Radiation from Global Topological Strings using Adaptive Mesh Refinement

Amelia Drew in collaboration with Paul Shellard

Gravitational Wave Probes of Fundamental Physics, 2019

Department of Applied Mathematics and Theoretical Physics, Cambridge

arXiv:1910.01718
Global Topological Strings

- Assume complex scalar field ϕ, e.g. global cosmic string, (QCD) axion string

- Postulate a phase transition due to e.g. temperature cooling \rightarrow Lagrangian with U(1) symmetry

- Energetically favourable for field to fall into potential minimum at different spatial locations \rightarrow U(1) symmetry breaking

- Traverse closed path in space \rightarrow string if we want simply connected

\[
\mathcal{L} = (\partial_{\mu} \bar{\phi})(\partial^{\mu} \phi) - V(\phi)
\]

\[
V(\phi) = \frac{1}{4}\lambda(\bar{\phi}\phi - \eta^2)^2
\]

Euler-Lagrange equations

\[
\partial_{\mu} \partial^{\mu} \phi + \frac{\lambda}{2} \phi (|\phi|^2 - \eta^2) = 0
\]
Radiative Modes

• Oscillating strings emit massive (Higgs) and massless (Goldstone or `axion’) radiation

• Need robust diagnostic tools to numerically extract and analyse - radiative modes must be separated from string self-fields

• \(\phi(x^\mu) = \phi(x^\mu)e^{i\theta(x^\mu)} \) where \(\phi(x^\mu) \) and \(\theta(x^\mu) \) are real scalar fields associated with orthogonal excitations in figure

• Can show that these fields obey massive/massless wave equations respectively

\[
\frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi - \lambda \phi(1 - \phi^2) = 0
\]

\[
\frac{\partial^2 \theta}{\partial t^2} - \nabla^2 \theta = 0
\]
Radiative Modes \[\varphi = \phi_1 + i \phi_2 \]

- We can write the energy flux as massive and massless components

\[
T_{\mu\nu} = 2\partial_{(\mu} \bar{\varphi} \partial_{\nu)} \varphi - g_{\mu\nu} \left(\partial_\sigma \bar{\varphi} \partial^\sigma \varphi - \frac{\lambda}{4} (\bar{\varphi} \varphi - 1)^2 \right)
\]

\[
S_i \equiv T^{0i} = \Pi_\phi \mathcal{D}_i \phi + \Pi_\vartheta \mathcal{D}_i \vartheta
\]

\[
\Pi_\phi \equiv \frac{\phi_1 \dot{\phi}_1 + \phi_2 \dot{\phi}_2}{\phi}, \quad \mathcal{D}_i \phi \equiv \frac{\phi_1 \nabla_i \phi_1 + \phi_2 \nabla_i \phi_2}{\phi}
\]

\[
\Pi_\vartheta \equiv \frac{\phi_1 \dot{\phi}_2 - \phi_2 \dot{\phi}_1}{\phi}, \quad \mathcal{D}_i \vartheta \equiv \frac{\phi_1 \nabla_i \phi_2 - \phi_2 \nabla_i \phi_1}{\phi}
\]

- Two quantities are equivalent of EM Poynting vector

- Spatial diagnostic \(\mathcal{D} \vartheta \cdot \hat{r} \) particularly useful for distinguishing massless radiation from string self-field which can be similar order of magnitude in energy density - spatial gradient of self-field is weak
Analytic Predictions: Axions and Antisymmetric Tensors

- Duality of massless scalar ϕ and two-index antisymmetric tensor $B_{\mu\nu}$
 \[\phi^2 \partial_\mu \phi = \frac{1}{2} f_a \epsilon_{\mu\nu\lambda\rho} \partial^\nu B^{\lambda\rho} \]

- Can use this analytically to predict radiation power spectrum from global string

Predicted Radiation Power Spectrum

\[
\frac{dP}{dz} = 2\pi \sum_{n=1}^{\infty} \omega_n \left(\sum_{|\kappa_m|<\alpha \omega_n} \int_0^{2\pi} d\varphi \tilde{J}^{\mu\nu*}(\omega_n, k^\perp, \kappa_m) \tilde{J}_{\mu\nu}(\omega_n, k^\perp, \kappa_m) \right)
\]

Radiation Equation

\[\partial_\sigma \partial^\sigma B^{\mu\nu} = 4\pi J^{\mu\nu} \]

String Source Term

\[J^{\mu\nu} = \frac{f_a}{2} \int \delta^{(4)}[x - X(\sigma, \tau)] d\sigma^{\mu\nu} \]

- Can rewrite axion spectrum in terms of left- and right-moving modes (Fourier transform) - analogy with gravitational radiation

\[
\frac{dP}{dz} = \frac{8\pi^3 f_a^2}{L} \sum_{n=1}^{\infty} n \sum_{\substack{|m|<n \\text{m+n even}}} \left\{ |U^\perp|^2 |V^\perp|^2 + |U^{\perp*} \cdot V^\perp|^2 - |U^\perp \cdot V^\perp|^2 \right\}
\]

Periodic axion string

Similar forms

Local string for GWs

\[
\frac{dP}{dz} = \frac{64\pi G \mu_0^2}{L} \sum_{n=1}^{\infty} n \sum_{\substack{|m|<n \\text{m+n even}}} \left\{ |U^\perp|^2 |V^\perp|^2 - |U^{\perp*} \cdot V^\perp|^2 + |U^\perp \cdot V^\perp|^2 \right\}
\]
Separating String Scales

- Energy per unit length of global (axion) string
 \[\mu = 2\pi f_a^2 \log(L/\delta) \]

- String width, \(\delta \approx m_s^{-1} = (\sqrt{\lambda} f_a)^{-1} \)

- Axion strings (realistic), \(\log \left(\frac{L}{\delta} \right) \approx 70 \)

- Cosmological GUT strings, \(\log \left(\frac{L}{\delta} \right) \approx 100 \)

- Typical fixed grid simulations, \(\log \left(\frac{L}{\delta} \right) \approx 4 \)
Current Simulations

• Difficult to simulate topological strings accurately due to large separation of scales

• Two main approaches to date [Battye and Moss 2010, arXiv:1005.0479]:
 - Nambu-Goto string action - infinitely thin, no backreaction [e.g. Allen and Shellard 1990, Sakellariadou 1991]:
 \[S = -\mu \int d^2 \zeta \sqrt{-\gamma} \]
 - Field theory - ‘fat string’ to deal with expansion of the universe [e.g. Vincent, Antunes and Hindmarsh 2008, arXiv:hep-ph/9708427]
 - E.g. axion strings (Battye and EPS, 1994; Yamaguchi, 1999; Klaer & Moore 2017; Villadoro et al, 2018)
 \[\partial_\mu \partial^\mu \varphi + \frac{\lambda}{2} \varphi (|\varphi|^2 - \eta^2) = 0 \]

• Both approaches use a fixed grid
AMR and GRChombo

We use GRChombo adaptive mesh refinement code to bridge the gap:

www.grchombo.org

• Fully adaptive mesh refinement dynamically adapts solution grid to scale of the problem

• Dynamically tag cells according to chosen gradient criterion

• Significant OpenMP/MPI parallelism, optimised with support from Intel

• Refinement levels structured into boxes which can be distributed over processors
Radiation from Oscillating Strings

- Periodic string configuration (z-direction)

- Obtain initial conditions numerically with dissipative evolution - reduce string amplitude considerably to ensure long-range fields are relaxed

- Sinusoidal perturbations with range of amplitudes e.g. $A_0 = 1,3$

- Run range of λ (string width/mass) with AMR

\[
\delta \approx m_s^{-1} = (\sqrt{\lambda f_a})^{-1}
\]
Harmonic Radiation Modes

\[\vartheta(t, r, \theta, z) = \Re \sum_{p m n} A_{p m n} e^{-i \Omega [(p/\alpha) t - nz]} e^{i m \theta} \times H_{m}^{(1)} \left(\Omega \kappa_{p n} r \right) \]
$A_0 = 1$

$\lambda = 1$

$\lambda = 10$
String Radiation Backreaction

- We analyse detailed evolution of oscillating string trajectories by tracking string core.
- Focus on regimes where AMR evolution is robust and accurate.
- Analyse two specific sets of simulations with initial amplitudes $A_0 = 1, 3$.
- Vary the string width across the wide range $1 \leq \lambda \leq 100$.

NG Sinusoidal Long String

\[
\frac{1}{\varepsilon^2} - \frac{1}{\varepsilon_0^2} = \frac{\beta t}{\bar{\mu}L} \rightarrow \varepsilon_0 \left(1 + \frac{\beta \varepsilon_0^2 t}{\bar{\mu}L}\right)^{-1/2}
\]

Unequal left/right-moving modes

\[
\varepsilon = \varepsilon_0 \exp \left(-\frac{\beta t}{2\bar{\mu}L}\right)
\]
String Radiation Backreaction

$A_0 = 1$

$A_0 = 3$
Inverse Square Model

- Backreaction predicts linear slope depends on energy density, independent of amplitude.
- Here $A_0 = 1$ plot is offset by -20 for clarity, slopes unchanged.
- Finite width effects for lighter strings reduce damping rate.

\[\epsilon_0 = 0.20 \quad (A_0 = 1) \]
\[\epsilon_0 = 0.54 \quad (A_0 = 3) \]
Inverse Square Model

- Dashed lines - analytic predictions from linear inverse square model
- Least squares best fit, analytic prediction remarkably good agreement for $\lambda > 3$
- Have applied a finite width correction of 8%; internal modes mask true oscillation amplitude
- Again, see finite width effects for lighter strings reduce damping rate
Inverse Square Model

- Measured damping rates plotted as function of inverse energy density μ^{-1} (inverse $\ln \lambda$)

- Have used an effective string radius cutoff $R = 3.75$ for which damping rate vanishes as $\mu \to \infty$

\[R = 3.75 \]

\[\frac{4\beta}{\mu L} \]

\[0 \leq 0.20 \text{ (fwc)} \]

\[0 \leq 0.20 \text{ (raw)} \]

\[0 \leq 0.54 \text{ (fwc)} \]

\[0 \leq 0.54 \text{ (raw)} \]
Exponential Decay Model

- Alternative logarithmic model is less accurate.
- Decay rate strongly dependent on initial amplitude.
- See clear deviation from exponential behaviour (dashed).
Summary

• Previous simulations of cosmic/axion strings do not capture sufficient dynamic range - AMR bridges the gap

• Oscillating global strings simulated on a wide variety of physical length scales by exploiting AMR GRChombo code:

 • Quadrupole massless radiation observed together with dipole massive radiation using quantitative Fourier analysis

 • Matching physical intuition: Lower lambda = larger width and lower mass implies relatively more radiation into massive channels, more massive backreaction

• Analytic inverse square model offers excellent description of oscillating radiating global string, predicting both correct power law and magnitude of damping

• Future work: Further spectral analysis of axion radiation from string configurations (including relativistic cases). AMR simulations of large-scale string networks and precision constraints on axion mass. Calculation of GW signatures.
