CASE REPORT

Long-term, low-dose of clarithromycin as a cause of community-acquired Clostridium difficile infection in a 5-year-old boy

Hirofumi Namiki¹,* and Tadashi Kobayashi²

¹Yonaguni Municipal Clinic Japan Association for Development of Community Medicine, Yonaguni-cho, Yaeyama-gun, Okinawa 9071801, Japan, and ²Department of General Medicine, University School of Medicine & Hospital, Hirosaki-shi, Aomori-ken 0368563, Japan

*Correspondence address. Yonaguni Municipal Clinic, Japan Association for Development of Community Medicine, 125-1 Yonaguni, Yonaguni-cho, Yaeyama-gun, Okinawa 9071801, Japan. Tel: +81-980-87-2250; Fax: +81-980-87-2541; E-mail: japan_hiro2000@yahoo.co.jp

Abstract

Clostridium difficile is one of the most common causes of antibiotic-associated diarrhoea. Despite C. difficile infection (CDI) has increased in all ages worldwide, episodes of CDI are often misdiagnosed due to the lack of clinical suspicion. Macrolides are also associated with CDI. Additionally, exposure to macrolides in the 12 weeks preceding infection is reported to be a significant risk factor of CDI in a child. We report here a 5-year-old Japanese boy who presented with acute onset of watery diarrhoea. He was diagnosed with community-acquired CDI induced by long-term (20 weeks), low-dose, oral clarithromycin for otitis media with effusion, and he recovered by conservative treatment. Physicians should be more cautious of community-acquired CDI in children who take long-term, low-dose macrolides, not to misdiagnose as diarrhoea by its side effect, and avoid unnecessary use of systemic antibiotics.

INTRODUCTION

Clostridium difficile infection (CDI) is one of the most common antibiotic-associated diseases. In the last decade, the incidence and severity of CDI as well as that of community-acquired CDI (CA-CDI) has increased globally at all ages, including children [1, 2]. Despite the increasing burden, episodes of CA-CDI are often misdiagnosed as diarrhoea by a side effect. The typical reason is the lack of clinical suspicion [3].

The most important risk factor for CA-CDI is antibiotic exposure, especially fluoro-quinolones, cephalosporin, clindamycin and ampicillin [4]. The probable risk factors for CA-CDI in children are unnecessary use of antibiotics, multiple antibiotics and a long duration of antibiotics [5]. Moreover, exposure to macrolides in the 12 weeks preceding infection is a significant risk factor of CDI in a child [6]. We report here CA-CDI in a 5-year-old boy who had long-term (20 weeks), low-dose, oral clarithromycin for otitis media with effusion (OME).

CASE PRESENTATION

A 5-year-old boy developed acute onset of watery diarrhoea and slight abdominal pain ~12 h before presentation. He experienced diarrhoea four times in half a day, and had non-worsening intermittent, abdominal pain. His medical history included prolonged OME, for which he took regular medications, including low-dose clarithromycin (5 mg/kg/day) for 20 weeks.
weeks. He did not have any prior hospitalization. There was no family history of immunosuppression or inflammatory bowel disease. He did not appear unwell, and had normal vital signs. At a physical examination, lungs were clear to auscultation and there was slight lower abdominal tenderness without peritoneal signs. Blood tests, X-rays and colon fibroscopy were not performed because his symptoms were not severe. The C. Diff Quik Chek Complete® assay of stool was positive for antigen and toxin. Bacterial cultivation of stool showed CDI. Therefore, mild CA-CDI by oral clarithromycin was diagnosed.

We stopped the patient's oral clarithromycin treatment as a conservative treatment for CA-CDI because his infection was classed as mild. Furthermore, we prescribed probiotics (Bifidobacterium, 3 billion colony-forming units/day for 2 weeks) for prevention of recurrent CA-CDI. Our patient's symptoms gradually resolved after 5 days when conservative treatment was started. His symptoms disappeared after 2 weeks and remained asymptomatic without recurrence. Eight weeks after onset, he had slightly loose stools once a day for 2 days. The C. Diff Quik Chek Complete assay showed that the stool was negative for C. difficile. His symptoms immediately disappeared and there has been no recurrence.

Our patient had no fever, unexplained watery diarrhoea, and no other risk factors (e.g. exposure to acid-blocking medications, family members with CDI or outpatient healthcare environment), except for orally taking long-term, low-dose macrolide antibiotics [20 weeks], low-dose clarithromycin induced CA-CDI in a child. Physicians should be more cautious of CA-CDI in children, not to misdiagnose as diarrhoea by its side effect, and avoid the unnecessary use of systemic antibiotics for OME.

CONCLUSION

We showed that long-term (20 weeks), low-dose oral macrolides induced CA-CDI in a child. Physicians should be more cautious of CA-CDI in children, not to misdiagnose as diarrhoea by its side effect, and avoid the unnecessary use of systemic antibiotics for OME.

ACKNOWLEDGEMENTS

None.

FUNDING

None.

CONFLICTS OF INTEREST STATEMENT

No conflicts of interest.

ETHICAL APPROVAL

Written consent was signed by the patient’s parents in order to use the medical date for scientific purposes.

GUARANTOR

Hiroyumi Namiki.

REFERENCES

1. Leffler DA, Lamont JT. Clostridium difficile infection. N Engl J Med 2015;16:1539–48. doi:10.1056/NEJMra1403772.
2. Khanna S, Baddour LM, Huskins WC, Cammer PP, Faubion WA, Zinsmeister AR, et al. The epidemiology of Clostridium difficile infection in children: a population-based study. Clin Infect Dis 2013;10:1401–6. doi:10.1093/cid/cit075.
3. Alcala L, Martin A, Marin M, Sanchez-Somolinos M, Catalán P, Pelaez T, et al. The undiagnosed cases of Clostridium difficile infection in a whole nation: where is the problem? Clin Microbiol Infect 2012;7:204–13. doi:10.1111/j.1469-0691.2012.03883.x.
4. Chitnis AS, Holzbauer SM, Belflower RM, Winston LG, Bamberg WM, Lyons C, et al. Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. JAMA Intern Med 2013;14:1359–67. doi:10.1001/jamainternmed.2013.7056.
5. Sandora TJ, Fung M, Flaherty K, Helsing L, Scanlon P, Potter-Bynoe G, et al. Epidemiology and risk factors for Clostridium difficile infection in children. Pediatr Infect Dis J 2011;7:580–4. doi:10.1097/INF.0b013e31820b6f29.
6. Adams DJ, Eberly MD, Rajnik M, Nylund CM. Risk factors for community-associated Clostridium difficile infection in children. J Pediatr 2017;186:105–9. doi:10.1016/j.jpeds.2017.03.032. Epub 2017 Apr 7.
7. Vaz LE, Kleinman KP, Raebel MA, Nordin JD, Lakoma MD, Dutta-Linn MM, et al. Recent trends in outpatient antibiotic use in children. Pediatrics 2014;3.375–85. doi:10.1542/peds.2013-2903.
8. Rosenfeld RM, Shin JH, Schwartz SR, Coggins R, Gagnon L, Hackell JM, et al. Clinical practice guideline: otitis media with effusion (update). Otolaryng Head Neck Surg 2016;154:S1–S41. doi:10.1177/0194599815623467.