Hemilaminectomy for Removal of Extramedullary or Extradural Spinal Cord Tumors: Medium to Long-Term Clinical Outcomes

Toshitaka Naganawa,1 Kei Miyamoto,2 Hideo Hosoe,1 Naoki Suzuki,1 and Katsuji Shimizu1

Departments of 1Orthopaedic Surgery and 2Reconstructive Surgery for Spine, Bone, and Joint, Gifu University Graduate School of Medicine, Gifu, Japan.

Received: December 10, 2009
Revised: March 15, 2010
Accepted: March 19, 2010

Corresponding author: Dr. Kei Miyamoto, Department of Reconstructive Surgery for Spine, Bone, and Joint, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan.
Tel: 81-58-230-6333, Fax: 81-58-230-6334
E-mail: kei@bg8.so-net.ne.jp

Purpose: Laminectomy is generally the treatment of choice for removal of spinal tumors. However, it has been shown that laminectomy may cause instability due to damage of posterior elements of the spinal column, which may induce subsequent kyphosis in the future. Therefore, to reduce the risk of deformity and spinal instability after laminectomy, hemilaminectomy has been used. However, the medium to long-term effects of hemilaminectomy on spinal sagittal alignment is not well understood. The present study was performed to evaluate the clinical outcomes, including spinal sagittal alignment of patients, associated with spinal cord tumors treated by surgical excision using hemilaminectomy.

Materials and Methods: Twenty hemilaminectomy operations at our institute for extramedullary or extradural spinal cord tumors in 19 patients were evaluated retrospectively with an average follow-up of 85 months (range, 40-131 months). Neurological condition was evaluated using the improvement ratio of the Japanese Orthopaedic Association Score (JOA score) for cervical, thoracic myelopathy, or back pain, and sagittal alignment by sagittal Cobb angle of the hemilaminectomied area.

Results: The mean improvement ratio of neurological results was 56.7% in the cervical spine (p < 0.01, n = 10), 26.3% in the thoracic spine (not significant, n = 5), and 48.6% in the lumbar spine (NS, n = 5). The sagittal Cobb angle was 4.3 ± 18.0° in the preoperative period and 5.4 ± 17.6° at the latest follow-up, indicating no significant deterioration.

Conclusion: Hemilaminectomy is useful for extramedullary or extradural spinal cord tumors in providing fair neurological status and restoration of spinal sagittal alignment in medium to long-term follow-up.

Key Words: Hemilaminectomy, surgical treatment, spinal cord tumors, middle to long term clinical outcome, sagittal alignment

INTRODUCTION

A spinal tumor is defined as a growth of cells (mass) within or surrounding the spinal cord. In cases in which compression of the spinal cord is severe and the risk of neurological deterioration increases, surgery is needed to relieve the compression. Bilateral laminectomy is generally the treatment of choice for removal of spinal...
Pathological diagnosis of tumors

Pathological diagnoses using specimens from resected tumors were identified (Table 1).

Invasiveness of the procedures

To evaluate the invasiveness of the operations, the amount
Case no.	Age	Sex	Levels of tumors	Locations of tumors	Level for hemilaminectomy	Additional anterior operations	Pathological diagnosis	Operation time (min) Total	Blood loss (g) Total	Blood loss (g) Per hemilaminected levels	Follow-up period (months)	
1	55	M	C5-6	Intradural / extradural	C5-6	No	Neurinoma	140	70	140	70	131
2	35	F	C5	Intradural / extradural	C5-6	No	Neurinoma	140	70	25	13	130
3	67	M	C5-6	Intradural / extradural	C4-6	No	Neurinoma	130	43	220	73	120
4	39	M	C7-Th1	Extradural (dumbbell)	C7-T2	Yes	Neurinoma	390	130	600	200	117
5	24	F	C1-4	Extradural (dumbbell)	C1-4	No	Neurofibroma	195	49	780	195	115
6	31	M	C2-3	Extradural	C2-3	No	Neurinoma	400	200	1,270	635	94
7	63	F	C1-2	Extradural	C1-2	No	Neurinoma	150	75	250	125	79
8	40	M	C2-3	Extradural (dumbbell)	C2-3	Yes	Neurinoma	245	123	1,420	710	77
9	44	F	C1-2	Extradural	C1-2	No	Neurinoma	104	52	200	100	41
10	74	M	C2	Extradural	C1-3	No	Neurinoma	435	145	890	297	40
11	25	F	T3-4	Extradural	T3-4	No	Neurinoma	300	150	210	105	123
12	24	F	T3-8	Intradural / extradural	T3-8	No	Arachnoid cyst	250	42	280	47	90
13	52	M	T3-8	Intradural / extradural	T2-8	No	Arachnoid cyst	310	44	190	27	88
14	60	F	T11-12	Extradural	T11-12	No	Neurinoma	275	138	325	163	87
15	57	M	T3-6	Intradural / extradural	T3-6	No	Arachnoid cyst	200	50	250	63	87
16	31	M	L2	Extradural	L2-3	No	Ependymoma	120	60	50	25	78
17	14	F	L3-4	Intradural / extradural	L3-4	No	Meningioma	290	145	575	288	62
18	44	F	L3-4	Intradural / extradural	L3-4	No	Neurinoma	125	63	180	90	60
19	37	M	L4-5	Extradural	L4-S	No	Neurinoma	89	30	150	50	46
20	30	F	L1-2	Extradural (dumbbell)	L1-2	Yes	Neurofibroma	205	103	320	160	43

Average | **42.3** | **225** | **89** | **416** | **172** | **85**

S.D. | **16.4** | **105** | **48** | **392** | **190** | **30**
of blood loss during surgery and the duration of surgery were noted. These values were standardized by the number of hemilaminectomied laminae (Table 1).

Radicality of resection
Radicality of resection was assessed by the surgeons as complete resection or incomplete resection. Cases of incomplete resection were classified into unexpectedly incomplete and predictably incomplete resection.³

Complications
Intraoperative and postoperative complications were analyzed.

Changes in neurological status
Neurological status was evaluated using the Japanese Orthopaedic Association Score for Cervical Myelopathy.

Table 2. The Japanese Orthopaedic Association Score for Cervical Myelopathy

Motor function of fingers	Sensory function
1) Upper extremity	
0	Complete loss of touch & pain sensation
1	≤ 50% normal sensation &/or severe pain or numbness
2	> 60% normal sensation &/or moderate pain or numbness
3	Subjective numbness of slight degree w/out any objective sensory deficit
4	Normal

Shoulder & elbow: evaluated by MMT score of the deltoi or biceps muscles, whichever is weaker

2) Trunk

- 2 | MMT 2 or below | Complete loss of touch & pain sensation |
- 1 | MMT 3 | ≤ 50% normal sensation &/or severe pain or numbness |
- 0.5 | MMT 4 | > 60% normal sensation &/or moderate pain or numbness |
0 | MMT 5 | Subjective numbness of slight degree w/out any objective sensory deficit |

3) Lower extremity

Lower extremity	Sensory function
0	Complete loss of touch & pain sensation
0.5	≤ 50% normal sensation &/or severe pain or numbness
1	> 60% normal sensation &/or moderate pain or numbness
1.5 | Able to walk w/out support but w/a clumsy gait | Subjective numbness of slight degree w/out any objective sensory deficit |
2 | Walks independently on a level surface but needs support on stairs | Normal |
2.5 | Walks independently when going upstairs, but needs support when going downstairs | Bladder function |
3 | Capable of fast but clumsy walking | Urinary retention &/or incontinence |
4 | Normal | Sense of retention &/or dribbling &/or thin stream &/or incomplete continence |
2 | Urinary retardation &/or pollakiuria |
3 | Normal |

maximum score: 17 points

MMT, manual muscle test.
Hemilaminectomy for Removal of Extramedullary or Extradural Spinal Cord Tumors

Improvement ratio of JOA-B: (postoperative score-preoperative score) × 100 / [29 (full score) -preoperative score] (%)

Changes in the neurological status were classified into three grades: improved, unchanged, and worsened.

Effects of hemilaminectomy of postoperative spinal alignment

Cobb sagittal angle between the vertebral bodies at the upper and lower ends of the area of hemilaminectomy was measured on plain X-ray films preoperatively and at the final follow-up.

Postoperative recurrence of the tumor

At the final follow-up, MRI was used to assess the presence or absence of the recurrences of tumors.

Statistical analyses

The neurological improvement ratio was compared among patients with lesions of the cervical, thoracic, and lumbar spine by one-way analysis of variance.

Table 3. The Japanese Orthopaedic Association Score for Back Pain

Symptoms and signs	Evaluation and scores	III Activity of daily living	Evaluation and scores	
I Subjective symptoms	None	Moderate	None	
Lower back pain	Occasional mild pain	2	Turn over while lying down	3
	Occasional severe pain	1	Standing	0
	Continuous severe pain	0	Washing	1
Leg pain and/or tingling	Occasional slight symptoms	2	Leaning forwards	1
	Occasional severe symptoms	1	Standing (about 1 hour)	0
	Continuous severe symptoms	0	Lifting or holding heavy object	1
Caiet	Normal	Able to walk farther than 500 m although it results in symptoms	3	
	Unable to walk farther than 500 m	2	Normal bladder function	IV
	Unable to walk farther than 100 m	1	Mild dysuria	- 3
II Clinical signs		Unable to walk farther than 100 m	- 6	
Straight-leg-raising test	Normal	2		
	30 - 70°	1		
	Less than 30°	0		
Sensory disturbance	None	2		
	Slight disturbance (not subjective)	1		
	Marked disturbance	0		
Motor disturbance	Normal	2		
	Slight weakness (MMT 4)	1		
	Marked weakness (MMT 3 to 0)	0		

MMT, manual muscle test.
Case no.	Redicality of resection	Complications	JOA Score (Pre OP)*	JOA Score (Final)*	Improvement ratio (%)	Status	Cobb lordotic angle	Postoperative recurrence of the tumor		
1	Complete		12 / 17	14 / 17	40.0	Improved	1.0	1.1	+ 0.1	None
2	Complete		15 / 17	17 / 17	100.0	Improved	1.5	4.7	+ 3.2	None
3	Complete		12 / 17	14 / 17	40.0	Improved	6.1	5.5	- 0.6	None
4	Predictable incomplete		12 / 17	14 / 17	40.0	Improved	1.1	6.4	+ 5.3	None
5	Complete		15 / 17	17 / 17	100.0	Improved	12.2	11.5	- 0.7	None
6	Complete		16 / 17	17 / 17	100.0	Improved	6.9	6.1	- 0.8	None
7	Complete		14 / 17	15 / 17	33.3	Improved	17.8	16.7	- 1.1	None
8	Predictable incomplete		12 / 17	16 / 17	80.0	Improved	2.0	2.0	0.0	None
9	Complete		16 / 17	16 / 17	0.0	Unchanged	18.2	18.5	+ 0.3	None
10	Complete	C1-2 subluxation	16 / 17	17 / 17	100.0	Improved	21.7	22.7	+ 1.5	None
11	Complete		5 / 11	11 / 11	100.0	Improved	- 4.4	- 4.0	+ 0.4	None
12	Complete	CSF leak, intracranial hypotension syndrome*	7 / 11	7 / 11	0.0	Unchanged	- 32.8	- 23.5	+ 9.3	None
13	Complete		9 / 11	9 / 11	0.0	Unchanged	- 36.6	- 38.6	- 2.0	None
14	Complete	Vescorrectal disorder	6 / 11	6 / 11	- 66.7	Worsened	1.7	1.5	- 0.2	None
15	Complete		8 / 11	9 / 11	33.3	Improved	- 11.6	- 11.1	+ 0.5	None
16	Complete		16 / 29	27 / 29	84.6	Improved	3.4	3.0	- 0.4	None
17	Complete		13 / 29	15 / 29	12.5	Improved	36.3	36.0	- 0.3	None
18	Predictable incomplete		29 / 29	29 / 29	-	Unchanged	4.8	8.8	+ 4.0	None
19	Complete		29 / 29	29 / 29	100.0	Improved	35.7	38.2	+ 2.5	None
20	Predictable incomplete		27 / 29	27 / 29	50.0	Improved	1.9	2.2	+ 0.3	None
Average					49.8	Improved	4.3	5.4	1.1	None
S.D.					47.4	Improved	18.0	17.6	2.7	None

CSF, cerebrospinal fluid; OP, operation; JOA score, Japanese Orthopaedic Association Score.
*Case 1-10, JOA score for cervical myelopathy. Case 11-15, JOA score for Thoracic myelopathy. Case 16-20, JOA score for Back pain.
Pathological diagnosis of tumors
Pathological examination revealed neurinoma in 12 cases (54.5%), arachnoid cyst in 3 (13.6%), neurofibroma in 2 (10.0%, n = 2), meningioma in 1 (5.0%), chondroma in 1 (5%), and ependymoma in 1 (5%) (Table 1).

Invasiveness of the procedures
The duration of surgery was 225 ± 105 min (average ± SD). When divided by the number of hemilaminectomy levels, the duration was 89 ± 48 min. The amount of blood loss during surgery was 416 ± 392 g. When divided by the number of hemilaminectomy levels, the amount of blood loss was 172 ± 190 g (Table 1).

Radicality of resection
Radicality of resection was “complete” in 16 patients (80.0%) and “predictably incomplete” in 4 patients (20.0%). There were no “unexpected incomplete” resections. The four patients with predictably incomplete resections were those with dumbbell-shaped tumors; three of these patients underwent additional resections using the anterior approach. These patients, however, did not require any form of instrumented fusion (Table 4). Patient No.13 had a huge arachnoid cyst from T3 to T8, compressing the spinal cord. Total removal of this cyst required multilevel hemilaminectomy from T2 to T8. Conversion to conventional laminectomy was not required in any of the cases in the present study.

Complications
Three complications were recorded. In Case 10 (chondrom, C1-3 levels), slight subluxation at C1-2 occurred after the operation. However, the subluxation was asymptomatic. Case 12 suffered from intracranial hypotension syndrome due to cerebrospinal fluid leakage, which was successfully managed conservatively. Case 14 developed vesicorectal disorder after the resection of thoracic neurinoma. At the final follow-up, the symptoms had recovered almost completely (Table 4).

Changes in the neurological status
Postoperative neurological status improved in 16 cases (80%), unchanged in 3 (15%), and worsened in 1 (5%). Case 14 suffering from vesicorectal dysfunction showed worsening of the neurological status. The mean improvement ratio in neurological status scores was 49.8% (Table 4). When the scores of the three spinal regions were analyzed separately, we found that the improvement ratios were 56.7% in the cervical spine (p < 0.01), 26.3% in the thoracic spine not significant (NS), and 48.6% in the lumbar spine (NS) (Fig. 2). There were no significant differences in improvement ratios among the three groups (one-way analysis of variance).

Postoperative spinal alignment
The Cobb sagittal angle was 4.3 ± 18.0° lordosis (range, - 36.6° to 35.7°) preoperatively and 5.4 ± 17.6° lordosis (range, - 38.6° to 38.2°) at the final follow-up. The change in the lordotic angle ranged from 2.0° decrease to 9.3° increase, showing no significant changes (Table 2).

Postoperative recurrence of the tumor
There were no cases of tumor recurrence in the postoperative period in this series, and none received adjuvant therapy (Table 2).

Fig. 2. The average improvement ratio of postoperative neurological status was 62.3% in tumors of the cervical region (p < 0.01), 13.3% in tumors of the thoracic region, and 61.8% in tumors of the lumbar region. IR, improvement ratio; JOA score, Japanese Orthopaedic Association Score.
DISCUSSION

In the present study, clinical outcomes of the removal of spinal tumors by hemilaminectomy in 20 cases were reviewed with an average follow-up of 85 months. While several authors have reported the usefulness of this surgical method,1,8-11 medium to long-term follow-up results have rarely been reported. The present results with a medium to long-term follow-up showed a relatively low level of operative invasiveness, good improvement ratio of neurological status, no significant deterioration in spinal sagittal alignment, and no recurrence of tumors. Importantly, as hemilaminectomy was originally adopted for spinal tumor removal due to its possible advantage in preserving the sagittal alignment,20 the present results actually confirmed the advantage of this approach.

To reduce the risk of deformity and spinal instability after laminectomy, Raimondi, et al.2 and Parkinson21 recommended osteoplastic laminectomy, originally described by Bickham,22 to reconstruct the structures of the posterior column. However, this technique is somewhat difficult, and is therefore time consuming.2,21 To avoid subsequent complications in spinal sagittal alignment, the hemilaminectomy approach that can preserve interspinous ligaments, intervertebral joints, and paravertebral muscles of the contralateral side was then indicated for resection of spinal cord tumors.19 Although the usefulness of tumor removal by hemilaminectomy in maintenance of sagittal alignment in cervical regions has been reported previously by Asazuma, et al.,20 the present medium to long-term results from cases with hemilaminectomy of a number of different levels and spinal regions with no deterioration in the spinal sagittal alignment represent a significant addition to the literature.

While hemilaminectomy is advantageous in preserving posterior spinal structures, the hemilaminectomy approach provides a relatively narrow view of the spinal intracanal regions.12 Ozawa, et al.23 noted several limitations and disadvantages of hemilaminectomy in removal of spinal tumors. They suggested that additional foraminitomies and reconstructions using interspinous wiring are necessary for radical resection of dumbbell tumors of Eden type 2 and 3.23 They also suggested that huge tumors with scalloping of vertebrae, midline tumors that require resection and reconstruction of the dural sac, easy bleeding tumors spreading to both sides, malignant lymphomas, and hemangiomas are difficult to manage by hemilaminectomy.23 We agree with this concept and have altered our treatment strategy in accordance with it. Hemilaminectomy would be optimal for tumors with clear borders, extramedullary and extradural tumors, and dorsal and unilateral lesions throughout the spine. In contrast, we chose conventional laminectomy for removal of tumors with unclear borders, and for intramedullary, ventral, and bilateral spreading lesions. We observed a high radicality ratio (80.0%), no incidence of intraoperative conversion from hemilaminectomy to conventional laminectomy, and no postoperative tumor recurrence. Consistent with previous findings,23 the radicality of resection was predictably incomplete in 4 of the 5 patients with dumbbell-shaped tumors. We found cerebrospinal fluid (CSF) leakage resulting from one of the 20 operations (5%), higher than reported in patients who underwent either hemilaminectomy (0.7%) or total laminectomy (3%).21 The CSF leakage we observed in one of our patients was deemed minor and was managed conservatively. Definitions of CSF leakage should be standardized, in order to assess differences in rates of CSF leakage. During preoperative screening, we excluded patients suspected of having malignant tumors or tumors located anteriorly to the spinal cord. Those tumors were surgically removed via total laminectomy. Consequently, we did not convert these patients from hemilaminectomy to total laminectomy during surgery. Pathological analysis showed that all of these tumors were benign. These findings suggest that spinal tumor removal by hemilaminectomy through strict preoperative assessment using imaging modalities9 can guarantee a successful clinical outcome.

There were several limitations in the design of this study. First, in this study, a single cohort that underwent a single surgical strategy was followed-up prospectively. Therefore, a comparative study with similar patients treated using other strategies in a randomized manner must be performed. Second, the mean overall final follow-up period was 85 months, ranging from 40 to 131 months. Evaluations at consistent time periods are required in future studies to obtain more clinically relevant data. Third, the patients in this study were relatively young (median age, 42.3 years), indicating that they are not representative of a generalized patient population. Inclusion of elderly and/or osteopenic patients may have altered our results. Fourth, our patient population was skewed, in having more cervical patients than other regions. A laminectomy lower down in the spine would probably have had more destabilizing effects, thus altering the results of postoperative spinal alignment. Finally, our results may
have been more convincing had the patient cohort been more limited relative to the types of tumor.

In conclusion, twenty cases of spinal tumor excision by hemilaminectomy were reviewed. This surgical method provided satisfactory outcomes with a good neurological status, maintenance of sagittal alignment, and little complication over medium to long-term follow-up.

REFERENCES

1. Eggert HR, Scheremet R, Seeger W, Gaitzsch J. Unilateral microsurgical approaches to extramedullary spinal tumours. Operative technique and results. Acta Neurochir (Wien) 1983;67:245-53.
2. Raimondi AJ, Gutierrez FA, Di Rocco C. Laminotomy and total reconstruction of the posterior spinal arch for spinal canal surgery in childhood. J Neurosurg 1976;45:555-60.
3. Yasuoka S, Peterson HA, Laws ER Jr, MacCarty CS. Pathogenesis and prophylaxis of postlaminectomy deformity of the spine after multiple level laminectomy: difference between children and adults. Neurosurgery 1981;9:145-52.
4. Bradford DS. Spinal instability: orthopedic perspective and prevention. Clin Neurosurg 1980;27:591-610.
5. Cattell HS, Clark GL Jr. Cervical kyphosis and instability following multiple laminectomies in children. J Bone Joint Surg Am 1967;49:713-20.
6. Panjabi MM, White AA 3rd. Basic biomechanics of the spine. Neurosurgery 1980;7:76-93.
7. Reitner R, Onofrio BM. Astrocytomas of the spinal cord in children and adolescents. J Neurosurg 1985;63:669-75.
8. Bertalanffy H, Mitani S, Otani M, Ichikizaki K, Taya S. Usefulness of hemilaminectomy for microsurgical management of intraspinal lesions. Keio J Med 1992;41:76-9.
9. Chiozu SM, Eggert HR, Laborde G, Seeger W. Microsurgical unilateral approaches for spinal tumour surgery: eight years’ experience in 256 primary operated patients. Acta Neurochir (Wien) 1989;100:127-33.
10. Oleshkевич FV, Rozhanets NI, Volkovets NN. [Hemilaminectomy in the removal of spinal cord tumors]. Zh Vopr Neirokhir Im N N Burdenko 1988;30-2.
11. Sario-glu AC, Hanci M, Bozkus H, Kaynar MY, Kafadar A. Unilateral hemilaminectomy for the removal of the spinal space-occupying lesions. Minim Invasive Neurosurg 1997;40:74-7.
12. Oktem IS, Akdemir H, Kurtsoy A, Koç RK, Menkü A, Tucer B. Hemilaminectomy for the removal of the spinal lesions. Spinal Cord 2000;38:92-6.
13. Hosono N, Yonenobu K, Ono K. [Japanese Orthopedic Association: Scoring system for cervical myelopathy]. J Jpn Orthop Assoc 1994;68:490-503.
14. Yonenobu K, Abumi K, Nagata K, Taketomi E, Ueyama K. Interobserver and intraobserver reliability of the Japanese orthopaedic association scoring system for evaluation of cervical compression myelopathy. Spine (Phila Pa 1976) 2001;26:1890-4.
15. Yonenobu K, Ebara S, Fujiwara K, Yamashita K, Yamamoto T, et al. Thoracic myelopathy secondary to ossification of the spinal ligament. J Neurosurg 1987;66:511-8.
16. Fujimura Y, Nishi Y, Nakamura M, Toyama Y, Suzuki N. Long-term follow-up study of anterior decompression and fusion for thoracic myelopathy resulting from ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976) 1997;22:305-11.
17. Ohnishi K, Miyakoshi N, Abe E, Shimada Y, Okuyama K, Suzuki T, Sato K. Outcome of one-level posterior lumbar interbody fusion for standard discectomy for lumbar disc herniation. J Bone Joint Surg Br 2005;87:356-60.
18. Miyakoshi N, Abe E, Shimada Y, Okuyama K, Suzuki T, Sato K. Outcome of one-level posterior lumbar interbody fusion for spondylolisthesis and postoperative intervertebral disc degeneration adjacent to the fusion. Spine (Phila Pa 1976) 2000;25:1837-42.
19. Yorimitsu E, Chiba K, Toyama Y, Hirabayashi K. Long-term outcomes of standard discectomy for lumbar disc herniation: a follow-up study of more than 10 years. Spine (Phila Pa 1976) 2001;26:652-7.
20. Asazuma T, Nakamura M, Matsumoto M, Chibko K, Toyama Y. Postoperative changes of spinal curvature and range of motion in adult patients with cervical spinal cord tumors: analysis of 51 cases and review of the literature. J Spinal Disord Tech 2004;17:178-82.
21. Parkinson D. Replacement laminotomy. Surg Neurol 1977;8:277-9.
22. Bickham WS. III. Technique of Exposure of the Spinal Cord and Canal; Osteoplastie Resection and Laminectomy. Ann Surg 1905;41:372-98.
23. Ozawa H, Kokubun S, Aizawa T, Hoshika T, Kawahara C. Spinal dumbbell tumors: an analysis of a series of 118 cases. J Neurosurg Spine 2007;7:587-93.