Circulating glucose levels serve as the principal regulator of the rate of insulin secretion from the pancreatic β-cell, which, in turn, is the body’s principal mechanism preventing excessive elevation in circulating glucose. The control center for this critical negative feedback loop is generally thought to reside solely within the province of the β-cell. However, in the February issue of Diabetes, Osundiji et al. (1) provide evidence that there may be another player involved, namely, the hypothalamus. They observed that raising glucose levels locally or pharmaceutically blocking glucose entry into cells close to the third ventricle of the rat altered the acute insulin secretory response to intravenous glucose, presumably by the extensive neural connections that exist between the hypothalamus and islet. As pointed out by the authors, it is now well recognized that a subgroup of hypothalamic neurons, and neurons elsewhere in the brain, have the capacity to sense glucose and influence the secretion of anti-insulin hormones and hepatic glucose production (2–6). Yet, the idea that the glucose-sensing capacity of these neurons may also influence the function of the β-cell has not been appreciated, and if shown to be true under more physiological conditions, could have important therapeutic implications.

It is commonly believed that the K\textsubscript{ATP}-dependent model of glucose-stimulated secretion coupling is the primary means used by the β-cell to activate insulin secretion (7–10). In this model, glucose enters the β-cell, is phosphorylated by glucokinase to glucose-6-phosphate, and then enters the glycolytic and oxidative phosphorylation pathways to be metabolized. Through this, ATP is generated, causing ATP-sensitive potassium channel closure, plasma membrane depolarization, and activation of voltage-gated calcium channels, which ultimately cause exocytosis of insulin-containing granules. Although the components of this mechanism are expressed in the β-cell and appear adequate to explain most insulin responses to glucose, there is a growing body of data that cannot be solely explained by this K\textsubscript{ATP}-dependent mechanism of glucose-stimulated insulin secretion (GSIS). As a result, signals other than the ATP/ADP ratio have been postulated in recent years (11–16). These K\textsubscript{ATP}-independent mechanisms have mainly focused on the mitochondria and generation of second messengers other than ATP. In these models, it is postulated that conversion of pyruvate to oxaloacetate by pyruvate carboxylase leads to generation of a number of intermediary metabolites that are capable of acting as signals to stimulate insulin release (17,18). Some of these messengers, including NADPH (19–21), malonyl-CoA/long-chain CoA (22,23), short-chain CoA (24), glutamate (25), α-ketoglutarate (26), and GTP (27), are thought to act either directly or indirectly to alter the influx of calcium into the β-cell, ultimately affecting insulin secretory kinetics.

While studies examining GSIS have focused on factors that directly affect the β-cell, little attention has been given to the potential role of the brain in this regard. The brain and islet are tightly linked functionally through neural-entero-islet, brain-islet, and islet-brain axes. Thus, secretion of insulin and other islet hormones are clearly influenced by the hypothalamus and other brain areas, and conversely, insulin action in the hypothalamus influences both energy balance and glucose metabolism. The article in the February issue of Diabetes (1) presents some novel observations suggesting that hypothalamic glucose sensing may also provide an additional input to β-cells that modulates the first-phase insulin response to a glucose stimulus. In particular, data are presented suggesting that conversion of glucose to glucose-6-phosphate by glucokinase in the hypothalamus may serve to regulate the first phase of insulin secretion in response to glucose. Thirty minutes prior to giving an intravenous glucose tolerance test, the authors administered either glucose to activate glucokinase or one of two pharmacological inhibitors of glucokinase (glucosamine or mannosepentulose) into the third ventricle. When glucose was administered, a greater insulin secretory response occurred, along with a more rapid decline in plasma glucose levels. Conversely, when either of the nonspecific glucokinase inhibitors was administered, the acute insulin response to intravenous glucose was diminished and glucose excursions were slightly greater. The effect was more pronounced with glucosamine. This may be because glucosamine cannot only inhibit glucokinase, but it may also enter cells via glucose transporters, thereby redirecting intermediary metabolites of glycolysis into the hexosamine biosynthetic pathway. It should be noted that the study design employed a time-sequenced exposure of glucose or glucokinase inhibitors to the brain much before peripheral changes in glucose were induced in the experiments. This may have magnified the impact of the hypothalamus relative to what occurs in the physiological setting. Undoubtedly, more specific reductions in glucokinase gene expression within the hypothalamus will be required before the physiological importance of these specific observations can be determined.

Nonetheless, findings implicating the hypothalamus in GSIS are consistent with recent reports examining the role of insulin and glucose transport in the brain. We have reported that chronic knockdown of insulin receptors in
the ventromedial hypothalamus reduces insulin secretory responses to a standardized hyperglycemic stimulus (28). In addition, data from the laboratories of Simon Fisher and Domenico Accili indicate that deletion of the insulin-responsive glucose transporter, GLUT4, in the brain leads to impairments in glucose sensing and glucose tolerance in mice (29,30). Together, these data support the role of an insulin-responsive glucose-sensing mechanism within the hypothalamus that regulates islet hormone secretion to maintain glucose homeostasis. One can postulate that following meal ingestion, the rapid rise in peripheral glucose levels acts to initiate the insulin response. Subsequent rises in insulin and glucose may work together to stimulate an increase in glucose uptake by hypothalamic glucose-responsive neurons that further augment insulin secretion and increase glucose handling. Under conditions where central insulin resistance develops, it is intriguing to speculate that a reduction in the capacity to take up glucose in the hypothalamus may contribute to a diminution of the GSIS response. It is becoming increasingly evident that GSIS likely involves several signaling events that converge to activate exocytosis of insulin-containing granules from the β-cell. The study by Osundiji et al. (1) adds yet another dimension involving several signaling events that converge to activate GSIS response. The hypothalamus may contribute to a diminution of the insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest 1992;90:1288–1295.

11. Komatsu M, Yajima H, Yamada S, et al. Augmentation of Ca2+-stimulated insulin release by glucose and long-chain fatty acids in rat pancreatic islets: free fatty acids mimic ATP-sensitive K+ channel-independent insulinotropic action of glucose. Diabetes 1999;48:1543–1549

12. Oku M, Saitoh T, Iwamoto M, et al. Inhibition of glucose-stimulated insulin secretion in response to CCK in β-cells. Diabetologia 1996;39:1758–1762

13. Nenquin M, Zoliolos A, Aguilar-Bryan L, Bryan J, Henquin JC. Both triggering and amplifying pathways contribute to fuel-induced insulin secretion in pancreatic β-cells. J Biol Chem 2004;279:23316–23324

14. Remedi MS, Rocheleau JV, Tong A, et al. Hyperinsulinemia in mice with heterozygous loss of K(ATP) channels. Diabetes Metab Rev 1986;2:163–170

15. Shiota C, Larsson O, Shelton KD, et al. Sulfonflyurea receptor type I knock-out mice have intact feed-stimulated insulin secretion despite marked impairment in their response to glucose. J Biol Chem 2002;277:37170–37178

16. Straub SG, Sharp GW. Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev 2002;18:451–463

17. Lu D, Mulder H, Zhao P, et al. 13C NMR isopomor analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proc Natl Acad Sci U S A 2002;99:7085–7093

18. MacDonald MJ. Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion. J Biol Chem 1995;270:20051–20058

19. Iverson R, Quintens R, Dejonghe S, et al. Redox control of exocytosis: regulatory role of NADPH, thioerodoxin, and glutaredoxin. Diabetes 2005;54:2132–2142

20. MacDonald MJ, Fahien LA, Brown LJ, Hassan NM, Buss JD, Kendrick MA. Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab 2005;288:E1–E15

21. Ronnebaum SM, Ikayeva O, Burgess SC, et al. A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J Biol Chem 2006;281:30503–30502

22. Corkey BE, Glennon MC, Chen RS, Deeney JT, Matschinsky FM, Prentki M. A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic beta-cells. J Biol Chem 1998;263:21608–21612

23. Prentki M, Vischer S, Glennon MC, Regazzi R, Deeney JT, Corkey BE. Malonil-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem 1992;267:5902–5910

24. MacDonald MJ, Longacre MJ, Stoker SW, Brown LJ, Hassan NM, Kendrick MA. Acetoacetate and beta-hydroxybutyrate in combination with other metabolites release insulin from INS-1 cells and provide clues about pathways in insulin secretion. Am J Physiol Cell Physiol 2008;294:C442–C450

25. Maechler P, Wollheim CB. Mitochondrial glutamate acts as a messenger in glucose-stimulated insulin exocytosis. Nature 1999;402:685–688

26. Rahaglia ME, Gray-Keller MP, Frey BL, Shortt AR, South LM, Attie AD. Alpha-ketoisocaproate-induced hypersecretion of insulin by islets from diabetes-susceptible mice. Am J Physiol Endocrinol Metab 2005;289:E218–E224

27. Kibbey RG, Pongratz RL, Romaneli AJ, Wollheim CB, Cline GW, Shulman GI. Mitochondrial GTP regulates glucose-stimulated insulin secretion. Cell Metab 2007;5:233–244

28. Paranjape SA, Chan O, Zhu W, et al. Chronic reduction of insulin receptors in the ventromedial hypothalamus produces glucose intolerance and islet dysfunction in the absence of weight gain. Am J Physiol Endocrinol Metab 2011;301:E978–E983

29. Reno C, Puente E, Daphna-Iten D, Kahn BB, Fisher SJ. Brain specific glucose transporter 4 knockout mice display decreased brain glucose uptake and hepatic insulin resistance (Abstract). Diabetes 2010;59(Suppl. 1):A81

30. Lin HV, Ren H, Samuel VT, et al. Diabetes in mice with selective impairment of insulin action in Glut4-expressing tissues. Diabetes 2011;60:700–709

ACKNOWLEDGMENTS

No potential conflicts of interest relevant to this article were reported.

REFERENCES

1. Osundiji MA, Lam DD, Shaw J, et al. Brain glucose sensors play a significant role in the regulation of pancreatic glucose-stimulated insulin secretion. Diabetes 2012;61:321–328

2. Borg MA, Sherwin RS, Borg WP, Tamborlane WV, Shulman GI. Local ventromedial hypothalamic glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J Clin Invest 1997;99:361–365

3. Borg WP, Sherwin RS, During MJ, Borg MA, Shulman GI. Local ventromedial hypothalamic glucose perfusion regulates counterregulatory hormone release. Diabetes 1995;44:180–184

4. Lam CK, Chari M, Rutter GA, Lam TK. Hypothalamic nutrient sensing activates a forebrain–hindbrain neuronal circuit to regulate glucose production in vivo. Diabetes 2011;60:107–113

5. Levin BE, Dunn-Meynell AA, Routh VH. CNS sensing and regulation of peripheral glucose levels. Int Rev Neurobiol 2002;51:219–258

6. Sanders NM, Taborsky GJ Jr, Wilkinson CW, Daumen W, Figlewicz DP. Antecedent hindbrain glucoprivation does not impair the counterregulatory response to hypoglycemia. Diabetes 2007;56:217–223

7. Meglasson MD, Matschinsky FM. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev 1986;2:163–214

8. Newgard CB, McGarry JD. Metabolic coupling factors in pancreatic β-cell signal transduction. Annu Rev Biochem 1995;64:689–719

9. Chan CB, MacPhail RM. KATP channel-dependent and -independent pathways of insulin secretion in isolated islets from fa/fa Zucker rats. Brain Res Cell Biol 1996;46:199–210

10. Miki T, Nagashima K, Tashiro F, et al. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci U S A 1998;95:10402–10406

11. Gembal M, Gilon P, Henquin JC. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest 1992;90:1288–1295

12. Komatsu M, Yajima H, Yamada S, et al. Augmentation of Ca2+-stimulated insulin release by glucose and long-chain fatty acids in rat pancreatic islets: free fatty acids mimic ATP-sensitive K+ channel-independent insulinotropic action of glucose. Diabetes 1999;48:1543–1549

13. Nenquin M, Szollosi A, Aguilar-Bryan L, Bryan J, Henquin JC. Both triggering and amplifying pathways contribute to fuel-induced insulin secretion in pancreatic β-cells. J Biol Chem 2004;279:23316–23324