Analysis of Eddy Effect for Cu and CNT Bundle Based Through-Silicon Vias: Impact on Crosstalk and Power

Chopali Chanchal Sahu
Dr Shyama Prasad Mukherjee International Institute of Information Technology

Shubham Anand
IIIT–NR: Dr Shyama Prasad Mukherjee International Institute of Information Technology

Manoj Kumar Majumder (manojbesu@gmail.com)
Dr Shyama Prasad Mukherjee International Institute of Information Technology

Research Article

Keywords: Crosstalk-induced delay, Peak noise, Power dissipation, Eddy effect, Skin effect, Single-Walled CNT (SWCNT), Multi-Walled CNT (MWCNT), Circuit level approach

Posted Date: June 7th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-522576/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Analysis of Eddy Effect for Cu and CNT Bundle based Through-Silicon Vias: Impact on Crosstalk and Power

Chopali Chanchal Sahu· Shubham Anand · Manoj Kumar Majumder

Abstract
The performance of a three dimensional integrated circuit primarily depends on the filler material used in through silicon via (TSV). The mostly used filler material Cu is primarily facing severe reliability issues due to the skin effect and electromigration related problems at high frequencies. Therefore, in recent, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) have been emerged as suitable filler materials in TSV. Additionally, at high frequencies, an electromagnetic force primarily induces to an eddy current that adversely affects the overall performance of a TSV. This paper for the first time demonstrates the impact of eddy current on Cu, bundled SWCNT and MWCNT based TSVs. An accurate RLGC circuit model is proposed by considering the eddy effect at the depletion layer and the silicon substrate region. The equivalent circuit parameters are modelled at 7 nm technology using a three line driver-via-load setup. Using the proposed setup, crosstalk and power dissipation are analyzed with and without considering the eddy effect. Irrespective of TSV heights, the MWCNT bundle demonstrates substantially lower crosstalk delay, peak noise and power dissipation in comparison to the Cu and SWCNT bundle based TSVs.

Keywords Crosstalk-induced delay · Peak noise · Power dissipation · Eddy effect · Skin effect · Single-Walled CNT (SWCNT) · Multi-Walled CNT (MWCNT) · Circuit level approach

1 Introduction
In the recent past, several researchers have contributed in designing Three Dimensional (3D) integrated circuits (ICs) as an alternative solution to conventional 2D planar ICs, wherein IC layers are stacked vertically to integrate more devices on a single chip ensuring improved performance [1-3]. This process, referred to as 3D stacking, primarily results in higher transistor density, lower power dissipation, enhanced speed, and reduced footprint area. For interconnection purposes in 3D IC, Through Silicon Via (TSV) is mainly used that provides higher density and bandwidth, low latency, and provides homogeneous and heterogeneous integration [4]. The performance of 3D IC is primarily dependent on the type of filler material used in TSV [5]. Mostly, copper (Cu) is used as filler material in the TSV due to its higher conductive nature and is comparatively compatible in via last TSV fabrication process. In addition to this, Cu provides good thermal cycling performance, lesser stress, void-free filling, conductivity, and higher current density than tungsten and polymer [6]. However, challenges due to fabrication limitations in accomplishing Physical Vapour Deposition (PVD) and Seed Layer Deposition are observed in Cu-based TSVs. Therefore, researchers are compelled to find an alternative solution to replace the Cu TSVs. Carbon Nanotubes (CNTs) have emerged as the most promising filler material as an alternative choice to Cu. The CNTs are hollow cylindrical-shaped
structures made up of concentrically rolled-up graphene sheets at a specific angle [7]. Two types of CNTs such as single- (SWCNT) and multi-walled CNT (MWCNT) are generally preferred as filler materials. Negligible electromigration, thermal stability, unique electrical and mechanical properties provide CNT an edge over other materials to be considered suitable as TSV filler [8]. Thus compared to Cu TSV, impressive results can be observed in CNT-based TSV.

At high frequencies, eddy resistance primarily plays a key role for modelling of a TSV using Cu and CNT as filler materials. As per Faraday’s law of induction, the magnitude of induced electromotive force (EMF) is directly proportional to the rate of change of magnetic flux [9]. Thus induced EMF can work on the other conducting material of the TSV, and an eddy current will generate in it. According to the Lenz’s law, the eddy current opposes the change of magnetic field that is the main reason behind its circulatory nature [10]. Thus eddy resistance comes into the existence in the silicon substrate, neighboring TSVs, and depletion regions due to the flow of eddy current. In general, most of the state-of-the-art experimental evidences [11-20] describes an equivalent RLGC model of the cylindrical-shaped TSV without considering the eddy effect at high frequencies. Previously, Khalil et al. [11] demonstrated an analytical model of Cu-based TSV that depends on its physical parameters. The researchers studied the propagation delay of the TSV by using a transmission line model and electromagnetic field solver using both structural and analytical simulation by neglecting the impact of high-frequency eddy current. Afterward, Xu et al. [12] presented a comparative study of propagation delay of TSV with different filler materials like Cu, SWCNT, and MWCNT bundle. In the proposed circuit model, the authors have considered eddy resistance in the silicon substrate. However, the impact of the eddy effect in the depletion layer and neighboring TSVs were ignored. Later, Kim et al. [13] presented a compact ac model of the TSV including the via bump, redistribution layers, and skin effect. On the other hand, their frequency-based measurement techniques along with several other physical parameters such as inter-metal dielectric (IMD) layer, bump, and underfilled layer were considered for the analysis. The analysis was based on an eye diagram that demonstrates signal amplitude for different frequencies using the method described in [14]. However, the impact of the eddy effect is ignored in the TSV modeling in the case of high frequencies. Researchers in [15] proposed a comprehensive model of SWCNT bundle-based TSV to represent a driver-via-load (DVL) setup that presents significant improvement in delay and power performance with an increase in aspect ratio, although it was ignored in high-frequency analysis. Subsequently, Qian et al. [16] proposed a lumped crosstalk noise model to capture TSV to TSV coupling noise in CNT-based 3D IC but neglected the impact of eddy resistance at the higher frequency. Later, Su et al. [17] proposed an equivalent model of MWCNT based TSV using temperature effects that considered the eddy resistance due to the flow of eddy current in the substrate but neglected the eddy resistance impact due to depletion region and TSV material. Lu et al. [18] demonstrated a pi equivalent electrical model of the Cu-based cylindrical TSV with consideration of eddy current and proximity effect at high frequencies. However, the authors restricted their research related to the impact of the eddy effect only for the S parameter that shows the power loss of the TSV. Later, Liao et al. [19] demonstrated the crosstalk-induced delay considering the proximity effect in a shielded pair of the TSV. The proposed model provides a good agreement with the analytical calculations and 3D full-wave simulation. Although a comprehensive analysis has been performed for transmission coefficient and high-frequency impedance considering TSV design parameters but the impact of the eddy effect is restricted only to the silicon substrate. In recent, the researchers in [20] have demonstrated the crosstalk induced delay and power dissipation for cylindrical, tapered, square, and annular shaped TSVs considering the skin effect at high frequency. The authors proposed an electrical equivalent model of metal-insulator-semiconductor (MIS) and metal-semiconductor (MES) based on different TSV shapes to analyze the power delay product (PDP). The analysis is majorly focused on the TSV shapes and at high frequencies. However, the impact of several design parameters such as mutual inductance, eddy resistance, and depletion capacitance were ignored. Therefore, the state-of-the-art research [11-20] fails on some fronts to present a comprehensive analysis of eddy current for a pair of TSV at high frequencies, and hence a detailed investigation is required to apostrophize the eddy resistance of TSVs by considering all the physical parameters.

This research work for the first time demonstrates the electrical modeling of the TSV considering the eddy effect at high frequencies. Whenever high-frequency alternating current passes through the TSV, it causes the varying electromagnetic field that generates an induced EMF in the other conducting layers such as depletion region, silicon substrate, and the neighboring TSVs. Due to the induced EMF, a circulatory current known as eddy current primarily flows in it. Thus, an eddy resistance comes to an existence due to the flow of eddy current at high frequencies. Hence, all these phenomena are normally known as the eddy effect. In order to demonstrate this effect, a closed-form expression of the eddy resistance is derived for the depletion region, silicon substrate, and neighboring TSVs. In addition, Metal Oxide Semiconductor (MOS) effect is also considered during the RLGC modeling of
Section 1 sheds light on the recent state-of-art research concerning different heights and frequencies. Finally, a comprehensive study of the impact of eddy resistance in the silicon substrate, depletion region, and neighboring TSVs. Based on this concept, the diameter \(d_{\text{no}} \) is approximated as 10.5 nm. The height \(h_{\text{no}} \) of TSV is taken in the range of 30-120 nms. Considering an aspect ratio of 2.4, the height \(h_{\text{bump}} \) and diameter \(d_{\text{bump}} \) of the bump are approximated as 3.71 nm and 22.26 nm, respectively. The thickness of oxide liner \(t_{\text{liner}} \) and depletion width \(t_{\text{dep}} \) are approximated as 1.05 nm and 1.65 nm, respectively [12]. The height of the IMD layer \(h_{\text{IMD}} \) is 1.05 nm. The number of CNT bundles in a TSV is calculated using the cross-sectional area of TSV and diameter of CNTs in a bundle.

The physical parameters of the cylindrical TSV is designed at 7 nm technology [24] as shown in Fig. 1. Under the proposed TSV model, the via pitch \(p_{\text{via}} \) and distance between adjacent TSVs \(p_{\text{via}} \) is considered as 23 nm. TSV pitch \(p_{\text{pitch}} \) should be equal to or greater than twice the TSV diameter \(d_{\text{no}} \) to avoid the misalignment [25]. Based on this concept, the diameter \(d_{\text{tsv}} \) is taken in the range of 30-120 nms.

The physical parameters of the cylindrical TSV is designed at 7 nm technology [24] as shown in Fig. 1. Under the proposed TSV model, the via pitch \(i.e. \) center-to-center distance between adjacent TSVs \((p_{\text{via}}) \) is considered as 23 nm. TSV pitch \((p_{\text{pitch}}) \) should be equal to or greater than twice the TSV diameter \((d_{\text{no}}) \) to avoid the misalignment [25]. Based on this concept, the diameter \((d_{\text{tsv}}) \) is taken in the range of 30-120 nms. Considering an aspect ratio of 2.4, the height \((h_{\text{bump}}) \) and diameter \((d_{\text{bump}}) \) of the bump are approximated as 3.71 nm and 22.26 nm, respectively. The thickness of oxide liner \((t_{\text{liner}}) \) and depletion width \((t_{\text{dep}}) \) are approximated as 1.05 nm and 1.65 nm, respectively. The height \((h_{\text{IMD}}) \) of TSV is 1.05 nm. The number of CNT bundles in a TSV is calculated using the cross-sectional area of TSV and diameter of CNTs in a bundle.

The paper is organized in the following sections: Section 1 sheds light on the recent state-of-art research scenario and briefs the modeling of cylindrical-shaped TSV taking into account the impact of eddy resistance. Section 2 introduces the electrical equivalent model of Cu, SWCNT, and MWCNT (number of shells \(n = 10 \)) bundle-based TSV with and without consideration of eddy resistance. A detailed analytical expression is derived to model the eddy resistance in the silicon substrate, depletion region, and neighboring TSVs. Based on the proposed model, Section 3 demonstrates a comprehensive study of the impact of eddy resistance in the crosstalk noise, delay, and power dissipation concerning different heights and frequencies. Finally, Section 4 briefly concludes this work with a summary.

2 TSV Model and Eddy Resistance

This section demonstrates a cylindrical-shaped TSV structure and their physical parameters using different filler materials such as Cu, SWCNT and MWCNT bundle. Furthermore, a closed-form expression of eddy resistance is derived for the depletion region, silicon substrate, and in the neighboring TSVs. Consequently, a novel equivalent electrical modeling of cylindrical TSV is proposed with consideration of the eddy resistance.

2.1 TSV Structure and Physical Parameters

This subsection gives a detailed insight of the TSV structure and quantitative values of several parameters that will eventually be used in the modeling of equivalent \(RLGC \) model. Figures 1(a) and 1(b) shows the physical configuration and top cross-sectional view of cylindrical TSV, respectively. The TSV is surrounded by an insulating layer such as liner (usually SiO\(_2\)) and depletion layers to provide the DC isolation and prevent leakage between TSV and the substrate. Usually, copper is used as a filler material in TSV and the bump. A cylindrical-shaped pillar bump is used to provide a contact to the TSVs with a different functional block of the dies. In general, an IMD and underfilled layer is used to isolate the bump from the substrate and reduce the cross-coupling between the bumps, respectively. Lossy silicon material is considered as a substrate, whereas the depletion region consists of the lossless silicon to reduce the leakage. Silica-filled anhydride resin polymers are used in the underfilled layer to prevent coupling between the bumps.

![Fig. 1](image1.png)

Fig. 1 Structure of a cylindrical-shaped TSV (C-TSV): (a) Side-view and (b) Top cross-sectional view of C-TSV.

2.2 Cu based TSV Model

This subsection demonstrates the Cu-based TSV modeling with consideration of the eddy effect in the silicon substrate, depletion region, and neighboring TSVs. Firstly, a closed-form expression of eddy resistance in the silicon substrate is derived by using the physical dimension of the TSV as shown in Fig. 1. The equivalent \(RLGC \) circuit model of the 3-line TSV at high frequency is presented in Fig. 2. Whenever a high-frequency current passes through the TSVs, it generates a
varying magnetic field. Thus, magnetic vector potential \vec{A} is calculated by using the Maxwell equation [26-27] as
\[
\nabla \times \vec{A} = j\sigma \mu_0 \mu_{Si} \vec{A}_{Steff} \quad (1)
\]
where $\sigma_{Steff} = \sigma_{Si} + j\omega \mu_{ei}$ is the effective conductivity of the silicon substrate and ω is the angular frequency. Assuming the magnetic vector potential has only z directional component and it varies in radial direction r of the TSV, the variation in the ϕ and z will be zero in the cylindrical coordinate system. Therefore, $\partial \vec{A}/\partial \phi = 0$, $\partial \vec{A}/\partial \phi = 0$. In this way, the simplified Eqn. (1) can be expressed as
\[
\frac{\partial^2}{\partial r^2} A_z(r) + \frac{l}{r} \frac{\partial}{\partial r} A_z(r) + k_i^2 A_z(r) = 0 \quad (2)
\]
where $k_i = (j\omega \mu_0 \mu_{Si})^{1/2}$. Using the solution of the Bessel function, Eqn. (2) can be simplified as
\[
A_z^{\text{sub}}(r) = c_1 H_0^{(1)}(k_i r) + c_2 H_0^{(2)}(k_i r), \quad a_1 \leq r \leq b_1 \quad (3)
\]
where c_1 and c_2 are the arbitrary constant, $a_1 = r_{TSV}+r_{liner}+r_{dep}$ and $b_1 = [\rho_{via}\times r_{TSV}+r_{liner}+r_{dep}]$. It is assumed that the total current I is passing through the TSV. Hence, the Ampere’s law can be used to obtain the magnetic vector potential in the depletion and insulating layers as
\[
A_z^{\text{ins}}(r) = -2\mu_0 \ln(r) + c_3 \quad (4)
\]
where $r_{TSV} \leq r \leq a_1$ and $b_1 \leq r \leq (r_{via}+r_{TSV})$

Applying the boundary condition in the TSV as Eqn. (5) to (8) as
\[
\frac{\partial}{\partial r} A_z^{\text{ins}}(r)|_{r=a_1} = A_z^{\text{sub}}(r)|_{r=a_1} \quad (5)
\]
\[
\frac{\partial}{\partial r} A_z^{\text{ins}}(r)|_{r=a_2} = \frac{\partial}{\partial r} A_z^{\text{sub}}(r)|_{r=a_2} \quad (6)
\]
\[
A_z^{\text{ins}}(r)|_{r=b_1} = A_z^{\text{sub}}(r)|_{r=b_1} \quad (7)
\]
\[
\frac{\partial}{\partial r} A_z^{\text{ins}}(r)|_{r=b_1} = \frac{\partial}{\partial r} A_z^{\text{sub}}(r)|_{r=b_1} \quad (8)
\]
Now, c_1 and c_2 can be obtained after solving the above expressions as
\[
c_1 = \frac{\mu_0 \mu_{r Si} I}{2\pi k_s} \times \frac{m^2(a_1, b_1)}{u} \quad (9)
\]
\[
c_2 = \frac{\mu_0 H_{r Si} I}{2\pi k_s} \times \frac{m^1(b_1, a_1)}{u} \quad (10)
\]
where $u = \{H_1^1(k_s a_1) \times H_2^1(k_s b_1)\} - \{H_1^1(k_s b_1) \times H_2^1(k_s a_1)\}$

and $m^n(r_1, r_2) = \frac{1}{r_1} H_1^n(k_s r_1) - \frac{1}{r_2} H_1^n(k_s r_2)$

Electric current density in the substrate is $J_z^{\text{sub}}(r)$ that can be derived from Eqn. (3), (9), and (10) as
\[
J_z^{\text{sub}}(r) = -j\omega \mu_0 \sigma_{Si, eff} \times A_z^{\text{sub}}(r), a_1 \leq r \leq b_1 \quad (11)
\]

Hence, the eddy resistance in the substrate $(r_{e,sub})$ can be obtained by using Eqn. (13) and that can be expressed in per unit height $(p.u.h.)$ as
\[
r_{e,sub} = \frac{1}{\sigma_{Si, eff}} \left[J_z^{\text{sub}}(b_1) - J_z^{\text{sub}}(a_1) \right] \quad (14)
\]
where $h = h_{TSV} - 2x_{IMD}$ for the calculation of eddy resistance over the total height. In the same way, eddy resistance in the depletion region $(r_{e,dep})$ and neighboring TSVs $(r_{e,sub})$ can be obtained using the limits of the radius and material as $(r_{TSV}+r_{liner}) \leq r \leq (r_{TSV}+r_{liner}+r_{dep})$ and $(r_{TSV}+r_{liner}+r_{dep}) \leq r \leq [\rho_{via}+(r_{TSV}+r_{liner}+r_{dep})]$, respectively. The conductivity of depleted silicon region $\sigma_{Si, dep} = 1.56 \times 10^{-3} \text{ [S/m]}$ and for silicon substrate $\sigma_{Si} = 100 \text{ [S/m]}$ is considered for this work.

![Fig. 2 An equivalent RLGC circuit model of the Cu based C-TSV considering eddy effect](image-url)
As shown in the Fig. 2, rest of the other parasitic parameters of the TSV can be obtained by using the TSV physical dimensions. First of all, the total capacitance ($C_{\text{ IMD }}$) is a parallel combination of underfilled (C_{uf}) and IMD capacitances (C_{imd}). The C_{uf} exists between the bump pairs due to the presence of depletion layer that is made of silica-filled anhydride resin polymer. However, C_{imd} exhibits between the TSV pairs due to the presence of IMD layer [28]. The C_{uf} and C_{imd} can be modeled as parallel-wire capacitance [13].

$$C_{\text{imd}} = \frac{\pi \times \varepsilon_{\text{IMD}} \times h_{\text{IMD}}}{\cosh^{-1} \left(\frac{p_{\text{via}}}{d_{\text{swv}}} \right)}$$ (15)

$$C_{\text{uf}} = \frac{\pi \times \varepsilon_{\text{uf}} \times h_{\text{bump}}}{\cosh^{-1} \left(\frac{p_{\text{via}}}{d_{\text{bump}}} \right)}$$ (16)

$$C_{\text{uf}} + C_{\text{imd}} = C_{\text{ind}}$$ (17)

A silicon substrate capacitance (C_{sub}) is formed between the TSVs due to the presence of lossy characteristics of the silicon substrate. The C_{sub}' can be derived using the parallel-wire capacitance model [29] in p.u.h. as

$$C_{\text{sub}}' = \left\{ \frac{2\pi \times \varepsilon_{\text{sub}} \times h}{\cosh^{-1} \left(\frac{p_{\text{via}}}{2(t_{\text{lv}} + t_{\text{lm}} + t_{\text{dep}})} \right)^2} - 1 \right\}$$ (18)

where height is considered as $h = h_{\text{tc}} - 2 \times h_{\text{IMD}}$. In addition to this, substrate conductance g_{sub}' can be obtained by using a relationship between the C_{sub}' and g_{sub} as discussed in [13]. Liner capacitance C_{liner}' exists between the TSV and depletion layer due to the presence of the oxide layer [13]. In addition to this, depletion capacitance C_{d}' formed between the TSVs surrounded by the oxide layer and the Si substrate in the presence of the depletion layer [29]. The C_{liner}' and C_{d}' in p.u.h. can be derived by applying the coaxial-wire capacitance model.

Bump capacitance C_{b}' exists between the silicon substrate and the bump due to the presence of IMD layer. Bump capacitance can be expressed in p.u.h. by using the parallel plate capacitor model [13] as

$$C_{\text{b}}' = \varepsilon_{\text{IMD}} \times \pi \frac{h_{\text{imd}}}{\left(\frac{d_{\text{bump}}}{2} \right)^2 \left(\frac{d_{\text{swv}} + t_{\text{liner}} + t_{\text{dep}}}{2} \right)^2}$$ (19)

Apart from this, the total resistance of the circuit r_{tsv}' in Fig. 2 is a series combination of the TSV resistance r_{tsv}' and the bump resistance r_{b}'.

$$r_{\text{b}}' = r_{\text{tsv}}' + r_{\text{b}}$$ (20)

where r_{tsv}' and r_{b}' are obtained using the dc and ac components of the resistance in terms of p.u.h. Here, ac component of the resistance primarily considers the skin effect of the TSV [13]. On the other hand, the total inductance l_{tsv}' is a series combination of bump inductance l_{b}' and TSV inductance l_{swv}' [13]. Inductance forms due to the magnetic field that is produced by current passing through TSV.

2.3 CNT based TSV Model

This subsection presents the equivalent electrical model with the parasitic calculation techniques for SWCNT bundle, followed by MWCNT bundle based TSVs. The modeling of via parasitic primarily depends on the number of conducting channels in each SWCNT present in a bundle. The total number of SWCNTs (N_{CNT}) in a bundle is calculated using the radius of each SWCNT (r_{CNT}), the radius of TSV (r_{TSV}), and the Vander Waals distance ($\delta \approx 0.34$) between the adjacent SWCNTs. The N_{CNT} can be represented as

$$N_{\text{CNT}} = \frac{2\pi r_{\text{via}}^2}{3(2r_{\text{CNT}}+\delta)^2}$$ (21)

The number of conducting channels in MWCNT is a function of the shell diameter [30]. All the SWCNTs in a bundle act as either metallic or semiconductor based on their chirality whereas MWCNTs are always metallic. For metallic SWCNT in a bundle, the average number of conducting channels for a particular diameter of SWCNT is as follows

$$N_i(D_i) \approx \begin{cases} (k_1TD_i + k_2), & D_i > d_i/T \\ \frac{2}{3}, & D_i \leq d_i/T \end{cases}$$ (22)

where D_i represents the diameter of the ith shell of MWCNT (or SWCNT) and k_1 and k_2 possess a value of $2.04 \times 10^{-4} \text{ nm}^{-1}$ and 0.425, respectively. The quantitative value of d_i is determined from the thermal energy of electrons and the gap between the two sub-bands that is equivalent to 1300 nm.k at $T=300K$. For $D_i > 4.3$ nm, the average number of conducting channels is proportional to its shell diameter. Therefore, the total number of conducting channels in a bundle can be calculated by taking the summation of conducting channel of each SWCNT as

$$N_{\text{channel}} = \sum_{i=1}^{n} N_i$$ (23)

The conduction mechanism of CNT is ballistic due to the long mean free path (mfp) in the range of micrometers. The diameter following mfp can be expressed as:

$$\lambda_{\text{mfp,i}} = \frac{1000}{(r_{\text{f,i}})^2}$$ (24)
Thus, the total number of conducting channels can be expressed as

\[N_{Total} = N_{channel} \times N_{CNT}. \] (25)

The electrical equivalent RLGC model of CNT bundle-based TSV considers the eddy resistance as shown in Fig. 3. Each CNT in a bundle comprises of broadly three types of resistances: (1) scattering resistance \(r_{bundle}^{\prime} \) that occurs due to higher nanotube length exceeding mfps of the electron, (2) quantum resistance \(R_q \) due to the quantum confinement of electron and depends on the \(N_{channel} \) of each SWCNT/MWCNT in a bundle, and (3) imperfect metal-nanotube contact resistance \(R_{mc} \) with the approximated value of 3.2 kΩ arising due to the fabrication process [30-33]. Thus, the equivalent scattering and quantum resistances can be expressed as

\[R_{f,\text{fix}} = \frac{R_q}{N_{Total}} + R_{mc}, \text{where } R_q = \frac{h}{2e^2} \approx 12.9 \text{ kΩ} \] (26)

\[r_{bundle}^{\prime} = \frac{\left(\sum_{i=1}^{n} \frac{R_q}{2N_i} (\lambda_{mf,p,b})^{-1}\right)^{-1}}{N_{CNT}} \] (27)

\[\text{where } h \text{ and } e \text{ represents the plank's constant and electronic charge, respectively.} \]

The equivalent RLGC model of CNT bundle comprises of two types of capacitances: (1) quantum

\[c_{q,bundle}^{\prime} \] that arises due to finite electronic states in a quantum wire and (2) electrostatic capacitance \(c_{E,bundle}^{\prime} \) that is due to the potential difference between the CNT bundle and the ground plane. The \(c_{q,bundle}^{\prime} \) and \(c_{E,bundle}^{\prime} \) can be expressed as

\[c_{q,bundle}^{\prime} = c_q^{\prime} \times 2 N_{Total} \text{ where } c_q^{\prime} = \frac{2e^2}{hv_f}, \] (28)

\[c_{E,bundle}^{\prime} = \frac{2\pi \varepsilon_0 \varepsilon_r}{\cosh^{-1}\left(\frac{d_{CNT}^{\text{out}} + h_{TSV}}{d_{CNT}^{\text{out}}}\right)} \] (29)

\[\text{where } d_{CNT}^{\text{out}}, \text{and } v_f \text{ represents the outer shell diameter of SWCNT/MWCNT and the Fermi velocity } (\approx 8 \times 10^5 \text{m/s}), \text{respectively.} \]

Similarly, the equivalent bundle inductance \(l_{bundle}^{\prime} \) of TSV is a combination of two types of inductances: (1) kinetic inductance \(l_k^{\prime} \) is associated with the kinetic energy of the electrons in each conducting channel of CNT and (2) magnetic inductance \(l_m^{\prime} \) is due to the induced magnetic field by the current flowing through the nanotube [33]. Thus, \(l_{bundle}^{\prime} \) can be primarily expressed as

\[l_{bundle}^{\prime} = \frac{l_k^{\prime}}{2N_{Total}} + l_m^{\prime} \] (30)

\[\text{where } l_k^{\prime} = \frac{h}{2e^2v_f}, \text{ and } l_m^{\prime} = \mu \ln \left(\frac{y}{d_{CNT}^{\text{out}}}\right). \] (31)

\[\text{Fig. 3 An equivalent RLGC circuit model of the CNT based C-TSV considering eddy effect} \]
TABLE 1: Parasitic values of Cu, SWCNT, and MWCNT bundle based C-TSV for different TSV heights and frequencies.

TSV Height (in μm)	Parasitic Parameter	Parasitic values of Cylindrical shape TSV for different frequencies (in GHz) at								
		Cu based TSV	SWCNT bundle based TSV	MWCNT bundle based TSV						
		\(f = 20 \)	\(f = 200 \)	\(f = 500 \)	\(f = 20 \)	\(f = 200 \)	\(f = 500 \)			
30	\(R_{eq}(Ω) \)	6.0545	6.0545	6.0554	4.1835	4.1835	4.1835	1.8138	1.8138	1.8138
	\(R_{t} \)	0.1341	0.1351	0.1364	0.1110	0.1122	0.1185	0.1110	0.1122	0.1185
	\(R_{eddy,sub} \)	4.1485	4.1485	4.1485	4.1485	4.1485	4.1485	4.1485	4.1485	4.1485
	\(L_{eq}(H) \)	4.7010	4.7010	4.7010	2.600	2.600	2.600	9570	9570	9570
	\(C_{eq}(μF) \)	18.3451	18.3451	18.3451	17.8475	17.8475	17.8475	17.4488	17.8475	17.4488
	\(G_{sub}(μS) \)	9.6004	9.6004	9.6004	9.6004	9.6004	9.6004	9.6004	9.6004	9.6004
60	\(R_{eq}(Ω) \)	11.9543	11.9545	11.9559	8.3725	8.3725	8.3725	3.6331	3.6331	3.6331
	\(R_{t} \)	0.2681	0.2702	0.2728	0.2219	0.22435	0.23696	0.2219	0.2244	0.2370
	\(R_{eddy,sub} \)	8.6093	8.6093	8.6093	8.6093	8.6093	8.6093	8.6093	8.6093	8.6093
	\(L_{eq}(H) \)	9.1326	9.1326	9.1326	5100	5100	5100	19140	19140	19140
	\(C_{eq}(μF) \)	31.1581	31.1581	31.1581	30.0742	30.0742	30.0742	29.2358	29.2358	29.2358
	\(G_{sub}(μS) \)	19.9230	19.9230	19.9230	19.923	19.923	19.923	19.923	19.923	19.923
90	\(R_{eq}(Ω) \)	17.8542	17.8546	17.8566	12.5616	12.5616	12.5616	5.4525	5.4525	5.4525
	\(R_{t} \)	0.4023	0.4053	0.4092	0.3328	0.3365	0.3555	0.3328	0.3365	0.3555
	\(R_{eddy,sub} \)	13.0700	13.0700	13.0700	13.070	13.070	13.070	13.070	13.070	13.070
	\(L_{eq}(H) \)	13.5640	13.5640	13.5640	7700	7700	7700	28710	28710	28710
	\(C_{eq}(μF) \)	43.9697	43.9697	43.9697	42.3106	42.3106	42.3106	41.0191	41.0191	41.0191
	\(G_{sub}(μS) \)	31.8680	31.8680	31.8680	31.868	31.868	31.868	31.868	31.868	31.868
120	\(R_{eq}(Ω) \)	23.7541	23.7545	23.7572	16.7506	16.7506	16.7506	7.2718	7.2718	7.2718
	\(R_{t} \)	0.5364	0.5404	0.5455	0.4438	0.4487	0.4739	0.4438	0.4487	0.4739
	\(R_{eddy,sub} \)	17.5310	17.5310	17.5310	17.531	17.531	17.531	17.531	17.531	17.531
	\(L_{eq}(H) \)	17.9600	17.9600	17.9600	10300	10300	10300	38280	38280	38280
	\(C_{eq}(μF) \)	56.7836	56.7836	56.7836	54.5698	54.5698	54.5698	52.8041	52.8041	52.8041
	\(G_{sub}(μS) \)	42.7450	42.7450	42.7450	42.745	42.745	42.745	42.745	42.745	42.745

\[
R_{eq} = \begin{cases} R_{t} + R_{eddy,sub}, & \text{for Cu based TSV} \\ R_{bundle} + R_{eddy,sub}, & \text{for CNT based TSV}\end{cases} \quad \text{and} \quad C_{eq} = \begin{cases} C_{b} + \frac{1}{2} \left(C_{b, bundle} \times C_{\text{Linear}} + C_{d} \right), & \text{for Cu based TSV} \\ C_{b} + \frac{1}{2} \left(C_{b, bundle} \times C_{\text{Linear}} \times C_{d} \right), & \text{for CNT based TSV}\end{cases}
\]

\[
L_{eq} = \begin{cases} L_{t}, & \text{for Cu based TSV} \\ L_{bundle}, & \text{for CNT based TSV}\end{cases}
\]

Note: all parasitic values are calculated with consideration of the whole height of the TSV and bump.

The resistances due to eddy current induced by changing electromagnetic field are the same as that of Cu TSV. Equations (1) to (31) are used for the calculation of the parasitic parameters of the copper and CNT bundle-based cylindrical TSVs. Furthermore, the parasitic parameter values with different TSV heights and operating frequencies are summarized in Table 1 for Cu and CNT bundle-based TSVs. It is observed that the quantitative values of the parasitic parameters are lesser for MWCNT bundle compared to the Cu TSV irrespective of via height. As shown in Table 1, the eddy resistance in the neighboring TSV \(R_{t} \) becomes more effective at high frequencies due to the eddy effect and skin effect.

3 Performance Analysis

This section illustrates the impact of eddy current on the
crosstalk induced delay, peak noise and power dissipation using the proposed RLGC model of the TSV at 7 nm technology. A 3-line DVL setup (as shown in Fig. 4) is used for circuit-level simulation of the TSV with 20 distributed pi networks. Each via line represents the RLGC model of the TSV as shown in Fig. 3. The vias are driven by a field effect transistor (FET) instead of CMOS driver at the 7nm technology node. Although a CMOS performs well up to 28 nm technology but below 28 nm technology, CMOS shrinks in such a way that the short channel effect becomes uncontrollable. As a result, the gate is unable to control the leakage path. In the case of FET driver, there is good control of the gate on the leakage path at the lower technology and hence FET is used as a suitable driver. In Fig. 4, each via line is terminated with the load capacitor $C_{load} = 200aF$. Using the above mentioned setup in Fig. 4, the subsequent sections have analyzed the overall reliability of the TSV in terms of crosstalk induced delay, peak voltage, and power dissipation for different operating frequencies and via heights.

![Fig. 4 Driver-Via-Load (DVL) setup for circuit-level simulation](image)

3.1 Crosstalk Delay Analysis

This subsection presents the crosstalk induced delay analysis of cylindrical TSV with consideration of the eddy effect in terms of dynamic crosstalk delay by using the DVL setup as shown in Fig. 4. The transmission line experiences some delay at the same time as the signal passes through it. In this situation, one of the transmission lines can act as an aggressor and the other can act like a victim. Dynamic crosstalk delay phenomena is introduced when all signals provided to the aggressor and victim lines are in the same or the opposite switching state at the same time. However, in the case of out-phase crosstalk delay, all signals are in the opposite switching transition from each other [34]. Furthermore, out-phase crosstalk delay is the worst-case delay due to a higher Miller Capacitive Factor (MCF) between the vias [23]. Hence, this work considers the opposite switching transition state for crosstalk delay calculation such as aggressor line switches from high to low and victim is low to high. Figure 5 shows the crosstalk delay of Cu, SWCNT, and MWCNT bundle based TSVs that are obtained with and without consideration of eddy effect for different via heights and frequencies. From Fig. 5, it is clear that the delay of MWCNT bundle based TSV is considerably lower in comparison to the SWCNT bundle and Cu-based TSVs. The primary reason behind this is that the quantitative values of the coupling capacitance of the MWCNT bundle are lower as compared to other vias. It can also be noticed that the delay with eddy effect is substantially higher than the delay without considering the eddy effect. It is due to the fact that the impact of eddy current is more effective at high frequencies that shows the eddy resistance in neighboring TSV $R_{e_{tsv}}$ rises with frequencies as observed from Table 1. Additionally, it can be also observed that the crosstalk induced delay increases with the TSV heights and operating frequencies. It is due to the higher values of parasitics that increases for more via height and frequencies as witnessed from Table 1.

![Fig. 5 Crosstalk delay of Cu, SWCNT and MWCNT bundle based TSV at via heights of (a) $h_{TSV}=30\mu m$, (b) $h_{TSV}=60\mu m$, (c) $h_{TSV}=90\mu m$ and (d) $h_{TSV}=120\mu m$](image)
3.2 Peak Noise

This sub-section discusses the impact of eddy effect on peak noise of the TSV. Conceptually, noise coupling takes place in the region of substrate whenever a fast signal transition happens within the TSV. This coupling mechanism is similar to the noise coupling taking place into the substrate through source/drain junctions of a transistor. However, due to the greater dielectric area, the dielectric capacitance of a TSV is larger than source/drain junction capacitance. TSV related substrate noise coupling is therefore one of the primary noise injection mechanisms in 3D integrated circuits [35]. Peak noise is observed when the aggressor line is supplied with the in-phase signals and the victim line is grounded. It results in the form of unintentional peaks observed at the victim line which is responsible for faults in digital circuits [36]. Figure 7 demonstrates the peak noise voltage of Cu, SWCNT and MWCNT bundle based TSVs with and without consideration of eddy effect for different TSV heights and frequencies. From Fig. 7, it can be observed that the peak noise voltage in MWCNT bundle based TSV is lesser as compared to SWCNT bundle and Cu-based TSVs due to the less coupling factor. It can also be noticed that the peak noise with eddy effect is considerably lower than the peak noise without considering eddy. Additionally, the peak noise is more for higher TSVs and operating frequencies. The reason behind this is the higher parasitic values that increases with the height and frequencies of eddy effect for different TSV heights and frequencies.
as witnessed from Table 1.

Additionally, Fig. 8 demonstrates the rate of change in peak noise voltage for different frequencies w.r.t. the delay obtained at 20 GHz. This percentage change is calculated for Cu, SWCNT bundle and MWCNT bundle based TSVs with and without consideration of eddy effect at $h_{TSV} = 120 \text{ nm}$ as shown in Fig. 8. It is observed that the percentage change in noise voltage is considerably higher for more frequencies due to a rise in the noise voltage with an increase in frequencies. However, the rate of change of noise voltage considering the eddy effect is more server than without the eddy. The differences in the percentage of peak noise voltage with and without considering the eddy effect are 3.38%, 2.83%, 2.65%, and 2.45% at 120GHz, 200GHz, 300GHz, and 500GHz frequencies, respectively for Cu based TSV. Similarly, these differences in peak noise voltage for bundled SWCNT-based TSVs are 3.04%, 2.64%, 2.61%, and 2.32% at 120 GHz, 200 GHz, 300 GHz, and 500 GHz frequencies, respectively. The differences in peak noise voltage for bundled MWCNT based TSVs are 2.84%, 2.59%, 2.24%, and 2.05% at 120 GHz, 200 GHz, 300 GHz, and 500 GHz frequencies, respectively for Cu based TSV.

Fig. 8 Percentage change in peak noise of (a) Cu, (b) SWCNT bundle and (c) MWCNT bundle for different frequencies w.r.t. the noise obtained at 20 GHz with and without considering the eddy effect at $h_{TSV} = 120 \text{ nm}$.

3.3 Power Dissipation Analysis

This sub-section demonstrates the impact of eddy resistance on dynamic power dissipation. The power dissipation is obtained by providing the in-phase signal either from low to high or high to low through the coupled TSVs. Figure 9 shows the power dissipation of Cu, bundled SWCNT and MWCNT based TSVs that are obtained with and without consideration of eddy effect for different TSV heights and frequencies. It has been observed that the bundled MWCNT without eddy resistance dissipates the least power among all filler materials as shown in Fig. 9. Additionally, the power consumption rises for higher TSVs and operating frequencies. The reason behind this is the higher quantitative values of parasitics that increases for higher TSVs and frequencies as witnessed in Table 1.

Furthermore, Fig. 10 presents the rate of change in power dissipation for different frequencies w.r.t. the power obtained at 20 GHz at 120 nm TSV height. This percentage change is
calculated for SWCNT and MWCNT bundle based TSVs with and without consideration of the eddy effect that is shown in Fig 10. It can be illustrated that the percentage change in power dissipation is more for an increase in frequencies. However, the rate of change of power dissipation considering the eddy effect is more severe than variation in the power dissipation without the eddy effect. The differences in the percentage of power dissipation with and without considering the eddy effect are 0.17%, 0.43%, 0.6%, and 0.77% at 120 GHz, 200 GHz, 300 GHz, and 500 GHz frequencies, respectively.

The differences in the percentage of power dissipation for MWCNT bundle based TSVs, respectively.

4 Conclusion

This paper proposed a novel pi type equivalent RLGC model of Cu, SWCNT and MWCNT bundle based TSVs considering the eddy effect at high frequencies at 7 nm technology. A closed form expression of eddy resistance is derived for depletion region, substrate and in the neighboring TSV. Further, the performance of the TSV is analyzed in terms of crosstalk delay, peak noise and power dissipation of the TSV with concern of the eddy effect at high frequency. It has been observed that the impact of high frequency eddy current is substantially lower in case of MWCNT bundle based TSV as compared to the Cu and SWCNT bundle. The overall differences are approximately 16.55%, 2.45% and 0.27% in terms of crosstalk delay, noise voltage and power dissipation, respectively.

References

1. Schaller, R. R.: Moore's law: past, present, and future. IEEE Spectrum. 34(6), 52 – 59 (1997)
2. Zhang C. and Sun G.: Fabrication cost analysis for 2D, 2.5D, and 3D IC designs. InProceedings of IEEE International 3D Systems Integration Conference (3DIC), pp. 1 – 4, Osaka, Japan (2012)
3. Kaushik, B. K., Kumar, V. R., Majumder, M.K., Alam, A.: Through Silicon Vias: Materials, Models, Design, and Performance(1st ed.), CRC Press, ISBN: 9781498745529(2016)
4. Davis, W. R. et al.: Demystifying 3D ICs: the pros and cons of going vertical. IEEE Design & Test of Computers. 22(6), pp. 498 – 510 (2005)
5. Noia, B. and Chakraborty, K.: Pre-bond probing of TSVs in 3D stacked ICs, in Proceedings of the International Test Conference (ITC '11), pp. 1–10, Anaheim, California, USA (2011)
6. Kannan, S., Gupta, A., Kim, B. C., Mohammed, F., Ahn, B.: Analysis of carbon nano tube based through silicon vias, in Proceedings of the IEEE 60th Electronic Components and Technology Conference (ECTC '10), pp. 51–57, Las Vegas, Nev,USA (2010)
7. Kaushik, B. K., & Majumder, M. K.: Carbon Nanotube Based VLSI Interconnects. Springer Briefs in Applied Sciences and Technology (2015).
8. Alam, A., Majumder, M. K., Kumari, A., Kumar, V. R. and Kaushik, B. K.: Performance analysis of single- and multi-walled carbon nanotube based through silicon vias. 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), pp. 1834-1839 (2015)
9. Khan, A. A.: A Novel Apparatus to Study Faraday's Laws of Electromagnetic Induction. In IEEE Transactions on Education. 29(1), pp. 30-31(1986).
10. Hillmann, S., Schulze, M.H., and Heuer, H.: High-Frequency Eddy Current Techniques, In: Ida N., Meyendorf N. (eds) Handbook of Advanced NonDestructive Evaluation. Springer, ISBN: 9783319300504, Cham (2018)
11. Ismail, D. Y., Khellah, M., Karnik, T., De, V.: Analytical Model for the Propagation Delay of Through Silicon Vias, 9th International
12. Xu, C., Li, H., Suaya, R., Banerjee, K.: Compact AC Modeling and Performance Analysis of Through-Silicon Vias in 3-D ICs. IEEE Transactions on Electron Devices, 57(12), pp. 3405 – 3417 (2010)

13. Kim, J. et al.: High-frequency scalable electrical model and analysis of a through silicon via (TSV). IEEE Transactions on Components, Packaging and Manufacturing Technology, 1(2), pp. 181–195 (2011)

14. Lim, S. K.: Design for High Performance, Low Power, and Reliable 3D Integrated Circuits, Springer New York, pp. 537 – 560, ISBN:9781441995421(2012)

15. Goyal, T., Majumder, M. K., Kaushik, B. K.: Propagation delay and power dissipation for different aspect ratio of single-walled carbon nanotube bundled TSV. Journal of Semiconductors, 36(6),(2015)

16. Qian, L., Xia, Y., & Liang, G.: Study on crosstalk characteristic of carbon nanotube through silicon vias for three dimensional integration. Microelectronics Journal, 46(7), 572–580 (2015)

17. Su, Jinrong., Chen, Xinwei., Han, Liping.:Transmission characteristics of multi-walled carbon nanotube-based through-silicon vias considering temperature effects. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(10), pp. 203–211 (2017)

18. Lu, Q., Zhu, Z., Yang, Y., Ding, R., Li, Y.: High-Frequency Electrical Model of Through-Silicon Vias for 3-D Integrated Circuits Considering Eddy Current and Proximity Effects. IEEE Transactions on Components, Packaging and Manufacturing Technology, 7(12), pp. 2036 – 2044 (2017)

19. Liao, C., Zhu, Z., Lu, Q., Liu, X., Yang, Y.: Wideband Electromagnetic Model and Analysis of Shielded-Pair-Through-Silicon Vias. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8(3), pp. 473 – 481(2018)

20. Chandrakar, S., Gupta, D., Majumder, M. K.: Role of Through Silicon Via in 3D Integration: Impact on Delay and Power. Journal of Circuits, Systems and Computers(2020)

21. Gharavi Hamedani, S., Moaiyeri, M. H.:Impacts of Process and Temperature Variations on the Crosstalk Effects in Sub-10 nm Multilayer Graphene Nanoribbon Interconnects. In IEEE Transactions on Device and Materials Reliability, 19(4), pp. 630-641 (2019)

22. Kumbhare, V.R.,Paltani, P.P.,Majumder, M.K.: Impact of interconnect spacing on crosstalk for multi-layered graphene nanoribbon. IETE Journal of Research, 1 – 10 (2019)

23. Kumbhare, V. R., Paltani, P. P., & Majumder, M. K.: Analysis of top- and side-contact MLGNR interconnects: impact on crosstalk, stability, and electromigration. Journal of Computational Electronics(2020).

24. Hamedani, S. G., & Moaiyeri, M. H.: Impacts of Process and Temperature Variations on the Crosstalk Effects in Sub-10nm Multilayer Graphene Nanoribbon Interconnects. IEEE Transactions on Device and Materials Reliability, 1–1(2019)

25. Ahmed, M.A., Mohapatra, S. & Chrzanowska-Jeske, M.: TSV- and delay-aware 3D-IC floorplanning. Analog Integr Circ Sig Process 87, 235–248 (2016).

26. Ramo, S., Whinnery. J. R., Duzer, T. V.: Fields and Waves in Communication Electronics,Wiley-India, ISBN:9780471585510, (1994)

27. Niknejad, A. M., Meyer, R. G.: Analysis of eddy-current losses over conductive substrates with applications to monolithic inductors and transformers. IEEE Transactions on Microwave Theory and Techniques, 49(1), pp. 166 – 176, (2001)
Figure 1

Structure of a cylindrical-shaped TSV (C-TSV): (a) Side-view and (b) Top cross-sectional view of C-TSV.
Figure 2

An equivalent RLGC circuit model of the Cu based C-TSV considering eddy effect.
Figure 3
An equivalent RLGC circuit model of the CNT based C-TSV considering eddy effect

![RLGC circuit model diagram](image)

Figure 4
Driver-Via-Load (DVL) setup for circuit-level simulation
Figure 5

Crosstalk delay of Cu, SWCNT and MWCNT bundle based TSV at via heights of (a) $h_{TSV}=30\,\mu m$, (b) $h_{TSV}=60\,\mu m$, (c) $h_{TSV}=90\,\mu m$ and (d) $h_{TSV}=120\,\mu m$
Figure 6

Percentage change in the crosstalk delay of (a) Cu, (b) SWCNT bundle and (c) MWCNT bundle for different frequencies w.r.t. the delay obtained at 20 GHz with and without considering the eddy effect at hTSV = 120 nm.
Figure 7

Peak noise of Cu, SWCNT and MWCNT bundle based TSV at via heights of (a) $h_{TSV}=30 \, \mu m$, (b) $h_{TSV}=60 \, \mu m$, (c) $h_{TSV}=90 \, \mu m$ and (d) $h_{TSV}=120 \, \mu m$
Figure 8

Percentage change in peak noise of (a) Cu, (b) SWCNT bundle and (c) MWCNT bundle for different frequencies w.r.t. the noise obtained at 20 GHz with and without considering the eddy effect at hTSV = 120 nm.
Figure 9

Power dissipation of Cu, SWCNT and MWCNT bundle based TSV at via heights of (a) \(h_{TSV}=30 \, \mu \text{m} \), (b) \(h_{TSV}=60 \, \mu \text{m} \), (c) \(h_{TSV}=90 \, \mu \text{m} \) and (d) \(h_{TSV}=120 \, \mu \text{m} \)
Figure 10

Percentage change in power dissipation of (a) Cu, (b) SWCNT bundle and (c) MWCNT bundle for different frequencies w.r.t. the power obtained at 20 GHz with and without considering the eddy effect at $h_{TSV} = 120$ nm.