Endometriosis, a disease of the macrophage

Annelisa Capobianco and Patrizia Rovere-Querini*

Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy

INTRODUCTION

Endometriosis is a common condition, affecting a rather large fraction of menstruating women, characterized by the hormone-dependent persistence and growth of vascularized endometrial tissue at ectopic sites, typically the pelvis, with pain and reduced fertility (Leblich et al., 2001; Giudice and Rao, 2004; Berkley et al., 2005; Bulun, 2009; Luisi et al., 2009; Giudice, 2010; Simoens et al., 2012). Lesions are thought to originate from endometrial fragments shed during menstruations, which reach via the Fallopian tubes the peritoneal cavity. The event, which is likely to physiologically occur in most women, endometriotic and non-endometriotic, is referred to as “retrograde menstruation” (Sampson, 1927). Supporting evidence is mostly indirect. Endometriosis for example only takes place in species that menstruate, such as primates: this suggests that menstruation is required for the disease (D’Hooghe and Debrock, 2002). Shed endometrium is thought to initially adhere to endosalpinx structures, in particular the peritoneal wall and ovaries. Adhesion probably occurs quite commonly in healthy, non-endometriotic women. In in vitro models, adhesion requires a relatively short time and is apparently active supported by mesothelial cells (Lucidi et al., 2005; Nair et al., 2008), with an apparently healthy peritoneum that thus play an important facilitatory role in the further development of endometriotic lesions (Fassbender et al., 2011).

A further necessary step for lesion establishment is the capacity of ectopic endometrial cells to invade the underlying basement membrane. The molecular basis of this phenomenon are partially elucidated. Endometrial tissue has invades even intact serosal membranes, indicating that a previously disrupted peritoneum is not a requirement (Nair et al., 2008).

Invasion in a prerequisite for the organization of the ectopic endometrial cells in tridimensional cysts but is not sufficient: novel vessels are also necessary. Novel vessels originate through sprouting from the adjacent vasculature or incorporation of circulating precursor endothelial cells at sites of vascularization (Becker et al., 2011; Laschke et al., 2011a,b). They ensure the transport of oxygen and nutrients, the excretion of catabolites and the maintenance of fluid balance.

All together the persistence of ectopic endometriotic tissue is associated to uncontrolled growth, invasion of adjacent tissues, defective apoptosis, neoangiogenesis, and sustained local inflammatory responses. These features are not tissue-autonomous, but depend on the peculiar features of the innate immune response to the auto-transplantation of a hormone-regulated tissue at novel sites. Of importance, several differences exist between the uterine endometrium of women with and without endometriosis including invasive properties and resistance to apoptosis, as well as between ectopic and autologous eutopic endometrium of endometriotic patients (Novembri et al., 2011). This suggests that the inflammatory peritoneal environment influences the behavior of endometriotic endometrium.

Macrophages in particular are master regulators of the innate response to injured, infected, and neoplastic tissues. As such they are in charge of selecting the appropriate response to restore homeostasis: they include on one hand the identification and destruction of pathogens, infected or transformed cells, on the other hand the activation, proliferation, and differentiation of...
precursor/stem cell and the generation of new vessel. The perception of the role of macrophages in endometriosis has grown in the last years: in this review we will discuss the most recent data in the literature that name macrophages as defendants, with the charge of contributing to cause human endometriosis.

METHODS

Literature searches were performed in PubMed, Scopus, and ISI Web of Knowledge databases for publications focusing on the state and functions of macrophages in human and murine endometriosis. The searches included the key words “endometriosis,” “ectopic endometrial lesions,” and “endometrium” were matched with the key words “macrophages,” “angiogenesis,” “hypoxia,” “innate immunity,” and “ovarian cancer.” The bibliographic research encompasses studies on rodents, non-human primates and humans. No limits were set for publication dates.

ENDOMETRIUM AND ANGIogenesis

Organ vasculature comprises an integrated system of arteries, arterioles, capillaries, venules, and veins that ensures blood circulation and the transport of oxygen and other gases to target tissues. Blood vessels that form during growth and development generally arise by the sprouting from pre-existing vessels, via a process referred to as angiogenesis (Potente et al., 2011). Angiogenesis seldom occurs in the adult organism in normal tissues under physiologic conditions. Endometrium represents an exception: the tightly regulated variation of ovarian steroids estrogen and progesterone concentrations cyclically triggers the remodeling of the organ vasculature, with angiogenesis and lymphangiogenesis (Girling and Rogers, 2009). Estrogens during the proliferative stage of the menstrual cycle cause the rapid growth of the vasculature. Progesterone during the secretory phase controls the maturation of the capillary sub-epithelial plexus and the development/coiling of spiral arterioles. Finally, the swift hormone withdrawal triggers the endometrial repair in the perimenstrual period.

The molecular mechanisms involved in hormone-regulated remodeling of ectopic endometrial vessels are being actively investigated. The vascular endothelial growth factor (VEGF) family and associated receptors and the angiopoietin-tyrosine kinase with Ig and epidermal growth factor homology domain (angiopoietin/Tie-2) system play an important role, since they investigated. The vascular endothelial growth factor (VEGF) is generally considered an angiogenesis factor, have been convincingly suggested to play a role in endometriosis. The vascular endothelial growth factor, have been convincingly suggested to play a role in endometrial repair (Maybin et al., 2012).

Premenstrual progesterone withdrawal possibly represents the crucial event: during the late secretory phase the demise of the corpus luteum results in the abrupt fall of bioactive progesterone. This triggers an acute inflammatory response with destruction of the upper “functional” layers of the human endometrium (for a thorough and well-written review, see Maybin et al., 2011a): endometrial prostaglandin (PG), PGE2 and PGF2α, are synthesized that act as potent vasoconstrictor on the spiral arterioles. PG production, spiral arteriole vasoconstriction, and local hypoxia in turn regulate the production of chemokines, such as IL-8 (CXCL8) and CXC chemokine ligand 12 (CXCL12) stromal cell derived factor (SDF-1). Inflammation and chemokine production results in the attraction of neutrophils, that actively contribute to the destruction of the functional layer of the endometrium (Kainu-u-Lino et al., 2007): typically tissue breakdown is associated with loss of integrity of endometrial vessel and blood cells extravasation; endometrial fragments and blood are then flushed from the uterus to the vagina with overt menstruation.

The inflammatory response has a double-edged action: besides triggering the regulated destruction of the tissue, it initiates and guides the endometrial repair. Progesterone withdrawal indeed causes a transient constriction of spiral arteries in the upper layers of the endometrium, which is supposed to cause hypoxia (Fan et al., 2008). Hypoxia is the stimulus that triggers vessel remodeling in injured and regenerating tissues as well as in tumors. It elicits an adaptive response, which is largely mediated by the hypoxia-inducible transcription factor-α (HIF1α): under hypoxic conditions HIF1α translocates to the nucleus where it enhances and accelerates the transcription of genes with appropriate response elements, including angiopoietin-2 (Ang-2) CXCL12 and VEGF (Wu et al., 2007, 2011; Liu et al., 2011a; Maybin et al., 2011b; Wong et al., 2011; Henriot et al., 2012; Sarkar et al., 2012). Other signals induced by hypoxia and PG in epithelial cells and macrophages, such as connective tissue growth factor, have been convincingly suggested to play a role in endometrial repair (Maybin et al., 2012).

Events downstream HIF1α nuclear translocation are not apparently relevant for tissue destruction (Maybin et al., 2011a): in contrast they are required for attraction of macrophages and for their regenerative action in the hypoxic tissue (Du et al., 2008; Wong et al., 2011; Sarkar et al., 2012). For example ablation of HIF1α in tumor models is associated with decreased CXCL12/SDF1α levels and a less effective recruitment of bone marrow-derived macrophages in the tumors (Du et al., 2008).

Of critical importance for the environmental changes associated to endometriosis (see below), the vasculature of ectopic lesions remains dependent on the systemic concentration of hormones. As such, these structures undergo a cyclic remodeling, with synchronized tissue destruction and bleeding. This has been well-established since the pioneering work of Markee (1978), who has described that endometrial fragments transplanted in the eye anterior chamber of rhesus monkeys implant connect to the iris vasculature and grow. However, the tissue abruptly regresses after hormone withdrawal: cyclic destruction of the ectopic tissue is associated to coiling of spiral arterioles, vasoconstriction episodes, and bleeding.
The insight on the physiological control of eutopic endometrium is likely to be crucial to understand why endometriosis occurs. During menstruation red blood cells, hemoglobin, and leukocytes accumulate in the peritoneal fluid of most healthy women (Bokor et al., 2009); this indicates that retrograde menstruation is a fairly common event. Interestingly, retrograde menstruation appears not to be per se more frequent or abundant in endometriotic women (Bokor et al., 2009); therefore, the presence of endometrial tissue in the peritoneal cavity is not sufficient to cause endometriosis (Bulun, 2009). The role of the genetic background and/or of environmental factors deserves better attention and will be a hot topic for researchers in the next years.

MACROPHAGES ARE VERSATILE CELLS

Macrophages have been originally identified as an integral component of the mononuclear phagocyte system (MPS). They derive from bone marrow progenitors that enter the bloodstream as monocytes. Within a relatively short time they reach peripheral tissues where they yield resident macrophages or antigen-presenting cells, including dendritic cells (DCs); the MPS contributes both to pathogen elimination and to haukekeeping functions (van Furth and Cohn, 1968; Murray and Wynn, 2011). Macrophages are professional phagocytes, since they are endowed with the molecular machinery necessary to internalize and dispose of extracellular particulate substrates, including microbes or endogenous constituents, such as apoptotic cells or senescent erythrocytes.

Dedicated pattern-recognition receptors (PRRs) are non-clonally expressed by innate immune cells and by macrophages in particular (Palm and Medzhitov, 2009). PRRs have been initially thought to have undergone evolutionary selection because of their ability to selectively identify molecular structures referred to as pathogen-associated molecular patterns (PAMPs) expressed by large classes of microbes (Janeaway, 1992). After PAMP recognition, activation of PRRs recruits tightly coordinated events, including: (i) the production of various cytokines that attract and activate leukocytes (Nathan, 2002), arming them for neutralization/elimination of invading pathogens; (ii) the activation of an acute phase response, with the production of conserved soluble PRRs, such as pentraxins (Manfredi et al., 2008). Acute phase proteins in turn tune leukocyte activation and quench their ability to collaterally damage the tissue.

Besides microbial PAMPs, endogenous moieties trigger the PRR activation: damage-associated molecular pattern (DAMP) comprise an array of heterogeneous molecules that are released during cell and tissue necrosis and that via PRR activation elicit inflammation and prompt tissue regeneration even in the context of sterile injuries (Mattoo et al., 1996; Bianchi, 2007; Lotze et al., 2007; Rubartelli and Lotze, 2007; Ubovanovicute et al., 2008; Bianchi and Manfredi, 2009; Manfredi and Rovere-Querini, 2010; Zhang et al., 2010a; Castiglioni et al., 2011; Liu et al., 2011b).

Pattern-recognition receptors represent a crucial asset for the phagocytic ability of macrophages: they on one hand interact with the phagocytic substrate and on the other hand activate specific signaling cascades within the phagocyte. The characteristics of the signaling events are crucial to determine which array of soluble signals is produced.

An example is given by the signal transduction associated with the best-characterized family of PRRs, the Toll-like receptors (TLR): TLR 3, 7, and 9 are preferentially expressed in endosomes, where they have access to viral constituents. As a consequence, they activate PI3K/mTOR/56K with downstream production of antiviral and pro-inflammatory cytokines, such as type I interferon: the resulting response eventually leads to virus elimination.

TLR4, which is expressed at the plasma membrane, together with other extracellular moieties such as MD-2 and CD14, recognizes gram-negative bacteria lipopolysaccharide. Its recruitment results, via MyD88-dependent and -independent pathways, in NF-κB nuclear translocation and in the recruitment of the kinase pathways with an eventual production of inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-6: the response is crucial for the control of the infection (Kawai and Akira, 2011). The activation of other PRRs, such as those that recognize dying cells phagocytic tags, prompts the production of immunosuppressive cytokines, such as IL-10 and transforming growth factor β (TGF-β) and of factors implicated in the tissue regeneration and repair (Huysh et al., 2002; Ravichandran, 2011).

Thus, PRRs decipher the code associated to an infected or injured tissue, and thus enable macrophages to activate the innate/acquired immune response that is more functional for restoring homeostasis (Brancauto and Albina, 2011; Murray and Wynn, 2011). Conversely, macrophages extensively reprogram their functional properties in response to PAMPS and DAMPS (Nau et al., 2002; Martinson et al., 2010; London et al., 2011).

During sterile inflammation, which is by definition driven by DAMPs exclusively, macrophages play crucial and non-redundant actions in matrix remodeling and angiogenesis, which are required for effective tissue healing (Vezzoli et al., 2010; Bosurgi et al., 2011; Castiglioni et al., 2011; Rock et al., 2011; Vezzoli et al., 2011).

Macrophages have a rather heterogeneous array of characteristics, which possibly reflects the diverse functions they exert within the microenvironment: they become effector cells that kill invading pathogens, such as mycobacteria or Leishmania major and dramatically modify the environment via the production of cytokines and reactive oxygen (ROS) and nitric oxide (NO) species (Darragh et al., 2007; Mylonas et al., 2009). Such macrophages are referred to as classically activated/inflammatory macrophages, or M1 cells (Figure 1).

Macrophages also undergo a distinct activation program (“alternative activation”): as a consequence they tune inflammatory responses and adaptive immunity, scavange debris and promote angiogenesis, tissue remodeling, and repair (Mantovani et al., 2001; Gordon and Taylor, 2005). Macrophages within regenerating tissues are often alternatively activated, also termed “M2 cells” (Figure 1; Dalley et al., 2010; Gordon and Martinez, 2010; O’Brien et al., 2010; Schwartz, 2010; Braamato and Albina, 2011; Cairo et al., 2011; Corna et al., 2010; David and Kroner, 2011; Hazel-Adar et al., 2011; Iacchile, 2011; London et al., 2011; Wang and Harris, 2011). In contrast, uncontrolled classical activation in general results in defective healing and persistent inflammation (Gordon, 2002; Sindrilaru et al., 2011). Recent elegant studies suggest that neural stem cells in a model of murine sterile spinal cord injury possibly direct physically interact with endogenous...
Macrophages guide endometriosis

FIGURE 1 | Macrophages come in different flavors. Microbial components such as lipopolysaccharide (LPS) and/or cytokines such as IFN-γ or GM-CSF elicit conventionally activated macrophages. These cells secrete inflammatory cytokines and generate molecules involved in the anti-bacterial response, such as reactive oxygen species (ROS). Treatment with different cytokines like IL-4 and/or IL-13, IL-10 and/or M-CSF supports the activation of alternative activated macrophages. Local hypoxia, possibly in conjunction with chemotactic signals such as CXCL12 and/or DAMPs, such as HMGB1, recruit from the blood precursors that yield Tie-expressing macrophages in the inflamed tissues. The expression of specific arrays of membrane receptors and the generation of soluble and gaseous messengers reflect the macrophage activation programs. LPS, lipopolysaccharide; IFN-γ, interferon-γ; GM-CSF, granulocyte macrophage-colony stimulating factor; M-CSF, macrophage-colony stimulating factor; MHCII, major histocompatibility complex class II; CD163, haptoglobin–hemoglobin complex receptor; CD206, mannose receptor; TGF-β, transforming growth factor β; PGE2, prostaglandin E2; ROS, reactive oxygen species.

macrophages, an event that modulates expression levels of inflammatory cell transcripts in vivo, with a shift from “classically activated” (M1-like) macrophages to cells that facilitating the healing or regeneration of the lesion (Cassinotti et al., 2012). This is not an exception due to the environment of the spinal cord: a similar shift occurs in injured skeletal muscles, apparently facilitated by the signals derived from the apoptotic substrates (Arnold et al., 2007).

Recombinant cytokines can be used to activate macrophage precursors. Alternatively activated macrophages can be propagated in vitro by exposing monocytes or bone marrow precursors to low concentrations of macrophage-colony stimulating factor (M-CSF) in the presence of IL-4, IL-13, or IL-10 (Gordon, 2003; Mantovani et al., 2004). Exposure to microbial components in the presence of γIFN or to granulocyte macrophage-colony stimulating factor (GM-CSF) elicits classically activated, inflammatory macrophages.

Specific subpopulations of macrophages are preferentially involved in guiding angiogenesis (Qian and Pollard, 2010; De Palma and Naldini, 2011). Macrophages that express the Tie-2 receptor (TEM or Tie-2-expressing monocytes/macrophages) sustain neangiogenesis in a variety of experimental tumor models (Figure 1). Circulating monocytes in normal conditions express limited amounts of Tie-2; however, they substantially up-regulate it after homing to hypoxic tissue, where they yield a subset of perivascular macrophages (Du et al., 2008; De Palma and Naldini, 2009; Squadrito and De Palma, 2011). Angiopoietins, cytokines that regulate the quiescent and the angiogenic microvasculature, are known ligands of Tie-2: in vivo studies in which TEMs had been specifically depleted demonstrate that they are required to support angiogenesis and accelerate tumor growth (De Palma et al., 2003, 2005), indicating that TEMs interaction with the angiogenic vasculature plays a non-redundant role.

The model that apparently better fit with the data obtained in these diverse systems regards macrophages as guardians of the tissue integrity, that are in charge of: (i) perceiving clear and actual injury in the tissue; (ii) clearing dying cells and tissue debris; (iii) regulating neovessel generation and extracellular matrix remodeling; (iv) sustaining stem and progenitor cells migration, proliferation, survival, and differentiation (Lolmede
VEGF family members, which in turn behave as attractors of angiogenesis is a prerequisite for endometriotic lesions to establish at ectopic sites (Ren et al., 2011). Moreover, response to ischemia could facilitate implantation/establishment of endometrium at higher VEGF expression and better survival: this mechanism onto the chick embryo chorioallantoic membrane demonstrated repeated clamping/declamping of the uterine artery transplanted from women in which a transient ischemia had been induced by women (Donnez et al., 1998). Interestingly, endometrial fragments in early and middle secretory phase occurs: the event is apparent in injured tissues and is required for wound healing (Potente et al., 2011). It is physiologically dependent on macrophage activation, since the depletion of macrophages in experimental models of wound healing jeopardizes VEGF generation and disturbs neovascularization (van Amerongen et al., 2007; Martinez et al., 2008). Reduced/delayed differentiation of myoblasts, re-epithelialization, collagen deposition, and cell proliferation also ensue macrophage depletion and neovessel disruption (Mirza et al., 2009).

A large body of evidence indicates that macrophages are responsible for the angiogenic switch, i.e., the increase in the density of vessels that often characterizes the benign-to-malignant transition in cancer, being involved both in the initial establishment of the vasculature and in the subsequent remodeling of the vessels (Pollard, 2008). Their action is mediated via several pathways, that lead to: (i) the production of matrix metalloproteinases (MMPs) that are required for the release of VEGF bound to the extracellular matrix at hypoxic sites, thus increasing the availability of the bioactive growth factor; and (ii) the expression of VEGF family members, which in turn behave as attractors of myeloid cells, including macrophages. Of interest, an association between endometriosis and VEGF-A gene polymorphisms has been reported, even if caution should be used because of the effect of possible confounding factors.

In experimental models of endometriosis, early phases of lesion establishment are characterized by a transient hypoxia, which results in the up-regulation of HIF1α, with downstream expression of VEGF (Wu et al., 2007, 2011; Becker et al., 2008; Lin et al., 2012). Limited ischemia of the endometrium in the early and middle secretory phase occurs: the event is apparently associated with the up-regulated expression of VEGF in the late secretory phase of the menstrual cycle in endometriotic women (Donnez et al., 1998). Interestingly, endometrial fragments from women in which a transient ischemia had been induced by repeated clamping/declamping of the uterine artery transplanted onto the chick embryo choioallantoic membrane demonstrated higher VEGF expression and better survival: this mechanism could facilitate implantation/establishment of endometrium at ectopic sites (Ren et al., 2011). Moreover, response to ischemia is likely to play a role in established lesions of endometriotic patients: the relative expression of HIF1α and VEGF differs at various sites within endometriotic lesions, possibly accounting for some of their heterogeneous histological characteristics (Goteri et al., 2004, 2010).

It is important to underline that the vascular response to ischemia depends on the recruitment of activated macrophages at lesions sites (e.g., see Machado et al., 2010). Macrophages are indeed necessary to license lesions for growth and spreading (Bacci et al., 2009; Haber et al., 2009; Capobianco et al., 2011 and see below).

MACROPHAGES AS A KEY TO THE SUSCEPTIBILITY TO ENDOMETRIOSIS

The data discussed above indicate that endometriosis depends on the ability of endometrial tissue at ectopic sites to attract macrophages and to be as a consequence licensed for survival, angiogenesis, growth, and spreading (Figures 2 and 3). Macrophages physiologically convey these licensing signals in the eutopic endometrium, which undergoes physiological destruction as a consequence of progesterone withdrawal.

Infiltrating macrophages are a consistent feature of endometriotic lesions. Independent lines of evidence indicate that they undergo activation as a consequence of signals generated within ectopic lesion (Lebovic et al., 2001; Zhang et al., 2006; Herrmann Lauve et al., 2007; Lawso et al., 2007; Minici et al., 2007; Galieri et al., 2008; Lousse et al., 2008) or possibly of the lack of hormone-regulated anti-inflammatory signals in the ectopic but none in the eutopic endometrium (Novembri et al., 2011). However, it is unclear whether these changes in eutopic endometrium are primary defects or consequences of the development of endometriosis (Novembri et al., 2011). Ectopic endometriotic lesions are histologically similar to their putative eutopic precursors. However, several genes are differentially expressed in ectopic and eutopic of endometriotic and non-endometriotic patients and significant biochemical differences exist (Meola et al., 2010). These differences might stem from epigenetic modifications that occur in the eutopic endometrium of patients with endometriosis. Differential methylation and expression of genes involved in the regulation of implantation, such as HOXA10 and FE-8, have been for example reported in the eutopic endometrium of patients with endometriosis compared with controls (Stilley et al., 2012).

In endometriotic lesions the macrophage NF-kB-dependent pathway is engaged (Lousse et al., 2008) with transactivation of responsive gene elements that control angiogenesis and tissue remodeling (Hagemann et al., 2008; Timmer and Nizet, 2008). NF-kB inhibition decreases the in vivo growth of experimental lesions, indicating that its activation plays a particularly relevant role (Lousse et al., 2008, 2009).

The stimuli involved in the activation of macrophages are so far unclear. It is extremely unlikely that microbial structures (PAMPs) are involved. As such, the signals involved in the macrophages activation must be released in sterile conditions, like it happens for multiorgan trauma, which causes the systemic inflammatory response syndrome or at specific sites, as a consequence of ischemia/reperfusion or of immune mediated events, like in the case of allotrace rejection. The endogenous sterile triggers that are responsible for sterile inflammation in these conditions are
Macrophages guide endometriosis

FIGURE 2 | Macrophages in experimental and human endometriosis. Endometrial fragments (maximal diameter < 1 mm) derived from estradiol benzoate-treated mice (A) injected intra-peritoneally yield endometriotic lesions (B) that can be excised and processed for disease assessment (C) or immunohistochemical evaluation (D–G). CD68+ macrophages are abundant in human and experimental lesions (D,E). Most macrophages within human lesions express markers of alternative activation, such as the hemoglobin/haptoglobin CD163 scavenger receptor (F). CD163+ (green) vWF– (blue) pro-angiogenic Tie2-expressing macrophages surround the neoformed vessels (G).

apparently equally effective as microbial PAMPs and rely on similar molecular pathways, NF-kB nuclear translocation and activation is a clear example (Palumbo et al., 2007).

Once ectopic lesions are established, tissue remnants that are generated as a consequence of cyclic response to progesterone withdrawal accumulate in the peritoneal cavity since they cannot be flushed out with the menstrual blood. Cell remnants have a potentially noxious action on living tissues: as such, they require to be disposed by active phagocytosis. This is in general a relatively silent event, with macrophages recognizing and phagocytosing scattered cells that die in the midst of living tissues because of their physiological tissue turnover, releasing in the meantime immunosuppressive and anti-inflammatory signals. However, the challenge with a relatively ample load of cells dying in a synchronized fashion may exert a paradoxically opposite effect, representing a further threat to tissue integrity and immune tolerance (Rovere et al., 1998, 2000; Manfredi et al., 2002; Capobianco et al., 2011). Specifically the release of intracellular moieties endowed with inflammatory and adjuvant properties results in the activation of macrophages, which in turn release cytokines and chemokines, thus enforcing a positive feedback loop (Zhang et al., 2010a; Castiglioni et al., 2011). The persistence of cells dying as
FIGURE 3 | Macrophages drive endometriosis.

Endometrial cells reach the peritoneal cavity as a consequence of retrograde menstruation. The recruitment of macrophages at the site of endometrial cell engraftment is a limiting step for the lesion to organize and to grow. Local hypoxia and the production of chemokines play a major role in the recruitment of macrophages. Once endometriosis is established, the cyclic death of endometrial cells as a consequence of progesterone withdrawal leads to the release of cell debris, erythrocytes, and heme-bound iron in the peritoneal cavity. Recruited macrophages perceive ongoing cell death and tissue damage; in endometriotic patients they activate a reparative/regenerative/angiogenic program that is required for lesion maintenance, growth and spreading. In a subgroup of patients, endometriosis is a preneoplastic condition. The persisting tissue healing action of macrophages that keep interfering with the physiological apoptosis while prompting proliferation of epithelial cells might set the scenario in which genetic alterations accumulate.

Results of progesterone withdrawal within endometriotic lesions could cyclically activate infiltrating macrophages, thus sustaining the inflammation associated to the disease.

Relatively little is known on the ability of peritoneal macrophages to dispose of endometrial remnants, even if an apparent impairment in the ability to phagocytose particulate substrate has been reported (Chuang et al., 2009). The defect has been associated with a defect in the expression and the function of the class B scavenger receptor CD36, a well recognized player in the recognition and clearance of apoptotic cells, in endometriosis: such defect could be possibly related to the action of PG (Chuang et al., 2010). However, it is difficult to verify whether such defect is upstream or downstream the persistent inflammation of the peritoneal cavity associated to the disease.

Ectopic endometrium breakdown causes hemorrhage, with extravasation and persistence of aging red blood cells within the lesions; moreover erythrocytes accumulate into the pelvis because of retrograde menstruation (Defrere et al., 2008, 2012; Lousse et al., 2009).
The clearance of red blood cells and of apoptotic remnants has similar molecular constraints and often relies on common phagocytic tag/receptor pairs, which are in general expressed by professional phagocytes, such as macrophages (Ravichandran, 2011). The peritoneal fluid of endometriotic women indeed contains iron-loaded macrophages and higher fluid concentrations of the metal, which are possibly associated with the severity of the disease manifestations (Lousse et al., 2012). The iron in the fluid possibly derives from the lysis of red blood cells that that are not effectively cleared by macrophages, and as a consequence release hemoglobin. This moiety may as well bind to haptoglobin and be internalized by macrophages via the CD163 hemoglobin/haptoglobin scavenger receptor. In endometriosis patients this pathway is either originally defective or peritoneal macrophages become insufficient/unable to deal with the amounts of hemoglobin present in the liquid. The concentration of free iron within endometriotic cysts has also been investigated and found to be high. Metal accumulation was reflected by a higher oxidative stress, which in turn favors epigenetic modifications, prompting the evolution of ectopic tissue in immunodeficient mice (Yamaguchi et al., 2008, 2010). The peritoneal environment, whose characteristics are modulated by a vast and complex array of regulatory peptides and phagocytic tag/receptors pairs, which are in general expressed by professional phagocytes, such as macrophages (Ravichandran, 2011). The peritoneal fluid of endometriotic women indeed contains iron-loaded macrophages and higher fluid concentrations of the metal, which are possibly associated with the severity of the disease manifestations (Lousse et al., 2012). The iron in the fluid possibly derives from the lysis of red blood cells that that are not effectively cleared by macrophages, and as a consequence release hemoglobin. This moiety may as well bind to haptoglobin and be internalized by macrophages via the CD163 hemoglobin/haptoglobin scavenger receptor. In endometriosis patients this pathway is either originally defective or peritoneal macrophages become insufficient/unable to deal with the amounts of hemoglobin present in the liquid. The concentration of free iron within endometriotic cysts has also been investigated and found to be high. Metal accumulation was reflected by a higher oxidative stress, which in turn favors epigenetic modifications, prompting the evolution of ectopic tissue in immunodeficient mice (Yamaguchi et al., 2008, 2010). The peritoneal environment, whose characteristics are modulated by a vast and complex array of regulatory peptides and phagocytic tag/receptors pairs, which are in general expressed by professional phagocytes, such as macrophages (Ravichandran, 2011). The peritoneal fluid of endometriotic women indeed contains iron-loaded macrophages and higher fluid concentrations of the metal, which are possibly associated with the severity of the disease manifestations (Lousse et al., 2012). The iron in the fluid possibly derives from the lysis of red blood cells that that are not effectively cleared by macrophages, and as a consequence release hemoglobin. This moiety may as well bind to haptoglobin and be internalized by macrophages via the CD163 hemoglobin/haptoglobin scavenger receptor. In endometriosis patients this pathway is either originally defective or peritoneal macrophages become insufficient/unable to deal with the amounts of hemoglobin present in the liquid. The concentration of free iron within endometriotic cysts has also been investigated and found to be high. Metal accumulation was reflected by a higher oxidative stress, which in turn favors epigenetic modifications, prompting the evolution of ectopic tissue in immunodeficient mice (Yamaguchi et al., 2008, 2010). The peritoneal environment, whose characteristics are modulated by a vast and complex array of regulatory peptides and phagocytic tag/receptors pairs, which are in general expressed by professional phagocytes, such as macrophages (Ravichandran, 2011). The peritoneal fluid of endometriotic women indeed contains iron-loaded macrophages and higher fluid concentrations of the metal, which are possibly associated with the severity of the disease manifested...
We have observed that in the absence of macrophages, syntastic lesions. Interestingly, a similar differential sensitivity of the early phases of the diseases, which are not affected, versus the later growth neovascularization and spreading of lesions characterizes lesions that do not express the Tgfb1 transplanted immunodeficient mice that do not develop a well-organized glandular and stromal architecture (Bacci et al., 2009).

The data suggest that the recruitment of macrophages into the lesions is not only an early event in the lesion development, but a necessary step for the successful establishment of endometriotic lesions. Interestingly, a similar differential sensitivity of the early phases of the diseases, which are not affected, versus the later growth neovascularization and spreading of lesions characterizes immunodeficient mice that do not express the Tgfb1 transplanted immunodeficient mice that do not develop a well-organized glandular and stromal architecture (Bacci et al., 2009).

The role of the cytokine in coordinating the cascade of inflammatory signals of the disease (Saito et al., 2011). TGF-β is critically expressed in endometriotic lesions (Otmwaldho et al., 2010). Moreover, TGF-β is locally increased in endometriotic lesions (Otmwaldho et al., 2010).

Transforming growth factor β locally increases the expression of the PAR2 gene with possible downstream increased secretion of IL-6 from endometriotic stromal cells thus suggesting an upstream role of the cytokine in coordinating the cascade of inflammatory signals of the disease (Saito et al., 2011). TGF-β is a key factor produced by macrophages challenged with apoptotic cell remnants (Xiao et al., 2008), which as such could represent a relevant source of the cytokine.

Macrophage dependence is not limited to mice, since initiation and growth of endometriotic lesions are both jeopardized in a rat model of the disease after depletion of peritoneal macrophages by local injection of liposomal alendronate (Haber et al., 2009). Of interest, in this model the degree of lesion infiltration by macrophages is directly correlated with lesion infiltration by macrophages is directly correlated with lesion growth and is characterized by a severely disrupted glandular and stromal architecture (Bacci et al., 2009).

To experimentally address this possibility, we have set up a model previously depleted (see above). In this system, alternatively activated M2 macrophages strongly enhance the growth of endometriotic lesions. In contrast, mice injected with conventionally activated inflammatory macrophages develop minute lesions, that do not grow and are characterized by a severely disrupted glandular and stromal architecture (Bacci et al., 2009).

Given the critical role of lesion neovascularization in their outcome, we have focused on the possible role of TEMs, the best-characterized population of macrophages involved in angiogenesis: this subset has mainly been characterized in tumor models (De Palma and Naldini, 2011) but it has convincingly been suggested to play a role even in non-neoplastic conditions, in particular in the physiological development of embryos (Pucci et al., 2009). We have observed that human TEMs infiltrate areas surrounding endometriotic novel vessels (Capobianco et al., 2011). To obtain a mouse model in which TEMs, and not Tie2-expressing endothelial cells, are targeted we have transplanted in wild-type mice.

Typical markers of alternative activation, in particular high levels of scavenger receptors, CD163 and CD206 (Bacci et al., 2009). CD206 belongs to the C-type lectin superfamily is a well-characterized PRR and contributes to remove or inactivate inflammatory signals (Allavena et al., 2004). CD163 mediates endocytosis of haptoglobin-hemoglobin complexes, with degradation of heme-iron components that can be recycled for erythropoiesis (Kristiansen et al., 2001; Bond et al., 2008), a feature that may be particularly important in a disease in which disturbance of macrophage iron homeostasis appear particularly important (see above): Macrophage polarization results in differential iron management in both human and mice, with classically activated M1 macrophages that are characterized by iron sequestration, which operates as a bacteriostatic mechanism (Cairo et al., 2011).

In contrast alternatively activated M2 macrophages are endowed with the ability to effectively internalize and recycle the metal, with is reflected by a larger intracellular labile iron pool (Corna et al., 2010; Recalcati et al., 2010). The ability to uptake and recycle the metal to bystander cells could be relevant for the repair of tissues in which large amount of heme-iron are expressed, such as the skeletal muscle or the myocardium (Brunelli and Rovere-Querini, 2009; Corna et al., 2010) and may conversely be involved in sustaining the proliferation of neoplastic cells and the growth of neoplastic lesions (Recalcati et al., 2010; Cairo et al., 2011). It is tempting to speculate that the skewing of endometriotic macrophages toward alternative activation results in a more effective transfer of the metal to epithelial cells, with the effect to support the growth and the spreading of the lesions. This model would nicely fit with the increased extracellular concentration of iron in the peritoneal fluid of patients with endometriosis, as well as with the relative overload of macrophages with the metal (Defere et al., 2012).

Macrophages are alternatively activated in the inflammatory peritoneal fluid or in the endometriotic lesions, both in patients and experimental animals (Bacci et al., 2009). This suggests that this program is important for the natural history of the disease. To experimentally address this possibility, we have set up a model of cell transfer with various polarized macrophage populations in mice in which the endogenous macrophage population had been previously depleted (see above). In this system, alternatively activated macrophages strongly enhance the growth of endometriotic lesions. In contrast mice injected with conventionally activated inflammatory macrophages develop minute lesions, that do not grow and are characterized by a severely disrupted glandular and stromal architecture (Bacci et al., 2009).

Reparative and pro-angiogenic macrophages in endometriosis: this subset has mainly been characterized in tumor models (De Palma and Naldini, 2011) but it has convincingly been suggested to play a role even in non-neoplastic conditions, in particular in the physiological development of embryos (Pucci et al., 2009). We have observed that human TEMs infiltrate areas surrounding endometriotic novel vessels (Capobianco et al., 2011). To obtain a mouse model in which TEMs, and not Tie2-expressing endothelial cells, are targeted we have transplanted in wild-type mice.
As discussed above, macrophages are physiologically recruited in injured and recovering tissues, in order to prompt tissue regeneration. Macrophages recruited in the endometriotic lesions activate a similar program: they interfere with physiological apoptosis while prompt proliferation, thus setting the scenario in which genetic alterations accumulate. This action may contribute to the evolution of lesions toward atypical endometriosis and metastasis, which in turn fosters the development of borderline and finally fully malignant ovarian cancer (Wei et al., 2011). Further studies are required to experimentally address this possibility.

CONCLUSION

Endometriosis represents an immunological unique scenario, since it derives from the auto-transplantation of endometrial cells at distant sites. Recent studies have identified lesional macrophages as the auto-transplantation site, since their unregulated activation toward a reparative phenotype allows the survival, the neo-vascularization, and the growth of the lesions. This event possibly depends on the transfer of lesional macrophages and dendritic cells from endometriotic lesions toward the pregnant uterus, thus setting the scenario in which genetic alterations accumulate. This action may contribute to the evolution of lesions toward atypical endometriosis and metastasis, which in turn fosters the development of borderline and finally fully malignant ovarian cancer (Wei et al., 2011). Further studies are required to experimentally address this possibility.

REFERENCES

Allavena, P., Chieppa, M., Monti, P., and Pavlovsky, A., et al. (2008). 2-methoxyestradiol abates after TEM depletion. Of interest, in the absence of TEMs endometrial cells caspase 3 is activated. This results in disruption of vessel integrity and of glandular architecture, suggesting a paracrine action of TEMs on the survival of endometrial cells within the neovessel wall.

ENDOMETRIOSIS AS A PRENEOPLASTIC CONDITION: A ROLE OF MACROPHAGES?

Endometriotic tissue comprises non-transformed cells only. However, it shares several features with neoplasms (uncontrolled growth, invasion of adjacent tissues, defective apoptosis, sustained local inflammatory responses). Conversely, endometriosisis increases the risk of ovarian cancer, in particular invasive low-grade serous, clear-cell, and low-grade endometrioid subtypes of the neoplasm (Yamaguchi et al., 2008, 2010; Pearce et al., 2012). The molecular bases of the association are not completely defined. As discussed above, macrophages are physiologically recruited in injured tissues, where they activate the neo-angiogenic switch, sustain resistance to apoptotic stimuli and stimulate the proliferation and invasion of precursor cells, in order to prompt tissue growth, invasion of adjacent tissues, defective apoptosis, sustained local inflammatory responses. Conversely, endometriosis increases the risk of ovarian cancer, in particular invasive low-grade serous, clear-cell, and low-grade endometrioid subtypes of the neoplasm (Yamaguchi et al., 2008, 2010; Pearce et al., 2012). The molecular bases of the association are not completely defined.

Macrophages in injured skeletal muscle cells and peritoneal macrophages infiltrate endometriotic lesions, whose growth abruptly abates after TEM depletion. Of interest, in the absence of TEMs endometrial cells caspase 3 is activated. This results in disruption of vessel integrity and glandular architecture, suggesting a paracrine action of TEMs on the survival of endometrial cells within the neovessel wall.

Macrophages in injured skeletal muscle cells and peritoneal macrophages infiltrate endometriotic lesions, whose growth abruptly abates after TEM depletion. Of interest, in the absence of TEMs endometrial cells caspase 3 is activated. This results in disruption of vessel integrity and glandular architecture, suggesting a paracrine action of TEMs on the survival of endometrial cells within the neovessel wall.

REVIEWS

Allen, T., Weisel, M. A., and Murray, S. R. (2006). 2-methoxyestradiol abates after TEM depletion. Of interest, in the absence of TEMs endometrial cells caspase 3 is activated. This results in disruption of vessel integrity and glandular architecture, suggesting a paracrine action of TEMs on the survival of endometrial cells within the neovessel wall.
Alternately activated macrophages.

Hematolymphatoida 95, 1844-1822.

Cottone, L., Valenti, C., Capocaccia, A., Belloli, S., Rovero-Querini, P., Faini, R., et al. (2011). Evaluation of the role of tumor-associated macrophages in an experimental model of peritoneal carcinomatosis using (18)F-FDG PET. J. Med. Virol. 83, 1773–1777.

Cassinaia, M., Zornati, B., Brambilla, E., Donato, M., Alfaro-Cervello, L., Nusler, S., et al. (2012). Transplanted neural stem/progenitor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord. Brain 135, 491–499.

Daly, J., Branconi, S. K., Thyom, A. A., Bechman, J. S., and Abin, J. E. (2010). The phenotype of murine peritoneal macrophages. J. Immunol. 87, 59–67.

Darrah, P. A., Patel, D. T., Dale, J. M., Brancato, S. K., Thomay, A., Cusimano, M., Biziato, D., Brambilla, Cottone, L., Valtorta, S., Capobianco, L. (2013). Macrophages guide endometriosis.

De Palma, M., Venneri, M. A., Galli, A., Belloli, S., Rovere-Querini, P., et al. (2010). The phenotype of murine peritoneal macrophages. J. Immunol. 87, 59–67.

Di Comite, G., Grazia Sabbadini, M., Sampaolesi, M., et al. (2005). Tie2 progenitors. Blood 84, 211–226.

Dores, S., Van Langendonckt, A., Viere, S., Jouve, M., Gonzalez Ramos, R., Gonzalez, S., et al. (2006). Iron overload enhances epithelial cell proliferation in endometriotic lesions induced in a mouse model. Hum. Reprod. 21, 2916–2922.

D’Hooghe, T. M., and Dubrock, S. (2004). Endometriosis, estrogen monotherapy and preclinical inflammation and in women and its baboons. J. Reprod. Immunol. 68, 46–48.

De Comite, G., Graia Sabatini, M., Corti, A., Rovero-Querini, P., and Manfroto, A. A. (2007). Conservation galacte: how the immune and the neuroendocrine systems talk to each other. Autorev. Rev. 7, 23–29.

De Comite, G., Rossi, C. M., Marinosci, A., Lohrdo, K., Balsiuse, E., AIELLO, P., et al. (2008). Circularization chromogranin A reveals extra-articular involvement in patients with rheumatoid arthritis and early TNF-alpha-dictated endothelial activation. J. Biochem. 83, 80–81.

Doming, J., Smith, P., Gilkeson, S., Canas-Rouco, F., and Nisolle, M. (1998). Vascular endothelial growth factor (VEGF) in endometriosis. Hum. Reprod. 13, 1886–1890.

Du, B., Liu, K. V., Patrich, C., Liu, P., Games, R., Paspose, E., et al. (2009). HIF-1 alpha induce the recruitment of bone marrow-derived vascular endothelial cells to regulate tumor angiogenesis and invasion. Cancer Cell 15, 226–236.

Fainaru, O., Adini, A., Benny, O., Adini, H., Andal., S., Sylven, C., Ericzon, B., el., et al. (2009). Circulating monocytes required for tumor vessel formation and angiogenesis. Angiogenesis 12, 491–499.

Fisher, R., Gonzalez, D., et al. (2008). HIF1alpha induces the expression of bone marrow derived monocytes. Mol. Hum. Reprod. 13, 1686–1690.

Foti, D., De Palma, M., V enneri, M. A., Galli, A., Belloli, S., Rovere-Querini, P., et al. (2010). Low serum and perifolliculal fluid concentration of interferon-gamma-induced protein-10 (CXCL10) in women with endometriosis. Fertil. Steril. 94, 878–887.

Foster, P., Be, F. M., Torres, P. R., Colonaz, F., Aitre, M. S., Noninami, L. L., et al. (2009). High serum follistatin levels in women with ovarian endometriosis. Hum. Reprod. 24, 2616–2009.

Gallini, L., Luni, S., Rotondi, M., Romagnani, P., Cimbaja, L., Severi, M., et al. (2008). Low serum and perifolliculal fluid concentration of interferon-gamma induced protein-10 (CXCL10) in women with endometriosis. Fertil. Steril. 94, 446–453.

Girling, J. E., and Rogers, P. A. (2010). Regulation of endometrial vascular remodeling: role of the vascular endothelial growth factor family and the angiopoietin-TIE signaling system. Reproductive 138, 883–893.

Giudice, L. C. (2003). Clinical practice. Endometriosis. N. Engl. J. Med. 349, 2366–2374.

Giudice, L. C., and Kao, L. C. (2004). Endometriosis. Lancet 364, 1799–1808.

Goodman, S. (2001). Alternative activation in macrophages. Nat Rev. Cancer 1, 23–35.

Goodman, S., and Martinez, F. O. (2010). Alternative activation of macrophages: mechanism and functions. Immunity 32, 595–604.

Gotteti, G., Lucarini, G., Zizzi, A., Goletti, N., and Taylor, P. R. (2005). Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 955–964.

Gouget, G., Lucarini, G., Filsou, A., Parantoni, A., Morbitz, N., Bagin, G., et al. (2004). Immunohistochemical analysis of vascular endothelial growth factor family expression in ovarian endometriotic cysts. Fertil. Steril. 81, 1528–1533.

Gouget, G., Lucarini, G., Zizzi, A., Rahum, C., Di Primio, R., Trapani, A. L., et al. (2010). Proangiogenic molecules, hypoxia-inducible factor-1alpha and nitric oxide synthase isoforms in ovarian endometriotic cysts. Virochim. Arch. 458, 703–711.

Gruendler, R. (2008). Animal models in endometriosis research. J. Hum. Reprod. Med. 52, 641–649.

Habib, E., Drenten, H. D., references, N., Ron-Ri, E., Golenb, G., and Schachter, M. (2009). Peritoneal macrophage depletion by liposomal bisphosphonate attenuates endometriosis in the rat model. Hum. Reprod. 24, 388–407.

Hageman, T., Lawrence, T., Menicov, L., Charles, K. A., Kalbe, H., Thompson, R. G., et al. (2008). “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J. Exp. Med. 205, 1281–1286.

Hara, M., Yama, S., Shimiz, K., Onitsuka, T., Hoshii, N., Ohno, Y., et al. (2011). GI-G2P influences mouse skeletal muscle development and regeneration by stimulating mitotically proliferation. J. Exp. Med. 208, 715–727.

Hard-Adal, T., Ben Moch, T., Amanoff, Y., Feenber, M. S., Lose, J., and Colvin, S. (2011). Modulation of cardiac macrophages by phosphorylcholine-presenting liposomes improves intact repair. Proc. Natl. Acad. Sci. U. S. A. 108, 1827–1832.

Hennion, P., Gade Chevrouxon, H., and Marbus, E. (2012). The endocrine and paracrine control of menstruation. Mol. Cell. Endocrinol. 358, 197–207.

Herrmann, Lavoie, C., France, D., Therriault, M. J., and Akeson, A. (2007). Interleukin-1 stimulates macrophage migration inhibitory factor secretion in scopic endometrial cells of women with endometriosis. Cell. J. 40, 357–361.

Hull, M. L., Johan, M. E., Hodge, W. L., Robertson, S. A., and Ingman, W. L. (2012). Host-derived TGF-β2 deficiency suppresses development in a mouse model of endometriosis. Am. J. Pathol. 180, 880–887.

Hyrhok, M. L., Fadok, N. A., and Henson, P. M. (2002). Phosphatidylserine-bearing apoptotic cells promote TGF-beta-betacation and the resolution of inflammation. J. Clin. Invest. 109, 61–65.

Imperson, A., Rolle, A., Potzsch, F., Chalkis, J. R., and Casaggi, I. (2010). Hypoxia and proangiogenic expression of vascular endothelial growth factor and urocin in a mouse model of endometriosis. J. Surg. Res. 16, 823–834.

Iwasaki, H. (2011). Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J. Gastroenterol. Hepatol. 26(Suppl.), 77–79.

Janeway, C. A. Jr. (1992). The immune system evolved to discriminate infection from noninfectious self. Hum. Immunol. 15, 11–16.

Jasmin, E., den Broeder, J. J., Martin, N. B., and Salomon, L. A. (2007). Neutrophil depletion worsens endometrial repair.
Kawai, T., and Akira, S. (2011). Toll-like receptors and their crosstalk with innate and adaptive immune cells. Immunity 34, 657–677.

Kristiansen, M., Gravvanis, J. H., Jacobson, C., Somes, G., Hoffman, H. J., Lane, S. K., et al. (2011). Identification of the haemoglobin scavenger receptor. Nature 409, 198–201.

Lacal, M. W., Guido, C., and Meng, M. D. (2011). Vascular patterning in a neoplastic context. J. Pathol. 225, 630–640.

Lacal, M. W., Guido, C., Nicholls, R. M., Schouten, C., and Meng, M. D. (2011b). Endothelial progenitor cells contribute to the vascularization of endometriotic lesions. J. Pathol. 224, 442–450.

Lau, G. E., Sines, B. A., Drury, J. A., Robinson, S. C., Quadeby, S., and Bulloch, J. N. (2012). Localisation of angiogenic growth factors and their receptors in the human endometrium throughout the menstrual cycle and in recurrent miscarriage. Hum. Reprod. 27, 183–191.

Lawson, C., Al-Akoum, M., Maheux, R. N., (2001). Immunobiology of reproduction. Adv. Hematol. 97, E1515–E1523.

Liu, J., Chen, G. Y., and Zheng, W. Y. (2006). Neutrophils and angiogenesis: a coordinating role in an inflammatory and alternatively activated human macrophages attract vascular-associated stem cells, relying on separate HMGB1- and MIP-9-dependent pathways. J. Leukoc. Biol. 89, 779–787.

Lunch, A., Sekeres, E., Belzner, L., Kelen%%%%%%%huă, V., Macch, M., Jongs, S., et al. (2011). Neutrophil and progenitor cell removal in the induced adult murine retina requires healing microvascular-derived macrophages. J. Exp. Med. 208, 25–39.

Luir, M. T., Zah, H. J., Rabindelli, A., Sparrey, L. I., Amosato, A. A., Waddah, N. R., et al. (2007). The growth and damage-associated molecular pattern molecules and reflexion/reduction regulate immune responses. J. Immunol. Res. 220, 60–81.

Luo, J. C., Defeo, S., Van Langen-donckt, A., Gresl, G., González-Ramos, R., Collette, S., et al. (2008). Iron storage is significantly increased in peritoneal macrophages of endometriotic patients and correlates with iron overload in peritoneal fluid. Fertil. Steril. 91, 1068–1075.

Lucas, J. C, Van Langendonckt, A., Defeo, S., Ramos, G. B., Collette, S., and Donnez, J. (2011). Peritoneal endometriosis is an inflammatory disease. Front. Biosci. (Elite Ed.) 4, 23–40.

Lucas, J. C., Van Langendonckt, A., González-Ramos, R., Defeo, S., Collette, S., and Donnez, J. (2008). Increased activation of macrophage factor-kappa-b (NF-kappa-B) in isolated peritoneal macrophages of patients with endometriosis. J. Reprod. Immunol. 79, 191–199.

Lucas, R. S., Witz, C. A., Chrisso, G. M., Bartley, P., Rege, S. A., and Schenklin, R. S. (2005). A novel in vitro model of the early endometriotic lesion demonstrates that attachment of endometrial cells to mesothelial cells depends on the source of endometrial cells. J. Reprod. Immunol. 66, 16–22.

Lucas, S., Lautz, L., Ciani, V., and Petraglia, F. (2009). Endometriosis in balb/c mice. from cost estimates to new medical treatment. Gynecol. Endocrinol. 25, 774–780.

Machado, D. E., Bárbara, P. T., Landgraf, G., Fernandez, P. D., Palombo, T. M., et al. (2010). A subacute cyclosporine-2-inhibitor sup- pressed vascular involvement of endometriosis with an angiogenic effect in a rat model. Fertil. Steril. 95, 2067–2079.

Mantodzi, A., Aminov, M., D’Antu, F., and Rovere-Querini, P. (2012). The mitochondria—a Trojan horse that kicks off inflammation? Nat. Rev. J. Pathol. 3, 213–214.

Mantodzi, A. F., and Rovere-Querini, P. (2010). The mitochondria—a Trojan horse that kicks off inflammation? Nat. Rev. J. Pathol. 3, 213–214.

Maybin, J. A., Barraclough, J., Thrashchel, J., Hizhun, N., et al. (2008). The presence and regulation of vascular endothelial growth factor and its receptors in uterine samples. Fertil. Steril. 90, 217–220.

Maybin, J. A., Baracof, J., Thrashchel, J., Hizhun, N., et al. (2008). The presence and regulation of vascular endothelial growth factor in the human endometrium. Hum. Reprod. 23, 1112–1123.

Maybin, J. A., Crimchel, H. O., and Jabbar, H. N. (2011). The regulation of vascular endothelial growth factor by heparin and protoplatinagen-F. Pahl during human endometrial repair. J. Clin. Endocrinol. Metab. 96, 2478–2483.

Maybin, J. A., Harnan, N., Jabbar, H. N., and Chrischhe, H. O. (2011b). The regulation of vascular endothelial growth factor by heparin and protoplatinagen-E2 in the regulation of IL-4 during endometrial repair. Am. J. Pathol. 178, 1240–1256.

McLaren, J., Pretiuc, A., Chandock-Jones, D. S., Milican, S. A., Muller, H. K., Hackler, A. M. et al. (1996). Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J. Clin. Invest. 98, 482–489.

Meela, J., Rosa B Silva, J. C., Demitri, D. B., Da Silva, W. A. Jr., Vanina, A., Bernadi, L. A., et al. (2003). Differentially expressed genes in autoimmune and ectopic endometrium of women with endometriosis. Fertil. Steril. 89, 1750–1757.

Mincia, F., Tihori, F., Tropea, A., Fonineli, M., Orlandi, M., Cagnau, M. E, et al. (2007). Paracrine regulation of endometriotic tissue. Gynecol. Endocrinol. 23, 574–580.

Mills, M., Blomgren, B., and Pahlbof, J. (2010). Expression of angiopoietins 1, 2 and their common receptor tie-2 in relation to the size of endome- trial lining gaps and expression of VEGF and VEGF receptors in in-situ pathologic macrophages. Fertil. Steril. 94, 701–707.

Mitra, R., Dipietro, L. A., and Koh, T. J. (2009). Selective and specific macrophage ablation is detrimental to wound healing in mice. Am. J. Pathol. 175, 2845–2862.

Molteni, M., Capalgradi, M., Manfroi, A. A., Bianchi, M. E, and Verzani, A. (2010). Toll-like receptor 4 and high mobility group box 1 are involved in trophoblast and zygote target- ed to reduce outcome. Nat. Med. 16, 413–419.

Murray, F. J., and Wynn, T. A. (2011). Protective and pathological functions of macrophage subsets. Nat. Rev. Immunol. 11, 725–737.

Myklebust, K. I., Nair, M. G., Pinto-Loaite, L., Piaggio, D., and Allen, J. E. (2008). Alternative activated macrophages elicted by helium infection can be reprogrammed to enable microbial killing. J. Immunol. 182, 3086–3094.

Nair, A. S., Nair, H. B., Lucardi, R. S., Kirchner, A. I., Schenken, R. S., Malek, B. R., et al. (2006). Modelling the early endometrial lesion: microenvironment-endometrial cell co-culture increases endometrial inva- sion and alters mesothelial and endometrial gene transcription. Fertil. Steril. 96, 1487–1495.

Nathan, C. (2002). Points of control in inflammation. Nature 420, 846–852.

Nan, J. G., Richardton, J. F., Sch Lange, A., Jennings, E. G., Lander, S. E., and Young, R. A. (2002). Human macrophage activation programs induced by bacterial pathogens. Proc. Natl Acad. Sci. U.S.A. 99, 1503–1506.
Nicola, M., Cauna-Roux, F., Marbaix, E., Jadoul, F., and Donnay, J. (2000). Transformation of cultured explants of human endometrium into male mice. Hum. Reprod. 15, 577–573.

Novembre, R., Caracciolo, P., Sirti, P., Rocca, A. L., Bolognese, R., et al. (2011). Urocortin 2 and urocortin 3 in endometriosis: evidence for a possible role in inflammatory response. Mol. Hum. Reprod. 17, 551–562.

O’Brien, J., Lyons, T., Monks, I., Lucia, M. S., Wilson, R. S., Hines, L., et al. (2011). Activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species. Am. J. Pathol. 178, 1241–1255.

Omsoussid, C. O., Korstad, H., Hala, G., Osdime, F., and Timberg, H. B. (2012). Role of TGF-beta in normal human endometrium and endometriosis. Horm. Res. 73, 103–109.

Palm, N. W., and Mildenhall, R. (2008). Pattern recognition receptors and control of adaptive immunity. Immunol. Rev. 227, 231–233.

Palumbo, R., Calvog, G. B., Paterla, T., de Marchis, F., Gross, G., Morini, K. B., et al. (2007). Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. J. Cell Biol. 179, 429–436.

Pare, C. L., Tampellini, C., Roum, M. A., Lee, A., Neut, A. M., Webb, P. M., et al. (2012). Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. Lancet Oncol. 13, 287–295.

Pellegrini, C., Gori, I., Achtari, C., Palumbo, R., Galvez, B. G., Pusterla, T., Palm, N. W., and Medzhitov, R. (2012). Urocortin 2 and urocortin 3 in endometriosis: evidence for a possible role in inflammatory response. Hum. Reprod. 27, 1289–1299.

Ponce, C., Torres, M., Galleguillos, C. G., Oehmke, F., and Tinneberg, H. R. (2010). “Finnu-04-00009” — 2013/1/25 — 13:16 — page 13 — #13

Potente, M., Gerhardt, H., and Carmeliet, P. (2011). Basic and therapeutics aspects of angiogenesis. Cell 146, 875–887.

Qian, Q., Qian, Z. H., Li, S. H., and Xia, Z. Z. (2011). Vascular endothelial growth factor expression up-regulated by endometrioma in scrotal incision in scrotum with a new term: “testicular endometriosis.” J. Urol., 185, 2039–2045.

Ricciardi-Castagnoli, P. et al. (1998). Activation of phagocytes in tissues of normal and infected mice. J. Cell Biol. 142, 477–486.

Rubartelli, A., and Lotze, M. T. (2007). Macrophage diversity enhances recruitment of inflammatory cells to damaged tissues by forming a complex with SCL14 and signaling via CCR2. J. Exp. Med. 200, 551–563.

Schmidli, M., Reaux, A., Miron, L. M., Livet, E., Celona, R., Venuane, E., et al. (2012). HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with SCL14 and signaling via CCR2. J. Exp. Med. 209, 1450–1457.

Simeone, S., Denuzelle, G., Dekont, C., Hummedouli, L., Rohit, A., Braniu, D., et al. (2012). The burden of endometriosis: costs and quality of life of women with endometriosis and treated in referral centres. Hum. Reprod. 27, 1259–1268.

Smedsrod, A., Peters, T., Wensingh, S., Beets, C., Beukan, A., Peter, H., et al. (2011). An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest. 121, 985–997.

Sperling, E., Vignato, P., Fabro, P., Canini, M., Vignati, M., and Perina-Bordignon, P. (2011). Use of knockout transgenic mice in the study of endometriosis-induced inflammation. J. Reprod. Immunol. 87, 195–209.

Sperling, E., Vignato, P., Rossi, G., Carmelini, S., Vignati, M., and Perina-Bordignon, P. (1999). Endometrioidal ability to implant in ectopic sites can be prevented by interleukin-12 in a murine model of endometriosis. J. Reprod. Immunol. 38, 249–260.

Squillaci, A., Bett, J. A., and Sharpes-Timms, K. L. (2012). Cellular and molecular basis for endometriosis-associated infertility. Cell Res. 22, 849–862.

Sun, D., Martinon, G. O., Ouh, O., Bult-Wilhelms, L., Botella, S. J., Can- torno, V. E., et al. (2009). Bone marrow-derived cell regulation of skeletal muscle regeneration. FASEB J. 23, 382–393.

Timmer, A. M., and Nist, V. (2008). BONE marrow-derived cell regulation of skeletal muscle regeneration. FASEB J. 23, 1255–1259.

Tunali-Gonzalez, I., Barrientos, G., Tarradon, N., Ack, P. C., Garcia, M. G., Klipp, B. F., et al. (2010). Endometriosis research animal models for the study of a complex disease. J. Reprod. Immunol. 86, 141–147.

Urbanciscu, V., Furumloh, B. G., Mesteer, S., Munoz, L., Heyder, P. D., Marouch, M., et al. (2008). Induction of inflammatory and immune responses by HMGB1-slow endocytosis complex: implications for the pathogenesis of SLE. J. Exp. Med. 205, 3007–3018.

van Amersfoort, M. E., Harmen, M. C., Van Boven, J., Nis, P. A., and Van Luyk, M. J. (2007). Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial infarction in mice. Am. J. Pathol. 170, 838–849.

van Furth, R., and Cohn, Z. A. (1968). The origin and genetics of mononuclear phagocytes. J. Exp. Med. 128, 419–443.

van Rossum, N., and Sanders, A. (1994). Liposome mediated depletion of macrophages: mechanisms of action, preparation of liposomes and applications. J. Leukoc. Biol. 55, 83–93.

Verbosi, M., Castelli, P., Campagna, L., Coroni, G., Boussi, M., Marcelli, A. A., et al. (2010). Redox remodeling of a candidate regulator of HMGB1 function in injured skeletal muscle. Ann. N. Y. Acad. Sci. 1200, 85–90.

Verbosi, M., Castelli, P., Coroni, G., Castiglioni, A., Boussi, L., Monno, L., et al. (2010). Redox remodeling of a candidate regulator of HMGB1 function in injured skeletal muscle. Ann. N. Y. Acad. Sci. 1200, 85–90.

Weng, Y., and Haris, D. C. (2011). Macrophages in renal disease. J. Am. Soc. Nephrol. 22, 25–27.
Capobianco and Rovere-Querini

Macrophages guide endometriosis

Wei, J. J., William, J., and Bulun, S. (2011). Endometriosis and ovarian cancer: a review of clinical, pathologic, and molecular aspects. Int. J. Gynecol. Pathol. 30, 553–564.

Wong, C. C., Gilkes, D. M., Zhang, H., Chen, J., Wei, H., Chatterjee, P., et al. (2011). Hypoxia-inducible factor 1 is a target regulator of breast cancer metastatic niche formation. Proc. Natl. Acad. Sci. U.S.A. 108, 16369–16374.

Wu, M. H., Shi, Y., Wu, M. C., Cheung, F. C., Liu, C. C., Huang, M. F., et al. (2005). Suppression of matrix metalloproteinase-9 by prostaglandin E(2) in peritoneal macrophages is associated with severity of endometriosis. Am. J. Pathol. 167, 1061–1069.

Wu, M. H., Chen, K. F., Lin, S. C., Lgu, C. W., and Tsai, S. J. (2007). Aberrant expression of leptin in human endometriotic stromal cells is induced by elevated levels of hypoxia inducible factor-1alpha. Am. J. Pathol. 170, 590–598.

Wu, M. H., Liu, S. C., Hsiao, K. Y., and Tsai, S. J. (2011). Hypoxia-inhibited dual-specificity phosphatase-2 expression in endometriotic cells regulates cyclin-dependent kinase 2 expression. J. Pathol. 225, 390–400.

Xiao, Y. Q., Peiro-De-Lima, C. G., Schiemann, W. P., Bratton, D. L., Vandiver, R. W., and Henson, P. M. (2008). Transcriptional and translational regulation of TGF-beta production in response to apoptotic cells. J. Immunol. 181, 5575–5585.

Yamaguchi, K., Mandle, M., Toyokami, S., Humanishi, I., Higezhu, T., Takakura, K., et al. (2008). Contents of endometriotic cysts, especially the high concentration of free iron, are a possible cause of carcinogenesis in the cysts through the iron-induced persistent oxidative stress. Clin. Cancer Res. 14, 32–40.

Zhao, X., Mohaupt, M., Jiang, J., Liu, S., Li, B., and Qin, Z. (2007). Tumor necrosis factor receptor 2-mediated tumor suppression is nitric oxide dependent and involves angiostasis. Cancer Res. 67, 4453–4460.

Zhou, B., Rao, L., Peng, Y., Wang, Y., Qiu, M., Zhang, Z., et al. (2010). A functional promoter polymorphism in NFKB1 increases susceptibility to endometriosis. DNA Cell Biol. 29, 235–239.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 08 October 2012; accepted: 07 January 2013; published online: 28 January 2013.

Citation: Capobianco A and Rovere-Querini P (2013) Endometriosis, a disease of the macrophage. Front. Immun. 4:9. doi: 10.3389/fimmu.2013.00009

This article was submitted to Frontiers in Inflammation, a specialty of Frontiers in Immunology.

Copyright © 2013 Capobianco and Rovere-Querini. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.