Research Article
Insecticidal Activity of *Bacillus thuringiensis* Strains Isolated from Soil and Water

Edyta Konecka, Jakub Baranek, Anita Hrycak, and Adam Kaznowski

Department of Microbiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland

Correspondence should be addressed to Edyta Konecka, edkon@amu.edu.pl

Received 17 October 2011; Accepted 24 November 2011

Academic Editors: N. Maneekarn and R. D. Possee

Copyright © 2012 Edyta Konecka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We attempted to search novel *Bacillus thuringiensis* strains that produce crystals with potential utility in plant protection and with higher activity than strains already used in biopesticide production. Seven *B. thuringiensis* soil and water isolates were used in the research. We predicted the toxicity of their crystals by cry gene identification employing PCR method. The isolate MPU B63 with interesting, according to us, genes content was used in evaluating its crystal toxicity against *Cydia pomonella* caterpillars. The strain MPU B63 was cultured from water sample and had cry1Ab, cry1B, and cry15 genes. The LC50 crystals of MPU B63 were compared to LC50 of commercial bioinsecticide Foray determined against *C. pomonella* (codling moth). The activity of MPU B63 inclusions against codling moth larvae was approximately 24-fold higher than that of Foray. The results are a promising introduction for further study evaluating the potential usefulness of isolate MPU B63 crystals in plant protection.

1. Introduction
Biopreparations based on spore-crystals mixtures of *Bacillus thuringiensis* seem to be a good alternative for chemical pesticides. They are environment friendly, do not have a negative influence on nontarget animals, including vertebrates, and are effective in reducing the number of insect pests [1]. However, novel *B. thuringiensis* isolates with higher and broader spectrum of activity are searching in their natural habitats. New strains are cultured from samples collected from soil [2], leaves [3], dead insects [4], and other sources [5–7].

Bacteria *B. thuringiensis* produce crystals comprised of Cry and Cyt proteins active against insect pest [8]. Sixty-eight groups of Cry and 3 groups of Cyt toxins have been known [9]. The toxicity of the most Cry and Cyt proteins are determined [10]. The knowledge on crystal composition leads to prediction of its potential activity [5]. An effective tool in estimating the utility of crystals against pests is identification of genes coding for insecticidal toxins [11]. For example, genes cry1, cry2, cry7, cry8, cry9, cry15, cry22, cry51, and cry1 code for proteins active against *Lepidoptera* pests [10]. Similarly, cry54 codes for protein that is harmful to moths [12]. Other cry genes determine the synthesis proteins toxic for insects of *Diptera* [13, 14], *Coleoptera*, *Hemiptera*, *Hymenoptera*, *Hemiptera*, *Siphonoptera* [10], *Homoptera*, *Orthoptera*, and *Phthiraptera* orders [15]. Furthermore, detection of cry genes by PCR method enables discovering genes of novel crystalline toxins [11].

The protection of plants against some insects can be difficult. An example is protection of fruit trees against codling moth (*Cydia pomonella*) from *Lepidoptera* order. The pest forms tunnels inside the fruit and is hardly available for insecticides dispersed on the fruit surface. Moreover, *C. pomonella* is resistant to most chemical pesticides [16].

We cultured *B. thuringiensis* strains from samples of soil and water in searching for novel isolates synthesizing crystals with high and wide insecticidal activity. We determined the potential toxicity of their crystalline inclusions by detection of cry gene profiles with PCR technique. The isolate with interesting, according to us, gene content was used in evaluating its crystal activity against *C. pomonella* caterpillars.

2. Materials and Methods

2.1. Bacteria. Seven *Bacillus thuringiensis* strains were used in the study (Table 1). Six bacterial isolates were cultured
Identification of cry15, cry16, cry18, cry20, cry22, cry25, were accomplished as proposed by Ben-Dov et al. [26]. and steps of PCR for cry3, cry40, genes was described by Ejiofor and Ibarra et al. [13]. Identification of cry39 genes was conducted as depicted by Ibarra et al. [13]. Identification of cry19 and cry39 genes was done according to instruction of Salehi Jouzani et al. [27].

The gene amplifications were carried out in MyCycler Termal Cycler (Bio-Rad, USA). The PCR products were electrophoresed in 1.5% agarose gel NOVA Mini (Novazym, Poland), stained with ethidium bromide and documented with Bio-Print V.99 System (Vilber Lourmat, France). The sizes of amplicons were estimated by GelCompar II 3.5 software (Applied Maths, Belgium).

2.3. Activity of B. thuringiensis Crystals against C. pomonella Caterpillars. The activity of B. thuringiensis crystals against C. pomonella was determined using the strain MPU B63 with cry1Ab, cry1B, and cry15 genes. The B. thuringiensis strain was cultured on M.B.Th medium for 5 days during sporulation. The mixture of spores and crystals was collected, washed with 1 M NaCl and then in distilled sterile water [28]. The spore-crystal mixture was suspended in 50 mM Tris HCl, 10 mM KCl, and pH 7.5 and placed on sucrose density gradient (67%, 72%, 79%, and 87%). After centrifugation, the layer of crystals was gathered and washed in sterile distilled water [29].

The number of crystals in the suspension was evaluated in a Bürker cell. Five dilutions of toxins \(10^2 \text{–} 10^6\) were prepared and applied to two-day-old Cydia pomonella caterpillars. The spore-crystal mixture of commercial pesticide Foray was prepared in the same manner, at the same time, and using the same conditions as for MPU B63. The larvae were cultured on medium according to Guennelon et al. [30]. The suspension of MPU B63 crystals or Foray spore-crystal preparation with known concentrations was spread on the medium surface. The larvae are cannibalistic; therefore, they were reared individually at a 16 : 8 (day : night) period, 26°C and 40–60% humidity. The number of dead insects was estimated after 7 days.

The 50% lethal concentration (LC\(_{50}\)) of MPU B63 crystals against C. pomonella was calculated by using probit analysis with the consideration of dead caterpillars in control sample [31]. The obtained value was compared to LC\(_{50}\) commercial bioinsecticide Foray determined against C. pomonella. The insecticidal activity of Foray preparation was 21200 IU/mg. The potency (IU/mg) of isolate MPU B63 was counted using the following formula [32]: potency of isolate crystals (IU/mg) = [LC\(_{50}\) of Foray × potency of Foray (IU/mg)]/LC\(_{50}\) of isolate crystals.

3. Results

3.1. Distribution of Crystalline Toxin Genes. The B. thuringiensis strains had from three to eight crystalline toxin genes. We found that the isolates had cry1Aa, cry1Ab,
cry1Ac, cry1B, cry1C, cry1D, cry1I, cry2Aa, cry2Ab, cry9B, cry9E, and cry15. The obtained results are given in Table 1.

B. thuringiensis soil isolates harbored cry1, cry2 and cry9 genes. Strain MPU B63 cultured from water possessed cry1 and cry15 genes. The cry1A gene was present in all isolates. All *B. thuringiensis* strains obtained from soil samples carried cry2A and cry1I. Strains with cry1C had also cry1D, cry9B, and cry9E. The soil isolate MPU B30 had large number and diversity of cry genes; it possessed cry1Aa, cry1Ba, cry1Ca, cry1D, cry1H, cry2Ab, cry9B, and cry9E genes. The amplicons of some cry genes are shown in Figure 1. None of the isolates had cry1J, cry1K, cry5, cry6, cry7, cry8, cry11, cry12, cry13, cry14, cry16, cry17, cry18, cry19, cry20, cry21, cry22, cry24, cry26, cry27, cry28, cry29, cry30, cry32, cry39, cry40, cry1T, and cryT2 genes.

3.2. Toxicity of *B. thuringiensis* MPU B63 Crystals for *Cydia pomonella* Larvae

The strain MPU B63 was chosen to determine its crystal activity due to unique cry gene profile. The isolate had cry15 gene. The LC$_{50}$ value of MPU B63 toxins against *C. pomonella* was 1.55×10^5 crystals per larva. The obtained value was compared to the LC$_{50}$ of commercial biopesticide Foray containing spores and crystals of *B. thuringiensis* subsp. *kurstaki* that is recommended to protect plants against lepidopteran insects. LC$_{50}$ of Foray for *C. pomonella* was 3.69×10^6 spores and crystals per larva (Table 2). The LC$_{50}$ of MPU B63 crystals was approximately 24-fold lower than LC$_{50}$ of bioinsecticide against *C. pomonella* caterpillars. The potency of MPU B63 toxins was approximately 890 IU/mg, and it was higher than the potency of Foray.

4. Discussion

Bacillus thuringiensis bacteria are ubiquitous in soil [2, 13, 33, 34], dead larvae [4], sand [5], leaves [3], water [7], or dust from stored grains [6]. Wild strains isolated form environmental samples can synthesize crystals that display higher activity against insect pests in comparison to *B. thuringiensis* strains already used in pesticide production. We attempted to culture *B. thuringiensis* isolates from soil and water samples and estimate their potential usefulness in plant protection.

The knowledge on coding for genes toxins in crystalline inclusion is useful in predicting potential pathogenicity of *B. thuringiensis* isolates against insects [5, 7, 11]. Cry1 toxins display activity against lepidopteran, dipteran, and coleopteran pests. Cry2 genes code for crystalline proteins toxic for *Diptera* and *Hemiptera*. Cry9 proteins indicate activity against insects of *Coleoptera* and *Lepidoptera* order. Cry15 is toxic for lepidopteran pests [10]. Two of soil-isolated strains (MPU B30 and MPU B55) had genes of Cry1, Cry2, and Cry9 toxins. Other *B. thuringiensis* isolates cultured from soil possessed cry1 and cry2 genes. Their crystals showed potential activity against pests of *Coleoptera*, *Diptera*, *Hemiptera*, and *Lepidoptera*. Water-isolated strain harbored genes coding Cry1 and Cry15 toxins that indicate the crystals activity against coleopteran, dipteran, and lepidopteran insects.

All isolates had cry1 gene, and seven of eight strains harbored cry2 gene. These genes were also noted as the most frequent in *B. thuringiensis* strains [2, 3, 5, 6, 33, 34]. All analyzed *B. thuringiensis* harbored cry1I genes that have been reported as the most abundant in *B. thuringiensis* isolates [11]. Soil-isolated strains with cry1A possessed also cry2A gene, which is with agreement in notice done by Saadaoui et al. [3] in strains from soil samples collected in Tunisia. We observed that strains with cry1C had also cry1D, cry9B, and cry9E.

Strain *B. thuringiensis* subsp. *kurstaki* HD-1 applied in production of insecticide Foray harbored cry1Aa, 1Ab, 1Ac, 1I, 2Aa, 2Ab, and 2Ac genes [35]. Soil isolate MPU B30 had the largest number of cry genes among the isolates analyzed (Table 1). In comparison to Foray, it additionally carries cry1B, cry1C, cry1D, cry9B, and cry9E genes, which can indicate wider spectrum of toxicity and higher insecticidal
activity of their crystals than the commercial insecticide. Our attention was directed to MPU B63 with cry15 gene isolated from water sample. The gene is rarely detected on mouse erythrocytes [37].

Our searching for a novel isolate producing crystals with higher activity than commercial biopesticide revealed the MPU B63 strain. The toxicity of Foray insecticide was approximately 24-fold lower compared to that of MPU B63 crystals. The results are a starting point for future research determining potential usefulness of MPU B63 isolate in plant protection.

Acknowledgment

The work was supported by Grant no. N N310 079936 from science funding in years 2009–2012.

References

[1] K. B. Joung and J. Ch. Côté, “A review of the environmental impacts of the microbial insecticide Bacillus thuringiensis,” Technical Bulletin, vol. 29, pp. 1–16, 2000.

[2] H. Liang, Y. Liu, J. Zhu et al., “Characterization of cry2-type genes of Bacillus thuringiensis strains from soils isolated of Sichuan basin, China,” Brazilian Journal of Microbiology, vol. 42, no. 1, pp. 140–146, 2011.

[3] I. Saadouzi, R. Al-Thani, F. Al-Saadi et al., “Characterization of tunisian Bacillus thuringiensis strains with abundance of kurstaki subspecies harbouring insecticidal activities against the lepidopteran insect Ephesia kuehniella,” Current Microbiology, vol. 61, no. 6, pp. 541–548, 2010.

[4] F. H. Valicente, E. A. de Toledo Picoli, M. J. V. de Vasconcelos et al., “Molecular characterization and distribution of Bacillus thuringiensis cry1 genes from Brazilian strains effective against the fall armyworm, Spodoptera frugiperda,” Biological Control, vol. 53, no. 3, pp. 360–366, 2010.

[5] D. N. Baig and S. Mehnaz, “Determination and distribution of cry-type genes in halophilic Bacillus thuringiensis isolates of Arabian Sea sedimentary rocks,” Microbiological Research, vol. 165, no. 5, pp. 376–383, 2010.

[6] A. O. Eijofo and T. Johnson, “Physiological and molecular detection of crystalliferous Bacillus thuringiensis strains from habitats in the South Central United States,” Journal of Industrial Microbiology and Biotechnology, vol. 28, no. 5, pp. 284–290, 2002.

[7] C. S. Hernández-Rodriguez and J. Ferré, “Ecological distribution and characterization of four collections of Bacillus thuringiensis strains,” Journal of Basic Microbiology, vol. 49, no. 2, pp. 152–157, 2009.

[8] M. A. Ibrahim, N. G. M. Junker, and L. A. Bulla, “Bacillus thuringiensis A genomics and proteomics perspective,” Biomedical Engineering, vol. 1, no. 1, pp. 31–50, 2010.

[9] N. Crickmore, “Full list of delta-endotoxin,” 2011, http://www.lifesci.sussex.ac.uk/home/Neil.Crickmore/Bt/.

[10] K. V. Frankenhuysen, “Insecticidal activity of Bacillus thuringiensis crystal proteins,” Journal of Invertebrate Pathology, vol. 101, no. 1, pp. 1–16, 2009.

[11] A. Nazarian, B. V. Taheri, M. S. Sajjadi et al., “Coleopteran-specific and putative novel cry gene in Iranian native Bacillus thuringiensis collection,” Journal of Invertebrate Pathology, vol. 102, no. 2, pp. 101–109, 2009.

[12] F. Tan, J. Zhu, J. Tang et al., “Cloning and characterization of two novel cry protein genes, cry54Aa1 and cry30Fa1, from Bacillus thuringiensis strain BtMC28,” Current Microbiology, vol. 58, no. 6, pp. 654–659, 2009.

[13] J. E. Ibarra, M. C. Del Rincon, S. Ordúz et al., “Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species,” Applied and Environmental Microbiology, vol. 69, no. 9, pp. 5269–5274, 2003.

[14] D. R. Zeigler, Bacillus thuringiensis & Bacillus cereus. Bacillus Genetic Stock Center Catalog of Strains, vol. 2, The Ohio State University, USA, 7th edition, 1999.

[15] E. Schnepp, N. Crickmore, J. Van Rie et al., “Bacillus thuringiensis and its pesticidal crystal proteins,” Microbiology and Molecular Biology Reviews, vol. 62, no. 3, pp. 775–806, 1998.

[16] D. Mota-Sanchez, J. C. Wise, R. V. Poppen, L. J. Gut, and R. M. Hollingworth, “Resistance of cadling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), larvae in Michigan to insecticides with different modes of action and the impact on field residual activity,” Pest Management Science, vol. 64, no. 9, pp. 881–890, 2008.

[17] I. Swiecicka, D. K. Bideshi, and B. A. Federici, “Novel isolate of Bacillus thuringiensis subsp. thuringiensis that produces a quasicuboidal crystal of Cry1Ab21 toxic to larvae of Trichoplusia ni,” Applied and Environmental Microbiology, vol. 74, no. 4, pp. 923–930, 2008.

[18] M. M. Lecadet, V. Cosmao Dumanoir, E. Frachon, and H. Ripoulet, “Collection of Bacillus thuringiensis and Bacillus sphaericus (classified by H Serotypes),” International Entomopathogenic Bacillus Centre, W. H. O. Collaborating Centre, Institut Pasteur Paris, France, Catalogue No 1,1994.

[19] W. A. Smirnoff, “A staining method for differentiating spores, crystals, and cells of Bacillus thuringiensis,” Journal of Invertebrate Pathology, vol. 4, pp. 384–386, 1962.
and strains,” *Applied and Environmental Microbiology*, vol. 59, no. 1, pp. 114–119, 1993.

[21] E. Ben-Dov, A. Zaritsky, E. Dahan et al., “Extended screening by PCR for seven cry-group genes from field-collected strains of *Bacillus thuringiensis*,” *Applied and Environmental Microbiology*, vol. 63, no. 12, pp. 4883–4890, 1997.

[22] V. M. Juárez-Pérez, M. D. Ferrandis, and R. Frutos, “PCR-based approach for detection of novel *Bacillus thuringiensis* cry genes,” *Applied and Environmental Microbiology*, vol. 63, no. 8, pp. 2997–3002, 1997.

[23] R. Monnerat, E. Martins, P. Queiroz et al., “Genetic variability of *Spodoptera frugiperda* Smith (Lepidoptera: Noctuidae) populations from Latin America is associated with variations in susceptibility to *Bacillus thuringiensis* cry toxins,” *Applied and Environmental Microbiology*, vol. 72, no. 11, pp. 7029–7035, 2006.

[24] L. Masson, M. Erlandson, M. Puzstai-Carey, R. Brousseau, Y. S. Zhu, A. Brookes, K. Carlson, and P. Filner, “Separation of *Bacillus thuringiensis* by Ludox gradient centrifugation,” *Journal of Industrial Microbiology and Biotechnology*, vol. 55, no. 5, pp. 1279–1281, 1989.

[25] A. Bravo, S. Sarabia, L. Lopez et al., “Characterization of cry genes in a Mexican *Bacillus thuringiensis* strain collection,” *Applied and Environmental Microbiology*, vol. 64, no. 12, pp. 4965–4972, 1998.

[26] E. Ben-Dov, Q. Wang, A. Zaritsky et al., “Multiplex PCR screening to detect cry9 genes in *Bacillus thuringiensis* strains,” *Applied and Environmental Microbiology*, vol. 65, no. 8, pp. 3714–3716, 1999.

[27] G. Salehi Jouzani, A. Pourjan Abad, A. Seifinejad, R. Marzban, K. Kariman, and B. Maleki, “Distribution and diversity of Dipteran-specific cry and cyt genes in native *Bacillus thuringiensis* strains obtained from different ecosystems of Iran,” *Journal of Industrial Microbiology and Biotechnology*, vol. 35, no. 2, pp. 83–94, 2008.

[28] Y. S. Zhu, A. Brookes, K. Carlson, and P. Filner, “Separation of protein crystals from spores of *Bacillus thuringiensis* by Ludox gradient centrifugation,” *Applied and Environmental Microbiology*, vol. 55, no. 5, pp. 1279–1281, 1989.

[29] K. Guz, J. Kucińska, E. Lonc, and W. Doroszkiewicz, “Differentiated pattern of protein composition of crystalline inclusions of newly isolated *Bacillus thuringiensis* strains from Silesia in Poland,” *Polish Journal of Microbiology*, vol. 54, no. 4, pp. 263–269, 2005.

[30] G. Guennelon, H. Audemard, J. C. Fremond, and M. A. El Idriessi Ammari, “Prégrés réalisés dans l’elevage permanent du Carpocapse (Laspeyresia pomonella L.) sur milieu artificiel,” *Agronomie*, vol. 1, pp. 59–64, 1981.

[31] D. J. Finney, *Probit Analysis*, Cambridge University Press, Cambridge, UK, 1952.

[32] C. C. Beegle, T. L. Couch, R. T. Alls et al., “Standardization of HD-1-S-1980: U.S. Standard for Assay of Lepidopterous-active *Bacillus thuringiensis*,” *Bulletin of Entomological Society of America*, vol. 32, pp. 44–45, 1986.

[33] G. Armengol, M. C. Escobar, M. E. Maldonado, and S. Orduz, “Diversity of Colombian strains of *Bacillus thuringiensis* with insecticidal activity against dipteran and lepidopteran insects,” *Journal of Applied Microbiology*, vol. 102, no. 1, pp. 77–88, 2007.

[34] S. A. López-Pazos, J. W. Martínez, A. X. Castillo, and J. A. C. Salamanca, “Presence and significance of *Bacillus thuringiensis* cry proteins associated with the andean weevil *premonotyripes vorax* (Coleoptera: Curculionidae),” *Revista de Biología Tropical*, vol. 57, no. 4, pp. 1235–1243, 2009.

[35] E. Konecka, A. Kaznowski, J. Ziennicka, K. Ziennicki, and H. Paetz, “Analysis of cry gene profiles in *Bacillus thuringiensis* strains isolated during epizootics in *Cydia pomonella* L,” *Current Microbiology*, vol. 55, no. 3, pp. 217–222, 2007.

[36] K. L. Brown and H. R. Whiteley, “Molecular characterization of two novel crystal protein genes from *Bacillus thuringiensis* subsp. *thompsoni*,” *Journal of Bacteriology*, vol. 174, no. 2, pp. 549–557, 1992.

[37] S. Naimov, R. Boncheva, R. Karlova, S. Dukiandjiev, I. Minkov, and R. A. De Maagd, “Solubilization, activation, and insecticidal activity of *Bacillus thuringiensis* serovar *thompsoni* HD542 crystal proteins,” *Applied and Environmental Microbiology*, vol. 74, no. 23, pp. 7145–7151, 2008.

[38] C. Rang, L. A. Lacey, and R. Frutos, “The crystal proteins from *Bacillus thuringiensis* subsp. *thompsoni* display a synergistic activity against the codling moth, *Cydia pomonella*,” *Current Microbiology*, vol. 40, no. 3, pp. 200–204, 2000.

[39] R. Boncheva, S. Dukiandjiev, I. Minkov, R. A. De Maagd, and S. Naimov, “Activity of *Bacillus thuringiensis* δ-endotoxins against codling moth (*Cydia pomonella* L.) larvae,” *Journal of Invertebrate Pathology*, vol. 92, no. 2, pp. 84–87, 2006.

[40] R. A. De Maagd, A. Bravo, C. Berry, N. Crickmore, and H. E. Schnepf, “Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria,” *Annual Review of Genetics*, vol. 37, pp. 409–433, 2003.