All-optical band engineering of gapped Dirac materials

O. V. Kibis1,2,3, K. Dini2, I. V. Iorsh3,4, and I. A. Shelykh2,4

1Department of Applied and Theoretical Physics, Novosibirsk State Technical University, Karl Marx Avenue 20, Novosibirsk 630073, Russia
2Science Institute, University of Iceland, Dunhagi 3, IS-107, Reykjavik, Iceland
3Division of Physics and Applied Physics, Nanyang Technological University 637371, Singapore and
4ITMO University, Saint Petersburg 197101, Russia

We demonstrate theoretically that the interaction of electrons in gapped Dirac materials (gapped graphene and transition-metal dichalcogenide monolayers) with a strong off-resonant electromagnetic field (dressing field) substantially renormalizes the band gaps and the spin-orbit splitting. Moreover, the renormalized electronic parameters drastically depend on the field polarization.

Advances in laser physics and microwave technique have made possible the use of high-frequency fields as tools of flexible control of various atomic and condensed-matter structures (so called “Floquet engineering” based on the Floquet theory of periodically driven quantum systems1–3). As a consequence, the properties of electronic systems driven by oscillating fields are actively studied to exploit unique features of composite states of field and matter. Particularly, electron strongly coupled to electromagnetic field — also known as “electron dressed by field” (dressed electron) — has become a commonly used model in modern physics4–6. Recently, the physical properties of dressed electrons were studied in various nanostructures, including quantum wells7–13, quantum rings14–17, graphene18–25, and topological insulators26–30. Developing this exciting scientific trend in the present article, we elaborated the theory of dressed electrons for gapped Dirac materials.

The discovery of graphene — a monolayer of carbon atoms with linear (Dirac) dispersion of electrons31–35 — initiated studies of the new class of artificial nanostructures known as Dirac materials. While graphene by itself is characterized by the gapless electron energy spectrum, many efforts have been dedicated towards fabrication Dirac materials with the band gap between the valence and conduction bands (gapped Dirac materials). The electron energy spectrum of the materials is parabolic near band edges but turns into the linear Dirac dispersion if the band gap vanishes. Therefore, electronic properties of gapped Dirac materials substantially depend on the value of the gap and, consequently, are perspective for nanoelectronic applications36–38. Although dressed condensed-matter structures are in focus of attention for a long time, a consistent quantum theory of the gapped Dirac materials strongly coupled to light was not elaborated before. Since the electronic structure of Dirac materials differs crucially from conventional condensed-matter structures, the known theory of light-matter coupling cannot be directly applied to the gapped Dirac materials. Moreover, it should be noted that gapped Dirac materials are currently considered as a basis for new generation of optoelectronic devices. Therefore, their optical properties deserve special consideration. This motivated us to fill this gap in the theory. To solve this problem in the present study, we will focus on the two gapped Dirac materials pictured schematically in Fig. 1. First of them is the graphene layer grown on a hexagonal boron nitride substrate37,38, where the band gap can be tuned in the broad range with an external gate voltage38 (see Fig. 1a). The second is a transition metal dichalcogenide (TMDC) which is a monolayer of atomically thin semiconductor of the type MX2, where M is a transition metal atom (Mo, W, etc.) and X is a chalcogen atom (S, Se, or Te) (see Fig. 1b). The specific feature of the TMDC compounds is the giant spin-orbit coupling39,40 which is attractive for using in novel spintronic and valleytronic devices41. Formally, electronic properties of these materials near the band edge can be described by the same two-band Hamiltonian

\[
\hat{H} = \begin{pmatrix} \varepsilon_{\tau s}^c & \gamma(\tau k_x - i k_y) \\ \gamma(\tau k_x + i k_y) & \varepsilon_{\tau s}^v \end{pmatrix},
\]

where \(\mathbf{k} = (k_x, k_y) \) is the electron wave vector in the layer plane, \(\gamma \) is the parameter describing electron dispersion, \(\varepsilon_{\tau s}^c = \frac{\Delta_g}{2} + \frac{\tau_s \Delta_{so}}{2} \) is the energy of the conduction band edge, and \(\varepsilon_{\tau s}^v = -\frac{\Delta_g}{2} - \frac{\tau_s \Delta_{so}}{2} \) is the energy of the valence band edge, \(\Delta_g \) is the band gap between the conduction band and the valence band,

PACS numbers: 73.22.Pr, 78.67.Wj

I. INTRODUCTION

First of them is the graphene layer grown on a hexagonal boron nitride substrate37,38, where the band gap can be tuned in the broad range with an external gate voltage38 (see Fig. 1a). The second is a transition metal dichalcogenide (TMDC) which is a monolayer of atomically thin semiconductor of the type MX2, where M is a transition metal atom (Mo, W, etc.) and X is a chalcogen atom (S, Se, or Te) (see Fig. 1b). The specific feature of the TMDC compounds is the giant spin-orbit coupling39,40 which is attractive for using in novel spintronic and valleytronic devices41. Formally, electronic properties of these materials near the band edge can be described by the same two-band Hamiltonian

\[
\hat{H} = \begin{pmatrix} \varepsilon_{\tau s}^c & \gamma(\tau k_x - i k_y) \\ \gamma(\tau k_x + i k_y) & \varepsilon_{\tau s}^v \end{pmatrix},
\]

where \(\mathbf{k} = (k_x, k_y) \) is the electron wave vector in the layer plane, \(\gamma \) is the parameter describing electron dispersion, \(\varepsilon_{\tau s}^c = \frac{\Delta_g}{2} + \frac{\tau_s \Delta_{so}}{2} \) is the energy of the conduction band edge, and \(\varepsilon_{\tau s}^v = -\frac{\Delta_g}{2} - \frac{\tau_s \Delta_{so}}{2} \) is the energy of the valence band edge, \(\Delta_g \) is the band gap between the conduction band and the valence band,
\(\Delta_{c,v}^{\nu}\) is the spin-orbit splitting of the conduction (valence) band, \(s = \pm 1\) is the spin index describing the different spin orientations, and \(\tau = \pm 1\) is the valley index which corresponds to the two valleys in the different points of the Brillouin zone (the \(K\) and \(K'\) valleys in graphene\(^{32}\) and the \(K\) and \(-K\) valleys in TMDC monolayers\(^{45,46}\)). If \(\Delta_{g} \neq 0\) and \(\Delta_{c,v}^{\nu} \neq 0\), the Hamiltonian \(\mathbf{H}\) describes TMDC monolayers\(^{35}\). In the case of zero spin-orbit splitting, \(\Delta_{c,v}^{\nu} = 0\), the Hamiltonian \(\mathbf{H}\) describes gapped graphene\(^{37}\), whereas the case of \(\Delta_{g} = \Delta_{c,v}^{\nu} = 0\) corresponds to usual gapless graphene\(^{32}\). It should be noted that the two-band Hamiltonian \(\mathbf{H}\) describes successfully low-energy electron states near the band edge. As to omitted terms corresponding to the trigonal-warping deformation of electron bands in monolayer graphene, they can be neglected if the Rashba spin-orbit coupling is stronger than the intrinsic spin-orbit coupling\(^{45}\). In the present paper, we elaborate the theory of electromagnetic dressing for electronic systems described by the low-energy Hamiltonian \(\mathbf{H}\) and demonstrate that both the band gap and the spin splitting can be effectively controlled with the dressing field.

The paper is organized as follows. In the Section II, we apply the conventional Floquet theory to derive the effective Hamiltonian describing stationary properties of dressed electrons. In the Section III, we discuss the dependence of renormalized electronic characteristics of the dressed materials on parameters of the dressing field. The last two Sections contain conclusion and acknowledgements.

II. MODEL

Let us consider a gapped Dirac material with the Hamiltonian \(\mathbf{H}\), which lies in the plane \((x, y)\) at \(z = 0\) and is subjected to an electromagnetic wave propagating along the \(z\) axis (see Fig. 1). The frequency of the wave, \(\omega\), is assumed to be far from all resonant frequencies of the electron system. Therefore, the electromagnetic wave cannot be absorbed by electrons near band edge and should be considered as a dressing field for the states around \(\mathbf{k} = 0\). Considering the electron-field interaction within the minimal coupling approach, properties of dressed electrons can be described by the Hamiltonian

\[
\mathbf{\hat{H}}(\mathbf{k}) = \left(\begin{array}{cc}
0 & |e|\gamma(\tau A_x + i A_y)/\hbar \\
|e|\gamma(\tau A_x - i A_y)/\hbar & 0 \\
\end{array} \right)
+ \left(\begin{array}{cc}
\varepsilon_{c,s}^v & \gamma(\tau k_x - ik_y) \\
\gamma(\tau k_x + ik_y) & \varepsilon_{c,v}^v \\
\end{array} \right),
\]

which can be easily obtained from the Hamiltonian of "bare" electrons \(\mathbf{H}\) with the replacement \(\mathbf{k} \rightarrow \mathbf{k} - (e/\hbar)A\), where \(A = (A_x, A_y)\) is the vector potential of the dressing field, and \(e\) is the electron charge. It should be noted that the quantum electrodynamics predicts the quadratic (in the vector potential) additions to the Hamiltonian \(\mathbf{H}\)\(^{45,46}\). To avoid complication of the model, we will assume that the considered dressing field is classically strong and can be described successfully with the minimal coupling. In what follows, we will show that the properties of dressed electrons strongly depend on the polarization of the dressing field. Therefore, we have to discuss the solution of the corresponding Schrödinger problem for different polarizations successively.

Linearly polarized dressing field.—Assuming the dressing field to be linearly polarized along the \(x\) axis, the vector potential can be written as

\[
\mathbf{A} = \left(\frac{E_0}{\omega} \cos \omega t, 0 \right),
\]

where \(E_0\) is the electric field amplitude, and \(\omega\) is the wave frequency. Correspondingly, the Hamiltonian of the dressed electron system \(\mathbf{H}\) can be rewritten formally as

\[
\mathbf{\hat{H}}(\mathbf{k}) = \mathbf{\hat{H}}_0 + \mathbf{\hat{H}}_k,
\]

where

\[
\mathbf{\hat{H}}_0 = \left(\begin{array}{cc}
0 & \Omega \tau \hbar \omega/2 \\
\Omega \tau \hbar \omega/2 & 0 \\
\end{array} \right) \cos \omega t
\]

is the Hamiltonian of electron-field interaction,

\[
\mathbf{\hat{H}}_k = \left(\begin{array}{cc}
\Delta_{g}/2 + \tau s \Delta_{c,v}^{\nu}/2 & \gamma(\tau k_x - ik_y) \\
\gamma(\tau k_x + ik_y) & -\Delta_{g}/2 - \tau s \Delta_{c,v}^{\nu}/2 \\
\end{array} \right)
\]

is the Hamiltonian of "bare" electron, and

\[
\Omega = \frac{2|e|E_0}{(\hbar \omega)^2}
\]

is the dimensionless parameter describing the strength of electron coupling to the dressing field. The nonstationary Schrödinger equation with the Hamiltonian \(\mathbf{H}\),

\[
\frac{i\hbar}{\partial} \psi_0 = \mathbf{\hat{H}}_0 \psi_0,
\]

FIG. 1: (Color online) Sketch of the considered gapped Dirac materials subject to electromagnetic wave (dressing field): (a) Graphene grown on the substrate of hexagonal boron nitride; (b) Transition metal dichalcogenide monolayer MoS\(_2\).
describes the time evolution of electron states at the band edge \((k = 0)\) . The two exact solutions of the Schrödinger problem \((10)\) read as

\[
\psi_0^+ = \frac{1}{\sqrt{2}} \left(1 \pm 1 \right) \exp \left[\frac{i \Omega t \sin \omega t}{2} \right].
\]

Since the two wave functions \((11)\) form a complete basis at any fixed time \(t\), we can seek solutions of the nonstationary Schrödinger equation with the full Hamiltonian \((9)\) as an expansion

\[
\psi_k = a_1(t) \psi_0^+ + a_2(t) \psi_0^- .
\]

Substituting the expansion \((12)\) into the Schrödinger equation,

\[
i \hbar \frac{\partial \psi_k}{\partial t} = \hat{H}(k) \psi_k,
\]

we arrive at the expressions

\[
i \hbar \dot{a}_1(t) = \left[\frac{\epsilon_c r_x + \epsilon_r v_x + \gamma \tau k_x}{2} \right] a_1(t) \\
i \hbar \dot{a}_2(t) = \left[\frac{\epsilon_c r_x + \epsilon_r v_x - \gamma \tau k_x}{2} \right] a_2(t)
\]

It follows from the conventional Floquet theory of quantum systems driven by an oscillating field that the sought wave function \((12)\) must have the form \(\Psi(r, t) = e^{i \hat{\varepsilon}(k)t/\hbar} \phi(r, t)\), where the function \(\phi(r, t)\) periodically depends on time, \(\phi(r, t) = \phi(r, t + 2\pi/\omega)\), and \(\hat{\varepsilon}(k)\) is the quasi-energy of an electron. Since the quasi-energy (the energy of dressed electron) is the physical quantity which plays the same role in quantum systems driven by an oscillating field as the usual energy in stationary ones, the present analysis of the Schrödinger problem \((13)\) should be aimed to find the energy spectrum, \(\hat{\varepsilon}(k)\). It follows from the periodicity of the function \(\phi(r, t)\) that one can seek the coefficients \(a_{1,2}(t)\) in Eq. \((12)\) as a Fourier expansion,

\[
a_{1,2}(t) = e^{-i \hat{\varepsilon}(k)t/\hbar} \sum_{n = -\infty}^{\infty} a_{1,2}^{(n)} e^{i n \omega t} .
\]

Substituting the expansion Eq. \((15)\) into the Eqs. \((14)\) and applying the Jacobi-Anger expansion,

\[
e^{i z \sin \theta} = \sum_{n = -\infty}^{\infty} J_n(z) e^{i n \theta},
\]

one can rewrite the equations of quantum dynamics \((14)\) in the time-independent form,

\[
\sum_{n' = -\infty}^{\infty} \sum_{j = 1}^{2} \hat{H}_{ij}^{(n'n')} a_j^{(n')} = \hat{\varepsilon}(k) a_i^{(n)},
\]

where \(J_n(z)\) is the Bessel function of the first kind, and \(\hat{H}_{ij}^{(nn')}\) is the stationary Hamiltonian of dressed electron in the Floquet space with the matrix elements

\[
\hat{H}_{12}^{(nn')} = \left[\frac{\epsilon_c r_x - \epsilon_r v_x}{2} + i \gamma k_y \right] J_{n'-n}(\Omega), \\
\hat{H}_{21}^{(nn')} = \left[\frac{\epsilon_c r_x + \epsilon_r v_x}{2} - i \gamma k_y \right] J_{n'-n}(\Omega), \\
\hat{H}_{11}^{(nn')} = \left[\frac{\epsilon_c r_x + \epsilon_r v_x}{2} + \gamma \tau k_x + \hbar \omega \right] \delta_{nn'}, \\
\hat{H}_{22}^{(nn')} = \left[\frac{\epsilon_c r_x + \epsilon_r v_x}{2} - \gamma \tau k_x + \hbar \omega \right] \delta_{nn'},
\]

where \(\delta_{nn'}\) is the Kronecker delta. It should be noted that the Schrödinger equation \((10)\) describes still exactly the initial Schrödinger problem \((13)\). Next we will make some approximations.

In what follows, let us assume that the field frequency, \(\omega\), is high enough to satisfy the condition

\[
\left| \frac{\hat{H}_{ij}^{(nn)}}{\hat{H}_{ii}^{(00)} - \hat{H}_{jj}^{(nn')}} \right| \ll 1
\]

for \(n \neq 0\) and \(i \neq j\). Mathematically, the condition \((18)\) makes it possible to treat nondiagonal matrix elements of the Hamiltonian \((17)\) with \(n \neq n'\) as a small perturbation which can be omitted in the first-order approximation of the conventional perturbation theory for matrix Hamiltonians (see, e.g., Ref. \(18\)). Since the condition \((18)\) corresponds to an off-resonant field, the field can be neither absorbed nor emitted by the electrons. As a consequence, the main contribution to the Schrödinger equation \((10)\) under the condition \((18)\) stems from terms with \(n, n' = 0\), which describe the elastic interaction between an electron and the field. Neglecting the small terms with \(n, n' \neq 0\), the Schrödinger equation \((10)\) can be rewritten in the simple form

\[
\sum_{j = 1}^{2} \hat{H}_{ij}^{(00)} a_j^{(0)} = \hat{\varepsilon}(k) a_i^{(0)},
\]

where \(\hat{H}_{ij}^{(00)}\) is the \(2 \times 2\) Hamiltonian with the matrix elements \((17)\). Subjecting this Hamiltonian to the unitary transformation

\[
U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix},
\]

we arrive at the effective stationary Hamiltonian of electrons dressed by a linearly polarized field, \(\hat{H}_{\text{eff}} = U^{\dagger} \hat{H}_{ij}^{(00)} U\), which is given by the matrix

\[
\hat{H}_{\text{eff}}(k) = \begin{pmatrix} \Delta_g/2 + \tau s \Delta_{\gamma 0}/2 & \tau \gamma k_x - i \gamma k_y \\ \tau \gamma k_x + i \gamma k_y & -\Delta_g/2 - \tau s \Delta_{\gamma 0}/2 \end{pmatrix},
\]

where

\[
\Delta_g = \Delta g J_0(\Omega)
\]
is the effective band gap,
\[\Delta x = \frac{\Delta_x^c - \Delta_x^v}{2} + \frac{\Delta_x^v + \Delta_x^c}{2} J_0(\Omega) \] (22)
is the effective spin splitting of the conduction band,
\[\Delta y = \frac{\Delta_y^v - \Delta_y^c}{2} + \frac{\Delta_y^v + \Delta_y^c}{2} J_0(\Omega) \] (23)
is the effective spin splitting of the valence band, and
\[\tilde{\gamma}_y = \gamma, \quad \tilde{\gamma}_x = \gamma J_0(\Omega) \] (24)
are the effective parameters of electron dispersion along the \(x, y \) axes. The eigenenergy of the effective Hamiltonian [20],
\[\tilde{\varepsilon}_{\tau x}^\pm(k) = \frac{\tau s(\Delta_{x x} - \Delta_{x y})}{4} \pm \sqrt{\left[\frac{2\Delta_y + \tau s(\Delta_{x y} - \Delta_{x x})}{4} \right]^2 + \frac{\gamma_x^2 k_x^2 + \gamma_y^2 k_y^2}{2}} \] (25)
is the sought energy spectrum of electrons dressed by the linearly polarized field. Mathematically, the unperturbed Hamiltonian [11] is equal to the effective Hamiltonian [20] with the formal replacements \(\Delta_y \rightarrow \tilde{\Delta}_y, \Delta_{x y} \rightarrow \tilde{\Delta}_{x y}, \gamma_x \rightarrow \tilde{\gamma}_x, \gamma_y \rightarrow \tilde{\gamma}_y \). Therefore, the behavior of a dressed electron is similar to the behavior of a “bare” electron with the renormalized band parameters [21], [23]. It should be noted that the effective Hamiltonian [20] is derived under the condition [13]. Taking into account Eqs. [17], the condition [18] can be rewritten as \(\gamma k, \Delta_y \ll \hbar \omega \). Therefore, the effective Hamiltonian is applicable to describe the dynamics of dressed electron near the band edge if the photon energy of the dressed field, \(\hbar \omega \), substantially exceeds the band gap, \(\Delta_y \). It should be noted that such high-energy photons will lead to direct electron transitions between the valence band and the conduction band. However, the transitions take place very far from the band edge and do not affect on the considered renormalization of low-energy electron states.

Circularly polarized dressing field.— For the case of circularly polarized electromagnetic wave, the vector potential \(\mathbf{A} = (A_x, A_y) \) can be written as
\[\mathbf{A} = \left(\frac{E_0}{\omega} \cos \xi \omega t, \frac{E_0}{\omega} \sin \xi \omega t \right), \] (26)
where the different chirality indices \(\xi = \pm 1 \) correspond to the clockwise/counterclockwise circular polarizations. First of all, let us consider electron states at the wave vector \(\mathbf{k} = 0 \), where the Hamiltonian [11] can be written in the form
\[\hat{H}(0) = \begin{pmatrix} \varepsilon_{\tau x}^c & -i(h\omega \Omega/2)e^{-i\tau \xi \omega t} \\ -(h\omega \Omega/2)e^{i\tau \xi \omega t} & \varepsilon_{\tau x}^v \end{pmatrix}, \] (27)
which is similar to the well-known Hamiltonian of magnetic resonance. The corresponding nonstationary Schrödinger equation,
\[i\hbar \frac{\partial \psi_{\tau s}(0)}{\partial t} = \hat{H}(0) \psi_{\tau s}(0), \] (28)
describes the time evolution of electron states at the wave vector \(\mathbf{k} = 0 \). Solutions of the equation [28] can be sought as
\[\psi_{\tau x}^\pm(0) = e^{-i\tilde{\varepsilon}_{\tau x}^\pm(0)t/\hbar} \left(A_\pm e^{-i\varepsilon_{\tau x}^\pm(0)t/2} B_\pm e^{i\varepsilon_{\tau x}^\pm(0)t/2} \right), \] (29)
where \(\tilde{\varepsilon}_{\tau x}^\pm(0), A_\pm \) and \(B_\pm \) are the undefined constants. Substituting the wave function [29] into the Schrödinger equation [28] with the Hamiltonian [27], we arrive at the system of two algebraic equations,
\[A_\pm \left[\varepsilon_{\tau x}^c - \tau \xi \hbar \omega (1 + 1 - \varepsilon_{\tau x}^\pm(0)) - B_\pm \hbar \omega \Omega / 2 \right] = 0, \] (30)
\[A_\pm h \omega \Omega / 2 - B_\pm \left[\varepsilon_{\tau x}^v + \tau \xi \hbar \omega (1 + 1 - \varepsilon_{\tau x}^\pm(0)) \right] = 0, \] (31)
which can be easily solved. As a result, the two orthonormal exact solutions of the Schrödinger problem [28] are
\[\tilde{\varepsilon}_{\tau x}^\pm(0) = e^{-i\tilde{\varepsilon}_{\tau x}^\pm(0)t/\hbar} \left(\mp \frac{\sqrt{\Omega^2 + \delta^2} + \delta}{2\sqrt{\Omega^2 + \delta^2}} \right)^{1/2} e^{-i\varepsilon_{\tau x}^\pm(0)t/2}, \] (32)
\[\delta = \frac{\varepsilon_{\tau x}^c - \varepsilon_{\tau x}^v - \tau \xi \hbar \omega}{\hbar \omega} \] (33)
is the resonance detuning assumed to be nonzero in order to avoid the field absorption near the band edge. Correspondingly, the effective stationary Hamiltonian of dressed electron states at \(\mathbf{k} = 0 \) can be written in the basis [31] as
\[\hat{H}_{\text{eff}}(0) = \begin{pmatrix} \tilde{\varepsilon}_{\tau x}(0) & 0 \\ 0 & \tilde{\varepsilon}_{\tau x}(0) \end{pmatrix}, \] (34)
In order to find the energy spectrum of dressed electron at the wave vector \(\mathbf{k} \neq 0 \), let us restrict the consideration by the case of \(\Omega \ll 1 \), which corresponds physically to high frequencies \(\omega \) [see Eq. [3]]. Expanding the electron wave function, \(\psi_{\tau x}(\mathbf{k}) \), on the basis [31],
\[\psi_{\tau x}(\mathbf{k}) = a^+(t)e^{i\tilde{\varepsilon}_{\tau x}(0)t/\hbar} \psi_{\tau x}(0) + a^-(t)e^{i\tilde{\varepsilon}_{\tau x}(0)t/\hbar} \psi_{\tau x}^-(0) \] (35)
and substituting the expansion (34) into the Schrödinger equation with the total Hamiltonian (4), we arrive at the system of equations

\[i\hbar \frac{\partial}{\partial t} \left(a^+(t) a^-(t) \right) = \hat{H}_{\text{eff}}(k) \left(a^+(t) a^-(t) \right), \]

where

\[\hat{H}_{\text{eff}}(k) = \begin{pmatrix} \tilde{\varepsilon}_{\tau}^+(0) & -\text{sgn}(\delta)\gamma(\tau k_x - ik_y) \\ -\text{sgn}(\delta)\gamma(\tau k_x + ik_y) & \tilde{\varepsilon}_{\tau}^-(0) \end{pmatrix}. \]

The quantum dynamics equations (35) are equal to the stationary Schrödinger equation,

\[\text{Eq. (37) that the renormalized band gap is} \]

\[\tilde{\Delta}_g = \tau \xi \hbar \omega + \text{sgn}(\Delta_g - \tau \xi \hbar \omega) \sqrt{\hbar^2 + \left[\frac{\Delta_g - \tau \xi \hbar \omega}{\hbar \omega} \right]^2} \]

\[\approx \tau \xi \hbar \omega - \sqrt{\hbar^2 + 1} \left(\tau \xi \hbar \omega - \frac{\Delta_g}{\hbar^2 + 1} \right), \]

where the last equality holds under condition \(\hbar \omega \gg \Delta_g \).

The spin splittings in the conduction and valence bands can be written in simple form for the two limiting cases:

\[\tilde{\Delta}^c,v_{so} = \pm \frac{\Delta^c,v_{so} - \Delta^v_{so}}{2} + \frac{\Delta^c_{so} + \Delta^v_{so}}{2} \sqrt{1 + \Omega^2}, \]

\[\hbar \omega \gg \Delta_g, \]

and

\[\tilde{\Delta}^c,v_{so} = \pm \frac{\Delta^c_{so} - \Delta^v_{so}}{2} + \frac{\Delta^c_{so} + \Delta^v_{so}}{2} \left[1 - \frac{\Omega^2(\hbar \omega)^2}{2 \Delta_g^2} \right] \]

\[\hbar \omega \ll \Delta_g. \]

As expected, the renormalized band gap (35) and spin splittings (39)–(40) turn into their “bare” values, \(\Delta_g \) and \(\Delta_{so},v^c,v^v_{so} \) if the dressing field is absent (\(E_0 \to 0 \)).

Elliptically polarized dressing field.— Assuming the large axis of polarization ellipse to be oriented along the \(x \) axis, the vector potential of arbitrary polarized electromagnetic wave, \(\mathbf{A} = (A_x, A_y) \), can be written as

\[\mathbf{A} = \frac{E_0}{\omega} (\cos \omega t, \sin \theta \sin \omega t), \]

where \(\theta \in [-\pi/2, \pi/2] \) is the polarization phase: the polarization is linear for \(\theta = 0 \), circular for \(\theta = \pm \pi/2 \), and elliptical for other phases \(\theta \). Substituting the vector potential (11) into Eq. (4), we can write the total Hamiltonian (4) as

\[\hat{H}(k) = \hat{H}_k + \left(\hat{V} e^{i\omega t} + \hat{V}^\dagger e^{-i\omega t} \right), \]

where the Hamiltonian \(\hat{H}_k \) is given by Eq. (8) and

\[\hat{V} = \frac{\hbar \omega \Omega}{4} \left(\begin{array}{cc} 0 & \tau - \sin \theta \\ \tau + \sin \theta & 0 \end{array} \right). \]

is the operator of electron interaction with the dressing field (11). Generally, the effective stationary Hamiltonian of an electron driven by an oscillating field can be sought in the form

\[\hat{H}_{\text{eff}}(k) = e^{i\hat{F}(t)} \hat{H}(k) e^{-i\hat{F}(t)} + i \left(\frac{\partial e^{i\hat{F}(t)}}{\partial t} \right) e^{-i\hat{F}(t)}, \]

where \(\hat{F}(t) \) is the anti-Hermitian operator which is periodical with the period of the oscillating field, \(\hat{F}(t) = \hat{F}(t + 2\pi/\omega) \). In the particular case of weak electron-field coupling, \(\Omega \ll 1 \), this operator and the effective Hamiltonian (14) can be easily found as power series expansions,

\[\hat{F}(t) = \sum_{n=0}^{\infty} F^{(n)}(t), \quad \hat{H}_{\text{eff}}(k) = \sum_{n=0}^{\infty} \frac{\hat{H}^{(n)}(k)}{\omega^n}, \]

where \(F^{(n)}(t) \sim \Omega^n \) (the Floquet-Magnus expansion). Substituting the expansions (45) into Eq. (44) and restricting the accuracy by terms \(\sim \Omega^2 \), we arrive at the effective Hamiltonian

\[\hat{H}_{\text{eff}}(k) = \hat{H}_k + \frac{\hat{V}, \hat{V}^\dagger}{\hbar \omega} + \frac{[\hat{V}, \hat{H}_k, \hat{V}^\dagger]}{2(\hbar \omega)^2} + h.c. \]

Taking into account Eqs. (3) and (14), the effective stationary Hamiltonian (16) can be written as a matrix (20), where

\[\tilde{\Delta}_g = \Delta_g \left[1 - \frac{\Omega^2}{4}(1 + \sin^2 \theta) \right] - \frac{\tau \hbar \omega \Omega^2}{2} \sin \theta, \]

\[\tilde{\Delta}_{so,v} = \pm \frac{\Delta_{so,v} - \Delta_{so}^v}{2} + \frac{\Delta_{so}^c + \Delta_{so}^v}{2} \left[1 - \frac{\Omega^2(\hbar \omega)^2}{2 \Delta_g^2} \right], \]

\[\tilde{\gamma}_x = \gamma \left[1 - \frac{\Omega^2}{4} \sin^2 \theta \right], \quad \tilde{\gamma}_y = \gamma \left[1 - \frac{\Omega^2}{4} \right]. \]
are the band parameters renormalized by an elliptically polarized dressing field. Correspondingly, the eigenenergy of the effective Hamiltonian \(H' \) represents the sought energy spectrum of dressed electrons,

\[
\tilde{\varepsilon}^\pm_{\tau_1}(\mathbf{k}) = \frac{\tau s (\Delta c_{so} - \Delta v_{so})}{4} \pm \sqrt{\left(2\Delta_g + \tau s (\Delta c_{so} + \Delta v_{so})\right)^2 + s^2 k_x^2 + s^2 k_y^2},
\]

with the renormalized band parameters \(\{47\} \). It should be stressed that the effective Hamiltonian \(H' \) with the band parameters \(\{47\} \), which describes electrons dressed by an arbitrary polarized weak field, is derived under assumption of small coupling constant \(\gamma \) and high frequency, \(\omega \). On the contrary, the effective Hamiltonian \(\{20\} \) with the band parameters \(\{21\} \) and the effective Hamiltonian \(\{38\} \) are suitable to describe electrons dressed by linearly and circularly polarized dressing fields of arbitrary intensity. As a consequence, the band parameters \(\{21\} \) and \(\{38\} \) turn into the band parameters \(\{47\} \) for \(\Omega \ll 1 \), \(\hbar \omega \gg \Delta_g \), and \(\theta = 0, \pm \pi/2 \).

III. RESULTS AND DISCUSSION

First of all, let us apply the developed theory to gapped graphene, assuming \(\Delta c_{so} \approx 0 \) in all derived expressions. The electron dispersion in gapped graphene, \(\tilde{\varepsilon}(\mathbf{k}) \), is plotted in Fig. 2 for the particular cases of linearly and circularly polarized dressing field. It is clear that the absence of the dressing field, the electron dispersion is isotropic in the graphene plane (see the solid lines in Figs. 2a and 2b). However, a linearly polarized field breaks the equivalence of the \(x, y \) axes [see Eq. \(\{46\} \)]. As a consequence, the anisotropy of the electron dispersion along the wave vectors \(k_x \) and \(k_y \) appears (see the dashed and dotted lines in Figs. 2a and 2b). In contrast to the linear polarization, a circularly polarized dressing field does not induce the in-plane anisotropy [see Eq. \(\{37\} \)]. However, the electron dispersion is substantially different for clockwise and counterclockwise polarizations (see the dashed and dotted lines in Fig. 2c). Moreover, both linearly and circularly polarized field renormalizes the band gap (see Fig. 3). Mathematically, the dependence of the renormalized band gap, \(\tilde{\Delta}_g \), on the irradiation intensity, \(I \sim \hbar \omega \), is given by Eqs. \(\{24\} \) and \(\{48\} \) which are plotted in Fig. 3a) and Eq. \(\{47\} \) which is plotted in Fig. 3b). It should be noted that Eq. \(\{48\} \) correctly describes the gap for any off-resonant frequencies \(\omega \), whereas Eqs. \(\{24\} \) and \(\{47\} \) are derived under the condition \(\hbar \omega \gg \Delta_g \) and, therefore, applicable only to small gaps. However, the gap can be gate-tunable in the broad range, \(\Delta_g = 1 - 60 \text{ meV} \). Assuming the gap to be of meV scale and the field frequency to be in the terahertz range, we can easily satisfy this condition. It follows from Eqs. \(\{24\}, \{47\} \), and \(\{48\} \) that the renormalized gap, \(\tilde{\Delta}_g \), crucially depends on the field polarization. Particularly, the clockwise/counterclockwise circularly polarized field (polarization indices \(\xi = \pm 1 \)) differently interacts with electrons from different valleys of the Brillouin zone (valley indices \(\tau = \pm 1 \)). Namely, for the case of \(\tau \xi = -1 \), the value of the gap monotonously increases with intensity (see the dashed line in Fig. 3a). On the contrary, for the case of \(\tau \xi = 1 \), the gap first decreases to zero and then starts to grow (see the solid line in Fig. 3a). This light-induced difference in the band gaps for the two different valleys is formally equivalent to the appearance of an effective magnetic field acting on the valley pseudo-
spin and, therefore, can be potentially used in valleytronics applications. It should be noted that this optically-induced lifting of valley degeneracy has been observed for TMDC in the recent experiments22 which are in reasonable agreement with the present theory. As to linearly polarized dressing field, it always quenches the band gap and can even turn it into zero (see the dotted line in Fig. 3a). Formally, the collapse of the band gap originates from zeros of the Bessel function in Eq. 21. Since the linearly and circularly polarized fields change the gap value oppositely, there are field polarizations which do not change the gap. The polarization phases, \(\theta \), corresponding to such polarizations are marked by the dashed lines in Fig. 3b.

Applying the elaborated theory to analyze the renormalized spin splitting in TMDC monolayers, let us restrict the consideration by the most examined TMDC monolayer MoS\textsubscript{2}. The dependence of the spin splitting on the dressing field is described by Eqs. 22–24 for the case of linearly polarized field, Eqs. 39–40 for the case of circularly polarized field, and Eq. 48 for an arbitrary polarized field. It follows from analysis of these expressions that the most pronounced renormalization of the splitting takes place for a circularly polarized field.

The dependence of the field-induced renormalization of the band gap, \(\Delta_{g} \), and the spin splitting, \(\Delta_{c,v} \), in MoS\textsubscript{2} monolayer on the field intensity, \(I \sim E_{0}^{2} \), is plotted in Fig. 4 for such a field. It is seen in Fig. 4a that absolute values of the field-induced renormalization are of the same order for both the band gap, \(\Delta_{g} \), and the spin splitting, \(\Delta_{c,v} \). However, the unperturbed spin splitting of the conduction band, \(\Delta_{c} \), is small as compared to both the unperturbed band gap, \(\Delta_{g} \), and the unperturbed spin splitting of the valence band, \(\Delta_{v} \) (see Ref. 13). Therefore, the relative field-induced renormalization, \(|\Delta_{c}/\Delta_{g}| \), is most pronounced for the spin splitting of the conduction band (see Fig. 4b). It should be stressed that the renormalized splitting depends on the product of the polarization and valley indices, \(\tau \epsilon = \pm 1 \), and can be turned into zero by a dressing field (see Fig. 4b). It should be noted also that the renormalization of both band gap and spin splitting is the result of mixing electron states from the valence and conduction bands by the field. Therefore, the renormalized band parameters strongly depends on the value of the “bare” band gap, \(\Delta_{g} \). In contrast to gapped graphene with band gaps of meV scale, TMDC monolayers have band gaps of eV scale14. As a consequence, the considered terahertz photons effect on the gaps of TMDC very weakly (in contrast to the previously considered case of narrow-gapped graphene). Particularly, it follows from this that the irradiation intensity which collapses the spin splitting in TMDCs monolayers (see Fig. 4b) is really larger than the intensity collapsing the band gap in gapped graphene (see Fig. 3a).

It should be noted that the similar optically-induced spin splitting was recently observed experimentally in GaAs20. However, the one-band energy spectrum of conduction electrons in GaAs differs crucially from the electron spectrum of gapped Dirac materials describing by the two-band Hamiltonian 11. Therefore, the known theory of optically-induced spin splitting for electrons with simple parabolic dispersion — including both the recent papers20 and the classical article51 — cannot by applied directly to the materials under consideration. One has to take also into account that optical properties of

\[\text{FIG. 3: (Color online) Dependence of the band gap in irradiated gapped graphene (\(\Delta_{g} = 2 \text{ meV}, \gamma/\hbar = 10^{6} \text{ m/s} \)) on the irradiation intensity, } I, \text{ and the polarization, } \theta, \text{ for the photon energy } h\omega = 10 \text{ meV}. \text{ In the part (a): the dotted line corresponds to the linearly polarized dressing field, whereas the dashed and solid lines correspond to the different circular polarizations (\(\tau \epsilon = -1 \) and \(\tau \epsilon = 1 \), respectively). In the part (b): the dashed lines correspond to the polarizations, } \theta, \text{ which do not change the band gap.} \]
TMDC are dominated by excitons. To avoid the influence of excitons on the discussed dressing-field effects, the photon energy, \(\hbar \omega \), should be less than the binding exciton energy (which is typically of hundreds of meV in TMDC).

Within this approach, giant dressing fields (up to \(\text{GW/cm}^2 \)) can be applied to the structures. It should be noted also that we consider the electromagnetic wave as a purely dressing field which cannot be absorbed by electrons. Within the classical Drude theory, the collisional absorption of the oscillating field by conduction electrons is given by the well-known expression

\[
Q = \frac{1}{T} \int_0^T \langle j(t) E(t) \rangle dt = \frac{E_0^2}{2} \frac{\sigma_0}{1 + (\omega \tau)_0^2},
\]

where \(T \) is the period of the field, \(Q \) is the period-averaged field energy absorbed by conduction electrons per unit time and per unit volume, \(\langle j(t) \rangle \) is the ohmic current density induced by the oscillating electric field \(\mathbf{E}(t) = E_0 \sin \omega t \), \(\sigma_0 \) is the static Drude conductivity, and \(\tau_0 \) is the electron relaxation time. Evidently, the Drude optical absorption, \(Q \), is negligibly small under the condition \(\omega \tau_0 \gg 1 \). Thus, an electromagnetic wave can be considered as a purely dressing field in the high-frequency limit (see, e.g., Ref. 10 for more details). It should be stressed that the increasing of temperature decreases the time \(\tau_0 \) because of the strengthening of the electron-phonon scattering. Therefore, the temperature should be low enough to meet the aforementioned condition.

From viewpoint of experimental observability of the discussed phenomena, it should be noted that all dressing-field effects increase with increasing the intensity of the dressing field. However, an intense irradiation can melt a condensed-matter sample. To avoid the melting, it is reasonable to use narrow pulses of a strong dressing field. This well-known methodology has been elaborated long ago and commonly used to observe various dressing effects — particularly, modifications of energy spectrum of dressed electrons arisen from the optical Stark effect — in semiconductor structures (see, e.g., Refs. 54–56).

IV. CONCLUSION

We showed that the electromagnetic dressing can be used as an effective tool to control various electronic properties of gapped Dirac materials, including the band gap in gapped graphene and the spin splitting in TMDC monolayers. Particularly, both the band gap and the spin splitting can be closed by a dressing field. It is demonstrated that the strong polarization dependence of the renormalized band parameters appears. Namely, a linearly polarized field decreases the band gap, whereas a circularly polarized field can both decrease and increase one. It is found also that a circularly polarized field breaks equivalence of valleys in different points of the Brillouin zone, since the renormalized band parameters depend on the valley index. As a consequence, the elaborated theory creates a physical basis for novel electronic, spintronic and valleytronic devices operated by light.

Acknowledgments

The work was partially supported by the RISE project CoExAN, FP7 ITN project NOTEDEV, RFBR projects 16-32-60123 and 17-02-00053, the Ramn projects 141241-051 and 163082-051, and the Russian Ministry of Education and Science (projects 3.1365.2017, 3.2614.2017 and 3.4573.2017). O.V.K. and I.V.I. acknowledge support from the Singaporean Ministry of Education under AcRF Tier 2 grant MOE2015-T2-1-055.
A. A. Pervishko, O. V. Kibis, S. Morina, I. A. Shelykh, K. Dini, O. V. Kibis, I. A. Shelykh, Magnetic properties of O. V. Kibis, O. Kyriienko, I. A. Shelykh, Persistent current F. K. Joibari, Ya. M. Blanter, G. E. W. Bauer, Light- K. L. Koshelev, V. Yu. Kachorovskii, M. Titov, Reso- S. Kohler, J. Lehmann, P. Hänggi, Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields, Phys. Rev. X 4, 031027 (2014).
M. Holthaus, Floquet engineering with quasienergy bands of periodically driven optical lattices, J. Phys. B 49, 013001 (2016).
F. Meinert, M. J. Mark, K. Lauber, A. J. Daley, and H.-C. Nägerl, Floquet Engineering of Correlated Tunneling in the Bose-Hubbard Model with Ultracold Atoms, Phys. Rev. Lett. 116, 205301 (2016).
M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 2001).
C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interactions: Basic Processes and Applications (Wiley, Weinheim, 2004).
M. Wagner, et al., Observation of the intraexciton Adler-Townes effect in GaAs/AlGaAs semiconductor quantum wells, Phys. Rev. Lett. 105, 167401 (2010).
M. Teich, M. Wagner, H. Schneider, and M. Helm, Semiconductor quantum well excitons in strong, narrowband terahertz fields, New J. Phys. 15, 065007 (2013).
O. V. Kibis, How to suppress the backscattering of conduction electrons?, Europhys. Lett. 107, 57003 (2014).
S. Morina, O. V. Kibis, A. A. Pervishko, and I. A. Shelykh, Transport properties of a two-dimensional electron gas dressed by light, Phys. Rev. B 91, 155312 (2015).
A. A. Pervishko, O. V. Kibis, S. Morina, I. A. Shelykh, Control of spin dynamics in a two-dimensional electron gas by electromagnetic dressing, Phys. Rev. B 92, 205403 (2015).
K. Dini, O. V. Kibis, I. A. Shelykh, Magnetic properties of a two-dimensional electron gas strongly coupled to light, Phys. Rev. B 93, 235411 (2016).
O. V. Kibis, O. Kyrriienko, I. A. Shelykh, Persistent current induced by vacuum fluctuations in a quantum ring, Phys. Rev. B 87, 245437 (2013).
H. Sigurdsson, O. V. Kibis, I. A. Shelykh, Optically induced Aharonov-Bohm effect in mesoscopic rings, Phys. Rev. B 90, 235413 (2014).
F. K. Joibari, Ya. M. Blanter, G. E. W. Bauer, Light-induced spin polarizations in quantum rings, Phys. Rev. B 90, 155301 (2014).
K. L. Koshelev, V. Yu. Kachorovskii, M. Titov, Resonant inverse Faraday effect in nanorings, Phys. Rev. B 92, 235426 (2015).
T. Oka, H. Aoki, Photovoltaic Hall effect in graphene, Phys. Rev. B 79, 081406 (2009).
O. V. Kibis, Metal-insulator transition in graphene induced by circularly polarized photons, Phys. Rev. B 81, 165433 (2010).
O. V. Kibis, O. Kyrriienko, I. A. Shelykh, Band gap in graphene induced by vacuum fluctuations, Phys. Rev. B 84, 195413 (2011).
S. V. Syzranov, Ya. I. Rodionov, K. I. Kugel, F. Nori, Strongly anisotropic Dirac quasicomposites in irradiated graphene, Phys. Rev. B 88, 241112 (2013).
P. M. Perez-Piskunow, G. Usaj, C. A. Balseiro, L. E. F. Foa Torres, Floquet chiral edge states in graphene, Phys. Rev. B 89, 121401(R) (2014).
M. M. Glazov, S. D. Ganichev, High frequency electric field induced nonlinear effects in graphene, Phys. Rep. 535, 101 (2014).
O. V. Kibis, S. Morina, K. Dini, I. A. Shelykh, Magnetoelectronic properties of graphene dressed by a high-frequency field, Phys. Rev. B 93, 115420 (2016).
K. Kristinsson, O. V. Kibis, S. Morina, I. A. Shelykh, Control of electronic transport in graphene by electromagnetic dressing, Sci. Rep. 6, 20082 (2016).
M. Ezawa, Photoinduced Topological Phase Transition and a Single Dirac-Cone State in Silicene, Phys. Rev. Lett. 110, 026603 (2013).
G. Usaj, P. M. Perez-Piskunow, L. E. F. Foa Torres, C. A. Balseiro, Irradiated graphene as a tunable Floquet topological insulator, Phys. Rev. B 90, 115423 (2014).
L. E. F. Foa Torres, P. M. Perez-Piskunow, C. A. Balseiro, G. Usaj, Multiterminal Conductance of a Floquet Topological Insulator, Phys. Rev. Lett. 113, 266801 (2014).
H. L. Calvo, L. E. F. Foa Torres, P. M. Perez-Piskunow, C. A. Balseiro, G. Usaj, Floquet interface states in illuminated three-dimensional topological insulators, Phys. Rev. B 91, 241404(R) (2015).
T. Mikami, S. Kitamura, K. Yasuda, N. Tsuji, T. Oka, H. Aoki, Brillouin-Wigner theory for high-frequency expansion in periodically driven systems: Application to Floquet topological insulators, Phys. Rev. B 93, 144307 (2016).
K. S. Novoselov, et al., Electric field effect in atomically thin carbon films, Science 306, 666 2014.
A. H. Castro-Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 109 (2009).
S. Das Sarma, S. Adam, E. H. Hwang, E. Ross, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83 407 (2011).
A. Ferrari, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7, 4598 (2015).
Yu. D. Lensky, J. Song, P. Samutpraphoot, L. S. Levitov, Topological Valley Currents in Gapped Dirac Materials, Phys. Rev. Lett. 114, 256601 (2015).
K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, 2D materials and Van der Waals heterostructures, Science 353, 9439 (2016).
B. Sachs, T. O. Wehling, M. I. Katsnelson, A. I. Lichtenstein, Adhesion and electronic structure of graphene on hexagonal boron nitride substrates, Phys. Rev. Lett. 115, 115403 (2015).
J. Jung, A. M. DaSilva, A. H. MacDonald, S. Adam, Origin of band gaps in graphene on hexagonal boron nitride, Nature Commun. 6, 6308 (2014).
M. Kindermann, B. Uchoa, D. L. Miller, Zero-energy modes and gate-tunable gap in graphene on hexagonal boron nitride, Phys. Rev. B 86, 115415 (2012).
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechn. 8.
nol. 7 699 (2012).
41 S. Z. Butler, et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7, 2898 (2013).
42 K. Kosmider, J. Gonzalez, A. Fernandez-Rossier, Large spin splitting in the conduction band of transition metal dichalcogenide monolayers, Phys. Rev B 88, 245436 (2013).
43 A. Kormányos, et al., Kp theory for two-dimensional transition metal dichalcogenide semiconductors, 2D Mater. 2, 022001 (2015).
44 K. Mak, K. McGill, J. Park, P. McEuen, The valley Hall effect in MoS$_2$ transistors, Science 344, 1489 (2014).
45 P. Rakyta, A. Kormányos, J. Cserti, Trigonal warping and anisotropic band splitting in monolayer graphene due to Rashba spin-orbit coupling, Phys. Rev. B 82, 113405 (2010).
46 L. Chirolli, M. Polini, V. Giovannetti, A. H. MacDonald, DrudeWeight, Cyclotron Resonance, and the Dicke Model of Graphene Cavity QED, Phys. Rev. Lett. 109, 267404 (2012).
47 F. M. D. Pellegrino, L. Chirolli, R. Fazio, V. Giovannetti, M. Polini, Theory of integer quantum Hall polaritons in graphene, Phys. Rev. B 89, 165406 (2014).
48 G. Bir, E. Pikus, Symmetry and Strain-induced Effects in Semiconductors (New York, Wiley, 1974).
49 E. J. Sie, J. W. McIver, Y.-H. Lee, L. Fu, J. Kong, N. Gedik, Valley-selective optical Stark effect in monolayer WS$_2$, Nature Mater. 14, 290 (2015).
50 I. I. Ryzhov, et al., Spin noise explores local magnetic fields in a semiconductor, Sci. Rep. 6, 21062 (2016).
51 P. S. Pershan, J. P. Van Der Ziel, L. D. Malmstrom, Theoretical discussion of the inverse Faraday effect, Raman scattering, and related phenomena, Phys. Rev. 143, 574 (1966).
52 K. He, et al., Tightly bound excitons in monolayer WSe$_2$, Phys. Rev. Lett. 113, 026803 (2014).
53 A. Chernikov, et al., Exciton binding energy and non-hydrogenic rydberg series in monolayer WS$_2$, Phys. Rev. Lett. 113, 076802 (2014).
54 M. Joffre, D. Hulin, A. Migus, A. Antonetti, Dynamics of the Optical Stark Effect in Semiconductors, J. Mod. Optics 35, 1951 (1988).
55 M. Joffre, et al., Coherent effects in pump-probe spectroscopy of excitons, Optics Lett. 13, 276 (1988).
56 S. G. Lee, et al., Femtosecond excitonic bleaching recovery in the optical Stark effect of GaAs/Al$_x$Ga$_{1-x}$As multiple quantum wells and directional couplers, Phys. Rev. B 43, 1719 (1991).