Current status and prospects of hematopoietic stem cell transplantation in China

Xiaoqi Wang¹, Ruihao Huang¹, Xiaohui Zhang², Xi Zhang¹

¹Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China; ²Peking University People’s Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China.

Abstract
Hematopoietic stem cell transplantation (HSCT) is a highly effective and unique medical procedure for the treatment of most hematological malignancies. The first allogeneic transplantation was performed by E. Donnall Thomas in 1957. Since then, the field has evolved and expanded worldwide. The first successful allogeneic HSCT (allo-HSCT) in China was conducted in 1981. Although the development of allo-HSCT in China lagged, China has since made considerable contributions to the process of HSCT worldwide, with more than 10,000 HSCTs performed annually. In particular, haploidentical (haplo-HSCT) technology represented in the Beijing Protocol has demonstrated similar efficacy to human leukocyte antigen-matched HSCT and has gradually become the predominant choice for allo-HSCT in China. Currently, the number of haplo-HSCT procedures exceeds 5000 per year, and the Beijing Protocol has been greatly improved by implementing updated individualized strategies for controlling complications, relapse, and infection management. In addition, innovative haplo-HSCT technologies developed by different medical transplantation centers, such as Soochow, Zhejiang, Fujian, Chongqing, and Anhui, have emerged, providing inspiration for the refinement of global practice. This review will focus on the current activity in this field and highlight important trends that are vital in China’s allo-HSCT process, examining the current viewpoint and future directions.

Keywords: Hematopoietic stem cell transplantation; Haploidentical; China

Introduction
At present, allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative treatment for a broad spectrum of hematological malignancies, including acute and chronic leukemia, myelodysplastic syndromes (MDS), lymphomas, and immune or metabolic disorders.¹,² It has been more than 30 years since the first successful allo-HSCT was performed. Since then, many great achievements have been made in this field. The Chinese Blood and Marrow Transplantation Registry Group (CBMTRG) reported 18,110 HSCTs in a single year (2021), contributing to a total of 90,436 HSCTs since 2008. To date, 174 medical centers have been registered as having a certificate to perform HSCT. Among them, 12,744 allo-HSCTs were performed, accounting for 70.4%, whereas there were 5354 auto-HSCTs, accounting for 29.6%. In particular, there were 7977 (62.6%) haploidentical (haplo) transplants. The five disease entities most suitable for HSCT are acute myeloid leukemia (AML; 4963, 27%), acute lymphoblastic leukemia (ALL; 2903, 16%), multiple myeloma (2544, 14.05%), non-Hodgkin lymphoma (NHL; 2408, 13.30%), and aplastic anemia (AA; 1566, 8.65%).

According to a global survey of the Worldwide Network for Blood and Marrow Transplantation, and taking into consideration population size, China has achieved a remarkable transplantation rate (HSCT/10 million population) of 86 in comparison to 53.6 in the whole South East Asia/Western Pacific region and a team density (teams/10 million population) of 1.03.¹,³ Even during the spread of coronavirus disease 2019 (COVID-19) worldwide, the number of transplants in China still increased by 4695 in 2021, indicating that COVID-19 epidemic prevention and control is critical for improving transplantation develop-
The number of HLA-matched donors has been insufficient to meet the increasing need for allo-HSCT in China, and the current status of HSCT based on different diseases was summarized as [Table 1]. Each immediate family member could be a haploidentical donor, increasing the number of available donors. To overcome the HLA barrier and induce immune tolerance in haplo-HSCT, several developments have been made, such as T cell depletion (TCD),[10] unmanipulated grafts with granulocyte colony-stimulating factor (G-CSF) plus anti-thymocyte globulin (ATG)-based regimens,[11] and PT-Cy-based regimens.[12,13] In 2000, according to the theory of G-CSF inducing immune tolerance, the Peking University Institute of Hematology team established a protocol for unmanipulated haplo-HSCT using a myeloablative conditioning regimen with G-CSF-mobilized/primed grafts, named the Beijing Protocol,[14] which is characterized by individualized and optimized conditioning and modified grafts. Since then, the protocol has been perfected in terms of optimizing technological systems, forming a unique Chinese haplo-HSCT protocol.[15] In addition, because of the shift from TCD grafts to unmanipulated bone marrow (BM) and/or peripheral blood (PB) harvests, haplo-HSCT is much easier to perform than before.[16] The outcomes of haplo-HSCT following the Beijing Protocol have shown to be comparable to those of HLA-matched sibling HSCT in multicenter, prospective, or registry-based studies.[17] The development of haplo-HSCT has shown advantages in different hematological diseases. For adults with acute leukemia, haplo-HSCT showed outcomes in terms of 3-year disease-free survival (DFS) (74% vs. 78%, P = 0.34) and overall survival (OS) (79% vs. 82%, P = 0.36) that were similar to matched sibling donor transplantation (MSDT) in complete remission 1 (CR1).[18] The survival benefit should also be observed in children.[19,20] Yu et al.[21] reported comparable outcomes in 111 cases of refractory AML following MSDT or haplo-HSCT in terms of the 5-year cumulative incidence of relapse (CIR) (32% vs. 23%, P = 0.243) and OS (44% vs. 50%, P = 0.947). The First Affiliated Hospital of Zhejiang University School of Medicine team developed an approach of T cell-replete haplo-HSCT with low-dose ATG, which improved the outcomes of high-risk leukemia patients.[22] In a recent prospective multicenter study of young adults with standard-risk ALL in CR1 in the absence of HLA-matched donors, haplo-HSCT showed a lower 2-year CIR (12.8% vs. 46.7%, P = 0.0017) and better 2-year DFS (80.9% vs. 82.6%, P = 0.01).
The development of haplo-HSCT includes three main approaches: G-CSF plus ATG-based regimens with unmanipulated T cell replete grafts that originated in the Beijing Protocol; PT-Cy-based regimens with unmanipulated T cell replete grafts that originated from the Baltimore group; and TCD-based regimens that originated from the Perugia group in Italy. The former two approaches are the most verified regimens. While the Beijing protocol for haplo-HSCT combines myeloablative conditioning, reinfusion of G-CSF-primed BM plus PB relies on ATG for the prevention of GVHD (graft-versus-host disease), and the Baltimore protocol with reduced intensity conditioning and high-dose PT-Cy is predominant. PT-Cy is mostly used in haplo-HSCT in Western countries, and research from Johns Hopkins in Baltimore showed that the non-relapse mortality (NRM) at day 100 and 2 years was 9% and 17%, respectively, and the 2-year OS and event-free survival were 55% and 39%, respectively. However, PT-Cy is also associated with problems such as hematopoiesis suppression, delayed engraftment, and slow immune reconstitution, thus leading to increased infection rates. The application of the Beijing Protocol in therapy needs more attention to prevent GVHD. Furthermore, the poor remission rate or refractory disease before HSCT may be a situation in which the Beijing Protocol is the preferred platform. The Beijing Protocol also acted as a very effective choice for young SAA patients because there was no significant difference in 5-year OS or GVHD between haplo-HSCT and MSDT. The results of this meta-analysis also supported the role of haplo-HSCT with the Beijing Protocol, which could achieve comparable clinical outcomes in terms of OS, PFS, NRM, and relapse rate, and is better in terms of decreasing transplantation complications, thus supporting haplo-HSCT as a very valid option in the transplantation field.

Complication challenges include graft failure, GVHD, and relapse

General complication challenges such as poor graft function (PGF), GVHD, and recurrence after transplantation of allo-HSCT could not be avoided in haplo-HSCT. The Chinese transplant team aims to address the above problems to optimize haplo-HSCT, thus achieving an international advanced level.

Graft failure

PGF is defined as two or three cytopenic counts beyond day 28 post-HSCT with donor chimerism and is associated with a lower survival rate and is known to occur in 5% to 27% of patients. Despite advances in haplo-HSCT protocols, there still remains a need to reduce PGF, and the modified Beijing Protocol has been associated with a 4% to 5% incidence, which still compromises the success of haplo-HSCT. The occurrence of PGF may be correlated with donor-specific anti-HLA antibody (DSA) for the development of primary PGF. The Beijing team adopts rituximab (anti-CD20 monoclonal antibody) to clear DSA, thus decreasing the incidence of PGF. They reported that a single dose of 375 mg/m² rituximab was enough to show efficacy in preventing the onset of PGF. In addition, ongoing advances in the understanding of the BM microenvironment in PGF patients may suggest novel strategies to promote hematopoietic regeneration in individuals with PGF following HSCT. Because a reduced amount of BM endothelial progenitor cells (EPCs) is an independent risk factor for PGF occurrence, atorvastatin treatment could quantitatively and functionally improve BM EPCs from PGF through downregulation of the p38 MAPK pathway. Prophylactic oral N-acetyl-l-cysteine could safely and effectively improve hematopoiesis and megakaryocytopenia by repairing BM hematopoietic stem cells (HSCs), endothelial cells (ECs), and mesenchymal...
stem cells (MSCs) in PGF post-haplo-HSCT.[51] The Beijing team also proposed that all-trans retinoic acid could protect MSCs from dysfunction and apoptosis by upregulating deoxyribonucleic acid (DNA) hypermethylation of the \(I L 1 B\) promoter, thus restoring the thrombopoietic niche.[52] Eltrombopag, an oral thrombopoietin receptor agonist, has also been reported to be a safe and effective therapy for improving graft function.[53] For patients with graft failure after the first transplantation, a second haplo-HSCT using a fludarabine/cyclophosphamide regimen from a different donor was a promising salvage option, and the OS and DFS at 1 year were 56.6% and 48.4%, respectively.[54]

Graft-Versus-Host Disease

As mentioned above, the rates of GVHD were comparable between haplo-HSCT and MSDT with the Beijing Protocol. Based on the 9-year follow-up of the largest haplo-HSCT cohort in the Beijing Protocol, the incidence of grade II–IV acute GVHD (aGVHD) was 43%, and the 2-year cumulative incidence of total chronic GVHD (cGVHD) was 53%, which is the most common mortality after HSCT.[55] To better and more precisely predict or judge the severity of GVHD after haplo-GVHD, biomarkers are important. Xinqiao Hospital reported that the combination of Toll-like receptor 4 (TLR4), TNF receptor 1 (TNFR1), transforming growth factor-\(\beta\) (TGFB-\(\beta\)), and elafin could be a new four-biomarker panel to assist aGVHD diagnosis[56] and chemokine (C-C motif ligand 9 (CXCL9) and C-C Motif Chemokine Ligand 17 (CCL17) could be adopted as cGVHD severity and tissue-specific biomarkers.[57] In addition, cluster of differentiation 4/cluster of differentiation 8 (CD4/CD8) ratios in BM allografts \(\geq 1.16\), CD56bright natural killer (NK) cells in allografts \(> 1.9 \times 10^6/\text{kg}\), monocyctic myeloid-derived suppressor cells (MDSCs) in allografts \(< 1.22 \times 10^7/\text{kg}\), and other components of grafts played predictive roles in the onset of aGVHD.[58–60] To improve long-term outcomes and decrease NRM in haplo-HSCT patients, the joint use of ATG and PT-Cy showed better outcomes.[61] The Beijing team first discovered in a mouse model that ATG combined with low-dose PT-Cy could reduce GVHD incidence by promoting regulatory T cell (Treg) reconstitution.[62] In subsequent research to assess the efficacy of PT-Cy in conjunction with ATG for preventing GVHD, researchers confirmed that the addition of low-dose PT-Cy on the basis of the Beijing Protocol could reduce III- to IV-degree aGVHD (5% vs. 18%, \(P = 0.003\)), cGVHD (30% vs. 44%, \(P = 0.07\)), and NRM (6% vs. 15%, \(P = 0.045\)). The studies resulted in the “Sino-US Protocol,” which aimed to improve the prognosis of haplo-HSCT and is a further improvement and optimization of the current protocol. In addition, low-dose glucocorticoid prophylaxis could reduce GVHD and thus reduce the total dose of steroids, which might contribute to a lower incidence of infections and a superior GVHD-free, relapse-free survival (GRFS).[63] In addition to adjusting the regimen, cellular therapy has shown increasing significance in managing GVHD. In a phase II multicentre clinical trial at Xinqiao Hospital, which adopted umbilical cord-derived mesenchymal stromal cells in the prophylaxis of chronic GVHD, the 2-year cumulative incidence of cGVHD was reduced in the MSC group compared with the non-MSC group (27.4% vs. 49.0%, \(P = 0.021\)) without increasing the relapse risk.[64] This study might provide hope for preventing cGVHD after haplo-HSCT. Mechanistic research comparing the efficacy of different tissue-derived MSCs in controlling GVHD found that human umbilical cord-derived mesenchymal stem cells (HUCMSCs) decrease GVHD more effectively by recruiting MDSCs to target tissues through the CXCL1–CXCR2 axis.[65] For cGVHD treatment, in Xinqiao Hospital, sirolimus combined with calcineurin inhibitor had a better effect on steroid-refractor (SR) cGVHD[66] with relatively mild side effects, and was thus suitable for long-term treatment of cGVHD. In addition, in SAA, co-transplantation with MSCs for haplo-HSCT is encouraging and is associated with high rates of engraftment and survival.[67] Moreover, the Zhejiang team found that ruxolitinib combined with etanercept can reduce severe III–IV SR-cGVHD, and a marked reduction of \(\geq 75\%\) in daily corticosteroid dosing was observed in 75.4% of patients at day 28.[68] They subsequently performed a 41-patient single-site case series in which ruxolitinib demonstrated a significant response in patients with SR-cGVHD and a reasonably well-tolerated safety profile, suggesting ruxolitinib as a promising treatment option in SR-cGVHD.[69] Additionally, 7.5 mg/kg ATG as GVHD prophylaxis in haplo-HSCT was associated with reduced viral infections without increased GVHD.[70] The Fujian team proposed a promising approach in which sequential transplantation of haplo-cord could improve the survival outcomes of patients with relapsed/refractory hematological malignancies with lower GVHD.[71] The Xinqiao Hospital team has built a composite technology system based on “Remodeling the hematopoietic microenvironment” for refractory leukemia to formulate the therapy roadmap and comprehensively improve HSCT efficacy by decreasing GVHD and improving GVL. The 2-year OS increased by 21.5%,[72–74]

Relapse

For patients undergoing haplo-HSCT based on the Beijing Protocol, the 2-year cumulative incidences of relapse were 15% and 26% in the standard-risk and high-risk groups, respectively,[55] but the incidence of relapse-related mortality was reported to be no different between haplo-HSCT and MSDT (15.6% vs. 16.7%, \(P = 0.943\)).[75] Donor lymphocyte infusion (DLI) is an effective method of preventing relapse in patients. The Beijing team adopted PB mobilized by G-CSF combined with low-dose immunosuppressive agents to establish a modified DLI (mDLI) recurrence prevention system. A series of clinical studies conducted by the Beijing team showed that mDLI can be used effectively to prevent and treat relapse in haplo-HSCT patients, thus improving the efficacy of transplantation.[76] and efficacy was confirmed by the Johns Hopkins University team and the Zhejiang team. In addition, for the Beijing Protocol, the strategies for relapse are mineral residential disease (MRD)-based, multiple chemotherapy combined with DLI guided by MRD, and GVHD-guided multiple DLIs, which could reduce the relapse rate compared with single chemotherapy combined with DLI (22% vs. 56%, \(P < 0.001\), and
the OS rate was significantly increased (78% vs. 44%, P < 0.001) in patients with refractory/relapsed ALL after transplantation.77 In addition, targeted drugs such as tyrosine kinase inhibitors have been successfully used for relapse treatment.78 Fms-like tyrosine kinase 3 (FLT3) internal tandem duplication (FLT3-ITD) mutations occur in approximately 25% of adult AMLs. Even though allo-HSCT could improve survival, the relapse rate among those with FLT3-ITD mutations remains relatively high. Battipaglia et al.79 reported that sorafenib was adopted to treat patients after HSCT, and the 1-year OS and leukemia free survival (LFS) were 92% ± 6% and 92% ± 5%, respectively. Nanfang Hospital launched an open-label, randomized phase 3 trial at seven hospitals in China to investigate the efficacy and tolerability of sorafenib maintenance post-transplantation in patients with FLT3-ITD-mutated ALL, with a 1-year CIR that was reduced to 7.0% compared with 24.5% in the control group (P = 0.001).80

Prospects for the future

Further developments and improvements in the haplo-HSCT system have been simultaneously implemented from several aspects. First, how to select donors to strengthen graft versus leukemia effects remains unclear. Second, mechanistic research on immune tolerance for the separate effects of GVHD and GVL. Last but not least, combination therapies with novel drugs are in the pipeline.

Donor preparation and risk stratification

Although HSCT represents the only curative therapy for hematological malignancies, donor T cells failing to reach the tolerant state in the host microenvironment leads to severe GVHD and threatens the survival of patients. By characterizing the gene expression profile in tolerant T cells, the dynamics of transcriptomes in a physiological T cell tolerance model can be determined. Moreover, the Beijing team conducted the first prospective RCT across 23 transplantation centers to demonstrate that ATG could effectively decrease the incidence rate of grade 2 to 4 aGVHD (13.7% vs. 27.0%, P = 0.007), 2-year overall cGVHD (27.9% vs. 52.5%, P < 0.001), and 2-year extensive cGVHD (8.5% vs. 23.2%, P = 0.029) after HSCT compared with cyclosporine treatment without affecting the CIR or NRM.81

Balance of GVHD and GVL

Considering the control of GVHD, the establishment of a GVHD prevention prediction system and the study of the underlying mechanism were used to establish a concrete foundation for the transfer from precision medicine to clinical practice. Patients could be stratified into high- and low-risk sub-groups according to CD4/CD8 ratios. The cumulative incidence of grade II to IV acute GVHD was reduced from 48.1% to 20.9% by prophylaxis in the high-risk group treated with low-dose glucocorticoids.82 In addition, the Beijing team adopts G-CSF mobilized PB stem cell collection infusion combined with DLI, followed by short-term immunosuppressive agents, to prevent and treat recurrence after haplo-HSCT, which is safe and effective.

According to risk-stratified treatment, a complete mDLI system has been formed, which includes therapeutic mDLI for relapsed patients, interventional DLI for MRD-positive patients, and preventive mDLI for patients in a relapse/refractory state before transplantation. Chemotherapy combined with DLI therapy was guided by dual indicators of MRD and GVHD after DLI. Compared with chemotherapy combined with DLI alone, the relapse rate was significantly reduced (22% vs. 56%, P < 0.001), and the LFS and OS rates increased significantly (71% vs. 35%, P < 0.001; 78% vs. 44%, P < 0.001).83

Combination of novel treatments and HSCTs

Novel treatments include chimeric antigen receptor-T (CAR-T) cells and histone deacetylation inhibitors, demethylation agents, monoclonal antibodies, immunomodulatory drugs, and tumor vaccines. CAR-T cell therapy has shown promising efficacy in salvaging relapsed/refractory B-ALL patients after HSCT and is widely recognized worldwide, having brought hope for patients with hematological malignancies.84,85 Therefore, a new treatment model combining cutting-edge therapy and HSCT is emerging. The combination of CAR-T and HSCT has become an effective means to improve efficacy before, during, and after HSCT. Before HSCT, CAR-T cell therapy could help clear residual tumor tissue or be used to reduce the tumor burden before the regimen. During HSCT, CAR-T cell therapy could help better bridge HSCT and reduce relapse. An open-label pragmatic clinical trial from Wuhan suggested that CAR-T should be bridged to transplantation, resulting in better LFS.86 For patients who experience relapse or progression after HSCT, CAR-T cell therapy could serve as a rescue treatment. In addition, CAR-T cell therapy could be adopted as a consolidation or maintenance treatment to reduce the relapse risk in high-risk patients. However, in CAR-T cell therapy for refractory/relapsed hematopoietic malignancies, although the remission rate was encouraging, the high long-term relapse rate needs to be solved.87 CD19-targeted CAR-T cell therapy against R/R ALL achieved a CR rate of 92.3%. However, relapse after CAR-T cell therapy remains a pre-dominant obstacle, with a 20% to 70% relapse rate when the follow-up period was sufficiently long. Xinqiao Hospital reported that the therapy of B-ALL subjects experiencing relapse after transplantation with donor-derived CAR-T cells was safe and effective; the CR rate was up to 79.05%, and outcomes seem comparable to those achieved with alternative therapies, but data from a randomized trial are lacking.88 Allogeneic CAR-T cells can effectively treat malignancies that progress after HSCT. The Tongji group also reported that haplo-CAR-T cell therapy could effectively control lymphoma that failed to respond to autologous CAR-T cell therapy and thus may be one possible regimen before “universal” CAR-T cell therapy. In addition, antigen-specific T cell therapies will play a role in HSCT.89 Maintenance therapy after HSCT is the most effective therapy to reduce relapse. Alternative drugs include FLT3 inhibitors, histone deacetylase inhibitors, demethylation agents, monoclonal antibodies, immunomodulatory drugs, and tumor vaccines. The demethylating agent azacitidine could increase Tregs and induce CD8+ T cell reactions, which may be one of the mechanisms of graft versus leukemia effect enhancement.
without increasing GVHD.[90] In addition, the combination of hypomethylating agents could synergistically promote the elimination of AML and prevent relapse after HSCT. The Xinqiao group launched a study to investigate recombinant human G-CSF combined with decitabine (Dec) for relapse prophylaxis in high-risk AML (HR-AML) patients after HSCT. The results indicated that the estimated 2-year CIR in the G-Dec group was lower (15.0\% vs. 38.3\%, \textit{P} < 0.01) and that there was no significant difference in the 2-year cumulative incidence of cGVHD (23.0\% vs. 21.7\%, \textit{P} < 0.01 and \textit{P} = 0.82, respectively).[73]

The First Affiliated Hospital of Soochow University group also conducted maintenance therapy with Dec after HSCT to prevent relapse of HR-AML with a significant reduction in the 3-year CIR in the Dec and control groups (5.9\% vs. 45.3\%, \textit{P} = 0.002).[91] Moreover, their data indicated that 5-day low-dose Dec, as part of a modified Bu–Cy conditioning regimen, may confer a survival advantage in HR-AML (2-year OS 78.3\% vs. 62.9\%).[92] Recently, the FLT3 inhibitor midostaurin as a maintenance treatment for FLT3-positive patients after HSCT significantly improved the survival of CR1 patients.[93]

Conclusion

The establishment and improvement of haplo-HSCT technology systems has signified the coming of the new era of “everyone has a donor”. With its continuous improvement and optimization, the allo-HSCT system is becoming more complete, and more researchers are participating in academic exchanges. In the past 5 years, transplantation-related Science Citation Index (SCI) publications from China account for 13\% of the total publications worldwide, among which, depending on the different types of blood disorders, the SCI publication ratio in AML, ALL, AA, and MDS is 25.8\%, 38.5\%, 31.1\%, and 20.2\%, respectively. In addition, the proportion of Chinese guidelines/consensus to international guidelines/consensus is increasing to 59.6\% and 43.8\% about transplantation norms and complication management, respectively. As for other stem cell sources in allo-HSCT, umbilical cord blood transplantation in China also provides more choice for patients.[94,95] Moreover, based on the mechanism of HSCT, microtransplantation may bring hope for older patients with AML who are unfit for HSCT.[96,97]

The transplantation systems of different medical centers have their own characteristics, and all have made contributions to improving the transplantation technology, aiming to make HSCT much simpler and controllable with regard to manufacturing and more stable in terms of efficacy. However, the demands of patients have not been satisfied in the current situation due to the population baseline. Beyond the endeavors made to improve the depth of HSCT, the speed of HSCT technology dissemination also requires attention. Furthermore, scholars in China have already designed clinical trials to combine novel therapies such as CAR-T cell therapy and molecular drugs with haplo-HSCT, but the combination that brings the most benefit remains to be explored. Furthermore, survival is no longer the only goal, and promoting physical and psychological health recovery among patients to help them return to society and family life should receive more attention. These points are of great importance in the future [Figure 1].

Acknowledgments

We thank H. Nikki March, PhD, from Liwen Bianji (Edanz) (www.liwenbianji.cn/), for editing the English text of a draft of this manuscript.

Funding

This study was supported by grants from National Key Research and Development Program of China (No.2017YFA0105503), National Natural Science Foundation of China (No.82020108004), Natural Science Foundation of Chongqing Innovation Group

Figure 1: The future of allo-HSCT. allo-HSCT: Allogeneic Hematopoietic stem cell transplantation; CAR-T: Chimeric antigen receptor-T.
References

1. Pei X, Huang X. New approaches in allogenic transplantation in AML. Semin Hematol 2019;56:147–154. doi: 10.1036/semi-
2. Gratwohl A, Baldomero H, Aljurf M, Pasquini MC, Bouzas LF, Yoshimi A, et al. Hematopoietic stem cell transplantation: a global perspective. JAMA 2010;303:1617–1624. doi: 10.1001/
3. Niederwieser D. The Chinese HCT survey: a non-manipulated haploidentical transplantation procedure makes a novel contribution to data sharing within the regional and global transplant registries and worldwide knowledge. Bone Marrow Transplant 2021;56:1229–1231. doi: 10.1038/s41409-021-01220-1.
4. Niederwieser D, Baldomero H, Bazuaye N, Akter MR, Srivastava A, Moom JH, Dung PC, et al. Impact of the SARS-CoV-2 pandemic on hematopoietic stem cell transplantation and cellular therapies in Europe 2020: a report from the EBMT activity survey. Bone Marrow Transplant 2022;57:742–752. doi: 10.1038/s41409-022-01604-x.
5. Iida M, Dodds A, Akter MR, Srivastava A, Moon JH, Dung PC, et al. The 2016 APBMT Activity Survey Report: trends in haploidentical and cord blood transplantation in the Asia-Pacific region. Blood Cell Therapy 2021;4:20–28.
6. Passweg JR, Baldomero H, Chabannon C, Corbacioglu S, de la Camara R, Dohner H, et al. Impact of the SARS-CoV-2 pandemic on hematopoietic stem cell transplantation and cellular therapies in Europe 2020: a report from the EBMT activity survey. Bone Marrow Transplant 2022;57:742–752. doi: 10.1038/s41409-022-01604-x.
7. Iida M, Dodds A, Akter MR, Srivastava A, Moon JH, Dung PC, et al. The 2016 APBMT Activity Survey Report: trends in haploidentical and cord blood transplantation in the Asia-Pacific region. Blood Cell Therapy 2021;4:20–28.

Aulett J, Kou J, Chen M, Shaw BE. Current use and outcome of hematopoietic stem cell transplantation: CBMTR US summary slides 2021.
8. Ye Y, Wang M, Malard F, Shi J, Lu Y, Ouyang G, et al. Comparison of non-first-degree related donors and first-degree related donors in haploidentical HSCT: a multi-centre retrospective analysis. Blood Marrow Transplant 2021;56:1–8. doi: 10.1038/s41409-021-03352-4.
9. Aversa F, Tablino A, Terenzi A, Velardi A, Falzetti F, Giannoni C, et al. Successful engraftment of T-cell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood 1994;84:3948–3955. doi: 10.1182/blood.V84.11.3948.
10. Wang Y, Wu D-P, Liu Q-F, Lu X-P, Liu K-Y, Zhang X-H, et al. Donor and recipient age, gender and ABO incompatibility regardless of donor source: validated criteria for donor selection for haematopoietic transplants. Leukemia 2018;32:492–498. doi: 10.1038/leu.2017.199.
11. Nakamae H, Koh H, Katayama T, Nishimoto M, Hayashi Y, Nakashima Y, et al. HLA haploidentical peripheral blood stem cell transplantation using reduced dose of posttransplantation cyclophosphamide for poor-prognosis or refractory leukemia and myelodysplasia syndrome. Exp Hematol 2015;43:921.e1–929. e1. doi: 10.1016/j.exphem.2015.07.006.
12. Sugita J, Kawashima N, Fujisaki T, Kakehama K, Ota S, Matsuo K, et al. HLA-haploidentical peripheral blood stem cell transplantation with post-transplant cyclophosphamide after busulfan-containing reduced-intensity conditioning. Biol Blood Marrow Transplant 2015;21:1646–1652. doi: 10.1016/j.bbmt.2015.06.008.
13. Apperley J, Niederwieser D, Huang X-J, Nagler A, Fuchs E, Szer J, et al. Haplodentical hematopoetic stem cell transplantation: a global overview comparing Africa, Asia, the European Union and the United States. Biol Blood Marrow Transplant 2016;22:23–26. doi: 10.1016/j.bbmt.2015.11.001.
14. Lv M, Chang Y, Huang X. Everyone has a donor: contribution of the Chinese experience to global practice of haploidentical hematopoietic stem cell transplantation. Front Med 2019;13:45–56. doi: 10.1007/s41684-017-0395-7.
15. Aversa F, Pierini A, Ruggieri L, Martelli MF, Velardi A. The evolution of T cell depleted haploidentical transplantation. Front Immunol 2019;10:2769. doi: 10.3389/fimmu.2019.02769.
16. Lv M, Chang Y, Huang X. Update of the “Beijing Protocol” haplo-
17. Lv M, Chang Y, Huang X. Update of the “Beijing Protocol” haploidentical hematopoetic stem cell transplantation. Bone Marrow Transplant 2019;54:703–707. doi: 10.1038/s41409-019-0605-2.
18. Wang Y, Liu Q-F, Xu L-P, Liu K-Y, Zhang X-H, Ma X, et al. Haplodentical vs identical-sibling transplant for AML in remis-
19. Zhang Y, Bai L, Cheng Y, Lu A, Wang Y, Wu J, et al. Haplodentical hematopoetic stem cell transplantation may improve long-term survival for children with high-risk T-cell acute lymphoblastic leukemia in Beijing. Chin Med J 2022. doi:10.1097/CJM9.000000000001999.
20. Sun W, Huang X. Role of allogeneic hematopoetic stem cell transplantation in the treatment of adult acute lymphoblastic leukemia in the era of immunotherapy. Chin Med J 2022. doi:10.1097/CJM9.0000000000010188.
21. Yu S, Huang F, Fan Z, Yuan L, Nie D, Xu Y, et al. Haplodentical versus HLA-matched sibling transplantation for refractory acute leukemia undergoing sequential intensified conditioning followed by DLI: an analysis from two prospectivaive. J Hematol Oncol 2020;13:18. doi: 10.1186/s13045-020-00859-5.
22. Luo Y, Xiao H, Lai X, Shi J, Tan Y, He J, et al. T-cell-replete haploidentical HSCT with low-dose anti-T-lymphocyte globulin compared with matched sibling HSCT and unrelated HLA.
23. Wang Y, Liu Q-F, Xu L-P, Liu K-Y, Zhang X-H, Ma X, et al. Haplodentical versus matched-sibling transplant in adults with standard-risk Ph-negative acute lymphoblastic leukemia in CR1. J Hematol Oncol 2020;13:52. doi: 10.1186/s13045-020-00879-1.
24. Wang Y, Liu Q-F, Xu L-P, Liu K-Y, Zhang X-H, Ma X, et al. Haplodentical versus matched-sibling transplant in adults with Philadelphia-negative high-risk acute lymphoblastic leukemia; a biologically phase III randomized study. Clin Cancer Res 2016;22:3467–3476. doi: 10.1158/1078-0432.CCR-15-3962.
25. Han L-J, Wang Y, Fan Z-P, Huang F, Zhou J, Fu Y-W, et al. Haplodentical transplantation compared with matched sibling and unrelated donor transplantation for adults with standard-risk acute lymphoblastic leukemia in first complete remission. Be J Haematol 2017;179:120–130. doi: 10.1111/bjh.14585.
26. Chen Y, Huang F, Xuan L, Zhang Y, Fan Z, Xu N, et al. Upfront transplantation may have better outcomes than pretransplant cytoreductive therapy for treating patients with MDS-EB-1 or MDS-EB-2. Int J Cancer 2021;149:1109–1120. doi: 10.1002/ijc.33608.
27. Huang H, Zhu Q, Zhang L, Liu S, Wu D. Haplodentical hematopoetic stem cell transplantation compared with HLA-
28. Liu L, Zhang Y, Liu S, Zhou H, Wang Q, Tian H, et al. Outcomes of haploidentical haematopoetic stem cell transplantation for paroxysmal nocturnal haemoglobinuria. Bone Marrow Transplant 2020;55:1635–1637. doi: 10.1038/s41409-019-0751-6.
29. Chen Y, Xu L-P, Zhang X-H, Chen H, Wang F-R, Liu K-Y, et al. Busulfan, fludarabine, and cyclophosphamide (BFC) conditioning and the allowed stable engraftment after haplo-identical allogeneic stem cell transplantation in children with adrenoleukodystrophy and mucopolysaccharidosis. Bone Marrow Transplant 2018;53:770–773. doi: 10.1038/s41409-018-0175-8.
30. Wang J-Z, Huang X-J, Zhang Y-Y, Tang F-F, Han T-T, Mo X-D, et al. Successful hematopoietic stem cell transplantation with haploidentical donors and non-irradiation conditioning in patients
45. Tang, C; Chen, F; Kong, D; Ma, Q; Dai, H; Yin, J; et al. Successful treatment of secondary poor graft function post allogeneic hematopoietic stem cell transplantation with eltrombopag. J Hematol Oncol 2018;11:103. doi: 10.1186/s13045-018-0649-6.

46. Huang X-J. Overcoming graft failure after haploidentical transplantation: Is this a possibility? Best Pract Res Clin Haematol 2021;34:101255. doi: 10.1016/j.bepha.2021.011255.

47. Zhao, Y; Gao, F; Shi, J; Luo, Y; Tan, Y; Lai, X; et al. Incidence, risk factors, and outcomes of primary poor graft function after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2019;25:1898–1907. doi: 10.1016/j.bbmt.2019.05.036.

48. Chang Y-J, Xu L-P, Wang, Y, Zhang X-H, Chen H, Chen Y-H et al. Rituximab for desensitization during HLA-mismatched stem cell transplantation in patients with a positive donor-specific anti-HLA antibody. Bone Marrow Transplant 2020;55:1326–1336. doi: 10.1038/s41409-020-0928-x.

49. Kong, Y; Chang, Y-J; Wang Y-Z, Chen Y-H, Han W, Wang Y, et al. Association of an impaired bone marrow microenvironment with secondary poor graft function after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2013;19:1463–1473. doi: 10.1016/j.bbmt.2013.07.014.

50. Shi M-M, Kong Y, Song Y-Q, Wang Y, Zhang Y-L, X-H. Atorvastatin enhances endothelial cell function in posttransplant poor graft function. Blood 2016;128:2988–2999. doi: 10.1182/blood-2016-03-702803.

51. Kong, Y; Wang, Y; Zhang Y-Y; Shi M-M; Mo X-D; Sun Y-Q. et al. Prophylactic oral NAC reduced poor hematopoietic reconstitution by improving endothelial cells after haploidentical transplantation. Blood Adv 2019;3:1303–1317. doi: 10.1182/bloodadvances.2020029454.

52. Zhu, X; Wang, Y; Jiang, Q; Jiang, H; Lu, J; Wang, Y; et al. All-trans retinoic acid protects mesenchymal stem cells from immune thrombocytopenia by regulating the complement-interleukin-13 loop. Haematologica 2019;104:1661–1673. doi: 10.3324/haematol-2021-004446.

53. Halahleh K, Gale RP, Da’na W, Ma’koseh M, Saadeh S, Alan W, et al. Therapy of posttransplant poor graft function with eltrombopag. Bone Marrow Transplant 2021;56:A–6. doi: 10.1038/s41409-020-0975-5.

54. Sun Y-Q, Wang, Y; Wang F-R, Yan C-H, Cheng Y-F, Chen Y-H, et al. Graft failure in patients with hematological malignancies: a successful salvage with a second transplantation from a different haploidentical donor. Front Med 2021;8:721. doi: 10.3389/fmed.2021.604085.

55. Wang, Y; Liu D-H, Liu K-Y, Xu L-P, Zhang X-H, Han W, et al. Long-term follow-up of haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of leukemia: nine years of experience at a single center. Cancer 2013;119:978–985. doi: 10.1002/cncr.27761.

56. Li X, Chen T, Gao Q, Zhang W, Xiaoy Z, Wu, et al. A panel of 4 biomarkers for the early diagnosis and therapeutic efficacy of aGVHD. JCI Insight 2019;4:130413. doi: 10.1172/jci.insight.130413.

57. Chen T, Li XP, Zhang C, Kong PY, Gao QG, Tang L, et al. The clinical observation of serum specific biomarkers in patients with chronic graft-versus-host disease. Zhonghua Xue Ye Xue Za Zhi 2019;40:948–952. doi: 10.3760/cma.j.issn.0253-2727.2019.11.012.

58. Lv M, Zhao X-S, Hu Y, Chang Y-J, Zhao X-Y, Kong Y, et al. Monocytic and promyelocytic myeloid-derived suppressor cells may contribute to G-CSF-induced immune tolerance in haploidentical allogeneic hematopoietic stem cell transplantation. Am J Hematol 2015;90:E9–16. doi: 10.1002/j.1088-8170.23865.

59. Luo X-H, Chang Y-J, Xu L-P, Liu D-H, Liu K-Y, Huang X-J. The impact of graft composition on clinical outcomes in unmanipulated HLA-mismatched/haploidentical hematopoietic SCT. Bone Marrow Transplant 2009;43:29–36. doi: 10.1038/bmt.2008.267.

60. Zhao X-Y, Chang Y-J, Xu L-P, Liu D-H, Liu K-Y, Huang X-J, et al. Association of natural killer cells in allografts with transplant outcomes in patients receiving G-CSF-mobilized PBSC grafts and G-CSF-primed BM grafts from HLA-haploidentical donors. Bone Marrow Transplant 2009;44:721–728. doi: 10.1038/bmt.2009.73.

61. Wang, Y; Wu D-P, Liu Q-F, Xu L-P, Liu K-Y, Zhang X-H, et al. Low-dose post-transplant cyclophosphamide and anti-thymocyte...
66. Zhu W, Feng YM, Chen T, Yao H, Quan Y, Rao J, Yan CH, Xu LP, Wang FR, Chen H, Han W, Wang Y, Wang Y, Chang Y-J, Chen L, Xu L-P, Bian Z-L, Zhang X-H. Prophylactic donor lymphocyte infusion (DLI) followed by minimal residual disease and graft-versus-host disease-guided multiple DLIs could improve outcomes after allogeneic hematopoietic stem cell transplantation in patients with refractory/refractory acute leukemia. Biol Blood Marrow Transplant 2017;23:1311–1319. doi: 10.1016/j.bbmt.2017.04.028.

67. Gao L, Zhang C, Gao L, Liu Y, Su Y, Wang S, et al. Favorable outcome of haploidentical hematopoietic stem cell transplantation in Philadelphia chromosomes-positive acute lymphoblastic leukemia: a multicenter study in Southwest China. J Hematol Oncol 2015;8:90. doi: 10.1186/s13045-015-0186-5.

68. Battipaglia G, Ruggeri A, Massoudi R, El Cheikh J, Jestin M, Antar J, et al. Effect of decitabine as part of a modified Bu-Cy conditioning regimen improves survival in AML patients with active disease undergoing allogeneic hematopoietic stem cell transplantation for Fms-like tyrosine kinase 3-mutated acute myeloid leukemia. Cancer 2017;12:2867–2874. doi: 10.1002/cncr.31680.

69. Why? Biomark Res 2020;8:66. doi: 10.1186/s40364-020-00247-8.

70. Santomasso BD, Nasrallah K, Fingeroth JD, Cloos K, van Esser H, et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guideline. J Clin Oncol 2021;39:3978–3992. doi: 10.1200/JCO.20.21992.

71. Luo Z, Wu H, Shi J, Luo Y, Tan Y, Zhang M, Lai X, et al. Evaluation of ruxolitinib for steroid-refractory severe acute graft vs host disease after allogeneic hematopoietic stem cell transplantation: results of a multicenter trial. J Hematol Oncol 2020;13:1056. doi: 10.1002/jho.28598.

72. Wu H, Shi J, Luo Y, Tan Y, Zhang M, Lai X, et al. Evaluation of ruxolitinib for steroid-refractory chronic graft-versus-host disease after HLA-mismatched hematopoietic stem cell transplantation. JAMA Netw Open 2021;4:e204350. doi: 10.1001/jamanetworkopen.2020.34750.

73. Lin R, Wang Y, Huang F, Fan Z, Zhang S, Yang T, et al. Two dose levels of rabbit antithymocyte globulin as graft-versus-host disease prophylaxis for haploidentical stem cell transplantation: a multicenter randomized study. J Clin Med 2019;8:1356. doi: 10.3390/jcm.19121356.

74. Li H, Li X, Chen Y, Li D, Chen X, Zhu Z, et al. Sequential treatment of haploidentical stem cell transplantation: a multicenter randomized controlled study. Blood 2021;12:4583–4592. doi: 10.3389/fimmu.2021.733326.

75. L.G., Q.W., X.C., Y.L., C.Z., J.G., et al. Effects of priming with recombinant human granulocyte colony-stimulating factor-primed unmanipulated haploidentical blood and marrow transplantation. Front Immunol 2019;10:2516. doi: 10.3389/fimmu.2019.02516.

76. Wang Y, Chen H, Chen J, Han M, Hu J, Jiong Hu null, et al. The consensus on the monitoring, treatment, and prevention of leukemia relapse after allogeneic hematopoietic stem cell transplantation in China. Cancer Lett 2018;438:63–75. doi: 10.1016/j.canlet.2018.08.030.

77. Yan C-H, Liu Q-F, Wu D-P, Zhang X, Xu L-P, Zhang X-H, et al. Prophylactic donor lymphocyte infusion (DLI) followed by minimal residual disease and graft-versus-host disease-guided multiple DLIs could improve outcomes after allogeneic hematopoietic stem cell transplantation in patients with refractory/refractory acute leukemia. Biol Blood Marrow Transplant 2017;23:1311–1319. doi: 10.1016/j.bbmt.2017.04.028.
93. Schlenk RF, Weber D, Fiedler W, Salih HR, Wulf G, Salwender H, et al. Midostaurin added to chemotherapy and continued single-agent maintenance therapy in acute myeloid leukemia with FLT3-ITD. Blood 2019;133:840–851. doi: 10.1182/blood-2018-08-869453.

94. Tong J, Zhang L, Liu H, Xu X, Zheng C, Yao W, et al. Umbilical cord blood transplantation can overcome the poor prognosis of KMT2A-MLLT3 acute myeloid leukemia and can lead to good GVHD-free/relapse-free survival. Ann Hematol 2021;100:1303–1309. doi: 10.1007/s00277-021-04413-2.

95. Zhu X, Tang B, Sun Z. Umbilical cord blood transplantation: Still growing and improving stem cells. Transl Med 2021;10:S62–S74. doi: 10.1002/tsm.20-0495.

96. Cai B, Guo M, Ai H. Microtransplantation: clinical applications and mechanisms. Curr Opin Hematol 2018;25:417–424. doi: 10.1097/MOH.0000000000000470.

97. Guo M, Chao NJ, Li J-Y, Rizzieri DA, Sun Q-Y, Mohrbacher A, et al. HLA-mismatched microtransplant in older patients newly diagnosed with acute myeloid leukemia; results from the microtransplantation interest group. JAMA Oncol 2018;4:54–62. doi: 10.1001/jamaoncol.2017.2636.

How to cite this article: Wang XQ, Huang RH, Zhang XH, Zhang X. Current status and prospects of hematopoietic stem cell transplantation in China. Chin Med J 2022;135:1394–1403. doi: 10.1097/CM9.0000000000002235