Filling gaps in trustworthy development of AI

Incident sharing, auditing, and other concrete mechanisms could help verify the trustworthiness of actors

By Shahar Avin, Haydn Belfield1–2, Miles Brundage3, Gretchen Krueger3, Jasmine Wang4, Adrian Weller2,5,6, Markus Anderljung7, Igor Krawczuk8, David Krueger9,10, Jonathan Lebensold4,9, Tegan Maharaj9,10, Noa Zilberman11

T he range of application of artificial intelligence (AI) is vast, as is the potential for harm. Growing awareness of potential risks from AI systems has spurred action to address those risks while eroding confidence in AI systems and the organizations that develop them. A 2019 study (1) found more than 80 organizations that have published and adopted “AI ethics principles,” and more have joined since. But the principles often leave a gap between the “what” and the “how” of trustworthy AI development. Such gaps have enabled questionable or ethically dubious behavior, which casts doubts on the trustworthiness of specific organizations, and the field more broadly. There is thus an urgent need for concrete methods that both enable AI developers to prevent harm and allow them to demonstrate their trustworthiness through verifiable behavior. Below, we explore mechanisms [drawn from (2)] for creating an ecosystem where AI developers can earn trust—if they are trustworthy (see the figure). Better assessment of developer trustworthiness could inform user choice, employee actions, investment decisions, legal recourse, and emerging governance regimes.

Common themes in statements of AI ethics principles include (i) assurance of safety and security of AI systems throughout their life cycles, especially in safety-critical domains; (ii) prevention of misuse; (iii) protection of user privacy and source data; (iv) ensuring that systems are fair and minimize bias, especially when such biases amplify existing discrimination and inequality; (v) ensuring the decisions made by AI systems, as well as any failures, are interpretable, explainable, reproducible, and allow challenge or remedy; and (vi) identifying individuals or institutions who can be held accountable for the behaviors of AI systems. These principles address concerns that include accidents in robotic systems; erroneous judgments from AI systems used by physicians or in court; misuse of AI in surveillance, manipulation, or warfare; and risks to privacy and concerns about systemic bias (3).

In the study of trust in technology, a common approach differentiates trust in people (individuals and institutions) and trust in technology artifacts (4). Whereas trust in artifacts mainly relies on competence and reliability, trust in people also relies on motives and integrity. Trust can be earned by providing reliable evidence that AI systems, and the processes used to develop and deploy them, address potential harms. This evidence carries further weight in an ecosystem where principles for preventing harms are well established, and where failure to adhere to principles carries meaningful consequences; a failure to establish an ecosystem that links trust to trustworthiness could spread into a general loss of trust in AI systems, compounding the harm from specific systems with the harm of foregone benefits. Concerns regarding motives, although crucial to some aspects of trust, are mostly outside the scope of the proposed mechanisms.

Trustworthy AI development presents considerable challenges. Technical standards that assure that an AI system adheres to the ethical principles mentioned are often lacking. Thus, experts need to evaluate specific AI systems in the contexts where they are developed and deployed.

Experts may not be incentivized to address potential harms from their own organizations, and cooperation across organizations can raise antitrust law concerns. The proposed mechanisms we describe help address these challenges by sharing relevant information and incentivizing expert evaluation, which together can inform public assessments of AI developers’ trustworthiness.

Beyond AI development, we recognize that the broader sociotechnical context, including but not limited to AI procurement, deployment, social context, and use, will require additional engagement and measures. Although our mechanisms focus on AI systems at or close to deployment, where requirements and context are clearer, they also extend to earlier stages of development. Separately, we note the need for AI developers to earn trust by consistently displaying trustworthy behavior more generally, including healthy, equitable, and diverse work environments, clear antiretaliation policies to protect whistle-blowers, and broad environmental, ethical, and social responsibilities.

MECHANISMS
Red team exercises

To address concerns of misuse and new vulnerabilities, a growing number of AI developers are turning to “red teams”: professionals who consider a system from the perspective of an adversary to identify exploitable vulnerabilities, which can then be mitigated. To date, AI red teams exist mostly within large industry and government labs, though experts also engage in “red team” activity in academia and through consultancy. AI red-teaming could form a natural extension of the cybersecurity red team community, though the data-driven and increasingly general nature of AI systems requires new domains of expertise.

We see space for the formation of a community of AI red team experts that shares experience across organizations and domains. Such exchange is not currently commonplace, though there has been a growing trend to publish threat modeling of AI systems (5). For example, there are public technical discussions on the feasibility of criminals using adversarial attacks on machine learning (ML) models or on the possibility of misusing large-scale language models for online disinformation. Red-teaming could be carried out by an independent third party to address antitrust concerns (6).

1Centre for the Study of Existential Risk, University of Cambridge, Cambridge, UK. 2Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK. 3OpenAI, San Francisco, CA, USA. 4School of Computer Science, McGill University, Montreal, QC, Canada. 5Department of Engineering, University of Cambridge, Cambridge, UK. 6The Alan Turing Institute, London, UK. 7Centre for the Governance of AI, Oxford, UK. 8Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. 9Mila, Montreal, QC, Canada. 10Faculty of Information, University of Toronto, Toronto, ON, Canada. 11Department of Engineering Science, University of Oxford, Oxford, UK. Email: sa478@cam.ac.uk
Audit trails
External audits, whether mandated by regulation or undertaken voluntarily, would form an important piece of the AI trustworthiness ecosystem (see below). To enable audits, AI developers would need to adopt best practices for documenting their development process and systems’ makeup and activities. Clear standards for retaining information during development and operations exist in other domains (7). Standards and logging mechanisms have yet to be created to cover the range of AI applications, though there are some ongoing domain-specific efforts, for example, for automated vehicles (8). Although industry standards can raise antitrust concerns, lessons from other safety-critical industries suggest that such concerns can be addressed if standards are mandated by governments; if they are voluntary, developed in an open and participatory manner; or if they are accessible on fair, reasonable, and nondiscriminatory terms (6).

Early progress can be seen in ethics frameworks that formalize questions to ask during the development process (e.g., Rolls-Royce Aletheia Framework or the Machine Intelligence Garage Ethics Framework), in emerging guidelines for documenting certain features of AI models [e.g., Annotation and Benchmarking on Understanding and Transparency of Machine Learning Lifecycles (ABOUT ML) or Model Cards], and in proposals for continuous monitoring and logging. Developers are expected, for example, to record the provenance of all data that are used to train models and to record outcomes of benefit and risk assessments conducted before deployment. Further progress requires collective effort to develop widely accessible and free standards for audit trails.

Interpretability and explainability
Assuring the safety, accountability, and fairness of AI systems is often challenged by their “black box” nature. Many researchers aim to address this challenge, either by restricting AI systems to human-readable, rules-based behaviors or by explaining systems’ outputs, for example, by highlighting salient inputs. Research in this area has highlighted the importance of specific principles: (i) methods should provide sufficient insight for the end-user to understand how a model produced an output; (ii) the interpretable explanation should be faithful to the model, accurately reflecting its underlying behavior; and (iii) techniques should not be misused by AI developers to provide misleading explanations for system behavior. The challenge remains to translate these principles into verifiable practice.

Promoting and verifying trustworthiness
Existing relations (●) between organizations that develop artificial intelligence (AI) and users often leave gaps that make users unable to verify the trustworthiness of these organizations. The proposed relations (●) are supported by the mechanisms described in the text, which either (i) help developers adopt best practices in their internal processes and handling of user data (1 to 4, light-gray background) or (ii) incentivize external actors to evaluate the trustworthiness of developers and systems (5 to 7, dark-gray background) and share that information with users. Together, these mechanisms promote a flow of information about trustworthiness from developers, through external actors [researchers, auditors, nongovernmental organizations (NGOs)], to users.

Privacy-preserving machine learning
Concerns regarding privacy in ML include unauthorized access to the data that are used to train models, privacy violations and targeting of individuals and communities through inferring sensitive information from trained models, and unauthorized access to the trained model itself. Research on privacy-preserving ML (PPML) has developed complementary techniques to address these concerns. Federated learning techniques allow the centralized training of a model with decentralized data, without raw data ever leaving the source device (9). Differential privacy techniques modify the development process such that trained models retain meaningful statistical patterns at the population level but reduce
narrow context of model training; they illustrate to AI developers how to reason about where data is stored and what trade-offs exist in preserving privacy. To further accelerate adoption, we recommend establishing reliable support for active PPML projects, open standards, algorithm benchmarks, and educational resources.

Third-party auditing

For best practices to engender trust, AI developers must follow them and be seen to follow them. This is complicated by limitations on the information that can be shared publicly by AI developers, for example, private user data. A solution adopted in several other industries is third-party auditing, where an auditor gains access to restricted information and in turn either testifies to the veracity of claims made or releases information in an anonymized or aggregated manner. Third-party auditing sidesteps several antitrust concerns (6); it is also well positioned to leverage technical solutions, such as secure multiparty computation, that allow verification of claims without requiring direct access to sensitive information.

Auditing can take many forms, involving varying mixes of government and private actors and a range of funding models and information-sharing practices. A recent concrete proposal for independent auditing of AI systems highlights three key ingredients: (i) proactive independent risk assessment, (ii) reliance on standardized audit trails, and (iii) independent assessment of adherence to guidelines and regulations (17).

Auditing can only contribute to trust if auditors themselves are trusted and if failures to pass audits carry meaningful consequences; it is therefore essential that auditors have strong incentives to report their findings accurately and have protections for raising concerns when necessary. Reputational mechanisms, as well as government and societal backing, would help provide such incentives.

Bias and safety bounties

The complexity of AI systems means that it is possible for some vulnerabilities and risks to evade detection before release. For similar reasons, in the field of cybersecurity, experts research flaws and vulnerabilities in published software and publicly available hardware. What began as an antagonistic relationship between vendors and external security researchers led to the development of “bug bounties” and responsible disclosure: mechanisms by which security experts can carry out their research and be financially rewarded for their findings while companies benefit from the discoveries and have a period in which to address them before they are publicly revealed. These mechanisms have helped align incentives in cybersecurity, have led to more secure systems, have and helped increase trust in companies that meaningfully and continuously engage in bug-bounty programs.

A similar approach could be adopted to reward external parties who research bias and safety vulnerabilities in released AI systems. At present, much of our knowledge about harms from AI comes from academic researchers and investigative journalists, who have limited access to the AI systems they investigate and often experience antagonistic relationships with the developers whose harms they uncover. The Community Reporting of Algorithmic System Harms project from the Algorithmic Justice League explores the potential for bounty programs that cover a broad range of harms from AI systems, including unfair bias. This July, Twitter offered bounties to researchers who could identify biases in their image-cropping algorithm. Note that such bounty systems do not shift the burden from AI developers—more resources should also be invested in surfacing and addressing vulnerabilities and biases before product release.

Sharing of AI incidents

As AI systems move from labs to the world, theoretical risks materialize in actual harms. Collecting and sharing evidence about such incidents can inform research and development as well as regulatory mechanisms and user trust. However, any AI developer is disincentivized to share incidents in their own systems, owing to reputational harms, especially if they cannot trust competitors to share similar incidents—a classic collective-action problem (12). Mechanisms are needed that enable coordination and incentivize sharing.

Incident sharing could become a regulatory requirement. Until then, voluntary sharing can be incentivized, for example, by allowing anonymous disclosure to a trusted third party. Such a third party would need to have transparent processes for collecting and anonymizing information and operate an accessible and secure portal. The Partnership on AI is experimenting with such a platform through its AI Incident Database, where information about AI incidents is compiled from both public sources and reporting from developers (13). Recently, the Center for Security and Emerging Technology developed a taxonomy of three categories (specification, robustness, and assurance) based on the incidents reported, with more than 100 incidents exemplifying each category (14).

CONCLUSION

The mechanisms outlined here provide concrete next steps that can help the public assess the trustworthiness of AI developers. Although we stress the need for a broader ecosystem that considers stages both before and after development, and that can enforce meaningful consequences, we see the verification of trustworthy behavior by developers as an important part of the maturation of the field of AI. These mechanisms enable targeted and effective regulation; for example, the European Union has proposed AI regulation that includes incident sharing, audit trails, and third-party auditors (15). We invite greater engagement with this urgent challenge at the interface of interdisciplinary research and policy.

REFERENCES AND NOTES

1. A. Jobin, M. Ienca, E. Vayena, Nat. Mach. Intell. 1, 389 (2019).
2. M. Brundage et al., arXiv:2004.07213 (2020).
3. M. Whitaker et al., “AI Now report 2018” (AI Now Institute, 2018); https://ainownstitute.org/AI-
4. Now_2018_Report.pdf.
5. S. Theibes, S. Lins, A. Sunyaev, Electron. Mark. 31, 447 (2021).
6. P. Xiong et al., arXiv:2101.03042 (2021).
7. S. Hua, H. Bellfield, Yale J. Law Technol. 23, 415 (2021).
8. R. Bell, ACM Int. Conf. Proceed. Ser. 162, 3 (2006).
9. International Organization for Standardization (ISO), “Report on standardisation prospective for automated vehicles (RoSPAV)” (ISO/TC 22 Road Vehicles, ISO, 2021); https://sotc.iso.org/liveLink/liveLink/fetch/8856347/8856365/8857493/ISO_TC22_RoSPAV.pdf.
10. P. Karouzou et al., arXiv:1912.04977 (2019).
11. A. Dwork et al., in Theory of Cryptography Conference (Springer, 2006), pp. 265–284.
12. G. Falco et al., Nat. Mach. Intell. 3, 366 (2021).
13. S. McGregor, arXiv:2011.08512 (2020).
14. S. McGregor, The first taxonomy of AI incidents (Partnership on AI, 2021); https://incidentdatabase.ai/ blog/the-first-taxonomy-of-ai-incidents.
15. European Commission, “Proposal for a regulation of the European parliament and of the council laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending certain union legislative acts” (COM/2021/206 final, European Commission, 2021); https://eur-lex.europa.eu/legal-content/EN/ 1017/?uri=OJ:L:2021:006:EN:PDF.

ACKNOWLEDGMENTS

The report from which this paper draws was composed by 59 authors and benefitted from further feedback from colleagues and AI workshops [see (2) for details]. After the corresponding author, the next five authors and the last six authors each form sets; within each set, authors contributed equally and are ordered alphabetically. We thank S. Bhatnagar for graphical assistance and two anonymous reviewers for insightful suggestions. S.A. received funding from the Isaac Newton Trust and from Templeton World Charity Foundation, Inc. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of Templeton World Charity Foundation, Inc. 856347/885635/8857493/ISO_TC22_RoSPAV.pdf.

10.1126/science.7176

REFERENCES AND NOTES

1. A. Jobin, M. Ienca, E. Vayena, Nat. Mach. Intell. 1, 389 (2019).
2. M. Brundage et al., arXiv:2004.07213 (2020).
3. M. Whitaker et al., “AI Now report 2018” (AI Now Institute, 2018); https://ainownstitute.org/AI-
4. Now_2018_Report.pdf.
5. S. Theibes, S. Lins, A. Sunyaev, Electron. Mark. 31, 447 (2021).
6. P. Xiong et al., arXiv:2101.03042 (2021).
7. S. Hua, H. Bellfield, Yale J. Law Technol. 23, 415 (2021).
8. R. Bell, ACM Int. Conf. Proceed. Ser. 162, 3 (2006).
9. International Organization for Standardization (ISO), “Report on standardisation prospective for automated vehicles (RoSPAV)” (ISO/TC 22 Road Vehicles, ISO, 2021); https://sotc.iso.org/liveLink/liveLink/fetch/8856347/8856365/8857493/ISO_TC22_RoSPAV.pdf.
10. P. Karouzou et al., arXiv:1912.04977 (2019).
11. A. Dwork et al., in Theory of Cryptography Conference (Springer, 2006), pp. 265–284.
12. G. Falco et al., Nat. Mach. Intell. 3, 366 (2021).
13. S. McGregor, arXiv:2011.08512 (2020).
14. S. McGregor, The first taxonomy of AI incidents (Partnership on AI, 2021); https://incidentdatabase.ai/ blog/the-first-taxonomy-of-ai-incidents.
15. European Commission, “Proposal for a regulation of the European parliament and of the council laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending certain union legislative acts” (COM/2021/206 final, European Commission, 2021); https://eur-lex.europa.eu/legal-content/EN/ 1017/?uri=OJ:L:2021:006:EN:PDF.

ACKNOWLEDGMENTS

The report from which this paper draws was composed by 59 authors and benefitted from further feedback from colleagues and AI workshops [see (2) for details]. After the corresponding author, the next five authors and the last six authors each form sets; within each set, authors contributed equally and are ordered alphabetically. We thank S. Bhatnagar for graphical assistance and two anonymous reviewers for insightful suggestions. S.A. received funding from the Isaac Newton Trust and from Templeton World Charity Foundation, Inc. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of Templeton World Charity Foundation, Inc. 856347/885635/8857493/ISO_TC22_RoSPAV.pdf.