ON THE ENTROPY OF FLOWS WITH REPARAMETRIZED
GLUING ORBIT PROPERTY

PENG SUN
China Economics and Management Academy
Central University of Finance and Economics
Beijing 100081, China

Abstract. We show that a flow or a semiflow with a weaker reparametrized
form of gluing orbit property is either minimal or of positive topological en-
tropy.

1. Introduction

The gluing orbit property introduced in [7], [5] and [3] is a much weaker variation
of the well-studied specification property. It is satisfied by a larger class of systems
but is still productive, as indicated by a series of recent works (see also [1], [2], [4],
[8] and [9]). A system with gluing orbit property may have zero topological entropy,
which is different from those with specification property. However, it seems that
such a system should be quite simple. In [6], we show that it must be minimal. In
[6] we have made an effort to show that our results holds in both discrete-time and
continuous-time cases. In communication with Paulo Varandas, we realize that such
results should be more practical for flows if a reparametrization is allowed. Then
we have to overcome a bunch of technical difficulties. Finally, we are convinced
that the result extends to a even more general case.

Theorem 1.1. Let \((X, f)\) be a flow or semiflow with weak reparametrized gluing
orbit property. Then either it is minimal, or it has positive topological entropy.

2. Preliminaries

Let \((X, d)\) be a compact metric space. Denote by \(f^t\) a flow or a semiflow on \(X\).

Definition 2.1. For \(L \geq 1\), we call a strictly increasing continuous function \(\gamma : [0, \infty) \to [0, \infty)\) an \(L\)-reparametrization if \(\gamma(0) = 0\) and
\[
L^{-1} \leq \frac{\gamma(t_1) - \gamma(t_2)}{t_1 - t_2} \leq L \text{ for any } t_1, t_2 \in [0, \infty), t_1 \neq t_2.
\]

Definition 2.2. We call the finite sequence of ordered pairs
\[
\mathcal{C} = \{(x_j, m_j) \in X \times [0, \infty) : j = 1, \cdots, k\}
\]
an orbit sequence of rank \(k\). A gap for an orbit sequence of rank \(k\) is a \((k-1)\)-tuple
\[
\mathcal{G} = \{t_j \in [0, \infty) : j = 1, \cdots, k-1\}.
\]

2010 Mathematics Subject Classification. Primary: 37B05, 37B40, 37C50. Secondary: 37B20.

Key words and phrases. flow, gluing orbit property, minimality, topological entropy,
reparametrization.
Let γ be a reparametrization. For $\varepsilon > 0$, we say that $(\mathcal{C}, \mathcal{G}, \gamma)$ is be ε-shadowed by $z \in X$ if for every $j = 1, \ldots, k$,

$$(f^{\gamma(s_j+t)}(z), f^t(x_j)) < \varepsilon \text{ for every } t \in [0, m_j],$$

where

$$s_1 = 0 \text{ and } s_j = \sum_{i=1}^{j-1}(m_i + t_i) \text{ for } j = 2, \ldots, k.$$

Definition 2.3. We say that (X, f) have reparametrized gluing orbit property, if for every $\varepsilon > 0$ there is $M(\varepsilon) > 0$ such that for any orbit sequence \mathcal{C}, there are a gap \mathcal{G} with $\max \mathcal{G} \leq M(\varepsilon)$ and a $(1 + \varepsilon)$-reparametrization γ such that $(\mathcal{C}, \mathcal{G}, \gamma)$ can be ε-shadowed.

Definition 2.3 is the equivalent to the definition of reparametrized gluing orbit property introduced in [1]. It is natural to expect that most results that hold for gluing orbit property also hold for reparametrized gluing, where the reparametrization tends to identity as ε goes to 0. However, we perceive that our result only requires a weaker condition, where the reparametrization can be more flexible when ε gets smaller.

Definition 2.4. We say that (X, f) has weak reparametrized gluing orbit property if for every $\varepsilon > 0$ there is $M = M(\varepsilon) > 0$ such that for any orbit sequence \mathcal{C}, there are a gap \mathcal{G} with $\max \mathcal{G} \leq M$ and an M-reparametrization γ such that $(\mathcal{C}, \mathcal{G}, \gamma)$ can be ε-shadowed.

It is clear that reparametrized gluing implies weak reparametrized gluing.

3. Proof of the Theorem

Throughout this section, we assume that (X, f) has weak reparametrized gluing property and it is not minimal. We shall show that the topological entropy $h(f) > 0$.

Lemma 3.1. There are $z \in X$, $\varepsilon > 0$ and $\tau > 0$ such that

$$d(f^t(z), z) \geq \varepsilon \text{ for any } t \geq \tau.$$

Proof. As f is not minimal, there is a point whose orbit is not dense. We can find $x, y \in X$ and $\delta > 0$ such that

$$d(f^t(x), y) \geq \delta \text{ for any } t \geq 0.$$

Let $0 < \varepsilon < \frac{1}{3}\delta$ and $M := M(\varepsilon)$. For each $n \in \mathbb{Z}^+$, consider

$$\mathcal{C}_n := \{(y, 0), (x, n)\}.$$

There are $\tau_n \in [0, M]$ and an M-reparametrization γ_n such that $(\mathcal{C}_n, \{\tau_n\}, \gamma_n)$ is ε-shadowed by z_n. This implies that for any $t \geq M^2$ and $n \geq Mt$,

$$d(f^t(z_n), y) = d(f^{\gamma_n(t_n)}(z_n), y) \geq d(f^{\tau_n}(x), y) - d(f^{\gamma_n(t_n)}(z_n), f^{\tau_n}(x)) > 2\varepsilon,$$

where

$$t_n := \gamma_n^{-1}(t) \in [M^{-1}t, Mt] \subset [\tau_n, \tau_n + n].$$

Let z be a subsequential limit of $\{z_n\}$. Then

$$d(f^t(z), y) \geq \liminf_{n \to \infty} d(f^t(z_n), y) \geq 2\varepsilon \text{ for any } t \geq M^2.$$

Note that

$$d(z, y) \leq \liminf_{n \to \infty} d(z_n, y) \leq \varepsilon.$$
So for \(\tau := M^2 \),
\[
d(f^t(z), z) \geq d(f^t(z), y) - d(z, y) \geq \epsilon \text{ for any } t \geq \tau.
\]

\[\square\]

Lemma 3.2. There are \(x, y \in X, \epsilon > 0 \) and \(T > 0 \) such that
\[
d(f^t(x), x) \geq \epsilon \text{ for any } t \geq T,
\]
\[
d(f^t(y), x) \geq \epsilon \text{ for any } t \geq T,
\]
\[
d(f^t(y), y) \geq \epsilon \text{ for any } t \geq T, \text{ and}
\]
\[
d(f^t(x), y) \geq \epsilon \text{ for any } t \geq 0.
\]

Proof. By Lemma 3.1, there is \(x \in X, \epsilon_0 > 0 \) and \(\tau > 0 \) such that
\[
d(f^t(x), x) \geq \epsilon_0 \text{ for every } t \geq \tau.
\]

Let \(\epsilon_1 := \frac{1}{4} \epsilon_0 \) and \(M := M(\epsilon_1) > 1 \). For each \(n \), there are \(\tau_n \in [0, M] \) and an \(M \)-reparametrization \(\gamma_n \) such that
\[
\{(x, M\tau), (x, n)\}, \{\tau_n\}, \gamma_n
\]
is \(\epsilon_1 \)-shadowed by \(y_n \). Let
\[
T := M(M\tau + M) > M\tau > \tau.
\]

For any \(t \geq T \) and \(n \geq Mt \),
\[
d(f^t(y_n), x) = d(f^{\gamma_n(t_n)}(y_n), x) \geq d(f^{t_n}(x), x) - d(f^{\gamma_n(t_n)}(y_n), f^{t_n}(x)) > 2\epsilon_1,
\]
where
\[
t_n := \gamma_n^{-1}(t) \in [M^{-1}t, Mt] \subset [M\tau + \tau_n, M\tau + \tau_n + n] \text{ and } t_n > \tau.
\]

As \(\tau \leq \gamma_n(M\tau + \tau_n) \leq T \) for each \(n \), there is a subsequence such that
\[
\gamma_{n_k}(M\tau + \tau_{n_k}) \to \tau_0 \geq \tau \text{ as } n_k \to \infty.
\]

Let \(y \) be a subsequential limit of \(\{y_{n_k}\} \). Note that \(d(x, y) < \epsilon_1 \). So we have for any \(t \geq T \):
\[
d(f^t(y), x) \geq \liminf_{n \to \infty} d(f^t(y_n), x) \geq 2\epsilon_1,
\]
\[
d(f^t(y), y) \geq d(f^t(y), x) - d(x, y) \geq \epsilon_1, \text{ and}
\]
\[
d(f^t(x), y) \geq d(f^t(x), x) - d(x, y) \geq 2\epsilon_1. \tag{1}
\]

For any \(t \geq 0 \),
\[
d(f^{T_0}(y), x) \leq \limsup_{n_k \to \infty} d(f^{\gamma_{n_k}(M\tau + \tau_{n_k})}(y_{n_k}), x) \leq \epsilon_1 < \epsilon_0 \leq d(f^{T_0+t}(x), x).
\]

This guarantees that \(f^t(x) \neq y \) for any \(t \geq 0 \). Let
\[
\epsilon := \min\{d(f^t(x), y) : 0 \leq t \leq T\}.
\]

Then \(\epsilon \in (0, \epsilon_1) \). Together with (1) we have
\[
d(f^t(x), y) \geq \epsilon \text{ for every } t \geq 0.
\]

\[\square\]

Proposition 3.3. \((X, f)\) has positive topological entropy.
Proof. Let \(x, y \in X, \varepsilon > 0 \) and \(T > 0 \) be as in Lemma 3.2. Let \(0 < \varepsilon_0 < \frac{1}{3} \varepsilon \) and \(M := M(\varepsilon_0) > 1 \). Denote
\[
T_2 := M^2(M + T) + T \quad \text{and} \quad T_1 := T + M^2(T_2 + M) > T_2.
\]
Let
\[
Q_1 := \{(y, T_1)\} \quad \text{and} \quad Q_2 := \{(x, T_2), (x, T_2)\}.
\]
Let \(n \in \mathbb{Z}^+ \). For each \(\xi = \{\omega_k(\xi)\}_{k=1}^n \in \{1, 2\}^n \), consider
\[
\mathcal{G}_\xi := \{Q_{\omega_k(\xi)} : k = 1, \cdots, n\} = \{(x_j(\xi), m_j(\xi)) : j = 1, \cdots, n(\xi)\},
\]
where
\[
n(\xi) = \sum_{k=1}^n \omega_k(\xi).
\]
There are
\[
\mathcal{G}_\xi = \{t_j(\xi) : j = 1, \cdots, n(\xi) - 1\}
\]
with \(\max \mathcal{G}_\xi \leq M \) and an \(M \)-reparametrization \(\gamma_\xi \) such that \((\mathcal{G}, \mathcal{G})\) is \(\varepsilon_0 \)-shadowed by \(z_\xi \in X \). For each \(\xi \), denote
\[
s_1(\xi) := 0 \quad \text{and} \quad s_j(\xi) := \sum_{i=1}^{j-1} (m_i(\xi) + t_i(\xi)) \quad \text{for} \quad j = 2, \cdots, n(\xi).
\]
Then
\[
s_{n(\xi)}(\xi) < nT_3 \quad \text{for every} \quad \xi \in \{1, 2\}^n,
\]
where
\[
T_3 := \max\{T_1 + M, 2T_2 + 2M\}.
\]
We claim that if \(\xi \neq \xi' \) then there is
\[
s \leq \max\{\gamma_\xi(s_{n(\xi)}(\xi)), \gamma_{\xi'}(s_{n(\xi')} (\xi'))\} < nMT_3
\]
such that
\[
d(f^* (z_\xi), f^* (z_{\xi'})) > \varepsilon_0.
\]
Assume that \(x_j(\xi) = x_j(\xi') \) for \(j = 1, \cdots, l - 1, x_l(\xi) = y \) and \(x_l(\xi') = x \).
For \(j < k \), denote
\[
r_j := \begin{cases} \gamma_{\xi}^{-1}(\gamma_{\xi'}(s_j(\xi'))) - s_j(\xi), & \text{if } \gamma_\xi(s_j(\xi)) \leq \gamma_{\xi'}(s_j(\xi')); \\ \gamma_{\xi'}^{-1}(\gamma_\xi(s_j(\xi))) - s_j(\xi'), & \text{if } \gamma_\xi(s_j(\xi)) > \gamma_{\xi'}(s_j(\xi')). \end{cases}
\]
Our discussion can be split into the following cases.

(1) When \(l = 1 \).
Then
\[
d(z_\xi, z_{\xi'}) \geq d(x, y) - d(z_\xi, x) - d(z_{\xi'}, y) > \varepsilon_2.
\]
We can take \(s = 0 \).

(2) When \(l \geq 2 \) and there is \(k \leq l \) with \(r_k \geq T \).
We may assume that \(k \) is the smallest index with \(r_k \geq T \). As \(r_1 = 0 \), we have \(k \geq 2 \) and hence \(r_{k-1} < T \). We assume that \(\gamma_\xi(s_k(\xi)) \leq \gamma_{\xi'}(s_k(\xi')) \). Argument for the subcase \(\gamma_\xi(s_k(\xi)) > \gamma_{\xi'}(s_k(\xi')) \) is analogous.
(2.1) When $\gamma_l(s_k(\xi)) \leq \gamma_{l'}(s_{k-1}(\xi') + m_{k-1}(\xi'))$.

Note that

$$\gamma_l(s_k(\xi)) \geq \gamma_l(s_{k-1}(\xi) + m_{k-1}(\xi))$$

$$\geq \gamma_l(s_{k-1}(\xi) + T_2)$$

$$\geq \gamma_l(s_{k-1}(\xi) + r_{k-1} + T_2 - T)$$

$$\geq \gamma_l(s_{k-1}(\xi) + r_{k-1} + M^{-1}(T_2 - T)$$

$$> \gamma_{l'}(s_{k-1}(\xi')) + MT$$

$$\geq \gamma_{l'}(s_{k-1}(\xi') + T).$$

There is $r \in (T, m_{k-1}(\xi')]$ such that

$$\gamma_l(s_k(\xi)) = \gamma_{l'}(s_{k-1}(\xi') + r).$$

Then

$$d(f^{\gamma_l(s_k(\xi))}(z_\xi), f^{\gamma_{l'}(s_{k-1}(\xi'))}(z_{\xi'}))$$

$$\geq d(f^r(x_{k-1}(\xi')), x_k(\xi)) - d(f^{\gamma_l(s_k(\xi))}(z_\xi), x_k(\xi))$$

$$- d(f^{\gamma_{l'}(s_{k-1}(\xi'))+r}(z_{\xi'}), f^r(x_{k-1}(\xi')))$$

$$> \varepsilon_0.$$

We can take $s = \gamma_l(s_k(\xi))$.

(2.2) When $\gamma_l(s_k(\xi)) > \gamma_{l'}(s_{k-1}(\xi') + m_{k-1}(\xi'))$.

We have

$$r_k = \gamma^{-1}_l(\gamma_{l'}(s_{k-1}(\xi')) - s_k(\xi))$$

$$\leq M((\gamma_{l'}(s_{k-1}(\xi') + m_{k-1}(\xi')) - \gamma_l(s_k(\xi)))$$

$$\leq M((\gamma_{l'}(s_{k-1}(\xi') + m_{k-1}(\xi')) + M) - \gamma_{l'}(s_{k-1}(\xi') + m_{k-1}(\xi')))$$

$$\leq M^3 < T_2.$$

Then $r_k \in (T, T_2)$ implies that

$$d(f^{\gamma_{l'}(s_{k-1}(\xi'))}(z_\xi), f^{\gamma_{l'}(s_{k-1}(\xi'))}(z_{\xi'}))$$

$$\geq d(f^{r_k}(x_k(\xi)), x_k(\xi')) - d(f^{\gamma_{l'}(s_{k-1}(\xi'))+r_k}(z_\xi), f^{r_k}(x_k(\xi)))$$

$$- d(f^{\gamma_{l'}(s_{k-1}(\xi'))}(z_{\xi'}), x_k(\xi'))$$

$$> \varepsilon_0.$$

We can take $s = \gamma_{l'}(s_k(\xi))$.

(3) When $l \geq 2$ and $r_l < T$.

(3.1) When $\gamma_{l'}(s_{l-1}(\xi')) \leq \gamma_{l'}(s_{l}(\xi))$.

Note that $r_l < T < T_2$. We have

$$d(f^{\gamma_{l'}(s_{l}(\xi))}(z_\xi), f^{\gamma_{l'}(s_{l}(\xi))}(z_{\xi'}))$$

$$\geq d(y, f^{r_l}(x)) - d(f^{\gamma_{l'}(s_{l}(\xi))}(z_\xi), y) - d(f^{\gamma_{l'}(s_{l}(\xi'))+r_l}(z_{\xi'}), f^{r_l}(x))$$

$$> \varepsilon_0.$$

We can take $s = \gamma_{l'}(s_{l}(\xi))$.
(3.2) When $\gamma_{\xi}(s_{l}(\xi)) < \gamma_{\xi'}(s_{l}(\xi'))$.

Note that by the definitions of C_{ξ} and $\mathcal{C}_{\xi'}$, we must have

$$x_{i+1}(\xi') = x, m_{i}(\xi') = T_{2} \text{ and } n(\xi') \geq l + 1.$$

Then in this case we have

$$\gamma_{\xi}(s_{l+1}(\xi')) = \gamma_{\xi}(s_{l}(\xi') + m_{l}(\xi'))$$

$$\geq \gamma_{\xi}(s_{l}(\xi')) + M^{-1}T_{2}$$

$$> \gamma_{\xi}(s_{l}(\xi)) + MT$$

$$\geq \gamma_{\xi}(s_{l}(\xi) + T),$$

$$\gamma_{\xi}(s_{l+1}(\xi')) = \gamma_{\xi}(s_{l}(\xi') + m_{l}(\xi') + t_{l}(\xi'))$$

$$\leq \gamma_{\xi}(s_{l}(\xi')) + M(T_{2} + M)$$

$$= \gamma_{\xi}(s_{l}(\xi) + r_{l}) + M(T_{2} + M)$$

$$\leq \gamma_{\xi}(s_{l}(\xi) + T + M^{2}(T_{2} + M)).$$

$$= \gamma_{\xi}(s_{l}(\xi) + T).$$

So there is $r \in (T, T_{1}]$ such that

$$\gamma_{\xi}(s_{l+1}(\xi')) = \gamma_{\xi}(s_{l}(\xi) + r).$$

This yields that

$$d(f^{r}(\gamma_{\xi}(s_{l+1}(\xi')))(z_{\xi}), f^{r}(\gamma_{\xi}(s_{l}(\xi')))(z_{\xi}))$$

$$\geq d(f^{r}(y), x) - d(f^{r}(\gamma_{\xi}(s_{l}(\xi) + r)(z_{\xi}), f^{r}(y)) - d(f^{r}(\gamma_{\xi}(s_{l+1}(\xi')))(z_{\xi}), x)$$

$$> \varepsilon_{0}.$$

We can take $s = \gamma_{\xi}(s_{l+1}(\xi')).$

Above argument shows that

$$E := \{z_{\xi} : \xi \in \{1, 2\}^{n}\}$$

is an $(nMT_{3}, \varepsilon_{0})$-separated subset of X that contains 2^{n} points. Hence

$$h(f) \geq \limsup_{n \to \infty} \frac{\ln s(nMT_{3}, \varepsilon_{0})}{nMT_{3}} \geq \limsup_{n \to \infty} \frac{n \ln 2}{nMT_{3}} = \frac{\ln 2}{MT_{3}} > 0.$$

\[\square\]

Acknowledgments

We would like to thank Paolo Varandas for suggestions and comments. The author is supported by NSFC No. 11571387.

References

[1] M. Bessa, M. J. Torres and P. Varandas, On the periodic orbits, shadowing and strong transitivity of continuous flows. Nonlinear Analysis, 175 (2018), 191–209.
[2] T. Bomfim, M. J. Torres and P. Varandas, Topological features of flows with the reparametrized gluing orbit property. Journal of Differential Equations 262 (2017), 4292–4313.
[3] T. Bomfim and P. Varandas, The gluing orbit property, uniform hyperbolicity and large deviations principles for semiflows. ArXiv:1507.03905.
[4] D. Constantine, J. Lafont and D. Thompson, The weak specification property for geodesic flows on CAT(-1) spaces. arXiv:1606.06253.
[5] Vaughn Climenhaga and Daniel J. Thompson, Unique equilibrium states for flows and homeomorphisms with non-uniform structure. Adv. Math. 303 (2016), 744–799.
[6] P. Sun, *Minimality and gluing orbit property*. preprint, 2018.

[7] W. Sun and X. Tian, *Diffeomorphisms with various C^1-stable properties*. Acta Mathematica Scientia, 2012, 32B(2): 552–558.

[8] X. Tian, S. Wang and X. Wang, *Intermediate Lyapunov exponents for system with periodic gluing orbit property*. preprint, 2018.

[9] S. Xiang and Y. Zheng, *Multifractal Analysis for Maps with the Gluing Orbit Property*. Taiwanese Journal of Mathematics, 2017, 21(5): 1099-1113.

E-mail address: sunpeng@cufe.edu.cn