On a Periodic 2-Component Camassa–Holm Equation with Vorticity

Qiaoyi Hu

To cite this article: Qiaoyi Hu (2011) On a Periodic 2-Component Camassa–Holm Equation with Vorticity, Journal of Nonlinear Mathematical Physics 18:4, 541–556, DOI: https://doi.org/10.1142/S1402925111001787

To link to this article: https://doi.org/10.1142/S1402925111001787

Published online: 04 January 2021
ON A PERIODIC 2-COMPONENT CAMASSA–HOLM EQUATION WITH VORTICITY

QIAOYI HU

Department of Mathematics
South China Agricultural University
510642 Guangzhou, China
huqiaoyi@scau.edu.cn

Received 9 April 2011
Accepted 30 May 2011

We consider a periodic 2-component Camassa–Holm equation with vorticity in the paper. We first give the local well-posedness and the blow-up criterion for strong solutions to the equation in the Sobolev space $H^s, s > \frac{3}{2}$. We then present a global existence result for strong solutions to the equation. We finally obtain several blow-up results and the blow-up rate of strong solutions to the equation. The obtained results cover and improve the earlier results for a periodic 2-component Camassa–Holm equation without vorticity.

Keywords: A periodic 2-component Camassa–Holm equation; vorticity; global existence; blow-up; blow-up rate.

Mathematics Subject Classification 2000: 35G25, 35L05

1. Introduction

In the paper we consider the Cauchy problem of the following periodic 2-component Camassa–Holm equation with vorticity

\[
\begin{align*}
\rho_t + A\rho_x + (\rho u)_x &= 0, \\
\rho(0, x) &= \rho_0(x), \\
\rho(t, x) &= \rho(t, x + 1), \\
\rho(0, x) &= \rho_0(x),
\end{align*}
\]

where $y = u - u_{xx}$.

The 2-component Camassa–Holm Eq. (1.1) was recently derived by Ivanov [47], describing water waves in the shallow water regime with nonzero constant vorticity, where the nonzero vorticity case indicates the presence of an underlying current. For example, tidal
currents are realistically modeled by underlying shear flows of constant vorticity (see the discussions in [21, 28, 48]). \(u(t,x) \) describes the horizontal velocity of the fluid and \(\rho(t,x) \) is in connection with the horizontal deviation of the surface from equilibrium. All measured in dimensionless units. The parameter \(A > 0 \) characterizes a linear underlying shear flow so that (1.1) models wave-current interactions [48].

With \(\rho = A = 0 \) in Eq. (1.1), we find the classical Camassa–Holm equation, which models the unidirectional propagation of shallow water waves over a flat bottom, \(u(t,x) \) representing the fluid velocity at time \(t \geq 0 \) in the spatial \(x \) direction [6, 24, 29, 46, 48]. The classical Camassa–Holm equation has many interesting features. It has a bi-Hamiltonian structure [11, 32] and is completely integrable [6, 14]. Its solitary waves are peaked, orbitally stable and interact like solitons [3, 6, 27]. These peaked waves are analogous to the exact traveling wave solutions of the governing equations for water waves representing waves of great height (see the discussions in [15, 20, 53]). And there is a geometric interpretation of Eq. (1.1) in terms of geodesic flow on the diffeomorphism group of the circle [23]. More remarkably, it has not only global strong solutions modeling permanent waves [17, 19, 25], but also blow-up solutions modeling wave breaking [13, 16–18, 25, 49, 52, 55]. The Cauchy problem of the Camassa–Holm equation has been studied extensively. It has been shown that this equation is locally well-posed [12, 17, 49, 52] for initial data \(u_0 \in H^s(S) \) with \(s > \frac{3}{2} \).

On the other hand, it has global weak solutions with initial data \(u_0 \in H^1 \), cf. [4, 26, 54]. Moreover, the Camassa–Holm equation has not only global conservative solutions [38, 40] and dissipative solutions [5, 42] but also global conservative multipeakon solutions [39] and dissipative multipeakon solutions [41].

Equation (1.1) with \(A = 0 \) was rigorously justified by Constantin and Ivanov [22] in the context of shallow water waves without vorticity. The 2-component Camassa–Holm equation was also introduced by Falqui [31]. Chen, Liu and Zhang show that the 2-component Camassa–Holm equation can be identified with the first negative flow of the AKNS hierarchy and possesses the interesting peakon and multi-kink solutions [10]. Moreover Eq. (1.1) with \(A = 0 \) is connected with the time dependent Schrödinger spectral problem [1, 10]. Popowicz has been observed that Eq. (1.1) with \(A = 0 \) is related to the bosonic sector of an \(N = 2 \) supersymmetric extension of the classical Camassa–Holm equation [51].

For \(A = 0 \) in Eq. (1.1), there are many further works to study its mathematical properties. In [30], Lechtenfeld and Yin establish the local well-posedness and present the precise blow-up scenarios and several blow-up results of strong solutions to Eq. (1.1) on the line. In [22], Constantin and Ivanov investigate the global existence and blow-up phenomena of strong solutions of Eq. (1.1) on the line. Later, Guan and Yin obtain a new global existence result for strong solutions to Eq. (1.1) and get several blow-up results [33] which improve the recent results in [22]. Recently, Guan and Yin study the global existence of weak solutions Eq. (1.1) [34]. Henry studies the infinite propagation speed for Eq. (1.1) in [37], Gui and Liu establish the local well-posedness for Eq. (1.1) in a range of the Besov spaces, they also derive a wave breaking mechanism for strong solutions [35]. Mustafa gives a simple proof of existence for the smoothing traveling waves for Eq. (1.1) [50]. Hu and Yin study the blow-up phenomena [44, 45] and the global existence of Eq. (1.1) on the circle [45].

For \(A \neq 0 \), the Cauchy problem of Eq. (1.1) on the line (nonperiodic case) has been discussed in [36]. Therein Gui and Liu determine a wave breaking criterion for strong solutions in the lowest Sobolev space \(H^s, s > \frac{3}{2} \) by using the localization analysis in the
transport equation theory. Moreover, they establish an improved result of global solutions with only a nonzero initial profile of the free surface component of the system in H^s, $s > \frac{1}{2}$.

In [8], Chen and Liu investigate the wave breaking and global existence for a generalized 2-component Camassa–Holm system. In [9], Chen, Liu and Qiao studied the existence and stability of solitary wave solutions of a generalized 2-component Camassa–Holm system. However, Eq. (1.1) with $A \neq 0$ on the circle (periodic case) has not been studied yet. The aim of this paper is to present a global existence result, and to investigate the blow-up phenomena for strong solutions to Eq. (1.1) with $A \neq 0$.

The paper is organized as follows. In Sec. 2, we give the local well-posedness of Eq. (1.1), the precise blow-up scenarios and some useful lemmas to pursue our goal. Considering a Lyapunov function introduced in [22] and using an important conservation law, we address the precise blow-up scenarios and some useful lemmas to pursue our goal. Considering a 2-component Camassa–Holm system. In [9], Chen, Liu and Qiao studied the existence and stability of solitary wave solutions of a generalized 2-component Camassa–Holm system.

2. Preliminaries

In the section, we recall the local well-posedness and the blow-up criteria for strong solutions of Eq. (1.1). We first present the local well-posedness for the Cauchy problem of Eq. (1.1) in $H^r(S) \times H^{r-1}(S)$, $r > \frac{1}{2}$ with $S = \mathbb{R}/\mathbb{Z}$ (the circle of unit length).

Let $G(x) := \frac{1}{2\pi} \ln |x|^{-1/2}$, $x \in \mathbb{R}$. Then $(1 - \partial_x^2)^{-1}f = G * f$ for all $f \in L^2(S)$ and $G * y = y$. Here, we denote by $*$ the convolution. With a Galilean transformation $x \to x - At$, $t \to t$, as used in [47], we can drop the terms $A\rho_x$ and $A\rho_x$ in (1.1) and hence obtain the 2-component Camassa–Holm system as follows:

\[
\begin{aligned}
&u_t + uu_x + \partial_x G * \left(u^2 + \frac{1}{2} u_x^2 + \frac{1}{2} \rho_x^2 - A\rho \right) = 0, \quad t > 0, \ x \in \mathbb{R}, \\
&\rho_t + u\rho_x + \rho_x \rho = 0, \quad t > 0, \ x \in \mathbb{R}, \\
&w(0, x) = w_0(x), \quad x \in \mathbb{R}, \\
&\rho(0, x) = \rho_0(x), \quad x \in \mathbb{R}, \\
&w(t, x) = w(t, x + 1), \quad t \geq 0, \ x \in \mathbb{R}, \\
&\rho(t, x) = \rho(t, x + 1), \quad t \geq 0, \ x \in \mathbb{R}.
\end{aligned}
\]

Or the equivalent form:

\[
\begin{aligned}
&u_t + uu_x = -\partial_x (1 - \partial_x^2)^{-1} \left(u^2 + \frac{1}{2} u_x^2 + \frac{1}{2} \rho_x^2 - A\rho \right), \quad t > 0, \ x \in \mathbb{R}, \\
&\rho_t + u\rho_x + \rho_x \rho = 0, \quad t > 0, \ x \in \mathbb{R}, \\
&w(0, x) = w_0(x), \quad x \in \mathbb{R}, \\
&\rho(0, x) = \rho_0(x), \quad x \in \mathbb{R}, \\
&w(t, x) = w(t, x + 1), \quad t \geq 0, \ x \in \mathbb{R}, \\
&\rho(t, x) = \rho(t, x + 1), \quad t \geq 0, \ x \in \mathbb{R}.
\end{aligned}
\]

Applying transport equation theory combined with the method of Besov spaces, one may follow the similar argument as in [35, 36] to obtain the following local well-posedness result for the system (2.1).
The proof is similar to that of Theorem 1.1 in [35], so we omit it.

Proof. The proof is similar to that of Theorem 1.1 in [35], so we omit it.

Using Littlewood–Paley analysis for the transport equation and Moser-type estimates [7] and performing the same argument as in [36], we can obtain the following blow-up criterion.

Theorem 2.2 [36]. Let \(z_0 = (z_0^m) \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s > \frac{3}{2}, \) and let \(T \) be the maximal existence time of the solution \(z = (z^m) \) to Eq. (2.1) with the initial data \(z_0 \). Then \(T < \infty \Rightarrow \int_0^T \| u_s(t, \cdot) \|_{L^\infty} dt = \infty. \)

Proof. The proof is very similar to that of Theorem 4.1 in [36], and hence is omitted.

Next we state the following precise blow-up scenario.

Theorem 2.3 [36]. Let \(z_0 = (z_0^m) \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s > \frac{3}{2}, \) and let \(T \) be the maximal existence time of the solution \(z = (z^m) \) to Eq. (2.1) with the initial data \(z_0 \). Then the corresponding solution blows up in finite time if and only if

\[
\lim_{t \to T^-} \inf_{x \in \mathbb{S}} \| u_s(t, x) \| = -\infty.
\]

Proof. The proof of the theorem is similar to the proof of Theorem 4.2 in [36], so we omit it here.

Remark 2.1. If \(\rho = A = 0 \), then Theorems 2.2 and 2.3 cover the corresponding results for the Camassa–Holm equation in [49, 52]. If \(A = 0 \), Theorems 2.2 and 2.3 improve the corresponding results for the 2-component Camassa–Holm equation in [44, 45].

Given initial data \(z_0 = (z_0^m) \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s > \frac{3}{2}, \) Theorem 2.1 ensures the existence and uniqueness of strong solutions to Eq. (2.1).

Consider the following initial value problem

\[
\begin{cases}
q_t = u(t, q), & t \in [0, T), \ x \in \mathbb{R}, \ \\
q(0, x) = x, & x \in \mathbb{R},
\end{cases}
\]

where \(u \) denotes the first component of the solution \(z \) to Eq. (2.1) with the initial data \(z_0 \). Since \(u(t, \cdot) \in H^2(\mathbb{S}) \subset C^m(\mathbb{S}) \) with \(0 \leq m \leq \frac{3}{2} \), it follows that \(u \in C^m([0, T) \times \mathbb{S}, \mathbb{R}). \)

Applying the classical results in the theory of ordinary differential equations, one can obtain the following results of \(q \) which is the key in the proof of global existence of solutions to Eq. (2.1) in Theorem 3.2.
Lemma 2.1 [22, 30, 43]. Let $z_0 = (\omega_0, \psi_0) \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s > \frac{1}{2}$, and let $T > 0$ be the maximal existence time of the corresponding solution $z = (\omega, \psi)$ to Eq. (2.1) with the initial data z_0. Then Eq. (2.3) has a unique solution $q \in C^1([0, T) \times \mathbb{R}, \mathbb{R})$. Moreover, the map $q(t, \cdot)$ is an increasing diffeomorphism of \mathbb{R} with

$$q_t(t, x) = \exp\left(\int_0^t u_x(s, q(s, x))dx\right) > 0, \quad (t, x) \in [0, T) \times \mathbb{R}.$$

Lemma 2.2 [30, 45]. Let $z_0 = (\omega_0, \psi_0) \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s > \frac{1}{2}$, and let $T > 0$ be the maximal existence time of the corresponding solution $z = (\omega, \psi)$ to Eq. (2.1) with the initial data z_0. Then we have

$$\rho(t, q(t, x))q_x(t, x) = \rho_0(x), \quad (t, x) \in [0, T) \times \mathbb{R}. \quad (2.4)$$

Moreover, if there exists $x_0 \in \mathbb{S}$ such that $\rho_0(x_0) = 0$, then $\rho(t, q(t, x_0)) = 0$ for all $t \in [0, T)$.

We then give several useful conservation laws of strong solutions to Eq. (2.1).

Lemma 2.3. Let $z_0 = (\omega_0, \psi_0) \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s > \frac{1}{2}$, and let T be the maximal existence time of the solution $z = (\omega, \psi)$ to Eq. (2.1) with the initial data z_0. Then for all $t \in [0, T)$, we have

$$\int_\mathbb{S} u(t, x)dx = \int_\mathbb{S} u_0(x)dx,$n$$

$$\int_\mathbb{S} \rho(t, x)dx = \int_\mathbb{S} \rho_0(x)dx.$$

Proof. Integrating the first equation in (2.1) by parts, in view of the periodicity of u and G, we get

$$\frac{d}{dt} \int_\mathbb{S} udx = - \int_\mathbb{S} uu_xdx - \int_\mathbb{S} \partial_x G \cdot \left(u^2 + \frac{1}{2} u_x^2 + \frac{1}{2} \rho^2 - Au\right)dx = 0.$$

On the other hand, integrating the second equation in (2.1) by parts, in view of the periodicity of u and ρ, we get

$$\frac{d}{dt} \int_\mathbb{S} \rho dx = - \int_\mathbb{S} (up)_x dx = 0.$$

This completes the proof of the lemma.

Lemma 2.4. Let $z_0 = (\omega_0, \psi_0) \in H^s(\mathbb{S}) \times H^{s-1}(\mathbb{S}), s > \frac{1}{2}$, and let T be the maximal existence time of the solution $z = (\omega, \psi)$ to Eq. (2.1) with the initial data z_0. Then for all $t \in [0, T)$, we have

$$\int_\mathbb{S} (u^2(t, x) + u_x^2(t, x) + \rho^2(t, x))dx = \int_\mathbb{S} (u_0^2(x) + u_x^2(0, x) + \rho_0^2(x))dx.$$
Proof. Differentiating the first equation in (2.1) with respect to x, we get

$$u_{tx} = -\frac{1}{2}u_x^2 - u_{xx} + \frac{1}{2}u^2 - Au - G^* \left(u^2 + \frac{1}{2}u_x^2 + \frac{1}{2}u^2 - Au \right).$$ \hfill (2.5)

Multiplying the first equation in (2.1) by u and multiplying (2.5) by u_x, then adding them together, finally integrating by parts, we have

$$\frac{d}{dt} \int_S (u^2(t, x) + u_x^2(t, x)) dx = \int_S u_x(t, x) \rho^2(t, x) dx.$$

Multiplying the second equation in (2.1) by ρ and integrating by parts, we get

$$\frac{d}{dt} \int_S \rho^2(t, x) dx = -\int_S u_x(t, x) \rho^2(t, x) dx.$$

Adding the above two equalities, we obtain

$$\frac{d}{dt} \int_S (u^2(t, x) + u_x^2(t, x) + \rho^2(t, x)) dx = 0.$$

This completes the proof of the lemma.

We state the following lemmas to investigate the blow-up phenomena in Sec. 4.

Lemma 2.5 [16]. Let $T > 0$ and $v \in C^1([0, T); H^2(\mathbb{R}))$. Then for every $t \in [0, T)$, there exists at least one point $\xi(t) \in \mathbb{R}$ with

$$m(t) := \inf_{x \in \mathbb{R}} [v_x(x, t)] = v_x(t, \xi(t)).$$

The function $m(t)$ is almost everywhere differentiable on $(0, t)$ with

$$\frac{dm(t)}{dt} = v_{tx}(t, \xi(t)), \quad a.e. \text{ on } (0, t).$$

Lemma 2.6 [55].

(i) For every $f \in H^1(S)$, we have

$$\max_{x \in [0,1]} f^2(x) \leq \frac{1}{2(e-1)} \|f\|_{H^1(S)}^2,$$

where the constant $\frac{1}{2(e-1)}$ is sharp.

(ii) For every $f \in H^1(S)$, we have

$$\max_{x \in [0,1]} f^2(x) \leq c \|f\|_{H^1(S)}^2,$$

with the best possible constant c lying within the range $[1, \frac{1}{2e}]$. Moreover, the best constant c is $\frac{1}{2(e-1)}$.
By the conservation law stated in Lemmas 2.4 and 2.6(i), we have the following corollary.

Corollary 2.1. Let \(z_0 = (u_0^s, \rho_0^s) \in H^s(S) \times H^{s-1}(S), s > \frac{3}{2} \) be given and assume that \(T \) is the maximal existence time of the corresponding solution \(z = (u_s, \rho_s) \) to Eq. (2.1) with the initial data \(z_0 \). Then for all \(t \in [0, T) \), we have
\[
\|u(t, \cdot)\|^2_{L^2(S)} \leq \frac{e + 1}{2(e - 1)} \|u(t, \cdot)\|^2_{H^1(S)} \leq \frac{e + 1}{2(e - 1)} (\|u_0^s\|^2_{H^1(S)} + \|\rho_0^s\|^2_{L^2(S)}).
\]

Lemma 2.7 [43]. If \(f \in H^q(S) \) is such that \(\int_S f(x)dx = \frac{\partial}{\partial t} \), then for every \(\varepsilon > 0 \), we have
\[
\max_{x \in [0,1]} f^2(x) \leq \frac{\varepsilon + 2}{24} \int_S f^2 dx + \frac{\varepsilon + 2}{4\varepsilon} \|f\|^2_{H^1(S)}.
\]
Moreover,
\[
\max_{x \in [0,1]} f^2(x) \leq \frac{\varepsilon + 2}{24} \|f\|^2_{H^1(S)} + \frac{\varepsilon + 2}{4\varepsilon} \|\rho\|^2_{L^2(S)}.
\]

3. Global Existence

By Lemmas 2.1, 2.2 and 2.4, we obtain a global existence of strong solutions of Eq. (2.1).

Theorem 3.1. Let \(z_0 = (u_0^s, \rho_0^s) \in H^s(S) \times H^{s-1}(S), s > \frac{3}{2} \) be given. If \(\rho_0(x) \neq 0 \) for all \(x \in S \), then the corresponding strong solution \(z = (u_s, \rho_s) \) to Eq. (2.1) with the initial data \(z_0 \) exists globally in time.

Proof. Assumed that \(T \) is the maximal existence time of the corresponding solution \(z \) to Eq. (2.1) with the initial data \(z_0 \). In view of Theorem 2.3, it suffices to prove that there exists \(M > 0 \), such that \(\inf_{x \in \bar{S}} u_k(t, x) \geq -M \) for all \(t \in [0, T) \).

By Lemmas 2.1 and 2.2, we know that \(\rho(0, x) \) has the same sign with \(\rho(t, q(t, x)) \). Since \(\rho(0, x) \neq 0 \) for all \(x \in S \), it follows that \(\rho(t, q(t, x)) \neq 0 \) for all \((t, x) \in [0, T) \times S \).

By Lemma 2.1, we have that the map \(q(t, \cdot) \) is an increasing diffeomorphism of \(R \). By the periodicity of \(u_k \) and the property of \(q(t, \cdot) \), we have \(\inf_{x \in S} u_k(t, q(t, x)) = \inf_{x \in S} u_k(t, x) = \inf_{x \in S} u_k(t, x) \). Set \(m(t, x) = u_k(t, q(t, x)) \).

Next, we consider the function introduced in [22],
\[
w(t, x) = \rho(0, x)\rho(t, q(t, x)) + \frac{\rho(0, x)}{\rho(t, q(t, x))} + m^2(t, x).
\]
By Sobolev imbedding theorem, we have
\[
0 < w(0, x) \leq \|\rho_0\|^2_{L^2(S)} + \|u_0\|^2_{H^1(S)} + 1 \leq \|\rho_0\|^2_{H^s(S)} + \|u_0\|^2_{H^{s-1}(S)} + 1.
\]
By the definition of \(m(t, x) \) and the first equation in (2.1), we have
\[
\frac{\partial m}{\partial t} = (u_{zz} + u_{zz})(t, q(t, x)). \tag{3.1}
\]
By Eq. (2.3) and the second equation in (2.1), we obtain
\[
\frac{\partial \rho(t, q(t, x))}{\partial t} = -\rho(t, q(t, x))m(t, x). \tag{3.2}
\]
We get
\[E \frac{\partial u}{\partial t} = \frac{1}{2} u^2(t) + \left(u^2 + \frac{1}{2} \rho^2 - Au \right) (t, q(t, x)) \]
- \[G \ast \left(u^2 + \frac{1}{2} u^2 + \frac{1}{2} \rho^2 - Au \right) (t, q(t, x)). \] (3.3)

This completes the proof of the theorem.

Differentiating \(w(t, x) \) with respect to \(t \) and using (3.2) and (3.3) combined with Young’s inequality and Corollary 2.1, we have
\[
\frac{du}{dt} = \frac{\rho(0, x)}{\rho(t, q(t, x))} m(t, x) \left[u^2 - Au - G \ast \left(\frac{1}{2} u^2 + \frac{1}{2} \rho^2 - Au \right) + \frac{1}{2} \right].
\]
\[
\leq \frac{\rho(0, x)}{\rho(t, q(t, x))} (1 + m^2(t, x)) \left[u^2 - Au - G \ast \left(\frac{1}{2} u^2 + \frac{1}{2} \rho^2 - Au \right) + \frac{1}{2} \right],
\]
\[
\leq \left[\frac{e + 1}{2(e-1)} E_0 + A \sqrt{\frac{e + 1}{2(e-1)}} E_0 + \frac{\cosh(1/2)}{2 \sinh(1/2)} \left(E_0 + A \frac{e + 1}{2(e-1)} E_0 \right) + \frac{1}{2} \right] w(t, x),
\]
where \(E_0 = \| u \|_{L^2(\Omega)} + \| \rho \|_{L^2(\Omega)} \). Here we use the facts that \(\frac{1}{\cosh(x)} \leq G(x) \leq \frac{\cosh(1/2)}{2 \sinh(1/2)} \) and \(\| u \|_{L^2(\Omega)} \leq \| u \|_{L^2(\Omega)} \).

By Gronwall’s inequality, we have
\[
w(t, x) \leq w(0, x) e^{Kt} \leq (\| u \|_{H^{1/2}(\Omega)} + \| \rho \|_{L^2(\Omega)}) e^{Kt},
\]
where
\[K = \left[\frac{e + 1}{2(e-1)} E_0 + A \sqrt{\frac{e + 1}{2(e-1)}} E_0 + \frac{\cosh(1/2)}{2 \sinh(1/2)} \left(E_0 + A \frac{e + 1}{2(e-1)} E_0 \right) + \frac{1}{2} \right].
\]

On the other hand, we get
\[
w(t, x) \geq 2 \sqrt{\rho^2(0, x)(1 + m^2)} \geq 2 \tilde{a} |m(t, x)|.
\]
where \(a = \inf_{x \in \Omega} |\rho(x)| > 0. \)

Thus, we deduce that
\[
m(t, x) \geq - \frac{1}{2 \tilde{a}} w(t, x) \geq - \frac{1}{2 \tilde{a}} (\| u \|_{H^{1/2}(\Omega)} + \| \rho \|_{L^2(\Omega)}) e^{Kt} := - M.
\]

This completes the proof of the theorem.

4. Blow-up Phenomena

In the section we investigate the blow-up phenomena of strong solutions to Eq. (2.1). We will show that the 2-component Camassa-Holm system has the similar wave breaking phenomena as the classical Camassa-Holm equation in a lower Sobolev space \(H^s \times H^{s-1} \) for \(s > \frac{1}{2} \). Now we give the first blow-up result.
Theorem 4.1. Let \(z_0 = \binom{z_0}{\rho_0} \in H^s(S) \times H^{s-1}(S) \), \(s > \frac{1}{2} \), and let \(T \) be the maximal existence time of solution \(z = \binom{z}{\rho} \) to Eq. (2.1) with the initial data \(z_0 \). If there is some \(x_0 \in S \) such that \(\rho_0(x_0) = 0 \) and
\[
\|u_0^x(x_0)\| < \left[\frac{\varepsilon + 1}{2(e-1)} E_0 + A \sqrt{\frac{\varepsilon(e+1)}{e-1} E_0^2} \right]^{1/2},
\]
where \(E_0 = \|u_0\|_{H^1(S)}^2 + \|\rho_0\|_{L^2(S)}^2 \), then the corresponding solution to Eq. (2.1) blows up in finite time.

Proof. Let \(z \) be the solution to Eq. (2.1) with the initial data \(z_0 \in H^s(S) \times H^{s-1}(S) \), \(s > \frac{1}{2} \), and let \(T > 0 \) be the maximal time of existence of the solution \(z \) with the initial data \(z_0 \). Note that \(\partial^2_t G \ast f = G \ast f - f \).

Define \(m(t) = u(t, q(t, x_0)) \) and \(h(t) = \rho(t, q(t, x_0)) \). By Eqs. (2.1) and (2.3), we have
\[
\frac{d}{dt} m(t) = (u_{tx} + u_{xx} q)(t, q(t, x_0)) = (u_{tx} + u u_{xx})(t, q(t, x_0))
\]
and
\[
\frac{d}{dt} h(t) = \rho_t + \rho q_t = -h m.
\]
Substituting \((t, q(t, x_0)) \) into Eq. (2.5), we obtain
\[
m'(t) = -\frac{1}{2} m^2(t) + u^2(t, q(t, x_0)) + \frac{1}{2} \rho^2 - Au(t, q(t, x_0)),
\]
\[
- G \ast \left(u^2 + \frac{1}{2} \rho^2 - Au \right)(t, q(t, x_0)),
\]
\[
\leq -\frac{1}{2} m^2(t) + \left(\frac{1}{2} \rho^2 - Au + AG \ast u \right)(t, q(t, x_0)) + \frac{1}{2} h^2. \tag{4.1}
\]
Here we use the relation \(G \ast (u^2 + \frac{1}{2} \rho^2) \geq \frac{1}{4} u^2 \), and \(G \ast \rho^2 \geq 0 \).

Recalling Corollary 2.1, we have
\[
\|u\|_{L^\infty(S)} \leq \left(\frac{e + 1}{2(e-1)} \right) \left(\|u_0\|_{H^1(S)}^2 + \|\rho_0\|_{L^2(S)}^2 \right)^{1/2}.
\]

Using Young’s inequality and the above estimate, we have
\[
\|G \ast u\|_{L^\infty(S)} \leq \|G\|_{L^1(S)} \|u\|_{L^\infty(S)} \leq \left(\frac{e + 1}{2(e-1)} \right) \left(\|u_0\|_{H^1(S)}^2 + \|\rho_0\|_{L^2(S)}^2 \right)^{1/2},
\]
where we use the fact that \(\|G\|_{L^1(S)} = 1 \).

Note that \(h(0) = \rho(0, q(0, x_0)) = \rho_0(x_0) = 0 \). By Lemma 2.2, we have \(h(t) = 0 \) for all \(t \in [0, T] \). Setting \(E_0 = \|u_0\|_{H^1(S)}^2 + \|\rho_0\|_{L^2(S)}^2 \), we deduce that
\[
m'(t) \leq \frac{1}{2} m^2(t) + \frac{e + 1}{4(e-1)} E_0 + 2A \sqrt{\frac{e + 1}{2(e-1)} E_0^2},
\]
By Lemma 2.3, we have

\[\text{Proof.} \]

Let \(z(t) \) be the maximal existence time of solution \(z = \left(\psi \right) \) to Eq. (2.1) with the initial data \(z_0 \). Assume that \(\int_\mathbb{S} \rho_0(x)dx = \frac{\varphi_0}{2} \). If there is some \(x_0 \in \mathbb{S} \) such that \(\rho_0(x_0) = 0 \) and for any \(\epsilon > 0 \)

\[u_0(x_0) < \left(\frac{\epsilon + 2}{24} E_0 + \frac{\epsilon + 2}{8} a_0^2 + A \sqrt{\frac{2(\epsilon + 2)}{3} E_0 + \frac{4(\epsilon + 2)}{\epsilon} a_0^2} \right)^{\frac{1}{\epsilon}}, \]

where \(E_0 = \|u_0\|_{H^s(\mathbb{S})}^2 + \|\partial_x u_0\|_{L^2(\mathbb{S})}^2 \), then the corresponding solution to Eq. (2.1) blows up in finite time.

Proof. By Lemma 2.3, we have \(\int_\mathbb{S} u(t,x)dx = \int_\mathbb{S} u_0(x)dx = \frac{\varphi_0}{2} \). Using Lemma 2.7, Corollary 2.1 and the above conservation law, we have

\[\|u\|_{L^\infty(\mathbb{S})} \leq \sqrt{\frac{\epsilon + 2}{24} E_0 + \frac{\epsilon + 2}{4} a_0^2}, \]

and

\[\|G \ast u\|_{L^\infty(\mathbb{S})} \leq \sqrt{\frac{\epsilon + 2}{24} E_0 + \frac{\epsilon + 2}{4} a_0^2}, \]

where we use Young’s inequality and the fact that \(|G|_{L_1(\mathbb{S})} = 1 \). Let \(m(t) \) and \(h(t) \) be the same as those defined in Theorem 4.1. Using (4.1) and the above inequality, we have

\[m'(t) \leq -\frac{1}{2} m^2(t) + \left(\frac{\epsilon + 2}{48} E_0 + \frac{\epsilon + 2}{8} a_0^2 + 2A \sqrt{\frac{\epsilon + 2}{24} E_0 + \frac{\epsilon + 2}{4} a_0^2} \right)^{\frac{1}{2}}. \]

Set \(K = \left(\frac{\epsilon + 2}{48} E_0 + \frac{\epsilon + 2}{8} a_0^2 + 2A \sqrt{\frac{\epsilon + 2}{24} E_0 + \frac{\epsilon + 2}{4} a_0^2} \right)^{\frac{1}{2}} \). Following the same argument as in Theorem 4.1, we deduce that the solution \(z \) blows up in finite time.

Remark 4.2. Theorem 4.2 with \(A = 0 \) covers the result of Theorem 4.3 in [45].
Letting \(a_0 = 0 \) and \(\epsilon \to 0 \) in Theorem 4.2, we have the following corollary immediately.

Corollary 4.1. Let \(z_0 = (0, u_0) \in H^s(T) \times H^{s-1}(T), s > \frac{3}{2}, \) and let \(T \) be the maximal existence time of solution \(z = (u, \rho) \) to Eq. (2.1) with the initial data \(z_0 \). Assume that \(z(0) = 0 \) and \(u(0) \), \(\rho(0) \), and \(\partial_x \rho(0) \) are odd, and let \(z_0 = (0, u_0) \in H^s(T) \times H^{s-1}(T), s > \frac{3}{2}, \) and let \(T \) be the maximal existence time of solution \(z = (u, \rho) \) to Eq. (2.1) with the initial data \(z_0 \). Assume that \(u_0(0) \) is even, \(\rho_0(0) = 0 \), and \(\partial_x \rho(0) < 0 \), then the corresponding solution to Eq. (2.1) blows up in finite time.

Remark 4.3. Corollary 4.1 is also true for \(u_0 \) and \(\rho_0 \) being odd. Furthermore, Corollary 4.1 with \(A = 0 \) covers the result of Corollary 4.2 in [45].

Next, we give a blow-up result if \(u_0 \) is odd and \(\rho_0 \) is even.

Theorem 4.3. Let \(z_0 = (0, u_0) \in H^s(T) \times H^{s-1}(T), s > \frac{3}{2}, \) and let \(T \) be the maximal existence time of solution \(z = (u, \rho) \) to Eq. (2.1) with the initial data \(z_0 \). Assume that \(u_0(0) \) is odd, \(\rho_0(0) = 0 \), and \(\partial_x \rho(0) < 0 \), then the corresponding solution to Eq. (2.1) blows up in finite time and \(T < 2/u_0(0) \).

Proof. Let \(z \) be the solution to Eq. (2.1) with the initial data \(z_0 \in H^s(T) \times H^{s-1}(T), s > \frac{3}{2}, \) and let \(T > 0 \) be the maximal time of existence of the solution \(z \) with the initial data \(z_0 \).

Note that Eq. (2.1) is invariant under the transformation \((u, \rho) \to (-u, -\rho) \) and \((\rho, -x) \to (\rho, x) \). Thus, we deduce that if \(u_0(x) \) is odd and \(\rho_0(x) \) is even, then \(u(t, x) \) is odd and \(\rho(t, x) \) is even for any \(t \in [0, T] \). By the oddness of \(u(t, x) \), we have that \(u(t, 0) = 0 \). Define \(m(t) = u_x(t, 0) \) and \(h(t, x) = \rho(t, q(t, x)) \). Note that \(h(0, 0) = \rho(0, q(0, 0)) = \rho_0(0) = 0 \). By Eq. (2.3) and the second equation in (2.1), we have

\[
\frac{dh}{dt} = \rho_t + \rho_x q_t = -h(t, x) u_x(t, q(t, x)).
\]

In view of Eq. (2.3), we deduce that if \(u(t, x) \) is odd with respect to \(x \), then \(q(t, x) \) is also odd with respect to \(x \). Then we have \(q(t, 0) = 0 \). By Lemma 2.2, we have \(h(t, 0) = \rho(t, q(t, 0)) = \rho(0, 0) = 0 \) for all \(t \in [0, T] \).

Since \(u \) is odd and \(G \) is even, hence \((\partial_x^2 G * u)(t, 0) = 0 \). Substituting \((t, 0) \) into Eq. (2.5), we obtain

\[
m''(t) = -\frac{1}{2} m^2(t) + u_2(t, 0) + \frac{1}{2} u^2(0, 0),
\]

\[
- G * (u^2 + \frac{1}{2} u_x^2 + \frac{1}{2} \rho^2)(t, 0) + A(\partial_x^2 G * u)(t, 0),
\]

\[
\leq -\frac{1}{2} m^2(t).
\]

Here we use the relations \(u(0, 0) = 0 \), \(h(0, 0) = 0 \), and \(G * (u^2 + \frac{1}{2} u_x^2 + \frac{1}{2} \rho^2) \geq 0 \).
Note that \(m(0) = u_0'(0) < 0 \) and \(m'(t) \leq 0 \). We deduce that \(m(t) < 0 \) for all \(t > 0 \).

Solving (4.2), we have

\[
\frac{1}{m(0)} + \frac{1}{2} \frac{t}{m(0)} \leq \frac{1}{m(t)} < 0.
\]

The above inequality implies that \(T < -\frac{1}{m(0)} \), and \(u_x(t,0) \) tends to negative infinity as \(t \) goes to \(T \). This completes the proof of the theorem.

Remark 4.4. If the condition \(u_0'(0) < 0 \) in Theorem 4.3 is replaced by the conditions \(u_0'(0) \leq 0 \) and \(u_0(0) \neq 0 \), then one can also deduce that the solution of Eq. (2.1) blows up in finite time. Moreover, Theorem 4.3 with \(A = 0 \) improves Theorem 4.4 in [45], where the Sobolev space \(H^s \times H^{s-1} \) for \(s \geq 2 \) is considered.

Finally we give more insight into the blow-up rate for the wave breaking solutions to Eq. (2.1).

Theorem 4.4. Let \(z = (u, \rho) \) be the solution to Eq. (2.1) with the initial data \(z_0 = (u_0, \rho_0) \in H^s(S) \times H^{s-1}(S), s > \frac{3}{2} \) satisfying the assumption of Theorem 4.1, and let \(T > 0 \) be the maximal time of existence of the solution \(z \). If \(T < \infty \), we have

\[
\lim_{t\to T} \left(\inf_{x \in \mathbb{R}} u_x(t,x)(T-t) \right) = -2,
\]

while the solution remains uniformly bounded.

Proof. By Corollary 2.1, we get the uniform bound of \(u \). By (2.5) and the proof of Theorem 4.1, we find a constant \(K > 0 \) such that

\[
|m'(t)| + \frac{1}{2} m^2 \leq K,
\]

where \(K \) depends only on \(E_0 \) and \(A \). It follows that

\[
-K \leq m'(t) + \frac{1}{2} m^2 \leq K \quad \text{a.e. on } (0,T).
\]

Choose \(\epsilon \in (0, \frac{1}{K}) \). Since \(\lim_{t \to T} \inf_{x \in \mathbb{R}} u_x(t,x) = -\infty \) by Theorem 2.3, there is some \(t_0 \in (0,T) \) with \(m(t_0) < 0 \) and \(m^2(t_0) > \frac{K}{\epsilon} \). Let us first prove that

\[
m^2(t) > \frac{K}{\epsilon} \quad t \in (t_0, T).
\]

Since \(m \) is locally Lipschitz (it belongs to \(W^{1,\infty}_loc(\mathbb{R}) \) by Lemma 2.5), there is some \(\delta > 0 \) such that

\[
m^2(t) > \frac{K}{\epsilon} \quad t \in (t_0, t_0 + \delta).
\]

Pick \(\delta > 0 \) maximal with this property. If \(\delta < T - t_0 \) we would have \(m^2(t_0 + \delta) = \frac{K}{\epsilon} \) while

\[
m'(t) \leq -\frac{1}{2} m^2 + K < -\frac{1}{2} m^2 + em^2 \quad \text{a.e. on } (t_0, t_0 + \delta).
\]
Note that \(m \) is locally Lipschitz and therefore absolutely continuous. Integrating the previous relation on \([t_0, t_0 + \delta]\) yields that

\[m(t_0 + \delta) \leq m(t_0) < 0. \]

It follows from the above inequality that

\[m^2(t_0 + \delta) \geq m^2(t_0) > \frac{K}{\epsilon}. \]

The obtained contradiction completes the proof of the relation (4.4).

By (4.3) and (4.4), we infer

\[\frac{1}{2} - \epsilon \leq -\frac{m'(t)}{m^2} \leq \frac{1}{2} + \epsilon \quad \text{a.e. on } (0, T). \]

(4.5)

Since \(m \) is locally Lipschitz on \([0, T]\) and (4.5) holds, it is easy to check \(\frac{1}{m} \) is locally Lipschitz on \((t_0, T)\). Differentiating the relation \(m(t) \cdot \frac{1}{m(t)} = 1, \ t \in (t_0, T) \), we get

\[\frac{d}{dt} \frac{1}{m(t)} = -\frac{m'(t)}{m^2(t)} \quad \text{a.e. on } (0, T). \]

For \(t \in (t_0, T) \), integrating (4.5) on \((t, T)\) to get

\[\left(\frac{1}{2} - \epsilon \right) (T - t) \leq -\frac{1}{m(t)} \leq \left(\frac{1}{2} + \epsilon \right) (T - t), \quad t \in (t_0, T). \]

Since \(m(t) < 0 \) on \([t_0, T]\), it follows that

\[\frac{1}{2} + \epsilon \leq -m(t)(T - t) \leq \frac{1}{2} + \epsilon \quad t \in (t_0, T). \]

By the arbitrariness of \(\epsilon \in (0, \frac{1}{2}) \), the statement of the theorem follows.

By the similar argument in Theorem 4.4, we have the following theorem.

Theorem 4.5. Let \(z = (u, \rho) \) be the solution to Eq. (2.1) with the initial data \(z_0 = (u_0, \rho_0) \in H^s(S) \times H^{s-1}(S), s > \frac{3}{2} \) satisfying the assumption of Theorem 4.3, and let \(T > 0 \) be the maximal time of existence of the solution \(z \). If \(T < \infty \), we have

\[\lim_{t \to T} \left(\inf_{x \in S} u_x(t, x)(T - t) \right) = -2, \]

while the solution remains uniformly bounded.

Acknowledgments

This study was supported by Guangdong Natural Science Foundation (No. S2011040001127). The author is very pleased to acknowledge the support and encouragement of Professor Zhaoyang Yin as this work has developed. The author is also grateful to Chunxia Guan for her helpful discussions. The author thanks the referee for valuable comments and suggestions.
References

[1] M. Antonowicz and A. P. Fordy, Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems, Comm. Math. Phys. 124 (1989) 465–486.

[2] H. Aratyn, J. F. Gomes and A. H. Zimerman, On negative flows of the AKNS hierarchy and a class of deformations of bihamiltonian structure of hydrodynamical type, J. Phys. A 39 (2006) 1099–1114.

[3] R. Beals, D. Sattinger and J. Szmigielski, Multipeakons and a theorem of Stieljes, Inverse Problems 15 (1999) 1–4.

[4] A. Bressan and A. Constantin, Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal. 183 (2007) 215–239.

[5] A. Bressan and A. Constantin, Global dissipative solutions of the Camassa–Holm equation, Anal. Appl. (Singap.) 5 (2007) 1–27.

[6] R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993) 1661–1664.

[7] J. Y. Chemin, Localization in Fourier space and Navier–Stokes system, in Phase Space Analysis of Partial Differential Equations, CRM Series, (Pisa 2004), pp. 53–136.

[8] R. M. Chen and Y. Liu, Wave-breaking and global existence for a generalized two-component Camassa–Holm system, Int. Math. Res. Not. (2010), in press.

[9] R. M. Chen, Y. Liu and Z. Qiao, Stability of solitary waves of a generalized two-component Camassa–Holm system Comm. Partial Differential Equations (2010), in press.

[10] M. Chen, S. Liu and Y. Zhang, A 2-component generalization of the Camassa–Holm equation and its solutions, Lett. Math. Phys. 75 (2006) 1–15.

[11] A. Constantin, The Hamiltonian structure of the Camassa–Holm equation, Expo. Math. 15 (1997) 53–85.

[12] A. Constantin, The Cauchy problem for the periodic Camassa–Holm equation, J. Differential Equations 141 (1997) 218–235.

[13] A. Constantin, On the blow-up of solutions of a periodic shallow water equation, J. Nonlinear Sci. 10 (2000) 391–399.

[14] A. Constantin, On the scattering problem for the Camassa–Holm equation, Proc. R. Soc. Lond. A 457 (2001) 953–970.

[15] A. Constantin, The trajectories of particles in Stokes waves, Invent. Math. 166 (2006) 523–535.

[16] A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math. 181 (1998) 229–243.

[17] A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math. 51 (1998) 475–504.

[18] A. Constantin and J. Escher, On the structure of a family of quasilinear equations arising in a shallow water theory, Math. Ann. 312 (1998) 403–416.

[19] A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z. 233 (2000) 75–91.

[20] A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. (N.S.) 44 (2007) 423–431.

[21] A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math. 173 (2011) 599–668.

[22] A. Constantin and R. Ivanov, On an integrable two-component Camassa–Holm shallow water system, Phys. Lett. A 372 (2008) 7129–7132.

[23] A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv. 78 (2003) 861–888.

[24] A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Arch. Ration. Mech. Anal. 192 (2009) 165–186.

[25] A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999) 949–982.
[26] A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys. 211 (2000) 45–61.
[27] A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math. 53 (2000) 603–610.
[28] A. F. T. da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite depth with constant vorticity, J. Fluid Mech. 195 (1988) 281–302.
[29] H. R. Dullin, G. A. Gottwald, and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett. 87 (2001) 4501–4504.
[30] J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation, Discrete Contin. Dyn. Syst. 19 (2007) 493–513.
[31] G. Falqui, On the Camassa–Holm type equation with two dependent variables, J. Phys. A 39 (2006) 327–342.
[32] A. Fokas and B. Fuchssteiner, Symplectic structures, their Backlund transformation and hereditary symmetries, Phys. D 4 (1981) 47–66.
[33] C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water system, J. Differential Equations 248 (2010) 2003–2014.
[34] C. Guan and Z. Yin, Global weak solutions for a two-component Camassa–Holm shallow water system, J. Funct. Anal. 260 (4) (2011) 1132–1154.
[35] G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa–Holm system, Math. Z. (2010), doi:10.1007/s00209-009-0660-2.
[36] G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa–Holm system, J. Funct. Anal. 258 (2010) 4501–4504.
[37] D. Henry, Infinite propagation speed for a two component Camassa–Holm equation, Discrete Contin. Dyn. Syst. Ser. B 12 (2009) 597–606.
[38] H. Holden and X. Raynaud, Global conservative solutions of the Camassa–Holm equation—a Lagrangian point of view, Comm. Partial Differential Equations 32 (2007) 1511–1549.
[39] H. Holden and X. Raynaud, Global conservative multipeakon solutions of the Camassa–Holm equation, J. Hyperbolic Differential Equations 4 (2007) 39–64.
[40] H. Holden and X. Raynaud, Periodic conservative solutions of the Camassa–Holm equation, Ann. Inst. Fourier (Grenoble) 58 (2008) 945–988.
[41] H. Holden and X. Raynaud, Global dissipative multipeakon solutions for the Camassa–Holm equation, Comm. Partial Differential Equations 33 (2008) 2040–2063.
[42] H. Holden and X. Raynaud, Dissipative solutions for the Camassa–Holm equation, Discrete Contin. Dyn. Syst. 24 (2009) 1047–1112.
[43] Q. Hu and Z. Yin, Blowup phenomena for a new periodic nonlinearly dispersive wave equation, Math. Nachr. 283 (11) (2010) 1613–1628.
[44] Q. Hu and Z. Yin, Well-posedness and blowup phenomena for the periodic 2-component Camassa–Holm equation, Proc. Roy. Soc. Edinb. Sect. A 141 (2011) 93–107.
[45] Q. Hu and Z. Yin, Global existence and blowup phenomena for the periodic 2-component Camassa–Holm equation, Monatsh. Math. (2011), doi:10.1007/s00605-011-0263-5.
[46] R. Ivanov, Extended Camassa–Holm hierarchy and conserved quantities, Z. Naturforsch. 133 (2006) 133–138.
[47] R. Ivanov, Two-component integrable systems modelling shallow water waves: The constant vorticity case, Wave Motion 46 (2009) 389–396.
[48] R. S. Johnson, The Camassa–Holm equation for water waves moving over a shear flow, Fluid Dynam. Res. 33 (2003) 97–111.
[49] Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations 162 (2000) 27–63.
[50] O. G. Mustafa, On smooth traveling waves of an integrable two-component Camassa–Holm shallow water system, Wave Motion 46 (2009) 397–402.
[51] Z. Popowicz, A 2-component or $N = 2$ supersymmetric Camassa–Holm equation, Phys. Lett. A 354 (2006) 110–114.
[52] G. Rodriguez-Blanco, On the Cauchy problem for the Camassa–Holm equation, *Nonlinear Anal.* 48 (2001) 309–327.
[53] J. F. Toland, Stokes waves, *Topol. Methods Nonlinear Anal.* 7 (1996) 1–48.
[54] Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, *Comm. Pure Appl. Math.* 53 (2000) 1411–1433.
[55] Z. Yin, On the blow-up of solutions of a periodic nonlinear dispersive wave equation in compressible elastic roads, *J. Math. Anal. Appl.* 288 (2003) 232–245.