Article

Insight into the Systematics of Microfungi Colonizing Dead Woody Twigs of *Dodonaea viscosa* in Honghe (China)

Dhanushka N. Wanasinghe 1,2,3, Peter E. Mortimer 1,2,* and Jianchu Xu 1,2,3,*

1 CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China; dnadeeshan@gmail.com
2 World Agroforestry, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, China
3 Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County 654400, Yunnan, China
* Correspondence: peter@mail.kib.ac.cn (P.E.M.); J.C.Xu@cgiar.org (J.X.); Tel.: +86-158-8784-3793 (P.E.M.); +86-138-0870-8795 (J.X.)

Abstract: Members of *Dodonaea* are broadly distributed across subtropical and tropical areas of southwest and southern China. This host provides multiple substrates that can be richly colonized by numerous undescribed fungal species. There is a severe lack of microfungal studies on *Dodonaea* in China, and consequently, the diversity, phylogeny and taxonomy of these microorganisms are all largely unknown. This paper presents two new genera and four new species in three orders of Dothideomycetes gathered from dead twigs of *Dodonaea viscosa* in Honghe, China. All new collections were made within a selected area in Honghe from a single *Dodonaea* sp. This suggests high fungal diversity in the region and the existence of numerous species awaiting discovery. Multiple gene sequences (non-translated loci and protein-coding regions) were analysed with maximum likelihood and Bayesian analyses. Results from the phylogenetic analyses supported placing *Haniomyces dodonaeae* gen. et sp. in the Teratosphaeriaceae family. Analysis of *Rhytidhysteron* sequences resulted in *Rhytidhysterion hongheense* sp. nov., while analysed Lophiostomataceae sequences revealed *Lophiomurispora hongheensis* gen. et sp. nov. Finally, phylogeny based on a combined dataset of pyrenochaeta-like sequences demonstrates strong statistical support for placing *Quixadomyces hongheensis* sp. nov. in Parapyrenochaetaceae. Morphological and updated phylogenetic circumscriptions of the new discoveries are also discussed.

Keywords: Ascomycota; Asexual morph; Capnodiales; Greater Mekong Subregion; Hysteriales; Pleosporales; Sexual morph; Yunnan

1. Introduction

Fungi are cosmopolitan, featuring a broad geographic distribution and high level of diversity compared to plants and other organisms [1]. 140,000 fungal species have been listed in Kirk [2], and one recent overview of global fungi and fungus-like taxa by Wijayawardene et al. [3] listed approximately 100,000 known taxa. However, both numbers represent less than 5% of global fungal estimates [4,5]. There is a need to bridge the gap between our understanding of these missing fungi and their diversity. Numerous diverse habitats and substrates remain unexplored. It has also been observed that several countries and regions are bountiful repositories of many missing fungi, such as northern Thailand [6]. Despite this, fungi in Asia are relatively understudied [5]. Even though the Greater Mekong Subregion (GMS) hosts a high level of biodiversity and forms an integral part of the Indo-Burma Biodiversity Hotspot, fungi from this region largely remain a mystery. Yunnan Province, China, as part of the GMS, is home to an extremely wide variety of ecosystems. Mycologists working in Yunnan have recently focused their attention on abundant “less-researched habitats” for fungal occurrences, including caves, forests, grasslands, lakes, karst landscapes and mountains; accordingly, there is a rich body of literature documenting novel discoveries across the region [7–19].
The Honghe Hani and Yi Autonomous Prefecture is in south-eastern Yunnan Province. The region features a mountainous topography, numerous limestone deposits and a south-eastward decreasing elevation gradient. Owing to its abundant precipitation and heat as well as its dramatic altitudinal range and varied flora, this region harbours a rich diversity of plant species [20,21]. Along the altitudinal gradient, vegetation from lower to higher elevations range from tropical and montane rain forests to monsoon evergreen, montane mossy evergreen and summit mossy evergreen broad-leaved forests [22]. This complex topography and climatic diversity are both significant contributors to local biodiversity richness [23]. Among publications documenting fungal encounters across Yunnan Province, ascomycetes are critically neglected when compared to the amount of research on basidiomycetes [24]. Regrettably, studies on microfungi in Honghe are virtually non-existent. Except Marasinghe et al. [25], we could not find a single detailed account of microfungi in Honghe based on both morphological and phylogenetic analyses.

Dodonaea viscosa is a perennial evergreen woody shrub belonging to the family Sapindaceae. It is drought- and pollution-resistant as well as capable of growing on poor soils and rocky sites. The plant can also easily inhabit open areas and secondary forests [26,27]. A fast-growing plant, it typically grows 1 to 3 m in height but on rare occasions can reach up to 8 m [28]. *Dodonaea viscosa* is believed to have originated from Australia [29], though it grows throughout tropical and subtropical countries, including the African, Asian, Northern American and Southern American continents [30–32]. *Dodonaea viscosa* is effective at performing sand dune fixation and controlling coastal erosion since its roots function as excellent soil binders [33]. It can also be used to reclain marshes. It is also grown as an ornamental plant owing to its shiny foliage and pink–red winged fruit [33]. Moreover, it is a well-known topic in environmental impact studies to determine the growth and yield of crops based on the presence of *D. viscosa* [27,34] as well as study its capacity to increase resilience to pollution [35,36] and drought [37]. In traditional medicine systems, plant parts such as the stem, leaves, seeds, roots, bark and aerial parts are used for various treatments [38]. Hossain [39] reported that extract obtained from *D. viscosa* has shown significant antidiabetic, antimicrobial, insecticidal, antioxidant, cytotoxic, antifertility, anti-inflammatory, analgesic, anti-ulcer, antispasmodic, anti-diarrheal and detoxification properties [27].

This study is the second in a series comprising an exhaustive taxonomic effort to document the microfungi of Yunnan Province [24]. In this study, we collected fresh fungal specimens from dead woody twigs of *Dodonaea* species at the Centre for Mountain Futures (CMF), an applied research centre jointly managed by World Agroforestry (ICRAF) and the Kunming Institute of Botany, Chinese Academy of Sciences (CAS), in Honghe County of the Honghe Hani and Yi Autonomous Prefecture. Using morphology and multi-gene phylogenetic evidence retrieved from the gathered ascomycetes, we characterized two new genera and four new species in the orders Capnodiales, Hysteriales and Pleosporales from dead twigs of *Dodonaea viscosa* in Honghe.

2. Materials and Methods

2.1. Herbarium Material and Fungal Strains

Fresh fungal materials were gathered from dead twigs of *Dodonaea viscosa* at CMF in Honghe County (Yunnan Province, China UTM/WGS84: 48 Q 216849–217075 E, 2592645–2592856 N, 600–750 m above sea level) during the dry season (April 2020). The local environment is characterized by poor eroded soils, steep valleys and a subtropical monsoon climate. Specimens were transported to the laboratory in Ziploc bags. Single spore isolation was conducted in accordance with methods described in Wanasinghe et al. [40]. Germinated spores were individually placed on potato dextrose agar (PDA) plates and grown at 20 °C in daylight. Dry herbarium materials were stored in the herbarium of Cryptogams Kunming Institute of Botany, Academia Sinica (KUN-HKAS). Living cultures were deposited at the Kunming Institute of Botany Culture Collection (KUMCC), Kunming, China and duplicated at China General Microbiological Culture Collection Centre (CGMCC). MycoBank numbers
were registered as outlined in MycoBank (http://www.MycoBank.org accessed on 11 November 2020).

2.2. Morphological Observations

The morphology of external and internal macro-/micro-structures were observed as described in Wanasinghe et al. [24]. Images were captured with a Canon EOS 600D digital camera fitted to a Nikon ECLIPSE Ni compound microscope. Measurements were made with the Tarosoft (R) Image Frame Work program, and images used for figures were processed with Adobe Photoshop CS5 Extended version 10.0 software (Adobe Systems, San José, CA, USA).

2.3. DNA Extraction, PCR Amplifications and Sequencing

The extraction of genomic DNA was performed in accordance with the methods of Wanasinghe et al. [24], using the Biospin Fungus Genomic DNA Extraction Kit-BSC14S1 (BioFlux, P.R. China) following the instructions of the manufacturer. The reference DNA for the polymerase chain reaction (PCR) was stored at 4 °C for regular use and duplicated at −20 °C for long-term storage. The primers and protocols used for the amplification are summarized in Table 1. The amplified PCR fragments were then sent to a private company for sequencing (BGI, Ltd. Shenzhen, P.R. China).

Table 1. Genes/loci used in the study with PCR primers, references and protocols.

Locus	Primers	PCR: Thermal Cycles: (Annealing temp. in Bold)	References
act	ACT-512F ACT2Rd	(96 °C: 120 s, 52 °C: 60 s, 72 °C: 90 s) × 40 cycles	[41,42]
	TUB2Fw TUB4Rd	(94 °C: 30 s, 56 °C: 45 s, 72 °C: 60 s) × 35 cycles	[43]
cal	CAL-235F CAL2Rd	(96 °C: 120 s, 50 °C: 60 s, 72 °C: 90 s) × 40 cycles	[42,44]
ITS	ITS5 ITS4	(95 °C: 30 s, 55 °C:50 s, 72 °C: 90 s) × 40 cycles	[45]
LSU	LR0R LR5	(95 °C: 30 s, 55 °C:50 s, 72 °C: 90 s) × 35 cycles	[46,47]
rpb2	fRPB2-5f fRPB2-7cR	(94 °C: 60 s, 58 °C: 60 s, 72 °C: 90 s) × 40 cycles	[48]
	fRPB2-414R	(96 °C: 120 s, 49 °C: 60 s, 72 °C: 90 s) × 40 cycles	[49]
SSU	NS1 NS4	(95 °C: 30 s, 55 °C:50 s, 72 °C: 90 s) × 35 cycles	[45]
tef1	EF1-983F EF1-2218R	(95 °C: 30 s, 55 °C:50 s, 72 °C: 90 s) × 35 cycles	[50,51]
	EF1-728F EF-2	(96 °C: 120 s, 52 °C: 60 s, 72 °C: 90 s) × 40 cycles	[41,52]

a act: actin; *btub*: β-tubulin; *cal*: calmodulin; *ITS*: part of rDNA 18S (3’ end), the first internal transcribed spacer (ITS1), the 5.8S rRNA gene, the second ITS region (ITS2), and part of the 28S rRNA (5’ end); *LSU*: large subunit (28S); *rpb2*: RNA polymerase II second largest subunit; *SSU*: small subunit rDNA (18S); *tef1*: translation elongation factor 1-alpha gene. *b* fRPB2-5f and fRPB2-414R were used only for Teratosphaeriaceae analysis. *c* All the PCR thermal cycles include initiation step of 95 °C: 5 min, and final elongation step of 72 °C: 10 min and final hold at 4 °C.

2.4. Molecular Phylogenetic Analyses

2.4.1. Sequence Alignment

Sequences featuring a high degree of similarity were determined from a BLAST search to identify the closest matches with taxa in Dothideomycetes and recently published data [49,53–56]. Initial alignments of the acquired sequence data were first completed using MAFFT v. 7 (http://mafft.cbrc.jp/alignment/server/index.html accessed on 18 January 2021) [57,58] and manually clarified in BioEdit v. 7.0.5.2 when indicated [59].
2.4.2. Phylogenetic Analyses

Single-locus data sets were scanned for topological incongruences between loci for members of the analyses. Conflict-free alignments were concatenated into a multi-locus alignment that underwent maximum-likelihood (ML) and Bayesian (BI) phylogenetic analyses. Evolutionary models for BI and ML were selected independently for every locus using MrModeltest v. 2.3 [60] under the Akaike Information Criterion (AIC) implemented in PAUP v. 4.0b10.

The CIPRES Science Gateway platform [61] was used to perform RAxML and Bayesian analyses. ML analyses were made with RAxML-HPC2 on XSEDE v. 8.2.10 [62] employing the GTR+GAMMA swap model with 1000 bootstrap repetitions.

MrBayes analyses were performed setting GTR+I+GAMMA for 2–5 million generations, sampling every 100 generations and ending the run automatically when standard deviation of split frequencies dropped below 0.01 with a burnin fraction of 0.25. ML bootstrap values equal or greater than 60% and Bayesian posterior probabilities (BYPs) greater than 0.95 were placed above each node of every tree.

Phylograms were visualized with FigTree v1.4.0 program [63] and reassembled in Microsoft PowerPoint (2007) and Adobe Illustrator® CS5 (Version 15.0.0, Adobe®, San Jose, CA, USA). Finalized alignments and trees were deposited in TreeBASE, submission ID: S27699 (http://purl.org/phylo/treebase/phylows/study/TB2: S27699).

3. Results

3.1. Global Checklist of Fungi on Dodonaea Viscosa

Information for the global checklist (Table 2) was retrieved from the Agriculture Research Service Database generated by the United States Department of Agriculture (USDA) [64], related books and research papers. This checklist includes fungal species associated with Dodonaea viscosa and the countries from which they were recorded.

Phylum and Class	Order	Family	Species	Country	References	
Ascomycota	Dothideomycetes	Botryosphaeriales	Lasiodiplodia iranensis	Australia	[65]	
			Macrohomophora dodonaeae	India	[66]	
			Macrophomina phaseolina	Arizona	[67]	
Capnodiaceae	Capnodiaceae	Mycosphaerellaceae	Cercospora dodonaeae	India	[68]	
			Pseudocercospora dodonaeae	New Zealand	[73–78]	
			Pseudocercospora mitteriana	China	[79]	
			Macrophoma dodonaeae	India	[66]	
			Macrophomina phaseolina	Arizona	[67]	
			Cercospora dodonaeae	India	[68]	
			Pseudocercospora dodonaeae	New Zealand	[73–78]	
			Pseudocercospora mitteriana	China	[79]	
Hysteriales	Hysteriaceae	Teratosphaeriaceae	Hanionyces dodonaeae	China	This study	
incertae sedis		Pseudoperisporiaceae	Episphaerella dodonaeae	Dominican Republic	This study	
			incertae sedis	Mycotyphryidium pakistanicum	Pakistan	[80]
			incertae sedis	Mycotyphryidium rosselianum	Pakistan	[80]
			Tryblidiaria pakistani	Pakistan	[80]	
			Coniothyriaceae	Coniothyrium sp.	Venezuela	[84]
			Corynesporascales	Corynespora cassicola	India	[85]
			Didymosphaeriaceae	Didymosphaeria obtisia	Pakistan	[80]
			Leptosphaeriaceae	Leptosphaeria dodonaeae	Eritrea	[86]
			Lophiostomataceseae	Lophomurispora hongheensis	China	This study
			Parapyrenochaetaceae	Quixadomycy pseudolongipes	China	This study
			Pleosporascales	Pleospora dodonaeae	Cyprus	[87]
			Valsariaceae	Valsaria rubrica	Pakistan	[80]
Lecanoromycetes			Stictidaeae	Stictis marathwadensis	India	[88,89]
Leotiomyces	Helotiales	Ostropales	Pleospora	Cyprus	[87]	
			Erysipheaeae	Erysipheaeae	Iraq	[90]
			Valarsiaceae	Valarsiaceae	Israel	[90]
			Leotiomyces	South Africa	[90]	
Table 2. Cont.

Phylum and Class	Order	Family	Species	Country	References
Sordariomycetes	Diaporthales	Cytosporaceae	Cytospora sp.	Zimbabwe	[91]
	Glomerellales	Glomerellaceae	Colletotrichum gloeosporioides	Ethiopia	[92]
	Meliolales	Meliolaceae	Meliola lyoni	Germany	[93]
	Hypocreales	Nectriaceae	Calonectria cylinodera	New Zealand	[74,90]
			Fusarium solani	South Africa	[94]
		Plectosphaerellaceae	Verticillium dahliae	New Zealand	[74]
Coronophorales	Scortechiniaeae	Pythiaceae	Globisporangium debaryanum	USA	[117]
Amphiphausiales	Sporocadaceae	Schizoporiae	Phaeoacremonium italicum	Australia	[109]
Togniniales	Togniniaceae	Polyporales	Hyphoderma	Hawaii	[73]
Basidiomycota	Agaricales	Marasmiaceae	Campanella junghuhnii	Hawaii	[110]
	Hymenochaetales	Hymenochaetaceae	Rhizoctonia sp.	Italy	[112]
	Cantharellales	Ceratobasidiaceae	Arambaria cognata	Uruguay	[113]
		Hymenochaetaceae	Peltigera aurantiaca	Australia	[114]
		Schizoporiae	Phaeoacremonium alvei	Australia	[105-108]
		Hyphoderma	Phaeoacremonium italicum	Australia	[109]
	Polyporales	Hyphodermaeae	sphaerogedinulatum	Hawaii	[110]
Oomycota	Pucciniales	incertae sedis	Uredio dodonae	Indonesia	[117]
	Peronosporaceae	Pythiaceae	Phytophthora drechsleri	Australia	[118-120]
Peronosporomycetes			Phytophthora nicotianae	Italy	[121-123]
			Phytophthora palmivora	Italy	[123]
			Globisporangium debaryanum	New Zealand	[73,74]
			Globisporangium irregular	New Zealand	[74]
			Globisporangium ultimum	New Zealand	[73]
			Pythium inflatum	New Zealand	[73,74]
			Pythium sp.	New Zealand	[73]
				USA	[75]

3.2. Phylogenetic Analyses

Four phylogenetic analyses were performed using the acquired sequences from GenBank (Table 3). The first is a phylogenetic overview of the genera treated in Teratosphaeriaceae (Figure 1), while the remaining three alignments represent the species in Rhytidiolithteron (Figure 2), an overview of the phylogeny of the genera treated in Lophiostomataceae (Figure 3) and Parapyrenochaeta, and allied genera in Pleosporineae (Figure 4). Other details related to ML and BI analyses from different datasets are presented in Table 4. The acquired phylogenetic results are discussed where applicable in the notes below.
| Species | Strain | SSU | LSU | act | cal | ITS | rpb2 | tef1 | btub | Reference |
|----------------------------------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|----------------|
| Acidiella bohemica | CBS 132720 | - | | | | | | | | [49] |
| Acidiella parva | CMW 10189 | - | | | | | | | | [49] |
| Acrodictum crateriforme | CPC 11509 | - | GU214682 | GU320413 | KX289011 | GU214682 | KX288404 | GU384425 | | [124, 125] |
| Acrodontium pigmentosum | CBS 111111 | - | KX286963 | - | - | KX287257 | KX288412 | - | | [125] |
| Afloldia vorosii | CBS 145501 | MK589346 | MK589354 | - | - | JN859336 | - | MK599320 | | [126] |
| Alpestrisphaeria jonesii | GZCC 16-0021 | KX685775 | KX687753 | - | - | KX687757 | - | KX687759 | | [128] |
| Alpestrisphaeria terricola | Vi0216 | HI160808 | - | - | - | MK703662 | - | | | [127] |
| Alpestrisphaeria terricola | SC-12H | JX885749 | JX885750 | - | - | JN629300 | - | | | [128] |
| Almocolephoma cassiae | MFLUCC 17-2283 | NG_065775 | NG_066307 | - | - | NR_163330 | MK438494 | MK36041 | | [127] |
| Angustimassarina actina | MFLUCC 14-0505 | NG_063573 | KP888637 | - | - | NR_138406 | - | KRO75168 | | [129] |
| Angustimassarina quercicola | MFLUCC 14-0506 | NG_063574 | KP888638 | - | - | KP991333 | - | KRO75169 | | [129] |
| Angustimassarina rosarium | MFLUCC 17-2155 | MT226662 | MT214543 | - | - | MT310590 | MT394678 | MT39426 | | [127] |
| Aperidiella strumelloidea | CBS 114484 | - | KF937229 | - | - | - | KF937266 | - | | [49] |
| Aracuasphearia foliorum | CPC 33084 | - | MH327829 | - | - | MH327793 | - | | | [131] |
| Astragalica sasayae | MFLUCC 17-0832 | MG829098 | MG828986 | - | - | NR_157504 | MG829248 | MG829193 | | [130] |
| Austrotricana associata | CPC 13119 | - | KF901824 | KF903526 | KF902528 | KF901507 | KF902177 | KF903087 | | [49] |
| Austrotricana sp. | CPC 4313 | - | KF937183 | KF903460 | KF902527 | KF904198 | KF902186 | KF903086 | | [49] |
| Austrostigmidium mastodiae | MA 18215 | NG_057063 | - | - | - | - | | | | [132] |
| Austrostigmidium mastodiae | MA 18213 | - | KF937262 | - | - | - | KF937252 | - | | [49] |
| Batcheloromyces alistikari | CPC 12730 | - | KF937220 | - | - | - | KF937252 | - | | [49] |
| Batcheloromyces leucadendri | CPC 1838 | - | KF937221 | - | - | - | KF937252 | - | | [49] |
| Batcheloromyces sedgefeldii | CPC 3026 | - | KF937222 | - | - | - | KF937254 | - | | [49] |
| Biappendiculispora japonica | KT 573 | AB618986 | AB619005 | - | - | LC010728 | - | LC010744 | | [129, 133] |
| Biappendiculispora japonica | KT 686-1 | AB618987 | AB619006 | - | - | LC010729 | - | LC010745 | | [129, 133] |
| Camarosporidella caragunicola | MFLUCC 17-0726 | MF434200 | MF434212 | - | - | MF434125 | - | MF434388 | | [134] |
| Camarosporidella elongata | AFTOL-ID 1568 | DQ678009 | DQ678061 | - | - | DQ677957 | DQ677904 | - | | [135] |
| Camarosporidella effimarii | MFLUCC 17-0207 | MF434321 | MF434233 | - | - | MF434145 | MF434488 | - | | [134] |
| Camarosporula perisanensis | CPC 3350 | JF770460 | - | - | - | KF937255 | - | | [49, 136] |
| Capulatispora sagittiformis | KT 1934 | AB618693 | AB368267 | - | - | AB368268 | LC010756 | - | | [129, 133] |
| Catenulostroma hermanusense | CPC 18276 | KF902089 | - | - | - | KF902197 | - | | [49] |
| Catenulostroma protearum | CPC 15370 | KF902090 | - | - | - | KF902198 | - | | [49] |
| Coelodictiosporum pseudopogonii | MFLUCC 13-0451 | KRO25862 | - | - | KRO25858 | - | | | [137] |
| Coelodictiosporum rosarium | MFLUCC 17-0776 | NG_063674 | NG_059056 | - | - | MG708875 | - | MG708915 | | [130] |
| Conidiomyces palmarum | CBS 400.71 | EU754054 | JX681084 | - | - | MH860184 | KT389592 | - | KT389792 | [138] |
| Constantimassarina macranesis | TRN 440 | - | KF310005 | - | - | NR_164011 | KF310081 | - | | [139] |
| Constantimassarina minimus | CBS 118766 | - | KF310003 | - | - | NR_144957 | KF310077 | - | | [139] |
Species	Strain	GenBank Accession Numbers	Reference
Crassicylpeus aquaticus	KH 91	LC312469 LC312527	[140]
Crassicylpeus aquaticus	KH 104	LC312470 LC312528	[140]
Crassicylpeus aquaticus	KH 185	LC312471 LC312529	[140]
Crassicylpeus aquaticus	KT 970	LC312472 LC312530	[140]
Desertiserpentica hydei	SQUCC 15092	MW077163 MW077156	[54]
Deversia appanasi	CPC 19033	JX069859	-
Deversa strobilae	X1037	GL301810	EU436763
Dimorphotis braschiotae	CPC 22679	KF777213	-
Elatalcosomyces elastici	CCFFEE 5513	KJ508994	-
Euteratosphaeria verrucosiafricana	CPC 11167	-	DQ303056
Flabellascoma aquaticum	KUMCC 15-0258	MN304832 NG_068307	MN328895
Flabellascoma cyanidiola	KT 2034	LC312473 LC312531	LC312589
Flabellascoma fusiforme	MFLUCC 16-1584	NG_068308	MN328898
Flabellascoma minimum	KT 2013	LC312474 LC312532	LC312589
Flabellascoma minimum	KT 2040	LC312475 LC312533	LC312589
Flabellascoma unisepitata	MFLUCC 15-0765	NG_061234 NG_059659	-
Friedmaniomyces endolithicus	CCFFEE 5199	KF310007	-
Friedmaniomyces endolithicus	CCFFEE 5283	KF310006	-
Glionopsid calami	MFLUCC 15-0739	NG_063621 NG_059715	MN328895
Gloaniopsis calami	MFLUCC 10-0927	MN577426 MN577415	MN328898
Gloaniopsis panreus	CBS 112415	FJ161134 FJ161173	FJ161133
Guttulispora craetagi	MFLUCC 13-0442	KF899125 KP888639	KP899134
Guttulispora craetagi	MFLUCC 14-0993	KF899126 KP888640	KP899135
Haniomyces dodonaeae	KUMCC 20-0220	MW264221 MW264192 MW256802	MW265928
Haniomyces dodonaeae	KUMCC 20-0221	MW264222 MW264192 MW256803	MW265928
Hortaea thailandica	CPC 16651	KP902125	KP902026
HYperniun angustatum	MFLUCC 16-0623	MH535885 MH535893	MH535875
Hypocondena indica	NFCC 4146	-	MN68546
Hypoleurostis queenslandica	BRIP 61322b	NG_059766	KP899134
Incertomyces porrigens	CCFFEE 5393	KF310009	KF310057
Lapidomyces hispanicus	TRN126	KF310016	-
Lentistoma bipolare	HKUCC 10069	LC312476 LC312534	LC312592
Lentistoma bipolare	HKUCC 10110	LC312477 LC312535	LC312592
Lentistoma bipolare	HKUCC 8277	LC312478 LC312536	LC312594
Lentistoma bipolare	KT 2415	LC312483 LC312541	LC312599
Lentistoma bipolare	KT 3056	LC312484 LC312542	LC312600

This table continues with similar entries for other species and their associated GenBank Accession Numbers.
Table 3. Cont.

Species	Strain	SSU GenBank Accession Numbers	LSU GenBank Accession Numbers	GenBank Accession Numbers	Reference
Leptoparies palmarum	KT 1653	LC312485	LC312543	-	LC312514
Leptosphaeria conoida	CBS 616.75	JF740099	JF740279	-	JF740201
Leptosphaeria doliciom	CBS 505.75	NG_062778	NG_068574	-	NR_155309
Lophiophilchrysum helichrysi	MFLUCC 15-0701	KT333437	KT333436	-	KT333435
Lophiophaea paramacrostoma	MFLUCC 11-0463	KF899122	KP888636	-	KF887865
Lophiomurispora hongheensis	KUMCC 20-0217	MW264225	MW264195	-	MW264216
Lophiomurispora hongheensis	KUMCC 20-0223	MW264226	MW264196	-	MW264217
Lophiomurispora hongheensis	KUMCC 20-0216	MW264227	MW264197	-	MW264218
Lophiomurispora hongheensis	KUMCC 20-0219	MW264228	MW264198	-	MW264219
Lophiomurispora hongheensis	KUMCC 20-0224	MW264229	MW264199	-	MW264220
Lophiophacus winterti	KT 740	AB613699	AB619017	-	AB619018
Lophiophacus winterti	KT 764	AB618700	AB619018	-	AB619018
Lophiostoma caulium	CBS 623.86	GU296163	GU301833	-	GU301833
Lophiostoma macrostomum	KT 635	AB521731	AB433273	-	AB433273
Lophiostoma multiseptatum	JCM 17668	AB616864	AB619003	-	AB619003
Lophiostoma multiseptatum	MAFF 239451	AB616855	AB619004	-	AB619004
Lophiostoma roae	TASM 6115	NG_065145	NG_069558	-	NG_069558
Lophiostoma semilibersum	KT 828	AB616966	AB619014	-	AB619014
Massearina cistii	CBS 266.62	AB797249	AB807539	-	AB807539
Massearia eburnea	CBS 473.64	GU296170	GU301840	-	GU301840
Meristemomyces frigidum	CCFEE 5457	GU250389	GU371791	-	GU371791
Meristemomyces frigidum	CCFEE 5507	GU250389	GU371791	-	GU371791
Meristemomyces frigidum	CCFEE 5492	-	-	-	-
Myrgetopodella corymbia	CCFEE 14640	-	-	-	-
Neocatenulostroma albus	CBS 110038	-	-	-	-
Neocatenulostroma microporum	CPC 1960	-	-	-	-
Neocatulostroma frigidus	CCFEE 10202	-	-	-	-
Neophaeothecoidea proteae	CPC 2831	-	-	-	-
Neopyrenochaeta acicola	CBS 812.95	GQ387603	GQ387603	-	GQ387603
Neopyrenochaeta asiatica	CBS 80134	GQ387542	GQ387542	-	GQ387542
Neopyrenochaeta fragariae	CBS 142394	MF795840	MF795875	-	MF795875
Neopyrenochaeta fragariae	CBS 142394	MF795840	MF795875	-	MF795875
Neopyrenochaeta fragariae	CBS 142394	MF795840	MF795875	-	MF795875
Neopyrenochaeta macrospora	CPC 14640	-	-	-	-
Neopyrenochaeta phragmidica	CPC 11922	-	-	-	-
Neowalbertia radicata	CPC 1836	-	-	-	-
Neowalbertiidena phragmidica	CPC 1460	-	-	-	-
Neophytophthora acicola	CBS 812.95	GQ387603	GQ387603	-	GQ387603
Neophytophthora asiatica	CBS 80134	GQ387542	GQ387542	-	GQ387542
Neophytophthora fragariae	CBS 142394	MF795840	MF795875	-	MF795875
Neophytophthora fragariae	CBS 142394	MF795840	MF795875	-	MF795875
Neophytophthora fragariae	CBS 142394	MF795840	MF795875	-	MF795875

Reference
- [140]
- [153]
- [154]
- [139]
- [130]
- [157]
- [151]
- [143]
- [130]
- [153]
- [154]
- [155]
- [139]
- [162]
- [163]
- [164]
- [165]
Table 3. Cont.

Species	Strain	GenBank Accession Numbers	Reference								
Neopyrenochaeta maesuayensis	MFLUCC 14-0043	-	-								
Neopyrenochaeta telephoni	CBS 139022	-	-								
Neotrematosphaeria biappendiculata	KT 1124	GU205256 GU205227	-								
Neotrematosphaeria biappendiculata	KT 975	GU205254 GU205228	-								
Neotrematosphaeria excentricum	CPC 13092	KF901840 KF903534 KF902562 KF901518 KF902236 KF903123	-								
Neocoxypilispora clematidis	MFLUCC 17-2149	MT226676 MT214559	-								
Neocoxypilispora fukelii	CBS 101952	FJ95496 DQ99531	-								
Neocoxypilispora fukelii	KH 161	AB618689 AB619008	-								
Neocoxypilispora fukelii	KT 634	AB618690 AB619009	-								
Oleoguttula mirabilis	CCFEE 5522	KF310019	-								
Parapaucispora pseudaromatica	KT 2237	LC100018	-								
Parapaucispora tasmaniensis	CPC 12400	KF901844 KF903562 KF902589 KF901522 KF902265 KF903152	-								
Parapaucispora tasmaniensis	CPC 1555	KF901843 KF903541 KF902587 KF901521 KF902263 KF903150	-								
Parapaucispora tasmaniensis	CPC 25527	KX228316	-								
Parapaucispora tereuterum	CBS 131315	JQ044453	-								
Pancospora kammingense	MFLUCC 17-0932	MF173430 NG_059829	-								
Pancospora quadriquorpus	KH 448	LCO01720 LCO01722	-								
Pancospora quadriquorpus	KT 843	AB618692 AB619011	-								
Pancospora versicolor	KH 110	LCO01721 AB918732	-								
Pediella colombiana	CBS 486.80	KF901865 KF903587 KF902594 KF901630 KF902272 KF903158	-								
Penicillium aggregatum	CBS 128277	NG_057905 #	-								
Penicillium crispum	CPC 19778	KF901843 KF903541 KF902587 KF901521 KF902263 KF903150	-								
Penicillium radiculare	CBS 131976	KU216314 KU216292	-								
Penicillium ramosum	CBMA1 1937	KU216317 KU216295	-								
Phaeosporangiculinae	MFLUCC 17-0801	MT240624 MT240623	-								
Phaeoseptum fluidi	MFLUCC 17-0801	MT240624 MT240623	-								
Phaeosporangiculinae	MFLUCC 17-0801	MT240624 MT240623	-								
Phaeoseptum manglicola	NFCCI-4666	MK307817 MK307814	-								
Phaeosporangiculinae	MFLUCC 17-0801	MK307817 MK307814	-								
Phaeosporangiculinae	MFLUCC 17-0801	MK307817 MK307814	-								
Phaeosporangiculinae	MFLUCC 17-0801	MK307817 MK307814	-								
Phaeosporangiculinae	MFLUCC 17-0801	MK307817 MK307814	-								
Phaeosporangiculinae	MFLUCC 17-0801	MK307817 MK307814	-								
Phaeosporangiculinae	MFLUCC 17-0801	MK307817 MK307814	-								
Phaeosporangiculinae	MFLUCC 17-0801	MK307817 MK307814	-								
Phaeosporangiculinae	MFLUCC 17-0801	MK307817 MK307814	-								
Phaeosporangiculinae	MFLUCC 17-0801	MK307817 MK307814	-								
Phaeosporangiculinae	MFLUCC 17-0801	MK307817 MK307814	-								
Phaeosporangiculinae	MFLUCC 17-0801	MK307817 MK307814	-								
Species	Strain	SSU	LSU	act	cal	ITS	rpb2	tef1	btau	Reference	
----------------------------	-------------------	----------	----------	-----	-----	-------	------	------	------	--------------------	
Platystomum rosei	MFLUCC 15-0633	KT026115	KT026111			KT026119				[129]	
Platystomum salicicola	MFLUCC 15-0632	KT026114	KT026110			KT026118				[129]	
Pseudolophiostoma cornisporum	KH 322	LC312486	LC312544			LC312515	LC312602	LC312573	-	[140]	
Pseudolophiostoma obtusisporum	KT 2838	LC312489	LC312547			LC312518	LC312605	LC312576	-	[140]	
Pseudolophiostoma obtusisporum	KT 3119	LC312491	LC312549			LC312520	LC312607	LC312578	-	[140]	
Pseudolophiostoma tropicum	KH 352	LC312492	LC312550			LC312521	LC312608	LC312579	-	[140]	
Pseudolophiostoma tropicum	KT 3134	LC312493	LC312551			LC312522	LC312609	LC312580	-	[140]	
Pseudolophiostoma tropicum	KH 227	LC312494	LC312552			LC312523	LC312610	LC312581	-	[140]	
Pseudolophiostoma tropicum	BCC 22835	GQ925831	GQ925844			-	-	GL479830	GU479857	[174]	
Pseudolophiostoma tropicum	BCC 22836	GQ925832	GQ925845			-	-	GL479829	GU479856	[174]	
Pseudopyrenochaeta lycopersici	CBS 306.65	MB870217	MB870216			NR_103581	LT717680	-	LT717674	[154]	
Pseudopyrenochaeta terrestris	CBS 282.72	LT623216	LT623216			LT623228	LT623227	LT623246	-	[16]	
Pseudoteratosphaeria flexuosa	CPC 673	KP002698	KP003403	KP002653		KP001745	KP002345	KP003282	-	[18]	
Pseudoteratosphaeria flexuosa	CPC 1109	KP002110	KP003421	KP002654		KP001755	KP002345	-	-	[18]	
Pyrenochaeta nobilis	CBS 407.76	DQ898287	EU754206			-	-	DQ677991	DQ677936	MI75916	[176]
Pyrenochaeta pinicola	CBS 137997	KJ669152	LT717684			-	-	KJ669249	-	-	[177]
Pyrenochaeta sp.	DTO 305-C6	KX171361	KX147606			-	-	-	-	[176]	
Pyrenochaetopsis betulinipora	CBS 142458	LN907440	LT939245	LT939084	LT939035	LT939024	LT939033	LT939266	[53]		
Pyrenochaetopsis globosa	CBS 143034	LN907418	LT939243	LT939072	LT939035	LT939024	LT939033	LT939266	[53]		
Pyrenochaetopsis paucisetosa	CBS 142460	LN907336	LT939246	LT939072	LT939035	LT939024	LT939033	LT939266	[53]		
Quixadomyces terrestrisiae	CPC 13333	KP001860	KP003538	KP002663	KP001538	KP003536	KP003282	-	[14]		
Quixadomyces terrestrisiae	CPC 282.72	LT623216	LT623216	LT623228	LT623227	LT623246	LT623246	LT623246	[16]		
Recurvomyces mirabilis	CCCF 896823	MN017930	[19]								
Table 3. Cont.

Species	Strain	GenBank Accession Numbers	Reference
Rhytidhysteron camporesii	HKAS 104277	MN429072 - MN429071 - MN429069 - MN442087	[148]
Rhytidhysteron chromolaenae	MFLUCC 17-1516	NG_070139 - NG_086675 - MN632461 - MN635663	[55]
Rhytidhysteron erioi	MFLU 16-0584	MN429071 - MN429068 - MN442086 - MN442087	[148]
Rhytidhysteron hongheense	KUMCC 20-0222	MW264224 - MW264194 - MW264215 - MW256807	This study
Rhytidhysteron hongheense	HAKAS1122348	MW541831 - MW541820 - MW541824 - MW556132	This study
Rhytidhysteron hongheense	HAKAS1122349	MW541832 - MW541821 - MW541825 - MW556133	This study
Rhytidhysteron hysterinum	EB 0351	GL397350 - GL397350 - GL397340	[149]
Rhytidhysteron hystrix	MFLUCC 18-0719	MN989382 - MN989384 - MN997309	[177]
Rhytidhysteron mangarei	MFLUCC 18-1113	NG_082668 - NR_165548 - MK350300	[178]
Rhytidhysteron neorufulum	MFLUCC 13-0216	KU377571 - KU377566 - KU377561 - KU377560	[179]
Rhytidhysteron neorufulum	GKM 361A	GU296192 - GQ221893 - GQ221893 - GQ221893	[179]
Rhytidhysteron neorufulum	MFLUCC 12-0528	KJ418119 - KJ418117 - KJ418117 - KJ418117	[181]
Rhytidhysteron neorufulum	CBS 306-38	AI164375 - FJ469672 - FJ469672 - FJ469672	[181]
Rhytidhysteron neorufulum	MFLUCC 12-0011	KJ418110 - KJ418109 - KJ418109 - KJ418109	[181]
Rhytidhysteron neorufulum	MFLUCC 12-0567	KJ546129 - KJ546126 - KJ546126 - KJ546126	[181]
Rhytidhysteron neorufulum	MFLUCC 14-0577	KU377570 - KU377565 - KU377560	[179]
Rhytidhysteron neorufulum	EB 0384	GU397368 - GU397368 - GU397368	[182]
Rhytidhysteron neorufulum	EB 0382	GU397367 - GU397367 - GU397367	[182]
Rhytidhysteron neorufulum	EB 0383	GU397353 - GU397353 - GU397353	[182]
Rhytidhysteron neutrofulum	MFLUCC 12-0013	KJ418113 - KJ418113 - KJ418113	[181]
Rhytidhysteron neutrofulum	MFLUCC 13-0710	KL746698 - KL746698 - KL746698	[183]
Rhytidhysteron neutrofulum	MFLUCC 13-0051	MN594343 - MN594343 - MN594343	[56]
Rhytidhysteron thailandicum	MFLUCC 12-0530	KJ546128 - KJ546126 - KJ546126	[172]
Rhytidhysteron thailandicum	MFLUCC 14-0503	KJ546128 - KJ546126 - KJ546126	[172]
Sigarispora arundinis	KT 651	AB618680 - AB618680 - AB618680	[129,133]
Sigarispora caudata	MAFF 239453	AB618681 - AB619000 - AB619000	[129,133]
Sigarispora caudata	MAFF 239450	AB618682 - AB619001 - AB619001	[129,133]
Sigarispora caudata	ICM 17649	AB618683 - AB618683 - AB618683	[129,133]
Sigarispora ononidis	MFLUCC 15-2667	KU243126 - KU243125 - KU243125	[169]
Sigarispora rosicola	MFLU 15-1888	M028160 - M028160 - M028160	[130]
Simplicidiella nigra	CMB 1939	KL216313 - KL216313 - KL216313	[171]
Sparticola junce	MFLUCC 15-0030	KJ721765 - KJ721765 - KJ721765	[46]
Stiltsmania ulmi	CPC 13055	KF01874 - KF01874 - KF01874	[49]
Table 3. Cont.

Species	Strain	GenBank Accession Numbers	Reference							
		SSU	LSU	act	cal	ITS	rpb2	tef1	btub	
Staurosphaeria lycii	MFLUCC 17-0210	MF434372	MF434284	-	-	MF434196	-	MF434458	-	[134]
Staurosphaeria lycii	MFLUCC 17-0211	MF434373	MF434285	-	-	MF434197	-	MF434459	-	[134]
Stereilia araguta	FMC 245	KF902168	-	-	-	-	-	-	-	[49]
Suberoteratosphaeria	CPC 12085	KF902144	KP903508	-	KF901786	-	KP903275	-		
pseudosuberosa										
Suberoteratosphaeria	CPC 13093	KF901879	KP903584	-	KF901557	-	KP903280	-		
xenosuberosa	CPC 13093	KF901879	KP903584	-	KF901557	-	KP903280	-		
Telichorospora mariae	CI36	KU601581	-	-	-	-	KU601581	KU601595	KU601611	[184]
Telichorospora rubriostiolata	TR 7	KU601590	-	-	-	-	KU601590	KU601599	KU601609	[184]
Telichorospora thailandica	MFLUCC 17-2093	MT226708	MT214597	-	-	KF902393	-	-	-	[167]
Teratosphaeria aurantia	MFLUCC 17-0210	MF434372	MF434284	-	-	MF434196	-	MF434458	-	[134]
Teratosphaeria blakeyi	CPC 12837	KF901888	KP903518	-	KF902704	KF901561	KF902413	KF903288	-	[49]
Teratosphaeria destructans	CPC 1324	KF901901	KP903529	-	KF902720	KF901574	KF902427	KF903301	-	[49]
Teratosphaeria fimbriata	CPC 1324	KF901901	KP903529	-	KF902720	KF901574	KF902427	KF903301	-	[49]
Teratosphaeria gauchensis	CMW 17331	KF902148	KP903521	-	KF902729	KF901579	KF902439	KF903315	-	[49]
Teratosphaeria mareebensis	CPC 1272	KF901906	KP903581	-	KF902734	KF901582	KF902444	KF903320	-	[49]
Teratosphaeria pseudocryptica	CPC 11267	KF902032	KP903598	-	KF902760	KF901687	KF902472	KF903348	-	[49]
Teratosphaeriaceae sp.	CPC 13680	KF901921	KP903657	-	KF902765	KF901597	KF902477	KF903353	-	[49]
Teratosphaeriaceae sp.	CCFEE 5569	KF310015	-	-	-	-	KF310071	-	-	[139]
Teratosphaeriola pseudofricans	CPC 1231	KF902045	KP903435	-	KF902782	KF901699	KF902499	KF903370	-	[49]
Teratosphaeriola pseudofricans	CPC 1230	KF902084	KP903473	-	KF902783	KF901737	KF902500	KF903071	-	[49]
Teratosphaeriopsis pseudofricans	CPC 1261	KF902085	KP903436	-	KF902784	KF901738	KF902501	KF903732	-	[49]
Vaginatispora amgdali	KT 2248	LC312495	LC312553	-	LC312524	LC312611	LC312582	-	-	[140]
Vaginatispora appendiculata	MFLUCC 16-0314	KU743219	KU743218	-	KU743217	KU743220	-	-	-	[140]
Vaginatispora armatospora	MFLUCC 16-0314	KU743219	KU743218	-	KU743217	KU743220	-	-	-	[140]
Vaginatispora neoapinae	MFLUCC 16-0314	KU743219	KU743218	-	KU743217	KU743220	-	-	-	[140]
Vaginatispora pseudocatenata	CPC 18472	KF902508	-	-	-	-	-	-	-	[49]
Xenopenidiella inflata	CBS 379.55	GU296208	GU301880	-	-	AY943045	-	GU349021	-	[142]
Xenopenidiella tarda	CBCAI 1940	KL216312	KL216303	-	KL216303	KT831171	-	KU2116359	-	[171]
Xenopenidiella tarda	CBCAI 1940	KL216312	KL216303	-	KL216303	KT831171	-	KU2116359	-	[171]

GenBank accession numbers with * are resulting from EF1-728F and EF-2 primers and – means missing data or not used in the phylogenetic analyses. The newly generated sequences are indicated in bold.
Figure 1. RAxML tree based on a combined dataset of partial LSU, ITS, rpb2, act, cal and tef1 DNA sequence analysis in Teratosphaeriaceae. The tree is rooted to Staninwardia suttonii (CPC 13055). Bootstrap support values for ML equal to or greater than 60%, Bayesian posterior probabilities (BYPP) equal to or greater than 0.95 are presented as ML/BI above nodes. Known genera are indicated with coloured blocks. Blue represents new isolates. The ex-type strains are indicated in **bold**. The scale bar presents the expected number of nucleotide substitutions per site.
Table 4. Maximum-likelihood (ML) and Bayesian (BI) analyses results for each sequenced dataset.

Analyses	Teratosphaeriaceae	Rhytidhysteron	Lophiostomataceae	Parapyrenochaeta
Number of Taxa	106	34	106	37
Gene regions	LSU, ITS, rpβ2, act, cal and tef1	LSU, ITS and tef1	LSU, ITS, tef1 and rpβ2	LSU, ITS, rpβ2, tef1 and btub
Number of character positions	3517	3667	4649	5510
ML optimization likelihood value	−50604.86449	−10386.988691	−42280.12689	−27947.901235
Distinct alignment patterns in the matrix	1973	739	2082	1710
Number of undetermined characters or gaps (%)	48.76%	30.69%	27.07%	38.18%
Estimated base frequencies				
A	0.23693	0.241388	0.24893	0.245506
C	0.26813	0.244526	0.24732	0.244909
G	0.283733	0.277859	0.267917	0.265204
T	0.211207	0.256427	0.235833	0.244381
AC	1.498833	1.533268	1.549406	1.619926
AG	2.784366	2.507774	4.37387	4.391077
AT	1.662835	1.340621	1.462392	1.995039
Substitution rates				
CG	1.129905	1.029121	1.453674	1.225921
CT	6.210175	6.529612	8.808274	8.980921
GT	1.0	1.0	1.0	1.0
Proportion of invariant sites (I)	0.416989	0.610823	0.453545	0.55191
Gamma distribution shape parameter (α)	0.626612	0.475911	0.51454	0.443538
Number of trees sampled in BI after 25% were discarded as burn-in	29861	3451	9001	951
Number of generated trees in BI	22396	2589	6751	714
Final split frequency	0.009999	0.009261	0.009977	0.007923
The total of unique site patterns	1974	740	2084	1711

Figure 2. RAxML tree based on a combined dataset of partial SSU, LSU, ITS and tef1 DNA sequence analysis in Rhytidhyster. The tree is rooted to Gloniopsis calami (MFLUCC 15-0739, MFLUCC 10-0927). Bootstrap support values for ML equal to or greater than 60% and BYPP equal to or greater than 0.95 are shown as ML/BI above the nodes. Known species are indicated with coloured blocks. Blue represents new isolates. The ex-type strains are indicated in bold. The scale bar represents the expected number of nucleotide substitutions per site.
Figure 3. RAxML tree based on a combined dataset of partial SSU, LSU, ITS, tef1 and rpb2 DNA sequence analysis in Lophiostomataceae. The tree is rooted to Gloniopsis praelonga (CBS 112415) and Hysterium angustatum (MFLUCC 16-0623). Bootstrap support values for ML equal to or greater than 60% and BYPP equal to or greater than 0.95 are shown as ML/BI above the nodes. Known families and selected genera are indicated with coloured blocks. Blue represents new isolates. The ex-type strains are indicated in bold. The scale bar represents the expected number of nucleotide substitutions per site.
3.3. Taxonomy of Fungi Colonising Dodonaea Viscosa Twigs

In the current study, two new genera and four novel species were found. These taxa are subsequently described below.

Class Dothideomycetes O.E. Erikss. and Winka, Myconet 1: 5 (1997)
Capnodiales Woron., Annales Mycologici 23: 177 (1925)
Teratosphaeriaceae Crous and U. Braun, Studies in Mycology 58: 8 (2007)

Haniomyces J.C. Xu gen. nov.
MycoBank: MB837991

Etymology: The generic epithet refers to the “Hani” ethnic group in Honghe County, Yunnan Province, China.

It is saprobic on dead twigs and branches in terrestrial habitats. Sexual morph: the ascomata is a scattered, immersed to semi-immersed, subglobose to conical or shaped irregularly, glabrous, brown to dark brown ostiolute. The ostiole is a short papillate, black, smooth periphysate. The peridium comprises cells of textura angularis. The hamathecium
comprises numerous, filamentous, branched, septate, pseudoparaphyses. The *asci* are eight-spored, bitunicate, fissitunicate, clavate, with a pedicel, apically rounded with or without an ocular chamber. The *ascospores* overlap the biseriate, are ellipsoidal to sub-fusiform, hyaline, one-septate, with small to large guttules in each cell, with the ends remaining rounded, surrounded by a distinct mucilaginous sheath. Asexual morph: Coelomycetous. The *conidiomata* are sporodochial on PDA, globose, solitary or aggregated, semi-immersed, black, exuding yellow conidial masses. *Conidiophores* and conidiogenous cells were not observed in vitro. The *conidia* are solitary, aseptate, globose to ellipsoid, with the hyaline becoming medium to golden brown, and finely verruculose.

Type species: Haniomyces dodonaeae

Haniomyces dodonaeae Wanas. and Mortimer sp. nov. (Figure 5)

Figure 5. The sexual (HKAS110128, holotype) and asexual (KUMCC 20-0220, ex-type) morphs of *Haniomyces dodonaeae*. (a,b) ascomata on the dead woody twigs of *Dodonaea viscosa*; (c,d) vertical section of ascoma; (e) periphyses; (f) peridium; (g) pseudoparaphyses; (h–j) asci; (k–p) ascospores (p in Indian Ink); (q,r) colony on potato dextrose agar (PDA) (r from the bottom); (s) squashed pycnidia which were produced on PDA; (t) pycnidia wall; (u–w) conidia. Scale bars, (c,d) 100 µm; (e,h–j,l,u) 20 µm; (f,k–p,v,w) 10 µm; (s) 200 µm.

MycoBank: MB837997

Etymology: The specific epithet reflects the host genus *Dodonaea*.

Holotype: HKAS110128

It is saprobic on dead twigs of *Dodonaea viscosa* Jacq. (Sapindaceae). Sexual morph: the *ascomata* is a 150–200 µm high, 350–450 µm diam. (M = 165.4 × 390.3 µm, n = 5), scattered,
semi-immersed to erumpent, subglobose to conical or shaped irregularly, flattened base, glabrous, brown to dark brown ostiolar, fused with host tissues. The ostiole is a short papillate, black and smooth, with hyaline periphyses (15–25 µm long, 1.5–2 µm wide). The peridium 5–10 µm wide at the base, 10–20 µm wide at sides, comprising 2–4 layers, outer layer pigmented, comprising reddish brown to dark brown, with thin-walled cells of textura angularis, and an inner layer composed of hyaline, loose, cells of textura angularis. The hamatheicum comprises numerous, 2–3 µm wide, filamentous, branched, septate, pseudoparaphyses. The asci are 110–130 × 25–35 µm (M = 118.5 × 31.2 µm, n = 20), eight-spored, bitunicate, fissitunicate, clavate, with a short pedicel (10–15 µm long), apically rounded with an ocular chamber. The ascospores 25–35 × 12–15 µm (M = 32.2 × 14.3 µm, n = 30), overlap the biseriate, are ellipsoidal to sub-fusiform, hyaline, one-septate, with the septum almost median, densely constricted at the middle septum, with the upper cell wider than the lower cell, and are smooth-walled with small to large guttules in each cell, rounded at both ends and covered by a distinct mucilaginous sheath (30–50 µm, diam.). Asexual morph: Coelomycetous. The conidiumata are up to 250 µm diam., sporodochial on PDA, globose, solitary or aggregated, semi-immersed, black, exuding yellow conidial masses. Conidiophores and conidiogenous cells were not observed in vitro. The conidia are 5.5–7.5 × 4.5–5.5 µm (M = 6.4 × 5.4 µm, n = 30), solitary, aseptate, globose or ellipsoid, with the hyphae becoming medium to golden brown, and finely verruculose.

Culture characteristics: the colonies on PDA reached a 3 cm diameter after 2 weeks at 20 °C. They were circular has a serrate margin, whitish at the beginning, becoming brown at the centre and brownish green towards the margin after 4 weeks. They were slightly raised, and reverse blackish brown. The hyphae septate were branched, hyaline, thin, and smooth-walled.

Known distribution: Yunnan, China, on Dodonaea viscosa.

Material examined: China, Yunnan, Honghe Hani and Yi Autonomous Prefecture, Honghe County, 23.421068 N, 102.229128 E, 735 m, on dead twigs of Dodonaea viscosa, 22 April 2020, D.N. Wanasinghe, Honghe 005 (HKAS110128, holotype), ex-type living culture, KUMCC 20-0220, ibid. 23.419206 N, 102.231375 E, 618 m, Honghe 010 (HKAS110125, paratype), ex-paratype living culture, KUMCC 20-0221.

Hysteriales Lindau, Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten 1 (1): 265 (1897)

Hysteriaceae Chevall., Flore Générale des Environ de Paris 1: 432 (1826)

Rhytidhysterion Spec., Annales de la Sociedad Científica Argentina 12 (4): 188 (1881)

Rhytidhysterion hongheense Wanjas. sp. nov. (Figure 6)

Mycobank: MB837992

Etymology: The specific epithet is derived from Honghe County, Yunnan Province, China.

Holotype: HKAS110133

It is aerobic on dead twigs of Dodonaeai Mill. (Sapindaceae). Sexual morph: The hysterothecia is 1200–2000 µm long × 350–500 high × 600–1000 µm diam. (M = 1590 × 410 × 840 µm, n = 10), arising singly or in small groups, sessile, and slightly erumpent from the substrate. The receptacle is cupulate, black, flat or slightly concave, with a slightly dentate margin. The excipulum are 70–100 µm wide, with the ectal excipulum narrow layered, deep, and thick-walled, with black cells of textura globulosa to textura angularis; the medullary excipulum is composed of narrow, long, thin-walled, hyaline to brown cells of textura angularis. The hamatheicum are 2.5–4 µm wide, numerous, propoloid, pseudoparaphyses, exceeding asci in length, apically swollen, branched and reddish-orange pigmented. The branched apices form a layer on hymenium to develop pseudo-epitheciun. The asci are 140–180 × 12–16 µm (M = 163.3 × 13.8 µm, n = 20), eight-spored, long cylindrical, short pedicellate, and is rounded at apex. The ascospores 20–33 × 9–13 µm (M = 28.2 × 11.2 µm, n = 30), overlap the uniseriate, are hyaline to light brown, one-septate, with wrinkled walls when young, becoming dark brown at maturity. They are ellipsoid with conical ends, regularly three-septate, and rarely muriform with one longitudinal septum, smooth walled, guttulate. Asexual morph: Undetermined.
Figure 6. Rhytidhysteron hongheensis (HKAS110133, holotype). (a,b) Appearance of hysterothecia on the dead woody twigs of Dodonaea viscosa; (c,d) horizontal section of hysteriothecium; (e) vertical section of hysteriothecium; (f) cells of peridium; (g,h) pseudoparaphyses; (i,j) asci; (k–p) ascospores; (q,r) colony on PDA (r from the bottom). Scale bars, (d,e) 200 µm; (f,i,j) 50 µm; (g,h,k–p) 10 µm.

Culture characteristics: Colonies on PDA reached a 4 cm diameter after 2 weeks at 20 °C. The colony was dense, circular, slightly raised, and the surface was smooth, with an undulated edge, with floccose which were greenish grey at the centre and brown towards margin from the top and reverse dark brown. The hyphae septate were branched, hyaline, thin, and smooth-walled.

Known distribution: Yunnan, China, on Dodonaea.

Material examined: China, Yunnan, Honghe Hani and Yi Autonomous Prefecture, Honghe County, 23.421068 N, 102.229128 E, 735 m, on dead twigs of Dodonaea, 22 April 2020, D.N. Wanasinghe, Honghe 006 (HKAS110133, holotype), ex-type culture, KUMCC 20-0222. ibid. on dead twigs of Dodonaea viscosa, 08 December 2020, DWH6-1 (HKAS112348). ibid. 07 December 2020, DWH7-2 (HKAS112349).

Pleosporales Luttr. ex M.E. Barr, Prodromus to class Loculoascomycetes: 67 (1987)
Lophiostomataceae Sacc., Sylloge Fungorum 2: 672 (1883)
Lophiomurispora Wanas. and Mortimer, gen. nov.
MycoBank: MB837993
Etymology: The generic epithet stems from the combined two words “lophio” and “murispora”, referring to muriform ascospores in Lophiostomataceae.

It is saprobic on woody substrates in terrestrial habitats. Sexual morph: The ascomata is a solitary or gregarious, semi-immersed, erumpent through the host surface, coriaceous to carbonaceous, dark brown to black, globose to subglobose or conical ostiolate. The ostiole is a slit-like, central papillate, with or without a crest, opening by an apical, lysiogenous pore or dehiscence, comprising hyaline periphyses or hyaline to lightly pigmented, pseudoparenchymatous cells. The peridium is broad at the apex and thinner at the base,
comprising two strata with several layers of brown or lightly pigmented to hyaline cells of *textura angularis* to *textura prismatica*, fusing and indistinguishable from the host tissues. The hamathecium comprises many branched, septate, cellular pseudoparaphyses, located between and above the asci, embedded in a gelatinous matrix. The asci are eight-spored, bitunicate, fissitunicate, cylindric-clavate, pedicellate, and apically rounded, with an ocular chamber. The ascospores are uni- to bi-seriate, partially overlapping, and are hyaline when immature, becoming brown to dark brown when mature. They are ellipsoidal to fusiform, muriform, two-to-eight-transversely septate, with one-to-two-longitudinal septa, constricted at the central septum, with or without a mucilaginous sheath. Asexual morph: Coelomycetous. The conidiomata is pycnidial, phoma-like, solitary, gregarious, dark brown to black, immersed or slightly erumpent, coriaceous to carbonaceous, papillate or apapillate. The conidiomata wall is multi-layered, with three to four outer layers of brown-walled pseudoparenchymatous cells, with the innermost layer being thin and hyaline. The conidiphores are long, septate, and sparsely branched, which are formed from the innermost layer of the pycnidium wall. The conidiogenous cells are phialidic, cylindrical, hyaline, flexuous and smooth, with a short collarette. The conidia are hyaline, aseptate, straight to curved, ellipsoidal with rounded ends, thin-walled, smooth, and numerous.

Type species: *Lophiomurispora hongheensis*

Lophiomurispora hongheensis Wanas. sp. nov. (Figures 7 and 8)

Figure 7. Sexual morph of *Lophiomurispora hongheensis* (HKAS110127, holotype). (a–c) Ascomata on the dead woody twigs of *Dodonaea viscosa*; (d) cross section of ascomata; (e) vertical section of ascoma; (f) closeup of ostiole; (g,h) peridium; (i) pseudoparaphyses; (j–l) asci; (m–s) ascospores (s in Indian Ink); Scale bars, (e) 100 µm; (f–h,j–l) 20 µm; (i,m–s) 10 µm.
Figure 8. Asexual morph of *Lophiomurispora hongheensis* (KUMCC 20-0217, ex-type culture). (a,b) colony on PDA (b from the bottom); (c,d) immersed pycnidia in PDA (from the bottom); (e) pycnidia wall; (f–i) conidiophore; (j) conidia. Scale bars, (e–i) 10 µm; (j) 5 µm.

MycoBank: MB 837998

Etymology: The specific epithet is derived from Honghe County, the region of Yunnan Province in which this species was gathered.

Holotype: HKAS110127

It is *saprobic* on dead twigs of *Dodonaea viscosa* Jacq. (Sapindaceae) in terrestrial habitats. Sexual morph: The *ascomata* is a 280–360 µm high, 200–250 µm diam. (M = 318.6 × 232.7 µm, n = 5), scattered to gregarious, immersed, coriaceous, dark brown to black, globose to subglobose ostiolate. The *ostiole* is a 70–100 µm long, 40–80 µm diam. (M = 82.1 × 64.8 µm, n = 5), crest-like, central papillate, with a pore-like opening, comprising hyaline periphyses. The *peridium* is 20–30 µm wide at the base, 30–60 µm wide at the sides, broad at the apex, comprising two strata, with outer stratum composed of small, pale brown to brown, slightly flattened, thick-walled cells of *textura angularis*, fusing and indistinguishable from the host tissues. The inner stratum is composed of several layers with lightly pigmented to hyaline cells of *textura angularis* to *textura prismatica*. The *hamathecium* comprises 1–2 µm wide, branched, septate, cellular pseudoparaphyses, situated between and above the asci, embedded in a gelatinous matrix. The *asci* are 120–160 × 17–22 µm (M = 135.2 × 18.5 µm, n = 15), eight-spored, bitunicate, fissitunicate, cylindric-clavate, with a short pedicel, and is rounded at the apex, with an ocellar chamber. The *ascospores* are 25–30 × 11–13 µm (M = 27.8 × 12 µm, n = 30), uni- to bi-seriate, overlapping, and are initially hyaline, turning brown at maturity. They are ellipsoid to fusiform, muriform, four-to-eight-transversely septate, with one-to-two-longitudinal septa. They are slightly curved, deeply constricted at
the central septum, slightly constricted at the remaining septa, conically rounded at the ends, and smooth-walled, with a distinct mucilaginous sheath. Asexual morph: Coelomycetous. The conidiomata is 1–1.5 mm diam. pycnidial, phoma-like, solitary, gregarious, dark brown to black, and immersed, with a sphaerical mass of slimy conidia oozing out at ostiolar apex. The conidiomata wall is multi-layered, with brown-walled pseudoparenchymatous cells, with a hyaline inner most layer. The conidiomata are 10–15 × 1.5–2.5 µm long (M = 12.4 × 2.1 µm, n = 15), septate and sparsely branched, which are formed from the inner most layer of the pycnidium wall. The conidiogenous cells are phialidic, cylindrical, hyaline, flexuous and smooth, with a short collarette. The conidia are 2.5–4 × 1.5–2 µm (M = 3 × 1.7 µm, n = 50), hyaline, aseptate, straight to curved, ellipsoidal with rounded ends, and are thin-walled, smooth-walled, and numerous.

Culture characteristics: the colonies on PDA reached a 4 cm diameter after 2 weeks at 20 °C. They were circular, had a serrate margin, and were whitish at the beginning, becoming greenish-brown 4 weeks later. They were slightly raised, and reverse dark brown. The hyphae septate were branched, hyaline, thin, and smooth-walled.

Known distribution: Yunnan, China, on Dodonaea viscosa. Material examined: China, Yunnan, Honghe Hani and Yi Autonomous Prefecture, Honghe County, 23.421068 N, 102.229128 E, 735 m, on dead twigs of Dodonaea viscosa, 22 April 2020, D.N. Wanasinghe, Honghe 003 (HKAS110127, holotype), ex-type culture, KUMCC 20-0217, ibid. 23.419206 N, 102.231375 E, 618 m, Honghe 008 (HKAS110129, paratype), ex-paratype living culture, KUMCC 20-0223, ibid. 23 April 2020, ibid. DWHH07-1 (HKAS110130), living culture, KUMCC 20-0224, DWHH01 (HKAS110132), living culture, KUMCC 20-0216, ibid. DWHH04 3 (HKAS110131), living culture, KUMCC 20-0219.

Parapyrenochaetaceae Valenz-Lopez, Crous, Stchigel, Guarro and J.F. Cano, Studies in Mycology 90: 64 (2017)

Quixadomyces Cantillo and Gusmão, Persoonia 40: 317 (2018)

Quixadomyces hongheensis Wanas. sp. nov. (Figure 9)

MycoBank: MB837994

Etymology: The specific epithet is derived from Honghe County, Yunnan Province, China. Holotype: HKAS110126

It is saprobic on dead twigs of Dodonaea viscosa Jacq. (Sapindaceae) in terrestrial habitats. Sexual morph: Undetermined. Asexual morph: Coelomycetous. The conidiomata is immersed to erumpent, solitary, globose, brown, from 200–300 µm diam, with a central ostiole, exuding a hyaline conidial mass. It has a wall of two to three layers of brown textura angularis. The paraphyses are 20–100 µm long, 2–3 µm wide, cylindrical, hyaline, septate, and smooth. The conidiophores are mostly reduced to conidiogenous cells. The conidiogenous cells are 5–8 × 3.5–5 µm (M = 6.4 × 3.1 µm, n = 15), lining the inner cavity, hyaline, smooth, are ampulliform to subcylindrical, and are phialidic with periclinal thickening. The conidia are 3–4.7 × 1.2–2 (M = 3.7 × 1.7 µm, n = 60) µm, solitary, hyaline, smooth, aseptate, and allantoid with obtuse ends.

Culture characteristics: The colonies on PDA reached a 4 cm diameter after 2 weeks at 20 °C. They were circular, had a serrate margin, and were greenish brown after 4 weeks. They were slightly raised, and reverse dark brown. The hyphae septate were branched, hyaline, thin, and smooth-walled.

Known distribution: Yunnan, China, on Dodonaea viscosa. Material examined: China, Yunnan, Honghe Hani and Yi Autonomous Prefecture, Honghe County, 23.421068 N, 102.229128 E, 735 m, on dead twigs of Dodonaea viscosa, 22 April 2020, D.N. Wanasinghe, Honghe 01-N (HKAS110126, holotype), ex-type living culture, KUMCC 20-0215. 08 December 2020, HDW4-1 (HKAS112347). ibid. HDW4-3 (HKAS112346).
4. Discussion

Teratosphaeriaceae was introduced by Crous et al. [187]. Given that it is composed of 61 genera, it is regarded as one of the largest families in Dothideomycetes [188]. Members of this family are adapted to a broad range of life modes and can be saprobic, plant and human pathogenic, rock-inhabiting and endophytic; accordingly, they are widely distributed across varied terrain [49,136,139,188,189]. We have included representative sequence data of all available genera listed in Hongsanan et al. [188] for the phylogenetic analyses (except Davisoniella, Pachysacca and Placocrea, which lack DNA-based sequence data). Among them, Aulographina was grouped in Venturiales, and Leptomelanconium was related to Helotiales in the initial analysis. Therefore, they were excluded from the final analysis (Figure 1). In addition, representative taxa for Piedraia were included in the final dataset that were phylogenetically closely related to Teratosphaeriaceae. However, this genus is still considered a member in Piedraiaeae. The phylogeny generated herein (Figure 1) is congruent with those of other published studies to resolve intergeneric relationships in Teratosphaeriaceae [49,188]. In the combined LSU, ITS, rpb2, act, cal and tef1 data analysis, 58 clades are recognized from the ingroup taxa. Two strains from our new collections...
constitute a distinct monophyletic lineage (subclade 17, Figure 1) within the genera in Teratosphaeriaceae, which we introduce as a new genus.

The phylogeny (Figure 1) reveals a close relationship between two strains of the newly collected fungus (*Haniomyces dodonaeae*) to *Camarosporula persooniae*, *Lapidotheca hispanicus*, *Neophaeothecoidea proteae*, Teratosphaeriaceae sp. (CCFEE 5569), *Xenocoelomyces catenata* and *Xenophacidiella pseudocatenata*, with 87% ML and 1.00 BYPP support values. Among them, only *Camarosporula persooniae* is reported from the sexual morph, and despite the high degree of phylogenetic similarity, these two species are morphologically dissimilar [136]. *Neophaeothecoidea* is more closely related to *Haniomyces* in the phylogenetic results, but this relationship lacks statistical support. In addition, *Neophaeothecoidea* is reported as a hyphomycete [188], whereas *Haniomyces* produces a coelomycetous asexual morph.

Out of the 61 genera listed in Teratosphaeriaceae, only 24 genera are described with sexual morphs. We suggest that the sexual morphs of these genera require further examination with increased collections to verify the accurate treatment of and relationships to remaining species. During asexual stages of Teratosphaeriaceae, most members are pathogenic, whereas they are non-pathogenic during sexual stages. This is an important distinction for identifying opportunistic pathogens, as members of this family can easily spread diseases between locations. The new taxon, *Haniomyces dodonaeae*, fits morphologically well into Teratosphaeriaceae by its periphysate ostiole and hyaline ascospores with a single septum in each. However, the dimensions of the asci and ascospores are significantly larger than the existing sexual reports of this family. The golden brown, ellipsoidal conidia of *Haniomyces dodonaeae* are similar to those in *Neophaeothecoidea* and *Readeriella*. Phylogenetically, *Haniomyces dodonaeae* has a close proximity to *Neophaeothecoidea proteae*. This relationship, however, is not strongly supported in the ML and BI analyses (Figure 1). *Neophaeothecoidea proteae* was originally isolated as a coelomycete (*Phaeothecoidea proteae*) based on its yeast-like growth in culture [190]; however, it is currently accounted for in a hyphomycetous genus. Comparison of the 805 base pairs (bp) across the LSU gene region of *Haniomyces dodonaeae* shows 17 bp (2.1%) differences exist in comparison with *Neophaeothecoidea proteae*. Similarly, comparison of the 356 bp of the rpb2 gene region shows 56 bp (15.73%) differences in comparison with *Neophaeothecoidea proteae*.

Rhytidhysteron was introduced by Spegazzini [191] to account for *R. brasiliense* and *R. viride* collected from southern Brazil in 1877 and 1880, respectively. Spegazzini [56] did not designate any type; therefore, Clements and Shear [192] designated *R. brasiliense* as the type species. Subsequently, few species were introduced to this genus based on morphological evidence [193–196]. In recent studies, more species have been introduced based on both morphology and DNA-based sequence data [55,56,172,177,178,183]. Presently, there are 23 species mentioned in *Species Fungorum* [197], including saprobic to weakly pathogenic taxa that grow on woody plants in terrestrial habitats [56,181]. Species of *Rhytidhysteron* are typically involved in wood degradation and occur primarily on the woody parts of a broad range of hosts [64,188].

We introduce a new species into *Rhytidhysteron* from a dead twig of *Dodonaea* sp. in Honghe, China, and its relationships with other species are presented based on multigene phylogenetic analyses (Figure 2). Our analysed molecular data generated phylogenies consistent with those of Mapook et al. [55] and Hyde et al. [56]. The novel species, *Rhytidhysteron hongheense*, is phylogenetically closely related to *R. camporesii* (KUN-HKAS 104277) and *Rhytidhysteron chromolaenae* (MFLUCC 17-1516), and these three constitute a strongly supported monophyletic clade. The ascospore and asc charactistics between the three species are similar, but the colour of hysterotheca in *R. chromolaenae* (green) is different from the other two (black). The pseudo-epithecium of *R. camporesii* is brown to purple, whereas it is reddish orange in *R. hongheense*. The significance of these morphological characteristics in species delineation should be further investigated in terms of phylogenetic signals. A pairwise comparison of 521 ITS (+5.8S) sequence data showed 31 (5.95%) bp differences between *R. hongheense* and *R. camporesii* as well 28 (5.37%) bp differences between *R. hongheense* and *R. chromolaenae*. Currently, there are only two *Rhytidhysteron* species,
viz. *Rhytidhysteron magnoliae* and *Rhytidhysteron thailandicum*, reported from China [56,198], making this report the third of its kind from China and first from Honghe Prefecture.

Lophiostomataceae species are usually characterized by a slot-like ostiole on the top of the flattened neck, occurring mainly on twigs, stems or the bark of different woody and herbaceous plants in terrestrial, freshwater and marine environments as saprobes [129,140,188]. Thambugala et al. [129] undertook a comprehensive study of this family and accepted 16 genera. Subsequently, 12 new genera have been introduced by recent publications, and currently the family comprises 28 accepted genera [188]. The most recent multi-locus phylogenetic backbone tree to the family is presented in this study, including a novel genus (*Lophiomurispora*) found in Honghe County, Yunnan Province, China.

Lophiomurispora morphologically resembles *Coelodictyosporium*, *Platystomum* and *Sigarispora* with its crest-like ostiole and brown, multi-septate ascospores. However, these genera are re-rounded to treat our isolate as a new species in *Quixadomyces* potentially be reclassified as a synonym of *Parapyrenochaeta*. Very few of these taxa are confirmed by both morphological and phylogenetic evidence. Lophiomurispora revealed as phylogenetically distant in multi-gene phylogenetic analysis (Figure 3). *Rhytidhysteron magnoliae* and *R. thailandicum* are widely distributed across southwest and southern China, e.g., Fujian, Guangdong, Guangxi, Hainan, making this report the third of its kind from China and first from Honghe Prefecture.

Parapyrenochaetaceae was proposed by Valenzuela-Lopez et al. [53] to accommodate three isolates which were previously recognized in *Pyrenochaeta*. They introduced the novel genus *Parapyrenochaeta* for *P. acaciae* (*Pyrenochaeta acaciae*), *P. protearum* (*Pyrenochaeta protearum*) and for the strain CBS 137997, formerly misidentified as *Pyrenochaeta pinicola* (re-identified as *Parapyrenochaeta protearum*). Later, Crous et al. [131] introduced *Quixadomyces* as another genus in *Parapyrenochaetaceae* to accommodate *Quixadomyces cearensis*. Therefore, there are currently two accepted genera in *Parapyrenochaetaceae* [3,188].

Crous et al. [131] introduced *Quixadomyces* for a fungus that was collected from Brazil on decaying bark. However, they did not observe the development of any internal structures. This fungus slightly resembles species in *Pleosporales* with its setose pycnidia [131,188]. In a multi-gene (concatenated LSU, SSU, ITS, *rpb1*, *tef1* and *rpb2*) phylogenetic analysis, the ex-type strain of *Quixadomyces cearensis* (HUEFS 238438) clustered with two of our new strains as a monophyletic clade with poor bootstrap support (Figure 4). We introduce this isolate as a novel species belonging to this genus, *Q. hongheensis*. Based on the features of conidiogenous cells and conidia of *Quixadomyces hongheensis*, no substantial morphological differences exist to warrant two generic ranks. Therefore, this genus could potentially be reclassified as a synonym of *Parapyrenochaeta* in future studies. Because we did not perform extensive taxonomic reassessment using multiple fresh collections (especially sexual morphs of both genera), we will not attempt to synonymize any extant taxa.

Owing to lack of details on the internal structures of *Quixadomyces cearensis*, it is difficult to compare morphological characteristics such as conidiogenous cells and conidia between the new collection and this species. Lacking sufficient morphological evidence to perform accurate comparisons, we analysed nucleotide differences between these two strains. Comparing the 544 ITS (+5.8S) nucleotides of the two strains (HUEFS 238438 and KUMCC 20 0215) revealed 32 (5.88%) nucleotide differences. Therefore, it would seem prudent to treat our isolate as a new species in *Quixadomyces* as *Q. hongheensis*.

Nearly a century’s worth of taxonomic investigation into *Dodonaea viscosa* has yielded only 58 fungal records [Table 2]. These are mainly reported as saprobes or pathogens, but very few of these taxa are confirmed by both morphological and phylogenetic evidence. Many of these published records lack illustrations, descriptions or DNA sequence data, resulting in unclear taxonomic relationships. Even though *Dodonaea viscosa* is widely distributed across southwest and southern China, e.g., Fujian, Guangdong, Guangxi, Hainan, Honghe.
Sichuan and Yunnan [199], there is only one report for the fungus *Pseudocercospora mitteriana* on this host from China [124]. Previous taxonomic studies have suggested that increased collections might lead to the discovery of many new fungal species, and we, too, believe that *Dodonaea* is likely teeming with fungal diversity. More *Dodonaea* collections across different geographic regions are urgently needed, along with accompanying work in culture isolation, morphological description, DNA sequence analyses, phylogenetic relationship investigation, and accurate identification and classification. This study provides a case study for *Dodonaea viscosa* as a worthwhile host for the further study of microfungal associations and hints that it may potentially host numerous unknown fungal species.

Author Contributions: Conceptualization, D.N.W.; resources, P.E.M. and J.X.; writing—original draft preparation, D.N.W.; writing—review and editing, P.E.M.; supervision, P.E.M. and J.X.; funding acquisition, P.E.M. and J.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Key Research Project, Agroforestry Systems for Restoration and Bio-industry Technology Development (Grant No. 2017YFC0505101), Ministry of Sciences and Technology of China (Grant No. 2017YFC0505100), CAS President’s International Fellowship Initiative (Grant No. 2019PC0008), the 64th batch of China Postdoctoral Science Foundation (Grant No. 2018M643549), Postdoctoral Fund from Human Resources and Social Security Bureau of Yunnan Province, NSFC project codes 41761144055 and 41771063.

Data Availability Statement: The datasets generated for this study can be found in the NCBI GenBank, MycoBank and TreeBASE.

Acknowledgments: Austin G. Smith at World Agroforestry (ICRAF), Kunming Institute of Botany, China, is thanked for English editing. Lu Wen Hua and Li Qin Xian are thanked for their invaluable assistance. We acknowledge Kunming Institute of Botany, Chinese Academy of Sciences for providing the laboratories and instruments for molecular work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Antonelli, A.; Fry, C.; Smith, R.J.; Simmonds, M.S.J.; Kersey, P.J.; Pritchard, H.W.; Abbo, M.S.; Acedo, C.; Adams, J.; Ainsworth, A.M.; et al. *State of the World’s Plants and Fungi* 2020; Royal Botanic Gardens, Kew: Richmond, UK, 2020; 100p. [CrossRef]

2. Kirk, P.M. Catalogue of Life. Available online: http://www.catalogueoflife.org (accessed on 20 October 2020).

3. Wijayawardene, N.N.; Hyde, K.D.; Al-Ani, L.K.T.; Tedersoo, L.; Rajeshkumar, K.C.; Zhao, R.L.; Aptroot, A.; Haelewaters, D.; et al. Outline of Fungi and fungus-like taxa. *Mycosphere* 2020, 11, 1060–1456. [CrossRef]

4. Hawkesworth, D.L.; Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. *Microbiol. Spectr.* 2017, 5. [CrossRef]

5. Hyde, K.D.; Jeewon, R.; Chen, Y.J.; Bhunjun, C.S.; Calabon, M.S.; Jiang, H.B.; Lin, C.G.; Norphanphoun, C.; Sysouphanthong, P.; et al. The numbers of fungi: Is the descriptive curve flattening? *Fungal Divers.* 2020, 103, 219–271. [CrossRef]

6. Hyde, K.; Norphanphoun, C.; Chen, J.; Dissanayake, A.; Doilom, M.; Hongsanan, S.; Jayawardena, R.; Jeeven, R.; Perera, R.H.; Thongbai, B.; et al. Thailand’s amazing diversity: Up to 96% of fungi in northern Thailand may be novel. *Fungal Divers.* 2018, 93, 215–239. [CrossRef]

7. Wong, M.K.M.; Goh, T.K.; Hodgkiss, I.J.; Hyde, K.D.; Rangehoo, V.M.; Tsui, C.K.M.; Ho, W.W.H.; Wong, W.S.W.; Yuen, T.K. Role of fungi in freshwater ecosystems. *Biodivers. Conserv.* 1998, 7, 1187–1206. [CrossRef]

8. Fu-Qiang, S.; Xing-Jun, T.; Zhong-Qi, L.; Chang-Lin, Y.; Bin, C.; Jie-jie, H.; Jing, Z. Diversity of filamentous fungi in organic layers of two forests in Zijn Mountain. *J. For. Res.* 2004, 15, 273–279. [CrossRef]

9. Yuan, J.; Zheng, X.; Cheng, F.; Zhu, X.; Hou, L.; Li, J.; Zhang, S. Fungal community structure of fallen pine and oak wood at different stages of decomposition in the Qinling Mountains, China. *Sci. Rep.* 2017, 7, 13866. [CrossRef]

10. Zhao, G.C.; Zhao, R.L. The higher microfungi from forests of Yunnan Province; Yunnan Science and Technology Press: Kunming, China, 2012; pp. 1–572.

11. Xing, X.K.; Chen, J.; Xu, M.J.; Lin, W.H.; Guo, S.X. Fungal endophytes associated with *Sonneratia* (Sonneratiaceae) mangrove plants on the south coast of China. *For. Pathol.* 2011, 41, 334–340. [CrossRef]

12. Ariyawansa, H.A.; Hyde, K.D.; Liu, J.K.; Wu, S.P.; Liu, Z.Y. Additions to karst fungi 1: *Botryosphaeria minutispermatia* sp. nov., from Guizhou Province, China. *Phytotaxa* 2016, 275, 35–44. [CrossRef]

13. Ariyawansa, H.A.; Hyde, K.D.; Tanaka, K.; Maharachchikumbura, S.S.N.; Al-Sadi, A.M.; Elgorban, A.M.; Liu, Z.Y. Additions to karst fungi 3: *Pseudocercospora micrantha* sp. nov., from Guizhou province, China. *Phytotaxa* 2016, 284, 281–291. [CrossRef]

14. Ariyawansa, H.A.; Hyde, K.D.; Thambugala, K.M.; Maharachchikumbura, S.S.N.; Al-Sadi, A.M.; Liu, Z.Y. Additions to karst fungi 2: *Alpinastreptospora jonesii* from Guizhou Province, China. *Phytotaxa* 2016, 277, 255–263. [CrossRef]

15. Hu, D.M.; Cai, L.; Hyde, K.D. Three new ascomycetes from freshwater in China. *Mycologia* 2012, 104, 1478–1489. [CrossRef]
16. Zhang, Z.F.; Liu, F.; Zhou, X.; Liu, X.Z.; Liu, S.J.; Cai, L. Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia Mol. Phylogeny Evol. Fungi 2017, 39, 1–31. [CrossRef]
17. De-Long, Q.; Liu, L.L.; Zhang, X.; Wen, T.C.; Kang, J.C.; Hyde, K.D.; Shen, X.C.; Li, Q.R. Contributions to species of Xylariales in China-1 Durothea species. Mycol. Prog. 2019, 18, 495–510. [CrossRef]
18. Bao, D.F.; McKenzie, E.H.C.; Bhat, D.J.; Hyde, K.D.; Luo, Z.L.; Shen, H.W.; Su, H.Y. Acrogenospora (Acrogenosporaceae, Minutisphaeriales) appears to be a very diverse genus. Front. Microbiol. 2020, 11, 1606. [CrossRef]
19. Karunarathna, S.C.; Dong, Y.; Karasaki, S.; Tibpromma, S.; Hyde, K.D.; Sheng, J.; Mortimer, P.E. Discovery of novel fungal species and pathogens on bat carcasses in a cave in Yunnan Province, China. Emerg. Microbes Infect. 2020, 9, 1554–1566. [CrossRef]
20. Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [CrossRef]
21. Hu, W.Y.; Shen, Q. Evaluation on landscape stability of Yuanyang Hani terrace. Yunnan Geogr. Environ. Res. 2011, 1, 11–17. [CrossRef]
22. Shui, Y.M. Seed Plants of Honghe Region in SE Yunnan; Yunnan Science and Technology Press: Kunming, China, 2003; pp. 1–54.
23. Ju, Y.; Zhuo, J.X.; Liu, B.; Long, C.L. Eating from the wild: Diversity of wild edible plants used by Tibetans in Shangri–la region, Yunnan, China. J. Ethnobiol. Ethnomed. 2013, 1, 28. [CrossRef]
24. Wanasinghe, D.S.; Samarakoon, M.C.; Hongsanan, S.; Boonmee, S.; Mckenzie, E.H.C. Taxonomic novelties in Seed Plants of Honghe Region in SE Yunnan. Persoonia 2019, 420, 273–282. [CrossRef]
25. Marasinghe, D.S.; Samarakocon, M.C.; Hongason, S.; Boonme, S.; Mckenzie, E.H.C. Iodosphaeria honghense sp. nov. (Iodosphera- aceae, Xylariales) from Yunnan Province, China. Phytotaxa 2019, 420, 273–282. [CrossRef]
26. Zeki, H.F.; Ajmi, R.N.; Afi, E.M. Phytophresedation mechanisms of mercury (Hg) between some plants and soils in Baghdad City. Plant Arch. 2019, 19, 1395–1401.
27. Beshah, F.; Hunde, Y.; Getachew, M.; Bachhetti, R.K.; Husen, A.; Bachhetti, A. Ethnopharmacological, phytochemistry and other potential applications of Dodonaea genus: A comprehensive review.Curr. Biotechnol. 2020, 2, 103–119. [CrossRef]
28. Prakash, N.K.U.; Selvi, C.R.; Sasikala, V.; Dhanalakshmi, S.; Prakash, S.B.U. Phytochemistry and bio-efficacy of a weed, Dodonaea viscosa. Int. J. Pharm. Pharm. Sci. 2012, 4, 509–512.
29. Al-Snafi, P.A.E. A review on Dodonaea viscosa: A potential medicinal plant. IOSR J. Pharm. 2017, 7, 10–21. [CrossRef]
30. Al-Aamri, K.K.; Hossain, M.A. New prenylated flavonoids from the leaves of Dodonaea viscosa native to the Sultanate of Oman. Pacific Science Review A. Nat. Sci. Eng. 2016, 18, 53–61. [CrossRef]
31. Al-Oraimi, A.A.; Hossain, M.A. In vitro total flavonoids content and antimicrobial capacity of different organic crude extracts of D. viscosa. J. Biol. Active Prod. Nat. 2016, 6, 150–165. [CrossRef]
32. Christmas, M.J.; Biffin, E.; Lowe, A.J. Measuring genome–wide genetic variation to reassess subspecies classifications in Dodonaea viscosa (Sapindaceae). Aust. J. Bot. 2018, 66, 287–297. [CrossRef]
33. Selvam, V. Trees and Shrubs of the Maldives; FAO Regional Office for Asia and the Pacific, Thammada Press Co., Ltd.: Bangkok, Thailand, 2007; pp. 1–92.
34. Al-Jobori, K.M.M.; Ali, S.A. Effect of Dodonaea viscosa Jacq. residues on growth and yield of mungbean (Vigna mungo L. Hepper). Afr. J. Biotechnol. 2014, 13, 2407–2413. [CrossRef]
35. Al-Jobori, K.M.M.; Ali, S.A. Evaluation the effect of Dodonaea viscosa Jacq. residues on growth and yield of maize (Zea mays L.). Int. J. Adv. Res. 2014, 2, 514–521.
36. Al-Obaidy, A.H.M.J.; Jasim, I.M.; Al–Kubaisi, A.R.A. Air pollution effects in some plant leaves morphological and anatomical characteristics within Baghdad City. Iraq. Eng. Technol. J. 2019, 37, 24–28. [CrossRef]
37. Shtein, I.; Meir, S.; Riov, J.; Philosoph-hadas, S. Interconnection of seasonal temperature, vascular traits, leaf anatomy and hydraulic performance in cut Dodonaea ‘Dana’ branches. Postharvest Biol. Technol. 2011, 61, 184–192. [CrossRef]
38. Rani, M.S.; Pippalla, R.S.; Mohan, K. Dodonaea viscosa Linn-An overview. Asian J. Pharm. Res. Health Care 2009, 1, 97–112.
39. Hossain, M.A. Biological and phytotoxicity review of Omani medicinal plant Dodonaea viscosa. J. King Saud Univ. Sci. 2019, 31, 1089–1094. [CrossRef]
40. Wanasinghe, D.N.; Mortimer, P.E.; Senwanna, C.; Cheewangkoon, R. Saprobioc Dothideomycetes in Thailand: Phaeosaeptum hydei sp. nov., a new terrestrial ascomycete in Phaeosphaeaceae. Phytotaxa 2020, 449, 149–163. [CrossRef]
41. Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [CrossRef]
42. Groenewald, J.Z.; Nakashima, C.; Nishikawa, J.; Shin, H.D.; Park, J.H.; Lama, A.N.; Groenewald, M.; Braun, U.; Crous, P.W. Species concepts in Cercospora: Spotting the weeds among the roses. Stud. Mycol. 2013, 75, 115–170. [CrossRef]
43. Woudenberg, J.H.; Aveskamp, M.M.; de Gruyter, J.; Spiers, A.G.; Crous, P.W. Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 2009, 22, 56–62. [CrossRef]
44. Quaedvlieg, W.; Groenewald, J.Z.; de Jesus Yañez-Morales, M.; Crous, P.W. DNA barcoding of Mycosphaerella species of quarantine importance to Europe. Persoonia 2012, 29, 101–115. [CrossRef]
45. White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols Appl. 1990, 18, 315–322. [CrossRef]
46. Rehner, S.A.; Samuels, G.J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol. Res. 1994, 98, 625–634. [CrossRef]

47. Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [CrossRef]

48. Sung, G.H.; Sung, J.M.; Hywel-Jones, N.L.; Spatafora, J.W. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Mol. Phylogenet. Evol. 2007, 44, 1204–1223. [CrossRef]

49. Quaedvlieg, G.; Binder, M.; Groenewald, J.Z.; Summerell, B.A.; Carnegie, A.J.; Burgess, T.I.; Crous, P.W. Introducing the Consolidated Species Concept to resolve species in the Teratosphaeriaceae. Persoonia 2014, 33, 1–40. [CrossRef]

50. Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [CrossRef]

51. Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [CrossRef]

52. O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 1995, 92, 2044–2049. [CrossRef]

53. Valenzuela-Lopez, N.; Cano-Lira, J.F.; Guarro, J.; Sutton, D.A.; Wiederhold, N.; Crous, P.W.; Stichigl, A.M. Coelomycetous Dothideomycetes with emphasis on the families Cucurbitaritaeae and Didymellaceae. Stud. Mycol. 2018, 90, 1–69. [CrossRef]

54. Maharachchikumbura, S.S.N.; Wanasinghe, D.N.; Cheewangkoon, R.; Al-Sadi, A.M. Uncovering the hidden taxonomic diversity in genus Cercospora. Fungal Divers. 2021, in press. [CrossRef]

55. Mapook, A.; Hyde, K.D.; McKenzie, E.H.C.; Jones, E.B.G.; Bhat, D.J.; Jeewon, R.; Liu, N.; Abeywickrama, P.D.; Mapook, A.; Wei, D.; et al. Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed). Fungal Divers. 2020, 101, 1–175. [CrossRef]

56. Hyde, K.D.; Dong, Y.; Phookamsak, R.; Jeewon, R.; Bhat, D.J.; Jones, E.; Liu, N.; Abeywickrama, P.D.; Mapook, A.; Wei, D.; et al. Fungal diversity notes 1151–1276: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2020, 100, 5–277. [CrossRef]

57. Kuraku, S.; Nishihara, M.; Nishimura, O.; Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on visualization. Brief. Bioinform. 2019, 20, 1160–1166. [CrossRef]

58. Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [CrossRef]

59. Nylander, J.A.A.; Wilgenbusch, J.C.; Warren, D.L.; Swofford, D.L. AWTH (are we there yet?): A system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 2008, 24, 581–583. [CrossRef]

60. Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Mol. Phylogenet. Evol. 2007, 44, 1204–1223. [CrossRef]
190. Crous, P.W.; Summerell, B.A.; Mostert, L.; Groenewald, J.Z. Host specificity and speciation of *Mycosphaerella* and *Teratosphaeria* species associated with leaf spots of Proteaceae. *Persoonia* 2008, 20, 59–86. [CrossRef]

191. Spegazzini, C. Fungi argentini additis nonnullis brasiliensisibus montevideensibusque. *Pugillus quartus (Continuacion).* An. Soc. Cient. Argent. 1881, 12, 174–189.

192. Clements, F.E.; Shear, C.L. *The Genera of Fungi*; Hafner Publishing Co.: New York, NY, USA, 1931; pp. 1–632.

193. Samuels, G.J.; Müller, E. Life-history studies of Brazilian Ascomycetes. 7. *Rhytidhysteron rufulum* and the genus *Eutryblidiella*. *Sydowia* 1979, 32, 277–292.

194. Sharma, M.P.; Rawla, G.S. Ascomycetes new to India-III. *Nova Hedwigia* 1985, 42, 81–90.

195. Barr, M.E. Some dictyosporous genera and species of Pleosporales in North America. *Mem. N. Y. Bot. Gard.* 1990, 62, 1–92.

196. Magnes, M. Weltmonographie der Tribliidaeace. *Bibl. Mycol.* 1997, 165, 1–177.

197. Species Fungorum. Available online: http://www.speciesfungorum.org/Names/Names.asp (accessed on 25 February 2021).

198. De Silva, N.I.; Tennakoon, D.S.; Thambugala, K.M.; Karunaratha, S.C.; Lumyong, S.; Hyde, K.D. Morphology and multigene phylogeny reveal a new species and a new record of *Rhytidhysteron* (Dothideomycetes, Ascomycota) from China. *AJOM* 2020, 3, 295–306. [CrossRef]

199. Yu, N.T.; Xie, H.M.; Wang, J.H.; Liu, S.B.; Liu, Z.X. First Report on the Molecular Identification of Phytoplasma (16Srl) Associated with Witches’ Broom on *Dodonaea viscosa* in China. *Plant Dis.* 2016, 100:6, 1232. [CrossRef]