CRYSTAL STRUCTURE OF A BONY FISH β2-MICROGLOBULIN: INSIGHTS INTO THE EVOLUTIONARY ORIGIN OF IGSF CONSTANT MOLECULES

Weihong Chen1,2, Feng Gao2, Fuliang Chu2, Jianhua Zhang1,2, George F. Gao2,3,4 and Chun Xia1,5*

From Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, The People’s Republic of China1, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), BeiHen West Road, Beijing 100010, The People’s Republic of China2, China-Japan Joint Laboratory of Molecular Microbiology and Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, BeiHen West Road, Beijing 100010, The People’s Republic of China3, Beijing Institutes of Life Science, Chinese Academy of Sciences (CAS), Lincui East Road, Beijing 100101, The People’s Republic of China4, The Key Laboratory for Preventive Veterinary Medicine of Ministry of Agriculture of China, Beijing 100094, The People’s Republic of China5

Running head: Crystal structure of a bony fish β2m

*Address correspondence to: Dr. Chun Xia, Beijing 100094, The People’s Republic of China. Fax: 86-10-62733154; E-mail: xiachun@cau.edu.cn

β2-microglobulin (β2m) is classified as part of the set of immunoglobulin superfamily (IgSF) constant (C) proteins based on its amino acid sequence, number of strands and folding topology (1,2). Many protein molecules possessing the IgSF C domain exist in numerous organisms, but only two forms have been discovered in the immune system. One form is composed of IgSF domains, comprising the B cell receptor (BCR), the major histocompatibility complex (MHC) and the T cell receptor (TCR), in which IgSF C is combined with the IgSF variable (V) domain (3). The other form consists of independent molecules, such as the β2m molecules (4,5). Both forms, including dependent and independent molecules, play important roles in the adaptive immune system (AIS). β2m is a functional molecule that noncovalently associates with MHC class I molecules to stabilise their heavy chain three-dimensional (3D) structure, which is required to bind foreign antigen peptides and to facilitate T helper lymphocyte, cytotoxic T lymphocyte (CTL) and natural killer cells during the immune response (6-8). The β2m genes are conserved across species, including humans, mammals and birds. The genomic structure of these genes contains four exons and three introns. The β2m genes are genetically unlinked and are located outside of the MHC region (9).

The 3D structure of bovine β2m was first solved by Becker et al. (5). To date, the structures of β2m in humans, mice and chickens have been determined either in their monomer form or as part of MHC I complexes (4,5,10,11). The known β2m structures are composed of 99 mature residues with a seven-stranded β-sandwich fold and thus belong to the typical IgSF C1 set of molecules.
In the reported 3D structures of β2m, strands A, B, and E comprise one β-sheet; strands C, F, and G form the second β-sheet; and the D strand runs between the layers. A central disulphide bond, bridging Cys25 and Cys80 on the B and F strands, respectively, contributes to protein stability (14). The D strand is divided by a two-residue β-bulge into two short two-residue β strands (D1 and D2). This β-bulge has been found in all solved β2m structures and is considered a common feature of β-sheet proteins. The loss of the β-bulge, together with changes in the positions of three residues in the CD loop linking the C and D strands, results in the formation of a new continuous six-residue β sheet. Structural rearrangements of the D strand by a possible edge-to-edge mechanism have been implicated in human β2m amyloidosis (12). Interestingly, the IgSF C domains are not only highly conserved in BCR, TCR, and MHC class I and class II, but also appear in FcγR I, CD2, CD4, and CD8; the C domain has even been found in lower animals, such as in the lamprey TCR-like receptor (Lamp-TCRLC) and in the Amphioxus V and C domain-bearing protein (Amphi-VCPC) (13,14). However, it has been generally believed that the β2ms emerged suddenly in the antigen presentation system of the AIS and are present only in jawed vertebrates. Very little is known about the 3D structure of β2m in the early vertebrate bony fishes, and therefore its evolutionary origin cannot be adequately explained.

Fish β2m genes were first reported by Ono and co-workers (15) and Dixon et al. in 1993 (16). To date, β2m genes have been reported in 16 fish species, including grass carp (17), zebrafish (15), carp and tilapia (16), trout (9), channel catfish (18), Atlantic salmon (19), and sturgeon (20). Research has demonstrated that the 116 amino acids encoded by the fish β2m genes (except for in sturgeon) are three residues shorter than those of humans, mammals and chickens. Fish β2m genes have a number of unique characteristics that are not shared by their mammalian homologues, such as a deletion of two amino acids in the mature protein and a single N-linked glycosylation site in grass carp (17) and catfish (18). In addition, as first discovered in rainbow trout, the fish β2m locus consists of three linked genes: two similar expressed genes and one gene that is incomplete and not expressed (9).

We have previously reported a representative bony fish grass carp β2m (Ctid-β2m) gene (17). Here, we resolve at 2.1 Å the first 3D structure of Ctid-β2m. Ctid-β2m closely resembles the previously described human and bovine monomeric β2m structures, with some significant variations. Two new hydrogen bonds and a hydrophobic pocket were found in Ctid-β2m. In particular, the structure of Ctid-β2m revealed an unusually flexible conformation in the region of the CD loop. This β2m structure highlights the evolutionary propensity towards stability with the existence of an unusually flexible CD loop in bony fish. Because fish β2m is evidently the evolutionary turning point of the IgSF C set of molecules, the 3D structures of Lamp-TCRLC and Amphi-VCPC were predicted and their topologies were compared with that of Ctid-β2m. Based on the structures presented here, Ctid-β2m may well reflect evolutionary characteristics tracing back to ancestral C-set molecules.

Experimental Procedures

Protein cloning, expression and purification-The Ctid-β2m gene was amplified from the plasmid p2X-Ctid-β2m, which was constructed previously by our research group using PCR (21). This plasmid contains a unique Nde I restriction site, a stop codon and a unique Xho I restriction site (21,22). The products were ligated into a pET21a vector (Novagen) and transformed into E. coli strain BL21 (DE3) for protein expression. The recombinant proteins were expressed as inclusion bodies, which were then lysed using a sonicator and centrifuged at 2,000g. The pellet was washed three times with a solution containing Triton X-100 (20 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, and 1 mM DTT) and then once with the same solution without Triton X-100. The inclusion body was dissolved overnight in urea buffer (8 M urea, 50 mM Tris-HCl pH 8.0, 100 mM NaCl, 10 mM EDTA, 10% (V/V) glycerine, 10 mM DTT) using approximately 1 mL of urea buffer per 30 mg of protein. The Ctid-β2m was refolded by the gradual dilution method using the following refolding buffer: 100 mM Tris-HCl, 2 mM EDTA, 400 mM L-arginine-HCl, 0.5 mM oxidised glutathione, 5 mM reduced glutathione, 0.1 mM PMSF, and 0.1 mM NaCN, pH 8.0. After stirring for 48 h at 4°C, the remaining soluble proteins were concentrated and purified using a Superdex 200 (Amersham Biosciences) size-exclusion column followed by Resource-Q (Amersham Biosciences) ion-exchange chromatography (21,23).

Crystallisation, data collection and processing-The purified Ctid-β2m was adjusted
to a concentration of 10 mg/mL with crystallisation buffer (10 mM Tris-HCl, 10 mM NaCl). An initial crystallisation trial was set up with Crystal Screens I and II (Hampton Research) at 18°C using the hanging drop method. The drop, containing equal volumes (1 μL each) of protein solution and reservoir crystallisation buffer, was placed over a well containing 200 μL of reservoir solution using VDX plates. Crystals suitable for data collection were grown in 3-5 days under optimised conditions using 0.1 M MES pH 6.5, 12% PEG 20000, 3% (v/v) ethanol and a protein concentration of 5 mg/mL. For data collection, the crystals were soaked for several minutes in reservoir solution supplemented with 20% glycerol as a cryoprotectant and then flash cooled directly in liquid nitrogen. X-ray diffraction data were collected to 2.1 Å resolution on a Rigaku MicroMax007 rotating-anode X-ray generator operated at 40 kV and 20 mA (Cu Kα; λ=1.5418 Å) equipped with an R-AXIS VII++ image-plate detector. The data were processed and scaled using DENZO and SCALEPACK as implemented in HKL-2000 (24). The data collection statistics of the Ctid-β2m crystals are shown in Table 1.

Structure solution, refinement and analysis-The crystal structure of Ctid-β2m was solved by molecular replacement using human β2m (PDB code: IIDS) as a search model for the CNS program (24,25). Residues that differed between Ctid-β2m and the search model were manually rebuilt in the O program (26) under the guidance of Fo-Fc and 2Fo-Fc electron density maps. After refinement of the model with the CNS program using stimulated annealing, energy minimisation, restrained individual B factors, and the addition of 196 water molecules, the R_work and R_free dropped to 19.3% and 22.34% respectively for all data between 35 Å and 2.1 Å. The course of refinement was monitored by calculating R_free based on a subset containing 3% of the total number of unique reflections. The coordinate error estimated by the Luzzati plot in CNS [21, 22] for the Ctid-β2m structure is 0.41 Å. The average real-space fit value for Ctid-β2m, as calculated by O (26), is 0.95. Model geometries were verified using the PROCHECK program (27).

Homology modelling of the IgSF C domains in jawless vertebrates and protochordates-Although fusion molecules, including the IgSF C domain, exist widely in the AIS, only two proteins, Amphi-VCPC and Lamp-TCRLC, were predicted to possess the IgSF C domain in jawless vertebrates and protochordates (13,14). Because the 3D structures of Amphi-VCPC and Lamp-TCRLC are not yet available, but are necessary to determine the evolutionary origin of the IgSF C set, the 3D structures of Amphi-VCPC and Lamp-TCRLC were predicted by amino acid homology modelling using the SWISS-MODEL.html server (http://www.expasy.org/swissmod/) based on the existing 3D structures of ligand binding protein (Lingo-1) (PDB code: 2ID5A) and T-cell surface glycoprotein CD4 (PDB code: 2NY4B) in the Protein Data Bank (http://www.rcsb.org/pdb/home/home.do). DNAMAN was used to analyse the differences among these molecules and the PyMOL Molecular Graphics System (DeLano Scientific, http://www.pymol.org) was used for figure preparation.

RESULTS

Overall structure of Ctid-β2m. The mature Ctid-β2m contains 97 amino acids (compared with 99 for human and mice). As expected, the Cu r.m.s.d of Ctid-β2m (PDB code: 3GBL) is 1.3Å and 1.8 Å, similar to values for the structures of monomer bovine β2m (PDB code: 1BMG) and human β2m (PDB code: 1LDS). The chains are folded into a typical "β-barrel" configuration dominated by two antiparallel pleated sheets; one sheet is composed of four strands and the other sheet is composed of three strands (Fig. 1A). The Ctid-β2m structure is composed of two face-to-face β-sheets of different sizes: the large β-sheet is composed of strands A (6-11 aa), B (21-28 aa), D (55-57 aa), and E (60-70 aa), and the small β-sheet is formed by strands C (36-41 aa), F (78-84 aa), and G (87-92 aa). Six loop regions (AB, BC, CD, CE, EF, and FG) connect these strands. The two β-sheets are linked by a Cys25-Cys80 disulphide bridge, which is highly conserved in all known β2ms and provides strong geometric constraints on the surrounding residues. A cluster of hydrophobic residues (Ile7, Ile9, Tyr10 on strand A; Leu23, Ile24, Ytr26, Val27 on strand B; Ile37, Leu39, Leu40 on strand C; Phe54 on strand D; Trp69, Leu64, Thr65, Val68, Phe70 on strand E; Typ78, Val82 on strand F; and Thr88, Val92 on strand G) that are likely to form a strong hydrophobic pocket is found on both the large and small β-sheets (Fig. 1B).

Comparison of the 3D structures of β2ms in vertebrates. An alignment of Ctid-β2m with zebrafish, trout, catfish, salmon, chicken, bovine, mouse, and human β2ms revealed 37 identical amino acids (38% homology). Without Ctid-β2m, 48 amino acids are identical
among an alignment of the other β2ms (48% homology) (Fig. 2A). In Ctid-β2m, there are 20 amino acid residues that are distinct from the other homologues. These residues are randomly distributed throughout the β-sheets and loops. Previous studies have shown that most β2ms in teleosts are mature proteins composed of 97 amino acids. They have two amino acid deletions at positions 91 and 92, in which they differ from mammalian β2ms (9,17). Compared with human β2m, it has been indicated that bovine monomeric β2m has an additional deletion at position 48 (28). The function of the amino acid deletion is as yet unknown. The strands of Ctid-β2m are different compared with previously described β2ms. Strand B spans residues 21-28, which is the same as in mouse β2m, whereas this strand in human β2m is composed of residues 21-30. Strand G is longer than in other described β2m structures. Because of the two amino acids deleted in Ctid-β2m at positions 91 and 92, loop FG is shorter than its human β2m counterpart (Fig. 2B and C). Strand E is two amino acids longer than in human β2m and corresponds to residues 60-70 as opposed to 62-70 in human β2m. Compared with bovine and human β2ms, the total Ca r.m.s.d. (root mean square deviation) values of Ctid-β2m are 3.7 Å and 1.8 Å, respectively using program DALI (Table 1). The main difference between Ctid-β2m and human β2m is found around the loops from His11 to Asn20 and from His83 to Lys86, which correspond to Arg13 to Phe23 and Asn84 to Lys92 in human β2m (1LDS). Compared with bovine β2m, the loops in Ctid-β2m are different in sequence, from residue Glu56 to Trp59 and from His83 to Lys86, which correlate to Ser56 to Ser60 and Lys82 to Arg90 in bovine β2m (Fig. 2). Altogether, these data indicate small changes in β-sheet composition amongst different species.

Two additional hydrogen bonds found in Ctid-β2m. A total of about 60 intramolecular hydrogen bonds (mostly main-chain to main-chain) stabilise the folded human β2m (28). The hydrogen bonds of Ctid-β2m between strands D and E are conserved, as compared with human β2m. Both human β2m and Ctid-β2m form hydrogen bonds. Ctid-β2m has hydrogen bonds between Glu50-Ser67, Thr52-Thr65, and Ala55-His63, while the corresponding bonds of human β2m are Glu50-Tyr67, Ser52-Leu65, and Ser55-Tyr63. Asp53 is highly conserved in all β2ms and forms significant hydrogen bonds to the heavy chain in the human HLA/β2m complex structure. In human β2m, Asp53 is located in the "β-bulge" and forms hydrogen bonds to Gln32, Arg35, and Arg48 in the α1 domain of the HLA heavy chain, while the counterpart residues in the grass carp heavy chain are Gln31, Tyr34, and Lys45. These three residues (Gln32, Arg35, and Arg48) are also highly conserved in Ctid-β2m. However, two new hydrogen bonds in Ctid-β2m appear between the directly adjacent C and E strands (Fig. 3A). Two hydrogen bonds are formed at positions Ile37 and Glu38 in strand C to integrate with Lys66 in strand E. A hydrogen atom from the ε-amino group of Lys and an oxygen atom provided by the carboxyl group of Ile formed one hydrogen bond. Another hydrogen bond was formed by the above mentioned hydrogen atom and an oxygen atom from the γ-carboxyl group of Glu. The lengths of these hydrogen bonds are 2.75 Å and 3.54 Å, respectively, while the distance between the two strands is 7.65 Å. The Lys66 is a fish species-specific residue not present in mammalian and chicken β2ms, while Ile37 is highly conserved (Fig. 3B). The disulphide bond formed by residues Cys25 and Cys80 occurs between strands B and F and is highly conserved among all β2ms, including Ctid-β2m. The two new hydrogen bonds between strands C and D, which have not been found in any other resolved β2m structures, and the newly described hydrophobic pocket indicate a stable interaction between strands C and D in Ctid-β2m.

The unusual flexible CD loop in Ctid-β2m. The most structurally important part of the β2ms is strand D, which binds to the surface of the MHC heavy chain (6,23). Residues 50 to 56 (D1-D2 strands) interact with the heavy chain and are part of a region formed by two small strands. Residues Glu50-His51 comprise D1 and Ser55-Phel56 comprise D2. Between the D1-D2 strands, a noticeable β-bulge is formed by Asp53-Leu54 in the human structure (6). The β-bulge is found in all β2m structures described to date as well as in monomeric bovine β2m (5). However, strand D in Ctid-β2m starts at positions 55-57, and only a short β-sheet was observed. Ctid-β2m is different from human monomeric β2m in that a longer β-sheet begins at positions 51-56. Great attention is paid to the short D strand region, which can be involved in contacts with the heavy chain. A rather flexible domain from the CD loop to the D strand was found in Ctid-β2m (Fig. 4). Thus, Ctid-β2m appears to form a relatively unusual flexible region, which contributes greatly to the instability of its MHC class I complex.

Comparison of Ctid-β2m with
Lamp-TCRLC and Amphi-VCPC. In jawless vertebrates, Lamp-TCRLC possessing the IgSF C domain was found to have 20.7% identity with Ctid-β2m at the amino acid level (13). To determine the evolutionary origin of the IgSF C set, the 3D structure of Lamp-TCRLC was predicted using amino acid homology modelling. Using the First Approach Mode in SWISS-MODEL, the 3D structure of the Lingo-1 molecule (2id5A) (29) was found to have 24.68% identity with the Lamp-TCRLC at the amino acid level. The E-value of the constructed Lamp-TCRLC 3D structure is 2.20e⁻⁸. The 3D structure of Lamp-TCRLC is composed of 76 residues (amino acids 19-94) that form a six-stranded β-sandwich fold (Fig. 5A), but it is not a typical IgSF C molecule. In the 3D structure of Lamp-TCRLC, strands A (20-24 aa) and C (56-59 aa) comprise one β-sheet, while strands B (34-38 aa), E (73-81 aa) and F (84-92 aa) form the second β-sheet, and strand D (66-69 aa) runs between the layers (Fig. 5B). A central disulphide bond between Cys25 and Cys76 on loop AB and strand E, respectively, may stabilise the protein. Strand D lies atop the two β-sheets. Altogether, the topology of Lamp-TCRLC is very different from that of Ctid-β2m (Fig. 5C).

In protochordates, only a single gene, which is referred to as Amphi-VCPC, has been predicted to have the IgSF C domain (14). Amphi-VCPC was found to have 17.6% identity with Ctid-β2m at the amino acid level. To further determine the evolutionary origin of the IgSF C set, the 3D structure of Amphi-VCPC was predicted using amino acid homology modelling based on part of the CD4 complex (2ny4B) (30). Amphi-VCPC was found to have 16.88% identity with the human T-cell surface glycoprotein CD4 molecule (2ny4B). The E-value of the constructed 3D structure is 1.00e⁻⁸. The predicted 3D structure of the Amphi-VCPC domain is composed of 75 residues (in the 8-82 region) that form a six-stranded β-sandwich fold (Fig. 5D), which is not typical for IgSF C set molecules. In the 3D structure of Amphi-VCPC, strands A (17-20 aa) and C (48-51 aa) comprise one β sheet, while B (31-35 aa), E (62-69 aa) and F (72-79 aa) form the second β sheet. Strand D (56-58 aa) is positioned on top of the two β sheets (Fig. 5E). However, the predicted central disulphide bond connecting Cys21 and Cys65 on loop AB and strand E is not found in the predicted 3D structure. Compared with Ctid-β2m, the topology of Amphi-VCPC is quite different (Fig. 5F), whereas the 3D structures of Amphi-VCPC and Lamp-TCRLC are remarkably similar.

The evolutionary origin of the IgSF C set. By examining the topology of the bony fish β2m, Amphi-VCPC and Lamp-TCRLC molecules, features indicating the evolutionary origin of the IgSF C set were found. The β2m molecule might be traceable as a descendent of the ancestor of Amphi-VCPC/Lamp-TCRLC-like molecules. In support of this possibility: 1) 18-19 aa in the N-terminus of Amphi-VCPC/Lamp-TCRLC could have evolved to become the A strand of β2m; and 2) a mutation in the BC loops of Amphi-VCPC/Lamp-TCRLC molecules may be derived from the novel topology found in β2m (Fig. S1).

DISCUSSION

In the study, we determined to 2.1 Å the 3D structure of the β2m molecule in bony fish, which is the first β2m described in non-warm-blooded animals. The results show that Ctid-β2m is composed of A, B, D, and E strands and C, F, and G strands like a standard IgSF C set molecule. Two extra hydrogen bonds at positions Ile37 and Glu38 and a hydrophobic pocket around the centre of Ctid-β2m were also found. Importantly, a short D strand and a longer CD loop might compose a flexible region for binding to the MHC heavy chain in bony fish. These features are different from the structures of mammalian and chicken β2ms, which have two strands, D1 and D2. To explore the evolutionary origin of the unattached IgSF C set, we homology modelled Amphi-VCPC and Lamp-TCRLC at the 3D level. The proteins in the fusion form as well as the IgSF C might be precursors of β2ms, although β2m emerged suddenly in fish species. These results highlight the evolutionary propensity towards stability with the presence of an unusual flexible CD loop that co-evolved with the MHC class I molecules 400 million years ago.

IgSF domains can be classified as variable, constant, strand-switched (S) or hybrid (H) based on their β-strand topology (2). Although the IgSF domains exist widely in the AIS of vertebrates, only two genes, Amphi-VCPC and Lamp-TCRL, have highlighted the significance of the C domains in the jawless vertebrates and protochordates (13,14). To approach the evolutionary origin of the IgSF C, the 3D structures of Amphi-VCPC and Lamp-TCRLC were predicted, although homology modelling is not perfectly exact. The 3D structure of Lamp-TCRLC is composed of 76 residues that form a six-stranded β-sandwich fold, but is not
typical for IgSF C set molecules. The 3D structure of Amphi-VCPC is composed of 75 residues and also forms a six-stranded β-sandwich fold. Surprisingly, the topologies of Lamp-TCRLC and Amphi-VCPC are identical, although Amphi-VCPC and Lamp-TCRLC molecules split more than 500 million years ago. We hypothesised that the precursors of β2ms are the IgSF C set-related molecules as well as Amphi-VCP/Lamp-TCR-like molecules. In support of this hypothesis, the C domains of Amphi-VCPC and Lamp-TCRLC lack the A strand, which is similar to Ctid-β2m. That might imply that the “B strand” of β2m is the hodiernal A strand in Amphi-VCPC/Lamp-TCRLC. There are 18-19 aa at the N-terminus of the Amphi-VCPC/Lamp-TCRLC molecules that could have evolved to become an A strand, as in β2m. In addition, a mutation event might have occurred in the BC loops of Amphi-VCPC/Lamp-TCRLC that led to the origination of a new strand. If so, the topology of Amphi-VCPC/Lamp-TCRLC might have either evolved to be the precursor of β2m or led to the creation of new fusion molecules, such as BCR, TCR, Ig, MHC, CD4, and CD8.

REFERENCES

1. Cooper, M. D., and Alder, M. N. (2006) Cell 124, 815-822
2. Bork, P., Holm, L., and Sander, C. (1994) J Mol Biol 242, 309-320
3. Hernandez Prada, J. A., Haire, R. N., Allaire, M., Jakoncic, J., Stojanoff, V., Cannon, J. P., Litman, G. W., and Ostrov, D. A. (2006) Nat Immunol 7, 875-882
4. Trinh, C. H., Smith, D. P., Kalverda, A. P., Phillips, S. E., and Radford, S. E. (2002) Proc Natl Acad Sci U S A 99, 9771-9776
5. Becker, J. W., and Reeke, G. N., Jr. (1985) Proc Natl Acad Sci U S A 82, 4225-4229
6. Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. L., and Wiley, D. C. (1987) Nature 329, 506-512
7. Lancet, D., Parham, P., and Strominger, J. L. (1979) Proc Natl Acad Sci U S A 76, 3844-3848
8. Michaelsson, J., Acher, A., Rolle, A., and Karre, K. (2001) J Immunol 166, 7327-7334
9. Magor, K. E., Shum, B. P., and Parham, P. (2004) J Immunol 172, 3635-3643
10. Acher, A., Persson, K., Harris, R. A., Sundback, J., Sentman, C. L., Lindqvist, Y., Schneider, G., and Karre, K. (1998) Immunity 9, 199-208
11. Koch, M., Camp, S., Collen, T., Avila, D., Salomonsen, J., Wallyn, H. J., van Hateren, A., Hunt, L., Jacob, J. P., Johnston, F., Marston, D. A., Shaw, I., Dunbar, P., R., Cerundolo, V., Jones, E. Y., and Kaufman, J. (2007) Immunity 27, 885-899
12. Richardson, J. S., and Richardson, D. C. (2002) Proc Natl Acad Sci U S A 99, 2754-2759
13. Pancer, Z., Mayer, W. E., Klein, J., and Cooper, M. D. (2004) Proc Natl Acad Sci U S A 101, 13273-13278
14. Yu, C., Dong, M., Wu, X., Li, S., Huang, S., Su, J., Wei, J., Shen, Y., Mou, C., Xie, X., Lin, J., Yuan,
S., Yu, X., Yu, Y., Du, J., Zhang, S., Peng, X., Xiang, M., and Xu, A. (2005) *J Immunol* **174**, 3493-3500

15. Ono, H., Figueroa, F., O'Huigin, C., and Klein, J. (1993) *Immunogenetics* **38**, 1-10

16. Dixon, B., Stet, R. J., van Erp, S. H., and Pohajdak, B. (1993) *Immunogenetics* **38**, 27-34

17. Hao, H. F., Yang, T. Y., Yan, R. Q., Gao, F. S., and Xia, C. (2006) *Fish Shellfish Immunol* **20**, 118-123

18. Criscitiello, M. F., Benedetto, R., Antao, A., Wilson, M. R., Chinchar, V. G., Miller, N. W., Clem, L. W., and McConnell, T. J. (1998) *Immunogenetics* **48**, 339-343

19. Persson, A. C., Stet, R. J., and Pilstrom, L. (1999) *Immunogenetics* **50**, 49-59

20. Lundqvist, M. L., Appelkvist, P., Hermsen, T., Pilstrom, L., and Stet, R. J. (1999) *Immunogenetics* **50**, 79-83

21. Chen, W., Chu, F., Peng, H., Zhang, J., Qi, J., Jiang, F., Xia, C., and Gao, F. (2008) *Acta Crystallogr Sect F Struct Biol Cryst Commun* **64**, 200-202

22. Hao, H. F., Li, X. S., Gao, F. S., Wu, W. X., and Xia, C. (2007) *Protein Expr Purif* **51**, 120-125

23. Chu, F., Lou, Z., Chen, Y. W., Liu, Y., Gao, B., Zong, L., Khan, A. H., Bell, J. I., Rao, Z., and Gao, G. F. (2007) *J Immunol* **178**, 944-952

24. Smith, K. J., Reid, S. W., Harlos, K., McMichael, A. J., Stuart, D. I., Bell, J. I., and Jones, E. Y. (1996) *Immunity* **4**, 215-228

25. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) *Acta Crystallogr D Biol Crystallogr* **54**, 905-921

26. Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard, M. (1991) *Acta Crystallogr A* **47** (Pt 2), 110-119

27. Laskowski, R. A., Moss, D. S., and Thornton, J. M. (1993) *J Mol Biol* **231**, 1049-1067

28. Rosano, C., Zuccotti, S., and Bolognesi, M. (2005) *Biochim Biophys Acta* **1753**, 85-91

29. Mosyak, L., Wood, A., Dwyer, B., Buddha, M., Johnson, M., Aulabaugh, A., Zhong, X., Presman, E., Benard, S., Kelleher, K., Wilhelm, J., Stahl, M. L., Kriz, R., Gao, Y., Cao, Z., Ling, H. P., Pangalos, M. N., Walsh, F. S., and Somers, W. S. (2006) *J Biol Chem* **281**, 36378-36390

30. Zhou, T., Xu, L., Dey, B., Hessell, A. J., Van Ryk, D., Xiang, S. H., Yang, X., Zhang, M. Y., Zwick, M. B., Arthos, J., Burton, D. R., Dimitrov, D. S., Sodroski, J., Wyatt, R., Nabel, G. J., and Kwong, P. D. (2007) *Nature* **445**, 732-737

FOOTNOTES

*This work was supported by National Basic Research Program (Project 973) of China (2007CB815805) and National Natural Science Foundation of China (Grant no. 30371098).

Chen WH and Gao F contributed equally to this study.

FIGURE LEGENDS

Fig. 1. Overall structure of *Ctid*-β2m. A, *Ctid*-β2m is shown in a ribbon representation and coloured orange. β-strands are labelled with letters A to G. The CD loop and the intra-chain disulphide bridge are labelled in red and purple, respectively. B, The hydrophobic pocket in *Ctid*-β2m. The hydrophobic residues (Ile7, Ile9, Tyr10 on strand A; Leu23, Ile24, Tyr26, Val27 on strand B; Ile37, Leu39, Leu40 on strand C; Phe54 on strand D; Trp69, Leu64, Thr65, Val68, Phe70 on strand E; Tyr78, Val82 on strand F; and Thr88, Val92 on strand G) are labelled in blue.
Fig. 2. Analysis of Ctid-β2m with β2ms from fish, chicken, and mammals. A, Sequence alignment of Ctid-β2m with β2ms from fish and mammals. The sources of the sequences are as follows: Ctid-β2m (AB190815, PDB code: 3GBL), zebrafish (L05383), trout (L49056), catfish (AF016042), salmon (AF180488), chicken (M84767), bovine (NM_173893), mouse (NM_009734), and human (NM_004048). Numbers over the alignment denote residues that form Ctid-β2m. Black arrows above the alignment indicate β-strand; T, toil; Residues highlighted in red are absolutely conserved, whereas those with blue squares are highly conserved (80%). Green numbers denote residues that form disulphide bonds. The alignment was generated using the program Clustal X and drawn with ESPript. B, Structural superpositions of Ctid-β2m with the β2m monomer from chickens. Ctid-β2m and chicken β2m are coloured in orange and green, respectively. C, Structural superpositions of Ctid-β2m with β2m monomers from humans and bovines. Ctid-β2m, human and bovine β2ms are coloured in orange, green and red, respectively. The superposition was created by PyMOL, using the C atoms of the globular segment. Ctid-β2m (PDB code: 3GBL), chicken (PDB code: 3BEW), HLA β2m (PDB code: 1LDS), bovine (PDB code: 1BMG).

Fig. 3. Details of the Ctid-β2m contacts of the two extra hydrogen bonds and the disulphide bond. Hydrogen bonds are illustrated as dotted lines. The disulphide bond is shown as a yellow stick. Residues forming hydrogen bonds are shown in the stick model and coloured by atom types: N, blue; O, red. All of the residues are labelled.

Fig. 4. Structural superposition of Ctid-β2m with Human HLA *A0201. Ctid-β2m is shown in a ribbon representation and coloured orange, and the CD loop is indicated by a box. The PyMOL Molecular Graphics System was used to prepare the figure, and the geometry of the refined structure was validated according to Ramachandran plot criteria.

Fig. 5. The predicted 3D structures of Lamp-TCRLC, Amphi-VCPC and a structural overlay with Ctid-β2m. A, sequence alignment of Ctid-β2m with Lamp-TCRLC. B, 3D structure of Lamp-TCRLC alone and C, overlaid with Ctid-β2m. Using the first approach mode in SWISS-MODEL, the 3D structure of the Lingo-1 molecule (2id5A) is found to share 24.68% identity with the IgSF C domain of Lamp-TCRLR at the amino acid level. The best E-value of the constructed Lamp-TCRLC 3D structure is 2.20e^-8. The 3D structure of Lamp-TCRLC is composed of 76 residues (amino acids in the 19-94 region) with a six-stranded β-sandwich fold. D, sequence alignment of Ctid-β2m with Amphi-VCPC. E, Structure of Amphi-VCPC alone and F, overlaid with Ctid-β2m. The 3D structure of Amphi-VCPC was predicted by amino acid homology modelling, based on part of a CD4 complex (2ny4B). Amphi-VCPC shares 16.88% identity with human T-cell surface glycoprotein CD4. The E-value of the constructed 3D structure is 1.00e^-8. The predicted 3D structure of the Amphi-VCPC domain is composed of 75 residues (amino acids in the 8-82 region) with a six-stranded β-sandwich fold.

Fig. S1. Topology of bony fish β2m, Amphi-VCPC and Lamp-TCRLC domains. A, topology of Ctid-β2m. B, topology of Lamp-TCRLC. C, topology of Amphi-VCPC. Two arrowhead markers indicate: 1) the 18-19 aa region at the N-terminus of Amphi-VCPC/Lamp-TCRLC could have evolved to be the A strand of β2ms; 2) a mutation might have occurred in the BC loops of Amphi-VCPC/Lamp-TCRLC molecules.

Table 1. Data and Statistical refinement from Ctid-β2m.
Figure 2

A

B

C
Figure 3
Table 1. Statistics for data and refinement of Ctid-β2m.

A. Data statistics

Parameter	Value
Number of reflections(unique/total)	6433(82112)
Resolution (Å)	2.1(2.10-2.18)
Completeness (%)	92.2(55.9)
Rmerge(%)	10.7(33.4)
I/σ	25.3(5.4)
Unit cell parameters(Å)	38.74 40.60 71.09
Space group	P212121
Wavelength(Å)	1.5418

B. Refinement statistics

Parameter	Value
Resolution range(Å)	35.56-2.1
Number of protein atoms	781
Number of water molecules	196
Average B-factor(Å²)	30.93
r.m.s. deviation	0.006
Bonds(Å)	1.082
Angle (°)	19.30
R_work(%), R_free(%)	22.34

Values in parentheses are given for the highest resolution shell.

R_free is calculated over reflections in a test set (5%) not included in atomic refinement.