The Extracellular Signal-regulated Kinase Pathway Regulates the Phosphorylation of 4E-BP1 at Multiple Sites*

Terence P. Herbert‡§, Andrew R. Tee‡, and Christopher G. Proud‡

From the §Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom

The phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), a potent stimulator of Erk, leads to the phosphorylation of 4E-BP1 and its dissociation from eIF4E. In contrast to agonists such as insulin, this occurs independently of PKB activation. In this report, we investigate the mechanism by which TPA regulates 4E-BP1 phosphorylation. Treatment of HEK293 cells with TPA was found to result in the phosphorylation of 4E-BP1 at Ser64, Thr69, and Thr36/45. The TPA-stimulated phosphorylation of all these sites is sensitive to inhibitors of MEK and to the inhibitor of mTOR, rapamycin, indicating that inputs from both mTOR and MEK are required for the regulation of 4E-BP1 phosphorylation by TPA. Indeed, evidence is presented that mTOR may initially be required for the phosphorylation of Thr69 in a priming step, which is necessary for the subsequent phosphorylation of Ser64 and Thr69 through an Erk-dependent pathway. Overexpression of constitutively active MEK in HEK293 cells resulted both in the phosphorylation of 4E-BP1 at Ser64 and Thr36/45 and its release from eIF4E. In this case, the phosphorylation of these sites was also blocked by inhibitors of MEK or by rapamycin. In conclusion, the Erk pathway, via mechanisms also requiring mTOR, regulates the phosphorylation of multiple sites in 4E-BP1 in vivo and this is sufficient for the release of 4E-BP1 from eIF4E.

mRNA translation is conventionally divided into three stages: initiation, elongation, and termination. Of these, initiation is considered the rate-limiting step and therefore is considered the most important step in the acute regulation of translation. Essential for initiation of cap-dependent protein synthesis is the assembly of the initiation complex, eukaryotic initiation factor (eIF) 4F, containing the initiation factors eIF4G, a large scaffolding protein, eIF4E, the protein which binds to the 5′ cap structure and eIF4A, a bidirectional RNA helicase (for review, see Ref. 1). The formation of the eIF4F complex is regulated by a variety of stimuli through the activation of multiple signal transduction pathways. eIF4E-binding protein-1 (4E-BP1), also known as protein-heat and acid-stable I, is a translational repressor that regulates eIF4F assembly and therefore cap-dependent translation (for review, see Ref. 1). 4E-BP1 binds to a site on eIF4E that overlaps the binding site for eIF4G and it therefore competes with eIF4G for binding to eIF4E, which results in the inhibition of eIF4F assembly (2–4). The binding of 4E-BP1 to eIF4E is regulated through the phosphorylation of 4E-BP1. Phosphorylation of 4E-BP1 leads to a reduction in its affinity for eIF4E and its subsequent dissociation from eIF4E (2, 5–8).

Five phosphorylation sites each conforming to a (S/T)P motif have been identified in 4E-BP1: Thr36, Thr45, Ser64, Thr69, and Ser82 (based on rat sequence, +1 for human (9–11)). The phosphorylation of 4E-BP1 at Thr45 and Ser64; sites adjacent to the conserved eIF4E-binding motif, is thought to be the most important in influencing the binding of 4E-BP1 to eIF4E (12, 13). However, each site differentially influences the binding of 4E-BP1 to eIF4E and mRNA translation by affecting either the affinity of 4E-BP1 for eIF4E or (indirectly) influencing the phosphorylation of other sites (12, 14).

The signaling pathways leading to insulin-induced increases in the phosphorylation of 4E-BP1 have been the focus of much attention. Insulin is thought to regulate the phosphorylation of 4E-BP1 through the phosphatidylinositol 3-kinase (PI 3-kinase) signaling pathway (15) and this is thought to be dependent on both the phosphorylation and activation of PKB (16, 17). In vitro, 4E-BP1 is an excellent substrate for Erk, which phosphorylates all five sites, albeit with differing efficiencies (9). Ser64 is major in vitro Erk phosphorylation site and is also a major site of phosphorylation in response to insulin in vivo (6, 9). However, in vivo, the activation of Erk appears neither necessary nor sufficient for the phosphorylation of 4E-BP1 in response to insulin (15, 18, 19).

Rapamycin, a specific inhibitor of mTOR, blocks the effects of insulin or phorbol ester on the phosphorylation of 4E-BP1 (7, 18, 19). In vitro, immunoprecipitated mTOR can phosphorylate 4E-BP1 at Thr36, Thr45, Thr69, Ser64, and Ser82, albeit with low and differing efficiencies (12, 20, 21).

We have previously shown that, in HEK 293 cells, the phorbol ester TPA stimulates the phosphorylation of 4E-BP1 via mechanisms that are independent of PI 3-kinase and PKB (19). The phosphorylation and regulation of 4E-BP1 by TPA are inhibited by the MEK inhibitors PD098059 and U0126 indicating that the Erk pathway plays a role in the regulation of 4E-BP1 by TPA (19). In contrast, the regulation of 4E-BP1 by insulin in these cells is independent of MEK. In addition, there is an increasing number of other reports, using a variety of
Fig. 1. TPA stimulates 4E-BP1 phosphorylation through the MAP kinase pathway. HEK293 cells transiently transfected with pCDNA3–4E-BP1 were serum starved for 18 h. Cells were pretreated with the indicated inhibitors (PD98059, U0126, PD184352; r rapamycin; B, BIM) for 45 min prior to the addition of 1 μM TPA or 100 nM insulin (ins) for 1 h (or left untreated (Un)). a, samples of cell lysates (20 μg) were applied to a SDS-polyacrylamide gel followed by Western blotting using: (i) anti-phospho Erk and (ii) anti-Erk antiseras. b, samples of cell lysates (20 μg) were run on a SDS-polyacrylamide gel followed by Western blotting using: (i) anti-Myc antibody or (ii–iv) phospho-specific antibodies against 4E-BP1. The positions of the three forms of 4E-BP1 separated in this gel system (α, β, and γ in order of increasing state of phosphorylation) are indicated. (ii) anti-phospho Ser64; (iii) anti-phospho Thr69; and (iv) anti-phospho Thr36/45 antisera. Similar data were obtained from three separate experiments.

physiological stimuli, indicating a role for Erk pathway in the phosphorylation of 4E-BP1 (22, 23). In this report we demonstrate that TPA, a potent activator of Erk, leads to the phosphorylation of 4E-BP1 at Thr36/45, Ser64, and Thr69, and that this leads to the dissociation of eIF4E from 4E-BP1. Phosphorylation at these sites is sensitive to inhibitors of MEK and rapamycin, indicating that inputs from both mTOR and MEK are required for TPA regulation of 4E-BP1 phosphorylation. Additionally, activation of the Erk pathway in HEK293 cells through the overexpression of constitutively active MEK resulted in the phosphorylation of 4E-BP1 at positions Thr36/45 and Ser64, and its release from eIF4E.

MATERIALS AND METHODS

Chemicals and Materials—Microcystin LR, bisindolylmaleimide (BIM), PD098059 were purchased from Calbiochem. Materials for tissue culture were from Invitrogen. m7GTP-Sepharose was from Amersham Biosciences, Inc. U0126 was obtained from Promega. All other chemicals (unless stated) were obtained from Sigma. PD184352 was provided by the Division of Signal Transduction Therapy, Dundee University.

Cell Culture and Treatment of Cells—HEK293 cells were maintained in Dulbecco’s modified Eagle’s media (Invitrogen) supplemented with 10% fetal calf serum. Prior to treatment, cells were grown to 80% confluence before being serum starved for 18 h. Details of treatments are provided in the figure legends. After treatment, cells were washed in phosphate-buffered saline and lysed in extraction buffer (0.1% Triton X-100, 50 mM β-glycerophosphate, pH 7.4, 1.5 mM EDTA, 1 mM benzamidine-HCl, 0.5 mM sodium orthovanadate, 0.1 mM phenylmethylsulfonyl fluoride, 1 μg/ml each of pepstatin A, antipain, and leupeptin). The lysates were then centrifuged for 10 min at 16,000 × g. The supernatants were removed and used for further analysis.

SDS-PAGE and Immunoblotting—SDS-PAGE and Western blotting were performed as described previously (24). Anti-human eIF4E antisera was raised against a synthetic peptide corresponding to residues 1–5 of the protein. The anti-4E-BP1 antibody was a generous gift from Adri Thomas (Utrecht). Anti-phospho 4E-BP1, PKB, and Erk antibodies were supplied by New England Biolabs. Anti-Erk5 antibodies were supplied by New England Biolabs. Anti-ERK5 antibodies were obtained from Upstate Biotech. Densitometry was performed using the program Image Quant (Amersham Biosciences, Inc.).

m7GTP-Sepharose Chromatography—m7GTP-Sepharose CL-6B (Amersham Biosciences, Inc.) was added to 0.2–0.5 mg of cell lysate. The lysates were then mixed with the beads for 1 h at 4 °C. The m7GTP-Sepharose was pelleted by centrifugation at 1000 × g for 2 min. The beads were then washed three times in extraction buffer. For SDS-PAGE, proteins were removed from the m7GTP matrix by boiling in SDS loading buffer and, after centrifugation, the supernatant was loaded on to the gel.

Flasmas—A PCR directed fragment-encoding rat 4E-BP1 was digested with HindIII and BstXI and cloned into pcDNA3/myc/his (Invitrogen) to generate pcDNA3–4E-BP1 expressing Myc and Histagged 4E-BP1. The codon for residue Thr69 of 4E-BP1 within pcDNA3–4E-BP1 was mutated to encode alanine using the QuikChange mutagenesis kit (Stratagene) producing the vector pcDNA3–4E-BPIT45A. pCA-MEK expressing a constitutively active form of MEK1 (AN3–S218/E2022 MEK1), and pErk2–MEK–La expressing a constitutively active form of Erk (25), were kindly provided by Drs. Axel Knebel (University of Dundee) and Melanie Cobb (University of Texas, Southwestern Medical Center, Dallas), respectively.

Transient Transfections—Transient transfections were performed as described by Alessi et al. (26).

RESULTS

The Phorbol Ester, TPA, Leads to the Phosphorylation of 4E-BP1 through the Erk Pathway—We have previously provided evidence that the phorbol ester, TPA elicits the phosphorylation of 4E-BP1 though a mechanism that is dependent upon MEK but independent of PI 3-kinase and PKB (19). To characterize further the role of the MEK/Erk pathway in the phosphorylation of 4E-BP1, we first investigated which sites within 4E-BP1 were phosphorylated in response to TPA using previously described phospho-specific antibodies (12).

To examine the phosphorylation state of 4E-BP1, Myc/His-tagged 4E-BP1 (4E-BP1myc/his) was expressed in HEK293 cells. The cells were then treated with TPA, insulin, and/or specific kinase inhibitors. As previously observed, TPA treatment led to the phosphorylation of Erk (Fig. 1a) and a decrease in the mobility of 4E-BP1 (Fig. 1b, i) on SDS-PAGE, which is indicative of its phosphorylation. TPA caused an increase in the phosphorylation of 4E-BP1myc/his at Ser64 and Thr69 and a small increase in the phosphorylation of Thr36/45 as assessed using anti-phospho-Ser(P)64, Thr(P)69, and Thr(P)36/45 specific antibodies (Fig. 1b, ii–iv). Similar increases in the phosphorylation of 4E-BP1myc/his were detected when cells were stimulated with insulin (Fig. 1b). A basal level of phosphorylation of 4E-BP1 at both Thr69 and Thr36/45 was also detected in serum-starved untreated cells (Fig. 1b, iii and iv).

Pretreatment of the cells with each of three structurally distinct inhibitors of MEK (the upstream activator of Erk), PD098059, U0126, and PD184352 (27–29), resulted in a dose-dependent inhibition of TPA-stimulated Erk phosphorylation as assessed using an anti-phospho-Erk antibody (Fig. 1a, i) (as a loading control the same samples were probed with anti-Erk 2 antibody (Fig. 1a, ii)). All three MEK inhibitors caused an inhibition of TPA-stimulated 4E-BP1 phosphorylation at
Ser64 and partially blocked the phosphorylation at Thr69 and Thr26,45. These inhibitors also decreased the basal phosphorylation of 4E-BP1 at Thr69 and Thr26,45 (Fig. 1b, iii and iv).

It has been reported that each of the three MEK inhibitors used in this study can also inhibit MEK5, the upstream activator of Erk5 (30, 31). Thus, it was possible that the effect of these inhibitors was through inhibition of Erk5. We therefore investigated whether TPA could cause phosphorylation of Erk5 in HEK293 cells. HEK293 cells were treated with TPA and extracts were analyzed by SDS-PAGE and immunoblotting using an anti-Erk5 antibody (Fig. 2). As a positive control, HeLa cell lysates treated with EGF were run alongside (32). EGF treatment of HeLa cells leads to the phosphorylation of Erk5 as indicated by a shift in its mobility on SDS-PAGE. However, no phosphorylation of Erk5 was detected upon TPA stimulation of HEK293 cells (Fig. 2), thus excluding a role for this pathway in the effect of TPA on 4E-BP1.

Pretreatment of HEK293 cells with rapamycin, inhibited the TPA-stimulated phosphorylation of 4E-BP1 at Ser64 and abolished or markedly inhibited both basal and its TPA-stimulated phosphorylation at Thr69 and Thr26,45, respectively (Fig. 1b). However, rapamycin had no effect on the phosphorylation of Erk (Fig. 1a), suggesting that it exerts its effect independently of the MEK/Erk pathway.

TPA activates both classical and novel PKC isoforms (33). Consistent with this, pretreatment of cells with the broad spectrum PKC inhibitor BIM inhibited the effect of TPA on the phosphorylation of both Erk and 4E-BP1myc/his (Fig. 1, a and b).

These results provide strong evidence that the Erk pathway (specifically MEK) plays a role in the phosphorylation of 4E-BP1myc/his at Ser64, Thr69, and Thr26,45 induced by TPA.

TPA Stimulated Phosphorylation of 4E-BP1 at Ser64 and Thr69 Requires Phosphorylation at Thr45—It has previously been reported that the extent of insulin-stimulated phosphorylation of 4E-BP1 at one site can modulate the phosphorylation of another site, with Thr69 and Thr45 having the most dramatic influence on the phosphorylation at other sites (12, 14, 34).

To investigate whether TPA-stimulated 4E-BP1 phosphorylation was regulated similarly, Thr45 of 4E-BP1 was mutated to an alanine creating the vector 4E-BP1T45A Myc/His. The phosphorylation of overexpressed 4E-BP1T45A Myc/His and 4E-BP1myc/his upon insulin or TPA stimulation was monitored using the phospho-specific antibodies. As previously shown (see Fig. 1), stimulation of cells with either TPA or insulin resulted in the phosphorylation of 4E-BP1myc/his at Thr26,45, Ser64, and Thr69 (Fig. 3). In contrast, neither TPA nor insulin led to the phosphorylation of 4E-BP1T45A Myc/His at Thr26,45 or Ser64 and there was a severe reduction in the phosphorylation at Thr69 (Fig. 3). This suggests that phosphorylation of these residues in 4E-BP1 in response to TPA depends upon (prior) phosphorylation of 4E-BP1 at Thr45, as suggested earlier for the phosphorylation of 4E-BP1 in response to insulin or serum (34, 35).

Transient Transfection of Constitutively Active MEK Leads to the Phosphorylation of 4E-BP1—To demonstrate directly that MEK plays a role in the phosphorylation of 4E-BP1, HEK293 cells transiently co-transfected with the vector pCA-MEK encoding constitutively active MEK (CA-MEK) together with pcDNA3–4E-BP1 encoding 4E-BP1myc/his. As a control, cells were co-transfected with pcDNA3–4E-BP1 and an empty vector. The phosphorylation of 4E-BP1myc/his was investigated using phospho-specific antibodies for Thr26,45, Ser64, and Thr69.

Overexpression of CA-MEK led to the phosphorylation of Erk and a decrease in the mobility of 4E-BP1myc/his on SDS-PAGE, indicative of increased phosphorylation (Fig. 4, a and b, i). Overexpression of CA-MEK resulted in the phosphorylation of Ser64 (Fig. 4b, ii) and increased phosphorylation at Thr69 as assessed using phospho-specific antibodies (Fig. 4b, iii). In contrast to the situation for cells treated with TPA, no significant change in the phosphorylation of Thr69 was detected. However, some variation between experiments in the basal/control levels of phosphorylation at Thr26,45 and Thr69 was observed. Treatment of cells overexpressing CA-MEK and 4E-BP1myc/his with U0126, PD098059, or PD184352, inhibitors of MEK (27, 28), resulted in inhibition of the phosphorylation of 4E-BP1myc/his at Thr26,45 and Ser64 in parallel with the inhibition of Erk phosphorylation. In general, U0126 was more effective than PD098059 at inhibiting the phosphorylation of both Erk and 4E-BP1myc/his. This most likely reflects differences in the mechanisms by which these two inhibitors work. U0126 is thought to block the activity of MEK whereas PD098059 is thought to inhibit MEK activation (27, 28, 36).

Incubation of cells expressing CA-MEK with rapamycin, an inhibitor of mTOR, also inhibited CA-MEK-induced phosphorylation of 4E-BP1 at Ser64 and abolished or markedly inhibited both basal and MEK-stimulated phosphorylation at Thr26,45 and Thr45, respectively, without affecting the phosphorylation of Erk (Fig. 4, a and b).

The activation of MEK may lead to the activation of various PKC isoforms including PKC\(\delta\), which itself has been implicated in the phosphorylation of 4E-BP1 (37). To investigate whether MEK was acting through PKC, cells expressing CA-MEK were treated with the PKC inhibitor BIM. In contrast to the effect of BIM on TPA-stimulated phosphorylation of 4E-BP1 (Fig. 1), BIM had only a small effect on the phosphorylation of 4E-BP1 at the sites investigated (Fig. 4a, b and d), indicating that PKC was probably not mediating the effect of CA-MEK.

To rule out the possibility that MEK activation could lead to the phosphorylation of 4E-BP1 through activation of PKB, the phosphorylation status of PKB in cells expressing constitutively active MEK was monitored using a phospho-specific an-
MEK Signaling and 4E-BP1

FIG. 4. Constitutively active MEK regulates 4E-BP1 phosphorylation in vivo. HEK293 cells transiently transfected with pCA-MEK and pcDNA3–4E-BP1 were serum starved for 18 h. Cells were treated with the inhibitors indicated for 1 h (PD98, PD098059; U, U0126; PD18, PD184352; r, rapamycin; B, BIM). a, 20 μg of cell lysates were run on a SDS-polyacrylamide gel followed by Western blotting using: (i) anti-MEK, (ii) anti-phospho-Erk, or (iii) anti-Erk2 antisera. b, 20 μg of cell lysates were run on a SDS-polyacrylamide gel followed by Western blotting using: (i) anti-Myc to detect 4E-BP1myc/his. The positions of the three forms of 4E-BP1 separated in this gel system (α, β, and γ in order of increasing state of phosphorylation) are indicated. (ii) anti-phospho Ser64, (iii) anti-phospho Thr36/45; and (iv) anti-phospho-Thr69 antisera. c, 20 μg of cell lysates were run on a SDS-polyacrylamide gel followed by Western blotting using anti-phospho-PKB (Ser473). Similar data were obtained from three separate experiments. The change in phosphorylation is expressed as percentage of maximal phosphorylation, is indicated above blots (ii–iv).

Transfection of Constitutively Active Erk Results in the Phosphorylation of 4E-BP1—As an adjunct to the above and to define the role of Erk (as opposed to MEK) in the phosphorylation of 4E-BP1, HEK293 cells were transiently co-transfected with pcDNA3–4E-BP1 expressing 4E-BP1myc/his and pERK2-MEK1-LA expressing a MEK/ERK fusion protein which has constitutive Erk activity (25). As a control, cells were co-transfected with pcDNA3–4E-BP1 and an empty vector. The phosphorylation of 4E-BP1 was investigated using the phospho-specific antibodies for Ser64 and Thr69. Expression of constitutively active MEK/Erk led to the phosphorylation of 4E-BP1myc/his at Ser64 and a shift in its mobility on SDS-PAGE (Fig. 5). In contrast to cells stimulated with TPA, a small increase in the phosphorylation of Ser69 was detected upon expression of MEK-Erk. However, some variation in the basal/control levels of Thr69 phosphorylation was observed between experiments.

Pretreatment of the cells with PD098059, an inhibitor of MEK (27, 28), resulted in the inhibition the phosphorylation of Ser69 and a partial inhibition in the basal phosphorylation of Ser65 in MEK-Erk expressing cells. This was in parallel with the inhibition of Erk phosphorylation as assessed using a phospho-specific antibody to Erk. As a loading control, identical samples were probed with anti-Erk2 antibody. Incubation of these cells with rapamycin also inhibited Erk-stimulated and basal phosphorylation of 4E-BP1myc/his at Ser64 and Thr69, respectively. These results provide further, more direct, evidence that Erk activation, rather than any possible consequences of MEK activation, leads to the phosphorylation of 4E-BP1 in vivo.

Activation of the Erk Pathway Leads to the Release of 4E-BP1 from eIF4E—We have previously demonstrated that stimulation of HEK293 cells with TPA leads to the phosphorylation of the 4E-BP1

ribosome binding protein 1 (4E-BP1) at Ser65 and a partial inhibition in the basal phosphorylation of Ser69 at Thr69, respectively.
MEK Signaling and 4E-BP1

4E-BP1 and its dissociation from eIF4E and that these effects were blocked by inhibitors of MEK (19). To examine the role of the Erk pathway in the binding of 4E-BP1 to eIF4E, serum-starved HEK293 cells expressing 4E-BP1myc/his were treated with TPA, insulin, or transfected with CA-MEK and the association of eIF4E with 4E-BP1 was studied using m7GTP-Sepharose pull down. Proteins were separated on a SDS-polyacrylamide gel followed by Western blotting using (i) anti-Myc to detect 4E-BP1myc/his. The positions of the three forms of 4E-BP1 are indicated and (ii) anti-MEK antiserum. (iii) Anti-phospho-Thr36/45, (iv) Anti-phospho-Thr69 antibodies or (v) anti-phospho-Ser64. b, analysis of proteins isolated by m’GTP-Sepharose pull down. Proteins were separated on a SDS-polyacrylamide gel followed by Western blotting using antisera against either eIF4E or 4E-BP1.

DISCUSSION

We have previously demonstrated that in HEK293 cells, TPA causes the phosphorylation of 4E-BP1 and its dissociation from eIF4E via a mechanism which is independent of PI 3-kinase and PKB, but dependent on MEK (19). In this report we further investigate the phosphorylation of 4E-BP1 by TPA by determining the sites at which 4E-BP1 is phosphorylated under these conditions and identifying the signaling pathways which lead to 4E-BP1 phosphorylation. Treatment of HEK293 cells with TPA, a potent activator of Erk, results in the phosphorylation of 4E-BP1 at Thr69, Ser64, and Thr36/45 (Figs. 1, 3, and 6). Phosphorylation at these sites is blocked by rapamycin in vivo, which has been reported to phosphorylate 4E-BP1 in vitro (6, 9, 18). However, Erk is unlikely to directly phosphorylate 4E-BP1 in vivo as Erk cannot phosphorylate 4E-BP1 bound to eIF4E (18, 38). PKCδ has been reported to phosphorylate 4E-BP1 in vivo (37). However, PKCδ or the conventional PKC isoforms probably do not play a role in MEK-induced phosphorylation of 4E-BP1 at the sites investigated, as BIM had a small effect on the phosphorylation of 4E-BP1 (14, 34) (Fig. 7). This indicates that the phosphorylation of Thr69 may be important for the control of translation by mitogenic signals which do not activate PI 3-kinase/PKB. eIF4E is a proto-oncogene (39–41) and MEK/Erk signaling involves two upstream proto-oncogenes (ras and raf) so that the activation of
eIF4E, by release of the repressor 4E-BP1, may link the regulation of translation to oncogenic signaling via MEK/Erk.

Acknowledgments—We thank Dr. Adri Thomas (Utrecht, The Netherlands) for generously providing anti-protein-heat and acid-stable-I (4E-BP1) antibody and Professor Melanie Cobb (Dallas, TX) and Dr. Axel Knebel (Dundee, UK) for providing pERK2/MEK1-LA and pCAMEK constructs, respectively. We also thank Dr. E. Gomez for careful reading of this manuscript.

REFERENCES

1. Gingras, A. C., Raught, B., and Sonenberg, N. (1999) Annu. Rev. Biochem. 68, 913–963
2. Haghighat, A., Mader, S., Pause, A., and Sonenberg, N. (1996) EMBO J. 15, 5701–5709
3. Marcotrigiano, J., Gingras, A. C., Sonenberg, N., and Burley, S. K. (1999) Mol. Cell 3, 707–716
4. Putschkina, M., von der Haar, T., Karim, M. M., Hughes, J. M., and McCarthy, J. E. (1999) EMBO J. 18, 4068–4075
5. Pause, A., Belsham, G. J., Gingras, A. C., Donze, O., Lim, T. A., Lawrence, J. C., Jr., and Sonenberg, N. (1994) Nature 371, 762–767
6. Lin, T. A., Kong, X., Haystead, T. A., Pause, A., Belsham, G., Sonenberg, N., and Lawrence, J. C., Jr. (1994) Science 266, 653–656
7. Beretta, L., Gingras, A. C., Svitkin, Y. V., Hall, M. N., and Sonenberg, N. (1996) EMBO J. 15, 658–664
8. Brunn, G. J., Hudson, C. C., Sekulic, A., Williams, J. M., Hosoi, H., Houghton, P. J., Lawrence, J. C., Jr., and Abraham, R. T. (1997) Science 277, 99–101
9. Fadden, P., Haystead, T. A., and Lawrence, J. C., Jr. (1997) J. Biol. Chem. 272, 10240–10247
10. Hall, M. N., and Sonenberg, N. (2001) J. Biol. Chem. 276, 39033–39040
11. Yang, D. Q., and Kastan, M. B. (2000) J. Biol. Chem. 275, 18531–18538
12. Mothe-Satney, I., Brunn, G. J., McMahon, L. P., Capaldo, C. T., Abraham, R. T., and Lawrence, J. C., Jr. (2000) Mol. Cell. Biol. 20, 3558–3567
13. Karim, M. M., Hughes, J. M., Warwicker, J., Scheper, G. C., Proud, C. G., and McCarthy, J. E. (2001) J. Biol. Chem. 276, 20750–20757
14. Brunn, G. J., Hudson, C. C., Sekulic, A., Williams, J. M., Hosoi, H., Houghton, P. J., Lawrence, J. C., Jr., and Abraham, R. T. (1997) Science 277, 99–101
15. Fadden, P., Haystead, T. A., and Lawrence, J. C., Jr. (1997) J. Biol. Chem. 272, 10240–10247
16. Hessen, K. J., Avison, M. B., Diggle, T. A., and Denton, R. M. (1998) Biochem. J. 336, 39–48
17. Price, D. J., Gunsalus, J. R., and Avruch, J. (1990) Mol. Cell. Biol. 10, 2665–2673
18. Lin, T.-A., Kong, X., Saltiel, A. R., Blackshear, P. J., and Lawrence, J. C. (1995) J. Biol. Chem. 270, 18531–18538
19. Herbert, T. P., Kilhamns, G. E., Batty, I. H., and Proud, C. G. (2000) J. Biol. Chem. 275, 11249–11256
20. Brunn, G. J., Fadden, P., Haystead, T. A. J., and Lawrence, J. C., Jr. (1997) J. Biol. Chem. 272, 32547–32550
21. Yang, D., Brunn, G. J., and Lawrence, J. C., Jr. (1999) FEBS Lett. 453, 387–390
22. Rao, G. N., Madamanchi, N. R., Lele, M., Gadiaparthi, L., Gingras, A. C., Eling, T. E., and Sonenberg, N. (1999) J. Biol. Chem. 274, 12925–12932
23. Bhandari, B. K., Feilers, D., Duraiaisamy, S., Stewart, J. L., Gingras, A. C., Abboud, H. E., Choudhury, G. G., Sonenberg, N., and Kasinath, B. S. (2001) Kidney Int. 59, 866–875
24. Price, D. J., Gunsalus, J. R., and Arruvu, J. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 7944–7948
25. Robinson, M. J., Cheng, M., Khokhlatchev, A., Ebert, D., Ahn, N., Guan, K., Stein, B., Goldsmith, E., and Cobb, M. H. (1996) J. Biol. Chem. 271, 29734–29739
26. Alessi, D. R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P., and Hemmings, B. (1996) EMBO J. 15, 6541–6551
27. Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J., and Saltiel, A. R. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7686–7689
28. Alessi, D. R., Cuenca, A., Cohen, P., Dudley, D. T., and Saltiel, A. R. (1995) J. Biol. Chem. 270, 27489–27494
29. Scholtz-Leopold, J. S., Dudley, D. T., Herrera, R., Van Baelenaere, K., Wiland, A., Gowan, R. C., Teele, H., Barrett, S. D., Bridges, A., Przybranowski, S., Leopold, W. R., and Saltiel, A. R. (1999) Nat. Med. 5, 810–816
30. Davies, S. P., Reddy, H., Caivano, M., and Cohen, P. (2000) Biochem. J. 351, 95–105
31. Mody, N., Leitch, J., Armstrong, C., Dixon, J., and Cohen, P. (2001) FEBS Lett. 502, 21–24
32. Kato, Y., Tapping, R. I., Huang, S., Watson, M. H., Ulevitch, R. J., and Lee, J. D. (1998) Nature 395, 713–716
33. Rasmussen, H., Isales, C. M., Calle, R., Throackmorton, D., Anderson, M., Gasalla-Herranz, J., and McCarthy, R. (1995) Endocr. Rev. 16, 649–681
34. Gingras, A. C., Gygi, S. P., Raught, B., Polakiewicz, R. D., Abraham, R. T., Hoekstra, M. F., Aebersold, R., and Sonenberg, N. (1999) Genes Dev. 13, 1422–1437
35. Mothe-Satney, I., Yang, D., Fadden, P., Haystead, T. A., and Lawrence, J. C., Jr. (2000) Mol. Cell. Biol. 20, 3558–3567
36. Fovata, M. F., Horiuchi, K. Y., Manos, E. J., Daulerio, A. J., Stradley, D. A., Feeser, W. S., Van Dyk, D. E., Pitts, W. J., Earl, R. A., Hobbs, F., Copeland, R. A., Magolda, R. L., Scherle, P. A., and Trzaskos, J. M. (1998) J. Biol. Chem. 273, 18623–18632
37. Kumar, V., Pandey, P., Sabatini, D., Kumar, M., Majumder, P. K., Bharti, A., Carmichael, G., Kufe, D., and Kharbanda, S. (2000) EMBO J. 19, 1087–1097
38. Diggle, T. A., Moule, S. K., Avison, M. B., Flynn, A., Foulstone, E. J., Proud, C. G., and Denton, R. M. (1996) Biochem. J. 316, 447–453
39. Lazaris-Karatzas, A., Montine, K. S., and Sonenberg, N. (1990) Nature 345, 544–547
40. Smith, M. R., Jaramillo, M. R., Lele, M., Gadiparthi, L., Gingras, A. C., Eling, T. E., and Sonenberg, N. (1996) New Biol. 2, 645–654
41. Lazaris-Karatzas, A., Smith, M. R., Frederickson, R. M., Jaramillo, M. L., Liu, Y. L., and Sonenberg, N. (1992) Genes Dev. 6, 1631–1642