ARCWISE CONNECTEDNESS OF THE BOUNDARIES OF CONNECTED SELF-SIMILAR SETS

TAI-MAN TANG

Abstract. Let T be the attractor of injective contractions f_1, \ldots, f_m on \mathbb{R}^2 that satisfy the Open Set Condition. If T is connected, ∂T is arcwise connected. In particular, the boundary of the Lévy dragon is arcwise connected.

Key Words: self-similar sets, Lévy dragon, Lévy curve, reptiles, self-affine tiles.

AMS subject classification (2000): 28A80(Primary); 54F65(Secondary)

1. The theorem

Let f_1, \ldots, f_m be a family of injective contractions on \mathbb{R}^2 satisfying the Open Set Condition: there is a nonempty bounded open set V such that $f_i(V) \cap f_j(V) = \emptyset$ for $i \neq j$, and $\bigcup_{i=1}^{m} f_i(V) \subset V$ (see e.g. [F]). Let T be the attractor of the system. Suppose that T is connected. Among other results, Luo, Rao and Tan prove that ∂T is connected [LRT, Theorem 1.1]. They further ask whether ∂T is arcwise connected. We answer the question in the affirmative.

Theorem 1.1. Let f_1, \ldots, f_m be a family of injective contractions on \mathbb{R}^2 satisfying the Open Set Condition. Suppose that T is connected. Then ∂T is arcwise connected.

Corollary 1.2. The boundary of a connected reptile or self-affine tile is arcwise connected.

Lately there is some interest in the topology of self-similar sets, particularly for some classical reptiles and self-affine tiles (see [BKS], [BW], [LRT], [NN]). If the f_i are similarities of the same contraction ratio and $T^c \neq \emptyset$, T is called a reptile. A self-affine tile is defined by an expanding matrix and a digit set. The twindragon, the Heighway dragon and the Lévy dragon are classical examples in both classes. Bandt and Wang [BW] show that the twindragon is a disk. Ngai and Nguyen [NN] show that the Heighway dragon is a union of disks, each having a common point with each of its two neighboring disks. Hence
our theorem is true for the twindragon and the Heighway dragon. Notice that for these T, almost all points in ∂T are boundary points of the components of T^o. The only exceptions are the two special points of the Heighway dragon, which are limit points of such components.

The non-trivial cases for our theorem are offered by those T where ∂T has many points that are not boundary points of the components of T^o, but are the limits of such components. The Lévy dragon offers an example. The Hausdorff dimension of its boundary has been calculated using different methods [DK], [SW]. Its topology is discussed by Bailey, Kim and Strichartz [BKS]. The arcwise connectedness of its boundary is an addition to the results there.

2. Preliminaries

We collect here some definitions and results from point set topology and self-similar sets.

A continuum is a compact connected set. It is non-degenerate if it has more than one point. Let S be a topological space. Let G be an infinite collection of subsets of S, not necessarily different. The set of $x \in S$ such that every neighborhood of x contains points of infinitely many sets in G is called the limit superior of G, denoted $\limsup G$. The set of $y \in S$ such that every neighborhood of y contains points from all but a finite number of the sets of G is called the limit inferior of G, written $\liminf G$. If $\liminf G = \limsup G$, then G is said to be convergent, with limit $\lim G = \liminf G = \limsup G$.

A set M is said to be locally connected at $p \in M$ if for every neighborhood U of p, there exists a neighborhood V of p such that every point of $M \cap U$ containing p. Equivalently, M has a local base at p consisting of connected sets. M is locally connected if it is locally connected at every one of its points.

Theorem 2.1. (a) [W, p.13] If the continuum $M \subset \mathbb{R}^2$ is not locally connected at one of its points p, then there is a ball $B_r(p)$ and an infinite sequence of distinct components C and C_i of $M \cap B_r(p)$, $i = 1, 2, \ldots$, such that $\lim \{C_i\} = C$ and $p \in C$.

(b) [W, p.14] There is a non-degenerate subcontinuum H of M containing p such that M is not locally connected at every point of H.

Theorem 2.2. [W, p.27] Every locally connected continuum is arcwise connected.

An arc is a homeomorphic image of $[0, 1]$. A simple closed curve is a homeomorphic image of a circle. A set M is said to have property S if for each $\epsilon > 0$, M is the union of a finite number of connected sets of diameter less than ϵ.

Theorem 2.3. [W, p.19] A continuum M is locally connected if and only if M has property S.
Theorem 2.4. [W, p.34] If $M \subset \mathbb{R}^2$ is a locally connected continuum with no cut point, the boundary of any component of $\mathbb{R}^2 \setminus M$ is a simple closed curve.

For $\alpha = i_1 \ldots i_k \in \{1, \ldots, m\}^k$, we write $f_\alpha = f_{i_1} \circ \cdots \circ f_{i_k}$. $f_\alpha(T)$ is called a kth-level piece of T. Let
\[c_i = \sup \left\{ \frac{|f_i(x) - f_i(y)|}{|x - y|} : x \neq y; x, y \in \mathbb{R}^2 \right\} < 1; c = \sup \{c_1, \ldots, c_m\} < 1. \]
Notice that $\operatorname{diam}(f_\alpha(T)) \leq c^k \operatorname{diam}(T) \to 0$ as $k \to \infty$. As $T = \bigcup_{\alpha \in \{1, \ldots, m\}^N} f_\alpha(T)$, and each $f_\alpha(T)$ is connected, we have part (a) of the following.

Theorem 2.5. Let T be the connected attractor of injective contractions f_i, as in Theorem 1.1. Then

(a) T has property S.

(b) T is arcwise connected ([H], [K, p.33]).

(c) If $T^o \neq \emptyset$, $T = T^o$ (e.g. [LRT, p.226]).

(d) Suppose $T^o \neq \emptyset$. For different $\alpha_1, \alpha_2 \in \{1, \ldots, m\}^k$, $f_{\alpha_1}(T^o) \cap f_{\alpha_2}(T^o) = \emptyset$ (e.g. [LRT, p.226]).

3. The Proof

We prove Theorem 1.1 in this section. Under the given hypothesis, ∂T is connected ([LRT, Theorem 1.1(ii)]) and hence a continuum. We will prove that it is arcwise connected.

Lemma 3.1. If $T^o = \emptyset$, ∂T is arcwise connected.

Proof. In this case $\partial T = T$. The arcwise connectedness of ∂T follows from that of T (Theorem 2.5(b)).

Hereafter, we assume that $T^o \neq \emptyset$. Suppose ∂T is not arcwise connected. We derive a contradiction in a sequence of steps.

Claim 3.2. Suppose that ∂T is not arcwise connected. There is a point $p \in \partial T$, and an open ball $B_r(p)$ such that $\partial T \cap B_r(p)$ has infinitely many components C and C_i, $i = 1, 2, \ldots$, such that $\lim \{C_i\} = C$ and $p \in C$.

Proof. ∂T not arcwise connected implies that it is not locally connected (Theorem 2.2). The result follows from Theorem 2.4(a).

Claim 3.3. Let N be a positive integer such that for any Nth-level piece $f_\alpha(T)$, $\alpha \in \{1, \ldots, m\}^N$, $\operatorname{diam}(f_\alpha(T)) < r/2$. There is an Nth-level piece of T, denoted A, that is contained in $B_r(p)$ and intersects infinitely many C_i.

Proof. As $\lim \{C_i\} = C$, $C_i \cap B_{r/2}(p) \neq \emptyset$ except for finitely many i. As $C_i \subset \partial T \subset T = \bigcup_{\alpha \in \{1, \ldots, m\}^N} f_\alpha(T)$, each of these points of intersections is
We get a contradiction by proving the following.

Claim 3.4. There is an Nth-level piece of a neighbor of T, called B, such that $B \subset B_r(p)$ and $B \cap A$ contains points from two of the C_i's, say C_1, C_2. Here A is as in Claim 3.3.

Proof. Choosing another N if necessary, suppose that the Nth-level pieces of T and its neighbors in the blow up have diameter less than $r/2$. From Claim 3.3 $A \cap C_i \cap B_{r/2}(p) \neq \emptyset$ for infinitely many i. As $C_i \subset \partial T$, $A \cap C_i \cap B_{r/2}(p)$ is also contained in the neighbors of T. As only finitely many Nth-level pieces of the neighbors of T intersects $B_{r/2}(p)$, one such piece B contains points in $A \cap C_i \cap B_{r/2}(p)$ for infinitely many i. As $\text{diam}(B) < r/2$, $B \subset B_r(p)$.

By renaming the C_i's if necessary, suppose that $A \cap B$ contains points from C_1, C_2.

Let $x \in A \cap B \cap C_1, y \in A \cap B \cap C_2$. As A and B are arcwise connected (Theorem 2.5(b)), there are arcs $\gamma \subset A \subset T, \beta \subset B \subset T^c$ with endpoints x, y. We get a contradiction by proving the following.

Claim 3.5. C_1 and C_2 cannot be distinct components of $\partial T \cap \overline{B_r(p)}$.

Proof. Case 1. If $\gamma = \beta$, the arcs are in $\partial T \cap \overline{B_r(p)}$, and the claim is true.

Case 2. Suppose that $\gamma \neq \beta$, and $\gamma \cap \beta = \{x, y\}$. That is, $\gamma \cup \beta$ is a simple closed curve enclosing a region $D \subset B_r(p)$.

If $\gamma \subset \partial T$ or $\beta \subset \partial T$, then C_1 and C_2 are joined by an arc in $\partial T \cap \overline{B_r(p)}$, and the claim is true.

Suppose that $\gamma \cap T^c \neq \emptyset$. Look at the components of $T^c \cap D$ whose boundary has nonempty intersection with γ. Call them $A_i, i \in \mathbb{N}$. Notice that $\partial A_i \subset (\partial T \cap D) \cup \gamma \cup \beta$.

We claim that \overline{A}_i is a locally connected continuum with no cut point. We have to prove the local connectedness of \overline{A}_i at each of its points. As T is a locally connected continuum (Theorem 2.3 2.5(a)), it is locally connected at each of its points. For $z \in D \cap \overline{A}_i$, local connectedness of \overline{A}_i at z follows from the local connectedness of T at z.

Next consider $z \in \overline{A}_i \cap \gamma$ with the property that there is an interval $(t_1, t_2) \subset [0, 1]$ with $z \in \gamma(t_1, t_2) \subset \overline{A}_i$ (the ‘interior boundary points’). We have used the same symbol for the arc γ and one of its parametrizations $\gamma : [0, 1] \to \mathbb{R}^2$.

Notice that \(\text{dist}(z, \partial T \cap D) > 0 \). Suppose that \(\overline{A}_i \) is not locally connected at \(z \). Then there is a closed ball \(S \) of \(z \), such that \(S \cap \partial A_i \subset \gamma \), and \(\overline{A}_i \cap S \) has components \(C'_i, C' \) such that \(\lim \{C'_i\} = C' \) (Theorem 2.1(a)). By our choice of \(S \), \(\partial C'_i \subset \gamma \). It follows that every neighborhood of \(z \) in \(S \) intersects \(\gamma \) in infinitely many components. Hence \(\gamma \) does not have a local base of connected neighborhoods at \(z \), contradictory to the local connectedness of \(\gamma \). Hence \(\overline{A}_i \) is locally connected at \(z \). The same argument apply to the ‘interior boundary points’ on \(\overline{A}_i \cap \beta \).

It remains to establish the locally connectedness of \(\overline{A}_i \) at the ‘corner boundary points’ of \(\overline{A}_i \), the points \(z = \gamma(t) \in \gamma \) (and the similar points on \(\beta \)) with the following property. There is no interval \((t_1, t_2) \subset [0, 1] \) containing \(t \) such that \(\gamma(t_1, t_2) \subset \overline{A}_i \). If \(\overline{A}_i \) is not locally connected at \(z \), it is not locally connected on a non-degenerate sub-continuum \(H \) of \(\overline{A}_i \) containing \(z \) (Theorem 2.1(b)). As we have established the local connectedness of \(\overline{A}_i \) at the points of \(\overline{A}_i \) in \(D \), \(H \subset \gamma \) and hence must be a non-degenerate sub-arc. But then points in \(H \) other then its two end points are the ‘interior boundary points’ discussed in the last paragraph, and \(\overline{A}_i \) is locally connected at such points. This contradicts the definition of \(H \), and proves the local connectedness of \(\overline{A}_i \) at \(z \). Hence \(\overline{A}_i \) is locally connected.

\(\overline{A}_i \) has no cut point, as for any \(z \in \overline{A}_i \), \(A_i \setminus \{z\} \) is in one component, and hence so is \(\overline{A}_i \setminus \{z\} \). This establishes our claim that \(\overline{A}_i \) is a locally connected continuum with no cut point.

By Theorem 2.4 the boundaries of the components of \(\mathbb{R}^2 \setminus \overline{A}_i \) are simple closed curves. Let \(\delta_i \) be the boundary of the unbounded component. Points on \(\delta_i \) are of three types: those in \(D \), \(\gamma \) or \(\beta \). Those in \(D \) and \(\beta \) are in \(\partial T \).

Let \(s_i := \inf \{ s : \gamma(s) \in \delta_i \} \), \(t_i := \sup \{ t : \gamma(t) \in \delta_i \} \). Then \(\delta_i \setminus \{ \gamma(s_i), \gamma(t_i) \} \) is consist of two parts, with at least one lying entirely in \(D \cup \beta \). Call one such part \(\delta'_i \). Then \(\delta'_i \subset \partial T \). Define

\[
\gamma' := (\gamma \setminus \bigcup_i \gamma(s_i, t_i)) \cup \bigcup_i \delta'_i.
\]

Then \(\gamma' \subset \partial T \). Though \(\gamma' \) may not be an arc, it is the image of a continuous curve joining \(x, y \). Therefore \(x, y \) and hence \(C_1, C_2 \) are in the same component of \(\partial T \cap B_r(p) \). This finishes the argument when \(\gamma \cap \beta = \{x, y\} \).

Case 3. Suppose that \(\gamma \neq \beta \) and \(\gamma \cap \beta \) is more than \(\{x, y\} \). Let \((u_i, v_i), i \in \mathbb{N} \), be maximal intervals with \(\gamma(u_i, v_i) \cap \beta = \emptyset \). For each \(i \), \(\gamma(u_i), \gamma(v_i) \) bounds a segment from each of \(\gamma \) and \(\beta \). The two segments bounded a region \(D_i \). Apply the argument in case 2 to get a curve in \(\partial T \cap D_i \) joining \(\gamma(u_i) \) and \(\gamma(v_i) \). Together with the observation that \(\gamma \cap \beta \subset \partial T \cap B_r(p) \), we get that \(x, y \) and \(C_1, C_2 \) are in the same component of \(\partial T \cap B_r(p) \). \(\square \)
The contradiction obtained in Claim 3.5 proves the arcwise connectedness of ∂T.

References

[BKS] S. Bailey, T. Kim and R. S. Strichartz, Inside the Lévy dragon, Amer. Math. Monthly 109 (2002), no. 8, 689–703.

[BW] C. Bandt and Y. Wang, Disk-like self-affine tiles in \mathbb{R}^2, Discrete Comput. Geom. 26 (2001), 591–601.

[DK] P. Duvall and J. Keesling, The Hausdorff dimension of the boundary of the Lévy dragon, Int. J. Math. and Math. Sci. 20 (1997), 627–632.

[F] K. J. Falconer, Fractal geometry. Mathematical foundations and applications, John Wiley & Sons, Ltd., Chichester, 1990.

[H] M. Hata, On the structure of self-similar sets, Japan J. Appl. Math. 3 (1985), 381–414.

[K] J. Kigami, Analysis on Fractals, Cambridge University Press, Cambridge, 2001.

[LRT] J. Luo, H. Rao and B. Tan, Topological structure of self-similar sets, Fractals, 10 (2002), no. 2, 223–227.

[NN] S. -M. Ngai and N. Nguyen, The Heighway dragon revisited, to appear in Discrete Comput. Geom.

[SW] R. Strichartz and Y. Wang, Geometry of self-affine tiles I, Indiana Univ. Math. J. 48 (1999), 1–24.

[W] G. T. Whyburn, Topological Analysis, Princeton University Press, Princeton, 1958.