Electronic coupling mediated by furan, thiophene, selenophene and tellurophene in a homologous series of organic mixed valence compounds†

Ann Christin Jahnke, Mariana Spulber, Markus Neuburger, Cornelia G. Palivan and Oliver S. Wenger*

Charge delocalization in the mixed-valent monocationic forms of phenothiazine-decorated chalcogenophenes is explored by cyclic voltammetry, optical absorption and EPR spectroscopy. Single units of furan, thiophene, selenophene and tellurophene are found to mediate electronic coupling between the phenothiazines attached to their 2- and 5-positions roughly equally well. Electronic communication seems to occur mostly through the butadiene-like backbone of the chalcogenophenes.

The ability of π-conjugated oligomers and polymers to become highly conducting upon oxidation is of key importance for various (opto)electronic applications. Numerous studies have investigated charge delocalization and charge transport phenomena in oxidized oligo- and polythiophenes. Lately there has been increasing interest in oligomers and polymers of the other chalcogenophenes, in particular selenophene, but also furan and tellurophene. However, despite important recent progress, the synthesis of oligofurans and oligotellurophenes remains nontrivial. From a fundamental perspective and with the application potential of furan- or tellurophene-based materials in mind, it seemed worthwhile to explore to what extent an unpaired electron can delocalize over individual chalcogenophene units with the heteroatoms varying along the series O, S, Se, Te. Charge transport in oligomers and charge delocalization in monomers are different issues, but in order to tailor the properties of an oligomer or polymer it seems desirable to understand the electronic structure of its monomeric building blocks as detailed as possible.

Mixed valence compounds have been frequently employed for exploration of charge delocalization phenomena, and both metal-based as well as purely organic redox-active units have been used for this purpose. A considerable number of thiophene-bridged mixed valence compounds have been studied, but selenophene, furan, and tellurophene bridges have received little to no attention. A very recent study reported that oligofurans can mediate stronger electronic coupling between ferrocenyl redox units than oligothiophenes. We are unaware of prior comparative studies of charge delocalization encompassing the entire chalcogenophene series (Scheme 1).

Our study is based on four isostructural compounds with phenothiazine (PTZ) groups attached at the 2- and 5-positions of furan (1), thiophene (2), selenophene (3), and tellurophene (4). An X-ray crystal structure of the selenophene compound is shown in Fig. 1. The structure of the thiophene analogue (2) had been previously reported. Synthetic procedures and product characterization data are given in the ESI.†

Cyclic voltammetry reveals two essentially reversible oxidation waves in the potential range between 0 and 0.6 V vs. Fc+/Fc for all four compounds (Fig. 2), corresponding to consecutive one-electron oxidation of both PTZ moieties. Chalcogenophene-based oxidations are expected at much higher potentials. In CH₃CN with 0.1 M TBAPF₆, the splitting between peak potentials (ΔE) increases along the chalcogenophene series, ranging from 216 mV for furan to...
4.5 Cu(II) oxidant (red traces, bands marked with asterisks) from which about and ion pairing effects often dominate, and therefore conclusions D interaction (and ion pairing effects, as well as the strength of electronic energy absorption band is centered around 14 500–15 000 cm⁻¹ in infrared and visible spectral ranges. In all four cases the lowest-

We conclude that these bands are due to the mixed-valent dation of the two PTZ units and comproportionation constants in CH₃CN are essentially colorless (dotted black traces in Fig. 3),

clearly lose intensity when more than 1 equivalent of oxidant is to sample decomposition.

While 4 × 10⁻⁵ M solutions of the charge-neutral forms of 1–4 in CH₃CN are essentially colorless (dotted black traces in Fig. 3), oxidation with Cu(ClO₄)₂ produces new absorptions in the near-

291 mV for tellurophene (Table 1). Using these ΔE values one calculates comproportionation constants (Kₑ = 10⁻³ΔE/9mV) between 4.5 × 10³ and 8.6 × 10⁴ in CH₃CN (Table 1). In general, ΔE and Kₑ are governed by several factors including electrostatic and ion pairing effects, as well as the strength of electronic interaction (H_AB) between the two redox centers.⁹⁰ Electrostatic and ion pairing effects often dominate, and therefore conclusions about H_AB based on electrochemical data should be made with caution.⁹⁰ In the present case the observed increase of ΔE and Kₑ along the series of chalcogenophenes 1–4 is difficult to reconcile with electrosratics because the distance between redox centers is not decreasing along this series.

2014, 50, 10883–10886 This journal is © The Royal Society of Chemistry 2014

Table 1 Differences in electrochemical potentials for one-electron oxidation of the two PTZ units and comproportionation constants in CH₃CN with 0.1 M TBAPF₆

Compd	ΔE [mV]	Kₑ
1	216	4.5 × 10³
1	267	3.4 × 10⁴
1	283	6.3 × 10⁴
1	291	8.6 × 10⁴

By analogy to many previously investigated bis(triarylamines) and related organic mixed valence compounds we associate the low-energy absorptions of 1⁻–4⁺ (marked by the red asterisks) with intervalence charge transfer (IVCT) bands.⁶⁻⁹⁻¹¹ The optical absorption spectra with properly determined extinction coefficients were fitted to a sum of gaussian functions in order to estimate the dipole moment (µₑ) associated with the IVCT transition (Fig. S1 in the ESI†). Eqn (1) requires µ_d (the energetic position of the absorption band maximum) and ε(ν) input values in units of cm⁻¹ and M⁻¹ cm⁻¹, respectively, and yields the transition dipole moment in units of Debyes (D).¹²

\[
\mu \varepsilon = 0.09584 \cdot \sqrt{\frac{\int \varepsilon(\nu) \cdot d\nu}{\nu_{\text{max}}}}
\] (1)

The µₑ values for the furan-, thiophene-, selenophene-, and tellurophene-based compounds (1⁺, 2⁺, 3⁺, 4⁺) are between 3.4 and 4.7 D (Table 2). Eqn (2) relates µₑ to the electronic coupling matrix element H_AB which quantifies the strength of the electronic interaction between the two redox centers.¹³

\[
H_{\text{AB}} = \frac{\mu \varepsilon \cdot \nu_{\text{max}}}{\varepsilon \cdot R}
\] (2)

In eqn (2), ε is the elemental charge and R is the effective charge transfer distance. In compounds 1–4 the N–N distance is expected to vary between 4.58 and 5.32 Å based on molecular modeling and X-ray crystal structure data (Table 1). Prior studies of mixed-valent bis(triarylamine) cations and dinotroaromatic anions have reached the conclusion that R is equal to roughly 2/3 of the geometrical N–N distance (d_NN) in these systems.¹⁴ Therefore it seems plausible to assume that R = 2/3⋅d_NN for 1⁺–4⁺, and this leads to estimates for the electronic coupling matrix elements in the range from ~3300 to ~4100 cm⁻¹ (Table 2). For comparison, the structurally related N,N,N',N'-tetraakis(p-phenylenediamine) cation has H_AB = 3240 cm⁻¹.¹¹ The solvent dependence of the IVCT band is relatively weak,
The EPR spectra of 1+–4+ in CH3CN indicate that the unpaired electron spin interacts with the nuclear spins of 14N and 1H (solid traces in Fig. 4). Simulation of the experimental spectra (dotted traces in Fig. 4) yields the gyromagnetic factors g and the hyperfine coupling constants reported in Table 3. All EPR spectra are centered at values of the gyromagnetic factors g ranging from 2.0024 to 2.0032, typical for organic radicals. The simulations indicate an interaction of the unpaired electron with two equivalent nitrogen nuclei (α_N ranging from 4.2 to 5.2 G), and two equivalent hydrogen nuclei (α_H varying from 3.6 to 4.8 G) for the two chalcogenophene H-atoms. Nitrogen hyperfine coupling constants (α_N) between 4.2 and 5.2 G for 1+–4+ are compatible with complete delocalization of the unpaired electron over two N nuclei on the EPR timescale. In the case of 4+ the presence of an impurity somewhat complicates the interpretation. For 1+–3+ there is no indication for hyperfine interaction with the chalcogenophene heteroatom. For 4+ interaction of the unpaired electron with the tellurium atom cannot be rigorously excluded (see ESI†).

The combined data sets from cyclic voltammetry, optical absorption, and EPR spectroscopy are in line with strong charge delocalization in 1+–4+. ΔE and κ_L increase systematically along the chalcogenophene series (Table 1), but for μ_{PE} and H_{AB} this trend is not followed (Table 2). The optical absorption data rather suggests that furan and tellurophe none mediate electronic coupling somewhat less well than thiophene and selenophene, but the differences are relatively small when considering the uncertainty associated with the procedure used for determination of μ_{PE} and H_{AB}. We are therefore lead to the conclusion that single units of furan, thiophene, selenophene, and tellurophe none mediate electronic coupling between two amine redox centers similarly well. This is consistent with a picture in which the electronic communication between the 2- and 5-positions of a chalcogenophene is mostly mediated by the butadiene backbone of the heterocycle, and the EPR data is compatible with this view. A recent study of ferroocene-based mixed valence compounds has reached the same conclusion for phosphate bridges.15

We have conducted the first comparative study of charge delocalization across single units of the entire chalcogenophene series, and our findings are relevant in the greater context of molecular electronics,16 for instance for the design of new chalcogenophene-based charge-conducting oligomers and polymers.

Funding from the Swiss NSF through grant number 200021_146231/1 is gratefully acknowledged. CGP acknowledges the Swiss NSF for a R’Equip grant for the EPR spectrometer.

Notes and references

1 (a) X. Guo, M. Baumgarten and K. Müllen, Prog. Polym. Sci., 2013, 38, 1832–1908; (b) J. L. Bredas, J. P. Calbert, D. A. da Silva and J. Cornil, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 5804–5809.
2 (j) J. Roncali, Chem. Rev., 1992, 92, 711–738; (b) T. Otsubo, Y. Aso and K. Takimiya, J. Mater. Chem., 2002, 12, 2565–2575.
3 (a) E. Poverenov, Y. Sheynin, N. Zamoshchik, A. Patra, G. Leitus, I. F. Perepichka and M. Bendikov, J. Mater. Chem., 2012, 22, 14645–14655; (b) A. Patra and M. Bendikov, J. Mater. Chem., 2010, 20, 422–433; (c) Y. H. Wijboom, A. Patra, S. Zade, Y. Sheynin, M. Li, L. L. W. Shimon and M. Bendikov, Angew. Chem., Int. Ed., 2009, 48, 5443–5447; (d) M. Heeney, W. Zhang, D. J. Crouch, M. L. Chabinyc, S. Gordeyev, R. Hamilton, S. J. Higgins, I. McCulloch, P. J. Skabara, D. Sparrowe and S. Tierney, Chem. Commun., 2007, 5061–5063.
4 (a) O. Gidron, A. Dadvar, Y. Sheynin, M. Bendikov and D. F. Perepichka, Chem. Commun., 2011, 47, 1976–1978; (b) O. Gidron and M. Bendikov, Angew. Chem., Int. Ed., 2014, 53, 2546–2555; (c) A. A. Jahnke and D. S. Seferos, Macromol. Rapid Commun., 2011, 32, 943–951; (d) A. A. Jahnke, G. W. Howe and D. S. Seferos, Angew. Chem., Int. Ed., 2010, 49, 10140–10144.
5 (a) O. Gidron, Y. Diskin-Ponser and M. Bendikov, J. Am. Chem. Soc., 2010, 132, 2148–2149; (b) A. A. Jahnke, B. Djukic, T. M. McCormick, E. B. Domingo, C. Hellmann, Y. Lee and D. S. Seferos, J. Am. Chem. Soc., 2013, 135, 951–954; (c) C. R. B. Rhoden and G. Zeni, Org. Biomol. Chem., 2011, 9, 1301–1313.
6 (a) W. Kaim, A. Klein and M. Glöckle, Acc. Chem. Res., 2000, 33, 755–763; (b) S. F. Nelsen, Chem. – Eur. J., 2000, 6, 581–588; (c) K. D. Demadis, C. M. Hartshorn and T. J. Meyer, Chem. Rev., 2001, 101, 2655–2685; (d) D. M. D’Alessandro and F. R. Keene, Chem. Rev., 2006, 106, 2270–2298; (e) F. Pevy, E. Di Piazza, L. Norel, M. Drewe, R. F. Winter and S. Rigaut, Organometallics, 2010, 29, 5912–5918; (f) J. Hancocke and O. S. Wengen, Chem. Rev., 2011, 111, 5138–5178; (g) D. Siebler, M. Linseis, T. Gasi, L. M. Carrela,
