Spatial and temporal distribution of nitrate concentration in Ciliwung River, Bogor City

A J Sutrisno1*, R L Kaswanto2, and H S Arifin2
1 Master Student of Landscape Architecture, Graduate School of Bogor Agricultural University, Jl. Meranti Dramaga IPB Campus, Bogor 16680, Indonesia.
2 Landscape Architecture Department, Faculty of Agriculture, Bogor Agricultural University, Jl. Meranti Dramaga IPB Campus, Bogor 16680, Indonesia.

*Email: alfredjsmanurung@gmail.com

Abstract. Water is very important as a source of life for human and other living organism. Bogor City has two main rivers, i.e. Cisadane River and Ciliwung River. Those rivers, particularly Ciliwung River has low in water quality, that has been affected by land use changes and human activities. Nitrate concentration is one of hazardous chemical observed in this research, due to Nitrate contamination is very dangerous for human health. Focus of this paper is how the spatial distribution of Nitrate concentration in Ciliwung River. There were 13 sites of water sampling in Ciliwung River. Water samples were collected in December 2016, January 2017, and February 2017. Inverted Distance Weighted method was used to identify spatial distribution of Nitrate concentration. According to the analysis results, Nitrate had different concentrations in December 2016, January 2017, and February 2017. The highest concentration of Nitrate in December 2016 has occurred in three sites, i.e. Kedung Halang, Cibuluh and Sukaresmi. Nitrate concentration had increased from 4.30 to 5.70 mg/L in January 2017, and the highest had occurred in Sukaresmi. Furthermore, Nitrate concentration had decreased become 4.80 mg/L in February 2017, where the highest concentration of Nitrate had occurred in Cibuluh, Sukaresmi, Bantar Jati, and Kebun Raya Bogor.

Keywords: Ciliwung River, nitrate concentration, spatial distribution, water quality

1. Introduction
Water pollution is big issue worldwide, especially in urban landscape. Hazardous chemicals are detected in rivers due to global rapid population growth and intensive domestic activities in urban landscape [1, 2, 3]. One of hazardous chemical in river is Nitrate concentration. Nitrate concentration is very soluble in water [4]. This condition affected contamination in river, because river flow lead Nitrate concentration spread along the river. Nitrate contamination is an environmental issue of considerable concern, because the potential health hazards to both human and animal populations [5, 6, 7, 8]. Limit concentration of Nitrate for drinking water is 10 mg/L [9].

Ciliwung River is one of aquatic environment in Bogor City. Population growth resulted in land use changes. Land use in riparian Ciliwung River dominated by settlement (38.69 ha) and housing (20.67 ha). In addition, human activity in riparian Ciliwung River affected water quality in the river. Nitrate concentration coming from human waste and agricultural waste. Composition of water pollution on
Ciliwung River is industrial 7.3%, detergent 40%, human waste 44%, and household waste 6.7% [10]. The purpose of this paper is to determine spatial and temporal variation of Nitrate concentration in Ciliwung River.

2. Site Description and Methodology

2.1. Site description

This study was conducted at Ciliwung River, which is located in Bogor City with elevation 157 – 367 m above sea level (asl). There were 13 sites in Ciliwung River, all sites in this river divided based on villages around the Ciliwung River (Table 1). Length of Ciliwung River, which flows in the part of Bogor City is 14.5 km (Figure 1).

Site	Longitude	Latitude
S1 Katulampa	106°50'16.014"	6°38'1.2210"
S2 Tajur	106°49'22.824"	6°37'27.856"
S3 Sukasari	106°48'49.458"	6°36'59.814"
S4 Baranangsiang	106°48'36.461"	6°36'38.510"
S5 Babakan Pasar	106°48'21.552"	6°36'26.205"
S6 Kebun Raya Bogor	106°47'57.837"	6°35'27.875"
S7 Sempur	106°47'51.792"	6°35'4.1190"
S8 Tanah Sereal	106°48'17.830"	6°34'25.884"
S9 Bantar Jati	106°48'28.089"	6°34'13.179"
S10 Kedung Badak	106°48'31.575"	6°33'42.262"
S11 Kedung Halang	106°48'13.020"	6°33'3.2380"
S12 Cibuluh	106°48'19.756"	6°33'7.4350"
S13 Sukaresmi	106°48'5.0890"	6°32'51.727"

2.2. Sampling and analysis

Water samples collected 50 ml from Ciliwung River in December 2016, January 2017, and February 2017. Water samples from each site analyzing with Ion Chromatography (LC-10A, Shimadzu, Japan). Ion chromatography used to determine the concentrations of Nitrate (NO$_3$). Before determine Nitrate concentration, water samples stored in refrigerator with temperature under 4°C.

2.3. Data analysis

This study used spatial interpolation. Spatial interpolation is used determined the distribution of Nitrate concentration in Ciliwung River furthermore, the basic principles of spatial interpolation is to create a surface that models the sampled phenomenon in the best possible way. There were 13 sampling point in this study, the point is determined by a random distance where each point represents a village based on the administrative boundaries of the village. This study uses one of spatial interpolation method that is inversed distance weighted.

Inverted distance weighted interpolation (IDW) is an interpolation method commonly used in spatial interpolation analysis [11]. In IDW method, it is assumed substantially that the rate of correlations and similarities between neighbours is proportional to the distance between them that can be defined as a distance reverse function of every point from neighbouring points [12]. Inverted distance weighted
method is used to predict the value of a point to be known by using values from known points [13]. Where, \(Z(x)\) is the value of the point to be known, \(n\) is the number of sample points, \(Z_i\) is the value of the known sample point. The distance between the known sample point and the sample point you want to know is \(d_i\), and \(u\) is the weight value based on the distance.

\[
Z(x) = \frac{\sum_{i=1}^{n} \frac{Z_i}{d_i^u}}{\sum_{i=1}^{n} \frac{1}{d_i^u}}
\]

(1)

3. Result

3.1. Spatial variation of Nitrate
River water flows from Katulampa (S1) to Sukaresmi (S13), this means the concentration of Nitrate flows from Katulampa (S1) to Sukaresmi (S13). Spatial variation of Nitrate influenced by land use. Land use of Ciliwung river riparian in the Bogor city is dominated by settlements 38.69 ha and housing 20.67 ha (Figure 2). Kedung Halang (S11), Cibuluh (S12), and Sukaresmi (S13) are villages dominated by settlements and housing. The highest Nitrate concentration was in all three villages and the lowest concentration was in Katulampa (S1). So, the concentration of Nitrate increases from Katulampa (S1) to Sukaresmi (S13).
3.2. Temporal variation of Nitrate

The average of Nitrate concentrations in December 2016 was 4.30 mg/L with a maximum concentration was 4.90 mg/L in Kedung Halang, Cibuluh and Sukaresmi. The minimum concentration was 2.79 mg/L in Katulampa (Figure 3). In January 2017, the average of Nitrate concentration had increased from 4.30 to 5.70 mg/L with maximum concentration was 6.80 mg/L in Sukaresmi and minimum concentration was 4.09 mg/L in Katulampa (Figure 4). But, the average of Nitrate concentrations in February 2017 had decreased from 5.70 mg/L to 4.80 mg/L where, the maximum concentration was 5.39 mg/L in Cibuluh, Sukaresmi, Bantar Jati, dan Kebun Raya Bogor, and the minimum concentration was 4.00 mg/L in Katulampa (Figure 5).
3.3. Variation of water temperature

Water temperature is a physical parameter that can encourage the occurrence changes in concentration on chemical parameters, this depends on height and low water temperature [14]; [15]; [16]. In December 2016, the average of water temperature in the Ciliwung River was 26.9 °C. In January 2017, the average of water temperature had decreased became 24.9°C. It’s identified that in February 2017 had decreased become the lowest, i.e. 22.3°C (Figure 6).

![Water temperature graph](image)

Figure 6. Water temperature.

4. Discussion

The decreasing and increasing of Nitrate concentration in Ciliwung River is influenced by several factors. In the term of temporal variation, seasonally water temperature has affected to decreasing and increasing of Nitrate concentration. When the water temperature decreases, it can decrease the concentration of Nitrate [17]. In this research, the average of water temperature was different for each month. It’s 26.9°C, 24.9°C, and 22.3°C in December 2016, January 2017 and February 2017, respectively.

Other factors that affect the decrease and increase of nitrate concentration are water discharge and rainfall. When, water discharge and rainfall were high, this condition can affect the decrease of Nitrate concentration, because the occurrence of dilution [18, 19].

In the term of spatial variation, land use may affect the decrease and increase of Nitrate concentration [20, 21]. Nitrate concentration was very high in Kedung Halang (S11), Cibuluh (S12), and Sukaresmi (S13), since the land use of these villages are settlements and housing predominantly. Household waste from settlements or housing can degrade water quality [22, 23, 24, 25].

The Nitrate concentration in Kedung Halang (S11), Cibuluh (S12), and Sukaresmi (S13) was different with Katulampa (S1). Nitrate concentration in Katulampa is the lowest one, due to the land use in this village is not dominated by settlements and housing.

5. Conclusion

It’s well known that spatial and temporal distribution of Nitrate concentration was different. Water temperature, rainfall, and water discharge were affected distribution of Nitrate concentration through temporal variation. This condition influenced nitrate concentration in December 2016, January 2017, and February 2017. Where, Nitrate concentration in January 2017 was higher than Nitrate concentration in December 2016 and February 2017. On the other hand, the type of land use affects the distribution of
Nitrate concentrations in spatial variation. Where, the highest concentration in Kedung Halang (S11), Cibuluh (S12), and Sukaresmi (S13) with the use of land dominated by settlements and housing.

Reference

[1] Srebotnjak T, Carr G, De Sherbinin A, and Rickwood C 2012 A global water quality index and hot-deck imputation of missing data Ecol Indic 17 108–119
[2] Su S, Xiao R, Mi X, Xu X, Zhang Z, and Wu J 2013 Spatial determinants of hazardous chemicals in surface water of Qiantang River, China Ecol Indic 24 375–381
[3] Islam M, Han S, Ahmed M, and Masunaga S 2014 Assessment of trace metal contamination in water and sediment of some rivers in Bangladesh J Water Environ Technol 12 109–121
[4] Sutrisno A J, Han Z, Satake S, and Fukumoto K 2017 The role of wetland ecosystems to reduce the concentration of nitrate in groundwater IOP Conference Series: Earth and Environmental Sci (Bogor:2nd Int Sym Sustainable Landscape Development) 91 012004
[5] Canter L W 1997 Nitrates in Groundwater (New York: CRC Press Inc)
[6] Carlson J R and Breeze R G 1984 Ruminal metabolism of plant toxins with emphasis on indolic compounds J Anim Sci 58 1040–1049
[7] Davidson K L, Hansel W, Krook L, McEntee K, and Wright M J 1964 Nitrate toxicity in dairy heifers I Effects on reproduction, growth, lactation and vitamin A nutrition J Dairy Sci 47 1065–1073
[8] Sindelar J J and Milkowski A L 2012 Human safety controversies surrounding nitrate and nitrite in the diet Nitric Oxide 26 259–266
[9] World Health Organisation (WHO) 2006 Guidelines for Drinking Water Quality vol 2, Recommendations -3rd ed (Geneva:World Health Organization) p 417
[10] Satmoko Y 2010 Kondivsi kualitas air Sungai Ciliwung di Wilayah DKI Jakarta ditinjau dari parameter organic, amoniak, fosfat, deterjen, dan bakteri coli J Air Indonesia 6 34–42
[11] Yaxin C, Ruimin L, Chengchun S, Peipei Z, Chenghong F, and Zhenyao S 2012 Spatial and temporal variations in nitrogen and phosphorous nutrients in the Yangtze River Estuary Marine Pollution Bulletin 64 2083–2089
[12] Agung Setianto and Tamia Triandini 2013 Comparison of kriging and inverse distance weighted (IDW) interpolation Methods in lineament extraction and analysis J SE Asian Appl Geol 5 21–29
[13] Xie Y F, Chen T B, and Lei M 2011 Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis Chemosphere 82 468–476
[14] Shiller A M 1997 Dissolved trace elements in the Mississippi river: seasonal, interannual and decadal variability Geochem Cosmochim Acta 61 21–30
[15] Tripti M, Gurumurthy G P, Balakrishna K, and Chadaga M D 2013 Dissolved trace element biogeochemistry of a tropical river, Southwestern India Environ Sci Pollut Res 20 4067–4077
[16] Bu H, Wang W, Song X, and Zhang Q 2015 Characteristics and source apportionment of dissolved trace elements in the Jinshui river of the South Qinling Mts, China Environ Sci Pollut Res 22 14248–14257
[17] Thomas J, Joseph S, and Thrivikramji K P 2017 Hydrochemical variations of a tropical mountain river system in a rain shadow region of the Southern Western Ghats, Kerala, India Applied Geochemistry J 1 1–15
[18] Kirchner J W, Feng X H, Neal C, and Robson A J 2004 The fine structure of water – quality dynamics: The (high – frequency) wave of the future Hydrol Process J 18 1353–1359
[19] Lloyod C E M, Freer J E, Collins A L, Johnes P J, and Jones J 2014 Methods for detecting change in hydrochemical time series in response to targeted pollutant mitigation in river catchments Hydrology J 514 297–312
[20] Junaidi E and Tarigan S D 2011 Pengaruh hutan dalam pengaturan tata air dan proses sedimentasi
daerah aliran sungai (DAS): studi kasus di DAS Cisadane J Penelitian Hutan dan Konservasi Alam 8 155–176

[21] Wang Y, Li Y, Liu, X, Liu F, Li Y, Song L, Li H, Ma Q, and Wu J 2014 Relating land use patterns to stream nutrient levels in red soil agricultural catchments in subtropical central China Environ Sci Pollut Res 21 10481–10492

[22] Lei P, Zhang H, and Shan B Q 2012 Dynamic characteristics of nitrogen and phosphorus in the representative input tributaries of Danjiangkou Reservoir Environ Sci J 33 3038–3045

[23] Karima A, Kaswanto RL 2017 Land use cover changes and water quality of Cipunten Agung Watershed Banten. IOP Conf Series: Earth and Environmental Science 54(1):012025

[24] Wilson C O 2015 Land use/land cover water quality nexus: quantifying anthropogenic influences on surface water quality Environ Monit Assess 187 424

[25] Noviandi TUZ, Kaswanto RL, Arifin HS 2017 Riparian landscape management in the midstream of Ciliwung River as supporting Water Sensitive Cities program with priority of productive landscape. IOP Conf Series: Earth and Environmental Science 91(1):012033