) = 0, \ \forall (u, v) \in \eta_r(M) \times \eta(M).
\]
3.2. Determination of the solitonic vector field. Now, in our case we suppose \(M \) is a horospherical embedding of \(G/H \). We use the setup of the section 2.2.3 and hence we can suppose \(\eta_r(M) = g \). We can use the decompositions established in the previous section. In addition, as \(\eta_r(M) \simeq g \), we have that every element \(\chi \in g \) induces one vector fields \(\hat{\chi} \in \eta_r(M) \). Furthermore, we have \(\mathfrak{s}(\eta_r(M)) \subset \mathfrak{t}(M) \).

Now, using the logarithmic coordinates \((w_1, w_2, \ldots, w_d) = (x_1 + \sqrt{-1}\theta_1, \ldots, x_d + \sqrt{-1}\theta_d)\), we obtain that

\[
\mathfrak{s}(M) = \bigoplus_{i=1}^{d} \mathbb{R} \cdot \frac{\partial}{\partial \theta_i},
\]

so

\[
X = \sum_{i=1}^{d} c_i \frac{\partial}{\partial w_i}, \quad c_i = r_i + \sqrt{-1} t_i \in \mathbb{C}.
\]

Thus, we get

\[
X = \sum_{i=1}^{d} (r_i + \sqrt{-1} t_i) \left(\frac{\partial}{\partial x^i} - \sqrt{-1} \frac{\partial}{\partial \theta^i} \right)
= \sum_{i=1}^{d} \left(r_i \frac{\partial}{\partial x^i} + t_i \frac{\partial}{\partial \theta^i} \right) + \sqrt{-1} \sum_{i=1}^{d} \left(t_i \frac{\partial}{\partial x^i} - r_i \frac{\partial}{\partial \theta^i} \right).
\]

Finally, we have

\[
\text{Im}(X) = \sum_{i=1}^{d} \left(t_i \frac{\partial}{\partial x^i} - r_i \frac{\partial}{\partial \theta^i} \right).
\]

Yet Im(\(X\)) \(\in \mathfrak{s}(M)\) which is generated by the family \(\left(\frac{\partial}{\partial \theta^i} \right)\), so we have \(t_i = 0 \) for all \(i \in \{1, \ldots, n\} \). Finally, the vector field \(X\) vanishing the Futaki invariant belongs to \(\mathfrak{t}(M)\) and is written in the form

\[
X = \hat{\xi} - \sqrt{-1} J \hat{\xi}, \quad \xi \in \mathfrak{a}.
\]

Moreover, we know \(J \xi \) generates a torus in \(K \) so \(\xi \) induces a \(G \)-equivariant one-parametre subgroup. It implies \(\xi \in \mathfrak{b}_1 \simeq \mathfrak{a}_1 \) (see section 2.2.3 for more details).

This is summarized in the following proposition:

Proposition 3.3. Assume \(M \) is a smooth horospherical variety. The vector field \(X \in \eta_r(M) \) vanishing the Futaki invariant is on the form:

\[
X = \hat{\xi} - \sqrt{-1} J \hat{\xi}, \quad \xi \in \mathfrak{b}_1.
\]

3.3. Computation of the Futaki Invariant. In this section, we want to compute the Futaki invariant in our case. To do this, we first must compute \(\theta_X \). But, for this computation, it is preferable to renormalize the function \(\theta_X \) to a function \(\tilde{\theta}_X \) by requesting that it checks

\[
(1) \quad i_X \omega_g = \sqrt{-1} \partial \tilde{\theta}_X, \quad \Delta \tilde{\theta}_X + X(h_g) = -\tilde{\theta}_X.
\]

This condition is equivalent to

\[
(2) \quad \int_M \tilde{\theta}_X e^{\delta \tilde{X}} \omega^n_g = 0,
\]

and we obtain

\[
F_X(v) = - \int_M \tilde{\theta}_v e^{\delta \tilde{X}} \omega^n_g.
\]
First, we use the K-invariance of the Kähler form ω to remark the following fact:

\[L_\xi \omega = L_{\xi + \sqrt{-1} J \xi} \omega = L_{\xi} \omega + \sqrt{-1} L_{J \xi} \omega = L_{\xi} \omega, \]

because ω is K-invariant and $J \xi \in \mathfrak{k}$ so we just compute $L_{\xi} \omega$. Now we can use the proposition 4.4 of [Del16] to get:

Proposition 3.4. Let $\zeta \in b_1 \simeq \mathcal{N}(P/H) \otimes \mathbb{R}$. If we set $Y = \zeta - \sqrt{-1} J \zeta$ then θ_Y is K-invariant and

\[\tilde{\theta}_Y(\exp(x)H) = -(\nabla u(x), \zeta), \]

where ∇u is the gradient of u for the scalar product (\cdot, \cdot).

Now, we can compute the Futaki invariant $F_X(Y)$ when $X = \xi - \sqrt{-1} J \xi$ and $Y = \zeta - \sqrt{-1} J \zeta$. We have

\[
\begin{align*}
F_X(Y) &= \int_M \theta_Y e^{\theta_X} \omega_g^n \\
&= \int_{G/H} \theta_Y e^{\theta_X} \omega_g^n \\
&= C \int_{\mathbb{R}_1} (\nabla u(x), \zeta)e^{-\nabla u(x), \zeta} \prod_{\alpha \in \Phi^+} (\alpha, \nabla u(x) + 4t_{\rho_P}) MA_R(u)(x)dx \\
&= C \int_{2\Delta + 4\rho_P} (p - 4 \rho_P, \zeta)e^{(p - 4 \rho_P, \zeta)} \prod_{\alpha \in \Phi^+} (\alpha, p)dp \\
&= \tilde{C} \int_{\Delta^+} (p - 2 \rho_P, \zeta)e^{(2p - 4 \rho_P, \zeta)} \prod_{\alpha \in \Phi^+} (\alpha, p)dp,
\end{align*}
\]

where \tilde{C} and C are constants independent of ζ and ξ.

Proposition 3.5. Let $X = \xi - \sqrt{-1} J \xi$ the vector field vanishing the Futaki invariant. We have

\[
0 = \int_{\Delta^+} (p - 2 \rho_P, \zeta)e^{(2p - 4 \rho_P, \zeta)} \prod_{\alpha \in \Phi^+} (\alpha, p)dp, \forall \zeta \in a_1.
\]

4. **Monge-Ampère Equation in the Horospherical Case**

4.1. **General Case.** We fix a compact Fano manifold (M, g^0) with $\omega_{g^0} \in c_1(M)$ such that (X, g) is a Kähler-Ricci soliton i.e.

\[\text{Ric}(\omega_g) - \omega_g = L_X \omega_g. \]

Thanks to the $\partial\bar{\partial}$-lemma, there exists a unique function h in $C^\infty(M, \mathbb{R})$ such that

\[\text{Ric}(\omega_{g^0}) - \omega_{g^0} = \sqrt{-1} \partial\bar{\partial} h, \]

and a function ψ in $C^\infty(M, \mathbb{R})$ such that

\[\omega_g = \omega_{g^0} + \sqrt{-1} \partial\bar{\partial} \psi. \]
Noting $\theta_X(g) = \theta_X(g^0) + X(\phi)$, it is shown ([WZ04] for instance) that solving the Kähler-Ricci soliton equation is equivalent to finding a potential ψ solution of the following Monge-Ampère equation:

$$
\begin{aligned}
\{ \det(g^0_\triangledown + \psi_\triangledown) = \det(g^0_\triangledown) \exp(h - \theta_X(g^0) - X(\psi) - \psi) \\
(g^0_\triangledown + \psi_\triangledown) > 0.
\end{aligned}
$$

Moreover, if we fix a hermitian metric m^0 on $-K_M$ such that $\omega_m = \omega_g^0$, then we can define a volume form dV given in a local trivialisation s of $-K_M$ by

$$
dV = |s|m^0 s^{-1} \wedge \bar{s}^{-1}
$$

then modulo a constant we obtain that h is equal to the logarithm of the potential of dV with respect to ω_g^0, so we renormalise to match it i.e.

$$
e^{-h}\omega_g^0 = dV.
$$

Another way to write the first equation of (4) is then:

$$(\omega_g^0 + \partial\bar{\partial}\psi)^n = e^{h - \psi - \theta_X(g^0) - X(\psi)}\omega_g^0.
$$

4.2. Horospherical Case. Assume now that M is a smooth horospherical variety and g^0 is a K-invariant Kähler form. Moreover, since the metric ω_g^0 is K-invariant, we want to find a K-invariant solution ψ.

Now, thanks to the density of G/H in M, we can reduce our study in this space. Moreover, by K-invariance, we can just compute this equation for the values $exp(x)H$ for $x \in \mathfrak{a}_1$. We get

$$
\prod_{\alpha \in \Phi_p^+} \langle \alpha, \nabla u(x) + 4t_{\rho\rho}, \frac{\text{MA}_K(u)(x)}{4\pi 2\text{Card}(\Phi_p^+)} \rangle \Omega =
$$

$$
e^{h - \psi + (\nabla u(x), \xi)} \prod_{\alpha \in \Phi_p^+} \langle \alpha, \nabla u^0(x) + 4t_{\rho\rho}, \frac{\text{MA}_K(u^0)(x)}{4\pi 2\text{Card}(\Phi_p^+)} \rangle \Omega.
$$

Now we can simplify this expression. For this goal, we have the normalisation condition [3]

$$
e^{h}\omega_g^0|_{\rho/H} = e^{-u} s_r^{-1} \wedge \bar{s}_r^{-1},
$$

we can write the previous equation in the following way:

$$
\prod_{\alpha \in \Phi_p^+} \langle \alpha, \nabla u^0(x) + 4t_{\rho\rho}, \frac{\text{MA}_K(u^0)(x)}{4\pi 2\text{Card}(\Phi_p^+)} \rangle \Omega = e^{-u} s_r^{-1} \wedge \bar{s}_r^{-1}.
$$

If we choose correctly the section s_r such that $s_r \wedge \bar{s}_r^{-1} = \Omega$, we can simplify the previous equation. For this purpose, we recall that

$$
s_r(pH) = (e, p^{-1}H) \cdot (i^{-1} \circ \pi)(s(e))
$$

where $s(e) \in (\pi^*L)_e$ hence if we choose $s(e) \in \pi^{-1}(s(\Omega(e)))$ we get, by definition of Ω and s_r, $s_r \wedge \bar{s}_r^{-1} = \Omega$ (see the section 2.34 and 2.33). Finally, we get:

$$
\prod_{\alpha \in \Phi_p^+} \langle \alpha, \nabla u(x)/2 + 4t_{\rho\rho}, \frac{\text{MA}_K(u)(x)}{4\pi 2\text{Card}(\Phi_p^+)} \rangle = e^{-u} (\nabla u(x), \xi)
$$

Recall Φ_p^+ are the root in Φ^+ which are not orthogonal to Δ^+ and

$$
\text{Im}(\nabla u + 4t_{\rho\rho}) = 2\Delta^+
$$
so we can write

\[\text{MA}_R(u)(x) = \frac{4^r e^{2\text{Card}(\Phi^+_P)}}{\prod_{\alpha \in \Phi^+_P} (\alpha, \nabla u(x) + 4t \rho)} e^{-u + (\nabla u(x), \xi)}. \]

4.3. The continuity method. We now want the existence of Kähler-Ricci solitons. To do this, we will use the method of continuity which we now recall the approach.

To begin with, we introduce into the Monge-Ampère equation a parameter \(t \in [0,1] \):

\[
\begin{align*}
\det(g^{0 \overline{j}} + \psi_{\overline{j}}) &= \det(g^{0 \overline{j}}) \exp(h - \theta_X - X(\psi) - t\psi) \\
(g^{0 \overline{j}} + \psi_{\overline{j}}) &> 0.
\end{align*}
\]

We note that the equation (9) is the previous equation with \(t = 1 \). Moreover, if a solution exists at time \(t \), we denote it by \(\psi_t \). Now, if \(\psi_t \) is \(K \)-invariant, \(\omega^0 + \sqrt{-1} \psi_t \) has a convex potential \(u_t \). Thus, setting \(w_t = t \cdot u_t + (1 - t) \cdot u^0 \), we can write this equation on the dense orbit as:

\[
\text{MA}_R(u_t)(x) = \frac{4^r e^{2\text{Card}(\Phi^+_P)}}{\prod_{\alpha \in \Phi^+_P} (\alpha, \nabla u_t(x) + 4t \rho)} \exp \left[-w_t(x) + (\nabla u_t(x), \xi) \right].
\]

The method of continuity consists in considering the set \(S \) of times when there exists a solution:

\[S := \{ t \in [0,1] \mid \text{There is a solution } \psi_t \text{ of the equation (9) at the time } t \}, \]

and showing that \(S \) is a close open and nonempty set of \([0,1]\).

The openness and existence of a solution of (9) at time \(t = 0 \) comes from the study of the Monge-Ampère equations made in \([\text{Aub78, Yau78}]\). We can also consult \([\text{TZ00}]\) for a study made in the case of the Kähler-Ricci solitons. Moreover, thanks to the Arzelà-Ascoli theorem, it suffices to have an a priori estimate \(C^3 \) of the potentials \(\psi_t \) to obtain that \(S \) is close. Now, thanks to the works of Yau and Calabi made in appendix A of \([\text{Yau78}]\), we can reduce this estimate \(C^3 \) to an estimate \(C^0 \).

Moreover, by the following Harnack inequality (see \([\text{TZ00, WZ04}]\) for instance)

\[-\inf_M \psi_t \leq C(1 + \sup_M \psi_t), \]

we can reduce to a uniform upper bound for the \(\psi_t \).

5. Proof of the a priori estimation

We must a priori find an estimate for \(t \in [0,1] \). Now, using the fact that \(0 \in S \) and \(S \) is open, one can reduce to show an estimate on \([t_0, 1]\) for \(t_0 > 0 \). We set a such \(t_0 \) for the rest. Moreover, for simplicity, we denote by \(r \) the dimension of the real vector space \(a_1 \) and we use the isomorphism between \(a_1 \simeq \mathbb{R}^r \).

We begin with a lemma that will be useful to us later:

Lemma 5.1. We have

\[\int_{a_1} \frac{\partial w}{\partial \zeta} e^{-w} dx = 0, \forall \zeta \in a_1. \]
Proof. We choose a basis \((a_1, \cdots, a_r)\) of \(a_1\) and denote by \((x_1, \cdots, x_r)\) the coordinates associated in \(a_1\). Thanks to this, we can view \(a_1\) as \(\mathbb{R}^r\). Moreover, by linearity it suffices to prove:

\[
\int_{\mathbb{R}^r} \frac{\partial w}{\partial x_i} e^{-w} \, dx = 0, \quad i = 1, \cdots, r.
\]

We can write, thanks to the Fubini theorem:

\[
\int_{\mathbb{R}^r} \frac{\partial w}{\partial x_i} e^{-w} \, dx = -\int_{\mathbb{R}^r} \frac{\partial e^{-w}}{\partial x_i} \, dx \quad (i \in \{1, \cdots, r\})
\]

where \(w_i : \mathbb{R} \to \mathbb{R}^r\) is the partial application in the coordinate \(x_i\) of \(w\) i.e. \(w_i\) is the function \(w_i : t \in \mathbb{R} \mapsto (x_1, \cdots, x_{i-1}, t, x_{i+1}, \cdots, x_n) \in \mathbb{R}\) where the \(x_k\) are fixed.

To conclude, if suffices to prove

\[
\lim_{t \to \pm \infty} e^{-w_i(t)} = 0.
\]

To see this, we remarks, by definition of \(w\) and thanks to the proposition \(2.8\) we have

\[
e^{-w(x)} = \left(e^{-u}\right)^{1-t} \cdot (e^{-u})^t \leq C e^{-v_2\Delta(x)}, \quad \forall x \in \mathbb{R}^r.
\]

where \(v_2\Delta\) is the support function of \(2\Delta\) i.e. \(v_2\Delta(x) = \sup_{p \in 2\Delta} (x, p)\). Hence, we have for all \(p \in 2\Delta\)

\[
v_2\Delta(x) \geq (x, p)
\]

\[
\geq x_i(a_i, p) + \sum_{j=1, j \neq i} x_j(a_j, p)
\]

\[
\geq x_i(a_i, p) + \inf_{p \in 2\Delta} \left(\sum_{j=1, j \neq i} x_j(a_j, p) \right).
\]

Finally, we get

\[
0 \leq e^{-w_i(t)} \leq \hat{C} e^{-t(a_i, p)}, \quad \forall p \in 2\Delta,
\]

where \(\hat{C}\) is a constant independent of \(t\). To conclude, it suffice to remark, thanks to the fact \(0 \in 2\Delta\), there exists a ball centered in 0 with radius \(\delta > 0\) included in \(2\Delta\) and so there exists \(p_1 \in 2\Delta\) such that \((a_i, p_1) > 0\) and \(p_2 \in 2\Delta\) such that \((a_i, p_2) < 0\).

\[\Box\]

Lemma 5.2. The function \(w_i\) has a minimum \(m_t\) in \(x_i \in a_1\)

Proof. This is based on the fact that a convex function on \(\mathbb{R}^r\) which has a critical point has a global minimum. In order to apply this result, we note that \(w_i\) is indeed a convex function as barycenter of the two convex functions \(u\) and \(u^0\) (see...
12 DELGOVE FRANÇOIS

proposition 2.8, to conclude, it suffices to show that $0 \in \nabla w_t(\mathbb{R}^n)$. Indeed, we have:

$$\nabla w_t(a_1) = t \nabla u(a_1) + (1 - t) \nabla u^0(a_1) \quad \text{(thanks to the definition of } w)$$

$$= 2t\Delta^+ + 2 (1 - t) \Delta^+ \quad \text{(proposition 2.8)}$$

$$= 2\Delta^+ \quad \text{(because } 2\Delta^+ \text{ is convex)}$$

and we have $0 \in 2\Delta^+$.

\[\square \]

Lemma 5.3. We have the following property :

$$\exists C > 0, \forall t \in [t_0, 1], m_t \leq C.$$

Before starting the proof, we recall a result concerning the convex domains which will be used in the proof:

Lemma 5.4. [WZ04, Guz75, Gut01] Let Ω be a bounded convex domain in \mathbb{R}^n. Then there is a unique ellipsoid E, called the minimum ellipsoid of Ω, which attains minimum volume among all ellipsoids containing Ω, such that

$$\frac{1}{n} E \subset \Omega \subset E.$$

Let T be a linear transformation with $|T| = 1$, which leaves the center x_0 of E invariant, namely $T(x) = A(x - x_0) + x_0$ for some matrix A, such that $T(E)$ is a ball B_R. Then we have $B_{R/\rho} \subset T(\Omega) \subset B_R$ for two balls with concentrated center.

Now we can begin the proof of the lemma 5.3:

Proof. We set

$$A_k := \{ x \in \mathbb{R}^n / m_t + k \leq w(x) \leq m_t + k + 1 \},$$

And we then have the following elementary properties which come directly from the fact that w is convex and $m_t \leq +\infty$:

- A_k is bounded and for all $k \geq 0$ et $\bigcup_k A_k = a_1$
- $m_t \in A_0$
- $\bigcup_{i=0}^k A_i$ is convex for $k \geq 0$.

Moreover, as u et u^0 are convex, the matrix (u_{ij}) and (u_{ij}^0) are positive and we have an elementary algebraic fact which implies

$$\text{det}(w_{ij}) = \text{det}(tu_{ij} + (1 - t)u_{ij}^0) \geq \text{det}(tu_{ij}) + \text{det}((1 - t)u_{ij}^0),$$

but (u_{ij}^0) is positive then $\text{det}((1 - t)u_{ij}^0) \geq 0$ so

$$\text{det}(w_{ij}) \geq \text{det}(t \cdot u_{ij}) \geq t^r \cdot \text{det}(u_{ij}) \quad \text{(determinant propriety)}$$

$$\geq t^r \frac{4^{r}2^{\text{Card}(\Phi^+)}}{f} \cdot e^d \cdot e^{-w} \quad \text{(equation 10)}$$

where we set

$$d = \inf \{(p, \xi) / p \in 2\Delta^+ - 4\rho P \}$$
and

\[f = \sup \left\{ \prod_{\alpha \in \Phi^+_p} \langle \alpha, p \rangle \mid 2\Delta^+ \right\} \]

(we recall \(f \neq 0 \) because \(\Phi^+_p \) denote the roots in \(\Phi^+ \) which are not orthogonal to \(\Delta^+ \)). Finally, because \(t \in [t_0, 1] \) we can write:

\[\det(w_{ij}) \geq C_0 e^{-m_t} \text{ in } A_0, \]

Using the lemma 5.4, there exists a linear transformation \(y = T(x) \) with \(|T| = 1 \) and leaving the center of the minimal ellipsoid of \(A_0 \) invariant,

\[B_{R/r} \subset T(A_0) \subset B_R, \]

and thus preserving the previous inequality. Moreover, we have

\[R \leq \sqrt{2}rC_0^{-1/2r}e^{m_t/2r}. \]

Indeed, we set the map

\[v : y \in a_1 \mapsto \frac{1}{2}C_0^{-1/r}e^{m_t/r} \left| y - y_t \right|^2 - \left(\frac{R}{r} \right)^2 + m_t + 1 \in \mathbb{R} \]

where \(y_t \) is the center of the minimal ellipsoid of \(A_0 \). A computation gives us that

\[\det(v_{ij}) = C_0 e^{-m_t} \text{ on } T(A_0), \]

and \(v \geq \nu \) on \(\partial T(A_0) \) thus on \(T(A_0) \) thanks to the comparaison principle. In particular, we get

\[m_t \leq \nu_t \leq v(y_t) = -\frac{1}{2}C_0^{-1/r}e^{m_t/r} \left(\frac{R}{r} \right)^2 + m_t + 1. \]

Now, thanks to the convexity of \(w \), we get

\[T(A_k) \subset B_{2(k+1)R}, \]

and

\[\cup_k A_k = a_1. \]

Furthermore, \(T \) is an affine isometry of \(a_1 \) so an isomorphism thus the familly \((T(A_k))_{k \in \mathbb{N}} \) is a cover of \(a_1 \). Now, if we denote \(\omega_r \) the area of the sphere \(S_{r-1} \) then we have

\[\int_{a_1} e^{-w_1} \leq \sum_k \int_{T(A_k)} e^{-w_t} \]

\[\leq \sum_k e^{-m_t-k}|T(A_k)| \]

(since \(\omega \geq -m_t - k \) in \(A_k \) and so in \(T(A_k) \) because \(T \) is an isometry)

\[\leq \omega_r \sum_k e^{-m_t-k}|2(k+1)R|^r, \]

(since \(T(A_k) \subset B_{2(k+1)R} \))

\[= \omega_r \frac{(2R)^r}{e^{m_t}} \sum_k \frac{(k+1)^r}{e^k} \]

\[\leq C e^{m_t/2} \]

(thanks to \(R \leq \sqrt{2}rC_0^{-1/2r}e^{m_t/2r} \)).
where $C > 0$ is a constant independant of t. Finally, we get
\[e^{m_t/2} \geq \frac{1}{C} \int_{a_1} e^{-w} . \]
Moreover, thanks to the equation 10, we have
\[e^{m_t/2} \geq \frac{1}{C} \int_{a_1} \det(u_{ij}) \cdot e^{(\nabla u(x), \xi)} \prod_{\alpha \in \Phi^+_P} (\alpha, \nabla u_t(x) + 4t_{P_P}) \frac{d\alpha}{4^{r}2^{\text{Card}(\Phi^+_P)}} \]
\[= \frac{1}{C} \int_{2\Delta^+} e^{((p-4P_P), \xi)} \prod_{\alpha \in \Phi^+_P} (\alpha, p) \frac{d\alpha}{4^{r}2^{\text{Card}(\Phi^+_P)}} dp =: \hat{C} \]
where \hat{C} is independant of t. Finally we get
\[m_t \leq C, \]
where $C > 0$ is a constant independant of t. □

Lemma 5.5. Let $x^t = (x^t_1, \cdots, x^t_n)$ be the minimal point of ν_t. Then
\[|x^t| \leq C, \]
where C is a uniform constant.

Proof. We argue by the absurd : we suppose therefore that
\[\forall C > 0, \exists t \in [t_0, 1], |x^t| > C. \]
Recall that by equation 10 we have
\[\int_{a_1} e^{-w_t} dx = \beta, \]
for some constant β. Recall also that $|Dw| \leq d_0 := \sup\{|x| / x \in 2\Delta^+\}$ so there exists $R > 0$ independent of t that $\inf\{w(x) / x \in \partial B(x_t, R)\} \geq m_t + 1$. Now, by convexity, we have
\[w_t \geq \frac{1}{R} |x - x_t| + m_t, \forall x \in a_1 \setminus B(x_t, R). \]
So for any $\varepsilon > 0$, there exists R_ε independent of t such that
\[\int_{a_1 \setminus B(x_t, R_\varepsilon)} e^{-w_t(x)} dx \leq C \int_{a_1 \setminus B(x_t, R)} e^{-|x-x_t|} dx \leq \varepsilon. \]
We fix ε and δ which verify the property above. We recall that we suppose $\forall C > 0, \exists t \in [t_0, 1], |x^t| > C$. As ∇u^0 is a differomorphism of a^+ into $2P^+$ and $0 \in 2P^+$, there exists $t \in [t_0, 1]$ such that
\[\frac{\partial u^0}{\partial \zeta}(x) > \frac{1}{2} a_0, \forall x \in B(x_t, \delta) \]
where $\zeta = x_t/|x_t|$ and $a_0 = \inf\{|x| / x \in 2\partial P\}$. We obtain
\[\int_{B(x_t, \delta)} \frac{\partial u}{\partial \zeta}(x) e^{-w_t} dx > 1/4 a_0 \beta. \]
(We recall that
\[\int_{a_1} e^{-w_t(x)} \, dx =: \beta \]
is independant of \(t \).) Thus for \(\varepsilon \) small enough,
\[\int_{a_1} \frac{\partial u}{\partial \zeta}(x)e^{-wt} \, dx > 0. \]
Now, let’s note that for \(\zeta \in a_1 \), we have
\[\int_{a_1} \frac{\partial u}{\partial \zeta} e^{-wt} \, dx = 0, \]
Indeed, we have, thanks to the proposition \[3\] that :
\[0 = \int_{\Delta^+} \langle p - 2\rho_p, \zeta \rangle e^{-(2p-4\rho_p, \xi)} \prod_{\alpha \in \Phi^+_p} \langle \alpha, p \rangle dp \]
\[= C \int_{a_1} (\nabla u_t(x), \xi) e^{-(\nabla u(x), \zeta)} \prod_{\alpha \in \Phi^+_p} \langle \alpha, \nabla u_t(x) + 4t\rho_p \rangle MA(\nabla u_t)(x) \, dx \]
\[= C \int_{a_1} (\nabla u_t(x), \zeta) e^{-w_t(x)} \, dx \]
\[= C \int_{a_1} \frac{\partial u_t}{\partial \zeta} e^{-w_t(x)} \, dx. \]
\[= C \frac{1-t}{t} \int_{a_1} \frac{\partial u_0^0}{\partial \zeta}(x)e^{-w_t(x)} \, dx - C \frac{1}{t} \int_{a_1} \frac{\partial u_t}{\partial \zeta} e^{-w_t(x)} \, dx \]
\[= C \frac{1-t}{t} \int_{a_1} \frac{\partial u_0^0}{\partial \zeta}(x)e^{-w_t(x)} \, dx. \]
So, we have :
\[\int_{a_1} \frac{\partial u_0^0}{\partial \zeta}(x)e^{-w_t(x)} \, dx = 0, \forall \zeta \in a_1. \]
We reach a contradiction. This complete the proof. \(\square \)

We now conclude thanks to the following lemma :

Lemma 5.6. Let \(\psi_t \) solution of the equation \[4\] where \(t \in [t_0, 1] \). Then
\[\sup_M \psi \leq C, \]
for a constant \(C \) independent of \(t \).

Proof. By density and by \(K \)-invariance, it is sufficient to show
\[\sup_{y \in a_1} \psi|_{P/H}(\exp(y)H) \leq C \]
By convexity of \(u_t \), we have
\[u_t(0) + (\nabla u_t(y), y) \geq u_t(y), \forall y \in a_1, \]
and by definition of $v_{2\Delta}$ and the fact $\nabla u_t(a_1) = 2\Delta$, we have

$$v_{2\Delta}(y) + u_t(0) \geq u_t(y).$$

Now, we have

$$\psi_t(\exp(y)H) = u_t(y) - u_0(y) \leq v_{2\Delta}(y) + u_t(0) - u_0(y) \leq a + u_t(0) \quad \text{(because $v_{2\Delta} - u_0$ is bounded)}.$$

So it suffices to show $u_t(0)$ is upper bounded by a constant independent of t.

For this, let x^t the minimal point of w^t. As $Dw(a_1) = 2\Delta$ which is bounded, we have

$$|\nabla w(R^n)| \leq d_0 := \sup \{|x| / x \in \Delta\},$$

and so

$$|w(0) - w(x^t)| \leq d_0 \cdot |x^t|.$$

Moreover, thanks to the lemma 5.5 we have $C > 0$ independent of t such that $|x^t| \leq C$, that implies

$$|w(0) - w(x^t)| \leq d_0 \cdot C.$$

By the lemma 5.3 we have $w(x^t) = m_t \leq \tilde{C}$ where \tilde{C} is a constant independent of t. So we have

$$w(0) \leq \tilde{C} + d_0 \cdot C,$$

but $w = tu + (1 - t)u^0$ so

$$t \cdot u_t(0) \leq \tilde{C} + d_0 - (1 - t)u^0(0)$$

hence

$$tu_t(0) \leq \theta,$$

where $\theta := \tilde{C} + d_0 - \sup \{(1 - t - 0)u^0(0), 0\}$. Finally, As we have taken $t \in [t_0, 1]$, we thus get

$$u_t(0) \leq \Theta,$$

where Θ is independent of t. \hfill \Box

6. Acknowledgment

We warmly thank T. Delcroix for having pointed out to us that the Kähler-Ricci soliton in wonderful compactification of groups are all trivial.

References

[Aub78] Thierry Aubin. Equations du type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. (2), 1978.

[Del15] Thibaut Delcroix. Kähler-Einstein metrics on group compactifications. PhD thesis, Université Grenoble Alpes, 2015.

[Del16] T. Delcroix. K-Stability of Fano spherical varieties. ArXiv e-prints, August 2016.

[Dem] Jean-Pierre Demailly. Complex analytic and differential geometry. Notes de cours.

[Gut01] C.E. Gutierrez. The Monge—Ampère Equation. Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser Boston, 2001.

[Guz75] M. Guzmán. Differentiation of Integral in \mathbb{R}^n. Lecture notes in mathematics. Springer-Verlag, 1975.

[Ham88] Richard S. Hamilton. The Ricci flow on surfaces. In Mathematics and general relativity (Santa Cruz, CA, 1986), volume 71 of Contemp. Math., pages 237–262. Amer. Math. Soc., Providence, RI, 1988.

[Hua17] H. Huang. Kähler-Ricci flow on homogeneous toric bundles. ArXiv e-prints, 2017.
[Kno91] Friedrich Knop. The luna-vust theory of spherical embeddings. 01 1991.

[Pas06] Boris Pasquier. Fano horospherical varieties. PhD thesis, Université Joseph-Fourier - Grenoble I, 2006.

[Pas09] Boris Pasquier. On some smooth projective two-orbit varieties with picard number 1. Mathematische Annalen, 344(4):963–987, 2009.

[Per] N. Perrin. On the geometry of spherical varieties. ArXiv e-prints.

[PS10] Fabio Podestà and Andrea Spiro. Kähler-Ricci solitons on homogeneous toric bundles. J. Reine Angew. Math., 642:109–127, 2010.

[Tim] D.A. Timashev. Homogeneous Spaces and Equivarient Embeddings. Encyclopaedia of Mathematical Sciences.

[TZ00] Gang Tian and Xiaohua Zhu. Uniqueness of kähler-ricci solitons. Acta Mathematica, 184(2):271–305, 2000.

[TZ02] G. Tian and X. Zhu. A new holomorphic invariant and uniqueness of Kähler-Ricci solitons. Commentarii Mathematici Helvetici, 77(2):297–325, 2002.

[WZ04] Xu-Jia Wang and Xiaohua Zhu. Kähler–ricci solitons on toric manifolds with positive first chern class. Advances in Mathematics, 188(1):87 – 103, 2004.

[Yau78] Shing-Tung Yau. On the ricci curvature of a compact kähler manifold and the complex monge-ampère equation, i. Communications on Pure and Applied Mathematics, 31(3):339–411, 1978.

[Zhu12] Xiaohua Zhu. Kähler-Ricci flow on a toric manifold with positive first Chern class. In Differential geometry, volume 22 of Adv. Lect. Math. (ALM), pages 323–336. Int. Press, Somerville, MA, 2012.