Small groups of finite Morley rank with a tight automorphism

Ulla Karhumäki

Joint work with Pınar Üğurlu

Ranked Groups: The Return
23-24 September 2021 at Université Claude Bernard Lyon 1
The Cherlin-Zilber conjecture (Cherlin 1979 and Zilber 1977)

Infinite simple groups of finite Morley rank are isomorphic to Chevalley groups over an algebraically closed fields.

In any group G of fRM, the Sylow 2-subgroups are conjugate [Borovik, Poizat 2007] and their structure is well-understood:

$\text{Syl}_G = U \times T$,

where U is 2-unipotent and T is 2-divisible. If the ambient group G is infinite then:

Either $\text{Syl}_G = 1$ (degenerated type) or Syl_G is infinite. [Borovik, Burdges, Cherlin 2007]

Either $U = 1$ (odd type) or $T = 1$ (even type). (No mixed type groups exist.) [Altınel, Borovik, Cherlin 2008]

If $1 \neq \text{Syl}_G = U$ then (C-Z) holds. Namely, $G \hookrightarrow X(K)$ for an a.c. field K of $\text{char}(K) = 2$. [Altınel, Borovik and Cherlin 2008]
The Cherlin-Zilber conjecture (Cherlin 1979 and Zilber 1977)

Infinite simple groups of finite Morley rank are isomorphic to Chevalley groups over an algebraically closed fields.

The current state of (C-Z) stated in terms of the Sylow 2-subgroups:

In any group G of fRM, the Sylow 2-subgroups are conjugate and their structure is well-understood:

$$\overline{\text{Syl}_G} \cap \text{Syl}_G = \text{Syl}_G = U \ast T,$$

where U is 2-unipotent and T is 2-divisible. If the ambient group G is infinite simple then:

- Either $\overline{\text{Syl}_G} = 1$ (degenerated type) or Syl_G is infinite. [Borovik, Burdges, Cherlin 2007]
- Either $U = 1$ (odd type) or $T = 1$ (even type). (No mixed type groups exist.) [Altınel, Borovik, Cherlin 2008]
- If $1 \neq \overline{\text{Syl}_G} = U$ then (C-Z) holds. Namely, $G \hookrightarrow X(K)$ for an a.c. field K of char$(K) = 2$. [Altınel, Borovik and Cherlin 2008]
The Cherlin-Zilber conjecture (Cherlin 1979 and Zilber 1977)

Infinite simple groups of finite Morley rank are isomorphic to Chevalley groups over an algebraically closed fields.

The current state of (C-Z) stated in terms of the Sylow 2-subgroups:

In any group G of fRM, the Sylow 2-subgroups are conjugate and their structure is well-understood:

$$\overline{\text{Syl}}_G \cap \text{Syl}_G = \text{Syl}_G = U \ast T,$$

where U is 2-unipotent and T is 2-divisible. If the ambient group G is infinite simple then:

- Either $\text{Syl}_G = 1$ (degenerated type) or Syl_G is infinite. [Borovik, Burdges, Cherlin 2007]
- Either $U = 1$ (odd type) or $T = 1$ (even type). (No mixed type groups exist.) [Altınel, Borovik, Cherlin 2008]
- If $1 \neq \text{Syl}_G = U$ then (C-Z) holds. Namely, $G \cong X(K)$ for an a.c. field K of $\text{char}(K) = 2$. [Altınel, Borovik and Cherlin 2008]
Small groups
Let $H = X(K)$ be a Chevalley group for K a.c. with $\text{char}(K) \neq 2$, and T be a maximal algebraic torus of H. The ‘size’ of H can be described in different ways, e.g. by $\dim_{\text{Zar}}(H)$ or by

$$\dim_{\text{Zar}}(T) = \text{pr}_2(H) = \# \text{ of copies of } \mathbb{Z}_{2\infty} := \{ x \in \mathbb{C}^\times : x^{2^n} = 1, n \in \mathbb{N} \}.$$
Small groups

Let $H = X(K)$ be a Chevalley group for K a.c. with $\text{char}(K) \neq 2$, and T be a maximal algebraic torus of H. The ‘size’ of H can be described in different ways, e.g. by $\dim_{\text{Zar}}(H)$ or by

$$\dim_{\text{Zar}}(T) = \text{pr}_2(H) = \# \text{ of copies of } \mathbb{Z}_{2\infty} := \{x \in \mathbb{C}^\times : x^{2^n} = 1, n \in \mathbb{N}\}.$$

The only simple Chevalley group of $\text{pr}_2(H) = 1$ is $H = \text{PSL}_2(K)$; it is also the only simple Chevalley group of $\dim_{\text{Zar}}(H) = 3$.

By $\text{pr}_2(G)$? Makes sense...but we still don't know how to prove that if $\text{pr}_2(G) = 1$ then $G \subset = \text{PSL}_2(K)$ for K a.c. So, one needs further assumptions to the identification of ‘small’ G. For example:

I Minimal simple groups: every proper definable connected subgroup is solvable.

[Jaligot, Cherlin, Deloro, Altinel, Frécon, Burdges...]

I The presence of a tight automorphism whose fixed-point subgroup is pseudofinite—this is our framework.
Small groups

Let $H = X(K)$ be a Chevalley group for K a.c. with $\text{char}(K) \neq 2$, and T be a maximal algebraic torus of H. The ‘size’ of H can be described in different ways, e.g. by $\dim_{\text{Zar}}(H)$ or by

$$\dim_{\text{Zar}}(T) = \text{pr}_2(H) = \# \text{ of copies of } \mathbb{Z}_{2^{\infty}} := \{ x \in \mathbb{C}^\times : x^{2^n} = 1, n \in \mathbb{N} \}.$$

The only simple Chevalley group of $\text{pr}_2(H) = 1$ is $H = \text{PSL}_2(K)$; it is also the only simple Chevalley group of $\dim_{\text{Zar}}(H) = 3$.

Let G be an infinite simple group of fRM. How to describe the ‘size’ of G?
Small groups
Let $H = X(K)$ be a Chevalley group for K a.c. with $\text{char}(K) \neq 2$, and T be a maximal algebraic torus of H. The ‘size’ of H can be described in different ways, e.g. by $\dim_{\text{Zar}}(H)$ or by

$$\dim_{\text{Zar}}(T) = \text{pr}_2(H) = \# \text{ of copies of } \mathbb{Z}_{2\infty} := \{ x \in \mathbb{C}^\times : x^{2^n} = 1, n \in \mathbb{N} \}.$$

The only simple Chevalley group of $\text{pr}_2(H) = 1$ is $H = \text{PSL}_2(K)$; it is also the only simple Chevalley group of $\dim_{\text{Zar}}(H) = 3$.

Let G be an infinite simple group of fRM. How to describe the ‘size’ of G?

- By the RM? No real hope for inductive arguments on the RM (however we know that if $\text{RM}(G) = 3$ then $G \cong \text{PSL}(K)$ for K a.c!). [Frécon 2018]
Small groups
Let $H = X(K)$ be a Chevalley group for K a.c. with $\text{char}(K) \neq 2$, and T be a maximal algebraic torus of H. The ‘size’ of H can be described in different ways, e.g. by $\dim_{\text{Zar}}(H)$ or by

$$\dim_{\text{Zar}}(T) = \text{pr}_2(H) = \# \text{ of copies of } \mathbb{Z}_{2\infty} := \{x \in \mathbb{C}^\times : x^{2^n} = 1, n \in \mathbb{N}\}.$$

The only simple Chevalley group of $\text{pr}_2(H) = 1$ is $H = \text{PSL}_2(K)$; it is also the only simple Chevalley group of $\dim_{\text{Zar}}(H) = 3$.

Let G be an infinite simple group of fRM. How to describe the ‘size’ of G?

- By the RM? No real hope for inductive arguments on the RM (however we know that if $\text{RM}(G) = 3$ then $G \cong \text{PSL}(K)$ for K a.c!). [Frécon 2018]

- By $\text{pr}_2(G)$? Makes sense...but we still don’t know how to prove that if $\text{pr}_2(G) = 1$ then $G \cong \text{PSL}(K)$ for K a.c. So, one needs further assumptions to the identification of ‘small’ G. For example:
Small groups

Let $H = X(K)$ be a Chevalley group for K a.c. with $\text{char}(K) \neq 2$, and T be a maximal algebraic torus of H. The ‘size’ of H can be described in different ways, e.g. by $\dim_{\text{Zar}}(H)$ or by

$$\dim_{\text{Zar}}(T) = \text{pr}_2(H) = \# \text{ of copies of } \mathbb{Z}_{2\infty} := \{ x \in \mathbb{C}^\times : x^{2^n} = 1, n \in \mathbb{N} \}.$$

The only simple Chevalley group of $\text{pr}_2(H) = 1$ is $H = \text{PSL}_2(K)$; it is also the only simple Chevalley group of $\dim_{\text{Zar}}(H) = 3$.

Let G be an infinite simple group of fRM. How to describe the ‘size’ of G?

- By the RM? No real hope for inductive arguments on the RM (however we know that if $\text{RM}(G) = 3$ then $G \cong \text{PSL}(K)$ for K a.c!). [Frécon 2018]

- By $\text{pr}_2(G)$? Makes sense...but we still don’t know how to prove that if $\text{pr}_2(G) = 1$ then $G \cong \text{PSL}(K)$ for K a.c. So, one needs further assumptions to the identification of ‘small’ G. For example:

 - **Minimal simple** groups: every proper definable connected subgroup is solvable. [Jaligot, Cherlin, Deloro, Althinel, Frécon, Burdges...]

Ulla Karhumäki
Small groups of finite Morley rank with a tight automorphism
09/2021 3 / 14
Small groups

Let $H = X(K)$ be a Chevalley group for K a.c. with $\text{char}(K) \neq 2$, and T be a maximal algebraic torus of H. The ‘size’ of H can be described in different ways, e.g. by $\dim_{\text{Zar}}(H)$ or by

$$
\dim_{\text{Zar}}(T) = \text{pr}_2(H) = \# \text{ of copies of } \mathbb{Z}_{2\infty} := \{ x \in \mathbb{C}^\times : x^{2^n} = 1, n \in \mathbb{N} \}.
$$

The only simple Chevalley group of $\text{pr}_2(H) = 1$ is $H = \text{PSL}_2(K)$; it is also the only simple Chevalley group of $\dim_{\text{Zar}}(H) = 3$.

Let G be an infinite simple group of fRM. How to describe the ‘size’ of G?

- By the RM? No real hope for inductive arguments on the RM (however we know that if $\text{RM}(G) = 3$ then $G \cong \text{PSL}(K)$ for K a.c!).[Frécon 2018]

- By $\text{pr}_2(G)$? Makes sense...but we still don’t know how to prove that if $\text{pr}_2(G) = 1$ then $G \cong \text{PSL}(K)$ for K a.c. So, one needs further assumptions to the identification of ‘small’ G. For example:
 - *Minimal simple* groups: every proper definable connected subgroup is solvable.[Jaligot, Cherlin, Deloro, Altinel, Frécon, Burdges...]
 - The presence of a *tight* automorphism whose fixed-point subgroup is pseudofinite—this is our framework.
Pseudofinite fields and simple pseudofinite groups

Definition: An infinite structure is called pseudofinite if every first-order sentence true in it also holds in some finite structure or, equivalently, if it is elementarily equivalent to a non-principal ultraproduct of finite structures.
Pseudofinite fields and simple pseudofinite groups

Definition: An infinite structure is called *pseudofinite* if every first-order sentence true in it also holds in some finite structure or, equivalently, if it is elementarily equivalent to a non-principal ultraproduct of finite structures.

- $\mathbb{Z}, +$ is not pseudofinite.
- $\mathbb{Q}, + \equiv \prod_{p \in \mathbb{P}} \mathbb{C}_p / \mathcal{U}$ is pseudofinite.
- A (twisted) Chevalley group $X(F)$ is pseudofinite iff F is pseudofinite.
- Algebraically closed fields are not pseudofinite.
- $F \equiv \prod_{p \in \mathbb{P}} \mathbb{F}_p / \mathcal{U}$ is pseudofinite of $\text{char}(F) = 0$.

Theorem (Ax 1968) An infinite field is pseudofinite iff it is perfect, quasi-finite and PAC.

Theorem (Wilson 1995 and Ryten 2007) A simple group is pseudofinite iff it is isomorphic to a (twisted) Chevalley group over a pseudofinite field.
Pseudofinite fields and simple pseudofinite groups

Definition: An infinite structure is called *pseudofinite* if every first-order sentence true in it also holds in some finite structure or, equivalently, if it is elementarily equivalent to a non-principal ultraproduct of finite structures.

- $(\mathbb{Z}, +)$ is not pseudofinite.
- $(\mathbb{Q}, +) \equiv \prod_{p \in P} C_p / \mathcal{U}$ is pseudofinite.
- A (twisted) Chevalley group $X(F)$ is pseudofinite iff F is pseudofinite.
- Algebraically closed fields are not pseudofinite.
- $F \equiv \prod_{p \in P} \mathbb{F}_p / \mathcal{U}$ is pseudofinite of $\text{char}(F) = 0$.

Theorem (Ax 1968)

An infinite field is pseudofinite iff it is perfect, quasi-finite and PAC.

Theorem (Wilson 1995 and Ryten 2007)

A simple group is pseudofinite iff it is isomorphic to a (twisted) Chevalley group over a pseudofinite field.
The Principal conjecture

The theory ACFA of algebraically closed fields with generic automorphism is axiomatised [Chatzidakis, Hrushovski 1999] as follows: \((K, \sigma) \models \text{ACFA}\) iff:

- \(K \models \text{ACF}\) and \(\sigma \in \text{Aut}(F)\).

- Let \(V\) be an irreducible variety and let \(S\) be an irreducible subvariety of \(V \times \sigma(V)\) s.t. both \(\pi_1 : S \to V\) and \(\pi_2 : S \to \sigma(V)\) are dominant. Then there exists \(a \in V(K)\) s.t. \((a, \sigma(a)) \in S\).

If \((K, \sigma) \models \text{ACFA}\) then \(\text{Fix}_K(\sigma)\) is pseudofinite. [Macintyre1997/Chatzidakis, Hrushovski 1999]
The Principal conjecture

The theory ACFA of algebraically closed fields with generic automorphism is axiomatised [Chatzidakis, Hrushovski 1999] as follows: \((K, \sigma) \models ACFA\) iff:

- \(K \models ACF\) and \(\sigma \in \text{Aut}(F)\).
- Let \(V\) be an irreducible variety and let \(S\) be an irreducible subvariety of \(V \times \sigma(V)\) s.t. both \(\pi_1 : S \to V\) and \(\pi_2 : S \to \sigma(V)\) are dominant. Then there exists \(a \in V(K)\) s.t. \((a, \sigma(a)) \in S\).

If \((K, \sigma) \models ACFA\) then \(\text{Fix}_K(\sigma)\) is pseudofinite. [Macintyre1997/Chatzidakis, Hrushovski 1999]

Fixed point subgroups of generic automorphisms of ‘structures with certain nice model-theoretic properties’ resemble pseudofinite groups. [Hrushovski 2002]

The Principal conjecture (Hrushovski 2002/Uğurlu 2009)

Let \(G\) be an infinite simple group of finite Morley rank with a generic automorphism \(\alpha\). Then the fixed point subgroup \(C_G(\alpha)\) is pseudofinite.
The Principal conjecture
The theory ACFA of algebraically closed fields with generic automorphism is axiomatised [Chatzidakis, Hrushovski 1999] as follows: \((K, \sigma) \models \text{ACFA}\) iff:

- \(K \models \text{ACF}\) and \(\sigma \in \text{Aut}(F)\).

- Let \(V\) be an irreducible variety and let \(S\) be an irreducible subvariety of \(V \times \sigma(V)\) s.t. both \(\pi_1: S \to V\) and \(\pi_2: S \to \sigma(V)\) are dominant. Then there exists \(a \in V(K)\) s.t. \((a, \sigma(a)) \in S\).

If \((K, \sigma) \models \text{ACFA}\) then \(\text{Fix}_K(\sigma)\) is pseudofinite. [Macintyre1997/Chatzidakis, Hrushovski 1999]

Fixed point subgroups of generic automorphisms of ‘structures with certain nice model-theoretic properties’ resemble pseudofinite groups. [Hrushovski 2002]

The Principal conjecture (Hrushovski 2002/Uğurlu 2009)
Let \(G\) be an infinite simple group of finite Morley rank with a generic automorphism \(\alpha\). Then the fixed point subgroup \(C_G(\alpha)\) is pseudofinite.

- \((C-Z) \Rightarrow (PC)\). [Chatzidakis and Hrushovski 1999]

- We aim to prove that \((PC) \Rightarrow (C-Z)\).
A tight automorphism α

From now on:
1. Groups (resp. fields) are considered in pure group (resp. field) language.
2. Given a subset X of a group of fRM G, \overline{X} is the definable closure of X in G.

Example: We have $(K, U) \models ACFA [Hrushovski 1996]$, where $U: K = \prod_{i} p^{i_2} P_{alg}^{p_{i_2}}/\mathcal{U}$ is the non-standard Frobenius automorphism of K.

Let $G = X(K)$ be a simple Chevalley group and H be a definable, connected and U-invariant subgroup of G. Then U induces an automorphism on G s.t. $X(\text{Fix}_K(U)) = X(\mathcal{O}_p^{i_2} P_{alg}^{p_{i_2}}/\mathcal{U}) \hookrightarrow \mathcal{O}_p^{i_2} P_{alg}^{p_{i_2}}/\mathcal{U}$ is pseudofinite. $CH(U) = H(k)$, with k pseudofinite. So, $CH(U) \subset \text{Zar} = H$.

Ulla Karhumäki
A tight automorphism α

From now on:
1. Groups (resp. fields) are considered in pure group (resp. field) language.
2. Given a subset X of a group of fRM G, \bar{X} is the definable closure of X in G.

Definition (Üğurlu 2009)

An automorphism α of an infinite simple group of fRM G is called **tight** if, for any connected definable and α-invariant subgroup $H \leq G$, $C_H(\alpha) = H$.

Ulla Karhumäki

Small groups of finite Morley rank with a tight automorphism

09/2021 6/14
A tight automorphism α

From now on:
1. Groups (resp. fields) are considered in pure group (resp. field) language.
2. Given a subset X of a group of fRM G, \overline{X} is the definable closure of X in G.

Definition (Uğurlu 2009)

An automorphism α of an infinite simple group of fRM G is called **tight** if, for any connected definable and α-invariant subgroup $H \leq G$, $\mathcal{C}_H(\alpha) = H$.

Example: We have $(K, \phi_U) \models \text{ACFA}[\text{Hrushovski 1996}]$, where

$$
\phi_U : K = \prod_{p_i \in P} \mathbb{F}_{p_i}^{\text{alg}} / U \longrightarrow \prod_{p_i \in P} \mathbb{F}_{p_i}^{\text{alg}} / U, \quad [x_i]_U \mapsto [x_i^{p_i}]_U
$$

is the **non-standard Frobenius automorphism** of K.

Let $G = X(K)$ be a simple Chevalley group and H be a definable, connected and ϕ_U-invariant subgroup of G. Then ϕ_U induces an automorphism on G s.t.

- $X(\text{Fix}_K(\phi_U)) = X(\prod_{p_i \in P} \mathbb{F}_{p_i} / U) \cong \prod_{p_i \in P} X(\mathbb{F}_{p_i}) / U$ is pseudofinite.
- $\mathcal{C}_H(\phi_U) = H(k)$, with k pseudofinite. So, $\mathcal{C}_H(\phi_U)^{\text{Zar}} = H$.

Ulla Karhumäki
Small groups of finite Morley rank with a tight automorphism
09/2021 6 / 14
Tight α with pseudofinite fixed-point subgroup

The socle $\text{Soc}(H)$ of a group H is the subgroup generated by all minimal normal non-trivial subgroups of a group H.

Theorem (Uğurlu 2009)

Let G be an infinite simple group of fRM and α be a tight automorphism of G s.t. $C_G(\alpha) = P \equiv \prod_{i \in I} P_i/\mathcal{U}$ is pseudofinite. Then there is a definable normal S of P s.t.

$$X(F) \cong \prod_{i \in I} \text{Soc}(P_i)/\mathcal{U} \equiv S \trianglelefteq P \leq \text{Aut}(S),$$

where F is a pseudofinite field. Moreover, $\overline{S} = G$.
Tight α with pseudofinite fixed-point subgroup

The socle $\text{Soc}(H)$ of a group H is the subgroup generated by all minimal normal non-trivial subgroups of a group H.

Theorem (Uğurlu 2009)

Let G be an infinite simple group of fRM and α be a tight automorphism of G s.t. $C_G(\alpha) = P \equiv \prod_{i \in I} P_i/\mathcal{U}$ is pseudofinite. Then there is a definable normal S of P s.t.

$$
X(F) \cong \prod_{i \in I} \text{Soc}(P_i)/\mathcal{U} \equiv S \trianglelefteq P \leq \text{Aut}(S),
$$

where F is a pseudofinite field. Moreover, $\overline{S} = G$.

Remarks:

1. G has involutions as the simple pseudofinite group S has involutions.
2. For almost all i, The socle $\text{Soc}(P_i)$ is uniformly definable normal subgroup of P_i. So $P/S \equiv \prod_{i \in I} (P_i/\text{Soc}(P_i))/\mathcal{U}$.
Let G be an infinite simple group of fRM with a tight automorphism α whose fixed point subgroup $P = C_G(\alpha)$ is pseudofinite. We have $\text{pr}_2(G) = n \geq 1$. To prove that (C-Z) \iff (PC) we need to prove the following two steps:

1. **Algebraic identification step**: Show that S is of untwisted Lie type X and of Lie rank n, and, that $\text{char}(F) \neq 2$. Then prove that this forces G to be isomorphic to a Chevalley group $X(K)$, of the same untwisted Lie type X and the same Lie rank n as S, over an a.c. field K of $\text{char}(K) \neq 2$.

2. **Model-theoretic step**: Prove that a generic automorphism of G is tight.
Let G be an infinite simple group of fRM with a tight automorphism α whose fixed point subgroup $P = C_G(\alpha)$ is pseudofinite. We have $\text{pr}_2(G) = n \geq 1$. To prove that $(C-Z) \iff (PC)$ we need to prove the following two steps:

1. **Algebraic identification step:** We know that there is a pseudofinite (twisted) Chevalley group $S = X(F)$ s.t. $\overline{S} = G$.
 - Show that S is of untwisted Lie type X and of Lie rank n, and, that $\text{char}(F) \neq 2$.
 - Then prove that this forces G to be isomorphic to a Chevalley group $X(K)$, of the same untwisted Lie type X and the same Lie rank n as S, over an a.c. field K of $\text{char}(K) \neq 2$.

2. **Model-theoretic step:** Prove that a generic automorphism of G is tight.
Let G be an infinite simple group of fRM with a tight automorphism α whose fixed point subgroup $P = C_G(\alpha)$ is pseudofinite. We have $\text{pr}_2(G) = n \geq 1$. To prove that (C-Z) \iff (PC) we need to prove the following two steps:

1. **Algebraic identification step**: We know that there is a pseudofinite (twisted) Chevalley group $S = X(F)$ s.t. $\overline{S} = G$.
 - Show that S is of untwisted Lie type X and of Lie rank n, and, $\text{char}(F) \neq 2$.
 - Then prove that this forces G to be isomorphic to a Chevalley group $X(K)$, of the same untwisted Lie type X and the same Lie rank n as S, over an a.c. field K of $\text{char}(K) \neq 2$.

2. **Model-theoretic step**: Prove that a generic automorphism of G is tight.
Our results (K. and Uğurlu 2021)

From now on, G is an infinite simple group of fRM with $\text{pr}_2(G) = 1$ admitting a tight automorphism α whose fixed-point subgroup $C_G(\alpha) = P \equiv \prod_{i \in I} P_i/\mathcal{U}$ is pseudofinite and $S \cong \chi(F) \cong \prod_{i \in I} \text{Soc}(P_i)/\mathcal{U}$.

Proposition

$S \cong \chi(F) = \text{PSL}_2(F)$, where F is a pseudofinite field of $\text{char}(F) \neq 2$.

Theorem (Version 1.)

If 1 is a square in F and $\text{char}(F) > 2$, then $G \cong \text{PSL}_2(K)$ for K a.c. of $\text{char}(K) > 2$.

Theorem (Version 2.)

If 1 is a square in F and the Sylow 2-subgroups of S are not Klein 4-groups, $G \cong \text{PSL}_2(K)$ for K a.c. of $\text{char}(K) \neq 2$.

Almost an theorem

$G \cong \text{PSL}_2(K)$ for K a.c. of $\text{char}(K) \neq 2$.

Our results (K. and Uğurlu 2021)

From now on, G is an infinite simple group of fRM with $\text{pr}_2(G) = 1$ admitting a tight automorphism α whose fixed-point subgroup $C_G(\alpha) = P \equiv \prod_{i \in I} P_i / \mathcal{U}$ is pseudofinite and $S \cong X(F) \cong \prod_{i \in I} \text{Soc}(P_i) / \mathcal{U}$.

Proposition

$S \cong \text{PSL}_2(F)$, where F is a pseudofinite field of $\text{char}(F) \neq 2$.
Our results (K. and Uğurlu 2021)

From now on, \(G \) is an infinite simple group of fRM with \(pr_2(G) = 1 \) admitting a tight automorphism \(\alpha \) whose fixed-point subgroup \(C_G(\alpha) = P \equiv \prod_{i \in I} P_i/U \) is pseudofinite and \(S \cong X(F) \cong \prod_{i \in I} \text{Soc}(P_i)/U \).

Proposition

\(S \cong \text{PSL}_2(F) \), where \(F \) is a pseudofinite field of \(\text{char}(F) \neq 2 \).

Theorem (Version 1.)

If \(-1\) is a square in \(F^\times \) and \(\text{char}(F) > 2 \), then \(G \cong \text{PSL}_2(K) \) for \(K \) a.c. of \(\text{char}(K) > 2 \).
Our results (K. and Uğurlu 2021)

From now on, G is an infinite simple group of fRM with $\text{pr}_2(G) = 1$ admitting a tight automorphism α whose fixed-point subgroup $C_G(\alpha) = P \equiv \prod_{i \in I} P_i / U$ is pseudofinite and $S \cong \chi(F) \cong \prod_{i \in I} \text{Soc}(P_i)/U$.

Proposition

$S \cong \text{PSL}_2(F)$, where F is a pseudofinite field of $\text{char}(F) \neq 2$.

Theorem (Version 1.)

*If -1 is a square in F^\times and $\text{char}(F) > 2$, then $G \cong \text{PSL}_2(K)$ for K a.c. of $\text{char}(K) > 2$.***

Theorem (Version 2.)

*If -1 is a square in F^\times and the Sylow 2-subgroups of S are not Klein 4-groups, $G \cong \text{PSL}_2(K)$ for K a.c. of $\text{char}(K) \neq 2$.***
Our results (K. and Uğurlu 2021)

From now on, G is an infinite simple group of fRM with $\text{pr}_2(G) = 1$ admitting a tight automorphism α whose fixed-point subgroup $C_G(\alpha) = P \equiv \prod_{i \in I} P_i/\mathcal{U}$ is pseudofinite and $S \cong X(F) \cong \prod_{i \in I} \text{Soc}(P_i)/\mathcal{U}$.

Proposition

$S \cong \text{PSL}_2(F)$, where F is a pseudofinite field of $\text{char}(F) \neq 2$.

Theorem (Version 1.)

*If -1 is a square in F^\times and $\text{char}(F) > 2$, then $G \cong \text{PSL}_2(K)$ for K a.c. of $\text{char}(K) > 2$.***

Theorem (Version 2.)

*If -1 is a square in F^\times and the Sylow 2-subgroups of S are not Klein 4-groups, $G \cong \text{PSL}_2(K)$ for K a.c. of $\text{char}(K) \neq 2$.***

Almost an theorem

$G \cong \text{PSL}_2(K)$ for K a.c. of $\text{char}(K) \neq 2$.
Sylow 2-subgroups of S and G, $S \cong \text{PSL}_2(F)$

Theorem (Deloro and Jaligot 2010)

Let H be an odd type connected group of fRM with $\text{pr}_2(H) = 1$. Then exactly one of the following holds.

1. $\text{Syl}_H = \text{Syl}^o_H \cong \mathbb{Z}_{2\infty}$.
2. $\text{Syl}_H = \text{Syl}^o_H \rtimes \langle \omega \rangle$ *for an involution ω which inverts Syl^o_H.*
3. $\text{Syl}_H = \text{Syl}^o_H \cdot \langle \omega \rangle$ *for an element ω of order 4 which inverts Syl^o_H.*

Any Sylow 2-subgroup Syl_G of G must be of type (2) as for otherwise S satisfies the FO-expressible statement 'Every subgroup of order 4 is cyclic'.

Sylow 2-subgroups of S are either conjugate dihedral groups or as Syl_G.

In particular, the finite simple groups in the ultraproduct S has dihedral Sylow 2-subgroups.

Theorem (Gorenstein and Walter 1962)

Let H be a finite simple group with dihedral Sylow 2-subgroups. Then either $H \cong \text{PSL}_2(q)$, $q > 5$ or $H \cong A_7$.
Sylow 2-subgroups of S and G, $S \cong \text{PSL}_2(F)$

Theorem (Deloro and Jaligot 2010)

Let H be an odd type connected group of fRM with $\text{pr}_2(H) = 1$. Then exactly one of the following holds.

1. $\text{Syl}_H = \text{Syl}_H^o \cong \mathbb{Z}_{2\infty}.$

2. $\text{Syl}_H = \text{Syl}_H^o \times \langle \omega \rangle$ for an involution ω which inverts Syl_H^o.

3. $\text{Syl}_H = \text{Syl}_H^o \cdot \langle \omega \rangle$ for an element ω of order 4 which inverts Syl_H^o.

Any Sylow 2-subgroup Syl_G of G must be of type (2) as for otherwise S satisfies the FO-expressible statement ‘Every subgroup of order 4 is cyclic’.

- Sylow 2-subgroups of S are either conjugate dihedral groups or as Syl_G.
 In particular, the finite simple groups in the ultraproduct S has dihedral Sylow 2-subgroups.
Sylow 2-subgroups of S and G, $S \cong \text{PSL}_2(F)$

Theorem (Deloro and Jaligot 2010)

Let H be an odd type connected group of fRM with $pr_2(H) = 1$. Then exactly one of the following holds.

1. $\text{Syl}_H = \text{Syl}_H^o \cong \mathbb{Z}_{2^\infty}$.
2. $\text{Syl}_H = \text{Syl}_H^o \rtimes \langle \omega \rangle$ for an involution ω which inverts Syl_H^o.
3. $\text{Syl}_H = \text{Syl}_H^o \cdot \langle \omega \rangle$ for an element ω of order 4 which inverts Syl_H^o.

Any Sylow 2-subgroup Syl_G of G must be of type (2) as for otherwise S satisfies the FO-expressible statement ‘Every subgroup of order 4 is cyclic’.

- Sylow 2-subgroups of S are either conjugate dihedral groups or as Syl_G. In particular, the finite simple groups in the ultraproduct S has dihedral Sylow 2-subgroups.

Theorem (Gorenstein and Walter 1962)

Let H be a finite simple group with dihedral Sylow 2-subgroups. Then either $H \cong \text{PSL}_2(q)$, $q \geq 5$ or $H \cong A_7$.

Ulla Karhumäki
Structures of $S \cong \text{PSL}_2(F), \text{PGL}_2(F)$ and P

1. $\text{PSL}_2(F) \cong S \leq C_G(\alpha) = P \leq G$, for F pseudofinite of $\text{char}(F) \neq 2$.
2. $P \leq \text{PGL}_2(F) \rtimes \text{Aut}(F)$.

- Let $P = \prod_{i \in I} P_i / U$. Then $P/S \cong \prod_{i \in I} P_i / \text{soc}(P_i) / U = \prod_{i \in I} (P_i/\text{PSL}_2(\mathbb{F}_q)) / U$. $P_i \cong \text{PGL}_2(q_i) \rtimes \text{Aut}(q_i) \Rightarrow P_i/\text{PSL}_2(q_i)$ has an abelian subgroup of index 2.

- $x \in P \Rightarrow x = sdt$, $s \in S$, $d \in \text{Diag}(S)$, $t \in \text{Aut}(F)$.

- $\text{Diag}(S) \times \text{Aut}(F)$ leave invariant $U \cong F^+$ and $T \cong (F^x)^2$. $\Rightarrow P/S \cong \text{N}_P(T)/\text{N}_S(T) \cong \text{N}_P(\text{Aut}(F))/U$.
How to identify \(G \)

Aim: \(\overline{S} = G \) is a split Zassenhaus group, acting on the set of left cosets of \(\overline{B} \) in \(G \), with a one-point stabiliser \(\overline{B} \) and a two-point stabiliser \(\overline{T} \). This implies that \(G \cong \text{PSL}_2(K) = \text{PGL}_2(K) \) for \(K \) a.c. and of \(\text{char}(K) \neq 2 \).[Delahan, Nesin 1995]
How to identify G

Aim: $\overline{S} = G$ is a split Zassenhaus group, acting on the set of left cosets of \overline{B} in G, with a one-point stabiliser \overline{B} and a two-point stabiliser \overline{T}. This implies that $G \cong \text{PSL}_2(K) = \text{PGL}_2(K)$ for K a.c. and of $\text{char}(K) \neq 2$. [Delahan, Nesin 1995]

For above, we need to observe things as

- $G = \overline{B} \uplus \overline{U}\omega_0\overline{B}$.
- $\overline{B}^g \cap \overline{U} = 1$ for all $g \in G \setminus \overline{B}$ (in particular, $N_G(\overline{U}) = N_G(\overline{B}) = \overline{B}$).
- $C_G^o(u) = C_G^o(\overline{U}) = \overline{U}$ for all $u \in \overline{U}^*$.
- $N_G(\overline{T}) = C_G(i) = \langle \overline{T}, \omega_0 \rangle$.
- $\overline{B} = \overline{U} \bowtie \overline{T}$ is a split Frobenius group.
How to identify G

Aim: $\overline{S} = G$ is a split Zassenhaus group, acting on the set of left cosets of \overline{B} in G, with a one-point stabiliser \overline{B} and a two-point stabiliser \overline{T}. This implies that $G \cong \text{PSL}_2(K) = \text{PGL}_2(K)$ for K a.c. and of $\text{char}(K) \neq 2$. [Delahan, Nesin 1995]

For above, we need to observe things as

- $G = \overline{B} \sqcup \overline{U}\omega_0\overline{B}$.
- $\overline{B}^g \cap \overline{U} = 1$ for all $g \in G \setminus \overline{B}$ (in particular, $N_G(\overline{U}) = N_G(\overline{B}) = \overline{B}$).
- $C^G(u) = C^G(\overline{U}) = \overline{U}$ for all $u \in \overline{U}^*$.
- $N_G(\overline{T}) = C_G(i) = \langle \overline{T}, \omega_0 \rangle$.
- $\overline{B} = \overline{U} \times \overline{T}$ is a split Frobenius group.

1. Prove that $[\ell:S]<\infty$ and use twist to get information up to connected components:

 For $u \in U^*$: $C^G(u)^{(a)} \leq C^G(u)^{(d)} = C^G(u)^{(u)} \leq C^G(u)^{(a)}$, $C^G(u) = \overline{U} \implies C^G(\omega_0 u) = \overline{U}^*$.

2. Prove that there is an involution $\iota \in \overline{T}$. Then, for $\overline{T}^\iota \iota$, $C_G(\overline{T}^\iota \iota) = \overline{T}$.
We know that $P/S \cong N_P(U)/B$ and $P/S \cong N_P(T)/N_S(T)$ is abelian-by-finite. To prove that $[P : S] < \infty$, we observe the following things.
We know that $P/S \cong N_P(U)/B$ and $P/S \cong N_P(T)/N_S(T)$ is abelian-by-finite. To prove that $[P : S] < \infty$, we observe the following things.

1. $(N_P^0(U))' \leq U$ and $(N_P^0(T))' \leq N_S(T)$.
2. $[N_P(T) : N_P(T) \cap N_P(U)] < \infty$.
3. $[C_P(T) : T] < \infty$.
We know that $P/S \cong N_P(U)/B$ and $P/S \cong N_P(T)/N_S(T)$ is abelian-by-finite.
To prove that $[P : S] < \infty$, we observe the following things.

1. $(N_P^0(U))' \leq U$ and $(N_P^0(T))' \leq N_S(T)$.
2. $[N_P(T) : N_P(T) \cap N_P(U)] < \infty$.
3. $[C_P(T) : T] < \infty$.

Sketch of proof of (1).

Clearly $(N_P^0(U))' \leq B$.
As $N_P^0(U)$ is connected and solvable, $N_P^0(U)'$ is nilpotent\[Nesin 1990\].
As $B^0 \leq N_P^0(U)$ we have $N_P^0(U)' \leq F(B^0)$.
It can be proven that $F(B^0) = \overline{U}$ which gives us $(N_P^0(U))' \leq U$.
$i \in \overline{T}^\circ$

With assumptions in Theorem (Version 2):

- For the unique involution $i \in T$, we have

$$C_G^\circ(i) = C_{C_G(i)}(\alpha)^\circ = C_{C_G(i)}(\alpha) = C_{C_G^\circ(\alpha)}(i)^\circ = C_S(i)^\circ = \langle T, \omega_0 \rangle^\circ = \overline{T}^\circ.$$
With assumptions in Theorem (Version 2):

- For the unique involution \(i \in T \), we have

\[
C_G^\circ(i) = C_G^\circ(i)(\alpha)^\circ = C_G(i)(\alpha)^\circ = C_G^\circ(\alpha)(i)^\circ = C_S(i)^\circ = \langle T, \omega_0 \rangle^\circ = T^\circ.
\]

- Since \(i \in T \), we know that a Sylow 2-subgroup \(Syl_S \) of \(S \) is in \(N_S(T) \). Let \(Syl_G \) be a Sylow 2-subgroup of \(G \) containing the Klein 4-group \(\langle i \rangle \times \langle \omega_0 \rangle \). As \(Syl_S \) is not a Klein 4-group, \(\omega_0 \) inverts \(Syl_G^\circ \). So \(i \in Syl_G^\circ \).
For the unique involution $i \in T$, we have

$$C_G^\circ(i) = C_{C_G^\circ(i)}(\alpha)^\circ = C_{C_G(i)}(\alpha)^\circ = C_{C_G^\circ(\alpha)}(i)^\circ = C_S(i)^\circ = \langle T, \omega_0 \rangle^\circ = \overline{T}^\circ.$$

Since $i \in T$, we know that a Sylow 2-subgroup Syl_S of S is in $N_S(T)$. Let Syl_G be a Sylow 2-subgroup of G containing the Klein 4-group $\langle i \rangle \times \langle \omega_0 \rangle$. As Syl_S is not a Klein 4-group, ω_0 inverts Syl_G°. So $i \in Syl_G^\circ$.

Without extra assumptions:

- Enough to prove that $C_G^\circ(t) = \overline{T}^\circ$ for all $t \in \overline{T}^\circ$: Then \overline{T} is generous in G and so there is $1 \neq x \in \overline{T} \cap C_G(H)$ for some maximal decent torus of H of G. So $\mathbb{Z}_{2^{\infty}} \leq H \leq C_G^\circ(x) = \overline{T}^\circ$.
With assumptions in Theorem (Version 2):

- For the unique involution $i \in T$, we have
 \[
 C_G^\circ(i) = \overline{C_{G(i)}(\alpha)}^\circ = \overline{C_{G(i)}(\alpha)}^\circ = \overline{C_{G(\alpha)}(i)}^\circ = C_S(i)^\circ = \langle T, \omega_0 \rangle^\circ = \overline{T}^\circ.
 \]

- Since $i \in T$, we know that a Sylow 2-subgroup Syl_S of S is in $N_S(T)$. Let Syl_G be a Sylow 2-subgroup of G containing the Klein 4-group $\langle i \rangle \times \langle \omega_0 \rangle$. As Syl_S is not a Klein 4-group, ω_0 inverts Syl_G°. So $i \in \text{Syl}_G^\circ$.

Without extra assumptions:

- Enough to prove that $C_G^\circ(t) = \overline{T}^\circ$ for all $t \in \overline{T}^\circ$: Then \overline{T} is generous in G and so there is $1 \neq x \in \overline{T} \cap C_G(H)$ for some maximal decent torus of H of G. So $\mathbb{Z}_{2 \infty} \leq H \leq C_G^\circ(x) = \overline{T}^\circ$.

Idea for doing above: Prove that $\bigcup_{t \in \overline{T}^*} C_G^\circ(t) \cup \omega_0^\circ$ is abelian by considering its intersection with the maximal subgroups of S.