Appendix: A Predictive Based Regression Algorithm for Gene Network Selection

Stéphane Guerrier1,*, Nabil Mili2,*, Roberto Molinari2, Samuel Orso2, Marco Avella-Medina2 & Yanyuan Ma3

1Department of Statistics
University of Illinois at Urbana-Champaign, USA
Email: stephane@illinois.edu

2Research Center for Statistics
Geneva School of Economics and Management
University of Geneva, Switzerland

3Department of Statistics
University of South Carolina, USA

A Adapting the algorithm to p

In this subsection we provide two variants of the algorithm proposed in Section 3 in order to adapt it to situations where p is either small or large.

A.1 Adapting the algorithm to very large p

In situations where p is extremely large and the initial step of the algorithm is not computationally feasible, this step can, for example, be replaced by the following modified initial step:

\textit{A’. Large p Modified Initial Step:} We start by augmenting our initial variable set \mathcal{M}_0 with $d = 1$ variable in order to construct the set \mathcal{I}_1^*.

1. Augment \mathcal{M}_0 with $d = 1$ variable selected uniformly at random in \mathcal{J}_f.
2. Construct B models of dimension 1 by repeating Step A’.1 B times.
3. From Steps A’.1 and A’.2, construct the set I_1^* using (3). Go to Step B and let $d = 2$.

A.2 Adapting the algorithm to small p

On the other hand, when p is of reasonable size it may be possible to compute and evaluate all the ${p \choose d'}$ models of dimension $2 \leq d' \leq d_{\text{max}}$. In such cases, it may be feasible to also modify the initial step of the proposed algorithm to a different modified initial step. A possible modification is the following:

A”. Small p Modified Initial Step: We start by augmenting our initial variable set \mathcal{M}_0 with d ($1 \leq d \leq d'$) variables in order to construct the sets $I_1^*, ..., I_{d'}^*$.

1. We augment our initial variable set \mathcal{M}_0 with 1 variable in order to construct the set I_1^*.

 (i) Construct the p possible models obtained by augmenting \mathcal{M}_0 with each of the p available variables.

 (ii) Compute $\hat{D}(-,-)$ for every model obtained in Step (i).

 (iii) From Steps (i) and (ii), construct the set I_1^* using (3). Go to Step A”’.2 and let $d = 2$.

2. We augment our initial model \mathcal{M}_0 set by d variables in order to construct the set I_d^*.

 (i) Construct the $p \choose d$ possible models and augment \mathcal{M}_0 with all variables of these constructed models.

 (ii) Compute \hat{D} for every model obtained in Step (i).

 (iii) From Steps (i) and (ii), construct the set I_d^* using (3) and let $d = d + 1$. Go to Step A”’.2 (if $d < d'$) or Step B.1 (if $d \geq d'$), with model dimension starting value d.

B Complementary results on Acute Leukemia

Table 3 reports the main biomarker hubs and related biomarker networks for the leukemia data set analysed in Section 4.1.

Table 4 reports the performances of our implementation of the competing methods as described in Section 5. Unlike reported in Table 1, here the proposed
Table 3: Biomarker network organisation - leukemia data set - Lymphoblastic / Myeloblastic leukemia.

Network 1

Affy ID	Gene ID	Gene Function	Biological Process
M27891_at	ENSG0000010439	Cystatin C	AA
D8006_at	ENSG00000114978	MOB kinase activator 1A	AA
M20778_s_at	ENSG0000016359	Collagen, type VI, alpha 3	AA
U57315_at	ENSG0000018773	K(lysine) acetyltransferase 2A	TF
U98589_at	ENSG00000182952	High mobility group nucleosomal binding domain 4	TF
X66989_s_at	ENSG000001829944	Ewing Sarcoma region 1; RNA binding protein	TF
M74088_s_at	ENSG00000134982	Adenomatous polyposis coli, DP2, DP3, PPP1R46	TF
U51785_at	ENSG00000139372	thymine-DNA glycosylase	TF
Z69883_at	ENSG00000074370	ATPase, Ca++ transporting, ubiquitous	IPT
U49218_at	ENSG00000223839	ATP-binding cassette, sub-family C (CFTR/MRP), member 2	IPT
X89109_at	ENSG00000102879	Coronin, actin binding protein, 1A	IPT
HG2815-HT2931_at	ENSG00000192841	Myosin, Light Chain, Alkaline, Smooth Muscle (GibU02629)	ACC
M94345_at	ENSG00000142493	Capping protein (actin filament), gelsolin-like	ACC
L33675_at	ENSG00000140575	IQ motif containing GTPase activating protein 1	ACC
L07531_at	ENSG00000092010	Proteasome (prosome, macropain) activator subunit 1 (PA28 alpha)	APC
J05593_at	ENSG00000120178	Ubiquitin-like 4A	APC
D83920_at	ENSG00000085265	FCN1, Ficolin-1	IR
X03934_at	ENSG00000167286	CD3d molecule, delta (CD3-TCR complex)	IR

Network 2

Affy ID	Gene ID	Gene Function	Biological Process
X05735_at	ENSG00000159840	Zyxin	ACC
X0526_at	ENSG00000185838	Guanine nucleotide binding protein (G protein), beta polypeptide 1	ST
D78777_at	ENSG00000128245	Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta	ST
U32645_at	ENSG00000102034	E47-like factor 4 (ets domain transcription factor)	TF
U93867_at	ENSG00000186141	Polymerase (RNA) III (DNA directed) polypeptide C (62kD)	TF
U29175_at	ENSG00000127616	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily A, member 4	TF
Y06291_at	ENSG00000077092	Retinoic acid receptor, beta	TF
D17532_at	ENSG00000110367	DEAD (Asp-Glu-Ala-Asp) Box Helicase 6	TF
HG3521-HT3755_at	ENSG00000127314	Ras-Related Protein Rap1b	TF
M83253_at	ENSG00000140262	Transcription factor 12	TF
U94655_at	ENSG00000175389	Eukaryotic translation initiation factor 3, subunit F	TF
L77706_at	ENSG00000136945	PWP1 homolog	TF
D05066_at	ENSG00000116266	Syntaxin binding protein 3	IR
M36880_at	ENSG00000110651	CD81 molecule	IR
HG1612-HT1612_at	ENSG00000175130	Macromacs	CG
M92267_at	ENSG00000112576	Cyclo D3	CG
M64683_at	ENSG00000113575	Protein Phosphatase 2 (formerly 2A), catalytic subunit, alpha isoform	CG
U43838_at	ENSG00000169372	CASP2 and RIPK1 domain containing adaptor with death domain	AA
S80474_at	ENSG00000169710	Fatty acid synthase	

Network 3

Affy ID	Gene ID	Gene Function	Biological Process
M84526_at	ENSG00000197766	Complement factor D (adipsin)	IR
M26130_at	ENSG00000169429	Interleukine-8	IR
Z32765_at	ENSG00000135218	CD36 - Thrombospondin receptor	IR

Source: www.ensembl.org; www.uniprot.org
method uses the classical tenfold-CV for $D(\cdot, \cdot)$ ($K = 1$). The other hyperparameters are kept the same (i.e. $\alpha = 0.01$, $B = 20'000$ and $\pi = 0.5$).

Method	Tenfold CV error	Test error	Number of genes
Support vector machine	0/38	5/34	2/7129
(with recursive feature elimination)			
Penalised logistic regression	3/38	4/34	3/7129
(with forward selection followed by backward deletion)			
Logistic regression	1/38	3/34	1/7129
(with greedy forward selection)			
Nearest shrunken centroids	3/38	1/34	372/7129
Elastic net	0/38	2/34	74/7129
Panning Algorithm (81)			
Model a	0/38	1/34	2/7129
Model b	0/38	2/34	2/7129
Model c	0/38	2/34	2/7129
[\ldots]			2/7129
Model averaging	6/34	2/7129	
Trimmed-mean model averaging	2/34	2/7129	

Table 4: Performances of our implementation of the competing methods on the leukemia data-set. For the Panning Algorithm, models “a” to “c” are three examples out of the 81 models. All the 81 models have a tenfold-CV error of 0 except one. The best test error is 1 and the worst is 21. Model averaging gives an equal weight to all the 274 models and aggregates their prediction. Trimmed-mean model averaging is Model averaging on the best 25% models based on their in-sample deviances.

C Breast Cancer

The second data-set we analyzed is the breast cancer data presented in Chin et al. (2006). The main goal behind analyzing this data is to identify the estrogen receptor expression on tumor cells which is a crucial step for the correct management of breast cancer. Similarly to Table 4 in Appendix B, Table 5 reports the performances of our implementation of the competing methods and the proposed approach on the breast cancer data. For the sake of this comparison, the data-set was randomly split into training (60) and test (58) sets. The hyper-parameters
of the proposed method are $\alpha = 0.01$, $B = 30'000$, $\pi = 0.5$ and $D(\cdot, \cdot)$ is the repeated tenfold-CV ($K = 10$).

Method	Tenfold CV error	Test error	Number of genes
Support vector machine	0/60	10/58	3/22215
(with recursive feature elimination)			
Penalised logistic regression	2/60	12/58	15/22215
(with forward selection followed by backward deletion)			
Logistic regression	2/60	11/58	2/22215
(with greedy forward selection)			
Nearest shrunken centroids	2/60	11/58	5/22215
Elastic net	3/60	11/58	196/22215
Panning Algorithm (274)			
Model a	0/60	9/58	3/22215
Model b	2/60	9/58	3/22215
Model c	0/60	12/58	3/22215
[...]			3/22215
Model averaging	10/58		3/22215

Table 5: Performances of our implementation of the methods on the breast cancer data-set. For the proposed method, models “a” to “c” are two examples out of 274 models. The tenfold-CV error varies between 0 and 3. The best test error is 9 and the worst is 31. Model averaging gives an equal weight to all the 274 models and aggregates their prediction.

Figure 3 shows the paradigmatic network identified by our method for the breast cancer data for which the selected model dimension is three (i.e. only three biomarkers are needed in a model to well classify the breast cancer). We used the hyper-parameters $\alpha = 0.01$, $B = 22'215$, $\pi = 0.05$ and for $D(\cdot, \cdot)$ the tenfold-CV repeated $K = 10$ times was used. Table 6 provides the details of the networks based on the three main hubs and is to be interpreted as described in Section 4.1.

This figure is a clear example of the advantages of the proposed method since, it not only selects a set of low-dimensional models with a high predictive power, but also provides the basis for a more general biological interpretation which takes into account interactions between different biomarkers as opposed to one single model. The three main hubs identified through the proposed algorithm are:
Figure 3: Network representation of biomarkers selected from breast cancer data-set. Colors represent the position of covariates within the model: green for first position (hub), orange for second and purple for third. The width of the connecting lines is proportional to the frequency with which two biomarkers appear in the same model. The size of the circles is proportional to the frequency with which a biomarker is present within the selected set of models. (Note: biomarker “209602_s_at” is merged with biomarker “209604_s_at”).
1. GATA binding protein 3 (GATA3): a transcription factor regulating the differentiation of breast luminal epithelial cells;

2. IL6 Signal Transducer (IL6 ST): a pro-inflammatory cytokine signal transducer;

3. TBC1 domain family, member 9 (TBC1D9): a GTPase-activating protein for Rab family protein involved in the expression of the ER in breast tumors.

GATA3 is known to regulate the differentiation of epithelial cells in mammary glands (see Kouros-Mehr et al., 2006) and is required for luminal epithelial cell differentiation. Its expression is progressively lost during luminal breast cancer progression as cancer cells acquire a stem cell-like phenotype (see Chou et al., 2010). IL6 ST has been linked to breast cancer epithelial-mesenchymal transition and cancer stem cell traits (see Chung et al., 2014), cancer-promoting microenvironment (see Bohrer et al., 2014) and resistance (see Christer et al., 2013). Moreover, this result supports the assertion by Taniguchi and Karin (2014) that IL6 ST and related cytokines are the critical lynchpins between inflammation and cancer. Finally, concerning the third biomarker, a recent publication by Andres and Wittliff (2012) has shown that the expression of the ER on the surface of breast tumor cells is highly correlated with the coordinate expression of different genes among which we can find TBC1D9 and GATA3. These two genes are not only considered as relevant genes according to the proposed method but as actual hubs of the “best” models which define the structure of the identified network. Instead of selecting a single model with many biomarkers whose interactions may be difficult to interpret, the proposed method selects a set of models with few biomarkers that allow them to be individually easy to interpret without losing the possibility of interpreting them within the larger network. This is what this paper intends with the expression “paradigmatic network” since by taking this approach it is possible to identify a set of biomarker families within which each biomarker is interchangeable with the others.
Affy ID	Gene ID	Gene Function	Biological Process
NETWORK 1			
Position 1	209602_at	ENSG00000107485 GATA binding protein 3	TF
Position 2	205520_at	ENSG00000115808 Striatin, calmodulin binding protein	ER
Position 3	204902_at	ENSG00000168397 Autophagy related 4B, cysteine peptidase (APG4B, AUTL1, DKFZp586D1422, KIAA0943)	APC
Position 1	216601_at	ENSG00000172243 C-type lectin domain family 7, member A	IR
Position 2	49043_at	ENSG00000178498 Deltx3, E3 ubiquitin ligase	APC
Position 3	209602_at	ENSG00000107485 GATA binding protein 3	TF
Position 1	210021_at	ENSG0000003989 Solute carrier family 7 (cationic amino acid transporter, y+ system), member 2	IPT
Position 2	218877_at	ENSG00000066651 TRNA methyltransferase 11 homolog	TF
Position 3	201316_at	ENSG00000160588 Proteasome (prosome, macropain) subunit, alpha type, 2	APC
Position 1	208152_at	ENSG00000147171 Zinc finger protein 157	TF
Position 2	219408_at	ENSG00000186654 PRR5 (Proline rich 5 (renal))	CG
Position 3	219493_at	ENSG00000171241 SHC SH2-domain binding protein 1	CG
Position 1	204580_at	ENSG00000139719 Vacular protein sorting 33 homolog A	APC
Position 2	210021_at	ENSG00000152669 Cyclin O	CG
Position 3	208915_at	ENSG00000103365 Golgi-associated, gamma adaptin ear containing, ARF binding protein 2	IPT
Position 1	214318_at	ENSG00000073910 Furry homolog	ACC
Position 2	205766_at	ENSG00000177991 Titin-cap (Telethonin)	ACC
Position 3	221696_at	ENSG00000060140 Solute carrier family 2 (facilitated glucose transporter), member 3	STM
Position 1	202498_at	ENSG00000059804 Proteasome (prosome, macropain) subunit, alpha type, 2	STM
Position 2	201102_at	ENSG00000141959 Phosphofructokinase, liver	IPT
Position 3	208915_at	ENSG00000103365 Golgi-associated, gamma adaptin ear containing, ARF binding protein 2	IPT
Position 1	212250_at	ENSG00000093663 Rho GTPase activating protein 24	ACC
Position 2	212956_at	ENSG00000109436 TBC1 domain family, member 9 (with GRAM domain)	ACC
Position 3	210221_at	ENSG00000080644 Cholinergic receptor, nicotinic, alpha 3 (neuronal)	IFT
Position 1	221696_at	ENSG00000060140 Serine/threonine/tyrosine kinase 1	CG
Position 2	216814_at	ENSG000000232267 ACTR3 pseudogene 2	PUP
Position 3	211003_at	ENSG00000026530 Cilia and flagella associated protein 44	ACC
Position 1	221030_at	ENSG000000185963 Bicaudal D homolog 2	ACC
Position 2	210316_at	ENSG00000138639 Rho GTPase activating protein 24	ACC
Position 1	221696_at	ENSG00000060140 Serine/threonine/tyrosine kinase 1	CG
Position 2	211901_at	ENSG00000138944 KIAA1644	PUP
Position 3	208915_at	ENSG00000103365 Golgi-associated, gamma adaptin ear containing, ARF binding protein 2	IPT
Position 1	209602_at	ENSG00000107485 GATA3	TF
Position 2	202951_at	ENSG00000112079 Serine/threonine kinase 38	CG
Position 3	202433_at	ENSG00000116035 VAX2 (ventral anterior homeobox 2)	TF
Position 4	221955_at	ENSG00000088256 Guanine nucleotide binding protein (G protein), alpha 11 (Gq class)	IFT
Position 1	207303_at	ENSG00000154678 Phosphodiesterase 1C, calmodulin-dependent 70kDa	ST
Position 1	Position 2	Position 3	
------------	------------	------------	
205152_st	ENSG00000157103	Solute carrier family 6, member 1	ST
207518_st	ENSG00000153933	Diacylglycerol kinase, epsilon 64kDa	ST
206270_st	ENSG00000126583	Protein kinase C, gamma	ST
208964_kt	ENSG00000149485	Fatty acid desaturase 1	FAM
201102_kt	ENSG00000123505	Adenosylmethionine decarboxylase 1	CG
214972_at	ENSG00000198408	Protein O-GlcNAcase (Meningioma expressed antigen 5 (hyaluronidase))	ST
210477_cards	ENSG00000107643	Mitogen-activated protein kinase 8	CG
205907_cards	ENSG00000127083	Osteomodulin	STM

NETWORK 2

Position 1 212195_st ENSG00000134352 IL6 Signal Transducer ICT
Position 2 202951_st ENSG00000112079 Serine/threonine kinase 38 CG
Position 3 221935_at ENSG00000088256 Guanine nucleotide binding protein (G protein), alpha 11 (Gq class) ITT
| 207303_at | ENSG00000154678 | Phosphodiesterase 1C, calmodulin-dependent 70kDa |

NETWORK 3

Position 1 212956_at ENSG00000109436 TBC1 domain family, member 9 (with GRAM domain) IPT
Position 2 202951_at ENSG00000112079 Serine/threonine kinase 38 CG
Position 3 205152_at ENSG00000157103 Solute carrier family 6, member 1 ST
207518_at	ENSG00000153933	Diacylglycerol kinase, epsilon 64kDa
216814_at	ENSG00000232267	ACTR3 pseudogene 2
221103_at	ENSG0000026530	Cilia and flagella associated protein 44

| **Table 6:** Biomarker network organisation - breast cancer data set - Estrogen Receptor - Breast Cancer. |
| **TF** = transcription/translation factor activity, DNA/RNA repair and catabolism - **ER** = estrogen receptor activity - **APC** = autophagy - protein catabolism - **IR** = immunity, inflammatory response (blood coagulation, antigen presentation and complement activation) - **CC** = cell/cell communication - **ST** = intracellular signal transduction, protein glycosylation - **CG** = cell growth and division - **IPT** = intracellular protein trafficking, transmembrane amino-acid transporter - **ACC** = actin activity, cytoskeleton organisation, cell projection - **STM** = sugar transport and metabolism - **ITT** = ion transmembrane transport, transmembrane signaling systems - **PUP** = pseudogene, uncharacterized protein - **FAM** = fatty acid metabolism. Source: www.uniprot.org; www.ncbi.nlm.nih.gov/gene |
References

Andres, S. A. and Wittliff, J. L. (2012). Co-expression of genes with estrogen receptor-α and progesterone receptor in human breast carcinoma tissue. *Hormone molecular biology and clinical investigation, 12*(1), 377–390.

Bohrer, L. R., Chuntova, P., Bade, L. K., Beadnell, T. C., Leon, R. P., Brady, N. J., Ryu, Y., Goldberg, J. E., Schmechel, S. C., Koopmeiners, J. S., et al. (2014). Activation of the fgfr–stat3 pathway in breast cancer cells induces a hyaluronan-rich microenvironment that licenses tumor formation. *Cancer research, 74*(1), 374–386.

Chin, K., DeVries, S., Fridlyand, J., Spellman, P. T., Roydasgupta, R., Kuo, W.-L., Lapuk, A., Neve, R. M., Qian, Z., Ryder, T., et al. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiology. *Cancer cell, 10*(6), 529–541.

Chou, J., Provot, S., and Werb, Z. (2010). Gata3 in development and cancer differentiation: cells gata have it! *Journal of cellular physiology, 222*(1), 42–49.

Christer, H., Peter, K., Margaret, L. A., Stephen, H., and Kathryn, M. T. (2013). A mechanism for epithelial-mesenchymal transition and anoikis resistance in breast cancer triggered by zinc channel zip6 and stat3 (signal transducer and activator of transcription 3). *Biochemical Journal, 455*(2), 229–237.

Chung, S. S., Giehl, N., Wu, Y., and Vadgama, J. V. (2014). Stat3 activation in her2-overexpressing breast cancer promotes epithelial-mesenchymal transition and cancer stem cell traits. *International journal of oncology, 44*(2), 403–411.

Kourosh-Mehr, H., Slorach, E. M., Sternlicht, M. D., and Werb, Z. (2006). Gata-3 maintains the differentiation of the luminal cell fate in the mammary gland. *Cell, 127*(5), 1041–1055.

Taniguchi, K. and Karin, M. (2014). Il-6 and related cytokines as the critical lynchpins between inflammation and cancer. In *Seminars in immunology*, volume 26, pages 54–74. Elsevier.