MATHEMATICAL VS EMPIRICAL MEASUREMENT

DAVIDE BONDONI

ABSTRACT. In this short paper I will put in evidence a problem nested in Ozawa’s effort to block von Neumann’s chains and in his attributing the wave-collapse to a interaction between systems. This suggests distinguishing sharply the mathematical world from the phenomenological one.

1. von Neumann

Let us starting with Ozawa’s own words:

The orthodox view [of the wave-collapse] confuses the time at which the outcome of measurement is obtained and the time at which the object is left in the state determined by the outcome. (...) it confuses the time just after the reading of the outcome and the time just after the interaction between the object and the apparatus. There is no causality relation between the outcome and the state just after measurement (...)]

I agree with Ozawa on this point. Otherwise, we would have a regress at infinity, a sort of hegelian odd infinity as von Neumann points out:

(...) wir müssen die Welt immer in zwei Teile teilen, der eine ist das beobachtete System, der andere der Beobachter. (...) Daß diese Grenze [i.e. zwischen beide Systeme] beliebig tief ins Innere des Körpers des wirklichen Beobachters verschoben kann, ist der Inhalt des Prinzips vom psychophysikalischen Parallelismus (...)]

[(...) we must always divide the world in two parts, the one being the observed system, the other the observer. (...) That this boundary [i.e. between the observed system and the observer] can be pushed at will deeply in the interior of the body of the real observer is the content of the principle of the psycho-physical parallelism (...)]

Surely the word beliebig [at will] is the source of such problem. This way, the consciousness can enter in the description of a measurement. On the other hand, we must distinguish the measurement and the reading of this measurement; i.e. the entanglement of the object with the observer and the reading of this interaction by the experimenter. So, we can no longer assert that the mind causes the collapse, as the given collapse is occurred earlier.

As the japanese physician accurately demonstrates, the wave-collapse occurs in a

\begin{footnotesize}
\begin{enumerate}
\item[1]Ozawa p. 117.
\item[2]vN32 pp. 223–224. The italic is mine.
\item[3]WZS9 p. 622. The italic is mine. I corrected the original translation in two points.
\end{enumerate}
\end{footnotesize}
time interval $t + \Delta t$, while the perception of this collapse is at $t + \Delta t + \tau$, interval in which the two systems (object and observer) can no longer be in a relation.

On the other hand, we can observe that exists only that is perceivable in a phenomenon. A measurement which is not perceived (by a reading) is not a real measurement. It is a logically possible interaction which doesn’t belong to the reality. From the discrasy between the above mentioned interval Ozawa infers a difference between measurement and perceiving of this measurement. But it is a logical inference. How can someone experience a measurement without interact with it (with a reading)? And if this collapse is not experienceable, then we are making meta-physics (we are going beyond physics). Therefore, is not usefull putting aside a non physical entity as the mind to leave room for something more abstract, as a measurement without reading, also if this something has a definite grade of mathematical reality.

Moreover, Masanao Ozawa doesn’t answer the main question. The reading of a measurement is invoked to explain the collapse; now, if this cannot be more the cause of the collapse, what is the real cause? Apparently, the interaction between subject and object, but we have no direct experience of it. I prefer a mereological-nominalistic stance (à la Leśniewski) in which it is a perceived measurement in a given context to determine the wave-collapse. Von Neumann seems adhering to this position, stating:

\begin{quote}
(\ldots) die Erfahrung macht nur Aussagen von diesem Typus: ein Beobachter hat eine bestimmte (subjective) Wahrnehmung gemacht, und nie eine solche: eine physikalische Größe hat ein bestimmten Wert.
\end{quote}

\begin{quote}
[(\ldots) experience only permits statements of this type: an observer has made a certain (subjective) observation; and never any like this: a physical quantity has a certain value.]
\end{quote}

Obviously it is highly questionable the subjective character of our perception. Our perception is on the contrary objective in a phenomenological point of view. What is more objective than the fact that we have in front of us a given and no other

\footnote{\begin{enumerate}
\item We cannot eliminate τ from the interval $t + \Delta t + \tau$ putting it as 0, because as you shows, $\Delta t < \tau$ [Oza03 p. 116].
\item One can interacts with an object without knowing the result of this interaction. For example, an observer can know that he is interacting with an object, without knowing the eigen-state in which the object jumped. The observer knows that surely by this interaction the system-object jumped in an eigen-state $|\phi_i\rangle$ and that an observable \mathcal{O} must have in $|\phi_i\rangle$ an eigen-value λ. But the observer cannot, without a reading, know in which eigen-state the system is. Obviously, knowing the wave-function of the system, he knows too the amplitudes of the probabilities associated to its vectors, but this is only a mathematical (statistic) forecasting, not a perception. In this sense, the fact that at $t + \Delta t$ the system-object is in an eigen-state is only an inference.
\item [vN32 p. 224].
\item [WZ83 p. 622]. I substituted experience only makes statements… with experience only permits statements… inasmuch it is evident from the discourse that any statement which don’t satisfy certain conditions is not permitted. In other words, a purely objective observation is impossible for von Neumann. It is against the real physical experience making objective (if possible) statements. It is an absurdity.
\end{enumerate}}
experimental set-up, built in a given way, with given pointers?

Using Bohr’s own words:

(...) in actual experiments all evidence pertains to observations obtained under reproducible conditions and is expressed by unambiguous statements referring to the registration of the point at which an atomic particle arrive on a photographic plate.8

And:

(...) the problem of explanation that is embodied in the notion of complementarity suggests itself in our position as conscious beings and recalls forcefully the teaching of ancient thinkers that, in the search for a harmonious attitude towards life, it must never be forgotten that we ourselves are both actors and spectators in the drama of existence.9

Obviously, it is one thing asserting that reality must be confined to the realm of experience and one other asserting that the cause of the wave-collapse, which oughts to belong to our experience, must coincide with the act of registration of a measure. Ozawa successfully shows that this act cannot cause the collapse. But, where is, then, the real cause of this collapse? If this is the measurement, where is, ontologically speaking, this measurement?

Let us quote Max Planck:

(...) es ist unmöglich (...) daß die ganze bisherige Entwicklung der physikalischen Erkenntnis tatsächlich gerade auf eine möglichst weitgehende grundsätzliche Trennung der Vorgänge in der äußeren Natur von der Vorgängen in der menschlichen Empfindungswelt hinarbeitet.10

[(...) it is impossible (...) that the development of the knowledge in Physics until now aimed at a fundamental and radical division between the processes in the external nature and the processes in the human world of feelings.11]

Being no clear distinction between subject and object, it is best adopting an holistic view and consider as fundamental the perceived phenomenon. I.e. there are not in reality subject and object as two clear distinct entities, but a relation which founds it. Subject and object are only in a relation, in a totally entangled Gestalt. The measurement seen as interaction is such a Gestalt. But not meaning that observer and object enter in relation, but that the relation founds relate and correlate.

What it is this relation in the measurement? The totality of the experimental arrangement which permits speaking of measurement. A totality which lives in our perception and is made of perceiving devices and tools of measurement. This is the kantian position of Bohr which sees in the experiment the real cause of any result: the a-priori, a sort of category which makes possible speaking of measurements, particles, collapses and so on. A frame in which the observer arranges his experiences.

8[Boh48, p. 317]. The italic is mine.
9[Boh48, p. 318].
10[Pla14, p. 39].
11The translations from this text are mine.
But it is the position of Leśniewski too which saw no elements or sets, but parts and collections. In reality, there is a body. We can imagine to split it up. If we continue in this process at infinity, we would arrive at points or elements. But, in reality, we stop us at an Umgebung, at a little ball not at a point. This relation must be perceived, must be object of our perception. What could we say of something beyond our perceptions, our Erscheinung? Planck observes:

(1) was man messen kann, das existiert auch.12

[...what we can measure, that it exists.]

Meaning for Messung the act of measuring, the registration of measurement, not the measurement without observer. What a measurement could be without observer, I don’t dare to say. We can restate Planck’s quotation as follows:

\[\forall x(M(x) \rightarrow E(x)) \] 13

With \(M = \{x|x \text{ is measured}\} \) and \(E = \{x|x \text{ exists}\} \). In other words, if \(x \) is measured, then \(x \) exists. So, if we have that \(\neg M(x) \) (i.e. \(x \) is not measured), what can we conclude? Nothing. From \(\neg M(x) \) it follows both \(E(x) \) and \(\neg E(x) \).

2. Conclusion

Summing up, we have faced two distinct questions:

(1) the reading of a measurement cannot be the cause of the wave-collapse

(2) attributing the wave-collapse to the interaction observer-object before the reading of the measurement stops von Neumann’s chain

According to our opinion, Ozawa successfully demonstrates.14 We are not sure that stating [1] rules out completely the problem hidden in [2]. That is, the rôle of the subject in the act of knowing. In particular, it is not clear the phenomenological correlate of the measurement.13 In absence of a precise phenomenological correlate of a measurement, we can infer that this process amounts to an observation without observer.

References

[Boh28] Niels Bohr, The Quantum Postulate and the recent Development of Atomic Theory, Nature 121 (1928), 580–590.
[Boh35] , Can Quantum-Mechanical Description of Physical Reality be Considered Complete?, Physical Review 48 (1935), 696–702.
[Boh48] , On the Notions of Causality and Complementarity, Dialectica 2 (1948), no. 3–4, 312–319.
[Fra07] François Lurçat, Understanding Quantum Mechanics with Bohr and Husserl, Rediscovering Phenomenology (Berlin-Heidelberg) (L. Boi et al., ed.), Springer Verlag, 2007, pp. 229–258.
[Miè84] Denis Mièville, Un développement des systèmes logiques de Stanislaw Leśniewski, Protéothétique - Ontologie - Mérologie, Peter Lang SA, Berne, 1984.
[Oza89] Masanao Ozawa, Statistical Inference and Quantum Measurement, Annals of the Japan Association for the Philosophy of Science 7 (1989), no. 4, 185–194.

12[Pla14, p. 38].
13We know that the existence is not a predicate. We mean for \(E \) a real, not only logical, existence. Leśniewski would write: \(\forall x(x \in M \rightarrow x \in x) \). If \(x \) is measured, then \(x \) is an object ([Miè84, p. 385]).
14Of course, it is clear the mathematical correlate of the measuring process.
[Oza03] , Quantum State Reduction and the Repeatability Hypothesis, Annals of the Japan Association for Philosophy of Science 11 (2003), no. 2, 107–121.
[Pla14] Max Planck, Neue Bahnen der physikalischen Erkenntnis, Jahresbericht der Deutschen Mathematiker-Vereinigung 23 (1914), 29–41.
[vN32] John von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer Verlag, Berlin-Heidelberg, 1932, Zweite Auflage, mit einem Geleitwort von Rudolf Haag.
[WZ83] John Archibald Wheeler and Wojciech Hubert Zureck (eds.), Princeton, Princeton University Press, 1983, Princeton Series in Physics.
[Yan57] Mutsuo M. Yanase, Reversibilität und Irreversibilität in der Physik, Annals of the Japan Association for Philosophy of Science 1 (1957), no. 2, 131–149.

VIA BERSAGLIO, 2, ANFO (BS), 25070 – ITALY
E-mail address: davidebond@yahoo.it
URL: http://www.davidebondoni.eu