β-Stochastic Sign SGD: A Byzantine Resilient and Differentially Private Gradient Compressor for Federated Learning

Ming Xiang
Department of Electrical and Computer Engineering
Northeastern University
Boston, MA 02115
xiang.mi@northeastern.edu

Lili Su
Department of Electrical and Computer Engineering
Northeastern University
Boston, MA 02115
l.su@northeastern.edu

September, 2022

ABSTRACT

Federated Learning (FL) is a nascent privacy-preserving learning framework under which the local data of participating clients is kept locally throughout model training. Scarce communication resources and data heterogeneity are two defining characteristics of FL. Besides, a FL system is often implemented in a harsh environment – leaving the clients vulnerable to Byzantine attacks. To the best of our knowledge, no gradient compressors simultaneously achieve quantitative Byzantine resilience and privacy preservation. In this paper, we fill this gap via revisiting the stochastic sign SGD [JHH+20]. We propose \(\beta \)-stochastic sign SGD, which contains a gradient compressor that encodes a client’s gradient information in sign bits subject to the privacy budget \(\beta > 0 \). We show that as long as \(\beta > 0 \), \(\beta \)-stochastic sign SGD converges in the presence of partial client participation and mobile Byzantine faults, showing that it achieves quantifiable Byzantine-resilience and differential privacy simultaneously. In sharp contrast, when \(\beta = 0 \), the compressor is not differentially private. Notably, for the special case when each of the stochastic gradients involved is bounded with known bounds, our gradient compressor with \(\beta = 0 \) coincides with the compressor proposed in [JHH+20]. As a byproduct, we show that when the clients report sign messages, the popular information aggregation rules simple mean, trimmed mean, median and majority vote are identical in terms of the output signs. Our theories are corroborated by experiments on MNIST and CIFAR-10 datasets.

1 Introduction

Federated Learning (FL) is a nascent learning framework that enables privacy sensitive clients to collectively train a model without disclosing their raw data [MMR+17, KMA+21]. Expensive communication overhead and non-IID local data are two defining characteristics of FL. A variety of communication-saving techniques have been introduced, including periodic averaging [MMR+17], large mini-batch sizes [LSPJ20], and gradient compressors [XHA+20, AGL+17, BWAA18, BZAA19, JHH+20, SHR21, WWL+21]. However, challenges remain.

A FL system is often massive in scale and is implemented in harsh environment – leaving the clients vulnerable to unstructured faults such as Byzantine faults [Lyn96]. Moreover, FL clients are privacy-sensitive. Despite clients’ privacy is partially preserved via denying raw data access, quantitative privacy preservation is still desirable. Observing this, [BZAA19] proposed signSGD with majority vote which is provably resilient to Byzantine faults. However, even in the absence of Byzantine faults, SignSGD fails to converge in the presence of non-IID data [SR21, CCS+20], and is not differentially private. To handle non-IID data, [JHH+20] proposed stochastic sign SGD and its differentially-private (DP) variant, whose gradient compressors are simple yet elegant. Unfortunately, their DP variant does not converge \(^1\), and their standard stochastic sign SGD is not differentially-private (shown in our Theorem 2). Moreover, stochastic sign

\(^1\)Their Theorem 6 analysis contains major flaws.
SGD is proved to be secure against sign-flipping adversary under full client participation only. In practice, a client may drop out and rejoin at any time, and the system adversary could go beyond simple sign-flipping and adaptively choose the clients to compromise based on their availability in each iteration.

Contributions. In this paper, we revisit the elegant compressor in [JHH+20]. We propose β-stochastic sign SGD, which contains a gradient compressor that encodes a client’s gradient information in sign bits subject to the privacy budget $\beta > 0$, and works for unbounded and mini-batch stochastic gradients. A parameter $B > 0$ is chosen carefully to clip the unbounded gradients.

- We first show (in Theorem 1) that when the clients report sign messages, the popular information aggregation rules simple mean, trimmed mean, median, and majority vote are identical in terms of the output signs.
- We show (in Theorem 2) that when $\beta = 0$, the compressor is not differentially private. In sharp contrast, when $\beta > 0$, the compressor is $d \cdot \log ((2B + \beta)/\beta)$-differentially private. Notably, for the special case when each of the stochastic gradients involved is bounded and their bounds are known, our gradient compressor with $\beta = 0$ coincides with the compressor proposed in [JHH+20]. We provide a finer characterization of the differential privacy preservation (in Theorem 3). In addition, we show (in Proposition 1) that our compressor with $\beta > 0$ can be viewed as a composition of a randomized sign flipping and stochastic sign SGD compressor.
- We show (in Theorem 5) the convergence of β-stochastic sign SGD in the presence of partial client participation and mobile Byzantine faults, showing that it achieves Byzantine-resilience and differential privacy simultaneously. Both static and adaptive adversaries are considered.
- Our theoretical findings are validated with experiments on the MNIST and CIFAR-10 datasets

2 Related Work

Communication Efficiency. Communication is a scare resource in FL [MMR+17, KMA+21]. Numerous efforts have been made to improve the provable communication efficiency of FL. FedAvg – the most widely-adopted FL algorithm – and its Algorithm 1s save communication by performing multiple local updates at the client side [MMR+17, WJ19, Siti19, LSV20]. Large mini-batch size is another communication-saving technique yet its performance turns out to be often inferior to FedAvg [LSPJ20]. Gradient compressors [XHA+20] take the physical layer of communication into account and are used to reduce the number of bits used in encoding local gradient information. Quantized SGD (QSGD) [AGL+17] is a lossy compressor with provable trade-off between the number of bits communicated per iteration with the variance added to the process. However, its performance is shown to be inferior to simple compressor such as SignSGD [BZAA19], which, based on the sign, compresses a local gradient into a single bit. Nevertheless, SignSGD fails to converge in the presence of non-IID data [SR21, CCS20], and is not differentially private. This is because SignSGD neglects the information contained in the gradient magnitude.

Byzantine Resilience. Despite its popularity, FedAvg is vulnerable to Byzantine attacks on the participating clients [KMA+21, BEMGS17, CSX17]. This is because that under FedAvg the PS aggregates the local gradients via simple averaging. Alternative aggregation rules such as Krum [BEMGS17], geometric median[CSX17], coordinate-wise median and trimmed mean [YCKB18] are shown to be resilient to Byzantine attacks though different in levels of resilience protection with respect to the number of Byzantine faults, the model complexity, and underlying data statistics. Assuming the PS can get access to sufficiently many freshly drawn data samples in each iteration, Xie et al. [XKG19] proposed an algorithm Zeno that can tolerate more than 1/2 fraction of clients to be Byzantine. Unfortunately, their analysis is restricted to homogeneous and balanced local data using techniques from robust statistics, and it is not straightforward to extend the results to non-IID data, limiting their applications to practical FL implementation. Many efforts have been devoted to mitigate the negative impacts stemming from heterogeneous data [GHYR19, KHJ22]. Ghosh et al. [GHYR19] used robust clustering techniques whose correctness crucially relies on large local dataset and local cost functions to be strongly convex. Karimireddy et al. [KHJ22] derived convergence under the strong assumption of bounded dissimilarity of local gradients, which often does not hold when the data efficiency is taken into account [SXY22].

Privacy Preservation. FL is renowned for its capability to decouple model training from the raw data collections by communicating only model/gradient parameters [MMR+17] between the clients and the PS. However, recent results show that both weight and gradient sharing schemes may leak sensitive information [ZLH19, PAH+18]. Two notions of differential privacy exist in FL [TLC+20]: (A) central privacy, where a trusted server masks the data and shares the perturbed updates with the distributed clients, and (B) local privacy, where each client protects their data from any external parties, including the server. Most of the current works focus on the perturbed updates by adding Laplace [HMV15], Gaussian[WWL+21], or Binomial perturbation [ASY+18]. The former two are applied to traditional gradients/updates, and the latter is applied to compressed gradients/updates whose values are represented in terms of
3 Problem Setup

The system consists of one parameter server (PS) and M clients that collaboratively minimize

$$
\min_{w \in \mathbb{R}^d} F(w) := \frac{1}{M} \sum_{m=1}^{M} f_m(w),
$$

where $f_m(w) := \mathbb{E}_{D_m}[f_m(w, x, y)]$ is the local cost function at client $m \in [M] := \{1, \cdots, M\}$ with the expectation taken over heterogeneous local data $(x, y) \sim D_m$.

Client unavailability. Clients are also heterogeneous in their computation speeds and communication channel conditions, which result in intermittent clients unavailability. To capture this, following the literature [KMA+21, LHY+20, PD20], instead of full participation, we assume that, in each iteration, a client successfully uploads its local update with probability p independently across rounds, and independently from the PS and other clients.

Mobile Byzantine attacks. In each iteration t, up to τ clients suffer Byzantine faults. Denote by $B(t) \subseteq [M]$ the set of clients that are Byzantine in iteration t, which is unknown to the PS. Let $\tau(t) = |B(t)|$. We refer to the clients in $B(t)$ as Byzantine clients at iteration t. We consider both static and adaptive system adversaries. In the former, the system adversary does not know client unavailability in each iteration; in the latter, the system adversary adaptively chooses $B(t)$ accordingly to the client unavailability in each iteration t.

Differential privacy. In addition to Byzantine resilience, we also aim to provide quantitative privacy protection. Towards this, we use differential privacy framework.

Definition 1 (Definition 2.4 [DR+14]). For any $\epsilon > 0$, a randomized algorithm \mathcal{M} with domain $\mathbb{N}^{[X]}$ is ϵ-differentially private if

$$
\mathbb{P}\{\mathcal{M}(x) \in S\} \leq \exp(\epsilon)\mathbb{P}\{\mathcal{M}(y) \in S\}
$$

holds for all $S \subseteq \text{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{[X]}$ such that $\|x - y\|_1 \leq 1$.

4 Algorithm

Due to the randomness in data (x, y), $\nabla f(x, y)$ varies significantly across different realizations, and could even be unbounded. To cope with this, in Algorithm 1, we clip the gradient coordinate-wise, which are then used to stochastically generate signs. Formal definitions are given next.

Definition 2. The clipping function with parameter B, denoted by $\text{clip} \{\cdot, B\}$, projects $g \in \mathbb{R}$ onto $[-B, B]$ as

$$
\text{clip}(g, B) = \max\{-B, \min\{B, g\}\}.
$$

Definition 3. For any privacy budget $\beta > 0$ and any clipping parameter $B > 0$, we define a gradient compressor $\mathcal{M}_{B, \beta}$ as

$$
[\mathcal{M}_{B, \beta}]_i(g) := \begin{cases} 1, & \text{with probability } \frac{B + \beta + \text{clip}(g_i, B)}{2B + 2\beta}, \\ -1, & \text{otherwise,} \end{cases}
$$

where g_i and $[\mathcal{M}_{B, \beta}]_i(g)$ are the i-th coordinates of g and $[\mathcal{M}_{B, \beta}]_i(g)$, respectively.

Our algorithm is formally described in Algorithm 1, which takes T, η, β, n, B, and $\nu \in \mathbb{R}^d$ as inputs, where T is the iteration horizon, $\eta > 0$ is the stepsize, $\beta > 0$ is the privacy budget, n is the mini-batch size of local stochastic gradients, $B > 0$ is a parameter used to clip stochastic gradients, and ν serves as the initial values of $w(0)$.

In each iteration t of Algorithm 1, a client m is selected by the PS with probability p. Let $\mathcal{S}(t)$ be the set of selected clients at time t. Since Byzantine clients can deviate from Algorithm 1 arbitrarily, lines 2-8 are executed at clients in $\mathcal{S}(t) \setminus B(t)$ only. In each iteration t, client $m \in \mathcal{S}(t) \setminus B(t)$ first obtains n stochastic gradients $g_{m}^0(t), \ldots, g_{m}^n(t)$. Then it passes $\frac{1}{n} \sum_{j=1}^{n} g_{m}^j(t)$ to $\text{clip}\{\cdot, B\}$ coordinate-wise, and compresses the clipped gradient via the compressor $\mathcal{M}_{B, \beta}$ in lines 5 and 6. For ease of exposition, let $\hat{g}_{m}(t) = [\mathcal{M}_{B, \beta}]_i(\frac{1}{n} \sum_{j=1}^{n} g_{m}^j(t))$. Finally, client m reports $\hat{g}_{m}(t)$ to the PS. On the PS side (lines 8 - 12), it first waits to receive messages $\hat{u}_{m}(t)$ from the sampled clients, for which $\hat{u}_{m}(t) = \hat{g}_{m}(t)$ if $m \notin B(t)$. Then the PS passes $\{\hat{u}_{m} : m \in \mathcal{S}(t)\}$ to an aggregation function agg, and takes the coordinate-wise sign of the function output to obtained $\tilde{g}(t)$. Finally, it broadcasts $\tilde{g}(t)$ to $\mathcal{S}(t + 1)$. For convenience of
Algorithm 1: Federated Learning with β-Stochastic Sign SGD

Input: $T, \eta, \beta, n, B,$ and ν
Output: $w(T)$

1. **Initialization:** $w(0) \leftarrow \nu$ for each $m \in [M]$ and the PS samples each client $m \in [M]$ with probability p to form $S(0)$;

2. for $t = 0, \cdots, T - 1$

 /* On each $m \in S(t) \setminus B(t)$ */

 Get n stochastic gradients $\hat{g}^i_m(t), \ldots, \hat{g}^n_m(t)$;

 for $i = 1, \ldots, d$

 $\hat{g}_{mi}(t) \leftarrow 1$ with probability $\frac{B + \beta + \text{clip}(\frac{2}{2B + 2\beta})}{S}$, $\hat{g}_{mi}(t) \leftarrow -1$ otherwise.

 end

 Report $\hat{g}_m(t)$ to the PS;

 /* On the PS */

 Wait to receive messages $\hat{u}_m(t) \in \mathbb{R}^d$ from the sampled clients $S(t)$

 $\bar{g}(t) \leftarrow \text{sign}(\text{agg}\{\hat{u}_m(t) : m \in S(t)\})$

 Sample each client $m \in [M]$ with probability p to obtain $S(t + 1)$;

 Broadcast $\bar{g}(t)$ to all clients;

 /* On each client $m \in S(t + 1) \setminus B(t)$ */

 Upon receiving $\hat{g}(t)$: $w(t + 1) \leftarrow w(t) - \eta \hat{g}(t)$;

end

exposition, if no message is received from a selected client m (which only occurs when $m \in B(t)$), then the PS treats \hat{u}_m as 0. Notably, if $m \in B(t)$, the received $\hat{u}_m(t)$ could take arbitrary value. Since $\hat{u}_m \in \{\pm 1\}^d$ for $m \notin B(t)$, if $\hat{u}_{mi}(t) \notin \{-1, 1\}$, then it must be true that client $m \in B(t)$. Thus, $\hat{u}_m(t)$ will be removed from aggregation by the PS. In other words, it is always a better strategy for a Byzantine client to restrict $\hat{u} \in \{\pm 1\}^d$. Henceforth, without loss of generality, we assume that $\hat{u}(t) \in \{\pm 1\}^d$ for all received compressed gradients.

4.1 Aggregation Functions

Simple mean (i.e., naive averaging) is one of the widely-adopted aggregation rule of FL algorithms [KMA+21, BEMGS17], yet it is vulnerable to Byzantine attacks. Alternative aggregation rules such as Krum [BEMGS17], geometric median [CSX17], coordinate-wise median and trimmed mean [YCKB18] are shown to be resilient to Byzantine attacks yet with different levels of resilience protection with respect to the number of Byzantine faults and the model complexity. Next we show that when the inputs of the aggregation functions are a collection of binary vectors in $\{\pm 1\}^d$, the signs of the outputs of the simple mean, trimmed mean, and median aggregation rules are identical. Moreover, they are all equivalent to the coordinate-wise majority vote aggregation rule.

Definition 4. Let $S \subseteq [M]$ and let $\hat{u}_m \in \{\pm 1\}^d$ for $m \in S$.

(A.1) The mean aggregation rule is defined as $\text{agg}_\text{avg}\{\{\hat{u}_m, m \in S\}\} = \frac{1}{|S|} \sum_{m \in S} \hat{u}_m$.

(A.2) The coordinate-wise k-trimmed-mean aggregation rule, denoted by $\text{agg}_\text{trimmed,k}$, takes $k \in \mathbb{N}$ and $\{\hat{u}_m, m \in S\}$ as inputs and aggregates each coordinate $i \in [d]$ as follows: (1) sort $\{\hat{u}_m, m \in S\}$, where \hat{u}_m is the i-th coordinate of \hat{u}_m, in an increasing order; (2) remove the top and bottom k values, and denote the remained clients w.r.t. coordinate i as R_i; (3) if $R_i = \emptyset$, then $\text{agg}_\text{trimmed,k}\{\{\hat{u}_m, m \in S\}\}$'s coordinating i as $\frac{|S|}{2}$; otherwise, $\text{agg}_\text{trimmed,k}\{\{\hat{u}_m, m \in S\}\} = \frac{1}{|S|} \sum_{m \in R_i} \hat{u}_m$.

(A.3) The coordinate-wise median aggregation rule, denoted by agg_median, aggregates each coordinate $i \in [d]$ as follows: it first sorts the $\{\hat{u}_m, m \in S\}$ in an increasing order. If $|S|$ is even, $\text{agg}_\text{median}\{\{\hat{u}_m, m \in S\}\}$ outputs the average of the elements whose ranks are $\frac{|S|}{2}$ and $\frac{|S|}{2} + 1$. Otherwise, $\text{agg}_\text{median}\{\{\hat{u}_m, m \in S\}\}$ outputs the element whose rank is $\frac{|S|}{2}$.

(A.4) The coordinate-wise majority vote aggregation rule, denoted by agg_maj, aggregates each coordinate $i \in [d]$ as follows: If there are more than -1 in $\{\hat{u}_m, m \in S\}$, then $\text{agg}_\text{maj}\{\{\hat{u}_m, m \in S\}\}$ outputs 1. If there are more -1 than 1 in $\{\hat{u}_m, m \in S\}$, then $\text{agg}_\text{maj}\{\{\hat{u}_m, m \in S\}\}$ outputs -1. Otherwise, $\text{agg}_\text{median}\{\{\hat{u}_m, m \in S\}\}$ outputs 0.

Theorem 1. For any given $S \subseteq [M]$ and any given $\hat{u}_m \in \{\pm 1\}^d$ for $m \in S$, the aggregation rules agg_avg, $\text{agg}_\text{trimmed,k}$ with $k < |S|/2$, agg_median and agg_maj are equivalent in terms of their signs.
5 Privacy Preservation

In this section, we characterize the differential privacy of our gradient compressor \(\mathcal{M}_\beta \). Over the entire training time horizon, the quantification of the differential privacy preserved for any given client can be obtained by applying the composition theorem of \(\epsilon \)-differentially private algorithms [DR+14, Corollary 3.15].

When each of the stochastic gradients involved is bounded and their bounds are known, \(\mathcal{M}_\beta \) with \(\beta = 0 \) coincides with the compressor proposed in [JHH+20]. We first show that the common compressor is not differentially private.

Theorem 2. \(\mathcal{M}_{B,0} \) is not differentially private. That is, there does not exist a finite \(\epsilon > 0 \) for which Definition 1 holds. When \(\beta > 0 \), \(\mathcal{M}_{B,\beta} \) is \(d \cdot \log \left(\frac{2B+\beta}{\beta} \right) \)-differentially private for all gradients.

Theorem 2 also implies that as long as \(\beta \geq B \), \(\mathcal{M}_{B,\beta} \) ensures \(\epsilon \)-differential privacy for \(\epsilon = O(d) \). Theorem 3 gives a finer characterization of the differential privacy preserved by \(\mathcal{M}_{B,\beta} \) when \(\beta > 0 \).

Definition 5. For any given \(B > 0 \), let \(\mathcal{C}_B := (-\infty, -B) \cup (B, \infty) \). For each \(g \in \mathbb{R} \), define

\[
\text{dist}(g, \mathcal{C}_B) := \inf_{g' \in \mathcal{C}_B} |g - g'|.
\]

Theorem 3. Let \(\beta > 0 \) and \(\mathcal{G} \subseteq \mathbb{R}^d \). \(\mathcal{M}_{B,\beta} \) is \(\max_{g \in \mathcal{G}} \sum_{i=1}^d \log \left(1 + \frac{1}{\beta + \text{dist}(g, \mathcal{C}_B)} \right) \)-differentially private on \(\mathcal{G} \).

It turns out that \(\mathcal{M}_{B,\beta} \) is essentially a composition of \(\mathcal{M}_{B,0} \) and the randomized sign flipping.

Definition 6. \(\text{DP-flip mechanism} \mathcal{M}_{B,\text{flip}} : \{\pm 1\} \rightarrow \{\pm 1\} \) is defined as: For any \(b \in \{\pm 1\} \),

\[
\mathcal{M}_{B,\text{flip}}(b) = \begin{cases}
 b \quad \text{with probability } \frac{2B+\beta}{2(B+\beta)}; \\
 -b \quad \text{otherwise.}
\end{cases}
\]

It can be easily checked that \(\mathcal{M}_{B,\text{flip}} \) is \(\log \left(\frac{2B+\beta}{\beta} \right) \)-differentially private.

Proposition 1. For any \(\beta > 0 \), \(\mathcal{M}_{B,\beta} \overset{d}{=} \mathcal{M}_{B,\text{flip}} \circ \mathcal{M}_{B,0} \), where \(\overset{d}{=} \) denotes “equal in distribution”.

Intuitively, to preserve the same amount of privacy, compared with naively applying \(\mathcal{M}_{B,0} \) and \(\mathcal{M}_{B,\text{flip}} \) sequentially, our compressor \(\mathcal{M}_{B,\beta} \) is more computationally efficient. A simple example of the equivalence in Proposition 1 is given in Fig.1. Under \(\mathcal{M}_{B,0} \), an occurrence of \(-1\) in any round of one of experiments suggests its input gradient is \(g' \) rather than \(g \). Even if we constrain the set of gradients, the ensured differential privacy is not controllable (implied by the proof of Theorem 3). In contrast, under \(\mathcal{M}_{B,\beta} \), one can manipulate \(\beta \) to ensure a controllable privacy quantification as per Theorem 2.

![Figure 1](image-url)

Figure 1: \(d = 1, B = \beta = 0.1 \) and two gradients \(g = 0.1 \) and \(g' = -0.05 \).

6 Convergence Analysis

Our analysis is derived under the following technical assumptions that are standard in non-convex optimization [SSBD14].

Assumption 1 (Lower bound). There exists \(F^* \) such that \(F(w) \geq F^* \) for all \(w \).

Assumption 2 (Smoothness). There exists some non-negative constant \(L \) such that \(F(w_1) \leq F(w_2) + \langle \nabla F(w_2), w_1 - w_2 \rangle + \frac{L}{2}||w_1 - w_2||^2 \) for all \(w_1, w_2 \).

Assumption 3 (Bounded true gradient). For any coordinate \(i \in [d] \), there exists \(B_i > 0 \) such that \(||\nabla f_{m,i}(w)\| \leq B_i \) for all \(m \in [M] \). Let \(B_0 := \max_{i \in [d]} B_i \).

Stochastic gradients can have significantly wider range than the true gradients.
Example 1 (Norm discrepancy between true and stochastic gradients). Let \(x \sim \mathcal{N}(0, I_d) \) be standard Gaussian random vector. Let \(f(w, x) = \langle w, x \rangle + \xi \), where \(\xi \) is some unknown observation noise. It can be checked easily that for any \(w \in \mathbb{R}^d \), it holds that \(\nabla f(w) = \nabla \mathbb{E}[f(w, x)] = \mathbb{E}[x] = 0 \), whereas the natural stochastic gradient \(\nabla f(w, x) \) whose support is the entire \(\mathbb{R}^d \).

Assumption 4 (Sub-Gaussianity). For a given client \(m \in [M] \), at any query \(w \in \mathbb{R}^d \), the stochastic gradient \(g_m(w) \) is an independent unbiased estimate of \(\nabla f_m(w) \) that is coordinate-wise related to the gradient \(\nabla f_m(w) = \nabla f_m(w) + \xi_m \), \(\forall i \in [d] \), where \(\xi_m \) is zero-mean \(\sigma_m \)-sub-Gaussian, i.e., \(\mathbb{E}[\xi_m] = 0 \), and the two deviation inequalities \(\mathbb{P}\{\xi_m \geq t\} \leq \exp\left(-\frac{t^2}{2\sigma_m^2} \right) \) and \(\mathbb{P}\{\xi_m \leq t\} \geq \exp\left(-\frac{t^2}{2\sigma_m^2} \right) \) hold. Let \(\sigma^2 := \max_{m \in [M], i \in [d]} \sigma^2_{mi} \). Notably, the class of sub-Gaussian random variables contains bounded and unbounded random variable as special cases. Tighter convergence bounds can be obtained under boundedness or Gaussianity assumptions on the noise; see Appendix A.1 for details.

Following the road-map used in [BZAA19, JHH+20, SR21], we first establish an upper bound for the probability of gradient sign errors \(\mathbb{P}\{\tilde{g}_i(t) \neq \text{sign}(\nabla F_i(w(t)))\} \), and then bound \(\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla F(w(t))\|_1] \) to conclude convergence. Recall that \(g_m(t) := \nabla f_m(w(t)) \) denotes the true local gradient at client \(m \).

Theorem 4. Suppose that Assumptions 3 and 4 hold. Choose \(B = (1 + \epsilon_0)B_0 \) for \(\epsilon_0 > \frac{\sigma}{B_0} \) and \(c_0 = \max\left\{\sqrt{\frac{8\sigma^2}{m} \log \frac{6}{\epsilon}}, \sqrt{\frac{8(B+\beta)^2}{pT} \log \frac{6}{\epsilon}}\right\} \). Fix \(t \geq 1 \) and \(i \in [d] \). Let \(c > 0 \) be any given constant such that \(c < \frac{3}{2} \). When the system adversary is adaptive or the system adversary is static but with \(\tau(t) \leq \frac{2p}{\beta} \log \frac{6}{c} \), if \(|\nabla F_i(w(t))| \geq \frac{3(B+\beta)\tau(t)}{M} + 2(B+\beta) \exp\left(-\frac{n^2}{2}\right) + \frac{n}{\sqrt{M}} \), then

\[
\mathbb{P}\{\tilde{g}_i(t) \neq \text{sign}(\nabla F_i(w(t))) \mid w(t)\} \leq \frac{1-c}{2}.
\]

When the system adversary is static with \(\tau(t) > \frac{2p}{\beta} \log \frac{6}{c} \), if \(|\nabla F_i(w(t))| \geq 3(B+\beta)\tau(t) + 2(B+\beta) \exp\left(-\frac{n^2}{2}\right) + \frac{n}{\sqrt{M}} \), then Eq. (4) holds.

Theorem 4 says that when \(|\nabla F_i(w(t))| \) is large enough, the sign estimation at the PS in each iteration is more likely to be correct. This is crucial in ensuring the convergence because Theorem 4 implies that when \(|\nabla F_i(w(t))| \) is large enough, in expectation, Algorithm 1 pushes \(w(t) \) towards a stationary point of the global objective \(\dot{F} \). Additionally, small \(|\nabla F_i(w(t))| \) implies that \(w(t) \) is already near the neighborhood of a stationary point. Different from [SR21] and [JHH+20], we neither assume the sign error distributions across clients be identical, nor require the average probability of sign error to be less than 1/2. Instead, we show that it is enough to guarantee the probability of population sign errors be small when the magnitude of the gradients is large.

Theorem 5. Suppose Assumptions 1, 2, 3, and 4 hold. For any given \(T, B = (1 + \epsilon_0)B_0 \) for \(\epsilon_0 > \frac{\sigma}{B_0} \) and \(c \) such that \(0 < c < \frac{3}{2} \), set the learning rate as \(\eta = \frac{1}{\sqrt{dT}} \) and \(c_0 := \max\left\{\sqrt{\frac{8\sigma^2}{m} \log \frac{6}{\epsilon}}, \sqrt{\frac{8(B+\beta)^2}{pT} \log \frac{6}{\epsilon}}\right\} \). When the system adversary is adaptive or the system adversary is static but with \(\tau(t) \leq \frac{2p}{\beta} \log \frac{6}{c} \), we have

\[
\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla F(w(t))\|_1] \leq \frac{1}{c} \left[\frac{(F(w(0)) - F^*) \sqrt{d}}{\sqrt{T}} + \frac{L \sqrt{d}}{2\sqrt{T}} + 2d \frac{c_0}{\sqrt{M}} + 4d(B+\beta) \exp\left(-\frac{n^2}{2}\right) \right] + 4d(B+\beta) \sum_{t=0}^{T-1} \frac{\tau(t)}{pTM}.
\]

When the system adversary is static with \(\tau(t) > \frac{2p}{\beta} \log \frac{6}{c} \), we have

\[
\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla F(w(t))\|_1] \leq \frac{1}{c} \left[\frac{(F(w(0)) - F^*) \sqrt{d}}{\sqrt{T}} + \frac{L \sqrt{d}}{2\sqrt{T}} + 2d \frac{c_0}{\sqrt{M}} + 4d(B+\beta) \exp\left(-\frac{n^2}{2}\right) \right] + 6d(B+\beta) \sum_{t=0}^{T-1} \frac{\tau(t)}{TM}.
\]

Remark 1. (1) The convergence rates in Eq. (5) and Eq. (6) only differ in their last terms by a multiplicative factor of \(\frac{3p}{2} \). As long as \(\tau(t) \) is sufficiently large, the impacts of \(p \) – the degree of partial client participation – on the convergence
rate upper bound is limited. The lower bound requirement on $\tau(t)$ might be an artifact of our analysis in simplifying the boundary case derivation.

(2) If $\tau(t) = \tau$ for each t, then the last terms in Eq. (5) and Eq. (6) become $\frac{4(B+\beta)\tau d}{p M}$ and $\frac{6(B+\beta)\tau d}{M}$. Now consider the asymptotics in terms of T and the client population size M only. If $\tau = O\left(\sqrt{\frac{1}{M}}\right)$, then both $\frac{4(B+\beta)\tau d}{p M}$ and $\frac{6(B+\beta)\tau d}{M}$ scale in M with order $O\left(\frac{1}{\sqrt{M}}\right)$, which is of the same as the third terms in Eq. (5) and Eq. (6) – the consequences of weak signal strength of the compressed gradients near a stationary point of the global objective F. In other words, the impacts of the Byzantine attacks are dominated by the third terms in Eq. (5) and Eq. (6). On the other hand, if $\sum_{t=0}^{T-1} \tau(t) = O\left(\sqrt{T}\right)$, the last terms in Eq. (5) and Eq. (6) scale as $O\left(\frac{1}{\sqrt{T}}\right)$, dominated by the first two terms. In either case, due to the mobility of the Byzantine faults, it is possible that $\bigcup_{t=0}^{T-1} B(t) = [M]$, i.e., every client is attacked at least once.

(3) The residual term $4d(B+\beta)\exp\left(-\frac{T}{2}\right)$ is an immediate consequence of using mini-batch stochastic gradients rather than true gradient [JHH+20]. It turns out that this term have minimal impact on the final convergence due to its exponential decay in the mini-batch size n. In fact, as long as $n = \Omega\left(\log M\right)$, this term becomes non-dominating.

(4) When $\tau(t) = \tau = O\left(\sqrt{\frac{1}{M}}\right)$ and $n = \Omega\left(\log M\right)$, the convergence rates become $O\left(\frac{1}{\sqrt{T}} + \frac{1}{\sqrt{M}}\right)$, approaching the convergence rate of the standard (centralized, non-private, and adversary-free) SGD $O\left(\frac{1}{\sqrt{T}}\right)$ as $M \to \infty$. Fortunately, in FL, M is often large [MMR+17].

The bounds in Theorem 5 can be tightened with more structured gradient noises. We defer our results on Gaussian-tailed and bounded stochastic gradients to Appendix A.2. All of the results have a similar form and differ only in the noisy residual terms. In detail, the residual term $O\left(\exp\left(-n/2\right)\right)$ in the convergence results of the Gaussian-tailed stochastic gradients is scaled by a constant $1/4\sqrt{2\pi}$, while no noisy tail term appears in the case of bounded stochastic gradients.

7 Experimental Evaluation

In this section, we evaluate the accuracy and convergence speed of our Algorithm 1 in terms of the impacts of client sampling p, the differential privacy protection β, and Byzantine attack resilience. More experiment details are deferred to Appendix C. We list key elements of our experimental setup for benchmark datasets below.

- **Datasets:** MNIST [LCB09], and CIFAR-10 [KH+09].
- **Models:** Simple Multi-Layer Perceptron (MLP) [MMR+17].
- **Clients Data:** 100 balanced workers with $\alpha = 1$ Dirichlet distribution [HQB19].
- **Baseline algorithms:** Sign SGD [BWAA18] and FedAvg [MMR+17].

![Figure 2: Dirichlet distributions with $\alpha \in \{10000, 1000, 100, 10, 1\}$, 10 classes, and 10 clients.](image)

BS	MNIST	CIFAR-10
32	89.2%	46.03%
64	88.6%	46.68%
128	89.8%	46.78%
256	91.8%	46.54%

Table 1: Testing results on two datasets (DS) with different mini-batch sizes (BS).
We train MLP under full client participation with 80 and 300 communication rounds in the first two comparisons for MNIST and CIFAR-10, respectively. For the client sampling and Byzantine resilience, we extend the time horizon to 500 communication rounds for both datasets.

Mini-batch size. We compare the peak performances of our variant under different mini-batch sizes. It is observed in Table 1 that the Algorithm 1 is not sensitive to mini-batch size n. This meets Remark 1 (3) as $n = \Omega (\log M)$ is enough for the term not to become dominant.

Parameter B and β. The peak performances are collected and listed in Table 2. We can observe that the testing results drop as β increases. This matches a trivial observation from Theorem 5 such that the increase of β pushes the bound farther away from stationary point, implying our variant suffers from the data-utility-privacy trade-off. For any given B, the testing accuracy is comparable when the differential privacy quantification βs are relatively small.

Figure 3: MNIST testing results under non-i.i.d distribution with different Byzantine fractions and (a) no differential privacy protection: $\beta = 0$, (b) differential privacy protection $\beta = B$.

Figure 4: CIFAR-10 testing results under non-i.i.d distribution with different Byzantine fractions and (a) no differential privacy protection: $\beta = 0$, (b) differential privacy protection $\beta = B$.

be unbounded and the true gradient is upper bounded by B_0.
such as $\beta \in \{0.1B, B\}$, which is fortunate as we might not sacrifice too much data utility while ensuring a privacy quantification.

β/B	MNIST	$\epsilon = 3.04d$	$\epsilon = 3.1d$	$\epsilon = 0.34d$	$\epsilon = 0.18d$
1.0	64.0%	61.7%	41.0%	16.2%	
0.1	83.1%	82.9%	81.4%	41.2%	
0.01	89.9%	90.0%	90.3%	76.7%	

Table 2: Testing results on two datasets with different combinations of B and β/B (ϵ).

Client sampling and Byzantine resilience. Besides normal clients, we assume a constant fraction of the reporting clients are Byzantine and only send the negation of the reporting signs to PS, the adversary which we call adaptive mobile attackers in our theory. It is observed in Fig. 3 and Fig. 4 that the Algorithm 1 is not sensitive to client sampling. In particular, the Byzantine-free peak accuracy reaches around 96% on MNIST and around 44% on CIFAR-10, which is a direct consequence of highly heterogeneous data distributions. The accuracy drops are almost negligible when the Byzantine fraction does not exceed 0.1. We can see a sharper drop as the fraction increases. However, the testing accuracy remains stable during the final training stage when Byzantine clients account for 50% of the reporting clients except when the sampling rate p is small. Two baseline algorithms with no Byzantine clients are also evaluated for comparisons. It is observed that SignSGD slightly outperforms our variant in some cases with $\beta > 0$; however, our variant is provably $d \cdot \log \beta$-differentially private. FedAvg is inferior to the other algorithms in all cases.

8 Conclusion

We propose β-stochastic sign SGD for federated learning, which is provably Byzantine resilient and differentially private when $\beta > 0$. Our algorithm will converge in the presence of mobile Byzantine adversary and partial client participation. For future directions, a promising path is to look at an adaptive B, which might further optimize the convergence rate. In addition, it remains to explore a more general client participation pattern, where clients may join or leave arbitrarily.
References

[AGL+17] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-efficient sgd via gradient quantization and encoding. Advances in Neural Information Processing Systems, 30, 2017.

[ASY+18] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and Brendan McMahan. cpsgd: Communication-efficient and differentially-private distributed sgd. Advances in Neural Information Processing Systems, 31, 2018.

[BEMGS17] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with adversaries: Byzantine tolerant gradient descent. Advances in Neural Information Processing Systems, 30, 2017.

[BWAA18] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signSGD: Compressed optimisation for non-convex problems. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 560–569, 10–15 Jul 2018.

[BZAA19] Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar. signSGD with majority vote is communication efficient and fault tolerant. In International Conference on Learning Representations, 2019.

[CCS+20] Xiangyi Chen, Tiancong Chen, Haoran Sun, Steven Z Wu, and Mingyi Hong. Distributed training with heterogeneous data: Bridging median-and mean-based algorithms. Advances in Neural Information Processing Systems, 33:21616–21626, 2020.

[CSX17] Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial settings: Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 1(2):1–25, 2017.

[DR+14] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

[GHYR19] Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ramchandran. Robust federated learning in a heterogeneous environment. arXiv preprint arXiv:1906.06629, 2019.

[Gor41] Robert D Gordon. Values of mills’ ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. The Annals of Mathematical Statistics, 12(3):364–366, 1941.

[HMV15] Zhenqi Huang, Sayan Mitra, and Nitin Vaidya. Differentially private distributed optimization. In Proceedings of the 2015 International Conference on Distributed Computing and Networking, 2015.

[HQB19] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[JHH+20] Richeng Jin, Yufan Huang, Xiaofan He, Huaiyu Dai, and Tianfu Wu. Stochastic-sign sgd for federated learning with theoretical guarantees. arXiv preprint arXiv:2002.10940, 2020.

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[KHJ22] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-robust learning on heterogeneous datasets via bucketing. In International Conference on Learning Representations, 2022.

[KMA+21] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

[LCB09] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten digits (2010). URL http://yann.lecun.com/exdb/mnist, 2009.

[LHY+20] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg on non-iid data. In International Conference on Learning Representations, 2020.

[LSZ+20] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2:429–450, 2020.
Nancy A. Lynch. *Distributed Algorithms*. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1996.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Aarti Singh and Jerry Zhu, editors, *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*, volume 54 of *Proceedings of Machine Learning Research*, pages 1273–1282, 20–22 Apr 2017.

Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shio Moriai. Privacy-preserving deep learning via additively homomorphic encryption. *IEEE Transactions on Information Forensics and Security*, 13(5):1333–1345, 2018.

Constantin Philippenko and Aymeric Dieuleveut. Bidirectional compression in heterogeneous settings for distributed or federated learning with partial participation: tight convergence guarantees. *arXiv preprint arXiv:2006.14591*, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. *Advances in Neural Information Processing Systems*, 32, 2019.

Mher Safaryan, Filip Hanzely, and Peter Richtarik. Smoothness matrices beat smoothness constants: Better communication compression techniques for distributed optimization. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, *Advances in Neural Information Processing Systems*, volume 34, pages 25688–25702, 2021.

Mher Safaryan and Peter Richtárik. Stochastic sign descent methods: New algorithms and better theory. In *International Conference on Machine Learning*, pages 9224–9234, 2021.

Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge university press, 2014.

Sebastian U. Stich. Local SGD converges fast and communicates little. In *International Conference on Learning Representations*, 2019.

Lili Su, Jiaming Xu, and Pengkun Yang. Global convergence of federated learning for mixed regression. *arXiv preprint arXiv:2206.07279*, 2022.

Stacey Truex, Ling Liu, Ka-Ho Chow, Mehmet Emre Gursoy, and Wenvi Wei. Ldp-fed: Federated learning with local differential privacy. In *Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking*, pages 61–66, 2020.

Jianyu Wang and Gauri Joshi. Adaptive communication strategies to achieve the best error-runtime trade-off in local-update sgd. *Proceedings of Machine Learning and Systems*, 1:212–229, 2019.

Boxin Wang, Fan Wu, Yunhui Long, Luka Rimanic, Ce Zhang, and Bo Li. Datalens: Scalable privacy preserving training via gradient compression and aggregation. In *Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security*, CCS ’21, page 2146–2168, 2021.

Hang Xu, Chen-Yu Ho, Ahmed M Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstantinos Karatsenidis, Marco Canini, and Panos Kalnis. Compressed communication for distributed deep learning: Survey and quantitative evaluation. Technical report, 2020.

Cong Xie, Sanni Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent with suspicion-based fault-tolerance. In *International Conference on Machine Learning*, pages 6893–6901, 2019.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed learning: Towards optimal statistical rates. In *International Conference on Machine Learning*, pages 5650–5659, 2018.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 32, 2019.
A Alternative Results

A.1 Alternative Assumptions

The following two alternative assumptions on the randomness of stochastic gradients are of decreasing levels of stringency.

Assumption 5 (Boundedness). The ℓ_∞ norm of all possible stochastic gradients is upper bounded. Formally, let $m \in [M]$ be an arbitrary client and g be an arbitrary stochastic gradient that client m obtains. For any coordinate $i \in [d]$, there exists $\tilde{B}_i > 0$ such that $|g_i| \leq \tilde{B}_i$. Let $\tilde{B} = \max_{i\in[d]} \tilde{B}_i$.

The following alternative assumption relaxes the boundedness requirement, and allows the stochastic gradients to be supported over the entire \mathbb{R}^d.

Assumption 6 (Gaussianity). For a given client $m \in [M]$, at any query $w \in \mathbb{R}^d$, the stochastic gradient $g_m(w)$ is an independent unbiased estimate of $\nabla f_m(w)$ that is coordinate-wise related to the gradient $\nabla f_m(w)$ as $g_m(w) = \nabla f_m(w) + \xi_{mi} \forall i \in [d]$, where $\xi_{mi} \sim \mathcal{N}(0, \sigma^2_{mi})$. Let $\sigma^2 := \max_{m\in[M],i\in[d]} \sigma^2_{mi}$.

A.2 Alternative Convergence Rates

Corollary 1. Suppose that Assumptions 3 and 6 hold. Choose $B = (1 + \epsilon_0)B_0$ for $\epsilon_0 > \sigma/B_0$ and $c_0 = \max \left\{ \sqrt{\frac{8\pi^2}{n}} \log \frac{6}{c}, \sqrt{\frac{8(B+\beta)^2}{p^2} \log \frac{6}{3-5c}} \right\}$. Fix $t \geq 1$ and $i \in [d]$. Let $c > 0$ be any given constant such that $c < \frac{\tilde{B}}{2}$. When the system adversary is adaptive or the system adversary is static but with $\tau(t) \leq \frac{2}{p^2} \log \frac{\tilde{B}}{c}$, if $|\nabla F_i(w(t))| \leq \frac{3(B+\beta)\tau(t)}{M} + \frac{B+\beta}{2\sqrt{2\pi}} \exp \left(-\frac{n}{2}\right) + \frac{c_0}{\sqrt{M}}$, then Eq. (4) holds.

When the system adversary is static with $\tau(t) > \frac{2}{p^2} \log \frac{\tilde{B}}{c}$, if $|\nabla F_i(w(t))| \geq \frac{3(B+\beta)\tau(t)}{M} + \frac{B+\beta}{2\sqrt{2\pi}} \exp \left(-\frac{n}{2}\right) + \frac{c_0}{\sqrt{M}}$, then Eq. (4) holds.

Corollary 2. Suppose Assumptions 1, 2, 3, and 6 hold. For any given T, $B = (1 + \epsilon_0)B_0$ for $\epsilon_0 > \frac{c}{TM}$, and c such that $0 < c < \frac{\tilde{B}}{2}$, set the learning rate as $\eta = \frac{1}{\sqrt{d}T}$ and $c_0 := \max \left\{ \sqrt{\frac{8\pi^2}{n}} \log \frac{6}{c}, \sqrt{\frac{8(B+\beta)^2}{p^2} \log \frac{6}{3-5c}} \right\}$. When the system adversary is adaptive or the system adversary is static but with $\tau(t) \leq \frac{2}{p^2} \log \frac{\tilde{B}}{c}$, we have

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[||\nabla F(w(t))||_1 \right] \leq \frac{1}{c} \left[\frac{(F(w(0)) - F^*)}{\sqrt{T}} \sqrt{T} + \frac{L}{\sqrt{2T}} \frac{\sqrt{d}}{\sqrt{2\pi}} (B + \beta) \exp \left(-\frac{n}{2}\right) \right] + \frac{2d}{\sqrt{M}} + \frac{4d}{TM} \left[(B + \beta) \sum_{t=0}^{T-1} \tau(t) \right].$$

On the other hand, when the system adversary is static with $\tau(t) > \frac{2}{p^2} \log \frac{\tilde{B}}{c}$, we have

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[||\nabla F(w(t))||_1 \right] \leq \frac{1}{c} \left[\frac{(F(w(0)) - F^*)}{\sqrt{T}} \sqrt{T} + \frac{L}{\sqrt{2T}} \frac{\sqrt{d}}{\sqrt{2\pi}} (B + \beta) \exp \left(-\frac{n}{2}\right) \right] + \frac{2d}{\sqrt{M}} + \frac{6d}{TM} \left[(B + \beta) \sum_{t=0}^{T-1} \tau(t) \right].$$

Corollary 3. Suppose that Assumption 5 holds. Choose $B = \tilde{B}$ and $c_0 = \max \left\{ \sqrt{\frac{8\pi^2}{n}} \log \frac{6}{c}, \sqrt{\frac{8(B+\beta)^2}{p^2} \log \frac{6}{3-5c}} \right\}$. Fix $t \geq 1$ and $i \in [d]$. Let $c > 0$ be any given constant such that $c < \frac{\tilde{B}}{2}$.

When the system adversary is adaptive or the system adversary is static but with $\tau(t) \leq \frac{2}{p^2} \log \frac{\tilde{B}}{c}$, if $|\nabla F_i(w(t))| \geq \frac{3(B+\beta)\tau(t)}{M} + \frac{B+\beta}{2\sqrt{2\pi}} \exp \left(-\frac{n}{2}\right) + \frac{c_0}{\sqrt{M}}$, then Eq. (4) holds.

When the system adversary is static with $\tau(t) > \frac{2}{p^2} \log \frac{\tilde{B}}{c}$, if $|\nabla F_i(w(t))| \geq \frac{3(B+\beta)\tau(t)}{M} + \frac{B+\beta}{2\sqrt{2\pi}} \exp \left(-\frac{n}{2}\right) + \frac{c_0}{\sqrt{M}}$, then Eq. (4) holds.
Corollary 4. Suppose Assumptions 1, 2, and 5 hold. For any given T and c such that $0 < c < \frac{1}{5}$, set the learning rate as $\eta = \frac{1}{\sqrt{T} \varepsilon}$ and $c_0 := \max \left\{ \frac{8\eta^2}{\sqrt{n}} \log \frac{6}{\varepsilon}, \frac{8(B+\beta)^2}{p^2} \log \frac{6}{3\varepsilon c} \right\}$. When the system adversary is adaptive or the system adversary is static but with $\tau(t) \leq \frac{2}{p'} \log \frac{6}{c}$, we have

$$
\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\| \nabla F(w(t)) \|_1 \right] \leq \frac{1}{c} \left(\frac{(F(w(0)) - F^*) \sqrt{d}}{\sqrt{T}} + \frac{L \sqrt{d}}{2\sqrt{T}} + 2d \frac{c_0}{\sqrt{M}} + 4d \frac{(B + \beta) \sum_{t=0}^{T-1} \tau(t)}{pTM} \right).
$$

On the other hand, when the system adversary is static with $\tau(t) > \frac{2}{p'} \log \frac{6}{c}$, we have

$$
\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\| \nabla F(w(t)) \|_1 \right] \leq \frac{1}{c} \left(\frac{(F(w(0)) - F^*) \sqrt{d}}{\sqrt{T}} + \frac{L \sqrt{d}}{2\sqrt{T}} + 2d \frac{c_0}{\sqrt{M}} + 6d \frac{(B + \beta) \sum_{t=0}^{T-1} \tau(t)}{TM} \right).
$$

B Proofs

B.1 Aggregation Functions

Proof of Theorem 1 (Equivalent to Majority Vote). The intuition behind this proof is to show that the signs of all the aggregation rules mentioned in the theorem statement, given $\tilde{u}_m \in \{\pm 1\}^d$ for $m \in S$, are equivalent to the sign of the k-trimmed-mean aggregation rule.

We first show that for any $k < |S|/2$, the signs of the outputs of the signs of the aggregation rule $agg_{trimmed,k}$ are the same. When $k < |S|/2$, it holds that $R_i \neq \emptyset$ for each $i \in [d]$. Thus, the aggregation rules $agg_{trimmed,k}$ with $k < |S|/2$ is deterministic.

For any given coordinate $i \in [d]$, if the sign of $agg_{trimmed,k}$ is 0, by definition, we know that there are equal numbers of 1 and −1 in $\{\tilde{u}_m : m \in R_i\}$, and that the top (resp. bottom) k elements removed from $\{\tilde{u}_m : m \in S\}$ are 1 (resp. −1). That is, there are equal numbers of 1 and −1 in $\{\tilde{u}_m : m \in S\}$. Hence, for any $k \neq k'$, as long as the remained set R_i' after trimming is nonempty (which is ensured by the condition that $k' < |S|/2$), it holds that $agg_{trimmed,k'}(\{\tilde{u}_m : m \in S\}) = 0$.

If the sign of $agg_{trimmed,k}$ is −1, we know that there are more −1 than 1 in $\{\tilde{u}_m : m \in R_i\}$, and that the bottom k elements in $\{\tilde{u}_m : m \in S\}$ are all −1 whereas the number of 1 in the top k elements is at most k. That is, there are more −1 than 1 in $\{\tilde{u}_m : m \in S\}$. Hence, we know that for any k', as long as the remained set R_i' after trimming is nonempty, the sign of $agg_{trimmed,k'}(\{\tilde{u}_m : m \in S\})$ is −1. Similarly, we can show the case when the sign of $agg_{trimmed,k}$ is 1.

The above argument, combined with the definition of agg_{maj}, immediately implies that when $k < |S|/2$, the signs of $agg_{trimmed,k}$ and agg_{maj} are the same.

Finally, since agg_{avg} is $agg_{trimmed,0}$ and $agg_{median} = agg_{trimmed,\lfloor \frac{|S|}{2} \rfloor}$, the signs of agg_{avg}, agg_{median}, and $agg_{trimmed,k}$ for $k < |S|/2$ are all the same, proving the theorem.

\[\square \]

B.2 Privacy Preservation

Theorem 6. [DR+14, Corollary 3.15] Let $\mathcal{M}_i : \mathbb{R}^d \to \{\pm 1\}^d$ be an ϵ_i-differentially private algorithm for $i \in [k]$. Then $\mathcal{M}_k(x) := (\mathcal{M}_1(x), \cdots, \mathcal{M}_k(x))$ is $\sum_{i=1}^k \epsilon_i$-differentially private.

Proof of Theorem 2 (Necessity of b). We first consider the setting when $b = 0$. Let

$$
G = \{ g \in \mathbb{R}^d : \exists \ i \text{ s.t. } \min \{ |g_i - B|, |g_i + B| \} \leq 1 \}.
$$

Let $g \in G$. Without loss of generality, let us assume that $|g_i - B| \leq 1$, where g_i is the first entry of g. If $g_1 \geq B$, then there exists $g' \in \mathbb{R}^d$ such that $g' \neq g_i, g'_1 \in (-B, B)$, and $\|g - g'\|_1 \leq 1$. Let \tilde{g}_1 and \tilde{g}'_1 be the compressed values of g_1 and g'_1 under our compressor in Eq. (2). It holds that

$$
\mathbb{P} \left\{ \tilde{g}'_1 = -1 \right\} = \frac{B - \text{clip} \left\{ g'_1, B \right\}}{B - \text{clip} \left\{ g'_1, B \right\}} = B - \text{clip} \left\{ g'_1, B \right\} = \frac{B - \text{clip} \left\{ g'_1, B \right\}}{B - B} = \infty.
$$
When \(\beta > 0 \), then there exists \(g' \in \mathbb{R}^d \) such that \(g' \neq g \), \(g_1' \geq B \), and \(\|g - g'\|_1 \leq 1 \). We have

\[
\frac{\mathbb{P}\{\hat{g}_1 = -1\}}{\mathbb{P}\{\hat{g}_1' = -1\}} = \frac{B - \text{clip}(g_1, B)}{B - \text{clip}(g_1', B)} = \frac{B - \text{clip}(g_1, B)}{B - B} = \infty.
\]

Since a finite differential privacy quantification does not hold for any pair of gradients \(g \) and \(g' \), no differential privacy implies as per Definition 1, proving the first part of the theorem.

When \(\beta > 0 \), for any \(g, g' \in \mathbb{R}^d \) such that \(g' \neq g \) and \(\|g - g'\|_1 \leq 1 \), and for each coordinate \(i \in [d] \), it holds that

\[
\frac{\mathbb{P}\{\hat{g}_i = -1\}}{\mathbb{P}\{\hat{g}_i = 1\}} = \frac{B + \beta - \text{clip}(g_i, B)}{B + \beta - \text{clip}(g_i', B)} = \frac{B + \beta - \text{clip}(g_i, B)}{B + \beta - 1} \leq \frac{2B + \beta}{2B + B}.
\]

Similarly, we can show the same upper bound for \(\mathbb{P}\{\hat{g}_i = 1\} / \mathbb{P}\{\hat{g}_i = 1\} \). That is, for the \(i \)-th coordinate, the compressor \(M_{B, \beta} \) is coordinate-wise \(\log(2B + \beta) \)-differentially private. By Theorem 6, we conclude that the compressor \(M_{B, \beta} \) is \(d \cdot \log(2B + \beta) \)-differentially private for the entire gradient. \(\square \)

Proof of Proposition 1 (Equivalent as a Composition). Let \(g \in \mathbb{R}^d \) be an arbitrary gradient. To show this proposition, it is enough to show \(\mathbb{P}\{[M_{B, \beta}]_i(g_1) = 1\} = \mathbb{P}\{[M_{B, \beta}]_i(g_1) = 1\} \) holds for any \(i \in [d] \).

To see this,

\[
\mathbb{P}\{[M_{B, \beta}]_i(g_1) = 1\} = \mathbb{P}\{[M_{B, \beta}]_i(g_1) = 1 \& M_{B, \beta}(1) = 1\} + \mathbb{P}\{[M_{B, \beta}]_i(g_1) = -1 \& M_{B, \beta}(1) = -1\}
\]

\[
= \frac{B + \text{clip}(g_i, B)}{2B} \cdot \frac{2B + \beta}{2B + \beta} + \frac{B - \text{clip}(g_i, B)}{2B} \cdot \frac{\beta}{2B + \beta}
\]

\[
= \frac{B + \beta + \text{clip}(g_i, B)}{2B + \beta}
\]

\[
\mathbb{P}\{[M_{B, \beta}]_i(g_1) = 1\}.
\]

\(\square \)

Proof of Theorem 3 (Smaller Collection of Gradients). Let \(g, g' \in \mathbb{R}^d \) be an arbitrary pair of gradient inputs such that \(g' \neq g \) and \(\|g - g'\|_1 \leq 1 \). For each coordinate \(i \in [d] \), it holds that

\[
\frac{\mathbb{P}\{g_i' = -1\}}{\mathbb{P}\{g_i = -1\}} = \frac{B + \beta - \text{clip}(g_i, B)}{2B + \beta} \leq \frac{B + \beta - \text{clip}(g_i, B)}{B + \beta - \text{clip}(g_i, B)} \leq 1 + \frac{1}{B + \beta - \text{clip}(g_i, B)}.
\]

By Theorem 6, we conclude that the compressor \(M_{B, \beta} \) is \(\max_{g \in \mathcal{G}} \sum_{i=1}^d \log \left(1 + \frac{1}{\beta + \text{dist}(g_i, C_B)} \right) \)-differentially private for all gradients \(g \in \mathcal{G} \). \(\square \)

B.3 Convergence Results

Proposition 2 (Bounded Random Variable Variance Bound). Given a random variable \(X \) and a clipping threshold \(B > 0 \), if \(\mu = \mathbb{E}[X] \in [-B, B] \), then \(\text{var}(\text{clip}(X, B)) \leq \text{var}(X) = \sigma^2 \).
\(\beta\)-Stochastic Sign SGD: A Byzantine Resilient and Differentially Private Gradient Compressor for Federated Learning

Proof of Proposition 2.

\[
\text{var} (\text{clip} (X, B)) := \mathbb{E} \left[(\text{clip}(X, B) - \mathbb{E} [\text{clip}(X, B)])^2 \right] \\
= \mathbb{E} \left[(\text{clip}(X, B) - \mathbb{E} [X])^2 \right] - (\mathbb{E} [\text{clip}(X, B) - X])^2 \\
\leq \mathbb{E} \left[(\text{clip}(X, B) - \mathbb{E} [X])^2 \right].
\] (7)

For ease of exposition, we assume \(X\) admits a probability density function \(f(x)\). General distributions of \(X\) can be shown analogously. It follows that

\[
\mathbb{E} \left[(\text{clip}(X, B) - \mathbb{E} [X])^2 \right] \\
= \int_B^\infty (B - \mu)^2 f(x)dx + \int_B^\infty (x - \mu)^2 f(x)dx + \int_{-\infty}^{-B} (B - \mu)^2 f(x)dx \\
\leq \int_B^\infty (x - \mu)^2 f(x)dx + \int_B^\infty (x - \mu)^2 f(x)dx + \int_{-\infty}^{-B} (x - \mu)^2 f(x)dx \\
= \text{var} (X) = \sigma^2.
\] (8)

Combining (7) and (8), we conclude \(\text{var} (\text{clip} (X, B)) \leq \text{var} (X) = \sigma^2. \)

\[\square\]

B.3.1 Sub-Gaussian Distributions

Proof of Theorem 4 (Sub-Gaussian Tail Sign Error). Recall that

\[
\tilde{g}_{mi}(t) = \begin{cases}
[M_{B,\beta}]_i \left(\frac{1}{n} \sum_{j=1}^n g_{mj}(t) \right) & \text{if } m \in S(t); \\
* & \text{if } m \notin S(t),
\end{cases}
\]

where \(*\) is an arbitrary value in \{-1,1\}. For any client \(m \in [M]\) and any coordinate \(i \in [d]\), let

\[
X_{mi} = 1_{\{m \in S(t)\}} 1_{\{\tilde{g}_{mi} \neq \text{sign} (\frac{1}{n} \sum_{j=1}^M g_{mj})\}},
\]

and

\[
\bar{X}_{mi} = 1_{\{m \in S(t)\}} 1_{\{[M_{\beta}]_i, (\frac{1}{n} \sum_{j=1}^M g_{mj}) \neq \text{sign} (\frac{1}{n} \sum_{j=1}^M g_{mj})\}}.
\]

Notably, if \(m \in B(t)\), then it is possible that \(X_{mi} \neq \bar{X}_{mi}\); otherwise, \(X_{mi} = \bar{X}_{mi}\).

Without loss of generality, we assume the true aggregation is negative, i.e., \(\text{sign} (\nabla F; (w(t))) = -1\). The case when \(\text{sign} (\nabla F; (w(t))) = 1\) can be shown analogously.

For ease of exposition, we drop a condition of \(w(t)\) in the conditional probability expressions unless otherwise noted. It holds that

\[
\mathbb{P} \left\{ \text{sign} \left(\frac{1}{M} \sum_{m=1}^M \tilde{g}_{mi} \right) \neq -1 \right\} \leq \mathbb{P} \left\{ \sum_{m=1}^M X_{mi} \geq \frac{|S(t)|}{2} \right\}
\]

\[
= \mathbb{P} \left\{ \sum_{m \in S(t)} \bar{X}_{mi} + \sum_{m \in B(t)} X_{mi} \geq \frac{|S(t)|}{2} \right\}
\]

\[
= \mathbb{P} \left\{ \sum_{m \in S(t)} \bar{X}_{mi} \geq \frac{|S(t)|}{2} - \sum_{m \in B(t)} X_{mi} \right\}
\]

\[
\leq \mathbb{P} \left\{ \sum_{m=1}^M \bar{X}_{mi} \geq \frac{|S(t)|}{2} - \sum_{m \in B(t)} X_{mi} \right\}.
\] (9)

Next, we bound \(\sum_{m=1}^M \bar{X}_{mi}\) and \(\sum_{m \in B(t)} X_{mi}\) separately.

When the system adversary is static, i.e., the system adversary does not know \(S(t)\), it corrupts clients independently of \(S(t)\). Hence,

\[
\sum_{m \in B(t)} X_{mi} \leq \sum_{m \in S(t)} 1_{\{m \in S(t)\}}.
\] (10)
We know that if \(\tau(t) \leq \frac{2}{p} \log \frac{6}{\delta} \), then \(\sum_{m \in B(t)} 1_{\{m \in S(t)\}} \leq \frac{2}{p} \log \frac{6}{\delta} \). Otherwise, with probability at least \(1 - \frac{c}{p} \), it is true that \(\sum_{m \in B(t)} 1_{\{m \in S(t)\}} \leq \frac{3}{2} p \tau(t) \).

On the other hand, when the system adversary is adaptive, it chooses \(B(t) \) based on \(S(t) \). In particular, if \(|S(t)| \leq \tau(t)\), then the adversary chooses \(B(t) = S(t) \). Otherwise, i.e., \(|S(t)| > \tau(t)\), the adversary chooses an arbitrary subset of \(S(t) \). In both cases, it holds that

\[
\sum_{m \in B(t)} X_{mi} \leq \sum_{m \in B(t)} 1_{\{m \in S(t)\}} \leq \min\{\tau(t), |S(t)|\} \leq \tau(t).
\] (11)

For ease of exposition, we first focus on adaptive adversary and will visit the static adversary towards the end of this proof. Observe that \(|S(t)| = \sum_{m=1}^{M} 1_{\{m \in S(t)\}} \). Let \(\bar{Y}_{mi} = X_{mi} - \frac{1}{n} \sum_{j=1}^{n} g_{mi}^{j} \). Conditioning on the mini-batch stochastic gradients \(g_{mi}^{1}, \ldots, g_{mi}^{n} \), we have

\[
\mathbb{E} \left[\bar{Y}_{mi} \mid g_{mi}^{1}, \ldots, g_{mi}^{n} \right] = \mathbb{E} \left[\bar{X}_{mi} \mid g_{mi}^{1}, \ldots, g_{mi}^{n} \right] - \frac{p}{2} = \frac{p}{2B + 2\beta} \text{clip} \left(\frac{1}{n} \sum_{j=1}^{n} g_{mi}^{j}, B \right).
\]

Taking expectation over \(g_{mi}^{1}, \ldots, g_{mi}^{n} \), we get

\[
\mathbb{E} \left[\mathbb{E} \left[\bar{Y}_{mi} \mid g_{mi}^{1}, \ldots, g_{mi}^{n} \right] \right] = \mathbb{E} \left[\bar{Y}_{mi} \mid g_{mi}^{1}, \ldots, g_{mi}^{n} \right] - \frac{p}{2} \frac{1}{n} \sum_{j=1}^{n} g_{mi}^{j} = \frac{p}{2B + 2\beta} \left(\frac{1}{n} \sum_{j=1}^{n} g_{mi}^{j} \right) + \frac{pg_{mi}}{2B + 2\beta}.
\] (12)

It turns out that \(\mathbb{E} \left[\bar{Y}_{mi} \mid g_{mi}^{1}, \ldots, g_{mi}^{n} \right] - \frac{p}{2} \frac{1}{n} \sum_{j=1}^{n} g_{mi}^{j} \) is small:

\[
\frac{1}{p} \mathbb{E} \left[\bar{Y}_{mi} \mid g_{mi}^{1}, \ldots, g_{mi}^{n} \right] - \frac{p}{2} \frac{1}{n} \sum_{j=1}^{n} g_{mi}^{j} = \frac{B \mathbb{P} \left\{ \frac{1}{n} \sum_{j=1}^{n} g_{mi}^{j} \geq B \right\}}{2B + 2\beta} \tag{a}
\]

\[
+ \frac{1}{2B + 2\beta} \mathbb{E} \left[\frac{1}{n} \sum_{j=1}^{n} g_{mi}^{j} \mathbf{1}_{\left\{ \frac{1}{n} \sum_{j=1}^{n} g_{mi}^{j} \geq B \right\}} \right]. \tag{b}
\]
We have
\begin{align*}
(A) & \leq \frac{B}{2B + 2\beta} \mathbb{P}\left\{ \frac{1}{n} \sum_{j=1}^{n} g_{mi}^j - \mathbb{E}\left[\frac{1}{n} \sum_{j=1}^{n} g_{mi}^j \right] \geq B - \mathbb{E}\left[\frac{1}{n} \sum_{j=1}^{n} g_{mi}^j \right] \right\} \\
& \leq \frac{B}{2B + 2\beta} \exp \left(- \frac{n(B - g_{mi})^2}{2\sigma_{mi}^2} \right) \\
& \leq \frac{B}{2B + 2\beta} \exp \left(- \frac{nr_0^2B_0^2}{2\sigma_{mi}^2} \right) \\
& \leq \frac{1}{2} \exp \left(- \frac{n}{2} \right) \quad \text{[since } \epsilon_0 > \frac{\sigma}{B_0}],
\end{align*}
and
\begin{align*}
(B) &= \mathbb{E}\left[-\frac{1}{n} \sum_{j=1}^{n} g_{mi}^j \mathbbm{1}\{ | \frac{1}{n} \sum_{j=1}^{n} g_{mi}^j | \geq B \} \right] \\
& = \frac{1}{2B + 2\beta} \left\{ \int_{-\infty}^{-B} \mathbb{P}\left\{ \frac{1}{n} \sum_{j=1}^{n} g_{mi}^j < t \right\} dt - \int_{B}^{\infty} \mathbb{P}\left\{ \frac{1}{n} \sum_{j=1}^{n} g_{mi}^j > t \right\} dt \right\} \\
& \leq \frac{1}{2B + 2\beta} \int_{-\infty}^{-B} \mathbb{P}\left\{ \frac{1}{n} \sum_{j=1}^{n} g_{mi}^j < t \right\} dt \\
& \leq \frac{1}{2B + 2\beta} \left[\frac{2\sigma_{mi}^2}{n} \right] \int_{-\infty}^{-B} \exp \left(- \frac{(t - g_{mi})^2}{2\sigma_{mi}^2} \right) dt \\
& \leq \frac{1}{2B + 2\beta} \left[\frac{2\sigma_{mi}^2}{n} \right] \left[2\exp \left(- \frac{n}{2} \right) \right] \\
& \leq \frac{1}{2B + 2\beta} \left[\frac{2\sigma_{mi}^2}{n} \right] \left[2\exp \left(- \frac{n}{2} \right) \right] \\
\end{align*}
where the last inequality follows from the choice of \(\epsilon_0 > \frac{\sigma}{B_0} \). Combining the bounds of (A) and (B), we get
\begin{equation}
\mathbb{E}\left[\mathbb{E}\left[\tilde{Y}_{mi} \mid g_{mi}^1, \ldots, g_{mi}^M \right] - p \right] \geq \frac{1}{2B + 2\beta} \mathbb{E}\left[\mathbb{E} \left[\sum_{m=1}^{M} \frac{1}{n} \sum_{j=1}^{n} g_{mi}^j - B \right] \right] \leq \frac{1}{2B + 2\beta} \mathbb{E}\left[\mathbb{E} \left[\sum_{m=1}^{M} \frac{1}{n} \sum_{j=1}^{n} g_{mi}^j - B \right] \right].
\end{equation}
Let us consider two mutually complement events \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \):
\begin{align*}
\mathcal{E}_1 & := \left\{ \frac{1}{2B + 2\beta} \sum_{m=1}^{M} \text{clip} \left(\frac{1}{n} \sum_{j=1}^{n} g_{mi}^j, B \right) - \mathbb{E} \left[\frac{1}{2B + 2\beta} \sum_{m=1}^{M} \text{clip} \left(\frac{1}{n} \sum_{j=1}^{n} g_{mi}^j, B \right) \right] \leq \frac{c_0}{4(B + \beta)} \sqrt{M} \right\}, \\
\mathcal{E}_2 & := \left\{ \frac{1}{2B + 2\beta} \sum_{m=1}^{M} \text{clip} \left(\frac{1}{n} \sum_{j=1}^{n} g_{mi}^j, B \right) - \mathbb{E} \left[\frac{1}{2B + 2\beta} \sum_{m=1}^{M} \text{clip} \left(\frac{1}{n} \sum_{j=1}^{n} g_{mi}^j, B \right) \right] > \frac{c_0}{4(B + \beta)} \sqrt{M} \right\}.
\end{align*}
We have
\begin{equation}
\mathbb{P}\left\{ \sum_{m=1}^{M} \tilde{X}_{mi} \geq \frac{|S(t)|}{2} - \tau(t) \right\} \leq \mathbb{P}\left\{ \sum_{m=1}^{M} \tilde{Y}_{mi} \geq -\tau(t) \mid \mathcal{E}_1 \right\} + \mathbb{P}\left\{ \mathcal{E}_2 \right\}. \tag{14}
\end{equation}
By Proposition 2, we know that
\[
\text{var} \left(\text{clip} \left(\frac{1}{n} \sum_{j=1}^{n} g_{jmi}^{i}, B \right) \right) \leq \text{var} \left(\frac{1}{n} \sum_{j=1}^{n} g_{jmi}^{i} \right) \leq \frac{1}{n} \text{var} (g_{mi}^{i}) = \frac{1}{n} \sigma_{mi}^2 \leq \frac{1}{n} \sigma^2.
\]

In addition, since \(g_{mi}^{i} \) is Sub-Gaussian, \(\text{clip} \left(\frac{1}{n} \sum_{j=1}^{n} g_{jmi}^{i}, B \right) \) is also sub-Gaussian. Thus, we have
\[
P \{ \mathcal{E}_2 \} \leq \exp \left(-\frac{\epsilon_0^2 M}{2M \sigma^2} \right).
\]

Since \(\epsilon_0 \geq \sqrt{\frac{4\sigma^2}{n}} \log \frac{6}{\epsilon} \), we have \(P \{ \mathcal{E}_2 \} \leq \frac{\epsilon}{6} \).

For the first term in the right-hand side of Eq. (14), we have
\[
P \left\{ \sum_{m=1}^{M} \tilde{Y}_{mi} \geq -\tau(t) \mid \mathcal{E}_1 \right\} = \begin{cases} \sum_{m=1}^{M} \tilde{Y}_{mi} - \mathbb{E} \left[\sum_{m=1}^{M} \tilde{Y}_{mi} \mid g_{mi}^{1}, \cdots, g_{mi}^{n} \right] \geq -\tau(t) - \mathbb{E} \left[\sum_{m=1}^{M} \tilde{Y}_{mi} \mid g_{mi}^{1}, \cdots, g_{mi}^{n} \right] \mid \mathcal{E}_1 \end{cases}
\]

Recall that \(\mathbb{E} \left[\tilde{Y}_{mi} \mid g_{mi}^{1}, \cdots, g_{mi}^{n} \right] = \frac{p}{2B+2\beta} \text{clip} \left(\frac{1}{n} \sum_{j=1}^{n} g_{jmi}^{i}, B \right) \). We have
\[
(C) \mid \mathcal{E}_1 = -\tau(t) - \frac{p}{2B+2\beta} \sum_{m=1}^{M} \text{clip} \left(\frac{1}{n} \sum_{j=1}^{n} g_{jmi}^{i}, B \right) \mid \mathcal{E}_1
\]
\[
\begin{align*}
&\geq -\tau(t) - \mathbb{E} \left[\frac{p}{2B+2\beta} \sum_{m=1}^{M} \text{clip} \left(\frac{1}{n} \sum_{j=1}^{n} g_{jmi}^{i}, B \right) \right] - \frac{pc_0}{4(B+\beta)\sqrt{M}} \\
&= -\tau(t) - \sum_{m=1}^{M} \mathbb{E} \left[\tilde{Y}_{mi} \right] - \frac{pc_0}{4(B+\beta)\sqrt{M}} \\
&\geq -\tau(t) - Mp \exp \left(-\frac{n}{2} \right) - \frac{pc_0}{4(B+\beta)\sqrt{M}}
\end{align*}
\]

Recall that \(\nabla F_i(w(t)) < 0 \). When \(\frac{pM}{2(B+\beta)} \mid \nabla F_i(w(t)) \mid \geq \tau(t) + M \exp \left(-\frac{n}{2} \right) + \frac{pc_0}{2(B+\beta)\sqrt{M}} \), we get
\[
P \left\{ \sum_{m=1}^{M} \tilde{Y}_{mi} \geq -\tau(t) \mid \mathcal{E}_1 \right\} \leq \begin{cases} \sum_{m=1}^{M} \tilde{Y}_{mi} - \mathbb{E} \left[\sum_{m=1}^{M} \tilde{Y}_{mi} \mid g_{mi}^{1}, \cdots, g_{mi}^{n} \right] \geq \frac{pc_0}{4(B+\beta)\sqrt{M}} \mid \mathcal{E}_1 \end{cases}
\]
\[
\begin{align*}
&\leq \exp \left(-\frac{p^2c_0^2}{8(B+\beta)^2} \right) \\
&\leq 3 - \frac{5c}{6},
\end{align*}
\]

where the last inequality holds because \(c_0 \geq \sqrt{\frac{8(B+\beta)^2}{p^2} \log \frac{6}{\epsilon - 5c}} \).

Therefore, for adaptive system adversary, choosing \(c_0 = \max \left\{ \sqrt{\frac{3\sigma^2}{n}} \log \frac{6}{\epsilon}, \sqrt{\frac{2(B+\beta)^2}{p^2} \log \frac{6}{\epsilon - 5c}} \right\} \), we conclude that if \(\frac{pM}{2(B+\beta)} \mid \nabla F_i(w(t)) \mid \geq \tau(t) + M \exp \left(-\frac{n}{2} \right) + \frac{pc_0}{2(B+\beta)\sqrt{M}} \), then
\[
P \left\{ \text{sign} \left(\frac{1}{M} \sum_{m=1}^{M} \tilde{Y}_{mi} \right) \neq \text{sign} (\nabla F_i(w(t))) \mid w(t) \right\} \leq \frac{1 - c}{2}.
\]
Otherwise, \(P \left\{ \frac{1}{M} \sum_{m=1}^{M} \tilde{g}_{m} \right\} \neq \text{sign} \left(\nabla F_i(w(t)) \right) \mid w(t) \right\} \leq 1. \)

It remains to show the case for static adversary. When \(\tau(t) \leq \frac{2}{p^d} \log \frac{5}{\epsilon} \), we bound Eq. (9) as

\[
P \left\{ \sum_{m=1}^{M} \tilde{X}_{mi} \geq \frac{|S(t)|}{2} - \sum_{m \in B(t)} X_{mi} \right\} \leq P \left\{ \sum_{m=1}^{M} \tilde{X}_{mi} \geq \frac{|S(t)|}{2} - \tau(t) \right\},
\]

When \(\tau(t) > \frac{2}{p^d} \log \frac{6}{\epsilon} \), we bound Eq. (9) as

\[
P \left\{ \sum_{m=1}^{M} \tilde{X}_{mi} \geq \frac{|S(t)|}{2} - \sum_{m \in B(t)} X_{mi} \right\} \leq P \left\{ \sum_{m=1}^{M} \tilde{X}_{mi} \geq \frac{|S(t)|}{2} - \frac{3p}{2} \tau(t) \right\} + \frac{c}{6}.
\]

The remaining proof follows the above argument for adaptive adversary. \(\square \)

Proof of Theorem 5 (Sub-Gaussian Convergence Rate). By Assumption 2, we have

\[
F(w(t+1)) - F(w(t)) \leq \langle \nabla F(w(t)), w(t+1) - w(t) \rangle + \frac{L}{2} \|w(t+1) - w(t)\|^2
\]

\[
= -\eta \sum_{i=1}^{d} |\nabla F(w(t))_i| \mathbf{1}_{\{\tilde{g}_i \neq \text{sign}(\nabla F(w(t)))_i\}} + \eta \sum_{i=1}^{d} |\nabla F(w(t))_i| \mathbf{1}_{\{\tilde{g}_i \neq \text{sign}(\nabla F(w(t)))_i\}} + \frac{Ld}{2} \eta^2
\]

\[
= -\eta \|\nabla F(w(t))\|_1 + 2\eta \sum_{i=1}^{d} |\nabla F(w(t))_i| \mathbf{1}_{\{\tilde{g}_i \neq \text{sign}(\nabla F(w(t)))_i\}} + \frac{Ld}{2} \eta^2,
\]

where \(\nabla F(w(t))_i \) is the \(i \)-th coordinate of \(\nabla F(w(t)) \). Then, by conditioning on parameter \(w(t) \), we get

\[
\mathbb{E} \left[F(w(t+1)) - F(w(t)) \mid w(t) \right] \leq \mathbb{E} \left[-\eta \|\nabla F(w(t))\|_1 + 2\eta \sum_{i=1}^{d} |\nabla F(w(t))_i| \mathbf{1}_{\{\tilde{g}_i \neq \text{sign}(\nabla F(w(t)))_i\}} + \frac{Ld}{2} \eta^2 \right]
\]

\[
= -\eta \|\nabla F(w(t))\|_1 + \frac{Ld}{2} \eta^2 + 2\eta \sum_{i=1}^{d} |\nabla F(w(t))_i| \mathbb{P} \{ \tilde{g}_i \neq \text{sign} (\nabla F(w(t)))_i \}.
\]

We now have two cases:
Therefore, by Assumption 1, we have \(\frac{2(B + \beta)}{pM} \tau(t) + 2(B + \beta) \exp \left(-\frac{n}{2} \right) + \frac{c_0}{\sqrt{M}} \), then

\[
\mathbb{E} \left[F(w(t + 1)) - F(w(t)) \mid w(t) \right]
= -\eta \|\nabla F(w(t))\|_1 + \frac{Ld}{2} \eta^2
+ 2n \sum_{i=1}^{d} |\nabla F(w(t))_i| \mathbb{P} \{ \hat{g}_i \neq \text{sign} (\nabla F(w(t)))_i \} \mathbf{1} \left\{ \|\nabla F_i(w(t))\| \geq \frac{2(B + \beta)}{pM} \tau(t) + 2(B + \beta) \exp \left(-\frac{n}{2} \right) + \frac{c_0}{\sqrt{M}} \right\}
+ 2n \sum_{i=1}^{d} |\nabla F(w(t))_i| \mathbb{P} \{ \hat{g}_i \neq \text{sign} (\nabla F(w(t)))_i \} \mathbf{1} \left\{ \|\nabla F_i(w(t))\| < \frac{2(B + \beta)}{pM} \tau(t) + 2(B + \beta) \exp \left(-\frac{n}{2} \right) + \frac{c_0}{\sqrt{M}} \right\}
\leq -\eta \|\nabla F(w(t))\|_1 + \frac{Ld}{2} \eta^2
+ 2n \sum_{i=1}^{d} \left[\frac{2(B + \beta) \tau(t)}{pM} + 2(B + \beta) \exp \left(-\frac{n}{2} \right) + \frac{c_0}{\sqrt{M}} \right] \mathbf{1} \left\{ \|\nabla F_i(w(t))\| < \frac{2(B + \beta)}{pM} + 2(B + \beta) \exp \left(-\frac{n}{2} \right) + \frac{c_0}{\sqrt{M}} \right\}
\leq -\eta \|\nabla F(w(t))\|_1 + \frac{Ld}{2} \eta^2 + 2n \frac{d}{M} + 4\eta(B + \beta)d \exp \left(-\frac{n}{2} \right) + 4\eta \frac{(B + \beta) \tau(t)}{pM}.
\]

Therefore, by Assumption 1, we have

\[
F^* - F(w(0)) \leq \mathbb{E} \left[F(w(T)) - F(w(0)) \right]
\leq -\eta n \sum_{t=0}^{T-1} \mathbb{E} \left[\|\nabla F(w(t))\|_1 \right] + \frac{\eta^2 LdT}{2} + 2\eta dT \frac{c_0}{\sqrt{M}} + 4\eta(B + \beta) dT \exp \left(-\frac{n}{2} \right)
+ 4\eta \frac{(B + \beta) \sum_{t=0}^{T-1} \tau(t)}{pM}.
\]

Rearrange the inequality and plug in \(\eta = \frac{1}{\sqrt{M}} \), we get

\[
\eta \sum_{t=0}^{T-1} \mathbb{E} \left[\|\nabla F(w(t))\|_1 \right] \leq F(w(0)) - F^* + \frac{\eta^2 LdT}{2} + 2\eta dT \frac{c_0}{\sqrt{M}} + 4\eta(B + \beta) dT \exp \left(-\frac{n}{2} \right)
+ 4\eta \frac{(B + \beta) \sum_{t=0}^{T-1} \tau(t)}{pM}
\]

\[
\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\|\nabla F(w(t))\|_1 \right] \leq \frac{F(w(0)) - F^*}{\eta T c} + \frac{\eta Ld}{2c} + 2d \frac{c_0}{c \sqrt{M}} + 4d \frac{(B + \beta) \exp \left(-\frac{n}{2} \right)}{c}
+ 4d \frac{(B + \beta) \sum_{t=0}^{T-1} \tau(t)}{c pTM}
\]

\[
= \frac{1}{c} \left[\frac{(F(w(0)) - F^*) \sqrt{d}}{\sqrt{T}} + \frac{L\sqrt{d}}{2 \sqrt{T}} + 2d \frac{c_0}{c \sqrt{M}} + 4d(B + \beta) \exp \left(-\frac{n}{2} \right) + 4d \frac{(B + \beta) \sum_{t=0}^{T-1} \tau(t)}{pTM} \right].
\]
Second, when the system adversary is static with $\tau(t) > \frac{2}{p}\log \frac{6}{2}$, if $|\nabla F_i(w(t))| \geq \frac{3(B+\beta)\tau(t)}{M} + 2(B+\beta) \exp\left(-\frac{n}{2}\right) + \frac{c_0}{\sqrt{M}}$, by following a similar proof as above, we get

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\|\nabla F(w(t))\|_1 \right] \leq \frac{1}{c} \left[\frac{(F(w(0)) - F^*)}{\sqrt{T}} \sqrt{d} + \frac{L\sqrt{d}}{2\sqrt{T}} + 2d - \frac{c_0}{\sqrt{M}} + 4d(B+\beta) \exp\left(-\frac{n}{2}\right) + 6d(B+\beta) \sum_{t=0}^{T-1} \tau(t) \right].$$

\[\square\]

B.3.2 Gaussian Distribution

Proof of Corollary 1 (Gaussian Tail Sign Errors).

Most of the proofs are the same with Theorem 4. We start from Eq. 12.

It turns out that $\mathbb{E} \left[\mathbb{E} \left[Y_{mi} \mid g_{mi}^1, \ldots, g_{mi}^n \right] - \frac{1}{p} \frac{1}{2B+2\beta} \sum_j g_{mi}^j \right]$ is small:

$$\frac{1}{p} \mathbb{E} \left[\mathbb{E} \left[Y_{mi} \mid g_{mi}^1, \ldots, g_{mi}^n \right] - \frac{1}{p} \frac{1}{2B+2\beta} \sum_j g_{mi}^j \right] = \frac{(B - g_{mi}) \mathbb{P} \left\{ \frac{1}{n} \sum_j g_{mi}^j \geq B \right\}}{2B + 2\beta} \quad \text{(A)}$$

$$- \frac{(B + g_{mi}) \mathbb{P} \left\{ \frac{1}{n} \sum_j g_{mi}^j \leq -B \right\}}{2B + 2\beta} \quad \text{(B)}$$

$$+ \mathbb{E} \left[\left(-\frac{1}{p} \sum_j g_{mi}^j + g_{mi} \right) \mathbb{1}_{\left\{ \left| \frac{1}{n} \sum_j g_{mi}^j \right| \geq B \right\}} \right] \quad \text{(C)}$$

We have,

$$(2B + 2\beta) \quad \text{(A)} \leq (B - g_{mi}) \cdot \frac{\sigma_{mi}/\sqrt{n}}{B - g_{mi}} \cdot \frac{1}{2\pi} \cdot \exp \left(-\frac{(B - g_{mi})^2}{2\left(\sigma_{mi}/\sqrt{n}\right)^2} \right) = \frac{\sigma_{mi}/\sqrt{n}}{\sqrt{2\pi}} \cdot \exp \left(-\frac{(B - g_{mi})^2}{2\left(\sigma_{mi}/\sqrt{n}\right)^2} \right);$$

$$(2B + 2\beta) \quad \text{(B)} \geq (B + g_{mi}) \cdot \frac{(B + g_{mi})}{(\sqrt{n})} \cdot \frac{1}{2\pi} \cdot \exp \left(-\frac{(B + g_{mi})^2}{2\left(\sigma_{mi}/\sqrt{n}\right)^2} \right)$$

$$= \left[1 - \frac{\left(\frac{\sigma_{mi}/\sqrt{n}}{\sqrt{2\pi}}\right)^2}{(B + g_{mi})^2 + \left(\frac{\sigma_{mi}/\sqrt{n}}{\sqrt{2\pi}}\right)^2} \right] \frac{\sigma_{mi}/\sqrt{n}}{\sqrt{2\pi}} \cdot \exp \left(-\frac{(B + g_{mi})^2}{2\left(\sigma_{mi}/\sqrt{n}\right)^2} \right);$$

$$(2B + 2\beta) \quad \text{(C)}$$

$$= -\int_B^\infty \frac{x - g_{mi}}{\sqrt{2\pi} \sigma_{mi}/\sqrt{n}} \exp \left(-\frac{(x - g_{mi})^2}{2\left(\sigma_{mi}/\sqrt{n}\right)^2} \right) \, dx - \int_-\infty^B \frac{x - g_{mi}}{\sqrt{2\pi} \sigma_{mi}/\sqrt{n}} \exp \left(-\frac{(x - g_{mi})^2}{2\left(\sigma_{mi}/\sqrt{n}\right)^2} \right) \, dx$$

$$= \frac{\sigma_{mi}/\sqrt{n}}{\sqrt{2\pi}} \left[\exp \left(-\frac{(B + g_{mi})^2}{2\left(\sigma_{mi}/\sqrt{n}\right)^2} \right) - \exp \left(-\frac{(B - g_{mi})^2}{2\left(\sigma_{mi}/\sqrt{n}\right)^2} \right) \right],$$

where (A) and (B) follow because of Mill’s ratio [Gor41].
Combining (A), (B), and (C), we get

\[
\tag{15} \leq \frac{p(\sigma_{mi}/\sqrt{n})^3}{\sqrt{2\pi} (2B + 2\beta)} \left[(B + g_{mi})^2 + (\sigma_{mi}/\sqrt{n})^2 \right] \exp \left(- \frac{(B + g_{mi})^2}{2(\sigma_{mi}/\sqrt{n})^2} \right) + \frac{pg_{mi}}{2B + 2\beta}
\]

\[
\leq \frac{p(\sigma_{mi}/\sqrt{n})^3}{\sqrt{2\pi} (2B + 2\beta)} \left[\epsilon_0^2 B_0^2 + (\sigma_{mi}/\sqrt{n})^2 \right] \exp \left(- \frac{\epsilon_0^2 B_0^2}{2(\sigma_{mi}/\sqrt{n})^2} \right) + \frac{pg_{mi}}{2B + 2\beta}
\]

\[
\leq \frac{p}{4\sqrt{2\pi}} \exp \left(- \frac{n}{2} \right) + \frac{pg_{mi}}{2B + 2\beta},
\]

where the last inequality follows because \(\epsilon_0 > \frac{\sigma_{mi}}{B_0} \) and \(B := B_0 + \epsilon_0 B_0 > \epsilon_0 B_0 \).

For the first term in the right hand side of Eq. (14), we have

\[
P \left\{ \sum_{m=1}^{M} \tilde{Y}_{mi} \geq -\tau(t) \mid \mathcal{E}_1 \right\}
\]

\[
= P \left\{ \sum_{m=1}^{M} Y_{mi} - E \left[\sum_{m=1}^{M} Y_{mi} \mid g_{mi}^1, \ldots, g_{mi}^n \right] \geq -\tau(t) - E \left[\sum_{m=1}^{M} Y_{mi} \mid g_{mi}^1, \ldots, g_{mi}^n \right] \mid \mathcal{E}_1 \right\}
\]

Recall that \(E \left[Y_{mi} \mid g_{mi}^1, \ldots, g_{mi}^n \right] = \frac{p}{2B + 2\beta} \text{clip} \left(\frac{1}{n} \sum_{j=1}^{n} g_{mi}^j, B \right) \). We have

\[
(D) \mid \mathcal{E}_1 = -\tau(t) - \frac{p}{2B + 2\beta} \sum_{m=1}^{M} \text{clip} \left(\frac{1}{n} \sum_{j=1}^{n} g_{mi}^j, B \right) \mid \mathcal{E}_1
\]

\[
\geq -\tau(t) - E \left[\frac{p}{2B + 2\beta} \sum_{m=1}^{M} \text{clip} \left(\frac{1}{n} \sum_{j=1}^{n} g_{mi}^j, B \right) \right] - \frac{pc_0}{4(B + \beta)} \sqrt{M}
\]

\[
= -\tau(t) - \sum_{m=1}^{M} E \left[Y_{mi} \right] - \frac{pc_0}{4(B + \beta)} \sqrt{M}
\]

\[
\geq -\tau(t) - \frac{Mp}{4\sqrt{2\pi}} \exp \left(- \frac{n}{2} \right) - \frac{p}{2(B + \beta)} \sum_{m=1}^{M} g_{mi} - \frac{pc_0}{4(B + \beta)} \sqrt{M}
\]

Recall that \(\nabla F_i(w(t)) < 0 \). When \(\frac{Mp}{2(B + \beta)} \left| \nabla F_i(w(t)) \right| \geq \tau(t) + \frac{Mp}{4\sqrt{2\pi}} \exp \left(- \frac{n}{2} \right) + \frac{pc_0}{4(B + \beta)} \sqrt{M} \), we get

\[
P \left\{ \sum_{m=1}^{M} \tilde{Y}_{mi} \geq -\tau(t) \mid \mathcal{E}_1 \right\} \leq P \left\{ \sum_{m=1}^{M} \tilde{Y}_{mi} - E \left[\sum_{m=1}^{M} Y_{mi} \mid g_{mi}^1, \ldots, g_{mi}^n \right] \geq \frac{pc_0}{4(B + \beta)} \sqrt{M} \mid \mathcal{E}_1 \right\}
\]

\[
\leq \exp \left(- \frac{p^2 c_0^2}{8(B + \beta)^2} \right)
\]

\[
\leq 3 - 5c_0
\]

where the last inequality holds because \(c_0 \geq \sqrt{\frac{8(B + \beta)^2}{p^2}} \log \frac{6}{3 - 5c_0} \).

The remaining proof follows the arguments in Theorem 4.

Proof of Corollary 2 (Gaussian Tail Convergence Rate). This proof follows from Theorem 5. We also consider two cases here.
Recall that \(\mathbb{E}[\nabla F_i(w(t))] \geq \frac{2(B+\beta)}{M_p} \tau(t) + \frac{(B+\beta)}{2\sqrt{2\pi}} \exp\left(-\frac{n}{2}\right) + \frac{c_0}{\sqrt{M}} \), we get

\[
\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[||\nabla F(w(t))||_1] \leq \frac{1}{c} \left[\frac{(F(w(0)) - F^*) \sqrt{d}}{\sqrt{T}} + \frac{L \sqrt{d}}{2 \sqrt{T}} + 2d \frac{c_0}{\sqrt{M}} + \frac{d}{\sqrt{2\pi}} (B + \beta) \exp\left(-\frac{n}{2}\right) + 4d \frac{(B + \beta) \sum_{t=0}^{T-1} \tau(t)}{p TM} \right].
\]

Second, when the system adversary is static with \(\tau(t) > \frac{2}{p} \log \frac{6}{\epsilon}, \) plug in \(|\nabla F_i(w(t))| \geq \frac{3(B+\beta) \tau(t)}{M} \) + \(\frac{(B+\beta)}{2\sqrt{2\pi}} \exp\left(-n/2\right) + \frac{c_0}{\sqrt{M}}, \) we get

\[
\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[||\nabla F(w(t))||_1] \leq \frac{1}{c} \left[\frac{(F(w(0)) - F^*) \sqrt{d}}{\sqrt{T}} + \frac{L \sqrt{d}}{2 \sqrt{T}} + 2d \frac{c_0}{\sqrt{M}} + \frac{d}{\sqrt{2\pi}} (B + \beta) \exp\left(-\frac{n}{2}\right) + 6d \frac{(B + \beta) \sum_{t=0}^{T-1} \tau(t)}{TM} \right].
\]

\[\square\]

B.4 Bounded Stochastic Gradients

Proof of Corollary 3 (Bounded Gradient Sign Errors). This proof follows from Theorem 4. Notably, if we choose \(B = B, \) clip \(\left(\frac{1}{n} \sum_{j=1}^{n} g_j^i, B \right) = \frac{1}{n} \sum_{j=1}^{n} g_j^i \) by Assumption 5. Thus, the bias introduced by the tail bound will be gone.

For the first term in the right-hand side of Eq. (14), we have

\[
\mathbb{P}\left\{ \sum_{m=1}^{M} Y_{mi} \geq -\tau(t) \mid \mathcal{E}_1 \right\}
\]

\[
= \mathbb{P}\left\{ \sum_{m=1}^{M} Y_{mi} - \mathbb{E}\left[\sum_{m=1}^{M} Y_{mi} \mid g_{m1}^i, \ldots, g_{mn}^i \right] \geq -\tau(t) - \mathbb{E}\left[\sum_{m=1}^{M} Y_{mi} \mid g_{m1}^i, \ldots, g_{mn}^i \right] \mid \mathcal{E}_1 \right\}
\]

(A)

Recall that \(\mathbb{E}\left[Y_{mi} \mid g_{m1}^i, \ldots, g_{mn}^i \right] = \frac{p}{2B+2\beta} \frac{1}{n} \sum_{j=1}^{n} g_j^i. \) We have

\[
(A) \mid \mathcal{E}_1 = -\tau(t) - \frac{p}{2B+2\beta} \sum_{m=1}^{M} \frac{1}{n} \sum_{j=1}^{n} g_j^i \mid \mathcal{E}_1
\]

\[
\geq -\tau(t) - \mathbb{E}\left[\frac{p}{2B+2\beta} \sum_{m=1}^{M} \frac{1}{n} \sum_{j=1}^{n} g_j^i \right] - \frac{pc_0}{4(B + \beta)} \sqrt{M}
\]

\[
= -\tau(t) - \sum_{m=1}^{M} \mathbb{E}\left[Y_{mi} \right] - \frac{pc_0}{4(B + \beta)} \sqrt{M}
\]

\[
\geq -\tau(t) - \frac{p}{2(B + \beta)} \sum_{m=1}^{M} g_{mi} - \frac{pc_0}{4(B + \beta)} \sqrt{M}
\]
Recall that $\nabla F_i(w(t)) < 0$. When $|\nabla F_i(w(t))| \geq \frac{2(B+\beta)\tau(t)}{Mp} + \frac{c_0}{\sqrt{M}}$, we get
\[
\mathbb{P}\left\{ \sum_{m=1}^{M} \tilde{Y}_{mi} \geq -\tau(t) \mid \mathcal{E}_1 \right\} \leq \exp\left(-\frac{\beta^2 r_0^2}{8(B+\beta)^2} \right) \leq \frac{3 - 5c}{6},
\]

The remaining proof also follows the arguments in Theorem 4. \(\square\)

Proof of Corollary 4 (Bounded Gradient Convergence Rate). This proof follows from Theorem 5. We also consider two cases here.

First, when the system adversary is adaptive or the system adversary is static but with $\tau(t) \leq \frac{2}{p} \log \frac{g}{c}$, plug in $|F_i(w(t))| \geq \frac{2(B+\beta)\tau(t)}{Mp} + \frac{c_0}{\sqrt{M}}$, we get
\[
\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla F_i(w(t))\|_1] \leq \frac{1}{c} \left[\frac{(F(w(0)) - F^*) \sqrt{d}}{\sqrt{T}} + \frac{L\sqrt{d}}{2\sqrt{T}} + 2d \frac{c_0}{\sqrt{M}} + 4d \frac{(B+\beta) \sum_{t=0}^{T-1} \tau(t)}{pT M} \right].
\]

Second, when the system adversary is static with $\tau(t) > \frac{2}{p} \log \frac{g}{c}$, plug in $|\nabla F_i(w(t))| \geq \frac{3(B+\beta)\tau(t)}{M} + \frac{c_0}{\sqrt{M}}$, we get
\[
\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla F_i(w(t))\|_1] \leq \frac{1}{c} \left[\frac{(F(w(0)) - F^*) \sqrt{d}}{\sqrt{T}} + \frac{L\sqrt{d}}{2\sqrt{T}} + 2d \frac{c_0}{\sqrt{M}} + 6d \frac{(B+\beta) \sum_{t=0}^{T-1} \tau(t)}{TM} \right].
\]

\(\square\)

C Experiment Details

C.1 Datasets and preprocessing
- **MNIST** [LCB09]. MNIST contains 60,000 training images and 10,000 testing images of 10 classes.
- **CIFAR-10** [KH+09]. CIFAR-10 contains 50,000 training images and 10,000 testing images of 10 classes.

Implementation. We build our codes upon PyTorch [PGM+19]. We run all the experiments with 4 GPUs of type Tesla P100 and 1 GPU of type RTX 3060.

C.2 Parameters

Communication rounds: 500 for both datasets in the section of client sampling. For the other sections, 80 and 300 communication rounds for MNIST and CIFAR-10, respectively.

We consider a constant learning rate in all cases, and the choices are tuned through grid search. Specifically, $\eta \in \{0.0001, 0.001, 0.01, 0.1\}$, $B \in \{0.001, 0.01, 0.1, 1\}$. Although our theory indicates the algorithm is not sensitive to mini-batch size, we set a large batch size $n = 256$ for both datasets.

Universal	β-Stochastic Sign SGD	FedAvg		
Learning Rate η	Mini-batch Size n	Hidden Units B	Local Epochs	
MNIST 0.01	256	64	0.01	1
CIFAR-10 0.01	256	200	0.01	1

Table 3: Hyperparameters