Research Paper

Investigating Acanthamoeba in Coastal Waters of Caspian Sea in Guilan Province, Iran

'Mohammad Reza Mahmoudi1,2, Yasaman Vahedi1, Keyhan Ashrafi1

1. Department of Microbiology and Parasitology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
2. Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
3. Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.

Background: Acanthamoeba spp., can cause severe and fatal diseases including encephalitis, skin granulomatous and keratitis [1]. Water can be a source of Acanthamoeba spp.; thus, contaminated waters can be a threat to high risk people such as contact lens wearers, patients with eye surgery or eye trauma, and immunocompromised patients [2]. There are numerous examples of microorganisms such as Vibrio cholera and Legionella which survive, grow, or proliferate inside amoebae [3]. Northern Iran including Guilan Province, attract many

Extended Abstract

1. Introduction

Acanthamoeba spp., can cause severe and fatal diseases including encephalitis, skin granulomatous and keratitis [1]. Water can be a source of Acanthamoeba spp.; thus, contaminated waters can be a threat to high risk people such as contact lens wearers, patients with eye surgery or eye trauma, and immunocompromised patients [2]. There are numerous examples of microorganisms such as Vibrio cholera and Legionella which survive, grow, or proliferate inside amoebae [3].
tourists due to its mediterranean climate and existence of many recreational beaches; however, there is no report regarding the presence of Acanthamoeba genotypes in coastal waters of Caspian Sea.

The present study aims to investigate the presence of potentially pathogenic Acanthamoeba genus in coastal waters of Caspian Sea based on morphological criteria and thermoderatance assay.

2. Materials and Methods

In this descriptive study, 60 water samples were collected from sea shore of Caspian Sea in Guilan, Iran in 2018. Samples were collected at a depth of 10-30 cm from the shores of Rudar, Chamkhaleh, Kiyashahr, Zibakenar and Bandar-e Anzali. From each site, 12 samples of 500 mL were collected, filtered by cellulose nitrate membranes with 0.45 µm pore size, and cultured on Non-Nutrient Agar (NNA) according our previous studies [4, 5]. To determine potential pathogenicity of Acanthamoeba spp. grown in the agar by thermoderatance assay, culture positive sample were transferred to a new NNA plate and kept at 42°C. The presence of Free-Living Amoeba (FLA) examined daily for up to 14 days using a light microscope (100X). FLAs were identified by morphologic characteristics of both trophozoite and cyst.

3. Results

Out of 60 samples, FLA were grown in 30 samples (50%) at a room temperature, and in 8 samples (26.6 %) at a temperature of 42°C. Acanthamoeba were identified in all sampling sites, where 8 samples were potentially pathogenic using thermoderatance assay.

4. Discussion and Conclusion

The study of FLA, especially in environmental waters, is dramatically increasing due to their increased prevalence and their capability to cause human diseases. The presence of FLA in water sources has been reported in various studies; however, there are few studies on the presence of these amoebae in seawater [6-10]. In Guilan Province, some studies have reported the presence of FLA in surface water [4, 5, 11]; however, no study has been conducted on the presence of FLA in the Caspian Sea water. The present study is the first study on the presence of FLA in the shores of Caspian Sea. FLA and the potentially pathogenic Acanthamaba spp., were identified in 50% and 26.6% of water samples collected from recreational beaches of the Caspian Sea, respectively. In a study in Jamaica, West Indies, Acanthamoeba were identified in 49.6% of the sea-water samples, of which 40.4% were reported potentially pathogenic based on the morphologies of the cysts and trophozoites, and using thermoderatance and osmotolerance assays [7]. In Booton et al.’s study, Acanthamoeba strains were isolated from beach sand (n = 20) and nearly all beach isolates were genotype T4 [12].

Interestingly, in the present study, Acanthamoeba were isolated from high-salinity coastal water. It seems that some Acanthamoeba species can grow in waters with high osmolality (high salinity) can be pathogenic [13]. Since Acanthamoeba spp. (pathogenic and non-pathogenic) can act as natural vectors for pathogenic microorganisms, it can has an impact on the public health sector [14]. The presence of pathogenic and non-pathogenic Acanthamoeba spp. in the Caspian Sea indicates a risk for human health. In this regard and considering that Guilan province attracts many tourists annually and all water samples were collected from recreational beaches where swimming activity usually takes place, it is necessary that high-risk people including contact lens wearers and immunocompromised patients in this area be warned by health organizations.

Ethical Considerations

Compliance with ethical guidelines

The present study has been approved by the Ethics Committee of Guilan University of Medical Sciences (Code: IR.GUMS.REC.1397.079).

Funding

This research didn’t receive any grant from funding agencies in the public, commercial, or not-for-profit sector.

Authors’ contributions

Conceptualization: Mohammad Reza Mahmoudi, Keyhan Ashrafi; Sample collection and Methodology: Mohammad Reza Mahmoudi, Yasaman Vahedi; Supervision and funding: Mohammad Reza Mahmoudi; Writing: Mohammad Reza Mahmoudi, Keyhan Ashrafi.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors would like to thank Ms. Behnam Rahmati.
مقاله بیzugوشی

بررسی وجود آکانتامبا در شناگاه‌های دریای خزر در سواحل استان گیلان

محمد رضا محمودی*

1. گروه میکروب‌شناسی و اکتیوم‌شناسی، دانشگاه پزشکی دانشگاه علوم پزشکی گیلان، رشت ایران
2. مرکز تحقیقات سلولی و مولکولی، دانشگاه پزشکی دانشگاه علوم پزشکی گیلان، رشت ایران
3. مرکز تحقیقات بیولوژی‌های ژنتیکی، دانشگاه پزشکی دانشگاه علوم پزشکی گیلان، رشت ایران

چکیده

آکانتامبا، یک گونه از اکسی‌کلربن‌ها در محدوده‌های مختلفی از آب شیرین، آب شور، شن‌های ساحل، فاضلاب و خاک مناطق گرمسیر تا قطب شمال تاکنون مورد شناسایی و در نقشه‌برداری دنیا قرار گرفته است. آکانتامبا از سلسله‌ای از جاتی است که به سبب بروز بیماری‌های قابل مشاهده مانند انسفالیت، ضایعات پوست و کراتیت چشمی در انسان مورد توجه قرار گرفته است. این بیماری به شباهت با آمیبایی تحقیق که تحت تأثیر فاکتورهای مختلفی از جمله دما، فشار، نیازمندی به اکسیژن، و... پیشسرد می‌شود. در این مقاله، بررسی وجود آکانتامبا در شناگاه‌های دریای خزر در سواحل استان گیلان انجام شده است.

کلیدواژه‌ها: آکانتامبا، آب، دریای خزر، گیلان

مقدمه

آکانتامبا از زیستگاه‌های مختلفی چون آب شور، آب شیرین، شناگاه‌های ساحلی و طبیعت‌های متنوعی در تمام جغرافیای جهان به شکل مختلفی شناسایی شده است. این گونه در شناگاه‌های دارای فاصله‌های مایع و یا آب‌های مدفوع در معرض استحکامات آبی و دمای اقلیمی متفاوت قرار دارد. اکانتامبا از دسته‌ایی از آمیبهاست که در انسان موجب بروز بیماری‌های شایع و رایج می‌شوند.

جمله اصلی مقاله

آکنتامبا، یک اکسی‌کلربنی از گروه چم‌پردازها، در آب‌های مختلفی از آب شیرین، آب شور، شناگاه‌های ساحلی، فاضلاب و خاک مناطق گرمسیر تا قطب شمال می‌باشد. این گونه در شناگاه‌های دارای فاصله‌های مایع و یا آب‌های مدفوع در معرض استحکامات آبی و دمای اقلیمی متفاوت قرار دارد. اکنتامبا از دسته‌ایی از آمیبهاست که در انسان موجب بروز بیماری‌های شایع و رایج می‌شوند.

*نویسنده مسئول: دکتر محمدرضا محمودی
نشانی: شماره ۱۳۸/۷۳۶۱۲۲۱۳۹۹، کیهان اشرفی، گروه میکروب‌شناسی و اکتیوم‌شناسی، دانشگاه پزشکی دانشگاه علوم پزشکی گیلان، رشت ایران
مراجع:
1. کیهان اشرفی، گروه میکروب‌شناسی و اکتیوم‌شناسی، دانشگاه پزشکی دانشگاه علوم پزشکی گیلان، رشت ایران
آلوده می‌توانند یک منبع خطر برای گروه‌های در معرض خطر، مانند افراد استفاده کننده از لنزهای تماسی، افراد دچار ترومای چشم و افراد دچار ضعف سیستم ایمنی باشند. علاوه بر این، برخی ارگانیسم‌ها مانند ویبریو کلرا و لژیونلا قادر هستند که داخل الی‌آمیب‌ها رشد و تکثیر داشته باشند که این مسئله نیز از نظر بهداشت عمومی و انتقال بیماری‌ها حائز اهمیت است.

استان گیلان به خاطر داشتن سواحل تفریحی و سالانه پذیرای تعداد زیادی مهمان است، اگرچه در برخی مطالعات این الی‌آمیب، اما از رودخانه‌ها و چشمه‌های استان گیلان گزارش نشده است. این الی‌آمیب‌ها در حالت آزادزی، از جمله آکانتامبا، در سواحل شنی این استان وجود دارد.

بنابراین مطالعه حاضر با توجه به تغییرات در دمای محیط آب و داشتن الی‌آمیب‌های آکانتامبا در این سواحل نیازمند است. در این مطالعه، تعداد آمیب‌های آکانتامبا در سواحل شنای دریای خزر، با توجه به تغییرات در دمای محیط آب و وجود الی‌آمیب‌های آکانتامبا، به صورت زیادی مطالعه گردیده است.

مواد و روش‌ها

gather samples and culture in non-nutrient agar

In this study, descriptive samples of seawater from the Caspian Sea, within the project area, were collected in the years 1397 and 2019, from beaches in Rudsar, Chahal, Kish, Ziba and Bandar-e Anzali. Twelve samples of seawater from each of the mentioned beaches were collected. Each sample of seawater was filtered using paper filters and then placed on non-nutrient agar. The culture medium was placed in an incubator at room temperature for at least two weeks, and under a microscope, the characteristics of the trophozoite and cyst were examined.

نتایج

با توجه به مشخصات شکل ظاهری آمیب‌های آکانتامبا و تست تحمل حرارتی، در مطالعه حاضر، آمیب‌های آکانتامبا در سیصد نمونه (60 درصد) از شش نمونه، در شش نمونه و شش نمونه (12 درصد) نیز در ده نمونه کشت شد. در مجموع، آمیب‌های آکانتامبا از جمله الی‌آمیب‌های آزادزی، در تمام شناگاه‌های مورد بررسی شناخته شدند و با توجه به نتایج تست تحمل حرارتی نیز، وجود آکانتامبا بالقوه بیماری زا در تمام شناگاه‌های مورد بررسی ثابت شد.

محل نمونه برداری	تعداد نمونه	نتیجه کشت	نتیجه تست تحمل حرارتی
رودسر	12	7 (58%)	14
چمخاله	12	8 (66%)	37
کیاشهر	12	5 (42%)	20
زیباکنار	12	5 (42%)	20
بندر انزلی	12	5 (42%)	40
کل	60	30 (50%)	26/28 (43%)

بحث و نتیجه‌گیری

با توجه به دریافت نتایج، مطالعه حاضر به وضوح نشان می‌دهد که الی‌آمیب‌های آکانتامبا در سواحل دریای خزر، به ویژه در آب‌های محیطی، به دلیل توانایی الی‌آمیب‌های آکانتامبا در رشد و تکثیر در آب‌های سواحل، نیازمند تحقیق انسجامی می‌باشد.
مطالعه حاضر، به‌طور مکثف، مطالعاتی به زبان پرتغالی در شناگاه‌های مختلف سواحل دریای خزر در استان گیلان انجام شده است که نشان داد که آکانتامبا بالقوه بیماری‌زا در شناگاه‌های سواحل دریای خزر در استان گیلان وابسته است. به‌طوری‌که فراوانی آمیب‌های آزادزی و آکانتامبا بالقوه بیماری‌زا در نمونه‌های مورد بررسی در مطالعه حاضر از 26 درصد در حدود 40 درصد بوده است. منجر به این نتایج، مطالعات مشابه در مطالعه‌های دیگر نیز در نقاط مختلف دنیا گزارش شده است. مشابه مطالعه حاضر، سویه‌های مقاوم به حرارت از نمونه‌های آب دریا در جامائیکا گزارش شده است که نتایج آن مشابه نتایج مطالعه حاضر در گیلان است.

با توجه به نتایج مطالعه حاضر، وجود آکانتامبا بالقوه بیماری‌زا در سواحل استان گیلان تأیید می‌شود که سویه‌های بالقوه بیماری‌زا بتوانند تازه‌ترین روش‌های نگهداری در سواحل استان گیلان بوده و در صورت نگهداری به‌طور مناسب، بیماری‌های آکانتامبایی جلوگیری می‌شود. همچنین، سویه‌های مقاوم به حرارت از نمونه‌های آب دریا در جامائیکا گزارش شده است که نتایج آن مشابه نتایج مطالعه حاضر در گیلان است.

با توجه به نتایج مطالعه حاضر، وجود آکانتامبا بالقوه بیماری‌زا در سواحل استان گیلان تأیید می‌شود که سویه‌های بالقوه بیماری‌زا بتوانند تازه‌ترین روش‌های نگهداری در سواحل استان گیلان بوده و در صورت نگهداری به‌طور مناسب، بیماری‌های آکانتامبایی جلوگیری می‌شود. همچنین، سویه‌های مقاوم به حرارت از نمونه‌های آب دریا در جامائیکا گزارش شده است که نتایج آن مشابه نتایج مطالعه حاضر در گیلان است.
مشارکت‌کنندگان
طراحی: محمدرضا محمودی، کیهان اشرفی؛ جمع‌آوری نمونه و اجرای محمدرضا محمودی و یاسمن واحدی؛ نظارت و تأمین مالی: محمدرضا محمودی؛ پیش‌نویس اولیه مقاله: محمدرضا محمودی.

تعارض منافع

نداشت.

بنابر اظهار نویسندگان این مقاله هیچگونه تعارض منافعی ندارد.

تشکر و درخواست

لیست نویسندگان از خانم بهناز رحمتی، کارشناس آزمایشگاه، از کادر پزشکی، تشکر می‌کنند.
References

[1] Schuster FL, Visvesvara GS. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. International Journal for Parasitology. 2004; 34(9):1001-27. [DOI:10.1016/j.ijpara.2004.06.004] [PMID]

[2] La Scola B, Boyadjiev I, Greub G, Khamis A, Martin C, Raoult D. Amoeba-resisting bacteria and ventilator-associated pneumonia. Emerging Infectious Diseases. 2003; 9(7):815-21. [doi: 10.3201/eid0907.020760] [PMCID]

[3] Feiz Haddad MH, Habibpour H, Mahmoudi MR. Isolation and molecular identification of free-living amoebae (Naegleria spp., Acanthamoeba spp. and Vermamoeba spp.) from mineral springs in Guilan Province, northern Iran. Journal of Water and Health. 2020; 18(1):60-6. [DOI:10.2166/wh.2020.191]

[4] Górnik K, Kuzna-Grygiel W. Presence of virulent strains of amphizoic amoebae in swimming pools of the city of Szczecin. Annals of Agricultural and Environmental Medicine. 2004; 11(2):233-6. [PMID]

[5] Patrick S. Free-living amoebae as human parasites and hosts for pathogenic microorganisms. Proceedings. 2018; 211(1):692. [DOI:10.3390/proceedings2110692]

[6] Mahmoudi MR, Taghipour N, Eftekhar M, Haghighi A, Karanis P. Isolation of Acanthamoeba species in surface waters of Gilan province-north of Iran. Parasitology Research. 2012; 110:473-7. [DOI:10.1007/s00436-011-2530-1] [PMID]

[7] Mahmoudi MR, Kazemi B, Haghighi A, Karanis P. Detection of Acanthamoeba and Toxoplasma in river water samples by molecular methods in Iran. Iranian Journal of Parasitology. 2015; 10(2):250-7. [PMID]

[8] Munson DA, Timothy AP. Distribution of Acanthamoeba in more and less polluted North Sea coastal sediments. Journal of Eukaryotic Microbiology. 2006; 53(5):512-4. [DOI:10.1111/j.1550-7408.2006.00157.x] [PMID]

[9] Lorenzo-Morales J, Lindo JF, Martinez E, Calder D, Figueruelo E, Valladares B, et al. Pathogenic Acanthamoeba strains from water sources in Jamaica, West Indies. Annals of Tropical Medicine & Parasitology. 2005; 99(8):751-8. [DOI:10.1179/136485905X65215] [PMID]

[10] Jonckheere JF. Molecular identification of free-living amoebae of the Vahlkampfidae and Acanthamoebidae isolated in Arizona (USA). European Journal of Protistology. 2007; 43(1):9-15. [DOI:10.1016/j.ejop.2006.09.001] [PMID]

[11] Sawyer TK, Visvesvara GS, Harke BA. Pathogenic amoebas from brackish and ocean sediments, with a description of Acanthamoeba hatchetti, n. sp. Science. 1977; 196(4296):1324-5. [DOI:10.1126/science.867031] [PMID]

[12] Liu H, Ha YR, Lee ST, Hong YC, Hong HH, Chung DI. Genetic diversity of Acanthamoeba isolated from ocean sediments. The Korean Journal of Parasitology. 2006; 44(2):117-25. [DOI:10.3347/kjp.2006.44.2.117] [PMID] [PMCID]

[13] Schroeder JM, Booton GC, Hay J, Niszl IA, Seal DV, Markus MB, et al. Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoeba from humans with keratitis and from sewage sludge. Journal of Clinical Microbiology. 2001; 39(5):1903-11. [DOI:10.1128/JCM.39.5.1903-1911.2001] [PMID] [PMCID]

[14] Khan NA. Acanthamoeba, biology and pathogenesis. 1 ed. United Kingdom: Caister Academic Press; 2009. https://books.google.com/books/about/Acanthamoeba.html?id=7cx8zQEACAAJ&source=kp_book_description

[15] Górnik K. Pathogenic properties of free-living amoebae isolated from natural and man-made bathing sites in the province of Western Pomerania. Annales Academiae Medicae Stetinensis. 2005; 51(1):127-33. [PMID]

[16] Mahmoodi MR, Kosik-Bogacka D, Maciejewska A, Sawczuk M, Wilk A, Kuzna-Grygiel W. The Occurrence Acanthamoeba (Free Living Amoeba) in Environmental and Respiratory Samples in Poland. Acta Protozoologica. 2009; 48(3):271-9. http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-9b81eae1-714b-4516-b2f0-b571b6089514