SYSTEM OF INTERACTING PARTICLES WITH MARKOVIAN SWITCHING

A. A. POGORUI

Abstract. Most of the published articles on random motions have been devoted to the study of the telegraph process or its generalizations that describe the random motion in \mathbb{R}^n of a single particle in a Markov or semi-Markov medium. However, up to our best knowledge there are no published papers dealing with the interaction of two or more particles which move according to the telegraph processes. In this paper, we construct the system of telegraph processes with interactions, which can be interpreted as a model of ideal gas. In this model, we investigate the free path times of a family of particles before they are collided with any other particle. We also study the distribution of particles, which described by telegraph processes with hard collisions and reflecting boundaries, and investigate its limiting properties.

1. Introduction

Let $\{\xi(t), t \geq 0\}$ be a Markov process on the phase space $\{0, 1\}$ with generative matrix

$$Q = \lambda \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Definition 1.1. $S(t)$ is the telegraph process if

$$\frac{d}{dt}S(t) = v(-1)^{\xi(t)}, \quad v = \text{const} > 0,$$

$$S(0) = y_0.$$

For a set of real numbers $y_1 < y_2 < \cdots < y_n$ we consider a family of independent telegraph processes $S_i(t), i = 1, 2, \ldots, n$ with $S_i(0) = y_i$. It is assumed that all the processes have absolute velocity v and parameter of switching process $\lambda > 0$, and starting form y_i the process $S_i(t)$ has equal probabilities of initial directions of the motion.

Denote by $x(y_i, t)$ the position of the particle i at time t, which starts from site y_i. Suppose that particle $x(y_i, t)$ develops as the telegraph process $S_i(t)$ up to the hard collision with another particle. Under the hard collision of two particles, we mean that at the time of the collision the particles change their direction to the opposite that is, the particles exchange the telegraph processes that describe their movement. It is easily verified that the positions of the particles $x(y_i, t), i = 1, 2, \ldots, n$ at time t coincide with the order statistics of $S_i(t), i = 1, 2, \ldots, n$ as follows

$$x(y_1, t) = S_{(1)}(t), x(y_2, t) = S_{(2)}(t), \ldots, x(y_n, t) = S_{(n)}(t).$$

Remark 1.1. It should be noted that each $x(y_i, t), i = 1, 2, \ldots, n$ is not a telegraph process for all $t \geq 0$.

Remark 1.2. It follows from the description of $x(y_i, t)$ that $x(y_1, t) \leq x(y_2, t) \leq \cdots \leq x(y_n, t)$ for any $t \geq 0$. Such kind of model for Wiener processes with coalescence after collision are called the Arratia flow and they were studied in [6]-[8].

Received by the editors 10/04/2013.

2000 Mathematics Subject Classification. 82C70, 60K35.

Key words and phrases. Random motion; Markovian switching; telegraph process; interacting particle systems.
Various problems such as the number of particle collisions up to time t in the Arratia flow are studied in [9].

Below the explicit form for the distribution of the meeting instant of two telegraph processes on the line, which started at the same time from different positions in the line, is obtained. We also study the limiting distribution of the meeting instant of two telegraph processes on the line under Kac’s condition. It allows us to investigate the system of telegraph processes with interactions, which can be interpreted as a model of ideal gas. In this model, we investigate the free path times of a family of particles before they are collided with any other particle. We also study the distribution of particles, which described by telegraph processes with hard collisions and reflecting boundaries, and investigate its limiting properties.

2. DISTRIBUTION OF THE FIRST COLLISION OF TWO TELEGRAPH PARTICLES

Consider two particles 1 and 2 on a line. Each particle can move in two opposite directions. Starting at $x_i \in R$, $i = 1, 2$ particle i moves at the velocity $v > 0$ in one of two directions during a random time interval that is exponential distributed with parameter $\lambda > 0$. Then the particle changes its direction and so on. In the sequel, such particle is said to be a telegraph particle as its motion satisfies the telegraph equation [1], [2].

Let $\xi_1 (t), \xi_2 (t)$ be independent alternating Markov processes with the phase space $\{0, 1\}$ and with the generator matrix Q.

Denote by $x_i (t)$ the position of particle i at a point of time $t \geq 0$ up to the first collision with another particle. It is easily seen that

$$\frac{d}{dt} x_i (t) = v (-1)^{\xi_i (t)},$$

$$x_i (0) = x_i.$$

We assume that $z = x_2 - x_1 > 0$ and put $\Delta (t) = x_2 (t) - x_1 (t)$.

Denote $\eta (t) = (\xi_1 (t), \xi_2 (t))$. Suppose $\eta (0) = (k_1, k_2)$ and define

$$\tau_{(k_1, k_2)} (z) = \inf \{ t \geq 0 : \Delta (t) = 0 \}, \quad k_j \in \{0, 1\}.$$

Denote by $f_{(k_1, k_2)} (t, z) dt = P (\tau_{(k_1, k_2)} (z) \in dt)$ the density probability function (pdf) of $\tau_{(k_1, k_2)} (z)$.

Lemma 2.1. For $t \geq \frac{z}{2v}$

$$f_{(0, 1)} (t, z) = e^{-2\lambda t} \delta (z - 2vt) + \frac{z\lambda}{2v^2} e^{-2\lambda t} \frac{I_1 \left(\frac{2v^2}{z} \right)}{\sqrt{4v^2t^2 - z^2}},$$

$$f_{(0, 0)} (t, z) = f_{(1, 1)} (t, z) = \frac{z\lambda}{2v^2} e^{-2\lambda t} \int_{z/2v}^t \frac{I_1 \left(\frac{2v^2u^2}{z^2} \right) I_1 \left(2\lambda (t-u) \right)}{\sqrt{4v^2u^2 - z^2}} du$$

and

$$f_{(1, 0)} (t, z) = \frac{z\lambda}{2v^2} e^{-2\lambda t} \int_{z/2v}^t \frac{I_1 \left(\frac{2v^2u^2}{z^2} \right)}{\sqrt{4v^2u^2 - z^2}} \int_0^{t-u} \frac{I_1 \left(2\lambda (t-u-v) \right) I_1 \left(2\lambda v \right)}{(t-u-v) v} dvdu.$$

Proof. Let us consider the Laplace transforms of $\tau_{(k_1, k_2)} (z), k_i \in \{0, 1\}$.

$$\varphi_{(k_1, k_2)} (s, z) = E \left[e^{-s\tau_{(k_1, k_2)} (z)} \right], \quad s > 0.$$

By using the renewal theory, we can obtain the following system of integral equations for these Laplace transforms:
Solving this equation, we have

\[
\varphi_{(0,1)} (s, z) = e^{-\frac{s+2\lambda}{2v} z} + \frac{\lambda}{2v} \int_{0}^{z} e^{-\frac{s+2\lambda}{2v} u} \varphi_{(1,1)} (s, z-u) \, du
\]

\[+ \frac{\lambda}{2v} \int_{0}^{z} e^{-\frac{s+2\lambda}{2v} u} \varphi_{(0,0)} (s, z-u) \, du
\]

\[= e^{-\frac{s+2\lambda}{2v} z} + \frac{\lambda}{2v} e^{-\frac{s+2\lambda}{2v} \int_{0}^{z} e^{\frac{s+2\lambda}{2v} u} (\varphi_{(1,1)} (s, u) + \varphi_{(0,0)} (s, u)) \, du
\]

\[
\varphi_{(0,0)} (s, z) = \lambda \int_{0}^{\infty} e^{-(s+2\lambda)u} \varphi_{(0,1)} (s, z) \, du + \lambda \int_{0}^{\infty} e^{-(s+2\lambda)u} \varphi_{(1,0)} (s, z) \, du
\]

\[= \frac{\lambda}{s + 2\lambda} (\varphi_{(0,1)} (s, z) + \varphi_{(1,0)} (s, z))
\]

\[
\varphi_{(1,1)} (s, z) = \lambda \int_{0}^{\infty} e^{-(s+2\lambda)u} \varphi_{(0,1)} (s, z) \, du + \lambda \int_{0}^{\infty} e^{-(s+2\lambda)u} \varphi_{(1,0)} (s, z) \, du
\]

\[= \frac{\lambda}{s + 2\lambda} (\varphi_{(0,1)} (s, z) + \varphi_{(1,0)} (s, z))
\]

\[
\varphi_{(1,0)} (s, z) = \frac{\lambda}{2v} \int_{0}^{\infty} e^{-\frac{s+2\lambda}{2v} u} (\varphi_{(0,0)} (s, z+u) + \varphi_{(1,1)} (s, z+u)) \, du
\]

\[= \frac{\lambda}{2v} e^{-\frac{s+2\lambda}{2v} z} \int_{0}^{\infty} e^{-\frac{s+2\lambda}{2v} u} (\varphi_{(0,0)} (s, u) + \varphi_{(1,1)} (s, u)) \, du.
\]

It is easily seen that

\[
(5) \quad \varphi_{(0,0)} (s, z) = \varphi_{(1,1)} (s, z).
\]

Taking into account that

\[
(6) \quad \varphi_{(0,0)} (s, z) + \varphi_{(1,1)} (s, z) = \frac{2\lambda}{s + 2\lambda} (\varphi_{(0,1)} (s, z) + \varphi_{(1,0)} (s, z)),
\]

we have

\[
\frac{\partial}{\partial z} \varphi_{(0,1)} (s, z) = -\frac{s + 2\lambda}{2v} \varphi_{(0,1)} (s, z) + \frac{\lambda^2}{v(s + 2\lambda)} (\varphi_{(0,1)} (s, z) + \varphi_{(1,0)} (s, z)),
\]

\[
\frac{\partial}{\partial z} \varphi_{(1,0)} (s, z) = \frac{s + 2\lambda}{2v} \varphi_{(1,0)} (s, z) - \frac{\lambda^2}{v(s + 2\lambda)} (\varphi_{(0,1)} (s, z) + \varphi_{(1,0)} (s, z)).
\]

It is well-known [3] that \(\varphi_{(1,0)} (s, z)\) and \(\varphi_{(0,1)} (s, z)\) satisfy the following equation

\[
\text{det} \left(\begin{array}{cc}
\frac{\lambda^2}{v(s + 2\lambda)} & \frac{\lambda^2}{v(s + 2\lambda)} \\
\frac{s + 2\lambda}{2v} & \frac{s + 2\lambda}{2v}
\end{array} \right) f(z) = 0.
\]

By calculating the determinant, we get

\[
\frac{\partial^2}{\partial z^2} f(z) - \frac{s^2 + 4\lambda s}{4v^2} f(z) = 0.
\]

Solving this equation, we have

\[
f(z) = C_1 e^{\sqrt{s^2 + 4\lambda s} z} + C_2 e^{-\sqrt{s^2 + 4\lambda s} z}.
\]

The constants obtained from the system of integral equations yields

\[
(7) \quad \varphi_{(0,1)} (s, z) = e^{-\frac{\sqrt{s^2 + 4\lambda s}}{2v} z},
\]

and

\[
(8) \quad \varphi_{(1,0)} (s, z) = \frac{s + 2\lambda - \sqrt{s^2 + 4\lambda s}}{s + 2\lambda + \sqrt{s^2 + 4\lambda s}} e^{-\frac{\sqrt{s^2 + 4\lambda s}}{2v} z}.
\]
Taking into account Eqs. [5], [6], we have

\[\varphi_{(0,0)} (s, z) = \varphi_{(1,1)} (s, z) = \frac{s + 2\lambda - \sqrt{s^2 + 4\lambda s}}{2\lambda} e^{-\frac{z}{2\lambda} \sqrt{s^2 + 4\lambda s}}. \]

The inverse Laplace of \(\varphi_{(0,1)} (s, z) \) yields the following pdf (\[3\], p.239, Formula 88)

\[f_{(0,1)} (t, z) = \mathcal{L}^{-1} \left(e^{-\frac{z}{2\lambda} \sqrt{s^2 + 4\lambda s}}, t \right) = e^{-2\lambda t} \delta (z - 2vt) + 2z\lambda e^{-2\lambda t} \frac{I_1 \left(\frac{z}{2\lambda} \sqrt{4v^2t^2 - z^2} \right)}{\sqrt{4v^2t^2 - z^2}}, \quad t \geq \frac{z}{2v}. \]

Hence, Eq. (2) is proved and

\[P \left(\tau_{(0,1)} (z) \in dt \right) = e^{-2\lambda t} \delta (z - 2vt) dt + 2z\lambda e^{-2\lambda t} \frac{I_1 \left(\frac{z}{2\lambda} \sqrt{4v^2t^2 - z^2} \right)}{\sqrt{4v^2t^2 - z^2}} dt. \]

It is easily verified that

\[\exp \left\{ -\frac{z}{2v} \sqrt{s^2 + 4\lambda s} \right\} = \exp \left\{ -\frac{z}{2v} s + \int_0^\infty (1 - e^{-sy}) \frac{\lambda e^{-2\lambda y} I_1 (2\lambda y)}{y} dy \right\}. \]

Then, it comes from [12], p.237, no.49 the following inverse Laplace transform

\[\mathcal{L}^{-1} \left(1 + \frac{s - \sqrt{s^2 + 4\lambda s}}{2\lambda}, t \right) = e^{-2\lambda t} \frac{I_1 (2\lambda t)}{t}. \]

It is easily seen that the following condition holds

\[\int_0^\infty (1 + t)e^{-2\lambda t} \frac{I_1 (2\lambda t)}{t} dt < +\infty. \]

It is well known that the distribution which the Laplace transform can be represented as the right side of Eq. (10) with the condition (11) belongs to the infinitely divisible distribution [13]. Therefore, the pdf \(f_{(0,1)} (t, z) \) is the infinitely divisible density function. Using [12], p.237, no.49, we get

\[\mathcal{L}^{-1} \left(\frac{s + 2\lambda - \sqrt{s^2 + 4\lambda s}}{s + 2\lambda + \sqrt{s^2 + 4\lambda s}}, t \right) = \frac{1}{4\lambda^2} \mathcal{L}^{-1} \left(\left(s + 2\lambda - \sqrt{s^2 + 4\lambda s} \right)^2, t \right) = e^{-2\lambda t} \int_0^t \frac{I_1 (2\lambda (t - v)) I_1 (2\lambda v)}{(t - v)} dv. \]

By calculating

\[\mathcal{L}^{-1} \left(\frac{s + 2\lambda - \sqrt{s^2 + 4\lambda s}}{s + 2\lambda + \sqrt{s^2 + 4\lambda s}} e^{-\frac{z}{2\lambda} \sqrt{s^2 + 4\lambda s}}, t \right), \]

we obtain Eq. (11).

It is easily seen that \(f_{(0,1)} (t, z) \) is a heavy tail probability density function w.r.t. \(t \).

Indeed, by using asymptotic expansion for \(I_1 (t) [5] \), we have

\[\lim_{t \to +\infty} \sqrt{2\pi t I_1 (t) e^{-t}} = 1. \]

Therefore,

\[E\left[\tau_{(0,1)} (z) \right]^\alpha \geq 2z\lambda \int_0^\infty t^\alpha e^{-2\lambda t} \frac{I_1 \left(\frac{z}{2\lambda} \sqrt{4v^2t^2 - z^2} \right)}{\sqrt{4v^2t^2 - z^2}} dt = +\infty, \quad \text{for } \alpha \geq \frac{1}{2}. \]

It is easily verified that \(E\left[\tau_{(0,1)} (z) \right]^\alpha < \infty \) for \(0 \leq \alpha < \frac{1}{2} \).
For \(\tau_{(0,1)}(z) \) at time \(t = 0 \) particles move in opposite directions to meet each other and for \(\tau_{(0,1)}(z) \) at time \(t = 0 \) particles move in opposite directions far away from each other.

Hence, \(E\tau_{(0,1)}(z) \leq E\tau_{(1,0)}(z) \) and \(f_{(1,0)}(t,z) \) is also a heavy tail density function w.r.t. \(t \).

Let us consider the following so-called Kac’s condition (or the hydrodynamic limit): denote by \(\lambda = \varepsilon^{-2} \), \(v = \varepsilon\varepsilon^{-1} \), as \(\varepsilon > 0 \), that is \(v \to +\infty \), and \(\lambda \to +\infty \), such that \(\frac{v^2}{\lambda} \to \varepsilon^2 \).

It was proved in \([9]\) that under Kac’s condition the telegraph process \(x(t) \) weakly converges to the Wiener process \(w(t) \sim N(0,\varepsilon^2 t) \).

Denote \(f(t,z) = \frac{cz \exp \left(-\frac{c^2 z^2}{4t} \right)}{2\sqrt{\pi t}^{3/2}} \). It is well known that \(f(t,z) \) is the pdf of a collision instant of two particles moving according to Wiener paths \(w(t) \), where \(z > 0 \) is the distance between starting points of the particles.

Lemma 2.2. For each \(k_1,k_2 \in \{0,1\} \), \(f_{(k_1,k_2)}(t,z) \) weakly converges to \(f(t,z) \) under Kac’s condition.

Proof. It follows from Eqs.\((7)-\(9)\) that

\[
\lim_{\varepsilon \to 0} \varphi_{(k_1,k_2)}(s,z) = e^{-z\sqrt{s}}.
\]

Passing to the inverse Laplace transform, we have

\[
f(t,z) = \mathcal{L}^{-1}(e^{-z\sqrt{s}}) = \frac{cz \exp \left(-\frac{c^2 z^2}{4t} \right)}{2\sqrt{\pi t}^{3/2}}.
\]

Therefore, under Kac’s conditions not only the telegraph process weakly converges to the Wiener process, but the first meeting instant of two telegraph processes weakly converges to the first meeting instant of the corresponding two Wiener processes.

Remark 2.1. It should be noted that instead of two telegraph processes \(x(y_1,t), x(y_2,t) \) on the line we can consider the bivariate process \(\mathcal{F}(t) = (x(y_1,t), x(y_2,t)) \) on the plane. The process \(\mathcal{F}(t) \) is driven by the switching process \(\eta(t) \). Denote \(l = \{ (x,y) : x = y; x, y \in \mathbb{R} \} \).

For this case

\[
\tau_{(k_1,k_2)}(z) = \inf \{ t \geq 0 : \mathcal{F}(t) \in l \}
\]

3. **Estimation of the number of particle collisions.**

Denote by \(N_{(0,1)}(t,z) \) the number of collisions of particles \(x_i(t), i = 1,2 \) during time \((0,t), t > 0 \) assuming \(\eta(0) = (0,1) \).

Consider the renewal function \(H_{(0,1)}(t,z) = EN_{(0,1)}(t,z) \). By using the Laplace transform for general renewal function \([10]\), it follows from Eqs.\((7)-\(9)\) that the Laplace transform \(\hat{H}_{(0,1)}(s,z) = \mathcal{L} \left(H_{(0,1)}(t,z), s \right) \) of \(H_{(0,1)}(t,z) \) w.r.t. \(t \) has the following form

\[
\hat{H}_{(0,1)}(s,z) = e^{-\frac{\sqrt{s^2 + 4\lambda s}}{s}} \sum_{k=0}^{\infty} \left(\frac{s + 2\lambda - \sqrt{s^2 + 4\lambda s}}{s + 2\lambda + \sqrt{s^2 + 4\lambda s}} \right)^k
\]

\[
= e^{-\frac{\sqrt{s^2 + 4\lambda s}}{2s}} \frac{s + 2\lambda + \sqrt{s^2 + 4\lambda s}}{2s\sqrt{s^2 + 4\lambda s}}.
\]

It is easily verified that

\[
\mathcal{L}^{-1} \left(\frac{s + 2\lambda + \sqrt{s^2 + 4\lambda s}}{2s\sqrt{s^2 + 4\lambda s}} \right) = \frac{1}{2} + \left(\frac{1}{2} + \lambda t \right) I_0(2\lambda t) + \lambda t I_1(2\lambda t) e^{-2\lambda t}.
\]

Therefore,
\[H_{0,1}(t) = \int_{\frac{1}{2}}^{t} e^{-2\lambda t} \left(\delta(z-2vt) + 2z\lambda \frac{I_1 \left(\frac{\sqrt{4v^2u^2 - z^2}}{4v^2u^2 - z^2} \right)}{\sqrt{4v^2u^2 - z^2}} \right) dt \]
\[\times \left(\frac{1}{2} + e^{-2\lambda(t-u)} \left(\frac{1}{2} + \lambda(t-u) \right) I_0(2\lambda(t-u)) + \lambda(t-u) I_1(2\lambda(t-u)) \right) \right) du \]
\[= e^{-\frac{\lambda t}{2}} + z\lambda \int_{\frac{1}{2}}^{t} e^{-2\lambda t} \frac{I_1 \left(\frac{\sqrt{4v^2u^2 - z^2}}{4v^2u^2 - z^2} \right)}{\sqrt{4v^2u^2 - z^2}} du \]
\[+ e^{-2\lambda t} \left(\frac{1}{2} + \lambda \left(t - \frac{z}{2v} \right) \right) I_0 \left(2\lambda \left(t - \frac{z}{2v} \right) \right) + \lambda \left(t - \frac{z}{2v} \right) I_1 \left(2\lambda \left(t - \frac{z}{2v} \right) \right) \]
\[+ e^{-2\lambda t} z\lambda \int_{\frac{1}{2}}^{t} \frac{I_1 \left(\frac{\sqrt{4v^2u^2 - z^2}}{4v^2u^2 - z^2} \right)}{\sqrt{4v^2u^2 - z^2}} \times \left(1 + ((1 + 2\lambda(t-u)) I_0(2\lambda(t-u)) + \lambda(t-u) I_1(2\lambda(t-u))) \right) du. \]

It follows from Eq. (13) that by putting \(\lambda = \varepsilon^{-2}, v = c\varepsilon^{-1} \), we have
\[H_{0,1}(t, z) = O(\varepsilon^{-1}) = O \left(\sqrt{\lambda} \right) = O(v) \quad \text{as} \quad \varepsilon \to 0. \]

For \(y, y^* \) such as \(y < y^* \) and a fixed \(T > 0 \) denote by \(\bar{\tau} = \inf \{ T; t: x(y,t) - x(y^*,t) = 0 \} \). Much in the same way we can show that for all \(k_1, k_2 \in \{0, 1\} \)
\[H_{(k_1,k_2)}(t, z) = O(\varepsilon^{-1}) = O \left(\sqrt{\lambda} \right) = O(v) \quad \text{as} \quad \varepsilon \to 0. \]

Lemma 3.1. There exist \(C > 0 \) such that for any two points \(y, y^* \) \((y < y^*) \)
\[E\bar{\tau} \leq C(y^* - y). \]

Proof.
\[E\tau_{(0,1)} = \int_{\frac{1}{2}}^{T} te^{-2\lambda t} \left[\delta(z-2vt) + 2z\lambda \frac{I_1 \left(\frac{\sqrt{4v^2t^2 - z^2}}{4v^2t^2 - z^2} \right)}{\sqrt{4v^2t^2 - z^2}} \right] dt \]
\[\leq \frac{z}{2v} + 2z\lambda \int_{\frac{1}{2}}^{T} t \frac{I_1 \left(\frac{\sqrt{4v^2t^2 - z^2}}{4v^2t^2 - z^2} \right)}{\sqrt{4v^2t^2 - z^2}} dt \]
\[= \frac{z}{2v} + \frac{z}{2v} \left[I_0 \left(\frac{\lambda}{v} \sqrt{4T^2v^2 - z^2} \right) - 1 \right] \leq Cz, \]
where \(C = \frac{I_0(2T\lambda)}{2v}. \)

Now
\[E\tau_{(1,0)} = \int_{\frac{1}{2}}^{T} tf_{(1,0)}(t, z) dt \]
\[= 2z\lambda \int_{\frac{1}{2}}^{T} te^{-2\lambda t} \int_{\frac{1}{2}}^{t} \frac{I_1 \left(\frac{\sqrt{4v^2u^2 - z^2}}{4v^2u^2 - z^2} \right)}{\sqrt{4v^2u^2 - z^2}} \int_{0}^{t-u} \frac{I_1(2\lambda(t-u-r)) I_1(2\lambda r) }{(t-u-r)} r dr du dt \]
\[< Cz, \]
where \(C = \frac{\lambda}{v} \int_{0}^{T} te^{-2\lambda t} \int_{0}^{t} \frac{I_1(2\lambda u) I_1(2\lambda(r-t))}{(t-u-r)} \left[\frac{I_1(2\lambda(r-t))}{(t-u-r)} \right] dr du dt. \)

4. Free path times of a family of particles.

Since we consider the model of an ideal gas it is natural to assume that the number of particles is very large. As an example, we consider a model with an infinite number of particles, and study the free path of the particles before collisions.
Consider the segment \([0, S] \subset \mathbb{R}\) and an increasing sequence of different points \(\{y_n; \, n \geq 1\}\) from this segment. As above, we consider a family of independent telegraph processes \(S_k(t), \, k \geq 1\) and trajectories \(x(y_k, t)\) of particles, which satisfy Eq. (11).

Introduce the following random times:

\[
\tau_1 = T > 0, \\
\tau_k = \inf \{T; t : (x(y_k, t) - x(y_{k-1}, t)) = 0\}, \quad k \geq 2,
\]

The random variable \(\tau_k\) is a time of free path of the particle with number \(k\) up to the collision with a particle starting with a smaller number or until \(T\) (finite) if no one collision occurs.

Lemma 4.1. Suppose \(\{y_n; \, n \geq 1\} \subset [0, S], \, 0 < S < +\infty\) is a sequence of different points. Then

\[
\sum_{k=1}^{\infty} \tau_k < +\infty \quad \text{a.s.}
\]

Proof. Consider the following random times

\[
\tilde{\tau}_1 = T, \\
\tilde{\tau}_k = \inf \{T; t : (S_k(t) - S_{k-1}(t)) = 0\}, \quad k \geq 2.
\]

It is easily seen that \(\tau_k \leq \tilde{\tau}_k\) for all \(k \geq 1\).

Hence, if we show that that \(\sum_{k=1}^{\infty} \tilde{\tau}_k < +\infty\) a.s., we prove the lemma. Since \(\tilde{\tau}_k \geq 0\), it is sufficient to prove that

\[
\sum_{k=1}^{\infty} E\tilde{\tau}_k < +\infty.
\]

Consider the set of numbers \(y_1 < y_2 < \cdots < y_n\). It follows from Lemma 2.1 that there exists \(C > 0\) such that for any \(k \geq 2\)

\[
E\tilde{\tau}_k \leq C (y_k - y_{k-1}).
\]

Hence, we have

\[
\lim_{n \to \infty} \sum_{k=2}^{n} E\tilde{\tau}_k \leq C \lim_{n \to \infty} \sum_{k=2}^{n} (y_k - y_{k-1}) = C \sum_{k=2}^{\infty} (y_k - y_{k-1}) \leq CS.
\]

Therefore, it follows from Eq. (14) that \(\sum_{k=1}^{\infty} \tilde{\tau}_k\) converges almost surely and it concludes the proof.

Note that Lemma 4.1 for Wiener particles was proved in [8].

Let us denote by \(N_{(k_1, k_2, \ldots, k_n)}(t, y_1, y_2, \ldots, y_n), \quad k_i \in \{0, 1\}, \quad y_1 < y_2 < \cdots < y_n\) the number of collisions of particles \(x(y_i, t), \, i = 1, 2, \ldots, n\) during time \((0, t), \, t > 0\) assuming \(\eta(0) = (k_1, k_2, \ldots, k_n)\).

Then it is easily seen that

\[
H_{(k_1, k_2, \ldots, k_n)}(t, y_1, y_2, \ldots, y_n) = EN_{(k_1, k_2, \ldots, k_n)}(t, y_1, y_2, \ldots, y_n) = \sum_{i=1}^{n-1} H_{(k_i, k_{i+1})}(t, y_{i+1} - y_i),
\]

where \(H_{(k_i, k_{i+1})}(t, y_{i+1} - y_i)\) can be calculated similarly to Eq. (13).
5. Random motion with reflecting boundaries

Consider a set of real numbers \(\{y_i; i = 1, \ldots, n\} \subset (0, b) \), where \(b > 0 \) and \(y_1 < y_2 < \cdots < y_n \). Let \(S_1(t), S_2(t), \ldots, S_n(t) \) be independent telegraph processes. It is assumed that all processes have absolute velocity \(v \) and parameter of switching process \(\lambda \) and starting form \(y_i \) the process \(S_i(t) \) has equal probabilities of initial directions of the motion. We suppose that 0 and \(b \) are two reflecting boundaries such that if a process reaches boundary 0 or \(b \) then it changes velocity direction to the opposite. Consider the family of particles with trajectories \(x(y_1, t), x(y_2, t), \ldots, x(y_n, t) \), where every \(x(y_i, t) \) coincides respectively with processes \(S_i(t) \) before particle \(i \) has first hard collision with another particle or equivalently to the first intersection of the process \(S_i(t) \) with another process. After the first hard collision of the particle \(x(y_i, t) \) with another particle, say \(x(y_j, t) \) they will switch the telegraph processes that describe their trajectories so, \(S_i(t) \) will coincide with the trajectory of \(x(y_j, t) \) and so on.

It is easily seen that the trajectories of the particles \(x(y_k, t), k = 1, 2, \ldots \) coincides with the order statistics of \(S_i(t), i = 1, 2, \ldots, n \), as follows

\[
(15) \quad x(y_1, t) = S_{(1)}(t), x(y_2, t) = S_{(2)}(t), \ldots, x(y_n, t) = S_{(n)}(t).
\]

Let us introduce the following distribution functions \(F_{y_r}(x) = P\{x(y_r, t) < x\} \). Denote by \(M^l_k \), \(l = 1, 2, \ldots, C^k_n \), different \(k \) elements subsets of the set \(M = \{1, 2, \ldots, n\} \). It follows from Eqs. (15) that

\[
F_{y_r}(x) = P\{x(y_r, t) < x\} = \sum_{k=1}^{n} \sum_{i=1}^{C^k_n} \prod_{l \in M^l_k} P(S_i(t) < x) \prod_{j \notin M^l_k} P(S_j(t) \geq x).
\]

For some particular cases we have

\[
F_{y_1}(x) = P\{x(y_1, t) < x\} = 1 - \sum_{i=1}^{n} P(S_i(t) \geq x),
\]

\[
F_{y_{n-1}}(x) = P\{x(y_{n-1}, t) < x\} = \sum_{k=1}^{n} \prod_{i=1}^{n} P(S_i(t) < x) P(S_k(t) \geq x) + \prod_{i=1}^{n} P(S_i(t) < x),
\]

\[
F_{y_n}(x) = P\{x(y_n, t) < x\} = \prod_{i=1}^{n} P(S_i(t) < x).
\]

Let us study the limiting distribution of \(S_k(t), k = 1, \ldots, n \) as \(t \to +\infty \). Denote by \(N(t) \) the number of Poisson events that have occurred in the interval \((0, t) \) and let \(s_j, j \geq 0 \) be instants at which Poisson events occur, and \(s_0 = 0 \). We assume that instants \(s_j \) denote times of change of direction of \(S_k(t) \).

Lemma 5.1. Suppose that \(f(x) \) is an integrable function on \([0, b]\). Then

\[
P\left(\lim_{T \to +\infty} \frac{1}{T} \int_0^T f(S_k(t)) \, dt = \frac{1}{b} \int_0^b f(x) \, dx \right) = 1.
\]

Proof In the sequel, we will use the well-known strong law of the large numbers for Poisson process

\[
(16) \quad P\left(\lim_{T \to +\infty} \frac{N(T)}{T} = \lambda \right) = 1.
\]
Since during the time \(s_{j+1} - s_j \) the particle covers the distance of \((s_{j+1} - s_j)v\) the number
\[
\left\lfloor \frac{(s_{j+1} - s_j)v}{2b} \right\rfloor
\]
is equal to the double number of passages of segment \([0, b]\) by the particle.
Hence,

\[
\lim_{T \to +\infty} \frac{1}{T} \int_0^T f(S_k(t)) \, dt = \lim_{T \to +\infty} \frac{1}{T} \sum_{i=0}^{N(T)} \int_{s_i}^{s_{i+1}} f(S_k(t)) \, dt
\]

(17)

\[
= \lim_{T \to +\infty} \frac{1}{T} \sum_{i=0}^{N(T)} \left(\left(s_{j+1} - s_j \right) v \right) \frac{2}{v} \int_0^b f(x) \, dx + r_i \text{ a.s.}
\]

where \(r_i = \int_{u_i}^{u_{i+1}} f(S_k(t)) \, dt \), \(u_i, \theta_i \) are independent random variables and \(u_i \) is uniformly distributed on \([0, 2b]\), \(\theta_i \) has the following pdf

\[
g(t) = \frac{\lambda}{v} e^{-\frac{\lambda}{v}} \left(1 - e^{-\frac{\lambda}{v}} \right)^{-1} I_{\{0 \leq t \leq 2b\}}.
\]

Therefore,

\[
Er_i = E \int_{u_i}^{u_{i+1}} f(S_k(t)) \, dt = \frac{\lambda}{2bv} \int_0^{2b} \frac{dx}{1 - e^{-\frac{2\lambda}{v}}} \int_0^{2b} \frac{dp}{x} \int_x^{x+p} df(S_k(t)) e^{-\frac{\lambda}{v} p}
\]

\[
= -\frac{1}{2b} \int_0^{2b} dx \int_x^{x+p} df(S_k(t)) \left(e^{-\frac{2\lambda}{v} p} \right)
\]

(18)

\[
+ \frac{1}{2b} \left(1 - e^{-\frac{2\lambda}{v}} \right) \int_0^{2b} dx \int_0^{2b} df(S_k(t)) \left(1 - e^{-\frac{2\lambda}{v} p} \right)
\]

\[
= -\frac{2e^{-\frac{2\lambda}{v}}}{1 - e^{-\frac{2\lambda}{v}}} \int_0^b f(x) \, dx + \frac{1}{\lambda b} \int_0^b f(x) \, dx.
\]

The strong law of the large numbers for \(\{r_i, i \geq 1\} \) implies

\[
\lim_{N \to +\infty} \frac{1}{N} \sum_{i=1}^{N} r_i = Er_i \text{ a.s.}
\]

Since \(\theta_j = s_{j+1} - s_j, j = 1, 2, \ldots \) are independent exponentially distributed random variables, we have the following strong law of the large numbers

\[
\lim_{N \to +\infty} \frac{1}{N} \sum_{j=1}^{N} \left(s_j - s_{j-1} \right) \frac{v}{2b} = E \left[\frac{\left(s_j - s_{j-1} \right) v}{2b} \right]
\]

(19)

\[
= \sum_{n=1}^{\infty} \left(e^{-2\lambda/k} - e^{-2\lambda(n+1)/k} \right) = \frac{e^{-2\lambda/k}}{1 - e^{-2\lambda/k}}.
\]

Combining Eqs.(17)-(19), we get

\[
\lim_{T \to +\infty} \frac{1}{T} \int_0^T f(S_k(t)) \, dt = \lim_{T \to +\infty} \frac{N(t)}{T} \frac{1}{N(T)} \sum_{j=1}^{N(T)} \left(\int_{s_{j-1}}^{s_j} f(S_k(t)) \right)
\]

\[
= \frac{1}{b} \int_0^b f(x) \, dx \text{ a.s.}
\]

This concludes the proof.

Therefore, the limiting distribution of \(S_k(t) \) as \(t \to +\infty \) for all \(k = 1, \ldots, n \) is the uniform distribution on \([0, b]\).
Lemma 5.2. Suppose that the initial distribution of a telegraph particle with reflecting boundaries 0 and b is uniform on $[0, b]$. Then it remains uniform for all $t > 0$.

Proof Denote by $p(t, x | y_k)$ the probability density of the process $S_k(t)$ position at time t. It was shown in [15] that for $x \in [0, b]$

$$p(t, x | y_k) = \frac{1}{b} + \frac{2}{b} e^{-\lambda t} \sum_{n=1}^{\infty} \left\{ \cosh (\theta_n t) + \frac{\lambda}{\theta_n} \sinh \theta_n t \cos \left(\frac{\pi n y_k}{b} \right) \cos \left(\frac{\pi n x}{b} \right) \right\},$$

where

$$\theta_n = \left(\lambda^2 - \frac{\pi^2 v^2}{b^2} n^2 \right)^{1/2}.$$

It is easily seen that for any $t > 0$ and $x \in [0, b]$

$$p(t, x) = \frac{1}{b} \int_0^b p(t, x | y_k) dy_k = \frac{1}{b}. $$

Now let us consider the system of processes $\overline{S}_k(t)$ with the limiting distribution of the respective processes $S_k(t)$, $k = 1, 2, \ldots, n$. According to Lemmas [2] and [3] for each $t \geq 0$ processes $\overline{S}_k(t)$, $k = 1, 2, \ldots, n$ are independent and having the uniform distribution on $[0, b]$.

For this case denote by $x_k(t)$, $k = 1, 2, \ldots, n$ particles positions at time $t \geq 0$. It is easy to see that for every $t \geq 0$ processes $x_k(t)$ are the order statistics of $S_k(t)$, $k = 1, 2, \ldots, n$, namely

$$x_1(t) = \overline{S}_{(1)}(t), x_2(t) = \overline{S}_{(2)}(t), \ldots, x_n(t) = \overline{S}_{(n)}(t).$$

Consider the following function

$$p(x) = P(S_k(t) < x) = \begin{cases} \frac{x}{b}, & x \in [0, b], \\ 0, & x \notin [0, b]. \end{cases}$$

It is easily verified that the distributions $\pi_k(\cdot)$ of the particles positions $x_k(t)$, $k \in \{1, 2, \ldots, n\}$ are as follows

$$\pi_k(x) = P(x_k(t) < x) = I_{p(x)}(k, n - k + 1),$$

where

$$I_{p(x)}(k, n - k + 1) = \frac{\int_0^{p(x)} t^{k-1}(1-t)^{n-k} dt}{\int_0^1 t^{k-1}(1-t)^{n-k} dt}.$$

Let us study the number of collisions $C_{(1, 2, \ldots, n)}(0, t)$ of particles $x_k(t)$, $k = 1, 2, \ldots, n$ during time $(0, t)$. It is easy to see that $C_{(1, 2, \ldots, n)}(0, t)$ is a number of intersections of $\overline{S}_k(t)$, $k = 1, 2, \ldots, n$ for each $t > 0$.

Denote by $I_{(k,l)}(0, t)$, $k \neq l$ the number of intersection of processes $\overline{S}_k(t)$ and $\overline{S}_l(t)$ during time $(0, t)$. Then it is easily verified that

$$C_{(1, 2, \ldots, n)}(0, t) = \sum_{1 \leq k < l \leq n} I_{(k,l)}(0, t).$$

Therefore, let us analyze the distribution of $I_{(k,l)}(0, t)$, $k \neq l$.

Since $\overline{S}_k(t)$ and $\overline{S}_l(t)$ have the uniform distribution on $[0, b]$ the probability of their intersections $I_{(k,l)}(t, t + \Delta t)$ during $(t, t + \Delta t)$ satisfies the following inequalities for $x \in (a, b)$
\[
\frac{1}{4} P \left(|\mathcal{S}_k(t) - \overline{\mathcal{S}}_l(t)| \leq 2\Delta tv \right) e^{-2\lambda \Delta t} \leq P \left(N_{(k,l)}(t, t + \Delta t) \geq 1 \right) \\
\leq P \left(|\mathcal{S}_k(t) - \overline{\mathcal{S}}_l(t)| \leq 2\Delta tv \right).
\]

(20)

By using \(P \left(|\mathcal{S}_k(t) - \overline{\mathcal{S}}_l(t)| \leq 2\Delta tv \right) = O(\Delta t) \) and \(\frac{1}{4} P \left(|\mathcal{S}_k(t) - \overline{\mathcal{S}}_l(t)| \leq 2\Delta tv \right) e^{-2\lambda \Delta t} = O(\Delta t) \), we get

\[
P \left(I_{(k,l)}(t, t + \Delta t) \geq 1 \right) = O(\Delta t).
\]

(21)

It is easily verified that for \(n \geq 2 \)

\[
P \left(I_{(k,l)}(t, t + \Delta t) = n \right) \leq P \left(|\mathcal{S}_k(t) - \overline{\mathcal{S}}_l(t)| \leq 2\Delta tv \right) \left(1 - e^{-\lambda \Delta t} \right)^{2(n-1)} + P \left(\{\mathcal{S}_k(t), \overline{\mathcal{S}}_l(t) \in [0, 2\Delta tv] \} \cup \{\mathcal{S}_k(t), \overline{\mathcal{S}}_l(t) \in [b - 2\Delta tv, b] \} \right) \left(1 - e^{-\lambda \Delta t} \right)^{(n-1)}
\]

\[
\leq \frac{4\Delta tv}{b} (\lambda \Delta t)^{2(n-1)} + 2 \left(\frac{2\Delta tv}{b^2} \right)^2 (\lambda \Delta t)^{(n-1)}.
\]

(22)

Taking into account Eqs. (21), (22), we conclude that

\[
P \left(I_{(k,l)}(t, t + \Delta t) = 1 \right) = O(\Delta t).
\]

Therefore, for \(x \in (a, b) \)

\[
O(\Delta t) = \frac{1}{4} P \left(|\mathcal{S}_k(t) - \overline{\mathcal{S}}_l(t)| \leq 2\Delta tv \right) e^{-2\lambda \Delta t}
\]

\[
\leq EI_{(k,l)}(t, t + \Delta t) \leq P \left(|\mathcal{S}_k(t) - \overline{\mathcal{S}}_l(t)| \leq 2\Delta tv \right)
\]

\[
+ \frac{4\Delta tv}{b} \sum_{n \geq 1} n \left((\lambda \Delta t)^{2(n-1)} + \frac{2\Delta tv}{b} (\lambda \Delta t)^{(n-1)} \right)
\]

(23)

\[
= \frac{4\Delta tv}{b} + o(\Delta t).
\]

It is easily seen the additive property of \(EI_{(k,l)}(t_1, t_2) \): for any \(s \in (t_1, t_2) \)

\[
EI_{(k,l)}(t_1, t_2) = EI_{(k,l)}(t_1, s) + EI_{(k,l)}(s, t_2).
\]

Hence, there exists a constant \(c > 0 \) such that

\[
EI_{(k,l)}(0, t) = ct.
\]

This implies that

\[
EC_{(1,2,\ldots,n)}(0, t) = \frac{n(n-1)}{2} ct.
\]

It follows from (20) and (23) the following estimation for the factor \(c \)

\[
\frac{v}{b} \leq c \leq \frac{4v}{b}.
\]

6. ACKNOWLEDGMENTS

The author expresses deep gratitude to Professor A.A. Dorogovtsev for graciously dedicating so much of his time, patience, and knowledge in guiding me through the writing of this article.
REFERENCES

[1] Kac, M. (1974) A stochastic model related to the telegrapher’s equation. Rocky Mt. J. Math. 4, 497–509.
[2] Pinsky M.A. (1991) Lectures on Random Evolution. World Scientific.
[3] Pogorui, A. A. and Rodriguez-Dagnino, R. M. (2005). One-dimensional semi-Markov evolutions with general Erlang sojourn times. Random Operators Stoch. Equat. 13, 399–405.
[4] Korn, G.A., and Korn, T.M. (1961) Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York.
[5] Gradshtein I.S. and Ryzhik I. M., (1980) Table of Integrals, Series, and Products (Academic, New York.
[6] Arratia R.A. (1979) Brownian Motion on the line, Thesis, University of Wisconsin, Madison, U.S.A.
[7] Dorogovtsev A.A. (2010) One Brownian stochastic flow, Theory Stoch. Processes, 10, P.21–25.
[8] Dorogovtsev A.A. (2007) Fourier-Wiener transforms of functionals on Arratia flow. Ukrainian Mathematical Bulletin, 4, No.3, 333–354.
[9] Le Jan Yves, Raimond Olivier (2004), Flows, coalescence and noise, The Annals of Probability, 32 No.2, 1247-1315.
[10] Pogorui A.A. (2009) Asymptotic expansion for the distribution of a Markovian random motion, Random Operators Stoch. Equat. 17, 189–196.
[11] Pogorui A.A. (2010) Fading evolution in multidimensional spaces. Ukr. Math. J. 62(11), 1828–1834
[12] Bateman Manuscript Project, (1954) Tables of Integral Transforms, (Volume 1), Higher Transcendental Functions (Volume 2), ed. Erdelyi, McGraw Hill, New York.
[13] Meyer P. (1969) Processus a accroissements independants et positives, Seminaire de probilites de Strasbourg, 3, 175–189.
[14] Pogorui A.A. (2007) The stationary measure of the stochastic transfer process with reflecting boundaries in a semi-Markov medium, Theor. Probability and Math. Statist. No.74, 125–132.
[15] Masoliver J., Porra J.M., Weiss G.H. (1993) Solution to the telegrapher’s equation in the presence of reflecting and partly reflecting boundaries, Physical Review, 48, No.2 939-944.
[16] Cox D. (1970) Renewal Theory, London: Methuen and Co.

A. A. POGORUI, ZHITOMIR STATE FRANKO UNIVERSITY, VELYKA BERSYCHIVSKA 40, ZHITOMIR 10008, UKRAINE
E-mail address: pogor@zu.edu.ua