RESTRICTED SET OF PATTERNS, CONTINUED FRACTIONS, AND CHEBYSHEV POLYNOMIALS

Toufik Mansour
Department of Mathematics,
University of Haifa, Haifa, Israel 31905
tmansur11@hotmail.com

Abstract
We study generating functions for the number of permutations in S_n subject to set of restrictions. One of the restrictions belongs to S_3, while the others to S_k. It turns out that in a large variety of cases the answer can be expressed via continued fractions, and Chebyshev polynomials of the second kind.

2001 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary 30B70 42C05

1. Introduction
Let $\pi \in S_n$ and $\tau \in S_k$ be two permutations. An occurrence of τ in π is a subsequence $1 \leq i_1 < i_2 < \ldots < i_k \leq n$ such that $(\pi_{i_1}, \ldots, \pi_{i_k})$ is order-isomorphic to τ; in such a context τ is usually called a pattern. We say that π avoids τ, or is τ-avoiding, if there is no occurrence of τ in π. The set of all τ-avoiding permutations in S_n is denoted $S_n(\tau)$.

Pattern avoidance proved to be a useful language in a variety of seemingly unrelated problems, from stack sorting [Kn], [Ta] to theory of Kazhdan-Lusztig polynomials [Fo], and singularities of Schubert varieties [El], [Sc]. A natural generalization of single pattern avoidance is subset avoidance; that is, we say that $\pi \in S_n$ avoids a subset $T \subset S_k$ if π avoids any $\tau \in T$. A complete study of subset avoidance for the case $k = 3$ is carried out in [SS] (see also [W,M1,M2]).

Several recent papers [CW,RWZ,MV1,Kr,JR,MV2,MV3,MV4] deal with the case $\tau_1 \in S_3$, $\tau_2 \in S_k$ for various pairs τ_1, τ_2. Another natural question is to study permutations avoiding τ_1 and containing τ_2 exactly t times. Such a problem for certain $\tau_1, \tau_2 \in S_3$ and $t = 1$ was investigated in [Kr], and for certain $\tau_1 \in S_3$, $\tau_2 \in S_k$ in [CW,RWZ,MV1,KJ,JR,MV2,MV3,MV4]. The tools involved in these papers include continued fractions, Chebyshev polynomials, Dyck paths, and ordered trees.
Definition 1. A finite continued fraction with \(n \) steps define as the following expression

\[
\frac{a_1}{b_1 + \frac{a_2}{b_2 + \cdots + \frac{a_n}{b_n + a_{n+1}}}}.
\]

There are many faces for applications of theory of continued fractions as an examples: Theory of functions, Approximation theory, Numerical analysis, and Restricted pattern. As an application in restricted pattern is appear the continued fraction

\[
\frac{1}{1 - \frac{x}{1 - \frac{x}{\cdots}}}
\]

in [RWZ, CW], and later than in [MV1, Kr, JR, MV2, MV3, MV4]. Now we generalize this continued fraction by the following.

Definition 2. Let us denote the continued fraction with \(k \) steps

\[
\frac{1}{1 - \frac{x}{1 - \frac{x}{\cdots}}}
\]

by \(R_{k;E}(x) \) for any \(k \geq 1 \), and for \(k = 0 \) we define \(R_{0;E}(x) = E \). Also for simplicity we denote \(R_{k;0}(x) \) by \(R_k(x) \).

Properties for \(R_{k;E} \) is given by the following proposition.

Proposition 1. Let \(E \) any expression. Then

(i) For all \(k \geq 1 \);

\[
R_{k;E}(x) = \frac{U_{k-1} \left(\frac{1}{2\sqrt{x}} \right) - \sqrt{x} E \cdot U_{k-2} \left(\frac{1}{2\sqrt{x}} \right)}{\sqrt{x} \left(U_k \left(\frac{1}{2\sqrt{x}} \right) - \sqrt{x} E \cdot U_{k-1} \left(\frac{1}{2\sqrt{x}} \right) \right)},
\]

where \(U_k \) if the \(k \)th Chebyshev polynomials of the second kind;

(ii) For all \(k \geq 1 \);

\[
\prod_{j=1}^{k} R_{j;E}(x) = \frac{1}{x^{\frac{1}{2}} \left[U_k \left(\frac{1}{2\sqrt{x}} \right) - \sqrt{x} E \cdot U_{k-1} \left(\frac{1}{2\sqrt{x}} \right) \right]},
\]

where \(U_k \) is the \(k \)th Chebyshev polynomial of the second kind;
(iii) \[
\lim_{k \to \infty} R_{k;E}(x) = \frac{1 - \sqrt{1 - 4x}}{2x}.
\]

Proof. (i). For \(k = 1\) the proposition is trivial. By definitions
\[
R_{k+1;E}(x) = \frac{1}{1 - xR_k;E(x)},
\]
and by us induction we yields
\[
R_{k+1;E}(x) = \frac{\sqrt{x} \left(U_k \left(\frac{1}{2 \sqrt{x}} \right) - \sqrt{x} E \cdot U_{k-1} \left(\frac{1}{2 \sqrt{x}} \right) \right)}{\sqrt{x} \left(U_k \left(\frac{1}{2 \sqrt{x}} \right) - \sqrt{x} E \cdot U_{k-1} \left(\frac{1}{2 \sqrt{x}} \right) \right) - x \left(U_{k-1} \left(\frac{1}{2 \sqrt{x}} \right) - \sqrt{x} E \cdot U_{k-2} \left(\frac{1}{2 \sqrt{x}} \right) \right)},
\]
which means that
\[
R_{k+1;E}(x) = \frac{U_k \left(\frac{1}{2 \sqrt{x}} \right) - \sqrt{x} E \cdot U_{k-1} \left(\frac{1}{2 \sqrt{x}} \right)}{U_k \left(\frac{1}{2 \sqrt{x}} \right) - \sqrt{x} E \cdot U_{k-1} \left(\frac{1}{2 \sqrt{x}} \right) - \sqrt{x} \left(U_{k-1} \left(\frac{1}{2 \sqrt{x}} \right) - \sqrt{x} E \cdot U_{k-2} \left(\frac{1}{2 \sqrt{x}} \right) \right)}.
\]
On the other hand, by definition of Chebyshev polynomials of the second kind have the following property
\[
\sqrt{x} U_k \left(\frac{1}{2 \sqrt{x}} \right) = U_{k-1} \left(\frac{1}{2 \sqrt{x}} \right) - \sqrt{x} U_{k-2} \left(\frac{1}{2 \sqrt{x}} \right).
\]
Hence the Proposition holds for \(k + 1\).

Again by us induction it is easy to see the second property, and the third property its yield immediately from \[MV1, Lemma 3.1\].

Example 1. By Proposition \[R_{k;0} = R_k(x), R_{k,1}(x) = R_{k+1}(x), \]
\[
R_{k+1;x}(x) = \frac{U_k \left(\frac{1}{2 \sqrt{x}} \right) - x U_{k-2} \left(\frac{1}{2 \sqrt{x}} \right)}{\sqrt{x} \left[U_{k+1} \left(\frac{1}{2 \sqrt{x}} \right) - x U_{k-1} \left(\frac{1}{2 \sqrt{x}} \right) \right]}.
\]

Now, for any three set of patterns \(A, B, \) and \(C\) let us define \(F^C_{A;B}(n)\) be the number of all \(\alpha \in S_n(A)\) such that \(\alpha\) containing every pattern in \(B\) exactly once and containing every pattern in \(C\) at least once. The corresponding generating function we denote by \(F^C_{A;B}(x)\). For simplicity, we write \(F_A(x), F_{A;B}(x)\) and \(G_B(x)\) when \(B = C = \emptyset, C = \emptyset,\) and \(A = C = \emptyset\) respectively.

The paper is organized as the following. In section 2, we find a recurrence in terms of generating functions for \(F^C_{A;B}(x)\), and we prove \(F^C_{A;B}(x)\) for all \(A, B, C\) such that \(A \cup B \neq \emptyset\) is a rational function. In section 3 we present an examples of the main results, which are present the relation between the restricted patterns and continued fractions.
2. Main results

Consider an arbitrary pattern \(\tau = (\tau_1, \ldots, \tau_k) \in S_k(132) \). Recall that \(\tau_i \) is said to be a right-to-left maximum if \(\tau_i > \tau_j \) for any \(j > i \). Let \(m_0 = k, m_1, \ldots, m_r \) be the right-to-left maxima of \(\tau \) written from left to right. Then \(\tau \) can be represented as

\[
\tau = (\tau^0, m_0, \tau^1, m_1, \ldots, \tau^r, m_r),
\]

where each of \(\tau^i \) may be possibly empty, and all the entries of \(\tau^i \) are greater than \(m_{i+1} \) and all the entries of \(\tau^{i+1} \). This representation is called the canonical decomposition of \(\tau \). Given the canonical decomposition, we define the ith prefix of \(\tau \) by \(\pi^i(\tau) = (\tau^0, m_0, \ldots, \tau^i, m_i) \) for \(1 \leq i \leq eq \) and \(\pi^0(\tau) = \tau^0, \pi^{-1}(\tau) = \emptyset \).

Besides, the ith suffix of \(\tau \) is defined by \(\sigma^i(\tau) = (\tau^i, m_i, \ldots, \tau^r, m_r) \) for \(0 \leq i \leq r \) and \(\sigma^{r+1}(\tau) = \emptyset \). Strictly speaking, prefixes and suffixes themselves are not patterns, since they are not permutations (except for \(\pi^r(\tau) = \sigma^0(\tau) = \tau \)). However, any prefix or suffix is order-isomorphic to a unique permutation, and in what follows we do not distinguish between a prefix (or suffix) and the corresponding permutation. Now, let us find \(f_A^\tau(n) \) in terms of \(f_T(n) \) by the following lemma.

Lemma 1. Let \(A \) set of patterns, and let \(\{\beta^{(i)}\}_{i=1}^m \) be sequence of patterns. Then

\[
f_A^{\beta^{(1)}, \ldots, \beta^{(m)}}(n) = \sum_{j=0}^{m} \left(-1 \right)^j \sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq m} f_{A,\beta^{(i_1)}, \ldots, \beta^{(i_j)}}(n).
\]

Proof. By definitions

\[
f_A^{\beta^{(1)}}(n) + f_{A,\beta^{(1)}}(n) = f_A(n),
\]

which means this statement holds for \(m = 1 \). So more generally,

\[
f_A^{\beta^{(1)}, \ldots, \beta^{(m+1)}}(n) = \sum_{j=0}^{m} \left(-1 \right)^j \sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq m} f_{A,\beta^{(i_1)}, \ldots, \beta^{(i_j)}}(n),
\]

by use induction and the same argument in the case \(m = 1 \), the theorem holds.

Immediately, we can represent this result (Lemma 1) by another way, as the following.

Theorem 1. Let \(\{\alpha^{(i)}\}_{i=1}^m \), \(\{\beta^{(i)}\}_{i=1}^m \) be two sequences of patterns such that \(\alpha^{(i)} \) contains \(\beta^{(i)} \) for all \(i = 1, 2, \ldots, m \), and let \(A \) set of patterns. Then

\[
f_{A,\alpha^{(i_1)}, \ldots, \alpha^{(i_j)}}^{\beta^{(1)}, \ldots, \beta^{(m)}}(n) = \sum_{j=0}^{m} \left(-1 \right)^j \sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq m} f_{A_{i_1}, \ldots, i_j}(n),
\]

where \(A_{i_1}, \ldots, i_j = A \bigcup_{d=1}^{m} \{\alpha^{(d)}\} \setminus \{\alpha^{(i_{d-1})}, \ldots, \alpha^{(i_j)}\} \bigcup_{d=1}^{j} \{\beta^{(i_d)}\} \).

Theorem 3. By induction, by uses Theorem 1, Theorem 2, and us result in \[MV3, \text{Th 3.1}\].

In the current subsection we find a recurrence to calculate the generating function \(F \). The generating function is a rational function satisfying the relation

\[
F_{\tau[1], \ldots, \tau[p]}(x) = 1 + x \sum_{j_1=0}^{m_1} \sum_{j_2=0}^{m_2} \cdots \sum_{j_p=0}^{m_p} \prod_{j=p}^{(j_1-1)} F_{\tau[1], \ldots, \tau[j]}^{(j_1-1), \ldots, (j_p-1)}(x) F_{\tau[1], \ldots, \tau[p]}^{(j_1), \ldots, (j_p)}(x),
\]

where

\[
F_{\tau[1], \ldots, \tau[p]}^{(j_1-1), \ldots, (j_p-1)}(x) = \sum_{j=0}^{p} (-1)^j \sum_{1 \leq t_1 < \cdots < t_j \leq p} F_{A_{t_1}, \ldots, t_j}^{(j_1), \ldots, (j_p)}(x),
\]

such that \(A_{t_1}, \ldots, t_j = \bigcup_q \{ \tau_{q[t]} \} \bigcup \bigcup_q = \{ \tau_{q[t]} \} \).

The generating function \(F_{A,B}(x) \).

Here, we find a recurrence to calculate \(F_{A,B}(x) \). This calculation immediately by induction, by uses Theorem 2, Theorem 3 and us result in \[MV3, \text{Th 2.1}\].

Theorem 2. Let \(\tau[i] = (\tau^{i,0}, d_i, 0, \tau^{i,1}, d_i, 1, \ldots, \tau^{i,m_i}, d_i, m_i) \in S_{d_i,0}(132) \) for \(i = 1, 2, \ldots, p \) such no there two patterns one contain the another. Then

\[
F_{\tau[1], \ldots, \tau[p]} (x) = 1 + x \sum_{a_i=0}^{m_i} \sum_{b_j=0}^{1+r_{\gamma_j}} \prod_{a_i=0}^{m_i} F_{A_{1;B_1}}^{(a_i)} (x) F_{A_{2;B_2}}^{(b_j)} (x), \quad B \neq \emptyset
\]

where \(A_i = \{ \tau_i \} \) and \(B = \{ \gamma_j \} \), and

\[
C = \{ \pi^{a_i-1} (\tau_i) | i = 1, 2, \ldots, a \}, \quad A_1 = \{ \pi^{a_i} (\tau_i) | i = 1, 2, \ldots, a \} \cup \{ \pi^{b_j} (\gamma_j) | j = 1, 2, \ldots, b \},
\]

\[
B_1 = \{ \pi^{b_j-1} (\gamma_j) | j = 1, 2, \ldots, b \}, \quad A_2 = \{ \sigma^{a_i} (\tau_i) | i = 1, 2, \ldots, a \} \cup \{ \sigma^{b_j-1} (\gamma_j) | j = 1, 2, \ldots, b \},
\]

\[
B_2 = \{ \sigma^{b_j} (\gamma_j) | j = 1, 2, \ldots, b \}.
\]
(ii) for two sequences of patterns \(\{\alpha^{(i)}\}_{i=1}^{m}, \{\beta^{(i)}\}_{i=1}^{m}\) such that \(\alpha^{(i)}\) contains \(\beta^{(i)}\) for all \(i = 1, 2, \ldots, m\), and for any set of patterns \(T\),

\[
F_{T,\alpha^{(i)},\ldots,\alpha^{(m)},B}(x) = \sum_{j=0}^{m} (-1)^j \sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq m} F_{A_{i_1},...,i_j:B}(x),
\]

where \(A_{i_1,...,i_j} = T \bigcup_{d=1}^{m} \{\alpha^{(d)}\} \setminus \{\alpha^{(i_1)},...,\alpha^{(i_j)}\} \bigcup_{d=1}^{j} \{\beta^{(i_d)}\}\).

3. Examples and continued fractions

Though elementary, Theorem 2 enables us to derive easily various known and new results for a fixed set of patterns.

Example 2. (see [3]) An a numerical case, by Theorem 2 we yields

\[
F_{\{2341,3241\}}(x) = 1 + x F_{\{23,32\}}(x) F_{\{2341,3241\}}(x) + x(F_{\{23,32\}}(x) - F_{\{23,32\}}(x)) F_{\{2341,1\}}(x) + x(F_{\{2341,32\}}(x) - F_{\{23,32\}}(x)) F_{\{1,3241\}}(x) + x(F_{\{2341,3241\}}(x) - F_{\{23,3241\}}(x) - F_{\{23,32\}}(x) + F_{\{23,32\}}(x)) F_{\{1,1\}}(x).
\]

On the other hand, by definition it is easy to see \(F_{\{23,32\}}(x) = 1 + x, F_{\{\tau,1\}}(x) = 1\), and \(F_{\{23,3241\}}(x) = F_{\{2341,32\}} = \frac{1}{1-x}\). Hence, it is easy to get \(F_{\{2341,3241\}}(x) = \frac{1-x-x^2}{1-2x-x^2}\).

As a corollary of Theorem 2 we obtain the following.

Corollary 1. Let \(T\) set of pattern, and let \(T = \{(\tau_1,\ldots,\tau_{k-1},k)|(\tau_1,\ldots,\tau_{k-1}) \in T'\}\). Then

\[
F_T(x) = \frac{1}{1-xF_T(x)}.
\]

Example 3. (see [5], Pr. 15., and [3], Sec 4.1) An another numerical example, by Corollary 2 we yields

\[
F_{\{123,213\}}(x) = \frac{1}{1-xF_{\{21,12\}}(x)},
\]

and by definitions we get the result [5], Pr. 15., which is

\[
F_{\{123,213\}}(x) = \frac{1}{1-x-x^2}.
\]

In the same way, by use Corollary 2 twice we yields

\[
F_{\{1234,2134\}}(x) = \frac{1-x-x^2}{1-2x-x^2},
\]

which is result [3, Sec. 4.1].
Now let us generalize the above example. First let define a special set of patterns.

Definition 3. For any \(k \geq l \geq 1 \), let \(U^k_l \) be the set of all permutations \(\tau \in S_k \) such that \((\tau_{l+1}, \tau_{l+2}, \ldots, \tau_k) = (l+1, l+2, \ldots, k)\). Clearly \(|U^k_l| = l! \).

By \([Kn]\) and definitions

\[
F_{U^k_l}(x) = \sum_{j=0}^{l-1} c_j x^j,
\]

where \(c_j \) is the \(j \)th Catalan number. Hence, consequentially to Example 3 we yields similarly the following.

Corollary 2. Let \(k \geq l \geq 1 \); then

\[
F_{U^k_l}(x) = R_{k-l,E(x)}(x),
\]

where \(E(x) = \sum_{j=0}^{l-1} c_j x^j \), and \(c_j \) is the \(j \)th Catalan number.

Example 4. (see \([CW, MV1, Kr]\)) For \(l = 1 \), by Corollary 3 we yields

\[
F_{U^k_1}(x) = F_{12\ldots k}(x) = R_{k,0}(x) = R_k(x).
\]

Now we present another direction to use continued fractions.

Corollary 3. Let \(k > l \geq 1 \). For any \(\tau \in U^k_l \),

\[
F_{U^k_l \setminus \{\tau\};\tau}(x) = \frac{x^{l^{\downarrow}}}{\left(U_k^{-l}(\frac{1}{2 \sqrt{x}}) - \sqrt{x E(x) U_{k-1-l}(\frac{1}{2 \sqrt{x}})}\right)^2},
\]

where \(E(x) = \sum_{j=0}^{l-1} c_j x^j \), and \(c_j \) is the \(j \)th Catalan number.

Proof. Let us fix \(\tau \in U^k_l \) such that \((\tau = \tau', k)\), and let us denote \(U^k_l \setminus \{\tau\} \) by \(M^k_l \). Immediately by Theorem 3 we yields

\[
F_{M^k_l;\tau}(x) = x F_{M^k_l-1,\tau'}(x) F_{U^k_l}(x) + x F_{U^k_l-1}(x) F_{M^k_l;\tau}(x),
\]

which means by Corollary 2

\[
F_{M^k_l;\tau}(x) = \frac{x R_{k-l,E(x)}(x) F_{M^k_l-1,\tau'}(x)}{1 - x R_{k-l-1,E(x)}} F_{M^k_l-1,\tau'}(x),
\]

where \(E = \sum_{j=0}^{l-1} c_j x^j \), and \(c_j \) is the \(j \)th Catalan number. Since \(\frac{1}{1-x R_{m-1,E(x)}} = R_{m,E(x)} \) we obtain

\[
F_{M^k_l;\tau}(x) = x R_{k-l,E(x)}(x) F_{M^k_l-1,\tau'}(x),
\]
By use induction we yields

\[F_{M^k;\tau}(x) = x^{k-l}F_{M;\beta}(x) \prod_{j=1}^{k-l} R^2_{j;E}(x), \]

where \(\tau = (\beta, l+1, l+2, \ldots, k) \). On the other hand, by definitions \(F_{M;\beta}(x) = x^l \), so

\[F_{M^k;\tau}(x) = x^k \prod_{j=1}^{k-l} R^2_{j;E}(x). \]

Hence by Proposition 1 the corollary holds.

Example 5. (see [MV1, Kr]) For either \(l = 1, E = 1 \); or \(l = 0, E = 0 \), we yields from Corollary 3 for all \(k \geq 1 \)

\[G_{(12\ldots k)}(x) = F_{\emptyset;12\ldots k}(x) = \frac{1}{U^2_k \left(\frac{1}{2\sqrt{x}} \right)}. \]

For \(l = 2, E = 1 + x \) we obtain for all \(k \geq 3 \)

\[F_{123\ldots k;213\ldots k}(x) = F_{213\ldots k;123\ldots k}(x) = \frac{x}{U_{k-1} \left(\frac{1}{2\sqrt{x}} \right) - xU_{k-3} \left(\frac{1}{2\sqrt{x}} \right)^2}. \]

Example 6. Now we complete all the calculation for either containing exactly once, or avoiding a two patterns from \(U^k_2 = \{123\ldots k, 213\ldots k\} \). By Corollary 2 and Example 5 its left to find \(G_{U^k_2}(x) \). Let \(k \geq 3 \); by Theorem 3

\[G_{U^k_2}(x) = xF_{U^k_2-1}(x)G_{U^k_2}(x) + xF_{123\ldots k-1,213\ldots k-1}(x)F_{213\ldots k-1,213\ldots k}(x) + xG_{U^k_2-1}(x)F_{U^k_2}(x), \]

so by Corollary 2 Example 5 and by use Proposition 1 we yields

\[G_{U^k_2}(x) = \frac{2x^2\sqrt{x}}{W_{k;2}(x)W_{k;1}^2(x)} + xR^2_{k-2;1+x}(x)G_{U^k_2-1}(x), \]

where \(W_{k;j}(x) = U_{k-j} \left(\frac{1}{2\sqrt{x}} \right) - xU_{k-2-j} \left(\frac{1}{2\sqrt{x}} \right) \). Besides \(G_{U^k_2}(x) = 0 \) for all \(k = 0, 1, 2, 3 \), hence

\[G_{U^k_2}(x) = \frac{2x^2\sqrt{x}}{W_{k;2}^2(x)} \sum_{j=3}^{k-2} \frac{1}{W_{k;j-1}(x)W_{k;j}(x)}. \]
References

SCb. S.C. Billy, Pattern avoidance and rational smoothness of Schubert varieties, Adv. in Math. 139 (1998) 141–156.

Fb. F. Brenti, Combinatorial properties of the Kazdan-Lusztig R-polynomials for Sn, Adv. in Math. 126 (1997) 21–51.

G. O. Guibert, Permutations sans sous séquence interdite, Mémoire de Diplôme d’Études Aprofondies de L’Université Brodeaux I (1992).

JR. M. Jani and R.G. Rieper, Continued fractions and Catalan problems, Electronic J. Combin. 7 (2000) #1.

Kn. D. Knuth, The Art of Computer Programming, vol. 1, Addison Wesley, Reading, MA, 1968.

LS. V. Lakshmibai and B. Sandhya, Criterion for smoothness of Schubert varieties in Sl(n)/B, Proc. Indian Acad. Sci. 100 (1990), no. 1, 45–52.

M1. T. Mansour, Permutations containing and avoiding certain patterns, FPSAC’00, (2000) 704–708.

M2. T. Mansour, Permutations avoiding a pattern from Sk and at least two patterns from S3, Ars Combinatorica, to appear, CO/0007194.

Ta. R. Tarjan, Sorting using networks of queues and stacks, J. Assoc. Comput. Mach. 19 (1972) 341–346.

CW. T. Chow and J. West, Forbidden subsequences and Chebyshev polynomials, Discr. Math. 204 (1999) 119–128.

Kr. C. Krattenthaler, Permutations with restricted patterns and Dyck paths, (2000) preprint CO/0002200.

MV1. T. Mansour and A. Vainshtein, Restricted permutations, continued fractions, and Chebyshev polynomials Electron. J. Combin. 7 (2000) #R17.

MV2. T. Mansour and A. Vainshtein, Layered restrictions and Chebyshev polynomials (2000) preprint CO/0008173.

MV3. T. Mansour and A. Vainshtein, Restricted 132-avoiding permutations, (2000) preprint CO/0010047.

MV4. T. Mansour and A. Vainshtein, Restricted permutations and Chebyshev polynomials

R. A. Robertson, Permutations containing and avoiding 123 and 132 patterns Discrete Mathematics and Theoretical Computer Science 3 (1999) 151–154.

RWZ. A. Robertson, H. Wilf, and D. Zeilberger, Permutation patterns and continuous fractions Electron. J. Combin. 6 (1999) #R38.

SS. R. Simion and F. Schmidt, Restricted permutations European J. Combin. 6 (1985) 383–406.

W. J. West, Generating trees and forbidden subsequences, Discr. Math. 157 (1996) 363–372.