A NOTE ON GENERATING FUNCTIONS
FOR HAUSDORFF MOMENT SEQUENCES

OLIVER ROTH, STEPHAN RUSCHEWEYH, AND LUIS SALINAS

Abstract. For functions f whose Taylor coefficients at the origin form a Hausdorff moment sequence we study the behaviour of $w(y) := |f(\gamma + iy)|$ for $y > 0$ ($\gamma \leq 1$ fixed).

1. Introduction and statement of the results

A sequence $\{a_k\}_{k \geq 0}$ of non-negative real numbers, $a_0 = 1$, is called a Hausdorff moment sequence if there is a probability measure μ on $[0, 1]$ such that

$$a_k = \int_0^1 t^k \, d\mu(t), \quad k \geq 0,$$

or, equivalently,

$$F(z) = \sum_{k=0}^{\infty} a_k z^k = \int_0^1 \frac{d\mu(t)}{1-tz},$$

and F is its generating function.

It is well known (Hausdorff [2]) that a sequence $\{a_k\}_{k \geq 0}$ with $a_0 = 1$ is a Hausdorff moment sequence if and only if it is completely monotone, i.e.

$$\Delta^n a_k := \Delta^{n-1} a_k - \Delta^{n-1} a_{k+1} \geq 0, \quad k \geq 0, \quad n \geq 1,$$

where Δ^0 is the identity operator: $\Delta^0 a = a$.

Let T denote the set of such generating functions F. They are analytic in the slit domain $\Lambda := \mathbb{C} \setminus [1, \infty)$ and also belong to the set of Pick functions $P(-\infty, 1)$ (see Donoghue [1] for more information on Pick functions).

Wirths [5] has shown that $f \in T$ implies that the function $zf(z)$ is univalent in the half-plane $\text{Re} \, z < 1$, and recently the theory of universally prestarlike mappings...
has been developed, showing a close link to T; see [4]. Many classical functions belong to T or are closely related to it. We mention only the polylogarithms

$$Li_\alpha(z) := \sum_{k=1}^{\infty} \frac{z^k}{k^\alpha}, \quad \alpha \geq 0,$$

where $Li_\alpha(z)/z \in T$ and which we are going to study somewhat closer in the sequel.

The main result in this paper is

Theorem 1.1. For $f \in T$ we have

$$\text{Re} \frac{f(\gamma + iy)}{f(\gamma + iy_2)} \geq 1, \quad \gamma \in (-\infty, 1], \; 0 < y_1 \leq y_2.$$ \hfill (1.1)

This relation does not hold, in general, for $\gamma > 1$.

Theorem 1.1 has the following immediate consequence.

Corollary 1.2. For $f \in T$ and $\gamma \in (-\infty, 1]$ fixed, the function $|f(\gamma + iy)|$ is monotonically decreasing with $y > 0$ increasing.

In the case $\gamma = 0$ Theorem 1.1 admits a slight generalization. It is well-known and easy to verify that T is invariant under the Hadamard product: if

$$f(z) = \sum_{k=0}^{\infty} a_k z^k, \in T, \quad g(z) = \sum_{k=0}^{\infty} b_k z^k \in T,$$

then also

$$(f \ast g)(z) := \sum_{k=0}^{\infty} a_k b_k z^k \in T.$$

Theorem 1.3. For $f, g \in T$ we have

$$\text{Re} \left(\frac{f \ast g(iy)}{f(iy)} \right) \geq 1, \quad y > 0.$$

Therefore, under the same assumption,

$$|f(iy)| \leq |(f \ast g)(iy)|, \quad y > 0. \hfill (1.2)$$

For the polylogarithms and $0 < \alpha \leq \beta$ it is clear that $Li_\beta = Li_\alpha \ast Li_{\beta - \alpha}$, so that we get

Corollary 1.4. For $0 \leq \alpha < \beta$

$$|Li_\alpha(iy)| \leq |Li_\beta(iy)|, \quad y > 0.$$

This result can also be obtained and even strengthened using Corollary 1.2 and the deeper relation

$$\frac{Li_\alpha}{Li_\beta} \in T, \quad 0 \leq \alpha \leq \beta,$$

recently established in [4].

For a certain subset of T we can go one step beyond Corollary 1.2 as far as the behaviour of $|f(iy)|$ for $y > 0$ is concerned.
Theorem 1.5. Let

\[f(z) = \int_0^1 \frac{\sigma(t)dt}{1 - tz}, \]

where \(\sigma \in C^1((0,1)) \) is positive and with \(t\sigma'(t)/\sigma(t) \) decreasing. Then, for \(w(y) := |f(iy)| \), the function \(\frac{yw'(y)}{w(y)} \) decreases with \(y > 0 \) increasing.

Fundamental for the proof of Theorem 1.5 is the following result, which is based on a general theorem in [4].

Theorem 1.6. Let \(f \) be as in Theorem 1.5. Then, for \(x \in [0,1] \),

\[\frac{f(z)}{f(xz)} \in T. \]

One can show that the conclusion of Theorem 1.6 is not generally valid for \(f \in T \). However, for the functions \(g_\alpha(z) := \frac{1}{z} \text{Li}_\alpha(z), \alpha > 0 \), we have

\[g_\alpha(z) = \frac{1}{\Gamma(a)} \int_0^1 \frac{\log^{a-1}(1/t)}{1 - tz} dt, \]

for which the assumptions of Theorem 1.5 are fulfilled. Thus both Theorem 1.5 and Theorem 1.6 apply to \(g_\alpha \).

2. Proofs

We first note that the convex set \(T \) satisfies the condition of the main theorem in [3], which for the present case can be stated as follows:

Lemma 2.1. Let \(\lambda_1, \lambda_2 \) be two continuous linear functionals on \(T \) and assume that \(0 \notin \lambda_2(T) \). Then the range of the functional

\[\lambda(f) := \frac{\lambda_1(f)}{\lambda_2(f)} \]

over \(T \) equals the set

\[\left\{ \lambda \left(\frac{\rho}{1 - t_1 z} + \frac{1 - \rho}{1 - t_2 z} \right) : \rho, t_1, t_2 \in [0,1] \right\}. \]

Proof of Theorem 1.1. First we note that it is enough to prove (1.1) for \(\gamma = 1 \) only. This is because \(f \in T \) implies \(f(z - \delta)/f(-\delta) \in T \) for all \(\delta > 0 \). In Lemma 2.1 we choose \(\lambda_j(f) := f(1 + iy_j), j = 1, 2 \). Since \(\text{Im} f(z) > 0 \) for \(f \in T \) and \(\text{Im} z > 0 \), it is clear that \(0 \notin \lambda_2(T) \). Lemma 2.1 now implies that for the proof of Theorem 1.1 we only need to show that the expression

\[\frac{\rho}{1 - t_1 - it_1 y_1} + \frac{1 - \rho}{1 - t_2 - it_2 y_1}, \rho, t_1, t_2 \in [0,1], \]

is located in the half-plane \(\{w : \text{Re} w \geq 1\} \). To simplify this expression we set \(\kappa := (1 - \rho)/\rho, \tau := y_1/y_2 \). Then our claim is

\[\text{Re} q(\kappa, y, \tau, t_1, t_2) \geq 1, \quad \kappa \geq 0, \quad y > 0, \quad t_1, t_2, \tau \in [0,1], \]
where

\[q(\kappa, y, \tau, t_1, t_2) = \frac{1}{1 - t_1 - i\tau y t_1} + \frac{\kappa}{1 - t_1 - i\tau y t_2}, \]

\[\frac{1}{1 - t_1 - i\tau y t_1} + \frac{\kappa}{1 - t_2 - i\tau y t_2}. \]

Note that by symmetry we may assume that \(t_1 \leq t_2 \). For fixed \(y, \tau, t_1, t_2 \) the values of \(w(\kappa) := q(\kappa, y, \tau, t_1, t_2), \kappa \geq 0, \) form a circular arc connecting the points \(w(0) = v(t_1) \) and \(w(\infty) = v(t_2) \), where

\[v(t) = \frac{1 - t - i\tau y t}{1 - t - i\tau y t}. \]

It is easily checked that under our assumptions for \(y \) and \(\tau \) the function \(\text{Re} v(t) \) increases with \(t \in [0, 1] \) and, in particular, \(\text{Re} v(t) \geq \text{Re} v(0) = 1. \) This implies that \(1 \leq \text{Re} w(0) \leq \text{Re} w(\infty). \)

We will prove that \(\text{Re} w'(0) \geq 0. \) Once this is done a simple geometric consideration shows that under these circumstances the circular arc \(w(\kappa), \kappa \geq 0, \) cannot leave the half-plane \(\{w : \text{Re} w \geq 1\} \), which then completes the proof of (1.1).

Calculation yields

\[\text{Re} w'(0) = (1 - \tau)(t_2 - t_1)y^2 \frac{Z}{N}, \]

where

\[Z = t_1^* t_2^*(t_2 - t_1) + (t_1 t_2 + t_2^* t_1^*)t_1^* t_2^* \tau + t_1 t_2 y^2 \tau (t_1 t_2^* + t_2^* t_1^* - \tau(t_2 - t_1)), \]

\[N = ((1 - t_1)^2 + (t_1 y \tau)^2)((1 - t_2)^2 + (t_2 y \tau)^2)((1 - t_2)^2 + (t_2 y \tau)^2), \]

and \(t_j^* := 1 - t_j. \) Here all terms are non-negative (note that \(s(\tau) := t_1 t_2^* + t_2^* t_1^* - \tau(t_2 - t_1) \) decreases with \(\tau \) and is therefore not smaller than \(s(1) = 2t_1 t_2^* \geq 0). \)

It remains to show that (1.1) does not hold, in general, for \(\gamma > 1. \) Let \(\gamma = 1 + \varepsilon, \varepsilon > 0, \) and choose

\[f(z) := \frac{1}{1 + 2\varepsilon} + \frac{2\varepsilon}{1 + 2\varepsilon} \frac{1}{1 - z} \in T. \]

Then, using \(y_1 = \varepsilon, y_2 = 1, \)

\[\text{Re} \frac{f(\gamma + i\varepsilon)}{f(\gamma + i)} = \frac{2\varepsilon}{1 + \varepsilon^2} < 1. \]

Proof of Theorem 1.3. If

\[g(z) = \int_0^1 \frac{d\mu(t)}{1 - tz}, \]

then

\[\frac{(f * g)(iy)}{f(iy)} = \int_0^1 f(iy) \frac{d\mu(t)}{f(iy)} \frac{d\mu(t)}{d\mu(t)}, \]

which is a convex combination of the values of \(f(iy)/f(iy). \) By Theorem 1.1 these are all in the half-plane \(\{w : \text{Re} w \geq 1\}. \)

For the proof of Theorem 1.6 we need the following result from [4].
Lemma 2.2. Let $f, g \in \mathcal{T}$ be represented by

$$f(z) = \int_0^1 \frac{\varphi(t)dt}{1-tz}, \quad g(z) = \int_0^1 \frac{\psi(t)dt}{1-tz}$$

with non-negative Borel functions φ, ψ on $(0, 1)$. If $\varphi(t)\psi(s) \geq \varphi(s)\psi(t)$ holds for all $0 < s < t < 1$, then $f/g \in \mathcal{T}$.

Proof of Theorem 1.6. We have

$$f(xz) = \int_0^1 \frac{\sigma(t)dt}{1-txz} = \int_0^1 \frac{\sigma^*(t)dt}{1-tz},$$

with

$$\sigma^*(t) := \begin{cases} \frac{1}{x} \sigma(t/x), & 0 < t \leq x, \\ 0, & x < t < 1. \end{cases}$$

The condition

$$(2.1) \quad \sigma(t)\sigma^*(s) \geq \sigma(s)\sigma^*(t), \quad 0 < s < t < 1,$$

is immediately fulfilled if $t > x$. Otherwise we are left with

$$\sigma(t)\sigma(s/x) \geq \sigma(s)\sigma(t/x), \quad 0 < s < t \leq x.$$

This requires that $\sigma(t)/\sigma(t/x)$ increases with t. Taking logarithms and differentiating w.r.t. the variable t, we find as a necessary and sufficient condition for (2.1) that $t\sigma'(t)/\sigma(t)$ decreases for t increasing. The result now follows from Lemma 2.2. □

Proof of Theorem 1.5. We apply Theorem 1.1 to the function F of Theorem 1.6. Then, for $x, \tau \in (0, 1)$, we get

$$\left| \frac{\frac{f(iy\tau)f(iyx)}{f(iyx\tau)f(iy)}} \right| \geq 1, \quad y > 0.$$

Taking logarithms we obtain

$$(\log w(y) - \log w(xy)) - (\log w(\tau y) - \log w(x\tau y)) \leq 0.$$

Dividing by $1-x$ and letting $x \rightarrow 1-0$ yield

$$\frac{yw'(y)}{w(y)} \leq \frac{\tau yw'(\tau y)}{w(\tau y)},$$

which implies the assertion. □

References

[1] W.B. Donoghue Jr., Monotone matrix functions and analytic continuation, Grundlehren Math. Wiss. 207, Springer-Verlag (1974). MR0486556 (58:6279)

[2] F. Hausdorff, Summationsmethoden und Momentfolgen I, Math. Z. 9 (1921), 74–109. MR1544453

[3] S. Ruscheweyh, Nichtlineare Extremalprobleme für holomorphe Stieltjesintegrale, Math. Z. 142 (1975), 19–23. MR0374406 (51:10606)
[4] S. Ruscheweyh, L. Salinas, and T. Sugawa, Completely monotone sequences and universally prestarlike functions, preprint 2007.

[5] K.J. Wirths, Über totalmonotone Zahlenfolgen, Arch. Math. 26 (1975), 508–517. MR0396930 (53:790)

Mathematisches Institut, Universität Würzburg, D-97074 Würzburg, Germany
E-mail address: roth@mathematik.uni-wuerzburg.de

Mathematisches Institut, Universität Würzburg, D-97074 Würzburg, Germany
E-mail address: ruscheweyh@mathematik.uni-wuerzburg.de

Departamento de Informática, Universidad Técnica Federico Santa María, Valparaíso, Chile
E-mail address: lsalinas@inf.utfsm.cl