Identification of hub genes and biological pathways in hepatocellular carcinoma by integrated bioinformatics analysis

Qian Zhao¹, Yan Zhang¹, Shichun Shao², Yeqing SunCorresp., Zhengkui LinCorresp.

¹ College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning, China
² College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China

Corresponding Authors: Yeqing Sun, Zhengkui Lin
Email address: 554951052@qq.com, 2111897652@qq.com

Background: Hepatocellular carcinoma (HCC), the main type of liver cancer in human, is one of the most prevalent and deadly malignancies in the world. The present study aimed to identify hub genes and key biological pathways by integrated bioinformatics analysis.

Methods: A bioinformatics pipeline based on gene co-expression network (GCN) analysis was built to analyze the gene expression profile of HCC. Firstly, differentially expressed genes (DEGs) were identified and a GCN was constructed with Pearson correlation analysis. Then, the gene modules were identified with 3 different community detection algorithms, and the correlation analysis between gene modules and clinical indicators was performed. Moreover, we used the Search Tool for the Retrieval of Interacting Genes (STRING) database to construct a protein protein interaction (PPI) network of the key gene module, and we identified the hub genes using 9 topology analysis algorithms based on this PPI network. Further, we used the Oncomine analysis, survival analysis, GEO data set and random forest algorithm to verify the important roles of hub genes in HCC. Lastly, we explored the methylation changes of hub genes using another GEO data (GSE73003).

Results: Firstly, among the expression profiles, 4130 up-regulated genes and 471 down-regulated genes were identified. Next, the multilevel algorithm which had the highest modularity divided the GCN into 9 gene modules. And, a key gene module (m1) was identified. The biological processes of GO enrichment of m1 mainly included the processes of mitosis and meiosis and the functions of catalytic and exodeoxyribonuclease activity. Besides, these genes were enriched in the cell cycle and mitotic pathway. Furthermore, we identified 11 hub genes, MCM3, TRMT6, AURKA, CDC20, TOP2A, ECT2, TK1, MCM2, FEN1, NCAPD2 and KPNA2 which played key roles in HCC. The results of multiple verification methods indicated that the 11 hub genes had highly diagnostic efficiencies to distinguish tumors from normal tissues. Lastly, the methylation changes of gene CDC20, TOP2A, TK1, FEN1 in HCC samples had statistical significance (P-value < 0.05).

Conclusion: MCM3, TRMT6, AURKA, CDC20, TOP2A, ECT2, TK1, MCM2, FEN1, NCAPD2 and KPNA2 could be potential biomarkers or therapeutic targets for HCC. Meanwhile, the metabolic pathway, the cell cycle and mitotic pathway might played vital roles in the progression of HCC.
Introduction

Hepatocellular carcinoma (HCC) is the main type of liver cancer, which causes more than 700,000 deaths each year (Ni et al. 2020) (Cho et al. 2019). Recently, many studies have demonstrated that multiple genes and cellular pathways participate in the initiation and progression of HCC. The CDKN3 might play an important role in the transformation process from cirrhosis to HCC by analysis of the gene expression omnibus (GEO) data (Jiang et al. 2020). And, miR-133a-3p might inhibit the growth of HCC by analyzing the miR-133a-3p expression and the clinicopathological characteristics of HCC based on GEO data and the Cancer Genome Atlas (TCGA) data (Liang et al. 2018). Besides, DUXAP8 might be involved in the biological processes such as cell cycle, cell division and cell proliferation in HCC, and the down-regulation of DUXAP8 inhibited the proliferation and invasion of HCC in vitro (Yue et al. 2019). Previous studies focused on the specific genes in the initiation and progression of HCC, however, the precise molecular mechanisms underlying HCC progression was not clear.

In the last decade, the high-throughput platforms were used to generate gene expression profiling in HCC. However, sequencing results are often limited and inconsistent owing to the heterogeneity of samples in independent studies, and due to the fact that most studies focus on one cohort. As such, this study sought to analyze a range of available HCC-related gene expression data sets by integrated bioinformatics analysis, with the goal of identifying potential novel hub genes and key gene module for HCC treatment and diagnosis. Currently, the Weighted Gene Co-expression Network Analysis (WGCNA), for analysis of genetic alteration during tumorigenesis, is increasingly valued as promising tools in medical oncology research. Based on WGCNA, we further explored the gene co-expression network (GCN) analysis
algorithm in this study. Such as, multiple machine learning algorithms were used to improve the
reliability of the gene modules.

Besides, DNA methylation plays a role in genome stability and gene expression (Esteller &
Herman 2002). In particular, aberrant DNA promoter methylation is an important mechanism for
loss of gene function in tumors (Ohtani-Fujita et al. 1993) (Jarrard et al. 1998). Given that
methylation is now known to play important roles in cancer, it is of great significance to detect
DNA methylation of hub genes in HCC in this study.

It is vital to classify and detect the key biological pathways and hub genes participated in
the initiation and progression of HCC. Firstly, we obtained the transcriptome data set of HCC
and normal tissues from TCGA (Hutter & Zenklusen 2018), and used the FC-t algorithm to
identify differentially expressed genes (DEGs). Next, the Pearson correlation analysis was used
to construct a GCN, and three community detection algorithms (multi-level, label-propagation,
edge-betweenness) were used to identify gene modules. Then, the correlation analysis between
gene modules and clinical indicators was performed, and a key gene module was identified.

Herein, we performed GO/Reactome enrichment analysis on key gene module to explore the
biological significance. Then, the protein protein interaction (PPI) network of the key gene
module was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING)
database (Szklarczyk et al. 2011), and the hub genes were identified based on PPI network.
Moreover, we used the Oncomine analysis, survival analysis, GEO data set and ROC curve to
verify the important roles of hub genes in HCC. Finally, we explored the methylation of hub
genes using GEO data (GSE73003).

Materials and Methods
2.1. Data collection and preprocessing

A workflow of this study is shown in Figure 1. The HCC gene expression profiles used in this study were downloaded from TCGA (https://cancergenome.nih.gov/), which was processed using the RNA-sequencing platform, and contained 416 samples, including 367 HCC samples and 49 normal samples. In order to avoid the interference of genes with lower expression on subsequent analysis, the gene whose maximum FPKM value was less than 1 in tumor or normal samples was removed. Then, the outliers from HCC samples were removed by hierarchical clustering with R function hclust() in the stats package (v3.6.1), and euclidean distance was used in the clustering process. In this study, FC-\(t\) algorithm (Chen et al. 2018) was used to identify DEGs. The fold change of each gene’s FPKM value between cancer and normal tissues was calculated. Next, the differential expression analysis was carried out on the basis of \(t\)-test using the t.test() in stats R package (v3.6.1). Only genes with the fold change \(\geq 2\) or fold change \(\leq 0.5\) and \(P\)-value < 0.05 were regarded as DEGs.

2.2. Construction of GCN and identification of gene modules

Pearson correlation analysis was used to construct a correlation matrix between pairwise DEGs with FPKM values in cancer tissues (Chang et al. 2019). And Pearson correlation analysis was implemented using the cor.test() in stats R package (v3.6.1). Then Pearson correlation coefficient \(|PCC| \geq 0.65\) and \(P\)-value < 0.05 was set as the cut-off criteria to screen the interaction between two genes. The reserved interactions were represented by networks, the largest of which was the GCN. We clustered all genes (nodes) in the GCN with three different community detection algorithms, including multi-level (Blondel et al. 2008), label-progration (Raghavan et al. 2007) and edge-betweenness (Newman & Girvan 2004), which were performed by R functions multilevel.community(), label.propagation.community(), edge.betweenness.community() in
igraph package (v1.2.4) (Csardi & Nepusz 2006). Then the modularity was used to evaluate the clustering results, so as to select the optimal module identification result.

2.3. Association analysis between gene modules and clinical indicators

Principal component analysis (PCA) (Wold et al. 1987) was used to analyze the gene expression profiles in each module by using the prcomp() in stats R package (v3.6.1). Then the first principal component was defined as the module eigengenes (MEs). We believed that the four clinical indicators of event, \(T \), \(N \), and \(M \) (\(T \) referred to the primary tumor stage, \(N \) referred to the regional lymph node involvement stage and \(M \) referred to the distant metastasis stage) were of great significance for judging the initiation and progression of tumors, so an association matrix was constructed based on the correlation analysis between the MEs and event, \(T \), \(N \) and \(M \), which was calculated by the Pearson correlation analysis. Then, the gene module which was highly related to clinical indicators was selected as the key gene module.

To further verify the importance of the key module, Cox proportional hazards regression model was used to perform survival analysis on genes in all modules, and \(P \)-values of Cox regression results were obtained (the survival analysis results came from the online analysis tool onclinc (http://www.oncolnc.org/)). Further, the prognostic significance (PS-value, calculated in logs as \(-\log P\)-value) was used to measure the importance of a gene, and the PS-value of a module is the sum of the PS-values of all genes in this module. Obviously, the larger the PS-value of a module, the more important the module is.

2.4. GO/Reactome enrichment analysis

For the biological significance of the key gene module, the genes in which were enriched with the biological processes provided by the GO database (http://geneontology.org/) and the signaling pathways provided by the Reactome database (https://reactome.org/). GO enrichment
analysis was implemented with the enrichGO() in clusterProfiler R package (v3.12.0), and Reactome enrichment analysis was performed by logging in the online database, P-value < 0.05 was considered statistically significant. Meanwhile, the top 20 GO terms and signaling pathways with the lowest P-value were selected for further research. At last, the GO terms were categorized with QuickGO database (https://www.ebi.ac.uk/QuickGO/).

2.5. Construction of PPI network and analysis of hub genes

The online database STRING (https://string-db.org/) was applied to construct a PPI network of the genes in key gene module and analyze the functional interactions between proteins. A confidence score ≥ 0.400 was set as significant. Subsequently, the result was visualized using Cytoscape software (v3.7.1) (Shannon et al. 2003), and nine topology analysis algorithms (DNMC, MNC, Degree, EPC, BottleNeck, Closeness, Radiality, Betweenness, Stress) provided by the cytohubba (Chin et al. 2014) plug-in were used to calculate the importance of nodes (genes) in the PPI network. For details of the nine topology analysis algorithms, please refer to the literature Chin et al. 2014. Further, five genes with the highest score in each algorithm were merged together as the hub genes.

2.6. Validation of Hub Genes

Firstly, the mRNA expression of hub genes was explored in common cancer using Oncomine database (https://www.oncomine.org). The parameters were set as follows: THRESHOLD (P-VALUE)=0.05, THRESHOLD (FOLD CHANGE)=2. Then the online analysis tool onclnc was used for the survival analysis of hub genes. And the cancer was set as LIHC, lower percentile was set as 20, and upper percentile was set as 20. Furthermore, we downloaded a test data set, GSE138485, from the GEO (https://www.ncbi.nlm.nih.gov/geo/), and this data set included 64
paired normal and HCC samples (Table S1). The t-test was used to verify the differential expression of the hub gene in GSE138485. Moreover, ROC curve and AUC were used to detect the ability of hub genes to distinguish tumors from normal tissues.

2.7. DNA methylation analysis

The gene methylation profiling data set GSE73003 was downloaded from the GEO (Table S2). It included 40 paired normal and HCC samples from 20 patients. We found the methylation changes of the hub genes in GSE73003, and then used t-test to identify the genes whose methylation changed significantly.

Results

3.1. Identification of DEGs in expression profiles

The HCC gene expression profiles contained 416 samples, including 367 HCC and 49 normal samples, and the original HT-Seq-FPKM data included 60,483 genes in total. The genes with lower expression were removed. Then, the remained 14,129 genes (Table S3) were used for hierarchical clustering to obtain a data set for further analysis. The result showed that there were three outlier samples should be removed, TCGA-DD-AAEB, TCGA-CC-5259 and TCGA-FV-A4ZP (Figure S1). Using bioinformatics approaches, a total of 4,601 DEGs between HCC and normal samples were identified, including 4,130 up-regulated and 471 down-regulated genes (Figure 2, Table S4).

3.2. Construction of GCN and identification of gene modules
Pearson correlation analysis was used to construct a correlation matrix with FPKM values between pairwise DEGs. In total, there were 21,169,201 interactions. After filtered, 2,859 genes and 57,340 interactions were kept and imported into Cytoscape software for visualization. In total, 95 networks were built (Figure 3). The result showed that there were 2,583 genes in the large network, while there were fewer than 20 genes in each smaller one. After removed the small networks, the largest one which referred to GCN were kept for the further research.

To obtain more accurate and objective clustering results, three community discovery algorithms were used to cluster all genes (nodes) in the GCN. The modularity of each algorithm was shown in Table 1, and the modularity of multi-level was 0.6009015, label-propagation was 0.3748268 and betweenness was 0.4815381, respectively. The multi-level algorithm clustering result with the highest modularity was performed for subsequent analysis. A total of nine modules were identified after removing the modules with less than 50 genes (Figure 4, Table S5). The network density of these nine modules was shown in Table 2; the density of m9 was the lowest one, 0.065630124. It was worth noting that the network density of these nine modules was greater than that of GCN (0.01704045).

3.3. Identification of key gene module and GO/Reactome enrichment analysis

The first principal component of PCA result which performed on the gene expression profiles in each module defined as the MEs (Table S6). Furthermore, an association matrix was constructed based on the correlation analysis between the MEs and the clinical indicators, including event, T, N and M, which was calculated by the Pearson correlation analysis. In this process, a key gene module m1 was obtained from the association matrix, and the correlation coefficient between m1 and T was the maximum 0.259, m1 and event was 0.179, as well as m1 and N was 0.080 (Figure
5). In addition, we calculated the PS-values of all modules, and the PS-value of module m1 was the largest (Figure 6).

To further investigate the function of identified genes in m1, GO enrichment analysis was performed to analyze functional enrichment (Table S7). The top 20 biological processes enriched in GO terms were shown in Figure 7. The genes in m1 mainly participated in biological processes associated with the process of mitosis and meiosis, and the functions of catalytic and exodeoxyribonuclease activity. Moreover, the biological processes of key gene module mostly occurred in the chromosomal region. Additionally, the genes in m1 were enriched in many Reactome signaling pathways (Table S8), which mainly included the cell cycle and mitotic (Table 3).

3.4. Construction of PPI network and identification of hub genes

Based on the STRING database, a PPI network for all genes in the m1 was constructed (Figure 8). Nine topological analysis algorithms provided by cytohubba plug-in were used to calculate the importance of node (gene) in the PPI network (Table S9). The five genes with the highest score in each algorithm were merged together to be the hub genes in this study. Finally, 16 hub genes were identified, *NUSAP1, MCM3, TRMT6, RFC3, POLA2, AURKA, CDC20, TOP2A, ECT2, TK1, MCM2, FEN1, NOP58, GINS2, NCAPD2* and *KPNA2* (Table 4). It was worth noting that the 16 hub genes were all up-regulated genes.

3.5. Validation of hub genes

Firstly, the mRNA expression of 16 hub genes in liver cancer was explored using Oncomine analysis. The result showed that 13 hub genes were up-regulated in liver cancer as shown in Figure 9. Then we found that the expression levels of 13 hub genes were significantly related
with worse overall survival (OS) (Logrank \(P \)-value < 0.05) (Figure 10). After the merger, a total of 11 genes meet the above two requirements, which included \(MCM3 \), \(TRMT6 \), \(AURKA \), \(CDC20 \), \(TOP2A \), \(ECT2 \), \(TK1 \), \(MCM2 \), \(FEN1 \), \(NCAPD2 \) and \(KPNA2 \). And the following focuses on these 11 hub genes.

Further, the data of GEO (GSE138485) showed that the RPKM of 11 hub genes were significantly (all \(P \)-values < 0.005) up-regulated in HCC samples compared with normal samples (Figure 11). Moreover, based on the RPKM of 11 hub genes in the GEO data set, we used ROC curve and AUC to classify HCC and normal samples. The results showed that the whole 11 hub genes had highly diagnostic efficiencies to distinguish tumors from normal tissues (AUC > 0.87 and \(P \)-value < 1.0E-06) (Figure 12).

3.6. DNA methylation analysis of the hub genes

Among the 11 hub genes, we found the methylation of gene \(CDC20 \), \(TOP2A \), \(TK1 \), \(FEN1 \) were significantly changed in the gene methylation profiling data set (GSE73003) (\(P \)-value < 0.05), and they were hypomethylation in the HCC samples (Table 5). It was noted that the expression (RPKM) of \(CDC20 \), \(TOP2A \), \(TK1 \), \(FEN1 \) were significantly higher in HCC samples compared to normal tissues.

Discussions

On the global scale, HCC is a major contributor to both cancer incidence and mortality. Understanding the molecular mechanism of HCC is of critical importance for early detection, diagnosis, and treatment. In our study, the HCC mechanism was analyzed by bioinformatics analysis, including DEGs screening, GCN construction, module analysis, hub gene identification.
in the PPI network, validation of the hub genes, and DNA methylation analysis of the hub genes. These findings may help us to understand the molecular mechanism of HCC pathogenesis and identify potential biomarkers for the diagnosis and treatment of HCC.

From the result of module identification, we found that the network density of each module was greater than that of GCN. It might imply that compare with the other genes in the GCN, the genes in one module perform the same biological function, which also proved the reliability of the multi-level algorithm.

GO enrichment analyses showed that the key gene module were associated with many biological processes. Previous reports showed that the tRNA expressed abnormal (GO:0006409, GO:00071431, GO:0051031 and GO:0006403) had a dual role for the promotion and suppression in cancer development (Nientiedt et al. 2016). The tRNA might be involved in cell proliferation process, cell cycle and gene regulation process in cancer (Balatti et al. 2017) (Goodarzi et al. 2015). In tumor cells, the variation of cell function was often influenced by the structure of DNA strand and the conformation of chromosome (GO:0009987 and GO:0071103). DNA was regulated by different functional regions in the nucleus due to its local strand structure abnormality, compression or long-range proximity (Phillippa et al. 2016). Besides, signal transduction by p53 class mediator (GO:0072331) and response to heat (GO:0009408) belonged to response to stimulus (GO:0050896). P53 is a key tumor suppressor (Vogelstein et al. 2000). As a transcription factor, p53 transcribes its target genes to regulate various cellular biological processes, including cell cycle arrest, apoptosis, senescence, energy metabolism, and anti-oxidant defense, to prevent tumorigenesis (Feng & Levine 2010). P53 is an important tumor suppressor gene, 30 to 60% of HCC patients with mutated p53 gene (Hussain et al. 2007). Many GO Terms belonged to cellular process (GO:0009987), DNA replication (GO:00006260) and
protein sumoylation (GO:0016925). The post-translational modification sumoylation is a major regulator of protein function that plays an important role in a wide range of cellular processes (GO:0009987 and GO:0016925) (Wilkinson & Henley 2010). Furthermore, GO enrichment analyses results showed that the small networks were associated with the detoxification of inorganic compound (GO:0061687), nucleosome assembly and organization (GO:0006334, GO:0034728), metabolism, such as fatty, hormone and neurotransmitter. Similarly, the small gene modules were associated with antigen processing and presentation (GO:0019882), complement activation lectin pathway (GO:0001867), RNA splicing (GO:0008380), negative regulation of lymphocyte (GO:0050672) and centromeric sister chromtid (GO:0070601).

Beyond these, previous reports revealed the evidence of meiosis (GO:0140014 and GO:1901990) might be responsible for the proliferation of the tumor cells, such as meiosis error invoked the malignant transformation of germ cell tumor (Ichikawa et al. 2013). Besides, the studies demonstrated that oocyte meiosis might induce the proliferation of the tumor cells (Li et al. 2014). It has been reported that increased expression genes which were associated with cell cycle and oocyte meiosis, were associated with the development and progression of HCC (Fujii et al. 2006) (Zhang et al. 2019).

According to the validation, the 11 hub genes were good biomarkers in HCC and functioned as tumor promoter. MCM3 complex required for cell cycle regulation of DNA replication in vertebrate cells (Madine et al. 1995). MCM3 were significantly up-regulated in invasive ductal carcinoma (Zhao et al. 2020). Consistent with the findings reported in previous studies (Zhuang et al. 2018) (Yang et al. 2019), our results showed that higher MCM3 expression levels are associated with worse clinical outcomes and a shorter survival times of patients with HCC, thereby highlighting the potential use of MCM3 as a prognostic biomarker. MCM2 is a...
promising marker for premalignant lesions of the lung (Yan et al. 1993) (Musahl et al. 1998).

Besides, high MCM2 expression has been associated with poor prognosis in HCC patients (Liu et al. 2018) (Li et al. 2019). Previous report showed that the up-regulation of Epithelial cell transforming sequence 2 (ECT2) was significantly associated with early recurrent HCC disease and poor survival. ECT2 was closely associated with the activation of the Rho/ERK signaling axis to promote early HCC recurrence. Moreover, knockdown of ECT2 markedly suppressed Rho GTPases activities, enhanced apoptosis, attenuated oncogenicity and reduced the metastatic ability of HCC cells (Chen et al. 2015). The NCAPD2 is a novel candidate genes in ovarian cancer (Tatsumoto & T. 1999) (Fields & Justilien 2009). In fact, elevated AURKA expression was observed in several human cancers, such as pancreatic cancer, endometrioid ovarian carcinoma and colorectal cancer liver metastasis, and was associated with poor prognosis (Furukawa et al. 2006). Besides, AURKA promoted cancer metastasis by regulating epithelial-mesenchymal transition and cancer stem cell properties in HCC (Chen et al. 2017). Emerging evidence suggests that KPNA2 plays a crucial role in oncogenesis and early recurrence. KPNA2 expression levels were found to be markedly higher in tumor tissue (83.33%, 25/30) (Feng et al. 2014). Besides, nuclear KPNA2 expression was significantly up-regulated (30.3%, 67/221) in HCC tissues; however, no nuclear expression of KPNA2 in non-tumorous tissues was observed by immunohistochemical assays (Jiang et al. 2014). Both in vitro and in vivo experiments demonstrated that knockdown of KPNA2 reduced migration and proliferation capacities of HCC cells, while over-expression of KPNA2 increased these malignant characteristics (Xinggang et al. 2019). TOP2A encodes a 170 kDa nuclear enzyme that controls DNA topological structure, chromosome segregation, and cell cycle progression (Isaacs et al. 1998). TOP2A over-expression, that is, increased level of TOP2A mRNA and protein, has been detected in HCC
(Panvichian et al. 2015) (Wong et al. 2009). TRMT6, which catalyzes the installation of m1A at position 58 of tRNA, is an oncogene in HCC (Li et al. 2017). Clinical significance of TRMT6 in HCC and colon cancers is very important (Wang et al. 2019). TRMT6 knockout HCC cells displayed compromised stemness properties, as reflected by impaired sphere formation and tumor initiating ability, and increased sensitivity to molecular target drug sorafenib (Chen 2019). TRMT6 was up-regulated in HCC tissues, and higher TRMT6 expression levels was correlated with reduced OS (P=0.0224) and RFS (P=0.0146) in patients with primary HCC (Wang et al. 2019). The above results indicated that TRMT6 might be a promising prognostic biomarker for poor clinical outcomes in primary HCC patients.

Previous results showed that the levels of serum TK1 (thymidine kinase 1) in the primary hepatic carcinoma group were significantly higher than those in the control group and the benign group (P < =0.05) (Shen-Jie & Li 2018) (Zhang et al. 2015). Cell division cycle 20 (CDC20) encodes a regulatory protein interacting with the anaphase-promoting complex/cyclosome in the cell cycle and plays important roles in tumorigenesis and progression of multiple tumors (Liu et al. 2015). Immunohistochemistry result showed that, in the 132 matched HCC tissues, high expression levels of CDC20 were detected in 68.18% HCC samples, and over-expression of CDC20 was positively correlated with gender (P=0.013), tumor differentiation (P=0.000), TNM stage (P=0.012), P53 and Ki-67 expression (P=0.023 and P=0.007, respectively) (Li et al. 2014). The Flap endonuclease (FEN1) expression levels were also positively correlated with tumor size (P = 0.047 < 0.05), distant metastasis (P = 0.013 < 0.05) and vascular invasion (P = 0.024 < 0.05) in HCC (Li et al. 2019). Combined with the study in this paper, it was reasonable to speculate that these 11 hub genes might be biomarkers for HCC.

DNA methylation, a pretranscriptional modification, regulates the stability of gene
expression states and maintains genome integrity by collaborating with proteins that modify
nucleosomes (Jaenisch & Bird 2003) (Zhong et al. 2016). Altered DNA methylation such as
tumor suppressor gene hypermethylation or oncogene hypomethylation is thought to promote
tumorigenesis (Ehrlich 2019). Previous reports found that genes including P15, P16, RASSF1A
and Retinoblastoma 1 were inactivated in HCC due to promoter hypermethylation of these genes
(Fan et al. 2018). In the present study, we identified four highly-expressed hub genes with
hypomethylation, CDC20, TOP2A, TK1, FEN1. Therefore, we might provide more effective
diagnostic strategies by these novel biomarkers of HCC.

In accordance with our findings, previous studies have also identified hub genes that
participate in HCC (Hua et al. 2020) (Song et al. 2020). Shengni et al. constructed a PPI network
based on 176 DEGs. Then four gene modules were identified with Cytoscape MCODE plug-in
and 12 hub genes were obtained with integrated survival and methylation analysis. Finally, three
genes, KPNA2, TARBP1 and RNASEH2A, were identified as diagnostic and prognostic markers
for HCC. However, 176 genes were a little too small to construct a network and identify gene
modules, and all of DEGs were up-regulated. It would be better if this article had an association
analysis between gene modules and clinical indicators. Another study identified key gene
modules with WGCNA. And 29 hub genes were identified based on PPI network. Finally, DAO,
PCK2, and HAO1 were determined as prognostic targets for HCC. It was worth noting that the
study used Pearson correlation analysis to associate gene modules with clinical indicators, which
was classic but a little simple. Besides, they used the "Degree" algorithm to identify hub genes in
the PPI network, rather than make full use of the topology of the PPI network. In our study, data
analysis was conducted using the integrated bioinformatics analysis based on GCN analysis,
which is highly suitable for the analysis of gene expression data. First of all, 4,601 DEGs
(including 4,130 up-regulated and 471 down-regulated genes) were used to construct GCN. In particular, we used three community detection algorithms to identify gene modules, and used modularity to select the optimal module identification result. In addition, Pearson correlation analysis and survival analysis were used to identify key gene module, so the key gene module of HCC in this paper was more accurate, and GO enrichment analysis results also proved the reliability of this module. Lastly, nine topology analysis algorithms were used to identify hub genes in PPI network. And we used the Oncomine analysis, survival analysis, GEO data set and ROC curve to verify the important roles of hub genes in HCC. Therefore, the hub genes identified in the present study are more reliable and comprehensive.

Conclusions

In summary, integrated bioinformatics analysis based on GCN analysis was built to analyze the gene expression profile of HCC, and the hub genes and biological pathways in HCC were identified in this study. *MCM3, TRMT6, AURKA, CDC20, TOP2A, ECT2, TK1, MCM2, FEN1, NCAPD2* and *KPNA2* could be potential biomarkers or therapeutic targets for HCC. Meanwhile, the metabolic pathway, the cell cycle and mitotic pathway might played vital roles in the progression of HCC. However, we need more experiments to investigate these novel, key and hub genes. Based on these results, the underlying molecular mechanisms of HCC were explored on genetic and molecular levels, which provided new insights into HCC diagnosis and treatment.

References
Balatti V, Nigita G, Veneziano D, Drusco A, Stein GS, Messier TL, Farina NH, Lian JB, Tomasello L, and Liu CG. 2017. tsRNA signatures in cancer. *Proceedings of the National Academy of Sciences of the United States of America*:201706908. 10.1073/pnas.1706908114

Blondel VD, Guillaume JL, Lambiotte R, and Lefebvre E. 2008. Fast unfolding of communities in large networks. *Journal of Statistical Mechanics* 2008:0-0. 10.1088/1742–5468/2008/10/P10008

Chang YM, Lin HH, Liu WY, Yu CP, Chen HJ, Wartini PP, Kao YY, Wu YH, Lin JJ, Lu MJ, Tu SL, Wu SH, Shiu SH, Ku MSB, and Li WH. 2019. Comparative transcriptomics method to infer gene coexpression networks and its applications to maize and rice leaf transcriptomes. *Proceedings of the National Academy of Sciences of the United States of America* 116:3091-3099. 10.1073/pnas.1817621116

Chen C, Song G, Xiang J, Zhang H, Zhao S, and Zhan Y. 2017. AURKA promotes cancer metastasis by regulating epithelial-mesenchymal transition and cancer stem cell properties in hepatocellular carcinoma. *Biochem Biophys Res Commun* 486:514-520. 10.1016/j.bbrc.2017.03.075

Chen J, Wang X, Hu B, He Y, Qian X, and Wang W. 2018. Candidate genes in gastric cancer identified by constructing a weighted gene co-expression network. *PeerJ* 6:e4692. 10.7717/peerj.4692

Chen J, Xia H, Zhang X, Karthik S, Pratap SV, Ooi LL, Hong W, and Hui KM. 2015. ECT2 regulates the Rho/ERK signalling axis to promote early recurrence in human hepatocellular carcinoma. *Journal of Hepatology* 62:1287-1295. 10.1016/j.jhep.2015.01.014

Chen M. 2019. Dysregulations and functions of RNA modifying enzymes METTL3 and TRMT6 in hepatocellular carcinoma.

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, and Lin CY. 2014. cytoHubba: identifying hub objects and sub-networks from complex interactome. *BMC Systems Biology* 8 Suppl 4:S11. 10.1186/1752-0509-8-s4-s11

Cho K, Ro SW, Seo SH, Jeon Y, Moon H, Kim DY, and Kim SU. 2019. Genetically Engineered Mouse Models for Liver Cancer. *Cancers* 12. 10.3390/cancers12010014

Csardi G, and Nepusz T. 2006. The igraph software package for complex network research. *InterJournal, complex systems* 1695:1-9.

Ehrlich M. 2019. DNA hypermethylation in disease: mechanisms and clinical relevance. *Epigenetics* 14:1141-1163. 10.1080/15592294.2019.1638701

Esteller M, and Herman JG. 2002. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. *Journal of Pathology* 196:1-7. 10.1002/path.1024

Fan G, Tu Y, Chen C, Sun H, Wan C, and Cai X. 2018. DNA methylation biomarkers for hepatocellular carcinoma. *Cancer Cell International* 18:140. 10.1186/s12935-018-0629-5

Feng L, Zeyan P, Fangjiu L, Rong W, and Yanli L. 2014. Expression of KPNA2 in hepatocellular carcinoma. *International Journal of Laboratory Medicine*.
Feng Z, and Levine AJ. 2010. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. *Trends in Cell Biology* 20:427-434. 10.1016/j.tcb.2010.03.004

Fields AP, and Justilien V. 2009. The guanine nucleotide exchange factor (GEF) Ect2 is an oncogene in human cancer. *Advances in Enzyme Regulation* 50:190-200. 10.1016/j.advenzreg.2009.10.010

Fujii T, Nomoto S, Koshikawa K, Yatabe Y, Teshigawara O, Mori T, Inoue S, Takeda S, and Nakao A. 2006. Overexpression of pituitary tumor transforming gene 1 in HCC is associated with angiogenesis and poor prognosis. *Hepatology* 43:1267-1275. 10.1002/hep.21181

Furukawa T, Kanai N, Shiwaku HO, Soga N, Uehara A, and Horii A. 2006. Overexpression of pituitary tumor transforming gene 1 in pancreatic cancer. *Oncogene* 25:4831-4839. 10.1038/sj.onc.1209494

Goodarzi H, Liu X, Nguyen HCB, Zhang S, Fish L, and Tavazoie SF. 2015. Endogenous tRNA-Derived Fragments Suppress Breast Cancer Progression via YBX1 Displacement. *Cell* 161:790-802. 10.1016/j.cell.2015.02.053

Hua S, Ji Z, Quan Y, Zhan M, Wang H, Li W, Li Y, He X, and Lu L. 2020. Identification of hub genes in hepatocellular carcinoma using integrated bioinformatic analysis. *Aging* 12:5439-5468. 10.18632/aging.102969

Hussain SP, Schwank J, Staib F, Wang XW, and Harris CC. 2007. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. *Oncogene* 26:2166-2176. 10.1038/sj.onc.1210279

Hutter C, and Zenklusen JC. 2018. The Cancer Genome Atlas: Creating Lasting Value beyond Its Data. *Cell* 173:283-285. 10.1016/j.cell.2018.03.042

Ichikawa M, Arai Y, Haruta M, Furukawa S, Ariga T, Kajii T, and Kaneko Y. 2013. Meiosis error and subsequent genetic and epigenetic alterations invoke the malignant transformation of germ cell tumor. *Genes Chromosomes Cancer* 52:274-286. 10.1002/gcc.22027

Isaacs RJ, Davies SL, Sandri MI, Redwood C, Wells NJ, and Hickson ID. 1998. Physiological regulation of eukaryotic topoisomerase II. *Biochim Biophys Acta* 1400:121-137. 10.1016/s0167-4884(98)00131-6

Jaenisch R, and Bird A. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. *Nature Genetics* 33 Suppl:245-254. 10.1038/ng1089

Jarrard DF, Kinoshita H, Shi Y, Sandefur C, Hoff D, Meisner LF, Chang C, Herman JG, Isaacs WB, and Nassif N. 1998. Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells. *Cancer Research* 58:5310-5314.

Jiang CH, Yuan X, Li JF, Xie YF, Zhang AZ, Wang XL, Yang L, Liu CX, Liang WH, Pang LJ, Zou H, Cui XB, Shen XH, Qi Y, Jiang JF, Gu WY, Li F, and Hu JM. 2020. Bioinformatics-based screening of key genes for transformation of liver cirrhosis to hepatocellular carcinoma. *Journal of Translational Medicine* 18:40. 10.1186/s12967-020-02229-8
Jiang P, Tang Y, He L, Tang H, Liang M, Mai C, Hu L, and Hong J. 2014. Aberrant expression of nuclear KPNA2 is correlated with early recurrence and poor prognosis in patients with small hepatocellular carcinoma after hepatectomy. *Medical Oncology* 31:131. 10.1007/s12032-014-0131-4

Li C, Qin F, Hong H, Tang H, Jiang X, Yang S, Mei Z, and Zhou D. 2019. Identification of Flap endonuclease 1 as a potential core gene in hepatocellular carcinoma by integrated bioinformatics analysis. *PeerJ* 7:e7619. 10.7717/peerj.7619

Li J, Gao JZ, Du JL, Huang ZX, and Wei LX. 2014. Increased CDC20 expression is associated with development and progression of hepatocellular carcinoma. *International Journal of Oncology* 45:1547-1555. 10.3892/ijo.2014.2559

Li X, Xiong X, Zhang M, Wang K, Chen Y, Zhou J, Mao Y, Lv J, Yi D, Chen XW, Wang C, Qian SB, and Yi C. 2017. Base-Resolution Mapping Reveals Distinct m(1)A Methylome in Nuclear- and Mitochondrial-Encoded Transcripts. *Molecular Cell* 68:993-1005.e1009. 10.1016/j.molcel.2017.10.019

Liang HW, Yang X, Wen DY, Gao L, Zhang XY, Ye ZH, Luo J, Li ZY, He Y, Pang YY, and Chen G. 2018. Utility of miR133a3p as a diagnostic indicator for hepatocellular carcinoma: An investigation combined with GEO, TCGA, metaanalysis and bioinformatics. *Mol Med Rep* 17:1469-1484. 10.3892/mmr.2017.8040

Liu M, Zhang Y, Liao Y, Chen Y, Pan Y, Tian H, Zhan Y, and Liu D. 2015. Evaluation of the Antitumor Efficacy of RNAi-Mediated Inhibition of CDC20 and Heparanase in an Orthotopic Liver Tumor Model. *Cancer Biother Radiopharm* 30:233-239. 10.1089/cbr.2014.1799

Liu Z, Li J, Chen J, Shan Q, Dai H, Xie H, Zhou L, Xu X, and Zheng S. 2018. MCM family in HCC: MCM6 indicates adverse tumor features and poor outcomes and promotes S/G2 cell cycle progression. *BMC Cancer* 18:200. 10.1186/s12885-018-4056-8

Madine MA, Khoo CY, Mills AD, and Laskey RA. 1995. MCM3 complex required for cell cycle regulation of DNA replication in vertebrate cells. *Nature* 375:421-424. 10.1038/375421a0

Musahl C, Holthoff HP, Lesch R, and Knippers R. 1998. Stability of the Replicative Mem3 Protein in Proliferating and Differentiating Human Cells. *Experimental Cell Research* 241:0-264. 10.1006/excr.1998.4041

Newman MEJ, and Girvan M. 2004. Finding and Evaluating Community Structure in Networks. *Physical Review E Statistical Nonlinear & Soft Matter Physics* 69:026113. 10.1103/PhysRevE.69.026113

Ni FB, Lin Z, Fan XH, Shi KQ, Ao JY, Wang XD, and Chen RC. 2020. A novel genomic-clinico-pathologic nomogram to improve prognosis prediction of hepatocellular carcinoma. *Clinica Chimica Acta* 504:88-97. 10.1016/j.cca.2020.02.001

Nientiedt M, Deng M, Schmidt D, Perner S, Müller SC, and Ellinger Jr. 2016. Identification of aberrant tRNA-halves expression patterns in clear cell renal cell carcinoma. *Scientific Reports* 6:37158. 10.1038/srep37158
Ohtani-Fujita N, Fujita T, Aoike A, Osifchin NE, Robbins PD, and Sakai T. 1993. CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. *Oncogene* 8:1063-1067.

Panvichian R, Tantiwetrueangdet A, Angkathunyakul N, and Leelaudomlipi S. 2015. TOP2A amplification and overexpression in hepatocellular carcinoma tissues. *Biomed Res Int* 2015:381602. 10.1155/2015/381602

Phillippa, Taberlay, Joanna, Achinger-Kawecka, Aaron, Lun, and Fabian. 2016. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. *Genome Research*. 10.1101/gr.201517.115

Raghavan UN, Albert R, and Kumara S. 2007. Near linear time algorithm to detect community structures in large-scale networks. *Physical Review E Statistical Nonlinear & Soft Matter Physics* 76:036106. 10.1103/PhysRevE.76.036106

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, and Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Research* 13:2498-2504. 10.1101/gr.1239303

Shen-Jie JI, and Li G. 2018. The diagnostic value of joint detection of serum AFP, CA125 and TK1 in patients with primary hepatic carcinoma. *Journal of Tropical Medicine*.

Song H, Ding N, Li S, Liao J, Xie A, Yu Y, Zhang C, and Ni C. 2020. Identification of Hub Genes Associated With Hepatocellular Carcinoma Using Robust Rank Aggregation Combined With Weighted Gene Co-expression Network Analysis. *Front Genet* 11:895. 10.3389/fgene.2020.00895

Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minge P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, and von Mering C. 2011. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. *Nucleic Acids Research* 39:D561-568. 10.1093/nar/gkq973

Tatsumoto, and T. 1999. Human ECT2 Is an Exchange Factor for Rho GTPases, Phosphorylated in G2/M Phases, and Involved in Cytokinesis. *Journal of Cell Biology* 147:921-928. 10.1083/jcb.147.5.921

Vogelstein B, Lane D, and Levine AJ. 2000. Surfing the p53 network. *Nature* 408:307-310. 10.1038/35042675

Wang Y, Huang Q, Deng T, Li BH, and Ren XQ. 2019. Clinical Significance of TRMT6 in Hepatocellular Carcinoma: A Bioinformatics-Based Study. *Medical Science Monitor* 25:3894-3901. 10.12659/msm.913556

Wilkinson KA, and Henley JM. 2010. Mechanisms, regulation and consequences of protein SUMOylation. *Biochemical Journal* 428:133-145. 10.1042/BJ20100158

Wold S, Esbensen K, and Geladi P. 1987. Principal component analysis. *Chemometrics and Intelligent Laboratory Systems* 2:37-52.
Wong N, Yeo W, Wong WL, Chan KY, Mo FK, Koh J, Chan SL, Chan AT, Lai PB, Ching AK, Tong JH, Ng HK, Johnson PJ, and To KF. 2009. TOP2A overexpression in hepatocellular carcinoma correlates with early age onset, shorter patients survival and chemoresistance. *International Journal of Cancer* 124:644-652. 10.1002/ijc.23968

Xinggang G, Zhiheng W, Jianing Z, Qingguo X, Guojun H, Yuan Y, Chuanpeng D, Gang L, Chenhua L, and Lei L. 2019. Upregulated KPNA2 promotes hepatocellular carcinoma progression and indicates prognostic significance across human cancer types. *Acta Biochimica et Biophysica Sinica* 3. 10.1093/abbs/gmz003

Yan H, Merchant AM, and Tye BK. 1993. Cell cycle-regulated nuclear localization of MCM2 and MCM3, which are required for the initiation of DNA synthesis at chromosomal replication origins in yeast. *Genes Dev* 7:2149-2160. 10.1101/gad.7.11.2149

Yang WX, Pan YY, and You CG. 2019. CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 May Be Potential Therapeutic Targets for Hepatocellular Carcinoma Using Integrated Bioinformatic Analysis. *Biomed Res Int* 2019:1245072. 10.1155/2019/1245072

Yue C, Liang C, Li P, Yan L, Zhang D, Xu Y, Wei Z, and Wu J. 2019. DUXAP8 a Pan-Cancer Prognostic Marker Involved in the Molecular Regulatory Mechanism in Hepatocellular Carcinoma: A Comprehensive Study Based on Data Mining, Bioinformatics, and in vitro Validation. *OncoTargets and Therapy* 12:11637-11650. 10.2147/ott.S231750

Zhang Q, Sun S, Zhu C, Zheng Y, Cai Q, Liang X, Xie H, and Zhou J. 2019. Prediction and analysis of weighted genes in hepatocellular carcinoma using bioinformatics analysis. *Mol Med Rep* 19:2479-2488. 10.3892/mmr.2019.9929

Zhang SY, Lin BD, and Li BR. 2015. Evaluation of the diagnostic value of alpha-l-fucosidase, alpha-fetoprotein and thymidine kinase 1 with ROC and logistic regression for hepatocellular carcinoma. *FEBS Open Bio* 5:240-244. 10.1016/j.fob.2015.03.010

Zhao Y, Wang Y, Zhu F, Zhang J, Ma X, and Zhang D. 2020. Gene expression profiling revealed MCM3 to be a better marker than Ki67 in prognosis of invasive ductal breast carcinoma patients. *Clinical and Experimental Medicine* 20:249-259. 10.1007/s10238-019-00604-4

Zhong J, Agha G, and Baccarelli AA. 2016. The Role of DNA Methylation in Cardiovascular Risk and Disease: Methodological Aspects, Study Design, and Data Analysis for Epidemiological Studies. *Circulation Research* 118:119-131. 10.1161/cireresaha.115.305206

Zhuang L, Yang Z, and Meng Z. 2018. Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in Tumor Tissues Predicted Worse Overall Survival and Disease-Free Survival in Hepatocellular Carcinoma Patients. *Biomed Res Int* 2018:7897346. 10.1155/2018/7897346
Figure 1

Flow-chart of data analysis in this paper.

1. Downloading data from TCGA and preprocessing data
2. Constructing GCN and identifying gene modules
3. Association analysis between gene modules and clinical indicators
4. Identifying key gene module and verify the importance of them
5. Constructing PPI network of key gene module and identifying hub genes
6. GO/Reactome enrichment analysis of key gene module
7. Verifying the important roles of hub genes using multiple methods
8. Analysing DNA methylation of hub genes
Figure 2

Identification results of DEGs.

(A) X-axis represents log2 fold-changes and Y-axis represents negative logarithm to the base 10 of the P-values. Black vertical and horizontal dashed lines reflect filtering criteria (log2(Fold change)=±1 and P-value=0.05). (B) Pink and green bars are number of significantly up-regulated (n=4,130) and down-regulated genes (n=471) in HCC compared with its normal tissues.
Figure 3

The GCN was constructed by Pearson correlation analysis.

The total number of gene in figure is 2859, and the number of gene in GCN (the largest network) is 2583.
Figure 4

Module identification result obtained by the multilevel algorithm.

The multilevel algorithm divided GCN into 13 gene modules, the little modules with less than 50 genes were removed, and the labeled modules were 9 gene modules for further analysis.
Figure 5

The heat map of the correlation between gene modules and clinical indicators.

The row corresponds to module, and the column corresponds to clinical indicator. The m1 is key gene module in HCC.
Figure 6

The PS-values of all modules.
Figure 7

The 20 GO Terms (biological processes) with the smallest P-value of genes in the key gene module (m1).

The size of bubbles represents the numbers of genes, the color of bubbles corresponds to P-value, and the GeneRatio represents the ratio of the number of genes enriched to the total number of genes in key gene module (m1).
Figure 8

The PPI network of key gene module (m1).

Each node corresponds to a gene, where a red node corresponds to a hub gene.
Figure 9

The results returned from Oncomine database.

The row corresponds to cancer, and the column corresponds to gene. The red square represents that the gene was up-regulated in cancer, the blue square represents that the gene was down-regulated in cancer, and the value in the square represents the number of related references.
Figure 10

Significant correlation between hub genes expression and survival.

Survival curves of genes *AURKA, CDC20, ECT2, FEN1, etc.* X-axis represents survival time and Y-axis represents survival rate.
Figure 11

The heat map of RPKM of *KPNA2*, *MCM3*, *FEN1*, *TRMT6*, etc. in normal and HCC samples.

TA-Tf represents HCC samples, NTA-NTf represents normal samples.
Figure 12

The ROC curves of 11 hub genes.

These ROC curves described the diagnostic efficiency of the mRNA levels of 11 hub genes for HCC and normal tissues.
Table 1 (on next page)

The modularities of 3 algorithms.
Algorithm	Modularity
multilevel	0.6009015
label_propagation	0.3748268
edge-betweenness	0.4815381
Table 2 (on next page)

The network densities of 9 gene modules containing more than 50 genes.
Module	Densities
m1	0.197628458
m2	0.29029703
m3	0.177997842
m4	0.215233881
m5	0.106922766
m6	0.090001227
m7	0.080307853
m8	0.216806723
m9	0.065630124
Table 3 (on next page)

The 20 signaling pathways with the smallest P-value of genes in the key gene module (m1).
ID	Description	Count	P-value
R-HSA-69190	DNA strand elongation	18	1.11E-16
R-HSA-453279	Mitotic G1 phase and G1/S transition	31	1.11E-16
R-HSA-69278	Cell Cycle, Mitotic	78	1.11E-16
	Cell Cycle	90	1.11E-16
R-HSA-73894	DNA Repair	38	1.11E-16
R-HSA-69620	Cell Cycle Checkpoints	35	1.11E-16
R-HSA-69242	S Phase	27	2.22E-16
R-HSA-69206	G1/S Transition	25	3.33E-16
R-HSA-69306	DNA Replication	24	8.88E-16
R-HSA-69239	Synthesis of DNA	23	2.33E-15
R-HSA-68886	M Phase	36	8.33E-15
R-HSA-73886	Chromosome Maintenance	20	3.18E-14
R-HSA-5693532	DNA Double-Strand Break Repair	24	3.45E-14
R-HSA-5693538	Homology Directed Repair	21	1.63E-13
R-HSA-68877	Mitotic Prometaphase	24	4.54E-12
R-HSA-69186	Lagging Strand Synthesis	11	5.40E-12
R-HSA-5693567	HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA)	19	5.88E-12
R-HSA-73933	Resolution of Abasic Sites (AP sites)	13	1.53E-11
R-HSA-176187	Activation of ATR in response to replication stress	12	2.21E-11
R-HSA-4615885	SUMOylation of DNA replication proteins	13	2.52E-11
Table 4 (on next page)

Calculation results of 9 algorithms.

The row corresponds to gene, and the column corresponds to algorithm. Each value represents a score.
Hub gene	DMNC	MNC	Degree	EPC	BottleNeck	Closeness	Radiality	Betweenness	Stress
NUSAP1	1.0893	51	51	19.988	9	101.3333	5.09091	96.90787	1902
MCM3	0.91716	69	69	22.824	23	111.5	5.24242	372.309	7082
TRMT6	0.47733	9	11	2.093	6	69.78333	4.4	1264.09432	10640
RFC3	0.88611	60	60	20.772	10	107.25	5.19394	542.48026	7874
POLA2	1.16211	36	36	16.597	1	93.33333	4.97576	27.46845	786
AURKA	0.83591	71	71	23.302	7	112.5	5.25455	944.81247	9646
CDC20	0.75746	80	80	23.462	5	117.66667	5.33939	1556.30666	16426
TOP2A	0.81632	76	76	23.363	2	115.66667	5.30909	1108.53404	13048
ECT2	1.16516	30	30	14.084	1	89.33333	4.90303	9.41338	276
TK1	1.14366	41	41	17.127	1	95.75	5	60.29409	1056
MCM2	0.93961	69	69	22.807	5	111.58333	5.25455	827.49161	8772
FEN1	0.82386	73	73	22.298	4	114.25	5.29697	1278.36825	12488
NOP58	0.27044	15	16	2.45	10	76.91667	4.61818	2059.91502	14078
GINS2	1.15247	50	50	19.731	1	101	5.09091	105.79312	1852
NCAPD2	1.19618	38	39	17.413	7	96.25	5.05455	1216.19414	12076
KPNA2	0.97174	51	51	19.066	8	104.41667	5.21212	1504.41719	14138
Table 5 (on next page)

Methylation of hub genes.

The P-value was obtained by t-test. Methylation status was obtained by analyzing GSE73003, and expression status was obtained by analyzing TCGA data set.
Hub gene	Methylation status	P-value	Expression status	P-value
CDC20	Hypomethylation	8.94E-05	High expression	2.11E-32
TOP2A	Hypomethylation	4.41E-02	High expression	2.70E-41
TK1	Hypomethylation	4.78E-04	High expression	1.02E-49
FEN1	Hypomethylation	4.06E-02	High expression	8.23E-62