Incidence, risk factors, and prognosis of meningiomas with distant metastases at presentation

Huy Gia Vuong, Tam N. M. Ngo, and Ian F. Dunn

Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA (H.G.V.); Department of Neurosurgery, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA (H.G.V.); Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam (T.N.M.N.); Department of Neurosurgery, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA (I.F.D.)

Corresponding Author: Ian F. Dunn, MD, Department of Neurosurgery, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA (Ian-Dunn@ouhsc.edu).

Abstract

Background. Distant metastases (DM) at presentation in meningiomas is a very rare event, and the incidence and factors predicting this are uncertain. This population-based study also aimed to investigate the prognostic implication of DM at presentation and clinical parameters to prognosticate the overall survival (OS) of meningiomas presenting with DM (M1).

Methods. We accessed the Surveillance, Epidemiology, and End Results program to search for patients who were diagnosed with meningioma between 2004 and 2016. The log-rank test was used to compare Kaplan–Meier survival curves and multivariate Cox regression model was utilized to evaluate the prognostic parameters of meningiomas with DM at presentation.

Results. The incidence of DM at presentation among all meningiomas was 0.18%. Clinical variables associated with this event were male gender, large tumor size, and WHO grade III. The presence of DM at diagnosis conferred a shorter survival in comparison to those without DM (HR = 2.015; 95% CI = 1.600–2.536). Older patient age, male gender, malignant histology, and the lesser extent of resection were independent prognostic factors that could negatively impact OS of M1 meningiomas. Radiotherapy and chemotherapy were not associated with an improved outcome for these patients.

Conclusion. Our study highlighted the clinical and prognostic factors of M1 meningiomas. These data suggest that a greater extent of resection is associated with increased OS across a nationwide analysis and emphasize the need to establish the standards of care in these patients.

Key Points

- Meningiomas presenting with distant metastasis at diagnosis had a worse prognosis as compared to those without distant metastasis.
- Risk factors for meningiomas with distant metastasis at presentation were male gender, large tumor size, and WHO grade III.

Meningioma is the most frequently reported primary brain tumor in the United States with an annual age-adjusted incidence rate of 8.58 per 100,000 persons. Meningioma is typically seen in females at lower grade and its incidence increases with age. The 10-year overall survival (OS) of benign and malignant meningiomas is 83.7% and 61.7%, respectively. The current World Health Organization (WHO) classification has divided this tumor entity into 3 different grades with distinct prognoses; most meningiomas are grade I and associated with a benign clinical course, although there are subgroups...
Meningiomas with DM at presentation

Importance of the Study

Distant metastasis (DM) at presentation in meningiomas is an extremely rare event and little is known about its incidence, associated risk factors, as well as its impact on patient outcome. In this population-based study using the Surveillance, Epidemiology, and End Result database, the incidence of DM at presentation was 0.18% among all meningiomas. We demonstrated clinical variables associated with this event including male gender, large tumor size, and malignant histology. The presence of DM at diagnosis conferred a shorter survival in comparison to those without DM. Among meningiomas presenting with DM, older patient age, male gender, malignant histology, and the lesser extent of resection were independent prognostic factors that could negatively impact overall survival. Radiotherapy and chemotherapy did not add survival advantages to these patients.

Materials and Methods

The SEER 18 registries custom database was used to search for meningioma cases from 2004 to 2016 without age restriction. The year 2004 was selected as the cut-off year because the data of DM at diagnosis was added in SEER from this year onward. Patients who had autopsy or death certificate only were excluded. Cases with missing information for demographic (age, gender, and race), clinical (WHO grade, primary tumor site, and DM at presentation), treatment (extent of resection, radiotherapy, and chemotherapy), and follow-up data were also removed. Our selection criteria resulted in a final cohort of 71,906 meningiomas. Data regarding the metastatic sites of M1 meningiomas were only available for cases diagnosed in 2010 and onward.

DM at presentation was categorized as M0 (without DM) and M1 (with DM). M0 meningiomas included the Collaborative Stage (CS) code of 00. M1 cases included the CS codes of 10, 20, 30, 40, 50, and 60. Cases with the code of 99 were regarded as missing data and subsequently deleted from the analyses. The associations of DM at presentation with baseline patient characteristics were compared using the Mann–Whitney test and Student t-test for continuous variables, and Chi-square test and Fisher’s exact test for categorical covariates. The Kaplan–Meier curve and log-rank test were computed to analyze all-cause mortality differences between patients with M0 and M1. A multivariate Cox proportional hazards regression was used to assess the impact of DM at presentation on all-cause mortality. To assess prognostic parameters for M1 meningioma, we computed a multivariate Cox regression model adjusted for relevant parameters. The median follow-up of patients was 50 months. All P-value are 2-sided and a value of less than 0.05 was considered statistically significant. Statistical analyses were performed using SPSS version 20 (IBM).

Results

Baseline Patient Characteristics

We included a total of 71,906 meningiomas for analyses with a mean age of 64 years. One hundred and thirty-three patients were identified to have DM at presentation and the incidence of M1 among all meningiomas was 0.18%. Table 1 shows the association of DM at presentation with clinicopathological parameters. We found significant associations of DM at presentation with gender, tumor size, WHO grades, extent of resection, administration of radiotherapy, and chemotherapy (P-value < .001). There were no correlations of M1 with age and race. M1 meningiomas were also associated with an increased mortality rate and a compromised overall survival (OS).

Regarding the metastatic sites, data were provided in only 30 cases. Metastases to bones were most commonly seen among M1 meningioma (70%), followed by the central nervous system (30%), lungs (10%), and liver (7%). Five cases (17%) had metastases to multiple sites.

Subgroup Analyses Stratified by WHO Grades

Supplementary Table S1 shows the associations of DM at presentation status with clinical and treatment covariates in different WHO grades. Gender and tumor size were no longer significant risk factors for the occurrence of DM in each grade. In WHO grade I meningiomas, the presence of DM at time of diagnosis was associated with more aggressive treatments (wide extent of resection, use of radiotherapy, and chemotherapy) whereas treatments in
Vuong et al. Meningiomas with DM at presentation

Neuro-Oncology Advances

WHO grade II and III meningiomas were mostly similar between patients with and without DM at presentation. In WHO grade I and II, the mortality rate and patient survival were not statistically different between meningiomas with and without DM. On the other hand, the presence of DM at presentation conferred poorer outcomes in malignant meningiomas (WHO grade III).

Impact of DM at Presentation on Patient OS

Kaplan–Meier curve and the log-rank test demonstrated that the presence of DM at time of diagnosis is associated with a dismal outcome (P-value < .001; Figure 1). The negative impact of DM at presentation on patient OS was further confirmed by a multivariate Cox regression model adjusted for age, gender, race, WHO grade, extent of resection, radiation, and chemotherapy, we demonstrated several significant prognostic factors that can impact patient OS of M1 meningioma (Table 3). Older age at diagnosis, male gender, and malignant histology conferred a negative impact on patient survival. In addition, meningioma patients treated with STR or GTR were also associated with a superior OS in comparison to patients treated with biopsy only. The administration of radiation or chemotherapy added no survival benefits to metastatic meningiomas.

Discussion

Distant metastasis is an extremely uncommon event in patients with meningioma with an estimated incidence of less than 1% of meningiomas.3,7 In an institutional study with 396 meningiomas, the incidences of DM among all cases and malignant meningiomas were 0.76% and 43%, respectively. As opposed to previous hypotheses that only malignant meningiomas develop DM,7 our findings unexpectedly revealed that about one-third of metastatic meningiomas were grade I. Earlier studies reported metastatic meningiomas only in clinically symptomatic patients.10 With the preponderance and ease of surveillance imaging studies and the increased use of whole-body

Table 1. The Associations of Clinicopathological Parameters, Treatments, and Survival with Distant Metastasis at Presentation in Meningiomas

DM at Presentation	All Cases	Entire Cohort (n = 71,906)		
	M0	M1		
Patient no. (%)	71,906	71,773 (99.8)		
Age, median (IQR) (years)	65 (53–76)	65 (53–76)	62 (53–72)	.078
Gender		.001		
Female, no. (%)	53,169	53,094 (74.0)		
Male, no. (%)	18,737	18,679 (26.0)		
Race		79 (25.6)		
White, no. (%)	57,540	57,441 (80.0)		
Non-white, no. (%)	14,366	14,332 (20.0)		
Tumor size, median (IQR) (cm)	22 (14–36)	22 (14–36)	45 (34.5–60)	<.001
WHO grade		<.001		
Grade I, no. (%)	67,531	67,492 (94.0)		
Grade II, no. (%)	2729	2720 (3.8)		
Grade III, no. (%)	1646	1561 (2.2)		
Extent of resection		85 (63.9)		
Biopsy, no. (%)	43,638	43,598 (60.7)		
STR, no. (%)	13,815	13,766 (19.2)		
GTR, no. (%)	14,453	14,409 (20.1)		
Radiotherapy, no. patients (%)	6510	6467 (9.0)	43 (32.3)	<.001
Chemotherapy, no. patients (%)	187	178 (0.2)	9 (0.6)	<.001
Patient mortality, no. patients (%)	17703	17626 (24.6)	77 (57.9)	<.001
Survival, median (IQR) (months)	50	50 (25–84)	35 (8–69)	<.001

GTR, gross total resection; IQR, interquartile range; SD, standard deviation; STR, subtotal resection; WHO, World Health Organization.

In a multivariate Cox regression model adjusted for age, gender, race, WHO grade, extent of resection, receipt of radiation, and chemotherapy, we demonstrated several significant prognostic factors that can impact patient OS of M1 meningioma (Table 3). Older age at diagnosis, male gender, and malignant histology conferred a negative impact on patient survival. In addition, meningioma patients treated with STR or GTR were also associated with a superior OS in comparison to patients treated with biopsy only. The administration of radiation or chemotherapy added no survival benefits to metastatic meningiomas.

Prognostic Factors of Meningiomas Presenting with DM at Time of Diagnosis

Among 133 M1 meningiomas, older age, male gender, non-white race, large tumor size, malignant histology, and the administration of chemotherapy were significantly associated with an increased mortality rate (Table 2).
imaging, more metastatic meningiomas identified incidentally have been reported.3,9–11

Several clinical parameters have been linked to the development of systemic spread in meningiomas such as venous sinus invasion, nuclear pleomorphism, tumor necrosis, high mitotic rate, papillary and malignant histology, and tumor relapse.5,12,13 However, these criteria are mainly seen in malignant meningiomas and may not explain the metastatic occurrence in benign cases. Of note, the majority of metastases develop during the follow-up period,3 and limited data are known regarding the clinical importance of DM at presentation in meningioma. We demonstrated several risk factors of this rare event including male gender, large primary tumor size, and high-grade tumor. Additionally, patients with DM at presentation had a significantly higher rate of a greater extent of resection, radiotherapy, and chemotherapy administration.

Stratified by WHO grades, however, we failed to identify significant risk factors for DM at presentation, probably due to the small sample size in each grade. Treatment modalities were only statistically different for benign meningiomas (WHO grade I) with and without DM. In high-grade tumors, the treatment approaches were comparable between M0 and M1 groups with the only exception of radiotherapy administration in WHO grade II cases. Our findings signify that high tumor grade were associated with aggressive treatment plans regardless of DM status.

Medulloblastoma and atypical teratoid/rhabdoid tumor (ATRT) were among the newly diagnosed primary brain tumors with the highest risk for DM.14 In contrast, glioma and meningioma are associated with the lowest risk.14 The most common metastatic site of meningiomas is the lung,3 indicating that the hematogenous spread via the jugular veins may be the most frequent pathway for tumor dissemination. Metastasis to the liver may occur if the tumor cells enter the inferior vena cava system via the right atrium.16 Less commonly, meningioma cells may also spread through the paravertebral venous plexus to the vertebrae, kidney, and adrenal glands or through the lymphatic vessels and cerebrospinal fluid.16–18

Because meningiomas presenting with DM are very rare, there are no guidelines or consensus on staging and management of these cases. It is of clinical interest to determine the prognostic factors to predict the survival of these patients and to identify molecular features which may be associated with metastatic potential. Our results highlighted some independent parameters that can negatively influence patient survival of M1 meningioma including increased age, male gender, WHO grade III, and biopsy only of primary tumor. The use of radiation and chemotherapy in M1 cases did not benefit patients with metastases and tended to have a higher risk of mortality; however, the results were not statistically significant, underscoring the importance of aggressive surgical resection of the primary tumor. Our findings can help clinicians better evaluate patient prognosis and consider appropriate treatment plans for patients presenting with remote metastasis at diagnosis.

Our study has several limitations that need to be outlined. First, we could not include primary tumor locations in our analysis since most of M1 cases were found in meninges, not otherwise specified (70%). Second, other important covariates including multifocality, patient performance status, the development of tumor recurrence and/or new/additional metastases during follow-up, and

Figure 1. Kaplan–Meier curve illustrating the overall survival of M0 and M1 meningiomas.
histological features (e.g., tumor necrosis, nuclear pleomorphism, number of mitoses, Ki67 index) that can affect the survival analysis were not available. The study also is subject to the inherent limitations of large population-based datasets. And finally, the rarity of this event resulted in difficulty identifying meaningful risk factors in each tumor grade. Future SEER cohort analyses should aim to reinvestigate these risk factors in different WHO grades.

Specific biological attributes of meningioma are likely to govern metastatic potential. Indeed, efforts have been made to characterize the genomic profiles of metastatic meningiomas to better understand the biologic nature of meningiomas with DM at presentation. The table below shows the associations of clinicopathological parameters and treatment modalities with all-cause mortality of M1 meningiomas.

Table 2. The Associations of Clinicopathological Parameters and Treatment Modalities with All-cause Mortality of M1 Meningiomas

Meningioma with M1	Patient mortality	P-value	
	Dead (n = 77)	Alive (n = 56)	
Age, median (IQR) (years)	66 (57–72)	55.5 (48.8–70)	.002
Gender			
Female, no. (%)	35 (45.5)	40 (71.4)	.003
Male, no. (%)	42 (54.5)	16 (28.6)	
Race			
White, no. (%)	52 (67.5)	47 (83.9)	.032
Non-white, no. (%)	25 (32.5)	9 (16.1)	
Tumor size, median (IQR) (cm)	49.5 (40–60)	35 (15.5–47.5)	<.001
WHO grade			
Grade I, no. (%)	14 (18.2)	25 (44.6)	<.001
Grade II, no. (%)	1 (1.3)	8 (14.3)	
Grade III, no. (%)	62 (80.5)	23 (41.1)	
Extent of resection			
Biopsy, no. (%)	26 (33.8)	14 (25.0)	
STR, no. (%)	29 (37.7)	20 (35.7)	
GTR, no. (%)	22 (28.6)	22 (39.3)	
Radiotherapy, no. (%)	26 (33.8)	17 (30.4)	.678
Chemotherapy, no. (%)	9 (11.7)	0 (0.0)	.01

GTR, gross total resection; IQR, interquartile range; SD, standard deviation; STR, subtotal resection; WHO, World Health Organization.

Table 3. Multivariate Cox Proportional Hazards Model for All-cause Mortality in M1 Meningiomas

Variable	Hazard Ratio (95% CI)	P-value
Age (per year increase)	1.030 (1.011–1.050)	.002
Gender		
Male	Reference	
Female	0.355 (0.209–0.602)	<.001
Race		
Non-white	Reference	
White	0.644 (0.383–1.060)	.096
WHO grade		
Grade I-II	Reference	
Grade III	3.209 (1.789–5.758)	<.001
Extent of resection		
Biopsy	Reference	
STR	0.504 (0.271–0.938)	.031
GTR	0.370 (0.203–0.676)	.005
Radiation		
No	Reference	
Yes	1.349 (0.775–2.346)	.290
Chemotherapy		
No	Reference	
Yes	2.029 (0.930–4.426)	.076

CI, confidence interval; GTR, gross total resection; STR, subtotal resection; WHO, World Health Organization.
this event. There were no differences in incidence of NF2, CDKN2A, BAP1, ARID1A, and TP53 mutations between meningiomas with and without dissemination.19 TERT promoter mutations were associated with a significantly higher risk for DM in thyroid cancer or melanoma,20,21 but this association was not found in meningioma.10

In conclusion, DM at presentation was an exceedingly rare event of meningiomas, but surprisingly can be seen in all grades. Meningiomas presenting with DM were associated with compromised outcome as compared to those without this event. In this population-based study, we identified several risk factors that help predict the occurrence of DM at presentation. Our study also highlighted important parameters which are of prognostic significance among M1 meningiomas. The extent of resection remains an important concept in improving patient survival while radiotherapy and chemotherapy added no discernable survival advantage to patients.

Supplementary Material

Supplementary material is available at Neuro-Oncology Advances online.

Keywords

distant metastasis | extent of resection | meningioma | overall survival | prognosis | population-based | SEER

Funding

This study receives no funding support.

Conflict of interest statement.

The authors declare no conflicts of interest.

Author Contributions

H.G.V.: conceptualization, data curation, formal analysis, investigation, methodology, project administration, software, validation, writing-review, and editing. T.N.M.N.: data curation, formal analysis, investigation, software, writing-review, and editing. I.F.D.: project administration, validation, writing-review, editing, and supervision. All authors have read and approved the manuscript.

References

1. Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol. 2019;21(Supplement_5):v1–v100.

2. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–820.

3. Surov A, Gottschling S, Bolz J, et al. Distant metastases in meningioma: an underestimated problem. J neurooncol. 2013;112(3):323–327.

4. Enomoto T, Aoki M, Kouzaki Y, et al. WHO Grade I meningioma metastasis to the lung 26 years after initial surgery: a case report and literature review. Soma Tool Res. 2019;10(4):1296.

5. Paix A, Waissi W, Antonio D, Aceduran R, Noël G. Visceral and bone metastases of a WHO grade 2 meningioma: a case report and review of the literature. Cancer Radiother. 2017;21(1):55–59.

6. Liu Y, Li J, Duan Y, Ye Y, Xiao L, Mao R. Subcutaneous metastasis of atypical meningioma: case report and literature review. World Neurosurg. 2020;138:182–186.

7. Enam SA, Abdulrauf S, Mehta B, Malik GM, Mahmood A. Metastasis in meningioma. Acta Neurochirurgica. 1996;138(10):1172–1177; discussion 1177–1178.

8. Adlakha A, Rao K, Adlakha H, et al. Meningioma metastatic to the lung. Mayo Clin Proc. 1999;74(11):1129–1133.

9. Dalle Ore CL, Magill ST, Yen AJ, et al. Meningioma metastases: incidence and proposed screening paradigm. J Neurosurg. 2019;132(5):1447–1455.

10. Chiarelli M, De Simone M, Gerosa M, Guttadauro A, Cioffi U. An incidental pulmonary meningioma revealing an intracranial meningioma: primary or secondary lesion? Ann Thorac Surg. 2015;99(4):e83–e84.

11. Isilmi AI, Kalamannage-Dona R, Mohan M, et al. A prognostic model to personalize monitoring regimes for patients with incidental asymptomatic meningiomas. Neuro Oncol. 2021;23(2):278–289.

12. Ludwin SK, Rubinstein LJ, Russell DS. Papillary meningioma: a malignant variant of meningioma. Cancer. 1975;35(6):1363–1373.

13. Figueuroa BE, Quint DJ, McKeever PE, Chandler WF. Extracranial metastatic meningioma. Br J Radiol. 1999;72(857):513–516.

14. Lian H, Daniels C, Han YP, et al. Incidence of metastatic disease and survival among patients with newly diagnosed primary CNS tumors in the United States from 2004–2013. J Cancer. 2019;10(13):3037–3045.

15. Nabeya Y, Okazaki Y, Watanabe Y, et al. Metastatic malignant meningioma of the liver with hypoglycemia: report of a case. Surg Today. 1998;28(9):953–958.

16. Magu SK, Gupta MK, Behl A. Malignant meningioma - clinicopathological study of an unusual presentation of a rare malignancy. Med J Armed Forces India. 2003;59(2):166–168.

17. Akimura T, Orita T, Hayashida O, Nishizaki T, Fudaba H. Malignant meningioma metastasizing through the cerebrospinal pathway. Acta Neurol Scand. 1992;85(5):368–371.

18. Harada M, Shimizu A, Nakamura Y, Nemoto R. Role of the vertebral venous system in metastatic spread of cancer cells to the bone. Adv Exp Med Biol. 1992;324:83–92.

19. Williams EA, Santagata S, Wakimoto H, et al. Distinct genomic sub-classes of high-grade/progressive meningiomas: NF2-associated, NF2-exclusive, and NF2-agnostic. Acta Neuropathol Commun. 2020;8(1):171.

20. Osella-Abate S, Bertero L, Senetta R, et al. TERT promoter mutations are associated with visceral spreading in melanoma of the trunk. Cancers. 2019;11(4):452.

21. Vuong HG, Altibi AM, Duong UN, et al. Role of molecular markers to predict distant metastasis in papillary thyroid carcinoma: promising value of TERT promoter mutations and insignificant role of BRAF mutations-a meta-analysis. Tumour Biol. 2017;39(10):1010428317713913.