Supplementary Information

to

Automated screening of endoderm differentiation with 3D human induced pluripotent stem cell cultures on chip

Jessi Carolina Ardila Riveros*1, Anna Karolina Blöchinger*3, Scott Atwell*1, Michel Moussus1, Nina Compera1, Omid Rajabnia6, Tihomir Georgiev1, Heiko Lickert2,3,4,5, Matthias Meier$1,4

1Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
2TUM School of Medicine, Technical University of Munich, Munich, Germany
3Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
4German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
5Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
6Laboratory for MEMS Application, IMTEK-Department of Microsystems Engineering, University of Freiburg, Germany

*contributed equally
$corresponding author.

$ Corresponding authors:
Dr. Matthias Meier (lead contact)
Email: matthias.meier@helmholtz-muenchen.de
Supplementary Figure 1. Microfluidic large-scale integration chip platform with 128 hiPSC derived 3D cell cultures. Image was taken 24h after seeding. Scale bar denotes for 1000 µm.

Supplementary Figure 2. Flow characterization of the U-shape valve within a unit cell culture chamber on the mLSI chip. Particle tracking velocity analysis around the U-shape valve within the cell culture chamber actuated with (a) Valve restricted state with a control pressure of 10 psi and (b) Valve closed state with a control pressure of 15 psi. Particle tracking velocity was achieved using 1:1000 dilution of 2.55µm polystyrene beads (microparticles GmbH), tracked with Trackmate (ImageJ plugin), and analyzed in Matlab. Scale bar denotes for 500 µm. (c) Flow speeds in function of flow pressure for the three states of the valves, unrestricted (purple 00psi), restricted (green 10psi), and closed (orange 15psi).
Supplementary figure 3. Evaluation of the hiPSC pluripotency after 3D cell culture formation on-chip. (left and middle panel) FACS plot from hiPSCs expressing the pluripotency markers TRA-60 and SSEA-4 after 48 hours of culture inside the mLSi platform. (right panel). Representative immunofluorescent image of a 3D hiPSC cell culture expressing the pluripotency transcription factors Oct-4 (red) and Nanog (Green); Nuclei are counterstained with DAPI (blue). Scale bar denotes for 50µm.

Supplementary figure 4: Cell trapping unit retention capacity after 24h. (left panel) shows representative brightfield images of 3D cell cultures contained within cell trapping units with and without retention pillar (Scale bar 200µm). (right panel) bar plot of the retention capacity of a cell trapping unit expressed as a percentage of the 3D cell cultures still present within the U-shaped traps after 24h of culture.
Supplementary figure 5. On-chip comparison of differentiations induced by either CHIR-99021 or WNT3A. (left panels) Distribution of the mean fluorescence intensity of individual nuclei for the transcription factors FOXA-2 and SOX-17 by quantitative confocal image analysis (right panels) Representative immunofluorescence images of a DE aggregates induced with CHIR-99021 (top) or WNT3A (bottom) expressing transcription factors FOXA-2 (red) and SOX-17 (green). Nuclei counterstained with DAPI (blue). Scale bar 50µm.
Supplementary Figure 6: Representative IF images of 3D cell aggregates cultured under different conditions (C1-C6), stained for the mesoderm marker Brachyury-T (red), DE marker SOX-17 (green), and anterior DE marker CER-1 (magenta). Nuclei counterstained with DAPI (blue). Scale bar 100 µm.
Supplementary Table 1. Chemical compounds used for definite endoderm differentiations.

Chemicals	Company, Cat#
MCDB131	Gibco®, Cat# 10372-019
Glutamax	Life Technologies, Cat# 35050-079
BSA	Sigma, Cat# 10775835001
Sodium bicarbonate	Sigma, MO, Cat# S6297
Glucose	Sigma, Cat# G8769
ITS-X	Life Technologies, Cat# 51500-056
Ascorbic acid	Sigma-Aldrich, Cat# A4544
Penicillin/Streptomycin	Gibco®, Cat# 15140-122

Supplementary Table 2. Basal media composition and supplements for conditions P1-P2 in the main text.

Basal media P1-P2	Component	Day	P1	P2
MCDB131	ActA(ng/ml)	D1	100	100
	CHIR (µM)		5	3
	ROCK inhibitor (µM)		0	10
1x Glutamax	ActA(ng/ml)	D2	100	100
0.5% BSA	CHIR (µM)		0.3	0.3
1.5g/l Sodium Bicarbonate	ActA(ng/ml)	D3	100	100
1.8g/l Glucose	CHIR (µM)		0	0
1% penicillin/streptomycin				
Supplementary Table 3. Basal media composition and supplements for conditions P3-P4 in the main text.

Basal media P3-P4	Component	Day	P3	P4
MCDB131	ActA(ng/ml)	D1	100	100
	CHIR (μM)	D1	5	3
1x Glutamax				
2% BSA				
2.46 g/l Sodium Bicarbonate				
0.44 g/l Glucose				
ITS-X 20 μl/l	rocky inhibitor (μM)			
250 μM ascorbic acid				
1% penicillin/streptomycin				

Supplementary Table 4. Basal media composition and supplements for the DE differentiation conditions C1-C6 in the main text.

Basal media C1-C6	Component	Day	C1	C2	C3	C4	C5	C6
MCDB131	ActA(ng/ml)	D1	100	50	50	25	25	0
	CHIR (μM)	D1	5	5	7	7	10	10
1x Glutamax								
0.5% BSA								
1.5g/l Sodium Bicarbonate								
1.8g/l Glucose								
1% penicillin/streptomycin								

Supplementary Table 5. Antibody vendors information.

Target	Antibody	Dilution	Company, Cat#
Pluripotency Markers	Mouse anti-OCT3/4	1:11	Cell signaling Technology, Cat# 75463S
	Human anti-SSEA4-FITC	1:11	Miltenyi Biotec, Cat# 130-098-371
	Human anti-TRA-1-60-PE	1:11	Miltenyi Biotec, Cat# 130-100-347
DE Markers	Rabbit anti-FOXA2	1:400	Cell signaling Technology, Cat# 8186S
	Goat anti-SOX17	1:400	Neuromics, Cat# GT15094
	Mouse anti-human FOXA2-PE	1:20	BD Pharmingen™, Cat# 561589
	Mouse anti-human SOX17-A647	1:20	BD Pharmingen™, Cat# 562594
	Rabbit anti-T	1:300	Abcam, Cat# ab209665
Supplementary Table 6. Summary of geometric parameters evaluated for the catching valve design and operation.

Wb [µm]	Wm [µm]	Repeats
220	250	6
	300	6
233	250	6
	300	6
250	150	8
	175	8
	200	8
	250	6
	275	8
	300	6
270	250	6
	300	6
280	150	8
	175	8
	200	8
	275	8
290	250	6
	300	6
320	300	4