Supplemental Material
SUPPLEMENTAL METHODS

Data Collection & Clinical Covariates

Detailed descriptions of data collection, methodology, specimen collection and processing have been previously described.\(^1\,^2\) Age, sex, and education level were obtained by self-report using standardized interviewer-administered questionnaires. Current smoking was defined by affirmative responses to the questions “Have you smoked more than 400 cigarettes in your lifetime?” and “Do you now smoke cigarettes?” Antihypertensive medication use in the two weeks prior to the study visit was self-reported. Participants were asked to bring any medications taken within 2 weeks prior to the baseline examination to the clinic visit and were transcribed verbatim. Medication coding was performed by a pharmacist using the Medispan dictionary and classified into categories according to the Therapeutic Classification System. The number of medications were also recorded. Alcohol consumption was categorized None (no drinks per week), Moderate (1-7 drinks per week for women and 1-14 drinks per week for men), or Heavy (≥8 drinks per week for women or ≥14 drinks per week for men). Using a modified Baecke questionnaire, validated in the Jackson Heart Study (JHS) using pedometers and accelerometers, the weekly duration and annual frequency of participation in sports/exercises during the previous year were recorded and summed to calculate the total number of minutes per week spent in moderate or vigorous physical activity.\(^3\,^4\) Physical activity was categorized according to American Heart
Association Life’s Simple 7 categories: Poor (0 mins of moderate physical activity and 0 minutes of vigorous physical activity), Intermediate (1-149 minutes of moderate physical activity or 1-74 minutes of vigorous physical activity or 1-149 minutes of combined moderate and vigorous physical activity), and Ideal (≥150 minutes of moderate physical activity or ≥75 minutes of vigorous physical activity or ≥150 minutes of combined moderate and vigorous physical activity).^5^ Height, weight, and blood pressure were measured and blood samples were collected by trained staff during the study visit. Body mass index was calculated as weight in kilograms divided by height in meters squared. Total and high-density lipoprotein cholesterol were quantified by an oxidase method.^1^ Serum glucose was measured using a glucose oxidase method on a Vitros 250 or 950, Ortho-Clinical Diagnostics analyzer.^1^ Hemoglobin A1c was measured using a TOSOH high performance liquid chromatography system. Diabetes was defined as a fasting (≥8 hours) serum glucose ≥126 mg/dL or hemoglobin A1c ≥6.5% or self-reported use of insulin or oral hypoglycemic medications within 2 weeks prior to the study visit. Serum creatinine was measured using a multi-point enzymatic spectrophotometric assay on a Vitros 950 Ortho-Clinical Diagnostic analyzer.

Blood pressure was measured according to a standardized protocol. Participants were asked to avoid heavy physical activity, caffeine, eating, smoking and alcohol intake for 12 hours prior to their study visit. Two blood pressure measurements were obtained using an appropriately sized cuff, determined from a measurement of arm circumference, and a random-zero sphygmomanometer (Hawksley and Sons Ltd).^6^,^7^ Participants were seated in an upright position with their back and arms supported, feet flat on the floor and legs uncrossed for at least five minutes after which trained staff
conducted the two blood pressure measurements, separated by one minute, in the right arm. The average of these two blood pressure measurements was used as the reported blood pressure. As previously described, random-zero blood pressure measurements were calibrated to an oscillometric device using robust regression.8 Pulse pressure was defined as the difference between average systolic blood pressure and average diastolic blood pressure.

Outcomes

Detailed description of cardiovascular disease (CVD) and all-cause mortality event adjudication have been previously described.9 JHS participants or their proxies were contacted annually via telephone to assess potential CVD events and vital status. Hospital discharge lists with specific diagnosis criteria were also obtained from the Jackson, Mississippi, tri-county area hospitals. Death certificates were requested from the Mississippi State Department of Health for JHS participants as needed. When a potential CVD-related hospitalization or death was identified, medical records were retrieved and abstracted. Trained clinicians adjudicated events following published guidelines using the information available about the circumstance surrounding each event.9
Table S1. Percentage of missing data among Jackson Heart Study participants included in the analytic sample.

Variable	N (%)
Age	0 (0)
Sex	0 (0)
Body mass index	0 (0)
Diabetes	44 (0.99)
eGFR	69 (1.56)
HDL cholesterol	369 (8.34)
Total cholesterol	368 (8.32)
Education	17 (0.38)
Smoking status	0 (0)
Physical activity category	3 (0.07)
Alcohol use	0 (0)
Systolic blood pressure	14 (0.32)
Diastolic blood pressure	14 (0.32)
Antihypertensive medication use	82 (1.85)

eGFR: Estimated glomerular filtration rate
HDL: High-density lipoprotein
Table S2. Echocardiographic parameters of Jackson Heart Study participants with appropriate and inappropriate left ventricular mass.

	Overall Sample (n = 4,424)	aLVM (n = 3,815)	iLVM (n = 609)	p-value*
Stroke work, g-m	137.10 (35.90)	137.70 (35.25)	133.50 (39.53)	0.015
Stroke volume, mL	75.08 (16.42)	75.41 (16.01)	73.02 (18.66)	0.003
Fractional shortening, %	4.93	3.44	17.45	<0.001
Interventricular septum	0.88 (0.14)	0.86 (0.12)	1.08 (0.16)	<0.001
thickness in diastole, cm	0.84 (0.13)	0.82 (0.11)	1.03 (0.15)	<0.001
Posterior wall thickness in diastole, cm	0.84 (0.13)	0.82 (0.11)	1.03 (0.15)	<0.001
RWT	0.36 (0.07)	0.35 (0.06)	0.44 (0.09)	<0.001
Left ventricular end-	4.84 (0.45)	4.82 (0.42)	4.96 (0.59)	<0.001
diastolic diameter, cm				
Left ventricular end-systolic diameter, cm	2.98 (0.47)	2.94 (0.41)	3.25 (0.69)	<0.001

The numbers in the table are mean ± standard deviation.

aLVM: Appropriate left ventricular mass; iLVM: Inappropriate left ventricular mass

Relative wall thickness (RWT) was calculated using the ASE formula; RWT = 2 x posterior wall thickness in diastole/left ventricular internal dimension in diastole. Increased RWT is defined as RWT >0.42. Normal RWT is defined as RWT ≤0.42
Table S3. Characteristics of the Jackson Heart Study participants included in the analytic sample by left ventricular mass (LVM) status for participants without left ventricular hypertrophy (LVH, left) and with LVH (right).

	Without LVH (N=3,807)	With LVH (N=617)				
	aLVM (N= 3,559)	iLVM (N= 248)				
Age, years	53.41 (12.60)	55.11 (12.39)	60.77 (11.38)	60.11 (11.47)		
Female, %	62.66	64.11	87.89	71.75	<0.001	
Body mass index, kg/m²	31.18 (6.84)	33.61 (6.95)	35.73 (7.79)	35.37 (8.53)	0.592	
Education < high school, %	16.09	19.35	30.86	26.39	0.225	
Current smoking, %	11.97	10.89	10.94	14.40	0.207	
Physical activity category			0.207			
Ideal	46.20	50.81	55.08	56.23	0.950	
Intermediate	32.90	32.26	28.91	28.53		
Poor	20.89	16.94	16.02	15.24		
Alcohol use, %			0.270			
Non-drinker	61.87	66.53	73.83	75.07		
Moderate drinker	34.34	31.05	24.22	24.38		
	0	1				
--------------------------	------------	------------	----	----	----	
Heavy drinker	3.79	2.42	1.95	0.55		
Diabetes, %	18.36	27.53	<0.001	26.29	33.52	0.057
eGFR <60 ml/min/m², %	5.82	9.72	0.013	16.87	17.18	0.919
HDL cholesterol, mg/dL	51.87 (14.49)	48.43 (12.93)	<0.001	54.51 (15.71)	53.21 (15.05)	0.325
Total cholesterol, mg/dL	199.30 (39.10)	197.90 (43.00)	0.627	204.00 (42.18)	201.30 (42.57)	0.458
SBP, mmHg	125.50 (15.17)	119.80 (15.10)	<0.001	141.00 (19.45)	132.00 (18.82)	<0.001
DBP, mmHg	75.81 (8.35)	73.38 (8.71)	<0.001	77.42 (8.70)	75.57 (10.54)	0.018
Pulse Pressure, mmHg	49.72 (13.04)	46.38 (12.37)	<0.001	63.61 (18.53)	56.42 (15.04)	<0.001
Prevalent hypertension, %	49.46	59.84	0.002	84.96	78.20	0.039
Antihypertensive medication use, %	42.81	56.15	<0.001	70.00	71.80	0.633
Number of antihypertensive medication classes	56.53	43.15	<0.001	30.47	30.19	0.330
	18.07	18.95	25.00	20.78		
	2	3+	22.27	28.25	22.27	20.78
----------------	-------	-------	-------	-------	-------	-------
LVM, g	16.91	24.60	22.27	28.25		
LVMI, g/m²⁷	8.49	13.31	22.27	20.78		
Mean ejection fraction, %	136.40 (28.79)	173.10 (32.59)	189.30 (34.27)	228.30 (53.27)	<0.001	
Ejection fraction ≤ 40%, %	32.80 (5.94)	40.43 (4.23)	51.42 (7.06)	58.06 (10.72)	<0.001	
Stroke work, g-m	62.01 (6.76)	60.22 (7.75)	64.32 (7.70)	60.42 (10.16)	<0.001	
Stroke volume, mL	0.23	1.22	0.030	0.78	4.46	0.007
Fractional shortening, %	134.00 (32.02)	109.30 (23.90)	188.80 (38.90)	150.10 (39.61)	<0.001	
Interventricular septum thickness in diastole, cm	74.14 (15.08)	63.99 (14.26)	93.11 (17.93)	79.22 (18.81)	<0.001	
Posterior wall thickness in diastole, cm	3.38	18.84	4.38	16.39	<0.001	
RWT	0.85 (0.11)	1.03 (0.14)	0.98 (0.12)	1.13 (0.16)	<0.001	
	0.81 (0.11)	0.97 (0.13)	0.93 (0.11)	1.07 (0.15)	<0.001	
	0.35 (0.06)	0.43 (0.07)	0.37 (0.07)	0.44 (0.10)	<0.001	
	Value 1	Value 2	p-value	Value 3	Value 4	p-value
--------------------------------	---------------	---------------	---------	---------------	---------------	---------
Left ventricular end-diastolic diameter, cm	4.79 (0.40)	4.73 (0.43)	0.024	5.21 (0.45)	5.12 (0.63)	0.046
Left ventricular end-systolic diameter, cm	2.93 (0.41)	3.16 (0.50)	<0.001	3.06 (0.50)	3.31 (0.78)	<0.001
Eccentric Hypertrophy, %	--	--	---	83.20	43.21	<0.001
Concentric Hypertrophy, %	--	--	---	16.80	56.79	<0.001

The numbers in the table are mean ± standard deviation or percentages.
*p-value comparing aLVM and iLVM

Left Ventricular Hypertrophy (LVH) is defined as LVM index (LVMI) ≥45 g/m².7 in females and ≥49 g/m².7 in males
LVMI is calculated as LVM/height².7
Relative wall thickness (RWT) was calculated using the American Society of Echocardiography formula; RWT = 2 x posterior wall thickness in diastole/left ventricular internal dimension in diastole.
Increased RWT is defined as RWT >0.42. Normal RWT is defined as RWT ≤0.42
Eccentric Hypertrophy is defined as: LVH and normal Relative wall thickness
Concentric Hypertrophy is defined as: LVH and increased Relative wall thickness

aLVM: Appropriate left ventricular mass
iLVM: Inappropriate left ventricular mass
eGFR: Estimated glomerular filtration rate
HDL: High-density lipoprotein
SBP: Systolic blood pressure
DBP: Diastolic blood pressure
LVM: Left ventricular mass
Table S4. Hazard ratios for cardiovascular disease events associated with an observed-to-predicted LVM ratio, modeled as a continuous variable, in the overall analytic sample and among participants without and with left ventricular hypertrophy.

CVD events / n at risk	Hazard Ratios (95% CI) per one SD higher observed-to-predicted LVM ratio			
	Model 1	Model 2	Model 3	Model 4
Overall (N=4,424)				
262 / 4424	1.35 (1.25 – 1.45)	1.29 (1.19 – 1.40)	1.31 (1.21 – 1.42)	1.28 (1.16 – 1.43)
Without LVH (N=3,807)				
184 / 3807	1.64 (1.37 – 1.96)	1.52 (1.28 – 1.82)	1.60 (1.34 – 1.91)	#
With LVH (N=617)				
78 / 617	1.11 (0.96 – 1.29)	1.05 (0.90 – 1.23)	1.16 (0.99 – 1.37)	#

CVD: Cardiovascular disease
CI: Confidence Interval
LVM: Left ventricular mass
SD: Standard deviation. 1 SD = 0.235 = 23.5%
LVH: Left ventricular hypertrophy
Model 1: Adjusted for age, sex, and body mass index
Model 2: Adjusted for the variables in Model 1 and diabetes, estimated glomerular filtration rate < 60 ml/min/1.73m², education level (less than high school), current smoking, physical activity, and alcohol use (none, moderate, heavy)
Model 3: Adjusted for the variables in Model 2 and mean systolic blood pressure, mean diastolic blood pressure, and antihypertensive medication use
Model 4: Adjusted for the variables in Model 3 and left ventricular hypertrophy
Model 4 was not performed as these analyses are stratified by left ventricular hypertrophy status
The test for interaction between LVH and iLVM for CVD events had a $P_{interaction} = 0.004$ (on Model 4)
Table S5. Hazard ratios for all-cause mortality associated with observed-to-predicted LVM ratio, modeled as a continuous variable in the overall analytic sample and among participants without and with left ventricular hypertrophy.

	Deaths / n at risk	Model 1 (Hazard Ratio)	Model 2 (Hazard Ratio)	Model 3 (Hazard Ratio)	Model 4 (Hazard Ratio)
Overall (N=4,424)	419 / 4424	1.26 (1.18 – 1.35)	1.21 (1.13 – 1.30)	1.24 (1.15 – 1.33)	1.18 (1.08 – 1.29)
Without LVH (N=3,807)	288 / 3807	1.12 (0.95 – 1.31)	1.06 (0.90 – 1.24)	1.14 (0.97 – 1.34)	#
With LVH (N=617)	131 / 617	1.17 (1.05 – 1.30)	1.12 (1.00 – 1.25)	1.17 (1.05 – 1.32)	#

CI: Confidence Interval
LVM: Left ventricular mass
SD: Standard deviation. 1 SD = 0.235 = 23.5%
LVH: Left ventricular hypertrophy

Model 1: Adjusted for age, sex, and body mass index
Model 2: Adjusted for the variables in Model 1 and diabetes, estimated glomerular filtration rate < 60 ml/min/1.73m², education level (less than high school), current smoking, physical activity, and alcohol use (none, moderate, heavy)
Model 3: Adjusted for the variables in Model 2 and mean systolic blood pressure, mean diastolic blood pressure, and antihypertensive medication use
Model 4: Adjusted for the variables in Model 3 and left ventricular hypertrophy
Model 4 was not performed as these analyses are stratified by left ventricular hypertrophy status

The test for interaction between LVH and iLVM for all-cause mortality had a $P_{interaction} = 0.534$ (on Model 4)
SUPPLEMENTAL REFERENCES:

1. Carpenter MA, Crow R, Steffes M, Rock W, Heilbraun J, Evans G, Skelton T, Jensen R, Sarpong D. Laboratory, reading center, and coordinating center data management methods in the jackson heart study. *Am J Med Sci*. 2004;328:131-144.

2. Dubbert PM, Carithers T, Ainsworth BE, Taylor HA, Jr., Wilson G, Wyatt SB. Physical activity assessment methods in the jackson heart study. *Ethn Dis*. 2005;15:S6-56-61.

3. Smitherman TA, Dubbert PM, Grothe KB, Sung JH, Kendzor DE, Reis JP, Ainsworth BE, Newton RL, Jr., Lesniak KT, Taylor HA, Jr. Validation of the jackson heart study physical activity survey in african americans. *J Phys Act Health*. 2009;6 Suppl 1:S124-132.

4. Bell EJ, Lutsey PL, Windham BG, Folsom AR. Physical activity and cardiovascular disease in african americans in atherosclerosis risk in communities. *Med Sci Sports Exerc*. 2013;45:901-907.

5. Sacco RL. The new american heart association 2020 goal: Achieving ideal cardiovascular health. *J Cardiovasc Med (Hagerstown)*. 2011;12:255-257.

6. Taylor HA, Jr., Wilson JG, Jones DW, Sarpong DF, Srinivasan A, Garrison RJ, Nelson C, Wyatt SB. Toward resolution of cardiovascular health disparities in african americans: Design and methods of the jackson heart study. *Ethn Dis*. 2005;15:S6-4-17.

7. Barker MH, Erlanger J, Meakins J, Schneider R, Scholz SB, Ungerleider H, White PD, Wiggers C, Wright I, Bramwell C, Cotton TF, Evans W, Gilchrist AR, Hay J, Campbell M, Pressure CSB, Pressure CSB. Standard method for taking and recording blood pressure readings. *J Amer Med Assoc*. 1939;113:294-297.

8. Abdalla M, Booth JN, 3rd, Seals SR, Spruill TM, Viera AJ, Diaz KM, Sims M, Muntner P, Shimbo D. Masked hypertension and incident clinic hypertension among blacks in the jackson heart study. *Hypertension*. 2016;68:220-226.

9. Keku E, Rosamond W, Taylor HA, Jr., Garrison R, Wyatt SB, Richard M, Jenkins B, Reeves L, Sarpong D. Cardiovascular disease event classification in the jackson heart study: Methods and procedures. *Ethnicity & disease*. 2005;15:S6-62-70.