Solid-gas phase photo-catalytic behaviour of rutile and TiO$_n$ (1<n<2) sub-oxide phases for self-cleaning applications

Manuel Nuño 1, Vaia Adamaki 2, David M. Tobaldi 3, Maria J. Hortigüela Gallo 4, Gonzalo Otero-Irurueta 4, Chris R. Bowen 2 and Richard J. Ball 1,*

1 BRE Centre for Innovative Construction Materials (CICM), Department of Architecture and Civil Engineering, University of Bath, Claverton Down, BA2 7AY, UK
2 Department of Mechanical Engineering, University of Bath, Claverton Down, BA2 7AY, UK
3 Department of Materials and Ceramic Engineering/CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
4 Center for Mechanical Technology and Automation—TEMA, Department of Mechanical Engineering, University of Aveiro; Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

* Correspondence: r.j.ball@bath.ac.uk; Tel.: +44-1225-386944

Received: date; Accepted: date; Published: date

Abstract: The solid-gas phase photo-catalytic activities of rutile TiO$_2$ and TiO$_n$ (1<n<2) sub-oxide phases have been evaluated. Varying concentrations of Ti$^{3+}$ defects were introduced into the rutile polymorph of titanium dioxide through carbo-thermal reduction at temperatures ranging from 350°C to 1300°C. The resulting sub-oxides formed were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, impedance spectroscopy and UV-visible diffuse reflectance spectroscopy. The presence of Ti$^{3+}$ in rutile exposed to high reduction temperatures was confirmed by X-ray diffraction. In addition, a Ti$^{3+}$-Ti$^{4+}$ system was demonstrated to enhance the photo-catalytic properties of rutile for the degradation of the air pollutants NO$_2$ and CO$_2$: under UV irradiation of wavelengths (λ) 376-387 nm and 381-392 nm. The optimum reduction temperature for photo-catalytic activity was within the range 350-400 °C and attributed to improved charge-separation. The materials that were subject to carbo-thermal reduction at temperatures of 350°C and 400°C exhibited electrical conductivities over one hundred times higher compared to the non-reduced rutile. The results highlight that sub-oxide phases form an important alternative approach to doping with other elements to improve the photo-catalytic performance of TiO$_2$. Such materials are important for applications such as self-cleaning where particles can be incorporated into surface coatings.

Keywords: Photocatalysis; TiO$_2$; sub-oxide

1. Introduction

Following the discovery of water photo-splitting by Fujishima and Honda in 1972 [1] the properties of titanium dioxide have received much attention [2]. Research has focused on a diverse range of applications including wastewater treatment, reduction of atmospheric air pollutants and neutralisation of bacteria, fungus and other pathogens [3][4][5][6]. In addition to these, TiO$_2$ is also a key component in many self-cleaning technologies. Titanium dioxide is the natural oxide of Ti$^{4+}$ (TiO$_2$) with the three main crystallographic structures being anatase, brookite and rutile [7][8][9][10]. Rutile is the most common polymorph of titania on Earth due to its thermodynamic stability and low molecular volume and much of the titanium dioxide in metamorphic and igneous rocks has a rutile crystal structure. While the optical band gap of anatase (3.2 eV) is higher than rutile (3.0 eV) [11].
The photo-catalytic reactions promoted by rutile remain of interest in both the gas and aqueous phase due to its abundance and widespread use. Aqueous based photo-catalysis studies, under UV light, include those focusing on the degradation of organic dyes and neutralisation of pathogens [2] [12].

Following the initial absorption of UV irradiation by the semiconducting rutile phase, an electron is promoted from its valence band to the conduction band over a femtosecond timescale [13]. This charge separation produces a reactive hole (h$_{vb}^+$) and associated electron (e$_{cb}^-$), this is shown in Equation 1. Both of these species may diffuse to the surface of the semiconductor and participate in a photo-catalytic reaction, provided they do not recombine forming an electron-hole pair. If the species are present on the surface, they can react with absorbed reduction and oxidation (red-ox) molecules leading to the formation of free radicals [1] [14] [15] [16]. Equations 2-6 show typical reactions for H$_2$O and O$_2$ and those reactions which involve the formation of hydroxyl radicals and superoxide anions are the most important for pollution degradation, such as volatile organic compounds (VOCs) and NOx via oxidation [6].

\[
TiO_2 + h \nu \rightarrow h_{vb}^+ + e_{cb}^-
\]

(1)

\[
h_{vb}^+ + H_2O \rightarrow \cdot OH + H^+
\]

(2)

\[
e_{cb}^- + H^+ \rightarrow \cdot H
\]

(3)

\[
e_{cb}^- + O_2 \rightarrow O_2^{-}
\]

(4)

\[
h_{vb}^+ + O_2^{-} \rightarrow \cdot O_2
\]

(5)

\[
H^+ + O_2^- \rightarrow HO_2
\]

(6)

Previous research on the surface of jet spray formed TiO$_2$ suggested reduction of CO$_2$ via reaction with an electron from the conduction band. The final reaction product formed following a number of reaction steps was proposed to be ethenolate [17]. In a different study the photocatalytic reduction of CO$_2$ in aqueous solution on surface-fluorinated anatase TiO$_2$ nanosheets with exposed [001] facets were investigated. Reduction of CO$_2$ was proposed to proceed via a mechanism involving generation of hydrogen radicals and carbon radicals where CO$_2^-$ was formed extending the lifetime of photogenerated electron–hole pairs [18]. CO$_2$ photo reduction has also been proposed to consume electrons and hydrogen radicals as shown in Equations 7-12 [19], [20] [21], [22].

\[
CO_2 + e_{cb}^- \rightarrow \cdot CO_2
\]

(7)

\[
\cdot CO_2^- + 8'\cdot H + h_{vb}^+ \rightarrow CH_4 + 2H_2O
\]

(8)

\[
\cdot CO_2^- + 6'\cdot H + h_{vb}^+ \rightarrow CH_3OH + H_2O
\]

(9)

\[
\cdot CO_2^- + 2'\cdot H + h_{vb}^+ \rightarrow HCOOH
\]

(10)

\[
\cdot CO_2^- + 4'\cdot H + h_{vb}^+ \rightarrow HCHO + H_2O
\]

(11)

\[
2\cdot CO_2^- + 12'\cdot H + 2h_{vb}^+ \rightarrow C_2H_5OH + 3H_2O
\]

(12)

Halmann reported that one of the potential reasons why CO$_2$ reduction may occur in a less extensive percentage is the reoxidation of CO$_2^-$ by hydroxyl radical [23] [24]. Other studies suggested the mechanism involved the anchoring of CO$_2$ on the TiO$_2$ surface [25], [26].
In order to improve the photo-catalytic performance, research has explored a variety of approaches to shift the absorbance spectra towards the higher wavelengths of visible light. These approaches include (i) doping of the TiO$_2$, (ii) deforming its crystal lattice and (iii) tuning its bandgap [27][38][28][30]. Adding red-ox species, such as alcohols or ions such as Ag$^+$, also slows down the recombination of electrons and holes thereby reducing the carrier losses. An alternative strategy is to modify the electronic transfer properties of the material and involves improving the diffusion of charge to the material surface by increasing the bulk electrical conductivity.

In addition to the photocatalytic properties of TiO$_2$, another important phenomena observed is that of superhydrophillic behavior. When self-cleaning mechanisms are considered, on very flat surfaces, such as glass, the superhydrophillic properties of TiO$_2$ under UV irradiation can promote the formation of a thin water film rather than droplets, due to the reduced contact angle. This promotes the water film to run off the glass surface readily during which dirt particles are carried with it due to surface tension effects. However, this process is less likely to occur on rough or porous construction materials such as cement renders, lime renders, or the surface of concrete. On these rougher surfaced materials photocatalytic particles are added to the wet-mix. Following application of the cement, particles are left exposed on the surface following hardening or setting which impart self-cleaning properties due to the chemical degradation of dirt particles at the surface [31]. It is noteworthy that this mechanism is effective for organic contaminants containing bonds which can be attacked by the free radicals formed on the TiO$_2$ surface under light irradiation. The process efficiency is linked to the photocatalytic properties of the material.

In this paper we explore the approach of increasing the charge transfer towards the surface by reducing Ti$^{4+}$ to Ti$^{3+}$ to form sub-oxides and increase its electrical conductivity [32][33]. A variety of methods can be used to prepare titanium sub-oxides including hydrogenation [34][35], thermal treatment under an inert atmosphere [36], or by solvo-thermal methods employing TiCl$_3$ and TiF$_4$ [37]. This research investigates how vacancies in the rutile lattice of carbothermally reduced titania influence the phase structure, band gap, electrical conductivity and solid-gas photo-catalytic decomposition of nitrogen dioxide (NO$_2$) and carbon dioxide (CO$_2$) greenhouse gases. Photocatalytic performance was evaluated under radiation of two different wavelength ranges, 376–387 and 381–392 nm, emitted from ultraviolet LED’s. The effectiveness of these sub-oxide materials to decompose NO$_2$ is related to the free radicals formed on the surface. As it is these same radicals which react with other organic contaminants on the surface this can also reflect the self-cleaning potential.

2. Materials and Methods

Materials were formed from commercial TiO$_2$: rutile powder (0.3mm mean particle size, 99.5% pure, Pi-kem, UK) which was processed by the addition of 2.5%wt of an organic binder (polyethylene glycol-PEG 8000). By adding 1%v/w of distilled water to the powder, a slurry was formed and ball milled in a Capco machine for 24h at 120rpm [38][39]. Ball milling reduced the particle size and thoroughly mixed the organic binder with the ceramic powder preventing the formation of agglomerates. The slurry was subsequently dried and the resulting powder sieved through a 45μm mesh [40]. TiO$_2$: specimens were formed by dry cold pressing at a pressure of 250MPa (20kN over an area of 100mm2). The resulting green body was then pressure-less sintered in a furnace at 1300°C in air for 90 minutes with an initial dwell at 400°C for 2 hours to decompose the binder. This firing regime was previously optimised to maximise the density (98.65±0.48% of theoretical) and control grain growth (5-10μm) [41]. To introduce Ti$^{3+}$ defects into the structure of the TiO$_2$: a carbo-thermal reduction was employed, Equation 13 [42].

$$nTiO_2 + \frac{1}{2}C \rightarrow Ti_nO_{2n-1} + \frac{1}{2}CO_2$$ (13)
Carbo-thermal reduction of the sintered titania was performed in a tube furnace (LTF, Lenton, UK), under a constant flow of argon to prevent re-oxidation. A micro-environment was created by embedding the specimens in carbon powder consisting of needle shaped particles of mean diameter 3.55µm and length 105µm. The reduction treatment started with a heating ramp of 150°C/h followed by a reduction stage of 24h. A range of reduction temperatures was employed to vary the degree of reduction; these temperatures included 350, 400, 450, 600 and 1300°C; a reduction temperature of 1300°C is typical for the manufacture of highly reduced Magnéli phases [36][43]. Once the reduction was complete, samples were cooled to room temperature with a ramp of 150°C/h. Further details describing the methodology for producing the sub oxide phases are available in PhD thesis [44].

The density of the samples was determined using the Archimedes method as described in the standard BS EN623:2.26 [45]. Theoretical densities (Dt) for TiO2 and TiO0 were assumed to be 4.26g/cm3 [46] and 4.30g/cm3 respectively.

X-ray diffraction analysis (XRD) was used to determine the crystalline phase composition of the specimens. XRD was carried out using a BRUKER D8 ADVANCE X-ray diffractometer with CuKα radiation (1.5406 Å), 2θ range between 20° and 140° with a step size of 0.016° 2θ and a virtual time-per-step of 200s. The microstructure of the specimens’ surface was evaluated using a JEOL-JSM64802V scanning electron microscope (SEM) with an accelerator voltage of 15kV and a spot-size of 30nm. Specimens were coated with a 10nm layer of chromium to prevent surface charging. Rietveld refinement method was used for a fine study of oxygen occupancy.

X-ray photoelectron spectroscopy (XPS) was used to measure the surface elemental composition. The system was equipped with a hemispherical electron energy analyser (SPECs Phoibos 150), a delay-line detector and a monochromatic AlKα (1486.74 eV) X-ray source. High resolution spectra were recorded at normal emission take-off angle and with a pass-energy of 20eV. The binding energies were corrected by referencing C-C to 284.8eV. The optical bandgap energy of the materials was determined using UV-Vis diffuse reflectance spectroscopy, along with the Kubelka-Munk function [34] (Eq. 14) to convert the reflectance, R, into the absorption coefficient, F(R).

\[F(R) = \frac{(1 - R)^2}{2R} \]
(14)

Combining the Kubelka-Munk function with the Tauc’s plot provides the absorption energy which corresponds to the bandgap, \(E_g \), calculated from Equation 15,

\[(h \nu \times F(R))^2 = A \times (h \nu - E_g) \]
(15)

In addition to the bandgap, the diffuse reflectance spectrogram at 650nm was used to assign the intervalence charge transfer (IVCT) transition between Ti\(^{3+}\) and Ti\(^{4+}\), where \(h \) is Planck’s constant, \(\nu \) is frequency of vibration and ‘A’ is a proportionally constant. The bandgap was calculated from absorption spectra obtained at room temperature using a PerkinElmer 750 S UV/Vis Spectrometer with a 60mm integrating sphere in a wavelength range between 240nm and 800nm [33].

The effect of level of reduction and Ti\(^{3+}\) on the ac conductivity within the specimen bulk was determined by impedance spectroscopy. Electrical properties of stoichiometric titanium dioxide and sub-oxide species were characterized using a Solartron 1260 Impedance Analyser with a Solartron 1296 Dielectric Interface. Measurements were taken at frequencies from 1-10⁵ Hz with a voltage perturbation of 0.1Vrms.

The photo-catalytic activity of the TiO0 specimens was evaluated by following the decomposition of CO\(_2\) and NO\(_2\) under UV illumination over a duration of 150 minutes in a reaction chamber coupled to an electron ionization mass spectrometer, as shown in Figure 1. 190ppm of NO\(_2\), 6% of air balanced N\(_2\) was introduced into the chamber followed by vacuum cycles up to 10\(^{-3}\) mbar to ensure the chamber
filled with the gas mixture and was not diluted by the gas previously in the chamber. Under these conditions three separate experiments were conducted, in the dark and under UV LED’s emitting light of wavelength (λ) 376-387nm and 381-392nm. Experiments in the dark provided a comparison for absorption of gas onto the surface. Variations were shown to be within the background noise of the measurements. Further details can be found in the PhD thesis, Photocatalytic coatings in the built environment [47].

Data from the mass spectrometer was processed using a multiplicative approach using argon as an inert internal standard to avoid time-deviation errors [10]. The fractional change of inert argon during the experiment is defined as α, Eq. 16, where the superscript ‘max’ is the maximum value of its partial pressure for the data series; ‘min’ is the minimum value of its partial pressure for the data series and ‘i’ is the partial pressure value for a given time during the experiment. A similar approach to data is then used relating to the relative change in molecule X of interest (e.g. CO2 or NO2); defined as ‘εX’ in Eq. 17. This treatment normalises the data to a value between 0 and 1. The fractional change of ‘X’ considering the changes of Ar with time by the area of the sample in the Ar partial pressure scale is then defined by Eq. 18.

\[
\alpha = \frac{(Ar_{max} - Ar_i)}{(Ar_{max} - Ar_{min})}
\]

(16)

\[
\varepsilon_X = \frac{(X_{max} - X_i)}{(X_{max} - X_{min})}
\]

(17)

\[
x = (\varepsilon_x - \alpha) / \text{Area}
\]

(18)

After 150 minutes, the fractional change value of the component ‘X’ for the reaction under UV was subtracted from the fractional change value of ‘X’ from the control experiment with no specimen in the chamber. This approach was then applied to determine the changes of CO2 and NO2 with time under dark and illumination conditions.

3. Results and discussion

3.1 X-ray characterisation and electron microscopy

Crystalline phases were identified from the X-ray patterns. The XRD diffractogram, shown in Figure 2 indicates that rutile was the main crystallographic phase, even for the specimen reduced at 1300°C where Magnéli phases (Ti4O7, Ti6O11) were present. The presence of secondary phases (i.e. substoichiometric TiO2-.) in specimens reduced within the temperature range 350-600 °C was not detected; if present, these phases, related to defects within the TiO2 lattice, are therefore below the
detection limit of the XRD system (approximately 5%). Nevertheless, the presence of defects in reduced specimens, particularly Ti$^{3+}$, is confirmed by the changes in electrical conductivity measured by impedance spectroscopy, to be discussed in section 3.3.

Changes in specimen microstructure as a result of the reduction temperature was examined by scanning electron microscopy, revealing no significant changes in structure from the non-reduced TiO$_2$ and specimens reduced at temperatures up to 600°C. Figures 3a and b show the surface morphologies of the non-reduced TiO$_2$ (theoretical density ~98.6%) and Magnéli phase based material reduced at 1300 ºC (theoretical density ~96.7%) respectively. Due to the increased conductivity and diffusion processes during the reduction of TiO$_2$, there is significant grain growth when the material is reduced at this high temperature. The carbon-thermal reduction process leads to a gradual darkening on the materials as the reduction temperature increases; see insets Figures 3a and 3b.

Figures 4a and 4b show the X-ray photoelectron spectra (XPS) obtained from the samples in the Ti 2p and O 1s regions. In the case of the non-reduced samples, Ti 2p$_{3/2}$ presents a sharp component centered at a binding energy (BE) of 458.1 eV. This value shifted 0.5eV towards lower binding
energies for the samples prepared at higher temperatures 600°C and 1300°C of Figure 4a. Complementary, this shift was also detected in the O 1s core level as it is shown in Figure 4b, where the small component on the right of the spectra is ascribed to the oxygen atoms in the TiO$_2$ structure. These results are in good agreement with previous works in which the shift to lower BEs were ascribed to a reduction process [48].

Figure 4. X-ray photoelectron spectra in the Ti 2p (a) and O 1s (b) regions of non-reduced rutile and TiO$_n$ carbon-thermally reduced from 450°C to 1300°C.

3.2 UV-visible diffuse reflectance spectroscopy

Changes in band gap with reduction conditions, were identified by the application of the Kubelka-Munk model, however this was not applicable for the sample reduced at 1300°C containing significant conducting Magnéli phase as it was no longer a semiconductor; see impedance data in Section 3.3. Only small changes in the band gap were observed with the maximum corresponding to the specimen reduced at 400 ºC, see Table 1.

Table 1. Optical band gap of TiO$_n$ specimens

Specimen - reduction temp	Band gap (eV)	Rietveld refinement for Oxygen vacancies
Rutile TiO$_2$	3.03	1
TiO$_n$-350 ºC	3.04	1
TiO$_n$-400 ºC	3.06	1
TiO$_n$-450 ºC	3.04	1
TiO$_n$-600 ºC	3.05	0.95
TiO$_n$-1300 ºC	Overlapped bands	-

The diffuse reflectance spectra in figure 5 revealed an absorption band at 650 nm for the samples reduced at 450°C which can be assigned to the intervalence charge transfer transition Ti$^{3+}$ to Ti$^{4+}$.

3.3 Electrical characterization

Impedance spectroscopy was performed to identify correlations between the ac conductivity and the photo-activity of the specimens. Figure 6a shows that the ac conductivity of the non-reduced rutile phase rises almost linearly with frequency and in this case the material is behaving predominately as a dielectric and the phase angle approaches -90° since current in a capacitor (dielectric) leads the voltage; see Figure 6b. For the carbo-thermally reduced materials there is an increase in the low frequency conductivity with increasing reduction temperature, see Figure 6a. Materials reduced at 350-400 °C exhibit the ‘universal dielectric response’ (UDR) whereby at low frequency the bulk ac conductivity is frequency independent, σ_{dc}, while at higher frequencies the ac conductivity increases following a power law behavior [49][50]. The higher electrical conductivity with increasing reduction temperature is a clear indication that by increasing the reduction temperature, a larger number of defects is introduced within the rutile lattice. It can therefore be concluded that, although the presence of Ti$^{3+}$ could not be detected by XRD, a reduction temperature of 350°C is sufficient to form Ti$^{3+}$ states.

In specimens reduced at 450°C to 1300°C the defects are the dominant phase and the conductivity response is frequency independent and the materials no longer exhibit the UDR, Figure 6a. This behaviour is much like that of a resistor with the phase angle approaching 0° and current and voltage are in phase, Figure 6b. Figure 6c shows the relative permittivity of selected materials as a function of frequency. The non-reduced rutile phase exhibits a relatively frequency independent permittivity, typical of a dielectric. The materials reduced at 350°C and 400°C show a significantly enhanced relative permittivity (in excess of 103) and strong frequency dependence. Materials reduced at 450-1300°C showed excessive noise in the permittivity data due to the high conductivity; e.g. see data for 600°C where the relative permittivity was 10^4-10^5; such as enhancement in permittivity, and frequency dependence has been shown to originate from conductivity in the material.

Changes in the conductivity are also shown in Figure 6d, illustrating the frequency dependence of the complex impedance, again indicating the transition from capacitive behaviour to resistive
behaviour as the material is carbo-thermally reduced with a corresponding increase in electrical conductivity; this can be seen as a decrease in the real part of impedance (Z') at low frequencies (right hand side intercept of the Z'-axis).

![Image](a)

![Image](b)

![Image](c)

![Image](d)

Figure 6. (a) AC conductivity (b) phase angle (c) permittivity, (d) complex plane plot of real impedance (Z') vs imaginary impedance (Z'') for TiO$_2$ specimens.

3.4 Photo-catalytic performance

The degradation of CO$_2$ and NO$_2$ was monitored over 150 minutes through the fractional change relative to Ar for rutile and titanium sub-oxides. The sub-oxides were produced by reduction of rutile at temperatures ranging from 300°C to 1300°C. Two independent experiments were conducted using irradiation from LED’s with wavelengths ranging from 376-387nm and 381-392nm. Figure 7 (a) and (b) present results showing the fractional change of CO$_2$ under wavelengths of 376-387nm and 381-392nm respectively. Figure 8 (a) and (b) present results showing the fractional change of NO$_2$ under wavelengths of 376-387nm and 381-392nm respectively. The results show an increase of photo-activity for both NO$_2$ and CO$_2$ when subjected to irradiation at wavelengths of 381-392nm for the titanium sub-oxide sample reduced at 400°C; see Figures 7b and 8b. The maximum degradation of NO$_2$ was observed for the titanium sub-oxide reduced at 350°C when irradiated with a wavelength of 376-387nm; see Figure 8a.

Based on these results it is thought that when the TiO$_2$ was not reduced the defects introduced within the rutile lattice are insufficient to induce a significant change in the conductivity of TiO$_2$ and improve charge-separation. The low frequency ac conductivity for the sample reduced at 350°C increased by
a factor of 10^3, compared to non-reduced rutile, see Figure 6(c), and up to 10^3 for the sample reduced at 400°C, leading to enhanced photo-activity.

This increase in the conductivity, due to the presence of Ti$^{3+}$ in the bulk, can improve the efficiency of the electron-hole separation and stabilisation of the charge distribution. As a result, the photo-activity of the material increased. When the material was subjected to a greater degree of reduction, i.e. at reduction temperatures above 450°C, a much higher concentration of defects is produced which leads to localisation of defects, promoting recombination of charge carriers and therefore reducing the photo-activity. Tailoring the degree of reduction therefore offers a route to balance these effects to produce improved photo-catalytic materials.

Figure 7. Fractional change of CO$_2$ over 150 minutes under UV wavelengths (a) 376-387nm and (b) 381-392nm.

Figure 8. Fractional change of NO$_2$ over 150 minutes under UV wavelengths of (a) 376-387nm and (b) 381-392nm.
4. Conclusions

This paper has demonstrated that solid-gas phase solar photo-catalysis of rutile based materials can be enhanced by production of TiO$_n$ ($1<n<2$) phases prepared by carbo-thermal reduction under an inert atmosphere. Materials were formed by carbo-thermal reduction of rutile at temperatures from 350°C to 1300°C and characterised in detail. The optimum temperature range to enhance photocatalytic properties was 350°C to 400°C and demonstrates that the photo-catalytic performance of TiO$_2$ can be improved by the introduction of defects into the lattice by a reduction process.

The enhancement in solid-gas phase photo-activity for the degradation of CO$_2$ and NO$_2$ was attributed to the increase in the electrical conductivity; this leads to an improved separation of photo-generated charge carriers. Subjecting rutile to reduction temperatures 450°C and above lead to a significant increase in conductivity and created localized titanium sub-oxide species leading to the promotion of recombination of charge carriers and therefore does not lead to enhanced photo-activity. Impedance spectroscopy has proven to be the most suitable technique to measure titanium sub-oxide dislocations due to its sensitivity. This strategy constitutes an important alternative to doping TiO$_2$ with other elements to modify the band gap and thus photo-catalytic performance for applications such as air purification.

Author Contributions: Conceptualization, M. Nuño, R. J. Ball and C. R. Bowen.; Methodology, M. Nuño, R. J. Ball and C. R. Bowen.; XRD, D. M. Tobaldi.; XPS, M. J. H. Gallo and G. Otero-Irurueta.; Writing-Original Draft Preparation, M. Nuño, C. R. Bowen, D. M. Tobaldi, V. Adamaki, and R. J. Ball; Supervision, R. J. Ball and C. R. Bowen.; Project Administration, R. J. Ball and C. R. Bowen.; Funding Acquisition, R. J. Ball.

Funding: This research was funded through a University of Bath research studentship. Instrumentation funding was received from the Royal Society, Research grant RG110024. Adamaki and Bowen acknowledge funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 320963 on Novel Energy Materials, Engineering Science and Integrated Systems (NEMESIS). Tobaldi acknowledges the project CICECO–Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID /CTM /50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.

Acknowledgments: Thanks are due to Professor W. N. Wang (University of Bath) for specifying the LEDs. The authors also acknowledge the contribution of Dr Liam Emmett for help with band gap measurements, and Dr Domenico Regonini for valuable suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References:

[1] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 37–38, 1972.

[2] G. Meinhold, “Rutile and its applications in earth sciences,” Earth-Science Rev., vol. 102, no. 1–2, pp. 1–28, Sep. 2010.

[3] H. Zhang and J. F. Banfield, “Thermodynamic analysis of phase stability of nanocrystalline titania,” J. Mater. Chem., vol. 8, no. 9, pp. 2073–2076, 1998.

[4] A. Giampiccolo, M. P. Ansell, D. M. Tobaldi, and R. J. Ball, “Synthesis of Co–TiO$_2$ nanostructured photocatalytic coatings for MDF substrates,” Green Mater., vol. 4, no. 4, pp.
[5] M. Nuño, R. J. Ball, C. R. Bowen, R. Kurchania, and G. D. Sharma, “Photocatalytic activity of electrophoretically deposited (EPD) TiO$_2$ coatings,” *J. Mater. Sci.*, vol. 50, no. 14, 2015.

[6] A. Giampiccolo *et al.*, “Sol gel graphene/TiO$_2$ nanoparticles for the photocatalytic-assisted sensing and abatement of NO$_2$,” *Appl. Catal. B Environ.*, vol. 243, pp. 183–194, Apr. 2019.

[7] D. M. Tobaldi *et al.*, “Quantitative XRD characterisation and gas-phase photocatalytic activity testing for visible-light (indoor applications) of KRONOClean 7000®,” *RSC Adv.*, vol. 5, no. 124, 2015.

[8] D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, “Phase-pure TiO$_2$ nanoparticles: anatase, brookite and rutile,” *Nanotechnology*, vol. 19, no. 14, p. 145605, Apr. 2008.

[9] A. Fujishima, X. Zhang, and D. Tryk, “TiO$_2$: photocatalysis and related surface phenomena,” *Surf. Sci. Rep.*, vol. 63, no. 12, pp. 515–582, Dec. 2008.

[10] M. Nuño, R. J. Ball, and C. R. Bowen, “Study of solid/gas phase photocatalytic reactions by electron ionization mass spectrometry,” *J. Mass Spectrom.*, vol. 49, no. 8, pp. 716–726, 2014.

[11] X. Liu *et al.*, “UV and visible light photoelectrocatalytic bactericidal performance of 100% {111} faceted rutile TiO$_2$ photoanode,” *Catal. Today*, vol. 224, pp. 77–82, Apr. 2014.

[12] A. Fujishima and X. Zhang, “Titanium dioxide photocatalysis: present situation and future approaches,” *Comptes Rendus Chim.*, vol. 9, no. 5–6, pp. 750–760, May 2006.

[13] A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” *J. Photochem. Photobiol. C Photochem. Rev.*, vol. 1, no. 1, pp. 1–21, Jun. 2000.

[14] O. Carp, C. L. Huisman, and A. Reller, “Photoinduced reactivity of titanium dioxide,” *Prog. Solid State Chem.*, vol. 32, no. 1–2, pp. 33–177, 2004.

[15] S. Wei, B. Peng, L. Chai, Y. Liu, and Z. Li, “Preparation of doping titania antibacterial powder by ultrasonic spray pyrolysis,” *Trans. Nonferrous Met. Soc. China*, vol. 18, no. 5, pp. 1145–1150, Oct. 2008.

[16] H. Nishikiori, Y. Fukasawa, Y. Yokosuka, and T. Fujii, “Nitrogen doping into titanium dioxide by the sol-gel method using nitric acid,” *Res. Chem. Intermed.*, vol. 37, no. 8, pp. 869–881, 2011.

[17] J. W. MacFarlane and T. B. Scott, “Reduction of carbon dioxide on jet spray formed titanium dioxide surfaces,” *J. Hazard. Mater.*, vol. 211–212, pp. 247–254, Apr. 2012.

[18] Z. He *et al.*, “Photocatalytic reduction of CO$_2$ in aqueous solution on surface-fluorinated anatase TiO$_2$ nanosheets with exposed [001] facets,” *Energy and Fuels*, vol. 28, no. 6, pp. 3982–3993, Jun. 2014.
[19] Y. H. Inoue Hiroshi, Matsuyama Takehiko, Liu Bi-Jin, Sakata Takao, Mori Hirotaro, “Photocatalytic Activities for Carbon Dioxide Reduction of TiO2 Microcrystals Prepared in SiO2 Matrices Using a Sol–Gel Method,” Chem. Lett., vol. 23, no. 3, p. 4, 1994.

[20] S. K. & K. H. Tooru Inoue, Akira Fujishima, “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders,” Nature, vol. 277, pp. 637–638, 1979.

[21] E. Bahadori A. Tripodi, A. Villa, C. Pirola, L. Prati, G. Ramis, and I. Rossetti, “High Pressure Photoreduction of CO2: Effect of Catalyst Formulation, Hole Scavenger Addition and Operating Conditions,” Catalysts, vol. 8, no. 10, p. 430, Sep. 2018.

[22] Y. Taniguchi, H. Yoneyama, and H. Tamura, “Photoelectrochemical Reduction of Carbon Dioxide at p-Type Gallium Phosphide Electrodes in the Presence of Crown Ether,” Bull. Chem. Soc. Jpn., vol. 55, no. 7, pp. 2034–2039, Jul. 1982.

[23] B. Aurian-Blajeni, M. Halmann, and J. Manassen, “Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials,” Sol. Energy, vol. 25, no. 2, pp. 165–170, 1980.

[24] C. D. Jaeger and A. J. Bard, “Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems,” J. Phys. Chem., vol. 83, no. 24, pp. 3146–3152, Nov. 1979.

[25] M. Anpo, H. Yamashita, Y. Ichihashi, and S. Ehara, “Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts,” J. Electroanal. Chem., vol. 396, no. 1–2, pp. 21–26, Oct. 1995.

[26] M. Anpo et al., “Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts,” Catal. Today, vol. 44, no. 1–4, pp. 327–332, Sep. 1998.

[27] T. Ohno, T. Tsubota, K. Nishijima, and Z. Miyamoto, “Degradation of Methylene Blue on Carbonate Species-doped TiO2 Photocatalysts under Visible Light,” Chem. Lett., vol. 33, no. 6, pp. 750–751, 2004.

[28] Y. Mizukoshi, N. Ohtsu, S. Semboshi, and N. Masahashi, “Visible light responses of sulfur-doped rutile titanium dioxide photocatalysts fabricated by anodic oxidation,” Appl. Catal. B Environ., vol. 91, no. 1–2, pp. 152–156, Sep. 2009.

[29] Y. Ren, J. Li, and J. Yu, “Enhanced electrochemical performance of TiO2 by Ti3+ doping using a facile solvothermal method as anode materials for lithium-ion batteries,” Electrochim. Acta, vol. 138, pp. 41–47, Aug. 2014.

[30] W. H. Saputera, G. Mul, and M. S. Hamdy, “Ti3+-containing titania: Synthesis tactics and photocatalytic performance,” Catal. Today, vol. 246, pp. 60–66, May 2015.

[31] M. Nuño, G. L. Pesce, C. R. Bowen, P. Xenophonos, and R. J. Ball, “Environmental performance of nano-structured Ca(OH)2/TiO2 photocatalytic coatings for buildings,” Build.
Environ., vol. 92, pp. 734–742, 2015.

[32] M. Xing, W. Fang, M. Nasir, Y. Ma, J. Zhang, and M. Anpo, “Self-doped Ti$^{3+}$-enhanced TiO2 nanoparticles with a high-performance photocatalysis,” J. Catal., 2013.

[33] S. Riyapan, Y. Boonyongmaneerat, O. Mekasuwandumrong, P. Praserthdam, and J. Panpranot, “Effect of surface Ti$^{3+}$ on the sol–gel derived TiO$_2$ in the selective acetylene hydrogenation on Pd/TiO$_2$ catalysts,” Catal. Today, vol. 245, pp. 134–138, May 2015.

[34] V. Adamaki, F. Clemens, P. Ragulis, S. R. Pennock, J. Taylor, and C. R. Bowen, “Manufacturing and characterization of Magnéli phase conductive fibres,” J. Mater. Chem. A, vol. 2, no. 22, pp. 8328–8333, 2014.

[35] Q. Zhu, Y. Peng, L. Lin, Cong-Min Fan, Gui-Qi Gao, Rui-Xia Wang and An-Wu Xu, “Stable blue TiO$_{2-x}$ nanoparticles for efficient visible light photocatalysts,” J. Mater. Chem. A, vol. 2, no. 12, p. 4429, 2014.

[36] S. R. Sangawar, J. P. Agarwal, and D. B. Sarwade, “A comprehensive study on some binders for piezoelectric ceramics,” Indian J. Eng. Mater. Sci., vol. 8, no. 1, pp. 26–35, 2001.

[37] F. Bradley, “The Relation of Ceramics Processing to Materials Properties for Electronic Applications,” IEEE Trans. Parts, Hybrids, Packag., vol. 8, no. 4, pp. 15–23, Dec. 1972.

[38] M. N. Rahaman, Ceramic Processing. CRC Press, 2017.

[39] S. J. Kalita, S. Qiu, and S. Verma, “A quantitative study of the calcination and sintering of nanocrystalline titanium dioxide and its flexural strength properties,” Mater. Chem. Phys., vol. 109, no. 2–3, pp. 392–398, 2008.

[40] F. C. Walsh and R. G. A. Wills, “The continuing development of Magnéli phase titanium sub-oxides and Ebonex® electrodes,” Electrochim. Acta, vol. 55, no. 22, pp. 6342–6351, Sep. 2010.

[41] P. C. S. Hayfield, Development of a New Material. Cambridge: Royal Society of Chemistry, 2007.

[42] W. E. Wang and Y. S. Kim, “Thermodynamic evaluation of the titanium-oxygen system from O/Ti = 0 to 3/2,” J. Nucl. Mater., vol. 270, no. 1, pp. 242–247, 1999.

[43] K. P. Surendran, P. V. Bijumon, P. Mohanan, and M. T. Sebastian, “(1-x)MgAl$_2$O$_3$–xTiO$_2$: dielectrics for microwave and millimeter wave applications,” Appl. Phys. A, vol. 81, no. 4, pp. 823–826, Sep. 2005.

[44] V. Adamaki, “Manufacturing and characterisation of Ti-suboxides for sensing and energy applications”, PhD Thesis, University of Bath, 2015.

[45] R. López and R. Gómez, “Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO$_2$: a comparative study,” J. Sol-Gel Sci. Technol., vol. 61, no. 1, pp. 1–7, Jan. 2012.
[46] D. S. McClure, “Mineralogical applications of crystal field theory by R. G. Burns,” J. Appl. Crystallogr., vol. 3, no. 6, pp. 550–550, Dec. 1970.

[47] M. Nuño, “Photocatalytic coatings in the built environment”, PhD Thesis, University of Bath, 2015.

[48] Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, and J. Ye, “Reduced TiO2 nanotube arrays for photoelectrochemical water splitting,” J. Mater. Chem. A, vol. 1, no. 18, p. 5766-5774, 2013.

[49] D. P. Almond and B. Vainas, “The dielectric properties of random R - C networks as an explanation of the ‘universal’ power law dielectric response of solids,” J. Phys. Condens. Matter, vol. 11, no. 46, pp. 9081–9093, Nov. 1999.

[50] D. P. Almond and C. R. Bowen, “Anomalous Power Law Dispersions in ac Conductivity and Permittivity Shown to be Characteristics of Microstructural Electrical Networks,” Phys. Rev. Lett., vol. 92, no. 15, p. 157601, Apr. 2004.