Cosmic rays in the Inner Galaxy

A D Erlykin1,2 and A W Wolfendale2

1 P.N.Lebedev Physical Institute, Leninsky prosp. 53, Moscow 119991, Russia
2 Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
E-mail: erlykin@sci.lebedev.ru

Abstract. Recent measurements of cosmic gamma ray intensities up to TeV energies have been used to estimate the spectral shape of the parent cosmic ray particles present in the interstellar medium. The case is made for the particle spectrum in the Inner Galaxy being flatter than locally and in the Outer Galaxy. Of various possible explanations we make the case for the propagation of the particles being different in the more turbulent interstellar medium of the Inner Galaxy. The characteristic parameter α for the so called anomalous diffusion is expected to be less in the Inner Galaxy than locally by about 0.2 and the corresponding power law spectral exponent of the cosmic ray particles differs from that locally by about $\Delta \gamma \simeq 0.1$.

1. Introduction
In most of the models cosmic ray (CR) particles are generated by supernova remnants (SNR) within a few kpc of the Earth. To probe more distant sources techniques used in Gamma Ray and Neutrino Astronomy must be used.

Here, we examine the diffuse component and choose regions of the Galaxy (latitude range, $|b| < 2.5^\circ$), where CR interactions with gas in the interstellar medium (ISM) predominate. The interactions are primarily between CR protons and the ISM in which π^0-mesons are produced, the π^0 - decaying into two gamma rays each. A non-negligible flux of gamma rays from CR electron-photon interactions (Inverse Compton, 'IC') is also generated and is relevant.

2. The data
The satellite data used here for the study of gamma rays in the Inner Galaxy are from Fermi LAT for the longitude and latitude ranges $|\ell| \leq 80^\circ$ and $|b| \leq 8^\circ$ respectively [1]. The Fermi LAT collaboration also presented the gamma ray spectrum in the Outer Galaxy for $80^\circ \leq \ell \leq 280^\circ$, $|b| \leq 8^\circ$, which we use here for comparison with our model (see §5). To compare measurements made at different angular ranges we convert them using our model [2]. The published Fermi LAT spectra are limited to the highest gamma ray energy of 10^2 GeV. Data from the TeV region come from the MILAGRO project: a water-Cherenkov detector, [3].

3. Analysis of the energy spectra
3.1. Derivation of the spectra
Figure 1 shows the integral spectrum for the angular range: $30^\circ < \ell < 65^\circ$, $|b| < 2.5^\circ$. The predictions come from our Monte Carlo model of SNR acceleration of CR [4, 5] with the target gas [2]. As for π^0-gamma rays, the proton injection spectrum with differential energy spectrum exponent of $\gamma \simeq 2.15$ comes out in our SNR acceleration model. Anomalous diffusion has
been adopted with the parameter $\alpha = 1.0$ [6]. We prefer anomalous diffusion since it matches better the propagation in the highly non-uniform ISM. The parameter α in the description of anomalous diffusion is an exponent determined by the structure of the turbulent ISM. It determines the temporal dependence of the CR propagation and the shape of the diffusion front. The value $\alpha = 2$ is for the normal 'gaussian' diffusion in the relatively uniform ISM with small turbulence, such as that in the far Outer Galaxy or in the Galactic Halo. The smaller $\alpha = 1$ value corresponds to an asymptotically faster diffusion, which fits better the conditions in the local environment. Connection of the turbulence spectra with the diffusion characteristics let us make some predictions about steepening the cosmic ray energy spectra with rising galactocentric radius, the rise of the radial gradient of CR at higher energies etc. [7].

Turning to the IC contribution, the electron spectrum in the Inner Galaxy was taken equal to the local one but truncated at 10 TeV, following [5]. In any event, this narrow range of latitudes leads to IC gamma rays comprising only a minority component. The photon intensities in the interstellar radiation field (ISRF) were taken from [8].

3.2. Spectral features to be explained

It is evident that calculated spectra do not fit the Fermi LAT and MILAGRO measurements. The concavity of the measured spectrum at about 10 GeV is stronger than that of the calculated spectrum. The Fermi LAT collaboration put forward three possible explanations [1]: (i) a contribution of undetected point sources; (ii) the presence of 'fresh' cosmic ray sources with a harder injection spectrum; (iii) different cosmic ray spectra in different parts of the Galaxy. We give stronger support to the last two mechanisms. We argue that both of them have the same physical origin - the higher frequency of SN explosions in the Inner Galaxy and hence the higher density of SNR.

It is known that CR measured locally come mostly from a relatively small number of sources at small distances from the solar system. On the other hand, measured gamma quanta are produced by CR interacting with the ISM all along the line of sight and therefore originating from many more sources. Gamma quanta coming from the Inner Galaxy contain a larger fraction of those produced in the region of higher frequency of SN explosions. The higher frequency means that the 'effective' age of SNRs is younger and the energy spectrum of their produced CR is harder than those nearby. Thus, the concave shape of the π^0-gamma spectrum can be due to the contribution of many sources with different slopes of the power law spectra including relatively hard ones from young sources - the mechanism proposed in [7, 9], and also in [1] as item (ii).

In addition to the role of 'new' SNR sources in the Inner Galaxy there is a possibility of Inner Galaxy sources providing flatter injection spectra. Such a result could come from the different ISM characteristics such as magnetic fields, gas density etc. Clearly, if the mean exponent of the injection spectrum in the Inner Galaxy is reduced a better fit can be achieved. A change
by $\Delta\gamma = 0.1$, i.e. from $\gamma = 2.15$ to 2.05 is possible, both by virtue of slightly flatter injection spectra and the increased probability of a line of sight penetrating a SNR ‘bubble’, within which the spectrum is flatter than outside.

However, it is seen in Figure 1 that in spite of the fact that our simulated spectra show the concavity originating from this mechanism there is still an excess of the experimental intensities over our Monte Carlo simulations. Such an excess is also mentioned in [1]. The actual reduction of the exponent for needed injection spectra is greater than $\Delta\gamma = 0.1$ and the explanation of the flattening by only this mechanism requires a more serious modification of the model for the CR acceleration in SNR, which seems to us less likely than the explanation given below.

4. Interpretation in terms of the higher turbulence in the ISM in the Inner Galaxy
A better explanation is in terms of the effect of propagation as distinct from injection. In [7] it was pointed out that the exponent of the ambient CR spectrum depends on the mode of the particle diffusion. In [7] the diffusive properties of the ISM were assumed to depend on the degree of turbulence of the medium caused by the frequency of SN explosions. The higher frequency of SN explosions in the Inner Galaxy makes the ISM there more turbulent and the parameter α decreases [6]. The spectrum becomes flatter as α falls and we argue that with respect to its value at R = 8.5kpc, the value of α at 6kpc (the relevant ‘Inner Galaxy’ for $\ell: 30^\circ - 65^\circ$) is smaller by \sim0.2 [7]. This value is just what is required as will be seen in Figure 2 where the reduction of α down to $\alpha = 0.8$ gives a good agreement with the Fermi LAT measurements.

5. Difference between the gamma-ray spectra in the Inner and Outer Galaxy
The smaller density of SNR in the Outer Galaxy and in the Galactic Halo leads us to predict that the smaller turbulence of the ISM there will give steeper CR energy spectra. The published Fermi LAT measurements cover the area of the whole Outer Galaxy with coordinates $80^\circ < \ell < 280^\circ$, $|b| < 8^\circ$ and the collaboration has already noticed that the excess of measured intensities above the model calculations at high energies is smaller in the Outer compared with the Inner Galaxy. It means that the energy spectrum of gamma quanta in the Outer Galaxy is steeper than in the Inner Galaxy. Figure 3 shows the measured spectra compiled from Figures 15 and 16 of [1]. Fitting them by power laws at energies above 10 GeV yields the values $\gamma = 2.401 \pm 0.009$ for the Inner Galaxy and $\gamma = 2.525 \pm 0.005$ for the Outer Galaxy. The difference is very significant. This supports the prediction of the steeper spectrum in the Outer Galaxy.

Inspired by the good agreement of our model calculations with the experimental data in the Inner Galaxy shown in Figure 2 we calculated the gamma ray spectrum for the Outer Galaxy $80^\circ < \ell < 280^\circ$, $|b| < 8^\circ$ at higher energies than published by Fermi LAT. The α parameter was taken as 0.8 for the Inner Galaxy and 1.0 for the Outer Galaxy. The comparison of these two spectra is shown in Figure 4. It is seen that the predicted spectrum in the Inner Galaxy at TeV
energies is considerably flatter than in the Outer Galaxy and the expected difference between spectra in the Inner and Outer Galaxy is higher than at tens of GeV.

6. Conclusion
The flattening of the gamma ray spectrum for the Inner Galaxy and the steeper spectrum in the Outer Galaxy finds a natural explanation for CR accelerated in SNR in which particles are propagated in the increasingly turbulent region encountered as the Galactocentric distance is diminished.

Acknowledgments
The Kohn Foundation is thanked for supporting this work.

References
[1] Ackermann M et al 2012, Astrophys. J., 750:3(35pp)
[2] Erlykin A D and Wolfendale A W 2003 28th ICRC, Tsukuba, Japan 4 2281
[3] Abdo A A et al 2008 Astrophys. J. 688 1078
[4] Erlykin A D and Wolfendale A W 2001 J. Phys. G: Nucl. Part. Phys. 27 941
[5] Erlykin A D and Wolfendale A W 2002 J. Phys. G: Nucl. Part. Phys. 28 359
[6] Erlykin A D and Wolfendale A W 2003 Astropart.Phys. 19 51
[7] Erlykin A D and Wolfendale A W 2002 J. Phys. G: Nucl. Part. Phys. 28 2329
[8] Porter T A et al 2011 http://galprop.stanford.edu/download/workshop 2011/07
[9] Qiang Y et al 2011 Proc. 31st ICRC, Beijing, China 6 218; (Preprint arxiv:1109.0076)