Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation

1. Multi-Instance Modulation Block (MIMB) Code

In this section, we describe the code of MIMB in PyTorch. The code in Listing 1 outlines the details of functions F_{sq}, F_{ex}, and F_{em}. F_{sq} is a simple global average pool and F_{ex} and F_{em} are two-layered neural networks. MIMB can be incorporated in any existing feature extraction backbone, with a relatively simple (<15 lines) code change.

```python
class MIMB(nn.Module):
    def __init__(self, num_channels=c, reduce=r):
        super(MIMB, self).__init__()
        self.F_sqn = nn.AdaptiveAvgPool2d(1)
        self.F_ex = nn.Sequential(
            nn.Linear(c, c // r, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(c // r, c, bias=False),
            nn.Sigmoid()
        )
        self.F_em = nn.Sequential(
            nn.Linear(2, c // r),
            nn.BatchNorm1d(c // r),
            nn.ReLU(inplace=True),
            nn.Linear(c // r, c),
            nn.Sigmoid()
        )
    return

    def forward(self, x, lambda_):
        b, c, _, _ = x.size()
        y = self.F_sqn(x).view(b, c)
        y = self.F_ex(y).view(b, c, 1, 1)
        z = self.F_em(lambda_).view(b, c, 1, 1)
        out = x * y.expand_as(x) + z.expand_as(x)
        return out
```

Listing 1: Code for MIMB.

2. Implementation Details

We merge all the instances from $\lambda = 0$ to $N-1$ and then apply oks-nms. During the merger, we discount the confidence of the instance $\lambda = i$ by γ^i. As the primary instance ($\lambda = 0$) is always centralized in the input, this confidence discounting avoids suppression of a high resolution primary predictions by a low resolution $\lambda > 0$ prediction. We use $\gamma = 0.9$ in all our experiments.
MIPNet-HRNet: Figure 1 shows the architecture details of HRNet [15]. For simplicity, we only show backbone HRNet-W32 at input size 256×192, other HRNet backbones follow similar pipeline. Figure 2 shows the architecture of MIPNet, where multiple MIMBs are inserted at various stages.
Figure 3: Illustration of SimpleBaseline architecture. The blue blocks represent the four blocks in the encoder of SimpleBaseline.

Figure 4: Illustration of MIPNet with SimpleBaseline architecture. We insert 2 MIMBs into the encoder after Block 3 and Block 4.

MIPNet-SimpleBaseline: Figure 3 shows the architecture details of SimpleBaseline [16]. Figure 4 shows the architecture of MIPNet, where multiple MIMBs are inserted in the encoder of the pose estimator.

3. **Diminishing Returns with $N = 3, 4$**

We observed a small improvement in AP using $N = 3$ and $N = 4$ on top of $N = 2$ respectively on the datasets when evaluated using ground-truth bounding boxes. This is consistent with the fact that most datasets have very few examples with three or more ground-truth pose instances per bounding box (Refer data statistics in the paper). Note, on the more occluded OCHuman dataset, increasing N gives better performance.

Inference	COCO	CrowdPose	OCHuman
HRNet	78.1	72.8	65.0
MIPNet, $N = 2$	**78.8**	73.7	74.1
MIPNet, $N = 3$	78.4	**73.9**	74.3
MIPNet, $N = 4$	78.6	73.7	**74.7**

Table 1: Performance of MIPNet on val sets using ground truth bounding boxes with increasing N. We use the backbone W48 with image resolution 384×288, and compare with the same HRNet configuration. By default, HRNet only predicts a single instance.
4. Additional Results on COCO, CrowdPose and OCHuman

4.1. Additional results on COCO

Table 2 shows additional metrics for comparison between MIPNet ($N = 2$) and various baseline architectures on COCO val dataset using ground truth bounding boxes for evaluation. We also report GFLOPs for each model. Note that for all baseline evaluations for HRNet and SimpleBaseline, we follow the same protocol as outlined in the respective papers [15, 16].

Table 3 shows additional metrics for comparison between MIPNet and HRNet on COCO val and test datasets using Faster-RCNN bounding boxes, provided by authors of [15] for evaluation. For HRNet, numbers are reported from their paper [15] (some metrics are not provided).

4.2. Additional results on CrowdPose

Table 5 compares MIPNet to HRNet for various widths and image resolutions on CrowdPose val dataset using ground truth bounding boxes. Similarly, Table 6 compares MIPNet to HRNet on CrowdPose val and test datasets using Faster-RCNN bounding boxes [14]. Note that, commensurate with increasing percentage of occlusions in the dataset, MIPNet consistently does better than HRNet in most metrics on both datasets.

4.3. Additional results on OCHuman

Table 7 shows our detailed evaluations on the OCHuman val dataset using ground truth bounding boxes. As can be seen, MIPNet outperforms HRNet and SimpleBaseline on all metrics, with a maximum improvement of 10.5 AP over SimpleBaseline ($R = 50, 384 \times 288$) and 9.1 AP over HRNet ($H = 48, 384 \times 288$).

Similarly, Table 8 shows detailed results on the OCHuman val and test datasets using Faster-RCNN bounding boxes. MIPNet achieves a **state-of-the-art** 42.5 AP across both top-down and bottom-up pose estimation networks, to the best of our knowledge. We show a 4.2 AP improvement over HRNet on val dataset and a 5.3 AP improvement over HRNet on test dataset in this case.

4.4. Robustness to Bounding Box Confidence

Table 9 illustrates the number of Faster-RCNN bounding boxes as a function of minimum bounding box confidence. Notice that a majority of all available bounding boxes (min. confidence = 0) have confidence < 0.4.

Method	Arch	Input Size	GFLOPS	AP	AP$^+$	AP$^{++}$	AP$^{+++}$	AR	AR$^+$	AR$^{++}$	AR$^{+++}$	AR*
SBL	R-50	256 × 192	8.90	72.4	91.5	80.4	69.7	76.5	73.0	83.4	73.4	80.4
MIPNet	R-50	256 × 192	16.3	73.3 (+0.9)	93.3	81.2	70.6	77.6	80.4	73.4	81.2	
SBL	R-101	256 × 192	12.4	73.4	92.6	81.4	70.7	77.5	83.4	94.4	84.4	
MIPNet	R-101	256 × 192	23.1	74.1 (+0.7)	93.3	82.3	71.3	78.6	75.4	84.4	84.1	82.3
SBL	R-152	256 × 192	29.1	74.3	92.6	82.5	71.6	78.7	74.8	82.4	82.0	
MIPNet	R-152	256 × 192	15.7	74.8 (+0.5)	93.3	82.4	71.7	79.4	78.2	94.6	84.9	
SBL	R-50	384 × 288	20.2	74.1	92.6	80.5	70.5	79.6	76.9	83.4	85.7	82.6
MIPNet	R-50	384 × 288	36.7	75.3 (+1.2)	93.4	82.4	72.0	80.4	79.4	84.6	87.4	83.8
SBL	R-101	384 × 288	27.8	75.5	92.5	82.6	72.4	80.8	78.4	93.6	84.5	74.9
MIPNet	R-101	384 × 288	51.9	76.0 (+0.5)	93.4	83.5	72.6	81.1	79.1	94.8	85.6	85.5
SBL	R-152	384 × 288	35.5	76.6	92.6	83.6	73.7	81.3	79.3	94.0	85.3	75.9
MIPNet	R-152	384 × 288	65.4	77.0 (+0.4)	93.5	84.3	73.7	81.9	80.0	94.9	86.1	75.4
HRNet	H-32	256 × 192	7.10	76.5	93.5	83.7	73.9	80.8	79.3	94.5	85.8	76.2
MIPNet	H-32	256 × 192	9.80	77.6 (+1.1)	94.4	85.3	74.7	81.9	80.6	95.6	87.1	77.3
HRNet	H-48	256 × 192	14.6	77.1	93.6	84.7	74.1	81.9	79.9	94.5	86.3	76.5
MIPNet	H-48	256 × 192	20.7	77.6 (+0.5)	94.4	85.4	74.6	82.1	80.6	95.6	87.0	77.3
HRNet	H-32	384 × 288	16.0	77.7	93.6	84.7	74.8	82.5	80.4	94.4	86.4	77.0
MIPNet	H-32	384 × 288	22.1	78.5 (+0.8)	94.4	85.7	75.6	83.0	81.4	95.6	87.4	80.0
HRNet	H-48	384 × 288	32.9	78.1	93.6	84.9	75.3	83.1	80.9	94.7	86.7	77.5
MIPNet	H-48	384 × 288	46.5	78.8 (+0.7)	94.4	85.7	75.5	83.7	81.6	95.5	87.5	78.0

Table 2: Additional metrics for comparison between MIPNet and various architectures on COCO val set using ground-truth bounding boxes for evaluation.
Method	Arch	Input Size	AP	AP₅₀	AP₇₅	AR^{easy}	AR^{med}	AR^{hard}	AR^{easy}	AR^{med}	AR^{hard}
HRNet	H-48	384 × 288	76.3	90.8	82.9	72.3	83.4	81.2	-	-	-
MIPNet	H-48	384 × 288	76.3 (+0.0)	90.6	83.0	72.1	83.3	81.4	94.2	87.6	76.1
OpenPose	-	-	61.8	84.9	67.5	57.1	68.2	66.5	-	-	-
AE	[10]	-	65.5	86.8	72.3	60.6	72.6	70.2	-	-	-
PersonLab	[11]	-	68.7	89.0	75.4	64.1	75.5	75.4	-	-	-
MultiPoseNet	[9]	-	69.6	86.3	76.6	65.0	76.3	73.5	-	-	-
HRNet	H-48	384 × 288	75.5	92.5	83.3	71.9	81.5	80.5	-	-	-
MIPNet	H-48	384 × 288	75.7 (+0.2)	95.5	87.4	76.1	88.2	-	-	-	-
Test	Bottom-Up										
OpenPose	-	-	61.8	84.9	67.5	57.1	68.2	66.5	-	-	-
AE	[10]	-	65.5	86.8	72.3	60.6	72.6	70.2	-	-	-
PersonLab	[11]	-	68.7	89.0	75.4	64.1	75.5	75.4	-	-	-
MultiPoseNet	[9]	-	69.6	86.3	76.6	65.0	76.3	73.5	-	-	-
HRNet	H-48	384 × 288	75.5	92.5	83.3	71.9	81.5	80.5	-	-	-
MIPNet	H-48	384 × 288	75.7 (+0.2)	95.5	87.4	76.1	88.2	-	-	-	-

Table 3: Additional metrics for comparison between MIPNet and various architectures on COCO ^{val} and ^{test} set using Faster-RCNN bounding boxes for evaluation.

Method	Arch	Input Size	AP	AP₅₀	AP₇₅
HRNet	H-32	256 × 192	76.5	93.5	83.7
MIPNet	H-32	256 × 192	77.4 ± 0.185	94.42 ± 0.039	85.32 ± 0.025
HRNet	H-48	77.1	93.6	84.7	
MIPNet	H-48	77.84 ± 0.162	94.44 ± 0.079	85.4 ± 0.012	

Table 4: We report mean ± std-dev of MIPNet over five runs on the COCO ^{val} set with ground-truth bounding boxes using 256 × 192 input resolution. H-@ stands for HRNet-W@ backbone.

We compare the performance of MIPNet to HRNet as a function of varying minimum confidence on OCHuman ^{test} dataset in Fig. 6 and ^{val} dataset in Fig. 5 (also shown in the paper). MIPNet is much more stable w.r.t bounding box confidence thresholding, as compared to baseline networks like HRNet. We note that while MIPNet AP drops from 42.5 to 41.4 (1.1 AP drop) on ^{test} set at minimum confidence of 0.9, HRNet drops by more than 6 AP. This performance is consistent with the performance on the ^{val} dataset (Fig. 4 in the paper).

5. Individual Instance Performance

It is interesting to compare the performance of each individual instances predicted by MIPNet in isolation. Since λ = 0 correspond to the primary instance (centered on the person), only using the primary instance for inference is expected to give better results compared to only using λ = 1 instance during inference. In addition, we also expect λ = 0 instance to provide similar performance as baseline top-down network, if used in isolation. Table 10 shows the performance of each
Table 6: Additional metrics for comparison between MIPNet and various architectures on CrowdPose val and test set using Faster-RCNN and YOLO-v3 bounding boxes for evaluation.

Method	Arch	Input Size	AP	AP_{dd}	AP_{do}	AP_{ex}	AR	AR_{dd}	AR_{do}	AR_{ex}	AP_{all}	
SimpleBaseline	R-50	256 × 192	56.3	76.1	61.2	66.4	56.3	61.0	78.0	65.9	70.0	
MIPNet	R-50	256 × 192	64.4 (+8.1)	86.0	70.4	66.8	64.6	72.3	91.5	78.5	71.4	72.3
SimpleBaseline	R-101	256 × 192	60.5	77.2	66.6	68.3	60.5	64.7	79.6	70.1	72.9	64.7
MIPNet	R-101	256 × 192	68.2 (+7.7)	87.4	75.1	67.0	68.2	75.5	92.9	82.1	74.3	75.5
SimpleBaseline	R-152	256 × 192	62.4	78.3	68.1	68.3	62.4	66.5	80.2	71.8	74.3	66.5
MIPNet	R-152	256 × 192	70.3 (+7.9)	88.6	77.9	66.9	70.2	77.0	93.0	84.1	72.9	77.0
SimpleBaseline	R-50	384 × 288	55.8	74.8	60.4	64.7	55.9	60.7	78.0	65.2	71.4	60.7
MIPNet	R-50	384 × 288	66.3 (+10.5)	87.5	72.2	66.0	66.3	74.1	92.7	80.3	71.4	74.1
SimpleBaseline	R-101	384 × 288	61.6	77.2	66.6	62.1	61.6	65.8	79.4	70.5	72.9	65.8
MIPNet	R-101	384 × 288	70.3 (+8.7)	88.4	77.1	64.1	70.4	77.7	93.4	84.0	72.9	77.7
SimpleBaseline	R-152	384 × 288	64.2	78.3	69.1	66.5	64.2	68.1	80.4	73.0	74.3	68.1
MIPNet	R-152	384 × 288	72.4 (+8.2)	89.5	79.5	67.7	72.5	79.6	94.1	86.2	71.4	79.6
HRNet	H-32	256 × 192	63.1	79.4	69.0	64.2	63.1	67.3	81.9	72.4	68.6	67.3
MIPNet	H-32	256 × 192	72.5 (+9.4)	89.2	79.4	65.1	72.6	79.1	93.6	85.2	71.4	79.1
HRNet	H-48	256 × 192	64.5	79.4	70.1	65.1	64.5	68.5	81.6	73.7	68.6	68.5
MIPNet	H-48	256 × 192	72.2 (+7.7)	89.5	78.7	66.5	72.3	79.2	94.2	85.4	70.0	79.2
HRNet	H-32	384 × 288	63.7	78.4	69.0	64.3	63.7	67.6	80.8	72.6	70.0	67.6
MIPNet	H-32	384 × 288	72.7 (+9.0)	89.6	79.6	66.5	72.7	79.7	94.3	86.1	70.0	79.7
HRNet	H-48	384 × 288	65.0	78.4	70.3	68.4	65.0	68.8	80.6	73.4	71.4	68.8
MIPNet	H-48	384 × 288	74.1 (+9.1)	89.7	80.1	68.4	74.1	81.0	94.4	87.0	72.9	81.0

Table 7: Additional metrics for comparison between MIPNet and various architectures on OCHuman val set using ground-truth bounding boxes for evaluation.

individual instance mode of MIPNet with HRNet-W48 backbone at input size 384 × 288 on various datasets, using ground truth bounding boxes. Note that when using only a single hypothesis from MIPNet for inference, performance of primary instance (λ = 0) is similar to HRNet. When using multiple instances during inference, we get an improvement of 8.4 AP (65.7 to 74.1 AP) on the OCHuman dataset.

6. Ablation: MIMB

In this section, we study the effect of ablation for MIMB. As outlined in the paper, MIMB consists of three operations squeeze F_{sq}, excite F_{ex} and embed F_{em}. Of the three operations, the embed operation F_{em} consumes the λ parameter that we
Method	Arch	Input Size	AP	AP^{val}	AP^{test}	AR	AR^{val}	AR^{test}	AR^M	AR^R		
HRNet	H-48	384 × 288	37.8	50.6	40.5	3.8	40.4	69.9	89.0	73.9	67.1	69.9
MIPNet	H-48	384 × 288	42.0(4.2)	51.2	45.6	3.2	43.5	82.5	96.7	88.5	71.4	82.5

Method	Arch	Input Size	AP	AP^{val}	AP^{test}	AR	AR^{val}	AR^{test}	AR^M	AR^R	
AE [10]	Hourglass	-	29.5	-	-	-	-	-	-	-	-
AE-multiscale [10]	Hourglass	-	32.8	-	-	-	-	-	-	-	-
HGG [8]	Hourglass	-	34.8	-	-	-	-	-	-	-	-
HGG-multiscale [8]	Hourglass	-	36.0	-	-	-	-	-	-	-	-

Method	Arch	Input Size	AP	AP^{val}	AP^{test}	AR	AR^{val}	AR^{test}	AR^M	AR^R		
MaskRCNN [5]	R-101	-	20.2	33.2	24.5	-	-	-	-	-	-	
SimpleBaseline	R-101	-	24.1	37.4	26.8	-	-	-	-	-	-	
AlphaPose+ [13]	R-101	-	27.5	40.8	29.9	-	-	-	-	-	-	
OPEC-Net [13]	R-101	-	29.1	41.3	31.4	-	-	-	-	-	-	
MIPNet	R-101	384 × 288	35.0	44.1	36.1	-	35.1	74.5	88.6	79.1	-	72.8

Method	Arch	Input Size	AP	AP^{val}	AP^{test}	AR	AR^{val}	AR^{test}	AR^M	AR^R		
HRNet	H-48	384 × 288	37.2	46.7	40.0	-	39.8	78.0	93.5	83.7	-	78.0
MIPNet (SIP, λ = 1)	R-101	384 × 288	42.5(5.3)	51.8	46.3	-	44.1	83.0	97.1	89.2	-	83.0
MIPNet (SIP, λ = 0)	R-101	384 × 288	78.3	72.7	65.7	-	-	-	-	-	-	-
MIPNet (MIP)	R-101	384 × 288	78.8	73.7	74.1	-	-	-	-	-	-	-

Table 8: Additional metrics for comparison between MIPNet and various architectures on OCHuman val and test set using Faster-RCNN and YOLO-v3 bounding boxes for evaluation.

Min. BB Confid.	OCHuman	
	val	test
0.0	30637	26992
0.1	22247	19704
0.2	16273	14613
0.3	13603	12216
0.4	11944	10767
0.5	10654	9645
0.6	9626	8697
0.7	8699	7880
0.8	7768	7018
0.9	6644	5989
0.99	4416	3883

Table 9: Number of Faster-RCNN bounding boxes greater than a given confidence score.

Inference	COCO	CrowdPose	OCHuman
HRNet	78.1	72.8	65.0
MIPNet (SIP, λ = 1)	55.8	42.2	41.4
MIPNet (SIP, λ = 0)	78.3	72.7	65.7
MIPNet (MIP)	78.8	73.7	74.1

Table 10: Performance of each individual instances of MIPNet on val sets using ground truth bounding boxes. We use the backbone W48 with image resolution 384 × 288, and compare with the same HRNet configuration. By default, HRNet only predicts a single instance.

pass as additional input to MIMB. In Tab. 11, we show the effect of only using the embed block by disabling F_{sq} and F_{ex}, in the first row for both COCO and OCHuman val datasets. Note that these numbers are lower than corresponding experiments that use F_{sq} and F_{ex} operations, by 0.3 AP for COCO (Tab. 2, last row in paper) and 3.3 AP (Tab. 4, last row in paper) for OCHuman val datasets. This confirms that all three operations contribute to MIMB, and therefore to MIPNet. We further study the effect of varying the intermediate linear layer within F_{sq} and F_{ex}, which is controlled by the reduce parameter [6].
in Listing 1. While all the results reported in the paper use the default value of $\text{reduce}=4$, we show that $\text{reduce}=2$ and $\text{reduce}=1$ show comparable results.

7. OCPose Dataset

For completeness, we also benchmark MIPNet on another occlusion specific OCPose dataset [13]. OCPose is a larger dataset than OCHuman with pose annotations of occluded humans. It contains $9K$ images and 18000 persons labeled with 12 keypoints. The number of examples with occlusion IoU > 0.5 is 78% for OCPose [13]. Each image in the dataset, is annotated with exactly two person keypoints. Further, both the persons have the same bounding box, this is in contrast to tight fitting bounding box annotations in the datasets like COCO, Crowdpose and OCHuman. This results in inflated occlusion levels for the OCPose dataset in comparison to the OCHuman dataset reported in [13] (refer its Table 1).

Table 12 reports the MIPNet’s results on the OCPose dataset [13] with custom train:test splits as the OPEC-Net [13] splits are not released. All the models are trained on the COCO dataset and evaluated on the test set of OCPose. We evaluate
Table 11: We illustrate different ablations of MIMB. For MIPNet with backbone W48 on resolution 384×288, we train models with varying capacity for squeeze F_{sq} and excite F_{ex} operations. When both operations are disabled, and only embed operation F_{embed} is used within MIMB, we get sub-optimal results on both COCO val (0.3 AP drop) and OCHuman val (3.6 AP drop) datasets (first row of each dataset). When squeeze and excite operations are employed, we get a good performance boost, especially on the OCHuman val dataset. All results in the paper employ reduce=4 (bold).

Method	Arch	Ablation	AP	AP50	AP75	APM	APL	AR	AR50	AR75	ARM	ARL
MIPNet	H-48	only embed	78.5	94.4	85.5	75.3	83.5	81.4	95.8	87.5	77.8	86.7
MIPNet	H-48	reduce=1	78.8	94.4	85.8	75.5	83.6	81.5	95.4	87.8	78.0	86.6
MIPNet	H-48	reduce=2	78.8	94.4	85.6	75.8	83.6	81.7	95.7	87.7	78.3	86.8
MIPNet	H-48	reduce=4	78.8	94.4	85.7	75.5	83.7	81.6	95.5	87.5	78.0	86.8
MIPNet	H-48	only embed	70.8	89.8	77.5	65.7	70.9	77.9	94.2	84.2	68.6	77.9
MIPNet	H-48	reduce=1	74.4	90.7	80.9	66.9	74.4	81.2	95.1	87.2	70.0	81.2
MIPNet	H-48	reduce=2	74.0	90.1	80.3	63.6	74.0	80.7	94.5	86.7	68.6	80.7
MIPNet	H-48	reduce=4	74.1	89.7	80.1	68.4	74.1	81.0	94.4	87.0	72.9	81.0

Table 12: Results on the OCPose val set. All the evaluations use the HRNet-W48 backbone at 348×288 image resolution. We provide both evaluations, using the relaxed gt bounding boxes provided by the OCPose and the tight fitting gt bounding box. The tight fitting bounding box is using the keypoint annotations.

Method	AP	AP50	AP75	APM	APL	AR	AR50	AR75	ARM	ARL
HRNet	34.2	48.2	36.7	36.6	34.1	36.8	48.9	39.5	38.3	36.8
MIPNet ($\lambda = 0$)	34.6	49.2	36.7	37.0	34.6	37.3	49.2	39.9	36.7	37.3
MIPNet ($\lambda = 1$)	23.8	34.9	25.2	30.6	24.0	28.6	39.7	30.0	45.0	28.6
MIPNet	**49.7 (+15.5)**	**72.3**	**53.0**	**59.4**	**49.7**	**56.4**	**74.8**	**60.1**	**70.0**	**56.4**

Method	AP	AP50	AP75	APM	APL	AR	AR50	AR75	ARM	ARL
HRNet	47.7	74.6	50.1	35.8	47.7	53.0	77.0	56.4	41.3	53.1
MIPNet ($\lambda = 0$)	46.6	73.2	49.1	33.7	46.9	52.5	76.2	55.8	37.0	52.6
MIPNet ($\lambda = 1$)	26.5	51.2	23.9	10.7	26.9	36.4	61.4	35.7	32.3	36.4
MIPNet	**49.3 (+1.6)**	**77.3**	**51.9**	**33.6**	**49.5**	**56.9**	**82.8**	**60.7**	**37.3**	**57.1**

8. Qualitative Results

Figure 7 and Figure 8 shows additional results on the OCHuman dataset, comparing MIPNet to HRNet. Note that in all of these cases, HRNet faces the problem of having highly overlapping bounding boxes because of the spatial proximity of humans in these images. Consequently, HRNet picks one dominant person and detects key-points on the same person within both bounding box instances. In contrast, MIPNet can clearly identify the correct set of key-points and associate them to the correct human(s) in each example. We especially want to point attention to the cases where people are dancing in tandem, or tackling each other while playing sports. Such situations produce extremely complicated occlusions. However, MIPNet is able to successfully attribute the correct key-points to each human in the input bounding boxes in such situations, highlighting its usefulness in occlusion scenarios.
Figure 7: Qualitative results of MIPNet. Each image (left to right) shows input bounding boxes, HRNet predictions and MIPNet predictions.
Figure 8: Qualitative results of MIPNet. Each image (left to right) shows input bounding boxes, HRNet predictions and MIPNet predictions.
References

[1] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Openpose: realtime multi-person 2d pose estimation using part affinity fields. arXiv preprint arXiv:1812.08008, 2018. 5, 6

[2] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang Yu, and Jian Sun. Cascaded pyramid network for multi-person pose estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7103–7112, 2018. 5

[3] Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi, Thomas S Huang, and Lei Zhang. Higherhrnet: Scale-aware representation learning for bottom-up human pose estimation. arXiv preprint arXiv:1908.10357, 2019. 6

[4] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu. Rmpe: Regional multi-person pose estimation. In Proceedings of the IEEE International Conference on Computer Vision, pages 2334–2343, 2017. 5

[5] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B Girshick. Mask r-cnn. arXiv preprint arXiv:1706.03762 (2017). 6

[6] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7132–7141, 2018. 7

[7] Junjie Huang, Zheng Zhu, Feng Guo, and Guan Huang. The devil is in the details: Delving into unbiased data processing for human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5700–5709, 2020. 6

[8] Sheng Jin, Wentao Liu, Enze Xie, Wenhai Wang, Chen Qian, Wanli Ouyang, and Ping Luo. Differentiable hierarchical graph grouping for multi-person pose estimation. In European Conference on Computer Vision, pages 718–734. Springer, 2020. 7

[9] Muhammed Kocabas, Salih Karagoz, and Emre Akbas. Multiposenet: Fast multi-person pose estimation using pose residual network. In Proceedings of the European conference on computer vision (ECCV), pages 417–433, 2018. 5

[10] Alejandro Newell, Zhiao Huang, and Jia Deng. Associative embedding: End-to-end learning for joint detection and grouping. In Advances in neural information processing systems, pages 2277–2287, 2017. 5, 7

[11] George Papandreou, Tyler Zhu, Liang-Chieh Chen, Spyros Gidaris, Jonathan Tompson, and Kevin Murphy. Personlab: Person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model. In Proceedings of the European Conference on Computer Vision (ECCV), pages 269–286, 2018. 5

[12] George Papandreou, Tyler Zhu, Nori Kanazawa, Alexander Toshev, Jonathan Tompson, Chris Bregler, and Kevin Murphy. Towards accurate multi-person pose estimation in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4903–4911, 2017. 5

[13] Lingteng Qiu, Xuanye Zhang, Yanran Li, Guanbin Li, Xiaojun Wu, Zixiang Xiong, Xiaoguang Han, and Shuguang Cui. Peeking into occluded joints: A novel framework for crowd pose estimation. arXiv preprint arXiv:2003.10506, 2020. 6, 7, 8

[14] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems, pages 91–99, 2015. 4

[15] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution representation learning for human pose estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5693–5703, 2019. 2, 4

[16] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and tracking. In Proceedings of the European conference on computer vision (ECCV), pages 466–481, 2018. 3, 4, 6