Aminovinyl Cysteine Containing Peptides: A Unique Motif That Imparts Key Biological Activity

Emily S. Grant-Mackie,⊥ Elyse T. Williams,⊥ Paul W. R. Harris,* and Margaret A. Brimble*

ABSTRACT: Natural products that contain distinctive chemical functionality can serve as useful starting points to develop Nature’s compounds into viable therapeutics. Peptide natural products, an under-represented class of medicines, such as ribosomally synthesized and post-translationally modified peptides (RiPPs), often contain noncanonical amino acids and structural motifs that give rise to potent biological activity. However, these motifs can be difficult to obtain synthetically, thereby limiting the transition of RiPPs to the clinic. Aminovinyl cysteine containing peptides, which display potent antimicrobial or anticancer activity, possess an intricate C-terminal ring that is critical for bioactivity. To date, successful methods for the total chemical synthesis of such peptides are yet to be realized, although several advancements have been achieved. In this perspective, we review this burgeoning class of aminovinyl cysteine peptides and critically evaluate the chemical strategies to install the distinct aminovinyl cysteine motif.

KEYWORDS: Lanthipeptides: aminovinyl cysteine, antimicrobials, cyclic peptides, biosynthesis, chemical synthesis

1. INTRODUCTION

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of diverse natural products that cover a broad range of bioactivities.1,2 They are genetically encoded and expressed as large precursor peptides which are enzymatically processed into smaller modified bioactive peptides.3 These enzymatic modifications are known as post-translational modifications (PTMs) and may include cyclization, halogenation, dehydration, and incorporation of α-amino acids.3 These PTMs act to improve the peptides’ bioactivity and increase their stability against proteolytic degradation.4 One such PTM is the rigidifying C-terminal S-[(Z)-2-aminovinyl]-D-cysteine (AviCys) or (2S,3S)-S-[(Z)-2-aminovinyl]-3-methyl-D-cysteine (AviMeCys) unit, herein jointly referred to as Avi(Me)Cys units (Figure 1).

To date, there are 32 peptides that contain this moiety. These are found among five major peptide families: lanthipeptides (Figures 2, 3, and 4), linaridins (Figure 5), thioamitides (Figure 6), lantidins (Figure 7), and the lipolanthines (Figure 7). Gram-positive bacteria produce these compounds as a defense mechanism against competing bacterial species; therefore, many RiPPs have potent antibacterial activity against Staphylococcus, Streptococcus, Enterococcus, and Clostridia species (Table 1).4 Some Avi-(Me)Cys-containing peptides, such as the thioamitides, exhibit cytotoxicity toward human cancer cell lines.5

These Avi(Me)Cys-containing peptides possess highly modified structures that give rise to desirable drug-like properties such as heat and pH stability, high target specificity, and resistance toward proteases.6 These natural products also commonly contain other noncanonical amino acids, including...
2,3-dehydroalanine (Dha, 2), (Z)-2,3-dehydrobutyrine (Dhb, 3), α-amino acids, and lanthionine (Lan, 4), β-methylanthionine ((Me)Lan (4)), and avionin (Avi, 5) (Figure 1).3,4,7 These PTMs restrict the conformational freedom of the peptide, providing a dual function of (a) locking the peptide in an active conformation for target binding and (b) inhibiting proteolytic degradation.6 In particular, unsaturated Dha, Dhb, and Avi(Me)Cys moieties increase structural rigidity by including sp² α-carbons in the peptide backbone.8

Despite the “drug-like” potential of Avi(Me)Cys-containing peptides, lack of viable synthetic routes to access the Avi(Me)Cys moiety limits their transition to the clinic. To date, there is no total synthesis of an Avi(Me)Cys-containing natural product peptide reported, although several routes have been investigated.9−13 Therefore, these natural products present an intriguing synthetic target with important therapeutic applications and require the development of novel methodology. This perspective discusses in detail the different families of Avi(Me)Cys-containing peptides and the current attempts to install the Avi(Me)Cys unit by chemical methods.

2.0. LANTHIPEPTIDES

Over 100 lanthipeptides have been discovered and characterized since Rogers and Whittier discovered the lanthipeptide nisin in 1928.14 This family encompasses RiPPs that contain one or more (Me)Lan thioether linkages and are further categorized into five classes (I−V) determined by their genetically encoded biosynthetic enzymes responsible for installing the Lan and (Me)Lan motifs.15,16 The seven known Avi(Me)Cys-containing lanthipeptides are found only in classes I, II, and V. Class I comprises mutacin-1140,17 microbisporicin,18 gallidermin,19 epidermin,20 and clausin (Figure 3).21 Class II and V contain the peptides mersacidin22 and lexapeptide,23 respectively (Figure 4). Daspyromycin (Figure 4), the most recently discovered Avi(Me)Cys-containing lanthipeptide, is yet to be categorized.24 The Avi(Me)Cys-containing peptides within the lanthipeptide family are the most well-known and studied of the Avi(Me)Cys natural products.7 All display antimicrobial activity against Gram-positive bacterial species including...
multi-drug-resistant *Staphylococcus epidermidis* and *Staphylococcus aureus*. The antibacterial activity of Avi(Me)Cys-containing lanthipeptides arises from targeting lipid II, an essential precursor for the cell wall of Gram-positive bacteria (Figure 2). Lipid II consists of a bactoprenol "carrier lipid" coupled to a peptidoglycan building block (N-acetylMuramyl pentapeptide-N-acetylg glucosamine) via a pyrophosphate bridge. The lanthipeptide nisin and the Avi(Me)Cys-
Figure 6. Chemical structures of Avi(Me)Cys-containing peptides of the thioamitide family: thioholgamide A (19), thioviridamide (20), thioholgamide S4 (21), thioholgamide B (22), thiosparsoamide (23), JBIR-140 (24), TVA-YJ-4 and 5 (epimers at α-hydroxyamide) (25), thioalbamide (26), TVA-YJ-6 (27), and TVA-YJ-1 (28). Pink = Avi(Me)Cys.

Table 1. Producing Bacterial Strain and Bioactivity of Known Avi(Me)Cys-Containing Peptides (G+ = Gram-Positive, G− = Gram-Negative)

family	peptide	producing strain	notable bioactivity
lanthipeptide	mutacin -1140 (class I)	Streptococcus mutans	Neisseria gonorrhoea (G−), Enterococcus faecalis (G+), Staphylococcus epidermidis (G+), Helicobacter pylori (G−)
	microbisporicins	Microbacterium corallina	Staphylococcus aureus (G+), Staphylococcus pneumoniae (G+)
	gallidermin	Staphylococcus gallinarum	Mariniluteicoccus flavus (G+), Staphylococcus simulans (G+)
	epidermin	Staphylococcus epidermidis	Mariniluteicoccus flavus (G+), Staphylococcus simulans (G+)
	clausin	Bacillus clausii O/C	Clostridium difficile (G+)
	Bsa A2	Staphylococcus aureus	antibacterial (G+)
	mersacidin	Bacillus amyloliquefaciens	Staphylococcus aureus (G+), MRSA (G+)
	lexapeptide	Streptomyces rochei	MRSA (G+), MRSE (G+), Micrococcus luteus (G+), Bacillus subtilis (G+)
	daspyromycin A and B (unknown class)	Actinokineospora diospyrosa NBR 15665	MRSA (G+), VRE (G+)
linaridin	cypemycin	Streptomyces sp. OH-4156	cytotoxic against P388 leukemia cells, antibacterial against Micrococcus luteus not reported
	grisemycin	Streptomyces griseus	group A Streptococcus pyogenes M1T1
	salinipeptins A-D	Streptomyces sp. strain GSL-6C	apoptosis inducer (anticancer)
	thioviridamide	Streptomyces olivoviridis	cytotoxic (anticancer)
	TVA-YJ-4, 5, and 6	Streptomyces sp. NRRL S-87	antiproliferative and cytotoxic (anticancer)
	thioholgamide A and B	Streptomyces malayense	
	thioholgamide S4	Streptomyces sp. NRRL S-4	
	thiosparsoamide	Streptomyces sparsogenes	
	thioalbamide	Amycolatopsis alba	
	JBIR-140	Streptomyces avermitilis	
	TVA-YJ-1	Streptomyces laurentii	
lipolanthine	microviorina	Microbacterium arborescens	MRSA (G+), Staphylococcus pneumoniae (G+)
	nocaviornin	Nocardia terpenica	Staphylococcus aureus (G+), Bacillus subtilis (G+), Micrococcus luteus (G+)
	goadvirina	Streptomyces sp. TP-A0584	MRSA (G+), Clostridium difficile (G+), Staphylococcus simulans (G+)
lanthidin	cacaoaidin	Streptomyces cacaoi	
containing microbisporicin sequester lipid II by forming lanthipeptide−lipid II complexes.28,29 Sequestration of lipid II blocks cell wall biosynthesis, resulting in poor structural integrity and lysis due to high intracellular osmotic pressure (Figure 2).27 Additionally, some lanthipeptide−lipid complexes can form pores in the bacterial cell membrane by insertion of the complexed lanthipeptide into the phospholipid bilayer (Figure 2).27,28,30 These pores provide a permeable channel through which cellular components may leak through into the periplasm, causing loss of osmotic pressure and cell death.28 This pore-forming mode of action remains poorly understood, with only a handful of lanthipeptides known to exhibit this behavior, notably the Avi(Me)Cys-containing peptides epidermin and mutacin-1140.28,31

Glycopeptide antibiotics such as vancomycin typically target the peptide side chain (D-Ala-D-Ala) of lipid II.33 In vancomycin-resistant bacteria, the D-Ala-D-Ala sequence is mutated to prevent vancomycin from binding, therefore reducing its efficacy.34,35 Another mechanism of resistance is a “false target” wherein vancomycin-resistant bacteria produce excess peptidoglycan containing the D-Ala-D-Ala unit, which trap and sequester vancomycin.35 Lanthipeptides typically do not target the D-Ala-D-Ala sequence of lipid II and instead function differently as a peptidoglycan cell wall biosynthesis inhibitor.18 Microbisporicin, an Avi(Me)Cys-containing lanthipeptide, interacts electrostatically with the negatively charged lipid II pyrophosphate bridge, an interaction that is favored by the association of the hydrophobic ring system in microbisporicin with the cell membrane.36 The pyrophosphate bridge of lipid II is less susceptible to mutation than the D-Ala-D-Ala sequence, thereby reducing the probability of antibiotic resistance toward microbisporicin developing compared to vancomycin.36 The Avi(Me)Cys-containing lanthipeptides lexapeptide and microbisporicin exhibit potent activity against vancomycin-resistant bacteria, indicating their potential for therapeutic use to combat antimicrobial resistance.18,23

Microbisporins A1 and A2 (Figure 3), produced in a 60:40 ratio by fermentation of the actinomycete Microbispora corallina, were previously being developed by Naicons SRL and Sentinella Pharmaceuticals for the treatment of multi-drug-resistant bacterial infections.54,55 Known as NAI-107,56 both peptides exhibit potent antibacterial activity against both Gram-positive and Gram-negative bacteria, including against vancomycin-intermediate \textit{S. aureus} (VISA) and vancomycin-resistant \textit{Enterococcus faecalis}.54,57 Microbisporicins A1 and A2 are both 24-mer pentacyclic lanthipeptides, identical except at Pro14, wherein A1 contains 3,4-dihydroxyproline, and A2 contains 4-hydroxyproline.56 With promising activity in preliminary in vivo studies,58,59 NAI-107 was in preclinical development by Naicons SRL and Sentinella Pharmaceuticals for treatment of multi-drug-resistant Gram-positive infections; however, the current status of NAI-107 development is unknown.54,55

In contrast to lexapeptide and microbisporicin, the class II Avi(Me)Cys-containing lanthipeptide mersacidin (Figure 4) does not target the pyrophosphate bridge of lipid II.22,60 Instead, mersacidin exhibits affinity for the lipid II GlcNAc (N-acetylglycosamine) unit, which is absent in lipid I (Figure 8).51 As such, mersacidin does not show affinity for lipid I, unlike...
class I lanthipeptides which can bind to lipid I via the pyrophosphate bridge.30 The mersacidin–lipid II complex does not lead to the formation of pores in the bacterial membrane, and therefore, the primary mechanism of action of mersacidin is by the sequestering of lipid II and inhibition of cell wall biosynthesis.60

Mersacidin is also unusual in that it does not possess any positively charged amino acids. Typically, antimicrobial peptides (AMPs) have a net positive charge, which facilitates association of the peptide with the negatively charged bacterial membrane.62 Mersacidin, however, contains a negatively charged glutamate at position 17 (Figure 4). Mutation of this residue by amidation or substitution for an alanine greatly reduces the activity of mersacidin, which indicates that Glu17 is essential for activity.63 It has been postulated that Glu17 interacts with calcium ions (Ca2+) to form a salt bridge with negatively charged moieties on the bacterial cell membrane.32

Mersacidin has previously displayed moderate in vitro antimicrobial activity; however, preliminary in vivo antibacterial activity studies have shown promise.64,65 Antimicrobial assays have shown low to moderate activity against some Gram-positive bacteria and negligible activity against Gram-negative strains, with mersacidin having significantly less activity compared to that of the glycopeptide class overall.66 However, work by Kruzewska et al.65 found that mersacidin eliminated methicillin-resistant Staphylococcus aureus (MRSA, strain 99308) from the nasal cavity in mouse rhinitis models. A twice daily treatment of mersacidin (1.66 mg/kg per dose) in nasal cavity (n = 12) compared to mice that did not receive mersacidin.66 Additionally, cytotoxic effects such as morphological changes, mucosal lesions, and cytokines related to MRSA infection were not detected in mouse models when treated with mersacidin intranasally.65

2.1. Biosynthesis of Avi(Me)Cys in Lanthipeptides

Within the lanthipeptide family, the incorporation of Avi-(Me)Cys units across the relevant lanthipeptides is catalyzed by structurally homologous flavoprotein decarboxylase (LanD) enzymes.67 These flavoproteins require a redox-active flavin cofactor, such as flavin mononucleotide (FMN) or flavin adenine dinucleotide (FAD), for catalytic activity.67 LanD enzymes are part of the homo-oligomeric flavoprotein cysteine decarboxylase (HFCD) family.68 These proteins form complex homo-oligomeric quaternary structures with active site(s) at the central interface of the complex.69 LanD enzymes form dodecameric oligomers with a substrate binding clamp that is highly disordered in the absence of a peptide substrate. The flavin cofactor (FMN or FAD) is anchored in a structurally conserved region of the active site.67

For the biosynthesis of Avi(Me)Cys-containing peptides, the C-terminal Cys-sulphhydryl of the LanA prepeptide undergoes flavin-mediated oxidation to give a corresponding thioaldehyde A (Scheme 1).67,69,70 Spontaneous decarboxylation of the C-terminal carboxylate then occurs, driven by tautomerization of the thioaldehyde to enethiol B.67 Within the lanthipeptide family, the incorporation of Avi-(Me)Cys units across the relevant lanthipeptides is catalyzed by structurally homologous flavoprotein decarboxylase (LanD) enzymes.68 These proteins form complex homo-oligomeric quaternary structures with active site(s) at the central interface of the complex.67 LanD enzymes form dodecameric oligomers with a substrate binding clamp that is highly disordered in the absence of a peptide substrate. The flavin cofactor (FMN or FAD) is anchored in a structurally conserved region of the active site.67

For the biosynthesis of Avi(Me)Cys-containing peptides, the C-terminal Cys-sulphhydryl of the LanA prepeptide undergoes flavin-mediated oxidation to give a corresponding thioaldehyde A (Scheme 1).67,69,70 Spontaneous decarboxylation of the C-terminal carboxylate then occurs, driven by tautomerization of the thioaldehyde to enethiol B to install the Ca−Cβ double bond of Avi(Me)Cys (Scheme 1).67,69,70 Thioether cyclization then occurs by nucleophilic attack of the sulphhydril upon the β-carbon of an αβ-unsaturated amino acid (Dha or Dhb), and the resulting enolate C is protonated to afford the (2S)-AviCys or (2S,3S)-AviMeCys moiety (Scheme 1).67 To date, this thioether cyclization step during Avi(Me)Cys formation is not fully understood and may be enzyme-catalyzed (e.g., by LanC or LanD) or a spontaneous process.15,23

Oxidative decarboxylation of C-terminal cysteine peptides by the epidermin decarboxylase, EpiD, has been reported to occur in the absence of a Michael acceptor residue (Dha/Dhb), giving the linear thioenamide-containing products.71 Kupke et al.70 demonstrated the decarboxylase activity of EpiD on C-terminal Cys-sulphhydryl substrates and the absence of activity on S-alkylated peptides, confirming that the decarboxylation step occurs prior to cyclization.72 Furthermore, EpiD has been successfully applied to the formation of Avi(Me)Cys linkages on non-epidermin peptides from 4 to 52 amino acids in length with the C-terminal tripeptide sequence AA1-AA2-Cys, where AA1 = Val, Ile, Leu, Met, Phe, Tyr, or Trp and AA2 = Ala, Ser, Val, Thr, Cys, Ile, or Leu.67,77 However, the leader peptide sequence is seemingly nonessential for the enzymatic activity of EpiD.72 Combined with its broad substrate scope, the use of EpiD for the decarboxylation of synthetic peptides may be a viable strategy for the efficient production of bioactive compounds.67

The X-ray crystal structures of the LanD enzymes EpiD70 and MrsD (mersacidin decarboxylase)69 have been determined. The X-ray crystal structure of EpiD complexed with a C-terminal cysteine containing a pentapeptide substrate revealed a contact between the FMN cofactor and the Cys-sulphhydril but not the Cys-carboxylic acid, supporting the idea that decarboxylation occurs indirectly as a result of sulphhydryl modification.70 Obtaining this X-ray crystal structure was achieved by mutation of EpiD-His67 to an asparagine (Asn) residue, which abolished decarboxylation activity without preventing substrate binding.70 Therefore, His67 of EpiD plays an essential role in the oxidative decarboxylation of C-terminal cysteines, proposed to occur by increasing acidity of the Cys-sulphhydryl proton.68,70

In the proposed mechanism (Scheme 2), nucleophilic attack of the Cys-sulphhydril on the C4a position of flavin initiates the oxidative decarboxylation reaction of a C-terminal cysteine...
Scheme 2. Postulated Mechanism of Oxidation and Subsequent Decarboxylation Catalyzed by EpiD (Peptide Substrate Is Indicated in Red, Enzyme (EpiD) in Blue, and Enzyme Cofactor (FMN) in Black)

H-bonding interactions between the side-chain carboxyl of Asn117 in EpiD and the peptide Cys-Cβ protons facilitate Cβ-deprotonation to afford the thioaldehyde intermediate. The subsequent decarboxylation step is favored over Cα-deprotonation as the Cα-proton is blocked by Ile151 of EpiD (Scheme 2), and decarboxylation to give the C=C double bond of Avi(Me)Cys is further promoted through exposure of the Cys-carboxylate to solvent, allowing carbon dioxide to exit the active site.

The observed interaction of Asn117 with the Cys-Cβ protons provides insight to the selective formation of the (Z)-alkene in Avi(Me)Cys, as these contacts enable rotation of the Cys-sulphydryl toward a syn conformation with respect to the Cys-Nα (Scheme 2). When the peptide substrate binds in the enzyme active site, the C-terminal Cys sits above the flavin re face, with the sulphydryl oriented downward toward flavin-C4α and -N5 (Scheme 2). Formation of thioaldehyde then positions the sulfur atom toward the protonated Asn117 oxygen, and decarboxylation generates the (Z)-alkene (Scheme 2). The role of EpiD Asn117 in Avi(Me)Cys formation is further supported by the presence of Asn residues at structurally similar sites across other LanD enzymes, such as Asn125 in MrsD.

2.2. Lipolanthines

In 2018, Wiebach et al. isolated microvionin (Figure 7) from a culture of Microbacterium arborescens. This peptide natural product exhibits an unusual trimaminocarboxylic acid moiety named avionin, as well as an Avi(Me)Cys macrocycle and N-terminal guanidino fatty acid. It displayed potent antibacterial activity against Gram-positive bacteria, the exact mechanism of which is currently unknown.

Previously understood to be a family of their own, lipolanthines have since been classified as class III lanthipeptide synthetases, owing to the utilization of class-III-type lanthipeptide synthetases in biosynthesis. Formation of the Avi(Me)Cys unit in microvionin is catalyzed by FAD-dependent cysteine decarboxylases, MicD and MicKC, which resemble class III lanthipeptide-modifying enzymes. Mechanistic studies show both enzymes function in a mutual regulatory manner, wherein the activity of MicKC is enhanced by MicD through substrate binding.

3.0. LINARDINS

In 1993, Komiyama et al. isolated a new peptide natural product from Streptomyces sp. OH-4156 called cypemycin, displaying antibacterial activity against Micrococcus luteus and cytocidal activity against mouse P388 leukemia cells. Cypemycin possesses four Dhb residues, two 1,5-iso-leucines, an Nα-dimethylated N-terminal alanine, and an AviCys ring at the C-terminus (Figure 5). Due to the presence of the Dhb and AviCys moieties, cypemycin was initially classified as a lanthipeptide until 2010, when Claesen and Bibb identified the cypemycin biosynthetic gene cluster which revealed that there was no lanthipeptide dehydratase-like enzyme encoded. Therefore, cypemycin was reclassified as a linardinine.

Linardin natural products are a small but growing family of linear dehydrated peptides, and to date, there are 10 characterized members: cypemycin, griseimycin, legonaridin, salpinpeptin A–D, mononaridin, and pegvadin A and B. Of these 10, six contain the Avi(Me)Cys moiety (Figure 5); however, only two of them have shown antimicrobial and anticancer properties, cypemycin and salpinpeptin A, with the latter displaying modest levels of activity against Streptococcus pyogenes, U87 glioblastoma and HCT-116 colon carcinoma cells. The mechanism of their antimicrobial activity is unclear, but for cypemycin, it is postulated that it inserts itself into the bacterial membranes and forms pores, thereby causing cell lysis.

Biochemically, incorporation of the Avi(Me)Cys moiety into these natural products is achieved via a decarboxylation using a homo-oligomeric flavin-containing Cys decarboxylase known as LinD followed by Michael-type addition of the thioenol to a Dhb residue formed prior to decarboxylation. Unlike most other Avi(Me)Cys-containing peptides, the Dha intermediate is derived from a Cys rather than a Ser. The cyclization step to form Avi(Me)Cys is still unclear for linardinins as their biosynthetic gene clusters (BGCs) do not encode any cyclase enzymes like those found in lanthipeptide and lipolanthines (Lancs). It is thought that a LinD enzyme (e.g., CypD) catalyzes both decarboxylation and cyclization, although further investigation is required.

4.0. THIOAMITIDES

Thioviridamide (Figure 6), the first thioamitide, was characterized by Hayakawa et al. in 2005. This unusual natural peptide was isolated from Streptomyces olivoviridis and was revealed to contain a 2-hydroxy-2-methyl-4-oxopentanoyl (HMOP) group, a β-hydroxy-N,N3-dimethylhistidinum, and an AviCys ring. However, the most unique part of the structure was that it contained thioamide bonds in the peptide backbone. This natural product displayed potent cytotoxic properties against rat fibroblasts transformed with adenovirus oncogenes with an IC50 = 3.9 ng/mL. Since then, nine other Avi(Me)Cys-containing thioamitides have been discovered, with all of them displaying anticancer activity across multiple structures.
Thioviridamide acts as an apoptosis inducer by targeting the F$_1$F$_0$-ATP synthase and inducing the integrated stress response, a cellular process that down-regulates protein synthesis in response to internal or environmental stresses such as amino acid deprivation or endoplasmic reticulum stress. Thioholgamide A, which was discovered in 2020 by Kiemer et al., also targets the ATP synthase which causes antiproliferative and cytotoxic effects on cancer cells. The antiproliferative nature of these compounds is due to the initiation of the integrated stress response which causes the cancer cells to enter a resting state, thereby preventing proliferation before they undergo apoptosis.

Much like the other Avi(Me)Cys-containing peptide families, formation of the Avi(Me)Cys motif involves the dehydration of serine/threonine residues, cysteine decarboxylation, and Avi(Me)Cys macrocyclization. Apart from that, little is known about the biosynthetic pathway, although it has been postulated that enzymes similar to those found in the class III lanthipeptides (LanKCt) are responsible for forming the Avi(Me)Cys structure. These enzymes dehydrate the precursor peptide and form a complex with the cysteine decarboxylase to produce the Avi(Me)Cys macrocycle.

5.0. LANTHIDINS

Lanthidins are the most recently discovered family of Avi(Me)Cys-containing peptides, currently only encompassing one member, cacaoidin (Figure 7). Cacaoidin was characterized in 2020 by Ortiz-López et al. and found to contain a dimethylated N-terminus, a lanthionine, an Avi(Me)Cys ring, and a rare O-glycosylated tyrosine residue. It was isolated from *Streptomyces cacaoi* CA-170360 and demonstrated potent antibacterial activity against MRSA and moderate activity against *Clostridium difficile*. Cacaoidin was observed to trigger the induction of the lipid II cycle interfering with the antibiotic response regulator and sensor (LiaRS) bioreceptor, indicating interference with the lipid II biosynthesis cycle. This suggests that cacaoidin targets lipid II in the bacterial membrane, resulting in poor structural integrity and lysis. Formation of the Avi(Me)Cys moiety is believed to be facilitated by a protein homologous to the cypemycin decarboxylase CypD.

6.0. CHEMICAL SYNTHESIS OF Avi(Me)Cys UNITS

The preparation of multicyclic peptides containing dehydrated residues (Dha, Dhb) and (Me)Lan rings has been researched extensively, however, the total chemical synthesis of Avi(Me)Cys-containing natural product peptides has remained elusive. Several research groups have investigated different chemical methods for forming the Avi(Me)Cys moiety on building-block-type compounds and peptide fragments including thiol-yne conjugation by Castle et al., oxidative decarboxylation by VanNieuwenhze et al., and condensation of amines with acetals by Taylor et al. However, each route only generated a low to moderate yield of the Avi(Me)Cys and in E/Z mixtures. Further modification of these peptides is yet to be reported, perhaps due to the chemical instability of the Avi(Me)Cys unit. Therefore, a total chemical synthesis of any bioactive Avi(Me)Cys-containing natural product has yet to be reported.

6.1. Radical Thiol-Yne Couplings

In a study toward the synthesis of thioviridamide, Castle et al. prepared building block analogues of AviCys using a radical thiol-yne reaction, where backbone-protected cysteine derivatives were coupled with various ynamides. In this synthesis, the radical initiator, 2,2’-azobis(2-methylpropanitrile) (AIBN), first abstracts the sulfhydryl proton to yield a thiyl radical, which propagates across the electron-rich alkyne (Scheme 4). The resulting carbon-centered alkene radical is then quenched by hydrogen atom transfer (HAT) from a second equivalent of the sulfhydryl. Preliminary studies suggested the (Z)-alkene dominates as the kinetically favored product, due to rapid quenching of the alkene radical by HAT on the least hindered side (Scheme 4). Under these conditions, the reaction proceeded well with small substrates, successfully affording 35 as the desired isomer in good yield (Scheme 4). However, when these methods were applied to more complex and potentially useful ynamide building blocks, such as 36, no desired product was obtained. Therefore, although this procedure proved to be effective for small molecules, it may...
not be practical for the installation of AviCys into more complex substrates.

6.2. Oxidative Decarboxylation/Decarbonylation

In 2012, VanNieuwenhze et al.10,13 published two back-to-back research articles investigating decarboxylation/decarbonylation strategies toward the synthesis of mersacidin. Their work focused on mimicking the biosynthetic route to Avi(Me)Cys-containing peptides to create building blocks and peptide fragments.

Decarboxylation of model cysteine-containing thioester derivatives afforded the corresponding Avi(Me)Cys derivatives selectively using a Ni(COD)4 and copper(I) thiophene-2-carboxylate (CuTC) catalyst system (Scheme 6). Upon application of the optimized method to building block 37, complete Z-selectivity successfully afforded 39 in 75% yield. However, they found that the yield decreased with increasing substrate complexity, illustrated by the low to moderate yield of 40 from 38.10 Furthermore, incorporation of Avi(Me)Cys-containing amino acids such as 39 or 40 into a peptide has not yet been reported, suggesting that a building block approach may not be viable for the synthesis of Avi(Me)Cys-containing peptides.

VanNieuwenhze et al.13 then reported a similar approach to form a protected fragment of the C-terminal D-ring fragment of mersacidin. The cyclic substrate 41 was prepared by solution-phase peptide synthesis utilizing protecting groups that are orthogonal to TFA-mediated deprotection of the C-terminal carboxylic acid. The Me Lan building block was prepared by literature procedures and incorporated into the growing peptide chain, followed by lactamization to yield 41 (Scheme 7). Preliminary attempts at decarboxylation of 41 to afford 42 using diphenylphosphoryl azide (DPPA) with Et3N in toluene gave promising but low-yielding results. Optimization of this route afforded Z-isomer 42 in 25–30% yield using DPPA and 1,4-diazabicyclo[2.2.2]octane (DABCO) in dioxane at reflux overnight (Scheme 7).

This method employed by VanNieuwenhze et al.13 is presumed to undergo a Curtius rearrangement followed by intramolecular trapping of the isocyanate and collapse of the resulting six-membered ring (Scheme 7, inset). The resulting protected analogue 42 remains the largest Avi(Me)Cys-containing substrate synthesized to date; however, deprotection and/or ligation of this fragment for the total or partial synthesis of mersacidin is yet to be reported.

6.3. Condensation of Amides with Acetals

Taylor et al.11 published a unique strategy toward (Z)-thioenamide moieties and AviCys derivatives based on condensation of amides with acetals, followed by β-hydride elimination. The optimized reaction used the mild Lewis acid, B(OH)3, in toluene at reflux to catalyze the condensation of cysteine derivative 43 with acetamide, affording (Z)-AviCys derivative 44 in moderate yield with high stereoselectivity.15

The presence of the sulfur atom directed the E/Z selectivity of the reaction.11 Electronic structure calculations were performed for the reaction of butanal dimethyl acetal with acetamide, with a methylene unit replacing the sulfur atom. The calculations were performed using the Gaussian 09 suite of programs, and it was found that the (E)-enamide was the favored product. Conversely, the Z-isomer was favored in all reactions with sulfur-containing substrates. This strongly supported the idea that the sulfur atom was favoring the formation of the desired Z-isomer; hence computational
stabilization energy of 4.04 kcal mol\(^{-1}\) associated with the hyperconjugative donation from the \(\sigma\)-orbital of the adjacent C–H bond (red) into the \(\sigma^*\)-orbital of the C–S bond (blue) (Scheme 8).\(^{11}\) This does not occur with substrates lacking sulfur, as the intermediate cation loses a proton resulting in the rapid formation of the (E)-enamide.\(^{11}\) This was consistent with their original hypothesis that a rotational barrier to elimination exists, which favors the arrangement of the electronegative substituents to maximize hyperconjugative stabilization.\(^{11}\) Additionally, their calculations found that the sulfur atom of the final product possesses a partial positive charge enabling electrostatic attraction with both the oxygen and the nitrogen, thus stabilizing the Z- over the E-isomer by 1.8 kcal mol\(^{-1}\) (Figure 9).\(^{11}\)

Recently, Taylor et al. successfully applied this methodology to the synthesis of the AviCys C-terminal macrocycle of all known members of the linaridin family (Scheme 9).\(^{12}\) First, the primary alcohol of 45 was oxidized to an aldehyde with Dess–Martin periodinane to afford aldehyde 46 in high yield (84%).\(^{12}\) Condensation of 46 with (Tcp)Val-NH\(_2\) (Tcp = 3,4,5,6-tetrachlorophthalimide) in the presence of the Lewis acid B(OH)\(_3\) afforded a 1:8 E/Z mixture of isomers of the AviCys-containing compound 47 in good yield (68%).\(^{12}\) Previous work had demonstrated that the Tcp group in 47 could be removed in the presence of a Phl (Phl = phthalimide) group using ethylenediamine; however, for Tcp removal of 47, this led to complex mixtures.\(^{12}\) It was then found that treatment of 47 with 1 equiv of hydrazine led to a single product: the ring-opened acyl hydrazide intermediate 48, which was hydrolyzed in aqueous HCl to afford a free amine.\(^{12}\) Boc-Leu-OH was then coupled using EDC-HCl and HOBt to afford 49 (Scheme 9).

The final step was deprotection of the N- and C-termini with required modifications to the standard reaction conditions due to the sensitivity of the thioenamide.\(^{12}\) The N-terminal deprotection of 49 was achieved using TFA and thioanisole. Thioanisole was used instead of the more common triethylsilane due to partial reduction of the thioenamide double bond when triethylsilane was used.\(^{12}\) For deprotection of the C-terminus, initial deallylation conditions using palladium(0) with barbituric acid as an allyl acceptor were unsuccessful and resulted in oxidation of the thioenamide sulfur to the corresponding sulfoxide.\(^{12}\) Deallylation of the C-terminus was then successfully achieved using thiosalicylic acid as both the allyl acceptor and sacrificial reductant.\(^{12}\) Finally, lactamization with EDC/HOBt afforded the cyclic AviCys-containing peptide 50 as a single isomer (4.6% overall yield from 45) (Scheme 9).\(^{12}\)
7.0. CONCLUSION

RiPPs are a large class of diverse natural peptides that contain a number of PTMs, including the structurally distinct Avi(Me)-Cys macrocycle. Nearly all peptides that contain this unusual motif exhibit antimicrobial or anticancer activity, suggesting a biological importance of this scaffold. This is further highlighted by the fact that the biosynthesis of Avi(Me)Cys is conserved across all families, involving the dehydrogenation of serine/threonine or cysteine residues, cysteine decarboxylation, and final macrocyclization to fashion the Avi(Me)Cys unit.

Despite the clinical potential these of natural products, difficulties in synthesizing this important structural moiety hinder drug development. Several synthetic strategies toward Avi(Me)Cys moieties have been attempted; however, the application of these methods to the total synthesis of an Avi(Me)Cys-containing peptide is yet to be reported. Nevertheless, the successes of VanNieuwenhze et al.12 and Taylor et al.12 in the syntheses of the Avi(Me)Cys-containing rings of mersacidin and the linaridins, respectively, offer encouragement.

■ AUTHOR INFORMATION

Corresponding Authors

Paul W. R. Harris — School of Chemical Sciences, The University of Auckland, Auckland 1132, New Zealand; School of Biological Sciences and The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1132, New Zealand; Email: paul.harris@auckland.ac.nz

Margaret A. Brimble — School of Chemical Sciences, The University of Auckland, Auckland 1132, New Zealand; School of Biological Sciences and The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1132, New Zealand; Email: m.brimble@auckland.ac.nz

Authors

Emily S. Grant-Mackie — School of Chemical Sciences, The University of Auckland, Auckland 1132, New Zealand
Elyse T. Williams — School of Chemical Sciences, The University of Auckland, Auckland 1132, New Zealand; Present Address: Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

Complete contact information is available at: https://pubs.acs.org/10.1021/jacsau.1c00308

Author Contributions

1E.S.G.-M. and E.T.W. contributed equally to this work.

Funding

The authors wish to acknowledge the Ministry of Business, Innovation and Employment (MBIE Endeavor Grant No. UOAX2010) for generous financial support and the Maurice Wilkins Centre for Molecular Biodiscovery.

Notes

The authors declare no competing financial interest.

■ ABBREVIATIONS

AIBN, 2,2′-azobis(2-methylpropanitrite); AMP, antimicrobial peptide; AviCys, S-[Z)-2-amino-3,3'-dicyciste; AviMeCys, (2S,3S)-S-[Z)-2-amino-3,3'-dicyciste; Cbz, carboxybenzyl; CuMeSal, copper(I) 3-methylsalicylate; CuTC, copper(1) thiophene-2-carboxylate; DABCO, 1,4 diazabicyclo[2.2.2]octane; Dha, 2,3-didehydroalanine; Dhb, (Z)-2,3-didehydroturbytine; DPPA, diphenylphosphoryl azide; FAD, flavin adenine dinucleotide; FMN, flavin mononucleotide; GlcNac, N-acetylclycosamine; HAT, hydrogen atom transfer; HFCD, homo-oligomeric flavoprotein cysteine decarboxylase; HMOP, 2-hydroxy-2-methyl-4-oxopentanoyl; Lan, lanthionine; LiaRS, lipid II cycle interfering antibiotic response regulator and sensor; (Me) Lan, β-methylanthioninie; MRSA, meticillin-resistant Staphylococcus aureus; Ni(COD)_2, bis(1,5-cyclooctadiene)nickel(0); PMB, para-methoxybenzyl; PNB, para-nitrobenzyl; RiPP, post-translationally modified peptide; TBDPS, tert-butylphenylsilyl; Tcp, 3,4,5,6-tetra-chlorophtalimide; VISA, vancomycin-intermediate Staphylococcus aureus; VRE, vancomycin-resistant Enterococcus faecalis

■ REFERENCES

(1) Cao, L.; Do, T.; Link, A. J. Mechanisms of Action of Ribosomally Synthesized and Posttranslationally Modified Peptides (RiPPs). J. Ind. Microbiol. Biotechnol. 2021, DOI: 10.1007/jmib.00015.

(2) Montalban-Lopez, M.; Scott, T. A.; Ramesh, S.; Rahman, I. R.; van Heel, A. J.; Viel, J. H.; Bandarian, V.; Dietmann, E.; Genilloud, O.; Goto, Y.; Grande Burgos, M. J.; Hill, C.; Kim, S.; Koehnke, J.; Latham, J. A.; Link, A. J.; Martinez, B.; Nair, S. K.; Nicolet, Y.; Rebuffat, S.; Sahh, H.-G.; Sareen, D.; Schmidt, E. W.; Schmitt, L.; Severinov, K.; Sussmuth, R. D.; Truman, A. W.; Wang, H.; Weng, J.-K.; van Wezel, G. P.; Zhang, Q.; Zhong, J.; Piel, J.; Mitchell, D. A.; Kuipers, O. P.; van der Donk, W. A. New Developments in RiPP Discovery, Enzymology and Engineering. Nat. Prod. Rep. 2021, 38 (1), 130–239.

(3) Scheidler, C. M.; Kick, L. M.; Schneider, S. Ribosomal Peptides and Small Proteins on the Rise. ChemBioChem 2019, 20 (12), 1479–1486.

(4) Dischinger, J.; Basi Chipalu, S.; Bierbaum, G. Lantibiotics: Promising Candidates for Future Applications in Health Care. Int. J. Med. Microbiol. 2014, 304 (1), 51–62.

(5) Hayakawa, Y.; Sasaki, K.; Adachi, H.; Furihata, K.; Nagai, K.; Shin-ya, K. Thioviridamide, a Novel Apoptosis Inducer in Transformed Cells from Streptomyces Ollivoviridis. J. Antibiot. 2006, 59 (1), 1–5.

(6) Ongey, E. L.; Yassi, H.; Pflugmacher, S.; Neubauer, P. Pharmacological and Pharmacokinetic Properties of Lantipeptides Undergoing Clinical Studies. Biotechnol. Lett. 2017, 39 (4), 473–482.

(7) Ongey, E. L.; Neubauer, P. Lantipeptide: Chemical Synthesis versus in Vivo Biosynthesis as Tools for Pharmaceutical Production. Microb. Cell Fact. 2016, 15 (1), 97.

(8) De Leon Rodriguez, L. M.; Williams, E. T.; Brimble, M. A. Chemical Synthesis of Bioactive Naturally Derived Cyclic Peptides Containing Ene-Like Rigidifying Motifs. Chem. - Eur. J. 2018, 24 (68), 17869–17880.

(9) Banerjee, B.; Litvinov, D. N.; Kang, J.; Bettale, J. D.; Castle, S. L. Stereoselective Additions of Thiyl Radicals to Terminal Ynamides. Org. Lett. 2010, 12 (11), 2650–2652.

(10) García-Reynaga, P.; Carrillo, A. K.; VanNieuwenhze, M. S. Decarboxylative Synthesis of the (Z)-Aminovinyl-d-Cysteine Unit of Mersacidin. Org. Lett. 2012, 14 (4), 1030–1033.

(11) Lutz, J. A.; Subasinghe Don, V.; Kumar, R.; Taylor, C. M. Influence of Sulfur on Acid-Mediated Enamide Formation. Org. Lett. 2017, 19 (19), 5146–5149.

(12) Lutz, J. A.; Taylor, C. M. Synthesis of the Aminovinylcysteine-Containing C-Terminal Macrocyle of the Linardins. Org. Lett. 2020, 22 (5), 1874–1877.

(13) Carrillo, A. K.; VanNieuwenhze, M. S. Synthesis of the AviMeCys-Containing D-Ring of Mersacidin. Org. Lett. 2012, 14 (4), 1034–1037.
(14) Rogers, L. A.; Whittier, E. O. Limiting Factors in the Lactic Fermentation. J. Bacteriol. 1928, 16 (4), 211–229.
(15) Repka, L. M.; Chekan, J. R.; Nair, S. K.; van der Donk, W. A. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem. Rev. 2017, 117 (8), 5457–5520.
(16) Amison, P. G.; Bibb, M. J.; Bierbaum, G.; Bowers, A. A.; Bugni, T. S.; Bulaj, G.; Camarero, J. A.; Campopiano, D. J.; Challis, G. L.; Clardy, J.; Cotter, P. D.; Craik, D. D.; Danson, M.; Dittmann, E.; Donadio, S.; Dorrestein, P. C.; Entian, K.-D.; Fischbach, M. A.; Garavelli, J. S.; Götz, F.; zur Gen, H.-M. Discovery of Daspyromycins A and B, 2274.
(17) Hillman, J. D.; Novák, J.; Sagura, E.; Gutierrez, J. A.; Brooks, T. S.; Bulaj, G.; Camarero, J. A.; Campopiano, D. J.; Challis, G. L.; Dawson, M.; Dittmann, E.; Donadio, S.; Dorrestein, P. C.; Entian, K.-D.; Fischbach, M. A.; Garavelli, J. S.; Göttler, M.; zur Gen, H.-M. Discovery of Daspyromycins A and B, 2274.
(18) Castiglione, F.; Lazzarini, A.; Carrano, L.; Corti, E.; Ciciliato, I.; Gaich, M.; Smith, L. Improving the Attrition Rate of Pancreatic Cancer with Selective Anticancer Activity. Chin. J. Chem. 2019, 27 (1), 124–127.
(19) Kellner, R.; Jung, G.; Hörner, T.; Zähner, H.; Schnell, N.; Entian, K.-D.; Göttler, F. Gallidermin: A New Lanthionine-Containing Polypeptide Antibiotic. Eur. J. Biochem. 1986, 160 (1), 9–22.
(20) Alaghaei, J.; Jung, G.; Werner, R. G.; Schneider, U.; Zähner, H. Epidermin: Sequencing of a Heterodimer Tetracyclic 21-Amino Acid Amide Antibiotic. Eur. J. Biochem. 1986, 160 (1), 9–22.
(21) Barbosa, J.; Caetano, T.; Mendo, S. Class I and Class II Lanthipeptide Produced by Bacillus Sp. J. Nat. Prod. 2015, 78 (11), 2850–2866.
(22) Chatterjee, S.; Chatterjee, D. K.; Jani, R. H.; Blumberg, J.; Magdal, B. N.; Kleese, N.; Limbdert, M.; Seibert, G. Mersacidin, a New Antibiotic from Streptococcus Mutans. Eur. J. Biochem. 2013, 249 (6), 1151–1156.
(23) Xu, M.; Zhang, F.; Cheng, Z.; Bashi, G.; Wang, J.; Hong, J.; Wang, Y.; Xu, L.; Chen, X.; Huang, S.-X.; Lin, S.; Deng, Z.; Tao, M. Functional Genome Mining Reveals a Class V Lanthipeptide Cluster of the Thermophilic Geobacillus Sp. Strain ZtGt-1. J. Mol. Biol. 2019, 419 (9), 2650.
(24) Shi, J.; Ma, J.-Q.; Wang, Y.-C.; Xu, Z.-F.; Zhang, B.; Jiao, R.-H.; Tan, R.-X.; Ge, H.-M. Discovery of Dapsyromycins A and B, 2-Aminovinyl-Cysteine Containing Lanthipeptides, through a Genomics-Based Approach. Chin. Chem. Lett. 2021, DOI: 10.1016/j.jcl.2021.06.010.
(25) Komiyama, K.; Otsuguro, K.; Segawa, T.; Shiomi, K.; Yang, H.; Takahashi, Y.; Hayashi, M.; Otsani, T.; Omura, S. A New Antibiotic, Cypemycin Taxonomy, Fermentation, Isolation and Biological Characteristics. J. Antibiot. 1993, 46 (11), 1666–1671.
(26) Dahlmen, C.; Siow, W. X.; Lopatiuk, M.; Tse, W. K. F.; Kessler, S. M.; Kirsch, S. H.; Hoppstädter, J.; Vollmar, A. M.; Müller, R.; Luzhetskyy, A.; Bartel, K.; Krümmer, A. K. Thioholgamide A, a New Anti-Proliferative Anti-Tumor Agent, Modulates Macrophage Polarization and Metabolism. Cancers 2012, 4 (5), 1288.
(27) Wang, H. Lanthipeptide Synthetases Participate the Biosynthesis of 2-Aminovinyl-Cysteine Containing Lanthipeptides, through a Genomics-Based Approach. Chin. Chem. Lett. 2021, DOI: 10.1016/j.jcl.2021.06.010.
(28) Geng, M.; Smith, L. Improving the Attrition Rate of Pancreatic Cancer with Selective Anticancer Activity. Chin. J. Chem. 2019, 37 (10), 1015–1020.
(29) Dahlmen, C.; Siow, W. X.; Lopatiuk, M.; Tse, W. K. F.; Kessler, S. M.; Kirsch, S. H.; Hoppstädter, J.; Vollmar, A. M.; Müller, R.; Luzhetskyy, A.; Bartel, K.; Krümmer, A. K. Thioholgamide A, a New Anti-Proliferative Anti-Tumor Agent, Modulates Macrophage Polarization and Metabolism. Cancers 2020, 12 (5), 1288.
(30) Frattarulo, L.; Lacret, R.; Cappello, A. R.; Trump, A. W. A Genomics-Based Approach Identifies a Thioviridamide-Like Compound with Selective Anticancer Activity. ACS Chem. Biol. 2017, 12 (11), 2815–2822.
(31) Lu, J.; Wu, Y.; Li, J.; Li, Y.; Zhang, Y.; Bai, Z.; Zheng, J.; Zhu, J.; Wang, H. Lanthipeptide Synthetases Participate the Biosynthesis of 2-Aminovinyl-Cysteine Motifs in Thioamides bioRxiv 2020; https://doi.org/10.1002/jacs.201540.
(32) Frattarulo, L.; Fiorillo, M.; Brindisi, M.; Curcio, R.; Dolce, V.; Lacret, R.; Trump, A. W.; Teglia, F.; Lisanti, M. P.; Cappello, A. R. Thioalbamide, A Thioamidated Peptide from Amycolatopsis Alba, Affects Tumor Growth and Stemness by Inducing Metabolic Dysfunction and Oxidative Stress. Cells 2019, 8 (11), 1408.
(33) Izumikawa, M.; Kozono, I.; Hashimoto, J.; Kayaguchi, N.; Takagi, M.; Kojwai, H.; Komatsu, M.; Fujise, M.; Satoh, N.; Ikeda, H.; Shin-ya, K., Y. N.; Li, J.; Li, Y.; Zhang, Y.; Bai, Z.; Zheng, J.; Zhu, J.; Wang, H. Lanthipeptide Synthetases Participate the Biosynthesis of 2-Aminovinyl-Cysteine Motifs in Thioamides bioRxiv 2020; https://doi.org/10.1002/jacs.201540.
(82) Takase, S.; Kurokawa, R.; Kondoh, Y.; Honda, K.; Suzuki, T.; Kawahara, T.; Ikeda, H.; Dohmae, N.; Osada, H.; Shin-ya, K.; Kushiro, T.; Yoshida, M.; Matsumoto, K. Mechanism of Action of Prethioviridamide, an Anticancer Ribosomally Synthesized and Post-Translationally Modified Peptide with a Polythioamide Structure. ACS Chem. Biol. 2019, 14 (8), 1819−1828.

(83) Jimenez, J. C.; Bayo, N.; Chavarria, B.; Lopez-Macra, A.; Royo, M.; Nicolas, E.; Giralt, E.; Albericio, F. Synthesis of Peptides Containing α or β-Didehydroamino Acids. Scope and Limitations. Lett. Pept. Sci. 2002, 9 (2–3), 135−141.

(84) Denoël, T.; Lemaire, C.; Luxen, A. Progress in Lanthionine and Protected Lanthionine Synthesis. Chem. - Eur. J. 2018, 24 (58), 15421−15441.