Dynamics of Density Imbalanced Bilayer Holes in the Quantum Hall Regime

S. Misra, N. C. Bishop, E. Tutuc, and M. Shayegan

Department of Electrical Engineering, Princeton University, Princeton, NJ 08544

(Dated: April 15, 2008)

We report magnetotransport measurements on bilayer GaAs hole systems with unequal hole concentrations in the two layers. At magnetic fields where one layer is in the integer quantum Hall state and the other has bulk extended states at the Fermi energy, the longitudinal and Hall resistances of the latter are hysteretic, in agreement with previous measurements. For a fixed magnetic field inside this region and at low temperatures \(T \leq 350 \text{ mK} \), the time evolutions of the longitudinal and Hall resistances show pronounced jumps followed by slow relaxations, with no end to the sequence of jumps. Our measurements demonstrate that the jumps occur simultaneously in pairs of contacts 170 \(\mu \text{m} \) apart, and appear to involve changes in the charge configuration of the bilayer. In addition, the jumps can occur with either random or regular periods, excluding thermal fluctuations as a possible origin for the jumps. Finally, while remaining at a fixed field, we warm the sample to above 350 \(\text{mK} \), where the jumps disappear. Upon recooling the sample below this temperature, the jumps reappear, indicating that the jumps do not result from nearly dissipationless eddy currents either.

PACS numbers: 73.21.-b, 73.43.-f, 73.50.Td

I. INTRODUCTION

The hallmarks of the integer quantum Hall effect, a quantized Hall resistance and zero longitudinal resistance in two dimensional (2D) carrier systems at low temperatures, are essentially independent of the sample characteristics. This universal behavior results from the Fermi energy lying in between two Landau levels (LLs), meaning that the bulk has only localized states at the Fermi energy, and thus the sample’s properties are dominated by the extended one-dimensional edge states. Accordingly, the properties of the bulk have been difficult to access directly except in a series of recent scanning probe experiments. These studies indicate that the bulk can be thought of as a set of isolated quantum dots and antidots separated by incompressible regions.

A number of recent experiments have placed a probe, such as a single-electron transistor or a magnetometer close to a 2D layer in the quantum Hall state (QHS) to explore how the isolated bulk states achieve equilibrium. Here we focus on a bilayer 2D hole system with unequal hole densities such that, at a particular magnetic field, the Fermi energy lies in between LLs for one layer, and near the middle of one LL for the other layer. In samples with narrow tunnel barriers between the two layers (\(w_b < 7.5 \mu \text{m} \)), the holes can easily tunnel between the two layers, and the system appears to be in equilibrium. In contrast, for samples with wider barriers (\(w_b > 7.5 \mu \text{m} \)), the magnetoresistance of the conducting layer, which we call the probe layer, is hysteretic for the range of magnetic fields where the other layer is in a QHS. This effect has been proposed to be the consequence of a non-equilibrium charge distribution. The charge configurations of the QHS layer are different on the low- and high-field sides of the QHS, which result in different charge configurations for the probe layer as well. This charge configuration becomes frozen once the former enters the QHS, resulting in a hysteretic magnetoresistance. For bilayer hole samples with intermediate barrier widths (\(7.5 \mu \text{m} < w_b < 200 \mu \text{m} \)), the magnetic field is set such that one layer is in the QHS, the system appears to never reach equilibrium. Instead, both the longitudinal and Hall resistances of the probe layer show large jumps as a function of time: the resistance changes by \(\Delta r \sim 50 - 500 \Omega \) over a short time (faster than 300 ms), typically followed by a slow relaxation (\(\tau \sim 40 - 400 \text{s} \)), with no apparent end to the sequence of jumps.

The purpose of this paper is to present new data describing additional features of this non-equilibrium phenomenon. Section II covers the details of the experiment. In Section III, we demonstrate that the resistance jumps occur simultaneously in pairs of contacts which are 170 \(\mu \text{m} \) apart, and appear to involve a change in the charge configuration of the bilayer. We show in Section IV that the jumps can occur at quasi-periodic time intervals, or, for slightly different experimental conditions, at largely random time intervals. Data presented in Section V reveal that the jumps decrease in amplitude with increasing temperature, and disappear above \(\sim 350 \text{ mK} \). Surprisingly, when we recool the sample in a fixed magnetic field, the jumps reappear at low temperatures. In Section VI, we conclude with a discussion of possible physical explanations of the data.

II. EXPERIMENTAL DETAILS

We performed electrical transport measurements on double quantum well samples grown on GaAs (311)A substrates. Although the behavior described here has been observed for a number of hole bilayer samples having a range of barrier thicknesses and densities, we present data taken on three samples from one wafer. The
wafer contains a pair of 15 nm-wide GaAs quantum wells separated by a \(w_b = 11 \text{ nm} \) AlAs barrier, and flanked by a spacer and Si-doped layers of \(\text{Al}_{0.21}\text{Ga}_{0.79}\text{As} \). Sample A consists of a Hall bar with two current arms and 6 voltage probe arms, with an active region of 100 \(\mu\text{m} \times 900 \mu\text{m} \), as illustrated schematically in the inset to Fig. 1(a). The distance between two adjacent contacts on one side is 170 \(\mu\text{m} \), and the width of the Hall bar is 100 \(\mu\text{m} \). Samples B and C have simpler Hall bar configurations, with a pair of current contacts and two voltage contacts. Alloyed InZn contacts were used to contact both layers of the structure. Using a selective gate-depletion scheme \(^{22} \) we could also independently contact the bottom layer in Sample A, or either layer in Sample C.

Electrical transport measurements were made at a temperature of 30 mK, unless otherwise noted, using standard ac lockin techniques with a drive current of 1 nA at a frequency of 4.2 Hz. The as-grown densities for the three samples used in this manuscript are \(8 \times 10^{10} \text{cm}^{-2} \) (top layer) and \(6 \times 10^{10} \text{cm}^{-2} \) (bottom layer), and the typical mobility at 30 mK is \(\approx 30 \text{ m}^2/\text{Vs} \). In order to determine the carrier densities of the two layers in Sample A, we compared the total density to the density of just the bottom layer, both extracted from the Hall resistance \((R_{xy}) \) at low magnetic fields. In Sample B, we examined the Shubnikov-de Haas oscillations of the longitudinal resistance \((R_{xx}) \) of the bilayer in order to determine the densities of the top and bottom layers. For sample C, we compared the Shubnikov-de Haas oscillations of \(R_{xx} \) of the top and the bottom layers, acquired independently, to establish the carrier densities of the two layers. The density of the bottom layer was then set such that it had a filling factor \(\nu \) in between 1 and 2 at a magnetic field where the top layer had a filling factor \(\nu = 1 \). Thus, the Fermi energy of the bottom layer is in the second LL for a range of fields where the Fermi energy of the top layer is in between the first and second LLs. Unless noted otherwise, we report on the resistance of just the bottom layer, which we refer to as the probe layer, while the other layer, which we refer to as the QHS layer, is held at ground us- ing a common ground contact. For Sample B, we show the resistance of the bilayer, which is indicative of the resistance of the probe layer. At magnetic fields where the QHS layer is near \(\nu=1 \), current flowing through this layer causes no drop in longitudinal voltage. As a result, the voltage drop sensed across two bilayer longitudinal contacts occurs solely in the probe layer.

III. Layer Charge Instability

Figure 1(a) shows the magnetoresistance of the probe layer of Sample A at 30mK, when the probe layer has a density \(p_p = 7.4 \times 10^{10} \text{cm}^{-2} \) and the other (QHS) layer has a density \(p_q = 5.8 \times 10^{10} \text{cm}^{-2} \). As seen in this figure, the probe layer exhibits the zero longitudinal resistance and quantized Hall resistance characteristic of the integer quantum Hall effect. In addition, both the longitudinal and Hall resistances of the probe layer are seen to be hysteretic in the range of magnetic fields where the other layer is in the \(\nu = 1 \) QHS. The hysteresis is consistent with earlier reports from a single-well sample with an unintentional parasitic layer \(^{8,9,11} \) and recent measurements of intentionally imbalanced bilayer hole \(^{8} \) and electron \(^{10,11} \) samples.

This hysteresis is believed to result from a non-equilibrium interlayer charge distribution \(^5,9,11\). This can be understood by examining how the Fermi energy of two layers changes as a function of the magnetic field, as illustrated schematically in Fig. 2. Because the probe layer has a larger density than the QHS layer at zero magnetic field, we show the bottom of the subbands for...
FIG. 2: Schematic diagram of the change of the Fermi energy as a function of magnetic field for the probe layer (black) and the QHS layer (gray), referenced to the Fermi energy of the respective layer at zero magnetic field. Also shown as dotted lines are the energies of the first and second LLs for both layers.

FIG. 3: The time evolution of the longitudinal resistance of the bilayer, where the contacts to the sample are grounded for the time periods shown in gray. Note in particular that a jump must have occurred during the third time period, even though the sample was grounded.

the two wells as being offset from one another, but the Fermi energies as being equal (at zero magnetic field). Upon increasing the magnetic field just below the point where the QHS layer is at filling factor $\nu = 1$, the Fermi energy of this layer has increased more than that of the probe layer. This results in a redistribution of charge between the two layers, such that the QHS layer will have a higher carrier density relative to what it had at zero magnetic field, and the probe layer a lower density. By the same argument, upon decreasing the magnetic field just above the point where the QHS layer is at $\nu = 1$, its Fermi energy has decreased relative to what it was at zero magnetic field. Thus, the QHS layer will have a lower carrier density relative to what it had at zero magnetic field, and the probe layer a higher density. Upon entering the QHS, the charge configuration of the QHS layer becomes frozen, as there are now only localized states at the Fermi energy, and large incompressible regions separate these states from a reservoir. This layer exerts an electrostatic potential on the probe layer, and thus the density of the latter becomes trapped at a non-equilibrium level as well. Because its density is lower (higher) than at zero magnetic field when sweeping the magnetic field up (down), the magnetoresistance of the probe layer should look shifted to lower (higher) fields, consistent with the data shown in Fig. 1(a). At even higher magnetic fields, the Fermi energy of the QHS layer will remain in the first LL, while the probe layer will enter the $\nu = 1$ QHS, that is, their roles reverse. Just below the field where the probe layer enters the $\nu = 1$ QHS, it has a higher Fermi energy than the QHS layer. Just above the field where it enters the $\nu = 1$ QHS, it has a lower Fermi energy than the QHS layer. This situation is thus identical to the one described above, and thus we would expect the magnetoresistance of the QHS layer to look shifted to lower (higher) fields when sweeping the magnetic field up (down). Note in particular that this picture is also consistent with the data presented in Ref. 4.

In agreement with the results reported in Ref. 8 for bilayer hole samples with intermediate barrier widths $(7.5 \text{nm} < w_b < 200 \text{nm})$, we find that the bilayer system shows peculiar dynamics in the hysteretic region of magnetic fields. As shown in Fig. 1(b), for example, the time evolution of the resistance after stopping a field sweep in the hysteretic region features sudden jumps in resistance, where the resistance changes by $\Delta R \approx \pm 25$ to $\pm 500\Omega$ over a short time scale (as fast as 300 ms) that is limited by our experimental bandwidth. A jump is followed by a slow relaxation over a long time scale ($\tau \approx 20 \text{ to } 400 \text{ s}$), and then another jump a time ($\Delta t \approx 30 \text{ to } 3000 \text{ s}$) later. This sequence of jumps continues for as long as we have tracked the time evolution, up to $\approx 10^5 \text{ s}$, with no systematic change in the jump amplitude or sign, the time spacing between jumps, or the relaxation time constant. Consistent with previous results, we find that these characteristics depend sensitively on the magnetic field and carrier concentration, and are different for separate cooldowns. The data indicate that the dynamics of the sample itself are responsible for the jumps. No such jumps are seen in a resistor hooked up in series with the sample, or when measuring the sample at a magnetic field outside the hysteretic region. None of the characteristics of the jumps change significantly when varying the drive current used to measure the resistance ($0.5 \text{ nA} \text{ to } 8 \text{nA}$), up to the point where the drive current starts to heat the sample. Most strikingly, the jumps happen whether or not we probe the resistance, as shown in Fig. 3. Even when grounding the sample for hundreds of seconds, and then resuming our measurement, we can see the decay associated with a jump which must have happened while the sample was grounded.

The jumps themselves signal a significant change in the properties of the probe layer. In Fig. 4, we compare magnetoresistance traces taken from Sample B when sweeping the magnetic field at two different sweep rates, one fast enough that no jumps occur while sweeping the field, and a second slow enough that many jumps occur. The fast magnetoresistance traces (dotted lines), which contain no jumps, define the two branches of the hys-
teresis loop, the upward and downward branches. When sweeping the magnetic field slowly enough so that the resistance does jump during the field sweep (solid line), we find that the magnetoresistance trace departs from the branch of the hysteresis loop on which it would be expected to lie. For the data in Fig. 4, when we slowly sweep the magnetic field up, we find that the jumps first cause this magnetoresistance trace to depart from the upward branch of the hysteresis loop, to a point where the magnetoresistance is not even at a value in between the extremes defined by the upward and downward branches of the hysteresis loop. Later, further jumps result in the magnetoresistance joining the downward branch of the hysteresis loop despite being taken while sweeping the magnetic field upwards. Although it is more common that jumps shift the magnetoresistance to curves unrelated to the upward or downward branch of the hysteresis loop, this data set clearly demonstrates that the jumps have changed the carrier concentration of the probe layer. Within the layer charge instability scenario, the data would suggest that there are a number of bilayer charge configurations which produce different magnetoresistance curves. These magnetoresistance curves have similar features, but appear shifted in magnetic field, suggesting that these charge configurations involve different carrier concentrations for the probe layer. The jumps would then result from sudden changes in the probe layer charge configuration.

We next address whether these jumps are local fluctuations of the charge configuration by measuring the resistance simultaneously in three sets of contacts. As shown in Fig. 1(b), we find that the jumps almost always occur at the same time in all three sets of contacts, which are up to 170 µm apart. This indicates that the jumps are not the result of a local fluctuation, and implies that there is a change in either the QHS layer or the probe layer over large length scales which is responsible for creating a jump in the probe layer resistance. However, the direction and amplitude of the jumps, and the relaxation time constant, are not, in general, the same for the jumps seen simultaneously in different contacts. We also occasionally observe a jump in only one of the longitudinal sets of contacts, or in the Hall contacts, without any jump in the other two sets of contacts. These observations suggest that the charge configuration is changing over a length scale which, while large, does not extend across the entire sample.

IV. QUASI-PERIODIC OSCILLATIONS

Thermal fluctuations are the most obvious candidates for what drives the imbalanced bilayer to jump between various charge configurations. The physical situation where a system has two nearly energy degenerate charge configurations in a quantizing magnetic field has been studied previously in resonant transport through a quantum dot. In these studies, the quantum dot has two charge configurations with similar energies, one which has a high conductance and the other a low conductance. The fluctuations in the charge configuration of the quantum dot result in a conductance through the dot which switches between the high conductance and low conductance values to create telegraph noise. As is to be expected for a process driven by fluctuations, the amount of time between switching events is rather widely distributed.

In order to determine whether fluctuations are responsible for the jumps in resistance seen in our imbalanced bilayer system, we examine the distribution of time elapsed in between jumps. In Fig. 5(a), we show the time evolution of the resistance taken immediately after sweeping the magnetic field into the hysteretic range of fields and stopping at a particular field. Each of the two time evolutions shown in Fig. 5(a) were recorded after ramping the magnetic field from 0 T to 2.33T, and then recording R_{xx} as a function of time. As shown in Fig. 5(b), the time elapsed between successive jumps, Δt, is not widely distributed, but rather is almost always either 1030 ± 40 s, 2060 ± 10 s or 3090 ± 5 s. Reexamining Fig. 5(a) data in blocks of 1030 s periods, the top trace shows a jump (j), followed by no jump (x), and then again by no jump (x). This j-x-x pattern repeats every 3090s. The bottom trace shows a j-x-j pattern which repeats every 3090s. In all cases, this pattern becomes less robust the longer we take the data, although the quasi-periodicity remains. Comparing the two traces and shifting them in time so that their first jump lines up, as shown in Fig. 5(a), reveals that all 8 jumps seen in the top trace occur within 20 s of a jump in the bottom trace. Combined, these observations indicate the presence of a reliable time
FIG. 5: (a) Time evolution of $R_{1,3}$ for the probe layer of Sample A taken immediately after ramping the magnetic field from 0 T up to 2.33 T. The layer densities are $p_p = 7.4 \times 10^{10} \text{cm}^{-2}$ and $p_q = 5.8 \times 10^{10} \text{cm}^{-2}$. The experiment was repeated twice, and the two sets of time evolution data have been offset vertically for clarity, and horizontally to match the position of the first jump. (b) Stacked histogram of the time Δt between consecutive jumps in the time captures shown in (a), with black (gray) bars corresponding to Δt extracted from the top (bottom) trace. Taking the basic time block to be 1030 seconds, the train of jumps in the top trace of part (a) follows the sequence jump (j), no jump (x), no jump (x), with two jumps occurring out of sequence (circled). The train of jumps for the bottom time capture shown in part (a) follows the sequence j-x-j, with two extra jumps occurring out of sequence (circled). The first of the circled jumps in the lower trace of (a) is the only one whose Δt is not an integer multiple of 1030 s. (c) Stacked histogram of the size of a resistance jump Δr. Excluding the jump that starts the sequence, the standard deviation of jumps sizes (55 Ω) is much smaller than the median jump size (285 Ω).

FIG. 6: (a) The time evolution of Sample B, having layer densities were $p_p = 5.3 \times 10^{10} \text{cm}^{-2}$ and $p_q = 3.9 \times 10^{10} \text{cm}^{-2}$. (b) Histogram of the time Δt between consecutive jumps in the time capture shown in (a). (c) Histogram of the size of a jump Δr. The standard deviation of jump sizes (500 Ω) is nearly as large as the median (575 Ω).

scale for the jumps, and thus exclude the possibility that thermal fluctuations are driving the system to switch between a set of nearly energy degenerate charge configurations. The distribution of resistance jump amplitudes, shown in Fig. 5(c), is relatively sharp, inasmuch as the standard deviation of jump sizes (55 Ω) is much smaller than the median jump size (285 Ω).

The quasiperiodic behavior of jumps seen in Fig. 5, however, is not always observed. In the time evolution data for Sample B, for example, shown in Fig. 6(a), the system appears to be jumping between a significantly larger number of quasi-stable points, as jumps occur in both directions, and do not appear to relax to the same value. The histogram of the time between jumps, shown in Fig. 6(b), is not sharply peaked at a small number of values, as in Fig. 5(b), but is rather widely distributed. Quantitatively, the distribution of jump amplitudes for the data in Fig. 6 is wide, as can be seen by comparing
FIG. 7: Time evolution of the longitudinal resistance of the probe layer at 1.512 T in Sample C, with layer densities of $p_p = 6.7 \times 10^{10} \text{cm}^{-2}$ and $p_q = 4.1 \times 10^{10} \text{cm}^{-2}$. Shown are representative 1000 s slices of 5000 s-long sweeps taken at 30 mK, 310 mK and 355 mK.

the standard deviation of jump amplitudes with the mean jump amplitude. Finally, we note that the occurrence of a semi-regular period and a narrow distribution of jump sizes, as in Fig. 5, as opposed to a largely random period and wide distribution of jump sizes, as in Fig. 6, are not mutually exclusive. Curiously, even when the system has a wide range of jump amplitudes, it can exhibit quasiperiodic time evolution. In Figs. 7 and 8, which will be discussed in Section V, the system appears to be jumping between a number of quasi-stable points; the jumps relax to different values of resistance. Similar to the data shown in Fig. 5(b), and unlike the data in Fig. 6(b), the distribution of time between successive jumps shows quasi-periodic behavior. However, unlike the data in Fig. 5(c), and similar to the data in Fig. 6(c), the distribution of jump amplitudes is broad.

V. TEMPERATURE DEPENDENCE

The non-equilibrium behavior of the probe layer is intimately tied to the other layer in the bilayer being in the $\nu = 1$ QHS. Because the strength of the QHS decreases with increasing temperature, we expect the properties of the jumps to change upon increasing the temperature of the system. In Figs. 7 and 8, we examine how the jumps change upon increasing the temperature for Sample C. The magnetic field was first swept up to 1.512 T, and five thousand seconds elapsed before taking the first time evolution at $T = 30$ mK (center trace in Fig. 7). While remaining at this field, we then warmed the sample up slowly, tracking the time evolution at a number of temperatures. We find that the jumps decrease in amplitude upon increasing the temperature, but otherwise are qualitatively similar to how they appear at 30 mK. In Fig. 7 (upper trace), we show the time evolution at 310 mK, where the jumps are clearly visible, although their amplitude is significantly smaller than at 30 mK. As can be seen by examining the histogram of time between jumps (Fig. 8(a)), the quasiperiodic nature of the jumps at this field is unaffected by raising the temperature. What does change dramatically is the amplitude of the jumps, as shown in Fig. 8(b), which drops from hundreds of Ohms at 30 mK to tens of Ohms at 310 mK. The time constant for the slow relaxation after a jump, determined by fitting the relaxation to a double exponential, as in Ref. 9, remains roughly 40 s at both temperatures. However, the temperature independence of the relaxation time seen here is not a robust feature of the data. For Sample A, at a magnetic field of 1.87 T and
layer densities of 5.1 and 7.4×10^{10} cm$^{-2}$, the relaxation time was seen to vary between 400 s at a temperature of 30 mK and 10 s at 270 mK.

At high enough temperatures, the QHS layer begins to weakly conduct. At that point, any non-equilibrium condition induced by the field sweep should dissipate. We heated the sample above the temperature (355 mK, lower trace on Fig. 7 (a)) where the jumps and the hysteresis in the probe layer magnetoresistance disappear, allowing the sample to come to equilibrium. In Figs. 9 and 10, we compare two sets of data taken at a fixed magnetic field, the first set before heating the sample, and the second after heating the sample to 355 mK and then cooling back to 30 mK over three hours. Surprisingly, when we recool the sample, the jumps in the time evolution resume. But the histogram of times in between jumps has also changed from being quasi-periodic to being nonperiodic after recooling.

VI. SUMMARY AND DISCUSSION

We have examined the magnetoresistance of bilayer hole systems whose layer densities have been intentionally set to be unequal. At magnetic fields where one layer is in the $\nu = 1$ QHS and the other layer (the probe layer) has bulk extended states at the Fermi energy, the longitudinal and Hall resistances of the latter are hysteretic, in agreement with previous studies.6,9,10,11 For a fixed magnetic field inside this hysteretic region, and at low temperatures, the resistance of the probe layer shows pronounced jumps followed by a slow relaxation, with no end to the sequence of jumps, also in agreement with previous work.2 The data presented in Section III suggest that the probe layer resistance jumps in response to the system switching between different charge configurations. In addition, we have shown that the resistance jumps almost always occur simultaneously in pairs of contacts which are 170 μm apart, suggesting that the charge configuration of a significant part of the probe layer changes.

In Section IV, we have demonstrated that the jumps can occur at quasi-periodic time intervals, or, for slightly different conditions, at largely random time intervals. The observation of quasi-periodic jumps excludes the possibility that the jumps represent thermal fluctuations between a set of nearly energy degenerate charge configurations, as such jumps would be expected to occur at random time intervals. The presence of a reproducible time scale for a cycle that includes a jump followed by a relaxation is a defining characteristic of relaxation oscil-
lators. In a typical relaxation oscillator, a voltage builds up across a capacitor until a breakdown threshold is exceeded, at which point the capacitor discharges. Such behavior has been seen in a circuit containing a capacitor in parallel with a Corbino disk in the QHS. In this system, the capacitor charges until the QHS breaks down, which leads to a discharging of the capacitor until the QHS in the Corbino disk can be established again. Relaxation oscillations have also been seen in the breakdown of the reentrant integer QHSs and in the transition from a pinned to a sliding Wigner solid phase. The presence of nonperiodic jumps is difficult to understand in terms of a single relaxation oscillator, which should always have a well-defined period. One possibility is that our system contains a number of relaxation oscillators in different parts of the sample. The charge-discharge cycles for different parts of the sample could be interdependent, masking any periodic behavior. Such behavior has been seen before in a circuit consisting of two coupled, ac driven relaxation oscillators. In addition to periodic behavior associated with the charge-discharge cycles of each relaxation oscillator, Golub and coworkers found period-multiplying behavior, similar to the j-x-j and j-x-x patterns we see in Fig. 5, and nonperiodic behavior for different ac signals applied to their circuit.

In Section V, we have shown that, while remaining at a fixed magnetic field, the jumps decrease in magnitude when increasing the temperature, disappearing for \(T > 350 \text{ mK} \). Surprisingly, upon recoiling the sample at fixed magnetic field, the jumps reappeared at low temperatures. This excludes any interpretation that relies on sweeping the magnetic field to establish a non-equilibrium initial condition as a source for the jumps. For example, a series of recent experiments have found that sweeping the magnetic field sets up eddy currents in a 2D layer which can persist for days when it is in the QHS. In one of these experiments, a single electron transistor placed close to a single 2D electron layer was used to show that there are sudden jumps in the local Fermi energy associated with these nearly dissipationless eddy currents breaking down the QHS in the 2D layer. Such a breakdown of the QHS, driven by nearly dissipationless eddy currents, could lead to jumps in the probe layer resistance seen by us. However, for our experiment, by warming our sample to a temperature where neither the jumps nor the hysteretic magnetoresistance are seen, while keeping the magnetic field fixed, we would have allowed the eddy currents to dissipate. Thus, the reappearance of jumps upon recoiling the sample in fixed fields excludes the possibility that eddy currents are responsible for the jumps we see in the probe layer resistance.

The data presented here argue for a different physical origin for the jumps seen in our bilayer hole samples. Our data show that thermal fluctuations are not responsible for the jumps, and it is unlikely that quantum fluctuations are either. Another possibility is that two different energetic requirements are competing against one another to create the jump-relaxation cycle. The data in Ref. 9 show that the time the system spends in the relaxation part of the cycle increases when increasing the width of the barrier between the two layers, suggesting that the inter-layer Coulomb interaction is involved in this part of the cycle. Because the amplitude of the jumps decreases with increasing temperature, along with the strength of the \(\nu = 1 \) QHS, it seems likely that the jump part of the cycle occurs within the QHS layer. The intra-layer Coulomb interaction thus likely plays an important role in the jump part of the cycle. We propose that the dynamic competition between the inter- and intra-layer Coulomb interaction in the localized states of the QHS layer creates a charge-discharge cycle, which manifests itself as the relaxation-jump cycle. The capacitive coupling between the probe layer and the localized states of the QHS layer could lead to a charging of the localized states. Thus, the inter-layer Coulomb interaction is responsible for charging. Eventually, the localized states in one region of the QHS layer become overcharged compared to neighboring regions, and discharge to them, or, in an avalanche, all the way to the edge state. The intra-layer Coulomb interaction is thus responsible for the discharge. The data shown here is consistent with the characteristics of such a charge-discharge cycle. This cycle involves a change in the charge distribution of the QHS layer, and, through the inter-layer Coulomb interaction, the probe layer as well. The sample itself could contain several such regions, each of which could cycle independently, yielding periodic time evolution, or they could be coupled, yielding complex time evolutions. Finally, at elevated temperatures, the thermal energy would lower the threshold where one region could discharge to neighboring regions, decreasing the amount of excess charge that could build up in any given region.

Ultimately, the physical processes responsible for the jump and the relaxation remain unclear. We emphasize that what is clear is that the bulk states of the QHS do not come to equilibrium over extremely long time scales in a wide range of samples. This has been demonstrated clearly by Huel et al. in single layer 2D electron samples, and by us here in bilayer hole samples with barriers larger than 7.5 nm. More broadly, it is possible that the bulk states of the QHS are out of equilibrium in general, but that very few experiments are sensitive to the non-equilibrium character of the bulk states. We add that we have been able to identify cases where our bilayer samples do not show any indication of non-equilibrium behavior: in imbalanced bilayer hole samples with barriers smaller than 7.5 nm, we observe no magnetoresistance hysteresis or resistance jumps. This implies that the bulk states of the QHS can come to equilibrium with the probe layer if interlayer tunneling is large enough.

We thank the DOE and the Princeton NSF MRSEC for support, and D. A. Huse and A. H. MacDonald for illuminating discussions.
Present address: Microelectronics Research Center, University of Texas, Austin

1 R. E. Prange and S. M. Girvin, *The Quantum Hall Effect* (Springer, 1990).
2 S. H. Tessmer, P. I. Glicofridis, R. C. Ashoori, L. S. Levitov, and M. R. Melloch, Nature 392, 51 (1998).
3 S. Ilani, J. Martin, E. Teitelbaum, J. H. Smet, D. Mahalu, V. Umansky, and A. Yacoby, Nature 427, 328 (2004).
4 G. A. Steele, R. C. Ashoori, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 95, 136804 (2005).
5 J. Huels, J. Weis, J. Smet, K. v. Klitzing, and Z. R. Wasilewski, Phys. Rev. B 69, 85319 (2004).
6 M. Pioro-Ladriere, A. Usher, A. S. Sachrajda, J. Lapointe, J. Gupta, Z. Wasilewski, S. Studenikin, and M. Elliott, Phys. Rev. B 73, 75309 (2006).
7 M. Elliott, Y. Lu, K. L. Phillips, W. G. Herrenden-Harker, A. Usher, A. J. Matthews, J. D. Gething, M. Zhu, M. Henini, and D. A. Ritchie, Europhys. Lett. 75, 287 (2006).
8 J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. B 61, R13361 (2000).
9 E. Tutuc, R. Pillarsetty, S. Melinte, E. P. DePoortere, and M. Shayegan, Phys. Rev. B 68, 201308(R) (2003).
10 W. Pan, J. L. Reno, and J. A. Simmons, Phys. Rev. B 71, 153307 (2005).
11 A. Siddiki, S. Kraus, and R. R. Gerhardts, Physica E 34, 136 (2006).
12 J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 57, 2324 (1990).
13 N. C. van der Vaart, M. P. de Ruyter van Steveninck, L. P. Kouwenhoven, A. T. Johnson, Y. V. Nazarov, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. 73, 320 (1994).
14 N. C. van der Vaart, L. P. Kouwenhoven, M. P. de Ruyter van Steveninck, Y. V. Nazarov, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. B 55, 9746 (1997).
15 N. G. Kalugin, B. E. Sagol, A. Buss, A. Hirsch, C. Stellmach, G. Hein, and G. Nachtwei, Phys. Rev. B 68, 125313 (2003).
16 K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 90, 226803 (2003).
17 G. A. Csathy, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 98, 66805 (2007).
18 J. P. Gollub, T. O. Brunner, and B. G. Danly, Science 78, 49 (1978).