EXAMPLES OF AUSLANDER-REITEN COMPONENTS IN
THE BOUNDED DERIVED CATEGORY

SARAH SCHEROTZKE

Abstract. We deduce a necessary condition for Auslander-Reiten com-
ponents of the bounded derived category of a finite dimensional algebra
to have Euclidean tree class by classifying certain types of irreducible
maps in the category of complexes. This result shows that there are
only finitely many Auslander-Reiten components with Euclidean tree
class up to shift. Also the Auslander-Reiten quiver of certain classes of
Nakayama are computed directly and it is shown that they are piece-
wise hereditary. Finally we state a condition for $\mathbb{Z}[A_\infty]$-components to
appear in the Auslander-Reiten quiver generalizing a result in \[W\].

1. INTRODUCTION

Auslander-Reiten triangles have been introduced by Happel for triangu-
lated categories generalizing the concept of Auslander-Reiten sequences for
finite-dimensional algebras.

In this paper we analyze Auslander-Reiten triangles in the bounded de-
rived category of a finite-dimensional algebra A, denoted by $D^b(A)$. Us-
ing Auslander-Reiten triangles, Happel has defined a locally finite graph,
whose vertices correspond to indecomposable complexes in $D^b(A)$ and whose
edges correspond to irreducible maps appearing in Auslander-Reiten trian-
gles. The connected components of this quiver are the Auslander-Reiten
components.

So far Auslander-Reiten components of $D^b(A)$ for A self-injective have
been determined by Wheeler in \[W\] and for A a hereditary algebra they
have been determined by Happel in \[H1, I.5.5\]. But very little is known
about the components of the bounded derived category of non self-injective
algebras. In this paper we compute the Auslander-Reiten quiver of the
bounded derived category for a class of algebras with finite global dimension.

In \[S\] we classified bounded derived categories whose Auslander-Reiten
quiver has either a stable component of Dynkin tree class, or a stable finite
component or a bounded component. It is shown that a component with

Date: June 26, 2009.
Dynkin tree class can only appear in the Auslander-Reiten component of the bounded derived category of a piecewise hereditary algebra. In this paper which can be read independently from [S] we will focus on Auslander-Reiten components with Euclidean tree class.

In the first section we introduce some notation and give the definition of Auslander-Reiten triangles. In section two we state some properties of Auslander-Reiten triangles and show that certain indecomposable elements lie in Auslander-Reiten components isomorphic to $\mathbb{Z}[A_\infty]$. This generalizes Wheeler’s main result in [W].

In section three we determine a necessary condition for the existence of stable Auslander-Reiten components with Euclidean tree class. In the last section we determine the Auslander-Reiten quivers of the bounded derived category for certain classes of algebras and use our results to show that they are piecewise hereditary.

In the third section irreducible maps of complexes in $\text{Comp}^{-b}(P)$ that end in an indecomposable contractible complex are analyzed. We show that these irreducible maps start in a complex that is isomorphic in $D^b(A)$ to a simple module of A embedded into $D^b(A)$. Using this result we show that a stable Auslander-Reiten component of $D^b(A)$ which has Euclidean tree class contains a simple A-module. It then follows that there are only finitely many Auslander-Reiten components with Euclidean tree class up to shift and this number is bounded by the number of isomorphism classes of simple modules.

Finally in the last section we analyze the Auslander-Reiten quivers of Nakayama algebras given as path algebras kA_n/I for some ideal $I \subseteq kA_n$. The first class are such Nakayama algebras with global dimension $n - 1$. In this case the Auslander-Reiten quiver consists of only one component $\mathbb{Z}[A_n]$. So by previous results the algebra kA_n/I is derived equivalent to A_n.

The second class are the algebras where I is generated by the path of length $n - 1$. In the second case the Auslander-Reiten quiver consists of only one component $\mathbb{Z}[D_n]$. Therefore the algebra kA_n/I is derived equivalent to kD_n.

The notation is the same as in [S]. Also some definitions and results from [S] will be used. For the convenience of the reader the notation and definitions are stated in this paper.
I would like to thank my supervisor Dr Karin Erdmann, Prof. Dieter Happel and Prof. Bernhard Keller for helpful discussions on the topic of this paper.

2. Preliminaries and Notation

Let A denote a finite-dimensional indecomposable algebra over a field k and $A\text{-mod}$ the category of finite-dimensional left A-modules. We denote by \mathcal{P} the full subcategory in $A\text{-mod}$ of projective modules and \mathcal{I} the full subcategory category of injective A-modules. Let $C \in \{A\text{-mod}, \mathcal{P}, \mathcal{I}\}$.

Then $\text{Comp}^{*,?}(C)$ is the category of complexes that are bounded above if $* = -$, bounded below if $* = +$ and bounded if $* = b$. The homology is bounded if $? = b$. We denote by $D^b(A)$ the bounded derived category and by $K^{*,?}(C)$ the homotopy category.

The homotopy category and the derived categories are triangulated categories by [Wei, 10.2.4, 10.4.3] where the shift functor $[1]$ is the automorphism. The distinguished triangles are given up to isomorphism of triangles by

$$X \xrightarrow{f} Y \xrightarrow{0 \circ \text{id}_Y} \text{cone}(f) \xrightarrow{\text{id}_{X[1]} \circ 0} X[1].$$

for any morphism f.

It is difficult to calculate the morphisms in the derived category of A-modules. The following theorem provides an easier way to represent them.

Theorem 2.1. [Wei, 10.4.8] We have the following equivalences of triangulated categories

$$K^{-,b}(\mathcal{P}) \cong K^{+,b}(\mathcal{I}) \cong D^b(A).$$

We identify a A-module X with the complex that has entry X in degree 0 and entry 0 in all other degrees. By abuse of notation we call this complex X. A complex with non-zero entry in only one degree is also called a stalk complex. Note that $A\text{-mod}$ is equivalent to a full subcategory of $D^b(A)$ using this embedding.

Let N be a left A-module and $\cdots \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \to N$ its minimal projective resolution. Let $N \to I_0 \xrightarrow{d_1} I_1 \xrightarrow{d_2} \cdots$ be its minimal injective resolution. Then we denote throughout this paper by pN the complex with $(pN)^i = P_{-i}$ and $d^i := d^i_P$ for $i \leq 0$ and $(pN)^i = 0$ for $i > 0$. Similarly we define iN to be the complex with $(iN)^n = I_n$ and $d^n := d^n_I$ for $n \geq 0$ and $(iN)^n = 0$ for $n < 0$.

Remark 2.2. Note that all indecomposable contractible complexes in $\text{Comp}^{-b}(\mathcal{P})$ have up to shift the form

$$\cdots \rightarrow 0 \rightarrow P \rightarrow_{\text{id}} P \rightarrow 0 \rightarrow \cdots$$

for an indecomposable projective module P of A. We denote such a complex where P occurs in degree 0 and 1 by \bar{P}.

Contractible complexes are projective objects in $\text{Comp}^{-b}(\mathcal{P})$ (see for example [S, 2.9]).

Finally we define for a complex X, the complex $\sigma \leq n(X)$ to be the complex with $\sigma \leq n(X)^i = X^i$ for $i \leq n$ and $d^i_{\sigma \leq n(X)} = d^i_X$ for $i < n$ and $\sigma \leq n(X)^i = 0$ for $i > n$. We define $\sigma \geq n(X)$ analogously.

Next we introduce Auslander-Reiten theory for $D^b(A)$. We state the existence conditions for Auslander-Reiten triangles in the bounded derived category of a finite-dimensional algebra and prove some properties that will be needed in the other sections.

For an introduction to triangulated categories we refer to [H2, 1.1].

Definition 2.3. [H1, 4.1] [Auslander-Reiten triangles] A distinguished triangle $X \rightarrow_u Y \rightarrow_v Z \rightarrow_w X[1]$ is called an Auslander-Reiten triangle if the following conditions are satisfied:

(1) The objects X, Z are indecomposable
(2) The map w is non-zero
(3) If $f : W \rightarrow Z$ is not a retraction, then there exists $f' : W \rightarrow Y$ such that $v \circ f' = f$.

By [H1, 4.2] we have the following equivalences. The condition (3) is equivalent to

(3") If $f : W \rightarrow Z$ is not a retraction, then $w \circ f = 0$.

We refer to w as the connecting homomorphism of an Auslander-Reiten triangle. We say that the Auslander-Reiten triangle $X \rightarrow Y \rightarrow Z \rightarrow X[1]$ starts in X, has middle term Y and ends in Z. Note also that an Auslander-Reiten triangle is uniquely determined up to isomorphisms of triangles by the isomorphism class of the element it ends or starts with. The Auslander-Reiten translation τ is the functor from the set of isomorphism classes of indecomposable objects that appear at the end of an Auslander-Reiten triangle to the set of isomorphism classes of indecomposable objects that appear at the start of an Auslander-Reiten triangle. The functor τ sends the isomorphism class of Z to the isomorphism class of X.
The Auslander-Reiten translation of A-mod will be denoted by τ_A in this chapter to avoid confusion.

Analogously to the classical Auslander-Reiten theory we can define irreducible maps, minimal maps, left almost split maps and right almost split maps as in [ASS, 1.1,1.4]. Irreducible maps here have the same properties as in the case of Artin algebras. (see [ASS, 1.8,1.10])

Lemma 2.4. Let $N, M \in D^b(A)$ and let $f : N \to M$ be an irreducible map in $D^b(A)$.

(1) Let $N \to_g Q \to E \to TN$ be the Auslander-Reiten triangle, then there is a retraction $s : Q \to M$ such that $f = s \circ g$.

(2) Let $L \to B \to_h M \to TL$ be an Auslander-Reiten triangle, then there is a section $r : N \to B$ such that $f = h \circ r$.

We define the Auslander-Reiten quiver to be the labelled graph $\Gamma(D^b(A))$ with vertices the isomorphism classes of indecomposable objects. The label of an arrow $\xymatrix{X \ar[r]^{d_{XY}} & Y}$ is defined as follows. If there is an Auslander-Reiten triangle $X \to L \to \tau^{-1}(X) \to X[1]$ then d_{XY} is the multiplicity of Y as a direct summand of L. Analogously if there is an Auslander-Reiten triangle $\tau(Y) \to M \to Y \to \tau(Y)[1]$ ending in Y, then d_{XY}' is the multiplicity of X as a direct summand of M. We call a connected component of $\Gamma(D^b(A))$ an Auslander-Reiten component. For well-defininess we refer to [H1].

Lemma 2.5. [H1] 4.3, 4.5] Let $X \to_u M \to_v Z \to X[1]$ be an Auslander-Reiten triangle and $M \cong M_1 \oplus M_2$, where M_1 is indecomposable. Let $i : M_1 \to M$ be an inclusion and $p : M \to M_1$ a projection. Then $\nu \circ i : M_1 \to Z$ and $p \circ u : X \to M$ are irreducible maps. Furthermore u is minimal left almost split and v is minimal right almost split.

Let ν_A denote the Nakayama functor of A and let

$$\nu_A^{-1} := \text{Hom}_A(\text{Hom}_k(-, k), A).$$

We denote by ν the left derived functor of ν_A on $D^b(A)$ and by ν^{-1} the right derived functor of ν_A^{-1}. Then ν maps a complex $X \in \text{Comp}^b(P)$ to $\nu(X) \in \text{Comp}^b(I)$, where $\nu(X)^i := \nu_A(X^i)$ and $d_{\nu(X)}^i := \nu_A(d_X^i)$ for all $i \in \mathbb{Z}$.

For $D^b(A)$ the existence of Auslander-Reiten triangles have been determined.
Theorem 2.6. [H2, 1.4] (1) Let $Z \in K^{-b}(P)$ be indecomposable. Then there exists an Auslander-Reiten triangle ending in Z if and only if $Z \in K^{b}(P)$. The triangle is of the form $\nu(Z)[-1] \to Y \to Z \to \nu(Z)$ for some $Y \in K^{-b}(P)$.

(2) Let $X \in K^{+b}(I)$ be indecomposable, then there exists an Auslander-Reiten triangle starting in X if and only if $X \in K^{b}(I)$. The triangle is of the form $X \to Y \to \nu^{-1}(X)[1] \to X[1]$ for some $Y \in K^{-b}(P)$.

From this result we deduce that the translation τ is given by $\nu[-1]$ and τ is natural equivalence from $K^{b}(P)$ to $K^{b}(I)$.

Let $N, M \in D^{b}(A)$ be two indecomposable elements and let $f : N \to M$ be an irreducible map. Then there is an arrow from N to M in the Auslander-Reiten quiver representing f if and only if $N \in K^{b}(I)$ or $M \in K^{b}(P)$.

3. Auslander-Reiten triangles

In this section we establish some properties of Auslander-Reiten triangles and definitions needed for the rest of this paper.

We call an Auslander-Reiten component Λ stable, if τ is an automorphism on Λ. By [2.6] this is equivalent to the fact that all vertices in Λ are in $K^{b}(I)$ and $K^{b}(P)$.

By [XZ, 2.2.1] and [Ri, p.206] we have

Corollary 3.1. Let Λ be a stable Auslander-Reiten component of $D^{b}(A)$. Then $\Lambda \cong \mathbb{Z}[T]/I$ where T is a tree and I is an admissible subgroup of $\text{aut}(\mathbb{Z}[T])$.

The following lemma determines the relation between irreducible maps, retractions and sections in $K^{-b}(P)$ and $\text{Comp}^{-b}(P)$. Note that by duality the same is true if we replace $K^{-b}(P)$ by $K^{+b}(I)$ and $\text{Comp}^{-b}(P)$ by $\text{Comp}^{+b}(I)$.

Lemma 3.2. [S, 3.1] Let $B, C \in \text{Comp}^{-b}(P)$ be complexes that are not contractible. Let $f : B \to C$ be a map of complexes.

(1) Let C, B be indecomposable. The map f is irreducible in $\text{Comp}^{-b}(P)$ if and only if f is irreducible in $K^{-b}(P)$.

(2) Let C be indecomposable. The map f is a retraction in $\text{Comp}^{-b}(P)$ if and only if f is a retraction in $K(P)$.

(3) Let B be indecomposable. The map f is a section in $\text{Comp}^{-b}(P)$ if and only if f is a section in $K^{-b}(P)$.
We can therefore choose for an irreducible map in $K^{-b}(P)$ an irreducible map in $\text{Comp}^{-b}(P)$ that represents this map. For the rest of this chapter all irreducible maps in $K^{-b}(P)$ or $K^{+,b}(I)$ will be represented by irreducible maps in $\text{Comp}^{-b}(P)$ or $\text{Comp}^{+,b}(I)$ respectively.

The following straightforward result will be used often to show that a complex is indecomposable.

Lemma 3.3. Let $X \in \text{Comp}(A)$ be such that X^i is indecomposable for all $i \in \mathbb{Z}$ and $d_X^i = 0$ if and only if $X^j = 0$ for all $j > l$ or $X^j = 0$ for all $j \leq l$. Then X is an indecomposable complex.

The next result follows from the previous lemma by applying 3.2.

Corollary 3.4. Let $X \in \text{Comp}^{-b}(P)$ (respectively $\text{Comp}^{+,b}(I)$) such that X^i is indecomposable for all $i \in \mathbb{Z}$ and $d_X^i = 0$ if and only if $X^j = 0$ for all $j > l$ or $X^j = 0$ for all $j \leq l$. Then X is an indecomposable object in $K^{-b}(P)$ (respectively $K^{+,b}(I)$).

We can determine the homology of the middle term of an Auslander-Reiten triangle ending in the stalk complex of a projective indecomposable module.

Lemma 3.5. Let P be a projective indecomposable module and let M be the middle term of the Auslander-Reiten triangle ending in P. Then $H^1(M) = I/\text{soc } I$ where $I := \nu(P)$, $H^0(M) = \text{rad } P$ and $H^i(M) = 0$ for all $i \neq 0, 1$.

Proof. Let $I := \nu_A(P)$ and let $\cdots \to P_2 \to g P_1 \to f P_0$ be a minimal projective resolution of I. Then I is isomorphic to pI in $D^b(A)$. Let $w : P \to pI$ be a homomorphism in $\text{Comp}^{-b}(P)$ representing the Auslander-Reiten triangle ending in P. By 2.6, the Auslander-Reiten triangle can be written as $pI[-1] \to \text{cone}(w)[-1] \to P \to w pI$. Let $M = \text{cone}(w)[-1]$, then M is given by

$$
\cdots \to P_2 \xrightarrow{g} P \oplus P_1 \xrightarrow{(f,w^0)} P_0 \to 0 \to \cdots
$$

where $P \oplus P_1$ appears in degree zero. We have $H^1(M) \cong P_0/\text{Im}(f,w^0)$ and $\text{Im}(f,w^0) = \text{Im } f + \text{Im } w^0$. We show next that $\text{Im}(f,w^0)/\text{Im } f$ is simple, hence isomorphic to $\text{soc } I$. Let $h : P' \to P$ be a projective cover of P. We identify h with the corresponding map of complexes $P' \to P$. As h is not a retraction we have $w \circ h = 0$ in $K^{-,b}(P)$ by 2.3 (3") and $w \circ h$ is therefore homotopic to zero. Then there is a map $s : P' \to P_1$ such that $w^0 \circ h = f \circ s$. We visualize this in the following diagram
As the diagram commutes, we have $w^0(\text{rad } P) \subset \text{Im } f$ and $w^0(P) \not\subset \text{Im } f$. As $P/\text{rad } P$ is simple, $\text{Im}(f, w^0)/\text{Im } f$ is also simple and we have $H^1(M) = I/\text{soc } I$. Furthermore $\ker(f, w^0) = \text{rad } P \oplus \text{Im } g$. Therefore $H^0(M) = \text{rad } P$. Clearly $H^i(M) = 0$ for all $i \neq 0, 1$.

We generalize Wheeler’s construction [W] 2.4 in the next theorem.

Theorem 3.6. Let P be a projective indecomposable module that is not simple and suppose $\nu_A^i(P)$ is injective and projective for all $i \in \mathbb{Z}$. Then the Auslander-Reiten component Λ of $D^b(A)$ containing P is isomorphic to $\mathbb{Z}[A_\infty]$.

Proof. Let w by the connecting map in the Auslander-Reiten triangle ending in P. We can choose w such that w^0 induces a projection of $P/\text{rad } P$ onto $\text{soc } \nu_A(P)$ by [3.3]. Set $f^i := \nu_A^i(w^0)$ for all $i \in \mathbb{Z}$. The elements

\[P_i := \cdots \to 0 \to P \xrightarrow{f^0} \nu_A(P) \to \cdots \to \nu_A^i(P) \xrightarrow{f^i} \nu_A^i(P) \to 0 \to \cdots \]

with entry P in degree 0 are complexes by the choice of w^0 and they are indecomposable for all $i \in \mathbb{Z}$ by [3.4]. We set $P_{-1} = 0$. The Auslander-Reiten triangles in Λ are given by

\[\nu_A(P_{i-1})[-1] \to P_i \oplus \nu_A(P_{i-2})[-1] \to P_{i-1}. \]

This can be seen as follows: the middle term of the Auslander-Reiten sequence ending in P_{i-1} can be taken as the upper row of the next diagram and the bottom row is the direct summand P_i.

\[
\begin{array}{c}
0 \to P \xrightarrow{(f^0, 0)} \nu_A(P) \oplus \nu_A(P) \xrightarrow{(f^1, 0)} \cdots \nu_A^{i-1}(P) \oplus \nu_A^{i-1}(P) \xrightarrow{(f^{i-1}, 0)} \nu_A^i(P) \to 0 \\
\text{id} \quad -\text{id} \quad -\text{id}
\end{array}
\]

We have to alternate the signs of the second identity map from column two to $i - 1$ so that we have a positive sign in the i-th column for all
$i \in \mathbb{Z}$. This sequence has as direct summand P_i and $\nu_A(P_{i-2})[-1]$. Therefore $\Lambda \cong \mathbb{Z}[A_\infty]$, and Λ looks as follows:

```
\begin{array}{cccc}
\cdots & \nu_A(P_0)[-1] & P_0 & \cdots \\
\nu_A(P_2)[-1] & P_2 & \nu_A^{-1}(P_2)[1] & \cdots \\
\cdots & P_3 & \nu_A^{-1}(P_3)[1] & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\end{array}
```

As $\nu_A(P)[-i] \neq P$ the component cannot be a tube. □

For an self-injective algebra we have $\mathcal{P} = \mathcal{I}$ and we can therefore apply the previous theorem to construct Auslander-Reiten components. We can also use this theorem to compute Auslander-Reiten components of non-self-injective algebras, as shown in the Example 3.10.

Next we define certain length functions of complexes similar to the functions defined in [W].

Definition 3.7. For $Y \in \text{Comp}^b(\mathcal{P})$ we denote by $l(Y)$ the number of projective indecomposable summands in $\bigoplus_{i \in \mathbb{Z}} Y_i$. For $X \in K^b(\mathcal{P})$ we denote by

$$l_p(X) := \min\{l(Y) \mid Y \in \text{Comp}^b(\mathcal{P}) \text{ and } Y \cong X \text{ in } K^b(\mathcal{P})\}.$$

For well-definedness see [S, 4.5].

Remark 3.8. Let Λ be a stable component. Then by 2.6 every Auslander-Reiten triangle is isomorphic to

$$\tau(P) \rightarrow \text{cone}(w)[-1] \rightarrow P \rightarrow \tau(P)[1]$$

where

$$0 \rightarrow \tau(P) \rightarrow \text{cone}(w)[-1] \rightarrow P \rightarrow 0$$

is a short exact sequence in $\text{Comp}^b(\mathcal{P})$ and $w : P \rightarrow \tau(P)[1]$ is a representative in $\text{Comp}^b(\mathcal{P})$ of the connecting morphism. Then $\text{cone}(w)[-1] \in \text{Comp}^b(\mathcal{P})$. Therefore l_p is well-defined on a stable component and satisfies
We can generalize [W, 3.2] where the same result is proven in the case that \(A \) is a self-injective algebra. The next result also generalizes [8.6] which has only been proven for stalk complexes of projective modules.

Theorem 3.9. Let \(X \in \text{Comp}^b(P) \) be an indecomposable not contractible complex such that \(\nu^i_A(X^j) \) is projective and injective for all \(i, j \in \mathbb{Z} \). Then \(X \) is in an Auslander-Reiten component of \(D^b(A) \) isomorphic to \(\mathbb{Z}[A_{\infty}] \) or \(A_1 \).

Proof. Let \(C \) be the Auslander-Reiten component of \(\Gamma(D^b(A)) \) containing \(X \) with tree class \(T \). The function \(l_p \) is constant on all \(\tau \)-orbits and therefore \(l_p \) is a subadditive function on \(T \). Suppose \(l_p \) is bounded. Then by [S, 4.15] the algebra \(A \) is derived equivalent to \(D^b(kQ) \) for a finite Dynkin diagram \(Q \neq A_1 \) or \(A \) is simple. As in the first case there is no complex that satisfies the assumption, we have that \(A \) is simple. So \(C \cong A_1 \). Otherwise \(l_p \) is unbounded and \(C \) has therefore tree class \(A_{\infty} \). Assume without loss of generality that \(X^i \neq 0 \) if and only if \(0 \leq i \leq n \). We have \(H^0(X) \neq 0 \) as \(X \) does not have contractible summands. Then \(\tau(X) \) viewed as complex in \(\text{Comp}^b(P) \) satisfies \(\tau(X)^i \neq 0 \) if and only if \(1 \leq i \leq n+1 \). Therefore \(X \) is not periodic and \(C \cong \mathbb{Z}[A_{\infty}] \). \(\square \)

We compute some examples of Auslander-Reiten quivers using the previous results.

Example 3.10. Let \(k \) be a field and let \(G \) be the quiver

\[
\begin{array}{ccc}
1 & \overset{\alpha}{\longrightarrow} & 2 \\
\beta & & \\
\end{array}
\]

Let \(A := kG/R \) where \(kG \) is the path algebra of \(G \), and where \(R \) is the ideal generated by \(\{\alpha, \beta\} \). The algebra \(A \) has global dimension 2 and has finite representation type. We denote by \(S_1 \) and \(S_2 \) the simple modules corresponding to the vertices 1 and 2. Let \(P_i \) be the projective covers of \(S_i \). We have \(S_1 = P_1/P_2 \) and \(P_2/S_1 = S_2 \). We fix a non-zero map \(f : P_1 \rightarrow P_1 \) that maps the generator to the socle. Then \(f \) is not an isomorphism. The derived category \(D^b(A) \) has infinitely many indecomposable elements \(I_n \) given by \(I^m_n = P_1 \) for all \(0 \leq m \leq n - 1 \) and \(d^l = f \) for \(0 \leq l \leq n - 2 \) for all \(0 \leq n \leq n - 2 \). By [BGS, Theorem A] we have that \(D^b(A) \) is discrete.
As \(I_1 = P_1 \) we have by \(X.6 \) that all \(I_n \) are the elements of a component \(\mathbb{Z}[A_\infty] \).

As we have \(\tau(S_2) = S_2[1] \) the element \(S_2 \) belongs to a component \(\mathbb{Z}[A_\infty] \) by \([S, 4.13]\) and \([S, 4.14]\).

Finally we note that the \(\tau \)-orbit of \(P_2 \) is given by

\[
\tau^n(P_2)^i = \begin{cases}
 P_1, & \text{for } -n \leq i \leq n \\
 P_2, & \text{for } i = -n - 1 \\
 0 & \text{else.}
\end{cases}
\]

Therefore the value of \(l_p \) is strictly increasing on \(\tau \)-orbits of the component containing \(P_2 \). The predecessors of \(P_2 \) are \(S_1 \) and \(S_1[-1] \). Therefore the component is \(\mathbb{Z}[A_\infty] \). There are no components of Euclidean tree class, as these would have to contain at least one simple \(A \)-module by \(X.6 \).

The previous example is a discrete derived categories. These categories have been defined and classified in [V, Theorem] and their Auslander-Reiten quivers have been determined in \([BGS, \text{Theorem A}]\). The authors do not calculate the Auslander-Reiten quiver directly but use the fact that the Happel functor (see \([H2, 2.5]\)) induces an equivalence of triangulated categories between \(D^b(A) \) and the stable module category of the repetitive algebra \(\hat{A} \) for all algebras \(A \) of finite-global dimension by \([H2, 2.3 \text{Theorem}]\).

We can also determine the predecessors for some projective indecomposable modules \(P \) using the previous results.

Corollary 3.11. (1) If \(\nu_A(P) \) is projective, then

\[
\cdots \rightarrow 0 \rightarrow P \rightarrow \nu_A(P) \rightarrow 0 \rightarrow \cdots
\]

with \(P \) appearing in degree 0, is the only predecessor of \(P \).

(2) If \(P \) is injective, then

\[
\cdots \rightarrow 0 \rightarrow P \rightarrow \nu_A(P) \rightarrow 0 \rightarrow \cdots
\]

with \(P \) appearing in degree 0 is the only predecessor of \(P \).

Proof. Let \(w \) be the connecting homomorphism in the Auslander-Reiten triangle ending in \(P \). Suppose that \(\nu_A(P) \) is projective. Then cone(\(w \)) can be taken as \(\cdots \rightarrow 0 \rightarrow P \xrightarrow{w^0} \nu_A(P) \rightarrow 0 \rightarrow \cdots \), where \(w^0 \) induces a projection of \(P / \text{rad } P \) onto \(\text{soc } \nu_A(P) \) by \(3.5 \). The complex cone(\(w \)) is indecomposable in \(K^b(\mathcal{P}) \) by \(3.4 \). This proves part (1) and part (2) follows similarly. \(\square \)
4. IRREDUCIBLE MAPS ENDING IN CONTRACTIBLE COMPLEXES

Next we analyze under which conditions a contractible complex can appear as direct summand of cone\((w)[-1] \in \text{Comp}^{-b}(\mathcal{P})\) for a map \(w\) in \(\text{Comp}^{-b}(\mathcal{P})\) that induces an Auslander-Reiten triangle \(\nu(Z)[-1] \to Y \to Z \overset{w}{\to} \nu(Z)\) in \(D^b(A)\).

We first introduce a new definition.

Definition 4.1. Let \(P_1, P_2 \in \mathcal{P}\) and \(f : P_1 \to P_2\) be a map. Then \(f\) is \(p\)-irreducible if \(f\) is not a section and not a retraction and if for any \(P \in \mathcal{P}\) and maps \(f_1 : P_1 \to P\) and \(f_2 : P \to P_2\) such that \(f = f_2 \circ f_1\) we have that \(f_1\) is a section or \(f_2\) is a retraction.

Throughout this section let \(P\) be an indecomposable projective module and \(\bar{P}\) the contractible complex

\[
\cdots \to 0 \overset{\text{id}}{\to} P \overset{\text{id}}{\to} P \to 0 \to \cdots
\]

with \(\bar{P}^0 = \bar{P}^1 = P\).

Lemma 4.2. Let \(f : Q \to \bar{P}\) be an irreducible map in \(\text{Comp}^{-b}(\mathcal{P})\), where \(Q \in \text{Comp}^{-b}(\mathcal{P})\) is indecomposable and not contractible. Then there exists an indecomposable projective module \(P_0\) and a map \(d : P_0 \to P\) that is \(p\)-irreducible, such that \(Q \cong p(\text{Coker}(d))\).

Proof. Let \(f\) be an irreducible map given by the diagram

\[
\begin{array}{cccccc}
\cdots & Q^{-1} & Q^0 & Q^1 & Q^2 & \cdots \\
\downarrow f^0 & \downarrow f^1 & & & \\
\cdots & 0 & P & \overset{\text{id}}{\to} P & 0 & \cdots \\
\end{array}
\]

We first show that \(Q^i = 0\) for \(i \geq 2\), and that \(Q^1 \cong P\). We can factorize \(f\) through \(\sigma^{\leq 1}Q\) as

\[
\begin{array}{cccccc}
\cdots & Q^{-1} & Q^0 & Q^1 & Q^2 & \cdots \\
\downarrow \text{id} & \downarrow \text{id} & \downarrow \text{id} & & & \\
\cdots & Q^{-1} & Q^0 & Q^1 & 0 & \cdots \\
\downarrow f^0 & \downarrow f^1 & & & \\
\cdots & 0 & P & \overset{\text{id}}{\to} P & 0 & \cdots \\
\end{array}
\]
The map given by the last two rows is not a retraction, as \(f \) is not a retraction. Therefore the map between the first two rows is a section and \(Q^i = 0 \) for all \(i \geq 2 \).

We can factorize \(f \) as

\[
\begin{array}{c}
\cdots \longrightarrow Q^{-1} \longrightarrow Q^0 \underset{d}{\longrightarrow} Q^1 \longrightarrow 0 \longrightarrow \cdots \\
\downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
\cdots \longrightarrow 0 \longrightarrow Q^0 \underset{id}{\longrightarrow} Q^1 \longrightarrow 0 \longrightarrow \cdots \\
\downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
\cdots \longrightarrow 0 \longrightarrow P \underset{id}{\longrightarrow} P \longrightarrow 0 \longrightarrow \cdots
\end{array}
\]

If the map between the first two rows is a section, then \(Q \) is isomorphic to the complex in the middle row, and hence is contractible, which is a contradiction. Therefore the map between the last two rows is a retraction.

We can write \(Q^1 \cong P \oplus P' \) for a projective module \(P' \) and \(f^1 \) is a retraction. But then we can factorize \(f \) as follows

\[
\begin{array}{c}
\cdots \longrightarrow Q^{-1} \longrightarrow Q^0 \underset{d}{\longrightarrow} P \oplus P' \longrightarrow 0 \longrightarrow \cdots \\
\downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
\cdots \longrightarrow Q^{-1} \longrightarrow Q^0 \underset{f^1}{\longrightarrow} P \longrightarrow 0 \longrightarrow \cdots \\
\downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
\cdots \longrightarrow 0 \longrightarrow P \underset{id}{\longrightarrow} P \longrightarrow 0 \longrightarrow \cdots
\end{array}
\]

If the map in the last two rows is a retraction, then \(f \) is a retraction. Therefore the map between the two upper rows has to be a section and \(P' = 0 \), \(f^0 = d \) and \(f^1 = id \).

Let \(\cdots \longrightarrow L_{-2} \longrightarrow L_{-1} \longrightarrow \ker d \) be a minimal projective resolution of \(\ker d \). Then \(f \) factorizes through \(\text{Coker}(d) \) as follows

\[
\begin{array}{c}
\cdots \longrightarrow Q^{-1} \underset{h}{\longrightarrow} Q^0 \underset{d}{\longrightarrow} P \longrightarrow 0 \longrightarrow \cdots \\
\downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
\cdots \longrightarrow L_{-1} \underset{g}{\longrightarrow} Q^0 \underset{d}{\longrightarrow} P \longrightarrow 0 \longrightarrow \cdots \\
\downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
\cdots \longrightarrow 0 \longrightarrow P \underset{id}{\longrightarrow} P \longrightarrow 0 \longrightarrow \cdots
\end{array}
\]

Clearly the bottom diagram is not a retraction, because else \(f \) would be a retraction. Therefore the upper diagram is a section and the \(Q^{-r} \) are
isomorphic to direct summands of L_{-r} for all $r > 0$. Then there exists a projection $s : L_{-1} \to Q^{-1}$ such that $hs = g$. By the minimality of the projective resolution, we have $Q^{-1} \cong L_{-1}$. By induction Q is isomorphic to the complex consisting of a minimal projective resolution of $\text{Coker} \, d$ and 0 elsewhere. Suppose d is not p-irreducible. Then we can factorize $d = s \circ t$ where $t : Q^0 \to \tilde{P}$ is not a section and $s : \tilde{P} \to P$ is not a retraction for some projective module \tilde{P}. But then we can factorize f as follows

\[
\begin{array}{cccccccc}
\cdots & Q^{-1} & \hat{h} & Q^0 & \hat{d} & P & 0 & \cdots \\
\downarrow \text{id} & \downarrow t & \downarrow \text{id} & \downarrow \text{id} \\
\cdots & Q^{-1} & \hat{P} & s & P & 0 & \cdots \\
\downarrow \text{id} & \downarrow s & \downarrow \text{id} & \downarrow \text{id} \\
\cdots & 0 & P & s & P & 0 & \cdots \\
\end{array}
\]

This is a contradiction to the irreducibility of f as the map between the first two rows is not a section and the map between the two bottom rows is not a retraction. Therefore d is p-irreducible.

Next we determine p-irreducible maps between indecomposable projective modules.

Lemma 4.3. Let P_1 and P_2 be indecomposable projective modules and $d : P_1 \to P_2$ some map. Then d is p-irreducible if and only if P_1 is isomorphic to a direct summand of the projective cover of $\text{rad} \, P_2$ and d is induced by this projection.

Proof. \Leftarrow

Let $d : P_1 \to P_2$ be as in the statement. Suppose that d factors as $d = g \circ f$ where $f : P_1 \to \tilde{P}$, $g : \tilde{P} \to P_2$ and g is not a retraction. Then $\text{Im} \, d \subset \text{Im} \, g \subset \text{rad} \, P_2$. Let $\pi : P_1 \oplus P'_1 \to \text{rad} \, P_2$ be the projective cover. Since \tilde{P} is projective, there is a map $e : \tilde{P} \to P_1 \oplus P'_1$ such that $\pi e = g$.

Then we have a commutative diagram

\[
\begin{array}{cccccccc}
P_1 & \xrightarrow{f} & \tilde{P} & \xrightarrow{e} & P_1 \oplus P'_1 \\
\downarrow d & \downarrow g & \downarrow e \\
\text{Im} \, d & \xrightarrow{\text{Im} \, g} & \text{rad} \, P_2 \\
\end{array}
\]

Let $\text{top} \, P_1 \cong S_1$ and let $q : \text{rad} \, P_2 \to S_1$ be a projection with $q(\text{Im} \, d) \neq 0$. Then $q(\text{Im}(ef)) \neq 0$. Let $p : P_1 \oplus P'_1 \to P_1$ denote the natural projection.
EXAMPLES OF AUSLANDER-REITEN COMPONENTS IN THE BOUNDED DERIVED CATEGORY

Then $pef \not\subset \text{rad } P_1$. Therefore pef is an isomorphism. So f is a section and d is p-irreducible.

\Rightarrow

Conversely, let $s : P_1 \to P_2$ be a p-irreducible map. Then s is not surjective and therefore $\text{Im } s \subset \text{rad } P_2$. Let P_0 be a projective module and $i : P_0 \to \text{rad } P_2$ be a projection. Then there is a map $h : P_1 \to P_0$ such that $s = ih$. As s is p-irreducible, h is a section and P_1 is a direct summand of P_0. □

Next we determine which p-irreducible maps induce an irreducible map in $\text{Comp}^{-b}(\mathcal{P})$.

\textbf{Theorem 4.4.} Let P_0 be a projective module and let $d : P_0 \to P$ be a p-irreducible map. Then there is an irreducible map in $\text{Comp}^{-b}(\mathcal{P})$ from the complex $p(\text{Coker}(d))$ to the contractible complex \mathcal{P} if and only if P_0 is the projective cover of $\text{rad } P$ and d is the projection onto $\text{rad } P$.

Proof. \Leftarrow

Let $p(\text{Coker}(d)) := \cdots \to P_{-1} \to P_0 \overset{d}{\to} P \to 0 \to \cdots$, where P_0 is the projective cover of $\text{rad } P$. We claim that the map h given by

$$
\cdots \to P_{-1} \to P_0 \overset{d}{\to} P \to 0 \to \cdots
$$

is irreducible in $\text{Comp}^{-b}(\mathcal{P})$.

Suppose the given map factors through a complex $X \in \text{Comp}^{-b}(\mathcal{P})$ via maps $f : p(\text{Coker}(d)) \to X$ and $g : X \to \mathcal{P}$ such that g is not a retraction. As $\text{id}_P = g^1 \circ f^1$, we have that f^1 is a section and g^1 is a retraction. We have that $X^1 \cong P \oplus \mathcal{P}$ for some projective module \mathcal{P}. If $\text{Im } g^1 \delta_X^0 = P$, then g is a retraction. Therefore $\text{Im } g^0 = \text{rad } P$, as $\text{Im } d \subset \text{Im } g^1 \delta_X^0 = \text{Im } g^0$. Then d factors through g^0 and f^0. As d is irreducible by assumption, f^0 is a section. Therefore $X^0 = P_0 \oplus P'$ for some projective module P' and $g^1 \delta_X^0(P') = g^0(P') = 0$. We visualize this in the next diagram.
··· → P_{-1} → P_0 → P → 0 → ···

··· → X^{-1} → $P_0 \oplus P'$ → $P \oplus \tilde{P}$ → 0 → ···

··· → 0 → P → P → 0 → ···

Using the fact that ··· → P_{-1} → ker d is a minimal projective resolution of ker d, we can factorize the map g through $s : X → p \text{Coker}(d)$ and $t : p \text{Coker}(d) → \tilde{P}$ as follows

··· → X^{-1} → $P_0 \oplus P'$ → $P \oplus \tilde{P}$ → 0 → ···

··· → P_{-1} → P_0 → P → 0 → ···

··· → 0 → P → P → 0 → ···

So $s \circ f$ is an isomorphism. Therefore f is a section.

Conversely, if there is an irreducible map $p(\text{Coker}(d)) → \tilde{P}$, then P_0 is a direct summand of the projective cover of rad P and d is the induced map by 4.2 and 4.3. Let $r : \tilde{P} → \text{rad} P$ be the projective cover of rad P and suppose $\tilde{P} \cong P_0 \oplus P'$ where $P' \neq 0$ is a projective module and let $i : P_0 → \tilde{P}$ be a section such that $r \circ i = d$. Let $p(\text{Coker}(r)) := ··· → S_{-1} → \tilde{P} \xrightarrow{r} P → 0 → ···$. Then the map of complexes $p(\text{Coker}(d)) → \tilde{P}$ induced by the p-irreducible map d as in the first part of the proof factors through $p(\text{Coker}(r))$ as follows:

··· → P_{-1} → P_0 → P → 0 → ···

··· → S_{-1} → \tilde{P} → P → 0 → ···

··· → 0 → P → P → 0 → ···

The map between the first two rows is not a section and the map between the last two rows is not a retraction. This shows that the map is not irreducible in $\text{Comp}^{-,b}(\mathcal{P})$. Therefore $P_0 \cong \tilde{P}$.

□
Let P_1 be a summand of the projective cover of $\text{rad } P$ and $d : P_1 \to P$ the induced map. Then $p(\text{Coker}(d)) \in K^{-b}(P)$ is isomorphic to the stalk complex $P/\text{Im } d \in D^b(A)$ and is therefore indecomposable.

Corollary 4.5. Let θ be a stable Auslander-Reiten component of $\Gamma(D^b(A))$. Then l_p is not additive if and only if there exists an indecomposable projective module P such that $P/\text{rad } P$ has finite projective and finite injective dimension and a shift of the stalk complex $P/\text{rad } P$ is in θ.

Proof. By 3.8 the function l_p is not additive if and only if there exists an indecomposable complex $L \in \text{Comp}^b(P)$ and a map $w : L \to \nu(L)$ in $\text{Comp}^b(P)$ that represents an Auslander-Reiten triangle in θ such that $\text{cone}(w)[-1] \in \text{Comp}^b(P)$ contains a contractible summand.

By 3.2 there is a complex \bar{P} that is a direct summand of $\text{cone}(w)[-1]$ and an irreducible map $f : \nu(L)[-1] \to \bar{P}$ in $\text{Comp}^{-b}(P)$. By Lemma 4.3, $\nu(L)[-1]$ is isomorphic in $D^b(A)$ to $P/\text{rad } P$ up to shift. As θ is a stable Auslander-Reiten component, we have $p(P/\text{rad } P) \in K^b(P)$ and $i(P/\text{rad } P) \in K^b(\mathcal{I})$. Therefore $P/\text{rad } P$ has finite projective and finite injective dimension.

From this corollary it follows that if A is self-injective, then l_p is an additive function on the Auslander-Reiten components of $D^b(A)$.

We can deduce that Euclidean components always contain the stalk complex of a simple module.

Theorem 4.6. Let C be a stable component of the Auslander-Reiten quiver of $D^b(A)$ with tree class an Euclidean diagram. Then C contains a simple module.

Proof. The function l_p is subadditive on C. Suppose l_p is additive. By [We, 2.4], the function l_p takes bounded values on C. This is a contradiction to [S, 4.14]. Therefore l_p is not additive. By 4.5, this means that C contains a simple module.

As there are only finitely many isomorphism classes of simple modules, we get

Corollary 4.7. The Auslander-Reiten quiver of $D^b(A)$ contains finitely many Auslander-Reiten components up to shift that have Euclidean tree class. Their number is bound by the number of isomorphism classes of simple A-modules.
Lemma 4.8 (Irreducible maps that do not appear in Auslander-Reiten triangles). Let $f : B \to C$ be an irreducible map in $D^b(A)$ that does not appear in an Auslander-Reiten triangle. Then $B, C \notin K^b(\mathcal{P})$ and $B, C \notin K^b(\mathcal{I})$.

Proof. By 2.6 it is clear that $B \notin K^b(\mathcal{I})$ and $C \notin K^b(\mathcal{P})$. Let us assume that $B \in K^b(\mathcal{P})$ and let $n \in \mathbb{N}$ be minimal such that $B^n \neq 0$. Then f factorizes through $\sigma^{\geq n-1}(C)$, where C is represented as a complex in $\text{Comp}^{-b}(\mathcal{P})$. Let $f = h \circ g$ be this factorization, then g is not a section, as f is not a section and h is not a retraction as $\sigma^{\geq n-1}(C) \cong C$. This is a contradiction to the fact that f is irreducible. Therefore $B \notin K^b(\mathcal{P})$. Analogously, we can show that $C \notin K^b(\mathcal{I})$. □

An example of such an irreducible map not appearing in the Auslander-Reiten quiver of $D^b(A)$ is given at the end of [S].

5. Auslander-Reiten triangles of Nakayama algebras

In this section we analyze the Auslander-Reiten quiver of certain Nakayama algebras A with finite global dimension. The results at the end of this section may help to illustrate results from the previous sections.

Let $A_n : 1 \to 2 \to \cdots \to n-1 \to n$ and let I be an ideal of the path algebra of kA_n. We define $A := kA_n/I$, then A is a Nakayama algebra of finite global dimension. We denote by J the ideal generated by the paths of length one in kA_n.

We denote the starting vertex of a path b by $s(b)$ and the vertex that b ends in by $t(b)$. With this notation we have $s(n-1, n) = n$ in the above diagram. Then $s(b) \geq t(b)$ and $b_1 b \neq 0$ for two paths b_1 and b if $t(b) = s(b_1)$.

We denote by S_i the simple modules at the vertex i, by P_i the projective indecomposable modules with $P_i/\text{rad} P_i = S_i$ and by I_i the injective indecomposable modules with $\text{soc} I_i = S_i$. Whenever S_j occurs in I_i then it occurs precisely once, therefore $\dim_k \text{Hom}_A(I_i, I_j) \leq 1$. So we can fix maps $d^j_i : I_i \to I_j$ which are non-zero if and only if $\dim_k \text{Hom}_A(I_i, I_j) = 1$ such that $d^i_i = \text{id}$ and $d^j_k \circ d^j_i = d^j_i$ for all $1 \leq i \leq k \leq j \leq n$. When constructing injective resolutions we can always take these maps. Analogously, when we construct minimal projective resolutions we can always take maps $\nu_{A}^{-1}(d^j_i)$.

We investigate the global dimension of Nakayama algebras with quiver A_n. We call two paths intersecting, if they have at least one arrow in common.
Note that we can always choose a generating set B of an ideal I in kA_n that consists of paths in kA_n. If the generating set B is minimal there are no two paths in B that contain each other. We call a subset of B intersecting, if every path in that set intersects with at least one other path in the set.

Lemma 5.1. Let $A = kA_n/I$. Let B be a minimal generating set of I that consists of paths in kA_n. Then the global dimension of A is smaller or equal to the maximal cardinality of all intersecting subsets of B plus one.

Proof. We denote the starting vertex of b_i by $s_i := s(b_i)$ and the vertex that b_i ends in by $t_i := t(b_i)$. We assume that paths generating B are ordered such that $s_i \leq s_j$ if $i < j$. For a fix i we consider $\{b_m, \ldots, b_i\}$, the intersecting set of B that does not contain elements b_j for $j > i$ and is maximal with that property.

Suppose first that for all $m < j < i$ there is an element s_w for some $m \leq w \leq i$ with $s_w \in [t_j, t_{j+1}]$

Then a minimal projective resolution of S_{s_i} is of the form

$$0 \rightarrow P_{t_m} \rightarrow \cdots \rightarrow P_{t_{i-1}} \rightarrow P_{t_i} \rightarrow P_{s_i-1} \rightarrow P_{s_i}.$$

Therefore S_{s_i} has projective dimension $i - m + 2$.

Suppose there is some j with $m < j < i$ such that the interval $[t_j, t_{j+1}]$ does not contain any s_w for all $m \leq w \leq i$. Let j be maximal with this property, then a minimal projective resolution of S_{s_i} is given by

$$0 \rightarrow P_{t_j} \rightarrow \cdots \rightarrow P_{t_{i-1}} \rightarrow P_{t_i} \rightarrow P_{s_i-1} \rightarrow P_{s_i}.$$

Therefore S_{s_i} has projective dimension $i - j + 2$. As $j \geq m + 1$, we have that the projective dimension is $\leq i - m + 1$.

If $j \neq s_i$ for all $b_i \in B$, then a minimal projective resolution of S_j is given by $0 \rightarrow P_{j-1} \rightarrow P_j$ and S_j has therefore projective dimension 1.

We can use the same argument for injective resolutions. This proves the lemma. \[\square\]

Corollary 5.2. The algebra A has global dimension $n - 1$ if and only if I is generated by all paths of length 2.

Proof. If I is generated by all paths of length 2, then we are in the first case of 5.1 and S_i has projective dimension $i - 1$ for all $1 \leq i \leq n$. Suppose A has global dimension $n - 1$, then S_n has projective dimension $n - 1$. So we are in the first case of 5.1. Therefore a maximal intersecting set of B is given by
\{b_1, \ldots, b_{n-2}\} \text{ with } t_j = j \text{ and } s_{n-2} = n \text{ for all } 1 \leq j \leq n - 1. \text{ Then the } b_j \text{ have to be paths of length two. Furthermore } I \text{ is generated by the } b_j \text{ as any other path in } A_n \text{ of length } >1 \text{ can be written as a product of the } b_j. \qed

By [ASS 3.5] every indecomposable module \(M\) of \(A\) is isomorphic to \(P_i / \text{rad}^t(P_i)\). If \(M\) is projective then we choose \(t\) minimal such that \(\text{rad}^t(P_i) = 0\). Then \(i \text{ and } t\) are uniquely determined. We fix \(i\) and \(t\). Let \(l := l(P_i)\) and \(\bar{l} := l(I_{i-t+1})\). If \(\text{pdim}M \geq 1\), then the minimal projective resolution of \(M\) starts with \(\cdots \rightarrow P_{i-1} \rightarrow P_{i-2} \rightarrow P_i\). If \(\text{idim}M \geq 1\) then the minimal injective resolution of \(M\) starts with \(I_{i-t+1} \rightarrow I_{i+1} \rightarrow I_{i+i-t+1} \rightarrow \cdots\). We thereby set \(I_k = 0\) and \(P_k = 0\) if \(k \leq 0\).

We introduce three conditions:

(1) We have \(d_i - t + 1 = 0\) or \(\text{pdim}M \leq 1\).
(2) We have \(d_i + l - t + 1 = 0\) or \(\text{idim}M \leq 1\).
(3) We have \(d_i + 1 = 0\) or \(\text{pdim}M = 0\) or \(\text{idim}M = 0\).

The next lemma will be used to calculate concrete examples.

Lemma 5.3. Let \(w : M \rightarrow \nu(M)\) define an Auslander-Reiten triangle terminating in \(M\).

(a) cone\((w)\) has a direct summand isomorphic to \(\nu(\Omega(M))[1]\) if and only if (1) and (3) hold.
(b) cone\((w)\) has a direct summand isomorphic to \(\Omega^{-1}(M)\) if and only if (2) and (3) hold.
(c) cone\((w)\) has a direct summand isomorphic to
\[\cdots \rightarrow 0 \rightarrow I_{i-t+1} \rightarrow I_i \rightarrow 0 \cdots \]
if and only if (1) and (2) hold.
(d) cone\((w)\) decomposes as sum of the indecomposable complexes isomorphic to \(\Omega^{-1}(M)\),
\[\cdots \rightarrow 0 \rightarrow I_{i-t+1} \rightarrow I_i \rightarrow 0 \cdots, \] and \(\nu(\Omega(M))[1]\) if and only if (1), (2) and (3) hold.
(e) If at most one condition (1)-(3) holds, then cone\((w)\) is indecomposable.

Proof. We will write \(d\) instead of \(d_i^t\) for an easier presentation. The connecting map \(w\) of the Auslander-Reiten triangle ending in \(M\) can be taken as a map in \(\text{Comp}^{+,b}(\mathcal{I})\)

\[
\begin{array}{cccccccc}
\cdots & \rightarrow & 0 & \rightarrow & I_{i-t+1} & \rightarrow & I_{i+1} & \rightarrow & I_{i+i-t+1} \\
\downarrow & & \downarrow d & & \downarrow d & & \downarrow d & & \downarrow d \\
\cdots & \rightarrow & I_{i-t} & \rightarrow & I_{i-t} & \rightarrow & I_i & \rightarrow & 0 \\
\end{array}
\]
Note that if \(\text{pdim} M = 0 \), then \(I_{i-t} \) does not appear and all entries left of \(I_{i-t} \) are zero. If \(\text{pdim} M = 1 \), then all entries left of \(I_{i-t} \) are zero. Analogously if \(\text{idim} M = 0 \), then \(I_{i+1} \) does not appear and all entries right of \(I_{i+1} \) are zero. If \(\text{idim} M = 1 \), then all entries right of \(I_{i+1} \) are zero. Then \(\text{cone}(w) \) is given by the complex

\[
\cdots \rightarrow I_{i-t} \xrightarrow{(d,0)} I_{i-t+1} \oplus I_{i-t} \xrightarrow{(-d,0)} I_{i+1} \oplus I_i \xrightarrow{(d,0)} I_{i+1-t+1} \rightarrow \cdots
\]

We determine the direct summands of \(\text{cone}(w) \) in \(\text{Comp}^{+,b}(\mathcal{I}) \) as by 3.2 the direct sum decomposition in \(\text{Comp}^{+,b}(\mathcal{I}) \) gives the direct sum decomposition in \(\text{D}^b(A) \). We have a surjective map \(f \) given by

\[
\cdots \rightarrow I_{i-t} \xrightarrow{(d,0)} I_{i-t+1} \oplus I_{i-t} \xrightarrow{(-d,0)} I_{i+1} \oplus I_i \xrightarrow{(d,0)} I_{i+1-t+1} \rightarrow \cdots
\]

\[
\text{id} \downarrow \quad \downarrow \\
\cdots \rightarrow I_{i-t} \xrightarrow{d} I_{i-t} \rightarrow 0 \rightarrow 0 \rightarrow \cdots
\]

Note that up to multiplication with a non-zero scalar, this is the only surjective map between the two complexes. If there is a non-zero map \(g \) from the bottom complex to the top complex such that \(f \circ g = \text{id} \), then it is of the following form

\[
\cdots \rightarrow I_{i-t} \xrightarrow{(d,0)} I_{i-t+1} \oplus I_{i-t} \xrightarrow{(-d,0)} I_{i+1} \oplus I_i \xrightarrow{(d,0)} I_{i+1-t+1} \rightarrow \cdots
\]

\[
\text{id} \downarrow \quad \downarrow \\
\cdots \rightarrow I_{i-t} \xrightarrow{d} I_{i-t} \rightarrow 0 \rightarrow 0 \rightarrow \cdots
\]

where \(\lambda \in k \). We need to determine under which conditions \(g \) is a chain map. As the middle square commutes, we have \((-\lambda + 1)d_{i-t}^t = 0\) and \(\lambda d_{i-t+1}^{t+1} = 0\). As the square on the left hand side commutes, we have \(\lambda d_{i-t+1}^{t+1} = 0\). If \(\text{pdim} M > 0 \), then \(d_{i-t}^t \neq 0 \) as \(\nu_{A}^{-1}(d_{i-t}^t) \) appears in a minimal projective resolution of \(M \). Therefore \(\lambda = -1 \). Then \(d_{i-t+1}^{t+1} = 0 \) or \(\text{idim} M = 0 \) as in this case \(I_{i+1} \) does not appear in the diagram. This is then equivalent to condition (2). Furthermore we need \(d_{i-t+1}^{t+1} = 0 \) or \(\text{pdim} M = 0 \) which is equivalent to condition (1). If \(\text{pdim} M = 0 \), then \(I_{i-t} \) and \(I_{i-t} \) do not appear and therefore the diagram commutes.
The bottom row is isomorphic to $\nu(\Omega(M))[1]$ in $D^b(A)$. This is an indecomposable complex, as $\Omega(M)$ is indecomposable. Therefore $\text{cone}(w)$ has an indecomposable summand isomorphic to $\nu(\Omega(M))[1]$.

We have an injective map s given by

\[
\begin{array}{cccccccc}
\cdots & I_{i-t} & \rightarrow & I_{i-t+1} \oplus I_{i-t} & \rightarrow & I_{i+1} \oplus I_i & \rightarrow & I_{i+1-t+1} & \rightarrow \\
& (d, a) & & (d, a) & & (d, a) & & (d, a) & \\
\cdots & 0 & \rightarrow & 0 & \rightarrow & I_{i+1} & \rightarrow & I_{i+1-t+1} & \rightarrow \\
& id & & id & & id & & id & \\
\end{array}
\]

The map s is up to multiplication with non-zero scalar the only injective map from the bottom row to the top row.

Suppose there is a map h such that $h \circ s = id$. Then h is of the form

\[
\begin{array}{cccccccc}
\cdots & I_{i-t} & \rightarrow & I_{i-t+1} \oplus I_{i-t} & \rightarrow & I_{i+1} \oplus I_i & \rightarrow & I_{i+1-t+1} & \rightarrow \\
& (d, a) & & (d, a) & & (d, a) & & (d, a) & \\
\cdots & 0 & \rightarrow & 0 & \rightarrow & I_{i+1} & \rightarrow & I_{i+1-t+1} & \rightarrow \\
& id & & id & & id & & id & \\
\end{array}
\]

where $\Lambda \in k$. As in the first case, we need to determine under which conditions h is a chain map. The middle square commutes if and only if $(\lambda - 1)d_i^{i+1-t+1} = 0$ and $\lambda d_i^{i+1} = 0$. The square on the left hand side commutes if $\lambda d_i^{i+1-t+1} = 0$. If idim$M > 0$, then $d_i^{i+1-t+1} \neq 0$. Therefore $\lambda = 1$. Then $d_i^{i+1} = 0$ or idim$M = 1$ and $d_i^{i+1-t+1} = 0$ or pdim$M = 0$, so condition (2) and (3) hold.

The bottom row is isomorphic to $\Omega^{-1}(M)$. As A is a Nakayama algebra, $\Omega^{-1}(M)$ is indecomposable. Therefore the complex $\Omega^{-1}(M)$ is indecomposable.

To prove the third part, we assume that there is a retraction x from $\text{cone}(w)$ to the given complex. The map x and the map y such that $y \circ x = id$ can be taken as

\[
\begin{array}{cccccccc}
\cdots & I_{i-t} & \rightarrow & I_{i-t+1} \oplus I_{i-t} & \rightarrow & I_{i+1} \oplus I_i & \rightarrow & I_{i+1-t+1} & \rightarrow \\
& (d, a) & & (d, a) & & (d, a) & & (d, a) & \\
\cdots & 0 & \rightarrow & I_{i-t+1} & \rightarrow & I_i & \rightarrow & 0 & \rightarrow \\
& d & & id & & id & & id & \\
\end{array}
\]

for some $\lambda, \delta \in k$. The square on the left hand side of the map going down commutes if and only if $\lambda d_i^{i-t+1} = 0$. The middle square commutes if and only if $(\lambda - 1)d_i^{i-t} = 0$. If pdim$M > 0$, then $d_i^{i-t} \neq 0$, so $\lambda = -1$ and we get that condition (1) is satisfied.
The square on the right hand side of the map going up commutes if and only if \((\delta + 1)d_{i-t+1}^{i+1} = 0\) holds. The middle square of the map going up commutes if and only if \(\delta d_i^{i+1} + l - t + 1 = 0\). If \(\text{idim} M > 0\), then \(d_i^{i+1} \neq 0\), so \(\delta = -1\) and \(d_i^{i+1} = 0\) or \(\text{idim} M = 1\). So condition (2) holds.

Therefore the complex in the bottom row is a direct summand of \(\text{cone}(w)\) if and only if (1) and (2) hold. The complex in the bottom row is indecomposable by [3.4]. This proves part (a)-(d).

The complexes \(\sigma^\geq 1(\text{cone}(w))\) and \(\sigma^\leq -1(\text{cone}(w))\) are indecomposable in \(\text{Comp}^{+,b}(\mathcal{I})\), as the first one is a minimal injective resolution of an indecomposable module and the second one is \(\nu\) applied to a minimal projective resolution of an indecomposable module. Therefore the retractions presented in the previous three diagrams are the only possibilities for direct summands. So if at most one condition is satisfied, then \(\text{cone}(w)\) has to be indecomposable, which proves part (e).

\[\square\]

We determine the number of predecessors of the simple \(A\)-modules in the Auslander-Reiten quiver of \(D^b(A)\).

Lemma 5.4. Let \(S_i\) be a simple \(A\)-module and assume that \(S_i\) is not projective and not injective. Then \(S_i\) has two predecessors in \(\Gamma(D^b(A))\) if and only if \(d_i^{i+1} = 0\). Otherwise \(S_i\) has only one predecessor.

Proof. With the notation of [5.3], we have that \(t = 1\) and \(\bar{l} = l(I_i)\). Clearly condition (1) and condition (2) are always satisfied. Therefore \(S_i\) has two predecessors if and only if (3) is satisfied. This is the case if and only if \(d_i^{i+1} = 0\). Then \(S_i\) has the two predecessor \(\nu(\text{rad} P_i)\) and \(I_i/S_i[-1]\). In all other cases \(S_i\) has only one predecessor. \(\square\)

We compute an example.

Example 5.5. Let \(1 \overset{\alpha}{\rightarrow} 2 \overset{\beta}{\rightarrow} 3 \overset{\gamma}{\rightarrow} 4\) and \(I = \langle \alpha \beta \gamma \rangle\). Then a complete list of indecomposable left \(A\)-modules is given as \(P_1 = S_1 = \text{rad} P_2, P_2 = \text{rad} P_3, P_3 = I_1, M := P_3/P_1 = \text{rad} P_4, P_4 = I_2, S_2, S_3, \) \(I_3 = P_4/S_2\) and \(I_4 = S_4\).

As \(P_1\) is simple, its Auslander-Reiten triangle is of the form

\[P_3[-1] \rightarrow M[-1] \rightarrow P_1 \rightarrow P_3.\]

As \(I_2 = P_4\) is projective, we have

\[P_4[-1] \rightarrow \nu^{-1}(i(M)) \rightarrow P_2 \rightarrow P_4.\]
Therefore the Auslander-Reiten triangles of P_3 and P_4 are of the form

$$I_3[-1] \rightarrow \nu(p(M)) \rightarrow P_3 \rightarrow I_3$$

and

$$I_4[-1] \rightarrow M \rightarrow P_4 \rightarrow I_4.$$

By 5.3 the module M satisfies the conditions (1) and (2) and therefore its Auslander-Reiten-triangle is of the form

$$\nu(M)[-1] \rightarrow I_4[-1] \oplus P_3 \oplus S_2 \rightarrow M.$$

The simple modules S_2 and S_3 have only one predecessor by 5.4. Their Auslander-Reiten triangles are of the form

$$S_2 \rightarrow M \rightarrow S_3 \rightarrow S_2[1]$$

and

$$\nu^{-1}(S_3) \rightarrow \nu(M)[-1] \rightarrow S_2 \rightarrow \nu^{-1}(S_3)[1].$$

The τ-orbits are the following:

1st orbit: $P_1, P_3[-1], I_3[-2], P_1[-1]$
2nd orbit: $P_4, I_4[-1], P_2, P_4[-1]$
3rd orbit: $M, \nu(M)[-1], \nu^{-1}(M), M[-1]$
4th orbit: $S_3, S_2, \nu(S_2)[-1], S_3[-1]$.

So all elements of A-mod lie in one component $\mathbb{Z}[D_4]$ where D_4 is the following quiver:

```
1 \rightarrow

3 \rightarrow 4
```

The number of the vertices of D_4 correspond to the number of the τ-orbits and represent their position in the tree of the Auslander-Reiten component. Note also that the shift $[-1]$ acts on the component as τ^4.

By $[S, \text{bounded}]$ it is clear that all indecomposable elements of $K^b(\mathcal{P})$ belong to this component.

We can determine the Auslander-Reiten quiver for some classes of Nakayama algebras.
Theorem 5.6. Let A be of global dimension $n - 1$. Then the Auslander-Reiten quiver is isomorphic to $\mathbb{Z}[A_n]$. In particular $[-1]$ is an involution on the tree class A_n of $\Gamma(D^b(A))$. The algebra A is derived equivalent to kA_n.

Proof. Let $1 < i < n$, then S_i is non-projective and non-injective. Furthermore by [8.4] the simple module S_i has the two predecessors $\tau(S_{i-1})[1]$ and $S_{i+1}[-1]$. We also know by by [3.11] that S_1 has the only predecessor $S_2[-1]$ and S_n has the only predecessor $\tau(S_{n-1})[1]$. So every complex in this component lies in the τ-orbit of a stalk complex of a simple module up to shift.

Next we show that all complexes in the component are shift periodic. By direct computation we have that $\tau^s(S_i)$ is isomorphic to the complex

$$
\cdots \to 0 \to I_s \to \cdots \to I_{i+s-1} \to 0 \to \cdots [i-s-1].
$$

Therefore $\tau^s(S_i)$ has two non-zero homologies except for $s = n - i + 1$ where $\tau^{n-i+1}(S_i) = S_{n-i+1}[-n+2i-2]$ and $s = n+1$ where $\tau^{n+1}(S_i) = S_i[-2]$. The τ-orbit of S_1 is given by $\tau^s(S_1) = I_s[-s]$. Therefore a shift of all projective indecomposable modules and of all injective indecomposable modules are in the orbit of S_1. Also $\tau^n(S_1) = S_n[-n]$ and $\tau(S_n) = S_1[n-2]$. Therefore $\tau^{n+1}(S_i) = S_i[-2]$ for all $1 \leq i \leq n$. The above computation also shows that the τ-orbits of non-isomorphic simple modules are distinct. Therefore a maximal sectional path is given by

$$
S_n[-n+1] \longrightarrow \cdots \longrightarrow S_2[-1] \longrightarrow S_1.
$$

The Auslander-Reiten component is therefore isomorphic to $\mathbb{Z}[A_n]$ given as above. As the $[2]$ shift operates on τ-orbits, we can see that all elements in the component are of bounded length. By [S, 4.9] all indecomposable elements are part of the component and by [S, 4.15] the algebra A is derived equivalent to kA_n. \hfill \Box

We investigate another class of Nakayama algebras.

Theorem 5.7. Let $A := kA_n/I$ with $n \geq 4$ and I is generated by the path of length $n - 1$. Then the Auslander-Reiten quiver of $D^b(A)$ is isomorphic to $\mathbb{Z}[D_n]$. If n is even, then $[-1]$ acts as the identity on D_n. If n is odd $[-1]$ acts as the involution on D_n. Furthermore A is derived equivalent to kD_n.

Proof. Let $1 < i < n$, then the projective resolution of S_i is given by $0 \to P_{i-1} \to P_i$ and the injective resolution by $I_i \to I_{i+1} \to 0$. Therefore $\tau(S_i) = S_{i-1}$ for $2 < i < n$, $\tau(S_2) = \cdots \to 0 \to I_1 \to I_2 \to 0 \to \cdots$ and $\tau^2(S_2) =$...
\(S_{n-1}[-1]\). All non-injective and non-projective simple modules are in the same \(\tau\)-orbit and \([-1]\) operates on that orbit. By \([5,3]\) each \(S_1\) has exactly one predecessor and it is of the form

\[
\cdots \rightarrow 0 \rightarrow I_{i-1} \rightarrow I_{i+1} \rightarrow 0 \rightarrow \cdots
\]

which is isomorphic to the stalk complex with stalk \(P_i/\text{rad}^2(P_i)\) for \(i > 2\).

We note that \(I_i\) has projective resolution \(0 \rightarrow P_1 \rightarrow P_{i-1} \rightarrow P_i \rightarrow 0\) for \(i > 2\). Therefore \(\tau(I_i) = P_{i-2}[1]\) for \(i > 2\). \(\tau(I_2) = I_n[-1]\) and \(\tau(I_1) = I_{n-1}[-1]\).

Suppose now that \(n\) is even, then the orbit of \(S_1 = P_1\) is given by \(P_1, I_1[-1], I_{n-1}[-2], P_{n-3}[-1], \cdots, I_{n-(2k+1)}[-2], P_{n-(2k+3)}[-1], \cdots, P_1[-1]\).

In this case the orbit of \(S_n = I_n\) is given by \(S_n, P_{n-2}[1], I_{n-2}, \cdots, I_{n-2k}, P_{n-2k-2}[1], \cdots, I_2, S_n[-1]\).

Suppose now that \(n\) is odd. Then the orbit of \(P_1\) is given by \(P_1, I_1[-1], I_{n-1}[-2], P_{n-3}[-1], \cdots, I_{n-(2k+1)}[-2], P_{n-(2k+3)}[-1], \cdots, I_2[-2], S_n[-3], P_{n-2}[-2], I_{n-2}[-3], \cdots, I_{n-2k}[-3], P_{n-2k-2}[-2], \cdots, P_1[-2]\) and contains the odd shifts of \(S_n\).

So \(S_n\) and \(S_1\) lie in different orbits. If \(n\) is even \([-1]\) operates on each orbit. If \(n\) is odd, \([-2]\) operates on the orbits and \([-1]\) maps the orbit of \(S_1\) onto the orbit of \(S_n\).

The only predecessor of \(S_1\) is given by \(P_{n-1}/\text{rad}^{n-2}(P_{n-1})[-1]\).

Next we investigate the predecessors of modules \(M_s := P_s/\text{rad}^{s-1}(P_s)\) for \(n-1 \geq s \geq 2\). The projective resolution of \(M_s\) is given by \(0 \rightarrow P_1 \rightarrow P_s\) and the injective resolution of \(M_s\) is given by \(I_2 \rightarrow I_{s+1} \rightarrow 0\). Therefore (1) and (2) are always satisfied. We have \(d_i^{s+1} = 0\) if and only if \(s = n-1\). So \(M_s\) has three predecessor if and only if \(s = n-1\) and else it has only two predecessor. By the proof of \([5,3]\) the predecessors of \(M_{n-1}\) are \(S_n[-1]\), \(\tau(S_1[1])\) and \(M_{n-2}\). The predecessors of \(M_s\) for \(2 < s < n-1\) are \(M_{s-1}\) and \(\tau^{-1}(M_{s+1})\). Therefore a maximal sectional path of the Auslander-Reiten component looks as follows

\[
\begin{array}{c}
S_1[1] \\
S_2 \longrightarrow M_3 \longrightarrow \cdots \longrightarrow M_{n-1} \\
\end{array}
\]

\[
\begin{array}{c}
S_2 \\
S_3 \longrightarrow \cdots \longrightarrow M_{n-1} \longrightarrow S_1[1] \\
\end{array}
\]

\[
\begin{array}{c}
S_2 \longrightarrow M_3 \longrightarrow \cdots \longrightarrow M_{n-1} \longrightarrow S_1[1] \\
\end{array}
\]
The component is isomorphic to $\mathbb{Z}[D_n]$. Furthermore we know that $[-2]$ acts on the τ-orbit of S_i, S_n and S_1. Therefore $[2]$ acts as the identity on all τ-orbits of the component. By [S] 4.9 this component is the only Auslander-Reiten component of $D^b(A)$ and by [S] 4.15 the algebra A is derived equivalent to kA_n. □

REFERENCES

[ASS] I. Assem, D. Simson and A. Skowroński, Elements of the representation theory of associative algebras, London Mathematical Society Student Texts, 65. Cambridge Univ. Press, Cambridge, 2006.

[BGS] G. Bobiski, C. Gei, A. Skowroski, Classification of discrete derived categories, Cent. Eur. J. Math. 2 (2004), no. 1, 19-49.

[H1] D. Happel, Triangulated Categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988.

[H2] D. Happel, Auslander-Reiten Triangles in Derived categories of Finite-Dimensional Algebras, Proc. Amer. Math. Soc. 112 (1991), no. 3, 641-648.

[HPR] D. Happel, U. Preiser and C. M. Ringel, Vinberg’s characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules. Representation Theory II, Lecture Notes in Math. 832 (1980), Springer, Berlin, 1980, 280-294.

[Ri] C. Riedtmann, Algebren, Darstellungskerger, beraugungen und zuerk, Comment. Math. Helv. 55 (1980), no. 2, 199-224.

[S] S. Scherotzke, Finite and bounded Auslander-Reiten components in the derived category, archiv: .

[We] P. Webb, The Auslander-Reiten quiver of a finite group. Math. Z. 179 (1982), no. 1, 97-121.

[Wei] C. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994.

[W] W. Wheeler, The triangulated structure of the stable derived category, J. Algebra 165 (1994), no. 1, 23-40.

[V] D. Vossieck, The algebras with discrete derived category J. Algebra 243 (2001), no. 1, 168-176.

[XZ] J. Xiao, B. Zhu, Locally finite triangulated categories, J. Algebra 290 (2005), no. 2, 473-490.

Sarah Scherotzke
Mathematical Institute, University of Oxford, 24-29 St. Giles, Oxford OX1 3LB, United Kingdom

E-mail address: scherotz@maths.ox.ac.uk