DEFORMATIONS OF \mathbb{Q}-CALABI–YAU THREEFOLDS
AND \mathbb{Q}-FANO THREEFOLDS

TARO SANO

Abstract. We investigate some coboundary map associated to a 3-dimensional terminal singularity which is important in the study of deformations of singular 3-folds. We prove that this map vanishes only for quotient singularities and a $A_{1,2}/4$-singularity, that is, a terminal singularity analytically isomorphic to a $\mathbb{Z}/4$-quotient of the singularity $(x^4+y^5+z^3+u^2=0)$.

As an application, we prove that a \mathbb{Q}-Fano 3-fold with terminal singularities can be deformed to one with only quotient singularities and $A_{1,2}/4$-singularities. We also treat the \mathbb{Q}-smoothability problem on \mathbb{Q}-Calabi–Yau 3-folds.

Contents

1. Introduction
1.1. \mathbb{Q}-smoothing of \mathbb{Q}-Fano 3-folds
1.2. Methods of the proof
1.3. \mathbb{Q}-smoothing of \mathbb{Q}-Calabi–Yau 3-folds
2. Calculation of coboundary maps
3. Application to \mathbb{Q}-smoothing problems
Acknowledgments
References

1. Introduction

We consider algebraic varieties over the complex number field \mathbb{C}.

1.1. \mathbb{Q}-smoothing of \mathbb{Q}-Fano 3-folds. In this paper, a \mathbb{Q}-Fano 3-fold means a 3-dimensional projective variety with only terminal singularities whose anticanonical divisor is ample. A \mathbb{Q}-Fano 3-fold is an important object in the classification theory of algebraic 3-folds. It is one of the end products of the Minimal Model Program. Toward the classification of \mathbb{Q}-Fano 3-folds, it is fundamental to study their deformations.

Locally, a 3-dimensional terminal singularity has a \mathbb{Q}-smoothing, that is, it can be deformed to a variety with only quotient singularities. In general, local deformations of singularities may not lift to a global deformation of a projective 3-fold as shown for Calabi–Yau 3-folds (cf. [8, Example 5.8]). Nevertheless, Altınok–Brown–Reid ([1, 4.8.3]) conjectured that a \mathbb{Q}-Fano 3-fold has a \mathbb{Q}-smoothing. This conjecture aims to reduce the classification of \mathbb{Q}-Fano 3-folds to those with only quotient singularities. For example, there are several papers (cf. [2], [14]) on the classification of certain \mathbb{Q}-Fano 3-folds with only quotient singularities.
Previously, deformations of \mathbb{Q}-Fano 3-folds are treated in several papers (cf. [9], [6], [15], [12]). In [12, Theorem 1.5], the author proved that a \mathbb{Q}-Fano 3-fold with only “ordinary” terminal singularity has a \mathbb{Q}-smoothing. (See Definition 2.1 for the ordinariness of the singularity.) In this article, we treat the remaining case, that is, a \mathbb{Q}-Fano 3-fold with non-ordinary terminal singularities. The following result almost gives an answer to the conjecture.

Theorem 1.1. A \mathbb{Q}-Fano 3-fold can be deformed to one with only quotient singularities and $A_{1,2}/4$-singularities.

Here, an $A_{1,2}/4$-singularity means a singularity analytically isomorphic to $0 \in (x^2 + y^2 + z^3 + u^2 = 0)/\mathbb{Z}_4 \subset \mathbb{C}^4/\mathbb{Z}_4(1,3,2,1)$, where x, y, z, u are coordinates on \mathbb{C}^4 and $\mathbb{C}^4/\mathbb{Z}_4(1,3,2,1)$ is the quotient of \mathbb{C}^4 by an action of $\mathbb{Z}_4 = \langle \sigma \rangle$ as follows:

$$\sigma \cdot (x, y, z, u) = (\sqrt{-1}x, -\sqrt{-1}y, z, -\sqrt{-1}u).$$

If there exists an anticanonical element with only Du Val singularities on X, we can prove the \mathbb{Q}-smoothability of X. ([12, Theorem 1.9]) However, we do not know whether we can deform $A_{1,2}/4$-singularities on a general \mathbb{Q}-Fano 3-fold.

1.2. Methods of the proof. We use a method which is used in [12, Theorem 3.5]. Let (U, p) be a germ of a 3-dimensional terminal singularity. The key tool of our method is the coboundary map ϕ_U associated to some local cohomology group on a birational modification $\hat{U} \to U$. (See [2] for the definition of ϕ_U.) This map is used in several papers as [10], [6], [12] to find a smoothing or a \mathbb{Q}-smoothing of a projective 3-fold. The following purely local statement is the main result of Section 2.

Theorem 1.2. Let (U, p) be a germ of a “non-ordinary” 3-dimensional terminal singularity. (See Definition 2.1)

(i) Assume that the germ (U, p) is not the $A_{1,2}/4$-singularity. Then we have $\phi_U \neq 0$.

(ii) Assume that the germ (U, p) is the $A_{1,2}/4$-singularity. Then $\phi_U = 0$.

The map ϕ_U is known to be nonzero when (U, p) is Gorenstein ([10, Theorem 1.1]) or (U, p) is an ordinary singularity ([6], [12]).

Let us mention about the proof of Theorem 1.2. Since a terminal singularity (U, p) of index r is a \mathbb{Z}_r-quotient of a hypersurface singularity (V, q), the set $T^1_{(U, p)}$ of first order deformations of (U, p) is the \mathbb{Z}_r-invariant part of $T^1_{(V, q)}$. The set $T^1_{(V, q)}$ can be written as $\mathcal{O}_{V, q}/J_{V, q}$ for the Jacobian ideal of (V, q). We calculate the map ϕ_U by using this structure and the inequality [4] proved in [10].

By Theorem 1.2 (ii), the map ϕ_U vanishes for a neighborhood U of an $A_{1,2}/4$-singularity. It seems that we need a new method to treat a \mathbb{Q}-Fano 3-fold with $A_{1,2}/4$-singularities. (See also Remark 3.1)

1.3. \mathbb{Q}-smoothing of \mathbb{Q}-Calabi–Yau 3-folds. As another corollary of Theorem 1.2, we obtain a similar result for \mathbb{Q}-Calabi–Yau 3-folds. Here, a \mathbb{Q}-Calabi–Yau 3-fold is a normal projective 3-fold with only terminal singularities whose canonical divisor is a torsion class. Let r be the Gorenstein index of X, that is, the minimal positive integer such that $\mathcal{O}_X(rK_X) \simeq \mathcal{O}_X$. The isomorphism $\mathcal{O}_X(rK_X) \simeq \mathcal{O}_X$ determines the global index one cover $\pi : Y := \text{Spec} \oplus_{j=1}^{r-1} \mathcal{O}_X(jK_X) \to X$.

As a consequence of Theorem 1.2 and the proof of [6, Main Theorem 1], we obtain the following.
Theorem 1.3. Let X be a \mathbb{Q}-Calabi–Yau 3-fold. Assume that the global index one cover $Y \to X$ is \mathbb{Q}-factorial.

Then a \mathbb{Q}-Calabi–Yau 3-fold X can be deformed to one with only quotient singularities and $A_{1,2}/4$-singularities.

Remark 1.4. Namikawa studied another invariant for terminal singularities and \mathbb{Q}-smoothability of \mathbb{Q}-Calabi–Yau 3-folds in his unpublished note.

2. Calculation of coboundary maps

First, we introduce the coboundary map of local cohomology which is used in [12, 3.2] to find a \mathbb{Q}-smoothing of a \mathbb{Q}-Fano 3-fold. (See also [10, Section 1], [6, Section 4].)

Let (U, p) be a germ of a 3-dimensional terminal singularity. Let $\pi_U : (V, q) \to (U, p)$ be the index one cover. By the classification ([7], [11]), we see that (V, q) is a hypersurface singularity and π_U is étale outside p. Moreover, we have

$$(V, q) \simeq ((f = 0), 0) \subset (\mathbb{C}^4, 0)$$

for some $f \in \mathbb{C}[x, y, z, u]$, where x, y, z, u are coordinate functions on \mathbb{C}^4 and f satisfies $\sigma \cdot f = \zeta_\nu f$ for the generator $\sigma \in G := \text{Gal}(V/U) \simeq \mathbb{Z}_r$ and $\zeta_\nu = \pm 1$.

Definition 2.1. Let (U, p) be a germ of a 3-dimensional terminal singularity. The germ (U, p) is called ordinary (resp. non-ordinary) if $\zeta_\nu = 1$ (resp. $\zeta_\nu = -1$).

Assume that (U, p) is non-ordinary. By the classification ([7], [11]), we have

$$(U, p) \simeq ((x^2 + y^2 + g(z, u) = 0), 0)/\mathbb{Z}_4 \subset (\mathbb{C}^4/\mathbb{Z}_4, 0),$$

where $g(z, u) \in \mathbb{Z}_4\{-1, 1\}$ is some \mathbb{Z}_4-semi-invariant polynomial in z, u and $\sigma \in \mathbb{Z}_4$ acts on \mathbb{C}^4 by $\sigma \cdot (x, y, z, u) = (\sqrt{-1}x, -\sqrt{-1}y, -z, \sqrt{-1}u)$.

Let $\nu : \tilde{V} \to V$ be a \mathbb{Z}_4-equivariant resolution such that its exceptional divisor $F \subset \tilde{V}$ has SNC support and $\tilde{V} \setminus F \simeq V \setminus \{q\}$. Let $V' := V \setminus \{q\}$ and

$$\tau_V : H^1(V', \Omega^2_{\tilde{V}}(-K_{V'})) \to H^2_{\tilde{F}}(\tilde{V}, \Omega^2_{\tilde{V}}(\log F)(-F - \nu^*K_V))$$

the coboundary map of the local cohomology. Note that the sheaf $\mathcal{O}_V(-K_V)$ is not isomorphic to the sheaf \mathcal{O}_V as \mathbb{Z}_4-equivariant sheaves. Let $\tilde{\pi} : \tilde{V} \to U := \tilde{V}/\mathbb{Z}_4$ be the finite morphism induced by π and $E \subset \tilde{U}$ the exceptional locus of the birational morphism $\mu : \tilde{U} \to U$ induced by ν. Let $U' := U \setminus \{p\}$ and $\mathcal{F}^{(0)}_U$ the \mathbb{Z}_4-invariant part of $\tilde{\pi}_*\Omega^2_{\tilde{V}}(\log F)(-F - \nu^*K_V)$. Then we have the coboundary map

$$\phi_U : H^1(U', \Omega^2_{U'}(-K_{U'})) \to H^2_{\mathcal{F}^{(0)}_U}(U, \mathcal{F}^{(0)}_U)$$

which is the \mathbb{Z}_4-invariant part of τ_V. We shall study these coboundary maps τ_V and ϕ_U in this section.

We have $H^2_{\mathcal{F}^{(0)}_U}(\tilde{V}, \Omega^2_{\tilde{V}}(\log F)(-F)) = 0$ by the proof of [13, Theorem 4]. We also have $H^2(\tilde{V}, \Omega^2_{\tilde{V}}(\log F)(-F)) = 0$ by the Guillén–Navarro Aznar–Puerta–Steenbrink vanishing theorem. Thus we have an exact sequence

$$0 \to H^1(\tilde{V}, \Omega^2_{\tilde{V}}(\log F)(-F - \nu^*K_V)) \to H^1(V', \Omega^2_{V'}(-K_{V'})) \xrightarrow{\tau_V} H^2_{\mathcal{F}^{(0)}_U}(\tilde{V}, \Omega^2_{\tilde{V}}(\log F)(-F - \nu^*K_V)) \to 0$$

We have the following inequality.
Proposition 2.2. We have
\[\dim \text{Ker } \tau_V \leq \dim \text{Im } \tau_V. \]

Proof. This is proved in Remark after [10, Theorem (1.1)]. Let us recall the proof for the convenience of the reader.

By the exact sequence (2), it is enough to show that
\[h^1(\tilde{V}, \Omega^2_V(\log F)(-F)) \leq h^1(\tilde{V}, \Omega^2_V(\log F)(-F)). \]

We have a surjection
\[H^2_F(\tilde{V}, \Omega^2_V(\log F)(-F)) \to H^2_F(\tilde{V}, \Omega^2_V(\log F)) \]

since we have \(H^2_F(\tilde{V}, \Omega^2_V(\log F) \otimes \mathcal{O}_F) = \text{Gr}_F H^2_{(q)}(V, \mathbb{C}) = 0 \). By the local duality, we have
\[H^2_F(\tilde{V}, \Omega^2_V(\log F))^* \simeq H^1(\tilde{V}, \Omega^1_V(\log F)(-F)). \]

Moreover we see that the differential homomorphism
\[d: H^1(\tilde{V}, \Omega^1_V(\log F)(-F)) \to H^1(\tilde{V}, \Omega^2_V(\log F)(-F)) \]

is surjective by studying the spectral sequence
\[H^q(\tilde{V}, \Omega^p_V(\log F)(-F)) \Rightarrow \mathbb{H}^{p+q}(\tilde{V}, \Omega^*(\log F)(-F)) = 0 \]

as in the proof of [10] Theorem (1.1)]. Thus we obtain relations
\[h^2_F(\tilde{V}, \Omega^2_V(\log F)(-F)) \geq h^2_F(\tilde{V}, \Omega^2_V(\log F)) = h^1(\tilde{V}, \Omega^1_V(\log F)(-F)) \]
\[\geq h^1(\tilde{V}, \Omega^2_V(\log F)(-F)) \]

and this implies (4).

Let \(T^1_{(V,q)} \), \(T^1_{(U,p)} \) be the sets of first order deformations of the germs \((V, q)\) and \((U, p)\) respectively. Recall that we have an isomorphism \(T^1_{(V,q)} \simeq \mathcal{O}_{V,q}/J_{V,q} \) of \(\mathcal{O}_{V,q} \)-modules for the Jacobian ideal \(J_{V,q} \subset \mathcal{O}_{V,q} \). Hence we have a surjective \(\mathcal{O}_{V,q} \)-module homomorphism \(\varepsilon : \mathcal{O}_{V,q} \to T^1_{(V,q)} \) which sends \(h \in \mathcal{O}_{V,q} \) to the corresponding deformation \(\varepsilon h \in T^1_{(V,q)} \). Also we have a commutative diagram
\[T^1_{(U,p)} \xrightarrow{\sim} H^1(U', \Omega^2_{U'}(-K_{U'})) \]
\[\downarrow \]
\[T^1_{(V,q)} \xrightarrow{\sim} H^1(V', \Omega^2_{V'}(-K_{V'})), \]

where the horizontal isomorphisms are restrictions by open immersions and the upper terms inject into the lower terms as the \(\mathbb{Z}_4 \)-invariant parts. Thus we identify \(T^1_{(V,q)} \), \(T^1_{(U,p)} \) and \(H^1(V', \Omega^2_{V'}(-K_{V'})), H^1(U', \Omega^2_{U'}(-K_{U'})) \) respectively via these isomorphisms.

We use the following notion of right equivalence ([4, Definition 2.9]).

Definition 2.3. Let \(\mathbb{C}\{x_1, \ldots, x_n\} \) be the convergent power series ring of \(n \) variables. Let \(f, g \in \mathbb{C}\{x_1, \ldots, x_n\} \).

We say that \(f \) is right equivalent to \(g \) if there exists an automorphism \(\varphi \) of \(\mathbb{C}\{x_1, \ldots, x_n\} \) such that \(\varphi(f) = g \). We write this as \(f \sim g \).

By using these ingredients, we prove Theorem 1.2. We repeat the statement.
Theorem 2.4. Let \((U, p)\) be a germ of a non-ordinary 3-dimensional terminal singularity.

(i) Assume that the index one cover \((V, q) \not\cong ((x^2 + y^2 + z^3 + u^2 = 0), 0)\). Then we have \(\phi_V \neq 0\).

(ii) Assume that \((V, q) \cong ((x^2 + y^2 + z^3 + u^2 = 0), 0)\). Then \(\phi_V = 0\).

Proof. (i) Suppose that \(\phi_V = 0\). We show the claim by contradiction. We can write \(g(z, u) = \sum a_{i,j} z^i u^j \in \mathbb{C}[z, u]\) for some \(a_{i,j} \in \mathbb{C}\) for \(i, j \geq 0\). Since the generator \(\sigma \in \mathbb{Z}_4\) acts on \(g\) by \(\sigma \cdot g = -g\) and on \(z^i u^j\) by \(\sigma \cdot z^i u^j = \sqrt{-1} T^{i+j} z^i u^j\), we see that \(a_{i,j} \neq 0\) only if

\[
i, j \neq 0 \mod 4.
\]

Let \(J_g := \left(\frac{\partial g}{\partial z}, \frac{\partial g}{\partial u}\right) \subset \mathbb{C}[z, u]\) be the Jacobian ideal of the polynomial \(g\). Note that a monomial \(z^i u^j\) is an \(O_{V,q}\)-module homomorphism, we obtain a surjection \(C_{V,q} \twoheadrightarrow \text{Im}(\tau_V(\epsilon_{x} \epsilon_{y} = 0)) \in T_{(V,q)}^1\).

(Case 1) Assume that \(a_{0,2} \neq 0\). We can write

\[
g(z, u) = u^2(1 + h_1(z, u)) + h_2(z)
\]

for some polynomials \(h_1(z, u) \in (z, u) \subset \mathbb{C}[z, u]\) and \(h_2(z) \in (z) \subset \mathbb{C}[z]\). Thus \(g(z, u) \in O_{C,0}\) is right equivalent to \(u^2 + h_2(z)\). We see that \(h_2(z) \in O_{C,0}\) is right equivalent to \(z^{2i_0 + 1}\) for some positive integer \(i_0\) since \((g = 0)\) has an isolated singularity and by the condition \(6\). Thus we have

\[
(V, q) \cong ((x^2 + y^2 + z^{2i_0 + 1} + u^2 = 0), 0).
\]

If \(i_0 = 1\), it contradicts the assumption \((V, q) \not\cong ((x^2 + y^2 + z^3 + u^2 = 0), 0)\).

Hence we have \(i_0 \geq 2\). By calculating the partial derivatives of \(x^2 + y^2 + z^{2i_0 + 1} + u^2\), we see that \(\epsilon_1, \epsilon_2, \epsilon_3 \in T_{(V,q)}^1\) are linearly independent and

\[
\dim T_{(V,q)}^1 \geq 3.
\]

On the other hand, we see that \(\tau_V(\epsilon_{z}) = 0\) since we assumed \(\phi_V = 0\) and \(\epsilon_z \in T_{(U,p)}^1\).

By this and the fact that \(\tau_V\) is an \(O_{V,q}\)-module homomorphism, we obtain a surjection \(\mathbb{C}[z, u]\to \text{Im}(\tau_V)\) since \(\epsilon_u = 0\). By this surjection and \(\mathbb{C}[z, u]\to (z, u) \cong \mathbb{C}\), we obtain \(\dim \text{Im}(\tau_V) \leq 1\). By this and the inequality \(4\), we obtain an inequality

\[
\dim T_{(V,q)}^1 = \dim \text{Im}(\tau_V) + \dim \ker(\tau_V) \leq 1 + 1 = 2
\]

and it is a contradiction.

(Case 2) Assume that \(a_{0,2} = 0\). Then we see that \(a_{i,j} \neq 0\) only if \(2i + j \geq 6\) by \(6\). Note that a monomial \(z^i u^j\) with \(2i + j \geq 6\) is some multiple of either \(z^3, z^2 u^2, z^4 u^2\) or \(u^6\). By computing partial derivatives of these monomials, we see that \((g, J_g) \subset (z^2, z u^2, u^4)\). Thus we see that \(\epsilon_1, \epsilon_2, \epsilon_4, \epsilon_5, \epsilon_6 \in T_{(V,q)}^1\) are linearly independent and we obtain

\[
\dim T_{(V,q)}^1 \geq 6.
\]

On the other hand, by the assumption \(\phi_V = 0\), we have \(\tau_V(\epsilon_{z}) = 0, \tau_V(\epsilon_{u^2}) = 0\) since \(\epsilon_z, \epsilon_{u^2} \in T_{(U,p)}^1\). Thus we have a relation \((z, u^2) \subset \ker(\tau_V) \circ \epsilon \subset O_{V,q}\) and obtain a surjection \(\mathbb{C}[z, u]\to \text{Im}(\tau_V)\). This implies an inequality \(\dim \text{Im}(\tau_V) \leq \dim \mathbb{C}[z, u]/(z, u^2) = 2\). By this inequality and the inequality \(4\), we have an inequality

\[
\dim T_{(V,q)}^1 = \dim \ker(\tau_V) + \dim \text{Im}(\tau_V) \leq 2 + 2 = 4.
\]

This contradicts \(7\).
Hence we obtain \(\phi_U \neq 0 \) and finish the proof of (i).

(ii) For non-negative integers \(i, j \), we set
\[
b^{i,j} := \dim H^j(\tilde{V}, \Omega^i_V(\log F)(-F)),
\]
\[
t^{i,j} := \dim H^j(F, \Omega^i_V(\log F) \otimes \mathcal{O}_F).
\]

Let \(s_k(V, q) \) for \(k = 0, 1, 2, 3 \) be the Hodge number of the Milnor fiber of \((V, q)\) as in [13] Section 4. By [13] Theorem 6, we have \(s_0 = 0, s_1 = b^{1,1}, s_2 = b^{1,1} + t^{1,1} \) and \(s_3 = t^{0,2} \). We see that \(t^{0,2} = 0 \) by [13] Lemma 2. Since the sum \(\sum_{k=0}^3 s_k(V, q) \) is the Milnor number of \((V, q)\), we obtain \(2b^{1,1} + t^{1,1} = 2 \). Since \(b^{1,1} \neq 0 \) by [10] Theorem 2.2, we obtain
\[
b^{1,1} = 1, \quad t^{1,1} = 0.
\]

There exists an exact sequence
\[
H^0(F, \Omega^1_V(\log F) \otimes \mathcal{O}_F) \to H^1(\tilde{V}, \Omega^1_V(\log F)(-F)) \to H^1(\tilde{V}, \Omega^1_V(\log F)) \to H^1(F, \Omega^1_V(\log F) \otimes \mathcal{O}_F).
\]

Since \(t^{1,0} = 0 \) by [13] Lemma 1], the both outer terms are zero and the homomorphism in the middle is an isomorphism. By this and (8), we have
\[
C \simeq H^1(\tilde{V}, \Omega^1_V(\log F)) \simeq H^2_F(\tilde{V}, \Omega^2_V(\log F)(-F))^*.
\]

Suppose that \(\tau_V(\varepsilon_z) \neq 0 \). Then \(\varepsilon_z \notin \text{Ker} \tau_V \). This implies that \(\text{Ker} \tau_V = 0 \) since \(T^1(V, q) \simeq \mathbb{C}[z]/(z^2) \) as \(\mathbb{C}[z] \)-modules. Thus \(\mathbb{C}^2 \simeq \text{Im} \tau_V \simeq H^2_F(\tilde{V}, \Omega^2_V(\log F)(-F)) \).

This contradicts [10].

Thus we obtain \(\tau_V(\varepsilon_z) = 0 \). Since \(T^1(U, p) \simeq \mathbb{C} \) is generated by \(\varepsilon_z \), we see that \(\phi_U = 0 \). Thus we finish the proof of (ii). \(\square \)

We have another coboundary map
\[
\tau_V : H^1(V', \Omega^2_{V'}(-K_{V'})) \to H^2_F(\tilde{V}, \Omega^2_V(-\nu^* K_V))
\]
and this fits in the commutative diagram
\[
\begin{array}{ccc}
H^1(V', \Omega^2_{V'}(-K_{V'})) & \xrightarrow{\tau_V} & H^2_F(\tilde{V}, \Omega^2_V(-\nu^* K_V)) \\
\downarrow{\tau_V} & & \downarrow{\tau_V} \\
H^2_F(\tilde{V}, \Omega^2_V(\log F)(-F - \nu^* K_V)),
\end{array}
\]

where the injectivity of \(\tau'_V \) is proved in the proof of [10] Theorem 1.1].

Let \(\tilde{F}^{(0)}_U := (\pi, \Omega^2_V(-\nu^* K_V))^Z_4 \) be the \(\mathbb{Z}_4 \)-invariant part. Let
\[
\tilde{\phi}_U : H^1(U', \Omega^2_{U'}(-K_{U'})) \to H^2_F(\tilde{U}, \tilde{F}^{(0)}_U)
\]
be the coboundary map. It is the \mathbb{Z}_4-invariant part of $\bar{\tau}_V$. As the \mathbb{Z}_4-invariant part of the diagram (11), we obtain the following diagram:

$$
\begin{array}{c}
H^1(U', \Omega^2_{U'}(-K_{U'})) \xrightarrow{\phi_U} H^2_E(U, \mathcal{F}_U^{(0)}) \\
\downarrow \phi_U \\
H^2_E(U, \mathcal{F}_U^{(0)}),
\end{array}
$$

By these arguments, we obtain the following corollary of Theorem 2.4.

Corollary 2.5. Let (U, p) be a germ of a non-ordinary 3-dimensional terminal singularity. Assume that $\bar{\phi}_U = 0$.

Then the germ (U, p) is an $A_{1,2}/4$-singularity.

Let

$$
\nu_* : H^1(\tilde{V}, \Omega^2_{\tilde{V}}(-K_{\tilde{V}})) \to H^1(V', \Omega^2_{V'}(-K_{V'}))
$$

be the restriction homomorphism by the open immersion $V' \hookrightarrow \tilde{V}$. We use this notation since there is a commutative diagram

$$
\begin{array}{ccc}
H^1(\tilde{V}, \Omega^2_{\tilde{V}}(-K_{\tilde{V}})) & \xrightarrow{\nu_*} & H^1(V', \Omega^2_{V'}(-K_{V'})) \\
\downarrow \cong & & \downarrow \cong \\
T^1_{\tilde{V}} & \rightarrow & T^1_V,
\end{array}
$$

where the lower horizontal homomorphism is the blow-down homomorphism of deformations ([16]). We can prove the relation

(12) $\text{Im} \, \nu_* \subset \text{Ker} \, \tau_V = \text{Ker} \, \bar{\tau}_V$

by the same argument as in [12, Claim 3.7].

3. Application to \mathbb{Q}-smoothing problems

As an application of Theorem 2.4, we obtain a proof of Theorem 1.1 as follows.

Proof of Theorem 1.1. By [12, Theorem 3.2], we can deform a \mathbb{Q}-Fano 3-fold X to one with only singularities p_1, \ldots, p_l such that $\phi_{U_i} = 0$, where U_i is a Stein neighborhood of p_i for $i = 1, \ldots, l$. By Theorem 2.4 such a terminal singularity is either a quotient singularity or an $A_{1,2}/4$-singularity. Thus we finish the proof. □

Remark 3.1. We give a comment on a \mathbb{Q}-Fano 3-fold with $A_{1,2}/4$-singularities.

Let X be a \mathbb{Q}-Fano 3-fold. The local-to-global spectral sequence of Ext groups induces an exact sequence

$$
\text{Ext}^1(\Omega^1_X, \mathcal{O}_X) \to H^0(X, \text{Ext}^1(\Omega^1_X, \mathcal{O}_X)) \to H^2(X, \Theta_X),
$$

where Ext^1 is a sheaf of Ext groups. Recall that $\text{Ext}^1(\Omega^1_X, \mathcal{O}_X)$ and $H^0(X, \text{Ext}^1(\Omega^1_X, \mathcal{O}_X))$ are the sets of first order deformations of X and the singularities on X, respectively. Thus, if we have $H^2(X, \Theta_X) = 0$, we see that X is \mathbb{Q}-smoothable.

However, this approach does not work in general. We can construct an example of a \mathbb{Q}-Fano 3-fold X with $A_{1,2}/4$-singularities such that $H^2(X, \Theta_X) \neq 0$ by taking certain global quotient of the example given in [9, Example 5]. However, we can deform the singularities on it. We exhibit this example in elsewhere.

Thus we do not know \mathbb{Q}-smoothability of a \mathbb{Q}-Fano 3-fold with $A_{1,2}/4$-singularities.
As another application of Theorem 2.4 we obtain a proof of Theorem 1.3 as follows.

Proof of Theorem 1.3 The proof is a modification of the proof of [6, Main Theorem 1]. We sketch the proof for the convenience of the reader.

We can assume that X has only quotient singularities and non-ordinary terminal singularities by [6, Main Theorem 1]. First we prepare notations to define the diagram (13).

Let $p_1, \ldots, p_l \in X$ be the non-ordinary singularities and U_1, \ldots, U_l their Stein neighborhoods. Let $\nu : Y \to Y$ be a \mathbb{Z}_r-equivariant resolution such that its exceptional divisor F is a SNC divisor and $Y \setminus F \simeq Y \setminus \nu^{-1}((p_1, \ldots, p_l))$. Let $\pi : X \to X$ be the quotient morphism and $\mu : X \to X$ the induced birational morphism with the exceptional divisor E.

Let $V_i := \pi^{-1}(U_i)$, $\tilde{V}_i := F \cap \tilde{V}_i$ and $\nu_i := \nu|_{\tilde{V}_i} : \tilde{V}_i \to V_i$ be the restrictions. Let $\tilde{U}_i := \nu^{-1}(U_i)$, $E_i := E \cap \tilde{U}_i$ and $\tilde{\pi}_i := \tilde{\pi}_{|\tilde{V}_i} : \tilde{V}_i \to \tilde{U}_i$ the induced finite morphism. Let $\tilde{F}(0) := (\tilde{\pi}_i \Omega Y^{-2}(-\nu^* K_Y))_{\mathbb{Z}_r}$ be the \mathbb{Z}_r-invariant part and $\tilde{F}_i(0) := \tilde{F}(0)_{\tilde{U}_i}$ its restriction.

Then we have the diagram

$$
\begin{aligned}
H^1(X', \Omega^2_{X'}(-K_{X'})) &\xrightarrow{\oplus \psi_i} \oplus_{i=1}^l H^2_{E_i}(X, \tilde{F}(0)) \xrightarrow{\oplus B_i} H^2(X, \tilde{F}(0)) \\
\oplus_{i=1}^l H^1(U_i, \Omega^2_{U_i}(-K_{U_i})) &\xrightarrow{\oplus \phi_i} \oplus_{i=1}^l H^2_{E_i}(U_i, \tilde{F}(0)),
\end{aligned}
$$

where $X' := X \setminus \{p_1, \ldots, p_l\}$ and $U'_i := U_i \cap X'$.

Let $V'_i := \pi^{-1}(U'_i)$. Note that $B_i \circ \varphi_i^{-1} \circ \tilde{\phi}_i$ is the \mathbb{Z}_r-invariant part of the composition

$$
\begin{aligned}
H^1(V'_i, \Omega^2_{V'_i}(-K_{V'_i})) &\to H^2_{E_i}(V'_i, \Omega^2_{V'_i}(-\nu^* K_{V'_i})) \to H^2(Y, \Omega^2_Y(-\nu^* K_Y)) \\
&\to H^2(Y, \Omega^2_Y(-\nu^* K_Y)).
\end{aligned}
$$

We see that this is zero by [10, Proposition 1.2] since we assumed that Y is \mathbb{Q}-factorial. Thus we also see that $B_i \circ \varphi_i^{-1} \circ \tilde{\phi}_i = 0$.

There exists an element $\eta_i \in H^1(U'_i, \Omega^2_{U'_i}(-K_{U'_i}))$ such that $\tilde{\phi}_i(\eta_i) \neq 0$ by Theorem 1.2. Since $B_i \circ \varphi_i^{-1} \circ \tilde{\phi}_i(\eta_i) = 0$, there exists $\eta \in H^1(X', \Omega^2_X(-K_{X'}))$ such that $\psi_i(\eta) = \varphi_i^{-1}(\tilde{\phi}_i(\eta_i))$. By the relation (12) and $p_{U_i}(\eta) - \eta_i \in \ker \tilde{\phi}_i$, we see that $p_{U_i}(\eta) \notin \text{Im}(\psi_i)$, where we use the inclusion $H^1(U'_i, \Omega^2_{U'_i}(-K_{U'_i})) \subset H^1(V'_i, \Omega^2_{V'_i}(-K_{V'_i}))$. By arguing as in the proof of [12, Theorem 3.5], we can deform singularity $p_i \in U'_i$ as long as $\tilde{\phi}_i \neq 0$. By Corollary 2.3 we obtain a required deformation since the deformations of a \mathbb{Q}-Calabi–Yau 3-fold are unobstructed ([8, Theorem A]).

\[\square\]

Acknowledgments

The author would like to thank Professors Yoshinori Namikawa for useful conversations. Part of this paper is written during the author’s stay in Princeton university. He would like to thank Professor János Kollár for useful comments.
and nice hospitality. He is partially supported by Warwick Postgraduate Research Scholarship.

References

[1] S. Altıntok, G. Brown, M. Reid, *Fano 3-folds, K3 surfaces and graded rings*. Topology and geometry: commemorating SISTAG, 25–53, Contemp. Math., 314, Amer. Math. Soc., Providence, RI, 2002.

[2] G. Brown, M. Kerber, M. Reid, *Fano 3-folds in codimension 4, Tom and Jerry. Part I*, Compos. Math. 148 (2012), no. 4, 1171–1194.

[3] D.M. Burns, J. Wahl, *Local contributions to global deformations of surfaces*, Invent. Math. 26 (1974), 67–88.

[4] G. Greuel, C. Lossen, E. Shustin, *Introduction to singularities and deformations*, Springer Monographs in Mathematics. Springer, Berlin, 2007. xii+471 pp.

[5] J. Kollár, N. Shepherd-Barron, *Threefolds and deformations of surface singularities*, Invent. Math. 91 (1988), no. 2, 299–338.

[6] T. Minagawa, *Deformations of Q-Calabi–Yau 3-folds and Q-Fano 3-folds of Fano index 1*, J. Math. Sci. Univ. Tokyo 6 (1999), no. 2, 397–414.

[7] S. Mori, *On 3-dimensional terminal singularities*, Nagoya Math. J. 98 (1985), 43–66.

[8] Y. Namikawa, *On deformations of Calabi–Yau 3-folds with terminal singularities*, Topology 33 (1994), no. 3, 429–446.

[9] Y. Namikawa, *Smoothing Fano 3-folds*, J. Algebraic Geom. 6 (1997), no. 2, 307–324.

[10] Y. Namikawa, J. Steenbrink, *Global smoothing of Calabi–Yau threefolds*, Invent. Math. 122 (1995), no. 2, 403–419.

[11] M. Reid, *Young person’s guide to canonical singularities*, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 345–414, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.

[12] T. Sano, *On deformations of Fano threefolds with terminal singularities*, arXiv:1203.6323.

[13] J. Steenbrink, *Du Bois invariants of isolated complete intersection singularities*, Ann. Inst. Fourier (Grenoble), 47 (1997), no. 5, 1367–1377.

[14] H. Takagi, *Classification of primary Q-Fano threefolds with anti-canonical Du Val K3 surfaces. I*, J. Algebraic Geom. 15 (2006), no. 1, 31–85.

[15] H. Takagi, *On classification of Q-Fano 3-folds of Gorenstein index 2. II*, Nagoya Math. J. 167 (2002), 157–216.

[16] J. Wahl, *Equisingular deformations of normal surface singularities. I*, Ann. of Math. (2) 104 (1976), no. 2, 325–356.

Mathematics Institute, Zeeman Building, University of Warwick, Coventry, CV4 7AL, UK

E-mail address: T.Sano@warwick.ac.uk