Research Article

Museum Display Showcase Furniture System Research Based on Internet of Things Technology in Intelligent Environment

Jiaojiao Hu, Zhihui Wu, and Lei Jin

1College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
2Zhejiang Art Museum, Hangzhou 310000, China

Correspondence should be addressed to Zhihui Wu; wzh550@njfu.edu.cn

Received 22 October 2020; Revised 26 December 2020; Accepted 4 January 2021; Published 29 January 2021

Copyright © 2021 Jiaojiao Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The protection of cultural relics has always been an important issue in the field of museums and archaeology. With the development of Internet of Things technology, the security system of the museum is more intelligent and integrated. In order for the museum display system to keep up with the intelligent age, this article mainly studies the research and realization of the museum showcase system based on the Internet of Things technology in a smart environment. Before the start of the experiment, we developed the overall design of the system, including three functional modules: temperature module, illumination module, and monitoring module. The experiment is done mainly for system testing. The performance test of the sensor module needs to sample the temperature and humidity sensor to verify the accuracy of the temperature and humidity signal collected in the instrument circuit. The light information collection test uses the ADC sampling inside the CC2530 to obtain the required data and judges whether these temperature, humidity, and light intensity values exceed the preset values. The serial port needs to be initialized to carry out data communication and transmission normally. After the receiving end finishes receiving, the sending end will clear the data buffer to prepare for the next data transmission. The experimental data show that the error between the predicted value and measured value of the temperature system is about 3°C, which is within the allowable error range of the experiment. The results show that the system has perfect functions, is safe and reliable, meets the expected requirements, and has good practicability.

1. Introduction

The Internet of things is a new network communication technology in recent years. It is a new network based on the Internet, through various information sensing devices, using cloud computing and big data technology, to connect “human machine things” together by means of communication, so as to realize informatization and intelligence. With the development of social economy, people pay more and more attention to the construction of spiritual civilization. Museums play an important role in providing social education, recording historical changes, and displaying cultural details. It has become an indispensable part of the construction of human spiritual civilization. As an important part of the museum, the display cabinet has a close relationship with the exhibits, so the design of the display cabinet has a strong influence on the overall exhibition effect.

Cultural relics are the product of history. In the course of five thousand years of development, the Chinese nation has created brilliant material and spiritual civilizations for us but also left us countless treasures of cultural relics. Only by better preserving these cultural heritages in the form of material and promoting them to better serve the development of mankind can it promote the better development of mankind. As the highly integrated and comprehensive application of a new generation of information technology, the rapid development of the Internet of Things plays an important role and significance in promoting the design of museum showcases and the green, intelligent, and sustainable development of the
society. According to the specific environment, the corresponding sensor is selected to obtain the parameters, which improves the accuracy of obtaining the environmental parameters and eliminates the drawbacks of manual detection.

The Internet of Things technology has brought tremendous changes to human life. Wu believes that, in recent years, museums have invested a lot of manpower and material resources to promote the construction of digital museums. However, in the construction of digital museums, it is very difficult to manage so many collections and find a collection in them. Therefore, he used information technology to identify collections. He described the digital construction of the museum and proposed the idea of using the Internet of Things technology in the construction of the digital museum. He proposed a system design for museum collection management, which provides a new way for the construction of smart museums. Although his research is theoretically correct, it lacks specific experimental content [1]. Palattella believes that, in recent years, a variety of communication technologies have gradually emerged, reflecting the diversity of application fields and communication requirements. He analyzed in detail the potential of 5G technology in the Internet of Things by considering technology and standardization. He reviewed the current IoT connectivity landscape and the main 5G support factors for IoT. He explained that the close connection between the Internet of Things and 5G may cause huge business changes in the operator and supplier ecosystem. His research is not comprehensive enough [2]. Bello believes that similar to the way humans use the Internet, devices will become the main users of the Internet of Things (IoT) ecosystem. Therefore, device-to-device (D2D) communication is expected to become an inherent part of the Internet of Things. Devices will automatically communicate with each other without any centralized control and cooperate in a multihop manner to collect, share, and forward information. He believes that the ability to collect relevant information in real time is the key to harnessing the value of the Internet of Things because such information will be transformed into intelligence, which will help create a smart environment. Ultimately, the quality of the information collected depends on the intelligence of the device. He outlined how to implement smart D2D communication in the IoT ecosystem. His research is not accurate enough [3]. Akpakwu believes that the Internet of Things (IoT) is a promising technology, which tends to change and connect the global world through seamless connection and heterogeneous intelligent devices. The current demand for machine-type communication (MTC) has led to a variety of communication technologies and services to achieve the vision of modern IoT. He surveyed the latest Internet of things application requirements and related communication technologies. In addition, he discussed in detail the 3G partner program's cellular-based low-power wide area solution to support and enable new service requirements for "large to critical IOT" use cases. He presented a comprehensive overview of emerging technologies and enabling technologies, with a focus on 5G mobile networks, to support the exponential traffic growth of IOT. Although his research is comprehensive, it lacks necessary data [4].

The innovation of this article is to connect this emerging wireless communication technology with the current cultural relics protection hotspot and design a museum showcase system based on the Internet of Things technology. The system can monitor environmental information parameters in real time and realize the monitoring of multiple environmental parameters in the same network. It can not only monitor the environmental parameters that affect the preservation of cultural relics in the showcase in real time but also adjust the temperature and humidity in the showcase in real time. Compared with the traditional environmental monitoring system, this scheme has good scalability, convenient use, and strong portability. It can be used for environmental monitoring in other fields through simple parameter modification. At the same time, this paper compares and analyzes the key technologies in the system and focuses on the detailed introduction and analysis of single-chip technology, WiFi technology, cloud computing mode, and other technologies. Finally, the overall architecture of the system is built, the design plan is determined, and the appropriate chip is selected for design.

2. Internet of Things and Showcase System

2.1. Internet of Things Technology. Information and communication technology currently has the ability to transmit any place and any information to designated people or objects in a short time, and this information line is connected into an intricate network, which is the Internet of Things. The main function of the Internet of Things technology is to finally realize a technology of information transmission between objects through the perception and transmission of information. The roles and functions of the various structures of the Internet of Things technology are also different. The perception layer is mainly used for the perception of information, such as information collection and recognition; the network layer is mainly used for the transmission of various information, and the application layer is mainly presents the result of the final identification information to humans. The result of the final identification information is presented in front of human beings, which further promotes human’s intelligent management of something [5]. Sensor nodes generally belong to embedded systems (micro) in the aforementioned Internet of Things, and their basic functions are mainly manifested in routing, wireless communication, and collecting, storing, and processing data. In addition to collecting and processing local information, it is also necessary to forward and save data transmitted from other nodes. The electrical energy of the sensor node mainly comes from the battery, so its energy consumption is positively related to its function. The more nodes in the Internet of Things, the more data will need to be forwarded by sensor nodes, which will increase its energy consumption. The monitoring area of the heterogeneous Internet of Things is divided into multiple clusters. Each cluster is usually composed of several nodes (sensor nodes) in the cluster and one cluster head node (sink node). All sensor nodes in the cluster need to transmit data to the cluster aggregation node, and then, each cluster aggregation
node in the network will send the collected data to the task management node through satellite channels, the Internet, and other channels [6, 7].

The network layer is an indispensable part of the ZigBee protocol stack. It is connected with the media access control layer and the user layer confidentiality. The joining and leaving of nodes in the network, routing lookup, and other functions must be implemented through this layer. The network layer reference model is shown in Figure 1. The network layer provides a function interface to the media access control layer to ensure the normal operation of this layer.

The source node forwards the data packet to its corresponding neighbor node, and then, it uses this routing algorithm to check that the destination node is its parent node. The parent address of the neighbor node is given as follows:

\[P_{LA} = L_A + \left[\frac{D_A - (L_A + 1)}{C_{skip}} \cdot (d) \right] + 1. \]

(1)

The Euclidean distance between two points is given as follows:

\[d(x_i, x_j) = \sqrt{(x_i1 - x_j1)^2 + (x_i2 - x_j2)^2 + \cdots + (x_in - x_jn)^2}. \]

(2)

Among them, \(x_i = (x_{i1}, x_{i2}, \ldots, x_{in}) \) and \(x_j = (x_{j1}, x_{j2}, \ldots, x_{jn}) \) are the data objects of the monitoring points.

The formula for the average distance between monitoring data points is given as follows:

\[\text{avgDist} = \frac{1}{c_N^2} \times \sum d(i, j). \]

(3)

In the formula, \(c_N^2 \) is the number of combinations of two points taken from \(n \) points.

The square error criterion function is as follows:

\[\text{SSE} = \sum_{i=1}^{\infty} \sum_{m \in c_i} |m - m_i|^2. \]

(4)

The difference within the cluster measures the compactness within the cluster, that is, the density distribution of the data points in the museum. It can be judged here that the sum of the squares of the distance from each data point in the cluster to the cluster center is calculated. The formula is as follows:

\[w(c) = \sum_{i=1}^{k} w(C_i) = \sum_{i=1}^{k} \sum_{x \in C_i} d(x, C_i)^2. \]

(5)

The balanced environmental evaluation function is as follows:

\[W(c, k) = \sqrt{w^2(c) + b^2(c)}. \]

(6)

From \(t = 1 \) to \(t = T \), in the 16 channels of the ZigBee wireless sensor network, the probability of the hidden state observation sequence is given as follows:

\[\Pr(x^T) = \prod_{t=1}^{T} a_{x_{t-1}, x_t}, \]

(7)

where \(x_t \) is the hidden channel state of the channel at time \(t \). Under the given hidden state sequence \(x^T \), from \(t = 1 \) to \(t = T \), the conditional probability of the observation state sequence \(y^T \) is given as follows:

\[\Pr(y^T | x^T) = \prod_{t=1}^{T} b_{x_t, y_t}(x_t). \]

(8)

In the KSS-HMM model, the historical hidden state and detected channel state are determined. Therefore, if the ZigBee network device performs channel switching at time \(t_0 \), the probability of the observation sequence of the channel time slot time \(T_1 \) is given as follows:

\[\Pr(y^{T_1}) = \sum_{t=t_0-T_1+1}^{t_0} a_{x_{t-1}, x_t} b_{x_t, y_t}(x_t). \]

(9)

The difference within the cluster measures the compactness within the cluster, that is, the density distribution of the data points in the museum. It can be judged here that the sum of the squares of the distance from each data point in the cluster to the cluster center is calculated. The formula is as follows:

\[w(c) = \sum_{i=1}^{k} w(C_i) = \sum_{i=1}^{k} \sum_{x \in C_i} d(x, C_i)^2. \]

(5)

The balanced environmental evaluation function is as follows:

\[W(c, k) = \sqrt{w^2(c) + b^2(c)}. \]

(6)

2.2. Museum Showcase. Museum display cabinet refers to the cabinet specially designed and manufactured by the museum for the storage and display of collections to meet the needs of collection display and realize the purpose of research, education, and appreciation. From the definition of museum display cabinet, a museum display cabinet must serve as the display of the museum and realize the purpose of museum design and production. The lighting mode of the independent cabinet generally adopts top-line fluorescent lamp lighting or spotlight lighting. In order to prevent the damage of lighting lamps to cultural relics, the lighting part and display part are generally separated by aluminum grille and glass [8]. The function of the aluminum grille is to provide uniform illuminance so that visitors cannot see the structure of the lamp. The upper part of the grille is generally made of glass with an antiradiation film to effectively isolate harmful light and heat. The display cabinets of precious cultural relics generally adopt optical fiber lighting. This lighting method generates less heat and can protect cultural relics to the utmost extent. The full-body wall cabinet is generally placed against the wall, usually used to display large or grouped cultural relics, and the display part usually has side panels or back panels, which can only be viewed from the front or from both sides. The display cabinets of precious cultural relics generally adopt optical fiber lighting. This lighting method generates less heat and can protect cultural relics to the utmost extent. The lighting of table-style showcases generally uses external lighting, and some precious paper or organic cultural relics use optical fiber lighting.
lighting in the cabinet. This lighting method generates less heat and can protect cultural relics to the utmost extent [9, 10].

PID controller can be expressed as follows:

$$u(t) = k_p \left(\text{err}(t) + \frac{1}{T_i} \int_0^t \text{err}(t) dt + \frac{T_d}{T_i} \text{err}(t) \right).$$

(11)

Among them, $k_p \text{err}(t)$ is a proportional control item. The PI mathematical model is given as follows:

$$\mu(t) = K_P \left[e(t) + \frac{1}{T_i} \int_0^t e(t) dt \right] + \mu_0.$$

(12)

The transfer function form is given as follows:

$$G(s) = \frac{U(s)}{E(s)} = K_P \left(1 + \frac{1}{T_i s} + T_D s \right).$$

(13)

When increasing the gain, the system will become more sensitive. But when the gain is too large, the number of system vibrations will increase and the adjustment time will be prolonged. Therefore, it is very important to determine the appropriate gain value in the control process.

2.3. System Design. To realize the monitoring of showcase parameters, corresponding sensors are needed. In addition to sensors, instruments are also needed to collect and process sensor data and can control humidity in a certain way and send the data to the host computer after networking [11].

2.3.1. Temperature Module. The momentum conservation equation follows Newton’s second law of motion, and the differential form of conservation is expressed as follows:

$$\frac{\partial}{\partial t} (\rho u_j) + \frac{\partial}{\partial x_i} (\rho u_j u_j) = \frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} + \rho g_j + F_i.$$

(14)

In the formula, ρ is static pressure, and F_i is unit mass force in different directions.

The energy conservation equation follows the first law of thermodynamics, and the differential form of conservation is expressed as follows:

$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_i} (u_i (\rho E + p)) = \frac{\partial}{\partial x_i} \left(k_{\text{eff}} \frac{\partial T}{\partial x_i} - \sum_j h_j J_j + u_i \left(\tau_{ij} \right) \right) + S_h.$$

(15)

In the formula, E is the total energy of fluid clusters, and k_{eff} is the effective thermal conductivity.

The system is mainly composed of the wireless sensor network and monitor platform. The zig node is composed of the zigs node and bee node. The ZigBee terminal node is connected with various sensors, which are used to collect environmental data in the museum. The TCP socket receiver program on the server side writes the data from GPRS DTU to the database on the server side and then uses the php script program based on Web technology to display the data to the user. The user can analyze and process the data through the PC client [12]. The intelligent greenhouse communication mode needs to collect as much data as possible and also uses video surveillance. Therefore, the data rate of network transmission is relatively high to accommodate video communication. Transmission of information should be secure, and information security has been paid more and more attention now, and there will be no application market if there is no security application; since the equipment is the uninterrupted automatic work, the communication stability needs to be guaranteed [13, 14].

![Network layer reference model](image-url)
In order to measure the temperature and humidity value, a sensor is needed to measure it. This design uses the integrated temperature and humidity sensor DHT11. DHT11 has undergone precise humidity adjustment and stores the school team coefficients in the memory and calls these calibration coefficients during detection signal processing. Generally, a 4-pin package is used, in which the 3 pins are floating, and the second pin is transmitted by a single bus. The photosensor module is generally used to detect the brightness of the light in the surrounding environment, trigger the single-chip microcomputer or relay module, etc.

The methods and steps to determine the humidity index of cultural relics preservation are summarized as follows: when there is no moisture absorption model corresponding to various materials, the moisture regain of materials under different humidities is measured by the experiment, and then, the moisture absorption isotherm is drawn according to the data obtained; the parameter values of the moisture absorption model are obtained by nonlinear regression of several existing moisture absorption models with I4Opt statistical software. Analyze the fitting procedures of each moisture absorption model and material moisture absorption isotherm, and find the model with the highest fitting accuracy; the model with the highest fitting accuracy is the best moisture absorption model of the material. Through this model, the relative humidity index of the material can be deduced by giving the moisture regain value under the condition of known temperature [16].

2.3.2. Illumination Module. In terms of hardware, the CC2530 chip is selected to deploy the wireless sensor network, and the PWM module is used as an LED-dimming module; in terms of software, an IAR-integrated development environment is used as the development tool, MySQL is used as the database software, and easyUI framework is used to realize the function of data viewing on Web. The illuminance sensor adopts nhzd10au series. The special-purpose optical chip has the advantages of low illumination and strong illumination. Sensor measurement signal transmission distance is long, and signal stability and transmission anti-interference ability are strong [17]. The system consists of server, gateway, and intelligent lighting terminal. The server serves as a node for collecting and storing terminal information and provides users with an interface for registering, inquiring, and controlling terminal lighting equipment. WEB/APP server, database server, and terminal access server are set up on the server. The system consists of server, system gateway, and intelligent lighting terminal. The server is the node for collecting and storing terminal information and provides users with an interface for registering, querying, and controlling terminal lighting equipment. The server is equipped with Web/app server, database server, and terminal access server. The system gateway is responsible for maintaining and coordinating networking and exchanging communication between many terminals and servers, and the gateway is connected up to the terminal access server. The smart lighting terminal is used to collect the status information of LED lights and control the LED status, which is the final execution system of user actions [18, 19].

2.3.3. Monitoring Module. The hardware block diagram of the security instrument in the museum’s smart showcase security system is shown in Figure 2. The security instrument uses the ARM CORTEX-M3-based STM32F103ZET6 microcontroller as the core controller to design the hardware circuit, which mainly includes a power-supply module, a real-time clock module, four groups of sensor monitoring modules, a WiFi module, a GSM communication module, and a booth lifting device. The display cabinet security instrument has less need for buttons, so it adopts the independent button design. The hardware circuit of the independent button is simple and easy to operate. It can be directly connected to the IO port of the single-chip microcomputer to obtain button information, which is widely used in the industrial embedded field [20]. Aiming at the cultural relics on display in the independent cabinet, this paper designs a booth lifting device. When the security system is triggered, if the booth is at the upper limit of the stroke, it will automatically descend to the dark warehouse of the showcase, reducing the risk of cultural relic damage. At the same time, the administrator can also control the lifting of the showcase booth through the remote control. The booth lifting device is composed of four DC motors and auxiliary mechanical devices to further improve work efficiency and ensure the safety of cultural relics. The security instrument controls the forward rotation, reverse rotation, and stop rotation of the electric push rod through the corresponding circuit to realize the function of lifting the booth. The remote control sends up, down, and stop commands to the security instrument through the wireless sending and receiving module PT2262/2272 [21].

3. Function Test of Museum Showcase System

3.1. Experimental Environment. Before testing the system, a test outline should be made in accordance with the system requirement documents, and a feasibility analysis of the test outline should be performed, to design reasonable test cases and to perform the test. The experimental equipment are as follows: a computer, a network coordinator (FFD) and a terminal node (RFD), a temperature and humidity sensor, ground temperature and humidity sensor, simulator, GPRSDTU, error detection wizard, and an integrated IAR development environment. Both test units are equipped with two independent data transmission and network control buttons and are connected to an LCD screen to observe the experimental results. Among these, the termination node is also used as a control center for the smart home system, which is connected to the higher computer via the RS232 channel, and the ZigBee network and operation can be further observed via the above computer [22, 23].
3.2. System Function Test. Functional testing is a verification test for each function of the system. According to the analysis of functional requirements and design requirements of the system, functional test cases are designed and tested item by item to check whether the prototype system has reached the functional goal of the design. Before performing functional testing, we must first build a testing environment. The steps to set up a test environment are as follows.

1. Open Eclipse, debug, and run the program, and start the system server.
2. Connect the Ethernet interface of the coordinator node to the router and the miniUSB interface to the 5V power interface. The coordinator node starts to create the ZigBee network and waits for other nodes to join.
3. Deploy sensor nodes. After testing, the communication range of the node is 5–10 meters. Since the sensor is networked with a star structure and the coordinator node is placed in the museum, the nodes deployed in the museum can guarantee communication [24].

3.3. Sensor Module Performance Test. When collecting data on greenhouse environmental factors, in order to ensure the accuracy of its numerical reference, it is necessary to accurately test each sensor module. Various types of sensors are installed in different corners of the laboratory to ensure the integrity of data collection at any location in the laboratory. When detecting the received data, in order to be able to observe the change trend of the data more intuitively, select one of the sensors to collect data interface, compare the detection value obtained by the interface with the data collected by the actual engineering instrument, and verify the effectiveness of data collection [25]. By running the IAR software tool, to various sensor modules of different types, the control instructions that conform to their own data acquisition process are programmed, which are the same principles as the operating instructions programmed in the coordinator module. When the coordinator module is called for communication, the LED1 diode can always keep on after each node applies to join the wireless network communication. A portable heating and humidifying device is used to gradually increase the temperature and humidity of the air around the room [26].

First, sample the temperature and humidity sensor to verify the accuracy of the temperature and humidity signal collected in the instrument circuit. Place the sensor and instrument in a built-up constant temperature and humidity room, set the temperature at 25°C and 40% RH, and use the serial debugging assistant to observe the collected data values. Then, the sensor whose signal type is analog signal is collected to verify that the Butterworth filter in the circuit will not make the data deviate, while ensuring the stability of the data. The debugging process is as follows: use a voltmeter to measure the voltage value connected to the AD pin of the microcontroller, use the serial debugging assistant to view the converted digital quantity, and judge the corresponding relationship between the two [27].

3.4. Light Information Collection Test. The collection of light intensity information is obtained by sampling the ADC inside the CC2530. It collects the amplified voltage signal of the BPW34S sensor and connects it to the port of the CC2530 chip. Finally, the sampled data is packaged and sent to the network coordinator in a wireless manner. The coordinator processes these data and judges whether these temperature, humidity, and light intensity values exceed the preset value. If it is greater than the previously set value, the
buzzer will send out an alarm signal so that the manager can turn on the corresponding button. The company’s control equipment can adjust temperature, humidity, and light intensity [28].

3.5. Serial Communication Function Test. The serial port must be initialized before data communication, and transmission can be carried out normally. This is a prerequisite to ensure the smooth operation of the serial port. If the serial port wants to send data, first, save the data in the buffer of the sender and then start writing data through the serial port, and the data starts to transmit. After the receiver finishes receiving, the sender will clear the data buffer to prepare for the next data transmission [29].

4. System Test Results

4.1. Temperature Module Test Results. The exhibits in the museum must use a certain form of the museum showcase to achieve the purpose of the external display. At the same time, museum showcases must be based on exhibits and designed and manufactured in accordance with the different characteristics of different exhibits. Therefore, when discussing the design and selection of museum showcases, we must fully understand the relationship between exhibits and showcases, and on this premise, fully consider and study the impact of exhibits on showcases. The relationship between museum showcases and exhibits can be said to be interdependent and indispensable. On the one hand, in order to realize its display, education, and research functions, the museum needs to concentrate a large number of collections for the external display. In this way, it provides a broad stage and good prospect for the survival and development of the showcase. On the other hand, the showcase creates excellent conditions for the display of exhibits. It not only creates an extremely comfortable storage space for the exhibits inside but also effectively prevents external threats from harming the exhibits. In the museum’s security system, it is the various security technologies and security equipment that ensure its survival and long-term maintenance. Various security technologies and security equipment play a huge role in the museum’s daily security work.

The temperature test results are shown in Table 1 and Figure 3. In the control command test process, no matter it is single lamp control, area control, or global control, precise control is achieved. Whether it is time control, illumination control, or instant control, real-time response is achieved, and there is no packet loss during communication. It is phenomenal that the control success rate is as high as 100%. From a macro point of view, the temperature and humidity environment in the cabinet will be affected by the changes in the environment outside the cabinet and show a relative change in time lag. The changes in the indoor environment outside the cabinet (exhibition room) will also be affected by the outdoor environment. The change of climate presents the effect of delay, and its delayed time-lag characteristics are generally affected by the construction materials, airtight characteristics of the building, and display cabinet envelope structure, which presents different delay effects, and is vulnerable to the external environment. Under the influence of the external environment, the temperature change of the cabinet will show obvious fluctuations. The temperature change in the atmospheric environment has the regular characteristics of annual and daily changes. Similarly, the temperature environment in the exhibition room environment is not adjusted by the environmental adjustment equipment during the closing process. It will also show corresponding fluctuations, only because the time of the impact is lagging and the degree is weakened.

Simulation is carried out by NS2 software. In the simulation environment, the network range is 200 m × 200 m, and the number of network nodes is up to 220 and randomly distributed. The neighbor table of each node allows storage of 9 neighbor node information, and the network coordinator is located in the center of the network area. Considering the increasing number of nodes in the network, the end-to-end average delay is shown in Figure 4. The packet transmission rate is shown in Figure 5. The routing efficiency is shown in Figure 6. It can be seen from the simulation results that the improved ImcTR algorithm reduces the node and average energy consumption, while at the same time it also reduces the number of hops from the source node to the destination node and improves the network performance.

4.2. Function Analysis of Showcase System. The fuzzy control method requires that the equipment must be continuously adjustable or it can be divided into multiple levels with different control capabilities in order to design fuzzy control rules. In order to make fuzzy control have a certain adaptive ability, usually use the neural network or genetic algorithm for optimization. The regeneration of the dehumidifier mainly uses heating to evaporate the water in the solution. The temperature and humidity monitoring experiment data are shown in Table 2. The experimental data shows that the system test data is basically the same as the instrument test data, the temperature measurement error is ±0.3%, and the humidity measurement error is ±3%. During the experiment, the temperature of the simulated exhibition hall (constant temperature and humidity room) fluctuates around 20°C, and the humidity fluctuates around 45%. The initial temperature in the simulated showcase (standard test box) is 20.0°C, and the initial humidity is 40.6% RH. The initial temperature and humidity of the test box is different from that in the constant temperature and humidity room because of the tightness of the test box. Different positions, forms, specifications, and outlet wind speeds of air supply and exhaust ports will cause different indoor air flow conditions, and different air flow conditions will achieve different air conditioning effects. Reasonable airflow organization can make the personnel working area and specific area reach the required four degrees, namely, temperature, humidity, speed, and cleanliness, and its distribution is uniform and stable so that it can meet the requirements of human comfort and special production technology.
4.3. Sensor Error Analysis. System data collection: its collection method is the fusion of cluster collection and distributed collection. Distributed collection is to use the connection points of multiple sensing devices to lay out the agent items of distributed collection in it to achieve the goal of data collection. Among them, the sensor device connection point transmits the collected information to the information-processing module through the wireless connection.
Figure 5: Packet transfer rate.

Figure 6: Routing efficiency.
Table 2: Comparison of temperature and humidity monitoring experimental data.

Serial number	Standard temperature	Experimental temperature	Standard humidity	Experimental humidity
1	16.7	16.5	45.2	45.1
2	16.8	16.6	44.1	44.2
3	17.3	17.2	42.8	43.0
4	17.6	17.6	42.0	42.3
5	18.0	18.0	41.2	41.3
6	17.9	17.8	40.3	40.5
7	18.3	18.1	40.0	40.1
8	18.9	19.0	39.7	39.7
9	19.5	19.4	39.6	39.7
10	19.5	19.5	39.6	39.6

network, which processes the data and at the same time feeds the processing results back to the upper computer client and loads the records in the database. Convergent collection is to realize the networking of multiple sensor equipment connection points, set up observation ports on the upper computer terminal, realize centralized observation of multiple sensor equipment connection points, and collect data information corresponding to the observation items. Data transmission is a process of transferring data from the information source to the database through one or several data links based on certain regulations. Its function is to exchange information among multiple nodes, and the information transmission methods are usually wired and wireless. Comparing the two, the wireless method has excellent adaptability, and the regional dimension has little influence. Before information enters the data fusion process, the step of data cleaning is essential. It is to delete invalid information and error information and duplicate information collected by the sensor to ensure the authenticity and validity of the data in the later fusion. Supplemented with the adaptive weighting algorithm, it can solve the time-varying and limited nature of independent sensing devices. The temperature data comparison is shown in Figure 7. It can be seen that there is a time interval between the measured values, indicating that the trend of the predicted value and measured value are close. The error between the predicted value and measured value is about 3°C, which is within the allowable error range of the experiment.

4.4. System Accuracy Analysis. In the design of relational database, the most important part of the work is to allocate metadata to various relational data tables and complete the classification of these metadata, and the operation of data will depend on the relationship between these data tables; through the relationship between these data tables, these data can be linked together in a meaningful way. In a relational database, creating a relationship between tables means that columns in one table are linked to columns in another table. This relationship can prevent redundant data and ensure that the information in one table matches that in the other. Relationships are generated by matching data in key columns, which are columns with the same name in two tables. Usually, primary keys in one table are matched with external keys in another table. There are many kinds of harmful gases in the microenvironment of museum’s cultural relics. When the cultural relics are exposed to a certain concentration of pollution gas for a long time, the harm of cultural relics will be very obvious. Therefore, the air quality monitoring system of cultural relics should meet the characteristics of high sensitivity, high reliability, small size, good anti-interference ability, and real-time online detection of multiple gases. The system accuracy test results are shown in Table 3 and Figure 8. It can be seen from the experimental results that the accuracy of the system on the first day is not high enough due to the lack of sufficient sample data in the early stage. However, with the increase of the number of training samples, the accuracy of the system output has also been improved. In addition, the output of the control group has no obvious relationship with the input of the sample number; that is, the increase of the sample number cannot improve the performance of the system without the genetic fuzzy neural network, and the performance is obviously slightly better than that of the complete system. It shows that the intelligent computing module has a good practical effect in predicting user behavior and realizing intelligent control.

There are many exhibition halls in the museum, and the objects that need environmental protection are also different. Therefore, the data of monitoring points are also increasing, and the data tends to show a massive trend. Using traditional data analysis and processing methods to process massive amounts of monitoring data has low efficiency and cannot effectively give information on the pollution level and quantitative evaluation of monitoring points. Using K-means cluster analysis and prediction methods, environmental monitoring data can be effectively processed. The traditional method of predicting trends is nothing more than carrying out a large amount of manual data analysis to predict conclusions, and data mining, as a new data-processing technology, can automatically search for information that is valuable for prediction in large databases and can quickly pass the massive data itself. And, draw a conclusion. The most representative one is the Decision Support System (DSS). Data mining can analyze historical sales data to find the market law that can bring the most profit to the enterprise in the future. It can be seen that predicting trends and behavior is discovering predictive knowledge. The showcase security instrument and host computer software constitute a complete system based on the C/S architecture. The showcase security instrument acts as a server to collect monitoring data and process and send them to the upper computer for storage; the host computer acts as a client to send a connection request to the showcase security instrument and deliver working parameters. The display cabinet setting includes the display cabinet quantity setting and display cabinet parameter setting. The former determines the number of display cabinets displayed on the host computer interface, which is convenient for the adjustment of the number of display cabinets in the exhibition hall; the latter determines the display cabinets connected to the host computer, which facilitates the replacement of the security equipment in the display cabinet and enhances the
intelligence of the museum. The expansibility of the showcase security system makes later maintenance more convenient. The accuracy of the alarm system is shown in Figure 9. It can be seen from the figure that the application of the Internet of Things technology in the alarm system can significantly improve the accuracy of the system. At the same

Serial number	1	2	3	4	5	6	7
Using GFNN	0.440	0.716	0.689	0.696	0.749	0.666	0.600
No GFNN	0.452	0.338	0.394	0.394	0.344	0.284	0.334

Figure 7: Comparison of temperature data.

Figure 8: System accuracy test results.

Figure 9: Comparison of temperature data.

Table 3: System accuracy test results.
time, the sensitivity of the sensor is better, which greatly avoids the destruction of cultural relics.

Compared with the PID control algorithm and pure fuzzy control algorithm, the fuzzy adaptive PID control algorithm has no better control effect in terms of overshoot or other performance indicators. The performance index comparison results of the three control algorithms are shown in Table 4. By comparing the performance indexes of the three control methods, the effectiveness of temperature control in the fuzzy adaptive PID control mode is higher than that of PID control and pure fuzzy control.

5. Conclusions

This article mainly studies the research and implementation of the museum's window system based on Internet of Things technology in a smart environment. By introducing the concept, architecture, and basic technologies of the Internet of Things, the article explains the theoretical and practical importance of creating a smart home scene for the Internet of Things. And, with the microcontroller core of the STM32F103xx series as the core, the display casing is monitored through various monitoring channels, such as infrared and smoke. When an alarm occurs, the on-site sound and light alarm shall be sent to the central computer and to the specified mobile terminal at the same time. The radio-controlled method is used to operate the remote control of LED lamps, which can improve the level of lighting management, save energy, reduce emissions, and reduce maintenance costs.

The system designed in this paper mainly detects the environmental parameters such as temperature, humidity, and illumination in the museum system. The system can effectively detect these data information, so as to achieve the purpose of protecting museum collections. After training the lighting environment data, the dimming classification model is generated, which realizes six levels of intelligent dimming in complex environment and can automatically adjust the dimming level in real time in case of emergency. Through the algorithm, the system realizes the effective energy saving and intelligent control of illumination. At the same time, the hardware circuit of the system is small in size and low in power consumption, which meets the requirements of energy conservation and emission reduction; the software design structure is clear, which is convenient for the later maintenance and upgrading of the system; the test results show that the basic lighting function, Internet of things communication function, and server control function of the system are reliable and meet the design requirements.

With the rapid development of electronic technology, the application scope of the Internet of Things has gradually expanded. From the initial smart home to the intelligent museum showcase system, it is getting closer and closer to our lives. Through the design and construction of the Internet of Things temperature and humidity monitoring system, continuous observation and data collection of the air

\begin{table}[h]
\centering
\caption{Comparison results of performance indicators of three control algorithms.}
\begin{tabular}{|l|c|c|c|}
\hline
Controller name & Overshoot (%) & Steady-state error & Adjustment time (min) \\
\hline
Conventional PID control & 36.18 & 0 & 11.2 \\
Pure fuzzy control & 14.34 & 0.003 & 7.4 \\
Fuzzy adaptive PID control & 8.12 & 0 & 5.6 \\
\hline
\end{tabular}
\end{table}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure9.png}
\caption{The accuracy of the alarm system.}
\end{figure}
temperature, air humidity, and light intensity in the greenhouse are carried out. Through ZigBee communication technology, each node is networked. The control system is equipped with a coordinator, a wireless control node, and multiple wireless detection nodes. The coordinator collects all detection node information and transmits the data to the upper computer through the serial port for display and storage. The monitoring interface is designed through LabVIEW to realize the acquisition, setting, and control of the parameters of each node.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

[1] Z. H. Wu, “Research on the application of internet of things technology to digital museum construction,” Acta Geonatica Sinica, vol. 38, no. 2, pp. 293–298, 2017.
[2] M. R. Palattella, M. Dohler, L. A. Grieco et al., “Internet of things in the 5G era: enablers, architecture, and business models,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 3, pp. 510–527, 2016.
[3] O. Bello and S. Zeadally, “Intelligent device-to-device communication in the internet of things,” IEEE Systems Journal, vol. 10, no. 3, pp. 1172–1182, 2016.
[4] G. Akpakwu, B. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, “A survey on 5G networks for the internet of things: communication technologies and challenges,” IEEE Access, vol. 6, no. 12, pp. 3619–3647, 2018.
[5] S. Liu, “Research on the application of internet of things technology in digital sports and community fitness,” Boletin Tecnico/Technical Bulletin, vol. 55, no. 4, pp. 139–145, 2017.
[6] A. V. Dastjerdi and R. Buyya, “Fog computing: helping the internet of things realize its potential,” Computer, vol. 49, no. 8, pp. 112–116, 2016.
[7] C. Perera, C. H. Liu, and S. Jayawardena, “The emerging internet of things marketplace from an industrial perspective: a survey,” IEEE Transactions on Emerging Topics in Computing, vol. 3, no. 4, pp. 585–598, 2017.
[8] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on internet of things: architecture, enabling technologies, security and privacy, and applications,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–1142, 2017.
[9] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers, “Twenty security considerations for cloud-supported internet of things,” IEEE Internet of Things Journal, vol. 3, no. 3, pp. 269–284, 2017.
[10] X. Sun and N. Ansari, “EdgelIoT: mobile edge computing for the internet of things,” IEEE Communications Magazine, vol. 54, no. 12, pp. 22–29, 2016.
[11] J. W. Xue, X. K. Xu, and F. Zhang, “Big data dynamic compressive sensing system architecture and optimization algorithm for internet of things,” Discrete and Continuous Dynamical Systems-Series S, vol. 8, no. 6, pp. 1401–1414, 2017.
[12] I. Yaqoob, E. Ahmed, I. A. T. Hashem et al., “Internet of things architecture: recent advances, taxonomy, requirements, and open challenges,” IEEE Wireless Communications, vol. 24, no. 3, pp. 10–16, 2017.
[13] A. Mosenia and N. K. Jha, “A comprehensive study of security of internet-of-things,” IEEE Transactions on Emerging Topics in Computing, vol. 5, no. 4, pp. 586–602, 2017.
[14] M. Amadeo, C. Campolo, J. Quevedo et al., “Information-centric networking for the internet of things: challenges and opportunities,” IEEE Network, vol. 30, no. 2, pp. 92–100, 2016.
[15] Y. Zhang and J. Wen, “The IoT electric business model: using blockchain technology for the internet of things,” Peer-to-Peer Networking and Applications, vol. 10, no. 4, pp. 983–994, 2017.
[16] Z. Longchao, Y. X. Jianjun, and Y. Limei, “Research on congestion elimination method of circuit overload and transmission congestion in the internet of things,” Multimedia Tools and Applications, vol. 76, no. 17, pp. 18047–18066, 2017.
[17] H. S. Dhillon, H. Huang, and H. Viswanathan, “Wide-area wireless communication challenges for the internet of things,” IEEE Communications Magazine, vol. 55, no. 2, pp. 168–174, 2017.
[18] A. Ouaddah, A. A. Abou Elkalame, and A. Ait Ouahman, “FairAccess: a new blockchain-based access control framework for the internet of things,” Security and Communication Networks, vol. 9, no. 18, pp. 5943–5964, 2016.
[19] J. Ni, K. Zhang, X. Lin et al., “Securing fog computing for internet of things applications: challenges and solutions,” IEEE Communications Surveys & Tutorials, vol. 20, no. 99, pp. 601–628, 2018.
[20] D. Zhang, L. T. Yang, M. Chen et al., “Real-time locating systems using active RFID for internet of things,” IEEE Systems Journal, vol. 10, no. 3, pp. 1226–1235, 2017.
[21] K. Sood, S. Yu, and Y. Xiang, “Software-defined wireless networking opportunities and challenges for internet-of-things: a review,” IEEE Internet of Things Journal, vol. 3, no. 4, pp. 453–463, 2016.
[22] S. P. Mohanty, U. Choppali, and E. Kougianos, “Everything you wanted to know about smart cities: the Internet of things is the backbone,” IEEE Consumer Electronics Magazine, vol. 5, no. 3, pp. 60–70, 2016.
[23] S. E. Collier, “The emerging energy: convergence of the smart grid with the internet of things,” IEEE Industry Applications Magazine, vol. 23, no. 2, pp. 12–16, 2017.
[24] O. Arias, J. Wurm, K. Hoang et al., “Privacy and security in internet of things and wearable devices,” IEEE Transactions on Multi Scale Computing Systems, vol. 1, no. 2, pp. 99–109, 2017.
[25] W. Ejaz, A. M. Naeem, A. Anpalagan, A. Shahid, and M. Jo, “Efficient energy management for the internet of things in smart cities,” IEEE Communications Magazine, vol. 55, no. 1, pp. 84–91, 2017.
[26] J. Bernal Bernabe, A. F. Hernandez Ramos, and A. F. Skarmeta Gomez, “TACIoT: multidimensional trust-aware access control system for the internet of things,” Soft Computing, vol. 20, no. 5, pp. 1763–1779, 2016.
[27] T. Fossati and H. Tschofenig, “Transport layer security (TLS)/datagram transport layer security (DTLS) profiles for the internet of things,” Physiological Reviews, vol. 66, no. 4, pp. 1121–1188, 2016.
[28] Z. Guan, J. Li, L. Wu, Y. Zhang, Y. Wu, and X. Du, “Achieving efficient and secure data acquisition for cloud-supported internet of things in smart grid,” *IEEE Internet of Things Journal*, vol. 4, no. 6, pp. 1934–1944, 2017.

[29] S. Mumtaz, A. Alsohaily, Z. Pang, A. Rayyes, K. F. Tsang, and J. Rodriguez, “Massive internet of things for industrial applications: addressing wireless IIoT connectivity challenges and ecosystem fragmentation,” *IEEE Industrial Electronics Magazine*, vol. 11, no. 1, pp. 28–33, 2017.