Physical acceptability conditions for realistic neutron star equations of state

D L Ramos-Salamanca¹, L A Núñez¹,² and J Ospino³

¹ Escuela de Física, Universidad Industrial de Santander, Bucaramanga, Colombia
² Departamento de Física, Universidad de los Andes, Mérida, Venezuela
³ Departamento de Matemática Aplicada, Universidad de Salamanca, Salamanca, España

E-mail: david2208450@correo.uis.edu.co

Abstract. We select 37 most common and realistic dense matter equation of states to integrate the general relativistic stellar structure equations for static spherically symmetric matter configurations. For all these models, we check the compliance of the acceptability conditions that every stellar model should satisfy. It was found that some of the non-relativistic equation of states violate the causality and/or the dominant energy condition and that adiabatic instabilities appear in the inner crust for all equation of state considered.

1. Introduction

Neutron stars are among the densest astronomical objects in the universe. These stars are formed from the gravitational collapse of massive stars $M > 8M_\odot$ (supernova event) and leave a compact remnant whose mass and radius usually lies between $1 - 2M_\odot$ and $10 - 14$ km, respectively [1].

The inner structure of a compact object is heavily influenced by the equation of state (EoS) that governs the star’s nuclear matter. This makes important theoretical predictions like the maximum mass of a neutron star (the dividing line between neutron stars and black holes) EoS dependent [2]. There are numerous EoS models based on models on different many-body field theories employed to describe the nuclear matter at ultra-high density [3]. These EoS do not have exact analytical form and are found in the literature as tables. Nevertheless, the EoS of neutron stars is still unknown due to the lack of a definitive theory of nuclear interactions at ultra-high densities and the impossibility of recreating the extreme density conditions in current laboratory experiments.

Commonly, this problem involves observations to constrain individual EoS models [2, 4]. The present work will complement the previous methodology using physical acceptability criteria formulated in the general relativistic framework. To do this, we numerically solve the stellar structure equations for a static neutron star, using as input 37 different EoSs for the ultra-dense matter, which cover a wide variety of microscopic EoS inspired models. Subsequently, we verified that these solutions satisfied the acceptability conditions gathered by B. Ivanov [5] and extended further by Hernández et al. [6, 7].

This paper is organized as follows. In Section 2 we describe how the relativistic equation for stellar structure are numerically solved for a given EoS. Section 3 lists the set of conditions that any realistic stellar model (independent of the EoS) must satisfy and in Section 4 we exhibit an
example for verifying these acceptability conditions. Next, in Section 5, we discuss the results of applying the physical acceptability conditions to the stellar models calculated with each EoS. Finally, in Section 6, we present the conclusions of our work.

2. Relativistic stellar structure

Let us assume the line element

\[ds^2 = e^{2\nu(r)} dt^2 - e^{2\lambda(r)} dr^2 - r^2 (d\theta^2 + \sin^2 \theta d\phi^2) , \]

with the energy-momentum tensor given by

\[T^\mu_\nu = \text{diag} [\rho(r), -P(r), -P(r), -P(r)] , \]

with \(P(r) \) the pressure and \(\rho(r) \) its energy density, defined in the fluid’s reference frame.

The above \((2) \) leads to relativistic stellar structure equations –i.e. Tolman-Oppenheimer-Volkoff (TOV) system–, through \(T^\mu_\nu;_\mu = 0 \), as

\[\frac{dm}{dr} = 4\pi \rho r^2 , \quad \frac{dP}{dr} = -\left(\rho + P\right) \frac{m + 4\pi r^3 P}{r(r - 2m)} \quad \text{and} \quad \frac{d\nu}{dr} = -\frac{1}{\rho + P} \frac{dP}{dr} . \]

where \(m(r) \equiv \frac{r}{2} \left(1 - e^{-2\lambda}\right) \) is defined as the gravitational mass. The TOV system are three first-order ordinary differential equations with four unknowns: \(m(r), \rho(r), P(r) \) and \(\nu(r) \). To close the system, we need an EoS; then we have the same number of equations and unknown functions. Thus, given \(\rho_c \), the density at the central density we can integrate the system.

3. Physical acceptability conditions

Solutions to the Einstein field equations have to satisfy some regularity, matching and stability conditions. The acceptability conditions are 5, 6, 7: C1, Positive and free from singularities; C2, Matching conditions at the surface of the star; C3, Decrease of interior redshift \(Z \) with the increase of \(r \); C4, Positive density and pressures; C5, Density and pressure having a maximum at the center and decreasing monotonically outwards; C6, Dominant energy condition \(\rho \geq P \); C7, Causality condition \(0 \leq v^2 \leq 1 \); C8, Adiabatic index criterion \(\Gamma > 4/3 \); C9, Stability against cracking; C10, Harrison-Zeldovich-Novikov stability condition \(dM(\rho_c)/d\rho_c > 0 \); C11, Stability against convection \(\rho'' \leq 0 \).

For the static and spherically symmetric stellar models conditions C1-C5 and C9 are automatically satisfied. Additionally, it has been shown 9 that C8 is only valid in the Newtonian limit. Thus, only C6, C7, C10 and C11 are relevant to our discussion.

4. EoS for stable models

Given a realistic EoS, \((P_c, \rho_c)\), the TOV equations are solved numerically for an evenly spaced set of central densities between \(10^{14} \text{ g/cm}^3\) and the maximum density available in the EoS. Finally, conditions C7, C8, C10 and C11 are evaluated.

Using the ENG EoS \([10] \) as example, conditions C6 and C7 can be checked immediately (see Figures 1a and 1b). Next, the TOV equations were solved with condition C10 restricting the models. Only models with \(\frac{dM(\rho_c)}{d\rho_c} > 0 \) will be considered. This derivative vanishes for the model with maximum mass and marks the start of the models that are unstable to radial pulsations (see Figure 1c).

From figure 2 it is clear that there is a density range –from \(\rho_{ND} \approx 4 \times 10^{11} \text{ to } \rho_0 \) (shadowed)– where C11 does not hold. This range is consistent with the neutron star’s inner crust and suggests that there could be some physical effect common to the 37 EoS considered, which generates the adiabatic instability within this region.
(a) Strong energy condition. The red dashed line indicates $P = \rho c^2$.

(b) Causality condition. The red dashed line indicates $v_s = c$.

(c) $M(\rho_c)$ curve. The maximum mass for this EoS was reached for the initial value $\rho_c = 2.5704 \times 10^{15}$ (red dashed line).

Figure 1: Verification of the C6 (a), C7 (b) and C10 (c) conditions for the ENG EoS.

Figure 2: Convective stability condition for the ENG EoS. $\rho''(r)$ calculated for models satisfying C10. Left. The condition does not hold over the entirety of the star. Right. It can be seen that $\rho'' > 0$ in the same density range (shadowed region) for neutron stars with different ρ_c. This density range was found to be (ρ_{ND}, ρ_0).

5. Results and discussion

We analyzed a collection of 37 realistic dense matter EoS from F. Özel and P. Freire’s review [2] and Table 1 displays the results obtained.

As reported previously [1], some of the most commonly used EoSs do not comply with C_6 and/or C_7. However, these violations do not occur for relativistic EoS. Thus it may suggest that the non-relativistic EoSs applied are not valid at ultra-high densities.

The results show that none of the EoSs considered produces static stellar models that are stable against adiabatic convection C_{11} [6]. This could indicate that the non-uniformity of matter characteristic of the inner crust region can have an impact in the stability of neutron stars.

6. Conclusions

We consider a selection of 37 realistic dense matter EoSs –based on a wide variety of nuclear interaction models [2]– to integrate the general relativistic stellar structure equations for static spherically symmetric matter configuration. For all these models we check the compliance with the acceptability conditions C_1-C_{11} that every stellar model should satisfy. It was found that some of the non-relativistic EoSs infringe the causality condition and/or the dominant energy condition.

Additionally, we obtained that adiabatic instabilities appear in the inner crust for all EoSs considered. However, this type of instability is physically challenging to interpret due to the complexity of nuclear physics in modelling this region within neutron stars.

As was previously reported in [11], the envelope of weakly magnetized stars could be unstable against convection. However, little is known about the convective stability of the inner crust in static isotropic general relativistic stars. We recognize the need to investigate further this topic, including rotation and radiation transport effects in the analysis.

Acknowledgments

We thank the support of the Vicerrectoría de Investigación y Extensión from Universidad Industrial de Santander and the financial support from COLCIENCIAS under contract No. 8863. J.O. acknowledges financial support from Ministerio de Ciencia, Innovacion y Universidades, Spain. Grant number: PGC2018–096038–B–I00, and Junta de Castilla y Leon, Spain. Grant number: SA096P20.
Table 1: Results for the collection of 37 realistic EoSs considered. C6: dominant energy condition, C7: causality condition, C11: convection stability condition. Also shown: theoretical method used to obtain the EoS, composition (every model has leptonic contributions), maximum mass M_{max} and its corresponding radius $R_{M_{\text{max}}}$ for static stars and reference to the original article.

EoS	Method	Composition	M_{max} [M$_\odot$]	$R_{M_{\text{max}}}$ [km]	C6	C7	C11	Reference
ALF1	Mixed	n, p, q	1.496	9.221	✓	✓	×	[12]
ALF2			2.087	11.962	✓	✓	×	
ALF3			1.473	9.514	✓	✓	×	
ALF4			1.943	10.892	✓	✓	×	
AP1	Variational	n, p	1.684	8.292	✓	✓	×	
AP2			1.809	8.746	✓	✓	×	
AP3			2.391	10.765	X	X	X	[13]
AP4			2.214	10.004	X	X	X	
BBB2	BD-HF	n, p	1.920	9.515	✓	✓	×	[14]
BGN1H1	Effective potential	n, p, H	1.630	9.325	✓	✓	×	[15]
BPAL12	BD-HF	n, p	1.455	9.015	✓	✓	×	[16]
BSK19			1.861	9.110	X	X	X	
BSK20	Effective potential	n, p	2.165	10.173	X	X	X	[17]
BSK21			2.274	11.038	X	X	X	
ENG	BD-HF	n, p	2.241	10.425	✓	✓	×	[18]
FPS	Variational	n, p	1.800	9.279	✓	✓	X	
GNH3	Field theoretical	n, p, H, Δ	1.965	11.372	✓	✓	×	[19]
H1			1.556	10.968	✓	✓	×	
H2			1.668	11.516	✓	✓	X	
H3	Field theoretical	n, p, H	1.790	11.863	✓	✓	X	
H4			2.032	11.467	✓	✓	-	[20]
H5			1.726	10.930	✓	✓	-	
H7			1.683	10.474	✓	✓	-	
MPA1	BD-HF	n, p	2.462	11.301	✓	✓	X	[21]
MS1	Field theoretical	n, p	2.770	13.346	✓	✓	X	[22]
MS1b			2.778	13.301	✓	✓	X	
NL3	Field theoretical	$n, p, \sigma, \omega, \rho$	2.806	13.427	✓	✓	X	[23]
PAL6	Schematic potential	n, p	1.478	9.258	✓	✓	X	[24]
PCL2	Field theoretical	n, p, H, q	1.483	10.116	✓	✓	X	[25]
PS	Field theoretical	n, π^0	1.755	11.372	✓	✓	X	[26]
SLy	Mixed	n, p	2.050	9.977	✓	X	X	[27]
SQM1	Field theoretical	q	1.532	8.315	✓	✓	-*	
SQM2			1.737	9.638	✓	✓	-*	[25]
SQM3			1.977	10.814	✓	✓	-*	
WFF1	Variational	n, p	2.134	9.413	✓	X	X	[28]
WFF2			2.199	9.825	✓	X	X	
WFF3			1.845	9.516	✓	✓	X	

*Results problematic at the star’s boundary
References

[1] Haensel P, Potekhin A and Yakovlev D 2007 Neutron stars 1: Equation of state and structure (Astronomy and Astrophysics Library vol 326) (Berlin: Springer Science & Business Media)
[2] Özel F and Freire P 2016 Annual Review of Astronomy and Astrophysics 54 401–440
[3] Fiorella Burgio G and Fantina A F 2018 The Physics and Astrophysics of Neutron Stars (Astrophysics and Space Science Library vol 457) ed Rezzolla L, Pizzochero P, Jones D, Rea N and Vidana I (Springer, Cham) chap 6, pp 255–335
[4] Hernandez Vivanco F, Smith R, Thrane E, Lasky P, Talbot C and Raymond V 2019 Physical Review D 100 103009
[5] Ivanov B 2017 The European Physical Journal C. 77 738
[6] Hernández H, Núñez L and Vásquez-Ramírez A 2018 The European Physical Journal C 78 883
[7] Hernández H, Suárez-Urango D and Núñez L 2020 arXiv preprint [arXiv:2010.09632]
[8] Delgaty M and Lake K 1998 Computer Physics Communication 115 395
[9] Moustakidis C 2017 General Relativity and Gravitation 49 68
[10] Engvik L, Hjorth-Jensen M, Osnes E, Bao G and Østgaard E 1994 Physical review letters 73 2650
[11] Miralles J, Urpin V and Van Riper K 1997 The Astrophysical Journal 480 358–363
[12] Alford M, Braby M, Paris M and Reddy S 2005 The Astrophysical Journal 629 969–978
[13] Akmal A, Pandharipande V and Ravenhall D 1998 Physical Review C 58 1804–1828
[14] Baldo M, Bombaci I and Burgio G 1997 Astronomy & Astrophysics 328 274–282
[15] Balberg S and Gal A 1997 Nucl.Phys. A625 435–472
[16] Zuo W, Bombaci I and Lombardo U 1999 Physical Review C - Nuclear Physics 60 13
[17] Potekhin A, Fantina A, Chamel N, Pearson J and Goriely S 2013 Astronomy & Astrophysics 560 A48
[18] Friedman B and Pandharipande V 1981 Nuclear Physics A 361 502–520
[19] Glendenning N K 1985 Astrophys. J. 293 470–493
[20] Lackey B, Nayyar M and Owen B 2006 Physical Review D 73 024021
[21] Mütter H, Prakash M and Ainsworth T 1987 Physics Letters B 199 469–474
[22] Mueller H and Serot B 1996 Nuclear Physics A 606 508–537
[23] Lalazissis G, König J and Ring P 1997 Physical Review C 55 540–543
[24] Prakash M, Ainsworth T and Lattimer J 1988 Physical Review Letters 61 2518–2521
[25] Prakash M, Cook J and Lattimer J 1995 Physical Review D - Particles, Fields, Gravitation and Cosmology 52 661–665
[26] Pandharipande V and Smith R 1975 Nuclear Physics, A 237 507–532
[27] Douchin F and Haensel P 2001 Astronomy & Astrophysics 380 151–167
[28] Wiringa R, Fiks V and Fabrocini A 1988 Physical Review C 38 1010–1037