A LIOUVILLE THEOREM FOR THE COMPLEX MONGE-AMPERE EQUATION

YU WANG

Abstract. In this note, we derive a Liouville theorem for the complex Monge-Ampère equation from the small perturbation result of O. Savin [4]. Let dx stands for the standard Lebesgue measure, our result states that if a plurisubharmonic function u solves

$$(i\partial \bar{\partial} u)^n = dx, \quad \text{on } \mathbb{C}^n$$

and u satisfies the growth condition

$$u = \frac{1}{2} |x|^2 + o(|x|^2), \quad \text{as } x \to \infty,$$

then u differs from $|x|^2/2$ by a linear function.

1. Introduction

In this note, we consider the global solutions of the complex Monge-Ampère equation. Denote the Lebesgue measure by dx, our result states:

Theorem 1.1. If the plurisubharmonic function u is a viscosity solution of

$$(i\partial \bar{\partial} u)^n = dx, \quad \text{on } \mathbb{C}^n$$

and u satisfies the growth condition

$$u = \frac{1}{2} |x|^2 + o(|x|^2), \quad \text{as } x \to \infty,$$

then

$$u = \frac{1}{2} |x|^2 + l(x)$$

where $l(x)$ is a linear function.

By a linear change of coordinates, one can replace $|x|^2/2$ by every quadratic polynomial P such that

$$(i\partial \bar{\partial} P)^n = dx.$$

We have stated the theorem in terms of viscosity solutions for our convenience. It is also valid for pluripotential solutions, as viscosity and pluripotential solutions are equivalent (see [2, 5]).
Unlike the real Monge-Ampère equation, global solutions of (1.1) cannot be classified without any restriction on solution’s growth at infinity. Consider the following example due to Blocki [1]: the function

$$u = |z| (1 + |w|^2)$$

satisfies (1.1) on \mathbb{C}^2 in viscosity sense. However u is clearly not the pull back of a quadratic polynomial by a holomorphic mapping. In fact, u is not even C^2 at the points $\{(z, w) : z = 0\}$. We also notice that, along the diagonal direction $z = w$

$$u(x) \sim |x|^3,$$

as $x = (z, w) \to \infty$.

A disadvantage of Theorem 1.1 (and our proof) is that we have not been able to handle the case $u - |x|^2 / 2$ has exactly quadratic growth, i.e.,

$$\frac{|x|^2}{2C} \leq u - |x|^2 / 2 \leq \frac{C}{2} |x|^2, \quad C > 1.$$

The author believe that u is a quadratic polynomial in this case.

The study of the complex Monge-Ampère equation is largely motivated by the study of Kähler geometry. From the geometric point of view, our theorem implies the following rigidity statement.

Corollary 1.2. Suppose that g is a Ricci-flat Kähler metric on \mathbb{C}^n. Let φ be its Kähler potential and μ_g be the induced measure. Denote $|B_1|$ the Lebesgue measure of the unit ball.

If μ_g is comparable with Lebesgue measure, i.e.,

$$C^{-1} dx \leq \mu_g \leq C dx$$

and

$$\varphi = \left(\frac{\mu_g(B_1)}{|B_1|} \right)^{1/n} \frac{|x|^2}{2} + o(|x|^2) \quad \text{as} \quad x \to \infty,$$

then

$$\left(\frac{|B_1|}{\mu_g(B_1)} \right)^{1/n} g$$

is the Euclidean metric.

The above statement would be more satisfactory if one can replace the analytic condition (1.4) by a pure geometric condition.

To end the introduction, we would like to mention that if one replace the condition (1.2) in Theorem 1.1 by

$$u = \frac{1}{2} |x|^2 + O(1)$$

then the conclusion can be derived from an unpublished result of Kolodziej [3]. This reference is pointed out to the author by S. Dinew. The method in this paper is independent from the work of Kolodziej.
Acknowledgement. The author is grateful to his thesis advisor Professor Duong Hong Phong for his inspirational discussions and helpful suggestions. The author also would like to thank Professor Ovidiu Savin, from whom the author have learned many important PDE techniques. The author also would like to thank Professor Valentino Tosatti and Professor Slawomir Dinew for many important discussions.

2. Preliminaries

In this section, we recall some basic facts regarding the complex Monge-Ampère operator and the statement of Savin’s small perturbation theorem.

2.1. Complex Monge-Ampère equation in real Hessian. Let $\text{Sym}(2n)$ be the space of $2n \times 2n$ symmetric matrices equipped with the standard spectral normal

$$\|M\| = \max\{|\lambda_i|\}, \lambda_i, \text{ eigenvalue of } M \in \text{Sym}(2n).$$

Let $\text{Herm}(n)$ be the space of $n \times n$ Hermitian matrices. Denote the $n \times n$ identity matrix by I_n.

The space \mathbb{C}^n can be identify to \mathbb{R}^{2n} equipped with the complex structure

$$J = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}.$$

This identification induces an embedding ι of $\text{Herm}(n)$ to $\text{Sym}(2n)$

$$\iota : H = A + iB \mapsto \begin{pmatrix} A & -B \\ B & A \end{pmatrix}.$$

Moreover, we have

$$\iota(\text{Herm}(n)) = \{M \in \text{Sym}(2n) | [M, J] = 0\}.$$

From now on, we shall identify a Hermitian matrix and its image under the embedding ι.

Let φ be a C^2-function on \mathbb{C}^n. Recall that

$$(i\partial\bar{\partial}\varphi)^n = \det(2\varphi_{z_i\bar{z}_k}) \, dx.$$

Denote the real Hessian of φ by $D^2\varphi$. It is easy to see that

$$\iota(2\varphi_{z_i\bar{z}_k}) = \frac{1}{2} (D^2\varphi + J^T D^2\varphi J)$$

and

$$\det(2\varphi_{z_i\bar{z}_k}) = \det^{1/2} \left[\frac{1}{2} (D^2\varphi + J^T D^2\varphi J) \right].$$

The above discussion immediately implies the following lemma
Lemma 2.1. Let the function \(F : \text{Sym}(2n) \to \mathbb{R} \) be given by

\[
F(M) := \begin{cases}
\det^{1/2} \left[\frac{1}{2} (M + J^T MJ) + I \right] - 1 & M + J^T MJ \geq -I \\
-1 & \text{otherwise.}
\end{cases}
\]

If \(u \) is a viscosity solution of (1.1), then

\[
w := u - \frac{|x|^2}{2}
\]

is a viscosity solution of \(F(D^2w) = 0 \), on \(\mathbb{R}^{2n} \).

Proof. Let \(P \) be a quadratic polynomial that touches \(w \) from above, then \(P + \frac{|x|^2}{2} \) touches \(u \) from above. Since \(u \) is a plurisubharmonic function,

\[
\frac{1}{2} \left(D^2P + J^T D^2P J \right) \geq -I
\]

Since \(u \) is a viscosity subsolution of (1.1),

\[
\det^{1/n} \left[\frac{1}{2} \left(D^2 \varphi + J^T D^2 \varphi J \right) + I \right] = \det \left[2 \left(P + \frac{|x|^2}{2} \right) \right] \geq 1.
\]

Therefore, we conclude that \(w \) is a viscosity subsolution of \(F(D^2w) = 0 \). Let \(P \) be a quadratic polynomial that touches \(w \) from below. It suffices to consider the case

\[
\frac{1}{2} \left(D^2P + J^T D^2P J \right) > -I.
\]

Since otherwise, \(F(D^2P) = -1 < 0 \). Again \(P + \frac{|x|^2}{2} \) touches \(u \) from below. By the fact that \(u \) is also a viscosity supersolution of (1.1), we have

\[
\det^{1/n} \left[\frac{1}{2} \left(D^2 \varphi + J^T D^2 \varphi J \right) + I \right] = \det \left[2 \left(P + \frac{|x|^2}{2} \right) \right] \leq 1.
\]

In turn \(F(D^2P) \leq 0 \) and \(w \) is a viscosity supersolution of \(F(D^2w) = 0 \). \(\square \)

2.2. Small perturbation theorem. We recall the small perturbation theorem due to Savin [4]. The following definition will be convenient.

Definition 2.2. Given constants \(\delta, \theta, K > 0 \), the family \(\mathcal{F}_{\delta, \theta, K} \) consists of functions \(F : \text{Sym}(2n) \to \mathbb{R} \) that satisfy the following conditions:

- **H1:** For every \(M \in \text{Sym}(2n) \)

 \[F(M + P) \geq F(M), \quad \forall P \geq 0. \]

- **H2:** \(F(0) = 0 \).

- **H3:** For every \(M \) with \(\|M\| \leq \delta \)

 \[\theta^{-1} \|P\| \geq F(M + P) - F(M) \geq \theta \|P\|, \quad \forall P \geq 0, \|P\| \leq \delta. \]
H4: F is twice differentiable in the set $\{M \mid \|M\| \leq \delta\}$ and
\[|D^2 F(M)| \leq K. \]

We state the following version of the small perturbation theorem.

Theorem 2.3 (Savin, 2007). Given constant $\delta > 0$, if
\[F \in \mathcal{F}_{\delta, \theta, K}, \text{ for some } \theta, K > 0, \]
then there exist constant μ only depending on n, δ, θ, K such that, if $u \in C(B_1)$ is a viscosity solution of $F(D^2 u) = 1$ and
\[\|u\|_{L^\infty(B_1)} \leq \mu, \]
then u is $C^2(B_{1/2})$ and
\[\|D^2 u\|_{L^\infty(B_{1/2})} \leq \delta. \]

We end this section with the following lemma.

Lemma 2.4. Let F be the function on $\text{Sym}(2n)$ given by (2.1). There exists constants θ, K only depends on n such that
\[F \in \mathcal{F}_{\delta, \theta, K}, \forall \delta < 1/3. \]

Proof. The fact that F satisfies H1 and H2 of Definition 2.2 follows immediately from its expression.

Let $D_{ij} F$ be the differentiation of F with respect to the ij-entry of a matrix variable. By direct calculation, we have
\[|D_{ij} F(M)| = \left| \left(D_{ij} \det^{1/2} \right) \left[\frac{1}{2} (M + J^T MJ) + I \right] \right| \]
\[|D_{ij,kl}^2 F| = \left| \left(D_{ij,kl}^2 \det^{1/2} \right) \left[\frac{1}{2} (M + J^T MJ) + I \right] \right|. \]

The fact that F satisfies H3 and H4 then follows from
\[\|M + J^T MJ\| \leq 2 \|M\| \]
and
\[\left| D_{ij} \det^{1/2}(N) \right|, \left| D_{ij,kl}^{1/2} \det^{1/2}(N) \right| \leq C(n), \forall N, \frac{1}{3} I \leq N \leq 3I. \]
3. Proof of the Main Statements

The Theorem 1.1 follows from Theorem 2.3 via a simple scaling argument.

Proof of Theorem 1.1. By a translation of coordinate, it suffices to show that u is C^2 and

$$D^2 u(0) = I.$$

Consider the function

$$(3.1)\quad w_R(x) := \frac{1}{R^2} u(Rx) - \frac{1}{2} |x|^2$$

Claim:

$$(3.2)\quad \|w_R\|_{L^\infty(B_1)} \leq \frac{o(R^2)}{R^2}$$

Consider the domain B_1, both $u(Rx)/R^2$ and $|x|^2/2$ satisfies

$$(i\partial\bar{\partial}\varphi)^n = dx$$

in B_1. By the comparison principle of the complex Monge-Ampère operator, we conclude that

$$\left\| \frac{1}{R^2} u(Rx) - \frac{|x|^2}{2} \right\|_{L^\infty(B_1)} \leq \left\| \frac{1}{R^2} u(Rx) - \frac{|x|^2}{2} \right\|_{L^\infty(\partial B_1)} = \frac{1}{R^2} \left\| u - |x|^2/2 \right\|_{L^\infty(\partial B_R)}.$$

The claim (3.2) then follows from the assumption (1.2).

Now, let F be the operator given by (2.1) and θ, K be the constants given by Lemma 2.4. For every $\delta \in (0, 1/3)$, let μ_δ be the constant produced by Theorem 2.3 with respect to $F_{\delta, \theta, K}$.

By Lemma 2.4 $F \in F_{\delta, \theta, K}$. It is easy to see that

$$w_R = \frac{1}{R^2} \left(u(Rx) - \frac{1}{2} |Rx|^2 \right)$$

satisfies $F(D^2w) = 0$ for any $R > 0$. Moreover, by the claim (3.2), we can take R large so that

$$\|w_R\|_{L^\infty(B_1)} \leq \mu_\delta.$$

Therefore, we can apply Theorem 2.3 to conclude that w_R is C^2 in $B_{1/2}$ and

$$\|D^2 w_R(0)\| \leq \delta.$$

It follows then u is C^2 in $B_{R/2}$ and

$$\|D^2 u(0) - I\| \leq \delta.$$

The desired conclusion follows by letting δ tend to 0. \[\square\]

Next, we prove Corollary 1.2.
Proof of Corollary 1.2. Since g is Ricci flat, we have
\[\Delta \log \det(\varphi_{zi\bar{z}_k}) = 0, \text{ on } \mathbb{C}^n \]
Since μ_g is comparable with Lebesgue measure, we have
\[C^{-1} \leq \det(\varphi_{zi\bar{z}_k}) \leq C. \]
Therefore, $\log \det(\varphi_{zi\bar{z}_k})$ is a bounded harmonic function on entire \mathbb{C}^n. Henceforth,
\[\log \det(\varphi_{zi\bar{z}_k}) = \text{constant}. \]
It follows then φ satisfies
\[(i\partial \bar{\partial} \varphi) = \frac{\mu_g(B_1)}{|B_1|} dx, \text{ on } \mathbb{C}^n \]
Along with the assumption (1.4), we see
\[\tilde{\varphi} := \left(\frac{|B_1|}{\mu_g(B_1)} \right)^{1/n} \varphi \]
satisfies the hypotheses of Theorem 1.1. Therefore, we conclude that
\[\tilde{\varphi} = \frac{1}{2} |x|^2 + l(x). \]
The desired conclusion follows. \hfill \Box

References

[1] Bocki, Z. On the regularity of the complex Monge-Ampère operator. Complex geometric analysis in Pohang (1997), 181-189. Contemp. Math., 222, Amer. Math. Soc., Providence, RI, 1999.
[2] Eyssidieux, P.; Guedj, V.; Zeriahi, A. Viscosity solutions to degenerate complex Monge-Ampère equations. Comm. Pure Appl. Math. 64 (2011), no. 8, 1059-1094.
[3] Kolodziej, S. Existence and regularity of global solutions to the complex Monge-Ampère equation, unpublished, available on www2.im.uj.edu.pl/badania/preprinty/
[4] Savin, O. Small perturbation solutions for elliptic equations. Comm. Partial Differential Equations, 32(2007), no.4-6, 557-578.
[5] Wang, Y. A viscosity approach to the Dirichlet problem for complex Monge-Ampère equations. Math. Z. 272 (2012), no. 1-2, 497-513.

Department of Mathematics, Columbia University, Room 509, MC 4406, 2990 Broadway, New York, NY 10027, USA
E-mail address: yuwang@math.columbia.edu