Pneumocystis jirovecii pneumonia in COVID-19: an overlooked clinical entity—Response to “Pneumocystis pneumonia risk among viral acute respiratory distress syndrome related or not to COVID 19”

Antonio Riccardo Buonomo, Giulio Viceconte* and Ivan Gentile

To the editor,

We read with great interest the article published in Critical Care by Razazi et al. reporting no cases of Pneumocystis jirovecii pneumonia (PJP) among intubated patients with acute respiratory distress syndrome (ARDS) secondary to COVID-19 (C-ARDS) [1]. The authors compared these results with a historical cohort of non-COVID-19 ARDS (NC-ARDS). They showed a higher incidence of proven PJP and PCR positivity (without a diagnosis of PJP) in respiratory samples in NC-ARDS than in C-ARDS (0.05% and 13% vs 0% and 0%, respectively) [1].

However, patients in study by Razazi et al. are enrolled during the first period of pandemic, when dexamethasone was not strongly recommended and, surprisingly, they found a more profound lymphopenia in NC-ARDS. Moreover, in NC-ARDS group 82% of enrolled patients were immunocompromised compared to 13% of C-ARDS [1].

Conversely, we have published 5 cases of proven PJP in immunocompetent hosts in late phase of COVID-19 disease [2, 3]. According to EORTC/MSGERC diagnostic criteria, we observed that the use of steroids was the most frequent host factor that predispose to PJP [4].

Moreover, Razazi et al. showed that the two proven PJP diagnosis in NC-ARDS cohort had Beta-D Glucan assay (BDG) > 80, while in our experience we documented negative BDG in all the proven cases.

In the end, we think that the absence of PJP cases in C-ARDS cohort may have been influenced by the phase of COVID-19 clinical course and lower dosage of steroids administrated, while the higher prevalence of PJP diagnosis and qPCR positivity in NC-ARDS cohort should be led back to the high prevalence of immunocompromised patients enrolled.

Therefore, since either lymphopenia or steroidal treatment are strongly associated with the risk of PJP development, further studies are needed to detect any other risk factor for developing PJP in COVID-19 and to design any potential prophylactic strategies. Nevertheless, it is noteworthy that BDG assay has a high negative predictive value in HIV positive patients for PJP diagnosis, while it is less clear the real power of this test in other settings such as immunocompetent patients and COVID-19.

In conclusion, the pathogenesis of PJP in late COVID-19 and the role of BDG and of PCR in predicting development of PJP must be further investigated, and PJP should be taken into account in differential diagnosis of respiratory relapse in late COVID-19 by obtaining invasive samples (bronchoalveolar lavage), since BDG seems to have a low negative predictive value in this setting.
Altogether, these data confirm that even when steroid therapy was the standard of care, Pneumocystis pneumonia risk is very low among patients with COVID-19 related ARDS even in immunocompromised patients.

Acknowledgements
Not applicable.

Authors’ contributions
All the authors have equally contributed.

Funding
No funding sources have been used.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Authors have no competing interests to disclose.

Received: 9 November 2021 Accepted: 10 November 2021
Published online: 06 December 2021

References
1. Razazi K, Arrestier R, Haudebourg AF, Botterel F, Mekontso DA. Pneumocystis pneumonia risk among viral acute respiratory distress syndrome related or not to COVID 19. Crit Care. 2021;25(1):1–4. https://doi.org/10.1186/s13054-021-03767-3.
2. Gentile I, Viceconte G, Lanzardo A, Zotta I, Zappulo E, Pinchera B, et al. Pneumocystis jiroveci pneumonia in non-HIV patients recovering from COVID-19: a single-center experience. Int J Environ Res Public Health. 2021;18:11590.
3. Viceconte G, Buonomo AR, Lanzardo A, Pinchera B, Zappulo E, Scotto R, et al. Pneumocystis jiroveci pneumonia in an immunocompetent patient recovered from COVID-19. Infect Dis. 2021;53(5):382–5. https://doi.org/10.1080/23744235.2021.1890331.
4. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21.
5. Yale SH, Limper AH. Pneumocystis carinii pneumonia in patients without acquired immunodeficiency syndrome: associated illness and prior corticosteroid therapy. Mayo Clin Proc. 1996;71:5–13.
6. Donnelly JP, Chen SC, Kauffman CA, Steinbach WJ, Baddley JW, Verweij PE, et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis. 2019;71:1367–76.
7. Del Corpo O, Butler-Laporte G, Sheppard DC, Cheng MP, McDonald EG, Lee TC. Diagnostic accuracy of serum (1–3)-β-D-glucan for Pneumocystis jiroveci pneumonia. a systematic review and meta-analysis. Clin Microbiol Infect. 2020;26:1137–43.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.