Association between the XPG Asp1104His and XPF Arg415Gln Polymorphisms and Risk of Cancer: A Meta-Analysis

Xiao-Feng He1,*, Li-Rong Liu1,*, Wu Wei3,*, Yi Liu4, Jiao Su5, Su-Lan Wang3, Xu-Liang Shen3, Xian-Bin Yang1

1 Department of Research, Peace Hospital of Changzhi Medical College, Changzhi, China, 2 Department of Clinical Biochemistry, Affiliated Hospital of Guiyang Medical University, Guiyang, China, 3 Department of Hematology, Peace Hospital of Changzhi Medical College, Changzhi, China, 4 Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China, 5 Department of Biological Chemistry, Changzhi Medical College, Changzhi, China

Abstract

Background: The XPG (xeroderma pigmentosum type G) Asp1104His and XPF (xeroderma pigmentosum type F) Arg415Gln polymorphisms had been implicated in cancer susceptibility. The previous published data on the association between XPG Asp1104His and XPF Arg415Gln polymorphisms and cancer risk remained controversial.

Methodology/Principal Findings: To derive a more precise estimation of the association between the XPG Asp1104His and XPF Arg415Gln polymorphisms and overall cancer risk, we performed a meta-analysis to investigate the association between cancer susceptibility and XPG Asp1104His (32,162 cases and 39,858 controls from 66 studies) and XPF Arg415Gln polymorphisms (17,864 cases and 20,578 controls from 32 studies) in different inheritance models. We used odds ratios with 95% confidence intervals to assess the strength of the association. Overall, significantly elevated cancer risk was found when all studies were pooled into the meta-analysis of XPG Asp1104His (dominant model: OR = 1.05, 95% CI = 1.00–1.10; Asp/His vs. Asp/Asp: OR = 1.06, 95% CI = 1.01–1.11). In the further stratified and sensitivity analyses, significantly decreased lung cancer risk was found for XPF Arg415Gln (dominant model: OR = 0.82, 95% CI = 0.71–0.96; Arg/Gln versus Arg/Arg: OR = 0.83, 95% CI = 0.71–0.97; additive model: OR = 0.83, 95% CI = 0.72–0.95) and significantly increased other cancer risk was found among hospital-based studies for XPG Asp1104His (dominant model: OR = 1.23, 95% CI = 1.02–1.49).

Conclusions/Significance: In summary, this meta-analysis suggests that XPF Arg415Gln polymorphism may be associated with decreased lung cancer risk and XPG Asp1104His may be a low-penetrant risk factor in some cancers development. And larger scale primary studies are required to further evaluate the interaction of XPG Asp1104His and XPF Arg415Gln polymorphisms and cancer risk in specific populations.

Introduction

DNA repair systems play critical roles in protecting cells against mutations and are essential for maintaining the genome integrity. Certain common genetic polymorphisms within the genes involved in DNA damage responses may contribute to the development of cancer and be associated with an increased risk of the disease. Because reduced DNA repair capacity may cause genetic instability and carcinogenesis, genes involved in DNA repair have been proposed as candidate cancer susceptibility genes [1]. Nucleotide excision repair (NER) is a crucial DNA repair mechanism, which counteracts the consequences of mutagenic exposure of cells [2].

The NER pathway consists of >30 proteins involved in DNA damage recognition, incision, DNA ligation and resynthesis. Seven XP (xeroderma pigmentosum) complementation groups have been identified, from XPA to XPG, representing the malfunctioning proteins in the NER mechanism [3]. The XPG (xeroderma pigmentosum type G), one important component of the NER pathway, encodes a structure-specific endonuclease catalyzing 3’ incision and involves the subsequent 5’ incision by ERCC1-XPF heterodimer [4, 5]. It has been observed that there is a relationship between the SNP in exon 15 (G3507C, Asp1104His) and cancer susceptibility. ERCC4/XPF (Arg-to-Gln substitution in codon 415 of exon 8, rs1800067) forms a tight complex with ERCC1 and XPF to incise 5’ to the damage site recognized and repaired by NER [6]. The XPF gene encodes a protein which, together with ERCC1, creates the 5’ endonuclease [7].

To date, a number of molecular epidemiological studies have been done to evaluate the association between XPG Asp1104His and XPF Arg415Gln polymorphisms and different types of cancer risk in diverse populations [8–83]. However, the results were
inconsistent or even contradictory, partially because of the possible small effect of the polymorphism on cancer risk and the relatively small sample size in each of published study. In addition, two recent meta-analyses have studied the association between XPG Asp1104His and XPF Arg415Gln and risk of cancer. However, many published studies were not included in the two recent meta-analyses [84,85]. Therefore, we performed a comprehensive meta-analysis by including the most recent and relevant articles to identify statistical evidence of the association between XPG Asp1104His and XPF Arg415Gln polymorphisms and risk of all cancers that have been investigated. Meta-analysis is an outstanding tool for summarizing the different studies. It can not only overcome the problem of small size and inadequate statistical power of genetic studies of complex traits, but also can provide more reliable results than a single case–control study.

Materials and Methods

Identification and eligibility of relevant studies

A comprehensive literature search was performed using the PubMed and Medline database for relevant articles published (the last search update was Sep 5, 2013) with the following key words “XPG”, “ERCC5”, “XPF”, “ERCC4”, “polymorphism”, “Variant” or “Mutation”, and “Cancer” or “Carcinoma.” In addition, studies were identified by a manual search of the reference lists of reviews and retrieved studies. We included all the case–control studies and cohort studies that investigated the association between XPG Asp1104His and XPF Arg415Gln polymorphisms and cancer risk with genotype data. All eligible studies were retrieved, and their bibliographies were checked for other relevant publications. When the same sample was used in several publications, only the most complete study was considered for further analysis.

Inclusion criteria

The included studies needed to have met the following criteria: (1) only the case–control studies or cohort studies were considered, (2) evaluated the XPG Asp1104His and XPF Arg415Gln polymorphisms and the risk of cancer, and (3) the genotype distribution of the polymorphisms in cases and controls were described in details and the results were expressed as odds ratio (OR) and corresponding 95% confidence interval (95% CI). Major reasons for exclusion of studies were as follows: (1) not for cancer research, (2) only case population, and (3) duplicate of previous publication.

Data extraction

Information was carefully extracted from all eligible studies independently by two investigators according to the inclusion criteria listed above. The following data were collected from each study: first author’s name, year of publication, country of origin, ethnicity, source of controls, sample size, and numbers of cases and controls in the XPG Asp1104His and XPF Arg415Gln genotypes whenever possible. Ethnicity was categorized as “Caucasian,” “African,” (including African Americans) and “Asian.” Two studies were carried out with Hispanic ethnic groups. When one study did not state which ethnic groups was included or if it was impossible to separate participants according to phenotype, the sample was termed as “mixed population.” Meanwhile, studies investigating more than one kind of cancer were counted as individual data set only in subgroup analyses by cancer type. We did not define any minimum number of patients to include in this meta-analysis. In case of articles reported different ethnic groups and different countries or locations, we considered them different study samples for each category cited above.

Statistical analysis

Crude odds ratios (ORs) together with their corresponding 95% CIs were used to assess the strength of association between the XPG Asp1104His and XPF Arg415Gln polymorphisms and the risk of cancer. The pooled ORs were performed for co-dominant model (XPG Asp1104His: His/His versus Asp/Asp and Asp/His versus Asp/Asp, XPF Arg415Gln: Gln/Gln versus Arg/Arg and Arg/Gln versus Arg/Arg); dominant model (XPG Asp1104His: Asp/His + His/His versus Asp/Asp, XPF Arg415Gln: Arg/Gln + Gln/Gln versus Arg/Arg); recessive model (XPG Asp1104His:...
His/His versus Asp/Asp, XPF Arg415Gln: Gln/Gln versus Arg/Arg; and additive model (XPG Asp1104His: His versus Asp, XPF Arg415Gln: Gln versus Arg), respectively. Between-study heterogeneity was assessed by calculating Q-statistic (Heterogeneity was considered statistically significant if \(P < 0.10 \)) [66] and quantified using the I² value, a value that describes the percentage of variation across studies that are due to heterogeneity rather than chance, where I² = 0% indicates no observed heterogeneity, with 25% regarded as low, 50% as moderate, and 75% as high [87]. If results were not heterogeneous, the pooled ORs were calculated by the fixed-effect model (we used the Q-statistic, which represents the magnitude of heterogeneity between-studies) [88]. Otherwise, a random-effect model was used (when the heterogeneity between-studies were significant) [89]. In addition to the comparison among all subjects, we also performed stratification analyses by cancer type (if one cancer type contained less than three individual studies, it was combined into the “other cancers” group). Moreover, the extent to which the combined risk estimate might be affected by individual studies was assessed by consecutively omitting every study from the meta-analysis (leave-one-out sensitivity analysis). This approach would also capture the effect of the oldest or first positive study (first study effect). In addition, we also ranked studies according to sample size, and then repeated this meta-analysis. Sample size was classified according to a minimum of 200 participants and those with fewer than 200 participants. The cite criteria were previously described [90]. Last, sensitivity analysis was also performed, excluding studies whose allele frequencies in controls exhibited significant deviation from the Hardy–Weinberg equilibrium (HWE), given that the deviation may denote bias. HWE was calculated by using the goodness-of-fit test, and deviation was considered when \(P < 0.05 \). Begg’s funnel plots [91] and Egger’s linear regression test [92] were used to assess publication bias. If publication bias existed, the Duval and Tweedie nonparametric “trim and fill” method was used to adjust for it [93]. A meta-regression analysis was carried out to identify the major sources of between-studies variation in the results, using the log of the ORs from each study as dependent variables, and cancer type, ethnicity, sample size, HWE, and source of controls as the possible sources of heterogeneity. All of the calculations were performed using STATA version 10.0 (STATA Corporation, College Station, TX).

Results

Eligible studies and meta-analysis databases

Fig. 1 graphically illustrates the trial flow chart. A total of 236 articles regarding XPG Asp1104His and XPF Arg415Gln...
First author/year	Country	Ethnicity	Cancer type	SC	XPG Asp1104His (Case/control)	XPF Arg415Gln (Case/control)	HWE	
Smith [8] 2003	USA	Caucasian	Breast	HB	NA	NA	Yes	
Kumar [9] 2003	Finland	Caucasian	Breast	HB	108/182	96/107	NA	
Jeon [10] 2003	Korea	Asian	Lung	HB	58/90	164/132	88/89	No
Sanyal [11] 2004	Sweden	Caucasian	Bladder	NA	182/173	109/91	8/20	Yes
Blankenburg [12] 2005	Germany	Caucasian	Melanoma	HB	184/232	100/124	9/18	Yes
Weiss [13] 2005	USA	Mixed	Endometrial	PB	215/250	134/148	22/22	Yes
Shen [14] 2005	China	Asian	Lung	PB	26/25	52/46	NA	No
Bigler [15] 2005	USA	Mixed	Colorectal	PB	440/353	243/226	36/37	Yes
Sakiyama [16] 2005	Japan	Asian	Lung	HB	300/228	500/333	202/124	Yes
Cui [17] 2006	USA	Mixed	Lung	PB	244/468	212/356	41/78	Yes
Cui [17] 2006	USA	Mixed	Multiple	PB	214/474	194/357	35/80	Yes
Zienoldidiny [18] 2006	Norway	Caucasian	Lung	HB	NA	NA	195/178	Yes
Millikan [19] 2006	USA	Caucasian	Melanoma	PB	731/1513	389/780	73/115	Yes
Mechanic [20] 2006	USA	Caucasian	Breast	PB	771/661	409/412	69/60	Yes
Mechanic [20] 2006	USA	African	Breast	PB	231/231	387/320	139/123	Yes
Huang [21] 2006	USA	Mixed	Colorectal	PB	407/403	243/265	29/29	Yes
Garcia-Closas [22] 2006	Spain	Caucasian	Bladder	HB	629/607	434/445	78/84	Yes
Moreno [23] 2006	Spain	Caucasian	Colorectal	HB	NA	NA	282/257	Yes
Shen [24] 2006	USA	Mixed	NHL	PB	260/352	170/169	34/29	Yes
Shen [25] 2006	USA	Mixed	Breast	FB	83/82	63/62	8/7	Yes
Wen [26] 2006	China	Asian	HNC	PB	55/129	81/296	39/100	No
Li [27] 2006	USA	Caucasian	Melanoma	HB	373/370	206/206	23/27	Yes
Wu [28] 2006	USA	Caucasian	Bladder	HB	364/371	225/211	26/18	Yes
Sugimura [29] 2006	Japan	Asian	HNC	HB	20/52	59/112	43/77	Yes
Thirumaran [30] 2006	Multiple	Caucasian	Skin	HB	325/330	172/173	32/30	Yes
Hill [31] 2006	Multiple	Mixed	NHL	PB	599/521	425/331	77/71	Yes
Crew [32] 2007	USA	Mixed	Breast	PB	562/571	371/409	66/71	Yes
Jorgensen [33] 2007	USA	Caucasian	Breast	PB	159/165	93/95	12/15	Yes
Romanowicz [34] 2007	Poland	Caucasian	Breast	NA	NA	NA	31/21	Yes
Povey [35] 2007	UK	Caucasian	Melanoma	PB	314/252	169/162	24/27	Yes
Wang [36] 2007	USA	Mixed	Skin	HB	146/200	89/119	11/10	Yes
Shen [37] 2007	Australia	Caucasian	NHL	PB	340/294	170/163	30/27	Yes
McWilliams [38] 2008	USA	Mixed	Pancreatic	HB	NA	NA	411/481	Yes
Hooker [39] 2008	USA	African	Prostate	HB	74/100	119/141	61/60	Yes
Smith [40] 2008	USA	Caucasian	Breast	HB	195/256	113/124	12/28	Yes
Table 1. Cont.

First author/year	Country	Ethnicity	Cancer type	SC	XPG Asp1104His (Case/control)	XPF Arg415Gln (Case/control)	HWE				
Smith [40] 2008	USA	African	Breast	HB	13/18	32/37	7/20	51/73	2/2	0/0	Yes
Chang [41] 2008	USA	Hispanic	Lung	HB	60/138	44/127	9/34	97/267	16/31	0/1	Yes
Chang [41] 2008	USA	African	Lung	HB	68/93	119/138	68/49	NA	NA	NA	Yes
Rajaraman [42] 2008	USA	Caucasian	Breast	PB	482/674	288/352	49/53	714/922	124/147	No for Asp1104His	
Freidlin [43] 2008	Russia	Caucasian	Multiple	HB	38/92	12/36	2/12	NA	NA	NA	Yes
Hung [44] 2008	Multiple	Mixed	Lung	NA	1852/2485	1155/1510	209/286	220/21208	306/390	13/21	
He [45] 2008	China	Asian	Cervical	HB	35/53	94/80	71/67	NA	NA	NA	No
Padhani [46] 2008	Czech	Caucasian	Colorectal	HB	334/356	177/153	21/23	NA	NA	NA	Yes
Joshi [47] 2009	USA	Caucasian	Colorectal	FB	183/213	125/148	265/313	40/47	NA	No	Yes
El-Zein [48] 2009	USA	Mixed	NHL	HB	104/127	78/80	16/12	NA	NA	NA	Yes
Wen [49] 2009	China	Asian	Bladder	HB	15/45	57/233	3/3	NA	NA	NA	Yes
Narter [50] 2009	Turkey	Caucasian	Bladder	NA	25/18	28/19	3/3	NA	NA	NA	Yes
Abbas [51] 2009	Germany	Caucasian	HNC	PB	137/380	103/230	8/37	203/554	44/90	1/3	
Hussain [52] 2009	China	Asian	Gastric	PB	38/90	104/180	39/91	NA	NA	NA	Yes
McKeen-Cowdin [53] 2009 USA	Caucasian	Glioma	PB	499/989	348/657	157/311	NA	NA	NA	No	
Pan [54] 2009	USA	Caucasian	esophageal	HB	222/287	145/155	15/15	NA	NA	NA	Yes
Han [55] 2009	USA	Caucasian	Breast	PB	142/285	80/167	17/20	200/401	38/69	0/2	
Liu [56] 2009	USA	Caucasian	Glioma	PB	353/351	20/13	NA	NA	NA	NA	Yes
Abbagnesi [57] 2010	USA	Caucasian	Prostate	PB	NA	NA	NA	1023/1012	183/202	13/5	
Abbagnesi [57] 2010	USA	African	Prostate	PB	NA	NA	NA	136/78	8/3	0/0	
Rajaraman [58] 2010	USA	Caucasian	Glioma	HB	206/286	123/156	13/26	280/405	56/62	1/4	
Ming-Shiean [59] 2010	China	Asian	Breast	HB	134/159	191/243	76/129	NA	NA	NA	Yes
Liu [60] 2010	China	Asian	Liver	HB	174/151	233/265	93/91	NA	NA	NA	Yes
Canbay [61] 2010	Turkey	Caucasian	Gastric	NA	25/148	12/83	3/16	NA	NA	NA	Yes
Figl [62] 2010	Multiple	Caucasian	Melanoma	HB	703/725	409/465	74/84	NA	NA	NA	Yes
Rouissi [63] 2010	Tunisia	African	Bladder	HB	95/87	70/86	28/20	NA	NA	NA	Yes
Liu [64] 2011	China	Asian	Colorectal	HB	233/329	603/537	192/219	NA	NA	NA	Yes
Canbay [65] 2011	Turkey	Caucasian	Colorectal	NA	43/148	34/83	2/16	NA	NA	NA	Yes
Goncalves [66] 2011	Brazil	Caucasian	Melanoma	HB	105/109	77/74	10/25	NA	NA	NA	Yes
Ibarrola-Villavea [67] 2011 Spain	Caucasian	Melanoma	HB	412/242	222/140	50/24	560/316	117/87	7/3		
Doherty [68] 2011	USA	Mixed	Endometrial	PB	418/408	254/248	42/47	593/620	107/89	3/5	
Blason [69] 2011	Italy	Caucasian	Osteosarcoma	HB	75/141	39/94	16/15	NA	NA	NA	Yes
Krupa [70] 2011	Poland	Caucasian	HNC	HB	NA	NA	NA	221/224	26/29	6/0	
Yu [71] 2011	USA	Caucasian	HNC	HB	NA	NA	NA	837/829	195/209	8/8	
Ma [72] 2012	USA	Caucasian	HNC	HB	648/654	359/350	52/62	NA	NA	NA	Yes
polymorphisms with respect to cancer were identified. After screening the titles and abstracts, 160 articles were excluded because they were review articles, case reports, other polymorphisms of CYP1A1, or irrelevant to the current study. In addition, of these published articles, 4 publications [76–79] were excluded because of their populations overlapped with another 3 included studies [40,44,68]. Five publications [17,20,40,41,57] including different case–control groups should be considered as two separate studies each. As summarized in Table 1, 72 publications with 98 case–control studies were selected among the meta-analysis, including 32,162 cases and 39,858 controls for XPG Asp1104His (66 studies from 62 publications) and 17,864 cases and 20,578 controls for XPF Arg415Gln (32 studies from 29 publications). Among these studies, for XPG Asp1104His, there were 7 bladder cancer studies, 11 breast cancer studies, 7 colorectal cancer studies, 5 head and neck cancer studies, 7 lung cancer studies, 4 non-Hodgkin lymphoma studies, 3 glioma studies, 8 melanoma studies, and 14 studies with the “other cancers”. There were 10 breast cancer studies, 3 lung cancer studies, 4 head and neck cancer studies, 4 colorectal cancer, 3 glioma studies, and 8 studies with the “other cancers” for XPF Arg415Gln. All of the cases were pathologically confirmed.

XPG Asp1104His

The evaluations of the association of XPG Asp1104His polymorphism with cancer risk are shown in Table 2. Overall, significantly increased risk of cancer was observed in dominant model (OR = 1.05, 95% CI = 1.00–1.10), P value of heterogeneity test (P heterogeneous = 0.001, h = 40.4) and in Asp/His versus Asp/Asp (OR = 1.06, 95% CI = 1.01–1.11, P heterogeneous ≤ 0.001, h = 43.3) when all the eligible studies were pooled into the meta-analysis. Then we performed subgroup analysis by cancer type. No significant association was found in any cancer type, such as breast cancer (dominant model: OR = 1.01, 95% CI = 0.94–1.09, P heterogeneous = 0.128, h = 33.8, recessive model: OR = 0.95, 95% CI = 0.83–1.09, P heterogeneous = 0.173, h = 28.6; additive model: OR = 1.00, 95% CI = 0.93–1.09, P heterogeneous = 0.098, h = 28.6; His/His versus Asp/Asp: OR = 0.99, 95% CI = 0.86–1.14, P heterogeneous = 0.183, h = 27.2; Asp/His versus Asp/Asp: OR = 1.02, 95% CI = 0.94–1.10, P heterogeneous = 0.136, h = 32.8), lung cancer (dominant model: OR = 1.13, 95% CI = 0.98–1.31, P heterogeneous = 0.045, h = 53.4, recessive model: OR = 1.04, 95% CI = 0.93–1.17, P heterogeneous = 0.212, h = 28.4; additive model: OR = 1.08, 95% CI = 0.98–1.19, P heterogeneous = 0.073, h = 48.0; His/His versus Asp/Asp: OR = 1.15, 95% CI = 0.94–1.42, P heterogeneous = 0.071, h = 48.3; Asp/His versus Asp/Asp: OR = 1.13, 95% CI = 0.98–1.31, P heterogeneous = 0.077, h = 47.3), and so on.

We further examined the association of the XPG Asp1104His polymorphism and cancer risk according to cancer type and ethnicity (Table 3). For samples of Caucasians, significant association was only found in head and neck cancer (His/His vs. Asp/His+Asp/Asp: OR = 0.71, 95% CI = 0.51–0.97, P heterogeneous = 0.271, h = 23.5%) but not bladder cancer (dominant model: OR = 0.99, 95% CI = 0.88–1.12, P heterogeneous = 0.673, h = 0.0, recessive model: OR = 0.84, 95% CI = 0.50–1.41, P heterogeneous = 0.078, h = 56.0; additive model: OR = 0.96, 95% CI = 0.89–1.08, P heterogeneous = 0.433, h = 0.0; His/His versus Asp/Asp: OR = 0.85, 95% CI = 0.51–1.42, P heterogeneous = 0.090, h = 53.8; Asp/His versus Asp/Asp: OR = 1.01, 95% CI = 0.89–1.15, P heterogeneous = 0.688, h = 0.0), breast cancer (dominant model: OR = 1.07, 95% CI = 0.92–1.24, P heterogeneous = 0.065, h = 51.8, recessive model: OR = 1.07, 95% CI = 0.86–1.32, P heterogeneous = 0.221, h = 28.6; additive model: OR = 1.03, 95% CI = 0.95–1.12, P heterogeneous = 0.113, h = 43.8; His/His versus Asp/Asp: OR = 1.08, 95% CI = 0.87–1.34, P heterogeneous = 0.215, h = 29.3; Asp/His versus Asp/Asp: OR = 1.07, 95% CI = 0.91–1.26, P heterogeneous = 0.048,
Table 2. Stratified analysis of XPG Asp1104His and XPF Arg415Gln polymorphisms on cancer risk. 1

Genetic model	N	Recessive model	Dominant model	Homozygote	Heterozygote	Additive model				
	OR (95%CI)	P* (%)	OR (95%CI)	P* (%)	OR (95%CI)	OR (95%CI)	P* (%)			
XPG Asp1104His	Overall	66 (32162/39858)	1.00 (0.94–1.07)*	0.073/21.2	1.05 (1.00–1.10)*	0.012/30.9	1.06 (1.01–1.11)*	<0.001/43.3	1.03 (0.99–1.06)*	0.008/32.8
Cancer type										
Bladder cancer	7	2488/2809	1.06 (0.72–1.56)*	0.041/56.8	1.10 (0.85–1.44)*	0.001/74.9	1.11 (0.69–1.80)*	0.066/60.7	1.02 (0.94–1.10)	<0.001/77.5
Breast cancer	11	5474/6157	0.95 (0.83–1.09)	0.173/28.6	1.01 (0.94–1.09)	0.128/33.8	0.99 (0.86–1.14)	0.185/27.2	1.02 (0.94–1.10)	<0.001/77.5
Colorectal cancer	7	3471/3638	0.91 (0.77–1.08)	0.696/0.0	1.07 (0.88–1.29)*	0.004/69.1	1.08 (0.89–1.30)	0.411/0.7	1.11 (0.86–1.42)*	<0.001/78.0
Glioma	3	1719/2789	0.98 (0.81–1.13)	0.262/25.3	1.03 (0.90–1.18)	0.984/0.0	0.97 (0.78–1.19)	0.322/0.0	1.06 (0.92–1.23)	0.810/0.0
HNC	5	1709/2691	0.92 (0.74–1.15)	0.114/46.4	1.01 (0.89–1.16)	0.244/26.6	0.86 (0.67–1.10)	0.257/24.6	1.05 (0.83–1.31)*	0.087/50.8
NHL	4	2303/2176	1.06 (0.84–1.35)	0.389/0.6	1.12 (0.99–1.26)	0.117/49.2	1.11 (0.88–1.42)	0.279/22.0	1.12 (0.99–1.27)	0.194/36.3
Lung cancer	7	5509/6867	1.04 (0.93–1.17)	0.212/28.4	1.13 (0.98–1.31)*	0.045/53.4	1.15 (0.94–1.42)*	0.071/48.3	1.13 (0.98–1.31)*	0.077/47.3
Melanoma	8	5297/7072	0.87 (0.69–1.12)	0.050/30.3	0.97 (0.90–1.04)	0.762/0.0	0.87 (0.68–1.11)	0.098/48.4	0.98 (0.90–1.06)	0.854/0.0
Other cancer	14	4192/5659	1.07 (0.93–1.22)	0.578/0.0	1.06 (0.97–1.15)	0.406/41	1.12 (0.96–1.30)	0.330/0.7	1.05 (0.96–1.15)	0.290/14.9

| XPF Arg415Gln | Overall | 32 (17864/20578) | 1.11 (0.81–1.52)* | 0.068/30.5 | 1.04 (0.93–1.15)* | <0.001/62.6 | 1.10 (0.79–1.54)* | 0.035/53.7 | 1.02 (0.91–1.14)* | <0.001/62.5 |

Cancer type										
Breast cancer	10	5096/5542	1.22 (0.82–1.83)*	0.017/58.9	1.03 (0.92–1.15)	0.167/30.2	1.18 (0.76–1.83)*	0.007/63.8	0.99 (0.87–1.12)	0.277/18.6
Lung cancer	3	2857/3118	0.75 (0.40–1.41)	0.491/0.0	0.82 (0.71–0.96)	0.104/55.7	0.73 (0.39–1.37)	0.466/0.0	0.83 (0.71–0.97)	0.132/50.7
HNC	4	1643/2156	1.47 (0.72–2.98)	0.364/5.8	1.04 (0.88–1.23)	0.359/6.9	1.48 (0.73–3.00)	0.370/4.5	1.02 (0.86–1.21)	0.323/13.9
Colorectal cancer	4	1501/1497	0.51 (0.06–4.45)*	0.069/67.9	0.93 (0.76–1.14)	0.605/0.0	0.51 (0.06–4.45)*	0.067/70.3	0.93 (0.74–1.18)	0.526/0.0
Glioma	3	874/1359	1.51 (0.83–2.74)	0.368/0.0	2	<0.001/87.0	1.61 (0.88–2.93)	0.357/3.0	2	<0.001/88.0
Other cancer	8	5903/6906	1.03 (0.69–1.53)	0.239/24.9	0.95 (0.82–1.10)*	0.048/50.6	1.02 (0.68–1.52)	0.254/23.0	0.95 (0.82–1.11)*	0.040/52.3

1All summary ORs were calculated using fixed-effects models. In the case of significant heterogeneity (indicated by *), ORs were calculated using random-effects models.
2The results were excluded due to high heterogeneity. The bold values indicate that the results are statistically significant.

doi:10.1371/journal.pone.0088490.t002
Table 3. Summary ORs (95% CI) categorized by ethnicity for the XPG Asp1104His and XPF Arg415Gln polymorphisms under different genetic models and cancer type.1

Ethnicity	Cancer type	N	Recessive model		Dominant model		Homozygote		Heterozygote		Additive model	
XPG Asp1104His			OR (95%CI)	P/ I2 (%)								
Caucasian	Bladder cancer	4 (2111/2060)	0.84 (0.50–1.41)*	0.078/56.0	0.99 (0.88–1.12)	0.673/0.0	0.85 (0.51–1.42)*	0.090/53.8	1.01 (0.89–1.15)	0.688/0.0	0.98 (0.89–1.08)	0.433/0.0
	Breast cancer	6 (3111/3675)	1.07 (0.86–1.32)	0.221/28.6	1.18 (0.92–1.44)	0.965/51.8	1.08 (0.87–1.34)	0.215/29.3	1.07 (0.89–1.26)	0.048/50.2	1.03 (0.95–1.12)	0.113/43.8
	Colorectal cancer	4 (1051/1240)	0.92 (0.57–1.48)	0.262/25.2	1.05 (0.88–1.24)	0.372/0.0	0.97 (0.79–1.21)	0.870/0.0	1.02 (0.88–1.17)	0.123/5.8	1.00 (0.89–1.11)	0.774/0.0
	Glioma	3 (1719/2789)	0.98 (0.81–1.19)	0.262/25.3	1.07 (0.90–1.18)	0.322/0.0	0.97 (0.78–1.19)	0.810/0.0	1.07 (0.90–1.23)	0.113/43.8	1.02 (0.91–1.12)	0.774/0.0
	HNC	3 (1412/1925)	0.71 (0.51–0.97)	0.262/25.5	1.07 (0.90–1.20)	0.739/0.0	0.73 (0.53–1.02)	0.378/0.0	1.07 (0.95–1.28)	0.543/0.0	0.98 (0.87–1.10)	0.419/0.0
	Melanoma	8 (5297/7072)	0.87 (0.69–1.12)*	0.050/50.3	0.97 (0.89–1.04)	0.762/0.0	0.87 (0.73–1.03)	0.599/48.4	1.00 (0.90–1.06)	0.854/0.0	0.97 (0.91–1.03)	0.326/12.1
	Other cancer	5 (1133/1627)	1.21 (0.86–1.70)	0.345/10.7	1.04 (0.89–1.22)	0.395/0.0	1.14 (0.94–1.36)	0.142/58.0	1.02 (0.86–1.20)	0.522/0.0	1.06 (0.89–1.24)	0.131/5.0
Asian	Lung cancer	3 (1428/1105)	1.07 (0.88–1.29)	0.673/0.0	1.14 (0.90–1.20)	0.739/0.0	1.14 (0.90–1.20)	0.739/0.0	1.14 (0.90–1.20)	0.739/0.0	1.14 (0.90–1.20)	0.739/0.0
	Other cancer	4 (1031/1368)	1.04 (0.85–1.28)	0.350/8.6	1.14 (0.82–1.60)*	0.029/66.9	1.12 (0.88–1.43)	0.176/39.3	1.15 (0.79–1.67)*	0.077/70.7	1.03 (0.92–1.16)	0.187/37.5
XPF Arg415Gln			OR (95%CI)	P/ I2 (%)								
Caucasian	Breast cancer	7 (3258/3729)	2.17 (0.68–6.88)*	0.022/61.9	1.10 (0.96–1.25)	0.369/3.9	2.07 (0.56–7.62)*	0.008/61.9	1.05 (0.89–1.23)	0.522/0.0	1.10 (0.89–1.35)*	0.094/6.8
	HNC	4 (1643/2156)	1.47 (0.72–2.98)	0.364/5.8	1.04 (0.88–1.23)	0.359/6.9	1.48 (0.73–3.00)	0.370/4.5	1.02 (0.86–1.21)	0.323/13.9	1.05 (0.90–1.23)	0.302/17.7
	Colorectal cancer	3 (798/781)	1.26 (0.40–4.01)	–	0.99 (0.76–1.30)	0.519/0.0	1.28 (0.40–4.01)	–	0.97 (0.69–1.36)	0.271/17.6	1.00 (0.74–1.36)	0.253/23.5
	Other cancer	4 (4215/5095)	1.20 (0.77–1.87)	0.168/40.6	0.95 (0.85–1.06)	0.549/0.0	1.19 (0.77–1.86)	0.184/38.0	0.94 (0.84–1.05)	0.406/0.0	0.96 (0.87–1.07)	0.666/0.0

1All summary ORs were calculated using fixed-effects models. In the case of significant heterogeneity (indicated by *), ORs were calculated using random-effects models. The bold values indicate that the results are statistically significant.

doi:10.1371/journal.pone.0088490.t003
Table 4. Summary ORs (95% CI) and value of the heterogeneity of XPG Asp1104His and XPF Arg415Gln polymorphisms for studies according to source of controls and cancer type.

Source of control	Cancer type	N	Recessive model	OR (95% CI)	\(P_{\text{ph}} \)/\(I^2 \) (%)	Dominant model	OR (95% CI)	\(P_{\text{ph}} \)/\(I^2 \) (%)	Homozygote	OR (95% CI)	\(P_{\text{ph}} \)/\(I^2 \) (%)	Heterozygote	OR (95% CI)	\(P_{\text{ph}} \)/\(I^2 \) (%)	Additive model	OR (95% CI)	\(P_{\text{ph}} \)/\(I^2 \) (%)
XPG Asp1104His	PB	Breast cancer	6 (4327/4684)	1.06 (0.91–1.24)	0.642/0.0	1.00 (0.92–1.09)	0.130/41.4	1.09 (0.92–1.29)	0.579/0.0	0.99 (0.91–1.08)	0.130/41.3	1.01 (0.95–1.08)	0.130/41.3				
	Melanoma	3 (2340/4207)	0.91 (0.58–1.42)*	0.366/0.0	1.00 (0.90–1.11)	0.362/0.0	0.90 (0.56–1.43)	0.372/0.0	1.00 (0.89–1.12)	0.372/0.0	0.97 (0.83–1.13)*	0.073/61.7					
	NHL	3 (2105/1957)	1.03 (0.80–1.31)	0.345/0.0	1.11 (0.89–1.38)*	0.082/64.0	1.07 (0.83–1.38)	0.238/30.4	1.11 (0.90–1.37)	0.100/56.7	1.08 (0.90–1.30)*	0.053/66.0					
	Other cancer	4 (1709/2395)	0.89 (0.71–1.12)	0.367/0.0	1.08 (0.95–1.23)	0.062/0.0	0.97 (0.76–1.24)	0.900/0.0	1.11 (0.96–1.26)	0.522/0.0	1.02 (0.93–1.13)	0.840/0.0					
	HB	Bladder cancer	5 (2133/2485)	1.16 (0.92–1.46)	0.219/32.3	1.39 (0.86–2.23)*	0.022/68.8	1.16 (0.96–1.39)	0.247/27.4	0.97 (0.77–1.22)*	0.039/64.2						
	Breast cancer	4 (993/1322)	0.71 (0.55–0.92)	0.262/24.9	1.06 (0.89–1.26)*	0.100/51.9	0.74 (0.55–0.98)	0.213/33.3	1.16 (0.96–1.39)	0.247/27.4	0.97 (0.77–1.22)*	0.039/64.2					
	Colorectal cancer	3 (1692/1717)	0.93 (0.76–1.13)	0.525/0.0	1.33 (1.15–1.55)	0.188/0.0	1.21 (0.96–1.55)	0.668/0.0	1.29 (0.97–1.72)*	0.072/62.1	1.13 (1.02–1.25)	0.971/0.0					
	HNC	3 (1286/1519)	0.88 (0.66–1.16)	0.135/50.1	1.04 (0.89–1.22)	0.548/0.0	0.90 (0.66–1.22)	0.115	1.08 (0.91–1.27)	0.591/0.0	1.00 (0.88–1.13)	0.441/0.0					
	Lung cancer	4 (1680/1575)	1.15 (0.96–1.37)	0.105/51.1	1.22 (0.91–1.63)	0.030/66.4	1.32 (0.93–1.85)*	0.092/33.5	1.21 (0.89–1.63)*	0.053/65.2	1.13 (0.95–1.35)*	0.057/60.1					
	Melanoma	5 (2957/2865)	0.88 (0.70–1.09)	0.145/41.5	0.94 (0.85–1.04)	0.981/0.0	0.86 (0.69–1.08)	0.213/31.3	0.95 (0.85–1.06)	0.915/0.0	0.94 (0.86–1.02)	0.766/0.0					
	Other cancer	9 (2443/3017)	1.18 (0.99–1.41)	0.576/0.0	1.05 (0.94–1.18)	0.171/310	1.22 (1.01–1.47)	0.322/13.5	1.02 (0.90–1.15)	0.155/32.9	1.07 (0.98–1.16)	0.361/8.9					
XPF Arg415Gln	PB	Breast cancer	6 (4356/4687)	1.05 (0.29–3.77)	0.098/49.0	1.02 (0.90–1.16)	0.158/37.3	1.05 (0.29–3.81)*	0.093/49.7	1.00 (0.87–1.15)	0.133/42.1	0.96 (0.77–1.20)*	0.069/54.0				
	Other cancer	5 (3647/4879)	1.48 (0.84–2.60)	0.354/3.9	1.03 (0.91–1.17)	0.477/0.0	1.48 (0.84–2.60)	0.386/12.2	1.02 (0.90–1.15)	0.286/20.2	1.05 (0.93–1.17)	0.731/0.0					
	HB	Breast cancer	4 (730/855)	3.66 (0.38–34.9)*	0.009/78.7	1.04 (0.78–1.39)	0.178/38.9	3.39 (0.26–41.9)*	0.003/82.8	0.92 (0.68–1.25)	0.463/0.0	1.13 (0.73–1.73)*	0.054/60.7				
	Other cancer	3 (2256/2027)	0.70 (0.39–1.25)	0.341/0.9	0.79 (0.59–1.07)*	0.035/70.1	0.69 (0.38–1.24)	0.347/56.0	0.81 (0.59–1.09)*	0.037/70.8	0.80 (0.61–1.05)*	0.045/67.7					

1 All summary ORs were calculated using fixed-effects models. In the case of significant heterogeneity (indicated by *), ORs were calculated using random-effects models.

2 The results were excluded due to high heterogeneity. The bold values indicate that the results are statistically significant. PB Population-based studies, HB Hospital-based studies, the bold values indicate that the results are statistically significant.

doi:10.1371/journal.pone.0088490.t004
Genetic model	No. comparisons (SZ case/control)	Recessive model	Dominant model	Homozygote	Heterozygote	Additive model					
		OR (95%CI)	OR (95%CI)	OR (95%CI)	OR (95%CI)	OR (95%CI)					
		P_{het} (%)	P_{I^2} (%)	P_{het} (%)	P_{I^2} (%)	P_{het} (%)					
XPG Asp1104His	Overall	0.99 (0.92–1.07)*	0.068/22.9	1.03 (0.99–1.08)*	0.092/20.6	1.02 (0.94–1.11)*	0.066/23.4	1.04 (1.00–1.09)*	0.055/24.5	1.02 (0.99–1.05)	0.139/17.3
Cancer type	Bladder cancer	0.95 (0.62–1.47)*	0.065/54.9	0.97 (0.87–1.09)	0.724/0.0	0.94 (0.73–1.20)	0.112/46.6	0.98 (0.87–1.11)	0.517/0.0	0.98 (0.89–1.08)	0.599/0.0
	Glioma	0.99 (0.61–1.60)	0.102/62.6	1.04 (0.78–1.38)	–	0.69 (0.35–1.38)	–	1.09 (0.81–1.47)	–	0.97 (0.77–1.24)	–
	HNC	0.88 (0.67–1.16)	0.240/29.9	1.06 (0.92–1.23)	0.454/0.0	0.90 (0.67–1.22)	0.194/39.0	1.10 (0.95–1.28)	0.462/0.0	1.02 (0.91–1.14)	0.537/0.0
	Lung cancer	1.12 (0.95–1.34)	0.139/42.4	1.12 (0.98–1.28)	0.348/10.2	1.19 (0.98–1.44)	0.171/45.8	1.11 (0.96–1.27)	0.694/0.0	1.08 (0.94–1.24)*	0.098/48.9
	Other cancer	1.08 (0.93–1.24)	0.532/0.0	1.05 (0.96–1.14)	0.665/0.0	1.10 (0.94–1.29)	0.667/0.0	1.04 (0.95–1.14)	0.459/0.0	1.05 (0.98–1.12)	0.835/0.0
Ethnicity and cancer type	Lung cancer/Asian	1.10 (0.88–1.38)	0.463/0.0	1.15 (0.95–1.41)	0.710/0.0	1.20 (0.92–1.55)	0.517/0.0	1.14 (0.92–1.40)	0.694/0.0	1.10 (0.96–1.25)	0.484/0.0
	Other cancer/Caucasian	1.30 (0.92–1.85)	0.473/0.0	1.07 (0.90–1.26)	0.679/0.0	1.29 (0.91–1.85)	0.618/0.0	1.03 (0.87–1.23)	0.418/0.0	1.09 (0.95–1.25)	0.811/0.0
	Other cancer/Asian	1.03 (0.81–1.30)	0.199/38.1	0.96 (0.70–1.17)	0.109/54.8	1.02 (0.78–1.34)	0.240/30.0	1.01 (0.71–1.44)*	0.071/62.1	0.99 (0.87–1.13)	0.269/23.8
Source of controls and cancer type	Bladder cancer/HB	1.08 (0.84–1.40)	0.254/27.1	0.97 (0.85–1.10)	0.425/0.0	1.04 (0.80–1.36)	0.299/17.2	0.96 (0.84–1.10)	0.296/17.9	1.00 (0.90–1.10)	0.352/4.1
	Lung cancer/HB	1.20 (0.80–1.79)	0.077/61.0	1.13 (0.96–1.34)	0.112/54.3	1.23 (0.76–2.00)*	0.050/66.5	1.09 (0.91–1.30)	0.347/5.5	1.09 (0.85–1.40)*	0.029/71.8
	Other cancer/HB	1.23 (1.02–1.49)	0.595/0.0	1.03 (0.92–1.16)	0.375/7.0	1.20 (0.97–1.48)	0.394/4.3	0.99 (0.87–1.12)	0.324/13.9	1.07 (0.97–1.17)	0.515/0.0
XPF Arg415Gln	Overall	0.98 (0.92–1.05)	0.047/34.6	0.99 (0.91–1.07)*	0.026/36.4	1.07 (0.74–1.53)*	0.027/38.6	0.97 (0.89–1.05)*	0.059/31.4	1.00 (0.91–1.08)	0.003/47.8
Cancer type	Glioma	1.44 (0.71–2.93)	0.161/49.2	1.28 (0.96–1.70)	0.868/0.0	1.49 (0.73–3.03)	0.163/48.5	1.25 (0.92–1.69)	0.716/0.0	1.28 (0.99–1.65)	0.525/0.0
	HNC	1.58 (0.72–3.46)	0.204/37.1	1.02 (0.85–1.21)	0.277/22.1	1.57 (0.72–3.45)	0.206/36.6	0.99 (0.83–1.19)	0.264/25.0	1.04 (0.88–1.22)	0.201/37.7

*All summary ORs were calculated using fixed-effects models. In the case of significant heterogeneity (indicated by *), ORs were calculated using random-effects models. The bold values indicate that the results are statistically significant.

doi:10.1371/journal.pone.0088490.t005
Table 6. Summary ORs (95% CI) and value of the heterogeneity of XPG Asp1104His and XPF Arg415Gln polymorphisms under different genetic models according to studies with a minimum of 200 participants on cancer risk. 1

Genetic model	No. comparisons (SZ case/control)	Recessive model	Dominant model	Homozygote	Heterozygote	Additive model		
		OR (95%CI)	P_v2 (%)	OR (95%CI)	P_v2 (%)	OR (95%CI)	P_v2 (%)	
XPG Asp1104His	Overall 63 (32002/39603)	1.01 (0.94–1.07)*	0.085/20.6	1.04 (0.97–1.13)*	0.012/31.6	1.06 (1.01–1.11)*	<0.001/45.8	
	Cancer type							
	Breast cancer	10 (5422/6082)	0.97 (0.85–1.11)	0.089/40.3	1.00 (0.87–1.15)	0.250/25.9	1.04 (0.93–1.16)*	<0.001/45.8
	Bladder cancer	6 (2432/2769)	1.08 (0.71–1.63)	0.023/64.7	1.14 (0.68–1.91)*	0.003/75.4	2	<0.001/82.0
	Other cancer	13 (4140/5519)	1.08 (0.94–1.24)	0.618/0.0	1.07 (0.98–1.16)	0.425/21.2	1.13 (0.97–1.32)	0.596/0.0
XPF Arg415Gln	Overall 31 (17811/20503)	1.11 (0.81–1.52)*	0.068/30.5	1.04 (0.93–1.15)*	<0.001/63.7	1.10 (0.79–1.54)*	0.035/35.7	
	Cancer type							
	Breast cancer	9 (5033/5467)	1.54 (0.59–3.99)*	0.017/58.9	1.02 (0.91–1.15)	0.119/37.5	1.49 (0.52–4.25)	0.007/63.8

1All summary ORs were calculated using fixed-effects models. In the case of significant heterogeneity (indicated by *), ORs were calculated using random-effects models.
2The results were excluded due to high heterogeneity. The bold values indicate that the results are statistically significant.

doi:10.1371/journal.pone.0088490.t006
We also examined the association of the XPG Asp1104His polymorphism and cancer risk according to cancer type and source of controls (Table 4). For the population-based studies, no significant association was found between XPG Asp1104His polymorphism and cancer risk according to cancer type and source of controls. For the hospital-based studies, significant association was observed among breast cancer (recessive model: OR = 1.22, 95% CI = 1.01–1.47, \(P = 0.030\), additive model: OR = 1.13, 95% CI = 1.01–1.25, \(P = 0.022\), \(I^2 = 13.5\%\)) but not lung cancer (dominant model: OR = 1.27, 95% CI = 1.02–1.55, \(P = 0.035\), source of controls (dominant model: OR = 1.20, 95% CI = 0.92–1.55; His/His versus Asp/Asp: \(P = 0.213\), additive model: OR = 1.10, 95% CI = 0.92–1.55; His/His versus Asp/Asp: \(P = 0.971\), \(I^2 = 65.2\%\)). In the pooled ORs, the results were changed among overall cancer (dominant model: OR = 1.03, 95% CI = 0.99–1.08), Asians of lung cancer (dominant model: OR = 1.15, 95% CI = 0.95–1.41; His/His versus Asp/Asp: \(P = 0.241\), source of controls (dominant model: OR = 1.20, 95% CI = 0.92–1.55; His/His versus Asp/Asp: \(P = 0.262\), \(I^2 = 66.4\%\)). When these studies were excluded, the results were changed among overall cancer (dominant model: OR = 1.08, 95% CI = 0.99–1.17; His/His versus Asp/Asp: \(P = 0.441\), additive model: OR = 1.00, 95% CI = 0.88–1.16, \(P = 0.90\), \(I^2 = 83.3\%\)) but not lung cancer (dominant model: OR = 1.20, 95% CI = 1.02–1.55; His/His versus Asp/Asp: \(P = 0.272\), \(I^2 = 66.4\%\)).

Examining genotype frequencies in the controls, significant deviation from HWE was detected in the eight studies [10,26,43,44,45,53,80,81]. When these studies were excluded, the results were changed among overall cancer (dominant model: OR = 1.03, 95% CI = 0.99–1.08), Asians of lung cancer (dominant model: OR = 1.15, 95% CI = 0.95–1.41; His/His versus Asp/Asp: \(P = 0.241\), source of controls (dominant model: OR = 1.20, 95% CI = 0.92–1.55; His/His versus Asp/Asp: \(P = 0.262\), \(I^2 = 66.4\%\)). In addition, when the meta-analysis was performed excluding studies with small sample sizes, the results did not change among overall cancer studies and any subgroup analysis, as shown in Table 5. In addition, when the meta-analysis was performed excluding studies with small sample sizes, the results did not change among overall cancer studies and any subgroup analysis, as shown in Table 5.

Last, a single study involved in the meta–analysis was deleted each time to reflect the influence of individual data set to the pooled ORs, the results were changed among Caucasians of head and neck cancer (recessive model: OR = 0.79, 95% CI = 0.51–1.24), hospital-based studies of breast cancer (recessive model: OR = 1.22, 95% CI = 0.98–1.52; His/His versus Asp/Asp: \(P = 0.98–1.52\), Gln/Gln versus Arg/Arg: \(P = 0.19\), 95% CI = 0.51–1.24), hospital-based studies of colorectal cancer (dominant model: OR = 1.15, 95% CI = 0.92–1.43; additive model: OR = 1.12, 95% CI = 0.92–1.35).
XPF Arg415Gln

The evaluations of the association of XPF Arg415Gln polymorphism with cancer risk are shown in Table 2. No significant association was observed between XPF Arg415Gln polymorphism and cancer risk when all the eligible studies were pooled into the meta-analysis (dominant model: OR = 1.04, 95% CI = 0.93–1.15, \(P = 0.178 \), \(I^2 = 39.9 \); recessive model: OR = 5.66, 95% CI = 3.93–9.49, \(P = 0.009 \), \(I^2 = 70.7 \); additive model: OR = 1.13, 95% CI = 0.73–1.73, \(P = 0.354 \), \(I^2 = 66.7 \); Gln/Gln versus Arg/Arg: OR = 3.39, 95% CI = 0.26–43.9, \(P = 0.003 \), \(I^2 = 0.8 \); Arg/Gln versus Arg/Arg: OR = 0.92, 95% CI = 0.68–1.25, \(P = 0.463 \), \(I^2 = 0.0 \) and other cancer (dominant model: OR = 0.79, 95% CI = 0.59–1.07, \(P = 0.354 \), \(I^2 = 52.0 \); Gln/Gln versus Arg/Arg: OR = 0.69, 95% CI = 0.38–1.24, \(P = 0.347 \), \(I^2 = 5.6 \); Arg/Gln versus Arg/Arg: OR = 0.81, 95% CI = 0.59–1.19, \(P = 0.333 \), \(I^2 = 70.9 \)).

There was significant heterogeneity among these studies for dominant model comparison (\(P < 0.001 \), recessive model comparison (\(P = 0.068 \), additive model comparison (\(P < 0.001 \), homozygote model comparison (\(P = 0.035 \), and heterozygote model comparison (\(P < 0.001 \). Then, we assessed the source of heterogeneity by ethnicity, cancer type, source of controls, HWE, and sample size. Meta-regression analysis indicated that HWE (Arg/Gln versus Arg/Arg: \(P = 0.001 \); additive model: \(P = 0.001 \); dominant model: \(P < 0.001 \), and ethnicity (Gln/Gln versus Arg/Arg: \(P = 0.001 \); recessive model: \(P = 0.001 \) but not cancer type (dominant model: \(P = 0.446 \); recessive model: \(P = 0.344 \); Gln/Gln versus Arg/Arg: \(P = 0.314 \); Arg/Gln versus Arg/Arg: \(P = 0.694 \); additive model: \(P = 0.456 \), source of controls (dominant model: \(P = 0.710 \); recessive model: \(P = 0.218 \); Gln/Gln versus Arg/Arg: \(P = 0.221 \); Arg/Gln versus Arg/Arg: \(P = 0.558 \); additive model: \(P = 0.962 \), and sample size (dominant model: \(P = 0.125 \); recessive model: \(P = 0.255 \); Gln/Gln versus Arg/Arg: \(P = 0.076 \); Arg/Gln versus Arg/Arg: \(P = 0.252 \); additive model: \(P = 0.153 \)) contributed to substantial heterogeneity among the meta-analysis. Examining genotype frequencies in the controls, significant deviation from HWE was detected in the two studies [81,82]. When these two studies were excluded, the results were not changed among overall cancer and any subgroup analysis, as shown in Table 5. In addition, when the meta-analysis was performed excluding studies with small sample sizes, the results did not also change among overall cancer and any subgroup analysis, as shown in Table 6. Last, a single study involved in the meta-analysis was deleted each time to reflect the influence of individual data set to the pooled ORs, the results did not also change among this meta-analysis, indicating that our results did not influenced statistically robust.

Both Begg's funnel plot and Egger's test were performed to assess the publication bias of literatures. The Egger's test results \(P = 0.171 \); recessive model: \(P = 0.437 \); additive model: \(P = 0.114 \); Homozygote model: \(P = 0.425 \); Heterozygote model: \(P = 0.229 \) and Begg's funnel plot (Fig. 3) suggested no evidence of publication bias in the meta-analysis.

Discussion

NER is a crucial DNA repair mechanism, which counteracts the consequences of mutagenic exposure of cell. XPF and XPG are both central players in the NER pathway, and involved in incision 5'- and 3'-ends, respectively, of the DNA lesion. A number of epidemiological studies have evaluated the association between XPG Asp1104His and XPF Arg415Gln polymorphisms and cancer risk, but the results remain inconclusive.

For instance, McWilliams et al. [38] reported a significantly decreased pancreatic cancer risk with XPF Arg115Gln polymorphism (\(P = 0.003 \). But Liu et al. [64] reported a significantly increased colorectal cancer risk associated with the variant allele of XPG Asp1104His. Goncalves et al. [66] found that significantly...
decreased melanoma cancer risk with the XPG 1104 His/His genotype (OR = 0.32, 95% CI = 0.13–0.75). However, Berhane et al. [74] found that statistically significant increased risk of prostate cancer was observed on individuals that posses His/His genotype of XPG (OR = 2.53, 95% CI = 0.99–6.56, P = 0.031). Ming-Shiuan et al. [59] reported a significantly increased breast cancer risk with the variant allele of XPG Asp1104His (OR = 1.42, 95% CI = 1.00–1.97). He et al. [45] found that Women carrying homozygous Asp1104His genotypes had a significantly decreased risk of cervical or cervical squamous cell carcinoma compared to His1104Asp or His1104His genotypes. Smith et al. [8] reported a statistically significant difference in the XPF Arg415Gln genotype distributions between breast cancer cases and controls (P = 0.02). Furthermore, Kumar et al. [9] reported a marginally significantly increase in breast cancer risk associated with the variant allele of XPG Asp1104His. What’s more, more studies did not find obvious association among them. In order to resolve this conflict, a meta-analysis of 98 eligible studies including 32,162 cases and 39,858 controls for XPG Asp1104His and 17,804 cases and 20,578 controls for XPG Arg15Gln was performed to derive a more precise estimation of the association.

Overall, significantly elevated cancer risk was found when all studies were pooled into the meta-analysis of XPG Asp1104His (dominant model: OR = 1.05, 95% CI = 1.00–1.10; Asp/His versus Asp/Asp: OR = 1.06, 95% CI = 1.01–1.11). Based on biochemical properties described for XPG Asp1104His and XPF Arg15Gln polymorphisms, we would expect that the His or Gln alleles would be associated for all types of cancer. However, our results showed that such association was observed just among lung cancer (dominant model: OR = 0.82, 95% CI = 0.71–0.96; Asp/His versus Asp/Asp: OR = 0.83, 95% CI = 0.71–0.97; additive model: OR = 0.83, 95% CI = 0.72–0.95) for XPF Arg15Gln and hospital-based studies of other cancer (dominant model: OR = 1.23, 95% CI = 1.02–1.49) for XPG Asp1104His, suggesting that other factors may be modulating the XPG Asp1104His and XPF Arg15Gln polymorphisms functionality. However, the exact mechanism for association between different tumor sites and XPG Asp1104His and XPF Arg15Gln polymorphisms was not clear, carcinogenetic mechanism may differ by different tumor sites and the XPG Asp1104His and XPF Arg15Gln genetic variants may exert varying effects in different cancers. Hung et al. [14] reported a marginally significantly decreased lung cancer risk with the variant allele of XPF Arg15Gln (dominant model: OR = 0.70, 95% CI = 0.67–0.91). Our results seem to confirm and establish the trend in the meta-analysis of XPF Arg15Gln polymorphism and lung cancer risk that the data by Hung et al. [40] had indicated. However, at any case, the association between XPF Arg15Gln and lung cancer risk remain an open field, as the number of studies (n = 3 for Arg15Gln) is considerably smaller than that needed for the achievement of robust conclusions [94].

In the subgroup analysis by source of control and cancer type, significantly increased other cancer association was found among the hospital-based studies for the XPG Asp1104His polymorphism, but not the population-based studies. However, the hospital-based studies may have certain biases for such controls and may only represent a sample of an ill-defined reference population, and may not be representative of the general population or it may be that numerous subjects in the population-based controls were susceptible individuals. The results only indicate that participation of XPG Asp1104His may be a genetic susceptibility for other cancer. Therefore, the use of proper and representative population-based controls control subjects is important to reduce biases and in such generic studies.

We noticed with great interest that 2 previous meta-analysis had been reported on the cancer risk with XPG Asp1104His and XPF Arg15Gln polymorphisms [84,85]. Zhu et al. [84] had 49 case-control studies, in which a total of 23,490 cases and 27,168 controls were included. Their meta-analysis suggested that it was unlikely that the XPG Asp1104His polymorphism may contribute to individual susceptibility to cancer risk. Shi et al. [95] had 23 case-control studies, in which a total of 14,632 cancer cases and 15,545 controls. Their meta-analysis suggested that it was unlikely that the XPF Arg15Gln polymorphism may contribute to individual susceptibility to cancer risk. However, several published studies were not included in that meta-analysis [84,85]. By analyzing a larger number of studies than the previous meta-analysis [84,85], our meta-analysis included 32,162 cases and 39,858 controls (from 66 studies) for XPG Asp1104His and 17,804 cases and 20,578 controls (from 32 studies) for XPF Arg15Gln to perform the two gene polymorphisms and cancer risk. Our meta-analysis suggests that XPF Arg15Gln polymorphism may be associated with decreased lung cancer risk and XPG Asp1104His may be a low-penetrant risk factor in some cancer development. Our results seem to confirm and establish the trend in the meta-analysis of the XPG Asp1104His and XPF Arg15Gln polymorphisms according to the previous meta-analysis [84,85].

In the present meta-analysis, between-studies heterogeneity was observed between XPG Asp1104His and XPF Arg15Gln polymorphisms and cancer of risk. Meta-regression analysis indicated that HWE contributed to substantial heterogeneity among the meta-analysis for XPF Arg15Gln polymorphism and sample size contributed to substantial heterogeneity among the meta-analysis for XPG Asp1104His. Deviation of HWE may reflect methodological problems such as genotyping errors, population stratification or selection bias. When these studies were excluded, the results were changed among overall cancer and some subgroup analyses for XPG Asp1104His, indicating that our meta-analysis was not statistically robust. Hence, significant association may be not existed in some cancer types when the results were changed. When the meta-analysis was performed excluding studies with small sample sizes, the results did not change among overall cancer studies and any subgroup analysis, indicating that small sample sizes did not influenced statistically robust.

Our meta-analysis has several strengths. First, a systematic review of the association of XPG Asp1104His and XPF Arg15Gln polymorphisms with cancer risk is statistically more powerful than any single study. Second, the quality of eligible studies included in current meta-analysis was satisfactory and met our inclusion criterion. Third, we did not detect any publication bias indicating that the whole pooled results should be unbiased. However, although we have put considerable efforts and resources into testing possible association between XPG Asp1104His and XPF Arg15Gln polymorphisms and cancer risk, there are still some limitations inherited from the published studies. First, our results were based on single-factor estimations without adjustment for other risk factors including alcohol usage, environmental factors and other lifestyles. At lower levels of alcohol consumption, the difference in cancer risk between the various gene carriers was less striking. And higher levels of alcohol consumption result in production of more acetaldehyde which then can exert its carcinogenic effect [95]. Second, in the subgroup analysis may have had insufficient statistical power to check an association. Third, the controls were not uniformly defined. Some studies used a healthy population as the reference group, whereas others selected hospital patients without organic cancer as the reference group. Therefore, non-differential misclassification bias is possible.
because these studies may have included the control groups who have different risks of developing cancer of various organs.

In conclusion, this meta-analysis suggests that XPF Arg415Gln polymorphism may be associated with decreased lung cancer risk and XPG Asp1104His may be a low-penetrant risk factor in some cancer development. However, it is necessary to conduct large sample studies using standardized unbiased genotyping methods, homogeneous cancer patients and well-matched controls. Moreover, further studies estimating the effect of gene–gene and gene–environment interactions may eventually lead to our better, comprehensive understanding of the association between the XPF Arg415Gln and XPG Asp1104His polymorphisms and cancer risk.

References

1. Wood RD, Mitchell M, Sigouros J, Lindlall T (2001) Human DNA repair genes. Science 291:1284–1289.
2. Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nature Rev Cancer 1:22–33.
3. Cleaver JE (2000) Common pathways for ultraviolet skin carcinogenesis in the repair and replication defective groups of xeroderma pigmentosum. J Dermatol Sci 23:1–11.
4. O'Donovan A, Davies AA, Moggs JG, West SC, Wood RD (1994) XPG endonuclease makes the 30 incision in human DNA nucleotide excision repair. Nature 371:432–435.
5. Warshawski M, Gordon JT, Sancar A (1997) The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem 272:16303–16304.
6. Araujo SJ, Nigg EA, Wood RD (2001) Strong functional interactions of TFIHH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome. Mol Cell Biol 21:2281–2291
7. Gillet LC, Scharer OD (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 106:253–276.
8. South TR, Levine EA, Perrier ND, Miller MS, Freimann RJ, et al. (2005) DNA repair genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 12:1200–1204.
9. Kumar R, Højland I, Zhao C, Forstl A, Stenwall E, et al. (2003) Single nucleotide polymorphisms in the XPG gene: determination of role in DNA repair and breast cancer risk. Int J Cancer 103:671–675.
10. Jeon HS, Kim KM, Park SH, Lee SY, Choi JE, et al. (2003) Relationship between XPG codon 1104 polymorphism and risk of primary lung cancer. Carcinogenesis 24:1677–1681.
11. Sanyal S, Festi F, Sakano S, Zhang Z, Steinbeck G, et al. (2004) Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 25:729–734.
12. Blankenburg S, Kinig R, Møesner R, Laup P, Thoms KM, et al. (2005) No association between three xeroderma pigmentosum group C and one group G gene polymorphisms and risk of cutaneous melanoma. Eur J Hum Genet 13:233–235.
13. Weiss JM, Weiss NS, Ulrich CM, Doherty JA, Voigt LF, et al. (2005) Interindividual variation in nucleotide excision repair genes and risk of endometrial cancer. Cancer Epidemiol Biomarkers Prev 14:2524–2530.
14. Shen M, Berndt SJ, Rothman N, Demarini DM, Munnfeld JL, et al. (2005) Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei, China. Int J Cancer 116:768–773.
15. Bigler J, Ulrich CM, Kawashima T, Whittet P, Potter JD (2005) DNA repair polymorphisms and risk of colorectal adenomatous or hyperplastic polyps. Cancer Epidemiol Biomarkers Prev 14:2501–2508.
16. Sakiyama T, Kohno T, Mimaki S, Ohta T, Yanagitani N, et al. (2005) Polymorphism of Xeroderma pigmentosum group G and the risk of lung cancer and squamous cell carcinomas of the oropharynx, larynx and esophagus. Int J Cancer 118:714–720.
17. Cui Y, Morgenstern H, Greensland S, Taskin DP, Mao J, et al. (2006) Polymorphism of Xeroderma Pigmentosum group G and the risk of lung cancer. Carcinogenesis 27:1676–1681.
18. Shen M, Zheng T, Zhang Y, Zahm SH, et al. (2006) Polymorphisms in DNA repair genes and risk of non-Hodgkin lymphoma among women in Rochester, Minn. Hum Genet 119:655–668.
19. Shen J, Desai M, Agraval M, Kennedy DO, Senie RT, et al. (2006) Polymorphisms in nucleotide excision repair genes and DNA repair capacity phenotype in sisters discordant for breast cancer. Cancer Epidemiol Biomarkers Prev 15:1614–1621.
20. Mechanic LE, Millikan RC, Player J, de Cotret AR, Winkel S, et al. (2006) NER genetic variants and sporadic prostate cancer susceptibility in African Americans. Carcinogenesis 27:610–618.
21. Wang LE, Li C, Strom SS, Goldbergh LH, Brewer A, et al. (2007) Repair capacity for UV light induced DNA damage associated with risk of nonmelanoma skin cancer and tumor progression. Clin Cancer Res 13:6532–6539.
22. Avagyan S, Mokross S, McLaughlin MP, Kriek A, Lan Q, Grulich AE, et al. (2007) Polymorphisms in DNA repair genes and risk of non-Hodgkin’s lymphoma in New South Wales, Australia. Haematologica 92: 1180–1183.
23. McWilliams RR, Banlet VR, Cunningham JM, Goode EL, de Andrade M, et al. (2008) Polymorphisms in DNA repair genes, smoking, and pancreatic adenocarcinoma risk. Cancer Res 68:4926–4935.
24. Hooker S, Bonilla C, Akeryen F, Ahaghotu C, Kittles RA (2008) NAT2 and NER genetic variants and sporadic prostate cancer susceptibility in African Americans. Prostate Cancer Prostatic Dis 11:349–356.

Supporting Information

Checklist S1 PRISMA Checklist. (DOC)

Author Contributions

Conceived and designed the experiments: XFH WW. Performed the experiments: XFH LRL. Analyzed the data: XFH LRL. Contributed reagents/materials/analysis tools: XFH LRL YL JS SLW XLS XBY.

Wrote the paper: XFH.

Checked the paper: XFH LRL YL JS SLW XLS XBY.

Contributed resources: XFH LRL YL JS SLW XLS XBY.

Performed the experiments: XFH LRL.

Analyzed the data: XFH LRL.

Contributed resources: XFH LRL YL JS SLW XLS XBY.

Wrote the paper: XFH.

Contributed resources: XFH LRL YL JS SLW XLS XBY.

Analyzed the data: XFH LRL.

Contributed resources: XFH LRL YL JS SLW XLS XBY.

Wrote the paper: XFH.

Contributed resources: XFH LRL YL JS SLW XLS XBY.

Designed the experiments: XFH WW.

Conceived and designed the experiments: XFH WW. Performed the experiments: XFH LRL. Analyzed the data: XFH LRL. Contributed reagents/materials/analysis tools: XFH LRL YL JS SLW XLS XBY. Wrote the paper: XFH.
40. Smith TR, Levine EA, Freimanis RJ, Akman SA, Allen GO, et al. (2008) Polygenic model of DNA repair genetic polymorphisms in human breast cancer risk. Cancerogenesis 29:2122–2138.

41. Chang JS, Wernisch MK, Hansen HM, Sison JD, Aldrich MC, et al. (2008) Nucleotide excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African Americans. Int J Cancer 125:2095–2104.

42. Rajaraman P, Bhatti P, Doody MM, Simon SL, Weinstock RM, et al. (2008) Nucleotide excision repair polymorphisms may modify ionizing radiation-related breast cancer risk in Utah. Int J Cancer 122:2713–2716.

43. Freddin MB, Ivanina PV, Takahaevo RM, Goncharova IA, Dvostrickenko MV, et al. (2008) The evaluation of association between polymorphisms of DNA excision repair enzyme genes and risk of malignant tumors development in St Petersburg Group of Chemical Enterprises workers. Radiats Biolog Radioec 48:439–444.

44. Hung RJ, Christianson D, Risch A, Popanda O, hausgen A, et al. (2008) International Lung Cancer Consortium: pooled analysis of sequence variants in DNA repair and cell cycle pathways. Cancer Epidemiol Biomarkers Prev 17:3069.

45. He X, Ye F, Zhang J, Cheng Q, Shen J, et al. (2008) Susceptibility of XRCC3, XPD, and XPG genetic variants to cervical carcinoma. Pathology 35:356–358.

46. participation in DNA repair and cell cycle pathways. Cancer Epidemiol Biomarkers Prev 17:3069.

47. Liu D, Wu HZ, Zhang YN, Kang H, Sun MJ, et al. (2011) DNA repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African Americans. Int J Cancer 125:2095–2104.

48. Rajaraman P, Bhatti P, Doody MM, Simon SL, Weinstock RM, et al. (2008) Nucleotide excision repair polymorphisms may modify ionizing radiation-related breast cancer risk in Utah. Int J Cancer 122:2713–2716.

49. Freddin MB, Ivanina PV, Takahaevo RM, Goncharova IA, Dvostrickenko MV, et al. (2008) The evaluation of association between polymorphisms of DNA excision repair enzyme genes and risk of malignant tumors development in St Petersburg Group of Chemical Enterprises workers. Radiats Biolog Radioec 48:439–444.

50. Hung RJ, Christianson D, Risch A, Popanda O, hausgen A, et al. (2008) International Lung Cancer Consortium: pooled analysis of sequence variants in DNA repair and cell cycle pathways. Cancer Epidemiol Biomarkers Prev 17:3069.

51. He X, Ye F, Zhang J, Cheng Q, Shen J, et al. (2008) Susceptibility of XRCC3, XPD, and XPG genetic variants to cervical carcinoma. Pathology 35:356–358.

52. Abbasi R, Ramroth H, Becher H, Dietz A, Schmezer P, et al. (2009) Laryngeal cancer risk associated with smoking and alcohol consumption is modified by genetic polymorphisms in ERCC5, CCR4D and RAD23B but not in polymorphisms of other nucleotide excision repair genes. Int J Cancer 125:1431–1439.

53. Hussain SK, Mu LN, Cai L, Chang SC, Park SL, et al. (2009) Genetic variation in immune regulation and DNA repair pathways and stomach cancer in China. Cancer Epidemiol Biomarkers Prev 18:2304–2309.

54. Pan J, Lin J, Izzo JG, Liu Y, Xing Y, et al. (2009) Genetic polymorphisms of DNA repair and oxidative stress pathways. Cancer Epidemiol Biomarkers Prev 18:1118–1126.

55. McKean-Cowdin R, Barnholtz-Sloan JS, Inskip PD, Raderm J, Butler M, et al. (2009) Associations between Polymorphisms in DNA Repair Genes and Glioblastoma. Cancer Epidemiology Biomarkers & Prevention 18:1118–1126.

56. Pan J, Lin J, Izzo JG, Liu Y, Xing Y, et al. (2009) Genetic susceptibility to esophageal cancer: the role of the nucleotide excision repair pathway. Cancer 20:4379–4379.

57. Han J, Haiman C, Niu T, Guo Q, Cox DG, et al. (2009) Genetic variation in DNA repair pathway genes and premenopausal breast cancer risk. Breast Cancer Res Treat 115: 613–622.

58. Liu Y, Scheuner M, El-Zein R, Cao Y, Do KA, et al. (2009) Association and interactions between DNA Repair Gene Polymorphisms and Adult Glomma. Cancer Epidemiology Biomarkers & Prevention 18: 204–214.

59. Agalliu I, Kwon EM, Salinas CA, Koopman JS, Ostrander EA, et al. (2010) Genetic variation in DNA repair genes and prostate cancer risk results from a population-based study. Cancer Causes Control 21:289–300.

60. Rajaraman P, Hutchinson A, Wichner S, Black PM, Fine HA, et al. (2010) DNA repair gene polymorphisms and risk of adult meningioma, glioma, and acoustic neuroma. Neuro Oncol 12:37–48.

61. Synergistic effects of polymorphisms in DNA repair genes and endogenous estrogen exposure on female breast cancer risk. Ann Surg Oncol 17:600–771.

62. Li LM, Zeng XY, Ji L, Fan XJ, Li YQ, et al. (2010) Association of XPG and XPC polymorphisms with the risk of hepatocellular carcinoma. Zhonghua Guang Bao Zang Bing Za Zhi 18:271–275.

63. Canbay E, Sasavolu G, Gulluoglu M, Isbir T, Balik E, et al. (2010) Possible associations of APE1 polymorphism with susceptibility and HOGG1 polymorphisms with prognosis in gastric cancer. Anticancer Res 30:1359–1364.

64. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188.

65. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analysis. Br Med J 327:557–560.

66. Gonçalves FT, Francisco G, de Souza SP, Luiz OC, Festa-Neto C, et al. (2011) Genetic susceptibility to melanoma: a case–control study in a high UV index region in Brazil. J Dermatol Sci 64:59–66.

67. XPG Asp1104His and XPF Arg415Gln and Cancer Risk
93. Dual S, Tweedie R (2000) A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J Am Stat Assoc 95:89–98.
94. Higgins JPT, Green S (2008) Cochrane handbook for systematic reviews of interventions version 5.0.1. The Cochrane Collaboration, Oxford.
95. Visapää JP, Götte K, Benesova M, Li J, Homann N, et al. (2004) Increased cancer risk in heavy drinkers with the alcohol dehydrogenase 1C*1 allele, possibly due to salivary acetaldehyde. Gut 53:871–876.