1. INTRODUCTION

Newly formed stars drive copious mass back into the environments that gave them birth. Stars at the ends of their lives also drive strong outflows into the interstellar medium. Mass loss from young stellar objects (YSOs) takes the form of highly collimated Herbig-Haro jets and molecular outflows (Reipurth & Bally 2001), while in low-mass, evolved stars, mass loss takes the form of proto-planetary and planetary nebulae (PPNs and PNs; Balick 2000). High-resolution observations of PPNs and PNs have revealed outflow features that are very similar to those found in YSOs (Sahai 2000). In particular, recent visible and molecular observations of PPNs and young PNs have revealed the presence of both well-collimated jets and broader windswept bubbles. Even though PNs and YSOs are at different extremes of stellar evolution, the similarity manifested in their mass loss raises intriguing questions about the processes driving and shaping their outflows. For example, outflows from PPNs appear to have more momentum than can be supplied by the central star’s luminosity ($L_*/c << MV$; Alcolea et al. 2000), a situation that also occurs in YSOs. Recently, it has been shown that PPNs’ winds may derive their acceleration and collimation from the same magnetohydrodynamic (MHD) forces believed to be at work in YSOs (Blackman, Frank, & Welch 2001). This, thus, exists the possibility that a cross-fertilization between the two fields may yield some insights into the origins of magnetized winds and their dynamical interaction with the surrounding media. In this paper we focus on one specific issue in the study of stellar outflows: the role of shocked magnetic fields in shaping windblown bubbles.

Windblown bubbles have long been part of the theoretical explanation for PNs. The interaction of a fast wind from the hot central star of a PN with a slower, denser, and possibly aspherical asymptotic giant branch wind has been successful at explaining many properties of spherical PNs (Kwok, Purton, & Fitzgerald 1978; Kahn & West 1985; Balick 1987; Icke 1988; Frank et al. 1993; Mellema 1997). New images of PPNs and young PNs, however, show features that cannot be explained with a purely hydrodynamic interacting stellar wind model (Delamarter, Frank, & Hartmann 2000). With an eye toward understanding the intermediate- to large-scale shaping of PNs, Chevalier & Luo (1994) drew attention to the role of shock-amplified toroidal magnetic fields in the windblown bubble scenario. We will refer to this as the magnetized windblown bubble (MWB) model. A number of MWB studies (Różycka & Franco 1996; Garcia-Segura 1997; Garcia-Segura et al. 1999) have demonstrated the model’s ability to create a rich variety of structures in the shocked regions of the flow. A central assumption of the MWB model, however, is that the magnetic field strength in the central wind is sufficiently weak that intrinsic MHD collimation can be ignored. Gardiner & Frank (2001) recently studied the role of intrinsic collimation in the magnetized central wind, showing that for many cases of interest, the freely expanding wind may experience significant collimation before it passes through the wind shock. In this paper we borrow the central idea from Chevalier & Luo (1994) regarding the shock amplification of toroidal magnetic fields and use the results of Gardiner & Frank (2001) to explore MHD, wide-angle wind-driven outflows from YSOs.

Windblown bubbles have also been invoked to explain YSO outflows. Shu et al. (1991) presented a model wherein a radially directed wind from a central source sweeps up strongly cooling ambient material like a snowplow. This snowplow model was critically examined by Masson & Chernin (1992), who noted that without extreme choices for the angular variation of ambient density and wind momentum it is difficult to match the observed mass versus velocity relation. They concluded that the driving force was unlikely to originate from a wide-angle wind, but rather from a collimated, and possibly precessing, jet (Chernin & Masson 1995). Li & Shu (1996b), however, found that taking the
wind parameters from the X-wind model (Shu et al. 1995) and the ambient density as described by Li & Shu (1996b) an improved agreement with observations could be found.

More recently, Matzner & McKee (1999) have argued that the asymptotic form of the density and toroidal magnetic field strength in the X-wind model (Shu et al. 1995) is generally applicable to all MHD outflows. Moreover, they argue that the power-law mass versus velocity relations typically observed for molecular outflows are recovered for a wide variety of ambient density distributions.

More recently, Delamarter et al. (2000) used time-dependent, purely hydrodynamic simulations of winds driven into infalling environments, characteristic of YSOs (Hartmann, Calvet, & Boss 1996), to study very young outflows (Wilkin & Stahler 1998). It was concluded that the snowflow model could not embrace nonlinear effects, which may yield changes in momentum distributions in the resultant outflows. Delamarter et al. (2000) focused on the effect of shock focusing, where the wind strikes the bubble shell obliquely and is redirected to flow along the walls of the shell. The flow of shocked wind material toward the poles has the effect of substantially changing the bubble’s morphology and evolution from that obtained in a simple snowflow model. In addition, it was found that inflow pressure produced significant collimation. In a different set of purely hydrodynamic simulations, Lee et al. (2001) examine both wind-driven and jet-driven models, concluding that only some observed outflows have properties consistent with wide-angle winds. Their windblown bubble simulations do not, however, include infall, and their use of an isothermal equation of state produces what appear to be very thin bubble shells. It is not clear whether shock focusing could become manifest in such conditions. Thus, even in pure hydrodynamic models the applicability of windblown models remains an open issue.

Magnetic forces are expected to play a central role in launching and collimating YSO (and perhaps PPN) winds. Steady state models of MHD winds have been quite successful at articulating their characteristic distributions of mass and momentum (Shu et al. 1995; Pudritz & Königl 2000). These models rely on a detailed solution of cross-field force balance via the Grad-Shafranov equation (Shu et al. 1991). Interaction with an ambient medium will alter this distribution as the wind passes through the shock bounding the inner edge of the outflow shell. The subsequent redistribution of mass, momentum, and magnetic energy, as the plasma seeks equilibrium, will alter downstream (post-shock) regions of the flow from what might be expected via steady MHD wind models. If the sources are variable, substantial portions of the outflow cavities may behave differently as well. Thus, the time-dependent interaction of MHD winds with their environments is a rich subject with important consequences for both YSOs and PNs.

In this paper we describe a set of calculations aimed at elucidating the interaction of MHD winds from a central source with a collapsing environment applicable to YSOs. We show that magnetized wide-angle winds differ significantly from their hydrodynamic counterparts and offer a viable explanation for molecular outflows even for slow magnetic rotators. This paper focuses only on the flow pattern achieved in the simulations. In a second paper we plan to discuss observational consequences of MHD wind-driven outflows. We also note that because of the difficulty in treating magnetocentrifugally driven winds ab initio in larger scale simulations we choose magnetic field strengths in the wind consistent with slow magnetic rotators. While MHD-launched winds will be in the fast rotator regime, our results, relying on toroidal pinch effects, will hold for stronger field strengths. This level of abstraction allows us to isolate key effects in the evolution of magnetized winds that will result regardless of the field strengths and builds on previous studies, which only considered purely hydrodynamic winds (Delamarter et al. 2000; Lee et al. 2001).

2. SIMULATION DETAILS

We present axisymmetric (2.5-dimensional) numerical simulations calculated with a recently constructed Godunov-type scheme for the system of ideal MHD. We implement the “Positive Scheme” (Liu & Lax 1996; Lax & Liu 1998), which makes use of a Roe linearized Jacobian matrix (e.g., Cargo & Gallice 1997). Optically thin radiative cooling is included by making use of the Dalgarno-McCray coronal cooling curve in tabulated form. Below 10^4 K the cooling is turned off. The cooling is implicitly differenced and solved using Brent’s algorithm (Press et al. 1995, p. 359). The gravitational field of a central source is included using a first-order, explicit Euler step. The cooling and gravitational terms are operator split from the MHD integration. The system of ideal MHD is integrated in an unsplit (directional splitting) fashion, and second-order accuracy is obtained through the Runge-Kutta method of Shu & Osher (1989).

The simulations presented here build directly on the work of Delamarter et al. (2000). They defined the parameter $f' = \frac{M_t}{M_w}$, the ratio of the inflow mass flux to the wind mass flux, as a measure of the strength of the outflow and studied $10 \leq f' \leq 50$. In this paper we will use the $f' = 10$ configuration as a starting point. (Note that Table 1 in that paper contains typographical errors such that the infall mass flux should read M_t and be in units of $10^{-7} M_\odot$ yr$^{-1}$ rather than $10^{-6} M_\odot$ yr$^{-1}$.) The environment used in this study, and that of Delamarter et al. (2000), is initialized using the model of a collapsing, rotating, axially symmetric sheet as described by Hartmann et al. (1996). For a detailed description of the model and its comparison with hydrodynamic collapse calculations, see Hartmann et al. (1996). The model parameters include a central mass $M_* = 0.21 M_\odot$, a collapse radius $r_0 = 5.37 \times 10^{16}$ cm, a flattening parameter $\eta = 2.5$, a centrifugal radius $R_c = 4.28 \times 10^{14}$ cm, an infall mass flux $M_i = 10^{-6} M_\odot$ yr$^{-1}$, and an ambient temperature of 10 K. The central wind has a mass-loss rate of $10^{-7} M_\odot$ yr$^{-1}$, a wind velocity of 200 km s$^{-1}$, and a temperature of 10^4 K. This model is extended in two ways. First, a magnetic field, which is believed to be the principal agent for wind launching and collimation, is introduced into the wind. Second, an angular variation of the wind density and magnetic field strength is introduced, which is consistent with magnetic collimation at small radii.

It is straightforward to show from the ϕ-component of the induction equation and the momentum equation that for $r \gg R_A$, where r is the spherical radius and R_A is the Alfvén radius,

$$\frac{B_\phi}{B_r} \approx -\frac{r \Omega \sin \theta}{v_r}.$$
The other parameters in this equation are Ω, the angular velocity at the base of the wind, and v_r, the radial wind velocity. This expression assumes a radially directed wind and solid-body rotation. From the expression above we find that the toroidal field will likely dominate over the poloidal. Thus, for $\sin \theta = 1/\sqrt{2}$, $v_r = 200$ km s$^{-1}$, $r = 13$ AU we find $B_0/B_r \sim 6 \times 10^6 \Omega$, where $\Omega = 2\pi/r$ and r is the rotational period in seconds. It is not immediately clear which rotational period should be used in these expressions, the stellar rotational period or the period of the gas in orbit around the YSO at a few stellar radii. For example, using the Sun’s rotational period of 25 days we find $B_0/B_r \sim 20$. The higher rotation rates associated with YSOs should lead to stronger field ratios than calculated above, and it is likely that $B_0/B_r > 100$. Moreover, in the presence of cooling the post-shock toroidal field strength can be amplified by orders of magnitude over its preshock value. Thus, we begin our calculations by approximating the magnetic field in the wind as being purely toroidal.

An MHD wind is typically classified as a “slow” or “fast” magnetic rotator according to the relative importance of the magnetic stresses in accelerating the wind. Belcher & MacGregor (1976) defined this classification in terms of the Michell velocity V_m (Michell 1969) and the Parker velocity V_p, where V_p is defined as the velocity at infinity in the absence of rotation. Slow magnetic rotators have $V_m \ll V_p$, while fast magnetic rotators have $V_m \gg V_p$.

In the calculations presented here, the strength of the toroidal magnetic field is controlled by the parameter $\sigma = (V_m/V_\infty)^{1/3}$, where V_∞ is the asymptotic wind velocity. In this study we will be primarily concerned with slow magnetic rotators, i.e., $\sigma \ll 1$. As we will see, since the magnetic field will come to strongly influence the evolution of the outflow, our results will be valid for fast rotators (and their stronger initial fields) as well.

The angular variation of the wind density and magnetic field is parameterized by χ, the ratio of the density at the pole ($\theta = 0$) to the density at the equator ($\theta = \pi/2$) in the wind. We refer to this ratio as the pole-to-equator density contrast and study the range of $1 \leq \chi \leq 100$. Given these two parameters, σ and χ, the wind density

$$\rho(r, \theta) = \left(\frac{M}{4\pi r^2 V_\infty} \right) \left(\frac{\sqrt{\chi}}{\chi \sin^2 \theta + \cos^2 \theta} \right),$$

(2)

and the toroidal magnetic field component

$$B_\phi(r, \theta) = \left(\frac{\sqrt{\sigma M V_\infty} \sin \theta}{r} \right) \left(\frac{\sqrt{\chi}}{\chi \sin^2 \theta + \cos^2 \theta} \right).$$

(3)

In these expressions we have assumed that r is sufficiently large that the radial component of the wind velocity $v_r \approx V_\infty$. For $\chi = 1$ we obtain the classic split monopole, spherically symmetric wind conditions. For $(\chi - 1) \sin^2 \theta > 1$ the density and toroidal field strength take the form $B_\phi \propto 1/\omega$ and $\rho \propto 1/\omega^2$, where $\omega = r \sin \theta$. This form is consistent with the asymptotic form of the X-wind solution (Shu et al. 1995), and in this way the parameter χ models the intrinsic magnetic collimation at small radii. The parameters χ and σ are not actually independent of one another but rather are connected through a self-consistent solution at small radii, i.e., the launching and collimation process. However, since a complete simulation of the wind launching, collimation, and propagation is beyond the scope of this paper, we will treat them as weakly independent.

A few details remain to complete the specification of the wind. The “wind sphere” (the boundary on which the wind conditions are set) has a radius of 11.25 AU, or 30 grid cells. The toroidal magnetic field strength as shown above gives rise to a current sheet at the equator ($\theta = \pi/2$). To smooth out this singularity, we impose a linear variation on the toroidal magnetic field within 6° of the equator. At the radius of the wind sphere this affects approximately three grid cells adjacent to the equatorial plane. We have found no indication that this influences the results of the simulations. Finally, note that

$$\frac{2}{\pi} \int_0^{\pi/2} \sqrt{\chi} \sin^2 \theta + \cos^2 \theta \, d\theta = 1,$$

(4)

indicating that the mass-loss rate is independent of the parameter χ.

3. RESULTS

Here we focus on the effect of magnetic fields in shaping wide-angle windblown bubbles by showing the results of five simulations where the field strength (σ) and density stratification (χ) vary. In Figures 1–4 we present the logarithm of density for the four combinations of $\sigma = 0, 0.01$ and $\chi = 1, 9$. Figure 5 shows a time sequence of logarithmic density maps for a more highly stratified model ($\sigma = 0.01, \chi = 100$). Note that $\sigma = 0.01$ is approximately equal to the value for the solar wind, for which $\sigma \approx 0.009$, indicating that this is a slow magnetic rotator, i.e., the magnetic field is relatively unimportant in accelerating the wind. As we shall see, however, this does not imply that the field is dynamically unimportant with respect to shaping the bubble (Chevalier & Luo 1994; García-Segura et al. 1999). We note also that our simulations are relevant to the earliest phase of dynamical shaping since the length and timescales are relatively short ($L < 10^{16}$ cm, $t < 50$ yr). Our explicit goal is to understand the role of shock-amplified magnetic fields and wide-angle winds in shaping the early evolution of the outflow.

First, consider the hydrodynamic models shown in Figures 1 and 2 ($\sigma = 0, \chi = 1, 9$). In the spherical wind ($\chi = 1$) case the outflow assumes a characteristic bipolar morphology. As Wilkin & Stahler (1998) and Delamarter et al. (2000) have shown, the aspherical nature of the outflow is the result of both inertial and infall ram pressure gradients. The morphology is also affected by the development of shock focusing where the freely flowing wind impinges on the wind shock at an oblique angle. This leaves high-velocity (potentially supersonic) postshock gas flowing tangentially to the shock along the walls of the bubble shell. This postshock material flows toward the bubble’s axis, altering its shape and momentum distribution (Cantó, Tenorio-Tagle, & Rózyczka 1988; Giuliani 1982). Simplified calculations by Delamarter et al. (2000) show that mixing of the shocked ambient and shocked wind material cannot, a priori, be expected to quench shock focusing. In addition, Delamarter et al. (2000) found that the timescale for mixing was comparable to the outflow evolution timescale, meaning that the bubble shell was unlikely to be fully mixed. Thus, the shape of the outflow may deviate from what is predicted by simple snowplow models.

In Figure 2 we see the effect of the angular variation in the wind ram pressure (density stratification in a wide-angle
wind, $\chi = 9$). As has been shown for nebulae surrounding luminous blue variables, aspherical winds flowing into spherical environments can produce bipolar bubbles when cooling in the shell is effective (Frank et al. 1998). The higher wind ram pressure at the poles increases the shock speed at the tip of the bubble, elongating the outflow. This in turn has a secondary effect of increasing the obliquity of the wind shock relative to the freely expanding wind. The degree of shock focusing is thereby increased, creating a converging conical flow at the symmetry axis. Converging conical flows can be quite effective at producing well-collimated jets from the tips of windblown bubbles. This effect has been studied in analytical models (Canto et al. 1988), numerical simulations (Mellema & Frank 1997), and more recently, laboratory experiments (Lebedev et al. 2002), which have shown the stability of the collimation process.

In Figures 3 and 4 we present the logarithm of the density for MHD wind calculations with $\sigma = 0.01$ and $\chi = 1, 9$.
Compared with the hydrodynamic calculations, the magnetic field in the wind has modified the outflow evolution considerably. In both of these figures we find a dense, jetlike flow aligned with the symmetry axis. These features have been documented before in spherical wind models appropriate to PPNs (García-Segura et al. 1999). In our simulations we are able to investigate a new phenomenon, the effect of wind stratification on the subsequent MWB evolution.

The origin of axial features is a simple result of shock-amplified toroidal magnetic fields. The magnetic field is amplified after it passes through the wind shock. Strong cooling further compresses the field, decreasing $\beta = \frac{8\pi P_{\text{gas}}}{B^2}$ and leaving the Lorentz force out of balance with gas pressure gradients. When the magnetosonic wave speed is comparable to or greater than the radial expansion velocity of the bubble, the plasma in the postshock region will be approximately in force balance. If the radiative cooling decreases β sufficiently below 1, the Lorentz force will drive the plasma toward the axis. Gas pressure near the axis grows because of the compression driven by the magnetic pinch. While a new radial force balance will eventually be established, as we discuss below, the gas and magnetic pressures lead to expansion parallel and antiparallel to the z-axis. The jets expand along the z-axis, leading to an acceleration of the “head” of the bubble. When the wind is spherical, the jet can also push back toward the star, creating a dense “spike” that changes the wind shock geometry from convex to concave. The development of such backflowing jets has been seen in previous studies (Różycka & Franco 1996; García-Segura et al. 1999).

A new feature observed in our simulations is shown in Figure 4, where density stratification in a wide-angle wind produces increased ram pressure near the axis. The ram pressure gradient and corresponding shock-focused flow inhibits the backflowing jet. Thus, for χ sufficiently large, a density-stratified, wide-angle wind produces a convex wind shock rather than the concave feature seen in Figure 3. The quenching of the backflow implies that the jets will not appear to extend back to the source, and one expects hollow cavities with jets appearing some distance above the source inside the outflow.

Figure 5 shows a time sequence for a highly stratified wind, $\sigma = 0.01$ and $\chi = 100$. In this model the flow is highly elongated and is quite similar in appearance to simulations of toroidally dominated MHD jets (Cerqueira & de Gouveia Dal Pino 2001; Frank et al. 1998, 2000; Stone & Hardee...
The long-term evolution results in a highly cylindrically stratified, jetlike outflow. Note that near the base of the flow the divergent streamlines are still able to carve out a hollow cavity.

The formation of a steady, dense, well-collimated jet downstream of the wind shock (as is seen in Figs. 3, 4, and 5) requires the establishment of a new MHD equilibrium. A more detailed consideration of the simulation results along with simple results from magnetostatics shows how this occurs (Choudhuri 1998, p. 359). Establishment of a force balance in a cylindrical plasma column requires

\[
\frac{d \rho}{d \omega} - \frac{\rho v^2}{\omega} = -\frac{1}{\omega^2} \frac{d}{d \omega} \frac{\omega^2 B^2}{8 \pi},
\]

where the term on the right-hand side can be decomposed into magnetic pressure and tension components \(d/(d \omega) (B^2_\phi/8 \pi) + (B^2_\theta/4 \pi \omega)\). If the rotation in the wind is not significant, the behavior of the solution to equation (5) is controlled by the parameter \(\beta\). For \(\beta \gg 1\), the Lorentz force is insignificant to achieving force balance and hence we find that the gas pressure is a constant. For \(\beta \ll 1\) we have the opposite situation, where the gas pressure is significant. In this case the magnetic pressure and tension must balance one another. From equation (5) it is apparent that this force-free configuration occurs for \(B_\phi \propto \omega^{-1}\). Clearly, this approximation cannot hold near the axis, where the gas pressure is insignificant. In the simulations we present in this paper, the radial force balance in the postshock region is complicated by strong radiative cooling. In principle, since only the ambient gas is rotating and only the wind gas is magnetized, the preceding arguments should hold. We note that strong cooling in these simulations results in a mixing of the postshock gas, resulting in some rotation in the bubble plasma. The radial equilibrium of the postshock plasma is then attained through a combination of the forces present: thermal, centrifugal, and magnetic.

Finally, we note that the MHD simulations differ from their hydrodynamic counterparts in the physics occurring within the shell. Note the increased angle between the wind shock and the slipstream (the contact discontinuity) near the equator in the MHD models. The critical parameter determining the internal shell dynamics is the magnetosonic Mach number, which is lower than its sonic counterpart. This implies higher pressures (magnetic + gas) within the shell. This effect was noted by Li & Shu (1996a) in their study of the interaction of a wide-angle wind with a flared accretion disk. The relative importance of the magnetic field in opening the angle between the wind shock and slipstream is increased in the presence of cooling, which depletes the thermal pressure in the postshock region.

3.1. Momentum Distribution

Resolution requirements limit our studies to relatively short length and timescales compared with what is typically observed. In spite of this limitation we have attempted to characterize one simple observational characteristic of the outflows in our simulations. In a future study we will provide a more complete investigation of the observational consequences of larger and older simulated outflows.

In Chernin & Masson (1995) an analysis of the momentum distribution in a number of molecular outflows was pre-
that this peak shows a clear tendency to broaden with time and coincides with the bubble evolving toward a more prolate shape. While it is a large extrapolation to extend these results to the length scales and evolutionary timescales appropriate to molecular outflow observations, the results appear suggestive in that the observed momentum distributions could be recovered if we were to let these models evolve for longer times allowing the peak to continue to broaden and smooth.

Perhaps the most promising aspect of our models is the suggestion of an observational split between a narrow jet that forms from wind material on the axis (due to axial magnetic forces) and the broader outflow formed by the rest of the wide-angle wind sweeping up ambient material. Thus, the Chernin & Masson (1995) finding may point to a wide-angle wind with perhaps most of the ram pressure directed along the axis but the bulk of the outward momentum at some fairly wide opening angle. By creating a jet within the wind, the addition of magnetic fields to wide-angle wind models may provide the needed physics to overcome the obstacles to finding an observationally consistent model of molecular outflows (Cabrit, Raga, & Gueth 1997).

4. CONCLUSIONS

A dichotomy exists in the theoretical picture of molecular outflow formation. It appears that, to some degree, wide-angle winds were abandoned in favor of jets as the driving source for molecular outflows (Masson & Chernin 1992). Such conclusions have been, to a large extent, based on an analysis of snowplow models (Shu et al. 1991) in which ambient molecular material is driven in a purely radial direction by a central, wide-angle wind. In the wake of these conclusions, it was hoped that both Herbig-Haro (HH) jets and molecular outflows could be unified into a single model for outflows from YSOs. More recent studies have shown that wide-angle winds can be effective in producing molecular outflows when nonlinear flow effects or appropriate wind/ambient conditions are considered (Wilkin & Stahler 1998; Delamarter et al. 2000; Lee et al. 2001). Since both HH jets and wide-angle winds are believed to be launched and collimated by magnetic fields, attempts to unify jets and molecular outflows into a single consistent phenomenon need to address the role of magnetic forces and shocks in shaping the flows. In this paper we have sought to address this question.

As we have shown, MHD wide-angle winds with little or no collimation at small scales give rise to dense, jetlike, collimated outflows. We have shown that this is true even for slow magnetic rotators. Increasing either the collimation at small radii, parameterized by χ, or the magnetic field strength, parameterized by σ, toward the fast magnetic rotator limit will only enhance these results. As shown previously (Li & Shu 1996b; Matzner & McKee 1999), steady, wide-angle winds with cylindrical density stratification (consistent with MHD wind collimation) are capable of reproducing the observed characteristics of molecular outflows. In this paper we have described unsteady phenomena that result in highly collimated outflows even if there is little or no collimation to the driving wind. Extrapolating these simulations to larger radii, one can envision that as the flow evolves, an evacuated and well-collimated channel is created. At larger radii, the intrinsic MHD collimation will narrow the central wind, further realizing the results of Li &

![Momentum distribution in swept up ambient material as a function of position along the outflow axis for the $\sigma = 0.01$, $\chi = 1$ model at four times. Plot made by averaging in slices orthogonal to the outflow axis. The units of the momentum distribution are $M_\odot \text{ km s}^{-1} \text{ pc}^{-1}$. In this plot the tip of the outflow occurs at 260, 410, 560, and greater than 600 AU at an evolutionary time of 16, 24, 32, and 40 yr, respectively. In addition, at these times, the apex of the traditional windblown bubble is located at 150, 225, 310, and 425 AU, respectively. Thus, the momentum peak at large values of z does not correspond to the tip of the outflow where the dense jet elongates the lobe but is associated with swept up ambient material near the bubble apex.]
Our results are also of relevance to models of PNs and PPNs. Chevalier & Luo (1994), Różycka & Franco (1996), and García-Segura et al. (1999) pioneered the study of the MWB model in evolved, stellar outflows. As Gardiner & Frank (2001) have shown, however, even winds from slow rotators are likely to experience collimation before they are shocked via interaction with the environment. This conclusion implies that MWB models should begin with density-stratified wide-angle winds as initial conditions. The simulations presented in this paper show that when such wide-angle winds are included the resultant morphologies differ in significant ways from those obtained with spherically symmetric winds. In particular, the backflows obtained with spherical winds are suppressed when density-stratified flows are included.

Future directions for this line of research include modeling both the smaller, collimation scales and larger, propagation scales. In addition, the stability of such thin, dense magnetized plasma configurations seen in the axial jet deserves further investigation. Of greatest importance to the flows described here is the stability of the Cantó-like shock focusing in the presence of magnetic fields. Recent laboratory experiments (Lebedev et al. 2002) with an essentially hydrodynamic plasma find that even in the presence of significant nonaxisymmetric perturbations, a jet is formed. Moreover, these studies find that the degree of collimation of such jets is improved in the presence of strong radiative cooling. Hence, one might speculate that while the small-scale stability of such flows will be modified by the presence of a magnetic field, the global morphology should remain intact. This is supported by the calculations of García-Segura (1997), who studied the three-dimensional evolution of a magnetized wind for the case of PPNs at low resolution. That investigation found that while the dense, jetlike core does suffer some instabilities, its gross morphology was not disrupted, giving rise to similar outflow characteristics seen in two-dimensional cylindrically symmetric calculations (i.e., the formation of streamlined nose cones; Frank et al. 1998). We note, however, that Cerqueira & de Gouveia Dal Pino (2001) study jet propagation in three-dimensional jets and contrary to two-dimensional simulations do not observe the formation of “nose cones.”

We wish to thank Chris Matzner for helpful discussions and for providing us with information on generic wind configurations. Support was provided at the University of Rochester by NSF grants AST 97-02484 and AST 00-98442, NASA grant NAG5-8428, and the Laboratory for Laser Energetics.

REFERENCES

Alcolea, J., Bujarrabal, V., Castro-Carrizo, A., Sanchez Contreras, C., Neri, R., & Zweibel, J. 2000, in ASP Conf. Ser. 199, Asymmetrical Planetary Nebulae II: From Origins to Microstructures, ed. J. H. Kastner, N. Soker, & S. Rappaport (San Francisco: ASP), 347

Belcher, J. W., & MacGregor, K. B. 1976, ApJ, 210, 498

Blackman, E. G., Frank, A., & Welch, C. 2001, ApJ, 546, 288

Cabrit, S., Raga, A., & Gueth, F. 1997, in IAU Symp. 182, Herbig-Haro Flows and the Birth of Low Mass Stars, ed. B. Reipurth & C. Bertout (Dordrecht: Kluwer), 163

Canto, J., Tenorio-Tagle, G., & Różycka, M. 1998, A&A, 192, 287

Cargo, P., Gallice, G. 1997, J. Comput. Phys., 136, 446

Cerqueira, A. H., & de Gouveia Dal Pino, E. M. 2001, ApJ, 560, 779

Chenin, L. M., & Masson, C. R. 1995, ApJ, 453, 182

Chevalier, R. A., & Luo, D. 1994, ApJ, 421, 225

Choudhuri, A. R. 1998, The Physics of Fluids and Plasma: An Introduction for Astrophysicists (Cambridge: Cambridge Univ. Press)

Delamarter, G., Frank, A., & Hartmann, L. 2000, ApJ, 530, 923

Frank, A., Balick, B., Icke, V., & Mellema, G. 1993, ApJ, 404, L25

Frank, A., Lery, T., Gardiner, T. A., Jones, T. W., & Ryu, D. 2000, ApJ, 540, 342

Frank, A., Ryu, D., Jones, T. W., & Noriega-Crespo, A. 1998, ApJ, 494, L79

García-Segura, G. 1997, ApJ, 489, L189

García-Segura, G., Langer, N., Różycka, M., & Franco, J. 1999, ApJ, 517, 767

Gardiner, T. A., & Frank, A. 2001, ApJ, 557, 250

Giuliani, J. L., Jr. 1982, ApJ, 256, 624

Hartmann, L., Calvet, N., & Boss, A. 1996, ApJ, 464, 387

Icke, V. 1988, A&A, 202, 177

Kahn, F. D., & West, K. A. 1985, MNras, 212, 837

Kwok, S., Burton, C., & Fitzgerald, P. M. 1978, ApJ, 219, L125

Lax, P. D., & Liu, X.-D. 1998, SIAM J. Sci. Comput., 19, 319

Lebedev, S. V., et al. 2002, ApJ, 564, 113

Lee, C., Stone, J. M., Ostriker, E. C., & Mundy, L. G. 2001, ApJ, 557, 429

Li, Z.-Y., & Shu, F. H. 1996a, ApJ, 468, 261

—. 1996b, ApJ, 472, 211

Liu, X.-D., & Lax, P. D. 1996, J. Fluid Dyn., 5, 133

Masson, C. R., & Chernin, L. M. 1992, ApJ, 387, 147

Matzner, C. D., & McKee, C. F. 1999, ApJ, 526, L109

Mellema, G. 1997, A&A, 321, L29

Mellema, G., & Frank, A. 1997, MNras, 292, 795

Michel, F. C. 1969, ApJ, 158, 727

O’Sullivan, S., & Ray, T. P. 2000, A&A, 363, 355

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1995, Numerical Recipes in C: The Art of Scientific Computing (2d ed; Cambridge: Cambridge Univ. Press)

Pudritz, R. E., & Königl, A. 2000, in Protostars and Planets IV, ed. Y. Mannings, A. P. Boss, & S. S. Russell (Univ. Arizona Press), 759

Reipurth, B., & Bally, J. 2001, ARA&A, 39, 403

Różycka, M., & Franco, J. 1996, ApJ, 469, L127

Sahai, R. 2000, in ASP Conf. Ser. 199, Asymmetrical Planetary Nebulae II: From Origins to Microstructures, ed. J. H. Kastner, N. Soker, & S. Rappaport (San Francisco: ASP), 209

Shu, C.-W., & Osher, S. 1989, J. Comput. Phys., 83, 32

Shu, F. H., Najita, J., Ostriker, E. C., & Shang, H. 1995, ApJ, 455, L155

Shu, F. H., Ruden, S. P., Lada, C. J., & Lizano, S. 1991, ApJ, 370, L31

Stone, J. M., & Hardee, P. E. 2000, ApJ, 540, 192

Wilkin, F. P., & Stahler, S. W. 1998, ApJ, 502, 661