Compliance towards infection prevention measures among health professionals in public hospitals, southeast Ethiopia: a cross-sectional study with implications of COVID-19 prevention

Demisu Zenbaba 1*, Biniyam Sahiledengle 1, Abulie Takele 1, Yohannes Tekalegn 1, Ahmed Yassin 1, Birhanu Tura 1, Adem Abdul-Kadir 1, Edao Tesa 1, Alelign Tasew 1, Gemenchu Ganfure 2, Genet Fikadu 2, Kenbon Seyoum 2, Mohammedawel Abduku 2, Tesfaye Assefa 3, Garoma Morka 3, Makida Kemal 3, Adisu Gemechu 3, Kebebe Bekele 3, Abdi Tessaema 4, Safi Haji 4, Gebisa Haile 4, Alemu Girma 5, Mohammedaman Mama 6, Asfaw Negero 6, Eshetu Nigussie 6, Habtamu Gezahegn 7, Daniel Atlaw 7, Tadele Regasa 7, Heyder Usman 8 and Adem Esmael 3

Abstract

Introduction: The new coronavirus disease 2019 is an emerging respiratory disease caused by the highly contagious novel coronavirus which has currently overwhelmed the world. Realizing a comprehensive set of infection prevention measures is a key to minimize the spread of this virus and its impacts in all healthcare settings. Therefore, this study was aimed to assess the compliance towards COVID-19 preventive measures and associated factors among health professionals in selected public hospitals, southeast Ethiopia.

Methods: A descriptive hospital-based cross-sectional study was conducted among 660 health professionals in public hospitals of southeast Ethiopia from October 1 to 31, 2020. A multistage sampling technique was used to select the study participants. Data were collected by interview using structured and pretested questionnaires. Ordinary logistic regression modeling was used to estimate the crude and adjusted odds ratio. To declare the statistical significance of factors associated with the outcome variable, P-value < 0.05 and 95% confidence interval were used.

Results: A total of 654 health professionals were involved in the study; of whom, 313 participants were nurses. The overall good compliance and knowledge of health professionals regarding COVID-19 preventive measures were 21.6 and 25.5%, respectively. Working in the general hospital (AOR = 0.55; 95% CI 0.38, 0.79), service year (AOR = 2.10; 95% CI 1.35, 3.21), knowledge (AOR = 1.80; 95% CI 1.14, 2.89), and water availability (AOR = 3.26; 95% CI 2.25, 4.72) were some of the factors found to have a statistically significant association to compliance of health professionals regarding COVID-19 preventive measures.

(Continued on next page)
Conclusion: In this study, nearly one fifth of health professionals had good compliance towards COVID-19 prevention practices. Thus, a consistent supply of COVID-19 prevention materials, facilities, and improving the knowledge of health professionals through on and off-job training are crucial.

Keywords: Compliance, COVID-19, Preventive measures, Southeast Ethiopia

Introduction

Viral diseases are persistent to emerge and denote a serious issue to public health. In the preceding centuries, numerous viral epidemics such as the severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) were identified in different periods [1]. In our time, the new coronavirus disease 2019 (COVID-19) caused by the highly contagious novel coronavirus (SARS-CoV 2) which has currently overwhelmed the world [2, 3]. The known modes of transmissions are droplets, contact, and aerosols [4].

The healthcare systems of the countries in the world became shaken and disturbed due to the COVID-19 pandemic [5]. In Africa, the COVID-19 pandemic is uncontrollably rising and the reactions to this pandemic have been challenged by a shortage of human resources, personal protective equipment (PPE), limited infrastructure, inadequate systems for the prevention, and fragile healthcare systems [6–8]. Globally, there have been more than nearly 80.3 million confirmed cases, and more than 1.8 million deaths registered up to December 26, 2020. In Ethiopia, the first patient with COVID-19 was detected on March 3, 2020, in Addis Ababa. From then until December 26, 2020, 121,880 COVID-19 confirmed cases and 1897 deaths were reported [9].

Health professionals (HPs) are at the front line in fighting coronavirus spread that put them at the risk of contracting COVID-19 [10, 11]. Keeping safety in the working environment for the health professionals and an operative plan is crucial in each phase of the pandemic. COVID-19 preventive measures recommended by World Health Organization (WHO) consist of regular handwashing, with soap and running water or using alcohol-based hand sanitizer; using face masks; avoid touching the eyes, nose, and mouth if hands are not clean; and avoiding close physical contact [12]. Realizing a comprehensive set of infection prevention measures in all healthcare settings is a collective responsibility and critical to protecting the health and lives of our precious healthcare workforce as well as the key to minimize the spread of the virus in both health care settings and the community [13].

Despite the greater destructive consequences of COVID-19 to individuals and public health, non-compliance to the preventive measures has been reported around the world [14–16]. Previous studies conducted in different countries indicated that around one-tenth of healthcare workers remove their masks while talking to the patient, four-fifths of them reused surgical masks, and 44.9% correctly dispose of the used facemask in the yellow-coded bags. Overcrowding, limited infection prevention materials/supplies, less commitment of healthcare providers to the policies and procedures, insufficient training, and lack of policy were factors affecting COVID-19 prevention practice [16–18].

In Ethiopia, multiple interventions were implemented to prevent the COVID-19 pandemic before it causes a substantial impairment to the community. The government declared a state of emergency, and established a COVID-19 taskforce at national who were informing disease prevention measures, deliver regular situational updates, and organize massive awareness creation efforts using diverse social and mass media stages. The COVID-19 catastrophe sends a solid message to resistant health systems that can only be realized with a committed health workforce. Protecting everyone requires urgently addressing shortages of health workers, updating infection prevention measures, investing in capacity building, and warranting safe working environments [19, 20].

Currently, there are no conclusive cure and specific antiviral therapeutics that are suggested for preventing or treating the COVID-19. Thus, preventive measures ranging from individuals to large-scale societal level practices are the only available means to control the spread of the virus and minimize its impacts [13, 21]. In this regard, the findings of this study are crucial to health professionals, health facilities, or higher administrators and researchers to halt the spread of COVID-19 [17, 22]. Therefore, this study was aimed to assess the compliance towards COVID-19 preventive measures and associated factors among health professionals in selected public hospitals, southeast Ethiopia, 2020.

Methods

Study settings and design

A descriptive hospital-based cross-sectional study was conducted in selected public hospitals found in three zones (Bale, East Bale, and West Arsi) of southeast Ethiopia from October 1 to 31, 2020. The purposively selected zones consist of 164 health centers and 12 hospitals (4 primaries, 6 general, and 2 referral public
hospitals); of these, 7 hospitals were included in this study. According to Zonal Health Departments data of 2020, more than 4346 health professionals are employed with around 4.5 million populations in the catchment area of selected hospitals.

Source and study population
All health professionals who were working in hospitals found in three zones (Bale, East Bale, and West Arsi) were the source population. And all health professionals who are working in selected hospitals of three zones were the study population.

Sample size and sampling procedure
The sample size was calculated using the single population proportion formula by considering a 95% confidence interval (CI), 5% margin of error \((d)\), proportion \((P)\) 50%, and 1.5 of design effect. Considering 10% of the nonresponse rate, the final sample size 660 was obtained. A multistage sampling technique was used to select the study participants. Initially, the hospitals were stratified into primary, general, and referral hospitals. Accordingly, from each stratum, 2 primaries, 3 general, and 2 referral hospitals were selected using a simple random sampling technique. Based on the number of health professionals in each hospital, the total sample was proportionally allocated and each study participant was selected from the sampling frame using simple random sampling (lottery method).

Data collection tool, technique, and quality control
The questionnaire was developed first in English and translated to local languages by an expert of both languages “Amharic” and “Afan Oromo” and then back to English to check for consistency of the translation. The questionnaire was adapted and modified in the local settings from formerly available studies [23–25], CDC [26, 27], and WHO guidelines [28].

Data were collected by interviewer-administered, structured, and pretested, questionnaires containing health professionals’ socio-demographic characteristics, compliance, and knowledge regarding COVID-19 preventive measures. To assure the data quality, data collection instruments were pretested on 5% of the total sample size, and to minimize over-reporting of compliance to COVID preventive measures, the questionnaire was also set in PK (practice and knowledge) order.

Data processing and analysis
Data were entered using Epi-Data version 3.1 and analyzed using STATA version 14. Descriptive statistics were used to generate frequency tables, graphs, and ordinary logistic regression modeling was used to estimate crude \((p\)-value < 0.25) and adjusted odds ratio. To declare the statistical significance of factors associated to outcome variables, \(P\)-values < 0.05 and 95% confidence interval were used.

Operational definition
Compliance with COVID-19 preventive measures
In this study compliance to COVID-19 prevention measures was measured by using 18 questions with “Always, sometimes, and never” response options. A score of 1 was given for “always” and 0 for “sometimes and never” responses. Accordingly, the probable sum score of overall compliance to the COVID-19 prevention measure was ranged from 0 to 18. Respondents who score < 50% (score below 9), 50–79% (score 9–14 out of 18 items), and 80–100% (score 15–18 out of 18 items) were considered having poor, moderate, and good compliance towards COVID-19 prevention measures. Similarly, the knowledge of health professionals was assessed using 10 COVID prevention measure-related questions. Respondents who score < 50% (score below 5 out of total items), 50–79% (score 5–7), and 80–100% (score 8–10) were considered having poor, moderate, and good knowledge towards COVID-19 prevention measures [29, 30].

Adequate natural ventilation is when working and staff room have at least two air inlets and outlet with room area 12 \(m^2\) and below.

Functional handwashing facility is functional handwashing sink with water and soap during data collection time.

Results
Socio-demographic characteristics of the study participants
Six hundred fifty-four health professionals were involved in the study with a 99% response rate, of which, 419 (64.1%) participants were males and 501 (76.6%) were in the age category of 25–35 years. Regarding health professionals, about 313 (47.9%) were nurses, and 318 (48.6%) were from the general hospital. About 227 (34.7%) and 264 (40.4%) of health professionals reported that working and staff rooms have no adequate natural ventilation. Regarding the COVID-19 prevention facility, 227 (34.7%) and 279 (42.7%) of health professionals reported that there were no functional handwashing facilities and continuous water supply at their workplace respectively (Table 1).

Compliance/practice to COVID-19 prevention measures
In this study, 141 (21.6%) of health professionals had good compliance with COVID-19 prevention measures. And the remaining 185 (28.3%) and 328 (50.2%) had moderate and poor compliance regarding
Knowledge regarding COVID-19 preventive measures
In this study, 342 (52.3%) and 167 (25.5%) of health professionals had moderate and good knowledge regarding COVID-19 preventive measures, respectively, whereas 145 (22.2%) of them had poor knowledge. The majority of the health professionals know respiratory droplets and close contact was the main transmission route of COVID-19. Concerning handwashing, only one fourth (25.9%) of health professionals correctly identify the recommended duration of handwashing by the World Health Organization (Table 4).

Factors associated with compliance towards COVID-19 prevention measures
Socio-demographic-, knowledge-, and health facility-related factors to compliance towards COVID-19 prevention measures were identified using an ordinary logistic regression model. Health professionals who working in general hospitals were 45% times less likely to have good compliance towards COVID-19 prevention measures than health professionals working in referral hospitals (AOR = 0.55; 95% CI 0.38, 0.79). The odds of having good compliance towards COVID-19 preventive measures were 2 times more likely among health professionals with 3–6 service years than health professionals who had ≤ 2 service years (AOR = 2.10; 95% CI 1.35, 3.21). Health professionals who have a good knowledge regarding COVID-19 preventive measures were 1.80 more likely to have good compliance regarding COVID-19 preventive measures than their counterparts (AOR = 1.80; 95% CI 1.14, 2.89). Similarly, the odds of having good compliance were nearly 3 times more likely

Table 1	Socio-demographic- and institution-related characteristics of health professionals in selected public hospitals, southeast Ethiopia (n = 654) (Continued)	
Variables	Frequency	Percent
Availability of continuous water supply	375	57.3
No	279	42.7
COVID-19 training of respondents	269	41.1
No	385	58.9
Other working departments: clinics (dental, ART, psychiatric, ophthalmic, TB, and dermatology), X-ray, laboratory, operation room, pharmacy department, and triage		
*Other health professionals: psychiatric nurse, BSc in optometry, radiographer, cataract surgeon, and dermatologist		

COVID-19 preventive measures, respectively (Tables 2 and 3, Figs. 1 and 2).

Table 1	Socio-demographic- and institution-related characteristics of health professionals in selected public hospitals, southeast Ethiopia (n = 654)	
Levels of hospitals	Frequency	Percent
Referral	293	44.8
General	318	48.6
Primary	43	6.6
Working departments of respondents	Frequency	Percent
Outpatient department	276	42.2
Inpatient department	288	44.0
Others	90	13.8
Sex of respondents	Frequency	Percent
Male	419	64.1
Female	235	35.9
Age of respondents	Frequency	Percent
≤ 24 years	74	11.3
25–35 years	501	76.6
36–45 years	62	9.5
≥ 46 years	17	2.6
Profession of respondents	Frequency	Percent
Doctors	87	13.3
Nurses	313	47.9
Midwives	98	15.0
Laboratory technicians (technologist)	37	5.7
Health officer	39	6.0
Others*	80	12.2
Educational status of respondents	Frequency	Percent
Diploma	137	20.9
First degree	490	74.9
Second degree and above	27	4.1
Working rooms have adequate ventilation	Frequency	Percent
Yes	427	65.3
No	227	34.7
Staff rooms have adequate ventilation	Frequency	Percent
Yes	390	59.6
No	264	40.4
Presence COVID-19 prevention committee	Frequency	Percent
Yes	474	72.5
No	166	25.4
I don't know	14	2.1
Functional handwashing facility	Frequency	Percent
Yes	427	65.3
No	227	34.7
among health professionals who know the presence COVID-19 Prevention Committee to their counter-part (AOR = 2.97; 95% CI 1.96, 4.50). The odds of having good compliance towards COVID-19 preventive measures were nearly 3 times higher among health professionals who had functional handwashing facilities (AOR = 2.66; 95% CI 1.78, 3.97) and continuous water supply (AOR = 3.26; 95% CI 2.25, 4.72) at their working place respectively (Table 5).

Discussion

Compliance with infection prevention practices is essential for minimizing transmission of infection, particularly crucial during the COVID-19 pandemic [19, 31]. This study has assessed the compliance towards COVID-19 preventive measures among health professionals in selected public hospitals, southeast Ethiopia. In this study, the overall good compliance towards COVID-19 preventive measures among health professionals was found to be 21.6%. This finding was lower than a study conducted in northwest Ethiopia, 38.7% [32], and in China, 87% [33]. The possible explanation for the disparity of this finding might be due to the difference in the number outcome variable category (two vs. three), distribution of COVID-19 prevention supplies and facilities (at different levels of hospitals, or poor managerial attention). Moreover, the compliance disparity might be due to the duration of the study (early and late pandemic) and disease burden.

In this study, about 64.2% of health professionals reported using face masks at the workplace whenever approaching COVID-19 suspected or confirmed patients. Despite wearing the face mask is mandatory within the health facility, our findings showed that only around two thirds of health professionals (HPs) use masks, which means, about one third of HPs significantly facilitate the chance to acquire or transmit the disease. This might be because some HPs may have difficulty of using masks due to uncomfortability and shortage of masks [29]. This finding is comparable with the study conducted in eight teaching hospitals in Ethiopia, 67.3% [34]. This consistency might be due to the shortage of masks which similarly affects all healthcare facilities found in Ethiopia. In this study, around 56% and
Table 3: The level of compliance to COVID-19 prevention measures among health professionals (HPs) in public hospitals, southeast Ethiopia, 2020 (n = 654)

Variables	HP’s compliance to COVID-19 preventive measures	P-value		
	Poor, n (%)	Moderate, n (%)	Good, n (%)	
Levels of hospitals				
Referral	122 (41.6)	101 (34.5)	70 (23.9)	0.003
General	182 (57.2)	73 (23.0)	63 (19.8)	
Primary	24 (55.8)	11 (25.6)	8 (18.6)	
Working departments of respondents				
Outpatient department	134 (48.6)	79 (28.6)	63 (22.8)	0.07
Inpatient department	139 (48.3)	91 (31.6)	58 (20.1)	
Others	55 (61.1)	15 (16.7)	20 (22.2)	
Sex of respondents				
Male	220 (52.5)	115 (27.4)	84 (20.0)	0.25
Female	108 (46.0)	65 (27.7)	57 (24.3)	
Age of respondents				
≤ 24 years	46 (62.2)	18 (24.3)	10 (13.5)	0.02
25–35 years	253 (50.5)	142 (28.3)	106 (21.2)	
36–45 and above 46 years	29 (36.7)	25 (31.6)	25 (31.6)	
Service years				
≤ 2 years	134 (63.5)	56 (26.5)	21 (10)	< 0.001
3–6 years	99 (45.8)	63 (29.2)	54 (25.0)	
7–10 and above 10 years	95 (41.9)	66 (29.1)	66 (29.1)	
Professions				
Doctors and health officers	64 (50.8)	36 (28.6)	26 (20.6)	0.98
Nurses and midwives	208 (50.6)	115 (28.0)	88 (21.4)	
Lab technician and others	56 (47.9)	34 (29.1)	27 (23.1)	
Educational status of respondents				
Diploma	60 (43.8)	43 (31.4)	34 (24.8)	0.24
First degree and above	268 (51.8)	142 (27.5)	107 (20.7)	
Presence COVID-19 prevention committee				
Yes	199 (42.0)	148 (31.2)	127 (26.8)	< 0.001
No	129 (71.7)	37 (20.6)	14 (7.8)	
Functional handwashing facility				
Yes	160 (37.5)	137 (32.1)	130 (30.4)	< 0.001
No	168 (74.0)	48 (21.1)	11 (4.8)	
Availability of continuous water supply				
Yes	129 (34.4)	127 (33.9)	119 (31.7)	< 0.001
No	199 (71.3)	58 (20.8)	22 (7.9)	
COVID-19 training				
Yes	127 (47.2)	71 (26.4)	71 (26.4)	0.042
No	201 (52.2)	114 (29.6)	70 (18.2)	
Knowledge of health professionals				
Poor	82 (56.6)	40 (27.6)	23 (15.9)	0.015
Moderate	180 (52.6)	91 (26.6)	71 (20.8)	
Good	66 (39.5)	54 (32.3)	47 (28.1)	
Overall level of compliance, n (%)	328 (50.2%)	185 (28.3%)	141 (21.6%)	
54.9% of health professionals’ practice frequent handwashing before and after patients contact respectively. Again, this finding is under expected; only half of HPs reported having compliance towards one of the critical handwashing times recommended by the World Health Organization. This might be due to 65.3 and 57.3% of health professionals reported having a functional handwashing facility and continuous water supply at their workplace, respectively. Regarding working environment disinfection, only 34.1% of HPs disinfect examination tables and beds found in working rooms before and after each procedure. This might be due to no access to disinfectants or less attention to the values of disinfection or believing as this activity belongs to cleaners or non-health professionals. This finding was slightly higher than the study finding, in Amhara Regional state Ethiopia, 29% [32]. This difference might be due to the inconsistency of health professionals’ commitments regarding disinfection. Similarly, about 28% of HPs disinfect the blood pressure apparatus or thermometer after every patient contact. This might be due to the forgetfulness of health professionals or less attention, which may trigger the transmission of COVID-19 through direct contact.

This study shows that 25.5% of the health professionals have a good knowledge regarding COVID-19 prevention measures. This finding is lower than the study conducted, in Amhara Region, 70% [30]; northwest Ethiopia, 73.8% [32]; and in China, 88.4% [35]. The possible reason for this variation might be due to the study settings; participant’s negligence to focus on all items listed to evaluate knowledge, and only 41.1% of HPs taken training on COVID-19 prevention measures. This study indicated that the good compliance and knowledge of HPs regarding COVID-19 preventive measures were somewhat comparable, 21.6 and 25.5%, respectively. This
implied that the health professional’s compliance towards COVID-19 preventive measures was not over-reported when compared to their knowledge.

Based on the ordinary logistic regression model; service years of health professionals, level of hospital, knowledge of health professionals, presence of the COVID-19 prevention committee, handwashing facility, and water availability were factors associated with compliance regarding COVID-19 preventive measures. The odds of having good compliance were nearly 1.8 times higher among health professionals who had good knowledge regarding COVID-19 preventive measures. This might be attributed to adequate training (duration of training), the presence of reading materials/internet services, and personal commitments. The odds of having good compliance towards COVID-19 preventive measures were 2 times more likely among health professionals with 3–6 service years than health professionals with ≤ 2 service years. This finding

Variable	Response	Frequency	Percent
COVID-19 is caused by	Viral	562	86.1
	Bacterial	67	10.3
	I don’t know	25	3.7
What is the main transmission route of COVID-19	Respiratory droplets and close contact	583	89.3
	Water	52	8.0
	Food	17	2.6
	I don’t know	2	0.2
How long is the incubation period for COVID-19	2–14 days	457	70.0
	3–7 days	92	14.1
	More than 14 days	101	15.5
	I don’t know	4	0.5
Who is susceptible to COVID-19	People are generally susceptible	404	61.9
	The old and children	97	14.9
	Young adults	69	10.6
	People with pre-existing disease	81	12.4
	I don’t know	3	0.3
The main clinical manifestations of COVID-19	Fever and dry cough	563	86.1
	Fatigue	42	6.4
	Sore throat and myalgia	43	6.6
	Diarrhea	6	0.8
Patient with underlying chronic disease are at a higher risk of infection	Yes	588	90.0
	No	44	6.7
	I don’t know	22	3.2
Treatment option for COVID-19	Supportive care	500	76.6
	Antiviral treatment provision	113	17.3
	No definitive management	37	5.7
	I don’t know	4	0.5
WHO recommended duration of handwashing with soap and water	40–60 s	169	25.9
	20–30 s	450	68.9
	1 h	35	5.2
WHO recommended duration of alcohol hand rub using sanitizer	20–30 s	229	35.1
	10 s	307	47.0
	20 s	118	17.9
Recommend physical distance	0–1 m	36	5.5
	2 and above m	618	94.5
Variables/factors	Unadjusted and adjusted ordinary logistic regression	Base outcome (poor)	
---	---	---------------------	
	COR 95% CI P-value	AOR 95% CI P-value	
Level of hospital			
Referral	1	1	
General	0.60 (0.45, 0.81)* 0.001	0.55 (0.38, 0.79)** 0.001	
Primary	0.62 (0.33, 1.14) 0.123	0.99 (0.49, 2.04) 0.99	
Working departments			
Outpatient department	1.48 (0.92, 2.39) 0.103		
Inpatient department	1.43 (0.89, 2.20) 0.14		
Others	1		
Sex			
Male	1		
Female	1.29 (0.96, 1.75) 0.09		
Age			
≤ 24 years	1		
25–35 years	1.63 (1.02, 2.65)* 0.049		
36–45 and above 46 years	2.84 (1.54, 5.25)* 0.001		
Service years			
≤ 2 years	1		
3–6 years	2.21 (1.52, 3.20)* < 0.001	2.10 (1.35, 3.21)** 0.001	
7–10 and above 11 years	2.65 (1.84, 3.83)* < 0.001	2.40 (1.50, 3.84)** 0.001	
Educational status			
Diploma	1		
First degree and above	0.75 (0.52, 1.06) 0.102		
Presence COVID-19 prevention committee			
Yes	3.61 (2.51, 5.19)* < 0.001	2.97 (1.96, 4.50)** < 0.001	
No	1		
Functional handwashing facility			
Yes	5.14 (3.63, 7.28)* < 0.001	2.66 (1.78, 3.97)** < 0.001	
No	1		
Availability of continuous water supply			
Yes	4.87 (3.52, 6.74)* < 0.001	3.26 (2.25, 4.72)** < 0.001	
No	1		
COVID-19 training			
Yes	1		
No	0.75 (0.56, 1.01) 0.056		
Knowledge of health professionals			
Poor	1		
Moderate	1.22 (0.84, 1.78) 0.29	1.17 (0.78, 1.78) 0.45	
Good	1.99 (1.30, 3.03)* 0.000	1.8 (1.14, 2.89)** 0.014	

*p < 0.05 = crude OR
**p < 0.05 = adjusted OR
was comparable with the study finding in Amhara Region, Ethiopia [30]. This could be because as the HPs service years increase, the exposure and fear for such pandemic will increase and may practice prevention measures more strictly. On the other hand, the odds of having good compliance towards COVID-19 preventive measures were nearly 3 times more likely among health professionals who know the presence COVID-19 prevention committee in hospitals than their counterparts. This might be due to the committee informing HPs of the key COVID-19 preventive measures that are to be practiced during regular internal supervision.

Limitation of the study
This study had some limitations that include hospitals currently serve as COVID-19 treatment and isolation centers were not included. As the study assessed self-reported compliance regarding COVID-19 prevention measures, it may be affected by social desirability. Despite these limitations, our findings provide valuable information about health professionals’ compliance regarding COVID-19 prevention measures.

Conclusions
Regardless of the above limitation, around one fifth of health professionals in selected public hospitals of south-east Ethiopia had good compliance towards COVID-19 preventive measures. Nearly one fourth of health professionals had good knowledge of COVID-19 preventive measures. In this study, level of hospital, service years, presence of COVID-19 prevention committee, knowledge on COVID-19 preventive measures, availability of functional handwashing facility, and continuous water supply at the workplace were factors associated with compliance of health professionals towards COVID-19 preventive measures. Thus, a consistent supply of COVID-19 prevention materials, facilities, and improving knowledge of health professionals through on- and off-job training is recommended. Moreover, local health authorities should work in cooperation with fruitful stakeholders to fulfill gaps and monitor the operation of all COVID-19 preventive measures in hospitals.

Abbreviations
COVID-19: Coronavirus disease 2019; HPs: Health professionals; WHO: World Health Organization; AOR: Adjusted odds ratio; COR: Crude odds ratio

Acknowledgements
We would like to thank all data collectors, supervisors, study participants, and Madda Walabu University for their helpful participation in this study.

Authors’ contributions
Primary author and all co-authors were involved in the conception, design, supervision, data analyses, interpretation, report writing, and preparation of the first draft of the manuscript. Finally, the authors read, commented on, edited, and approved the final version of the manuscript.

Funding
This study was funded by Madda Walabu University.

Availability of data and materials
The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Ethical approval was obtained from Madda Walabu University Institutional Review Board before the initiation of the study, and written informed consent has been obtained from every participant before the data collection. All the participants have been up-to-date about the objectives of the research, benefit, and risks. The participants had been informed that their namelessness and confidentiality were kept secured and as there were no risks related to their participation. Their involvement was entirely voluntary and notified that they had the right to refuse or stop at any point of the data collection.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Public Health, School of Health Sciences, Madda Walabu University Goba Referral Hospital, Bale, Goba, Ethiopia. 2 Department of Midwifery, School of Health Science, Madda Walabu University Goba Referral Hospital, Bale, Goba, Ethiopia. 3 Department of Nursing, School of Health Science, Madda Walabu University Goba Referral Hospital, Bale, Goba, Ethiopia. 4 Department of Medicine and Surgery, School of Medicine, Madda Walabu University Goba Referral Hospital, Bale, Goba, Ethiopia. 5 Department of Anesthesia, School of Medicine, Madda Walabu University Goba Referral Hospital, Bale, Goba, Ethiopia. 6 Department of Medical Laboratory, School of Medicine, Madda Walabu University Goba Referral Hospital, Bale, Goba, Ethiopia. 7 Department of biomedicale science, School of Medicine, Madda Walabu University Goba Referral Hospital, Bale, Goba, Ethiopia. 8 Department of Pharmacy, School of Medicine, Madda Walabu University Goba Referral Hospital, Bale, Goba, Ethiopia. 9. World Health Organization Novel Coronavirus (2019-nCoV) situation reports – wordometer, COVID-19 report, December 2020.

Received: 11 January 2021 Accepted: 23 March 2021
Published online: 16 April 2021

References
1. Zaki AM, Van Boeckel TP, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–20. https://doi.org/10.1056/NEJMoa1211721.
2. Novel COVPE. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu xing bing xue za zhiZhonghua liuxingbingxue zazhi. 2020;41(2):145.
3. Zhu Z, Zhong C, Zhang K, Dong C, Peng H, Xu T, et al. Epidemic trend of coronavirus disease 2019 (COVID-19) in mainland China. Zhonghua yu Fang Yi Xue za Zhi [Chinese Journal of Preventive Medicine]. 2020;54:E022–E.
4. CDC NHICorP. Pneumonia diagnosis and treatment of 2019-nCov infection from Chinese NHIC and 2020. 2020;S4E022–E.
5. McRibbon WJ, Fernando R. The global macroeconomic impacts of COVID-19: Seven scenarios. 2020.
6. Chersich MF, Gray G, Fairlie L, Eichbaum Q, Mayhew S, Allwood B, et al. COVID-19 in Africa: care and protection for frontline healthcare workers. Globalization Health. 2020;16:1–6.
7. COVID TC, Team R. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)-United States, February 12-March 16, 2020. 2020.
8. World Health Organization Coronavirus disease (COVID-19) outbreak: rights, roles, and responsibilities of health workers, including key considerations for occupational safety and health. World Health Organization, Interim guidance. 2020;19.
9. World Health Organization Novel Coronavirus (2019-nCoV) situation reports – wordometer, COVID-19 report, December 2020.
10. Nemati M, Ebrahimi B, Nemati F. Assessment of Iranian nurses’ knowledge and anxiety toward COVID-19 during the current outbreak in Iran. Arch Clin Infect Dis. 2020;15(COVID-19).

11. Gan WH, Lim JW, David K. Preventing intra-hospital infection and transmission of COVID-19 in healthcare workers. Safety Health Work. 2020.

12. World Health Organization. Coronavirus disease (COVID-19) advice for the public. 2020. 2020.

13. World Health Organization. Coronavirus disease (COVID-19): weekly epidemiological update. 2020.

14. Mohammed K, Khadilaj A, Noor A, Ameneah M, Hoda ZH, Yasmin A, et al. Knowledge, attitude and practice toward COVID-19 among the public in the Kingdom of Saudi Arabia: a cross-sectional study. Front Public Health. 2020;8:217.

15. Pollak Y, Dayan H, Shoham R, Berger I. Predictors of adherence to public health instructions during the COVID-19 pandemic. medRxiv. 2020.

16. Steens A, De Blasio BF, Veneti L, Gimma A, Edmunds WJ, Van Zandvoort K, et al. Poor self-reported adherence to COVID-19-related quarantine/isolation requests, Norway, April to July 2020. Eurosurveillance. 2020; 25(37):200167.

17. Saqlain M, Munir MM, Ur Rehman S, Gulzar A, Naz S, Ahmed Z, et al. Knowledge, attitude, practice and perceived barriers among healthcare professionals regarding COVID-19: a cross-sectional survey from Pakistan. J Hospital Infect. 2020.

18. FMOH. National Comprehensive COVID-19 management Handbook. Ethiopian Federal Ministry of Health April. 2020.

19. Chen Y, Tong X, Wang J, Huang W, Yin S, Huang R, et al. High SARS-CoV-2 antibody prevalence among healthcare workers exposed to COVID-19 patients. J Infect. 2020;81(3):420-6. https://doi.org/10.1016/j.jinf.2020.05.067.

20. Wang Z, He T, Zhu L, Sheng H, Huang S, Hu J. Active quarantine measures are the primary means to reduce the fatality rate of COVID-19. Bull World Health Organ. 2020;1-12.

21. Houghton C, Meskell P, Delaney H, Smalley M, Glenton C, Booth A, et al. Barriers and facilitators to healthcare workers’ adherence with infection prevention and control (IPC) guidelines for respiratory infectious diseases: a rapid qualitative evidence synthesis. Cochrane Database Syst Rev. 2020.

22. World Health Organization. Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected: interim guidance, 25 January 2020. 2020.

23. Sahiledengle B, Gebreslassie A, Getahun T, Hiko DJ. Infection prevention practices and associated factors among healthcare workers in governmental healthcare facilities in Addis Ababa. Ethiop J Health Sci. 2018;28(2):177–86. https://doi.org/10.4314/ejhs.v28i2.9.

24. Zenbaba D, Sahiledengle B, Bogale D. Practices of healthcare workers regarding infection prevention in bale zone hospitals, Southeast Ethiopia. Adv Public Health. 2020;1:2020.

25. Ayinde O, Usman AB, Aduroja P, Gbolahan A; A cross-sectional study on Oyo state health care workers knowledge, attitude and practice regarding coronavirus disease 2019 (COVID-19); 2020.

26. ECDC. Infection prevention and control and preparedness for COVID-19 in health care settings. Solna Sweden: ECDC Technical report Report, ECDC; 2020.

27. CDC Africa. Coronavirus disease 2019 (COVID-19) latest updates on the COVID-19 crisis from Africa CDC. https://www.Africacdc.org. 2020.

28. World Health Organization. Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected: interim guidance, 25 January 2020. 2020.

29. Olum R, Chekwicz G, Wekha G, Nasoszi DR, Bongomin F. Coronavirus Disease-2019: Knowledge, attitude, and practices of health care workers at Makerere University Teaching Hospitals, Uganda. Front Public Health. 2020;8:181.

30. Asemahagn MA. Factors determining the knowledge and prevention practice of healthcare workers towards COVID-19 in Amhara region, Ethiopia: a cross-sectional survey. Trop Med Health. 2020;48(1):1–11.29.

31. Kumar J, Katto MS, Siddiqui AA, Sahito B, Jamil M, Rasheed N, et al. Knowledge, attitude, and practices of healthcare workers regarding the use of face masks to limit the spread of the new coronavirus disease (COVID-19). Cureus. 2020:20124.

32. Kasise BA, Adane A, Tilahun YT, Kasahun EA, Ayele AS, Belew AK. Knowledge and attitude towards COVID-19 and associated factors among health care providers in Northwest Ethiopia. PloS one. 2020;15(8):e0238415. https://doi.org/10.1371/journal.pone.0238415.