Use of teledermatology by dermatology hospitalists is effective in the diagnosis and management of inpatient disease.

C. K. Gabel
E. Nguyen
R. Karmouta
K. J. Liu
G. Zhou

See next page for additional authors

Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles

Recommended Citation
Gabel CK, Nguyen E, Karmouta R, Liu KJ, Zhou G, Alloo A, Arakaki R, Balagula Y, Sharon VR, Kroshinsky D, . Use of teledermatology by dermatology hospitalists is effective in the diagnosis and management of inpatient disease. . 2020 Jan 01; ():Article 6109 [p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/6109. Free full text article.

This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. For more information, please contact academicworks@hofstra.edu.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Use of teledermatology by dermatology hospitalists is effective in the diagnosis and management of inpatient disease.

Colleen K. Gabel, BS, Emily Nguyen, BS, Ryan Karmouta, MD, MBA, Kristina Jing Liu, MD, MHS, Guohai Zhou, PhD, Allireza Alloo, MD, Ryan Arakaki, MD, Yevgeniy Balagula, MD, Alina G. Bridges, DO, Edward W. Cowen, MD, MHS, Mark Denis P. Davis, MD, Alisa Femia, MD, Joanna Harp, MD, Benjamin Kaffenerberger, MD, Jesse J. Keller, MD, Bernice Y. Kwong, MD, Alina Markova, MD, Melissa Mauskar, MD, Robert Micheletti, MD, Arash Mostaghimi, MD, MPH, Joseph Pierson, MD, Misha Rosenbach, MD, Zachary Schwager, MD, Lucia Seminario-Vidal, MD, PhD, Victoria R. Sharon, MD, DTMH, Philip I. Song, MD, Lindsay C. Strowd, MD, Andrew C. Walls, MD, Karolyn A. Wanat, MD, David A. Wetter, MD, Scott Worswick, MD, Carolyn Ziemer, MD, MPH, Joseph Kvedar, MD, Anar Mikailov, MD, Daniela Kroshinsky, MD, MPH

PII: S0190-9622(20)30831-8
DOI: https://doi.org/10.1016/j.jaad.2020.04.171
Reference: YMJD 14619

To appear in: Journal of the American Academy of Dermatology

Received Date: 2 April 2020
Revised Date: 23 April 2020
Accepted Date: 25 April 2020

Please cite this article as: Gabel CK, Nguyen E, Karmouta R, Liu KJ, Zhou G, Alloo A, Arakaki R, Balagula Y, Bridges AG, Cowen EW, Davis MDP, Femia A, Harp J, Kaffengerber B, Keller JJ, Kwong BY, Markova A, Mauskar M, Micheletti R, Mostaghimi A, Pierson J, Rosenbach M, Schwager Z, Seminario-Vidal L, Sharon VR, Song PI, Strowd LC, Walls AC, Wanat KA, Wetter DA, Worswick S, Ziemer C, Kvedar J, Mikailov A, Kroshinsky D, Use of teledermatology by dermatology hospitalists is effective in the diagnosis and management of inpatient disease., Journal of the American Academy of Dermatology (2020), doi: https://doi.org/10.1016/j.jaad.2020.04.171.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier on behalf of the American Academy of Dermatology, Inc.
Title: Use of teledermatology by dermatology hospitalists is effective in the diagnosis and
management of inpatient disease.

Authors: Colleen K. Gabel, BS*; Emily Nguyen, BS*; Ryan Karmouta, MD, MBA2; Kristina
Liu, MD, MHS3; Guohai Zhou, PhD4; Allireza Alloo, MD5; Ryan Arakaki, MD6; Yevgeniy
Balagula, MD7; Alina G. Bridges, DO8; Edward W. Cowen, MD, MHSc9; Mark Denis P. Davis,
MD9; Alisa Femia, MD10; Joanna Harp MD11; Benjamin Kaffenberger, MD12; Jesse J. Keller,
MD13; Bernice Y. Kwong, MD14; Alina Markova, MD15; Melissa Mauskar, MD16; Robert
Micheletti, MD17; Arash Mostaghimi, MD, MPH1; Joseph Pierson, MD18; Misha Rosenbach,
MD17; Zachary Schwager, MD19; Lucia Seminario-Vidal, MD, PhD20; Victoria R. Sharon, MD,
DTMH5; Philip I. Song, MD21; Lindsay C. Strowd, MD22; Andrew C. Walls, MD4; Karolyn A.
Wanat, MD23; David A. Wetter, MD8; Scott Worswick, MD24; Carolyn Ziemer, MD, MPH25;
Joseph Kvedar, MD1; Anar Mikailov, MD26; Daniela Kroshinsky, MD, MPH1

*These two authors contributed equally to this work

1Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, United
States

2Division of Dermatology, University of California Los Angeles, Los Angeles, California,
United States

3Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts, United
States

4Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, Massachusetts,
United States

5Department of Dermatology, Donald and Barbara Zucker School of Medicine at
Hofstra/Northwell, New Hyde Park, New York
6Department of Dermatology, University of California San Francisco, San Francisco, California
7Department of Medicine, Division of Dermatology, Montefiore Medical Center, Bronx, New York
8Department of Dermatology, Mayo Clinic, Rochester, Minnesota
9Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
10Department of Dermatology, New York University School of Medicine, New York, New York
11Department of Dermatology, Weill Cornell Medicine, New York, New York
12Division of Dermatology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
13Department of Dermatology, Oregon Health and Science University, Portland, Oregon
14Department of Dermatology, Stanford University School of Medicine, Stanford, California
15Department of Dermatology, Memorial Sloan Kettering Cancer Center, New York, New York
16Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
17Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
18Dermatology Division, University of Vermont Medical Center, Burlington, Vermont
19Department of Dermatology, Lahey Hospital and Medical Center, Burlington, Massachusetts
20Department of Dermatology and Cutaneous Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
21Department of Dermatology, Palo Alto Medical Foundation, Palo Alto, California
22Department of Dermatology, Wake Forest Baptist Health, Winston-Salem, North Carolina
23Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin
Department of Dermatology, Keck School of Medicine at the University of Southern California, Los Angeles, California

Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina

Department of Dermatology, Beth Israel Lahey Health, Burlington, Massachusetts

Corresponding Author: Daniela Kroshinsky, MD, MPH

Department of Dermatology, Massachusetts General Hospital
50 Staniford Street, 2nd Floor
Boston, MA 02114 (USA)
Phone (617) 643-3884
E-mail dkroshinsky@partners.org

Funding Sources: None

Conflicts of Interest: None declared.

IRB approval status: Reviewed and approved by Partners IRB: 2018P002762

Reprint requests: Daniela Kroshinsky, MD MPH

Manuscript word count: 2,489 (max 2,500)
Abstract word count: 198 (max 200)
Capsule summary word count: 44 (max 50)
References: 27
Figures: 3
Tables: 2

Supplemental Figures: 2 (DOI: 10.17632/rnk3pyk24g.1)
Supplemental Tables: 1

Keywords: inpatient dermatology; teledermatology; dermatology consultations; store-and-forward; telemedicine; dermatology hospitalists
CAPSULE SUMMARY

- Inpatient access to dermatologists is limited, highlighting an opportunity to utilize teledermatology within the inpatient setting.

- Teledermatology in the inpatient setting may be a clinically acceptable option for diagnosis, evaluation, and management. This may represent a novel and effective option for hospitals.
ABSTRACT:

Background: Patient outcomes are improved when dermatologists provide inpatient consults. Inpatient access to dermatologists is limited, illustrating an opportunity to utilize teledermatology. Little is known about the ability of dermatologists to accurately diagnose and manage inpatients using teledermatology, particularly utilizing non-dermatologist generated clinical data.

Methods: This prospective study assessed the ability of teledermatology to diagnose and manage 41 dermatology consults from a large urban tertiary care center utilizing internal medicine referral documentation and photos. Twenty-seven dermatology hospitalists were surveyed. Interrater agreement was assessed by the kappa statistic.

Results: There was substantial agreement between in-person and teledermatology assessment of the diagnosis with differential diagnosis (median kappa = 0.83), substantial agreement in laboratory work-up decisions (median kappa = 0.67), almost perfect agreement in imaging decisions (median kappa = 1.0), and moderate agreement in biopsy decisions (median kappa = 0.43). There was almost perfect agreement in treatment (median kappa = 1.0), but no agreement in follow-up planning (median kappa = 0.0). There was no association between raw photo quality and the primary plus differential diagnosis or primary diagnosis alone.

Limitations: Selection bias and single-center nature.

Conclusions: Teledermatology may be effective in the inpatient setting, with concordant diagnosis, evaluation, and management decisions.
BACKGROUND:

Teledermatology is the remote dermatologic assessment of patients, in real-time (“live interactive”), by accessing stored data (“store-and-forward”), or a combination of the two (“hybrid”), with worldwide applications. Teledermatology has been studied in general triage, consultation in remote locations, and monitoring of chronic skin conditions. In addition to increased access to dermatologists, potential benefits of store-and-forward teledermatology include cost reduction due to fewer face-to-face (FTF) consultations, reduced travel time and opportunity cost due to missed work, and reduced contagion spread amid infectious disease outbreaks.

Significant clinical evidence supports the outpatient use of store-and-forward teledermatology. In contrast, teledermatology has been studied in the inpatient setting to a limited degree. A significant practice gap exists between the demand for inpatient dermatology services and access to dermatologists, often a source of frustration for inpatient providers and patients. Dermatology hospitalists represent a clinical group with expertise in complex medical dermatology and the diagnosis and management of skin diseases affecting hospitalized patients. Involvement of dermatology hospitalists in the care of hospitalized patients has been found to improve patient outcomes.

In a subset of cases, inpatient teledermatology reduces time for the primary medical team to receive a response for a dermatology consultation. Dermatologist interest in inpatient teledermatology is high. A survey of attending dermatologists demonstrated that 61.5% agreed or strongly agreed that teledermatology helps inpatient care. Another study found that 95% of hospital and emergency department practitioners would utilize a teledermatology consult service if available, however only 5% believed that teledermatology would be equivalent to a face-to-face (FTF) consult. This finding supports the need for
additional studies evaluating inpatient teledermatology, which may shift perception and
courage adoption of inpatient teledermatology.

This study investigates the diagnostic and management agreement between inpatient FTF and
store-and-forward teledermatology evaluations utilizing remote digital evaluations for hospital-
based dermatology consultations.

METHODS

Eligible patients for this study were admitted to Massachusetts General Hospital between July
and August 2013 and had a dermatology consultation staffed by a dermatology hospitalist with
more than six years of inpatient experience, defined as the Primary Dermatologist (PD). This
yielded a sample of 108 patients. Only those consultations with digital images and non-
dermatology evaluations involving the dermatologic complaint were included. Cases were
selected if the accuracy of the PD’s diagnosis was able to be confirmed based on testing,
response to therapy and final diagnosis at discharge. Based on these inclusion criteria, a total of
42 patients were initially included (Figure 1). One case was excluded from analysis to preserve
the generalizability of study results,(17) as this patient presented with multiple concomitant
dermatologic complaints and the documentation did not specify the specific focus of the
dermatology consultation.

For teledermatology review, data abstractors not involved in the care of the included cases
packaged patient data into surveys by unique numerical patient identifiers. Each survey set
contained seven individual cases, randomly assigned to each survey set from the total case pool.
Each individual case contained the relevant history and physical exam notes generated by a non-
dermatologic internal medicine or emergency medicine provider. In addition, all data such as
laboratory studies, imaging, microbiology, pathology, and digital images up to the day of the
consult that would have been available to the PD were included. Finally, a
diagnosis/management questionnaire was included. The order of case examination within each
survey set was fixed across all TDs. Patient identifiers were uniquely created and stored safely.
This study was approved by Partners Institutional Review Board (IRB) #2018P002762.
Only non-dermatologic patient history and physical exam notes were included to mimic real-
world settings. Photographs were captured primarily by Dermatology Residents from the
Harvard Combined Dermatology Residency. Camera use was heterogenous and included Sony
NEX5N 12MP and 5MP iPad Mini. Images were obtained both by using the original digital
images and screen grabs from the electronic medical record. Study data were collected and
managed using Research Electronic Data Capture (REDCap) tools hosted at Partners.(18, 19)
The packaged cases were sent to 27 experienced dermatology hospitalists in order of response to
request for participation at various academic institutions across the U.S. Each remote
teledermatologist (TD) received six to seven cases within a secure REDCap survey
(Supplemental Figure 1). Each clinical case was evaluated by 4-5 unique TDs.
The surveys included the option to list a primary diagnosis as well as a maximum of three
differential diagnoses. The workup and management plans offered were as follows: (1) biopsy,
(2) topical therapy, (3) systemic/oral therapy, (4) microbiology, (5) labs, (6) transfer to the burn
unit, if not already there, (6) recommend continued patient monitoring as an inpatient, and (7)
recommend follow-up as outpatient for dermatologic condition. Once the TD selected a
treatment plan, s/he was prompted for free-text details. Both the correct mode and type of
therapy was assessed. If the selected treatment differed between the PD and the TD but both
options were within the accepted standard of care for that disease, these treatments were
considered concordant. This was to minimize the effect of stylistic practice differences in grading appropriateness.

The follow-up plan options were: (1) sign-off and no need for future follow-up either inpatient or outpatient, (2) outpatient follow-up, no need for additional inpatient dermatology evaluations ("sign off"), (3) no need to see the patient tomorrow, but evaluate if the primary team requests and ensure outpatient follow-up planned, and (4) see the patient tomorrow and follow closely.

TDs rated their degree of comfort in managing the case as a dermatologist, as well as the quality of each image.

Outcomes measured were concordance between the PD and the TDs for the following: primary diagnosis, primary diagnosis plus differential diagnosis, decision to biopsy, laboratory work-up, imaging, treatment, and follow-up plan. Primary outcomes were defined as primary plus differential diagnostic concordance as well as management plan concordance, the rational of which was to assess whether teledermatology could result in an appropriate work-up and management leading to an effective outcome for the patient. Secondary outcomes were primary diagnostic concordance alone, as well as concordance in work-up.

Primary diagnostic concordance was defined as agreement between the primary diagnosis provided by the PD and the TD. Primary diagnostic plus differential diagnostic concordance was defined as the PD’s diagnosis being among the differential diagnosis of the TDs in cases when the primary diagnosis was discordant. The diagnoses themselves, and not diagnostic family, were used in calculating diagnostic concordance.

Statistical Analysis

We calculated the prevalence-adjusted bias-adjusted kappa (20) to quantify the concordance between a) the TDs’ and PD’s primary diagnosis, b) TDs’ primary diagnosis plus differential
diagnosis and PD’s primary diagnosis, and c) TDs’ and PD’s management plan (separately for each of the five domains: biopsy, work-up, imaging, treatment, and follow-up). The following criteria were used to assess significance: values ≤ 0 as indicating no agreement, 0.01–0.20 as none to slight, 0.21–0.40 as fair, 0.41– 0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as almost perfect agreement.(21) We evaluated the associations of the calculated concordance a) and b) with TDs’ years of experience and the reported photo quality rating, and the associations of the calculated concordance c) with photo quality using the Pearson correlation coefficient. We also evaluated the associations of TDs’ level of comfort managing patients (with photos and story alone) with photo quality and TDs’ years of experience using the Wilcoxon rank sum test. All were conducted using R version 3.6.1 (https://www.r-project.org/).

RESULTS

Table 1 depicts the characteristics of the patients included in the study surveys. The mean age was 54.1 years (standard deviation (SD) 23.7), 43.9% were female, 75.6% identified as Caucasian, and 68.3% as Non-Hispanic or Latino. The final diagnoses are provided that were used to evaluate diagnostic concordance. Diagnoses fell under a diverse set of diagnostic families, consisting of hypersensitivity reactions (29.3%), vascular (19.5%), infectious (17.1%), inflammatory (17.1%), neoplastic (7.3%), iatrogenic (4.9%) and traumatic (4.9%). The TDs were 40.7% female and practiced in diverse academic institutions from all geographic regions of the United States. The mean number of years’ experience of each of the TDs was 7.0 (SD 1.2) (Table 2). Out of all cases, 45.1% of TDs felt comfortable managing the case as a teledermatologist. The mean number of differential diagnoses per TD per individual case was 2.6 (SD 0.4).
There was fair concordance between PD and TD primary diagnosis alone (median concordance 66.7%, interquartile range (IQR) 57.1% to 78.6%; median kappa=0.33, interquartile range (IQR) 0.14 to 0.57), with substantial agreement between PD and TD primary plus differential diagnosis (median concordance 91.7%, IQR 85.7% to 92.9%; median kappa=0.83, IQR 0.71 to 0.86).

There was substantial agreement in pursuing additional laboratory work-up (median concordance 85.7%, IQR 85.7% to 92.9%; median kappa=0.67, IQR 0.43 to 0.79), and almost perfect agreement in imaging decisions (median concordance 100%, IQR 50.0% to 100.0%; kappa=1.0, IQR, 0.0-1.0). There was moderate agreement in the decision to biopsy (median concordance 71.4%, IQR 53.6% to 85.7%; median kappa=0.43, IQR 0.07 to 0.71). There was almost perfect agreement in treatment plans (median concordance 100%, IQR 85.7% to 100.0%; median kappa=1.0, IQR 0.67 to 1.0). There was no agreement in the follow-up plan (median concordance 50.0%, IQR 42.9% to 66.7%; median kappa=0.0, IQR -0.14 to 0.14). Figure 2 is a pair of histograms depicting the distribution of kappa values for agreement between the TDs’ and the PD’s primary diagnosis (Figure 2A), and primary plus differential diagnosis (Figure 2B).

There was no association between experience of the TD and primary plus differential diagnostic concordance (correlation=-0.27; 95% confidence interval (CI) -0.59 to 0.12, scatterplot in Supplemental Figure 2, corresponding Supplemental Table 1) or primary diagnostic concordance (correlation=-0.27; 95% CI, -0.59 to 0.12). There was also no association between years’ experience of the TD and decision to pursue laboratory evaluation (correlation=-0.19; 95% CI, -0.53 to 0.21), biopsy (correlation=-0.32; 95% CI, -0.62 to 0.07), imaging (correlation=-0.19; 95% CI, -0.53 to 0.21), treatment decisions (correlation=-0.18; 95% CI, -0.53 to 0.21), and follow-up planning (correlation=-0.06; 95% CI, -0.33 to 0.43).
There was no association between either raw photo quality and the primary plus differential diagnosis (correlation=0.008; 95% CI, -0.18-0.19), or primary diagnostic concordance alone (correlation=-0.07; 95% CI, -0.12-0.25). The Wilcoxon rank sum test of the TDs’ comfort with managing the case and years of experience indicated that TDs with fewer years of experience were more likely to feel comfortable managing the patients as a teledermatologist (p=0.04).

DISCUSSION

This study illustrates that store-and-forward teledermatology may be reliable in the academic inpatient setting, with strong agreement between PD and TD for diagnosis, work-up, and management.

The high concordance of primary plus differential diagnosis is in-line with prior outpatient literature,(8, 22) with studies demonstrating diagnostic concordance ranging from 41% to 100% for store-and-forward cases.(2) This finding builds upon limited studies evaluating the use of teledermatology in the inpatient setting.(12, 23, 24) As with prior study,(2) diagnostic concordance improved when the differential diagnosis was taken into account.

The decision by TDs to pursue work-up in this study was highly concordant, with substantial agreement in the laboratory work-up desired. However, there was only moderate agreement in the decision to biopsy, which is in contrast with a prior inpatient teledermatology study finding a >95% concordance in assessing need for biopsy.(12) This may be due to stylistic practice differences or individual comfort level.

The treatment plans offered by the TDs were highly concordant with those of the PD, suggesting that the outcomes of each patient may have been the same if managed by teledermatology, even in cases where the primary diagnosis differed. This may be due to the high concordance of primary plus differential diagnosis, leading to treatment plans applicable to multiple diagnoses.
The baseline inter-dermatologist variability that occurs even with face-to-face consultations must also be taken into consideration, as a previous study of face-to-face, clinic-based dermatologists has found diagnostic testing to be 85% concordant, medical-based therapy to be 85% concordant, and clinic-based therapy 77% concordant, respectively. Thus, some degree of discordance may be expected.

The lack of concordance between TDs and the PD for follow-up plans suggests that in-person evaluation may be needed prior to disposition planning. Stylistic differences also likely played a role. Patient-specific factors may go into disposition planning, such as access to resources and health literacy, which may contribute to the discordance between the PD and the TDs. Further study of follow-up planning is needed to elucidate whether teledermatology may be reliable for this use.

Photo quality was not associated with primary diagnostic concordance or primary plus differential diagnostic concordance. This suggests that even in cases in which image quality is suboptimal, the reliability of teledermatology may not be impacted. However, while the authors utilized images from heterogeneous sources, many photos utilized in the study surveys met the minimum standards recommended for teledermatology. Additionally, assessment of image quality was not broken down into detailed components, such as lighting, focus, or capture of clinically-relevant information. Photo quality and training in obtaining photos may be needed to ensure good capture of the relevant areas when implementing teledermatology, as the study photos were captured by dermatology resident physicians.

There was no association between experience of the teledermatologist and diagnostic concordance, illustrating the generalizability of teledermatology across all ages of practicing dermatologists.
There appeared to be a disconnect between concordance and the TDs’ level of comfort in managing each case as a teledermatologist. The TDs considered themselves comfortable less than half of the time; however, their survey responses often aligned with the PD. This may be in part due to the novelty of teledermatology. The TDs with fewer years of experience were more likely to feel comfortable managing the case, aligning with prior literature,(26) reflecting an opportunity to utilize teledermatology even in novice practice settings. Similarly, teledermatology exposure in residency may correlate with comfort of use,(27) suggesting that early incorporation of teledermatology in training may facilitate its implementation.

One of the greatest strengths of this study is the large sample size of TDs, mimicking the heterogeneity of applying teledermatology to real-life practice settings. The distribution of diagnoses included in this study reflects that of common dermatology consultations.(13) Limitations of this study include its single-center nature and the fact that dermatology residents captured the clinical photos. The dermatology residents may have had a more thorough understanding of how to obtain a high-quality dermatology photo than non-dermatology staff, who would be submitting the teledermatology consult in real-life. Training of non-dermatology staff in obtaining high-quality images may be needed. On the other hand, camera technology has likely improved today and may lead to heightened quality of photos in today’s use of teledermatology. Further study is needed to determine best practices for implementing an inpatient teledermatology program.

In conclusion, teledermatology may be effective for managing dermatologic disease in the inpatient setting and leads to highly concordant diagnostic, work-up, and management decisions when performed by experienced inpatient dermatologists. This may represent a novel and effective option for community hospitals and may be particularly applicable during times of
concern for spread of infectious disease, such as during the 2019-2020 outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Table 1. Demographic characteristics of patients included in this study.

Patient characteristic	Total (n=41)	
Age in years, mean (SD)	54.1 (23.7)	
Sex, n (%)		
Female	18 (43.9)	
Race, n (%)		
Asian	2 (4.9)	
Black or African American	4 (9.8)	
Caucasian	31 (75.6)	
Unknown	4 (9.8)	
Ethnicity		
Hispanic or Latino	0 (0.0)	
Not Hispanic or Latino	28 (68.3)	
Unknown	13 (31.7)	
Dermatologic consultation characteristics		
Chronology of skin findings, median (IQR) (days)	4.0 (2.0-14.0)	
Medications, mean (SD)	7.0 (3.7)	
Final diagnostic categories		
Hypersensitivity	12 (29.3)	
Contact dermatitis (4)		
Drug hypersensitivity (6)		
Erythema nodosum		
Urticaria		
Vascular	8 (19.5)	
Calciphylaxis		
Henoch-Schonlein purpura		
Leukocytoclastic vasculitis		
Lipodermatosclerosis		
Small vessel vasculitis		
Stasis dermatitis (3)		
Infectious	7 (17.1)	
Atypical mycobacterial infection		
Bullous impetigo		
Eczema herpeticum		
Herpes simplex virus		
Erythema chronicum migrans (2)		
Varicella zoster virus		
Inflammatory	7 (17.1)	
Atopic dermatitis		
Gout		
Granulomatous disease		
-----------------------	---	---
Hiradenitis suppurativa		
Miliaria rubra		
Pyoderma gangrenosum (2)		
Neoplastic		
Carcinoma erysipeloides		3 (7.3)
Kaposi sarcoma		
Nevus lipomatosus		
Iatrogenic		
Steroid acne		2 (4.9)
Warfarin skin necrosis		
Traumatic		
Bateman’s purpura		2 (4.9)
Neurotic excoriations		

Table 2. Characteristics of the surveyed teledermatologists.
Characteristic
Sex, n(%)
Female
Geographic distribution
Northeast
Midwest
West
Southeast
Southwest
Years of experience, mean (SD)
7.0 (1.2)
REFERENCES

1. Trettel A, Eissing L, Augustin M. Telemedicine in dermatology: findings and experiences worldwide - a systematic literature review. J Eur Acad Dermatol Venereol. 2018;32(2):215-24.

2. Whited JD. Teledermatology. Med Clin North Am. 2015;99(6):1365-79, xiv.

3. Tensen E, van der Heijden JP, Jaspers MW, Witkamp L. Two Decades of Teledermatology: Current Status and Integration in National Healthcare Systems. Curr Dermatol Rep. 2016;5:96-104.

4. Lee KJ, Finnane A, Soyer HP. Recent trends in teledermatology and teledermoscopy. Dermatol Pract Concept. 2018;8(3):214-23.

5. Warshaw EM, Hillman YJ, Greer NL, Hagel EM, MacDonald R, Rutks IR, et al. Teledermatology for diagnosis and management of skin conditions: a systematic review. J Am Acad Dermatol. 2011;64(4):759-72.

6. Pak H, Triplett CA, Lindquist JH, Grambow SC, Whited JD. Store-and-forward teledermatology results in similar clinical outcomes to conventional clinic-based care. J Telemed Telecare. 2007;13(1):26-30.

7. Kroemer S, Fruhauf J, Campbell TM, Massone C, Schwantzer G, Soyer HP, et al. Mobile teledermatology for skin tumour screening: diagnostic accuracy of clinical and dermoscopic image tele-evaluation using cellular phones. Br J Dermatol. 2011;164(5):973-9.

8. Kvedar JC, Edwards RA, Menn ER, Mofid M, Gonzales E, Dover J, et al. The substitution of digital images for dermatologic physical examination. Arch Dermatol. 1997;133(2):161-7.

9. Shapiro M, James WD, Kessler R, Lazorik FC, Katz KA, Tam J, et al. Comparison of skin biopsy triage decisions in 49 patients with pigmented lesions and skin neoplasms: store-and-forward teledermatology vs face-to-face dermatology. Arch Dermatol. 2004;140(5):525-8.

10. Lee JJ, English JC, 3rd. Teledermatology: A Review and Update. Am J Clin Dermatol. 2018;19(2):253-60.

11. Fox LP. Practice Gaps. Improving accessibility to inpatient dermatology through teledermatology. JAMA Dermatol. 2014;150(4):424-5.

12. Barbieri JS, Nelson CA, James WD, Margolis DJ, Littman-Quinn R, Kovarik CL, et al. The reliability of teledermatology to triage inpatient dermatology consultations. JAMA Dermatol. 2014;150(4):419-24.

13. Kroshinsky D, Cotlier J, Hughey LC, Shinkai K, Fox LP. Association of Dermatology Consultation With Accuracy of Cutaneous Disorder Diagnoses in Hospitalized Patients: A Multicenter Analysis. JAMA Dermatol. 2016;152(4):477-80.

14. Sharma P, Kovarik CL, Lipoff JB. Teledermatology as a means to improve access to inpatient dermatology care. J Telemed Telecare. 2016;22(5):304-10.

15. Weig EA, Tull R, Chung J, Wanat KA. Inpatient teledermatology: current state and practice gaps. J Am Acad Dermatol. 2019.

16. Cheeley J, Chen S, Swerlick R. Consultative teledermatology in the emergency department and inpatient wards: A survey of potential referring providers. J Am Acad Dermatol. 2018;79(2):384-6.

17. Kukull WA, Ganguli M. Generalizability: the trees, the forest, and the low-hanging fruit. Neurology. 2012;78(23):1886-91.
18. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377-81.

19. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, et al. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019;95:103208.

20. Byrt T, Bishop J, Carlin JB. Bias, prevalence and kappa. J Clin Epidemiol. 1993;46(5):423-9.

21. McHugh ML. Interrater reliability: the kappa statistic. Biochemia medica. 2012;22(3):276-82.

22. Whited JD, Hall RP, Simel DL, Foy ME, Stechuchak KM, Drugge RJ, et al. Reliability and accuracy of dermatologists’ clinic-based and digital image consultations. J Am Acad Dermatol. 1999;41(5 Pt 1):693-702.

23. Keller JJ, Johnson JP, Latour E. Inpatient teledermatology: Diagnostic and therapeutic concordance among hospitalist, dermatologist, and teledermatologist using store-and-forward teledermatology. J Am Acad Dermatol. 2020.

24. Muir J, Xu C, Paul S, Staib A, McNeill I, Singh P, et al. Incorporating teledermatology into emergency medicine. Emerg Med Australas. 2011;23(5):562-8.

25. McKoy K, Antoniotti NM, Armstrong A, Bashshur R, Bernard J, Bernstein D, et al. Practice Guidelines for Teledermatology. Telemed J E Health. 2016;22(12):981-90.

26. Korman AM, Kroshinsky D, Raff AB, Mostaghimi A, Micheletti RG, Rosenbach M, et al. A survey-based study of diagnostic and treatment concordance in standardized cases of cellulitis and pseudocellulitis via teledermatology. J Am Acad Dermatol. 2019.

27. Qureshi S, Mostaghimi A. Exposure to teledermatology and resident preparedness for future practice: results of a national survey. Dermatol Online J. 2016;22(7).
FIGURE LEGENDS

Figure 1. Selection criteria for cases to include in study.

Figure 2. Distribution of Kappa values for agreement between the teledermatologists’ and the primary dermatologist’s (A) primary diagnosis and (B) primary plus differential diagnosis.

SUPPLEMENTS

Supplemental Figure 1. Sample case within a survey set provided to the teledermatologists. The original diagnosis provided by the primary dermatologist was an atypical mycobacterial infection.

Supplemental Figure 2. Scatterplot of the correlation between the teledermatologists’ (TDs’) primary plus differential diagnosis and the primary dermatologist’s (PD’s) primary diagnosis. Each point represents a teledermatologist (TD), color-coded by which survey set the TD participated in. The absence of clustering of points by color and the wide variation in TDs’ years of experience indicate that TDs’ years of experience exhibit robust nonassociation with the concordance between the TD’s primary plus differential diagnosis and the primary dermatologist (PD)’s primary diagnosis.

Supplemental Table 1. Tabular representation of the years’ experience of the teledermatologists (TDs) with corresponding kappa values for primary and primary plus differential diagnostic concordance.
Cases originally seen by the primary dermatologist (n=108)

- Excluded 26 cases without clinical photographs

Cases with at least 1 clinical photograph (n=82)

- Excluded 21 cases without photograph capturing dermatologic complaint

Cases with photograph from time of initial consultation, capturing the dermatologic complaint (n=61)

- Excluded 11 cases without complete documentation of dermatologic complaint

Cases with complete documentation of dermatologic complaint from the primary team (n=50)

- Excluded 8 cases where diagnostic accuracy of the primary dermatologist was not confirmed

Cases with final diagnosis able to be confirmed for accuracy (n=42)

- Excluded 1 case where the patient presented with multiple dermatologic complaints, and the focus of the consultation was unclear

Cases included in final analysis (n=41)
Capsule summary:

- Inpatient access to dermatologists is limited, highlighting an opportunity to utilize teledermatology within the inpatient setting.
- Teledermatology in the inpatient setting may be a clinically acceptable option for diagnosis, evaluation, and management. This may represent a novel and effective option for hospitals.