Early Growth in a Perturbed Universe:
Exploring Dark Matter Halo Populations in 2LPT and ZA Simulations

By

Daniel J. Sissom

Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
in
PHYSICS

May, 2015
Nashville, TN

Approved:

J. Kelly Holley-Bockelmann, Ph.D.
Andreas A. Berlind, Ph.D.
David A. Weintraub, Ph.D.
Shane M. Hutson, Ph.D.
Robert J. Scherrer, Ph.D.
TABLE OF CONTENTS

LIST OF TABLES	vi
LIST OF FIGURES	vii

I Introduction

1. Dark Matter Halos in the Early Universe ... 2
 1.1 Halo Formation and Growth ... 2
 1.2 The Mass Function ... 4
 1.3 Density and Concentration ... 5
 1.4 Halos as Hosts to Baryonic Processes ... 12

2. Computational Theory ... 15
 2.1 Collisionless Dynamics and N-body Simulations 15
 2.2 Perturbation Theory and Particle Displacement 18
 2.2.1 Particle Displacement with z_A and $2lpt$ 19
 2.2.2 Transients and the Advantages of $2lpt$ 21
 2.2.3 Initial Redshift ... 22

II Numerical Methods

1. Simulation Initialization .. 24
2. Simulations with GADGET-2 ... 25
 2.1 GADGET-2 .. 25
 2.1.1 Gravitational Algorithms ... 26
 2.1.2 Time Integration .. 28
2.2 Simulations ... 29
3. Halo Finding with ROCKSTAR ... 30
 3.1 Halo Finding ... 30
 3.1.1 FOF Groups .. 31
 3.1.2 Phase-Space FOF Hierarchy ... 31
 3.1.3 Converting FOF Subgroups to Halos .. 32
 3.1.4 Substructure .. 33
 3.2 Halo Properties ... 33
4. CROSSMATCH .. 34
5. Analysis ... 35
 5.1 Halo Properties with ROCKSTAR .. 36
 5.1.1 Simulation Snapshots and ROCKSTAR Setup 36
 5.1.2 ROCKSTAR Output and Post-processing 37
 5.2 Density Profile Fitting ... 39
II.5.2.1 Density Profiles ... 39
II.5.2.2 Fitting .. 39
II.5.2.3 Characterization of Uncertainty 41
II.5.2.4 Concentration Comparison to ROCKSTAR 41
II.5.3 Cross-matched Halo Catalog 43
II.5.3.1 Cross-matching ... 43
II.5.3.2 Database Aggregation and Filtering 44
II.5.4 Halo Comparison .. 45
II.5.4.1 Match Verification .. 45
II.5.4.2 Morphology .. 46
II.5.4.3 Density Profiles .. 47
II.5.5 Difference Distributions 50
II.5.5.1 Histograms .. 51
II.5.5.2 Fitting .. 51
II.5.6 Redshift Trends .. 53
II.5.6.1 Mean and Standard Deviation 53
II.5.6.2 Skew .. 55
II.5.6.3 Kurtosis .. 57
II.5.7 Mass Trends ... 60
II.5.7.1 Binning and Fitting ... 61
II.5.7.2 Trends with Redshift ... 62
II.5.8 Alternate Difference Distributions 62
II.5.8.1 Equivalent Displacement 66
II.5.8.2 Redshift Trends .. 67
II.6 Automation .. 67

III Exploring Dark Matter Halo Populations in 2LPT and ZA Simulations ... 71

III.1 Introduction ... 71
III.2 Numerical Methods .. 77
III.3 Results ... 83
III.3.1 Individual halo pairs .. 83
III.3.2 Differences in ensemble halo properties 85
III.3.2.1 Time evolution of mass and concentration differences 86
III.3.2.2 Global halo population differences as a function of halo mass .. 89
III.3.3 A census of halo population differences 93
III.4 Discussion .. 95
III.5 Conclusion .. 98

IV Supermassive Black Holes and Their Hosts 100

IV.1 Introduction ... 100
IV.1.1 Galaxy Properties ... 100
Section
IV.1.1
IV.1.1.2
IV.1.2
IV.1.3
IV.1.3.1
IV.1.3.2
IV.1.3.3
IV.2
IV.2.1
IV.2.2
IV.3
IV.3.1
IV.3.1.1
IV.3.1.2
IV.3.1.3
IV.3.2
IV.3.2.1
IV.3.2.2
IV.4
IV.4.1
IV.4.2
V
BIBLIOGRAPHY

Appendices .. 129

A ROCKSTAR Configuration and Execution 130

A.1 Single Node Configuration File (Text) 130
A.2 PBS Submission Script (Bash) 130
A.3 Post-Processing Script (Bash) 131

B CROSSMATCH Modifications and Configuration 132

B.1 2LPT First Configuration File (Text) 132
B.2 ZA First Configuration File (Text) 132

C BGC2 Import Code (Python) 133
Section	Title	Page
D	Density Profile Code (Python)	135
E	CROSSMATCH Best Match Code	143
E.1	Best Match (Python)	143
E.2	PBS Submission Script (Bash)	143
F	Database Generation Code	145
F.1	Halo Match (Python)	145
F.2	PBS Submission Script (Bash)	149
G	Halo Comparison Code	151
G.1	Particle Comparison (Python)	151
G.2	Density Comparison (Python)	156
H	Concentration Comparison Code (Python)	164
I	Differential Histogram Code	166
I.1	Histogram Generation and Fitting (Python)	166
I.2	PBS Submission Script (Bash)	174
I.3	PBS Submission Script - Individual Boxes (Bash)	174
I.4	Statistics Collection Script (Bash)	175
J	Redshift Trends Code (Python)	176
K	Mass Trends Code	181
K.1	Mass and Concentration vs. Mass (Python)	181
K.2	PBS Submission Script (Bash)	186
K.3	Fit Slopes vs. Redshift (Python)	186
L	Alternate Differential Distribution Redshift Trends Code (Python)	190
M	Miscellaneous Scripts	193
M.1	Directory Structure Setup (Bash)	193
M.2	CROSSMATCH Setup (Bash)	193
M.3	Individual Snapshot ROCKSTAR Run Script (Bash)	194
M.4	All Snapshots ROCKSTAR 2LPT PBS Submission Script (Bash)	194
M.5	All Snapshots ROCKSTAR ZA PBS Submission Script (Bash)	195
Section	Description	Page
---------	---	------
M.6	All Snapshots ROCKSTAR Post-Process Script (Bash)	195
M.7	All Snapshots CROSSMATCH PBS Submission Script (Bash)	195
M.8	All Snapshots Density Profile PBS Submission Script (Bash)	196
Table	Description	Page
---------	---	------
III.1	Coefficients for linear least squares fits from Figure III.3.	86
III.2	Coefficients for linear least squares fits from Figure III.5.	92
LIST OF FIGURES

Figure	Description	Page
I.1	The halo mass function	6
I.2	Concentration upturn for high mass halos at high z	9
I.3	Evolution of concentration with redshift for two halo masses	10
I.4	Halo concentration c as a function of $\log \sigma^{-1}$	13
I.5	Halo concentration c as a function of halo mass	14
II.1	Potential and force softening	26
II.2	Barns-Hut oct-tree in two dimensions	27
II.3	Density profiles for two large halos at $z = 14$ and $z = 6$	42
II.4	Example of halo particle matching at $z = 6$	46
II.5	Comparison of two large well-fit companion halos $z = 6$	48
II.6	Comparison of two large companion halos $z = 6$ with differing nuclear structure	49
II.7	Histograms of ΔM_{vir} and Δc	54
II.8	Mean, standard deviation, and rms as functions of redshift for generalized normal fits	56
II.9	Skew and kurtosis as functions of redshift for generalized normal fits	58
II.10	ΔM_{vir} as a function of $M_{\text{vir,avg}}$	63
II.11	Δc as a function of $M_{\text{vir,avg}}$	64
II.12	Slopes of the Δq vs. $M_{\text{vir,avg}}$ fit functions	65
II.13	Statistics for distributions of δq as functions of redshift	68
CHAPTER I

Introduction

In this work, we explore the effects of simulation initialization technique on the properties of dark matter halo populations in the early Universe. Specifically, we compare simulations initialized with the Zel’dovich approximation and second-order Lagrangian perturbation theory and measure the discrepancies in mass and concentration between halos in each simulation during the pre-reionization epoch. Overall, we find that linear theory underestimates the growth of early halos, resulting in a suppressed halo mass distribution and large mass-dependent concentration fluctuations. The first two chapters of this work are dedicated to introducing the underlying physics and numerical methods used in our research. Our primary results are presented in the third chapter.

The structure of this document is as follows: The remainder of this chapter, Chapter I, provides an introduction to the early universe and the processes that lead to galaxy-hosting dark matter halos, as well as the fundamentals of the computational theory for the numerical methods relevant to this discussion. Chapter II examines in more detail the specific numerical methods used for this work, with emphasis on the methodologies of the codes themselves, how they are implemented in the context of the overall simulation and analysis pipeline, and the results obtained at each step. Chapter III is a direct representation of the paper submitted to the Astrophysical Journal (ApJ) on December 13, 2014, which (more succinctly) presents an overview of the numerical methods and the main results in this work. Chapter IV contains the material as previously submitted to fulfill the requirements of the Qualifying Exam and reviews supermassive black holes and their host galaxies. Chapter V concludes with a review of the results in this work and the direction of future research. Code
for the various programs written for this work and used in our analysis is presented in the Appendices.

I.1 Dark Matter Halos in the Early Universe

The bulk of this work deals with the distributions of properties of dark matter halos. To this effect, we begin our discussion with an introduction to dark matter halos in the early universe, including their formation and growth, the halo mass function, halo density and concentration, and the baryonic processes of the pre-reionization era that dark matter halos play host to.

There is ample evidence for the existence of dark matter. We find that the behavior and characteristics of galaxies and galaxy clusters necessitate the existence of an additional mass component that is decoupled from the electromagnetic force and interacts via gravity only. For example, measurements of the circular velocities of stellar matter in galaxies show a flattening of the rotation curves (Rubin et al. 1980), where it would be expected that the velocities should decrease with radius if the visible mass were the only component contributing to the potential. The emission of X-rays from hot gas in clusters implies a gas temperature to high to be accounted for by the visible mass (Vikhlinin et al. 2006). Additionally, observations and gravitational lensing studies of the Bullet cluster show a displacement of the stars and gas from the primary mass component (Clowe et al. 2006).

The evolution of galaxies, as studied through both observation and numerical simulation, make sense only in the context of existing inside a larger halo of hidden mass. As dark matter halos play such a fundamental role in the evolution of the Universe, it is imperative to thoroughly explore their properties and behavior.

I.1.1 Halo Formation and Growth

The attractive nature of gravity implies that regions of over-density become denser and regions of under-density become even more under-dense. A perfectly smooth
dark matter (DM) field would continue to stay smooth, as net forces would balance to zero. However, small density perturbation generated during inflation in the otherwise smooth primordial DM field trigger the inexorable collapse of dark matter into over-dense regions known as dark matter halos (Press & Schechter 1974; Bardeen et al. 1986).

The non-linear evolution of the collapse of density fluctuations may be approximated to first order by the spherical “top-hat” perturbation (Silk 1968; Peebles & Yu 1970; Peebles 1970; Gunn & Gott 1972). In this model, the perturbation is represented as an isolated, uniform sphere of dark matter. The region outside the sphere is unperturbed and does not influence the evolution of the sphere. This model affords an exact solution (Peebles 1980, 1993; Padmanabhan 1993, and references therein), but results in a collapse to infinite density. However, growth of initially small density inhomogeneities may interrupt the collapse by a rapid relaxation to a finite density virial equilibrium (Shapiro et al. 1999; Monaco 1998, and references therein).

The definition of a halo arises from the contrast in density between a virialized over-dense region and the density of the rest of the universe. For example, halos defined according to the spherical overdensity (SO) method are regions above a certain density threshold (Bryan & Norman 1998), either with respect to the critical density \(\rho_c = \frac{3H^2}{8\pi G} \) or the background matter density \(\rho_b = \Omega_m \rho_c \), where \(\Omega_m \) is the matter density of the Universe. The halo is then the region enclosed within a sphere with mean density \(\Delta \rho_c \) or \(\Delta \rho_b \), where \(\Delta \) commonly ranges from \(\sim 100 \) to \(\sim 500 \) and is typically taken to be \(\sim 200 \). The radius of the sphere is typically called the virial radius \(R_{\text{vir}} \), but may alternatively be denoted \(R_{\Delta} \), where the specific choice of \(\Delta \) is listed (e.g. \(R_{200} \)).

Dark matter halos form hierarchically (e.g., Cole et al. 2000; Conselice et al. 2003, and references therein). Small halos form first from gravitational collapse and successively merge to form larger structures over time, which is often referred to as
the “bottom-up” paradigm. This leads to a characteristic mass of assembling halos at each redshift, which, at \(z = 0 \), are clusters with mass \(\gtrsim 10^{14} M_\odot \). A typical halo undergoes a number of mergers throughout its evolution (e.g., Conselice et al. 2003; Genel et al. 2009; Fakhouri et al. 2010). Defining a major merger to have a mass ratio of 3 : 1 or less and a minor merger to have a mass ratio of 10 : 1 or less, a massive halo typically undergoes \(\sim 4 - 5 \) major mergers after \(z \sim 3 \), with minor mergers occurring even more frequently. These mergers play a critical role in the mass assembly of a halo, and greatly influence the evolution of the hosted baryonic galaxy.

I.1.2 The Mass Function

The number density of dark matter halos as a function of halo mass and redshift, often referred to simply as the mass function, is a key probe of cosmology. The original formulation of Press & Schechter (1974) is explored in more detail by a number of studies (e.g., Mo & White 2002; Warren et al. 2006). Here we follow the notation of Mo & White (2002), where the number density of halos per unit comoving volume with mass in the interval \((M, M + dM)\) at redshift \(z \) is given as

\[
 n(M, z) \, dM = \sqrt{\frac{2}{\pi}} \frac{\rho_0}{M} \frac{d\nu}{dM} \exp \left(-\frac{\nu^2}{2} \right) \, dM,
\]

where \(\rho_0 \) is the current mean density of the universe, \(\nu \equiv \delta_c / [D(z)\sigma(M)] \), \(\delta_c \approx 1.69 \), and the linear growth factor can be taken as \(D(z) = g(z) / [g(0)(1 + z)] \) (Carroll et al. 1992), where

\[
 g(z) \approx \frac{5}{2} \Omega_m \left[\Omega_m^{4/7} - \Omega_\Lambda + (1 + \Omega_m/2)(1 + \Omega_\Lambda/70) \right]^{-1}.
\]

The density fractions are, as usual, functions of redshift:

\[
 \Omega_m \equiv \Omega_m(z) = \frac{\Omega_{m,0}(1 + z)^3}{E^2(z)}, \quad \Omega_\Lambda \equiv \Omega_\Lambda(z) = \frac{\Omega_{\Lambda,0}}{E^2(z)},
\]

\[4\]
where
\[E(z) = \left[\Omega_{\Lambda,0} + (1 - \Omega_0)(1 + z)^2 + \Omega_{m,0}(1 + z)^3 \right]^{1/2}, \]

(I.4)

and \(\Omega_0, \Omega_{m,0}, \) and \(\Omega_{\Lambda,0} \) are the present day values at \(z = 0 \). The rms density fluctuations \(\sigma(M) \) may be expressed in terms of radius

\[R(M) = \left(\frac{3M}{4\pi \bar{\rho}_0} \right)^{1/3} \]

(I.5)

by

\[\sigma^2(R) = \frac{1}{2\pi^2} \int_0^{\infty} k^3 P(k) \tilde{W}^2(kR) \frac{dk}{k}, \]

(I.6)

where \(P(k) \) is the power spectrum of density fluctuations extrapolated to \(z = 0 \) and \(\tilde{W}(kR) = 3[\sin(kR) - kR \cos(kR)]/(kR)^3 \) is the Fourier transform of a spherical top-hat filter with radius \(R \).

The Press-Schechter model above does not account for halo mergers. The extended Press-Schechter model (Bond et al. 1991; Bower 1991; Lacey & Cole 1993; Parkinson et al. 2008) expands on the original formulation and includes the results of binary merger trees to provide more realistic halo mass assembly histories. Additionally, mass functions are often measured from the results of numerical simulations (e.g., Warren et al. 2006; Tinker et al. 2008; Heitmann et al. 2006; Reed et al. 2007; Lukić et al. 2007), avoiding the limitations of the analytical models. In Figure I.1, we provide an example mass function from numerical simulation.

I.1.3 Density and Concentration

The halo density profile is a measure of the spherically-averaged dark matter density as a function of radius. For numerical halos in \(N \)-body simulations, the density profile is typically computed by dividing the member particles into logarithmically-spaced bins from the virial radius inward towards the center, summing the mass of the particles in each bin, and dividing by the volume of the shell to find the density.
DM halos almost universally display a characteristic shape in their density profiles. This shape is most often parameterized with the Navarro-Frenk-White (NFW) profile (Navarro et al. 1996):

$$\rho(r) = \frac{\rho_0}{\frac{r}{R_s} \left(1 + \frac{r}{R_s}\right)^2},$$ \hspace{1cm} (I.7)

where ρ_0 is the characteristic density and R_s is the scale radius where the inner $\sim r^{-1}$ profile transitions to the outer $\sim r^{-3}$ profile.

Halo concentration c provides a single-parameter quantization of the density profile. For the NFW profile, concentration is defined as $c \equiv R_{\text{vir}}/R_s$, where R_{vir} is the halo virial radius. Generally, at low redshift, low mass halos are more dense than high mass halos (Navarro et al. 1997), and concentration decreases with redshift and increases in dense environments (Bullock et al. 2001b). Neto et al. (2007) addition-
ally find that concentration decreases with halo mass. Various additional studies have explored concentration’s dependence on characteristics of the power spectrum (Eke et al. 2001), cosmological model (Macciò et al. 2008), redshift (Gao et al. 2008; Muñoz-Cuartas et al. 2011), and halo merger and mass accretion histories (Wechsler et al. 2002; Zhao et al. 2003, 2009). For halos at high redshift, Klypin et al. (2011) find that concentration reverses and increases with mass for high mass halos, while Prada et al. (2012) find that concentration’s dependence on mass and redshift is more complicated and is better described through $\sigma(M, z)$, the rms fluctuation amplitude of the linear density field.

Concentration may be estimated from a halo’s virial mass M_{vir} and maximum circular velocity

$$V_{\text{circ}} = \sqrt{\frac{GM(<r)}{r}}_{\text{max}}. \quad (I.8)$$

Following Klypin et al. (2011), we outline this relationship for $z = 0$ and as a function of redshift. The relation between the virial mass and maximum circular velocity may be given as (Klypin et al. 2001):

$$V_{\text{circ}} = \left[G f(x_{\text{max}}) \frac{c}{x_{\text{max}}} \hat{\rho}^{1/3} \right]^{1/2} M_{\text{vir}}^{1/3}, \quad (I.9)$$

$$\hat{\rho} = \frac{M_{\text{vir}}}{R_{\text{vir}}^3} = \frac{4\pi}{3} \Delta_{\text{vir}} \rho_c \Omega_{\text{M}}, \quad (I.10)$$

$$f(x) = \ln(1 + x) - \frac{x}{1 + x}, \quad (I.11)$$

where $x = r/R_s$, $x_{\text{max}} = 2.15$, Δ_{vir} is the overdensity limit that defines the virial radius, ρ_c is the critical density, and Ω_{M} is the matter contribution to the average density of the universe. At $z = 0$, $\Delta_{\text{vir}} = 360$ and $\Omega_{\text{M}} = 0.27$, which yields

$$V_{\text{circ}}(M_{\text{vir}}) = \frac{6.72 \times 10^{-3} M_{\text{vir}}^{1/3} \sqrt{c}}{\sqrt{\ln(1 + c) - c/(1 + c)}} \quad (I.12)$$
for M_{vir} in units of $h^{-1}M_\odot$ and V_{circ} in units of km s$^{-1}$. Klypin et al. (2011) find that at $z = 0$, this yields the approximation

$$c(M_{\text{vir}}) = 9.60 \left(\frac{M_{\text{vir}}}{10^{12}h^{-1}M_\odot}\right)^{-0.075}$$

(I.13)

for distinct halos and

$$c(M_{\text{sub}}) = 12 \left(\frac{M_{\text{sub}}}{10^{12}h^{-1}M_\odot}\right)^{-0.12}$$

(I.14)

for subhalos. Figure I.2 plots concentration as a function of virial mass from $z = 0$ to $z = 5$. The dotted lines are given by

$$c(M_{\text{vir}}, z) = c_0(z) \left(\frac{M_{\text{vir}}}{10^{12}h^{-1}M_\odot}\right)^{-0.075} \times \left[1 + \left(\frac{M_{\text{vir}}}{M_0(z)}\right)^{0.26}\right],$$

(I.15)

where $c_0(z)$ and $M_0(z)$ are free parameters for each z. Concentration displays a decreasing trend with mass at low redshift. At higher redshift, however, concentration flattens out and reverses its trend, increasing with mass for the most massive halos.

Figure I.3 plots concentration as a function of redshift for two representative halo masses. For a given fixed halo mass, concentration decreases with redshift for low redshift, then increases again with redshift at high redshift. The black curves are given by

$$c(M_{\text{vir}}, z) = c(M_{\text{vir}}, 0)[\delta^{4/3}(z) + \kappa(\delta^{-1}(z) - 1)],$$

(I.16)

where $\delta(z)$ is the linear growth factor of fluctuations normalized to $\delta(0) = 1$ and κ is a free parameter. For the masses shown in the figure, $\kappa = 0.084$ for $M = 3 \times 10^{11}h^{-1}M_\odot$ and $\kappa = 0.135$ for $M = 3 \times 10^{12}h^{-1}M_\odot$.

Using the same method of determining concentration from halo virial mass and maximum circular velocity, Prada et al. (2012) find that the complex mass and redshift dependence of concentration found by Klypin et al. (2011) may be simplified to a universal U-shaped profile when viewed as a function of the linear rms fluctuation of
Figure I.2: Concentration as a function of virial mass for distinct halos from $z = 0$ to $z = 5$. Symbols and solid curves are numerical results, while the dashed curves are analytical fits (Equation I.15). Concentration decreases with increasing mass except for high-mass halos at high redshift, for which the concentration flattens and increases with mass. (Klypin et al. 2011)
Figure I.3: Concentration as a function of redshift for two representative halo masses. Black dots are simulation results. The dashed blue curves show the power law $c \propto (1+z)^{-1}$ and the dot-dashed red curves are $c \propto \delta$. The solid black curves are given by Equation I.16. Concentration initially decreases with redshift, but reverses and increases with redshift for high redshift. Concentration for both masses reaches a minimum of $c_{\text{min}} \approx 4 - 4.5$. (Klypin et al. 2011)
the density field $\sigma(M, z)$. Figure I.4 plots c as a function of $\log \sigma^{-1}$ for redshifts from $z = 0$ to $z = 6$ for halos from the Bolshoi (Klypin et al. 2011) and MultiDark (Prada et al. 2012) simulations. If we define

$$x \equiv \left(\frac{\Omega_{M,0}}{\Omega_{\Lambda,0}} \right)^{1/3} a,$$ \hspace{1cm} (I.17)

$$a \equiv (1 + z)^{-1},$$ \hspace{1cm} (I.18)

where $\Omega_{M,0}$ and $\Omega_{\Lambda,0}$ are the matter and cosmological constant contributions to the density of the universe at $z = 0$, then the overplotted curve is given by

$$c(M, z) = B_0(x)C(\sigma'),$$ \hspace{1cm} (I.19)

$$\sigma' = B_1(x)\sigma(M, x),$$ \hspace{1cm} (I.20)

$$C(\sigma') = A \left[\left(\frac{\sigma'}{b} \right)^c + 1 \right] \exp \left(\frac{d}{\sigma'^2} \right),$$ \hspace{1cm} (I.21)

where $A = 2.881$, $b = 1.257$, $c = 1.022$, and $d = 0.060$. The rms density fluctuation may be approximated as

$$\sigma(M, x) = D(x) \frac{16.9 y^{0.41}}{1 + 1.102 y^{0.20} + 6.22 y^{0.333}},$$ \hspace{1cm} (I.22)

where

$$y \equiv \left[\frac{M}{10^{12} h^{-1} M_\odot} \right]^{-1},$$ \hspace{1cm} (I.23)

$$D(x) = \frac{5}{2} \left(\frac{\Omega_{M,0}}{\Omega_{\Lambda,0}} \right)^{1/3} \frac{\sqrt{1 + x^3}}{x^{3/2}} \int_0^x \frac{x^{3/2}}{(1 + x^3)^{3/2}} \, dx.$$ \hspace{1cm} (I.24)

The functions $B_0(x)$ and $B_1(x)$ are defined such that they equal unity at $z = 0$ for WMAP5 parameters:

$$B_0(x) = \frac{c_{\text{min}}(x)}{c_{\text{min}}(1.393)},$$ \hspace{1cm} (I.25)
\[B_1(x) = \frac{\sigma_{\text{min}}^{-1}(x)}{\sigma_{\text{min}}^{-1}(1.393)}, \]

(I.26)

where

\[c_{\text{min}}(x) = c_0 + (c_1 - c_0) \left[\frac{1}{\pi} \arctan[\alpha(x - x_0)] + \frac{1}{2} \right], \]

(I.27)

\[\sigma_{\text{min}}^{-1}(x) = \sigma_0^{-1} + (\sigma_1^{-1} - \sigma_0^{-1}) \left[\frac{1}{\pi} \arctan[\beta(x - x_1)] + \frac{1}{2} \right], \]

(I.28)

\[c_0 = 3.618, \ c_1 = 5.033, \ \alpha = 6.948, \ x_0 = 0.424, \]

(I.29)

\[\sigma_0^{-1} = 1.047, \ \sigma_1^{-1} = 1.646, \ \beta = 7.386, \ x_1 = 0.526. \]

(I.30)

The resulting curve closely follows the data at all redshifts from \(z = 0 \) to \(z = 6 \), with a minimum concentration of \(\sim 5 \) at a well-defined scale of \(\sigma \sim 0.71 \). The relation may also be seen as a function of mass without rescaling to \(z = 0 \) by plotting Equations I.19-I.21, as shown in Figure I.5.

I.1.4 Halos as Hosts to Baryonic Processes

Early-forming dark matter halos provide an incubator for the baryonic processes that transform the surrounding space and allow galaxies to form. Initial gas accretion can lead to the formation of the first Pop-III stars (Couchman & Rees 1986; Tegmark et al. 1997; Abel et al. 2000, 2002), which, upon their death, can collapse into the seeds for supermassive black holes (SMBHs) (Madau & Rees 2001; Islam et al. 2003; Alvarez et al. 2009; Jeon et al. 2012) or enrich the surrounding medium with metals through supernovae (Heger & Woosley 2002; Heger et al. 2003). The radiation from these early quasars (Shapiro & Giroux 1987; Madau et al. 1999; Fan et al. 2001), Pop-III stars (Gnedin & Ostriker 1997; Venkatesan et al. 2003; Alvarez et al. 2006), and proto-galaxy stellar populations (Bouwens et al. 2012; Kuhlen & Faucher-Giguère 2012) all play a key role in contributing to the re-ionizing the universe by around \(z = 6 \) (Barkana & Loeb 2001). Additionally, halo mergers can drastically increase the temperature of halo gas through shock heating, increasing X-ray luminosity (Sinha
Figure I.4: Halo concentration c as a function of $\log \sigma^{-1}$ for halos in the Bolshoi and MultiDark simulations. The results are rescaled to $z = 0$. The solid curve $C'(\sigma')$ is given by Equation I.21. A universal minimum concentration of ~ 5 is seen at $\sigma \sim 0.71$. (Prada et al. 2012)
Figure I.5: Halo concentration c as a function of halo mass at various redshifts for halos in the Bolshoi (open circles) and MultiDark (filled circles) simulations. The overplotted curves are given by Equations I.19-I.21. The analytical approximations fit the data within a few percent. (Prada et al. 2012)
& Holley-Bockelmann 2009), and contribute to the unbinding of gas to form the warm-hot intergalactic medium (Bykov et al. 2008; Sinha & Holley-Bockelmann 2010; Tanaka et al. 2012).

I.2 Computational Theory

In this section, we present a broad overview of the fundamental theory and driving equations of computational astrophysics that are relevant to this work. Specific code implementations, such as the N-body simulation code GADGET-2 and the halo finder ROCKSTAR, are discussed in Chapter II, so here we instead focus on the mathematical concepts that form the basis these codes rely on and have in common with varied other implementations. Specifically, in this section, we discuss collisionless dynamics in N-body simulations and simulation initialization with the Zel’dovich approximation (ZA) and second-order Lagrangian perturbation theory (2LPT). As the simulations used in our study are of collisionless dark matter only, we forgo a discussion of collisional hydrodynamics.

I.2.1 Collisionless Dynamics and N-body Simulations

Astrophysical simulations of stars or dark matter, in essence, track a collisionless fluid, which is described in the continuum limit by the collisionless Boltzmann equation (CBE)

$$\frac{df(x, v, t)}{dt} \equiv \frac{\partial f}{\partial t} + v \cdot \frac{\partial f}{\partial x} - \frac{\partial \Phi}{\partial x} \cdot \frac{\partial f}{\partial v} = 0 \quad (I.31)$$

coupled to the Poisson equation

$$\nabla^2 \Phi(x, t) = 4\pi G \int f(x, v, t) \, dv \quad (I.32)$$

in an expanding background Universe, typically according to the Friedmann-Lemaître-Robertson-Walker metric. Here, Φ is the gravitational potential, and the distribution function $f(x, v, t)$ gives the mass density in phase space. The high-dimensionality
of the problem, however, makes directly solving the coupled system of equations intractable. Instead, the N-body method, in which the phase-space density is sampled with a finite number N of tracer particles, is used to evolve the system in time. For the following discussion, we primarily follow the notation in Springel (2005).

For such a system of particles in an N-body simulation, the Hamiltonian is given by

$$H(x_1, \ldots, x_N, p_1, \ldots, p_N, t) = \sum_i \frac{p_i^2}{2m_i a(t)^2} + \frac{1}{2} \sum_{ij} m_i m_j \varphi(x_i - x_j), \quad (I.33)$$

where the comoving coordinate vectors x_i correspond to canonical momenta $p_i = a^2 m_i \dot{x}_i$, and $a(t)$ is the time evolution of the scale factor that introduces explicit time dependence to the Hamiltonian. For simulations with periodic boundary conditions, the interaction potential $\varphi(x)$ for a cube of size L^3 is the solution of

$$\nabla^2 \varphi(x) = 4\pi G \left[-\frac{1}{L^3} + \sum_n \tilde{\delta}(x - nL) \right], \quad (I.34)$$

where $n = (n_1, n_2, n_3)$ iterates through all integer permutations, sampling the single particle density distribution function $\tilde{\delta}$. Here, the mean density is subtracted, and the dynamics of the system follow

$$\nabla^2 \phi(x) = 4\pi G [\rho(x) - \bar{\rho}], \quad (I.35)$$

with peculiar potential

$$\phi(x) = \sum_i m_i \varphi(x - x_i). \quad (I.36)$$

For non-periodic (vacuum) boundary conditions, the interaction potential for point masses simplifies to

$$\varphi(x) = -\frac{G}{|x|}, \quad (I.37)$$
for large separations.

At small particle separations as \(|x_i - x_j| \to 0\), particle accelerations computed via the standard force law

\[
a_i = - \sum_{j \neq i} \frac{Gm_j|x_i - x_j|}{|x_i - x_j|^3}
\]

approach a numerical singularity that can introduce unphysical results for finite time-steps. To avoid this scenario, numerical simulations employ a softening parameter \(\epsilon > 0\) in the force law so that it does not diverge for small particle separations. As a simple example, the softening parameter may be added to the denominator of the Newtonian force law:

\[
F_i = - \sum_{j \neq i} \frac{Gm_i m_j |x_i - x_j|}{(|x_i - x_j|^2 + \epsilon^2)^{3/2}}.
\]

More generally, the single particle density distribution function \(\tilde{\delta}(x)\) of Equation I.34 is the Dirac \(\delta\)-function convolved with a gravitational softening kernel of comoving scale \(\epsilon\). The specific choice of softening is dependent on the type of simulation and the system of study. The softening parameter is typically on the order of the mean inter-particle separation.

Directly calculating forces for every particle from every other particle inherently requires a double sum, implying a computational cost of \(\mathcal{O}(N^2)\) algorithm complexity scaling. For large \(N\), this quickly becomes computationally expensive. While the accuracy afforded by direct summation is sometimes necessary, such as for collisional systems like high-density star clusters, most studies can tolerate random force errors up to \(\sim 1\%\) (Hernquist et al. 1993), introducing the possibility of approximation methods. There are a number of implementations for force approximations, but a typical result is a reduction of algorithmic complexity from \(\mathcal{O}(N^2)\) to \(\mathcal{O}(N \log N)\). The specific implementation employed by GADGET-2 is discussed in Section II.2.1.
I.2.2 Perturbation Theory and Particle Displacement

In order to retrieve reliable results from N-body simulations, generation of accurate initial conditions for a given cosmology is imperative. For cosmological simulations, the goal in creating initial conditions is to assign particle positions and velocities that are appropriate for a given simulation starting redshift z_{start} and consistent with the evolution of the Universe up to that point.

The subtle $\mathcal{O}(10^{-5})$ density perturbations in place at the CMB epoch are vulnerable to numerical noise and intractable to simulate directly. Instead, a displacement field is applied to the particles to evolve them semi-analytically, nudging them from their initial positions to an approximation of where they should be at a more reasonable starting redshift for the numerical simulation. Starting at a later redshift aids in avoiding interpolation systematics and round-off errors (Lukić et al. 2007).

For this discussion, we will assume a ΛCDM Universe, where the initial density distribution is described by a Gaussian random field defined by the power spectrum. We wish to transform the information encoded in the power spectrum into a distribution of discrete particles at z_{start} that may then be evolved numerically. The first step is to create a representation of the density field in Fourier space. As the choice of power spectrum constrains the statistics of the density field and not its specific distribution, the specific realization of the field is generated from a random seed. The typical procedure is to create a set of uniform random phases and assign amplitudes drawn from the Rayleigh distribution (Efstathiou et al. 1985). The density field may then be used as a basis for creating a particle distribution.

Beginning from a uniform lattice of Lagrangian positions, particles are displaced to new Eulerian positions and assigned velocities according to a displacement field Ψ that is derived from the density field. The two most common methods for obtaining this displacement field are the Zel’dovich approximation (ZA, Zel’dovich 1970) and second-order Lagrangian perturbation theory (2LPT, Buchert 1994; Buchert et al.
1994; Bouchet et al. 1995; Scoccimarro 1998). Initial conditions created with ZA displace initial particle positions and assign velocities via a linear field (Klypin & Shandarin 1983; Efstathiou et al. 1985), while 2LPT initial conditions add a second-order correction term to the expansion of the displacement field (Scoccimarro 1998; Sirko 2005; Jenkins 2010).

I.2.2.1 Particle Displacement with ZA and 2LPT

In this section, we give an overview of the equations necessary to generate initial conditions for N-body simulations using ZA and 2LPT. These results are fully described in Appendix D1 of Scoccimarro (1998), and are largely reproduced here following that notation.

As mentioned above, our goal is to displace particles from their initial positions \mathbf{q} to final Eulerian particle positions \mathbf{x} via a displacement field $\Psi(\mathbf{q})$:

$$\mathbf{x} = \mathbf{q} + \Psi(\mathbf{q}). \quad (I.40)$$

If we define the conformal time $\tau = \int dt/a(t)$, where $a(t)$ is the scale factor, and the conformal expansion rate $\mathcal{H} \equiv d \ln a/d\tau = Ha$, where H is the Hubble constant, then the equation of motion for particle trajectories $\mathbf{x}(\tau)$ is given by

$$\frac{d^2 \mathbf{x}}{d\tau^2} + \mathcal{H}(\tau) \frac{d\mathbf{x}}{d\tau} = -\nabla \Phi, \quad (I.41)$$

where Φ is the gravitational potential and ∇ is the gradient operator in Eulerian coordinates \mathbf{x}. Using $1 + \delta(\mathbf{x}) = J^{-1}$, where $\delta(\mathbf{x}) \equiv [\rho(\mathbf{x},t) - \bar{\rho}]/\bar{\rho}$ is the density contrast and the Jacobian determinant is $J(\mathbf{q},\tau) \equiv \det(\delta_{ij} + \Psi_{i,j})$, where $\Psi_{i,j} \equiv \partial\Psi_i/\partial q_j$, we may take the divergence of I.41 to obtain

$$J(\mathbf{q},\tau) \nabla \cdot \left[\frac{d^2 \mathbf{x}}{d\tau^2} + \mathcal{H}(\tau) \frac{d\mathbf{x}}{d\tau} \right] = \frac{3}{2} \Omega \mathcal{H}^2 (J - 1). \quad (I.42)$$
Using $\nabla_i = (\delta_{ij} + \Psi_{ij})^{-1} \nabla q_j$, where the gradient operator in Lagrangian coordinates $\nabla q \equiv \partial / \partial q$, this equation may be rewritten in terms of Lagrangian coordinates.

The solution to this transformed equation is given to first order by the Zel’’dovich approximation:

$$\nabla q \cdot \Psi^{(1)} = -D_1(\tau)\delta(q), \quad (I.43)$$

where $\delta(q)$ is the Gaussian density field determined by the initial conditions and $D_1(\tau)$ is the linear growth factor, which obeys

$$\frac{d^2D_1}{d\tau^2} + \mathcal{H}(\tau)\frac{dD_1}{d\tau} = \frac{3}{2}\Omega\mathcal{H}^2(\tau)D_1. \quad (I.44)$$

The Zel’’dovich approximation solution for the particle displacement field is then given by

$$\mathbf{x}(q, \tau) = q + \Psi(q, \tau) \approx q - D_1(\tau)\nabla \phi^{(1)}(q), \quad (I.45)$$

where $\phi^{(1)}(q)$ is a Lagrangian potential given by the initial conditions. The velocities of particles initially at q are given by

$$\mathbf{v} \approx -D_1(\tau)\mathcal{H}(\tau)f \nabla \phi^{(1)}(q), \quad (I.46)$$

where $f(\Omega, \Lambda)$ is defined as

$$f_i(\Omega, \Lambda) \equiv \frac{d \ln D_i}{d \ln a} = \frac{1}{\mathcal{H}} \frac{d \ln D_i}{d \tau}. \quad (I.47)$$

The second-order (2LPT) correction is found by a perturbative solution to the non-linear equation for $\Psi(q)$ (Equation I.42 transformed to Lagrangian coordinates), expanding about the linear (ZA) solution (Equation I.43) to yield (e.g., Bouchet et al. 1995)

$$\nabla q \cdot \Psi^{(2)} = \frac{1}{2}D_2(\tau)\sum_{i \neq j} \left[\Psi_{ij}^{(1)} \Psi_{ji}^{(1)} - \Psi_{ij}^{(1)} \Psi_{ji}^{(1)} \right], \quad (I.48)$$
where $D_2(\tau)$ is the second-order growth factor, which may be approximated as $D_2(\tau) \approx -3D_1^2(\tau)/7$ (Bouchet et al. 1995). The displacement field may then be written in terms of two Lagrangian potentials $\phi^{(1)}$ and $\phi^{(2)}$:

$$x(q) = q - D_1 \nabla_q \phi^{(1)} + D_2 \nabla_q \phi^{(2)}.$$ \hspace{1cm} (I.49)

Likewise, the comoving velocities are then given to second order by

$$\mathbf{v} \equiv \frac{dx}{dt} = -D_1 f_1 H \nabla_q \phi^{(1)} + D_2 f_2 H \nabla_q \phi^{(2)}.$$ \hspace{1cm} (I.50)

The logarithmic derivatives of the growth factors f_i may be approximated as $f_1 \approx \Omega^{5/9}$ and $f_2 \approx 2\Omega^{6/11}$ (Bouchet et al. 1995). The potentials $\phi^{(1)}$ and $\phi^{(2)}$ are derived by solving a pair of Poisson equations (Buchert et al. 1994):

$$\nabla^2 q \phi^{(1)}(q) = \delta^{(1)}(q),$$ \hspace{1cm} (I.51)

$$\nabla^2 q \phi^{(2)}(q) = \delta^{(2)}(q),$$ \hspace{1cm} (I.52)

where $\delta^{(1)}(q)$ is the linear overdensity, and $\delta^{(2)}(q)$ is the second-order overdensity given by

$$\delta^{(2)}(q) = \sum_{i>j} \left\{ \phi^{(1)}_{,ii}(q) \phi^{(1)}_{,jj}(q) - \left[\phi^{(1)}_{,ij}(q) \right]^2 \right\},$$ \hspace{1cm} (I.53)

where $\phi^{(n)}_{,ij} \equiv \partial^2 \phi^{(n)}/\partial q_i \partial q_j$ (Jenkins 2010).

I.2.2.2 Transients and the Advantages of 2LPT

A primary concern when generating cosmological initial conditions is the effects of non-linear decaying modes, or transients, which introduce deviations from the growing modes of the exact dynamics. Linear growing modes of density and velocity perturbations are correctly reproduced by ZA. However, ZA has shown to be inaccu-
rate in regards to higher-order growing modes and non-linear correlations (Grinstein & Wise 1987; Juszkiewicz et al. 1993; Bernardeau 1994; Catelan & Moscardini 1994; Juszkiewicz et al. 1995), and fails to accurately represent statistical quantities that probe phase correlations of density and velocity fields (Scoccimarro 1998).

We cannot expect accurate simulation results until enough time has passed for transients to have sufficiently decayed away. Transients are damped proportional to $1/a$ in ZA. In 2LPT, however, transients are damped more quickly as $1/a^2$. Therefore, structure in 2LPT should be accurate after fewer e-folding times than in ZA (Scoccimarro 1998; Crocce et al. 2006; Jenkins 2010). Reed et al. (2013) suggest that for 2LPT-initialized simulations, between 10 and 50 expansion factors are needed before the relevant epoch of halo formation if percent level accuracy is to be achieved.

The practical result is that high-σ DM density peaks at high redshift are suppressed in ZA compared with 2LPT for a given starting redshift (Crocce et al. 2006). While differences in ensemble halo properties, such as the halo mass function, between simulation initialization methods are mostly washed away by $z = 0$ (Scoccimarro 1998), discrepancies between ZA and 2LPT remain at earlier redshifts (Reed et al. 2013; L’Huillier et al. 2014), though these trends are relatively less studied (Lukić et al. 2007).

I.2.2.3 Initial Redshift

When setting up an N-body simulation, it is critical to choose an appropriate starting redshift, determined by box size and resolution (Lukić et al. 2007). As 2LPT more accurately displaces initial particle positions and velocities, initialization with 2LPT allows for a later starting redshift compared with an equivalent ZA-initialized simulation. However, many ZA simulations do not take this into account, starting from too late an initial redshift and not allowing enough e-foldings to adequately dampen away numerical transients (Crocce et al. 2006; Jenkins 2010). In order to characterize an
appropriate starting redshift, the relation between the initial rms particle displacement and mean particle separation must be considered. The initial rms displacement Δ_{rms} is given by

$$\Delta_{\text{rms}}^2 = \frac{4\pi}{3} \int_{k_f}^{k_{Ny}} P(k, z_{\text{start}}) \, dk,$$

where $k_f = \frac{2\pi}{L_{\text{box}}}$ is the fundamental mode, L_{box} is the simulation box size, $k_{Ny} = \frac{1}{2} N k_f$ is the Nyquist frequency of an N^3 simulation, and $P(k, z_{\text{start}})$ is the power spectrum at starting redshift z_{start}. In order to avoid the “orbit crossings” that reduce the accuracy of the initial conditions, Δ_{rms} must be some factor smaller than the mean particle separation $\Delta_p = \frac{L_{\text{box}}}{N}$ (Holley-Bockelmann et al. 2012). For example, making orbit crossing a $\sim 10 \sigma$ event imposes $\Delta_{\text{rms}}/\Delta_p = 0.1$. However, for small-volume, high-resolution simulations, this quickly leads to impractical starting redshifts, placing such a simulation well into the regime of introducing errors from numerical noise caused by roundoff errors dominating the smooth potential. A more relaxed requirement of $\Delta_{\text{rms}}/\Delta_p = 0.25$, which makes orbit crossing a $\sim 4 \sigma$ event, often proves a more practical choice.
CHAPTER II

Numerical Methods

In this chapter, we discuss the computational tools used in this study. While Section I.2 dealt with the underlying principles behind some of the numerical methods used here, this section will instead focus on the actual implementation details of the code, as well as how each piece is incorporated into the analysis pipeline. The content proceeds in a natural order, following the flow of data. We begin with generation of simulation initial conditions according to zA and $2LPT$, followed by a discussion of GADGET-2 and our specific simulations, halo finding with ROCKSTAR, and pairing companion halos between simulations with CROSSMATCH. We then present the tools created for analysis of the data, and conclude with a discussion of the automation steps and scripts used to tie each component together. We additionally present example plots obtained from some of the analysis steps in order to demonstrate the function of each code. However, we defer discussion of the actual results presented in these plots until Chapter III, where they are given full treatment. The code referenced in this section that was specifically created for this project is reproduced in the Appendices.

II.1 Simulation Initialization

We have already discussed the fundamentals of particle displacement with zA and $2LPT$ in Section I.2.2.1, so this section will instead provide an overview of the steps performed in the numerical implementation of simulation initialization. The code used to generate zA and $2LPT$ initial conditions for the simulations used in this study follows the prescription detailed in Appendix D2 of Scoccimarro (1998), so we will simply summarize what is presented there. For this section, a tilde will denote Fourier-space quantities.
Beginning with a linear power spectrum, a Gaussian density field $\tilde{\delta}(k)$, with wavenumber k, is generated in Fourier space. Equation I.51 is then used to find the Fourier space first-order potential $\tilde{\phi}^{(1)}(k)$, after which an inverse fast Fourier transform (FFT) is applied to produce $\phi^{(1)}(q)$. The first-order particle displacements and velocities are then found from Equations I.45 and I.46 by differencing $\phi^{(1)}(q)$ along the three coordinate vectors to obtain $\nabla_q \phi^{(1)}$, providing the solution according to $z\Lambda$.

The 2LPT displacements and velocities are derived from the $z\Lambda$ solution by using $\nabla_q \phi^{(1)}$ to find the terms of the sum in Equation I.53. The diagonal terms $\nabla^2_{11} \phi^{(1)}$, $\nabla^2_{22} \phi^{(1)}$, $\nabla^2_{33} \phi^{(1)}$ are obtained by diagonally differencing the components of the $\nabla_q \phi^{(1)}$ array. These are multiplied together to obtain the first term of Equation I.53. The non-diagonal terms $\phi^{(1)}_{ij}(q)$ are found by differencing $\nabla_q \phi^{(1)}$, and the results are accumulated to form the second term of Equation I.53. An FFT is applied to $\delta^{(2)}(q)$, Equation I.52 is solved in Fourier space, and an inverse FFT is applied to the resulting $\tilde{\phi}^{(2)}(k)$ to yield $\phi^{(2)}(q)$. The second-order potential $\phi^{(2)}(q)$ is then differenced in each direction to yield $\nabla_q \phi^{(2)}$. With both $\nabla_q \phi^{(1)}$ and $\nabla_q \phi^{(2)}$, Equations I.49 and I.50 are used to find particle displacements and velocities, providing the solution for 2LPT.

II.2 Simulations with GADGET-2

We use the massively parallel TreeSPH (Hernquist & Katz 1989) cosmological N-body simulation code GADGET-2 (Springel et al. 2001; Springel 2005) for the dark matter simulations presented in this work. In this section, we give an overview of the fundamentals of the GADGET-2 code, followed by details of our particular simulations.

II.2.1 GADGET-2

GADGET-2 is a massively parallel cosmological N-body simulation code which calculates gravitational forces via a hierarchical multipole expansion and ideal gas parameters via smoothed particle hydrodynamics (SPH; Gingold & Monaghan 1977). This section will discuss the gravitational algorithms used to compute forces and the
Figure II.1: Potential (left) and force (right) softening. The solid curves are the spline softening of Equation II.1. Curves for Plummer softening (dotted) and Newton’s law (dashed) are provided for comparison. Here, $h = 1.0$ and $\epsilon = h/2.8$. (Springel et al. 2001)

time integration method used to advance the simulation. As our simulations are collisionless only, we do not discuss the details of the implementation of gas dynamics in GADGET-2.

II.2.1.1 Gravitational Algorithms

Force computation suffers from a numerical singularity as the separation between two particles approaches zero, as discussed in Section I.2.1. A modification of the force law is therefore required at small separation scales. Force softening is accomplished in GADGET-2 using a spline kernel (Monaghan & Lattanzio 1985) $W(|x|, h = 2.8\epsilon)$, where

$$W(r, h) = \frac{8}{\pi h^3} \begin{cases} 1 - 6 \left(\frac{r}{h}\right)^2 + 6 \left(\frac{r}{h}\right)^3, & 0 \leq \frac{r}{h} \leq \frac{1}{2} \\ 2 \left(1 - \frac{r}{h}\right)^3, & \frac{1}{2} < \frac{r}{h} \leq 1, \\ 0, & \frac{r}{h} > 1. \end{cases}$$ \hspace{1cm} \text{(II.1)}$$

An example of this softening is shown in Figure II.1 for the potential and force.

As discussed in Section I.2.1, direct summation N-body techniques are prohibitively slow for modern simulations. GADGET-2 therefore makes use of a hierarchical multipole expansion technique, often called a “tree” algorithm, using the Barnes-Hut octal tree (Barnes & Hut 1986) algorithm. This method recursively divides the simulation
Figure II.2: Barnes-Hut oct-tree in two dimensions. The simulation volume is recursively partitioned into cells until each contains only one particle each. Empty cells may be ignored. (Springel et al. 2001)

volume into eight cells at each level of refinement, continuing the division until each cell contains only one particle. A visual description of this process in two dimensions is given in Figure II.2. Distant particles can then be grouped together for the force calculation, reducing the algorithm complexity to $O(N \log N)$.

The Barnes-Hut octal tree algorithm begins with a cubic cell encompassing the entire simulation volume. The cell is then divided into eight daughter cells. If the cell contains no particles, it is ignored. If it contains one particle, the dividing process for that cell ends there. If it contains more than one particle, the process continues recursively, dividing daughter cells into eight octants each, until each cell contains either one or no particles. A multipole expansion of all daughter cells is then found for each node, or “leaf.”

The accuracy of the force computation can be set by choosing how far to “walk” the tree. For each particle, the goal is to calculate the gravitational accelerations from all other particles accurately and quickly. There is a trade off, however, as increasing the accuracy of the tree code toward that of a direct summation approach also increases the runtime complexity toward that of an $O(N^2)$ algorithm. The balance between runtime and accuracy is controlled by the opening angle parameter α. A node of
mass M and extension l will be considered for usage if

$$\frac{GM}{r^2} \left(\frac{l}{r} \right)^2 \leq \alpha |a|, \quad \text{(II.2)}$$

where r is the distance from the particle to the node and $|a|$ is the total acceleration from the previous time-step. Nodes that are massive, large, and near enough to fall outside this criterion are opened so that the daughter cells are recursively considered.

GADGET-2 can optionally make use of a hybrid approach for calculating forces, called the TreePM method (Xu 1995; Bode et al. 2000; Bagla 2002), where long range forces are computed using a particle-mesh algorithm instead of the Barnes-Hut octal tree. The GADGET-2 implementation of TreePM follows that of Bagla & Ray (2003).

II.2.1.2 Time Integration

The N-body Hamiltonian is separable such that $H = H_{\text{kin}} + H_{\text{pot}}$. Time evolution operators for each of H_{kin} and H_{pot} may be computed exactly, leading to “drift” and “kick” operators (Quinn et al. 1997):

\[
D_t(\Delta t) : \begin{cases}
 p_i \mapsto p_i, \\
 x_i \mapsto x_i + \frac{p_i}{m_i} \int_t^{t+\Delta t} \frac{dt}{a^2},
\end{cases} \tag{II.3}
\]

\[
K_t(\Delta t) : \begin{cases}
 x_i \mapsto x_i, \\
 p_i \mapsto p_i + f_i \int_t^{t+\Delta t} \frac{dt}{a},
\end{cases} \tag{II.4}
\]

where

\[
f_i = -\sum_j m_i m_j \frac{\partial \phi(x_{ij})}{\partial x_i} \tag{II.5}
\]

is the force in particle i.

A time evolution operator $U(\Delta t)$ for an interval Δt may be approximated by combining the above two operators, where each fall a half time-step after the previous...
operation:

\[\tilde{U}(\Delta t) = D \left(\frac{\Delta t}{2} \right) K(\Delta t) D \left(\frac{\Delta t}{2} \right), \]

(II.6)

or

\[\tilde{U}(\Delta t) = K \left(\frac{\Delta t}{2} \right) D(\Delta t) K \left(\frac{\Delta t}{2} \right), \]

(II.7)

which gives us a leapfrog integrator constructed as a drift-kick-drift (DKD) or kick-drift-kick (KDK) operator. DKD and KDK are symplectic and time reversible, as both \(D_i \) and \(K_i \) are symplectic.

Cosmological simulations inherently contain a large dynamic range in time scales. Maintaining a constant time-step would be computationally prohibitive and wasteful, as high-density regions like the centers of galaxies require orders of magnitude smaller time-steps than low-density regions like the intergalactic medium. GADGET-2 therefore uses adaptive individual time-steps which are much more computationally efficient. The time-step criterion for collisionless particles is

\[\Delta t_{\text{grav}} = \min \left[\Delta t_{\text{max}}, \left(\frac{2\eta\epsilon}{|a|} \right)^{1/2} \right], \]

(II.8)

where \(\eta \) is an accuracy parameter, \(\epsilon \) is the gravitational softening, and \(a \) is the particle’s acceleration. The maximum allowed time-step is \(\Delta t_{\text{max}} \), which is usually chosen to be a small fraction of the dynamical time of the system.

GADGET-2 allows particles to take on time-steps as a power of two subdivision of a global time-step. A particle is allowed to move to a smaller time-step at any time. However, moving to a larger time-step is only allowed on every second iteration and when this would lead to synchronization with the higher time-step hierarchy.

II.2.2 Simulations

We use GADGET-2 to evolve six dark matter–only cosmological volumes from \(z_{\text{start}} = 300 \) to \(z = 6 \) in a \(\Lambda \text{CDM} \) universe. Each simulation is initialized using WMAP-
5 (Komatsu et al. 2009) parameters. For each of the three simulation pairs, we directly compare 2LPT and ZA by identically sampling the CMB transfer function and displacing the initial particle positions to the same starting redshift using 2LPT and ZA. The three sets of simulations differ only by the initial phase sampling random seed. Each volume contains 512^3 particles in a $10 \ h^{-1} \text{Mpc}$ box.

Following Heitmann et al. (2010), we choose conservative simulation parameters in order to ensure high accuracy in integrating the particle positions and velocities. We have force accuracy of 0.002, integration accuracy of 0.00125, and softening of $0.5 \ h^{-1} \text{kpc}$, or $1/40$ of the initial mean particle separation. We use a uniform particle mass of $5.3 \times 10^5 h^{-1} \text{M}_\odot$. We select PMGRID, which defines the Fourier grid, to be 1024, SMTH, which defines the split between short- and long-range forces, to be 1.5 times the mesh cell size, and RCUT, which controls the maximum radius for short-range forces, to be 6.0 times the mesh cell size.

II.3 Halo Finding with ROCKSTAR

ROCKSTAR (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement; Behroozi et al. 2013) is a halo finder based on the hierarchical refinement of friends-of-friends (FOF) groups in six phase space dimensions and, optionally, one time dimensions. It has been shown (Knebe et al. 2011) to be robust in recovering halo properties, determining substructure, and providing accurate particle member lists, even for notoriously difficult scenarios such as for low particle count halos and halos undergoing major merger events.

II.3.1 Halo Finding

Halo finding in ROCKSTAR is broken down into a number of steps, leading from the particle distribution of a simulation snapshot to the recovery of individual halo properties. FOF overdensity groups are distributed among the analysis processors which build hierarchies of FOF subgroups in phase space, determine particle membership
for halos, compute host halo/subhalo relationships, remove unbounded particles, and compute halo properties. A summary of each of these steps is provided below.

II.3.1.1 FOF Groups

The 3D friends-of-friends algorithm groups particles together if they fall within a set linking length of each other. The linking length is often chosen as a fraction b of the mean interparticle distance, with typical values ranging from $b = 0.15$ to $b = 0.2$ (More et al. 2011). As ROCKSTAR only uses FOF groups for breaking up the simulation volume to be distributed to individual processors, it is able use a modified algorithm for calculating FOF groups that is an order of magnitude faster than the typical procedure of finding all particles within the linking length for every particle. For particles with more than 16 neighbor particles, the neighbor finding process is skipped for the neighboring particles. Instead, particles are linked to the same group if they are within two linking lengths of the original particle. This method runs much faster than the standard FOF algorithm, and links together at minimum the same particles. With this approach, run time decreases instead of increases with increasing linking length. ROCKSTAR therefore uses a large linking length of $b = 0.28$. The FOF groups are distributed among the available processors according to individual processor load.

II.3.1.2 Phase-Space FOF Hierarchy

Within each FOF group, FOF subgroups are found hierarchically in phase-space. A phase-space linking length is adaptively chosen so that a constant fraction f of particles are linked together with at least one other particle. For two particles p_1 and p_2, the phase-space distance metric is defined as (Gottloeber 1998)

$$d(p_1, p_2) = \left(\frac{|\vec{x}_1 - \vec{x}_2|^2}{\sigma_x^2} + \frac{|\vec{v}_1 - \vec{v}_2|^2}{\sigma_v^2} \right)^{1/2}, \quad (\text{II.9})$$
where σ_x and σ_v are the particle position and velocity dispersions for the FOF group. The phase-space distance to the nearest neighbor is computed for each particle, the linking length is chosen such that $f = 0.7$, and a new FOF subgroup is determined. This process is repeated recursively on the new FOF subgroups until a minimum threshold of 10 particles is reached at the deepest level of the hierarchy.

II.3.1.3 Converting FOF Subgroups to Halos

Seed halos are created for each of the deepest level subgroups in the FOF hierarchy. Particles from successively higher levels of the hierarchy are then assigned to the seed halos until all particles in the original FOF group are accounted for. To suppress extraneous seed halo generation due to noise, seed halos are merged if their positions and velocities are within 10σ of Poisson uncertainties of each. Specifically, the halos are merged if

$$\sqrt{(x_1 - x_2)^2 \mu_x^{-2} + (v_1 - v_2)^2 \mu_v^{-2}} < 10\sqrt{2},$$

(II.10)

with

$$\mu_x = \sigma_x / \sqrt{n},$$

(II.11)

$$\mu_v = \sigma_v / \sqrt{n},$$

(II.12)

where σ_x and σ_v are the position and velocity dispersions of the smaller seed halo, and n is the number of particles of the smaller seed halo.

If a parent FOF group contains multiple seed halos, particles are assigned to the closest seed halo in phase space. The distance between a halo h and a particle p is given by

$$d(h, p) = \left(\frac{|\vec{x}_h - \vec{x}_p|^2}{r_{\text{dyn,vir}}^2} + \frac{|v_h - v_p|^2}{\sigma_v^2} \right)^{1/2},$$

(II.13)

$$r_{\text{dyn,vir}} = v_{\text{max}} t_{\text{dyn,vir}} = \frac{v_{\text{max}}}{\sqrt{\frac{4}{3} \pi G \rho_{\text{vir}}}},$$

(II.14)

where the seed halo currently has velocity dispersion σ_v and maximum circular ve-
locity \(v_{\text{max}} \). Here, “vir” refers to the virial overdensity as defined by Bryan & Norman (1998) for \(\rho_{\text{vir}} \), which is 360 times the background density at \(z = 0 \). ROCKSTAR does, however, allow other choices for density definitions.

II.3.1.4 Substructure

Satellite membership is assigned based on phase-space distances before calculating halo masses. Equation II.13 is used to find the distance to all other halos with a greater number of particles, treating each halo center as a particle. The halo is then assigned to be a subhalo of the closest larger halo within the same FOF group, if one exists. If data from an earlier time-step is available, then halo cores at the current time-step are linked to halos from the previous time-step based on the largest contribution to the current halo core’s particle membership.

Halo masses are then determined so that particles assigned to the host are not counted in the mass of the subhalo, but particles in the subhalo are included in the mass of the host. Subhalo membership is then recalculated such that subhalos are those that fall within \(r_{\Delta} \) of more massive host halos.

II.3.2 Halo Properties

Halo positions based on maximum density peaks are more accurate than those found by averaging all FOF halo particles (Knebe et al. 2011). As ROCKSTAR has already determined the halo density distribution when calculating the FOF subgroup hierarchy, halo positions are readily calculated by taking the average position of the particles in the inner subgroup which best minimizes the Poisson error.

The velocity of the halo core can be substantial offset from that of the halo bulk (Behroozi et al. 2013). The velocity for the halo is calculated as the average velocity of the particles within the innermost 10% of the halo radius, as the galaxy hosted by the halo should be most associated with the halo core.

Halo masses are calculated using the spherical overdensity (SO) out to various
density thresholds, including the virial threshold of Bryan & Norman (1998) and density thresholds relative to the background density and the critical density. Mass calculations include all particles from the substructure contained in the halo, and can optionally remove unbound particles. As subhalo particles can be isolated from those of the host halo, mass calculations for substructure can also be obtained with spherical overdensities using only the particles belonging to the subhalo.

The scale radius R_s is determined by dividing halo particles up into up to 50 radial equal-mass bins, with a minimum of 15 particles per bin, and fitting an NFW profile to the bins to find the maximum-likelihood fit. The Klypin scale radius (Klypin et al. 2011), which uses v_{max} and M_{vir} to calculate R_s, is also determined.

A number of other parameters are calculated, including the angular momentum, halo spin parameter (Peebles 1969), Bullock spin parameter (Bullock et al. 2001a), central position offset (defined as the distance between the halo density peak and the halo center of mass), central velocity offset (defined as the difference between the halo core velocity and the bulk velocity), ratio of kinetic to potential energy, and ellipsoidal shape parameters (Zemp et al. 2011).

II.4 CrossMatch

Having pairs of corresponding 2LPT and ZA simulations necessitates a method for reliably matching halos between the two if we wish to compare properties of companion halos. To accomplish this, we use the CROSSMATCH code initially developed by Manodeep Sinha. CROSSMATCH uses particle IDs to find matching halos based on the percentage of common constituent particles. The code was modified for this study to import and process the BGC2 files output by the ROCKSTAR halo finder.

As dynamical variations between 2LPT and ZA simulations can cause companion halos to diverge in their evolutionary history, we cannot rely on bulk halo properties such as mass or central position as a primary means of matching. CROSSMATCH
therefore relies on ID-based particle matching to pair halos. Companion simulations are initialized with identical particle ID schemes, and CROSSMATCH can then use these particle IDs to find pairs that are most likely to be the “same” halo for a given simulation snapshot. At the most basic level, CROSSMATCH reads in halo and particle lists from a halo finder such as ROCKSTAR, iterates through the lists from one simulation, and finds the halo with the largest number of shared particles from the other simulation.

As CROSSMATCH needs to run on data from simulations with large numbers of particles, total runtime becomes a concern. A naive approach would be to iterate through the first particle list, and for every particle, linearly search through the entire second particle list to find which halo a particle belongs to. This would result in an $O(N^2)$ runtime complexity. To decrease runtime to an acceptable level, the second particle list is first sorted by particle ID using a standard QuickSort algorithm, which then enables the use of a more efficient binary search. This reduces runtime complexity to an $O(N \log N)$ algorithm. Halos from the second simulation are then ranked by the percentage of particles in common with the halo from the first simulation, and the best match is selected.

II.5 Analysis

In this section, we discuss the details of the pipeline used for this work, including the analysis and plotting codes, databases, and automation scripts. We also present an overview of the results obtained at each step. A more in depth discussion of the observed trends and interpretations of results are presented in Sections III.3 and III.4, and the figures presented here are provided only as examples of the output of the analysis code.

As a high-level overview, we gather snapshots from previously run 2LPT and ZA simulations, find halos in each snapshot with ROCKSTAR, match halos between
simulations with CROSSMATCH, and compare the differences in various properties between corresponding 2LPT and ZA halos, primarily as functions of redshift and halo mass. The specific codes developed for and used in our analysis are provided in the Appendices, and are referenced with the relevant discussions below.

II.5.1 Halo Properties with ROCKSTAR

Halos are identified and measured with the ROCKSTAR halo finder, which is discussed in detail in Section II.3. Here, we discuss the setup necessary to run ROCKSTAR, as well as its output files, post-processing steps, and particle list extraction.

II.5.1.1 Simulation Snapshots and ROCKSTAR Setup

We run ROCKSTAR on snapshots from each of our six simulation boxes. Each box has 62 snapshots, with 512^3 dark matter particles each. For each snapshot, a ROCKSTAR run directory is set up with a number of configuration files and scripts, including the ROCKSTAR configuration file (Appendix A.1), PBS submission script (Appendix A.2), a script to clean files from previous runs and begin a new run (Appendix M.3), and a script for post-processing generated output files (Appendix A.3). A directory for particle data contains a link to the actual simulation snapshot and a file containing a list of snapshot files, which for our setup contains only one item. A directory is also created for output halo data files. We discuss automation of run directory setup and simultaneous launching of multiple ROCKSTAR instances in Section II.6.

The parameter file controls various configuration options including simulation type, physical units, cosmological parameters, I/O options, halo definitions, and process setup. ROCKSTAR has native support for GADGET’s snapshot format and can automatically import cosmological parameters and box size. Length and mass scales must be input to convert from simulation units. ROCKSTAR uses periodic boundary conditions based on the number of analysis processes. Periodic boundary conditions are assumed if using a multiple of eight analysis processes and are not assumed if
using one analysis process. Halo virial radius and mass definitions may be set to either virial or a multiple of either the critical or background density. We select halos to be defined by the virial radius and mass. We are interested in defining halos as spherical overdensity halos rather than friends-of-friends halos, so we also choose to define halo properties based on all particles within the virial radius, whether or not they are energetically bound to the halo.

ROCKSTAR is run as a server-client setup. This is designed so that one processor acts as a director and output manager, one or more processors read in the input snapshots, and the remaining processors or compute nodes do the actual processing on different segments of the simulation box. ROCKSTAR uses sockets for communication between the server process and the worker processes if running on multiple nodes. However, we run each instance of ROCKSTAR on one node only, with ten processor cores for the necessary functions. One processor acts as the server, one as the snapshot reader, and the remaining eight as halo finders.

II.5.1.2 ROCKSTAR Output and Post-processing

ROCKSTAR outputs halo information in ASCII plaintext, binary, and BGC2 binary formats. As mentioned above, we run ROCKSTAR with eight worker processes per snapshot. Each worker process outputs its own set of data files, with each file covering a separate octant of the simulation box plus a small overlap region. Halos with particles in the overlap region are saved based on the location of their centers. In addition to the per-processor output, a composite list of halos (and only halos) from all worker processors are created.

Through its various output files, ROCKSTAR provides a large number of measured halo properties, including halo ID, number of constituent particles, masses to various radii, position, velocity, angular momentum, spin, virial radius, scale radius, shape parameters, energy parameters, position and velocity offsets between the center of
mass and the peak density, and parent halo ID. Whether or not full friends-of-friends particle lists are saved is controlled via the configuration file. In addition, spherical overdensity particle lists of particle positions, velocities, and IDs are saved only when utilizing BGC2 output. Individual particle masses are not included as our simulations have uniform particle mass.

As previously mentioned, we want halos defined based on spherical overdensity particle lists. These are only available from ROCKSTAR’s BGC2 binary output format, with all other available particle lists consisting of friends-of-friends particles. The BGC2 files consist of a 1024 byte header, halo data of 72 bytes per halo, and particle data with 32 bytes per particle. The header consists of an unsigned 8-byte integer, 16 8-byte signed integers, 19 8-byte double-precision floating point numbers, and extra padding out to 1024 bytes. We refer the reader to the bgc2.h header file in the publicly available ROCKSTAR source code for the list and explanation of the header variables. The data for each halo consist of 2 8-byte signed integers for ID and parent ID, 2 8-byte unsigned integers for number of particles and number of particles excluding substructure, and 10 4-byte floating point numbers for radius, mass, three position components, three velocity components, maximum circular velocity, and the radius of the maximum circular velocity. The data for each particle consist of 1 8-byte signed integer for ID and 6 4-byte floating point numbers for three position components and three velocity components. There is a 4-byte offset before the header, and 8-byte offsets between the header and halo data and between the halo data and particle data. Our python code for reading in BGC2 files is presented in Appendix C. C code for reading in BGC2 files is bundled with the ROCKSTAR source code.

After ROCKSTAR is run, some post-processing of the output is needed. By default, ROCKSTAR does not provide information on membership information for substructure. Two scripts—one for the composite halo list and one for the BGC2 files—are provided with ROCKSTAR to cycle back through the halo lists and find the "parents,"
or the halo in which a given subhalo is contained. A script is also provided to convert halo information in the BGC2 files to ASCII plaintext. Our script for running these post-processing steps is presented in Appendix A.3.

II.5.2 Density Profile Fitting

While ROCKSTAR’s output includes measurements for halo virial and scale radii, and thus concentration, we independently fit NFW density profiles to halos and measure concentration as a verification of ROCKSTAR’s fitting. The full density profile python code is presented in Appendix D. This section is included for completeness only, as we find that only a small fraction of halos are well fit by our method, and we instead rely on concentration measurements directly from ROCKSTAR for subsequent analysis.

II.5.2.1 Density Profiles

For each halo, a list of constituent spherical overdensity particles is obtained from the post-processed BGC2 catalog from ROCKSTAR’s output. For our purposes here, the relevant parameters are particle mass and position. We also use the values for each halo’s center position and virial radius as found by ROCKSTAR.

Density profiles are then constructed by binning the particle positions in logarithmic radial bins from the resolution limit of the simulation to the halo virial radius and multiplying by particle mass. Before being passed to the fitting routine, density profiles are normalized to unity for both virial radius and maximum density.

II.5.2.2 Fitting

Halos are fit using the CurveFit routine from the SciPy Optimize library. It uses the Levenberg-Marquardt algorithm (Marquardt 1963) for non-linear least squares fitting.

CurveFit is called by providing a model function, independent variable, measured dependent variable, and optionally weights for the dependent variable and initial
guesses for fit coefficients. Here, our fit function is the NFW dark matter density profile (see Equation I.7). The free parameters to be fit are the scale radius R_s and the characteristic density ρ_0.

As the least squares algorithm is sensitive to local minima, care must be taken in choosing initial guesses for the fit coefficients. Additionally, large dynamic range in the fit parameters tended to produce poor results. We explored a number of approaches to improve solution stability, including fitting in logarithmic space and randomizing the initial guesses and picking the best solution. We found the best results were achieved by normalizing the data to unity for both radius and density, and choosing initial guesses within an order of magnitude for a typical halo, namely, normalized $R_s = 0.1$ and normalized $\rho_0 = 1.0$.

Some halos with irregular profiles presented the problem of the fitting algorithm choosing an unphysical scale radius larger than the virial radius of the halo. In order to heavily penalize this option from being chosen by the fitting algorithm, the fit density profile returned by the model function must differ from the input measured density profile as much as possible. However, we discovered that the transition between a real fit and a purposefully distorted fit must also be smooth, as a disjointed jump such as, say, returning a very large number for every value if $R_s > R_{\text{vir}}$ would cause the algorithm to fail. We achieve this smooth transition penalty by adding the term $(R_s - 1)e^r$ to the density returned by the model function if the fitting algorithm tries to guess a value of R_s larger than R_{vir}. However, while this did force halos to have definable concentrations, these halos often ended up with best fit scale radii equal to or just slightly less than the virial radii.

As we fit halos over a large range in redshift, we found low particle count halos to have noisy density profiles that were inherently more difficult to properly fit. Throughout our analysis, we use a lower bound of 100 particles to define a halo. At high redshift, even the largest halos are just beginning to cross this threshold. With
so few particles spread across the number of bins necessary to properly define a density profile (we adaptively reduce the number of bins if there are too few particles in a bin, with a minimum of 5 bins), we are left with only a handful of particles per bin. In Figure II.3, we compare one of the largest halos at $z = 14$ with one of the largest halos at the end of the simulation at $z = 6$.

II.5.2.3 Characterization of Uncertainty

An initial motivation for finding our own concentration parameters independent from ROCKSTAR is that ROCKSTAR does not provide information about the quality of its density profile fits. We assign Poisson errors to the density in each bin such that $\sigma_\rho = \rho \sqrt{N}/N$, where ρ is the density and N is the number of particles in each bin. These uncertainties are then provided as weights to the CurveFit routine. Upon finding a best fit, the routine provides the fit parameters and an estimation of the uncertainty in those parameters via a covariance matrix, which we use to calculate the uncertainty in the concentration. Additionally, we find the χ^2 for the overall fit, which we use as an indicator of whether to accept or reject the fit for a given halo. We accept halos with $\chi^2 \leq 10$.

II.5.2.4 Concentration Comparison to ROCKSTAR

Overall, we do not find good agreement with ROCKSTAR. Using a script (see Appendix H) to compare the concentrations derived from our fits with those from ROCKSTAR, we find that at $z = 6$ only 26% of halos fit by our method have concentrations within 20% of concentrations as measured by ROCKSTAR. We have slightly more agreement with high mass halos, with 37% agreement if we only consider the most massive 10% of halos. Additionally, we do not find good fits for every halo. If the distribution of particles would produce too few bins or the fitting routine exceeded a maximum number of iterations to find a stable solution, the halo is not fit. We also exclude halos with fits returned with very large χ^2 values. Because of the discrep-
Figure II.3: Spacial projections and density profiles for two large halos at $z = 14$ (top) and $z = 6$ (bottom). Both halos are from the Box 1 2LPT simulation, and are the largest halos at their respective redshifts. The density profiles are fit with an NFW profile, and the resulting scale radius is plotted as a vertical dot-dash purple line.
ancies in our results and the fact that we do not find acceptable fits for every halo, we use the more complete ROCKSTAR data for the final concentration measurements used in the remainder of our analysis.

II.5.3 Cross-matched Halo Catalog
We need to be able to directly compare corresponding halos from the two suites of simulations. We match halos between ZA and 2LPT simulations based on constituent particles with the CROSSMATCH code modified to import ROCKSTAR’s BGC2 binary output files. Properties of the matched halos are then compiled into one large database per box for further filtering and analysis.

II.5.3.1 Cross-matching
Our simulations are initialized with identical particle ID schemes, and we are thus able to uniquely identify and track matching particles between simulations and match halos based on the largest number of shared particles. As the full implementation of the CROSSMATCH code is previously discussed in Section II.4, we only briefly summarize its place in our analysis pipeline here. The script in Appendix M.2 sets up the directory structure for the CROSSMATCH analysis and copies the CROSSMATCH parameter files (Appendices B.1 and B.2) to the appropriate run directories. CROSSMATCH is then run for each snapshot via the submission script in Appendix M.7, which is run for each simulation box.

One caveat of the CROSSMATCH code is that matches are not necessarily unique. For each halo in the first simulation, only one best match halo will be selected from the second simulation. However, there may be other halos from the first simulation that also have the same halo from the second simulation selected as a best match. For example, such a situation may arise in the case of offset merging epochs. To counter this, we run CROSSMATCH in both directions—once matching ZA halos to 2LPT halos and once matching 2LPT halos to ZA halos—and choose best match halos as those that
are matched in both directions. This assures a unique one-to-one matching between 2LPT and ZA halos. The code and submission script that select the best matches from the 2LPT-first and ZA-first cross-matched halo lists are presented in Appendix E.

II.5.3.2 Database Aggregation and Filtering

We now have raw halo data we need for further study, but are also left with a large number of disparate files that contain this information. For every snapshot, we have cross-simulation halo matching information from CROSSMATCH and the best match selection script, independent density profile and concentration measurement information from the density profile program, and original halo properties and host halo membership information from ROCKSTAR spread across plaintext and BGC2 binary files for each processor on which ROCKSTAR was run, all for three simulation boxes each for both 2LPT and ZA.

We combine the information from all of these file into one centralized database per snapshot with the database generation program and submission script in Appendix F. The program reads in all of the source data files, finds companion halos from the output of CROSSMATCH, and outputs all available data for each halo pair aggregated together. The program is run for each of our 62 snapshots per simulation box, giving 186 total database files.

With the first version of our database generation code, total runtime became a significant factor. The halo matching code was initially implemented in a naive double loop search through all the data files to find collect halo pair properties. Pure python loop structures are exceedingly slow for larger data sets, and an initial estimate gave a runtime on the order of weeks or months. This was unacceptable, as there are many snapshots, and the aggregation may need to be performed multiple times if any of the previous steps in the analysis pipeline were to be modified. The code was therefore rewritten to take full advantage of the vectorization of the NumPy library, achieving
a massive speedup to a runtime of order a few seconds.

In order to retain a centralized database of all available information for matched halos, we do not filter out halos at this step. Subsequent analysis, however, does remove halo pairs from consideration in certain circumstances. For early analysis involving our independent density profile fitting, we ignore halos based on evidence of a poor fit, including halos that have measured concentrations greater than 100 or less than 1, \(\rho_0 \) less than zero, or \(\chi^2 \) greater than 10. However, as we do not use these results in our final analysis, these filters are not relevant to the collected halo catalog. For all analysis, we remove halos with fewer than 100 particles and halos that exist as substructure in a larger host halo.

II.5.4 Halo Comparison

With a catalog of DM halos cross-matched between 2LPT and ZA simulations, we are able to directly compare properties on a halo-by-halo basis. At this stage, we are mostly concerned with a qualitative comparison between individual halos in order to judge the overall success of halo matching and the broad differences in halo evolution arising from differences in simulation initialization.

II.5.4.1 Match Verification

In order to compare halo evolution between 2LPT and ZA simulations, we first need to ensure that the halos being compared do actually represent the same halo in each simulation. One way we do this is by visual inspection of the halos’ position, virial radius, and morphology. The CrossMatch code as well as its implementation in our analysis pipeline are discussed above, so here we instead focus on the plots used as a visual sanity check on the resulting matches. The python code used to generate these plots is listed in Appendix G.1.

As we wish to compare halos that may have followed different evolutionary paths in their respective 2LPT or ZA simulations, we are unable to do a hard cut on a single
Figure II.4: Example of halo particle matching at $z = 6$. Blue dots are 2LPT halo particles, and red dots are ZA halo particles. Black circles are the virial radii of the halos. Good matches are achieved for halos, with only slight drift between simulations.

Parameter such as mass, radius, position or particle distribution. However, large variances in any of these properties can hint at a problem in the matching algorithm. We therefore perform a quick visual check on a number of halo pairs by plotting their relative positions, radii, and constituent particle distributions in order to verify that the CrossMatch code performed as expected.

An example of this comparison is shown in Figure II.4, where we plot two large matching halos at $z = 6$. Particles belonging to the halos are plotted as points, with 2LPT halo particles in blue and ZA halo particles in red. The virial radii of the two halos are represented by the black circles. The virial radii and particle distributions are very similar, and there is only a small offset in position. We consider this a successful match.

II.5.4.2 Morphology

The morphology of a dark matter halo can provide insight into its structural evolution and merger history. Features such as tidal tails, irregular shapes, and offset nuclei hint at recent merger activity, while more symmetrical distributions suggest a quieter recent history. We compare DM particle distributions of matched halos by observing the projected density map along three axis vectors as a guide to lead the discussion of halo merger histories. The python code for plotting these, as well as the density
profiles discussed below, is listed in Appendix G.2.

By comparing the projected density morphologies of companion 2LPT and ZA halos, we get a qualitative impression of the differences in their current evolutionary state. We found the inner nuclear region to often display the most discernible difference in structure between the two halos. For halo pairs where this difference is most apparent, such as one halo having a single central core with the other halo having two distinct density peaks, we believe the most likely cause to be an offset in merger epochs between the two simulations. In this case, the snapshot from one simulation would catch the merger in progress, with multiple unsettled density peaks still visible, while the other simulation snapshot would catch the halo after it has settled into a more virialized state.

As an example of this, we plot comparisons of two $z = 6$ halo pairs in Figures II.5 and II.6. The top two rows of panels of each show XY, XZ, and YZ projections of the dark matter density for the 2LPT and ZA halo on the first and second row, respectively. The density map is shown with a logarithmic color scale, and equal density contours are marked with white curves. Figure II.5 shows a pair of large halos that display similar central structure. These halos are unlikely to have largely differed in their evolution shortly prior to the snapshot. Figure II.6, however, shows a halo pair with differing nuclear structure. The ZA halo displays two distinct central density peaks, while the 2LPT halo shows only a single more relaxed core.

II.5.4.3 Density Profiles
The code listed in Appendix G.2, which produces the density projections discussed above, also plots comparisons of the halos’ density profiles. We have addressed the creation of density profiles in Section II.5.2, and here the same method is used for each profile. In this case, we wish to directly compare the profiles of the companion 2LPT and ZA halos, so they are plotted together, alongside the 2-D density projections
Figure II.5: Two large matched halos at $z = 6$ with similar nuclear structure. Top two rows: Projected density maps, with XY, XZ, and YZ views of the central nuclear region of the halos. Density is represented by a logarithmic color scale, and equal density contours are plotted as white curves. The first and second rows depict the 2LPT and ZA halo, respectively. Bottom two rows: Radially-binned halo density profiles fit with the NFW density profile model. The blue stepped profiles are the binned data, red curves are the fit NFW models, black dashed lines are the resolution limit of the simulation, and purple dot-dash lines are the measured scale radius.
Figure II.6: Like Figure II.5, but for two large matched halos at $z = 6$ with differing nuclear structure.
discussed in the previous section.

We again consider the halo pairs compared in Figures II.5 and II.6, where the bottom two panels of each display the density profiles of the 2LPT and ZA halos, respectively. Halo particles are binned in logarithmically-spaced radial bins from the virial radius inward to the simulation resolution limit. The profiles are fit with the NFW profile model with free parameters for scale radius and characteristic density. The resulting fit is overplotted as red curves, and the scale radius is marked with the vertical purple dot-dash lines.

The halos in Figure II.5 display very similar central morphology and are both well-fit by the NFW profile. The more relaxed and spherically symmetrical halos such as these tend to be easier to fit well than more irregular halos. The measured scale radii for these halos are also very similar, and combined with the similar virial radii, produce similar concentration values. The halos in Figure II.6 display a more differing structure. While the 2LPT halo is relatively symmetrical, the ZA halo has two distinct central density peaks. Here, there is a marked difference in the resulting scale radii, with the 2LPT halo displaying a larger concentration than its ZA companion.

II.5.5 Difference Distributions

We now turn our focus to the ensemble halo population as a whole. Comparing individual companion halos can realistically only give a qualitative picture of differences arising between 2LPT and ZA simulations, as the large number of halos necessitates consideration of only a small percentage of the sample. We therefore need a consistent way of measuring the behavior of the entire population. In this section, we discuss how we measure these differences in halo populations using the codes listed in Appendix I. In particular, the analysis code itself is listed in Appendix I.1, the script to run the analysis on the combined halo population from all three simulation boxes is listed in Appendix I.2, the script to run the analysis on the simulation boxes inde-
pendently is listed in Appendix I.3, and the script to collect the resulting statistics from all the individual snapshots into one database is listed in Appendix I.4.

II.5.5.1 Histograms

We wish to explore differences in a number of halo properties, so we construct a generic distribution so that any measured halo quantity q can be considered. The distribution should highlight the differences between 2LPT and ZA halo populations while remaining unbiased to the choice of simulation initialization. This leaves us with a distribution of the differences between 2LPT and ZA quantities, normalized by the average of the two:

$$\Delta q = \frac{q_{2\text{LPT}} - q_{ZA}}{q_{\text{avg}}},$$ \hspace{1cm} (II.15)

where $q_{\text{avg}} = \frac{1}{2}(q_{2\text{LPT}} + q_{ZA})$. Defined in this way, difference distributions of, e.g., virial mass ΔM_{vir}, concentration Δc, or the offset distance between the central density peak and the center of mass ΔX_{off} can all be considered on equal footing. We create distribution histograms of Δq for various halo quantities both for the combined halo catalog from the stacked simulation boxes and for the individual simulation boxes separately.

II.5.5.2 Fitting

In order to extract a number of statistical quantities and to get a better high-level feel for the leading behavior of the distributions, we wish to fit a statistical model to the data histograms. While the data would seem to be distributed according to a Gaussian distribution at first glance, we found the deviations from Gaussianity to be more significant than could be ignored. After significant trial and error, we found the Δq distributions to be best described by a generalized normal distribution (Nadarajah
2005) with the probability density function

\[f(x) = \frac{\beta}{2\alpha \Gamma(1/\beta)} e^{\frac{(x-\mu)}{\alpha \beta}}, \quad (\text{II.16}) \]

where \(\mu \) is the mean, \(\alpha \) is the scale parameter, \(\beta \) is the shape parameter, and \(\Gamma \) is the gamma function

\[\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} \, dx. \quad (\text{II.17}) \]

The shape parameter \(\beta \) is restricted to \(\beta \geq 1 \). This allows the distribution to potentially vary from a Laplace distribution \((\beta = 1) \) to a uniform distribution \((\beta = \infty) \) and includes the normal distribution \((\beta = 2) \). The distribution has variance

\[\sigma^2 = \frac{\alpha^2 \Gamma(3/\beta)}{\Gamma(1/\beta)} \quad (\text{II.18}) \]

and excess kurtosis

\[\gamma_2 = \frac{\Gamma(5/\beta) \Gamma(1/\beta)}{\Gamma(3/\beta)^2} - 3. \quad (\text{II.19}) \]

The distribution is symmetric, and thus has no skewness by definition. As such, the values obtained for the skew of the distribution are measured directly from the data.

We use the CurveFit module from the SciPy library for all of our functional fitting. CurveFit is a non-linear least squares fitting routine that can fit an arbitrary input function to data with optional uncertainties. It can return estimates of the free parameters of the model, as well as a covariance matrix used to determine the uncertainties in the fit coefficients.

We found our fitting routine to be fairly sensitive to differences in initial guess of fit coefficients. CurveFit is not guaranteed to find global minima, and can become stuck in local extrema. This ends up being most probable when trying to find multiple fit coefficients with large dynamic range. We found the best way to address this was to scale the data to unity in each dimension whenever possible. In the case of
our difference histograms, the standard deviations of the distributions are typically around order unity, so it was only necessary to normalized the counts. We also found that we achieved better results when fitting in logarithmic space.

We explored a number of halo parameters, but found the most interesting distributions to be those for virial mass and concentration. In Figure II.7, we plot histograms of ΔM_{vir} and Δc in the left and right columns, respectively, for three representative simulation snapshots at $z = 14.7$, $z = 10.3$, and $z = 6.0$. Data from the entire sample are plotted as blue histograms, data for the top 25\% of halo pairs, sorted by 2LPT halo mass, are plotted as grey-filled green histograms, and the generalized normal distribution fits are overplotted as red dashed curves.

II.5.6 Redshift Trends

Up to this point, we have only considered one snapshot at a time. While we have observed variations with redshift, this has not been explicitly quantified. In this section, we consider the statistical quantities derived from the generalized normal distribution fits from the previous section as functions of redshift. The code used for this analysis is listed in Appendix J.

II.5.6.1 Mean and Standard Deviation

Representing the mean and standard deviation of the distributions is relatively straightforward. For the fit generalized normal distributions, we record values for the mean, uncertainty in the mean, standard deviation, and uncertainty in the standard deviation. We also record the mean and standard deviation of the underlying distribution as directly measured from the data.

In Figure II.8, we plot the mean and standard deviation of the distributions for mass and concentration, as well as the rms value derived from the data, all as functions of redshift. The mean is plotted as blue points with error bars, the standard deviation is plotted as two black dashed lines that represent $\mu \pm \sigma$, and the rms is plotted as a
Figure II.7: Histograms of ΔM_{vir} (left column) and Δc (right column) for snapshots at $z = 14.7$, $z = 10.3$, and $z = 6.0$ (top, middle, and bottom panels, respectively). The small gray-filled histograms count only the top 25% most massive halos. The main histograms are fit with a generalized normal distribution with parameters for mean, scale, and shape, overplotted as the red dashed line (see Equation II.16).
dotted green line.

In this case, we wish to be conservative with the error bars on the mean. Since we have a measurement for the mean both from the fitting distribution and the underlying data, we can incorporate both of these into our result. The points plotted in Figure II.8 are the mean measured from the fit distribution, and the error bars are the uncertainty in the mean estimated from the least squares routine. However, if the mean measured directly from the data falls outside the error bars, the error bars are expanded to encompass that measurement. This is most often not a concern, as the means for most snapshots are very close together. However, when there is a slight discrepancy between the fit and data values, the error bars will reflect this.

II.5.6.2 Skew

The generalized normal distributions we use to fit our Δq histograms are symmetrical by definition and therefore have no inherent skew. This was a simplifying assumption necessary to use a well-defined distribution as well as reduce the number of free parameters during fitting. We do note, however, that the skew of our underlying data is often large enough to not be ignored.

Therefore, we need an alternate way to measure skew and its uncertainty. We use the skew routine from the SciPy statistics library, which defines skew as

$$\gamma_1 = \frac{\mu_3}{\mu_2^{3/2}},$$

where μ_m are central moments given by

$$\mu_m = E[(X - \mu)^m] = \sum_k (x_k - \mu)^m p(x_k)$$

$$= \sum_{k=0}^m (-1)^{m-k} \binom{m}{k} \mu^{m-k} \mu_k,$$
Figure II.8: Mean, standard deviation, and rms as functions of redshift for ΔM_{vir} (top) and Δc (bottom). The mean is plotted as blue points, $\mu \pm \sigma$ is plotted as the black dashed curves, and rms values are plotted as a green dotted curve. The red dashed line is a linear fit to the mean.
with non-central moments μ'_m given by

$$\mu'_m = E[X^m] = \sum_k x_k^m p(x_k),$$ \hspace{1cm} (II.23)

where $p(x_k)$ is the probability density function. The skew is then measured from the entire halo sample for the three combined simulation boxes. Uncertainty in skew is evaluated by taking the skew of the three boxes as independent measurements. The results for skew as a function of redshift are plotted as blue curves for the ΔM_{vir} and Δc distributions in Figure II.9.

II.5.6.3 Kurtosis

Variable kurtosis is a fundamental part of the generalized normal distribution, so we may therefore derive the kurtosis directly from the fit distribution parameters. The generalized normal distribution is defined in terms of a shape parameter β, which does introduce some complexity in the conversion to kurtosis. The shape parameter is converted to excess kurtosis by way of Equation II.19. As this definition includes the Gamma function, a number of steps are required to convert the uncertainty in shape parameter to the uncertainty in kurtosis, which we outline below.

The standard deviation of a function $f(x_1, x_2, \ldots, x_n)$ is, in general, given by

$$s_f = \sqrt{\sum_x \left(\frac{\partial f}{\partial x} \right)^2 s_x^2},$$ \hspace{1cm} (II.24)

with summation over all independent variables x. The generalized normal distribution

$$f(x) = \frac{\beta}{2\alpha \Gamma(1/\beta)} e^{-|(x-\mu)/\alpha|^{\beta}},$$ \hspace{1cm} (II.25)
Figure II.9: Skew (blue curve) and excess kurtosis (red curve) from generalized normal distribution fits as functions of redshift for ΔM_{vir} (top) and Δc (bottom). For both plots, the left axis is the scale for kurtosis and the right axis is the scale for skew.
with mean \(\mu \), scale parameter \(\alpha \), and shape parameter \(\beta \), has excess kurtosis

\[
\gamma_2 = \frac{\Gamma(5/\beta)\Gamma(1/\beta)}{\Gamma(3/\beta)^2} - 3.
\]

(II.26)

The gamma function

\[
\Gamma(x) = \int_0^\infty t^{x-1}e^{-t} \, dt
\]

(II.27)

has the first derivative

\[
\Gamma'(x) = \Gamma(x)\psi_0(x),
\]

(II.28)

where the digamma function \(\psi_0 \) is the derivative of the logarithm of the gamma function and is given by

\[
\psi_0(x) = \int_0^\infty \left(\frac{e^{-t}}{t} - \frac{e^{-xt}}{1 - e^{-t}} \right) \, dt
\]

(II.29)

if the real part of \(x \) is positive.

We now apply (II.24) to (II.26) to find the standard deviation of the excess kurtosis:

\[
s_{\gamma_2} = \sqrt{\left(\frac{d\gamma_2}{d\beta} \right)^2} \frac{s_\beta}{s_\beta}
\]

(II.30)

\[
= s_\beta \frac{d\gamma_2}{d\beta}
\]

(II.31)

\[
= s_\beta \frac{d}{d\beta} \left[\frac{\Gamma(5/\beta)\Gamma(1/\beta)}{\Gamma(3/\beta)^2} - 3 \right].
\]

(II.32)

Making the substitution \(x = 1/\beta \) and \(dx = -1/\beta^2 \, d\beta \), taking the derivative, and
doing a bit of algebra, we have:

\[s_{\gamma_2} = s_\beta \frac{d\gamma_2}{dx} \frac{dx}{d\beta} \]
\[= s_\beta \left(-\frac{1}{\beta^2} \right) \frac{d}{dx} \left[\frac{\Gamma(5x)\Gamma(x)}{\Gamma(3x)^2} - 3 \right] \]
\[= -s_\beta x^2 \left\{ \frac{\Gamma(3x)^2 \frac{d}{dx} [\Gamma(5x)\Gamma(x)] - \Gamma(5x)\Gamma(x) \frac{d}{dx} [\Gamma(3x)^2]}{\Gamma(3x)^4} \right\} \]
\[= -s_\beta \frac{x^2}{\Gamma(3x)^4} \left\{ \Gamma(3x)^2 [5\Gamma(5x)\psi_0(5x)\Gamma(x) + \Gamma(5x)\Gamma(x)\psi_0(x)] - \Gamma(5x)\Gamma(x) [6\Gamma(3x)^2\psi_0(3x)] \right\} \]
\[= s_\beta \frac{x^2}{\Gamma(3x)^4} \left\{ 6\Gamma(5x)\Gamma(3x)^2\Gamma(x)\psi_0(3x) - \Gamma(5x)\Gamma(3x)^2\Gamma(x) [5\psi_0(5x) + \psi_0(x)] \right\} \]
\[= s_\beta \frac{x^2}{\Gamma(3x)^4} \left\{ \Gamma(5x)\Gamma(3x)^2\Gamma(x) [6\psi_0(3x) - 5\psi_0(5x) - \psi_0(x)] \right\} \]
\[= s_\beta \frac{x^2}{\Gamma(3x)^2} \left[6\psi_0(3x) - 5\psi_0(5x) - \psi_0(x) \right]. \]

Substituting back in for \(x \) and recognizing an occurrence of \(\gamma_2 \), we have the result

\[s_{\gamma_2} = s_\beta \left(\frac{1}{\beta^2} \right) (\gamma_2 + 3) \left[6\psi_0(3/\beta) - 5\psi_0(5/\beta) - \psi_0(1/\beta) \right], \]

with which we can find the uncertainty in the kurtosis given the value and uncertainty of the shape parameter \(\beta \).

With a method of determining the uncertainty in kurtosis established, we may now provide an example of the results (which, again, will be discussed in Chapter III). In Figure II.9, we plot the kurtosis and associated uncertainties as a function of redshift as red curves for distributions of \(\Delta M_{\text{vir}} \) and \(\Delta c \).

II.5.7 Mass Trends

So far, our analysis has mostly focused on the behavior of the entire halo sample as a single unit. However, there is also a wealth of information available when the
statistics for our sample are viewed as functions of halo mass. In this section, we explore our halo ensemble more deeply by dividing into bins of mass and viewing the behavior of the resulting subsamples. In this way, we are able to explore differences in low- and high-mass halos, as well as quantify the explicit mass dependencies. The codes used for this analysis are listed in Appendix K.

II.5.7.1 Binning and Fitting

When representing the mass dependence of our various halo properties, we wished to do so in a way that was both straightforward to quantify and visually descriptive of the overall distribution of the data. We found the best way to accomplish this was to provide a dual representation, with the data both binned in mass for least-squares fitting and binned two dimensionally in mass and Δq, with a color scale representing bin density, for a human reader to more easily see the relative population of the parameter space.

First, the data is binned on a 2-D grid. We found this to be the most natural way to visually represent the distribution of the data, as some features like population sparseness at high redshift, asymmetry, and large differences in number between low- and high-mass halos would be more difficult to convey with only average mass bin means and standard deviations. The binned data are plotted with a logarithmic color scale and smoothed with a Gaussian kernel.

As a technical aside, we note that plotting bins with zero members with a logarithmic color scale naturally leads to poor results. We counter this by artificially counting one half halo for bins that are otherwise empty, and rescale the color representation to make anything less than one unit per bin display the minimum color value.

As an alternate representation, and mainly for the benefit of a more quantitative analysis, we bin the data along the average halo mass axis. For each bin, we measure
the mean and standard deviation of the data. The uncertainty in the mean is then calculated as the standard deviation divided by the square root of the number of particles in the bin. We find a linear fit to the bin means using our standard least-squares approach, weighted by the mean uncertainties.

Example plots are provided in Figures II.10 and II.11 to demonstrate this approach. The 2-D binned data is plotted using a logarithmic color scale to represent the number density of halos in a given cell. The bin means and associated uncertainties are plotted as the black points with error bars. The standard deviation to either side of the mean is plotted as black dotted lines. The least-squares fit to the bin means is plotted as a solid magenta line.

II.5.7.2 Trends with Redshift

To better analyze the time evolution of the mass dependence, we need a more compact representation than simply looking at successive individual redshift snapshots. The most informative individual parameter from these plots is the slope of the linear fit line for \(\Delta q \) as a function of average halo mass. We therefore plot the slopes and associated uncertainties for each snapshot as a function of redshift, with examples for \(\Delta M_{\text{vir}} \) and \(\Delta c \) displayed in Figure II.12. The data are then fit with our linear least-squares routine, and the fit is overplotted as a red dashed line.

II.5.8 Alternate Difference Distributions

The distributions of \(\Delta q \) that have been discussed up to this point are an excellent measure of the overall behavior of the halo population differences between 2LPT and ZA simulations. However, as these distributions rely on the average quantity

\[
q_{\text{avg}} = \frac{q_{\text{2LPT}} + q_{\text{ZA}}}{2}
\]

for normalization, quantities like the fraction of halo pairs differing by a given amount between simulations are more difficult to extract. We therefore redefine our distribution quantity to instead use a normalization factor of
Figure II.10: ΔM_{vir} as a function of $M_{\text{vir,avg}}$. For the 2-D color histogram, halos are counted in rectangular bins and smoothed with a Gaussian kernel with a logarithmic color scale. The halos are also divided into logarithmically-spaced bins in average virial mass, and the mean for each bin is plotted as a black point. The black dotted curves are the standard deviation around the mean. The magenta line is the linear least-squares best fit to the bin means. The light grey dashed line at $\Delta q = 0$ is provided to guide the eye. The two panels correspond to snapshots at $z = 10.3$ and $z = 6.0$. These plots are provided as examples of the output at this stage of the analysis and are further discussed in Chapter III.
Figure II.11: Like Figure II.10, but for Δc instead of ΔM_{vir} as a function of average halo mass.
Figure II.12: Slopes of the Δq vs. $M_{\text{vir,avg}}$ fit functions. The top and bottom panels correspond to the ΔM_{vir} and Δc plots of Figures II.10 and II.11. Linear least-squares fits to the data are overplotted as red dashed lines. These plots are provided as examples of the output at this stage of the analysis and are further discussed in Chapter III.
which allows for a more direct comparison between halo pairs. Statistics for these distributions are saved alongside the output for Δq distributions with the codes in Appendix I.

II.5.8.1 Equivalent Displacement

The question may be asked why these distributions have not been used all along, as they more readily offer more quantitative values for our halo populations. Our previous distributions of Δq are symmetrical between 2LPT and ZA quantities, which allows us to be completely unbiased as to which simulation initialization is correct. The distributions of δq lose this symmetry, and are only defined for $\delta q \geq -1$ for positive quantities like mass and concentration.

For this analysis, we therefore need a way to consider halo pairs that differ by a certain amount in either direction (e.g. pairs that differ in quantity q by 10%, whether q is larger in 2LPT or ZA). Rearranging Equation II.41 yields

$$q_{2\text{LPT}} = (\delta q + 1)q_{\text{ZA}},$$

(II.42)

and making the substitution $x = \delta q + 1$ gives us

$$q_{2\text{LPT}} = xq_{\text{ZA}}.$$

(II.43)

For a given x, we want to find x_{eq} such that $x_{eq} = 1/x$. Substituting now for x and x_{eq} and rearranging gives us

$$\delta q_{eq} = \frac{1}{\delta q + 1} - 1,$$

(II.44)

the value for which a halo pair with a larger q in ZA would differ by the same factor.
as a halo pair with a larger \(q \) in 2LPT.

II.5.8.2 Redshift Trends

In Figures II.13 and II.14, as an example of the output at this step, we plot statistics for our \(\delta q \) distributions as functions of redshift. In Figure II.13, we plot the \(\delta q \) of the peak of the distribution, as well as the \(\delta q \) values where 50%, 10%, and 1% of halo pairs fall at or above \(\delta q \). In Figure II.14, we plot the fraction of halo pairs \(f_h \) that fall outside various \(\delta q \) values. The solid curves represent the fraction of halo pairs that have a 2LPT mass or concentration at least 1.1, 1.5, 2.0, or 5.0 times that of the corresponding \(z_A \) halo. Dashed curves represent the same values, regardless of whether the 2LPT or \(z_A \) mass or concentration is higher. This is the same as counting halos that fall above a given \(\delta q \) as well as below the corresponding \(\delta q_{eq} \). The code for creating these plots is listed in Appendix L.

II.6 Automation

Dealing with the large number of data files, programs, and pipeline steps used in our analysis quickly becomes prohibitive in terms of time and complexity when each must be dealt with completely “by hand.” In order to shorten the time needed for a full analysis of the data down to a reasonably human-scale level, a certain level of automation is required. A combination of shell scripting and basic parallelization was used to this effect. This has the added benefit of providing a self-documenting reproducibility to the analysis that was invaluable for the inevitable times when an error was discovered and the entire pipeline had to be re-run from the beginning. In this section, we will give a very brief summary of the automation steps taken and the scripts written for these tasks. Scripts run locally or launched manually are written in Bash, while job scripts that are submitted to the ACCRE compute cluster use the PBS syntax for communication with the scheduler and Bash for the remaining logic.

The creation of the directory structure for analysis with ROCKSTAR and subse-
Figure II.13: Statistics for distributions of δM_{vir} (top) and δc (bottom) as functions of redshift. The δq of the peak of the distribution (black curve), and the δq where 50% (red dashed curve), 10% (green dashed curve), and 1% (blue dashed curve) of the halos fall at or above δq. These plots are provided as examples of the output at this stage of the analysis and are further discussed in Chapter III.
Figure II.14: Statistics for distributions of δM_{vir} (top) and δc (bottom) as functions of redshift. The fraction of halos with δq greater than 0.10 (solid blue curve), 0.50 (solid green curve), 1.00 (solid red curve), and 4.00 (solid black curve). The dashed curves additionally count halo pairs with δq lower than the corresponding equivalent displacements of -0.09, -0.33, -0.50, and -0.80, respectively (see Equation II.44). These plots are provided as examples of the output at this stage of the analysis and are further discussed in Chapter III.
quent halo catalog generation steps was done using the script listed in Appendix M.1. The creation of the directory structure for CROSSMATCH was done using the script listed in M.2. Individual instances of ROCKSTAR may be run on individual snapshots with the script in Appendix M.3, while all snapshots may be run as a batch job using the scripts in Appendices M.4 and M.5 for 2LPT and ZA snapshots, respectively. The output from ROCKSTAR is run through a post-processing step that is automated using the script in Appendix M.6. The CROSSMATCH program is run with the script in Appendix M.7, and the python code to generate density profiles is launched with the script in Appendix M.8. A number of other Bash scripts, PBS submission scripts, and Python programs, which we have already discussed in the above sections, were used for automation of the remainder of the analysis pipeline.
CHAPTER III

Exploring Dark Matter Halo Populations in 2LPT and ZA Simulations

We study the structure and evolution of dark matter halos from $z = 300$ to $z = 6$ for two cosmological N-body simulation initialization techniques. While the second-order Lagrangian perturbation theory (2LPT) and the Zel’dovich approximation (ZA) both produce accurate present day halo mass functions, earlier collapse of dense regions in 2LPT can result in larger mass halos at high redshift. We explore the differences in dark matter halo mass and concentration due to initialization method through three 2LPT and three ZA initialized cosmological simulations. We find that 2LPT induces more rapid halo growth, resulting in more massive halos compared to ZA. This effect is most pronounced for high mass halos and at high redshift, with a fit to the mean normalized difference between 2LPT and ZA halos as a function of redshift of $\mu_{\Delta M_{\text{vir}}} = (7.88 \pm 0.17) \times 10^{-3} z - (3.07 \pm 0.14) \times 10^{-2}$. Halo concentration is, on average, largely similar between 2LPT and ZA, but retains differences when viewed as a function of halo mass. For both mass and concentration, the difference between typical individual halos can be very large, highlighting the shortcomings of ZA-initialized simulations for high-z halo population studies.

III.1 Introduction

The pre-reionization epoch is a time of significant evolution of early structure in the Universe. Rare density peaks in the otherwise smooth dark matter (DM) sea lead to the collapse and formation of the first dark matter halos. For example, at $z = 20$, $10^7 \, M_\odot$ halos are $\sim 4\sigma$ peaks, and $10^8 \, M_\odot$ halos, candidates for hosting the first supermassive black hole seeds, are $\sim 5\sigma$ peaks.

These early-forming dark matter halos provide an incubator for the baryonic processes that allow galaxies to form and transform the surrounding IGM. Initial gas
accretion can lead to the formation of the first Pop-III stars (Couchman & Rees 1986; Tegmark et al. 1997; Abel et al. 2000, 2002), which, upon their death, can collapse into the seeds for supermassive black holes (SMBHs) (Madau & Rees 2001; Islam et al. 2003; Alvarez et al. 2009; Jeon et al. 2012) or enrich the surrounding medium with metals through supernovae (Heger & Woosley 2002; Heger et al. 2003). The radiation from early quasars (Shapiro & Giroux 1987; Madau et al. 1999; Fan et al. 2001), Pop-III stars (Gnedin & Ostriker 1997; Venkatesan et al. 2003; Alvarez et al. 2006), and proto-galactic stellar populations (Bouwens et al. 2012; Kuhlen & Faucher-Giguère 2012) all play a key role in contributing to re-ionizing the Universe by around $z = 6$ (Barkana & Loeb 2001). Additionally, halo mergers can drastically increase the temperature of halo gas through shock heating, increasing X-ray luminosity (Sinha & Holley-Bockelmann 2009) and unbinding gas to form the warm-hot intergalactic medium (Bykov et al. 2008; Sinha & Holley-Bockelmann 2010; Tanaka et al. 2012).

Since the pre-reionization era is such a critical epoch in galaxy evolution, much effort is expended to characterize the dark matter distribution accurately. Statistical measures of the DM halo population, such as the halo mass function, are employed to take a census of the collapsed halos, while 3-point correlation functions are used to describe the clustering of these halos as a probe of cosmology. Detailed analysis of the structure of individual halos involves characterizing the DM halo mass and density profile.

There are a number of ways to define a halo’s mass, the subtleties of which become significant for mass-sensitive studies, such as the halo mass function (Press & Schechter 1974; Reed et al. 2007; Heitmann et al. 2006; Lukić et al. 2007). For a review, see, e.g., White (2001) and references therein. Additionally, see Voit (2005) and references therein for a more observationally-focused discussion. From a simulation standpoint, however, the two most common ways to obtain halo mass are through either spherical overdensity or friends-of-friends (FOF) techniques. The spherical
overdensity method identifies regions above a certain density threshold, either with respect to the critical density \(\rho_c = 3H^2/8\pi G \) or the background density \(\rho_b = \Omega_m \rho_c \), where \(\Omega_m \) is the matter density of the universe. The mass is then the mass enclosed in a sphere of some radius with mean density \(\Delta \rho_c \), where \(\Delta \) commonly ranges from \(\sim 100 \) to \(\sim 500 \). Alternatively, the FOF method finds particle neighbors and neighbors of neighbors defined to be within some separation distance (Einasto et al. 1984; Davis et al. 1985). Halo mass, then, is simply the sum of the masses of the linked particles.

The density profile of a DM halo is most often modeled with the NFW (Navarro et al. 1996) profile:

\[
\rho(r) = \frac{\rho_0}{r/R_s \left(1 + r/R_s\right)^2},
\]

where \(\rho_0 \) is the characteristic density, and the scale radius \(R_s \) is the break radius between the inner \(\sim r^{-1} \) and outer \(\sim r^{-3} \) density profiles. The NFW density profile is quantified by the halo concentration \(c \equiv R_{\text{vir}}/R_s \). \(R_{\text{vir}} \) is the halo virial radius, which is often defined as the radius at which the average interior density is some factor \(\Delta_c \) times the critical density of the universe \(\rho_c \), where \(\Delta_c \) is typically \(\sim 200 \). Concentration may also be obtained for halos modeled with the Einasto (Einasto & Haud 1989) profile. However, while halo profiles can be better approximated by the Einasto profile (Navarro et al. 2004, 2010; Gao et al. 2008), the resulting concentrations display large fluctuations due to the smaller curvature of the density profile around the scale radius (Prada et al. 2012).

Generally, at low redshift, low mass halos are more dense than high mass halos (Navarro et al. 1997), and concentration decreases with redshift and increases in dense environments (Bullock et al. 2001b). Neto et al. (2007) additionally find that concentration decreases with halo mass. Various additional studies have explored concentration’s dependence on characteristics of the power spectrum (Eke et al. 2001),
cosmological model (Macciò et al. 2008), redshift (Gao et al. 2008; Muñoz-Cuartas et al. 2011), and halo merger and mass accretion histories (Wechsler et al. 2002; Zhao et al. 2003, 2009). For halos at high redshift, Klypin et al. (2011) find that concentration reverses and increases with mass for high mass halos, while Prada et al. (2012) additionally find that concentration’s dependence on mass and redshift is better correlated with $\sigma(M,z)$, the rms fluctuation amplitude of the linear density field.

Cosmological simulations that follow the initial collapse of dark matter density peaks into virialized halos often neglect to consider the nuances of initialization method. Despite much effort in characterizing the resulting DM structure, comparatively less attention is paid to quantifying the effect of the initialization and simulation technique used to obtain the DM distribution. The subtle $O(10^{-5})$ density perturbations in place at the CMB epoch are vulnerable to numerical noise and intractable to simulate directly. Instead, a displacement field is applied to the particles to evolve them semi-analytically, nudging them from their initial positions to an approximation of where they should be at a more reasonable starting redshift for the numerical simulation. Starting at a later redshift saves computation time as well as avoiding interpolation systematics and round-off errors (Lukić et al. 2007).

The two canonical frameworks for the initial particle displacement involved in generating simulation initial conditions are the Zel’dovich approximation (ZA, Zel’dovich 1970) and 2nd-order Lagrangian Perturbation Theory (2LPT, Buchert 1994; Buchert et al. 1994; Bouchet et al. 1995; Scoccimarro 1998). ZA initial conditions displace initial particle positions and velocities via a linear field (Klypin & Shandarin 1983; Efstathiou et al. 1985), while 2LPT initial conditions add a second-order correction term to the expansion of the displacement field (Scoccimarro 1998; Sirko 2005; Jenkins 2010).

Following Jenkins (2010), we briefly outline 2LPT and compare it to ZA. In 2LPT,
a displacement field $\Psi(q)$ is applied to the initial positions q to yield the Eulerian final comoving positions

$$\mathbf{x} = \mathbf{q} + \Psi.$$

(III.2)

The displacement field is given in terms of two potentials $\phi^{(1)}$ and $\phi^{(2)}$:

$$\mathbf{x} = \mathbf{q} - D_1 \nabla_q \phi^{(1)} + D_2 \nabla_q \phi^{(2)},$$

(III.3)

with linear growth factor D_1 and second-order growth factor $D_2 \approx -3D_1^2/7$. The subscripts q refer to partial derivatives with respect to the Lagrangian coordinates q. Likewise, the comoving velocities are given, to second order, by

$$\mathbf{v} = -D_1 f_1 H \nabla_q \phi^{(1)} + D_2 f_2 H \nabla_q \phi^{(2)},$$

(III.4)

with Hubble constant H and $f_i = d \ln D_i / d \ln a$, where a is the expansion factor. The relations $f_1 \approx \Omega_m^{5/9}$ and $f_2 \approx 2\Omega_m^{6/11}$, with matter density Ω_m, apply for flat models with a non-zero cosmological constant (Bouchet et al. 1995). The f_1, f_2, and D_2 approximations here are very accurate for most actual \(\Lambda\)CDM initial conditions, as Ω_m is close to unity at high starting redshift (Jenkins 2010). We may derive $\phi^{(1)}$ and $\phi^{(2)}$ by solving a pair of Poisson equations:

$$\nabla_{q}^2 \phi^{(1)}(q) = \delta^{(1)}(q),$$

(III.5)

with linear overdensity $\delta^{(1)}(q)$, and

$$\nabla_{q}^2 \phi^{(2)}(q) = \delta^{(2)}(q).$$

(III.6)
The second-order overdensity $\delta^{(2)}(q)$ is related to the linear overdensity field by

$$\delta^{(2)}(q) = \sum_{i>j} \left\{ \phi^{(1)}_{,ii}(q)\phi^{(1)}_{,jj}(q) - \left[\phi^{(1)}_{,ij}(q) \right]^2 \right\},$$

where $\phi_{,ij} \equiv \frac{\partial^2 \phi}{\partial q_i \partial q_j}$. For initial conditions from ZA, or first-order Lagrangian initial conditions, the $\phi^{(2)}$ terms of Equations III.3 and III.4 are ignored.

In theory, non-linear decaying modes, or transients, will be damped as $1/a$ in ZA. In 2LPT, however, transients are damped more quickly as $1/a^2$. It should be expected, then, that structure in 2LPT will be accurate after fewer e-folding times than in ZA (Scoccimarro 1998; Crocce et al. 2006; Jenkins 2010). The practical result is that high-σ DM density peaks at high redshift are suppressed in ZA compared with 2LPT for a given starting redshift (Crocce et al. 2006). While differences in ensemble halo properties, such as the halo mass function, between simulation initialization methods are mostly washed away by $z = 0$ (Scoccimarro 1998), trends at earlier redshifts are less studied (Lukić et al. 2007).

In this paper, we explore the effects of ZA and 2LPT on the evolution of halo populations at high redshift. It is thought that 2LPT allows initial DM overdensities to get a “head start” compared with ZA, allowing earlier structure formation, more rapid evolution, and larger possible high-mass halos for a given redshift. We explore this possibility by evolving a suite of simulations from $z = 300$ to $z = 6$ and comparing the resulting differences in halo properties arising from initialization with ZA and 2LPT in these otherwise identical simulations.

We discuss the simulations, halo finding, and analysis methods in Section III.2, results in Section III.3, implications, caveats, and future work in Section III.4, and a summary of our results and conclusions in Section III.5.
III.2 Numerical Methods

We use the N-body tree/SPH code GADGET-2 (Springel et al. 2001; Springel 2005) to evolve six dark matter–only cosmological volumes from $z_{\text{start}} = 300$ to $z = 6$ in a ΛCDM universe. Each simulation is initialized using WMAP-5 (Komatsu et al. 2009) parameters. For each of the three simulation pairs, we directly compare 2LPT and ZA by identically sampling the CMB transfer function and displacing the initial particle positions to the same starting redshift using 2LPT and ZA. The three sets of simulations differ only by the initial phase sampling random seed. Each volume contains 512^3 particles in a $10\ h^{-1}\text{Mpc}$ box. Following Heitmann et al. (2010), we choose conservative simulation parameters in order to ensure high accuracy in integrating the particle positions and velocities. We have force accuracy of 0.002, integration accuracy of 0.00125, and softening of 0.5 $h^{-1}\text{kpc}$, or 1/40 of the initial mean particle separation. We use a uniform particle mass of $5.3 \times 10^5 h^{-1}\text{M}_\odot$. Full simulation details are discussed in Holley-Bockelmann et al. (2012).

One facet often overlooked when setting up an N-body simulation is an appropriate starting redshift, determined by box size and resolution (Lukić et al. 2007). As 2LPT more accurately displaces initial particle positions and velocities, initialization with 2LPT allows for a later starting redshift compared with an equivalent ZA-initialized simulation. However, many ZA simulations do not take this into account, starting from too late an initial redshift and not allowing enough e-foldings to adequately dampen away numerical transients (Crocce et al. 2006; Jenkins 2010). In order to characterize an appropriate starting redshift, the relation between the initial rms particle displacement and mean particle separation must be considered. The initial rms displacement Δ_{rms} is given by

$$\Delta_{\text{rms}}^2 = \frac{4\pi}{3} \int_{k_f}^{k_N} \int_{k_f}^{k_N} P(k, z_{\text{start}}) \,dk,$$

(III.8)
where $k_f = 2\pi/L_{\text{box}}$ is the fundamental mode, L_{box} is the simulation box size, $k_{Ny} = \frac{1}{2}Nk_f$ is the Nyquist frequency of an N^3 simulation, and $P(k, z_{\text{start}})$ is the power spectrum at starting redshift z_{start}. In order to avoid the “orbit crossings” that reduce the accuracy of the initial conditions, Δ_{rms} must be some factor smaller than the mean particle separation $\Delta_p = L_{\text{box}}/N$ (Holley-Bockelmann et al. 2012). For example, making orbit crossing a $\sim 10\sigma$ event imposes $\Delta_{\text{rms}}/\Delta_p = 0.1$. However, for small-volume, high-resolution simulations, this quickly leads to impractical starting redshifts. Continuing our example, satisfying $\Delta_{\text{rms}}/\Delta_p \sim 0.1$ for a $10h^{-1}$ Mpc, 512^3 simulation suggests $z_{\text{start}} \approx 799$. Unfortunately, starting at such a high redshift places such a simulation well into the regime of introducing errors from numerical noise caused by roundoff errors dominating the smooth potential. A more relaxed requirement of $\Delta_{\text{rms}}/\Delta_p = 0.25$, which makes orbit crossing a $\sim 4\sigma$ event, yields $z_{\text{start}} = 300$, which we adopt for this work. For our small volume, the fundamental mode becomes non-linear at $z \sim 5$, after which, simulation results would become unreliable. We therefore end our simulations at $z = 6$.

For each of our six simulations, we use the 6-D phase space halo finder code ROCKSTAR (Behroozi et al. 2013) to identify spherical overdensity halos at each timestep. ROCKSTAR follows an adaptive hierarchical refinement of friends-of-friends halos in 6-D phase space, allowing determination of halo properties such as halo mass, position, virial radius, internal energy, and number of subhalos. ROCKSTAR tracks halos down to a threshold of around 20 particles, but we use a more conservative 100 particle threshold for our analysis. We use all particles found within the virial radius to define our halos and their properties.

We identify companion halos between 2LPT and ZA simulations based on the highest fraction of matching particles contained in each at any given timestep. We remove halo pairs where either one or both halos are considered subhalos (i.e. a halo must not be contained within another halo) and pairs with fewer than 100 particles
in either 2LPT or ZA. We are left with approximately 60,000 total halo pairs for our three boxes at $z = 6$. With halo catalogs matched between simulations, we can compare properties of individual corresponding halos. To mitigate the effects of cosmic variance on our small volumes, we “stack” the three simulation boxes for each initialization method, and combine the halos from each into one larger sample for our analysis.

Halo concentration is derived from ROCKSTAR’s output for R_s and R_{vir}. Here, R_{vir} is the virial radius as defined by Bryan & Norman (1998). Figure III.1 makes evident the difficulty in fitting density profiles and obtaining concentration measurements for typical realistic halos. Large substructure, as displayed by the ZA halo, can disrupt the radial symmetry of the halo and cause significant deviations in the density profile. Centering can also be an issue in these cases. Due to these complications, there are a number of approaches for finding halo concentrations (Prada et al. 2012), but for consistency, we use the values derived from ROCKSTAR’s fitting for our concentration measurements.

At each simulation snapshot, we measure and compare a number of parameters for halos in both 2LPT and ZA simulations. For each quantity q, we create histograms of Δq, the normalized difference in q between halos in the 2LPT and ZA simulations:

$$\Delta q = \frac{q_{2\text{LPT}} - q_{\text{ZA}}}{q_{\text{avg}}},$$

where $q_{\text{avg}} = \frac{1}{2}(q_{2\text{LPT}} + q_{\text{ZA}})$. The choice of q_{avg} for normalization allows us to be unbiased in our assumption of which halo better represents the truth, but can mask large differences between individual halos. We fit each of these Δq histograms with a generalized normal distribution (Nadarajah 2005) with the probability density function

$$f(x) = \frac{\beta}{2\alpha\Gamma(1/\beta)}e^{(x-\mu)/\alpha)^\beta},$$
Figure III.1: Top two rows: Density projections for two matching halos at $z = 6$. The first and second row are 2LPT and ZA, respectively. The halos appear to be either undergoing or have recently undergone a major merger. The 2LPT halo appears to be more relaxed and further along in the merger process, while the ZA halo lags behind, still displaying two distinct cores. The halos have masses of $5.95 \times 10^{9} M_\odot$ for 2LPT and $5.85 \times 10^{9} M_\odot$ for ZA. Bottom two rows: Density profiles for the same two halos as above. NFW profiles are fit to logarithmic radial bins of particle position and are overplotted as red curves. The purple dot–dash lines mark the scale radii. The black dotted lines mark the resolution limit of the simulations.
where μ is the mean, α is the scale parameter, β is the shape parameter, and Γ is the gamma function

$$\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} \, dx.$$ \hspace{1cm} (III.11)

The shape parameter β is restricted to $\beta \geq 1$. This allows the distribution to potentially vary from a Laplace distribution ($\beta = 1$) to a uniform distribution ($\beta = \infty$) and includes the normal distribution ($\beta = 2$). The distribution has variance

$$\sigma^2 = \frac{\alpha^2 \Gamma(3/\beta)}{\Gamma(1/\beta)}$$ \hspace{1cm} (III.12)

and excess kurtosis

$$\gamma_2 = \frac{\Gamma(5/\beta)\Gamma(1/\beta)}{\Gamma(3/\beta)^2} - 3.$$ \hspace{1cm} (III.13)

The distribution is symmetric, and thus has no skewness by definition. As such, the values for skew presented below are measured directly from the data.

As our fitting distributions are symmetrical, in order to derive uncertainties for skew, we measure the skew of the distributions for each of our three simulation boxes individually as well as for the single stacked data set. Uncertainty in skew is then simply the standard deviation of the mean of the skew of the three individual boxes.

Determining the uncertainty in the kurtosis is slightly more involved, as kurtosis is determined by a transformation of the generalized normal distribution’s shape parameter β according to Equation (III.13). Following the standard procedure for propagation of uncertainty, we calculate the standard deviation of the kurtosis:

$$s_{\gamma_2} = \sqrt{\left(\frac{d\gamma_2}{d\beta}\right)^2 s_\beta^2}$$ \hspace{1cm} (III.14)

$$= s_\beta \left[\frac{\Gamma(5/\beta)\Gamma(1/\beta)}{\Gamma(3/\beta)^2} - 3 \right].$$ \hspace{1cm} (III.15)
The derivative of the gamma function is

\[\Gamma'(x) = \Gamma(x)\psi_0(x), \]

(III.16)

where the digamma function \(\psi_0 \) is the derivative of the logarithm of the gamma function and is given by

\[\psi_0(x) = \int_0^\infty \left(\frac{e^{-t}}{t} - \frac{e^{-xt}}{1-e^{-t}} \right) \, dt \]

(III.17)

if the real part of \(x \) is positive. Now, taking the derivative of \(\gamma_2 \) and doing a bit of algebra yields

\[s_{\gamma_2} = s_\beta \frac{1}{\beta^2} (\gamma_2 + 3) \left[6\psi_0(3/\beta) - 5\psi_0(5/\beta) - \psi_0(1/\beta) \right], \]

(III.18)

with which we can find the uncertainty in the kurtosis given the value and uncertainty of the shape parameter \(\beta \) estimated from the least squares fit routine.

In addition to distributions of \(\Delta q \), we also consider distributions of \(\delta q = q_{2\text{LPT}} - q_{\text{ZA}} \)

(III.19)

to better quantify the fraction of halos differing by a given amount between 2LPT and ZA simulations. This is better suited to track the fractional differences between the halo populations and allows us to pose questions like: how many 2LPT halos are more massive than their ZA counterparts by at least a given amount? However, this function is inherently non-symmetrical, and is only defined for \(\delta q \geq -1 \) for positive quantities like mass and concentration. Therefore, in order to count halo pairs that differ by a certain amount, regardless of whether \(q \) is larger for the 2LPT or ZA halo,
we define

\[\delta q_{eq} = \frac{1}{\delta q + 1} - 1, \]

the value for which a halo pair with a larger \(q \) in ZA would differ by the same factor as a halo pair with a larger \(q \) in 2LPT.

III.3 Results

With our catalog of matched dark matter halos, we directly compare differences in halo properties arising from initialization with 2LPT vs ZA. We consider halos on a pair–by–pair basis as well as the entire sample as a whole. Overall, we find 2LPT halos have undergone more growth by a given redshift than their ZA counterparts.

III.3.1 Individual halo pairs

We compare large scale morphologies, density profiles, and various other halo properties for halo pairs on an individual halo–by–halo basis for several of the most massive halos. Morphologies appear similar for most halos, indicating good halo matches between simulations. However, many pairs display differences in central morphology, such as the number and separation of central density peaks. We interpret these cases to be examples of differences in merger epochs, in which case one halo may still be undergoing a major merger, while its companion is in a more relaxed post-merger state. We give an example of one such pair at \(z = 6 \) in Figure III.1. The top two rows show density projections of the nuclear regions for a large 2LPT and matching ZA halo (first and second rows, respectively). We find the ZA halo to contain two distinct density peaks with a separation of \(\sim 10 \) kpc, while the 2LPT halo displays only a single core. On the third and fourth rows, we plot the density profiles of the same two halos (2LPT and ZA, respectively). Here, with nearly identical virial radii, we can readily see that the 2LPT halo is more concentrated than its ZA counterpart.
Figure III.2: Histograms of ΔM_{vir} (left column) and Δc (right column) for snapshots at $z = 14.7$, $z = 10.3$, and $z = 6.0$ (top, middle, and bottom panels, respectively). The small gray-filled histograms count only the top 25% most massive halos. The main histograms are fit with a generalized normal distribution, overplotted as red dashed curves, with parameters for mean, scale, and shape (see Equation III.10). The distributions for ΔM_{vir} have positive means and heavier 2LPT halos, with the most pronounced difference at high redshift. The distributions shown here have means of $(8.4 \pm 1.8) \times 10^{-2}$, $(4.87 \pm 0.87) \times 10^{-2}$, and $(1.79 \pm 0.31) \times 10^{-2}$, respectively. The skew of the distribution is also the most positive at high redshift, and shifts toward symmetry by $z = 6$. The Δc distributions remain symmetric about zero and have negligible skew. The means are consistent with zero, at $(2.6 \pm 2.7) \times 10^{-2}$, $(0.2 \pm 2.6) \times 10^{-2}$, and $(0.3 \pm 1.1) \times 10^{-2}$, respectively. Both distributions have excess kurtosis consistently larger than that of a standard Gaussian distribution, with a sharp peak and heavy tails.
III.3.2 Differences in ensemble halo properties

For the halo population as a whole, we examine distributions of virial mass M_{vir} and concentration c. We plot histograms of ΔM_{vir} and Δc in the left and right columns, respectively, of Figure III.2 for redshifts 14.7, 10.3, and 6.0. For each panel, the blue histogram features the entire halo sample, and the smaller gray-filled green histogram displays only the top 25% most massive halos, ordered by 2LPT mass. Fits to the primary histograms are overplotted as red dashed curves.

Throughout the simulation, we find a tendency for 2LPT halos to be more massive. At $z = 15$, the mean of the ΔM_{vir} distribution is $(9.3 \pm 1.2) \times 10^{-2}$. The mean is consistently positive (heavier 2LPT halos) and is most displaced from zero at high redshift. The peak of the distribution gradually moves closer to zero as we progress in redshift. We find the least difference between paired halos for the final snapshot at $z = 6$, with $\mu_{\Delta M_{\text{vir}}} = (1.79 \pm 0.31) \times 10^{-2}$.

The higher-order moments of the ΔM_{vir} distribution are of interest as well, as we find significant deviation from a Gaussian distribution. One may expect this from the non-linear nature of gravitational collapse; the most massive outliers collapse earlier in 2LPT, and this head start compounds subsequent evolution. As we use a symmetrical generalized normal distribution to fit the data, the skew cannot be recovered from the fit itself; we therefore measure deviation from symmetry directly from the data. By $z = 6$, we observe a rather symmetrical distribution, with both sides of the histogram equally well described by our fit. However, at higher redshift, we note a marked increase in skewness and deviation from this symmetry. As redshift increases, we observe an increasing difference between the fit curve and the bins to the left of the histogram peak.

We find the distributions to be much closer to a Laplace distribution than a Gaussian, with shape parameter consistently sitting at or very close to $\beta = 1$. Compared to a Gaussian distribution, the larger excess kurtosis implies a narrower central peak.
Table III.1: Coefficients for linear least squares fits from Figure III.3.

	A	B
ΔM_{vir}	$(7.88 \pm 0.17) \times 10^{-3}$	$(-3.07 \pm 0.14) \times 10^{-2}$
Δc	$(3.62 \pm 0.95) \times 10^{-3}$	$(-2.34 \pm 0.84) \times 10^{-2}$

and heavier outlying tails. Our fit is constrained such that $\beta \geq 1$, so the kurtosis of the data itself could potentially be higher than the fit implies.

We find no overall preference for more concentrated 2LPT or ZA halos. In contrast to the ΔM_{vir} histograms, Δc shows very little deviation from symmetry about zero. Throughout the simulation, we find the distributions to have a mean close to zero and negligible skew. The widths of the distributions are much larger than those for ΔM_{vir}, with the standard deviation of the Δc distributions consistently about an order of magnitude higher than for ΔM_{vir}. As with mass, concentration histograms are sharply peaked with heavy tails, implying a tendency for halo pairs to move towards the extremes of either very similar or very discrepant concentrations.

III.3.2.1 Time evolution of mass and concentration differences

In Figure III.3, we more quantitatively assess the evolution of our various trends hinted at in Figure III.2. Here, we plot the mean, root mean square (rms), standard deviation, skew, and kurtosis for ΔM_{vir} and Δc as functions of redshift. Uncertainty in the mean is estimated directly from least squares theory.

The mean for ΔM_{vir} is positive and highest at high redshift, trending toward zero by the end of the simulation. Distributions for Δc retain means close to and consistent with zero. Standard deviation decreases slightly for both ΔM_{vir} and Δc. From $z = 15$ to $z = 6$, standard deviation falls from $(9.0 \pm 1.5) \times 10^{-2}$ to $(6.08 \pm 0.31) \times 10^{-2}$ for ΔM_{vir} and from 0.73 ± 0.11 to 0.551 ± 0.026 for Δc.

We find least square linear fits for both mean ΔM_{vir} vs z and mean Δc vs z. Coefficients for slope A and y-intercept B for the fit equation $\mu = Az + B$ are given
Figure III.3: Mean, standard deviation, and rms (left column) and skew and excess kurtosis (right column) as functions of redshift for ΔM_{vir} (top row) and Δc (bottom row). In the left column, μ is plotted as blue points, $\mu \pm \sigma$ is plotted as the black dashed curves, and rms values are plotted as a green dotted curve. The red dashed line is a linear fit to the mean. We find a significant trend for μ for ΔM_{vir} to be more positive at higher redshift and gradually shift toward zero as the simulation progresses, with a fit function of $\mu_{\Delta M_{\text{vir}}} = (7.88 \pm 0.17) \times 10^{-3} z - (3.07 \pm 0.14) \times 10^{-2}$. The mean for Δc, however, remains at or very near zero for most of the simulation and is fit by $\mu_{\Delta c} = (3.62 \pm 0.95) \times 10^{-3} z - (2.34 \pm 0.84) \times 10^{-2}$. The ΔM_{vir} and Δc distributions narrow over time, with a slight decrease in σ. In the right column, we plot skew (blue curve) and excess kurtosis (red curve). Skew is positive for much of the simulation for ΔM_{vir}, but is much smaller for Δc. Kurtosis is large (much more peaked than Gaussian) for both ΔM_{vir} and Δc throughout much of the simulation, and especially at later redshift.
in Table III.1 for both cases. We find a significant trend for ΔM_{vir}, with a slope $\sim 46\sigma$ from zero. Conversely, the slope for Δc is much smaller and, considering the larger spread of the underlying distributions, can be considered negligible. For ΔM_{vir}, the y-intercept coefficient B likely has little meaning in terms of the actual behavior at $z = 0$, as we expect the trend to level out at later redshift.

We do note, however, that the mean can be deceiving as an indicator of total difference between halo populations, especially when it is close to zero as with concentration. It should be noted that while the mean can indicate a lack of average difference between the whole sample of 2LPT and ZA halos, there can still be very large discrepancies between many individually paired halos. We visualize this by plotting the rms of ΔM_{vir} and Δc, which is plotted as a green dotted curve. Unlike the mean, standard deviation, and kurtosis, which are measured from fits to the histograms, rms is measured directly from the data and is not dependent on fitting. The large rms values are indicative of how much overall difference can arise between 2LPT and ZA halos, even though the differences may average to zero when considering the entire population. The rms for both ΔM_{vir} and Δc starts highest at high redshift—0.19 for ΔM_{vir} and 0.57 for Δc at $z = 15$—and steadily decreases throughout the simulation, reaching minimums of 0.11 for ΔM_{vir} and 0.45 for Δc by $z = 6$.

Additionally, it is of interest to consider the percentage of halo pairs that are “wrong” at some given time, regardless of whether the quantity is higher in 2LPT or ZA. For example, if we count halos outside a slit of $\epsilon = 10\%$ around $\Delta q = 0$, we find that by $z = 6$, 14.6% of halo pairs still have substantially mismatched masses, and 74.3% have mismatched concentrations. It is evident that a substantial percentage of halo pairs can have markedly different growth histories, even when there is little or no offset in the ensemble halo population average.

Kurtosis is consistently large for both mass and concentration, with a slight increasing trend throughout the simulation for concentration. It reaches maximum
values of 17.5 ± 2.4 at redshift 10 for ΔM_{vir} and 15.4 ± 1.0 at the end of the simulation at redshift 6 for Δc. Skew is positive for much of the simulation for mass, but is much smaller for concentration. We find average skews of 0.39 ± 0.29 for ΔM_{vir} and 0.045 ± 0.028 for Δc. These higher moment deviations from Gaussianity again hint at the non-linear dynamics at play in halo formation.

The narrow peak and heavy tails of the distribution may indicate a fair amount of sensitivity to initial differences in halo properties, in that halo pairs that start out within a certain range of the mean are more likely to move closer to the mean, while pairs that are initially discrepant will diverge even further in their characteristics. This is indicative of the non-linear gravitational influence present during halo evolution, and is further supported by a kurtosis that increases with time.

The skew at high redshift for ΔM_{vir} may give another hint at the non-linear halo formation process. Runaway halo growth causes more massive halos to favor even faster mass accretion and growth. The positively skewed distributions show a picture of 2LPT halo growth in which initial differences in mass are amplified most readily in the earliest forming and most massive halos, again indicating the extra kick-start to halo growth provided by 2LPT initialization. While the slight decrease in skew with redshift may be counter-intuitive to this notion, it is likely that the large number of newly formed halos begin to mask the signal from the smaller number of large halos displaying this effect.

III.3.2.2 Global halo population differences as a function of halo mass

We consider ΔM_{vir} and Δc as a function of average halo mass $M_{\text{vir, avg}} = (M_{\text{vir, 2LPT}} + M_{\text{vir, za}})/2$ for three representative timesteps in Figure III.4. The data are binned in average virial mass, for which means and standard deviations are provided as the black points and black dotted curves, respectively. The error bars on the black points represent the uncertainty in the mean and are the standard deviation divided by the
Figure III.4: ΔM_{vir} (left column) and Δc (right column) as functions of $M_{\text{vir,avg}}$. For the 2-D color histogram, halos are counted in rectangular bins and smoothed with a Gaussian kernel with a logarithmic color scale. The halos are also divided into logarithmically-spaced bins in average virial mass, and the mean for each bin is plotted as a black point. The black dotted curves are the standard deviation around the mean. The magenta line is the linear least-squares best fit to the bin means. The light grey dashed line at $\Delta q = 0$ is provided to guide the eye. The three rows again correspond to snapshots at $z = 14.7$, $z = 10.3$, and $z = 6.0$. We again see the overall offset for positive ΔM_{vir} as before, and additionally find a small tendency for more massive halo pairs to be more likely to have even larger ΔM_{vir}. Fit equations for the left column panels are $\Delta M_{\text{vir}} = -(0.5 \pm 1.5) \times 10^{-2} \log(M_{\text{vir,avg}}) + (0.15 \pm 0.12)$, $\Delta M_{\text{vir}} = (1.03 \pm 0.46) \times 10^{-2} \log(M_{\text{vir,avg}}) - (2.6 \pm 3.8) \times 10^{-2}$, and $\Delta M_{\text{vir}} = (3.49 \pm 0.99) \times 10^{-3} \log(M_{\text{vir,avg}}) - (6.8 \pm 8.3) \times 10^{-3}$, respectively. Concentration shows an opposite trend where more massive halos are less concentrated in 2LPT than in ZA. The right column panels have fit equations $\Delta c = -(0.256 \pm 0.093) \log(M_{\text{vir,avg}}) + (2.07 \pm 0.76)$, $\Delta c = -(7.0 \pm 1.2) \times 10^{-2} \log(M_{\text{vir,avg}}) + (0.595 \pm 0.099)$, and $\Delta c = -(1.10 \pm 0.31) \times 10^{-2} \log(M_{\text{vir,avg}}) + (0.103 \pm 0.026)$, respectively.
Figure III.5: Slopes of the Δq vs. $M_{\text{vir,avg}}$ fit functions. The left and right panels correspond to the ΔM_{vir} and Δc plots in the left and right columns, respectively, of Figure III.4. Linear least-squares fits to the data are overplotted as red dashed lines. Overall, we find a trend of positive and increasing slope with redshift for ΔM_{vir} and negative and decreasing slope with redshift for Δc. We find fit equations of $\text{Slope} = (9.4 \pm 2.4) \times 10^{-4} z - (1.8 \pm 1.8) \times 10^{-3}$ for ΔM_{vir} and $\text{Slope} = -(7.3 \pm 1.9) \times 10^{-3} z + (3.7 \pm 1.4) \times 10^{-2}$ for Δc. Snapshots at very high redshift, $z \gtrsim 14$ for ΔM_{vir} and $z \gtrsim 13$ for Δc, begin to deviate from these trends. However, it is uncertain if this deviation is significant due to the low number statistics of our sample at such high z.

number of halos in that bin. We additionally bin the data in rectangular bins on a 2-D grid with a logarithmic color map to feature the entire distribution of the data. Linear fits to the bin means are overplotted in magenta.

We find that ΔM_{vir} tends to increase with increasing $M_{\text{vir,avg}}$ for most snapshots. 2LPT halos are consistently more massive than their ZA counterparts, and, aside from the highest redshift snapshots, this difference increases with average halo mass. While less massive halo pairs have a larger spread in the difference in 2LPT and ZA mass, more massive halo pairs are consistently heavier in 2LPT than in ZA. At redshift 14.7, we find a transition between negative and positive slopes, and here the fit is $\Delta M_{\text{vir}} = -(0.5 \pm 1.5) \times 10^{-2} \log(M_{\text{vir,avg}}) + (0.15 \pm 0.12)$. The slope of the fit lines then become positive and trends back towards zero as we progress in redshift, with a fit of $\Delta M_{\text{vir}} = (3.49 \pm 0.99) \times 10^{-3} \log(M_{\text{vir,avg}}) - (6.8 \pm 8.3) \times 10^{-3}$ by $z = 6$.

We additionally find a trend for more massive halo pairs to be more concentrated in ZA. This trend is somewhat stronger than for ΔM_{vir}, but again, high z snapshots differ from the trend. The fit equations for $z = 15$ and $z = 6$ are $\Delta c = -(0.256 \pm 0.093) \log(M_{\text{vir,avg}}) + (2.07 \pm 0.76)$ and $\Delta c = -(1.10 \pm 0.31) \times 10^{-3}$.
Table III.2: Coefficients for linear least squares fits from Figure III.5.

	A	B
ΔM_{vir}	$(9.4 \pm 2.4) \times 10^{-4}$	$(-1.8 \pm 1.8) \times 10^{-3}$
Δc	$(-7.3 \pm 1.9) \times 10^{-3}$	$(3.7 \pm 1.4) \times 10^{-2}$

$10^{-2} \log(M_{\text{vir,avg}}) + (0.103 \pm 0.026)$, respectively. The negative slope for most of the redshift range might be expected, as halo concentration is expected to decrease with increasing mass for all but the largest halos, where the concentration begins to increase with increasing mass (Klypin et al. 2011; Prada et al. 2012), and we find that ΔM_{vir} increases with average mass for all but the highest redshift snapshots. The turnover in halo concentrations displayed in Klypin et al. (2011) and Prada et al. (2012) should be relatively inconsequential for our simulations, as we have a significantly smaller box size, and thus a smaller maximum halo mass. Additionally, our most massive halos account for a very small percentage of the total halo population, causing the larger number of small halos to be more significant in the resulting fits. The data have a larger variance than ΔM_{vir} by a factor of ~ 2. Again, mass dependence is smallest by $z = 6$. To reconcile these trends with the symmetrical concentration distributions of Figure III.2, we note that the trends in mass may be obscured by integration across the entire mass range and still result in overall Δc distributions symmetric about zero. Additionally, the histograms of Figure III.2 may be swamped by the large number of low mass halos, which masks the large difference in concentration seen here.

The slopes of the fits to the Δq vs. $M_{\text{vir,avg}}$ data are plotted in Figure III.5. Linear least-squares fits are overplotted as red dashed lines. We find a trend for there to be more Δq dependence on $M_{\text{vir,avg}}$ with increasing redshift, except for the highest z snapshots, where the trends seem to reverse. Coefficients A and B for the fit equation $\text{Slope} = Az + B$ are listed in Table III.2. The data are well-fit by the best fit line for most of the redshift range, except for $z \gtrsim 14$ for ΔM_{vir} and $z \gtrsim 13$ for Δc, which begin
to deviate from the trend. While this may simply be due to the fluctuations inherent when dealing with the low number of matched halos available in our sample at these very high redshifts, a shift to positive slope for concentration may be expected. At these redshifts, only the most massive halos fall above our particle threshold, whereas at later redshift, the large number of small halos can overwhelm the statistics. These massive halos are most affected by high redshift differences due to initialization and may retain larger 2LPT concentrations due to earlier formation.

III.3.3 A census of halo population differences

As our distributions of Δq rely on the average quantity $q_{\text{avg}} = (q_{2\text{LPT}} + q_{ZA})/2$ for normalization, it can be difficult to extract certain statistics, such as the fraction of halo pairs differing by a certain amount between 2LPT and ZA simulations. To address this, for this section, we redefine our difference distributions to instead use q_{ZA} as the normalization factor (see Equation III.19). In Figure III.6, we plot, as functions of redshift, statistics derived from these alternate fractional difference distributions δM_{vir} and δc. In the left column, we plot the δq of the peak of the distribution along with the δq where various percentages of the halo pairs fall at or above δq.

As the δq value of the peak of the distribution is the location of the mode, it represents the most typical halo pair. While concentration differences remain close to zero throughout the simulation, the mass difference peak moves from a δM_{vir} of 9×10^{-2} at $z = 15$ to 3×10^{-2} at $z = 6$. The 1% of halo pairs with the largest excess 2LPT mass have 2LPT mass at least twice ZA mass at $z = 15$ and 1.5 times ZA mass at $z = 6$. For concentration, the 1% most 2LPT concentrated halo pairs differ by at least a factor of 6 at $z = 15$ and 4 at $z = 6$.

In the right column of Figure III.6, we plot the fraction of halos f_h that fall outside various δq values. The solid curves represent halo pairs that have δq greater than or equal to the listed values, i.e., the fraction of halo pairs where the 2LPT halo has
Figure III.6: Statistics for distributions of δM_{vir} (top row) and δc (bottom row) as functions of redshift. *Left column:* The δq of the peak of the distribution (black curve), and the δq where 50% (red dashed curve), 10% (green dashed curve), and 1% (blue dashed curve) of the halos fall at or above δq. As with distributions of ΔM_{vir}, δM_{vir} has the largest positive displacement at high redshift and steadily decreases throughout the simulation. Additionally, δc maintains a peak near zero and has a spread much larger than that of δM_{vir}. *Right column:* The fraction of halos with δq greater than 0.10 (solid blue curve), 0.50 (solid green curve), 1.00 (solid red curve), and 4.00 (solid black curve). The dashed curves additionally count halo pairs with δq lower than the corresponding equivalent displacements of -0.09, -0.33, -0.50, and -0.80, respectively (see Equation III.20). We find that 50% of 2LPT halos are at least 10% more massive than their ZA companions at $z = 15$, reducing to 10% by $z = 6$. Halos in 2LPT are at least twice as concentrated for 12% of halos at $z = 15$ and 7.8% of halos at $z = 6$.
a virial mass or concentration that is at least 1.1, 1.5, 2.0, or 5.0 times that of its corresponding ZA halo. The dashed curves represent the fraction of halo pairs where one halo has a virial mass or concentration at least 1.1, 1.5, 2.0, or 5.0 times that of its companion, regardless of whether the 2LPT or ZA value is higher.

We find that half of halo pairs are at least 10% more massive in 2LPT at z = 15. By z = 6, this has fallen to 10%. Furthermore, 1% are at least twice as massive in 2LPT at z = 15, and by z = 6, this has only reduced to 0.3%. Halos in 2LPT are at least twice as concentrated as their ZA counterparts for at least 12% of the halo population at z = 15 and at least 8% by z = 6. Halo pairs that are at least 5 times as concentrated in 2LPT make up 1.3% of the sample at z = 15 and 0.3% at z = 6.

If we consider only the difference in properties between paired halos, regardless of whether the 2LPT or ZA halo has the higher mass or concentration, we include an even larger percentage of the population. We find 54% of the halo pairs differ in mass by at least 10% at z = 15, with 16% differing by z = 6. Halos that are at least twice as massive in either 2LPT or ZA account for 1.1% at z = 15 and 0.5% at z = 6. Halos that are at least twice as concentrated in either 2LPT or ZA account for 25% at z = 15 and 15% at z = 6.

III.4 Discussion

As we evolve our DM halo population from our initial redshift to z = 6, we find that simulation initialization with 2LPT can have a significant effect on the halo population compared to initialization with ZA. The second-order displacement boost of 2LPT provides a head start on the initial collapse and formation of DM halos. This head start manifests itself further along in a halo’s evolution as more rapid growth and earlier mergers. 2LPT halos are, on average, more massive than their ZA counterparts at a given redshift, with a maximum mean ΔM_{vir} of $(9.3 \pm 1.2) \times 10^{-2}$ at z = 15. The larger mass for 2LPT halos is more pronounced for higher mass
pairs, while 2LPT halo concentration is larger on the small mass end. Both mass and concentration differences trend towards symmetry about zero as halos evolve in time, with the smallest difference observed at the end of the simulations at $z = 6$, with a mean ΔM_{vir} of $(1.79 \pm 0.31) \times 10^{-2}$. Casual extrapolation of our observed trends with redshift to today would indicate that, barring structure like massive clusters that form at high redshift, 2LPT and ZA would produce very similar halo populations by $z = 0$. However, the larger differences at high redshift should not be ignored.

The earlier formation times and larger masses of halos seen in 2LPT-initialized simulations could have significant implications with respect to early halo life during the Dark Ages. Earlier forming, larger halos affect the formation of Pop-III stars, and cause SMBHs to grow more rapidly during their infancy (Holley-Bockelmann et al. 2012) and produce more powerful early AGN. The epoch of peak star formation may also be shifted earlier. This could additionally increase the contribution of SMBHs and early star populations to the re-ionization of the universe. Larger early halos may also increase clustering, speed up large scale structure formation, and influence studies of the high-z halo mass function, abundance matching, gas dynamics, and galaxy formation.

In these discussions, it is important to note that it is wrong to assume that the ZA halo properties are the “correct” halo properties, even in a statistical sense. While halo mass suggests the most obvious shortcoming of ZA simulations, even properties such as concentration—that show little difference on average between 2LPT and ZA—can have large discrepancies on an individual halo basis. Failure to consider uncertainties in halo properties for high z halos in ZA simulations can lead to catastrophic errors.

We note a few caveats with our simulations and analysis. We did not exclude substructure when determining the properties of a halo, and although this would not change the broad conclusions herein, care must be taken when comparing to works which remove subhalo particles in determining halo mass and concentration. Halo
matching is not perfect, as it is based on one snapshot at a time, and may miss-count halos due to merger activity and differences in merger epochs. However, we believe this effect to be minor. While we compared ROCKSTAR’s output with our own fitting routines and found them to broadly agree, ROCKSTAR does not provide goodness of fit parameters for its NFW profile fitting and \(R_s \) measurements. It also may be debated whether it makes sense to even consider concentration of halos at high redshift which are not necessarily fully virialized.

As ROCKSTAR does not provide goodness-of-fit parameters for its internal density profile measurements used to derive concentration, error estimates for concentration values of individual halos are unknown. Additionally, proper density profile fitting is non-trivial, as the non-linear interactions of numerical simulations rarely result in simple spherical halos that can be well described using spherical bins. Halo centering issues may also come into play, although ROCKSTAR does claim to perform well in this regard.

We use a simulation box size of only \((10 \text{ Mpc})^3\). This is too small to effectively capture very large outlier density peaks. We would, however, expect these large uncaptured peaks to be most affected by 2LPT initialization, so the effects presented here may even be dramatically underestimated. Additionally, a larger particle number would allow us to consider smaller mass halos than we were able to here, and to better resolve all existing structure. A higher starting redshift could probe the regime where 2LPT initialization contributes the most. It would also be of interest to evolve our halo population all the way to \(z = 0 \). The addition of baryons in a fully hydrodynamical simulation could also affect halo properties. These points may be addressed in future studies.
III.5 Conclusion

We analyzed three 2LPT and ZA simulation pairs and tracked the spherical overdensity dark matter halos therein with the 6-D phase space halo finder code ROCKSTAR to compare the effect of initialization technique on properties of particle–matched dark matter halos from $z = 300$ to $z = 6$. This approach allowed us to directly compare matching halos between simulations and isolate the effect of using 2LPT over ZA. In summary, we found the following:

- 2LPT halos get a head start in the formation process and grow faster than their ZA counterparts. Companion halos in 2LPT and ZA simulations may have offset merger epochs and differing nuclear morphologies.

- 2LPT halos are, on average, more massive than ZA halos. At $z = 15$, the mean of the ΔM_{vir} distribution is $(9.3 \pm 1.2) \times 10^{-2}$, and 50% of 2LPT halos are at least 10% more massive than their ZA companions. By $z = 6$, the mean ΔM_{vir} is $(1.79 \pm 0.31) \times 10^{-2}$, and 10% of 2LPT halos are at least 10% more massive.

- This preference for more massive 2LPT halos is dependent on redshift, with the effect most pronounced at high z. This trend is best fit by $\Delta M_{\text{vir}} = (7.88 \pm 0.17) \times 10^{-3}z - (3.07 \pm 0.14) \times 10^{-2}$.

- Earlier collapse of the largest initial density peaks causes the tendency for more massive 2LPT halos to be most pronounced for the most massive halos, a trend that increases with redshift. We find a trend of $\Delta M_{\text{vir}} = (1.03 \pm 0.46) \times 10^{-2} \log(M_{\text{vir,avg}}) - (2.6 \pm 3.8) \times 10^{-2}$ for $z = 10$. By $z = 6$, this has flattened to $\Delta M_{\text{vir}} = (3.49 \pm 0.99) \times 10^{-3} \log(M_{\text{vir,avg}}) - (6.8 \pm 8.3) \times 10^{-3}$. As a function of redshift, the slopes of these equations are fit by Slope = $(9.4 \pm 2.4) \times 10^{-4}z - (1.8 \pm 1.8) \times 10^{-3}$.

- Halo concentration, on average, is similar for 2LPT and ZA halos. However, even by the end of the dark ages, the width of the Δc distribution—$\sigma_{\Delta c} = 0.551 \pm$
0.026 at $z = 6$—is large and indicative of a significant percentage of halos with drastically mismatched concentrations, despite the symmetrical distribution of Δc. At $z = 15$, 25% of halo pairs have at least a factor of 2 concentration difference, with this falling to 15% by $z = 6$.

- There is a trend for ZA halos to be more concentrated than $2LPT$ halos at high mass. However, this trend seems to reverse above $z \sim 12$. We find $\Delta c = -(0.256 \pm 0.093) \log(M_{\text{vir,avg}}) + (2.07 \pm 0.76)$ at $z = 15$ and $\Delta c = -(1.10 \pm 0.31) \times 10^{-2} \log(M_{\text{vir,avg}}) - (0.103 \pm 0.026)$ at $z = 6$. The slopes of these equations, as a function of redshift, are fit by $\text{Slope} = -(7.3 \pm 1.9) \times 10^{-3} z + (3.7 \pm 1.4) \times 10^{-2}$. This is not visible in the symmetrical Δc distributions, as the trends are roughly centered about zero and are washed away when integrated across the entire mass range.

We have found that choice of initialization technique can play a significant role in the properties of halo populations during the pre-reionization dark ages. The early halo growth displayed in $2LPT$ simulations, or conversely the delayed halo growth arising from the approximations made in ZA-initialized simulations, makes careful attention to simulation initialization imperative, especially for studies of halos at high redshift. It is recommended that future N-body simulations be initialized with $2LPT$, and that previous high-z or high-mass halo studies involving ZA-initialized simulations be viewed with the potential offsets in halo mass and concentration in mind.

This work was conducted using the resources of the Advanced Computing Center for Research and Education (ACCRE) at Vanderbilt University, Nashville, TN. We also acknowledge the support of the NSF CAREER award AST-0847696. We would like to thank the referee for helpful comments, as well as the first author's graduate committee, who provided guidance throughout this work.
A note to the reader: This chapter is, in essence, the paper previously submitted prior to the Qualifier Exam to partially fulfill the requirements for candidacy for doctoral research. It is presented as an aside, and the subject matter differs somewhat from the rest of this document. This content serves as an introduction to the original plan for dissertation research, which was to study the evolution of the spin of supermassive black holes as they accrete gas in the infall towards the center of galaxies following major merger events for the purpose of determining recoil kick velocities and retention probabilities. However, the simulation methods used in this endeavor were found to be ill-suited to follow black hole evolution between simulation snapshots, and the project had to be abandoned.

IV.1 Introduction

The study of the evolution of galaxies and the growth of the supermassive black holes at their cores go hand in hand. Although the typical length scales for the two can vary by many orders of magnitude, they seem inexorably linked. Observational correlations between galaxy and supermassive black hole properties hint at an underlying co-evolution driven by shared mechanisms.

IV.1.1 Galaxy Properties

How do we describe a galaxy? Being extended, resolvable objects, galaxies provide a unique wealth of observable characteristics not obtainable from point sources such as stars. While many characteristics can be deduced about point sources, the actual observations themselves come down to measuring position on the sky and measuring flux as a function of frequency and time. From this information, all that we know
about stars and other point sources, such as temperature, age, size, and composition, can be inferred. However, for extended objects like galaxies, we are given more to work with.

IV.1.1.1 Color

A galaxy’s color is determined by its stellar component. While a galaxy in itself may be resolvable, for all but the most nearby of galaxies, individual stars are not. What we see when looking at a particular small section of a galaxy is the averaged-together light from stars in that section.

Broadly, bluer late-type spirals have a $u - r$ color of around $1.3 - 2.0$, while redder early-type galaxies have a $u - r$ color of around $2.3 - 2.7$. The color of a galaxy can be a good indicator for its age and evolutionary stage. Star formation processes generally tend to produce many smaller, cooler, redder stars and fewer larger, hotter, bluer stars. These small, cool stars are much longer-lived than their massive counterparts, while the large, warm stars are much brighter. After star formation turns off, the short-lived blue stars begin to die off, and the galaxy becomes redder, as more of the fraction of total light comes from the red end of the population.

IV.1.1.2 Morphology

The extended nature of galaxies allows us to observe their morphology. The classification scheme originally devised by Hubble (1926) places galaxies into four broad categories: elliptical, spiral, lenticular, and irregular. Elliptical galaxies tend to be larger, redder, more gas-poor, and dominated by more radial orbits. Spiral galaxies tend to be smaller, bluer, more gas-rich, and have more of a disk component. Spirals can have a number or arms, a central bulge, and a central bar. Lenticular galaxies are middle-of-the-road galaxies, with both a strong central bulge like an elliptical, and an extended disk like a spiral, however without spiral arms. Irregular galaxies tend to defy this simple classification scheme, and can be found in any number of
Figure IV.1: The Hubble tuning fork. On the left of the diagram are elliptical galaxies. E0 galaxies are the most spherical, while E7 are the most flattened or elongated. S0 are lenticular galaxies. The top branch on the right are spiral galaxies with no bar, while the bottom right branch are spiral galaxies with a bar. Both progress from tightly wound spiral arms and large bulges to loosely wound spiral arms and small to no bulges, going from Sa to Sc or SBa to SBc.
IV.1.2 Supermassive Black Hole Properties

A non-merging black hole, much like an elementary particle, can be described simply by its mass, charge, and spin. Its effect on its local spacetime, infalling matter, and surrounding environment all come back to these three parameters. However, determination of these parameters and the study of how black holes interact with their surroundings can be quite involved.

Black holes are, by their very nature, black, and difficult to observe. We cannot see light emitted directly from a black hole as we would a star, since a black hole is defined as an object massive and compact enough to not allow light within its event horizon to escape. We are forced, therefore, to employ other methods of measuring black holes.

Thus far, the majority of progress in the measurement of black hole properties has been in measuring mass. There are a number of ways to measure the mass of a black hole. Here, we will briefly discuss masers, stellar dynamics, gas dynamics, and reverberation mapping as methods of measuring a supermassive black hole’s mass.

Astrophysical masers are sources of stimulated spectral line emission in the microwave band formed in regions of high-density gas comprised of molecules such as hydroxyl, formaldehyde, and water (Lo 2005). Since the emission frequencies of these sources are very well constrained, high-accuracy Doppler shifts can be determined. These Doppler shifts can then be used to determine velocities for the masers, and thus how much mass is enclosed by their orbits. If these masers lie very close to the supermassive black hole (SMBH) in the center of their galaxy, the enclosed mass can be constrained to be primarily that of the SMBH.

Stellar dynamics and gas dynamics both probe light coming from matter near the black hole. The width of broadened spectral lines from either the stars or gas can be used to determine a velocity dispersion for the matter local to the SMBH. This velocity dispersion, therefore, can then be used to determine the potential through
which the matter is traveling, and thus the mass of the black hole.

A special case of stellar dynamics for which the orbits of the constituent stars can be resolved—namely, for the case of our own Milky Way—adds another dimension to our knowledge of the stellar orbits. Over time, we can observe the proper motion on the sky for these orbits. Combining these measurements with Doppler measurements for radial velocity yields full orbital solutions. Then, it simply requires Kepler’s laws to determine the mass of the SMBH.

Reverberation mapping can be thought of as “echo-mapping” the gas disk around a SMBH. Continuum emission very near the black hole travels outward and stimulates broad line emission in surrounding gas. Any changes in the continuum emission will
take time to propagate to the broad line region, since the speed of light is finite. By measuring the timing difference in the change in continuum emission and change in stimulated broad line emission, the physical distance from the SMBH to the broad line region can be inferred. With this radius, and the velocity of the gas in the broad line region measured by the width of the broadened lines, a black hole mass can be determined (Blandford & McKee 1982).

IV.1.3 Correlations

Correlations between varying properties of galaxies and black holes can provide much deeper insight into the dynamics that shape the evolution of both. Of particular interest here are the fundamental plane of elliptical galaxies, the $M - \sigma$ relation, and the green valley-AGN relation.

IV.1.3.1 The M-Sigma Relation

If we consider the all the observable properties of a galaxy and compare them to the mass of its SMBH, the tightest correlation can be found with the velocity dispersion σ of the galaxy’s bulge. Such a tight correlation is surprising, as the sphere of influence of a typical SMBH does not extend much past order a few pc, while bulges exist on scales of a kpc or greater. In essence, the supermassive black hole and the outer edges of the bulge shouldn’t “feel” each other. Nevertheless, the correlation is indeed there, suggesting some mechanism that influences—or is influenced by—both of them. Gültekin et al. (2009) use a sample of 49 M_{BH} measurements and 19 upper limits to measure this correlation, and find $\log(M_{BH}/M_\odot) = \alpha + \beta \log(\sigma/200 \text{ km s}^{-1})$ with $(\alpha, \beta, \epsilon_0) = (8.12 \pm 0.08 M_\odot, 4.24 \pm 0.41 M_\odot, 0.44 \pm 0.06 M_\odot)$ for all galaxies and $(\alpha, \beta, \epsilon_0) = (8.23 \pm 0.08 M_\odot, 3.96 \pm 0.42 M_\odot, 0.31 \pm 0.06 M_\odot)$ for ellipticals, where ϵ_0 is the intrinsic scatter in the relation.
Figure IV.3: The M-σ relation for galaxies with dynamical measurements. Black hole mass is plotted vs velocity dispersion of its host spheroid. The symbols represent the method by which the black hole mass was measured: pentagrams for stellar dynamics, circles for gas dynamics, and asterisks for masers. Upper limits are given by arrows. Error ellipses are colored by galaxy type, with red for ellipticals galaxies, green for lenticular galaxies, and blue for spiral galaxies. The saturation of the color is inversely proportional to the area of the ellipse. For this sample, the best fit relation is $M_{BH} = 10^{8.12} \, M_\odot (\sigma/200 \, \text{km s}^{-1})^{4.24}$. Galaxies not included in this fit are labeled as squares. (Gültekin et al. 2009)
IV.1.3.2 The Fundamental Plane

While not a direct correlation with the properties of supermassive black holes, the fundamental plane of elliptical galaxies offers insight into the characteristics of their hosts. The fundamental plane is a three-parameter correlation between properties of elliptical galaxies: velocity dispersion, effective radius, and surface brightness. This correlation (Figure IV.4) between these three parameters is tighter than the combination of any two alone (Djorgovski & Davis 1987). The fit for this correlation can be given as

$$\log R_e = 0.36(\langle I \rangle_e/\mu_B) + 1.4 \log \sigma_0,$$

where R_e is the effective radius in kpc, $\langle I \rangle_e$ is the mean surface brightness interior to R_e in units of μ_B, and σ_0 is the velocity dispersion in km s$^{-1}$ (Binney & Merrifield 1998).

IV.1.3.3 The Green Valley

When considering both the color and stellar mass of a galaxy, a correlation emerges where many galaxies lie in either the “blue cloud” of bluer, lower mass galaxies, or the “red sequence” of redder, generally higher mass galaxies. The area between these two is known as the “green valley” and, while not as populated as the blue cloud or red sequence, holds special interest when active galactic nuclei (AGN) are considered. AGN are very luminous regions at the centers of some galaxies. Schawinski et al. (2010) show that galaxies falling on the green valley are much more likely to host AGN than galaxies on the blue cloud or red sequence, hinting at an underlying link between the evolution of galaxies, and the activity at their centers.

IV.2 Galaxy Evolution

IV.2.1 Dark Matter Halos

Every galaxy resides inside a dark matter halo. Often about an order of magnitude larger in both radius and mass than the baryonic component, dark matter halos dominate the large-scale behavior of galaxies. Dark matter is matter that is thought to interact very weakly or not at all with light and ordinary matter, except gravita-
Figure IV.4: The fundamental plane for elliptical galaxies. Top panels: The top panels show the one-parameter scaling relations, with the relation between radius and mean surface brightness on the left and the relation between luminosity and velocity dispersion (the Faber-Jackson relation) on the right. Bottom left: The relation between the surface brightness and velocity dispersion. This is an almost face-on view of the fundamental plane. Bottom right: The relation between the effective radius and the combination of surface brightness and velocity dispersion. This is the edge-on view of the fundamental plane. (Kormendy & Djorgovski 1989)
Evidence for dark matter comes from a number of sources, including the relatively flat rotational velocity curve of galaxies, the velocity dispersion of galaxies, gravitational lensing measurements, galaxy clustering, and the offset between the gas and dominant mass measured in the Bullet cluster. Here we will briefly discuss the evidence from flat rotation curves.

If there were no dark matter component and only the baryonic components (i.e. stars and gas) contributed to the galactic potential, we would expect the rotational velocity of galaxies to fall off with radius. However, observations show that the
rotation curve remains relatively flat (Rubin et al. 1980). Figure IV.6 shows several observed rotation curves.

Navarro et al. (1997) found that dark matter halos generally follow the same density profile, regardless of mass. This universal dark matter density profile can be given as

\[\rho(r) \propto \frac{1}{(r/a)(1+r/a)^2}, \]

where \(a \) is the radius where the profile transitions from an \(r^{-1} \) power law to an \(r^{-3} \) power law.

IV.2.2 Galaxy Mergers

Galaxy mergers are the fundamental mechanism by which galaxies grow and evolve. Collisions between galaxies trigger processes that can alter nearly all the properties of the galaxies. Naturally, mergers increase the mass of galaxies. Starting from small perturbations in the early universe, gravity slowly pulls matter together to form larger and larger clumps. These clumps of gas and dark matter eventually form stars,
beginning what we think of as typical galaxies, and over time, these galaxies merge together into larger and larger galaxies.

Mergers affect many other properties of galaxies as well. Mergers distort the shapes of galaxies, causing long tidal tails to form and the entire morphology to appear irregular. The disk structures of spiral galaxies that form from the settling of the rotational component are distorted and “puffed up” into components with ever increasing bulge-like properties.

Mergers can trigger wide-scale starburst events, where a large portion of gas goes into the formation of stars. Much of the gas component of the galaxy can subsequently be blown out by the winds from the supernovae of short-lived O and B stars. This shuts off star formation, and as the stellar population is no longer replenished with new high-mass stars, the galaxy becomes progressively redder as large stars die.

The general trend is for mergers to move galaxies from the right side of the Hubble tuning fork towards the left, turning blue, gas rich spirals into red, gas poor ellipticals. This process is aided by the AGN feedback also triggered during galaxy mergers, as we discuss in the following section.

IV.3 Supermassive Black Hole Growth

Supermassive black holes grow by two primary mechanisms, binary mergers and gas accretion. Through a combination of these, black holes can grow to as large as $\sim 10^9 - 10^{10} \, M_\odot$ by $z = 0$.

IV.3.1 Binary Mergers

When two galaxies merge, the supermassive black holes at their hearts begin a process that will eventually lead to their coalescence. There are generally thought to be three stages to this journey. First, the black holes sink towards the center of the merged galaxy through mass segregation and dynamical friction until they form a bound orbit with each other. Then, the black holes tighten their orbit through three-body
scattering of nearby stars. Finally, as the black holes become close enough together for general relativistic effects to come into play, gravitational waves are emitted and radiate away the remaining orbital energy until the binary coalesces.

IV.3.1.1 Dynamical Friction and Inspiral

During the majority of the inspiral process, the black holes do not “feel” each other’s gravitational pull. Instead, interactions with the galaxy itself push the holes together.

As it travels through a galaxy, a black hole—or any massive body—is slowed by the surrounding field of matter. Gravitational attraction pulls surrounding matter toward the black hole. However, as the black hole is moving with respect to the local medium, the attracted particles will tend to fall behind the black hole. This creates a wake of overdensity that gravitationally attracts the black hole from behind and slows its velocity. Chandrasekhar (1943) develops this notion of dynamical friction for the motion of a star through a sea of other stars. If the distribution of velocities of the surrounding particles is Maxwellian, the acceleration on the black hole can be written as

\[
\frac{dv_M}{dt} = -\frac{4\pi G^2 M \rho \ln \Lambda}{v_M^3} \left[\text{erf}(X) - \frac{2X}{\sqrt{\pi}} e^{-X^2} \right] v_M, \tag{IV.2}
\]

where \(v_M\) is the velocity of the black hole, \(M\) is its mass, \(\rho\) is the density of surrounding matter, \(\text{erf}\) is the error function, \(\ln \Lambda\) is the Coulomb logarithm, and \(X \equiv v_M/(\sqrt{2}\sigma)\) where \(\sigma\) is the velocity dispersion of the surrounding medium (Binney & Tremaine 1988). As the black hole is slowed by dynamical friction, it loses angular momentum and sinks towards the center of the galaxy’s potential well.

IV.3.1.2 The Final Parsec Problem

Dynamical friction and mass segregation can only take us so far. Once the black holes are close enough together, they form a bound binary orbit. This generally occurs for separations of around a few to tens of parsecs. This presents a problem, however,
since the orbit needs to shrink to around 10^{-2}–10^{-3} pc in order for gravitational wave emission to remove energy from the orbit in a significant amount. The orbit can be tightened with three-body scattering of stars that wander through the orbit of the binary, however, in the spherical galaxies where mergers often take place, there is a depletion of stars with orbits that intersect the binary. Khan et al. (2011), however, show that the non-spherical, triaxial potential typical of post-merger galaxy remnants can efficiently funnel stars through the orbit of the black hole binary with sufficient intensity to tighten the binary orbit to the gravitational wave regime.

IV.3.1.3 Gravitational Waves and Recoil Kicks

Once the black hole binary separation reaches the point where strong field general relativistic effects come into play, we no longer require external influences to nudge the black holes together. In the final plunge toward coalescence, the black hole binary sheds energy through emission of gravitational radiation. As energy is radiated away, the binary tightens its orbit until the two black holes merge into one. Following this coalescence, the resultant black hole undergoes a “ringdown” phase, in which the distorted space time settles back down into a black hole that can again be simply described by mass, charge, and spin.

The emission of gravitational waves has two interesting consequences. First, the radiation from two merging supermassive black holes is extremely loud, and can potentially provide an observational signature of the process for gravitational wave observatories. Second, the gravitational waves carry linear momentum, leading to a recoil “kick” imparted to the black hole merger remnant.

Recent advances in numerical relativity simulations have provided a much deeper insight into the black hole binary merger process than has been previously available. Waveforms produced from these simulations (Figure IV.7) can be used to predict what gravitational wave observatories such as LIGO and LISA would expect to observe.
Figure IV.7: Gravitational waveform for an equal-mass, non-spinning black hole binary merger. This is the final waveform, extrapolated to infinity, from the numerical relativity simulation of Scheel et al. (2009). The waveform is shown on the top panel with a linear y-axis and on the bottom panel with a logarithmic y-axis. The left panels are the earlier stages of inspiral, and the right panels show the merger and ringdown stages.

for signals originating from merging supermassive black hole binaries. Having these waveforms as templates for comparison to data can greatly increase the signal to noise ratio for these detectors, potentially allowing the gravitational wave events to be seen among the sea of noise. These waveforms produced from simulations of the last few orbits of inspiral through the merger and ringdown can be combined with waveforms suggested from post-Newtonian approximations for the longer duration inspiral to provide a complete extended signal to match against.

For asymmetric mergers, gravitational radiation is emitted anisotropically. This causes a recoil kick, in which the gravitational waves impart a net velocity to the final black hole with respect to the original center of mass. The magnitude and direction of this kick are dependent on the mass ratio of the binary and the spins of the two
black holes—in all, a 7-dimensional parameter space. This large parameter space has been largely explored with numerical relativistic simulations, and analytic equations can be fit to the data to predict the recoil from a given merger configuration. Holley-Bockelmann et al. (2008), give these equations as

\[
\mathbf{v}_{\text{kick}} = (1 + e) \left[\hat{x} (v_m + v_\perp \cos \xi) + \hat{y} v_\perp \sin \xi + \hat{z} v_\parallel \right],
\]

(IV.3)

where

\[
v_m = A \frac{q^2 (1 - q)}{(1 + q)^5} \left[1 + B \frac{q}{(1 + q)^2} \right],
\]

(IV.4)

\[
v_\perp = H \frac{q^2}{(1 + q)^5} \left(\alpha_2^\parallel - q \alpha_1^\parallel \right),
\]

(IV.5)

\[
v_\parallel = K \cos (\Theta - \Theta_0) \frac{q^2}{(1 + q)^5} \left(\alpha_2^\perp - q \alpha_1^\perp \right).
\]

(IV.6)

Here, the fitting constants are \(A = 1.2 \times 10^4 \text{ km s}^{-1}\), \(B = -0.93\), \(H = (7.3 \pm 0.3) \times 10^3 \text{ km s}^{-1}\), and \(K = (6.0 \pm 0.1) \times 10^4 \text{ km s}^{-1}\). The \(\hat{z}\) unit vector is in the direction of the orbital angular momentum, and \(\perp\) and \(\parallel\) refer to components perpendicular and parallel to \(\hat{z}\), respectively. The fitting parameters are the eccentricity \(e\), the mass ratio \(q \equiv M_2/M_1\), and the reduced spin parameters \(\alpha_i \equiv S_i/M_i^2\) where \(S\) is the spin angular momentum. The orientation of the merger is given by the angles \(\Theta, \Theta_0,\) and \(\xi\) (Holley-Bockelmann et al. 2008).

Slices through this parameter space are shown in Figure IV.8. For certain configurations of the merger, the recoil velocity can be very high. Very asymmetric mergers can produce recoils as high as \(\sim 4000 \text{ km s}^{-1}\). These large recoils can be enough for the black hole to escape the potential well of its host galaxy and be ejected. Even less extreme recoil kicks can affect the evolution of black holes, as the kicked black hole can oscillate about its host’s center, potentially changing its local gas environment and accretion rate.
Figure IV.8: Left: Gravitational wave recoil velocity from a merger of nonspinning black holes as a function of eccentricity and mass ratio. Data from numerical relativity simulations (González et al. 2007) are overlaid along the zero eccentricity line. The overlaid white contours are the escape velocity of a typical globular cluster, 50 km s$^{-1}$. Right: Gravitational wave recoil kick velocity as a function of spin parameter and mass ratio for a merger of spinning black holes on a circular orbit with spins perpendicular to the orbital plane of the binary and anti-aligned with each other. Again, the 50 km s$^{-1}$ escape velocity of a globular cluster is overlaid as white contours. Results from numerical relativity simulations are over-plotted: squares for Koppitz et al. (2007), circles for Herrmann et al. (2007), and star for Brügmann et al. (2004). (Holley-Bockelmann et al. 2008)

IV.3.2 Accretion

Although mergers play an important role in the evolution of supermassive black holes, gas accretion can often dominate in terms of mass growth. Gas can fall into a black hole in a number of ways. Here, we will discuss accretion onto a moving black hole, spherical accretion onto a stationary black hole, and disk accretion onto a stationary black hole.

IV.3.2.1 Bondi-Hoyle-Lyttleton Accretion

Let us first consider a massive object, in this case our black hole, moving through a uniform density gas medium. Just as in the case of dynamical friction, particles close enough to the black hole will feel a gravitational attraction, causing them to move toward the black hole. As they move closer, the black hole is also moving through the medium, causing the gas particles to focus behind the black hole. As the particle stream reaches the wake directly behind the black hole, it collides with opposing streams, causing the angular momentum to go to zero. If these particles are bound,
they will proceed to fall onto the black hole. Hoyle & Lyttleton (1939) derive an impact parameter for which particles will be accreted,

\[\sigma < \sigma_{HL} = \frac{2GM}{v_{\infty}^2}, \] (IV.7)

and a mass accretion from the wake column at a rate of

\[\dot{M}_{HL} = \pi \sigma_{HL}^2 v_{\infty} \rho_{\infty} = \frac{4\pi G^2 M^2 \rho_{\infty}}{v_{\infty}^3}, \] (IV.8)

where \(v_{\infty} \) and \(\rho_{\infty} \) are the velocity and density far away from the black hole, respectively. Expanding upon this analysis, Bondi & Hoyle (1944) suggest that the accretion rate should rather be

\[\dot{M}_{BH} = \frac{2\alpha \pi G^2 M^2 \rho_{\infty}}{v_{\infty}^3}, \] (IV.9)

where \(\alpha \) is a constant between 1 and 2, with a typical value of around 1.25.

For an accretor at rest in an isotropic gas medium, one would expect accretion to be a spherical process. Bondi (1952) considers this configuration, and finds the accretion rate for this “temperature-limited” case to be

\[\dot{M}_{Bondi} = \frac{2\pi G^2 M^2 \rho_{\infty}}{c_{s,\infty}^3}, \] (IV.10)

where \(c_{s,\infty} \) is the speed of sound far away from the black hole.

Extrapolating between this result and the “velocity-limited” case of Equation IV.9 suggests (Bondi 1952)

\[\dot{M}_{BH} = \frac{2\pi G^2 M^2 \rho_{\infty}}{(c_{s,\infty}^2 + v_{\infty}^2)^{3/2}}, \] (IV.11)

as an order of magnitude estimate of the more general case of accretion. Numerical simulations (Shima et al. 1985) suggest an additional factor of 2 is needed for better agreement with simulation results, giving us a generally applicable from for the
accretion rate,
\[
\dot{M}_{BH} = \frac{4\pi G^2 M^2 \rho_\infty}{\left(c_{s,\infty}^2 + v_\infty^2\right)^{3/2}}.
\]
(IV.12)

IV.3.2.2 Disk Accretion and Active Galactic Nuclei

Active galactic nuclei play a fundamental role in the evolution of both supermassive black holes and their host galaxies. As gas falls in to a black hole in the center of a galaxy, its angular momentum forces it into an accretion disk. As matter moves towards the SMBH, it transfers its gravitational potential energy to thermal energy. For accretion disks around supermassive black holes, this can cause the disk to emit large amounts of electromagnetic radiation (Lin & Papaloizou 1996).

This emitted radiation is important in a number of ways. Most critical to the SMBH itself is the radiation pressure exerted on infalling matter. This radiation pressure sets an upper limit on the rate of accretion, as there is a point where the force from emitted radiation balances the force of gravity for infalling gas (Rybicki & Lightman 1979). This limit, known as the Eddington limit, is given by

\[
L_{Edd} = \frac{4\pi G M c m_H}{\sigma_T} = 1.25 \times 10^{38} \text{erg s}^{-1} (M/M_\odot),
\]
(IV.13)

where \(c\) is the speed of light, \(m_H\) is the mass of hydrogen, and \(\sigma_T\) is the Thompson cross section.

The radiation given off by the accretion disk affects galactic properties as well. Powerful AGN can strip away gas from the center of the galaxy, halting star formation. This can quickly change a galaxy from a blue, gaseous, star forming galaxy into one that is red, dry, and dead.

IV.4 Conclusion

We have seen that galaxies and the supermassive black holes at their centers both have their most dramatic periods of evolution around the same time. Galaxy mergers grow
both the galaxy and the SMBH. Galaxies grow and become more elliptical as mergers bring in additional mass on orbits that can disrupt their gaseous disks. These mergers also bring in counterpart supermassive black holes that fall toward the center of the galaxy and merge with the central SMBH, while also triggering accretion events and AGN feedback that pump energy back into the galaxy, shutting off star formation.

IV.4.1 Correlations

In light of these shared growth mechanisms, the correlations mentioned in Section IV.1 begin to move from a purely observational coincidence to a natural result of co-evolution. The M–σ relation is a natural byproduct of the simultaneous growth of supermassive black holes and their galaxies during merger events. The mass of the SMBH increases due to the merging of binary companions and increased levels of accretion, while the host mass, and thus velocity dispersion, increases due to the infalling galaxy itself. Likewise, the overabundance of AGN in galaxies lying in the green valley is the consequence of simultaneous change. Mergers both trigger highly luminous AGN feedback and cause an inexorable shift from the blue cloud, through the green valley, to the red sequence. Even the increase in scatter of the M–σ relation at low masses can be explained by the galaxies having lower mass, and therefore being more likely to allow a gravitational wave recoil kicked black hole of a given velocity to escape.

IV.4.2 Open Questions

In the end, there remain a number of open questions. How can very large supermassive black holes form so early? What is dark matter actually made of? How do galaxies retain their black holes if merger recoils can kick them with velocities greater than the escape velocity of the galaxy? Over what range are our correlations truly valid? These are just some of the questions that are currently being investigated, and promise to provide a rich field of study for years to come.
CHAPTER V

Conclusion

In this work, we have explored the properties and evolution of dark matter halos in the early Universe and the numerical effects of simulation initialization technique on their mass and concentration. Using six cosmological dark matter only N-body simulations evolved with the TreeSPH code GADGET-2, with three initialized according to the Zel’dovich approximation and three initialized according to second-order Lagrangian perturbation theory, we have compared distributions of halo properties as found by the six-dimensional phase space halo finder ROCKSTAR. Our study has focused on the early Universe in the pre-reionization epoch $z \geq 6$, as it is at these early times that the subtle differences in numerical technique become most pertinent.

We have found marked differences in the halo populations between simulation initialization type. The linear nature of zA underestimates the growth of early halos, resulting in a suppressed halo mass distribution and large concentration fluctuations. $2lpt$ halos get a head start in the formation process and tend to grow faster than zA halos, with potentially earlier merger epochs and differing nuclear morphologies.

Halos in $2lpt$ simulations are, on average, more massive than zA halos. This effect is dependent on redshift and most pronounced at high z. We find 50% of $2lpt$ halos are at least 10% more massive than their zA companions at $z = 15$, and 10% are at least 10% more massive by $z = 6$. Additionally, the earlier collapse of the largest density peaks in $2lpt$ causes the mass difference to be largest for the most massive halos. This is again more prominent at high redshift, until $z \sim 14$, where the trend seems to begin to reverse.

While halo concentration is similar for zA and $2lpt$ simulations on average, individual halo pairs can retain large discrepancies. We find 25% of halo pairs to have
concentrations differing by at least a factor of 2 at $z = 15$ and 15% at least a factor of 2 different by $z = 6$. Additionally, viewing concentration difference as a function of mass displays a trend for zA halos to be more concentrated than their 2LPT counterparts at high mass, while low mass halos tend to be more concentrated in 2LPT. This tendency increases with redshift until $z \sim 12$, where, as in the case of mass difference, the trend appears to reverse.

There remains the opportunity for further research into the effects of zA and 2LPT initialization on high-z dark matter halos. Our simulations consist of 512^3 particles in volumes of $(10 \text{ Mpc})^3$. This box size is too small to effectively capture very large outlier density peaks that correspond to the largest early halos. These large uncaptured density peaks should be expected to be most sensitive to initialization technique. The results in this work, therefore, may even be dramatically underestimated. Additionally, as computer cluster hardware continues to improve, larger N simulations become more feasible. A larger particle number would allow the increase in resolution needed to consider smaller mass halos and better resolve existing substructure. This is most critical for high redshift, as early-forming halos at large z are inherently represented with fewer particles, making accurate measurement of internal structure such as the density profile more difficult. Generation of consistent merger trees would allow tracking of individual halos through simulation snapshots, presenting the opportunity to study precise merger epochs as well as full mass accretion histories. We primarily explored virial mass and concentration in this study, but other halo statistics may also prove interesting probes of simulation differences. ROCKSTAR provides measurements for a number of additional halo properties, including angular momentum, spin, nuclear position offset, nuclear velocity offset, ellipsoidal shape parameters, and energy statistics. It would be relatively straightforward to incorporate study of these parameters into our analysis pipeline, which should also be readily adaptable to the output of larger and higher resolution numerical simulations.
Abel, T., Bryan, G. L., & Norman, M. L. 2000, Astrophys. J., 540, 39
—. 2002, Science, 295, 93
Alvarez, M. A., Bromm, V., & Shapiro, P. R. 2006, Astrophys. J., 639, 621
Alvarez, M. A., Wise, J. H., & Abel, T. 2009, Astrophys. J., Lett., 701, L133
Bagla, J. S. 2002, Journal of Astrophysics and Astronomy, 23, 185
Bagla, J. S., & Ray, S. 2003, New Astronomy, 8, 665
Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. 1986, Astrophys. J., 304, 15
Barkana, R., & Loeb, A. 2001, Phys. Rep., 349, 125
Barnes, J., & Hut, P. 1986, Nature, 324, 446
Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2013, Astrophys. J., 762, 109
Bernardeau, F. 1994, Astrophys. J., 433, 1
Binney, J., & Merrifield, M. 1998, Galactic Astronomy, Princeton Series in Astrophysics (Princeton University Press)
Binney, J., & Tremaine, S. 1988, Galactic Dynamics, Princeton Series in Astrophysics (Princeton University Press)
Blandford, R. D., & McKee, C. F. 1982, Astrophys. J., 255, 419
Bode, P., Ostriker, J. P., & Xu, G. 2000, Astrophys. J., Suppl. Ser., 128, 561
Bond, J. R., Cole, S., Efstathiou, G., & Kaiser, N. 1991, Astrophys. J., 379, 440
Bondi, H. 1952, Mon. Not. R. Astron. Soc., 112, 195
Bondi, H., & Hoyle, F. 1944, Mon. Not. R. Astron. Soc., 104, 273
Bouchet, F. R., Colombi, S., Hivon, E., & Juszkiewicz, R. 1995, Astron. Astrophys., 296, 575
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2012, Astrophys. J., Lett., 752, L5
Bower, R. G. 1991, Mon. Not. R. Astron. Soc., 248, 332
Brügmann, B., Tichy, W., & Jansen, N. 2004, Phys. Rev. Lett., 92, 211101
Bryan, G. L., & Norman, M. L. 1998, Astrophys. J., 495, 80
Buchert, T. 1994, Mon. Not. R. Astron. Soc., 267, 811
Buchert, T., Melott, A. L., & Weiss, A. G. 1994, Astron. Astrophys., 288, 349
Bullock, J. S., Dekel, A., Kolatt, T. S., et al. 2001a, Astrophys. J., 555, 240
Bullock, J. S., Kolatt, T. S., Sigad, Y., et al. 2001b, Mon. Not. R. Astron. Soc., 321, 559
Bykov, A. M., Paerels, F. B. S., & Petrosian, V. 2008, Space Sci. Rev., 134, 141
Carroll, S. M., Press, W. H., & Turner, E. L. 1992, Ann. Rev. Astron. Astrophys., 30, 499
Catelan, P., & Moscardini, L. 1994, Astrophys. J., 426, 14
Chandrasekhar, S. 1943, Astrophys. J., 97, 255
Clowe, D., Bradač, M., Gonzalez, A. H., et al. 2006, Astrophys. J., Lett., 648, L109
Cole, S., Lacey, C. G., Baugh, C. M., & Frenk, C. S. 2000, Mon. Not. R. Astron. Soc., 319, 168
Conselice, C. J., Bershady, M. A., Dickinson, M., & Papovich, C. 2003, Astron. J., 126, 1183
Couchman, H. M. P., & Rees, M. J. 1986, Mon. Not. R. Astron. Soc., 221, 53
Crocce, M., Pueblas, S., & Scoccimarro, R. 2006, Mon. Not. R. Astron. Soc., 373, 369
Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, Astrophys. J., 292, 371
Djorgovski, S., & Davis, M. 1987, Astrophys. J., 313, 59
Efstathiou, G., Davis, M., White, S. D. M., & Frenk, C. S. 1985, Astrophys. J., Suppl. Ser., 57, 241
Einasto, J., & Haud, U. 1989, Astron. Astrophys., 223, 89
Einasto, J., Klypin, A. A., Saar, E., & Shandarin, S. F. 1984, Mon. Not. R. Astron. Soc., 206, 529
Eke, V. R., Navarro, J. F., & Steinmetz, M. 2001, Astrophys. J., 554, 114
Fakhouri, O., Ma, C.-P., & Boylan-Kolchin, M. 2010, Mon. Not. R. Astron. Soc., 406, 2267
Fan, X., Narayanan, V. K., Lupton, R. H., et al. 2001, Astron. J., 122, 2833
Gao, L., Navarro, J. F., Cole, S., et al. 2008, Mon. Not. R. Astron. Soc., 387, 536
Genel, S., Genzel, R., Bouché, N., Naab, T., & Sternberg, A. 2009, Astrophys. J., 701, 2002

Gingold, R. A., & Monaghan, J. J. 1977, Mon. Not. R. Astron. Soc., 181, 375

Gnedin, N. Y., & Ostriker, J. P. 1997, Astrophys. J., 486, 581

González, J. A., Sperhake, U., Brügmann, B., Hannam, M., & Husa, S. 2007, Phys. Rev. Lett., 98, 091101

Gottloeber, S. 1998, in Large Scale Structure: Tracks and Traces, ed. V. Mueller, S. Gottloeber, J. P. Muecket, & J. Wambgsanss, 43–46

Grinstein, B., & Wise, M. B. 1987, Astrophys. J., 320, 448

Gültekin, K., Richstone, D. O., Gebhardt, K., et al. 2009, The Astrophysical Journal, 698, 198

Gunn, J. E., & Gott, III, J. R. 1972, Astrophys. J., 176, 1

Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003, Astrophys. J., 591, 288

Heger, A., & Woosley, S. E. 2002, Astrophys. J., 567, 532

Heitmann, K., Lukić, Z., Habib, S., & Ricker, P. M. 2006, Astrophys. J., Lett., 642, L85

Heitmann, K., White, M., Wagner, C., Habib, S., & Higdon, D. 2010, Astrophys. J., 715, 104

Hernquist, L., Hut, P., & Makino, J. 1993, Astrophys. J., Lett., 402, L85

Hernquist, L., & Katz, N. 1989, Astrophys. J., Suppl. Ser., 70, 419

Herrmann, F., Hinder, I., Shoemaker, D., Laguna, P., & Matzner, R. A. 2007, Astrophys. J., 661, 430

Herrnstein, J. R., Moran, J. M., Greenhill, L. J., et al. 1999, Nature, 400, 539

Holley-Bockelmann, K., Gültekin, K., Shoemaker, D., & Yunes, N. 2008, Astrophys. J., 686, 829

Holley-Bockelmann, K., Wise, J. H., & Sinha, M. 2012, Astrophys. J., Lett., 761, L8

Hoyle, F., & Lyttleton, R. A. 1939, Proceedings of the Cambridge Philosophical Society, 35, 405

Hubble, E. P. 1926, Astrophys. J., 64, 321

Islam, R. R., Taylor, J. E., & Silk, J. 2003, Mon. Not. R. Astron. Soc., 340, 647
Jenkins, A. 2010, Mon. Not. R. Astron. Soc., 403, 1859
Jeon, M., Pawlik, A. H., Greif, T. H., et al. 2012, Astrophys. J., 754, 34
Juszkiewicz, R., Bouchet, F. R., & Colombi, S. 1993, Astrophys. J., Lett., 412, L9
Juszkiewicz, R., Weinberg, D. H., Amsterdamski, P., Chodorowski, M., & Bouchet, F. 1995, Astrophys. J., 442, 39
Khan, F. M., Just, A., & Merritt, D. 2011, Astrophys. J., 732, 89
Klypin, A., Kravtsov, A. V., Bullock, J. S., & Primack, J. R. 2001, Astrophys. J., 554, 903
Klypin, A. A., & Shandarin, S. F. 1983, Mon. Not. R. Astron. Soc., 204, 891
Klypin, A. A., Trujillo-Gomez, S., & Primack, J. 2011, Astrophys. J., 740, 102
Knebe, A., Knollmann, S. R., Muldrew, S. I., et al. 2011, Mon. Not. R. Astron. Soc., 415, 2293
Komatsu, E., Dunkley, J., Nolta, M. R., et al. 2009, Astrophys. J., Suppl. Ser., 180, 330
Koppitz, M., Pollney, D., Reisswig, C., et al. 2007, Phys. Rev. Lett., 99, 041102
Kormendy, J., & Djorgovski, S. 1989, Ann. Rev. Astron. Astrophys., 27, 235
Kuhlen, M., & Faucher-Giguère, C.-A. 2012, Mon. Not. R. Astron. Soc., 423, 862
Lacey, C., & Cole, S. 1993, Mon. Not. R. Astron. Soc., 262, 627
L’Huillier, B., Park, C., & Kim, J. 2014, New Astronomy, 30, 79
Lin, D., & Papaloizou, J. 1996, Annual Review of Astronomy and Astrophysics, 34, 703
Lo, K. Y. 2005, Ann. Rev. Astron. Astrophys., 43, 625
Lukić, Z., Heitmann, K., Habib, S., Bashinsky, S., & Ricker, P. M. 2007, Astrophys. J., 671, 1160
Macòì, A. V., Dutton, A. A., & van den Bosch, F. C. 2008, Mon. Not. R. Astron. Soc., 391, 1940
Madau, P., Haardt, F., & Rees, M. J. 1999, Astrophys. J., 514, 648
Madau, P., & Rees, M. J. 2001, Astrophys. J., Lett., 551, L27
Marquardt, D. W. 1963, Journal of the Society for Industrial and Applied Mathematics, 11(2), 431
Mo, H. J., & White, S. D. M. 2002, Mon. Not. R. Astron. Soc., 336, 112

Monaco, P. 1998, Fundam. Cosmic Phys., 19, 157

Monaghan, J. J., & Lattanzio, J. C. 1985, Astron. Astrophys., 149, 135

More, S., Kravtsov, A. V., Dalal, N., & Gottlöber, S. 2011, Astrophys. J., Suppl. Ser., 195, 4

Muñoz-Cuartas, J. C., Macciò, A. V., Gottlöber, S., & Dutton, A. A. 2011, Mon. Not. R. Astron. Soc., 411, 584

Nadarajah, S. 2005, Journal of Applied Statistics, 32, 685

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, Astrophys. J., 462, 563

—. 1997, Astrophys. J., 490, 493

Navarro, J. F., Hayashi, E., Power, C., et al. 2004, Mon. Not. R. Astron. Soc., 349, 1039

Navarro, J. F., Ludlow, A., Springel, V., et al. 2010, Mon. Not. R. Astron. Soc., 402, 21

Neto, A. F., Gao, L., Bett, P., et al. 2007, Mon. Not. R. Astron. Soc., 381, 1450

Padmanabhan, T. 1993, Structure Formation in the Universe

Parkinson, H., Cole, S., & Helly, J. 2008, Mon. Not. R. Astron. Soc., 383, 557

Peebles, P. J. E. 1969, Astrophys. J., 155, 393

—. 1970, Astron. J., 75, 13

—. 1980, The large-scale structure of the universe

—. 1993, Principles of Physical Cosmology

Peebles, P. J. E., & Yu, J. T. 1970, Astrophys. J., 162, 815

Prada, F., Klypin, A. A., Cuesta, A. J., Betancort-Rijo, J. E., & Primack, J. 2012, Mon. Not. R. Astron. Soc., 423, 3018

Press, W. H., & Schechter, P. 1974, Astrophys. J., 187, 425

Quinn, T., Katz, N., Stadel, J., & Lake, G. 1997, ArXiv Astrophysics e-prints, astro-ph/9710043

Reed, D. S., Bower, R., Frenk, C. S., Jenkins, A., & Theuns, T. 2007, Mon. Not. R. Astron. Soc., 374, 2
Reed, D. S., Smith, R. E., Potter, D., et al. 2013, Mon. Not. R. Astron. Soc., 431, 1866

Rubin, V. C., Ford, W. K. J., & Thonnard, N. 1980, Astrophys. J., 238, 471

Rybicki, G. B., & Lightman, A. P. 1979, Radiative processes in astrophysics / George B. Rybicki, Alan P. Lightman (Wiley, New York :), xv, 382 p. :

Schawinski, K., Urry, C. M., Virani, S., et al. 2010, The Astrophysical Journal, 711, 284

Scheel, M. A., Boyle, M., Chu, T., et al. 2009, Phys. Rev. D, 79, 024003

Scoccimarro, R. 1998, Mon. Not. R. Astron. Soc., 299, 1097

Shapiro, P. R., & Giroux, M. L. 1987, Astrophys. J., Lett., 321, L107

Shapiro, P. R., Iliev, I. T., & Raga, A. C. 1999, Mon. Not. R. Astron. Soc., 307, 203

Shima, E., Matsuda, T., Takeda, H., & Sawada, K. 1985, Mon. Not. R. Astron. Soc., 217, 367

Silk, J. 1968, Astrophys. J., 151, 459

Sinha, M., & Holley-Bockelmann, K. 2009, Mon. Not. R. Astron. Soc., 397, 190

—. 2010, Mon. Not. R. Astron. Soc., 405, L31

Sirko, E. 2005, Astrophys. J., 634, 728

Springel, V. 2005, Mon. Not. R. Astron. Soc., 364, 1105

Springel, V., Yoshida, N., & White, S. D. M. 2001, New Astron, 6, 79

Tanaka, T., Perna, R., & Haiman, Z. 2012, Mon. Not. R. Astron. Soc., 425, 2974

Tegmark, M., Silk, J., Rees, M. J., et al. 1997, Astrophys. J., 474, 1

Tinker, J., Kravtsov, A. V., Klypin, A., et al. 2008, Astrophys. J., 688, 709

Venkatesan, A., Tumlinson, J., & Shull, J. M. 2003, Astrophys. J., 584, 621

Vikhlinin, A., Kravtsov, A., Forman, W., et al. 2006, Astrophys. J., 640, 691

Voit, G. M. 2005, Reviews of Modern Physics, 77, 207

Warren, M. S., Abazajian, K., Holz, D. E., & Teodoro, L. 2006, Astrophys. J., 646, 881

Wechsler, R. H., Bullock, J. S., Primack, J. R., Kravtsov, A. V., & Dekel, A. 2002, Astrophys. J., 568, 52
White, M. 2001, Astron. Astrophys., 367, 27
Xu, G. 1995, Astrophys. J., Suppl. Ser., 98, 355
Zel’dovich, Y. B. 1970, Astron. Astrophys., 5, 84
Zemp, M., Gnedin, O. Y., Gnedin, N. Y., & Kravtsov, A. V. 2011, Astrophys. J., Suppl. Ser., 197, 30
Zhao, D. H., Jing, Y. P., Mo, H. J., & Börner, G. 2009, Astrophys. J., 707, 354
Zhao, D. H., Mo, H. J., Jing, Y. P., & Börner, G. 2003, Mon. Not. R. Astron. Soc., 339, 12
Appendices
Appendix A

ROCKSTAR Configuration and Execution

A.1 Single Node Configuration File (Text)

1. #Rockstar Halo Finder
2. #Parallel config file for multi-cpu, multi-snapshot halo finding
3. #Note that periodic boundary conditions are assumed for NUM_WRITERS > 1.
4. #See README for details.

5. #Once compiled ("make"), run Rockstar server as
6. # ./rockstar -c parallel.cfg
7. #Then launch the reading/analysis tasks with:
8. # ./rockstar -c auto-rockstar.cfg
9. #You will have to launch at least NUM_BLOCKS+NUM_WRITERS processes.

10. FILE_FORMAT = "GADGET2" # or "ART" or "ASCII"
11. PARTICLE_MASS = 0 # must specify (in Msun/h) for ART or ASCII
12. # You should specify cosmology parameters only for ASCII formats
13. # For GADGET2 and ART, these parameters will be replaced with values from the
14. # particle data file
15. SCALE_NOW = 1
16. h0 = 0.7
17. O1 = 0.73
18. Om = 0.27

19. # This specifies the use of multiple processors:
20. #PARALLEL_IO = 1
21. # Output full particle information as well as halos for N number of procs
22. FULL_PARTICLE_CHUNKS = 0
23. # This should be less than 1/5 of BOXSIZE
24. OVERLAP_LENGTH = 1.5
25. # This specifies how many CPUs you want to analyze the particles:
26. #NUM_WRITERS = 8
27. # Calculate radii and other halo properties using unbound (0) or only bound (1) particles (default 1)
28. BOUND_PROPS = 0
29. # This sets the virial radius/mass definition ("vir", "XXXc", or "XXXb")
30. MASS_DEFINITION = "vir"
31. # This specifies the I/O filenames:
32. #OUTBASE = "halos"
33. #INBASE = "particles"
34. #NUM_SNAPS = 1
35. #NUM_BLOCKS = 1
36. #BGC2_SNAPNAMES = "snapnames.lst"
37. #FILENAME = "particles_<snap>_<block>.dat"

A.2 PBS Submission Script (Bash)

1. #!/bin/sh
2. #PBS -M djsissom@gmail.com
3. #PBS -m bae
4. #PBS -l nodes=1:ppn=10
5. #PBS -l pmem=3000mb
6. #PBS -l mem=30000mb
7. #PBS -l walltime=0:30:00
8. #PBS -o out.log
9. #PBS -j oe

10. # Change to working directory
11. echo $PBS_NODEFILE
12. cd $PBS_O_WORKDIR
13. # Start the server
14. rockstar -c onenode.cfg > server.out &
15. # Wait for auto-rockstar.cfg to be created
16. perl -e "sleep 1 while (!("auto-rockstar.cfg"))"
17. mv halos/auto-rockstar.cfg .
18. # Execute the reader processes
19. mpiexec -verbose -n 1 rockstar -c auto-rockstar.cfg >> clients.out 2>&1 &
20. sleep 20
25 # Execute the analysis processes
26 mpiexec -verbose -n 8 rockstar -c auto-rockstar.cfg >> clients.out 2>&1
28 # - end of script

A.3 Post-Processing Script (Bash)

#!/bin/bash

echo 'running finish_bgc2...'
"/projects/programs/nbody/rockstar/Rockstar-0.99.9/util/finish_bgc2 -c onenode.cfg -s 0

echo 'running bgc2_to_ascii...'
"/projects/programs/nbody/rockstar/Rockstar-0.99.9/util/bgc2_to_ascii -c onenode.cfg -s 0 > halos/all_halos.bgc2.ascii

echo 'running find_parents...'
"/projects/programs/nbody/rockstar/Rockstar-0.99.9/util/find_parents halos/out_0.list 10.0 > halos/out_0.list.parents

echo 'finished'
Appendix B

CROSSMATCH Modifications and Configuration

B.1 2LPT First Configuration File (Text)

```
1 MIN_SNAPSHOT_NUM 0
2 MAX_SNAPSHOT_NUM 0
3
4 MAX_RANK_LOC 0
5
6 OUTBASE crossmatch_2lpt_first
```

B.2 za First Configuration File (Text)

```
1 MIN_SNAPSHOT_NUM 0
2 MAX_SNAPSHOT_NUM 0
3
4 MAX_RANK_LOC 0
5
6 OUTBASE crossmatch_za_first
```
Appendix C

BGC2 Import Code (Python)

```python
#!/usr/bin/env python

import sys
import struct

def read_bgc2(filename):
    offset = 4
    groupoffset = 8
    particleoffset = 8

    headersize = 1024
    groupszie = 4*8 + 10*4
    particlesize = 1*8 + 6*4

    headerformat = '=Q 16q 19d'
    groupformat = '=2q 2Q 10f'
    particleformat = '=q 6f'

    print "Reading " + filename + "..."
    fd = open(filename, 'rb')
    bin_string = fd.read()
    fd.close()
    bin_string = bin_string[offset:]

    # Header stuff
    header_bin = bin_string[:headersize]
    header_pad = headersize - 36*8
    header = list(struct.unpack(headerformat, header_bin[:-header_pad]))

    # Group stuff
    ngroups = header[8]
    print 'ngroups = ', ngroups
    groupstart = headersize + groupoffset
    groupend = groupstart + ngroups*groupszie + particleoffset
    group_bin = bin_string[groupstart:groupend]
    group = []
    for i in range(ngroups):
        group.append(list(struct.unpack(groupformat, group_bin[i*groupszie:(i+1)*groupszie])))

    # Particle stuff
    particlestart = headersize + groupoffset + ngroups*groupsize + particleoffset
    particle_bin = bin_string[particlestart:]
    particle = []
    p_start = 0
    for i in range(ngroups):
        npart = group[i][2]
        particle.append([])
        for j in range(npart):
            particle[i].append(list(struct.unpack(particleformat, particle_bin[p_start:p_start+particlesize])))
        p_start += particlesize
        p_start += particleoffset

    print "Finished parsing bgc2 file"
    return header, group, particle

def main():
    header, group, particle = read_bgc2(sys.argv[1])
    print 'Header contents: '
    for value in header:
        print value
    print
    print 'Group[0].contents: '
    for value in group[0]:
        print value
    print
    print 'Particles in group[0]:'
    for part in group[0]:
        print part
    print
    print 'Group[1].contents: '
    for value in group[1]:
        print value
    print
    print 'Particles in group[1]:'
    for part in group[1]:
        print part
```

83 print part
84
85
86
87
88
89 if __name__ == '__main__':
90 main()
Appendix D

Density Profile Code (Python)

```python
#!/usr/bin/env python

import sys
import bgc2
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
from scipy.optimize import curve_fit
from scipy.stats import chisquare

#read_mode = 'ascii2'
read_mode = 'bgc2'

if read_mode == 'bgc2':
    use_bgc2 = True
    use_all = False
    individual_masses = False
    halo_id = 146289
    nbins = 50
    nfit = 500
    ooms = 3.0
    mass_scale = 1.0
    common_mass = 5.33423e5
    dist_scale = 1.0e3
    #res_limit = 0.488
    res_limit = 0.5
    draw_frac = 0.1
    tick_base_major = 100.0
    tick_base_minor = 10.0
    find_com = False
elif read_mode == 'ascii':
    use_bgc2 = False
    use_all = True
    individual_masses = True
    halo_id = 0
    nbins = 100
    nfit = 500
    ooms = 5.0
    mass_scale = 1.0e12
    dist_scale = 200.0
    res_limit = 1.0e-2
    tick_base_major = 20.0
    tick_base_minor = 20.0
    find_com = True
elif read_mode == 'ascii2':
    use_bgc2 = False
    use_all = True
    individual_masses = True
    halo_id = 0
    nbins = 100
    nfit = 500
    ooms = 3.5
    mass_scale = 1.0e10
    dist_scale = 1.0
    #res_limit = 3.0e-1
    res_limit = 0.1
    tick_base_major = 200.0
    tick_base_minor = 40.0
    find_com = True
else:
    sys.exit(98712)

#outfile = 'asciitest_halo_properties.txt'
outfile = 'density_profile_halos.dat'
comfile = 'center_of_mass.txt'

#make_plot = False
make_plot = True
#plot_base = 'asciitest_density_profile.fig.'
plot_base = 'figure_
plot_ext = '.eps'
dist_units = 'kpc'
xlabel_proj = r'X Position (%s h$^{-1}$)' % (dist_units),
xlabel_prof = r'Radius (%s h$^{-1}$)' % (dist_units)
ylabel_proj = r'Y Position (%s h$^{-1}$)' % (dist_units),
ylabel_prof = r'Z Position (%s h$^{-1}$)' % (dist_units)
```

135
ylabel_prof = r'Density, $(M_\odot (\text{s}^{-1} h^{2})$)' % (dist_units)

npixels = 50

#common_mass = 1.0e-7
#common_mass = 1.0e5
mass_col = 0
pos_cols = (1, 2, 3)
vel_cols = (4, 5, 6)
halo_id_col = 0

grav_const = 4.3e-6
kpc M_sol^-1 (km/s)^2

def read_files(files):
 data = 0
 for file in files:
 print 'Reading file %s...' % (file)
 if data == 0:
 data = np.genfromtxt(file, comments='#')
 else:
 data = np.append(data, np.genfromtxt(file, comments='#'), axis=0)
 print 'Finished reading files.'
 return data

def my_chisq(ydata, ymod, deg=2, sd=None):
 """
 Returns the reduced chi-square error statistic for an arbitrary model,
 chisq/nu, where nu is the number of degrees of freedom. If individual
 standard deviations (array sd) are supplied, then the chi-square error
 statistic, chisq, computed as the sum of squared errors divided by the
 standard deviations. See http://en.wikipedia.org/wiki/Goodness_of_fit for
 reference.

 Usage:
 >>> chisq=redchisqg(ydata,ymod,n,sd)
 where
 ydata : data
 ymod: model evaluated at the same x points as ydata
 n: number of free parameters in the model
 sd: uncertainties in ydata

 Rodrigo Nemmen
 http://goo.gl/8S1Oo
 """
 # Chi-square statistic
 if sd==None:
 chisq=np.sum((ydata-ymod)**2)
 else:
 chisq=np.sum((ydata-ymod)/sd)**2
 # Number of degrees of freedom assuming 2 free parameters
 nu=ydata.size-1-deg
 return chisq/nu

def calc_m_enclosed(mass, pos):
 r = np.sqrt(pos[:,0]**2 + pos[:,1]**2 + pos[:,2]**2)
 r = np.sort(r)
 first_good_bin = 0
 for i in range(len(r)):
 if r[i] > res_limit:
 first_good_bin = i
 break
 r1 = r[first_good_bin -1]
 r2 = r[first_good_bin]
 r3 = r[first_good_bin+1]
 m_extra = mass[0] * first_good_bin
 r = r[first_good_bin:]
 #m_enclosed = np.zeros(len(r))
 #for i in range(len(r)):
 # m_enclosed[i] = mass[0] * (i + 1.0)
 m_enclosed = (np.arange(len(r)) + 1.0) * mass[0] + m_extra
 return r, m_enclosed

def calc_density_profile(mass, pos):
 r = np.sqrt(pos[:,0]**2 + pos[:,1]**2 + pos[:,2]**2)
 max_r = r.max()
 #min_r = max_r / 10**ooms
 min_r = res_limit
 log_range = np.log10(max_r) - np.log10(min_r)
 #global nbins
 local_nbins = float(nbins + 1)
 #bins = len(r) / 1000
 while True:
 print 'r1=-, r[first_good_bin-1]
 print 'r2=-, r[first_good_bin]
 print 'r3=-, r[first_good_bin+1]
 m_extra = mass[0] * first_good_bin
 r = r[first_good_bin:]
 m_enclosed = np.zeros(len(r))
 for i in range(len(r)):
 m_enclosed[i] = mass[0] * (i + 1.0)
 m_enclosed = (np.arange(len(r)) + 1.0) * mass[0] + m_extra
 return r, m_enclosed

 #global nbins
 local_nbins = float(nbins + 1)
 #bins = len(r) / 1000
 while True:
 bins = np.arange(local_nbins)
 bins = max_r * 10.0**(log_range * bins / (local_nbins -1.0) - log_range)
 bin_mass, r_bins = np.histogram(r, bins, weights=mass)
 if (bin_mass == 0.0).any():
 local_nbins = local_nbins + 1
local_nbins -= 1

continue

else:
 break

print 'Binning particles using bin edges of \n', r_bins
rho = bin_mass / (sphere_vol(r_bins[1:]) - sphere_vol(r_bins[:-1]))

R_bin, blah = np.histogram(r, bins)
rho_err = poisson_error(N_bin) * rho

return r_bins, rho, rho_err

def logbin(pos):
 r = np.sqrt(pos[:,0]**2 + pos[:,1]**2 + pos[:,2]**2)
 max_r = r.max()
 min_r = max_r / 10**ooms
 log_range = np.log10(max_r) - np.log10(min_r)
 global nbins
 nbins = float(nbins + 1)
 bins = np.arange(nbins)
 bins = max_r * 10.0**(log_range * bins / (nbins-1.0) - log_range)
 hist, bin_edges = np.histogram(r, bins)
 return hist, bin_edges

def poisson_error(N):
 err = np.sqrt(N) / N
 return err

def sphere_vol(r):
 volume = (4.0 / 3.0) * np.pi * r**3
 return volume

def get_rho_0(R_s, R_vir):
 H = 70.0e-3 # km s^-1 kpc^-1
 G = 4.3e-6 # kpc M_sol^-1 (km/s)^2
 rho_crit = 3.0 * H**2 / (8.0 * np.pi * G)
 v = 178
 c = R_vir / R_s
 g = 1.0 / (np.log(1.0+c) - c/(1.0+c))
 delta_char = v * c**3 * g / 3.0
 return rho_crit * delta_char

def _nfw_def_rho0(r, R_s):
 rho_0 = get_rho_0(R_s, R_vir)
 return rho_0 / ((r / R_s) * (1.0 + r / R_s)**2)

def _nfw_databin_rho0(r, R_s):
 return rho_0 / ((r / R_s) * (1.0 + r / R_s)**2)

def dm_profile_fit_rho0_log(r, R_s, rho_0, alpha):
 r = 10.0**r
 R_s = 10.0**R_s
 rho_0 = 10.0**rho_0
 alpha = 10.0**alpha
 profile = rho_0 / ((r / R_s) * (1.0 + r / R_s)**alpha)
 return np.log10(profile)
```python
def _dm_profile_def_rho0(r, R_s, alpha):
    rho_0 = get_rho_0(R_s, R_vir)
    return rho_0 / ((r / R_s) * (1.0 + r / R_s)**alpha)

return _dm_profile_def_rho0

def _dm_profile_databin_rho0(r, R_s, alpha):
    return _dm_profile_databin_rho0(r, R_s, alpha)

def nfw_cdf(r, R_s, rho_0):
    r = 10.0**r
    R_s = 10.0**R_s
    rho_0 = 10.0**rho_0

    profile = rho_0 * R_s * (np.log(1.0 + r / R_s) - 1.0 / (1.0 + r / R_s))
    return np.log10(profile)

def nfw_cdf_nolog(r, R_s, rho_0):
    profile = rho_0 * R_s * (np.log(1.0 + r / R_s) - 1.0 / (1.0 + r / R_s))
    return profile

def mass_profile(s, c):
    g = 1.0 / (np.log(1.0 + c) - c / (1.0 + c))
    return g * (np.log(1.0 + c * s) - c * s / (1.0 + c * s))

def fit_mass_profile(s, m_enclosed, err=None, R_vir=None):
    first_good_bin = 0

    #popt, pcov = curve_fit(nfw_cdf, np.log10(r), np.log10(m_outside), sigma=np.log10(err))
    #popt, pcov = curve_fit(nfw_cdf, np.log10(r), np.log10(m_outside))
    #popt = 10.0**popt
    #pcov = 10.0**pcov
    popt, pcov = curve_fit(mass_profile, s, m_enclosed)

    print 'fit_params=', popt
    print 'covariance=', pcov

    nfw_r = np.linspace(s[0], s[-1], nfit)
    nfw_fit = mass_profile(nfw_r, popt[0])
    chi2_fit = mass_profile(s, popt[0])

    chi2 = chisquare(np.log10(m_enclosed[first_good_bin:]), np.log10(chi2_fit[first_good_bin:]))
    chi2_nolog = chisquare(m_enclosed[first_good_bin:], ch i2_fit[first_good_bin:])

    print 'chi_square=', chi2
    print 'chi_square_nolog=', chi2_nolog

    return nfw_r, nfw_fit, popt, pcov, chi2[0]

def fit_profile(r, rho, err=None, R_vir=None):
    first_good_bin = 0

    # for i in range(len(r)):
    # if r[i] > res_limit:
    # first_good_bin = i
    # break
    # first_good_bin = 0

    #popt, pcov = curve_fit(nfw_cdf, np.log10(r), np.log10(m_outside), sigma=np.log10(err))
    #popt, pcov = curve_fit(nfw_def_rho0(R_vir), r, rho, p0=[10.0], sigma=err)
    #popt, pcov = curve_fit(nfw_databin_rho0(rho_0_databin), r, rho, sigma=err)
    # blah = 3
    if blah == 0:
        for i in range(100):
            a = 2.0 * np.random.random() * 0.1 * r.max()
            b = 2.0 * np.random.random() * 10.0
            c = 2.0 * np.random.random() * 2.0
            try:
                popt, pcov = curve_fit(dm_profile_fit_rho0, r, rho, p0=[a, b, c], sigma=err)
            except RuntimeError:
                continue
        if (popt[0] < r.max()) and (popt[2] == 0.0):
            break
        elif i >= 99:
            print 'no_good_fit_found_for_this_halo...'
            return None, None, None, None, None
        else:
            blah += 1
            a = r.max() / 100.0
            a = 0.001
            b = rho[first_good_bin]
            c = 0.001
```

#popt, pcov = curve_fit(dm_profile_fit_rho0, r, rho, sigma=err)
print '-------------------------------------'
print 'rho_0 before =', b
#try:
#popt, pcov = curve_fit(dm_profile_fit_rho0, r, rho, p0=[a,b,c], sigma=err, maxfev=1, xtol=1.0e-1)
except RuntimeError:
 print 'just checking for now...
print 'rho_0 after =', popt[1]
#sys.exit()
elif blah == 2:
 popt, pcov = curve_fit(nfw_fit_rho0_log, np.log10(r), np.log10(rho), sigma=np.log10(err))
popt = 10.0**popt
pcov = 10.0**pcov
elif blah == 3:
popt, pcov = curve_fit(nfw_fit_rho0, r, rho, sigma=err, p0=[0.1, 1.0])

#popt, pcov = curve_fit(dm_profile_def_rho0(R_vir), r, rho_0.databin, sigma=err)
#-------------------------#

print 'fit_params =', popt
print 'covariance =', pcov
nfw_r = np.linspace(r[0], r[-1], nfit)
#--------- choose one fitting type ---------#
nfw_fit = nfw_fit_rho0(nfw_r, popt[0], popt[1])
#nfw_fit = nfw_def_rho0(R_vir)(nfw_r, popt[0])
#nfw_fit = nfw_databin_rho0(rho_0.databin)(nfw_r, popt[0])
#nfw_fit = dm_profile_fit_rho0(nfw_r, popt[0], popt[1], popt[2])
#nfw_fit = dm_profile_def_rho0(R_vir)(nfw_r, popt[0], popt[1])
#nfw_fit = dm_profile_databin_rho0(rho_0.databin)(nfw_r, popt[0], popt[1])
#-------------------------#

chi2_fit = nfw_fit_rho0(r, popt[0], popt[1])
#chi2_fit = nfw_def_rho0(R_vir)(r, popt[0])
#chi2_fit = nfw_databin_rho0(rho_0.databin)(r, popt[0])
#chi2_fit = dm_profile_fit_rho0(r, popt[0], popt[1], popt[2])
#chi2_fit = dm_profile_def_rho0(R_vir)(r, popt[0], popt[1])
#chi2_fit = dm_profile_databin_rho0(rho_0.databin)(r, popt[0], popt[1])
#-------------------------#

#chi2 = my_chisq(rho, chi2_fit, 2, err)
chi2 = chisquare(rho, chi2_fit)
print 'chi_square =', chi2
chi2 = chi2[0]
return nfw_r, nfw_fit, popt, pcov, chi2

def draw_projection(fig, place, plot_lim, x, y):
 ax = plt.subplot(2,3,place+1, aspect='equal')
 im = ax.plot(x, y, linestyle='', marker='.', markersize=1, markeredgecolor='blue')
 ax.set_xlabel(xlabel_proj[place])
 ax.set_ylabel(ylabel_proj[place])
 ax.set_xlim(-plot_lim, plot_lim)
 ax.set_ylim(-plot_lim, plot_lim)
 ax.xaxis.set_major_locator(MultipleLocator(tick_base_major))
 ax.xaxis.set_minor_locator(MultipleLocator(tick_base_minor))
 ax.yaxis.set_major_locator(MultipleLocator(tick_base_major))
 ax.yaxis.set_minor_locator(MultipleLocator(tick_base_minor))
 return fig

def draw_density_projection(fig, place, plot_lim, x, y):
 limits = [[-plot_lim, plot_lim], [-plot_lim, plot_lim]]
 ax = plt.subplot(2,3,place+1, aspect='equal')
 #im = ax.plot(x, y, linestyle='-', marker='.', markersize=1, markeredgelcolor='blue')
 ax.set_xlim(r[0] - (r[1]-r[0]), r[-1] + (r[-1]-r[-2]))
 ax.set_xlabel(xlabel_prof)
 #ax.set_xlim(r_bins[0], r_bins[-1])
 #ax.set_xlim(-plot_lim, plot_lim)
 #ax.set_ylim(-plot_lim, plot_lim)
 #im = ax.plot(x, y, linestyle='-', marker='.', markersize=1, markeredgelcolor='blue')
 z, xedges, yedges = np.histogram2d(x, y, bins=npixels, range=limits)
 #z = np.log10(z)
 #im = ax.imshow(z.T, extent=(-plot_lim, plot_lim, -plot_lim, plot_lim), interpolation='gaussian', origin='lower')
 ax.set_xlim(-plot_lim, plot_lim)
 ax.set_ylim(-plot_lim, plot_lim)
 ax.set_xlabel(xlabel_proj[place])
 ax.set_ylabel(ylabel_proj[place])
 # ax.xaxis.set_major_locator(MultipleLocator(tick_base_major))
 # ax.xaxis.set_minor_locator(MultipleLocator(tick_base_minor))
 # ax.yaxis.set_major_locator(MultipleLocator(tick_base_major))
 # ax.yaxis.set_minor_locator(MultipleLocator(tick_base_minor))
 return fig

def draw_density_profile(fig, r, rho, err=None):
 ax = plt.subplot(2,1,2)
 ax.set_xlim(r[0] - (r[1]-r[0]), r[-1] + (r[-1]-r[-2]))
 ax.set_xlabel('radius [kpc]')
 ax.set_ylabel('density [M_\odot/kpc^3]')
 #ax.set_xlim(-plot_lim, plot_lim)
 #ax.set_ylim(-plot_lim, plot_lim)
 #im = ax.plot(x, y, linestyle='-', marker='.', markersize=1, markeredgelcolor='blue')
 #ax.set_xlim(r_bins[0], r_bins[-1])
 # ax.set_xlim(-plot_lim, plot_lim)
 #ax.set_ylim(-plot_lim, plot_lim)
 #ax.set_xlabel(xlabel_prof)
 #ax.set_xlim(r_bins[0], r_bins[-1])
 #ax.set_xlim(-plot_lim, plot_lim)
 #ax.set_ylim(-plot_lim, plot_lim)
 #im = ax.plot(x, y, linestyle='-', marker='.', markersize=1, markeredgelcolor='blue')
 ax.imshow(x, y, bins=npixels, range=limits)
 ax.set_xlabel(xlabel_prof)
 ax.set_ylabel(ylabel_prof)
 ax.set_xlim(r[0] - (r[1]-r[0]), r[-1] + (r[-1]-r[-2]))
 ax.set_xlabel('radius [kpc]')
 ax.set_ylabel('density [M_\odot/kpc^3]')
 ax.set_xlim(-plot_lim, plot_lim)
 ax.set_ylim(-plot_lim, plot_lim)
 ax.set_xlabel(xlabel_prof)
 ax.set_ylabel(ylabel_prof)
 ax.set_xlim(r_bins[0], r_bins[-1])
 #ax.set_xlim(-plot_lim, plot_lim)
 #ax.set_ylim(-plot_lim, plot_lim)
 #im = ax.plot(x, y, linestyle='-', marker='.', markersize=1, markeredgelcolor='blue')
 #ax.set_xlim(r_bins[0], r_bins[-1])
 #ax.set_xlim(-plot_lim, plot_lim)
 #ax.set_ylim(-plot_lim, plot_lim)
 #im = ax.plot(x, y, linestyle='-', marker='.', markersize=1, markeredgelcolor='blue')
 #ax.set_xlim(r_bins[0], r_bins[-1])
 #ax.set_xlim(-plot_lim, plot_lim)
 #ax.set_ylim(-plot_lim, plot_lim)
 #im = ax.plot(x, y, linestyle='-', marker='.', markersize=1, markeredgelcolor='blue')
 #ax.set_xlim(r_bins[0], r_bins[-1])
 #ax.set_xlim(-plot_lim, plot_lim)
 #ax.set_ylim(-plot_lim, plot_lim)
 #im = ax.plot(x, y, linestyle='-', marker='.', markersize=1, markeredgelcolor='blue')
 #ax.set_xlim(r_bins[0], r_bins[-1])
 #ax.set_xlim(-plot_con, plot_con)
 #ax.set_ylim(-plot_con, plot_con)
 #im = ax.plot(x, y, linestyle='-', marker='.', markersize=1, markeredgelcolor='blue')
 #ax.set_xlim(r_bins[0], r_bins[-1])
 #ax.set_xlim(-plot_con, plot_con)
 #ax.set_ylim(-plot_con, plot_con)
 return
ax.set_ylabel(ylabel_prof)
if err != None:
 err_bars = ax.errorbar(r, rho, yerr=err, linestyle='None')
return fig, ax

def draw_nfw_profile(fig, ax, r, rho, R_s=None):
 ax.loglog(r, rho, linestyle='-', color='red')
 if R_s != None:
 line = ax.axvline(R_s, color='purple', linestyle='-.')
 return fig

def calc_kinetic_energy(mass, vel):
 vsq = vel[:,0]**2 + vel[:,1]**2 + vel[:,2]**2
 energy = 0.5 * np.sum(mass*vsq)
 return energy

def calc_potential_energy(mass, pos):
 local_sqrt = np.sqrt
 partial_sum = 0.0
 for i in range(len(mass)):
 for j in range(len(mass)):
 if j != i:
 r_diff = local_sqrt((pos[i,0] - pos[j,0])**2 + (pos[i,1] - pos[j,1])**2 + (pos[i,2] - pos[j,2])**2)
 partial_sum = partial_sum - mass[i]*mass[j]/r_diff
 energy = partial_sum * grav_const / 2.0
 return energy

def calc_angular_momentum(mass, pos, vel):
 ang_mom_x = np.sum(mass * (pos[:,1] * vel[:,2] - pos[:,2] * vel[:,1]))
 ang_mom_y = np.sum(mass * (pos[:,2] * vel[:,0] - pos[:,0] * vel[:,2]))
 ang_mom_z = np.sum(mass * (pos[:,1] * vel[:,2] - pos[:,2] * vel[:,1]))
 ang_mom = np.sqrt(ang_mom_x**2 + ang_mom_y**2 + ang_mom_z**2)
 return ang_mom

def main():
 with open(outfile, 'w') as fd:
 #fd.write('#halo_mass concentration R_vir R_s +- err rho_0 +- err alpha +- err chi_square
 #halo_id␣␣␣␣␣␣␣␣halo_mass␣␣␣␣␣␣␣␣␣␣␣x_pos␣␣␣␣␣␣␣␣␣␣␣y_pos␣␣␣␣␣␣␣␣␣␣␣z_pos␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣c␣+-␣␣␣␣␣␣␣
 #err␣␣␣␣␣␣␣␣␣␣␣R_vir␣␣␣␣␣␣␣␣␣␣␣␣␣R_s␣+-␣␣␣␣␣␣␣␣␣␣␣rho_0␣+-␣␣␣␣␣␣␣␣␣␣␣␣err␣␣␣␣␣␣chi_ square
 #nbins␣␣␣␣N_part
 #with open(comfile, 'w') as fd:
 #fd.write('#id mass dx dy dz
 # if use_bgc2 == True:
 #header, halos, particles = bgc2.read_bgc2(sys.argv[1])
 #for i in range(len(halos)):
 #if halos[i][halo_id_col] == halo_id:
 #index = i
 #halo_particles = np.asarray(particles[index])
 #pos = halo_particles[:,pos_cols[0]:pos_cols[0]+3] * dist_scale
 #r_vir = halos[i][4] * dist_scale
 # else:
 #data = read_files(sys.argv[1])
 #Select particles with a given halo ID and convert positions from Mpc to kpc
 #if use_all == False:
 #particles = data[np.where(data[:,halo_id_col] == halo_id)]
 #if use_all == True:
 #particles = [data]
 #del data
 #pos = halo_particles[:,pos_cols[0]:pos_cols[0]+3] * dist_scale
 #r_vir = 241.48
 #if ((len(particles[index]) >= 100) and (halos[index][1] == -1)):
halo_particles = np.asarray(particles[index])
pos = halo_particles[:,pos_cols[0]:pos_cols[0]+3] * dist_scale
vel = halo_particles[:,vel_cols[0]:vel_cols[0]+3] * dist_scale
if use_bgc2 == True:
 halo_id = halos[index][0]
r_vir = halos[index][4] * dist_scale
halo_mass = halos[index][5]
halo_pos = np.array([halos[index][6] * dist_scale, halos[index][7] * dist_scale, halos[index][8] * dist_scale])
halo_vel = np.array([halos[index][9], halos[index][10], halos[index][11]])
else:
 r_vir = 241.48
 halo_id = 0
 #halo_mass = mass[0] * len(halo_particles)
 halo_pos = np.array([0.0, 0.0, 0.0])
 halo_vel = np.array([0.0, 0.0, 0.0])
if individual_masses == True:
mass = halo_particles[:,mass_col] * mass_scale
else:
mass = np.ones(halo_particles.shape[0]) * common_mass * mass_scale
if use_bgc2 == False:
 halo_mass = mass[0] * len(halo_particles)
 #fix placement of this for ascii test
print 'Using %d particles in halo %d.' % (halo_particles.shape[0], halo_id)
Find center of mass
if find_com == True:
mass_tot = mass.sum()
m_pos = mass.reshape(mass.shape[0],1) * pos
com = m_pos.sum(axis=0) / mass_tot
pos = pos - com
print 'Center of mass = (%g | %g | %g)' % (com[0], com[1], com[2])
else:
pos = pos - halo_pos
vel = vel - halo_vel
##with open(comfile, "a") as fd:
fd.write("%d %g %g %g %g
" % (halo_id, halo_mass, halo_pos[0] - com[0], halo_pos[1] - com[1], halo_pos[2] - com[2]))
 # Bin halo particles into logarithmic shells and compute density
r_bins, rho, rho_err = calc_density_profile(mass, pos)
if len(r_bins) < 5:
 print 'Too few bins. Skipping this halo.'
 with open(outfile, "a") as fd:
 fd.write("Too few bins... Skipping this halo.")
 # hist, r_bins = logbin(pos)
 # err = poisson_error(hist)
 # rho = mass * hist / (sphere_vol(r_bins[1:]) - sphere_vol(r_bins[:-1]))
 # rho_err = abs(rho - rho[0]) * np.log10(r_bins < res_limit)
 # print "n_bins: %d" % len(mid_bins)
 # Don't pass NaN's to fitting routine
 rho_err_nonan = np.copy(rho_err)
 nan_check = np.isnan(rho_err_nonan)
 for i in range(len(rho_err_nonan)):
 if (nan_check[i] == True):
 # rho[i] = 0.0e-10
 if (mid_bins[i] < res_limit) or (nan_check[i] == True):
 rho_err_nonan[i] = 0.0e10
 # r_c, n_enclosed = calc_n_enclosed(mass, pos)
 # Fit an NFW profile to the data
 try:
 nfw_r, nfw_fit, popt, pcov, chisq = fit_profile(mid_bins / r_vir, rho / rho.max(),
 err = rho_err_nonan / rho.max(), R_vir = 1.0)
 nfw_r = nfw_r * r_vir
 nfw_fit = nfw_fit * rho.max()
 scale_radius = popt[0] * r_vir
 scale_radius_err = pcov[0,0] * r_vir
 rho_0 = popt[1] * rho.max()
 rho_0_err = pcov[1,1] * rho.max()
 concentration = r_vir / scale_radius
 concentration_err = concentration * scale_radius_err / scale_radius
 # Print parameters
 # Fit an NFW profile to the data
 try:
 nfw_r, nfw_fit, popt, pcov, chisq = fit_profile(mid_bins / r_vir, rho / rho.max(),
 err = rho_err_nonan / rho.max(), R_vir = 1.0)
 nfw_r = nfw_r * r_vir
 nfw_fit = nfw_fit * rho.max()
 scale_radius = popt[0] * r_vir
 scale_radius_err = pcov[0,0] * r_vir
 rho_0 = popt[1] * rho.max()
 rho_0_err = pcov[1,1] * rho.max()
 concentration = r_vir / scale_radius
 concentration_err = concentration * scale_radius_err / scale_radius
 # Print parameters
 print '--'
625 print 'r_vir=', r_vir
626 print 'rho_0=\pm\rho_0err' % (rho_0, rho_0_err)
627 print 'scale_radius=\pm scale_radiuserr' % (scale_radius, scale_radius_err)
628 print 'concentration=\pm concentrationerr' % (concentration, concentration_err)

put these back sometime##################################
kin_energy = calc_kinetic_energy(mass, vel)
pot_energy = calc_potential_energy(mass, pos)
ang_mom = calc_angular_momentum(mass, pos, vel)
#
635 ttow = 2.0 * abs(kin_energy / pot_energy)
636 lambda_spin = ang_mom * np.sqrt(abs(kin_energy + pot_energy)) / (grav_const * (np.sum(mass)**2.5))

641 lambda_spin = 0.0

645 if isinstance(pcov, float):
646 print 'inf covariance returned, skipping this halo...'
647 with open(outfile, 'a') as fd:
648 fd.write('%8d %16.12g %14.10g %14.10g %14.10g %14d %14d %14d %14d %14d
' % (halo_id, halo_mass, halo_pos[0], halo_pos[1], halo_pos[2], -9999, -9999, -9999, -9999, -9999))
649 continue

651 # Write parameters to file
652 with open(outfile, 'a') as fd:
653 fd.write('%g %g %g %g %14.10g %14.10g %14.10g %14.10g %14d
' % (halo_mass, concentration, r_vir, scale_radius, pcov[0,0], rho_0, pcov[1,1], alpha, pcov[2,2], chisq))
654 fd.write('%8d %16.12g %14.10g %14.10g %14.10g %14d %14d %14d %14d %14d
' % (halo_id, halo_mass, halo_pos[0], halo_pos[1], halo_pos[2], concentration, concentration_err, r_vir, scale_radius, scale_radius_err, rho_0, rho_0_err, chisq, len(r_bins), len(halo_particles)))

Plot density profile histograms
if (make_plot == True) and (iteration < 10):
 # Find the maximum of x, y, or z to be limit of projection plots
 plot_lim = pos.max()
 # Pick only a certain percentage of particles for projection plots
 if draw_frac < 1.0:
 np.random.shuffle(pos)
 pos = pos[:,(draw_frac*pos.shape[0])]
 else:
 fig = plt.figure()
 if draw_density == True:
 fig = draw_density_projection(fig, 0, plot_lim, pos[:,0], pos[:,1])
 fig = draw_density_projection(fig, 1, plot_lim, pos[:,0], pos[:,2])
 fig = draw_density_projection(fig, 2, plot_lim, pos[:,1], pos[:,2])
 else:
 fig = draw_projection(fig, 0, plot_lim, pos[:,0], pos[:,1])
 fig = draw_projection(fig, 1, plot_lim, pos[:,0], pos[:,2])
 fig = draw_projection(fig, 2, plot_lim, pos[:,1], pos[:,2])
 fig, ax = draw_density_profile(fig, mid_bins, rho, err=rho_err) # put this back for binning
 fig = draw_nfw_profile(fig, ax, nfw_r, nfw_fit, R_s=scale_radius) # take this out for binning
 fig.tight_layout()
 plt.savefig(plot_base+str(iteration)+plot_ext)

sys.exit()
Appendix E

CrossMatch Best Match Code

E.1 Best Match (Python)

```python
#!/usr/bin/env python

import sys
import getopt
import numpy as np

def main():
    # read in files
    print 'reading files...
    with open(sys.argv[1]) as f:
        matches1 = f.readlines()
    with open(sys.argv[2]) as f:
        matches2 = f.readlines()
    print 'done reading files

    header = matches1[2:6]
    header.insert(0, '#Best matches for bi-directional crossmatch
    header.insert(1, '#

    matches1 = matches1[7:]
    matches2 = matches2[7:]

    # convert to numpy arrays
    print 'converting to numpy arrays...'
    match_array1 = np.asarray([line.split() for line in matches1], dtype=int)
    match_array2 = np.asarray([line.split() for line in matches2], dtype=int)
    print 'done converting

    # find matches that exist in both lists
    print 'finding matches...'
    mask = np.zeros(len(match_array1), dtype=bool)
    for i, line in enumerate(match_array1):
        id1 = line[id1_col]
        id2 = line[id2_col]
        tmp = (match_array2[:,id1_col] == id2)
        tmp = (match_array2[tmp,id2_col] == id1)
        mask[i] = tmp.any()
        if i % 1000 == 0:
            print 'Finished line:', i

    print 'done matching'
    out_array = match_array1[mask]

    # write results
    print 'writing results...'
    with open(sys.argv[3], 'w') as f:
        f.writelines(('%s' % line for line in header))
        np.savetxt(f, out_array, fmt='%10d')

    print 'Finished.'

id1_col = 4
npart1_col = 5
id2_col = 1
npart2_col = 2
ncommon_col = 6
hnum1_col = 3
hnum2_col = 0

if __name__ == '__main__':
    main()
```

E.2 PBS Submission Script (Bash)

```bash
#!/usr/bin/env bash

#PBS -M djsissom@gmail.com
#PBS -m bae
#PBS -l nodes=27:ppn=1
#PBS -l pmem=20000mb
#PBS -l mem=54000mb
#PBS -l walltime=0:30:00
#PBS -o out.log
#PBS -j oe

#nodes=186:ppn=1
```

143
pmem=20000mb
mem=372000mb
minsnap=53
maxsnap=61
minbox=1
maxbox=3

Change to working directory
echo $PBS_NODEFILE
cd $PBS_O_WORKDIR

for ((i=$minbox; i<=$maxbox; i++)); do
 for ((snap=$minsnap; snap<=$maxsnap; snap++)); do
 if [$snap -lt 10]; then
 j=00$snap
 elif [$snap -lt 100]; then
 j=0$snap
 fi
 base_dir=~/projects/simulations/rockstar/box${i}
crossmatch_dir=${base_dir}/crossmatch/snap${j}
first_file=${crossmatch_dir}/crossmatch_2lpt_first_000.txt
second_file=${crossmatch_dir}/crossmatch_zs_first_000.txt
outfile=${crossmatch_dir}/crossmatch_000.txt
logfile=${crossmatch_dir}/best_crossmatch.log

echo "Starting box${i}_snap${j}..."
{
 mpiexec -verbose -n 1 ./best_crossmatch.py ${first_file} ${second_file} ${outfile} > ${logfile} 2>&1
 echo "Finished box${i}_snap${j}"}

wait

- end of script
Appendix F

Database Generation Code

F.1 Halo Match (Python)

```python
#!/usr/bin/env python

import sys
import getopt
import numpy as np

def main():
    # read and parse command line arguments
    opts, args = getopt.getopt(sys.argv[1:],)
    output_file, match_file, densprof_files, parents_files, ascii_files = parse_args(opts, args)

    # read in headers as lists and data as numpy arrays
    match_header, match_data = read_files(match_file, header_line = 3)
    densprof_header1, densprof_data1 = read_files(densprof_files[0], header_line = 0)
    densprof_header2, densprof_data2 = read_files(densprof_files[1], header_line = 0)
    parents_header1, parents_data1 = read_files(parents_files[0], header_line = 0)
    parents_header2, parents_data2 = read_files(parents_files[1], header_line = 0)
    ascii_header1, ascii_data1 = read_files(ascii_files[:len(ascii_files)/2], header_line = 0)
    ascii_header2, ascii_data2 = read_files(ascii_files[len(ascii_files)/2:], header_line = 0)
    print 'Finished reading files.'

    # filter matches, remove duplicate halo matches, and reorder match columns
    print 'Filtering match data...'
    match_data = filter_matches(match_data)
    if filter_duplicate_matches:
        match_data = filter_dups(match_data, unique_col = match_id1_col)
        match_data = filter_dups(match_data, unique_col = match_id2_col)
    if reorder_match_columns:
        match_header, match_data = reorder_match_cols(match_header, match_data)

    # calculate number of subhalos and add column to parents data and headers
    print 'Finding number of subhalos...'
    parents_header1.append('N_subs')
    parents_header2.append('N_subs')
    parents_data1 = count_subs(parents_data1)
    parents_data2 = count_subs(parents_data2)

    # create header
    print 'Making header...'
    header = make_header(match_header, densprof_header1, densprof_header2, 
                         parents_header1, parents_header2, ascii_header1, ascii_header2)

    # match halos
    print 'Matching halos...'
    halos = match_halos(match_data, [densprof_data1, densprof_data2, 
                                     parents_data1, parents_data2, ascii_data1, ascii_data2])

    # output matched table
    print 'Writing results...'
    write_results(output_file, header, halos)
    print 'Finished.'

    def get_args(arglist):
        try:
            opts, args = getopt.gnu_getopt(arglist, shortopts, longopts)
        except getopt.GetoptError:
            print "Invalid option(s)."
            print help_string
            sys.exit(2)
        if opts == []:
            print "No options given."
            print help_string
            sys.exit(2)
        return opts, args

    def parse_args(opts, args):
        densprof_files = None
```

145
for opt in opts:
 if (opt[0] == '-h') or (opt[0] == '--help') or (opts == None):
 print help_string
 sys.exit(0)
 if (opt[0] == '-o') or (opt[0] == '--outfile'):
 outfile = opt[1]
 if (opt[0] == '-m') or (opt[0] == '--match'):
 matchfile = opt[1]
 if (opt[0] == '-d') or (opt[0] == '--density'):
 densproffiles = create_append(densproffiles, opt[1])
 if (opt[0] == '-p') or (opt[0] == '--parents'):
 parentsfiles = create_append(parentsfiles, opt[1])
 if (opt[0] == '-a'):
 use_ascii = True
 if use_ascii:
 if len(args) % 2 != 0:
 print 'Must have an even number of ascii files!
 sys.exit(3)
 for arg in args:
 asciifiles = create_append(asciifiles, arg)
 return outfile, matchfile, densproffiles, parentsfiles, asciifiles

def create_append(lst, value):
 if lst == None:
 lst = [value]
 else:
 lst.append(value)
 return lst

def read_files(files, header_line = None, comment_char = '#'):
 header = None
 data = None
 if type(files) == str:
 files = [files]
 if header_line != None:
 with open(files[0], 'r') as fd:
 for line in range(header_line):
 fd.readline()
 header = fd.readline()
 if header[0] != comment_char:
 print 'Header must start with a %s' % comment_char
 sys.exit(4)
 header = header[1:]
 header = header.split()
 for file in files:
 print 'Reading file %s...' % (file)
 if data == None:
 data = np.genfromtxt(file, comments='#')
 else:
 data = np.append(data, np.genfromtxt(file, comments='#'), axis=0)
 if header_line == None:
 return data
 else:
 return header, data

def filter_matches(halos):
 if filter_bad_matches:
 halos = halos[halos[:, match_id1_col] != -1]
 halos = halos[halos[:, match_id2_col] != -1]
 if (min_npart != 0) and (min_npart != None):
 halos = halos[halos[:, match_npart1_col] >= min_npart]
 halos = halos[halos[:, match_npart2_col] >= min_npart]
 if (minperc_ncommon != 0) and (minperc_ncommon != None):
 halos = halos[halos[:, match_ncommon_col] / halos[:, match_npart1_col] >= minperc_ncommon]
 halos = halos[halos[:, match_ncommon_col] / halos[:, match_npart2_col] >= minperc_ncommon]
 return halos

def filter_dups(halos, unique_col = 0):
 ncommon = halos[:, match_ncommon_col]
 n1 = halos[:, match_npart1_col]
 n2 = halos[:, match_npart2_col]
 rank = ncommon**2 / (n1 * n2) - np.abs(n1 - n2) / (n1 + n2)
 sort_mask = np.argsort(rank)
 halos = halos[sort_mask]
 unique, mask = np.unique(halos[:, unique_col], return_index=True)
 halos = halos[mask]
 return halos

def reorder_match_cols(match_header, match_data):

def reorder_match_cols(match_header, match_data):
order = [match_id1_col, match_id2_col,
 match_hnum1_col, match_hnum2_col,
 match_npart1_col, match_npart2_col,
 match_ncommon_col]

match_header = [match_header[index] for index in order]

match_data = match_data[:, order]

def count_subs(halos):
 id = halos[:, id_col]
 parents = halos[:, parents_col]
 parents = parents[parents != -1]
 nsubs = (id[:, np.newaxis] == parents).sum(axis = 1)
 halos = np.column_stack((halos, nsubs))
 return halos

def make_header(match, densprof1, densprof2, parents1, parents2, ascii1, ascii2):
 # first line just lists column number
 total_len = len(match + densprof1 + densprof2 + parents1 + parents2 + ascii1 + ascii2)
 header_line0 = ['str(i) for i in range(total_len)]
 match_repeat = len(match) - 4
 densprof_repeat = len(densprof1 + densprof2) - 4
 parents_repeat = len(parents1 + parents2) - 4
 ascii_repeat = len(ascii1 + ascii2) - 4

 match_part = ['|---', 'cross', 'match'] + ['----'] * match_repeat + ['---|']
 densprof_part = ['|---', 'density', 'profile'] + ['----'] * densprof_repeat + ['---|']
 parents_part = ['|---', 'rockstar', 'parents'] + ['----'] * parents_repeat + ['---|']
 ascii_part = ['|---', 'rockstar', 'ascii'] + ['----'] * ascii_repeat + ['---|']

 header_line1 = '|^'.join([match_part, densprof_part, parents_part, ascii_part])
 header_line1 = '# ' + header_line1

 # second line labels 2lpt and za columns
 header_line2 = ['2lpt' if i % 2 == 0 else 'za' if i % 2 == 1 else 'blah' for i in range(tot_len - 1)]
 header_line2.insert(len(match) - 1, 'matched')
 header_line2 = '|^'.join(header_line2)
 header_line2 = '# ' + header_line2

 # third line pulls labels from original file headers
 match_part = match
 densprof_part = interweave(densprof1, densprof2)
 parents_part = interweave(parents1, parents2)
 ascii_part = interweave(ascii1, ascii2)

 header_line3 = '|^'.join([match_part, densprof_part, parents_part, ascii_part])
 header_line3 = '# ' + header_line3

 return header

def interweave(list1, list2):
 newlist = list1 + list2
 newlist[::2] = list1
 newlist[1::2] = list2
 return newlist

def interweave_np_2d(array1, array2):
 newarray = np.empty((len(array1), len(array1[0]) + len(array2[0])))
 newarray[:,::2] = array1
 newarray[:,1::2] = array2
 return newarray

def match_halos(matches, arrays):
 return

147
halos = matches.copy()
for i, array in enumerate(arrays):
 if array != None:
 match_id_col = i % 2
 halos = sort_stack(halos, array, match_id_col)

interweave columns so that matching 2lpt/za columns are adjacent
tmp_halos = halos
halos = np.empty((len(tmp_halos), len(tmp_halos[0])))
halos[:, :len(matches[0])] = matches
startcol = len(matches[0])
for i in range(0, len(arrays), 2):
 colrange1 = len(arrays[i][0])
 colrange2 = len(arrays[i+1][0])
 endcol = startcol + colrange1 + colrange2
 cols1 = tmp_halos[:, startcol:startcol+colrange1]
 cols2 = tmp_halos[:, startcol+colrange1:startcol+colrange1+colrange2]
 halos[:, startcol:endcol] = interweave_np_2d(cols1, cols2)
startcol = endcol
return halos

def sort_stack(halos, array, match_id_col):
 # add empty columns to halos to later fill with halo data
 rows = len(halos)
 origcols = len(halos[0])
 newcols = len(array[0])
 empty = np.empty((rows, newcols))
 empty[:] = np.nan
 halos = np.column_stack((halos, empty))

 # remove halos from array with no matches
 match_id = halos[:, match_id_col]
 array_id = array[:, id_col]
 array_mask = np.in1d(array_id, match_id)
 array = array[array_mask]

 # create mask so we only add lines for halos in array
 array_id = array[:, id_col]
 halo_mask = np.in1d(match_id, array_id)
 masked_halos = halos[halo_mask]

 # sort array by halo id and copy to empty columns of view of halos
 array_id_sort_mask = np.argsort(array[:, id_col])
 sorted_masked_halos[:, origcols:] = array[array_id_sort_mask]

 # 'unmask' - put data back in original halos
 masked_halos[match_id_sort_mask] = sorted_masked_halos
 halos[halo_mask] = masked_halos

 return halos

def filter_halos(halos):
 # todo
 return halos

def write_results(output_file, header, halos):
 format = get_format(halos[0])
 with open(output_file, 'w') as fd:
 for line in header:
 fd.write(line + '
')
 np.savetxt(fd, halos, fmt=format)

 return format

help_string = '''
Available options are:
 -h, --help
 -v, --verbose
 -o <outfile>, --outfile <outfile>
 -m <matchlist>, --match <matchlist>
 -d <densityprofile_file>, --density <densityprofile_file>
 -p <parents_file>, --parents <parents_file>
 -a <ascii_files>, --ascii <ascii_files> (must be last)

shortopts = "hvo:m:d:p:a"
longopts = ("help", "verbose", "outfile", "matchfile", "density", "parents", "ascii")
lit_cols = []

148
lt_vals = []
gt_cols = []
gt_vals = []
eq_cols = []
eq_vals = []
ne_cols = []
ne_vals = []

int_cols = [0, 1, 2, 3, 4, 5, 6, 7, 8]
int_cols = []

match_id2_col = 1
match_npart2_col = 2
match_id1_col = 4
match_npart1_col = 5
match_ncommon_col = 6
match_hnum1_col = 3

id_col = 0 # col of each input file

filter_bad_matches = True
filter_duplicate_matches = False
reorder_match_columns = True
filter_halo_properties = False
min_npart = 20 # use 0 or None to use all size halos
minperc_ncommon = 0.05 # a fraction, use 0 or None to use any match percent

if __name__ == '__main__':
 main()

F.2 PBS Submission Script (Bash)

```
#!/usr/bin/env bash

#PBS -M djsissom@gmail.com
#PBS -m bae
#PBS -l nodes=1:ppn=1
#PBS -l pmem=40000mb
#PBS -l mem=4000mb
#PBS -l walltime=1:00:00
#PBS -o out.log
#PBS -j oe

minsnap=0
maxsnap=61
minbox=1
maxbox=3

# Change to working directory
for ((i=$minbox; i<=$maxbox; i++)); do
    for ((snap=$minsnap; snap<=$maxsnap; snap++)); do
        if [ $snap -lt 10 ]; then
            j=00$snap
        elif [ $snap -lt 100 ]; then
            j=0$snap
        fi

        base_dir=~/projects/simulations/rockstar/box${i}
crossmatch_dir=${base_dir}/crossmatch/snap${j}
snap_dir_2lpt=${base_dir}/2lpt/snap${j}
snap_dir_za=${base_dir}/za/snap${j}
logfile=${crossmatch_dir}/match_halos.log

        echo "Starting box${i} snap${j}..."
        ./match.py -o $(crossmatch_dir)/halos.dat 
        -m $(crossmatch_dir)/crossmatch_000.txt 
        -d $(snap_dir_2lpt)/halos/density_profile_halos.dat 
        -d $(snap_dir_2lpt)/halos/halos.dat 
        -p $(snap_dir_2lpt)/halos/out_0.list.parents 
        -p $(snap_dir_2lpt)/halos/halos_O.list.parents 
        -a 
        --number --match_type=Zel_eng --match_type=2lpt 
        $(snap_dir_2lpt)/halos/halos_0.*.ascii 
        $(snap_dir_2lpt)/halos/halos_0.*.ascii 
        $(logfile) 2>&1

        echo 'Aligning columns....' >> $(logfile) 2>&1
    done
done
```
column -t $(crossmatch_dir)/halos.dat > $(crossmatch_dir)/tmp156546.dat 2>> $(logfile)
mv $(crossmatch_dir)/tmp156546.dat $(crossmatch_dir)/halos.dat 2>> $(logfile)
echo "Finished box$(i) snap$(j)"
echo 'Finished.' >> $(logfile) 2>&1
#} &
done
done
wait
- end of script
Appendix G

Halo Comparison Code

G.1 Particle Comparison (Python)

```python
#!/usr/bin/env python
import sys
import bgc2
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
from matplotlib.ticker import MultipleLocator
from scipy.optimize import curve_fit
from scipy.stats import chisquare

#read_mode = 'ascii2'
read_mode = 'bgc2'
if read_mode == 'bgc2':
    use_bgc2 = True
    use_all = False
    multiple_halos = True
    individual_masses = False
    halo_id = 146289
    nbins = 50
    nfit = 500
    ooms = 3.0
    mass_scale = 1.0
    common_mass = 5.33423e5
    dist_scale = 1.0e3
    res_limit = 0.488
    draw_frac = 1.0
    tick_base_major = 10.0
    tick_base_minor = 1.0
elif read_mode == 'ascii':
    use_bgc2 = False
    use_all = True
    individual_masses = True
    halo_id = 0
    nbins = 100
    nfit = 500
    ooms = 5.0
    mass_scale = 1.0e2
    dist_scale = 2.0e-4
    res_limit = 2.0e-2
    draw_frac = 2.0
    tick_base_major = 80.0
    tick_base_minor = 20.0
elif read_mode == 'ascii2':
    use_bgc2 = False
    use_all = True
    individual_masses = True
    halo_id = 0
    nbins = 100
    nfit = 500
    ooms = 3.5
    mass_scale = 1.0e10
    dist_scale = 1.0
    res_limit = 3.0e-1
    draw_frac = 1.0e-2
    tick_base_major = 200.0
    tick_base_minor = 40.0
else:
    sys.exit(98712)

outfile = 'halo_properties.txt'
comfile = 'center_of_mass.txt'
```

151
make_plot = True
plot_base = 'density_profile.fig.'
dist_units = 'kpc'
xlabel_proj = [r'X Position (%s h$^{-1}$)' % (dist_units), r'X Position (%s h$^{-1}$)' % (dist_units), r'Y Position (%s h$^{-1}$)' % (dist_units)]
ylabel_proj = [r'Y Position (%s h$^{-1}$)' % (dist_units), r'Z Position (%s h$^{-1}$)' % (dist_units), r'Z Position (%s h$^{-1}$)' % (dist_units)]
xlabel_prof = r'Radius (%s h$^{-1}$)' % (dist_units)
ylabel_prof = r'Density (M$_\odot$ %s$^{-3}$ h2)' % (dist_units)

common_mass = 1.0e-7
common_mass = 1.0e5
mass_col = 0
pos_cols = (1,2,3)
vel_cols = (4,5,6)
halo_id_col = 0

grav_const = 4.3e-6 # kpc M_sol^-1 (km/s)^2

profile_type = 0 # 0 -> nfw, fit rho_0
1 -> nfw, calculate rho_0
2 -> nfw, rho_0 middle of leftmost bin above resolution
3 -> fit outer slope, fit rho_0
4 -> fit outer slope, calculate rho_0
5 -> fit outer slope, rho_0 middle of leftmost bin above resolution

def read_files(files):
 data = 0
 for file in files:
 print 'Reading file %s...' % (file)
 if data == 0:
 data = np.genfromtxt(file, comments='#')
 else:
 data = np.append(data, np.genfromtxt(file, comments='#'), axis=0)
 print 'Finished reading files.'
 return data

def calc_density_profile(mass, pos):
 r = np.sqrt(pos[:,0]**2 + pos[:,1]**2 + pos[:,2]**2)
 max_r = r.max()
 min_r = max_r / 10**ooms
 log_range = np.log10(max_r) - np.log10(min_r)
 #global nbins
 local_nbins = float(nbins + 1)
 while True:
 bins = np.arange(local_nbins)
 bins = max_r * 10.0**(log_range * bins / (local_nbins-1.0) - log_range)
 bin_mass, r_bins = np.histogram(r, bins, weights=mass)
 if (bin_mass == 0.0).any():
 local_nbins -= 1
 else:
 break
 global nbins = float(nbins + 1)
 bins = np.arange(nbins)
 bins = max_r * 10.0**(log_range * bins / (nbins-1.0) - log_range)
 bin_mass, r_bins = np.histogram(r, bins, weights=mass)
 if (bin_mass == 0.0).any():
 local_nbins -= 1
 continue
 else:
 break
 #print 'Binning particles using bin edges of [m', r_bins
 rho = bin_mass / (sphere_vol(r_bins[1:]) - sphere_vol(r_bins[:-1]))
 r_bins, blah = np.histogram(r, bins)
 rho_err = poisson_error(N_bin) * rho
 return r_bins, rho, rho_err

def sphere_vol(r):
 volume = (4.0 / 3.0) * np.pi * r**3

de logbin(pos):
 r = np.sqrt(pos[:,0]**2 + pos[:,1]**2 + pos[:,2]**2)
 max_r = r.max()
 min_r = max_r / 10**ooms
 log_range = np.log10(max_r) - np.log10(min_r)
 global nbins = float(nbins + 1)
 bins = np.arange(nbins)
 bins = max_r * 10.0**(log_range * bins / (nbins-1.0) - log_range)
 hist, bin_edges = np.histogram(r, bins, weights=mass)
 #print 'Binning particles using bin edges of [m', bin_edges
 return hist, bin_edges

def poisson_error(N):
 err = np.sqrt(N) / N
 return err
return volume

def get_rho_0(R_s, R_vir):
 H = 70.0e-3 # km s^-1 kpc^-1
 G = 4.3e-6 # kpc M_sol^-1 (km/s)^2
 rho_crit = 3.0 * H**2 / (8.0 * np.pi * G)
 v = 178
 c = R_vir / R_s
 g = 1.0 / (np.log(1.0+c) - c/(1.0+c))
 delta_char = v * c**3 * g / 3.0
 return rho_crit * delta_char

def nfw_fit_rho0(r, R_s, rho_0):
 return rho_0 / ((r / R_s) * (1.0 + r / R_s)**2)

def nfw_fit_rho0_log(r, R_s, rho_0):
 r = 10.0**r
 R_s = 10.0**R_s
 rho_0 = 10.0**rho_0
 profile = rho_0 / ((r / R_s) * (1.0 + r / R_s)**2)
 return np.log10(profile)

def nfw_def_rho0(R_vir):
 def _nfw_def_rho0(r, R_s):
 rho_0 = get_rho_0(R_s, R_vir)
 return rho_0 / ((r / R_s) * (1.0 + r / R_s)**2)
 return _nfw_def_rho0

def nfw_databin_rho0(rho_0):
 def _nfw_databin_rho0(r, R_s):
 return rho_0 / ((r / R_s) * (1.0 + r / R_s)**2)
 return _nfw_databin_rho0

def dm_profile_fit_rho0_log(r, R_s, rho_0, alpha):
 r = 10.0**r
 R_s = 10.0**R_s
 rho_0 = 10.0**rho_0
 alpha = 10.0**alpha
 profile = rho_0 / ((r / R_s) * (1.0 + r / R_s)**alpha)
 return np.log10(profile)

def dm_profile_def_rho0(R_vir):
 def _dm_profile_def_rho0(r, R_s, alpha):
 rho_0 = get_rho_0(R_s, R_vir)
 return rho_0 / ((r / R_s) * (1.0 + r / R_s)**alpha)
 return _dm_profile_def_rho0

def dm_profile_databin_rho0(rho_0):
 def _dm_profile_databin_rho0(r, R_s, alpha):
 return rho_0 / ((r / R_s) * (1.0 + r / R_s)**alpha)
 return _dm_profile_databin_rho0

def fit_profile(r, rho, err=None, R_vir=None):
 for i in range(len(r)):
 if r[i] > res_limit:
 rho_0_databin = rho[i]
 first_good_bin = i
 break
 #--------- choose one fitting type ---------#
 #popt, pcov = curve_fit(nfw_fit_rho0, r, rho, sigma=err)
 #popt, pcov = curve_fit(nfw_def_rho0(R_vir), r, rho, p0=[10.0], sigma=err)
 #popt, pcov = curve_fit(nfw_databin_rho0(rho_0_databin), r, rho, sigma=err)
 #popt, pcov = curve_fit(dm_profile_fit_rho0, r, rho, p0=[a, b, c], sigma=err)
 #popt, pcov = curve_fit(dm_profile_fit_rho0(rho_0, rho), r, rho, p0=[10.0], sigma=err)
 except RuntimeError:
 continue
 if (popt[0] < r.max()) and (popt[2] >= 0.0):
 break
 else:
 print 'no good fit found for this halo...

 return None, None, None, None, None
elif blah == 1:
 #a = r.max() / 100.0
 a = 0.001
 b = rho[first_good_bin]
 c = 0.001
 #popt, pcov = curve_fit(dm_profile_fit_rho0, r, rho, sigma=err)
 print '-------------------------------------'
 print 'rho_0 before =', b
 #try:
 # popt, pcov = curve_fit(dm_profile_fit_rho0, r, rho, p0=[a,b,c], sigma=err, maxfev=1, xtol=1.0e-1)
 #except RuntimeWarning:
 # print 'just checking for now...
 print 'rho_0 after =', popt[1]
 #sys.exit()
elif blah == 2:
 #popt, pcov = curve_fit(dm_profile_fit_rho0_log, np.log10(r), np.log10(rho), sigma=np.log10(err))
 popt, pcov = curve_fit(nfw_fit_rho0_log, np.log10(r), np.log10(rho), sigma=np.log10(err))
 popt = 10.0**popt
 pcov = 10.0**pcov
elif blah == 3:
 popt, pcov = curve_fit(nfw_fit_rho0, r, rho, sigma=err)
 #popt, pcov = curve_fit(dm_profile_def_rho0(R_vir), r, rho, sigma=err)
 #popt, pcov = curve_fit(dm_profile_databin_rho0(rho_0_databin), r, rho, sigma=err)
 #---#
 print 'fit_params =', popt
 print 'covariance =', pcov
 nfw_r = np.linspace(r[0], r[-1], nfit)
 #--------- choose one fitting type ---------#
 nfw_fit = nfw_fit_rho0(nfw_r, popt[0], popt[1])
 #nfw_fit = nfw_def_rho0(R_vir)(nfw_r, popt[0])
 #nfw_fit = nfw_databin_rho0(rho_0_databin)(nfw_r, popt[0])
 #nfw_fit = dm_profile_fit_rho0(nfw_r, popt[0], popt[1], popt[2])
 #nfw_fit = dm_profile_def_rho0(R_vir)(nfw_r, popt[0], popt[1])
 #nfw_fit = dm_profile_databin_rho0(rho_0_databin)(nfw_r, popt[0], popt[1])
 #---#
 #--------- choose one fitting type ---------#
 chi2_fit = nfw_fit_rho0(r, popt[0], popt[1])
 #chi2_fit = nfw_def_rho0(R_vir)(r, popt[0])
 #chi2_fit = nfw_databin_rho0(rho_0_databin)(r, popt[0])
 #chi2_fit = dm_profile_fit_rho0(r, popt[0], popt[1], popt[2])
 #chi2_fit = dm_profile_def_rho0(R_vir)(r, popt[0], popt[1])
 #chi2_fit = dm_profile_databin_rho0(rho_0_databin)(r, popt[0], popt[1])
 #---#
 chi2 = chisquare(np.log10(rho[first_good_bin:]), np.log10(chi2_fit[first_good_bin:]))
 chi2_nolog = chisquare(rho[first_good_bin:], chi2_fit[first_good_bin:]
 print 'chi_square =', chi2
 print 'chi_square_nolog =', chi2_nolog
 return nfw_r, nfw_fit, popt, pcov, chi2[0]

def draw_projection(fig, place, plot_lim, x, y):
 ax = plt.subplot(1,3,place+1, aspect='equal')
 im = ax.plot(x, y, linestyle='', marker='.', markersize=1, markeredgecolor='blue')
 ax.set_xlabel(xlabel_proj[place])
 ax.set_ylabel(ylabel_proj[place])
 ax.set_xlim(-plot_lim, plot_lim)
 ax.set_ylim(-plot_lim, plot_lim)
 return fig, ax

def draw_projection_again(fig, ax, x, y):
 im = ax.plot(x, y, linestyle='', marker='.', markersize=1, markeredgecolor='red')
 return fig

def draw_density_profile(fig, r, rho, err=None):
 ax = plt.subplot(2,1,2)
 im = ax.plot(x, y, linestyle='steps-mid-', color='red')
 ax.set_xlabel(xlabel_prof)
 ax.set_ylabel(ylabel_prof)
 if err != None:
 err_bars = ax.errorbar(r, rho, yerr=err, linestyle='None')
 return fig, ax
 return fig

def draw_nfw_profile(fig, ax, r, rho, R_s=None):
 ax.loglog(r, rho, linestyle='-', color='red')
 if R_s != None:
 line = ax.axvline(R_s, color='purple', linestyle='-.')
 return fig

def draw_nfw_profile(fig, ax, r, rho, R_s=None):
 ax.loglog(r, rho, linestyle='-', color='red')
 if R_s != None:
 line = ax.axvline(R_s, color='purple', linestyle='-.')
 return fig
def calc_kinetic_energy(mass, vel):
 vsq = vel[:,0]**2 + vel[:,1]**2 + vel[:,2]**2
 energy = 0.5 * np.sum(mass*vsq)
 return energy

def calc_potential_energy(mass, pos):
 for i in range(len(mass)):
 for j in range(i):
 r_diff = np.sqrt((pos[i,0] - pos[j,0])**2 + (pos[i,1] - pos[j,1])**2 + (pos[i,2] - pos[j,2])**2)
 partial_sum = partial_sum - mass[i]*mass[j]/r_diff
 energy = partial_sum * grav_const / 2.0
 return energy

def calc_angular_momentum(mass, pos, vel):
 ang_mom_x = np.sum(mass * (pos[:,1] * vel[:,2] - pos[:,2] * vel[:,1]))
 ang_mom_y = np.sum(mass * (pos[:,2] * vel[:,0] - pos[:,0] * vel[:,2]))
 ang_mom_z = np.sum(mass * (pos[:,1] * vel[:,2] - pos[:,2] * vel[:,1]))
 ang_mom = np.sqrt(ang_mom_x**2 + ang_mom_y**2 + ang_mom_z**2)
 return ang_mom

def main():
 #for input_file in sys.argv[1:]:
 #header1, halos1, particles1 = bgc2.read_bgc2(sys.argv[1])
 #header2, halos2, particles2 = bgc2.read_bgc2(sys.argv[2])
 nargs = len(sys.argv) - 1
 if (float(nargs) % 2.0) != 0.0:
 print('number of arguments must be even')
 sys.exit()

 for i in range(nargs / 2):
 temp_header1, temp_halos1, temp_particles1 = bgc2.read_bgc2(sys.argv[i])
 temp_header2, temp_halos2, temp_particles2 = bgc2.read_bgc2(sys.argv[(nargs / 2) + i])
 if i == 1:
 halos1 = np.append(halos1, temp_halos1, axis=0)
 particles1 = np.append(particles1, temp_particles1, axis=0)
 else:
 halos1 = np.append(halos1, temp_halos1, axis=0)
 particles1 = np.append(particles1, temp_particles1, axis=0)
 halos2 = np.append(halos2, temp_halos2, axis=0)
 particles2 = np.append(particles2, temp_particles2, axis=0)
 halos1 = np.asarray(halos1)
 halos2 = np.asarray(halos2)
 #indices = np.argsort(halos[:,2]) # sort by number of particles
 #indices = indices[::-1] # start with the biggest

 iteration = 0
 for index in indices[:1000]:
 print 'Using %d particles in halo %d.' % (halo_particles1.shape[0], halo_id)
 # Find center of mass
 #pos = pos - halo_pos
 #vel1 = vel - halo_vel
 # Pick only a certain percentage of particles for projection plots
 if (draw_frac < 1.0):
 np.random.shuffle(pos1)
 pos1 = pos1[:int(draw_frac*pos1.shape[0])]
 for index in range(halos2.shape[0]):
 halo_id = halos2[index,0]
 if (halo_id == id2):
 print 'Using %d particles, %s.' % (halo_particles2.shape[0], halo_id)
446 r_vir2 = halos2[4] * dist_scale
447 halo_mass2 = halos2[5]
448 halo_pos2 = np.array([halos2[6] * dist_scale, halos2[7] * dist_scale, halos2[8] * dist_scale])
449 #halo_vel2 = np.array([halos2[9], halos2[10], halos2[11]])
450 print 'Using %d particles in halo %d.' % (halo_particles2.shape[0], halo_id)
451
452 # Find center of mass
453 #pos = pos - halo_pos
454 #vel = vel - halo_vel
455
456 # Pick only a certain percentage of particles for projection plots
457 if (draw_frac < 1.0):
458 np.random.shuffle(pos2)
459 pos2 = pos2[:int(draw_frac * pos2.shape[0])]
460
461 # Find the maximum of x, y, or z to be limit of projection plots
462 center = (halo_pos1 + halo_pos2) / 2.0
463 pos1 = pos1 - center
464 pos2 = pos2 - center
465 halo_pos1 = halo_pos1 - center
466 halo_pos2 = halo_pos2 - center
467 plot_lim = np.append(pos1, pos2).max()
468
469 # Plot density profile histogram
470 if (make_plot == True):
471 fig = plt.figure()
472 fig, ax = draw_projection(fig, 0, plot_lim, pos1[:,0], pos1[:,1])
473 fig = draw_projection_again(fig, ax, pos2[:,0], pos2[:,1])
474 ax.add_patch(Circle((halo_pos1[0], halo_pos1[1]), r_vir1, fc="None", ec="black", lw=1))
475 ax.add_patch(Circle((halo_pos2[0], halo_pos2[1]), r_vir2, fc="None", ec="black", lw=1))
476
477 fig, ax = draw_projection(fig, 1, plot_lim, pos1[:,0], pos1[:,2])
478 fig = draw_projection_again(fig, ax, pos2[:,0], pos2[:,2])
479 ax.add_patch(Circle((halo_pos1[0], halo_pos1[2]), r_vir1, fc="None", ec="black", lw=1))
480 ax.add_patch(Circle((halo_pos2[0], halo_pos2[2]), r_vir2, fc="None", ec="black", lw=1))
481
482 fig, ax = draw_projection(fig, 2, plot_lim, pos1[:,1], pos1[:,2])
483 fig = draw_projection_again(fig, ax, pos2[:,1], pos2[:,2])
484 ax.add_patch(Circle((halo_pos1[1], halo_pos1[2]), r_vir1, fc="None", ec="black", lw=1))
485 ax.add_patch(Circle((halo_pos2[1], halo_pos2[2]), r_vir2, fc="None", ec="black", lw=1))
486
487 #fig, ax = draw_density_profile(fig, mid_bins, rho, err=rho_err)
488 #fig = draw_nfw_profile(fig, ax, nfw_r, nfw_fit, R_s=scale_radius)
489 fig.tight_layout()
490 plt.savefig(plot_base+"%d.png"%iteration)
491
492 if __name__ == '__main__':
493 main()
halos = remove_nans(halos)
if global_filter_halos:
 halos = filter_halos(halos)
if (nhalos != None) or (nhalos != 0):
 Halos = halos[:nhalos]
 halos = halos[[0, 70]]
 halos = halos[[0, 0000:10050]]
header, halos = add_c_columns(header, halos)
header = reduce_header(header)
for i, halo_pair in enumerate(halos):
 make_plot(i, header, halo_pair, bgc2_2lpt_halos, bgc2_2a_halos,
 bgc2_2lpt_particles, bgc2_za_particles)
print 'Finished all plots.'
def filter_halos(halos):
 print "Filtering data..."
 for col, val in zip(lt_cols, lt_vals):
 halos = halos[halos[:, col] <= val]
 for col, val in zip(gt_cols, gt_vals):
 halos = halos[halos[:, col] >= val]
 for col, val in zip(eq_cols, eq_vals):
 halos = halos[halos[:, col] == val]
 for col, val in zip(ne_cols, ne_vals):
 halos = halos[halos[:, col] != val]
 return halos

def add_c_columns(header, halos):
 c1_rockstar = halos[:, Rv1_col] / halos[:, Rs1_col]
 c2_rockstar = halos[:, Rv2_col] / halos[:, Rs2_col]
 halos = np.column_stack((halos, c1_rockstar, c2_rockstar))
 header = np.append(header, 'c_rockstar')
 header = np.append(header, 'c_rockstar')
 return header, halos

def reduce_header(header):
 header_2lpt = header[print_cols_2lpt]
 header_za = header[print_cols_za]
 if (header_2lpt == header_za).all():
 header = header_2lpt
 else:
 print 'column mismatch... exiting'
 set_trace()
 sys.exit(123)
 return header

def make_plot(itteration, header, halo_pair, bgc2_halos_2lpt, bgc2_halos_za,
bgc2_particles_2lpt, bgc2_particles_za):
 id_2lpt = halo_pair[id_col_2lpt]
 id_za = halo_pair[id_col_za]
 properties_2lpt = halo_pair[print_cols_2lpt]
 properties_za = halo_pair[print_cols_za]

 # find 2lpt and za halo from id
 halo_index_2lpt = np.where(bgc2_halos_2lpt[:, halo_id_col] == id_2lpt)[0][0]
 halo_index_za = np.where(bgc2_halos_za[:, halo_id_col] == id_za)[0][0]
 bgc2_halos_2lpt = bgc2_halos_2lpt[halo_index_2lpt]
 bgc2_halos_za = bgc2_halos_za[halo_index_za]

 # convert particles to numpy arrays
 bgc2_particles_2lpt = np.asarray(bgc2_particles_2lpt[halo_index_2lpt])
 bgc2_particles_za = np.asarray(bgc2_particles_za[halo_index_za])

 # make density profiles
 r_2lpt, rho_2lpt, rho_err_2lpt, r_vir_2lpt = density_profile(bgc2_halos_2lpt, bgc2_particles_2lpt)
 r_za, rho_za, rho_err_za, r_vir_za = density_profile(bgc2_halos_za, bgc2_particles_za)

 # fit density profiles
 nfw_r_2lpt, nfw_rho_2lpt, r_s_2lpt = fit_profile(r_2lpt / r_vir_2lpt, rho_2lpt / rho_2lpt.max(), err = rho_err_2lpt / rho_2lpt.max())
 nfw_r_za, nfw_rho_za, r_s_za = fit_profile(r_za / r_vir_za, rho_za / rho_za.max(), err = rho_err_za / rho_za.max())

 # de-normalize values
 nfw_r_2lpt = nfw_r_2lpt * r_vir_2lpt
 nfw_r_za = nfw_r_za * r_vir_za
 nfw_rho_2lpt = nfw_rho_2lpt * rho_2lpt.max()
 nfw_rho_za = nfw_rho_za * rho_za.max()
 r_s_2lpt = r_s_2lpt * r_vir_2lpt
 r_s_za = r_s_za * r_vir_za

 # find center of halos and plot limit
 halo_pos_2lpt = bgc2_halos_2lpt[:,halo_pos_cols] * dist_scale
 bgc2_halos_2lpt = bgc2_halos_2lpt[:,halo_pos_cols] * dist_scale
 particle_pos_2lpt = bgc2_particles_2lpt[:,particle_pos_cols] * dist_scale
 particle_pos_za = bgc2_particles_za[:,particle_pos_cols] * dist_scale

 if wrap_box:
 for i in range(3):
 if abs(halo_pos_2lpt[i] - halo_pos_za[i]) > box_size / 2.0:
 print "*************** wrapping halo ***************"
center = (halo_pos_2lpt + halo_pos_za) / 2.0
halo_pos_2lpt = halo_pos_2lpt - center
halo_pos_za = halo_pos_za - center
particle_pos_2lpt = particle_pos_2lpt - center
particle_pos_za = particle_pos_za - center

if zoom_projections:
 plot_lim = zoom_scale
else:
 plot_lim = np.append(particle_pos_2lpt, particle_pos_za).max()

r_vir_2lpt = bgc2_halos_2lpt[halo_r_col] * dist_scale
r_vir_za = bgc2_halos_za[halo_r_col] * dist_scale

if make_stats:
 print('generating plot...')
 fig = plt.figure(figsize = (9.0, 6.0))
 fig = make_projections(fig, 221, halo_pos_2lpt, halo_pos_za, particle_pos_2lpt, particle_pos_za,
 r_vir_2lpt, r_vir_za, plot_lim)
 ax = fig.add_subplot(223)
 ax = draw_density_profile(ax, r_2lpt, rho_2lpt, err=rho_err_2lpt, color='blue', label='2lpt')
 ax = draw_density_profile(ax, r_za, rho_za, err=rho_err_za, color='red', label='za')
 ax = fig.add_subplot(122)
 ax = draw_parameters(ax, header, properties_2lpt, properties_za)
 fig.tight_layout()
 plot_name = '%s%0.3d_(%d,%d)%s' % (plot_base, itteration, id_2lpt, id_za, plot_ext)
 plt.savefig(plot_name, bbox_inches='tight')
 print('finished plot')

if make_projection:
 print('generating density projection plot...')
 fig = plt.figure(figsize = (9.0, 6.0))
 if label_projection:
 ax = fig.add_subplot(111, aspect=2.0/3.2)
 ax = hide_axes(ax)
 ax.set_xlabel(proj_xlabel)
 ax.set_ylabel(proj_ylabel)
 fig = make_projections(fig, 111, halo_pos_2lpt, halo_pos_za, particle_pos_2lpt, particle_pos_za,
 r_vir_2lpt, r_vir_za, plot_lim)
 fig.tight_layout()
 plot_name = '%s%0.3d_(%d,%d)%s%s' % (plot_base, itteration, id_2lpt, id_za, proj_name, plot_ext)
 plt.savefig(plot_name, bbox_inches='tight')
 print('finished density projection plot')

if make_density_profile:
 print('generating density profile plot...')
 fig = plt.figure(figsize = (9.0, 12.0))
 if label_projection:
 ax = fig.add_subplot(211, aspect=2.0/3.2)
 ax = hide_axes(ax)
 ax.set_xlabel(prof_xlabel)
 ax.set_ylabel(prof_ylabel)
 grid = ImageGrid(fig, 212, nrows_ncols=(2,1), axes_pad=0.24)
 ax1 = fig.add_subplot(413)
 ax1 = draw_density_profile(ax1, r_2lpt, rho_2lpt, err=rho_err_2lpt, color='blue')
 ax1 = draw_nfw_profile(ax1, nfw_r_2lpt, nfw_rho_2lpt, R_s=r_s_2lpt, color='red')
 ax2 = fig.add_subplot(414)
 ax2 = draw_density_profile(ax2, r_za, rho_za, err=rho_err_za, color='blue')
 ax2 = draw_nfw_profile(ax2, nfw_r_za, nfw_rho_za, R_s=r_s_za, color='red')
 if equal_profile_axes:
 xmin = min(ax1.get_xlim()[0], ax2.get_xlim()[0])
 xmax = max(ax1.get_xlim()[1], ax2.get_xlim()[1])
 ax1.set_xlim(xmin, xmax)
 ax2.set_xlim(xmin, xmax)
 if print_text:
 ax1.text(0.95, 0.85, '2LPT', color='black', horizontalalignment='right', verticalalignment='center',
 transform=ax1.transAxes)
 ax2.text(0.95, 0.85, 'ZA', color='black', horizontalalignment='right', verticalalignment='center',
 transform=ax2.transAxes)
transform=ax2.transAxes)

fig.tight_layout()
plot_name = "%s%0.3d_(%d,%d)%s%s" % (plot_base, itteration, id_2lpt, id_za, dens_name, plot_ext)
print 'finished density profile plot' + plot_name
plt.savefig(plot_name, bbox_inches='tight')

def density_profile(halo, particles):
 r_vir = halo[halo_r_col] * dist_scale
 halo_pos = halo[halo_pos_cols] * dist_scale
 # mass = np.ones(particles.shape[0]) * common_mass * mass_scale
 mass = particles[:,particle_mass_col] * mass_scale
 pos = particles[:,particle_pos_cols] * dist_scale
 pos = pos - halo_pos

 r_bins, rho, rho_err = calc_density_profile(mass, pos)
 mid_bins = 10.0**(0.5 * (np.log10(r_bins[1:]) + np.log10(r_bins[:-1])))

 # Don't pass NaN's to fitting routine
 rho_err_nonan = np.copy(rho_err)
 nan_check = np.isnan(rho_err_nonan)
 for i in range(len(rho_err_nonan)):
 if (mid_bins[i] < res_limit) or (nan_check[i] == True):
 rho_err_nonan[i] = 1.0e10
 return mid_bins, rho, rho_err, r_vir

def calc_density_profile(mass, pos):
 r = np.sqrt(pos[:,0]**2 + pos[:,1]**2 + pos[:,2]**2)
 max_r = r.max()
 min_r = res_limit
 log_range = np.log10(max_r) - np.log10(min_r)
 local_nbins = float(nbins + 1)
 while True:
 bins = np.arange(local_nbins)
 bins = max_r * 10.0**(log_range * bins / (local_nbins - 1.0) - log_range)
 bin_mass, r_bins = np.histogram(r, bins, weights=mass)
 if (bin_mass == 0.0).any():
 local_nbins -= 1
 continue
 else:
 break
 rho = bin_mass / (sphere_vol(r_bins[1:]) - sphere_vol(r_bins[:-1]))
 N_bin, blah = np.histogram(r, bins)
 rho_err = poisson_error(N_bin) * rho
 return r_bins, rho, rho_err

def sphere_vol(r):
 volume = (4.0 / 3.0) * np.pi * r**3
 return volume

def poisson_error(N):
 err = np.sqrt(N) / N
 return err

def fit_profile(r, rho, err=None, R_vir=None):
 popt, pcov = curve_fit(nfw_profile, r, rho, sigma=err, p0=[0.1, 1.0])
 R_s, rho_0 = popt[0], popt[1]
 nfw_r = np.linspace(r[0], r[-1], nfit)
 nfw_rho = nfw_profile(nfw_r, R_s, rho_0)
 return nfw_r, nfw_rho, R_s

def nfw_profile(r, R_s, rho_0):
 if R_s >= 1.0:
 return (R_s - 1.0) * np.exp(r) + rho_0 / ((r / R_s) * (1.0 + r / R_s)**2)
 return rho_0 / ((r / R_s) * (1.0 + r / R_s)**2)

def filter_column(x, x_col):
 print 'Filtering data...
 x = x[x != -9999]
 if x_col in lt_cols:
 val = lt_vals[lt_cols.index(x_col)]
 x = x[x <= val]
 if x_col in gt_cols:
 val = gt_vals[gt_cols.index(x_col)]
 x = x[x >= val]
 if x_col in eq_cols:
 val = eq_vals[eq_cols.index(x_col)]
 x = x[x == val]
 if x_col in ne_cols:
 val = ne_vals[ne_cols.index(x_col)]
 x = x[x != val]
 return x
def draw_hist(fig, ax, x, x_min=None, x_max=None, use_log=False, color=None, label=None):
 if use_log:
 xbins = np.logspace(x_min, x_max, num=nbins+1)
 xset_xlim = 'log'
 else:
 xbins = np.linspace(x_min, x_max, num=nbins+1)
 # n, bins, patches = ax.hist(x, bins=xbins, histtype='step', log=ylog, color=color, label=label)
 return fig, ax, n, bins, patches

def add_text(fig, ax, textstr):
 props = dict(boxstyle='round', facecolor='white', alpha=0.7)
 ax.text(0.02, 0.08, textstr, transform=ax.transAxes, fontsize=14,
 verticalalignment='center', horizontalalignment='left', bbox=props)
 return fig, ax

def make_projections(fig, position, halo_pos1, halo_pos2, pos1, pos2, r_vir1, r_vir2, plot_lim):
 # grid = ImageGrid(fig, position, nrows_ncols=(2,3), axes_pad=0.05, cbar_mode='single')
 grid = ImageGrid(fig, position, nrows_ncols=(2,3), axes_pad=0.12, cbar_mode='single')
 for i, (x, y, bx, by, r, plot_lim)
 in enumerate(zip(
 (halo_pos1[0], halo_pos1[0], halo_pos1[1], halo_pos2[0], halo_pos2[0], halo_pos2[1], halo_pos1[1], halo_pos1[1], halo_pos2[1], halo_pos2[1]),
 (halo_pos1[0], halo_pos1[0], halo_pos1[1], halo_pos2[0], halo_pos2[0], halo_pos2[1], halo_pos1[1], halo_pos1[1], halo_pos2[1], halo_pos2[1]),
 (halo_pos1[0], halo_pos1[0], halo_pos1[1], halo_pos2[0], halo_pos2[0], halo_pos2[1], halo_pos1[1], halo_pos1[1], halo_pos2[1], halo_pos2[1]),
 (halo_pos1[0], halo_pos1[0], halo_pos1[1], halo_pos2[0], halo_pos2[0], halo_pos2[1], halo_pos1[1], halo_pos1[1], halo_pos2[1], halo_pos2[1]),
 (halo_pos1[0], halo_pos1[0], halo_pos1[1], halo_pos2[0], halo_pos2[0], halo_pos2[1], halo_pos1[1], halo_pos1[1], halo_pos2[1], halo_pos2[1]),
 (halo_pos1[0], halo_pos1[0], halo_pos1[1], halo_pos2[0], halo_pos2[0], halo_pos2[1], halo_pos1[1], halo_pos1[1], halo_pos2[1], halo_pos2[1]),
 (halo_pos1[0], halo_pos1[0], halo_pos1[1], halo_pos2[0], halo_pos2[0], halo_pos2[1], halo_pos1[1], halo_pos1[1], halo_pos2[1], halo_pos2[1]),
 (halo_pos1[0], halo_pos1[0], halo_pos1[1], halo_pos2[0], halo_pos2[0], halo_pos2[1], halo_pos1[1], halo_pos1[1], halo_pos2[1], halo_pos2[1])):
 grid[i]
 # draw_projection(ax, x, y, bx, by, r, plot_lim)
 if print_text:
 if i == 0:
 ax.text(0.05, 0.12, '2LFT', color='white', horizontalalignment='left', verticalalignment='center', transform=ax.transAxes, path_effects=[patheffects.withStroke(linewidth=3, foreground='black')])
 if i == 3:
 ax.text(0.05, 0.12, 'Z2A', color='white', horizontalalignment='left', verticalalignment='center', transform=ax.transAxes, path_effects=[patheffects.withStroke(linewidth=3, foreground='black')])
 if i == 2:
 ax.text(0.05, 0.12, 'Y2Z', color='white', horizontalalignment='left', verticalalignment='center', transform=ax.transAxes, path_effects=[patheffects.withStroke(linewidth=3, foreground='black')])
 if i == 1:
 ax.text(0.05, 0.12, 'X2Y', color='white', horizontalalignment='right', verticalalignment='center', transform=ax.transAxes, path_effects=[patheffects.withStroke(linewidth=3, foreground='black')])
 if i == 2:
 ax.text(0.05, 0.12, 'Z2A', color='white', horizontalalignment='left', verticalalignment='center', transform=ax.transAxes, path_effects=[patheffects.withStroke(linewidth=3, foreground='black')])

def draw_projection(ax, x, y, bx, by, r, plot_lim):
 limits = [(-plot_lim, plot_lim), (-plot_lim, plot_lim)]
 z, xedges, yedges = np.histogram2d(x, y, bins=npixels, range=limits)
 if log_scale_projections:
 z[zi<0.0] = 0.5
 z2 = np.log10(z)
 z2 = np.log10(z)
 z2[(np.isinf(z)) = -0.1
 plot_norm = mpl.colors.LogNorm(vmin = 1, vmax = z.max(), clip=True)
 #plot_norm = None
 else:
 plot_norm = None
 if extra_smoothing:
 z = gaussian_filter(z, smoothing_radius)
 im = ax.imshow(z.T, extent=(-plot_lim, plot_lim, -plot_lim, plot_lim),
 interpolation='gaussian', origin='lower', cmap=colormap, norm=plot_norm) # interpolation='gaussian', origin='lower', cmap=colormap
 #ax.locator_params(nbins=6)
 if draw_circle:
 ax.add_patch(Circle((bx, by), r, fc='None', ec='black', lw=1))
 if draw_contours:
 x_midpoints = (xedges[:-1] + xedges[1:]) / 2.0
 y_midpoints = (yedges[:-1] + yedges[1:]) / 2.0
 X, Y = np.meshgrid(x_midpoints, y_midpoints)
 ax.contour(X, Y, z.T, 2, colors='white', linewidths=4)
 ax.contour(X, Y, z.T, 2, colors='white', linewidths=2)
 if label_colorbar:
 if log_scale_projections:
 log_format = mpl.ticker.LogFormatterMathtext(10, labelOnlyBase=False)
 ax = ax.colorbar(im, format=log_format)
 else:
 ax = ax.colorbar(im)
 else:
 bar = ax.colorbar(im, ticks=[])
 bar = ax.colorbar(im, ticks=[])
487 ax.set_xlim(r[0] - (r[1] - r[0]), r[-1] + (r[-1] - r[-2]))
488 ax.set_xlabel(xlabel_prof)
489 ax.set_ylabel(ylabel_prof)
490 if err != None:
491 err_bars = ax.errorbar(r, rho, yerr=err, linestyle='None', color=color)
492 if label != None:
493 ax.legend(fontsize='x-small')
494 return ax
495
496 def draw_nfw_profile(ax, r, rho, R_s=None, color='black'):
497 ax.loglog(r, rho, linestyle='-', color=color)
498 if R_s != None:
499 line = ax.axvline(R_s, color='purple', linestyle='-.')
500 return ax
501
502 def draw_parameters(ax, header, params1, params2):
503 strlen = 12
504 header = [str(item)[:strlen] for item in header]
505 params1 = [str(item)[:strlen] for item in params1]
506 params2 = [str(item)[:strlen] for item in params2]
507 header.insert(0, 'simulation')
508 params1.insert(0, '--2lpt--')
509 params2.insert(0, '---za---')
510 header = '
'.join(header)
511 params1 = '
'.join(params1)
512 params2 = '
'.join(params2)
513 ax.text(0.05, 0.5, header, horizontalalignment='left', verticalalignment='center', transform=ax.transAxes)
514 ax.text(0.40, 0.5, params1, horizontalalignment='left', verticalalignment='center', transform=ax.transAxes)
515 ax.text(0.75, 0.5, params2, horizontalalignment='left', verticalalignment='center', transform=ax.transAxes)
516 ax.axis('off')
517 return ax
518
519 def hide_axes(ax):
520 ax.spines['top'].set_color('none')
521 ax.spines['bottom'].set_color('none')
522 ax.spines['left'].set_color('none')
523 ax.spines['right'].set_color('none')
524 ax.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off')
525 return ax
526
527 nhalos = 1
528 sort_col = 9 # density_profile 2lpt halo mass
529 #sort_col = 47 # rockstar 2lpt halo mass (M200c)
530 nfits = 40
531 nfit_2lpt = 100
532 npixels = 30
533 #npixels = 100
534 smoothing_radius = 0.9
535 remove_nonfit_halos = True
536 global_filter_halos = True
537 column_filter_halos = True
538 log_scale_projections = True
539 wrap_box = False
540 label_colorbar = False
541 label_projection = True
542 zoom_projections = True
543 zoom_scale = 18.0 # kpc
544 draw_circle = False
545 draw_contours = True
546 extra_smoothing = True
547 equal_profile_axes = True
548 print_text = True
549 box_size = 10000.0 # kpc
550 id_col_2lpt = 0
551 id_col_za = 1
552 print_cols_2lpt = [43, 57, 4, 9, 17, 23, 31, 47, 51, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 91, 93, 97, 99, 101, 103, 105, 107, 111, 163, 201, -2]
553 print_cols_za = [44, 58, 6, 10, 18, 24, 32, 48, 52, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 82, 94, 96, 100, 102, 104, 106, 108, 112, 164, 202, -1]
555 Rv1_col = 53
556 Rv2_col = 54
557 Rs1_col = 55
558 Rs2_col = 56
559 c_2lpt_col = 17
560 c_za_col = 18
561 # c_2lpt, c_za, chi2_2lpt, chi2_za
562 lt_cols = [17, 18, 37, 38]
lt_vals = [100.0, 100.0, 10.0, 10.0]

gt_cols = [17, 18, 31, 32, 37, 38]
gt_vals = [1.0, 1.0, 0.0, 0.0, 0.0, 0.0]
eq_cols = []
eq_vals = []
ne_cols = []
ne_vals = []

c_2lpt, c_za, rho_0_2lpt, rho_0_za, chi2_2lpt, chi2_za

gt_cols = [17, 18, 31, 32, 37, 38]
gt_vals = [1.0, 1.0, 0.0, 0.0, 0.0, 0.0]
eq_cols = []
eq_vals = []
eq_cols = []
eq_vals = []

bgc2 halo array columns
halo_id_col = 0
halo_r_col = 4
halo_mass_col = 5

bgc2 particle array columns
particle_mass_col = 0
particle_pos_cols = [1, 2, 3]
particle_vel_cols = [4, 5, 6]
Appendix H

Concentration Comparison Code (Python)

```python
#!/usr/bin/env python
import sys
import numpy as np
from ipdb import set_trace

def main():
    # Read in particle files
    header, halos = read_files(sys.argv[1:], header_line = 3)

    if remove_nonfit_halos:
        print('Removing NaNs...')
        halos = halos[np.isfinite(halos[:,c_lpt_col])]
        halos = halos[np.isfinite(halos[:,c_za_col])]

    if global_filter_halos:
        print('Filtering data...')
        for col, val in zip(glob_lt_cols, glob_lt_vals):
            halos = halos[halos[:, col] <= val]
        for col, val in zip(glob_gt_cols, glob_gt_vals):
            halos = halos[halos[:, col] >= val]
        for col, val in zip(glob_eq_cols, glob_eq_vals):
            halos = halos[halos[:, col] == val]
        for col, val in zip(glob_ne_cols, glob_ne_vals):
            halos = halos[halos[:, col] != val]

    if sort_col != None:
        halos = sort_by_column(halos, sort_col)
    if (nhalos != None) or (nhalos != 0):
        halos = halos[:nhalos]
    if bad_halo_pairs != None:
        mask = np.arange(len(halos))
        mask = np.in1d(mask, bad_halo_pairs)
        mask = np.invert(mask)
        halos = halos[mask]

    c_rockstar_2lpt = halos[:, Rv1_col] / halos[:, Rs1_col]
    c_rockstar_za = halos[:, Rv2_col] / halos[:, Rs2_col]

    if use_klypin:
        mask = (halos[:,4] < 100)
        print('changed %d halos' % (mask.sum()))
        print('c_2lpt before', c_rockstar_2lpt[mask][0]
        c_rockstar_2lpt[mask] = halos[mask, Rv1_col] / halos[mask, 79]
        print('c_2lpt after', c_rockstar_2lpt[mask][0]

    mask = (halos[:,5] < 100)
    print('changed %d halos' % (mask.sum()))
    print('c_za before', c_rockstar_za[mask][0]
    c_rockstar_za[mask] = halos[mask, Rv2_col] / halos[mask, 80]

    c_diff_2lpt = 2.0 * (c_rockstar_2lpt - halos[:, c_lpt_col]) / (c_rockstar_2lpt + halos[:, c_lpt_col])
    c_diff_za = 2.0 * (c_rockstar_za - halos[:, c_za_col]) / (c_rockstar_2lpt + halos[:, c_za_col])
    #halos = np.column_stack((halos, c_rockstar_2lpt, c_rockstar_za, c_diff_2lpt, c_diff_za))
    #header.append('c_rockstar')
    #header.append('c_rockstar')
    #header.append('c_diff')
    #header.append('c_diff')

    if sort_col != None:
        halos = sort_by_column(halos, sort_col)
    if (nhalos != None) or (nhalos != 0):
        halos = halos[:nhalos]
    if bad_halo_pairs != None:
        mask = np.arange(len(halos))
        mask = np.in1d(mask, bad_halo_pairs)
        mask = np.invert(mask)
        halos = halos[mask]

    c_diff_2lpt = c_diff_2lpt[np.isfinite(c_diff_2lpt)]
    c_diff_za = c_diff_za[np.isfinite(c_diff_za)]
    c_diff_tot = np.append(c_diff_2lpt, c_diff_za)

    c_diff_2lpt_frac = (np.abs(c_diff_2lpt) <= cutoff_diff_frac).sum() / float(len(c_diff_2lpt))
    c_diff_za_frac = (np.abs(c_diff_za) <= cutoff_diff_frac).sum() / float(len(c_diff_za))
    c_diff_tot_frac = (np.abs(c_diff_tot) <= cutoff_diff_frac).sum() / float(len(c_diff_tot))

    with open(c_diff_file, 'w') as fd:
        fd.write('%g %g %g
% (c_diff_tot_frac, c_diff_za_frac, c_diff_2lpt_frac)

print 'Finished snapshot.'
```

def read_files(files, header_line = None, comment_char = '#'):
 header = None
data = None
if type(files) == str:
 files = [files]\nif header_line != None:
 with open(files[0], 'r') as fd:
 # Read in particle files
 header, halos = read_files(sys.argv[1:], header_line = 3)

 if remove_nonfit_halos:
 print('Removing NaNs...')
 halos = halos[np.isfinite(halos[:,c_lpt_col])]
 halos = halos[np.isfinite(halos[:,c_za_col])]

 if global_filter_halos:
 print('Filtering data...')
 for col, val in zip(glob_lt_cols, glob_lt_vals):
 halos = halos[halos[:, col] <= val]
 for col, val in zip(glob_gt_cols, glob_gt_vals):
 halos = halos[halos[:, col] >= val]
 for col, val in zip(glob_eq_cols, glob_eq_vals):
 halos = halos[halos[:, col] == val]
 for col, val in zip(glob_ne_cols, glob_ne_vals):
 halos = halos[halos[:, col] != val]

 if sort_col != None:
 halos = sort_by_column(halos, sort_col)
 if (nhalos != None) or (nhalos != 0):
 halos = halos[:nhalos]
 if bad_halo_pairs != None:
 mask = np.arange(len(halos))
 mask = np.in1d(mask, bad_halo_pairs)
 mask = np.invert(mask)
 halos = halos[mask]

 c_rockstar_2lpt = halos[:, Rv1_col] / halos[:, Rs1_col]
 c_rockstar_za = halos[:, Rv2_col] / halos[:, Rs2_col]

 if use_klypin:
 mask = (halos[:,4] < 100)
 print('changed %d halos' % (mask.sum()))
 print('c_2lpt before', c_rockstar_2lpt[mask][0]
 c_rockstar_2lpt[mask] = halos[mask, Rv1_col] / halos[mask, 79]
 print('c_2lpt after', c_rockstar_2lpt[mask][0]

 mask = (halos[:,5] < 100)
 print('changed %d halos' % (mask.sum()))
 print('c_za before', c_rockstar_za[mask][0]
 c_rockstar_za[mask] = halos[mask, Rv2_col] / halos[mask, 80]

 c_diff_2lpt = 2.0 * (c_rockstar_2lpt - halos[:, c_lpt_col]) / (c_rockstar_2lpt + halos[:, c_lpt_col])
 c_diff_za = 2.0 * (c_rockstar_za - halos[:, c_za_col]) / (c_rockstar_2lpt + halos[:, c_za_col])
 #halos = np.column_stack((halos, c_rockstar_2lpt, c_rockstar_za, c_diff_2lpt, c_diff_za))
 #header.append('c_rockstar')
 #header.append('c_rockstar')
 #header.append('c_diff')
 #header.append('c_diff')

 if sort_col != None:
 halos = sort_by_column(halos, sort_col)
 if (nhalos != None) or (nhalos != 0):
 halos = halos[:nhalos]
 if bad_halo_pairs != None:
 mask = np.arange(len(halos))
 mask = np.in1d(mask, bad_halo_pairs)
 mask = np.invert(mask)
 halos = halos[mask]

 c_diff_2lpt = c_diff_2lpt[np.isfinite(c_diff_2lpt)]
 c_diff_za = c_diff_za[np.isfinite(c_diff_za)]
 c_diff_tot = np.append(c_diff_2lpt, c_diff_za)

 c_diff_2lpt_frac = (np.abs(c_diff_2lpt) <= cutoff_diff_frac).sum() / float(len(c_diff_2lpt))
 c_diff_za_frac = (np.abs(c_diff_za) <= cutoff_diff_frac).sum() / float(len(c_diff_za))
 c_diff_tot_frac = (np.abs(c_diff_tot) <= cutoff_diff_frac).sum() / float(len(c_diff_tot))

 with open(c_diff_file, 'w') as fd:
 fd.write('%g %g %g
% (c_diff_tot_frac, c_diff_za_frac, c_diff_2lpt_frac)

print 'Finished snapshot.'
```
for line in range(header_line):
    fd.readline()
    header = fd.readline()
    if header[0] != comment_char:
        print "Header must start with a '%s'" % comment_char
        sys.exit(4)
    header = header[1:]
    header = header.split()

for file in files:
    print 'Reading file %s...' % (file)
    if data == None:
        data = np.genfromtxt(file, comments=comment_char)
    else:
        data = np.append(data, np.genfromtxt(file, comments=comment_char), axis=0)

print 'Finished reading files.'
if header_line == None:
    return data
else:
    return header, data

def sort_by_column(halos, col):
    print 'Sorting halos...'
    mask = np.argsort(halos[:, col])
    mask = mask[::-1]
    halos = halos[mask]
    return halos

def remove_nonfit_halos = False
global_filter_halos = True
use_klypin = False
halos = 100
nhalos = 'perc25'
#sort_col = None
sort_col = 9
cutoff_diff_frac = 0.2
Rv1_col = 53
Rv2_col = 54
R1_col = 55
R2_col = 56
c_lpt_col = 17
c_za_col = 18

lt_cols = [17, 18]
lt_vals = [100.0, 100.0]
gt_cols = [17, 18, 31, 32]
gt_vals = [1.0, 1.0, 0.0, 0.0]
eq_cols = []
eq_vals = []
ne_cols = []
ne_vals = []

# global filters
glob_lt_cols = []
glob_lt_vals = []
glob_gt_cols = [4, 5]
glob_gt_vals = [100, 100]
glob_eq_cols = [109, 110]
glob_eq_vals = [-1, -1]
glob_ne_cols = []
glob_ne_vals = []
bad_halo_pairs = None
c_diff_file = 'stats/c_diff.dat'

if __name__ == '__main__':
    main()
Appendix I

Differential Histogram Code

I.1 Histogram Generation and Fitting (Python)

```python
#!/usr/bin/env python

import sys
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from scipy import stats
from scipy.special import gamma as gamma_func
from scipy.optimize import curve_fit
import statsmodels.sandbox.distributions.extras as extrastats
from ipdb import set_trace

def main():
 # Read in particle files
 header, halos = read_files(sys.argv[1:], header_line = 3)

 if remove_nonfit_halos:
 print 'Removing NaNs...
 halos = halos[np.isfinite(halos[:,c_lpt_col])]
 halos = halos[np.isfinite(halos[:,c_za_col])]

 if global_filter_halos:
 print 'Filtering data...
 for col, val in zip(glob_lt_cols, glob_lt_vals):
 halos = halos[halos[:, col] <= val]
 for col, val in zip(glob_gt_cols, glob_gt_vals):
 halos = halos[halos[:, col] >= val]
 for col, val in zip(glob_eq_cols, glob_eq_vals):
 halos = halos[halos[:, col] == val]
 for col, val in zip(glob_ne_cols, glob_ne_vals):
 halos = halos[halos[:, col] != val]

 if sort_col != None:
 halos = sort_by_column(halos, sort_col)
 if (nhalos != None) or (nhalos != 0):
 halos = halos[:nhalos]
 if bad_halo_pairs != None:
 mask = np.arange(len(halos))
 mask = np.in1d(mask, bad_halo_pairs)
 mask = np.invert(mask)
 halos = halos[mask]

 c_rockstar_2lpt = halos[:, Rv1_col] / halos[:, Rs1_col]
 c_rockstar_za = halos[:, Rv2_col] / halos[:, Rs2_col]
 if use_klypin:
 mask = (halos[:,4] < 100)
 print 'changed %d halos'
 c_2lpt = halos[:, Rv1_col] / halos[:, Rs1_col]
 c_za = halos[:, Rv2_col] / halos[:, Rs2_col]
 mask = (halos[:,5] < 100)
 print 'changed %d halos'
 c_rockstar_2lpt = halos[:, Rv1_col] / halos[:, Rs1_col]
 c_rockstar_za = halos[:, Rv2_col] / halos[:, Rs2_col]
 if use_klypin:
 mask = (halos[:,4] < 100)
 print 'changed %d halos'
 print 'c_2lpt_klypin', c_rockstar_2lpt[mask][0]
 print 'c_za_klypin', c_rockstar_za[mask][0]
 c_diff_2lpt = 2.0 * (c_rockstar_2lpt - halos[:, c_lpt_col]) / (c_rockstar_2lpt + halos[:, c_lpt_col])
 c_diff_za = 2.0 * (c_rockstar_za - halos[:, c_za_col]) / (c_rockstar_za + halos[:, c_za_col])
 mask = (halos[:,5] < 100)
 print 'changed %d halos'
 print 'c_rockstar_2lpt_klypin', c_rockstar_2lpt[mask][0]
 print 'c_rockstar_za_klypin', c_rockstar_za[mask][0]
 c_diff_2lpt = 2.0 * (c_rockstar_2lpt - halos[:, c_lpt_col]) / (c_rockstar_2lpt + halos[:, c_lpt_col])
 c_diff_za = 2.0 * (c_rockstar_za - halos[:, c_za_col]) / (c_rockstar_za + halos[:, c_za_col])
 print 'c_rockstar_2lpt_klypin', c_rockstar_2lpt[mask][0]
 print 'c_rockstar_za_klypin', c_rockstar_za[mask][0]
 c_diff_2lpt = 2.0 * (c_rockstar_2lpt - halos[:, c_lpt_col]) / (c_rockstar_2lpt + halos[:, c_lpt_col])
 c_diff_za = 2.0 * (c_rockstar_za - halos[:, c_za_col]) / (c_rockstar_za + halos[:, c_za_col])
 for start_frac, end_frac in zip(start_fracs, end_fracs):
 halos_to_pass = halos[start_frac * len(halos) : end_frac * len(halos)]
 if use_alt_frac and (start_frac == 0.0) and (end_frac == 1.0):
 alt_halos_to_pass = halos[alt_start_frac * len(halos) : alt_end_frac * len(halos)]
 else:
 alt_halos_to_pass = None
```

166
if len(halos_to_pass) > 0:
    for (lpt_col, za_col, fancy_x_label) in zip(lpt_log_cols, za_log_cols, fancy_log_x_labels):
        make_plot(halos_to_pass, alt_halos_to_pass, lpt_col, za_col, start_frac, end_frac, fancy_x_label,
                  header, use_log=True)
    for (lpt_col, za_col, fancy_x_label) in zip(lpt_cols, za_cols, fancy_x_labels):
        make_plot(halos_to_pass, alt_halos_to_pass, lpt_col, za_col, start_frac, end_frac, fancy_x_label,
                  header, use_log=False)

print 'Finished all plots.'

def read_files(files, header_line = None, comment_char = '#'):
    header = None
    data = None
    if type(files) == str:
        files = [files]
    if header_line != None:
        with open(files[0], 'r') as fd:
            for line in range(header_line):
                fd.readline()
            header = fd.readline()
        if header[0] != comment_char:
            print "Header must start with a '%s'" % comment_char
            sys.exit(4)
        header = header[1:]
        header = header.split()
    for file in files:
        print 'Reading file %s...' % (file)
        if data == None:
            data = np.genfromtxt(file, comments=comment_char)
        else:
            data = np.append(data, np.genfromtxt(file, comments=comment_char), axis=0)
    print 'Finished reading files.'
    if header_line == None:
        return data
    else:
        return header, data

def sort_by_column(halos, col):
    print 'Sorting halos...'
    mask = np.argsort(halos[:, col])
    mask = mask[::-1]
    halos = halos[mask]
    return halos

def make_plot(halos, alt_halos, lpt_col, za_col, start_frac, end_frac, fancy_x_label, header=None, use_log=False):
    print 'start=' , start_frac
    print 'end=' , end_frac
    x_lpt = halos[:, lpt_col]
    x_za = halos[:, za_col]
    x_lpt, x_za = filter(x_lpt, x_za, lpt_col, za_col)

    if alt_halos != None:
        alt_x_lpt = alt_halos[:, lpt_col]
        alt_x_za = alt_halos[:, za_col]
        alt_x_lpt, alt_x_za = filter(alt_x_lpt, alt_x_za, lpt_col, za_col)

    if header != None:
        header_lpt = header[lpt_col]
        header_za = header[za_col]
        if header_lpt == header_za:
            xlabel = header_lpt
            xlabel = xlabel.replace('/', '_over_')
        else:
            print 'column mismatch...exiting'
            set_trace()
            sys.exit(123)

    if len(x_lpt) == 0 or len(x_za) == 0:
        print "Skipping range %f - %f for %s plot...No halos found.\n" % (start_frac, end_frac, xlabel)
        return
    set_trace()

    if perc_diff:
        print 'Finding percent difference stats...'
        x_perc_diff = (x_lpt - x_za) / x_za
        perc_diff_file = '%s('% lpt_col, za_col, ')_\n            %s_%s_(%s-%s)%s\n            (perc_diff_base, \', lpt_col, ', za_col, ')', xlabel, start_frac, end_frac,
            stats_ext)
        perc_diff_stats(x_perc_diff, perc_diff_file, use_log= use_log)
        print 'done.'
        x = 2.0 * (x_lpt - x_za) / (x_lpt + x_za)
        x[np.logical_and(x_lpt == 0, x_za == 0)] = 0
    if alt_halos != None:
alt_x = 2.0 * (alt_x_lpt - alt_x_za) / (alt_x_lpt + alt_x_za)
alt_x[np.logical_and(alt_x_lpt == 0, alt_x_za == 0)] = 0

# set_trace()

if x_lim == None:
x_max = max(abs(x.max()), abs(x.min()))
if lpt_col == 47:
x_max = x.mean() + x.std() * 1.5
x_min = x.mean() - x.std() * 1.5
else:
x_max = np.std(x) * 3.0
x_min = -x_max
else:
x_max = x_lim
x_min = -x_lim

# get stats
data_mean = x.mean()
data_stdev = x.std()**2
data_skew = stats.skew(x)
data_kurt = stats.kurtosis(x)
data_rms = np.sqrt(np.mean(x**2))
data_gt_epsilon = float(len(x[np.abs(x) >= 0.1])) / float(len(x))

# Generate plot
print('generating', xlabel, 'plot...')
fig = plt.figure(figsize=(9.0, 6.0))
if add_residuals_panel:
    grid = gridspec.GridSpec(2, 1, height_ratios=[1,4])
    ax = fig.add_subplot(grid[1])
else:
    ax = fig.add_subplot(111)
ax, n, bins, patches = draw_hist(ax, x, x_min=x_min, x_max=x_max, use_log=use_log, color='blue', fill=None)

p0 = [1.0, data_mean, data_stdev, 2.0]
if draw_data_fit:
    ax = draw_data_gaussian(ax, x, n, bins)
if alt_halos != None:
    ax, n_alt, bins_alt, patches_alt = draw_hist(ax, alt_x, x_min=x_min, x_max=x_max, use_log=use_log, color='green', fill='0.75')

ax.grid(color='gray', linestyle='dashed')
ax.set_xlim([x_min, x_max])
#ax.set_xlabel('(' + xlabel + '_2lpt - ' + xlabel + '_za) / ' + xlabel + '_avg')
#ax.set_ylabel(ylabel)
if label_axes:
    ax.set_xlabel(fancy_x_label, fontsize="xx-large")
    ax.set_ylabel(fancy_y_label, fontsize="xx-large")
#ax.legend()

if add_residuals_panel:
    ax = fig.add_subplot(grid[0])
ax = draw_residuals(ax, n, bins, fit_height, fit_mean, fit_stdev, fit_kurt)
ax.tick_params(axis='x', labelbottom='off')

fig.tight_layout()
plot_name = "%s_%s_%0.3d_%s_%0.3d%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_
data_gt_epsilon = float(len(np.abs(x) >= 0.1)) / float(len(x))

if x_lim == None:
    x_max = min((x.mean() + x.std() * 3.0), x.max())
    x_min = max((x.mean() - x.std() * 3.0), x.min())
else:
    x_max = x_lim
    x_min = -x_max

global nbins
if nbins <= 0:
    nbins = np.sqrt(len(x))
if nbins % 2 == 0:
    nbins = nbins - 1
if nbins < nbins_min:
    nbins = nbins_min
elif nbins > nbins_max:
    nbins = nbins_max

if use_log:
    xbins = np.logspace(np.log10(x_min), np.log10(x_max), num=nbins+1)
    mid_bins = 10.0**(0.5 * (np.log10(xbins[1:]) + np.log10(xbins[:-1])))
else:
    xbins = np.linspace(x_min, x_max, num=nbins+1)
    mid_bins = 0.5 * (xbins[1:] + xbins[:-1])

hist, bin_edges = np.histogram(x, bins=xbins)
x_peak = mid_bins[hist == hist.max()][0]

x_sorted = np.sort(x)
n_halos = len(x_sorted)
x_vals = []
for frac in fractions:
    x_vals.append(x_sorted[len(x_sorted)*frac])
x_vals = np.array(x_vals)

sum_frac_halos = []
for diff_val in diff_vals:
    n_gt_val = (x_sorted >= diff_val).sum()
    doublesum_frac_halos.append(float(n_gt_val) / float(n_halos))
    doublesum_frac_halos = np.array(doublesum_frac_halos)

with open(filename, 'w') as fd:
    fd.write("%d %g %s %s %s %g %g %g %g %g %g %g
" %
    (nbins, x_peak, \
     ', '.join("%g" % x for x in x_vals), \
     ', '.join("%g" % x for x in x_sorted), \
     data_mean, data_rms, data_gt_epsilon))

return

def find_frac_bounds(hist, start_bin, frac):
    n_tot = hist.sum()
    n_sum = hist[start_bin].sum()

    left_tot = hist[:start_bin].sum() + hist[start_bin] / 2.0
    right_tot = hist[start_bin+1:].sum() + hist[start_bin] / 2.0

    if float(left_tot) / float(n_tot) <= frac / 2.0:
        right_only = True
    elif float(right_tot) / float(n_tot) <= frac / 2.0:
        left_only = True

    left_bound = start_bin
    right_bound = start_bin

    while(float(n_sum) / float(n_tot) < frac):
        pass

    return left_bound, right_bound

def filter(x_lpt, x_za, lpt_col, za_col):
    mask = np.isfinite(x_lpt) & np.isfinite(x_za)
    x_lpt = x_lpt[mask]
    x_za = x_za[mask]
x_lpt, x_za = filter_columns(lpt_col, x_lpt, x_za)
return x_lpt, x_za

def filter_columns(x_col, x1, x2):
    print "Filtering data..."
    mask = np.isfinite(x1)
x1 = x1[mask]
x2 = x2[mask]
    if x_col in lt_cols:
        val = lt_vals[lt_cols.index(x_col)]
        mask = (x1 <= val)
x1 = x1[mask]
x2 = x2[mask]
    if x_col in gt_cols:
        val = gt_vals[gt_cols.index(x_col)]
        mask = (x1 >= val)
x1 = x1[mask]
x2 = x2[mask]
    if x_col in eq_cols:
        val = eq_vals[eq_cols.index(x_col)]
        mask = (x1 == val)
x1 = x1[mask]
x2 = x2[mask]
    if x_col in ne_cols:
        val = ne_vals[ne_cols.index(x_col)]
        mask = (x1 != val)
x1 = x1[mask]
x2 = x2[mask]
    return x1, x2

def draw_hist(ax, x, x_min=None, x_max=None, use_log=False, color=None, fill=None, label=None):
    if nbins <= 0:
        nbins = np.sqrt(len(x))
    if nbins % 2 == 0:
        nbins = nbins - 1
    if nbins < nbins_min:
        nbins = nbins_min
    elif nbins > nbins_max:
        nbins = nbins_max
    try:
        if use_log:
            xbins = np.logspace(np.log10(x_min), np.log10(x_max), num=nbins+1)
            ax.set_xscale('log')
        else:
            xbins = np.linspace(x_min, x_max, num=nbins+1)
        n, bins, patches = ax.hist(x, bins=xbins, histtype='step', facecolor=fill, normed=True, cumulative=False)
    except:
        xbins = np.linspace(x_min, x_max, num=nbins+1)
    return ax, n, bins, patches

def draw_fit(ax, hist, bin_edges, p0):
    bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2.0
    if ignore_central_bin:
        mask = (np.abs(bin_centers) > 0.000001)
        bin_centers = bin_centers[mask]
        hist = hist[mask]
    hist[hist==0] = 1  # fix divide by zero error
    try:
        if poisson_weight:
            sigma = np.sqrt(hist)/hist
        else:
            sigma = None
        if fit_in_log:
            # if sigma != None:
            #    sigma = np.log10(sigma)
    except:
        sigma = None
    coeff, var_matrix = curve_fit(log_generalized_normal, bin_centers, np.log10(hist/float(hist.max())), p0=p0, sigma=sigma)
    coeff[0] = coeff[0]**2
```python
441 var_matrix[0,0] = var_matrix[0,0]**2
442 else:
443 coeffs, var_matrix = curve_fit(generalized_normal, bin_centers, hist/float(hist.max()), p0=p0, sigma=sigma)
444 if prevent_small_shape_param and coeffs[3] < 1.0:
445 coeffs[3] = 1.0 / coeffs[3]
446 print 'coeffs='
447 print coeffs
448 except RuntimeError:
449 print '*******curve_fit_failed!'
450 return ax, np.nan, np.nan,
451 np.nan, np.nan,
452 np.nan, np.nan,
453 np.nan, np.nan,
454 np.nan, np.nan,
455 np.nan, np.nan,
456 np.nan, np.nan,
457 np.nan, np.nan,
458 np.nan, np.nan,
459 np.nan, np.nan,
460 np.nan, np.nan,
461 np.nan, np.nan,
462 np.nan, np.nan,
463 np.nan, np.nan,
464 np.nan, np.nan,
465 def draw_residul(ax, hist, bin_edges, fit_height, fit_mean, fit_stdev, fit_kurt):
466 bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2.0
467 fit = generalized_normal(bin_centers, fit_height, fit_mean, fit_stdev, kurt)
468 ratio = (hist - fit) / hist.max()
469 ax.plot(bin_centers, ratio, linestyle='steps-mid-')
470 return ax
471
def draw_data_gaussian(ax, x, hist, bins):
472 bin_centers = (bins[:-1] + bins[1:]) / 2.0
473 x_min = bins[0]
474 x_max = bins[-1]
475 mean = np.mean(x)
476 stdv = np.std(x)**2
477 skew = stats.skew(x)
478 kurt = stats.kurtosis(x)
479 print "data stats: mean = %g stdv = %g skew = %g kurt = %g"
480 print "\n"
481 coeffs, var_matrix = curve_fit(gaussian_height(mean, stdv, skew, kurt), bin_centers, hist, p0=[hist.max()])
482 height = coeffs[0]
483 fit_x = np.linspace(x_min, x_max, nfitpoints+1)
484 hist_fit = gaussian(fit_x, height, mean, stdv, skew, kurt)
485 ax.plot(fit_x, hist_fit, color='0.25', linestyle='-.')
486 return ax
487
def log_gaussian(x, A, mu, sigma, skew=0.0, kurtosis=0.0):
488 A = A**2 # remember to also square fit value for A
489 y = gaussian(x, A, mu, sigma, skew, kurtosis)
490 if (y <= 0.0).any():
491 y[y<=0] = -(y[y<=0] + 0.0001)**2
492 return np.log10(y)
493
def log_double_gaussian(x, A1, mu1, sigma1, skew1, kurtosis1, A2, mu2, sigma2, skew2, kurtosis2):
494 # for common mean
495 A = A1**2 # remember to also square fit value for A
496 y = gaussian(x, A, mu, sigma, skew, kurtosis)
497 if (y <= 0.0).any():
498 y[y<=0] = -(y[y<=0] + 0.0001)**2
499 return np.log10(y)
```

171
skew2 = 0.0
kurtosis2 = 0.0
y = double_gaussian(x, A1, mu1, sigma1, skew1, kurtosis1, A2, mu2, sigma2, skew2, kurtosis2)
if (y <= 0.0).any():
y[y<=0] = -y[y<=0] + 1
y[y<=0] = (y[y<=0] + 0.0001)**2
return np.log10(y)

def gaussian(x, A, mu, sigma):
    return A * np.exp(-(x - mu)**2 / (2.0 * sigma**2))

def generalized_normal(x, A, mu, alpha, beta):
    if prevent_small_shape_param and beta < 1.0:
        beta = 1.0 / beta
    return A * ( beta / (2.0 * alpha * gamma_func(1.0 / beta)) ) * np.exp(-(np.abs(x - mu)/alpha)**beta)

def log_generalized_normal(x, A, mu, alpha, beta):
    A = A**2
    y = generalized_normal(x, A, mu, alpha, beta)
    if (y <= 0.0).any():
        y[y<=0] = -y[y<=0] + 1.0
        y[y<=0] = (y[y<=0] + 0.0001)**2
    return np.log10(y)

def add_text(fig, ax, textstr):
    #props = dict(boxstyle='round', facecolor='white', alpha=0.25)
    props = dict(edgecolor='none', facecolor='none')
    ax.text(0.02, 0.16, textstr, transform=ax.transAxes, fontsize=14, verticalalignment='top', bbox=props)
    return fig, ax

def rebin_stats(ntestbins, x, x_min=None, x_max=None, use_log=False):
    if use_log:
        xbins = np.logspace(np.log10(x_min), np.log10(x_max), num=ntestbins+1)
    else:
        xbins = np.linspace(x_min, x_max, num=ntestbins+1)
    hist, bin_edges = np.histogram(x, bins=xbins)
    bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2.0
    if ignore_central_bin:
        mask = (np.abs(bin_centers) > 0.000001)
        bin_centers = bin_centers[mask]
        hist = hist[mask]
    #p0 = [hist.max(), 0.0, 0.2]
    p0 = [hist.max(), hist.mean(), hist.std(), stats.skew(hist), stats.kurtosis(hist)]
    hist[hist==0] = 1
    try:
        if poisson_weight:
            coeffs, var_matrix = curve_fit(gaussian, bin_centers, hist, p0=p0, sigma=(np.sqrt(hist)/hist))
        else:
            coeffs, var_matrix = curve_fit(gaussian, bin_centers, hist, p0=p0)
    except RuntimeError:
        print '*******curve_fit failed!'
        return np.nan, np.nan
    mean, stdev = coeffs[1], coeffs[2]
    return mean, stdev

# hist_normed = False
# hist_cumulative = False
# ylog = False

nbins = 35
#nbins = 26
nbins = -1
nbins_min = 15
nbins_max = 200
#nbins_max = 200
#nbins_min = 15
nfitpoints = 100
remove_nonfit_halos = False
#remove_nonfit_halos = True
#global_filter_halos = True
#global_filter_halos = True
#column_filter_halos = True
#column_filter_halos = True
#ignore_central_bin = False
#ignore_central_bin = False
#save_stats = True
#save_stats = True
#mass_quartiles = False
#mass_quartiles = True
poisson_weight = True
#poisson_weight = True
fit_in_log = True
#draw_data_fit = True
#draw_data_fit = False
mass_quartiles = False
#mass_quartiles = True
prevent_small_shape_param = False
#prevent_small_shape_param = True
add_residuals_panel = False
#add_residuals_panel = True
perc_diff = True
#perc_diff = False
hist_normed = False
#hist_normed = True
hist_cumulative = False
#hist_cumulative = True
ylog = False

172
ylabel='Number of Halos'

fractions = [0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.99]
diff_vals = [0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 1.00, 2.00, 4.00]

nhalos = None
sort_col = 9

# lpt_log_cols = [9, 23, 31, 47, 51, 57]
# za_log_cols = [10, 24, 32, 48, 52, 58]
# lpt_cols = [17, 77, 91, 93, 97, 99, 107, 111, -4, -2]
# za_cols = [18, 78, 92, 94, 98, 100, 108, 112, -3, -1]

lpt_cols = [-4, 47, 91, 93, 107]
za_cols = [-3, 48, 92, 94, 112]

lpt_log_cols = []
za_log_cols = []

c_lpt_col = 17
c_za_col = 18

# c_2lpt, c_za, chi2_2lpt, chi2_za
fct = (c_2LPT - c_ZA)/c_avg

glob_lt_cols = [4, 5]
glob_gt_cols = [109, 110]
glob_eq_cols = []
glob_ne_cols = []
### I.2 PBS Submission Script (Bash)

```
#!/usr/bin/env bash

#PBS -M djsissom@gmail.com
#PBS -m bae
#PBS -l nodes=1:ppn=1
#PBS -l pmem=40000mb
#PBS -l mem=4000mb
#PBS -l walltime=1:00:00
#PBS -o out.log
#PBS -j oe

minsnap=0
maxsnap=61

Change to working directory
echo $PBS_NODEFILE
cd $PBS_O_WORKDIR

for ((snap=$minsnap; snap<=$maxsnap; snap++)); do
 if [$snap -lt 10]; then
 j=00$snap
 elif [$snap -lt 100]; then
 j=0$snap
 fi
 new_plot_dir=snap${j}_plots

 if [! -e plots_all_snaps/${new_plot_dir}]; then
 mkdir plots_all_snaps/${new_plot_dir}
 fi

 echo "Starting box${i} snap${j}..."
 ./hist.py ~/projects/simulations/rockstar/box{1,2,3} /crossmatch/snap${j}/halos.dat > plots/out.log 2>&1
 mv plots/* plots_all_snaps/${new_plot_dir}/.
 echo "Finished snap${j}" done
```

```
- end of script
```

### I.3 PBS Submission Script - Individual Boxes (Bash)

```
#!/usr/bin/env bash

#PBS -M djsissom@gmail.com
#PBS -m bae
#PBS -l nodes=1:ppn=1
#PBS -l pmem=40000mb
#PBS -l mem=4000mb
#PBS -l walltime=2:00:00
#PBS -o out.log
#PBS -j oe

minsnap=0
maxsnap=61
minbox=1
maxbox=3
```

174
# Change to working directory

echo $PBS_NODEFILE

cd $PBS_O_WORKDIR

# - end of script

I.4 Statistics Collection Script (Bash)
Appendix J

Redshift Trends Code (Python)

```python
#!/usr/bin/env python

import sys
import os
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
from scipy.special import gamma as Gamma
from scipy.special import psi as digamma
from ipdb import set_trace

def main():
 if len(sys.argv[1:]) == 4:
 data1 = read_files(sys.argv[1], header_line = None)
 data2 = read_files(sys.argv[2], header_line = None)
 data3 = read_files(sys.argv[3], header_line = None)
 rsnap_data = read_files(sys.argv[4], header_line = None)
 else:
 print('need 4 files')
 sys.exit(15)

 if fit_mean_trend:
 with open(statsfile, 'w') as fd:
 fd.write('#plot slope slope_err intercept intercept_err
')

 if skew_err_boxes:
 skew_err1 = get_skew_err(sys.argv[1])
 skew_err2 = get_skew_err(sys.argv[2])
 skew_err3 = get_skew_err(sys.argv[3])

 if minsnap > 0:
 #for data in data1, data2, data3:
 data1 = data1[data1[:,0] >= minsnap]
 data2 = data2[data2[:,0] >= minsnap]
 data3 = data3[data3[:,0] >= minsnap]
 if skew_err_boxes:
 skew_err1 = skew_err1[-len(data1):]
 skew_err2 = skew_err2[-len(data2):]
 skew_err3 = skew_err3[-len(data3):]

 if skew_err_col == -2:
 data1 = np.column_stack((data1, skew_err1))
 data2 = np.column_stack((data2, skew_err2))
 data3 = np.column_stack((data3, skew_err3))

 if var_err_col == -2 or (mean_err_col == -2) or (var_err_col == -2):
 # fake_err = np.zeros(len(data1))
 # data1 = np.column_stack((data1, fake_err))
 # data2 = np.column_stack((data2, fake_err))
 # data3 = np.column_stack((data3, fake_err))

 z = 1.0 / rsnap_data[:,1] - 1.0
 if (len(data1) == len(data2)) and (len(data1) == len(data3)):
 z = z[-len(data1):]
 else:
 sys.exit(16)

 data1 = np.column_stack((data1, z))
 data2 = np.column_stack((data2, z))
 data3 = np.column_stack((data3, z))

 #data1[:, -1] = data1[:, -1] - 0.12
 #data2[:, -1] = data2[:, -1] + 0.12

 for data in [data1, data2, data3]:
 if expand_error:
 mask = (np.abs(data[:,mean_col] - data[:,mean_col]) > data[:,mean_err_col])
 data[mask,mean_err_col] = np.abs(data[mask,mean_col] - data[mask,mean_col])
 if transform_variance:
 if data[:,var_col] == data[:,var_col]**2 * Gamma(3.0 / data[:,beta_col]) / Gamma(1.0 / data[:,beta_col])
 if data[:,var_err_col] == data[:,var_col]**2 * Gamma(3.0 / data[:,beta_col]) / Gamma(1.0 / data[:,beta_col])
 if transform_kurtosis:
 data[:,kurt_col] = (Gamma(5.0 / data[:,kurt_col]) * Gamma(1.0 / data[:,kurt_col]) / Gamma(3.0 / data[:,kurt_col]) - 3.0
 beta = data[:,beta_col]
 beta_err = data[:,beta_err_col]
 kurtosis = (Gamma(5.0 / beta) * Gamma(1.0 / beta) / Gamma(3.0 / beta)) - 3.0
```

176
kurtosis_err = beta_err * (1.0 / beta**2) * (kurtosis + 3) * (6.0 * digamma(3.0/beta) - 5.0 * digamma(5.0/beta) - digamma(1.0/beta))

data[:,kurt_col] = kurtosis[:]
data[:,kurt_err_col] = kurtosis_err[:]

data[:,var_col] = np.sqrt(data[:,var_col])  # var to stdev
data[:,var_err_col] = np.sqrt(data[:,var_err_col])  # var to stdev

if save_transformed_data:
    for data, path in zip([data1, data2, data3], sys.argv[1:4]):
        fname = transform_file_base + os.path.basename(path)
        with open(fname, 'w') as fd:
            fd.write(transformed_data_header)
            np.savetxt(fd, np.column_stack((z, data)), fmt='%g')

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~#
# make mean and stdv plots#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~#

for data, ylabel, color, label, name in zip([data1, data2, data3], ylabels1, colors, labels1, names):
    print "Making %s plot..." % (name)
    fig = plt.figure(figsize=(9.0, 6.0))
    ax = fig.add_subplot(111)
    ax = make_plot(ax, data[:,z_col], data[:,mean_col], err = data[:,mean_err_col], color = 'blue', marker='o', label=label)
    ax = make_plot(ax, data[:,z_col], data[:,mean_col] + data[:,var_col], color = 'black', linestyle='--')
    ax = make_plot(ax, data[:,z_col], data[:,mean_col] - data[:,var_col], color = 'black', linestyle='--')
    if add_rms_line:
        ax = make_plot(ax, data[:,z_col], data[:,data_rms_col], color = 'green', linestyle=':')
    if fit_mean_trend:
        ax, slope, slope_err, intercept, intercept_err = add_fit( ax, data[:,z_col], data[:,mean_col], err=data[:,mean_err_col], color='red')
        save_fits(statsfile, name, slope, np.sqrt(slope_err), intercept, np.sqrt(intercept_err))
    ax.legend(loc='lower right')
    ax.set_xlim(z[0] + 1.0, z[-1] - 1.0)
    ax.invert_xaxis()
    ax.set_xlabel(xlabel, fontsize='x-large')
    ax.set_ylabel(ylabel, fontsize='x-large')
    fig.tight_layout()
    fig.savefig(plot_base + 'mean_stdev_' + name + plot_ext, bbox_inches='tight')

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~#
# make skew and kurtosis plots#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~#

for data, ylabel_kurt, ylabel_skew, color, name, ylim_low1, ylim_high1, ylim_low2, ylim_high2 in zip([data1, data2, data3], ylabels2_kurt, ylabels2_skew, colors, names, [-10.0, -10.0, -1.0], [20.0, 20.0, 1.5], [-0.2, -1.5, -0.4], [0.5, 3.5, 0.1]):
    print "Making %s plot..." % (name)
    fig = plt.figure(figsize=(9.0, 6.0))
    ax = fig.add_subplot(111)
    ax = make_plot(ax, data[:,z_col] - offset, data[:,kurt_col], err = data[:,kurt_err_col], color = 'red', marker='o', linestyle='-', label='Kurtosis')
    ax = make_plot(ax, data[:,z_col] + offset, data[:,skew_col], err = data[:,skew_err_col], color = 'blue', marker='o', linestyle='-', label='Skew')
    ax = make_plot(ax, data[:,z_col] - offset, data[:,kurt_col], err = data[:,kurt_err_col], color = 'red', marker='o', linestyle=':', label='Kurtosis')
    ax = make_plot(ax, data[:,z_col] + offset, data[:,skew_col], err = data[:,skew_err_col], color = 'blue', marker='o', linestyle=':', label='Skew')
    legend_lines, legend_labels = ax.get_legend_handles_labels()
    ax.legend(legend_lines, legend_labels, loc='lower right')
    ax.set_xlim(z[0] + 1.0, z[-1] - 1.0)
    ax.set_ylim(ylim_low2, ylim_high2)
    ax.invert_xaxis()
    ax.set_xlabel(xlabel, fontsize='x-large')
    ax.set_ylabel(ylabel_skew, fontsize='x-large')
    fig.tight_layout()
    fig.savefig(plot_base + 'skew_kurtosis_' + name + plot_ext, bbox_inches='tight')

#data1[:, -1] = data1[:, -1] * 0.12
#data2[:, -1] = data2[:, -1] * 0.12
#data3[:, -1] = data3[:, -1] * 0.12
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~#

print 'Finished all plots.'

def make_plot(ax, x, y, err=None, color='black', marker='None', linestyle='None', label=None):
    if err == None:
        if label == None:
            ax.plot(x, y, color=color, marker=marker, linestyle=linestyle)
        else:
            ax.plot(x, y, color=color, marker=marker, linestyle=linestyle, label=label)
    else:
        if label == None:
            ax.errorbar(x, y, yerr=err, color=color, marker=marker, linestyle=linestyle)
        else:
            ax.errorbar(x, y, yerr=err, color=color, marker=marker, linestyle=linestyle, label=label)
    return ax

def add_fit(ax, x, y, err=None, color='red'):
    from scipy.optimize import curve_fit
    p0 = [0.0, 0.0]
    try:
        coeffs, pcov = curve_fit(linear, x, y, sigma=err, p0=p0)
    except RuntimeError:
        print '********* Curve fit failed *********
        return np.nan, np.nan
    xmin, xmax = ax.get_xlim()
    x_fit = np.linspace(xmin, xmax, 20)
    y_fit = linear(x_fit, coeffs[0], coeffs[1])
    ax.plot(x_fit, y_fit, color=color, linestyle='--')
    return ax, coeffs[0], pcov[0,0], coeffs[1], pcov[1,1]

def linear(x, slope, intercept):
    return slope * x + intercept

def read_files(files, header_line = None, comment_char = '#'):
    header = None
    data = None
    if type(files) == str:
        files = [files]
    if header_line != None:
        with open(files[0], 'r') as fd:
            for line in range(header_line):
                fd.readline()
            header = fd.readline()
            if header[0] != comment_char:
                print 'Header must start with a %s' % comment_char
                sys.exit(4)
            header = header[1:]
            header = header.split()
        for file in files:
            print 'Reading file %s...' % (file)
            if data == None:
                data = np.genfromtxt(file, comments=comment_char)
            else:
                data = np.append(data, np.genfromtxt(file, comments=comment_char), axis=0)
        print 'Finished reading files.'
        if header_line == None:
            return data
        else:
            return header, data
    else:
        return

def get_skew_err(filebase):
    z = None
    skew = None
    for i in range(3):
        filename = filebase.replace('plots_all_snaps', 'plots_all_snaps_box'+str(i+1))
        data = read_files(filename, header_line = None)
        if i == 0:
            min_length = len(data)
        elif len(data) < min_length:
            min_length = len(data)
        if z == None:
            z = data[-min_length:,snap_col]
        else:
            z = np.column_stack((z[-min_length:], data[-min_length:,snap_col]))
        if skew == None:
            skew = data[-min_length:,skew_col]
        else:
            skew = np.column_stack((skew[-min_length:], data[-min_length:,skew_col]))
if (z[:,0] != z[:,1]).all() or (z[:,0] != z[:,2]).all():
    print 'Need matching snapshots for skew error from individual boxes.'
    print z
    sys.exit(-1)

skew_err = np.std(skew, axis=1) / np.sqrt(3.0)
return skew_err

def save_fits(file, name, slope, slope_err, intercept, intercept_err):
    with open(file, 'a') as fd:
        fd.write('%s %g %g %g %g
' % (name, slope, slope_err, intercept, intercept_err))

plot_dest_type = 'paper'
if plot_dest_type == 'paper':
    mpl.rcParams['font.size'] = 16
    mpl.rcParams['axes.linewidth'] = 3
    mpl.rcParams['lines.linewidth'] = 4
    mpl.rcParams['patch.linewidth'] = 4
    mpl.rcParams['xtick.major.width'] = 3
    mpl.rcParams['ytick.major.width'] = 3
    mpl.rcParams['xtick.major.size'] = 8
    mpl.rcParams['ytick.major.size'] = 8
    #colors = ['red', 'green', 'blue']
    colors = ['black', 'black', 'black']
    labels1 = [r'$c$', r'$M_{\mathrm{vir}}$', r'$X_{\mathrm{off}}$]
    names = ['c_rockstar', 'Mvir', 'Xoff']
    ylabels1 = [r'$\mu$ and $\sigma$ for $\Delta c$', r'$\mu$ and $\sigma$ for $\Delta M_{\mathrm{vir}}$', r'$\mu$ and $\sigma$ for $\Delta X_{\mathrm{off}}$]
    ylabels2_kurt = [r'Kurtosis for $\Delta c$', r'Kurtosis for $\Delta M_{\mathrm{vir}}$', r'Kurtosis for $\Delta X_{\mathrm{off}}$]
    ylabels2_skew = [r'Skew for $\Delta c$', r'Skew for $\Delta M_{\mathrm{vir}}$', r'Skew for $\Delta X_{\mathrm{off}}$]
    plot_base = 'plots/'
    plot_ext = '.eps'

    statsfile = 'plots/stats.dat'
    transform_file_base = 'plots/
    transform_data_header = '#z snap data_mean data_stdev data_skew data_kurt fit_height +/-err fit_mean +/-err fit_stdev +/-err fit_skew +/-err fit_kurt +/-err data_rms data_gt_epsilon chi2 prval skew_err err

offset = 0.06
offset = 0.0
mzsnap = 39
#mzsnap = None
transform_variance = True
transform_kurtosis = True
expand_error = True
fit_mean_trend = True
separate_skew_axes = True
skew_err_boxes = True
add_rms_line = True
save_transformed_data = True
if __name__ == '__main__':
    main()
Appendix K

Mass Trends Code

K.1 Mass and Concentration vs. Mass (Python)

```
#!/usr/bin/env python

import sys
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
from matplotlib import cm
from scipy import interpolate
from scipy.ndimage.filters import gaussian_filter
from scipy.optimize import curve_fit

#def main():

def main():

Read in particle files
header, halos = read_files(sys.argv[1:], header_line = 3)

if c_source == 'density_profile':
 print 'len(halos)=', len(halos)
 halos = halos[np.isfinite(halos[:,c_2lpt_col])]
 halos = halos[np.isfinite(halos[:,c_za_col])]
 print 'len(halos)=', len(halos)

print 'Filtering data...'
for col, val in zip(lt_cols, lt_vals):
 halos = halos[halos[:, col] <= val]
for col, val in zip(gt_cols, gt_vals):
 halos = halos[halos[:, col] >= val]
for col, val in zip(eq_cols, eq_vals):
 halos = halos[halos[:, col] == val]
for col, val in zip(ne_cols, ne_vals):
 halos = halos[halos[:, col] != val]

m_avg = (halos[:,47] + halos[:,48])/2.0
halos = np.column_stack((halos, m_avg))
header = np.append(header, 'M_avg')

if x_min_lim > 0:
 print 'nhalos=', len(halos)
 mask = (m_avg >= x_min_lim)
 halos = halos[mask]
 print 'nhalos=', len(halos)

if c_source == 'rockstar':
 c1 = halos[:, Rv1_col] / halos[:, Rs1_col]
 c2 = halos[:, Rv2_col] / halos[:, Rs2_col]
 if use_klypin:
 mask = (halos[:,4] < 100)
 c1[mask] = halos[mask, Rv1_col] / halos[mask, 79]
 mask = (halos[:,5] < 100)
 c1[mask] = halos[mask, Rv2_col] / halos[mask, 80]
 if c_source == 'density_profile':
 c1 = halos[:, c_2lpt_col]
 c2 = halos[:, c_za_col]

dc = 2.0 * (c1 - c2) / (c1 + c2)
#dc = c1 - c2

for x_col, xlabel in zip(x_cols, xlabels):
 make_plot(halos[:, x_col], dm, x_col, header[x_col], xlabel, ylabel_m, plot_base_m, stats_file_m, y_lim_m, use_log=False)
 make_plot(halos[:, x_col], dc, x_col, header[x_col], xlabel, ylabel_c, plot_base_c, stats_file_c, y_lim_c, use_log=True)

print 'Finished all plots.'

def read_files(files, header_line = None, comment_char = '#'):
 header = None
```
data = None
if type(files) == str:
    files = [files]
if header_line == None:
    with open(files[0], 'r') as fd:
        for line in range(header_line):
            fd.readline()
    header = fd.readline()
    if header[0] != comment_char:
        print("Header must start with a '\"%s'" % comment_char)
        sys.exit(4)
    header = header[1:]
    header = header.split()

for file in files:
    print("Reading file %s...") % (file)
    if data == None:
        data = np.genfromtxt(file, comments=comment_char)
    else:
        data = np.append(data, np.genfromtxt(file, comments=comment_char), axis=0)

print('Finished reading files.')
if header_line == None:
    return data
else:
    return header, data

def make_plot(x, y, x_col, header, xlabel, ylabel, plot_base, stats_file, y_lim, use_log):
    print('generating plot...
    fig = plt.figure(figsize=(9.0,6.0))
    ax = fig.add_subplot(1,1,1)
    ax = draw_hist2d(ax, x, y, y_lim)
    if fit_to_data:
        ax = draw_data_fit(ax, x, y, x.min(), x.max(), use_log=use_log)
    if fit_to_binned_data:
        mid_bins, mean, stdev, n = get_bin_avgs(x, y, use_log=use_log)
        ax = draw_bin_fit(ax, mid_bins, mean, stdev/np.sqrt(n), x.min(), x.max(), stats_file, use_log=use_log)
        ax = draw_bin_avgs(ax, mid_bins, mean, stdev, n, use_log=use_log)
    ax.set_xlim([x.min(), x.max()])
    ax.set_xlabel(xlabel, fontsize="x-large")
    ax.set_ylabel(ylabel, fontsize="x-large")
    fig.tight_layout()
    header = header.replace("/", "over")
    plot_name = "%s%s%0.3d%s%s%s") % (plot_base, '(' , x_col, ')_', header, plot_ext)
    plt.savefig(plot_name, bbox_inches='tight')
    print('finished plot' + plot_name)

def draw_hist2d(ax, x, y, y_lim):
    if use_log:
        xbins = np.logspace(np.log10(x.min()), np.log10(x.max()), num=nbins+1)
    else:
        xbins = np.linspace(x.min(), x.max(), num=nbins+1)
    ybins = np.linspace(y.min(), y.max(), num=nbins+1)
    if use_log:
        ax.set_xscale("log")
        im = my_hist2d(ax, x, xbins, ybins, zorder=-50)
    else:
        im = ax.hist2d(x, y, bins/np.sqrt(n), cmap=colormap, zorder=-50)
    ax.set_yticks([x_lim])
    line = ax.plot([x.min(), x.max()], [0.0, 0.0], color='0.65', linestyle='--', linewidth=1, zorder=-20)
    return ax

def my_hist2d(ax, x, y, bins=10, range=None, normed=False, weights=None, **kwargs):
    import matplotlib as mpl
    bin_range = range
    range = mpl.axes.__builtins__["range"]
    h, edges, yedges = np.histogram2d(x, y, bins=bins, range=bin_range, normed=normed, weights=weights)
    if cmap is not None:
        h[cmap < cmap] = None
    if cmap is not None:
        h[cmap > cmap] = None
    if x_log:
        h[h<0.0] = 0.5
        h = np.log10(h)

182
gaussian_filter(h, len(h) / 75.0)

pc = ax.imshow(h[:,::-1].T, cmap=colormap, extent=[x.min(), x.max(), y.min(), y.max()], interpolation='gaussian', **kwargs)

ax.set_xlim(xedges[0], xedges[-1])
ax.set_ylim(yedges[0], yedges[-1])
return h, xedges, yedges, pc

def get_bin_avgs(x, y, use_log):
    if use_log:
        fit_bins = np.logspace(np.log10(x.min()), np.log10(x.max()), num=nfit_bins+1)
    else:
        fit_bins = np.linspace(x.min(), x.max(), num=nfit_bins+1)

    mid_bins = (fit_bins[:-1] + fit_bins[1:]) / 2.0

    mean = np.array([])
    stdev = np.array([])
    n = np.array([])
    for xmin, xmax in zip(fit_bins[:-1], fit_bins[1:]):
        mask = np.logical_and(x > xmin, x <= xmax)
        if mask.sum() > 0:
            mean_el = y[mask].mean()
            #stdev_el = y[mask].std() / np.sqrt(len(y))
            stdev_el = y[mask].std()
            n_el = len(y[mask])
        else:
            mean_el = 0.0
            stdev_el = -1.0
            n_el = 0
        mean = np.append(mean, mean_el)
        stdev = np.append(stdev, stdev_el)
        n = np.append(n, n_el)

    mask = (n > 0)
    mean = mean[mask]
    stdev = stdev[mask]
    n = n[mask]
    mid_bins = mid_bins[mask]

    return mid_bins, mean, stdev, n

def draw_bin_avgs(ax, mid_bins, mean, stdev, n, use_log):
    ax.errorbar(mid_bins, mean, yerr=stdev/np.sqrt(n), fmt='o', color='black', linewidth=2)

    if draw_stdev_lines:
        ax.plot(mid_bins, mean + stdev, color='black', linestyle=':', linewidth=3, zorder=-15)
        ax.plot(mid_bins, mean - stdev, color='black', linestyle=':', linewidth=3, zorder=-15)

    return ax

def draw_bin_fit(ax, mid_bins, mean, stdev, x_min, x_max, stats_file, use_log):
    stdev[stdev == 0.0] = 0.1
    #fit data
    if use_log:
        #coefs, res, rank, sing vals, rcond = np.polyfit(np.log10(mid_bins), mean, 1, full=True)
        coefs, pcov = curve_fit(linear, np.log10(mid_bins), mean, sigma=stdev, p0=[0.0, 0.0])
    else:
        #coefs, stats = np.polynomial.polynomial.polyfit(mid_bins, mean, 1, full=True)
        coefs, pcov = curve_fit(linear, mid_bins, mean, sigma=stdev, p0=[0.0, 0.0])

    print('coefs =', coefs)

    m = coefs[0]
    b = coefs[1]

    ax.plot(x, y, color='white', linewidth=8) # to avoid blending with colormap background
    line = ax.plot(x, y, color='magenta', zorder=-10)

    if print_fit_params:
        if use_log:
            textstr = '$y = n \log x + b$ % (n, b)
        else:
            textstr = '$y = n x + b$ % (n, b)
        props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
        ax.text(0.75, 0.95, textstr, transform=ax.transAxes, fontsize=14,
                verticalalignment='top', bbox=props)

    if save_fit_params:
        with open(stats_file, "w") as fd:
260     fd.write("%g␣␣%g␣␣%g␣␣%g
" % (m, m_err, b, b_err))
261     return ax
262
263 def linear(x, slope, intercept):
264     return slope * x + intercept
265
266 def draw_data_fit(ax, x, y, x_min, x_max, use_log):
267     if remove_zero_strip:
268         mask = (np.abs(y) >= y_epsilon)
269         x = x[mask]
270         y = y[mask]
271     #fit data
272     if use_log:
273         coefs, residual, rank, singular_values, rcond = np.polyfit(np.log10(x), y, 1, full=True)
274     # coefs, stats = np.polynomial.polynomial.polyfit(np.log10(mid_bins), mean, 1, w=1.0/stdev, full=True)
275     # coefs, res, rank, singvals, rcond = np.polyfit(np.log10(mid_bins), mean, 1, full=True)
276     else:
277         coefs, residual, rank, singular_values, rcond = np.polyfit(x, y, 1, full=True)
278     # coefs, stats = np.polynomial.polynomial.polyfit(mid_bins, mean, 1, w=1.0/stdev, full=True)
279     # coefs, stats = np.polynomial.polynomial.polyfit(mid_bins, mean, 1, full=True)
280     print 'coefs␣=', coefs, '+/-', residual
281
282     m = coefs[0]
283     b = coefs[1]
284     if use_log:
285         x = np.logspace(np.log10(x_min), np.log10(x_max), 100)
286         y = m * np.log10(x) + b
287     else:
288         x = np.linspace(x_min, x_max, 100)
289         y = m * x + b
290     line = ax.plot(x, y, color='red')
291     if print_fit_params:
292         if use_log:
293             textstr = '$y␣=␣m␣\log␣x␣+␣b$
294             m␣=␣%g
295             b␣=␣%g$
296         else:
297             textstr = '$y␣=␣m␣x␣+␣b$
298             m␣=␣%g
299             b␣=␣%g$
300     props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
301     ax.text(0.75, 0.95, textstr, transform=ax.transAxes, fontsize=14,
302             verticalalignment='top', bbox=props)
303     if save_fit_params:
304         with open("fits_to_data.dat", "a") as fd:
305             fd.write("%g␣%g␣%g
" % (m, b, residual))
306         return ax
307
308 use_log = True
309 #use_log = False
310 z_log = True
311 #fit_bins = True
312 #fit_data = True
313 print_fit_params = False
314 save_fit_params = True
315 use_klypin = True
316 remove_zero_strip = False
317 y_epsilon = 0.01
318 x_labels = [47, 48, -1]
319 ylabel_m = r"$(M_{\mathrm{vir,2LPT}}␣-␣M_{\mathrm{vir,ZA}})␣/␣M_{\mathrm{vir,avg}}$"
320 ylabel_c = r"$(c_{\mathrm{2LPT}}␣-␣c_{\mathrm{ZA}})␣/ ␣c_{\mathrm{avg}}$"
321 #ylabel = r"$(M_{\mathrm{2LPT}} - M_{\mathrm{ZA}}) / M_{\mathrm{avg}}$"
322 n_cols = [4, 5, 6, 9, 10, 23, 24, 31, 32, 47, 48, 51, 52, 57, 58] # log10 columns
323 false:
324 # x_cols = [17, 18, 77, 78, 91, 92, 93, 94, 97, 98, 99, 100, 107, 108, 111, 112] # nolog columns
325 x_cols = []
326 x_log_cols = [-1]
327 #x_log_cols = [47, 48, -1]
328 xlabels = [r"$M_{\mathrm{vir,avg}}$", r"$M_{\mathrm{2LPT}}$", r"$M_{\mathrm{ZA}}$", r"$M_{\mathrm{avg}}$""]
329 #xlabels = [r"$M_{\mathrm{ZRT}}$", r"$M_{\mathrm{ZA}}$", r"$M_{\mathrm{avg}}$""]
330 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
331 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
332 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
333 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
334 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
335 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
336 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
337 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
338 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
339 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
340 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
341 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
342 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
343 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
344 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
345 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
346 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
347 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
348 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
349 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
350 #xlabels = [r"$\mathfrak{M}_{\mathrm{2LPT}} - \mathfrak{M}_{\mathrm{ZA}}$", r"$\mathfrak{M}_{\mathrm{avg}}$""]
351 184
c_source = 'density_profile'
c_source = 'rockstar'

plot_base_m = 'plots/diff_M_-_vs_-_'
plot_base_c = 'plots/diff_c_-_vs_-_'
plot_ext = '.eps'

stats_file_m = 'fits_to_bins_m.dat'
stats_file_c = 'fits_to_bins_c.dat'

plot_name = 'c_v_M200c_2lpt.eps'
fit_to_binned_data = True
fit_to_data = False
draw_stdev_lines = True

Rv1_col = 53
Rv2_col = 54
Rs1_col = 55
Rs2_col = 56

c_2lpt_col = 17
c_za_col = 18

nbins = 100
nfit_bins = 10

lt_cols = [17, 18, 37, 38]
lt_vals = [100.0, 100.0, 10.0, 10.0]

lt_cols = [4, 5]
lt_vals = [100, 100]

eq_cols = [109, 110]
eq_vals = [-1, -1]

eq_cols = [4, 5]
eq_vals = [0, 0]

colormap = cm.PuBuGn
colormap = cm.cubehelix_r
colormap = cm.ocean_r
colormap = cm.rainbow
colormap = cm.gnuplot2_r
colormap = cm.CMRmap_r

def add_white(orig_map, num):
    temp_cmap = cm.get_cmap(orig_map, num)
    vals = temp_cmap(np.arange(num))
    nfade = num / 7
    vals[nfade, 0] = np.linspace(1., vals[nfade-1,0], nfade)
    vals[nfade, 1] = np.linspace(1., vals[nfade-1,1], nfade)
    vals[nfade, 2] = np.linspace(1., vals[nfade-1,2], nfade)
    vals[nfade, 3] = np.linspace(0., vals[nfade-1,3], nfade)
    vals[0] = [1.0, 1.0, 0.0, 0.0]
    vals[1] = (vals[1] + [1.0, 1.0, 1.0, 1.0]) / 2.0
    newcmap = mpl.colors.LinearSegmentedColormap.from_list("custom_1", vals)
    return newcmap

colormap = add_white('rainbow', 30)

plot_dest_type = 'paper'
if plot_dest_type == 'paper':
    mpl.rcParams['font.family'] = 'serif'
    mpl.rcParams['font.size'] = 16
    mpl.rcParams['axes.linewidth'] = 3
    mpl.rcParams['lines.linewidth'] = 4
    mpl.rcParams['patch.linewidth'] = 4
    mpl.rcParams['xtick.major.width'] = 3
    mpl.rcParams['ytick.major.width'] = 3
    mpl.rcParams['xtick.major.size'] = 4
    mpl.rcParams['ytick.major.size'] = 4
    mpl.rcParams['xtick.minor.width'] = 2
    mpl.rcParams['ytick.minor.width'] = 2
    mpl.rcParams['xtick.minor.size'] = 4
    mpl.rcParams['ytick.minor.size'] = 4
    mpl.rcParams['lines.antialiased'] = True

if __name__ == '__main__':
    main()
K.2 PBS Submission Script (Bash)

```bash
#!/usr/bin/env bash

#PBS -M djsissom@gmail.com
#PBS -m bae
#PBS -l nodes=1:ppn=1
#PBS -l pmem=4000mb
#PBS -l mem=4000mb
#PBS -l walltime=1:00:00
#PBS -o out.log
#PBS -j oe

minsnap=0
maxsnap=61

Change to working directory
echo $PBS_NODEFILE
cd $PBS_O_WORKDIR

if [-e fits_to_bins_m.dat] && rm -v fits_to_bins_m.dat
else
if [-e fits_to_bins_c.dat] && rm -v fits_to_bins_c.dat
else
rm -v fits_to_data.dat
fi

#rm -v fits_to_data.dat

- end of script
```

K.3 Fit Slopes vs. Redshift (Python)

```python
#!/usr/bin/env python

import sys
import os
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
from scipy.special import gamma as Gamma
from scipy.special import psi as digamma
from ipdb import set_trace

def main():
 for filenum, file in enumerate(sys.argv[1:]):
 if (len(sys.argv[1:]) == 3):
 data1 = read_files(sys.argv[1], header_line = None)
 data2 = read_files(sys.argv[2], header_line = None)
 data3 = read_files(sys.argv[3], header_line = None)
 else:
 print('need 3 files')
 sys.exit(15)

 if fit_trend:
 with open(statsfile, 'w') as fd:
 fd.write('#plot
slope
slope_err
intercept
intercept_err
')
 echo 'Starting...

 for data in data1, data2, data3:
 data = data[data[:,0] >= minsnap]
 data1 = data1[data1[:,0] >= minsnap]
 data2 = data2[data2[:,0] >= minsnap]

 z = 1.0 / rsnapsnap - 1.0
 if (len(data1) == len(data2)):
```

186
z = z[-len(data1):]

for data in [data1, data2]:
    data[:, slope_err_col] = np.sqrt(data[:, slope_err_col])  # var to stdev
    data[:, intercept_err_col] = np.sqrt(data[:, intercept_err_col])  # var to stdev

    ax = make_plot(ax, data[:, z_col] - offset, data[:, slope_col], err = data[:, slope_err_col], color = 'blue', marker='o', label=label)

    if separate_axes:
        ax = ax.twinx()
        ax = make_plot(ax, data[:, z_col] + offset, data[:, intercept_col], err = data[:, intercept_err_col], color = 'red', marker='o', label=label)

    if fit_trend:
        ax, slope, slope_err, intercept, intercept_err = add_fit(ax, data[:, z_col], data[:, slope_col], err = data[:, slope_err_col], color='red', marker='o', linestyle=':', label='Kurtosis')
        save_fits(statsfile, name, slope, np.sqrt(slope_err), intercept, np.sqrt(intercept_err))

    ax.set_xlabel(xlabel, fontsize='x-large')
    ax.set_ylabel(ylabel, fontsize='x-large')
    ax.set_xlim(z[0] + 1.0, z[-1] - 1.0)
    ax.legend(loc='lower right')
    ax.set_ylim(-0.2, -1.5, -0.4, [0.5, 3.5, 0.1])

    ax = make_plot(ax, data[:, z_col] - offset, data[:, skew_col], err = data[:, skew_err_col], color = 'blue', marker='o', label='Skew')
    ax = make_plot(ax, data[:, z_col] + offset, data[:, kurt_col], err = data[:, kurt_err_col], color = 'red', marker='o', linestyle=':', label='Kurtosis')
    ax.legend(handles1, labels1, loc='lower right')

    ax.set_xlabel(xlabel, fontsize='x-large')
    ax.set_ylabel(ylabel, fontsize='x-large')
    ax.set_xlim(z[0] + 1.0, z[-1] - 1.0)
    ax.set_ylim(-10.0, -10.0, -1.0, [20.0, 20.0, 1.5])
    ax.legend(legend_lines1, legend_labels1, loc='lower right')

    if separate_axes:
        ax = ax.twinx()
        ax = make_plot(ax, data[:, z_col] + offset, data[:, skew_col], err = data[:, skew_err_col], color = 'blue', marker='o', linestyle=':', label='Skew')
        ax.set_xlabel(xlabel, fontsize='x-large')
        ax = make_plot(ax, data[:, z_col] + offset, data[:, kurt_col], err = data[:, kurt_err_col], color = 'red', marker='o', linestyle=':', label='Kurtosis')

        ax.legend(legend_lines2, legend_labels2, loc='lower right')

        ax.set_xlim(z[0] + 1.0, z[-1] - 1.0)
        ax.set_ylim(-0.2, -1.5, -0.4)
121    ax.errorbar(x, y, yerr=err, color=color, marker=marker, linestyle=linestyle)
122 else:
123    ax.errorbar(x, y, yerr=err, color=color, marker=marker, linestyle=linestyle, label=label)
124    return ax
125
126 def add_fit(ax, x, y, err=None, color='red'):
127    from scipy.optimize import curve_fit
128    p0 = [0.0, 0.0]
129    try:
130        coeffs, pcov = curve_fit(linear, x, y, sigma=err, p0=p0)
131    except RuntimeError:
132        print('********* Curve fit failed *********')
133        return np.nan, np.nan
134    xmin, xmax = ax.get_xlim()
135    x_fit = np.linspace(xmin, xmax, 20)
136    y_fit = linear(x_fit, coeffs[0], coeffs[1])
137    ax.plot(x_fit, y_fit, color=color, linestyle='--')
138    return ax, coeffs[0], pcov[0,0], coeffs[1], pcov[1,1]
139
140 def linear(x, slope, intercept):
141    return slope * x + intercept
142
143 def read_files(files, header_line=None, comment_char='#'):
144    header = None
145    data = None
146    if type(files) == str:
147        files = [files]
148    if header_line != None:
149        with open(files[0], 'r') as fd:
150            for line in range(header_line):
151                fd.readline()
152            header = fd.readline()
153            if header[0] != comment_char:
154                print('Header must start with a %s' % comment_char)
155                sys.exit(4)
156            header = header[1:]
157            header = header.split()
158    for file in files:
159        print('Reading file %s...' % file)
160        if data == None:
161            data = np.genfromtxt(file, comments=comment_char)
162        else:
163            data = np.append(data, np.genfromtxt(file, comments=comment_char), axis=0)
164    print('Finished reading files.')
165    if header_line == None:
166        return data
167    else:
168        return header, data
169
170 def save_fits(file, name, slope, slope_err, intercept, intercept_err):
171    with open(file, 'a') as fd:
172        fd.write('%s %g %g %g %g
' % (name, slope, slope_err, intercept, intercept_err))
173
174 plot_dest_type = 'paper'
175 if plot_dest_type == 'paper':
176    mpl.rcParams['font.family'] = 'serif'
177    mpl.rcParams['font.size'] = 16
178    mpl.rcParams['axes.linewidth'] = 3
179    mpl.rcParams['lines.linewidth'] = 4
180    mpl.rcParams['patch.linewidth'] = 4
181    mpl.rcParams['xtick.major.width'] = 3
182    mpl.rcParams['ytick.major.width'] = 3
183    mpl.rcParams['xtick.major.size'] = 8
184    mpl.rcParams['ytick.major.size'] = 8
185
186 colors = ['red', 'green', 'blue']
187 colors = ['black', 'black']
188 labels1 = ['$c$', r'$M_{\mathrm{vir}}$']
189 names = ['c_rockstar', 'Mvir']
190 xlabel = 'Redshift'
191 ylabel1 = r'$\Delta c$ Slope $((\log(M_{\odot}))^{-1})$
192 ylabel2 = r'$\Delta M_{\mathrm{vir}}$ Slope $((\log(M_{\odot}))^{-1})$
193 plot_base = 'plots/'
194 plot_ext = '.eps'
195 statsfile = 'plots/stats.dat'
196
197 z_col = -1
198 snap_col = 0
199 slope_col = 1
200 slope_err_col = 2
201
intercept_col = 3
intercept_err_col = 4

data_mean_col = 1
data_rms_col = 15

#z_col = -1
#snap_col = 0
#mean_col = 1
#mean_err_col = -2
#var_col = 2
#var_err_col = -2
#skew_col = 3
#skew_err_col = -2
#kurt_col = 4
#kurt_err_col = -2

offset = 0.06
#offset = 0.0

minsnap = 39
#minsnap = None

fit_trend = True
separate_axes = True
plot_intercept = False

if __name__ == '__main__':
    main()
Appendix L

Alternate Differential Distribution Redshift Trends Code (Python)

```python
#!/usr/bin/env python

import sys
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
from scipy.special import gamma as Gamma
from scipy.special import psi as digamma
from ipdb import set_trace

def main():
 if (len(sys.argv[1:]) == 4):
 data1 = read_files(sys.argv[1], header_line = None)
 data2 = read_files(sys.argv[2], header_line = None)
 data3 = read_files(sys.argv[3], header_line = None)
 rsnap_data = read_files(sys.argv[4], header_line = None)
 else:
 print 'need 4 files'
 sys.exit(15)

 if fit_mean_trend:
 with open(statsfile, 'w') as fd:
 fd.write('#plot slope slope_err intercept intercept_err
')

 if minsnap > 0:
 data1 = data1[data1[:,0] >= minsnap]
 data2 = data2[data2[:,0] >= minsnap]
 data3 = data3[data3[:,0] >= minsnap]
 z = 1.0 / rsnap_data[:,1] - 1.0
 if (len(data1) == len(data2)) and (len(data1) == len(data3)): z = z[-len(data1):]
 else:
 sys.exit(16)

 data1 = np.column_stack((data1, z))
 data2 = np.column_stack((data2, z))
 data3 = np.column_stack((data3, z))

 #~~ ~~~~~~~~~~~~~~~~~~~~~~~#
 # make mean and stdv plots #
 #~~ ~~~~~~~~~~~~~~~~~~~~~~~#

 for (data, ylabel, label, name) in zip([data1, data2, data3], ylabels1, labels1, names):
 print 'Making %s plot...' % (name + ' xvals')
 fig = plt.figure(figsize=(9.0, 6.0))
 ax = fig.add_subplot(111)

 ax = make_plot(ax, data[:,z_col], data[:,peak_col], err = None, color = 'black', marker='o', linestyle='-', label=None)

 for (x_val_col, color) in zip(x_val_cols, colors1):
 ax = make_plot(ax, data[:,z_col], data[:,x_val_col], err = None, color = color, marker='o', linestyle='--', label=None)

 #if add_rms_line:
 # ax = make_plot(ax, data[:,z_col], data[:,data_rms_col] , color = 'green', linestyle=':')

 if fit_mean_trend:
 ax, slope, slope_err, intercept, intercept_err = add_fit (ax, data[:,z_col], data[:,mean_col], err=data[:,mean_err_col], color='red')
 #save_fits(statsfile, name, slope, np.sqrt(slope_err), intercept, np.sqrt(intercept_err))

 ax.set_xlabel(xlabel, fontsize='x-large')
 ax.set_ylabel(ylabel, fontsize='x-large')

 fig.tight_layout()
 fig.savefig(plot_base + name + '_xvals' + plot_ext, bbox_inches='tight')

 #~~ ~~~~~~~~~~~~~~~~~~~~~~~#

 for (data, ylabel, label, name) in zip([data1, data2, data3], ylabels2, labels1, names):
 print 'Making %s plot...' % (name + ' sumfrac')
 fig = plt.figure(figsize=(9.0, 6.0))
 ax = fig.add_subplot(111)

 ax = make_plot(ax, data[:,z_col], data[:,data_rms_col], color = 'green', linestyle=':')

 if fit_mean_trend:
 ax, slope, slope_err, intercept, intercept_err = add_fit (ax, data[:,z_col], data[:,mean_col], err=data[:,mean_err_col], color='red')
 save_fits(statsfile, name, slope, np.sqrt(slope_err), intercept, np.sqrt(intercept_err))

 ax.legend(loc='lower right')
 ax.set_xlim(z[0] + 1.0, z[-1] - 1.0)
 ax.invert_xaxis()

 fig.tight_layout()
 fig.savefig(plot_base + name + '_sumfrac' + plot_ext, bbox_inches='tight')

 #~~ ~~~~~~~~~~~~~~~~~~~~~~~#
```

190
for (sum_frac_col, color) in zip(sum_frac_cols, colors2):
    ax = make_plot(ax, data[:,z_col], data[:,sum_frac_col], err = None, color = color, marker='o', linestyle='--', label=None)
for (doublesum_frac_col, color) in zip(doublesum_frac_cols, colors2):
    ax = make_plot(ax, data[:,z_col], data[:,doublesum_frac_col], err = None, color = color, marker='o', linestyle='--', label=None)
ax.set_xlabel(xlabel, fontsize='x-large')
ax.set_ylabel(ylabel, fontsize='x-large')
ax.set_xlim(z[0] + 1.0, z[-1] - 1.0)
ax.set_yscale('log')
fig.tight_layout()
fig.savefig(plot_base + name + '_sumfrac' + plot_ext, bbox_inches='tight')
print 'Finished all plots.'

def make_plot(ax, x, y, err=None, color='black', marker='None', linestyle='None', label=None):
    if err == None:
        if label == None:
            ax.plot(x, y, color=color, marker=marker, linestyle=linestyle)
        else:
            ax.plot(x, y, color=color, marker=marker, linestyle=linestyle, label=label)
    else:
        if label == None:
            ax.errorbar(x, y, yerr=err, color=color, marker=marker, linestyle=linestyle)
        else:
            ax.errorbar(x, y, yerr=err, color=color, marker=marker, linestyle=linestyle, label=label)
    return ax

def add_fit(ax, x, y, err=None, color='red'):
    from scipy.optimize import curve_fit
    p0 = [0.0, 0.0]
    try:
        coeffs, pcov = curve_fit(linear, x, y, sigma=err, p0=p0)
        return np.nan, np.nan
    except RuntimeError:
        print '********* Curve fit failed *********
        return np.nan, np.nan
    xmin, xmax = ax.get_xlim()
    x_fit = np.linspace(xmin, xmax, 20)
    y_fit = linear(x_fit, coeffs[0], coeffs[1])
    ax.plot(x_fit, y_fit, color=color, linestyle='--')
    return ax, coeffs[0], pcov[0,0], coeffs[1], pcov[1,1]

de linear(x, slope, intercept):
    return slope * x + intercept

def read_files(files, header_line = None, comment_char = '#'):
    header = None
    data = None
    if type(files) == str:
        files = [files]
    if header_line != None:
        with open(files[0], 'r') as fd:
            for line in range(header_line):
                fd.readline()
            header = fd.readline()
        if header[0] != comment_char:
            print 'Header must start with a "' + comment_char + '"
            sys.exit(4)
        header = header[1:]
        header = header.split()
    for file in files:
        print 'Reading file ' + file + '
        if data == None:
            data = np.genfromtxt(file, comments=comment_char)
        else:
            data = np.append(data, np.genfromtxt(file, comments=comment_char), axis=0)
        print 'Finished reading files.'
    if header_line == None:
        return data
    else:
        return header, data

def save_fits(file, name, slope, slope_err, intercept, intercept_err):
    with open(file, 'a') as fd:
        fd.write('Yn.Yn.Yn.Yn.Yn
% (name, slope, slope_err, intercept, intercept_err)
plot_dest_type = 'paper'
if plot_dest_type == 'paper':
mpl.rcParams['font.family'] = 'serif'
mpl.rcParams['font.size'] = 16
mpl.rcParams['axes.linewidth'] = 3
mpl.rcParams['patch.linewidth'] = 4
mpl.rcParams['xtick.major.width'] = 3
mpl.rcParams['ytick.major.width'] = 3
mpl.rcParams['xtick.major.size'] = 8
mpl.rcParams['ytick.major.size'] = 8

colors = ['red', 'green', 'blue']
labels1 = [r'$c$', r'$M_{\mathrm{vir}}$', r'$X_{\mathrm{off}}$']
names = ['c_rockstar', 'Mvir', 'Xoff']
xlabel = 'Redshift'
ylabels1 = [r'$\Delta' \ c(f_{h},z)$ and $\Delta' \ c_{\mathrm{peak}}$', r'$\Delta' \ M_{\mathrm{vir}}(f_{h},z)$ and $\Delta' \ M_{\mathrm{vir, \ peak}}$', r'$\Delta' \ X_{\mathrm{off}}(f_{h},z)$ and $\Delta' \ X_{\mathrm{off, \ peak}}$]
ylabels2 = [r'$f_{h}(\Delta' \ c,z)$', r'$f_{h}(\Delta' \ M_{\mathrm{vir}},z)$', r'$f_{h}(\Delta' \ X_{\mathrm{off}},z)$']

plot_base = 'plots/'
plot_ext = '.eps'
statsfile = 'plots/stats.dat'
z_col = -1
snap_col = 0
mean_col = 7
mean_err_col = 8
var_col = 9
var_err_col = 10
skew_col = 3
skew_err_col = -2
kurt_col = 13
kurt_err_col = 14
beta_col = 13
beta_err_col = 14

data_mean_col = 1
data_rms_col = 15
peak_col = 1
x_val_cols = np.array([4, 6, 8]) + 2
sum_frac_cols = np.array([2, 4, 6, 8]) + 2 + 9
doublesum_frac_cols = sum_frac_cols + 9

offset = 0.06

offset = 0.0

minsnap = 39

fit_mean_trend = False
add_rms_line = False

if __name__ == '__main__':
    main()
Appendix M

Miscellaneous Scripts

M.1 Directory Structure Setup (Bash)

```bash
#!/usr/bin/env bash

minsnap=0
maxsnap=61
minbox=1
maxbox=3

for ((i=$minbox; i<=$maxbox; i++)); do
 if [! -e ../box$i]; then
 mkdir -v ../box$i
 fi
 if [! -e ../box$i/2lpt]; then
 mkdir -v ../box$i/2lpt
 fi
 if [! -e ../box$i/za]; then
 mkdir -v ../box$i/za
 fi
 if [! -e ../box$i/crossmatch]; then
 mkdir -v ../box$i/crossmatch
 fi

 cp -v run_*.pbs ../box$i/.
 cp -v postprocess.sh ../box$i/.

 for ((snap=$minsnap; snap<=$maxsnap; snap++)); do
 if [$snap -lt 10]; then
 j=00$snap
 elif [$snap -lt 100]; then
 j=0$snap
 fi
 ln -v -s ~/projects/data/2lpt/box$i/2lpt_512_z300_PM_$j ../box$i/2lpt/snap$j/particles/2lpt_512_z300_PM_$j
 ln -v -s ~/projects/data/za/box$i/za_512_z300_PM_$j ../box$i/za/snap$j/particles/za_512_z300_PM_$j
 done
done
```

M.2 CrossMatch Setup (Bash)

```bash
#!/usr/bin/env bash

minsnap=0
maxsnap=61
minbox=1
maxbox=3

for ((i=$minbox; i<=$maxbox; i++)); do
 if [! -e ../box$i/crossmatch]; then
 mkdir -v ../box$i/crossmatch
 fi

 cp -v run_crossmatch.pbs ../box$i/.

 for ((snap=$minsnap; snap<=$maxsnap; snap++)); do
 ln -v -s ~/projects/data/2lpt/box$i/2lpt_512_z300_PM_$j
 `/home/sissomdj/projects/simulations/rockstar/box$i/2lpt/snap$j/particles/2lpt_512_z300_PM_$j`
 ln -v -s ~/projects/data/2lpt/box$i/2lpt_512_z300_PM_$j`/snapnames.lat`
 echo "BGC2_SNAPNAMES_2lpt" >> ../box$i/2lpt/snap$j/onenode.cfg
 echo "BGC2_SNAPNAMES_za" >> ../box$i/za/snap$j/onenode.cfg
 echo "FILENAME_2lpt" >> ../box$i/2lpt/snap$j/onenode.cfg
 echo "FILENAME_za" >> ../box$i/za/snap$j/onenode.cfg
 done
done
```
if [ $snap -lt 10 ]; then
    j=0$ SNAP
elif [ $snap -lt 100 ]; then
    j=00$snap
fi

if [ ! -e ../box$i/crossmatch/snap$j ]; then
    mkdir -v ../box$i/crossmatch/snap$j
fi

cp -v -r crossmatch_proto/* ../box$i/crossmatch/snap$j/ .

echo "OUTPUT_DIR␣␣␣␣␣␣␣␣/home/sissomdj/projects/simulations/rockstar/box$i/crossmatch/snap$j"
>> ../box$i/crossmatch/snap$j/rockstar_2lpt.param

echo "FIRST_GROUPDIR␣␣␣␣/home/sissomdj/projects/simulations/rockstar/box$i/2lpt/snap$j/halos"
>> ../box$i/crossmatch/snap$j/rockstar_2lpt.param

echo "SECOND_GROUPDIR␣␣␣/home/sissomdj/projects/simulations/rockstar/box$i/za/snap$j/halos"
>> ../box$i/crossmatch/snap$j/rockstar_2lpt.param

done
done

M.3 Individual Snapshot ROCKSTAR Run Script (Bash)

#!/bin/bash

if [ -e out.log ]; then
    mv -v out.log out.log.bak
fi

if [ -e server.out ]; then
    mv -v server.out server.out.bak
fi

if [ -e clients.out ]; then
    mv -v clients.out clients.out.bak
fi

if [ -e auto-rockstar.cfg ]; then
    rm -v auto-rockstar.cfg
fi

if [ $(ls halos/* 2> /dev/null | wc -l) != 0 ]; then
    rm -rv halos/*
fi

M.4 All Snapshots ROCKSTAR 2lpt PBS Submission Script (Bash)

#!/usr/bin/env bash

#PBS -M djsissom@gmail.com
#PBS -m bae
#PBS -l nodes=1:ppn=10
#PBS -l pmem=3000mb
#PBS -l mem=30000mb
#PBS -l walltime=6:00:00
#PBS -o out_2lpt.log
#PBS -j oe

echo $PBS_NODEFILE

cd $PBS_O_WORKDIR

for snapdir in 2lpt/*; do
    # Change to working directory
    echo Working on $snapdir...
    cd $PBS_O_WORKDIR/$snapdir

    # Start the server
    rockstar -c onenode.cfg &> server.out &

    # Wait for auto-rockstar.cfg to be created
    perl -e 'sleep 1 while (!(e "halos/auto-rockstar.cfg"))'
    rm -v halos/auto-rockstar.cfg .

    # Execute the reader processes
    mpxexec -v server -n 1 rockstar -c auto-rockstar.cfg >> clients.out 2>&1 &
    sleep 20

    # Execute the analysis processes
    mpxexec -v server -n 8 rockstar -c auto-rockstar.cfg >> clients.out 2>&1
```bash
#!/usr/bin/env bash

#PBS -M djsissom@gmail.com
#PBS -m bae
#PBS -l nodes=1:ppn=10
#PBS -l pmem=30000mb
#PBS -l mem=30000mb
#PBS -l walltime=6:00:00
#PBS -o out_za.log
#PBS -j oe

echo $PBS_NODEFILE
cd $PBS_O_WORKDIR

for snapdir in za/*; do
 echo Working on $snapdir...
cd $PBS_O_WORKDIR/$snapdir

 # Start the server
 rockstar -c onenode.cfg &> server.out &

 # Wait for auto-rockstar.cfg to be created
 perl -e 'sleep 1 while (!(-e "halos/auto-rockstar.cfg"))'
mv halos/auto-rockstar.cfg .

 # Execute the reader processes
 mpiexec -verbose -n 1 rockstar -c auto-rockstar.cfg >> clients.out 2>&1 &
sleep 20

 # Execute the analysis processes
 mpiexec -verbose -n 8 rockstar -c auto-rockstar.cfg >> clients.out 2>&1

 echo "Finished $snapdir"
 done

- end of script
```

M.5 All Snapshots ROCKSTAR ZA PBS Submission Script (Bash)

```bash
#!/usr/bin/env bash

startdir='pwd'

for snapdir in (2lpt,za)/*; do
 echo Working on $snapdir...
cd $startdir/$snapdir

 ./postprocess

 done

- end of script
```

M.6 All Snapshots ROCKSTAR Post-Process Script (Bash)

```bash
#!/usr/bin/env bash

for snapdir in crossmatch/*; do
 echo Working on $snapdir...
cd $PBS_O_WORKDIR/$snapdir

 # Change to working directory
 mpiexec -verbose -n 1 crossmatch rockstar_2lpt.param > out_2lpt_first.log 2>&1
 mpiexec -verbose -n 1 crossmatch rockstar_za.param > out_za_first.log 2>&1
 echo "Finished $snapdir"

 done

- end of script
```

M.7 All Snapshots CROSSMATCH PBS Submission Script (Bash)

```bash
#!/usr/bin/env bash

for snapdir in crossmatch/*; do
 echo Working on $snapdir...
cd $PBS_O_WORKDIR/$snapdir

 mpiexec -verbose -n 1 crossmatch rockstar_2lpt.param > out_2lpt_first.log 2>&1
 mpiexec -verbose -n 1 crossmatch rockstar_za.param > out_za_first.log 2>&1
 echo "Finished $snapdir"

 done

wait

- end of script
```

195
M.8 All Snapshots Density Profile PBS Submission Script (Bash)

```
#!/usr/bin/env bash

#PBS -M djsisson@gmail.com
#PBS -m bae
#PBS -l nodes=124:ppn=1
#PBS -l pmem=4000mb
#PBS -l mem=496000mb
#PBS -l walltime=1:00:00
#PBS -o out_density_profile.log
#PBS -j oe

echo $PBS_NODEFILE
cd $PBS_O_WORKDIR

for snapdir in {2lpt,za}/snap*/halos;
 do
 echo Working on $snapdir...
 cd $PBS_O_WORKDIR/$snapdir

 mpiexec -verbose -n 1 density_profile halos_0.*.bgc2 > density_profile_out.log 2>&1
 echo "Finished $snapdir"
 done

wait

- end of script
```