Managing clozapine-induced neutropenic fever: A case report

Regis G. Rosa, Maria D. Rosa, Alcina J. S. Barros

ABSTRACT

Introduction: Clozapine is an atypical antipsychotic, which is associated with an increased risk of neutropenia. Given that the signs and symptoms of infection in neutropenic patients are often subtle or absent because of the lack of an appropriate inflammatory response, fever may constitute the sole indicator of a serious underlying infection. Unfortunately, data about management of patients with neutropenic fever secondary to clozapine are scarce. Consequently, the entire management of this syndrome is based on extrapolation of data from the experience with cancer patients with neutropenia secondary to cytotoxic chemotherapy.

Case Report: Herein, we describe the management of a neutropenic fever case complicated with septic shock and acute respiratory failure in an 57-year-old Caucasian female with the diagnosis of schizophrenia and type-2 diabetes mellitus, who was being treated with clozapine. The patient rapidly developed cardiorespiratory collapse requiring mechanical ventilation and vasoactive drugs few minutes after arrival at hospital. Profound neutropenia (absolute neutrophil count 60 cells/mm3) and lobar pneumonia were diagnosed. Broad-spectrum antimicrobial therapy with piperacillin-tazobactam plus vancomycin and supportive intensive care were promptly implemented. The clozapine-induced neutropenia was managed with filgrastim. Pseudomonas aeruginosa was isolated from the tracheal aspirate and blood cultures. After a total length of hospital stay of 44 days, the patient was discharged home.

Conclusion: Neutropenic fever is a serious complication of clozapine treatment. Prompt administration of empiric broad-spectrum antibiotics and supportive care are required to avoid the high levels of mortality associated with this syndrome.
Managing clozapine-induced neutropenic fever: A case report

Regis G. Rosa, Maria D. Rosa, Alcina J. S. Barros

ABSTRACT

Introduction: Clozapine is an atypical antipsychotic, which is associated with an increased risk of neutropenia. Given that the signs and symptoms of infection in neutropenic patients are often subtle or absent because of the lack of an appropriate inflammatory response, fever may constitute the sole indicator of a serious underlying infection. Unfortunately, data about management of patients with neutropenic fever secondary to clozapine are scarce. Consequently, the entire management of this syndrome is based on extrapolation of data from the experience with cancer patients with neutropenia secondary to cytotoxic chemotherapy. Case Report: Herein, we describe the management of a neutropenic fever case complicated with septic shock and acute respiratory failure in a 57-year-old Caucasian female with the diagnosis of schizophrenia and type-2 diabetes mellitus, who was being treated with clozapine. The patient rapidly developed cardiorespiratory collapse requiring mechanical ventilation and vasoactive drugs few minutes after arrival at hospital. Profound neutropenia (absolute neutrophil count 60 cells/mm³) and lobar pneumonia were diagnosed. Broad-spectrum antimicrobial therapy with piperacillin-tazobactam plus vancomycin and supportive intensive care were promptly implemented. The clozapine-induced neutropenia was managed with filgrastim. Pseudomonas aeruginosa was isolated from the tracheal aspirate and blood cultures. After a total length of hospital stay of 44 days, the patient was discharged home. Conclusion: Neutropenic fever is a serious complication of clozapine treatment. Prompt administration of empiric broad-spectrum antibiotics and supportive care are required to avoid the high levels of mortality associated with this syndrome.

Keywords: Clozapine, Critical care, Febrile neutropenia, Neutropenic fever, Septic, Shock

INTRODUCTION

Neutropenia is the most feared adverse effect of clozapine, an antipsychotic dibenzodiazepine, primarily because its occurrence is known to predispose patients to severe infections [1]. The estimated incidence of clozapine-induced neutropenia ranges from 0.5–2.0% of patients treated with this medication, with the majority of cases occurring within the first three months after the start of treatment [2]. Although the exact mechanism of neutrophil toxicity is unknown, some evidence suggests immunologically mediated reactions may play a role [3].
Neutropenic fever (NF) is a syndrome characterized by fever in the presence of neutropenia (absolute neutrophil count < 500 cells/mm³) [4]. NF constitutes a medical emergency that requires the prompt administration of empirical broad-spectrum antimicrobials to prevent the characteristically high probability of mortality, which may reach values of approximately 10% in specialized centers [5,6]. The classical signs and symptoms of infection are often subtle or absent because an appropriate inflammatory response is missing due to granulocytopenia [7], underscoring the importance of early assessment and appropriate management of patients with NF. Among factors related to NF treatment, microbiologically effective initial antibiotics, time to antibiotic administration, and restoration of tissue perfusion play important roles in reducing mortality [8–10]. Herein, we describe the management of a NF episode complicated with septic shock in a 57-year-old Caucasian female with refractory schizophrenia after four weeks of treatment with clozapine.

CASE REPORT

A 57-year-old Caucasian female who had been diagnosed with paranoid schizophrenia since the age of 20 and type 2 diabetes mellitus since the age of 45 was admitted to a tertiary referral hospital due to fever (axillary temperature 38.9°C), sinus tachicardia (heart rate 110 bpm), malaise, and dehydration. She had a history of recent hospitalization due to refractory psychosis in which her antipsychotic treatment was switched from risperidone to clozapine. Clozapine treatment had been titrated up to a dosage of 400 mg orally per day starting four weeks before the hospitalization recounted here, and the routine white blood cell counts had been normal at the second and third weeks of treatment.

At the current hospitalization, the patient rapidly developed cardiorespiratory collapse requiring mechanical ventilation and continuous infusion of norepinephrine despite initial oxygen administration and fluid challenge with 1 L of crystalloid. She also presented oliguria (urine output < 0.5 mL/kg/h) and signs of poor peripheral perfusion (cold extremities, cyanosis, and capillary refill time > 2 s). The complete blood cell count demonstrated leukopenia (total leukocyte count 410 cells/mm³) and profound neutropenia (absolute neutrophil count 60 cells/mm³) with no abnormalities in hemoglobin or platelet counts. Initial C-reactive protein was elevated (96 mg/L) as was serum creatinine and BUN (3.5 mg/dL and 62 mg/dL, respectively). There were no abnormalities in serum electrolytes or liver function tests. The initial chest X-ray showed a lobar consolidation in the upper-right pulmonary lobe. After obtaining two samples of blood cultures and quantitative tracheal aspirate, the patient was treated according to current guidelines for the management of NF with 4.5 g piperacillin-tazobactam administered intravenously over a 4 h period every 8 h, plus 1.0 g vancomycin administered intravenously every 12 h [4, 11–13]. The time between emergency arrival and antibiotic administration was 50 min. Acute respiratory failure was managed through a lung-protective mechanical ventilation strategy with low tidal volumes (6 ml per kilogram of ideal body weight) [14]. Restoration of tissue perfusion was performed with vasopressors, inotropes, and intravenous fluids according to established early goal-directed therapy for septic shock [15]. The clozapine-induced neutropenia was treated by subcutaneously administering 5 mg/kg/day of Filgrastim, a granulocyte colony-stimulating factor. After implementing these measures, septic shock progressively improved and the vasopressor dose was gradually reduced. Peripheral perfusion and diuresis substantially improved without the need for hemodialysis. *Pseudomonas aeruginosa* was isolated from the tracheal aspirate and blood cultures. The isolated bacteria was sensitive to piperacillin-tazobactam and carbapenens, and resistant to cefepime, fluoroquinolones, and aminoglycosides. After results of the antimicrobial susceptibility tests, vancomycin treatment was suspended given that there was no evidence of infection by gram-positive bacteria. After the fifth day of treatment, neutrophil counts began to increase, and reached values above 500 cells/mm³ after the eighth day. The antimicrobial treatment with piperacillin-tazobactam was maintained for 14 days, and the patient was extubated on the tenth day. The patient stayed 13 days in the ICU and 44 days in the hospital. Upon discharge, the patient was using quetiapine for the treatment of schizophrenia with good control of psychotic symptoms.

DISCUSSION

The present case report describes the successful management of a severe case of NF complicated with septic shock. Probably, the profound neutropenia caused by clozapine followed by a high virulent bacterial infection (*Pseudomonas aeruginosa*) contributed to the complicated course of NF. Successful management in this situation is noteworthy as the expected mortality rate for neutropenic patients with septic shock has been reported to be quite high at 35–50% [16,17].

According to current guidelines, patients with NF should be treated initially with empiric intravenous therapy, comprising β-lactam antibiotic monotherapy with antipseudomonal activity (i.e. ceftazidime, cefepime, piperacillin/tazobactam, meropenem, or imipenem) within 1 hour from onset of neutropenic sepsis [4,18]. This recommended regimen reflects the principle of broad-spectrum initial therapy that focuses primarily on aerobic gram-negative bacteria such as *Escherichia coli*, *Pseudomonas aeruginosa*, *Klebsiella* spp., and *Enterobacter* spp., and aerobic gram-positive bacteria such as methicillin-susceptible staphylococci and viridans streptococci. The addition of vancomycin to the initial
regimen, which aims to combat resistant gram-positive bacteria (i.e. methicillin-resistant *Staphylococcus aureus* and penicillin-resistant *Streptococcus pneumoniae*), is indicated in cases of hemodynamic instability, suspected catheter-related infection, pneumonia, or infection of the skin and soft tissue. Our patient was treated initially with the combination of piperacillin-tazobactam and vancomycin due to the presence of hemodynamic instability and pneumonia. Glycopeptidemia was discontinued as soon as the initial cultures ensured the absence of infection by gram-positive bacteria. Filgrastim, a colony-stimulating factor, was used in this case as means to decrease the duration of clozapine-induced neutropenia. Its presumed efficacy is based on case reports [19–20] and studies in cancer patients under cytotoxic chemotherapy [21]. Given that protective mechanical ventilation and appropriate restoration of tissue through fluid challenge and vasopressor are two measures associated with better outcomes in critically ill patients, they likely played important roles in the positive outcome reported here [18].

CONCLUSION

In summary, patients with clozapine-induced neutropenia are at risk for severe infections. The timely administration of appropriate antimicrobials as well as rapid tissue-perfusion restoration are of paramount importance to avoid unfavorable outcomes in this context.

Author Contributions

Regis G. Rosa – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Maria D. Rosa – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Alcina J. S. Barros – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor
The corresponding author is the guarantor of submission.

Conflict of Interest

Authors declare no conflict of interest.

Copyright

© 2015 Regis G. Rosa et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited.

Please see the copyright policy on the journal website for more information.

REFERENCES

1. Andrès E, Maloise F. Idiosyncratic drug-induced agranulocytosis or acute neutropenia. Curr Opin Hematol 2008 Jan;15(1):15–21.
2. Alvir JMJ, Lieberman JA, Safferan AZ, Schwimmer JL, Schaff JA. Clozapine-induced agranulocytosis. Incidence and risk factors in the United States. N Engl J Med 1993 Jul 15;329(3):162–7.
3. Roge R, Moller BK, Andersen CR, Correl CU, Nielsen J. Immunomodulatory effects of clozapine and their clinical implications: what have we learned so far? Schizophr Res 2012 Sep;140(1-3):204–13.
4. Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis 2011 Feb 15;52(4):e56–93.
5. Kuderer NM, Dale DC, Crawford J, Cosler LE, Lyman GH. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 2006 May 15;106(10):2258–66.
6. Rosa RG, Goldani LZ, dos Santos RP. Association between adherence to an antimicrobial stewardship program and mortality among hospitalised cancer patients with febrile neutropaenia: A prospective cohort study. BMC Infect Dis 2014 May 23;14:286.
7. Bow EJ. Infection in neutropenic patients with cancer. Crit Care Clin 2013 Jul;29(3):411–41.
8. Kumar A, Ellis P, Arabi Y, et al. Cooperative Antimicrobial Therapy of Septic Shock Database Research Group. Initiation of inappropriate antimicrobial therapy results in a five fold reduction of survival in human septic shock. Chest 2009 Nov;136(5):1237–48.
9. Rosa RG, Goldani LZ. Cohort study of the impact of time to antibiotic administration on mortality in patients with febrile neutropenia. Antimicrobial Agents Chemotherapy 2014 Jul;58(7):3799–803.
10. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006 Jun;34(6):1589–6.
11. De Naurois J, Novitzky-Basso I, Gill MJ, Marti Marti F, Cullen MH, Roila F. Management of febrile neutropenia: ESMO clinical practice guidelines. Ann Oncol 2010 May;21 Suppl 5:v252–6.
12. Averbuch D, Orasch C, Cordonnier C, et al. on behalf of Ecil 4, a joint venture of EBMT, EORTC, ICHS, ESGICH/ESCMID and ELN. European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 2011 4th European Conference on Infections in Leukemia. Hematológca 2013;98(12):1826–35.
13. Bate J, Gibson F, Johnson E, Selwood K, Skinner R, Chishom J. Neutropenic sepsis: Prevention and management of neutropenic sepsis in cancer patients (NICE Clinical Guideline CG 151). Arch Dis Child Educ Pract Ed 2013 Apr;98(2):73–5.
14. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000 May 4;342(18):1301–8.

15. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001 Nov 8;345(19):1368–77.

16. Regazzoni CJ, Irrazabal C, Luna CM, Poderoso JJ. Cancer patients with septic shock: Mortality, predictors and neutropenia. Support Care Cancer 2004 Dec;12(12):833–9.

17. Rosa RG, Goldani LZ. Aetiology of bacteremia as a risk factor for septic shock at the onset of febrile neutropaenia in adult cancer patients. Biomed Res Int 2014;2014:561020.

18. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013 Feb;41(2):580–637.

19. Lamberti JS, Belnier TJ, Schwarzkopf SB, Schneider E. Filgrastim treatment of three patients with clozapine-induced agranulocytosis. J Clin Psychiatry 1995 Jun;56(6):256–9.

20. Hägg S, Rosenius S, Spigset O. Long-term combination treatment with clozapine and filgrastim in patients with clozapine-induced agranulocytosis. Int Clin Psychopharmacol 2003 May;18(3):173–4.

21. Sasse EC, Sasse AD, Brandalise S, Clark OA, Richards S. Colony stimulating factors for prevention of myelosuppressive therapy induced febrile neutropenia in children with acute lymphoblastic leukaemia. Cochrane Database Syst Rev 2005 Jul 20;(3):CD004139.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Mentored Review Articles (MRA)
Our academic program “Mentored Review Article” (MRA) gives you a unique opportunity to publish papers under mentorship of international faculty. These articles are published free of charges.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.

CONNECT WITH US