Electromagnetic Source Localization with Finite Set of Frequency Measurements

Abdul Wahab∗† Amer Rasheed† Rab Nawaz† Saman Anjum†‡

March 21, 2014

Abstract

A phase conjugation algorithm for localizing an extended radiating electromagnetic source from boundary measurements of tangential components of the electric field is presented. Measurements are taken over a finite number of frequencies. The artifacts related to the finite frequency data are tackled with l_1-regularization blended with the fast iterative shrinkage-thresholding algorithm with backtracking of Beck & Teboulle.

AMS subject classifications. 35L05, 35R30; Secondary 47A52, 65J20

Keywords. Phase conjugation; Electromagnetic waves; Inverse source problem; l_1-regularization

1 Introduction

Inverse source problems have been the subject of numerous studies over the recent past due to a plethora of applications in science and engineering, specially in biomedical imaging, non-destructive testing and geophysics; see, for instance, [1]-[10] and references therein. Several frameworks to recover spatial support of the stationary acoustic, elastic and electromagnetic sources in time and frequency domain have been developed [3, 4, 8, 11], including time reversal and phase conjugation algorithms [1, 2, 5, 12, 13, 14, 15].

This work aims to evince a radiating source for the Maxwell’s equations using boundary measurements over a finite set of frequencies using a phase conjugation sensitivity framework blended with fast iterative shrinkage-thresholding algorithm with backtracking of Beck and Teboulle for l_1-regularization; refer to [16, 4]. Phase conjugation and time reversal techniques have observed a significant success in the resolution of inverse problems, [17, 18], wherein the recorded wave is phase conjugated or time reversed and re-emitted into the medium [15, 12]. The re-emitted wave retraces its path backwards in chronology, due to the self-adjointness and reciprocity of the wave operator in lossless media, converging to the source location.

The inverse source problems are ill-posed having non-uniqueness issues generally due to the presence of non-radiating sources [19, 10, 8]. The stability and localization of electromagnetic radiating sources with single, multiple and entire frequency or time data have

∗Correspondence to: A. Wahab, E-Mail: wahab@ciitwah.edu.pk
†Department of Mathematics, COMSATS Institute of Information Technology, 47040, Wah Cantt., Pakistan. (wahab@ciitwah.edu.pk, amerasheed@ciitwah.edu.pk, rabnawaz@ciitwah.edu.pk)
‡Bahria Foundation College, E-115, Gulshan-e-Iqbal, Ab-ul-Hassan Isphani Road, Karachi(shum.88@yahoo.com).
been extensively studied in, for instance, [10, 13, 20, 21, 22]. The well-posedness of problem undertaken in this study, that is, the source problem for Maxwell’s equation with a finite set of frequency surface measurements is established in particular in [8].

The investigation is sorted in the following order. The inverse problem is presented and a few key identities are collected in Section 2. In Section 3 an electromagnetic source is retrieved using entire frequency measurements with a phase conjugation functional. The functional is further adopted to locate a source using finite set of frequencies in Section 4. An initial guess is retrieved and then optimized using l_1–regularization. The principle contributions of the investigation are summarized in Section 5.

2 Problem Formulation

Let $\Omega \subset \mathbb{R}^d, d = 2, 3$, be an open bounded domain with a Lipschitz boundary Γ. Consider

\[
\begin{cases}
\nabla \times \mathbf{E} - i\omega \mu_0 \mathbf{H} = 0, & x \in \mathbb{R}^d, \\
\nabla \times \mathbf{H} + i\omega \epsilon_0 \mathbf{E} = \mathbf{J}(x), & x \in \mathbb{R}^d,
\end{cases}
\]

subject to the Silver-Müller radiation conditions

\[
\lim_{|x| \to \infty} |x|^\frac{d-1}{2} \left(\sqrt{\mu_0} \mathbf{H} \times \hat{x} - \sqrt{\epsilon_0} \mathbf{E} \right) = 0, \quad \text{where } \hat{x} := \frac{x}{|x|},
\]

with frequency pulsation ω, electric permittivity $\epsilon_0 > 0$ and magnetic permeability $\mu_0 > 0$, where \mathbf{E} and \mathbf{H} are the time-harmonic electric and magnetic fields respectively. Here $\mathbf{J}(x) \in \mathbb{R}^d$ is the current source density, assumed to be sufficiently smooth and compactly supported in Ω, that is, $\text{supp}\{\mathbf{J}\} \subset \subset \Omega$.

Let ν be the outward unit normal to Γ. Define the admissible set of frequencies and the boundary data consisting of tangential component of the electric field respectively by

\[
\mathcal{W} := (\omega_n)_{n=1}^N \quad \text{and} \quad \mathbf{d}(x, \omega) = \nu \times \mathbf{E}(x, \omega), \quad \forall (x, \omega) \in \Gamma \times \mathbb{R}.
\]

Then, the ultimate goal of this work is to tackle the following problem:

Statement of Problem. Given $\mathbf{d}_\mathcal{W} := \mathbf{d}|_{\Gamma \times \mathcal{W}}$ for N sufficiently large, identify the support, $\text{supp}\{\mathbf{J}\}$, of current source density \mathbf{J}.

2.1 Preliminaries

In the sequel, we refer to $\kappa_0 := \omega \sqrt{\epsilon_0 \mu_0} = \omega/c_0$ as the wave number with $c_0 := 1/\sqrt{\epsilon_0 \mu_0}$ being the wave speed in dielectrics. By virtue of (2.1), the time-harmonic electric field satisfies the Helmholtz equation

\[
\nabla \times \nabla \times \mathbf{E} - \kappa_0^2 \mathbf{E} = i\omega \mu_0 \mathbf{J}(x), \quad x \in \mathbb{R}^d,
\]

subject to the outgoing radiation condition (2.2).

Let $\mathbf{G}_0^{\text{reg}}(x, \omega)$ be the outgoing electric-electric Green’s function for the Maxwell’s equations (2.1) in \mathbb{R}^d, that is,

\[
\nabla \times \nabla \times \mathbf{G}_0^{\text{reg}}(x, \omega) - \kappa_0^2 \mathbf{G}_0^{\text{reg}}(x, \omega) = i\omega \mu_0 \delta_0(x), \quad x \in \mathbb{R}^d,
\]
where $\delta_0(x)$ is the Dirac mass at $x = 0$. Following spatial reciprocity can be proved for isotropic dielectrics; see [24]:

$$G_0^{ee}(x - y, \omega) = G_0^{ee}(y - x, \omega), \quad x, y \in \mathbb{R}^d, \quad \omega \in \mathbb{R}. \quad (2.6)$$

2.2 Electromagnetic Identities

The following identities are the key ingredients to elucidate the localization property of the imaging functional proposed in the next section. The variants of the identity in Lemma 2.1 can be found in literature; see, for instance, [12, 23]. The details are, however, provided here since it is one of the building blocks of our reconstruction algorithm.

Lemma 2.1 (EM Helmholtz-Kirchhoff Identity). Let $B(0, R)$ be an open ball in \mathbb{R}^d with large radius $R \to \infty$ and boundary $\partial B(0, R)$. Then, for all $x, y \in \mathbb{R}^d$, we have

$$\lim_{R \to +\infty} \int_{\partial B(0, R)} G_0^{ee}(x - \xi, \omega) G_0^{ee}(\xi - y, \omega) d\sigma(\xi) = \mu_0 c_0 \Re \left\{ G_0^{ee}(x - y, \omega) \right\},$$

where the superposed bar indicates a complex conjugate.

Proof. Recall that we have for all constant vectors $p, q \in \mathbb{R}^d$, and $x, y \in \mathbb{R}^d$,

$$\nabla_\xi \times \nabla_\xi \times G_0^{ee}(x - \xi, \omega) p - \kappa_0^2 G_0^{ee}(x - \xi, \omega) p = i\omega \mu_0 \delta_x(\xi) p, \quad (2.7)$$

$$\nabla_\xi \times \nabla_\xi \times G_0^{ee}(y - \xi, \omega) q - \kappa_0^2 G_0^{ee}(y - \xi, \omega) q = -i\omega \mu_0 \delta_y(\xi) q. \quad (2.8)$$

Taking scalar product of (2.7) by $G_0^{ee}(y - \xi, \omega) q$ and (2.8) by $G_0^{ee}(x - \xi, \omega) p$, subtracting the resultant equations and finally integrating over $B(0, R)$, we arrive at

$$\int_B (\nabla_\xi \times \nabla_\xi \times G_0^{ee}(y - \xi, \omega) q) \cdot G_0^{ee}(x - \xi, \omega) p d\xi - \int_B G_0^{ee}(y - \xi, \omega) q \cdot (\nabla_\xi \times \nabla_\xi \times G_0^{ee}(x - \xi, \omega) p) d\xi = -i\omega \mu_0 \int_B G_0^{ee}(y - \xi, \omega) q \cdot \delta_x(\xi) p d\xi - i\omega \mu_0 \int_B G_0^{ee}(x - \xi, \omega) p \cdot \delta_y(\xi) q d\xi,$$

$$= -i\omega \mu_0 \int_B G_0^{ee}(y - \xi, \omega) q \cdot \delta_x(\xi) p d\xi - i\omega \mu_0 q \cdot G_0^{ee}(y - \xi, \omega) q d\xi,$$

$$= -2i\omega \mu_0 q \cdot \Re \left\{ G_0^{ee}(x - y, \omega) \right\} p. \quad (2.9)$$

On the other hand, recall that, for all $u, v \in C^2(\mathbb{B})^d$

$$\int_B (\nabla \times \nabla \times u) \cdot \nu dx - \int_B u \cdot (\nabla \times \nabla \times v) dx = -\int_{\partial B} (u \times \nu) \cdot (\nabla \times \nu) \cdot d\sigma(x) - \int_{\partial B} (\nabla \times u \times \nu) \cdot v d\sigma(x),$$

where $d\sigma$ is the surface element. Substitute $u = G_0^{ee}(y - \xi, \omega) q$ and $v = G_0^{ee}(x - \xi, \omega) p$ to
get
\[
\int_B (\nabla \times \nabla \times \mathcal{G}_0(y - \xi, \omega) q) \cdot \mathcal{G}_0^c(x - \xi, \omega) p \, d\xi
- \int_B \mathcal{G}_0^c(y - \xi, \omega) q \cdot (\nabla \times \nabla \times \mathcal{G}_0^c(x - \xi, \omega) p) \, d\xi
= - \int_{\partial B} (\mathcal{G}_0^c(y - \xi, \omega) q \times \nu) \cdot (\nabla \times \mathcal{G}_0^c(x - \xi, \omega) p) \, d\xi
- \int_{\partial B} (\nabla \times \mathcal{G}_0^c(y - \xi, \omega) q \times \nu) \cdot (\mathcal{G}_0^c(x - \xi, \omega) p) \, d\sigma(\xi),
\]
\[
= - \int_{\partial B} (\nabla \times \mathcal{G}_0^c(y - \xi, \omega) q) \cdot (\nu \times \nabla \times \mathcal{G}_0^c(x - \xi, \omega) p) \, d\xi
+ \int_{\partial B} (\nu \times \nabla \times \mathcal{G}_0^c(y - \xi, \omega) q) \cdot (\mathcal{G}_0^c(x - \xi, \omega) p) \, d\sigma(\xi).
\]

Now from Sommerfeld radiation conditions,
\[
\nu \times \nabla \times \mathcal{G}_0^c(x - \xi, \omega) p = i\kappa_0 \mathcal{G}_0^c(x - \xi, \omega) p + O\left(R^{-\frac{d+1}{2}}\right),
\]
where the order term vanishes as \(R \to \infty \). Therefore,
\[
\int_B (\nabla \times \nabla \times \mathcal{G}_0(y - \xi, \omega) q) \cdot \mathcal{G}_0^c(x - \xi, \omega) p \, d\xi
- \int_B \mathcal{G}_0^c(y - \xi, \omega) q \cdot (\nabla \times \nabla \times \mathcal{G}_0^c(x - \xi, \omega) p) \, d\xi
\approx -2i\kappa_0 \int_{\partial B} i\kappa_0 \mathcal{G}_0^c(x - \xi, \omega) p \cdot \mathcal{G}_0^c(y - \xi, \omega) q \, d\sigma(\xi)
= -2i\kappa_0 \int_{\partial B} q \cdot \mathcal{G}_0^c(y - \xi, \omega) \mathcal{G}_0^c(x - \xi, \omega) p \, d\sigma(\xi),
\]
where we have used the reciprocity relation (2.10).

Finally, comparing Equations (2.10) and (2.11), and by varying and choosing \(p \) and \(q \) as the basis vectors in \(\mathbb{R}^d \) we get
\[
\int_{\partial B} \mathcal{G}_0^c(y - \xi, \omega) \mathcal{G}_0^c(x - \xi, \omega) \, d\sigma(\xi) \approx \mu_0 c_0 \text{Re} \left\{ \mathcal{G}_0^c(x - y, \omega) \right\},
\]
which leads to the conclusion by tending \(R \to \infty \).

Lemma 2.2. For all \(x, y \in \mathbb{R}^d, x \neq y \),
\[
\frac{c_0}{2\pi} \int_\mathbb{R} \text{Re} \left\{ \mathcal{G}_0^c(x - y, \omega) \right\} d\omega = \delta_x(y) I.
\]

Proof. Let \(\tilde{G} \) be the solution to
\[
\frac{1}{c_0^2} \frac{\partial^2 \tilde{G}}{\partial t^2} (x, t; y, \tau) + \nabla \times \nabla \times \tilde{G}(x, t; y, \tau) = -\delta_y(x) \delta_x(t) I, \quad x, y \in \mathbb{R}, t > \tau,
\]
(2.11)
and let $G(x, y, \omega)$ be the Fourier transform of $\hat{G}(x; t; y, 0)$. Further, the following causality conditions are imposed

$$\hat{G}(x; t; y, \tau) = 0 = \frac{\partial \hat{G}}{\partial t}(x; t; y, \tau), \quad x, y \in \mathbb{R}, t < \tau.$$

Then, integrating (2.11) over an infinitesimal time interval from τ^{-} to τ^{+}, using the causality conditions above and the continuity of \hat{G} away from $t = \tau$, we find out that

$$\frac{\partial \hat{G}}{\partial t}(x; t; y, \tau) \bigg|_{t=\tau^{+}} = -c_0^2 \delta_y(x) I. \quad (2.12)$$

Therefore, integrating above equation over t and using the Parseval’s identity, yields

$$\int_{\mathbb{R}} i\omega G(x, y, \omega) d\omega = 2c_0^2 \pi \delta_y(x) I \int_{\mathbb{R}} \delta_0(\omega) d\omega = 2c_0^2 \pi \delta_y(x) I, \quad (2.13)$$

where we have made use of the fact that the Fourier transform of 1 is $2\pi \delta_0(\omega)$. Finally, since $G_0^c(x - y, \omega) = -i\omega \mu_0 G(x, y, \omega)$, and $\delta_y(x) I$ is real, relation (2.13) leads to the conclusion.

3 Reconstruction with Full Bandwidth Measurements

This section is in order to provide the building blocks to handle finite frequency data problem. As a first step toward the ultimate goal, we find the spatial support of the current source, $\text{supp}\{J\}$, from data $d(x, \omega)$ with $\omega \in \mathbb{R}$.

For a fixed frequency $\omega \in \mathbb{R}$, define the adjoint field E^* to be the solution to

$$\nabla \times \nabla \times E^*(x, \omega) - \kappa_0^2 E^*(x, \omega) = i\omega \mu_0 \overline{\nabla} G(x, \omega) \chi_\Gamma(x), \quad (x, \omega) \in \mathbb{R}^3 \times \mathbb{R}, \quad (3.1)$$

where χ_Γ is the characteristic function of the boundary Γ. Then, the phase conjugation functional is defined by

$$I(x) := \frac{\epsilon_0}{2\pi c_0 \mu_0} \int_{\mathbb{R}} E^*(x, \omega) d\omega, \quad \forall x \in \mathbb{R}. \quad (3.2)$$

Then, $I(x)$ yields the approximate spatial support of the current density $J(x)$. In fact, we have the following theorem.

Theorem 3.1. For $x \in \Omega$ sufficiently far from Γ compared to the wavelength of the wave impinging upon Ω, $I(x) \simeq J(x)$.

Proof. Since J is supported compactly inside Ω, for all $x \in \Omega$ and $y \in \Gamma$, we have

$$\left\{ \begin{array}{l}
E^*(x, \omega) = \int_{\Gamma} G_0^e(y - x, \omega) \overline{\mathbf{d}}(y, \omega) d\sigma(y) \\
\mathbf{d}(y, \omega) = E(y, \omega) \big|_{y \in \Gamma} = \int_{\Omega} G_0^e(y - z, \omega) J(z) dz \bigg|_{y \in \Gamma}
\end{array} \right. \quad (3.3)$$

5
Therefore, by using (3.3) in (3.2) we arrive at

\[I(x) = \frac{\epsilon_0}{2\pi c_0 \mu_0} \int_{\mathbb{R}^d} \left(\int_{\Gamma} G_0^{ce}(x - y, \omega) \overline{G_0^{ce}(y - z, \omega)} d\sigma(y) \right) d\omega J(z) dz. \]

Now, we invoke the Helmholtz-Kirchhoff identity from Lemma 2.1 to have

\[\int_{\Gamma} G_0^{ce}(x - y, \omega) \overline{G_0^{ce}(y - z, \omega)} d\sigma(y) \simeq \mu_0 c_0 \Re \{ G_0^{ce}(x - z, \omega) \}, \tag{3.4} \]

leading us to

\[I(x) \simeq \int_{\mathbb{R}^d} \frac{\epsilon_0}{2\pi} \int_{\mathbb{R}} \Re \{ G_0^{ce}(x - z, \omega) \} d\omega J(z) dz. \]

Finally, using Lemma 2.2, we conclude that

\[I(x) \simeq \int_{\mathbb{R}^d} \delta_x(z) J(z) dz = J(x). \]

\[\square \]

4 Source Localization with Finite Set of Frequencies

In this section, we address the electromagnetic inverse source problem using the boundary data \(d_W = d(x, \omega)|_{\Gamma \times W} \). First an initial guess is retrieved and then subsequently optimized using an \(l_1 \)-regularization technique.

4.1 Initial Guess Retrieval

Inspired by the functional \(I \) defined in (3.2), we define a single frequency functional \(I_n \) by (4.2). However, since we are dealing with a finite set of frequency measurements, the lack of information over entire spectrum induces noise and blurring in the reconstruction. In order to fix the problem, in this section, an initial guess to the current source density is identified, which will be optimized providing an improved approximation to \(\text{supp}\{J\} \).

Let \(0 \leq \kappa_1^0 \leq \kappa_2^0 \leq \cdots \leq \kappa_N^0 \) be \(N \) wave numbers corresponding to \(\omega_n \in W \) for \(n = 1, 2, \cdots, N \). Let us define the adjoint field \(E_n^* \) corresponding to a fixed frequency \(\omega_n \in W \) to be the solution to the Helmholtz equation

\[\nabla \times \nabla \times E_n^*(x, \omega_n) - (\kappa_n^0)^2 E_n^*(x, \omega_n) = i\omega_n \mu_0 d_W(x, \omega_n) \chi_\Gamma(x), \quad (x, \omega_n) \in \mathbb{R}^3 \times \mathbb{R}, \tag{4.1} \]

and the \textit{single frequency phase conjugation} functional by

\[I_n(x) := \frac{\epsilon_0}{2\pi c_0 \mu_0} E_n^*(x, \omega_n). \tag{4.2} \]

Our first result of this section is the following Lemma.

\textbf{Lemma 4.1.} For all \(x \in \Omega \) sufficiently far from \(\Gamma \), compared to the wavelength of the wave impinging upon \(\Omega \),

\[I_n(x) \simeq \frac{\epsilon_0}{2\pi} \int_{\Omega} \Re \{ \hat{G}_0^{ce}(x - y, \omega_n) \} J(y) dy. \]
Proof. The proof is very similar to that of Theorem 3.1. Recall that
\[
\begin{align*}
E_n^*(x, \omega_n) &= \int_{\Gamma} G_0^\infty(\xi - x, \omega_n) dV(\xi, \omega_n) d\sigma(\xi), \\
\mathbf{d}_W(\xi, \omega_n) &= \left. \mathbf{E}(\xi, \omega_n) \right|_{\Gamma} = \int_{\Omega} G_0^\infty(y - \xi, \omega_n) dJ(y) dy \bigg|_{\xi \in \partial \Omega}.
\end{align*}
\]
Therefore,
\[
\mathcal{I}_n(x) = \frac{\epsilon_0}{2\pi\epsilon_0\mu_0} E_n^*(x, \omega_n),
\]
\[
= \frac{\epsilon_0}{2\pi\epsilon_0\mu_0} \int_{\Omega} \int_{\Gamma} G_0^\infty(\xi - x, \omega_n) \overline{G_0^\infty(y - \xi, \omega_n)} d\sigma(\xi) J(y) dy.
\]
Finally, we conclude, again using the electromagnetic Helmholtz-Kirchhoff identity from Lemma 2.1.

4.2 Regularization

In this section, an optimized reconstruction to the current source density is provided using d_W. The aim is to explore an l_1-regularization to optimize the localization of the support of the source.

The objective is to resolve the following optimization problem:
\[
J_\lambda(x) := \arg\min_{J \in \mathbb{R}^d} \mathcal{M}(\tilde{J}) + \mathcal{R}(\tilde{J}),
\]
\[
\mathcal{M}(\tilde{J}) := \sum_{n=1}^{N} \frac{1}{2N} \left\| \mathcal{I}_n(x) - \frac{\epsilon_0}{2\pi} \int_{\Omega} \Re\left\{ G_0^\infty(x - y, \omega_n) \right\} \tilde{J}(y) dy \right\|^2, \tag{4.3}
\]
\[
\mathcal{R}(\tilde{J}) := \lambda \left\| \tilde{J}(x) \right\|_{l_1}, \tag{4.4}
\]
where the first term \mathcal{M} is the data fidelity term and the second term \mathcal{R} accounts for the l_1-regularization. It is precisely that λ is a regularization parameter controlling the relative weights of the two terms and provides a trade-off between fidelity to the measurements and noise sensitivity. Here $\| \cdot \|$ denotes the Euclidean norm in \mathbb{R}^d.

4.2.1 Fast Iterative-Shrinkage Thrashing Algorithm with Backtracking

The direct computations of the solution J_λ to the minimization problem (4.3) is not trivial, indeed, the l_1-term is not smooth, at least not differentiable. Thus, in order to obtain J_λ explicitly, approximation schemes are indispensable. In order to do so, we follow Beck & Teboulle [16] and use their fast iterative shrinkage thresholding algorithm with backtracking. This method belongs to the class of split gradient descent iterative schemes with a global convergence rate $O(k^{-2})$, where k is the iteration counter.

For any $\gamma > 0$, define the quadratic approximation of the Lagrangian
\[
\mathcal{L}(\tilde{J}, \lambda) = \mathcal{M}(\tilde{J}) + \mathcal{R}(\tilde{J})
\]
by

\[P_\gamma(x, y) := M(y) + \langle x - y, \nabla M(y) \rangle + \frac{\gamma}{2} \| x - y \|^2 + \mathcal{R}(x) \]

(4.6)

We also define

\[T_\gamma(y) := \arg \min_{x \in \mathbb{R}^d} \left\{ P_\gamma(x, y) \right\}, \]

(4.7)

where \(y \in \mathbb{R}^d \) and \(\langle \cdot, \cdot \rangle \) is the standard Euclidean inner product in \(\mathbb{R}^d \). Then the Algorithm converges to the global minimum; see \([16]\):

Algorithm 1 Fast Iterative-Shrinkage Thresholding with Backtracking.

Require: Set \(\gamma_0 > 0, \quad \eta > 1, \quad x_0 = 0, \quad y_1 = x_0, \quad s_1 = 1. \)

1. for \(k \geq 1 \) do
 2. Set \(i_k = 1, \quad \beta = \eta \gamma_{k-1}. \)
 3. while \(\mathcal{L}(T_\beta(y_k), \lambda) > P_\beta(T_\beta(y_k), y_k) \) do
 4. Update \(i_k = i_k + 1, \quad \beta = \eta^{i_k} \gamma_{k-1}. \)
 5. end while
 6. Set \(\gamma_k = \beta, \quad x_k = T_{\gamma_k}(y_k). \)
 7. Update \(s_{k+1} = \frac{1}{2} \left(1 + \sqrt{1 + 4s_k^2} \right), \quad y_{k+1} = x_k + \frac{s_{k-1}}{s_{k+1}} (x_k - x_{k-1}), \quad i_k = 0, \)
 8. \(k = k + 1. \)
8. end for

return \(\hat{J} = x_k. \)

5 Conclusion

In this investigation, electromagnetic inverse source problem is tackled using boundary measurements of the tangential component of electric field over a finite set of frequencies. A phase conjugation algorithm is proposed in order to deal with the problem associated with full frequency spectrum which subsequently inspired an imaging functional for that with finite set of frequencies. Since the information is lost due to incomplete frequency spectrum, an \(l_1 \)-regularization blended with the fast iterative shrinkage thresholding algorithm with backtracking of Beck and Teboulle is deployed.

References

[1] H. Ammari, E. Bretin, J. Garnier and A. Wahab, Time reversal algorithms in viscoelastic media, *European Journal of Applied Mathematics*, 24(4): (2013), pp 565-600.

[2] H. Ammari, E. Bretin, J. Garnier and A. Wahab, Time reversal in attenuating acoustic media, in *Mathematical and Statistical Methods for Imaging*, Contemporary Mathematics, vol. 548, pp. 151-163, AMS, 2011.

[3] H. Ammari, E. Bretin, J. Garnier and A. Wahab, Noise source localization in an attenuating medium, *SIAM Journal on Applied Mathematics*, 72(1): (2012), 317–336.
[4] H. Ammari, E. Bretin, V. Jugnon and A. Wahab, Photoacoustic imaging for attenuating acoustic media, in Mathematical Modeling in Biomedical Imaging II, Lecture Notes Math., vol. 2035, pp. 57-84, Springer, 2012.

[5] H. Ammari, L. Guadarrama Bustos, P. Garapon and H. Kang, Transient anomaly imaging by the acoustic radiation force, Journal of Differential Equations, 249:(2010), pp. 1579–1595.

[6] H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee, and A. Wahab, Mathematical Methods in Elasticity Imaging, submitted.

[7] H. Ammari, J. Garnier, W. Jing, H. Kang, M. Lim, K. Solna, and H. Wang, Mathematical and Statistical Methods for Multistatic Imaging, Lecture Notes in Mathematics, Vol. 2098, Springer, 2014.

[8] N. P. Valdivia, Electromagnetic source identification using multiple frequency information, Inverse Problems, 28:(2012), Article ID 115002.

[9] C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli and R. Grave de Peralta, EEG source imaging, Clinical Neurophysiology, 115:(2004), pp. 2195–2222.

[10] R. P. Porter and A. J. Devaney, Holography and the inverse source problem, Journal of Optical Society of America, 72, pp. 327–330, 1982.

[11] A Lakhal and A K Louis, Locating radiating sources for Maxwell’s equations using the approximate inverse, Inverse Problems, 24:(2008), Paper ID. 045020.

[12] R. Carminati, R. Pierrat, J. de Rosny and M. Fink, Theory of the time reversal cavity for electromagnetic fields, Optics Letters, 32(21):(2007), pp. 3107-3109.

[13] M. Fink, Time reversed acoustics, Physics Today, 50(3):(1997), pp.34.

[14] S. Gdoura and L. Guadarrama-Bustos, Transient wave imaging of anomalies: a numerical study, in Mathematical and Statistical Methods for Imaging, Contemporary Mathematics, vol 548, pp. 31-43, AMS, 2011.

[15] S. Gdoura, A. Wahab and D. Lesselier, Electromagnetic time reversal and scattering by a small dielectric inclusion, Journal of Physics: Conference Series, vol 386: (2012), Paper ID. 012010.

[16] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, 2:(2009), pp 183-202.

[17] J. P. Fouque, J. Garnier, G. Papanicolaou and K. Solna, Wave Propagation and Time Reversal in Randomly Layered Media, Springer, 2007.

[18] H. Ammari, Introduction to Mathematics of Emerging Biomedical Imaging, Math. & App., vol. 62, Springer, 2008.

[19] N. Bleistein and J. Cohen, Nonuniqueness in the inverse source problem in acoustics and electromagnetics, Journal of Mathematical Physics, 18;(1977), 194–201.
[20] R. Albanese and P. B. Monk, The inverse source problem for Maxwell’s equations, *Inverse Problems* 22(3): (2006), Paper ID. 1023.

[21] G. Bao, J. Lin and F. Triki, A multi-frequency inverse source problem, *Journal of Differential Equations*, 249(12):(2010), pp. 3443–3465.

[22] N. N. Bojarski, A survey of the near-field far-field inverse scattering inverse source integral equation, *IEEE Transactions on Antenna and Propagation*, 30(5):1982, 975-979.

[23] J. Chen, Z. Chen and G. Huang, Reverse time migration for extended obstacles: electromagnetic waves, *Inverse Problems*, 29:(2013), Paper ID. 085006.

[24] K. Wapenaar, General representations for wavefields modeling and inversion in geophysics. *Geophysics*, 75(5):(2007), pp. SM5-SM17.