Quantification of epitope abundance reveals the effect of direct and cross-presentation on influenza CTL responses

Ting Wu1,8, Jing Guan1,8, Andreas Handel2, David C. Tscharke3, John Sidney4, Alessandro Sette4,5, Linda M. Wakim6, Xavier Y.X. Sng1, Paul G. Thomas7, Nathan P. Croft1, Anthony W. Purcell1 & Nicole L. La Gruta1,6

The magnitude of T cell responses to infection is a function of the naïve T cell repertoire combined with the context and duration of antigen presentation. Using mass spectrometry, we identify and quantify 21 class 1 MHC-restricted influenza A virus (IAV)-peptides following either direct or cross-presentation. All these peptides, including seven novel epitopes, elicit T cell responses in infected C57BL/6 mice. Directly presented IAV epitopes maintain their relative abundance across distinct cell types and reveal a broad range of epitope abundances. In contrast, cross-presented epitopes are more uniform in abundance. We observe a clear disparity in the abundance of the two key immunodominant IAV antigens, wherein direct infection drives optimal nucleoprotein (NP)366–374 presentation, while cross-presentation is optimal for acid polymerase (PA)224–233 presentation. The study demonstrates how assessment of epitope abundance in both modes of antigen presentation is necessary to fully understand the immunogenicity and response magnitude to T cell epitopes.

1 Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia. 2 Department of Epidemiology and Biostatistics, Health Informatics Institute and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA. 3 John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia. 4 Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA. 5 Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA. 6 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia. 7 Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105, USA. 8 These authors contributed equally: Ting Wu, Jing Guan. Correspondence and requests for materials should be addressed to N.P.C. (email: nathan.croft@monash.edu) or to A.W.P. (email: anthony.purcell@monash.edu) or to N. Gruta. (email: nicole.la.gruta@monash.edu)
CTL responses are a critical determinant of protection against a number of diseases and there is a recognized need to develop vaccines that more effectively elicit CD8+ T-cell immunity. The optimum design of any T-cell-based vaccine mandates a comprehensive understanding of the factors that govern peptide immunogenicity and the size of the immune response. It is likely that the context and differential abundance of epitopes presented by MHC-I molecules plays a critical role in driving the reproducible CTL response hierarchies observed in MHC-matched individuals, especially during natural infection. Certainly, indirect analyses indicate antigen abundance plays a key role—alteration of epitope context or dose (or both) within a pathogen, for example, has the capacity to alter the size of the corresponding T-cell response. Our appreciation of the impact of epitope abundance on antigenicity and CTL response magnitude has, until recently, been limited by a lack of sufficiently sensitive methodologies to accurately and specifically probe this parameter. It is further complicated by the fact that MHC-I-restricted epitopes may be presented by either directly infected cells or by professional antigen-presenting cells that take up infecting material and exogenous viral antigens (cross-presentation). Each pathway may drive distinct epitope presentation characteristics for T-cell priming and expansion, yet the breadth and context of epitope abundance has not been studied systematically. Consequently, the question of how epitope abundance contributes to the immunogenicity and immunodominance of virus-derived CD8+ T-cell epitopes remains poorly understood.

IAV infection of C57BL/6 (H-2b) mice elicits a CTL immunodominance hierarchy, with reproducibly large (immunodominant) responses directed towards the H-2Db-restricted epitopes NP366–374 and PA224–233, with all detectable responses, including those directed toward DpbPB1–F262–70, KpbPB1–T70–251, KNs2114–121, and KpM1128–135 eliciting smaller (subdominant) responses. Using an in vitro mass spectrometry-based strategy to identify and quantitate naturally processed H-2b-restricted peptides, we identify 21 IAV-derived peptides following both direct infection and cross-presentation. These include seven novel peptides, presented by H-2Db and H-2Kb. All identified peptides are able to elicit CD8+ T-cell responses following infection, indicating that epitope presentation following in vitro infection is representative of that during in vivo infection. MHC-I-associated peptide abundance following direct infection is significantly correlated between dendritic cell (DC) and lung epithelial cells, reflecting conserved viral antigen expression and processing during infection across different cell types. Strikingly, the relative abundance of peptides presented following direct and cross-presentation highlights a remarkable disparity between the two immunodominant epitopes despite most peptides showing an overall correlation. Notably, the PA224–233 peptide is much better presented via cross-presentation, while the NP366–374 peptide is optimally presented following direct infection. The addition of quantitative mass spectrometry data from directly infected cells and cross-presented viral antigen is used along with other variables (naïve T-cell precursor frequency, MHC-I-binding affinity, protein abundance) to model the drivers of T-cell response magnitude to IAV. This analysis indicates significant contributions of both direct and cross-presentation, as well as peptide affinity for MHC-I, in establishing the IAV-specific CD8+ T-cell immunodominance hierarchy.

Results

Identification and quantitation of MHC-I-bound IAV peptides

Although a number of CD8+ T-cell epitopes have been identified in the B6 model of IAV infection (Table 1), their identification has been predominantly achieved through epitope prediction and screening of T-cell responses. To define a more complete spectrum of MHC-I-bound IAV-derived peptides presented following infection, we employed a conventional mass spectrometry approach (LC-MS/MS) to detect H-2Db- and H-2Kb-bound viral peptides following in vitro infection of DC2.4 cells. Infected DC2.4 cells were harvested and lysed at 8 h post infection (hpi), peptide-MHC-I complexes (pMHC-I) were isolated, and peptides analyzed by LC-MS (Supplementary Data 1). A total of 21 IAV-derived MHC-I-bound peptides were identified. These included the NP366–374 [Dkb], PA224–233 [Dkb], NS2114–121 [Kb], PB1703–711 [Kb] and PB1–F262–70 [Dkb] peptides to which T-cell responses have been extensively characterized, and seven novel peptides that had not been previously reported (Table 1). Of these novel peptides, three were derived from the HA protein, two from the M1 protein, and one each from NA and NS2. HA41–49 (VTVTHSVNL) was detected in both Kb and Dkb eluates, indicating that this peptide is a promiscuous binder, whilst NS2114–121 was the only novel Kb-binder (Table 1). Although mouse MHC-Kb and Dkb molecules typically bind peptides of 8–10 aa in length, three of the seven newly identified peptides were 11 aa long. The length of the newly identified peptides likely contributed to their obscurity to date since previous publication of a widely tested potential repertoire of IAV-derived epitopes generated via a matrix-based algorithm, assumed lengths of 8 aa for Kb binders and 9–10 aa for Dkb binders. In summary, this screening process culminated in the identification of 21 IAV peptides presented by either H-2Kb or H-2Db (or both for HA41–49), including all of the well-characterized epitopes known to elicit CD8+ T-cell responses.

Quantitation of directly presented IAV peptides

Having established the detectable repertoire of IAV peptides directly presented by DC2.4 cells at 8 hpi, we next quantitated the abundance of each peptide. The IAV peptides isolated from H-2Db and Kb molecules were quantitated using an LC-MRM (liquid chromatography-multiple reaction monitoring) approach as previously reported for other viral epitopes (Supplementary Data 2). Stable isotope-labeled viral peptides were synthesized and LC-MRM parameters individually optimized for each peptide to provide a complete suite of internal quantitative standards (see Table 1, Supplementary Tables 1–3, and Supplementary Figs. 1 and 2). The abundance of the 21 IAV-derived peptides spanned three orders of magnitude, ranging from 1–2 copies/cell of PB1–F262–70 to an average of 3871 copies/cell of NP366–374 (Fig. 1a). Of the well-characterized CD8+ T-cell epitopes, the immunodominant NP366–374 and subdominant NS2114–121 peptides were the most abundant, being present at an average of 3871 and 2464 copies/cell, respectively, while the subdominant epitopes PB1–F262–70 and PB1703–711 were substantially lower at 684 and 294 copies/cell, respectively. One of the least abundantly present species was the immunodominant epitope PA224–233 at only 7 copies/cell. Thus, the abundance of peptides presented following direct infection of the DC2.4 cells did not predict the CTL immunodominance hierarchy.

Given that productive IAV infection is restricted to respiratory epithelial cells, which are also the targets of the IAV-specific CTL response, we next investigated the relative abundance of IAV-derived peptides presented on H-2Db and Kb molecules expressed on the surface of an infected lung epithelial cell line (LET1 cells) (Supplementary Data 2). Although the infection efficiency of LET1 cells was similar to DC2.4 cells (~80–85%) (Supplementary Fig. 3a), the expression of surface H-2Kb and Dkb complexes was lower in LET1 cells (Supplementary Fig. 3b), resulting in an overall reduction in the yield of peptides/cell (Fig. 1b). However,
peaked at around 6.5 hpi and gradually diminished thereafter (Fig. 2a, yellow), 12 peptides whose presentation peaked at around 9.5 hpi and subsequently diminished (Fig. 2a, red), and two peptides whose presentation was continuing to increase at 12.5 hpi (Fig. 2a, blue). Neither of the immunodominant NP366–374 or PA224–233 epitopes showed a more rapid presentation kinetic than subdominant determinants, nor was there an association between duration of presentation and immunodominance, with NP366–374 presentation declining at 12.5h (Fig. 2a, dashed lines).

Given the suggestion that peptide presentation may be more closely associated with the rate of protein translation rather than steady-state protein amounts, we determined the relationship between the kinetics of protein expression and peptide presentation. Antigen expression was detectable either prior to, or coincident with, the detection of presented peptide. Intriguingly, peak presentation of the majority of the peptides (15/21) preceded the peak of protein abundance, while the peak of the seven remaining peptides was coincident with peak antigen expression (Fig. 2b). These observations corroborate studies suggesting proteasomal degradation of newly synthesized proteins is a prominent source of MHCI peptides. Again, as for absolute abundance at 8 hpi, the kinetics of peptide presentation were not dictated by the source protein as peptides derived from the same protein exhibited distinct kinetics. Thus, the majority of peptides were optimally presented between 6.5 and 9.5 hpi and the kinetics of epitope presentation occurred largely independently of antigen expression kinetics.

Table 1 Peptides identified from IAV-infected cells by LC-MS/MS

Peptide	Sequence	Length (aa)	Allele	Citation
NP36–43	IGRFYIQM	8	kβ	9
NP55–63	RLIQNSLTI	9	Dβ	70
NP366–374	ASNENMETM	9	Dβ	71
PA224–233	SSLENFRAY	10	Dβ	72
PB187–660	KINMEYDAV	8	kβ	9
PB197–711	SYYRPGV	9	kβ	73
PB12–237	LSLRNPLV	9	Dβ	74
PB127–234	VYIELVL	8	kβ	7
NS24–146	SFQDILLRM	9	kβ	7
NS24–145	RTFSFQOL	8	kβ	7
M128–135	MGLYINRM	8	kβ	7
M1207–216	SQARQMVQAM	10	Dβ	7
M1277–237	AGKLNDLLENL	11	Dβ	7
HA31–49	VTVTHSVNL	9	Dβ	7
HA31–49	VTVTHSVNL	9	Dβ	7
HA304–311	SSLPYQNI	8	kβ	8
HA308–316	YQNIHVTI	9	Dβ	7
HA309–399	NGITKNKNTVI	11	Dβ	7
HA302–409	MNQFTAV	8	kβ	9
NA181–190	SGDNGAVAV	10	Dβ	9
NA181–191	SGDNGAVAVL	11	Dβ	7

Sequences in bold represent novel epitopes identified in this study.

IAV influenza A virus

Identification and quantitation of cross-presented peptides.

Cross-presentation has been implicated in the generation of CTL immunity during IAV infection. Having established the abundance hierarchy of each of the IAV peptides following direct infection of both a DC and a lung epithelial cell line, we next sought to determine whether a similar or distinct peptide hierarchy was observed following cross-presentation.

To assess cross-presentation of IAV-derived peptides (Fig. 3a), DCs were optimally presented between 6.5 and 9.5 hpi and the kinetics of epitope presentation occurred largely independently of antigen expression kinetics.

Kinetics of IAV peptide presentation after direct infection.

Unlike members of the orthopoxvirus or herpesvirus genera, in which discrete early, intermediate and late waves of transcription are readily defined, IAV has a segmented RNA genome that is simultaneously transcribed and is therefore unlikely to show large variation in protein expression kinetics. To investigate whether IAV-derived peptide presentation was also temporally uniform, cell lysates were harvested from IAV-infected DC2.4 cells at various timepoints post infection and viral epitope abundance determined by LC-MRM (Fig. 2a and Supplementary Fig. 4 and Supplementary Data 2). Six of the 21 epitopes were detectable by 30 min after infection, including all three of the M1 peptides (M1128–135, M1207–216, M1227–237), both of the NA peptides (NA181–190, NA181–191), and one of the HA peptides (HA41–49), indicating some preference for structural protein-derived peptides at this early timepoint. The majority of the remaining epitopes could be detected by 2.5 hpi, and all epitopes were detectable by 4.5 hpi. The subsequent kinetics of peptide presentation fell broadly into three categories: seven peptides whose presentation...
0.6365, p = 0.0019) (Supplementary Fig. 5d). However, there were some key outliers to this association. Most notably, the rank order of PA224–233 was substantially increased by cross-presentation such that it was one of the most abundantly cross-presented peptides (Fig. 3c). Given the overall lower efficiency of the cross-presentation system, these data suggest that PA224–233 is substantially more efficiently presented via cross- than direct presentation.

Measurement of peptide-MHC I binding strength. The strength of the noncovalent interaction between peptide and the binding groove of MHC has long been implicated in contributing to immunogenicity; however, the extent to which the affinity of this interaction ultimately impacts upon pMHC abundance remains largely unknown. To address the role of peptide binding affinity for MHC in determining epitope abundance and CTL responses, for each of the peptides identified in this study we have determined peptide-MHC affinity (IC50 nM) values experimentally using classical competition assays19 (Table 2). Overall, 17/20 (85%) of the peptides bound either H-2Kb or Db, or both with an affinity of 500 nM or better, an affinity threshold identified for the vast majority of known class I epitopes20,21; ten peptides can be classified as strong binders (IC50 < 50 nM) for one or the other allele, seven as intermediate binders (IC50 between 50 and 500 nM), and three as weak (IC50 between 500 and 5000 nM) or nonbinders (IC50 > 5000 nM). Surprisingly, there was no significant correlation between the strength of peptide binding, as defined by IC50 and epitope abundance measured following direct or cross-presentation (Fig. 4).

Characterization of T-cell responses to the identified IAV peptides. The above data represent the first in-depth analysis of the differential abundance of virus peptides presented by MHC class I complexes via the routes of direct versus cross-presentation. In order to relate this information to the immunogenicity of each peptide in vivo, we systematically characterized...
the immune response elicited to each peptide identified in this study after IAV infection. The magnitudes of epitope-specific CTL responses, as defined by IFN-γ production, were determined from spleen and bronchoalveolar lavage (BAL) 10 days after intranasal IAV infection of B6 mice (Fig. 5a) and Supplementary Fig. 6). As shown previously, D^bNP366–374 and D^bPA224–233 elicited dominant CD8+ T-cell responses (comprising ~60% of the total antiviral response) (Fig. 5b, c) in all other epitopes eliciting smaller responses. Strikingly, all 20 of the peptides identified in the analysis (this assay cannot distinguish between K^b- and D^b-restricted HA41–49-specific responses) were able to elicit a response in at least one mouse, with a consistent CD8+ T-cell response (found in ≥3 mice) detected toward 16 of the 20 IAV peptides. These public responses included all seven well-documented IAV-derived peptides (D^bNP366–374, D^bPA224–233, K^bPB1703–711, D^bPB1-F262–70, K^bNS2114–121, K^bM1227–237, and D^bNA181–190) (Fig. 5b), and a further nine peptides detected in this study. These data thus confirm that the peptides identified by mass spectrometry, despite being isolated from cells infected in vitro, are presented on MHC1 during vivo infection.

Collectively, CD8+ T-cell responses to the seven novel epitopes identified in this study comprise ~10% of the total antiviral response, as mapped thus far. Analysis of the frequency with which each peptide was able to elicit a response revealed a tendency for responses to be elicited in either a few individuals (≤3/11 mice; 35%) or in all mice (30%) (Fig. 5d). Perhaps unsurprisingly, the frequency with which a peptide was able to induce a CTL response was positively correlated to the magnitude of that response (Fig. 5e). These data suggest that a threshold of immunogenicity exists, above which all mice are able to respond and below which the response is more stochastic.

Modeling of parameters that may impact T-cell response magnitude. Given that we have measured multiple variables that may contribute to CTL immunodominance, both in this study and earlier investigations, and obtained an epitope-based hierarchy for each of these measures, we employed an integrated statistical and modeling approach to determine their relative contributions to the CTL immunodominance hierarchy. Initially, we investigated correlations between the outcome of CTL response for each epitope and all other epitope-specific variables. For each variable, we took the mean of repeated measurements for a given epitope and computed rank correlation between variables (Fig. 6a). As observed previously, for the five epitopes for which naive CTL precursors (CTLp) have been determined, there was a negative correlation between CTLp frequency and CTL responses after infection. Despite strong correlations in virus protein levels between DC2.4 and LET1 cells, protein abundance showed weak association with epitope abundance via direct or cross-presentation, nor did it correlate with CTL response magnitude. The variables found to be significantly positively associated with CTL response magnitude were the peptide abundances driven by each of the presentation pathways analyzed. Surprisingly, while IC_{50} showed a moderate correlation (RCC = −0.4) with the CTL response, it showed poor associations with all measures of epitope abundance.
To investigate the relationship between the antiviral T-cell response and the different epitope-related quantities in more detail, we moved from an analysis of rank correlations to an analysis of actual numeric values for each variable. We performed simple linear regression to evaluate linear correlations on the log scale between CTL response and each individual predictor variable. This analysis showed linear correlations of epitope presentation (DC2.4 and LET1 direct presentation and cross-presentation) and T-cell response magnitude, and no correlation between T-cell response and protein levels. This analysis also found that peptide IC50 was significantly correlated with T-cell response magnitudes (Fig. 6b).

These findings suggested that a multivariate linear model might further improve the ability to predict CTL magnitude. To test this, we used an exhaustive subset selection approach with cross-validation to assess multivariate linear regression models with all possible combinations of variables to determine their ability to predict CTL magnitude, as quantified by R^2. Naïve CTLp response and protein levels. This analysis also found that peptide IC50 was significantly correlated with T-cell response magnitudes (Fig. 6b).
frequency was excluded from this analysis due to the limited dataset. The best-performing model only included two variables: cross-presentation and IC50, and had a cross-validated R2 of 0.68 (and an R2 of 0.76 without cross-validation), indicating a substantial improvement over any individual predictor (Fig. 6b). Using a proportional marginal variance decomposition (PMVD) method, we found that around 66% of the relative importance was attributed to cross-presentation, with the remaining 34% attributed to IC50. This finding is in line with the univariate analysis shown in Fig. 6b, which identified cross-presentation as the strongest contributor to CTL response magnitude. While the direct presentation variables also showed strong correlation in the univariate analysis, they are strongly correlated with cross-presentation and are thus not selected by the model building routine.

Next, to investigate the role of each individual epitope, we performed the above analysis while withholding a different epitope from the data each time. For 19 of the 20 epitopes removed, all best-fit models included the variables cross-presentation and IC50 as the factors that contributed the most to CTL response magnitudes. Intriguingly, removal of the PA224-233 epitope changed the best-fit model to one that included the DC2.4 direct presentation and the DC2.4 and LET1 protein level variables. Thus, it seems that cross-presentation is the major correlate for the DPbPA224-233-specific CTL response, and that its weighting as a superior global correlate (compared to direct presentation) for the CTL response was due to its influence on the DPbPA224-233-specific CTL response.

Finally, to determine if a model that allowed more complex relations (i.e. beyond linear) between CTL magnitude and epitope-specific variables would perform better, we applied a support vector machine model (SVM), a random forest (RF), and a gradient boosted regression tree model (GBM). We also used a LASSO method as an alternative way of doing variable selection for a linear model. However, none of these models provided better performance than the multivariate linear model (measured by cross-validated R2) after tuning and training. Further details are provided in the Supplementary Methods. Thus, for the dataset analyzed here, cross-presentation and the IC50 variables additively determine T-cell response strength, with no further predictive strength gained from the other variables or from a more complicated model structure.

Table 2 Measured IC50 (nM) of each peptide

peptide	H-2D b	H-2K b
NP36-43	3303	1.9
NP55-63	184	463
NP36-374	18	—
PA224-233	0.16	38
PB163-660	—	156
PB11-211	28988	1.9
PB1-F22-70	18	12403
PB227-234	20903	2.8
NS26-16	10687	185
NS25-121	—	4.7
M128-135	—	92.6
M127-216	11225	26943
M127-233	5285	3306
HA42-49	872	7.9
HA304-311	—	4.7
HA308-316	1971	1138
HA309-399	118	22004
HA402-409	6180	3.0
HA467-476	173	—
NA181-190	65	262
NA181-191	64	585

Data for each peptide’s restricting allele are shown in bold type. A dash indicates IC50 > 40,000 nM

Discussion

Mass spectrometry analyses of the nature and abundance of IAV-derived peptides presented on MHCI after infection identified 21 peptides (including seven novel epitopes), all of which were able to elicit CD8+ T-cell responses after infection. Of the 21 peptides identified in this study, seven were 10–11 aa in length, including four of the seven novel peptides. Notably, all of these longer IAV-derived peptides were bound by H-2D b while all seven of the shorter octamers were bound by H-2K b, consistent with previous observations that MHC alleles exhibit distinct peptide length preferences. The identification of 10–11 aa peptides is also consistent with the observation that a substantial proportion of naturally occurring mouse MHCI-bound peptides are longer than the canonical length of 8–9 aa. Such observations are becoming more apparent as global immunopeptidomics analyses increase, and underscore the potential deficiencies in many predictive algorithms. That long peptides from viruses and tumors are naturally processed and presented on MHCI suggests they likely play a key role in antiviral and antitumor immunity.
via a central bulging from the antigen binding cleft or occasionally via amino- or carboxy-terminal extensions from the MHCI groove. Structural analysis of TCRs binding long peptides in complex with MHCI show that TCRs can achieve pMHCI recognition using a variety of strategies, including flattening the bulged peptide to increase MHCI contact, or sitting atop the peptide making minimal MHCI contact. Collectively, given their prevalence and the demonstrated ability of T cells to recognize long peptides, our data further suggest that proteome-wide discovery-based approaches should now be utilized to obtain a comprehensive representation of the peptidome.

Whilst we have conceivably captured all available H-2Db and Kb complexes from cells through immunoprecipitation, there is potentially some bias in peptide identification. For example, C18 chromatography may miss overly hydrophilic or hydrophobic sequences and, due to the stochastic nature of conventional MS modalities for peptide isolation and fragmentation, coupled to protein-centric search algorithms, we may fail to detect and assign peptides of lower abundance, poor ionization, or where ambiguous spectra have been acquired. It is also conceivable that a fraction of the viral repertoire is presented through proteasome-catalyzed peptide splicing, an area that requires further investigation.

Fig. 5 Analysis of primary CD8^+ T-cell responses to IAV-derived peptides. Naive B6 mice were infected i.n. with 1000 pfu PR8 IAV, and spleens harvested 10 days later. Splenocytes, enriched for CD8^+ T cells, were stimulated for 5 h in the presence or absence of 1 μM of individual peptides, and analyzed by intracellular staining for the production of IFN-γ and TNF. a Representative dot plots of CD8^+ T-cell production of IFN-γ and TNF following peptide stimulation. Values indicate the percentage of CD8^+ cells within each gate. b Number of splenic CD8^+ IFN-γ^+ cells responding to each peptide from 11 mice in two independent experiments ± SEM. c Relative contribution of each detectable epitope-specific CD8^+ T-cell response to the total detectable response. d Frequency (out of a total of 11 mice) with which the identified peptides are able to elicit CD8^+ T-cell responses. Numbers within pie chart indicate number of peptides. e The mean ± SEM CD8^+ T-cell response plotted against the cumulative number of mice in which the responses were detected. N = 11 mice from two independent experiments. Source data are provided as a Source Data File.

via a central bulging from the antigen binding cleft or occasionally via amino- or carboxy-terminal extensions from the MHCI groove. Structural analysis of TCRs binding long peptides in complex with MHCI show that TCRs can achieve pMHCI recognition using a variety of strategies, including flattening the bulged peptide to increase MHCI contact, or sitting atop the peptide making minimal MHCI contact. Collectively, given their prevalence and the demonstrated ability of T cells to recognize long peptides, our data further suggest that proteome-wide discovery-based approaches should now be utilized to obtain a comprehensive representation of the peptidome.

Whilst we have conceivably captured all available H-2Db and Kb complexes from cells through immunoprecipitation, there is potentially some bias in peptide identification. For example, C18 chromatography may miss overly hydrophilic or hydrophobic sequences and, due to the stochastic nature of conventional MS modalities for peptide isolation and fragmentation, coupled to protein-centric search algorithms, we may fail to detect and assign peptides of lower abundance, poor ionization, or where ambiguous spectra have been acquired. It is also conceivable that a fraction of the viral repertoire is presented through proteasome-catalyzed peptide splicing, an area that requires further investigation.

Fig. 5 Analysis of primary CD8^+ T-cell responses to IAV-derived peptides. Naive B6 mice were infected i.n. with 1000 pfu PR8 IAV, and spleens harvested 10 days later. Splenocytes, enriched for CD8^+ T cells, were stimulated for 5 h in the presence or absence of 1 μM of individual peptides, and analyzed by intracellular staining for the production of IFN-γ and TNF. a Representative dot plots of CD8^+ T-cell production of IFN-γ and TNF following peptide stimulation. Values indicate the percentage of CD8^+ cells within each gate. b Number of splenic CD8^+ IFN-γ^+ cells responding to each peptide from 11 mice in two independent experiments ± SEM. c Relative contribution of each detectable epitope-specific CD8^+ T-cell response to the total detectable response. d Frequency (out of a total of 11 mice) with which the identified peptides are able to elicit CD8^+ T-cell responses. Numbers within pie chart indicate number of peptides. e The mean ± SEM CD8^+ T-cell response plotted against the cumulative number of mice in which the responses were detected. N = 11 mice from two independent experiments. Source data are provided as a Source Data File.

via a central bulging from the antigen binding cleft or occasionally via amino- or carboxy-terminal extensions from the MHCI groove. Structural analysis of TCRs binding long peptides in complex with MHCI show that TCRs can achieve pMHCI recognition using a variety of strategies, including flattening the bulged peptide to increase MHCI contact, or sitting atop the peptide making minimal MHCI contact. Collectively, given their prevalence and the demonstrated ability of T cells to recognize long peptides, our data further suggest that proteome-wide discovery-based approaches should now be utilized to obtain a comprehensive representation of the peptidome.

Whilst we have conceivably captured all available H-2Db and Kb complexes from cells through immunoprecipitation, there is potentially some bias in peptide identification. For example, C18 chromatography may miss overly hydrophilic or hydrophobic sequences and, due to the stochastic nature of conventional MS modalities for peptide isolation and fragmentation, coupled to protein-centric search algorithms, we may fail to detect and assign peptides of lower abundance, poor ionization, or where ambiguous spectra have been acquired. It is also conceivable that a fraction of the viral repertoire is presented through proteasome-catalyzed peptide splicing, an area that requires further investigation.

Fig. 5 Analysis of primary CD8^+ T-cell responses to IAV-derived peptides. Naive B6 mice were infected i.n. with 1000 pfu PR8 IAV, and spleens harvested 10 days later. Splenocytes, enriched for CD8^+ T cells, were stimulated for 5 h in the presence or absence of 1 μM of individual peptides, and analyzed by intracellular staining for the production of IFN-γ and TNF. a Representative dot plots of CD8^+ T-cell production of IFN-γ and TNF following peptide stimulation. Values indicate the percentage of CD8^+ cells within each gate. b Number of splenic CD8^+ IFN-γ^+ cells responding to each peptide from 11 mice in two independent experiments ± SEM. c Relative contribution of each detectable epitope-specific CD8^+ T-cell response to the total detectable response. d Frequency (out of a total of 11 mice) with which the identified peptides are able to elicit CD8^+ T-cell responses. Numbers within pie chart indicate number of peptides. e The mean ± SEM CD8^+ T-cell response plotted against the cumulative number of mice in which the responses were detected. N = 11 mice from two independent experiments. Source data are provided as a Source Data File.

via a central bulging from the antigen binding cleft or occasionally via amino- or carboxy-terminal extensions from the MHCI groove. Structural analysis of TCRs binding long peptides in complex with MHCI show that TCRs can achieve pMHCI recognition using a variety of strategies, including flattening the bulged peptide to increase MHCI contact, or sitting atop the peptide making minimal MHCI contact. Collectively, given their prevalence and the demonstrated ability of T cells to recognize long peptides, our data further suggest that proteome-wide discovery-based approaches should now be utilized to obtain a comprehensive representation of the peptidome.

Whilst we have conceivably captured all available H-2Db and Kb complexes from cells through immunoprecipitation, there is potentially some bias in peptide identification. For example, C18 chromatography may miss overly hydrophilic or hydrophobic sequences and, due to the stochastic nature of conventional MS modalities for peptide isolation and fragmentation, coupled to protein-centric search algorithms, we may fail to detect and assign peptides of lower abundance, poor ionization, or where ambiguous spectra have been acquired. It is also conceivable that a fraction of the viral repertoire is presented through proteasome-catalyzed peptide splicing, an area that requires further investigation.

Fig. 5 Analysis of primary CD8^+ T-cell responses to IAV-derived peptides. Naive B6 mice were infected i.n. with 1000 pfu PR8 IAV, and spleens harvested 10 days later. Splenocytes, enriched for CD8^+ T cells, were stimulated for 5 h in the presence or absence of 1 μM of individual peptides, and analyzed by intracellular staining for the production of IFN-γ and TNF. a Representative dot plots of CD8^+ T-cell production of IFN-γ and TNF following peptide stimulation. Values indicate the percentage of CD8^+ cells within each gate. b Number of splenic CD8^+ IFN-γ^+ cells responding to each peptide from 11 mice in two independent experiments ± SEM. c Relative contribution of each detectable epitope-specific CD8^+ T-cell response to the total detectable response. d Frequency (out of a total of 11 mice) with which the identified peptides are able to elicit CD8^+ T-cell responses. Numbers within pie chart indicate number of peptides. e The mean ± SEM CD8^+ T-cell response plotted against the cumulative number of mice in which the responses were detected. N = 11 mice from two independent experiments. Source data are provided as a Source Data File.

via a central bulging from the antigen binding cleft or occasionally via amino- or carboxy-terminal extensions from the MHCI groove. Structural analysis of TCRs binding long peptides in complex with MHCI show that TCRs can achieve pMHCI recognition using a variety of strategies, including flattening the bulged peptide to increase MHCI contact, or sitting atop the peptide making minimal MHCI contact. Collectively, given their prevalence and the demonstrated ability of T cells to recognize long peptides, our data further suggest that proteome-wide discovery-based approaches should now be utilized to obtain a comprehensive representation of the peptidome.

Whilst we have conceivably captured all available H-2Db and Kb complexes from cells through immunoprecipitation, there is potentially some bias in peptide identification. For example, C18 chromatography may miss overly hydrophilic or hydrophobic sequences and, due to the stochastic nature of conventional MS modalities for peptide isolation and fragmentation, coupled to protein-centric search algorithms, we may fail to detect and assign peptides of lower abundance, poor ionization, or where ambiguous spectra have been acquired. It is also conceivable that a fraction of the viral repertoire is presented through proteasome-catalyzed peptide splicing, an area that requires further investigation.
Fig. 6 Analysis of parameter contribution to CD8⁺ T-cell response hierarchy.

a Correlations as assessed through spearman rank correlation test between all variables. Spearman rank correlation coefficient is shown in the upper diagonal and associated p value (not adjusted for multiple comparison) in the lower diagonal. Color coding indicates strength of positive (blue) or negative (red) correlation between specific variables. Note that because the contribution of HA41–49 bound to H-2Db or H-2Kb could not be distinguished for CTL response, the abundance of HA41–49 bound to H-2Db and H-2Kb have been added for each of the presentation modalities to yield a single value.

b Linear correlations between log-transformed outcome (CTL response magnitude at day 10) and log-transformed predictor variables. For each variable, we took the mean of all measurements before log transformation. R² values are shown for the performance of the model on the actual data used to fit the model. CTLp frequencies for five epitopes taken from ref. 22.
future investigation now that accessible algorithms are available.

In this study we comprehensively characterize epitope presentation during direct and cross-presentation and demonstrate its influence on CTL immunodominance hierarchies after IAV infection. This builds on a previous study that has shown that CTL precursor frequency fails to predict the magnitude of the ensuing immune response, making this an ideal model in which to define the impact of epitope abundance on antigenicity and CTL response magnitude. Following, we highlight several important findings that arise from this direct analysis of antigenicity and the implications for CTL recruitment and expansion during infection. Firstly, we observed that directly infected cells show the same rank order of epitope presentation and abundance despite their tissue of origin. Given that DC2.4 cells express immunoproteasome subunits, this challenges the notion that the immunoproteasome generates a unique repertoire of MHCI-binding peptides to the constitutive proteasome by virtue of unique cleavage site specificity. Our findings support later studies, which showed a positive effect of immunoproteasome on the abundance of antigenic peptides, but little evidence for the generation of a qualitatively distinct peptide repertoire. Secondly, our mass-spectrometry-based approach identified a number of new IAV peptides that were all immunogenic in at least one mouse, and that for many subdominant epitopes there was a private response where recruitment of these CTL specificities into the immune repertoire appears to be more stochastic than the responses to the more dominant T-cell determinants. The most plausible explanation for poor or sporadic responses despite detectable epitope presentation is a lack of available naïve T cells. So-called holes in the T-cell repertoire have been attributed, in part, to the deletion of cross-reactive T cells due to excessive similarity to self-peptides. Alternatively, some epitopes elicit poor T-cell responses despite a large number of available naïve T cells. In this case, the subdominance of the response may be a consequence of poor naïve T-cell quality, due either to a low affinity TCRs or noncanonical TCR–pMHC interactions that are incapable of driving robust signaling. Such observations highlight the need to rethink how we define immunogenicity and reflect the complex nature of the immune response that are not uniform even in syngeneic experimental systems. Thirdly, we observed that while direct presentation yielded peptide abundances that spanned three orders of magnitude, the levels of cross-presented IAV-derived epitopes were much more uniform. This suggests that cross-presentation normalizes antigen presentation, providing a niche for T-cell priming that facilitates the expansion of T-cell clones on a level playing field with respect to epitope abundances. Finally, and remarkably, when comparing direct versus cross-presentation we observed that although optimal presentation of NP366-374 was driven by direct presentation, the unique capacity of cross-presentation to drive high-level display of PA224-233 was associated with its immunodominant status. This was particularly striking in light of the exceedingly poor presentation of PA224-233 via direct presentation (ranking 19th of 21 peptides). The disparate behavior of these two immunodominant epitopes highlights the difficulty in predicting CTL response magnitude and confounds attempts to model the evolution of viral immunity.

Previous studies have indicated that the characteristics of antigens that are efficiently cross- versus directly presented are contrasting—short-lived, unstable cytosolic proteins are optimally presented via the direct route, while more stable forms of antigen, such as cell-associated proteins, are preferred for cross-presentation. Evidence for this comes from minigene expression of three IAV-derived H-2Db-binding peptides, NP366-374, PA224-233, and PB1-F262-70, which demonstrated the unique capacity of the PA224-233 peptide to be retained as a long-lived cytosolic pool of peptide that was able to sustain presentation for hours after termination of protein synthesis. Collectively, our findings go some way in demystifying the relative contributions of direct and cross-presentation by demonstrating that peptides largely have access to both pathways. However, our data also support the notion that distinct peptide characteristics can markedly favor cross-presentation over direct presentation, and such distinctions can have major effects on the CTL response hierarchy.

In the current analysis of IAV infection, in contrast to vaccinia virus (VACV) infection of the same DC2.4 cell line, we noted only minor variation in the kinetics of protein expression and no obvious correlation between that and the presentation kinetics of directly presented peptides sourced from those proteins. Of course, VACV, unlike IAV, is a large virus that exhibits temporal regulation of protein expression, which is likely to more easily facilitate the observation of associations between protein expression and epitope presentation that were not detected here. We did observe rapid (within 30 min) presentation of epitopes derived from relatively abundant viral structural proteins (M, NA, HA), that were likely derived from pre-existing viral proteins rather than de novo production. For later timepoints, (>3 hpi) the peak presentation of all peptides either preceded or was coincident with peak protein expression, suggesting that antigen presentation is linked with the translation of newly synthesized polypeptides. This would be consistent with any mechanism that allows for the sampling of newly translated proteins, including the disposal of defective products of translation or those that fail to achieve their final function in the viral lifecycle. This is also supported by other studies demonstrating the rapid presentation of peptides after translation, and overall poor correlation between pMHC levels and protein turnover.

Peptide affinity for MHC has been shown in several systems, including VACV and lymphocytic choriomeningitis virus (LCMV), to correlate with the immunogenicity of pMHC during infections. The elevated affinity is typically thought to increase the abundance of pMHC complex on the cell surface. Surprisingly, and in accordance with our recent findings for VACV, our data revealed that the strong correlation between peptide affinity for MHC (as measured by IC50) and T-cell response magnitude occurred independently of epitope abundance. This is exemplified by the similar relative levels of the HA41-49 peptide presented on H2Db and Kβ, following both direct and cross-presentation, despite this peptide exhibiting a substantially greater affinity for Kβ. Additionally, the affinities of the NP366-374 and PA224-233 peptides for H2Db were the highest observed, corresponding with their immunodominant status, but not with their differential abundance following direct presentation. Thus, in the absence of a notable effect on epitope abundance, it is possible that a relatively low affinity peptide/MHC interaction, under the tensile force that is characteristic of agonistic TCR-pMHC recognition, leads to unstable interactions between the TCR and pMHC that result in suboptimal T-cell activation. It is also possible that peptide affinity for MHC primarily influences the longevity of pMHC complexes, which is also proposed to be a key indicator of antigenicity, independently of the relative abundance of those complexes at a given timepoint.

The relevance of this study to the immune CD8+ T-cell responses in humans should be highlighted, especially since human responses to many pathogens, and IAV in particular, reflect recall, rather than primary, responses. Nonetheless, humans must acquire T-cell immunity to viruses, and the primary CTL response to the initial exposure event establishes a framework from which an individual’s capacity to respond to
virus rechallenge thereafter is defined. For example, studies suggest that repeated exposures to the same virus tend to focus responses that were established following primary infection2,3, and that in some cases pre-existing memory populations may detrimentally impact subsequent CD8+ T-cell responses4,5. Thus, an understanding of the key contributors to antigenicity and immunodominance in primary CD8+ T-cell responses is imperative for a comprehensive understanding of both primary and recall CD8+ T-cell responses in humans. Certainly, characteristics of mouse and human antiviral CD8+ T-cell responses (reproducible immunogenicity and immunodominance in MHC-matched individuals) are similar, and direct analyses of epitope presentation are becoming highly feasible in human cells6. Such studies will ultimately elucidate whether similar mechanisms drive CTL immunodominance in the human setting.

In summary, our study provides new insights into the mechanisms by which antigen presentation influences CTL response magnitude after infection, with both direct and cross-presentation making pivotal contributions to distinct epitope-specific CTL responses. Such studies will inform further studies relating the direct quantitation of epitope abundance to immune outcomes, are essential for the understanding and informed development of vaccines and immunotherapies targeting T-cell responses.

Methods

Cell lines. The two murine cell lines used in direct infection were DC2.418, a DC-like cell derived from B6 mice (kindly provided by Dr. Ken Rock, University of Massachusetts, Worcester, MA), and LET1 cells, a type 1 lung epithelial cell derived from B6 mice31. The cell lines used in cross-presentation were the human adenoacrinocarcinoma alveolar basal epithelial A549 cells (ATCC #CCL-185) and the murine-derived DC-Mat832 Muc-2 cells33 (kindly provided by Dr. Hans Acha-Orbea, University of Lausanne). Endothelial-like cells were prepared from endothelial precursors and cultured in 5% CO\textsubscript{2} in recommended growth medium (purchased from Life Technologies) supplemented with 10% fetal bovine serum, 50 IU/ml penicillin, 50 \textmu M streptomycin and 2 mM L-glutamine. DC2.4, LET1 and A549 cells were cultured in DMEM. Mutu cells were cultured in IMDM supplemented with Gluta-MAX34. Murine EL-4 lymphoma cell lines were maintained in RPMI 1640 supplemented with 10% fetal B, 50 IU/ml penicillin, 50 \textmu g/ml streptomycin and 2 mM L-glutamine (RF-10) and EG2, a subclone of EL-4 transfected with ovabumin (OVA) gene35, was maintained in RF-10 supplemented with 500 \mu g/ml G418 (Invitrogen).

Mice and viruses. C57Bl/6 (B6, H-2b) WT mice and OT-I transgenic mice expressing a TCR specific for the OVA\textsubscript{264-271} SIINFEKL peptide in complex with H2-Kb were housed in specific pathogen-free animal facility of the Department of Microbiology and Immunology, University of Melbourne (Victoria, Australia) or at the Animal Research Laboratories (ARL) at Monash University. Mice aged 6–12 weeks and PR8 H1N1 IAV (A/Puerto Rico/8/34) and PR8-OVA IAV36 were used in this study. All animal experimentation was conducted following the Australian National Health and Medical Research Council Code of Practice for the Care and Use of Animals for Scientific Purposes guidelines for housing and care of laboratory animals and performed in accordance with Institutional regulations after pertinent review and approval by the University of Melbourne and Monash University Animal Ethics Committee.

Synthetic peptides. Isotope-labelled peptides (>90% purity) were purchased from Mimotopes Pty Ltd (Clayton, Victoria, Australia) and dissolved in 100% (v/v) dimethyl sulfoxide or 20–30% (v/v) ACN according to the manufacturer’s instructions. The concentration of each peptide was determined using a Direct Detect37 Infrared Spectrometer (Merck, Germany).

Direct infection of cells. DC2.4 or LET1 cells were allowed to grow to 80–90% confluence in T175 flasks and harvested by trypsinisation. Cells (\texttimes{}1 \times{} 104) were washed and mock- or IAV-infected at a MOI of 5 at 37 °C for 1 h. The cells were then incubated for a further 7 h at 37 °C with gentle rolling, and counted. Cells were washed, snap frozen and stored at −80 °C.

Infection efficiency assay. At 8 hpi IAV or mock-infected DC2.4 or LET1 were fixed, permeabilized and stained with fluorescein isothiocyanate (FITC)-conjugated anti-influenza A nucleoprotein (NP) monoclonal antibody (D67, Biocense, San Diego, CA) for 30 min at 4 °C, followed by flow cytometric acquisition on a FACSCan (BD Biosciences, Oxford, UK) and analysis using FlowJo software (Tree Star Inc, Ashland, OR).

Intracellular cytokine staining. Lymphocytes were obtained from the pulmonary lung by bronchoalveolar lavage (BAL) and adherent cells were removed by incubating on plastic for 1 h at 37 °C. Single-cell preparations of spleen were enriched for CD8+ T cells by panning on tissue culture plates coated previously with AffiPure goat anti-mouse IgG+IgM (H+L) (Jackson ImmunoResearch Labs). CD8+ T-cell responses to each candidate epitope were tested via intracellular cytokine staining. Enriched lymphocytes from spleens or bronchoalveolar lavage of mice infected 10 days previously with IAV were incubated with 10 \mu M IL-2 (Roche) and 1 \mu g/ml Golgi-plug (BD Biosciences) in the presence or absence of 1 \mu M synthetic peptide in 96-well plates and cultured for 5 h at 37 °C and 5% CO\textsubscript{2}. Cells were then stained for surface expression of CD8a and intracellular IFN-\gamma and TNF. Data was acquired by flow cytometry (FACSCan, BD Biosciences) and analysis was performed using Flowcyt version 9.6 (FlowJo LLC, Ashland), Single viable live CD8+ lymphocytes were gated for analysis (Supplementary Fig. 7). A response was deemed positive if the test response (with background subtracted) was equal to or greater than 2× the average background values.

In vitro cross-presentation. A549 cells (antigen donor cells) were mock-infected or infected with IAV virus or IAV-OVA virus (MOI = 10) for 10 h prior to virus removal (50 Gy) to inhibit the replication of virus in the cells. After washing, the irradiated cells were incubated with Mutu cells (GFP+) at a ratio of 1:1 or 1:2 in the presence of 500 \mu g/ml oligodeoxynucleotides (Invivogen) at 37 °C and harvested at the designated time. For preliminary analysis of cross-presentation, the Mutu cells were then co-cultured with VPD450-labeled OT-1 CD8+ T cells at ratio of 1:1 at 37 °C for 24 h. OT-1 T-cell proliferation was assessed based on the VPD450 dye dilution in CD8+ T cells. Alternatively, the Mutu cells were stained with monoclonal 25-D1-16 antibody, specific for the H-2k–bound peptide OVA\textsubscript{A327-264} (SIINFEKL), followed by a PE-conjugated anti-mouse IgG antibody (BD Biosciences), and analyzed by flow cytometry.

Purification of MHC-I-peptide complexes. Frozen cell pellets of murine cells (DC2.4s, LET1 or A549/Mutu cells) were lysed in 5 ml of lysis buffer containing 50 mM Tris pH 8.0, 150 mM NaCl, 0.5% Igepal and protease inhibitors. The lysates were incubated at 4 °C for 1 h under rotation and centrifuged at 16,000 \times g for 10 min. After centrifugation, the MHC/peptide in the supernatant were captured sequentially by immunoaffinity purification using columns containing protein A sepharose (GE Healthcare) conjugated to firstly Y (anti-H-2k) and then 28-14-8s (anti-H-2b) monochlonal antibody38. The bound complexes were then eluted with 10% acetic acid and mixed with 200–300 fmol of each isotopic peptide. The mixture of peptides and dissociated MHCII molecules were further fractioned on a C18 reverse-phase column (5 \mu m, 50 \times 4.6 mm LD, Chromolith Speed Rod, Merck) on an AKTAmicro HPLC system (GE Healthcare) across an increasing gradient of buffer B (80% acetonitrile, 0.1% TFA in water) at a constant flow rate of 1 ml/min. Fractions were vacuum concentrated (Labconco Centrivap) and resuspended in 0.1% formic acid to a volume of 20 \mu l prior to mass spectrometry analysis.

Identification of viral peptides by IVA-MS. Peptide fractions were analyzed by LC-MS/MS with trapping and separation using an Eksigent nanoLC harry system (SCIEX) mass spectrometer through an uncoated silica PicoTip nano electrospray emitter (New Objective Woburn, MA) with an ion spray voltage of 2300 V in positive ion mode. The MS analysis was performed in Information Dependent mode (IDA) using the following parameters: 200 ms of MS1 scan acquired from 200 to 1800 Da followed by 150 nm MS/MS scan at an m/z range of 60–1800 Da. Up to 20 of the most intense ions with a charge-state of +2 to +5 were selected for MS/MS per cycle if they exceeded 40 counts per second (cps), and then they were excluded for further analysis for 30 s after two occurrences. Data analysis was performed on ProteinPilot version 4.5 (SCIEX). An in-house database was used which contained protein sequences of A/California/04/2009, influenza H1N1 IAV-PR8 strain and proteins from the alternative open reading frames of IAV-PR8. The peptides generated from the software were exported into Microsoft Excel for further data analysis at a 5% false discovery rate cut-off.

Identification of viral peptides by LC-MRM. LC-MRM was initially employed to detect peptides reported in previous studies. Initially, a list of viral peptides was generated by searching the open-source immune epitope database and analysis performed using 2D design of MRM. Optimizations for each peptide was performed using the Skyline software60. The positive double charged precursor ion and at least three single or double charged product ions (y and b ions) for each peptide were selected.
The collision energy (CE) and declustering potential (DP) was calculated automatically in Skyline according to the rolling collision energy equations used by the QTRAP™ 5500 (SCIEX). The dwell time was set to 5 ms to ensure sufficient data points (at least eight) could be acquired across the chromatographic peak. The identification of peptides using LC-MRM MS was performed as follows: separation of the peptides was performed on the same Eksigent nanoLC system as described above; after online LC separation, the MS was operated in a nonscheduled MRM mode followed by an Enhanced Product Ion (EPI) scan triggered each cycle for the most intense MRM transition. The MRM transitions were acquired at unit resolution in the first and third quadrupoles (Q1 and Q3). In EPI scanning mode, rolling collision energy (CE) was applied to acquire fragment ion spectra for selected precursor ions. The results were then analyzed by Skyline.

Design of viral peptide MRMs for peptide quantification. The design of MRM transitions for the quantification of identified influenza peptides was performed as follows: initially, the predominant precursor ion of each peptide was selected by Q1 and at least eight points (at least eight) could be acquired across the chromatographic peak. The above; after online LC separation, the MS was operated in a nonscheduled MRM mode followed by an Enhanced Product Ion (EPI) scan triggered each cycle for the maximum ion injection time (IT) of 50 ms. Dynamic exclusion was set to 20 s. The 12 most intense multiply charged ions were sequentially isolated and fragmented in the octopole collision cell by higher-energy collisional dissociation (HCD) with the following parameters: 17,500 resolution, MS2 AGC target value of 2 × 10̅⁶, normalised collision energy (NCE) of 27% and maximum IT of 120 ms and 1.8 ms isolation window. Data searching was carried out using MaxQuant® (version 1.5.2.8) against a combined database of Mus musculus, Homo sapiens and influenza strain PR8 (all obtained from Uniprot; March 2015) and with results at 1% FDR, LFQ minimum ratio count was set to two and matching between runs was enabled with a window of 0.7 min. LFQ data were analyzed in Perseus® (version 1.5.3.0).

Modeling and statistical analysis. Subset selection for the linear multivariable models was done with the mlr package® in R using an exhaustive search over all sub-models and evaluating each sub-model by minimizing the mean squared error (MSE) on the test data through 100 times repeated cross-validation (tenfold, ten repeats)®. Model performance was reported as measured by the coefficient of determination ($R^2 = 1 - MSE/MST$, where MST is mean square total), evaluated on the hold-out dataset in cross-validation.

We also used several more complex and powerful machine-learning approaches that typically provide strong predictive performance®. These models were tuned using the same cross-validation procedure and significance thresholds as described above. All other data are available from the corresponding authors upon reasonable request.

Data availability

Immunoproteomics and proteomics datasets analyzed in this study have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository® with the dataset identifiers PXD012728 (HMC and SWATH data) and PXD012778 (LFQ data). MRM data have been made available on the The PeptideAtlas Project® at the following address: http://www.peptideatlas.org/PASS/PASS01317. Data underlying Fig. 5 and Supplementary Fig. 6 are provided as a Source Data File. Data underlying Figs. 1 to 4 and Supplementary Figs. 4 and 5 are included as Supplementary Data Files 1 and 2. All other data are available from the corresponding authors upon reasonable request.

Received: Received 18 December 2018 Accepted: 24 May 2019
Published online: 28 June 2019

References

1. Luciani, F., Sanders, M. T., Oveissi, S., Pang, K. C. & Chen, W. Increasing viral dose causes a reversal in CD8⁺ T cell immunodominance during primary influenza infection due to differences in antigen presentation, T cell avidity, and precursor numbers. *J. Immunol.* 190, 36–47 (2013).

2. La Grutta, N. L. et al. A virus-specific CD8⁺ T cell immunodominance hierarchy determined by antigen dose and precursor frequencies. *Proc. Natl. Acad. Sci. USA* 103, 994–999 (2006).

3. Croft, N. P., Purcell, A. W. & Tscharke, D. C. Quantifying epitope presentation by MHC class I molecules. *Mol. Immunol.* 42, 77–80 (2005).

4. Croft, N. P. et al. Kinetics of antigen expression and epitope presentation during viral infection. *PLoS Pathog.* 9, e1003129 (2013).

5. Tschare, D. C., Croft, N. P., Doherty, P. C. & La Grutta, N. L. Sizing up the key determinants of the CD8⁺ T cell response. *Nat. Rev. Immunol.* 15, 705–716 (2015).

6. Thomas, P. G. et al. Hidden epitopes emerge in secondary influenza virus-specific CD8⁺ T cell responses. *J. Immunol.* 178, 3091–3098 (2007).

7. Vitiello, A. et al. Immunodominance analysis of CTL responses to influenza PR8 virus reveals two new dominant and subdominant Kb-restricted epitopes. *J. Immunol.* 157, 5555–5562 (1996).
22. La Gruta, N. L. et al. Primary CTL response magnitude in mice is determined by the extent of naive T cell recruitment and subsequent clonal expansion. J. Immunol. 192, 52–59 (2013).

23. Rist, M. J. et al. HLA peptide length preferences control CD8+ T cell immunodominance hierarchies when antigen is limiting. J. Immunol. 181, 2917–2925 (2007).

24. Stevens, J., Wiesmüller, K. H., Walden, P. & Joly, E. Peptide length preferences are the major source of antigenic peptides endogenously generated from influenza A virus neuraminidase. J. Immunol. 184, 1419–1424 (2010).

25. Geurts-van Kessel, C. H. et al. Clearance of influenza virus from the lung depends on migratory langerin + CD11b+ but not plasmacytoid dendritic cell responses. J. Exp. Med. 192, 1621–1634 (2000).

26. Andreatta, M. & Nielsen, M. Bioinformatics tools for the prediction of T-cell epitopes. Nat. Biotechnol. 18, 4513–4514 (2003).

27. Shen, Z., Reznikoff, G., Dranoff, G. & Rock, K. L. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158, 2723–2730 (1997).

28. Tynan, F. E. et al. A T cell receptor gene is deleted by the extent of naive T cell recruitment and subsequent clonal expansion. J. Immunol. 182, 617–819 (2006).

29. Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide–MHC triggers T cell signaling. Cell 157, 357–368 (2014).

30. Brooks, J. M., Colbert, R. A., Mear, J. P., Leese, A. M. & Rickinson, A. B. HLA-B7 subtype polymorphism and CTL epitope choice: studies with EBV peptides link immunogenicity with stability of the B27–peptide complex. J. Immunol. 161, 5252–5259 (1998).

31. Kallergis, P. & Zinkernagel, R. M. Original antigenic sin impairs cytotoxic T cell immunodominance. J. Immunol. 177, 536–542 (2001).

32. Busch, D. H., Pilip, I. & Pamer, E. G. Evolution of a complex T cell receptor repertoire during primary and recall bacterial infection. J. Exp. Med. 188, 61–70 (1998).

33. Johnson, L. R., Weizman, O. E., Rapp, M., Way, S. S. & Sun, J. C. Epitope-specific vaccination limits clonal expansion of heterologous naïve T cells during viral challenge. Cell Rep. 17, 636–644 (2016).

34. Toes, R. E. et al. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med. 194, 1–12 (2001).

35. Misho, M. et al. Proteasome isoforms exhibit only quantitative differences in cleavage and epitope generation. Eur. J. Immunol. 44, 3508–3521 (2014).

36. Zanker, D. & Chen, W. Standard and immunoproteasomes show similar peptide degradation specificities. Eur. J. Immunol. 44, 3500–3503 (2014).

37. Norbury, C. C. et al. CD8+ T cell priming via transfer of proteasome subunits. Science 304, 1318–1321 (2004).

38. Uehara, R. et al. Reversed T cell receptor docking on a major histocompatibility complex I complex limits involvement in the immune response. Immunity 45, 749–760 (2016).

39. Gutierrez-Martinez, E. et al. Cross-presentation of cell-associated antigens by MHC class I in dendritic cell subsets. Front. Immunol. 6, 363 (2015).

40. Goos, S. et al. Reversed T cell receptor docking on a major histocompatibility complex I complex limits involvement in the immune response. Immunity 45, 749–760 (2016).

41. Nicolas, F. E. et al. Cross-presentation of cell-associated antigens by MHC class I in dendritic cell subsets. Front. Immunol. 6, 363 (2015).

42. Shinnick, T. M. et al. HLA class I priming of T cell responses. Nat. Rev. Immunol. 11, 346–355 (2011).

43. Doherty, P. C. & Turner, S. J. Addition of a cleavage motif to a mouse HLA–β2-microglobulin complex promotes generation of a specific T cell epitope. J. Exp. Med. 193, 2593–2603 (2001).

44. Kotturi, M. F. et al. Naive precursor frequencies and MHC binding rather than the degree of epitope diversity shape CD8+ T cell immunodominance. Immunity 181, 2124–2133 (2008).

45. Moutafis, M. et al. A consensus epitope prediction approach identifies the breadth of murine T(CD8)+ cell responses to vaccinia virus. Nat. Biotechnol. 24, 817–819 (2006).

46. Nara, K. et al. Cross-presentation of cell-associated antigens by MHC class I in dendritic cell subsets. Front. Immunol. 6, 363 (2015).

47. Hassan, C. et al. Naturally processed non-canonical HLA-A*0201 presented proteasomal products are the major source of antigenic peptides endogenously generated from influenza A virus neuraminidase. J. Immunol. 184, 1419–1424 (2010).

48. Croft, N. P. et al. Most viral peptides displayed by class I MHC on infected cells are immunogenic. Proc. Natl. Acad. Sci. USA 116, 3112–3117 (2019).

49. Sidney, J. et al. Measurement of MHC/peptide interactions by gel chromatography. Proc. Natl. Acad. Sci. USA 108, 11572–11577 (2011).

50. Moita, R. et al. Cross-presentation of cell-associated antigens by MHC class I in dendritic cell subsets. Front. Immunol. 6, 363 (2015).
63. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (pro)teomics data. Nat. Methods 13, 731–740 (2016).
64. Bischl, B. et al. mlr: machine learning in R. J. Mach. Learn. Res. 17, 1–5 (2016).
65. James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: with Applications in R (Springer, New York, 2013).
66. Groening, U. Variable importance in regression models. Wiley Interdiscip. Rev.: Comput. Stat. 7, 137–152 (2015).
67. Groening, U. Relative importance for linear regression in R: The package relaimpo. J. Stat. Softw. 17, 1–26 (2006).
68. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
69. Desiere, F. et al. The PeptideAtlas project. Nucleic Acids Res. 34, D655–D658 (2006).
70. Oukka, M., Riche, N. & Kosmatopoulos, K. A nonimmunodominant nucleoprotein-derived peptide is presented by influenza A virus-infected H-2b cells. J. Immunol. 152, 4843–4851 (1994).
71. Townsend, A. R. et al. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44, 959–968 (1986).
72. Belz, G. T., Xie, W., Altman, J. D. & Doherty, P. C. A previously unrecognized H-2D(b)-restricted peptide prominent in the primary influenza A virus-specific CD8(+) T-cell response is much less apparent following secondary challenge. J. Virol. 74, 3486–3493 (2000).
73. Belz, G. T., Xie, W. & Doherty, P. C. Diversity of epitope and cytokine profiles for primary and secondary influenza virus-specific CD8+ T cell responses. J. Immunol. 166, 4627–4633 (2001).
74. Chen, W. et al. A novel influenza A virus mitochondrial protein that induces cell death. Nat. Med. 7, 1306–1312 (2001).

Acknowledgements

We thank Stephen J. Turner and Jamie Rossjohn for critical reading of the manuscript, Lukasz Kedzierzki and Claerwen Jones for technical assistance, and staff at Monash University flow cytometry, biomedical proteomics and animal core facilities. We thank Dr. Ken Rock for provision of DC2.4 cells and Dr. Acha-Orbea for provision of Mutu DCs. This work was supported by a Sylvia and Charles Viertel Senior Medical Research Fellowship, an Australian Research Council (ARC) Future Fellowship FT170100174, and a National Health and Medical Research Council (NHMRC) Program grant APP1071916 (to N.L.L.G.), an NHMRC Principal Research Fellowship APP1137739 (to A.W.P.), an NHMRC Senior Research Fellowship APP1104329 (to D.C.T.) and an NHMRC Project grant APP1084283 (to A.W.P., N.P.C., and D.C.T.). A.H. and P.G.T. were partially supported by NIH/NIAID grant U19AI117891.

Author contributions

Conceptualization N.L.L.G., A.W.P., N.P.C.; Methodology J.G., L.M.W., N.L.L.G., A.W.P., N.P.C., D.C.T., A.H., P.G.T., A.S.; Investigation J.G., T.W., X.Y.X.S., J.S., A.H.; Resources D.C.T., A.H., L.M.W., J.S., A.S., A.W.P., N.P.C., N.L.L.G.; Writing—original draft N.P.C., N.L.L.G., A.W.P.; Writing—review and editing N.P.C., N.L.L.G., A.W.P., P.G.T., A.H., D.C.T., L.M.W., A.S., J.S., T.W., J.G., X.Y.X.S.; Supervision N.L.L.G., N.P.C., A.W.P.; Funding acquisition A.W.P., N.P.C., D.C.T., N.L.L.G.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-10661-8.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Peer review information: Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.