Active Surveillance of Influenza A and Other Respiratory Viruses in Children with Influenza-like-illness in Two Seasons

Saniye Girit¹, Ayşe Karaaslan², Serap Gençer³, Emel Yılmaz⁴, Yetkin Ayhan⁴, Elif Ruşen Vayvada⁴, Meral Akçay Ciblak⁵, Selim Badur⁵, Yasemin Akın⁴

¹ Department of Pediatrics, Division of Pediatric Pulmonology, Dr. Lütfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
² Department of Pediatrics, Division of Pediatric Infectious Diseases, Dr. Lütfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
³ Department of Infectious Diseases and Clinical Microbiology, Dr. Lütfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
⁴ Department of Pediatrics, Dr. Lütfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
⁵ Department of Microbiology, Faculty of Medicine, Istanbul University, Istanbul, Turkey

Abstract
Introduction: The aim of this study was to assess the surveillance of influenza A/other respiratory viruses and risk factors in hospitalized children with the symptoms of influenza-like illness during two consecutive influenza seasons.
Methodology: All children hospitalized with a diagnosis of influenza-like illness had been investigated for Influenza A and other respiratory antigens in pharyngeal/nasopharyngeal secretions.
Results: A total of 132 hospitalized children between December 2013-May 2014 and December 2014-May 2015 were enrolled in this study. At least one respiratory virus was found to be positive by RT-PCR in 78 (59%) patients, influenza A (H3N2) was detected in only 8 (6%) patients. In 54 (41%) patients samples no respiratory viral pathogen was detected and in 70 (53%) patients, one non-influenza A virus was detected. The respiratory viral pathogens detected in decreasing rates were: RSV (n = 46, 35%), HCoV (n = 10, 7.5%), adenovirus (n = 7, 5%), rhinovirus (n = 6, 4.5%), HMPV (n = 5, 4%), Influenza B (n = 4, 3%) and human Bocavirus (n = 2, 1.5%). In 10 patients, coinfection was detected, however none was with H3N2. In the H3N2 (+) group, the following risk factors were identified: age older than three years (p < 0.05), asthma history (p < 0.05) and chronic lung diseases (p < 0.05).
Conclusion: Influenza A virus was detected in 6% of hospitalized patients with influenza-like illness. Viruses other than Influenza, especially RSV, can cause similar symptoms compatible with Influenza-like-illness.

Key words: Influenza A; influenza like illness; respiratory viruses.

J Infect Dev Ctries 2017; 11(12):944-949. doi:10.3855/jidc.8867

Introduction
Acute respiratory tract infections (ARTIs) are common in children; mostly they are self-limiting diseases however they can cause respiratory failure which can result in critical care admission. They are still the leading causes of morbidity and mortality in children [1]. Many pathogenic microorganisms may cause ARTIs, however viruses are the most commonly identified agents [2]. Respiratory syncytial virus (RSV), Influenza A and B, human rhinovirus (HRV), adenovirus, human metapneumovirus (HMPV), human coronavirus (HCoV-229E and HCoV OC43) are the most frequent of the known causative viruses. Recently described viruses such as HCoV-NL63 and human Bocavirus (HBoV) are also responsible for ARTIs. Among these viruses, Influenza, which is a vaccine preventable disease, is one of the most commonly associated with severe infection. It causes outbreaks every year, especially in the winter season.

Influenza virus belongs to the orthomyxoviruses family and has three types named A, B and C. Influenza virus type A and B cause epidemic disease and the associated antigens are included in influenza vaccines. Type C influenza virus is associated with mild influenza-like illness and causes sporadic disease. It is estimated that, every year 15-42% of preschool and school-age children are infected with influenza virus [3]. The severe disease is associated with low-income settings in children and 99% of deaths in children occur in developing countries [4,5]. The other well-known
risk factors for severe infection are: under two years old; underlying chronic diseases; immunosupression; long term aspirin use; and morbid obesity [6]. It is estimated that each year Influenza causes 500,000 deaths worldwide [7].

Influenza-like illness is a clinical diagnosis which can be used as a replacement for influenza disease in epidemiological researches. In surveillance programmes for influenza The Centers for Disease Control and Prevention (CDC) suggest using the criteria fever plus cough or sore throat for ILI diagnosis [8]. The European Centre for Disease Prevention and Control (ECDC) define ILI as; sudden onset of symptoms and at least one of the following: i) fever or feverishness, ii) malaise, iii) headache, iv) myalgia and at least one of the following three respiratory symptoms: i) cough, ii) sore throat, iii) shortness of breath [9]. All these symptoms are also associated with other viral Artis.

The main aim of this study was to determine the surveillance and the risk factors of Influenza A, during two influenza seasons, in hospitalized children with symptoms of influenza-like illness. We also investigated the other respiratory viruses simultaneously.

Methodology

The Global Influenza Hospital Surveillance Network was established in 2012 to obtain valid epidemiologic data on hospital admissions with influenza-like illness in consecutive seasons in different countries [10-13]. One of the participating hospitals of this multi-center, prospective, active surveillance study is our hospital, which is a tertiary care training and research hospital in Istanbul, Turkey. In this study, we used the data collected from pediatric patients of our hospital included in this study in 2013-2014 and 2014-2015 influenza seasons lasting from December to May.

The aims of this study were:

i) Hospital based surveillance of Influenza A as done in many countries,

ii) Effect of Influenza vaccination,

iii) To determine other different respiratory viruses except Influenza A in hospitalized children with ILI.

iv) To assess the possible risk factors for ILI.

A total of 189 patients with the diagnosis of ICD code in Table 1 or Table 2 were hospitalized. Firstly, the patients were investigated if they can be accepted as resident population. If so, inclusion criterias were investigated.

Inclusion criteria were, patients hospitalized during last 24-48 hours with the diagnosis of ICD codes as shown in Table 1 and 2 were determined by hospital records. These children were investigated for ILI and the patients with eligible criteria were included in the study. Inclusion criteria for patients aged 5 years and older with influenza-like illness were; at least one of the following: i) temperature ≥ 37.8°C, ii) headache, iii) myalgia, iv) malaise and at least one of the following: i) cough, ii) sore throat, iii) shortness of breath during the last seven days of admission according to ECDC.

Patients >5 years	International Classification of Diseases Code version 10 (ICD 10)
Acute respiratory infection	J00-J06, J20-J22, H66.90
Acute myocardial infarction or acute coronary syndrome	I20-I25.9
Asthma	J45.2-J45.22, J45.9-J45.998, J44-J44.9
Heart failure	J05-J0.9; J15.4
Pneumonia and influenza	J09-J18
Chronic Pulmonary Obstructive disease	J40-J44.9
Myalgia	M79.1
Metabolic failure (diabetic coma, renal dysfunction, acid-base disturbances, alterations to the water balance)	E11.9, E10.9, E11.65, E10.65, J10.11, E11.01, E10.641, E11.641, E10.69, E11.00, E10.10, E11.69, N17.0, N17.1, N17.2, N17.8, N17.9, N18.1, N18.2, N18.3, N18.4, N18.5, N18.6, N18.9, N19, E87.0, E87.1, E87.2, E87.3, E87.4, E87.5, E87.6, E87.70, E87.71, E87.79, E86.0, E86.1
Altered consciousness, convulsions, febrile-convulsions	R40.20, R40.4, R40.0, R40.1, R56.00, R56.01
Dyspnea/respiratory abnormality	R06.0, R06-R06.9
Respiratory abnormality	R06.9
Shortness of breath	R06.02
Respiratory abnormality	R06.3, R06.00, R06.09, R06.83
Respiratory symptoms/chest symptoms	R06.89
definition [9]. Children under five years who had one of these symptoms during the last seven days of admission were also included. Resident population was defined as, patients who were living in Asian part of İstanbul during the last six months.

Exclusion criteria were, i) patients hospitalized during the last one month, ii) Patients of the parents / legal guardians whom did not agree to give consent, iii) children who live in child hostels, iv) patients whom are not accepted as resident population.

Parents / legal guardians were informed of the study and informed consent was obtained before inclusion of all cases. Physician assistants who filled the questionnaire were educated.

All the children hospitalized with the diagnosis of ILI into our Pediatrics departments had been investigated for Influenza A and other respiratory antigens in pharengeal / nasopharyngeal secretions. Pharyngeal / nasopharyngeal samples were obtained with the standard method of collection[14].

Date of birth weight, gestational age, duration of breastfeeding, hospitalization in the past year, hospital admission in the last three months, immunization with influenza vaccine, underlying chronic diseases; immunocompromised status, malignancy, renal insufficiency, asthma, chronic lung diseases and neuromuscular diseases were questioned from the patients with the diagnosis of ILI. The study protocol was approved by the Ethics Committee of İstanbul University İstanbul Medical Faculty.

Statistical analysis

Statistical calculations were performed with NCSS 11 data Analysis (Number Cruncher Statistical System), 2007 for Statistical Software (Utah, Corporation, Kaysville, USA). Besides descriptive statistical calculations (mean and Standard deviation and frequency), Tukey test, Pearson chi-square test, Fischer’s exact tests were used for evaluation of qualitative data. Statistical significance was set at p < 0.05.

Results

189 patients with the diagnosis of ICD code in Table 1 or Table 2 were questioned, 135 the patients met the criterias of ILI. Three of the patients’ samples were transferred to cryo-tubes and if not tested on day of arrival they were stored at4-8°C.

EZ1 Virus mini kit V2.0 (Catalog number: 955134, Qiagen, Hilden Germany) was used for total nucleic acid extraction. Real-time PCR based, multiplex FTD Respiratory Pathogens 21 kit (Fast-track diagnostics Ltd. Valletta-Malta) was used for detection of respiratory pathogens on RotorGene Q platform (Qiagen, Hilden Germany). Kit is able to detect following pathogens: influenza A, H1N1, influenza B, rhinovirus, coronavirus NL63, 229E, OC43, HKU1, parainfluenza 1, 2, 3, 4, human metapneumovirus A/B, bocavirus, Mycoplasma pneumoniae, respiratory syncytial virus A/B, adenovirus, enterovirus, parechovirus and internal control.

For detection of Influenza H3 subtype, Influenza B Yamagata and Victoria lineages real-time RT-PCR method was performed using an ABI 7500 platform with CDC primers and probes according to the CDC protocol [15].

Table 2. International Classification of Diseases Code version 10 (ICD 10).

Patients aged between 0 - 5 years	International Classification of Diseases Code version 10 (ICD 10)
Acute upper or lower respiratory disease	J00-J06, J20-J22
Dyspnea, breathing anomaly, shortness of breath, tachypnea	R06.0, R06, R06.9, R06.3, R06.00, R06.09, R06.83, R06.02, R06.82, R06.2, R06.89
Asthma	J45.2-J45.22, J45.9-J45.998, J44-J44.9
Pneumonia and influenza	J09-J18
Heart failure	I50-I50.9, I51.4
Myalgia	M79.1
Altered consciousness, convulsions, febrile convulsions	R40.20, R40.4, R40.0, R40.1, R56.00, R56.01
Fever or fever unknown origin or non-specified	R50, R50.9
Cough	R05
Gastrointestinal manifestations	A09.0, A09.9
Sepsis, Systemic inflammatory response syndrome	R65.10, R65.11, R65.20, A41.9
were transported in the wrong conditions for this reason
this three patients removed out of the study.

A total of 132 hospitalized children with ILI between December 2013-May 2014 and December
2014-May 2015, (59% male, 41% female) were enrolled
in this study. According to age distribution, 37 patients
(28%) were aged <1 year, 80 patients (61%) were aged
between 1 to 3 years, and 15 patients (11%) were aged
> 3 years. A history of vaccination with the seasonal
influenza vaccine was present in 11 patients (8%), 11
patients (8%) in 2012-2013 and 2013-2014 seasons,
respectively. At least one respiratory virus was founded
to be positive by RT-PCR in 78 (59%) patients,
influenza A (H3N2) was detected in only 8 (6%)
patients. In 54 (41%) patients samples were negative for
any respiratory viral pathogens, on the other hand in 70
(53%) patients, one of other respiratory virus was
detected other than influenza A.

The respiratory viral pathogens detected in
decreasing rates were; RSV (n = 46, 35%), HCoV (n =
10, 7.5%), adenovirus (n = 7, 5%), rhinovirus (n = 6,
4.5%), HMPV (n = 5, 4%), Influenza B (n = 4, 3%) ve
HBoV (n = 2, 1.5%). In 10 patients, coinfection was
detected, however none of them was with H3N2. Seven
of the coinfections were related to influenza RSV virus
associated with the following single respiratory viruses:
HCoV43 in two cases, HCoV229 in two cases, adenoviruses in one case, rhinovirus in one case and
HMPV in one case. The other three coinfections were
causd by: HCoV229 and adenovirus, HCoV229 and
HMPV, HCoV 43 and influenza B.

In H3N2 (+) group, age older than three years (p =
0.006), asthma history (p = 0.015) and chronic lung
diseases (p = 0.0001) were found to be risk factors. On
the other hand in patients infected with any other virus
except Influenza A female gender was found to be a risk
factor (p = 0.012). There were no statistically
significant differences for birth weight, gestational age,
duration of breastfeeding, admission to hospital during
the last three months, history of vaccination with
influenza, immunocompromised status, malignancy,
renal insufficiency norneuromuscular disease between
the groups. Demographic characteristics and risk
factors of children with ILI areshown in Table 3. No
mortality was observed during the study.

Discussion

In this study, firstly we aimed to determine the
prevalence of influenza A virus and epidemiological
characteristics of patients with the diagnosis of ILI
during the 2013-2014 and 2014-2015 influenza season.
Secondly, we also investigated other respiratory viruses
in these patients group. In our study, we found influenza
A (H3N2) virus positivity in patients as 6%. In our
country multicenter epidemiologic studies showed that,
in 2005-2006, 2006-2007, 2008-2009 and 2011-2012
influenza season, H3N2 was the isolated type of
influenza A, in 2007-2008, 2009-2010, 2010-2011
H1N1 was the predominant isolated type [16]. As far as
we know, our study is the latest study to determine the
prevalence of influenza A which has found H3N2 as the
dominant type. There is no data of epidemiologic study
of influenza in 2012-2013 season in our country, for this
reason we don’t know the dominant type of influenza
for that period. We have found the overall vaccination
for influenza was 8% both in 2012-2013 and 2013-2014
seasons. The influenza vaccination is not part of the
routine immunization programme of our ministry of
health and many parents prefer their children not to be
vaccinated against influenza. This can be attributed to

Table 3. Comparison of Demographic Characteristics and Risk Factors between children with H3N2-positive, other virus detected and not
detected presenting with Influenza-Like – Illness.

Variables	H3N2 positive (n=8)	Other virus detected (n=70)	Not virus detected (n=54)	P value
Age	> 1 year	0	17 (24)	0.028
	1 – 3 years	5 (62.5)	44 (63)	0.714
	> 3 year	3 (37.5)	9 (13)	0.238
Gender	Male	6 (75)	33 (47)	0.012
	Female	2 (25)	37 (53)	
Breastfeeding		6 (100)	70 (100)	0.238
Chronic lung diseases	1 (14)	0	0	0.0001
Asthma status	1 (14)	1 (1.4)	0	0.015
Influenza vaccination status between 2012-2013	1 (12)	5 (7)	5 (9)	0.830
Influenza vaccination status between 2013-2014	1 (12)	5 (7)	5 (9)	0.714
the socioeconomic status of citizen, parents thinking that if it was necessary it should be in our routine immunization programme, and parents worrying about side effects.

In our study, 28% of hospitalized children were under 1 year, 61% were 1 to 3 years and 11% were older than three years. H3N2 was found to be significantly higher in children older than 3 years when compared to the virus negative group and children infected with any other viruses (p = 0.028). On the other hand, 5 of 8 patients infected with H3N2 were aged between 1 to 3 years. Vandepitte et al reported that, older age, having an underlying co-morbidity and a history of being prematurity were risk factors for influenza infection in logistic regression analysis [17]. In another study, Dalziel et al showed that a history of chronic lung disease, history of cerebral palsy / developmental delay are significantly associated with severe infection in children with ILI [18]. Because of the low frequency of H3N2 positivity in our study, it was difficult to evaluate risk factors in this study group.

The overall detection of at least one respiratory virus was 59% in our study. In one of the most recent studies, Wang et al. found at least one respiratory virus as 14.5% in hospitalized children with respiratory infection [19]. On the other hand, in the study of Kamikawa which was conducted in Brazil, at least one respiratory viruses were detected in 74% in outpatient children with the symptoms of common cold [20]. In two different studies from our country, at least one respiratory virus was found to be in children with ARTIs and ILI were 37% and 52%, respectively [21,22]. We found differences in our study which may introduce some bias. Firstly, all the children in our study were hospitalized and this may be associated with severe symptoms, secondly the pharyngeal swabs were obtained during the two peak subsequent influenza season which may be associated with increased diagnostic rates and thirdly, we investigated a different variety of viruses to others.

RSV is one of the most common causes of acute respiratory infection in children under two years. In our study, RSV positivity was 35% in our hospitalized children with LRTI similar to other studies conducted in our country [23,24]. There were ten coinfections in our study and RSV was also the most common in coinfection. Studies showed different results about prognosis of coinfections, some of them reported that coinfections are associated with worse prognosis, however some of them found no significant difference between coinfections and infections with single virus [25,26]. In our study, there was no significant difference of prognosis between coinfections with RSV and single virus infections.

One of the limitation of this study is, we did not record the clinical findings of the patients group. Because of low frequency of H3N2 positivity and vaccination rates, we could not determine the efficacy of influenza vaccination.

Conclusion

We found low rates of Influenza A in hospitalized children with ILI and low rates of vaccination with Influenza in our region. Different types of viruses with a wide range can cause ILI and hospitalization in children. We show that RSV is still one of the most common virus attributable respiratory tract infections. Because of a lack of data showing the frequency of Influenza A in 2013-2014 and 2014-2015 season in our country, this study has importance because we showed H3N2 predominancy for those seasons.

Acknowledgements

All authors have participated in drafting of the manuscript and/or critical revision of the manuscript for important intellectual content. All authors read and approved the final manuscript.

References

1. World Health Organization (WHO)(2012)World Health Organization| Battle against Respiratory Viruses (BRaVe) initiative. Available: http://www.who.int/influenza/patient_care/clinical/brave/en/ Accessed 17 March 2016.

2. Tregoning JS, Schwarz J (2010) Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev 23:74–98.

3. Poehling KA, Edwards KM, Weinberg GA, Szilagyi P, Saut MA, Iwane MK, Bridges CB, Grijalva CG, Zhu Y, Bernstein DI, Herrera G, Erdman D, Hall CB, Seither R, Griffin MR; New Vaccine Surveillance Network (2006) The underrecognized burden of influenza in young children. N Engl J Med 355:31.

4. Van Kerkhove MD, Vandemaele KA, Shinde V, Jaramillo-Gutierrez G, Koukounari A, Donnelly CA (2011) Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis. PLoS Med 8:1001053.

5. Nair H, Brooks WA, Katz M, Roca A, Berkley JA, Madhi SA, Simmerman JM, Gordon A, Sato M, Howie S, Krishnan A, Ope M, Lindblade KA, Carosone G, Di, Herrera G, Kamimoto L, Dumez E, Bhat N, Vong S, Theodoratou E, Chittaganpitch M, Chimah O, Balmaseda A, Buchy P, Harris E, Evans V, Katayose M, Gaur B, O'Callaghan-Gordo C, Goswami D, Arvelo W, Venter M, Briese T, Tokarz R, Widdowson MA, Mounts AW, Breiman RF, Feikin DR, Klugman KP, Olsen SJ, Gessner BD, Wright PF, Rudan I, Broor S, Simões EA, Campbell H (2011) Global burden of respiratory infections due to seasonal influenza in young
children: a systematic review and meta-analysis. Lancet 378:1917–1930.
6. Centers for Disease Control and Prevention (CDC) (2013) Prevention and control of seasonal influenza with vaccines. Recommendations of the Advisory Committee on Immunization Practices—United States, 2013-2014. MMWR Recomm Rep 62:1.
7. World Health Organization (WHO) (2013) (Seasonal) Fact Sheet N°211 on Influenza. Available: http://www.who.int/mediacentre/factsheets/fs211/en/. Accessed 15 December 2014.
8. Centers for Disease Control and Prevention’s (2013) Influenza activity—United States, 2012–13 season and composition of the 2013–14 influenza vaccine MMWR Morb Mortal Wkly Rep 62:473–9. Available: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6223a5.h tm. Accessed 15 December 2015
9. European Commission. Commission Implementing Decision of 8 August 2012 amending Decision 2002/253/EC laying down case definitions for reporting communicable diseases to the Community network under Decision No 2119/98/EC of the European Parliament and of the Council (notified under document C (2012) 5538). Official Journal of the European Union. Luxembourg: Publications Office of the European Union. 27.9.2012:L 262/16.
10. Puig-Barbera J, Tormos A, Sominina A, Burtscheva E, Launay O, Ciblak MA, Natividad-Sanco A, Buigues-Vila A, Martinez-Ubeda S, Mahe C, GIHSN Group (2014) First-year results of the Global Influenza Hospital Surveillance Network: 2012-2013 Northern hemisphere influenza season. BMC Public Health;14:564.
11. Puig-Barbera J, Natividad-Sanco A, Launay O, Burtscheva E, Ciblak MA, Tormos A, Buigues-Vila A, Martinez-Ubeda S, Sominina A, GIHSN Group (2014) 2012-2013 Seasonal influenza vaccine effectiveness against influenza hospitalizations: Results from the Global Influenza Hospital Surveillance Network. PLoS ONE 9:e100497.
12. Puig-Barbera J, Tormos A, Trushakova S, Sominina A, Pisareva M, Ciblak MA, Badur S, Yu H, Cowling BJ, Burtscheva E; GIHSN Group (2015) The Global Influenza Hospital Surveillance Network (GIHSN): A new platform to describe the epidemiology of severe influenza. Influenza Other Respir Viruses 9:277–286.
13. Puig-Barberà J, Natividad-Sanco A, Trushakova S, Sominina A, Pisareva M, Ciblak MA, Badur S, Yu H, Cowling BJ, El Guerche-Sèblain C, Mira-Iglesias A, Kisteneva L, Stolyarov K, Yurtcu K, Feng L, López-Labrador X, Burtscheva E; Global Influenza Hospital Surveillance Study Group (GIHSSN) (2016) Epidemiology of hospital admissions with influenza during the 2013/2014 Northern Hemisphere influenza season: Results from the Global Influenza Hospital Surveillance Network. PLoS One 11:e0154970.
14. Michaels MG, Serdy C, Barbadora K, Green M, Apalsch A, Wald ER (1992) Respiratory syncytial virus: a comparison of diagnostic modalities. Pediatr Infect Dis J 11:613-616.
15. World Health Organization (2009) CDC protocol of real time RTPCR for swine influenza A(H1N1) Available: http:// www.who.int/crs/resources/publications/swineflu/CDCrea tiveRTPCR protocol_20090428.pdf Accessed 23 June 2014.
16. Meral AC, Melis KT, Serkan A, Merve T, Nurcihan F, Selim B (2012) Influenza surveillance in nine consecutive seasons, 2003-2012: Results from national influenza reference laboratory, Istanbul faculty of medicine, Turkey. Mikrobiyol Bul 46:575-593.
17. Vandeputte WP, Netsawang S, Suntarattiwong P, Srisarang S, Chittagarnpitich M, Chotipayyasunondh T (2014) Risk factors and outcomes of influenza infection among children presenting with influenza-like illness. J Med Assoc Thai 97:40-46.
18. Dalziel SR, Thompson JM, Macias CG, Fernandes RM, Johnson DW, Waisman Y Cheng N, Acworth J, Chamberlain JM, Osmond MH, Plint A, Valerio P, Black J, Fitzgerald E, Newton AS, Kuppermann N, Klassen TP(2013)Predictors of severe H1N1 infection in children presenting within Pediatric Emergency Research Networks (PERN): retrospective case-control study. BMJ 347:4836.
19. Wang H, Zheng Y, Deng J, Wang W, Liu P, Yang F, Jiang H (2016) Prevalence of respiratory viruses among children hospitalized from respiratory infections in Shenzhen, China. Virol J 13:39.
20. Kamikawa J, Granato CF, Bellei N (2015) Viral aetiology of common colds of outpatient children at primary care level and the use of antibiotics. Mem Inst Oswaldo Cruz 110:884-889.
21. Hatipoğlu N, Somer A, Badur S, Ünlüvar E, Açıkgöz-Ciblak M, Yekeler E, Salman N, Keser M, Hatipoğlu H, Siraneci R (2011) Viral etiology in hospitalized children with acute lower respiratory tract infection. Turk J Pediatr 53:508-516.
22. Karadag-Oncel E, Ciblak MA, Özsurekci Y, Badur S, Ceyhan M (2014) Viral etiology of influenza-like illnesses during the influenza season between December 2011 and April 2012. J Med Virol 86:865-871.
23. Haçmustrafaoğlu M, Çelebi S, Bodzemir SE, Özgür T, Özcan I, Güray A, Çakır D (2013) RSV frequency in children below 2 years hospitalized for lower respiratory tract infections. The Turkish Journal of Pediatrics 55:130-139.
24. Hatipoğlu S, Arica S, Çelik Y, Öztora S, Şevketoğlu E, Erkum T (2009) The Frequency and clinical features of RSV infection among babies hospitalized with the diagnosis of lower respiratory tract infection. Düzce Tip Dergisi 11:38-44. (Article in Turkish).
25. Semple MG, Cowel A, Dove W, Greensill J, McNamara PS, Halfhide C, Shears P, Smyth RL, Hart CA (2005) Dual infection of infants by human metapneumovirus and human respiratory syncytial virus is strongly associated with severe bronchiolitis. J Infect Dis 191:382–386.
26. Nascimento MS, Souza AV, Perreira AV, Rodrigues JC, Abramovici S, Silva Filho LV (2010) High rate of viral coinfections in infants with acute bronchiolitis. Clinics (Sao Paulo) 65:1133–1137.

Corresponding author
Saniye Girit
Lütfi Kirdar Kartal Education and Research Hospital
Department of Pediatrics, Division of Pediatric Pulmonology
Şemsi Denizer Cad. E-5 Karayolu Cevizli Mekvii
34890 Kartal-Istanbul, Türkiye
Phone: +90 216 458 30 00
Fax: +90 216 441 39 00
e-mail: saniyegirit@gmail.com

Conflict of interests: No conflict of interests is declared.