Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data

Charles C. White, Hyun-Sik Yang, Lei Yu, Lori B. Chibnik, Robert J. Dawe, Jingyun Yang, Hans-Ulrich Klein, Daniel Felsky, Alfredo Ramos-Miguel, Konstantinos Arfanakis, William G. Honer, Reisa A. Sperling, Julie A. Schneider, David A. Bennett, Philip L. De Jager

Abstract

Introduction

The molecular underpinnings of the dissociation of cognitive performance and neuropathological burden are poorly understood, and there are currently no known genetic or epigenetic determinants of the dissociation.

Methods and findings

“Residual cognition” was quantified by regressing out the effects of cerebral pathologies and demographic characteristics on global cognitive performance proximate to death. To identify genes influencing residual cognition, we leveraged neuropathological, genetic, epigenetic, and transcriptional data available for deceased participants of the Religious Orders Study \((n = 492) \) and the Rush Memory and Aging Project \((n = 487) \). Given that our sample size was underpowered to detect genome-wide significance, we applied a multistep approach to identify genes influencing residual cognition, based on our prior observation that independent genetic and epigenetic risk factors can converge on the same locus. In the first step \((n = 979) \), we performed a genome-wide association study with a predefined suggestive \(p < \)
Competing interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: WGH is on the Scientific Advisory Board of In Silico Biosciences, and served as a consultant to Roche, MDH Consulting Ltd, Lundbeck, Otsuka, and Eli Lilly; and received an honorarium from Rush University (as part of the National Institute of Aging (NIA) grant held by DAB) related to the study. RAS served as a consultant to and received honorarium from Abbvie, Biogen, Genentech, Bracket, Roche, Sanofi, Lundbeck, Otsuka, and Merck, all of which were under $5,000; and received clinical research funding from Eli Lilly and Janssen; and is a research grant site principal investigator for the NIA; and reports the following financial relationship for her spouse, all of which were under $5,000: Lundbeck, Piramal Healthcare, Siemens, and Novartis. DAB receives many grants from the NIH; and serves on numerous external advisory boards for AD centers and other NIH grants; and serves on the adjudication committee for a clinical trial by Takeda; and serves on the data monitoring committee for a clinical trial by AbbVie. In the past, DAB received an unrestricted educational grant from Zinfandel Pharmaceuticals, Inc.; and was a US PI for a clinical trial funded by Nutricia, which also funded a travel grant to the XXV Brazil Neurological Congress to present the clinical trials program; and has served as a paid consultant for Eli Lilly, Inc. and Enzymmedica, Ltd; and was provided a travel grant and honoraria from Sun Pharmaceuticals to speak at a neurology course in India; and was funded by Elsevier for a travel to London to present at a Lancet Neurology conference; and served as a consultant for the India Institute of Science.

Abbreviations: AD, Alzheimer disease; CAA, cerebral amyloid angiopathy; cis-eQTL, cis-expression quantitative trait locus; DLPFC, dorsolateral prefrontal cortex; FDR, false discovery rate; FPKM, fragments per kilobase of transcript per million fragments mapped; FTLD, frontotemporal lobar degeneration; GTEx, Genotype-Tissue Expression; GWAS, genome-wide association study; LD, linkage disequilibrium; MAF, minor allele frequency; MAP, Rush Memory and Aging Project; QC, quality control; RNA-Seq, RNA sequencing; ROS, Religious Orders Study; SNF, single nucleotide polymorphism; TSS, transcription start site.

The availability of genetic, epigenetic, and transcriptomic data from two longitudinal cohorts with quantitative cognitive and pathological assessments enabled us to look for convergence of different molecular features onto certain target genes.

Author summary

Why was this study done?

- Only a part of cognitive impairment in older adults is explained by common neuropathologies such as amyloid plaques, neurofibrillary tangles, stroke, or Lewy bodies found in Parkinson disease and some forms of dementia.
- Understanding the molecular basis of dissociation between cognitive outcomes and neuropathological burden is of critical importance in understanding prognosis and in designing clinical trials to prevent dementia.
- Animal studies cannot fully address this complex discrepancy between cognition and neuropathology, and a well-powered large-scale genome-wide association study with detailed cognitive and pathological phenotypes is not yet available.

Conclusions

Through a multistep analysis of cognitive, neuropathological, genomic, epigenomic, and transcriptomic data, we identified ENC1 and UNC5C as genes with convergent genetic, epigenetic, and transcriptomic evidence supporting a potential role in the dissociation of cognition and neuropathology in an aging population, and we expanded our understanding of the TMEM106B haplotype that is protective against TDP-43 proteinopathy.
What did the researchers do and find?

- In two well-characterized cohorts of aging (the Religious Orders Study and the Rush Memory and Aging Project), we first captured the gap between cognitive performance proximate to death and neuropathological burden for each individual (“residual cognition”).

- Then, we performed sequential analyses including a genome-wide association study (step 1), in which we identified loci that were further analyzed for association of their methylation pattern (step 2) and brain RNA expression (step 3) with residual cognition.

- We identified two genes (UNC5C and ENC1) with converging evidence from all three analytic steps, and also showed that a previously reported risk gene for frontotemporal lobar degeneration, TMEM106B, might play a role in the dissociation of cognition and neuropathology in older adults. Further, UNC5C brain expression level was correlated with presynaptic protein levels, while ENC1 brain expression level was correlated with depressive symptoms.

What do these findings mean?

- ENC1, UNC5C, and TMEM106B had converging evidence suggesting that they might have a role in determining cognitive resilience in the aging population, which is affected by Alzheimer disease, stroke, and other neuropathologies.

- These genes should be studied further to expand our understanding of molecular mechanisms relevant to cognitive resilience that could be translated into prognostic and therapeutic tools for dementia prevention.

Introduction

It is well known that cognitive impairment in older adults is only partially explained by common neuropathologies such as Alzheimer disease (AD), stroke, and Lewy body disease [1–4]. Previous studies have shown that the majority of the variability in cognitive decline is unexplained, even when quantitative indices of common neuropathologies and demographic variables are included in the model [1,2]. Although additional variability has been explained by traits such as depressive symptoms [2,5] and by neuroimaging measures of brain tissue integrity [6,7], a large part of the cognitive impairment in late life remains unexplained. Further disentangling this dissociation of pathological burden and cognitive outcome is of critical importance in understanding clinical heterogeneity in the patient population and in designing treatments that can prevent progression into dementia.

To account for this dissociation, multiple mechanisms have been suggested: brain reserve capacity [2,8,9], cognitive reserve [2,10], differential neuroglial reactions to pathology [11], and other undetected pathophysiological processes [11–13]. Although prior studies have shown that the synaptic density and brain expression levels of multiple proteins in various biochemical pathways are correlated with resilient cognition [14,15], the molecular and genetic underpinnings of the dissociation of cognition and pathology remain poorly understood, and currently there are no known genetic or epigenetic determinants of the cognition–pathology discordance [16].
To identify genes that contribute to differential cognitive outcomes in the setting of neuro-pathology, we leveraged data from two large and richly phenotyped longitudinal cohort studies, the Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP) [17,18]. Similar to prior studies using data from ROS and MAP [1,2,4], we quantified the dis-sociation of cognition proximate to death and neuropathology by capturing the residual of global cognitive performance proximate to death after regressing out the effects of demo-graphic characteristics and neuropathologies. We use the term “residual cognition” for this quantified residual of global cognitive performance that captures the dissociation of cognition and neuropathology.

We recently reported that both genetic and epigenetic variation can be independently associated with neuritic plaque pathology in the same chromosomal locus: for example, we see such convergence of molecular evidence in ATP binding cassette subfamily A member 7 (ABCA7) and bridging integrator 1 (BIN1) [19]. In this study, we designed a strategy involving a multistep analysis to identify loci in which genetic and epigenetic variation converge to influence residual cognition. In the first step of the analysis, we performed a genome-wide association study (GWAS) and identified independent loci meeting our predetermined threshold of suggestive genetic association with residual cognition. Candidate genes were identified based on proximity to the lead single nucleotide polymorphism (SNPs) from each locus and were selected for further analysis based on expression in human frontal cortex (the region for which we have additional epigenomic and transcriptomic data). For the second step, we examined associations between residual cognition and differential DNA methylation of the candidate genes in human frontal cortex. In the third step, we further validated the role of the selected genes using transcriptional data from the same cortical region. This allowed us to identify genes with converging evidence from genetic, epigenetic, and transcriptomic data regarding their roles in determining the dissociation of cognition and neuropathology.

Methods
Participants
This study and the protocol for both ROS and MAP were approved by the institutional review board of Rush University Medical Center, and each participant signed a written informed con-sent and an Anatomical Gift Act document. Our participants came from two longitudinal cohort studies of older persons, ROS and MAP. ROS, started in 1994, is a longitudinal cohort study that enrolls Catholic nuns, priests, and brothers from more than 40 communities across the United States. MAP, launched in 1997, is a longitudinal cohort study that enrolls partici-pants with diverse backgrounds and socioeconomic status from continuous care retirement communities throughout northeastern Illinois, as well as from individual homes across the Chicago metropolitan area. Participants from both cohorts were free of known dementia at the time of enrollment, and these two cohorts were designed and are managed by the same team of investigators, who capture the same cognitive measures and conduct a structured, quantitative neuropathological examination at a single site. Thus, the two cohorts were designed to be used in combined analyses. At the time of our analyses in September 2014, 1,240 participants had been enrolled in ROS, and 1,752 participants had been enrolled in MAP; 674 and 723 par-ticipants from each study were deceased, respectively. The combined follow-up rate of these studies was 97%, and the brain autopsy rate among deceased participants was 86%. Among the deceased participants, 492 ROS participants and 487 MAP participants were of European ancestry and had the complete neuropathological evaluation, cognitive testing measures, and quality-controlled genotyping data required for our step 1 analysis (n = 979). Further details about the ROS and MAP cohorts can be found in previous publications [17,18] and through
the Rush Alzheimer’s Disease Center Research Resource Sharing Hub (https://www.radc.rush.edu/home.htm).

Cognitive and neuropsychiatric phenotypes

Cognitive function was annually assessed in both the ROS and MAP cohorts via 19 cognitive tests, of which 17 were distributed across five cognitive domains: episodic memory, semantic memory, working memory, perceptual speed, and visuospatial ability (S2 Table). Annual measures of global cognitive performance were derived by averaging the z-scores from each of these 17 annual tests [17,18,20]. We used global cognition proximate to death to derive residual cognition. Separately, the residual slope of global cognitive change and the residual slopes of cognitive change in the five cognitive domains were derived through general linear mixed models, controlling for age at enrollment, sex, and education, as previously described [21]. Diagnosis of AD dementia was made by a neurologist blinded to all postmortem data, after reviewing all available clinical data at the time of death. Selected cases were also reviewed through case conferences [13,17,18]. For most of the participants (n = 977), depressive symptoms were measured annually with a ten-item form of the Center for Epidemiologic Studies Depression Scale (CES-D) [5]. Given the previously reported relationship between depression and residual cognitive decline [2], this measure of depressive symptoms proximate to death was used to explore the association of depression with genes implicated in residual cognition.

Genotyping data acquisition

Genotyping was performed on either the Affymetrix GeneChip 6.0 platform (1,878 participants, 909,600 SNPs) or the Illumina OmniQuad Express platform (456 participants, 730,525 SNPs). DNA was extracted from whole blood, lymphocytes, or frozen brain tissue, as previously described [22]. To minimize population admixture, only self-declared non-Latino individuals of European ancestry were genotyped. Then, genotyping data from both platforms were processed using PLINK software, version 1.08p [23], with standard quality control (QC) metrics such as genotype success rate > 0.95, Hardy–Weinberg equilibrium p > 0.001, and misshap test < 1 × 10⁻⁹, as previously described [22,24,25]. EIGENSTRAT was used with default settings to remove population outliers and to generate a genotype covariance matrix [26], and closely related participants were removed. After these QC steps, 1,709 individuals and 750,173 autosomal markers from the Affymetrix GeneChip 6.0 platform, and 382 individuals and 627,742 autosomal markers from the Illumina OmniQuad Express platform were used for imputation. Dosages for SNPs (>35 million) were imputed on the 1000 Genomes reference (1000 Genomes Project interim phase 1 haplotypes, 2010–2011 data freeze), using BEAGLE software, version 3.3.2 [27]. All GWAS analyses in ROS and MAP filtered SNPs based on minor allele frequency (MAF) > 0.01 and imputation INFO score > 0.3, leaving about 7 million SNPs that were analyzed. Of note, each individual included in our analysis had non-missing genotype dosages of these quality-controlled markers, as any missing markers were imputed. In the current study limited to 979 participants, 859 participants were genotyped through the Affymetrix platform, and 120 participants were genotyped through the Illumina platform. In addition, APOE genotyping was done through a separate sequencing procedure, as previously described [17,18], and the resulting allele counts were used in our study.

Pathological phenotypes

The derivation of pathological variables has been previously described in detail [17,18]. Briefly, each brain was inspected for ten common pathologies relating to loss of cognition in aging populations: neurofibrillary tangles, neuritic plaques, diffuse plaques, Lewy bodies, macroscopic...
infarcts, microscopic infarcts, atherosclerosis, arteriolosclerosis, cerebral amyloid angiopathy (CAA), and hippocampal sclerosis [13,28–33]. More specifically, neurofibrillary tangles, neuritic plaques, and diffuse plaques were counted and scaled in five brain regions: mid-frontal, temporal, inferior parietal, entorhinal cortex, and hippocampus CA1. Composite scores for each of the three pathology types were derived by scaling the counts within each of the five regions, and then taking the square root of the average of the regional scaled values to account for their positively skewed distribution [17,18,21]. CAA was graded on a five-level scale (0 to 4) in four neocortical regions (mid-frontal, angular gyrus, inferior temporal gyrus, and calcarine cortex) and averaged to derive a CAA score, as previously described [34]. Chronic macroscopic and microscopic infarcts were each dichotomized as present or absent. Atherosclerosis was scored on a four-level severity scale, and arteriolosclerosis was measured on a four-level scale by small vessel pathologies in anterior basal ganglia [35]. Nigral, limbic, and neocortical Lewy bodies were dichotomized as present or absent, as identified using immunohistochemistry. Hippocampal sclerosis was recorded as either present or absent as evaluated with H&E stain. Pathological diagnosis of AD was given for cases with high or intermediate likelihood of AD per the modified National Institute of Aging–Reagan Institute criteria [36]. For a subset of participants (n = 826), transactive response DNA-binding protein 43 kDa (TDP-43) proteinopathy was measured and categorized into four steps of severity as previously described [37]: no inclusions (stage 0), inclusions in amygdala only (stage 1), inclusions in amygdala as well as entorhinal cortex and/or hippocampus CA1 (stage 2), and inclusions in amygdala, neocortex, and entorhinal cortex and/or hippocampus CA1 (stage 3). In addition, a semi-quantitative six-point scale for the severity of the TDP-43 cytoplasmic inclusions was rated as previously described (n = 812) [38].

DNA methylation and RNA sequencing data acquisition

In ROS and MAP, dorsolateral prefrontal cortex (DLPFC) was selected for initial multi-omics data generation, as it is relevant to multiple common neuropathologies and cognitive phenotypes in the aging population [22]. DNA methylation levels from the gray matter of DLPFC were measured using the Illumina HumanMethylation450 BeadChip, and the measurements underwent QC processing as previously described (e.g., detection \(p < 0.01 \) for all samples) [19,22], yielding 708 participants with 415,848 discrete CpG dinucleotide sites with methylation measurement. Any missing methylation levels from any of quality-Controlled CpG dinucleotide sites were imputed using a \(k \)-nearest neighbor algorithm for \(k = 100 \) [19]. A subset of 648 participants in our study had quality-Controlled genome-wide methylation data.

RNA was extracted from the gray matter of DLPFC, and next-generation RNA sequencing (RNA-Seq) was done on the Illumina HiSeq for samples with an RNA integrity score > 5 and a quantity threshold > 5 ug, as previously described [22,39]. We quantile-normalized the fragments per kilobase of transcript per million fragments mapped (FPKM), correcting for batch effect with Combat [39,40]. These adjusted FPKM values were used for analysis. A subset of 469 participants in our study had quality-Controlled RNA-Seq data, and all of them had non-missing values for the expression levels of the six genes identified in step 1.

Brain MRI data acquisition and processing

Ex vivo brain MRI data were available in a subset of 419 participants in our study. In secondary analyses exploring phenotypic correlates of identified genes, we used a composite measure of transverse relaxation rate (\(R_2 \)) that was previously shown to correlate with the residual slope of global cognitive decline in ROS and MAP participants [6,7]. Data acquisition and processing have been described in detail previously [7]. In brief, for each participant, each voxel’s \(R_2 \) was quantified from the spin echo images to generate an \(R_2 \) map. Voxelwise linear regression was
run with slope of cognitive decline as a dependent variable, R_2 as an independent variable, and neuropathological indices (AD, cerebrovascular disease, and Lewy body disease) and demographics (age, sex, and education) as covariates. After correcting for multiple testing, contiguous clusters of voxels associated with the slope of global cognitive decline were identified, and mean R_2 values of the voxels in each cluster were calculated, which were averaged to generate a composite R_2 measure.

Presynaptic protein data acquisition and processing

For a subset of the study participants, presynaptic protein quantification ($n = 315$) and quantitative protein–protein interaction ($n = 295$) assays were done from the gray matter of three brain regions (hippocampus, mid-frontal cortex, and inferior temporal cortex), and an overall standardized score was generated as previously described [15]. Among the measurements, we selected Complexin-I, Complexin-II, and Syntaxin/SNAP-25 interaction for our secondary analyses to explore phenotypic correlations with identified genes, given their previously reported strong association with global cognitive function independent from pathological burden [15]. For a secondary evaluation of the specificity of findings to inhibitory or excitatory terminals, we also examined Munc18-1 long (M18L, GABAergic terminals) and short (M18S, GABAergic and glutamatergic terminals) isoforms as previously described ($n = 280$) [41].

Statistical analysis

We defined “residual cognition” as the residual of global cognition proximate to death resulting from a multivariate linear model adjusting for demographic characteristics (age at death, sex, education, study cohort) and ten common neuropathologies implicated in cognitive decline in older people (neurofibrillary tangles, neuritic plaques, diffuse plaques, Lewy bodies, macroscopic infarcts, microscopic infarcts, atherosclerosis, arteriolosclerosis, CAA, and hippocampal sclerosis) [13,28–33]. Of note, TDP-43 proteinopathy was not included in this model, as the number of participants with TDP-43 measurement was limited at the time of the analysis.

A GWAS (step 1) was performed on residual cognition, modeling residual cognition as the dependent variable, genotype as the independent variable, and the top three principal components derived from the genetic covariance matrix (EV1–3) as covariates. Using PLINK version 1.08p, a linear model assuming additive genetic effects was used, and separate analyses were performed according to genotyping platform. These results were meta-analyzed using PLINK to mitigate potential confounding effects due to the combination of platforms. We used a genome-wide significance threshold of $p < 5 \times 10^{-8}$ and a suggestive threshold of $p < 10^{-5}$, given our modest sample size. To count the number of independent loci associated with residual cognition, we used PLINK to clump SNPs within the suggestive loci with linkage disequilibrium (LD) $r^2 > 0.2$ as a threshold. The SNP with the most significant association with residual cognition within each independent locus was selected as the lead SNP for that locus. The lead SNPs were looked up in the HaploReg database version 4.1 [42] to identify coding variants in LD ($r^2 > 0.2$) with each of them, and selected SNPs were interrogated with the ChromHMM core 15-state model (15-state chromatin map model) from the Roadmap Epigenomics Project’s Human Epigenome Atlas [43,44] to assess their functional implications. Each lead SNP was tested for cis-expressive quantitative trait locus (cis-eQTL) association with genes within 100 kb of the SNP, as it has been reported that the majority of cis-regulatory variations are found within 100 kb of transcription start site (TSS) [45]. Then, among the genes within 100 kb from each lead SNP, only those with non-zero brain expression in the majority of participants (>80%) were selected for further DLPFC DNA methylation and RNA level
analyses, as differential methylation would have greater functional implications in actively transcribed genomic regions.

In order to assess differential DNA methylation of candidate genes (step 2), three steps were followed, similar to a previous study [46]. In the first step, all CpGs within 100 kb of the start and stop positions of the gene were tested with linear regression for association with residual cognition. Similar to the GWAS, residual cognition was modeled as the dependent variable, each CpG methylation level as an independent variable, and technical variables (batch and mean bisulfite conversion) as covariates. In the second step, the \(p \)-values of all CpGs were meta-analyzed into a single observed test statistic using Fisher’s method. Finally, to get an empirical omnibus \(p \)-value for a given gene, 10,000 permutations were run (permuting the outcome variable, residual cognition), and the observed test statistic was compared to these randomly generated test statistics. False discovery rate (FDR) < 0.05 was used as a threshold for statistical significance. For regions with significant association between residual cognition and differential methylation, further analyses also adjusting for the lead SNP from each region and EV1–3 were done to check whether genetic and epigenetic associations were independent.

To analyze RNA expression data (step 3), linear regressions were applied with residual cognition as the dependent variable, Combat-adjusted FPKM values as the independent variable, and technical factors as covariates (RNA integrity score, \(\log_2 \) [total aligned reads], postmortem interval, and number of ribosomal bases).

We performed secondary analyses of each validated candidate gene. First, to assess whether each validated candidate genetic locus is exerting its effect through a neurodevelopmental process, the association of the lead SNP from each locus with global cognition at enrollment was assessed, controlling for demographic variables. In addition, to explore the effect of candidate genetic loci on cognitive decline, the residual slope of global cognition change (“global cognitive decline”; data available in 924 participants) and the residual slope of cognitive change in each of the five cognitive domains were tested for association with the lead SNPs from validated loci, with pathologies and EV1–3 as covariates. In addition, we tested the association of each lead SNP and RNA level with traits previously shown to be associated with residual cognition (depressive symptoms proximate to death, ex vivo brain MRI composite \(R_0 \), and presynaptic protein levels), controlling for demographics. As these secondary analyses were to further characterize the selected loci that were identified through the primary analyses, a threshold for significance of \(p < 0.05 \) was used, except when we tested for the association of each lead SNP and RNA level with cognitive domains, pathologies, or presynaptic proteins, where we used FDR < 0.05. To further investigate the relationship among the identified \(TMEM106B \) SNP rs11509153\(^A\), TDP-43 proteinopathy, and residual cognition, we tested whether rs11509153\(^A\) has an independent effect on residual cognition when the analysis was controlled for TDP-43 stage or a semi-quantitative severity scale. Methylation pattern and RNA expression of \(GRN \), a gene functionally downstream of \(TMEM106B \) [37,47], were also tested for association with residual cognition.

Of note, there were six loci that were identified in step 1 but did not have DLPFC-expressed adjacent genes and were therefore excluded from the step 2 and step 3 analyses. In an exploratory analysis, we examined their genetic association with residual cognitive decline. Moreover, all representative SNPs identified in step 1 analyses were checked for cis-eQTL association in various brain regions using the Genotype-Tissue Expression (GTEx) project database [48].

To obtain the variance explained of the different variable types, we followed a sequential adjusted R-squared analysis. First, we calculated the adjusted R-squared by modeling the last-visit global cognitive score versus the pathological and demographic variables. Then, to determine the variance explained by genetic, epigenetic, and transcriptomic data, we calculated the
additional adjusted R-squared gained when modeling the last global cognitive score versus pathological, demographic, and genetic/epigenetic/transcriptomic data (the top SNP for each respective locus, the top respective CpGs, and RNA levels) for UNC5C, ENC1, and TMEM106B.

Of note, all statistical analyses were done with R 3.2.1 (https://www.r-project.org/) unless mentioned otherwise. Each analysis was limited to participants with non-missing values.

Results

Description of participants, data, and phenotypes

From a total of 1,397 deceased ROS and MAP participants, we included 979 deceased individuals of European descent from ROS and MAP who had complete neuropathological evaluation, cognitive testing measures, and genotyping data in our step 1 analysis. Of note, among deceased participants, included and excluded participants had similar demographic characteristics (S1 Table). Phenotypic and genetic data were measured and derived as described in the Methods and previous studies [17,18,22]. In brief, global cognition was calculated from 17 different neuropsychological tests (S2 Table), and each participant underwent a structured, quantitative neuropathological examination at the time of death. The demographic characteristics of the participants used in our analyses are reported in Table 1.

In this study, “residual cognition” was defined as the residual of global cognitive performance proximate to death, after controlling for demographic characteristics (sex, age, years of education, and study cohort) and for ten common cerebral pathologies (neurofibrillary tangles, neuritic plaques, diffuse plaques, Lewy bodies, macroscopic infarcts, microscopic infarcts, atherosclerosis, arteriolosclerosis, CAA, and hippocampal sclerosis). TDP-43 pathology was initially available for only a subset of participants and was therefore not included in the derivation of residual cognition. We note that our approach captures not only the extent to which someone might be performing better than expected but also the extent to which other individuals are performing worse than expected, based on their pathological burden.

Genome-wide association study for residual cognition

In order to identify genetic effects on residual cognition, we performed a GWAS for this trait (Fig 1) as a first step of our analyses. The minor allele of each lead SNP was used as the alternate allele in this analysis; thus, in some cases the minor allele may be protective while in other

Table 1. Demographic characteristics of participants.

Characteristic	ROS	MAP	Combined
Cohort size, n	492	487	979
Age (years) at enrollment, mean (SD)	78.3 (7.0)	83.5 (5.7)	80.9 (6.9)
Age (years) at death, mean (SD)	87.8 (6.8)	89.8 (5.8)	88.8 (6.4)
Female, n (percent)	308 (62.6%)	322 (66.1%)	630 (64.4%)
Education (years), mean (SD)	18.2 (3.3)	14.5 (2.8)	16.4 (3.6)
Diagnosis of AD dementia, n (percent)	209 (42.9%)	184 (38.1%)	393 (45.5%)
Pathological diagnosis of AD, n (percent)	312 (63.4%)	312 (64.1%)	624 (63.7%)
Last global cognition, mean (SD)	-0.92 (1.26)	-0.90 (1.11)	-0.91 (1.19)

Among 979 participants, only 970 participants were evaluated for final diagnosis of AD dementia. Last global cognition is the measure of global cognitive performance proximate to death (z-score derived from baseline mean and standard deviation).

AD, Alzheimer disease; MAP, Rush Memory and Aging Project; ROS, Religious Orders Study; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1002287.t001

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002287 April 25, 2017 9 / 23
cases the minor allele may be deleterious in relation to residual cognition. Given our moderate sample size, no variant met a threshold of genome-wide significance \(p < 5 \times 10^{-8}\); however, 67 variants across nine independent loci in eight distinct genomic regions met our predefined threshold for suggestive results \(p < 10^{-5}\) (S3 Table). The lead SNPs with the smallest \(p\)-value within each independent locus are shown in Table 2. There were six genes within 100 kb of these lead SNPs: **unc-5 netrin receptor C (UNC5C)**, **ectodermal-neural cortex 1 (ENC1)**, **transmembrane protein 106B (TMEM106B)**, **anterior gradient 2 (AGR2)**, **anterior gradient 3 (AGR3)**, and **LOC286083**, as defined by the Genome Reference Consortium GRCh37.p13 primary human genome assembly. We also checked whether identifying genes based on LD patterns would change the candidate genes: five genes (**UNC5C**, **ENC1**, **TMEM106B**, **AGR3**, and **LOC286083**) included SNPs that were in LD with the lead SNPs, and all of these genes were also captured by our 100-kb cutoff. All identified SNPs were either intronic or intergenic, but a missense **TMEM106B** variant on Chromosome 7, rs3173615\(^G\), was in LD \(\left(r^2 = 0.67 \right) \) with the local lead SNP, rs11509153. Among the lead SNPs, only rs11509153\(^A\) (within **TMEM106B**) exhibited a cis-eQTL effect with respect to the genes within 100 kb in the DLPFC of ROS and MAP participants, being associated with lower expression of **TMEM106B** (estimated effect = −0.22, 95% CI −0.35 to −0.10, \(p = 6.4 \times 10^{-4}\)). Three of the six genes within 100 kb from lead

Fig 1. Manhattan plot from the genome-wide association study for residual cognition. In this plot, we present the results for each SNP tested in the genome-wide association study that included 979 participants from the Religious Orders Study and the Rush Memory and Aging Project. Each point is one SNP. The x-axis denotes the physical position of the SNP, and the y-axis reports −log(\(p\)-value) for each SNP. The threshold for a suggestive association \(p < 10^{-5}\) is denoted by the black dotted line and identifies those loci that were considered in step 2 of our analysis. The red dotted line denotes the threshold of genome-wide significance. The three loci considered in step 2 are highlighted: **UNC5C**, **ENC1**, and **TMEM106B**.

https://doi.org/10.1371/journal.pmed.1002287.g001
SNPs had non-zero DLPFC transcript levels in a majority (>80%) of samples from ROS and MAP participants: *UNC5C* (median [first quartile–third quartile] adjusted FPKM = 1.60 [1.41–1.77]), *ENC1* (adjusted FPKM = 70.10 [45.54–94.34]), and *TMEM106B* (adjusted FPKM = 3.55 [2.95–4.25]). Therefore, these three genes could be evaluated in all three steps of our analysis. Regional genetic association plots around the lead SNPs close to these genes are depicted in Fig 2.

By contrast, consistent with our group’s prior report showing that *APOE* genotype loses its effect on cognition when the analysis is controlled for pathology [50], *APOE* ε4 count and *APOE* ε2 count were not associated with residual cognition (FDR > 0.05). Further, none of the 19 SNPs reaching overall genome-wide significance (*p* < 5 × 10^{-8}) in the International Genomics of Alzheimer’s Project analysis [51] had an association with residual cognition

Table 2. Lead SNPs for each independent locus associated with residual cognition.

CHR	Position (hg19)	SNP	Major	Minor	MAF	*p*-Value	Estimated effect	Genes within 100 kb
3	105772040	rs60328885	G	A	0.10	1.7 × 10^{-6}	-0.34	—
4	96363012	rs3846455	C	G	0.07	3.1 × 10^{-6}	-0.42	*UNC5C* (0 kb)
5	73847916	rs76662990	A	G	0.11	7.7 × 10^{-6}	0.30	*ENC1* (-75.32 kb)
7	12263800	rs11509153	G	A	0.41	9.4 × 10^{-6}	0.19	*TMEM106B* (0 kb)
7	16944069	rs74665712	C	T	0.07	7.6 × 10^{-7}	-0.58	*AGR2* (+99.33 kb), *AGR3* (+22.46 kb)
7	17065965	rs1029576	C	G	0.41	4.6 × 10^{-6}	-0.20	—
8	1216767	rs34130287	G	C	0.21	4.0 × 10^{-6}	-0.25	*LOC286083* (-27.53 kb)
13	57529602	rs9527561	G	A	0.46	2.2 × 10^{-6}	-0.21	—
15	25772908	rs7402241	C	T	0.04	4.5 × 10^{-6}	-0.50	—

Estimated effect indicates change in residual cognition, as measured by z-score, per each additional minor allele of each SNP.

CHR, chromosome; MAF, minor allele frequency; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1002287.t002

Fig 2. Regional genetic association plots for *UNC5C*, *ENC1*, and *TMEM106B* regions. In these regional plots, we present the association results for all SNPs (dots) within each region of interest. In each region, the lead SNP is colored in purple, and other SNPs are colored based on their extent of linkage disequilibrium with the lead SNP, following the color key included at the top right of each panel. The x-axis denotes the physical position of the SNP, and the y-axis reports -log(*p*-value) for each SNP. The blue line denotes the recombination rate in this region in EUR participants from the 1000 Genomes Project. The location of the gene is presented at the bottom of the figure. (A) *UNC5C* region where rs3846455 (hg19 chr4:96363012) is the lead SNP associated with residual cognition. (B) *ENC1* region where rs76662990 (hg19 chr5:73847916) is the lead SNP. (C) *TMEM106B* region where rs11509153 (hg19 chr7:12263800) is the lead SNP. Regional genetic association plots were plotted with LocusZoom [49].

https://doi.org/10.1371/journal.pmed.1002287.g002
Finally, none of the loci associated with cognitive traits in large GWASs [52,53] or that were cerebral cortex expression quantitative trait loci in a recent meta-analysis [54] overlapped with the suggestive residual cognition loci from step 1.

Epigenetic and transcriptomic studies of selected genes from the genome-wide association study

In step 2, we defined each gene’s genic region as the chromosomal segment containing the transcribed elements of each gene ±100 kb of flanking DNA. Then, in the subset of the study population that had DNA methylation data (n = 648), we identified CpG dinucleotides within each genic region that were detected in our DLPFC samples using the Illumina HumanMethylation450 array [19,22]. Using the set of CpGs in each genic region, we calculated an omnibus score that summarized the evidence of association between methylation levels and residual cognition in each of the three genic regions, as previously described [46]. The methylation patterns of UNC5C and ENC1 regions were associated with residual cognition (FDR < 0.05; Table 3; Fig 3), and therefore these loci displayed converging evidence of genetic and epigenetic association. These associations persisted when the analyses were controlled for the respective genotypes implicated in residual cognition (lead SNP from step 1; Table 2): the methylation associations are therefore not driven by the SNPs identified in step 1. In step 3, in the subset of the study population that had DLPFC RNA-Seq data (n = 469), residual cognition was associated with mRNA levels of both UNC5C (estimated effect = −0.40, 95% CI −0.69 to −0.10, p = 0.0089) and ENC1 (estimated effect = 0.0064, 95% CI 0.0033 to 0.0096, p = 5.7 × 10−5). By contrast, neither the DLPFC methylation pattern nor mRNA level of TMEM106B was associated with residual cognition. Thus, in our multistep analysis, two genes (UNC5C and ENC1) had converging genetic, epigenetic, and transcriptomic evidence for a role in determining residual cognition.

An UNC5C allele, rs3846455G, is associated with more rapid episodic memory decline

To further characterize the two genetic regions with convergent genetic/epigenetic/transcriptomic evidence, we performed additional analyses to begin to assess whether their effect may be related to cognitive loss with advancing age or a higher cognitive attainment during development and early life. We therefore picked the minor alleles of the lead SNPs from each of the loci (Table 1): rs3846455G, within the first intron of UNC5C, and rs76662990G, close to ENC1. Both SNPs were then evaluated in greater detail in relation to predicted chromatin state, baseline cognitive scores, an individual’s pathology-adjusted slope of cognitive decline, and pathological burden. Finally, we examined each SNP’s associations with previously reported

Gene	Number of CpGs	OmniBus p-value	OmniBus FDR	Top CpG	p-Value	FDR	DLPFC chromatin state
UNC5C	44	0.0025	0.008	cg10528218	0.0027	0.117	Enhancer
ENC1	40	0.0271	0.041	cg18892446	0.0032	0.129	Weak transcription
TMEM106B	23	0.0937	0.094	cg09613507	0.0086	0.199	Weak transcription

After adjustment for associated SNP	Gene	Number of CpGs	OmniBus p-value	OmniBus FDR	Top CpG	p-Value	FDR	DLPFC chromatin state
UNC5C	44	0.0028	NA	cg10528218	0.0015	0.066		
ENC1	40	0.0204	NA	cg18892446	0.0038	0.082		

DLPFC, dorsolateral prefrontal cortex; FDR, false discovery rate.
correlates of residual cognitive decline in ROS and MAP participants (depressive symptoms
[2] and composite MRI R^2 score [6,7]).

According to the 15-state chromatin map model of human brain regions from the Roadmap Epigenomics Project’s Human Epigenome Atlas [43,44], rs3846455, which is found within the first intron of $UNC5C$, is in a region annotated as an enhancer in multiple brain regions, including the middle hippocampus, substantia nigra, cingulate gyrus, inferior temporal lobe, and angular gyrus. However, it is in a quiescent chromatin conformation in the DLPFC. The frequency of the rs3846455G allele associated with lower residual cognition in our step 1 analysis (ROS and MAP MAF = 0.07) is comparable to that reported for the 1000 Genomes Project phase 1 EUR population (MAF = 0.06) [42]. When adjusted for baseline demographic variables, rs3846455G dosage was not associated with a participant’s baseline global cognitive score ($p > 0.05$). However, after adjusting for pathology and demographic variables, rs3846455G dosage was associated with more rapid global cognitive decline (estimated effect $= −0.033$, 95% CI $−0.050$ to $−0.016$, $p = 1.9 \times 10^{−4}$). These two analyses suggest that the detrimental effect of the $UNC5C$ rs3846455G allele may be related to processes in later life and is less likely to be related to developmental phenomena. The slopes of global cognitive decline for the participants with and without the minor allele (rs3846455G) are depicted in Fig 4. We further evaluated the rates of decline in the five cognitive domains that were included in the global cognitive score, and the detrimental effect of the $UNC5C$ rs3846455G allele on global cognitive decline appears to be primarily driven by more rapid episodic memory decline (estimated effect $= −0.037$, 95% CI $−0.054$ to $−0.019$, FDR = $2.3 \times 10^{−4}$); other cognitive domains were not associated (FDR > 0.05) (S4 Table).

In terms of pathological measures, we tested for association with rs3846455G, controlling for age at death, sex, and study cohort. None of the ten pathological traits tested are associated with rs3846455G dosage (FDR > 0.05), as expected given our study design. In addition, TDP-43 stage, which was not included in our initial model, was not associated with rs3846455G dosage ($p > 0.05$).
For previously reported phenotypic correlates of residual cognitive decline [2,7,15], neither depressive symptoms proximate to death (p > 0.05) nor composite R² measures from ex vivo brain MRI (p > 0.05) were associated with rs3846455G dosage. Similarly, we found no association of UNC5C RNA level with either depressive symptoms proximate to death (p > 0.05) or the composite R² (p > 0.05). On the other hand, rs3846455G dosage was associated with the expression of certain presynaptic proteins previously reported to be associated with residual cognitive decline in the ROS and MAP cohorts [15]: rs3846455G was associated with lower Complexin-I level (estimated effect = −0.33, 95% CI −0.57 to −0.09, p = 0.0073, FDR = 0.022) but not with Complexin-II level (FDR > 0.05) or Syntaxin/SNAP-25 protein–protein interaction (FDR > 0.05). Higher UNC5C RNA level was associated with lower Complexin-I level (estimated effect = −0.69, 95% CI −1.09 to −0.30, p = 6.1 × 10⁻⁴, FDR = 0.0018), lower Complexin-II level (estimated effect = −0.61, 95% CI −1.05 to −0.18, p = 0.0063, FDR = 0.0094), and weaker Syntaxin/SNAP-25 interaction (estimated effect = −0.45, 95% CI −0.80 to −0.09, p = 0.014, FDR = 0.014). Complexin-I is enriched in GABAergic, inhibitory terminals, as is the M18L isoform of Munc18-1, previously reported to be associated with cognitive decline in the MAP cohort [41]. On further exploratory analyses, we also observed an effect of rs3846455G dosage on the M18L isoform (estimated effect = −0.37, 95% CI −0.70 to −0.04, p = 0.028) but not the M18S isoform (p > 0.05), supporting the association of UNC5C rs3846455G with decreased inhibitory presynaptic terminal protein composition.

An ENCI allele, rs76662990G, is associated with slower decline in multiple cognitive domains

In the ENCI locus, rs76662990G is the minor allele that was associated with better residual cognition in our step 1 analysis. This SNP is found 75.32 kb downstream from the 3' end of ENCI, and its MAF in ROS and MAP is 0.11, which is comparable to the 1000 Genomes Project...
phase 1 EUR population MAF of 0.10. rs76662990G is in a quiescent chromatin state across multiple brain regions per the 15-state chromatin map model generated by the Roadmap Epigenomics Project’s Human Epigenome Atlas [43,44]. Baseline global cognition was not associated with rs76662990G dosage (\(p > 0.05\)) after adjusting for baseline demographics. When adjusted for pathology and demographics, rs76662990G dosage was modestly associated with a slower rate of adjusted global cognitive decline (additive model; estimated effect = 0.016, 95% CI 0.003 to 0.029, \(p = 0.018\)). The modest protective effect against adjusted cognitive decline was seen in all cognitive domains except working memory (S4 Table). As expected, none of the ten pathological traits tested were associated with rs76662990G (FDR > 0.05). Overall, like \textit{UNC5C}, the \textit{ENC1} locus may be influencing processes in later life rather than developmental processes in having an effect on residual cognition.

rs76662990G was not associated with either depressive symptoms proximate to death (\(p > 0.05\)) or the composite \(R_1\) (\(p > 0.05\)). On the other hand, higher \textit{ENC1} RNA level in the DLPFC, which was associated with better residual cognition, was nominally associated with less depressive symptoms proximate to death (estimated effect = −0.0091, 95% CI −0.0165 to −0.0017, \(p = 0.016\)) but not with the composite \(R_1\) measure (\(p > 0.05\)). For presynaptic proteins, neither rs76662990G dosage nor \textit{ENC1} RNA level was associated with any of the selected measures (FDR > 0.05).

\textbf{A \textit{TMEM106B} allele, rs11509153A, is associated with lower TDP-43 burden}

Although the \textit{TMEM106B} region showed no association with residual cognition in step 2, rs11509153A remains of interest because it is in strong LD (\(r^2 = 0.66\)) with rs1990622G, an allele previously reported to be associated with a lower risk of TDP-43 proteinopathy [37,55]. Thus, we looked more carefully at the \textit{TMEM106B} locus in our secondary analyses. The rs11509153A allele (ROS and MAP MAF = 0.41), which was associated with better residual cognition in step 1 (Table 1), is located in intron 4 of \textit{TMEM106B}. In our study, rs11509153A was not associated with baseline cognition (\(p > 0.05\)), but it was associated with slower pathology-adjusted global cognitive decline (estimated effect = 0.013, 95% CI 0.005 to 0.022, \(p = 0.0024\)), and this protective effect was observed in episodic memory, semantic memory, and working memory domains (FDR < 0.05) (S4 Table). Moreover, rs11509153A was associated with lower \textit{TMEM106B} RNA level in the DLPFC (\(p = 6.4 \times 10^{-4}\)), although \textit{TMEM106B} RNA level was not associated with residual cognition (FDR > 0.05).

Since the burden of TDP-43 proteinopathy was not available in all ROS and MAP participants at the beginning of our study, we did not include this variable when calculating residual cognition. However, we completed a post hoc analysis in a reduced sample of 826 participants in which we later had this variable: we explored the possibility that the association of rs11509153A with residual cognition in step 1 was due to the burden of TDP-43 proteinopathy that had not been accounted for in our measure of residual cognition. In this subset of participants with TDP-43 staging, the effect size of the association between rs11509153A and residual cognition was similar to that observed in the entire study population (estimated effect = 0.18, 95% CI 0.09 to 0.28, \(p = 1.3 \times 10^{-4}\)). In line with previous reports [37,55], rs11509153A was associated with lower TDP-43 stage (estimated effect = −0.16, 95% CI −0.27 to −0.05, \(p = 0.0050\)), and higher TDP-43 stage was associated with worse residual cognition (estimated effect = −0.090, 95% CI −0.148 to −0.032, \(p = 0.0023\)) in these ROS and MAP participants. Interestingly, however, even after controlling for TDP-43 stage, rs11509153A remained associated with residual cognition (estimated effect = 0.17, 95% CI 0.08 to 0.26, \(p = 3.8 \times 10^{-4}\)). To examine whether a semi-
quantitative measurement of TDP-43 severity better captured the burden of this pathological feature, we also tested the association of rs11509153\(^A\) with residual cognition while controlling for the TDP-43 severity score: the association between rs11509153\(^A\) and residual cognition remained similar (estimated effect = 0.18, 95% CI 0.08 to 0.27, \(p = 2.1 \times 10^{-4}\)). Thus, much of the haplotype’s protective effect was independent of the measured burden of TDP-43 proteinopathy.

We also addressed the possibility of independent effects for rs11509153\(^A\) and rs1990622\(^G\) by including both SNPs in our model: rs11509153\(^A\) did not have an effect beyond that captured by rs1990622\(^G\) (\(p > 0.05\)), suggesting that both SNPs are likely capturing the effect of the same functional variant. Moreover, given prior work linking the \textit{TMEM106B} locus and the \textit{granulin precursor (GRN)} gene, a Mendelian risk gene for frontotemporal lobar degeneration (FTLD) that is thought to be downstream of \textit{TMEM106B} \([37,47]\), we performed a secondary analysis of the \textit{GRN} locus: the omnibus DNA methylation (\(p = 0.025\)) and mRNA level (estimated effect = −0.024, 95% CI −0.038 to −0.009, \(p = 0.0018\)) analyses of \textit{GRN} revealed a modest association with residual cognition. These findings further suggest a role for \textit{TMEM106B} and related mechanisms in influencing residual cognition in older age.

Exploratory interrogation of the loci identified in step 1

At the conclusion of our step 1 analysis, we selected genes within 100 kb from the lead SNPs that were also expressed in DLPFC for further analyses. However, some regulatory elements can affect genes beyond 100 kb, and we may also have missed genes that are expressed in brain regions other than DLPFC. Thus, to test whether our analytic strategy might have missed pertinent candidate genes, we performed an exploratory interrogation of the lead SNPs from each region for \textit{cis}-eQTL associations using the publically available GTEx database \([48]\): in multiple brain regions (anterior cingulate, frontal cortex, hippocampus, basal ganglia, cerebellum, and hypothalamus), none of the lead SNPs were \textit{cis}-eQTLs for genes within 1 Mb from the SNP.

In addition, we explored each SNP’s association with baseline cognition and pathology-adjusted rate of global cognitive decline for the six lead SNPs from step 1 that were not further analyzed (S5 Table). Interestingly, some of the SNPs showed some association with baseline cognition (\(p < 0.05\)): rs60328885, rs1029576, rs9527561, and rs7402241. In particular, rs7402241\(^T\) displayed a highly significant association with worse baseline cognition, approaching genome-wide significance (estimated effect = −0.37, 95% CI −0.51 to −0.24, \(p = 9.0 \times 10^{-8}\)). However, this locus and the other five examined loci were not associated with cognitive traits in recent, very large GWASs of cognitive performance \([52,53]\). Further, rs7402241\(^T\) was not associated with TDP-43 or any of the ten pathologies that we used to derive residual cognition (\(p > 0.05\) for all pairs). Finally, all six examined loci were associated with the pathology-adjusted slope of global cognitive decline, suggesting that they may have a role in loss of cognitive function.

Variance in cognition proximate to death is partially explained by genetic, epigenetic, and transcriptional variations in \textit{UNC5C}, \textit{ENC1}, and \textit{TMEM106B}

In a subset (\(n = 465\)) of participants with all genotyping, DNA methylation, and RNA-Seq data, we used a sequential adjusted \(R^2\) analysis to obtain the variance in cognition proximate to death explained by different types of variables. In this model, demographics and common neuropathological indices explained 41.0% of the variance in global cognition proximate to death, which is consistent with prior reports from ROS and MAP \([1,2]\). Genetic (lead SNPs), epigenetic (lead CpGs), and transcriptomic (RNA level) variation in \textit{UNC5C}, \textit{ENC1}, and \textit{TMEM106B} identified in this study explain an additional 5.9% of the variance in global...
cognition proximate to death. Still, more than half (53.1%) of the variance in cognition proximate to death remained unexplained.

Discussion

Leveraging two large community-based cohorts of older adults with genetic and phenotypic data, this study used a multistep process including genetic, epigenetic, and expression analyses to identify genes associated with the dissociation of cognitive function and neuropathological burden. Our results support a potential role of *UNC5C* and *ENC1* in modulating differential neuronal susceptibility to pathological insults, and expand our understanding of *TMEM106B*, a gene known for its association with TDP-43 proteinopathy.

UNC5C is a netrin receptor gene that mediates repulsion from netrin signal in developmental neuronal migration and axonal guidance [56,57], and it also acts as a dependence receptor that can induce apoptosis in the absence of netrin signal [58]. A recent study linked a rare missense variant *UNC5C* T835M (rs137875858) to the risk of late-onset AD dementia and reported that *UNC5C* T835M made neurons more susceptible to neurotoxic exposures such as pathogenic β-amyloid 1–42, particularly in the hippocampus [59]. This study also reported that overexpression of *UNC5C* (T835M as well as wild-type) was associated with increased apoptosis and did not affect β-amyloid or extracellular tau production. Thus, our results that identify a convergence of genetic and epigenetic evidence within the *UNC5C* region—and that find increased *UNC5C* RNA expression to be associated with worse residual cognition—are consistent with this previous report [59]. Moreover, in our study, more rapid decline in episodic memory seemed to drive the association of the *UNC5C* allele rs3846455^G with cognitive decline, and this is consistent with the suggested selective effect of *UNC5C* on hippocampus [59], a brain region critical for episodic memory. Of note, *UNC5C* also has a known role in neurodevelopment; however, rs3846455^G was not associated with variability in cognition at study entry, making it less likely that the association between rs3846455^G and residual cognition is due to differential neurodevelopment. All in all, *UNC5C* is likely to be implicated in determining residual cognition through differential neuronal reaction to pathology, particularly by altering hippocampal neuronal susceptibility to pathological insults. In addition, both *UNC5C* rs3846455^G and higher *UNC5C* RNA level correlated with lower presynaptic protein levels, suggesting that the alterations in the synapses may be part of the functional consequences of the rs3846455^G risk allele and increased *UNC5C* RNA expression. Nonetheless, the functional mechanism of *UNC5C* rs3846455^G remains unclear: *UNC5C* rs3846455^G is in a quiescent chromatin state and does not influence RNA expression in the DLPFC, although the chromatin state of this locus is labeled as an enhancer in middle hippocampus according to the 15-state chromatin map model from the Roadmap Epigenomics Project’s Human Epigenome Atlas [43,44]. Also, it is unlikely that the relationship between rs3846455^G and residual cognition is driven by the rare *UNC5C* T835M variant (MAF = 0.0003) in our data, as less than a single minor allele would be expected within our entire sample of 979 participants.

ENC1, previously also known as nuclear restricted protein/brain (NRP/B), is a gene that is highly expressed in developing neurons as well as in the adult neocortex and hippocampus in murine models. It colocalizes with actin [60] and is implicated in neurite development and neuronal process formation during neuronal differentiation [61]. In addition, *ENC1* is implicated in neural protection from various insults: *ENC1* is upregulated in vitro in settings of neural injury such as oxygen-glucose deprivation [62] or toxic intracellular protein aggregation and endoplasmic reticulum stress [63]. In these in vitro models, *ENC1* upregulation is shown to be detrimental for neural survival through its downregulation of cytoprotective genes such as nuclear factor, erythroid 2 like 2 (NFE2L2, also known as NRF2) [62] or its downregulation
of the autophagic pathway through interaction with phosphorylated p62 \cite{63}. In our study, rs76662990G was not associated with baseline cognition, which makes it less likely that rs76662990G results in significant neurodevelopmental differences. Moreover, rs76662990G was associated with slower cognitive decline in multiple cognitive domains, which is consistent with widespread expression of \textit{ENCI} in the mammalian neocortex \cite{60}. Intriguingly, contrary to previous observations from in vitro models \cite{62,63}, we observed higher \textit{ENCI} RNA level in participants with higher residual cognition, and higher \textit{ENCI} RNA level was also correlated with less depressive symptoms, a known predictor of higher residual cognition \cite{2}. Given the complexity of in vivo pathophysiology in the human brain and the vagaries of in vitro models, further study is required to elucidate the relationship between \textit{ENCI} expression level and residual cognition.

In the \textit{TMEM106B} locus, we found suggestive evidence of genetic association between better residual cognition and rs11509153A, which is in a strong LD with rs1990622G, a well-known protective allele against TDP-43 proteinopathy \cite{37,55}. The \textit{TMEM106B} haplotype captured by rs1990622 was first identified as a risk factor for FTLD with TDP-43 proteinopathy (FTLD-TDP) in a large GWAS \cite{55}, and later our group showed that the same haplotype is also implicated in TDP-43 proteinopathy burden in older adults without FTLD \cite{37}. In the current study, our analyses show that rs11509153A captures the same haplotype as the rs1990622G allele, which is protective against FTLD-TDP. Moreover, epigenetic and transcriptomic associations with residual cognition observed at the \textit{GRN} locus further suggest a role for the \textit{TMEM106B–GRN} pathway in determining residual cognition. The association of the \textit{TMEM106B} haplotype with residual cognition is plausible, as TDP-43 proteinopathy was not considered in our model to derive residual cognition. However, neither TDP-43 staging nor a semi-quantitative TDP-43 severity score fully explains the effect of rs11509153A on residual cognition. Thus, it is possible that the \textit{TMEM106B} haplotype is related to residual cognition via multiple different processes including processes independent of TDP-43 proteinopathy, which is in line with a prior study reporting that the \textit{TMEM106B} genotype and TDP-43 proteinopathy have independent contributions to cognitive impairment in amyotrophic lateral sclerosis patients \cite{64}. Nevertheless, it is also possible that current TDP-43 quantification methods are not adequately capturing the burden of TDP-43 proteinopathy.

With extensive data on each participant’s cognitive performance and detailed assessment of neuropathology, the ROS and MAP cohorts are uniquely positioned for studying the phenomenon of differential cognitive outcomes in the setting of neuropathology, as previously shown through multiple studies \cite{1,2,4–7,9,14,15}. Nonetheless, our study has certain limitations. First, step 1 of our study was underpowered to detect genome-wide significance. To circumvent this problem, we leveraged our prior observation that independent genetic and epigenetic factors can converge on the same locus \cite{19} and used a multistep approach with predefined significance thresholds to yield credible candidate genes. In step 1, we expected enrichment of pertinent genetic associations in the tail end of the p-value distribution, and, based on our experiences with previous GWASs in the ROS and MAP cohorts \cite{24,25}, we selected an arbitrary suggestive p-value threshold of 10^{-5} to detect a small number of loci that could be further tested in steps 2 and 3 without prohibitive multiple testing burden. Nonetheless, we may have missed pertinent genetic associations if SNPs from other loci either failed to reach our step 1 threshold or did not have coexisting epigenetic associations with residual cognition. Second, we selected genes only within 100 kb from the suggestive lead SNPs. This was to maximize signal-to-noise ratio based on the finding that most \textit{cis}-regulatory elements are within 100 kb of TSSs \cite{45}. Nonetheless, some regulatory elements can be more distant from the TSS \cite{45}, and we may have missed pertinent genes further than 100 kb from each SNP. However, interrogation of the GTEx database \cite{48} and a previous brain eQTL meta-analysis \cite{54} suggest that
the loci identified in the step 1 analysis do not have regulatory roles for distant genes. Third, we used epigenetic and transcriptomic data from DLPFC alone, leaving the possibility that we may have missed genes that have significant roles in other brain regions or in other systems such as the immune system. Fourth, pathological phenotypes differed in the way they were quantified. For example, amyloid plaques and neurofibrillary tangles were counted and averaged throughout multiple brain regions, thus representing rigorous quantification, whereas other pathologies were recorded either as binary or categorical variables. The true effect of pathologies might have not been captured due to the variable definitions. Nonetheless, besides the TMEM106B locus—a risk factor for TDP-43 proteinopathy, which was not accounted for in our residual cognition model—none of the loci identified through the step 1 analysis were known genetic risk factors for the neuropathologies studied. Finally, given the limited sample size and power of our study, future replication studies as well as experimental studies are necessary to further clarify the role of the three genes identified through our study.

Despite its limitations, our study has initiated the genomic dissection of residual cognition, identifying three genes that deserve further investigation as determinants of differential cognitive outcomes in the setting of neuropathology. Further, this study supports our study design for addressing issues of limited statistical power in deeply phenotyped participants from cohorts of moderate size. As our results explain only a small portion of the dissociation between cognition and neuropathological burden, additional studies are required to elucidate the determinants of the unexplained cognitive variability in late life.

Supporting information

S1 Table. Characteristics of excluded participants.
(DOCX)

S2 Table. Cognitive tests shared in the Religious Orders Study and the Rush Memory and Aging Project.
(DOCX)

S3 Table. SNPs with suggestive associations with residual cognition ($p < 1.0 \times 10^{-5}$).
(DOCX)

S4 Table. Cognitive correlates of UNC5C, ENC1, and TMEM106B SNPs.
(DOCX)

S5 Table. Cognitive correlates of the loci not included in step 2 and 3.
(DOCX)

Acknowledgments

We thank the study participants.

Author Contributions

Conceptualization: CCW HSY LY LBC WGH RAS JAS DAB PLDJ.

Formal analysis: CCW HSY HUK DF PLDJ.

Funding acquisition: JAS DAB PLDJ.

Methodology: CCW HSY LY LBC RJD JY HUK ARM KA WGH JAS DAB PLDJ.

Resources: KA JAS DAB PLDJ.
Supervision: JAS DAB PLDJ.
Visualization: CCW HSY PLDJ.
Writing – original draft: CCW HSY PLDJ.
Writing – review & editing: CCW HSY LY LBC RJD JY HUK DF ARM KA WGH RAS JAS DAB PLDJ.

References
1. Boyle PA, Wilson RS, Yu L, Barr AM, Honer WG, Schneider JA, et al. Much of late life cognitive decline is not due to common neurodegenerative pathologies. Ann Neurol. 2013; 74(3):478–83. https://doi.org/10.1002/ana.23964 PMID: 23798485
2. Yu L, Boyle PA, Segawa E, Leurgans S, Schneider JA, Wilson RS, et al. Residual decline in cognition after adjustment for common neuropathologic conditions. Neuropsychology. 2015; 29(3):335–43. https://doi.org/10.1037/neu0000159 PMID: 25495832
3. Boyle PA, Yu L, Wilson RS, Schneider JA, Bennett DA. Relation of neuropathology with cognitive decline among older persons without dementia. Front Aging Neurosci. 2013; 5:50. https://doi.org/10.3389/fnagi.2013.00050 PMID: 24058343
4. Negash S, Wilson RS, Leurgans SE, Wolk DA, Schneider JA, Buchman AS, et al. Resilient brain aging: characterization of discordance between Alzheimer’s disease pathology and cognition. Curr Alzheimer Res. 2013; 10(8):844–51. PMID: 23919768
5. Wilson RS, Barnes LL, Mendes de Leon CF, Aggarwal NT, Schneider JS, Bach J, et al. Depressive symptoms, cognitive decline, and risk of AD in older persons. Neurology. 2002; 59(3):364–70. PMID: 12177369
6. Yu L, Dawe RJ, Buchman AS, Boyle PA, Schneider JA, Arfanakis K, et al. Ex vivo MRI transverse relaxation in community based older persons with and without Alzheimer’s dementia. Behav Brain Res. 2016; 322:233–40. https://doi.org/10.1016/j.bbr.2016.09.001 PMID: 27596378
7. Dawe RJ, Yu L, Leurgans SE, Schneider JA, Buchman AS, Arfanakis K, et al. Postmortem MRI: a novel window into the neurobiology of late life cognitive decline. Neurobiology Aging. 2016; 45:169–77. https://doi.org/10.1016/j.neurobiolaging.2016.05.023 PMID: 27459937
8. Katzman R, Terry R, DeTeresa R, Brown T, Davies P, Fuld P, et al. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol. 1988; 23(2):138–44. https://doi.org/10.1002/ana.410230206 PMID: 2897823
9. Wilson RS, Nag S, Boyle PA, Hizel LP, Yu L, Buchman AS, et al. Neural reserve, neuronal density in the locus ceruleus, and cognitive decline. Neurology. 2013; 80(13):1202–8. https://doi.org/10.1212/WNL.0b013e3182897103 PMID: 23486878
10. Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012; 11(11):1006–12. https://doi.org/10.1016/S1474-4422(12)70191-6 PMID: 23079557
11. Perez-Nieves BG, Stein TD, Tai HC, Dole-icardo O, Scotton TC, Barroeta-Espar I, et al. Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain. 2013; 136(PT8):2510–26. https://doi.org/10.1093/brain/awt171 PMID: 23824488
12. Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA. 1997; 277(10):813–7. PMID: 9052711
13. Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007; 69(24):2197–204. https://doi.org/10.1212/01.wnl.0000271090.28148.24 PMID: 17568013
14. Arnold SE, Louneva N, Cao K, Wang LS, Han LY, Wolk DA, et al. Cellular, synaptic, and biochemical features of resilient cognition in Alzheimer’s disease. Neurobiology Aging. 2013; 34(1):157–68. https://doi.org/10.1016/j.neurobiolaging.2012.03.004 PMID: 22554416
15. Honer WG, Barr AM, Sawada K, Thornton AE, Morris MC, Leurgans SE, et al. Cognitive reserve, presynaptic proteins and dementia in the elderly. Transl Psychiatry. 2012; 2:e114. https://doi.org/10.1038/tp.2012.38 PMID: 22832958
16. Allen GI, Amoroso N, Anghel C, Balagurusamy V, Bare CJ, Beaton D, et al. Crowdsourced estimation of cognitive decline and resilience in Alzheimer’s disease. Alzheimers Dement. 2016; 12(6):645–53. https://doi.org/10.1016/j.jalz.2016.02.006 PMID: 27079753
17. Bennett DA, Schneider JA, Arvanitakis Z, Wilson RS. Overview and findings from the religious orders study. Curr Alzheimer Res. 2012; 9(6):628–45. PMID: 22471860
18. Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle PA, Wilson RS. Overview and findings from the Rush Memory and Aging Project. Curr Alzheimer Res. 2012; 9(6):646–63. PMID: 22471867

19. De Jager PL, Srivastava G, Lunnø K, Burgess J, Schalkwyk LC, Yu L, et al. Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci. 2014; 17(9):1156–63. https://doi.org/10.1038/nn.3786 PMID: 25129075

20. Bennett DA, Wilson RS, Schneider JA, Evans DA, Beckett LA, Aggarwal NT, et al. Natural history of mild cognitive impairment in older persons. Neurology. 2002; 59(2):198–205. PMID: 12136057

21. Replique JM, Chan G, White CC, Raj T, Winn PA, Evans DA, et al. A TREM1 variant alters the accumulation of Alzheimer-related amyloid pathology. Ann Neurol. 2015; 77(3):469–77. https://doi.org/10.1002/ana.24337 PMID: 25545807

22. Bennett DA, Yu L, De Jager PL. Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer’s disease. Biochem Pharmacol. 2014; 88(4):617–30. https://doi.org/10.1016/j.bcp.2014.01.037 PMID: 24508835

23. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81(3):559–75. https://doi.org/10.1086/519795 PMID: 17701901

24. De Jager PL, Shulman JM, Chibnik LB, Keenan BT, Raj T, Wilson RS, et al. A genome-wide scan for common variants affecting the rate of age-related cognitive decline. Neurobiol Aging. 2012; 33(5):1017. e1–15. https://doi.org/10.1016/j.neurobiolaging.2011.09.033 PMID: 22054870

25. Shulman JM, Chen K, Keenan BT, Chibnik LB, Fleisher A, Thiyyagura P, et al. Genetic susceptibility for Alzheimer disease neuritic plaque pathology. JAMA Neurol. 2013; 70(9):1150–7. https://doi.org/10.1001/jamaneurol.2013.2815 PMID: 23836404

26. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006; 38(8):904–9. https://doi.org/10.1038/ng1847 PMID: 16862161

27. Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet. 2009; 84(2):210–23. https://doi.org/10.1016/j.ajhg.2009.01.005 PMID: 19200528

28. Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol Aging. 1997; 18(4 Suppl):S1–2. PMID: 9330978

29. Arvanitakis Z, Leurgans SE, Wang Z, Wilson RS, Bennett DA, Schneider JA. Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann Neurol. 2011; 69(2):320–7. https://doi.org/10.1002/ana.22112 PMID: 21387377

30. Nelson PT, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011; 42(9):2672–713. https://doi.org/10.1161/STR.0b013e3182299494 PMID: 21778438

31. Arvanitakis Z, Leurgans SE, Barnes LL, Bennett DA, Schneider JA. Microinfarct pathology, dementia, and cognitive systems. Stroke. 2011; 42(3):722–7. https://doi.org/10.1161/STROKEAHA.110.595082 PMID: 21212395

32. Boyle PA, Yu L, Nag S, Leurgans S, Wilson RS, Bennett DA, et al. Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology. 2015; 85(22):1930–6. https://doi.org/10.1212/WNL.0000000000002175 PMID: 26537052

33. Yip AG, McKee AC, Green RC, Wells J, Young H, Cupples LA, et al. APOE, vascular pathology, and the AD brain. Neurology. 2005; 65(2):259–65. https://doi.org/10.1212/01.wnl.0000168863.49053.4d PMID: 16043796

34. Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology. 2006; 66(12):1837–44. https://doi.org/10.1212/01.wnl.0000196688.47116.e6 PMID: 16801647

35. Yu L, De Jager PL, Yang J, Trojanowski QJ, Bennett DA, Schneider JA. The TMEM106B locus and TDP-43 pathology in older persons without FTLD. Neurology. 2015; 84(9):927–34. https://doi.org/10.1212/WNL.000000000001313 PMID: 25653292
38. Wilson RS, Yu L, Trojanowski JQ, Chen EY, Boyle PA, Bennett DA, et al. TDP-43 pathology, cognitive decline, and dementia in old age. JAMA Neurol. 2013; 70(11):1418–24. https://doi.org/10.1001/jamaneurol.2013.3961 PMID: 24080705

39. Chan G, White CC, Winn PA, Cimpean M, Replogle JM, Glick LR, et al. CD33 modulates TREM2: convergence of Alzheimer loci. Nat Neurosci. 2015; 18(11):1556–8. https://doi.org/10.1038/nn.4126 PMID: 26414614

40. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007; 8(1):118–27. https://doi.org/10.1093/biostatistics/kx037 PMID: 16632515

41. Ramos-Miguel A, Hercher C, Beasley CL, Barr AM, Bayer TA, Falkai P, et al. Loss of Munc18-1 long splice variant in GABAergic terminals is associated with cognitive decline and increased risk of dementia in a community sample. Mol Neurodegener. 2015; 10:65. https://doi.org/10.1186/s13024-015-0061-4 PMID: 26628003

42. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012; 40(Database issue):D930–4. https://doi.org/10.1093/nar/gkr917 PMID: 22064851

43. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods. 2012; 9(3):215–6. https://doi.org/10.1038/nmeth.1906 PMID: 22373907

44. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015; 518(7539):317–30. https://doi.org/10.1038/nature14248 PMID: 25693563

45. Stranger BE, Montgomery SB, Dimas AS, Parts L, Stegle O, Ingle CE, et al. Patterns of cis regulatory variation in diverse human populations. PLoS Genet. 2012; 8(4):e1002639. https://doi.org/10.1371/journal.pgen.1002639 PMID: 22532805

46. Yu L, Boyle PA, Schneider JA, Bennett DA. Disentangling the effects of age and APOE on neuropathology and late life cognitive decline. Neurobiol Aging. 2014; 35(4):819–26. https://doi.org/10.1016/j.neurobiolaging.2013.10.074 PMID: 24199961

47. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013; 45(12):1452–8. https://doi.org/10.1038/ng.2802 PMID: 24162737

48. Davies G, Marioni RE, Liewald DC, Hill WD, Hagaenaars SP, Harris SE, et al. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N = 112,151). Mol Psychiatry. 2016; 21(6):758–67. https://doi.org/10.1038/mp.2016.45 PMID: 27046643

49. Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB. The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature. 1997; 386(6627):838–42. https://doi.org/10.1038/386838a0 PMID: 9126743
57. Leonardo ED, Hinck L, Masu M, Keino-Masu K, Ackerman SL, Tessier-Lavigne M. Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature. 1997; 386(6627):833–8. https://doi.org/10.1038/386833a0 PMID: 9126742

58. Bernet A, Mazelin L, Coissieux MM, Gadot N, Ackerman SL, Scoazec JY, et al. Inactivation of the UNC5C Netrin-1 receptor is associated with tumor progression in colorectal malignancies. Gastroenterology. 2007; 133(6):1840–8. https://doi.org/10.1053/j.gastro.2007.08.009 PMID: 17967459

59. Wetzel-smith MK, Hunkapiller J, Bhangale TR, Srinivasan K, Maloney JA, Atwal JK, et al. A rare mutation in UNC5C predisposes to late-onset Alzheimer's disease and increases neuronal cell death. Nat Med. 2014; 20:1452–7. https://doi.org/10.1038/nm.3736 PMID: 25419706

60. Hernandez MC, Andres-Barquin PJ, Martinez S, Bullone A, Rubenstein JL, Israel MA. ENC-1: a novel mammalian kelch-related gene specifically expressed in the nervous system encodes an actin-binding protein. J Neurosci. 1997; 17(9):3038–51. PMID: 9096139

61. Kim TA, Lim J, Ota S, Raja S, Rogers R, Rivnay B, et al. NRP/B, a novel nuclear matrix protein, associates with p110(RB) and is involved in neuronal differentiation. J Cell Biol. 1998; 141(3):553–66. PMID: 9966959

62. Lei H, Li J, Zhao Z, Liu L. Inhibition of ectodermal-neural cortex 1 protects neural cells from apoptosis induced by hypoxia and hypoglycemia. J Mol Neurosci. 2016; 59(1):126–34. https://doi.org/10.1007/s12031-016-0742-7 PMID: 27039095

63. Lee H, Ahn HH, Lee W, Oh Y, Choi H, Shim SM, et al. ENC1 modulates the aggregation and neurotoxicity of mutant huntingtin through p62 under ER stress. Mol Neurobiol. 2015; 53:6620–34. https://doi.org/10.1007/s12035-015-9557-8 PMID: 26637326

64. Vass R, Ashbridge E, Geser F, Hu WT, Grossman M, Clay-Falcone D, et al. Risk genotypes at TMEM106B are associated with cognitive impairment in amyotrophic lateral sclerosis. Acta Neuropathol. 2011; 121(3):373–80. https://doi.org/10.1007/s00401-010-0782-y PMID: 21104415