SHORT COMMUNICATION

Slurry field management and ammonia emissions under Mediterranean conditions

M. R. Yagüe1 & A. D. Bosch-Serra2
1Department of Soil & Irrigation (EEAD-CSIC Associated Unit), Agrifood Research and Technology Centre Aragon (CITA), Avda. Montañana 930, E-50059, Zaragoza, Spain, and 2Department of Environmental & Soil Sciences, University of Lleida (UdL), Avda. Alcalde Rovira Roure 191, E-25198, Lleida, Spain

Abstract

In Spain, farmers are interested in applying pig (Sus scrofa domesticus) slurry (PS) to their fields throughout the year. During the spring and summer months, ammonia (NH3) volatilization may be high. We studied the potential range of NH3 losses under a warm and a hot period of the year, using available field practices, and two strategies: PS directly incorporated into the soil, in spring (I-spring); and PS applied by splash-plate, in summer time (SP-summer), both to bare soil. Measurements were conducted, after PS application, using the micrometeorological mass balance integrated horizontal flux method. The cumulative NH3-N volatilization was 35% (I-spring) and 60% (SP-summer) of total ammonium nitrogen applied, and half of the total NH3-N losses happened by 17 h and 8 h, respectively, after application. Incorporation strategy was less effective in avoiding NH3 losses than is described in the literature. This fact has important consequences for the implementation of NH3 mitigation measures in Mediterranean agricultural systems.

Keywords: Ammonia losses, slurry incorporation method, ammonia volatilization, splash-plate, fertilizer strategies

Introduction

Spain is the second largest pig producer in Europe, and nearly 50% of Spanish pig production is concentrated in the Ebro river valley (MARM, 2013).

Pig slurry (PS) is mainly applied to maize (long cycle) at sowing (April–May) and to winter cereals at sowing (October–November) or as a side-dressing (February–March), leaving a gap of 5–6 months when applications are normally avoided. In irrigated areas, a second crop after the cereal harvest or the extension of the maize (short cycle) sowing period can cover this gap.

Despite the importance of quantifying European NH3 emissions, little work done under Mediterranean conditions has been published on the topic (Génermont & Cellier, 1997; Sanz et al., 2010), and existing articles do not cover the whole annual period, nor the range of typical conditions.

Our objective was to quantify NH3 volatilization losses from PS applied according to two different strategies: (i) direct incorporation in spring (I-spring), assumed to approximate to minimum likely losses, and (ii) splash-plate application in summer time (SP-summer), taken to approximate to maximum likely losses.

Materials and methods

Two experiments were conducted in a representative area of the Ebro valley (41° 44′N, 0° 49′W, altitude 225 m) on bare ploughed soil (Table 1) before cereal establishment. The first was established on 16–17 May 2007. An incorporation machine was employed. Pig slurry incorporation was by a tube divided into three hoses (12 outlets), with a total application width of 4.80 m. Each outlet was located between two shares, the first one opened a slot in the soil and the one located at the back buried the applied PS at a depth of about 0.15–0.20 m. The second experiment was established on 2–3 August 2007 where surface PS spreading was by a tank fitted with a splash-plate; it was spread over the soil without incorporation. For each strategy (Table 2), three replicates were set up plus a control.

Weather in the experimental period has two limitations, in May with minimum average temperature (T) and maximum...
average relative humidity (RH), and in August with maximum T and minimum RH (Figure 1).

The micrometeorological mass balance integrated horizontal flux method was used, following the description and procedure given by Wood et al. (2000). Each rotating mast supported three passive NH₃ flux samplers mounted at three heights (0.375, 0.75 and 1.50 m), with the greatest height being 10% of fetch length, in agreement with estimates by Itier & Perrier (1976), which were confirmed by a previous field test. The ammonium solution obtained in passive samples was analysed with a continuous flow analyser (AA3–Bran + Luebbe). Sampling started immediately after application, and periodicity for the first day was from 1 to 2 h, at 3 h, from 5 to 8 h, at 12 h and before 24 h after application. Later on, the intensity of sampling decreased with time according to the declining of the intensity of NH₃ flux losses (Figure 2).

Differences between strategies in NH₃-N cumulative emissions and also as a percentage of applied NH₃-N were analysed using analysis of variance and LSMEANS test \( (P = 0.05) \). The statistical package SAS v8.2 was used for all statistical analysis.

### Results and discussion

The average for cumulative NH₃ emissions, measured during the experiments, was 35% of total ammonium nitrogen (TAN) applied (99 kg NH₃-N/ha, 25% of total N) in the I-spring strategy and 60% of applied TAN (122 kg NH₃-N/ha, 42% of total N) in the SP-summer strategy (Table 2). Half of the maximum NH₃-N loss was estimated to occur by 17 h and 8 h after application in I-spring and SP-summer strategies, respectively (Figure 2). For the SP-summer strategy, the emission was in the upper ranges found in other studies (e.g. Sommer et al., 2003; Rochette et al., 2009), but according to Mielbrook et al. (2005), the slurry dry matter content in the SP-summer strategy can explain losses equivalent to 60% of applied TAN. Incorporation did not reduce volatilization as much as it was expected to, according to the results from other experiments (Huijmsmans et al., 2003), probably because dry soil conditions (Table 1) made it difficult to fully bury the PS, favouring NH₃ gas diffusion through it.

In the context of Mediterranean agricultural systems, the official advice to bury PS spread over land not later than 24 h after application would not be fully effective in reducing NH₃ emissions, as more than 50% of applied TAN could already be lost during the first 24 h after application. In addition, the low moisture content in the soil, in the hottest months of the year, limits the effectiveness of PS incorporation. New methods must be investigated, and they should be orientated to the reduction in slurry-air contact (e.g. trail hoses) or/and to slurry infiltration enhancement (e.g. light irrigation). Nevertheless, their effectiveness will be influenced by soil carbonate content, and this aspect needs further practical evaluation. This research is also necessary in the framework of models such as ALFAM (Søgaard et al., 2002) that do not fully cover the special aspects that need to be considered in Mediterranean environments.

### Acknowledgements

The authors thank Miguel Izquierdo, Jesús Gaudó, Juan M. Acín and Benjamín Subías for their invaluable field management; Marisa Díez for laboratory assistance; and M. Rosa Teira for assessment of IHF method use. This work was supported by the Contract AGL2008-02566/AGR-ESF (to M.R.Y.) and by the Fundación Séneca, Murcia, Spain (to A.D.B.-S.).

### Table 1 Physicochemical soil average characteristics (0–0.30 m)

| Characteristics | Value |
|-----------------|-------|
| pH (potentiometry 1:2.5) | 8.3 |
| Humidity (105 °C, % w/w) | 1.8 |
| Organic matter (Walkley–Black, % w/w) | 2.1 |
| Carbonates (calcimeter Bernard method, % w/w) | 39.0 |
| Sand (0.05–2 mm, % w/w) | 25.1 |
| Silt (0.002–0.05 mm, % w/w) | 53.6 |
| Clay (<0.002 mm, % w/w) | 21.3 |

*1:2.5; 1 soil: 2.5 distilled water (w/v).* Soil water content was similar in both periods of slurry application.

### Table 2 Main characteristicsa and rates of the pig slurries applied to each plot according to the two strategies: Incorporation in spring (I-spring) and splash-plate in summer (SP-summer). Length of measurement periods and absolute emissions are included

| Strategy | pH (1:5) | Dry matter (kg/t) | Organic matter (kg/t) | Ammoniacal-N (kg NH₄⁻-N/ha) | Total N (kg N/ha) | Rate (t/ha) | Sampling period (days) | NH₃-N loss (kg N/ha) |
|----------|----------|-------------------|-----------------------|-----------------------------|------------------|-------------|------------------------|----------------------|
| I-Spring | 8.2      | 84.8              | 59.5                  | 267                         | 377              | 53          | 6                      | 100.7                |
| I-Spring | 8.2      | 84.8              | 59.5                  | 302                         | 427              | 60          | 7                      | 97.6                 |
| I-Spring | 8.2      | 84.8              | 59.5                  | 272                         | 385              | 54          | 6                      | 99.0                 |
| SP-Summer | 8.1    | 86.4              | 60.2                  | 168                         | 239              | 36          | 10                     | 102.0                |
| SP-Summer | 8.1    | 86.4              | 60.2                  | 254                         | 359              | 54          | 9                      | 157.9                |
| SP-Summer | 8.1    | 86.4              | 60.2                  | 187                         | 266              | 40          | 10                     | 106.3                |

*P by potentiometry (1:5; 1 pig slurry: 5 distilled water); dry matter by gravimetric analysis at 105 °C; organic matter by calcination at 550 °C; ammoniacal-N by modified Kjeldahl method and total N by Kjeldahl method.*
Study was supported by the National Institute for Agricultural and Food Scientific Research and Technology of Spain-INIA (projects RTA2004-114 and RTA2010-126) and by FEDER (European Fund for Regional Development) and FEADER (European Agricultural Fund for Rural Development) funds.

Figure 1 (a) Wind speed average (m/s); (b) Relative humidity averages of air (%): maximum (RH\text{max}), medium (RH\text{med}) and minimum (RH\text{min}); (c) Air temperature averages (°C): maximum (T\text{max}), medium (T\text{med}) and minimum (T\text{min}), on a daily basis for a period from 2004 to 2010. The black round symbols (●) are associated with average meteorological data for the period of measurements in each experiment (May and August of 2007). There is a marked contrast between the two measurement periods, and no rainfall occurred in either of the periods.

Figure 2 Cumulative ammonia emission (NH$_3$-N) as a percentage of total ammonium nitrogen applied (NH$_4$\textsuperscript{+}-N, TAN) and measured in two different strategies: slurry incorporated in May and slurry spread (splash-plate method) in August. Both trends were adjusted (***, $P < 0.001$) to the Michaelis–Menten equation $N_{\text{NH}_3}(t) = N_{\text{max}} \times (t/(t + K_m))$, where: $N_{\text{NH}_3}$ (% of TAN) is the accumulative ammonia loss at time ($t$); $N_{\text{max}}$ (% of TAN) is the maximum amount of NH$_3$-N lost and $K_m$ (hours) is the time to reach half of the total losses.
References

Génermont, S. & Cellier, P. 1997. A mechanistic model for estimating ammonia volatilization from slurry applied to bare soil. *Agricultural and Forest Meteorology*, 88, 145–167.

Huijsmans, J.F.M., Hol, J.M.G. & Vermeulen, G.D. 2003. Effect of application method, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land. *Atmospheric Environment*, 37, 3669–3680.

Itier, B. & Perrier, A. 1976. Présentation d’une étude analytique de l’advection. I- Advection liée aux variations horizontales de concentration et de température. *Annales Agronomiques*, 27, 111–140.

MARM. 2013. Anuario de estadística 2011. Available at: http://www.magrama.gob.es/estadistica/pags/anuario/2011/AE_2011_Completo.pdf; accessed 13/5/2013.

Misselbrook, T.H., Nicholson, F.A. & Chambers, F.B. 2005. Predicting ammonia losses following the application of livestock manure to land. *Bioresource Technology*, 96, 159–168.

M. R. Yagüe & A. D. Bosch-Serra

Sanz, A., Misselbrook, T.H., Sanz, M.J. & Vallejo, A. 2010. Use of an inverse dispersion technique for estimating ammonia emissions from surface-applied slurry. *Atmospheric Environment*, 44, 999–1002.

Søgaard, H.T., Sommer, S.G., Hutchings, N.J., Huijsmans, J.F.M., Bussink, D.W. & Nicholson, F. 2002. Ammonia volatilization from field-applied animal slurry - the ALFAM model. *Atmospheric Environment*, 36, 3309–3319.

Sommer, S.G., Génermont, S., Cellier, P., Hutchings, N.J., Olesen, J.E. & Morvan, T. 2003. Processes controlling ammonia emission from livestock slurry in the field. *European Journal Agronomy*, 19, 465–486.

Rochette, P., Angers, D.A., Chantigny, M.H., MacDonald, J.D., Gasser, M.O. & Bertrand, N. 2009. Reducing ammonia volatilization in a no till soil by incorporating urea and pig slurry in shallow bands. *Nutrient Cycling in Agroecosystems*, 84, 71–80.

Wood, C.W., Marshall, S.B. & Cabrera, M.L. 2000. Improved method for field-scale measurement of ammonia volatilization. *Communications in Soil Science and Plant Analysis*, 31, 581–590.