Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HBV-HCC) pathogenesis is fueled by persistent HBV infection that stealthily maintains a delicate balance between viral replication and evasion of the host immune system. HBV is remarkably adept at using a combination of both its own, as well as host machinery to ensure its own replication and survival. A key tool in its arsenal, is the HBx protein which can manipulate the epigenetic landscape to decrease its own viral load and enhance persistence, as well as manage host genome epigenetic responses to the presence of viral infection. The HBx protein can initiate epigenetic modifications to dysregulate miRNA expression which, in turn, can regulate downstream epigenetic changes in HBV-HCC pathogenesis. We attempt to link the HBx and miRNA induced epigenetic modulations that influence both the HBV and host genome expression in HBV-HCC pathogenesis. In particular, the review investigates the interplay between CHB infection, the silencing role of miRNA, epigenetic change, immune system expression and HBV-HCC pathogenesis. The review demonstrates exactly how HBx-dysregulated miRNA in HBV-HCC pathogenesis influence and are influenced by epigenetic changes to modulate both viral and host genome expression. In particular, the review identifies a specific subset of HBx induced epigenetic miRNA pathways in
HBV-HCC pathogenesis demonstrating the complex interplay between HBV infection, epigenetic change, disease and immune response. The wide-ranging influence of epigenetic change and miRNA modulation offers considerable potential as a therapeutic option in HBV-HCC.

Keywords: hepatitis B virus-associated hepatocellular carcinoma, epigenetic modulation, HBx, microRNA, immunology

INTRODUCTION

In the Globocan 2018 report, 841,080 new liver cancer cases were diagnosed with hepatocellular carcinoma (HCC) (1). Chronic hepatitis B virus (HBV) infection, which has been etiologically implicated in 43% to 80% of total HCC incidence (1–3) remains a primary risk factor and high HBsAg seroprevalence (>5%) levels currently persist in Western Pacific, Africa, East Mediterranean, and East Asia (2). The downstream effect of widespread HBV infection could precipitate 5 million deaths by 2030 from HBV-HCC (3). HBV-HCC pathogenesis is fueled by persistent HBV infection that stealthily ensures a careful balance between replication and the need to remain under the “radar” of the host immune system. HBV is remarkably adept at using a combination of both its own, as well as host machinery to manage viral load and enhance persistence (4, 5). A key tool in this regard, is the manipulation of the epigenetic landscape to modulate the silencing role microRNA (miRNA). The role of HBV dysregulated miRNA at each stage of the HBV-HCC continuum has been well documented from the onset of HBV infection to fibrosis/cirrhosis and the onset of HBV-HCC (6). The regulatory role of HBV dysregulated miRNA has also been extended to specifically examine the interplay between HCC and immune pathways (7).

This review examines the epigenetic role of HBx dysregulated miRNA in HBV-HCC pathogenesis. HBx is a 17 kDa transactivating protein expressed from the X open reading frame of HBV, with little sequence homology to any known genes, hence the name “X”. HBx can modulate several hepatocyte signaling cascades and factors associated with mechanisms that induce cellular transformation. Unlike mammalian hepadnaviruses (HBVs), avian HBVs do not express HBx and do not develop HCC leading to the postulation that the HBx protein has oncogenic potential (8, 9). HBx, can initiate a wide range of epigenetic changes implicated in hepatocarcinogenesis including DNA methylation, histone modifications, chromatin remodeling and microRNA (miRNA) dysregulation (10). One of these epigenetic factors, namely, miRNA are themselves influenced by epigenetic modulation often forming feedback loops that modulate epigenetic change (11, 12).

We attempt to link the epigenetic role of HBx dysregulated miRNA in HBV-HCC pathogenesis in both the HCC and immune pathways. The review commences by describing how the HBx viral protein can modulate both the host, as well as HBV genome expression by influencing the epigenetic landscape. Next a comprehensive list of HBx dysregulated miRNA are presented in Table 1, which are influenced by upstream epigenetic changes, and/or their downstream epigenetic targets. This table also identifies host gene targets in both the HBV-HCC cancer and immune pathways. Four comprehensive examples of epigenetically modified miRNA are then outlined in the next section to demonstrate the complex interplay between viral infection, HBV-HCC pathogenesis and immune system response. The review then examines the potential therapeutic role of miRNA that has yet to be deployed outside of the laboratory setting.

HBV-HCC PATHOGENESIS: ROLE OF MIRNA

Persistent HBV infection remains a global risk factor that can promote the development of fibrosis/cirrhosis and ultimately the onset of HBV-HCC (120). A significant component of HBV-HCC pathogenesis involves the integration of HBV DNA into the host genome that results in the oncogenic disruption of cellular genes (121). HBV DNA integration can cause host cell deletions, cis/trans-activation, translocations, the increased production of fusion transcripts, aberrant epigenetic changes and generalized genomic instability (122). These changes take place in the form of chronic inflammation and tissue damage that result in the continuous destruction of well differentiated hepatocytes and organized extracellular matrix (ECM). Over time the depletion of hepatocytes and well organized ECM results in their replacement with undifferentiated liver stem cells and poorly organized fibrotic tissue (120) that display changing patterns of apoptosis, regeneration, senescence and survival (123). HBV-HCC pathogenesis involves the deregulation of many cellular signaling pathways including the Wingless-related integration site/Beta-Catenin (WNT/β-CAT), in the Retinoblastoma-Tumor Protein 53 (RB1-TP53) suppressor networks, the Phosphoinositide 3-kinase/mitogen-activated protein kinase (PI3K/MAPK), the Janus kinase/signal transducer (JAK/STAT) pathways and the insulin receptor substrate-1/insulin growth factor (IRS1/IGF) pathways (124–126).

MicroRNA (miRNA) are a subsidiary subset of epigenetic factors that act as post-transcriptional gene silencers in the HBV-HCC pathways. miRNA collectively attempt to repress target mRNA expression in order to ensure homeostasis and their fluctuating role is explained by the inherently stochastic nature of gene transcription and environmental fluctuations (127). In the HBV-HCC continuum, from asymptomatic HBV infection leading to HCC, an increasing number of miRNA are...
HBx-epi-regulator	miRNA	Epi target	HBV-HCC gene target	Immune gene target	Epi-Ref	HCC Reference	
HMT/EZH2	Let-7c	SUZ12/EED/EZH1/2	CNKD1/PRICKLE/SFRPS/B/CAT/STAT3/RAS/HMG2A/MYC/	MYC/STAT3/IFN-b/RAS/TLR4/BCL-2/SMAD2/SMAE/D2/ APC2/WTN1/HMG2A/PLZFI/IFN/IL-4/IL-17/LIN28/KGF2B1	(13–16)	(19)	
LIN28	miR-1	HDAC4	EDN1/P3K/AKT/MET/FOXP1	E2F5/HSP60/HSP70/KCNJ2/GJA1	(20–22)	(20, 21, 23)	
tet/1/EED/SUZ12	DNMT	miR-1	DNMT3A/V	DNMT1/ROCK2/	ICOS (naive T-cells)/MCL-1	(13, 14, 24)	(25, 14, 26)
EZH2	miR-1	EED/EZH2/	GSTP1/FOS/MCL-1/RASSF1A/PROM2/CNKD1/PRICKLE/SFRPS/B-CAT/AP1/DUSP1/MCL-1/ROCK2/	ATG4D/MTOR/SOX9/COX2/RAB5A/STMN1/DNMT3A/FOS/RAP1/B/EGF	(31–34)	(30)	
EED/C-MYC/ SUZ12	DNMT7	miR-1	CNKIN1/CCNG1 modulated pS3/GLD2/NDRG3/	SOCS3/IFN/IP-10/BCL-W	(29, 30)		
PPARα	122	EZH2/	SIRT7	MMP1/VEGF-A/ERBB2/HbsAg	NF-α/BCL-2/KLF13/BMF	(38, 39)	(40–42)
DNMT1	EZH2/BMI1	124	SUZ12/	STAT3/TRA6/CYLIND3/BM11	(14, 37)		
miR-1	SIRT7	125a	SUZ12/	EED/EZH1/	(35, 36)		
EZH1/2/	SUZ12/	125b	EZH2/	p300	AKT/GSK3/WNT-BCAT	(36, 37)	
HMT/	p53/3	EED/SUZ12/	ZEB1/2/CNKD1/PRICKLE/SFRPS/B-CAT	IL-4/IFN-γ	(15, 14, 50)		
EZH2	miR-1	DNMT1	NF-κB/TGFβ/IFN/F3/P1	E2F5/CMIK/KIT/MET/SIP/BACH/PTE/PTEN/BIM/GADD45	(62–59)	(55–67)	
miR-1	HDAC2	140	MAP3K/CUL5/ADM17	IFN-b/TRA/TRA6	(58, 59)	(45, 60–62)	
DNMT1/p53C-MYC	DNMT1	148a	HPP1/AKT/ERK/FOSO4/A5/F5/ERBB3/BCL-2/1/	MIR-151/TOR/MET/ACVR1/SNAIL/IFG-IR/MG8/CAND1/	CaMK2/KIT/MET/SIP/BACH/PTE/PTEN/BIM/GADD45	(22, 23)	(42–56)
miR-1	DNMT1	152	GSP/C/DM1/1/K0T	CaMK2/KIT	(63, 66)	(65–69)	
HDAC-1/ EZH2	PRC2/P3	155	PTEN/SOX6/ZH2X/SOSC1	AID/Bim-p1/PROM1/FN/SHP1/SOC5/	(43, 66, 68, 69)		
miR-1	E2F1, Cyclin G1/Pten/p21/p27/pS7/cccDNA	17–92	(70, 72–74)	TNFSF9/IL-5/KBKE/c-MAF/AML1/PTEN/BCAT1/p22/	(71)		
SAHA/ C-MYC	E2F6, IQGAP1	199b/b	ZEB1/2/HNF-3β/Rho/ROCK/ASB4	CD19+	(75)	(76)	
HMT	200a	HDAC4	(77, 78)	(45, 79)			
miR-1	E2F1, Pten/p21/p27/pS7/cccDNA	200b	EED/SUZ12/	CNKIN1/PRICKLE/SFRPS/B-CAT	(77, 78)	(45, 79)	
EZH1/2	BM1	203	RAP1A	SMAD1/BCL11B/RARB/PKCCA/PKRCC/1/	(83)	(81)	
DNMT	ACES4/E2F1/ZEB1/2	205	SMAD1/BCL11B/RARB/PKCCA/PKRCC/1/	(82)	(81)		
DNMT	miR-	221	HDAC6	E2F2/DDT4/BM/t25/pS7/PTEN/p21/PTEN/	(84, 85)	(86, 88)	
DNMT	Mir-222	221	P27kip 1/PTEN/PPI2P25A/pS7/p21	p27kip 1/PTEN/KIT	(80, 88–90)	(93–95)	
HAT/ HDAC1/3/ EP300/ p50/p65	224	PAK4/MMP9 inhibitor-5/SMAD4	AP15/SMAD4	(91, 92)			

(Continued)
HBX INDUCED EPIGENETIC CHANGES IN HBV-HCC PATHOGENESIS

HBV DNA and its proteins influence own and host genome expression by employing a range of epigenetic modifications in HBV-HCC pathogenesis, as well as modulating signal transduction, transactivation and transcription to regulate immune response, cell cycle, apoptosis and DNA repair (4). In particular, the HBx protein influences cccDNA transcription by recruiting CBP/p300 (pCAF) to transactivate HATs (H3K9ac) (131), histone modifications (132), chromatin remodeling (133) and miRNA dysregulation (6) which is the central focus of this review (Figure 1).

Regulation of cccDNA Activity

The HBV covalently closed circular DNA (cccDNA), a stable mini-chromosome that is classified as nuclear eposomal DNA, serves as the template for viral RNA transcription. In order to enhance the efficiency of HBV replication, this virus co-opts host transcription machinery like HNF1/2/3, C/EBP, CREB and CRTCI to trigger cccDNA transcription (4). The HBx protein appears to be co-opted to influence its own transcription by triggering histone modifications including histone acetylation and deacetylation (HAT/HDAC), histone methylation and demethylation (HMT/HDMT), DNA methylation (DNMT) and ubiquitination (5). An example in this respect, is when cccDNA transcription is increased the HBx protein co-opts DDB1 and Cul4 to create a ubiquitination complex to repress SMC5/6 which maintains the structure of chromosomes. The repression of SMC5/6, therefore, promotes DNA relaxation to increase the transcription of cccDNA (131, 134) (Figure 1A). The HBx protein can also increase cccDNA transcription by recruiting CBP/p300 (pCAF) to transactivate HATs (H3K9ac) that leads to hyperacetylation (131, 135) (Figure 1B).

DNA Methylation

DNA methylation, the addition of a methyl group by the enzymes DNMT1/2/3A/3B, can silence target gene promoters or enhance target gene expression by silencing transcription regulators in both the HBV and host genome (4, 5). In percentage terms, common host genes targeted for DNA methylation in HBV-HCC include WT1 (54%), SOCS1 (43-65%), SEMA3B (83%), RASSF1A (59-75%), p300 (65%), p27 (48%), p21 (63%), p16 (16-83%), GSP1 (41-76%), E-cadherin (33-67%), E2F1 (70%), CPS1 (80%) and APC (53-81%) (10). In many cases these epigenetic changes silence tumor suppressor or activate oncogenic proteins and the HBx protein influences DNMT expression to subdue the host immune response, as well as manage its own expression to promote a balance between survival and replication (4). The HBx protein, for example, often promotes DNMT1/3A/3B expression to silence tumor suppressor genes like SOCS1/RASSF1A in HBV-HCC pathogenesis (4, 10) (Figure 1C). It can also use this machinery to suppress cccDNA expression in order to evade the host immune system (136).

Histone Modifications

Histone modifications are post translation modifications to histone proteins that include HAT/HDAC, HMT/HDMT, phosphorylation and ubiquitylation. These post translational modifications primarily occur at the N-terminal of the histone tails and have a fundamental impact on chromatin remodeling which essentially alters the structure of host and HBV DNA in
HBV-HCC pathogenesis. For example, the HBx protein can promote HAT by recruiting trans-activator proteins like CBP/p300 complex to induce H3K9ac (135). Conversely, the HBx protein can induce HDAC to promote cell proliferation in HBV-HCC by repressing tumor suppressors like p21/p27 that are important regulators of cell cycle control (132) (see Figure 1F) and promote epithelial-mesenchymal transition (EMT) by repressing CDH1 (137). The HBx protein can also use HDAC to modulate the viral genome expression by recruiting HDAC1/2 to cccDNA to suppress its expression (4, 5). In addition, HBx also induces HMT by upregulation of the SMYD3 gene, which encodes a histone H3-K4-specific methyltransferase to trigger oncogene expression (138). The HBx protein can also induce histone methylation transferases and it has been demonstrated that HBx induced upregulation of SMYD3, that encodes for histone H3-K4-specific methyltransferase (HMT), is linked to the upregulation of the oncogene C-MYC in HCC (138, 139) (Figure 1E). Conversely, the HBx protein can reverse the repressive effect of histone methylation (H3K9me3) on cccDNA by initiating a histone demethylation (HDMT) agent (140).

Polycomb Proteins

The Polycomb repressive complex (PcG) proteins, namely, Polycomb repressive complex 1 (PRC1) and 2 (PRC2) form part of the histone modification machinery that epigenetically regulate chromatin remodeling. PRC2 participates in histone methylation (H3K27me3) and, following histone H2AK119 mono-ubiquitination by PRC1, collaboratively represses target gene transcription (141). In the HBV-HCC continuum, the HBx protein can co-opt the proteins of these two complexes to influence epigenetic changes. For example, HBx upregulates the proto-oncogene PLK1, an enzyme that can block the repressive effect of the PRC2 complex (SUZ12/EED/EZH1/EZH2) to down-regulate WNT antagonists (CNDK1/PRICKLE/SFRP5). The repression of these WNT antagonists leads to increased β-catenin transcription and hepatocarcinogenesis (13, 142) (Figure 1D).

HBx DYSREGULATED miRNA IN HBV-HCC AND EPIGENETIC CHANGE

In the HBV-HCC continuum, the HBx protein can influence epigenetic changes like DNA methylation, histone modifications and other non-coding RNA that dysregulate a specific subset of miRNA (called epi-miRNA) that forms the central focus of this review (Table 1). In addition, the HBx protein can dysregulate host genes that modulate miRNA biosynthesis, transcription and translation (47). Simultaneously, miRNA expression modulates downstream epigenetic modulation by targeting epigenetic modifiers suggesting epigenetic feedback loops that directly influence both miRNA and their downstream epigenetic targets (4, 10, 45). In the HBV-HCC continuum, HBx-dysregulated miRNA, therefore, are epigenetic regulators that are themselves epigenetically modulated. In Table 1 we show the HBV-HCC specific gene targets of miRNA identified in the literature, as well as their specific immune targets in HCC.
It should be borne in mind that these are dynamic pathways and that the proposed regulatory effect of miRNA is also dynamic.

The HBx protein can upregulate or downregulate specific miRNA expression using specific epigenetic regulation (Table 1). These mechanisms, for instance, include DNA methylation of miR-1/-122/-124/-132/-148/200/205 genes to downregulate miRNA expression (24, 48), histone acetylation or HDAC inhibitors to upregulate miR-224/-29/-155/-17-92 and histone methylation to downregulate Let-7c/mir-101/-125b/-139-5p (45). The HBx protein can also target upstream transcription factors essential for miRNA expression like p53 suppression of miR-23a/-34/-125b/-148a/-192/-200 (143) and C-MYC upregulation of miR-15a/-16/-26a/-101/-148a/-363 (144). This protein also targets p50/65 upregulation of miR-143/-224 (93) and NF-κB upregulation of miR-143/-146a, as well as dysregulating miRNA expression by repressing miRNA biosynthesis machinery like DROSHA (145, 146).

HBx-DYSREGULATED miRNA IN HBV-HCC PATHWAYS

In the HBV-HCC continuum, upregulated miRNA often reduce tumor suppressor expression in the four key HCC cancer pathways, namely, the PI3K/MAPK, WNT/β-Catenin, TP53 and JAK/STAT pathways (125). In this section we seek to demonstrate the complexity of the interlocking roles of viral infection, selected epigenetic changes of miRNA in HBV-HCC pathogenesis and the resulting modulation of the host immune system. We illustrate some of the proven epigenetic pathways in HBV-HCC pathogenesis by using four well researched miRNA (miR-29a/b, miR-155, miR-148/152 and miR-101). Two of these miRNA are downregulated (blue) and two are upregulated (red) (see Figures 2–5). These four miRNA are all HBx epigenetically dysregulated in various HBV-HCC pathways, as well as exercise diverse roles in both the innate and adaptive immune pathways. In many cases, the same miRNA plays a significant regulatory role in many other cancers like those of the breast, lung and colon (147). It is important to highlight that the illustrated hypothetical pathways in Figures 2–5 occur in a dynamic context and that the degree of influence of any single path is non constant. It is also important to keep in mind that the HBx protein can modulate miRNA via non epigenetic pathways (e.g. C-MYC/p53) and that in HBV-HCC pathogenesis multiple other factors (e.g. somatic mutations) also influence miRNA expression (45).

HBx-Dysregulated Epi-miR-101 HBV-HCC Pathogenesis

In HBV-HCC and many other cancers, the tumor suppressor miR-101 is regarded as a key miRNA in epigenetic systems (147) (see Figure 2). This HBx-dysregulated miRNA involves both upstream and downstream epigenetic systems and has been...
widely reported as downregulated in HBV-HCC (147). The HBx protein can recruit the Polycomb protein EZH2 (148) to downregulate miR-101 but a feedback loop exists because this miRNA also targets EZH2 (149). In HBV-HCC pathogenesis a demonstrated EZH2 downregulated miR-101 pathway promotes HCC progression as a result of failing to modulate COX-2 activated AKT signaling (14, 150). This downregulated miRNA also fails to block the oncogenic MYCN, a member of the MYC family of proteins that are widely cited in many cancers including HCC. The MYC family can directly promote proliferation by promoting CDK/CYC expression (14, 149, 150) as well as promote angiogenesis via promoting VEGFA expression (151). In HBV-HCC pathogenesis, a direct epigenetic target of this miRNA is DNMT3A which targets a range of tumor suppressors. It has been demonstrated that HBx-downregulated miR-101 fails to modulate DNMT3A expression in HBV-HCC and this can contribute to the silencing of tumor suppressor genes like SF1/PRDM2/GSTP1/RUNX3/APC/CDKN2A/STMN1 (24, 149). The silencing of cell cycle inhibitors like CDKN2A in the TP53 pathway, for example promotes cell proliferation in HCC while silencing of the APC tumor suppressor promotes β-catenin expression and the development of EMT (152, 153) HBx (EZH2) downregulated miR-101 can also fail to modulate MCL-1, a key anti-apoptotic member of the BCL-2 family, thus promoting survival in HCC cells as a result of suppressing caspase driven apoptosis (152, 154). This downregulated miRNA also fails to repress the proto-oncogene c-FOS which regulates transcription activity and results in increased invasiveness in HCC pathogenesis (26). EZH2 downregulated miR-101 also fails to modulate CCDC88A that codes for the oncogenic protein GIRDIN which regulates many signal transduction pathways such as AKT/PKB, GAI/S, EGFR and is linked to increased migration and invasiveness in HCC (155). Conversely, downregulated miR-101 also targets the tumor suppressor PTEN in the P13/MAPK pathway that contributes to the activation of this pathway and HBV-HCC pathogenesis (156).

Innate Immune System

Downregulated miR-101 can downregulate the activation of LPS-stimulated macrophages by failing to modulate MKP-1 which de-activates p38 and JUN induction of pro-inflammatory cytokines like TNF-α (157, 158). In another pathway in the innate immune system, LPS-stimulated macrophages are reduced by HBx-repressed miR-101 as a result of its failure to modulate DUSP1 which, in turn downregulates ERK1/2/p38/JNK promotion of pro-inflammatory cytokines like TGF-β (159). Reduced DUSP1
is often noted in HCC, however, and it has been demonstrated that it plays a protective role in HCC by lowering the ERK cascade and thus repressing cell proliferation (160). TGF-β plays a major role in the regulation of inflammatory processes that influence immune cell development (159). Alternatively, miR-101 can play a role macrophage expression via activating the NF-κB signaling as a result of the upregulation of the KPNB1 transport protein (161–163) which is commonly reported in many cancers including HCC (164). In the innate immune system the activation of dendritic cells (DCs) and neutrophils is also directly influenced by NF-κB signaling suggesting that miR-101 can potentially play a wider role in the activation of leucocytes (165).

Adaptive Immune System
The differential expression of miR-101 has been implicated in modulating T-cell activation. A direct target of miR-101 is the Inducible T-cell co-stimulator (ICOS) mRNA that acts in concert with interaction between T cell receptor(TCR) and MHC class 1 and 2 peptides (166, 167). T-cell function is highly dependent on miR-101 modulation of ICOS mRNA and a reduction in miR-101 mediated regulation can increase ICOS expression on naïve T-cells increases, causing an effector T-cell-like phenotype and that results in autoimmunity (166). HBx-induced stimulation of EZH2 suppresses miR-101 in HBV-HCC (14, 24) and this effect could lead to ICOS upregulation that influences T-cell activation (166). HBx-downregulated miR-101 in HBV-HCC results in a failure to modulate the anti-apoptotic protein MCL-1 thus promoting cell survival (152). Acting alongside this relationship, MCL-1 expression influences an increase in CD8+ T-cell activity (168). A further hypothetical pathway, supported by various studies indicates that miR-101 can initiate T-cell expression, T-cell differentiation and memory T-cells via activating NF-κB signaling by promoting the expression of the KPNB1 transport protein. KPNB1 is often reported as upregulated in many cancers including HCC (161, 162, 169).

HBx-Dysregulated miRNA-29 Family
HBV-HCC Pathogenesis
HBx upregulated miR-29a/b plays a key epigenetic role in modulating aberrant DNA methylation which is often a key feature of HBV-HCC pathogenesis (171) (Figure 3). HBx-upregulated miR-29 can repress DNMT3A/3B in HBV-HCC (102) acting as a feedback mechanism to modulate DNA methylation. This can influence a range of downstream effects because DNMT3A/3B often targets cell cycle controls in HBV-HCC including CDKN2A, p16(INK4A) and p15(INK4B) (171). By repressing DNMT3A/3B, HBx-upregulated expression of
miR-29 acts in support of host cell cycle controls. DNMT3A/3B also silences many tumor suppressors in HBV-HCC pathways like RASSF1/PRDM2/GSTP1/RUNX3/APC therefore, miR-29 induced DNMT3A/3B repression contributes to a secondary support system for tumor suppressor expression to slow HCC progression (172). HBx-upregulated miR-29 family members could increase cell survival by targeting BCL-2 proteins (MCL-1) that retard apoptosis by contributing to the down regulation Caspase 9/3 driven apoptosis in the TP53 cancer pathway (105, 173, 174). The upregulation of the histone methyltransferase (HMT) SETDB1/SIRT1 is a common feature in HCC. HBx-upregulated miR-29, therefore, acts as a tumor suppressor to modulate the histone methylation transferase SETDB1/SIRT1 leading to a reduction in hepatocarcinogenesis possibly because of a reduction in AKT signaling and/or an increase in pro-apoptotic expression (107, 175). The upregulation of miR-29b has been demonstrated to increase HCC carcinogenesis by repressing SOCS1 expression in the JAK/STAT pathway via directly targeting the TET1 DNA demethylation enzyme (176, 177).

Innate Immune System
HBx-upregulated miR-29 upregulates LPS induced macrophage activation by repressing AKT1 suppression of a pro-inflammatory response resulting in increased IL-6, IL-1β and NF-κB signaling (178, 179). In addition, the upregulation of miR-29 can repress IL-12/IL-23 activation of mature DCs (180) and can influence NK production via targeting TBX21/EOMES promotion of IFN-γ (181).

Adaptive Immune System
The miR-29a/b cluster plays a crucial role in the thymic production of T-cells, T-cell differentiation and B-cell oncogenic transformation (182, 183) and miR-29 has been cited as a repressor of the immune system because it directly targets IFN-λ in IFN producing immune cells (184). It has also been demonstrated that miR-29 targets IFNAR1 to promote T-cell production (185). In the presence of infection, type 1 IFN signaling and T-BET/EOMES expression modulate Th1:Th2 differentiation. In turn, miR-29a/b directly targets type 1 IFN/T-BET/EOMES thus playing an important role in Th1:Th2 differentiation. Upregulated miR-29a/b blocks type 1 IFN/T-BET/EOMES to promote Th2 expression and reduce Th1 expression. In the HBV-HCC continuum, miR-29a/b is upregulated by the HBx protein suggesting a viral intervention to promote modulate Th1:Th2 differentiation (182). A similar role is played by miR-29a/b when this miRNA is downregulated by intracellular bacteria and fails to modulate type 1 IFN...
resulting in an imbalance of the production of CD8+ T-cell (182, 183). The upregulation of miR-29 therefore tilts the Th1:Th2 ratio in favor of Th2 expression that also influences B-cell production (184). In addition, the upregulation of miR-29 can repress IL-12/IL-23 activation of Th17 cells (180).

HBx Epigenetically Dysregulated miR-148/152 Family

HBV-HCC Pathogenesis

HBx downregulation of miR-148/152 has a downstream influence on multiple HBV-HCC pathways (Figure 4). HBx-downregulated miR-152 influences DNMT1 to silence both the CDH1 and GSTP1 tumor suppressors to promote carcinogenesis. The downregulation of CDH1 increases B-CATENIN in the WNT/B-CATENIN pathway and the downregulation of GSTP1 increases cell proliferation (63). Interestingly HBx activation of DNMT1 also represses cell cycle controls like p16INK4A to promote cell proliferation (186) thus further widening the downstream epigenetic change in HBV-HCC pathways. HBx-downregulated miR-148a fails to suppress HP1IP induced upregulation of the mTOR pathway contributing to EMT and increased hepatocarcinogenesis (60). The progression of EMT is also less modulated as a result of this downregulated miRNA failing to repress expression in the MET/SNAI/EMT pathway contributed to progression of HBV-HCC (61). This downregulated family also fails to regulate the production of B-catenin as a result of the reduced repression of WNT1 signaling (187). HBx-downregulated miR-148a increases SMAD pathway expression by failing to directly regulate TGF-B signaling and by failing to repress USP4 induced TGF-B signaling (188, 189).

Innate and Adaptive Immune Pathways

The miR-148/152 family play an especially important role modulating the adaptive immune system. In the adaptive immune system this family targets many genes that influence B and T lymphocyte function. This HBx-downregulated miRNA in HBV-HCC targets BCL2L11/TWIST to influence T-cell differentiation and BACH2/MITF to influence B-cell differentiation (190, 191). This family also plays a role in B-cell tolerance and elevated levels of miR-148a which have been noted in autoimmune disorders. In particular, miR-148a targets GADD45, BIM and PTEN that suppress B-cell tolerance (192). This family also targets CAMK11 to suppress MHC class II levels in antigen stimulated DCs that promote T-cell activation. It can thus be hypothesized that if the HBx protein epigenetically downregulates miR-148/152 then this would result in reduced suppression of MHC class II levels in DC activation of T-cells (193). This family, therefore, plays an important role in the innate system as a result of its ability to regulate antigen presenting (APC) DCs which are regarded as the most important class of APC in the innate immune system. DCs, therefore, link the innate and adaptive immune systems (194). This family also modulates IL-6, TNF-α and IFN-β to repress TLR induced DC activation and it can be hypothesized that downregulated miR-148/152 would fail to repress IL-6/TNF-α/IFN-β induced DC expression (194).

HBx Epigenetically Dysregulated miR-155 HBV-HCC Pathogenesis

HBx-upregulated miR-155 is a key epi-miRNA that targets both the HBV-HCC immune and cancer pathways (Figure 5). HBx dysregulation of miR-155 can occur due to histone modifications like histone deacetylase inhibitors (HDAC-1) or the repression of polycomb proteins (EZH2) can contribute to upregulated miR-155 expression in HBV-HCC pathways (43, 66, 67). This well researched miRNA is cited as an epigenetic modulator in many cancers including those of the breast, lung and colon (195–197), as well as playing multiple different roles in both the innate and adaptive immune system response (7). In HBV-HCC pathogenesis, upregulated miR-155 typically represses PTEN modulation of AKT/MTOR signaling in the PI3K/MAPK pathway that promotes epithelial to mesenchymal transition (EMT) (68, 198). In addition, this miRNA can promote β-catenin expression in the WNT/β-Catenin pathway by repressing the APC/GSK3 destruction complex to thus promoting the transcription of oncogenic proteins like C-MYC (45, 199). This miRNA also represses the SOCS1 tumor suppressor in the JAK/STAT pathway to induce the transcription of CCND1 and c-MYC thus promoting HCC cell proliferation (200, 201). In the TP53 pathway, this key HBx epigenetically upregulated miRNA can repress SOX6 to negate its promotion of p21/Waf1/cip1 modulation of cell cycle controls directly promoting HCC proliferation (6, 69). In a strategy to possibly evade immune system response, this HBx upregulated miR-155 can also subdue HBV replication by blocking the CCAAT/enhancer-binding protein (C/EBP) protein that binds and activates the HBV Enhancer 11/core promoter (199).

Innate Immune System

Epigenetically upregulated miR-155 is a key modulator of pro- and anti-inflammatory responses in the innate immune system (202, 203). It is a particularly important miRNA in the modulation of NF-κB driven induced myelopoiesis as a result of targeting IRAK1/TRA6 and SHIP1/SOCS1 respectively (204–206) and also targets CSFR to influence myeloid differentiation (207).

Macrophages

SHIP1, an important regulator of the innate system, is a primary target of miR-155 and its repression influences an increase in granulocyte/monocyte cell populations and a reduction in lymphocyte numbers (208, 209) and reduced levels of SHIP1 appears to induce myeloproliferative disorders (208). Interestingly, SHIP-1 is classified as a tumor suppressor in HBV-HCC and reduced levels of SHIP-1 are associated with a poorer prognosis (210). Upregulated miR-155 in viral infection can induce type I IFN induced macrophages via by activating the TLR4/MyD88/JNK/NF-κB dependent pathway. In order to upregulate TLR4 signaling, upregulated miR-155 can suppress both SHIP1 and SOCS1 to block their regulation of downstream TLR signaling directly contributing to increased inflammatory signaling and macrophage activation (208). Furthermore, SOCS1 which regulates type I IFN signaling, is targeted by miR-155 in
macrophages (211, 212) and the loss of function of SOCS-1 is a common feature in HCC clearly supporting a hypothesis that HBx-upregulated miR-155 promotes the progression of HBV-HCC (200, 201). Finally, it has been demonstrated that AKT signaling can repress miR-155 in macrophages thus indicating a negative feedback loop to fine-tune TLR signaling (213).

Dendritic Cells (DC)
Upregulated-miR-155 modulates the TLR/IL-1 (interleukin-1) inflammation signaling pathway to regulate human monocyte-derived DCs in order to ensure excess damage does not occur (214). TLR/TNF/IFN upregulated miR-155 via API/BIC plays a significant homeostatic role in monocyteopoiesis by repressing PU.1 which activates DC-SIGN, a C-type lectin receptor to increase pathogen cell surface uptake on DCs (207, 215). Decreased DC-SIGN expression in HCC is related to poor prognosis and PU.1 has been identified as a metastasis suppressor possibly relating to the impairment of the antigen presenting capabilities of APCs (216).

Adaptive Immune System: B-Cells
In the adaptive immune system the epigenetically modulated miR-155 can influence B-cell expression by triggering downstream epigenetic changes. Epigenetically upregulated miR-155 (HDAC-1/EZH2) can repress the expression of an important epigenetic regulator like activation induced cytidine de-aminase (AID) which acts as a HDAC inhibitor that bind to specific immunoglobulin genes in the nucleus to induce CSR/SHM/antibody diversification (43). The repression of AID by upregulated miR-155 thus leads to a reduction in CSR/SHM/Plasma B cell diversification thus contributing to reduced ability to synthesize pathogen specific antibodies (217, 218). Interestingly, different studies indicate AID is upregulated in both HBV and HCV induced hepatocarcinogenesis (219, 220). This upregulated miRNA also influences B-cell synthesis by targeting Ship-1 which plays an important role in the regulation of immune cell activation in both the innate and adaptive pathways (221). Epigenetically upregulated miR-155 targets PU-1, a critical transcription factor, to block GC B-cell to Plasma cell transition thereby modulating germinal cell B-cell differentiation into memory cells or plasma cells (222).

T-Cells
Epigenetically upregulated miR-155 can target Ship-1 to promote histone building capacity (Phf19) to promote PRC2 expression that promotes histone modifications to repress T-cell senescence and promote CD8+ T-cell expression (67). This miRNA can also modulate IFNy expression by repressing SHIP1to play a critical role in the reciprocal regulation of CD4+ and CD8+ leukopoiesis (223). MiR-155 also has a role in the generation of exhausted dysfunctional T cells and Fosl2 antagonism of miR-155 can reduce T cell exhaustion during chronic viral infection (224). This upregulated miRNA modulates T helper cell differentiation and the germinal center reaction to synthesize T-cell dependent antibody response. In order to do this, upregulated miR-155 can repress SOCS1 to maintain Foxp3+ regulatory T-cell (Treg) generation in order to regulate an autoimmune response (225, 226). It can also enhance Treg and Th17 cells differentiation and IL-17A production by targeting SOCS1 (206). A supporting meta study also confirms that the elevated expression of Tregs can be associated with HCC pathogenesis and Treg upregulation is a feature of the HCC tumor microenvironment (227). Conversely, Tregs can also target miR-155 to provide a negative feedback loop to control Treg expression (228). In the Th1/2 differentiation stage upregulated miR-155 can promote Th1 differentiation as a result of targeting C-MAF (229, 230) and an elevated Th1 to Th1 ratio has been associated with tumor progression in HBV-HCC (231). MiR-155 in Th17 cells can also trigger autoimmune inflammation through a signaling network by targeting the Ets1/IL-23/IL-23R pathway (205).

CLINICAL THERAPEUTIC OPTIONS
The five-year survival rate of advanced HCC remains dismal low and the treatment of advanced stages is limited by a paucity of targeted options despite the fact that HCC cancer pathways and their targeted genes have been well documented. Since the introduction of the multi-kinase inhibitor sorafenib, very little progress has been made in treatment of advanced HCC (232). Novel targeted therapies developed for a range of cancers include the development of immune checkpoint inhibitors like anti-CTLA4 or anti-PD-1/PD-L1 antibodies has introduced new opportunities in clinical oncology (233, 234). Chronic CHB, inflammation and the development of cirrhosis are all hallmarks of HBV-HCC pathogenesis. The question remains as to how miRNA-regulated epigenetic expression can prompt an appropriate immune response.

Our review demonstrates that multiple miRNA can influence epigenetic changes in multiple pathways in HBV-HCC pathogenesis by regulating histone modifications, DNA Methylation and chromatin modelling. For example, we show that HBx- downregulated miR-101 fails to modulate DNMT3A silencing of multiple tumor suppressors in HBV-HCC (24) while simultaneously modulating the expression of macrophages (157), DCs (165), T-cells (166) and B-cells (170). The question remains, however, as to the in vivo clinical potential of deploying miR-101 replacement therapy in HBV-HCC. Current trials using HDAC inhibitors to inhibit cell cycle in HCC have been disappointing (235) and to date there has been no attempt to modulate HDAC expression using miRNA in HCC. In a breast cancer study, for instance, HDAC inhibitors reduced tumorigenesis and apoptosis via microRNA miR-125a-5p in vivo and in vitro (236). Epigenetic targeting of EZH2, a histone-lysine-N-methyltransferase and DNMT1 inhibitor reactivated transcriptionally repressed chemokine genes and augmented T cell response in HCC (237). Our review shows that 29 dysregulated miRNA in HBV-HCC (Table 1) are both regulated and regulate epigenetic changes offering numerous hypotheses to be tested in vitro. In the case of our four HBV-HCC pathways, miR-101 influences PRC2 and DNMT3A silencing, miR-148/152 influenced DNMT1/3A silencing,
miR-155 repressed PRC2 silencing and miR-29a/b repressed DNMT1/3A silencing in parallel with affecting immune expression in both the innate and adaptive immune systems.

The use of miRNA-led therapeutics is still a work in progress and most likely these therapeutic options would be used as an ancillary form of treatment in support of current options. In theory miRNA-led therapeutics attempt to repress or restore oncogenic and tumor suppressor expression respectively. Currently, miRNA replacement therapy has started investigating whether this could be an adjuvant therapy in support of chemotherapy and radiation (238, 239). This approach relies on the use of synthetic miRNA or miRNA inhibitors to upregulate or downregulate miRNA expression respectively (240). However, this approach has yet to capture the synergistic response generated by multiple miRNA, nor its dynamic homeostatic shifts and this is the puzzle yet to be solved.

CONCLUSION

This review attempts to link the epigenetic modifications that influence HBV and host genome expression in HBV-HCC pathogenesis in both the hepatocyte and immune pathways. We examine the interplay between CHB infection, the silencing role of miRNA, epigenetic change, immune system expression and HBV-HCC pathogenesis. In particular, we demonstrate how HBx dysregulated miRNA in HBV-HCC pathogenesis influence and are influenced by epigenetic changes to modulate both the HBV and host genome expression. The paper provides useful insights and potential hypotheses of the complex interplay between host gene targets in the principal cancer and immune pathways as a result of HBx deregulated miRNA, epigenetic change, HBV-HCC pathogenesis and immune response.

This review paper tries to provide a platform for a wide range of evidence-based hypotheses rather than an (exactly) correct snapshot of the role of miRNA in HBV-HCC pathways. Even though HBV-HCC is a specific sub-type of HCC, there are multiple different classes and stages in which the hypothesized figures would operate to greater or lesser degree. This review should contribute to the point of view that our understanding of miRNA-based pathogenesis is far superior to our current ability to translate this knowledge to improve clinical outcomes.

AUTHOR CONTRIBUTIONS

KS conceptualized review article, performed literature review, wrote up first draft including figures and tables. Rewrote drafts 2-4 after fellow author comment. PA assisted re conceptualization of article, reviewed article. CW reviewed article, added text comments. AC reviewed article, added text comments XL reviewed article, added text comments. All authors contributed to the article and approved the submitted version.

FUNDING

JM has received funding within the framework of the Basic Research Program at HSE University.

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2016: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: Cancer J Clin (2018) 68(6):594–622. doi: 10.3322/caac.21492
2. Ginzberg D, Wong RJ, Gish R. Global HBV burden: guesstimates and facts. Hepatol Int (2018) 12(4):315–29. doi: 10.1016/s1297-018-9884-8
3. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol (2019) 16(10):589–604. doi: 10.1038/s41575-019-0186-y
4. Dandri M, ed. Epigenetic modulation in chronic hepatitis B virus infection. Seminars in Immunopathology, Springer Berlin Heidelberg: Springer (2020).
5. Koumbi L, Karayiannis P. The epigenetic control of hepatitis B virus (HBV). Front Immunol (2020) 11:315. doi: 10.3389/fimmu.2020.00315
6. Sartorius K, Makarova J, Sartorius B, An P, Winkler C, Chuturgoon A, et al. The regulatory role of MicroRNA in Hepatitis-B Virus-associated hepatocellular carcinoma (HBV-HCC) pathogenesis. Cells (2019) 8(12):1504. doi: 10.3390/cells8121504
7. Sartorius K, Swadling L, An P, Makarova J, Winkler C, Chuturgoon A, et al. The multiple roles of hepatitis B virus X protein (HBx) regulated MicroRNA in hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) and immune pathways. Viruses (2020) 12(7):746. doi: 10.3390/v12070746
8. Arbuthnot P, Capovilla A, Kew M. Putative role of hepatitis B virus X protein in hepatocarcinogenesis: Effects on apoptosis, DNA repair, mitogen-activated protein kinase and JAK/STAT pathways. J Gastroenterol Hepatol (2000) 15(4):357–68. doi: 10.1046/j.1440-1746.2000.02069.x
9. Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus. J Virol (2004) 78(23):12725–34. doi: 10.1128/JVI.78.23.12725-12734.2004
10. Wahib B, Ali A, Rafique S, Idrees M. New Insights Into the Epigenetics of Hepatocellular Carcinoma. BioMed Res Int (2017) 2017:1–26. doi: 10.1155/2017/1609575
11. Zhang X, Hou J, Lu M. Regulation of hepatitis B virus replication by epigenetic mechanisms and microRNAs. Front Genet (2013) 4:1–6. doi: 10.3389/fgene.2013.00202
12. Xu J, An P, Winkler CA, Yu Y. Dysregulated microRNAs in Hepatitis B Virus-Related Hepatocellular Carcinoma: Potential as Biomarkers and Therapeutic Targets. Front Oncol (2020) 10:1271. doi: 10.3389/fonc.2020.01271
13. Ma L, Chua M-S, Andrisani O, So S. Epigenetics in Hepatocellular Carcinoma: An Update and Future Therapy Perspectives. World J Gastroenterol: WJG (2014) 20(23):333. doi: 10.3748/wjg.v20.i23.333
14. Au SLK, Wong CCL, Lee JMF, Fan DNY, Tsang FH, Ng IOL, et al. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology (2012) 56(2):622–31. doi: 10.1002/hep.25679
15. Zhu X, Wu L, Xu J, Yang R, Wu F. Let-7c microRNA expression and clinical significance in hepatocellular carcinoma. J Int Med Res (2011) 39(6):2323–9. doi: 10.1177/03000605114090631
16. Wu G, Huang P, Ju X, Li Z, Wang Y. Lin28B over-expression mediates the repression of let-7 by hepatitis B virus X protein in hepatoma cells. Int J Clin Exp Med (2015) 8(9):15108.
27. Xie Y, Yao Q, Butt AM, Guo J, Tian Z, Bao X, et al. Expression profiling of microRNA-1 in HBV-associated chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Cancer Biol Ther (2014) 15(9):1248–55. doi: 10.1046/jcb.29688

28. Li C-Y, Pang Y-Y, Yang H, Li J, Lu H-X, Wang H-L, et al. Identification of mir-101-3p targets and functional features based on bioinformatics, meta-analysis and experimental verification in hepatocellular carcinoma. Am J Transl Res (2017) 9(5):2088.

29. Li S, Fu H, Wang Y, Tie Y, Xing R, Zhu J, et al. MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology (2009) 49(4):1194–202. doi: 10.1002/hep.22757

30. Xie Y, Yao Q, Butt AM, Guo J, Tian Z, Bao X, et al. Expression profiling of serum microRNA-101 in HBV-associated chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Cancer Biol Ther (2014) 15(9):1248–55. doi: 10.1046/jcb.29688

31. Fan C-G, Wang C-M, Tian C, Wang Y, Li L, Sun W-S, et al. MicroRNA-122 inhibits viral replication and hepatocellular carcinoma proliferation. PLoS One (2011) 6(11):e27740. doi: 10.1371/journal.pone.0027740

32. Fan C-G, Wang C-M, Tian C, Wang Y, Li L, Sun W-S, et al. MicroRNA-122 inhibits viral replication and cell proliferation in hepatitis B virus-related hepatocellular carcinoma and targets NDRG3. Oncol Rep (2011) 26(5):1281–6. doi: 10.3892/or.2011.1375

33. Formari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, et al. MicroRNA-122-cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocellular carcinoma cells. Cancer Res (2010) 70(5):5618–22. doi: 10.1158/0008-5472.CAN-09-1679

34. Li C, Wang Y, Wang S, Wu B, Hao J, Fan H, et al. Hepatitis B virus microRNA-mediated miR-122 inhibition upregulates PTTG1-binding protein, which promotes hepatocellular carcinoma tumor growth and cell invasion. J Virol (2013) 87(4):2193–205. doi: 10.1128/JVI.02831-12

35. Furuta M, Kozaki K-i, Tanaka S, Arii S, Imoto I, Inazawa J. mir-124 and mir-203 are Epigenetically Silenced Tumor-Suppressive microRNAs in Hepatocellular Carcinoma. Carcinogenesis (2009) 31(5):766–76. doi: 10.1093/carcin/bgp250

36. Anwar SL, Albat C, Krech T, Hasemeier B, Schipper E, Schweitzer N, et al. Concordant hypermethylation of intergenic microRNA genes in human hepatocellular carcinoma as new diagnostic and prognostic marker. Int J Cancer (2013) 133(3):660–70. doi: 10.1002/ijc.28068

37. Lu Y, Yue X, Cui Y, Zhang J, Wang K. MicroRNA-124 suppresses growth of human hepatocellular carcinoma by targeting STAT3. Biochim Biophys Acta (2013) 1834(4):873–9. doi: 10.1016/j.bbrc.2013.10.157

38. Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, et al. Methylation mediated silencing of Microrna-1 gene and its role in hepatocellular carcinoma. Cancer Res (2008) 68(13):5049–58. doi: 10.1158/0008-5472.CAN-07-0655

39. Zhang X, Zhang E, Ma Z, Pei R, Jiang M, Schlaak JF, et al. Modulation of hepatitis B virus replication and hepatocyte differentiation by MicroRNA-1. Hepatology (2011) 53(5):1476–85. doi: 10.1002/hep.24195

40. Sarker N, Chakravarty R. Hepatitis B virus infection, microRNAs and liver disease. Int J Mol Med (2015) 16(8):17746. doi: 10.3899/jiems.16.08.17746

41. Lu J-W, Liao C-Y, Yang W-Y, Lin Y-M, Jin S-LC, Wang H-D, et al. Overexpression of endothelin 1 triggers hepatocarcinogenesis in zebrafish and promotes cell proliferation and migration through the AKT pathway. PLoS One (2014) 9(1):e85318. doi: 10.1371/journal.pone.0085318

42. Potenza N, Papa U, Mosca N, Zerbini F, Nobile V, Russo A. Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen. Nucleic Acids Res (2011) 39(12):5157–63. doi: 10.1093/nar/gkr067

43. Chen G, Liu M, Jiang Z, Yu M, Wei S. MicroRNAs Play Significant Roles in Pathogenesis of HBV-Related Diseases. J Biomed Sci Eng (2016) 9(10):78. doi: 10.2436/jbse.9.10.78

44. White CA, Pone EJ, Lam T, Tat C, Hayama KL, Li G, et al. Histone deacetylase inhibitors upregulate B cell microRNAs that silence AID and Blimp-1 expression for epigenetic modulation of antibody and autoantibody responses. J Immunol (2014) 193(12):3933–50. doi: 10.4049/jimmunol.1401702

45. Dong-Yin Fan D, Ho-Ching Tsang F, Hoi-Kam Tam A, Leung-Kuen Au S, Chak-Lui Wong C, Wei L, et al. Histone lysine methyltransferase, suppressor of variegation 3-9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA-125b. Hepatology (2013) 57(2):637–47. doi: 10.1002/hep.26083

46. Xie K-L, Zhang Y-F, Liu J, Zeng Y, Wu H. MicroRNAs associated with HBV infection and HBV-related HCC. Theranostics (2014) 4(12):1176. doi: 10.7150/thno.8715

47. Liu W, Hu J, Zhou K, Chen F, Wang Z, Liao B, et al. Serum exosomal miR-125b is a novel prognostic marker for hepatocellular carcinoma. OncoTargets Ther (2017) 10:3843. doi: 10.2147/OTT.S140062

48. Wang Z, Wu Z, Huang P. The Function of microRNAs in Hepatocarcinogenesis Induced by Hepatitis B Virus Protein. Oncol Rep (2017) 38(2):652–64. doi: 10.3892/or.2017.5716

49. Wei X, Tan C, Tang C, Ren G, Xiang T, Qiu Z, et al. Epigenetic repression of mir-132 expression by the hepatitis B virus x protein in hepatitis B virus-related hepatocellular carcinoma. Cancer Biol Ther (2013) 12(5):426–31. doi: 10.4161/cbt.2260651

50. Wang Z, Wu Z, Huang P. The Function of microRNAs in Hepatocarcinogenesis Induced by Hepatitis B Virus X Protein. Oncol Rep (2017) 38(2):652–64. doi: 10.3892/or.2017.5716

51. Wei X, Tan C, Tang C, Ren G, Xiang T, Qiu Z, et al. Epigenetic repression of mir-132 expression by the hepatitis B virus x protein in hepatitis B virus-related hepatocellular carcinoma. Cell Signal (2013) 25(5):1037–43. doi: 10.1016/j.cellsig.2013.01.019

52. Wong CCL, Wong CM, Ting EK, Lee JM, Fong RT, et al. The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology (2011) 140(1):322–31. doi: 10.1053/j.gastro.2010.10.006

53. Qiu G, Lin Y, Zhang H, Wu D. miR-139-5p inhibits epithelial–mesenchymal transition, migration and invasion of hepatocellular carcinoma cells by targeting ZEB1 and ZEB2. Biochim Biophys Acta (2015) 2013(12):515–25. doi: 10.1016/j.bbrc.2015.05.062

54. Takata A, Otsuka M, Yoshikawa T, Kishikawa T, Hikaba Y, Obi S, et al. microRNA-140 acts as a liver tumor suppressor by controlling NF-kappaB activity by directly targeting DNA methyltransferase 1 (Dnmt1) expression. Hepatology (2013) 57(1):162–70. doi: 10.1002/hep.26011

55. Noh JH, Chang YG, Kim MG, Jung KH, Kim JK, Bae HI, et al. MiR-145 functions as a tumor suppressor by directly targeting histone deacetylase 2 in
Zhao Z, Hu Y, Shen X, Lao Y, Zhang L, Qiu X, et al. HBx represses RIZ1

Xie Q, Chen X, Lu F, Zhang T, Hao M, Wang Y, et al. Aberrant expression of miR-148a on tumor growth and phenotype and liver carcinogenesis. J Int Oncol (2014) 44(6):1915–22. doi: 10.3982/jio.2014.2373

Braconi C, Huang N, Patel T. MicroRNA-dependent Regulation of DNA Methyltransferase-1 and Tumor Suppressor Gene Expression by Interleukin-6 in Human Malignant Cholangiocytes. Hepatology (2010) 51(3):881–90. doi: 10.1002/hep.23381

Xu X, Fan Z, Kang L, Han J, Jiang C, Zheng X, et al. Hepatitis B virus X protein represses miR-148a to enhance tumorigenesis. J Clin Invest (2013) 123(2):630–45. doi: 10.1172/JCI64265

Zhang J, Zeng C, Xu L, Gong J, Fang J, Zhuang S. MicroRNA-148a Suppresses the Epithelial-Mesenchymal Transition and Metastasis of Hepatoma Cells by Targeting Met/Smad Signaling. Oncogene (2014) 33(31):4069. doi: 10.1038/onc.2013.369

Jung KH, Zhang J, Zhou C, Shen H, Gagea M, Rodriguez-Aguayo C, et al. Differentiation therapy for hepatocellular carcinoma: Multifaceted effects of miR-148a on tumor growth and phenotype and liver fibrosis. Hepatology (2016) 63(3):864–79. doi: 10.1002/hep.28367

Huang J, Wang Y, Guo Y, Sun S. Down-Regulated microRNA-152 Induces Aqueous Dna Methylation in Hepatitis B Virus-Related Hepatocellular Carcinoma by Targeting DNA Methyltransferase-1. Hepatology (2010) 52(1):1160–70. doi: 10.1002/hep.23660

Huang H, Hu M, Li P, Pu C, Li M. Mir-152 Inhibits Cell Proliferation and Colony Formation of CD133+ Liver Cancer Stem Cells by Targeting KIT. Tumor Biol (2015) 36(2):921–8. doi: 10.1007/s13277-014-2719-x

Zhao Z, Hu Y, Shen X, Lao Y, Zhang L, Qiu X, et al. HBx represses RIZ1 expression by DNA methyltransferase-1 involvement in decreased miR-152 in hepatocellular carcinoma. Oncol Rep (2017) 37(5):2811–8. doi: 10.3829/ or.2017.5518

Song X, Tan S, Wu Z, Xu L, Wang Z, Xu Y, et al. HBV suppresses ZHX2 expression to promote proliferation of HCC through miR-155 activation. Int J Cancer (2018) 143(12):3120–30. doi: 10.1002/ijc.31995

Li Y, Fioravanti J, Zhu W, Wang H, Wu T, Hu J, et al. miR-155 harnesses Phf19 to potentiate cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate. Nat Commun (2019) 10(1):1–12. doi: 10.1038/s41467-019-09882-8

Fu X, Wen H, Jing L, Yang Y, Wang W, Liang X, et al. Micro RNA-155-5p promotes hepatocellular carcinoma progression by suppressing PTEN through the PI 3K/Akt pathway. Cancer Sci (2017) 108(4):620–31. doi: 10.1111/cas.13177

Xie Q, Chen X, Lu F, Zhang T, Hao M, Wang Y, et al. Aberrant expression of microRNA 155 may accelerate cell proliferation by targeting sexdetermining region Y box 6 in hepatocellular carcinoma. Cancer (2012) 118(9):2431–42. doi: 10.1002/cncr.26566

Moon IY, Choi JH, Chung JW, Jang ES, Jeong SH, Kim JW. MicroRNA–20 induces methylation of hepatitis B virus covalently closed circular DNA in human hepatoma cells. Mol Med Rep (2019) 20(3):2285–93. doi: 10.3822/mmr.2019.10435

Yang H, Lan P, Hou Z, Guan Y, Zhang J, Xu W, et al. Histone deacetylase inhibitor SAHA epigenetically regulates miR-17-22 cluster and MCM7 to upregulate MICA expression in hepatoma. Br J Cancer (2015) 112(1):112–21. doi: 10.1038/bjc.2014.547

Jung YJ, Kim JW, Park SJ, Min BY, Jang ES, Kim NY, et al. c-Myc-mediated overexpression of miR-17-22 suppresses replication of hepatitis B virus in human hepatoma cells. J Med Virol (2013) 85(6):969–78. doi: 10.1002/jmv.23354

Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci (2008) 105(50):19678–83. doi: 10.1073/pnas.0811166106

Connelly E, Melegari M, Landgraf P, Tchaikovskaya T, Tennant BC, Slagle BL, et al. Elevated expression of the miR-17–92 polycistron and miR-21 in hepatadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. Am J Pathol (2008) 173(3):856–64. doi: 10.2353/ajpath.2008.080096

Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell (2011) 19(2):232–43. doi: 10.1016/j.ccr.2011.01.001

Wang W, Zhao LJ, Tan Y-X, Ren H, Qi Z-T. Identification of deregulated miRNAs and their targets in hepatitis B virus-associated hepatocellular carcinoma. World J Gastroenterol: WJG (2012) 18(38):5442. doi: 10.3748/wjg.v18.i38.5442

Yuan JH, Yang F, Chen BF, Lu Z, Huo XS, Zhou WP, et al. The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology (2011) 54(6):2025–35. doi: 10.1002/hep.24606

Zhang L, Yang F, Yuan J-H, Yuan S-X, Zhou W-P, Huo X-S, et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis (2012) 33(3):577–86. doi: 10.1093/carcin/bgs381

Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: At the crossroads of signal transduction in cancer. Int J Cancer (2013) 132(4):745–54. doi: 10.1002/ijc.27708

Yang F, Lv L-Z, Cai Q-C, Jiang Y. Potential roles of EZH2, Bmi-1 and miR-203 in cell proliferation and invasion in hepatocellular carcinoma cell line Hep3B. World J Gastroenterol (2015) 21(47):13268. doi: 10.3748/wjg.v21.i47.13268

Wu A, Chen H, Xu C, Zhou J, Chen S, Shi Y, et al. miR-203a is involved in HBx-induced inflammation by targeting rep1a. Exp Cell Res (2016) 349(1):191–7. doi: 10.1016/j.yexcr.2016.10.016

Zhang T, Zhang J, Cui M, Liu F, You X, Du Y, et al. Hepatitis B virus X protein inhibits tumor suppressor miR-205 through inducing hypermethylation of miR-205 promoter to enhance carcinogenesis. Neoplasia (2015) 13(11):NE24–IN6. doi: 10.1593/neo.131362

Cui M, Wang Y, Sun B, Xiao Z, Ye L, Zhang X. MiR-205 modulates abnormal lipid metabolism of hepatoma cells via targeting acyl-CoA synthetase long-chain family member 1 (ACS L1) miRNA. Biochem Biophys Res Commun (2014) 444(2):270–7. doi: 10.1016/j.bbrc.2014.01.051

Bae HJ, Jung KH, Eun JW, Shen Q, Kim HS, Park PJ, et al. MicroRNA-221 governs tumor suppressor HDAC6 to potentiate malignant progression of liver cancer. J Hepatol (2015) 63(2):408–19. doi: 10.1016/j.jhep.2015.03.019

Fornari F, Milazzo M, Galassi M, Callegari E, Veronese A, Miyaaki H, et al. miR-375/m2md2 feedback loop sustains miR-221 expression and dictates the response to anticancer treatments in hepatocellular carcinoma. Mol Cancer (2014) 13(12):2023–16. doi: 10.1186/1541-7786-MCR-13-0312-T

Chen J-J, Tang Y-S, Huang S-F, Ai J-G, Wang H-X, Zhang L-P. HBx protein-induced upregulation of microRNA-221 promotes aberrant proliferation in HBV-related hepatocellular carcinoma by targeting estrogen receptor-α. Oncol Rep (2015) 33(2):792–8. doi: 10.3892/or.2014.3647

Rong M, Chen G, Deng Y. Increased miR-221 Expression in Hepatocellular Carcinoma Tissues and its Role in Enhancing Cell Growth and Inhibiting
Sartorius et al. Epigenetic miRNA Pathways in HBV-HCC

100. Yang X, Liang L, Zhang XF, Jia HL, Qin Y, Zhu XC, et al. MicroRNA-26a

102. Parpart S, Roessler S, Dong F, Rao V, Takai A, Ji J, et al. Modulation of miR-

106. Wang C-M, Wang Y, Fan C-G, Xu F-F, Sun W-S, Liu Y-G, et al. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma. *Biochem Biophys Res Commun* (2011) 411(3):586–92. doi: 10.1016/j.bbrc.2011.06.191

107. (2016). CM, Wei L, Law, 10.1111/DWH. Tsang FHC, Au SLK, et al. Up-regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis. *Hepatology* (2016) 63 (2):474–87. doi: 10.1002/hep.28304

108. Morales S, Monzo M, Navarro A. Epigenetic regulation mechanisms of microRNA expression. *Biomed Concepts* (2017) 8:5–6:203–12. doi: 10.1515/bmc-2017-0024

109. Kong G, Zhang J, Zhang S, Shan C, Ye L, Zhang X. Upregulated microRNA-29a by Hepatitis B Virus X Protein Enhances Hepatoma Cell Migration by Targeting PTEN in Cell Culture Model. *PhoS One* (2011) 6(5):e19518. doi: 10.1371/journal.pone.0019518

110. Chamani F, Sadeghizadeh M, Masoumi M, Babashah S. Evaluation of miR-34 Family and DNA Methyltransferases 1, 3A, 3B Gene Expression Levels in Hepatocellular Carcinoma Following Treatment With Dendrosomal Nanocurcumin. *Asian Pac J Cancer Prev* (2016) 17(53):219–24. doi: 10.7374/APJCP.2016.17.S3.219

111. Yang P, Li Q-J, Feng Y, Zhang Y, Markowitz GJ, Ning S, et al. TGF-β-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. *Cancer Cell* (2012) 23(2):291–303. doi: 10.1016/j.ccr.2012.07.023

112. Ou Q, Wang G, Li B, Li W-F. Decreased miR-34a Promotes Growth by Regulating MAPK4/6 in Hepatitis B Virus Related Hepatocellular Carcinoma. *Int J Clin Exp Med* (2017) 10(2):2523–31.

113. Hermeking H. The miR-34 family in cancer and apoptosis. *Cell Death Diff* (2010) 17(2):193. doi: 10.1038/cdd.2009.56

114. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. *Cancer Res* (2007) 67(18):8433–8. doi: 10.1158/0008-5472.CAN-07-1585

115. Sun F, Hu H, Liu Q, Tie Y, Zhu J, Xing R, et al. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. *FEBS Lett* (2008) 582 (10):1564–8. doi: 10.1016/j.febslet.2008.03.057

116. Azurmanyan A, Friedman T, Kotei E, Ng IO, Lian Z, Feitelson MA. Epigenetic Repression of E-cadherin Expression by Hepatitis B Virus X Antigen in Liver Cancer. *Oncogene* (2012) 31(5):563. doi: 10.1038/onc.2011.255

117. Xing T, Zhu J, Jian J, Li A, Wang X, Wang W, et al. miRNA-548ah promotes the replication and expression of hepatitis B virus by targeting histone deacetylase 4. *Life Sci* (2019) 219:199–208. doi: 10.1016/j.lfs.2018.12.057

118. Hu XM, Yan XH, Hu YW, Huang JL, Cao SW, Ren TY, et al. miRNA-548p suppresses hepatitis B virus X protein associated hepatocellular carcinoma by downregulating oncprotein hepatitis B x-interacting protein. *Hepatol Res* (2016) 46(8):804–15. doi: 10.1111/hepr.12618

119. Li Y, Xie J, Xu W, Jiang J, Ao F, Wan Y, et al. MicroRNA-548a down-regulates host antiviral response via direct targeting of IFN-α1. *Protein Cell* (2013) 4 (2):130–41. doi: 10.1007/s13238-012-2081-y

120. Ganem D, Prince AM. Hepatitis B Virus Infection—Natural History and Clinical Consequences. *New Engl J Med* (2004) 350(11):1118–29. doi: 10.1056/NEJMra031087

121. Bréchot C. Pathogenesis of hepatitis B virus—related hepatocellular carcinoma: old and new paradigms. *Gastroenterology* (2004) 127(5):S56–61. doi: 10.1053/gast.2004.09.016

122. Ringelmann M, O’Connor T, Potzter U, Heikenwalder M. The Direct and Indirect Roles of HBV in Liver Cancer: Prospective Markers for HCC Screening and Potential Therapeutic Targets. *J Pathol* (2015) 235(2):355–67. doi: 10.1002/path.4434

123. Jiang J, Gusev Y, Aderca I, Mettler TA, Nagorney DM, Brackett DJ, et al. Association of MicroRNA-34 and Histone Acetylation in Hepatocellular Carcinoma. *Hepatology* (2015) 62(4):1663–70. doi: 10.1002/heap.26265

124. Schulz W. Molecular biology of human cancers: an advanced student’s textbook. Springer Heidelberg: Springer Science & Business Media (2005).
hepatocellular carcinoma. Med Oncol (2015) 32(4):128. doi: 10.1007/s12032-015-0559-1

165. Newton C, Dixit VM. Signaling in innate immune and inflammation. Cold Spring Harbor Perspect Biol (2012) 4(3):a006049. doi: 10.1101/cshperspect.a006049

166. Yu D, Tan AH-M, Hu X, Athanasopoulos V, Simpson N, Silva DG, et al. Roquin represses autolimitation by limiting inducible T-cell co-stimulator messenger RNA. Nature (2007) 450(7167):299–303. doi: 10.1038/nature06253

167. Wikenheiser DJ, Stumhofer JS. ICOS co-stimulation: friend or foe? Front Immunol (2016) 7:304. doi: 10.3389/fimmu.2016.00304

168. Pfannenstiel LW, Gastman BR. Mcl-1 expression influences CD8+ anti-tumor immunity. J Immunother Cancer (2015) 3(6):3233. doi: 10.1186/1051-1426-3-32-33

169. Oh H, Grinberg-Bleyer Y, Liao W, Maloney D, Wang P, Wu Z, et al. An NF-kB transcription-factor-dependent lineage-specific transcriptional program promotes regulatory T cell identity and function. Immunity (2017) 47(3):450–65. doi: 10.1016/j.immuni.2017.08.010

170. Vikström IB, Slomp A, Carrington EM, Moebergen LM, Chang C, Kelly GL, et al. MCL-1 is required throughout B-cell development and its loss sensitizes specific B-cell subsets to inhibition of BCL-2 or BCL-XL. Cell Death Dis (2016) 7(6):e2345-e. doi: 10.1038/cddis.2016.237

171. Dong Y, Wang A. Aberrant DNA methylation in hepatocellular carcinoma tumor suppression. Oncol Lett (2014) 8(3):963–8. doi: 10.3892/ol.2014.2301

172. Wu H, Zhang W, Wu Z, Liu Y, Shi Y, Gong J, et al. miR-29c-3p regulates DNMT3B and LATS1 methylation to inhibit tumor progression in hepatocellular carcinoma. Cell Death Dis (2019) 10(2):1–18. doi: 10.1038/s41419-018-1287-1

173. Xu J, Zhu X, Wu L, Yang R, Yang Z, Wang Q, et al. MicroRNA-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt-β-catenin pathway. Liver Int (2012) 32(5):752–60. doi: 10.1111/j.1478-3231.2011.02705.x

174. Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29 Regulates Mcl-1 Protein Expression and Apoptosis. Oncogene (2007) 26(42):6133–40. doi: 10.1038/sj.onc.1210436

175. Torrano J, Al Emran A, Hammerlindl H, Schaid H. Emerging roles of H3K9me3, SETDB1 and SETDB2 in therapy-induced cellular reprogramming. Clin Epigenet (2019) 11(1):43. doi: 10.1186/s13148-019-0644-y

176. Lin LL, Wang W, Hu Z, Wang LW, Chang J, Qian H. Negative Feedback of miR-148/-152 family in physiology and disease. Eur J Immunol (2017) 37(2):351–36. doi: 10.1002/eji.201644637

177. Chen Q, Yin D, Zhang Y, Yu L, Li X-D, Zhou Z-J, et al. MicroRNA-29a expression and apoptosis. J Cancer Res Clin Oncol (2014) 140(5):752–8. doi: 10.1007/s00432-014-1581-6

178. Yang M, Shen H, Qiu C, Ni Y, Wang L, Dong W, et al. High expression of miR-148/-152 family in physiology and disease. Eur J Immunol (2017) 47(12):2026–38. doi: 10.1002/eji.201747132

179. Porstner M, Winkelmann R, Daum P, Schimid J, Pracht K, Corle-Real J, et al. miR-148a promotes plasma cell differentiation and targets the germinal center transcription factors Mifil and Bach2. Eur J Immunol (2015) 45(4):1206–15. doi: 10.1002/eji.201444637

180. Gonzalez-Martin A, Adams BD, Lai M, Shepherd J, Salvador-Bernaldez M, Salvador JM, et al. The microRNA miR-148a functions as a critical regulator of B cell tolerance and autointolerance. Nat Immunol (2016) 17(4):433–40. doi: 10.1038/nijmigen.2016.40

181. Herrmann TL, Agrawal RS, Connolly SF, McCaffrey RL, Schloemann J, Kusner DJ. MHC Class II levels and intracellular localization in human dendritic cells are regulated by calmodulin kinase II. J leukocyte Biol (2007) 82(3):686–99. doi: 10.1189/jlb.0107045

182. Liu X, Zhan Z, Xu L, Ma F, Li D, Guo Z, et al. MicroRNA-148b-152 impairs innate immune response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIa. J Immunol (2015) 199(2):1180–11800. doi: 10.4049/jimmunol.1500573

183. Yang M, Shen H, Qiu C, Ni Y, Wang L, Dong W, et al. High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur J Cancer (2013) 49(3):604–15. doi: 10.1016/j.ejca.2012.09.031

184. Mattiske S, Suetsani RI, Neilson PM, Callen DF. The Oncogenic Role of miR-155 in Breast Cancer. Cancer Epidemiol Prev Biomarkers (2012) 21(8):1236–43. doi: 10.1158/1055-9965.EPI-12-0173

185. Pu J, Bai D, Yang X, Lu X, Lu J. Adrenalin promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155. Biochem Biophys Res Commun (2012) 428(2):210–5. doi: 10.1016/j.bbrc.2012.09.126

186. Kong X, Liu F, Gao J. MiR-155 Promotes Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma Cells Through the Activation of PI3K/SK3/JNK Signaling Pathways. Oncotarget (2017) 8(40):66051–6. doi: 10.18632/oncotarget.11800

187. Wang B, Majumder S, Nuevo G, Kutay H, Volinia S, Patel T, et al. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid–defined diet in C57BL/6 mice. Hepatology (2009) 50(4):1152–61. doi: 10.1002/hep.23100

188. Chen Z, Ma T, Huang C, Hu T, Li J. The Pivotal Role of microRNA-155 in the Control of Cancer. J Cell Physiol (2014) 229(5):545–50. doi: 10.1002/jcp.24492

189. Guo Y, Veganeh M, Donates Y, Tobeidam W, Chababi W, Mayhue M, et al. Regulation of MEF receptor tyrosine kinase signaling by suppressor of cytokine signaling 1 in hepatocellular carcinoma. Oncogene (2015) 34(46):5718. doi: 10.1038/onc.2015.20
202. Schulte LN, Westermann AJ, Vogel J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. *Nucleic Acids Res* (2013) 41(17):53–53. doi: 10.1093/nar/gkt3030

203. Curtis AM, Fagundes CT, Yang G, Palsson-McDermott EM, Wochal P, McGrattan AF, et al. Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. *Proc Natl Acad Sci* (2015) 112(23):7231–6. doi: 10.1073/pnas.1501327112

204. Schulte LN, Westermann AJ, Vogel J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. *Nucleic Acids Res* (2013) 41(17):53–53. doi: 10.1093/nar/gkt3030

205. Hu R, Hufnaker TB, Kagele DA, Runtsch MC, Bake E, Chen X, Zhao J, et al. Epistasis between microRNAs 155 and 146a during T cell-mediated antimitochondium immunity. *Cell Rep* (2012) 26(6):1697–709. doi: 10.1016/j.celrep.2012.10.025

211. Wang P, Hou J, Lin L, Wang C, Liu X, Li D, et al. Inducible microRNA-155 by miR-93 and Mir-155. *BMC Cancer* (2020) 20:69. doi: 10.1186/s12885-020-03290-2

212. Choudhary M, Tamrakar A, Singh AK, Jain M, Jaiswal A, Kodgire P. AID Acids Res

213. Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, McGettrick AF, et al. Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. *Proc Natl Acad Sci* (2015) 112(23):7231–6. doi: 10.1073/pnas.1501327112

214. Gerloff D, Grundler R, Wurm A, Bräuer-Hartmann D, Katzerke C, Hufnaker TB, Kagele DA, Runtsch MC, Bake E, Chen X, Zhao J, et al. Epistasis between microRNAs 155 and 146a during T cell-mediated antimitochondium immunity. *Cell Rep* (2012) 26(6):1697–709. doi: 10.1016/j.celrep.2012.10.025

215. Yao R, Ma Y-L, Liang W, Li H-H, Ma Z-J, Yu X, et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in human neoplasms. *Mol Biol Int* (2014) 378:1–11. doi: 10.1155/2014/630797

216. Xia HB, Wang HJ, Song SS, Zhang JG, He XL, Hu ZM, et al. Decreased expression of activation-induced cytidine deaminase by miR-93 and Mir-155. *BMC Cancer* (2011) 11(1):1–9. doi: 10.1186/1471-2407-1-1-347

217. Choudhary M, Tamrakar A, Singh AK, Jain M, Jaiswal A, Kodgire P. AID Acids Res

218. Schulte LN, Westermann AJ, Vogel J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. *Nucleic Acids Res* (2013) 41(17):7113–4. doi: 10.1093/nar/gkt3030

219. Kou T, Marusawa H, Kinoshita K, Endo Y, Im O, Ueda Y, et al. Expression of activation-induced cytidine deaminase in human hepatocytes via nf-kb signaling. *Oncogene* (2007) 26(38):5587–95. doi: 10.1038/sj.onc.1210034

220. Pauls SD, Marshall AJ. Regulation of immune cell signaling by SHIP1: A phosphatase, scaffold protein, and potential therapeutic target. *Eur J Immunol* (2017) 47(6):1521–49. doi: 10.1002/eji.201646795

221. Mullaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. *J Cell Physiol* (2019) 234(8):12369–84. doi: 10.1002/jcp.28058

222. Schulte LN, Westermann AJ, Vogel J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. *Nucleic Acids Res* (2013) 41(17):53–53. doi: 10.1093/nar/gkt3030

223. Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. *J Cell Physiol* (2019) 234(8):12369–84. doi: 10.1002/jcp.28058

224. Curtis AM, Fagundes CT, Yang G, Palsson-McDermott EM, Wochal P, McGrattan AF, et al. Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. *Proc Natl Acad Sci* (2015) 112(23):7231–6. doi: 10.1073/pnas.1501327112

225. Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT, et al. Selective microRNA disruption in T reg cells leads to uncontrolled autoimmunity. *J Exp Med* (2008) 205(9):1983–91. doi: 10.1084/jem.20080707

226. O’Connell RM, Chaudhuri AA, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. *Proc Natl Acad Sci* (2009) 106(24):9761–6. doi: 10.1073/pnas.0902636106

227. Zhao H-Q, Li W-M, Li Z-Q, Yao Y-M. Roles of Tregs in Development of Hepatocellular Carcinoma: A Meta-Analysis. *World J Gastroenterol: WJG* (2014) 20(24):7971–6. doi: 10.3748/wjg.v20.i24.7971

228. Kohliaas, S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigoreto E. Cutting Edge: The Fopx3 Target miR-155 Contributes to the Development of Regulatory T Cells. *J Immunol* (2009) 182(5):2578–82. doi: 10.4049/jimmunol.0803162

229. Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V, et al. The kinase Akt1 controls macrophase response to lipopolysaccharide by regulating microRNAs. *Immunity* (2009) 31(2):220–31. doi: 10.1016/j.immuni.2009.06.024

230. Yang L, Boldin MP, Yu Y, Liu CS, Ea C-K, Ramakrishnan P, et al. miR-146a controls the resolution of T cell responses in mice. *J Exp Med* (2012) 210(9):1655–70. doi: 10.1084/jem.2011.205

231. Yan J, Liu X-L, Xiao G, Li N-L, Deng Y-N, Han L-Z, et al. Prevalence and Clinical Relevance of T-helper Cells, Th17 and Th1, in Hepatitis B Virus-Related Hepatocellular Carcinoma. *Plos One* (2014) 9(5):e96080. doi: 10.1371/journal.pone.0096080

232. O’Connell RM, Chaudhuri AA, Baltimore D. Physiological and Pathological Roles for microRNAs in the Immune System. *Nat Rev Immunol* (2010) 10(2):111–22. doi: 10.1038/nri7078

233. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. *Proc Natl Acad Sci* (2009) 106(24):9761–6. doi: 10.1073/pnas.0902636106

234. Gulyaeva LF, Kushnerniy KE. Regulatory mechanisms of microRNA expression. *J Trans Med* (2016) 14(1):143. doi: 10.1186/s12967-016-0893-x

235. Wu L-Z, Ding K, Wang Z-R, Ding C-H, Lei S-J, Liu J-P, et al. SHP-1 acts as a tumor suppressor in hepatocarcinogenesis and HCC progression. *Cancer Res* (2018) 78(16):4680–91. doi: 10.1158/0008-5472.CAN-17-3896

236. Wang P, Hou J, Lin L, Wang C, Liu X, Li D, et al. Inducible microRNA-155 promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. *J Immunol* (2010) 185(10):6226–33. doi: 10.4049/jimmunol.1000491

237. Hong YK, Li Y, Pandit H, Li S, Pulliam Z, Zheng Q, et al. Epigenetic miRNA Pathways in HBV-HCC

238. Sartorus et al. Epigenetic miRNA Pathways in HBV-HCC
240. Hosseinahli N, Aghapour M, Duijf PH, Baradaran B. Treating cancer with microRNA replacement therapy: A literature review. J Cell Physiol (2018) 233 (8):5574–88. doi: 10.1002/jcp.26514

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.