Interdecadal Variation of the Atmospheric Heat Source over the Tibetan Plateau and Surrounding Asian Monsoon Region: Impact on the Northern Hemisphere Summer Circulation

Xiaoting SUN1,2,3, Yihui DING3*, and Qingquan LI1,3

1 Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044
2 Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing 100081
3 Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081

(Received June 22, 2020; in final form October 26, 2020)

ABSTRACT

We use 71-yr (1948–2018) reanalysis data to investigate the interdecadal variation in the atmospheric heat source (Q_1) over the Tibetan Plateau and surrounding Asian monsoon region (AMTP) and its effect on the Northern Hemisphere summer circulation. The large-scale circulation driven by Q_1 over the AMTP is characterized by a center of convergent (divergent) or low (high) potential wind function in the lower (upper) troposphere. Q_1 over the AMTP shows a clear interdecadal variation (with positive–negative–positive phases) and these three phases correspond to the time periods 1948–1972, 1973–2005, and 2006–2018, respectively. The thermal circulation has a corresponding interdecadal variation as a response to the interdecadal variation in Q_1. An enhanced Q_1 leads to an increase in the conversion of the total potential energy to non-divergent wind kinetic energy via the divergent wind velocity. The maximum conversion occurs in the tropopause. The primary thermal forcing for Q_1 is produced by the intense, large volume precipitation of the summer monsoon. This induces a response in the large-scale circulation, leading to large-scale divergence patterns. The synergistic effects of Pacific Decadal Oscillation (PDO) and North Atlantic Multidecadal Oscillation (AMO) influence Q_1 over the AMTP, which is ultimately responsible for the modulation of variations in the global divergent circulation. The global divergent circulation in summer is therefore essentially a direct thermodynamic circulation driven by the strong Q_1 over the AMTP.

Key words: Tibetan Plateau, atmospheric heat source, interdecadal variation, global divergent circulation, Asian–African summer monsoon

Citation: Sun, X. T., Y. H. Ding, and Q. Q. Li, 2021: Interdecadal variation of the atmospheric heat source over the Tibetan Plateau and surrounding Asian monsoon region: Impact on the Northern Hemisphere summer circulation. J. Meteor. Res., 35(2), 238–257, doi: 10.1007/s13351-021-0101-7.

1. Introduction

The Tibetan Plateau (TP) is the largest and highest plateau in the world. Ye and Gao (1979) reported that changes in the thermodynamic effects of the land–atmosphere system of the TP can affect the both East Asian summer monsoon (EASM) and the planetary-scale atmospheric circulation. Research on the role of the TP as a heat source started in the 1950s and showed that the surface of the plateau acts as a heat source throughout the year, whereas the atmosphere over the TP is a heat source in summer but a cold source in winter. The thermal condition of the TP has a great influence on the circulation of the atmosphere in summer and affects both the local-scale precipitation around the plateau and precipitation on larger scales. The strength of the TP atmospheric heat source (Q_1) affects the East Asian major trough, the summer South Asian high, and the strength of

*Corresponding author: dingyh@cma.gov.cn

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2021
the monsoons in both winter and summer (Ye and Gao, 1979; Tao and Ding, 1981; Murakami and Ding, 1982; Nitta, 1983; Luo and Yanai, 1984; Tao and Chen, 1987; Huang, 2006; Xu et al., 2013; Liu et al., 2018). Chen et al. (2007) and Krishnamurti et al. (2015) showed that there is a huge anticyclone near the tropopause over the TP and surrounding Asian monsoon region (AMTP) in summer, which forms in association with the large-scale heating field produced by vigorous precipitation in the Asian–African summer monsoon (AASM) system.

The recent increases in the area of snow cover in both winter and spring, the air temperature, and amount of precipitation over the TP have been shown to have a significant interdecadal variation (Zhu et al., 2007, 2009; Ding F. et al., 2008; Ding Y. H. et al., 2008). Wu et al. (2012a, b, 2016) found that snow cover on the western TP in summer is closely linked to the interannual variation in summer heat waves over southern Europe and northeastern Asia. There has been a significant change in the land–atmosphere coupling system over the TP with recent changes in the global climate, especially its thermodynamic component (Ding and Zhang, 2008). The surface temperature and precipitation over the TP have increased significantly in both winter and summer during the last two decades and show clear interdecadal changes with an increasing trend (Zhu et al., 2007, 2009; Duan et al., 2013; Si and Ding, 2013; Ding et al., 2015). The aim of this study is to demonstrate the interdecadal variations of Q_1 over the TP.

The AASM has an internally consistent variation on a planetary scale, which is generally assumed to have a synchronous interdecadal evolution (Ding and Li, 2016). The AASM began to strengthen after the end of the 20th century when the North Atlantic Multi-decadal Oscillation (AMO) entered a positive (warm water) phase. The interdecadal variability of the sea surface temperature (SST) in the North Atlantic and North Pacific oceans therefore affects the northward and southward migration of AASM precipitation (Li et al., 2017). Paleoclimate studies also indicate that weakening of the AASM is associated with cooling of the North Atlantic Ocean at high latitudes (Gupta et al., 2003; Shanahan et al., 2009; Stager et al., 2011). The synergistic effects of the Pacific Decadal Oscillation (PDO) and the AMO are the main reasons for the 30–40 yr periodic oscillation of the EASM, which has also undergone a strong–weak–strong interdecadal change since the 1960s, consistent with the trend of the AASM system (Ding et al., 2018). The TP is a subregion of the Asian summer monsoon (ASM) and the scientific question arises as to whether the anomalous interdecadal variability of the AMO and PDO is related to the anomalous Q_1 over the TP.

This paper focuses on the interdecadal variation of Q_1 over the AMTP in summer and the characteristics of the anomalous divergent wind fields in different interdecadal periods. The relationships between the interdecadal variation in Q_1, water vapor transport, and precipitation over the AMTP are discussed. The relationship between the PDO/AMO and the interdecadal variation in Q_1 is analyzed in terms of the forced influence of the North Atlantic and North Pacific oceans. The purpose of this study is to develop an understanding of the impact of the thermodynamic effects over the AMTP on the anomalous circulation in the Northern Hemisphere in summer and to provide a reference for future climate prediction studies.

2. Data and computational methods

We use the NCEP-1 monthly reanalysis dataset provided by the NCEP/NCAR from 1948 to 2018 (Kalnay et al., 1996). The data include the wind velocity (V), temperature (T), and geopotential height (H) from 1000 to 10 hPa. The vertical velocity data (ω) include 12 layers from 1000 to 100 hPa and the specific humidity data (q) include 8 layers from 1000 to 300 hPa in the vertical direction. We use the sea-level pressure and a horizontal grid spacing of $2.5^\circ \times 2.5^\circ$.

We use the monthly NCEP-2 reanalysis data (Kanamitsu et al., 2002) from 1980 to 2018 and the Japanese 55-year Reanalysis (JRA-55) dataset (Kobayashi et al., 2015) provided by the Japan Meteorological Agency from 1979 to 2018 to calculate Q_1. These data include temperature, the vertical wind velocity, and the wind and sea-level pressure from 1000 to 100 hPa. The horizontal resolution of the NCEP-2 data is $1.875^\circ \times 1.875^\circ$ and that of the JRA-55 data is $1.25^\circ \times 1.25^\circ$. The monthly SST data [Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4)] from 1948 to 2018 were reconstructed by the NOAA (Huang et al., 2015). The monthly global precipitation data from 1948 to 2018 are provided by the NOAA Earth System Research Laboratory (Chen et al., 2002). The linear trends of the calculated Q_1 and other atmospheric circulation fields are removed to isolate the interdecadal variation of the atmospheric Q_1.

Q_1 is calculated by referring to the inverted algorithm of Yanai et al. (1992):

$$Q_1 = c_p \left[\frac{\partial T}{\partial t} + V \cdot \nabla T + \left(\frac{p}{p_0} \right)^k \frac{\partial \theta}{\partial p} \right],$$ \hspace{1cm} (1)
where \(T \) is the temperature, \(\theta \) is the potential temperature, \(p \) is the pressure, and \(\omega \) is the vertical velocity. All these variables are in \(p \) coordinates. The variable \(p_0 (= 1000 \) hPa) is the standard pressure; \(k = R/c_p \approx 0.286 \), where \(R \) and \(c_p \) are the dry atmospheric constant and the isobaric specific heat capacity, respectively. \(V \) is the horizontal wind vector and therefore \(Q_1 \) can be calculated at each isobaric layer. From Eq. (1), \(Q_1 \) consists of three items. When calculating the atmospheric heat source \(\langle Q_1 \rangle \) in the troposphere, Yanai et al. (1992) set \(\omega = 0 \) at 100 hPa at the top of the troposphere. The vertical integral value of \(Q_1 \) is calculated as:

\[
\langle Q_1 \rangle = \frac{1}{g} \int_{p_s}^{p_t} Q_1 dp,
\]

where \(p_s \) is the surface level pressure and \(p_t (= 100 \) hPa) is the pressure at the top of troposphere. We select the nearest isobaric layer above the grid as the bottom level to integrate upward. Here, the range of the TP (28°–40°N, 70°–105°E), the ASM (25°–45°N, 60°–140°E), and southwestern North America (25°–35°N, 100°–110°W) are defined in latitude–longitude coordinates. Our calculation of \(Q_1 \) from 1948 to 2018 is consistent with the results of Ding et al. (2015).

According to the vorticity, divergence, and thermodynamic equations, the conversion function of the divergent wind kinetic energy (\(K_\psi \)) and the non-divergent wind kinetic energy (\(K_\chi \)) can be obtained with the following equation (Ding and Liu, 1985a, b; Ding et al., 1987):

\[
C(K_\psi, K_\phi) = f\nabla X \cdot \nabla \psi + \nabla^2 \psi \nabla X \cdot \nabla \psi + \frac{1}{2} \nabla^2 \chi + \omega J \left(\psi, \frac{\partial \chi}{\partial p} \right),
\]

where \(K_\chi \) is produced by \(P \), the potential energy. It is first computed with the baroclinic conversion function between \(P \) and \(K_\chi \):

\[
C(P, K_\chi) = -\nabla \cdot (\nabla \psi) + \nabla \cdot (\psi \nabla \chi) - \frac{\partial \psi}{\partial p} \cdot \frac{R}{P} \psi = \frac{\partial \psi}{\partial p} - \frac{R}{P} \psi.
\]

In Eqs. (3) and (4), \(\psi, \chi \), and \(\varphi \) represent the stream function, velocity potential, and potential height, respectively; \(f \) is the Coriolis parameter; and \(J \) and \(R \) are the Jacobian operator and specific gas constant, respectively. The four terms on the right-hand side of Eq. (3), i.e., \(f\nabla X \cdot \nabla \psi, \nabla^2 \psi \nabla X \cdot \nabla \psi, \frac{1}{2} \nabla^2 \chi \), and \(\omega J \left(\psi, \frac{\partial \chi}{\partial p} \right) \), are referred to as \(C_1 \), \(C_2 \), \(C_3 \), and \(C_4 \), respectively, in the following sections.

The physical understanding and computational procedure for Eqs. (3) and (4) are as follows. Initially, diabatic heating tends to change the available potential energy (\(P \)) through heating or cooling, and then, the available potential energy \(P \) changes the divergent wind \(K_\psi \) through Eq. (4). The changed \(K_\psi \) further transforms into \(K_\chi \) with Eq. (3). \(K_\chi \) is nearly equal to the actual or observed wind. These results are analyzed in Section 5.

3. Distribution of the global atmospheric heat source

Figure 1 shows the global distribution of \(Q_1 \) in summer (June–August) from 1948 to 2018. The distribution
of the vertically integrated Q_1 shows that the largest center is located in the ASM (Fig. 1). Large values of $Q_1 (> 200 \text{ W m}^{-2}$) are mainly located in the Bay of Bengal and over the southern slopes of the TP. This is consistent with the results of Yanai and Tomita (1998) and Zhang et al. (2012). In spring, autumn, and winter, the global centers of Q_1 are mainly located around the Intertropical Convergence Zone (figure omitted). In summer, the center near the equator moves to the ASM region as a result of the northward migration of the planetary-scale land–sea thermal contrast, forced by the northward shift in the latitude of solar declination. The TP is located in the strongest region of the global Q_1. However, the TP is not the center of the largest Q_1 as a result of the limited integration level (the atmosphere above 500–100 hPa) above the topography of the TP.

Figure 2 shows that the patterns of the potential function and divergent wind are similar to that of the water vapor flux in both the lower and upper troposphere. In general, there are two huge divergent wind centers on a global scale. One is located in the ASM and the other stretches from the equatorial eastern Pacific to the Atlantic oceans. The mid to lower troposphere (from the surface to 500 hPa) and the upper troposphere (400–100 hPa) in the ASM region present typical convergence and divergence patterns, respectively. The circulation pattern driven by Q_1 over the AMTP is mainly characterized by reverse circulation between the upper and lower layers—that is, large-scale wind convergence occurs in the mid to lower troposphere, whereas divergence occurs in the upper troposphere. The flow from the divergence center of the AMTP moves eastward, sinks over the tropical eastern Pacific Ocean and western coast of North America, and then flows back to the area of the Asian heat source with a low-level tropical east wind, thus forming a huge large-scale circulation cell on a global scale driven by the heat source in the ASM region.

Figures 2b and 2d indicate that the ASM region is the most powerful sink for water vapor convergence in the lower troposphere, whereas the eastern Pacific Ocean and equatorial Atlantic Ocean are sources of water vapor in the lower troposphere in summer. Previous studies have shown that the high water vapor content in the monsoon region, Central America, and equatorial West Africa is maintained by the divergent component of the water vapor flux, which is formed by the convergence of water vapor in these areas via a latitudinal Walker cell and a meridional Hadley cell (Salstein et al., 1980; Chen, 1985). Overall, the strongest regions of global Q_1, the convergence of low-level winds and the high-level cen-

Fig. 2. Distributions of the potential function ($10^6 \text{ m}^2 \text{ s}^{-1}$) and divergence component ($\text{g s}^{-1} \text{ hPa}^{-1} \text{ cm}^{-1}$) of the (a, c) winds and (b, d) water vapor flux at (a, b) 300 hPa and (c, d) 850 hPa in summer from 1948 to 2018. The shading is the potential function of the wind field/water vapor flux, and the vectors are the convergence and divergence components of the potential function.
ters of divergence in summer are all located in the region of the AMTP.

There is an intense exchange of energy and water vapor between the TP and its surrounding atmosphere in the form of the sensible heat flux, latent heat flux, and radiation heating, which makes the TP a huge source of Q_1. Li and Yanai (1996) indicated that the rising flow caused by Q_1 over the TP and the convergence of the surrounding atmosphere favor the northward movement of tropical warm and humid air flows over the ASM. This process eventually leads to the onset of the EASM. Thermal and mechanical forcing by the TP leads to the first appearance of the ASM in the Bay of Bengal (Wu and Zhang, 1998) and then in the South China Sea (Ding and Liu, 2001). The variation of Q_1 over the TP in summer affects the distributions of wind convergence and divergence at different altitudes through forced heating. As a result, the global circulation and precipitation are significantly affected by the convergence and divergence caused by thermal imbalances.

We investigated the vertical profile of Q_1, the vertical velocity, and divergent winds along the latitude of the TP in summer from 1948 to 2018. Figure 3a clearly shows that the TP has the strongest Q_1 at this latitude. An intense Q_1 appears from the lower to upper troposphere. The center of Q_1 is located at 600–250 hPa, with a maximum of about 2.0×10^{-5} K s$^{-1}$. There is also a large Q_1 over the Rocky Mountains in central and western North America, but its height is relatively low, located from the lower troposphere to 300 hPa. Another Q_1 near the east coast of North America is also high in the troposphere at 400–150 hPa. There is a large and shallow Q_1 near the surface in the deserts of North Africa, which is a result of the strong sensible heat flux in deserts in summer. From the vertical distribution of the divergent wind fields (Fig. 3b), the convergence occurs below 400 hPa over the TP. A divergence is located between 400 and 100 hPa in the troposphere with the central height at 150 hPa. The centers of convergence and divergence are located in the eastern TP. Another region of high wind potential is located in the North America–Atlantic Ocean–African desert region, which is opposite to its counterpart in the AMTP, with convergence in the upper layer and divergence in the lower layer. The updraft over the TP flows eastward to the eastern Pacific Ocean and the western coast of North America near 200 hPa and then changes into a downdraft. Overall, the TP is characterized by a strong Q_1 and upward motion in the troposphere, accompanied by low-level convergence and high-level divergence. This configuration of the circulation favors the development of convection over the TP in summer.

The profiles of Q_1 and vertical velocity over the TP are compared with those over southwestern North America (Figs. 4a, b). Q_1 is largest in the surface layer and decreases with increasing altitude; ascending motion dominates in the troposphere. The variations in Q_1 correspond with the variations in vertical velocity with a clear upward motion throughout the whole troposphere over the TP. Water vapor is transported from the southern TP and the ASM region in summer and the underlying surface is heated by the sensible heat flux. These thermal conditions favor the development of deep convection over the TP in summer.

The vertical profiles of Q_1 and the upward movement over southwestern North America are the opposite to those over the TP at all altitudes. The subsidence extends from the surface to the upper troposphere with a negative value of Q_1. A dynamic downdraft therefore prevails over this region, with cooling throughout the whole troposphere. Southwest North America is located on the southeastern side of the Pacific subtropical high. Weak subsidence prevails in the mid to upper troposphere as a result of large-scale convergence in this region in summer. Despite the larger sensible heat flux in the surface layer, the warming caused by subsidence restricts the thickness of convective clouds. The strong inversion caused by subsidence therefore does not favor the formation of deep convection and shallow convective clouds dominate in this region. From the viewpoint of the summer global circulation, the distributions of Q_1 and the vertical velocity in this area appear to be a dynamic compensation for thermal forcing over the AMTP.

4. Interdecadal variation of Q_1 over the TP

A high center of Q_1 in summer is located in the AMTP and drives the global-scale thermal circulation. A strong Q_1 and deep convection develop as a result of the transport of water vapor from the ASM region and thermal and dynamic uplift by the large-scale topography of the TP. The formations of Q_1 and convergence/divergence anomalies of large-scale circulation caused by Q_1 therefore have a close relationship with the topography of the TP.

4.1 Temporal evolution of Q_1 over the TP

Figure 5 shows the summer Q_1 and its 10-yr low-pass filtering evolution over the TP and ASM regions. The long-term trend has been removed from the raw data series. The integrated values of Q_1 over the two regions show a similar interdecadal variation. Q_1 shows a clear positive–negative–positive interdecadal variation from 1948 to 2018. It then maintains a high value from the
1950s to 1970s before changing to a downward trend from the 1980s to the early 21st century, when it reaches a minimum value. Q_1 then shows an increasing trend and the intensity in the third phase is close to that in the first phase. We choose 1948–1972, 1973–2005, and 2006–2018 as the three phases of interdecadal variation in the intensity of Q_1 over the TP.

Figure 6 shows the time series and correlation coefficients of Q_1 over the TP derived from different reanalysis datasets. Despite the differences among the three time series, they all show relatively consistent trends on an interdecadal scale. Q_1 derived from the JRA-55 dataset represents a strong stage from the 1960s to 1970s. It clearly weakens from 1980 to 2000 and then increases gradually.

Fig. 3. Longitude–height cross-sections of (a) Q_1 (10^{-5} K s$^{-1}$), (b) the wind potential function and divergence component (10^6 m2 s$^{-1}$), and (c) the vertical velocity (Pa s$^{-1}$) averaged along 28°–40°N in summer from 1948 to 2018. In part (b), the shading is the wind field potential function averaged along 28°–40°N; the component of the vectors in the x-direction is the zonal wind U (m s$^{-1}$) and the component of the vectors in the y-direction is $-\omega$ (hPa s$^{-1}$).
The NCEP-2 dataset also shows a weakening trend at the end of the 20th century with relatively small fluctuations. The correlation coefficient of \(Q_1 \) between the NCEP-1 and NCEP-2 datasets is 0.6933 from 1980 to 2018 and that between the NCEP-1 and JRA-55 datasets is 0.3852 from 1959 to 2018. Both correlations pass the 95% confidence level. Intercomparison of the three reanalysis datasets shows that the selected data reliably reflect the interdecadal variation of \(Q_1 \) over the TP, with generally consistent trends.

Figure 7 shows the vertical profiles of \(Q_1 \) in summer in different interdecadal phases. \(Q_1 \) is fairly large over...
the whole troposphere from the 1960s to 1970s, which implies that the convection is deeper. Q_1 shows a significant weakening trend from the 1980s to the beginning of the 21st century, especially in the mid to upper troposphere. Shallow convection is more frequent in the third period, corresponding to the enhancement of Q_1 in the lower and mid troposphere (700–400 hPa). The warmer and moister TP favors increased latent heating over this region. Overall, the value of Q_1 in different isobaric layers over the TP reflects interdecadal variations consistent with the integrated Q_1.

We calculated the 9-yr moving-average summer Q_1 over the TP and ASM at different isobaric surfaces (Fig. 8). The interdecadal variation in Q_1 over the TP presents consistent positive–negative–positive phases at different isobaric surfaces (600–100 hPa). These changes present more clearly in the upper troposphere than in the lower troposphere. The interdecadal variations in Q_1 over the ASM are similar to those over the TP, which generally present an increase from 1948 to 1972 and after 2005, whereas there is an anomalous negative phase during the 1970s–1990s in the mid to upper troposphere. This comparison led us to use a common name for the AMTP to characterize the features of its components of the TP and ASM sub-regions. Using the empirical orthogonal function from the ERA-40 data, Zhang et al. (2015) determined that the mid and late 1970s are the transition stage of the interdecadal variation in Q_1 in the ASM, which is roughly consistent with our study.

4.2 Large-scale divergent circulation in different interdecadal phases of Q_1 over the TP

The longitude–altitude profiles of Q_1, wind potential, and vertical velocity over the TP were calculated in three time periods. Figures 9a, 9d, and 9g show that Q_1 over the eastern TP increases significantly at 400–150 hPa during the first period (1948–1972). Q_1 over the western TP shows a positive anomaly from the surface to 100 hPa. The positive anomaly below 500 hPa may be dominated by the sensible heat flux. There is a small negative anomaly over the central plateau. By contrast, there are clear negative anomalies in the heat sources over the eastern and western TP when Q_1 weakens during 1973–2005. Combining the anomalous vertical velocity with the wind potential and its vertical circulation anomaly (Figs. 9b, e, h), the flow over most of the TP shows abnormal upward motion when Q_1 is increased. There is an abnormal convergent wind field from the lower layer to 150 hPa and divergence above 150 hPa. The maximum height of wind convergence occurs between 500 and 400 hPa in the first stage, whereas in the third stage, the maximum height occurs near 300–200 hPa. When Q_1 weakens in the second stage, the anomaly in the wind potential function shows divergence in the mid to lower troposphere and convergence in the upper troposphere.

Away from the TP, a negative Q_1 occurs on the west coast of North America and abnormal sinking below 200 hPa is observed during the strong Q_1 period. The vertical distributions of the wind potential and anomalous divergence occur from the surface to 300 hPa on west coast of North America. Anomalous convergence occurs in the upper troposphere. The trends of Q_1, vertical velocity, and wind potential in North Africa (part of the AASM regime) are consistent with those over the TP. Specifically, there is an abnormal upward motion in northern Africa.

![Fig. 7. Profiles of Q_1 (10^{-3} \text{ K s}^{-1})$ averaged over the TP in summer from 1948 to 2018.](image-url)
during the strong Q_1 period.

As a response to the interdecadal variability of Q_1 over the TP, the intensity of the divergence circulation on a global scale driven by the thermal forcing also shows corresponding interdecadal variations. Figure 10 shows the anomalous distribution of the global wind potential in three different periods and indicates that the divergence anomalies caused by thermal differences over the TP are clearly different at different stages. When Q_1 increases (Figs. 10a, b, e, f), the convergence circulation in the lower troposphere and the divergence circulation in the upper troposphere are strengthened over Eurasia and Africa. The center of divergence of the 100-hPa wind potential in the upper troposphere appears over the TP, Indian Peninsula, and Bay of Bengal, whereas the center of convergence appears in the eastern equatorial Pacific and on the western coast of South America. The flow on the TP is characterized by abnormal convergence at 850 Pa in the lower troposphere. The Sahel region of Africa and the northern Arabian Sea are also characterized by abnormal convergence, whereas the center of global divergence is located in the eastern equatorial Pacific and Central America. When Q_1 decreases over the TP (Figs. 10c, d), the anomalous convergence and divergence components show the opposite patterns.

These results show that the global divergent circulation in summer is essentially a direct thermal circulation driven by the strong Q_1 over the AMTP and this thermally driven circulation has clear interdecadal variations. The large-scale convergent wind fields over the AMTP can lead to dynamic sinking over the tropical eastern Pacific Ocean and the western coast of North America. Based on an analysis of the vertical motion and Q_1 profiles in Fig. 9, it can be shown that abnormal upward motion occurs from the near-surface to the mid to upper troposphere accompanied by an increase in Q_1. An
anomalous convergence is seen between 600 and 150 hPa and a divergence occurs above 150 hPa. By contrast, the global divergent circulation caused by thermal differences over the AMTP favors the further development of the Asian–African monsoon rain belt and the enhancement of convection via a feedback mechanism, thus maintaining a persistent interdecadal variation.

5. Conversion of energy between the divergent wind kinetic energy and the rotational wind kinetic energy forced by Q_1 over the AMTP

Chen and Wiin-Nielsen (1976) and Krishnamurti and Ramanathan (1982) showed that the total potential energy is first transformed into the kinetic energy of the divergent airflow. It is then transformed into the kinetic energy of the non-divergent airflow, which presents an increase in the actual wind field and the total kinetic energy. The divergent wind component therefore plays a key part in the development and evolution of the large-scale circulation (Xie et al., 1980; Ding and Liu, 1985a, b).

The vertical profiles of the total kinetic energy (K) over the TP are similar to that of the non-divergent wind kinetic energy (K_{ψ}) in different periods of Q_1 (Figs. 11a, c). The values of K and K_{ψ} in the troposphere increase during the enhancement period of the TP Q_1 and reach the maximum near 200 hPa. The maximum total kinetic energy over the TP was 9 J kg$^{-1}$ during 1948–1972 and 8 J kg$^{-1}$ during 2006–2018. However, when Q_1 weakened during 1973–2005, the intensities of K and K_{ψ} were weaker than those in the previous two periods. The variation in K_{ψ} over the TP is consistent with K, which shows that the increase in the total kinetic energy mainly depends on the increase in the non-divergent wind kinetic energy. The difference in the divergent wind kinetic energy (K_{χ}) appears at a higher altitude than the difference in K and K_{ψ}, and its maximum value is near to 100–150 hPa at the tropopause. The value of K_{χ} increases in the periods (1948–1972 and 2006–2018) with a strong TP Q_1, especially in the third stage, but its amplitude is significantly smaller than K and K_{ψ}. This shows that the ef-
effects of thermal differences on the divergent wind kinetic energy over the TP vary in different stages of Q_1. The characteristics of the K_x, $K_{x'}$, and K_ψ profiles over the ASM (Figs. 11d–f) are very similar to those over the TP, but the area-average value is slightly weaker than that over the plateau.

Figure 12 shows the divergent wind kinetic energy and non-divergent wind kinetic energy conversion function $C(K_x', K_\psi)$ and its four subitems C_1, C_2, C_3, and C_4 in each pressure layer in different periods of Q_1 over the TP and ASM. The conversion function increases significantly from the tropopause above 150 hPa to the lower stratosphere at 50 hPa when the TP Q_1 is relatively strong (1948–1972). The maximum value is 2×10^{-5} W m$^{-2}$ at 100 hPa and much of K_x' is converted into K_ψ. At the same time, the negative $C(K_x', K_\psi)$ conversion increases in the mid and lower troposphere, which destroys K_ψ at 500–150 hPa. During 2006–2018, the $C(K_x', K_\psi)$ profile is similar to that of the first stage, but the maximum height significantly increases. The negative conversion occurs from 300 hPa to the tropopause, whereas the conversion of K_x' to K_ψ is mainly manifested in the stratosphere (70–50 hPa). When there is a weak Q_1 (1973–2005), the conversion $C(K_x', K_\psi)$ is negative from 200 hPa to the lower stratosphere and relatively weak in the lower pressure layers. The characteristics of the transition between the ASM and TP are similar, but the ASM regional intensity is weak. The evolution of $C(K_x', K_\psi)$ shows that the kinetic energy conversion from K_x' to K_ψ over the ASM and TP mainly occurs from the tropopause to the lower stratosphere. C_1 is the most important of the four conversions, which indicates that relative ori-
entation of the gradient between the χ and ψ fields has a decisive role in the conversion.

Figure 13 shows that the conversion function $C(P, K_\chi)$ of the vertical profile from the available potential energy to the divergent wind kinetic energy over the TP and ASM are consistent in different TP periods and the extreme values appear between the tropopause and lower stratosphere (about 100 hPa). When the diabatic heating over the TP or ASM region is enhanced during 1948–1972 and 2006–2018, the total potential energy increases and the conversion from the available potential energy to the divergent wind kinetic energy increases. Compared with 1948–1972, $C(P, K_\chi)$ increased over the TP during 2006–2018, with maxima of 24×10^{-5} and 10×10^{-5} W m$^{-2}$, respectively. When Q_1 over the TP is weak, the minimum is -15×10^{-5} W m$^{-2}$. The $C(P, K_\chi)$ vertical profile over the ASM region is consistent with the TP, but its maxima are lower than that of the TP in the same pressure layer.

6. Interdecadal variation in Q_1 over the AMTP region and its impact on circulation in the Northern Hemisphere

6.1 Characteristics of precipitation and water vapor transport

Figure 14 shows the regression coefficients of the global precipitation and the water vapor transport flux at 850 hPa against the summer Q_1 over the TP and ASM re-
regions from 1948 to 2018. The patterns of precipitation and water vapor associated with Q_1 over these two regions are fairly consistent. The precipitation over the southern TP clearly increases with increasing Q_1. The intensity in Q_1 is significantly correlated with the location of the AASM rain belt. The precipitation belt increases uniformly during the strong Q_1 period over the TP and ASM regions—that is, the precipitation increases in the Sahel, northwest India, northern China, and southern Japan. Previous studies (Ding and Li, 2016; Li et al., 2017) have indicated that the AASM has presented a consistent northward and southward evolution in Africa and Asia for the past 100 years. The planetary-scale AASM is an internally consistent monsoon system.

The AASM feedback mechanism mainly enhances the associated water vapor transport. The regression coefficients between Q_1 over the TP and the water vapor transport flux suggest that the water vapor is mainly transported from the southern slopes of the TP. The water vapor in the southwest path flows from western and central Africa to the TP through the Arabian Sea and the northwestern Indian Peninsula. The southeast path flows westward from the equatorial Pacific to the oceanic continent. It then turns northwestward to the southeastern TP. The
water vapor is lifted up on the southern slopes of the TP, which leads to an increase in latent heating and Q_1.

The regression between Q_1 over the TP (Figs. 15a, c) and the global vertical velocity at 200 and 600 hPa shows that the southern TP has an abnormal upward motion with increasing Q_1. An abnormal upward motion also occurs in North–Central Africa, northwestern Indian Peninsula, southern TP, and northern China. Dominant downward motion occurs in southern China and near the Philippines. The vertical velocity pattern of Q_1 (Figs. 15b, d) associated with the ASM region has a similar distribution, showing a broader and stronger upward movement from the mid and lower troposphere to upper layers. At the same time, the AASM also shows a consistent abnormal upward movement. Q_1 is closely related to water vapor convergence and the ascending motion of the AASM. Combined with the regression of the 300–500-hPa vertical velocity (figure omitted), the distribution characteristics are consistent with those at 200 and 600 hPa.

6.2 Global teleconnection path enhanced by Q_1 over the AMTP region in summer

Figure 16 shows the regression of the geopotential heights at 200 and 600 hPa against Q_1 over the AMTP in summer. The lower and midtroposphere over the TP correspond to an abnormally low pressure when Q_1 increases, whereas an abnormally high pressure appears in the upper troposphere. An enhanced Q_1 corresponds to upward motion, which favors the formation of a thermal depression and low-level convergence over the TP, while the upper level divergence is strengthened. By contrast, the eastern Pacific Ocean and the west coast of North America are an anomalous high-pressure region. As a response to thermal forcing, the geopotential height shows an east–west-oriented positive–negative–positive pattern in the troposphere at mid to high latitudes, with multiple centers located in the Okhotsk Sea, Alaska, North America, and near southeastern North America. The geopoten-
Potential height over the Okhotsk Sea and Greenland is positively correlated with Q_1, whereas that over Alaska and southeastern North America is negatively correlated with Q_1. There are abnormal low- and high-pressure regions in western Europe and the Ural Mountains, respectively. The potential height distribution is reversed when the TP Q_1 weakens.

These results show that the increase in Q_1 affects the wave intensity at mid to high latitudes along the global teleconnection path originating from the North Atlantic Ocean in the Northern Hemisphere (Li et al., 2017). The vertical regression coefficients of the geopotential height
within 28°–40°N and 50°–70°N against \(Q_1 \) over the TP are calculated (Fig. 17). The centers of the geopotential height anomaly in the Okhotsk Sea, Alaska, and northern North America always show a barotropic structure characterized by a consistent positive–negative–positive pattern from the lower to upper troposphere (Fig. 17a). The anomalous center of geopotential height over the TP is negative below 400 hPa and positive above 400 hPa, which indicates a baroclinic structure mainly affected by thermal forcing (Fig. 17b). The regression coefficients over the eastern Pacific and on the west coast of North America show a roughly barotropic structure related to the sinking of large-scale convergent winds caused by thermal forcing over the TP.

7. Discussion and conclusions

7.1 Discussion

The PDO and AMO are two interdecadal oscillation modes of the SST. These two interdecadal oscillation modes are the main natural driving forces of the ASM (Zhu and Yang, 2003; Li et al., 2017; Ding et al., 2018). Changes in the PDO and AMO occur over long time periods and show a periodicity in phase. Forced coupling of these oscillation modes exerts a significant impact on the interdecadal variation of the ASM.

Figure 18 shows the regression coefficients between the AMTP \(Q_1 \) and global SSTs. The increase in the SST in mid to high latitudes over the western and central Pacific Ocean and the decrease in the eastern Pacific Ocean are closely related to the increase in the \(Q_1 \) anomaly. This distribution is consistent with a negative (cold) PDO phase. By contrast, anomalous high SSTs occur over the North Atlantic when \(Q_1 \) increases, showing a positive (warm) AMO phase.

Combined with the AMO index (Trenberth and Shea, 2006) and the PDO index (Mantua et al., 1997) from 1948 to 2018 (Fig. 19), the mean values of \(Q_1 \), PDO, and AMO in three interdecadal phases are calculated. The PDO index presents a negative–positive–negative trend on an interdecadal scale, whereas the trend of the AMO index is the opposite. A cold phase of the PDO persisted during the periods with a strong \(Q_1 \) (1948–1972 and 2006–2018), whereas the PDO index was in a warm

Fig. 17. Profiles of the regression coefficients of the geopotential height \([10^{-3} \text{ gpm} (\text{W m}^{-2})^{-1}]\) averaged along (a) 50°–70°N and (b) 28°–40°N and \(Q_1 \) averaged over the TP in summer from 1948 to 2018. The black dots represent grid points with statistical significance exceeding the 90% confidence level.
phase in 1973–2005 when a weak Q_1 occurred. By contrast, the AMO index showed a positive anomaly (warm phase) in time periods with a strong Q_1. The AMO index decreased and became a negative anomaly (cold phase) in time periods with a weak Q_1. The intensity of Q_1 is therefore negatively correlated with the PDO index and positively correlated with the AMO index.

Our results show that, to a large extent, the interdecadal variation in Q_1 over the AMTP is forced by coupling of the AMO and PDO indexes (AMO$^+$/PDO$^-$ and AMO$^-$/PDO$^+$). The intensity of Q_1 will increase when the AMO is in a warm phase and the PDO is in a cold phase, and vice versa. Previous studies have shown that the PDO may be the main factor driving the first mode of summer precipitation in East Asia and is inversely correlated with precipitation in the Yangtze–Huaihe River basin (Ding et al., 2018). The AMO can influence interdecadal variations in precipitation over entire Northern Hemisphere from the Atlantic Ocean, Eurasia to North America by exciting a global-scale baroclinic teleconnection (Si and Ding, 2016; Li et al., 2017). The studies on EASM precipitation during different PDO and AMO phases indicate that the SST in the North Pacific and North Atlantic oceans shows the same-sign anomalies as the monsoon precipitation when the PDO and AMO indexes are out of phase (Zhang et al., 2018). At the same time, a zonal teleconnection wave train is seen at mid to high latitudes in Eurasia. This wave train propagates along the Asian westerly jet waveguide from the North Atlantic Ocean to Northeast Asia, forming a global zonal Rossby wave train spanning the mid to high latitudes of Eurasia from the North Atlantic to North Pacific oceans. This wave train connects the AMO-related North Atlantic–European east–west mode and the PDO-related North Pacific barotropic atmospheric circulation, which both affect the rain belt of the EASM region.

7.2 Conclusions

We analyzed the interdecadal variation in Q_1 over the AMTP in summer and showed the characteristics of the divergence wind fields and vertical velocity anomalies in different interdecadal periods. We also analyzed their effects on the atmospheric circulation and precipitation of the Northern Hemisphere in summer.
One key finding is that the TP is located in the AMTP region, which has the strongest Q_1 in summer. The circulation driven by the huge Q_1 over the AMTP is mainly represented by the centers of divergent winds in the upper and lower layers. Large-scale wind convergence and divergence occur in the mid to lower and upper troposphere, respectively. An air current from the center of divergence over the AMTP flows from west to east and sinks over the tropical eastern Pacific Ocean and the western coast of North America. It then flows back to the AMTP region with a low-level tropical east wind, forming a large-scale circulation cell driven by thermodynamic effects on a global scale.

The variable Q_1 over the AMTP has clear interdecadal variations. During 1948–1972, Q_1 maintained a high intensity in summer. However, it showed an anomalous negative phase from 1973 to 2005 and strengthened again from 2006 to 2018. The diagnostic computation with the $\chi-\psi$ energy conversion method showed that when Q_1 over the AMTP is enhanced, the conversions from total potential energy to divergent wind kinetic energy and then to non-divergent wind kinetic energy are clearly increased. As a response to the interdecadal variation in Q_1, this global circulation also has a corresponding interdecadal variation. An anomalous upward motion occurs in the mid and upper troposphere when Q_1 over the AMTP is strengthened. The wind fields from low levels to 150 hPa and above 150 hPa show anomalous convergence and divergence, respectively. There is an abnormal compensatory subsidence of convergence over the tropical eastern Pacific Ocean and west coast of North America. These results show that the large-scale divergence caused by thermal forcing over the AMTP can cause an anomalous compensatory dynamic sinking in remote areas.

The intensity of Q_1 over the TP is significantly correlated with the AASM rain belt. During the high-intensity period of the AASM, the northward movement of the rain belt favors the release of latent heat over the TP, and Q_1 increases. The interdecadal variation in Q_1 and the intensity of the ASM are ultimately forced by coupling of the AMO and PDO, as documented by this work and other studies (e.g., Li et al., 2017). Q_1 is strengthened during the warm phase of AMO and the cold phase of PDO, and vice versa. The natural forcing of interdecadal coupling in the oceans is ultimately responsible for the global divergent circulation by affecting Q_1 over the AMTP.

The interdecadal oscillation of the SST over the Pacific and Atlantic oceans in summer modulates the global divergence circulation through affecting Q_1 over the TP or AMTP. The thermal circulation as a thermal forcing generates dynamic forcing over the tropical eastern Pacific Ocean and the west coast of North America. This is a consequence of the natural driving force. We have not discussed the effect of anthropogenic forcing in this paper. It should be pointed out that the role of human factors will gradually increase with ongoing global warming. It is worth investigating when the effect of human activities on the global circulation will be close to or exceed the natural variability of the climate system. We plan to use multiple numerical models to analyze this issue further.

REFERENCES

Chen, H., Y.-H. Ding, and J.-H. He, 2007: The structure and variation of tropical easterly jet and its relationship with the monsoon rainfall in Asia and Africa. *Chinese J. Atmos. Sci.*, 37, 253–280, doi: 10.3878/j.issn.1006-9895.2007.05.16. (in Chinese)

Chen, M. Y., P. P. Xie, J. E. Janowiak, et al., 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. *J. Hydrometeor.*, 3, 249–266, doi: 10.1175/1525-7541(2002)003<0249:GLPAYM2.0.CO;2.

Chen, T.-C., 1985: Global water vapor flux and maintenance during FGGE. *Mon. Wea. Rev.*, 113, 1801–1819, doi: 10.1175/1520-0493(1985)113<1801:GWVFAM>2.0.CO;2.

Chen, T.-C., and A. C. Wiin-Nielsen, 1976: The effect of global-scale divergent circulation on the atmospheric water vapor transport and maintenance. Proceedings of MECA Workshop on Atmospheric H$_2$O Observations of Earth and Mars, Lunar and Planetary Inst. Available online at https://intrs.nasa.gov/citations/19890016422. Accessed on 23 November 2020.

Ding, F., Z. B. Sun, S. W. Zhou, et al., 2008: Influences of snow over the Tibetan Plateau on the summer precipitation of East Asia. Proceedings of the SPIE 7154, Microwave Remote Sensing of the Atmosphere and Environment VI, SPIE, Nourmea, 715405, doi: 10.1117/12.804938.

Ding, Y.-H., and Y.-Z. Liu, 1985a: On the analysis of typhoon kinetic energy—I. Budget of total kinetic energy and eddy kinetic energy. *Sci. China Ser. B*, 10, 957–966.

Ding, Y. H., and Y. Z. Liu, 1985b: A study on kinetic energy budget of typhoon. II: Transform of divergent wind energy and non-divergent wind energy. *Sci. China Ser. B*, 11, 1045–1054.

Ding, Y. H., and Y. J. Liu, 2001: Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX field experiment in 1998. *J. Meteor. Soc. Japan. Ser. II*, 79, 255–276, doi: 10.2151/jmsj.1998.79.255.

Ding, Y. H., and L. Zhang, 2008: Intercomparison of the time for climate abrupt change between the Tibetan Plateau and other regions in China. *Chinese J. Atmos. Sci.*, 32, 794–805, doi: 10.3878/j.issn.1006-9895.2008.04.08. (in Chinese)

Ding, Y.-H., and Y. Li, 2016: A review on climatology of Afro-Asian summer monsoon and its long-term variability. *J. Trop. Meteor.*, 32, 786–796, doi: 10.16032/j.issn.1004-4965.2016.06.002. (in Chinese)

Ding, Y. H., B. Y. Zhang, and X. Q. Fu, 1987: A study on the kin-
etic energy budget of a depression in the Bay of Bengal. *J. Trop. Meteor.*, 3, 20–30. (in Chinese)

Ding, Y. H., Z. Y. Wang, and Y. Sun, 2008: Interdecadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. *Int. J. Climatol.*, 28, 1139–1161, doi: 10.1002/joc.1615.

Ding, Y. H., Y. J. Liu, Y. F. Song, et al., 2015: From MONEX to the global monsoon: A review of monsoon system research. *Adv. Atmos. Sci.*, 32, 10–31, doi: 10.1007/s00376-014-0008-7.

Ding, Y. H., D. Si, Y. J. Liu, et al., 2018: On the characteristics, driving forces and interdecadal variability of the East Asian summer monsoon. *Chinese J. Atmos. Sci.*, 42, 533–558, doi: 10.3878/j.issn.1006-9895.1712.17261. (in Chinese)

Duan, A. M., M. R. Wang, Y. H. Lei, et al., 2013: Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008. *J. Climate*, 26, 261–275, doi: 10.1175/JCLI-D-11-00669.1.

Gupta, A. K., D. M. Anderson, and J. T. Overpeck, 2003: Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. *Nature*, 421, 354–357, doi: 10.1038/nature01340.

Huang, B. Y., V. F. Banzon, E. Freeman, et al., 2015: Extended re-constructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. *J. Climate*, 28, 911–930, doi: 10.1175/JCLI-D-14-00066.1.

Huang, R.-H., 2006: Progresses in research on the formation mechanism and prediction theory of severe climatic disasters in China. *Adv. Earth Sci.*, 21, 564–575, doi: 10.11867/j.issn.1001-8166.2006.06.0564. (in Chinese)

Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. *Bull. Amer. Meteor. Soc.*, 77, 437–472, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP–DOE AMP-II reanalysis (R–2). *Bull. Amer. Meteor. Soc.*, 83, 1631–1644, doi: 10.1175/bams-83-11-1631.

Kobayashi, S., Y. Ota, Y. Harada, et al., 2015: The JRA-55 reanalysis: General specifications and basic characteristics. *J. Meteor. Soc. Japan. Ser. II*, 93, 5–48, doi: 10.2151/jmsj.2015-001.

Krishnamurti, T. N., and Y. Ramanathan, 1982: Sensitivity of the monsoon onset to differential heating. *J. Atmos. Sci.*, 39, 1290–1306, doi: 10.1175/1520-0469(1982)039<1290:SOMO2>2.0.CO;2.

Krishnamurti, T. N., R. Krishnamurti, S. Das, et al., 2015: A pathway connecting the monsoonal heating to the rapid Arctic ice melt. *J. Atmos. Sci.*, 72, 5–34, doi: 10.1175/JAS-D-14-0004.1.

Li, C. F., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. *J. Climate*, 9, 358–375, doi: 10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.

Li, Y., Y. H. Ding, and W. J. Li, 2017: Interdecadal variability of the Afro-Asian summer monsoon system. *Adv. Atmos. Sci.*, 34, 833–846, doi: 10.1007/s00376-017-6247-7.

Liu, G., P. Zhao, S. L. Nan, et al., 2018: Advances in the study of linkage between the Tibetan Plateau thermal anomaly and atmospheric circulations over its upstream and downstream regions. *Acta Meteor. Sinica*, 76, 861–869, doi: 10.11676/qxbb2018.058. (in Chinese)

Luo, H. B., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. *Mon. Wea. Rev.*, 112, 966–989, doi: 10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.

Mantua, N. J., S. R. Hare, Y. Zhang, et al., 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. *Bull. Amer. Meteor. Soc.*, 78, 1069–1080, doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

Murakami, T., and Y.-H. Ding, 1982: Wind and temperature changes over Eurasia during the early summer of 1979. *J. Meteor. Soc. Japan. Ser. II*, 60, 183–196, doi: 10.2151/jmsj1965.60_1_183.

Nitta, T., 1983: Observational study of heat sources over the eastern Tibetan Plateau during the summer monsoon. *J. Meteor. Soc. Japan. Ser. II*, 61, 590–605, doi: 10.2151/jmsj1965.61_4_590.

Salstein, D. A., R. D. Rosen, and J. P. Peixoto, 1980: Hemispheric water vapor flux variability—Stream function and potential fields. *Atmospheric Water Vapor*, A. Deepak, T. D. Wilker-son, and L. H. Ruhnke, Eds., Academic Press, Elsevier, 20–30.

Stager, J. C., D. B. Ryves, B. M. Chase, et al., 2011: Catastrophic drought in the Afro-Asian monsoon region during Heinrich event. *Science*, 331, 1299–1302, doi: 10.1126/science.1198322.

Tao, S.-Y., and Y.-H. Ding, 1981: Observational evidence of the Tibetan Plateau snow cover on the ENSO teleconnections: Mechanisms and prediction theory of severe climatic disasters over China. *Monsoon Meteorology*, C. P. Chang, and T. N. Krishnamurti, Eds., Oxford University Press, London, 60–92.

Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. *Monsoon Meteorology*, C. P. Chang, and T. N. Krishnamurti, Eds., Oxford University Press, London, 60–92.
From the East Asian summer monsoon perspective. *J. Climate*, 25, 2481–2489, doi: 10.1175/JCLI-D-11-00135.1.

Wu, Z. W., P. Zhang, H. Chen, et al., 2016: Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency? *Climate Dyn.*, 46, 3405–3417, doi: 10.1007/s00382-015-2775-y.

Xie, A., W.-J. Xiao, and S.-J. Chen, 1980: Kinetic energy budget of sub-synoptic scale disturbance during Mei-Yu season. *Acta Meteor. Sinica*, 38, 351–359, doi: 10.11676/qxxb1980.041. (in Chinese)

Xu, X. D., C. G. Lu, Y. H. Ding, et al., 2013: What is the relationship between China summer precipitation and the change of apparent heat source over the Tibetan Plateau? *Atmos. Sci. Lett.*, 14, 227–234, doi: 10.1002/asl2.444.

Yanai, M., and T. Tomita, 1998: Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP–NCAR reanalysis. *J. Climate*, 11, 463–482, doi: 10.1175/1520-0442(1998)011<0463:SAIVOA>2.0.CO;2.

Yanai, M., C. F. Li, and Z. S. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. *J. Meteor. Soc. Japan. Ser. II*, 70, 319–350, doi: https://doi.org/10.2151/jmsj1965.70.1B_319.

Ye, D. Z., and Y. X. Gao, 1979: *Meteorology of the Tibetan Plateau*. Science Press, Beijing, 1–278. (in Chinese)

Zhang, L.-L., X.-Q. Yang, Q. Xie, et al., 2012: Global atmospheric seasonal-mean heating: Diabatic versus transient heating. *J. Trop. Meteor.*, 18, 494–502.

Zhang, L.-L., Q. Xie, and X. Q. Yang, 2015: Interdecadal anomaly of atmospheric diabatic heating and interdecadal weakening of East Asian summer monsoon at the end of 1970s. *J. Meteor.*, 35, 663–671, doi: 10.3969/2015jms.0064. (in Chinese)

Zhang, Z. Q., X. G. Sun, and X.-Q. Yang, 2018: Understanding the interdecadal variability of East Asian summer monsoon precipitation: Joint influence of three oceanic signals. *J. Climate*, 31, 5485–5506, doi: 10.1175/JCLI-D-17-0657.1.

Zhu, Y. M., and X. Q. Yang, 2003: Relationships between Pacific Decadal Oscillation (PDO) and climate variabilities in China. *Acta Meteor. Sinica*, 61, 641–654, doi: 10.3321/j.issn:0577-6619.2003.06.001. (in Chinese)

Zhu, Y. X., Y. H. Ding, and H. G. Xu, 2007: The decadal relationship between atmospheric heat source of winter and spring snow over Tibetan Plateau and rainfall in East China. *Acta Meteor. Sinica*, 65, 946–958, doi: 10.3321/j.issn:0577-6619.2007.06.012. (in Chinese)

Zhu, Y. X., Y. H. Ding, and H. W. Liu, 2009: Simulation of the influence of winter snow depth over the Tibetan Plateau on summer rainfall in China. *Chinese J. Atmos. Sci.*, 33, 903–915, doi: 10.3878/j.issn.1006-9895.2009.05.02. (in Chinese)