This is a repository copy of *A dinuclear ruthenium(II) complex excited by near-infrared light through two-photon absorption induces phototoxicity deep within hypoxic regions of melanoma cancer spheroids.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/157376/

Version: Accepted Version

**Article:**
Raza, A., Archer, S.A., Fairbanks, S.D. et al. (5 more authors) (2020) *A dinuclear ruthenium(II) complex excited by near-infrared light through two-photon absorption induces phototoxicity deep within hypoxic regions of melanoma cancer spheroids.* Journal of the American Chemical Society. ISSN 0002-7863

https://doi.org/10.1021/jacs.9b11313

This document is the Accepted Manuscript version of a Published Work that will appear in final form in Journal of the American Chemical Society, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/jacs.9b11313

**Reuse**
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

**Takedown**
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
A dinuclear ruthenium(II) complex excited by near-infrared light through two-photon absorption induces phototoxicity deep within hypoxic regions of melanoma cancer spheroids

Ahtasham Raza,† Stuart A. Archer,‡ Simon D Fairbanks,‡ Kirsty L Smitten,† Stanley W. Botchway,§ James A. Thomas*, Sheila MacNeil†*, John W. Haycock†*

† Materials Science & Engineering, University of Sheffield, Mappin St, Sheffield S1 3JD, UK.
‡ Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK.
§Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, UK.

ABSTRACT: The dinuclear photo-oxidizing RuII complex [{Ru(TAP=)2}(tpphz)]4+ (TAP = 1,4,5,8-tetraazaphenanthrene, tpphz = tetraipyrido[3,2-a:2′,3′-c:3′′,2″-h:2″′,3″′-j]phenazine), 14+ is readily taken up by live cells localizing in mitochondria and nuclei. In this study, the two-photon absorption cross-section of 14+ is quantified and its use as a two-photon absorbing phototherapeutic is reported. It was confirmed that the complex is ready photo-excited using near infrared, NIR, light through two-photon absorption, TPA. In 2-D cell cultures, irradiation with NIR light at low power results in precisely focused photo-toxicity effects in which human melanoma cells were killed after 5 minutes of light exposure. Similar experiments were then carried out in human cancer spheroids that provide a realistic tumor model for the development of therapeutics and phototherapeutics. Using the characteristic emission of the complex as a probe, its uptake into 280 µm spheroids was confirmed that the complex takes up the complex. Notably TPA excitation results in more intense luminescence being observed throughout the depth of the spheroids, although emission intensity still drops off toward the necrotic core. As 14+ can directly photo-oxidize DNA without the mediation of singlet oxygen or other reactive oxygen species, phototoxicity within the deeper, hypoxic layers of the spheroids was also investigated. To quantify the penetration of these phototoxic effects, 14+ was photo-excited through TPA at a power of 60 mW, which was progressively focused in 10 µm steps throughout the entire z-axis of individual spheroids. These experiments revealed that, in irradiated spheroids treated with 14+, acute and rapid photo-induced cell death was observed throughout their depth, including the hypoxic region.

Introduction
The potential of photodynamic therapy, PDT, as a possible treatment regime was first identified over a hundred years ago, 1-3 but it only became clinically available from the 1980s. 3-8 This light driven modality requires a photosensitizer, PS, which is essentially a prodrug. 9-12 In fact, photo-excitation of the PS results in the generation of reactive molecular species and it is these species that are responsible for the therapeutic action of PDT; they are created by two common pathways, 13-15 both of which begin with the PS excited into a triple state.

In Type I reactions, the photo-excited PS participates in redox processes leading to generation of reactive oxygen species (ROS) that trigger cell death. 16 On the other hand, Type-II reactions involve the direct energy transfer from the triplet state of the PS to dioxygen thus forming highly reactive singlet oxygen (1O2), that is capable of damaging virtually all biomolecules. 17-19

PDT is still an emerging treatment technique. Consequently, although PS leads are in development, only a few systems are currently licensed. 20,21 Nevertheless, PDT offers particular potential for the treatment of skin cancers. 22-23 However, whilst some FDA-approved PS molecules have been tested in preclinical melanoma models demonstrating tumor regression and prolonged survival rates, 24,25 remission and reoccurrence of melanoma have also been reported. 26-28 Full clinical trials on the treatment of choroidal melanoma and metastatic skin melanoma using a clinically established sensitizer Verteporfin, and also Chorine, have been reported and photo-excitation at fluences of 100- to 120 J/cm2 produced promising therapeutic responses. 29,30 However, one of the complications with classical PDT regimes arises from hypoxia. Due to rapid growth many tumors possess hypoxic regions, particularly at, and close to, their core. 31 Hence, incomplete treatment of tumors by PDT leading to relapse often involves these hypoxic regions where phototoxic effects are diminished. 32
proportional to the square of the light source intensity and therefore only occurs at, or very close to, the focal point of the laser.\textsuperscript{33} TPA also has an added advantage of providing a method to excite the PS in the near-infrared, NIR, therapeutic window where biological materials are most transparent, thereby providing PDT up to depths of 8 mm.\textsuperscript{34} However, this requires a PS with an appreciable two photon absorption cross section, TPACS (\(\sigma\)) and unfortunately, current commercial PS molecules have low TPACS; for example for photofofin, \(\sigma = 3\) BM at 800 nm, \textsuperscript{35} which results in low therapeutic effects under two photon irradiation conditions.\textsuperscript{36,37}

An ideal PS should be amphiphatic in nature, so that it can readily transverse the cellular membrane but display good water-solubility, exhibit a minimum toxicity in the dark, and be photostable.\textsuperscript{38,39} Additionally, a good TPACS would enhance treatment depths within tumors.\textsuperscript{34,40} It is becoming apparent that these demanding criteria can be met by certain transition metal complexes;\textsuperscript{41} The fact that complexes of \(d_{x}\)-metal centers can display large optical nonlinearity is well established.\textsuperscript{42-44} At the same time, this class of complexes have been investigated as photosensizers for PDT,\textsuperscript{45-48} with Ru\textsuperscript{II} complexes attracting particular attention.\textsuperscript{49-53} In recent work the potential of \(d_{x}\) complexes for TPA-PDT has also been delineated.\textsuperscript{41,54-59}

In separate research, it has been found that new cancer treatments often fail clinical trials even after successful preclinical studies.\textsuperscript{60,61} This is attributed to the fact that preclinical models usually involve either 2D cell cultures or animal models. 2D monolayer models are not capable of mimicking the complexity and heterogeneity of clinical tumors,\textsuperscript{62,63} while in vivo tumors models involving non-human species can display discrepancies due to physiological differences between species. In response to these difficulties, Humanized 3D models\textsuperscript{64} are being developed; in particular, multicellular spheroids possess several features of in vivo tumors such as cell-cell interaction, hypoxia, drug penetration, response and resistance, and production/deposition of extracellular matrix.\textsuperscript{65-69}

**Figure 1.** Structure of complex 1\textsuperscript{4+}.

As part of a program to identify novel therapeutic\textsuperscript{70-73} and phototherapeutics\textsuperscript{74,75} based on \(d_{x}\)-metal complexes, we recently reported on a novel dinuclear Ru\textsuperscript{II} complex ([Ru(TAP)\textsuperscript{2}]=\textsuperscript{2}(tpphz)]\textsuperscript{4+}, 1\textsuperscript{4+}, Figure 1, (TAP = tetraazaphenanthrene, tpphz = tetrapyridophenazine) that binds to duplex and quadruplex DNA with high affinities.\textsuperscript{76} This complex is water-soluble, stable in serum free media, and is internalized into live cells, where it predominately localizes in the nucleus and mitochondria of melanoma cells. Earlier studies have established that complexes containing electron deficient Ru(TAP)\textsuperscript{2} units possess strongly oxidizing Ru\textsuperscript{II}\textsuperscript{\rightarrow}TAP MLCT excited states capable of directly photodamaging guanine sites within DNA.\textsuperscript{77-82} In agreement with these previous reports, detailed photophysical studies on 1\textsuperscript{4+} revealed that both quadruplex and duplex DNA quenches its excited state and this results in the generation of photooxidized guanine radical cation sites within the DNA. Furthermore, within 2-D melanoma cultures, we found that whilst 1\textsuperscript{4+} is not intrinsically cytotoxic, it is activated by light; for example, irradiation with low fluences of LED light at 405 nm rapidly induced apoptosis in human CB161 melanoma cells, effectively resulting in zero cell-viability.\textsuperscript{76}

Complex 1\textsuperscript{4+} was developed as a photo-redox active analogue of the metal complex ([Ru(phen)\textsuperscript{2}]=\textsuperscript{2}(tpphz)]\textsuperscript{4+} (phen = phenanthroline) which has been successfully used as a live cell TPA optical imaging probe.\textsuperscript{83} Given that 1\textsuperscript{4+} is capable of directly damaging biomolecules without the mediation of \(\text{O}_2\) or other ROS, that it localizes in both nuclei and mitochondria, which are specific targets for PDT,\textsuperscript{7,9,48,44,84,85} and the fact that it is related to a system with an appreciable TPACS, we reasoned that this complex could be developed as a PS to initiate PDT effects at tissue depths where hypoxic occurs and normal PDT regimes are ineffective.

Herein, we report that 1\textsuperscript{4+} functions well as a PS in TPA conditions and as a consequence the complex facilitates high spatial resolution photoxicity within an engineered spheroid model of the highly invasive and spontaneously metastatic, recalcitrant human skin cancer, CB161 melanoma.\textsuperscript{28} Furthermore, as the complex is luminescent, and its emission properties are compatible with optical microscopy, we can directly track the penetration of this theranostic deep into this tumor model.

 Virtually no studies on metal complex photosensizers and spheroids have been reported. The Chao group recently reported on Ru\textsuperscript{II}-complexes for TPA-PDT in HeLa-based spheroids but their work involved PSs that function through a classic oxygen-dependent Type II mechanism, whereas the photo-damaging mechanism of 1\textsuperscript{4+} is independent of ROS and \(\text{O}_2\). As the employed spheroid model contain healthy, hypoxic, and necrotic layers these studies have afforded insights into the effectiveness of the new PS in a realistic tumor environment containing both quiescent and proliferative areas. Consequently, the use of this preclinical human tumor model has provided detailed information on PS penetration, light penetration, responsiveness dosage and resistance area that could only previously be obtained by animal studies in immune compromised animals or clinical trials.
Results and Discussion

Figure 2. Emission from 14+ internalized within human melanoma cells following a TPA laser excitation over a wavelength range of 840 -1000 nm and power range of 5 – 40 mW (Scale Bar =10 µm).

We first investigated the TPACS of 14+ through an adaption of a previously reported method86 (see Materials and Methods for details). This led to an estimate maximum TPACS of $\sigma = 90\ GM$, which is up to double that of commercial sensitizers that have been investigated for TPA-PDT.87 88

We then went on to investigate emission within the melanoma cells using TPA conditions, which revealed optimal emission outputs from the internalized complex on excitation at 850 - 900 nm (Figure 2), confirming that it could be photo-excited in these conditions using NIR light, well within the therapeutic window.

The TPA-PDT potential of 14+ was next investigated in a monolayer of human C8161 melanoma cells incubated with 100 µM of 14+ for 24 hour to ensure complete internalization. A discrete 250x250 pixel region of interest (ROI) was marked in a 512x512 pixel frame and irradiated with 900 nm laser light (10 and 20 mW). The ratio of live and dead cells were determined before and after the irradiation (every 5 minutes) using Syto-9 (cell indicator) and PI as live and dead cell markers respectively - see SI and Figure 3. This experiment revealed that at 10mW, 30min exposure time was required before any phototoxicity was observed in irradiated cells within the ROI (see SI), while at 20mW the entire ROI showed complete melanoma death after 5 minutes of exposure – Figure 3. The photoxic-effect was observed in melanoma cells only in the presence of Ru-Ru TAP, and not in response to two-photon-laser irradiation alone under identical conditions (See SI).

Apoptosis and necrosis are cell death defined responses to a stimulus. In response to Ru(II) plus light activation cell death was studied as apoptosis more specifically using Annexin V and propidium iodide (PI). Furthermore, morphology changes of cells (by H and E) and cytoskeleton filament (F-actin) structures were also studied. Both apoptosis and necrosis was noticed within the cell population after PDT treatment. Cell size was decreased, actin filaments were damaged, with shrinkage in nuclear size and cell blebbing, suggesting necrosis as the prominent cause of death (See SI).

We have previously established that C8161 human melanoma spheroids cultured for 10 days (at an initial seeding density of 12,000 cells) have an outer proliferative area of approximately 100 µm in depth over a second layer of hypoxic cells that is also approximately 100 µm thick. The remaining central volume of the spheroid forms a necrotic core.89 These features provide an opportunity to study the PDT effect of 14+ in a live multicellular 3-D tumor model that has both proliferative and hypoxic regions and thus assess the therapeutic effectiveness of this PS in low oxygen conditions. In these experiments we first explored photo-excitation of 14+ at various depths within tumor spheroids using conventional one-photon excitation at 458 nm and two-photon excitation ($\lambda_{ex} = 900\ nm$). Although luminescence was observed throughout the 280 x 280 µm spheroid, indicating that the complex penetrates deep into the spheroids, emission intensity using either excitation regime noticeably decreases toward their center.
Figure 4 Comparing the luminescence of 1\textsuperscript{4+} in a 280 \textmu m C8161 human melanoma spheroids following: (A) one-photon excitation (458 nm) and (B) two-photon excitation (900 nm) at a power of 10 mW. Intensities measured at z-stack depths of: (i) 0 \mu m, (ii) 60 \mu m, (iii) 180 \mu m, and (iv) 240 \mu m. (scale bar = 100 \mu m).

This decrease in signal is probably caused by a combination of two effects: 1) there is a concentration gradient for the complex that diminishes with spheroid depth and/or 2) light penetration into the center of the spheroid is too low to photo-excite 1\textsuperscript{4+}. Nevertheless, a comparison of emission produced by 1PA and TPA at analogous laser powers reveals that, as expected, NIR excitation results in higher intensity emission at depths (Figure 4). These results reveal that photoexcitation of the complex to a depth of \textasciitilde240 \pm 20 \mu m in the z-axis can be readily accomplished.

Figure 5. Two-photon PDT in a human melanoma spheroid outer proliferative area region with a 900 nm laser and powers of: (A) 40 and (B) 60 mW after treatment with 100 \mu M of 1\textsuperscript{4+} for 24 hours. Left: live cells imaged with Syto-9. Right: dead cells imaged with PI. In spheroids untreated with 1\textsuperscript{4+}, illumination at either power produced no increase in cell death (scale bar = 20 \mu m).

Figure 6. TPA-PDT on human melanoma spheroids cultured for 10 days. Spheroids were then allowed to settle on a 35mm plate overnight and incubated with 1\textsuperscript{4+} (100uM), propidium iodide (500nM) and Syto-9 (2\mu M) in SFM for 24 hours. Spheroids were irradiated with a 900nm laser (power = 60mW) using a continuous z-stack scan (10\mu M apart) for 30 min. This was followed by a live and dead cell scan through the whole spheroid. Live/dead scan at specific depths before treatment revealing hypoxic/necrotic central region (before treatment, top). Analogous live/dead scans 15 minutes (middle) 30 minutes (bottom) after irradiance. (scale bar = 50 \mu m).

Consequently, the therapeutically effective dose of 1\textsuperscript{4+} in melanoma spheroids using a two-photon excitation regime was evaluated. In particular, the effect of laser power on exposure to 1\textsuperscript{4+} at a concentration of 100 \mu M was quantified. Initially excitation through laser irradiation at 900 nm was focused on the spheroid outer proliferative layer at fluxes of 20, 40 and 60 mW respectively. Live and dead cells were quantified before irradiation and then at every 15 minutes using Syto-9 and PI respectively – Figure 5.

These experiments showed that although no cell death occurred at 20 mW flux, at 40mW the proliferative region of the spheroid was eradicated after 30 to 45 min of exposure, Figure 5a, and irradiation at 60 mW produced the same effect after only 15 minutes of light exposure – Figure 5b. Negative control experiments confirmed that spheroids untreated with 1\textsuperscript{4+} showed no increase in cell death on laser irradiation confirming that the photosensitization of the spheroids requires 1\textsuperscript{4+}. The differences in the irradiance dose for monolayer cultures compared to melanoma spheroids illustrates how the use of 3D spheroids provides an improved preclinical model for lead development.

Next we investigated the depth of the phototherapeutic effect of 1\textsuperscript{4+} within the spheroid. Depending on cancer stage, human melanoma tissue thickness can vary, consequently PDT treatment will be optimized when a PS penetrates and activates at specific depths. To investigate this possibility, a
point on the surface of the spheroid was chosen and then laser irradiation at a power of 40 mW or 60 mW was focused at z-axis depths that progressively increased in 10 µm steps (Figure 6 and SI). Again, the ratio of live and dead cells in this z-stack was determined before irradiation and every 15 minutes thereafter using Syto-9 and PI. At 40 mW laser power, minimal evidence of phototoxicity at depth was observed after 30 to 45 min, but at 60 mW the continuous z-stack scan revealed cell death within 15 to 30 minutes. Significantly, although the phototoxic effect was at its greatest between 0 to 80 µm, cell death was observed throughout the entire z-axis depth of the spheroid - Figure 6C, showing that cell killing occurred in the hypoxic regions of the spheroid. A similar analysis of light-induced cell death across the entire 300x300 µm x-y plane at 60 mW revealed that phototoxic effects can be seen through the entire xy plane, even at depth.

**Conclusion**

Lamp light sources commonly used for conventional PDT are in an energy range of 60 to 200 J/cm² (commonly with flux rates of 150 mW/cm²). Although a high flux rate does reduce treatment time, it often causes hyperthermia and a reduced photodynamic effect due to oxygen depletion. Furthermore, although lamp sources are suitable for treatment of large skin area they cannot be focused on small specific lesions. In contrast, as laser excitation volumes of a few femtoliters can be attained by two-photon excitation, high spatial selectivities can be obtained providing the potential to selectively treat melanoma without deleterious effects on surrounding tissue. Furthermore, excitation of a PS through TPA at 900 nm avoids a known mechanism of PDT resistance in melanoma; the abundance of melanin in such pigmented tumors means that light that should excite the PS is instead absorbed by melanin. This “filter” effect means that transmissance through melanoma only occurs at wavelength about 700 nm. In summary, given that NIR photo-excitation of 14+ through TPA allows phototoxic effects to be delivered with high precision into the depths of a therapeutically relevant and realistic tumor model to induce cell death even in hypoxic conditions, this complex is a highly promising lead for focused PDT regimes. By exploiting structural “ground rules” used to optimize TPACS, new derivatives of this lead complex with enhanced two-photon excitation properties are currently being targeted. Ongoing work exploring the use of this PS in more sophisticated preclinical models will form the basis of our future reports.

**Material and Method**

Complex 14+ was synthesized through a reported method. Estimate of two-photon absorption cross-section

The value of two-photon absorption cross-section was calculated according to the following modified equation presented by Rebane and co-workers:

\[ \sigma_t = \left( \frac{c}{c_r} \right)^* \left( \frac{l_r}{l} \right)^* \left( \frac{F_l}{F} \right) \lambda \sigma_1 \left( \sum \frac{l_r}{\sum F_l} \right)^* \left( \phi_\phi \right)^* \sigma (1) \]

where \( \sigma \) is the two-photon absorption cross-section, I is two photon intensity, F (one photon emission intensities at I) \( \sum F_l \) is the integrated one photon intensity, c is the molar concentration (\( r, s \) are reference and sample), and \( \phi \) is the differential emission quantum yield in the spectral range: 608-620 nm. The differential emission quantum yield of Rhodamine B, was taken as 0.5. The value \( \sigma_1 \) for Rhodamine B in MeOH was taken as 180 GM at 850 nm and 13 GM at 900 nm. The differential quantum yield \( \sigma \) was obtained on a Jobin-Yvon Fluoromax 4 fluorometer under one photon excitation. However, in order to achieve good spectral agreement for the reference under one- and two photon excitation, a lower solution concentration required for single photon measurements. The emission maxima and QY of Rhodamine B in MeOH is known to vary with sample concentration. Therefore, the two-photon absorption cross section were calculated using Rhodamine B QY which corresponds to the solution used: i) for two-photon measurements (QY = 0.4[5]) and ii) for single photon measurements (QY= 0.65[5]). The difference between the two calculations are approximately 50%. Thus a range of ~7 (@ 900 nm) to 90 (485 nm) GM was estimated. These errors are due to several factors including the small values and uncertainties of rhodamine B two-photon cross section at 900 nm (which is 13 GM).

**Human melanoma cell culture**

The C8161 human melanoma cell line was isolated from an abdominal wall metastasis from a recurrent malignant melanoma menopausal woman (and a gift from Professor F. Meyskens UC Irvine (USA) via Dr. M. Edwards (University Glasgow, UK)). C8161 melanoma cells were grown in melanoma culture medium consisted of EMEM media (Sigma-Aldrich) supplemented with FCS (10%v/v), L-glutamine (2uM), Pencillin (100U/mL), streptomycin (100ug/mL) and Amphotericin (0.625ug/mL).

Intracellular localization in human melanoma cell line C8161 melanoma cells were grown in 6-well plates for 24 hours at 37°C. The cells were washed with SFM and incubated with 100 µM RuRuTAP for 1, 6, 12 and 24 hours in dark at 37°C. For mitochondria, nucleus and lysosome co-localisation, the cells were further incubated with Mitotracker (200 nM), Lysotracker (100 nM) and DAPI (300 nM, for 15min) for an hour. Cells were washed with SFM and fixed with formaldehyde (3.7%, 15 min). Cell imaging was performed after cells were washed with PBS (thrice, 5min).

**Photo-cytotoxicity using 405±20nm lamp in human melanoma cell line**

C8161 melanoma cells were grown in 24 well plates (1x10⁶ cells/well) for 24 hours at 37°C. Cells were then incubated with increasing concentrations of 14+ (0, 10, 50, 10, 200 µM) for another 24 hours in the dark at 37°C. The compound was then removed and cells were washed with SFM and replenished with SFM. The plates were then irradiated (6.01 J (1 hour), 12.04 J (2 hours) and 18.03 J (3 hours), using a ThorLabs LED (M405LP1) with an emission of 405 nm (±20nm) and power output of 1500 mA. The LED was fixed on a metal stand (20cm from base). After the irradiance, the SFM was replaced with PBS (thrice, 5min).

**Apoptosis assay (Annexin V and PI staining)**
Apoptosis and/or necrosis cell death are two defined pathways. To distinguish the cellular death pathway after the stimuli (1+ at 100μM for 24 hours with and without 1-hour 405nm light irradiance) was studied using Annexin V Fluor-488 and PI (Invitrogen, V13241). Briefly, C8161 melanoma cells were seeded on 6 well plate for 24 hours, then treated with or without 1+ (100μM for 24 hours in SFM), the plates were then irradiated or kept in dark for 1 hour using lamp (405nm). After which the plates were incubated with Annexin V and PI (10μg/mL and 500nM respectively) for 30 min and washed with annexin binding buffer (thrice, 5min). Cells were then fixed (formaldehyde 3.7%, 15 minute) and washed with PBS (x3, 5min). Counterstained with DAPI and imaged under a Zeiss LSM510 confocal microscope using an Achroplan water dipping objective (40X, NA 0.75, WD 2.1).

Two-photon absorption cross-section imaging
C8161 melanoma cells were incubated with 1+ at 100 μM concentration (in SFM) for 24 hours. Cells were then washed with PBS (x3) and fixed with 3.7% formaldehyde (15 min). Luminescence images of 1+ within were taken between 800 to 1000 nm by confocal microscopy (attached to Ti-sapphire Chameleon FD900 laser) and an Achroplan objective 40X/0.75 W, Scan speed of 6 r). The average optical power of each wavelength studied was altered to four different powers (5, 10, 20, and 40 mW). The resultant emission images were collected at λem = 630-700nm from varied excitation wavelengths and four different power settings. To attain ideal cross-section value the emission profile was used to calculate corrected fluorescence emission intensity using ImageJ.

Uptake and distribution 1+ in 3D melanoma spheroids
Melanoma spheroids were formed using C8161 human melanoma cell lines using a liquid overly method as described previously. Briefly, an initial cell seeding density of 12K were cultured in a 96-well plate coated with agarose gel (1.5% w/v) for 10 days (at 37°C and 5% CO2). To measure 1+ distribution through the melanoma spheroids (MCTS), spheroids after 10 days culture were removed and transferred to 35mm glass bottomed dishes (3-4 MCTS in each dish) and allowed to incubate at 37°C (5% (v/v) CO2) overnight to settle. 1+ at 100 μM concentration was incubated for a period of 24 hours. Before analysis, MCTS were washed with SFM (x3) and kept immersed in SFM during data collected upon two-photon excitation (λex = 900nm, λem = 630-700nm). A Zeiss LSM510 META upright confocal microscope, connected to a two-photon class 4 tuneable Ti-sapphire Chameleon laser (FD900, Coherent) and an Achroplan water dipping 40X objective lens (WD 2.1 mm, NA 0.75) was used to image the 1+ emission through the full depth of the spheroid. Optical slices were taken at 10 μm apart in each sample to create a 3D (z-stack) construct image. The depth of penetration was between first and last fluorescence optical slice. Frame size (512 x 512) scan direction (single), scan speed (6), laser power (20mW), and detector gain (874) was kept constant for all repeats.

Two-photon photo-cytotoxicity in melanoma cells
Human melanoma C8161 cells were seeding on a 35 mm dish plate (5x10s cells/well). After incubation for 24 hours the cells were treated with or without 1+ at 100 μM concentration (in SFM) for 24 hours. The cells were washed with serum free culture medium (x3) and replenished with live and dead medium (propidium iodide (PI at 500 nM) and Syto-9 (2 μM) in SFM) for 15 minutes and through the length of time of experiment. The monolayer of cells was imaged for live cells (Syto-9, λex = 488nm (Ar-ion), λem = 500-550nm) and dead cells (PI, λex = 543 nm, λem = 565-615 nm). Live and dead image were taken from the same area (512x512 pixel) after every 5 minutes of irradiation at 900nm at 10 and 20 mW (scan speed= 6) on a marked region of interest (250x250 pixel). Irradiation was carried using a Ti:sapphire laser (Chameleon, Coherent) connected to a Zeiss confocal microscope (LSM510) using an Achroplan water dipping objective (40X, NA 0.75, WD 2.1).

ASSOCIATED CONTENT

SUPPORTING INFORMATION

Intracellular localization and uptake in melanoma cells; apoptosis and necrosis caused by PDT on melanoma; Two-Photon photo-toxicity without 1+; Imaging showing TPA-PDT of whole thickness of melanoma spheroid

AUTHOR INFORMATION

Corresponding Authors
* Email, james.thomas@sheffield.ac.uk ; j.w.haycock@sheffield.ac.uk; s.macneil@sheffield.ac.uk

ORCID
Jim A. Thomas: 0000-0002-8662-7917
John W Haycock: 0000-0002-3950-3583
Stuart A Archer: 0000-0001-8644-1605

ACKNOWLEDGMENT

We are grateful to the EPSRC for postdoctoral funding of SAA and AR (EP/M015572/1). We thank our reviewers whose comments have greatly helped in improving the quality of this report.

REFERENCES

(1) Daniell, M. D.; Hill, J. S. A History of Photodynamic Therapy. Aust N Z J Surg 1991, 61 (5), 340–348.
(2) Moan, J.; Peng, Q. An Outline of the History of PDT. In Photodynamic Therapy; Royal Society of Chemistry: Cambridge, 2003; pp 1–18.
(3) Allison, R. R.; Mota, H. C.; Sibata, C. H. Clinical PD/PDT in North America: an Historical Review. Photodiagnosis Photodyn Ther 2004, 1 (4), 263–277.
Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic Therapy. J. Natl. Cancer Inst. 1998, 90 (12), 889–905.

Hsi, R. A.; Rosenthal, D. I.; Glattstein, E. Photodynamic Therapy in the Treatment of Cancer: Current State of the Art. Drugs 1999, 57 (5), 725–734.

Dolmans, D. E. J. G.; Fukumura, D.; Jain, R. K. Photodynamic Therapy for Cancer. Nat Rev Cancer 2003, 3 (5), 380–387.

Dąbrowski, J. M.; Arnaud, L. G. Photodynamic Therapy (PDT) of Cancer: From Local to Systemic Treatment. Photomed. Photobiol. Sci. 2015, 14 (10), 1765–1780.

Chilikamathuri, U.; Girirabu, L. Photodynamic Therapy: Past, Present and Future. Chem Record 2017, 17 (8), 775–802.

Castano, A. P.; Demidova, T. N.; Hamblin, M. R. Mechanisms in Photodynamic Therapy: Part One—Photosensitizers, Photochemistry and Cellular Localization. Photodiagnosis Photodyn Ther 2004, 1 (4), 279–293.

O’Connor, A. E.; Gallagher, W. M.; Byrne, A. T. Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy. Photomed. Photobiol. 2009, 85 (5), 1053–1074.

Celi, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization. Chem. Rev. 2010, 110 (5), 2795–2838.

Abrahamse, H.; Hamblin, M. R. New Photosensitizers for Photodynamic Therapy. Biochim. J. 2016, 473 (4), 347–364.

Foote, C. S. Definition of Type I and Type II Photosensitized Oxidation. Photochem Photobiol 1991, 54 (5), 659–659.

Sharman, W. M.; Allen, C. M.; Van Liier, J. E. Photodynamic Therapeutics: Basic Principles and Clinical Applications. Drug Discovery Today 1999, 4 (11), 507–517.

Juarranz, A.; Jaen, P.; Sanz-Rodriguez, F.; Cuevas, J.; Gonzalez, S. Photodynamic Therapy of Cancer. Basic Principles and Applications. Clin Transl Oncol 2008, 10 (3), 148–154.

Plaetzer, K.; Krammer, B.; Berlanda, J.; Berr, F.; Kiesslich, T. Photophysics and Photochemistry of Photodynamic Therapy: Fundamental Aspects. Lasers Med Sci 2008, 24 (2), 259–268.

Fernandez, J. M.; Bilgin, M. D.; Grossweiner, L. I. Singlet Oxygen Generation by Photodynamic Agents. Int J Mass Spec 1997, 171 (1–2), 131–140.

DeRosa, M. C.; Crutchley, R. J. Photosensitized Singlet Oxygen and Its Applications. Coord Chem Rev 2002, 233, 351–371.

Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive Oxygen Species Generating Systems Meeting Challenges of Photodynamic Cancer Therapy. Chem Soc Rev 2016, 45 (23), 6597–6626.

Dettty, M. R.; Gibson, S. L.; Wagner, S. J. Current Clinical and Preclinical Photosensitizers for Use in Photodynamic Therapy. J. Med. Chem. 2004, 47 (16), 3897–3915.

Kawczyk-Krupka, A.; Bugaj, A. M.; Latos, W.; Zarzeka, K.; Sierot, A. Photodynamic Therapy in Treatment of Cutaneous and Cutaneous Melanoma. Photodiagnosis Photodyn Ther 2013, 10 (4), 503–509.

Ross, K.; Cherpelis, B.; Lien, M.; Fenske, N. Spotlighting the Role of Photodynamic Therapy in Cutaneous Malignancy: an Update and Expansion. Dermatol Surg 2013, 39 (12), 1733–1744.

Huang, Z. A Review of Progress in Clinical Photodynamic Therapy. Technol. Cancer Res. Treat. 2016, 4 (3), 283–293.

Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic Therapy of Cancer: an Update. CA Cancer J Clin 2011, 61 (4), 250–281.

Baldea, I.; Filip, A. G.; Filip, A. G.; 2012. Photodynamic Therapy in Melanoma - an Update. Journal of Physiology and Pharmacology 2012, 63 (2), 109–118.

Nelson, J. S.; McCullough, J. L.; Berns, M. W.; Berns, M. W. Photodynamic Therapy of Human Malignant Melanoma Xenografts in Athymic Nude Mice. J. Natl. Cancer Inst. 1988, 80 (1), 56–60.

Huang, Y.-Y.; Vecchio, D.; Avci, P.; Yin, R.; Garcia-Diaz, M.; Hamblin, M. R. Melanoma Resistance to Photodynamic Therapy: New Insights. Biol Chem 2013, 394 (2), 1–12.

Domingues, B.; Lopes, J. M.; Soares, P.; Populo, H. Melanoma Treatment in Review. Immunotargets Ther 2018, 7, 35–49.

Ergun, E.; Tittl, M.; Stur, M. Photodynamic Therapy with Verteporfin in Subfoveal Choroidal Neovascularization Secondary to Central Serous Chorioretinopathy. Arch. Ophthalmol. 2004, 122 (1), 37–41.

Sheleg, S. V.; Zhavrid, E. A.; Khodina, T. V.; Kochubeev, G. A.; Istomin, Y. P.; Chalov, V. N.; Zhuravkin, I. N. Photodynamic Therapy with Chlorin E6 For Skin Metastases of Melanoma. Photodermatology Photoinmunology and Photomedicine 2004, 20 (1), 21–26.

Harris, A. L. Hypoxia - a Key Regulatory Factor in Tumour Growth. Nat Rev Cancer 2002, 2 (1), 38–47.

Muz, B.; de Puente, P.; Azab, F.; Azab, A. K.; Azab, A. K. The Role of Hypoxia in Cancer Progression, Angiogenesis, Metastasis, and Resistance to Therapy. Hypoxia (Auckl) 2015, 3, 83–92.

Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L. Two-Photon Absorption and the Design of Two-Photon Dyes. Angew. Chem. Int. Ed. 2009, 48 (18), 3244–3266.

Bolze, F.; Jenni, S.; Sour, A.; Heitz, V. Molecular Photosensitizers for Two-Photon Photodynamic Therapy. Chem. Commun. 2017, 53 (96), 12857–12877.

Mir, Y.; van Lier, J. E.; Allard, J.-F.; Morris, D.; Houde, D. Two-Photon Absorption Cross Section of Excited Pthalocyanines by a Femtosecond Ti-Sapphire Laser. Photchem Photobiol Sci. 2009, 8 (3), 391–395.

Xu, C.; Williams, R. M.; Zipfel, W.; Webb, W. W. Multiphoton Excitation Cross Sections of Molecular Fluorophores. Bioimaging 1996, 4 (3), 198–207.

Karotki, A.; Khurana, M.; Lepock, J. R.; Anderson, H. L. Simultaneous Two-Photon Excitation of Photofrin in Relation to Photodynamic Therapy. Photochem Photobiol 2006, 82 (2), 443–452.

Szacilowski, K.; Macyz, W.; Drezewka-Matuszek, A.; Brindell, M.; Stoehel, G. Bioinorganic Photochemistry: Frontiers and Mechanisms. Chem. Rev. 2005, 105 (6), 2647–2694.

Allison, R. R.; Sibata, C. H. Oncologic Photodynamic Therapy Photosensitizers: a Clinical Review. Photodiagnosis Photodyn Ther 2010, 7 (2), 61–75.

Kim, H. M.; Cho, B. R. Small-Molecule Two-Photon Probes for Bioimaging Applications. Chem. Rev. 2015, 115 (11), 5014–5055.

McKenzie, L. K.; Bryant, H. E.; Weinstein, J. A. Transition Metal Complexes as Photosensitisers in One- and Two-
Photon Photodynamic Therapy. *Coord. Chem. Rev. 2018*, 379, 1–28.

Dhenaut, C.; Ledoux, I.; Samuel, I. D. W.; Zycs, J.; Bourgaut, M.; Bozec, H. L. Chiral Metal Complexes with Large Octupolar Optical Nonlinearities. *Nature 1995*, 374 (6520), 339–342.

Feuvrie, C.; Maury, O.; Le Bozec, H.; Ledoux, I.; Morral, J. P.; Dalton, G. T.; Samoc, M.; Humphrey, M. G. Nonlinear Optical and Two-Photon Absorption Properties of Octupolar Tris(bipyridyl)Metal Complexes. *J. Phys. Chem. A 2007*, 111 (37), 8980–8985.

Lacroix, P. G.; Malfant, I.; Lepeit, C. Second-Order Nonlinear Optics in Coordination Chemistry: an Open Door Towards Multi-Functional Materials and Molecular Switches. *Coord. Chem. Rev. 2015*, 308, 1–14.

Josefson, L. B.; Boyle, R. W. Photodynamic Therapy and the Development of Metal-Based Photosensitizers. *Met Based Drugs 2008*, 2008 (4), 1–23.

Basu, U.; Khan, I.; Hussain, A.; Kondiah, P.; Chakravarty, A. R. Photodynamic Effect in Near-IR Light by a Photocytotoxic Iron(III) Cellular Imaging Agent. *Angew. Chem. Int. Ed. 2012*, 51 (11), 2658–2661.

Higgins, S. L. H.; Brewer, K. J. Designing Red-Light-Activated Multifunctional Agents for the Photodynamic Therapy. *Angew. Chem. Int. Ed. 2012*, 51 (46), 11420–11422.

Knoll, J. D. Control and Utilization of Ruthenium and Rhodium Metal Complex Exited States for Photoactivated Cancer Therapy. *Coord. Chem. Rev. 2015*, 282–283, 110–126.

Arenas, Y.; Monro, S.; Shi, G.; Mandel, A.; McFarland, S.; Lilge, L. Photodynamic Inactivation of Staphylococcus Aureus and Methylcillin-Resistant Staphylococcus Aureus with Ru(II)-Based Type I/Type II Photosensitizers. *Photodiagnosis Photodyn Ther 2013*, 10 (4), 615–625.

Stephenson, M.; Reichardt, C.; Pinto, M.; Wächtler, M.; Sainuddin, T.; Shi, G.; Yin, H.; Monro, S.; Sampson, E.; Dietzek, B.; et al. Ru(II) Dyads Derived From 2-(1-Pyrenyl)-1H-imidazo[4,5-F][1,10]-Phenantrline: Versatile Photosensitizers for Photodynamic Applications. *J. Phys. Chem. A 2014*, 118 (45), 10507–10521.

Frei, A.; Agarwal, C.; Tubafard, S.; Blacque, O.; Anstaett, P.; Felgenträger, A.; Maisch, T.; Spiccia, L.; Gasser, G. Synthesis, Characterization, and Biological Evaluation of New Ru(II) Polypryidyl Photosensitizers for Photodynamic Therapy. *J. Med. Chem. 2014*, 57 (17), 7280–7292.

Mari, C.; Pierroz, V.; Ferrari, S.; Gasser, G. Combination of Ru(II) Complexes and Light: New Frontiers in Cancer Therapy. *Chem. Sci. 2015*, 6 (5), 2660–2686.

Liu, J.; Zhang, C.; Rees, T. W.; Ke, L.; Ji, L.; Chao, H. Harnessing Ruthenium(II) as Photodynamic Agents: Encouraging Advances in Cancer Therapy. *Coord Chem Rev 2018*, 363, 17–28.

Huang, H.; Yu, B.; Zhang, P.; Huang, J.; Chen, Y.; Gasser, G.; Ji, L.; Chao, H. Highly Charged Ruthenium(II) Polypryidyl Complexes as Lysosome-Localized Photosensitizers for Two-Photon Photodynamic Therapy. *Angew. Chem. Int. Ed. 2015*, 54, 14049–14052.

McKenzie, L. K.; Szanovich, I. V.; Baggaley, E.; Bonneau, M.; Guerciais, V.; Williams, J. A. G.; Weinstein, J. A.; Bryant, H. E. Metal Complexes for Two-Photon Photodynamic Therapy: a Cyclometallated Iridium Complex Induces Two-Photon Photosensitization of Cancer Cells Under Near-IR Light. *Chem. Eur. J. 2017*, 23 (2), 234–238.

Tian, X.; Zhu, Y.; Zhang, M.; Luo, L.; Wu, J.; Zhou, H.; Guan, L.; Battaglia, G.; Tian, Y. Localization Matters: a Nuclear Targeting Two-Photon Absorption Iridium Complex in Photodynamic Therapy. *Chem. Commun. 2017*, 53 (23), 3303–3306.

Heinemann, F.; Karges, J.; Gasser, G. Critical Overview of the Use of Ru(II) Polypryidyl Complexes as Photosensitizers in One-Photon and Two-Photon Photodynamic Therapy. *Acc. Chem. Res. 2017*, 50 (11), 2727–2736.

Qiu, K.; Wang, J.; Song, C.; Wang, L.; Zhu, H.; Huang, H.; Huang, J.; Wang, H.; Ji, L.; Chao, H. Crossfire for Two-Photon Photodynamic Therapy with Fluorinated Ruthenium(II) Photosensitizers. *ACS Appl. Mater. Interfaces 2017*, 9 (22), 18482–18492.

Hess, J.; Huang, H.; Kaiser, A.; Kaur, M.; Blacque, O.; Chao, H.; Gasser, G. Evaluation of the Medicinal Potential of Two Ruthenium(II) Polypryidyl Complexes as One- and Two-Photon Photodynamic Therapy Photosensitizers. *Chem. Eur. J. 2017*, 23 (41), 9888–9896.

Ocana, A.; Panidialia, A.; Sui, L. L.; Tannock, I. F. Preclinical Development of Molecular-Targeted Agents for Cancer. *Nature Reviews Clinical Oncology 2010*, 8 (4), 200–209.

Harrison, R. K. Phase II and Phase III Failures: 2013–2015. *Nat Rev Drug Discov 2016*, 15 (12), 817–818.

Minchinton, A. I.; Tannock, I. F. Drug Penetration in Solid Tumours. *Nat Rev Cancer 2006*, 6 (8), 583–592.

Imamura, Y.; Mukohara, T.; Shimono, Y.; Funakoshi, Y.; Chayahara, N.; Toyoda, M.; Kiyota, N.; Takao, S.; Kono, S.; Nakatsu, T.; et al. Comparison of 2D- and 3D-Culture Models as Drug-Testing Platforms in Breast Cancer. *Oncology Reports 2015*, 33 (4), 1837–1843.

Baker, B. M.; Chen, C. S. Deconstructing the Third Dimension-How 3D Culture Microenvironments Alter Cellular Cues. *J. Cell Science 2012*, 125 (13), 3015–3024.

Dubessy, C.; Merlin, J. M.; Marchal, C.; Guillen, F. Spheroids in Radiobiology and Photodynamic Therapy. *Crit Rev Oncol Hematol 2010*, 72 (2–3), 179–192.

Hirschhaeuser, F.; Menne, H.; Dittfeld, C.; West, J.; Mueller-Klieser, W.; Kunz-Schughart, L. A. Multicellular Tumor Spheroids: an Underestimated Tool Is Catching Up Again. *Journal of Biotechnology 2010*, 148 (1), 3–15.

Breslin, S.; O’Driscoll, L. Three-Dimensional Cell Culture: the Missing Link in Drug Discovery. *Drug Discovery Today 2013*, 18 (5-6), 240–249.

Weiswald, L. B.; Bellet, D.; Dangles-Marie, V. Spherical Cancer Models in Tumor Biology. *Neoplasia 2015*, 17 (1), 1–15.

Däster, S.; Amatrua, N.; Calabrese, D.; Ivanek, R.; Turrini, E.; Dreeser, R. A.; Zajac, P.; Fimognari, C.; Spagnoli, G. C.; Iezzi, G.; et al. Induction of Hypoxia and Necrosis in Multicellular Tumor Spheroids Is Associated with Resistance to Chemotherapy Treatment. *Oncotarget 2017*, 8 (1), 1725–1736.

Ramu, V.; Gill, M. R.; Jarman, P. J.; Turton, D.; Thomas, J. A.; Das, A.; Smythe, C. A. CYCOSTATIC Ruthenium(II)-Platinum(II) Bis(Terpyridyl) Anticancer Complex That Blocks Entry Into S Phase by Up-Regulating P27 KIP1. *Chem. Eur. J. 2015*, 21 (25), 9185–9197.

Gill, M. R.; Derrat, H.; Smythe, C. G. W.; Battaglia, G.; Thomas, J. A. Ruthenium(II) Metallo-Calcatelators: DNA Imaging and Cyotoxicity. *Chembiochem 2011*, 12 (6), 877–880.

Gill, M. R.; Jarman, P. J.; Halder, S.; Walker, M. G.; Saed, H. K.; Thomas, J. A.; Smythe, C.; Ramadan, K.; Vallis, K. A. A Three-in-One-Bullet for Desophageal Cancer: Replication Fork Collapse, Spindle Attachment Failure and
Enhanced Radiosensitivity Generated by a Ruthenium(II) Metallo-Intercalator. *Chem. Sci.* **2018**, *9* (4), 841–849.

Jarman, P. J.; Noakes, F.; Fairbanks, S.; Smitten, K.; Griffiths, I. K.; Saeed, H. K.; Thomas, J. A.; Smythe, C. Exploring the Cytotoxicity, Uptake, Cellular Response, and Proteomics of Mono- and Dinuclear DNA Light-Switch Complexes. *J. Am. Chem. Soc.* **2018**, *141* (7), 2925–2937.

Walker, M. G.; Jarman, P. J.; Gill, M. R.; Tian, X.; Ahmad, H.; Reddy, P. A. N.; McKenzie, L.; Weinstein, J. A.; Meijer, A. J. H. M.; Battaglia, G.; et al. A Self-Assembled Metallomacrocyclic Singlet Oxygen Sensitizer for Photodynamic Therapy. *Chem. Eur. J.* **2016**, *22* (17), 5996–6000.

Saeed, H. K.; Archer, S.; Sreedharan, S.; Saeed, I. Q.; Buurman, N. J.; Thomas, J. A. Homo- and Heteroleptic Phototoxic Dinuclear Metallo-Intercalators Based on Ru(II) Intercalating Moieties: Synthesis, Optical, and Biological Studies. *Angew. Chem. Int. Ed.* **2017**, *56* (41), 12628–12633.

Archer, S. A.; Raza, A.; Dröge, F.; Robertson, C.; Aty, A. J.; Chekulaev, D.; Weinstein, J. A.; Keane, T.; Meijer, A. J. H. M.; Haycock, J. W.; et al. A Dinuclear Ruthenium(II) Phototherapeutic That Targets Duplex and Quadruplex DNA. *Chem. Sci.* **2019**, *10*, 3502–3513.

Elías, B.; Kirsch-DeMesmaeker, A. Photo-Reduction of Polyazaaromatic Ru(II) Complexes by Biomolecules and Possible Applications. *Coord. Chem. Rev.* **2006**, *250* (13-14), 1627–1641.

Ortmans, T. I.; Elías, B. B.; Kelly, J. M. J.; Moucheron, C. C.; Kirsch-DeMesmaeker, A. A. [Ru(TAP)2(Dppz)]2+: a DNA Intercalating Complex Which Luminesces Strongly in Water and Undergoes Photo-Induced Proton-Coupled Electron Transfer with Guanosine-5’-Monophosphate. *Dalton Trans* **2004**, *No. 4*, 668–676.

Ghizdavu, L.; Pierard, F.; Rickling, S.; Aury, S.; Surin, M.; Beljonne, D.; Lazaroni, R.; Murat, P.; Defrancq, E.; Moucheron, C.; et al. Oxidizing Ru(II) Complexes as Irreversible and Specific Photo-Cross-Linking Agents of Oligonucleotide Duplexes. *Inorg Chem 2009*, *48* (23), 10988–10994.

Elías, B.; Creely, C.; Doorley, G. W.; Feeney, M. M.; Moucheron, C.; Kirsch-DeMesmaeker, A.; Dyer, J.; Grills, D. C.; George, M. W.; Matousek, P.; et al. Photooxidation of Guanine by a Ruthenium Dipyridophenazine Complex Intercalated in a Double-Stranded Polynucleotide Monitored Directly by Picosecond Visible and Infrared Absorption Spectroscopy. *Chem. Eur. J.* **2008**, *14* (1), 369–375.

Hall, J. P.; Poynton, F. E.; Keane, P. M.; Gurung, S. P.; Brazier, J. A.; Cardin, D. J.; Winter, G.; Gunnaugsson, T.; Sanazovich, I. V.; Towrie, M.; et al. Monitoring One- Electron Photo-Oxidation of Guanine in DNA Crystals Using Ultrasfast Infrared Spectroscopy. *Nat Chem* **2015**, *7* (12), 961–967.

Cardin, C. J.; Kelly, J. M.; Quinn, S. J. Photochemically Active DNA-Intercalating Ruthenium and Related Complexes – Insights by Combining Crystallography and Transient Spectroscopy. *Chem. Sci. 2017*, *8* (7), 4705–4723.

Beggaley, E.; Gill, M. R.; Green, N. H.; Turton, D.; Sanazovich, I. V.; Bothway, S. W.; Smythe, C.; Haycock, J. W.; Weinstein, J. A.; Thomas, J. A. Dinuclear Ruthenium(II) Complexes as Two-Photon, Time-Resolved Emission Microscopy Probes for Cellular DNA. *Angew. Chem. Int. Ed.* **2014**, *53* (13), 3367–3371.

Kessel, D.; Luo, Y. Mitochondrial Photodamage and PDT-Induced Apoptosis. *J Photochem Photobiol B* **1998**, *42* (2), 89–95.

Morgan, J.; Oseroff, A. R. Mitochondria-Based Photodynamic Anti-Cancer Therapy. *Advanced Drug Delivery Reviews* **2001**, *49* (1-2), 71–86.

Makarov, N. S.; Drobizhev, M.; Rebane, A. Two-Photon Absorption Standards in the 550-1600 Nm Excitation Wavelength Range. *Opt Express* **2008**, *16* (6), 4029–4047.

Ogawa, K.; Kobuke, Y. Two-Photon Photodynamic Therapy with Water-Soluble Self-Assembled Conjugated Porphyrins. *Biomed Research International* **2013**, *2013* (11), ArticleID125658.

Khurana, M.; Collins, H. A.; Karotki, A.; Anderson, H. L.; Cram, D. T.; Wilson, B. C. Quantitative in Vitro Demonstration of Two-Photon Photodynamic Therapy Using Photofrin ® and Visudyne ®. *Photochem Photobiol 2007*, *83* (6), 1441–1448.

Raza, A.; Colley, H. E.; Baggaley, E.; Sanazovich, I. V.; Green, N. H.; Weinstein, J. A.; Botchway, S. W.; MacNeil, S.; Haycock, J. W. Oxygen Mapping of Melanoma Spheroids Using Small Molecule Platinum Probe and Phosphorescence Lifetime Imaging Microscopy. *Sci. Rep.* **2017**, *7* (1), 10743.

Sitnik, T. M.; Henderson, B. W. The Effect of Fluence Rate on Tumor and Normal Tissue Responses to Photodynamic Therapy. *Photochem Photobiol 1998*, *67* (4), 462–466.

Henderson, B. W.; Busch, T. M.; Vaughan, L. A.; Frawley, N. P.; Babich, D.; Sosa, T. A.; Zole, J. D.; Dee, A. S.; Cooper, M. T.; Bellnier, D. A.; et al. Photofrin Photodynamic Therapy Can Significantly Deplete or Preserve Oxygenation in Human Basal Cell Carcinomas During Treatment, Depending on Fluence Rate. *Cancer Research* **2000**, *60* (3), 525–529.

Dysart, J. S.; Patterson, M. S. Characterization of Photofrin Photobleaching for Singlet Oxygen Dose Estimation During Photodynamic Therapy of MLL Cells in Vitro. *Phys. Med. Biol.* **2005**, *50* (11), 2597–2616.

Seshadri, M.; Bellnier, D. A.; Vaughan, L. A.; Spernyak, J. A.; Mazurchuk, R.; Foster, T. H.; Henderson, B. W. Light Delivery Over Extended Time Periods Enhances the Effectiveness of Photodynamic Therapy. *Clinical Cancer Research* **2008**, *14* (9), 2796–2805.

Gallagher Colombo, S. M.; Finlay, J. C.; Busch, T. M. Tumor Microenvironment as a Determinant of Photodynamic Therapy Resistance. In *Resistance to Photodynamic Therapy in Cancer*; Resistance to Targeted Anti-Cancer Therapeutics; Springer International Publishing: Cham, 2014; Vol. 5, pp 65–97.

Ortonne, J.-P. Photoprotective Properties of Skin Melanin. *Br J Dermatol* **2002**, *146 Suppl 61* (61), 7–10.

Vera, R. E.; Lamberti, M. J.; Rivarola, V. A.; Rumie Vittar, N. B. Developing Strategies to Prevent Photodynamic Therapy Outcome: the Role of Melanoma Microenvironment. *Tumor Biol.* **2015**, *36* (12), 9127–9136.

Sharma, K. V.; Bowers, N.; Davids, L. M. Photodynamic Therapy-Induced Killing is Enhanced in Depigmented Metastatic Melanoma Cells. *Cell. Biol. Int.* **2011**, *35* (9), 939–944.