Beyond partial control: controlling chaotic transients with the safety function

Rubén Capeáns · Miguel A. F. Sanjuán

Abstract Partial control is a technique used in systems with transient chaos. The aim of this control method is to avoid the escape of the orbits from a region \(Q \) of the phase space where the transient chaotic dynamics takes place. This technique is based on finding a special subset of \(Q \) called the safe set. The chaotic orbit can be sustained in the safe set with a minimum amount of control. In this work, we develop a control strategy to gradually lead any chaotic orbit in \(Q \) to the safe set by using the safety function. With the technique proposed here, the safe set can be converted into a global attractor of \(Q \).

Keywords Chaos control · Transient chaos · Time series

1 Introduction

The control of chaotic systems developed in the late 20th century has been one of the main achievements in the field of nonlinear dynamics. The deterministic nature of these systems does not make them predictable. Due to the high sensitivity of the chaotic systems, the uncertainty in the forecast of the trajectories increases exponentially with time, making their control a challenging task. The OGY control method [1] was the first to achieve the stabilization of an unstable periodic orbit embedded in a chaotic attractor, by applying small perturbations in a system parameter. Since then, a variety of control methods have been developed in different scenarios where chaotic dynamics is present.

One that has attracted interest in recent years is the chaotic transient behaviour. This situation usually arises when due to the change of a parameter of the system, a chaotic attractor collides with its own boundary basin causing a boundary crisis, giving the trajectories a path to escape towards an external attractor. Sooner or later almost all trajectories escape with the exception of a set called the nonattracting chaotic set (i.e. chaotic repellor or a chaotic saddle), where arbitrarily long transients can be found. This set is fractal and nonattracting and is the skeleton of the transient chaos behaviour [2,3].

In some situations, the chaotic behaviour is a desirable feature that is worth to preserve [4,5]. However, if we have transient chaos, we need to apply some control strategy to sustain it. In this sense, different control methods have been proposed to convert transient chaos into permanent chaos. Among the most important methods, we can refer to the methods proposed by Yang et al. [6], Schwartz and Triandaf [7], and Dhamala and Lai [8]. With the same goal, a new method called partial control has been proposed [9,10]. The main difference of this method is that is conceived to deal with chaotic dynamics affected by bounded noise. This actu-
ally makes a big difference, since all real experiments are affected by noise. Even if this amount of noise is small, it should be taken into account since chaotic motion is an error amplifier, and small deviations at the beginning can ruin even the best control strategy.

The intrinsic instability of the nonattracting chaotic set, together with the action of noise creates a difficult scenario where keeping the control small might seem not realistic. However, the application of the partial control technique comes up with a surprising result. It was discovered that a region \(Q \) with a nonattracting chaotic set contains a special subset where chaotic orbits can be sustained with a very small amount of control. This subset of \(Q \) called the safe set depends on the noise strength affecting the map and the available control intensity. Roughly speaking, the safe sets resemble a coarse grained version of the nonattracting chaotic repellor, where the degree of coarse graining depends on the noise and control strength. The mathematical conditions for the existence of the safe sets have been explored in [10–13], where both one-dimensional and higher-dimensional maps have been studied. The following works in the partial control method show the application of this control technique in many different problems, including maps and flows exhibiting transient chaos [5,10,14,15]. The main advantage of this method is that the safe sets allow to minimize the necessary control bound to sustain the chaotic orbit in \(Q \). Furthermore, it has been demonstrated that this control bound can be smaller than the noise bound affecting the system.

In all these previous works, partial control is limited to find a safe set in a certain region \(Q \) of phase space and then sustain the chaotic trajectory inside the safe set. This approach implies that the initial condition of the orbit must already be in the safe set. However, it may happen in some cases that the choice of the initial condition might be imposed by the problem. For example, if we deal with the problem of putting a satellite into a particular orbit, the launch from Earth is an unavoidable initial condition that should be taken into account in the control design. For this reason, we will develop here a novel strategy to extend the control of the trajectories to any initial condition in \(Q \), keeping the control as low as possible.

The paper is organized as follows. In Sect. 2, we briefly introduce the partial control method, and explain how to obtain the safe set from the safety function by using the slope-three tent map. In Sect. 3, we present an strategy going beyond the partial control method to gradually approach the safe set for any initial condition in \(Q \). In Sect. 4, we analyse the variation of the safe set in function of the upper disturbance bound and the parameter \(\mu \) of the tent map. Finally, we describe the main conclusions of our work.

\section{2 The partial control method}

Partial control is a control technique to sustain transient chaotic orbits affected by bounded noise. The method is applied on a certain region \(Q \) of phase space \(\mathbb{R}^n \) where orbits exhibit transient chaos that eventually escape from \(Q \). It is assumed that the dynamics in \(Q \) can be described with the following map:

\[q_{n+1} = f(q_n) + \xi_n + u_n, \quad \text{with} \quad |\xi_n| \leq \xi_0, \quad |u_n| \leq u_0 < \xi_0, \]

where \(q \) describes the state vector of the system defined in \(\mathbb{R}^n \), \(\xi \) is the noise (we call it disturbance) affecting the map and is considered to be bounded so that \(|\xi_n| \leq \xi_0 \). The control term \(u_n \) is also bounded so that \(|u_n| \leq u_0 \). This control \(u_n \) is applied with the knowledge of the value \(f(q_n) + \xi_n \). There is no need to know \(f(q_n) \) or \(\xi_n \) separately.

The safe set is defined to be the subset of \(Q \) where the controlled orbits can be sustained with \(u_0 < \xi_0 \). This set can be obtained from a special function called the safety function, which has been developed in a previous work [16]. An algorithm to compute the safety function is described in an Appendix at the end. This function named \(U \) is defined in each point \(q \in Q \). The value \(U(q) \) represents the minimum control bound that an orbit starting in \(q \) needs to remain in \(Q \) forever. For example, a value \(U(q) = 0.1 \) means that a chaotic orbit with the initial condition \(q \) can be sustained in \(Q \) by applying each iteration a control \(|u_n| \leq 0.1 \).

The relation between the safe set and the safety function is the following. Given an upper disturbance bound affecting the map \(\xi_0 \), and an upper control bound \(u_0 < \xi_0 \), the safe set corresponds to the points \(q \in Q \) that satisfies \(U(q) \leq u_0 \). The minimum possible value \(u_0 \) is the minimum value of the function \(U \). Below this value, no safe set exist. In the following, we compute the safe sets with the minimum value \(u_0 \).

To show a simple example of the partial control application, we will use here the well-known slope-
Once the safe set is computed, the chaotic orbit can be controlled by forcing it to pass through the safe set at each iteration. Each control \(|u_n| \leq 0.03\) is applied with the knowledge of \(f(x_n) + \xi_n\) so that \(f(x_n) + \xi_n + u_n\) falls in the closest safe point. Note that the controlled orbit drawn is not periodic. The eight small pieces of the safe set are not visited by the orbit following a periodic sequence due to the action of disturbance. Depending on the direction of the disturbance and magnitude, the orbit will be controlled to a different piece of the safe set. The control values corresponding to the first 100 iterations is shown in Fig. 1c.

In this example, we can also note that the 8 minima of the safety function have exactly the same value 0.03. This is not a coincidence and usually indicates that the controlled orbit takes advantage of all these minima to remain in \(Q\) with the minimum control. Therefore, it follows that all the minima must share the same value \(\min(U(x))\), since this value represents the minimum upper control bound for the entire orbit.

3 Beyond the partial control method

As mentioned in the introduction, partial control applies only to initial points in the safe set, which is the subset of \(Q\) where the upper control bound satisfies \(u_0 < \xi_0\). As shown before, orbits starting in this subset require the minimum control to remain in \(Q\).

However, it may occur that the initial condition of our orbit is outside the safe set. As the shape of the safety function shows (Fig. 2a), initial conditions outside the safe set may require a very large upper control bound in comparison with the control needed in the safe set. The successive application of this large control can be prohibitive for the controller. Fortunately, we have observed that with a suitable strategy, the use of large controls is only needed at the very beginning. Broadly speaking, the strategy consists of converting the safe set into a global attractor of the orbits in the region \(Q\). In this manner, the controlled orbits gradually approach the safe set, where the control needed is minimum.

Notice that, leading the orbit to the safe set is equivalent to leading the orbit to the minima of the safety function \(U\). Therefore, given an initial condition \(q_n \in Q\) with the corresponding value \(U(q_n)\), the control \(u_n\) is chosen so that the image \(f(q_n) + \xi_n + u_n\) falls in a point \(q_{n+1}\) with \(U(q_{n+1}) \leq U(q_n)\). By repeating this strategy, the orbit gradually approaches to the mini-
Fig. 2 Controlling any initial condition in \(Q \). a The black horizontal bar on the bottom represents a set of 1000 initial conditions in \(Q \). The remaining black pieces represent how these initial conditions gradually approach the safe set, shown in red. Any initial condition converges to the safe set in at most 6 iterations. A particular controlled orbit is shown by the red dots. b The figure shows the first 100 controls \(|u_n| \) corresponding to the orbit shown in the figure, represented by the red dots. Note that the intensity of the controls decreases very quickly as the orbit approaches the safe set. Once the orbit enters into the safe set (in our example in at most 6 iterations), the controls \(|u_n| \) remain below the minimum control bound 0.03, that is, the minimum value of the safety function.

We call this strategy the additional algorithm to differentiate it from the partial control algorithm to compute the safe sets.

In summary, the whole control strategy proposed here consists of two steps:

- **Step 1** Given the map and the upper disturbance bound affecting it \(\xi_0 \), compute the minimum safe set. This computation can be done directly with the algorithm shown in [10] or through the computation of the safety function developed in [16].
- **Step 2** Compute the corresponding safety function (if it was not done in step 1) and apply the additional algorithm to bring the orbits to the safe set. We want to insist that this second step is only a proposal to control orbits starting outside the safe set and that there might be other ways to do it depending on the preferences of the controller to reach the safe set.

To show an example of this control strategy, we use again the slope-three tent map affected by a disturbance bound value \(\xi_0 = 0.05 \). The corresponding safety function is shown in Fig. 2a. This function is the same as the one shown in Fig. 1b with a minimum value \(u_0 = 0.03 \). To show how any initial condition converges to the safe set, we take a grid of 1000 points in the interval \(Q = [0, 1] \). This set of initial conditions is represented with a black horizontal bar at the bottom of Fig. 2a. Then, we apply the control strategy to the corresponding orbits. As shown, the initial set gradually converges to the safe set in at most 6 iterations of the map.

We also show in Fig. 2a a particular controlled orbit, the orbit starting in \(x_1 = 0.16 \) (outside the safe set) and the next 5 iterations after which the orbit reaches the

Fig. 3 Average number of iterations to reach the safe set. For each initial condition \(q \in Q \), the average was done over 1000 different orbits. The initial conditions farther from the safe set take more iterations to reach the safe set. The central region is an exception because this region maps directly outside the interval \(Q \). See the explanation in the text.

We show an example of this control strategy, we use again the slope-three tent map affected by a disturbance bound value \(\xi_0 = 0.05 \). The corresponding safety function is shown in Fig. 2a. This function is the same as the one shown in Fig. 1b with a minimum value \(u_0 = 0.03 \). To show how any initial condition converges to the safe set, we take a grid of 1000 points in the interval \(Q = [0, 1] \). This set of initial conditions is represented with a black horizontal bar at the bottom of Fig. 2a. Then, we apply the control strategy to the corresponding orbits. As shown, the initial set gradually converges to the safe set in at most 6 iterations of the map.
Fig. 4 Average control per iteration to reach the safe set. For each orbit, we compute the sum of the individual controls $|u_n|$ to reach the safe set divided by the number of iterations. For each initial point $q \in Q$, the average control has been computed for 1000 different orbits. Note that the average control shape is similar to the safety function shape, showing that initial conditions that need a larger upper control bound also require a larger average control.

Fig. 5 Safe set variation with ξ_0. In this plot, we represent in red different safe sets computed for different values $\xi_0 = [0.005, 0.25]$. The parameter $\mu = 3$ of the tent map is kept fixed. In blue, the upper control bound u_0 corresponding to each safe set. Notice that the relation u_0/ξ_0 is almost constant and smaller than 1, as a matter of fact about 0.6.

4 Variation of the safe set with ξ_0 and μ

In the previous section, we have seen how the safe set can be transformed in a global attractor of the initial conditions in Q. Once the trajectories enter into the safe set, the upper control bound u_0 required is minimum.

As shown, the safe set is the subset of Q where the safety function is minimum. This function strongly depends on the upper disturbance bound ξ_0 affecting the map and the parameter value of the system. As a consequence, the location of the safe set and the corresponding control u_0 may change.

To visualize this variation, Fig. 5 shows the different safe sets in red computed for the slope-three tent map, that is, with the parameter $\mu = 3$, and different disturbance values in the range $\xi_0 = [0.005, 0.25]$. We represent here the interval $Q = [0, 1]$ on the left y-axis. For a given value ξ_0, the safe set corresponds to the intersection of the vertical axis located at this value with the red figure. On the other hand, we plot on the right y-axis, the u_0 control value in blue associated with each safe set at a given value ξ_0. As it can be seen, from left to right, the safe sets structure resembles the Cantor structure characteristic of the nonattracting chaotic set, the topological object responsible for the transient chaotic dynamics. Lower values of ξ_0 result in safe sets with many small pieces, whereas larger ξ_0 values result in safe sets with only a few pieces. Note that each piece of the safe set is a region of Q where the safety function converge to the safe set. The farther an initial condition is from the safe set, the more control it will need.
The value \(u_0 \) tends to be the lowest in the safe sets for which \(d \approx \xi_0 = 0.05 \). For example, from left to right in the figure, for \(\mu = 2.6 \), the separation \(d \) between nearby pieces is about 0.1, which is far from \(\xi_0 \), and the control \(u_0 \) has a local maximum. For \(\mu = 3.8 \), however, the separation \(d \) between nearby pieces is about 0.05, and the control \(u_0 \) has a local minimum. Then, the control increases again until it reaches a maximum for \(\mu = 8.67 \). Here, the separation \(d \) between nearby pieces of the safe set is approximately 0.015, also far from \(\xi_0 \). At this point, the 8 pieces of the safe set collapses in 4 pieces and the separation \(d \) changes to approximately 0.1, again far from \(\xi_0 \). Finally, for parameter values \(\mu > 8.67 \), the separation \(d \) decreases, taking values closer and closer to \(\xi_0 \). The \(u_0 \) value in this region also decreases until the last safe set plotted (\(\mu = 15 \)), where the separation \(d \) is about 0.06.

The reason for this minimum condition \(d \approx \xi_0 = 0.05 \) can be roughly explained if we note that the image \(f(\text{safeset}) \) is surrounded by the own safe set. Typically, the image \(f(\text{safeset}) \) falls in between the safe set. In this situation, it is clear that if we apply the worst disturbance to the image \(f(\text{safeset}) \), we can always come back to the safe set applying a smaller control \((u_0 \leq \xi_0) \). Going further in this reasoning, it also follows that when the typical distance between nearby pieces of the safe set satisfies \(d \approx \xi_0 \), the relation \(u_0/\xi_0 \) will be minimum. However, it should be clear that this is merely a heuristic explanation lacking rigor, as it goes without saying that features such as the shape of the map can also influence the determination of \(u_0 \).

5 Conclusions

The partial control technique is able to sustain a transient chaotic orbit by means of the computation of the safe set. This special set is the subset of \(Q \) where the safety function has a minimum. Orbits with initial conditions inside the safe set need a minimum control to remain in \(Q \). However, orbits with initial conditions outside the safe set may need a larger control to remain in \(Q \). Here, we present a different strategy to greatly
reduce these large controls. This control strategy consists of gradually approaching the orbit to the safe set. As a result, the safe set is an attractor of any initial condition in \(Q \). Any orbit starting in \(Q \) converges to the safe set and remain in it forever. However, if the control is switched off, the orbit escapes from the safe set and eventually from \(Q \).

We have illustrated the application of this method in the slope-three tent map. For this map, we have shown how the initial conditions in the interval \(Q = [0, 1] \) converges to the safe set. Both, the average iterations to converge and the average control applied, strongly depend on how far the initial condition is from the safe set. In any case, after a few iterations, the orbit enters into the safe set where it can be sustained with minimum control \(u_0 \).

We have also analysed how the safe set and the corresponding control \(u_0 \) change depending on the disturbance \(\xi_0 \) and the parameter \(\mu \) of the tent map. Our results reveal that the larger the value \(\xi_0 \), the larger the value \(u_0 \). In contrast, the variation of \(u_0 \) with \(\mu \) is more complex, showing that the separation \(d \) between nearby pieces of the safe set plays an important role.

Finally, we want to emphasize that although the chaotic map used here was one-dimensional for simplicity, this control technique can be extended to higher-dimensional maps where safe sets exist. Both the existence of safe sets and the computation of the corresponding safety function for higher dimensions have been shown in previous works cited above in this manuscript. However, the required computational cost is very high.

Appendix: The safety function algorithm

Notation:
- \(i \equiv \) index of the starting point \(q[i], \ i = 1 : N \) where \(N = \) total number of grid points in \(Q \).
- \(s \equiv \) index of the disturbance \(\xi[s], \ s = 1 : M \) where \(M = \) number of disturbed images.
- \(j \equiv \) index of the arrival point \(q[j], \ j = 1 : N \).

Map with the index notation:

\[
q_{n+1} = f(q_n) + \xi_n + u_n \rightarrow q[j] = f(q[i]) + \xi[s] + u[i, s, j].
\]

Computation of the safety function \(U \):

- Initially set \(U_0[j] = 0, \ \forall j = 1 : N, \ k = 0. \)

\[
\text{while } U_{k+1} \neq U_k \text{ do}
\]

\[
\text{for } i = 1 \text{ to } N \text{ do}
\]

\[
\text{for } s = 1 \text{ to } M \text{ do}
\]

\[
\text{for } j = 1 \text{ to } N \text{ do}
\]

\[
u[i, s, j] = \frac{|f(q[i], \xi[s]) - q[j]|}{
\]

Note that the \(u[i, s, j] \) values remain unchanged every iteration of the while loop so compute them once and save them.

\[
u^*[i, s, j] = \max_j \left(u[i, s, j], U_k[j] \right)
\]

end for

\[
u^{**}[i, s] = \min_j (u^*[i, s, j])
\]

end for

\[
U_{k+1}[i] = \max_s \left(u^{**}[i, s] \right)
\]

end for

\[
k = k + 1
\]

end while

Compact formula:

\[
\max_{1 \leq s \leq M} \left(\min_{1 \leq j \leq N} \left(\max_{1 \leq i \leq N} \left(u[i, s, j], U_k[j] \right) \right) \right)
\]
Acknowledgements This work was supported by the Spanish State Research Agency (AEI) and the European Regional Development Fund (FEDER) under Project No. PID2019-105554GB-100.

Data availability All data generated or analysed during this study have been obtained through numerical simulations that are included in this article.

Declarations

Conflict of interest The authors declare that they have no conflict of interest concerning the publication of this manuscript.

References

1. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196 (1990)
2. Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press, Cambridge (2012)
3. Lai, Y.C., Tél, T.: Transient Chaos: Complex Dynamics on Finite Time Scales. Cambridge University Press, Cambridge (2011)
4. In, V., Spano, M.L., Neff, J.D., Ditto, W.L., Daw, C.S., Edwards, K.D., Nguyen, K.: Maintenance of chaos in a computational model of thermal pulse combustor. Chaos 7, 605–613 (1997)
5. Capeáns, R., Sabuco, J., Sanjuán, M.A.F.: When less is more: partial control to avoid extinction of predators in an ecological model. Ecol. Complex. 19, 1–8 (2014)
6. Yang, W., Ding, M., Mandell, A.J., Ott, E.: Preserving chaos: control strategies to preserve complex dynamics with potential relevance to biological disorders. Phys. Rev. E 51, 102–110 (1995)
7. Schwartz, I.B., Triandaf, I.: Sustaining chaos by using basin boundary saddles. Phys. Rev. Lett. 77, 4740–4743 (1996)
8. Dhamala, M., Lai, Y.C.: Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology. Phys. Rev. E 59, 1646–1655 (1999)
9. Sabuco, J., Sanjuán, M.A.F., Yorke, J.A.: Dynamics of partial control. Chaos 22, 047507 (2012)
10. Sabuco, J., Zambrano, S., Sanjuán, M.A.F., Yorke, J.A.: Finding safety in partially controllable chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 17, 4274–4280 (2012)
11. Zambrano, S., Sanjuán, M.A.F.: Control of transient chaos using safe sets in simple dynamical systems. Prog. Nonlinear Differ. Equ. Appl. 75, 437–447 (2007)
12. Zambrano, S., Sanjuán, M.A.F., Yorke, J.A.: Partial control of chaotic systems. Phys. Rev. E 77, 055201(R) (2008)
13. Zambrano, S., Sanjuán, M.A.F.: Exploring partial control of chaotic systems. Phys. Rev. E 79, 026217 (2009)
14. Lorenz, E.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)
15. Capeáns, R., Sabuco, J., Sanjuán, M.A.F.: Parametric partial control of chaotic systems. Nonlinear Dyn. 2, 869–876 (2016)
16. Capeáns, R., Sabuco, J., Sanjuán, M.A.F.: A new approach of the partial control method in chaotic systems. Nonlinear Dyn. 98, 873–887 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.