Abstract

Pneumatic Control Valves (PCV) are used in the process industries. In this paper, a Recurrent Fuzzy Wavelet Neural Network (RFWNN) is constructed by using Recurrent Wavelet Neural Network (RWNN). In RWNN, temporal relations are embedded in the network by adding feedback connections on the first layer of the network, and wavelet basis n is used as fuzzy membership function. The proposed method is applied on a PCV. P, PI and PID controllers are also employed for comparison. Bondgraph method has been utilized to model the control valve, so as to compare the response characteristics of valve. Simulation results have been made for four controllers.

Keywords: Control Valve, Bondgraph, Recurrent Fuzzy Neural Network

1. Introduction

Process industries involves of control loops all networked together to develop a product to be offered for sale. The design of each control loop is of great importance. It should be in a way that guarantees the quality of the end product through keeping such important variables as pressure, flow, level, temperature, etc. within required operating range. Some disturbances may be received and internally caused by any of these loops so that they can have a detrimental effect on the process variable; Moreover, the interaction of other loops in the network leads to the same result. To reduce the effect of disturbances, sensors gather information about the variable and its relationship to some desired set point. The data is processed by a controller to determine what must be done to get the process variable back to where it should be after the occurrence of a disturbance. A method is chosen by the controller to be implemented by a type of final control element after all the measuring, comparing, and calculating are done.

Control valve is regarded as the most common final element in the process control industries. This way, the load disturbance is compensated and the regulated process variable are kept to the nearest desired set point. Figure 1 shows an actuator of sliding-stem control valve.

Now PC valves are used in many industries. So the design of CV to be a very challenging task. Valve body housing and the actuation unit are two main components of the control valves. Champagne et al.1 reviewed the pneumatic actuator of CV and positioner parameters that affect the control performance. This is done using a control valve package computer model to assess the dynamic performance. The effects of supply pressure, step size, load margin, and flow, actuator volume and design style are studied using mathematical simulations of PCV dynamic performance. Hagglund2 introduced a procedure so as to compensate for static friction in PC valves through adding pulses to the control signal. The characteristics of the pulses are determined from the control action. The static friction in PC valves causes vibration consequently resulting in losses in quality and expense of new materials. De Souza et al.3 presented a well-known stiction compensation method in order to reduce variability both at process variable and pneumatic valve stem movement. Bondgraph is a graphical representation of a physical dynamics system.

In other word, bondgraphs are multi domain and domain neutral. Morover, a bondgraph can incorporate...
Recurrent neural network14-17 can model the dynamical response of a system. It is a dynamic characteristics of the pulses are determined from the control action. The static friction in PC networks11-13.

A application in cardiovascular modeling was demonstrated by focusing on a specific example; a 3D model of the mitral valve coupled to a lumped parameter model of the left ventricle. Heidari and Homaei10 presented a neural plan in order to control an actuator of pneumatic valve. After comparing their responses it was revealed that minimum overshoot and settling time was achieved.

Bondgraph is a graphical representation of a physical dynamics system. De Souza et al.3 presented a well-known friction compensation method in order to reduce variability both at process variable and pneumatic valve stem movement. Bondgraph is a modified type of recurrent neural network, which uses recurrent neural network for realizing fuzzy inference. It is possible to train RFNN using the linguistic experience of human operators, and interpret the knowledge acquired from training data in linguistic for and it is very easy to initialize the structure and parameters of RFNN from linguistic rules. Moreover, with its own internal feedback connections, RFNN can temporarily store dynamic information and deal with temporal problems efficiently.

This research is organized as follows: Section 2 recalls the bondgraph model of the valve and proposes equations of motion of valve. Section 3 presents the RFNN. Standard PID control method is presented in Section 4. Section 5 shows the results of P, PI, PID and RWFNN controllers for the valve and finally some conclusions are given in section 6.

\section{Bondgraph Model of Valve and Equations}

Figure 2 shows the bondgraph model of the valve. SE is the input pressure of the valve. The pressure changes to force by multiplying in effect area of the diaphragm. The T.F. shows this transformer in the Bondgraph model of the valve. Friction of the valve is R. Element I is the movable mass of valve and diaphragm. Element C represents the spring of the valve actuator.

Also 1-junction is a common flow junction. 1-junctions have equality of flows and the efforts sum up to zero with the same power orientation.

In fact, junctions can connect two or more bonds. The direction of the half arrows (\textemdash) denotes the direction of power flow given by the product of the effort and flow variables associated with the power bond. The two 1-junctions in the bondgraph shown can be uniquely determined as (S 1 2) and (S 4 5 6); similarly symbols like SE_1, R_6 can be used to identify a particular element. P_i and q_5 are two

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{bondgraph.png}
\caption{Model of the Bondgraph9.}
\end{figure}
state variable of this model. \(q_s\) is the displacement of valve stem and the variation of the spring length. Also \(v_4 = \frac{P_4}{I_4}\) is the velocity of the valve stem. The equations of motion using bondgraph method are as follows:

\[
\dot{P}_4 = A \times SE_1 - K_xq_5 - \frac{R_k}{I_4} P_4 \tag{1}
\]

\[
\dot{q}_5 = \frac{P_4}{I_4} \tag{2}
\]

If the velocity and position of the valve stem were zero in the initial condition so:

\[
X(0) = \begin{bmatrix} P_4 (0) \\ q_5 (0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

The transfer function of the valve is obtained by derivation of equation (2) with respect to time:

\[
\ddot{q}_5 = \frac{P_4}{I_4} \tag{3}
\]

With substitution of \(\dot{P}_4\) from equation (1) in to equation (3):

\[
\ddot{q}_5 = \frac{A \times SE_1 - K_x q_5 - \frac{R_k}{I_4} P_4}{I_4} \tag{4}
\]

By substitution of \(P_4\) from equation (2) in to equation (4):

\[
\dot{q}_5 = \frac{1}{I_4} \left(A \times SE_1 - K_x q_5 - R_k \dot{q}_5 \right) \tag{5}
\]

By applying the laplace transform to equation (5):

\[
\frac{q_5 (s)}{SE_1(s)} = \frac{\left(A / I_4 \right)}{s^2 + \left(\frac{R_k}{I_4} \right) s + \left(\frac{K_x}{I_4} \right)} \tag{6}
\]

Equation (6) is the transfer function of the valve. The results of bondgraph model of valve show that the response of the system is identical with the result in\(^{9,10,21}\).

3. Construction of RFWNN

Figure 3 shows the topology of the RFWNN, which comprises \(n\) input variables, \(m\) term nodes for each input variable, \(l\) rule nodes, and \(p\) output nodes. Using \(u_i^k\) and \(O_i^j\) to denote the input and output of the \(i\)th node in the \(k\)th layer separately, the signal propagation and the operation functions of the nodes in each layer are introduced as follows. Input layer accepts input variables. Its nodes transmit input values to the next layer. Feedback connections are added in this layer to embed temporal relations in the network.

\[
u_i^k(k) = x_i^k(k) + w_i^j O_i^j(k - 1),
\]

\[
O_i^j(k) = u_i^k(k)
\]

In equation (7), \(i = 1, 2, \ldots n\); \(k\) is the number of iterations and \(w_i^j\) is the recurrent weights.

Each node performs a wavelet basis function.

\[
u_i^2 = \frac{O_i^j - a_{ij}}{b_{ij}}, O_i^2 = h(u_i^2)
\]

where \(i = 1, 2, \ldots n\) and \(j = 1, 2, \ldots m\).

\(h(.)\) is a mother wavelet used in this paper, which is defined as follows:

\[
h(x) = \cos(0.25x) \exp(-x^2)
\]

\(a_i\) and \(b_i\) in (8) are the dilation and translation parameters of the wavelet function, the subscript \(ij\) indicates the \(j\)th term of the \(i\)th input variable. Rule layer forms the fuzzy rule base and realizes the fuzzy inference. Each node is corresponding to a fuzzy rule. Links before each node represent the preconditions of the corresponding rule, and the node output represents the firing strength of corresponding rule. The \(q\)th node of layer 3 performs the AND operation in \(q\)th rule. It multiplies the input signals and output the product. Using \(O_i^j, q_i \in \{1, 2, \ldots m\}\), to denote the membership of \(x_i\) to its corresponding linguistic term in \(q\)th rule, then the input and output of \(q\)th node can be defined as:
Recurrent Fuzzy Wavelet Neural Network to Control a PCV

The input and output of sth node can be calculated as follows:

\[u_q^i = \sum_{q=1}^{l} w_{sq}^i q, q = 1, 2, \ldots, l. \]

(9)

The performance of the control strategy is proposed in this part through a series of simulations. The PID control is perhaps the most widely used control method. It can provide fast response, good system stability and small steady state errors in linear system with known parameters. The simulation results are presented below. They demonstrate the effects of different controllers on the performance of the control system. We want to design the P, PI and PID controllers such that in the Unit Step Response (USR) the maximum overshoot is less than 10% and settling time is equal to 0.5 sec.

Figure 4 shows results of the USR of valve without any controller. In this case, the OS is very high and the settling time is also 0.178 second. The output has an OS less than 90% and rise time (RT) is 0.00337 seconds. Using the P controller for valve system, the results of the OS and settling time for closed loop system is shown in Figure 5. The best gain parameter is 1.012. The OS is very big and it is 89.6%. Also the settling and RT are 0.178 and 0.00337 second respectively. So the P controller is not suitable for this problem. Figure 6 shows the results for the PI controller. The gain parameters of the PI controllers were chosen

\[\frac{q_s(s)}{E_s(s)} = \frac{6.53}{s^2 + 33.33s + 226333.3} \]

5. Results and Discussion

Table 1 shows the parameters for a sample sliding-stem PCV. By substitution of Table 1 parameters in equation (6), we have:

Table 1. Valve parameters

Name of Variable	Parameter	Value
Effective area of diaphragm	A	0.196 ft²
Spring constant	K	6790
Movable mass	I (M)	0.03 slug
Resistance and friction coefficient	R	1lb.S/ft
Air pressure	SE	140 lb/ ft²
From Figure 6, OS and settling time are 6.63% and 0.376 second and the RT is 0.0831 sec.

Figure 7 shows the PID controller results for OS and settling time. The tuning algorithm is singular frequency and performance metric was Integral Time Absolute Error (ITAE). The gain parameters of the PID such as, K_p, K_i and K_d, obtained and set to $K_p = 7570$, $K_i = 1.514 - 4$ and $K_d = 15.21$. From the figure 7, the settling time is 0.22 second and OS is very small. The output has an OS less than 5%. The RT is 0.0967 sec.

Figure 8 shows the USR of PCV with RFWNN. In this case, the OS is very small and the settling time is also 0.209 second. The output has an OS less than 0.55% and RT is 0.226 seconds.

Table 2 shows the results of four controllers for the pneumatic control valve.
6. Conclusion

In this research an RFWNN is used for control of PCV. The RFWNN consists of layers and the feedback connections are added in first layer. Wavelet mother is used as fuzzy membership. This RFWNN can be used for control of the valve. For identification, RFWNN only needs the current inputs and most recent outputs of plant as its inputs. Finally, in this paper, the proposed control scheme based on RFWNN is used to control the pneumatic control valve system and simulation results verified its effectiveness.

7. References

1. Champagne RP, Boyle SJ. Optimizing Valve Actuator Parameters to Enhance Control Valve Performance. ISA Transactions. 1996; 35:217–23.
2. Hagglund T. A Friction Compensator for Pneumatic Control Valves. Journal of Process Control. 2002; 12:897–904.
3. De Souza MA, Cuadros L, Munaro CJ, Munareto S. Improved Stiction Compensation in Pneumatic Control Valves. Computers and Chemical Engineering. 2012; 38:106–14.
4. Paynter H. Analysis and Design of Engineering Systems. M.I.T. Press; 1959.
5. Karnopp DC, Rosenberg RC, Margolis DL. System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems. 5 ed. John Wiley and Sons, LTD; 2012.
6. Thoma JU. Simulation by Bondgraphs: Introduction to a Graphical Method. Springer; 2012.
7. Athanasatos P, Costopoulos T. Proactive Fault Finding in a 4/3-Way Direction Control Valve of a High Pressure Hydraulic System Using the Bondgraph Method with Digital Simulation. Mechanism and Machine Theory. 2012; 50:64–89.
8. Zuccarini VD, Rafirou D, LeFevre J, Hose DR, Lawford PV. Systemic Modeling and Computational Physiology: The Application of Bondgraph Boundary Conditions for 3D Cardiovascular Models. Simulation Modelling Practice and Theory. 2009; 17:125–36.
9. Heidari M, Homaei H. Quadratic Optimal Regulator Design of a Pneumatic Control Valve. Modelling and Simulation in Engineering. 2013; 862190:8. DOI: 10.1155/2013/862190.
10. Heidari M, Homaei H. Stem Control of a Sliding-Stem Pneumatic Control Valve using a Recurrent Neural Network. Advances in Artificial Neural Systems. 2013; 410870:7. DOI: 10.1155/2013/410870.
11. Park YM, Choi MS, Lee KY. An optimal tracking neuro-controller for nonlinear dynamic systems. IEEE Trans Neural Networks. 1996; 7(5):1099–110.
12. Narendra KS, Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Trans Neural Networks. 1990; 1(1):4–27.
13. Brdys MA, Kulawski GJ. Dynamic neural controllers for induction motor. IEEE Trans Neural Networks. 1999; 10(2):340–55.
14. Ku CC, Lee KY. Diagonal recurrent neural networks for dynamic systems control. IEEE Trans Neural Networks. 1995; 6(1):144–56.
15. Campolucci P, Uncini A, Piazza F, Rao BD. On-line learning algorithms for locally recurrent neural networks. IEEE Trans on Neural Networks. 1999; 10(2):253–71.
16. Sundareshan MK, Condarcure TA. Recurrent neural network training by a learning automaton approach for trajectory learning and control system design. IEEE Trans Neural Networks. 1998; 9(3):354–68.
17. Liang XB, Wang J. A recurrent neural network for non-linear optimization with a continuously differentiable objective function and bound constraints. IEEE Trans Neural Networks. 2000; 11(6):1251–62.
18. Lee CH, Teng CC. Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans on Fuzzy Systems. 2000; 8(4):349–66.
19. Lin CT, Chang CL, Cheng WC. A recurrent fuzzy cellular neural network system with automatic structure and template learning. IEEE Trans. on Circuits and Systems I. 2004; 51(5):1024–35.
20. Ogata K. Modern Control Engineering. 5 ed. Prentice Hall; 2010.
21. Mackanic JC. Design, Construction and Evaluation of A Simulated Geothermal Flow System. University of California; 1980.
22. Bajcina N. The Method of Singular Frequencies for Robust Control Design in an Affine Parameter space. IEEE Transactions on Automatic Control. 2001; 100–5.