Development and Validation of a Ultra Flow Liquid Chromatography Method for the Assay of Boceprevir Using a Quality-by-Design Approach

Manish Majumder¹, Ramesh B*¹, Minaketan Tripathy²

¹Department of Pharmaceutical Chemistry and Analysis, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University (ACU), B G Nagara, Karnataka, India
²Centre for Molecular Pharmaceutics and Advanced Therapeutics (CMPAT), Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University (ACU), B G Nagara, Karnataka, India

Article History:
Received on: 01 Nov 2020
Revised on: 07 Dec 2020
Accepted on: 14 Dec 2020

Keywords:
Boceprevir, Quality by Design, Method Development, Validation, Ultra Flow Liquid Chromatography

ABSTRACT

Quality by design guided. The assay method of Boceprevir is developed in accordance with ICH Q8(R2) guideline with due validation. In this process, the Target analytical profile (TAP) of the drug was set and critical method parameters (CMP) were investigated by systematic risk assessment experimentation to control critical Quality Attributes (CQA). In this, A Cause Effect Risk Assessment Matrix with Control-Noise-Experiment (CNX) is used for identifying the high-risk variables i.e Percentage of Organic Modifier (% methanol), pH of the Buffer and flow rate of the mobile phase. The surface response methodology was applied to optimize the critical method parameters (CMP) as well as Critical Quality Attributes (CQA) to find out the Design space of the method. The Optimum assay method condition was mobile phase Acetate Buffer (50mM) pH 5.4: Methanol (11:89), Flow rate: 0.9 ml/min, Lambda Max: 207. The separation was achieved in the Eclip Plus C-18 column (250 × 4.6 mm, 5μm) at ambient temperature. The retention time of Boceprevir was found to be 4.2 min. The method evaluation was performed according to the (Q2R1) ICH guideline.

INTRODUCTION

Hepatitis C virus (HCV) is a seriously increasing health problem globally. Each year, 500000—700000 people died of HCV infected liver disease (Lavanchy, 1999). Boceprevir is an HCV protease inhibitor used for the treatment of chronic hepatitis C (Ascione, 2012). Traditional Method Development by RP-UFLC is a time-dependent process because of the fact one-factor-at-a-time (OFAT) system is utilized for finalizing the method performance. But in today’s competitive scenario, the need of Pharmaceutical Industry is to develop a fast, economic and robust method for estimation of Boceprevir. This type of method can be developed and optimized using the Quality by Design Approach (QbD) (Mallik et al., 2015).

Analytical QbD begins with Analytical Target Profile (ATP) describing the aim of the method, subsequently followed by the Quality Target Method Profile (QTMP) identifying the potential method variables using Initial Risk factor analysis. Analytical Quality by Design (AQbD) includes the Design of Experiments (DOE) to study instantly a high number of investigational dynamics in a limited number of trials. The final target of the QbD approach is to concurrently optimize the separation and method.
robustness that is established through the construction of a Design Space (DS) (Vogt and Kord, 2011; S, 2009; Ferety et al., 2018).

Till date, to our knowledge, few analytical methods are available in literature viz., Anuradha et al., using Uv-Visible Spectrophotometer (Anuradha and Nizami, 2018). Liquid Chromatography(LC) being reported by Ganji et al., Damle M et al., and Chandramowli et al., (Damle and Salunke, 2016; Chandramowli et al., 2018). Two Boceprevir estimation method in Human Plasma by LCMS are also reported (Aouri et al., 2013; Chandramowli and Rajkamal, 2016). However, these reported methods possess such kinds of limitations like method developed by the traditional approach, lack of deep understanding of critical method parameters etc.

Hence, deep monitoring and a detailed understanding of the key variables are expected to establish a robust analytical method. In the current study, it is envisaged to develop a sensitive and economical UFLC method for estimation of Boceprevir using QbD with due validation. The study is planned to be carried out in three phases, (i) the initial Risk factor identification by Control-Noise-Experimentation (CNX) approach, (ii) Optimization of the chromatographic condition by Central Composite Design (CCD) to find out DS and Method Operable Design Region (MODR), and (iii) Validation of the method according to ICH guideline.

Experimental
Chemical and materials
Boceprevir was procured from MNS Laboratories Pvt Ltd. Sodium Acetate Trihydrate (Analytical Grade) was purchased from Ranbaxy laboratories ltd, Mumbai and HPLC grade Methanol was purchased from Thermo Fischer Scientific. Ultra-pure water (HPLC grade) was obtained from a Milli-Q Plus 185 water purification unit.

Instruments
The method development and method validation was performed using one Shimadzu Ultra Flow Liquid Chromatography (UFLC) system with LC-20AD pump and PDA Detector. The posterm analysis was combined and managed using LC Real-time Analysis software. The pH meter (S-3CW microprocessor) was from Anametrics, Bangalore. The weighing Balance ACCULAB Sartorius was used during the experiment.

Initial Chromatographic Condition
The initial chromatographic condition includes mobile phase consisting 20mM Sodium acetate Buffer (pH 5.5): Methanol (10:90% v/v), separation is achieved on Eclip plus C-18 column (250 × 4.6 mm, 5 μm) at 1.0mL/min flow rate with 10 min run time.

Statistics
The obtained results were subjected to Central Composite Design (CCD) using Design-Expert® 11 Software Trial Version.

Preparation of standard and sample solution
Preparation of primary Stock solution (1000μg/ml): 10mg of Boceprevir was dissolved in 10ml of methanol to obtain the strength 1000μg/ml
Preparation of working standard (100 μg/ml): The stock solution was diluted to attain the strength of 100μg/ml solution of Boceprevir.

Initial Risk Assessment
Risk assessments are an integral part of the Analytical QbD process. A cause-effect risk assessment Metrix is utilised for identifying and subsequently ranking the critical method parameters affecting the critical method attributes mostly in conformation to Analytical target profile (ATP) of the Boceprevir (Raman et al., 2015; Beg et al., 2016b). In the present studies, High risk Dependent and Dependent variables are identified and analysed by Control-Noise-Experimentation (CNX) approach (Table 1). Three identified high scored Independent variables viz. percentage of methanol, flow rate and pH of Buffer solution was subjected to Design of Experiment using Surface Response methodology to find and establish a design space of the method.

Experimental Design
In experimental design, the number of experimental runs is constructed to achieve true optimum points. Therefore, The Surface Response Methodology in term of Central Composite Design (CCD) is applied to optimize the effective Independent variables on the proficiency of the method. A quadratic model was constructed between the Critical Method Attributes (Resolution & Asymmetric factor) and Critical Method Parameters (% organic modifier, mobile phase pH & Flow Rate) variables (Box and Wilson, 1951; Hashemi et al., 2010; Sivakumar et al., 2007).

The Main and interactive effects of the variables are studied by the developed model. The Analysis of Variance (ANOVA) is utilized for the significance study of the model’s coefficients. Here polynomial equation is constructed for responses by taking into consideration of coefficient of correlation, %CV and lack of fit as an adopted model fittings (Sivakumar et al., 2007; Rhodadoust and Ghaedi, 2013). The fitness of the model is investigated by the diagno.
Figure 1: Normal probability plot of residuals for Resolution (As)

Figure 2: Normal probability plot of residuals for Asymmetric factor (As)

Figure 3: Plot of residuals vs. predicted values for Resolution (Rs)
Table 1: Control-Noise-Experimentation (CNX) approach

Critical Method Parameter	Critical Method Attributes	Initial Risk assessment Scores	C,N,X	Experimental Strategy	
	Resolution	Asymmetric Factor			
Isocratic Binary Parameter					
Flow Rate	2	2	40	C	Calibrated
Stationary Phase	5	5	100	C	New Column
Particle size	2	2	40	C	Optimum
Dimension	2	2	40	C	Standard
Column Temp	5	5	100	N	Ambient
Buffer pH	10	10	200	X	DOE
% organic Modifier	10	10	200	X	DOE
Solvent Grade	5	5	100	N	HPLC grade
Injection Vol	2	2	40	C	20μL
Flow Cell	5	5	100	C	400 °C
temp	5	5	100	N	Standard

Note: C-Control, N-Noise and X-Experiment Score Low Risk-1, Medium Risk-5 and High Risk-10 Total Score = (Risk level of First CMA × 10) + (Risk level of Second CMA × 10)

Figure 4: Plot of residuals vs predicted values for Asymmetric factor (As)
Figure 5: 3D-response surface plot for interaction study

(a) % of Organic modifier & Flow Rate Vs Resolution, (b) pH & % of Organic modifier Vs Resolution, (c) Flow Rate & pH Vs Resolution, (d) pH & % of Organic modifier Vs Asymmetric factor, (e) flow Rate and % of Organic modifier Vs Asymmetric factor, (f) pH & flow Rate Vs Asymmetric factor.

Figure 6: Design space by using % of organic modifier and buffer's pH

Figure 7: Design space by using flow rate and % of organic modifier
Table 2: Central Composite design: 3 Factors with 2 Responses

Run	A: % Organic Modifier % concentration	B: pH	C: Flow Rate mL/min	Response 1: Resolution	Response 2: Asymmetric Factor (K)
1	90	6.3409	1	1.582	0.408
2	90	5.5	1	1.572	0.403
3	85	6	1.5	1.922	0.751
4	90	5.5	1	1.672	0.403
5	90	5.5	1	1.672	0.403
6	90	5.5	1.8409	1.672	0.403
7	95	6	1.5	1.5	0.229
8	90	5.5	1	1.524	0.403
9	85	5	1.5	1.967	0.733
10	95	5	1.5	1.507	0.226
11	90	5.5	1	1.672	0.403
12	95	6	0.5	1.578	0.234
13	90	5.5	0.159104	1.585	0.393
14	85	6	0.5	1.564	0.349
15	90	4.6591	1	1.538	0.336
16	98.409	5.5	1	1.501	0.135
17	81.591	5.5	1	1.99	1.099
18	85	5	0.5	1.76	0.544
19	95	5	0.5	1.679	0.44
20	90	5.5	1	1.608	0.403

A: Factor1: % Organic Modifier;
B: Factor2: pH
C: Factor3: Flow rate
R1: Response 1: Resolution
R2: Response 2: Asymmetric Factor (K)

Figure 8: Derringer’s desirability plot for optimizing % of Organic Modifier, pH and Flow Rate of the method.
Table 3: Summary of Validation

Assay Parameters	Result	Acceptance Criteria
Specificity	The retention Time of Boceprevir is observed to be 4.2 min with Peak Purity Index: 0.9999.	The chromatographic peak excipient must not interfere with the targeted analyte peak.
Linearity	The standard linearity for Boceprevir was generated from 100 µg/mL to 800 µg/mL. R² was found to be 0.9987 with \(y = 14766x + 255855 \). And Standard error was found to be 118550. P-value was found to be 0.097085.	The correlation coefficient for six concentration levels will be ≥0.997 for the range of 80 to 120% of the target Concentration.
Range	200 µg/mL to 600 µg/mL range was used for the Accuracy and Precision study. %RSD was less than 2.	The acceptable range will be defined as the concentration interval over which linearity and accuracy are obtained per the above criteria, and in addition, that yields a precision of ≤3% RSD.
Accuracy	For drug substance: Average %assay at three concentration level (50%, 100% & 150%) for Boceprevir were found to be 100%, 100.75% & 100% respectively. And % RSD were found to be 0.422, 0.209 & 0.177 for three different level. For Accuracy of Drug Product (Boceprevir tablet): Average Recovery (%) and Standard Deviation (SD) Values at Each level (80%, 100%, and 120%) for Boceprevir were found to be 99.42%±0.4233, 98.69%±0.4618 and 99.26±0.1456, respectively.	The Relative Standard Deviation (RSD %) for the individual recovery result at each level, not more than 2.0%. The average recovery at different concentration levels: 98.0-102.0%.
Precision	The % RSD for the repeatability study was found to be 0.1197 for Retention Time and 0.7326 for Peak Area of Boceprevir, respectively. Therefore, the precision of the analytical method was found to be within acceptable limits.	The %RSD for repeatability, not more than 2.0
LOD	29.24 µg/mL	Complies the report
LOQ	87.51 µg/mL	Complies the report
Assay	198.68 mg 99.34%	98% to 102%
RESULTS AND DISCUSSION

Design of Experiment

In Central Composite design (CCD) 20 experiments are run in randomized order to reduce the effects of unrestrained variables as shown in Table 2. This design is utilized to optimize the quadratic and interactive effect (Hashemi et al., 2010). The experimental results of the CCD have been fitted with coded expressions for (Resolution) R1 and R2 (Asymmetric factor) as expressed

\[
R1 = +1.62 - 0.1297A - 0.0201B + 0.0338C + 0.0166AB - 0.1019AC + 0.0306BC + 0.0525A^2 - 0.0131B^2 + 0.0111C^2
\]

\[
R2 = 0.4039 - 0.2111A - 0.0299B + 0.0835C + 0.0155AB - 0.1450AC + 0.0340BC + 0.1175A^2 - 0.0045B^2 + 0.0042C^2
\]

Response R1 = Resolution, Response R2 = Asymmetric factor, Factor A = %Organic modifier

Factor B = pH of the Buffer, Factor C = Flow Rate of the mobile Phase

The ANOVA is applied to understand the variable’s effect and interaction using Design expert 11. The P-value for R1 & R2 is observed to be 0.0004 & 0.002, indicating the statistical significance of an effect at a 95% confidence level. The Model F-values of 11.22 for R1 & 11.03 for R2, respectively, implies the model is significant (Sivakumar et al., 2007; Khodadoust and Ghaedi, 2013). The quality of fit of the polynomial model equation is expressed by the coefficient of determination R^2 as shown in the result with 0.9909 and 0.9098 for the corresponding values of resolution and asymmetric factor, whereas 0.8287 and 0.8261 represented the same for the adjusted R^2 values. The large adjusted R^2 values ≥ 0.80 indicate a good relationship between the experimental data and the fitted model (Sivakumar et al., 2007; Khodadoust and Ghaedi, 2013). The adequate precision value is a measure of the “signal (response) to noise (deviation) ratio”. A ratio greater than four is desirable (Sivakumar et al., 2007; Khodadoust and Ghaedi, 2013). In this study, the ratio is found to be 12.3243 for R1 & 12.8682 for R2, indicating the model is significant for the separation process. The value of 3.76 in the case of the parameter of %CV for all models is in agreement with previous literature, hence indicate reasonable reproducibility (Sivakumar et al., 2007; Khodadoust and Ghaedi, 2013).

The diagnostic plots, (i) a normal probability plot of residuals and (ii) a plot of residuals vs predicted values, are analysed for response R1 and R2. It is observed by closed inspection in Figures 1 and 2 that the distribution of errors is normal, indicating the model fits the data adequately (Khodadoust and Ghaedi, 2013; Olivero et al., 1995; Stalikas et al., 2009). The observation of Figures 3 and 4 tells there is no apparent pattern of residual in the plot of residual versus predicted response due to equal scattering of residuals above and below the x-axis, expressing the suitability of the proposed model. Since the norms of normality and continual discrepancy of the residuals were found to be satisfied, the fitted model for the R1 and R2 may be accepted (Khodadoust and Ghaedi, 2013; Olivero et al., 1995; Stalikas et al., 2009).

Interference study

Response surface analysis has been carried out employing a 2D-response surface plot for identifying the underlying interaction(s) among the studied factors (Hasnain et al., 2016; Jovanović et al., 2015;
The 3D-response surface plot Figure 5 indicates a linear increasing Resolution value with a decrease in the Organic modifier (%) as well as flow rate and a linear declining Resolution value observed with increase in the pH as well decrease in flow rate. And at the highest level of pH and lowest flow rate, Resolution is Maximum.

It is also observed in the 3D-response surface plot that a linear declining Asymmetric factor value increases with Organic modifier (%) and with decreasing pH value. Asymmetric Factor illustrated a linear declining value with an increase in the pH as well decrease in flow rate. At the point of the highest level of pH and lowest flow rate, Asymmetric factor showed minimum.

Design Space and Desirability Function

Design Space has been created after treating all data using the modelling software Design Expert-11 Trial Version. Two-dimensional charts are created by taking three factors (% Organic Modifier, pH & Flow rate) and represented in Figures 6 and 7. The Red region of the 2D contour plots depicts the design space, defining the robust region of the method where results are within designated criteria.

Maximising the resolution of symmetrical peak and minimization of asymmetric factors are the main objectives. Derringer’s desirability function (D) is the most suitable technique to optimize the different responses at multiple targets (Hadjmohammadi and Sharifi, 2012). The value of D is zero indicating a desirable range of all responses and subsequently, a value of D is close to one, representing globally optimal (near to the target value) for a combination of different criteria (Beg et al., 2016a). In this study, the value of D is 0.985 obtained from the surface response curve, indicating an excellent mathematical model in Figure 8 (Hadjmohammadi and Sharifi, 2012; Panda, 2015). The coordinates produce the maximum desirability value at % organic modifier 89% v/v, buffer pH 5.4, and a flow rate of 0.9 mL min⁻¹. The represented Chromatogram of Boceprevir is presented in Figure 9.

Validation

The method validation is performed according to the (Q2R1) ICH guideline. (26) Summary of Validation is illustrated in Table 3.

CONCLUSIONS

In this work, the QbD approach has been successfully implemented for robust method development in the estimation of Boceprevir in its pure form and also in the case of the investigated formulation. Each step of the Analytical QbD process has been studied to find out the Design Space. Response surface plots using CCD illustrated graphically the major effects of independent variables (% Organic modifier, pH and Flow rate) on the separation. Using the QbD approach, a robustness of the method is already available before going for validation. The method has been found to be linear, accurate as well as precise in the range of 200 mg/ml to 600 mg/mL for Boceprevir using Eclip plus C-18 column in 10 minutes runtime.

ACKNOWLEDGEMENT

All authors are thankful to Sri Adichunchanagiri College of Pharmacy, B G Nagara, for providing all required chemicals and facilities.

Funding Support

The authors declare that they have no funding support for this study.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

REFERENCES

Anuradha, N., Nizami, S. 2018. Development and Validation of UV Spectrophotometric Method for the Estimation of Some Hepatitis-C Drugs in Bulk and in Formulations. *International Journal for scientific research and development*, 6:202–205.

Aouri, M., Moradpour, D., Cavassini, M., Mercier, T., Buclin, T., Csajka, C., Telenti, A., Rauch, A., Decosterd, L. A. 2013. Multiplex Liquid Chromatography-Tandem Mass Spectrometry Assay for Simultaneous Therapeutic Drug Monitoring of Ribavirin, Boceprevir, and Telaprevir. *Antimicrobial Agents and Chemotherapy*, 57(7):3147–3158.

Ascione, A. 2012. Boceprevir in chronic hepatitis C infection: a perspective review. *Therapeutic Advances in Chronic Disease*, 3(3):113–121.

Beg, S., Chaudhary, V., Sharma, G., Garg, B., Panda, S. S., Singh, B. 2016a. QbD-oriented development and validation of a bioanalytical method for nevirapine with enhanced liquid-liquid extraction and chromatographic separation. *Biomedical Chromatography*, 30(6):818–828.

Beg, S., Jain, A., Kaur, R., Panda, S. S., Katare, O. P., Singh, B. 2016b. QbD-driven development and validation of an efficient bioanalytical UPLC method for estimation of olmesarten medoxomil. *Journal
of Liquid Chromatography and Related Technologies, 39(13):587–597.

Box, G. E. P., Wilson, K. B. 1951. On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society: Series B (Methodological), 13(1):1–38.

Chandramouli, B., Kumar, B. S., Bhikshapathi, D. R. N., Rajkamal, B. B. 2018. A New Quantitative Analytical Method Development and Validation for the Analysis of Boceprevir in Bulk and Marketed Formulation. International Journal of Pharmaceutical Sciences and Drug Research, 10(03):201–205.

Chandramouli, B., Rajkamal, B. B. 2016. A validated LC-MS/MS method for the estimation of boceprevir and boceprevir D6 (IS) in human plasma employing liquid-liquid extraction. Int. J. Pharm. Pharm. Sci, 8(7):133–137.

Choisnard, L., Bigan, M., Blondeau, D., Dhulster, P., Leman, B., Guillochon, D. 2003. Application of the method of the experimental design to the study of a processing of unshrinkableness of wool fibers. Journal of Applied Polymer Science, 89(2):535–547.

Damle, M., Salunke, S. 2016. Development and Validation of Stability-Indicating HPLC Method for Determination Of Boceprevir. International Research Journal of Pharmacy, 7(8):47–53.

Ferey, L., Raimbault, A., Rivals, I., Gaudin, K. 2018. UHPLC method for multiproduct pharmaceutical analysis by Quality-by-Design. Journal of Pharmaceutical and Biomedical Analysis, 148:361–368.

Hadjmohammadi, M., Shariﬁ, V. 2012. Simultaneous optimization of the resolution and analysis time of flavonoids in reverse phase liquid chromatography using Derringer’s desirability function. Journal of Chromatography B, 880:34–41.

Hashemi, P., Raeisi, F., Ghiasvand, A. R., Rahimi, A. 2010. Reversed-phase dispersive liquid-liquid microextraction with central composite design optimization for preconcentration and HPLC determination of oleuropein. Talanta, 80(5):1926–1931.

Hasnain, M. S., Siddiqui, S., Rao, S., Mohanty, P., Ara, T. J., Beg, S. 2016. QbD-Driven Development and Validation of a Bioanalytical LC–MS Method for Quantification of Fluoxetine in Human Plasma. Journal of Chromatographic Science, 54(5):736–743.

Jovanović, M., Rakić, T., Tumpa, A., Stojanović, B. J. 2015. Quality by Design approach in the development of hydrophilic interaction liquid chromatographic method for the analysis of iohexol and its impurities. Journal of Pharmaceutical and Biomedical Analysis, 110:42–48.

Khodadoust, S., Ghaedi, M. 2013. Optimization of dispersive liquid-liquid microextraction with central composite design for preconcentration of chloridiazepoxide drug and its determination by HPLC-UV. Journal of Separation Science, 36(11):1734–1742.

Lavanchy, D. 1999. Hepatitis C: public health strategies. Journal of Hepatology, 31:146–151.

Mallik, R., Raman, S., Liang, X., Grobin, A. W., Choudhury, D. 2015. Development and validation of a rapid ultra-high performance liquid chromatography method for the assay of benzalkonium chloride using a quality-by-design approach. Journal of Chromatography. A, 1413:22–32.

Olivero, R. A., Nocerino, J. M., Deming, S. N. 1995. Experimental design and optimizationIn Chemometrics in Environmental Chemistry-Statistical Methods. Springer, Berlin, Heidelberg.

Panda, S. S. 2015. Analytical Quality-By-Design Compliant Ultrafast Liquid Chromatographic Method for Determination of Paliperidone in Extended Release Tablet Dosage Form. Journal of Bioanalysis and Biomedicine, 7(04):116–123.

Raman, N. V. V. S. S., Mallu, U. R., Bapatu, H. R. 2015. Analytical Quality by Design Approach to Test Method Development and Validation in Drug Substance Manufacturing. Journal of Chemistry, 2015:1–8.

S, U. 2009. Department of Health and Human Services Food and Drug Administration, ICH Q8(R2) Pharmaceutical Development. Work Qual. by Des. Pharm, 8:28–28.

Sivakumar, T., Manavalan, R., Muralidharan, C., Valliappan, K. 2007. An improved HPLC method with the aid of a chemometric protocol: Simultaneous analysis of amlodipine and atorvastatin in pharmaceutical formulations. Journal of Separation Science, 30(18):3143–3153.

Stalikas, C., Fiafmegos, Y., Sakkas, V., Albanis, T. 2009. Developments on chemometric approaches to optimize and evaluate microextraction. Journal of Chromatography A, 1216(2):175–189.

Vogt, F. G., Kord, A. S. 2011. Development of Quality-By-Design Analytical Methods. Journal of Pharmaceutical Sciences, 100(3):797–812.