ON THE AUTOMORPHISM GROUP OF RATIONAL MANIFOLDS

TURGAY BAYRAKTAR

ABSTRACT. In this note, we prove that every automorphism of a rational manifold which is obtained from \mathbb{P}^k by a finite sequence blow-ups along smooth centers of dimension at most r with $k > 2r + 2$ has zero topological entropy.

1. INTRODUCTION

A holomorphic automorphism of a compact Kähler manifold has positive topological entropy if and only if absolute value of one of the eigenvalues of f^* on the cohomology $H^*(X, \mathbb{C})$ is larger than one. It follows from the results of Cantat [Can01, Can99] that a compact complex surface admit an automorphism with positive entropy if it is Kähler and bimeromorphic to one of the following: a rational surface, a torus, a $K3$ surface or an Enriques surface. In particular, if X is a rational surface admitting an automorphism with positive entropy then X is obtained from \mathbb{P}^2 by blowing up a finite sequence of at least ten points [Nag61]. Examples of rational surface automorphisms with positive entropy were given by [BK06, BK10, McM07]. On the other hand, in higher dimensions the question if one can obtain automorphisms with interesting dynamics by blowing up certain subvarieties of \mathbb{P}^k remained open. Our first result partially addresses this question:

Theorem 1.1. Let X be a rational manifold such that $X = X_m$ and $\pi_i : X_{i+1} \to X_i$ is obtained by blowing up a smooth irreducible subvariety of dimension at most r with $k > 2r + 2$ in X_i where $X_0 = \mathbb{P}^k$. If $f : X \to X$ is a holomorphic automorphism then f has zero topological entropy.

In particular, if X is obtained from \mathbb{P}^k with $k \geq 3$ by blowing up a finite sequence of points then every holomorphic automorphism of X has zero topological entropy. This was observed in [Tru12] when $k = 3$.

A cohomology class $\alpha \in H^{1,1}(X, \mathbb{R})$ is called numerically effective (nef in short) if α lies in the closure of classes of Kähler forms. Following [Kaw85] we define numerical dimension of a nef class as

$$\nu(\alpha) := \max\{p \in \mathbb{N} : \alpha^p := \alpha \wedge \cdots \wedge \alpha \neq 0 \text{ in } H^{p,p}(X, \mathbb{R})\}. $$

Next, we prove that if an automorphism of a compact Kähler manifold preserves a numerically-effective class $\alpha \in H^{1,1}(X, \mathbb{R})$ with large numerical dimension then it has zero entropy.

Date: May 3, 2014.

2000 Mathematics Subject Classification. 37F10, 32H50, 14E09.

Key words and phrases. automorphism, rational manifold, topological entropy.
Theorem 1.2. Let X be a compact Kähler manifold with $f \in \text{Aut}(X)$. If there exists a nef class $\alpha \in H^{1,1}(X, \mathbb{R})$ such that $\nu(\alpha) \geq \dim X - 1$ and $f^* \alpha = \alpha$ then f has zero topological entropy.

In some sense Theorem 1.2 can be considered a generalization of Liberman’s result [Lie78] (see also [Zha09] for big and nef case) which asserts that if X is a compact Kähler manifold and $f \in \text{Aut}(X)$ preserves a Kähler class then an iterate of f belongs to $\text{Aut}_0(X)$, the connected component of the identity, and hence f has zero topological entropy.

Acknowledgement

I would like to thank Mattias Jonsson and Tuyen Truong for their valuable comments on an earlier draft. I am also grateful to Brian Lehmann for stimulating correspondence.

2. Preliminaries

Let X be a compact Kähler manifold. We denote the de Rham (respectively Dolbeault) cohomology groups by $H^{2p}(X, \mathbb{R})$ (respectively $H^{p,p}(X, \mathbb{C})$) and define

$$H^{p,p}(X, \mathbb{R}) := H^{p,p}(X, \mathbb{C}) \cap H^{2p}(X, \mathbb{R}).$$

Note that $H^{2p}(X, \mathbb{R})$, $H^{p,p}(X, \mathbb{C})$ are finite dimensional and one can identify $H^{p,p}(X, \mathbb{R})$ with a real subspace of $H^{p,p}(X, \mathbb{C})$. In the sequel, we implicitly use the fact that the cohomology classes can be defined in terms of smooth forms or currents. We refer the reader to [CH] for basic results in Hodge theory. A cohomology class $\alpha \in H^{1,1}(X, \mathbb{R})$ is called numerically effective (nef in short) if α lies in the closure of classes of Kähler forms. The set of nef classes $H^{1,1}_{\text{nef}}(X, \mathbb{R})$ forms a closed convex cone which is strict that is $H^{1,1}_{\text{nef}}(X, \mathbb{R}) \cap -H^{1,1}_{\text{nef}}(X, \mathbb{R}) = \{0\}$.

We let $\text{Pic}(X)$ denote the Picard group of X that is isomorphism classes of line bundles with the group operation tensor product and denote the Chern map by

$$c_1 : \text{Pic}(X) \to H^2(X, \mathbb{Z}).$$

By a slight abuse of notation we will write $c_1(L) \in H^2(X, \mathbb{R})$ where we consider the image of $c_1(L)$ under the inclusion $i : H^2(X, \mathbb{Z}) \to H^2(X, \mathbb{R})$. The Neron-Severi group of X is defined by $NS(X) = c_1(\text{Pic}(X)) \subset H^2(X, \mathbb{R})$ that is the Chern classes of line bundles on X. It follows from Lefschetz theorem on $(1, 1)$ classes that

$$NS(X) = H^2(X, \mathbb{Z}) \cap H^{1,1}(X, \mathbb{R}).$$

We also let $NS_{\mathbb{R}}(X)$ be the real vector space $NS_{\mathbb{R}}(X) = NS(X) \otimes \mathbb{R} \subset H^2(X, \mathbb{R})$.

A holomorphic line bundle L is called numerically effective (nef) if

$$L \cdot C = \int_C c_1(L) \geq 0$$

for every curve $C \subset X$. It follows from [Dem92] that L is nef if and only if $c_1(L) \in H^{1,1}_{\text{nef}}(X, \mathbb{R})$. A line bundle L is said to be big if $\kappa(L) = \dim X$ where $\kappa(L)$ denotes the Kodaira-Iitaka dimension of L. It is well-known that a nef line bundle L is big if and only if $L^k := \int_X c_1(L)^k > 0$.

2.1. Dynamics of automorphisms of compact Kähler manifolds. Let X be a compact Kähler manifold of dimension k and ω be a fixed Kähler form on X. We let $\text{Aut}(X)$ denote the set of holomorphic automorphisms of X. Every $f \in \text{Aut}(X)$ induces a linear action

$$f^* : H^{p,p}(X, \mathbb{R}) \to H^{p,p}(X, \mathbb{R})$$

$$f^* \{ \theta \} := \{ f^* \theta \}$$

where $\{ \theta \}$ denotes the class of the smooth (p,p) form θ in $H^{p,p}(X, \mathbb{R})$.

For $f \in \text{Aut}(X)$ the ith dynamical degree of f is defined by

$$\lambda_i(f) := \limsup_{m \to \infty} \left(\int_X (f^n)^* \omega^i \wedge \omega^{k-i} \right)^{\frac{1}{n}}.$$

Since X is compact this definition is independent of ω. The following properties of dynamical degrees are well known [DS04a].

Lemma 2.1. Let $f : X \to X$ be an automorphism. Then

(i) $1 \leq \lambda_i$ is the spectral radius of $f^*|_{H^{i,i}(X, \mathbb{R})}$.

(ii) $i \to \log \lambda_i(f)$ is concave on $\{0, 1, \ldots, k\}$.

(iii) $\lambda_1(f)^i \geq \lambda_1(f)$ and $\lambda_i(f)^i \geq \lambda_1(f)$ for $1 \leq i \leq k-1$.

(iv) $\lambda_i(f) = \lambda_{k-i}(f^{-1})$ for $i \in \{0, 1, \ldots, k\}$.

Theorem 2.2 (Gromov and Yomdin). Let $f \in \text{Aut}(X)$ then the topological entropy of f is given by

$$h_{\text{top}}(f) = \max_{0 \leq i \leq k} \log \lambda_i(f).$$

The next proposition will be useful in the proof of Theorem 1.2.

Proposition 2.3. [DS04a] Let $\alpha, \alpha', \alpha_1, \ldots, \alpha_r \in H^{1,1}(X, \mathbb{R})$ be nef classes where $r \leq k-2$.

1. If $\alpha \wedge \alpha' = 0$ then α and α' are colinear.

2. If $\alpha \wedge \alpha' \wedge \alpha_1 \cdots \wedge \alpha_r = 0$ in $H^{r+2,r+2}(X, \mathbb{R})$ then there exists real numbers $(a, b) \neq (0, 0)$ such that

$$(a \alpha + ba') \wedge \alpha_1 \cdots \wedge \alpha_r = 0.$$

Furthermore, if $\alpha' \wedge \alpha_1 \cdots \wedge \alpha_r \neq 0$ then the pair (a, b) is unique up to a multiplicative constant.

3. Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. Let $X = X_m$ be a rational manifold where $\pi_i : X_{i+1} \to X_i$ is obtained by blowing up a smooth irreducible subvariety $Y_i \subset X_i$ of dimension at most r and $X_0 = \mathbb{P}^k$ with $k > 2r + 2$.

By Lemma 2.1 we have $\lambda_1(f)^{k-r-1} \geq \lambda_{k-r-1}(f)$. First, we will show that

$$\lambda_1^{k-r-1}(f) = \lambda_{k-r-1}(f).$$

Indeed, assuming otherwise $\lambda_1^{k-r-1}(f) > \lambda_{k-r-1}(f)$ we will derive a contradiction. Since f^* preserves the nef cone it follows from a version of Perron-Frobenius theorem [Bir67] that there exists a nef class $\alpha \in NS_R(X)$ such that $f^* \alpha = \lambda_1(f) \alpha$. Now, as f^* preserves the intersection product and $\lambda_1(f)^{k-r-1} > \lambda_{k-r-1}(f)$ we see that $\alpha^{k-r-1} = 0$ in $H^{k-r-1,k-r-1}(X, \mathbb{R})$. Therefore, $\nu(\alpha) \leq k-r-2$. Thus, the assertion follows from the next lemma:
Lemma 3.1. Let $X = X_m$ be a rational manifold where $\pi_i : X_{i+1} \to X_i$ is obtained by blowing up a smooth irreducible subvariety $Y_i \subset X_i$ of dimension at most r and $X_0 = \mathbb{P}^k$ with $k \geq r + 2$. If $\alpha \in H^{1,1}_{\text{nef}}(X, \mathbb{R})$ is non-zero then $\nu(\alpha) \geq k - r - 1$.

Proof. It follows from [Kaw85] that

$$\nu(\alpha) = \max\{p : \alpha^p \cdot A^{k-p} \neq 0\}$$

where A is any ample divisor. Therefore, it is enough to show that there exists a divisor D such that $\alpha^{k-r-1} \cdot D^{r+1} \neq 0$.

It is classical that [GH] the Picard group $\text{Pic}(X)$ is generated by the classes H_X, E_1, \ldots, E_m where

$$\pi = \pi_{m-1} \circ \pi_{m-2} \circ \cdots \circ \pi_1 : X \to X_0 = \mathbb{P}^k$$

$$H_X := \pi^*(H)$$

H is the class of a generic hyperplane in \mathbb{P}^k and E_i is the exceptional divisor of the blow up $\pi_i : X_{i+1} \to X_i$ and

$$E_{i-1} := \pi_i^{-1}(E_{i-1} - Y_i)$$

is the class of the proper transform in X_i of the exceptional divisor E_{i-1}. Then we can represent the class α as

$$\alpha = aH_X + \sum c_iE_i.$$

where $a, c_i \in \mathbb{R}$. Since $\pi(E_i) \subset \mathbb{P}^k$ has codimension at least 2, a generic line in \mathbb{P}^k does not intersect $\pi(E_i)$. Then by the projection formula [Ful98] we have

$$E_i \cdot H_X^{k-1} = 0.$$

Since α is nef and nonzero this implies that $\alpha \cdot H_X^{k-1} = a > 0$.

Now, since the dimension of Y_i is at most r, a generic subvariety of \mathbb{P}^k of codimension $r + 1$ does not intersect $\pi(E_i)$. This in turn implies that $E_i^{k-r-1} \cdot H_X^{r+1} = 0$ hence,

$$\alpha^{k-r-1} \cdot H_X^{r+1} = a^{k-r-1} > 0.$$

Hence, we deduce that $\alpha^j \neq 0$ in $H^{j,j}(X, \mathbb{R})$ and $\lambda_1(f^j) = \lambda_j(f)$ for all $1 \leq j \leq k - r - 1$. Therefore, applying the same argument to f^{-1} and using Lemma 2.1 we conclude that

$$\lambda_1(f)(k-r-1)^2 = \lambda_{k-r-1}(f)^{k-r-1} = \lambda_{r+1}(f^{-1})^{k-r-1} = \lambda_1(f^{-1})(k-r-1)(r+1)$$

$$= \lambda_{k-r-1}(f^{-1})^{r+1} = \lambda_{r+1}(f)^{r+1} = \lambda_1(f)^{(r+1)^2}$$

since $k > 2 + 2r$ this contradicts $\lambda_1(f) > 1$.

Proof of Theorem 1.2. Let $f \in \text{Aut}(X)$ and assume that the first dynamical degree, $\lambda_1 > 1$ we will derive a contradiction. Since f^* preserves the nef cone there exists a class $\beta \in H^{1,1}_{\text{nef}}(X, \mathbb{R})$ such that $f^*\beta = \lambda_1 \beta$.

Now, $\nu(\alpha) \geq k-1$ implies that $\alpha^{k-2} \neq 0$ in $H^{k-2,k-2}(X, \mathbb{R})$. On the other hand, since f is an automorphism it preserves the cup product hence

$$f^*(\alpha^{k-1} \wedge \beta) = \lambda_1 \alpha^{k-1} \wedge \beta.$$
Since the topological degree $\lambda_k = 1$ we must have
$$\alpha^{k-1} \wedge \beta = 0.$$
Then, by Proposition 2.3 there exists (up to a scalar multiple) unique real numbers $(a, b) \neq (0, 0)$ such that
$$(a\beta + ba) \wedge \alpha^{k-2} = 0.$$
Pulling-back this equation by f, we obtain
$$(a\lambda_1\beta + ba) \wedge \alpha^{k-2} = 0.$$
Since $\lambda_1 > 1$, we see that $b = 0$. Thus,
$$\beta \wedge \alpha^{k-2} = 0.$$
Applying the same argument repeatedly we obtain that
$$\beta \wedge \alpha = 0.$$
Then Proposition 2.3 implies that $\beta = c\alpha$ for some $c \in \mathbb{R}_+$ but this contradicts $\lambda_1 > 1$. □

The following result is an immediate corollary of Theorem 1.2 and [Kaw85, Proposition 2.2]:

Corollary 3.2. Let X be a projective manifold and $f \in \text{Aut}(X)$. If there exists a nef \mathbb{R}-divisor L such that $\kappa(L) \geq k - 1$ and $f^*L \cong L$ then $h_{\text{top}}(f) = 0$.

Recall that a compact complex manifold is called Fano if the anti-canonical bundle $-K_X$ is ample. It follows from Kodaira embedding theorem that a Fano manifold is projective. More generally, a compact complex manifold is called weak Fano if the anti-canonical bundle $-K_X$ is big and nef. The following immediate corollary is well-known [Zha09]:

Corollary 3.3. Let X be a projective weak Fano manifold and $f \in \text{Aut}(X)$ then $h_{\text{top}}(f) = 0$.

Proof. Note the f preserves the divisor class $-K_X$ which is big and nef by definition of X. Thus, the assertion follows from the Corollary 3.2. □

Blanc and Lamy [BL] recently proved that blow up of the complex projective space \mathbb{P}^3 along a curve C of degree d and genus g lying on a smooth quadric gives a weak Fano manifold if $4d - 30 \leq g \leq 14$ or $(g, d) = (19, 12)$ or there is no 5-secant line, 9-secant conic, nor 13-secant twisted cubic to C. In particular, Corollary 3.3 implies that blowing up \mathbb{P}^3 along such curves does not give rise to a rational manifold admitting an automorphism with positive entropy. More generally, it was observed in [Tru12] that if a rational manifold is obtained from \mathbb{P}^3 by blowing up finitely many curves with no common intersection then any automorphism of X is of zero entropy.

References

[Bir67] G. Birkhoff. Linear transformations with invariant cones. *Amer. Math. Monthly*, 74:274–276, 1967.

[BK06] E. Bedford and K. Kim. Periodicities in linear fractional recurrences: degree growth of birational surface maps. *Michigan Math. J.*, 54(3):647–670, 2006.

[BK10] E. Bedford and K. Kim. Continuous families of rational surface automorphisms with positive entropy. *Math. Ann.*, 348(3):667–688, 2010.
[BL] J. Blanc and S. Lamy. Weak fano threefolds obtained by blowing-up a space curve and construction of sarkisov links. arxiv:1106.3716, 2012.

[Can99] S. Cantat. Dynamique des automorphismes des surfaces projectives complexes. C. R. Acad. Sci. Paris Sér. I Math., 328(10):901–906, 1999.

[Can01] S. Cantat. Dynamique des automorphismes des surfaces $K3$. Acta Math., 187(1):1–57, 2001.

[Dem92] J.-P. Demailly. Singular Hermitian metrics on positive line bundles. In Complex algebraic varieties (Bayreuth, 1990), volume 1507 of Lecture Notes in Math., pages 87–104. Springer, Berlin, 1992.

[DS04a] T.-C. Dinh and N. Sibony. Groupes commutatifs d’automorphismes d’une variété kählérienne compacte. Duke Math. J., 123(2):311–328, 2004.

[DS04b] T.-C. Dinh and N. Sibony. Regularization of currents and entropy. Ann. Sci. École Norm. Sup. (4), 37(6):959–971, 2004.

[Ful98] W. Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 1998.

[GH] P. Griffiths and J. Harris. Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons Inc., New York, 1994. Reprint of the 1978 original.

[Kaw85] Y. Kawamata. Pluricanonical systems on minimal algebraic varieties. Invent. Math., 79(3):567–588, 1985.

[Lie78] D. I. Lieberman. Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds. In Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977), volume 670 of Lecture Notes in Math., pages 140–186. Springer, Berlin, 1978.

[McM07] C. T. McMullen. Dynamics on blowups of the projective plane. Publ. Math. Inst. Hautes Études Sci., (105):49–89, 2007.

[Nag61] M. Nagata. On rational surfaces. II. Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 33:271–293, 1960/1961.

[Tru12] T. T. Truong. On automorphisms of blowups of \mathbb{P}^3. arXiv:1202.4224, 2012.

[Zha09] D.-Q. Zhang. Dynamics of automorphisms on projective complex manifolds. J. Differential Geom., 82(3):691–722, 2009.

Mathematics Department, Johns Hopkins University 21218 Maryland, USA
E-mail address: bayraktar@jhu.edu