Proper Motion of H$_2$O Masers in IRAS 20050+2720 MMS1: An AU Scale Jet Associated with An Intermediate-Mass Class 0 Source

Ray S. FURUYA1, Yoshimi KITAMURA2, Alwyn WOOTTEN3, Mark J. CLAUSSEN4 and Ryohei KAWABE5

1 Division of Physics, Mathematics, and Astronomy, California Institute of Technology, MS 105-24, 1201 East California Boulevard, Pasadena, CA 91125, U.S.A.
e-mail: rsf@astro.caltech.edu,
2 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai 3-1-1, Sagamihara, Kanagawa 229-8510, Japan
e-mail: kitamura@pub.isas.jaxa.jp
3 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, U.S.A.
e-mail: awootten@nrao.edu
4 National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM 87801, U.S.A.
e-mail: mclausse@nrao.edu
5 National Astronomical Observatory, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan

Received 2003 August 13; accepted 2005 March 26

Abstract. We conducted a 4 epoch 3 month VLBA proper motion study of H$_2$O masers toward an intermediate-mass class 0 source i20 MMS1 (d =700 pc). The region of i20 contains at least 3 bright young stellar objects at millimeter to submillimeter wavelengths and shows three pairs of CO outflow lobes: the brightest source MMS1, which shows an extremely high velocity (EHV) wing emission, is believed to drive the outflow(s). From milli-arcsecond (mas) resolution VLBA images, we found two groups of H$_2$O maser spots at the center of the submillimeter core of MMS1. One group consists of more than \sim 50 intense maser spots; the other group consisting of several weaker maser spots is located at 18 AU south-west of the intense group. Distribution of the maser spots in the intense group shows an arc-shaped structure which includes the maser spots that showed a clear velocity gradient. The spatial and velocity structures of the intense group and the relative proper motions strongly suggest that the maser emission is associated with a protostellar jet. Comparing the observed LSR velocities with calculated radial velocities from a simple biconical jet model, we conclude that the most of the maser emission are likely to be associated with an accelerating biconical jet which has large opening angle of about 70$^\circ$. The large opening angle of the jet traced by the masers would support the hypothesis that poor jet collimation is an inherent property of luminous (proto)stars.

Key words. Stars: formation – Radio lines: ISM – ISM: jets and outflows – ISM: individual objects: IRAS 20050+2720 MMS1

1. Introduction

Water maser surveys using single-dish radio telescopes toward intermediate- and low-mass young stellar objects (YSOs) have been extensively performed since the early 1990s (e.g., Claussen et al. 1996). From a multi-epoch survey toward low-mass YSOs (bolometric luminosity, $L_{bol} < 100 L_\odot$), Furuya et al.(2001, 2003) found that class 0 objects are favored sites for the masers: the detection rates are derived to be $\sim 40\%$ for class 0, while only $\sim 4\%$ for class I. It is known that the isotropic maser luminosity, L_{H_2O}, correlates well with the bolometric luminosity of the source (Wilking et al. 1994; Furuya et al. 2001). It is interesting, however, to note that the presence of the maser emission is strictly related to that of high-velocity
outflowing gas in the case of high-mass YSOs (Felli, Palagi & Tofani 1992). Furuya et al. (2001) showed that the H$_2$O maser luminosity in low-mass stars is more closely related to the luminosity of 100 AU scale radio jets rather than the mechanical luminosity of larger scale CO outflows. In fact, VLA observations have revealed that the masers tend to be distributed within several hundred AU of the central stars (e.g., Wootten 1989). Although some H$_2$O masers are reported to be associated with protostellar disks (e.g., Fiebig et al. 1996; Torrelles et al. 1998; Seth et al. 2002), high resolution VLBI observations have demonstrated the presence of knots and shock structures which are reminiscent of those of ionized jets in the larger scale Harbig Haro objects (Patel et al. 2000; Seth et al. 2002). In order to extend our knowledge of H$_2$O masers in intermediate-mass YSOs, we have conducted multi-epoch VLBA observations of H$_2$O masers towards the intermediate-mass YSO IRAS 20050+2720 (d=700 pc).

2. IRAS 20050+2720

IRAS 20050+2720 is surrounded by a large cluster of low-mass stars (Chen et al. 1997; Wilking et al. 1989) and has a luminosity in the IRAS bands of 388 L_{\odot} (Molinari et al. 1996). The IRAS source has been categorized as a luminous class 0 protostar in the early compilation (Bachiller 1996). Recent SCUBA imaging (Chini et al. 2001) revealed the presence of a bright central object (IRAS 20050+2720 MMS1) and two associated objects located $\sim 2''$ south-east. The brightest source MMS1 is identified as the IRAS source. Although it was not categorized as class 0 in the updated compilation (André, Ward-Thompson & Barsony 2000), Chini et al. (2001) reported that the source MMS1 is very likely to be at the class 0 stage. This is because MMS1 shows a ratio of FIR luminosity (L_{FIR}) and submillimeter luminosity (L_{mm}) for $\lambda \geq 350 \mu$m of ~ 164 which satisfies one of the definitions of class 0 (André, Ward-Thompson & Barsony 1993; $L_{\text{bol}}/L_{\text{mm}} \leq 200$).

Bachiller, Fuente & Tafalla (1995; hereafter BFT95) found three pairs of outflow lobes emanating from the vicinity of the source MMS1 from the IRAM 30-m telescope CO $J = 2-1$ observations. One of the lobe pairs is a highly collimated jet with extremely high velocity (EHV) emission whose terminal velocity exceeds ~ 60 km s$^{-1}$ with respect to the ambient cloud velocity. The presence of the EHV outflow suggests that the driving source of the EHV outflow is in its most powerful outflow phase. BFT95 suggested that two or three independent outflows are emanated from different YSOs embedded in the cloud core, although the driving sources have not been identified.

H$_2$O maser emission in IRAS 20050+2720 region was first detected by Palladini et al. (1991), and was subsequently observed by the Arcetri group (Brand et al. 1994; Palumbo et al. 1994): all of the detected emission was seen around the cloud velocity ($V_{\text{LSR}} = 6$ km s$^{-1}$). Using the Nobeyama 45-m telescope, Furuya et al. (2003) newly detected EHV maser emission at $V_{\text{LSR}} = -91$ km s$^{-1}$. The EHV emission was blueshifted with respect to the cloud velocity, while no high velocity emission was detected on the redshifted side. This result also showed weak, blueshifted, intermediate high velocity (IHV) components at $V_{\text{LSR}} = -24$ and -36 km s$^{-1}$ in 1998 February. In 1999, we carried out VLA observations and found that all of the maser emission was located within $\sim 5''$ (~ 350 AU) from the source MMS1. Our VLA observations revealed that the EHV emission is located exactly at the JCMT position for source MMS1, while the low-velocity components around the cloud velocity are located to 4.5$''$ west and 0.6$''$ north from the EHV emission (Furuya et al. 2003). Suspecting multiplicity of CO outflows and the fact that the SCUBA beam ($8.3''$ at 450 μm; Chini et al. 2001) is larger than the separation of the two maser components, we made high resolution continuum images of the region with the OVRO mm-array. In order to investigate the detailed structure of the masers, we carried out extremely high angular resolution VLBA observations.

3. Observations

3.1. 3 mm Continuum Emission Observations with OVRO mm-Array

Aperture synthesis observations of continuum emission at 3 mm were carried out using the six-element Owens Valley Radio Observatory (OVRO) Millimeter Array from 2002 December to 2003 February with the H and E array configurations. The phase tracking center was α(J2000)=20h07m55s.87, δ(J2000)=27$^\circ$28$'$59$''$.80. The field of view (FOV) was 65$''$. All of the element antennas are equipped with SIS receivers having system noise temperatures in double-sideband of 200 K toward the zenith at 93 GHz. We tuned the 3 mm SIS receiver at the frequencies of N$_2$H$^+$ (1–0) line (93.173 GHz) for upper sideband and H$^{13}\text{CO}^+$ (1–0) line (86.754 GHz) for lower side band. A detailed presentation of the results of the molecular line emission will be published elsewhere (R. S. Furuya et al. 2005, in preparation). The Continuum Correlator was configured for both the sidebands, with a total bandwidth of 3 GHz. We used 3C 454.3 and 3C 84 as a passband calibrator and J2025+337 as a phase and gain calibrator. Flux density of J2025+337 was measured by comparison of that of Uranus: it was stable in the range from 1.2 to 1.5 Jy during the observation period. The overall flux uncertainty is about 20%. The data calibration was done using the originally developed software at OVRO, and the image construction was performed using the AIPS package of the NRAO. After merging the data in both the sidebands, we constructed continuum emission images with two beam weightings. Synthesized beam sizes were 4.$''$04 × 3.$''$18 with natural weighting and 2.$''$60 × 1.$''$85.
Table 1. Summary of VLBA H$_2$O Maser Observations

Epocha	MAIN Field: Low-Velocity Emission	Sub-Fieldb: EHV Emission						
	Number of Antennas	$\theta_{\text{maj}} \times \theta_{\text{min}}$	P.A.	Sensitivityc	Number of Antennas	$\theta_{\text{maj}} \times \theta_{\text{min}}$	P.A.	Sensitivityc
I	10^f	0.78\times0.40	-2	3.4	5^f	2.8\times1.4	$+29$	6.2
II	9^e	1.1\times0.51	$+26$	3.7	5^f	2.8\times1.5	$+29$	4.7
III	10^f	0.95\times0.40	-14	2.8	5^f	2.9\times1.6	$+24$	4.8
IV	10^f	1.1\times0.39	-14	3.5	5^f	2.9\times1.6	$+27$	6.9

a The 4 epochs are 1999 April 1, May 5, June 5 and July 4. b The following data are common for the Sub-Fields 1 and 2 (see §4.2.2). c An RMS image noise level with a velocity resolution of 0.2 km s$^{-1}$. d All 10 VLBA stations. e Except the North Liberty station. f Fort Davis, Los Alamos, Pie Town, Kitt Peak and Owens Valley.

Fig. 1. Continuum emission maps taken with the OVRO millimeter array toward IRAS 20050+2720 MMS1 with (a) natural weighting (left) and (b) uniform weighting (right). The solid contours start at $+2\sigma$ level with $+2\sigma$ interval and the dashed contours are -2σ intervals started at -2σ level. The image noise levels are 0.78 and 1.5 mJy beam$^{-1}$ for the panels (a) and (b), respectively. The white dot and the eastern cross indicate the positions of the low-velocity and EHV H$_2$O maser emission (see Fig. 2). The sizes of the synthesized beams are presented in the bottom right corners.

with uniform weighting. The 1σ rms noise levels for the continuum emission maps were 0.78 mJy beam$^{-1}$ for the former and 1.5 mJy beam$^{-1}$ for the latter.

3.2. H$_2$O Maser Observations with VLBA

VLBI observations of the H$_2$O maser emission in IRAS 20050+2720 MMS1 were carried out using all 10 antennas of the Very Long Baseline Array (VLBA) of the NRAO1 on 1999 April 1, May 5, June 5, and July 4 (hereafter epochs I, II, III and IV, respectively). For epoch II, however, we could not use the antenna at North Liberty. All of the data were obtained for 8-hour integration in each epoch. We used a frequency setup of the 8 MHz IF bandwidth mode with 512 channels, which provides a velocity resolution of 0.2 km s$^{-1}$ at 22.235077 GHz. This frequency setup covers the range of $V_{\text{LSR}} = -96.1$ to $+10.5$ km s$^{-1}$:

1 The National Radio Astronomy Observatory (NRAO) is operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation.

this velocity coverage is sufficient to detect all of the maser emission previously detected.

The data were correlated at the NRAO Array Operation Center (Socorro, New Mexico). We adopted a correlator averaging time of 2.16 sec to obtain $\sim 0.8''$ radius FOV for the baseline of ~ 4000 km. Data calibration and image construction were performed using the AIPS package developed by the NRAO. We used two bright quasars 3C345 and 3C454.3 to determine delay and fringe rates as well as to calibrate bandpass response. In the next section, we present the image construction, identification of the maser emission and further analysis together with the results.

4. Results and Analyses

4.1. Relation between Millimeter Continuum Emission and Masers

Figure 1 presents the OVRO continuum emission maps together with the positions of the H$_2$O masers. There is a
distinct continuum emission peak toward the low-velocity and EHV maser emission. To plot the absolute position of the low-velocity masers, we adopted the results of the VLA measurements by Furuya et al. (2003) and used the position offset of the EHV emission obtained in [4.2.2].

Clearly the millimeter continuum emission is associated with the low-velocity maser emission. The peak of the continuum emission is slightly shifted with respect to the maser emission. We believe that this positional shift is real considering the baseline accuracies of VLA and OVRO array and angular separations between the calibrators and the source. It is noteworthy that the continuum emission in the natural weighting map (Figure 1a) is elongated to the east, namely, toward the EHV emission. In the uniform weighting map (Figure 1b), one may notice that there is a weak emission peak close to the EHV maser emission: this fact might suggest that there are at least two YSOs in this region.

We estimate molecular hydrogen mass \(M_{\text{H}_2}\) of the core from the total flux density \(F_\nu\) of the continuum emission assuming that the emission is thermal radiation from dust grains. We used a relation \(M_{\text{H}_2} = F_\nu D^2 / (\kappa_\nu B_\nu(T_\text{d})\) where \(\kappa_\nu\) is the mass opacity coefficient of the dust, \(T_\text{d}\) is the dust temperature and \(B_\nu(T_\text{d})\) is the Planck function. The value of \(\kappa_\nu\) at 3 mm is calculated with the usual form of \(\kappa_\nu \propto \kappa_0 \nu^\beta\). In order to keep consistency with the previous JCMT measurements by Chini et al. (2001), we used the same \(\kappa_0\) of 0.003 cm\(^2\) g\(^{-1}\) at 231 GHz, \(\beta\) of 1.4, and \(T_\text{d}\) of 34 K. We obtained \(M_{\text{H}_2}\) of 0.007 M\(_\odot\) for \(F_\nu = 25.6\) mJy by integrating the emission inside the 3\(\sigma\) contour. Note that the derived mass is a lower limit because interferometric observations do not receive the whole flux from a source due to the lack of short spatial frequency data. In fact, the resultant projected baseline length of our OVRO observations ranged from 6.2 to 75 k\(\lambda\), which will miss 50\% of the flux from structures extending more than 16" (0.05 pc at \(d=700\) pc)(see Wilner & Welch 1994).

4.2. Maser Emission Search in the VLBA Data: Low and Extremely High Velocity Emission

In the following, we present results and analyses from the VLBA observations of the H\(_2\)O masers.

First, we carried out fringe-frequency analysis (e.g., Walker 1981; Walker, Matsakis & Garcia-Barreto 1982) to cover a large FOV of \(\sim 3\)" which is 3 orders of magnitude larger than the VLBA fringe-spacings. The purpose of the fringe-frequency analysis was to search for maser spots which were not excited during the VLA observations in 1999 February (Furuya et al. 2003). As expected from the VLA observations, we confirmed that the distribution of the low-velocity masers is sufficiently compact to perform standard Fourier synthesis. The EHV emission was too weak to be detected with the fringe-frequency analysis.

Subsequently, we performed self-calibration using a strong (\(\sim 45\) Jy measured by Furuya et al. 2003) and point-like maser spot identified at \(V_{\text{LSR}} = +1.6\) km s\(^{-1}\) as a model. In the self-calibration procedure, we solved the time variation of the complex gain for phase weighted by amplitude.

4.2.1. Main Field: Low-Velocity Emission

Applying the solutions from the self-calibration procedure, we carried out image construction toward the low-velocity emission (hereafter we refer to it as the MAIN Field); the image area has \(\sim 0.23\)" size divided into 9 fields each of which has 77 milli-arcsecond (mas) size and 512\times512 pixels with a cell size of 0.15 mas. We believe that the area size of \(\sim 0.23\)" was sufficient to search for maser emission considering the absolute position accuracy of the VLA observations [4.2.2]. Subsequent to this coarse search, we constructed a final image of 41 mas size for the area where the low-velocity emission was detected, with a smaller cell size of 0.08 mas. The image noise level per velocity channel was typically 3 mJy beam\(^{-1}\) and the synthesized beam size was typically 1.0\times0.5 mas (Table 1).

In Figure 2 we show a total integrated intensity map of the MAIN Field, namely low-velocity H\(_2\)O masers, obtained in the Epoch III, in which we attained the highest sensitivity among the 4 epochs. The inserted panel presents the spectrum of the maser emission detected in the region. The overall distribution of the masers was similar for all 4 epochs: there can be seen bright maser emission peaks at the field center (hereafter MAIN group) and an isolated emission peak at \(\sim 25\) mas (corresponding to \(\sim 18\) AU) south-west of the MAIN group. Hereafter we call the latter emission as “SW feature” instead of “SW group” because the emission showed a point-like structure. The definition of “feature” will be given in [4.2.2].

4.2.2. Extremely High Velocity Emission

In addition, we searched for the EHV emission on the basis of the snapshot VLA D-array observations in 1999 February (Furuya et al. 2003) and 2003 January (M. Claussen, private communication): the former observations (hereafter Sub-Field 1) showed that the \(V_{\text{LSR}} = -93\) km s\(^{-1}\) emission is shifted by +2.33" in R.A. and -0.60" in Decl. with respect to the low-velocity emission and the latter observations (hereafter Sub-Field 2) showed that the \(V_{\text{LSR}} = -72\) and -78 km s\(^{-1}\) emission is shifted by +4.4" in R.A. and -0.6" in Decl.. Since these positions are outside the FOV correlated toward the 1.6 km s\(^{-1}\) emission, we used UV data only from south-western 5 antennas (Fort Davis, Los Alamos, Pie Town, Kitt Peak and Owens Valley) which provide the maximum spatial frequency of \(\sim 1.1 \times 10^7\) \(\lambda\). The synthesized beam sizes were typically 2.8\times1.5 mas and the image noise levels per velocity channel were typically 5 mJy beam\(^{-1}\) (Table 1). Applying the solution from the self-calibration procedure above, we constructed images toward both the Sub-Fields.
4.3. Identification of Maser Spots and Features

To identify maser “spots” from the image, we fitted a two-dimensional elliptical Gaussian profile to individual possible spots. We adopted a detection threshold of a signal-to-noise ratio (S/N) larger than 10. In this way, we detected 30~70 maser spots at each epoch (Figure 3). We estimated a relative positional error for each spot (σ_{spot}) to be ≤ 0.02 mas: a relative positional error of a point-like source convolved with a Gaussian shaped beam is given by the relation of $\sigma = 0.45 \theta_{\text{syn}}/[S/N]$ (Condon 1997), where θ_{syn} is the FWHM of the synthesized beam ($\theta_{\text{syn}} = [\theta_{\text{maj}} \times \theta_{\text{min}}]^{1/2}$).

Subsequent to the identification of the maser “spots”, we divided them into groups, i.e., spatially localized “features” with distinct peaks in line profiles; we grouped the spots in adjacent velocity channels that are distributed within one synthesized beam width. Each feature is considered probably to represents a distinct clump of gas. In Figure 3 only Features 4, 5, 9 and 13 showed emission over the 4 epochs among the 14 features identified in the MAIN-Field. Feature 2 persisted from Epoch I to III, but disappeared in the Epoch IV. The other 9 features did not persist continuously more than 3 epochs. Therefore, we do not consider these 9 features for our further analysis in proper motion measurements. For each feature, we calculated an intensity-weighted mean position of the contributing maser spots: its uncertainty is given by $\sigma_{\text{feature}} = [\sum_{\text{spot}} \sigma_{\text{spot}}^2]^{1/2}$. As summarized in Table 2, the resultant positional errors were a few $\times 0.01$ mas for the 6 features in the MAIN-Field and a few $\times 0.1$ mas for the EHV feature in the Sub-Field.

Finally, it is noteworthy that there is a velocity gradient of approximately 9 km s$^{-1}$ over 10 mas from Features 1 to 9.

4.4. Spectra of the Features and Their Time Variation

For each maser feature identified, we made a spectrum by integrating the intensity over the corresponding region. Figure 4 represents spectra of the features listed in Table 3. Among the series of the 7 spectra, Features 2, 5 and EHV showed single-peaked spectra while Features 4, 9, 13 and SW displayed multi-peaked spectra. Using these spectra, we evaluated intensity-weighted mean velocities (V_{mean}; Table 3). It is noteworthy that the former single-peaked features did not show any prominent trend of LSR-velocity change over the 4 epochs. On the other hand, the latter multiple-peaked features displayed small drifts. We discuss the velocity drifts when we assess proper motions of the features in the next subsection.

4.5. Proper Motions

Since VLBI observations generally do not provide absolute positions, we adopt the brightest spot at $V_{\text{LSR}} = 1.6$ km s$^{-1}$ in Feature 5 as a reference to examine the cross-epochal positional shifts of the maser features. The selec-
Fig. 3. Total integrated intensity maps (contours) overlaid with isovelocity maps (images) for the MAIN Field of the H$_2$O masers in IRAS 20050+2720. The contour levels are the same as those in Figure 2. The velocity range shown here is from $V_{\text{LSR}} = -1.5$ to 8.5 km s$^{-1}$. The white dots present peak positions of the maser spots. Boxes with labels indicate identified maser features.

Table 2. Relative Positions of the Identified H$_2$O Maser Features

Features	Epoch I	Epoch II	Epoch III	Epoch IV								
	$\Delta \alpha$	$\Delta \delta$	σ									
2	-0.046	3.928	0.011	0.049	4.094	0.014	-0.133	3.860	0.012
4	-0.160	1.500	0.031	-0.124	1.434	0.010	-0.154	1.308	0.012	-0.172	1.510	0.008
5	-0.133	0.135	0.008	-0.034	0.113	0.009	-0.053	-0.021	0.018	-0.071	-0.037	0.019
9	-1.794	-2.481	0.014	-1.679	-2.436	0.012	-1.659	-2.398	0.019	-1.684	-2.204	0.010
13	-5.439	-1.280	0.010	-5.392	-1.464	0.016	-5.349	-1.600	0.023	-5.235	-1.395	0.019
SW	-23.11	-12.89	0.052	-23.43	-13.10	0.04	-23.62	-13.50	0.03	-23.97	-13.60	0.05
EHV	4184.8	-709.9	0.29	4184.3	-709.9	0.35	4183.9	-709.7	0.18	4183.6	-709.4	0.17

(a) Right Ascension offset with respect to the 1.6 km s$^{-1}$ spot, (b) Declination offset, (c) Position error

The reference spot is not a complete point spread function of the 1.6 km s$^{-1}$ spot is justified because this spot does not show any velocity drift over the 4 epochs. In addition, the spot is enough small to be used as a position reference as shown in the following. The correlated flux (i.e., fringe amplitude) of the spot drops by a factor 2 at a projected baseline length of $\sim 3.2 \times 10^8 \, \lambda$ which corresponds to a fringe spacing of ~ 0.06 mas. This means that FWHM of the maser spot would be ~ 0.06 mas assuming that the spot has a Gaussian shape brightness distribution. Note that the reference spot is not a complete point
source compared with the relative position accuracy of the features (Table 2). Therefore, the size of the reference spot will be treated as a positional uncertainty in our analyses.

In Figure 5, we present an overlay of the peak positions of the maser spots together with boxes indicating the identified features. The overall distribution of the maser spots does not change over the 4 epochs: it shows an arc-shaped structure. In Figure 6, we present magnified overlays of the 7 features together with the intensity-weighted mean positions for the observing epochs (Table 2). As expected from Figure 5, most of the maser features in the MAIN Group do not show any prominent positional shifts. On the other hand, Features SW and EHV displayed distinct positional shifts as can be seen in Figure 6: the member spots of SW sequentially appeared from NE to SW over the 4 epochs and those of EHV appeared from SE to NW. These facts strongly suggest that the observed position shifts are caused by real motions of the spatially localized maser gas. In contrast, Features 2, 4 and 5 show neither well-defined position shifts of member spots nor systematic motions of their intensity-weighted mean positions.

Fig. 4. H$_2$O maser spectra toward Features 2, 4, 5, 9, 13, SW and EHV in IRAS 20050+2720 MMS1. The ambient cloud velocity is $V_{LSR} = 6.0$ km s$^{-1}$ (BFT95). In each feature, the spectra in the left-hand panels are magnified in the right-hand panels.
Fig. 5. Overlay of the peak positions of the low-velocity H_2O maser spots in the MAIN-Field of IRAS 20050+2720 MMS1. The colors present the observing epochs and the dashed-boxes indicate the maser features identified in §4.3. The dashed-boxes are the same as the solid boxes in Figure 3.

In order to identify proper motions more quantitatively, we made plots of the intensity-weighted mean positions vs. time (Figure 7). Table 4 summarizes the results of our analysis: we showed the derived position displacements for the 7 features. After fifth column, we show results only for the maser features being identified to have proper motions. We assess that the position shifts seen only in Features SW and EHV represent real motions of masing gas because these features displayed position shifts in $|\mu|$ exceeding 3σ levels of the uncertainties. In Table 4, we present P.A. of the proper motions, transverse velocities (V_{trans}) in the plane of the sky. In addition, we estimated 3-Dimensional (3D) velocities (V_{3D}) and an inclination angle (i) to the plane of the sky.

On the other hand, we conclude that the mean position shifts of the Features 9 and 13 were not real gas motions, but apparent changes because their spot distributions seem random. Let us suppose maser appearance reflects the motions of shock fronts through a gas clump, as seems likely. Then the observations may catch the clump harboring Feature 9 as one shock dies out in epoch I (e.g. SE-NW line of maser spots in Figure 8) and as another becomes dominant in epochs II, III, and IV (e.g. NE-SW line of maser spots in Figure 8). In this interpretation, there appears to be little proper motion between epochs II and III, however there does appear to be some between epochs III and IV. Since the status of these aspects of Feature 9 remain unclear, we do not include them in our analysis of proper motions. A dataset with more closely spaced observations, extending over a similar time period, could possibly clarify the situation.
4.6. Results of EHV Maser Emission

In \S 4.5, we presented that the observed position shift of the EHV maser emission is the proper motions of masering gas. It should be noted that the proper motion of the EHV masers is almost directed toward the MAIN when we compare Figures 1 with 6. Together with its line of sight velocity, we estimate that 3D motion of the masering gas has inclination angle of $79.4^\circ \pm 0.4^\circ$ with respect to the plane of sky (Table 4), suggesting that the gas motion is closely parallel to the line of sight. Applying the inclination to the apparent angular separation of $\sim 4.2^\prime\prime$ between the MAIN and EHV (Table 4, corresponding to ~ 2900 AU at $d = 700$ pc), their 3D separation is estimated to be approximately $23^\prime\prime$ ($\approx 16,000$ AU ≈ 0.078 pc). Even if considering possible uncertainties, the real separation is very likely to be in the range between $\sim 2,900$ AU and $\sim 16,000$ AU.

We argue that the EHV masers represent a different protostar’s activity from the Main for the following reasons. First, the separation is too large to associate the EHV masers with the Main, which is likely to be excited by the intermediate-mass protostar (\S 2). In fact, Furuya et al. (2003) reported that all the twenty H$_2$O maser sources detected in their VLA survey toward low- and intermediate-mass YSOs were associated with the central protostars within $\lesssim 50 \sim 200$ AU (see, e.g., Terebey, Vogel, & Myers 1992). On the other hand, Hofner & Churchwell (1996) showed that a median separation between H$_2$O masers and ultra compact Hii regions is 0.1 pc for OB stars. Clearly, these facts support the above conclusion. Second, if masers are originated in the larger scale EHV CO outflows from the MAIN, we could have observed expanding motions. However, our proper motion measurements clearly showed that their separation has decreased. On the basis of the large separation and the direction of proper motions, we thus rule out the hypothesis that EHV masers are associ-
3-Dimensional velocity obtained from VVuum emission with a 3We, however, could not detect a compact radio continuum emission data from the VLA Archive Database. EHV maser emission, we analyzed 4.86 GHz radio con-
et al. 1989).

member source in the cluster (Chen et al. 1997; Wilking
ated with the jet emanated from the MAIN. We suggest
that the EHV masers must be associated with another member source in the cluster (Chen et al. 1997; Wilking
et al. 1989).

In order to search for the possible exciting source of the
EHV maser emission, we analyzed 4.86 GHz radio con-
tinuum emission data from the VLA Archive Database. We,
however, could not detect a compact radio continuum emission with a 3σ upper limit of 0.14 mJy beam
(θmaj × θmin ≃ 5.97″ × 5.15″). On the basis of the lack
of a bright compact continuum source and the presence
of the EHV maser emission, we speculate that the driving
source of the EHV emission could be an extremely young
protostar.

5. Discussion

Evidence from AU-scale VLBI H2O maser observations
suggests that the masers in star forming regions are most
likely to be excited in the interaction zone between a jet
and ambient cloud material; or in interaction between a
wide angle flow and the surface of a protostellar disk.

In this section, we discuss the origin of H2O masers
associated with the millimeter continuum source MMS1
in terms of the jet scenario, supported by the following
evidence. We do not further discuss the EHV maser emis-
ion which we have shown to be associated with other
YSO activity (Wilking et al. 1989). We first note that the spatial
and velocity structures of Features 2 to 12 in the MAIN group
(Figure 8) convincingly demonstrate that they are ex-
cited in outflowing gas associated with a protostellar jet.

Table 4. Position Shifts and Proper Motions for the 7 Maser Features

| Feature | Δα (mas) | Δδ (mas) | |μ| (mas) | P.A. (deg) | Vtrans (km s⁻¹) | V3D (km s⁻¹) | i (deg) |
|---------|----------|----------|-----------|---------|-----------|--------------|-------------|--------|
| 2 | -0.018±0.31 | -0.15±0.16 | (0.15±0.35) | ... | ... | ... | ... | ... |
| 4 | 0.013±0.13 | -0.017±0.011 | (0.021±0.14) | ... | ... | ... | ... | ... |
| 5 | -0.17±0.034 | 0.04±0.03 | (0.18±0.076) | ... | ... | ... | ... | ... |
| 9 | 0.28±0.058 | 0.098±0.043 | (0.30±0.094) | ... | ... | ... | ... | ... |
| 13 | -0.13±0.017 | 0.19±0.062 | (0.23±0.06) | ... | ... | ... | ... | ... |
| SW | -0.75±0.078 | -0.85±0.085 | 1.13±0.11 | -131.4 | 14.4±1.4 | 14.4±1.4 | 4.7±3.5 | 79.4±0.2 |
| EHV | -0.50±0.12 | +1.26±0.085 | 1.36±0.16 | -68.2 | 17.9±5.2 | -91.3±29.5 | ... | ... |

(a) and (b) Total position shifts of the maser features over the observing period, namely per 95 days, along R.A. and Decl.
directions, respectively, derived from the least-square fitting in Figure 7 (c) |μ| = √(Δα)² + (Δδ)². For the maser features where we could not detect well-defined proper motions, apparent position shifts are given in the parenthesis. (d) Position Angle of the proper motion vector in the plane of the sky. (e) Transverse velocity on the plane of the sky converted from |μ|. (f) 3-Dimensional velocity obtained from V3D = √(Vtrans^2 + (Vmean - Vref)^2) where Vmean is in Table 4 and Vref is the LSR-velocity of the reference spot (1.6 km s⁻¹). Negative and positive represent approaching and receding motions, respectively. (g) Inclination angle of the V3D vector with respect to the plane of the sky, obtained from i = tan⁻¹[(Vmean - Vref)/Vtrans]. (h) All the parameters for Feature 2 are derived from the data taken in the first 3 epochs.
Fig. 8. Sketch of the biconical jet model. The z and x axes correspond to the line of sight and the jet axis projected on the plane of the sky, respectively. An observer lies at $z = -\infty$, and the $x-y$ plane corresponds to the plane of the sky.

Fig. 9. Guide map showing the 3 jet axes that have been taken as cutting lines in the position-velocity diagrams (see text; Figure 10). To avoid confusion, we present only an outline of each single lobe of the jet. The position angles of the 3 jet axes in the upper panel are 61° for the axis with the labels of A1 and A2, 101° for B1 and B2, and 28° for C1 and C2.

The maser velocity gradient parallels a line connecting MAIN and SW masers. It also parallels the NE-SW pair of the Intermediate High Velocity (IHV) CO outflow lobes (P.A. $\simeq -150°$; BFT95), although on a smaller scale than the 10″ (corresponding to 0.034 pc) scale of the CO lobes. Secondly, the velocity sense of the two flow signatures agrees: the blueshifted masers lie to the NE side and the redshifted masers lie to the SW, the same as found in the velocity structure of the IHV CO outflow lobe pair. Third, the relative proper motion between the MAIN and SW shows expansion, and its direction (P.A. = −131°; Table 4) is almost parallel to the flow line. These results strongly suggest that the maser jet channels along the direction of the line connecting MAIN and SW. It would be difficult to reconcile these motions with interaction of a flow with a protostellar disk.

We assume that the exciting source of the jet is located very near the position of the reference 1.6 km s$^{-1}$ spot for the following reasons. First, Feature 5, which hosts the 1.6 km s$^{-1}$ spot, shows a single-peaked spectrum over all 4 epochs (Figure 4), and it did not show a velocity drift (Table 3). Second, the intensity weighted mean position of Feature 5 and position of the 1.6 km s$^{-1}$ spot showed a positional coincidence within 0.11 mas over the 4 epochs (see Figure 4), which is consistent with the result that the reference spot would have a FWHM \sim 0.06 mas derived from the fringe amplitude analysis (\S 4.5). Last, the intensity weighted mean positions lie near to a line connecting the MAIN and SW masers, suggesting that the 1.6 km s$^{-1}$ spot is located at the expansion center.

Fig. 10. Comparison of the radial velocities from the biconical jet model with the observed LSR-velocities in the position-velocity (PV) diagram along the A1–A2 axis. Here we plotted all of the maser spots detected in the 4 epoch observations. The vertical and horizontal dashed lines, respectively, represent the positions of the reference 1.6 km s$^{-1}$ spot. Expected blue- and redshifted radial velocity regions from the model are hatched with blue and red, respectively (see text).

Now we try to shed light on the nature of the masers using a simple jet model. We assume that the H$_2$O maser emission is excited in the material at the interface be-
between the protostellar jet and the ambient gas, namely, at the surface of the protostar whose opening angle is \(2\theta\). Such a model has successfully explained the distribution of \(H_2\) masers in the high-mass (proto)star IRAS 20126+4104 [Moscadelli, Cesaroni, & Rioja 2000]. Figure 5 schematically shows the model: the assumed protostar lies at the apex of the cone. The axis of the cone is inclined by an angle of \(\phi\) with respect to the plane of the sky. We define a coordinate system whose \(z\) and \(x\) axes are, respectively, parallel to the line of sight and the projection of the jet axis on the sky. To calculate the jet velocities seen by an observer \(v_s\) at \(z = -\infty\), we consider that the gas moves along straight lines passing through the apex into two opposite directions. Given a power-law velocity profile of \(v(r) = v_0 (\frac{R}{r})^\alpha\), the jet velocity along the line of sight can be written as

\[
v_s(x) = v_0 \left(\frac{x}{R \cos(\phi + \theta)} \right)^\alpha \sin(\phi + \theta)
\]

Here we adopt \(v_0\) of 14.4 km s\(^{-1}\) from the 3D-velocity of the SW maser (Table 4i, and its distance of 21 AU from the 1.6 km s\(^{-1}\) spot for \(R\). We believe that this assumption is reasonable when we considered other results from VLBA proper motions studies in low- and intermediate-mass YSOs (IRAS 05143-0104: 64±22 km s\(^{-1}\) at a distance of 40 AU from the expansion center [Claussen et al. 1998], S106 FIR: 25–40 km s\(^{-1}\) at 25 AU [Furuya et al. 2000], IRAS 21391+5802: \(< 42\) km s\(^{-1}\) at \(~ 20\) AU [Patel et al. 2000], NGC 2071 IRS3: 22–42 km s\(^{-1}\) at 260 AU [Seth et al. 2002]). We thus have the following four free parameters: P.A. of the projected jet axis to the plane of the sky (i.e., P.A. of \(x\)-axis), \(\phi\), \(\theta\), and \(\alpha\). By definition, we can give constraints of \(0 < \theta < \pi/2\) and \(0 < |\phi| < \pi/2\). To apply such model, we selected 3 possible axes of P.A. = 61°, 101°, and 28° which we refer to as, respectively, A1–A2, B1–B2, and C1–C2 (see Figure 9). Note that 61° is the P.A. of the line connecting the reference spot and the SW maser, and that B1–B2 and C1–C2 are parallel to the two pairs of CO outflow lobes (see Figure 3 of BFT95). As for the power-law indices of the jet velocity, we considered representative values of \(\alpha = 0\), +1, and −1 which characterize constant velocity, accelerating, and decelerating jets, respectively.

We compared the observed and calculated velocities in position-velocity (PV) diagrams: the black dots in Figure 10 represent the PV distribution of the masers along the A1–A2 axis. Here we took the LSR-velocity of −1.6 km s\(^{-1}\) as a mean velocity. Figure 10 clearly tells us that the systemic velocity of \(v_{LSR} = 6\) km s\(^{-1}\) (see the inserted panel in Figure 2) which was derived from the 0.01 pc scale molecular cloud (BFT95) is not valid for the 10 AU scale maser emitting region. We started searching for the best-fit parameters from \(\alpha\). We found that only accelerating jet can explain the observed velocity structure whereas both constant velocity and decelerating jets cannot. We thus take \(\alpha = +1\), leaving us with two free parameters — \(\phi\) and \(\theta\). We obtained the best-fit parameters of \(\phi = -39^\circ\), and \(\theta = 36^\circ\). The blue- and red hatched regions in the 1st and 3rd quadrants of Figure 10 respectively, show the expected LSR-velocity ranges for the blue- and redshifted components. Although the observed maser emission is not excited all over the expected regions, a large opening angle such as \(2\theta \gtrsim 70^\circ\) is required to explain the velocity structure in the 1st and 3rd quadrants. This geometry suggests that the line of the sight would match the cone surface (that is, \(|\theta| + |\phi| \sim \frac{\pi}{2}\)). However, the remaining maser spots in the 4th quadrant, which are Features 13 and 14 (see Figure 3B), do not reconcile with the jet model prediction.

Since only the accelerating jet explains the velocity structure, we extended our analysis to the remaining two axes of B1–B2 and C1–C2, keeping \(\alpha = +1\). The best-fit parameters for the B1–B2, and C1–C2 cases are essentially the same as those obtained from the A1–A2 in the following three senses:

(i) Requiring a large opening angle \((2\theta = 72^\circ\) for B1–B2 and 74° for C1–C2), in other words, the P.A. would have an uncertainty of 35°.

(ii) The cone is most likely to have a geometry such that the surface where masers are excited is nearly parallel to the line of sight \((|\theta| + |\phi| = 78^\circ\) for B1–B2, and 80° for C1–C2), namely, the SW masers lie at the either of the two edges of the cone.

(iii) The LSR-velocities of the spots in Features 13 and 14 cannot be simultaneously reproduced with other spots.

In addition, we performed further analysis by changing the P.A. through 5° increments, realizing the following points which might jeopardize the above conclusion:

(a) There is a 4 order of magnitude difference in the spatial scales between our VLBA images and CO (2–1) maps.

(b) There is no clear association of CO outflows with known driving source(s) (W49N BFT95; Chini et al. 2001).

(c) The maser emission does not trace the whole of the outflowing gas.

Nonetheless, the analysis with 5° P.A. steps showed that the above results from (i) to (iii) are valid, and that no other range of P.A. than from 25° to 110° can be taken.

Of the available observations of this region, our high resolution data has the best opportunity to discern individual sources of outflow. We stress that a single jet model cannot explain the velocity structure of the Features 13 and 14 which were located at the most western portion of the chain of the MAIN maser features, but showed a clear velocity gap with respect to the coherent velocity structure from the Features 3 to 12 (see Figure 3B). Can they be used to pinpoint additional sources of outflow, perhaps associated with the other jet-like CO outflows from the region? We examined the velocity structure of the discordant spots in terms of a “multiple jet scenario” by applying the above “single jet model” again on “residual PV
Given the complexity of the region seen in the CO maps (BFT95) and the near-IR image (Chen et al. 1997), we believe that sub-arcsecond resolution imaging of the CO outflow and continuum emissions with radio interferometers will associate jets and outflows with their driving sources. These interferometric observations will fill the spatial resolution gap between our AU scale VLBI view of the masers and the 0.01 pc scale single-dish telescope view of the CO outflows. As we have mentioned, r20 has displayed H2O maser emission at VLSR = −72 and −78 km s$^{-1}$ since 2003 January, which were not seen during our observations (4122). Subsequent monitoring observations using the Green Bank 100-m telescope (A. Wootten, private communication) showed that these emissions have flared up to ∼20 Jy in 2004 October. Together with sub-arcsecond interferometric observations, further VLBA H2O maser study will help to assess the nature of this multiple jet-outflow system, which harbors some of the highest velocity outflowing gas in any star forming region known to date.

6. Summary

We have performed a monthly 4-epoch VLBA observations of the H2O masers in the intermediate-mass protostar IRAS 20050+2720 MMS1 together with aperture synthesis observations of 3 mm continuum emission with the OVRO array. The main results of this study are summarized as follows.

1. From the VLBA images taken with all the 10 antennas, we found the two groups of the low-velocity H2O maser spots toward the bright millimeter continuum emission peak. One group (the MAIN group) showed intense emission around the cloud velocity, the other (the SW feature) was located at a projected distance of 18.2 AU south-west of the MAIN. The OVRO 3-mm images clearly showed that a bulk of millimeter continuum emission (MMS1) is associated with the low-velocity masers.

2. Using only the south-western antennas of the VLBA, we have succeeded in detecting the EHV maser emission blueshifted by 99 km s$^{-1}$ to the cloud velocity. The EHV emission is located at 4400 mas in east and 709 mas south of the low-velocity emission. Considering the large 3D separation between the MAIN and EHV features, and the proper motion of the EHV toward the MAIN, we concluded that the EHV emission is not associated with the low-velocity emission. A distinct millimeter continuum source appears to be associated with the EHV masers, which we speculate is the driving source of the EHV emission and which could be an extremely young protostar.

3. The overall structure of the masers in the MAIN group did not change over the 4 epochs. On the other hand, we found that the projected separation between the MAIN group and the SW feature increased by 1.13 mas over the 4 epochs, which corresponds to a trans-
verse velocity of 14.4 km s\(^{-1}\). This increment of the separation indicates proper motion(s) of spatially localized masering gas in the MAIN group and/or the SW Features.

4. From the analysis of the velocity field of the masers, we conclude that the majority of the H\(_2\)O masers in IRAS 20050 + 2720 MMS1 are likely to be associated with an accelerating biconical jet whose opening angle is approximately 70\(^\circ\) at a distance of 21 AU from the central star. The presence of such accelerating jet indicates that the central protostar is driving the powerful jet. Moreover, the obtained large opening angle of the jet would support the hypothesis that poor jet collimation is an inherent property of luminous YSOs.

Acknowledgements. We are grateful to all of the staff at the VLBA, VLA, and OVRO. R.S.F. thanks C. M. Walmsley for discussion and encouragement. R.S.F. was supported by postdoctoral fellowship program at INAF, Osservatorio Astrofisico di Arcetri, Italy. Research at the Owens Valley Radio Observatory is supported by the National Science Foundation through NSF grant AST 02-28955.

References

Andrè, P., Ward-Thompson, D., & Barsony, M. 1993, ApJ, 406, 122
Andrè, P., Ward-Thompson, D., & Barsony, M. 2000, in Protostars and Planets IV, eds. V. Mannings, A. P. Boss, & S. S. Russell, (Tucson: University of Arizona Press), 59
Bachiller, R. 1996, ARA&A, 34, 111
Bachiller, R., Fuente, A., & Tafalla, M. 1995, ApJ, 445, L51 (BFT95)
Brand, J. et al. 1994, A&AS, 103, 541
Chen, H., Tafalla, M., Greene, T. P., Myers, P. C., & Wilner, D. J. 1997, ApJ, 475, 163
Chini, R., Ward-Thompson, D., Kirk, J. M., Nielbock, M., Reipurth, B., & Sievers, A. 2001, A&A, 369, 155
Claussen, M. J., Wilking, B. A., Benson, P. J., Wootten, A., Myers, P. C., & Terebey, S. 1996, ApJS, 106, 111
Claussen, M. J., Marvel, K. B., Wootten, A., & Wilking, B. A. 1998, ApJ, 507, L79
Condon, J. J. 1997, PASP, 109, 166
Felli, M., Palagi, F., & Tofani, G. 1992, A&A, 255, 293
Fiebig, D., Duschl, W. J., Menten, K. M., & Tscharnuter, W. M. 1996, A&A, 310, 199
Furuya, R. S., Kitamura, Y., Saito, M., Kawabe, R., & Wootten, H. A. 1999, ApJ, 525, 821
Furuya, R. S., Kitamura, Y., Wootten, H. A., Claussen, M. J., Saito, M., Marvel, K. B., & Kawabe, R. 2000, ApJ, 542, L135
Furuya, R. S., Kitamura, Y., Wootten, H. A., Claussen, M. J., & Kawabe, R. 2001, ApJ, 559, L143
Furuya, R. S., Kitamura, Y., Wootten, H. A., Claussen, M. J., & Kawabe, R. 2003, ApJS, 143, 71
Hofner, P., & Churchwell, E. 1996, A&AS, 120, 283
Gwinn, C. R., Moran, J. M., & Reid, M. J. 1992, ApJ, 393, 149
Molinari, S., Brand, J., Cesaroni, R., & Palla, F. 1996, A&A, 308, 573
Moscadelli, L., Cesaroni, R., & Rioja, M. J. 2000, A&A, 360, 663

Palla, F., Brand, J., Comoretto, G., Felli, M., & Cesaroni, R. 1991, A&A, 246, 249
Palumbo, G. G. C., Scappini, F., Pareschi, G., Codella, C., Caselli, P., & Attoloni, M. R. 1994, MNRAS, 266, 123
Patel, N. A., Greenhill, L. J., Herrnstein, J., Zhang, Q., Moran, J. M., Ho, P. T. P., & Goldsmith, P. F. 2000, ApJ, 538, 268
Richer, J. S., Shepherd, D. S., Cabrit, S., Bachiller, R., & Churchwell, E. 2000, in Protostars and Planets IV, eds. V. Mannings, A. P. Boss, & S. S. Russell, (Tucson: University of Arizona Press), 867
Seth, A. C., Greenhill, L. J., & Holder, B. P. 2002, ApJ, 581, 325
Shepherd, D. S., Claussen, M. J., & Kurtz, S. E. 2001, Science, 292, 1513
Terebey, S., Vogel, S. N., & Myers, P. C. 1992, ApJ, 300, 181
Torrelles, J. M., Gómez, J. F., Rodriguez, L. F., Curiel, S., Anglada, G., & Ho, P. T. P. 1998, ApJ, 505, 756
Walker, R. C., Matsakis, D. N., & Garcia-Barreto, J. A. 1982, ApJ, 255, 128
Walker, R. C. 1981, AJ, 86, 1323
Wilking, B. A., Blackwell, J. H., Mundy, L. G., & Howe, J. E. 1989, ApJ, 345, 257
Wilking, B. A., Claussen, M. J., Benson, P. J., Myers, P. C., Terebey, S., & Wootten, A. 1994, ApJ, 431, L119
Wilner, D. J. & Welch, W. J. 1994, ApJ, 427, 898
Wootten, A. 1989, ApJ, 337, 858