Straightforward and Relatively Safe Process for the Fluoride Exchange of Trivalent and Tetravalent, Group 13 and 14 Phthaloecyanines.

Electronic Supporting Information.

Trevor M. Grant¹, Victoria McIntyre¹, Jenya Vestfrid², Hasan Raboui², Robin T. White³, Zheng-Hong Lu³, Benoît H. Lessard¹,* and Timothy P. Bender²,³,⁴*

¹ University of Ottawa, Dept. of Chemical & Biological Engineering,
161 Louis Pasteur, Ottawa, Ontario K1N 6N5, CANADA

² University of Toronto, Dept. of Chemical Engineering & Applied Chemistry,
200 College Street, Toronto, Ontario M5S 3E5, CANADA

³ University of Toronto, Dept. of Materials Science and Engineering,
180 College Street, Toronto, Ontario M5S 3E5, CANADA

⁴ University of Toronto, Dept. of Chemistry,
80 St. George Street, Toronto, Ontario M5S 3H6, CANADA

* - to whom correspondences should be addressed. E-mail: benoît.lessard@uottawa.ca (B.H.L.) tim.bender@utoronto.ca (T.P.B.)
Electronic supporting information content:

Table S1.1: Solubilities of fluoride salts, chloride salts, bromide salts, and iodide salts in acetamide and N-methylacetamide

Table S1.2: Solubilities of fluoride salts, chloride salts, bromide salts, and iodide salts in formamide and N-methylformamide

Table S1.3: Solubilities of fluoride salts, chloride salts, bromide salts, and iodide salts in acetonitrile

Table S1.4: Solubilities of fluoride salts, chloride salts, bromide salts, and iodide salts in N, N-dimethylformamide (DMF)

Table S1.5: Solubilities of fluoride salts, chloride salts, bromide salts, and iodide salts in N, N-dimethylacetamide (DMAc) and dimethyl sulfoxide (DMSO)

Table S2. UV-Vis absorbance spectroscopy results for chloro and fluoro group 13 and group 14 metal containing Pcs.

Table S3. Electrochemical characterization of the chloro and fluoro derivatives of the aluminum, gallium, silicon and germanium containing Pcs.
Salts	Source	Solubility (g/kg)	Br/Cl Ratio	I/Cl Ratio	Salts	Source	Solubility (g/kg)	Br/Cl Ratio	I/Cl Ratio
LiCl	Not Available	LiCl	Dawson	18.2396	-	-			
LiBr	Not Available	LiBr	Not Available	-	-				
NaF	Not Available	NaF	Not Available	-	-				
NaCl	Burgess	24.5	-	-	NaCl	Chandra	20.5	-	-
NaBr	Menschutkin	280.0	11.4	-	NaBr	Chandra	190.8	9.3	-
NaI	Sarkisov	359.0	-	14.7	NaI	Chandra	514.8	-	25.1
KCl	Wallace	24.5	-	-	KCl	Chandra	8.7	-	-
KBr	Wallace	103.0	4.2	-	KBr	Chandra	47.7	5.52	-
KI	Wallace	323.0	-	13.2	KI	Chandra	304.3	-	35.2
RbBr	Not Available	RbBr	Not Available	-	-				
CsCl	Not Available	CsCl	Not Available	-	-				
CsBr	Not Available	CsBr	Not Available	-	-				
CsI	Not Available	CsI	Not Available	-	-				
MgCl₂	Not Available	MgCl₂	Not Available	-	-				
CaCl₂	Menschutkin	253.0	-	-	CaCl₂	Dawson	30.0	-	-
CaBr₂	Not Available	CaBr₂	Dawson	80.0	2.7	-			
SrCl₂	Not Available	SrCl₂	Chandra	161.3	-	-			
SrBr₂	Not Available	SrBr₂	Chandra	415.0	2.6	-			
BaCl₂	Not Available	BaCl₂	Chandra	124.7	-	-			
BaBr₂	Not Available	BaBr₂	Chandra	385.0	3.1	-			

Table S1.1: Solubilities of fluoride salts, chloride salts, bromide salts, and iodide salts in acetamide and N-methylacetamide [1-11].
Salts	Source	Solubility (g/kg)	Br/Cl Ratio	I/Cl Ratio	Salts	Source	Solubility (g/kg)	Br/Cl Ratio	I/Cl Ratio
LiCl	Paul and Berardelli	266.5	-	-	LiCl	Paul, Starck & Berardelli	230.0	-	-
LiBr	Paul and Berardelli	596.5	**2.2**	-	LiBr	Paul and Berardelli	446.0	**1.9**	-
NaF	Colton	1.0	-	-	NaF	Not Available			
NaCl	Paul, Berardelli, and Gopal	92.2	-	-	NaCl	Berardelli and Strack	32.6	-	-
NaBr	Paul, Berardelli, and Gopal	353.4	**3.8**	-	NaBr	Paul, Strack & Berardelli	298.0	**9.2**	-
NaI	Paul and Gopal	600.0	-	**6.5**	NaI	Paul & Strack	787.0	-	**24.2**
KCl	Paul, Berardelli, Gopal, and Pavlopolpus	62.3	-	-	KCl	Paul, Strack & Berardelli	22.4	-	-
KBr	Paul, Berardelli, and Gopal	215.3	**3.5**	-	KBr	Paul, Strack & Berardelli	101.5	**4.5**	-
KI	Paul, Berardelli, Gopal, Colton, and Pavlopolpus	683.0	-	**11.0**	KI	Berardelli and Strack	491.0	-	**21.9**
RbBr	Pavlopolpus	274.5	-	-	RbBr	Not Available			
CsCl	Alexander	91.5	-	-	CsCl	Not Available			
CsBr	Alexander	152.4	**1.7**	-	CsBr				
CsI	Alexander and Pavlopolous	315.2	-	**3.4**	CsI				
MgCl₂	Berardelli	84.0	-	-	MgCl₂	Berardelli	88.0	-	-
CaCl₂	Berardelli, Gopal, and Colton	202.0	-	-	CaCl₂	Berardelli	186.0	-	-
CaBr₂	Berardelli	434.0	**2.2**	-	CaBr₂	Berardelli	303.0	**1.6**	-
SrCl₂	Gopal	156.9	-	-	SrCl₂	Not Available			
SrBr₂	Gopal	190.5	**1.2**	-	SrBr₂				
BaCl₂	Gopal	117.6	-	-	BaCl₂	Not Available			
BaBr₂	Gopal	305.0	**2.6**	-	BaBr₂				

Table S1.2: Solubilities of fluoride salts, chloride salts, bromide salts, and iodide salts in formamide and N-methylformamide [1-11].
Table S1.3: Solubilities of fluoride salts, chloride salts, bromide salts, and iodide salts in acetonitrile [1-11].
Table S1.4: Solubilities of fluoride salts, chloride salts, bromide salts, and iodide salts in N,N-dimethylformamide (DMF) [1-11].

Salts	Source	Solubility (g/kg)	Br/Cl Ratio	Br/Cl Ratio	I/Cl Ratio	I/Cl Ratio		
CsI	Kellogg, R.M	38.3	-	-	74.5	-		
CsBr	Kellogg, R.M	5.4	10.8	-	-	-		
CsCl	Kellogg, R.M	0.5	-	-	-	-		
CsF	Kellogg, R.M	0.1	-	-	-	-		
KI	Kellogg, R.M	271.1	-	-	542.3	1,500.6		
KI	Flick, Ernest W.	250.0	-	-	500.0	1,383.7		
KBr	Labban and Marcus	9.1	18.2	50.4	-	-		
KBr	Kellogg, R.M	8.2	16.3	45.1	-	-		
KCl	Flick, Ernest W.	0.5	-	-	-	-		
KCl	Kellogg, R.M	0.2	-	-	-	-		
KF	Kellogg, R.M	0.1	-	-	-	-		
NaI	Flick, Ernest W.	144.0	-	-	288.0	403.2		
NaI	Kellogg, R.M	79.0	-	-	158.0	221.1		
NaBr	Kellogg, R.M	117.1	234.2	327.8	-	-		
NaCl	Flick, Ernest W.	0.5	-	-	-	-		
NaCl	Kellogg, R.M	0.4	-	-	-	-		
NaF	Kellogg, R.M	0.1	-	-	-	-		
LiI	Not Available							
LiBr	Kellogg, R.M	206.8	1.8	-	-	-		
LiCl	Flick, Ernest W.	114.0	-	-	-	-		
LiF	Kellogg, R.M	0.1	-	-	-	-		
Salts	Source	Solubility (g/kg)	Br/Cl Ratio	I/Cl Ratio	Source	Solubility (g/kg)	Br/Cl Ratio	I/Cl Ratio
--------	-------------------	-------------------	-------------	------------	-------------------	-------------------	-------------	------------
CsI	Not Available				CsI			
CsBr					CsBr			
CsCl					CsCl			
CsF					CsF			
KI	Pistoia & Scrosati	15.4	-	140.0	KI	181.7	-	100.0
KBr	Pistoia & Scrosati	3.9	35.5	-	KBr	59.0	32.5	-
KCl	Pistoia & Scrosati	0.1	-	-	KCl	1.8	-	-
KF	N/A				KF			
NaI	Pistoia & Scrosati	346.0	-	1,730.0	NaI	272.5	-	75.0
NaBr	Pistoia & Scrosati	65.1	325.5	-	NaBr			
NaCl	Pistoia & Scrosati	0.2	-	-	NaCl	3.6	-	-
NaF	N/A				NaF			
LiI	Fedorov	45.6	-	0.5	LiI	373.3	-	4.0
LiBr	Pistoia & Scrosati	262.0	3.1	-	LiBr	285.2	3.1	-
LiCl	Pistoia & Scrosati	86.0	-	-	LiCl	92.6	-	-
LiF	N/A				LiF			

Table S1.5: Solubilities of fluoride salts, chloride salts, bromide salts, and iodide salts in \(N,N\)-dimethylacetamide (DMAc) and dimethyl sulfoxide (DMSO) [1-11].
Table S2. UV-Vis absorbance spectroscopy results for chloro and fluoro group 13 and group 14 metal containing Pcs.

Sample	DMSO	Chloroform	Toluene			
	λ_{max} (nm)	Egap (eV)	λ_{max} (nm)	Egap (eV)	λ_{max} (nm)	Egap (eV)
Cl-AlPc	680	1.78	681	1.77	688	1.77
F-AlPc	671	1.81	688	1.77	690	1.76
Cl-GaPc	678	1.79	687	1.77	687	1.77
F-GaPc	676	1.79	687	1.77	686	1.78
Cl$_2$-SiPc	700	1.73	694	1.75	685	1.77
F$_2$-SiPc	699	1.73	694	1.75	726	1.67
Cl$_2$-GePc	677	1.78	679	1.78	691	1.76
F$_2$-GePc	680	1.77	689	1.77	678	1.79
Table S3. Electrochemical characterization of the chloro and fluoro derivatives of the aluminum, gallium, silicon and germanium containing Pcs.

Sample	$E_{OX, peak}$ (V)	$E_{Red, peak}$ (V)	$E_{OX, 1/2}$ (V)	$E_{Red, 1/2}$ (V)	Φ_{XPS} (eV)	Φ_{UPS} (eV)	$E_{HOMO,UPS}$ (eV)
Cl-AlPc	1.40*	-0.71*, -0.96*, -1.40	-	-	4.5	4.4	5.7
F-AlPc	1.18*	-0.81, -1.35*	-	-0.74, -	4.4	3.6	4.7
Cl-GaPc	0.91, 1.27	-0.79*, -1.19	0.88, 1.24	-	4.4	4.3	5.7
F-GaPc	1.19*	-0.74	-	-0.69	4.4	4.3	5.6
Cl$_2$-SiPc	1.27*	-0.68, -1.07	-	-0.62, -1.02	4.1	4.1	5.7
F$_2$-SiPc	1.23	-0.63	1.13	-0.60	4.1	4.0	5.6
Cl$_2$-GePc	1.39*	-0.75*	-	-	4.5	4.4	5.8
F$_2$-GePc	1.28*	-0.86*	-	-	4.1	4.1	4.3

*Denotes that the peak was irreversible.
References.

[1] J.Burgess, “Thermochemistry of Metal Ion Solvation,” in *Metal Ions in Solution*, 1st ed. New York, New York: John Wiley & Sons, 1978, ch. 7, sec. 7.6, pp. 219-223.

[2] A.Seidell, W.F.Linke, A.W.Francis, and R.G.Bates, *Solubilities of Inorganic and Organic Compounds: A Complication of Solubility Data from the Periodical Literature*, 3rd ed. New York, New York: D. Van Nostrand Company, 1952, pp. 1 – 1599

[3] A.Seidell, *Solubilities of Organic Compounds: A Complication of Quantitative Solubility Data from the Periodical Literature*, 3rd ed. New York, New York: D. Van Nostrand Company, 1941, pp. 1 – 1599

[4] A.Seidell, *Solubilities of Inorganic and Organic Compounds: A Compilation of Quantitative Solubility Data from the Periodical Literature*, 2nd ed. New York, New York: D. Van Nostrand Company, 1919, pp. 1-756.

[5] B.Scrosati, C.A.Vincet, and J.S.McKechnie, *Solubility Data Series - Volume 11: Alkali Metal, Alkaline-Earth Metal and Ammonium Halide. Amide Solvents*, 1st ed. Willowdale, Ontario, Canada: Pergamon of Canada, 1980.

[6] Wynn, D.A.; Roth, M.M.; Pollard, B.D The Solubility of Alkali-Metal Fluorides in Non-Aqueous Solvents with and without Crown Ethers, as determined by Flame Emission Spectrometry. *Talanta*, 1984, 31 (11), 1036-1040.

[7] Macfie, G.; Compton, R.G.; Corti, H.R. Electrical Conductivity and Solubility of KF in N,N-Dimethylformamide up to 125°C. *J. Chem. Eng. Data*, 2001, 46 (5), 1300-1304.
[8] Breck, D.W.; Harvey, J.L.; Haendler, H.M. The Solubility of Antimony (III) Fluoride in Organic Compounds. *J. Phys. Chem.* **1949**, *53* (6), 906-912.

[9] Kraus, C.A.; Seward, R.P. The Influence of Salts on the Solubility of Other Salts in Non-Aqueous Solvents. *J. Phys. Chem.* **1928**, *32* (9), 1294-1307.

[10] Livingston, R.; Halverson, R.R. Solubility of Potassium Iodide in Acetone. *J. Phys. Chem.* **1946**, *50* (1), 1-6.

[11] Richard, W. Solubility of Potassium Halide in Fused Acetamide. *Inorg. Chem.* **1972**, *11* (2), 414-415.