BALANCING CONDITIONS IN GLOBAL TROPICAL GEOMETRY

TONY YUE YU

Abstract. We study tropical geometry in the global setting using Berkovich’s deformation retraction. We state and prove the generalized balancing conditions in this setting. Starting with a strictly semi-stable formal scheme, we calculate certain sheaves of vanishing cycles using analytic étale cohomology, then we interpret the tropical weights via these cycles. We obtain the balancing condition for tropical curves on the skeleton associated to the formal scheme in terms of the intersection theory on the special fiber. Our approach works over any complete discrete valuation field.

1. INTRODUCTION AND STATEMENT OF RESULT

Tropicalization is a procedure which relates algebraic geometry with tropical geometry. Usually, tropicalization is carried out in the setting of toric varieties [11, 2, 13]. Let us give a quick review in the case of curves.

By definition, a toric variety contains an open dense torus G^n_m. Assume that our torus G^n_m is defined over a complete discrete valuation field k. Consider the coordinate-wise valuation map

$$
G^n_m(k) \simeq (k^\times)^n \to \mathbb{R}^n, \quad (x_1, \ldots, x_n) \mapsto (\text{val}(x_1), \ldots, \text{val}(x_n)).
$$

(1.1)

This map can be extended to the Berkovich analytification $(G^n_m)^{an}$ and we obtain a continuous surjective map $\tau_0: (G^n_m)^{an} \to \mathbb{R}^n$.

Now let C be an analytic curve embedded in $(G^n_m)^{an}$. Traditionally, the tropicalization of C is by definition the image $\tau_0(C) \subset \mathbb{R}^n$, which we denote by C^t. The tropical curve C^t has the structure of a metrized graph satisfying the balancing condition. One idea of tropical geometry is to study curves in algebraic varieties in terms of such combinatorial gadgets.

Let us recall the classical balancing condition. To each edge e of C^t with a chosen orientation, one can associate an element $\tilde{w}_e \in \mathbb{Z}^n$, parallel to the direction of e inside \mathbb{R}^n, called the tropical weight of e. Then the balancing condition states that for any vertex $v \in C^t$, we have $\sum_{e \ni v} \tilde{w}_e = 0$, where the sum is taken over all
edges that contain v as an endpoint, and the orientation of each edge is chosen to be the one that points away from v. We refer to [17, 18, 20, 2] for the proofs.

In order to go beyond the toric case above, we propose to replace the map $\tau_0: (\mathbb{G}_m^n)^{an} \to \mathbb{R}^n$ by the deformation retraction of a non-archimedean analytic space onto its skeleton constructed by V. Berkovich [7]. Let \mathfrak{X} be a strictly semistable formal scheme over the ring of integers k^o (see Definition 2.2). Its generic fiber \mathfrak{X}_g is a Berkovich space over k and its special fiber \mathfrak{X}_s is a scheme over the residue field \tilde{k}. Let S_X denote the dual intersection complex of \mathfrak{X}_s. Following [7], one can construct an embedding $S_X \subset \mathfrak{X}_s$, and a continuous proper surjective retraction map $\tau: \mathfrak{X}_s \to S_X$. So S_X is called a skeleton of \mathfrak{X}_s. We consider the map $\tau: \mathfrak{X}_s \to S_X$ to be the globalization of the map $\tau_0: (\mathbb{G}_m^n)^{an} \to \mathbb{R}^n$ in (1.1).

Now in parallel, let C be a compact quasi-smooth k-analytic curve, and let $f: C \to \mathfrak{X}_s$ be a k-analytic morphism. We call the image $(\tau \circ f)(C) \subset S_X$ the associated tropical curve, and denote it again by C^t. By working locally, one can show as in the toric case that C^t is a graph piecewise linearly embedded in S_X. However, the balancing condition for the tropical curve C^t is no longer clear in the global setting, because the vertices of C^t may sit on the corners of S_X. So we ask the following question.

Question. Let v be a vertex of the tropical curve C^t. What are the constraints on the shape of C^t near the vertex v?

In this paper, we give a necessary condition in terms of the intersection theory on the special fiber.

Let $\{D_i\}_{i \in I_X}$ denote the set of irreducible components of the special fiber \mathfrak{X}_s. We have a natural embedding $S_X \subset R^{I_X}$. Assume that the vertex v sits in the relative interior of the face of S_X corresponding to a subset $I_v \subset I_X$. Let D_{I_v} denote the corresponding closed stratum of \mathfrak{X}_s, and let $\overline{D_{I_v}}$ denote the base change to the algebraic closure of \tilde{k}.

As in the classical case, to each edge e of C^t containing v as an endpoint, we can associate a weight $\tilde{w}_e \in \mathbb{Z}^{I_X}$ (see Section 5, compare [2, §6]). We denote the sum of weights around v by

$$\sigma_v := \sum_{e \ni v} \tilde{w}_e \in \mathbb{Z}^{I_X}. \quad (1.2)$$

1The quasi-smoothness assumption on the curve C is not restrictive because we are considering morphisms from C to \mathfrak{X}_s rather than embedded curves, and one can always make desingularizations.
Let L_i be the pullback of the line bundle $\mathcal{O}(D_i)$ to \mathcal{D}_{I_v}, for every $i \in I_X$. Let α be the map

$$\alpha: \text{CH}_1(\mathcal{D}_{I_v}) \to \mathbb{Z}^{I_X}$$

$$L \mapsto (L \cdot L_i, \forall i \in I_X),$$

that takes a one-dimensional cycle L in \mathcal{D}_{I_v} to its intersection numbers with the divisors L_i for every $i \in I_X$.

Our generalized balancing condition is stated in the following theorem. The rest of the paper provides a proof of the theorem.

Theorem 1.1. Assume that the closed stratum D_{I_v} is projective, and that the vertex v does not lie in the image of the boundary $(\tau \circ f)(\partial C)$. Then the sum of weights σ_v lies in the image of the map

$$\alpha_\mathbb{Q} := \alpha \otimes \mathbb{Q}: \text{CH}_1(D_{I_v})_\mathbb{Q} \to \mathbb{Q}^{I_X}.$$

Example 1.2. Assume that X is n-dimensional and that the vertex v sits in the interior of an n-dimensional face of S_X. Then D_{I_v} is a point and the map α is zero. Our balancing condition in this case simply states that the sum of weights σ_v must be zero. So we recover the classical balancing condition in our generalized setting.

Example 1.3. Let us work out a concrete example for a degeneration of K3 surfaces. Let $k = \mathbb{C}((t))$ be the field of formal Laurent series. Let $X^0 \subset \mathbb{P}^3_{\mathbb{C}[[t]]}$ be the formal scheme given by the equation

$$x_0x_1x_2x_3 + tP_4(x_0, x_1, x_2, x_3) = 0,$$

where P_4 is a generic homogeneous polynomial of degree four. We think of X^0 as a formal family of complex K3 surfaces. The special fiber X^0_0 consists of the four coordinate hyperplanes in $\mathbb{P}^3_{\mathbb{C}}$, which we denote by D_0, D_1, D_2, D_3 respectively. The formal scheme X^0 is not strictly semi-stable. We make a small resolution (cf. [1]) at each of the 24 conical singularities p_a, given by the equations

$$P_4(x_0, x_1, x_2, x_3) = 0, \quad x_i = x_j = 0, \quad \text{for } 0 \leq i < j \leq 3.$$

More precisely, we blow up the divisors D_0, D_1, D_2, D_3 subsequently, and denote by X the formal scheme after the blow-ups. Other choices of small resolutions are also possible. We make this particular choice for the simplicity of exposition.

Now the formal scheme X is strictly semi-stable. Its special fiber X_s has four irreducible components, which are strict transforms of the divisors D_0, D_1, D_2, D_3.
We denote them by $\tilde{D}_0, \tilde{D}_1, \tilde{D}_2, \tilde{D}_3$ respectively. We have

- $\tilde{D}_0 \simeq \mathbb{P}^2_C$,
- $\tilde{D}_1 \simeq \text{Bl}_{\{4 \text{ points}\}} \mathbb{P}^2_C$,
- $\tilde{D}_2 \simeq \text{Bl}_{\{8 \text{ points}\}} \mathbb{P}^2_C$,
- $\tilde{D}_3 \simeq \text{Bl}_{\{12 \text{ points}\}} \mathbb{P}^2_C$,

where the symbol Bl means blow-up. The dual intersection complex $S_X \subset \mathbb{R}^4$ is a hollow tetrahedron, which is homeomorphic to the sphere S^2. Let v be a point in S_X. Let us describe explicitly our balancing condition at v. According to Theorem 1.1, it suffices to calculate the map $\alpha: \text{CH}_1(\tilde{D}_Iv) \to \mathbb{Z}^4$. We distinguish three cases.

First, the point v sits in the relative interior of a 2-dimensional face of S_X. Then we are in the situation of Example 1.2. So the map α is zero in this case.

Second, the point v sits on a vertex of S_X. Suppose for example v corresponds to the divisor \tilde{D}_0. We have $\text{CH}_1(\tilde{D}_0) \simeq \text{CH}_1(\mathbb{P}^2_C) \simeq \mathbb{Z}$. The map $\alpha: \text{CH}_1(\tilde{D}_0) \to \mathbb{Z}^4$ sends 1 to $(-3, 1, 1, 1)$. We omit the cases where v corresponds to other divisors.

Third, the point v sits in the relative interior of a 1-dimensional face of S_X. Suppose for example the corresponding closed stratum D_{Iv} is the intersection $\tilde{D}_0 \cap \tilde{D}_1$, which we denote by \tilde{D}_{01}. It is isomorphic to the projective line \mathbb{P}^1_C, so $\text{CH}_1(\tilde{D}_{01}) \simeq \mathbb{Z}$. Let E_1, E_2, E_3, E_4 denote the four exceptional curves in \tilde{D}_1. Let $\pi_1: \tilde{D}_1 \to \mathbb{P}^2_C$ denote the blow-up. Then $(\pi_1^*\mathcal{O}(1), [E_1], [E_2], [E_3], [E_4])$ form a basis of $\text{CH}_1(\tilde{D}_1)$. From the relations

$$
\left([\tilde{D}_0] + [\tilde{D}_1] + [\tilde{D}_2] + [\tilde{D}_3] \right) |_{\tilde{D}_0} = 0 \in \text{CH}_1(\tilde{D}_0),
$$

$$
\left([\tilde{D}_0] + [\tilde{D}_1] + [\tilde{D}_2] + [\tilde{D}_3] \right) |_{\tilde{D}_1} = 0 \in \text{CH}_1(\tilde{D}_1),
$$

we have

$$
[\tilde{D}_0] |_{\tilde{D}_0} = -3 \in \text{CH}_1(\tilde{D}_0),
$$

$$
[\tilde{D}_1] |_{\tilde{D}_1} = (-3, 1, 1, 1, 1) \in \text{CH}_1(\tilde{D}_1).
$$

Therefore,

$$
[\tilde{D}_0] |_{\tilde{D}_{01}} = -3 \in \text{CH}_1(\tilde{D}_{01}),
$$

$$
[\tilde{D}_1] |_{\tilde{D}_{01}} = -3 + 1 + 1 + 1 + 1 = 1 \in \text{CH}_1(\tilde{D}_{01}).
$$
It is obvious that
\[
\left[\tilde{D}_2 \right] \mid \left[\tilde{D}_{01} \right] = \left[\tilde{D}_3 \right] \mid \left[\tilde{D}_{01} \right] = 1 \in \text{CH}_1(\tilde{D}_{01}).
\]
So we conclude that the map \(\alpha : \text{CH}_1(\tilde{D}_{01}) \to \mathbb{Z}^4 \) sends 1 to \((-3, 1, 1, 1)\).

Plan. Basic definitions are given in Section 2. In Section 3, we study the geometry of strictly semi-stable formal schemes in terms of vanishing cycles. In Section 5, we define tropical weights. We prove that they are homological in nature. Indeed, they are only related to the “vanishing part” of the first degree cohomology of the generic fiber (Proposition 5.10). In Section 4, we establish an important technical step which allows us to localize our calculation of vanishing cycles to a smaller domain inside the skeleton. In Section 6, we prove a weaker form of our balancing conditions in terms of étale cohomology. The key ingredient is the long exact sequence relating nearby cycles with vanishing cycles. In Section 7, we explain how to use standard arguments in algebraic geometry to obtain the stronger balancing condition (Theorem 1.1) which is stated in terms of algebraic cycles.

Acknowledgement. I am very grateful to Maxim Kontsevich for inspiring discussions, from which this article originates. Discussions with Antoine Ducros, Pierrick Bousseau, Jean-François Dat, Ilia Itenberg, Sean Keel, Bernhard Keller, Bruno Klingler and Grigory Mikhalkin are equally very essential and useful. I would also like to thank the referees for valuable comments.

2. Strictly semi-stable formal schemes and skeleta

In this article, \(k \) always denotes a complete discrete valuation field\(^2\). Let \(k^\circ \) be the ring of integers of \(k \), \(k^{\text{max}} \) the maximal ideal of \(k^\circ \), and \(\bar{k} \) the residue field. The symbol \(\ell \) always denotes a prime number invertible in the residue field \(\bar{k} \).

For \(n \geq 1 \), \(0 \leq d \leq n \) and \(a \in k^{\text{max}} \setminus 0 \), put
\[
\mathcal{S}(n, d, a) = \text{Spf} \left(k^\circ \{ T_0, \ldots, T_d, S_{d+1}^+, \ldots, S_n^+ \} / (T_0 \cdots T_d - a) \right).
\]

Definition 2.1. A formal scheme \(\mathfrak{X} \) over \(k^\circ \) is said to be **finitely presented** if it is a finite union of open affine subschemes of the form
\[
\text{Spf} \left(k^\circ \{ T_0, \ldots, T_n \} / (f_1, \ldots, f_m) \right).
\]

\(^2\)We assume the valuation to be discrete because the theory of special formal schemes (cf. [6]) in the non-discrete valued case is not studied in the literature. It is not clear whether one can drop this assumption.
Definition 2.2. Let X be a formal scheme finitely presented over k°. X is said to be strictly semi-stable if every point x of X has an open affine neighbourhood U such that the structural morphism $U \to \text{Spf } k^\circ$ factorizes through an étale morphism $\phi: U \to \mathcal{G}(n,d,a)$ for some $0 \leq d \leq n$ and $a \in k^{\infty} \setminus 0$.

Recall that for a formal scheme X finitely presented over k°, its special fiber X_s is a scheme of finite type over \tilde{k}, and its generic fiber X_η is a compact strictly k-analytic space (cf. [3, 4, 5]). When X is polystable in the sense of [7], one can construct a polysimplicial set $C(X_s)$. Its topological realization is denoted by S_X. In [7], Berkovich constructed an embedding $S_X \subset X_\eta$ and a strong deformation retraction from X_η to S_X. So S_X is called the skeleton of X_η with respect to X. In our simplified situation, i.e. when X is strictly semi-stable, the skeleton S_X has a simple description as the dual intersection complex of the special fiber X_s.

Let $\{ D_i \mid i \in I_X = \{0, \ldots, N\} \}$ be the set of irreducible components of the special fiber X_s. For any non-empty subset $I \subset I_X$, let $D_I = \bigcap_{i \in I} D_i$ and $J_I = \{ j \mid D_{I \cup \{j\}} \neq \emptyset \}$. We further assume that the strata D_I are all irreducible. The general constructions in [7] imply the following two lemmas.

Lemma 2.3. The skeleton S_X is the finite simplicial sub-complex of the simplex Δ^{I_X} such that for any $I \subset I_X$, Δ^I is a face of S_X if and only if $D_I \neq \emptyset$.

A face $\Delta^I \subset S_X$ for $I \subset I_X$ is called maximal if it does not belong to another face of higher dimension. Let Δ^I be a maximal face of S_X of dimension d. By Definition 2.2, there exists an affine open subscheme U in X such that the structural morphism $U \to \text{Spf } k^\circ$ factorizes through an étale morphism $\phi: U \to \mathcal{G}(n,d,a)$ for some $n \in \mathbb{N}$, $a \in k^{\infty} \setminus 0$, and that $D_I \cap U_s$ is given by the equations $T_0 = \cdots = T_d = 0$. We denote this element $a \in k^{\infty} \setminus 0$ by a_I.

Let

$$S_I = \left\{ \sum_{i \in I} r_i \langle D_i \rangle \mid r_i \in \mathbb{R}_{\geq 0}, \sum_{i \in I} r_i = \text{val}(a_I) \right\} \subset \mathbb{R}^{I_X},$$

where $\langle \langle D_i \rangle \rangle_{i \in I_X}$ is regarded as the standard basis of \mathbb{R}^{I_X}.

Lemma 2.4. The skeleton S_X can be identified with the union of the simplexes S_I over all maximal faces $I \subset I_X$. Thus we obtain an embedding of S_X into \mathbb{R}^{I_X}.

We refer to [21, 8, 15, 14] for related constructions.
3. Calculation of vanishing cycles

For any space X, we denote by $X_{\acute{e}t}$ the category of étale sheaves on X whenever it makes sense. Let $\Lambda = \mathbb{Z}/\ell^\nu \mathbb{Z}$ for any positive integer ν. We denote by Λ_X the constant sheaf on X associated to Λ. Let k^s be a separable closure of k, \tilde{k}^s its completion, and \tilde{k} its residue field. For any scheme X defined over $\text{Spec} k$, we denote $X = X \times \tilde{k}$. For any k-analytic space X, we denote $X = X \times \hat{k}$.

Let X be a strictly semi-stable formal scheme over k°. Let X_s (resp. X_η) denote the special (resp. generic) fiber of the formal scheme $X = X \hat{\otimes} k^\circ$. For any k-analytic space X, we denote $X = X \times \hat{k}$.

In [5], Berkovich constructed two functors $\Theta : X_\eta \sim \acute{e}t \to X_s \sim \acute{e}t$ and $\Psi : X_\eta \sim \acute{e}t \to X_\eta \sim \acute{e}t$. We call them the specialization functor and the nearby cycles functor respectively. We denote by $R\Theta$ and $R\Psi$ the corresponding derived functors. Our aim in this section is to compute the sheaf of nearby cycles $R\Psi \Lambda_{X_\eta}$ and the sheaf of vanishing cycles $R\Phi \Lambda_{X_\eta}$ defined as usual as a cone ([12] XIII 2.1).

The question being local, we only have to study the affine charts $\phi : U \to \mathcal{S}(n, d, a)$ as in Definition 2.2. The formal scheme $\mathcal{S}(n, d, a)$ is the completion of the scheme $\text{Spec} \left(k^\circ \mathbb{T}_0, \ldots, \mathbb{T}_d, \mathbb{S}_{d+1}, \ldots, \mathbb{S}_n \right) / (\mathbb{T}_0 \cdots \mathbb{T}_d - a)$ along its special fiber. Therefore, by [5] Corollary 4.5(i) and Corollary 5.3, the calculation is reduced to the case of ordinary schemes.

Proposition 3.1 ([19]). We have $R^0 \Psi \Lambda_{X_\eta} \simeq \Lambda_X$, an exact sequence

$$0 \to \Lambda_X \xrightarrow{\text{diag}} \bigoplus_{i \in I_X} \Lambda_{\mathcal{D}_i} \to R^1 \Psi \Lambda_{X_\eta}(1) \to 0,$$

and isomorphisms

$$\wedge^q R^1 \Psi \Lambda_{X_\eta} \simeq R^q \Psi \Lambda_{X_\eta}, \quad \text{for } q \geq 1.$$

The sheaf of vanishing cycles $R\Phi \Lambda_{X_\eta}$ is related to the sheaf of nearby cycles $R\Psi \Lambda_{X_\eta}$ through an exact triangle

$$\Lambda_X \to R\Psi \Lambda_{X_\eta} \to R\Phi \Lambda_{X_\eta} \to R^2 \Gamma \Lambda_X \to \cdots$$

(3.1)

Let $\Delta^I, I \subset I_X$ be a face of S_X and let $j : \mathcal{D}_I \hookrightarrow \mathcal{X}_X$ denote the closed immersion. We assume that \mathcal{D}_I is a projective variety. Applying j^* to (3.1), we obtain an exact triangle

$$j^* \Lambda_X \to j^* R\Psi \Lambda_{X_\eta} \to j^* R\Phi \Lambda_{X_\eta} \to j^* R^2 \Gamma \Lambda_X \to \cdots$$

(3.2)

Taking global sections $R\Gamma$, we obtain a long exact sequence

$$\cdots \to R^1 \Gamma \left(j^* R\Psi \Lambda_{X_\eta} \right) \xrightarrow{\beta^*} R^1 \Gamma \left(j^* R\Phi \Lambda_{X_\eta} \right) \xrightarrow{\alpha^*} R^2 \Gamma \left(j^* \Lambda_X \right) \to \cdots$$

(3.3)

where we denote the two arrows above by β^* and α^* respectively.

3Our terminology differs from [5], where Ψ is called the vanishing cycles functor.
Corollary 3.2. We have an isomorphism
\[R^1 \Gamma \left(j^* R^2 \Phi \Lambda_X \right) \simeq \text{Coker} \left(\Lambda \overset{\Delta}{\to} \Lambda^J \right)(-1), \]
where \(\Delta \) denotes the diagonal map that sends an element \(\lambda \in \Lambda \) to \((\lambda, \ldots, \lambda) \in \Lambda^J\). Moreover, the map \(\alpha^*: \text{Coker} \left(\Lambda \overset{\Delta}{\to} \Lambda^J \right)(-1) \to R^2 \Gamma \left(j^* \Lambda_X \right) \simeq H^2_{\text{ét}}(D_I, \Lambda) \) is induced by the cycle class map in étale cohomology.

Proof. The first statement is an immediate corollary of Proposition 3.1. Let us explain the second statement. Again by comparison theorems between analytic and algebraic vanishing cycles, it suffices to work in the setting of ordinary schemes. In this proof, let us temporarily assume that \(\mathcal{X} \) is a scheme over \(\text{Spec} \ k \) instead of a formal scheme. Let \(i_s: \mathcal{X}_s \to \mathcal{X}, \ i_\eta: \mathcal{X}_\eta \to \mathcal{X} \) denote the inclusions, and let \(i_s^*: \mathcal{X}_s \to \mathcal{X}, \ i_\eta^*: \mathcal{X}_\eta \to \mathcal{X} \) denote the natural morphisms. We have an exact triangle
\[i_s i_s^* \Lambda_X \to \Lambda_X \to i_\eta i_\eta^* \Lambda_X +1 \to. \] (3.4)
By purity, we have an isomorphism
\[R^1 i_s i_\eta^* \Lambda_X \simeq \bigoplus_{i \in I_X} \Lambda_{D_i}(-1) \]
given by the cohomology classes of the divisors \(D_i \) for \(i \in I_X \). Applying \(j^*_D \) to (3.4) and shifting by 1, we obtain an exact triangle
\[j^*_D \Lambda_X \to j^*_D i_\eta i_\eta^* \Lambda_X \to j^*_D i_s i_s^* \Lambda_X[1] +1 \to. \]
We have a morphism from the exact triangle above to the exact triangle (3.2)
\[\begin{array}{cccccc}
 j^*_D \Lambda_X & \to & j^*_D i_\eta i_\eta^* \Lambda_X & \to & j^*_D i_s i_s^* \Lambda_X[1] & \to & j^*_D \Lambda_X \\
 f_1 & & f_2 & & f_s & & f_4 \\
 j^* \Lambda_X & \to & j^* R^2 \Lambda_X & \to & j^* R^2 \Lambda_X & \to & j^* \Lambda_X[1],
\end{array} \]
where the maps \(f_1, f_4 \) are identities, the map \(f_2 \) is obtained from adjunction
\[i_\eta i_\eta^* \Lambda_X \to i_\eta i_\eta^* \Lambda_X, \]
and the map \(f_3 \) follows from the properties of triangulated categories. Now the second statement in the corollary follows from the commutativity
\[f_4 \circ b = b' \circ f_3 \]
and the definition of the cycle class map in étale cohomology.

4. Deformation of analytic tubes

The retraction map \(\tau : \mathfrak{X}_\eta \to S_\mathfrak{X} \) constructed by Berkovich [7] is easy to describe for the standard formal scheme \(\mathfrak{B} := \mathfrak{G}(n, d, a) \) defined as in (2.1). By Lemma 2.4, we have

\[
S_{\mathfrak{B}} = \left\{ (r_0, \ldots, r_d) \in \mathbb{R}_{\geq 0}^{d+1} \left| \sum_{i=0}^{d} r_i = \text{val } a \right. \right\} \subset \mathbb{R}^{d+1}.
\]

Lemma 4.1. The retraction map \(\tau_{\mathfrak{B}} : \mathfrak{B}_\eta \to S_{\mathfrak{B}} \) takes \(x \in \mathfrak{B}_\eta \) to the point \((\text{val } T_0(x), \ldots, \text{val } T_d(x)) \in S_{\mathfrak{B}} \subset \mathbb{R}^{d+1} \).

For a general strictly semi-stable formal scheme \(\mathfrak{X} \), the retraction map \(\tau : \mathfrak{X}_\eta \to S_{\mathfrak{X}} \) is defined by gluing the construction above in the étale topology. Our aim in this section is to describe the local geometry of this retraction in terms of nearby cycles. More precisely, let \(v \) be a point in \(S_{\mathfrak{X}} \) sitting in the relative interior of a \(d_v \)-dimensional face \(\Delta_{I_v} \) for \(I_v = \{i_0, \ldots, i_{d_v}\} \subset I_\mathfrak{X} \). Denote by \(j \) the closed immersion \(D_{I_v} \hookrightarrow \mathfrak{X}_\eta \). Let

\[
V_{I_v}^{s_0 \ldots s_{d_v}} = S_{\mathfrak{X}} \cap \left\{ (r_0, \ldots, r_d) \in \mathbb{R}^{I_\mathfrak{X}} \left| r_{i_j} \geq s_j \text{ for } j \in \{0, \ldots, d_v\} \right. \right\},
\]

where \(s_0, \ldots, s_{d_v} \in \text{val } k^\infty \). It follow from the definition that

Lemma 4.2. \(V_{I_v}^{s_0 \ldots s_{d_v}} \neq \emptyset \) if and only if \(s_0 + \cdots + s_{d_v} \leq \text{val } a_{I_v} \).

We suppose from now on that \(V_{I_v}^{s_0 \ldots s_{d_v}} \neq \emptyset \), and denote by \(\iota \) the inclusion map \(\tau^{-1} : (V_{I_v}^{s_0 \ldots s_{d_v}}) \hookrightarrow \mathfrak{X}_\eta \).

Theorem 4.3. We have a quasi isomorphism

\[
j_* j^* R\Psi \left(\Lambda_{\mathfrak{X}_\eta} \right) \xrightarrow{\cong} R\Psi \left(R\iota_* \iota^* \Lambda_{\mathfrak{X}_\eta} \right).
\]

Proof. By adjunction, we have a morphism \(\Lambda_{\mathfrak{X}_\eta} \to R\iota_* \iota^* \Lambda_{\mathfrak{X}_\eta} \), thus a morphism

\[
j_* j^* R\Psi \left(\Lambda_{\mathfrak{X}_\eta} \right) \xrightarrow{\cong} j_* j^* R\Psi \left(R\iota_* \iota^* \Lambda_{\mathfrak{X}_\eta} \right).
\]

In order to prove the theorem, we only have to show that

(i) The morphism \(\gamma \) is a quasi-isomorphism.

(ii) The sheaf \(R\Psi(R\iota_* \iota^* \Lambda_{\mathfrak{X}_\eta}) \) is supported on \(D_{I_v} \).

The properties being local, we only have to show them for the formal scheme \(\mathfrak{B} = \mathfrak{G}(n, d, a) \). We assume that \(d_v \leq d \) because otherwise it will not have contributions to the stratum \(D_{I_v} \). The special fiber \(\mathfrak{B}_s \) is given by the equation \(T_0 \cdots T_d = 0 \), and we assume that \(D_{I_v} \subset \mathfrak{B}_s \) is further cut out by the equations \(T_{d_v} = \cdots = T_d = 0 \).
Now pick any elements $a_0, \ldots, a_d, \in k^\infty$ such that $\text{val} a_j = s_j$. Let $a' = a \cdot a_0^{-1} \cdots a_d^{-1}$, $\mathfrak{B} = \mathfrak{G}(n, d, a')$. Let $f: \mathfrak{B} \to \mathfrak{B}$ be the morphism given by the algebra homomorphism

$$k^o \{ T_0, \ldots, T_d, S^\pm_{d+1}, \ldots, S^\pm_n \} / (T_0 \cdots T_d - a) \longrightarrow k^o \{ T_0, \ldots, T_d, S^\pm_{d+1}, \ldots, S^\pm_n \} / (T_0 \cdots T_d - a'),$$

which takes

$$T_j \mapsto a_j T_j \quad \text{for } j = 0, \ldots, d_v,$$

$$T_j \mapsto T_j \quad \text{for } j = d_v + 1, \ldots, d,$$

$$S_j \mapsto S_j \quad \text{for } j = d + 1, \ldots, n.$$

We have

$$Rf_\eta^* \Lambda_\mathfrak{B}_n \simeq R\iota_* t^* \Lambda_\mathfrak{B}_n.$$ \hfill (4.2)

By [5] Corollary 4.5(ii), we have

$$R\Psi \left(Rf_\eta^* \Lambda_\mathfrak{B}_n \right) \simeq Rf_{\tau*} \left(R\Psi \left(\Lambda_\mathfrak{B}_n \right) \right).$$ \hfill (4.3)

Combining (4.2) and (4.3), we obtain

$$R\Psi \left(R\iota_* t^* \Lambda_\mathfrak{B}_n \right) \simeq Rf_{\tau*} \left(R\Psi \left(\Lambda_\mathfrak{B}_n \right) \right).$$

This shows (ii). Then (i) follows from the calculation of nearby cycles in the last section and the fact that the fibers of f_τ are all cohomologically trivial. \qed

Remark 4.4. The geometry behind Theorem 4.3 is that the étale cohomology does not change when we deform certain tubular neighborhoods. A scheme theoretic analog can be found in [9]. Our approach may be adapted to give a better understanding of the result loc. cit.

5. Cohomological interpretation of tropical weights

Let C be a compact quasi-smooth k-analytic curve, and $f: C \to \mathfrak{X}_n$ a k-analytic morphism. The image of C under $\tau \circ f$ is a one-dimensional polyhedral complex embedded in the skeleton S_X. We denote it by C^t, and call it the associated *tropical curve*. We call the 0-dimensional faces of C^t vertices and the 1-dimensional faces of C^t edges. We denote by e^o the interior of an edge e.

\footnote{In degenerate situations, the tropical curve C^t can be zero-dimensional. We are not interested in such cases.}
Proposition 5.1. There exists a subdivision of the edges of the tropical curve C^t such that, if we denote by $\overline{C^t}$ the polyhedral complex after the subdivision of edges, then

1. For any edge e of $\overline{C^t}$, each connected component of $(\tau \circ f)^{-1}(e^o)$ is isomorphic to an open annulus.
2. For each annulus A as above, there exists an open subscheme \mathcal{U} in \mathcal{X}, equipped with an étale morphism $\phi: \mathcal{U} \to \mathcal{G}(n, d, a)$ as in Definition 2.2, such that $f(A)$ is contained in \mathcal{U}_η.

Proof. Let us choose affine charts $\mathcal{U}_1, \ldots, \mathcal{U}_m$ as in Definition 2.2 such that $\bigcup_{i=1}^m \mathcal{U}_i = \mathcal{X}$. Assume that for each $i \in \{1, \ldots, m\}$, the structural morphism $\mathcal{U}_i \to \text{Spf} k^\circ$ factorizes through an étale morphism

$$\phi_i: \mathcal{U}_i \to \text{Spf} \left(k^\circ \{ T_0^{(i)}, \ldots, T_d^{(i)}, S_{d+1}^{(i)}, \ldots, S_n^{(i)} \} / (T_0^{(i)} \cdots T_d^{(i)} - a_i) \right)$$

for some $0 \leq d_i \leq n_i$, $a_i \in k^\circ \setminus 0$. Let $C_i = f^{-1}(\mathcal{U}_i) \cap \mathcal{X}$. By Lemma 5.2, there exists a finite graph Γ_i such that the functions t_{ij} are locally constant over $C_i \setminus \Gamma_i$, and piecewise linear over Γ_i.

By extending Γ_i, we can assume that it contains an analytic skeleton of C_i (cf. [10](5.1.8)). Let Γ be the convex hull of Γ_i and let $\Gamma' = \Gamma \cap C_i$. By [10](5.1), we have a strong deformation retraction $r: C \to \Gamma'$, which gives a retraction of C_i onto Γ_i. Let K_i be the set of knot points for the subgraph $\Gamma_i \subset C_i$ for $i = 1, \ldots, m$, and let K be the set of knot points for the subgraph $\Gamma \subset C$. Let $P_0 = (\tau \circ f)(K \cup \bigcup_{i=1}^m K_i)$, and let P_1 be the union of the points $p \in C^t$ such that $((\tau \circ f)_\Gamma)^{-1}(p)$ contains an infinite number of points. The set of points P_0 is finite by [10](5.1.12.2). The set of points P_1 is also finite by Lemma 5.2. Therefore, the union $P := P_1 \cup P_2$ is a finite set. Now it suffices to make the subdivision of the edges of our tropical curve C^t by adding the points in P as new vertices. Indeed, for each edge e of the subdivided tropical curve $\overline{C^t}$, $r^{-1}(s)$ is isomorphic to an open annulus, which we denote by A. By Lemma 5.2, we have $f|_{\Gamma_r} \circ r|_A = \tau \circ f|_A$. So we have proved the first assertion of our proposition.

5 Many thanks to Antoine Ducros for his help with this proof.

6 The notion of knot points is defined in [10](5.1.12) for an analytically admissible and locally finite subgraph inside a generically quasi-smooth k-analytic curve.
Moreover, $s \subset \overline{t}_i$ implies that $A_i := (r_i|_{C_i})^{-1}(s)$ is an open annulus inside C_i. We have an inclusion of two open annuli $A_i \subset A$, and both of them retract to the same segment s. Therefore we have $A_i = A$, and $f(A) = f(A_i) \subset U_{i, \eta}$. So we have proved the second assertion as well.

\[\square \]

Remark 5.3. It is pointed out by the referee that Proposition 5.1 is the analog of [2, Proposition 6.4(2)] in our global setting.

From now on, we replace our tropical curve C^t by the subdivided curve \overline{C}^t produced by Proposition 5.1.

We explain in the following how to equip every edge e of C^t a tropical weight $\tilde{w}_e \in \mathbb{Z}^{tX}$ with respect to a choice of orientation of the edge e. An orientation of an edge e is a choice of a direction parallel to e among the two possible choices. We will see that the weight \tilde{w}_e is multiplied by -1 if we reverse the orientation of e.

Now fix an edge e of our tropical curve C^t and an orientation of e. Assume that the interior e^o of the edge e is contained in the relative interior of a d_e-dimensional face Δ^e for $I_e \subset I_X$. Let A be a connected component of $(\tau \circ f)^{-1}(e^o)$. Fix $i \in I_X$ and denote by $p_i: \mathbb{R}^{tX} \to \mathbb{R}$ the projection to the i^{th} coordinate. Let r_i be the composition of $p_i \circ \tau \circ f|A$ using the embedding $S_X \subset \mathbb{R}^{tX}$. By Proposition 5.1(2) and the explicit description of the retraction map in Lemma 4.1, the map r_i equals $\text{val}(f_i)$ for some invertible function f_i on the open annulus A. Choose a coordinate z on A such that A is given by $c_1 < |z| < c_2$ for two positive real numbers $c_1 < c_2$ and that the image $(\tau \circ f)(z)$ moves along the orientation of the edge e as $\text{val}(z)$ increases. Write

$$f_i = \sum_{m \in \mathbb{Z}} f_{i,m} z^m$$

with $f_{i,m} \in k$. By [4] Lemma 6.2.2, there exists $m_i \in \mathbb{Z}$ with $|f_{i,m_i} r^m| > |f_{i,m} r^m|$ for all $m \neq m_i$, $c_1 < r < c_2$. Therefore, for $c_1 < |z| < c_2$, we have

$$\text{val}(f_i(z)) = \text{val}(f_{i,m_i}) + m_i \cdot \text{val}(z). \quad (5.1)$$

We define the i^{th} component \tilde{w}^i_A of the weight \tilde{w}_A to be m_i for every $i \in I_X$.

Lemma 5.4. The weight $\tilde{w}_A \in \mathbb{Z}^{tX}$ defined as above does not depend on the choice of the invertible function f_i or the coordinate z. It is multiplied by -1 if we reverse the orientation of the edge e. It is parallel to the direction of the edge e sitting inside \mathbb{R}^{tX}. In particular, it is an element of $\text{Ker} \left(\mathbb{Z}^{t^e} \xrightarrow{\Sigma} \mathbb{Z} \right) \subset \mathbb{Z}^{tX}$, where $\Sigma: \mathbb{Z}^{t^e} \to \mathbb{Z}$ sends $(x^1, \ldots, x^q) \in \mathbb{Z}^{t^e}$ to $x^1 + \cdots + x^q \in \mathbb{Z}$.

Proof. All the assertions follow from Eq. (5.1). \[\square \]
Definition 5.5. Let \tilde{w}_e be the sum of \tilde{w}_A over every connected component A of $(\tau \circ f)^{-1}(e)$. The element $\tilde{w}_e \in \text{Ker}(\mathbb{Z}^n \xrightarrow{\Sigma} \mathbb{Z}) \subset \mathbb{Z}^n$ is called the tropical weight associated to the edge e with the chosen orientation.

Remark 5.6. Definition 5.5 is a globalization of the classical notion of tropical weights. We refer to [2, §6] for similar considerations in the toric case.

Let us explain the homological nature of the tropical weights. Let A be an open annulus as above and let $\phi: \mathcal{U} \rightarrow \mathcal{S}(n, d, a)$ be as in Proposition 5.1(2). We assume for simplicity that the divisors D_0, \ldots, D_d restricted to \mathcal{U} are given by the equations $T_0 \circ \phi = 0, \ldots, T_d \circ \phi = 0$ respectively, where T_0, \ldots, T_d are coordinates on $\mathcal{S}(n, d, a)$ (see Eq. (2.1)). We further assume that $I_e = \{0, \ldots, d_e\}$. Let $\mathcal{B} = \mathcal{S}(n, d, a)$, and let $\pi_\mathcal{U}: \mathcal{U}_\eta \rightarrow \mathcal{U}_s$, $\pi_{\mathcal{B}}: \mathcal{B}_\eta \rightarrow \mathcal{B}_s$ be the reduction maps (cf. [5, §1]).

Lemma 5.7. There exists a closed point $p \in \mathcal{U}_s$ such that $f(A) \subset \pi_{\mathcal{B}}^{-1}(p)$.

Proof. Consider the composition $\phi_\eta \circ f|A: A \rightarrow \mathcal{B}_\eta$. In terms of affinoid algebras, it is given by n power series:

\[
\begin{align*}
T_i \mapsto \sum_{m \in \mathbb{Z}} f_{i,m}z^m & \quad \text{for } i = 0, \ldots, d, \\
S_i \mapsto \sum_{m \in \mathbb{Z}} f_{i,m}z^m & \quad \text{for } i = d + 1, \ldots, n.
\end{align*}
\]

From the definition of the weight \tilde{w}_A, for any $i = 0, \ldots, n$, $c_1 < r < c_2$, $m \neq \tilde{w}_i$, we have

\[
|f_{i,\tilde{w}_i}|r^{\tilde{w}_i} > |f_{i,m}|r^m.
\]

Therefore, if $\tilde{w}_i = 0$, then the i^{th}-coordinate of all the points in $(\pi_{\mathcal{B}} \circ \phi_\eta \circ f)(A)$ is $\tilde{T}_{i,0}$, where $\tilde{T}_{i,0}$ denotes the image of $f_{i,0}$ in the residue field \tilde{k}. If $\tilde{w}_i \neq 0$, then the i^{th}-coordinate of all the points in $(\pi_{\mathcal{B}} \circ \phi_\eta \circ f)(A)$ is zero. This shows that the image $(\pi_{\mathcal{B}} \circ \phi_\eta \circ f)(A)$ is a k-rational point in \mathcal{B}_s, which we denote by $p_{\mathcal{B}}$. By the commutativity

\[
\pi_{\mathcal{B}} \circ \phi_\eta = \phi_s \circ \pi_\mathcal{U}: \mathcal{U}_\eta \rightarrow \mathcal{B}_s,
\]

we have

\[
(\pi_\mathcal{U} \circ f)(A) \subset \phi_s^{-1}(p_{\mathcal{B}}).
\]

Since ϕ_s is étale, $\phi_s^{-1}(p_{\mathcal{B}})$ is discrete. Then by the connectedness of the annulus A, there exists a point $p \in \phi_s^{-1}(p_{\mathcal{B}})$ such that $(\pi_\mathcal{U} \circ f)(A) = p$. \hfill \Box

Since $\phi: \mathcal{U} \rightarrow \mathcal{B}$ is étale, and ϕ_s induces an isomorphism between the point p and the point $p_{\mathcal{B}} = \phi_s(p)$, ϕ_η induces an isomorphism between $\pi^{-1}_\mathcal{U}(p)$ and $\pi_{\mathcal{B}}^{-1}(p_{\mathcal{B}})$.

}\]
Now $\pi^{-1}_B(p_B)$ is very easy to describe. It is isomorphic to the generic fiber of the special formal scheme
\[
\text{Spf} \left(\frac{k[[T_0, \ldots, T_{d_e}, S_{d_e+1}, \ldots, S_n]]}{(T_0 \cdots T_{d_e} - a')} \right).
\] (5.2)

For $i \in I_e$, let A_i be the generic fiber of the special formal scheme
\[
\text{Spf} \left(\frac{k[[T_i, T']]}{(T_i \cdot T' - a')} \right),
\]
and let c_i denote the morphism of k-analytic spaces
\[
\pi^{-1}_B(p_B) \to A_i
\]
induced by the homomorphism of algebras
\[
k[[T_i, T']] / (T_i \cdot T' - a') \longrightarrow k[[T_0, \ldots, T_{d_e}, S_{d_e+1}, \ldots, S_n]] / (T_0 \cdots T_{d_e} - a'),
\]
which takes
\[
T_i \mapsto T_i \quad T' \mapsto T_0 \cdots \hat{T}_i \cdots T_{d_e}.
\]

Lemma 5.8. Let $g_i = c_i \circ \phi \circ f_i : A \to A_i$, and let $g^*_i : H^1_{\text{ét}}(A, \mathbb{Q}_\ell) \to H^1_{\text{ét}}(A_i, \mathbb{Q}_\ell)$ be the induced homomorphism of étale cohomology groups. Then $w^*_A = g^*_i(1) \in \mathbb{Q}_\ell$ for all $i \in I_e$.

Proof. It follows from [4] Lemma 6.2.5 that the winding numbers in terms of étale cohomology equals exactly the numbers m_i in Eq. (5.1). \qed

Our next step is to relate the tropical weights to vanishing cycles. Since our tropical weights are defined using étale cohomology with \mathbb{Q}_ℓ-coefficients, we shall take the inverse limit over ν for all our reasonings in Sections 3 and 4. By abuse of notation, we will just replace Λ by \mathbb{Q}_ℓ, although it should be understood that the inverse limit is taken in the last step rather than from the beginning.

Let v, I_v, $V^{s_0 \cdots s_{d_v}}$, j be as in Section 4. Let A, $\phi : \mathfrak{M} \to \mathfrak{B}$, $p \in \mathfrak{M}$, be as before. We assume that $f(A) \subset \tau^{-1}(V^{s_0 \cdots s_{d_v}})$. By Theorem 4.3, we have
\[
H^1_{\text{ét}}(\tau^{-1}(V^{s_0 \cdots s_{d_v}}) \times \overline{k^s}, \mathbb{Q}_\ell) \simeq R^1\Gamma(j^* R\Psi Q_{\ell, x_n}).
\]

Lemma 5.9. We have an isomorphism
\[
R^1\Gamma\left(j^*_p R\Psi Q_{\ell, x_n}\right) \simeq H^1_{\text{ét}}(\tau^{-1}(V^{s_0 \cdots s_{d_v}}) \cap \pi^{-1}_M(p) \times \overline{k^s}, \mathbb{Q}_\ell). \quad (5.3)
\]

Proof. By [6], we have
\[
R^1\Gamma\left(j^*_p R\Psi Q_{\ell, x_n}\right) \simeq H^1_{\text{ét}}(\pi^{-1}_M(p) \times \overline{k^s}, \mathbb{Q}_\ell). \quad (5.4)
\]
Using the isomorphism $\pi_{\tilde{u}}^{-1}(p) \simeq \pi_{\tilde{w}}^{-1}(p_{\tilde{w}})$ and the explicit description of $\pi_{\tilde{w}}^{-1}(p_{\tilde{w}})$ in Eq. (5.2), the same arguments as in the proof of Theorem 4.3 give an isomorphism

$$H_{\text{ét}}^1 \left(\left(\tau^{-1}(V_{I_v}^{s_0 \cdots s_d}) \cap \pi_{\tilde{u}}^{-1}(p) \right) \times \tilde{k}^s, \mathbb{Q}_{\ell} \right) \simeq H_{\text{ét}}^1 \left(\pi_{\tilde{u}}^{-1}(p) \times \tilde{k}^s, \mathbb{Q}_{\ell} \right). \tag{5.5}$$

Now our lemma follows from (5.4) and (5.5). \hfill \square

Now assume that v is an endpoint of the edge e. Let $J := J_{I_v}$ (see Eq. (2.2)). Since $I_v \subset J$, by Lemma 5.4, the weight \tilde{w}_A is an element in $\text{Ker}(\mathbb{Z}^J \xrightarrow{\Sigma} \mathbb{Z})$. Using the natural inclusion $\text{Ker}(\mathbb{Z}^J \xrightarrow{\Sigma} \mathbb{Z}) \hookrightarrow \text{Ker}(\mathbb{Q}_\ell^J \xrightarrow{\Sigma} \mathbb{Q}_\ell)$, the weight \tilde{w}_A induces a map

$$\tilde{w}_A^* : \text{Coker} \left(\mathbb{Q}_\ell \xrightarrow{\Delta} \mathbb{Q}_\ell^J \right) \to \mathbb{Q}_\ell.$$

Proposition 5.10. We have the following commutative diagram

$$
\begin{array}{ccc}
R^1 \Gamma \left(j^* R\Psi Q_\ell \mathcal{X}_p, U_p \right) & \xrightarrow{\beta^*} & R^1 \Gamma \left(j^* R\Phi Q_\ell \mathcal{X}_p \right) \\
\sim & & \sim \\
H_{\text{ét}}^1 \left(\tau^{-1}(V_{I_v}^{s_0 \cdots s_d}) \times \tilde{k}^s, \mathbb{Q}_\ell \right) & \xrightarrow{f_p^*} & H_{\text{ét}}^1 \left(\mathcal{A}, \mathbb{Q}_\ell \right) \\
\end{array}
$$

Proof. In order to simplify notation, let us temporarily denote

$$V = \tau^{-1}(V_{I_v}^{s_0 \cdots s_d}) \times \tilde{k}^s,$$

$$\tilde{V}_p = \left(\tau^{-1}(V_{I_v}^{s_0 \cdots s_d}) \cap \pi_{\tilde{u}}^{-1}(p) \right) \times \tilde{k}^s,$$

$$Q^{[\ell]}_\mathcal{U} = \text{Coker} \left(\mathbb{Q}_\ell \xrightarrow{\Delta} \mathbb{Q}_\ell^J \right),$$

$$Q^{[\ell]}_p = \text{Coker} \left(\mathbb{Q}_\ell \xrightarrow{\Delta} \mathbb{Q}_\ell^J \right).$$

Let f_p denote the inclusion $\{p\} \hookrightarrow \mathcal{U}_p$. By the description of the point p in the proof of Lemma 5.7, we have

$$R^1 \Gamma \left(j^* R\Psi Q_\ell \mathcal{U}_p, U_p \right) \simeq R^1 \Gamma \left(j^* R\Phi Q_\ell \mathcal{U}_p \right) \simeq \text{Coker} \left(\mathbb{Q}_\ell \xrightarrow{\Delta} \mathbb{Q}_\ell^J \right)(-1). \tag{5.6}$$

Combining (5.6) and (5.3), we have isomorphisms

$$H_{\text{ét}}^1 \left(\tilde{V}_p, \mathbb{Q}_\ell \right) \simeq R^1 \Gamma \left(j^* R\Psi Q_\ell \mathcal{U}_p \right) \simeq R^1 \Gamma \left(j^* R\Phi Q_\ell \mathcal{U}_p \right) \simeq \mathbb{Q}_\ell^{[\ell]}(-1).$$

Then the following commutative diagram follows from the cohomological interpretations of tropical weights (Lemma 5.8).

$$
\begin{array}{ccc}
R^1 \Gamma \left(j^* R\Psi Q_\ell \mathcal{U}_p \right) & \xrightarrow{\sim} & R^1 \Gamma \left(j^* R\Phi Q_\ell \mathcal{U}_p \right) \\
\sim & & \sim \\
H_{\text{ét}}^1 \left(\tilde{V}_p, \mathbb{Q}_\ell \right) & \xrightarrow{f_p^*} & H_{\text{ét}}^1 \left(\mathcal{A}, \mathbb{Q}_\ell \right) \\
\end{array}
$$

$$\tilde{w}_A^* : \text{Coker} \left(\mathbb{Q}_\ell \xrightarrow{\Delta} \mathbb{Q}_\ell^J \right) \to \mathbb{Q}_\ell(-1). \tag{5.7}$$
We conclude by the functoriality of the formation of vanishing cycles, i.e. the following commutative diagram:

\[
\begin{array}{c}
H^1_{\acute{e}t}(\tilde{V}, \mathbb{Q}_\ell) \\ \sim \downarrow \sim \\
H^1_{\acute{e}t}(\tilde{V}', \mathbb{Q}_\ell) \\
\end{array}
\begin{array}{c}
\xrightarrow{\beta^*} R^1\Gamma(j^* R\Psi Q_\ell, X_n) \\ \sim \downarrow \sim \\
R^1\Gamma(j_p^* R\Phi Q_\ell, \eta_n) \\
\end{array}
\begin{array}{c}
\xrightarrow{\sim} \mathbb{Q}_\ell^{[J]}(-1) \\
\end{array}
\]

\[
\begin{array}{c}
H^1_{\acute{e}t}(\tilde{V}_p, \mathbb{Q}_\ell) \\ \sim \downarrow \sim \\
H^1_{\acute{e}t}(\tilde{V}_p', \mathbb{Q}_\ell) \\
\end{array}
\begin{array}{c}
\xrightarrow{\beta^*} R^1\Gamma(j_p^* R\Psi Q_\ell, \eta_n) \\ \sim \downarrow \sim \\
R^1\Gamma(j_p^* R\Phi Q_\ell, \eta_n) \\
\end{array}
\begin{array}{c}
\xrightarrow{\sim} \mathbb{Q}_\ell^{[L]}(-1). \\
\end{array}
\]

\[\square\]

Remark 5.11. Intuitively, Proposition 5.10 says that the image of the annulus \(A\) under the morphism \(f\) can only go around vanishing cycles in \(\tau^{-1}(V_0^{s_0...s_{dv}})\) rather than arbitrary homology cycles.

6. Balancing condition in terms of étale cohomology

We use the settings in Section 1. The aim of this section is to prove the following theorem.

Theorem 6.1. Let \(\sigma_v\) denote the sum of weights around the vertex \(v\) as in (1.2). Let \(J := J_{I_v}\) as in Section 5. Then \(\sigma_v\) lies in the image of the following map:

\[
\alpha_\ell : H^2_{\acute{e}t}(D_{I_v} \times \kappa \text{Spec } \kappa^s, \mathbb{Q}_\ell) \to \text{Ker } \left(\mathbb{Q}_\ell \xrightarrow{\Sigma} \mathbb{Q}_\ell \right),
\]

where \(\alpha_\ell\) is dual to the map \(\alpha^*\) in Corollary 3.2 for \(\mathbb{Q}_\ell\) coefficients.

We begin with a simple observation.

Lemma 6.2. For any extension \(k \subset k'\) of non-archimedean fields, if we apply extension of ground fields to \(X_\eta\) and to the map \(f : C \to X_\eta\), the skeleton \(S_X\) and the tropical curve \(C_t\) remains unchanged.

We assume that our tropical curve \(C_t^k\) is already subdivided according to Proposition 5.1. We choose a sufficiently small convex neighborhood \(V\) of \(v\) inside \(S_X\) which does not contain any other vertex of \(C_t^k\). We further require that \(V\) is of the form (4.1). This can be achieved by making a finite extension of our field \(k\).

Lemma 6.3. Let \(k'\) be a separably closed non-archimedean field, \(C^o\) a connected compact quasi-smooth \(k'\)-analytic curve, and let \(b_1, \ldots, b_m\) be the boundary points of \(C^o\). We assume that there are neighborhoods \(A_1, \ldots, A_m\) of \(b_1, \ldots, b_m\) which are pairwise disjoint and are isomorphic to annuli. Let \(A = \prod A_i\) and let \(\iota_b\) denote the inclusion \(A \hookrightarrow C^o\). Then the composition \(\Sigma \circ \iota_b^*\)

\[
H^1_{\acute{e}t}(C^o, \mathbb{Q}_\ell)(1) \xrightarrow{\iota^*} H^1_{\acute{e}t}(A, \mathbb{Q}_\ell)(1) \cong \mathbb{Q}_\ell^{m} \xrightarrow{\Sigma} \mathbb{Q}_\ell
\]
is zero, where Σ denotes the sum.

Proof. By gluing discs onto b_1, \ldots, b_m, we embed C° into a proper smooth k'-analytic curve, which we denote by C°. Let z_1, \ldots, z_m be the centers of the discs, and let $Z = \bigcup_{i=1}^m z_i$. Now the lemma follows from the Gysin exact sequence

$$0 \to H^1_{\text{ét}}(\overline{C^\circ}, \mathbb{Q}_\ell)(1) \to H^1_{\text{ét}}(C^\circ, \mathbb{Q}_\ell)(1) \to H^0_{\text{ét}}(Z, \mathbb{Q}_\ell) \to H^2_{\text{ét}}(\overline{C^\circ}, \mathbb{Q}_\ell)(1) \simeq \mathbb{Q}_\ell \to \cdots.$$

\square

Let r be a positive real number. Let

$$V' = \left\{ x \in V \subset S_X \subset \mathbb{R}^I | \text{dist}(x, V^c) > r \right\},$$

where dist denotes the standard Euclidean metric in \mathbb{R}^I and V^c denotes the complement of V in S_X. Put $V^b = V \setminus V'$, $C^\circ = (\tau \circ f)^{-1}(V)$, $C^b = (\tau \circ f)^{-1}(V^b)$, $\iota_b: C^b \hookrightarrow C^\circ$. We choose r sufficiently small, such that C^b does not contain any vertices of C°. For each segment e in $C^\circ \setminus V^b$, we choose the orientation of e to be the one that points away from v. The definition of tropical weights in Section 5 gives an element $\tilde{w}_e \in \text{Ker} \left(\mathbb{Z}^J \xrightarrow{\Sigma} \mathbb{Z} \right)$, which induces a map

$$\tilde{w}_e^*: \text{Ker} \left(\mathbb{Q}_\ell \xrightarrow{\Delta} \mathbb{Q}_\ell^J \right) \to \mathbb{Q}_\ell.$$

Then σ_e is the sum of \tilde{w}_e over all segments e in $C^\circ \setminus V^b$. It induces a map

$$\sigma_e^*: \text{Ker} \left(\mathbb{Q}_\ell \xrightarrow{\Delta} \mathbb{Q}_\ell^J \right) \to \mathbb{Q}_\ell.$$

By Proposition 5.10, we have a commutative diagram

$$\begin{array}{c}
\xymatrix{ R^1\Gamma \left(j^*R\Psi_{Q_{\ell,x,\eta}} \right) \ar[d]_{\sim} \ar[r]^{\beta^*} & R^1\Gamma \left(j^*R\Phi_{Q_{\ell,x,\eta}} \right) \ar[d]_{\mathbf{Coker} \left(\mathbb{Q}_\ell \xrightarrow{\Delta} \mathbb{Q}_\ell^J \right)(-1)} \\
H^1_{\text{ét}}(\tau^{-1}(V) \times \mathbb{X}, \mathbb{Q}_\ell) \ar[r]^{f_{C^b}} & H^1_{\text{ét}}(\overline{C^b}, \mathbb{Q}_\ell) \ar[r]_{\Sigma} & \mathbb{Q}_\ell(-1),}
\end{array}$$

where the bottom row factorizes as

$$H^1_{\text{ét}}(\tau^{-1}(V) \times \mathbb{X}, \mathbb{Q}_\ell) \xrightarrow{f_{C^b}^*} H^1_{\text{ét}}(\overline{C^b}, \mathbb{Q}_\ell) \xrightarrow{\iota_b^*} H^1_{\text{ét}}(\overline{C^b}, \mathbb{Q}_\ell) \xrightarrow{\Sigma} \mathbb{Q}_\ell(-1).$$

By Lemma 6.3, we have $\Sigma \circ \iota_b^* = 0$. By the commutativity of (6.1), we have

$$\sigma_e^* \circ \beta^* = 0. \quad (6.2)$$

By (3.3), we have a long exact sequence

$$\cdots \to R^1\Gamma(j^*R\Psi_{Q_{\ell,x,\eta}}) \xrightarrow{\beta^*} R^1\Gamma \left(j^*R\Phi_{Q_{\ell,x,\eta}} \right) \xrightarrow{\sigma_e^*} R^2\Gamma(j^*Q_{\ell,x,\eta}) \to \cdots. \quad (6.3)$$
Combining (6.2) and the exactness of (6.3), we have proved that the sum of weights \(\sigma_v \) lies in the image of the map \(\alpha_\ell \).

7. FROM COHOMOLOGICAL CLASSES TO ALGEBRAIC CYCLES

The passage from Theorem 6.1 to Theorem 1.1 is a simple application of the standard conjectures on algebraic cycles, which is easy to prove in codimension one. More precisely, for divisors with rational coefficients in a projective variety, Matsusaka [16] proved that numerical equivalence implies algebraic equivalence. So in particular, numerical equivalence implies homological equivalence.

Let us suppose that \(\text{Im}(\alpha_\mathbb{Q}) \subset \mathbb{Q}^I_X \) is contained in a hyperplane given by \(f = 0 \). Let \(x_i, i \in I_X \) be the coordinates on \(\mathbb{Q}^I_X \) and write \(f \) as \(\sum_{i \in I_X} a_ix_i \), for some \(a_i \in \mathbb{Q} \). The fact that \(\text{Im}(\alpha_\mathbb{Q}) \) is contained in the hyperplane \(f = 0 \) implies that the \(\mathbb{Q} \)-divisor \(\sum_{i \in I_X} a_iL_i \) is numerically equivalent to 0, it is thus homologically equivalent to 0. Therefore, the image \(\text{Im}(\alpha_\ell) \) in Theorem 6.1 is also contained in the hyperplane in \(\mathbb{Q}_\ell^I_X \) defined by the same equation \(f = 0 \). To conclude, we have shown that \(\text{Im} \alpha_\mathbb{Q} \otimes \mathbb{Q}_\ell \simeq \text{Im} \alpha_\ell \). So we have deduced Theorem 1.1 from Theorem 6.1.

REFERENCES

[1] M. F. Atiyah. On analytic surfaces with double points. Proc. Roy. Soc. London. Ser. A, 247:237–244, 1958.
[2] Matthew Baker, Sam Payne, and Joseph Rabinoff. Nonarchimedean geometry, tropicalization, and metrics on curves. arXiv preprint arXiv:1104.0320, 2011.
[3] Vladimir G. Berkovich. Spectral theory and analytic geometry over non-Archimedean fields, volume 33 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1990.
[4] Vladimir G. Berkovich. Étale cohomology for non-Archimedean analytic spaces. Inst. Hautes Études Sci. Publ. Math., (78):5–161 (1994), 1993.
[5] Vladimir G. Berkovich. Vanishing cycles for formal schemes. Invent. Math., 115(3):539–571, 1994.
[6] Vladimir G. Berkovich. Vanishing cycles for formal schemes. II. Invent. Math., 125(2):367–390, 1996.
[7] Vladimir G. Berkovich. Smooth \(p \)-adic analytic spaces are locally contractible. Invent. Math., 137(1):1–84, 1999.
[8] Sébastien Boucksom, Charles Favre, and Mattias Jonsson. Singular semipositive metrics in non-archimedean geometry. arXiv preprint arXiv:1201.0187, 2011.
[9] Jean-François Dat. A lemma on nearby cycles and its application to the tame Lubin-Tate space. Math. Res. Lett., 19(1):165–173, 2012.
[10] Antoine Ducros. La structure des courbes analytiques. En cours de rédaction, date du 15/11/2012.
[11] Manfred Einsiedler, Mikhail Kapranov, and Douglas Lind. Non-Archimedean amoebas and tropical varieties. *J. Reine Angew. Math.*, 601:139–157, 2006.

[12] Alexander Grothendieck. *Groupes de monodromie en géométrie algébrique. II*. Lecture Notes in Mathematics, Vol. 340. Springer-Verlag, Berlin, 1973. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II), Dirigé par P. Deligne et N. Katz.

[13] Walter Gubler. A guide to tropicalizations. In *Algebraic and combinatorial aspects of tropical geometry*, volume 589 of *Contemp. Math.*, pages 125–189. Amer. Math. Soc., Providence, RI, 2013.

[14] Walter Gubler, Joseph Rabinoff, and Annette Werner. Skeletons and tropicalizations. *arXiv preprint arXiv:1404.7044*, 2014.

[15] Maxim Kontsevich and Yury Tschinkel. Non-archimedean kähler geometry. *Preprint*, 2002.

[16] T. Matsusaka. The criteria for algebraic equivalence and the torsion group. *Amer. J. Math.*, 79:53–66, 1957.

[17] Grigory Mikhalkin. Enumerative tropical algebraic geometry in \mathbb{R}^2. *J. Amer. Math. Soc.*, 18(2):313–377, 2005.

[18] Takeo Nishinou and Bernd Siebert. Toric degenerations of toric varieties and tropical curves. *Duke Math. J.*, 135(1):1–51, 2006.

[19] M. Rapoport and Th. Zink. Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik. *Invent. Math.*, 68(1):21–101, 1982.

[20] David E Speyer. Uniformizing tropical curves I: genus zero and one. *arXiv preprint arXiv:0711.2677*, 2007.

[21] Tony Yue Yu. Gromov compactness in non-archimedean analytic geometry. *arXiv preprint arXiv:1401.6452v2*, 2014.

Tony Yue Yu, Institut de Mathématiques de Jussieu, CNRS-UMR 7586, Case 7012, Université Paris Diderot - Paris 7, Bâtiment Sophie Germain 75205 Paris Cedex 13 France

E-mail address: yuyuentony@gmail.com