EQUITABLE PARTITION OF GRAPHS
INTO INDUCED FORESTS

LOUIS ESPERET, LAETITIA LEMOINE, AND FRÉDÉRIC MAFFRAY

Abstract. An equitable partition of a graph G is a partition of the vertex-set of G such that the sizes of any two parts differ by at most one. We show that every graph with an acyclic coloring with at most k colors can be equitably partitioned into $k-1$ induced forests. We also prove that for any integers $d \geq 1$ and $k \geq 3^{d-1}$, any d-degenerate graph can be equitably partitioned into k induced forests.

Each of these results implies the existence of a constant c such that for any $k \geq c$, any planar graph has an equitable partition into k induced forests. This was conjectured by Wu, Zhang, and Li in 2013.

An equitable partition of a graph G is a partition of the vertex-set of G such that the sizes of any two parts differ by at most one. Hajnal and Szemerédi [4] proved the following result, which was conjectured by Erdős (see also [5] for a shorter proof).

Theorem 1. For any integers Δ and $k \geq \Delta + 1$, any graph with maximum degree Δ has an equitable partition into k stable sets.

Note that there is no constant c, such that for any $k \geq c$, any star can be equitably partitioned into k stable sets. Wu, Zhang, and Li made the following two conjectures [9].

Conjecture 2. There is a constant c such that for any $k \geq c$, any planar graph can be equitably partitioned into k induced forests.

Conjecture 3. For any integers Δ and $k \geq \lceil \frac{\Delta+1}{2} \rceil$, any graph of maximum degree Δ can be equitably partitioned into k induced forests.

A proper coloring of a graph G is acyclic if any cycle of G contains at least 3 colors. We first prove the following result.

Theorem 4. Let $k \geq 2$. If a graph G has an acyclic coloring with at most k colors, then G can be equitably partitioned into $k-1$ induced forests.

Proof. The proof proceeds by induction on $k \geq 2$. If $k = 2$ then G itself is a forest and the result trivially holds, so we can assume that $k \geq 3$. Let V_1, \ldots, V_k be the color classes in some acyclic k-coloring of G (note that some sets V_i might be empty). Let n be the number of vertices of G. Without loss of generality, we can assume that V_1 contains at most $\frac{n}{k} \leq \frac{n}{k-1}$ vertices. Observe that the sum of the number of vertices in $V_1 \cup V_i$, $2 \leq i \leq k$, is $n + (k-2)|V_1| \geq n$. It follows that there is exists a color class, say V_2, such that $V_1 \cup V_2$ contains at least $\frac{n}{k}$ vertices. Let S be a set of vertices of G.
consisting of V_1 together with $\left\lfloor \frac{n}{k-1} \right\rfloor - |V_1|$ vertices of V_2, and let H be the graph obtained from G by removing the vertices of S. Note that S induces a forest in G, and H has an acyclic coloring with at most $k-1$ colors. By the induction hypothesis, H has an equitable partition into $k-2$ induced forests, and therefore G has an equitable partition into $k-1$ induced forests. □

It was proved by Borodin [2] that any planar graph has an acyclic coloring with at most 5 colors. Therefore, Theorem 9 implies Corollary 5, which is a positive answer to Conjecture 2.

Corollary 5. For any $k \geq 4$, any planar graph can be equitably partitioned into k induced forests.

We now prove stronger results in two different ways. We first show the induced forests can be chosen to be very specific. We then show that graphs from a class that is much wider than the class of planar graphs can also be equitably partitioned into constantly many induced forests.

A **star coloring** of a graph G is a proper coloring of the vertices of G such that any two color classes induce a star forest. Using the same proof as that of Theorem 4, it is easy to show the following result.

Theorem 6. Let $k \geq 2$. If a graph G has a star coloring with at most k colors, then G can be equitably partitioned into $k-1$ induced star forests.

It was proved by Albertson et al. [1] that every planar graph has a star coloring with at most 20 colors. The next corollary follows as an immediate consequence.

Corollary 7. For any $k \geq 19$, any planar graph can be equitably partitioned into k induced star forests.

Indeed, if one is not too regarding on the constant, a stronger result holds. An **orientation** of a graph G is a directed graph obtained from G by orienting each edge in either of two possible directions. An **out-star** (resp. **in-star**) is the orientation of a star such that every edge is oriented from the center of the star to the leaf (resp. from the leaf to the center of the star).

Theorem 8. For any $k \geq 319$, any orientation of a planar graph can be equitably partitioned into k induced forests of in- and out-stars.

Proof. It was proved by Raspaud and Sopena [8] that every orientation of a planar graph has an acyclic coloring with at most 80 colors such that for any two colors classes V_i and V_j, if there is an arc (u,v) with $u \in V_i$ and $v \in V_j$, then there is no arc (x,y) with $y \in V_i$ and $x \in V_j$. Using [1, Theorem 4.3] and the Four Color Theorem, this acyclic coloring can be refined into a star coloring, with the same additional property, using no more than $80 \cdot 4 = 320$ colors. In particular, every two color classes induce a forest of in- and out-stars. The remainder of the proof follows the same lines as the proofs of Theorems 4 and 6. □

It is known that graphs with bounded acyclic chromatic number also have bounded star chromatic number [1] and bounded oriented chromatic number [8], so it follows that the results of Theorems 6 and 8 hold for any
class of graphs with bounded acyclic chromatic number (with possibly larger constants).

A graph G is d-degenerate if every subgraph of G contains a vertex of degree at most d. In the remainder of this article, we prove the following result.

Theorem 9. For any integers $d \geq 1$ and $k \geq 3^{d-1}$, any d-degenerate graph can be equitably partitioned into k induced forests.

It follows from Euler’s formula that every planar graph is 5-degenerate. Therefore, Theorem 9 also implies Conjecture 2 (with $c = 81$ instead of $c = 4$ in Corollary 5). For a graph G, let $\chi_a(G)$ denote the least integer k such that G has an acyclic coloring with k colors. It is known that there is a function f such that every graph G is $f(\chi_a(G))$-degenerate [3]. However, there exist families of 2-degenerate graphs with unbounded acyclic chromatic number. It follows that Theorem 9 can be applied to wider classes of graphs than Theorems 4, 6, and 8.

A class of graphs is hereditary if it is closed under taking induced subgraphs.

Lemma 10. Let ℓ be an integer and C be a hereditary class of graphs such that every graph in C can be equitably partitioned into ℓ induced forests. Then for any $k \geq \ell$, any graph in C can be equitably partitioned into k induced forests.

Proof. Let G be a graph of C, and let n be the number of vertices of G. Let $n = kq + s$, with $0 \leq s < k$. Note that an equitable partition of G into k sets consists of s sets of size $\lceil n/k \rceil$ and $k - s$ sets of size $\lfloor n/k \rfloor$.

Let $G_0 = G$. For any $1 \leq i \leq k - \ell$, we inductively define G_i as a graph obtained from G_{i-1} by removing a set S_{i-1} of $\lceil n/k \rceil$ vertices (if $i \leq s$) or $\lfloor n/k \rfloor$ vertices (otherwise) inducing a forest in G_{i-1}. The existence of such an induced forest follows from the fact that for any $n' \geq \frac{n}{\ell}$, any induced subgraph of G on n' vertices contains an induced forest on at least $\lceil n'/\ell \rceil \geq \lceil n/k \rceil$ vertices. By assumption, the graph $G_{k-\ell}$ can be equitably partitioned into ℓ induced forests (each on $\lfloor n/k \rfloor$ or $\lceil n/k \rceil$ vertices). Combining these induced forests with $S_0, S_1, \ldots, S_{k-1}$, we obtain an equitable partition of G into k induced forests. \qed

The following result was proved in [6].

Theorem 11. Let $k \geq 3$ and $d \geq 2$. Then every d-degenerate graph can be equitably partitioned into k $(d-1)$-degenerate graphs.

We now give a short proof of Theorem 9 using Lemma 10 and Theorem 11.

Proof of Theorem 9. By Lemma 10 it is enough to show that any d-degenerate graph has an equitable partition into 3^{d-1} induced forests.

We prove this result by induction on $d \geq 1$. If $d = 1$, the result follows from the fact that a 1-degenerate graph is a forest. Assume that $d \geq 2$. By Theorem 11 G has an equitable partition into three $(d-1)$-degenerate graphs. By the induction, each of these graphs has an equitable partition.
4 LOUIS ESPERET, LAETITIA LEMOINE, AND FRÉDÉRIC MAFFRAY

into 3^{d-2} induced forests, therefore G has an equitable partition into $3 \cdot 3^{d-2} = 3^d - 1$ induced forests. \hfill \qed

Open problems. It remains to determine whether every planar graph has an equitable partition into three induced forests. By Theorems 4 and 9, a possible counterexample must have acyclic chromatic number equal to 5 and cannot be 2-degenerate.

It was proved by Poh [7] that every planar graph has a partition into three induced *linear forests* (i.e. graphs in which each connected component is a path). A natural question is the following.

Question 12. *Is there a constant c such that for any $k \geq c$, any planar graph has an equitable partition into k induced linear forests?*

It was pointed out to us by Yair Caro that the (outer)planar graph obtained from a large path by adding a universal vertex shows that Question 12 has a negative answer.

References

[1] M.O. Albertson, G.G. Chappell, H.A. Kierstead, A. Kündgen and R. Ramamurthi, *Coloring with no 2-colored P_4’s*, Electron. J. Combin. 11 (2004), #R26.

[2] O.V. Borodin, *On acyclic coloring of planar graphs*, Discrete Math. 25 (1979) 211–236.

[3] Z. Dvořák, *On forbidden subdivision characterizations of graph classes*, European J. Combin. 29 (2008), 1321–1332.

[4] A. Hajnal and E. Szemerédi, *Proof of a conjecture of P. Erdős*, in: Combinatorial Theory and its Application (P. Erdős, A. Rényi and V. T. Sós, eds.), pp 601–623, North-Holland, London, 1970.

[5] H.A. Kierstead, A.V. Kostochka, M. Mydlarz, and E. Szemerédi, *A fast algorithm of equitable coloring*, Combinatorica 30(2) (2010), 217–224.

[6] A.V. Kostochka, K. Nakprasit, and S.V. Pemmaraju, *On equitable coloring of d-degenerate graphs*, SIAM J. Discrete Math. 19(1) (2005), 83–95.

[7] K.S. Poh, *On the linear vertex-arboricity of a planar graph*, J. Graph Theory 14 (1990), 73–75.

[8] A. Raspaud and E. Sopena, *Good and semi-strong colorings of oriented planar graphs*, Inform. Proc. Letters 51 (1994), 171–174.

[9] J.-L. Wu, X. Zhang, and H. Li, *Equitable vertex arboricity of graphs*, Discrete Math. 313(23) (2013), 2696–2701.

Laboratoire G-SCOP (CNRS, Grenoble-INP), Grenoble, France

E-mail address: louis.esperet@g-scop.fr

Laboratoire G-SCOP (CNRS, Grenoble-INP), Grenoble, France

E-mail address: laetitia.lemoine@g-scop.fr

Laboratoire G-SCOP (CNRS, Grenoble-INP), Grenoble, France

E-mail address: frederic.maffray@g-scop.fr