In-plane Zeeman field induced Majorana corner and hinge modes in an s-wave superconductor heterostructure

Ya-Jie Wu,1,2 Junpeng Hou,1 Yun-Mei Li,1 Xi-Wang Luo,1 and Chuanwei Zhang1,*

1Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
2School of Science, Xi’an Technological University, Xi’an 710023, China

Second-order topological superconductors host Majorana corner and hinge modes in contrast to conventional edge and surface modes in two and three dimensions. However, the realization of such second-order corner modes usually demands unconventional superconducting pairing or complicated junctions/layered structures. Here we show that Majorana corner modes could be realized using a 2D quantum spin Hall insulator in proximity contact with an s-wave superconductor and subject to an in-plane Zeeman field. Beyond a critical value, the in-plane Zeeman field induces opposite effective Dirac masses between adjacent boundaries, leading to one Majorana mode at each corner. Similar paradigm also applies to 3D topological insulators with the emergence of Majorana hinge states. Avoiding complex superconductor pairing and material structure, our scheme provides an experimentally realistic platform for implementing Majorana corner and hinge states.

Introduction.— Majorana zero energy modes in topological superconductors and superfluids [1–4] have attracted great interests in past two decades because of their non-Abelian exchange statistics and potential applications in topological quantum computation [5, 6]. A range of physical platforms [7–18] in both solid state and ultracold atomic systems have been proposed to host Majorana modes. In particular, remarkably experimental progress has been made recently to observe Majorana zero energy modes in s-wave superconductors in proximity contact with materials with strong spin-orbit coupling, such as semiconductor thin films and nanowires, topological insulators, etc. [19–24]. In such topological superconductors and superfluids, Majorana zero energy modes usually localize at 2D vortex cores or 1D edges, where the Dirac mass in the low-energy Hamiltonian changes sign.

Recently, a new class of topological superconductors, dubbed as higher-order topological superconductors, has been proposed [25–38]. In contrast to conventional topological superconductors, r-th-order ($r \geq 2$) topological superconductors in d-dimensions host $(d-r)$-dimensional Majorana bound states, rather than $d-1$ dimensional gapless Majorana excitations. For example, in a 2D second-order topological superconductors, the edge modes manifest themselves as 0D Majorana excitations localized at the corners, instead of 1D edges, giving rise to Majorana corner modes (MCMs). A variety of schemes have been proposed recently to implement MCMs, such as p-wave superconductors under magnetic field [26], 2D topological insulators in proximity to high temperature superconductors (d-wave or s_\pm-wave pairing) [29–31], π-junction Rashba layers [34] in contact with s-wave superconductors. However, those schemes demand either unconventional superconducting pairings or complicated junction/lattice structures, which are difficult to implement with current experimental technologies.

In this Letter, we propose that MCMs can be realized with a simple heterostructure composing of an s-wave superconductor in proximity contact with a quantum spin Hall insulator (QSHI) and subject to an in-plane Zeeman field, as sketched in Fig. 1. Here we consider a simple square lattice and the MCM physics does not rely on certain lattice symmetry. At each edge of the 2D QSHI, there are two helical edge states with opposite spins and momenta, which thus support proximity-induced s-wave superconducting pairing, resulting in a quasiparticle band gap for the helical edge mode spectrum.

Because of different spin-orbit coupling at adjacent edges, an in-plane Zeeman field induces quite different effects on adjacent edges. Across a critical Zeeman field, the quasiparticle band gap along one edge first closes then reopens, indicating a topological phase transition, but remains unaffected for adjacent edges. Before the phase transition, the Dirac mass term in the low-energy effective Hamiltonian for the helical edge states has the same sign for two adjacent edges. After the topological

FIG. 1: Illustration of a heterostructure composing of a quantum spin Hall insulator on top of an s-wave superconductor and subject to an in-plane Zeeman field. The spheres at four corners represent four Majorana zero energy modes.
phase transition, the Dirac mass term reverses its sign at the corner connecting two edges, resulting in MCMs. In contrast, the corner Dirac sign change in previous schemes originates from the sign change of the pairing order through unconventional superconducting pairing. There is only one MCM at each corner due to the time-reversal symmetry breaking, instead of Majorana hinge modes.

Physical system and model Hamiltonian.—Consider a QSHI in proximity contact with an s-wave superconductor and subject to a Zeeman field \(\mathbf{h} \) (see Fig. 1). The four edges of a square sample are labeled by i, ii, iii, iv. The physics of the heterostructure can be described by an effective Hamiltonian [29]

\[
H(k) = 2\lambda_x \sin k_x \sigma_x \tau_z + 2\lambda_y \sin k_y \sigma_y \tau_z + (\xi_k \sigma_z - \mu) \tau_z + \Delta_0 \tau_x + h \cdot s, \tag{1}
\]

under the basis \(\hat{C}_k = \begin{pmatrix} c_k, -is_y c^\dagger_{-k} \end{pmatrix}^T \) with \(c_k = (c_{k,a,\uparrow}, c_{k,b,\uparrow}, c_{k,a,\downarrow}, c_{k,b,\downarrow})^T \). Here \(\lambda_i \) is the spin-orbit coupling strength, \(\Delta_0 \) denotes s-wave superconducting order parameter induced by proximity effect, \(\xi_k = \epsilon_0 - 2t_x \cos k_x - 2t_y \cos k_y \) with \(2\epsilon_0 \) being the crystal-field splitting energy and \(t_i \) the hopping strength on the square lattice, and \(\mu \) is the chemical potential. Three Pauli matrices \(\sigma, s \) and \(\tau \) act on orbital (\(a, b \)), spin (\(\uparrow, \downarrow \)) and particle-hole degrees of freedom, respectively. For simplicity of the presentation, we focus on \(\mu = 0 \) case, where simple analytic results for edge modes can be obtained.

In the absence of superconducting pairing and Zeeman field, the Hamiltonian (1) is invariant under the time-reversal \(T = is_y K \) and space-inversion \(I = \sigma_z \) operations, where \(K \) is the complex-conjugation operator. The band topology can be characterized by a \(Z_2 \) topological index protected by \(T \) symmetry. The system is a QSHI in the band inversion region

\[
\left[\epsilon_0^2 - (2t_x + 2t_y)^2 \right] \left[\epsilon_0^2 - (2t_x - 2t_y)^2 \right] < 0,
\]

which consists of two copies of quantum anomalous Hall insulators in the orbital space. With the open boundary condition, there are two helical edge states with opposite spins and momenta propagating along each edge (Fig. 2(a)) in the QSHI phase, which are expected from the bulk-boundary correspondence [1, 2].

Topological phase diagram and MCMs—In the presence of superconducting order parameter \(\Delta_0 \), a finite quasiparticle energy gap is opened in the edge spectrum for two helical edge states due to the s-wave pairing, as illustrated in Fig. 2(b). The in-plane Zeeman field \(h_x \) has different effects on the single particle edge spectra (i.e., \(\Delta_0 = 0 \)) along \(x \) and \(y \) directions: it can (not) open the gap along \(h_x \) (\(k_y \)) direction (Fig. 2(c)). Such anisotropic effect of \(h_x \) leads to very different physics with a finite \(\Delta_0 \). Along \(k_x \) direction, the quasiparticle band gap first closes (Fig. 2(d1)) at the critical point \(h_{xc} = \Delta_0 \) and then reopens (Fig. 2(e1)) with increasing \(h_x \), indicating a topological phase transition. While along \(k_y \) direction, the quasiparticle band gap does not close (Figs. 2(d2,e2)). The resulting topological phase in Fig. 2(e) can be characterized by a \(Z \) invariant [39]. The difference between the

FIG. 2: Quasiparticle bands with edge spectrum (red lines) for open boundary conditions along \(y \) or \(x \) directions. (a1) and (a2) \(h_x = \Delta_0 = 0 \); (b1) and (b2) \(h_x = 0.0, \Delta_0 = 0.4 \); (c1) and (c2) \(h_x = 0.3, \Delta_0 = 0.0 \); (d1) and (d2) \(h_x = 0.4, \Delta_0 = 0.4 \); (e1) and (e2) \(h_x = 0.6, \Delta_0 = 0.4 \). Other parameters: \(t_x = t_y = \lambda_x = \lambda_y = 1 \), and \(\epsilon_0 = 1 \).
The inset shows h for a trivial superconductor.

The color bar ∆ indicates the edge energy gap. The white line represents the phase boundary h_c = √µ^2 + ∆_0^2. Parameters t_x = t_y = λ_x = λ_y = 1 and ε_0 = 1 are used.

edge spectra drives the heterostructure to a second-order topological superconductor.

The emergence of MCMs after the topological phase transition is confirmed by the numerical simulation of corresponding real space lattice tight-binding model, as shown in Figs. 3(a,b). Before the topological phase transition (Fig. 3(a)), there are no zero energy bounded states localized at edges. After the in-plane Zeeman field passes the critical point h_c, four zero energy MCMs emerge at four corners (Fig. 3(b)). The emergence of MCMs does not depend on the sample geometry (e.g., a rectangle sample yields the same result). In Fig. 3(c), a right triangle sample is also considered. Comparing with the square sample with the same parameters (Fig. 3(b)), there are only two MCMs at left two corners due to the orientation of the hypotenuse edge that leads to different effects of the in-plane Zeeman field.

Low-energy theory on edges.— All above numerical results can be explained by developing an effective low-energy theory on edges. With both superconducting order and in-plane Zeeman field, the Hamiltonian H(k) possesses both inversion symmetry and particle-hole symmetry \(P H(k) P^{-1} = -H(-k) \), but breaks the time-reversal symmetry, where \(P = \tau_x K \). Without loss of generality, we assume a positive in-plane Zeeman field applied along x direction, i.e., \(h_x > 0 \) and \(h_y = h_z = 0 \).

The low-energy effective Hamiltonian can be obtained through the lowest order expansion with respect to k at Γ point

\[
H_{\text{eff}}(k) = (\epsilon + t_x k_x^2 + t_y k_y^2) \sigma_z \tau_z + 2\lambda_x k_x \sigma_x \tau_z + 2\lambda_y k_y \sigma_y \tau_z + \Delta_0 \tau_x + h_x s_x, \tag{2}
\]

where \(\epsilon = \epsilon_0 - 2t_x - 2t_y < 0 \) is assumed such that the QSHI is topologically non-trivial and characterized by the \(\mathbb{Z}_2 \) index without superconducting pairing and Zeeman field.

Assuming an open-boundary condition along the x direction for edge i, we can replace \(k_x \) with \(-i\partial_x\) and rewrite \(H_{\text{eff}}(k) = H_0(-i\partial_x) + H_p(k_y) \) with \(H_0 = (\epsilon - t_x k_x^2) \sigma_z \tau_z - 2i\lambda_x \partial_x \sigma_x s_z \tau_z \), and \(H_p = t_y k_y^2 \sigma_y \tau_z + 2\lambda_y k_y \sigma_y \tau_z + \Delta_0 \tau_x + h_x s_x \). When the pair order \(\Delta_0 \) is small comparing to the energy gap, we can treat \(H_p \) as a perturbation and solve \(H_0 \) to derive the effective edge Hamiltonian for edge i. Assume that \(\Psi_a \) is a zero energy solution for \(H_0 \) bounded at edge i, \(\sigma_y s_z \tau_z \Psi_a \) is also the eigenstate for \(H_0 \) due to \(E_{0}(\lambda) = \{H_0, \sigma_y s_z \} = 0 \). We choose the basis vector \(\zeta_{\beta} \) for \(\Psi_a \) satisfying \(\sigma_y s_z \zeta_{\beta} = -\zeta_{\beta} \), where \(\zeta_1 = |-,+,-\rangle \), \(\zeta_2 = |+,+,+\rangle \), \(\zeta_3 = |-,+,+\rangle \), \(\zeta_4 = |+,+,+\rangle \) are eigenstates of \(\sigma_y s_z \tau_z \). Under this basis, the effective low-energy Hamiltonian for the edge becomes \(H_{\text{Edge},i} = 2\lambda_y s_x \tau_z \partial_y + \Delta_0 \tau_x + h_y s_x \). Similarly, we obtain the low-energy Hamiltonian for every edge, which can be written as

\[
H_{\text{Edge},j} = -i\lambda_j s_x \tau_z \partial_j + \Delta_0 \tau_x + h_j s_x. \tag{3}
\]

Here the parameters are \(\lambda_j = \{-2\lambda_y, 2\lambda_x, 2\lambda_y, -2\lambda_x\} \), \(l_j = \{y, x, y, x\} \), and \(h_j = \{0, h_x, 0, h_x\} \) for \(j = i, iv \) edges.

From the effective edge Hamiltonian (3), we see that the superconducting order induces quasiparticle gaps for all helical edge states regardless of Zeeman fields since \(s_x \tau_z, \tau_x \) = 0, which is observed in Fig. 2(b). On the other hand, Eq. (3) indicates that the in-plane Zeeman field \(h_x \) only opens a gap on two parallel edges (ii and iv), but keeps two perpendicular edges (i and iii) untouched, which are also observed numerically in Fig. 2(c).

When \(\Delta_0 = 0 \), the low-energy edge Hamiltonian possesses two zero-energy bound states on edge i

\[
\Psi_1(x) = A_1 (\sin \alpha) e^{-\frac{\lambda_1}{t_x} x} (\zeta_1 + \zeta_2), \tag{4}
\]

\[
\Psi_2(x) = A_2 (\sin \alpha) e^{-\frac{\lambda_2}{t_x} x} (\zeta_3 + \zeta_4),
\]

where \(\alpha = \sqrt{\frac{-2\Delta_0}{t_x^2 + h_x^2} + \epsilon/x_2} \) and \(A_1(A_2) \) is the normalization constant. Similarly, there are two zero energy bound states localized at edge iii, which are confirmed by real space numerical simulation (see supplementary material).

After a unitary transformation \(U = 1 \oplus (-is_y) \), the edge Hamiltonian reads

\[
H'_{\text{Edge},j} = -i\lambda_j s_x \partial_j + \Delta_0 \tau_x + h_j s_x. \tag{5}
\]
on the rotated basis \(\chi_1 = |+1\rangle |+1\rangle, \chi_2 = |+1\rangle |-1\rangle, \chi_3 = |-1\rangle |+1\rangle, \chi_4 = |-1\rangle |-1\rangle \), which are eigenstates of \(s_z \tau_y \). For edge i, the Hamiltonian \(H_{\text{edge},i} \) has two decoupled diagonal blocks with Dirac masses \(\Delta_0 + h_x \) and \(h_x - \Delta_0 \), respectively. While for edge ii, Dirac masses are the same \(\Delta_0 \) for two blocks. When \((\Delta_0 - h_x) \cdot \Delta_0 < 0 \) (i.e., \(h_x > \Delta_0 \)), the Dirac masses on edges i and ii have opposite signs, leading to the emergence of a localized mode at the intersection of two edges, which is the MCM observed numerically in Fig. 3(b). At the corner between edges i and ii, the MCM can be obtained from the zero-energy wavefunction

\[
\Phi(x, y) \propto \begin{cases}
 e^{-\Delta_0 h_x} |y-y_0\rangle (\chi_3 - i\chi_4) \quad \text{(edge i)}, \\
 e^{-\Delta_0} |x-x_0\rangle (\chi_3 - i\chi_4) \quad \text{(edge ii)},
\end{cases}
\]

where the corner locates at \((x_0, y_0)\). We see that MCMs could have different density distributions along different directions when \(|\Delta_0 - h_x|/\lambda_y \neq \Delta_0/\lambda_x \).

For the triangle geometry in Fig. 3(c), the effect of the in-plane Zeeman field on the hypotenuse edge can be studied by projecting it to the direction of the Zeeman field, which shows that the Zeeman field acts uniformly on the hypotenuse and upper edges. Consequently, there is no kink of Dirac mass at that corner, i.e., no MCM. Generally, such an argument applies to all geometric configurations with odd edges (e.g., a square with a small right triangle removed at a corner), which is consistent with bulk spectra because the particle-hole symmetry demands that zero-energy modes must be lifted pairwise.

For a general form of the in-plane Zeeman field, MCMs emerge in the region \(\sqrt{h_x^2 + h_y^2} > \Delta_0 \). However, an out-of-plane Zeeman field \((h_z s_z \text{ term}) \) does not induce MCMs because the helical edge states of QSHIs remain gapless for any \(h_z \) and \(h_x \) affects each edge in the same way. Finally, for a nonzero chemical potential \(\mu \neq 0 \), the spectrum is more complicated (see Supplementary materials), and MCMs still exist for \(h_x > \sqrt{h_y^2 + \Delta_0^2} \) with bulk spectrum being gapped. The phase diagram with a finite \(\mu \) is shown in Fig. 3(d).

Majorana hinge modes in 3D.— Similar physics also applies to 3D. Consider a 3D topological insulator described by the Hamiltonian \(H_T (k) = \xi_k \sigma_z s_0 + \sum_i \lambda_i \sin k_i \sigma_z s_i \), where \(\xi_k = m_0 + \sum_i t \cos k_i \), which respects both time reversal and inversion symmetries. For \(1 < |m_0| < 3 \), \(H_T (k) \) represents a 3D topological insulator that possesses surface Dirac cones with gapped bulk spectrum protected by \(\mathcal{I} \) and \(\mathcal{P} \) symmetries. In the presence of an \(s \)-wave superconducting order \(\Delta_0 \) and a Zeeman field,

\[
H_{3D} (k) = \xi_k \sigma_z \tau_z + \lambda_x \sin k_x \sigma_x s_x \tau_z + \lambda_y \sin k_y \sigma_y s_y \tau_z + \lambda_z \sin k_z \sigma_z s_z \tau_z + \Delta_0 \tau_z + h \cdot s.
\]

For \(\Delta_0 \neq 0 \), \(|h| = 0\), the surface states are gapped and the system is a trivial superconductor. When \(h_x > 0 \), \(h_y = h_z = 0 \), the in-plane Zeeman field \(h_x \) breaks the time reversal symmetry in the \(x \)-direction, generating a class-D superconductor. Tuning \(h_x > \Delta_0 \), we observe the gapless chiral Majorana hinge modes propagating along the \(z \) direction as shown in Fig. 4. Such a 3D second-order topological superconductor can be characterized by a \(Z \) invariant [39].

Fig. 4(a) shows the energy spectrum with open boundary conditions along \(x \) and \(y \) directions, where the chiral Majorana hinge modes (each two-fold degenerate) emerge in the bulk energy gap. The combination of the Zeeman field and the superconductor order gives rise to four domain walls at which the Dirac mass sign changes. Due to the inversion symmetry, the chiral modes at diagonal hinges propagate along opposite directions, as illustrated in Fig 4(b). We remark that the requirement of in-plane Zeeman field can be relaxed in 3D and the direction of the Zeeman field can be used to control the directionality of the hinge modes. Specifically, when the Zeeman field lies along the \(y \) direction and \(h_y > \Delta_0 \) \((h_z > \Delta_0)\), the chiral Majorana hinge modes propagate along the \(x \) \((y)\) direction with periodic boundary conditions.

Discussion and conclusion.—InAs/GaSb quantum wells are 2D \(Z_2 \) QSHIs with large bulk insulating gaps up to \(\sim 50 \) mev, and significant experimental progress has been made [40–43] recently to observe their helical edge states. Superconducting proximity effects in InAs/GaSb quantum wells were also observed in experiments [44–46]. In particular, edge-mode superconductivity due to proximity contact with an \(s \)-wave superconductor has been detected through transport measurement [45], and giant supercurrent states have been observed [46]. By engineering a quantum device illustrated in Fig. 1, MCMs should be observable.

Another potential material is the monolayer WTe\(_2\), which has the desired band structure [47], and has been
confirmed as a QSHI in recent experiments [48, 49]. S-wave superconductor NbTiN has a high transition temperature at \(T > 15 \) K [50], while the proximity-induced superconducting gap is usually much smaller \(\sim 0.1 \) meV. To achieve a comparable spin Zeeman splitting in transition metal dichalcogenides (TMDs), a small in-plane magnetic field \(H > 25 \) mT is enough [51]. For Majorana hinge modes in 3D, effective Zeeman fields could be induced by doping magnetic impurities into 3D topological insulators.

In conclusion, we have shown that a heterostructure composed of QSHI/s-wave superconductor can become a second-order topological superconductor with MCMs in the presence of an in-plane Zeeman field. Because neither exotic superconducting pairings nor complex junction structures are required, our scheme provides a simple and realistic platform for the experimental study of the non-Abelian Majorana corner and hinge modes.

This work is supported by Air Force Office of Scientific Research (FA9550-16-1-0387), National Science Foundation (PHY-1806227), and Army Research Office (W911NF-17-1-0128). The work by C.Z. was performed at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1607611. This work is also supported in part by NSFC under the grant No. 11504285, and the Scientific Research Program Funded by Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JQ1058), the Scientific Research Program Funded by Shaanxi Provincial Education Department under the grant No. 18JK0397, and the scholarship from China Scholarship Council (CSC) (Program No. 201708615072).

* chuanwei.zhang@utdallas.edu

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topologicalinsulators, Rev. Mod. Phys. 82, 3045 (2010).
[2] X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
[3] S. R. Elliott and M. Franz, Majorana fermions in nuclear, particle, and solid-state physics, Rev. Mod. Phys. 87, 137 (2015).
[4] Ramón Aguado, Majorana quasiparticles in condensed matter, La Rivista del Nuovo Cimento 40, 523 (2017).
[5] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).
[6] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80, 1083 (2008).
[7] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids and Majorana Bound States in Quantum Wires, Phys. Rev. Lett. 105, 177002 (2010).
[8] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor heterostructures, Phys. Rev. Lett. 105, 077001 (2010).
[9] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Non-Abelian statistics and topological quantum information processing in 1D chain networks, Nat. Phys. 7, 412 (2011).
[10] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. Ignacio Cirac, E. Demler, M. D. Lukin, and P. Zoller, Majorana fermions in equilibrium and in driven cold-atom quantum chains, Phys. Rev. Lett. 106, 220402 (2011).
[11] J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75, 076501 (2012).
[12] S. Tewari and J. D. Sau, Topological Invariants for Spin-Orbit Coupled Superconductor Nanowires, Phys. Rev. Lett. 109, 150408 (2012).
[13] L. Fu, and C. Kane, Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator, Phys. Rev. Lett. 100, 096407 (2008).
[14] C. Zhang, S. Tewari, R. M. Lutchyn, and S. Das Sarma, \(p_x + ip_y \) superfluid from s-wave interactions of fermionic cold atoms, Phys. Rev. Lett. 101, 160401 (2008).
[15] M. Sato, Y. Takahashi, and S. Fujimoto, Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms, Phys. Rev. Lett. 103, 020401 (2009).
[16] A. Bühler, N. Lang, C.V. Kraus, G. Möller, S.D. Huber & H.P. Büchler, Majorana modes and p-wave superfluids for fermionic atoms in optical lattices, Nat. Commun. 5, 4504 (2014).
[17] L. Ortiz, S. Varona, O. Viyuela, and M. A. Martin-Delgado, Localization and oscillations of Majorana fermions in a two-dimensional electron gas coupled with d-wave superconductors, Phys. Rev. B 97, 064501 (2018).
[18] S. Varona, L. Ortiz, O. Viyuela and M. A. Martin-Delgado, Topological phases in nodeless tetragonal superconductors, J. Phys.: Condens. Matter 30, 395602 (2018).
[19] V. Mourik, K. Zuo, S. M Frolow, SR Plissard, E. Bakkers, and L.P. Kouwenhoven, Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science 336, 1003 (2012).
[20] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li, Anomalous modulation of a zero bias peak in a hybrid nanowire-superconductor device, Phys. Rev. Lett. 110, 126406 (2013).
[21] S. Nadji-Perge, I. K Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H MacDonald, B A. Bernevig, and A. Yazdani, Observation of majorana fermions in ferromagnetic atomic chains on a superconductor, Science 346, 602 (2014).
[22] J.-P. Xu, M.-X. Wang, Z.-L. Liu, J.-F. Ge, X.-J. Yang, C.-H. Liu, Z.-A. Xu, D.-D. Guan, C.-L. Gao, D.-Q., Y. Liu, Q.-H. Fang, F.-C. Zhang, Q.-K. Xue, and J.-F. Jia, Experimental detection of a majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi\(_2\)Te\(_3\)/NbSe\(_2\) heterostructure, Phys. Rev. Lett. 114, 017001 (2015).
[23] Z. F. Wang, H.-M. Zhang, D.-F. Liu, C. Liu, C.-J. Tang, C.-L. Song, Y. Zhong, J.-P. Peng, F.-S. Li, C.-N. Nie, L.-L. Wang, X. J. Zhou, X.-C. Ma, Q. K. Xue, and F. Liu, Topological edge states in a high-temperature superconductor FeSe/SrTiO\(_3\) (001) film, Nat. Mater. 15, 968 (2016).
[24] Q. L. He, L. Pan, A. L. Stern, E. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Mu-
rata, X. Kou, T. Nie, Q. Shao, Y. Fan, S.-C. Zhang, K. Liu, J. Xia, and K. L. Wang, Chiral Majorana edge state in a quantum anomalous Hall insulator-superconductor structure, Science 357, 294 (2017).

[25] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W. Brouwer, Reflection-Symmetric Second-Order Topological Insulators and Superconductors, Phys. Rev. Lett. 119, 246401 (2017).

[26] X. Zhu, Tunable Majorana corner states in a two-dimensional second-order topological superconductor induced by magnetic fields, Phys. Rev. B 97, 205134 (2018).

[27] E. Khalaf, Higher-order topological insulators and superconductors protected by inversion symmetry, Phys. Rev. B. 97, 205136 (2018).

[28] Y. Wang, M. Lin, and T. L. Hughes, Weak-Pairing Higher Order Topological Superconductors, Phys. Rev. B 98, 165144 (2018).

[29] Z. Yan, F. Song, and Z. Wang, Majorana Corner Modes in a High-Temperature Platform, Phys. Rev. Lett. 121, 096803 (2018).

[30] Q. Wang, C.-C. Liu, Y.-M. Lu, and F. Zhang, High-Temperature Majorana Corner States, Phys. Rev. Lett. 121, 186801 (2018).

[31] T. Liu, J. J. He, and F. Nori, Majorana corner states in a two-dimensional magnetic topological insulator on a high-temperature superconductor, Phys. Rev. B 98, 245413 (2018).

[32] X.-H. Pan, K.-J. Yang, L. Chen, Q. Xu, C.-X. Liu, X. Liu, Lattice symmetry assisted second order topological superconductors and Majorana patterns, arXiv:1812.10989v2.

[33] C.-H. Hsu, P. Stano, J. Klinovaja, and D. Loss, Majorana Kramers pairs in higher-order topological insulators, Phys. Rev. Lett. 121, 186801 (2018).

[34] Y. Volpez, D. Loss, and J. Klinovaja, Second Order Topological Superconductivity in π-Junction Rashba Layers, Phys. Rev. Lett. 122, 126402 (2019).

[35] X. Zhu, Second-order topological superconductors with mixed pairing, Phys. Rev. Lett. 122, 236401(2019).

[36] S. Franca, D. V. Efremov, and I. C. Fulga, Phase tunable second-order topological superconductor, arXiv:1904.02437.

[37] S. Ghorashi, X. Hu, T. L. Hughes, E. Rossi, Second-order Dirac superconductors and magnetic field induced Majorana hinge modes, arXiv:1901.07579.

[38] K. Laubscher, D. Loss, and J. Klinovaja, Fractional Topological Superconductivity and Parafermion Corner States, arXiv:1905.00885.

[39] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer, Second-order topological insulators and superconductors with an order-two crystalline symmetry, Phys. Rev. B. 97, 205135 (2018).

[40] L. Du, X. Li, W. Lou, G. Sullivan, K. Chang, J. Kono, and R.-R. Du, Evidence for a topological excitonic insulator in InAs/GaSb bilayers, Nat. Commun. 8, 1971 (2017).

[41] F. Nichele et al., Giant Spin-Orbit Splitting in Inverted InAs/GaSb Double Quantum Wells, Phys. Rev. Lett. 118, 016801 (2017).

[42] L. Du et al., Tuning Edge States in Strained-Layer InAs/GaInSb Quantum Spin Hall Insulators, Phys. Rev. Lett. 119, 056803 (2017).

[43] L. Du, I. Knez, G. Sullivan, and R.-R. Du, Robust Helical Edge Transport in Gated InAs/GaSb Bilayers, Phys. Rev. Lett. 114, 096802 (2015).

[44] W. Yu, Y. Jiang, C. Huan, X. Chen, Z. Jiang, S. D. Hawkins, J. F. Klem, and W. Pan, Superconducting proximity effect in inverted InAs/GaSb quantum well structures with Ta electrodes, Appl. Phys. Lett. 105, 192107 (2014).

[45] V. S. Pribiag, A. J. A. Beukman, F. Qu, M. C. Cassidy, C. Charpentier, W. Wegscheider, and L. P. Kouwenhoven, Edge-mode superconductivity in a two-dimensional topological insulator, Nat. Nanotechnol. 10, 593 (2015).

[46] X. Shi, W. Yu, Z. Jiang, B. A. Bernevig, W. Pan, S. D. Hawkins, and J. F. Klem, Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction, J. Appl. Phys. 118, 133905 (2015).

[47] X. Qian, J. Liu, L. Fu, and J. Li, Quantum spin hall effect in two-dimensional transition metal dichalcogenides, Sci. Adv. 5 eaat8799 (2019).

[48] S. Wu, V. Fatemi, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Observation of the quantum spin hall effect up to 100 kelvin in a monolayer crystal, Science 359, 76 (2018).

[49] Y. M. Shi, J. Kahn, B. Niu, Z. Fei, B. Sun, C. Francisco, D. Wu, Z.-X. Shen, X. Xu, D. H. Cobden, and Y.-T. Cui, Imaging quantum spin Hall edges in monolayer WTe$_2$, Sci. Adv. 5 eaat7899 (2019).

[50] J. R. Gavaler, D. W. Deis, J. K. Hulm, and C. K. Jones, Superconductor properties of Niobium-Titanium-Nitride thin films, Appl. Phys. Lett. 15, 329 (1969).

[51] G. Aivazian, Z. Gong, A. M. Jones, R.-L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Magnetic control of valley pseudospin in monolayer WS$_2$, Nat. Phys. 11, 148 (2015).