Remarkable body weight gain in a patient in the terminal phase of gastric carcinoma secondary to ‘big IGF-II’—producing tumor

Genta Ishikawa, Naoki Nishimura, Teruhiko Yoshida, Atsushi Kitamura, Yasuhiko Yamano, Yutaka Tomishima, Torahiko Jinta, Koyu Suzuki, Naohiko Chohnabayashi

ABSTRACT

Introduction: Weight loss as a result of cachexia with malignancy is frequently encountered in clinical practice. However, previous reports have not demonstrated weight gain in terminal phase of malignancy. Case Report: We report a 69-year-old male admitted with an exacerbation of interstitial pneumonia and multiple metastases of relapsed gastric adenocarcinoma complicated with refractory hypoglycemia. He had gained approximately 10 kg weight with an acromegaloïd appearance in a one-month period before admission. The presence of big insulin-like growth factor II (Big IGF-II) in his blood and an immunohistochemical study on the tumor cells confirmed a diagnosis of non-islet cell tumor hypoglycemia. Conclusion: This report possibly illustrates an unreported differential diagnosis of weight gain in terminal phase of malignancy.

Keywords: Gastric carcinoma, Non-islet cell tumor hypoglycemia (NICTH), Body weight gain

Ishikawa G, Nishimura N, Yoshida T, Kitamura A, Yamano Y, Tomishima Y, Jinta T, Suzuki K, Chohnabayashi N. Remarkable body weight gain in a patient in the terminal phase of gastric carcinoma secondary to ‘big IGF-II’—producing tumor. International Journal of Case Reports and Images 2013;4(7):380–383.

doi:10.5348/ijcri-2013-07-336-10

INTRODUCTION

Non-islet cell tumor hypoglycemia (NICTH) is a rare condition of malignancy. It has been considered as a cause of refractory hypoglycemia, which results from an abnormal secretion of big insulin growth factor-II (Big IGF-II) from tumor cells. This case report describes significant weight gain with an acromegaloïd appearance in a 69-year-old male with NICTH associated with Big IGF-II producing tumor in the terminal phase of gastric adenocarcinoma.

CASE REPORT

A 69-year-old male with relapsed gastric adenocarcinoma (total gastrectomy and Roux-en-Y reconstruction were performed in September 2009) and systemic metastases was admitted to our hospital for severe respiratory failure as a result of an acute exacerbation of interstitial pneumonia on June 22, 2011. He had gained approximately 10 kg weight with acromegaloïd features in a one-month period before his admission (Figures 1 and 2). He had noticed his shoes were too small for his feet and his wedding ring no longer fit in his finger.
On the day of admission, he suffered from severe hypoglycemia (blood sugar 28 mg/dL). He had an acromegaloïd appearance with enlargement of hands, prognathism, and increased heel pad thickness without edema in his extremities (Figure 1). Skin tags, excessive oiliness of the skin and rhinophyma were also observed. He was given 10% dextrose intravenously and 1 mg intramuscular glucagon. In addition, methyl-prednisone 1 g/day was commenced for the exacerbation of interstitial pneumonia. Despite these therapies, his hypoglycemia persisted and 10% dextrose infusion continued to be necessary to maintain the glucose level until his death.

The laboratory examination showed no increased levels of insulin (4.0 μU/mL, normal limit 1.7–10.4 μU/mL), growth hormone (1.786 ng/mL, normal limit <5.0 ng/mL) and insulin growth factor-I (IGF-I, 41.8 ng/mL, normal limit 42–250 ng/mL). Furthermore, C-peptide level in the urine sample was suppressed (0.3 μg/day, normal limit 20.1–155.0 μg/day). Western blot analysis of IGF-II in sera obtained at hypoglycemia disclosed a two-fold higher molecular IGF-II (Big IGF-II) when compared with normal human IGF-II (7.5 kDa) (Figure 3). The computed tomography (CT) scan showed diffuse ground glass opacities with traction bronchiectasis throughout the lungs as well as multiple lung metastases with bilateral pleural effusion and mediastinal lymphadenopathy and the metastasis had markedly increased in extent compared to the CT scan performed two months before admission (Figure 4). Echocardiography demonstrated normal left ventricular contraction, and serum NT-pro-BNP level was 383.4 pg/mL (normal limit <125.0 pg/mL). Massive proteinuria and severe liver dysfunction had not been observed. An increased thickness of abdominal subcutaneous tissue was detected in CT scan (Figure 4). The patient died three days after admission due to uncorrectable respiratory failure induced by interstitial pneumonia.

The postmortem examination confirmed a diagnosis of poorly differentiated gastric adenocarcinoma with metastases to lungs, thyroid, pancreas and lymph nodes. Diffuse alveolar damage and chronic interstitial pneumonia were also recognized. Immunohistochemical study using polyclonal anti-IGF-

---

**Figure 1:** Enlargement of left hand and increased heel pad thickness.

**Figure 2:** Body weight change in the clinical course.

**Figure 3:** Western Blot in serum analysis of IGF-II in sera. A two-fold higher molecular IGF-II (Big IGF-II) compared with the control, IGF-II: insulin-like growth factor-II.

**Figure 4:** The computed tomography scan showing diffuse ground glass opacities with traction bronchiectasis throughout the lungs, as well as multiple lung metastases with bilateral pleural effusion and mediastinal lymphadenopathy (right), and the metastasis had markedly increased in extent compared to the computed tomography performed two months before admission (left).
II antibody (ab9574; Abcam, Cambridge, UK) demonstrated a positive staining of IGF-II in tumor cells (Figure 5). Additionally, the immunohistochemistry with anti-IGF-II demonstrated a positive staining in the specimen of primary gastric cancer resected in 2009. Taking into account the detection of Big IGF-II in his blood, the result of immunohistochemistry and refractory hypoglycemia, we made a final diagnosis of NICTH.

![Image](image_url)

**Figure 5**: Immunohistochemical study using polyclonal anti-IGF-II antibody demonstrating a positive staining of IGF-II in tumor cells, IGF-II: insulin-like growth factor-II.

---

**DISCUSSION**

The NICTH is a rare condition and was first reported in 1929 with hepatocellular carcinoma. In 1988, the relationship between the aberrant production of pro-IGF-II (Big-IGF-II) and tumor-induced hypoglycemia was first proposed. Several case reports of tumor-induced hypoglycemia have been published and various tumors can result in NICTH. Data on the exact incidence and prevalence of NICTH are not available. However, it usually occurs in a subject with solid tumors of well-differentiated mesenchymal origin [1–3]. Also, gastric carcinoma is one of the most possible causes of NICTH [4], and several case reports have been published [5].

While the synthesis of IGF-I in liver is largely regulated by growth hormone (GH), the synthesis of IGF-II is independent of GH action. IGF-II originally has a role in fetal development, cell proliferation and apoptosis [6, 7]. Both IGF-I and IGF-II are structurally and functionally associated with insulin. Big-IGF-II is an immature form of IGF-II, whose bioavailability is markedly increased because of its tendency to cross the capillary barrier and activate the insulin receptors more easily than mature IGF-II [8]. In NICTH patients, the tumor cells upregulate the IGF-II gene and the abnormal IGF-II produced by the tumor causes refractory hypoglycemia by direct interaction with insulin receptors [9, 10]. In addition, IGF-II is a potent mitogen for many cell types in the autocrine, paracrine and endocrine fashions, which possibly indicates that overproduction of Big-IGF-II from residual tumor cells may facilitate tumor growth (anabolic activity).

Acromegaloïd skin changes, such as skin tags, excessive oiliness of the skin and rhinophyma, have been reported in patients with NICTH [11, 12]. This patient demonstrated the acromegaloïd features.

Furthermore, this report showed a remarkable finding of weight change during the clinical course. At first, he lost about 10 kg in one month, followed by a gain of approximately 10 kg in the one month before his death (Figure 2). In radiographic investigation (CT scan), thickened subcutaneous tissue compared to the image taken two months before was observed. We suppose at first the initial body weight loss resulted from cachexia state surpassing anabolic activity with Big IGF-II production. Further, we suppose anabolic activity of Big IGF-II towards not only tumor cells but also normal cells possibly accounted for the remarkable weight gain. We ruled out the existence of insulinoma and primary acromegaly with laboratory data. Worsening fluid accumulation was excluded by the physical examinations, unchanged BNP level in his blood and normal ventricular contraction on echocardiography. Obesity was not probable because his diet had not changed during the clinical course.

The limitation of our report was we could not investigate thyroid function that could influence weight change. Further, we could not demonstrate histological finding of anabolic state in subcutaneous tissue.

---

**CONCLUSION**

This is the first report demonstrating weight gain in the terminal phase of malignancy. The possibility of Non-islet cell tumor hypoglycemia might be investigated when encountering malignancy with remarkable weight gain.

**Acknowledgements**

We thank Izumi Fukuda (Department of Medicine, Institute of Clinical Endocrinology Tokyo Women’s Medical University) for processing the western blot analysis, and Eri Ishikawa, Miyako Uetake for processing the immunohistochemical study.

********

**Author Contributions**

Genta Ishikawa – Conception and design, Acquisition of data, Analysis and Interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Naoki Nishimura – Conception and design, Acquisition of data, Analysis and Interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Teruhiko Yoshida – Conception and design, Acquisition of data, Analysis and Interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Atsushi Kitamura – Conception and design, Acquisition of data, Revising it critically for important intellectual content, Final approval of the version to be published
Yasuhiro Yamano – Conception and design, Acquisition of data, Revising it critically for important intellectual content, Final approval of the version to be published
Yutaka Tomishima – Conception and design, Acquisition of data, Revising it critically for important intellectual content, Final approval of the version to be published
Torahiko Jinta – Conception and design, Acquisition of data, Revising it critically for important intellectual content, Final approval of the version to be published
Koyu Suzuki - Conception and design, Acquisition of data, Revising it critically for important intellectual content, Final approval of the version to be published
Naohiko Chohnabayashi – Conception and design, Acquisition of data, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor
The corresponding author is the guarantor of submission.

Conflict of Interest
Authors declare no conflict of interest.

Copyright
© Genta Ishikawa et al. 2013; This article is distributed under the terms of Creative Commons attribution 3.0 License which permits unrestricted use, distribution and reproduction in any means provided the original authors and original publisher are properly credited. (Please see www.jcasereportsandimages.com/copyright-policy.php for more information.)

REFERENCES

1. de Groot JW, Rikhof B, van Doorn J, et al. Non-islet cell tumour-induced hypoglycaemia: a review of the literature including two new cases. Endocr Relat Cancer 2007;14(4):979–93.

2. Nadler WH, Wolfer JA. Hepatogenic hypoglycemia associated with primary liver cell carcinoma. Arch Intern Med 1929;44:700–5.
3. Hizuka N, Fukuda I, Takano K, Okubo Y, Asakawa-Yasumoto K, Demura H. Serum insulin-like growth factor II in 44 patients with non-islet cell tumor hypoglycemia. Endoer J 1998;45(Suppl):S61–5.
4. Fukuda I, Hizuka N, Ishikawa Y, et al. Clinical features of insulin-like growth factor-II producing non-islet-cell tumor hypoglycemia. Growth Horm IGF Res 2006 Aug;16(4):211–6.
5. Kato A, Bando E, Shinozaki S, et al. Severe Hypoglycemia and Hypokalemia in Association with Liver Metastases of Gastric Cancer. Intern Med 2004;43(9):824–8.
6. Jones JJ, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endoc Rev 1995;16(1):3–34.
7. van der Ven ET, Van Buul-Offers SC, Gloudemans T, et al. Modulation of insulin-like growth factor (IGF) action by IGF-binding proteins in normal, benign, and malignant smooth muscle tissues. J Clin Endocrinol Metab 1996;81(10):3629–35.
8. Zapf J. Role of insulin-like growth factor II and IGF binding proteins in extrapaneeric tumor hypoglycemia. Horm Res 1994;42(1-2):20–6.
9. Zapf J, Futo E, Peter M, Froesch ER. Can "big" insulin-like growth factor II in serum of tumor patients account for the development of extrapaneeric tumor hypoglycemia? J Clin Invest 1992;90(6):2574–84.
10. Zapf J. Role of insulin-like growth factor II and IGF binding proteins in extrapaneeric tumor hypoglycemia. Horm Res 1994;42(1-2):20–6.
11. Trivedi N, Mithal A, Sharma AK, et al. Non-islet cell tumour induced hypoglycaemia with acromegaloïd facial and acral swelling. Clin Endocrinol (Oxf) 1995;42(4):433–5.
12. Bertherat J, Logié A, Giequell C, Mourririéas F, Luton JP, Le Bouc Y. Alterations of the 11p15 imprinted region and the IGf5 system in a case of recurrent non-islet-cell tumour hypoglycaemia (NICTH). Clin Endocrinol (Oxf) 2000;53(2):213–20.