Experimental evidence of low-density liquid water upon rapid decompression

Chuanlong Lin, Jesse S. Smith, Stanislav V. Sinogeikin, and Guoyin Shen

*High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL 60439

Edited by Pablo G. Debenedetti, Princeton University, Princeton, NJ, and approved January 19, 2018 (received for review September 15, 2017)

Water is an extraordinary liquid, having a number of anomalous properties which become strongly enhanced in the supercooled region. Due to rapid crystallization of supercooled water, there exists a region that has been experimentally inaccessible for studying deeply supercooled bulk water. Using a rapid decompression technique integrated with in situ X-ray diffraction, we show that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140–165 K. The LDN subsequently crystallizes into ice-I₆ through a diffusion-controlled process. Together with the change in crystallization rate with temperature, the experimental evidence indicates that the LDN is a low-density liquid (LLD). The measured X-ray diffraction data show that the LDL is tetrahedrally coordinated with the tetrahedral network fully developed and clearly linked to low-density amorphous ices. On the other hand, there is a distinct difference in structure between the LDL and supercooled water or liquid water in terms of the tetrahedral order parameter.

Significance

To understand water's anomalous behavior, a two-liquid model with a high-density liquid and a low-density liquid (LDL) has been proposed from theoretical simulations, and is gradually gaining ground. However, it has been experimentally challenging to probe the region of the phase diagram of H₂O where the LDL phase is expected to occur. We overcome the experimental challenge by using a technique of rapid decompression integrated with fast synchrotron measurements, and show that the region of LDL is accessible via decompression of a high-pressure crystal. We report the experimental evidence of the LDL from in situ X-ray diffraction and its crystallization process, providing a kinetic pathway for the appearance of LDL as an intermediate phase in the crystal–crystal transformation upon decompression.
Together with the change in crystallization rate with temperature, these results indicate that the LDN is an LDL. The tetrahedral network of the LDL is found to be fully developed and linked to the LDA ices. On the other hand, the structure of the LDL is distinctly different from those of supercooled water above T_H.

Results

Fig. 1A shows that ice-VIII transforms to ice-VI at \sim1.4 GPa under slow decompression (<0.01 GPa/s) at 160 K, followed by a VI-to-II transition at \sim0.6 GPa and eventually a II-to-I$_c$ transition upon complete release of pressure. This is consistent with the observation in a previous study under slow decompression (52). When ice-VIII is subjected to a rapid decompression (\sim48 GPa/s) at 160 K (Fig. 1B), ice-VIII is found to transform to a noncrystalline phase with two characteristic diffraction halo peaks at \sim1.7 and \sim3.0 Å$^{-1}$. The noncrystalline phase persists for about 0.4 s and then crystallizes into ice-I$_c$ (Fig. 1B). This indicates that there is an intermediate phase in the transformation from ice-VIII to ice-I$_c$ at an isothermal condition under decompression. It is interesting to note that upon heating at ambient pressure the ice-VIII-to-I$_c$ transformation displayed a similar multistep process via LDA and glass transition (53).

The transformation from ice-VIII to a noncrystalline phase under rapid decompression is also observed at 140, 145, 150, 155, and 165 K (SI Appendix, Figs. S2–S6), all above T_g of 136 K (28, 54). At these temperatures under moderate decompression, however, ice-VIII transforms to ice-II or -IX (SI Appendix, Fig. S7) (52). Fig. 1C summarizes the experimental conditions where the noncrystalline phase is observed by using different decompression rates at different temperatures. It appears that there exists a threshold decompression rate required for the appearance of the noncrystalline phase at a given temperature (T). At 140–155 K, the required rate gradually increases as temperature increases. At $T > 155$ K, the decompression rate required for producing the noncrystalline phase increases rapidly with increasing T. Meanwhile, the crystallization time of noncrystalline-to-I$_c$ changes by six orders of magnitude, varying from about half an hour ($\sim 1.8 \times 10^3$ s) at 140 K to about 8 ms ($\sim 8 \times 10^{-3}$ s) at 165 K. Above 165 K, even though our decompression device can reach the required decompression rate, the detection of the noncrystalline phase becomes limited by the experimental conditions.

![Fig. 1](https://www.pnas.org/doi/10.1073/pnas.1716310115)
current time resolution (at a few milliseconds) in our X-ray diffraction measurements. At the highest temperature of 175 K in this study, ice-VIII is found to transform to ice-VI at a decompression rate of \(\sim 48 \) GPa/s, followed by the transformation to ice-II and I\(_c\) (SI Appendix, Fig. S8). Fig. 1 D shows the integrated diffraction patterns with background subtracted (Materials and Methods and SI Appendix, Fig. S9), compared with those of LDA and HDA. The LDA sample at 125 K was obtained by first forming HDA under high pressure (\(\sim 2 \) GPa) and then decompressing the HDA at 125 K via an HDA–LDA transformation. The LDA sample at 103 K was obtained by cooling the LDA sample from 125 to 103 K. The HDA sample at 96 K was obtained by first compressing ice-I\(_h\) at 96 K to \(\sim 2 \) GPa and then decompressing the formed HDA to vacuum pressure (52). It can be clearly seen that the diffraction patterns of the noncrystalline phase are similar to those of LDA, indicating that it is an LDN phase transformed from ice-VIII under rapid decompression.

Fig. 2 shows the fractions of ice-I\(_c\) transformed from the LDN plotted against time (\(t \)) between 140 and 165 K and at \(\sim 3–5 \) mtorr. The fractions are calculated using the diffraction intensities of ice-I\(_c\) (Materials and Methods and SI Appendix, Fig. S10). At a given \(T \), the fraction gives a typical sigmoidal curve as a function of time. The sigmoidal patterns can be well-fitted using the Avrami equation (55–57):

\[
\text{fraction} = 1 - \exp\left(-\left(\frac{t}{\tau}\right)^n\right),
\]

where \(\tau \) is the characteristic time of the crystallization and \(n \) is the dimensionality of the crystal growth, also referred to as the Avrami index. The index \(n \) generally reflects the growth mechanism, with integer \(n \) corresponding to interface-controlled growth and half-integer \(n \) (1/2, 3/2, 5/2, ...) corresponding to diffusion-controlled growth (55, 57, 58). As shown in Fig. 2, the fittings yield \(n \) values close to half-integer of the Avrami index, indicating that the growth of ice-I\(_c\) transformed from the LDN is via a diffusion-controlled mechanism. Given that the temperature range of the observed LDN is above \(T_g \) of 136 K (31, 54, 59, 60), the crystallization mechanism suggests that the LDN is of liquid-like nature. It should be noted that \(n \) values are close to 1.5 at \(T > 140 \) K, corresponding to diffusion-controlled growth of spherical nuclei in the case of rapid nucleation rate and depletion (61, 62). At 140 K, \(n \) is close to 2.5, which may be due to a relatively long nucleation duration (62, 63).

The temperature dependence of the crystallization rate (rate constant: \(\sim 1/\tau \)) provides further evidence that the LDN is an LDL. According to classical nucleation and growth theory, the growth rate (\(v \)) in a diffusion-controlled process is determined by the diffusion coefficient (\(D \)) with a relationship (55):

\[
v \sim \sqrt{D/\tau}.
\]

The Arrhenius behavior of the diffusion coefficient can be indicated by the temperature dependence of the characteristic time (55). Fig. 3 shows the logarithm of the characteristic time as a function of temperature. It is clear that in the covered range of 140–165 K the crystallization displays non-Arrhenius behavior with at least two distinct regions. Below \(\sim 155 \) K, \(\log(\tau) \) has a linear relationship with inverse temperature, which is consistent with the results of previous studies using Fourier transform

\[
\tau = A e^{E/RT} + B e^{E/RT}
\]

where \(A, B, E, R \) are constants, and the activation energy is determined to be 10.3 K at 150 K. The Arrhenius behavior of the diffusion coefficient can be indicated by the Arrhenius equation (55, 57, 58). As shown in Fig. 3, the fittings yield \(\tau \) values close to half-integer of the Avrami index, indicating that the crystallization mechanism suggests that the LDN is of liquid-like nature. It should be noted that \(n \) values are close to 1.5 at \(T > 140 \) K, corresponding to diffusion-controlled growth of spherical nuclei in the case of rapid nucleation rate and depletion (61, 62). At 140 K, \(n \) is close to 2.5, which may be due to a relatively long nucleation duration (62, 63).
infrared spectroscopy (62, 64). Such Arrhenius behavior implies that it could be a strong liquid at \(T \) between \(T_0 \) and 155 K (22, 40, 42, 65–70). Fitting \(\tau^{-1} T \) data according to the Arrhenius equation

\[
\tau = \tau_0 \exp(Q/RT)
\]

where \(Q \) is the activation energy and \(R \) is the gas constant, yields an activation energy of

\[33(7) \text{ kJ/mol with } \tau_0 = 4.4 \times 10^{-19} \text{s.}\]

The activation energy is close to that of 34 kJ/mol at

\[94. \text{ s.}\]

\(T \) above 155 K is a fragile or strong liquid (22, 40, 41, 65, 68). We tentatively fit the data according to the Arrhenius equation, yielding \(Q \) of 167(48) kJ/mol and \(\tau_0 \) of 3.6 \(\times \) \(10^{-62} \) s. We note a recent report on the isothermal growth rate that exhibits a slope change in Arrhenius behavior with activation energies of

\[47 \text{ kJ/mol and } \sim 76 \text{ kJ/mol at } T \text{ below 151 K and at } T \text{ of } 180–235 \text{ K, respectively (50).}\]

These values qualitatively agree with the activation energies in this study below and above the kink temperature, but slightly differ in values. This may be partly explained by the fact that the nucleation rate and the growth rate have not been independently determined in the present work and the crystallization rate cannot be directly compared with the growth rate (50).

Two possible mechanisms are considered to elucidate the kink at around 155 K. (i) The kink could be a reflection of the decoupling of self-diffusion from structural relaxation (71). According to the mode-coupling theory (MCT), there exists a critical temperature \(T_c \) for supercooled liquids, with diffusion mechanism changing from liquid-like motion to solid-like hopping (72–74). \(T_c \) in MCT is generally different from, and higher than, the caloric temperature \(T_c \) with \(T_c \) close to 1.2\(T_c \) for many fragile liquids (72, 75–78). From Fig. 3, the small activation energy below the kink temperature (155 K) could be related to the decoupling of translational diffusion from structural relaxation, whereas the large activation energy above 155 K reflects the effect of structural relaxation and represents the intrinsic property of a supercooled liquid state (72, 76, 79, 80).

Similar kinks in the temperature-dependent diffusion coefficient have been observed in metallic glasses near the glass-transition temperatures (81–85). (ii) The kink at \(\sim 155 \text{ K} \) might be a signature of a fragile–strong dynamic cross-over (22, 40, 66–68). It should be noted that, due to the limited data points above 155 K, a fitting of the data to a Vogel–Fulcher–Tamman law remains ambiguous. It is thus inconclusive from our data alone to support a fragile–strong cross-over. It has been reported that there is a fragile–strong cross-over at \(\sim 220 \text{ K} \) from studies of confining water in nanopores (22, 40, 67, 70). Our kink temperature is \(\sim 65^\circ \) below the reported values. However, this discrepancy in temperature might be related to interaction of water molecules with the confining surfaces in these experiments (42). Regardless of which one of the above two mechanisms is responsible for the kink, the change in crystallization rate with temperature (Fig. 3) strongly supports the notion that the observed LDN is an LDL. Therefore, we indicate several regions in Fig. 3, with LDA ices lying below \(T_c \), a viscous LDL at 136–155 K, and an LDL at 156–165 K.

Discussion

The appearance of an LDL under rapid decompression is consistent with a recently proposed two-step phase-transition mechanism (86–88). In a solid–solid phase transition, a metastable liquid may appear first as an intermediate state before subsequently transforming to the stable product phase. The occurrence of an intermediate liquid is attributed to a much smaller interfacial energy barrier at the solid/liquid interface than that at the solid/solid interface (86). Such intermediate metastable liquid in solid–solid transitions has been experimentally observed in colloidal systems (86), metallic alloys (89), and an elemental metal (90). In our case for ice, such intermediate phase is LDL, forming from the parent solid phase (ice-VIII) under rapid release of pressure, followed by the crystallization of the product solid (ice-I).

How is the LDL structurally related to amorphous ices and supercooled water above \(T_m \)? From X-ray scattering data (Fig. 1D), we plot the position of the first peak (\(Q_1 \)) and the peak separation between the first and the second peaks (\(\Delta Q = Q_2 – Q_1 \)) (Fig. 4), together with those data for LDA, supercooled water, and Liquid water up to 360 K (29, 91). We can see that the structure of LDL reflected by \(Q_1 \) and \(\Delta Q \) is similar to that of LDA (92–94), but is distinctly different from those of supercooled water and liquid water. As temperature gets down into the deeply supercooled region, both \(Q_1 \) and \(\Delta Q \) for supercooled water display strong temperature dependences and change continuously, approaching values corresponding to tetrahedral structures (29, 95). In contrast, only weak temperature dependences of \(Q_1 \) and \(\Delta Q \) are shown for LDL. Because \(\Delta Q \) is associated with the degree of tetrahedral configurations favored by water’s directional hydrogen bonds (29), the trend in Fig. 4 suggests that the local tetrahedrally coordinated network is fully developed in LDL.

The relationship of LDA, LDL, and supercooled liquid can be used to explain water’s anomalous properties. At high temperatures above \(\sim 319 \text{ K} (46^\circ \text{C}) \), water exhibits normal liquid behavior (dominated by HDL), in that both heat capacity and compressibility increase as it is heated (7). As water is cooled from 319 K down to supercooled temperatures, the structural fluctuations between LDL and HDL may cause the anomalous properties of water (4, 7, 8, 14). The anomalous region with structural fluctuations may extend down to around the Widom line. At temperatures far below the Widom line, water may exhibit normal liquid again dominated by the fully developed tetrahedrally structured LDL observed in this study.

Materials and Methods

Sample Preparation. Symmetric diamond-anvil cells (DACs) with 400–500-μm anvil culets were used for high-pressure experiments in a cryostat. Rhenium gaskets with an initial thickness of 250 μm were preindented to a thickness...
of ~100 μm. Sample holes with a diameter of ~200 μm were drilled by laser at the center of the indented area (98). Distilled deionized water was used and loaded into the sample chamber with a mass of ~1.7 μg, together with two or three ruby spheres located near the center and near the edge of the sample chambers (SI Appendix, Fig. 59). The pressures before and after rapid pressure ramps were determined by the ruby fluorescence method with temperature corrections (97, 98).

Low-Temperature and Pressure Controls. Loaded DACs were placed in a liquid nitrogen cryostat (99). Two silicon diode sensors were used to monitor the temperatures with one attached to the DAC holder and the other attached to the gasket close to the sample position. The sample temperature was monitored by the thermal sensor attached to the gasket. Before cooling, the pressure of the cryostat assembly was vacuum-pumped to 3 mtorr. The entire DAC assembly was then cooled using liquid nitrogen. A heater mounted on the holder allows the controls of DAC temperature precisely. The sample temperature was stable within ±2 K during the experiments. Double-sided gas membranes were used to control compression and decompression pathways (99). After rapid pressure release, the sample remained under the vacuum environment inside a cryostat assembly. Therefore, the pressure condition in our isothermal measurements was at 3–5 mtorr, rather than ambient pressure of 10^5 Pa. During the decompression processes, the sample positions were monitored by X-ray radiography and an online optical system. We found that the sample position may change slightly (<5 μm) during decompression, which is negligible compared with the sample chamber diameter of 150 μm. Furthermore, the measurements of the crystallization were taken after complete release of pressure, with the sample position well maintaining its position.

In Situ X-Ray Diffraction. Angle-dispersive X-ray diffraction experiments were performed at beamline 16-ID-B, HPCAT (51) at the Advanced Photon Source, Argonne National Laboratory. X-ray beam with a wavelength of 0.61992 Å was focused into a 5×6-μm^2 (full width at half maximum) spot on the sample. Two-dimensional diffraction images were collected continuously throughout the decompression process with a PILATUS 1M-F detector. The typical exposure time was from 5 to 7 ms, depending on decomposition rate and temperature. Diffraction data were analyzed and integrated using the software Diotaps (100). In the background subtraction, we used a diffraction image of crystalline ice-VIII as background to obtain a clear diffraction pattern of the low-density noncrystalline phase and ice-Ic (52).

Calculation of the Fraction of Ice-Ic. At a given temperature, the crystallization process was monitored by time-resolved in situ X-ray diffraction. We found that the growing ice-Ic is fine-powdered relative to the X-ray beam size in this study, producing continuous diffraction rings (SI Appendix, Fig. 59). Therefore, the relative intensities of the diffraction peaks of ice-Ic are a good measure of the fraction of ice-Ic, and may be used to quantify the crystallization process as a function of time (SI Appendix, Fig. S10). Using the diffraction intensity of Ic after the crystallization is complete as a reference, the fraction of Ic during the crystallization was determined by the normalized intensities relative to the reference.

ACKNOWLEDGMENTS. We thank Curtis Kenney-Benson, Eric Rod, and Richard Ferry for technical support, and Russell Hemley for useful discussions. This research was supported by the Department of Energy (DOE), Office of Basic Energy Science, Division of Materials Sciences and Engineering under Award DE-FG02-99ER45775. High Pressure Collaborative Access Team operations are supported by DOE, National Nuclear Security Administration under Award DE-NA0001974. The Advanced Photon Source is a User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357.
47. Mishima O, Suzuki Y (2002) Propagation of the polyamorphic transition of ice and the liquid-liquid critical point. Nature 419:599–603.
48. Mishima O, Calvert LD, Whalley E (1984) Melting ice-I at 77 K and 10-kbar—A new method of making amorphous solids. Nature 310:393–395.
49. Mishima O, Calvert LD, Whalley E (1985) An apparently 1st-order transition between 2 amorphous phases of ice induced by pressure. Nature 314:76–78.
50. Xu Y, Petrik NG, Smith RS, Kay BD, Kimmel GA (2016) Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K. Proc Natl Acad Sci USA 113:14921–14925.
51. Smith JS, et al. (2015) Developments in time-resolved high pressure x-ray diffraction using rapid compression and decompression. Rev Sci Instrum 86:072208.
52. Lin C, et al. (2017) Kinetically controlled two-step amorphization and amorphous-amorphous phase transition in ice. Phys Rev Lett 119:135701.
53. Handa YP, Klug DD (1988) Heat-capacity and glass-transition behavior of amorphous water. J Phys Chem 92:3323–3325.
54. Kawasaki K (2002) The Theory of Transformation in Metals and Alloys (Pergamon, Oxford).
55. Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 7:1103–1112.
56. Avrami M (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224.
57. Liu F, Sommer F, Bos C, Mittemeijer EJ (2007) Analysis of solid state phase transformation kinetics: Models and recipes. Int Mater Rev 52:193–212.
58. Ballbracker A, Mayer E, Johari GP (1999) Glass-liquid transition and the enthalpy of devitrification of annealed vapor-deposited amorphous solid water—A comparison with hyperquenched glassy water. J Phys Chem 93:4986–4990.
59. Angell CA (2007) Glass transition dynamics in water and other tetrahedral liquids: 'Order-disorder' transitions versus 'normal' glass transitions. J Phys Condens Matter 19:205112.
60. Rao CNR, Rao KJ (1978) Various kinds of phase transitions. Phase Transitions in Solids (McGraw-Hill, New York), pp 81–155.
61. Hage W, Ballbracker A, Mayer E, Johari GP (1994) Crystallization kinetics of water below 150 K. J Chem Phys 100:2743–2747.
62. Doremus RH (1985) Diffusion and phase change. Rates of Phase Transformations (Academic, New York), pp 4–31.
63. Hage W, Ballbracker A, Mayer E, Johari GP (1995) Kinetics of crystallizing D2O-water near 50 K by Fourier-transform infrared spectroscopy and a comparison with the corresponding calorimetric studies on H2O water. J Chem Phys 103:545–550.
64. Angell CA (1991) Relaxation in liquids, polymers and plastic crystals—Strong fragile patterns and problems. J Non-Cryst Solids 131:13–31.
65. Ito K, Moynihan CT, Angell CA (1999) Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398:492–495.
66. Bergman R, Svenson J (2000) Dynamics of supercooled water in confined geometry. Nature 403:283–286.
67. Xu LM, et al. (2009) Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset. Nat Phys 5:565–569.
68. Mallamace F, et al. (2010) Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proc Natl Acad Sci USA 107:22457–22462.
69. Liu L, Chen SH, Faraone A, Yen CW, Mou CY (2005) Possibility of achieving the so-called kauczuk paradox in supercooled liquids. Phys Rev Lett 95:117802.
70. Tanaka H (2003) Possible resolution of the Kauzmann paradox in supercooled liquids. Phys Rev E Stat Nonlin Soft Matter Phys 68:011505.
71. Chong SH (2008) Connections of activated hopping processes with the breakdown of the Stokes-Einstein relation and with aspects of dynamical heterogeneities. Phys Rev E Stat Nonlin Soft Matter Phys 78:041501.
72. Kawasaki K (1994) Stochastic-model of slow dynamics in supercooled liquids and dense colloidal suspensions. Phys A 208:35–64.
73. Bhattacharyya SM, Bagchi B, Wolyens PG (2005) Bridging the gap between the mode coupling and the random first order transition theories of structural relaxation in liquids. Phys Rev E Stat Nonlin Soft Matter Phys 72:031509.
74. Chang J, Sillersu H (1997) Heterogeneity at the glass transition: Translational and rotational self-diffusion. J Phys Chem B 101:8794–8801.
75. Swallen SF, Bonvallet PA, McMahon RJ, Ediger MD (2003) Self-diffusion of tris-naphthylbenzene near the glass transition temperature. Phys Rev Lett 90:015501.
76. Maples MK, Swallen SF, Kears KI, Ediger MD (2006) Isothermal desorption measurements of self-diffusion in supercooled o-terphenyl. J Chem Phys 124:054710.
77. Maples MK, Swallen SF, Ediger MD (2006) Self-diffusion of supercooled o-terphenyl near the glass transition temperature. J Chem Phys B 110:507–511.
78. Chathoth SM, Damaschke B, Kosz MM, Samwer K (2008) Dynamic singularity in multicomponent glass-forming metallic liquids. Phys Rev Lett 101:037801.
79. Zöllmer V, Rätzke K, Faupel F, Meyer A (2003) Diffusion in a metallic melt at the critical temperature of mode coupling theory. Phys Rev Lett 90:195502.
80. Tang XP, Geyer U, Busch R, Johnson WL, Wu Y (1999) Diffusion mechanisms in metallic supercooled liquids and glasses. Nature 402:160–162.
81. Kerner K, Macht MP, Freitag K, Mehler H (1999) Self-diffusion in the amorphous and supercooled liquid state of the bulk metallic glass Zr41.2Ti13.8Cu12.5Ni10Be22.5. J Non-Cryst Solids 250:669–673.
82. Fiehler P, Macht MP, Naundorf V, Frohberg G (1999) Diffusion in ZrTiCuNb bulk glasses at temperatures around the glass transition. J Non-Cryst Solids 250:674–678.
83. Geyer U, et al. (1995) Atomic diffusion in the supercooled liquid and glassy states of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Phys Rev Lett 75:2364–2367.
84. Geyer U, et al. (1996) Small atom diffusion and breakdown of the Stokes-Einstein relation in the supercooled liquid state of the Zr46.7Ti13.8Cu12.5Ni10Be22.5 alloy. Appl Phys Lett 69:2492–2494.
85. Peng Y, et al. (2015) Two-step nucleation mechanism in solid-solid phase transitions. Nat Mater 14:101–108.
86. Levitas VI, Henson BF, Smilowitz LB, Asay BW (2004) Solid-state phase transition via virtual melting significantly below the melting temperature. Phys Rev Lett 92:235702.
87. Sanz E, Valeriani C (2015) Crystal-crystal transitions: Mediated by a liquid. Nat Mater 14:15–16.
88. Pogatscher S, Leutenegger D, Schawe JKE, Uggowitzer PJ, Löffler JF (2016) Solid-state phase transitions via melting in metal melts. Nat Commun 7:11112.
89. Lin C, et al. (2017) A metastable liquid melted from a crystalline solid under decompression. Nat Commun 8:14260.
90. Skinner LB, Benmore CJ, Neufeld JC, Parise JB (2014) The structure of water around the compressibility minimum. J Phys Chem A 118:24507.
91. Winkel K, et al. (2008) Structural transitions in amorphous H2O and D2O: The effect of temperature. J Phys Condens Matter 20:494212.
92. Seidl M, Amann-Winkel K, Handle PH, Zifferer G, Loerting T (2013) From parallel to single crystallization kinetics in high-density amorphous ice. Phys Rev B 88:174105.
93. Shephard JJ, Klotz S, Vickers M, Salzmann CG (2016) A new structural relaxation pathway of low-density amorphous ice. J Chem Phys 144:204502.
94. Errington JR, Debenedetti PG (2001) Relationship between structural order and the anomalies of liquid water. Nature 409:318–321.
95. Hrubčík R, Sinogeikin S, Rod E, Shen G (2015) The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team. Rev Sci Instrum 86:072202.
96. Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800-kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676.
97. Yen J, Nicol M (1992) Temperature-dependence of the ruby luminescence method for measuring high pressures. J Appl Phys 72:5355–5358.
98. Sinogeikin SV, et al. (2015) Online remote control systems for static and dynamic compression and decompression using diamond anvil cells. Rev Sci Instrum 86:072209.
99. Prescher C, Prakapenka VB (2015) DIOPtAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res 35:223–230.