Technology applications in bovine gait analysis: A scoping review

Amir Nejati¹, Anna Bradtmueller¹, Elise Shepley², Elsa Vasseur¹*

¹ Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada,
² Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America

* elsa.vasseur@mcgill.ca

Abstract

Quantitative bovine gait analysis using technology has evolved significantly over the last two decades. However, subjective methods of gait assessment using visual locomotion scoring remain the primary on-farm and experimental approach. The objective of this review is to map research trends in quantitative bovine gait analysis and to explore the technologies that have been utilized to measure biomechanical parameters of gait. A scoping literature review was conducted according to PRISMA guidelines. A search algorithm based on PICO framework generated three components—bovine, gait, and technology—to address our objectives. Three online databases were searched for original work published from January 2000 to June 2020. A two-step screening process was then conducted, starting with the review of article titles and abstracts based on inclusion criteria. A remaining 125 articles then underwent a full-text assessment, resulting in 82 final articles. Thematic analysis of research aims resulted in four major themes among the studies: gait/claw biomechanics, lameness detection, intervention/comparison, and system development. Of the 4 themes, lameness detection (55% of studies) was the most common reason for technology use. Within the literature identified three main technologies were used: force and pressure platforms (FPP), vision-based systems (VB), and accelerometers. FPP were the first and most popular technologies to evaluate bovine gait and were used in 58.5% of studies. They include force platforms, pressure mapping systems, and weight distribution platforms. The second most applied technology was VB (34.1% of studies), which predominately consists of video analysis and image processing systems. Accelerometers, another technological method to measure gait characteristics, were used in 14.6% of studies. In sum, the strong demand for automatic lameness detection influenced the path of development for quantitative gait analysis technologies. Among emergent technologies, deep learning and wearable sensors (e.g., accelerometers) appear to be the most promising options. However, although progress has been made, more research is needed to develop more accurate, practical, and user-friendly technologies.
Introduction

Gait abnormalities are a major welfare concern that cause considerable economic losses in cattle farming [1, 2]. Hoof and leg disorders are the most common causes of gait abnormalities—mainly referred to as “lameness” in literature [3, 4]. Identifying cows with impaired locomotion, especially at early stages of development, is key to minimizing the welfare and economic consequences of gait abnormalities [5]. The prevalence of lame cows is often underestimated by farmers who only rely on passive observation of cows for abnormal gait (e.g., visual assessment when moving cows for milking), which is not sufficient for identifying lame cows [6, 7], particularly in the case of mild lameness and early lameness detection. Gait analysis can be used to facilitate and improve lameness detection in cows [8]. Besides the role of gait analysis in identifying a lame cow, it can also be utilized in research to investigate cow’s welfare and ease of movement under different conditions (e.g., housing systems, Shepley and Vasseur [9]; flooring type, Telezhenko and Bergsten [10]).

Generally, gait analysis is conducted through subjective (qualitative) and objective (quantitative) methods. Subjective methods, i.e., visual gait scoring, is the traditional and primary method of gait analysis as it is easy and inexpensive to implement both on-farm and in research studies. However, visual gait scoring is subjective in nature and, as such, variability in the observer’s training level and background experience as well as the wide range of different gait characteristics evaluated across different scoring systems may contribute to low intra- and inter-observer reliability [3, 11, 12]. In addition, visual gait scoring is a time-consuming procedure, particularly in large herds, which may lead to producers conducting less frequent assessments of gait, resulting in later detection of lameness and, thus, hindering early intervention and treatment [3]. Objective methods using gait analysis technologies have been developed by researchers over the years to address the weaknesses of the traditional methods of cow gait assessment. However, exploring and appraising studies that utilize gait analysis technologies and drawing comparisons between their outcomes is difficult. This is due not only to the variety of ways in which gait analysis technologies are applied in research and the outcome measures investigated, but also due to differences in hardware and settings within similar types of technology that complicate comparisons even when the same category of gait analysis technology is used. Moreover, although several efforts have been made to put forth systematic reviews on cow gait analysis technologies, these looked primarily at studies in which cow lameness is the central focus. Yet, application of such technologies with aims more centered on the detection of changes in cow gait rather than on the detection of clinical lameness cases is an aspect that could contribute to address some of the weaknesses of the traditional gait assessment methods in enabling earlier interventions before the threshold of clinical lameness is reached by the cow. This more specific use of technologies in cow gait analysis was not covered in previous reviews. Thus, there is a lack of systematic reviews that considers all aspects of technology-based cow gait and movement analysis, independent of cow lameness.

The objectives of this scoping review were 1) to map research trends of quantitative bovine gait analysis, 2) to explore the technologies that have been utilized to measure biomechanics parameters of gait variables in bovine species, and 3) to spotlight the current gaps in the field of cow gait analysis.

Methods

The protocol for this review was formatted as per the items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews, i.e., PRISMA-ScR [13].
Eligibility criteria

Since English was the language common to all members of the editorial team and a major publication language, we included only English language full text publications of primary research from any geographic location, without restrictions on study design. As per this criterion, review articles were excluded. Publications dated prior to 2000 were excluded due to substantive changes that occurred since that time in bovine gait practices and in technology development. We included research conducted on live cow populations (in vivo studies) for either beef or dairy cattle with no age and production cycle limitation. Only studies that measured gait attributes objectively through technologies using biomechanical parameters derived from kinematic and kinetic analysis were included in the review.

Information sources and search strategy

To identify references, the literature search was conducted in three electronic databases (Web of Science Core Collection, CAB Abstracts, and Scopus). A comprehensive search strategy was developed in order to identify relevant literature. Search terms were developed based on PICO framework in which three main components—population/problem (P), intervention/interest (I), context/comparison (Co)—were extracted from the original research question. The target population (first component) is bovine species in which we are looking for the intervention of technology (second component) in the context of gait analysis (third component). Afterwards, nine domains were included in the search. These domains were bovine, gait analysis, locomotion analysis, movement analysis, lameness detection, biomechanics, vision-based analysis, accelerometer, and measuring plates. The search algorithm applied the following combination of these nine domains: (bovine) AND [(gait analysis) OR (locomotion analysis) OR (movement analysis) OR (lameness detection)] AND [(biomechanics) OR (vision-based analysis) OR (accelerometer) OR (measuring plate)]. Then, in the selected databases, article titles, abstracts and keywords using the nine domains with several possible keywords for each were looked at. Table 1 shows the details of the search strings conducted in the Web of Science database as an example. The same search strategy was translated into the CAB Abstracts and Scopus databases. The final search was conducted on June 2, 2020. For this search, no limits were set on subject area, study design or date of publication to allow for the minimization of bias in identifying all relevant research for inclusion in the review.

A supplementary search was performed using hand-searching to pick up any relevant references that were missed by the database searches. Subsequently, the reference lists of each of the documents found to meet the inclusion criteria were also screened to identify any additional documents of interest.

Selection of sources of evidence

All references were imported into the Endnote X9 reference management software (Clarivate, Philadelphia, PA; [14]) and duplicates were removed. All literature was then uploaded to Covidence, an online systematic review management program [15]. The review was then performed in two steps. The first consisted of a review of titles and abstracts through which papers unrelated to the research questions were excluded. Articles related to the topic of bovine gait and movement analysis or lameness detections were all included in the next step of screening process. The second step consisted of a full-text review to make sure that the references all met the eligibility criteria. Further exclusion of the documents was performed during the data collection process (i.e., a document could be later excluded based on its full-text review). Fig 1 summarizes the selection process.
Data charting process and data items

A data extraction sheet developed by the authors was used to chart literature under the following headings: author(s), title, year published, journal, research aims, research setting (laboratory- or farm-based), technologies used, hardware (device, specifications), types of animal preparation (e.g., marker or sensor attachment), target anatomical regions, test corridor characteristics (dimensions, flooring, number of steps), housing system characteristics (e.g., housing type, flooring type), sample size, breed, age, production cycle (dry or lactating), measured variables, main findings, study limitations (as identified by a study’s authors), and future directions. All screening and data extraction steps were performed by a single reviewer. To minimize the likelihood of human error, all the uncertainties during the review process as well as the initial development of the scoping review protocol were discussed with the review team on a weekly basis. These meetings served to discuss the progress of the review, the decision rules for each step of the PRISMA protocol steps, and the findings, including how they should be presented in their respective sections of the paper.

Synthesis of results

A narrative synthesis was used to collate, summarize, and present the findings of the current review. Various tools and approaches such as thematic analysis, textual descriptions, tabulation, and graphs were used to explore similarities, differences, and relationships between different studies. Literature data were analyzed using a thematic analysis approach to map research aims. The included articles were coded accordingly based on the objectives they aimed to address. Major themes, subthemes, and their corresponding codes and definitions were developed by the review team. A thematic analysis approach was similarly employed in the analysis of the gait assessment technologies.
Results

Selection of sources of evidence

Fig 1 shows the PRISMA flow diagram for the study’s selection method. A total of 729 articles were retrieved from three databases and other sources: 316 from Scopus, 280 from Web of Science Core Collection, 113 from CAB Abstracts, and 20 from the other sources. The de-duplication process left 474 records to screen. After screening abstracts and titles, we excluded...
349 publications that were not related to field of bovine locomotion evaluation. By examining the remaining 125 in detail, a further 43 were excluded. Therefore, a final number of 82 articles were included in the scoping literature review.

Characteristics of sources of evidence

The 82 included articles were published between 2000 and 2020, with the majority of articles (93%) published after 2005 (Fig 2). Datasets presented in the articles originated from 16 countries, with most originating from the United States (n = 16 articles; 19.5%), followed by Belgium and Canada (n = 12 articles; 14.6% and n = 11 articles; 13.4% respectively).

Articles included in this review were published across 23 scientific journals. Journal of Dairy Science was the journal with the most articles included in this review (n = 33 articles; 40%), followed by Computers and Electronics in Agriculture (n = 10 articles; 12%); as such, the publications identified can be considered to be found mostly in journals specializing in agriculture. The trend of the publications found seems to reflect how developed countries with industrialized dairy sectors place more emphasis on this topic and on the use of technologies as a means to tackle the challenges associated with bovine gait analysis.

Thematic analysis of research aim

To understand the importance of using technology in bovine gait analysis, it is necessary to first examine the objectives of studies that have used these technologies. Therefore, a thematic analysis of research aims was conducted based on the stated objective(s) of the studies. Table 2 shows the thematic classification of research aims/themes, each theme was coded and described. There were four major themes: Gait/Claw biomechanics (GCB), Lameness detection (LD), Intervention/Comparison (IC), and System development (SD). Three of the major themes had subthemes. These were 1) Lameness detection: visual locomotion Scoring.
Lameness detection, i.e., identifying lame cows or an impaired limb using technology, was the most frequent research aim pursued in the gait analysis literature with 45 studies (55%, Table 2), followed by Intervention/Comparison studies (29 studies, 35.5%) and System development studies (20 studies, 24.5%). Studies that aimed to explore gait/claw biomechanics of a non-lame cow using a technology accounted for the lowest number of studies (9 studies, 11%) in the bovine gait analysis literature. The trend of four major research aims/themes (Fig 3) illustrates that lameness detection has maintained its dominance over the other research objectives for the last 15 years.

Gait analysis technologies

Three main technologies employed in bovine gait analysis including force and pressure platforms (FPP), vision-based technologies (VB), and accelerometers. Table 3 shows an overview of these technologies and their subcategories that will be explained in detail further in this review. Force and pressure platforms (FPP), which included force platforms, pressure mapping systems and weight distribution platforms, were the most frequently used technologies (48 studies; 58.5%). Vision-based technologies (VB), which encompass video analysis and image processing, came in second (28 studies; 34.0%), followed by accelerometers (12 studies; 14.5%). The trend among publications included illustrates a dominance of kinetic-based technologies (FPP) over other types of technological tools used in bovine gait analysis.

Force and pressure platforms (FPP). Force, pressure, and weight—along with their derivatives—are the main kinetic attributes measured by floor-sensitive plates. These measures

Table 2. Published trends in bovine biomechanical research, with findings derived from thematic analysis of stated research aims of the 82 included articles. Some papers were categorized under more than one main theme or subtheme (i.e., they aimed more than one objective).

Major theme	Subtheme	Description	N	%
Gait/Claw biomechanics (GCB)		Exploring biomechanics of sound (non-lame) animals while walking or standing naturally.	9	11.0
Lameness detection (LD)		Utilizing technology to distinguish between lame and non-lame cows and identifying the impaired limb.	45	55.0
ALDS		Investigating lameness detection methods using automated lameness detection systems.	35	42.5
VLS		Using visual locomotion scoring for identifying a lame cow.	36	44.0
FD		Using foot disorders, i.e., foot pathologies, hoof lesion, and hoof pain, for identifying a lame cow.	18	22.0
Intervention/Comparison (IC)		Investigating/comparing gait alterations before and after an intervention or between different set-ups.	29	35.5
FT		Comparing gait across different flooring types.	10	12.0
HT		Examining the gait measures before and after Hoof trimming.	8	10.0
AN		Investigating the effect of local or systemic analgesics on gait.	7	8.5
Other		Investigating the effect of other circumstances on gait such as diet, walking speed, hoof treatment block, milking, calving, etc.	5	6.0
System development (SD)		Research aiming to develop a system.	20	24.5
DV		Developing and/or validating a new system.	14	17.0
IM		Enhancing an existing system by improving the material and methods used or by using various statistical models	6	7.5

Abbreviations: ALDS: automatic lameness detection system; VLS: visual locomotion scoring; FD: foot disorders; FT: flooring type; HT: hoof trimming; AN: analgesics; DV: development-validation; IM: improvement.

https://doi.org/10.1371/journal.pone.0266287.t002
are taken either when an animal is walking over the plates (dynamic measurements) or when standing on them (static measurements). Measuring plates were the most widely used technology (48 studies, 58.5%) in bovine biomechanical analysis. In the current review, these technologies are classified into three main groups: force platforms (FP), pressure mapping systems (PMS), and weight distribution platforms (WDP). More information on these three main kinetic technologies can be found in Table 4.

Force platforms (FP). Force platforms use one of several different types of transducers (aka load cells) which are installed under a cover plate to measure ground reaction forces (GRF) applied over the platform’s top surface. There were 18 bovine gait analysis studies that have used different force platform types, and these vary in the type and number of force transducers. The most common FP among the studies were 1D (single-axis) plates that can only measure the vertical forces. Alternatively, 4 studies included 3D force plates that can provide information on the three-dimensional components of force (vertical, transverse and longitudinal). One study also used a thin electromechanical film (Emfit) to measure the force generated...
Table 4. Overview of studies included in the review that used force and pressure platforms (FPP).

Ref.	Platform type/brand/setup	Research aim	Data freq. (Hz)	Platform layout	Width × Length per unit (cm)	FP & WDP: sensors/unit; PMS: sensors/cm²	Output variables
[16]	FP: RFD SD	100	2-unit, Parallel	63×198	4 transducers/unit	Peak vertical GRF, average vertical GRF, stance time, time derivatives of force, stride length	
[17]	FP: RFD LD	N/A	2-unit, Parallel	63×198	4 transducers/unit	Peak vertical GRF, average vertical GRF, stance time, time derivatives of force	
[18]	PMS: FootScan GCB	300	Single-unit	32.5×48.8	2.6/cm²	Pressure, location of the maximum pressure	
[19]	FP: Kistler; PMS: FootScan GCB	250	FP & PMS: Single-unit	FP: 60×90; PMS: 32.5×97.6	FP: N/A; PMS: 2.6/cm²	FP: vertical GRF; PMS: peak pressure, average pressure, contact area	
[20]	FP: RFD SD	100	2-unit, Parallel	63×198	4 transducers/unit	Vertical GRF, stance time, stride length	
[21]	FP: Kistler; PMS: FootScan IC	250	FP & PMS: Single-unit	FP: 60×90; PMS: 32.5×97.6	FP: N/A; PMS: 2.6/cm²	FP: vertical GRF; PMS: peak pressure, average pressure, contact area	
[22]	FP: N/A; PMS: MatScan IC	40	FP & PMS: Single-unit	FP & PMS: 49.9×50.8	FP: 4 transducers/unit; PMS: 1.4/cm²	FP: GRF; PMS: claw pressure distribution, peak pressure	
[23]	FP: RFD LD	N/A	2-unit, Parallel	N/A	4 transducers/unit	Peak vertical GRF, average vertical GRF, stance time, time derivatives of force	
[24]	WDP: integrated into unknown IC	1.1 & 4	4-unit	56×91	2 strain gauges/unit	Average weight, standard deviation of weight	
[25]	WDP: integrated into a milking robot	10	4-unit	31×31 to 44.5×39	1 strain gauge/unit	Average weight, standard deviation of weight, kicks, steps	
[26]	FP: Stepmetrix LD	N/A	2-unit, Parallel	N/A	N/A	Stepmetrix Locomotion Scoring	
[27]	FP: integrated into a treadmill GCB & IC	433	2-unit, Parallel	N/A	N/A	Peak vertical GRF, stride frequency, stance time, swing time	
[28]	PMS: FootScan LD	250	Single-unit	40×100	8192 sensors, each 0.39 cm²	Peak vertical GRF, asymmetry of peak vertical GRF	
[29]	WDP: integrated into a milking robot (Delaval)	10	4-unit	31×31 to 44.5×39	1 strain gauge/unit	Leg Weight Ratio, standard deviation of weight, number of kicks and steps	
[30]	WDP: Integrated into unknown IC & SD	N/A	4-unit	56×91	2 strain gauges/unit	Average weight, standard deviation of weight	
[31]	FP: Emfit; WDP: integrated into a milking robot	LD	4-unit	31×31 to 44.5×39	1 strain gauge/unit	Leg Weight Ratio, standard deviation of weight, number of kicks and steps	
[32]	PMS: I-Scan IC	100	Single-unit	24.6×24.6	3.202/cm²	Vertical GRF, average pressure, contact area	
[33]	WDP: integrated into a milking robot (Delaval)	LD	N/A	N/A	1 strain gauge/unit	Leg Weight Ratio, number of kicks	
[34]	WDP: integrated into a milking robot	LD & SD	10	N/A	1 strain gauge/unit	Leg Load Index	
[35]	WDP: integrated into a milking robot	LD & SD	10	31×31 to 44.5×39	1 strain gauge/unit	Average weight, standard deviation of weight, number of kicks	
[36]	FP: Stepmetrix LD	N/A	2-unit, Parallel	N/A	4 transducers/unit	Peak vertical GRF, average vertical GRF, time derivatives of force, stance time	
[37]	PMS: MatScan LD	N/A	Single-unit	90×240	1.5/cm²	Pressure, stance time, contact area	
[38]	PMS: Gaitwise LD	N/A	Single-unit	N/A	N/A	Step width, step length, step time, stance time, stride length, stride time, tracking-up, abduction, force, asymmetry of variables (step width, step length, step time, stance time, force)	
[39]	PMS: FootScan LD	N/A	Single-unit	32.5×97.6	8192 sensors, each 0.39 cm²	Peak force, total force, stance time, center of pressure, contact area	
[40]	WDP: integrated into unknown IC	6	4-unit	56×91	2 strain gauges/unit	Leg Weight Ratio, average weight, standard deviation of weight	

(Continued)
Table 4. (Continued)

Ref.	Platform type/brand/setup	Research aim	Data freq. (Hz)	Platform layout	Width x Length per unit (cm)	FP & WDP: sensors /unit; PMS: sensors/cm²	Output variables
[41]	FP: 3D platform (AMTI)	GCB & IC	200	5-unit, end to end	90x60	N/A	Peak vertical GRF, peak longitudinal GRF, time derivatives of force, stance time, swing time, stride time, stride frequency, duty-factor, walking speed
[42]	WDP: integrated into unknown	LD & IC	14/s	4-unit	59x99	4 hermetically sealed load cells/unit	Leg Weight Ratio, standard deviation of weight
[43]	WDP: integrated into unknown	LD	6	4-unit	56x91	2 strain gauges/unit	Leg Weight Ratio
[44]	FP: Stepmetrix	LD	200	2-unit, Parallel	N/A	4 transducers /unit	Peak vertical GRF, average vertical GRF, time derivatives of force, stance time, asymmetry of variables (GRF, stance time, time derivatives of force)
[45]	FP: Stepmetrix	LD & SD	N/A	2-unit, Parallel	N/A	4 transducers /unit	Peak vertical GRF, average vertical GRF, time derivatives of force, stance time
[46]	PMS: Gaitwise	LD & SD	60	Single-unit	61x488	18432 sensors	Step width, step length, step time, stance time, stride length, stride time, tracking-up, abduction, force, asymmetry of variables (step width, step length, step time, force)
[47]	PMS: MatScan	IC	N/A	Single-unit	90x240	1.5 /cm²	Force, peak force, pressure, peak pressure, time derivatives of force/pressure, contact area
[48]	FP: integrated into a hoof trimming chute	LD	50	4-unit	N/A	4 transducers /unit	Vertical GRF
[49]	PMS: Gaitwise	LD	60	Single-unit	61x488	18432 sensors	N/A
[50]	WDP: integrated into unknown	LD & SD	13	4-unit	59x99	4 hermetically sealed load cells/unit	Number of steps
[51]	FP: 3D platform	SD	2000	2-unit, Parallel	46x207	strain gauge (unknown number)	Center of pressure
[52]	PMS: Gaitwise	LD	N/A	Single-unit	61x488	N/A	Step width, step length, step time, stance time, stride length, stride time, tracking-up, abduction, force, inconsistency of variables (stance time, force), imprints time/location
[53]	PMS: Tekscan walkway system	GCB	N/A	Single-unit	36.9x87.2	1.4 /cm²	Peak force, stance time, time derivatives of force, stride velocity
[54]	FP: 3D platform	LD & IC	2000	2-unit, Parallel	46x207	strain gauge (unknown number)	Vertical GRF, longitudinal GRF, transverse GRF, asymmetry of GRF
[55]	PMS: MatScan	IC	N/A	Single-unit	90x240	1.5 /cm²	Pressure, stance time, time derivatives of force, contact area
[56]	FP: 3D platform	LD & SD	100	2-unit, Parallel	35.5x183	7 transducers /unit	Vertical GRF, longitudinal GRF, transverse GRF, time derivatives of force
[57]	PMS: I-scan	IC	100	Single-unit	24.6x24.6	3.202 /cm²	Peak force, pressure, contact area
[58]	WDP: integrated into unknown	LD	10	4-unit	55x78	1 hermetically sealed load cell/unit	Leg Weight Ratio, standard deviation of weight, weight difference
[59]	PMS: Gaitwise	LD & SD	60	Single-unit	61x488	1.6 /cm²	Step width, step length, step time, stance time, stride length, stride time, tracking-up, abduction, force, inconsistency of variables (stance time, force), imprints time/location
[60]	WDP: integrated into unknown	LD	10	4-unit	55x78	1 hermetically sealed load cell/unit	Standard deviation of weight, weight difference
[61]	PMS: MatScan	IC	N/A	Single-unit	90x240	1.5 /cm²	Vertical GRF, pressure, time derivatives of force

(Continued)
as a result of a change in the film thickness [31]. Additionally, a treadmill-integrated force measuring system equipped with 18 force transducers (9 on each side) was employed in one study to measure GRF while cows were walking at a controlled speed [27].

Most studies implemented a multiple-force-plate layout, usually a double setup with parallel orientation, to capture bi-lateral and/or individual footfall measurements of force. Three studies, however, used a single force plate system, which allowed for the evaluation of only one side of the animal (i.e., the fore and hind limbs of one side) during a measurement. The length of the FP varied between the studies that have reported platform dimensions, typically ranging from 0.9 to 2 m. An exception to this was the application of a 3-meter-long force platform system in a study that placed 5 smaller plates (each 0.6 m long) in a row to measure multiple consecutive footfalls [41]. Force data recording rate also had considerable variation among the studies that reported it, ranging from 50 Hz to 2000 Hz. However, the usual recording frequency for most of the studies ranged from 100 to 250 Hz.

Force platform variables

Dynamic measurements recorded while animals walk over the plates are the primary way of using force platforms. However, measurements recorded while the animal is standing have also been used in two studies; one study used a force plate system comprised of four plates installed in a hoof-trimming chute [48], and the other used a combined system of force and pressure plates [21]. Peak and average ground reaction forces (GRF) were the most important and frequent variables obtained from FP. The GRF measurements have been primarily measured vertically, except in the case of 3D platforms, which can supplement the vertical inputs with the transversal and the longitudinal inputs. In addition to GRF, other derivatives of force with respect to time (e.g., GRFω and impulse) have been measured.

Centre of pressure (COP) and duty-factor (ratio of stance time and stride time) are other variables that have been measured using 3D force platforms. COP was measured to identify stance phases [51] or to detect left and right limbs [41]. Stance time is the most frequent temporal variable that has been measured by most of the FP. More temporal variables such as swing time, and stride time were provided when a five-platform layout was used [41].

The studies that used Reaction Force Detection (RFD) systems [16]—Stepmetrix and the redesigned 3D version of the RFD system—usually presented their measurements as Limb Movement Variables (LMV), which are typically a collection of the following variables: peak GRF, average GRF, stance time, impulse, and GRFω. The Stepmetrix machine, as a lameness detection system, provides an automated locomotion scoring system (Stepmetrix locomotion scoring, SLS) using the LMVs. The SLS ranges from 1 to 100, and has been only reported in one study [26]. Asymmetry measurements of some aforementioned variables such as GRF, stance time, impulse and GRFω have been also calculated by two studies [44, 54].

Table 4. (Continued)

Ref.	Platform type/brand/setup	Research aim	Data freq. (Hz)	Platform layout	Width × Length per unit (cm)	FP & WDP: sensors/unit; PMS: sensors/cm²	Output variables
[62]	PMS: HoofScan	IC	100	N/A	N/A	N/A	Vertical GRF, pressure, contact area, asymmetry of GRF
[63]	WDP: integrated into unknown	IC	10	4-unit	55×78	1 hermetically sealed load cell/unit	Standard deviation of weight, weight difference

*Duty-factor is the ratio of stance time and stride time.

Abbreviations: FP: force platforms; RFD: reaction force detection system; PMS: pressure mapping systems; N/A: not applicable; WDP: weight distribution platforms; SD: system development; LD: lameness detection; GCB: gait/claw biomechanics; IC: intervention/comparison; GRF: ground reaction force.

https://doi.org/10.1371/journal.pone.0266287.t004
Pressure mapping systems (PMS). Pressure mapping systems consist of a continuous network of sensors which measure multiple points of contact simultaneously, allowing for a detailed pressure map to be produced. They have been employed in 19 studies, 3 of which used a combined system of a pressure plate laid over a force plate. They typically come in the form of walkway plates and mats that allow animals to walk over or stand on them. However, one study developed an insole pressure system by attaching a sensor-equipped shoe (a leather claw shoe) to the cow’s left hind claw to measure kinetic outputs for both standing and walking conditions [62].

Pressure mapping systems had considerable variation in dimensions, ranging from 24.6 × 24.6 cm (I-Scan system to assess static pressure distribution of only the left hind foot) to 61 × 488 cm (Gaitwise system to capture more gait cycle steps for lameness detection purposes). The sensor resolution of a pressure mapping system is another aspect that varied among the studies that reported it, ranging from 1.4 to 3.2 sensing elements (pressure sensors) per cm². Recording rate of data (frequency) also varied greatly among the studies, ranging from 40 to 300 frames per second (Hz).

Pressure mapping system variables: Kinetic outputs measured by PMS are typically obtained through dynamic assessments, with the exception of 4 studies that performed static measurements [18, 21, 32, 57]. Vertical pressure, vertical GRF, impulse, contact area, and stance time are common variables measured among the studies using pressure mapping systems. One study also calculated center of pressure to investigate hoof pressure patterns during stance phase (39). Additionally, studies that have used the Gaitwise system [38, 46, 52, 59], provided mainly temporal (step time, stance time, and stride time) and spatial (step width, step length, stride length, tracking-up distance, and abduction) variables and their asymmetries. Relative force was the only force/pressure variable measured by the Gaitwise system.

Weight distribution platforms (WDP). Four-scale weight distribution platforms consist of four independent recording units (one for each limb) that measure the weight distribution between limbs while the animal is standing. These platforms have been used in 15 studies, in which they were installed either inside or outside automatic milking systems. Studies incorporating WDP mainly aimed to detect leg problems, as lame cows reduce weight-bearing on the affected limb, consequently showing asymmetry in weight distribution across contralateral limbs (i.e., legs on the left vs. right side of the cow). Each recording unit typically contained 1 or 2 transducers (load cells) measuring the load applied on them. However, two studies used a weighing platform that had 4 load cells within each recording unit [42, 50]. Dimensions of recording units ranged from 31 × 31 cm to 56 × 91 cm. The sizes of front and rear units may differ, as the rear recording units installed in the milking robots were usually larger than the front units. The duration of time that a cow stands on the weighing platform for data recording varied among studies, typically ranging from 2 to 5 minutes in 1 to 4 separate measurements. The reported recording rate (frequency) varied from 1.1 to 14 recordings per seconds (Hz).

Weight distribution platform variables: Mean and standard deviation of the weight distributed between all legs or between a pair of legs were the most frequent variables that have been measured during the recording time in which animals stood on the weight distribution platform. Leg weight ratio (LWR) and weight difference (Δweight) were the other important variables associated with contralateral legs. The number and frequency of kicks and step behavior have been also calculated using weight distribution data.

Vision-based technologies (VB). Vision-based technologies involve acquiring and analyzing the motion and posture (i.e., kinematic parameters) of a walking animal using videos or sequential images. These technologies have evolved considerably from manual annotation of images and videos to automatic motion/posture optical trackers, and computer vision and machine learning algorithms. The beginning of kinematic gait analysis in cattle using vision-
based technology goes back to the study of Herlin and Drevemo [64], who measured angular patterns and hoof trajectories. Since 2000, there were 28 (34% of studies) published papers in bovine motion analysis that have utilized vision-based technology in different methods to measure locomotion variables while animals are walking through a corridor. Table 5 shows more information on vision-based technologies. The most frequent methods are video analysis (VA) and image processing (IP) techniques.

Video analysis (VA) techniques were used in 13 studies, eleven of which involved digitizing and tracking anatomical landmarks of a walking cow using motion analysis software to extract kinematic data either directly from a video (8 studies) or from consecutive still images obtained from a video (3 studies). Labelling and digitizing the anatomical landmarks can be done either manually, which requires manual localization of several points of interest, or using a marker-based system attaching reflective markers to palpable anatomical landmarks to measure kinematic data more accurately. Seven studies have employed a marker-based VA method using different types of passive markers (retroreflective markers) including reflective tape, color cardboard and reflective plastic balls. Additionally, two studies used the VA method to look at the pattern of ground contact of the claws of animals walking on a treadmill [27, 72]. All VA studies employed only a single digital camera, which is usually positioned perpendicular to the plane of movement of the cows to record sagittal plane kinematics data. Therefore, they were only limited to analysis of two-dimensional (2D) kinematic data. Filming a walking cow has also been employed by a few studies to assist other technologies, i.e., force and pressure platforms and accelerometers, as a video synchronization in the determination of stride events (e.g., hoof strike, and toe off). These studies are not included under VB technologies in this review since they were not primarily used to produce gait variables.

Image processing (IP) is the other method of VB technologies that was used in 13 studies to analyze the motion and posture of a walking cow through an algorithm. After extracting still images of several desired frames from a video, some operations will be applied to the images to prepare them for the cow motion/posture recognition. Background subtraction is one of the major tasks in image processing procedure, which allows an image’s foreground, i.e., a moving cow, to be extracted from background for further processing. Then the motion/posture of the desired regions will be analyzed either manually or using machine learning algorithms. Studies that have employed IP techniques usually targeted one anatomical region. Back posture as one of the main lameness indicators is the most popular single target in the studies that utilized image processing techniques, followed by hoof and leg movement. Similar to the videography analysis method, the image processing studies also used a side-view camera, unless in the case of using 3D camera, i.e., depth-sensing camera, to produce depth images of the cow’s back posture that is positioned overhead.

The object/target detection system is a novel technique in the field of vision-based technology and computer vision that allows us to automatically identify and locate multiple objects/targets in a video. This technique, used recently in one bovine gait analysis study, works by applying deep learning algorithms to detect the leg, head, and back regions of the cow [90]. However, only leg data has been analyzed and published. Biplane high-speed fluoroscopic kinematography (HFK) was another new technique to analyze bone movement with high accuracy in a 3D approach that has been utilized in a bovine study to evaluate the range of motion of interphalangeal joints [89].

Type of cameras varies among all the VB studies from a digital video camera to 3D depth sensors and dome cameras with various recording rates ranging from 15 to 60 fps. A high recording rate of 500 fps was set for the HFK study [89] as well as for two studies that walked the animals on a treadmill for video analysis [27, 72]. In most of the studies it has also been
Table 5. Overview of studies included in the review that used vision-based technologies (VB).

Ref.	Technique	Research Aim	Camera setup	Data freq. (Hz)	Number of recorded/analyzed strides/frames	Target anatomical regions	Output variables
[65]	Video analysis—Landmarks (markers) tracking	LD	2D cam, side-view	60	2 consecutive strides	Limbs	Stride length, max stride height, stride time, stance time, swing time, hoof speed, double and triple support, hoof trajectories
[66]	Video analysis—Landmarks (anatomical points) tracking	IC	2D cam, side-view	N/A	3 steps (2 strides)	Limbs & back posture	Walking speed, stride length, stepping rate, ROM (fetlock, Fetlock, Carpal and tarsal joints), backward angle horizontally (hoof, fetlock, Carpal and tarsal joints), back posture, Vertical fluctuation in the back
[67]	Video analysis—Landmarks (markers) tracking	IC	N/A	N/A	N/A	Limbs	Stride length, max stride height, stride duration, stance duration, swing duration, hoof speed, triple support
[68]	Video analysis—Landmarks (anatomical points) tracking	IC	2D cam, side-view	30	2 consecutive strides	Limbs	Stride length, ROM (Fetlock joints), stride time, stride velocity
[69]	Video analysis—Landmarks (markers) tracking	IC	2D cam, side-view	N/A	2 consecutive strides	Limbs	Stride length, max stride height, stride time, stance time, swing time, hoof speed, triple support, track-up
[70]	Video analysis—Hoof-ground contact order	GCB, IC	2D cam (high-speed), side-view	500	4 consecutive steps (3 strides)	Hooves	Ground contact order of claws and claw’s zones
[71]	Image processing	LD	2D cam, side-view	15	2 Strides	Hooves	Track-up
[72]	Video analysis—Hoof-ground contact order	GCB	2D cam (high-speed), side-view	500	4 consecutive steps (3 strides)	Hooves	Ground contact order of claws and claw’s zones
[73]	Image processing	LD	2D cam, side-view	15 & 20	N/A	Hooves	Track-up
[74]	Image processing	LD	2D cam, side-view	30	4 frames (based on front/hind hoof-ground contact)	Back posture	Back posture curvature
[75]	Video analysis—Landmarks (markers) tracking	LD	2D cam, side-view	N/A	N/A	Limbs	Stride length, track-up, ROM (fore fetlock, knee, hind fetlock, hock)
[76]	Video analysis—Landmarks (markers) tracking	GCB, IC	2D cam	15	N/A	Limbs	Range of vertical and forward movement of limb joints
[77]	Video analysis—Landmarks (markers) tracking	LD	2D cam, side-view	N/A	N/A	Limbs & back posture	Stride length, track-up, Stride time, fetlock/hock/withers height, back length, hoof speed, head position
[78]	Image processing	LD	2D cam, side-view	25	N/A	Back posture	Body movement pattern (BMP)
[79]	Image processing	LD	3D cam (Kinect), overhead	30	Average 4.9 frames per video	Back posture	Back posture measure (BPM)
[80]	Image processing	LD	2D cam, side-view & 3D Cam (Kinect), overhead	25 (2D cam), 30 (3D cam)	Digital cam: 2 frames (based on hind hoof-ground contact); 3D cam: average 2.56 frames per cow	Back posture	Back posture measure (BPM)
[81]	Video analysis—Landmarks (anatomical points) tracking	IC	N/A	N/A	2 consecutive strides	Limbs	Walking speed, step length, stepping rate, stance time, track-up, support phase

(Continued)
stated that camera placement was set up in a position to allow researchers to evaluate at least two consecutive strides.

Vision-based technology variables. Vision-based technologies can provide distance (spatial) and time (temporal) parameters, angular range of motion (ROM) of joints, displacement, and velocities, all of which are classified under kinematic variables. Since video analysis techniques allow researchers to quantify motion and posture of multiple anatomical regions at the same time—i.e., several points (usually major joints) on fore and rear limbs, back posture, and head position—a more complete set of kinematic variables can be obtained. Stride length and stride time are the most frequent variables that have been measured using VA techniques, followed by maximum stride height, hoof velocity, stance time, swing time, triple support, hoof overlap and ROM of fetlock joint.

On the other hand, most of the studies that used image processing methods generally focused on one specific anatomical area leading to a particular variable. There are 7 IP studies that have focused only on the back posture and provided particular variables such as curvature angles (curvature angle of back around shoulders, curvature angle of back around hip joints, overall back curvature angle, curvature distance of shoulder and hip), back posture measure (BPM) and inverse radius. In addition to back curvature, one study [84] also looked at the hook bones in order to track the hind limb symmetry movements. There were two other studies that only looked at the hoof displacements and measured hoof location trackway, i.e., hoof overlap [71, 73].

Leg swing/movement has been another target for the kinematic studies using vision-based technologies. One study evaluated ROM of leg's touch and release angles while another analyzed leg swing to generate six features referring to the gait asymmetry, speed, tracking up,
stance time, and stride length \[49, 87\]. Also, a different work adopted an object detection system to detect leg movement and measured the relative step size characteristic vector \[90\].

Accelerometers. Gait analysis in cattle has also been done using accelerometers which are attached to the cow’s leg to measure acceleration data. The output from accelerometers in bovine studies are generally classified as either behavior measures, including step activity, lying, and standing behaviors or as gait measures, including kinematics and kinetics of a gait cycle and symmetry between the legs. The current review focuses only on the gait measurement aspects of using accelerometers. There were 12 studies that have utilized the wearable sensors (i.e., 3D accelerometers) to measure gait variables. The details of these studies are shown in Table 6.

The typical location for attaching the accelerometer is above the fetlock joint at the metatarsal/metacarpal level of a limb; however, 2 studies placed accelerometer at thoracic vertebrae level as well. The main objective of using an accelerometer is to detect a lame cow or to find a gait abnormality in intervention studies. The number of accelerometers per cows depends on the research set-up and the purposes. Studies that used only one accelerometer per cow, i.e., attached to one of the hind limbs or the affected (lame) limb, looked at the consistency/inconsistency of a variable within an animal or the differences between animals. In cases where more than one accelerometer per animal was used, accelerometers were worn on 2 limbs (hind limbs only or one side of the cow) or all 4 limbs to study differences in acceleration data between the limbs. The sampling rate of the accelerometer varies among the studies, ranging from 10 to 400 Hz. It stands to reason that the studies which employed accelerometers with high sampling rates (more than 100 Hz) could provide more details on events and moments of a gait cycle.

Ref.	Acc type and combined tech.	Device info	Data freq. (Hz)	Research Aim	Target anatomical regions	Output variables
[91]	3D Acc	N/A	25	SD	4 Acc on 4 limbs	Symmetry of variance acceleration
[92]	3D Acc	Hobo Pendant	33.3	LD, IC	4 Acc on 4 limbs (fetlock) & 1 Acc on thoracic belt	Acceleration variables, walking speed
[76]	3D Acc & Cinematography	N/A	200	GCB, IC	4 Acc on 4 limbs	Vertical, lateral and forward movement
[93]	3D Acc	RumiWatch	10	SD	1 Acc on one of the hind limbs	Stride time, stride length
[94]	3D Acc	RumiWatch	N/A	LD	2 Acc on hind limbs	Stride time, stride length, walking speed
[82]	3D Acc & Cinematography	Hobo Pendant	33	IC	2 Acc on right limbs (front & hind fetlocks)	Mean acceleration, asymmetry of variance acceleration
[95]	3D Acc, IMU* & Cinematography	N/A	400	LD, GCB	1 Acc on one if the hind limbs & 2 Acc on both hind limbs	Kinematic outcome (gait cycle, stance time, swing time), and kinetic outcome (foot load, toe-off)
[96]	3D Acc & Cinematography	N/A	400	SD	2 Acc on both hind limbs	Kinematic outcome (gait cycle, stance time, swing time), and kinetic outcome (foot load, toe-off)
[97]	3D Acc & Cinematography	N/A	400	IC	2 Acc on both hind limbs	Kinematic outcome (gait cycle, stance time, swing time), and kinetic outcome (foot load, toe-off)
[60]	3D Acc & WDP	N/A	400	LD	2 Acc on affected (lame) front/hind limb pair	Kinematic outcome (gait cycle, stance time, swing time), and kinetic outcome (foot load, toe-off)
[98]	3D Acc	N/A	100	IC, SD	1 Acc on one of the hind limbs	Stride segmentation
[63]	3D Acc & WDP	N/A	400	IC	2 Acc on affected (lame) front/hind limb pair	Kinematic outcome (gait cycle, stance time, swing time), and kinetic outcome (foot load, toe-off)

1 IMU is a device that integrates 3D accelerometers, 3D gyroscopes, and a magnetometer.

Abbreviations: Acc: Accelerometer; N/A: not applicable; WDP: weight distribution platforms; SD: system development; LD: lameness detection; GCB: gait/claw biomechanics; IC: intervention/comparison; IMU: inertial measurement unit.

https://doi.org/10.1371/journal.pone.0266287.t006
Accelerometer variables. Measuring asymmetries and differences of acceleration data across the legs is one of the main parameters in the studies which employed more than one accelerometer per cow. Acceleration data has also been used to extrapolate kinematic and kinetic variables. Studies that used low frequency (less than 40 Hz) accelerometers have estimated stride time, stride length and walking speed in addition to behavioral measurements, while accelerometers with higher sampling rates have measured more detailed parameters of a gait cycle including stance and swing duration as temporal kinematic outcomes and foot-load, heel-off, and toe-off as kinetic outcomes.

Gait technology trends
The trend of technology use in bovine gait analysis has changed throughout the last two decades (Fig 4). The use of both FP and PMS was the starting point of gait analysis research in bovine between 2000 and 2004, while the use of IP techniques of vision-based technologies and accelerometers have grown considerably over the last decade and have surpassed the other technologies.

Discussion
The field of bovine gait analysis stems from equine gait analysis and human movement research, adapting technologies that initially were developed in horses or humans such as force and pressure platforms, video analysis techniques, and wearable sensors. Theoretically, the research on equine locomotion can be easily applied to cows, since both species are considered large quadrupeds with many similarities in locomotion traits. Our review was able to include a total of 82 published papers related to objective gait analysis in bovine studies, compared to 510 papers (432 papers with the same period, between 2000 and 2018) included in a review with the same scope in equine gait analysis literature [99]. This confirms that gait analysis in bovine research and practice is less covered compared to equine. The current main roles of the
The horse as a sport and leisure animal and the importance of its locomotor system performance is possibly the reason behind the difference in representations in scientific literature [100]. Moreover, equine quantitative gait analysis is not only limited to lameness studies; with many other practical uses in clinics and training centers with the goal of improving equine performance, optimizing training, and enhancing the horse-rider relationship [99, 101]. In cows, however, as a livestock animal, lameness and identifying impaired locomotion remains the primary topics investigated using gait analysis technologies. Indeed, lameness is an important issue in dairy cattle and is one of top 3 reasons for involuntary culling cows in North-America [102], thus the use of automated technologies for early detection and prevention is a main focus of interest. The results of this review also confirm that lameness detection is the main purpose of gait analysis research on cows (55% of studies) and the efforts for automatizing lameness detection on farms have influenced the research trend. Even most of the intervention/comparison (IC) studies looked at identifying impaired limb and gait abnormalities between different set-ups, confirming the dominance of lameness detection in gait analysis. Nevertheless, there is a limited number of studies on exploring natural (i.e., when cows are sound) gait/claw biomechanics using various technologies (11% of studies), especially between different breeds and size of cows, and investigating gait at early life. In fact, with regard to early life gait research, there is only one study that looked at the gait kinetics of 4–6 months old male calves. These are areas that could be the subject of future studies. While over a third of the literature is on IC studies (35.5%), the impact of other factors of welfare concerns and cow management (e.g., housing systems, stall dimensions, heat stress, outdoor access) on cow’s locomotion using gait analysis technology are seldom studied. To the best of our knowledge, there is no study published on the use of gait analysis technologies in beef cattle despite the fact that lameness is also a concerning issue in beef industry [103].

Strengths and weaknesses of cow gait technologies

Force platforms. Force platforms (FP) are considered the gold standard because of their recognized accuracy and high frequency measurements. Beyond vertical force, 3D force platforms can output shear forces (i.e., transverse, and longitudinal forces). This allows researchers to investigate more in depth the gait attributes affecting transverse and longitudinal components of force [56]. Nonetheless, one of the FP limitations is that it is challenging to measure individual footfalls when more than one foot touches the plate at the same time (i.e., the best results are achieved when only one foot fits on the plate). Based on this, force plates generally come in multiple-platform layouts to register forces exerted by each hoof strike. However, walking animals on a multiple-platform setting to fit footfalls on the designated plates is challenging per se.

Research aim analysis shows that efforts have been made to employ FP as an automatic lameness detection system, generally using a commercial version of force platform for on-farm use (i.e., StepMetrix®, Boumatic LLC, WI, USA). Despite this, the use of FP in studies dropped since 2015, suggesting that the weaknesses of FP may outweigh the strengths, especially as other technologies, by comparison to FP, are capable of measuring a more diverse assortment of variables that can more robustly analyze gait.

Pressure mapping systems. Unlike the FP, pressure mapping systems (PMS) can distinguish and segment individual footprints regardless of how many feet are on the ground. As such, they can be used as a single mat or plate in different dimensions which makes them more applicable for kinetic analysis in quadrupeds. PMS can also quantify a wide range of pressure/force (only in vertical dimension), temporal, and spatial parameters, depending on the device’s specifications. Research aim analysis shows that PMS have been utilized to address
different aims including evaluation the effects of hoof trimming, local analgesics, and flooring type on cows/claws’ biomechanics. In addition, lameness detection is another research aim that was studied, particularly using a longer version of pressure platforms (i.e., Gaitwise system). Utilizing a longer pressure mapping system allows registering more gait cycles and steps during a passage, which is a key for lameness detection purposes. In comparison with FP, PMSs are more practical and efficient in terms of easy implementation and generating more diverse outcomes either in research studies or at the farm level.

Weight distribution platforms. While being a limitation for FP and PMS systems as well, numerous failed measurements because of placing hooves outside of the measuring zones have been reported as the primary weakness for WDP. WDP measures variables only while an animal is standing, so the outcomes are limited to static measures and no information on gait cycle kinetics can be taken. Nevertheless, the strength of WDP is the fact that it is not just a quick snapshot of the cow walking, but a longer review of how she distributes her weight. A lack of even distribution of weight makes it easier to pinpoint the limb of issue in these cows with greater certainty, as the reluctance to bear weight in this case is usually a sustained measure. Moreover, they can be easily implemented in farms with the least space occupation, such as embedded in the flooring of milking robots or cattle chute. The results of our scoping review confirm this, since WDPs are primarily used for lameness detection purposes at the farm level.

Video analysis. Video analysis is the gold standard for kinematic measurements. They are able to provide a variety of gait variables from distances to ROM, velocities, and trajectories. They allow researchers to investigate multiple anatomical locations on the body with a single passage, yielding a better understanding of different aspects of an animal locomotion. Since impaired locomotion (lameness) can manifest in different ways (e.g., from short stride length to back arch, joint stiffness, asymmetries), a system that can consider all of these variables can provide a more accurate analysis. However, these systems, especially marker-based VA systems, pose several limitations, including marker placement error, observer (digitizer) error, and the time-consuming process of manual/semi-manual tracking. Moreover, it requires animal preparation (attaching markers on animal’s body) and a specific environment (room) wherein lighting conditions can be controlled and ample space can be provided so as to not block the cameras’ views of the markers. All these procedures can be challenging and make these techniques unfeasible to implement on commercial farms. The results of this review illustrated that the use of VA techniques have decreased over time, from 8 studies between 2005 and 2009 to only 1 study over the last five years.

Moreover, all the previous studies that used VA technology were limited only to 2D kinematic analysis which includes several limitations by comparison to three-dimensional (3D) analysis, where multiple synchronized cameras are being used. Some of these limitations include parallax error and perspective error that occur when subjects move away from the optical axis of the camera and subjects are restricted to movement within the plane of calibration and accuracy is compromised. Also, 2D angular data are limited to one degree of freedom (DOF) for joint rotation within the sagittal plane, while 3D kinematic data allow the researcher to explore the full range of motion (ROM) and orientation of segments and joints within 3D space [103]. Therefore, although the use of VA techniques is challenging, the high accuracy of these systems, especially the 3D video analysis systems, makes them a reliable reference for the future works of using marker-less VA technologies.

Image processing. By comparison to VA systems, the downside of the IP methods is that, since they usually focus on one anatomical region as a lameness indicator, their outcomes are limited to the targeted region and the other facets of lameness will be missed. However, use of machine learning algorithms and eliminating the requirement of animal preparation (e.g., with reflective markers) allows them to be utilized as automated systems on commercial farms.
Also, the use of overhead 3D depth image cameras instead of the side-view digital cameras benefited this technology to overcome the challenges of side-view image capturing at farm conditions, including occlusions and sensitivity to lighting variance in order to facilitate the image segmentation of the foreground from the background. Our results showed that efforts for implementing IP technology as automated lameness detection systems on farms has become more prevalent in gait analysis studies over the last decade (13 studies between 2010 and 2020).

Accelerometers. Accelerometers have been used as a technology for gait analysis in cattle studies since 2009 and have been the most widely used technology in the last 5 years. Previous studies showed that pedometers (accelerometers) can be a promising tool for detecting lameness and foot pathologies in dairy cows. Uncontrolled walking speed and cow traffic as well as behavior are the usual limitations reported for gait analysis using FP, PMS and WDP and vision-based technologies, but not for accelerometers. Accelerometer outcomes are not dependent on a single passage or a specific walking corridor. At present, however, accelerometers still carry limitations. For example, not all variables can be measured using a single pedometer, with useful gait metrics for detecting impaired gait, such as asymmetry of acceleration between legs, requiring 2 or more devices. Technologies that require more hardware can be a barrier to adoption on commercial farms [104]. Moreover, current pedometers used on farm generally have lower data sampling rates as they are less costly than high-frequency pedometers; however, this trade-off can compromise the efficacy of the pedometer use for detecting impaired gait. Low frequency accelerometers can make gait analysis more challenging and requires more research.

Limitations

Although this review brings forward some important considerations with regards to the portrait of the current literature on the application of technologies in bovine gait analysis, it also has limitations which must be acknowledged. Only one person was conducting the screening and extraction of data from the articles included in the review, which can be considered to bring forward a risk of bias. We aimed to counter or prevent this bias by working with the whole editorial committee to establish a standardized framework designed specifically to collect the most relevant data from the papers on the topic, in the form of the data extraction sheet which was used in this work. The role of the committee comprising all co-authors on this paper was also to assist in the development and implementation of the whole literature review protocol, and as such, it was involved in all steps of the process, helping to establish the bases of a strong work.

It can also be argued that some of the decision criteria such as the choice to limit ourselves to studies published in 2000 or later, or the choice to exclude non-English language papers, could have led to biases in the current study by excluding relevant literature. The selection criteria were developed with the editorial team prior to launching the literature search and aimed to follow a logical thread to ensure that the work conducted for this paper would be easily replicable by other teams, and to ensure that no bias was incurred as a result of a pre-screening of the literature. The decision was made to include only studies using technology for direct kinetic and kinematic gait analysis. This excludes 1) studies that used technology to evaluate gait based on cow’s behavior and 2) studies that did not measure kinetic and kinematic parameters (e.g., a study utilized cows footfall sound volume to detect claw lesions [105]). In addition, including only in vivo studies that conducted research only on live animals has left out the studies that measured gait variables using cow’s foot specimen. While no search was made to evaluate how many studies these criteria kept out of our selection, it is possible that they
would have led to the exclusion of relevant or promising works of literature with regards to the topic of this review. This could be further assessed in future studies.

Finally, we must acknowledge that although this review presents a picture of the literature published thus far in the field of bovine gait analysis, it does not reflect much on the limitations associated with the currently published and included studies. As per the intended scope of this review, no appraisal of the studies quality was performed, and although a "study limitations" section was included in the established data extraction sheet, the aforementioned section served to collect information relating to the elements the authors of the included studies mentioned as limitations in their own work rather than a constructive critique of their work on behalf of our team. Unfortunately, most of the studies have not included any discussion on the limitations relevant to their own work. Further development on these aspects would have allowed to present an even more complete and a fully comprehensive evaluation of the current literature.

Conclusion

A strong demand for automatic lameness detection has influenced the path of development for quantitative gait analysis technologies in bovine. Although the field of bovine gait analysis has evolved considerably through the last two decades, more research is needed to achieve more accurate, practical, and user-friendly technologies for research and on-farm applications. Previous reviews on the topic have focused exclusively on detecting clinically lame and non-lame cows, a trend that can be seen as well in the development of quantitative gait analysis technologies. Force and pressure platforms, image processing techniques, and accelerometers have shown that they are capable and practical methods for automated lameness detection systems, despite their weaknesses.

While the most common technologies explored in this review were force and pressure platforms, the last two decades has seen increasing focus on vision technologies and accelerometers. This trend has undoubtedly been driven by advancements in machine learning and artificial intelligence, allowing such technologies to become increasingly sensitive and accurate. Computer vision technologies using deep learning and wearable sensors (e.g., accelerometers) are promising emergent technologies that could be useful for the next stage of quantitative gait analysis in bovine. By expanding the scope of quantitative gait analysis technologies to focus instead on any change in locomotion, these technologies bring forth the opportunity to measure more detailed changes in gait and thus, rejuvenating age-old techniques to further enhance animal welfare.

Supporting information

S1 Checklist. PRISMA 2009 checklist. (DOCX)

Author Contributions

Supervision: Elsa Vasseur.

Writing – original draft: Amir Nejati.

Writing – review & editing: Anna Bradtmueller, Elise Shepley, Elsa Vasseur.
References

1. Dolecheck K, Bewley J. Animal board invited review: Dairy cow lameness expenditures, losses and total cost. Animal. 2018; 12(7):1462–74. https://doi.org/10.1017/S1751731118000575 PMID: 29557318

2. Whay HR, Main DCJ, Green LE, Webster AJF. Assessment of the welfare of dairy cattle using animal-based measurements: direct observations and investigation of farm records. Vet Rec. 2003; 153 (7):197–202.

3. Schiageter-Tello A, Bokkers EAM, Koerkamp PWGG, Van Hertem T, Viazzi S, Romanini CEB, et al. Manual and automatic locomotion scoring systems in dairy cows: A review. Preventive Veterinary Medicine. 2014; 116(1):12–25. https://doi.org/10.1016/j.prevetmed.2014.06.006 PMID: 25000863

4. Van Nuffel A, Zvertvaegher I, Pluym L, Van Weyenberg S, Thorup VM, Pastell M, et al. Lameness Detection in Dairy Cows: Part 1. How to Distinguish between Non-Lame and Lame Cows Based on Differences in Locomotion or Behavior. Animals (Basel). 2015; 5(3):838–60. https://doi.org/10.3390/ani5030387 PMID: 26479389

5. Leach KA, Tisdall DA, Bell NJ, Main DCJ, Green LE. The effects of early treatment for hindlimb lameness in dairy cows on four commercial UK farms. The Veterinary Journal. 2012; 193(3):626–32. https://doi.org/10.1016/j.tvjl.2012.06.043 PMID: 22884565

6. Cutler JHH, Rushen J, de Passille AM, Gibbons J, Orsel K, Pajor E, et al. Producer estimates of prevalence and perceived importance of lameness in dairy herds with tiestalls, freestalls, and automated milking systems. J Dairy Sci. 2017; 100(12):9871–80. https://doi.org/10.3168/jds.2017-13008 PMID: 28987585

7. Jensen KC, Oehm AW, Campe A, Stock A, Woudstra M, Feist M, et al. German Farmers' Awareness of Lameness in Their Dairy Herds. Front Vet Sci. 2022 9:866791. https://doi.org/10.3389/fvets.2022.866791 PMID: 35400109

8. Whay H. Locomotion scoring and lameness detection in dairy cattle. In Practice. 2002; 24.

9. Shepley E, Vasseur E. SHORT COMMUNICATION: The effect of housing tie-stall dairy cows in deep-bedded pens during an eight-week dry period on gait and step activity. J Dairy Sci. 2021.

10. Telezhenko E, Tisdall DA, Bell NJ, Main DCJ, Green LE. The effects of early treatment for hindlimb lameness in dairy cows on four commercial UK farms. The Veterinary Journal. 2012; 193(3):626–32. https://doi.org/10.1016/j.tvjl.2012.06.043 PMID: 22884565

11. Brennimeyer C, Dippel S, March S, Brinkmann J, Winckler C, Knierim U. Reliability of a subjective lameness scoring system for dairy cows. Anim Welf. 2007; 16:127–9.

12. Oehm AW, Merle R, Tautenhahn A, Jensen KC, Mueller KE, Feist M, et al. Identifying cow—level factors and farm characteristics associated with locomotion scores in dairy cows using cumulative link mixed models. PLoS One. 2022; 17(1):e0263294. https://doi.org/10.1371/journal.pone.0263294 PMID: 35089972

13. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLOS Medicine. 2021; 18(3):e1003583. https://doi.org/10.1371/journal.pmed.1003583 PMID: 33780438

14. The EndNote Team. EndNote. EndNote X9 ed. Philadelphia, PA: Clarivate; 2013.

15. Oosterlinck M, Pille F, Huppes T, Gasthuys F, Back W. Comparison of pressure plate and force plate gait kinetics in sound Warmbloods at walk and trot. The Veterinary Journal. 2010; 186(3):347–51. https://doi.org/10.1016/j.tvjl.2009.08.024 PMID: 19751984

16. Rajkondawar PG, Tasch U, Lefcourt AM, Erez B, Dyer RM, Varner MA. A system for identifying lameness in dairy cattle. Appl Eng Agric. 2002; 18(1):87–96.

17. Rajkondawar PG, Lefcourt AM, Neerchal NK, Dyer RM, Varner MA, Erez B, et al. The development of an objective lameness scoring system for dairy herds: Pilot study. Trans Am Soc Agric Eng. 2002; 45 (4):1123–5.

18. van der Tol PPJ, Metz JHM, Noordhuizen-Stassen EN, Back W, Braam CR, Wejs WA. The Pressure Distribution Under the Bovine Claw During Square Standing on a Flat Substrate. J Dairy Sci. 2002; 85 (6):1476–81. https://doi.org/10.3168/jds.S0022-0302(02)74216-1 PMID: 12146479

19. van der Tol PPJ, Metz JHM, Noordhuizen-Stassen EN, Back W, Braam CR, Wejs WA. The Vertical Ground Reaction Force and the Pressure Distribution on the Claws of Dairy Cows While Walking on a Flat Substrate. J Dairy Sci. 2003; 86(9):2875–83. https://doi.org/10.3168/jds.S0022-0302(03)73884-3 PMID: 14507023

20. Tasch U, Rajkondawar PG. The development of a SoftSeparator™ for a lameness diagnostic system. Computers and Electronics in Agriculture. 2004; 44(3):239–45.

21. van der Tol PPJ, van der Beek SS, Metz JHM, Noordhuizen-Stassen EN, Back W, Braam CR, et al. The Effect of Preventive Trimming on Weight Bearing and Force Balance on the Claws of Dairy Cattle.
22. Carvalho V R C., Bucklin R A., Shearer J K., Shearer L. Effects of trimming on dairy cattle hoof weight bearing and pressure distributions during the stance phase. Transactions of the ASAE. 2005; 48 (4):1653–9.

23. Rajkondawar PG, Liu M, Dyer RM, Neerchal NK, Tasch U, Lefcourt AM, et al. Comparison of models to identify lame cows based on gait and lesion scores, and limb movement variables. J Dairy Sci. 2006; 89(11):4267–75. https://doi.org/10.3168/jds.S0022-0302(06)72473-0 PMID: 17033014

24. Neveux S, Weary DM, Rushen J, von Keyserlingk MAG, de Passille AM. Hoof discomfort changes how dairy cattle distribute their body weight. J Dairy Sci. 2006; 89(7):2503–9. https://doi.org/10.3168/jds.S0022-0302(06)72325-6 PMID: 16772568

25. Pastell M, Takko H, Gröhn H, Hautala M, Poikalainen V, Praks J, et al. Assessing Cows’ Welfare: weighing the Cow in a Milking Robot. Biosystems Engineering. 2006; 93(1):81–7.

26. Bicalho RC, Cheong SH, Cramer G, Guard CL. Association Between a Visual and an Automated Locomotion Score in Lactating Holstein Cows. J Dairy Sci. 2007; 90(7):2503–9. https://doi.org/10.3168/jds.2007-0076 PMID: 17582114

27. Meyer SW, Weishaupt MA, Nuss KA. Gait Pattern of Heifers Before and After Claw Trimming: A High-Speed Cinematographic Study on a Treadmill. J Dairy Sci. 2007; 90(2):670–6. https://doi.org/10.3168/jds.S0022-0302(07)71549-7 PMID: 18447986

28. Kotschwar JL, Coetsee JF, Anderson DE, Gehring R, KuKanich B, Apley MD. Analgesic efficacy of sodium salicylate in an amphotericin B-induced bovine synovitis-arthritis model. J Dairy Sci. 2009; 92(8):3731–43. https://doi.org/10.3168/jds.2009-2058 PMID: 19620655

29. Van Nuffel A, Sprenger M, Tuyttens FAM, Maertens W. Cow gait scores and kinematic gait data: Can people see gait irregularities? Anim Welf. 2009; 18(4):433–9.

30. Ouweltjes W, Holzhauer M, van der Tol PPJ, van der Werf J. Effects of two trimming methods of dairy cattle on concrete or rubber-covered slatted floors. J Dairy Sci. 2009; 92(3):960–71. https://doi.org/10.3168/jds.2008-1559 PMID: 19233789

31. Chapinal N, de Passillé AM, Rushen J. Weight distribution and gait in dairy cattle are affected by milking and late pregnancy. J Dairy Sci. 2009; 92(2):581–8. https://doi.org/10.3168/jds.2008-1533 PMID: 19164668

32. Walker AM, Pfau T, Channon A, Wilson A. Assessment of dairy cow locomotion in a commercial farm setting: The effects of walking speed on ground reaction forces and temporal and linear stride characteristics. Res Vet Sci. 2010; 88(1):179–87. https://doi.org/10.1016/j.rvsc.2009.05.016 PMID: 19527912

33. Chapinal N, de Passillé AM, Rushen J, Wagner S. Automated methods for detecting lameness and measuring analgesia in dairy cattle. J Dairy Sci. 2010; 93(5):2007–13. https://doi.org/10.3168/jds.2009-2803 PMID: 20412914
43. Pastell M, Hänninen L, de Passillé AM, Rushen J. Measures of weight distribution of dairy cows to detect lameness and the presence of hoof lesions. J Dairy Sci. 2010; 93(3):954–60. https://doi.org/10.3168/jds.2009-2385 PMID: 20172215

44. Liu J, Dyer RM, Neerchal NK, Tasch U, Rajkondawar PG. Diversity in the magnitude of hind limb unloading occurs with similar forms of lameness in dairy cows. J Dairy Res. 2011; 78(2):168–77. https://doi.org/10.1017/S0022029911000057 PMID: 21385514

45. Wu Y, Neerchal NK, Dyer R, Tasch U, Rajkondawar P. Modeling bovine lameness with limb movement variables. Journal of Biomedical Science and Engineering. 2011; 4:149–25.

46. Maertens W, Vangeyte J, Baert J, Jantuan A, Mertens KC, De Campeneere S, et al. Development of a real time cow gait tracking and analysing tool to assess lameness using a pressure sensitive walkway: The GAITWISE system. Biosystems Engineering. 2011; 110(1):29–39.

47. Schulz KL, Anderson DE, Coetzee JF, White BJ, Miesner MD. Effect of flunixin meglumine on the amelioration of lameness in dairy steers with amphotericin B-induced transient synovitis-arthritis. Am J Vet Res. 2011; 72(11):1431–8. https://doi.org/10.2460/ajvr.72.11.1431 PMID: 22023120

48. Mokaram Ghotoorlar S, Mehdi Ghamsari S, Nowroozian I, Shiry Ghidary S. Lameness scoring system for dairy cows using force plates and artificial intelligence. Vet Rec. 2012; 170(5):126. https://doi.org/10.1136/vr.100429 PMID: 22141114

49. Pluk A, Bahr C, Poursaberi A, Maertens W, van Nuffel A, Berckmans D. Automatic measurement of touch and release angles of the fetlock joint for lameness detection in dairy cattle using vision techniques. J Dairy Sci. 2012; 95(4):1738–48. https://doi.org/10.3168/jds.2011-4547 PMID: 22459822

50. Chapinal N, Tucker CB. Validation of an automated method to count steps while cows stand on a weighing platform and its application as a measure to detect lameness. J Dairy Sci. 2012; 95(11):6523–8. https://doi.org/10.3168/jds.2012-5742 PMID: 22659332

51. Skjøth F, Thorup VM, do Nascimento OF, Ingvartsen KL, Rasmussen MD, Voigt M. Computerized identification and classification of stance phases as made by front or hind feet of walking cows based on 3-dimensional ground reaction forces. Computers and Electronics in Agriculture. 2013; 90:7–13.

52. Van Nuffel A, Vangeyte J, Mertens KC, Pluym L, De Campeneere S, Saeyes W, et al. Exploration of measurement variation of gait variables for early lameness detection in cattle using the GAITWISE. Livest Sci. 2013; 156(1–3):88–95.

53. Wheeler CA, White BJ, Anderson DE, Amrine DE, Larson RL. Assessment of biometric tools for quantitative gait analysis in Holstein calves. Am J Vet Res. 2013; 74(11):1443–9. https://doi.org/10.2460/ajvr.74.11.1443 PMID: 24168311

54. Thorup VM, do Nascimento OF, Skjøth F, Voigt M, Rasmussen MD, Bennedsgaard TW, et al. Short communication: Changes in gait symmetry in healthy and lame dairy cows based on 3-dimensional ground reaction force curves following claw trimming. J Dairy Sci. 2014; 97(12):7679–84. https://doi.org/10.3166/jds.2014-8410 PMID: 25306278

55. Coetzee JF, Mosher RA, Anderson DE, Robert B, Kohake LE, Gehring R, et al. Impact of oral meloxicam administered alone or in combination with gabapentin on experimentally induced lameness in beef calves1. J Anim Sci. 2014; 92(2):816–29.

56. Dunthorn J, Dyer RM, Neerchal NK, McHenry JS, Rajkondawar PG, Steingraber G, et al. Predictive models of lameness in dairy cows achieve high sensitivity and specificity with force measurements in three dimensions. J Dairy Res. 2015; 82(4):391–9. https://doi.org/10.1017/S002202991500028X PMID: 26278403

57. Bergsten C, Telezhenko E, Ventorp M. Influence of Soft or Hard Floors before and after First Calving on Dairy Heifer Locomotion, Claw and Leg Health. Animals (Basel). 2015; 5(3):662–86. https://doi.org/10.3390/ani5030378 PMID: 26479380

58. Nechanitzky K, Starke A, Vidondo B, Müller H, Reckardt M, Friedli K, et al. Analysis of behavioral changes in dairy cows associated with claw horn lesions. J Dairy Sci. 2016; 99(4):2904–14. https://doi.org/10.3168/jds.2015-10105 PMID: 26874422

59. Van De Gucht T, Saeyes W, Van Weyenberg S, Lauwers L, Mertens K, Vandaele L, et al. Automatic claw lameness detection with a pressure mat: Effects of mat length and sensor resolution. Computers and Electronics in Agriculture. 2017; 134:172–80.

60. Buisman LL, Alsaaod M, Bucher E, Koffier J, Steiner A. Objective assessment of lameness in cattle after foot surgery. PLoS ONE. 2018; 13(12). https://doi.org/10.1371/journal.pone.0209783 PMID: 30592750

61. Kleinhenz MD, Gorden PJ, Burchard M, Ydstie JA, Coetzee JF. Rapid Communication: Use of pressure mat gait analysis in measuring pain following normal parturition in dairy cows. J Anim Sci. 2019; 97(2):846–50. https://doi.org/10.1093/jas/sky450 PMID: 30476107
62. Oehme B, Grund S, Munzel J, Mülling CKW. Kinetic effect of different ground conditions on the sole of the claws of standing and walking dairy cows. J Dairy Sci. 2019; 102(11):10119–28. https://doi.org/10.3168/jds.2018-16183 PMID: 31495627

63. Alsaaod M, Fadul M, Deiss R, Bucher E, Rehage J, Guccione J, et al. Use of validated objective methods of locomotion characteristics and weight distribution for evaluating the efficacy of ketoprofen for alleviating pain in cows with limb pathologies. PLoS ONE. 2019; 14(6).

64. Herlin AH, Drevemo S. Investigating locomotion of dairy cows by use of high speed cinematography. Equine Veterinary Journal. 1997; 29(S23):106–9. https://doi.org/10.1111/j.2042-3306.1997.tb05066.x PMID: 9354302

65. Flower FC, Sanderson DJ, Weary DM. Hoof pathologies influence kinematic measures of dairy cow gait. J Dairy Sci. 2005; 88(9):3166–73. https://doi.org/10.3168/jds.S0022-0302(05)73000-9 PMID: 16107407

66. Aoki Y, Kamo M, Kawamoto H, Zhang J, Yamada A. Changes in walking parameters of milking cows after hoof trimming. 2006; 77(1):103–9.

67. Flower FC, Sanderson DJ, Weary DM. Effects of milking on dairy cow gait. J Dairy Sci. 2006; 89(6):2084–9. https://doi.org/10.3168/jds.S0022-0302(06)72278-0 PMID: 16702274

68. Carvalho V, Bucklin RA, Shearer JK, Shearer L, Naas IA, Mollo Neto M, et al. Dairy cattle linear and angular kinematics during the stance phase. Agricultural Engineering International. 2007; 9(06).

69. Flower FC, De Passillé AM, Weary DM, Sanderson DJ, Rushen J. Softer, higher-friction flooring improves gait of cows with and without sole ulcers. J Dairy Sci. 2007; 90(3):1235–42. https://doi.org/10.3168/jds.S0022-0302(07)61162-0 PMID: 17297100

70. Song X, Leroy T, Vranken E, Maertens W, Sonck B, Berckmans D. Automatic detection of lameness in dairy cattle (1)—gait analysis in dairy cattle by vision. Commun Agric Appl Biol Sci. 2007; 72(1):23–7. PMID: 18018854

71. Song X, Leroy T, Vranken E, Maertens W, Sonck B, Berckmans D. Automatic detection of lameness in dairy cattle—Vision-based trackway analysis in cow's locomotion. Computers and Electronics in Agriculture. 2008; 64(1):39–44.

72. Scmidt T, Weishaupt MA, Meyer SW, Waldern N, Peinen Kv, Nuss K. High-speed cinematographic evaluation of claw-ground contact pattern of lactating cows. Vet J. 2009; 181(2):151–7. https://doi.org/10.1016/j.tvjl.2008.02.019 PMID: 18424198

73. Pluk A, Bahr C, Leroy T, Poursaberi A, Song X, Vranken E, et al. Evaluation of step overlap as an automatic measure in dairy cow locomotion. Trans ASABE. 2010; 53(4):1305–12.

74. Poursaberi A, Bahr C, Pluk A, Van Nuffel A, Berckmans D. Real-time automatic lameness detection based on back posture extraction in dairy cattle: Shape analysis of cow with image processing techniques. Computers and Electronics in Agriculture. 2010; 74(1):111–9.

75. Blackie N, Bleach E, Amory J, Scaife J. Impact of lameness on gait characteristics and lying behaviour of zero grazed dairy cattle in early lactation. Appl Anim Behav Sci. 2011; 129(2–4):67–73.

76. Tanida H, Koba Y, Rushen J, de Passillé AM. Use of three-dimensional acceleration sensing to assess dairy cow gait and the effects of hoof trimming. Anim Sci J. 2011; 82(6):792–800. https://doi.org/10.1111/j.1740-0929.2011.00903.x PMID: 22111637

77. Blackie N, Bleach ECL, Amory JR, Scaife JR. Associations between locomotion score and kinematic measures in dairy cows with varying hoof lesion types. J Dairy Sci. 2013; 96(6):3564–72. https://doi.org/10.3168/jds.2012-5597 PMID: 23548277

78. Viazzi S, Bahr C, Schlageter-Tello A, Van Hertem T, Romanini CEB, Pluk A, et al. Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle. J Dairy Sci. 2013; 96(10):257–66. https://doi.org/10.3168/jds.2012-5806 PMID: 23164234

79. Van Hertem T, Viazzi S, Steensels M, Maltz E, Antler A, Alchanatis V, et al. Automatic lameness detection based on consecutive 3D-video recordings, Biosystems Engineering, 2014; 119:108–16.

80. Viazzi S, Bahr C, Van Hertem T, Schlageter-Tello A, Romanini CEB, Halachmi I, et al. Comparison of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows. Computers and Electronics in Agriculture, 2014; 100:139–47.

81. Yamamoto S, Ito K, Suzuki K, Matsushima Y, Watanabe I, Watanabe Y, et al. Kinematic gait analysis and lactation performance in dairy cows fed a diet supplemented with zinc, manganese, copper and cobalt. Anim Sci J. 2014; 85(3):330–5. https://doi.org/10.1111/asj.12141 PMID: 24206275

82. Franco-Gendron N, Bergeron R, Curilla W, Conte S, De Vries T, Vasseur E. Investigation of dairy cattle ease of movement on new methyl methacrylate resin aggregate floorings. J Dairy Sci. 2016; 99(10):8231–40. https://doi.org/10.3168/jds.2016-11125 PMID: 27522415

83. Van Hertem T, Bahr C, Tello AS, Viazzi S, Steensels M, Romanini CEB, et al. Lameness detection in dairy cattle: Single predictor v. multivariate analysis of image-based posture processing and behaviour
and performance sensing. Animal. 2016; 10(9):1525–32. https://doi.org/10.1017/S175173115001457 PMID: 26234298

84. Jabbar KA, Hansen MF, Smith ML, Smith LN. Early and non-intrusive lameness detection in dairy cows using 3-dimensional video. Biosystems Engineering. 2017; 153:63–9.

85. Tv Hertem, Tello AS, Viazzi S, Steensels M, Bahr C, Romani CE, et al. Implementation of an automatic 3D vision monitor for dairy cow locomotion in a commercial farm. (Special Issue: Advances in the engineering of sensor-based monitoring and management systems for precision livestock farming.). Biosystems Engineering. 2018; 173:166–75.

86. Schlager-Tello A, Van Hertem T, Bokkers EAM, Viazzi S, Bahr C, Lokhorst K. Performance of human observers and an automatic 3-dimensional computer-vision-based locomotion scoring method to detect lameness and hoof lesions in dairy cows. J Dairy Sci. 2018; 101(7):6322–35. https://doi.org/10.3168/jds.2017-13768 PMID: 29627245

87. Zhao K, Bewley JM, He D, Jin X. Automatic lameness detection in dairy cattle based on leg swing analysis with an image processing technique. Computers and Electronics in Agriculture. 2018; 148:226–36.

88. Jiang B, Song H, He D. Lameness detection of dairy cows based on a double normal background statistical model. Computers and Electronics in Agriculture. 2019; 158:140–9.

89. Weiss M, Hainke K, Grund S, Gerlach K, Mülling CKW, Geiger SM. Does the range of motion in the bovine interphalangeal joints change with flooring condition? A pilot study using biplane high-speed fluoroscopic kinematography. J Dairy Sci. 2019; 102(2):1443–56. https://doi.org/10.3168/jds.2018-14844 PMID: 30591344

90. Wu D, Wu Q, Yin X, Jiang B, Wang H, He D, et al. Lameness detection of dairy cows based on the YOLOv3 deep learning algorithm and a relative step size characteristic vector. Biosystems Engineering. 2020; 189:150–63.

91. Pastell M, Tiisanen J, Hakojärvi M, Hänninen L. A wireless accelerometer system with wavelet analysis for assessing lameness in cattle. Biosystems Engineering. 2009; 104(4):545–51.

92. Chapinal N, de Passillé AM, Pastell M, Hänninen L, Munksgaard L, Rushen J. Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle. J Dairy Sci. 2011; 94 (6):2895–901. https://doi.org/10.3168/jds.2010-3882 PMID: 21605759

93. Alsaaod M, Niederhauser JJ, Beer G, Zehner N, Schuepbach-Regula G, Steiner A. Development and validation of a novel pedometer algorithm to quantify extended characteristics of the locomotor behavior of dairy cows. J Dairy Sci. 2015; 98(9):6236–42. https://doi.org/10.3168/jds.2015-9657 PMID: 26142842

94. Beer G, Alsaaod M, Starke A, Schuepbach-Regula G, Müller H, Kohler P, et al. Use of extended characteristics of locomotion and feeding behavior for automated identification of lame dairy cows. PLoS ONE. 2016; 11(5). https://doi.org/10.1371/journal.pone.0155796 PMID: 27187073

95. Alsaaod M, Luternauer M, Hausegger T, Kredel R, Steiner A. The cow pedogram —Analysis of gait cycle variables allows the detection of lameness and foot pathologies. J Dairy Sci. 2017; 100(2):1417–26. https://doi.org/10.3168/jds.2016-12335 PMID: 28365123

96. Alsaaod M, Kredel R, Hofer B, Steiner A. Technical note: Validation of a semi-automated software tool to determine gait-cycle variables in dairy cows. J Dairy Sci. 2017; 100(6):4897–902. https://doi.org/10.3168/jds.2016-12335 PMID: 28365123

97. Alsaaod M, Huber S, Beer G, Kohler P, Schüpbach-Regula G, Steiner A. Locomotion characteristics of dairy cows walking on pasture and the effect of artificial flooring systems on locomotion comfort. J Dairy Sci. 2017; 100(10):8330–7. https://doi.org/10.3168/jds.2017-12760 PMID: 28755930

98. Haladjian J, Haug J, Nüske S, Bruegge B. A wearable sensor system for lameness detection in dairy cattle. Multimodal Tech Inter. 2018; 2(2).

99. Egan S, Brama P, McGrath D. Research trends in equine movement analysis, future opportunities and potential barriers in the digital age: A scoping review from 1978 to 2018. Equine Veterinary Journal. 2019; 51(6):813–9. https://doi.org/10.1111/evj.13076 PMID: 30659639

100. Lesimple C. Indicators of Horse Welfare: State-of-the-Art. Animals (Basel). 2020; 10(2):294. https://doi.org/10.3390/ani10020294 PMID: 32069888

101. Gómez Álvarez CB, van Weeren PR. Practical uses of quantitative gait analysis in horses. Equine Veterinary Journal. 2019; 51(6):811–2. https://doi.org/10.1111/evj.13162 PMID: 31584725

102. Booth CJ, Warnick LD, Gröhn YT, Maizon DO, Guard CL, Janssen D. Effect of Lameness on Culling in Dairy Cows. J Dairy Sci. 2004; 87(12):4115–22. https://doi.org/10.3168/jds.S0022-0302(04)73554-7 PMID: 15545373

103. Tunstall J, Mueller K, Grove White D, Oultram JWH, Higgins HM. Lameness in Beef Cattle: UK Farmers’ Perceptions, Knowledge, Barriers, and Approaches to Treatment and Control. 2019; 6(94).
104. O'Leary NW, Byrne DT, O'Connor AH, Shalloo L. Invited review: Cattle lameness detection with accelerometers. J Dairy Sci. 2020; 103(5):3895–911. https://doi.org/10.3168/jds.2019-17123 PMID: 32113761

105. Volkmann N, Kulig B, Kemper N. Using the Footfall Sound of Dairy Cows for Detecting Claw Lesions. Animals (Basel). 2019; 9(3):78. https://doi.org/10.3390/ani9030078 PMID: 30832278