RESEARCH ARTICLE

Crowdsourced identification of multi-target kinase inhibitors for RET- and TAU-based disease: The Multi-Targeting Drug DREAM Challenge

Zhaoping Xiong, Minji Jeon, Robert J. Allaway, Jaewoo Kang, Donghyeon Park, Jinhuyuk Lee, Hwisang Jeon, Miyoung Ko, Hualiang Jiang, Mingyue Zheng, Aik Choon Tan, Xindi Guo, The Multi-Targeting Drug DREAM Challenge Community, Kristen K. Dang, Alex Tropsha, Chana Hecht, Tirtha K. Das, Heather A. Carlson, Ruben Abagyan, Justin Guinney, Avner Schlessinger, Ross Cagan

1 Shanghai Institute for Advanced Immunoc hemical Studies, ShanghaiTech University, Shanghai, China, 2 Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea, 3 Sage Bionetworks, Seattle, Washington, United States of America, 4 Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Republic of Korea, 5 Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China, 6 Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America, 7 Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America, 8 Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America, 9 Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America, 10 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, United States of America, 11 Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America, 12 Institute of Cancer Sciences, University of Glasgow; Glasgow, Scotland, United Kingdom

‡ These authors share first authorship on this work.
¶ Membership of The Multi-Targeting Drug DREAM Challenge Community is provided in the Acknowledgments.
* avner.schlessinger@mssm.edu (AS); ross.cagan@glasgow.ac.uk (RC)

Abstract

A continuing challenge in modern medicine is the identification of safer and more efficacious drugs. Precision therapeutics, which have one molecular target, have been long promised to be safer and more effective than traditional therapies. This approach has proven to be challenging for multiple reasons including lack of efficacy, rapidly acquired drug resistance, and narrow patient eligibility criteria. An alternative approach is the development of drugs that address the overall disease network by targeting multiple biological targets (‘polypharmacology’). Rational development of these molecules will require improved methods for predicting single chemical structures that target multiple drug targets. To address this need, we developed the Multi-Targeting Drug DREAM Challenge, in which we challenged participants to predict single chemical entities that target pro-targets but avoid anti-targets for two unrelated diseases: RET-based tumors and a common form of inherited Tauopathy. Here, we report the results of this DREAM Challenge and the development of two neural network-
based machine learning approaches that were applied to the challenge of rational polypharmacology. Together, these platforms provide a potentially useful first step towards developing lead therapeutic compounds that address disease complexity through rational polypharmacology.

Author summary

Many modern drugs are developed with the goal of modulating a single cellular pathway or target. However, many drugs are, in fact, ‘dirty;’ they target multiple cellular pathways or targets. This phenomenon is known as multi-targeting or polypharmacology. While some strive to develop ‘cleaner’ therapeutics that eliminate secondary targets, recent work has shown that multi-targeting therapeutics have key advantages for a variety of diseases. However, while multi-targeting drugs that affect a precisely-defined profile of targets may be more effective, it is difficult to computationally predict which molecules have desirable target profiles. Here, we report the results of a competitive crowdsourcing project (the Multi-Targeting Drug DREAM Challenge), where we challenged participants to predict chemicals that have desired target profiles for cancer and neurodegenerative disease.

This is a PLOS Computational Biology Benchmarking paper.

Introduction

Despite important advances in drug development, many diseases remain partly or wholly resistant to drug-based treatments. In recent decades, the field has attempted to address this by developing precision therapeutics with the goal of targeting critical nodes in disease networks. However, this approach has proven to be challenging. Most targeted therapeutics do not progress past preclinical research or clinical trials due to poor efficacy or unacceptable toxicity [1,2]. Additional hurdles are encountered even after clinical approval. For example, initial efficacy against melanoma by the BRAF inhibitors dabrafenib or vemurafenib as single-agent therapies is generally followed by emergent tumor resistance [3]. Further, based on biomarkers only a small number of patients with metastatic tumors are eligible for these target-driven precision therapies, and fewer still show sustained response [4].

An alternative to developing drugs with single targets is the development of polypharmacology (multi-targeting) drugs. Many clinically approved drugs bind multiple targets (http://ruben.ucsd.edu/dnet) [5,6], and in some cases the drug is improved by these secondary activities. For example, vandetanib, a drug used in RET-dependent medullary thyroid cancer (MTC), has a broad range of kinase targets that include RET, VEGFR, etc. [7]; pre-clinical studies suggest that some of these secondary targets can contribute to drug efficacy (e.g., [8,9]). Toxicity is also an important consideration in multi-targeting drug activity. For example, imatinib’s side effects—including inhibition of proper bone remodeling—are likely due to multiple ‘off-targets’ of imatinib [10]. Developing optimized polypharmacology-based drugs remains a challenge as there are few roadmaps for predicting compounds that safely combine beneficial targets (‘pro-targets’) while avoiding ‘anti-targets’ (direct targets that are liabilities in the context of a specific assay) in a single molecule.
Current approaches to predict multi-target compounds range from ‘physics-based’ methods that directly predict binding affinities, to ‘omics-based’ approaches utilizing large datasets such as those including side-effects or gene expression profiles [11–15]. Notably, recent advances in machine learning architectures have allowed the development of more effective methods relying on both physics-based and omics-based approaches [16,17]. For example, a generative tensorial reinforcement learning (GENTRL) model was used to design a small-molecule with optimal biological activity for the discoidin domain receptor 1 (DDR1) with desirable pharmacokinetic properties in just 21 days [18]. However, several limitations remain: current methods often (i) identify frequent binders or obvious compounds, (ii) fail to discriminate activities among close analogs, or (iii) identify small molecule inhibitors of ‘promiscuous kinases’ (e.g., DDR1 [19]) that are inherently easier to target. Notably, exploration of the full chemical space—estimated between 10^{24} and 10^{60} structures—still remains a tremendous challenge: known binders of, e.g., the kinome together address a limited set of chemical scaffolds [20].

Rational polypharmacology will require an improved ability to predict chemical structures that specifically target optimized target sets. To identify better computational strategies for this problem, we developed the Multi-Targeting Drug DREAM Challenge [21]. In this challenge, we challenged participants to predict single chemical entities that target pro-targets but avoid anti-targets for two unrelated diseases: RET-based tumors and an inherited form of Tauopathy. Exploring each disease, we used a Drosophila ‘dominant genetic modifier screen’ to identify mediators of Drosophila RET^{M955T}-mediated transformation and of Tau-mediated dysfunction, two well-characterized models of human disease [22,23]. Although Drosophila-based screening platforms provide an imperfect model of human disease, we have previously used them to help identify effective pharmacologic interventions for RET-driven, colorectal, and adenoid cystic cancers [8,24,25]. The resulting functional suppressors and enhancers of RET-driven transformation provide a useful ‘roadmap’ towards an ideal profile of a lead polypharmacological therapeutic.

We used data from our dominant genetic modifier screens to identify suppressors (candidate ‘pro-targets’) and enhancers (candidate ‘anti-targets’) for RET- and TAU-based disease. We publicly posted this data, challenging the community to develop computational approaches with improved ability to predict single chemical structures that successfully inhibit pro-targets while avoiding anti-targets. Here, we report the development of two artificial neural network-based machine learning approaches that were applied to the challenge of rational polypharmacology. Together, these platforms provide a potentially useful first step towards developing lead therapeutic compounds that address disease complexity through polypharmacology.

Results

Rational development of drugs that act through polypharmacology will require identifying (i) pro-targets that, as a group, are predicted to be effective in addressing a disease network, and (ii) anti-targets that are predicted to act as liabilities either due to reduced disease efficacy or increased whole body toxicity. Our work in Drosophila [22,23,26–30] identified whole body pro-targets and anti-targets for RET-associated cancer and Tauopathy. To leverage this data, we established the Multi-targeting Drug DREAM challenge (www.doi.org/10.7303/syn8404040) designed to promote and assess novel rational approaches to polypharmacology (Fig 1).

Pro-targets and anti-targets

To ensure whole animal relevance, we used data from two Drosophila models. To model RET-dependent oncogenic transformation, we used data from previous work that screened Drosophila GMR-RET^{M955T} and ptc>RET^{M955T} cancer models [22,23]. Broad genetic screening
identified multiple key ‘pro-targets’ defined as ‘dominant genetic suppressors’ of GMR-RET
M955T-mediated transformation including Drosophila orthologs of BRAF, SRC, and S6K. Candidate ‘anti-targets’—genetic loci that, when reduced, acted as ‘dominant genetic enhancers’ of RET
M955T-mediated transformation—include MKNK1, TTK, ERK8, PDK1, and PAK3. Given its central role, we also included RET as a pro-target.

To provide a second independent test for compound predictions, we used data recently generated in a screen of a previously described inherited Drosophila Tauopathy model [26–30]. Expressing the human disease isoform TAU
R406W exogenously in a transgenic Drosophila line led to nervous system defects and animal lethality [26–30]. Genetic screening of most of the Drosophila kinome identified several dominant genetic suppressors of TAU
R406W. For example, reducing the activity of the Drosophila orthologs of AURKA, PAK1, FGFR1, or STK11 suppressed TAU
R406W-mediated fly lethality; these loci represent candidate therapeutic targets. Conversely, reducing activity of PAK3, MAP3K7, or PIK3CA enhanced TAU
R406W-mediated lethality, indicating they should be avoided by candidate therapeutics.

We used these two sets of data as benchmarks for computation-based compound predictions: ideal therapeutic leads would inhibit most or all pro-targets while exhibiting minimum activity against anti-targets.

Participation and performance

The challenge had 190 registered participants. Of these registrants, 34 submitted predictions, either as a part of one of 5 teams or as individuals. 10 prediction sets were submitted for
Problem 1: Prediction of multi-targeting compounds for RET-driven cancers

Problem 1 asked participants to predict molecules that bound the RETM918T-associated cancer pro-targets RETM918T, BRAF, SRC, S6K, and did not bind the anti-targets MKNK1, TTK, ERK8, PDK1, and PAK3. Of the 10 prediction files submitted, two of the predictions had the same top-ranked molecule and, therefore, 9 compounds were selected by the challenge organizers for experimental evaluation. S1A Fig shows that while most of the submitted compounds had no similar molecule submitted by another team (Tanimoto similarity >0.5), the few similar submitted molecules were mostly predicted by the same method/team.

Binding evaluation revealed that the majority of predicted compounds (7/9) did not bind any of the pro-targets at 10 μM or any of the anti-targets at 30 μM (S1 Table). Two compounds were observed to significantly bind one or more pro-targets: ZINC98209221 and ZINC40900273 (Figs 2 and 3). ZINC98209221 was observed to significantly bind all 4 pro-targets, while avoiding 2 of the 5 anti-targets. Of the remaining 3 ‘bound’ anti-targets, the \(K_d\) was larger than that of the pro-targets, indicating that ZINC98209221 displayed a lower binding affinity for the Problem 1 anti-targets as compared to the pro-targets. The other compound in Fig 3, ZINC40900273, only significantly bound one of 4 pro-targets (BRAF) but avoided all 5 anti-targets.

Table 1. Scoring guidelines for Problems 1 and 2. Starred targets indicate that binding or avoiding that target was a requirement to receive target-based points.

Criteria	Points Awarded
Problem 1	
Binds RETM918T	5
Binds BRAF, SRC, S6K	1, 3 or 9 if binding 1, 2 or 3 of these targets
Avoids MKNK1*	3
Avoids TTK, ERK8, PDK, PAK3	1, 2, 3, or 4 if it avoids 1, 2, 3, or 4 of these targets
Problem 2	
Binds AURKA*	5
Binds PAK1*	5
Binds FGFR1, LKB	1 or 3 if binding 1 or 2 of these targets
Avoids PAK3*	3
Avoids MAP3K7*	3
Avoids PIK3CA	1
Predicted to enter CNS	3
Both Problems	
Novelty	2
Ability to Patent	2
Drug-like molecule	3

Problem 2: Prediction of multi-targeting compounds for Tauopathy

Problem 2 asked participants to predict compounds that bind the Tauopathy pro-targets AURKA, PAK1, FGFR1, and STK11 and avoid the Tauopathy anti-targets PAK3, MAP3K7, and PIK3CA. Eight compounds were selected for experimental testing. Kinase binding assays indicated that 6 of 8 of the predicted compounds did not bind any of the pro-targets or anti-
targets at 30 μM (S2 Table). Two compounds were observed to bind one or more pro-targets: ZINC3938668 and ZINC538658 (Figs 3 and 4). S1B Fig recapitulates the finding from Problem 1 in Problem 2—most of the submitted compounds had no similar molecule submitted (Tanimoto similarity >0.5) and when similar molecules were submitted, they were generally predicted within a single method and not across different teams.

The molecule predicted by Zhaoping Xiong, ZINC3938668, bound 3 of 4 pro-targets at 10 μM: AURKA, PAK1, and STK11. However, this molecule also bound 2 of 3 anti-targets at 10 μM: PAK3 and MAP3K7. Similarly, the predicted molecule from team DMIS-MTD, ZINC538658, bound 3 of 4 pro-targets at 10 μM: AURKA, FGFR1, and STK11, and 2 of 3 anti-targets at 10 μM: PAK3 and MAP3K7.

Overall performance and methods summaries

To identify the top participants, we used the scoring algorithm described in Table 1. This algorithm considered multiple factors including binding of targets and avoiding anti-targets as well as fulfilling novelty, patentability, and drug-likeness criteria to derive a numerical score. The top teams for both Problem 1 and Problem 2 were identical: Zhaoping Xiong and DMIS_MTD, with 16 points each for Problem 1, and 11 and 9 points for Problem 2, respectively (Table 2). The remaining teams received points for novelty, patentability, and drug-
Fig 3. Compounds with activity against Problem 1, 2 targets. “Submitter or Team” indicates the team that identified the compound as a solution to Problem 1 (top) or Problem 2 (bottom) as indicated. “Chemical ID” is the ZINC identifier for the molecule. “Structure” is a two-dimensional representation of the molecule. “InChIKey” is the hashed InChI for the molecule. Strikingly, two teams identified the same molecule as a solution for Problem 1.

https://doi.org/10.1371/journal.pcbi.1009302.g003

likeness criteria, but the compounds predicted by these teams failed to meet binding criteria to receive points. Therefore overall top-performers for the challenge were Zhaoping Xiong and DMIS_MTD, with overall scores of 28 and 25, respectively (Table 2).

Across the 10 participating teams a variety of approaches were employed to arrive at a set of predicted compounds for Problems 1 and 2 (Table 3 and S1 Methods). The majority of these
methods utilized multiple steps including (i) combining structure- and ligand-based approaches, (ii) applying one or more machine learning/classification algorithms, (iii) use of other computational approaches such as filtering, ligand docking, or creation and application of confidence scoring metrics to identify compounds for the two problems, or (iv) manual selection of the top candidates. Importantly, some teams used fully automated methods, while others used approaches that required several manual curation steps. While the majority of

Table 2. Challenge scoreboard. "Submitter or Team" indicates which team was scored. The "Problem 1" and "Problem 2" scores indicate each team’s performance in the two problems as scored using the criteria described in Table 1. "Interactome" indicates whether the team participated in a text-mining exercise to facilitate team interaction for bonus points. "Final Points" indicates the final score for each team.

Submitter or Team	Problem 1	Problem 2	Interactome	Final Points
Zhaoping Xiong	16	11	TRUE	28
DMIS_MTD	16	9	FALSE	25
Lasige-BioISI—Multi-target Drug Designing	7	7	TRUE	15
SuperModels	7	7	FALSE	14
Huiyuan Chen	7	7	FALSE	14
Masahiro Mochizuki	7	7	FALSE	14
David Koes	7	7	FALSE	14
Gregory Koytiger	7	7	FALSE	14
UM-BISBII	8		FALSE	8
Stratified	7		FALSE	7

https://doi.org/10.1371/journal.pcbi.1009302.t002
teams utilized one or more machine learning approaches, the two top-performing teams specifically relied on neural network-based approaches to identify the best compounds for Problem 1 and 2 (Fig 3). We therefore examined these two approaches more closely to identify key similarities and differences.

Top performing teams

The two teams that were most effective at predicting binding of pro-targets and avoidance of anti-targets both used artificial neural network approaches. Method 1 (Zhaoping Xiong) used features derived from the protein and small molecules. Method 2 (Team DMIS_MTD) relied on transcriptional responses in combination with chemical features of the drug, with a post-processing step that included docking.

Method 1 used a graph convolutional neural network deep learning approach [31,32] to predict candidate bioactive compounds (Fig 5). Ligand-based models are constrained when testing is done with just a few bioactive compounds. To build a more generalizable and useful model, this approach incorporated key features of each target kinase by converting the amino acid sequence into a ‘word embedding’ vector of a length of 80, then trained together with graph convolutional neural fingerprints which includes 4 layers of GRUs (Gated Recurrent Units) as the aggregating method. In developing this method, different combinations were used of extended connectivity fingerprints (ECFP4) of compounds with known bioactivity data, neural fingerprints, and protein embeddings. Testing on a 10% internal hold-out test set demonstrated that the combination of neural fingerprints and protein embeddings, which we have termed FEMTD (Fused Embedding for Multi-Targeting Drug), performed the best, with an RMSE of 0.414 (S3 Table).

The Method 1 researcher also made the observation that the majority of $-\log_{10} IC_{50}$ (pIC50) values were centered around a pIC50 of 5, making prediction of more extreme compound-target pIC50 values more challenging. To address this, the method was developed as a classification problem in which the bioactivity of training data was classified as “inactive” (pIC50 < 5), “weak” (5 < pIC50 < 6) or “potent” (pIC50 > 6). A classification model trained on these data was then used to predict compound classes for the targets/anti-targets posed by the Challenge. Finally, the top predictions were manually selected based on predicted
classes for the query targets and anti-targets. Overall, this model performed best in the Challenge (S3 Fig).

Team DMIS-MTD based Method 2 on ReSimNet [33], a Siamese neural network model that receives the structural information of two drugs represented as 2048-bit extended connectivity fingerprints (ECFPs) and predicts their transcriptional response similarity. ReSimNet was trained on the Connectivity Map (CMap) dataset [34], which provides CMap scores of around 260,000 drug pairs from 2,400 unique drugs. The CMap score of a pair of drugs is computed based on the similarity of the observed drug-induced gene expression profiles of the two drugs. Trained on these CMap scores of observed drug pairs, ReSimNet predicts the CMap scores of any drug pair that includes novel compounds. ReSimNet consists of two identical 2-layer Multi-Layer Perceptrons (MLPs), and the dimension of a hidden layer and an output layer is 512 and 300, respectively. The cosine similarity of two output vectors is considered predicted CMap scores of two compounds. The model was trained to minimize the mean squared error between the real CMap scores and the predicted CMap scores of compound pairs using Adam optimizer [35] with a learning rate of 0.005. The input fingerprints and the output embedding vectors of the CMap compounds are available on the Challenge workspace (see Code and Data availability).

Before utilizing ReSimNet to identify novel drug candidates, Team DMIS-MTD first identified several prototype drugs with kinase inhibition profiles that satisfied most of the
Challenge’s pro-target and anti-target conditions. They used the kinase inhibition profiles from the KInase Experiment Omnibus (KIEO) database, which was constructed from experimental data on kinase inhibitors. The data was curated from more than 600 published articles (Fig 6A). ReSimNet, trained on the CMap dataset (Fig 6B), was used to predict the transcriptional response similarity between a prototype drug and a novel compound from ZINC15 [36] (Fig 6C). Finally, the top-ranking ZINC15 compounds were aggregated and filtered for compounds that fulfill Lipinski’s rules, a patent search through PubChem, and a protein-ligand docking algorithm (Fig 6D).

Translation of hits to in vivo model systems

After identifying the best-binders in the competitive phase of the Challenge, we assessed the in vivo translatable of the in silico predicted binders from Problem 1 that were also found to bind the P1 targets in vitro (Figs 2A and 3). We obtained and tested the compounds for their ability to rescue viability of transgenic flies that expressed the oncogenic form of Drosophila RET in multiple tissues (ptc>\text{RET}^{M955T}) as previously described [23,37].

Control transgenic ptc>\text{RET}^{M955T} (RET2B) flies fail to eclose to adulthood due to expression of the transgene (0% adult viability; S4 Fig and S4 Table). Feeding ptc>\text{RET}^{M955T} flies with food containing AD80 or APS6-45 (50 μM)—experimental multi-targeting kinase inhibitors that reduce ptc>\text{RET}^{M955T} lethality [23,37]—significantly increased survival to 27% and 22% mean eclosure, respectively (S4 Fig and S4 Table). Feeding with ZINC98209221 or ZINC40900273 (1, 10, or 50 μM final food concentrations) rescued to 1–1.5% of animals, respectively (S4 Fig and S4 Table), a number that failed to rise to statistical significance.

Ensemble modeling

As a proof-of-concept to identify candidates for future study, we devised a “wisdom of the crowds” approach to identify consensus Problem 1 predictions of the top-performing models by identifying the nexus of chemical space predicted by these methods. Specifically, we obtained a larger list of top predictions from the two top-performing teams using the same method and then determined the pairwise Tanimoto similarity (S2A Fig) between these two sets. Using this data, we performed network analysis (S2B Fig), which allowed us to identify subclusters of structurally similar predicted molecules within the full set of top predicted molecules. We further profiled these molecules using computationally generated absorption,
distribution, metabolism and excretion (ADME) metrics (S5 Table) to facilitate future prioritization of these molecules for medicinal chemistry and in vivo screening.

Discussion

One approach to overcoming the limitations of precision medicine approaches in drug development is to develop new drugs with a goal of multi-targeting drugs that target multiple nodes in a disease network. Developing these drugs is a challenge, as both desired targets as well as toxic targets must be considered in the design process. One possible framework for identifying these drugs involves the use of predictive computational modeling strategies to perform virtual screening and identify compounds with a desirable target profile. Here, we described our efforts to identify better computational approaches for this pharmacologic problem.

To provide a disease context to this challenge, we used a set of previously identified pro-targets and anti-targets to design two challenge problems. Problem 1 asked teams to predict molecules that bound the RET^{M955T}-associated cancer targets RET[M918T], BRAF, SRC, S6K, and avoided binding to MKNK1, TTK, ERK8, PDK1, and PAK3. Problem 2 asked participants to predict compounds that bound the Tauopathy pro-targets, AURKA, PAK1, FGFR1, and STK11 and did not bind PAK3, MAP3K7, and PIK3CA. The teams collectively identified 3 compounds for Problem 1 and 2 compounds for Problem 2 that were observed to have any binding potency to the pro-targets. Furthermore, the same set of teams in both problems were successful, indicating that their methods were consistently best-performing. Both of the top-performing teams used neural networks based learning approaches. However, there were other teams that also employed a neural network based approach but did not successfully identify any binding compounds, suggesting that the specific approach may be critical for success. Other approaches (solely manual curation, random forest, logistic regression) were unsuccessful in identifying binder, suggesting that these methods may not be well-poised to perform well in this type of problem. In the future, it may prove valuable to explore how additional high-dimensionality training data types—for example, high-content image-based screening [38] or pharmacogenomic datasets [34,39,40]—can improve performance or enable the community to explore different prediction strategies and methodologies.

Another key finding was that most of the submitted methods, including the top-performing methods, required a manual curation/selection step to select the top performing compounds (Table 3). The decisions and criteria that are used in manual selection can be difficult to define or reproduce using a decision tree or other algorithm. A clear direction for future studies is to better define the nature and rationale for these manual curation steps and devise strategies to automate these steps. The benefits of such future work would likely be two-fold: it would increase the reproducibility of these methods, and it could yield ensemble methods that are more successful in identifying optimal compounds for a given set of targets and anti-targets.

The predominant limitation of this challenge was a relatively small participant pool, which likely resulted in constrained space of methodology. Remarkably, the top-performing methods predicted the identical compound (ZINC98209221) as the best candidate for solving Problem 1, which is surprising given the size of the ZINC15 compound library. Furthermore, previous DREAM Challenges have consistently demonstrated that a variety of methodologic approaches can perform well in many different applications; therefore, it may be the case that methodologic approaches beyond neural networks may indeed be applicable to the problems defined in this challenge, but that the implementation may need to be altered to be successful.

The other key limitation of this study was the difficulty in translating computationally predicted best binders to activity in an in vivo system. We tested the top prediction from Problem
1 in the Drosophila RET^{M955} model system of RET-driven cancer but did not observe bioactivity. There are multiple possible explanations for this, such as the standard ADME challenges faced in drug development, as well as the differences between the fly and human targets and networks [23,41]. To ameliorate this, improvements could include increasing the scale of experimentally tested compounds to identify a larger number of best binders, performing more stringent computational filtering to eliminate compounds with poorer predicted bioavailability characteristics, and performing standard medicinal chemistry and structure-activity relationship studies to identify analogues with better in vivo performance.

In the Results, we described a proof-of-concept approach to use these methods to identify molecular candidates for future experimental validation. By leveraging a "wisdom of the crowds" approach, we identified consensus Problem 1 predictions of the top-performing models by identifying the nexus of chemical space predicted by these methods. We subsequently evaluated these molecules using computationally ADME metrics to facilitate future prioritization of these molecules for medicinal chemistry and in vivo screening. With this in mind, employing a tandem approach where that leverages ensembled computational models to identify a general region of chemical space with an appropriate polypharmacological profile, followed by more traditional drug optimization approaches, may be a worthwhile future avenue to accelerate the development of multi-targeting drugs.

Materials and methods

Challenge infrastructure

Multi-targeting Drug DREAM Challenge participants were required to submit a prediction file following a pre-formatted YAML template that included each team’s top 5 compound predictions for each of the two problems (RET^{M955T1}- and TAU^{R406W}-mediated phenotypes) (Fig 1). Each prediction included a compound name, vendor name and ID, a methods description, a rationale explaining why the approach was innovative, how the approach is generalizable, and why top predicted compounds are chemically novel. Participants were restricted to compounds that were available through a vendor listed on ZINC15 or other vendors for no more than $250 per mg. The full set of predictions and methods descriptions provided by the Multi-targeting Drug DREAM Challenge community is available as Supplementary Methods.

Top-performing algorithms

Detailed descriptions of all methods, including the top performing methods (Zhaoping Xiong and DMIS-MTD) are available in the Supplementary Methods file. Additional resources (e.g. final protein embeddings used) for each method can be obtained as described in the Code and Data Availability section.

In vitro testing

Compounds were purchased and delivered to a contract research organization for experimental testing of binding to the target and anti-target kinases defined for Problems 1 (Fig 2) and 2 (Fig 4). Binding was evaluated using the DiscoverX KinomeScan profiling service. In brief, this method evaluated the ability of the predicted compounds to compete with a bead-immobilized ligand for the active sites of DNA-tagged kinases from Problem 1 and Problem 2. Kinases bound to the immobilized ligand were exposed to a broad range of concentrations of the prediction compounds (11 doses, 3-fold serial dilutions starting at 30 μM of compound). At each dose, the amount of drug bound to kinase was measured by eluting the non-bead-bound DNA-tagged kinase and performing quantification by quantitative polymerase chain reaction (qPCR).
Scoring algorithm

Submissions were assessed using a point-based approach (Table 1). Points were awarded for meeting multiple criteria, in which “binding” of a pro-target was a positive hit at 10 μM and “non-binding” of an anti-target was defined as a negative result at 30 μM (S1 and S2 Tables).

For problem 1, each of the compounds submitted were awarded points for binding RET [M918T], BRAF, SRC, and/or S6K. Compounds were also awarded points for avoiding MKNK1, TTK, ERK8, PDK1, and/or PAK3. For problem 2: E, each of the compounds submitted were awarded points for binding AURKA, FGFR1, LKB1, and PAK1 and avoiding the anti-targets PAK3, MAP3K7 (TAK1), and PIK3CA. In addition, points were awarded for predictions for meeting other criteria including: novelty (ECFP6-based Tanimoto coefficient <0.4 against all other ChEMBL compounds known to be active against these targets), ability to patent (<2 hits in SciFinder database), and drug-like features (adheres to ¾ of Lipinski’s rule of 5). In addition, for Problem 2, predictions predicted to enter the central nervous system (polar surface area <75) were awarded additional points.

Chemical similarity calculations

Chemical similarity calculations and visualizations were performed in the R programming language using rcdk, fingerprint, pheatmap and visNetwork packages. SMILES strings for each structure were provided by each team, and then converted to a binary fingerprint using the “standard” method provided by the fingerprint package (a 1024-bit "path based, hashed fingerprint"). These fingerprints were then used to generate pairwise similarity matrices using the fingerprint::fp.sim matrix with the method parameter set to ‘tanimoto’. Full R notebooks describing these analyses can be found at https://github.com/Sage-Bionetworks-Challenges/Multi-Target-Challenge.

Ensemble method

Ensemble predictions were performed by generating lists of top predictions for each top-performing team and assessing structural similarity as described above. We then used the SwissADME [42] webapp to calculate the number of Lipinski violations, Ghose violations, Veber violations, Egan violations, Muegge violations, PAINS alerts, Brenk alerts, and Lead-likeness violations (S5 Table). For each compound, we assigned a score of 1 for each value without a violation or alert, or a score of 0 otherwise. We then summed these values to create a composite score where a larger score indicates fewer applicable violations/alerts to prioritize compounds for in vivo screening.

In vivo validation

Female UAS-RET^{M955T} virgins were mated to ptc-GAL4 males to generate ptc>RET^{M955T} progeny. Progeny were grown at 25˚C and compounds were tested by feeding larvae at three doses: 10 μM, 5 μM, and 1 μM final food concentration. DMSO alone served as a negative control and the experimental compounds AD80 and APS6-45 [23,37] served as positive controls. Using survival to adulthood (eclosure), each condition was done in quadruplicate, with 41–110 animals tested for each drug concentration.

Supporting information

S1 Methods. Supplementary description of the methods used to generate the predictions submitted by the Multi-targeting Drug DREAM Challenge community.

(ODOX)
S1 Fig. Chemical similarity comparison of all submitted Problem 1 and Problem 2 solutions. (TIFF)

S2 Fig. (A) Similarity heatmap of top predicted compounds for Problem 1 provided by the top-performing teams. Columns correspond to predictions from Zhaoping Xiong, while rows correspond to predictions from DMIS-MTD. The majority of compounds are relatively dissimilar from one another. (B) The similarity matrix was converted into a network, where nodes are individual predicted compounds and edges encode compound-compound Tanimoto similarities. Edge thickness represents similarity (thicker edges = greater similarity). Edges representing similarity below 0.4 were filtered out, and cluster subnetworks were identified (with each color representing an individual subnetwork). (TIFF)

S3 Fig. Recapitulating Zhaoping Xiong’s three-class classification model used for screening. (A) The distribution of pIC50; (B) The distribution of classes; (C) The accuracy of the model across train, valid and test sets. (TIFF)

S4 Fig. RET2B and control D. melanogaster were treated with DMSO (negative control), two candidate RET-targeting compounds identified using top performing methods (ZINC4020 and ZINC9820) and two positive control multi-targeting RET inhibitors previously demonstrated to rescue the RET2B model (AD80 [37], APS6-45 [23]). Bars show the mean percent survival and error bars show the standard deviation of four replicates per condition. A Mann-Whitney test was used to assess the significance of changes to percent survival in the varying conditions. The RET2B Adult panel (bottom right) indicates that higher concentrations of AD80 or APS6-45 significantly (p < 0.05) rescue the RET2B model, while the two candidate ZINC molecules have a minimal and non statistically-significant effect on percent survival to adulthood. (TIFF)

S1 Table. Problem 1 Results. “Submitter or Team” indicates which team was scored. “Chemical ID” indicates the ZINC or MolPort identifier for each predicted compound. “InChIKey” indicates the InChiKey for each predicted compound. Columns 4–12 indicate the experimentally-validated binding constant (K$_d$, nanomolar) for the pro-target or anti-target listed in the column header (>30000 nM indicates it was above the detection limit for the assay). Columns 13–16 indicate the status of the compound with respect to the challenge rules for novelty, drug-like properties, and likelihood to pass the CNS as defined in the challenge scoring rules. The final column indicates the number of points the prediction was given based on the defined scoring criteria. (XLSX)

S2 Table. Problem 2 Results. “Submitter or Team” indicates which team was scored. “Chemical ID” indicates the ZINC or MolPort identifier for each predicted compound. “InChIKey” indicates the InChiKey for each predicted compound. Columns 4–10 indicate the experimentally-validated binding constant (K$_d$, nanomolar) for the pro-target or anti-target listed in the column header (>30000 nM indicates it was above the detection limit for the assay). Columns 11–14 indicate the status of the compound with respect to the challenge rules for novelty, drug-like properties, and likelihood to pass the CNS as defined in the challenge scoring rules. The final column indicates the number of points the prediction was given based on the defined scoring criteria. (XLSX)
S3 Table. Zhaoping Xiong's method predictive performance on regression models. A summary of the performance of various model architectures tested by top performer Zhaoping Xiong using root-mean-square-error calculated using true pIC50 values.
(XLSX)

S4 Table. Top Problem 1 predictions fail to rescue the RET2B fly model. The RET2B model was treated with two positive controls expected to rescue this model (AD80 and APS6-45), a vehicle control (DMSO), and two test compounds (ZINC4090, ZINC9820) predicted by the challenge results to rescue the RET2B model. "tx": the treatment (compound and concentration) used; "genotype": WT or RET2B flies; stage: class of counted animal—adult or pupae; "mean_percent_surv": the mean percent survival across 4 replicates; "std_dev_survival": the standard deviation of the percent survival across 4 replicates.
(XLSX)

S5 Table. in silico chemical modeling of Problem 1 predictions from top performers. Additional hits from top performing teams were characterized using SwissADME to identify compounds with preferred absorption, distribution, metabolism, excretion, and other medicinal chemistry properties.
(XLSX)

Acknowledgments
The members of the Multi-targeting Drug DREAM Challenge Community in addition to the article byline include: Joerg Kurt Wegner, Janssen Pharmaceuticals; Huub Henkelsma, Gerard JP van Westen, Leiden Academic Center for Drug Research; Brandon Bongers, Leiden University; Lindsey Burggraaff; Leiden University, Jesper Van Engelen; Leiden University, Xuhan Liu, Leiden University; Xuhuan Liu; Marina Gorostiola Gonzalez; Marvin Steijaert; Hugo Gutierrez de Teran, Uppsala University; Holger Hoos; Anthe Janssen; Andre Falcao, University of Lisbon; Samina Kausar, University of Lisbon; Miguel Rocha, Centre Biological Engineering; Delora Baptista; Jorge Miguel Lourinho Ferreira, University of Minho; Jinhyuk Lee; Hwisang Jeon; Miyoung Ko; Donghyeon Park, Korea University; Gregory Koytiger, Immunneering Corporation; Team Stratified (4 anonymous members); Masahiro Mochizuki, DeNA Co., Ltd.; David Koes, University of Pittsburgh; Huiyuan Chen; Xengie Doan, Sage Bionetworks; Nasim Sanati, Sage Bionetworks.

Author Contributions
Conceptualization: Kristen K. Dang, Alex Tropsha, Heather A. Carlson, Ruben Abagyan, Justin Guinney, Avner Schlessinger, Ross Cagan.
Data curation: Robert J. Allaway, Xindi Guo.
Formal analysis: Zhaoping Xiong, Minji Jeon, Robert J. Allaway.
Funding acquisition: Ruben Abagyan, Justin Guinney, Avner Schlessinger, Ross Cagan.
Investigation: Zhaoping Xiong, Minji Jeon, Robert J. Allaway, Mingyue Zheng, Xindi Guo, Alex Tropsha, Heather A. Carlson, Ruben Abagyan, Justin Guinney, Avner Schlessinger, Ross Cagan.
Methodology: Minji Jeon, Donghyeon Park, Jinhyuk Lee, Hwisang Jeon, Miyoung Ko, Hualiang Jiang, Aik Choon Tan, Xindi Guo, Alex Tropsha, Heather A. Carlson, Ruben Abagyan, Justin Guinney, Avner Schlessinger, Ross Cagan.
Project administration: Justin Guinney, Ross Cagan.

Resources: Xindi Guo, Tirtha K. Das.

Software: Zhaoping Xiong, Minji Jeon, Robert J. Allaway, Donghyeon Park, Jinhyuk Lee, Hwi-sang Jeon, Miyoun Ko, Hualiang Jiang, Mingyue Zheng, Aik Choon Tan, Xindi Guo.

Supervision: Justin Guinney, Avner Schlessinger, Ross Cagan.

Validation: Zhaoping Xiong, Minji Jeon, Robert J. Allaway.

Visualization: Zhaoping Xiong, Minji Jeon, Robert J. Allaway.

Writing – original draft: Zhaoping Xiong, Minji Jeon, Robert J. Allaway, Jaewoo Kang, Donghyeon Park, Jinhyuk Lee, Hwi-sang Jeon, Miyoun Ko, Hualiang Jiang, Mingyue Zheng, Aik Choon Tan, Kristen K. Dang, Alex Tropsha, Heather A. Carlson, Ruben Abagyan, Justin Guinney, Avner Schlessinger, Ross Cagan.

Writing – review & editing: Zhaoping Xiong, Minji Jeon, Robert J. Allaway, Jaewoo Kang, Donghyeon Park, Jinhyuk Lee, Hwi-sang Jeon, Miyoun Ko, Hualiang Jiang, Mingyue Zheng, Aik Choon Tan, Xindi Guo, Kristen K. Dang, Alex Tropsha, Chana Hecht, Tirtha K. Das, Heather A. Carlson, Ruben Abagyan, Justin Guinney, Avner Schlessinger, Ross Cagan.

References
1. Barton P, Riley RJ. A new paradigm for navigating compound property related drug attrition. Drug Discovery Today. 2016. pp. 72–81. https://doi.org/10.1016/j.drudis.2015.09.010 PMID: 26404453
2. Empfield JR, Clark MP. Reducing Drug Attrition. Springer; 2014.
3. Sullivan RJ, Flaherty KT. Resistance to BRAF-targeted therapy in melanoma. Eur J Cancer. 2013; 49: 1297–1304. https://doi.org/10.1016/j.ejca.2012.11.019 PMID: 23290287
4. Marquart J, Chen E, Prasad V. Estimation of the Percentage of US Patients With Cancer Who Benefit From Genome-Driven Oncology. JAMA Oncol. 2018; 4: 1093–1098. https://doi.org/10.1001/jamaoncol.2018.1660 PMID: 29710180
5. Allaway RJ, La Rosa S, Guinney J, Gosline SJC. Probing the chemical–biological relationship space with the Drug Target Explorer. Journal of Cheminformatics. 2018. https://doi.org/10.1186/s13321-018-0297-4 PMID: 30128806
6. Shi D, Khan F, Abagyan R. Extended Multitarget Pharmacology of Anticancer Drugs. J Chem Inf Model. 2019; 59: 3006–3017. https://doi.org/10.1021/acs.jcim.9b00031 PMID: 31025683
7. Davis M, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011; 29: 1046–1051. https://doi.org/10.1038/nbt.1990 PMID: 22037378
8. Vidal M, Wells S, Ryan A, Cagan R. ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma. Cancer Res. 2005; 65: 3538–3541. https://doi.org/10.1158/0008-5472.CAN-04-4561 PMID: 15867345
9. Vitagliano D, De Falco V, Tamburrino A, Coluzzi S, Troncone G, Chiappetta G, et al. The tyrosine kinase inhibitor ZD6474 blocks proliferation of RET mutant medullary thyroid carcinoma cells. Endocrinol Relat Cancer. 2011; 18: 1–11. https://doi.org/10.1677/ERC-09-0292 PMID: 20943719
10. Vandyke K, Fitter S, Dewar AL, Hughes TP, Zannettino ACW. Dysregulation of bone remodeling by imatinib mesylate. Blood. 2010; 115: 766–774. https://doi.org/10.1182/blood-2009-08-237404 PMID: 19890095
11. Szalai B, Subramanian V, Holland CH, Alföldi R, Puskás LG, Saez-Rodriguez J. Signatures of cell death and proliferation in perturbation transcriptomics data—from confounding factor to effective prediction. Nucleic Acids Res. 2019; 47: 10010–10026. https://doi.org/10.1093/nar/gkz2805 PMID: 31552418
12. Cichonska A, Ravikumar B, Allaway RJ, Park S, Wan F, Isayev O, et al. Crowdsourced mapping of unexplored target space of kinase inhibitors. bioRxiv. 2020. p. 2019.12.31.891812. https://doi.org/10.1101/2019.12.31.891812
13. Thafar M, Raies AB, Albaradei S, Essack M, Bajic VB. Comparison Study of Computational Prediction Tools for Drug-Target Binding Affinities. Front Chem. 2019; 7: 782. https://doi.org/10.3389/fchem.2019.00782 PMID: 31824921

14. Pabon NA, Xia Y, Estabrooks SK, Ye Z, Herbrand AK, Süß E, et al. Predicting protein targets for drug-like compounds using transcriptomics. PLoS Comput Biol. 2018; 14: e1006651. https://doi.org/10.1371/journal.pcbi.1006651 PMID: 30532261

15. Douglass EF, Allaway RJ, Szalai B, Wang W, Tian T, Fernández-Torras A, et al. A Community Challenge for Pan-cancer Drug Mechanism of Action Inference from Perturbational Profile Data. bioRxiv. 2020. p. 2020.12.21.423514. https://doi.org/10.1101/2020.12.21.423514

16. Lim H, Xie L. Omics Data Integration and Analysis for Systems Pharmacology. Methods Mol Biol. 2019; 1939: 199–214. https://doi.org/10.1007/978-1-4939-9089-4_11 PMID: 30848463

17. Schneider P, Walters WP, Plowright AT, Sieroka N, Goodnow RA Jr, et al. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov. 2020; 19: 353–364. https://doi.org/10.1038/s41573-019-0050-3 PMID: 31801986

18. Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladinskaya AV, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019; 37: 1038–1040. https://doi.org/10.1038/s41587-019-0224-x PMID: 31477924

19. Hanson SM, Georghiou G, Thakur MK, Miller WT, Rest JS, Chodera JD, et al. What Makes a Kinase Promiscuous for Inhibitors? Cell Chem Biol. 2019; 26: 390–399.e5. https://doi.org/10.1016/j.chembio.2018.11.005 PMID: 30612951

20. Rahman R, Umg PM-U, Schlessinger A. KinaMetrrix: a web resource to investigate kinase conformations and inhibitor space. Nucleic Acids Res. 2019; 47: D361–D366. https://doi.org/10.1093/nar/gky916 PMID: 31021373

21. Schlessinger A, Abagyan R, Carlson HA, Dang KK, Gunney J, Cagan RL. Multi-targeting Drug Community Challenge. Cell Chem Biol. 2017; 24: 1434–1435. https://doi.org/10.1016/j.chembio.2017.12.006 PMID: 29277200

22. Read RD, Goodfellow PJ, Mardis ER, Novak N, Armstrong JR, Cagan RL. A Drosophila model of multiple endocrine neoplasia type 2. Genetics. 2005; 171: 1057–1081. https://doi.org/10.1534/genetics.104.038018 PMID: 15965261

23. Sonoshita M, Scopton AP, Umg PMU, Murray MA, Silber L, Maldonado AY, et al. A whole-animal platform to advance a clinical kinase inhibitor into new disease space. Nat Chem Biol. 2018. https://doi.org/10.1038/nchembio.2556 PMID: 29355849

24. Bangi E, Ang C, Smibert P, Uzlov AV, Teague AG, Antipin Y, et al. A personalized platform identifies trametinib plus zoledronate for a patient with KRAS-mutant metastatic colorectal cancer. Sci Adv. 2019; 5: eaav6528. https://doi.org/10.1126/sciadv.aav6528 PMID: 31131321

25. Bangi E, Smibert P, Uzlov AV, Teague AG, Gopinath S, Antipin Y, et al. A Drosophila platform identifies a novel, personalized therapy for a patient with adenoid cystic carcinoma. iScience. 2021; 24: 102212. https://doi.org/10.1016/j.isci.2021.102212 PMID: 33733072

26. Beharry C, Alaniz ME, Alonso ADC. Expression of Alzheimer-like pathological human tau induces a behavioral motor and olfactory learning deficit in Drosophila melanogaster. J Alzheimers Dis. 2013; 37: 539–550. https://doi.org/10.3233/JAD-130617 PMID: 23948901

27. Bland O, Feuillette S, Bou J, Chaumette B, Frébourg T, Campion D, et al. Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum Mol Genet. 2007; 16: 555–566. https://doi.org/10.1093/hmg/dlm011 PMID: 17309878

28. Grammenoudi S, Anezaki M, Kosmidis S, Skoulakis EMC. Modelling cell and isoform type specificity of tauopathies in Drosophila. SEB Exp Biol Ser. 2008; 60: 39–56. PMID: 18309786

29. Pfleger CM, Wang J, Friedman L, Vittorio R, Conley LM, Ho L, et al. Grape-seed polyphenolic extract improves the eye phenotype in a Drosophila model of tauopathy. Int J Alzheimers Dis. 2010; 2010. https://doi.org/10.4061/2010/576357 PMID: 20871666

30. Williams DW, Tyrer M, Shepherd D. Tau and tau reporters disrupt central projections of sensory neurons in Drosophila. J Comp Neurol. 2000; 428: 630–640. https://doi.org/10.1002/1096-9861(20001225)428:4<630::AID-CNE4>3.0.CO;2-x PMID: 11077417

31. Li X, Li Z, Wu X, Xiong Z, Yang T, Fu Z, et al. Deep Learning Enhancing Kinome-Wide Polypharmacology Profiling: Model Construction and Experiment Validation. J Med Chem. 2019. https://doi.org/10.1021/acs.jmedchem.9b00855 PMID: 31364850

32. Xiong Z, Wang D, Liu X, Zhong F, Wan X, Li X, et al. Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism. J Med Chem. 2019. https://doi.org/10.1021/acs.jmedchem.9b00959 PMID: 31408336
33. Jeon M, Park D, Lee J, Jeon H, Ko M, Kim S, et al. ReSimNet: drug response similarity prediction using Siamese neural networks. Bioinformatics. 2019; 35: 5249–5256. https://doi.org/10.1093/bioinformatics/btz411 PMID: 31116384

34. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell. 2017; 171: 1437–1452.e17. https://doi.org/10.1016/j.cell.2017.10.049 PMID: 29195078

35. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG]. 2014. Available: http://arxiv.org/abs/1412.6980

36. Sterling T, Irwin JJ. ZINC 15—Ligand Discovery for Everyone. J Chem Inf Model. 2015; 55: 2324–2337. https://doi.org/10.1021/acs.jcim.5b00559 PMID: 26479676

37. Dar AC, Das TK, Shokat KM, Cagan RL. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature. 2012; 486: 80–84. https://doi.org/10.1038/nature11127 PMID: 22678283

38. Ohnuki S, Oka S, Nogami S, Ohya Y. High-content, image-based screening for drug targets in yeast. PLoS One. 2010; 5: e10177. https://doi.org/10.1371/journal.pone.0010177 PMID: 20418956

39. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 483: 603–607. https://doi.org/10.1038/nature11003 PMID: 22460905

40. Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell. 2016; 166: 740–754. https://doi.org/10.1016/j.cell.2016.06.017 PMID: 27397505

41. Ung PMU, Sonoshita M, Scopton AP, Dar AC, Cagan RL, Schlessinger A. Integrated computational and Drosophila cancer model platform captures previously unappreciated chemicals perturbing a kinase network. PLoS Comput Biol. 2019; 15: e1006878. https://doi.org/10.1371/journal.pcbi.1006878 PMID: 31026276

42. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7: 42717. https://doi.org/10.1038/srep42717 PMID: 28256518