Inverse problem for a three-parameter space-time fractional diffusion equation

Ngartelbaye Guerngar
Auburn University

Erkan Nane
Auburn University

Suleyman Ulusoy
American University of Ras Al Khaimah

Abstract
In this article, we consider the space-time Fractional (nonlocal) diffusion equation

$$\partial_t^{\beta} u(t, x) = \mathcal{L}u(t, x), \quad t \geq 0, \quad -1 < x < 1,$$

where ∂_t^{β} is the Caputo fractional derivative of order $\beta \in (0, 1)$ and the differential operator \mathcal{L} is the generator of a Lévy process, sum of two symmetric independent α_1-stable and α_2-stable processes. We consider a nonlocal inverse problem and show that the fractional exponents β and α_i, $i = 1, 2$ are determined uniquely by the data $u(t; 0) = g(t), 0 < t < T$. The uniqueness result is a theoretical background for determining experimentally the order of many anomalous diffusion phenomena, which are important in physics and in environmental engineering.

The research of S.U. has been partially supported by BAGEP 2015 award.
1 Introduction

While the traditional diffusion equation $\partial_t u = \Delta u$ describes a cloud of spreading particles at the macroscopic level, the space-time fractional diffusion equation $\partial^\beta_t u = -(-\Delta)^{\alpha/2} u$ with $0 < \beta < 1$ and $0 < \alpha < 2$ models anomalous diffusions. The fractional derivative in time can be used to describe particle sticking and trapping phenomena. The fractional space derivative models long particle jumps. The combined effect produces a concentration profile with a sharper peak, and heavier tails [6, 15]. Here the fractional Laplacian $(-\Delta)^{\alpha/2}$ is the infinitesimal generator of a symmetric $\alpha-$ stable process $X = \{X_t, t \geq 0, \mathbb{P}_x, x \in \mathbb{R}^d\}$, a typical example of a non-local operator. This process is a Lévy process satisfying

$$\mathbb{E}\left[e^{\xi (X_t - X_0)}\right] = e^{-t|\xi|^\alpha} \quad \text{for every } x, \xi \in \mathbb{R}^d.$$

In this paper, we consider the equation

$$\partial^\beta_t u = -(-\Delta)^{\alpha_1/2} u - (-\Delta)^{\alpha_2/2} u \quad \text{with } 0 < \beta < 1 \quad \text{and } 0 < \alpha_1 < \alpha_2 < 2.$$

Suppose X is a symmetric α_1- stable process and Y is a symmetric α_2-stable process, both defined on \mathbb{R}^d, and that X and Y are independent. We define the process $Z = X + Y$. Then the infinitesimal generator of Z is $(-\Delta)^{\alpha_1/2} + (-\Delta)^{\alpha_2/2}$. The Lévy process Z runs on two different scales: on the small spatial scale, the α_2 component dominates, while on the large spatial scale the α_1 component takes over. Both components play essential roles, and so in general this process can not be regarded as a perturbation of the α_1-stable process or of the α_2- stable process. Note that this process can not be obtained from symmetric stable processes through a combination of Girsanov transform and Feynman-Kac transform [4].

The fractional-time derivative considered here is the Caputo fractional derivative of order $0 < \beta < 1$ and is defined as

$$\partial^\beta_t q(t) = \frac{\partial^\beta q(t)}{\partial t^\beta} := \frac{1}{\Gamma(1-\beta)} \int_0^t \frac{\partial q(s)}{\partial s} \frac{ds}{(t-s)^\beta},$$

where $\Gamma(.)$ is the Euler’s gamma function. For example, $\partial^\beta_t (t^p) = \frac{t^{\beta-p} \Gamma(p+1)}{\Gamma(p+1-\beta)}$ for any $p > 0$.

This definition of the Caputo fractional derivative is intended to properly handle initial values [2, 6, 8], since its Laplace transform $s^\beta \tilde{q}(s) - s^{\beta-1} \tilde{q}(0)$ incorporates the initial value in the same way the first derivative does. Here, $\tilde{q}(s) = \int_0^\infty e^{-ts} q(t) dt$ represents the usual Laplace transform of the function q.

It is also well known that, if $q \in C^1(0,\infty)$ satisfies $|q(t)| \leq C t^{\nu-1}$ for some $\nu > 0$, then by (1.2), the Caputo derivative of q exists for all $t > 0$ and the derivative is continuous in $t > 0$ [11, 16].

The following class of functions will play an important role in this article.
Definition 1.1. The Generalized (two-parameter) Mittag-Leffler function is defined by:

\[
E_{\beta,\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\beta k + \alpha)}, \quad z \in \mathbb{C}, \quad \text{Re}(\alpha) > 0, \quad \text{Re}(\beta) > 0,
\]

where \(\text{Re}(\cdot)\) is the real part of a complex number. When \(\alpha = 1\), this function reduces to \(E_{\beta}(\cdot) := E_{\beta,1}(\cdot)\).

It is well-known that the Caputo derivative has a continuous spectrum \([0,1]\), with eigenfunctions given in terms of the Mittag-Leffler function. In fact, it is not hard to check that the function \(q(t) = E_{\beta}(-\lambda t^\beta)\) is a solution of the eigenvalue equation

\[
\partial_t^\beta q(t) = -\lambda q(t) \quad \text{for any } \lambda > 0.
\]

For \(0 < \alpha_1 < \alpha_2 < 2\), \((-\Delta)^{\alpha_1/2}h - (-\Delta)^{\alpha_2/2}h\) is defined for

\[
h \in \text{Dom}(-(-\Delta)^{\alpha_1/2} - (-\Delta)^{\alpha_2/2}) := \left\{ h \in L^2(\mathbb{R}^d; dx) : \int_{\mathbb{R}^d} (|\xi|^{\alpha_1} + |\xi|^{\alpha_2}) |\hat{h}(\xi)|^2 d\xi < \infty \right\}
\]

as the function with Fourier transform

\[
\mathcal{F}\left[-(-\Delta)^{\alpha_1/2}h(\xi) - (-\Delta)^{\alpha_2/2}h(\xi) \right] = -\left(|\xi|^{\alpha_1} + |\xi|^{\alpha_2}\right)|\hat{h}(\xi)|^2.
\]

Here, \(\mathcal{F}(h) = \hat{h}\) represents the usual Fourier transform of the function \(h\).

The main purpose of this article is to establish the determination of the unique exponents \(\beta\) and \(\alpha_i\), \(i = 1, 2\) in the fractional time and space derivatives by means of the observed data (also called additional condition) \(u(t,0) = g(t), \ 0 < t < T\). We assume \(g(t) \neq 0\). We show in another article that such inversion algorithm exists and we provide some numerical examples.

Many works have been done recently in inverse problems \([3, 10, 13, 14, 17, 18, 20, 21, 22, 23, 24]\). While most of these works have been dedicated to fractional derivatives only in the time variable \([3, 10, 13, 14, 17, 18, 22, 23, 24]\), space-time fractional derivatives were considered in \([20, 21]\), similarly as in this article. However, a substantial difference is that our work considers diffusion equation involving two independent processes.

The rest of this article is organized as follows: in the next section we provide a review of main properties of the direct problem and introduce the inverse problem. Section 3 is devoted to both the statement and the proof of the main result of this paper. Throughout this article, the letter \(c\), in upper or lower case, with or without a subscript, denotes a constant whose value is not of interest in this article and may stay the same or change from line to line. For simplicity, we will fix \(d = 1\) in the remainder of this paper. The following notation will be used in the sequel: for \(a, b \in \mathbb{R}\), \(a \wedge b := \min(a, b)\); for any two positive functions \(p\) and \(q\), \(p \asymp q\) means that there is a positive constant \(c \geq 1\) so that \(c^{-1}q \leq p \leq cq\) on their common domain of definition. For a given set \(A \subset \mathbb{R}\), \(A^C = \mathbb{R} - A\).
2 Analysis of the direct problem and formulation of the inverse problem

We start by considering the direct problem. The equation we are interested in reads as

\[\begin{align*}
\partial_t^\beta u(t, x) &= -\varepsilon \Delta_1^{\alpha_1/2} u(t, x) - \varepsilon \Delta_2^{\alpha_2/2} u(t, x), \quad (t, x) \in (0, T) \times (-1, 1), \\
\; u(t, x) &= 0, \quad x \in (-1, 1)^c, \quad 0 < t < T, \\
\; u(0, x) &= f(x), \quad -1 < x < 1.
\end{align*} \tag{2.1} \]

Here \(T > 0 \) is a final time and \(f \) is a given function.

We define the operator \(\mathcal{L} := -\varepsilon \Delta_1^{\alpha_1/2} - \varepsilon \Delta_2^{\alpha_2/2} \) for \(0 < \alpha_1 < \alpha_2 < 2 \). We will also set \(D := (-1, 1) \). The notation \(\mathcal{L}_D \) will be used to emphasize the underlying domain of interest.

Definition 2.1 ([6]). A function \(u(t, x) \) is said to be a weak solution of (2.1) if the following conditions are satisfied:

\[\begin{align*}
u(t, .) &\in W_0^{\alpha_2, 2}(D) \quad \text{for each } t > 0, \\
\lim_{t \downarrow 0} u(t, x) &= f(x) \quad \text{a.e,} \\
\partial_t^\beta u(t, x) &= \mathcal{L}_D u(t, x) \quad \text{in the distributional sense, i.e}
\end{align*} \tag{2.2} \]

\[\int_{\mathbb{R}} \left(\int_0^\infty u(t, x) \partial_t^\beta \psi(t) \right) \phi(x) dx = \int_0^\infty \varepsilon \mathcal{D}(u(t, .), \phi) \psi(t) dt \]

for every \(\psi \in C_0^1(0, \infty) \) and \(\phi \in C_0^2(D) \). Here, \(W_0^{\alpha_2, 2}(D) \) is the \(\sqrt{\varepsilon} \)-completion of the space \(C_0^\infty(D) \) of smooth functions with compact support in \(D \), where

\[\varepsilon_1(u, u) = \varepsilon(u, u) + \int_{\mathbb{R}} u^2(x) dx, \]

\[\varepsilon(u, v) = \varepsilon^D(u, v) \quad \text{for } u, v \in W_0^{\alpha_2, 2}(D), \]

and

\[\varepsilon^D(u, v) = \frac{1}{2} \int_{D^2} \left(u(x) - u(y) \right) \left(v(x) - v(y) \right) \frac{A(-\alpha_2)}{|x-y|^{1+\alpha_2}} + \frac{b}{|x-y|^{1+\alpha_1}} \; dx dy, \]

where \(A(-\alpha) = \alpha 2^{\alpha-1} \pi^{-1/2} \Gamma((1+\alpha)/2) \Gamma(1-\alpha/2)^{-1} \) and \(b \in \mathbb{R}, \; \text{for } u, v \in \mathcal{F} /[7]. \)

\(\varepsilon^D(u, v) \) comes from variational formulation and symmetry, and

\[\mathcal{F} := W_0^{\alpha_2, 2}(D) := \left\{ u \in L^2(D; dx) : \int_{D^2} (u(x)-u(y))^2 \left(\frac{A(-\alpha_2)}{|x-y|^{1+\alpha_2}} + \frac{b}{|x-y|^{1+\alpha_1}} \right) \; dx dy < \infty \right\}. \]
Following [6], a weak solution of Problem (2.1) is given by the following formula

\[
\begin{align*}
u(t,x) &= \int_0^\infty \mathbb{E}_x \left[f(Z_s); s < \tau_D \right] f_t(s) ds \\
&= \int_0^\infty \left(\sum_{n=1}^\infty e^{-\mu_n t} \langle f, \phi_n \rangle \phi_n(x) \right) f_t(s) ds \\
&= \sum_{n=1}^\infty E_{\beta}(-\mu_n t^\beta) \langle f, \phi_n \rangle \phi_n(x),
\end{align*}
\]

(2.3)

where \(f_t(.) \) is defined in [6, (2.1)], \(\tau_D \) is defined later in (2.14), \((\mu_n)_{n \geq 1} \) is a sequence of positive numbers satisfying \(0 < \mu_1 \leq \mu_2 \leq \cdots \) and \((\psi_n)_{n \geq 1} \) is an orthonormal basis of \(L^2(D) \), satisfying the following system of equations

\[
\begin{align*}
\mathcal{L}_D \psi_n &= -\mu_n \psi_n \quad \text{on } D \\
\psi_n &= 0 \quad \text{on } \partial D.
\end{align*}
\]

(2.4)

Hence, any function \(f \in L^2(D; dx) \) has the representation

\[
f(x) = \sum_{n=1}^\infty \langle f, \phi_n \rangle \phi_n(x).
\]

(2.5)

Using the spectral representation, one has

\[
\text{Dom}(\mathcal{L}_D) = \left\{ f \in L^2(D) : \| \mathcal{L}_D f \|_{L^2(D)}^2 = \sum_{n=1}^\infty \mu_n^2 \langle f, \phi_n \rangle^2 < \infty \right\}
\]

(2.6)

and

\[
\mathcal{L}_D f(x) = -\sum_{n=1}^\infty \mu_n \langle f, \phi_n \rangle \phi_n(x).
\]

For any real-valued function \(\phi : \mathbb{R} \to \mathbb{R} \), one can also define the operator \(\phi(\mathcal{L}_D) \) as follows:

\[
\text{Dom}(\phi(\mathcal{L}_D)) = \left\{ f \in L^2(D) : \| \phi(\mathcal{L}_D) f \|_{L^2(D)}^2 = \sum_{n=1}^\infty \phi(\mu_n)^2 \langle f, \phi_n \rangle^2 < \infty \right\}
\]

(2.7)

and

\[
\phi(\mathcal{L}_D) f = \sum_{n=1}^\infty \phi(\mu_n) \langle f, \phi_n \rangle \phi_n.
\]

(2.8)

For the remainder of this article, we will use \(\phi(t) = t^k \) for some \(k > 0 \). For technical reasons (cf. proof of main Theorem), we also restrict \(f \) to the class of functions satisfying

\[
\langle f, \phi_n \rangle > 0, \ n \geq 1 \quad \text{or} \quad \langle f, \phi_n \rangle < 0, \ n \geq 1.
\]

(2.9)

The following lemma indicates an important property of the Mittag-Leffler function. It will be used frequently in the sequel.
Lemma 2.2. For each $0 < \alpha < 2$ and $\pi/2 < \mu < \min(\pi, \pi\alpha)$, there exists a constant $C_0 > 0$ such that

$$|E_\beta(z)| \leq \frac{C_0}{1 + |z|}, \quad \mu \leq |\arg(z)| \leq \pi. \quad (2.10)$$

Theorem 2.3. The eigenvalues of the spectral problem for the one-dimensional double fractional Laplace operator, i.e. $(-\Delta)^{\alpha_1}u(x) + (-\Delta)^{\alpha_2}u(x) = \mu_n u(x)$ in the interval $D \subset \mathbb{R}$ satisfy the following bounds

$$c_1(n^{\alpha_1} + n^{\alpha_2}) \leq \mu_n \leq c_2(n^{\alpha_1} + n^{\alpha_2}), \quad \text{for all } n \geq 1 \text{ and } c_1, c_2 > 0. \quad (2.11)$$

Proof. This follows easily from [5, Theorem 4.4] by taking $\phi(s) = s^{\alpha_1} + s^{\alpha_2}$. \hfill \Box

For the existence of a solution to (2.1), we now show that the series given in (2.3) is uniformly convergent for $(t,x) \in (0,T] \times (-1,1)$. To this aim, we use the following Lemma giving bounds for the eigenvalues and eigenfunctions:

Lemma 2.4. Suppose that the initial value f in (2.1) is such that $f \in \text{Dom}(\phi(L_D^k))$ for $k > -1 + \frac{3}{2\alpha_2}$. Let (μ_n, φ_n) be the eigenpair from (2.4), then

$$\begin{align*}
|\langle f, \varphi_n \rangle| &\leq \sqrt{M\mu_n^{-k}} \\
|\varphi_n(x)| &\leq c_3 \left(\mu_n^{1/2\alpha_1} \wedge \mu_n^{1/2\alpha_2} \right),
\end{align*} \quad (2.12)$$

where

$$M := \sum_{n=1}^{\infty} \mu_n^{2k} |\langle f, \varphi_n \rangle|^2 < \infty \quad \text{and} \quad c_3 > 0.$$

Proof. The first bound in (2.12) follows directly from the definition of M. So we only show the second bound.

Recall that the fundamental solution $p(t,x,y)$, also referred to as the heat kernel of L, is the unique solution to

$$\partial_t u = Lu. \quad (2.13)$$

It represents the transition density function of Z. Denote the first exit time of the process Z by

$$\tau_D := \inf\{t \geq 0 : Z_t \notin D\}. \quad (2.14)$$

Let Z_D^τ denote the process Z "killed" upon exiting D, i.e.

$$Z_D^\tau := \begin{cases} Z_t, & t < \tau_D \\ \partial, & t \geq \tau_D \end{cases} \quad (2.15)$$
Here, ∂ is a cemetery point added to D. Throughout this paper, we use the convention that any real-valued function f can be extended by taking $f(\partial) = 0$. Then Z^D has a jointly continuous transition density function $p_D(t, x, y)$. Moreover, by the strong Markov property of Z, one has for $t > 0$ and $x, y \in D$,

\begin{equation}
(2.16) \quad p_D(t, x, y) = p(t, x, y) - E[p(t - \tau_D, X_{\tau_D}, y); t < \tau_D] \leq p(t, x, y).
\end{equation}

By [4, (1.4)],

\begin{equation}
(2.17) \quad p(t, x, y) \asymp \left(t^{-1/\alpha_1} \wedge t^{-1/\alpha_2} \right) \wedge \left(\frac{t}{|x - y|^{1+\alpha_1}} + \frac{t}{|x - y|^{1+\alpha_2}} \right).
\end{equation}

In particular, one has $\sup_{x \in D} \int_D p(t, x, y)^2 dy \leq \infty$ for all $t > 0$. Denote by $\{p^D_t, t \geq 0\}$ the transition semigroup of Z^D, i.e

\begin{equation*}
p^D_t f(x) = \int_D p_D(t, x, y) f(y) dy.
\end{equation*}

It is well known (cf. [9]) that $u(t, x) = p^D_t f(x)$ is the unique weak solution to

\begin{equation*}
\partial_t u = \mathcal{L}_D u
\end{equation*}

with initial condition $u(0, x) = f(x)$ on the Hilbert space $L^2(D; dx)$. Therefore, for each $t > 0$, p^D_t is a Hilbert-Schmidt operator in $L^2(D; dx)$ so it is compact [6]. Consequently, for the eigenpair defined in (2.4), we have $p^D_t \varphi_n = e^{-\mu_n t} \varphi_n$ in $L^2(D; dx)$ for $n \geq 1$ and $t > 0$. Combining this with (2.5), it follows that

\begin{equation*}
p^D_t f(x) = \sum_{n=1}^{\infty} \langle f, \varphi_n \rangle p^D_t \varphi_n = \sum_{n=1}^{\infty} e^{-\mu_n t} \langle f, \varphi_n \rangle \varphi_n.
\end{equation*}

In particular, the transition density $p_D(t, x, y)$ is given by

\begin{equation}
(2.18) \quad p_D(t, x, y) = \sum_{n=1}^{\infty} e^{-\mu_n t} \varphi_n(x) \varphi_n(y).
\end{equation}

Next,

\begin{equation*}
e^{-\mu_n t} |\varphi_n(x)|^2 \leq \sum_{m=1}^{\infty} e^{-\mu_n t} |\varphi_m(x)|^2 = p_D(t, x, x) \leq p(t, x, x) \leq C_1 \left(t^{-1/\alpha_1} \wedge t^{-1/\alpha_2} \right).
\end{equation*}

Hence, taking the square root of both sides, we get

\begin{equation}
(2.19) \quad |\varphi_n(x)| \leq C_2 e^{\mu_n t/2} \sqrt{t^{-1/\alpha_1} \wedge t^{-1/\alpha_2}}.
\end{equation}
Finally, taking $t = \mu_n^{-1}$ concludes the proof.

With everything set, we can now proceed to show the uniform convergence of the series given in (2.3). In fact, using (2.10), (2.11) and (2.12), we have

\[
\sum_{n=1}^{\infty} \max_{x \in D} \left| E_{\beta}(-\mu_n t^\beta) \langle f, \varphi_n(x) \rangle \right| \leq \sqrt{MC} \sum_{n=1}^{\infty} \frac{1}{1 + |\mu_n t^\beta|} \mu_n^{-k} \left(\mu_n^{1/2\alpha_1} \wedge \mu_n^{1/2\alpha_2} \right)
\]

by our choice of k in Lemma 2.4. This shows that the series in (2.3) is uniformly convergent.

We are now ready to state and prove our main result.

3 Statement and proof of the main result

We open this section straight with our main result. We then provide its proof.

Theorem 3.1. Let u be the weak solution of (2.1) and let v be the weak solution of the following problem

\[
\begin{align*}
\frac{\partial^\gamma v(t,x)}{\partial t^\gamma} & = -(-\Delta)^{n/2} v(t,x) - (-\Delta)^{\eta_2/2} v(t,x), \quad x \in D, \quad 0 < t < T, \\
v(t,x) & = 0, \quad x \in D^c, \quad 0 < t < T, \\
v(0,x) & = f(x), \quad x \in D.
\end{align*}
\]

If $u(t,0) = v(t,0)$, $0 < t < T$ and (2.9) holds, then

$\beta = \gamma$ and $\alpha_i = \eta_i$, $i = 1, 2$.

Proof. The proof follows a similar argument as in [21]. Using the explicit formula (2.3), the weak solutions u and v can be written as

\[
u(t,x) = \sum_{n=1}^{\infty} E_{\beta}(-\mu_n t^\beta) \langle f, \varphi_n(x) \rangle \varphi_n(x)
\]

and

\[
v(t,x) = \sum_{n=1}^{\infty} E_{\gamma}(-\lambda_n t^\gamma) \langle f, \psi_n(x) \rangle \psi_n(x),
\]

where the eigenpairs $\left(\mu_n, \varphi_n \right)$ and $\left(\lambda_n, \psi_n \right)$ satisfy
\[
\begin{aligned}
\mathcal{L}_D \varphi_n &= -\mu_n \varphi_n \quad \text{on } D, \\
\varphi_n &= 0 \quad \text{on } D^c
\end{aligned}
\]

and
\[
\begin{aligned}
\mathcal{L}_D^{\eta_1; \eta_2} \psi_n &= -\lambda_n \psi_n \quad \text{on } D, \\
\psi_n &= 0 \quad \text{on } D^c,
\end{aligned}
\]

where \(\mathcal{L}_D^{\eta_1; \eta_2} \) is the operator \(\mathcal{L}_D \) with \(\eta_1 \) and \(\eta_2 \) replacing the fractional exponents. Without loss of generality, we can normalize the eigenfunctions such that \(\varphi_n(0) = \psi_n(0) = 1 \) for all \(n \geq 1 \). This implies that

\[
\sum_{n=1}^{\infty} E_\beta(-\mu_n t^\beta) \langle f, \varphi_n \rangle = \sum_{n=1}^{\infty} E_\gamma(-\lambda_n t^\gamma) \langle f, \psi_n \rangle
\]

if we assume that \(u(t, 0) = v(t, 0) \).

Next, we use the following asymptotic property of the Mittag-Leffler function \([11, 16]\)

\[
E_l(-t) = \frac{1}{t^{1-l}} + O(|t|^{-2}), \quad 0 < l < 1.
\]

Combining (2.11) and (3.5), we get

\[
\sum_{n=1}^{\infty} \left| E_\beta(-\mu_n t^\beta) - \frac{1}{\Gamma(1-\beta)} \frac{1}{\mu_n t^\beta} \right| \leq C t^{-2\beta}.
\]

By adding and subtracting the term \(\frac{1}{\Gamma(1-\beta)} \frac{1}{\mu_n t^\beta} \) in the left side term in (3.4), we get the following asymptotic equation

\[
\sum_{n=1}^{\infty} E_\beta(-\mu_n t^\beta) \langle f, \varphi_n \rangle = \sum_{n=1}^{\infty} \langle f, \varphi_n \rangle \left[\frac{1}{\Gamma(1-\beta)} \frac{1}{\mu_n t^\beta} + E_\beta(-\mu_n t^\beta) - \frac{1}{\Gamma(1-\beta)} \frac{1}{\mu_n t^\beta} \right]
\]

\[
= \sum_{n=1}^{\infty} \langle f, \varphi_n \rangle \frac{1}{\Gamma(1-\beta)} \frac{1}{\mu_n t^\beta} + O(|t|^{-2\beta}).
\]

Similarly,

\[
\sum_{n=1}^{\infty} E_\gamma(-\lambda_n t^\gamma) \langle f, \psi_n \rangle = \sum_{n=1}^{\infty} \langle f, \psi_n \rangle \left[\frac{1}{\Gamma(1-\gamma)} \frac{1}{\lambda_n t^\gamma} + E_\gamma(-\lambda_n t^\gamma) - \frac{1}{\Gamma(1-\gamma)} \frac{1}{\lambda_n t^\gamma} \right]
\]

\[
= \sum_{n=1}^{\infty} \langle f, \psi_n \rangle \frac{1}{\Gamma(1-\gamma)} \frac{1}{\lambda_n t^\gamma} + O(|t|^{-2\gamma}).
\]
Now combining (3.4), (3.7) and (3.8), we get, as $t \to \infty$

$$\sum_{n=1}^{\infty} \langle f, \varphi_n \rangle \frac{1}{\Gamma(1-\beta) \mu_n t^\beta} + O(|t|^{-2\beta}) = \sum_{n=1}^{\infty} \langle f, \psi_n \rangle \frac{1}{\Gamma(1-\gamma) \lambda_n t^\gamma} + O(|t|^{-2\gamma}). \quad (3.9)$$

Now assume, for example, that $\beta > \gamma$. Then multiply (3.9) by t^γ to get

$$-t^{\gamma-\beta} \sum_{n=1}^{\infty} \langle f, \varphi_n \rangle \frac{1}{\Gamma(1-\beta) \mu_n} + O(|t|^{\gamma-2\beta}) + \sum_{n=1}^{\infty} \langle f, \psi_n \rangle \frac{1}{\Gamma(1-\gamma) \lambda_n} + O(|t|^{-\gamma}) = 0. \quad (3.10)$$

Letting $t \to \infty$ in (3.10) yields

$$\sum_{n=1}^{\infty} \langle f, \psi_n \rangle \frac{1}{\Gamma(1-\gamma) \lambda_n} = 0: \ a \ contradiction \ to \ (2.9)! \quad (3.11)$$

Similarly, assuming $\gamma > \beta$ also leads to a contradiction. Thus $\beta = \gamma$.

We now prove the second part of the Theorem, i.e $\alpha_i = \eta_i$, $i = 1, 2$. To this aim, we will show that $\mu_n = \lambda_n$ for all $n \geq 1$.

Since $\beta = \gamma$, (3.4) becomes

$$\sum_{n=1}^{\infty} E_\beta(-\mu_n t^\beta) \langle f, \varphi_n \rangle = \sum_{n=1}^{\infty} E_\beta(-\lambda_n t^\beta) \langle f, \psi_n \rangle. \quad (3.12)$$

Taking the Laplace transform of $E_\beta(-\mu_n t^\beta)$ yields

$$\int_0^\infty e^{-zt} E_\beta(-\mu_n t^\beta) dt = \frac{z^{\beta-1}}{z^{\beta} + \mu_n}, \ Re \ z > 0. \quad (3.13)$$

Furthermore, taking the Laplace transform of the Mittag-Leffler function term by term, we get

$$\int_0^\infty e^{-zt} E_\beta(-\lambda_n t^\beta) dt = \frac{z^{\beta-1}}{z^{\beta} + \lambda_n}, \ Re \ z > \mu_n^{1/\beta}. \quad (3.14)$$

It follows that $\sup_{t \geq 0} |E_\beta(-\mu_n t^\beta)| < \infty$ by (2.10). This implies that $\int_0^\infty e^{-zt} E_\beta(-\mu_n t^\beta) dt$ is analytic in the domain $Re \ z > \mu_n^{1/\beta}$. Then by analytic continuity, $\int_0^\infty e^{-zt} E_\beta(-\mu_n t^\beta) dt$ is analytic in the domain $Re \ z > 0$.

Using (2.10), (2.11), (2.12) and Lebesgue’s convergence Theorem, we get that $e^{-t Re z t^\beta}$ is integrable for $t \in (0, \infty)$ with fixed z such that $Re \ z > 0$.

10
and

\[|e^{-t\text{Re}z} \sum_{n=1}^{\infty} E_{\beta}(-\mu_n t^\beta) \langle f, \varphi_n \rangle| \leq C_0 e^{-t\text{Re}z} \left(\sum_{n=1}^{\infty} \langle f, \varphi_n \rangle \frac{1}{\mu_n t^\beta} \right) \]

\[\leq C_0' e^{-t\text{Re}z} t^{-\beta} \sum_{n=1}^{\infty} n^{-\alpha_2(k+1)} < \infty \]

by the choice of \(k \) in (2.12).

Next, for \(\text{Re} z > 0 \), we have

(3.15)

\[\int_0^\infty e^{-t\text{Re}z} \sum_{n=1}^{\infty} E_{\beta}(-\mu_n t^\beta) \langle f, \varphi_n \rangle dt = \sum_{n=1}^{\infty} \langle f, \varphi_n \rangle \frac{z^{\beta-1}}{z^\beta + \mu_n} \]

Similarly,

(3.16)

\[\int_0^\infty e^{-t\text{Re}z} \sum_{n=1}^{\infty} E_{\beta}(-\lambda_n t^\beta) \langle f, \psi_n \rangle dt = \sum_{n=1}^{\infty} \langle f, \psi_n \rangle \frac{z^{\beta-1}}{z^\beta + \lambda_n} \]

This means, by (3.12), (3.15) and (3.16),

(3.17)

\[\sum_{n=1}^{\infty} \frac{\langle f, \varphi_n \rangle}{\rho + \mu_n} = \sum_{n=1}^{\infty} \frac{\langle f, \psi_n \rangle}{\rho + \lambda_n}, \quad \text{Re} \rho > 0. \]

Since we can continue analytically (in \(\rho \)) both series in (3.17), this equality actually holds for \(\rho \in \mathbb{C} - \left(\{\mu_n\}_{n \geq 1} \cup \{\lambda_n\}_{n \geq 1} \right) \).

We are now ready to show that \(\mu_n = \lambda_n \) for all \(n \geq 1 \). We proceed by induction:

Without loss of generally, assume \(\mu_1 < \lambda_1 \). Thus we can find a suitable disk containing \(-\mu_1\) but not \(\{-\mu_n\}_{n \geq 2} \cup \{-\lambda_n\}_{n \geq 1} \). Then integrating (3.17) over this disk, by the Cauchy’s integral formula, we get

\[2\pi i \langle f, \varphi_1 \rangle = 0 : \] this is a clear contradiction to (2.9).

This means that \(\mu_1 = \lambda_1 \) since the reverse inequality would also lead to a contradiction.

A similar argument yields \(\mu_2 = \lambda_2 \). Inductively, we deduce that

(3.18)

\[\mu_n = \lambda_n \quad \text{for all } n \geq 1. \]

This also means that

(3.19)

\[c_1(n^{\alpha_1} + n^{\alpha_2}) \leq \mu_n \leq c_2(n^{\alpha_1} + n^{\alpha_2}) \]

and

11
(3.20) \[c_3(n^{\eta_1} + n^{\eta_2}) \leq \mu_n \leq c_4(n^{\eta_1} + n^{\eta_2}), \] where \(c_i > 0, i = 1, 2, 3, 4. \)

Assume for example that \(\alpha_2 < \eta_2 \), then combining (3.19) and (3.20) yields
\[
c_3' n^{\eta_2} \leq \mu_n \leq c_4' n^{\alpha_2}, \text{ for all } n \geq 1: \text{ a contradiction!}
\]

Therefore \(\alpha_2 = \eta_2 \) since the reverse inequality would also lead to a contradiction.

Similarly, assuming \(\alpha_1 > \eta_1 \) and combining (3.19) and (3.20) gives
\[
c_1(n^{\alpha_1} + n^{\alpha_2}) \leq c_4(n^{\eta_1} + n^{\eta_2}), \text{ for all } n \geq 1: \text{ a contradiction!}
\]

Thus \(\alpha_1 = \eta_1 \) and this concludes the proof. \(\square \)
References

[1] R. M. Blumenthal, R. K. Getoor. Asymptotic distribution of the eigenvalues for a class of Markov operators. Pacific J. Math., 9:399–408, 1959.

[2] M. Caputo. Linear models of diffusion whose Q is almost frequency independent, part II. Geophys. J. R. Astron. Soc., 13:529–539, 1967.

[3] J. Chen, J. Nakagawa, M. Yamamoto and T. Yamazaki. Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inv. Prob., 25:115–131, 2009.

[4] Z-Q. Chen, P. Kim and R. Song. Dirichlet heat kernel estimates for $\Delta^{\alpha/2} + \Delta^{\beta/2}$. Ill. J. Math, vol 54 (2010) 1357-1392

[5] Z-Q. Chen and R. Song. Two-sided eigenvalue estimates for subordinate processes in domains. J. Func. Ana. 226 (2005) 90-113.

[6] Z-Q. Chen, M. M. Meerschaert and E. Nane. Space-time fractional diffusion on bounded domains. J. Math. Ana. Appl., 393:479–488, 2012.

[7] S. Cho, P. Kim, R. Song and Z. Vondraček. Factorization and estimates of Dirichlet heat kernels for non-local operators with critical killings. arXiv: 1809.01782v1 (2018).

[8] S. D. Eidelman, S. D. Ivasyshen, A. N. Kochubei. Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type. Birkhäuser, Basel, 2004.

[9] M. Fukushima, Y. Oshima and M. Takeda. Dirichlet forms and symmetric Markov processes. de Gruyter, Berlin, 1994.

[10] B. Jin, and W. Rundell. An inverse problem for a one-dimensional time-fractional diffusion problem. Inv. Prob., 28:075010, 2012.

[11] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006.

[12] M. Kwasnicki. Eigenvalues of the fractional Laplace operator in the interval. J. Func. Ana., 262:2379–2402, 2012.

[13] J.J Liu and M. Yamamato. A backward problem for the time-fractional diffusion equation. Appl. Ana., 89:1769-1788, 2010.

[14] F. Mainardi, Y. Luchko and G. Pagnini. The fundamental solution of the space-time fractional diffusion equation. Fract. Cal. Appl. Ana., 4:153-192, 2001.

[15] M. M. Meerschaert, D. A. Benson, H.-P. Scheffler and B. Baemer. Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E, 65, 2002.

[16] I. Podlubny. Fractional Differential Equations. Academic Press, San Diego, 1999.
[17] K. Sakamoto and M. Yamamato Inverse source problem with a final overdetermination for a fractional diffusion equation. *Math. Cont. Rel. Fiel.*, 4:509-518, 2011.

[18] K. Sakamoto and M. Yamamato Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems *J. Math. Ana. Appl.*, 382:426-447, 2011.

[19] S.G. Samko, A.A. Kilbas and O.I. Marichev. Fractional Integrals and Derivatives: Theory and Applications. *Taylor & Francis*, 1983.

[20] S. Tatar, R. Tinaztepe and S. Ulusoy. *simultaneous inversion for the exponents of the fractional time and space derivatives in the space-time fractional diffusion equation*. *Appl. Ana.* (2014).

[21] S. Tatar and S. Ulusoy. *A uniqueness result for an inverse problem in a space-time fractional diffusion equation*. *Elec. J. Diff. Eq*, Vol. 2013 (2013), No. 258, P. 1-9

[22] X. Xu, J. Cheng and M. Yamamato Carleman esimate for a fractional diffusion equation with half order and application. *Appl. Ana.*, 90:1355-1371, 2011.

[23] M. Yamamato and Y. Zhang Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate. *Inv.Prob.*, 28:105010, 2012.

[24] Y. Zhang, and X. Xu. Inverse source problem for a fractional diffusion equation. *Inv. Prob.*, 27:035010, 2011.

NGARTELBAYE GUERNGAR
DEPARTMENT OF MATHEMATICS AND STATISTICS, AUBURN UNIVERSITY, AUBURN, AL 36849
E-mail address: nzg0017@auburn.edu
URL: https://www.researchgate.net/profile/Ngartelbaye_Guerngar

ERKAN NANE
DEPARTMENT OF MATHEMATICS AND STATISTICS, AUBURN UNIVERSITY, AUBURN, AL 36849
E-mail address: ezn0001@auburn.edu
URL: http://www.auburn.edu/~ezn0001

SÜLEYMAN ULUSOY
DEPARTMENT OF MATHEMATICS AND NATURAL SCIENCES, AMERICAN UNIVERSITY OF RAS AL KHAIMAH, RAS AL KHAIMAH, UAE
E-mail address: suleyman.ulusoy@aurak.ac.ae
URL: https://www.researchgate.net/profile/Suleyman_Ulusoy