Nonlinear algorithms of residual stresses reconstruction for axisymmetric problem

Donghai Chen¹, Quan Tian², Xun Zhang*,² Juntong Yun³

¹Changjiang institute of survey, planning, design and research, Wuhan, Hubei 430081, China
²Zhihong college of Hubei University, Wuhan, Hubei 430081, China
³Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China

*Corresponding author Email: zhangxun@cjwsjy.com.cn

Abstract. A non-destructive testing method for three-dimensional stress of a glass cylinder based on photoelasticity is presented. Based on simulated stresses in the glass cylinder, intensity images output from a circular polariscope are calculated by Jones calculus. Therefore, the isoclinic angle and optical retardation can be simulated. Then the residual stresses in the glass cylinder can be reconstructed in cylindrical coordinates. By comparing the reconstructed stresses with numerical simulated stresses, there is good agreement but with some mismatches.

1. Introduction
With a large demand of the compression molded glass products, especially precision glass lenses, nondestructive method for stress measurement inside the glass components are needed. However, due to the nonlinear problem of the stress. Stress reconstruction in photoelastic material is a problem[1]. In order to study the reconstruction error of the stress reconstruction method, a residual stress reconstruction process of a glass cylinder is analyzed. Firstly, residual stresses in the glass cylinder are simulated by finite element method (FEM). Based on the simulated stresses, intensity images emerging from a circular polarizer can be calculated by Jones calculus. With six step phase-shifting technique (six step PST) [2], the isoclinic angle and optical retardation of the glass cylinder was then obtained. Therefore, the residual stresses were reconstructed through the isoclinic angle and optical retardation by integrated photoelasticity. The error of reconstruction method is presented by comparing the reconstructed stresses with the stresses through FEM.

2. Numerical simulation of a circular polariscope
Figure 1 shows a schematic of a circular polarizer. In Fig. 1, the polarizer and analyzer are identical. S represents the slow axis, F represents the fast axis. ξ and γ represents the fast axis of two quarter wave plates; φ is isoclinic angle of the specimen. The orientation of the polarizer is fixed at π/2, β is the orientation of the analyzer.
According to Jones Calculus, the light emitting from the analyzer can be described as [3]:

$$\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ -\cos \beta \sin \beta & \sin^2 \beta \end{pmatrix} \times \begin{pmatrix} i \cos^2 \gamma + \sin^2 \gamma (i-1) \sin \gamma \cos \gamma \\ (i-1) \sin \gamma \cos \gamma i \sin^2 \gamma + \cos^2 \gamma \end{pmatrix}$$

$$\times J(\Delta, \phi) \times \begin{pmatrix} i \cos^2 \varepsilon + \sin^2 \varepsilon (i-1) \sin \varepsilon \cos \varepsilon \\ (i-1) \sin \varepsilon \cos \varepsilon i \sin^2 \varepsilon + \cos^2 \varepsilon \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

(1)

$J(\Delta, \phi)$ is the Jones matrix of the specimen, and Δ and ϕ are optical retardation and isoclinic angle of the specimen, respectively. The $J(\Delta, \phi)$ can also be expressed as:

$$J(\Delta, \phi) = \begin{pmatrix} e^{i\Delta} \cos^2 \phi + \sin^2 \phi & (e^{i\Delta} - 1) \sin \phi \cos \phi \\ (e^{i\Delta} - 1) \sin \phi \cos \phi & e^{i\Delta} \sin^2 \phi + \cos^2 \phi \end{pmatrix}$$

(2)

Along the light path, the object can be divided into n layers with a thickness of dz. The relation between the outgoing light E_{out} and the incident light E_{in} is expressed as [3, 4]:

$$E_{out} = \sum_{k=1}^{n} (1 + A_k dz) E_{in}$$

(3)

where, $E = \begin{pmatrix} E_x \\ E_y \end{pmatrix}$, $A = -\frac{1}{2} i C_0 \begin{pmatrix} \sigma_{xx} - \sigma_{yy} & 2\tau_{xy} \\ 2\tau_{xy} & -(\sigma_{xx} - \sigma_{yy}) \end{pmatrix}$. σ_{xx}, σ_{yy} and τ_{xy} are stress components in XY plane, i is imaginary. Then, the Jones matrix of the photoelastic object is obtained as:

$$J_{stress} = \sum_{k=1}^{n} (1 + A_k dz) = J(\Delta, \phi)$$

(4)

2.1. Experiment simulation

The residual stresses in a thermal treated glass cylinder are simulated by MSC/MARC[5] based on a two-dimensional axisymmetric model. Figure 2 shows the residual stresses in cylindrical coordinates. The stress distribution displays half of the normal cross section of the cylinder. In the stress distribution figures, compressive stress is represented by negative value and tensile stress is represented by positive value.

Based on Fig. 2, light intensity images of six step PST can be calculated, shown in Fig. 3. In the calculation, refraction of light passing through the glass cylinder is not considered. And the light wavelength is 683 nm, the photoelastic constant of BK7 is $C_0 = 2.77 e-6$/Mpa.
3. Residual stress reconstruction

As shown in Fig. 4, along the light ray s, in the 3D region LMN formed by plane $z=Z_0+h$ and plane $z=Z_0$, the shear forces of plane $z=Z_0+h$ and plane $z=Z_0$ can be expressed as:

$$ T_u = \int_{d}^{R} (\int_{d}^{\zeta} \tau_{xz} dy) dx = \frac{1}{2C_0} \int_{d}^{R} V_z dx $$ \hspace{1cm} (5)

$$ T_l = \int_{d}^{R} (\int_{d}^{\zeta} \tau_{xz} dy) dx = \frac{1}{2C_0} \int_{d}^{R} V_z dx $$ \hspace{1cm} (6)
where, R is the outer diameter of this area; d is the distance to the axis of symmetry of light s. In the auxiliary plane $z=zh$, V_1 and V_2 are denoted as V_1' and V_2', respectively.

Based on the equilibrium condition of the 3D region LMN:

$$
C_0 \int_L^M \sigma_z dy = \frac{1}{2h} \left(\int_0^N V_{2}^2 dx - \int_0^N V_{1}^2 dx \right) - V_i
$$

(7)

The shear stress τ_c and axial stress σ_c can be calculated, through Eqs. (6) and (7), respectively [6, 7].

3.1. Circumferential stress and radial stress

The circumferential stress σ and radial stress σ_r, can be calculated through the equation of equilibrium:

$$
\frac{\partial \sigma_r}{\partial r} + \frac{\sigma_r - \sigma_\theta}{r} + \frac{\partial \tau_c}{\partial z} = 0
$$

(8)

and the generalized sum rule:

$$
\sigma_\theta + \sigma_r = \sigma_c - 2 \int_0^r \frac{\partial \tau_c}{\partial z} dt + C_1
$$

(9)

where, C_1 is an constant and depends on boundary conditions. Therefore, the circumferential stress σ and radial stress σ_r can be obtained as:

$$
\sigma_c(r) = -\int_0^r \frac{\partial \tau_c}{\partial z} dt + \frac{1}{r^2} \int_0^r r \sigma_z dt + \frac{1}{2} C_2 + C_4
$$

(10)

$$
\sigma_r(r) = \sigma_c - \int_0^r \frac{\partial \tau_c}{\partial z} dt - \frac{1}{r^2} \int_0^r r \sigma_z dt - \frac{1}{2} C_2 + C_4
$$

(11)

where, C_2 and C_4 are constants depending on C_1. In order to acquire C_2 and C_4, a cost function PF is introduced [4].

$$
PF = \frac{1}{n} \sum_{m=1}^n \left[(V_{1c}(i) - V_{1m}(i))^2 \right]
$$

(12)

Subscript m denotes experiment values and subscript c denotes calculated values. The relation between $V_{1c}(i)$ and $V_{1m}(i)$ can be expressed as:

$$
C_2 \left(C_0 \int_L^M \left(\frac{x^2}{r^4} - \frac{1}{2r^2} \right) dy \right) + C_4 \left(C_0 \int_L^M dy \right) = V_{1m} - V_{1c}'
$$

(13)

Therefore, the C_2 and C_4 on each layer can be obtained and optimized by using the least square method.

4. Results and discussion

Based on the method in section 3, the reconstructed stresses are shown in Fig. 5. Compressive stress is represented by negative value and tensile stress is represented by positive value.

![Fig. 5 Residual stresses calculation of the normal cross section in cylindrical coordinates: (a) σ_z, (b) σ_r, (c) σ_θ, (d) τ_c](image-url)
Comparing Fig. 2 and Fig. 5, the reconstructed stresses shows the same magnitude and distribution with the FEM simulation but the axial stress, radial stress and circumferential stress have certain errors.

Figure 6 shows the C_2 and C_4 along the layer. It can be seen that the C_2 is a very small value, and can be ignored. C_4 is the mainly factor.

5. Conclusion
In this paper, the residual stress distribution in a thermal treated glass cylinder is calculated by FEM simulation. Based on the stress tensor, intensity images from the circular polariscope were simulated and the stresses reconstruction was carried out. By comparing the reconstructed stresses with the stresses by numerical simulation, it shows that the method can be used to reconstruct the 3D stresses but with some errors. In the calculation of circumferential stress and radial stress the constant, which depends on boundary conditions, in generalized sum rule plays an import factor.

References
[1] Doyle, J. F., and Danyluk, H. T., “Integrated photoelasticity for axisymmetric problems,” Exp. Mech. 18(6), 215-220.
[2] Tao, B., He, P., Shen, L., and Yi, A., “Quantitatively measurement and analysis of residual stresses in molded aspherical glass lenses,” Int. J. Adv. Manuf. Tech. 74(9-12), 1167-1174.
[3] Theocaris, B. P. S., Gdoutos, E. E., [Matrix Theory of Photoelasticity]. Springer-Verlag.
[4] Aben, H. K., Josepson, J. I., and Kell, K. J., “The case of weak birefringence in integrated photoelasticity,” Opt. Lasers Eng. 11(3), 145-157.
[5] Chen, Y., Allen, Y. Y., Su, L., Klocke, F., and Pongs, G., “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. E.-T. Asme 130(5), 051012.
[6] Aben, H., and Errapart, A., “Photoelastic Tomography with Linear and Non-linear Algorithms,” Exp. Mech. 52(8), 1179-1193.
[7] Aben, H., Ainola, L., and Errapart, A., “Application of the Abel inversion in case of a tensor field,” Inverse Probl. Sci. Eng. 18(2), 241-249.