Associations of tobacco retailer density and proximity with adult tobacco use behaviours and health outcomes: a meta-analysis

Joseph G L Lee, Amanda Y Kong, Kerry B Sewell, Shelley D Golden, Todd B Combs, Kurt M Ribisl, Lisa Henriksen

ABSTRACT

Objective We sought to conduct a systematic review and meta-analysis of evidence to inform policies that reduce density and proximity of tobacco retailers.

Data sources Ten databases were searched on 16 October 2020: MEDLINE via PubMed, PsycINFO, Global Health, LILACS, Embase, ABI/Inform, CINAHL, Business Source Complete, Web of Science and Scopus, plus grey literature searches using Google and the RAND Publication Database.

Study selection Included studies used inferential statistics about adult participants to examine associations between tobacco retailer density/proximity and tobacco use behaviours and health outcomes. Of 7373 studies reviewed by independent coders, 37 (0.5%) met inclusion criteria.

Data extraction Effect sizes were converted to a relative risk reduction (RDR) metric, indicating the presumed reduction in tobacco use outcomes based on reducing tobacco retailer density and decreasing proximity.

Data synthesis We conducted a random effects meta-analysis and examined heterogeneity across 27 studies through subgroup analyses and meta-regression. Tobacco retailer density (RDR=2.55, 95% CI 1.91 to 3.19, k=155) and proximity (RDR=2.38, 95% CI 1.39 to 3.37, k=100) were associated with tobacco use behaviours. Pooled results including both density and proximity (RRR=2.48, 95% CI 1.95 to 3.02, k=255). Results for health outcomes came from just two studies and were not significant. Considerable heterogeneity existed.

Conclusions Across studies, lower levels of tobacco retailer density and decreased proximity are associated with lower tobacco use. Reducing tobacco supply by limiting retailer density and proximity may lead to reductions in tobacco use. Policy evaluations are needed.

INTRODUCTION

Novel strategies focused on reducing the supply of tobacco products are recommended to help achieve the tobacco endgame and promote health equity.14 Governments around the globe are increasingly regulating15 the retail supply of tobacco by: (1) limiting the sales of tobacco products near youth-serving locations such as schools,16 (2) limiting the total number of locations selling tobacco products in a given area17 and (3) limiting the types of stores (eg, pharmacies) that can sell tobacco products.18 While not all of these policy options are possible in any given jurisdiction, the burgeoning interest in tobacco supply reduction highlights the need for a robust understanding of the evidence underlying these policy efforts to reduce tobacco retailer density and decrease proximity.

Both tobacco retailer density and proximity are hypothesised to influence behaviour4,12 and thus, ultimately, health. This influence is thought to operate through reduced travel costs,11 increasing exposure to cues to purchase and, in some jurisdictions, increased exposure to marketing when there are more tobacco retailers.12 Retailer density and proximity may also influence social norms around smoking.13 However, prior reviews provide inconsistent evidence for these hypotheses. One meta-analysis focused on youth14 and four systematic reviews examined the association between density and proximity and youth15–17 and adult18 tobacco use. In a 2014 review, Gwon et al reported on nine studies about adolescent smoking behaviours, finding a pattern of positive associations between retailer density, retailer proximity and lifetime and past-year smoking, with less evidence regarding smoking susceptibility and past-month smoking.15 In a 2017 systematic review, Nuyts et al identified 20 studies, reporting inconsistent evidence for a positive association of density and proximity with adolescent smoking. Notably, this review identified ‘fundamental challenges in study design and exposure measurement’ hindering the interpretation of findings (p. 239).16 In a 2017 meta-analysis of 11 studies, Finan et al reported a significant positive relationship between density around participant homes (but not schools) and past-month smoking.14 In a 2019 systematic review, Marsh et al identified 35 studies regarding youth, finding evidence of an association between density and smoking but not of the relationship between retailer proximity and smoking.13 In a 2019 systematic review that included 40 studies of youth and adults, Valiente et al found a pattern of positive associations of density with smoking and initiation, and a negative association with cessation. However, proximity measures were only associated with cessation.18,19

To date, there has been no meta-analysis of studies about density/proximity and adult tobacco use behaviours. Additionally, the literature examining tobacco retailer density/proximity in relation to health outcomes, such as hospital admissions and birth outcomes, is sparse19–21 and warrants greater attention. Other gaps in the literature are
questions about the underlying methodology and measures of tobacco retailer density and proximity. To fill these gaps, this systematic review and meta-analysis examines the relationships between tobacco retailer density/proximity and adult tobacco use behaviours as well as health outcomes.

METHODS

Search

Following best practices, a professional health sciences librarian (KBS) iteratively developed the search strategy (see Footnote), translated it between databases and implemented the search. We limited our search to records published in 2000 or after, corresponding to the initiation of this review. The search was implemented in 10 databases: MEDLINE via PubMed, PsycINFO, Global Health, LILACS, Embase, ABI/Inform, CINAHL, Business Source Complete, Web of Science and Scopus. The search was last updated on 16 October 2020. We also reviewed supplemental tables from a systematic review that included studies of adults.

To assess the grey literature, we conducted backwards searching of systematic reviews and conducted a search of the New York Academy Medicine Grey Literature database, Google Custom Search for non-governmental organisation publications, Dissertations and Theses through ProQuest and the RAND Publication Database. We deduplicated references in EndNote and then loaded references into Covidence software (covidence.org) for screening.

Eligibility

As defined in our registered protocol, PROSPERO #CRD42019124984, which is available from East Carolina University Dataverse, we sought to include peer-reviewed or grey literature with the following characteristics: records that (a) use inferential statistics with (b) individual-level data to examine an association between (c) tobacco retailer density or proximity and (d) tobacco use (initiation, use, cessation, quit attempts, health outcomes) for (e) adults in (f) an Organisation for Economic Cooperation and Development (OECD) member country. Ecological studies of area-level behaviours were not eligible. We defined tobacco retailers as stationary retail locations that sell tobacco products, as this literature is emerging and may have different relationships with the outcomes of interest.

Inclusion coding

First, each record’s title and abstract were reviewed by two independent coders for inclusion. Second, each record identified as eligible in the title and abstract screening had its full-text reviewed by two independent coders. At both stages, disagreements were resolved by consensus. Figure 1 shows the flow diagram.

Data abstraction

Data abstraction was conducted by one author (JGLL) and confirmed by a second (AYK). Data abstraction included design, study area, area units used, use of activity space (ie, calculating the area unit based on participant movements), statistical approach, sample size, variable definitions, prevalence of the outcome for the reference group and effect sizes. Based on the included records, effect size measures for behavioural effect sizes included initiation; smoking; quitting; relapse and psychological constructs directly related to quitting, such as smoking urges, pro-cessation attitudes and self-efficacy. Effect size measures for health outcomes included hospital admissions, overall survival among cancer patients and pregnancy outcomes such as low birth weight. We excluded effects that simultaneously controlled for multiple measures of density (eg, measures of proximity that held the count of stores constant).

1. (“Tobacco Industry”[Mesh] OR “Tobacco Products”[Mesh] OR “Tobacco”[Mesh] OR “Smoking”[Mesh] OR Tobacco[tiab] OR Tobacconist[tiab] OR Tobacconists[tiab]) AND (“Commerce”[Mesh] OR “Marketing”[Mesh] OR Outlet[tiab] OR Outlets[tiab] OR Retail[tiab] OR Retailer[tiab] OR Retailers[tiab] OR “point of sale”[tiab] OR “point of sale”[tiab] OR “point of sale”[tiab] OR “point of sale”[tiab] OR “point of sale”[tiab]) AND (“Residence Characteristics”[Mesh] OR “Census”[Mesh] OR “Geographic Mapping”[Mesh] OR “Demography”[Mesh] OR “Geopolitical Areas”[tiab] OR Census[tiab] OR Censuses[tiab] OR Density[tiab] OR Proximity[tiab] OR Concentration[tiab] OR Distribution[tiab] OR Spatial [tiab] OR Neighborhood[tiab] OR Neighborhoods[tiab] OR Neighbourhoods[tiab] OR Neighbourhoods[tiab] OR Zoning[tiab] OR Mapping[tiab] OR “zip code”[tiab] OR “zip codes”[tiab] OR Tract[tiab] OR Tracts[tiab] OR “area unit”[tiab] OR “area units”[tiab] OR Residential[tiab] OR Residence[tiab] OR County[tiab] OR counties[tiab] OR Cluster[tiab])
restricts retail displays of tobacco products. We coded policies based on reports from the International Tobacco Control Project,24 Campaign for Tobacco-Free Kids Country Profiles,25 and published reports.26 27 The coding considered policies in Canada and Australia at the subnational level. In the event that a policy changed during data collection, we coded whichever policy covered the greater proportion of data collection.

Study risk of bias assessment

To assess risk of bias in studies, we used a modified Downs and Black checklist,28 creating a risk of bias index (0–7, with greater numbers indicating higher risk). We planned to exclude studies with a score of four or higher of bias a priori; however, the mean score was 0.49 (range 0–2). Thus, no studies were excluded based on risk of bias. Additionally, we examined records for evidence of being published in likely predatory journals, which is an emerging best practice in systematic reviews.29 We did not exclude any records based on coding for predatory journals. See online repository protocol file for details of both risk of bias assessments.

Meta-analysis

We first converted results into a relative risk reduction (RRR) using methods proposed by Mirazadeh et al30 including a correction proposed by Zhang and Yu.31 This effect size is recommended for translational research and can be computed from results of various statistical analyses.30 A Dictionary of Epidemiology explains the RRR as, '[t]he amount by which a person's risk of diseases is reduced by elimination or control of an exposure to risk'.32 The RRR is the per cent reduction in the outcome expected from the reduction in exposure measured in any given analysis. However, the exact interpretation of the RRR is based on how the outcomes and exposures were operationalised and analysed in the reviewed studies. For example, outcomes could be measured as the likelihood of being a current smoker, the likelihood of quitting or the likelihood of relapse. Tobacco retailer density reduction could be assessed as one fewer retailer per thousand population or as the difference between being in the highest vs lowest quartile of exposure. In this meta-analysis, a positive RRR indicates a relative reduction in risk corresponding to an average tobacco-related outcome from an average reduction in exposure to density or decrease in proximity across the studies. For example, a RRR of 4.92 indicates we would expect an approximately 5% reduction in tobacco use using an average study’s measures of tobacco use as a result of a reduction in density or proximity using an average study’s measure of density or proximity. In the included studies, density is typically measured with larger numbers indicating greater density, and proximity is typically measured with smaller distances indicating greater proximity. To consistently classify the direction of results, proximity was reverse coded so that increasing proximity (ie, closer retailers) is indicated by larger values—as is the case with density where increasing density (ie, more retailers) is indicated by larger values in our data.

Meta-analysis techniques for synthesising the results of multiple studies were originally developed for testing the results of interventions.33 Observational studies present challenges in that they are associated with a change in effect size while controlling for multiple comparisons following the logic of Rothman.40

Fourth, we examined the role of different study and measurement characteristics on the magnitude and direction of effect sizes in a meta-regression framework. While separate meta-analyses can tell us how the association between retailer density/proximity and the risk reduction in tobacco use and related disease differ by each study characteristic, they can be confounded by other study characteristics. Results from an adjusted meta-regression controlling for all assessed study characteristics can help further disentangle which specific study characteristics, settings or specific populations may be associated with this reduction. That is, we regressed study characteristics on effect size estimates to identify whether study characteristics were associated with a change in effect size while controlling for all other study characteristics. With an intra-class correlation of 0.17 across our effect sizes, we used multilevel modelling for our meta-regression to address dependence in the data from having multiple effects nested within studies.

We pooled the results of each study by use of density or proximity predictor variables and present these results in a forest plot. To assess for publication bias, which is the propensity of researchers to publish findings reaching historical thresholds of statistical significance more frequently than findings not reaching such thresholds, we examined a funnel plot to assess for asymmetry.41 The presence of publication bias can indicate that an effect size is overestimated given the absence of null findings.41

We used SPSS V.27/Macintosh for data management and conducted the meta-analysis in Stata IC V.16/Macintosh. Files review do not typically report a ‘main effect’. Instead, many report results from sensitivity analyses (eg, results when density is calculated within 500 m vs 250 m of a participant’s home).

These sources of heterogeneity in the literature have been identified as a challenge to the interpretation of existing evidence about tobacco retailer density and proximity.16 Heterogeneity is often thought of as a noise or nuisance in meta-analysis; however, it can also help with understanding patterns of results across different study characteristics and populations. For example, studies conducted in different policy environments may have greater or lesser exposure to pro-smoking cues at the point of sale. Following guidance from the Cochrane Handbook on addressing heterogeneity,35 we addressed this challenge in four ways.

First, we used a random effects meta-analysis framework and calculated I2 heterogeneity statistics46 to indicate the percentage of variability in the estimate due to heterogeneity in studies rather than chance from sampling.37 Following the assumptions of random effects meta-analysis, we also calculated a prediction interval (ie, the interval in which 95% of the future values are estimated to be) and an opposite effects proportion (ie, the proportion of the population for whom the effect will be in the opposite direction). While the opposite effects proportion was hypothesised to be low, it represents an important consideration in the presence of heterogeneity.

Second, we reported the estimated proportion of effect sizes that are meaningful at the population level,38 which we defined as a 1% or larger reduction in the measured outcome (eg, smoking). We selected this cut-off given overwhelming evidence of the harms of tobacco use and that even small declines at the individual level have meaningful population effects.39

Third, we then conducted separate meta-analyses for each study characteristic to assess the consistency of our findings across diverse studies. Each analysis was conducted using a subpopulation command to better estimate standard errors. We did not further adjust for multiple comparisons following the logic of Rothman.40

Lee JGL, et al. Tob Control 2021;0:1–12. doi:10.1136/tobaccocontrol-2021-056717
are available from the East Carolina University Dataverse, accession doi:10.15139/S3/6175L7, at https://doi.org/10.15139/S3/6175L7.

RESULTS

Meta-analysis

As shown in Table 1, we identified 37 records from 8 countries: Australia, Canada, Denmark, England, Finland, New Zealand, Scotland and the USA. We constructed an evidence table (see online repository files). Over one-third of the records (n=14) leveraged longitudinal data from Canada, Finland, New Zealand, Scotland, and the USA. The analysis was a conference presentation that was later published, or publications did not provide enough details to calculate an effect size. The analysis was a conference presentation that was later published, or publications did not provide enough details to calculate an effect size. For example, in the unadjusted model, compared with studies measuring smoking as the outcome variable, studies measuring quitting (reverse coded) are associated with a larger estimated RRR (b=3.81, 95%CI −2.09 to 9.71), which did not reach statistical significance. After controlling for other study characteristics in the adjusted model, again compared with studies measuring smoking status as the outcome variable, studies that assessed quitting were associated with a smaller RRR (b=−1.17, 95%CI −7.49 to 5.16), which also did not reach statistical significance.

Given the substantial heterogeneity in studies and their reported effect sizes, many characteristics are not statistically significant. However, after adjustment for other study characteristics, there were some differences by type of outcome measured, with smaller estimated RRRs for studies measuring relapse, initiation and other psychosocial variables than for those measuring smoking. Results from longitudinal studies showed significantly greater RRR versus those from cross-sectional studies (b=11.09; 95%CI 5.95 to 16.23). In other words, studies that were longitudinal found a larger benefit to public health from reducing tobacco retailer density and proximity. Significant adjusted results were present for effect sizes where a study predictor variable was delineared or collapsed into two or more categories (which would, by definition, increase effect sizes). We found significantly higher RRR in studies focused on men compared with results aggregating men and women and for levels of smoking intensity. However, the 40 effect sizes reported for specific genders and the 32 effect sizes reported for specific levels of intensity should be interpreted with caution as they come from just three studies and one study respectively. Other characteristics with few effect sizes or effect sizes from few studies should also be interpreted with caution.

DISCUSSION

Principal findings

Overall, the meta-analysis indicated that there was an estimated 2.48% reduction in risk of tobacco use behaviours with reduced exposure to tobacco retailer density and proximity as defined by the average included study. In the separate meta-analyses, the pattern of results was the same for both studies of smoking and quitting, although findings from studies of relapse, adult initiation and health outcomes were equivocal. Relatively few studies assessed these outcomes. Results were also in the same direction across different study designs, countries and policy contexts suggesting that our principal findings are robust. The direction of results did differ among results specific to certain populations: unlike for results specific to low-income individuals, results specific to high-income populations were in the opposite direction, suggesting less impact of density and proximity for high-income than low-income populations. Similarly, among results specific to tobacco use intensity, results suggested density mattered more for people who used tobacco more rather than less. While these
Table 1 Included records, n=37, characteristics, effect sizes identified (n effects), effects included in meta-analysis (k) and risk of bias (RoB) index score

Study	Design	Area (date)	Statistics	Sampling (n)	n effects (k)*	RoB
Barnes et al[9]	Cross-sectional	Western Australia (2003–2009 participants; 1999–2011 hospital data; 2011 tobacco retailers)	Logistic regression	Western Australia adults; probability/representative stratified (n=12,270 smoker and non-smoker; n=1,873 smokers)	38 (38)	0
Berg-Beckhoff et al[10]	Cross-sectional	Denmark (2011 respondents; NR tobacco retailers)	Multinomial logistic regression	Denmark respondents aged 15–79 years: probability (n=3122)	2 (0)	0
Brown et al[4]	Cross-sectional	Baltimore, Maryland (2009 participants; 2009 tobacco retailers)	Logistic regression (note study tests gender interactions)	Young adult black men and women aged 21–24 years originally recruited in 1993 as first-grade students in nine public elementary schools: follow-up of cohort after attrition (n=283)	15 (0)	0
Cantrell et al[6]	Cross-sectional	Eight Designated Media Areas across the USA (2006–2010 respondents; retailers NR)	Generalised estimating equations	US smokers aged 18–49 years: randomly selected (n=2377)	14 (14)	1
Cantrell et al[44]	Cross-sectional	USA (2013 participants; 2012 tobacco retailers)	Logistic regression	Adults aged 18–34 years participating in GIK KnowledgePanel: Participation Legacy Young Adult Cohort Study, which used a nationally representative sample (n=4280)	6 (6)	0
Chaiton et al[3]	Cross-sectional	Toronto, Canada (2008–2010 participants; 2011 tobacco retailers)	Conditional fixed effects regression	Healthcare setting/cessation clinic: census (n=734)	16 (12)	1
Chaiton et al[44]	Longitudinal	Ontario, Canada (2005–2011 participants; 2011 tobacco retailers)	Mixed models/survival analysis	Ontario adult smokers in urban or suburban area: probability (n=2414)	4 (4)	0
Chuang et al[72]	Cross-sectional	Four cities in Northern California (1979–1990 participants; 1979–1990 convenience stores)	Mixed models	Stanford Heart Disease Prevention Programme, adults aged 25–74 years: (8121)	15 (0)	1
Clemens et al[39]	Longitudinal within subject	Scotland (2000–2015 maternity records; 2012 tobacco retailers)	Conditional fixed effects logistic regression	Maternity records of women who changed smoking behaviour and had two or more pregnancies (n=55,234)	4 (4)	0
Dearfield (dissertation)+ Dearfield (paper)[14]	Cross-sectional	Washington, District of Columbia (2012–2014 participants; NR tobacco retailers)	Multilevel model	Healthcare Setting (District of Columbia Primary Care Practice Based Research Network); convenience; current or former smokers (n=152)	2 (0)	2
Eng 2019[99]	Longitudinal	Toronto (participants/tobacco retailers NR)	Logistic regression, survival analysis	Healthcare setting, patients with lung and head and neck cancer: convenience (721 patients with lung cancer; 445 patients with head and neck; 391 were smokers at baseline)	6 (6)	0
Eng 2020[10]	Longitudinal	Toronto (2009–2012 participants; NR tobacco retailers)	Survival analysis	Healthcare setting, patients with lung cancer: convenience (n=1411)	6 (6)	0
Farley 2016 (dissertation)+ Farley 2019 (published paper)[1, 15]	Cross-sectional	New York, New York (2011–2013 respondents; 2012 tobacco retailers)	Linear regression, geographically weighted regression; multilevel models	NYC respondents aged 18+ years: probability, phone (NR)	3 (3)	0
Farley et al[47]	Cross-sectional	Louisiana (1997–1998 maternity records; NR tobacco retailers)	Multilevel modelling	Live births from Louisiana vital records: census (n=105111)	See evidence table (k=0)	0
Fleischer et al[45]	Longitudinal	Canada (2006–2011 respondents; 2007–2010 tobacco retailers)	Generalised estimating equations	Canadian adult smokers: probability (categorization: 4388 observations, 2024 individuals; relapse n=866 observations, 448 individuals)	8 (8)	0
Ghenadenik et al[46]	Longitudinal with self-reported retrospective outcome variable	Canada (2011–2012 participants; 2011 tobacco retailers)	Mixed models with multinomial outcome variable	Adults aged 18–25 years proficient in English or French with ≥1 year residence at current address in the Interdisciplinary Study of Inequalities in Smoking: Random (n=2070)	9 (9)	0
Ghenadenik et al[50]	Longitudinal panel	Montreal, Canada (2011–2012, 2013–2014 participants; 2011 tobacco retailers)	Mixed models	Adults aged 18–25 years with ≥1 year residence at current address and did not move across study period in the Interdisciplinary Study of Inequalities in Smoking: Random (n=1108)	9 (9)	0
Ghenadenik et al[51]	Longitudinal panel	Montreal, Canada (2011–2012, 2013–2014 participants; 2011 tobacco retailers)	Mixed models	Adults aged 18–25 years with ≥1 year residence at current address and did not move across study period in the Interdisciplinary Study of Inequalities in Smoking: Random (n=1025)	30 (30)	0
Halonen et al[45]	Longitudinal	Finnish towns (n=10) and hospital districts (n=46) (1997–2005 baseline, 2008–2009 follow-up participants; 2010 tobacco retailers)	Generalised estimating equations	Employees of Finnish towns and hospitals who had reported being current smokers in the Finnish Public Sector study (1997–2005): convenience (n=6663)	32 (32)	0
Han et al[14]	Longitudinal	Birmingham and Bristol, UK (2007–2009 participants; 2009 assumed tobacco retailers)	Continuation ratio logit models	Primary care research setting (29 general practices), current smokers: convenience (n=611)	6 (6)	2
King et al[46]	Cross-sectional	North Carolina and Virginia (2017, participants; 2018 tobacco retailers)	Mixed generalised linear models	First-year college students in 2010 (Assessment of the Post-College Experience [ACE II] cohort) present in wave 10 of data collection and who live in North Carolina or Virginia (n=1099)	12 (12)	0
Kirchner et al[47]	Cross-sectional	USA (2012 participants; 2012 tobacco retailers)	Generalised categorical regression	Online panel (English-speaking, aged 25 years or older, current smoking status: quota (n=2376)	See evidence table (k=0)	2
Kist et al[52]	Cross-sectional	Toronto, Canada (2009–2011 participants; 2011 tobacco retailers)	Mixed models	Adult residents who could communicate in English and had been a resident in neighbourhood for at least 6 months (Neighbourhood Effects on Health and Well-being Study): probability based (n=2412)	2 (2)	0

Continued
findings are based on few studies for individual and area-level income and smoking intensity, they suggest further attention is needed to the moderating role of participant income and nicotine dependence as well as the possibility that retailer reduction policies might reduce health inequities.

In the regression approach, we controlled for potentially confounding study characteristics. One of the most striking findings is the larger effect sizes from studies with longitudinal (vs cross-sectional) designs. That better causal inference from longitudinal data is associated with findings that are suggestive of greater public health benefit from supply reduction is promising. Compared with studies that assessed smoking, studies that assessed relapse, young adult initiation and psychosocial variables (eg, quit efficacy, stages of change) showed smaller effects. For disease and young adult initiation, it is plausible that tobacco retailer density and proximity may have limited impact and thus the smaller effect sizes are consistent with the underlying theory of influence. Each of these was also measured in few studies. Further studies should directly assess relapse. We also examined the associations of retail advertising and product display restrictions with the magnitude of the RRR, but neither was significant after controlling for other study characteristics.

Regarding measurement of density and proximity, meta-analysis results were consistent in magnitude and direction, except for measures of density assessed retailers per population, which was not significant and had an estimate near zero. Differences in the size of the magnitude of associations may also result from the meaning of a one-unit change in retailer density or proximity. For example, many count-based studies reported a one-unit change in the number of retailers. But, a one-unit change in retailers per land area as well as approaches that tertile and dichotomise could produce a larger effect size as an artefact of the one-unit-change interpretation in the regression model. Interpreting the existing literature is made more complex by the varied approaches to operationalise

Table 1

Study	Design	Area (date)	Statistics	Sampling (n)	n effects (k)*	RoB†
Marashi-Pour et al	Cross-sectional	New South Wales, Australia (2008–2010 participants; 2009–2011 tobacco retailers)	Mixed models	Adults; probability (n=29375)	2 (2)	0
Pearce et al‡	Longitudinal	Scotland (2000–2015 participants; NR tobacco retailers)	Mixed models	Maternity records: census (~750,000)	2 (0)	0
Pearce et al‡	Cross-sectional	New Zealand (2002–2003; 2004 tobacco retailers)	Mixed models	Adults: probability but weights not applied to these analyses (n=13,528)	12 (12)	0
Pearce et al†	Cross-sectional	Scotland (2008–2011, survey; 2012 tobacco retailers)	Logistic regression, weighted	Scottish adults aged 16 years or older: probability (n=24,387)	12 (12)	0
Pulakka et al‡	Longitudinal	Finland (2003–2012)	Conditional logistic regression meta-analysed across study	Two Finnish studies of participants who had changed their smoking status: one convenience and one representative (n=3641)	7 (0)	0
Pulakka et al*‡	Longitudinal between subjects and case-crossover	Finland (2003, 2008–2013 participants; tobacco retailers 2010 and 2013)	Logistic regression (between subjects) and conditional logistic regression (case-crossover)	Two Finnish studies: Finish Public Sector study (convenience) and Health and Social Support study (representative) (n=20,729)	22 (22)	0
Reitzel et al‡	Longitudinal	Houston, Texas (2005–2007 participants; 2006 tobacco retailers)	Continuation ratio logit models	Age 21 years or older, smoked five cigarettes per day for last year, English proficiency at sixth-grade reading level or higher, motivation to quit in next 30 days: convenience (n=414)	5 (5)	1
Rodriguez et al‡	Cross-sectional	USA (2015 participants; NR tobacco retailers)	Logistic regression	Panel Study of Income Dynamics Transition to Adulthood Supplement: Restricted to African-American young adults aged 18–22 years (n=682)	4 (0)	2
Scheuermann et al‡	Cross-sectional	Kansas City, Missouri (participants/ tobacco retailers NR)	Mixed models	White and black current smokers enrolled in smoking cessation intervention (counselling, varenicline) cohort who had income <400% of the federal poverty level: cohort (n=440)	5 (2)	1
Shareck et al‡	Cross-sectional	Montreal, Canada (2011–2012 participants; 2011 tobacco retailers)	Generalised estimating equations	Young adult (18–25 years) in Interdisciplinary Study of Inequalities in Smoking who were fluent in French or English and had lived at current address for 1 year: probability (n=1994)	8 (8)	0
Shareck et al‡	Cross-sectional	Montreal, Canada (2011–2012 participants; 2011 tobacco retailers)	Log-binomial regression models	Young adults (aged 18–25 years) in Interdisciplinary Study of Inequalities in Smoking: random, restricted to those having smoked one full cigarette or more in lifetime (n=921)	16 (16)	0
Vyas et al‡	Cross-sectional	San Francisco Bay, California (2015–2017 participants; tobacco retailers)	Generalised estimating equations	Chinese or Vietnamese male, adult (aged 18 years or older), daily smokers (at least one cigarette daily in previous 7 days) who could speak and read Chinese or Vietnamese and who were enrolled in lifestyle intervention study (designed to promote smoking cessation, healthy eating and physical activity): convenience (n=340)	1 (1)	2
Watkins et al†	Longitudinal/Ecological momentary assessment	Dallas, Texas (2011–2012 participants; 2012 tobacco retailers)	Mixed models	Smoking cessation clinic in safety net healthcare setting: aged 18 years or older, English-speaking at seventh-grade level, willing to quit smoking a week following initial visit, smoked at least five cigarettes per day: convenience (n=47)	5 (0)	1
Young-Wolff et al†	Cross-sectional	San Francisco Bay Area (2006–2013 participants; 2010 tobacco retailers)	Mixed models	Inpatient psychiatric healthcare setting, adult smokers living with serious mental illness recruited for third Tobacco treatment clinical trials: convenience (n=1,065)	11 (4)	2

*indicates effect sizes reported in record and †indicates effect sizes used in meta-analysis.
†RoB assessed for each study (higher numbers indicate higher risk). See the online repository evidence table for full details of predictor and outcome variables.

ACE II, Assessment of the Post-College Experience; NR, not reported.
exposure variables such as the presence of a retailer (also identified by Valiente et al.18) or dichotomising based on comparisons of quartiles, which may inflate effect sizes and reduce power to detect an effect.78 Just one study measured tobacco retailer density per population,76 which is more commonly measured in studies about inequitable distribution of tobacco retailers.79,80 Further studies should assess the use of per population measures of retailer density with adult tobacco use behaviours and health outcomes.

Logically, strategies to reduce tobacco retailer availability are designed and implemented to focus on administrative boundaries (e.g., capping the number of retailers within a district). However, further research that captures dynamic activity spaces, rather than static residential areas, is important to better measure individual-level exposure to tobacco retailers and can provide evidence about the need to implement policies that reduce tobacco retailer availability everywhere and promote a more equitable distribution of tobacco retailers.

Figure 2 Forest plot of pooled study (n=27) results (k=285) by use of density and proximity showing estimated relative risk reduction (RRR) expected from reduced exposure to tobacco retailers. RRR, relative risk reduction.
Table 2 | Separate meta-analyses by study characteristics estimating relative risk reduction (RRR) in tobacco use from reduction of tobacco retailer density and proximity, $k=285, n=27$

Characteristics	n	k	I^2	Estimated RRR (95% CI)
Outcome variable				
All behavioural outcomes	26	255	99.82	2.48 (1.95 to 3.02)
Smoking	10	68	99.92	2.06 (1.26 to 2.85)
Quitting (reverse coded)	15	125	99.75	6.50 (4.64 to 8.37)
Relapse	3	12	0	0.04 (−0.24 to 0.17)
Young adult initiation	3	19	0	-0.25 (−1.09 to 0.60)
Other (eg, stage of change)	5	31	99.72	3.28 (1.54 to 5.02)
Health outcomes	2	30	41.84	0.01 (−0.01 to 0.03)
Predictor variable				
Proximity (reverse coded)	14	100	87.88	2.38 (1.39 to 3.37)
Density—all types	24	155	99.89	2.55 (1.91 to 3.19)
Count	8	53	99.99	5.29 (2.49 to 8.10)
Per land area	10	45	99.94	3.30 (2.19 to 4.42)
Per persons	1	6	0	0.07 (−0.88 to 1.03)
Other (eg, proportion of smaller area units within area unit with retailers)	6	51	74.85	3.84 (2.24 to 5.44)
Design and statistics				
Use of activity space	2	12	33.01	19.85 (12.44 to 27.26)
Longitudinal	10	96	99.80	4.91 (3.03 to 6.79)
Cross-sectional	18	159	99.83	2.22 (1.65 to 2.79)
Adjustment for confounders or covariates				
Adjusted: no controls (unadjusted)	10	73	0	−0.01 (−0.03 to 0.01)
Adjusted: individual characteristics only	13	89	99.81	4.04 (2.95 to 5.14)
Adjusted: neighbourhood characteristics only	2	2	100	−0.91 (−1.00 to 0.00)
Adjusted: both individual and neighbourhood characteristics	14	91	96.45	2.96 (1.70 to 4.23)
No delinearisation of predictor	15	81	3.56	−0.0003 (−0.02 to 0.02)
Used delinearisation of predictor	16	174	47.79	4.33 (3.32 to 5.33)
Used ordinal or nominal outcome variable	3	24	0	0.15 (−0.25 to 0.56)
No ordinal or nominal outcome variable	23	231	99.87	2.87 (2.25 to 3.50)
Results with men and women combined	24	215	99.77	2.04 (1.57 to 2.50)
Women-specific effect sizes	3	22	68.99	0.17 (−4.25 to 4.58)
Men-specific effect sizes	2	18	53.65	15.30 (8.28 to 22.31)
Results with incomes combined	26	244	99.83	2.59 (2.04 to 3.14)
Low income-specific effect sizes	2	5	36.72	4.31 (0.19 to 8.43)
High income-specific effect sizes	2	6	32.04	−1.01 (−2.48 to 0.46)
Aggregated tobacco use intensity	25	223	99.81	2.39 (1.88 to 2.90)
Low intensity	1	16	28.63	-2.61 (−6.94 to 1.72)
High intensity	1	16	73.22	7.84 (−1.09 to 16.77)
Context				
Country				
Australia	2	16	37.79	0.001 (−0.03 to 0.04)
Canada	10	104	99.14	3.10 (2.06 to 4.14)
Finland	2	54	91.84	5.84 (2.05 to 9.62)
New Zealand	1	12	16.39	1.28 (0.15 to 2.40)
UK	4	22	91.60	4.48 (2.97 to 5.98)
USA	8	47	99.82	1.61 (0.72 to 2.49)
Retail point-of-sale advertising				
Without retail advertising restrictions	14	137	99.93	2.86 (2.04 to 3.69)
With retail advertising restrictions	12	118	86.00	0.86 (0.49 to 1.24)

Findings in context

Our findings are broadly in line with the one meta-analysis focused on adolescent populations by Finan et al, which found a significant relationship between density of retailers around homes and adolescent smoking (OR 1.08, 95% CI 1.04 to 1.13).14 Assuming 20% youth smoking prevalence, the finding by Finan et al converts28 to an estimated RRR of 1.57 (95% CI 0.79 to 2.53), which is only slightly smaller than our estimated RRR of 2.55 (95% CI 1.91 to 3.19) for density.

The current findings complement a series of prior systematic reviews that have found a link between tobacco retailer density with tobacco use behaviours among adolescents and adults.17 18 81-83 However, conclusions from prior research are inconsistent about the impact of proximity with some reviews finding proximity matters,17 others not assessing proximity14 and others finding inadequate evidence.15 16 Valiente et al found only one association of proximity with cessation in their systematic review of youth and adult studies.38 The current study provides more evidence that proximity to tobacco retailers matters for adults. It parallels results of studies published after our search was conducted.84 85 including one showing associations between density and chronic obstructive pulmonary disease hospital outcomes.86 It also parallels studies not eligible for inclusion that found impacts on some smoking behaviours from removal of tobacco in some pharmacy chains.87-89

A review by Glasser and Roberts examined evaluations of change in tobacco retailer density/proximity based on different policy interventions.53 The authors note that although implementation of policy interventions on density/proximity is growing, there has been more attention to immediate end points (eg, tobacco retail availability and environmental equity, as reviewed by Glasser and Roberts) than to subsequent health behaviours (eg, tobacco use/cessation, as reviewed in the current study). Thus, more evidence of the impact of real-world policy interventions on the retail environment and subsequent tobacco-related behaviours is much needed. This meta-analysis is consistent with evidence that such interventions should have a meaningful impact on health behaviours.

Although our review is limited to OECD countries, our findings match a small literature examining these relationships in lower-income countries. For example, Agaku et al found the presence of tobacco retailers on school grounds were associated with smoking behaviours among school personnel in 19 sub-Saharan African countries.90 The findings regarding proximity are consistent with the underlying theoretical frameworks identified to address why the tobacco retail environment matters to health. Shareck et al, drawing on theoretical approaches to understanding neighbourhoods and health,10 argue that the physical environment

Table 2 Continued | Characteristics | n | k | I^2 | Estimated RRR (95% CI) |
|-------------------------------------|----|----|-------|------------------------|
| **Retail display of tobacco products** | | | | |
| Without retail display restrictions | 17 | 155| 99.87 | 2.32 (1.68 to 2.96) |
| With retail display restrictions | 9 | 100| 99.41 | 3.80 (2.60 to 5.00) |

Each row represents a separate meta-analysis of the effect sizes in that row; n is the number of studies include and k is the number of effect sizes included. I^2 is a measure of heterogeneity. Bold indicates a statistically significant estimate at the historical p<0.05 threshold. We suppressed results with fewer than five effect sizes.

*Includes only behavioural effect sizes (k=255).
†Presence of an advertising policy includes results from Australia, Canada and New Zealand.
‡Presence of a display policy includes only results from Canada.
NR, not reported.
Table 3 Unadjusted and adjusted mixed models regression predicting change in effect size from study and effect size characteristics, k=285

Operationalisation of outcome	Models 1–14	Model 15
Smoking	Reference	Reference
Quitting (reverse coded)	3.81 (−2.09 to 9.71)	−1.17 (−7.49 to 5.16)
Relapse	−11.41 (−21.81 to −1.01)	−10.49 (−20.51 to −0.48)
Disease	−0.85 (−8.36 to 6.65)	−3.14 (−10.17 to 3.89)
Young adult initiation	−8.08 (−16.56 to 0.40)	−14.32 (−22.25 to −6.39)
Other (eg, readiness)	−7.60 (−14.68 to −0.53)	−13.97 (−20.84 to −7.10)

Proximity	Reference	Reference
Density: count	0.52 (−6.60 to 5.65)	1.35 (−3.42 to 6.11)
Density: per land area	−1.41 (−7.93 to 5.11)	5.20 (−2.32 to 13.62)
Density: per people	−11.37 (−25.18 to 2.44)	−11.78 (−23.96 to 0.41)
Density: other	5.44 (−1.69 to 12.58)	9.06 (−0.71 to 18.83)

Study size	Reference	Reference
Study size (per 100n)	−0.02 (−0.05 to 0.01)	−0.02 (−0.07 to 0.03)

Study design	Reference	Reference
No use of activity space	Reference	Reference
Activity space	10.81 (1.20 to 20.42)	7.34 (−1.31 to 16.00)
Cross-sectional	Reference	Reference
Longitudinal	10.38 (5.29 to 15.47)	11.09 (5.95 to 16.23)

Implementation of control variables	Reference	Reference
Unadjusted result	Reference	Reference
Adjusted for individual	1.76 (−3.11 to 6.62)	1.17 (−3.13 to 5.47)
Adjusted for neighbourhood	−5.93 (−26.83 to 14.97)	−4.11 (−22.67 to 14.46)
Adjusted for both	−0.39 (−6.13 to 5.35)	1.38 (−4.33 to 7.08)

Operation of predictor variable	Reference	Reference
No delinearisation of predictor	Reference	Reference
Delinearisation of predictor	5.33 (0.34 to 10.32)	11.31 (4.80 to 17.82)

Operation of outcome	Reference	Reference
No ordinal or nominal outcome	Reference	Reference
Ordinal or nominal outcome	7.82 (−0.64 to 16.28)	3.63 (−7.14 to 14.41)

Study setting/Context	Reference	Reference
Policy environment	Reference	Reference
Point of sale advertising policy*	Reference	Reference
Without retail advertising restrictions	3.64 (−2.46 to 9.74)	−15.21 (−44.45 to 14.04)
With retail advertising restrictions	Reference	Reference
Retail product display policy†	Reference	Reference
Without retail display restrictions	Reference	Reference
With retail display restrictions	6.75 (0.87 to 12.63)	2.42 (−19.00 to 23.84)
Country (weighted effect coded)‡	Reference	Reference
Average country	Reference	Reference
Canada	4.03 (0.47 to 7.58)	6.80 (−13.47 to 27.07)
Finland	−1.29 (−8.06 to 5.48)	−6.16 (−25.42 to 13.09)
New Zealand	−6.14 (−18.35 to 6.08)	1.74 (−20.79 to 24.28)
UK	−1.88 (−9.92 to 6.15)	−17.34 (−39.84 to 5.16)
USA	0.67 (−4.73 to 6.06)	2.11 (−14.38 to 18.60)
Participant sex	Reference	Reference
Results from analyses aggregating participant sex	Reference	Reference

Table 3 Continued

Models 1–14	Model 15	
Results specific to female participants	−2.39 (−12.18 to 7.41)	4.01 (−9.78 to 17.80)
Results specific to male participants	15.55 (5.00 to 26.11)	21.82 (8.26 to 35.37)

Participant income	Reference	Reference	Reference	Reference
Results from analyses aggregating income levels	Reference	Reference	Reference	Reference
Results specific to lower-income participants	−1.74 (−15.70 to 12.21)	−3.92 (−16.59 to 8.75)		
Results specific to higher-income participants	−5.53 (−18.49 to 7.43)	−6.05 (−18.37 to 6.28)		

Participant tobacco use intensity	Reference	Reference	Reference	Reference
Aggregated levels of tobacco use intensity	Reference	Reference	Reference	Reference
Results specific to light tobacco use	−10.70 (−24.88 to 3.48)	−26.02 (−49.25 to −2.80)		
Results specific to heavy tobacco use	−0.20 (−13.48 to 13.98)	−36.61 (−59.89 to −13.33)		

| Intercept | 4.93 (−11.37 to 21.24) |

A larger number indicates a larger estimated reduction in the behavioural outcome (eg, smoking) from reducing exposure to tobacco retailers as defined in the study. Models were constructed with a random intercept for study to address nesting of results within research studies. Bold indicates statistical significance at the historical p<0.05 threshold.
*Presence of an advertising policy includes results from Australia, Canada and New Zealand.
†Presence of a display policy includes results only from Canada.
‡Country results are weighted effect coded with Australia as the omitted category.
Regression results from weighted effect coding can be compared against an average reference category instead of a single reference category.

Strengths and limitations

A strength of this review is a robust search including grey literature, designed by a health sciences librarian that resulted in the identification of 37 papers. It followed standard systematic review methods to reduce the potential for bias by assessing papers for risk of bias and adding in a screening for predatory journals. This review also included the largest number of studies to date and incorporated distal tobacco-related disease outcomes. However, conclusions may be impacted by publication bias, as indicated by a funnel plot.

We sought to use an effect size (RRR) that is meaningful and easy to interpret in translational research. This strength must be balanced against the challenges of converting between asymmetric effect sizes where negative relationships range from 0 to 1 and positive relationships range from 1 upwards. Some research reports likelihood of smoking (hypothesised to be higher) and some reports likelihood of quitting (hypothesised to be lower). The strength of a straightforward measure is also a limitation as this approach likely overestimates likelihood of smoking (hypothesised to be higher) and underestimates likelihood of quitting (hypothesised to be lower). The strength of a straightforward measure is also a limitation as this approach likely overestimates likelihood of smoking (hypothesised to be higher) and underestimates likelihood of quitting (hypothesised to be lower).

Second, meta-analyses were historically used for one outcome per study, and including more than one outcome per study can violate the assumption of independence in traditional statistical models. Although our approach of including multiple effect sizes provides access and exposure to tobacco products and (in many countries) retail marketing. Of course, behaviours are also influenced by price, local norms and other community factors. While it is beyond the scope of the current study to test for evidence to support the underlying theories, the findings do confirm that the tobacco retail environment is an important correlate of behaviour and potential target for policy change.

91 92

Lee JGL, et al. Tob Control 2021;0:1–12. doi:10.1136/tobaccocontrol-2021-056717

Copyright © 2021 BMJ Publishing Group Ltd. All rights reserved. For permission to reuse any element of this article, please go to: https://www.tobaccocontrol.bmj.com/content/early/2021/09/19/tobaccocontrol-2021-056717.
from a given study may underestimate SEs and gives more weight to studies reporting more outcomes, it fits with our interest in exploring the heterogeneity between effect sizes, use of stratified and meta-regression approaches and focus on interpreting the pattern of direction in results. Additionally, the regression models we use account for nesting of effects within studies to account for potential bias in SEs.

Third, there is substantial heterogeneity in the reviewed literature, which indicates the included studies did not all measure the same phenomenon. Given the limitations of our approach described above, readers are advised to focus on the pattern and direction of results. However, heterogeneity can also be overestimated with large, precise studies that do not have overlapping CIs, which has been identified as a problem in other meta-analyses.10 Heterogeneity in the current study is likely the result of both factors. Our attempt to control heterogeneity by limiting our review to OECD countries excluded emerging evidence from low-income countries.

The current study assessed the level (individual vs neighbour- hood) at which variables were conceptualised as mediators and confounders. In separate meta-analyses, our pattern of results was similar for studies with individual level and both individual and area-level covariates. Given the compelling prior work of Nuysts \textit{et al}16 examining in depth the control for covariates and confounders (and lack thereof) in the youth and young adult literature, the current study did not assess every covariate. We instead refer readers to their excellent discussion of overadjustment (ie, inclusion of potential mediators) and underadjustment (ie, omission of potential confounders).16

\textbf{CONCLUSIONS}

In summary, this meta-analysis supports prior reviews’ evidence of the relationship between tobacco retailer density and tobacco use behaviours. Regardless of how density and proximity are measured or what country the research is conducted in, the general pattern of association is consistent: reducing the density and proximity of tobacco retailers is consistently associated with reductions in adult tobacco use. We extend the previous body of literature to a larger number of papers, provide the first meta-analysis of this relationship among adult populations and provide clear evidence of the importance of proximity. We suggest that future research attend to the theorised mechanisms through which these associations are produced and leverage stronger quasi-experimental designs that allow for better understanding the mechanisms through which policy changes influence health behaviours and outcomes. Based on the existing literature linking tobacco retailer density and proximity with tobacco use behaviours and other health-relevant outcomes, policymakers should consider that supply reduction strategies to reduce tobacco retailer density and proximity will likely result in improvements to population health.

\textbf{Twitter} Joseph G L Lee @Joseph_GL_Lee, Amanda Y Kong @AmandaYKong and Kurt M Ribisl @KurtRibisl

\textbf{Acknowledgements} The authors would like to thank Emmanuel McLeod and Sneha Amareesh for help with screening and record management.

\textbf{Contributors} JGL and KMR developed the protocol, coded data, abstracted data, drafted the manuscript and conducted the analyses; ATK developed the protocol, coded data, abstracted data and drafted the manuscript; KBS developed and implemented the search and coded data; SDG developed the protocol and drafted the manuscript; TBC created figures; KMR originated the study, developed the protocol and drafted the manuscript; LH drafted the manuscript. All authors provided critical feedback, edited the manuscript and approved its final submission.

\textbf{Funding} Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Numbers P01CA225597 and T32CA128582. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

\textbf{Competing interests} JGL and KMR hold a royalty interest in tobacco retailer mapping system owned and licensed by the University of North Carolina at Chapel Hill. The software was not used in this research. KMR is a paid expert consultant in litigation against electronic cigarette companies.

\textbf{Patient consent for publication} Not required.

\textbf{Ethics approval} As no human participants were involved in this study of published papers, we did not seek ethics approval.

\textbf{Provenance and peer review} Not commissioned; externally peer reviewed.

\textbf{Data availability statement} Data are publicly available in the East Carolina University dataverse, https://doi.org/10.15139/53/6175L7.

\textbf{Open access} This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

\textbf{ORCID iDs}

Joseph G L Lee http://orcid.org/0000-0001-9698-649X
Amanda Y Kong http://orcid.org/0000-0002-8361-7342
Shelley D Golden http://orcid.org/0000-0002-2283-542X
Todd B Combs http://orcid.org/0000-0003-1015-6589
Kurt M Ribisl http://orcid.org/0000-0003-3318-8524
Lisa Henriksen http://orcid.org/0000-0002-9288-3562

\textbf{What this paper adds}

\begin{itemize}
 \item The density of tobacco retailers matters to youth tobacco use according to prior meta-analyses.
 \item No studies have meta-analyzed tobacco retailer density and proximity in relation to adult tobacco use behaviors and health outcomes.
 \item Prior research has noted methodological challenges to understanding the role of tobacco retailer density and proximity on behavior.
 \item Overall, this meta-analysis indicated that there was an estimated 2.48% reduction in risk of tobacco use behaviors with reduced exposure to tobacco retailer density and proximity as defined by the average included study.
 \item Policymakers should consider that supply reduction strategies to reduce tobacco retailer density and proximity will likely result in improvements to population health.
\end{itemize}

\textbf{REFERENCES}

1 Kong AV, King BA. Boosting the tobacco control vaccine: recognizing the role of the retail environment in addressing tobacco use and disparities. \textit{Tob Control} 2020. doi:10.1136/tobaccocontrol-2020-055722. [Epub ahead of print: 23 Sep 2020].
2 McDaniel PA, Smith EA, Malone RE. The tobacco endgame: a qualitative review and synthesis. \textit{Tob Control} 2016;15:594–604.
3 Henriksen L. The retail environment for tobacco: a barometer of progress towards the endgame. \textit{Tob Control} 2015;24:e1–2.
4 Lange T, Hoefges M, Ribisl KM. Regulating tobacco product advertising and promotions in the retail environment: a roadmap for states and localities. \textit{J Law Med Ethics} 2015;43:878–96.
5 Laverman HG, Henry KA, Scherees A, et al. Tobacco retail licensing and density 3 years after license regulations in Philadelphia, Pennsylvania (2012-2019). \textit{Am J Public Health} 2020;110:547–53.
6 Vyaz P, Sturrock H, Ling PM. Examining the role of a retail density ordinance in reducing concentration of tobacco retailers. \textit{Spat Spatiotemporal Epidemiol} 2020;32:100307.
7 Jin T, Lu B, Klein EG, et al. Tobacco-Free pharmacy laws and trends in tobacco retailer density in California and Massachusetts. \textit{Am J Public Health} 2016;106:679–85.
8 Shareck M, Dassa C, Frohlich KL. Improving the measurement of neighbourhood characteristics through systematic evaluation: inequalities in smoking as a case study. \textit{Health Place} 2012;18:671–82.
9 Galster GC. The mechanism(s) of neighbourhood effects: theory, evidence, and policy implications. In: van Ham M, Manley D, Bailey N, eds. Neighbourhood effects research: new perspectives. New York, NY: Springer, 2012: 23–56.

10 Bernard P, Charafeddine R, Frohlich KL, et al. Health inequalities and place: a theoretical conception of neighbourhood. Soc Sci Med 2007;65:1839–52.

11 Luke DA, Hammer RA, Combs T, et al. Tobacco Town: computational modeling of policy options to reduce tobacco retailer density. Am J Public Health 2017;107:740–6.

12 Obinwa U, Pasch KE, Jetelina KK, et al. A simulation of the potential impact of restricting tobacco retail outlets around middle and high schools on tobacco advertisements. Tob Control 2020. doi:10.1136/tobaccocontrol-2020-055724. [Epub ahead of print: 11 Dec 2020].

13 Kovell SD, Lipperman-Kreda S. How is exposure to tobacco outlets within activity spaces associated with daily tobacco use among youth? A mediation analysis. Nicotine Tob Res 2020;22:958–66.

14 Finan LJ, Lipperman-Kreda S, Abadi M, et al. Tobacco outlet density and adolescents’ cigarette smoking: a meta-analysis. Tob Control 2019;28:27–33.

15 Marsh L, Vaneecke F, Robertsont, et al. Association between density and proximity of tobacco retail outlets with smoking: a systematic review of youth studies. Health Place 2021;67:102275.

16 Nuyts PWA, Davies LEM, Kunst AE, et al. The association between tobacco outlet density and smoking among young people: a systematic methodological review. Nicotine Tob Res 2021;23:239–48.

17 Gwon SW, DeGuzman PB, Kulbak PA, et al. Density and proximity of licensed tobacco retailers and adolescent smoking. J Sch Health 2017;77:18–20.

18 Valiente R, Escobar F, Urtasun M, et al. Tobacco retail environment and smoking: a systematic review of geographic exposure measures and implications for future studies. Nicotine Tob Res 2021;23:1263–73.

19 Barnes R, SA Pereira G, et al. Is neighbourhood access to tobacco outlets related to smoking behaviour and tobacco-related health outcomes and hospital admissions? Prev Med 2016:2819–32.

20 Eng L, Huiken K, Norwood TA, et al. The impact of tobacco retail density on overall survival (OS) in lung cancer survivors. J Clin Oncol 2020;38:12058.

21 Farley TA, Mason K, Rice J, et al. The relationship between the neighbourhood environment and adverse birth outcomes. Paediatr Perinat Epidemiol 2006;20:188–200.

22 Retsielsen ML, Farrell AM, Osterhaus Trasko LC, et al. Librarian co-authors correlated with higher quality reported search strategies in general internal medicine systematic reviews. J Clin Epidemiol 2015;68:617–26.

23 Laws MB, Whitman J, Bowser DM, et al. Tobacco availability and point of sale marketing in demographically contrasting districts of Massachusetts. Tob Control 2002;11(Suppl 2):ii71–3.

24 Li L, Borland R, Fong GT, et al. Impact of point-of-sale tobacco display bans: findings from the International Tobacco Control Four Country Survey. Health Educ Res 2013;28:898–910.

25 Campaign for Tobacco-Free Kids. Find legislation from 210 countries and FCTC analysis of 129 countries. Washington, DC: Author, 2021.

26 Fraser T. Phasing out of point-of-sale tobacco advertising in New Zealand. Tob Control 2015;24:182–4.

27 Henrixson L. Comprehensive tobacco marketing restrictions: promotion, packaging, price, and place. Tob Control 2012;21:147–53.

28 Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 1998;52:377–84.

29 Ross-White A, Godfrey CM, Sears KA, et al. Predatory publications in evidence synthesis. J Med Libr Assoc 2019;107:423–5.

30 Mirzazadeh A, Malekinejad M, Kahn JG. Relative risk reduction is useful metric to standardize effect size for public health interventions for translational research. J Clin Epidemiol 2015;68:317–23.

31 Zhang J, Yu KF. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 1998;280:1690–1.

32 Porta M. A dictionary of epidemiology. 6th ed. Oxford: Oxford University press, 2014.

33 Egger M, Davey Smith G, O’Rourke K. Rationale, potentials, and promise of systematic reviews. J Med Libr Assoc 1998;7:82–4.

34 Egger M, Davey Smith G, Schneider M. Systematic reviews of observational studies. In: Egger M, Davey Smith G, Altman DG, eds. Systematic reviews in health care: meta-analysis in context. London, UK: BMJ Publishing Group, 2001: 3–22.

35 Egger M, Davey Smith G, Minder C. Systematic reviews of observational studies. In: Egger M, Davey Smith G, Altman DG, eds. Systematic reviews in health care: meta-analysis in context. London: BMJ Publishing Group, 2001.

36 Deeks JJ, Higgins JP, Altman DG. 10.11 Investigating heterogeneity. In: Higgins JP, Thomas J, eds. Cochrane handbook for systematic reviews of interventions: cochrane training, 2021.

37 Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. BMJ 2011;342:d549.

38 Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.

39 Mathur MB, VanderWeele TJ. New metrics for meta-analyses of heterogeneous effects. Stat Med 2019;38:1336–42.

40 Rose G. The strategy of preventive medicine. Oxford: Oxford University Press, 1993.
Review

67 Kitchner TR, Ansetti-Rothemel A, Bennett M, et al. Tobacco outlet density and converted versus native non-daily cigarette use in a national US sample. Tob Control 2017;26:85–91.
68 Reitzel LR, Crowley EK, Li Y, et al. The effect of tobacco outlet density and proximity on smoking cessation. Am J Public Health 2011;101:135–20.
69 Scheuermann T, Saint Onge JM, Taylor N. Distribution of tobacco retail outlets and smoking cessation among African American and white smokers. Ann Behav Med 2018;52:5375.
70 Watkins KL, Regan SD, Nguyen N, et al. Advancing cessation research by integrating EMA and geospatial methodologies: associations between tobacco retail outlets and real-time smoking urges during a quit attempt. Nicotine Tob Res 2014;16(Suppl 2):S93–101.
71 Young-Wolf KC, Henriksen L, Deluchi K, et al. Tobacco retailer proximity and density and nicotine dependence among smokers with serious mental illness. Am J Public Health 2014;104:1454–63.
72 Chuang Y-C, Cubbin C, Ahn D, et al. Effects of neighbourhood socioeconomic status and convenience store concentration on individual level smoking. J Epidemiol Community Health 2005;59:568–73.
73 Rodriguez D, Adachi-Mejia A, Carlos H. Understanding the relation between tobacco outlet density and tobacco use in African American young adults. Ann Behav Med 2020;54:5403.
74 Dearfield CT, Horn KA, Jiggep-Akhtar MC. Influence of social and neighborhood contexts on smoking cessation among urban minorities. J Ethn Subst Abuse 2019;18:445–61.
75 Farley SM, Maroko AR, Suglia SF, et al. The influence of tobacco retailer density and poverty on tobacco use in a densely populated urban environment. Public Health Rep 2019;134:164–71.
76 King JL, Wagoner KG, Suerken CK, et al. Are waterpipe café, vape shop, and traditional tobacco retailer locations associated with community composition and young adult tobacco use in North Carolina and Virginia? Subst Use Misuse 2020;55:2395–402.
77 Vyas P, Tosh IV, Gildengorin G, et al. Disentangling individual and neighborhood differences in the intention to quit smoking in Asian American male smokers. Prev Med Rep 2020;18:101064.
78 MacCallum RC, Zhang S, Preacher KJ, et al. On the practice of dichotomization of quantitative variables. Psychol Methods 2002;7:19–40.
79 Fakunle DO, Cumiero FC, Leaf PJ, et al. Black, white, or green? The effects of racial composition and socioeconomic status on neighborhood-level tobacco outlet density. Ethno Health 2019:1-16.
80 Rodriguez D, Carlos HA, Adachi-Mejia AM, et al. Predictors of tobacco outlet density nationwide: a geographic analysis. Tob Control 2013;22:349–55.
81 Marsh L, Vaneckova P, Robertson L, et al. Association between density and proximity of tobacco retail outlets with smoking: a systematic review of youth studies. Health Place 2021;67:102275.
82 Robertson L, Cameron C, McGee R, et al. Point-of-sale tobacco promotion and youth smoking: a meta-analysis. Tob Control 2016;25:e83–9.
83 Glasser AM, Roberts ME. Retailer density reduction approaches to tobacco control: a review. Health Place 2021;67:102242.
84 Kong AV, Gottfredson NC, Ribisl KM, et al. Associations of county tobacco retailer availability with U.S. adult smoking behaviors, 2014–2015. Am J Prev Med 2021;17. doi:10.1016/j.amepre.2021.03.015
85 Baker J, Masood M, Rahman MA, et al. Tobacco retailer density and smoking behavior in a rural Australian jurisdiction without a tobacco retailer licensing system. Tob Induc Dis 2021;19:39.
86 Kong AV, Baggett CD, Gottfredson NC, et al. Associations of tobacco retailer availability with chronic obstructive pulmonary disease related hospital outcomes, United States, 2014. Health Place 2021;67:102464.
87 Jin Y, Lu B, Berman M, et al. The impact of tobacco-free pharmacy policies on smoking prevalence. J Am Pharm Assoc 2016;56:627–32.
88 Hall J, Cho HD, Guo Y, et al. Association of rates of smoking during pregnancy with corporate tobacco sales policies. JAMA Pediatr 2019;173:284–6.
89 Ali FRM, Neff L, Wang X, et al. Tobacco-free pharmacies and U.S. adult smoking behavior: evidence from CVS Health’s removal of tobacco sales. Am J Prev Med 2020;58:41–9.
90 Agaku IT, Adisa AO, Omaduvie UT, et al. The relationship between proximity of tobacco retail outlets to schools and tobacco use among school personnel in sub-Saharan Africa. Prev Med 2014;69:21–7.
91 Ackerman A, Etow A, Bartel S, et al. Reducing the density and number of tobacco Retailers: policy solutions and legal issues. Nicotine Tob Res 2017;19:133–40.
92 Asher M, Jerrigan D, Kline R, et al. Land use planning and the control of alcohol, tobacco, firearms, and fast food restaurants. Am J Public Health 2003;93:1404–8.
93 McNutt LA, Hafner JP, Xue X. Correcting the odds ratio in cohort studies of common outcomes. JAMA 1999;282:529.
94 Li J, Berg CJ, Weber AA, et al. Tobacco use at the intersection of sex and sexual identity in the U.S., 2007–2020: a meta-analysis. Am J Prev Med 2021;60:415–24.