Minimum Model Semantics for Logic Programs with Negation-as-Failure*

Panos Rondogiannis
Department of Informatics & Telecommunications
University of Athens
Panepistimiopolis, 157 84 Athens, Greece
e-mail: prondo@di.uoa.gr

William W. Wadge
Department of Computer Science
University of Victoria
PO Box 3055, STN CSC, Victoria, BC, Canada V8W 3P6
e-mail: wwadge@csr.uvic.ca

Abstract

We give a purely model-theoretic characterization of the semantics of logic programs with negation-as-failure allowed in clause bodies. In our semantics the meaning of a program is, as in the classical case, the unique minimum model in a program-independent ordering. We use an expanded truth domain that has an uncountable linearly ordered set of truth values between False (the minimum element) and True (the maximum), with a Zero element in the middle. The truth values below Zero are ordered like the countable ordinals. The values above Zero have exactly the reverse order. Negation is interpreted as reflection about Zero followed by a step towards Zero; the only truth value that remains unaffected by negation is Zero. We show that every program has a unique minimum model M_P, and that this model can be constructed with a T_P iteration which proceeds through the countable ordinals. Furthermore, we demonstrate that M_P can also be obtained through a model intersection construction which generalizes the well-known model intersection theorem for classical logic programming. Finally, we show that by collapsing the true and false values of the infinite-valued model M_P to (the classical) True and False, we obtain a three-valued model identical to the well-founded one.

Keywords: Negation-as-failure, non-monotonic reasoning, well-founded model.

* A preliminary version of this paper appears in the Proceedings of the 8th European Conference on Logics in Artificial Intelligence (JELIA 2002), Lecture Notes in Artificial Intelligence (LNAI) 2424, pages 456–467, Cosenza, Italy, September 2002.
1 Introduction

One of the paradoxes of logic programming is that such a small fragment of formal logic serves as such a powerful programming language. This contrast has led to many attempts to make the language more powerful by extending the fragment, but these attempts generally back-fire. The extended languages can be implemented, and are in a sense more powerful; but these extensions usually disrupt the relationship between the meaning of programs as programs and the meaning as logic. In these cases the implementation of the program-as-program can no longer be considered as computing a distinguished model of the program-as-logic. Even worse, the result of running the program may not correspond to any model at all.

The problem is illustrated by the many attempts to extend logic programming with negation (of atoms in the clause bodies). The generally accepted computational interpretation of negated atoms is negation-as-failure. Intuitively, a goal \(\neg A \) succeeds iff the subcomputation which attempts to establish \(A \) terminates and fails. Despite its simple computational formulation, negation-as-failure proved to be extremely difficult to formalize from a semantic point of view (an overview of the existing semantic treatments is given in the next section). Moreover, the existing approaches are not purely model theoretic in the sense that the meaning of a given program can not be computed by solely considering its set of models. This is a sharp difference from classical logic programming (without negation), in which every program has a unique minimum Herbrand model (which is the intersection of all its Herbrand models).

This paper presents a purely model-theoretic semantics for negation-as-failure in logic programming. In our semantics the meaning of a program is, as in the classical case, the unique minimum model in a program-independent ordering. The main contributions of the paper can be summarized as follows:

- We argue that a purely declarative semantics for logic programs with negation-as-failure should be based on an infinite-valued logic. For this purpose we introduce an expanded truth domain that has an uncountable linearly ordered set of truth values between \(\text{False} \) (the minimum element) and \(\text{True} \) (the maximum), with a \(\text{Zero} \) element in the middle. The truth values below \(\text{Zero} \) are ordered like the countable ordinals while those above \(\text{Zero} \) have the reverse order. This new truth domain allows us to define in a logical way the meaning of negation-as-failure and to distinguish it in a very clear manner from classical negation.

- We introduce the notions of infinite-valued interpretation and infinite-valued model for logic programs. Moreover, we define a partial ordering \(\sqsubseteq_{\infty} \) on infinite-valued interpretations which generalizes the subset ordering of classical interpretations. We then demonstrate that every logic program that uses negation-as-failure, has a unique minimum (infinite-valued) model \(M_P \) under \(\sqsubseteq_{\infty} \). This model can be constructed by appropriately iterating a simple \(T_P \) operator through the countable ordinals. From an algorithmic point of view, the construction of \(M_P \) proceeds in an analogous way as the iterated least fixpoint approach [Prz89]. There exist however crucial differences. First and most important, the proposed approach aims
at producing a unique minimum model of the program; this requirement leads to a more demanding logical setting than existing approaches and the construction of M_P is guided by the use of a family of relations on infinite-valued interpretations. Second, the definition of T_P in the infinite-valued approach is a simple and natural extension of the corresponding well-known operator for classical logic programming; in the existing approaches the operators used are complicated by the need to keep track of the values produced at previous levels of the iteration. Of course, the proposed approach is connected to the existing ones since, as we demonstrate, if we collapse the true and false values of M_P to (classical) $True$ and $False$ we get the well-founded model.

- We demonstrate that by considering infinite-valued models, we can derive a model intersection theorem for logic programs with negation-as-failure. The model produced by the model intersection theorem coincides with the model M_P produced by T_P. To our knowledge, this is the first such result in the area of negation (because model intersection does not hold if one restricts attention to either two or three-valued semantical approaches).

The rest of the paper is organized as follows: Section 2 discusses the problem of negation and gives a brief outline of the most established semantic approaches. Section 3 outlines the infinite-valued approach. Section 4 introduces infinite-valued interpretations and models, and discusses certain orderings on interpretations that will play a vital role in defining the infinite-valued semantics. The T_P operator on infinite-valued interpretations is defined in Section 5 and an important property of the operator, namely α-monotonicity, is established. In Section 6 the construction of the model M_P is presented. Section 7 establishes various properties of M_P, the most important of which is the fact that M_P is the minimum model of P under the ordering relation \sqsubseteq_∞. Section 8 introduces the model intersection theorem and demonstrates that the model produced in this way is identical to M_P. Finally, Section 9 concludes the paper with discussion on certain aspects of the infinite-valued approach.

2 The Problem of Negation-as-Failure

The semantics of negation-as-failure is possibly the most broadly studied problem in the theory of logic programming. In this section we first discuss the problem and then present the main solutions that have been proposed until now.

2.1 The Problem

Negation-as-failure is a notion that can be described operationally in a very simple way, but whose denotational semantics has been extremely difficult to specify. This appears to be a more general phenomenon in the theory of programming languages:

“It seems to be a general rule that programming language features and concepts which are simple operationally tend to be complex denotationally,
The basic idea behind negation-as-failure has as follows: suppose that we are given the goal $\leftarrow \sim A$. Now, if $\leftarrow A$ succeeds, then $\leftarrow \sim A$ fails; if $\leftarrow A$ fails finitely, then $\leftarrow \sim A$ succeeds. For example, given the program

$$
p \leftarrow
\quad r \leftarrow \sim p
\quad s \leftarrow \sim q
$$

the query $\leftarrow r$ fails because p succeeds, while $\leftarrow s$ succeeds because q fails.

To illustrate the problems that result from the above interpretation of negation, consider an even simpler program:

$$\text{works} \leftarrow \sim \text{tired}$$

Under the negation-as-failure rule, the meaning of the above program is captured by the model in which tired is False and works is True.

Consider on the other hand the program:

$$\text{tired} \leftarrow \sim \text{works}$$

In this case, the correct model under negation-as-failure is the one in which works is False and tired is True.

However, the above two programs have exactly the same classical models, namely:

$$M_0 = \{(\text{tired}, \text{False}), (\text{works}, \text{True})\}$$

$$M_1 = \{(\text{tired}, \text{True}), (\text{works}, \text{False})\}$$

$$M_2 = \{(\text{tired}, \text{True}), (\text{works}, \text{True})\}$$

We therefore have a situation in which two programs have the same model theory (set of models), but different computational meanings. Obviously, this implies that the computational meaning does not have a purely model theoretic specification. In other words, one can not determine the intended model of a logic program that uses negation-as-failure by just examining its set of models. This is a very sharp difference from logic programming without negation in which every program has a unique minimum model.

2.2 The Existing Solutions

The first attempt to give a semantics to negation-as-failure was the so-called program completion approach introduced by Clark [Cla78]. In the completion of a program the “if” rules are replaced by “if and only if” ones and also an equality theory is added to the program (for a detailed presentation of the technique, see [Llo87]). The main problem is that the completion of a program may in certain cases be inconsistent. To circumvent the problem, Fitting [Fit85] considered 3-valued Herbrand models of the
program completion. Later, Kunen [Kun87] identified a weaker version of Fitting’s semantics which is recursively enumerable. However, the last two approaches do not overcome all the objections that have been raised regarding the completion (see for example the discussion in [PP90] and in [vG93]).

Although the program completion approach proved useful in many application domains, it has been superseded by other semantic approaches, usually termed under the name canonical model semantics. The basic idea of the canonical model approach is to choose among the models of a program a particular one which is presumed to be the model that the programmer had in mind. The canonical model is usually chosen among many incomparable minimal models of the program. Since (as discussed in the last subsection) the selection of the canonical model can not be performed by just examining the set of (classical) models of the program, the choice of the canonical model is inevitably driven by the syntax of the program. In the following we discuss the main semantic approaches that have resulted from this body of research.

A semantic construction that produces a single model is the so-called stratified semantics [ABW88]. Informally speaking, a program is stratified if it does not contain cyclic dependencies of predicate names through negation. Every stratified logic program has a unique perfect model, which can be constructed in stages. As an example, consider again the program:

\[
\begin{align*}
p & \leftarrow \\
r & \leftarrow \sim p \\
s & \leftarrow \sim q
\end{align*}
\]

The basic idea in the construction of the perfect model is to rank the predicate variables according to the maximum “depth” of negation used in their defining clauses. The variables of rank 0 (like \(p\) and \(q\) above) are defined in terms of each other without use of negation. The variables of rank 1 (like \(r\) and \(s\)) are defined in terms of each other and those of rank 0, with negation applied only to variables of rank 0. Those of rank 2 are defined with negations applied only to variables of rank 1 and 0; and so on. The model can then be constructed in stages. The clauses for the rank 0 variables form a standard logic program, and its minimum model is used to assign values for the rank 0 variables. These are then treated as constants, so that the clauses for the rank 1 variables no longer have negations. The minimum model is used to assign values to the rank 1 variables, which are in turn converted to constants; and so on.

An extension of the notion of stratification is local stratification [Prz88]; intuitively, in a locally stratified program, predicates may depend negatively on themselves as long as no cycles are formed when the rules of the program are instantiated. Again, every locally stratified program has a unique perfect model [Prz88]. The construction of the perfect model can be performed in an analogous way as in the stratified case (the basic difference being that one can allow infinite countable ordinals as ranks). It is worth noting that although stratification is obviously a syntactically determinable condition, local stratification is generally undecidable [CB94]. It should also be noted here that there exist some interesting cases of logic programming languages where one can establish some intermediate notion between stratification and local stratification which is powerful and decidable. For example, in temporal logic programming [Org94, OW92] many
different temporal stratification notions have been defined, and corresponding decision tests have been proposed \[\text{[ZAO93, Lud98, Ron01]} \].

The stratified and locally stratified semantics fail for programs in which some variables are defined (directly or indirectly) in terms of their own negations, because these variables are never ranked. For such programs we need an extra intermediate neutral truth value for certain of the negatively recursively defined variables. This approach yields the “well-founded” construction and it can be shown \[\text{[vGRS91]} \] that the result is indeed a model of the program. Many different constructive definitions of the well-founded model have been proposed; two of the most well-known ones are the alternating fixpoint \[\text{[vG89, vG93]} \] and the iterated least fixpoint \[\text{[Prz89]} \]. The well-founded model approach is compatible with stratification (it is well-known that the well-founded model of a locally stratified program coincides with its unique perfect model \[\text{[vGRS91]} \]).

An approach that differs in philosophy from the previous ones is the so-called stable model semantics \[\text{[GL88]} \]. While the “canonical model” approaches assign to a given program a unique “intended” model, the stable model semantics assigns to the program a (possibly empty) family of “intended” models. For example, the program

\[
p \leftarrow \neg p
\]

does not have any stable models while the program

\[
p \leftarrow \neg q \\
q \leftarrow \neg p
\]

has two stable models. The stable model semantics is defined through an elegant stability transformation \[\text{[GL88]} \]. The relationships between the stable model semantics and the previously mentioned canonical model approaches are quite close. It is well-known that every locally stratified program has a unique stable model which coincides with its unique perfect model \[\text{[GL88]} \]. Moreover, if a program has a two-valued well-founded model then this coincides with its unique stable model \[\text{[vGRS91]} \] (but the converse of this does not hold in general, see again \[\text{[vGRS91]} \]). Finally, as it is demonstrated in \[\text{[Prz90]} \], the notion of stable model can be extended to a three-valued setting; then, the well-founded model can be characterized as the smallest (more precisely, the \(F \)-least, see \[\text{[Prz90]} \]) three-valued stable model. The stable model approach has triggered the creation of a new promising programming paradigm, namely answer-set programming \[\text{[MT99, GL02]} \].

It should be noted at this point that the infinite-valued approach proposed in this paper contributes to the area of the “canonical model” approaches (and not in the area of stable model semantics). In fact, as we argue in the next section, the infinite-valued semantics is the purely model theoretic framework under which the existing canonical model approaches fall.

The discussion in this section gives only a top-level presentation of the research that has been performed regarding the semantics of negation-as-failure. For a more in-depth treatment, the interested reader should consult the many existing surveys for this area (such as for example \[\text{[AB94, BG94, PP90, Fit02]} \]).
3 The Infinite-Valued Approach

There is a general feeling (which we share) that when one seeks a unique model, then the well-founded semantics is the right approach to negation-as-failure. There still remains however a question about its legitimacy, mainly because the well-founded model is in fact one of the minimal models of the program and not a minimum one. In other words, there is nothing that distinguishes it as a model.

Our goal is to remove the last doubts surrounding the well-founded model by providing a purely model theoretic semantics (the infinite-valued semantics) which is compatible with the well-founded model, but in which every program with negation has a unique minimum model. In our semantics whenever two programs have the same set of infinite-valued models then they have the same minimum model.

Informally, we extend the domain of truth values and use these extra values to distinguish between ordinary negation and negation-as-failure, which we see as being strictly weaker. Consider again the program:

\[
\begin{align*}
p & \leftarrow r \\
r & \leftarrow \neg p \\
s & \leftarrow \neg q
\end{align*}
\]

Under the negation-as-failure approach both \(p\) and \(s\) receive the value True. We would argue, however, that in some sense \(p\) is “truer” than \(s\). Namely, \(p\) is true because there is a rule which says so, whereas \(s\) is true only because we are never obliged to make \(q\) true. In a sense, \(s\) is true only by default. Our truth domain adds a “default” truth value \(T_1\) just below the “real” truth \(T_0\), and (by symmetry) a weaker false value \(F_1\) just above (“not as false as”) the real false \(F_0\). We can then understand negation-as-failure as combining ordinary negation with a weakening. Thus \(\neg F_0 = T_1\) and \(\neg T_0 = F_1\). Since negations can effectively be iterated, our domain requires a whole sequence \(\ldots, T_3, T_2, T_1\) of weaker and weaker truth values below \(T_0\) but above the neutral value 0; and a mirror image sequence \(F_1, F_2, F_3\ldots\) above \(F_0\) and below 0. In fact, to capture the well-founded model in full generality, we need a \(T_\alpha\) and a \(F_\alpha\) for every countable ordinal \(\alpha\).

We show that, over this extended domain, every logic program with negation has a unique minimum model; and that in this model, if we collapse all the \(T_\alpha\) and \(F_\alpha\) to True and False respectively, we get the three-valued well-founded model. For the example program above, the minimum model is \(\{(p, T_0), (q, F_0), (r, F_1), (s, T_1)\}\). This collapses to \(\{(p, True), (q, False), (r, False), (s, True)\}\), which is the well-founded model of the program.

Consider now again the program \(\text{works} \leftarrow \neg \text{tired}\). The minimum model in this case is \(\{(\text{tired}, F_0), (\text{works}, T_1)\}\). On the other hand, for the program \(\text{tired} \leftarrow \neg \text{works}\) the minimum model is \(\{(\text{tired}, T_1), (\text{works}, F_0)\}\). As it will become clearer in the next section, the minimum model of the first program is not a model of the second program, and vice-versa. Therefore, the two programs do not have the same set of infinite-valued models and the paradox identified in the previous section, disappears. Alternatively, in the infinite-valued semantics the programs \(\text{works} \leftarrow \neg \text{tired}\) and \(\text{tired} \leftarrow \neg \text{works}\) are no longer logically equivalent.
The proof of our minimum-model result proceeds in a manner analogous to the classical proof in the negation-free case. The main complication is that we need extra auxiliary relations to characterize the transitions between stages in the construction. This complication is unavoidable and due to the fact that in our infinite truth domain negation-as-failure is still antimonotonic. The approximations do converge on the least model, but not monotonically (or even anti-monotonically). Instead (speaking loosely) the values of variables with standard denotations (T_0 and F_0) are computed first, then those (T_1 and F_1) one level weaker, then those two levels weaker, and so on. We need a family of relations between models to keep track of this intricate process (whose result, nevertheless, has a simple characterization).

4 Infinite Valued Models

In this section we define infinite-valued interpretations and infinite-valued models of programs. In the following discussion we assume familiarity with the basic notions of logic programming \cite{Llo87}. We consider the class of normal logic programs:

Definition 4.1 A normal program clause is a clause whose body is a conjunction of literals. A normal logic program is a finite set of normal program clauses.

We follow a common practice in the area of negation, which dictates that instead of studying (finite) logic programs it is more convenient to study their (possibly infinite) ground instantiations \cite{Fit02}.

Definition 4.2 If P is a normal logic program, its associated ground instantiation P^* is constructed as follows: first, put in P^* all ground instances of members of P; second, if a clause $A ←$ with empty body occurs in P^*, replace it with $A ← \text{true}$; finally, if the ground atom A is not the head of any member of P^*, add $A ← \text{false}$.

The program P^* is in essence a (generally infinite) propositional program. In the rest of this paper, we will assume that all programs under consideration (unless otherwise stated) are of this form.

The existing approaches to the semantics of negation are either two-valued or three-valued. The two-valued approaches are based on classical logic that uses the truth values False and True. The three-valued approaches are based on a three-valued logic that uses False, 0 and True. The element 0 captures the notion of undefined. The truth values are ordered as: $\text{False} < 0 < \text{True}$ (see for example \cite{Prz89}).

The basic idea behind the proposed approach is that in order to obtain a minimum model semantics for logic programs with negation, it is necessary to consider a much more refined multiple-valued logic which is based on an infinite set of truth values, ordered as follows:

$$F_0 < F_1 < \cdots < F_\omega < \cdots < F_\alpha < \cdots < 0 < \cdots < T_\alpha < \cdots < T_\omega < \cdots < T_1 < T_0$$

Intuitively, F_0 and T_0 are the classical False and True values and 0 is the undefined value. The values below 0 are ordered like the countable ordinals. The values above
0 have exactly the reverse order. The intuition behind the new values is that they express different levels of truthfulness and falsity. In the following we denote by V the set consisting of the above truth values. A notion that will prove useful in the sequel is that of the order of a given truth value:

Definition 4.3 The order of a truth value is defined as: $\text{order}(T_\alpha) = \alpha$, $\text{order}(F_\alpha) = \alpha$ and $\text{order}(0) = +\infty$.

The notion of “Herbrand interpretation of a program” can now be generalized:

Definition 4.4 An (infinite-valued) interpretation I of a program P is a function from the Herbrand Base B_P of P to V.

In the rest of the paper, the term “interpretation” will mean an infinite-valued one (unless otherwise stated). As a special case of interpretation, we will use \emptyset to denote the interpretation that assigns the F_0 value to all atoms of a program.

In order to define the notion of model of a given program, we need to extend the notion of interpretation to apply to literals, to conjunctions of literals and to the two constants true and false (for the purposes of this paper it is not actually needed to extend I to more general formulas):

Definition 4.5 Let I be an interpretation of a given program P. Then, I can be extended as follows:

- For every negative atom $\neg p$ appearing in P:

 $$I(\neg p) = \begin{cases}
 T_{\alpha+1} & \text{if } I(p) = F_\alpha \\
 F_{\alpha+1} & \text{if } I(p) = T_\alpha \\
 0 & \text{if } I(p) = 0
 \end{cases}$$

- For every conjunction of literals l_1, \ldots, l_n appearing as the body of a clause in P:

 $$I(l_1, \ldots, l_n) = \min\{I(l_1), \ldots, I(l_n)\}$$

Moreover, $I(\text{true}) = T_0$ and $I(\text{false}) = F_0$.

It is important to note that the above definition provides a purely logical characterization of what negation-as-failure is; moreover, it clarifies the difference between classical negation (which is simply reflection about 0) and negation-as-failure (which is reflection about 0 followed by a step towards 0). The operational intuition behind the above definition is that the more times a value is iterated through negation, the closer to zero it gets.

The notion of satisfiability of a clause can now be defined:

Definition 4.6 Let P be a program and I an interpretation of P. Then, I satisfies a clause $p \leftarrow l_1, \ldots, l_n$ of P if $I(p) \geq I(l_1, \ldots, l_n)$. Moreover, I is a model of P if I satisfies all clauses of P.
Given an interpretation of a program, we adopt specific notations for the set of predicate symbols of the program that are assigned a specific truth value and for the subset of the interpretation that corresponds to a particular order:

Definition 4.7 Let P be a program, I an interpretation of P and $v \in V$. Then $I \parallel v = \{p \in BP \mid I(p) = v\}$. Moreover, if α is a countable ordinal, then $I_\alpha = \{(p, v) \in I \mid \text{order}(v) = \alpha\}$.

The following relations on interpretations will prove useful in the rest of the paper:

Definition 4.8 Let I and J be interpretations of a given program P and α be a countable ordinal. We write $I =_\alpha J$, if for all $\beta \leq a$, $I \parallel T_\beta = J \parallel T_\beta$ and $I \parallel F_\beta = J \parallel F_\beta$.

Example 4.9 Let $I = \{(p, T_0), (q, T_1), (r, T_2)\}$ and $J = \{(p, T_0), (q, T_1), (r, F_2)\}$. Then, $I =_1 J$, but it is not the case that $I =_2 J$.

Definition 4.10 Let I and J be interpretations of a given program P and α be a countable ordinal. We write $I \sqcap_\alpha J$, if for all $\beta < a$, $I =_\beta J$ and either $I \parallel T_\alpha \subseteq J \parallel T_\alpha$ and $I \parallel F_\alpha \geq J \parallel F_\alpha$, or $I \parallel T_\alpha \subseteq J \parallel T_\alpha$ and $I \parallel F_\alpha \supseteq J \parallel F_\alpha$. We write $I \sqsubseteq_\alpha J$ if $I =_\alpha J$ or $I \sqcap_\alpha J$.

Example 4.11 Let $I = \{(p, T_0), (q, T_1), (r, F_2)\}$ and $J = \{(p, T_0), (q, T_1), (r, T_2)\}$. Obviously, $I \sqsubseteq_2 J$.

Definition 4.12 Let I and J be interpretations of a given program P. We write $I \sqsubseteq_\infty J$, if there exists a countable ordinal α such that $I \sqsubseteq_\alpha J$. We write $I \sqsubseteq_\infty J$ if either $I = J$ or $I \sqsubseteq_\alpha J$.

It is easy to see that the relation \sqsubseteq_∞ on the set of interpretations of a given program, is a partial order (ie. it is reflexive, transitive and antisymmetric). On the other hand, for every countable ordinal α, the relation \sqsubseteq_α is a preorder (ie. reflexive and transitive). The following lemma gives a condition related to \sqsubseteq_∞ which will be used in a later section:

Lemma 4.13 Let I and J be two interpretations of a given program P. If for all p in P it is $I(p) \leq J(p)$, then $I \sqsubseteq_\infty J$.

Proof. If $I = J$ then obviously $I \sqsubseteq_\infty J$. Assume $I \neq J$ and let α be the least countable ordinal such that $I_\alpha \neq J_\alpha$. Now, for every p in P such that $J(p) = F_\alpha$, we have $I(p) \leq F_\alpha$. However, since I and J agree on their values of order less than α, we have $I(p) = F_\alpha$. Therefore, $I \parallel F_\alpha \geq J \parallel F_\alpha$. On the other hand, for every p in P such that $I(p) = T_\alpha$, we have $J(p) \geq T_\alpha$. Since I and J agree on their values of order less than α, we have $J(p) = T_\alpha$. Therefore, $I \parallel T_\alpha \subseteq J \parallel T_\alpha$. Since $I_\alpha \neq J_\alpha$, we get $I \sqsubseteq_\alpha J$ which implies $I \sqsubseteq_\infty J$. ☐
The relation \sqsubseteq_∞ will be used in the coming sections in order to define the minimum model semantics for logic programs with negation-as-failure.

Example 4.14 Consider the program P:

\[
p \leftarrow \neg q \\
q \leftarrow \text{false}
\]

It can easily be seen that the interpretation $M_P = \{(p, T_1), (q, F_0)\}$ is the least one (with respect to \sqsubseteq_∞) among all infinite-valued models of P. In other words, for every infinite-valued model N of P, it is $M_P \sqsubseteq_\infty N$.

We can now define a notion of monotonicity that will be the main tool in defining the infinite-valued semantics:

Definition 4.15 Let P be a program and let α be a countable ordinal. A function Φ from the set of interpretations of P to the set of interpretations of P is called α-monotonic iff for all interpretations I and J of P, $I \sqsubseteq_\alpha J \Rightarrow \Phi(I) \sqsubseteq_\alpha \Phi(J)$.

Based on the notions defined above, we can now define and examine the properties of an immediate consequence operator for logic programs with negation-as-failure.

5 The Immediate Consequence Operator

In this section we demonstrate that one can easily define a T_P operator for logic programs with negation, based on the notions developed in the last section. Moreover, we demonstrate that this operator is α-monotonic for all countable ordinals α. The α-monotonicity allows us to prove that this new T_P has a least fixpoint, for which however ω iterations are not sufficient. The procedure required for getting the least fixpoint is more subtle than that for classical logic programs, and will be described shortly.

Definition 5.1 Let P be a program and let I be an interpretation of P. The operator T_P is defined as follows:\footnote{The notation $T_P(I)(p)$ is possibly more familiar to people having some experience with functional programming: $T_P(I)(p)$ is the value assigned to p by the interpretation $T_P(I)$.}

\[
T_P(I)(p) = \text{lub}\{I(l_1, \ldots, l_n) \mid p \leftarrow l_1, \ldots, l_n \in P\}
\]

T_P is called the immediate consequence operator for P.

The following lemma demonstrates that T_P is well-defined:

Lemma 5.2 Every subset of the set V of truth values has a least upper bound.
Proof. Let \(V_F \) and \(V_T \) be the subsets of \(V \) that correspond to the false and true values respectively. Let \(S \) be a subset of \(V \). Consider first the case in which \(S \cap V_T \) is nonempty. Then, since \(V_T \) is a reverse well-order, the subset \(S \cap V_T \) must have a greatest element, which is clearly the least upper bound of \(S \).

Now assume that \(S \cap V_T \) is empty. Then, the intermediate truth value \(0 \) is an upper bound of \(S \). If there are no other upper bounds in \(V_F \), then \(0 \) is the least upper bound. But if the set of upper bounds of \(S \) in \(V_F \) is nonempty, it must have a least element, because \(V_F \) is well ordered; and this least element is clearly the least upper bound of \(S \) in the whole truth domain \(V \).

Example 5.3 Consider the program:

\[
\begin{align*}
p &\leftarrow \sim q \\
p &\leftarrow \sim p \\
q &\leftarrow \text{false}
\end{align*}
\]

and the interpretation \(I = \{(p, T_0), (q, T_1)\} \). Then, \(T_P(I) = \{(p, F_2), (q, F_0)\} \).

Example 5.4 For a more demanding example consider the following infinite program:

\[
\begin{align*}
p_0 &\leftarrow \text{false} \\
p_1 &\leftarrow \sim p_0 \\
p_2 &\leftarrow \sim p_1 \\
p_3 &\leftarrow \sim p_2 \\
\vdots &\vdots
\end{align*}
\]

Let \(I = \{(q, F_0), (p_0, F_0), (p_1, F_1), (p_2, F_2), \ldots\} \). Then, it can be easily seen that \(T_P(I) = \{(q, F_\omega), (p_0, F_0), (p_1, T_1), (p_2, T_2), \ldots\} \).

One basic property of \(T_P \) is that it is \(\alpha \)-monotonic, a property that is illustrated by the following example:

Example 5.5 Consider the program:

\[
\begin{align*}
p &\leftarrow \sim q \\
q &\leftarrow \text{false}
\end{align*}
\]

Let \(I = \{(q, F_0), (p, T_2)\} \) and \(J = \{(q, F_1), (p, T_0)\} \). Clearly, \(I \sqsubseteq J \). It can easily be seen that \(T_P(I) = \{(q, F_0), (p, T_1)\} \) and \(T_P(J) = \{(q, F_0), (p, T_2)\} \), and obviously \(T_P(I) \sqsubseteq T_P(J) \).

The following lemma establishes the \(\alpha \)-monotonicity of \(T_P \). Notice that a similar lemma also holds for the well-founded semantics (see for example [Prz89]).

Lemma 5.6 The immediate consequence operator \(T_P \) is \(\alpha \)-monotonic, for all countable ordinals \(\alpha \).
Proof. The proof is by transfinite induction on α. Assume the lemma holds for all $\beta < \alpha$. We demonstrate that it also holds for α.

Let I, J be two interpretations of P such that $I \subseteq_{\alpha} J$. We first establish that the values of order less that α remain intact by T_P. Since $I \subseteq_{\alpha} J$, for all $\beta < \alpha$ we have $I \subseteq_{\beta} J$ and $J \subseteq_{\beta} I$. By the induction hypothesis, we have that $T_P(I) \subseteq_{\beta} T_P(J)$ and $T_P(J) \subseteq_{\beta} T_P(I)$, which implies that $T_P(I) =_{\beta} T_P(J)$, for all $\beta < \alpha$. It remains to show that $T_P(I) \parallel T_\alpha \subseteq T_P(J) \parallel T_\alpha$ and that $T_P(I) \parallel F_\alpha \supseteq T_P(J) \parallel F_\alpha$. We distinguish these two cases.

We first demonstrate that $T_P(I) \parallel T_\alpha \subseteq T_P(J) \parallel T_\alpha$. Assume that for some predicate p in P it is $T_P(I)(p) = T_\alpha$. We need to show that $T_P(J)(p) = T_\alpha$. Obviously, $T_P(J)(p) \leq T_\alpha$ since $T_P(I) =_{\beta} T_P(J)$, for all $\beta < \alpha$. Consider now the fact that $T_P(I)(p) = T_\alpha$. This implies that there exists a rule of the form $p \leftarrow q_1, \ldots, q_n, \sim w_1, \ldots, \sim w_m$ in P whose body evaluates under I to the value T_α. This means that for all q_i, $1 \leq i \leq n$, it is $I(q_i) \geq T_\alpha$ and for all w_i, $1 \leq i \leq m$, it is $I(\sim w_i) \geq T_\alpha$ (or equivalently, $I(w_i) < T_\alpha$). But then, since $I \subseteq_{\alpha} J$, the evaluation of the body of the above rule under the interpretation J also results to the value T_α. This together with the fact that $T_P(J)(p) \leq T_\alpha$ allows us to conclude (using the definition of T_P) that $T_P(J)(p) = T_\alpha$.

It now remains to demonstrate that $T_P(I) \parallel F_\alpha \supseteq T_P(J) \parallel F_\alpha$. Assume that for some predicate p in P it is $T_P(J)(p) = F_\alpha$. We need to show that $T_P(I)(p) = F_\alpha$. Obviously, $T_P(I)(p) \geq F_\alpha$ since $T_P(I) =_{\beta} T_P(J)$, for all $\beta < \alpha$. Now, the fact that $T_P(J)(p) = F_\alpha$ implies that for every rule for p in P, the body of the rule has a value under J that is less than or equal to F_α. Therefore, if $p \leftarrow q_1, \ldots, q_n, \sim w_1, \ldots, \sim w_m$ is one of these rules, then either there exists a q_i, $1 \leq i \leq n$, such that $J(q_i) \leq F_\alpha$, or there exists a w_i, $1 \leq i \leq m$, such that $J(\sim w_i) \leq F_\alpha$ (or equivalently $J(w_i) > T_\alpha$). But then, since $I \subseteq_{\alpha} J$, the body of the above rule evaluates under I to a value less than or equal to F_α. Therefore, $T_P(I)(p) \leq F_\alpha$. This together with the fact that $T_P(J)(p) \geq F_\alpha$ imply that $T_P(J)(p) = F_\alpha$.

It is natural to wonder whether T_P is monotonic with respect to the relation \subseteq_{∞}. This is not the case, as the following example illustrates:

Example 5.7 Consider the program:

\[
\begin{align*}
p & \leftarrow \sim q \\
sp & \leftarrow p \\
t & \leftarrow \sim s \\
t & \leftarrow u \\
u & \leftarrow t \\
q & \leftarrow \text{false}
\end{align*}
\]

Consider the following interpretations: $I = \{(p, T_1), (q, F_0), (s, F_0), (t, T_1), (u, F_0)\}$ and $J = \{(p, T_1), (q, F_0), (s, F_1), (t, F_1), (u, F_1)\}$. Obviously, it is $I \subseteq_{\infty} J$ because $I \subseteq_{0} J$. However, we have $T_P(I) = \{(p, T_1), (q, F_0), (s, T_1), (t, T_1), (u, T_1)\}$ and also $T_P(J) = \{(p, T_1), (q, F_0), (s, T_1), (t, T_2), (u, F_1)\}$. Clearly, $T_P(I) \nsubseteq T_P(J)$.
The fact that T_P is not monotonic under \sqsubseteq_∞ appears to suggest that if we want to find the least (with respect to \sqsubseteq_∞) fixpoint of T_P^n, we should not rely on approximations based on the relation \sqsubseteq_∞. The way that this minimum fixpoint can be constructed, is described in the following section.

6 Construction of the Minimum Model M_P

In this section we demonstrate how the minimum model M_P of a given program P can be constructed. The construction can informally be described as follows. As a first approximation to M_P, we start with the interpretation that assigns to every atom of P the value F_0 (as already mentioned, this interpretation is denoted by \emptyset). We start iterating the T_P on \emptyset until both the set of atoms that have a F_0 value and the set of atoms having a T_0 value, stabilize. We keep all these atoms whose values have stabilized and reset the values of all remaining atoms to the next false value (namely F_1). The procedure is repeated until the F_1 and T_1 values stabilize, and we reset the remaining atoms to a value equal to F_2, and so on. Since the Herbrand Base of P is countable, there exists a countable ordinal δ for which this process will not produce any new atoms having F_δ or T_δ values. At this point we stop the iterations and reset all remaining atoms to the value 0. The above process is illustrated by the following example:

Example 6.1 Consider the program:

\[
\begin{align*}
p & \leftarrow \neg q \\
q & \leftarrow \neg r \\
s & \leftarrow p \\
s & \leftarrow \neg s \\
r & \leftarrow \text{false}
\end{align*}
\]

We start from the interpretation $I = \{(p,F_0),(q,F_0),(r,F_0),(s,F_0)\}$. Iterating the immediate consequence operator twice, we get in turn the following two interpretations:

\[
\begin{align*}
\{(p,T_1),(q,T_1),(r,F_0),(s,T_1)\} \\
\{(p,F_2),(q,T_1),(r,F_0),(s,T_1)\}
\end{align*}
\]

Notice that the set of atoms having an F_0 value as well as the set of atoms having a T_0 value, have stabilized (there is only one atom having an F_0 value and none having a T_0 one). Therefore, we reset the values of all other atoms to F_1 and repeat the process until the F_1 and T_1 values converge:

\[
\begin{align*}
\{(p,F_1),(q,F_1),(r,F_0),(s,F_1)\} \\
\{(p,T_2),(q,T_1),(r,F_0),(s,T_2)\} \\
\{(p,F_2),(q,T_1),(r,F_0),(s,T_2)\}
\end{align*}
\]

Now, the order 1 values have converged, so we reset all remaining values to F_2 and continue the iterations:

\[
\begin{align*}
\{(p,F_2),(q,T_1),(r,F_0),(s,F_2)\} \\
\{(p,F_2),(q,T_1),(r,F_0),(s,T_3)\} \\
\{(p,F_2),(q,T_1),(r,F_0),(s,F_4)\}
\end{align*}
\]
The order 2 values have converged, and we reset the value of \(s \) to \(F_3 \):
\[
\{(p, F_2), (q, T_1), (r, F_0), (s, F_3)\}
\]
\[
\{(p, F_2), (q, T_1), (r, F_0), (s, T_1)\}
\]
The fact that we do not get any order 3 value implies that we have reached the end of the iterations. The final model results by setting the value of \(s \) to 0:

\[
M_P = \{(p, F_2), (q, T_1), (r, F_0), (s, 0)\}
\]

As it will be demonstrated, this is the minimum model of the program under \(\subseteq_\infty \).

The above notions are formalized by the definitions that follow.

Definition 6.2 Let \(P \) be a program, let \(I \) be an interpretation of \(P \) and \(\alpha \) a countable ordinal. Moreover, assume that \(I \subseteq_\alpha T_P(I) \subseteq_\alpha T_P^2(I) \subseteq_\alpha \cdots \subseteq_\alpha T_P^n(I) \subseteq_\alpha \cdots, n < \omega \). Then, the sequence \(\{T_P^n(I)\}_{n<\omega} \) is called an \(\alpha \)-chain.

Definition 6.3 Let \(P \) be a program, let \(I \) be an interpretation of \(P \) and assume that \(\{T_P^n(I)\}_{n<\omega} \) is an \(\alpha \)-chain. Then, we define the interpretation \(T_{P,\alpha}(I) \) as follows:

\[
T_{P,\alpha}(I)(p) = \begin{cases}
I(p) & \text{if order}(I(p)) < \alpha \\
T_\alpha & \text{if } p \in \bigcup_{n<\omega}(T_P^n(I) \parallel T_\alpha) \\
F_\alpha & \text{if } p \in \bigcap_{n<\omega}(T_P^n(I) \parallel F_\alpha) \\
F_{\alpha+1} & \text{otherwise}
\end{cases}
\]

The proof of the following lemma follows directly from the above definition:

Lemma 6.4 Let \(P \) be a program, \(I \) an interpretation of \(P \) and \(\alpha \) a countable ordinal. Assume that \(\{T_P^n(I)\}_{n<\omega} \) is an \(\alpha \)-chain. Then, for all \(n < \omega, T_P^n(I) \subseteq_\alpha T_{P,\alpha}(I) \). Moreover, for all interpretations \(J \) such that for all \(n < \omega, T_P^n(I) \subseteq_\alpha J \), it is \(T_{P,\alpha}(I) \subseteq_\alpha J \).

The following definition and lemma will be used later on to suggest that the interpretations that result during the construction of the minimum model, do not assign to variables values of the form \(T_\alpha \) where \(\alpha \) is a limit ordinal.

Definition 6.5 An interpretation \(I \) of a given program \(P \) is called reasonable if for all \((p, T_\alpha) \in I, \alpha \) is not a limit ordinal.

Lemma 6.6 Let \(P \) be a program and \(I \) a reasonable interpretation of \(P \). Then, for all \(n < \omega, T_P^n(I) \) is a reasonable interpretation of \(P \). Moreover, if \(\{T_P^n(I)\}_{n<\omega} \) is an \(\alpha \)-chain, then \(T_{P,\alpha}(I) \) is a reasonable interpretation of \(P \).

Proof. The proof of the first part of the theorem is by induction on \(n \). For \(n = 0 \) the result is immediate. Assume that \(T_P^n(I) \) is reasonable, and consider the case of \(T_P^{k+1}(I) \). Now, if \((p, T_\alpha) \) belongs to \(T_P^{k+1}(I) \), where \(\alpha \) is a limit ordinal, then there must exist a clause \(p \leftarrow B \) in \(P \) such that \(T_P^k(I)(B) = T_\alpha \). But this implies that there exists a literal
l in B such that $T^k_P(l)(l) = T_\alpha$. If l is a positive literal, then this is impossible due to the induction hypothesis. If l is a negative literal, this is impossible from the interpretation of \sim in Definition 4.5.

The proof of the second part of the theorem is immediate: if $(p, T_\alpha) \in T^\omega_{P,\alpha}(I)$ then (by the definition of $T^\omega_{P,\alpha}$) there exists $k < \omega$ such that $(p, T_\alpha) \in T^k_P(I)$. But this is impossible from the first part of the theorem.

We now define a sequence of interpretations of a given program P (which can be thought of as better and better approximations to the minimum model of P):

Definition 6.7 Let P be a program and let:

\[
M_0 = T^\omega_{P,0}(\emptyset) \\
M_\alpha = T^\omega_{P,\alpha}(M_{\alpha-1}) \quad \text{for successor ordinal } \alpha \\
M_\alpha = T^\omega_{P,\alpha}(\bigcup_{\beta < \alpha} M_\beta) \quad \text{for limit ordinal } \alpha
\]

where:

\[
(\bigcup_{\beta < \alpha} M_\beta)(p) = \begin{cases}
(\bigcup_{\beta < \alpha}(M_\beta^{\sharp(\beta)}))(p) & \text{if this is defined} \\
F_\alpha & \text{otherwise}
\end{cases}
\]

The $M_0, M_1, \ldots, M_\alpha, \ldots$ are called the approximations to the minimum model of P.

From the above definition it is not immediately obvious that the approximations are well-defined. First, the definition of $T^\omega_{P,\alpha}$ presupposes the existence of an α-chain (for example, in the definition of M_0 one has to demonstrate that $\{T^n_P(\emptyset)\}_{n<\omega}$ is a 0-chain).

Second, in the definition of $\bigcup_{\beta < \alpha} M_\beta$ above, we implicitly assume that $\bigcup_{\beta < \alpha}(M_\beta^{\sharp(\beta)})$ is a function. But in order to establish this, we have to demonstrate that the domains of the relations $M_\beta^{\sharp(\beta)}$, $\beta < \alpha$, are disjoint (ie. that no predicate name participates simultaneously to more than one $M_\beta^{\sharp(\beta)}$). The following lemma clarifies the above situation. Notice that the lemma consists of two parts, which are proven simultaneously by transfinite induction. This is because the induction hypothesis of the second part is used in the induction step of the first part.

Lemma 6.8 For all countable ordinals α:

1. M_α is well-defined, and
2. $T_P(M_\alpha) =_\alpha M_\alpha$.

Proof. The proof is by transfinite induction on α. We distinguish three cases:

Case 1: $\alpha = 0$. In order to establish that the sequence $\{T^n_P(\emptyset)\}_{n<\omega}$ is a 0-chain, we use induction on n. For the basis case observe that $\emptyset \subseteq_0 T_P(\emptyset)$. Moreover, if we assume that $T^n_P(\emptyset) \subseteq_0 T^{n+1}_P(\emptyset)$, using the 0-monotonicity of T_P we get that $T^{n+1}_P(\emptyset) \subseteq_0 T^{n+2}_P(\emptyset)$. Therefore, for all $n < \omega$, $T^n_P(\emptyset) \subseteq_0 T^{n+1}_P(\emptyset)$. It remains to establish that $T_P(M_0) =_0 M_0$.

From Lemma 6.3, $T^n_P(\emptyset) \subseteq_0 M_0$, for all n. By the 0-monotonicity of T_P, we have that for all $n < \omega$, $T^{n+1}_P(\emptyset) \subseteq_0 T_P(M_0)$; moreover, obviously $\emptyset \subseteq_0 T_P(M_0)$. Therefore,
for all \(n < \omega \), \(T^n_\beta(\emptyset) \subseteq_0 T_\beta(M_0) \). But then, from the second part of Lemma 6.4, \(M_0 \subseteq_0 T_\beta(M_0) \). It remains to show that \(T_\beta(M_0) \subseteq M_0 \). Let \(p \) be a predicate in \(P \) such that \(M_0(p) = F_0 \). Then, for all \(n \), \(T^n_\beta(\emptyset)(p) = F_0 \). This means that for every clause of the form \(p \leftarrow B \) in \(P \) and for all \(n < \omega \), \(T^n_\beta(\emptyset)(B) = F_0 \). This implies that there exists a literal \(l \) in \(B \) such that for all \(n < \omega \), \(T^n_\beta(\emptyset)(l) = F_0 \) (this is easily implied by the fact that \(\{ T^n_\beta(\emptyset) \}_{n<\omega} \) is a 0-chain). Therefore, \(M_0(l) = F_0 \) and consequently \(M_0(B) = F_0 \), which shows that \(T_\beta(M_0)(p) = F_0 \). Consider on the other hand a predicate \(p \) in \(P \) such that \(T_\beta(M_0) = T_0 \). Then, there exists a clause \(p \leftarrow B \) in \(P \) such that \(M_0(B) = T_0 \). This implies that for all literals \(l \) in \(B \), \(M_0(l) = T_0 \). But then there exists a \(k \) such that for all \(l \) in \(B \) and all \(n \geq k \), \(T^n_\beta(\emptyset)(l) = T_0 \) (this again is implied by the fact that \(\{ T^n_\beta(\emptyset) \}_{n<\omega} \) is a 0-chain). This implies that for all \(n \geq k \), \(T^{n+1}_\beta(\emptyset)(p) = T_0 \). Consequently, \(M_0(p) = T_0 \).

Case 2: \(\alpha \) is a limit ordinal. Then, \(M_\alpha = T^\omega_{\alpha\alpha}(\bigcup_{\beta<\alpha} M_\beta) \). Based on the induction hypothesis one can easily verify that the domains of the relations \(M_\beta \beta \beta, \beta < \alpha \), are disjoint and therefore the quantity \(\bigcup_{\beta<\alpha} M_\beta \) is well-defined (intuitively, the values of order less than or equal to \(\beta \) in \(M_\beta \) have stabilized and will not change by subsequent iterations of \(T_P \)). Moreover, it is easy to see that the sequence \(\{ T^n_\beta(\bigcup_{\beta<\alpha} M_\beta) \}_{n<\omega} \) is an \(\alpha \)-chain (the proof is by induction on \(n \) and uses the \(\alpha \)-monotonicity of \(T_P \)).

It remains to establish that \(T_P(M_\alpha) =_\alpha M_\alpha \). We first show that \(M_\alpha \subseteq_\alpha T_P(M_\alpha) \). Since \(\{ T^n_\beta(\bigcup_{\beta<\alpha} M_\beta) \}_{n<\omega} \) is an \(\alpha \)-chain, from Lemma 6.4, \(T^n_\beta(\bigcup_{\beta<\alpha} M_\beta) \subseteq_\alpha M_\alpha \), for all \(n < \omega \). By the \(\alpha \)-monotonicity of \(T_P \) we have that for all \(n < \omega \), \(T^{n+1}_P(\bigcup_{\beta<\alpha} M_\beta) \subseteq_\alpha T_P(M_\alpha) \); moreover, it is \(\bigcup_{\beta<\alpha} M_\beta \subseteq_\alpha T_P(M_\alpha) \) (because \(\bigcup_{\beta<\alpha} M_\beta \subseteq_\alpha T_P(\bigcup_{\beta<\alpha} M_\beta) \) and \(T_P(\bigcup_{\beta<\alpha} M_\beta) \subseteq_\alpha T_P(M_\alpha) \)). Therefore, for all \(n < \omega \), \(T^n_\beta(\bigcup_{\beta<\alpha} M_\beta) \subseteq_\alpha T_P(M_\alpha) \). But then, by Lemma 6.4, \(M_\alpha \subseteq_\alpha T_P(M_\alpha) \). Notice that this (due to the definition of \(\subseteq_\alpha \)) immediately implies that for all \(\beta < \alpha \), \(M_\alpha =_\beta T_P(M_\alpha) \).

It remains to show that \(T_P(M_\alpha) \subseteq_\alpha M_\alpha \). It suffices to show that \(T_P(M_\alpha) \parallel T_\alpha \subseteq M_\alpha \parallel T_\alpha \) and \(T_P(M_\alpha) \parallel F_\alpha \supseteq M_\alpha \parallel F_\alpha \). The former statement is immediate since (by Lemma 6.6) values of the form \(T_\alpha \), where \(\alpha \) is a limit ordinal, do not arise. Consider now the latter statement and let \(p \) be a predicate in \(P \) such that \(M_\alpha(p) = F_\alpha \). Then, by the definition of \(T^\omega_{\alpha\alpha} \), we get that for all \(n \geq 0 \), \(T^n_\beta(\bigcup_{\beta<\alpha} M_\beta)(p) = F_\alpha \). Assume that \(T_P(M_\alpha)(p) \neq F_\alpha \). Then, since \(M_\alpha =_\beta T_P(M_\alpha) \) for all \(\beta < \alpha \), it has to be \(T_P(M_\alpha)(p) > F_\alpha \). But then this means that there exists a clause \(p \leftarrow B \) in \(P \) such that \(M_\alpha(B) > F_\alpha \). This implies that for every literal \(l \) in \(B \), it is \(M_\alpha(l) > F_\alpha \). But then, by a case analysis on the possible values that \(M_\alpha(l) \) may have, one can show that there exists a \(k \) such that for all \(l \) in \(B \) and for all \(n \geq k \), \(T^n_\beta(\bigcup_{\beta<\alpha} M_\beta)(l) > F_\alpha \). In other words, for this particular clause there exists a \(k \) such that for all \(n \geq k \), \(T^n_\beta(\bigcup_{\beta<\alpha} M_\beta)(B) > F_\alpha \). But this implies that for all \(n \geq k \), \(T^{n+1}_P(\bigcup_{\beta<\alpha} M_\beta)(p) > F_\alpha \) (contradiction). Therefore, \(T_P(M_\alpha)(p) = F_\alpha \).

Case 3: \(\alpha \) is a successor ordinal. Then, \(M_\alpha = T^\omega_{\alpha\alpha}(M_{\alpha-1}) \). As before, it is straightforward to establish that \(\{ T^n_\beta(M_{\alpha-1}) \}_{n<\omega} \) is an \(\alpha \)-chain. Moreover, demonstrating that \(M_\alpha \subseteq_\alpha T_P(M_\alpha) \) is performed in an entirely analogous way as in Case 2. Notice that this (due to the definition of \(\subseteq_\alpha \)) immediately implies that for all \(\beta < \alpha \), \(M_\alpha =_\beta T_P(M_\alpha) \).

It remains to show that \(T_P(M_\alpha) \subseteq_\alpha M_\alpha \). For this, it suffices to establish that
$T_P(M_\alpha) \parallel T_\alpha \subseteq M_\alpha \parallel T_\alpha$ and $T_P(M_\alpha) \parallel F_\alpha \supseteq M_\alpha \parallel F_\alpha$. Consider the former statement and let $T_P(M_\alpha)(p) = T_\alpha$, for some predicate p in P. Then, since $M_\alpha \models T_P(M_\alpha)$ for all $\beta < \alpha$, it has to be $M_\alpha(p) \leq T_\alpha$. Moreover, since $T_P(M_\alpha)(p) = T_\alpha$, there exists a clause $p \leftarrow B$ in P such that $M_\alpha(B) = T_\alpha$. This implies that for every literal l in B, $M_\alpha(l) \geq T_\alpha$. By a case analysis on the possible values that $M_\alpha(l)$ may have, one can show that there exists a k such that for all $n \geq k$, $T_P^n(M_{\alpha-1})(l) = M_\alpha(l)$. This implies that for all $n \geq k$, $T_P^n(M_{\alpha-1})(B) = M_\alpha(B) = T_\alpha$. This implies that for all $n \geq k$, $T_P^{n+1}(M_{\alpha-1})(p) \geq T_\alpha$ and therefore $M_\alpha(p) \geq T_\alpha$. Now, since $M_\alpha(p) \leq T_\alpha$, we conclude that $M_\alpha(p) = T_\alpha$.

The proof for the latter part of the statement is similar to the corresponding proof for Case 2.

The following two lemmas are now needed in order to define the minimum model of a given program:

Lemma 6.9 Let P be a program. Then, there exists a countable ordinal δ such that:

1. $M_\delta \parallel T_\delta = \emptyset$ and $M_\delta \parallel F_\delta = \emptyset$

2. for all $\beta < \delta$, $M_\beta \parallel T_\beta \neq \emptyset$ or $M_\beta \parallel F_\beta \neq \emptyset$

This ordinal δ is called the depth of P^2.

Proof. The basic idea behind the proof is that since B_P is countable and the set of countable ordinals is uncountable, there cannot exist an onto function from the former set to the latter. More specifically, consider the set S of pairs of truth values of the form (T_α, F_α), for all countable ordinals α. Consider the function F that maps each predicate symbol $p \in B_P$ to (T_α, F_α) if and only if $p \in M_\alpha \parallel F_\alpha \cup M_\alpha \parallel T_\alpha$. Assume now that there does not exist a δ having the properties specified by the theorem. This would imply that every member of the range of F would be the map of at least one element from B_P. But this is impossible since B_P is countable while the set S is uncountable. To complete the proof, take as δ the smallest countable ordinal α such that $M_\alpha \parallel T_\alpha = \emptyset$ and $M_\alpha \parallel F_\alpha = \emptyset$.

The following property of δ reassures us that the approximations beyond M_δ do not introduce any new truth values:

Lemma 6.10 Let P be a program. Then, for all countable ordinals $\gamma \geq \delta$, $M_\gamma \parallel T_\gamma = \emptyset$ and $M_\gamma \parallel F_\gamma = \emptyset$.

Proof. (Outline) The proof is by transfinite induction on γ. The basic idea is that if either $M_\gamma \parallel T_\gamma$ (respectively $M_\gamma \parallel F_\gamma$) was nonempty, then $M_\delta \parallel T_\delta$ (respectively $M_\delta \parallel F_\delta$) would have to be nonempty.

2The term “depth” was first used by T. Przymusinski in [Prz89].
We can now formally define the interpretation M_P of a given program P:

$$M_P(p) = \begin{cases} M_\delta(p) & \text{if } \text{order}(M_\delta(p)) < \delta \\ 0 & \text{otherwise} \end{cases}$$

As it will be shown shortly, M_P is the least fixpoint of T_P, the minimum model of P with respect to \sqsubseteq_∞, and when it is restricted to three-valued logic it coincides with the well-founded model \cite{vGRS91}.

7 Properties of M_P

In this section we demonstrate that the interpretation M_P is a model of P. Moreover, we show that M_P is in fact the minimum model of P under \sqsubseteq_∞.

Theorem 7.1 The interpretation M_P of a program P is a fixpoint of T_P.

Proof. By the definition of M_P and from Lemma 6.10 we have that for all countable ordinals α it is $M_P =_\alpha M_\alpha$. Then, for all α, $T_P(M_P) =_\alpha T_P(M_\alpha) =_\alpha M_\alpha =_\alpha M_P$. Therefore, M_P is a fixpoint of T_P. □

Theorem 7.2 The interpretation M_P of a program P is a model of P.

Proof. Let $p \leftarrow B$ be a clause in P. It suffices to show that $M_P(p) \geq M_P(B)$. We have:

$$M_P(p) = T_P(M_P)(p) = \text{lub}\{M_P(B_C) \mid (p \leftarrow B_C) \in P\} \geq M_P(B)$$

Therefore, M_P is a model of P. □

The following lemma will be used in the proof of the main theorem of this section:

Lemma 7.3 Let N be a model of a given program P. Then, $T_P(N) \sqsubseteq_\infty N$.

Proof. Since N is a model of P, then for all p in P and for all clauses of the form $p \leftarrow B$ in P, it is $N(p) \geq N(B)$. But then:

$$T_P(N)(p) = \text{lub}\{N(B) \mid (p \leftarrow B) \in P\} \leq N(p)$$

Therefore, we have that $T_P(N)(p) \leq N(p)$ for all p in P. Using Lemma 4.13 we get that $T_P(N) \sqsubseteq_\infty N$. □

Theorem 7.4 The infinite-valued model M_P is the least (with respect to \sqsubseteq_∞) among all infinite-valued models of P.

18
The infinite-valued model M_P is the least (with respect to \subseteq_∞) among all the fixpoints of T_P.

Proof. It is straightforward to show that every fixpoint of T_P is a model of P (the proof is identical to the proof of Theorem 7.2). The result follows immediately since M_P is the least model of P.

Finally, the following theorem provides the connection between the infinite-valued semantics and the existing semantic approaches to negation:

Theorem 7.6 Let N_P be the interpretation that results from M_P by collapsing all true values to True and all false values to False. Then, N_P is the well-founded model of P.

Proof. (Outline) We consider the definition of the well-founded model given by T. Przymusinski in [Prz89]. This construction uses three-valued interpretations but proceeds (from an algorithmic point of view) in a similar way as the construction of the infinite-valued model. More specifically, the approximations of the well-founded model are defined in [Prz89] as follows (for a detailed explanation of the notation, see [Prz89]):

\[
M_0 = (T_\emptyset, F_\emptyset)
\]
\[
M_\alpha = M_{\alpha-1} \cup (T_{M_{\alpha-1}}, F_{M_{\alpha-1}})
\]
\[
M_\alpha = (\bigcup_{\beta < \alpha} M_\beta) \cup (T_{\bigcup_{\beta < \alpha} M_\beta}, F_{\bigcup_{\beta < \alpha} M_\beta})
\]

for successor ordinal α

for limit ordinal α
Notice that we have slightly altered the definition of [Prz89] for the case of limit ordinals; the new definition leads to exactly the same model (obtained in a smaller number of steps). One can now show by a transfinite induction on α that the above construction introduces at each step exactly the same true and false atoms as the infinite-valued approach.

8 A Model Intersection Theorem

In this section we demonstrate an alternative characterization of the minimum model M_P of a program P. Actually, the proposed characterization generalizes the well-known model intersection theorem [vK76, Llo87] that applies to classical logic programs (without negation).

The basic idea behind the model intersection theorem can be described as follows. Let P be a given program and let \mathcal{M} be the set of all its infinite-valued models. We now consider all those models in \mathcal{M} whose part corresponding to T_0 values is equal to the intersection of all such parts for all models in \mathcal{M}, and whose part corresponding to F_0 values is equal to the union of all such parts for all models in \mathcal{M}. In other words, we consider all those models from \mathcal{M} that have the fewest possible T_0 values and the most F_0 values. This gives us a new set S_0 of models of P (which as we demonstrate is non-empty). We repeat the above procedure starting from S_0 and now considering values of order 1. This gives us a new (non-empty) set S_1 of models of P, and so on. Finally, we demonstrate that the limit of this procedure is a set that contains a unique model, namely the minimum model M_P of P. The above (intuitive) presentation can now be formalized as follows:

Definition 8.1 Let S be a set of infinite-valued interpretations of a given program and α a countable ordinal. Then, we define $\Lambda^\alpha S = \{(p, T_\alpha) \mid \forall M \in S, M(p) = T_\alpha\}$ and $\Lambda^\alpha S = \{(p, F_\alpha) \mid \exists M \in S, M(p) = F_\alpha\}$. Moreover, we define $\Lambda^\alpha S = (\Lambda^\alpha S) \cup (\Lambda^\alpha S)$.

Let P be a program and let \mathcal{M} be the set of models of P. We can now define the following sequence of sets of models of P:

$$
S_0 = \{ M \in \mathcal{M} \mid M_T^0 = \bigotimes^0 \mathcal{M}\}
$$

$$
S_\alpha = \{ M \in S_{\alpha-1} \mid M_T^{\alpha} = \bigotimes^\alpha S_{\alpha-1}\} \quad \text{for successor ordinal } \alpha
$$

$$
S_{\alpha} = \{ M \in \bigcap_{\beta < \alpha} S_{\beta} \mid M_T^{\alpha} = \bigotimes^\alpha \bigcap_{\beta < \alpha} S_{\beta}\} \quad \text{for limit ordinal } \alpha
$$

Example 8.2 Consider again the program of Example 6.1:

\begin{verbatim}
 p ← ¬q
 q ← ¬r
 s ← p
 s ← ¬s
 r ← false
\end{verbatim}
We first construct the set S_0. We start by observing that one of the models of the program is the interpretation $(\{r, F_0\}, (q, T_1), (p, F_2), (s, 0))$. Since this model does not contain any T_0 value, we conclude that for all $M \in S_0$, $M \parallel T_0 = \emptyset$. Moreover, since the above model contains (r, F_0), we conclude that for all $M \in S_0$, $(r, F_0) \in M$. But this implies that $(q, T_1) \in M$, for all $M \in S_0$ (due to the second rule of the program and the fact that $M \parallel T_0 = \emptyset$). Using these restrictions, one can easily obtain restrictions for the values of p and s. Therefore, the set S_0 consists of the following models:

$$S_0 = \{ (r, F_0), (q, T_1), (p, v_p), (s, v_s) \mid F_2 \leq v_p \leq T_1, 0 \leq v_s \leq T_1, u_s \geq v_p \}$$

Now, observe that the model $(r, F_0), (q, T_1), (p, F_2), (s, 0))$ belongs to S_0. Since this model contains only one T_1 value, we conclude that for all $M \in S_1$, $M \parallel T_1 = \{q\}$. Then, the set S_1 is the following:

$$S_1 = \{ (r, F_0), (q, T_1), (p, v_p), (s, v_s) \mid F_2 \leq v_p \leq T_2, 0 \leq v_s \leq T_2, u_s \geq v_p \}$$

Using similar arguments as above we get that the set S_2 is the following:

$$S_2 = \{ (r, F_0), (q, T_1), (p, F_2), (s, v_s) \mid 0 \leq v_s \leq T_3 \}$$

In general, given a countable ordinal α, we have:

$$S_\alpha = \{ (r, F_0), (q, T_1), (p, F_2), (s, v_s) \mid 0 \leq v_s \leq T_{\alpha+1} \}$$

Observe that the model $(r, F_0), (q, T_1), (p, F_2), (s, 0))$ is the only model of the program that belongs to all S_α.

Consider now a program P and let $S_0, S_1, \ldots, S_\alpha, \ldots$ be the sequence of sets of models of P (as previously defined). We can now establish two lemmas that lead to the main theorem of this section:

Lemma 8.3 For all countable ordinals α, S_α is non-empty.

Proof. The proof is by transfinite induction on α. We distinguish three cases:

Case 1: $\alpha = 0$. Let N^* be the following interpretation:

$$N^*(p) = \begin{cases}
T_0, & \text{if } \forall M \in \mathcal{M} (M(p) = T_0) \\
F_0, & \text{if } \exists M \in \mathcal{M} (M(p) = F_0) \\
T_1, & \text{otherwise}
\end{cases}$$

It is easy to show (by a case analysis on the value of $N^*(p)$) that N^* is a model of program P and therefore (due to the way it has been constructed) that $N^* \in S_0$.

Case 2: α is a successor ordinal. Let $N \in S_{\alpha-1}$ be a model of P. We construct an interpretation N^* as follows:

$$N^*(p) = \begin{cases}
N(p), & \text{if } \text{order}(N(p)) < \alpha \\
T_\alpha, & \text{if } \forall M \in S_{\alpha-1} (M(p) = T_\alpha) \\
F_\alpha, & \text{if } \exists M \in S_{\alpha-1} (M(p) = F_\alpha) \\
T_{\alpha+1}, & \text{otherwise}
\end{cases}$$

21
We demonstrate that N^* is a model of P. Assume it is not. Then, there exists a clause $p \leftarrow B$ in P such that $N^*(p) < N^*(B)$. We perform a case analysis on the value of $N^*(p)$:

- $N^*(p) = F_\beta$, where $\beta \leq \alpha$. Then, there exists $M \in S_{\alpha-1}$ such that $M(p) = F_\beta$. Since M is a model of P, for all clauses $p \leftarrow B_C$ in P, it is $M(B_C) \leq F_\beta$. Consequently, for every such clause, there exists a literal l_C in B_C such that $M(l_C) \leq F_\beta$. But then, it is also $N^*(l_C) \leq F_\beta$ (by the definition of N^* and since all models in $S_{\alpha-1}$ agree on the values of order less than α). This implies that $N^*(B_C) \leq F_\beta$. Therefore, for all clauses of the form $p \leftarrow B_C$, it is $N^*(p) \geq N^*(B_C)$ (contradiction).

- $N^*(p) = T_\beta$, $\beta \leq \alpha$. Since we have assumed that $N^*(p) < N^*(B)$, it is $N^*(B) > T_\beta$. This implies that for every literal l in B, it is $N^*(l) > T_\beta$. But then, given any $M \in S_{\alpha-1}$, it is also $M(l) > T_\beta$ (since all models in $S_{\alpha-1}$ agree on the values of order less than α). Therefore, $M(B) > T_\beta$. But then, since $M(p) = T_\beta$, M is not a model of P (contradiction).

- $N^*(p) = T_{\alpha+1}$. Since we have assumed that $N^*(p) < N^*(B)$, it is $N^*(B) \geq T_\alpha$. But then, for every $l \in B$, it is $N^*(l) \geq T_\alpha$. Take now a model $M \in S_{\alpha-1}$ such that $M(p) = T_\alpha$ (such a model must exist because otherwise it would be $N^*(p) \geq T_\alpha$). Now, it is easy to see that for every literal l in B, since it is $N^*(l) \geq T_\alpha$, it is $M(l) = N^*(l)$. This implies that $M(B) \geq T_\alpha$. But since $M(p) < T_\alpha$, M is not a model of P (contradiction).

Therefore, N^* is a model of P. Moreover, due to the way it has been constructed, $N^* \in S_\alpha$.

Case 3: α is a limit ordinal. Let $N_0 \in S_0, N_1 \in S_1, \ldots, N_\beta \in S_\beta, \ldots, \beta < \alpha$, be models of P. We construct an interpretation N as follows:

$$N(p) = \begin{cases}
\bigcup_{\beta<\alpha} (N_{\beta}(p)) & \text{if this is defined} \\
T_\alpha & \text{otherwise}
\end{cases}$$

It is easy to see that N is a model of P and that $N \in \bigcap_{\beta<\alpha} S_\beta$. This implies that the set $\bigcap_{\beta<\alpha} S_\beta$ is non-empty (which is needed in the definition that will follow). Now we can define an interpretation N^* as follows:

$$N^*(p) = \begin{cases}
N(p), & \text{if } \text{order}(N(p)) < \alpha \\
T_\alpha, & \text{if } \forall M \in \bigcap_{\beta<\alpha} S_\beta (M(p) = T_\alpha) \\
F_\alpha, & \text{if } \exists M \in \bigcap_{\beta<\alpha} S_\beta (M(p) = F_\alpha) \\
T_{\alpha+1}, & \text{otherwise}
\end{cases}$$

Then, using a proof very similar to the one given for Case 2 above, we can demonstrate that N^* is a model of P. Due to the way that it has been constructed, it is obviously $N^* \in S_\alpha$.

\[\square\]

Lemma 8.4 There exists a countable ordinal δ such that if $M \in S_\delta$ then:

1. \(M \not\in \emptyset \), and
2. for all \(\gamma < \delta \), \(M \not\in \emptyset \).

Proof. Since \(B_P \) is countable, there can not be uncountably many \(S_\alpha \) such that if \(M \in S_\alpha \), \(M \not\in \emptyset \). Therefore, we can take \(\delta \) to be the smallest ordinal that satisfies the first condition of the lemma.

We can now demonstrate the main theorem of this section which actually states that there exists a unique model of \(P \) that belongs to all \(S_\alpha \):

Theorem 8.5 \(\bigcap_\alpha S_\alpha \) is a singleton.

Proof. We first demonstrate that \(\bigcap_\alpha S_\alpha \) can not contain more than one models. Assume that it contains two or more models, and take any two of them, say \(N \) and \(M \). Then, there must exist a countable ordinal, say \(\gamma \), such that \(N \not\in \emptyset \not\in \emptyset \). But then, \(N \) and \(M \) can not both belong to \(S_\gamma \), and consequently they can not both belong to \(\bigcap_\alpha S_\alpha \) (contradiction).

It remains to show that \(\bigcap_\alpha S_\alpha \) is non-empty. By Lemma 8.4, there exists \(\delta \) such that if \(M \in S_\delta \) then \(M \not\in \emptyset \) (and for all \(\gamma < \delta \), \(M \not\in \emptyset \)). Let \(N \in S_\delta \) be a model (such a model exists because of Lemma 8.3). We can now create \(N^* \) which is identical to \(N \) but in which all atoms whose value under \(N \) has order greater than \(\delta \) are set to the value 0.

We demonstrate that \(N^* \) is a model of the program. Assume it is not. Consider then a clause \(p \leftarrow B \) such that \(N^*(p) < N^*(B) \). There are three cases:

- \(N^*(p) = F_\beta, \beta < \delta \). Then, \(N(p) = F_\beta \) and since \(N \) is a model of \(P \), we have \(N(B) \leq F_\beta \). But this easily implies that \(N^*(B) \leq F_\beta, \) and therefore \(N^*(p) \geq N^*(B) \) (contradiction).

- \(N^*(p) = T_\beta, \beta < \delta \). Then, \(N(p) = T_\beta \) and since \(N \) is a model of \(P \), we have \(N(B) \leq T_\beta \). But this easily implies that \(N^*(B) \leq T_\beta, \) and therefore \(N^*(p) \geq N^*(B) \) (contradiction).

- \(N^*(p) = 0 \). Now, if \(N(p) \leq 0 \) then (since \(N \) is a model) it is also \(N(B) \leq 0 \). This easily implies that \(N^*(B) \leq 0 \). Therefore, \(N^*(p) \geq N^*(B) \) (contradiction). If on the other hand \(N(p) > 0 \) then \(N(p) < T_\delta \) (because \(N^*(p) = 0 \)). Now, since \(N \) is a model, we have \(N(B) < T_\delta \). But this easily implies that \(N^*(B) \leq 0 \) and therefore \(N^*(p) \geq N^*(B) \) (contradiction).

It is straightforward to see that (due to the way that it has been constructed) \(N^* \in S_\alpha \) for all countable ordinals \(\alpha \). Therefore, \(N^* \in \bigcap_\alpha S_\alpha \).

Finally, we need to establish that the model \(M_P \) of \(P \) produced through the \(T_P \) operator coincides with the model produced by the above theorem:

Theorem 8.6 \(\bigcap_\alpha S_\alpha = \{ M_P \} \)
Proof. Let N^* be the unique element of $\bigcap_{\alpha} S_\alpha$. Intuitively, due to the way that it has been constructed, N^* is “as compact as possible” at each level of truth values. More formally, for every model M of P and for all countable ordinals α, if for all $\beta < \alpha$ it is $N^* =_\beta M$, then $N^* \sqsubseteq_\alpha M$ (the proof is immediate due to the way that the sets S_α are constructed). Then, this implies that $N^* \sqsubseteq_\infty M$. Take now M to be equal to M_P. Then, $N^* \sqsubseteq_\infty M_P$ and also (from Theorem 7.4) $M_P \sqsubseteq_\infty N^*$. But since \sqsubseteq_∞ is a partial order, we conclude that $N^* = M_P$.

9 Discussion

In this section we argue (at an informal level) that the proposed approach to the semantics of negation is closely related to the idea of infinitesimals used in Nonstandard Analysis. Actually, our truth domain can be understood as the result of extending the classical truth domain by adding a neutral zero and a whole series of infinitesimal truth values arbitrarily close to, but not equal to, the zero value.

Infinitesimals can be understood as values that are smaller than any “normal” real number but still nonzero. In general, each infinitesimal of order $n + 1$ is considered to be infinitely smaller than any infinitesimal of order n. It should be clear now how we can place our nonstandard logic in this context. We consider negation-as-failure as ordinary negation followed by “multiplication” by an infinitesimal ϵ. T_1 and F_1 can be understood as the first order infinitesimals ϵT and ϵF, T_2 and F_2 as the second order infinitesimals $\epsilon^2 T$ and $\epsilon^2 F$, and so on.

Our approach differs from the “classical” infinitesimals in that we include infinitesimals of transfinite orders. Even in this respect, however, we are not pioneers. John Conway, in his famous book On Numbers and Games, constructs a field No extending the reals that has infinitesimals of order α for every ordinal α - not just, as our truth domain, for every countable ordinal. Lakoff and Nunez give a similar (less formal) construction of what they call the granular numbers $[LN00]$. It seems, however, that we are the first to propose infinitesimal truth values.

But why are the truth values we introduced really infinitesimals? Obviously ϵT is smaller than T, $\epsilon^2 T$ is smaller than ϵT, and so on. But why are they infinitesimals - on what grounds can we claim that ϵT, for example, is infinitely smaller than T? In the context of the real numbers, this question has a simple answer: ϵ is infinitely smaller than 1 because $n \epsilon$ is smaller than 1 for any integer n. Unfortunately, this formulation of the notion of “infinitely smaller” has no obvious analogue in logic because there is no notion of multiplying a truth value by an integer.

There is, however, one important analogy with the classical theory of infinitesimals that emerges when we study the nonstandard ordering between models introduced. Consider the problem of comparing two hyperreals each of which is the sum of infinitesimals of different orders, i.e. the problem of determining whether or not $A < B$, where $A = a_0 + a_1 \epsilon + a_2 \epsilon^2 + a_3 \epsilon^3 + \cdots$ and $B = b_0 + b_1 \epsilon + b_2 \epsilon^2 + b_3 \epsilon^3 + \cdots$ (with the a_i and b_i standard reals). We first compare a_0 and b_0. If $a_0 < b_0$ then we immediately conclude that $A < B$ without examining any other coefficients. Similarly, if $a_0 > b_0$
then $A > B$. It is only in the case that $a_0 = b_0$ that the values a_1 and b_1 play a role. If they are unequal, A and B are ordered as a_1 and b_1. Only if a_1 and b_1 are also equal do we examine a_2 and b_2, and so on.

To see the analogy, let I and J be two of our nonstandard models and consider the problem of determining whether or not $I \subseteq \infty J$. It is not hard to see that the formal definition of $I \subseteq \infty J$ (given in Section 4) can also be characterized as follows. First, let I_0 be the finite partial model which consists of the standard part of I - the subset $I \parallel T_0 \cup I \parallel F_0$ of I obtained by restricting I to those variables to which I assigns standard truth values. Next, I_1 is the result of restricting I to variables assigned order 1 infinitesimal values (T_1 and F_1), and then replacing T_1 and F_1 by T_0 and F_0 (so that I_1 is also a standard interpretation). The higher “coefficients” I_2, I_3, \ldots are defined in the same way. Then (stretching notation) $I = I_0 + I_1 \epsilon + I_2 \epsilon^2 + \cdots$ and likewise $J = J_0 + J_1 \epsilon + J_2 \epsilon^2 + \cdots$. Then to compare I and J we first compare the standard interpretations I_0 and J_0 using the standard relation. If $I_0 \subseteq_0 J_0$, then $I \subseteq \infty J$. But if $I_0 = J_0$, then we must compare I_1 and J_1, and if they are also equal, I_2 and J_2, and so on. The analogy is actually very close, and reflects the fact that higher order truth values are negligible (equivalent to 0) compared to lower order truth values.

It seems that the concept of an infinitesimal truth value is closely related to the idea of prioritizing assertions. In constructing our minimal model the first priority is given to determining the values of the variables which receive standard truth values. This is the first approximation to the final model, and it involves essentially ignoring the contribution of negated variables because a rule with negated variables in its body can never force the variable in the head of the clause to become T_0. In fact the whole construction proceeds according to a hierarchy of priorities corresponding to degrees of infinitesimals. This suggests that infinitesimal truth could be used in other contexts which seem to require prioritizing assertions, such as for example in default logic.

Acknowledgments: We wish to thank Maarten van Emden, Bruce Kapron, Christos Nomikos and John Schlipf for their comments on earlier versions of this paper. This work has been partially supported by the University of Athens under the project “Extensions of the Logic Programming Paradigm” (grant no. 70/4/5827).

References

[AB94] K. Apt and R. Bol. Logic Programming and Negation: A Survey. *Journal of Logic Programming*, 19,20:9–71, 1994.

[ABW88] K.R. Apt, H.A. Blair, and A. Walker. Towards a Theory of Declarative Knowledge. In J. Minker, editor, *Foundations of Deductive Databases and Logic Programming*, pages 89–148. Morgan Kaufmann, Los Altos, CA, 1988.

[AW82] E. A. Ashcroft and W. W. Wadge. Prescription for Semantics. *ACM Transactions on Programming Languages and Systems*, 4(2):283–294, April 1982.
[BG94] C. Baral and M. Gelfond. Logic Programming and Knowledge Representation. *Journal of Logic Programming*, 19(20):73–148, 1994.

[CB94] P. Cholak and H.A. Blair. The Complexity of Local Stratification. *Fundamenta Informaticae*, 21(4):333–344, 1994.

[Cla78] K. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, *Logic and Databases*, pages 293–322. Plenum Press, New York, 1978.

[Fit85] M. Fitting. A Kripke-Kleene Semantics for Logic Programs. *Journal of Logic Programming*, 2(4):295–312, 1985.

[Fit02] M. Fitting. Fixpoint Semantics for Logic Programming: A Survey. *Theoretical Computer Science*, 278(1–2):25–51, 2002.

[GL88] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In *Proceedings of the Fifth Logic Programming Symposium*, pages 1070–1080. MIT Press, 1988.

[GL02] M. Gelfond and N. Leone. Logic Programming and Knowledge Representation - the A-Prolog perspective. *Artificial Intelligence*, 138(1–2):3–38, 2002.

[Kun87] K. Kunen. Negation in Logic Programming. *Journal of Logic Programming*, 4(4):289–308, 1987.

[Llo87] J. Lloyd. *Foundations of Logic Programming*. Springer-Verlag, 1987.

[LN00] G. Lakoff and R. Nunez. *Where Mathematics comes from*. Basic Books, 2000.

[Lud98] B. Ludäscher. *Integration of Active and Deductive Database Rules*. PhD thesis, Institut für Informatik, Universität Freiburg, 1998.

[MT99] V. W. Marek and M. Truszczyński. Stable Models and an Alternative Logic Programming Paradigm. In *The Logic Programming Paradigm: a 25-Year Perspective*, pages 375–398. Springer-Verlag, 1999.

[Org94] M. Orgun. Temporal and Modal Logic Programming. *SIGART Bulletin*, 5(3), July 1994.

[OW92] M. Orgun and W. W. Wadge. Towards a Unified Theory of Intensional Logic Programming. *Journal of Logic Programming*, 13(4), 1992.

[PP90] H. Przymusinska and T. Przymusinski. Semantic Issues in Deductive Databases and Logic Programs. In R. Banerji, editor, *Formal Techniques in Artificial Intelligence: a Source-Book*, pages 321–367. North Holland, 1990.

[Prz88] T. Przymusinski. On the Declarative Semantics of Deductive Databases and Logic Programs. In J. Minker, editor, *Foundations of Deductive Databases and Logic Programming*, pages 193–216. Morgan Kaufmann, Los Altos, CA, 1988.
[Prz89] T. C. Przymusinski. Every Logic Program has a Natural Stratification and an Iterated Fixed Point Model. In Proceedings of the 8th Symposium on Principles of Database Systems, pages 11–21. ACM SIGACT-SIGMOD, 1989.

[Prz90] T. Przymusinski. The Well-Founded Semantics Coincides with the Three-Valued Stable Semantics. Fundamenta Informaticae, 13(4):445–463, 1990.

[Ron01] P. Rondogiannis. Stratified Negation in Temporal Logic Programming and the Cycle-Sum Test. Theoretical Computer Science, 254(1-2):663–676, 2001.

[vG89] A. van Gelder. The Alternating Fixpoint of Logic Programs with Negation. In Proceedings of the 8th Symposium on Principles of Database Systems, pages 11–21. ACM SIGACT-SIGMOD, 1989.

[vG93] A. van Gelder. The Alternating Fixpoint of Logic Programs with Negation. Journal of Computer and System Sciences, 47(1):185–221, 1993.

[vGRS91] A. van Gelder, K. A. Ross, and J. S. Schlipf. The Well-Founded Semantics for General Logic Programs. Journal of the ACM, 38(3):620–650, 1991.

[vK76] M. H. vanEmden and R. A. Kowalski. The Semantics of Predicate Logic as a Programming Language. Journal of the ACM, 23(4):733–742, October 1976.

[ZAO93] C. Zaniolo, N. Arni, and K. Ong. Negation and Aggregates in Recursive Rules: the LDL++ Approach. In Proceedings of DOOD-93, pages 204–221, 1993.