Carotid intima-media thickness in mainly non-obese women with polycystic ovary syndrome and age-matched controls

Jin Ju Kim1,2, Young Min Choi1,3, Jin Hwa Kang2,4, Kyu Ri Hwang1,5, Soo Jin Chae6, Sun Mie Kim1,2, Seung Yup Ku1,3, Seok Hyun Kim1,3, Jung Gu Kim1, Shin Yong Moon1,3

1Department of Obstetrics and Gynecology, Seoul National University College of Medicine; 2Healthcare System Gangnam Center, Seoul National University Hospital; 3The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine; 4Department of Radiology, Seoul National University Hospital; 5Seoul National University Boramae Medical Center; 6Department of Obstetrics and Gynecology, Maria Fertility Hospital, Seoul, Korea

Objective
Metabolic disturbances are well-recognized clinical features of polycystic ovary syndrome (PCOS). Carotid intima-media thickness (CIMT) has been widely used as a surrogate marker of atherosclerosis and cardiovascular disease (CVD). CIMT in women with PCOS has been investigated in many studies, but there has been only one report in the Korean population. The aim of the present study was to compare the presence of subclinical atherosclerosis in young untreated Korean women with PCOS and age-matched controls, specifically by measuring their CIMT.

Methods
CIMT was measured by one radiologist in 56 PCOS patients and 56 controls. To compare the CIMT according to PCOS phenotypes, women with PCOS were divided into two subgroups according to the presence of hyperandrogenism.

Results
Although PCOS patients were more obese and had higher blood pressure and insulin resistance index than the age-matched controls, the CIMT was not different between the two groups (0.49 ± 0.09 mm in PCOS patients vs. 0.50 ± 0.11 mm in controls, respectively, \(p = 0.562 \)). When the CIMT in the control group was compared with hyperandrogenic and non-hyperandrogenic PCOS groups, also no significant differences were found.

Conclusion
Despite the significant differences in some vascular risk factors between women with PCOS and controls, PCOS patients did not have a significantly higher CIMT (even in the hyperandrogenic subgroups). Although our study did not show the increased risk of subclinical atherosclerosis in PCOS patients, the role of CIMT continues to be investigated considering the importance of screening and monitoring CVD risk factors in women with PCOS.

Keywords: Atherosclerosis; Carotid intima-media thickness; Insulin resistance; Polycystic ovary syndrome

Introduction
Polycystic ovary syndrome (PCOS) is one of the most common causes of endocrine dysfunction in women of reproductive age with a prevalence that ranges from 4% to 7% [1,2]. Metabolic disturbances such as visceral obesity, hypertension, dyslipidemia, insulin resistance, and glucose intolerance are well-recognized clinical features of this syndrome. These factors, which are cluster in patients with PCOS, are also closely related to atherosclerosis.

Carotid intima-media thickness (CIMT) has been widely
used as a surrogate marker of atherosclerosis and cardiovascular disease (CVD) events [3-8]. The association between PCOS and CIMT has been investigated in many studies [9-13], but there has been only one report in the Korean population: in 24 women with PCOS and 16 matched controls, mean CIMT was significantly higher in PCOS group than controls (0.57 ± 0.12 mm vs. 0.49 ± 0.11 mm, respectively, \(P = 0.004 \)) [14]. The aim of the present study was to compare the presence of premature atherosclerosis in young untreated Korean women with PCOS and age matched controls, specifically by measuring their CIMT.

Materials and methods

1. Subjects

Fifty-six women with PCOS (range, 18 to 40 years) were recruited using the Rotterdam criteria [15]. Clinical hyperandrogenism (HA) was defined as a modified Ferriman and Gallwey score (mF-G score) of 6 or greater and biochemical HA was defined as follows: total testosterone >0.68 ng/mL, free testosterone >1.72 pg/mL, and free androgen index (FAI) >5.36 [16,17]. To determine the distribution of the different PCOS phenotypes, patients with PCOS were divided into two subgroups according to the presence of HA. All women with PCOS were screened to exclude hyperprolactinemia and thyroid dysfunction. Serum 17-hydroxypregesterone (OHP) was also measured, and if the serum 17-OHP level was over 2 ng/mL, a repeat test was performed during the early morning follicular phase. The patients who showed continuous elevation of 17-OHP were excluded from the study group.

A total of 56 age-matched (±1 year) premenopausal women served as controls, and the match ratio was 1 to 1. Control women visited Seoul National University Hospital as part of a group check-up for work and lacked specific health problems. All controls had regular (21 to 35 day) menstrual cycles, a pelvic ultrasound examination to evaluate ovarian morphology and were excluded if PCOS morphology was identified.

None of the patients with PCOS and controls had taken combined oral contraceptives, lipid-lowering agents or insulin sensitizer. The Institute Review Board (IRB) for human research of Seoul National University Hospital approved this project (IRB number: H-0807-031-250) and written informed consent was obtained from each woman.

2. Clinical and biochemical measurements

Clinical variables, such as body weight, height, waist circumference, and blood pressure were assessed in all subjects. Using radioimmunoassay (RIA) (Siemens, Los Angeles, CA, USA), serum levels of total testosterone, free testosterone and sex hormone-binding globulin (SHBG) were measured in all patients with PCOS and in a subset of controls (n=14) whose blood samples were taken during the follicular phase of the menstrual cycle. FAI was calculated as total testosterone/SHBG ×100, and the values for testosterone were converted from ng/mL to nmol/L using the following index proposed by the manufacturer: 1 ng/mL = 3.467 nmol/L. The intra-assay and inter-assay coefficients of variation were 4.0% to 11.0% and 5.9% to 12.0% for total testosterone, and 4.0% to 17% and 8.0% to 18.3% for free testosterone, respectively.

In all subjects, after 12-hour overnight fast, fasting plasma glucose (FPG) (hexokinase method), total cholesterol (cholesterol oxidase-N-[3-sulphopropyl]-3-methoxy-5-methylaniline [HMMPS] method), triglycerides (glycerol-3-Phosphatase oxidase–HMMPS glycerol blanking), high density lipoprotein (HDL)-cholesterol (selective elimination method) and low density lipoprotein (LDL)-cholesterol (selective elimination method) were measured (Wako Pure Chemical Industries Ltd., Osaka, Japan). Circulating highly sensitive C-reactive protein (hs-CRP) was measured using a latex turbidimetric immunoassay with a sensitivity of 0.01 mg/dL (Wako Pure Chemical Industries Ltd., Japan). Fasting insulin levels were measured using RIA (BioSource Europe S.A., Nivelles, Belgium). The homeostatic model for insulin resistance was calculated by glucose (mg/dL) × insulin (μU/mL)/405, and HOMA\(_{\text{insul}}\) (%) was calculated as follows: (20×fasting insulin)/(fasting glucose-3.5).

Although transducer frequency is best between 8 to 12 MHz [4], CIMT measurement was conducted using a high-resolution 7.5-MHz phased-array transducer (Vivid 7 Cardiovascular Ultrasound, GE Healthcare, Milwaukee, WI, USA) by one radiologist (K.J.H.) who was blinded to the patients’ clinical profiles. Depth and gain were optimized to reduce noise, and to get best image, the operator manipulated transducer for ultrasound beam is perpendicular to the intima-media structure. Both common carotid arteries were explored in B-mode and intra-assay variation was <10%. The posterior carotid wall at 1 cm of the common carotid bulb was imaged and CIMT was estimated by visual assessment of the distance between the lumen/intima and intima/adventitia interphases in longitudinal frame. Each left and right carotid artery IMT was
calculated as the average of three recordings, and the mean CIMT, which was calculated from the bilateral CIMT values, was used as the outcome variable.

3. Statistical analysis

Deviation of the data from a normal distribution was examined through visual inspection of quantile-normal plots and/or the Shapiro-Wilk test of normality. The data are shown as the mean ± standard deviation or median value with the range. If Gaussian distribution was achieved by natural logarithmic or square root transformation, the data are shown as geometric means and 95% confidence intervals (95% CI). Continuous parameters were compared using Student’s t or Mann-Whitney U test. Univariate regression analyses were conducted with CIMT as a dependent variable and traditional CVD risk factors and serum androgens as independent variables. All data analyses were performed using the Statistical Package for the Social Sciences software ver. 19.0 (IBM SPSS, Somers, NY, USA), and statistical significance was set at two-sided P-values <0.05.

Power calculations were performed using the G-power ver. 3.1.5 software (http://wwwpsycho.uni-duesseldorf.de/abteilungen/aap/gpower3). Given the specified sample size (56 PCOS patients and 56 controls), the power to detect a mean CIMT difference 0.5 mm (an α value of 0.05) was 0.75.

Results

Clinical and biochemical characteristics of the subjects are shown in Table 1. Women with PCOS and controls were same

Clinical feature	PCOS (n = 56)	Control (n = 56)	P-value
Age (yr)	30.9 ± 4.6	30.8 ± 4.8	0.904
BMI (kg/m²)	21.2 ± 2.8	19.8 ± 2.1	0.004
Prevalence of obesity (BMI=25 kg/m²) (%)	12.5 (7/56)	1.8 (1/56)	0.061
WC (cm)	76.2 ± 7.0	74.6 ± 6.9	0.223
Hirsutism score	6 (0–20)	1 (0–5)	<0.001
Total T (ng/mL)	0.30 (0.26–0.34)	0.23 (0.21–0.25) (n=14)	0.323
Free T (pg/mL)	0.56 (0.45–0.67)	0.37 (0.33–0.41) (n=14)	0.119
SHBG (nmol/L)	42.6 (37.9–47.3)	72.6 (77.3–67.9) (n=14)	0.013
FAI	4.53 (3.53–5.53)	1.36 (1.27–1.45) (n=14)	0.205
SBP (mm Hg)	108.0 ± 11.8	102.1 ± 9.0	0.005
DBP (mm Hg)	67.4 ± 10.1	62.9 ± 7.9	0.012
Fasting plasma glucose (mg/dL)	87.4 ± 6.3	86.6 ± 7.7	0.577
Fasting insulin (µU/mL)	7.8 (7.4, 8.2)	6.4 (6.0–6.8) (n=40)	0.053
HOMA-IR	1.7 (1.6, 1.8)	1.4 (1.3–1.5) (n=40)	0.048
HOMA-BC	114.2 (109.4–119.0)	102.5 (97.3–107.7)	0.262
hs-CRP (mg/dL)	0.01 (0.01–1.15)	0.02 (0.01–0.29)	0.286
A1C (%)	5.62 ± 0.30	5.59 ± 0.31	0.639
Total C (mg/dL)	183.0 ± 29.2	176.3 ± 28.0	0.221
TG (mg/dL)	78.5 ± 28.3	72.4 ± 31.6	0.285
HDL-C (mg/dL)	64.6 ± 15.4	64.7 ± 14.2	0.980
LDL-C (mg/dL)	126.3 ± 30.5	96.7 ± 22.9	0.203
CIMT (mm)	0.49 ± 0.09 (range, 0.30–0.70)	0.50 ± 0.11 (range, 0.24–0.82)	0.562

PCOS, polycystic ovary syndrome; BMI, body mass index; WC, waist circumference; T, testosterone; SHBG, sex-hormone binding globulin; FAI, free androgen index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HOMA-IR, homeostatic model assessment for insulin resistance; HOMA-BC, homeostatic model assessment for beta cell capacity; hs-CRP, high-sensitivity C-reactive protein; A1C, hemoglobin A1c; C, cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; CIMT, carotid intima media thickness.

P-values were analysed by Student’s t test or Mann-Whitney U test except the prevalence of obesity (Fisher’s exact test).

Data are shown as means ± standard deviations;

Medians (ranges);

Geometric means with 95% confidence intervals.

www.ogscience.org

251
Although mean BMI of the PCOS patients was significantly higher than that of the controls (21.2 kg/m² vs. 19.8 kg/m², respectively, \(P = 0.004 \)), most (87.5%) of the women with PCOS in the present study were not obese. The PCOS group had significantly higher blood pressure, HOMA-IR as well as lower SHBG levels than the controls, but there were no significant differences in serum androgen, lipid profiles, fasting glucose and A1C levels between the two groups.

The CIMT ranged from 0.30 to 0.70 mm in women with PCOS and from 0.24 to 0.82 mm in controls. Despite the significant differences in some vascular risk factors between women with PCOS and controls, the mean CIMT was not different between the two groups (0.49 ± 0.10 mm in PCOS patients vs. 0.50 ± 0.11 mm in controls, respectively, \(P = 0.562 \)). When the CIMT in the control group was compared with hyperandrogenic and non-hyperandrogenic PCOS groups, there were also no significant differences between the groups (Table 2). The univariate linear correlations between CIMT and common atherogenic factors or androgenic parameters are presented in Table 3. CIMT was not correlated with any of the above parameters in all subjects as well as the subset of PCOS patients.

Discussion

We have presented a case-control study of the CIMT, a marker of subclinical atherosclerosis, in women with PCOS and age-matched controls. Although young Korean PCOS patients...
were more obese and had higher blood pressure and insulin resistance index than the age-matched controls, carotid artery intima-media thickness measurements as a pre-indicator of CVD was not found to be different between the patients and controls.

Numerous studies have investigated whether CIMT is elevated in women with PCOS or not [9-13]. However, these studies have not shown consistent results, and it may stem from the quality of the CIMT measurement, small sample sizes and young age of the subjects. Recently, systematic review and meta-analysis has been reported [18]. Eight studies were included in the systematic review and 19 studies were included in the meta-analysis (total $n=1,123$ women with PCOS, $n=923$ controls). In this analysis, the mean difference in CIMT among women with PCOS compared with controls was 0.072 mm (95% CI, 0.040–0.105; $P<0.0001$) for highest quality studies, and 0.084 mm (95% CI, 0.042–0.126; $P<0.0001$) for good quality studies, and the authors concluded that women with PCOS demonstrated higher CIMT than controls. However, in our current study, there were no significant differences in CIMT between the PCOS group and controls. Additionally, there were also no significant associations between CIMT and serum androgen and metabolic markers.

One outstanding issue is the role of androgens in cardiovascular risk, and in the current study, PCOS cases with HA did not show higher CIMT than the controls. Although there have been studies reporting similar occurrence of metabolic risk across PCOS subgroups [19,20], patients with no evidence of HA may have milder metabolic profile compared with the other phenotypes [21,22]. In current study, mean serum androgen levels of the whole PCOS patients were not different compared to those of the controls, and almost half (41.2%) of the PCOS subjects had non-hyperandrogenic phenotype. Thus, no difference in CIMT between PCOS patients and controls may stem from the presence of this mild phenotype.

Although our study could not find any difference in CIMT between PCOS patients and controls, the present study has some limitations that need to be discussed. First, mean age of the patients was 30.9 (±4.6) years old, and mean BMI was 21.2 (±2.8) kg/m², suggesting that the subjects mainly consisted of young and non-obese women. The prevalence of atherogenic CIMT pattern increases with age and BMI [3,4], thus the absence of CIMT difference between PCOS patients and controls may be, in part, due to the relatively young age of our subjects. However, previous studies, which found that the PCOS patients presented with an increased CIMT, were also performed using patients under 35 years of age [11,12,23], suggesting that the premature atherosclerosis may be found even in these young PCOS patients. Second, as mentioned above, no difference in CIMT between patients and controls also might stem from non-obese state of the subjects. Although mean BMI of the PCOS patients was significantly higher than that of the controls (21.2±2.8 kg/m² vs. 19.8±2.1 kg/m², respectively, $P=0.004$), women with PCOS in the present study were definitely thin. Thus, the degree of metabolic dysfunction in this study was modest such that serum insulin, lipid, hs-CRP levels of the patients were not different compared to the controls. This would be the most important reason why there were no differences in CIMT. Data on obese subjects could offer complementary findings about the possible relationship between the magnitude of obesity and CIMT. Third, given the specified sample size (56 PCOS patients and 56 controls), the power to detect a mean CIMT difference 0.5 mm (an α value of 0.05) was 0.75. Since this study has limited power for the small CIMT difference, no difference between PCOS patients and controls could be due to insufficient power. Finally, we cannot exclude the possibility of other potentially confounding factors, such as differences in diet and/or exercise patterns.

In conclusion, despite the significant differences in some vascular risk factors between women with PCOS and controls, PCOS patients did not have a significantly higher CIMT (even in the hyperandrogenic subgroups). Although our study did not show the increased risk of subclinical atherosclerosis in PCOS patients, the role of CIMT continues to be investigated considering the importance of screening and monitoring CVD risk factors in women with PCOS.

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

This study was supported by Supported by grant no. 04-2008-0900 from the Seoul National University Hospital Research Fund.
Reference

1. Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab 1998;83:3078-82.

2. Asuncion M, Calvo RM, San Millan JL, Sancho J, Avila S, Escobar-Morreale HF. A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J Clin Endocrinol Metab 2000;85:2434-8.

3. van der Meer IM, Iglesias del Sol A, Hak AE, Bots ML, Hofman A, Witteman JC. Risk factors for progression of atherosclerosis measured at multiple sites in the arterial tree: the Rotterdam Study. Stroke 2003;34:2374-9.

4. Hurst RT, Ng DW, Kendall C, Khandheria B. Clinical use of carotid intima-media thickness: review of the literature. J Am Soc Echocardiogr 2007;20:907-14.

5. Poredos P. Intima-media thickness: indicator of cardiovascular risk and measure of the extent of atherosclerosis. Vasc Med 2004;9:46-54.

6. Espeland MA, O’Leary D H, Terry JG, Morgan T, Evans G, Mudra H. Carotid intimal-media thickness as a surrogate for cardiovascular disease events in trials of HMG-CoA reductase inhibitors. Curr Control Trials Cardiovasc Med 2005;6:3.

7. Lorenz MW, Karbstein P, Markus HS, Sitzer M. High-sensitivity C-reactive protein is not associated with carotid intima-media progression: the carotid atherosclerosis progression study. Stroke 2007;38:1774-9.

8. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 2007;115:459-67.

9. Guizick DS, Talbott EO, Sutton-Tyrrell K, Herzog HC, Kuller LH, Wolfson SK Jr. Carotid atherosclerosis in women with polycystic ovary syndrome: initial results from a case-control study. Am J Obstet Gynecol 1996;174:1224-9.

10. Talbott EO, Guizick DS, Sutton-Tyrrell K, McHugh-Pemu KP, Zbrowoski JV, Remsberg KE, et al. Evidence for association between polycystic ovary syndrome and premature carotid atherosclerosis in middle-aged women. Arterioscler Thromb Vasc Biol 2000;20:2414-21.

11. Vryonidou A, Papatheodorou A, Tavridou A, Terzi T, Loi V, Vatalas IA, et al. Association of hyperandrogenemic and metabolic phenotype with carotid intima-media thickness in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005;90:2740-6.

12. Luque-Ramirez M, Mendieta-Azcona C, Alvarez-Blasco F, Escobar-Morreale HF. Androgen excess is associated with the increased carotid intima-media thickness observed in young women with polycystic ovary syndrome. Hum Reprod 2007;22:3197-203.

13. Teng HW, Chien YW, Hsu MI, Chen CI. The relationship between carotid intima-media thickness and endogenous androgens in young women with polycystic ovary syndrome in Taiwan. Gynecol Endocrinol 2013;29:238-41.

14. Kim JY, Park IH, Jeong IA, Kang GS, Ahn CW, Bai SW, et al. Intima media thickness (IMT) in relation to insulin resistance and subclinical atherosclerosis in polycystic ovary syndrome (PCOS). Korean J Obstet Gynecol 2001;44:1178-85.

15. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004;19:41-7.

16. Kim JJ, Chae SJ, Choi YM, Hwang SS, Hwang KR, Kim SM, et al. Assessment of hirsutism among Korean women: results of a randomly selected sample of women seeking pre-employment physical check-up. Hum Reprod 2011;26:214-20.

17. Chae SJ, Kim JJ, Choi YM, Hwang KR, Jee BC, Ku SY, et al. Clinical and biochemical characteristics of polycystic ovary syndrome in Korean women. Hum Reprod 2008;23:1924-31.

18. Meyer ML, Malek AM, Wild RA, Korytkowski MT, Talbott EO. Carotid artery intima-media thickness in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update 2012;18:112-26.

19. Guo M, Chen ZJ, Macklon NS, Shi YH, Westerveld HE, Eijkemans MJ, et al. Cardiovascular and metabolic characteristics of infertile Chinese women with PCOS diagnosed according to the Rotterdam consensus criteria. Reprod Biomed Online 2010;21:572-80.

20. Wijeyaratne CN, Seneviratne Rde A, Dahanayake S, Kumarapeli V, Palipane E, Kuruppu N, et al. Phentype and metabolic profile of South Asian women with polycystic ovary syndrome (PCOS): results of a large database from a specialist Endocrine Clinic. Hum Reprod 2011;26:202-13.
21. Shroff R, Syrop CH, Davis W, Van Voorhis BJ, Dokras A. Risk of metabolic complications in the new PCOS phenotypes based on the Rotterdam criteria. Fertil Steril 2007;88:1389-95.

22. Zhang HY, Zhu FF, Xiong J, Shi XB, Fu SX. Characteristics of different phenotypes of polycystic ovary syndrome based on the Rotterdam criteria in a large-scale Chinese population. BJOG 2009;116:1633-9.

23. Lakhani K, Hardiman P, Seifalian AM. Intima-media thickness of elastic and muscular arteries of young women with polycystic ovaries. Atherosclerosis 2004;175:353-9.