Distinct Pattern of Allelic Loss and Inactivation of *Cadherin 1* and 5 Genes in Mammary Carcinomas Arising in p53^{+/–} Mice

Seiichi UMESAKO, Sayoko IIGA, Masahiro TAKAHASHI, Kae IMURA, Nobuko MORI, Doo-Pyo HONG, Chang-Woo SONG, Otsura NIWA, and Masaaki OKUMOTO

Mammary carcinoma/Loss of heterozygosity/p53^{+/–} mice/Cadherin gene/Tumor suppressor gene.

p53 is one of the most frequently mutated genes in mammary carcinomas (MCs). To detect tumor suppressor genes cooperating with a hetero-deficient *p53* gene in mammary carcinogenesis, we first examined allelotypes in MCs from (BALB/cHeA × MSM/Ms) F₁-p53^{+/–} and (BALB/cHeA × 129/SvEv) F₁-p53^{+/–} female mice, and then surveyed down-regulated genes in the allelic loss regions. Genome-wide screening at 42 loci identified frequent (more than 30%) loss of heterozygosity (LOH) on chromosomes 5, 8, 11, 12, 14 and 18 in the MCs from either of the F₁ mice. The MCs in the p53^{+/–} mice indicated highly frequent LOH, especially on chromosomes 8, 11 and 12, distinct from other mouse tumors. Moreover, 60% of the 38 MCs from (BALB/cHeA × MSM/Ms) F₁-p53^{+/–} mice showed LOH in a region ranging from D8Mit85 (105.0 Mb from centromere) to D8Mit113 (111.8 Mb) on chromosome 8, a region syntenic to human chromosome 16q22.1, on which LOH has been found in breast cancers. RT-PCR analyses revealed that the LOH of chromosome 8 was associated with the reduced and/or complete loss of expression of *Cdhl* and *Cdhs* genes in 15 (58%) and 8 (31%) of 26 MCs derived from the F₁ mice, respectively. Thus, inactivation of *Cdhl* and *Cdhs* is likely to cooperate with the loss of *p53*, suggesting a possible tumor suppressive function of these genes in mammary carcinogenesis.

INTRODUCTION

A number of studies have been performed to clarify the molecular mechanism underlying the development of breast cancer. The *p53* gene is mutated in approximately 50% of human cancers^{1,2} and sporadic breast cancers show a high frequency of *p53* mutations.³ In fact, the frequency of *p53* mutations varies from 20 to 40% in breast cancers, depending on the tumor size and the stage of the disease.⁴ Li-Fraumeni syndrome is due to germline mutations of *p53*, and patients are predisposed to a high incidence of breast cancer, sarcomas and other neoplasms.^{5,6} Loss of function of *p53*, by both genetic and epigenetic changes, is thus crucial in mammary carcinogenesis. In addition, some other genetic events are required for the development of mammary carcinomas (MCs) since the carcinogenesis is multi-step. In fact, analyses of knockout (KO) mice revealed that *Brca1* and *Brca2* tumor suppressor genes cooperate with *p53*.^{7,8} Studies of transgenic mice also indicated that *neu*, *Wnt1*, *ras* and *IGF-1* oncogenes also cooperate with *p53* to accelerate tumor formation.⁹ Furthermore, *p53* mutations are highly frequent in breast cancers of those patients carrying germ-line mutations of *BRCA1* or *BRCA2*.^{10,11} In *p53*-heterozygous-deficient BALB/c mice (BALB/c-p53^{+/–}), almost all MCs exhibit a loss of the remaining wild-type *p53* allele.¹² As the function of *p53* is completely lost in these MCs, additional genetic events related to other tumor suppressor genes can be detected by analyses of allelotypes and alterations of gene expression in the tumors.

Various genetic events result in a loss of heterozygosity (LOH) in cancers,¹³ and the LOH regions often contain tumor suppressor genes in human and in experimental animals.^{14,15} Therefore, the genome-wide search for the tumor suppressor genes can be made by allelotype analysis in F₁ hybrid mice between two different subspecies^{16,17} supple-
mized with the gene expression profile analyses by microarray techniques.

In this study, we first examined allelotypes to identify the region of LOH in the MCs from (BALB/cHeA × MSM/Ms) F₁-p53^{+/–} and (BALB/cHeA × 129/SvEv) F₁-p53^{+/–} female mice, and those from doubly heterozygous deficient (BALB/cHeA × MSM/Ms) F₁-p53^{+/–}Atm^{+/–} mice. Then, the regions with LOH were analyzed for the down-regulated genes for possible genes cooperating with the loss of p53 for the development of MCs. We found that highly frequent LOH appeared on chromosomes 8, 11 and 12 in the MCs. The LOH of a region of chromosome 8 was found to be associated with the reduced and/or complete loss of expression of the Cadh1 and Cadh5 genes.

MATERIALS AND METHODS

Mice

The p53 targeted allele originally generated by Donehower et al.¹⁸) was introduced into the BALB/cHeA mouse at The Netherlands Cancer Institute (Amsterdam). The p53-heterozygous deficient mice (p53^{+/–}) were repeatedly backcrossed to BALB/cHeA mice, and maintained at the animal facility of Osaka Prefecture University. The MSM/Ms mice used in the production of F₁ mice in this study were Atm-heterozygous deficient mice (MSM/Ms-Atm^{+/–}). The Atm targeted mouse (129/SvEv-Atm^{+/–} mouse) was originally generated at the Jackson Laboratory.¹⁹) The Atm-heterozygous deficient mice (Atm^{+/–}) were repeatedly backcrossed more than ten times to MSM/Ms mice. The BALB/cHeA-p53^{+/–} mice were crossed with MSM/Ms-Atm^{+/–} or 129/SvEv-Atm^{+/–} mice, and females of the F₁ progeny [(BALB/cHeA × MSM/Ms)F₁] and (BALB/cHeA × 129/SvEv)F₁] were used in the experiments. The conditions for breeding were described previously.²⁰) All animal experiments were carried out in accordance with the Standards Relating to the Care and Management of Experimental Animals (Japan) and the Guidelines for Animal Care and Use of Osaka Prefecture University.

Induction of MC and histological examination

Mice with genotypes of p53^{+/–}-Atm^{+/–} or p53^{+/–}-Atm^{+/–} were exposed to 5Gy X-rays at five weeks of age. MCs arising in the irradiated mice were used in the present study. Additional 11 MCs were those from non-irradiated F₁ mice with the same genotypes. Developed MCs and normal tissues were removed, and immediately frozen and kept at –80°C until isolation of DNA and RNA. Histological examination was described previously.²¹) Briefly, the tissues were fixed in 10% neutralized formalin solution and embedded in paraffin. Thin sections were prepared from the paraffin blocks. They were stained with hematoxylin and eosin for microscopic examination.

DNA isolation, LOH analysis and genotyping

Isolation of DNA, LOH analysis, electrophoresis of PCR products and the assessment of allelic losses were performed according to the procedures described previously.²⁰) The chromosomal locations (cM) of the microsatellite markers were based on the 2000 Chromosome Committee Reports in the Mouse Genome Database (Mouse Genome Informatics; Jackson Laboratory, Bar Harbor, ME). The chromosomal locations (Mb) of the markers and genes were based on Ensemble and UCSC databases. Genotypes for the wild-type and targeted alleles of p53 and Atm genes were determined by analyzing the PCR products for these alleles. Amplification of the p53 alleles was described elsewhere.²²) Similarly, amplification of the wild-type and the targeted allele of the Atm gene were performed by using primers IMR0640 (5’-GCTGCCACACTTGATTCCAGGATG-3’) and IMR0641 (5’-TCCCGAATTGGCAGCAGGT-3’), and primers IMR0641 and AtmNeo410 (5’-CGGTGGAAGTGGCAGTTG-3’), respectively.

Expression analysis of the Cadherin family by RT-PCR

The tissues were stored in RNAlater RNA Stabilization Reagent (QIAGEN). Total RNA was isolated from the tissues using RNeasy Protect Mini Column Kit (QIAGEN) as recommended by the manufacturer. cDNA was synthesized using SUPERSCRIPT II Amplification Kit (Invitrogen). The reaction volumes were 50 μl and the reaction tubes contained SUPERSCRIPTTM reverse transcriptase/Platinum[™] DNA polymerase (1 μl), dNTPs (0.2 mM of each), magnesium sulfate (1.2mM) and gene specific sense/anti-sense primer set, an extension step of 1min at adequate temperatures for each primer (0.2 μM) at concentrations that were recommended by the manufacturer. The primers for RT-PCR for cadherin family members are shown as below.

Cadherin 1 Forward: GCCAAGGGCTTGGATTTTGAGGCAACAGAGCAGGAG
Reverse: GGTCAGTTGACGCTTGGCC

Cadherin 5 Forward: CAGCCTTCAGTCTGAGTGTCG
Reverse: GGTTCAAAGCAGCTGGCG

Cadherin 8 Forward: CAGAGAAATCTGGCTGTGGGC
Reverse: CCACTGGCCAGCAGCTCATCTG

Cadherin 11 Forward: CAGCAGTCAGTGCTGTTGGCC
Reverse: CCGTGGACGCTGATCTG

Gapdh Forward: CTCAGGCATGTTAAACAGAG
Reverse: GTTCGACCCTGCTGATATTGC

Cadherin 14 Forward: TGGGAACAGTGGCAAAGTTGG
Reverse: TGTTGTTCGCCAGCAGACC

Cadherin 16 Forward: GCCAAGGGCTTGGATTTTGAGGCAACAGAGCAGGAG
Reverse: GGTCAGTTGACGCTTGGCC

The RT-PCR conditions consisted of 2 min at 94°C, followed by 35 cycles of a denaturation step of 30 sec at 94°C, an annealing step of 1min at adequate temperatures for each primer set, an extension step of 1 min at 72°C, and a final extension step of 10 min at 72°C.
Exon analysis of Cdh5 gene

Tumor and normal tissue DNA were amplified using the primer sets for each exon as described below. Sequences of the primers were designed using a software Primer 3 based on DNA sequences shown on NCBI Sequence Viewer.

Exon	Forward	Reverse
1	AAGGTGCAGAGGCTCACAG	GGGTTCTCTTCATCGATGTGT
2	TCAGCTCATGGTCTCTTTC	TGAGGTGCTGATGTGAGAG
3	CATAGGCGGACACCAAGAA	CCATCCCTCCAAATGGGTA
4	TGGGACACTCTTCTTCTCAGG	TGTCCACTTAAAGGCCTATGG
5	TGCGGTATCCTATGCACATT	GCTCGGTTCTGCAGGTCTAC
6	GGAGGACTGGGCCTAAGTGT	GTCCTCCCTTGAGCCTTGAT
7	GTCAAGGAGAGCCATGAAGC	AGGTAGCCTGGAAGGTGGAT
8	CAGGTAACCCTGTAGGGAAA	AAACACACGACTCCCTAGTCC
9	CACATTCCAGCTGGTAGTACA	TTCTCAGAGCCAACCGTCTT
10	GGGAACAAAGAAGGCAGTGA	TTCTGTGAAGCCCTCTCGAT
11F	CTGGTCCCATGAACCTGTCT	TTTCTTCACGTCGATCATGG
11R	AGGTGTACACGCAGGTGCAGA	CCTAGATGATGAGTTCCTCCTG

The PCR conditions consisted of 3 min at 94°C, followed by 35 cycles of a denaturation step of 1 min at 94°C, an annealing step of 1min at 58°C, an extension step of 75 sec at 72°C, and a final extension step of 3 min at 72°C.

RESULTS

Genome-wide search for LOH in MCs from (BALB/cHeA × MSM/Ms)F₁ and (BALB/cHeA × 129SvEv)F₁ mice

To detect tumor suppressor genes cooperating with the p53 gene in the mammary carcinogenesis, LOH analysis was first carried out for 23 MCs from 5 Gy-irradiated (BALB/cHeA × MSM/Ms) F₁-p53⁺/⁻ mice at 42 polymorphic microsatellite loci. Fig. 1A depicts the highest frequency of LOH found in the analyses of 2 to 4 loci on each chromosome. In (BALB/cHeA × MSM/Ms) F₁-p53⁺/⁻, highly frequent allelic losses were found at D8Mit270 (56 cM from centromere) on chromosome 8, D11Mit12 (75.4 cM) on chromosome 11 and D12Nds1 (27 cM) on chromosome 12, and the frequencies of LOH at these loci were 52%, 57% and 65%, respectively. LOH of lower frequencies was observed at several loci; 26% at D3Mit6 (23.3 cM), 22% at D4Mit13 (71 cM), 30% at D5Mit81 (28 cM), 20% at D9Mit20 (61 cM), 28% at D10Nds2 (58 cM), 35% at D14Mit7 (44.7 cM), 26% at D16Mit7 (57.7 cM) and 22% at D18Mit8 (47 cM) (Fig. 1A).

LOH analysis was then performed for 13 MCs from 5 Gy-irradiated (BALB/cHeA × 129SvEv)F₁-p53⁺/⁻ mice at 42 polymorphic microsatellite loci. Fig. 1B demonstrates the highest frequency of LOH at 1 to 4 loci on each chromosome. Highly frequent LOH was again found on chromosome 8 at D8Mit87 (56 cM), on chromosome 11 near p53 at D11Mit51 (15 cM) and on chromosome 12 at D12Mit132 (52 cM), and the frequencies of LOH at these loci were 92%, 92% and 77%, respectively. LOH with a lower frequency was observed in several loci; 23% at D4Mit31 (51 cM), 23% at D6Mit55 (50 cM), 23% at D10Nds1 (6 cM), and 31% at D18Mit8 (47 cM) (Fig. 1B).

Thus, more than 30% LOH was observed in MCs on chro-

Table 1. LOH frequency of microsatellite markers on chromosome 8 in 38 mammary carcinomas from X-irradiated (BALB/cHeA × MSM/Ms)F₁ mice

Locus	Position (Mb)	Position (cM)	p53⁺/⁻Atm⁺/⁻ mice (No. (n=25) Frequency (%))	p53⁺/⁻Atm⁺/⁻ mice (No. (n=13) Frequency (%))	(p53⁺/⁻Atm⁺/⁻) + (p53⁺/⁻Atm⁺/⁻) mice (No. (n=38) Frequency (%))
D8Mit4	33.5	14	10 40	4 31	14 37
D8Mit6	50.9	30	11 44	2 15	13 34
D8Mit11	99.2	46	11 40	6 46	16 42
D8Mit85	105	47	18 72	7 54	25 66
D8Mit12	107	51	18 72	8 62	26 68
D8Mit12	109.6	53.3	15 60	8 62	23 61
D8Mit113	111.8	52	17 68	9 69	26 68
D8Mit319	117.4	58	13 52	7 54	20 53
D8Mit120	121.2	61	8 32	5 38	13 34
mosomes 5, 8, 11, 12, 14 and 18 in the MCs from either of the F₁ mice, and it was especially high on chromosomes 8, 11 and 12 in both F₁ mice. This pattern was distinct from other mouse tumors.16,17,23,34 Meanwhile, the LOH patterns in the Atm⁻/⁻ and Atm⁺/⁺ mice of both of the two F₁ did not differ markedly (data not shown). There was no correlation between the chromosome regions of LOH and the pathological characteristics such as the latency of tumors and histopathological features.

Allelotype analysis of microsatellite loci on chromosome 8

Frequent LOH found at some loci on chromosome 8 was further studied for the precise allelotype of this chromosome on 38 radiation-induced MCs from (BALB/cHeA × MSM/Ms)F₁-p53⁺/⁻ mice (Table 1 and Fig. 2). Frequent LOH spanned wide regions from D8Mit11 (99.2 Mb, 46 cM) to D8Mit319 (117.4 Mb, 58 cM) in both 25 tumors from p53⁺/⁻ Atm⁻/⁻ and 13 tumors from p53⁺/⁻ Atm⁺/⁺ mice (Table 1). No significant difference of LOH pattern was observed in the mice between heterozygous deficient and wild-type for Atm gene. More than 60% of 38 MCs from p53⁺/⁻ Atm⁻/⁻ and p53⁺/⁻ Atm⁺/⁺ mice showed LOH in a region spanning from D8Mit85 (105.0 Mb, 47 cM) to D8Mit113 (111.8 Mb, 52 cM) on chromosome 8, a region syntenic to human chromosome 16q22.1 where frequent LOH has been reported for human breast cancer cases (Table 1 and Fig. 2).

Among the loci tested, the highest frequency of LOH was found at two loci, and the frequency was 68% (26 of 38 MC) (Fig. 2). One was D8Mit212 (107.0 Mb, 51 cM), which is a

Fig. 1. Genome-wide search for LOH conducted on 23 mammary carcinomas (MCs) from irradiated (BALB/cHeA × MSM/Ms)F₁-p53⁺/⁻ (A) and on 13 MCs from irradiated (BALB/cHeA × 129SvEv)F₁-p53⁺/⁻ (B) mice. The maximum frequency obtained on each chromosome is shown. (A) Loci examined were as follows: D1Mit9 (52 centimorgans from the centromere: 52 cM), D2Mit15 (69 cM), D3Mit6 (23.3 cM), D4Mit13 (71 cM), D5Mit81 (28 cM), D6Mit16 (30 cM), D7Mit9 (59 cM), D8Mit270 (56 cM), D9Mit20 (61 cM), D10Nds2 (58 cM), D11Mit12 (75.4 cM), D12Nds1 (27 cM), D13Mit263 (71 cM), D14Mit7 (44.7 cM), D15Mit15 (64.8 cM), D16Mit7 (57.7 cM), D17Mit221 (56.7 cM), D18Mit8 (47 cM), D19Mit52 (0 cM). (B) Loci examined were as follows: D1Mit18 (30 cM), D2Mit14 (49 cM), D3Mit14 (64 cM), D4Mit31 (51 cM), D5Mit13 (20 cM), D6Mit55 (50 cM), D7Nds4 (72.4 cM), D8Mit87 (56 cM), D9Mit18 (77 cM), D10Nds1 (6 cM), D11Mit51 (15 cM), D12Mit32 (52 cM), D13Mit23 (19.9 cM), D14Mit34 (40 cM), D15Mit33 (49 cM), D16Mit73 (10 cM), D17Mit16 (18 cM), D18Mit8 (47 cM), D19Mit56 (2.2 cM).
marker within the *Cdh5* gene (107.0 Mb), and is also near the *Cdh16* gene (107.5 Mb). The other locus was *D8Mit113* (111.8 Mb, 52 cM) near the *Cdh1* gene (109.4 Mb) and *Cdh3* genes (109.1 Mb). The above mentioned LOH locus, *D8Mit85* (105.0 Mb, 47 cM), is located near the *Cdh8* (101.9 Mb) and *Cdh11* genes (105.5 Mb). Spontaneously developed 11 MCs also showed similar LOH patterns (data not shown). The frequencies were 73% (8 of 11 MC) at both *D8Mit85* and *D8Mit113*, and 55% (6 of 11 MC) at the loci *D8Mit212* and *D8Mit12*.

Fig. 2. Schematic representation of the allelotype in the frequent LOH regions on chromosome 8 in 38 mammary carcinomas (MC) from (BALB/cHeA × MSM/Ms) F1-*p53^{−/−}* mice. The names of microsatellite markers and their positions in centiMorgan (cM) and megabase (Mb) from the centromere are indicated at the top. Numbers at the left of the fig. represent tumor numbers. Black (C) and stippled (M) boxes represent loss of alleles derived from BALB/cHeA and MSM/Ms, respectively, and white boxes represent the retention of both alleles. Genotypes of *p53* and *Atm* of mice bearing tumors are shown at the left of the fig. The frequency of LOH at each marker is written below.

MC No.	p53 genotype	Atm genotype	D8Mit85 (14 cM)	D8Mit16 (50 cM)	D8Mit113 (46 cM)	D8Mit85 (50 cM)	D8Mit12 (55 cM)	D8Mit113 (55 cM)	D8Mit12 (55 cM)							
1238	KO/Wild	KO/Wild	R	C	C	C	C	C	C	C	C	C	C	C	C	C
1249	KO/Wild	KO/Wild	C	C	C	C	C	C	C	C	C	C	C	C	C	C
1301	KO/Wild	KO/Wild	C	C	C	C	C	C	C	C	C	C	C	C	C	C
1082	KO/Wild	KO/Wild	C	C	C	C	C	C	C	C	C	C	C	C	C	C
1063	KO/Wild	KO/Wild	C	C	C	C	C	C	C	C	C	C	C	C	C	C
1103	KO/Wild	KO/Wild	R	R	C	C	C	C	C	C	C	C	C	C	C	C
1104	KO/Wild	KO/Wild	C	C	M	C	C	C	C	C	C	C	C	C	C	C
1106	KO/Wild	KO/Wild	R	M	M	C	C	C	C	C	C	C	C	C	C	C
1173	KO/Wild	KO/Wild	R	R	R	R	C	C	C	C	C	C	C	C	C	C
1245	KO/Wild	KO/Wild	C	C	R	R	C	C	C	C	C	C	C	C	C	C
1107	KO/Wild	KO/Wild	C	M	M	R	C	C	C	C	C	C	C	C	C	C
1264	KO/Wild	KO/Wild	M	M	M	M	M	M	M	M	M	M	M	M	M	M
1216	KO/Wild	KO/Wild	C	M	R	M	M	M	M	M	M	M	M	M	M	M
1109	KO/Wild	KO/Wild	R	R	R	M	M	M	M	M	M	M	M	M	M	M
1172	KO/Wild	KO/Wild	R	R	M	M	M	M	M	M	M	M	M	M	M	M
1251	KO/Wild	KO/Wild	M	M	M	M	M	M	M	M	M	M	M	M	M	M
1304	KO/Wild	KO/Wild	M	M	M	M	M	M	M	M	M	M	M	M	M	M
1209	KO/Wild	KO/Wild	R	M	M	M	M	M	M	M	M	M	M	M	M	M
1252	KO/Wild	KO/Wild	R	M	M	M	M	M	M	M	M	M	M	M	M	M
1180	KO/Wild	KO/Wild	R	R	R	M	M	M	M	M	M	M	M	M	M	M
1242	KO/Wild	KO/Wild	R	R	R	R	M	M	M	M	M	M	M	M	M	M
1250	KO/Wild	KO/Wild	M	M	R	R	M	M	M	M	M	M	M	M	M	M
1182	KO/Wild	KO/Wild	R	R	R	M	M	M	M	M	M	M	M	M	M	M
1202	KO/Wild	KO/Wild	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1218	KO/Wild	KO/Wild	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1241	KO/Wild	KO/Wild	R	R	C	R	C	C	R	R	R	R	R	R	R	R
1300	KO/Wild	KO/Wild	R	R	C	R	R	R	C	C	C	M	M	R	R	R
1244	KO/Wild	KO/Wild	R	R	R	R	R	C	C	C	C	C	C	C	C	C
1296	KO/Wild	KO/Wild	R	M	M	R	R	C	C	R	C	R	R	R	R	R
1081	KO/Wild	KO/Wild	M	C	M	M	M	M	M	M	M	M	M	M	M	M
1095	KO/Wild	KO/Wild	M	R	M	M	M	M	M	M	M	M	M	M	M	M
1208	KO/Wild	KO/Wild	M	M	M	M	M	M	M	M	M	M	M	M	M	M
1110	KO/Wild	KO/Wild	R	R	R	M	M	M	M	M	M	M	M	M	M	M
1201	KO/Wild	KO/Wild	R	R	R	M	M	M	M	M	M	M	M	M	M	M
1294	KO/Wild	KO/Wild	R	R	R	M	M	M	M	M	M	M	M	M	M	M
1112	KO/Wild	KO/Wild	R	R	R	R	R	R	R	R	R	R	R	R	R	R
LOH (%)	37	34	42	66	68	61	68	53	34							
Inactivation of cadherin (Cdh) family genes

D8Mit212, one of the two loci exhibiting the most frequent LOH, is a marker within the Cdh5 gene. Other members of the cadherin family, such as Cdh1, Cdh3, Cdh8, Cdh11 and Cdh16, are also located in the frequent LOH region. The consequence of LOH was tested by analyzing the expression of these cadherin genes, Cdh1, Cdh3, Cdh5, Cdh8, Cdh11 and Cdh16, which exist in the chromosomal region syntenic to human chromosome 16q22.1, on 26 MCs from (BALB/cHeA × MSM/Ms) F1-p53+/– mice. Representative examples of RT-PCR of cadherin mRNA are shown in Fig. 3. Expression of the Cdh1 and Cdh5 genes was not detected in 15 (58%) and 8 (31%) of the 26 tumors, respectively (Fig. 4). The expression of Cdh3 and Cdh8 mRNA was also absent in 4 (15%) and 7 (27%) of the 26 tumors, respectively (Fig. 4). No inactivation of Cdh11 and Cdh16 genes was observed.

The integrity of all 11 exons of the Cdh5 gene was examined by PCR of DNA segments with primers designed within each exon in the 8 tumors in which down-regulation of Cdh5 was observed by RT-PCR. PCR products of exon 7, 8 or 10 were not detected in 4 of 8 tumors (data not shown). Thus, abnormality of some of the exons of the Cdh5 gene was found to be associated with the loss of expression in MCs arising in p53+/– mice.

Fig. 3 Representative examples of mRNA detection of Cdh 1, 3, 5 and 16 genes by RT-PCR in 2 normal mammary glands and 6 mammary carcinomas. Control: GAPDH

Fig. 4 Detection of mRNA expression of the Cdh1, Cdh3, Cdh5, Cdh8, Cdh11 and Cdh16 genes by RT-PCR in 26 mammary carcinomas from (BALB/cHeA × MSM/Ms) F1-p53+/– mice. Ratios of mRNA-expressing mammary carcinomas are indicated in the several members of cadherin. Control: GAPDH.
Frequent LOH on chromosomes 12

Since frequent LOH extended to some loci on chromosome 12 in genome-wide screening described earlier, precise allelotype analysis on chromosome 12 was also examined for 28 radiation-induced MCs from (BALB/cHeA × MSM/Ms) F1-p53+/– mice (Fig. 5). Highly frequent LOH was found at many loci throughout chromosome 12. Two regions are of particular interest; a wide region from D12Mit37 (1 cM) to D12Mit30 (46 cM) and a near telomeric region centered at D12Mit279 (53 cM). No strain preference for the allelic loss was observed on this chromosome.

DISCUSSION

p53 is one of the most frequently mutated genes in MC. However, the MC development in p53+/– mice is greatly modified by genetic background. Mammary tumors develop at less than 1% of all tumors in p53+/– mice of the 129/Sv and C57BL/6 × 129/Sv backgrounds.25 In contrast, the p53-heterozygotes of the BALB/c genetic background spontaneously develop mammary tumors at a high incidence.12,26,27 In addition, the mammary epithelia of BALB/c-p53–/– mice develop into mammary tumors at high incidence when transplanted into mammary fat pads of p53+/+ BALB/c hosts.28 Thus, genetic components cooperating with the p53 deficiency must be present in BALB/c to promote mammary tumor formation. In the analysis of N2 backcross mice [(C57BL × BALB/c) × BALB/c], BALB/c alleles for Prkdc and Cdkn2a do not bring about a difference in mammary tumor susceptibility.29 Thus, the BALB/c genetic components remain to be elucidated. Therefore, the search for allelic loss in MC from F1-p53+/– mice heterozygous with the BALB/c were carried out to find some tumor suppressor genes cooperating with both p53+/– and the BALB/c genetic components in mammary carcinogenesis.

By genome-wide LOH screening, we found highly frequent LOH on chromosomes 8, 11 and 12 (Fig. 1). More than 60% of the MCs showed LOH in a region ranging from D12Mit37 to D12Mit279 (53 cM). No strain preference for the allelic loss was observed on this chromosome.

![Fig. 5. Schematic representation of the allelotype in the frequent LOH regions on chromosome 12 in 28 mammary carcinomas (MC) from (BALB/cHeA × MSM/Ms) F1-p53+/– mice. The names of microsatellite markers are presented in abbreviated forms such as Mit37 and Nds2 at the top. Their genetic distances (cM) from the centromere are also indicated in parentheses at the top. Numbers at the left of the fig. represent tumor numbers. Black (C) and stippled (M) boxes represent loss of alleles derived from BALB/cHeA and MSM/Ms, respectively, and white (R) boxes represent the retention of both alleles. Genotypes of p53 and Atm of mice bearing tumors are shown at the left of the fig. The frequency of LOH at each marker is written below.](https://academic.oup.com/jrr/article-abstract/48/2/143/1050788)
Expression of the Cdh1 (E-cadherin) gene was not detected by RT-PCR in 15 (58%) of the 26 tumors showing LOH on chromosome 8 (Fig. 4). Inactivation of CDH1, a tumor suppressor gene, has been reported in many human breast cancers.\(^{36,37}\) On the other hand, the expression pattern of Cdh5 (VE-cadherin) was more complex. Cdh5 expression is up-regulated in invasive breast carcinomas which contributes for neovascularization of the tumors.\(^{38}\) VE-cadherin was exclusively expressed by highly aggressive melanoma cells and yet it was undetectable in the poorly aggressive tumor cells, suggesting the difference in ability to induce tumor angiogenesis.\(^{39}\) In contrast, the endothelial specific VE-cadherin is low or absent in angiosarcomas, suggesting an inhibitory role for this protein in tumor progression.\(^{40}\) In MCs from (BALB/c × MSM)F\(_1\) mice, the expression of Cdh5 gene was not detected in 8 (31%) of the 26 tumors showing LOH on chromosome 8 (Fig. 4). Furthermore, exons 7, 8 or 10 of Cdh5 failed to be amplified in 4 of the 8 MCs, indicating some impairment of the gene.

The overexpression of CDH3 (P-cadherin) in breast cancer is strongly associated with tumor aggressiveness, and the aberrant expression might be regulated by hypomethylation of gene promotor region.\(^{41}\) In the present analyses, expression of Cdh3 mRNA was absent in only a few MCs from the F\(_1\) mice with BALB/c-p53\(^{+/–}\) mice (Fig. 4). Screening of 16 cell lines from renal cell carcinomas revealed a complex pattern of cadherin expression, and cadherin 8 may be involved in tumorigenesis in some types of renal cell carcinomas.\(^{42}\) The expression of Cdh8 mRNA was absent in 7 (27%) of the 26 tumors in our study (Fig. 4). These discrepancies between the previous reports and our study remain to be clarified in further studies. Cdh11 mRNA and protein are expressed in the most invasive cell lines but not in any of the noninvasive cell lines, suggesting that the Cdh11 expression may well correlate with the invasive phenotype in cancer cells.\(^{43}\) Inactivation of Cdh11 and Cdh16 genes was not observed in our study.

Another highly frequent LOH on chromosome 12 was observed in at least two regions; a wide region from D12Mit37 (1 cM) to D12Mit30 (46 cM) and at D12Mit279 (53 cM) which is close to the telomeric region. The former region is very large, and may contain more than one tumor suppressor gene. However, no major tumor suppressor gene has been reported yet in this region of MC. The latter region contains RIIc (Br11b), a major tumor suppressor gene found in mouse thymic lymphomas.\(^{44,45}\) Future studies on the role of this gene in mammary carcinogenesis are likely to yield important insight of the mechanism of radiation-induced mammary carcinogenesis.

Our genome-wide screening at 42 loci identified frequent LOH (more than 30%) in chromosomes 5 (D5Mit81, 28 cM), 11 (D11Mit12, 75.4 cM), 14 (D14Mit7, 44.7 cM) and 18 (D18Mit8, 47 cM) in addition to chromosomes 8 and 12. The use of KO mice indicated that Brca1 (60.5 cM on chromosome 11) and Brca2 (88 cM on chromosome 5) cooperate with p53.\(^{46,78}\) Another tumor suppressor gene, Rb1, is located at 41 cM on chromosome 14. However, the contribution of the Brca1, Brca2 and Rb1 genes to tumor development in the BALB/c- p53\(^{+/–}\) mice remains to be determined.

ACKNOWLEDGEMENTS

We are grateful to Mr. M. Ikeda and Mr. U. Ujihara for their skillful animal care. This work was supported in part by Grants-in-aid for Basic Scientific Research No. 13480172 (to M. O.) and No.15580571 (to N. M.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a grant-in-aid from the Japan Atomic Energy Research Institute under contract to the Nuclear Safety Research Association.

REFERENCES

1. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.
2. Liu, M. C. and Gelmann, E. P. (2002) p53 gene mutations: case study of a clinical marker for solid tumors. Semin. Oncol. 29(3): 246–257.
3. Coles, C., Condice, A., Chetty, U., Steel, C. M., Evans, H. J. and Prosser, J. (1992) p53 mutations in breast cancer. Cancer Res. 52(19): 5291–5298.
4. Borrensen-Dale, A. L. (2003)Tp53 and breast cancer. Hum. Mutat. 21(3): 292–300.
5. Malkin, D. (1993)p53 and the Li-Fraumeni syndrome. Cancer Genet. Cytogenet. 66(2): 83–92.
6. Varley, J. M., McGown, G., Thornicroft, M., Santibanez-Koref, M. F., Kelsey, A. M., Tricker, K. J., Evans, D. G. and Birch, J. M. (1997) Germ-line mutations of TP53 in Li-Fraumeni families: an extended study of 39 families. Cancer Res. 57(15): 3245–3252.
7. Xu, X., Wagner, K. U., Larson, D., Weaver, Z., Li, C., Ried, T., Hennighausen, L., Wynshaw-Boris, A. and Deng, C. X. (1999) Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumor formation. Nat. Genet. 22: 37–43.
8. Jonkers, J., Meuwissen, R., van der Gulden, H., Peterse, H., van der Valk, M. and Berns, A. (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse study.

J. Radiat. Res., Vol. 48, No. 2 (2007); http://jrr.jstage.jst.go.jp

Downloaded from https://academic.oup.com/jrr/article-abstract/48/2/143/1050788 by guest on 29 July 2018
Allelic Loss in Mouse Mammary Carcinomas

model for breast cancer. Nat. Genet. 29: 418–425.

9. Blackburn, A. C. and Jerry, D. J. (2002) Knockout and transgenic mice of Trp53: what have we learned about p53 in breast cancer? Breast Cancer Res. 4(3): 101–111.

10. Crook, T., Brooks, L. A., Crossland, S., Osin, P., Barker, K. T., Waller, J., Philip, E., Smith, P. D., Yulug, I., Petro, J., Parker, G., Allday, M. J., Crompton, M. R. and Gusterson, B. A. (1998) p53 mutation with frequent novel codons but not a mutator phenotype in BRCA1- and BRCA2-associated breast tumors. Oncogene 17: 1681–1689.

11. Greenblatt, M. S., Chappuis, P. O., Bond, J. P., Hamel, N. and Foulkes, W. D. (2001) TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: distinctive spectrum and structural distribution. Cancer Res. 61: 4092–4097.

12. Mori, N., Yamate, J., Umesako, S., Hong, D. P., Okumoto, M. and Nakao, R. (2003) Preferential induction of mammary tumors in p53 hemizygous BALB/c mice by fractionated irradiation of a sub-lethal dose of X-rays. J. Radiat. Res. 44: 249–254.

13. Cavenee, W. K., Hansen, M. F. and Nordenskjold, M., Kock, E., Maumenee, I., Squire, J. A., Phillips, R. A. and Gallie, B. L. (1985) Genetic origin of mutations predisposing to retinoblastoma. Science 228: 501–503.

14. Weinberg, R. A. (1991) Tumor suppressor genes, Science 254: 1138–1146.

15. Levine, A. J. (1993) The tumor suppressor genes. Ann. Rev. Biochem. 62: 623–651.

16. Matsumoto, Y., Kosugi, S., Shinbo, T., Chou, D., Ohashi, M., Wakabayashi, Y., Sakai, K., Okumoto, M., Mori, N., Aizawa, S., Niwa, O. and Komimami, R. (1998) Allelic loss analysis of gamma-ray-induced mouse thymic lymphomas: two candidate tumor suppressor gene loci on chromosomes 12 and 16. Oncogene 16: 2747–2754.

17. Hong, D. P., Mori, N., Umesako, S., Song, C. W., Park, Y. G., Aizawa, S. and Okumoto, M. (2002) Putative tumor suppressor gene regions responsible for radiation lymphomagenesis in F1 mice with different p53 status. J. Radiat. Res. 43: 175–185.

18. Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montogomery Jr., C. A., Butel, J. S. and Bradley, A. (1992) Mice deficient for Trp53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

19. Barlow, C., Hirotsune, S., Paylor, R., Liyanage, M., Eckhaus, M., Collins, F., Shiloh, Y., Crawley, J. N., Ried, T., Tagle, D. and Wynshaw-Boris, A. (1996) Atm deficient mice: a paradigm of ataxia telangiectasia. Cell 86: 159–171.

20. Okumoto, M., Song, C. W., Tabata, K., Ishibashi, M., Mori, N., Park, Y. G., Kominami, R., Matsumoto, Y., Takamori, Y. and Esaki, K. (1998) Putative tumor suppressor gene region within 0.85 cM on chromosome 12 in radiation-Induced murine lymphomas. Mol. Carcinog. 22: 175–181.

21. Okumoto, M., Nishikawa, R., Imai, S. and Hilgers, J. (1990) Genetic analysis of resistance to radiation lymphomagenesis with recombinant inbred strains of mice. Cancer Res. 50: 3848–3850.

22. Mori, N., Yamate, J., Stassen, A. P., Oka, S., Okumoto, M., Tsuhara, A., Akamatsu, T., Sakuma, S. and Demant, P. (1999) Modulations of glucocorticoid-induced apoptosis linked to the p53 deletion and to the apoptosis susceptibility gene Rapop-1 (Radiation-induced apoptosis 1). Oncogene 18: 4282–4285.

23. Shimada, Y., Nishimura, M., Kakinuma, S., Okumoto, M., Shiroishi, T., Clifton, K. and Wakan, S. (2000) Radiation-associated loss of heterozygosity at the Znf71 (lkaro) locus on chromosome 11 in murine thymic lymphomas. Radiat. Res. 154: 293–300.

24. Miyazawa, T., Sato, H., Hatakeyama, K., Kitagawa, T. and Komimami, R. (2002) Allelic losses in mouse skin tumors induced by γ-irradiation of p53 heterozygotes. Jpn. J. Cancer Res. 93: 994–999.

25. Donehower, L. A., Harvey, M., Vogel, H., McArthur, M. J., Montgomery, C. A. Jr., Park, S. H., Thompson, T., Ford, R. J. and Bradley, A. (1995) Effects of genetic background on tumorigenesis in p53-deficient mice. Mol. Carcinog. 14: 156–22.

26. Kuperwasser, C., Hurlbut, G. D., Kittrell, F. S., Dickinson, E. S., Lavirica, R., Medina, D., Naber, S. P. and Jerry, D. J. (2000) Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am J Pathol. 157: 2151–2159.

27. Backlund, M. G., Trasti, S. L., Backlund, D. C., Cressman, V. L., Godfrey, V. and Koller, B. H. (2001) Impact of ionizing radiation and genetic background on mammary tumorigenesis in p53-deficient mice. Cancer Res. 61: 6577–6582.

28. Jerry, D. J., Kittrell, F. S., Kuperwasser, C., Lavirica, R., Dickinson, E. S., Bonilla, P. J., Butel, J. S. and Medina, D. (2000) A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene 19: 1052–1058.

29. Blackburn, A. C., Brown, J. S., Naber, S. P., Otis, C. N., Wood, J. T. and Jerry, D. J. (2003) BALB/c alleles for Ptkdc and Cdkn2a interact to modify tumor susceptibility in Trp53+/- mice. Cancer Res. 63: 2364–2368.

30. Hong, D. P., Kubo, K., Tsgawa, N., Mori, N., Umesako, S., Song, C. W. and Okumoto, M. (2002) Generation of large homozygous chromosomal segments by mitotic recombination during lymphomagenesis in F1 hybrid mice. J. Radiat. Res. 43: 187–194.

31. Okumoto, M. and Yonekawa, H. (2005) Intestinal tumorigenesis in mice deficient for Prkdc and Cdkn2a is enhanced by X-irradiation in an age-dependent manner. J. Radiat. Res. 46: 83–91.

32. Chen, T., Sahin, A. and Aldaz, C. M. (1996) Deletion map of chromosome 16q in ductal carcinoma in situ of the breast: Refining a putative tumor suppressor region. Cancer Res. 56: 5605–5609.

33. Cleton-Jansen, A–M., Callen, D. F., Seshadri, R., Goldup, S., McCallum, B., Crawford, J., Powell, J. A., Settasatan, C., van Beerendonk, H., Moerland, E. W., Vitt, M., Harris, W. H., Millis, K., Morgan, N. V., Barnes, D., Mathew, C. G. and Cornelisse, C. J. (2001) Loss of heterozygosity mapping at chromosome arm 16q in 712 breast tumors reveals factors that influence delineation of candidate regions. Cancer Res. 61: 117–1177.

34. Kouvaraki, M., Gorgoulis, V. G., Rassidakis, G. Z., Liodis, P., Koutroumbi, E., Markopoulos, C., Gogas, J. and Kittas, C. (2001) Alterations of the 16q22.1 and 16q24.3 chromosomal loci in sporadic invasive breast carcinomas: correlation with

J. Radiat. Res., Vol. 48, No. 2 (2007); http://jrr.jstage.jst.go.jp
proliferative activity, ploidy and hormonal status of the tumors. Anticancer Res. 21: 991–999.
35. Nagahata, T., Hirano, A., Utada, Y., Tsuchiya, S., Takahashi, K., Tada, T., Makita, M., Kasumi, F., Akiyama, F., Sakamoto, G., Nakamura, Y. and Emi, M. (2002) Correlation of allelic losses and clinicopathological factors in 504 primary breast cancers. Breast Cancer 9(3): 208–215.
36. Berx, G., Cleto-Jansen, A. M., Nollet, F., de Leeuw, W. J., van de Vijver, M., Cornelisse, C. and van Roy, F. (1995) E-cadherin is a tumor/invasion suppressor gene mutated in human lobular breast cancers. EMBO J. 14: 6107–6115.
37. Hirohashi, S. (1998) Inactivation of the E-cadherin-mediated cell adhesion system in breast cancers. Am. J. Pathol. 153: 333–339.
38. Parker, B. S., Argani, P., Cook, B. P., Liangfeng, H., Charrand, S. D., Zhang, M., Saha, S., Bardelli, A., Jiang, Y., St. Martin, T. B., Nacht, M., Teicher, B. A., Klinger, K. W., Sukumar, S. and Madden, S. L. (2004) Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res. 64: 7857–7866.
39. Hendrix, M. J., Seftor, E. A., Meltzer, P. S., Gardner, L. M., Hess, A. R., Kirshmann, D. A., Schatterman, G. C. and Seftor, R. E. (2001) Expression and functional significance of VECadherin in aggressive human melanoma cells: role in vascu-rogenic mimicry. Proc. Natl. Acad. Sci. 98: 8018–8023.
40. Zanetta, L., Corada, M. Grazia Lampugnani, M., Zanetti, A., Breviario, F., Moons, L., Carmeliet, P., Pepper, M. S. and Dejana, E. (2005) Downregulation of vascular endothelial-cadherin expression is associated with an increase in vascular tumor growth and hemorrhagic complications. Thromb. Haemost. 93: 1041–1046.
41. Parkes, J., Albergaria, A., Oliveira, J. T., Jeronimo, C., Milanezi, F. and Schmitt, F. C. (2005) P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin. Cancer Res. 11: 5869–5877.
42. Blaschke, S., Mueller, C. A., Markov-S-Lipkovski, J., Puch, S., Miosge, N., Becker, V., Mueller, G. A. and Klein, G. (2002) Expression of cadherin-8 in renal cell carcinoma and fetal kidney. Int. J. cancer 101: 327–334.
43. Pishvaian, M. J., Feltis, C. M., Thompson, P., Bussemarkers, M. J., Schalken, J. A. and Byers, S. W. (1999) Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Res. 59: 947–952.
44. Wakabayashi, Y., Watanabe, H., Inoue, J., Takeda, N., Sakata, J., Mishima, Y., Hitomi, J., Yamamoto, T., Usuyama, M., Niwa, O., Aizawa, S. and Komai, R. (2003) Bc11b is required for differentiation and survival of alphabeta T lymphocytes. Nat. Immunol. 4: 533–539.
45. Park, Y. G., Song, C. W., Mori, N., Sugimoto, K., Hong, D. P. and Okumoto, M. (2000) Analysis of highly frequent allelic loss region on distal chromosome 12 in murine radiation-induced lymphomas. Cancer Lett. 148: 95–103.