Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment

M. Aaboud et al. * (ATLAS Collaboration)

(Received 14 February 2018; published 22 May 2018)

A direct search for the standard model Higgs boson decaying to a pair of charm quarks is presented. Associated production of the Higgs and Z bosons, in the decay mode $ZH \rightarrow \ell^+ \ell^- c\bar{c}$ is studied. A data set with an integrated luminosity of 36.1 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the LHC is used. The $H \rightarrow c\bar{c}$ signature is identified using charm-tagging algorithms. The observed (expected) upper limit on $\sigma(pp \rightarrow ZH) \times B(H \rightarrow c\bar{c})$ is 2.7 (3.9$^{+2.4}_{-1.1}$) pb at the 95% confidence level for a Higgs boson mass of 125 GeV, while the standard model value is 26 fb.

In July 2012, the ATLAS and CMS collaborations announced the discovery of a new particle with a mass of approximately 125 GeV [1,2] in searches for the standard model (SM) Higgs boson at the Large Hadron Collider (LHC) [3]. Subsequent measurements indicate that this particle is consistent with the SM Higgs boson [4–10]. Direct evidence for the Yukawa coupling of the Higgs boson to the top [11] and bottom [12,13] quarks was recently obtained. Measurements of the Yukawa coupling of the Higgs boson to quarks in generations other than the third are difficult at hadron colliders, due to small branching fractions, large backgrounds, and challenges in jet flavor identification [14,15]. This Letter presents a direct search by the ATLAS experiment for the decay of the Higgs boson to a pair of charm (c) quarks. This search targets the production of the Higgs boson in association with a Z boson decaying to charged leptons: $Z(\ell^+\ell^-)H(c\bar{c})$, where $\ell = e, \mu$.

The SM branching fraction for a Higgs boson with a mass of 125 GeV to decay to a pair of charm quarks is predicted to be 2.9% [16]. The inclusive cross section for $\sigma(pp \rightarrow ZH) \times B(H \rightarrow c\bar{c})$ is 26 fb at $\sqrt{s} = 13$ TeV [17]. Rare exclusive decays of the Higgs boson to a light vector meson or quarkonium state and a photon can also probe the couplings of the second-generation quarks to the Higgs boson [18–21]. Previously, the ATLAS Collaboration presented an indirect search for the decay of the Higgs boson to c quarks via the decay to $J/\psi\gamma$, obtaining a branching fraction limit of 1.5×10^{-3} at the 95% confidence level (C.L.), which approximately corresponds to a limit of 540 times the SM branching fraction prediction [14,20]. Bounds on the Higgs boson branching fractions to unobserved final states and fits to global rates constrain $B(H \rightarrow c\bar{c}) < 20\%$ at the 95% C.L., assuming SM production cross sections [22]. These limits can still accommodate large modifications to the Higgs boson coupling to charm quarks from new physics [22]. In this Letter, a new approach is introduced to investigate the coupling of the Higgs boson to charm quarks.

The search is performed using pp collision data recorded in 2015 and 2016 with the ATLAS detector [23] at $\sqrt{s} = 13$ TeV. The ATLAS detector at the LHC covers nearly the entire solid angle around the collision point [24]. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting toroidal magnets. An additional pixel layer was installed for the $\sqrt{s} = 13$ TeV running period [25]. After the application of beam, detector, and data-quality requirements, the integrated luminosity corresponds to 36.1 \pm 0.8 fb$^{-1}$, measured following Ref. [26]. Events are required to contain exactly two same-flavor leptons with an invariant mass consistent with that of the Z boson, and at least two jets of which one or two are identified as charm jets (c jets). In this Letter, lepton refers to only electrons or muons. The analysis procedure is validated by measuring the yield of ZW and ZZ production, where the sample is enriched in $W \rightarrow cs, cd$ and $Z \rightarrow c\bar{c}$ decays. Further details can be found in Ref. [12]. Monte Carlo (MC) simulated samples were produced for signal and background processes using the full ATLAS detector simulation [27] using GEANT4 [28]. Table I provides details of the event generators used for each signal and background sample. Signal events were produced at next-to-leading order (NLO) for the $q\bar{q} \rightarrow ZH$ process and at leading order (LO) for the $gg \rightarrow ZH$ process with POWHEG-BOX v2 [32]. The dominant $Z +$ jets background and the resonant diboson ZW and ZZ processes were generated using SHERPA 2.2.1 [54]. The $t\bar{t}$ background was...
TABLE I. The configurations used for event generation of the signal and background processes. If two parton distribution functions (PDFs) are shown, the first is for the matrix element calculation and the second for the parton shower, otherwise the same is used for both. Alternative event generators and configurations, used to estimate systematic uncertainties, are in parentheses. Tune refers to the underlying-event tuned parameters of the parton shower event generator. MG5_AMC refers to MadGraph5_AMC@NLO 2.2.2 [29]; PYTHIA 8 refers to version 8.212 [30]. Heavy-flavor hadron decays modeled by EvtGen 1.2.0 [31] are used for all samples except those generated using Sherpa. The order of the calculation of the cross sections used to normalize the predictions is indicated. The $q\bar{q} \to ZH$ cross section is estimated by subtracting the $gg \to ZH$ cross section from the $pp \to ZH$ cross section. The asterisk (*) in the last column denotes that the indicated order is for the $pp \to ZH$ cross section. NNLO denotes next-to-next-to-leading order; NLL denotes next-to-leading log and NNLL denotes next-to-next-to-leading log.

Process	Event Generator (alternative)	Parton Shower (alternative)	PDF (alternative)	Tune	Cross section
$q\bar{q} \to ZH$	POWHEG-BOX v2 [32] +GoSam [35] +MiNLO [45,46]	PYTHIA 8 (Herwig 7 [47])	PDF4LHC15NLO [33] /CTEQ6L1 [36,37]	AZNLO [34] (A14 [48])	NNLO (QCD)* +NLO (EW) [38-44]
$gg \to ZH$	POWHEG-BOX v2	PYTHIA 8 (Herwig 7)	PDF4LHC15NLO /CTEQ6L1	AZNLO	NLO+NLL (QCD) [17,49-51]
$t\bar{t}$	POWHEG-BOX v2	PYTHIA 8 (Herwig 7)	NNPDF3.0NLO /NNPDF2.3LO	A14	NNLO + NNLL [53]
ZW, ZZ	SHERPA 2.2.1 [54] (POWHEG-BOX)	SHERPA (Pythia 8)	NNPDF3.0NNLO	SHERPA	NLO
$Z + \text{jets}$	SHERPA 2.2.1 (MG5_AMC)	SHERPA (Pythia 8)	NNPDF3.0NNLO /NNPDF2.3LO	SHERPA	NNLO [55]

generated using POWHEG-BOX v2. Backgrounds from single top and multijet production and the contribution from Higgs decays other than $b\bar{b}$ and $c\bar{c}$ are assessed to be negligible and not considered further. The Higgs boson mass is set to $m_H = 125$ GeV and the top-quark mass is set to 172.5 GeV.

Events are required to have at least one reconstructed primary vertex. Electron candidates are reconstructed from energy clusters in the electromagnetic calorimeter that are associated with charged-particle tracks reconstructed in the inner detector [56,57]. Muon candidates are reconstructed by combining inner detector tracks with muon spectrometer tracks or energy deposits in the calorimeters consistent with the passage of minimum-ionizing particles [58]. For data recorded in 2015, the single-electron (muon) trigger required a candidate with $p_T > 24(20)$ GeV; in 2016 the lepton p_T threshold was raised to 26 GeV. Events are required to contain a pair of same-flavor leptons, both satisfying $p_T > 7$ GeV and $|\eta| < 2.5$. At least one lepton must have $p_T > 27$ GeV and correspond to a lepton that passed the trigger. The two leptons are required to satisfy loose track-isolation criteria with an efficiency greater than 99%. They are required to have opposite charge in dimuon events, but not in dielectron events due to the non-negligible charge misidentification rate of electrons. The invariant mass of the dilepton system is required to be consistent with the mass of the Z boson: 81 GeV < $m_{\ell\ell}$ < 101 GeV.

Jets are reconstructed from topological energy clusters in the calorimeters [59,60] using the anti-k_t algorithm [61] with a radius parameter of 0.4 implemented in the FastJet package [62]. The jet energy is corrected using a jet-area-based technique [63,64] and calibrated [65,66] using p_T- and η-dependent correction factors determined from simulation, with residual corrections from internal jet properties. Further corrections from in situ measurements are applied to data. Selected jets must have $p_T > 20$ GeV and $|\eta| < 2.5$. Events are required to contain at least two jets. If a muon is found within a jet, its momentum is added to the selected jet. An overlap removal procedure resolves cases in which the same physical object is reconstructed multiple times, e.g. an electron also reconstructed as a jet.

FIG. 1. The c-jet-tagging efficiency (colored scale) as a function of the b-jet and l-jet rejection as obtained from simulated $t\bar{t}$ events. The cross, labeled as working point, WP, denotes the selection criterion used in this analysis. The solid and dotted black lines indicate the contours in rejection space for the fixed c-tagging efficiency used in the analysis and two alternatives.
Table II. Breakdown of the relative contributions to the total uncertainty in μ. The statistical uncertainty includes the contribution from the floating $Z + \text{jets}$ normalization parameters. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between the components.

Source	$\sigma/\sigma_{\text{tot}}$
Statistical	49%
Floating $Z + \text{jets}$ normalization	31%
Systematic	87%
Flavor tagging	73%
Background modeling	47%
Lepton, jet and luminosity	28%
Signal modeling	28%
MC statistical	6%

Jets in simulated events are labeled according to the presence of a heavy-flavor hadron with $p_T > 5$ GeV within $\Delta R = 0.3$ from the jet axis. If a b hadron is found the jet is labeled as a b jet. If no b hadron is found, but a c hadron is present, then the jet is labeled as a c jet. Otherwise the jet is labeled as a light-flavor jet (l jet).

Flavor-tagging algorithms exploit the different lifetimes of b, c, and light-flavor hadrons. A c-tagging algorithm is used to identify c jets. Charm jets are particularly challenging to tag because charm hadrons have shorter lifetimes and decay to fewer charged particles than b hadrons. Boosted decision trees are trained to obtain two multivariate discriminants: to separate c jets from l jets and c jets from b jets. The same variables used for b tagging [67,68] are used. Figure 1 shows the selection criteria applied in the two-dimensional multivariate discriminant space, to obtain an efficiency of 41% for c jets and rejection factors of 4.0 and 20 for b jets and l jets. The efficiencies are calibrated to data using b quarks from $t \to Wb$ and c quarks from $W \to cs$, cd with methods identical to the b-tagging algorithms [67]. Statistical uncertainties in the simulation are reduced, by weighting events according to the tagging efficiencies of their jets, parametrized as a function of jet flavor, p_T, η and the angular separation between jets, rather than imposing a direct requirement on the c-tagging discriminants.

Data are analyzed in four categories with different expected signal purities. The dijet invariant mass, $m_{c\bar{c}}$, constructed using the two highest-p_T jets, is the discriminating variable in each category. Categories are defined using the transverse momentum of the reconstructed Z boson, p_T^Z (75 GeV $\leq p_T^Z < 150$ GeV and $p_T^Z \geq 150$ GeV) and the number of c tags amongst the leading jets (either one or two). The p_T^Z requirements exploit the harder p_T^Z distribution in ZH compared to $Z + \text{jets}$ production. Background events are rejected by requiring the angular separation between the two jets constituting the dijet system, $\Delta R_{c\bar{c}}$, to be less than 2.2, 1.5, or 1.3 for events satisfying $75 \leq p_T^Z < 150$ GeV, $150 \leq p_T^Z < 200$ GeV, or $p_T^Z \geq 200$ GeV. The signal acceptance ranges from 0.5% to 3.4% depending on the category. A joint binned maximum-profile-likelihood fit to $m_{c\bar{c}}$ in the categories is used to extract the signal yield and the $Z + \text{jets}$ background normalization. The fit uses 15 bins in each category within the range of 50 GeV $< m_{c\bar{c}} < 200$ GeV, with a bin width of 10 GeV. The parameter of interest, μ, common to all categories, is the signal strength, defined as the ratio of the measured signal yield to the SM prediction.

Systematic uncertainties affecting the signal and background predictions include theoretical uncertainties in the signal and background modeling and experimental uncertainties. Table II shows their relative impact on the fitted value of μ. Uncertainties in the $m_{c\bar{c}}$ shape of the backgrounds are assessed by comparisons between nominal and alternative event generators as indicated in Table I.

Systematic uncertainties are incorporated within the statistical model through nuisance parameters that modify the shape and/or normalization of the distributions. Statistical uncertainties in the simulation samples are accounted for. The $Z + \text{jets}$ background is normalized from the data through the inclusion of an unconstrained normalization parameter for each category. The fitted

Table III. Postfit yields for the signal and background processes in each category from the profile likelihood fit. Uncertainties include statistical and systematic contributions. The prefit SM expected $ZH(c\bar{c})$ signal yields are indicated in parenthesis.

Sample	$1 \ c \ tag$	$2 \ c \ tags$		
	75 $\leq p_T^Z < 150$ GeV	$p_T^Z \geq 150$ GeV	75 $\leq p_T^Z < 150$ GeV	$p_T^Z \geq 150$ GeV
$Z + \text{jets}$	69400 \pm 500	15650 \pm 180	5320 \pm 100	1280 \pm 40
ZW	750 \pm 130	290 \pm 50	53 \pm 13	20 \pm 5
ZZ	490 \pm 70	180 \pm 28	55 \pm 18	26 \pm 8
$t\bar{t}$	2020 \pm 280	130 \pm 50	240 \pm 40	13 \pm 6
$ZH(b\bar{b})$	32 \pm 2	19.5 \pm 1.5	4.1 \pm 0.4	2.7 \pm 0.2
$ZH(c\bar{c})$ (SM)	-143 \pm 170 (2.4)	-84 \pm 100 (1.4)	-30 \pm 40 (0.7)	-20 \pm 29 (0.5)
Total	72500 \pm 320	16180 \pm 140	5650 \pm 80	1320 \pm 40
Data	72504	16181	5648	1320
normalization parameters range between 1.13 and 1.30. All other background normalization factors are correlated between categories, with acceptance uncertainties of order 10% to account for relative variations between categories.

The dominant contributions to the uncertainty in μ are the efficiency of the tagging algorithms, the jet energy scale and resolution, and the background modeling. The largest uncertainty is due to the normalization of the dominant $Z + jets$ background. The typical uncertainty in the tagging efficiency is 25% for c jets, 5% for b jets, and 20% for l jets.

Table III shows the fitted signal and background yields. The $m_{c\bar{c}}$ distributions in the 2 c tag categories are shown in Fig. 2 with the background shapes and normalizations according to the result of the fit. Good agreement is observed between the postfit shapes of the distributions and the data.

The analysis procedure is validated by measuring the yield of ZV production, where V denotes a W or Z boson, with the same event selection. The fraction of the ZZ yield from $Z \rightarrow c\bar{c}$ decays is \sim55% (20%) in the 2 c tag (1 c tag) category, while the fraction of the ZW yield from $W \rightarrow c\bar{s}$, cd is \sim65% for both the 2 and 1 c tag categories. Contributions of Higgs boson decays to $c\bar{c}$ and $b\bar{b}$ are treated as background and constrained to the SM predictions within its theoretical uncertainties. The diboson signal strength is measured to be $\mu_{ZV} = 0.6^{+0.4}_{-0.8}$ with an observed (expected) significance of 1.4 (2.2) standard deviations.

The best-fit value for the $ZH(c\bar{c})$ signal strength is $\mu_{ZH} = -69 \pm 101$. By assuming a signal with the kinematics of the SM Higgs boson, model-dependent corrections are made to extrapolate to the inclusive phase space. Hence, an upper limit on $\sigma(pp \rightarrow ZH) \times B(H \rightarrow c\bar{c})$ is computed using a modified frequentist CL$_{s}$ method [69,70] with the profile likelihood ratio as the test statistic. The observed (expected) upper limit is found to be 2.7 ($3.9^{+2.1}_{-1.1}$) pb at the 95% C.L. This corresponds to an observed (expected) upper limit on μ at the 95% C.L. of 110 (150^{+80}_{-40}). The uncertainties in the expected limits correspond to the $\pm 1\sigma$ interval of background-only pseudoexperiments. With the current sensitivity, the result depends weakly on the assumption of the SM rate for $H \rightarrow b\bar{b}$. The observed limit remains within 5% of the nominal value when the assumed value for normalization of the $ZH(b\bar{b})$ background is varied from zero to twice the SM prediction.

A search for the decay of the Higgs boson to charm quarks has been performed using 36.1 fb$^{-1}$ of data collected with the ATLAS detector in pp collisions at $\sqrt{s} = 13$ TeV at the LHC. No significant excess of $ZH(c\bar{c})$ production is observed over the SM background expectation. The observed upper limit on $\sigma(pp \rightarrow ZH) \times B(H \rightarrow c\bar{c})$ is 2.7 pb at the 95% C.L. The corresponding expected upper limit is $3.9^{+2.1}_{-1.1}$ pb. This is the most stringent limit to date in direct searches for the inclusive decay of the Higgs boson to charm quarks.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG,
ATLAS Collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B 726, 120 (2013).

CMS Collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, Phys. Rev. D 92, 012004 (2015).

ATLAS and CMS Collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s} = 7$ and 8 TeV, J. High Energy Phys. 08 (2016) 045.

ATLAS and CMS Collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114, 191803 (2015).

ATLAS Collaboration, Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector, Phys. Rev. D 97, 072003 (2017).

ATLAS Collaboration, Evidence for the $H \rightarrow bb$ decay with the ATLAS detector, J. High Energy Phys. 12 (2017) 024.

CMS Collaboration, Evidence for the Higgs boson decay to a bottom quark-antiquark pair, Phys. Lett. B 780, 501 (2018).

G. Perez, Y. Soreq, E. Stamou, and K. Tobioka, Constraining the charm Yukawa and Higgs-quark coupling universality, Phys. Rev. D 92, 033016 (2015).

G. Perez, Y. Soreq, E. Stamou, and K. Tobioka, Prospects for measuring the Higgs boson coupling to light quarks, Phys. Rev. D 93, 013001 (2016).

A. Djouadi, J. Kalinowski, and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108, 56 (1998).

D. de Florian et al., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv: 1610.07922.

G. T. Bodwin, F. Petriello, S. Stoynev, and M. Velasco, Higgs boson decays to quarkonia and the $H\bar{c}c$ coupling, Phys. Rev. D 88, 053003 (2013).

A. L. Kagan, G. Perez, F. Petriello, Y. Soreq, S. Stoynev, and J. Zupan, Exclusive Window onto Higgs Yukawa Couplings, Phys. Rev. Lett. 114, 101802 (2015).

ATLAS Collaboration, Search for Higgs and Z Boson Decays to $J/\psi \gamma$ and $T(nS)\gamma$ with the ATLAS Detector, Phys. Rev. Lett. 114, 121801 (2015).

ATLAS Collaboration, Search for Higgs and Z Boson Decays to $\phi \gamma$ with the ATLAS Detector, Phys. Rev. Lett. 117, 111802 (2016).

C. Delaunay, T. Golling, G. Perez, and Y. Soreq, Enhanced Higgs boson coupling to charm pairs, Phys. Rev. D 89, 033014 (2014).

ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, J. Instrum. 3, S08003 (2008).

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of...
the polar angle \(\theta \) as \(\eta = -\ln \tan(\theta/2) \). Angular distance is measured in units of \(\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \).

[25] ATLAS Collaboration, ATLAS insertable B-layer technical design report, Report No. ATLAS-TDR-19, 2010, https://cds.cern.ch/record/1291633; ATLAS insertable B-layer technical design report addendum, Report No. ATLAS-TDR-19-ADD-1, 2012, https://cds.cern.ch/record/1451888.

[26] ATLAS Collaboration, Luminosity determination in pp collisions at \(\sqrt{s} = 8 \) TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 76, 653 (2016).

[27] ATLAS Collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70, 823 (2010).

[28] S. Agostinelli et al. (GEANT4 Collaboration), GEANT4—A simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[29] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079.

[30] T. Sjöstrand, S. Mrenna, and P. Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178, 852 (2008).

[31] D.J. Lange, The EVTGEN particle decay simulation package, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[32] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: The POWHEG BOX, J. High Energy Phys. 06 (2010) 043.

[33] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43, 023001 (2016).

[34] ATLAS Collaboration, Measurement of the Z/\(\gamma^* \) boson transverse momentum distribution in pp collisions at \(\sqrt{s} = 7 \) TeV with the ATLAS detector, J. High Energy Phys. 09 (2014) 145.

[35] G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola, T. Reiter, and F. Tramontano, Automated one-loop calculations with GoSam, Eur. Phys. J. C 72, 1889 (2012).

[36] J. Pumpkim, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and W.-K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, J. High Energy Phys. 07 (2002) 012.

[37] P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumpkim, D. Stump, W.-K. Tung, and C.-P. Yuan, Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78, 013004 (2008).

[38] M.L. Ciccolini, S. Dittmaier, and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68, 073003 (2003).

[39] O. Brein, A. Djoudi, and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579, 149 (2004).

[40] G. Ferrera, M. Grazzini, and F. Tramontano, Associated WH Production at Hadron Colliders: A Fully Exclusive QCD Calculation at NNLO, Phys. Rev. Lett. 107, 152003 (2011).

[41] O. Brein, R. Harlander, M. Wiesemann, and T. Zirke, Top-quark mediated effects in hadronic Higgs-Strahlung, Eur. Phys. J. C 72, 1868 (2012).

[42] G. Ferrera, M. Grazzini, and F. Tramontano, Higher-order QCD effects for associated WH production and decay at the LHC, J. High Energy Phys. 04 (2014) 039.

[43] G. Ferrera, M. Grazzini, and F. Tramontano, Associated ZH production at hadron colliders: the fully differential NNLO QCD calculation, Phys. Lett. B 740, 51 (2015).

[44] J.M. Campbell, R.K. Ellis, and C. Williams, Associated production of a Higgs boson at NNLO, J. High Energy Phys. 06 (2016) 179.

[45] K. Hamilton, P. Nason, and G. Zanderighi, MINLQO: multi-scale improved NLO, J. High Energy Phys. 10 (2012) 155.

[46] G. Luisoni, P. Nason, C. Oleari, and F. Tramontano, HW*/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO, J. High Energy Phys. 10 (2013) 083.

[47] J. Bellm et al., Herwig 7.0/Herwig ++ +3.0 release note, Eur. Phys. J. C 76, 196 (2016).

[48] ATLAS Collaboration, ATLAS PYTHIA 8 tunes to 7 TeV data, Report No. ATL-PHYS-PUB-2014-021, 2014, https://cds.cern.ch/record/1966419.

[49] L. Altenkamp, S. Dittmaier, R. V. Harlander, H. Rzehak, and T.J.E. Zirke, Gluon-induced Higgs-strahlung at next-to-leading order QCD, J. High Energy Phys. 02 (2013) 078.

[50] B. Hespel, F. Maltoni, and E. Vryonidou, Higgs and Z boson associated production via gluon fusion in the SM and the 2HDM, J. High Energy Phys. 06 (2015) 065.

[51] L. Altenkamp, S. Dittmaier, R. V. Harlander, H. Rzehak, and T.J.E. Zirke, Gluon-induced Higgs-strahlung at next-to-leading order QCD, J. High Energy Phys. 02 (2013) 078.

[52] R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B867, 244 (2013).

[53] M. Czakon and A. Mitov, Top + + : A program for the calculation of the top-pair cross section at hadron colliders, Comput. Phys. Commun. 185, 2930 (2014).

[54] T. Gleisberg, S. HÖche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, and J. Winter, Event generation with SHERPA 1.1, J. High Energy Phys. 02 (2009) 007.

[55] S. Catani, L. Cieri, G. Ferrera, M. Grazzini, and F. Tramontano, Vector Boson Production at Hadron Colliders: A Fully Exclusive QCD Calculation at Next-to-Next-to-Leading Order, Phys. Rev. Lett. 103, 082001 (2009).

[56] ATLAS Collaboration, Electron efficiency measurements with the ATLAS detector using 2012 LHC proton-proton collision data, Eur. Phys. J. C 77, 195 (2017).

[57] ATLAS Collaboration, Electron efficiency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data, Report No. ATLAS-CONF-2016-024, 2016, https://cds.cern.ch/record/2157687.

[58] ATLAS Collaboration, Muon reconstruction performance of the ATLAS detector in proton-proton collision data at \(\sqrt{s} = 13 \) TeV, Eur. Phys. J. C 76, 292 (2016).

[59] ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, Eur. Phys. J. C 77, 490 (2017).

[60] ATLAS Collaboration, Properties of jets and inputs to jet reconstruction and calibration with the ATLAS detector.
using proton–proton collisions at $\sqrt{s} = 13$ TeV, 2015. https://cds.cern.ch/record/2044564.

[61] M. Cacciari, G. P. Salam, and G. Soyez, The anti-k_t jet clustering algorithm, J. High Energy Phys. 04 (2008) 063.

[62] M. Cacciari, G. P. Salam, and G. Soyez, FASTJET User Manual, Eur. Phys. J. C 72, 1896 (2012).

[63] M. Cacciari and G. P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659, 119 (2008).

[64] ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector, Eur. Phys. J. C 76, 581 (2016).

[65] ATLAS Collaboration, Jet energy measurement with the ATLAS detector in proton–proton collisions at $\sqrt{s} = 7$ TeV, Eur. Phys. J. C 73, 2304 (2013).

[66] ATLAS Collaboration, Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Rev. D 96, 072002 (2017).

[67] ATLAS Collaboration, Performance of b jet identification in the ATLAS experiment, J. Instrum. 11, P04008 (2016).

[68] ATLAS Collaboration, Optimization of the ATLAS b-tagging performance for the 2016 LHC Run, Report No. ATL-PHYS-PUB-2016-012, 2016, https://cds.cern.ch/record/2160731.

[69] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71, 1554 (2011).

[70] A. L. Read, Presentation of search results: The CLS technique, J. Phys. G 28, 2693 (2002).

[71] ATLAS Collaboration, ATLAS Computing Acknowledgements 2016–2017, Report No. ATL-GEN-PUB-2016-002, https://cds.cern.ch/record/2202407.
28c Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
28d National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
28e West University in Timisoara, Timisoara, Romania
29 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
31 Department of Physics, Carleton University, Ottawa, Ontario, Canada
32 CERN, Geneva, Switzerland
33 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
34a Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
34b Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
35a Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
35b Department of Physics, Nanjing University, Jiangsu, China
35c Physics Department, Tsinghua University, Beijing, China
35d University of Chinese Academy of Science (UCAS), Beijing, China
36a Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui, China
36b School of Physics, Shandong University, Shandong, China
36c School of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, China
36d Tsung-Dao Lee Institute, Shanghai, China
37 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
38 Nevis Laboratory, Columbia University, Irvington, New York, USA
39 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
40a INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy
40b Dipartimento di Fisica, Università della Calabria, Rende, Italy
41a AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
41b Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
42 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
43 Physics Department, Southern Methodist University, Dallas, Texas, USA
44 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
45 DESY, Hamburg and Zeuthen, Hamburg and Berlin, Germany
46 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
47 Institut für Kern-und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
48 Department of Physics, Duke University, Durham, North Carolina, USA
49 SUPA—School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
50 INFN e Laboratori Nazionali di Frascati, Frascati, Italy
51 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
52 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland
53 INFN Sezione di Genova, Genova, Italy
53b Dipartimento di Fisica, Università di Genova, Genova, Italy
54a E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
54b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
55 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
56 SUPA—School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
57 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
58 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
60 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
61 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
62 Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
62b Department of Physics, The University of Hong Kong, Hong Kong, China
62c Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
63 Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
64 Department of Physics, Indiana University, Bloomington, Indiana, USA
65 Institut für Astrophy- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
66 University of Iowa, Iowa City, Iowa, USA
