(Photo)electrocatalysis of molecular oxygen reduction by S-doped graphene decorated with a star-shaped oligothiophene

Anastasios Stergiou,* Dimitris K. Perivoliotis and Nikos Tagmatachris*

Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece. E-mail: astergiou@eie.gr (A. Stergiou); tagmatar@eie.gr (N. Tagmatachris).
Figure S1. 1H and 13C NMR spectra of compound 2 obtained in CDCl$_3$.
Figure S2. 1H NMR spectrum of compound 3 obtained in CDCl$_3$.

![Figure S2. 1H NMR spectrum of compound 3 obtained in CDCl$_3$.](image)
Figure S3. 1H NMR spectrum of compound 4 obtained in CDCl$_3$.
Figure S4. 1H NMR spectrum of star-shaped compound 5 obtained in CDCl$_3$.

[Image of the NMR spectrum]
Figure S5. 13C NMR spectrum of compound 5 obtained in CDCl$_3$.
Figure S6. 1H and 13C NMR spectra of star-shaped oligothiophene 1 obtained in CDCl$_3$.
Figure S7. MALDI-TOF mass spectrum of oligothiophene I.
Figure S8. ATR-IR spectra of (a) GO (grey) and SG (black), and (b) 1 (orange) and 1/SG (red).
Figure S9. TGA graphs of (a) GO (grey), (b) SG (black) and (c) 1/SG (red). Dotted lines represent the first derivative of mass/temperature.
Figure S10. (a) UV-Vis and (b) fluorescence emission (λ_{exc} 441 nm) spectra of 1 (orange) and 1/SG (red) recorded in benzonitrile. (c, d) UV-Vis and fluorescence emission (λ_{exc} 441 nm) spectra of reference 1/GO (blue). The insets of (b, d) represent the magnified fluorescence emission intensity of the ensembles.
Figure S11. CV of 1 (magenta), 1/SG (red) and 1/GO (blue) in N$_2$-saturated 0.1 M TBAPF$_6$ in benzonitrile.
Figure S12. CV curves for GO, SG, 1, 1/GO, 1/SG and commercial Pt/C in N₂ (black) and O₂ (red) saturated aqueous 0.1M KOH electrolyte.
Figure S13. LSV curves for GO, SG, 1, 1/GO, 1/SG and commercial Pt/C in N₂ (black) and O₂ (red) saturated aqueous 0.1M KOH electrolyte.
Table S1. Onset (E_{on}) and peak (E_p) reduction potentials of the electrocatalytic O$_2$ reduction derived from the CV and LSV curves recorded in O$_2$ saturated aqueous 0.1M KOH electrolyte and at a scan rate of 50 mV/s. All potentials are versus the Hg/HgO electrode, at 25°C.

Material	ORR E_{on} (CV)	ORR E_p (CV)	ORR E_{on} (LSV)	ORR E_p (LSV)
1	-194mV	-391mV	-172mV	-386mV
GO	-181mV	-390mV	-172mV	-398mV
SG	-133mV	-377mV	-132mV	-383mV
1/GO	-179mV	-345mV	-184mV	-336mV
1/SG	-129mV	-320mV	-120mV	-327mV
Pt/C (5% Pt)	-76mV	-315mV	-78mV	-323mV
Figure S14. ORR polarization curves at 1600 rpm for SG (left panel) and 1/SG (right panel) recorded in O$_2$ saturated aqueous 0.1M KOH electrolyte vs Hg/HgO.
Figure S15. Capacitance curves for SG (up left panel), 1/SG (up right panel) and GO (bottom panel) recorded in N$_2$ saturated aqueous 0.1M KOH electrolyte at different scan rates (0.1, 0.2, 0.5 and 1.0 V/s) vs Hg/HgO. The capacitance was calculated to be 0.8×10^{-4} F for GO, 1.4×10^{-4} F for SG and 9.5×10^{-4} F for $1/SG$ ensembles, by integrating the average graph-area derived by the voltammographs in different scan rates.
Figure S16. Tauc plots of 1/SG (red) and 1 (orange) for calculating the band-gap.