Abstract Background Structural brain imaging is assumed to be a key method to elucidate the underlying neuropathology of bipolar disorder. However, magnetic resonance imaging studies using region of interest analysis and voxel-based morphometry (VBM) revealed quite inconsistent findings. Hence, there is no clear evidence so far for core regions of cortical or subcortical structural abnormalities in bipolar disorder. The aim of this study was to investigate grey and white matter volumes in a large sample of patients with bipolar I disorder. Methods Thirty-five patients with bipolar I disorder and 32 healthy controls matched with respect to gender, handedness and education participated in the study. MRI scanning was performed and an optimized VBM analysis was conducted. Results We could not observe any significant differences of grey or white matter volumes between patients with bipolar disorder and healthy control subjects. Additional analyses did not reveal significant correlations between grey or white matter volume with number of manic or depressive episodes, duration of illness, existence of psychotic symptoms, and treatment with lithium or antipsychotics. Conclusions With this VBM study we were not able to identify core regions of structural abnormalities in bipolar disorder.

Key words grey matter volume · white matter volume · bipolar disorder · VBM · MRI

Introduction

The neurobiological basis of bipolar disorder is still not fully understood. Structural and functional imaging is assumed to be a clue method to elucidate the underlying neuropathology of this disorder. In the last decade conventional magnetic resonance imaging (MRI) studies using region of interest analyses revealed quite inconsistent findings in bipolar disorder [13, 22, 24]. A meta-analytical review indicated merely increased lateral ventricles but no cortical or subcortical differences compared to healthy control subjects [13]. Another recent review summarizes structural and functional neuro-imaging studies [24]. Based on the reviewed studies these authors postulate several functional neuronal networks that modulate mood states and might be causal for bipolar affective disorder. These networks comprise the prefrontal cortex, ventral striatum, thalamus, and the associated limbic regions (amygdala and midline cerebellum). The authors postulate that in bipolar disorder a diminished prefrontal modulation of subcortical and temporal structures within the anterior limbic network results in dysregulation of mood.

The included studies of these reviews used region of interest analysis of brain structures by manually traced regions of interest in predefined brain regions. This method is prone to measurement error and investigator bias. Moreover it is time consuming, and focusing on hypothesized brain regions might lead to overlooking of possible findings in unexpected regions. Voxel-based morphometry (VBM) is a new method which allows the investigation of structural
MRI of the brain that is free from hypotheses and user-bias [2]. VBM is a fully automated whole brain image analysis technique that involves the voxel-wise comparison of segmented grey and white matter between at least two groups of subjects. Therefore, this method does not require manual tracing of regions. In bipolar disorder eight studies investigated structural abnormalities using VBM. Three of them [5, 9, 11] used traditional VBM which results in data of grey and white matter density, whereas the other five [1, 4, 10, 14, 19] used the optimized VBM protocol [7] which allows the determination of grey and white matter volumes.

Investigations of grey matter in bipolar disorder revealed quite inconsistent findings. While two studies reported decreased grey matter density in different cortical regions involving frontal [11], temporal and parietal cortex [5], a further study [9] could not observe any grey matter density changes at usual significance level. One of the five studies investigating grey matter volume could not observe any volume differences between patients with bipolar disorder and healthy control subjects [4] and another reported decreased grey matter volume only in the prefrontal cortex but not in other brain regions [14]. The further three studies reported varying grey matter volume increases or decreases in several brain regions involving frontal regions—in particular anterior cingulate cortex—and temporal and parietal regions but could never replicate prior findings in the same sub-region [1, 10, 19].

Analyses of white matter abnormalities in bipolar disorder are rare. Bruno et al. [4] could not observe any white matter volume differences between patients with bipolar disorder and healthy control subjects, while Nugent et al. [19] found increased white matter volumes in the left orbitofrontal cortex between medicated bipolar patients and controls, and in the left posterior cingulate and medial parietal cortex interface between unmedicated bipolar patients and controls. A study on white matter density observed a reduction in the left anterior internal capsule in patients with familial bipolar disorder [14]. Two different studies investigated the influence of the genetic risk of bipolar disorder on structural brain abnormalities. The first study revealed an association of the genetic risk for bipolar disorder with white matter deficits in the anterior corpus callosum and bilateral frontal, left temporoparietal, and right parietal regions [12]. The second study could not observe any white matter deficits which related to an increased genetic liability to bipolar disorder [15].

In summary, the results of studies on grey and white matter abnormalities in patients with bipolar disorder are highly inconsistent and core regions of cortical or subcortical structural abnormality in bipolar disorder are far from evident.

The aim of this study was to re-investigate abnormalities of grey and white matter volumes in a large sample of euthymic patient with bipolar I disorder. Despite the reported inconsistencies we hypothesized based on postulated neuronal networks that volume abnormality could be expected in the prefrontal cortex, especially in the anterior cingulate cortex, and in subcortical regions (ventral striatum, thalamus and amygdala).

Methods

Subjects

Thirty-five euthymic patients with bipolar I disorder and 32 healthy controls matched with respect to gender, handedness and education participated in the study. The mean age in this sample differed significantly between groups (43.3 ± 12.5 in patients vs. 33.7 ± 11.8 in controls; Table 1). Therefore we used age as a covariate in the further analyses of this sample. In this sample the age of onset was 28.4 (±8.9) years, duration of illness was 14.4 (±10.9) years and patients exhibited on average 3.9 (±5.6) previous manic and 4.8 (±5.6) previous depressive episodes. The scores on the MADRS [17] (4.7 ± 3.4) and YMRS [30] (2.5 ± 2.8) scales indicated patients’ euthymic mood state. Twelve patients received lithium, 27 other mood-stabilizers, 3 first and 15 second generation antipsychotics (Table 1). All patients were on stable medication at the time of imaging.

Written informed consent was obtained from all subjects and the study was approved by the local ethical committee. Patients with bipolar disorder were consecutively recruited from the outpatient unit of the Department of Psychiatry and Psychotherapy of the Saarland University Hospital between December 2003 and August 2005. The diagnosis of bipolar I disorder was confirmed by using the German version of the Structural Clinical Interview for DSM-IV [29]. Other axis-I disorders in particular alcohol dependence and medical illnesses that might have influence on brain structure were excluded. The healthy control subjects exhibited no past or present psychiatric, neurological or medical disorder and had no positive family history of psychiatric disorders. They were recruited from the general population via advertising in newspapers.

Imaging

MRI scanning was performed on a 1.5 T Magnetom (Siemens, Erlangen). A T1-weighted, MPRAGE sequence (TE = 4.42 ms, TR

Table 1 Demographical and clinical data of subjects

	Bipolar patients	Healthy controls	P
Number	35	32	
Gender (F/M)	17/18	20/12	
Handedness (R/L/B)	37/2/2	25/5/2	
Age (years ± SD)	43.31 ± 12.48	33.71 ± 11.81	<0.01
Education proband (years ± SD)	13.83 ± 2.60	14.59 ± 2.75	0.25
Education father (years ± SD)	12.94 ± 2.57	13.87 ± 2.85	0.20
Education mother (years ± SD)	10.91 ± 2.22	12.26 ± 2.41	0.02
Age of onset (±SD)	28.38 ± 8.91		
Duration of illness (±SD)	14.38 ± 10.93		
Previous manic episodes (±SD)	3.92 ± 5.64		
Previous depressive episodes (±SD)	4.83 ± 5.61		
MADRS (±SD)	4.71 ± 3.41	2.54 ± 2.79	
Lithium	12		
Mood-stabilizer	27		
First generation antipsychotic	3		
Second generation antipsychotic	15		

F both, F female, L left, MADRS Montgomery Asberg depression rating scale, M male, R right, SD standard deviation, YMRS Young mania rating scale
extension software ``cg_create_template'' [6]. This step involved
extension software. We applied an optimized method of VBM [3] using SPM
UK). For analysis we used VBM, a fully automatic technique for
software (Wellcome Department of Cognitive Neurology, London,
the anterior–posterior commissural axis and the origin was set to
position. Regional volumes were preserved while corrections for
global differences in whole brain volume were made. The normal-
ized images of all subjects were averaged and smoothed with a
Gaussian kernel of 8 mm full-width at half-maximum (FWHM) and
then used as a new template which reduced scanner- and popula-
tion-specific bias. In the second normalization step using the
software ``cg_optimized'' [6] we locally deformed each image to the
new template using a non-linear spatial transformation. This ac-
counts for the remaining shape differences between the images and
the template and improves the overlap of corresponding anatom-
ical structures. Finally, using a modified mixture model cluster
analysis, normalized images were corrected for non-uniformities in
signal intensity and partitioned into grey and white matter, CSF
and background [6]. The following smoothing procedure involved
in the VBM process is necessary to obtain a local weighted average of
the surrounding pixels. The width of the Gaussian smoothing
kernel determines the scale at which morphological changes are
most sensitively detected [6]. In VBM studies investigating patients
with bipolar disorder Gaussian kernels with a FWHM of 8 [5, 9]
or 12 mm [1, 4, 10, 14, 19] were used. Therefore, we decided to smooth
the resulting grey and white images with Gaussian kernels of both 8
and 12 mm FWHM for parallel analyses to consider different
dimensions of possible morphological abnormalities.

Statistical analysis

Processed images were analysed within SPM2. An ANOVA model
with age as a covariate was designed for analysing the sample. Four
contrasts were calculated, testing for a positive or negative correla-
tion of grey or white matter volume with the parameter of interest. In
addition we performed multiple regression analyses testing for a
positive or negative correlation of grey and white matter volume with
number of manic or depressive episodes, duration of illness, exis-
tence of psychotic symptoms, or treatment with lithium or antipsy-
chotics. In all these additional analyses age was used as a covariate.
For regions with an a priori hypothesis as laid out in the introduction
significance was set at a P value of 0.001, not corrected for multiple
comparisons, as suggested by several authors [19, 28]. An additional
extent threshold of 200 contiguous voxels had to be met, excluding
smaller clusters possibly arising by chance. For volumetric abnor-
malities found outside of expected regions, a correction for multiple
comparisons was required, and significance was only assumed at a
corrected P value of 0.05. Furthermore, we performed analyses with
small volume correction to investigate regions which showed
abnormal volume in prior studies. For small volume correction we
used a 5 mm sphere around the Talairach coordinates originally
reported in these studies [1, 5, 9, 10, 19].

Results

The statistical analyses revealed neither significant in-
creases nor decreases of grey or white matter volume
between patients with bipolar disorder and healthy
control subjects using a Gaussian kernel of FWHM = 8
or 12 mm. Analyses with lower level of significance did
not reveal further results. Analyses with small volume
correction in previously reported regions of abnormal
volume did not reveal significant changes.

The additional analyses revealed no significant
correlation between grey or white matter volume and
number of manic or depressive episodes, duration of
illness, existence of psychotic symptoms, and treat-
ment with lithium or antipsychotics.

Discussion

In this study we could not observe any significant
differences of grey or white matter volumes between
euthymic patients with bipolar I disorder and healthy
control subjects. Firstly we looked at regions with an
a priori hypothesis as laid out in the introduction
(prefrontal cortex including anterior cingulate cortex,
amygdala, ventral striatum and thalamus) with a
significance level of $P = 0.001$ and a threshold of 200
contiguous voxels. Secondly we conducted analyses
with small volume correction around the Talairach
coordinates of all originally reported volume abnor-
malities in previous studies [1, 5, 9, 10, 19]. Neither
the first nor the second analysis revealed significant
volume abnormalities of grey or white matter in our
samples.

Our results are in accordance with three studies [4,
10, 14] apart from the finding of decreased grey matter
volume in the prefrontal lobe in the latter. Our results
are in contrast to three studies using the optimized
VBM protocol [1, 10, 19] and two using traditional
VBM [5, 11]. In these studies decreased grey matter
density or decreased and increased grey matter volume
in multiple cortical regions were reported. For the most
part these differences were observed in frontal cortical
regions involving prefrontal and anterior cingulate
cortices. But no study could replicate prior findings in
exactly the same localization according to the Talairach
coordinates. Moreover, some reported abnormalities are
contradictory, for example increased and decreased
volumes of the anterior cingulate gyrus. Taken together
the reported grey matter volume or density abnor-
malities in bipolar disorder are highly inconsistent. We
hypothesize that this inconsistency might be caused by
differences in the investigated samples with regard to
sample size, clinical outcome, type of bipolar disorder,
age range and number of previous manic or depressive
episodes.

Three studies investigated small samples with 16
[9] or 11 patients [5, 10]. Significant results in such
small samples might be false positive findings. In the
present study the sample consisted of 33 patients with
bipolar disorder and 30 healthy control subjects.
Since we used a rather conservative level of signifi-
cance as compared to previous VBM studies [1, 5, 19]
this might have led to a false negative finding. To
resolve this problem, we lowered the significance level
as suggested by several authors [1, 5, 19, 28] but again
we could not find any abnormalities. Nonetheless our
sample might be too small to detect hypothesized
abnormalities, but to our knowledge there is no study
that investigates many more patients.

Previous VBM studies in bipolar disorder also
differed from each other with respect to the clinical
characteristics of the samples. One study [5] investigat-
gated patients with poor outcome whereas the other
studies did not mention the outcome of the patients.
In the present study we analysed only patients with
good outcome that are euthymic and on stable med-
ication.

The majority of studies assessed patients with
bipolar I disorder [1, 5, 11, 14] but three included also
patients with bipolar II disorder into analysis [4, 10,
19]. Lochhead et al. [10] investigated seven patients
with bipolar I and four patients with bipolar II dis-
order, Bruno et al. [4] included 28 patients with
bipolar I and 11 patients with bipolar II disorder and
Nugent et al. [19] investigated seven bipolar I and 29
bipolar II patients. In our study we investigated only
patients with bipolar I disorder. Clinical differences
between patients like recurrent episodes of hypoma-
nia or mania might be caused by different structural
brain abnormalities or might lead to different struc-
tural changes. Therefore, investigations of patient
samples that are heterogeneous with respect to clini-
cal criteria might produce inconsistent results.

The age range of the subjects in most studies was
between 18 and 65 years. In most studies matching
was done with regard to mean age and not pair-wise
to single subjects. Because the effect of age on brain
structure may be non-linear and may also vary be-
tween individuals, matching by mean values alone
might not be able to fully control for age effects. We
analysed a large sample in which patients with bipolar
disorder were significantly older than the controls.
When using age as a covariate, we could not observe
any changes of grey or white matter volumes.

A meta-analysis of MRI studies revealed that hip-
 pocampal volume is reduced in patients with repeated
periods of major depressive disorder [27]. Patients
with bipolar disorder did not show a reduction of
hippocampal volume in that study. Nevertheless, this
finding suggests a possible influence of number of
affective episodes on brain structure. Therefore, this
criterion should be taken into account in discussions
of study results of brain volume abnormalities. The
majority of previous VBM studies in bipolar disorder
did not report number of episodes [4, 5, 9, 14, 19].
Two studies investigated patients with multiple
depressive and manic episodes [10, 11]. One study so
far [1] and the present study investigated patients
with only few previous illness episodes (Table 1). Due
to these clear differences regarding number of affec-
tive episodes the comparability of the studies is lim-
ited. We performed additional multiple regression
analyses concerning number of manic or depressive
episodes. In the present study we did not find any
significant correlation between number of affective
episodes and grey or white matter volume.

There is some evidence that psychiatric medication
could influence brain structure. Some studies reported
increased grey matter volume due to treatment with
lithium in patients with bipolar disorder [18, 21]. So far
no data is available on the effect of other mood-stabi-
lizers or antidepressive drugs on grey matter volume.
The effect of first and second generation antipsychotics
on brain structure in patients with schizophrenia was
recently reviewed [23]. First generation antipsychotics
seem to increase the volume of nucleus caudatus and to
reduce the overall grey matter volume. In contrast to
this, second generation antipsychotics seem to affect
neither the cortical grey matter nor the basal ganglia
volumes except the thalamus whose volume has been
reported to be increased. Most patients in the VBM
studies in bipolar disorder were treated with mood
stabilizers or antipsychotic drugs. However, no study
investigated their possible influence on the reported
abnormalities of brain structure. In this study, we did
not differentiate between patients treated with lithium
or other mood stabilizers. We performed however
multiple regression analyses regarding treatment with
lithium or antipsychotics. This analysis did not reveal
any significant correlation of grey or white matter
volume with medication.

VBM studies on patients with schizophrenia re-
ported grey matter reductions in frontal and temporal
regions [8]. These differences—in particular in the
dorsolateral prefrontal cortex and the superior tem-
poral gyrus—were already found at the time of the first
psychotic episode [16]. One recent study observed
additionally an increased CSF volume in the frontal and
temporal lobe of patients with schizophrenia [20]. A
recent study on patients with bipolar disorder revealed
a ventricular enlargement in patients with psychotic
symptoms in contrast to patients without psychotic
symptoms [25]. This result suggests that patients with
bipolar disorder with psychotic symptoms could be
considered a clinically distinguishable sub-group with
possibly distinctive neuropathological features. We
performed, therefore, an additional multiple regression
analysis concerning the existence of prior psychotic
symptoms. However, we could not detect a correlation
between psychotic symptoms and grey or white matter
volume in our sample.

Investigation with VBM allows structural analyses
free from hypotheses and user-bias [2]. Despite these
advantages, its general application in structural MRI
studies might be restricted by a low sensitivity in
detecting marginal abnormalities. A recent study
concluded that manual tracing of the corpus callosum
was more sensitive in detecting discrete structural
changes than VBM [26]. Negative findings in VBM-
studies, therefore, could only exclude major structural changes but not minor abnormalities.

The lack of structural abnormality in this study may speak against a structural vulnerability hypothesis in bipolar disorder. Nevertheless, studies using region of interest analyses in patients with bipolar disorder revealed for example consistently a decreased amygdala volume in children and adolescents and more heterogeneous an increased amygdala volume in adult patients [24]. We conclude, therefore, that we need both methods, VBM and region-of-interest analyses to detect major and discrete structural changes in patients with bipolar disorder.

In summary, using the optimized VBM-procedure the present study could not provide any evidence for differences of grey and white matter volume in a sample of patients with bipolar I disorder. This is in contrast to some prior findings. Our negative finding does not eliminate possible grey and white matter volume changes in the longitudinal course of the illness. Perhaps, structural changes emerge only in distinct sub-groups of bipolar patients. Larger well matched samples in consideration of clinical characteristics are needed to examine brain volume abnormalities in longitudinal studies. A combination of structural and functional imaging might reveal more robust data on patho-physiological relevant brain regions in bipolar disorder.