A new investigation of the possible X-ray counterparts of the magnetar candidate AX J1845-0258

Fabio Pintore and Sandro Mereghetti

INAF - IASF Milano, Via E. Bassini 15, I-20133 Milano, Italy

ABSTRACT

AX J1845–0258 is a transient X-ray pulsar, with spin period of 6.97s, discovered in the 1993 ASCA satellite archive (Torii et al. 1998; Gotthelf & Vasisht 1998). Further ASCA observations in 1997 did not detect it, while a fainter source, AX J184453–025640, was found in an ASCA observation of the Galactic Plane Survey carried out in 1999. A source consistent in flux and position with AX J184453–025640 was also seen with the BeppoSAX satellite in 2001 (Israel et al. 2004).

Based on the value of its spin period, on the soft X-ray spectrum (a blackbody with temperature $kT \sim 0.6$ keV or a steep power law with photon index $\Gamma \sim 5$), and on the possible association with a SNR (if indeed AX J184453–025640 and the pulsar are the same source), it was suggested that AX J1845–0258 could belong to the class of anomalous X-ray pulsars. These sources, together with the soft gamma-ray repeaters which show similar properties, are generally believed to be isolated neutron stars powered by strong magnetic fields, i.e. magnetars (see e.g. Mereghetti 2008).

Tam et al. (2006) analyzed 7 Chandra observations taken between June and August 2003, and found three X-ray sources inside the large (3' radius) error box of AX J1845–0258 reported in

1 INTRODUCTION

AX J1845–0258 is an X-ray pulsar, with spin period of 6.97s, discovered in a periodicity search for the sources in the 1993 ASCA archive (Torii et al. 1998; Gotthelf & Vasisht 1998). Further ASCA observations in 1997 did not detect it, while a fainter source, AX J184453–025640, was found in an ASCA observation of the Galactic Plane Survey carried out in 1999. A source consistent in flux and position with AX J184453–025640 was also seen with the BeppoSAX satellite in 2001.

Table 1. Log of the XMM-Newton and Chandra observations.

Satellite	Obs.ID	Observation date	Exposure (ks)
Chandra	7578	2007-02-19	4.7
Chandra	7579	2007-04-22	5.0
Chandra	7580	2007-06-08	4.8
Chandra	7581	2007-08-04	5.2
Chandra	7582	2007-09-18	5.1
Chandra	7583	2007-11-05	5.2
Chandra	11801	2010-06-17	32
XMM-Newton	0602350101	2010-04-14	61
XMM-Newton	0602350201	2010-04-16	43

© 2015 RAS

arXiv:1605.03413v1 [astro-ph.HE] 11 May 2016
sient magnetar, which experienced an outburst shortly before the 1993 ASCA observation and subsequently faded to quiescence. Similar behaviours are not unusual in magnetars (see, e.g. Rea & Esposito 2011).

Here we present a new investigation of all the X-ray sources in the sky region of AX J1845–0258, based on XMM-Newton and Chandra archival data. These observations allowed us to carry out a more detailed spectral and timing analysis of the sources already

Source	Name	R.A.	Dec.	Band	Rate (Chandra)	Rate (XMM/EPIC, pn)	Other information
A	CXOU J184449.8-030015	18°44′39″.8	−3°00′15″.4	s	(7.1 ± 1.4) × 10⁻⁴	(4.2 ± 0.6) × 10⁻³	J = 14.30, K = 13.06, late type star
B	CXOU J184451.1-025611	18°44′51″.1	−2°56′11″.5	s	(2.3 ± 0.7) × 10⁻⁴	–	J = 8.96, K = 8.63, late type star
C	CXOU J184452.8-025809	18°44′52″.8	−2°58′09″.0	T	(2.0 ± 0.7) × 10⁻⁴	–	R1 = 17.97, I = 16.29, start?
D	CXOU J184453.5-030000	18°44′53″.5	−3°00′00″.8	T	(6.6 ± 3.1) × 10⁻⁴	–	J = 12.96, K = 11.63, late type star
E	CXOU J184454.3-030033	18°44′54″.3	−3°00′33″.3	T	(4.5 ± 1.2) × 10⁻⁴	–	J = 15.31, K = 14.31, late type star
F	AX J184453-025640	18°44′54″.7	−2°56′53″.2	H	(4.8 ± 0.3) × 10⁻³	(2.34 ± 0.09) × 10⁻²	J = 13.41, K = 13.07, start?
G	CXOU J184456.4-030104	18°44′56″.4	−3°01′04″.6	s	(4.0 ± 1.0) × 10⁻⁴	–	J = 10.27, K = 9.31, late type star
H	CXOU J184457.5-025823	18°44′57″.5	−2°58′23″.7	T	(2.2 ± 0.2) × 10⁻³	(1.1 ± 0.1) × 10⁻²	–
I	CXOU J184457.6-025854	18°44′57″.6	−2°58′54″.6	s	(7.3 ± 1.2) × 10⁻⁴	(1.9 ± 0.4) × 10⁻³	–
J	CXOU J184501.5-025829	18°45′01″.5	−2°58′29″.5	s	(1.5 ± 0.6) × 10⁻⁴	–	–
K	CXOU J184501.7-030108	18°45′01″.7	−3°01′08″.2	T	(3.9 ± 1.1) × 10⁻⁴	(3.1 ± 0.5) × 10⁻³	J = 14.75, K = 11.95, late type star
L	CXOU J184503.8-025845	18°45′03″.8	−2°58′45″.6	s	(1.6 ± 0.6) × 10⁻⁴	–	J = 13.01, K = 12.28, late type star
M	CXOU J184505.3-030105	18°45′05″.3	−3°01′05″.4	T	(7.9 ± 1.5) × 10⁻⁴	(3.6 ± 0.7) × 10⁻³	J = 13.77, K = 13.08, late type star
N	CXOU J184506.3-025614	18°45′06″.3	−2°56′14″.6	T	(3.7 ± 1.3) × 10⁻⁴	(2.0 ± 0.4) × 10⁻³	J = 15.29, K = 12.80, late type star
O	CXOU J184507.2-025657	18°45′07″.2	−2°56′57″.4	s	(6.4 ± 1.6) × 10⁻⁴	–	J = 13.73, K = 12.71, late type star
P	CXOU J184508.5-025852	18°45′08″.5	−2°58′52″.0	T	(5.1 ± 1.3) × 10⁻⁴	–	J = 16.01, K = 11.72, late type star
Q	CXOU J184509.7-025903	18°45′09″.7	−2°59′03″.9	H	(1.8 ± 0.4) × 10⁻³	–	–
R	CXOU J184509.8-025714	18°45′09″.8	−2°57′14″.1	H	(8.5 ± 2.1) × 10⁻⁴	(1.2 ± 0.4) × 10⁻³	–
S	CXOU J184510.6-025948	18°45′10″.6	−2°59′48″.3	s	(2.4 ± 0.8) × 10⁻⁴	–	J = 15.79, K = 13.39, late type star

a Also reported in Liu et al. (2006).

b Detection band: 0.3–10 keV; s: 0.3–2 keV; t: 2–10 keV.

c Count rate in the given detection band.

d Magnitude in J and K infrared bands from the 2MASS catalogue, or R1 and I optical bands from the USNO B1 catalogue.

Figure 1. Left: *EPIC* image in the 0.3–10 keV energy range, obtained by stacking the pn and MOS data of the two *XMM-Newton* observations. The largest circle (3′ radius) is the error region of AX J1845–0258 reported by Gotthelf & Vassili 1998, while the smaller one (2′ radius) is that reported by Torii et al. 1999. Right: Stacking of all the 2007 and 2010 *Chandra* observations in the 0.3–10 keV energy range.

In both images, the small circles (18′ for graphical purposes only) indicate the sources found in this work. A smoothing has been applied to both images for display purposes.

The results indicate that AX J1845–0258 might be a transient magnetar, which experienced an outburst shortly before the 1993 ASCA observation and subsequently faded to quiescence. Similar behaviours are not unusual in magnetars (see, e.g. Rea & Esposito 2011).
reported in the literature and to discover other possible counterparts of AX J1845–0258.

2 OBSERVATIONS AND DATA REDUCTION

We used two XMM-Newton observations, with durations of 61 and 43 ks, carried out in April 2010 (see details in Table 1). The three cameras of the EPIC instrument (one pn camera, Strüder et al. 2001 and two MOS cameras Turner et al. 2001) were operated in full-frame mode in both observations. The corresponding EPIC-pn and MOS read-out time resolution is 0.073 and 2.6 s, respectively. The data were reduced with SAS v. 14.0.0. We selected single-and double-pixel events (PATTERN ⩽ 4) for the pn and single- and multiple-pixel events for the MOS (PATTERN ⩽ 12). Time intervals with high particle background were excluded from the analysis, resulting in a net exposure time of ~40 and ~32 ks for the first and the second observation, respectively. We excluded from this work the 2003 XMM-Newton observation (Obs.ID: 0046540201) because it is affected by high particle background which limits the net exposure time to a few ks.

The seven Chandra observations used in this work were performed in 2007 and 2010, for a total exposure time of ~60 ks (see Table 1). They were made using the ACIS-S detector in full-frame mode, yielding a time resolution of 3.241 s. We reduced the data with the CIAO software v. 4.7 and the CALDB v. 4.6.9.

For XMM-Newton data, we extracted the source counts from circular regions with radius 20″ (except in a few cases mentioned below) and the background counts from nearby source-free circular regions with 40″ radius. For Chandra data, we instead used circular regions with radius of 5″ and 20″ for source and background, respectively. Spectral fits were carried out with XSPEC v. 12.8.2 in the energy range 0.3–10 keV. In the following, all the errors on the spectral parameters are at the 90% c.l. For the timing analysis, the times of arrival of the counts were converted to the Solar System barycenter using the JPL planetary ephemerides DE405 and the Chandra coordinates of the sources.

3 DATA ANALYSIS AND RESULTS

We first created a combined EPIC image in the energy range 0.3–10 keV by stacking the pn and MOS data of both observations (Fig. 1 left). In addition to the three Chandra sources reported in Tam et al. (2006) (labelled here as source F, O and R), the EPIC data reveal the presence of 7 new sources inside (or slightly outside) the error regions of AX J1845–0258. All of them are detected at ⩾ 3σ in at least one of the considered energy ranges (0.3–10 keV, 0.3–2 keV, and 2–10 keV). The brightest of the new sources (H and I) are positionally coincident with the region of diffuse X-ray emission detected by Vasisht et al. (2000) in the ASCA-SIS data, which had a spatial resolution insufficient to resolve them.

We created a combined image in the 0.3–10 keV energy range by joining the data of the seven Chandra observations (Fig. 1 right). This image shows all the sources detected by XMM-Newton (except for source Q) plus 10 fainter ones. Note that the 2003 Chandra observations covered with high sensitivity only a small fraction of the pulsar error region; this explains why most of these sources were not reported by Tam et al. (2006).

We also looked in the optical USNO B1.0 (Monet et al. 2003) and infrared (IR) 2MASS (Skrutskie et al. 2006) catalogues for any possible counterpart of all the detected sources. The coordinates, count rates and possible counterparts of the sources are listed in Table 2.

3.1 AX J184453–025640 (Source F)

AX J184453–025640 is the brightest source presented in Tam et al. (2006). For the spectral analysis of this source, we first considered the two XMM-Newton observations separately. By fitting simultaneously the pn and MOS spectra with simple models (power-law, blackbody) we obtained acceptable fits and found no evidence for time variations in the flux or spectral parameters. Therefore, also considering the short time interval between the two observations, we joined them and extracted a single spectrum combining pn+MOS data using the SAS tool EPICSPCCOMBINE. This allowed us to collect a total of ~2300 net counts in the 0.3–10 keV energy band.

In the individual observations, both a power law (photon index Γ ~ 1) and a blackbody (temperature in the range 2.1 ~ 2.4 keV) gave equally acceptable fits. However, the fit to the combined spectrum rebinned with a minimum of 200 counts per bin favours the power-law model (see Figure 2 and Table 3).

The source count rates measured in the single Chandra observations were consistent with a constant, indicating no significant flux variability. Hence, for the Chandra spectral analysis, we created a stacked spectrum using all the observations and fitted it with a powerlaw, fixing N_0 to the value found with XMM-Newton. The resulting photon index (0.9 ± 0.5) and absorbed flux ((3.3 ± 0.75) × 10^{-13} erg cm^{-2} s^{-1}, 2–10 keV) are consistent with those found with XMM-Newton.

In order to search for pulsations in AX J184453–025640, we used the EPIC pn and MOS source counts of the two observations. We used only the counts with energy above 2 keV, where the signal to noise ratio is the highest. This yielded a total of about 1700 counts, of which ~16% can be attributed to the background. Using a Rayleigh test technique, we explored periods in the range 6.5–7.5 s, which accounts for a possible spin-up or spin-down of the source of |P| < 10^{-9} s^{-1} from 1993 up to the present days. No significant pulsations were detected and, by means of Montecarlo simulations assuming a sinusoidal pulse profile, we could set a 3σ c.l. upper limit of 6% on the source pulsed fraction (defined as the amplitude of the sinusoid divided by its average value).

![Figure 2. EPIC spectrum of AX J184453–025640 (source F). Top panel: data and best-fit powerlaw model. Bottom panel: residuals in units of σ.](image-url)
Absorption poorly constrained. Therefore, we fixed the absorption most of its photons are above 1.5 keV, making the estimates of the two XMM-Newton only a rough spectral analysis using the stacked EPIC spectrum of Ported by Tam et al. (2006). Due to its faintness we could perform CXOU J184509.8–025714 (Source R) most likely a late type star. The association with a bright IR object suggest that this source is the XMM-Newton study it in detail since it fell very close to the gap between CCDs XMM-Newton this source was first reported by Tam et al. (2006), who noted its CXOU J184457.6–025854 (Source O) This source was first reported by Tam et al. (2006), who noted its CXOU J184457.5–025823 (Source H) 3.3 CXOU J184457.5–025823 (Source H) 3.3 CXOU J184457.5–025823 (Source H) 3.2 CXOU J184507.2–025657 (Source O) 3.3 CXOU J184509.8–025714 (Source R) 3.2 CXOU J184507.2–025657 (Source O) 3.3 CXOU J184509.8–025714 (Source R)
3.5 CXOU J184457.6–025854 (Source I)

This source was too faint for a spectral analysis of the individual XMM-Newton observations. We extracted, from a region of 15″ radius, a total pn+MOS source spectrum by summing the two XMM-Newton observations, which gave us a total of 220 net counts in the 0.3–10 keV energy band. The fits with either a powerlaw or a blackbody were acceptable but left several residuals ($\chi^2 > 1.5$), while a good fit could be obtained with the APEC model (Figure 4 right and Tab. 2). This gave a plasma temperature of 0.8 keV and an absorbed 0.3–10 keV flux of $(4.2 \pm 0.8) \times 10^{-15}$ erg cm$^{-2}$ s$^{-1}$. This source was too faint for a spectral analysis with the Chandra data.

Source I can be associated to an IR counterpart in 2MASS with magnitudes $J=10.267 \pm 0.023$, $H=9.542 \pm 0.025$ and $K=9.305 \pm 0.025$. An optical counterpart can also be found with a B1-band magnitude of 15.29 ± 1. Based on the optical/IR colours and the thermal X-ray spectrum, we conclude that this object is most likely a foreground star of spectral type K or M.

3.6 CXOU J184505.3–030105 (Source M)

Source M, positionally coincident with a 2MASS object with magnitudes $J=13.8$, $H=12.6$ and $K=13.1$, can be likely associated to a foreground late type star. Its combined (pn+MOS of both observations) X-ray spectrum (218 net counts in the 0.3–10 keV band) is poorly constrained but can be well modelled ($\chi^2 < 1$) with an APEC component. The best fit parameters are $N_H = (5.7^{+3}_{-3}) \times 10^{22}$ cm$^{-2}$, $kT = 1.9^{+4}_{-1}$ keV and a 0.3–10 keV absorbed flux of $(1.6 \pm 0.5) \times 10^{-14}$ erg cm$^{-2}$ s$^{-1}$.

3.7 CXOU J184501.7–030108 (Source K)

Also source K can be associated to an IR source of the 2MASS catalogue with magnitudes in J, H and K bands of 14.745 ± 0.057, 12.779 ± 0.032 and 11.947 ± 0.035, respectively. No counterparts are reported in optical catalogues. The two XMM-Newton observations yielded ~300 net counts and its X-ray spectrum can be well described with a single blackbody ($\chi^2/\text{dof} = 7.09/7$) while a powerlaw or an APEC model are statistically worse. We found $N_H < 1.5 \times 10^{21}$ cm$^{-2}$, $kT = 0.9^{+0.3}_{-0.1}$ keV and a 0.3–10 keV absorbed flux of $(1.3 \pm 0.4) \times 10^{-14}$ erg cm$^{-2}$ s$^{-1}$. Also in this case, a possible association to a foreground late type star is likely.

3.8 CXOU J184449.8–030015 (Source A)

Source A has an IR counterpart in the 2MASS catalogue with magnitudes in J, H and K bands of 14.296 ± 0.037, 13.472 ± 0.037 and 13.06 ± 1, respectively. An optical counterpart is also associated to the X-ray source, with magnitudes in R1, B1 and I bands of 14.6 ± 1, 19.6 ± 1 and 15.25 ± 1, respectively. The combined source X-ray spectrum (~200 total net counts) could be well fitted with a blackbody or an APEC model. In the latter case, we found a $N_H = (8.6^{+12}_{-6}) \times 10^{21}$ cm$^{-2}$, $kT = 3.8^{+3.7}_{-2.3}$ keV and a 0.3–10 keV absorbed flux of $(1.2 \pm 0.6) \times 10^{-14}$ erg cm$^{-2}$ s$^{-1}$. Because of its spectral properties and IR/optical emission, the source may be associated to a late type star.
4 DISCUSSION AND CONCLUSIONS

After more than 20 years since its discovery, the nature of the pulsating X-ray source AX J1845–0258 is still unknown: it could be either a transient magnetar or a transient accreting X-ray binary containing a neutron star or a white dwarf. All the X-ray observations carried out after the 1993 discovery revealed only fainter sources, implying a variability of at least one order of magnitude, but none of them could be safely associated with AX J1845–0258 since the pulsations at 7s were never detected again.

The brightest of these sources, AX J184453–025640, remains a good candidate for being the pulsar counterpart. The location at the center of the supernova remnant G29.6+0.1, the lack of a bright optical/IR counterpart, and the long term light curve (see Fig. 5) strongly support the interpretation in terms of a transient magnetar. Our new upper limit on the pulsed fraction in AX J184453–025640 is incompatible with the strong modulation observed in AX J1845–0258. However, magnetars often show changes in their pulse profile when they evolve from an outburst toward quiescence, and some of them have pulsed fractions comparable with our upper limits (for example SGR 1806–20; e.g. Mereghetti et al. 2005; Woods et al. 2007). The nearly constant flux that the source has maintained for almost 16–17 years (∼ 2.5 × 10^-13 erg cm^{-2} s^{-1}), Fig. 5 corresponds to an average luminosity of ∼ 3 × 10^{33} (d/10 kpc)^2 erg s^{-1}, which is fully consistent with that of quiescent magnetars, while the relatively hard spectrum is the only characteristic of AX J184453–025640 that disfavours this interpretation. In fact, this spectrum is much softer than that typically observed in magnetars, especially when they are in a quiescent state, and it is also harder than that measured for AX J1845–0258 in 1993.

Of course, it is also possible that AX J184453–025640 is a source totally unrelated to the pulsar. Its presence could have been easily missed in the 1993 ASCA data dominated by the much brighter X-ray pulsar. Besides AX J184453–025640, the Chandra and XMM-Newton data reported here show the presence of several faint X-ray sources. Many of them, with soft X-ray spectra and optical/IR counterparts, may be associated to foreground stars and are most likely not associated to AX J1845–0258. Only two of these sources were previously reported in the literature (CXOU J184507.2–025657 and CXOU J184509.8–025714; Tam et al. 2006). Amongst the other newly reported objects, we note that the sources H, J, and Q are not associated to any optical/IR counterpart.

Source H (CXOU J184457.5–025823), being the second brightest in the error region after AX J184453–025640, is particularly interesting. The lack of a bright optical/IR counterpart, together with a hard and highly absorbed spectrum, indicate that this source is unlikely to be a normal field star. On the other hand, its absorption is smaller than that of AX J184453–025640 and of the pulsar seen in 1993 suggesting that source H is not a background AGN. Associating this source with the pulsar implies a variability of at least a factor of 60, still fully compatible with the variability seen in transient magnetars, but we note that source H lies outside the SNR.

We finally note that, although none of the X-ray sources reported here has optical/IR counterparts compatible with a high mass X-ray binary, the possibility that AX J1845–0258 is a neutron star or white dwarf accreting from a low mass companion can not be excluded.

ACKNOWLEDGEMENTS

This work has been partially supported through financial contribution from the agreement ASI/INAF/I/037/12/0 and PRIN INAF 2014.

The results are in part based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, and on data obtained from the Chandra Data Archive. This publication makes partially use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

REFERENCES

Dickey J. M., Lockman F. J., 1990, ARA&A, 28, 215
Gaensler B. M., Gotthelf E. V., Vasisht G., 1999, ApJ, 526, L37
Gotthelf E. V., Vasisht G., 1998, NewA, 3, 293
Israel G., et al., 2004, in IAU Symposium Unveiling the Multi-wavelength Phenomenology of Anomalous X-ray Pulsars. p. 247
Mereghetti S., 2008, A&A Rev., 15, 225
Mereghetti S., Götz D., von Kienlin A., Rau A., Lichti G., Wödenpointer G., Jean P., 2005, ApJ, 624, L105
Monet D. G., et al., 2003, AJ, 125, 984
Rea N., Esposito P., 2011, in Torres D. F., Rea N., eds, Astrophysics and Space Science Proceedings, High-Energy Emission from Pulsars and their Systems. Springer Berlin Heidelberg, pp 247–273
Skrutskie M. F., et al., 2006, AJ, 131, 1163
Strüder L., et al., 2001, A&A, 365, L18
Tam C. R., Kaspi V. M., Gaensler B. M., Gotthelf E. V., 2006, ApJ, 652, 548
Torii K., Kinugasa K., Katayama K., Tsunemi H., Yamauchi S., 1998, ApJ, 503, 843
Turner M. J. L., et al., 2001, A&A, 365, L27
Vasisht G., Gotthelf E. V., Torii K., Gaensler B. M., 2000, ApJ, 542, L49

Figure 6. Absorbed 2–10 keV light curve of AX J184453–025640. The ASCA, BeppoSAX and 2003 Chandra fluxes are taken from Tam et al. (2006). The BeppoSAX and ASCA fluxes might be overestimated due to the presence of other unresolved sources.
The possible counterparts of AX J1845-0258

Woods P. M., Kouveliotou C., Finger M. H., Göğüş E., Wilson C. A., Patel S. K., Hurley K., Swank J. H., 2007, ApJ, 654, 470

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.