Influence of a topographic gradient on the occurrence, abundance and composition of nine species of palms (Arecaceae) in the Central Amazon

Influência de um gradiente topográfico nas mudanças na ocorrência, abundância e composição de nove espécies de palmeiras (Arecaceae) na Amazônia Central
Introduction

Studies of changes in population and community composition are of great importance to the comprehension of interactions among species and how these species are influenced by ecological factors, determining the local and regional biodiversity (Ricklefs and Schluter, 1993). In the tropical forest, these factors are essential to management actions and conservation politics.

Population ecology studies conducted with palms show that this is one of the most abundant and diverse group of plants in tropical forests (Scariot et al., 1989; Lima-Filho et al., 2002), it being found in all forest levels and relief types, and exhibiting a wide variety of growth forms (Kahn and Castro, 1985). The study of populations can reveal more clear distribution patterns in relation to the niche occupied by species than the more complex studies performed to the community.

Palms distribution in Terra Firme forest has been related to the topography because it can influence soil patterns, hydrology, drainage, and forest architecture (Kahn, 1986; Moraes, 1996; Vormisto et al., 2004). In the Central Amazon, Kahn and Castro (1985) observed three general types of soil conditions of Terra Firme forest: (i) well-drained soils (plateau), (ii) poorly-drained soils (slope), and (iii) water-logged soils (valley). The authors relate that these three types of environment were favorable to the development of typical palm species, with few species common to two types of soils.

Palms able to establish in a certain habitat present a more restricted distribution and higher density than rare species (Castilho et al., 1998, De Souza et al., 1999). Most of the studies conducted at Ducke Reserve, near Manaus, are about communities (Tello, 1997; Zuquim et al. 2007). In the same area, the species composition of the palm community varied significantly in relation to environmental and geographical gradients (Costa et al., 2009). The distribution of populations of more abundant palm species can be influenced by several components of the forest structure, like litter quantity, canopy opening, tree density, soil types, etc (Cintra et al., 2005). However, in most of these studies, only adults were considered.

This study differs from previous studies performed at Ducke Reserve because it evaluates the distribution and abundance of palms, including some less abundant, considering seedling and adult phases. Furthermore, we analyzed the populations at only one micro basin of the reserve, separating a priori the potential effect in a spatial mesoscale that different micro basins can produce in palm distribution and abundance.

Since palms are relatively abundant and distributed all over the Reserve, our prediction is that community composition is relatively homogeneous along the variation of the topographical gradient (plateau, slope, valley). Nevertheless, palm species differ in the capacity to occupy more complex environments and some more direct relations are expected, for example, changes in species composition with concomitant changes in soil type or topographical gradients.

Material and methods

Study area

The study was conducted at Adolpho Ducke Forest Reserve (02°55, 59°59'W), in Terra Firme forest, which is not seasonally inundated by the river flood (Ribeiro et al., 1999). Ducke Reserve has a system of regularly spaced trails each with an extension of 8 km in north-south and east-west directions, separated to each other by 1 km. The path system forms a grid and cover an area of 64 km², of which, 12 km² correspond to one of the five hydrographic micro basins of the Reserve (Barro Branco stream “igarapé”), located in the northwest region of the reserve considered in this study (Figure 1).

![Figure 1. Map with the location of Adolfo Ducke Forestal Reserve and the grid with plots location.](image)
Data collection

Abundance data of seedlings and adults were used as dependent variables in Analyses of variance models (ANOVA) in order to verify differences of palm species abundance in relation to the relief (valley, slope, and plateau).

Changes in composition variation of palm species were evaluated using non-metric multidimensional scaling ordination (NMDS), available in PCORD program (McCune and Mefford, 1979). From the data matrix (species/plot), dissimilarity matrices were constructed using the Bray Curtis index. Ordination analyses were performed on qualitative (presence / absence) and quantitative (abundance) matrices of seedlings and adults. The vectors resultant from ordination analyses were used as dependent variables in the Multivariate analysis of variance models (MANOVA), available in the SYSTAT program (Wilkinson, 1998), to evaluate differences in palm species composition in relation to the topographical gradient (valley, slope, plateau). Two NMDS axes captured most of the variance in the original variables for both qualitative and quantitative data in the seedling and adult palm species matrices (Cumulative proportion of total variance (CPV) ranging from 0.60 to 0.80). Therefore, two axes were used as dependent variable in the MANOVAs.

Statistical Analyses

Analysis of variance (ANOVA) was used to verify differences in seedlings and adults abundance in relation to the topographical gradient. To use analyses of variance ANOVA and MANOVA, quantitative data were normalized, performing first the 0.5 sum, and then the square root of the data.

Results and discussion

The pattern of occurrence and distribution of species found in this study corroborates results found in the community in general, in the Amazon Forest (Figures 2 and 3), confirming that palms distribution and abundance are related to the topographic gradient (Kahn and Castro, 1985; Kahn, 1987; Vormisto et al., 2004).

Some of the palms found, like Attalea attaleoides, Oenocarpus bataua, Euterpe precatoria, Socratea exorrhiza and some others, are relatively well distributed in the Amazon region (Henderson et al., 1999). The wide distribution of these species suggests that they can tolerate a great variation of light intensity, soil, nutrient, humidity and topography of the environmental gradient.

Seedlings and adults of Oenocarpus bataua and adults of Oenocarpus minor and Geonoma aspidifolia were less frequent, and seedlings and adults of Attalea microcarpa and adults of Oenocarpus bataua were more frequent in valleys (Table 2). These

Figure 2. Species distribution of the more abundant adult palms along the topographic gradient at Ducke Reserve. Aa= Attalea attaleoides, Am= Attalea microcarpa, Is= Iriartella setigera, Ga= Geonoma aspidifolia, Om=Oenocarpus minor, Ot=Oenocarpus bataua.
Influence of a topographic gradient on the occurrence, abundance and composition of nine species of palms (Areceae)

Figure 3. Abundance of the nine palm species in seedling and adult phases in the topographic gradient (plateau, slope, and valley) of Adolpho Ducke Forest Reserve.

Table 1. Analyses of variance (ANOVA) results of abundance data of the nine studied species in relation to the relief gradient. v = valley, s = slope and p = plateau.

Species	Phase	Plateau	Slope	Valley	Total
Attalea attaleoides	seedlings	14	45	0	59
	adults	130	120	18	268
Attalea microcarpa	seedlings	6	0	89	95
	adults	23	0	182	205
Euterpe precatória	seedlings	50	65	88	203
	adults	3	8	8	19
Geonoma aspidifolia	seedlings	130	97	14	241
	adults	196	105	23	324
Iriartella setigera	seedlings	173	101	30	304
	adults	101	24	8	133
Oenocarpus bacaba	seedlings	563	456	48	1067
	adults	21	25	2	48
Oenocarpus bataua	seedlings	127	74	247	448
	adults	4	2	43	49
Oenocarpus minor	seedlings	30	39	5	74
	adults	40	34	3	77
Socratea hexorrhiza	seedlings	10	14	7	31
	adults	5	10	3	18

Tabela 2. Distribution in relation to seedlings and adults of palms in “floresta de terra firme” in the Central Amazon.
results probably indicate a distribution pattern in which physiological characteristics that favor the establishment and development in flooded areas are enable the establishment of species in the valley. The presence of water is the main factor in the variation of plant species recruitment, inhibiting growth of species that do not present physiological adaptations to deal with the hydric stress (Joly and Crawford, 1982). The presence of water constrains the growth of species that do not present physiological adaptations to deal with the hydric stress, and plants adapted to this condition tend to be dominant in the community (Joly and Crawford, 1982; Losos, 1995; Scarano et al., 1997; Pacheco, 2001). Seedlings of Attalea microcarpa and O. bataua were more abundant in the valley and seedlings of O. bacaba and Geonoma aspidiifolia were less abundant (Figure 4). Adults of Attalea attaleoides, Geonoma aspidiifolia, and Oenocarpus minor were less abundant in the valley and Attalea microcarpa and O. bataua were more abundant. Iriartella setigera was more abundant in the plateau (Table 1, Figure 5). Adults of Attalea attaleoides were found in higher abundance with greater slope areas. De Souza et al. (1999) found that Attalea attaleoides was abundant with greater slopes, probably because it is acaulescent species, and thus more resistant to changes in soil drainage. The composition of the palm communities of the Oriental, Central and Occidental Amazon Forest were compared, showing that species richness is higher in the Occidental region and in the Terra Firme forest, dominated by understory palm species (Kahn et al., 1988). The authors state that the largest and one of the most diverse palm communities of the world is represented, in most part, by small understory species. Arborescent adult palms occur in low density in the Terra Firme forest and the opposite is found in the seasonally flooded forests. Studies of palms in flooded forests in low Ucayali River valley in Peru, re-
Influence of a topographic gradient on the occurrence, abundance and composition of nine species of palms (Arecaceae)

The distribution and abundance of this group of nine palm species, of relatively low ecological density, in the Terra Firme forest of Ducke Reserve, are related to topographic gradients, corroborating previous results of palm communities in the same area. The variation of species composition in different topographic levels probably occurs due to different responses of the species to the environmental heterogeneity of the forest, produced by spatial variation in the abundance of the structural components of the forest. In the context of a complex environment, the topographic gradient certainly contributes for and enables the existence of different ecological niches, favoring the coexistence among species, not only of palms, but also of other organisms, including other groups of plants, invertebrates and vertebrates (Oliveira et al., 2008).

Acknowledgments

We thank the logistic support of INPA, the financial support of FAPEM (Doctorship grant), of IIEB (Beca Program) and Pedro Santos who helped with the English review.
References

BROKAW, N.; BUSING, R.T. 2000. Niece versus chance and tree diversity in forest gaps. *Tree* **15:**183-188.
http://dx.doi.org/10.1016/S1069-5347(00)01822-X

CASTILHO, C.V.; SMITH, M.; TUCKER, J. 1998. Distribuição de palmeiras em três níveis topográficos de uma floresta de “terra firme” na Amazônia Central. In: E. VENTICINQUE; M. HOPKINS (org.), *Curso de Campo Ecologia da Floresta Amazônica*. Manaus, PDBFF-INPA, p. 17-19.

CINTRA, R.; XIMENES, A. de C.; GONDIM, F.R.; KROPF, M.S. 2005. Forest Spacial heterogeneity and palm richness, abundance and community composition in Terra Firme Forest, Central Amazon. *Revista Brasileira de Botânica* **28:**(1):75-84.
http://dx.doi.org/10.1590/S0100-84042005000100007

DORIAN RAIN FOREST.
GALE, N. 2000. The relationship between canopy gaps and topography in a western Ecua-
ics.
KAHN, F. 1987. The distribution of palms as a function of local topography in Amazonian terra-firme forests. *Experientia*, **43:**251-259.
http://dx.doi.org/10.1007/BF01945548

KAHN, F.; CASTRO, A. 1985. The palm community in a forest of central Amazonia, Brazil. *Biotropica*, **17:**210-216.
http://dx.doi.org/10.2307/2388221

KAHN, F.; MEIJIA, K.; CASTRO, A. 1988. Species richness and density of palms in “Terra firme” forests of Amazonia. *Biotropica*, **20:**266-269.
http://dx.doi.org/10.2307/2388314

KAHN, F.; MEIJIA, K. 1990. Palm communities in wetland forest ecosystem of Peruvian Amazonia. *Forest Ecology and Management*, **33/44:**169-179.
http://dx.doi.org/10.1016/0378-1127(90)90191-D

LIMA FILHO, D. de A.; REVILLA, J.; COELHO, L. de S.; RAMOS, J.F.; DOS SANTOS, J.L.; OLIVEIRA, J.G. 2002. Regeneração natural de três hectares de floresta ombrófila densa de “terra firme” na região do rio Urucu-AM, Brasil. *Acta Amazônica*, **32**(4):555-569.

LOSOS, E. 1995. Habitat specificity of two palm species: experimental transplantation in Amazonian successional forests. *Ecology*, **76:**2595-2606.
http://dx.doi.org/10.2307/2265830

MORAES, M.R. 1996. Diversity and distribution of palms in Bolivia. *Principes*, **40**(2):75-85.
OLIVEIRA, M.L.; BACCA, F.B.; BRAGA, R.; MAGNUSSON, W.E. 2008. Reserva Ducke: A biodiversidade amazônica através de uma grade. Manaus, Atenea Design Editorial, 168 p.

PACHECO M.A.W. 2001. Effects of flooding and herbivores on variation in recruitment of palms between habitats. *Journal of Ecology*, **89:**358-366.
http://dx.doi.org/10.1046/j.1365-2745.2001.00548.x

PERES, C. 1994. Composition, density, and fruiting phenology of arborescent palms in an Amazonian Terra firme Forest. *Biotropica*, **26:**285-294.
http://dx.doi.org/10.2307/238849

RIBEIRO, J.E.L.S.; HOPKINS, M.J.G.; VICE-NTINI, A.; SOTHERS, C.A.; COSTA, M.A.S.; BRITO, J.M.; SOUZA, M.A.D.; MARTINS, L.H.P.; LOHMANN, L.G.; ASSUNÇÃO, P.A. C.L.; PEREIRA, E.C.; SILVA, C.F.; MESQUITA, M.R.; PROCOPIO, L.C. 1999. Flora da Reserva Ducke: Guia de identificação das plantas vascu- lares de uma floresta de terra-firme na Amazônia Central. Manaus, Editora INPA, 816 p.

RICKLEFS, R.E.; SCHLUTER, D. 1993. Species Diversity in Ecological Communities: Historical and Geographical perspectives. Chicago, University of Chicago Press, 414 p.

SCARION, R.; RIBEIRO, K.T.; DE MO- RAEs, L.F.D.; DE LIMA, H.C. 1997. Plant establishment on flooded and unflooded patches of freshwater swamp forest in southeastern Brazil. *Journal of Tropical Ecology*, **14:**793-803.
http://dx.doi.org/10.1017/S0266467400011007

SCHIOL, A.O.; OLIVEIRA, A.T.; LLERAS, E. 1989. Species Richness, Density and Distribution of Palms in an Eastern Amazonian Seasonally Flooded Forest. *Principes*, **33**(4):172-179.

TELLO, J.C.R. 1997 Diversidade Florística Das Comunidades Vegetais De Uma Toposse- quência da Reserva Florestal Adolpho Ducke, Manaus-Am. *Revista da Universidade do Ama- zonas - Séries Ciencias Agrárias*, (6-1-2):13-35.

VORMISTO, J.; TUOMISTO, H.; OKSANEN, J. 2004. Palm distribution patterns in Amazonian rainforests: What is the role of topograph- ic variation? *Journal of Vegetation Science*, **15:**485-494.
http://dx.doi.org/10.1111/j.1654-1103.2004.tb02287.x

ZUQUIM, G.; COSTA, F.R.C.; PRADO, J. 2007. Fatores que determinam a distribuição de espécies de pteridófitas da Amazônia Central. *Revista Brasileira de Biociências*, **5**(2):360-362.

WILKINSON, L. 1998. *SYSTAT, the system for statistics*. Systat, Evanston, 677 p.