Competing sexual-asexual
generic names of Pezizomycetes
and recommendations for use

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Healy, Roseanne, Donald H. Pfister, Amy Y. Rossman, Ludmila Marvanová, and Karen Hansen. 2016. “Competing sexual-asexual generic names of Pezizomycetes and recommendations for use.” IMA Fungus 7 (2): 285-288. doi:10.5598/imafungus.2016.07.02.08. http://dx.doi.org/10.5598/imafungus.2016.07.02.08.

Published Version
doi:10.5598/imafungus.2016.07.02.08

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:29739159

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Competing sexual-asexual generic names of *Pezizomycetes* and recommendations for use

Roseanne Healy¹, Donald H. Pfister², Amy Y. Rossman³, Ludmila Marvanová⁴, and Karen Hansen⁵

¹Department of Plant Pathology, University of Florida, Gainesville, Florida 32607, USA
²Harvard University Herbaria, Harvard University, Cambridge, Massachusetts 02138, USA
³Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97330, USA; corresponding author e-mail: amyedianer@yahoo.com
⁴Czech Collection of Microorganisms, Institute of Experimental Biology, Masaryk University, 625 00 Brno, Czech Republic
⁵Swedish Museum of Natural History, Department of Botany, P.O. Box 50007, SE-104 05 Stockholm, Sweden

Abstract: Following the change that eliminated dual naming of sexual and asexual morphs of fungi, generic names of *Pezizomycetes* have been evaluated to determine which of the competing names should be recommended for use. Evaluation is based on congruence of type species to determine if the names are congeneric and which name is most commonly cited as well as priority. In the *Pezizomycetes* six pairs of generic names were determined to compete. In all cases the older name, representing the sexual morph, is recommended for use, specifically Caloscypha rather than Geniculodendron, Desmazerella rather than Verticicladium, Miladina rather than Actinosperella, Morchella rather than Costantinella, Sarcoscypha rather than Moiliardomyces, and Trichophaea rather than Dichobotrys.

Key words: Ascomycota
dual nomenclature
Pezizomycetes
pleomorphic fungi
protected lists
taxonomy

ARTICLE INFO
Submitted: 8 November 2016; Accepted: 15 November 2016; Published: 23 November 2016

INTRODUCTION

With the changes in the *International Code of Nomenclature for algae, fungi, and plants* (ICN; McNeill et al. 2012), one species of fungus may no longer be referred to by more than one scientific name. The practice of giving separate scientific names to sexual and asexual morphs (dual nomenclature) of the same species is no longer acceptable (Art. 59). As for all organisms governed by the ICN, the correct scientific name for fungal species is determined primarily by the principle of priority of publication (Art. 11). However, in some cases it is expedient to use a later generic or specific name as the type species of a genus or species. Here we consider six competing generic names with pleomorphic type species in the *Pezizomycetes*. In all cases the generic name recommended here represents the older sexual morph as summarized in Table 1, thus no action is needed such as protection of a name or approval of the Nomenclature Committee for Fungi (NCF). No new combinations of species names are needed. Below is the detailed rationale for these recommendations.

In the following notes, (A) = a name typified by an asexual morph, and (S) = a name typified by a sexual morph.

GENERIC NAMES RECOMMENDED FOR USE IN PEZIZOMYCETES

Use Caloscypha Boud. 1885 (S) rather than Geniculodendron G.A. Salt 1974 (A)

The type species of *Caloscypha*, *C. fulgens*, is associated with conifers in the Northern Hemisphere (Pfister et al. 2013) and develops in early spring after the snow melts. One additional name, *C. musiva* (Fr.) Boud 1907, is currently accepted in *Caloscypha* but its identity is unclear (Pfister et al. 2013). The monotypic genus *Geniculodendron* based on *G. pyriforme*...
was described as a psychrophilic fungus pathogenic on seeds of various conifers (Salt 1974). Paden et al. (1978) proved that G. pyriforme is the asexual morph of C. fulgens through comparing cultural characteristics, conidiophore and conidial morphology, and growth-temperature and pathogenicity studies. *Geniculosodendron* has been cited in pathogenicity studies alongside *Caloscypha* (e.g. Phillips & Burdekin 1992, Schröder et al. 2002), thus both names are used. Since *Caloscypha* is the earliest name, is more widely used, and has priority, it is recommended for use over *Geniculosodendron*.

Use Desmaziereella Lib. 1829 (S) rather than Verticicladium Preuss 1851 (A)

Verticicladium trifidum, type of *Verticicladium*, was linked to *Desmaziereella acicola*, type of *Desmaziereella*, by Hughes (1951) using physical association and morphological methods, thus these generic names are synonyms. *Verticicladium trifidum*, the asexual morph, has long been associated with decaying pine needles (Mitchell et al. 1978). The asexual morph was most recently determined to consist of eight geographical lineages using ITS rDNA sequences, but morphology could not effectively distinguish most lineages (Martinović et al. 2016). These authors suggested that the sexual morph should be studied to determine whether there are multiple lineages (cryptic species) within the current concept of *Verticicladium*. It was suggested that the strains studied by Hughes (1951) belong to a European clade (Martinović et al. 2016). While RPB2 and 28S sequences of a sexual morph identified as *D. acicola* matched sequences of the asexual form in the Martinović et al. (2016) study, no ITS sequence of the sexual morph is available, and the types have not been sequenced. Historical confusion over the delimitation of *Verticicladium* is evidenced by the placement of many former species into other genera by Subramanian (1956), Hughes (1958), and Gams & Holubova-Jechova (1976). It is apparent that this genus requires a deeper study using molecular phylogenetics and comparative morphology of sexual morphs. We recommend the use of *Desmaziereella* over *Verticicladium* because *Desmaziereella* has priority. This was the recommendation of Martinović et al. (2016).

Use Miladina Svrček 1972 (S) rather than Actinospora Descals et al. 1999 (A)

The monotypic genus *Miladina* is based on *Peziza lecithina*. The orange ascomata of *Miladina* occur mostly on partly submerged woody substrates in freshwater streams. An aquatic hyphomycete *Actinospora megalospora* was described in the illegitimate monotypic fungus genus *Actinospora* (Ingold 1952; non Actinospora Turtzanimov 1835, Ranunculaceae) and later renamed *Actinospora megalospora*, type of the monotypic *Actinospora* (Descals et al. 1999). The connection between *Miladina lecithina* and *Actinospora megalospora* was originally ascertained by monoascosporic isolates from *M. lecithina* yielding a *megalospora* conidia after submerging pieces of the cultures in water (Descals & Webster 1978). Thus these two generic names are synonyms. Apothecia of *M. lecithina* from nature were sequenced; this species was placed in the well-supported *Scutellinia/Miladina* lineage of *Pyronemataceae* (Hansen et al. 2013). Isolates from the asexual morph were not sequenced. The generic names of both morphs are used more or less equally. *Miladina* has priority and is recommended for use rather than *Actinospora*.

Use Morchella Dill. ex Pers. 1794 (S) rather than Costantinella Matr. 1892 (A)

The type species of *Morchella*, *M. esculenta*, has long been known to be associated with an asexual morph described as *Costantinella cristata* (Mollardi 1904), a name regarded as *C. terrestris* by Hughes (1958). The linkage between *Morchella* and *Costantinella* was confirmed by later authors through cultural and molecular studies (Paden 1972, Volk & Leonard 1990, Carris et al. 2015). Since the type species of *Costantinella*,

Table 1. Generic names recommended and competing for use in the Pezizomycetes with citations and type species.

Recommended generic name, citation and type species	Suppressed generic name, citation, and type species
Caloscypha Boud. in Bull. Soc. Mycol. France 1: 103.1885. Type: C. fulgens (Pers.) Boud. 1885, basionym: *Peziza fulgens* Pers. 1822.	*Geniculosodendron* G.A. Salt in Trans. Brit. Mycol. Soc. 63: 339. 1974. Type: G. pyriforme G.A. Salt 1974, now regarded as *Caloscypha fulgens* (Pers.) Boud. 1885.
Desmaziereella Lib. in Ann. Sci. Nat., Bot., sér. 1 17: 83. 1829. Type: D. acicola Lib. 1829.	*Verticicladium* Preuss in Linnaea 24: 127. 1851. Type: V. trifidum Preuss 1851, now regarded as *Desmaziereella acicola* Lib. 1829.
Miladina Svrček in Česká Mykol 26: 213. 1972. Type: M. lecithina (Cooke) Svrček (1972), basionym: *Peziza lecithina* Cooke (1876).	*Actinospora* Descals et al. in Canad. J. Bot. 76: 1647. 1999. Type: A. megalospora (Ingold) Descals et al. 1999, basionym: *Actinospora megalospora* Ingold 1952, now regarded as *Miladina lecithina* (Cooke) Svrček 1972.
Morchella Dill. ex Pers. in Neues Mag. Bot. 1: 116. 1794. Type: M. esculenta (L.) Pers. 1797.	*Costantinella* Matr., Rech. Developp. Mucedin: 97. 1892. Type: C. cristata Matr. 1892, now regarded as *Morchella esculenta* (L.) Pers. 1797.
Sarcoscypha (Fr.) Boud. in Bull. Soc. Mycol. France 1: 103. 1885, basionym: *Peziza* trib. Sarcoscyphae Fr. 1822. Type: S. coccinea (Gray) Boud. 1885, basionym: *Macrocyphus coccineus* Gray 1821.	*Mollariomyces* Paden in Canad. J. Bot. 62: 21. 1984. Type: M. coccineus Paden 1984, now regarded as *Sarcoscypha austriaca* (Sacc.) Boud. 1907.
Trichophaea Boud. in Bull. Soc. Mycol. France 1: 105. 1885. Type: T. woolhopea (Cooke & W. Phillips) Boud. 1885.	*Dichobotrys* Hennebert in Persoonia 7: 193. 1973. Type: D. abundans Hennebert 1973, now regarded as *Trichophaea abundans* (P. Karst.) Boud. 1907.
C. cristata, refers to the asexual morph of the type species of Morchella, M. esculenta, these generic names are synonyms. The genus Morchella includes at least 65 phylogenetically distinct species, many of which are highly prized edibles, and commercially valued in the morel-rich countries of China, Europe, Turkey, and the USA (Du et al. 2015, Richard et al. 2015), with significant advances toward their cultivation (e.g. Ower et al. 1986, 1988, Masaphy 2010). A costantinella-like asexual morph was determined with molecular methods to also occur in the related genera Disciotis Bourd. 1885, Gyromitra Fr. 1849, and Hydnotrya Berk. & Broome 1846 (Carris et al. 2015). Costantinella is less frequently used than Morchella and includes only seven species. There is no question that the generic name Morchella has priority and is widely used, thus we recommended it for adoption.

Use Sarcoscypha (Fr.) Bourd. 1885 (S) rather than Molliardiomyces Paden 1984 (A)
The asexual morph of Sarcoscypha coccinea, type of Sarcoscypha, was originally described as Molliardiomyces coccineus, type of Molliardiomyces, suggesting that these generic names are synonyms. Later, as part of a monographic account of Sarcoscypha in North America, Harrington (1990) concluded that the sexual morph of M. coccineus is S. austriaca while the asexual morph of S. coccinea is M. eucoccineus F.A. Harrington 1990. Nevertheless, the type species of Sarcoscypha and Molliardiomyces are congeneric and the generic names are synonyms. Ten names have been placed in Molliardiomyces, however, these have been linked to species throughout the family Sarcoscyphaceae. Molliardiomyces domingensis Paden 1984 is considered the asexual morph of Phillipsia domingensis Berk. 1881 while M. cupressinus Paden 1984 was described as the asexual morph of Pitypha cupressina (Batsch) Fockel 1870 (Paden 1984). Most of the names in Molliardiomyces were established by Paden (1984) using cultural methods, and thus are later names than those of their sexual morphs. Sarcoscypha is widely used, includes over thirty species, and has priority, thus the use of Sarcoscypha is recommended.

Use Trichophae Boud. 1885 (S) rather than Dichobotrys Hennebert 1973 (A)
The genus Dichobotrys was established for D. abundans, and considered to be the asexual morph of Trichophae abundans. In the same study, three additional species of Dichobotrys were connected to described species of Trichophae: D. brunnea Hennebert 1973 was linked to Trichophae brunnea (Alb. & Schwein.) L.R. Batra 1963, D. parvispora Hennebert 1973 was linked to T. saccata (H.C. Evans) Korf 1973, and D. sessilispora Hennebert 1973 was linked to T. minuta (Cain) Korf (Hennebert 1973). The linkage between sexual and asexual morphs was determined by the production of both morphs in the same culture (Hennebert 1973). Hansen et al. (2013) showed through a multi-clone phylogenetic analysis that the type species of Trichophae, T. woolhopeia, was congeneric with T. abundans. Trichophae has been demonstrated to be paraphyletic, but the majority of sequenced species, including T. brunnea, T. minuta, and T. saccata, belong to the clade with T. woolhopeia (Perry et al. 2007, Hansen et al. 2013). Neither Trichophae hybrida nor T. hemisphaerioides, which are only distantly related to the core clade of Trichophae, are known to produce an anamorph. While Trichophae includes 46 species, Dichobotrys with four species has not been widely used. Given its widespread use and priority, the use of Trichophae is recommended.

REFERENCES
Carris LM, Peever TL, McCotter SW (2015) Mitospore stages of Disciotis, Gyromitra and Morchella in the inland Pacific Northwest USA. Mycologia 107: 729–744.
Descals E, Marvanová L, Webster J (1999) New taxa and combinations of aquatic hyphomycetes. Canadian Journal of Botany 76: 1647–1659.
Descals E, Webster J (1978) Miladina lecithina (Pezizales), the ascigerous state of Actinospora megalospora. Transactions of the British Mycological Society 70: 466–472.
Du X-H, Zhao Q, Yang ZL (2015) A review on research advances, issues, and perspectives of morels. Mycology 6:78–85.
Gams W, Holubová-Jechová V (1976) Chloridium and some other dematiaceous hyphomycetes growing on decaying wood. Studies in Mycology 13: 1–99.
Hansen K, Pfister DH (2007) (2006). Systematics of the Pezizomycetes-the opeculcate discomycetes. Mycologia 98: 1029–1040.
Hansen K, Perry BA, Dranginis AW, Pfister DH (2013) A phylogeny of the highly diverse cup-fungus family Pyrenomataceae (Pezizomycetes, Ascomycota) clarifies relationships and evolution of selected life history traits. Molecular Phylogenetics and Evolution 67: 311–335.
Harrington FA (1990) Sarcoscypha in North America (Pezizales, Sarcoscyphaceae). Mycotaxon 38: 417–458.
Hennebert G (1973) Botrytis and botrytis-like fungi. Persoonia 7: 183–204.
Hughes SJ (1951) Studies on microfungi IX. Calcarisporium, Verticicadium and Hansfordia (gen. nov.). Mycological Papers 43: 3–25.
Hughes SJ (1958) Revisiones hyphomycetum aliquid cum appendice de nominibus rejecindis. Canadian Journal of Botany 36: 727–836.
Inglod CT (1952) Actinospora megalospora n. sp., an aquatic hyphomycete. Transactions of the British Mycological Society 35: 66–70.
Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby’s Dictionary of the Fungi. 10th edn. Wallingford: CAB International.
Landvik S, Egger KN, Schumacher T (1997) Towards a subordinal classification of the Pezizales (Ascomycota): phylogenetic analyses of SSU rDNA sequences. Nordic Journal of Botany 17: 403–418.
Lumbsch HT, Huhndorf SM (2010) Myconet 14. Outline of the Ascomycota – 2009. Fieldiana, Life Earth Sci. 1: 1–42.
Martinović T, Koukol O, Hirose D (2016) Distinct phylogeographic structure recognized within Desmazierella aciola. Mycologia 108: 20–30.
Masaphy S (2010) Biotechnology of morel mushrooms: successful fruiting body formation and development in a soilless system. Biotechnology Letters 32: 1523–1527.
Healy et al. (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). [Regnum vegetabile no. 154.] Königstein: Koeltz Scientific Books.

Mitchell CP, Millar CS, Minter DW (1978). Studies on decomposition of Scots pine needles. Transactions of the British Mycological Society 71: 343–348.

Molliard M (1904) Forme conidienne et sclerotes de Morchella esculenta Pers. Revue Generale de Botanique 16: 209–218.

Ower R, Mills G, Malachowski J (1986) Cultivation of Morchella. US Patent No 4,594,809.

Ower R, Mills G, Malachowski J (1988) Cultivation of Morchella. US Patent No 4,757,640.

Padden JW (1972) Imperfect states and the taxonomy of the Pezizales. Persoonia 6: 405–414.

Padden JW (1984) A new genus of hyphomycetes with teleomorphs in the Sarcoscyphaceae (Pezizales, Sarcoscyphineae). Canadian Journal of Botany 62: 211–218.

Padden JW (1986) On the anamorph of Phillipsia cristata. Mycotaxon 25:165–174.

Padden JW, Sutherland JR, Woods TAD (1978) Caloscypha fulgens (Ascomycetidae, Pezizales): the perfect state of the conifer seed pathogen Geniculodendron pyriforme (Deuteromycotina, Hyphomycetes) Canadian Journal of Botany 56: 2375–2379.

Perry BA, Hansen K, Pfister DH (2007) A phylogenetic overview of the family Pyronemataceae (Ascomycota, Pezizales). Mycological Research 111: 549–571.

Pfister DH, Slater C, Hansen K (2008) Chorioactidaceae: a new family in the Pezizales (Ascomycota) with four genera. Mycological Research 112: 513–27.

Macleod K, Barrie FF, Demoulin V, Greuter W, et al. (eds) (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). [Regnum vegetabile no. 154.] Königstein: Koeltz Scientific Books.

McNeill J, Barrie FF, Demoulin V, Greuter W, et al. (eds) (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). [Regnum vegetabile no. 154.] Königstein: Koeltz Scientific Books.

McNeil J, Barrie FF, Demoulin V, Greuter W, et al. (eds) (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). [Regnum vegetabile no. 154.] Königstein: Koeltz Scientific Books.

McNeil J, Barrie FF, Demoulin V, Greuter W, et al. (eds) (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). [Regnum vegetabile no. 154.] Königstein: Koeltz Scientific Books.

McNeil J, Barrie FF, Demoulin V, Greuter W, et al. (eds) (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). [Regnum vegetabile no. 154.] Königstein: Koeltz Scientific Books.