A multidisciplinary framework to assess the sustainability and acceptability of wildlife tourism operations

Lauren Meyer1,2 | Kirin Apps3 | Simon Bryars4 | Thomas Clarke1 | Barry Hayden4 | Grant Pelton4 | Brett Simes4 | Lewis M. Vaughan5 | Sasha K. Whitmarsh1 | Charlie Huveneers1

1 Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
2 Georgia Aquarium, Atlanta, Georgia, United States
3 School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia
4 Department for Environment and Water, Adelaide, SA, Australia
5 Flinders University, Bedford Park, SA, Australia

Correspondence
Lauren Meyer, Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, SA 5042, South Australia.
Email: lauren.meyer@flinders.edu.au

ABSTRACT
Wildlife tourism is growing in popularity, diversity of target species, and type of tours. This presents difficulties for management policy that must balance the complex trade-offs between conservation, animal welfare, and pragmatic concerns for tourist satisfaction and economic value. Here, we provide a widely applicable, multidisciplinary framework to assess the impacts of wildlife tourism focusing on industry tractability, socioeconomic values, and their effects on conservation, animal welfare, and ecosystem impacts. The framework accommodates and quantifies the complexity of factors influencing wildlife tourism management, including direct and indirect effects on target and nontarget species, and identifies priorities for future biological, socioeconomic, and cultural heritage research. When applied to white shark cage-diving as a case study, the output demonstrates the utility of the framework for researchers, managers, and policy makers, and highlights the benefits of undertaking the assessment as an inclusive workshop to facilitate a more multidisciplinary assessment of wildlife tourism industries. The use of a universally applicable assessment framework will enable the identification of relevant factors to account for when managing wildlife tourism, provide an inventory of current knowledge, identify research needs, and semi-quantitatively compare categories and target and nontarget species, leading to improved conservation outcomes for species and ecosystems.

KEYWORDS
cage-diving, conservation, ecology, ecotourism, management, nonlethal consumptive use, provisioning, sustainable tourism

1 WILDLIFE TOURISM GLOBAL POLICY AND MANAGEMENT

The importance of sustainable tourism practices, when visiting protected areas or interacting with wildlife, is increasingly emphasized in international policy (Center for Responsible Travel [CREST], 2017; Koprowski & Krausman, 2019; Spenceley, 2017). Recommendations to ensure the sustainability of wildlife tourism is now incorporated...
in the Convention on Biological Diversity (CBD, 2004),
the IUCN (Spenceley, 2017), and the United Nations (UN
Resolution A/RES/69/233). The creation of organizations
such as the Global Sustainable Tourism Council (GSTC)
and Centre for Responsible Travel (CREST), and the in-
clusion of tourism in IUCN, UN, and CBD recommenda-
tions showcases the recognition by policy makers of the
role wildlife tourism plays in both species exploitation
and conservation. The GSTC states (D3.4 d): “Direct in-
teractions, in particular feeding, should not be permitted,
unless specifically sanctioned by internationally accepted
standards or, where standards are not available, guided
by independent wildlife expert advice” (Global Sustain-
able Tourism Council [GSTC], 2016). However, in the
absence of global standards or consensus amongst wildlife
experts, this holds limited real-world applicability, show-
casing a disconnect between international policy, regional
management, and scientific research. Implementing the
policies recommended in these conventions to ensure
sustainable wildlife tourism at the global, national, and
community level requires a comprehensive understand-
ing of the impacts of tourism on the organisms, environ-
ment, and community (Buckley, 2009; Higham, Bejder,
Allen, Corkeron, & Lusseau, 2016; Newsome & Rodger,
2013; Newsome, Dowling, & Moore, 2005).

Wildlife tourism practices are globally diverse, targeting
a multitude of taxa across all biomes, and uses a range of
methods to observe and attract species. The industry
has a history of affecting species and ecosystems (Higham
et al., 2016; Trave, Brunnschweiler, Sheaves, Diedrich,
& Barnett, 2017), but can also provide a positive alterna-
tive to lethal wildlife use, owing to a number of con-
servation and economic benefits (Huveneers et al., 2017;
Macdonald et al., 2017). Balancing the impacts on species
and benefits to the community has prompted a paradigm
shift in how we view wildlife tourism from “noncon-
sumptive use” to “nonlethal consumptive use” (Higham
et al., 2016). However, industry practices often predate
appropriate policies or impact assessments, with the evol-
ution and diversification of wildlife tourism outpacing
location-specific research and management. Additionally,
policy and management is sometimes driven by industry
best practice (Mau, 2008). This leaves research teams to
piece together an understanding of the myriad of poten-
tial context-specific impacts, while managers balance the
complex trade-offs between animal welfare, conservation,
tourist satisfaction, and economic benefits (Agyeiwaah,
Mckercher, & Suntikul, 2017; Dubois & Fraser, 2013; Leung,
Spenceley, Hvenegaard, Buckley, & Groves, 2018). Specif-
ically, the intersection between industry tractability and
socioeconomic benefits showcases the challenge managers
and tourism operators face, as congested tourism sites risk
species conservation and welfare, and tourists satisfaction
(Steven & Castley, 2013; Steven, Pickering, & Castley, 2011).
This challenge is not limited to wildlife tourism, as man-
agers of marine protected areas, or those conducting broad
ecological impact assessments must also conceptually bal-
ance disparate impacts and benefits (Brown et al., 2001;
Glasson & Therivel, 2013).

A number of ad hoc management and assessment
frameworks have been developed to conceptually bal-
ance impacts and benefits and facilitate effective man-
agement. The scope of such frameworks include manag-
ing marine protected areas (Brown et al., 2001), evalua-
ting wildlife tourism sustainability (Agyeiwaah et al.,
2017; Rodger, Smith, Newsome, & Moore, 2011), assessing
the acceptability of wildlife feeding (Dubois & Fraser,
2013), and negative impact mitigation (Higginbottom, Green,
& Northrope, 2003). However, in the case of wildlife tourism
these frameworks focus almost exclusively on the direct
impacts on target species, which exclude the considera-
tion of nontarget species, and overlooks broad concerns for
the ecosystem, indirect impacts on species, cultural her-
itage, and future research and planning. Given the in-
clusion of wildlife tourism in global policy recommenda-
tions (Koprowski & Krausman, 2019; Spenceley & Snyman,
2017), scientists, managers, and policy makers require an
inclusive, multidisciplinary framework to assess and man-
age local wildlife tourism operations as nonlethal con-
sumptive wildlife use. Thus, we aim to:

1. Build a semiquantitative, multidisciplinary framework
to assess the impacts of wildlife tourism by including
direct and indirect impacts on target and nontarget
species, and identifying priorities for future biological,
socioeconomic, and cultural heritage research.
2. Apply the framework to white shark cage-diving activ-
ities at the Neptune Islands Group Marine Park,
South Australia, to demonstrate the utility of the
framework for researchers, managers, and policy
makers.

2 FRAMEWORK DEVELOPMENT

The framework (Table 1) includes factors within five
discrete categories (tractability, socioeconomic values,
conservation outcomes, animal welfare, and ecosystem
impacts; Figure 1), incorporating previous management
and assessment frameworks, international policy rec-
ommendations, and concerns detailed in the literature
(factors defined in Table S1). The framework uses the
existing Dubois and Fraser framework (2013) as a scaffold
to incorporate broader, multidisciplinary considerations
underpinning effective adaptive management policy
(Figure 2), expanding the 13 factors from three categories,
TABLE 1 Framework evaluating white shark *Carcharodon carcharias* cage-diving practices in south Australia, assessed by 26 factors within the categories of tractability, impacts on socioeconomic values, and their effects on conservation, animal welfare, and ecosystem impacts. Factors are scored based on previous studies when available or expert opinion. Scores are very high (+ +), somewhat high (+), somewhat low (−) or very low (− −) from Dubois and Fraser (2013), null impact (Ø), and unknown (U). Green highlight indicates indirect effects, and purple knowledge gaps. Grey boxes are proportion scores calculated as the number of positive (++ = 1) and negative scores (− − = −1) divided by the count of potential scores for each category (see Supplementary Material for more information). Factors are defined in Table S1.

Factors	Target	Nontarget
Tractability		
Practice linked to conventions and guidelines\(^2,^6\)	++ Industry management includes activity limits\(^{101}\)	+ indirect Industry guidelines indirectly manage nontarget species\(^{101}\)
Feasible to regulate/monitor/intervene\(^1,^6\)	+ Small industry with limited operator licences & an industry management plan\(^{101}\)	+ Small industry with limited operator licences, an industry management plan, & activity contained within a regulated marine protected area\(^{101}\)
Socioeconomic values		
Economic benefits\(^1,^2,^5\) to the local community\(^2,^5,^6,^7\)	++ $15 Million to the regional economy\(^{106}\) + + Operators, supporting industries locally owned and operated\(^{106}\)	+ Inclusive wildlife experience\(^{106}\)
Conservation outcomes		
Contributes to understanding the species\(^1,^2\)	++ History of providing opportunities for research\(^{121,123,124,127,129}\)	+ Providing opportunities for research\(^{127}\)
Contributes to population sustainability\(^1,^2,^5,^6\)	Ø	+ Marine protected area, fish-based attractant nutritionally supports numerous species\(^{102}\)
Does not facilitate illegal use (i.e., poaching)\(^1,^6\)	+ Presence of operators provides area surveillance	+ + Supports the marine protected area, presence of operators provides area surveillance

Proportion score:
- **0.70**
- **0.10**
- **0.80**
- **0.38**
- **0.50**
- **0.83**

(Continues)
Factors	Target	Nontarget
Animal welfare		
Effects relatively few individual animals1,6	Relatively few sharks interact with the industry116	Many fish interact with the industry102
Does not cause physiological stress to animal1,3,4,6,8	U/Ø	U/- Large aggregations potentiate stress from increased competition, or predation risk
Does not physically harm wildlife2,3,6,8	Occasional collisions with cages may cause injury	Collisions with cages may cause minor injury
Does not facilitate harm to conspecifics8	– Rare aggressive competition	– Some fish are aggressively competitive
Does not facilitate disease1,4,8	U/- Aggregations potentiate higher parasite load and disease transmission	U/- Large aggregations potentiate higher parasite load and disease transmission
Maintains normal migration and movement4,8,10	– Increased residency116	U/-
Does not facilitate predation8	+ Few white shark predators, with a single incident of predation by an orca at this site	U/- No observed successful predations around diving boats increased shark residency potentiate natural predations on pinnipeds & benthic elasmobranchs
Maintains natural foraging & energy budgets1,4,6,8,10	+ + No change in diet or nutritional condition102 - Increase energy expenditure129	– – Altered diet from consuming attractant102
Impacts from conditioned behavior8	U/- Potential reduced foraging range, reduced threat avoidance Potentially conditioned to human interaction, but unlikely125	U/- Conditioned fish are more aggressive Reduced threat avoidance, including approaching boats, fishers & divers
Does not impact on mental state8	U/- Potential frustration with failure to capture bait, may compromise natural learning opportunities U/+ Increased residency at rich hunting grounds	U/- Increased fear of predation and stress from competition
Proportion score	+ 0.29	0.75
Ecosystem impacts		
Maintains suitable environment3,4,8	+ Minimal traffic (3 boats max)101	+ Minimal traffic (3 boats max)101
	- Light pollution can attract nocturnal birds and squid	-
	U/- Potential noise pollution	U/-
	U/- Potential for nutrification from fish aggregations and attractant	
TABLE 1 (Continued)

Factors	Target	Nontarget
Does not strain natural resources⁵	-	**UP** Provisioned fish may strain resources when operators are absent¹⁰²
	+/−	Attractant is waste from local aquaculture
Maintains ecosystem services⁷	+	**UP** Unbalanced pelagic fish assemblages¹²⁶
Does not competitively exclude species	−	+ Unaltered benthic fish assemblages
	+	Trevally and leatherjacket dominance likely to affect other species
Does not facilitate invasive species	Ø	Ø
Proportion score	+0.33	+0.21
	−0.17	−0.21

Citations for factors

1. Bushell and McCool (2007), 2. Dubois and Fraser (2013), 3. Higginbottom et al. (2003), 4. Cox and Gaston (2018), 5. Agyeiwaah et al. (2017), 6. Higham et al. (2016, 2017, 2018), 7. Heinrich et al., 8. DEWNR (2016); 9. Meyer et al. (2019b); 10. Bruce and Bradford (2013); 11. Huveneers et al. (2017); 12. Apps et al. (2019); 13. Apps et al. (2018); 14. May et al. (2019); 15. Gallagher and Huveneers (2018); 16. Meyer, Whitmarsh, Nichols, Revill, and Huveneers (2020); 17. Huveneers et al. (2018c); 18. Huveneers et al. (2018b); 19. Apps et al. (2017)

FIGURE 1 (a) Proportion of known positive impacts (+ scores) and negative impacts (− scores) for each management category (represented by different symbols) and for the target species (blue) and the nontarget species (orange). Threshold lines at 0.25 indicate 50% of positive or negative proportionate scores. + and − at 0.5 indicate where the average is a single positive or negative. The size of the marker represents the number of factors scored at “unknown” in Table 1 (Figure 1b), with smaller markers indicating a higher proportion of unknown scores. (b) Percent of factors within each category scored as unknown. Blue is target species and orange is nontarget species.
into the 26 factors in five categories here (see “Factor Selection” section of the Supplementary Material). The number of factors were expanded to include those detailed in other management frameworks, reviews, and policy recommendations, including Reynolds and Braithwaite (2001); Buckley (2009); Bushell and McCool (2007); Higginbottom et al. (2003); Agyeiwaah et al. (2017); Cullen-Knox, Haward, Jabour, Ogier, and Tracey (2017); Global Sustainable Tourism Council (2016); Higham et al. (2016); Mellor (2017); Spenceley and Snyman (2017); Cox and Gaston (2018); and Leung et al. (2018) (detailed in Table S1). Further, important factors known to the authors, but not explicitly detailed in the published literature were included based on author expertise. In an effort to ensure the framework and factors were sufficiently broad and pertinent to industry managers, ecologists, biologists, social scientists, and included animal welfare and ethics concerns, authors for this work spanned the aforementioned expertise.

1. Industry tractability

This category examines the ability to manage the industry and tourist behavior, and mitigate impacts (Figure 1). Often overlooked in assessments, this has a major influence on the success of managing industries ranging from consumptive to nonlethal wildlife use, including tourism, fishing, and marine protected areas (Bushell & McCool, 2007; Dubois & Fraser, 2013; Higham et al., 2016; Leung et al., 2018). Tractability includes the presence of formal management and community support (e.g., social license Cullen-Knox et al., 2017), both of which underpin successful adaptive management policy (Bushell & McCool, 2007; Cullen-Knox et al., 2017).

2. Socioeconomic values

Wildlife tourism often provides substantial education opportunities and economic benefits (Huveneers et al.,
which require inclusion to enable managers to balance the complex and challenging trade-offs of the industry, similar to frameworks such as Brown et al. (2001) balancing marine protected area management options. Furthermore, sustainable wildlife tourism should ensure that economic benefits remain, at least in part, within the local community (Agyeiwaah et al., 2017; Brown et al., 2001; Leung et al., 2018). Location or species-specific cultural values, including traditional, global popular culture, and religious importance have not been detailed in wildlife tourism policy frameworks to date, yet are highlighted when managing sustainable tourism more broadly (Spenceley, 2017). In some instances, traditional and cultural values may be exploitative (Steven & Castley, 2013; Steven et al., 2011), yet the impact of the industry on these values should be scored independently of conservation concerns and popularized ideals of wildlife use, which are incorporated in other factors (see Table S1 in Supplementary Material).

3. Conservation outcomes

Touted by proponents of wildlife tourism as a primary benefit of the industry, the opportunity for conservation from area and species protection, increased public support for conservation measures, and opportunities for research require inclusion within the framework (Higginbottom et al., 2003; Higham et al., 2016; Koprowski & Krausman, 2019; Steven et al., 2017). However, ensuring the industry contributes to population survival and does not facilitate illegal poaching are often overlooked and difficult to prove, despite their importance to wildlife conservation (Dubois & Fraser, 2013; Higham et al., 2016; Steven & Castley, 2013).

4. Animal welfare

Following the numerous reported impacts of wildlife tourism on animal welfare (Dubois & Fraser, 2013; Trave et al., 2017), welfare is a primary concern voiced by scientists, policy makers and the public (Koprowski & Krausman, 2019), and is featured in most existing wildlife tourism management frameworks (Higginbottom et al., 2003). Specifically, factors impacting animal welfare include extent of physiological and physical harm (Dubois & Fraser, 2013; Higginbottom et al., 2003; Mellor, 2017), and disruptions of natural behavior including foraging success and energy expenditure, predation likelihood, migration, reproduction (Dubois & Fraser, 2013; Higham et al., 2016; Rizzari, Semmens, Fox, & Huveneers, 2017; Meyer, Pethybridge, Beckmann, Bruce, & Huveneers, 2019; Senigaglia, Christiansen, Sprogis, Symons, & Bejder, 2019; Heinrich et al., 2021), and impacts from conditioned behavior (Mellor, 2017). Mental state is a key consideration in Mellor’s (2017) five domains model for assessing animal welfare, often used in the context of zoos and aquariums. It is included, here, as the emotional response to the combination of animal welfare and ecosystem impacts. We acknowledge it is challenging to assess for most taxa, especially teleosts and elasmobranchs.

5. Ecosystem impacts

Existing policies and frameworks focus on target species, with little attention paid to the broad ecosystem that these species and industries rely upon (Higginbottom et al., 2003). As such, we have included specific ecological factors to detail the impacts on natural resources, ecosystem services and habitats, as well as ensuring a natural balance of native species, similar to ecological criteria used to assess the management of marine parks (Brown et al., 2001). Environmental suitability includes habitat modification and anthropogenic pollution, such as ambient noise (e.g., boat motors), light, and waste (Mellor, 2017; Popper, Hawkins, & Thomsen, 2020; Steven et al., 2011).

2.1 Target versus nontarget species

Management assessments and impact mitigation traditionally focus on target species, while calls within the literature detail the need to include nontarget species (Gallagher & Huveneers, 2018; Higginbottom et al., 2003; Rizzari, Semmens, Fox, & Huveneers, 2017; Meyer et al., 2020; Trave et al., 2017). To facilitate their inclusion, we have extended the same framework factors developed for target species to nontarget species (Table 1). This enables the direct comparison between these groups, which aids managers and policy makers in balancing the positive and negative effects of wildlife tourism.

2.2 Factor assessment

Assessing the continuum of wildlife tourism impacts necessitates the inclusion of null impacts, multiple scales of impact, and indirect effects, when evaluating factors. Here, we evaluate each of the factors included in our framework (Table 1), scoring them as very high (+ +), somewhat high (+), somewhat low (−) or very low (−−), as initially described by Dubois and Fraser (2013) (see Supplementary Material). This evaluation included an assessment workshop, whereby the multidisciplinary group of authors met to discuss and assess each factor based on group consensus and available literature (Supplementary
Material). This work expands the +/− evaluation used to include “null impact” (Ω), and indirect effects (highlighted in green) to better accommodate the complexity, or lack of impact the industry has on species, environment, and socioeconomic values. We also included “unknown” (U, purple highlight), that when paired with +/− from expert knowledge, allows researchers and managers to use the framework output as a completed assessment.

The framework scores (+ and −) enable a semi-quantitative comparison between target and nontarget species, and between the five categories (Table 1, Figure 1A), with the potential to compare quantitatively across industries. The proportions of positive and negative impacts are calculated separately and plotted on different axis (Figure 1a) to emphasize that effects of each factor do not cancel out one another. The proportions are calculated as the total positive (+ = 0.5, ++ = 1) and negative scores, divided by the count of potential scores for each category, excluding those scored as unknown (see Supplementary Material for more information). The proportion of “unknown” can be similarly calculated, providing a quantitative value for which categories target and nontarget species (Figure 1b), and industries can be compared to highlighting key areas of future research needed to facilitate management.

3 | WHITE SHARK CAGE-DIVING IN SOUTH AUSTRALIA

Cage-diving with white sharks (Carcharodon carcharias) is a globally popular tourism industry with many associated challenges for industry, managers, and policy makers (DEWNR, 2016; Meza-Arce et al., 2020). White shark cage-diving in South Australia has been the focus of numerous studies on the socioeconomic benefits of the industry (Apps, Dimmock, Lloyd, & Huveneers, 2017, 2018, 2019; Huveneers et al., 2017) and its ecological impacts on target white sharks (Bruce & Bradford, 2013; Huveneers et al., 2013; Meyer et al., 2019) and nontarget species, including trevally (Pseudocaranx spp.), yellowtail kingfish (Seriola lalandi), ray spp., and other teleosts (Gallagher & Huveneers, 2018; Meyer et al., 2020; Rizzari, Semmens, Fox, & Huveneers, 2017) is an ideal case study to demonstrate the use of the assessment framework (Table 1, Figure 1).

In South Australia, white shark cage-diving operates at the Neptune Islands Group (Ron and Valerie Taylor) Marine Park, hosting >10,000 passengers across three operators running ~260 days per year (DEWNR, 2016; Huveneers et al., 2017). The industry is limited to maximum 200 kg/day of fish-based attractant (Southern Bluefin Tuna Thunnus maccoyii) including minced tuna chum edible to sharks, and tuna heads and gills used to coax sharks within view of divers, then retracted prior to being eaten, as operators are explicitly prohibited from feeding sharks (policy 7.3, DEWNR, 2016). The Neptune Islands Group is also a Marine Protected Area, providing protection for unique offshore island habitats (DEWNR, 2012) and supporting hundreds of invertebrate, fish, marine mammal, bird, and elasmobranch species. The tractability of South Australia’s white shark cage-diving industry is very high for target species (+0.70), and somewhat high (+0.50) for nontarget species (Table 1, Figure 1a), as this is a small (three operators), highly-regulated industry with area camera surveillance and mandatory daily-activity logs, leading to a history of compliance with temporal closures and restrictions on attractant type, quantity, and use (DEWNR, 2012; DEWNR, 2016). The polarized local and global public view of white shark cage-diving remains an ongoing challenge (Apps, Dimmock, Lloyd, & Huveneers, 2016; Gallagher & Huveneers, 2018), which limits tractability, socioeconomic values, and potentially the extent of conservation outcomes (Figure 1). Similar to tractability, the socioeconomic values from the target white shark is very high (+0.80), contributing ~$8 million AUS annually to the local economy (however the potential for additional educational opportunities has been discussed; Apps et al., 2017, 2019, Huveneers et al., 2017). The contribution to public education and awareness is considered high. The socioeconomic values are somewhat high (+0.38) for the other wildlife, which contribute to the experience as a whole, but do not carry the same charismatic draw, notoriety, or historically-damaged public perception as white sharks (Apps, Dimmock, & Huveneers, 2018, 2019; MacDonald et al., 2017). The Barngarla and Naou people are the traditional custodians of the Eyre Peninsula, yet the cultural and spiritual role of the Neptune Islands, white sharks, and nontarget species is unknown to industry managers. While visitors to the site may acknowledge the presence of these values (Apps, Dimmock, Lloyd, & Huveneers, 2019), the impact the industry may have on the relationship to Country is not well understood. The lack of knowledge in relation to traditional values was identified during the assessment workshop and is now being explored by industry managers. Historically, the industry has played an evolving role in popular culture, from contributing to the filming of Jaws at Dangerous Reef in 1974, to now avoiding interactions which appear “aggressive,” with operators, managers, and passengers advocating for revised perception of these top predators (Apps et al., 2018; DEWNR, 2016).

The conservation outcomes for both target (+0.50) and nontarget species (+0.83) are very high as the industry provides extensive opportunities for research (e.g., Apps et al., 2018; Huveneers, Watanabe, Payne, & Semmens, 2018b; Huveneers et al., 2018c; May, Meyer, Whitmarsh,
Huveneers, 2019), supports the MPA, and offers additional surveillance preventing illegal use. The trade-offs with animal welfare are less known, but where assessed animal welfare scores are predominantly negative (−0.29 target, −0.75 nontarget) (Bruce & Bradford, 2013; Gallagher & Huveneers, 2018; Huveneers et al., 2018b). Many factors warrant additional research, owing to the challenges of researching potentially dangerous large free-swimming predators (Huveneers et al., 2018a) and nontarget species in this remote location. The framework reveals several research priorities to better understand the impacts on animal welfare, particularly the potential for physiological stress, disease facilitation and the extent of conditioned behavior (Gallagher & Huveneers, 2018; Huveneers et al., 2018a; Heinrich et al., 2021). Similarly, the assessment of ecosystem impacts highlights the need for a better understanding of the industry’s effect on nontarget species in the ecosystem, abundance, and the flow-on changes in natural resources, ecosystem structure, and habitat (Gallagher & Huveneers, 2018; Rizzari, Semmens, Fox, & Huveneers, 2017; Meyer et al., 2020). The unknown effect of using noise to attract white sharks was identified from this framework and led to discussions of the need to review the effects of noise pollution on the Neptune Islands ecosystem.

White shark cage-diving scored highly positive overall, with only two categories scoring below +0.25 (indicate less than 50% of positive scores), and only two negative scores above −0.25 (Figure 1a). Conservation outcomes, tractability, and target species socioeconomic values are all very positive (ranging from +0.50 to +0.83), with only a lack of public support contributing to the −0.10 target species tractability score. In contrast, animal welfare and ecosystem impacts have the most shortcomings that warrant further consideration by managers. Categories with the most factors scored unknown (small symbols Figure 1a, Fig. 1b), are the least positive, suggesting that where information is available for managers to act on, policy appropriately mitigates impacts resulting in positive industry outcomes. Target and nontarget species face incongruent impacts and benefits, mandating that managers carefully balance the trade-offs unique to each group.

4 | GLOBAL FRAMEWORK USE

The application of the framework and semiquantitative assessment (Table 1, Figure 1) demonstrates the utility for researchers, managers, and policy makers to form multidisciplinary teams and work together to balance the complex trade-offs to manage wildlife tourism. The assessment included workshop-style meetings with the multidisciplinary group of co-authors, whereby each factor was discussed and assessed on group consensus and available literature (Supplementary Material). This process proved particularly valuable and we strongly recommend inclusive workshops using the framework as a scaffold to structure assessments of tourism industries. Following the geographic expansion, growing popularity, and increasing diversity of wildlife tourism industries, we provide a universally applicable, multidisciplinary framework including direct and indirect impacts on target and nontarget species, and identify priorities for future biological, socioeconomic, and cultural heritage research (Figure 2).

This framework facilitates a semiquantitative, comprehensive assessment of existing and proposed wildlife tourism operations, enabling better management with the potential for improved conservation outcomes for species and ecosystems. This semiquantitative framework approach also enables cross-industry comparisons (e.g., between different shark tourism industries), highlighting industry-specific risks, or best practice approaches.

This type of framework, including the semiquantitative approach developed here, could be modified for managing other industries that also balance trade-offs between disparate impacts and benefits, including general tourism (CREST, 2017), marine protected areas (Brown et al., 2001), or environmental impacts (Glasson & Therivel, 2013).

ACKNOWLEDGMENTS

We thank the cage-diving industry for ongoing assistance with research, support for industry management, and commitment to conservation.

AUTHOR CONTRIBUTIONS

LM conceived the idea. LM with the support of CH led the writing of the manuscript. LM, SW, TC, and CH developed the quantitative approach and designed the figures. All authors contributed to refining the concept of the manuscript, determining the factors, and scoring the white shark cage-diving industry, and approved the final version for submission.

ETHICS STATEMENT

Ethics approval was not required for this study, as no new data were created.

DATA ACCESSIBILITY STATEMENT

Data sharing is not applicable to this article as no new data were created.
CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

Lauren Meyer https://orcid.org/0000-0003-0374-9941
Sasha K. Whitmarsh https://orcid.org/0000-0001-8934-2354
Charlie Huveneers https://orcid.org/0000-0001-8937-1358

REFERENCES

Agyeiwaah, E., Mckercher, B., & Suntikul, W. (2017). Identifying core indicators of sustainable tourism: A path forward? Tour. Management Perspectives, 24, 26–33.

Apps, K., Dimmock, K., & Huveneers, C. (2018). Turning wildlife experiences into conservation action: Can white shark cage-dive tourism influence conservation behaviour? Marine Policy, 88, 108–115.

Apps, K., Dimmock, K., Lloyd, D., & Huveneers, C. (2016). In the water with white sharks (Carcharodon carcharias): Participants’ beliefs toward cage-diving in Australia. Anthrozoos, 29, 231–245.

Apps, K., Dimmock, K., Lloyd, D. J., & Huveneers, C. (2017). Is there a place for education and interpretation in shark-based tourism? Tourism Recreation Research, 42, 327–343.

Apps, K., Dimmock, K., Lloyd, D. J., & Huveneers, C. (2019). What values do tourists place on a marine protected area? White shark cage-diving tourists and the Neptune Islands. Tourism in Marine Environments, 14, 19–30.

Brown, K., Adger, W. N., Tompkins, E., Bacon, P., Shim, D., & Young, K. (2001). Trade-off analysis for marine protected area management. Ecological Economics, 37, 417–434.

Bruce, B. D., & Bradford, R. W. (2013). The effects of shark cage-diving operations on the behaviour and movements of white sharks, Carcharodon carcharias, at the Neptune Islands, South Australia. Marine Biology, 160, 889–907.

Buckley, R. (2009). Evaluating the net effects of ecotourism on the environment: A framework, first assessment and future research. Journal of Sustainable Tourism, 17(6), 643–672

Bushell, R., McCool, S. F., Bushell, R., & Eagles, P. F. J. (2007). Tourism as a tool for conservation and support of protected areas: Setting the agenda. In Tourism and Protected Areas : Benefits Beyond Boundaries: The Vth IUCN World Parks Congress (pp. 12). UK: Cabi.

Center for Responsible Travel (CREST). (2017). The case for responsible travel: Trends and statistics 2017. Washington, DC, USA.

Cox Daniel T. C., Gaston Kevin J. (2018). Human–nature interactions and the consequences and drivers of provisioning wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, (1745), 20170092 https://doi.org/10.1098/rstb.2017.0092.

Cullen-Knox, C., Haward, M., Jobour, J., Ogier, E., & Tracey, S. R. (2017). The social licence to operate and its role in marine governance: Insights from Australia. Marine Policy, 79, 70–77.

Department of Environment, W. and N.R. & (DEWNR). (2012). Neptune Islands Group (Ron and Valerie Taylor) Marine Park Management Plan Summary. Adelaide: DEWNR.

Department of Environment Water and Natural Resources (DEWNR). (2016). South Australian White Shark Tour Licensing Policy. Retrieved from http://www.environment.sa.gov.

Dubois, S., & Fraser, D. (2013). A framework to evaluate wildlife feeding in research, wildlife management, tourism and recreation. Animals, 3, 978–994.

Gallagher, A. J., & Huveneers, C. P. M. (2018). Emerging challenges to shark-diving tourism. Marine Policy, 96, 9–12.

Gallagher, A. J., Vianna, G. M. S., Papastamatiou, Y. P., Macdonald, C., Guttridge, T. L., & Hammerschlag, N. (2015). Biological effects, conservation potential, and research priorities of shark diving tourism. Biological Conservation, 184, 365–379.

Glasson, J., & Therivel, R. (2013). Introduction to environmental impact assessment, London: Routledge.

Global Sustainable Tourism Council (GSTC). (2016). Tour Operator Criteria. Version 3, 21 December 2016 with suggested performance indicators. Retrieved from www.gstcouncil.org/images/Integrity_Program/Criteria/GSTC-Tour-Operator_Industry_Criteria_with_tour_operator_indicators_21-Dec-2016_Final.pdf

Heinrich Dennis, Dhellemmes Félicie, Guttridge Tristan L., Smukall Matthew, Brown Culm, Rummor Jodie, Gruber Samuel, Huveneers Charlie (2021). Short-term impacts of daily feeding on the residency, distribution and energy expenditure of sharks. Animal Behaviour, 172, 55–71. https://doi.org/10.1016/j.anbehav.2020.12.002.

Higginbottom, K., Green, R., & Northrope, C. (2003). A framework for managing the negative impacts of wildlife tourism on wildlife. Human Dimensions of Wildlife, 8, 1–24.

Higham, J. E. S., Bejder, L., Allen, S. J., Corkeron, P. J., & Lusseau, D. (2016). Managing whale-watching as a non-lethal consumptive activity. Journal of Sustainable Tourism, 24, 73–90.

Huveneers, C., Apps, K., Becceri-Garcia, E. E., Bruce, B., Butcher, P. A., Carlisle, A., … Curtis, T. (2018a). Future research directions on the ‘elusive’ white shark. Front. Marine Science, 5, 455.

Huveneers, C., Meekan, M. G., Apps, K., Ferreira, L. C., Pannell, D., & Vianna, G. M. S. (2017). The economic value of shark-diving tourism in Australia. Reviews in Fish Biology and Fisheries, 27, 665–680.

Huveneers, C., Rogers, P. J., Beckmann, C., Semmens, J. M., Bruce, B. D., & Seuront, L. (2013). The effects of cage-diving activities on the fine-scale swimming behaviour and space use of white sharks. Marine Biology, 160, 2863–2875.

Huveneers, C., Watanabe, Y. Y., Payne, N. L., & Semmens, J. M. (2018b). Interacting with wildlife tourism increases activity of white sharks. Conservation Physiology, 6, coy019.

Huveneers, C., Whitmarsh, S., Thiele, M., Meyer, L., Fox, A., & Bradshaw, C. J. A. (2018c). Effectiveness of five personal shark-bite deterrents for surfers. PeerJ, 6, e5554.

Koprowski, J. L., & Krausman, P. R. (2019). International Wildlife Management: Conservation challenges in a changing world, Baltimore: JHU Press.

Leung, Y., Spenceley, A., Hvenegaard, G., Buckley, R., & Groves, C. (2018). Tourism and visitor management in protected areas: Guidelines for sustainability. Best Practice Protected Area Guidelines Series. Gland, Switzerland: IUCN.

Macdonald, C., Gallagher, A. J., Barnett, A., Brunnschweiler, J., Shiffman, D. S., & Hammerschlag, N. (2017). Conservation potential of apex predator tourism. Biological Conservation, 215, 132–141.

Mau, R. (2008). Managing for conservation and recreation: The Ningaloo whale shark experience. Journal of Ecotourism, 7, 213–225.
May, C., Meyer, L., Whitmarsh, S., & Huveneers, C. (2019). Eyes on the size: Accuracy of visual length estimates of white sharks, *Carcharodon carcharias*. *Royal Society Open Science*, 6(5), 190456.

Mellor, D. J. (2017). Operational details of the five domains model and its key applications to the assessment and management of animal welfare. *Animals*, 7(8), 60.

Meyer, L., Pethybridge, H., Beckmann, C., Bruce, B., & Huveneers, C. (2019). The impact of wildlife tourism on the foraging ecology and nutritional condition of an apex predator. *Tourism Management*, 75, 206–215.

Meyer, L., Whitmarsh, S. K., Nichols, P. D., Revill, A. T., & Huveneers, C. (2020). The effects of wildlife tourism provisioning on non-target species. *Biological Conservation*, 241, 108317.

Meza-Arce, M. I., Malpica-Cruz, L., Hoyos-Padilla, M. E., Mojica, F. J., Arredondo-García, M. C., Leyva, C., … Santana-Morales, O. (2020). Unraveling the white shark observation tourism at Guadalupe Island, Mexico: Actors, needs and sustainability. *Marine Policy*, 119, 119.

Newsome, D., Dowling, R. K., & Moore, S. A. (2005). *Wildlife tourism* (Vol. 24, 1st edition Cledendon). Channel View Publications.

Newsome, D., & Rodger, K. (2013). Feeding of wildlife: An acceptable practice in ecotourism? In R. Ballantyne & J. Packer (Eds.), *International handbook on ecotourism*, Northampton: Edward Elgar Publishing.

Popper, A. N., Hawkins, A. D., & Thomsen, F. (2020). Taking the animals’ perspective regarding anthropogenic underwater sound. *Trends in Ecology & Evolution*, 35(9), 787–794.

Reynolds Paul C, Braithwaite Dick (2001). Towards a conceptual framework for wildlife tourism. *Tourism Management*, 22, (1), 31–42. https://doi.org/10.1016/s0261-5177(00)00018-2.

Rizzari J. R., Semmens J. M., Fox A., Huveneers C. (2017). Observations of marine wildlife tourism effects on a non-focal species. *Journal of Fish Biology*, 91, (3), 981–988. https://doi.org/10.1111/jfb.13389.

Rodger, K., Smith, A., Newsome, D., & Moore, S. A. (2011). Developing and testing an assessment framework to guide the sustainability of the marine wildlife tourism industry. *Journal of Ecotourism*, 10, 149–164.

Secretariat of the CBD (Convention on Biological Diversity). (2004). *Guidelines on biodiversity and tourism development (CBD Guidelines)*. Secretariat of the Convention on Biological Diversity, Montreal, Canada.

Senigaglia, V., Christiansen, F., Sproges, K. R., Symons, J., & Bejder, L. (2019). Food-provisioning negatively affects calf survival and female reproductive success in bottlenose dolphins. *Scientific Reports*, 9, 8981.

Spenceley, A. (2017). Tourism and protected areas: Comparing the 2003 and 2014 IUCN World Parks Congress. *Tourism and Hospitality Research*, 17, 8–23.

Spenceley, A., & Snyman, S. (2017). Protected area tourism: Progress, innovation and sustainability. *Tourism and Hospitality Research*, 17(1), 3–7.

Steven, R., & Castley, J. G. (2013). Tourism as a threat to critically endangered and endangered birds: Global patterns and trends in conservation hotspots. *Biodiversity and Conservation*, 22, 1063–1082.

Steven, R., Morrison, C., & Castley, J. G. (2017). Exploring attitudes and understanding of global conservation practice among birders and avitourists for enhanced conservation of birds. *Bird Conservation International*, 27, 224–236.

Steven, R., Pickering, C., & Castley, J. G. (2011). A review of the impacts of nature based recreation on birds. *Journal of Environmental Management*, 92, 2287–2294.

Trave, C., Brunnschweiler, J., Sheaves, M., Diedrich, A., & Barnett, A. (2017). Are we killing them with kindness? Evaluation of sustainable marine wildlife tourism. *Biological Conservation*, 209, 211–222.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Meyer L, Apps K, Bryars S, et al. A multidisciplinary framework to assess the sustainability and acceptability of wildlife tourism operations. *Conservation Letters*. 2021;14:e12788. https://doi.org/10.1111/conl.12788