Torsion bounds for elliptic curves and Drinfeld modules

Florian Breuer (fbreuer@sun.ac.za)
Stellenbosch University, Stellenbosch, South Africa

October 17, 2008

Abstract

We derive asymptotically optimal upper bounds on the number of L-rational torsion points on a given elliptic curve or Drinfeld module defined over a finitely generated field K, as a function of the degree [L : K]. Our main tool is the adelic openness of the image of Galois representations attached to elliptic curves and Drinfeld modules, due to Serre and Pink-Rütsche, respectively. Our approach is to prove a general result for certain Galois modules, which applies simultaneously to elliptic curves and to Drinfeld modules.

2000 Mathematics Subject Classification: 11G05, 11G09
Keywords: Elliptic curves, Drinfeld modules, torsion points, Galois representations

1 Statement of main result

Let A be a Dedekind domain whose fraction field k is a global field, and let M be an A-module. For a non-zero ideal a ⊂ A we denote by

\[M[a] := \{ x \in M \mid a \cdot x = 0, \forall a \in a \} \]

the a-torsion submodule of M, by \(M[a^\infty] := \bigcup_{n \geq 1} M[a^n] \) the a-power torsion submodule, and by \(M_{\text{tor}} = \bigcup_{a \subset A} M[a] \) the full torsion submodule.

Let K be a finitely generated field, and denote by \(K^{\text{sep}} \) the separable closure of K in an algebraic closure \(\bar{K} \). Let \(G_K = \text{Gal}(K^{\text{sep}}/K) \) act on M. For a submodule \(H \subset M \) and a finite extension \(L/K \) we denote by \(H(L) \) the subset of \(H \) fixed by \(\text{Gal}(K^{\text{sep}}/L) \). The cardinality of a finite set \(S \) is denoted \(|S| \).

The goal of this article is to prove the following.

Theorem 1.1 Suppose we are in one of the following two situations:

(a) \(A = \mathbb{Z}, \ K \) is a finitely generated field of characteristic 0 and M is an elliptic curve over K. Set \(\gamma = \text{rank}_\mathbb{Z}(\text{End}_K(M))/2 \).

(b) \(k \) is a global function field and \(A \) is the ring of elements of \(k \) regular outside a fixed place \(\infty \) of \(k \). \(M \) is a rank \(r \) Drinfeld \(A \)-module in generic characteristic over the finitely generated field \(K \), and set \(\gamma = \text{rank}_A(\text{End}_K(M))/r \).

Then we have

(I) Let \(p \subset A \) be a non-zero prime ideal. Then there exists a constant \(C \) depending on \(M, K \) and \(p \) such that, for any finite extension \(L/K \),

\[|M[p^\infty](L)| \leq C[L : K]^\gamma. \]
There exists a constant C depending on M and K such that, for any finite extension L/K,

$$|M_{\text{tor}}(L)| \leq C([L : K] \log \log[L : K])^{\gamma}. \quad (2)$$

Moreover, these bounds are asymptotically optimal in the sense that there exist towers of fields achieving these bounds for suitable values of C.

2 Galois modules

Continuing with the notation from the previous section, we call M a (G_K, A)-module of rank r if the action of G_K commutes with the action of A, and $M[a] \cong (A/a)^r$ as A-modules for every non-zero ideal $a \subset A$.

Then for every non-zero ideal $a \subset A$ the action of G_K induces a Galois representation

$$\rho_a : G_K \longrightarrow \text{Aut}(M[a]) \cong \text{GL}_r(A/a),$$

once we have chosen a basis for $M[a]$. We denote the index of the image by

$$I(a) := (\text{GL}_r(A/a) : \rho_a(G_K)).$$

Our main tool is

Theorem 2.1 Let M be a (G_K, A)-module of rank r.

(I) Let $p \subset A$ be a non-zero prime ideal. Suppose that there exists a constant C_p, depending on M, K and p, such that $I(p^n) \leq C_p$ for all $n \in \mathbb{N}$. Then there exists a constant C depending on C_p, r and K such that, for every finite extension L/K,

$$|M[p^\infty](L)| \leq C[L : K]^{1/r}.$$

(II) Suppose that there exists a constant C_0, depending on M and K, such that $I(a) \leq C_0$ for all non-zero $a \subset A$. Then there exists a constant C depending on C_0, r and K such that, for every finite extension L/K,

$$|M_{\text{tor}}(L)| \leq C([L : K] \log \log[L : K])^{1/r}.$$

Moreover, these bounds are asymptotically optimal in the sense that there exist towers of fields achieving these bounds for suitable values of C.

2.1 Elementary Lemmas

We collect the following elementary results, which we will need in the proof of Theorem 2.1.

For a non-zero ideal $a \subset A$ we write $|a| := |A/a|$. We define the function

$$\theta(a) := \prod_{p | a} \left(1 - \frac{1}{|p|}\right)^{-1},$$

where the product ranges over all prime ideals $p | a$.
Lemma 2.2 There exist constants $C_1, C_2 > 0$, depending on A, such that $\theta(a) \leq C_1 \log \log |a|$ for all non-zero $a \subset A$. Moreover, if $a_n := \prod_{|p| \leq n} p$, then $\theta(a_n) \geq C_2 \log \log |a_n|$ for all $n \in \mathbb{N}$.

Proof. It is clear that $\theta(a)$ achieves its fastest growth (relative to $|a|$) for $a_n := \prod_{|p| \leq n} p$.

We start with the following version of Mertens’ Theorem [16, Theorems 2 and 3]:

$$\theta(a_n) = \prod_{|p| \leq n} \left(1 - \frac{1}{|p|}\right)^{-1} = C_1 \log n + O(1),$$

for an explicit constant $C_1 > 0$. On the other hand, we have,

$$\log |a_n| = \sum_{|p| \leq n} \log |p| = n + o(1).$$

When k is a number field, this is [16, Theorem 2.2]. When k is a function field over the finite field of q elements, this follows readily from the well-known estimate

$$|\{p \text{ prime} \mid |p| = q^m\}| = \frac{q^n}{m} + O\left(\frac{q^{m/2}}{m}\right).$$

Lemma 2.3 Let $a \subset A$ be a non-zero ideal. Then

$$|GL_r(A/a)| = |a|^n \prod_{|p| \leq n} \left(1 - \frac{1}{|p|}\right) \left(1 - \frac{1}{|p|^2}\right) \cdots \left(1 - \frac{1}{|p|^r}\right).$$

Proof. Since $|GL_r(A/a)|$ is multiplicative in a, it suffices to prove the result for $a = p^n$, where $p \subset A$ is prime.

It is well-known that $|GL_r(A/p)| = (|p|^r - 1)(|p|^r - |p|) \cdots (|p|^r - |p|^{r-1})$, and the general result follows from the exact sequence

$$1 \rightarrow 1 + M_r(p/p^n) \rightarrow GL_r(A/p^n) \rightarrow GL_r(A/p) \rightarrow 1,$$

where M_r denotes the additive group of $r \times r$ matrices.

Lemma 2.4 Let K_i/K and L_i/K_i be finite extensions inside \bar{K}, for $i = 1, 2, \ldots, r$. We denote by $\prod_{i=1}^r K_i$ the compositum of the fields K_1, \ldots, K_r inside \bar{K}, and similarly for $\prod_{i=1}^r L_i$. Then

$$\frac{\prod_{i=1}^r [K_i : K]}{[\prod_{i=1}^r K_i : K]} \leq \frac{\prod_{i=1}^r [L_i : K]}{[\prod_{i=1}^r L_i : K]}.$$

Proof. Elementary.
2.2 Fields of definition

Let \(H \subset M[\mathfrak{a}] \) be a subset, define

\[
\text{Fix}_{\text{Aut}(M[\mathfrak{a}])(H)} := \{ \sigma \in \text{Aut}(M[\mathfrak{a}]) \mid \sigma(h) = h, \forall h \in H \},
\]

and denote by \(K(H) \) the field generated by \(H \) over \(K \), i.e. \(K(H) \) is the fixed field of \(\rho_{\mathfrak{a}}^{-1}(\text{Fix}_{\text{Aut}(M[\mathfrak{a}])(H)}) \). When \(H = \{ x \} \) we write \(K(H) = K(x) \). Then \(\rho_{\mathfrak{a}} \) induces an isomorphism:

Lemma 2.5

\[
\text{Gal} \left(K(H)/K \right) \cong \frac{\rho_{\mathfrak{a}}(G_K)}{\rho_{\mathfrak{a}}(G_K) \cap \text{Fix}_{\text{Aut}(M[\mathfrak{a}])(H)}}.
\]

\[\square\]

Let \(x \in M_{\text{tor}} \). Then we say that \(x \) has order \(\mathfrak{a} \), where \(\mathfrak{a} \subset A \) is a non-zero ideal, if \(x \in M[\mathfrak{a}] \) but \(x \notin M[\mathfrak{b}] \) for any ideal \(\mathfrak{b} \supseteq \mathfrak{a} \). We also denote by \(\zeta_A(s) = \prod_p (1 - |p|^{-s})^{-1} \) the zeta-function of \(A \).

Proposition 2.6 Let \(x \in M_{\text{tor}} \) be a point of order \(\mathfrak{a} \). Then

\[
[K(x) : K] = \frac{1}{C} |\mathfrak{a}|^r \prod_{p | \mathfrak{a}} \left(1 - \frac{1}{|p|^r} \right)
\]

where \(1 \leq C \leq I(\mathfrak{a}) \).

Proof. Choose a basis for \(M[\mathfrak{a}] \) such that \(x \) is the first basis element. This choice determines the isomorphism \(\text{Aut}(M[\mathfrak{a}]) \cong \text{GL}_r(A/\mathfrak{a}) \). The stabilizer of \(x \) in \(\text{GL}_r(A/\mathfrak{a}) \) is of the form

\[
\text{Fix}_{\text{GL}_r(A/\mathfrak{a})}(x) = \begin{pmatrix} 1 & * & \cdots & * \\ 0 & \vdots & \ddots & \text{GL}_{r-1}(A/\mathfrak{a}) \\ 0 & \text{GL}_{r-1}(A/\mathfrak{a}) \end{pmatrix}
\]

where the starred entries of the first row are arbitrary elements of \(A/\mathfrak{a} \) and the bottom right \((r-1) \times (r-1) \) block is \(\text{GL}_{r-1}(A/\mathfrak{a}) \). It follows from Lemma 2.5 that

\[
|\text{Fix}_{\text{GL}_r(A/\mathfrak{a})}(x)| = |\mathfrak{a}|^{r-1} |\text{GL}_{r-1}(A/\mathfrak{a})|
\]

\[
= |\mathfrak{a}|^{r(r-1)} \prod_{p | \mathfrak{a}} \left(1 - \frac{1}{|p|} \right) \left(1 - \frac{1}{|p|^r} \right) \cdots \left(1 - \frac{1}{|p|^{r-1}} \right).
\]

From Lemma 2.5 follows that

\[
[K(x) : K] = \frac{1}{C} \frac{|\text{GL}_r(A/\mathfrak{a})|}{|\text{Fix}_{\text{GL}_r(A/\mathfrak{a})}(x)|}
\]

\[
= \frac{1}{C} |\mathfrak{a}|^r \prod_{p | \mathfrak{a}} \left(1 - \frac{1}{|p|^r} \right),
\]

where \(1 \leq C \leq I(\mathfrak{a}) \).

\[\square\]
Proposition 2.7 Suppose $r \geq 2$. Then there exists a constant $C > 0$ depending on $I(a)$ and K, such that the following holds. Let $x_1, \ldots, x_r \in M[a]$ be a basis for $M[a]$. Then
\[
\prod_{i=1}^{r} \left[K(x_i) : K \right] \leq C \theta(a).
\]

Of course, $[K(x_1) : K] = [K(M[a]) : K]$ if $r = 1$.

Proof. From Lemma 2.5 we obtain
\[
[K(M[a]) : K] = \frac{1}{I(a)} |GL_r(A/a)|.
\]

Now Lemma 2.3 and Proposition 2.6 give
\[
\prod_{i=1}^{r} [K(x_i) : K] \leq I(a) \prod_{p\mid a} \left(1 - \frac{1}{|p|^r} \right)^{-1} \left(1 - \frac{1}{|p|} \right)^{-1} \left(1 - \frac{1}{|p|^{r-1}} \right)^{-1} \left(1 - \frac{1}{|p|} \right)^{-1} \left(1 - \frac{1}{|p|^{r-1}} \right)^{-1} \cdots
\]
\[
\leq I(a) \zeta_A(2) \zeta_A(3) \cdots \zeta_A(r-1) \cdot \prod_{p\mid a} \left(1 - \frac{1}{|p|} \right)^{-1}.
\]

The intuition is that the fields generated by linearly independent torsion points have minimal intersection. Explicitly,

Corollary 2.8 There exists a constant $C > 0$ depending on $I(a)$ and K, such that the following holds. Let $x_1, x_2 \in M[a]$ be points of order a for which $\langle x_1 \rangle \cap \langle x_2 \rangle = \{0\}$. Then
\[
[K(x_1) \cap K(x_2) : K] \leq C \theta(a).
\]

2.3 Proof of Theorem 2.1

Proof of Theorem 2.1 Let $H = M_{\text{tor}}(L)$, which is finite since we assume that the indices $I(a)$ are bounded. Let $a \subset A$ be the minimal ideal for which $H \subset M[a]$. One can choose a basis x_1, \ldots, x_r of $M[a] \cong (A/a)^r$ such that $H = \langle y_1, \ldots, y_r \rangle$, with $y_i \in \langle x_i \rangle$, and y_i is of order a_i, for each $i = 1, \ldots, r$. Then $K(H)$ is the compositum of the $K(y_i)$’s in L.

From Lemma 2.4, Proposition 2.7 and Lemma 2.2 we obtain
\[
\prod_{i=1}^{r} [K(y_i) : K] \leq \prod_{i=1}^{r} [K(x_i) : K] \leq C_1 \theta(a) \leq C_2 \log \log |a|,
\]
for some constant C_2 independent of H. From Proposition 2.6 now follows that
\[
[K(H) : K] \geq \frac{\prod_{i=1}^{r} [K(y_i) : K]}{C_2 \log \log |a|} \quad \text{(or } [K(y_1) : K] \text{ if } r = 1) \]
\[
\geq \frac{1}{I(a)^r \zeta_A(r)^r C_2 \log \log |a|} \quad \text{(or } \frac{1}{I(a)} \frac{|a_1|}{C_2 \log \log |a|} \text{ if } r = 1) \]
\[
\geq C_2 \frac{|H|^r}{\log \log |H|}.
\]
where C_2 is independent of H, by the assumption on $I(a)$.

It follows that $|H| \leq C_3([K(H) : K] \log \log [K(H) : K])^{1/r}$, which proves part (II).

If $H = M[p^\infty](L)$, then in the above argument we find that $a = p^n$ for some n, and $	heta(p^n) = (1 - |p|^{-1})^{-1}$ only depends on p, so the log log-term falls away. Part (I) follows.

Lastly, we show that the bounds are sharp. In case (II), let $a_n := \prod_{|p| \leq n} p$ for $n \in \mathbb{N}$, as in Lemma 2.2. Now set $L_n := K(M[a_n])$. By Lemmas 2.5 and 2.3,

$$[L_n : K] = \frac{1}{I(a_n)}|GL_r(A/a_n)| = \frac{1}{I(a_n)}|a_n|^{r^2} \prod_{p|a_n} \left(1 - \frac{1}{|p|}\right) \left(1 - \frac{1}{|p|^r}\right) \cdots \left(1 - \frac{1}{|p|^r}\right).$$

It follows that

$$|M_{\text{tor}}(L_n)| \geq |M(a_n)| = |a_n|^r \geq C_2([L_n : K] \log \log [L_n : K])^{1/r}.$$

Case (I) is similar: We let $a_n := p^n$ and $L_n := K(M[p^n])$. This time $\theta(p^n)$ is constant and we find

$$|M[p^\infty](L_n)| \geq |M[p^n]| = |p^n|^r \geq C_2[L_n : K]^{1/r}.$$

\square

3 Proof of the main result

3.1 Drinfeld modules

Suppose that k is a global function field, and fix a place ∞ of k. Let A be the ring of elements of k regular away from ∞, and let φ be a Drinfeld A-module of rank r in generic characteristic defined over the finitely generated field K. We denote by $\text{End}_L(\varphi)$ the ring of endomorphisms of φ defined over a field L/K. See [3] Chapter 4] for basic facts about Drinfeld modules.

Proof of Theorem 1.1(b).

We first reduce to the case where $\text{End}_K(\varphi) = A$. Replacing K by a finite extension if necessary, we may assume that $\text{End}_K(\varphi) = \text{End}_K(\varphi)$. Let $R = \text{End}_K(\varphi)$, then since φ has generic characteristic, R is an order in a purely imaginary extension k'/k, i.e. k' has only one place above ∞. Furthermore, $[k' : k]$ divides r. Denote by A' the integral closure of A in k'.

By [3] Prop 4.7.19] there exists a Drinfeld A-module ψ and an isogeny $P : \varphi \to \psi$, defined over K, such that $\text{End}_K(\psi) = A'$. Now P induces a morphism $\varphi_{\text{tor}}(L) \to \psi_{\text{tor}}(L)$, and the dual isogeny \tilde{P} likewise induces a morphism $\psi_{\text{tor}}(L) \to \varphi_{\text{tor}}(L)$, of degree independent of L. Hence

$$c_1|\psi_{\text{tor}}(L)| \leq |\varphi_{\text{tor}}(L)| \leq c_2|\psi_{\text{tor}}(L)|$$

for constants $c_1, c_2 > 0$ independent of L.

Now ψ may be extended to a Drinfeld A'-module of rank $r' = r/[A' : A]$, which we denote by ψ'. We claim that $\psi_{\text{tor}}(L) = \psi'_{\text{tor}}(L)$. Let $c \in A'$, then $\psi'_c \in \text{End}_K(\psi)$, and $\psi'_c \circ \psi'_d = \psi'_{cd}$ for some $d \in A$, where ψ'_c denotes the dual of ψ'_c as an isogeny. Hence $\ker(\psi'_c) \subset \ker(\psi'_d)$ and so $\psi'_{\text{tor}}(L) \subset \psi_{\text{tor}}(L)$. The other inclusion is obvious.

Thus it suffices to prove Theorem 1.1(b) with (φ, A, r, γ) replaced by $(\psi', A', r', 1/r')$. The result now follows from Theorem 2.1 together with the following important result of Pink and Rütsche [13]:

6
Theorem 3.1 (Pink-Rütsche) Let φ be a rank r Drinfeld A-module in generic characteristic, defined over the finitely generated field K. Suppose that $\text{End}_K(\varphi) = \text{End}_K(\varphi) = A$. Then there exists a constant C_0 depending on φ and on K, such that such that the index $I(\mathfrak{a})$ of the image of the Galois representation on $\varphi[\mathfrak{a}] \cong (A/\mathfrak{a})^r$ is bounded by C_0 for all $\mathfrak{a} \subset A$.

\[\square \]

3.2 Elliptic curves

Let K be a finitely generated field of characteristic zero, and E/K an elliptic curve. For a field L/K we denote by $\text{End}_L(E)$ the ring of endomorphisms of E defined over L.

Proof of Theorem 1.1(a).

Suppose that E does not have complex multiplication. Then E is a rank 2 (G_K, \mathbb{Z})-module, and the result follows from Theorem 2.1 with $A = \mathbb{Z}$ and $r = 2$ once we have established

Theorem 3.2 (Serre) Suppose E/K is an elliptic curve without complex multiplication, defined over a finitely generated field K of characteristic zero. Then there exists a constant C_0, depending on E and on K, such that the index $I(n)$ of the image of the Galois representation on $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$ is bounded by C_0 for all $n \in \mathbb{Z}$.

Proof. Let j denote the j-invariant of E and let $K_1 = \mathbb{Q}(j)$. Then by [20, §III, Prop 1.4] there exists an elliptic curve E'/K_1 with $j(E') = j$ which becomes isomorphic to E over a finite extension of K. It suffices to prove Theorem 3.2 with E replaced by E'.

The result holds for K_1, in the sense that the cokernel of $\rho_n : \text{Gal}(K_1^{\text{sep}}/K_1) \to \text{GL}_2(\mathbb{Z}/n\mathbb{Z})$ is bounded independently of n. Indeed, if K_1 is a number field then this is Serre’s celebrated Open Image Theorem [18], whereas if j is transcendental then the result follows by an older result of Weber [8, p68].

Now let $K_1 \subset K_2 \subset K$ such that K_2/K_1 is purely transcendental and K/K_2 is finite. The result also holds for K_2 since $\text{Gal}(K_2^{\text{sep}}/K_2) \cong \text{Gal}(K_1^{\text{sep}}/K_1)$. As $\text{Gal}(K^{\text{sep}}/K)$ is a subgroup of index $[K : K_2]$ in $\text{Gal}(K_2^{\text{sep}}/K_2)$, it follows that the result also holds for K.

Next, suppose that E has complex multiplications by an order in the quadratic imaginary field k/\mathbb{Q}. After replacing K by a finite extension and E by a K-isogenous elliptic curve if necessary, we may assume that $\text{End}_K(E) = \text{End}_K(E) = A$ is the maximal order in k. Now E is a rank 1 (G_K, A)-module, and for any finite extension L/K the torsion points in $E(L)$ with respect to the A-module structure coincide with the usual torsion points. Again, the result follows from Theorem 2.1 with $r = 1$ together with the following consequence of CM theory.

Theorem 3.3 (CM) Suppose E/K is an elliptic curve defined over a finitely generated field K of characteristic zero. Suppose that $\text{End}_K(E) = \text{End}_K(E) = A$ is the maximal order in a quadratic imaginary field k. Then there exists a constant C_0, depending on E and on K, such that the index $I(\mathfrak{a})$ of the image of the Galois representation on $E[\mathfrak{a}] \cong A/\mathfrak{a}$ is bounded by C_0 for all $\mathfrak{a} \subset A$.

Proof. As before, let j denote the j-invariant of E, and set $K_1 = \mathbb{Q}(j)$. Since E has complex multiplication, K_1 is a number field and the result holds for K_1 by [18, §4.5]. The result now extends to K as in the proof of Theorem 3.2.

\[\square \]
4 Discussion

When M is an elliptic curve with complex multiplication, then the lower bound in Theorem 1.1 improves the bound $|M_{\text{tor}}(L)| \geq C[L : K] \sqrt{\log \log [L : K]}$ (for suitable fields L) often encountered in the literature (e.g. [1, 2]).

4.1 Other applications of Galois modules

Applying Theorem 2.1 to the rank 1 $(G_{\mathbb{Q}}, \mathbb{Z})$-module $M = G_{\mathbb{Q}}$, we get the well known result that the number of roots of unity in a number field L/\mathbb{Q} is bounded by $C[L : \mathbb{Q}] \log \log [L : \mathbb{Q}]$, for an absolute constant $C > 0$.

One may also bound the orders of $\text{Gal}(K^{\text{sep}}/L)$-stable submodules (equivalently, degrees of L-rational isogenies) of elliptic curves or Drinfeld modules.

Proposition 4.1 Let M be a (G_K, A)-module of rank $r \geq 2$. Let L/K be a finite extension and $H \subset M$ a $\text{Gal}(K^{\text{sep}}/L)$-stable cyclic submodule of order $a \subset A$, i.e. $H \cong A/a$. Then

$$|H| = |a| \leq C[L : K]^{1/(r-1)},$$

where the constant C depends on M, K, r and the index $I(a)$, but not on L.

Proof. One shows, as in Proposition 2.6, that the stabilizer of H in $\text{Aut}(M[a])$ has order

$$|\text{Stab}_{\text{Aut}(M[a])}(H)| = |(A/a)\times| \cdot |a|^{r-1} \cdot |\text{GL}_{r-1}(A/a)|$$

$$= |a|^{r^2-r+1} \prod_{p | a} \left(1 - \frac{1}{|p|} \right) \left(1 - \frac{1}{|p|^2} \right) \cdots \left(1 - \frac{1}{|p|^{r-1}} \right)$$

and hence

$$[K(H) : K] \leq \frac{1}{I(a)} \frac{|\text{GL}_r(A/a)|}{|\text{Stab}_{\text{Aut}(M[a])}(H)|}$$

$$\geq \frac{\zeta_A(r)}{I(a)} |a|^{r-1}.$$

The result follows. \qed

Corollary 4.2 Suppose M is an elliptic curve without complex multiplication defined over a finitely generated field K of characteristic zero, or that M is a Drinfeld A-module of rank $r \geq 2$ in generic characteristic with $\text{End}_{\mathbb{F}}(M) = A$, defined over the finitely generated field K. Then there exists a constant $C > 0$, depending on M, K and r such that, for any finite extension L/K, the degree of any L-rational cyclic isogeny $M \to M'$ is bounded by $C[L : K]^{1/(r-1)}$, (where $r = 2$ if M is an elliptic curve). \qed
4.2 Uniform bounds

One may ask if the constants in Theorem 1.1 may be chosen independently of M (this would follow from a uniform bound on $I(a)$).

When M is a Drinfeld module of rank 1 this was shown by Poonen [14, Theorem 8]. For Drinfeld modules of higher rank the existence of an upper bound on $|M_{\text{tor}}(L)|$ depending only on r, A and $[L : K]$ is conjectured by Poonen [loc. cit.], though there are various partial results, typically with the upper bound depending on primes of bad reduction, see for example [2 14 17].

When E is an elliptic curve over a number field K, uniform upper bounds on $|E_{\text{tor}}(L)|$ do exist, as shown by Mazur, Kamienny and Merel [7 11 12], but these bounds are not yet known to be polynomial in the degree $[L : K]$ in general. When E has everywhere good reduction, then we have the explicit bound $|E_{\text{tor}}(L)| \leq 1977408[L : \mathbb{Q}] \log[L : \mathbb{Q}]$, due to Hindry and Silverman, [9].

If E is an elliptic curve with complex multiplication defined over a number field, one may translate Poonen’s proof of [14, Theorem 8] from rank 1 Drinfeld modules to the rank 1 $(G_K, \text{End}(E))$-module E, and one obtains

$$|E_{\text{tor}}(L)| \leq C[L : \mathbb{Q}] \log \log[L : \mathbb{Q}],$$

where the constant C depends only on the endomorphism ring $\text{End}(E)$. On the other hand, it follows from [15 19] that the exponent of the group $E_{\text{tor}}(L)$ is bounded by $C[L : \mathbb{Q}] \log \log[L : \mathbb{Q}]$ for an absolute constant C.

4.3 Abelian varieties

Suppose M is an abelian variety of dimension g defined over a number field K. Masser has shown that $|M_{\text{tor}}(L)| \leq C([L : K] \log[L : K])^g$, see [9 10]. The exponent g is not optimal in general.

The key to our approach is the independence of fields generated by linearly independent torsion points (Proposition 2.7), which holds because

$$r \cdot \text{codim} \text{Fix}_G(x) = \dim G,$$

when $G = \text{GL}_r$.

For abelian varieties, the image of Galois is contained in the Mumford-Tate group, which is an algebraic subgroup of GSp_{2g}. This suggests developing a theory of “symplectic” Galois modules. However, as $\dim \text{GSp}_{2g} = 2g^2 + g + 1$ does not factorize, an identity of the form (4) is not possible. This means that one must explicitly estimate the order of $\text{Fix}_G(A/a)(H)$ for submodules $H \subset M_{\text{tor}}$, which requires more effort. This is done by Hindry and Ratazzi [11 15], allowing them to obtain the optimal exponent γ for which $|M_{\text{tor}}(L)| \leq C_{\varepsilon}[L : K]^\gamma + \varepsilon$ holds in various cases (here the constant C_{ε} depends on $\varepsilon > 0$).

Acknowledgements. The seed for this article was sown in discussions with Marc Hindry and Amilcar Pacheco at the XX Escola de Álgebra in Rio de Janeiro.
References

[1] P. L. Clark and X. Xarles, Local bounds for torsion points on abelian varieties. *Canad. J. Math.* 60 (2008), no. 3, 532–555.

[2] D. Ghioca, The Lehmer inequality and the Mordell-Weil theorem for Drinfeld modules. *J. Number Theory* 122 (2007), no. 1, 37–68.

[3] D. Goss, *Basic Structures in Function Field Arithmetic*, Springer-Verlag, 1998.

[4] M. Hindry and N. Ratazzi, Torsion dans un produit de courbes elliptiques. arXiv:0804.3031v1 [math.NT], (2008).

[5] M. Hindry and N. Ratazzi, Points de torsion sur les variétés abéliennes de type GSp$_{2g}$. Manuscript, 2008.

[6] M. Hindry and J. H. Silverman, Sur le nombre de points de torsion rationnels sur une courbe elliptique, *C. R. Acad. Sci. Paris, Série I*, 329 (1999) 97–100.

[7] S. Kamienny, Torsion points on elliptic curves and q-coefficients of modular forms, *Invent Math.* 109 (1992) 221–229.

[8] S. Lang, *Elliptic functions, 2nd Edition*, GTM 112, Springer Verlag, 1987.

[9] D. Masser, Counting points of small height on elliptic curves, *Bull. Soc. Math. France* 117 (1989), 247–265.

[10] D. Masser, Letter to Daniel Bertrand of 10 November 1986.

[11] B. Mazur, Modular curves and the Eisenstein ideal, *Pub. Math. IHES* 47 (1978), 33–186.

[12] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres. *Invent. Math.* 124 (1996), no. 1-3, 437–449.

[13] R. Pink and E. Rütsche, Adelic openness for Drinfeld modules in generic characteristic. Preprint, 2008.

[14] B. Poonen, Torsion in rank 1 Drinfeld modules and the uniform boundedness conjecture. *Math. Ann.* 308, 571–586 (1997).

[15] D. Prasad and C. S. Yogananda, Bounding the torsion in CM elliptic curves. *C. R. Math. Acad. Sci. Soc. R. Can.* 23 (2001), no. 1, 1–5.

[16] M. Rosen, A generalization of Mertens’ Theorem. *J. Ramanujan Math. Soc.* 14 (1999), no. 1, 1–19.

[17] A. Schweizer, Torsion of Drinfeld modules and gonality. *Forum Math.* 16 (2004), 925–941.

[18] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, *Invent. Math.* 15 (1972), 259-331.

[19] A. Silverberg, Torsion points on abelian varieties of CM-type. *Compositio Math.* 68 (1988), no. 3, 241–249.

[20] J. H. Silverman, *The arithmetic of elliptic curves*, GTM 106, Springer-Verlag, 1986.