A Greedy Heuristic for Crossing-Angle Maximization

Graph Drawing 2018

Almut Demel Dominik Dürrschnabel Tamara Mchedlidze Marcel Radermacher Lasse Wulff
Crossing-Angle Maximization

crossing angle $\text{cr-} \angle (e, f)$

crossing angle $\text{cr-} \angle (\Gamma)$ of a drawing:
smallest crossing angle of two crossing edges

A Lot of Theory

NP-Hardness
1, 2, 3 - bends per edge
Counting edges of RAC graphs

Practice before GD’17 contest
2 force-directed algorithms
[Argyriou et al., '13, Huang et al., '10]
Crossing-Angle Maximization

crossing angle $\text{cr-} \angle (e, f)$

crossing angle $\text{cr-} \angle (\Gamma)$ of a drawing:
 smallest crossing angle of two crossing edges

Crossing-Angle Maximization

Compute a straight-line drawing Γ of G that maximizes $\text{cr-} \angle (\Gamma)$

A Lot of Theory

NP-Hardness

1, 2, 3 - bends per edge

Counting edges of RAC graphs

... [Argyriou et al., Arikushi et al, Didimo et al., Djumović et al., ...]

Practice before GD’17 contest

2 force-directed algorithms

[Argyriou et al. ’13, Huang et al.’10]
Crossing-Angle Maximization

crossing angle \(cr-\angle(e, f) \)

crossing angle \(cr-\angle(\Gamma) \) of a drawing:
smallest crossing angle of two crossing edges

Crossing-Angle Maximization

Compute a straight-line drawing \(\Gamma \) of \(G \) that maximizes \(cr-\angle(\Gamma) \)

A Lot of Theory

NP-Hardness
1, 2, 3 - bends per edge
Counting edges of RAC graphs

Practice before GD’17 contest
2 force-directed algorithms

[Argyriou et al., Arikushi et al, Didimo et al, Djumović et al., ...]
Our Heuristic
Motivation: Win Graph Drawing Contest

Our Heuristic
Motivation: Win Graph Drawing Contest

Challenge: No Restriction on Input
Motivation: Win Graph Drawing Contest

Challenge: No Restriction on Input

Our Heuristic

Design Goals
- Fast
- Generic
- Easy to implement
Our Heuristic

Initial Drawing

select a vertex v

Move v to a better position

repeat
Our Heuristic

Initial Drawing

select a vertex v

Move v to a better position

repeat
Our Heuristic

Initial Drawing → select a vertex v → Move v to a better position

repeat
Our Heuristic

Initial Drawing

Select a vertex v

Repeat

S: set of random points in \mathbb{R}^2

Move v to best position in S
Our Heuristic

Initial Drawing

- select a vertex v

- repeat

S: set of random points in \mathbb{R}^2

Move v to best position in S
Our Heuristic

Initial Drawing

select a vertex v

repeat

S: set of random points in \mathbb{R}^2

Move v to best position in S
Our Heuristic

Initial Drawing

select a vertex v

repeat

S: set of random points in \mathbb{R}^2

Move v to best position in S
Our Heuristic

Initial Drawing

select a vertex v

repeat

S: set of random points in \mathbb{R}^2

Move v to best position in S
Our Heuristic

Initial Drawing

select a vertex v

repeat

restrict S to a square R around v

S: set of random points in R

Move v to best position in S

fine tune
Our Heuristic

Initial Drawing

- select a vertex v
- repeat

S: set of random points in R

- Move v to best position in S
- restrict S to a square R around v

fine tune
Our Heuristic

Initial Drawing

- select a vertex v

Repeat

- restrict S to a square R around v
- S: set of random points in R
- Move v to best position in S
- fine tune
Our Heuristic

Initial Drawing

select a vertex v

repeat

S: set of random points in R

Move v to best position in S

restrict S to a square R around v

fine tune
Our Heuristic

Initial Drawing

1. Select a vertex v
2. Repeat
 - Restrict S to a square R around v
 - Move v to best position in S
3. Fine tune

S: set of random points in R

\[R \]
Evaluation
Test Instances

- **North**
 - collection of small real world graphs

- **Rome**
 - collection of small real world graphs

- **Community**
 - Resembles community structure

- **1-Planar**

- **Triangulation + X**
 - Triangulation + set of random edges

100 randomly selected graphs per class
Research Questions

Q: What is good parametrization of our algorithm?

Q: What is a good choice for an initial drawing?

Q: Does our heuristic improve the crossing angle?
Research Questions

Q: What is good parametrization of our algorithm?

Q: What is a good choice for an initial drawing?

Q: Does our heuristic improve the crossing angle?
Good Initial Drawing

Initial Drawing Styles:

Random: random position per vertex

Fr+Cos: Force-Directed + Angle Max. Force [Huang et al. '14]

Stress: Stress Majorization [Gansner et al. '05, OGDF]

cr-small: Drawing with small number of crossings [R. et al.'18]

Observations

Random seems to be a bad choice

Tendence towards Fr+Cos
Good Initial Drawing

Initial Drawing Styles:

Random: random position per vertex

Fr+Cos: Force-Directed + Angle Max. Force [Huang et al. '14]

Stress: Stress Majorization [Gansner et al. '05, OGDF]

cr-small: Drawing with small number of crossings [R. et al.'18]

Observations

Random seems to be a bad choice

Tendence towards Fr+Cos
Good Initial Drawing

Initial Drawing Styles:

Random: random position per vertex

Fr+Cos: Force-Directed + Angle Max. Force [Huang et al. '14]

Stress: Stress Majorization [Gansner et al. '05, OGDF]

cr-small: Drawing with small number of crossings [R. et al.'18]

Observations

Random seems to be a bad choice

Tendence towards Fr+Cos
Good Initial Drawing

Q: Is Fr+Cos a good initial drawing?

North Rome Comm. 1-Planar Triang.
Q: Is Fr+Cos a good initial drawing?

North

![North Diagram](image1.png)

Rome

![Rome Diagram](image2.png)

Comm.

![Comm. Diagram](image3.png)

1-Planar

![1-Planar Diagram](image4.png)

Triang.

![Triang. Diagram](image5.png)
Good Initial Drawing

Q: Is Fr+Cos a good initial drawing?

North	Rome	Comm.	1-Planar	Triang.
stress
cr-small
random
Good Initial Drawing

Q: Is Fr+Cos a good initial drawing?

North	Rome	Comm.

1-Planar | Triang.

stress	cr-small	random
90	90	90
60	60	60
30	30	30
0	0	0
90	90	90

Need for a tool to compare paired drawings.
Tool to Compare Paired Drawings

Input: Ground set of Graphs \(G = \{G_1, G_2, \ldots, G_n\} \)

Two sets of drawings of \(G \)
\(\{\Gamma[G_i] \mid G_i \in G\} \) \(\{\Pi[G_i] \mid G_i \in G\} \)
Tool to Compare Paired Drawings

Input: Ground set of Graphs $\mathcal{G} = \{G_1, G_2, \ldots, G_n\}$

Two sets of drawings of \mathcal{G}: $\{\Gamma[G_i] | G_i \in \mathcal{G}\}$ and $\{\Pi[G_i] | G_i \in \mathcal{G}\}$

Q: Do the drawings Γ have a larger crossing angle than Π?

for all G_i: $\text{cr-}\angle(\Gamma[G_i]) > \text{cr-}\angle(\Pi[G_i])$
Tool to Compare Paired Drawings

Input: Ground set of Graphs $\mathcal{G} = \{G_1, G_2, \ldots, G_n\}$

Two sets of drawings of \mathcal{G}

\[
\{\Gamma[G_i] \mid G_i \in \mathcal{G}\} \quad \{\Pi[G_i] \mid G_i \in \mathcal{G}\}
\]

A number $p \in [0, 1]$

Q: Do the drawings Γ have a larger crossing angle than Π?

Is there: a subset $\mathcal{G}' \subseteq \mathcal{G}$, $|\mathcal{G}'| > p \cdot |\mathcal{G}|$ such that

for all $G_i \in \mathcal{G}'$:

\[
\text{cr-}\angle(\Gamma[G_i]) > \text{cr-}\angle(\Pi[G_i])
\]
Tool to Compare Paired Drawings

Input: Ground set of Graphs \(\mathcal{G} = \{ G_1, G_2, \ldots, G_n \} \)

Two sets of drawings of \(\mathcal{G} \) \(\{ \Gamma[G_i] \mid G_i \in \mathcal{G} \} \) \(\{ \Pi[G_i] \mid G_i \in \mathcal{G} \} \)

A number \(p \in [0, 1] \), \(\Delta > 0 \)

Q: Do the drawings \(\Gamma \) have a larger crossing angle than \(\Pi \)?

Is there: a subset \(\mathcal{G}' \subseteq \mathcal{G}, |\mathcal{G}'| > p \cdot |\mathcal{G}| \) such that

for all \(G_i \in \mathcal{G}' \) : \(\text{cr-} \angle(\Gamma[G_i]) > \text{cr-} \angle(\Pi[G_i]) + \Delta \)
Tool to Compare Paired Drawings

Input: Ground set of Graphs $\mathcal{G} = \{G_1, G_2, \ldots, G_n\}$

Two sets of drawings of \mathcal{G}

$$\{\Gamma[G_i] \mid G_i \in \mathcal{G}\} \quad \{\Pi[G_i] \mid G_i \in \mathcal{G}\}$$

A number $p \in [0, 1]$, $\Delta > 0$

Q: Do the drawings Γ have a larger crossing angle than Π?

Is there: a subset $\mathcal{G}' \subseteq \mathcal{G}$, $|\mathcal{G}'| > p \cdot |\mathcal{G}|$ such that

for all $G_i \in \mathcal{G}'$:

$$\text{cr-\angle}(\Gamma[G_i]) > \text{cr-\angle}(\Pi[G_i]) + \Delta$$
Tool to Compare Paired Drawings

Input: Ground set of Graphs $\mathcal{G} = \{G_1, G_2, \ldots, G_n\}$

Two sets of drawings of \mathcal{G}

$\{\Gamma[G_i] \mid G_i \in \mathcal{G}\}$

$\{\Pi[G_i] \mid G_i \in \mathcal{G}\}$

A number $p \in [0, 1]$, $\Delta > 0$

Q: Do the drawings Γ have a larger crossing angle than Π?

Is there: a subset $\mathcal{G}' \subseteq \mathcal{G}$, $|\mathcal{G}'| > p \cdot |\mathcal{G}|$ such that

for all $G_i \in \mathcal{G}'$:

$\text{cr-} \angle (\Gamma[G_i]) > \text{cr-} \angle (\Pi[G_i]) + \Delta$

Graphs and histograms showing the distribution of crossing angles and related measurements.
Good Initial Drawing

Q: Is Fr+Cos a good initial drawing?

North Rome Comm. 1-Planar Triang.

- **stress**
- **cr-small**
- **random**
Good Initial Drawing

Q: Is Fr+Cos a good initial drawing?

North	Rome	Comm.

fr-cos vs stress

fr-cos vs cr-small
Research Questions

Q: What is good parametrization of our algorithm?

Q: What is a good choice for an initial drawing?

Q: Does our heuristic improve the crossing angle?
Improvement of the Crossing Angle

Q: Does our Heuristic improve the Crossing Angle?

North
Rome
Comm.
1-Planar
Triang.
Improvement of the Crossing Angle

Q: Does our Heuristic improve the Crossing Angle?

North Rome Comm. 1-Planar Triang.
Improvement of the Crossing Angle

Q: Does our Heuristic improve the Crossing Angle?

North Rome Comm. 1-Planar Triang.

![Graph showing the improvement of the crossing angle for different datasets and parameters.](image-url)
Our Heuristic

Initial Drawing

- select a vertex v
- repeat

S: set of random points in R
Move v to best position in S
restrict S to a square R around v

fine tune
Our Heuristic

Initial Drawing

select a vertex \(v \)

repeat

What is a good next candidate?

\[S: \text{ set of random points in } R \]

Move \(v \) to best position in \(S \)

restrict \(S \) to a square \(R \) around \(v \)

fine tune
Running Time

Task Find edges \(e,f \) s.t. \(\text{cr-} \angle (\Gamma, e, f) = \text{cr-} \angle (\Gamma) \)

Possibility *Sweep*: Sweep-Line Algorithm

Possibility *Bucket*:
- sort edges into buckets according to slopes
- edges of adjacent buckets form \(\text{cr-} \angle (\Gamma) \)

Time to move a single vertex
Running Time

Task Find edges e, f s.t. $\text{cr-} \angle (\Gamma, e, f) = \text{cr-} \angle (\Gamma)$

Possibility Sweep: Sweep-Line Algorithm

Possibility Bucket:
- sort edges into buckets according to slopes
- edges of adjacent buckets form $\text{cr-} \angle (\Gamma)$

Time to move a single vertex
Running Time

Task Find edges e, f s.t. $\text{cr-} \angle(\Gamma, e, f) = \text{cr-} \angle(\Gamma)$

Possibility **Sweep**: Sweep-Line Algorithm

Possibility **Bucket**:

- sort edges into buckets according to slopes
- edges of adjacent buckets form $\text{cr-} \angle(\Gamma)$

Time to move a single vertex

![Graph showing time to move a single vertex vs. #vertices for different sweep types]
Conclusion

a simple heuristic for Crossing-Angle Maximization
easy to implement
generic

Future Work

Drawings are not necessarily readable
Let R be a region that ensure some properties of v
Optimize position of v within R
Conclusion

a simple heuristic for Crossing-Angle Maximization
easy to implement
generic

Future Work

Drawings are not necessarily readable

Let R be a region that ensure some properties of v
Optimize position of v within R
Conclusion

a simple heuristic for Crossing-Angle Maximization

easy to implement
generic

Future Work

Drawings are not necessarily readable

Let R be a region that ensure some properties of v

Optimize position of v within R
Conclusion

a simple heuristic for Crossing-Angle Maximization
 easy to implement
 generic

GD Contest duplicated the number of applied papers on Cr. Angle Max ;-)

Future Work

Drawings are not necessarily readable
Let R be a region that ensure some properties of v
Optimize position of v within R
Thank you.
Good Parameter

Configurations:
- Sloppy: Fast and *inaccurate*
- Medium: Trade of between speed and accuracy
- Precise: Slow and *accurate*

Time Limit: n seconds for an n-vertex graph
Good Parameter

Configurations:
- Sloppy: Fast and *inaccurate*
- Medium: Trade of between speed and accuracy
- Precise: Slow and *accurate*

Time Limit: n seconds for an n-vertex graph

allows fair comparison
Good Parameter

Configurations:
- Sloppy: Fast and *inaccurate*
- Medium: Trade of between speed and accuracy
- Precise: Slow and *accurate*

Time Limit: n seconds for an n-vertex graph
allows fair comparison

There is no obvious difference between the configurations
Good Parameter

Configurations:
- Sloppy: Fast and *inaccurate*
- Medium: Trade of between speed and accuracy
- Precise: Slow and *accurate*

Time Limit: n seconds for an n-vertex graph

There is no obvious difference between the configurations.
Good Parameter

Configurations:

- Sloppy: Fast and *inaccurate*
- Medium: Trade of between speed and accuracy
- Precise: Slow and *accurate*

Time Limit: \(n \) seconds for an \(n \)-vertex graph

allows fair comparison

There is no obvious difference between the configurations?