Airborne Emissions from 1961 to 2004 of Benzo[a]pyrene from U.S. Vehicles per km of Travel Based on Tunnel Studies

JAN BEYEA,*† STEVEN D. STELLMAN, ‡ MAUREEN HATCH,§⊥ and MARILIE D. GAMMON

Consulting in the Public Interest (CIPI), Lambertville, New Jersey, Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, Department of Community and Preventive Medicine, Mount Sinai School of Medicine, New York, NY, 10029, and Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599

Received January 9, 2008. Revised manuscript received May 19, 2008. Accepted June 2, 2008.

We identified 13 historical measurements of polycyclic aromatic hydrocarbons (PAHs) in U.S. vehicular traffic tunnels that were either directly presented as tailpipe emission factors in µg per vehicle-kilometer or convertible to such a form. Tunnel measurements capture fleet cruise emissions. Emission factors for benzo[a]pyrene (BaP) for a tunnel fleet operating under cruise conditions were highest prior to the 1980s and fell from more than 30-µg per vehicle-km to approximately 2-µg/km in the 1990s, an approximately 15-fold decline. Total annual U.S. (cruise) emissions of BaP dropped by a factor of 2.7 during the period. Other PAH compounds measured in tunnels over the 40-year period (e.g., benzo[ghi]perylene, coronene) showed comparable reduction factors in emissions. PAH declines were comparable to those measured in tunnels for carbon monoxide, volatile organic compounds, and particulate organic carbon. The historical PAH “source terms” determined from the data are relevant to quantifying the benefits of emissions control technology and can be used in epidemiological studies evaluating the health effects of exposure, such as those undertaken with breast cancer in New York State.

Introduction

Polycyclic aromatic hydrocarbons (PAH), principally benzo[a]pyrene (BaP), have been associated with lung, bladder, and, possibly, breast cancer, as discussed by Boström et al. as part of an extensive review of individual PAH risks and sources (1). Traffic emissions are a major source of both indoor and outdoor exposures to PAH, and often the largest source in areas near cities, as has been confirmed in a number of experimental studies. (See Supporting Information for references.) We present here estimates of U.S. historical tailpipe emissions into the air of BaP per vehicle-km traveled throughout the period 1961–2004. We focused on BaP, because it is considered a good marker of overall PAH airborne exposure (2) and was measured in every PAH tunnel study located. Emissions for benzo[ghi]perylene (BGP), coronene (COR), benzo[a]anthracene (BAA), perylene (PER), pyrene (PYR), and fluoranthene (FLT) are presented in the Supporting Information for those studies that measured them by 1975. The resulting historical “source terms” are relevant to quantifying the benefits of emissions control technology. When the tailpipe emissions data are combined with estimates of yearly traffic flow and a meteorologic dispersion model (3–6), it is possible to estimate individualized ambient PAH exposures for use in retrospective epidemiologic studies (6), as is being done in studies of breast cancer (7, 8).

Tailpipe Emissions per km by Year Determined from Tunnel Measurements. Measurements in vehicular traffic tunnels provide a historical snapshot of the average performance of thousands of vehicles, including heavy-duty trucks (HDV), both gasoline (HDGV) and diesel (HDDV). We located 13 measurements of BaP-emissions or concentrations in eight different U.S. tunnels between 1961 and 2004. One study was unpublished. See Table 1.

Tunnel air was sampled in the different studies for 1/2-h or longer during time periods lasting up to 2 weeks. Over the years, the filters that were used to collect BaP in the tunnels changed from glass and quartz fibers to Teflon coated fibers. Most authors found little difference in the collection efficiency of these filters (14), provided extractions were made relatively quickly (24) or stored in the dark (25). As a result of the high BaP recovery rates expected for all of the extraction methods used, we conclude that no historical bias was introduced into BaP emission factors by the shift in extraction technology over time (see the Supporting Information).

Potential competing sources of PAH in tunnels other than tailpipe emissions are thought to be small, particularly emissions from brake linings and tires (26, 27).

Of the 13 studies in Table 1, three of them gave measurements of BaP per vehicle-km directly (9, 21, 28) based on measurements of tunnel output concentrations and measured tunnel ventilation rates. For the other studies, measurements of copollutants in the tunnel with known BaP emission rates of their own obviated the need for tunnel ventilation measurements. To be useful, the excess concentration in the tunnel of these copollutants over outdoor background concentrations must be traceable to vehicle emissions and not some other source. As discussed below, under these conditions, when the copollutant’s emission factor is known, the measured ratio of BaP to copollutant concentration can be used to extract the BaP emission factor. Following De Fré (29), we call these copollutants, “tracers”. Five of the tracer studies used carbon in the form of CO2 and CO as the tracer to measure BaP emitted per unit of fuel consumed (17, 19, 20, 22, 30). We converted results in units of fuel consumed to BaP per vehicle-km by dividing by national fuel economy rates for the relevant year as determined from Davis and Diegel (31), taking into account the percentages of truck traffic in each tunnel. The BaP emission factor was not explicitly given in one of the 5 studies (22), but its value could be extracted from data given in the paper and other publications by the authors (see the Supporting Information). We call the 8 studies discussed so far, “complete”. The remaining five (“opportunistic”) studies were not designed to estimate emission factors, but the
authors did report BaP-concentration data at various locations in their respective tunnels. We have converted this opportunistic, concentration data to emissions per km using tracer techniques, relying either on BaP itself, as measured by other researchers in the same tunnel in a different year, or relying on the copollutant lead, which was prominent in the early years. Tracer methods require knowledge not only of the concentration of the tracer but also its vehicle emission factor in one of the years of measurement.

Tracer methods, in effect, provide a way to infer tunnel ventilation parameters. For instance, when using BaP as a tracer, we, in effect, inferred effective ventilation parameters of a particular tunnel by computing the ratio of concentration to emission factors determined in “complete” studies in year, $t = 1$. Correction for ventilation from the movement of vehicles, the so-called, “piston effect,” was made using a function of the traffic rate. This approach allowed us to convert to emission factors the concentration measurements given in the “opportunistic” studies carried out in the same tunnel in year, $t = 2$, using the following equation

$$E_f(2) = E_f(1) \frac{C(2)}{C(1)} \frac{N(1)^w}{N(2)}$$

where $E_f(t)$ is an emission factor, $N(t)$ is a traffic rate (vehicles/min), and $C(t)$ is a BaP tunnel concentration.

The exponent, w, lies between 0.5 and 1 (as discussed in the Supporting Information). A numerical example computed by Schlaug and Carlin (Figure 5.4 of ref 32) for a “composite” transversely ventilated tunnel produced an exponent of about two-thirds, which we take as the most likely value for, w. To account for the uncertainty in this exponent, we use a triangular distribution between 0.5 and 1, with the peak value set to 0.66.

The validity of eq 1 depends on the assumption that the concentration at both the tunnel entrance and the intake air vent can be neglected compared to the concentration in the tunnel at the exit portal. Generally, in the tunnel studies discussed in this paper, background concentrations at the intake air vent were 10% or so of the measured concentration, which means that neglecting background concentrations is a reasonable approximation. By relying on eq 1, it is also assumed that the fan capacity and operating protocols have not changed over time. This, for instance, was the case with the Caldecott tunnel in the East Bay area of California (Mailhot, R., California Department of Transportation, personal communication, 2007).

In the “complete” studies in the California Caldecott Tunnel, measurements were made 50 m from the traffic exit portal (33). There is some evidence that penetration of outside air reduces tunnel concentration at this distance, which could lead to an underestimate in our BaP-tracer method by as much as a factor of 2 for the Pb-emission factor, namely the amount of small particles of lead emitted per km by the fleet of vehicles using the tunnel. We obtained these estimates for the tunnel study years by substituting information obtained from the literature in the following equation

$$E_{f_{\text{BaP}}} = \left(\frac{C_{\text{BaP}}}{C_{\text{Pb}}}\right) E_{f_{\text{Pb}}}$$

where E_f is an emission factor and C is a tunnel concentration. To use the Pb-tracer, ratio method, it is necessary to have an estimate for the Pb-emission factor, namely the fuel economy in km/L for the year of the study.

We obtained values for, $S(t)$, C_{BaP}, and $m(t)$ from the literature as referenced in the Supporting Information. We compared measurements in U.S. tunnels of the fraction, F, of lead in gasoline emitted as small particles and found them to be consistent over a 20+ year period (9, 36, 39), with an average value of 0.23 ± 0.04. This number is quite close to the average of 0.25 ± 0.04 obtained in 3 tunnels in Belgium during the period 1989–1991 by De Fré and colleagues (29).

After 1995, researchers reported emission factors separately for light-duty vehicles (LDV) and heavy-duty diesels (HDDV), having separated out the contribution of diesel with the exception of particulates of sulfur dioxide (SO2) and sulfate (SO4). The assumption of negligible deposition in tunnels for fine particles is universally made in the kinds of studies analyzed here (29), as is the assumption of negligible resuspension of tunnel dust by moving vehicles. We assume the same low deposition/resuspension conditions hold for the parallel ventilation ducts, which, like the tunnel proper, are quite large.

The most complicated derivation we had to make of inferred ventilation parameters was in the Sumner Tunnel in Boston. The 1961 (complete) measurements, which included direct measurement of the ventilation rate, took place with no additional ventilation from the piston effect, because traffic moved in two directions. This was not the case in 1963, when the traffic was changed to one-way, producing a piston effect. To mathematically correct for the 1963 piston effect so that the 1963-BaP data could be compared to the 1961 data, we relied on measurements of benzene-soluble particulates made in the 1963 study as a function of distance into the tunnel. As shown in the Supporting Information, fitting this data to the steady-state tunnel equation for transversely ventilated tunnels (37) allowed us determine that the concentrations would have been a factor of 2.3 higher in the absence of the piston effect, i.e. had the tunnel been two-way in 1963.

Although not previously used to estimate BaP-emission factors, lead in gasoline has been used as a tracer in tunnels to measure emission factors for total suspended particulates, SO2, SO4, carbon, sulfur, and barium (35, 38). The methodology is suitable for any copollutant, as described in ref 35. In some cases, the Pb-tracer method allowed us to obtain a second, independent estimate of BaP per vehicle-km for the same year in the same tunnel, increasing confidence in the combined results, which we obtained by computing the geometric mean.

For lead, the tracer equation (eq 1) simplifies, because year 2, is the same as year 1, so the factors involving traffic rate cancel, leaving

$$E_{f_{\text{Pb}}} = \left(\frac{C_{\text{Pb}}}{C_{\text{Pb}}^t}\right) E_{f_{\text{Pb}}}$$

where E_f is an emission factor and C is a tunnel concentration. To use the Pb-tracer, ratio method, it is necessary to have an estimate for the Pb-emission factor, namely the number of grams of lead per liter of gasoline in the year of the study; F is the fraction of lead in a liter of gasoline that is emitted as particles with significant residence time in tunnels; and $m(t)$ is the fuel economy in km/L for the year of the study.

We obtained values for, $S(t)$, C_{BaP}, and $m(t)$ from the literature as referenced in the Supporting Information. We compared measurements in U.S. tunnels of the fraction, F, of lead in gasoline emitted as small particles and found them to be consistent over a 20+ year period (9, 36, 39), with an average value of 0.23 ± 0.04. This number is quite close to the average of 0.25 ± 0.04 obtained in 3 tunnels in Belgium during the period 1989–1991 by De Fré and colleagues (29).
study	date(s)	sampler	particle filter fibers	extraction method	author method	our method(s)
Larsen, Boston (9)	Sept, 1961, 24 h	Hi-Vol, inlet/outlet of vent. bldg	glass	benzene in Soxhlet apparatus	direct	Pb-tracer
Conlee, Boston (10)	April, 1963, 24 h	Hi-Vol (vent and tunnel)	not specified	benzene in Soxhlet	none	Pb-tracer
Fox, Baltimore (11)	May, 1975, day	Hi-Vol, location not indicated	glass	benzene in Soxhlet	none	BaP-tracer
Kebbekus, NYC/NJ (12)	Nov, 1981, day	Hi-Vol in air duct, HLPI^b set at PM1.3	quartz	see footnote c	none	(1) BaP-tracer, (2) Pb-tracer
Hering, Berkeley (13)	Feb, July, 1983, day	Hi-Vol in exhaust rooms	Teflon	DCM^b in Soxhlet for > 18 h	direct	Pb-tracer
Venkataraman, Berkeley (15, 16)	Aug, 1989, day	HLPI^b in exhaust duct of bore 3, cyclone set at PM4	quartz (18)	hexane, benzene, propanol with sonication (18)	carbon tracer	convert from ng/gal to ng/km
Fraser, Los Angeles (17)	Sept, 1993, day	AIHL^b cyclone set at PM1.3, Inside tunnel and entrance of vent air in bores 1 and 2, AIHL^b cyclone set at PM2.5, Inside tunnel and entrance of vent air in bores 1 and 2	Teflon-coated glass	DCM^b with ultrasonication	carbon tracer	convert from ng/gal to ng/km
Miguel, Berkeley (19)	Aug, 1996, day	Teflon-coated glass	DCM^b with ultrasonication	carbon tracer	convert from ng/gal to ng/km	
Marr, Berkeley (20)	summer, 1997, day	Teflon-coated glass	DCM^b with ultrasonication	carbon tracer	convert from ng/gal to ng/km	
Gertler, Pennsylvania Turnpike (21)	May, 1999, day, night	Teflon-impregnated glass	DCM^b with sonification, methanol + sonification, hexane, benzene, propyl alcohol mixture, mild ultrasonic agitation	carbon tracer	see footnote d. Convert from ng/L to ng/km	
Chellam, Houston (22)	Aug, 29-Sept 1, 2000, day	Hi-Vol inside tunnel, with impactor set at PM2.5	quartz	DCM^b methanol, sonication	carbon tracer	sum over sizes, convert from ng/gal to ng/km
Phuleria, Berkeley (23)	Aug, 2004, day	Hi-Vol, inside tunnel in bores 1 and 2, impactor set at PM2.5	quartz	DCM^b methanol, sonication	carbon tracer	sum over sizes, convert from ng/gal to ng/km

^aSee text. The direct method involves measurement of ventilation rates, rather than inference from tracer measurements. The BaP-tracer here is BaP found in the same tunnel in a different year in a different study.
^bHLPI = Hering Low Pressure Impactor. DCM = dichloromethane (methylene chloride). DVI = dichotomous virtual impactor. AIHL = Air and Industrial Hygiene Laboratory.
^cExtraction of February samples: cyclohexane using ultrasonic cleaner. July data: sequential extraction with cyclohexane, dichloromethane, and acetone in Soxhlet apparatus.
^dThe BaP emission factor was not directly reported in the paper but can be derived from data in the paper (see the Supporting Information). The same value is given in a study summary table in ref 23.
emissions by regressing against the percentage of HDDV in the fleet (19–21, 30). Averaging over the 4 HDDV emission factors measured from 1996 to 2004 gives a value for BaP for heavy-duty diesels of 16.8 µg/km, as discussed in the Supporting Information. The average of LDV emissions of BaP per µg/km over the comparable period was ten times lower. To obtain fleet emission factors for the post-1995 studies, we have combined the separately measured light-duty and heavy-duty emission factors, using a value of 4% trucks to match the most common percentage in earlier studies. See the Supporting Information for details of this standardization.

As discussed in the Supporting Information, error rates were propagated throughout the calculations using Monte Carlo techniques.

Results and Discussion

Table 2 shows the estimated BaP-emission factors. The last column gives the geometric mean of estimates derived using different methods in the same tunnel. The rates fell from more than 30-µg per vehicle-km to approximately 2-µg/km averaged over the 1990s. The geometric means are plotted in Figure 1.

The emission factors are reasonably consistent with tunnel data collected in Europe, if comparisons are made to emissions from fleets, not in the same calendar year, but in years when the percentage of catalytic converters are the same (see the Supporting Information). Results for those PAHs other than BaP that were measured in tunnels as early as 1975 are shown in Table S1, Figure S1, and Figure S2. The reductions over time were comparable to those found for BaP.

As discussed in the Supporting Information, declines for traffic pollutants other than PAH measured in tunnels are consistent with what we find for PAH. For instance, 14 individual VOC concentrations measured in the Lincoln Tunnel (43), and converted by us to emission factors, declined by a factor of 5 from 1970 to 1982 and by at least another factor of 5 by 1995, when they were measured in the same tunnel by Gertler et al. (41). Declines in emissions per km of particulate organic carbo. were also large, although uncertainties are significant. Carbon monoxide emission factors measured in tunnels also dropped markedly, as shown in Table S3 and Figure S3. Note that pollutant emissions during noncruise parts of the driving cycle may not have declined as much as cruise emissions.

In addition to emission factors, Table 2 also lists the tunnel grades, vehicle speeds, fleet percentages (4% from 1996 onward to match standardized emission factors), and average daily ambient temperature taken from the nearest weather station’s archived data (see the Supporting Information). Average vehicle age in the fleet was not available for the pre-1990 tunnel studies, so is not included in the table.

Multivariate regression of the BaP emission factor against tunnel speed, ambient temperature, and study-year found only study-year, to be statistically significant (p = 0.0005), with ambient temperature having a weak association (p = 0.11), and speed not significant in multivariate analysis (p = 0.56), in contrast to univariate analysis (p = 0.035).

Tunnel grade cannot explain the large drop in emission factors, either: We have 5 measurements in East-coast, urban-area tunnels out to 1986, with comparable tunnel grades, and dramatic drops in emission factor.

As indicated in Table 1, before 1983, there was no particle size cutoff applied to the collected particulates other than that inherent in a high-volume sampler. After 1986, all of the measurements had at least a PM2.5 cutoff. However, the large drop in emission factors post-1975 cannot be due to a difference in collection efficiency, because the low 1986
The emission factor for 1999, measured in a Pennsylvania turnpike tunnel, is noticeably higher than values measured back to 1986. There have been reports of increased PAH in urban areas in this period based on measurements in dated sediment cores from reservoirs and lakes (46). However, in subsequent papers, the authors of this finding have attributed the increase to sources other than deposition of atmospheric PAH, especially runoff from parking lot sealcoat (47, 48). Thus, the high estimate in Figure 1 for 1999 remains unexplained and may simply represent the variance in the tunnel methodology and/or variance in the vehicle fleet (see the Supporting Information).

The 2.9 µg/km emission factor reported in 1993 for the Van Nuys Tunnel in Los Angeles may be higher than its neighboring data points in Figure 1 because of the acceleration/deceleration that takes place at traffic lights entering and leaving this (short) tunnel. These considerations have been called upon to explain other higher than average emission factors measured in this tunnel, namely for carbon monoxide (41, 49).

The quantitative information in Figure 1 and Table 2 can help to track the changes in BaP tailpipe emissions over time back to 1960 for use in health studies. The data indicate that there was more than a 15-fold decline in BaP and other PAH cruise emission factors for the U.S. vehicle fleet following introduction of automotive pollution controls. Total yearly (cruise) emissions dropped by a lesser factor, because overall vehicle miles traveled in the U.S. increased by about a factor of 2.7 between 1970 and 2005 (31). In summary, there were additional benefits from the introduction of automotive emission controls that are not usually counted in cost-benefit studies of air pollution regulations.

Acknowledgments

Supported in part by Intramural Research Program of NIH, National Cancer Institute, Division of Cancer Epidemiology and Genetics; USPHS grants CA/ES-66572, ES-10126, CA-63021, CA-17613, and CA-68384; Long Island and Babylon Breast Cancer Coalitions, West Islip Breast Cancer Coalition for L.I., Inc., Huntington Breast Cancer Action Coalition, Noreen T. Holland Breast Cancer Foundation, Inc., Breast Cancer Grassroots Organizations for a Unified Purpose, Inc. Antonio Miguel and the late Joan Daisey provided unpublished tunnel data. Alan W. Gertler provided raw tunnel data. We thank Jing Nie, James Cook, Iris Obrams, Gwen Collman, and several anonymous referees.

Supporting Information Available

Information on pollutant trends other than BaP, details of uncertainty analysis, derivation of equations, and disaggregation of HDV truck emissions. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

(1) Boström, C. E.; Gerde, P.; Hanberg, A.; Jernstrom, B.; Johansson, C.; Kyrklund, T.; Ranug, A.; Törnqvist, M.; Victorin, K.; Westerholm, R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. *Environ. Health Perspect.* 2002, 110 (Suppl 3), 451–88.

(2) Fertmann, R.; Tesseraux, I.; Schümann, M.; Neus, H. Evaluation of ambient air concentrations of polycyclic aromatic hydrocarbons in Germany from 1990 to 1998. *J. Expo. Anal. Environ. Epidemiol.* 2002, 12 (2), 115–23.

(3) Cohen, J.; Cook, R.; Bailey, C. R.; Carr, E. Relationship between motor vehicle emissions of hazardous pollutants, roadway proximity, and ambient concentrations in Portland, Oregon. *Environ. Modell. Software* 2005, 20 (1), 7–12.

(4) Bellander, T.; Berglund, N.; Gustavsson, P.; Jonson, T.; Nyberg, F.; Pershagen, G.; Jarup, L. Using geographic information systems to assess individual historical exposure to air pollution from traffic and house heating in Stockholm. *Environ. Health Perspect.* 2001, 109 (6), 633–9.

The results differed by a factor of 1.5 ± 0.4. Considering the limitations of these two methods, this difference is reasonable and can serve as a marker of the uncertainty of the overall methodology.
Raaschou-Nielsen, O.; Hertel, O.; Vignati, E.; Berkowicz, R.; Jensen, S. S.; Larsen, V. B.; Lohse, C.; Olsen, J. H. An air pollution model for use in epidemiological studies: evaluation with measured levels of nitrogen dioxide and benzene. J. Expo. Anal. Environ. Epidemiol. 2000, 10, 4–14.

Beyea, J.; Hatch, M. Geographic exposure modeling: a valuable extension of GIS for use in environmental epidemiology. Environ. Health Perspect. 1999, 107 (Suppl. 1), 181–190.

Beyea, J.; Hatch, M.; Stielman, S. D.; Santella, R. M.; Teitelbaum, S. L.; Prokopczyk, B.; Camaioni, D. G.; Procopiuc, M. D. Validation and calibration of a model used to reconstruct historical exposure to polycyclic aromatic hydrocarbons for use in epidemiologic studies. Environ. Health Perspect. 2006, 114 (7), 1053–1058.

Nie, J.; Beyea, J.; Bonner, M. R.; Han, D.; Vena, J. E.; Rogerson, P.; Vito, D.; Muti, P.; Trevisan, M.; Edge, S. B.; Freudenberg, J. L. Exposure to traffic emissions throughout life and risk of breast cancer: the Western New York Exposures and Breast Cancer (WEB) study. Cancer Causes Control 2007, 18 (9), 947–55.

Larsen, B. I.; Konopinski, V. J. Summer Tunnel air quality. Arch. Environ. Health 1962, 5, 597–608.

Conlee, C. J.; Kenline, P. A.; Cummins, R. L.; Konopinski, V. J. Motor vehicle exhaust at three selected sites. Arch. Environ. Health 1967, 14, 423–446.

Fox, M.; Staley, S. Determination of polycyclic aromatic hydrocarbons in atmospheric particulate matter by high pressure liquid chromatography coupled with fluorescence techniques. Anal. Chem. 1976, 48 (7), 992–998.

Kebbekus, B.; Greenberg, A.; Horgan, L.; Bozelli, J.; Darack, F.; Eaveleens, C.; Strangeberg, L. Concentration of selected vapor and particulate-phase substances in the Lincoln and Holland tunnels. JAPCA 1985, 33 (4), 328–330.

Hering, S. V.; Miguel, A. H.; Daisey, J. M.; Dod, R. L. Data volume: source allocation of carbonaceous aerosols (second draft, unpublished); Dept. of Chemical Engineering, UCLA: Los Angeles, June 1, 1989.

Benner, B. A., Jr. Mobile sources of polycyclic aromatic hydrocarbons (PAH) and Nitro-PAH: a roadway tunnel study. Ph.D. thesis, University of Maryland, College Park: MD, 1988.

Venkataraman, C.; Freidlander, S. K. Size distribution of polycyclic aromatic hydrocarbons and elemental carbon. I. Sampling, measurement methods, and source characteristics. Environ. Sci. Technol. 1994, 28, 555–562.

Venkataraman, C. Polycyclic aromatic hydrocarbon and elemental carbon size distributions in Los Angeles aerosol: source resolution and deposition velocities. Ph.D. thesis, University of California, Los Angeles, 1992.

Fraser, M. P.; Cass, G. C.; Simoneit, B. R. T. Gas-phase and particle-phase organic compounds emitted from motor vehicle traffic in a Los Angeles roadway tunnel. Environ. Sci. Technol. 1998, 32, 2051–2060.

Fraser, M. P.; Cass, G. C.; Fraser, G. B.; Simoneit, B. R. T.; Rasmussen, R. A. Air quality model evaluation data for organics. 4. C2-C6 non-aromatic hydrocarbons. Environ. Sci. Technol. 1997, 31, 2356–2367.

Miguel, A.; Kirchstetter, T.; Harley, R.; Hering, S. On-road emissions of polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environ. Sci. Technol. 1998, 32 (4), 450–455.

Marr, L. C.; Kirchstetter, T. W.; Harley, R. A.; Miguel, A. H.; Hering, S. V.; Hammond, S. K. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environ. Sci. Technol. 1999, 33 (1), 3091–3099.

Geddes, A. W.; Gillies, I. A.; Pierson, W. R.; Rogers, C. F.; Sagehiel, J. C.; Abu-Allaban, M.; Coulmore, W.; Tarnay, L.; Cahill, T. A. Real-world particulate matter and gaseous emissions from motor vehicles in a highway tunnel. Res. Rep. Health Eff. Inst. 2002, 5–56 (107), 79–92.

Chellam, S.; Kulignani, P.; Fraser, M. P. Emissions of organic compounds and trace metals in fine particulate matter from motor vehicles: a tunnel study in Houston, Texas. J. Air Waste Manage. Assoc. 2005, 55, 60–72.

Phuleria, H. C.; Geller, M. D.; Fine, P. M.; Sioutas, C. Supporting info for: Size-resolved emissions of organic tracers from light- and heavy-duty vehicles measured in a California roadway tunnel. Environ. Sci. Technol. 2006, 40 (13), 4109–4119.

Lee, F. S.-C.; Pierson, W. R.; Ezkize, J. The problem of PAH degradation during filter collection of airborne particulates: an evaluation of several commonly used filter media. In Polynuclear aromatic hydrocarbons: chemistry and biological effects; Bjorseth, A., Dennis, A. J., Eds.; Battelle Press: 1979; pp 543–563.