HARDY-SOBOLEV INEQUALITY WITH HIGHER DIMENSIONAL
SINGULARITY

EL HADJI ABDOUNAYE THIAM

Abstract. For $N \geq 4$, we let Ω to be a smooth bounded domain of \mathbb{R}^N, Γ a smooth
closed submanifold of Ω of dimension k with $1 \leq k \leq N-2$ and h a continuous
function defined on Ω. We denote by $\rho_{\Gamma}(\cdot) := \text{dist}_{\text{g}}(\cdot, \Gamma)$ the distance function
to Γ. For $\sigma \in (0, 2)$, we study existence of positive solutions $u \in H^1_0(\Omega)$ to the
nonlinear equation
$$-\Delta u + hu = \rho_{\Gamma}^{-\sigma} \frac{u^{2^*(\sigma) - 1}}{2^*(\sigma)}$$
in Ω,
where $2^*(\sigma) := \frac{2(N-\sigma)}{N-2}$ is the critical Hardy-Sobolev exponent. In particular, we
provide existence of solution under the influence of the local geometry of Γ and the
potential h.

1. Introduction

We consider the following Hardy-Sobolev inequality with cylindrical weight: for $N \geq 3$, $0 \leq k \leq N-1$ and $0 \leq \sigma \leq 2$, we have
\begin{equation}
\int_{\mathbb{R}^N} |\nabla v|^2 \, dx \geq C \left(\int_{\mathbb{R}^N} |z|^{-\sigma} |v|^{2^*_\sigma} \, dx \right)^{2/2^*_\sigma} \quad \text{for all } v \in D^{1,2}(\mathbb{R}^N),
\end{equation}
where $x = (t, z) \in \mathbb{R}^k \times \mathbb{R}^{N-k}$, C is a positive constant depending only on N, k and σ, $2^*_\sigma := \frac{2(N-\sigma)}{N-2}$ is the critical Hardy-Sobolev exponent and $D^{1,2}(\mathbb{R}^N)$ is the completion of $C^\infty_c(\mathbb{R}^N)$ with respect to the norm
$$v \mapsto \left(\int_{\mathbb{R}^N} |\nabla v|^2 \, dx \right)^{1/2}.$$
For $\sigma = 0$, inequality (1.1) corresponds to the following classical Sobolev inequality:
\begin{equation}
\int_{\mathbb{R}^N} |\nabla v|^2 \, dx \geq C \left(\int_{\mathbb{R}^N} |v|^{2^*_0} \, dx \right)^{2/2^*_0} \quad \text{for all } v \in D^{1,2}(\mathbb{R}^N).
\end{equation}
In this case, the best constant (denoted $S_{N,0}$) is achieved by the function $w(x) = c \left(1 + |x|^2 \right)^{-N/2}$
and hence the value $S_{N,0} = N(N-2) [\Gamma(N/2) / \Gamma(N)]$ explicitly (see Aubin [1], Lieb [28]
and Talenti [32]). Here Γ is the classical Euler function.

For $\sigma = 2$ and $k \neq N-2$, inequality (1.1) corresponds to the following classical Hardy inequality:
\begin{equation}
\int_{\mathbb{R}^N} |\nabla v|^2 \, dx \geq \left(\frac{N-k-2}{2} \right)^2 \int_{\mathbb{R}^N} |z|^{-2} |v|^2 \, dx \quad \text{for all } v \in D^{1,2}(\mathbb{R}^N).
\end{equation}
The constant $\left(\frac{N-k-2}{2} \right)^2$ is optimal but it is never achieved. This fact suggests that
it is possible to improve this inequality, see Brezis-Vasquez [5] and references therein.
For improved Hardy inequality on compact Riemannian manifolds, see the paper of the author [11].
For $\sigma \in (0, 2)$, the best constant in (1.1) is given by

\[S_{N,\sigma} := \inf \left\{ \int_{\mathbb{R}^N} |\nabla u|^2 \, dx, \quad u \in D^{1,2}(\mathbb{R}^N) \quad \text{and} \quad \int_{\mathbb{R}^N} |z|^{-\sigma} |u|^2 \, dx = 1 \right\} \]

and it is attained, see Badiale-Tarantello [2]. Moreover extremal functions are cylindrical symmetric, see Fabbri-Mancini-Sandeep [12]. However few of them are known explicitily.

Indeed, when $k = 0$, they are given up to scaling by $w(x) = \left((N - \sigma)(N - 2)\right)^{\frac{N - \sigma}{2(N - 2)}} \left(1 + |x|^{2 - \sigma}\right)^{\frac{2 - N}{2σ}}$. Thus the best constant is

\[S_{N,\sigma} := (N - 2)(N - \sigma) \left[\frac{w_{N-1} \Gamma^2(N - \sigma)}{2 - \sigma} \frac{2 - \sigma}{\Gamma(\frac{2(N - \sigma)}{2 - \sigma})} \right] \frac{2 - \sigma}{N - \sigma}, \]

see Lieb [28]. When $\sigma = 1$, the authors in [12] showed that the minimizers are given by

\[w(x) = \left((N - k)(k - 1)\right)^{\frac{N - 2k}{2(N - 2)}} \left(1 + |x|^2\right)^{\frac{2 - N}{2}} \]

up to scaling in the full variable and translations in the t-direction.

In this paper, we consider a Hardy-Sobolev inequality in a bounded domain of the Euclidean space with singularity a closed submanifold of higher dimensional singularity. In particular, we let Ω be a bounded domain of \mathbb{R}^N, $N \geq 3$, and h a continuous function defined on Ω. Let $\Gamma \subset \Omega$ be a smooth closed submanifold in Ω of dimension k, with $1 \leq k \leq N - 2$. We are concerned with the existence of minimizers for the following Hardy-Sobolev best constant:

\[\mu_{h,\sigma}(\Omega, \Gamma) := \inf_{u \in H^1_0(\Omega) \setminus \{0\}} \left\{ \int_{\Omega} |\nabla u|^2 \, dx + \int_{\Omega} hu^2 \, dx \right\} \left(\int_{\Omega} \rho_v^{-\sigma} |u|^2 \, dx \right)^{\frac{1}{2}}, \]

where $\sigma \in (0, 2)$, $2^*_v := \frac{2(N - \sigma)}{N - 2}$ and $\rho_v(x) := \text{dist}(x, \Gamma)$ is the distance function to Γ. Here and in the following, we assume that $-\Delta + h$ defines a coercive bilinear form on $H^1_0(\Omega)$. We are interested with the effect of the local geometry of the submanifold Γ on the existence of minimizer for $\mu_{h,\sigma}(\Omega, \Gamma)$.

When $k = 1$ (i.e. Γ is a curve), we have the following result due to the author and Fall [14].

Theorem 1.1. Let $N \geq 3$, $\sigma \in (0, 2)$ and Ω be a bounded domain of \mathbb{R}^N. Consider Γ a smooth closed curve contained in Ω. Let h be a continuous function such that the linear operator $-\Delta + h$ is coercive. Then there exists a positive constant $C_{N,\sigma}$, only depending on N and σ with the property that if there exists $y_0 \in \Gamma$ such that

\[
\begin{aligned}
&h(y_0) + C_{N,\sigma} |\kappa(y_0)|^2 < 0 & \quad \text{for } N \geq 4 \\
&m(y_0) > 0 & \quad \text{for } N = 3
\end{aligned}
\]

then $\mu_{h,\sigma}(\Omega, \Gamma) < S_{N,\sigma}$, and $\mu_{h,\sigma}(\Omega, \Gamma)$ is achieved by a positive function. Here $\kappa : \Gamma \to \mathbb{R}^N$ is the curvature vector of Γ and $m : \Omega \to \mathbb{R}$ is the mass-the trace of the regular part of the Green function of the operator $-\Delta + h$ with zero Dirichlet data.

This result shows the dichotomy between the case $N \geq 4$ and the case $N = 3$ as in Brezis-Nirenberg [3], Druet [8], Jaber [25] et references therein.

Our main result deals with the case $2 \leq k \leq N - 2$ and $N \geq 4$. Then we have
Theorem 1.2. Let \(N \geq 4, \sigma \in (0, 2) \) and \(\Omega \) be a bounded domain of \(\mathbb{R}^N \). Consider \(\Gamma \) a smooth closed submanifold contained in \(\Omega \) of dimension \(k \) with \(2 \leq k \leq N - 2 \). Let \(h \) be a continuous function such that the linear operator \(-\Delta + h \) is coercive. Then there exists positive constants \(C_{N,\sigma}^1 \) and \(C_{N,\sigma}^2 \), only depending on \(N \) and \(\sigma \) with the property that if there exists \(y_0 \in \Gamma \) such that
\[
C_{N,\sigma}^1 H^4(y_0) + C_{N,\sigma}^2 R_\sigma(y_0) + h(y_0) < 0
\]
then \(\mu_{h,\sigma}(\Omega, \Gamma) < S_{N,\sigma} \), and \(\mu_{h,\sigma}(\Omega, \Gamma) \) is achieved by a positive function. Here \(H^2 \) and \(R_\sigma \) are respectively the norms of the mean curvature and the scalar curvature of \(\Gamma \).

The explicit values of \(C_{N,\sigma}^1 \) and \(C_{N,\sigma}^2 \) appearing in (1.7) are given by weighted integrals involving partial derivatives of \(w \), a minimizer for \(S_{N,\sigma} \), see Proposition 4.3 below. When \(k = 1 \) then \(R_\sigma(x_0) = 0 \). Hence \(H = \kappa \), so that we recover Theorem 1.1.

In the litterature several authors studied Hardy-Sobolev inequalities in domains of the Euclidean space and in Riemannian manifolds, see \([6, 7, 15, 21, 25, 27]\) and references therein. For instance, we let \(\Omega \) to be a smooth bounded domain of \(\mathbb{R}^N \) with \(0 \in \Omega \) and consider the following Hardy-Sobolev constant
\[
\mu_\sigma(\Omega) := \inf \left\{ \int_\Omega |\nabla u|^2 \, dx, \ u \in H_0^1(\Omega) \text{ and } \int_\Omega |x|^{-\sigma}|u|^2 \, dx = 1 \right\},
\]
with \(\sigma \in [0, 2) \). It is well known that the value of \(\mu_\sigma(\Omega) \) is independent of \(\Omega \) thanks to scaling invariant. Moreover \(\mu_\sigma(\Omega) = S_{N,\sigma} \) given by (1.4) and it is not attained for all bounded domains, see Ghoussoub-Yuan \([21]\) and Struwe \([30]\). However the situation changes when we add a little perturbation. For example, let \(h \) be a continuous function on \(\Omega \). Consider the following Hardy-Sobolev best constant
\[
\mu_{h,\sigma}(\Omega) := \inf \left\{ \int_\Omega |\nabla u|^2 \, dx + \int_\Omega h u^2 \, dx, \ u \in H_0^1(\Omega) \text{ and } \int_\Omega |x|^{-\sigma}|u|^2 \, dx = 1 \right\}.
\]
When \(\sigma = 0 \), (1.9) corresponds to the famous Brezis-Nirenberg problem (see \([4]\)) and when \(\sigma = 2 \), this kind of problem was study by the author on compact Riemannian manifolds, see \([33]\). In the non-singular case (\(\sigma = 0 \)), authors in \([4]\) showed that, for \(N \geq 4 \) it is enough that \(h(y_0) < 0 \) to get minimizer for some \(y_0 \in \Omega \). While for \(N = 3 \), the problem is no more local and existence of minimizers is guaranted by the positiveness of a certain mass-the trace of the regular part of the Green function of the operator \(-\Delta + h \) with zero Dirichlet data, see \([5, 10]\). Related references for this Brezis-Nirenberg type problem are Druet \([9]\), Hebey-Vaugon \([23, 24]\), Egnell \([11]\) and references therein.

When \(\sigma = 2 \) and \(h \equiv \lambda \) is a real parameter and \(\Omega \) is replaced by a compact Riemannian manifold, then the author in \([32]\) proved the existence of a threshold \(\lambda^*(\Omega) \) such that the best constant in (1.9) has a solution if and only if \(\lambda < \lambda^* \). See also \([34]\).

A very interesting case in the litterature is when \(0 \in \partial \Omega \). The result of the attainability for the Hardy-Sobolev best constant \(\mu_\sigma(\Omega) \) defined in (1.5) is quite different from that in the situation where \(0 \in \Omega \). The fact that things may be different when \(0 \in \partial \Omega \) first emerged in the paper of Egnell \([11]\) where he considers open cones of the form \(C = \{ x \in \mathbb{R}^N; x = r\theta, \theta \in D \text{ and } r > 0 \} \) where the base \(D \) is a connected domain of the unit sphere \(S^{N-1} \) of \(\mathbb{R}^N \). Egnell showed that \(\mu_\sigma(C) \) is then attained for \(0 < s < 2 \) even when \(C \neq \mathbb{R}^N \). Later Ghoussoub and Kang in \([21]\) showed that if all the principal curvatures of \(\partial \Omega \) at 0 are negative then \(\mu_\sigma(\Omega) < \mu_\sigma(\mathbb{R}^N) \) and it is achieved. Demyanov and Nazarov in \([17]\) proved that the extremals for \(\mu_\sigma(\Omega) \) exist when \(\Omega \) is average concave in a neighborhood of the origin. Later Ghoussoub and Robert in \([18]\) proved the existence of extremals when the boundary is smooth and the mean curvature at 0 is negative. For
more results in this direction and generalizations, we refer to Ghoussoub-Robert [15–17], Chern-Lin [8], Lin-Li [27], Lin-Walade [29, 31], the Fall, Minlend and the author [13] and references therein.

The proof of Theorem 1.2 rely on test function methods. Namely to build appropriate test functions allowing to compare \(\mu_{h,\sigma}(\Omega, \Gamma) \) and \(S_{N,\sigma} \). While it always holds that \(\mu_{h,\sigma}(\Omega, \Gamma) \leq S_{N,\sigma} \), our main task is to find a function for which \(\mu_{h,\sigma}(\Omega, \Gamma) < S_{N,\sigma} \). This then allows to recover compactness and thus every minimizing sequence for \(\mu_{h,\sigma}(\Omega, \Gamma) \) has a subsequence which converges to a minimizer. Building these approximates solutions requires to have sharp decay estimates of a minimizer \(w \) for \(S_{N,\sigma} \), see Lemma 2.3 below. In Section 3 we prove existence result when \(\mu_{h,\sigma}(\Omega, \Gamma) < S_{N,\sigma} \). In Section 4 we build continuous family of test functions \((u_\varepsilon)_{\varepsilon>0}\) concentrating at a point \(y_0 \in \Gamma \) which yields \(\mu_{h,\sigma}(\Omega, \Gamma) < S_{N,\sigma} \), as \(\varepsilon \to 0 \), provided (1.7) holds.

\[\text{Lemma 2.3} \]

Let \(\Gamma \subset \mathbb{R}^N \) be a smooth closed submanifold of dimension \(k \) with \(2 \leq k \leq N - 2 \). For \(y_0 \in \Gamma \), we let \((E_1; \ldots ; E_k) \) be an orthonormal basis of \(T_{y_0}\Gamma \), the tangent space of \(\Gamma \) at \(y_0 \). For \(r > 0 \) small, a neighborhood of \(y_0 \in \Gamma \) can be parametrized by the mapping \(f : B_{\varepsilon}((0, r)) \rightarrow \Gamma \) defined by

\[f(t) := \exp_{y_0}^\Gamma \left(\sum_{a=1}^{k} t_a E_a \right), \]

where \(\exp_{y_0}^\Gamma \) is the exponential map of \(\Gamma \) at \(y_0 \) and \(B_{\varepsilon}((0, r)) \) is the ball of \(\mathbb{R}^k \) centered at 0 and of radius \(r \). We choose a smooth orthonormal frame field \((E_{k+1}(f(t)); \ldots ; E_N(f(t))) \) on the normal bundle of \(\Gamma \) such that \((E_1(f(t)); \ldots ; E_N(f(t))) \) is an oriented basis of \(\mathbb{R}^N \) for every \(t \in B_{\varepsilon}^k \), with \(E_i(f(0)) = E_i \). We fix the following notation, that will be used a lot in the paper,

\[Q_r := B_{\varepsilon}^k(0, r) \times B_{\varepsilon}^{N-k}(0, r), \]

where \(B_{\varepsilon}^m(0, r) \) denotes the ball in \(\mathbb{R}^m \) with radius \(r \) centered at the origin. Provided \(r > 0 \) small, the map \(F_{y_0} : Q_r \rightarrow \Omega \), given by

\[(t, z) \mapsto F_{y_0}(t, z) := f(t) + \sum_{i=2}^{N} z_i E_i(f(t)), \]

is smooth and parameterizes a neighborhood of \(y_0 = F_{y_0}(0, 0) \). We consider \(\rho_{F} : \Omega \rightarrow \mathbb{R} \) the distance function to the submanifold given by

\[\rho_{F}(t) = \min_{\Gamma \in \Gamma} |t - \Gamma|. \]

In the above coordinates, we have

\[\rho_{F}(F_{y_0}(x)) = |z| \quad \text{for every } x = (t, z) \in Q_r. \]

Since the basis \(\{ E_i \} \) is orthonormal, then for every \(t \in B_{\varepsilon}^k(0, r) ; a, b = 1, \ldots , k \) and \(i, j = k + 1, \ldots , N \), there exists real numbers \(\Gamma_{ab}^i(f(t)) \) and \(\beta_{ij}^a(f(t)) \) such that we can write

\[dE_i \circ \frac{\partial f}{\partial t_a} = - \sum_{k=1}^{k} \Gamma_{ab}^i \frac{\partial f}{\partial t_b} + \sum_{i

The quantity \(\Gamma_{ab}^i(f(t)) \) and \(\beta_{ij}^a(f(t)) \) are the second fundamental form and the "torsion" of \(\Gamma \). The norms of the second fundamental form and the mean curvature are then given
respectively by
\[
\Gamma := \left(\sum_{i=0}^{k} \sum_{a=1}^{N} \left(\Gamma^i_{ab} \right)^2 \right)^{1/2}
\quad \text{and} \quad
H := \left(\sum_{i=k+1}^{N} \sum_{a=1}^{k} \left(\Gamma^i_{aa} \right)^2 \right)^{1/2}.
\]

We note that provided \(r > 0 \) small, \(\Gamma^i_{ab} \) and \(\beta^i_{ja} \) are smooth functions. Moreover, it is easy to see that
\[
\beta^i_{ja}(f(t)) = -\beta^i_{ja}(f(t)) \quad \text{for } i, j = 2, \ldots, N \text{ and } a = 1, \ldots, k.
\]

Next, we derive the expansion of the metric induced by the parameterization \(F_{y_0} \) defined above. For \(x = (t, z) \in Q_r \), we define
\[
\tilde{g}_{ab}(x) := \partial_{t_a} F_{y_0}(x) \cdot \partial_{t_b} F_{y_0}(x), \quad g_{ai}(x) := \partial_{t_a} F_{y_0}(x) \cdot \partial_{z_i} F_{y_0}(x)
\]
and
\[
g_{ij}(x) := \partial_{z_i} F_{y_0}(x) \cdot \partial_{z_j} F_{y_0}(x).
\]

Then we have the following

Lemma 2.1. For any \(a, b = 1, \ldots, k \) and for any \(i, j = k+1, \ldots, N \), we have
\[
g_{ab}(x) = \delta_{ab} - 2 \sum_{i=k+1}^{N} z_i \Gamma^i_{ab} + \sum_{i=k+1}^{N} \sum_{j=k+1}^{N} \sum_{c=1}^{k} z_i z_j \Gamma^i_{ac} \Gamma^j_{cb} + \frac{1}{3} \sum_{c,d=1}^{k} R_{abcd}(x_0) \partial_{z_c} \partial_{z_d} + O(|x|^3)
\]
and
\[
g_{ai}(x) = \sum_{j=k+1}^{N} z_j \beta^j_{ia} \quad \text{and} \quad g_{ij}(x) = \delta_{ij},
\]
where the curvature terms \(\Gamma^i_{ab} \) and \(\beta^i_{ja} \) are computed at the point \(f(t) \).

Proof. We use the expression in (2.1) to get
\[
\frac{\partial F}{\partial t_a} = \frac{\partial f}{\partial t_a} + \sum_{i=k+1}^{N} z_i dE_i \circ \frac{\partial f}{\partial t_a}, \quad \text{and} \quad \frac{\partial F}{\partial z_i} = E_i.
\]

Then using (2.5) and the fact that \(\frac{\partial f}{\partial t_a} \in T_{f(t)} \Gamma \), we easily get
\[
g_{ai}(x) = \sum_{j=k+1}^{N} z_j \beta^j_{ia} \quad \text{and} \quad g_{ij}(x) = \delta_{ij}.
\]

We have also that
\[
g_{ab}(x) = \left(\frac{\partial f}{\partial t_a} \cdot \frac{\partial f}{\partial t_b} \right) + \sum_{i=k+1}^{N} z_i (dE_i \circ \frac{\partial f}{\partial t_a} \cdot \frac{\partial f}{\partial t_b}) + \sum_{i=k+1}^{N} z_i z_j (dE_i \circ \frac{\partial f}{\partial t_a} dE_j \circ \frac{\partial f}{\partial t_b}).
\]

The expansion of the induced metric \(\tilde{g}_{ab} = \left(\frac{\partial f}{\partial t_a} \cdot \frac{\partial f}{\partial t_b} \right) \) in the local chart of the exponential map is given by
\[
\tilde{g}_{ab}(x) = \delta_{ab} - \frac{1}{3} \sum_{c,d=1}^{k} R_{abcd}(x_0) \partial_{z_c} \partial_{z_d} + O(|x|^3),
\]
where the \(R_{abcd} \) are the components of the tensor curvature of \(\Gamma \), see [22]. We then plug (2.7) in (2.6) to get

\[
g_{ab}(x) = \delta_{ab} - 2 \sum_{i=k+1}^{N} z_i \Gamma^i_{ab} + \sum_{ij=k+1}^{N} \sum_{c=1}^{k} z_i z_j \Gamma^i_{ac} \Gamma^j_{bc} + \sum_{ij=k+1}^{N} \sum_{\substack{c=1,\cdots,k \atop j \neq j}}^{k} z_i z_j \beta^i_{la} \beta^j_{lb} - \frac{1}{3} \sum_{cd=1}^{k} R_{abcd}(x_0) t_c t_d + O(|x|^3).
\]

This ends the proof. \(\square \)

We will need the following result deduced from Lemma 2.1.

Lemma 2.2. In a small neighborhood of the point \(y_0 \in \Omega \) the expansion of the square root of the determinant of the metric is given by

\[
\sqrt{|g|}(x) = 1 - \sum_{i=k+1}^{N} z_i H^i - \frac{1}{2} \sum_{ij=k+1}^{N} \sum_{ab=1}^{k} z_i z_j \Gamma^i_{ab} \Gamma^j_{ab} + \frac{1}{3} \sum_{ij=k+1}^{N} z_i z_j H^i H^j
\]

(2.8)

Moreover the components of the inverse of the metric are

\[
g^{ab}(x) = \delta_{ab} + 2 \sum_{i=k+1}^{N} z_i \Gamma^i_{ab} + 3 \sum_{ij=k+1}^{N} \sum_{c=1}^{k} z_i z_j \Gamma^i_{ac} \Gamma^j_{bc} + \frac{1}{3} \sum_{ij=k+1}^{N} \sum_{\substack{c=1,\cdots,k \atop j \neq j}}^{k} z_i z_j H^i H^j + O(|x|^3)
\]

(2.9)

\[
g^{ai}(x) = - \sum_{j=k+1}^{N} z_j \beta^i_{la} - 2 \sum_{c=1}^{k} \sum_{lm=k+1}^{N} z_l z_m \Gamma^i_{ac} \Gamma^m_{ae} + O(|x|^3)
\]

\[
g^{ij}(x) = \delta_{ij} + \sum_{c=1}^{k} \sum_{lm=k+1}^{N} z_l z_m \beta^i_{lc} \beta^j_{mc} + O(|x|^3).
\]

Proof. We can write \(g(x) = I + A \). Then we have the classical expansion

\[
\sqrt{\det(I + A)}(x) = 1 + \frac{\text{tr} A}{2} + \frac{\left(\text{tr} A\right)^2}{4} - \frac{\text{tr} (A^2)}{4} + O(|A|^3),
\]

where we have

\[
\frac{\text{tr} A}{2} = - \sum_{i=k+1}^{N} z_i H^i + \sum_{ij=k+1}^{N} \sum_{ab=1}^{k} z_i z_j \Gamma^i_{ab} \Gamma^j_{ab} + \sum_{ij=k+1}^{N} \sum_{\substack{c=1,\cdots,k \atop j \neq j}}^{k} z_i z_j \beta^i_{la} \beta^j_{lb} - \frac{1}{6} \sum_{cd=1}^{k} R_{cd}(x_0) t_c t_d + O(|x|^3)
\]

and

\[
\frac{\left(\text{tr} A\right)^2}{4} = \sum_{ij=k+1}^{N} z_i z_j H^i H^j + O(|x|^3),
\]

where for \(i = k + 1, \ldots, N \) we have

\[
H^i = \sum_{a=1}^{k} \Gamma^i_{aa}
\]
are the components of the mean curvature of Γ. Moreover using the fact that the matrix A is symmetric, we get
\[
trA^2 = \sum_{\alpha=1}^{N} (A^2)_{\alpha\alpha} = \sum_{\alpha=1}^{N} \left(\sum_{\beta=1}^{N} A_{\alpha\beta}(x)A_{\alpha\beta}(x) \right).
\]
Then
\[
-\frac{trA^2}{4} = -\frac{1}{4} \left(\sum_{\alpha=1}^{N} A_{\alpha\beta}(x) + 2 \sum_{a=1}^{N} \sum_{i=k+1}^{N} A_{ai}(x) + \sum_{i=j=k+1}^{N} A_{ij}^2(x) \right).
\]
Therefore
\[
(2.13)
-\frac{trA^2}{4} = -\sum_{ij=k+1}^{N} \sum_{ab=1}^{k} z_i z_j \Gamma_{ab}^i \Gamma_{ab}^j - \frac{1}{2} \sum_{ij=k+1}^{N} \sum_{ab=1}^{k} z_i z_j \beta_\alpha^i \beta_\alpha^j.
\]
By (2.10), (2.11), (2.12) and (2.13), we finally obtain
\[
\sqrt{|g|}(x) = 1 - \sum_{i=k+1}^{N} z_i H^i - \frac{1}{2} \sum_{ij=k+1}^{N} \sum_{ab=1}^{k} z_i z_j \Gamma_{ab}^i \Gamma_{ab}^j
+ \sum_{ij=k+1}^{N} z_i z_j H^i H^j - \frac{1}{6} \sum_{cd=1}^{k} Ric_{cd}(x_0) t_c t_d + O (|x|^3).
\]
We write
\[
g(x) = I + A(x) + B(x) + O (|x|^3),
\]
where A and B are symmetric matrix given by
\[
A_{ab}(x) = -2 \sum_{i=k+1}^{N} z_i \Gamma_{ab}^i; \quad A_{ai}(x) = \sum_{j=k+1}^{N} z_j \beta_\alpha^j \text{ and } A_{ij}(x) = 0
\]
and
\[
B_{ab}(x) = \sum_{ij=k+1}^{N} \sum_{c=1}^{k} z_i z_j \Gamma_{ac}^i \Gamma_{bc}^j + \sum_{ij=k+1}^{N} \sum_{ab=1}^{k} z_i z_j \beta_\alpha^i \beta_\alpha^j - \frac{3}{2} \sum_{cd=1}^{k} R_{abcd}(x_0) t_c t_d
\]
and
\[
B_{ai}(x) = B_{ij}(x) = 0.
\]
It’s clear that the inverse of the metric g^{-1} is given by
\[
g^{-1}(x) = I - A(x) - B(x) + A^2(x) + O (|x|^3).
\]
This yields
\[
g^{ab}(x) = \delta_{ab} - A_{ab}(x) - B_{ab}(x) + \sum_{c=1}^{k} A_{ac}(x)A_{bc}(x) + \sum_{i=k+1}^{N} A_{ai}(x)A_{bi}(x) + O (|x|^3)
\]
\[
g^{ai}(x) = -A_{ai}(x) - B_{ai}(x) + \sum_{c=1}^{k} A_{ac}(x)A_{ic}(x) + \sum_{j=k+1}^{N} A_{aj}(x)A_{ij}(x) + O (|x|^3)
\]
\[
g^{ij}(x) = \delta_{ij} - A_{ij}(x) - B_{ij}(x) + \sum_{c=1}^{k} A_{ac}(x)A_{jc}(x) + \sum_{l=k+1}^{N} A_{ul}(x)A_{jl}(x) + O (|x|^3).
\]
Hence we obtain that
\[(2.14)\]
\[g^{ab}(x) = \delta_{ab} + 2 \sum_{i=k+1}^{N} z_i \Gamma_{ai}^{i} + 3 \sum_{ij=k+1}^{N} \sum_{c=1}^{k} z_i z_j \Gamma_{ac}^{i} \Gamma_{bc}^{j} + \frac{1}{3} \sum_{cld=1}^{k} R_{acbd}(x) t_c t_d + O \left(|x|^3 \right) \]
\[g^{ai}(x) = - \sum_{j=k+1}^{N} z_j \beta_{ia}^{j} - 2 \sum_{c=1}^{k} \sum_{lm=k+1}^{N} z_l z_c \Gamma_{ac}^{i} \Gamma_{lc}^{m} + O \left(|x|^3 \right) \]
\[g^{ij}(x) = \delta_{ij} + \sum_{c=1}^{k} \sum_{lm=k+1}^{N} z_l z_m \beta_{ic}^{i} \beta_{jc}^{m} + O \left(|x|^3 \right) . \]

This ends the proof of the lemma. \(\square \)

We consider the best constant for the cylindrical Hardy-Sobolev inequality
\[S_{N,\sigma} = \min \left\{ \int_{\mathbb{R}^N} |\nabla w|^2 \, dx : w \in D^{1,2}(\mathbb{R}^N), \int_{\mathbb{R}^N} |z|^{-\sigma} |w|^{2^*} \, dx = 1 \right\} . \]

As mentioned in the first section, it is attained by a positive function \(w \in D^{1,2}(\mathbb{R}^N) \), satisfying
\[(2.15)\]
\[- \Delta w = S_{N,\sigma} |z|^{-\sigma} w^{2^*-1} \quad \text{in} \ \mathbb{R}^N, \]
see e.g. [2]. Moreover from [12], we have
\[(2.16)\]
\[w(x) = w(t, z) = \theta(|t|, |z|) \quad \text{for a function} \quad \theta : \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow \mathbb{R}_+. \]

We will need the following preliminary result in the sequel.

Lemma 2.3. Let \(w \) be a ground state for \(S_{N,\sigma} \) then there exist positive constants \(C_1, C_2 \), only depending on \(N \) and \(\sigma \), such that

(i) For every \(x \in \mathbb{R}^N \)
\[(2.17)\]
\[\frac{C_1}{1 + |x|^{N-2}} \leq w(x) \leq \frac{C_2}{1 + |x|^{N-2}}. \]

(ii) For \(|x| = |(t, z)| \leq 1 \)
\[|\nabla w(x)| + |x| |D^2 w(x)| \leq C_2 |z|^{1-\sigma} \]

(iii) For \(|x| = |(t, z)| \geq 1 \)
\[|\nabla w(x)| + |x| |D^2 w(x)| \leq C_2 \max(1, |z|^{-\sigma}) |x|^{1-N} . \]

Fabbri, Mancini and Sandeep proved (i) in [12]. The proof of (ii) and (iii) are done by the Fall and the author in [14].

3. Existence Result

Let \(\Omega \) be a bounded domain of \(\mathbb{R}^N \), \(N \geq 3 \), and \(h \) a continuous function on \(\Omega \). Let \(\Gamma \) be a smooth closed submanifold contained in \(\Omega \). We consider
\[(3.1)\]
\[\mu_{h, \sigma}(\Omega, \Gamma) := \inf_{u \in H_0^1(\Omega)} \left(\int_{\Omega} |\nabla u|^2 \, dx + \int_{\Omega} hu^2 \, dy \right)^{1/2} \left(\int_{\Omega} \rho_t^{-\sigma} |u|^{2^*} \, dy \right)^{1/2} . \]

We also recall that
\[(3.2)\]
\[S_{N,\sigma} = \inf_{w \in D^{1,2}(\mathbb{R}^N)} \left(\int_{\mathbb{R}^N} |\nabla w|^2 \, dx \right)^{1/2} \left(\int_{\mathbb{R}^N} |z|^{-\sigma} |w|^{2^*} \, dx \right)^{1/2}. \]
with $x = (t, z) \in \mathbb{R} \times \mathbb{R}^{N-1}$. Our aim in this section is to show that if $\mu_{h, \sigma}(\Omega, \Gamma) < S_{N, \sigma}$ then the best constant $\mu_{h, \sigma}(\Omega, \Gamma)$ is achieved. The argument of proof is standard. However, for sake of completeness, we add the proof. We start with the following

Lemma 3.1. Let Ω be an open subset of \mathbb{R}^N, with $N \geq 3$, and let $\Gamma \subset \Omega$ be a smooth closed submanifold. Then for every $r > 0$, there exist positive constants $c_r > 0$, only depending on $\Omega, \Gamma, N, \sigma$ and r, such that for every $u \in H^1_0(\Omega)$

$$S_{N, \sigma} \left(\int_\Omega \rho_{T}^{-\sigma}|u|^{2^*_s} \, dy \right)^{2/2^*_s} \leq (1 + r) \int_\Omega |\nabla u|^2 \, dy + c_r \left(\int_\Omega |u|^{2^*_s} \, dy \right)^{2/2^*_s},$$

where $2^*_s = \frac{2(N-\sigma)}{N-2}$ and $\sigma \in (0, 2)$.

Proof. We let $r > 0$ small. We can cover a tubular neighborhood of Γ by a finite number of sets $(T_r^i)_{1 \leq i \leq m}$ given by

$$T_r^i := F_{y_i}(Q_r), \quad \text{with } y_i \in \Gamma.$$

We refer to Section 22 for the parameterization $F_{y_i} : Q_r \to \Omega$. See e.g. [1, Section 2.27], there exists $(\varphi_i)_{1 \leq i \leq m}$ a partition of unity subordinated to this covering such that

$$\sum_i \varphi_i = 1 \quad \text{and} \quad |\nabla \varphi_i| \leq K \quad \text{in } U := \bigcup_{i=1}^m T_r^i,$$

for some constant $K > 0$. We define

$$\psi_i(y) := \varphi_i^{1/2^*_s}(y) u(y) \quad \text{and} \quad \tilde{\psi}_i(x) = \psi_i(F_{y_i}(x)).$$

Recall that $\rho_{T}^i > C > 0$ on $\Omega \setminus U$, for some positive constant $C > 0$. Therefore, since $\frac{1}{2^*_s} < 1$, by (3.3) we get

$$\left(\int_{T_r^i} \rho_{T}^{-\sigma} |\tilde{\psi}_i|^{2^*_s} \, dy \right)^{2/2^*_s} \leq \left(\int_U \rho_{T}^{-\sigma} |u|^{2^*_s} \, dy \right)^{2/2^*_s} + \left(\int_{\Omega \setminus U} |u|^{2^*_s} \, dy \right)^{2/2^*_s} \leq \sum_i \left(\int_{T_r^i} \rho_{T}^{-\sigma} |\tilde{\psi}_i|^{2^*_s} \, dy \right)^{2/2^*_s} + c_r \left(\int_\Omega |u|^{2^*_s} \, dy \right)^{2/2^*_s} \leq \sum_i \left(\int_{T_r^i} \rho_{T}^{-\sigma} |\tilde{\psi}_i|^{2^*_s} \, dy \right)^{2/2^*_s} + c_r \left(\int_\Omega |u|^{2^*_s} \, dy \right)^{2/2^*_s}.$$

By change of variables and Lemma 222 we have

$$\left(\int_{T_r^i} \rho_{T}^{-\sigma} |\tilde{\psi}_i|^{2^*_s} \, dy \right)^{2/2^*_s} = \left(\int_{Q_r} \left| z \right|^{-\sigma} |\tilde{\psi}_i|^{2^*_s} \sqrt{|g|(x)} \, dx \right)^{2/2^*_s} \leq (1 + cr) \left(\int_{Q_r} \left| z \right|^{-\sigma} |\tilde{\psi}_i|^{2^*_s} \, dx \right)^{2/2^*_s}.$$

In addition by the Hardy-Sobolev best constant (3.2), we have

$$S_{N, \sigma} \left(\int_{Q_r} \left| z \right|^{-\sigma} \left| \tilde{\psi}_i \right|^{2^*_s} \, dx \right)^{2/2^*_s} \leq \left(\int_{Q_r} \left| \nabla \tilde{\psi}_i \right|^2 \, dx \right)^{2/2^*_s}. $$

Therefore by change of variables and Lemma 222 we get

$$S_{N, \sigma} \left(\int_{T_r^i} \rho_{T}^{-\sigma} |\tilde{\psi}_i|^{2^*_s} \, dy \right)^{2/2^*_s} \leq (1 + cr) \int_{Q_r} \left| \nabla \tilde{\psi}_i \right|^2 \, dx \leq (1 + c'r) \int_{T_r^i} \left| \nabla (\varphi_i^{1/2^*_s} u) \right|^2 \, dy = (1 + c'r) \int_{T_r^i} |\varphi_i^{1/2^*_s} \nabla u + u \nabla \varphi_i^{1/2^*_s}|^2 \, dy + c_r \int_\Omega |u|^2 \, dy.$$
Applying Young’s inequality using (3.3) and (3.4), we find that
\[
S_{N,\sigma} \left(\int \rho_{\tau}^{-\sigma} \psi_i^2 \, dy \right)^{2/\sigma} \leq (1 + c') (1 + \varepsilon) \int \varphi_i^2 \left(\frac{|\nabla u|^2}{m} \right) dy + c_r(\varepsilon) \int |u|^2 \, dy \\
\leq (1 + c') (1 + \varepsilon) \int |\nabla u|^2 \, dy + c_r(\varepsilon) \int |u|^2 \, dy.
\]
Summing for \(i \) equal 1 to \(m \), we get
\[
S_{N,\sigma} \sum_{i=1}^{m} \left(\int \rho_{\tau}^{-\sigma} \psi_i^2 \, dy \right)^{2/\sigma} \leq (1 + c') (1 + \varepsilon) \left(\int |\nabla u|^2 \, dy \right)^{1/2} + c_r(\varepsilon) \left(\int |u|^2 \, dy \right)^{1/2}.
\]
This together with (3.5) give
\[
S_{N,\sigma} \left(\int \rho_{\tau}^{-\sigma} |u|^2 \, dy \right)^{2/\sigma} \leq (1 + c') (1 + \varepsilon) \int |\nabla u|^2 \, dy + c_r(\varepsilon) \int |u|^2 \, dy + c_r \left(\int |u|^2 \, dy \right)^{2/\sigma}.
\]
Since \(\varepsilon \) and \(r \) can be chosen arbitrarily small, we get the desired result. \(\square \)

We can now prove the following existence result.

Proposition 3.2. Consider \(\mu_{h,\sigma}(\Omega, \Gamma) \) and \(S_{N,\sigma} \) given by (3.1) and (3.2) respectively. Suppose that
\[
(3.6) \quad \mu_{h,\sigma}(\Omega, \Gamma) < S_{N,\sigma}.
\]
Then \(\mu_{h,\sigma}(\Omega, \Gamma) \) is achieved by a positive function.

Proof. Let \((u_n)_{n \in \mathbb{N}} \) be a minimizing sequence for \(\mu_{h,\sigma}(\Omega, \Gamma) \) normalized so that
\[
(3.7) \quad \int \rho_{\tau}^{-\sigma} |u|^2 \, dx = 1 \quad \text{and} \quad \mu_{h,\sigma}(\Omega, \Gamma) = \int \nabla u_n|^2 \, dx + \int u_n^2 \, dx + o(1).
\]
By coercivity of \(-\Delta + h \), the sequence \((u_n)_{n \in \mathbb{N}} \) is bounded in \(H_0^1(\Omega) \) and thus, up to a subsequence,
\[
u_n \rightharpoonup u \quad \text{weakly in } H_0^1(\Omega),
\]
and
\[
(3.8) \quad u_n \to u \quad \text{strongly in } L^p(\Omega) \quad \text{for } 1 \leq p < 2^*_0 := \frac{2N}{N-2}.
\]
The weak convergence in \(H_0^1(\Omega) \) implies that
\[
(3.9) \quad \int |\nabla u_n|^2 \, dx = \int |\nabla (u_n - u)|^2 \, dx + \int |\nabla u|^2 \, dx + o(1).
\]
By Brezis-Lieb lemma \(3 \) and the strong convergence in the Lebesgue spaces \(L^p(\Omega) \), we have
\[
(3.10) \quad 1 = \int \rho_{\tau}^{-\sigma} |u|^2 \, dx = \int \rho_{\tau}^{-\sigma} |u - u_n|^2 \, dx + \int \rho_{\tau}^{-\sigma} |u_n|^2 \, dx + o(1).
\]
By Lemma 3.1 and 3.3 — note that \(2^*_0 < 2^*_0 \), we then deduce that
\[
(3.11) \quad S_{N,\sigma} \left(\int \rho_{\tau}^{-\sigma} |u - u_n|^2 \, dx \right)^{2/\sigma} \leq (1 + r) \int |\nabla (u - u_n)|^2 \, dx + o(1).
\]
Using (3.9), (3.10) and (3.11), we have

\[
S_{N, \sigma} \left(1 - \int_{\Omega} \rho_{\Gamma}^{-\sigma} |u|^{2^*_\sigma} \, dx \right)^{2^{*}_\sigma} \leq (1 + r) \left(\int_{\Omega} |\nabla u_h|^2 \, dx - \int_{\Omega} |\nabla u|^2 \, dx \right) + o(1)
\]

\[
= (1 + r) \left(\mu_{h, \sigma}(\Omega, \Gamma) - \int_{\Omega} h u_h^2 \, dx - \int_{\Omega} |\nabla u|^2 \, dx \right) + o(1)
\]

\[
= (1 + r) \left(\mu_{h, \sigma}(\Omega, \Gamma) - \int_{\Omega} h u^2 \, dx - \int_{\Omega} |\nabla u|^2 \, dx \right) + o(1)
\]

(3.12)

By the concavity of the map \(t \mapsto t^{2^{*}_\sigma} \) on \([0, 1]\), we have

\[
1 \leq \left(1 - \int_{\Omega} \rho_{\Gamma}^{-\sigma} |u|^{2^*_\sigma} \, dx \right)^{2^{*}_\sigma} + \left(\int_{\Omega} \rho_{\Gamma}^{-\sigma} |u|^{2^*_\sigma} \, dx \right)^{2^{*}_\sigma}.
\]

From this, then taking the limits respectively as \(n \to +\infty \) and as \(r \to 0 \) in (3.12), we find that

\[
[S_{N, \sigma} - \mu_{h, \sigma}(\Omega, \Gamma)] \left(1 - \left(\int_{\Omega} \rho_{\Gamma}^{-\sigma} |u|^{2^*_\sigma} \, dx \right)^{2^{*}_\sigma} \right) \leq 0.
\]

Thanks to (3.6), we then get

\[
1 \leq \int_{\Omega} \rho_{\Gamma}^{-\sigma} |u|^{2^*_\sigma} \, dx.
\]

Since by (3.7) and Fatou’s lemma,

\[
1 = \int_{\Omega} \rho_{\Gamma}^{-\sigma} |u_h|^{2^*_\sigma} \, dx \geq \int_{\Omega} \rho_{\Gamma}^{-\sigma} |u|^{2^*_\sigma} \, dx,
\]

we conclude that

\[
\int_{\Omega} \rho_{\Gamma}^{-\sigma} |u|^{2^*_\sigma} \, dx = 1.
\]

It then follows from (3.7) that \(u_h \to u \) in \(L^{2^*_\sigma}(\Omega; \rho_{\Gamma}^{-\sigma}) \) and thus \(u_h \to u \) in \(H_0^1(\Omega) \). Therefore \(u \) is a minimizer for \(\mu_{h, \sigma}(\Omega, \Gamma) \). Since \(|u| \) is also a minimizer for \(\mu_{h, \sigma}(\Omega, \Gamma) \), we may assume that \(u \geq 0 \). Therefore \(u > 0 \) by the maximum principle. \(\square \)

4. Comparing \(S_{N, \sigma} \) and \(\mu_{h, \sigma}(\Omega, \Gamma) \)

Lemma 4.1. Let \(v \in D^{1,2}(\mathbb{R}^N), N \geq 3 \), satisfy \(v(t, z) = \Theta(|t|, |z|) \), for some some function \(\Theta : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R} \). Then for \(0 < r < R \), we have

\[
\int_{Q_R \setminus Q_r} |\nabla v|^2 \, \sqrt{g} \, dx = \int_{Q_R \setminus Q_r} |\nabla v|^2 \, dx + \frac{3 \Gamma^2 - 2 H^2}{k(N - k)} \int_{Q_R \setminus Q_r} |z|^2 |\nabla v|^2 \, dx
\]

\[
+ \frac{R_g(x_0)}{3k^2} \int_{Q_R \setminus Q_r} |t|^2 |\nabla v|^2 \, dx + \frac{H^2 - \Gamma^2}{N - k} \int_{Q_R \setminus Q_r} |z|^2 |\nabla v|^2 \, dx
\]

\[
- \frac{R_g(x_0)}{6k} \int_{Q_R \setminus Q_r} |t|^2 |\nabla v|^2 \, dx + O \left(\int_{Q_R \setminus Q_r} |x|^3 |\nabla v|^2 \, dx \right).
\]
Proof. It is easy to see that

\begin{equation}
\int_{Q_R \setminus Q_r} |\nabla v|^2 \sqrt{|g|} dx = \int_{Q_R \setminus Q_r} |\nabla v|^2 dx + \int_{Q_R \setminus Q_r} (|\nabla v|^2 - |\nabla v|^2) \sqrt{|g|} dx
\end{equation}

(4.2)

\begin{equation}
\sum_{ij=k+1}^N \beta_{ij}^a \beta_{ij}^b \frac{z_2^2 + z_3^2}{|z|^2} |\nabla v|^2 dx
\end{equation}

(4.3)

\begin{equation}
\sum_{a=1}^k \sum_{i=2}^N g^{ia} (\partial_{ia} \nabla v \cdot \nabla v) z_i t_a \sqrt{|g|} dx
\end{equation}

(4.6)

We recall that

\begin{equation}
|\nabla v|^2(x) - |\nabla v|^2 = \sum_{\alpha \beta=1}^N \left[g^{\alpha \beta} (x) - \delta_{\alpha \beta} \right] \partial_{\alpha x} v(x) \partial_{\beta x} v(x).
\end{equation}

It then follows that

\begin{equation}
\int_{Q_R \setminus Q_r} (|\nabla v|^2 - |\nabla v|^2) \sqrt{|g|} dx = \sum_{ij=k+1}^N \int_{Q_R \setminus Q_r} \left[g^{ij} - \delta_{ij} \right] \partial_{zi} v \partial_{zj} v \sqrt{|g|} dx
\end{equation}

(4.4)

We first use Lemma 2.1, Lemma 2.2 and (2.4), to get

\begin{equation}
\sum_{ij=k+1}^N \int_{Q_R \setminus Q_r} \left[g^{ij} - \delta_{ij} \right] \partial_{zi} v \partial_{zj} v \sqrt{|g|} dx
\end{equation}

(4.5)

Using again Lemma 2.1 and Lemma 2.2 it easy follows that

\begin{equation}
\sum_{a=1}^k \sum_{i=2}^N \int_{Q_R \setminus Q_r} g^{ia} (\partial_{ia} v \partial_{zj} v) \sqrt{|g|} dx = \sum_{a=1}^k \sum_{i=2}^N \int_{Q_R \setminus Q_r} g^{ia} (\nabla v \cdot \nabla v) z_i t_a \sqrt{|g|} dx
\end{equation}

(4.6)
By Lemma 2.1 and Lemma 2.2 we then have

\begin{align*}
\sum_{ab=1}^{k} \int_{Q_r \cap Q_x} [g^{ab} - \delta_{ab}] (\partial_{x_a} v \partial_{x_b} v) \sqrt{|g|} dx &= \sum_{ab=1}^{k} \int_{Q_r \cap Q_x} \left[-2 \sum_{ij=k+1}^{N} z_{i} z_{j} H^{i} \Gamma_{ab}^{i} + 3 \sum_{ij=k+1}^{N} z_{i} z_{j} \Gamma_{a l i} \Gamma_{b c j} + \frac{1}{3} \sum_{c d=1}^{k} R_{a c b d}(x_0) t_{c} t_{d} + O \left(|x|^3 \right) \right] \frac{t_{a} t_{b}}{|t|^2} |\nabla_{x} v|^2 dx.
\end{align*}

Therefore

\begin{align*}
\sum_{ab=1}^{k} \int_{Q_r \cap Q_x} [g^{ab} - \delta_{ab}] (\partial_{x_a} v \partial_{x_b} v) \sqrt{|g|} dx &= \frac{3 \Gamma^2 - 2 H^2}{k(N-k)} \int_{Q_r \cap Q_x} |z|^2 |\nabla_{x} v|^2 dx + O \left(\int_{Q_r \cap Q_x} |x|^3 |\nabla_{x} v|^2 dx \right)
\end{align*}

(4.7)

By Lemma 2.2 we have

\begin{align*}
\int_{Q_r \cap Q_x} |\nabla v|^2 (\sqrt{|g|} - 1) dx &= \frac{H^2 - \Gamma^2/2}{N-k} \int_{Q_r \cap Q_x} |z|^2 |\nabla_{x} v|^2 dx
\end{align*}

(4.8)

\begin{align*}
- \frac{R_{a}(x_0)}{6 k} \int_{Q_r \cap Q_x} |t|^2 |\nabla_{x} v|^2 dx + O \left(\int_{Q_r \cap Q_x} |x|^3 |\nabla_{x} v|^2 dx \right)
\end{align*}

(4.9)

The result follows from (4.1), (4.4), (4.5), (4.6), (4.7) and (4.8). This then ends the proof. \(\square\)

We consider \(\Omega\) a bounded domain of \(\mathbb{R}^N\), \(N \geq 3\), and \(\Gamma \subset \Omega\) be a smooth closed submanifold of dimension \(k\) with \(2 \leq k \leq N - 2\). For \(u \in H^1_0(\Omega) \setminus \{0\}\), we define the ratio

\begin{align*}
J(u) := \frac{\int_{\Omega} |\nabla u|^2 dy + \int_{\Omega} h u^2 dy}{\left(\int_{\Omega} \rho_{\Gamma}^{-\sigma} |u|^{2\sigma} dy \right)^{2/2\sigma}}.
\end{align*}

(4.10)

We let \(\eta \in C^\infty_c(Q_{2r})\) be such that

\begin{align*}
0 \leq \eta \leq 1 \quad \text{and} \quad \eta \equiv 1 \quad \text{in} \ Q_r.
\end{align*}

For \(\varepsilon > 0\), we consider \(u_\varepsilon : \Omega \to \mathbb{R} \) given by

\begin{align*}
u_\varepsilon(y) := \varepsilon^{-\frac{2-N}{2}} \eta(F_{y_0}^{-1}(y)) w \left(\varepsilon^{-1} F_{y_0}^{-1}(y) \right).
\end{align*}

(4.11)

In particular, for every \(x = (t, z) \in \mathbb{R}^k \times \mathbb{R}^{N-k}\), we have

\begin{align*}
u_\varepsilon(F_{y_0}(x)) := \varepsilon^{\frac{2-N}{2}} \eta(x) \theta(|t|/\varepsilon, |z|/\varepsilon).
\end{align*}

(4.12)

It is clear that \(u_\varepsilon \in H^1_0(\Omega)\). Then we have the following expansion.
Lemma 4.2. For J given by (4.10) and u_ε given by (4.11), as $\varepsilon \to 0$, we have

$$J(u_\varepsilon) = S_{N,\sigma} + \varepsilon^2 \frac{H^2 - 3R_0(x_0)}{k(N - k)} \int_{Q_{\varepsilon}} |z|^2 |\nabla \varepsilon w|^2 dx + \varepsilon^2 \frac{R_0(x_0)}{3k^2} \int_{Q_{\varepsilon}} |t|^2 |\nabla \varepsilon w|^2 dx$$

(4.13)

$$+ \varepsilon^2 \frac{H^2 + R_0(x_0)}{2(\varepsilon^2 - k)} \int_{Q_{\varepsilon}} |z|^2 |\nabla w|^2 dx - \varepsilon^2 \frac{R_0(x_0)}{6k} \int_{Q_{\varepsilon}} |t|^2 |\nabla w|^2 dx$$

(4.14)

$$+ \varepsilon^2 \frac{H^2 + R_0(x_0)}{2(\varepsilon^2 - k)} S_{N,\sigma} \int_{Q_{\varepsilon}} |z|^2 |\nabla w|^2 dx - \varepsilon^2 \frac{R_0(x_0)}{2(\varepsilon^2 - k)} S_{N,\sigma} \int_{Q_{\varepsilon}} |t|^2 |\nabla w|^2 dx$$

(4.15)

$$+ \varepsilon^2 h(y_0) \int_{Q_{\varepsilon}} \omega^2 dx + O \left(\varepsilon^2 \int_{Q_{\varepsilon}} |h(F_{y_0}(\varepsilon x) - h(y_0)||\nabla w|^2 dx \right) + O \left(\varepsilon^{N-2} \right).$$

Proof. To simplify the notations, we will write F in the place of F_{y_0}. Recalling (4.11), we write

$$u_\varepsilon(y) = \frac{2-N}{\varepsilon} \eta(F^{-1}(y)) W_\varepsilon(y),$$

where $W_\varepsilon(y) = W \left(\frac{y}{\varepsilon} \right).$ Then $|\nabla u_\varepsilon|^2 = \varepsilon^{2-N} \left(\eta^2 |\nabla W_\varepsilon|^2 + \eta^2 |\nabla W_\varepsilon|^2 + \frac{1}{2} \nabla W_\varepsilon \cdot \nabla \eta^2 \right).$

Integrating by parts, we have

$$\int |\nabla u_\varepsilon|^2 dy = \varepsilon^{2-N} \int_{F(Q_{2\varepsilon})} \eta^2 |\nabla W_\varepsilon|^2 dy + \varepsilon^{2-N} \int_{F(Q_{2\varepsilon}) \setminus F(Q_\varepsilon)} W_\varepsilon^2 \left(|\nabla \eta|^2 - \frac{1}{2} \Delta \eta^2 \right) dy$$

$$= \varepsilon^{2-N} \int_{F(Q_{2\varepsilon})} \eta^2 |\nabla W_\varepsilon|^2 dy - \varepsilon^{2-N} \int_{F(Q_{2\varepsilon}) \setminus F(Q_\varepsilon)} W_\varepsilon^2 \eta \Delta \eta dy$$

(4.16)

$$= \varepsilon^{2-N} \int_{F(Q_{2\varepsilon})} \eta^2 |\nabla W_\varepsilon|^2 dy + O \left(\varepsilon^{2-N} \int_{F(Q_{2\varepsilon}) \setminus F(Q_\varepsilon)} W_\varepsilon^2 \eta dy \right).$$

By the change of variable $y = \frac{F(z)}{\varepsilon}$ and (4.12), we can apply Lemma 4.1 to get

$$\int |\nabla u_\varepsilon|^2 dy = \int_{Q_{\varepsilon}} |\nabla w|_{Q_{2\varepsilon}} |\nabla w|_{Q_{2\varepsilon},Q_{\varepsilon}} \int_{Q_{\varepsilon}} |\nabla w|^2 dx$$

$$= \int_{Q_{\varepsilon}} |\nabla w|^2 dx + \varepsilon^2 \frac{3\Gamma^2 - 2H^2}{k(N - k)} \int_{Q_{\varepsilon}} |z|^2 |\nabla \varepsilon w|^2 dx + \varepsilon^2 \frac{R_0(x_0)}{3k^2} \int_{Q_{\varepsilon}} |t|^2 |\nabla \varepsilon w|^2 dx$$

$$+ \varepsilon^2 \frac{H^2 - \Gamma^2}{N - k} \int_{Q_{\varepsilon}} |z|^2 |\nabla w|^2 dx - \varepsilon^2 \frac{R_0(x_0)}{6k} \int_{Q_{\varepsilon}} |t|^2 |\nabla w|^2 dx + O(\rho(\varepsilon))$$

$$= S_{N,\sigma} + \varepsilon^2 \frac{3\Gamma^2 - 2H^2}{k(N - k)} \int_{Q_{\varepsilon}} |z|^2 |\nabla w|^2 dx + \varepsilon^2 \frac{R_0(x_0)}{3k^2} \int_{Q_{\varepsilon}} |t|^2 |\nabla w|^2 dx$$

$$+ \varepsilon^2 \frac{H^2 - \Gamma^2}{N - k} \int_{Q_{\varepsilon}} |z|^2 |\nabla w|^2 dx - \varepsilon^2 \frac{R_0(x_0)}{6k} \int_{Q_{\varepsilon}} |t|^2 |\nabla w|^2 dx + O(\rho(\varepsilon)),$$

where

$$\rho(\varepsilon) = \varepsilon^3 \int_{Q_{\varepsilon}} |z|^3 |\nabla w|^2 dx + \varepsilon^3 \int_{Q_{2\varepsilon}} |w|^2 dx + \int_{R^N \setminus Q_{\varepsilon}} |\nabla w|^2 dx + \varepsilon^2 \int_{Q_{2\varepsilon} \setminus Q_{\varepsilon}} |z|^2 |\nabla w|^2 dx.$$
Using Lemma 2.3, we find that $\rho(\varepsilon) = O(\varepsilon^{N-2})$. Therefore

$$
\int_{\Omega} |\nabla u_\varepsilon|^2 \, dy = S_{N,\sigma} + \varepsilon^2 \frac{3\Gamma^2 - 2H^2}{k(N-k)} \int_{Q_{r/\varepsilon}} |z|^2 |\nabla w|^2 \, dx + \varepsilon^2 \frac{R_\varepsilon(x_0)}{3k^2} \int_{Q_{r/\varepsilon}} |t|^2 |\nabla w|^2 \, dx
$$

(4.17)

$$
+ \varepsilon^2 \frac{H^2 - \Gamma^2/2}{N-k} \int_{Q_{r/\varepsilon}} |z|^2 |\nabla w|^2 \, dx - \varepsilon^2 \frac{R_\varepsilon(x_0)}{6k} \int_{Q_{r/\varepsilon}} |t|^2 |\nabla w|^2 \, dx + O(\varepsilon^{N-2}).
$$

(4.18)

By the change of variable $y = \frac{F(x)}{\varepsilon}$, and using the fact that $\rho(F(x)) = |z|$, we get

$$\int_{Q_{r/\varepsilon}} |\nabla u_\varepsilon|^2 \, dy = \int_{Q_{r/\varepsilon}} |z|^{-\sigma} w^2\sqrt{|\gamma_k|} \, dx + O \left(\int_{Q_{2r/\varepsilon}\setminus Q_{r/\varepsilon}} |z|^{-\sigma} (\eta(\varepsilon x) w) \right)$$

$$+ O \left(\int_{Q_{2r/\varepsilon}\setminus Q_{r/\varepsilon}} |z|^{-\sigma} w^2 \, dx \right).$$

Using (4.17), we have

$$\varepsilon^3 \int_{Q_{r/\varepsilon}} |z|^3 |z|^{-\sigma} w^2 \, dx + \int_{\Omega\setminus Q_{r/\varepsilon}} |z|^{-\sigma} w^2 \, dx + \int_{Q_{2r/\varepsilon}\setminus Q_{r/\varepsilon}} |z|^{-\sigma} w^2 \, dx = O(\varepsilon^{N-\sigma}).$$

Hence by Taylor expanding, we get

$$\left(\int_{\Omega} \rho^{-\sigma} |u_\varepsilon|^{2^{*}} \, dx \right)^{2/2^*} = 1 + \varepsilon^2 \frac{2H^2 - \Gamma^2}{2N-k} \int_{Q_{r/\varepsilon}} |z|^{-\sigma} w^2 \, dx - \varepsilon^2 \frac{R_\varepsilon(x_0)}{2^{*}(3k)} \int_{Q_{r/\varepsilon}} |t|^2 |z|^{-\sigma} w^2 \, dx + O(\varepsilon^{N-\sigma}).$$

Finally, by (4.10), we conclude that

$$J(u_\varepsilon) = S_{N,\sigma} + \frac{3\Gamma^2 - 2H^2}{k(N-k)} \int_{Q_{r/\varepsilon}} |z|^2 |\nabla w|^2 \, dx + \frac{3R_\varepsilon(x_0)}{3k^2} \int_{Q_{r/\varepsilon}} |t|^2 |\nabla w|^2 \, dx$$

$$+ \varepsilon^2 \frac{H^2 - \Gamma^2/2}{N-k} \int_{Q_{r/\varepsilon}} |z|^2 |\nabla w|^2 \, dx - \varepsilon^2 \frac{R_\varepsilon(x_0)}{6k} \int_{Q_{r/\varepsilon}} |t|^2 |\nabla w|^2 \, dx$$

$$+ \varepsilon^2 \frac{2H^2 - \Gamma^2}{2N-k} \int_{Q_{r/\varepsilon}} |z|^{-\sigma} w^2 \, dx - \varepsilon^2 \frac{R_\varepsilon(x_0)}{2^{*}(3k)} \int_{Q_{r/\varepsilon}} |t|^2 |z|^{-\sigma} w^2 \, dx$$

$$+ \varepsilon^2 h(y_0) \int_{Q_{r/\varepsilon}} w^2 \, dx + O \left(\varepsilon^2 \int_{Q_{r/\varepsilon}} |h(F_\varepsilon(x)) - h(y_0)| w^2 \, dx \right) + O(\varepsilon^{N-2}).$$

We thus get the desired result by using the Gauss equation $\Gamma^2 = H^2 - R_\varepsilon(x_0)$, see [22]. Chapter 4.
Proposition 4.3. For $N \geq 5$, we define

\[A_{N, \sigma} = \frac{1}{k(N-k)} \int_{Q_{r/\varepsilon}} |z|^2 |\nabla w|^2 \, dx + \frac{1}{2(N-k)} \int_{Q_{r/\varepsilon}} |z|^2 |\nabla w|^2 \, dx + \frac{1}{2k(N-k)} S_{N, \sigma} \int_{Q_{r/\varepsilon}} |z|^{2-\sigma} w^{2\sigma} \, dx, \]

\[B_{N, \sigma} = -\frac{3}{k(N-k)} \int_{Q_{r/\varepsilon}} |z|^2 |\nabla w|^2 \, dx + \frac{3}{2k} \int_{Q_{r/\varepsilon}} |t|^2 |\nabla w|^2 \, dx + \frac{1}{2(N-k)} \int_{Q_{r/\varepsilon}} |z|^2 |\nabla w|^2 \, dx \]

\[-\frac{1}{6k} \int_{Q_{r/\varepsilon}} |t|^2 |\nabla w|^2 \, dx + \frac{S_{N, \sigma}}{2k(N-k)} \int_{Q_{r/\varepsilon}} |z|^{2-\sigma} w^{2\sigma} \, dx - \frac{S_{N, \sigma}}{2k(3k)} \int_{Q_{r/\varepsilon}} |t|^2 |z|^{-\sigma} w^{2\sigma} \, dx \]

and

\[C_{N, \sigma} = \int_{\mathbb{R}^N} |\nabla w|^2 \, dx. \]

Assume that, for some $y_0 \in \Gamma$, we have

\[
\left\{ \begin{array}{l}
A_{N, \sigma} H^2 + B_{N, \sigma} R_0(y_0) \quad \text{for } N \geq 5 \\
A_4 H^2(y_0) + B_4 R_0(y_0) + h(y_0) \quad \text{for } N = 4.
\end{array} \right.
\]

Then

\[\mu_{h, \sigma} (\Omega, \Gamma) < S_{N, \sigma}. \]

Proof. We claim that

\[S_{N, \sigma} \int_{Q_{r/\varepsilon}} |z|^{2-\sigma} w^{2\sigma} \, dx = \int_{Q_{r/\varepsilon}} |z|^2 |\nabla w|^2 \, dx - (N-k) \int_{Q_{r/\varepsilon}} w^2 \, dx + O(\varepsilon^{N-2}) \]

(4.19)

\[S_{N, \sigma} \int_{Q_{r/\varepsilon}} |t|^2 |z|^{-\sigma} w^{2\sigma} \, dx = \int_{Q_{r/\varepsilon}} |t|^2 |\nabla w|^2 \, dx - k \int_{Q_{r/\varepsilon}} w^2 \, dx + O(\varepsilon^{N-2}) \]

(4.20)

To prove this claim, we let \(\eta_k(x) = \eta(\varepsilon x) \). We multiply \(\eta_k \) by \(|z|^2 \eta_k w \) and integrate by parts to get

\[S_{N, \sigma} \int_{Q_{2r/\varepsilon}} \eta_k |z|^{2-\sigma} w^{2\sigma} \, dx = \int_{Q_{2r/\varepsilon}} \nabla w \cdot \nabla (\eta_k |z|^2 w) \, dx \]

\[= \int_{Q_{2r/\varepsilon}} \eta_k |z|^2 |\nabla w|^2 \, dx + \frac{1}{2} \int_{Q_{2r/\varepsilon}} \nabla w^2 \cdot \nabla (|z|^2 \eta_k) \, dx \int_{Q_{2r/\varepsilon}} \eta_k |z|^2 |\nabla w|^2 \, dx - \frac{1}{2} \int_{Q_{2r/\varepsilon}} w^2 \Delta (|z|^2 \eta_k) \, dx \]

\[= \int_{Q_{2r/\varepsilon}} \eta_k |z|^2 |\nabla w|^2 \, dx - (N-1) \int_{Q_{2r/\varepsilon}} w^2 \eta_k \, dx = -\frac{1}{2} \int_{Q_{2r/\varepsilon}} w^2 (|z|^2 \Delta \eta_k + 4 \nabla \eta_k \cdot z) \, dx. \]

We then deduce that

\[S_{N, \sigma} \int_{Q_{r/\varepsilon}} |z|^{2-\sigma} w^{2\sigma} \, dx = \int_{Q_{r/\varepsilon}} |z|^2 |\nabla w|^2 \, dx - (N-1) \int_{Q_{r/\varepsilon}} w^2 \, dx \]

\[+ O \left(\int_{Q_{2r/\varepsilon} \setminus Q_{r/\varepsilon}} |z|^{2-\sigma} w^{2\sigma} \, dx + \int_{Q_{2r/\varepsilon} \setminus Q_{r/\varepsilon}} |z|^2 |\nabla w|^2 \, dx + \int_{Q_{2r/\varepsilon} \setminus Q_{r/\varepsilon}} w^2 \, dx \right) \]

\[+ O \left(\varepsilon \int_{Q_{2r/\varepsilon} \setminus Q_{r/\varepsilon}} |z| |\nabla w| \, dx + \varepsilon^2 \int_{Q_{2r/\varepsilon} \setminus Q_{r/\varepsilon}} |z|^2 w^2 \, dx \right). \]

Thanks to Lemma 2.3 we get the first equation of (4.19) as claimed. For the second one we multiply (2.15) by \(|t|^2 \eta_k w \) and integrate by parts as in the first one.

Next, by the continuity of \(h \), for \(\delta > 0 \), we can find \(r_3 > 0 \) such that

\[|h(y) - h(y_0)| < \delta \quad \text{for ever } y \in F(Q_{r_3}). \]
Case $N \geq 5$.

Using (4.19) and (4.21) in (4.22), we obtain, for every $r \in (0, r_4)$

\begin{equation}
J(u_\varepsilon) = S_{N, \sigma} + \varepsilon^2 \frac{H^2 - 3R_\sigma(x_0)}{k(N-k)} \int_{\mathbb{R}^N} |z|^2 |\nabla w|^2 dx + \varepsilon^2 \frac{R_\sigma(x_0)}{3k^2} \int_{\mathbb{R}^N} |t|^2 |\nabla w|^2 dx
\end{equation}

(4.22)

\begin{equation}
+ \varepsilon^2 \frac{H^2 + R_\sigma(x_0)}{2(N-k)} \int_{\mathbb{R}^N} |z|^2 |\nabla w|^2 dx - \varepsilon^2 \frac{R_\sigma(x_0)}{6k} \int_{Q_{r/\varepsilon}} |t|^2 |\nabla w|^2 dx
\end{equation}

(4.23)

\begin{equation}
+ \varepsilon^2 \frac{H^2 + R_\sigma(x_0)}{2\varepsilon(N-k)} S_{N, \sigma} \int_{\mathbb{R}^N} |z|^{2-\sigma} w^{2\sigma} dx - \varepsilon^2 \frac{R_\sigma(x_0)}{2\varepsilon^2(3k)} S_{N, \sigma} \int_{\mathbb{R}^N} |t|^{2} |z|^{-\sigma} w^{2\sigma} dx
\end{equation}

(4.24)

\begin{equation}
+ \varepsilon^2 h(y_0) \int_{\mathbb{R}^N} w^2 dx + O \left(\varepsilon^2 \delta \int_{\mathbb{R}^N} w^2 dx \right) + O \left(\varepsilon^{N-2} \right),
\end{equation}

(4.25)

where we have used Lemma 2.3 to get the estimates

\[\int_{\mathbb{R}^N \setminus Q_{r/\varepsilon}} |z|^2 |\nabla w|^2 dx + \int_{\mathbb{R}^N \setminus Q_{r/\varepsilon}} w^2 dx = O(\varepsilon). \]

It follows that, for every $r \in (0, r_4)$,

\[J(u_\varepsilon) = S_{N, \sigma} + \varepsilon^2 \left\{ A_{N, \sigma} H^2(y_0) + B_{N, \sigma} R_\sigma(y_0) + C_{N, \sigma} h(y_0) \right\} + O(\delta \varepsilon^2 B_{N, \sigma}) + O(\varepsilon^3). \]

Suppose now that

\[A_{N, \sigma} H^2(y_0) + B_{N, \sigma} R_\sigma(y_0) + C_{N, \sigma} h(y_0) < 0 \]

We can thus choose respectively $\delta > 0$ small and $\varepsilon > 0$ small so that $J(u_\varepsilon) < S_{N, \sigma}$. Hence we get

\[\mu_{h, \sigma}(\Omega, \Gamma) < S_{N, \sigma}. \]

Case $N = 4$.

From (4.22) and (4.21), we estimate, for every $r \in (0, r_4)$

\begin{equation}
J(u_\varepsilon) \leq S_{N, \sigma} + \varepsilon^2 \frac{|H - 3R_\sigma(x_0)|}{k(N-k)} \int_{Q_{r/\varepsilon}} |z|^2 |\nabla w|^2 dx + \varepsilon^2 \frac{|R_\sigma(x_0)|}{3k^2} \int_{Q_{r/\varepsilon}} |t|^2 |\nabla w|^2 dx
\end{equation}

(4.22)

\begin{equation}
+ \varepsilon^2 \frac{H^2 + R_\sigma(x_0)}{2(N-k)} \int_{Q_{r/\varepsilon}} |z|^2 |\nabla w|^2 dx - \varepsilon^2 \frac{R_\sigma(x_0)}{6k} \int_{Q_{r/\varepsilon}} |t|^2 |\nabla w|^2 dx
\end{equation}

(4.23)

\begin{equation}
+ \varepsilon^2 \frac{H^2 + R_\sigma(x_0)}{2\varepsilon(N-k)} S_{N, \sigma} \int_{Q_{r/\varepsilon}} |z|^{2-\sigma} w^{2\sigma} dx - \varepsilon^2 \frac{R_\sigma(x_0)}{2\varepsilon^2(3k)} S_{N, \sigma} \int_{Q_{r/\varepsilon}} |t|^{2} |z|^{-\sigma} w^{2\sigma} dx
\end{equation}

(4.24)

\begin{equation}
+ \varepsilon^2 h(y_0) \int_{Q_{r/\varepsilon}} w^2 dx + O \left(\varepsilon^2 \delta \int_{Q_{r/\varepsilon}} w^2 dx \right) + O \left(\varepsilon^{N-2} \right).
\end{equation}

Further since, by (4.17),

\[\int_{Q_{r/\varepsilon}} |z|^{2-\sigma} w^{2\sigma} dx = O(1), \]
then by (4.19), we get
\[J(u_c) \leq S_{N, \sigma} + \varepsilon^2 \left[\frac{H^2 - 3R_0(x_0)}{k} \int_{Q_{r/\varepsilon}} w^2 \, dx + \varepsilon^2 \frac{|R_0(x_0)|}{3k} \int_{Q_{r/\varepsilon}} w^2 \, dx \right. \\
+ \varepsilon^2 \frac{|H^2 + R_0(x_0)|}{2} \int_{Q_{r/\varepsilon}} w^2 \, dx - \varepsilon^2 \frac{|R_0(x_0)|}{6} \int_{Q_{r/\varepsilon}} w^2 \, dx \\
+ \varepsilon^2 h(y_0) \int_{Q_{r/\varepsilon}} w^2 \, dx + O \left(\varepsilon^2 \delta \int_{Q_{r/\varepsilon}} w^2 \, dx \right) + O \left(\varepsilon^{N-2} \right). \]

Therefore
\[J(u_c) \leq S_{N, \sigma} + \varepsilon^2 \left[\frac{|H^2(y_0) - 3R_0(y_0)|}{k} + \frac{|R_0(y_0)|}{3k} + \frac{H^2(y_0)}{2} + \frac{R_0(y_0)}{3} + h(y_0) \right] \int_{Q_{r/\varepsilon}} w^2 \, dx \]
\[+ O \left(\varepsilon^2 \delta \int_{Q_{r/\varepsilon}} w^2 \, dx \right) + O \left(\varepsilon^{N-2} \right). \]
Thus
\[J(u_c) \leq S_{N, \sigma} + \varepsilon^2 \left[\frac{|H^2(y_0) - 3R_0(y_0)|}{k} + \frac{|R_0(y_0)|}{3k} + \frac{H^2(y_0)}{2} + \frac{R_0(y_0)}{3} + h(y_0) \right] \int_{Q_{r/\varepsilon}} w^2 \, dx \]
\[+ O \left(\varepsilon^2 \delta \int_{Q_{r/\varepsilon}} w^2 \, dx \right) + C\varepsilon^2, \]
for some positive constant C independent on ε. By (2.44), we have that
\[\int_{Q_{r/\varepsilon}} \frac{C^2}{1 + |x|^2} \, dx \leq \int_{Q_{r/\varepsilon}} w^2 \, dx \leq \int_{Q_{r/\varepsilon}} \frac{C^2}{1 + |x|^2} \, dx, \]
so that
\[(4.26) \int_{B_{\frac{1}{2} (0, r/\varepsilon)}} \frac{C^2}{1 + |x|^2} \, dx \leq \int_{Q_{r/\varepsilon}} w^2 \, dx \leq \int_{B_{\frac{1}{2} (0, r/\varepsilon)}} \frac{C^2}{1 + |x|^2} \, dx. \]
Using polar coordinates and a change of variable, for $R > 0$, we have
\[\int_{B_{\frac{1}{2} (0, R)}} \frac{dx}{(1 + |x|^2)^2} \, dx = \left| S^3 \right| \int_0^R \frac{t^3}{(1 + t^2)^2} \, dt \]
\[= \left| S^3 \right| \int_0^{\sqrt{R}} \frac{s^2}{2(1 + s)^2} \, ds \]
\[= \frac{\left| S^3 \right|}{2} \left(\log \left(1 + \sqrt{R} \right) - \frac{\sqrt{R}}{1 + \sqrt{R}} \right). \]
Therefore, there exist numerical constants $c, \overline{c} > 0$ such that for every $\varepsilon > 0$ small, we have
\[(4.27) c \log \varepsilon \leq \int_{Q_{r/\varepsilon}} w^2 \, dx \leq \overline{c} \log \varepsilon. \]

Now we assume that
\[\frac{|H^2(y_0) - 3R_0(y_0)|}{k} + \frac{|R_0(y_0)|}{3k} + \frac{H^2(y_0)}{2} + \frac{R_0(y_0)}{3} + h(y_0) < 0. \]
Therefore by Lemma 122 and 127, we get
\[J(u_c) \leq S_{N, \sigma + \overline{c}} \left[\frac{|H^2(y_0) - 3R_0(y_0)|}{k} + \frac{|R_0(y_0)|}{3k} + \frac{H^2(y_0)}{2} + \frac{R_0(y_0)}{3} + h(y_0) \right] \varepsilon^2 \log \varepsilon + \overline{c} \delta \varepsilon^2 \| \log \varepsilon \| + C\varepsilon^2. \]
Then choosing $\delta > 0$ small and ε small, respectively, we deduce that $\mu_{h,\sigma}(\Omega, \Gamma) < J(u_\varepsilon) < S_{4,\sigma}$. This ends the proof of the proposition.

\textbf{Proof of Theorem 1.2 (completed).} We know that when $\mu_{h,\sigma}(\Omega, \Gamma) < S_{N,\sigma}$ then $\mu_{h,\sigma}(\Omega, \Gamma)$ is achieved by a positive function u, see Proposition 3.2 above. Therefore by Proposition 4.3, we get the result with $C_{1,\sigma}^{4} = A_{N,\sigma}^{4} C_{N,\sigma}$ and $C_{2,\sigma}^{4} = B_{N,\sigma}^{4} C_{N,\sigma}$ for $N \geq 5$. When $N = 4$, we get $C_{1,\sigma}^{4}$ and $C_{2,\sigma}^{4}$ depending on the signs of $H^2(y_0) - 3R_\gamma(y_0)$ and $R_\gamma(y_0)$. They are given by:

$$C_{1,\sigma}^{4} = 1 \quad \text{and} \quad C_{2,\sigma}^{4} = \frac{10}{3k} \quad \text{when} \quad H^2 \leq R_\gamma(y_0) \leq 0.$$

$$C_{1,\sigma}^{4} = \frac{1}{2} + \frac{1}{k} \quad \text{and} \quad C_{2,\sigma}^{4} = \frac{1}{2} - \frac{8}{3k} \quad \text{when} \quad H^2 \geq 3R_\gamma(y_0) \geq 0.$$

(4.28)

$$C_{1,\sigma}^{4} = \frac{1}{2} + \frac{1}{k} \quad \text{and} \quad C_{2,\sigma}^{4} = \frac{1}{2} - \frac{10}{3k} \quad \text{when} \quad R_\gamma(y_0) \leq 0.$$

$$C_{1,\sigma}^{4} = \frac{1}{2} + \frac{1}{k} \quad \text{and} \quad C_{2,\sigma}^{4} = \frac{1}{2} - \frac{10}{3k} \quad \text{when} \quad H^2 - 3R_\gamma(y_0) \leq 0 \quad \text{and} \quad R_\gamma(y_0) \geq 0.$$

\textbf{Acknowledgement:} I wish to thanks my supervisor Mouhamed Moustapha Fall for useful discussions and remarks. This work is supported by the German Academic Exchange Service (DAAD).

\textbf{References}

[1] T. Aubin, \textit{Problèmes isopérimétriques de Sobolev}, J. Differential Geom. 11(1976) 573-598.

[2] M. Badiale, G. Tarantello, \textit{A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics}, Arch. Rational Mech. Anal. 163(4)(2002) 259-293.

[3] Brezis H., Lieb E., \textit{A relation between pointwise convergence of functions and convergence of functionals}, Proc. Amer. Math. Soc. 88(1983), no.3, 486-490.

[4] H. Brezis and L. Nirenberg, \textit{Positive solutions of nonlinear elliptic equations involving critical exponents}, Comm. Pure Appl. Math 36 (1983), 437-477.

[5] Brezis H., Vasquez J.L., \textit{Blow-up solutions of some nonlinear elliptic problems}, Rev. Mat. Univ. Complut. Madr. 10(1997), 443-469.

[6] Chern J-L. and Lin C-S., \textit{Minimizers of Caffarelli-Kohn-Nirenberg Inequalities with the singularity on the boundary}, Archive for rational mechanics and Analysis, Volume 197, No. 2 (2010), 401-432.

[7] Demyanov A.V., Nazarov A.I., \textit{On the solvability of the Dirichlet problem for the semilinear Schrödinger equation with a singular potential}, (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklor, (POMI) 336 (2006). Kravch. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 37, 25–45, 274; translation in J. Math. Sci. (N.Y.) 143 (2007), no. 2, 2857-2868.

[8] O. Druet, \textit{Elliptic equations with critical Sobolev exponents in dimension 3}, Ann. Inst. H. Poincaré Anal. Non Linéaire 19(2002), no.2, 125-142(English, with English and French summaries).

[9] O. Druet, \textit{The best constants problem in Sobolev inequalities}. Math. Ann., 314, 1999, 327-346.

[10] O. Druet, \textit{Optimal Sobolev inequalities and extremals functions. The three-dimensional case}, Indiana Univ. Math. J. 51(2002), no.1, 69-88.

[11] H. Egide, \textit{Positive solutions of semilinear equations in cones}, Tran. Amer. Math. Soc 11(1992), 191-201.

[12] Fabbrri I., Mancini G., Sandeep K., \textit{Classification of solutions of a critical Hardy-Sobolev operator}, J. Differential equations 224 (2006), 258-276.

[13] Fall M. M., Minlend I., Thiama E. H. A, \textit{The role of the mean curvature in a Hardy-Sobolev inequality}, NoDEA Nonlinear Differential Equations Appli. 22 (2015), no. 5, 1047-1066.
[14] M. M. Fall and E. H. A. Thiam, *Hardy-Sobolev inequality with singularity a curve*, DOI: 10.12775/TMNA.2017.045.

[15] N. Ghoussoub and F. Robert, *On the Hardy-Schrödinger operator with a boundary singularity*, Preprint 2014. https://arxiv.org/abs/1410.1913.

[16] N. Ghoussoub and F. Robert, *Sobolev inequalities for the Hardy-Schrödinger operator: extremals and critical dimensions*, Bull. Math. Sci. 6 (2016), no. 1, 89-144.

[17] N. Ghoussoub and F. Robert, *Elliptic Equations with Critical Growth and a Large Set of Boundary Singularities*, Trans. Amer. Math. Soc., Vol. 361, No. 9 (Sep., 2009), pp. 4843-4870.

[18] N. Ghoussoub and F. Robert, *Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth*, IMRP Int. Math. Res. Pap. (2006), 21867, 1-85.

[19] N. Ghoussoub and F. Robert, *The effect of curvature on the best constant in the Hardy Sobolev inequalities*, Geom. Funct. Anal. 16(6), 1201-1245(2006).

[20] Ghoussoub N., Kang X. S., *Hardy-Sobolev critical elliptic equations with boundary singularities*, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 6, 767-793.

[21] N. Ghoussoub, C. Yuan, *Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents*, Trans. Amer. Math. Soc. 12 (2000), 5703-5743.

[22] A. Gray, *Tubes*, second edition, Springer Science and Business Media, 2004.

[23] E. Hebey and M. Vaugon, *The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds*, Duke Mathematical Journal, 1995, 79(1), 235-279.

[24] E. Hebey and M. Vaugon, *Meilleures constantes dans le théorème d’inclusion de Sobolev*, In Annales de l’Institut Henri Poincaré (C) Non Linear Analysis, 2016, 13(1), 57-93.

[25] Jaber H., *Hardy-Sobolev equations on compact Riemannian manifolds*, Nonlinear Anal. 421 (2015) 1869-1888.

[26] Jaber H., *Optimal Hardy-Sobolev equations on compact Riemannian manifolds*, J. Math. Appl. 421 (2015) 1869-1888.

[27] Li Y., Lin C., *A Nonlinear Elliptic PDE with Two Sobolev-Hardy Critical Exponents*, published online september 28, 2011-© Springer-Verlag (2011).

[28] Lieb E.H., *Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities*, Ann. of Mathematics 118 (1983), 349-374.

[29] C-S. Lin, H. Wadade, *Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary*, Tohoku Math. J. (2) 64 (2012), no. 1, 79-103.

[30] M. Struwe, *Variational Methods: Applications to nonlinear Partial Differential Equations and Hamiltonian Systems*, Springer Science and Business Media, 2008, Vol. 34.

[31] C-S. Lin, H. Wadade, *On the attainability for the best constant of the Sobolev-Hardy type inequality*, RIMS Kôyûroku 1740 (2011), 141-157.

[32] Talenti G., *Best constant in Sobolev inequality*, Ann. di Matem. Pura ed. Appli. 110 (1976), 353-372.

[33] E. H. A. Thiam, *Hardy and Hardy-Sobolev Inequalities on Riemannian manifolds*, Imhotep Mathematical Journal, Vol. 2, No. 1, (2017), pp 14-35.

[34] E. H. A. Thiam, *Weighted Hardy Inequality On Riemannian manifolds*, Communications in Contemporary Mathematics, 2016, 18(6), 1550072, 25pp.

E. H. A. T.: AFRICAN INSTITUTE FOR MATHEMATICAL SCIENCES IN SENEGAL, KM 2, ROUTE DE JOAL, B.P. 14 18. Mbour, SENEGAL.
E-mail address: elhadji@aims-senegal.org