Characterization of the Oleaginous Potential of *Jatropha curcas* in Burkina Faso: Study of Accessions Resistance to Fungal Pathogens, Seed Traits and Molecular Diversity

Sama Hemayoro¹, *, Sombié Pierre Alexandre Eric Djifaby², Adéoti Kifouli³, Bonzi Schemaeza⁴, Hilou Adama¹

¹Laboratory of Biochemistry and Applied Chemistry (LABIOCA), University Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
²Crop Production Department, Institute of Environment and Agricultural Research, Ouagadougou, National Center of Scientific Research and Technology, Burkina Faso
³Microbiology and Food Technology Laboratory, University of Abomey Calavi, Benin
⁴Rural Development Institute (IDR), University Nazi Boni (UNB), Bobo-Dioulasso, Burkina Faso

Email address: hemayorosama@yahoo.com (S. Hemayoro)
*Corresponding author

To cite this article:
Sama Hemayoro, Sombié Pierre Alexandre Eric Djifaby, Adéoti Kifouli, Bonzi Schemaeza, Hilou Adama. Characterization of the Oleaginous Potential of *Jatropha curcas* in Burkina Faso: Study of Accessions Resistance to Fungal Pathogens, Seed Traits and Molecular Diversity. *International Journal of Natural Resource Ecology and Management*. Vol. 5, No. 3, 2020, pp. 129-138. doi: 10.11648/j.ijnrem.20200503.17

Received: September 4, 2020; Accepted: September 22, 2020; Published: October 12, 2020

Abstract: The development of the *Jatropha* sector is limited by the lack of adequate plant genetic resources and data on local genotypes. However, knowledge of the characteristics of local accessions can help to identify suitable genotypes and/or identify varietal improvement paths for sustainable biofuel production. In order to characterize the local genotypes of *Jatropha curcas* in Burkina Faso, seeds of a collection from 40 plantations of the different climatic zones of the country were used to assess the accessions resistance to fungal pathogens, seeds oil and germination and molecular diversity. The results revealed a high variability in accessions resistance to fungal pathogens, seeds oil content and germination depending on the accessions. These variations of seeds oil content, seeds germination capacity and accessions resistance to fungal pathogens could be explained by genetic factors. This hypothesis is confirmed by genetic parameters which showed a strong heritability of the studied characters. Indeed, outside the diameter of the necrosis, the study exhibited high phenotypic and genotypic coefficients of variation and high heritability in broad sense. The study also revealed positive correlations between resistance parameters and seed oil content on the one hand and between these parameters and germination capacity on the other hand. There are good opportunities to improve accessions resistance to pathogens, seeds oil content and germination capacity. However, the evaluation of molecular diversity based on 20 microsatellites markers showed low genetic diversity. The high phenotypic variability observed in seed traits and resistance of accessions contrasts with a low level of genetic diversity of accessions. This study constitutes an important contribution to the characterization of local genotypes in order to identify the best genotypes for improvement of seeds traits and accessions resistance to fungi in a breeding program.

Keywords: Jatropha, Oil Content, Genetic Diversity, Resistance, Pathogens

1. Introduction

In tropical and subtropical countries, *Jatropha curcas* is used as a biofuel crop. Among the oil-bearing tree species [1, 2], *Jatropha curcas* is sought because of its drought hardiness, rapid growth, easy propagation, low cost of seeds, high oil content, small gestation period, wide adaptation, good production on rich and degraded soils and the optimum plant size that makes the seeds collection more convenient [1, 3]. Worldwide, introduction of *J. curcas* for various purposes has had limited success due to pests and diseases, unreliable seed and oil yields and low economic returns [4, 5]. The propagation of Jatropha through quality plant material is today
a major challenge. It is propagated normally through seeds or vegetative cuttings. However, plants propagated by cuttings show a lower longevity and possess a lower drought and disease resistance than plants propagated by seeds [6]. Many problems (poor seed viability, low germination, scanty and delayed rooting of seedlings) are associated with *Jatropha curcas* propagation through seeds [6, 7]. Indeed, *Jatropha curcas* seeds are usually unreliable in terms of germination rates which varies from 10-95 per cent [7]. The seed yields, accessions resistance to pathogens and seed oil content are variable and generally weak, reducing its economic potential and making its cultivation a risk business [1].

Therefore, genetic improvement and development of superior genotypes with high quality of seeds germinations, seeds high oil content, resistance to pests and diseases are essential for a sustainable biodiesel production [8]. The potential areas of genetic improvement of *J. curcas* are the increased in seed oil content, seeds germination capacity and genotypes resistance to pathogens [2]. Genetic improvements of *J. curcas* can be based on morphological traits expressed in the existing local population [9]. Indeed, regarding the large distribution of the specie, it is expected large variability of seeds traits and accessions resistance to pathogens [10]. Burkina Faso has a large climate gradient from North to South. It covers dry and hot climates in the Sahelian zone to humid climates in the south Sudanian. This climatic gradient is a suitable option for the assessment of variations in *Jatropha* germplasm. Some local genotypes may have the best adaptation to climatic and soil conditions and the key for the success of any genetic improvement program depends in the availability of genetic variability for the desired traits [8]. The improvement work must begin with the evaluation of the local genotypes. *J. curcas*, which is also highly cross-pollinated species, is expected to contain wide genetic variability with a high potential for the breeding of genotypes with superior traits [5]. However, very few studies have been published on the variation of seeds germination, oil content, resistance of local accessions to pathogenic fungi and on the determinism of this variation. Most of these studies have focused on the morphological traits of plants, [11], fruits [12] and the morpho-metric of seeds traits [10, 11]. However, knowledge of the relationship between seeds oil content variation, germination and resistance of accessions to pests and diseases can optimize breeding and improvement programs [13]. In this research study, we investigated the seeds oil content and germination capacity of local accessions of *J. curcas* from Burkina Faso and their resistance against three fungal species. In order to establish the probable determinism of this variability, the molecular variability of local accessions was study.

2. Material and Methods

2.1. Plant Material

The plant material is constituted by seeds of 40 genotypes of *J. curcas* collected from different sites (plantations and hedges) spread over the 3 climatic zones of Burkina Faso: Southern Sudan zone, the Northern Sudan zone and the Sahelian zone (sub-Sahelian and Sahelian). These seeds were collected from *J. curcas* plants at least 5 years old and were used to investigate seeds oil content and germination capacity, to sow Jatropha seeds in a greenhouse in order to study the resistance of accessions to fungal pathogens and to assess their molecular diversity. The characteristics of the different collecting sites are presented in table 1.

Table 1. Characteristics of the collecting plantations and hedges.

Climatic zone	Age of plantations	Number of plantations			
	5 ≤ 9	10 ≤ years	5 ≤ 9	10 ≤ years	Total
Northern soudan	2	1	10	0	13
Sahelian	0	0	2	0	2
Sub sahelian	3	0	2	0	5
South soudan	1	0	14	5	20

2.2. Fungal Material

The fungal material is composed of 3 fungal pathogens of *J. curcas*: *Curvularia Lunata*, *Fusarium oxysporum* and *Lasiodiplodia theobromae*. These fungi come from the plant clinic laboratory of Nazi BONI University and have been isolated and characterized by [14].

2.3. Seeds Traits Variation Assessment

2.3.1. Seeds Oil Content

Seeds oil content was determined by Soxhlet method described by Sama et al. [15]. Six (6) hours extraction with petroleum ether as extraction solvent were performed. The extracted oil is recovered after solvent evaporation at 40°C under reduced pressure using a rotavapor. The extracted seed oil was weighed. The amount of oil in seeds was calculated and expressed as percentage (%) by following formula:

\[
\text{Seeds oil content (\%) = \frac{\text{Oil weight} \times 100}{\text{Sample weight}}}
\]

2.3.2. Seeds Germination Capacity

Seeds germination capacity of local accessions was assessed in the greenhouse. Three lots of ten (10) seeds of each accession randomly selected were sown in plastic pots of about 1 litter capacity at the rate of one seed per pot. Each pot contained a mixture of sand, compost and organic manure in 3/1/1 (v/v/v) proportion. For each treatment, the seeds were surface sterilized with 2% of sodium hypochlorite solution for 1/2 minute and then washed 2 to 3 times with distilled water and seeds were then sown. The water supply was made every day in each pot during the experiment. The
number of germinated seeds per accession was recorded daily for 3 weeks. The germination capacity of the seeds was calculated according to the following formula:

\[
\text{Germination Capacity (\%)} = \frac{\text{Number of germinated seeds} \times 100}{\text{Total number of sown seeds}}
\]

2.4. Accessions Resistance Investigation

2.4.1. Seedling and Experimental Design

The experiments were performed in the greenhouse of the plant clinic laboratory of the Nazi BONI University. The experiment was carried out in a randomized complete block design divided into 3 treatments with three replicates. The three treatments are: a control treatment without any treatment, a positive control treatment treated with sterilized water and a test treatment in which the plants have been inoculated by the pathogenic fungus. The same design was adopted for each genotype and for the tree fungal species. Seeds of the tested genotypes were sown in plastic pots according to the method described by Sama et al. [14]. Each pot contains a mixture of sand, compost and organic manure in the proportions 3/1/1. This mixture was previously sterilized at 120°C for four (04) hours. Plants were maintained in the greenhouse and watered every day.

2.4.2. Fungal Pathogens Cultivation and Inoculum Production

Pathogenic fungi were cultivated according to the method described by Setti et al. [16]. Isolates of each pathogen were grown on Potato Dextrose Agar (PDA) medium for 10 days at 22°C. Conidia of 10 days were collected by adding 10 ml sterilized water and the concentration of suspension after filtration was adjusted to 2. 10^7 conidia.ml^-1.

2.4.3. Plants Inoculation

The plants were inoculated on the 30th day according to the method described by Hernández-Cubero et al. [17] after rubbing the carborandum on the leaves to cause micro-injuries on the leaves. Inoculated plants were observed daily and the resistance parameters were measured. The experiment was followed for 14 days. The inoculated leaves were observed daily until the symptoms of diseases appeared.

2.4.4. Measurement of Resistance Parameters

The resistance parameters of the tested genotypes estimated were incubation period (I.P), necrosis diameters and (N. D) and frequency of successful inoculations (F. S. I.). The incubation period was expressed in days and can be defined as the period between the day of inoculation and the day of appearance of a visible reaction on the leaf of the inoculated plant. The diameter of necrosis was expressed in millimeter and was measured using a caliper. The number of successful inoculations is the ratio of the number of plants showing disease symptoms per test and per genotype.

2.5. Genetic Diversity Assessment

2.5.1. DNA Extraction

The young leaves of the seedlings from the nursery previously set up in the greenhouse were used for the study of molecular diversity. DNA was extracted from fresh young leaves of *Jatropha curcas* using MATAB (Mixed Alkyl Trimethyl Ammonium Bromide) as extraction buffer following the method described by Ouattara et al. [5] with minor modifications. 100 mg of fresh leaves were ground and homogenized in 1700 µL of MATAB buffer (100 mM Tris-HCl, 1.4 M NaCl, 25 mM EDTA, 2% MATAB, 1% PEG 6000, 0.5% sodium sulphite; pH8) and incubated at 65°C. After 1 h, 500 µL of chloroform-isooamyl (24:1) were added in each micro tube. The micro tubes were mixed for 5 minutes by inverting and the mixture was centrifuged at 13,000 rpm for 10 minutes. The chloroform step was repeated and the aqueous phase was transferred carefully into a clean microtubes. The DNA was precipitated with 450 µL of cold isopropanol. The micro tubes were mixed by inverting the tubes until a ball is formed. The mixture is then centrifuged at 13000 rpm for 5 minutes and the supernatant was removed. The pellets DNA were washed with 450 µL of cold ethanol 70% then centrifuged at 12000 rpm at 4°C for 5 minutes and dried until the ethanol has evaporated completely. 5 µL of RNase is added and the mixture incubated over a 45 minute to 1-hour period and the extracted DNA is suspended in 75 µL TE 0.1X buffer or sterile distilled water and stored at -20°C until used. The concentration and purity of the DNA samples were evaluated using a Nanodrop and by running the samples on a 0.8% agarose gel based on the intensities of bands by comparison with the Lambda DNA marker as standard and diluted in 1X TE to a concentration of 5 ng/µL.

2.5.2. Microsatellite Primers

Primer pairs specific to 20 microsatellites containing sequences of *J. curcas* were used. They were selected considering their high level of polymorphism reported by different authors (Table 2). The forward of each of the 20 primer pairs used is presented in table 2.

Table 2. Sequences of used SSR primers.

Number	Locus	Repeat motif	Primer sequence	Tm (°C)	Number of reported alleles	References
1	JCT17	(GA)_n…(GA)_1 (GT)_1	F: TCTCTCAATGTGTCGCTGTC R: TAAACAAGTCTCCTCCCTCTCTCT	60.0	3	[5]
2	JCT15	(A)22…(CT)10	F: AATTTCTTCCTCCGCGATCTCT R: CTTCTCTTCGCCGATCTCTCT	60.0	3	[18]
3	JCT27	(CT)_17	F: GCCATTAGAATGAGCCGGA R: TGGGTGAAGGTTGATTTGGA	60.0	3	
4	Jems21	(CA)_4	F: TAACCCTTTCTGACA	43.0	3	[13]
Number	Locus	Repeat motif	Primer sequence	Tm (°C)	Number of reported alleles	References
--------	--------	--------------	----------------	---------	---------------------------	------------
5	JMDB04	(AT)	R: ATAGGAAAATAAGAGGATTCCAAA F: CTCTTTTCCCTTGCGCTTTTGG	52.0	2	
6	JCT16	(GT)	F: AAGGAAAATAAGAGGATTCCAAA R: CTCTTTTCCCTTGCGCTTTTGG	60.0	2	
7	JCT27	(CT)	F: GACGAAAATAAGAGGATTCCAAA R: CTCTTTTCCCTTGCGCTTTTGG	60.0	2	
8	Jcds24	(CA)	F: GAGGAAAATAAGAGGATTCCAAA R: CTCTTTTCCCTTGCGCTTTTGG	51.0	11	
9	Jcps20	(CA)	R: TAGGAAAATAAGAGGATTCCAAA F: CTCTTTTCCCTTGCGCTTTTGG	55.0	9	[7]
10	jcds41	(CA)	R: TAGGAAAATAAGAGGATTCCAAA F: CTCTTTTCCCTTGCGCTTTTGG	55.0	5	
11	jcp20	(GA)	R: TAGGAAAATAAGAGGATTCCAAA F: CTCTTTTCCCTTGCGCTTTTGG	60.0	4	
12	JeSSR3	(GA)	R: TAGGAAAATAAGAGGATTCCAAA F: CTCTTTTCCCTTGCGCTTTTGG	51.0	6	
13	JeSSR4	(AG)	R: TAGGAAAATAAGAGGATTCCAAA F: CTCTTTTCCCTTGCGCTTTTGG	55.0	6	[11]
14	JeSSR8	(AC)	R: TAGGAAAATAAGAGGATTCCAAA F: CTCTTTTCCCTTGCGCTTTTGG	60.0	4	
15	JeSSR26	(CA)	R: TAGGAAAATAAGAGGATTCCAAA F: CTCTTTTCCCTTGCGCTTTTGG	55.0	4	[18]
16	phi299852	AGCC	R: TAGGAAAATAAGAGGATTCCAAA F: CTCTTTTCCCTTGCGCTTTTGG	52	8	
17	bnlg1614	(AG)	R: TAGGAAAATAAGAGGATTCCAAA F: CTCTTTTCCCTTGCGCTTTTGG	58	6	
18	phi053	GCT	R: TAGGAAAATAAGAGGATTCCAAA F: CTCTTTTCCCTTGCGCTTTTGG	54	6	[19]
19	phi032	CCG	R: TAGGAAAATAAGAGGATTCCAAA F: CTCTTTTCCCTTGCGCTTTTGG	54	6	
20	phi109275	AGCT	R: TAGGAAAATAAGAGGATTCCAAA F: CTCTTTTCCCTTGCGCTTTTGG	54	5	

2.5.3. PCR Amplification

The reaction mixture was 25µL and included 3 µL of DNA (10 ng / µL), 2.5 µL of 10X buffer, 2 µL of dNTP (2.5 mM), 2 µL of MgCl₂ (25 mM), 0.05 µL of each primer, 0.2 µL of 0.5 U Taq polymerase and 15.2 µL of ultra-pure water. The amplification was performed with a thermocycler. The PCR program used is as follows: 37 cycles including one (1) DNA pre-denaturation cycle at 95°C for 1 min followed by a set of 35 cycles with denaturation for 30s at 95°C, hybridization at 55°C for 30s and extension for 30 s at 72°C. A final phase containing only a 5 min extension to 72°C.

2.5.4. PCR Products Revelation

The PCR products were migrated on an agarose gel (1% gel) for 30 min at 135 V and visualized under UV light. 1 kb DNA Ladder has been used as a molecular marker to determine the molecular weights and sizes of the different bands.

2.6. Statistical Analyses

Analysis of variance (ANOVA) was carried out using version 2016 of XL-STAT on the seed traits and the resistance parameters in order to access the genotype effect for all traits. The graphs were performed using version 6.01 of GraphPad Prism. Phenotypic and genotypic coefficients of variance were estimated according to the method described by Zongo et al. [20] to quantify the genetic variance among the genotypes, the heritability in broad sense and genetic advance as a percent of mean.

3. Results and Discussion

3.1. Variation in Seeds Oil Content and Germination Capacity

The seeds oil content and germination capacity of the different accessions of *J. curcas* are shown in table 3. The results showed that seeds oil content and germination capacity varied significantly among the accessions. Seed oil content expressed as a dry weight percentage ranged from 33.83 ± 1.65 to 57.21 ± 2.44% for the J1 and J7 accessions, respectively. The seeds germination capacity of the different accessions varied significantly from 5 to 95% with an average of 58.54%. The lowest germination capacity was recorded at accession J37 while the highest value was recorded at accession J39. In addition, the variation of seeds oil content and germination of genotypes is not depending to their geographical distribution. Indeed, the seeds of genotypes of the same climatic zone have often shown different characteristics.

3.2. Response to Fungal Pathogens Inoculation in Leaves

Seedling of local 40 genotypes of *J. curcas* reaction...
against fungal pathogens are shown in table 3. Data about the seedling reaction showed a range of responses depending both accessions and pathogens. Among the 40 accessions tested, the inoculated leaves of 20 accessions exhibited yellowing and necrosis on the inoculated zones while those of others accessions did not present any symptoms of disease. The resistance parameters were also measured. All the resistance parameters measured presented significant variations depending to the genotype. The incubation period varied of 4 to 11.67 days respectively for J21 and J2 accessions. The necrosis diameters of accessions which showed symptoms of diseases ranged from 4.33 to 12.83 mm for J20 and J17 respectively. The percentage of successful inoculation percentage (≥ 88%). This group could therefore be considered as a group of resistant accessions. The second group composed of accessions which leaves have shown symptoms of disease with one or two of the pathogens. In addition, the leaves of these accessions showed lows diameters of necrosis and the numbers of inoculation in a controlled environment. These accessions also have average incubation periods (8.00 to 11.67 days). The third group showed symptoms of disease with all the three pathogens used. In addition, they have relatively short incubation times (4.67 to 8.00 days) with high necrosis diameters (10.97 to 12.82 mm) and successful inoculation percentage (≥ 88%). This group could therefore represent the group of susceptible accessions.

Accession	Seeds oil content (%)	Germination capacity (%)	Incubation period (days)	Necrosis diameter (mm)	Number of successful inoculation (%)
J1	46.317	90.000	14.000	0.000	0.000
J2	33.833	65.000	11.667	6.443	44.333
J3	42.643	90.000	14.000	0.000	0.000
J4	44.713	20.000	8.000	0.000	0.000
J5	31.300	70.000	10.667	0.000	0.000
J6	38.417	75.000	14.000	0.000	0.000
J7	57.210	50.000	14.000	0.000	0.000
J8	48.833	60.000	11.333	6.333	44.333
J9	36.200	55.000	14.000	0.000	0.000
J10	48.493	85.000	14.000	0.000	0.000
J11	36.567	55.000	14.000	0.000	0.000
J12	46.317	51.667	14.000	0.000	0.000
J13	49.667	75.000	14.000	0.000	0.000
J14	40.853	65.000	11.000	5.000	44.333
J15	39.467	73.333	10.667	5.000	44.333
J16	34.103	23.333	11.110	5.000	44.333
J17	41.170	43.333	5.000	12.827	88.900
J18	50.827	73.333	14.000	0.000	0.000
J19	41.377	16.667	14.000	0.000	0.000
J20	50.133	85.000	14.000	0.000	0.000
J21	36.917	70.000	11.333	4.333	44.333
J22	39.023	66.667	4.000	12.140	88.900
J23	49.413	75.000	14.000	0.000	0.000
J24	39.340	15.000	8.000	0.000	0.000
J25	31.363	6.667	9.000	7.000	44.333
J26	37.667	10.000	4.667	11.000	88.900
J27	50.433	85.000	14.000	0.000	0.000
J28	46.667	61.667	14.000	0.000	0.000
J29	50.633	80.000	14.000	0.000	0.000
J30	47.810	55.000	14.000	0.000	0.000
J31	41.933	70.000	11.333	6.667	33.333
J32	50.707	30.000	14.000	0.000	88.900
J33	45.643	66.667	4.667	11.890	44.333
J34	39.187	12.000	10.333	6.333	22.890
J35	47.407	30.000	14.000	0.000	0.000
J36	50.177	30.000	14.000	0.000	0.000
J37	42.393	50.000	11.000	6.333	44.333
J38	47.967	33.333	4.000	10.967	88.900
J39	38.667	95.000	11.333	5.000	33.333
J40	38.933	75.000	11.000	5.000	44.333
Pr > F	0.000	0.000	< 0.0001	< 0.0001	< 0.0001

Significatcy: Yes Yes Yes Yes Yes

Values that have different subscript are significantly different according to the Newman-Keuls test at the 5% level.
3.3. Genetic Parameters of Seeds Traits and Resistance Parameters

The genetic parameters have been calculated and results are reported in Table 3. The highest values of phenotypic variation coefficient (CVP) (95%) and genotypic variation coefficient (CVG) (98%) were recorded for seed oil content and incubation period respectively. The highest heritability (0.94) and the highest genetic advance (12.02) were observed for seeds oil content. The lowest genetic gain was found for seed germination capacity (0.01).

Source	Coefficient of variation	Heritability in broad sense	Genetic advance	Genetic gain (%)
Seeds oil content	0.95	0.94	12.02	0.01
Seeds germination	0.81	0.92	11.31	0.01
Incubation period	0.95	0.93	6.17	0.02
Necrosis diameter	0.03	0.90	10.84	0.03
F. S. I	0.83	0.76	1.22	0.01

3.4. Correlation Between Seeds Traits and Accessions Resistance to Fungi

The Pearson correlation matrix of seed traits (seed oil content and germination capacity) and the different resistance parameters of the accessions are presented in the table 5. The results showed that the incubation period was significantly and negatively correlated with the necrosis diameter (-0.96) and the frequency of successful inoculation (-0.87). Positive and significant correlation (0.88) was recorded between frequency of successful inoculation and the necrosis diameter parameters.

Variables	Seeds oil content	Germination capacity	Incubation period	N. D.	F. S. I.
Seeds oil content	1				
Germination capacity	0.20	1			
Incubation period	0.35	0.35	-0.96	1	
N. D.	-0.45	-0.31			
F. S. I.	-0.34	-0.35	-0.87	0.88	1

N. D: Necrosis Diameters; F. S. I.: Number of successful inoculations.

Figure 1. Hierarchical Analysis Classification on seeds traits and accessions resistance to fungal pathogens.
3.5. Diversity of Local Genotypes Based on Seeds Traits and Resistance to Fungal Pathogens

Data of accessions resistance to pathogenic fungi, seeds oil content and germination capacity were used to perform the hierarchical ascendant classification (HAC). The results (Figure 1) showed a breakdown of accessions into three groups whose characteristics are presented in table 6. Their characteristics can be summarized as follows: the group 1 is constituted by accessions which have very interesting seed traits (high oil content and high germination capacity) and which did not present symptomatic of disease. This group present a high potential for selection and breeding programs. Group 2 presented seed and resistance traits intermediate between group 1 and group 3. Group 2 reassembled the accessions with intermediate features between the two previous groups.

3.6. Molecular Diversity of the Local Accessions

The molecular diversity of the 40 local accessions was assessed using 20 primers microsatellites. Among the 20 primers tested (table 2), only 3 microsatellite primers (JcSSR4, JCT16 and Phi032) showed exploitable polymorphism for the diversity study. A diversity analysis was performed on our study genotypes by using these 3 primers. The figure 2 presented the profile obtained using the primer JcSSR4.

![Molecular analysis of J. curcas germplasm through microsatellite primer JcSSR4.](image)

The number of the alleles produced by each polymorphic primer was 12.67. The genetic diversity parameters of the three polymorphic primers are shown in table 5. The results show that the diversity ranges from 0.20 for primer Phi032 to 0.64 for primers JcSSR4 and JCT-16 respectively with an average of 0.49. Observed heterozygosity and expected heterozygosity ranged from 0.13 for Phi032 to 0.45 for JcSSR4 and JCT-16.

Table 7. Genetic diversity parameters of the three polymorphic primers.

	JcSSR4	JCT-16	Phi032	Mean
N	12.67 ± 4.33	12.67 ± 4.33	12.67 ± 4.33	12.67 ± 2.17
Na	2.00 ± 0.00	2.00 ± 0.00	1.33 ± 0.33	1.78 ± 1.78
I	1.84 ± 0.15	1.84 ± 0.15	1.22 ± 0.22	1.63 ± 0.14
Ho	0.64 ± 0.05	0.64 ± 0.05	0.20 ± 0.20	0.490 ± 0.10
He	0.45 ± 0.05	0.45 ± 0.05	0.13 ± 0.13	0.34 ± 0.07
	0.47 ± 0.06	0.47 ± 0.06	0.14 ± 0.13	0.36 ± 0.7

N: sample size; Na: number of different alleles; I: Shannon's information index; Ho: observed heterozygosity; He: expected heterozygosity.

Genetic variability analysis between the climatic zone collections showed a low level of heterozygosity variability ranging from 0.24 for the southern Sudanian zone to 0.50 for the sub-Saharan zone. The genetic variability index varied from 0.35 to 0.66. The lowest value was observed in the southern Sudanian zone. The dissimilarity matrix based on the Nei distances between the different populations showed that the weakest differentiation is observed between the North Sudan zone and the Sub Sahelian zone while the largest difference is observed between those of the South and North zones. To evaluate the intra and inter population variations, a molecular variance analysis (AMOVA) was performed. The results showed a very low variability (1%) between climate zones. Much of the variability (99%) can therefore be defined only between accessions.

4. Discussion

Accessions resistance to fungal pathogens, seeds oil content and germination capacity are important breeding characters that can increase economic potential of *Jatropha curcas*. All the studied parameters exhibited high variations among the accessions in the germplasm used for this study. This high variability of seed traits constitutes an important input for the species improvement programs. These results are in agreement with the findings of [2] and [21] whom observed high variations in the oil content in different *J. curcas* populations in India. Large variation of seeds weight and oil content for *Jatropha* accessions from 21 locations in the southwest Guangxi of China was reported [22]. High variations in *J. curcas* fruits and seeds traits and plants morphological traits depending of accessions respectively in Senegal [5] and in Burkina Faso [10-12] were also observed. Such variations can be explained by genetic variability among plants, biotic interactions (human intervention, pests
and diseases) and abiotic factors (soil properties, temperature, rainfall, nutrient content in soil). The climate factors or ecological conditions (temperature, precipitation, sunshine etc.) could have a significant effect on growth, distribution, productivity, seed yield and oil content of \textit{J. curcas} \cite{22, 23}. If environmental conditions can be evoked to explain the variability of seed oil content, they cannot be
evoked in this study because the germination and the plants
used for the evaluation of the resistance of accessions to
fungal pathogens were carried out under the same conditions
(in greenhouse). Only genetic factors could explain the
variation in accessions resistance and germinative capacity of
the seeds in this study. Indeed, genetic factors have been
confirmed to affect seed traits (oil content and morphological
traits) and accessions characteristics (plants growth and seeds
yield) of \textit{J. curcas} in a multitude of studies \cite{5, 10, 21}. These
results are also confirmed by Abdul \cite{24} who reported that
conidia only start to germinate 6 to 12 hours after artificial
inoculation. Forty-eight hours after inoculation, 95 to 99% of
conidia have germinated systematically on all plants but
genotypes showed different reactions to infection. Thus,
before symptoms appear, conidia germinate but the
possibility of penetration into stomata and causing infection
varies according to the host genotypes \cite{13, 24}. There is then
a more or less long incubation period depending on the
genotypes. In susceptible genotypes, there is severe swelling
and the first symptoms appear quickly between four and
seven days. In tolerant genotypes, invasion is less and
symptoms development time can be long (between 7 to 12
days).

The hierarchical ascendant classification (HAC)
distinguished 3 types of genotypes basis on recorded data.
Among these genotypes, the accessions of group 1 present
the best potential for selection programs. The accessions of
this group have a good degree of resistance in adult plant and
their seeds present high oil seeds content and germination
capacity. The accessions could be considered in future
breeding programs to improve the natural resistance of \textit{J. curcas}. Accessions of group 2 are tolerant to pathogen and
their seeds have lower oil content and capacity than those in
Group 1. Those of group 3 have low potential for breeding
programs because they include pathogen-sensitive accessions
and present low values for germination capacity and seed oil
content. Our results are in agreement with those of Draz
et al. \cite{13}. Their work on wheat genotypes for leaf rust resistance
has distinguished different levels of resistance including
resistant genotypes, partially resistant and susceptible
genotypes. Outside the diameter of the necrosis, the study
exhibited high phenotypic and genotypic coefficients of
variation for all studied parameters. The variability of
parameters estimated in this study are very close to the
results of genetic parameters of \textit{J. curcas} previously found
\cite{21, 25}, whose reported high genetic parameters variations
in \textit{Jatropha} seeds traits respectively in India and Senegal.

The heritability in the broad sense was high (>70%) for all
the studied parameters. Regarding these results, these traits
can be considered as the best gain characteristics for

\textit{Jatropha} improvement. Similar results have been reported in
many species including \textit{J. curcas} \cite{5, 21}. The study also
showed correlation between some seed traits and resistance
parameters of some accessions. Correlation is one of the
important biometric tools that measures the degree and
magnitude of association between different traits. In tree
improvement programs, a clear understanding of association
between different traits have great importance because it
illustrates the choice of a character that confirms the
appearance or disappearance of another \cite{21}. Similar results
have been reported by Lama \textit{et al.} and Tiendrebeogo \textit{et al.} \cite{9,
21} whose works also reported correlations between \textit{Jatropha}
seeds traits. These results confirm the good potential of this
study in breeding and varietal improvement programs for
seed traits and resistance of accessions to fungal pathogens.

However, the study of the molecular diversity of
accessions showed a low molecular variability of local
accessions. Thus, the high phenotypic variability observed in
seed traits and resistance of accessions contrasts with a low
level of genetic diversity of accessions. Similar results were
also reported \cite{5, 18, 25} in Senegal and Indian \textit{Jatropha}
accessions. These results make the genetic determinism of
the phenotypic variability speculative. Indeed, a low genetic
diversity with a wide distribution in different agro-ecological
zones suggests that \textit{J. curcas} has a large ecological plasticity.

Ecological plasticity is known as a trait that promotes the
adaptation of species to a wide range of environmental
conditions through morphological and physiological
modifications necessary for the survival of the species \cite{5}.
Unfortunately, in this study the influence of ecological
factors on the observed variability can be minimized
considering that the nurseries for molecular analysis were
grown under the same conditions. Therefore, two hypotheses
can explain these results. Either the markers used did not
reveal the molecular diversity of accessions or the observed
variability can be explained by the influence of epigenetic
factors. Indeed, the molecular basis of a strong phenotypic
variation on a background of low genetic diversity would
therefore be due to the effect of epigenetic factors that
regulate gene transcription \cite{18, 19}. Such variation often
results from the action of environmental factors (temperature,
diet, physico-chemical characteristics of the environment,
etc.) on phenotypic expression. Epigenetic mechanisms for
such variations have also been reported in the case of
\textit{Arabidopsis} and \textit{J. curcas}

5. Conclusion

The study exhibited high and significant variation between
the accessions of \textit{J curcas} from Burkina Faso. Such variation
of seed traits and accessions resistance to fungal pathogens
could be explained by genetic factors. This hypothesis is
confirmed by the parameters which showed a strong
heritability of the studied characters. In addition, the study
revealed positive correlations between resistance parameters
and seed oil content on the one hand and between these
parameters and germination capacity on the other hand.
There are good opportunities to improve the Jatropha accessions resistance to pathogens, seeds oil content and germination capacity. However, the high phenotypic variability observed in seed traits and resistance of accessions contrasts with a low level of genetic diversity of accessions. This could be explained by the fact that the markers used in the study could not reveal genetic diversity. This study constitutes a contribution to the identification of the best genotypes for improvement of seeds traits and accessions resistance to fungi in a breeding program.

Conflict of Interest

The authors declare that they have no competing interest.

References

[1] Ayizannon, R. G., Ahoton, L. E., Ezin, V., Quenum, F. A. and Mergeai G. (2017). Improvement of physic nut (Jatropha curcas L.) by intraspecific hybridization between ecotypes of Africa and Americana, Journal of Plant Breeding and Crop Science, 5: 54-62.

[2] Kumar, S. and Sanjay, S. (2008). Variability assessment of seed traits in Jatropha curcas L. for improvement of oil yield, International Journal of Genetics and Molecular Biology, (2013).

[3] Kumar, A. and Sharma, S. (2007). An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review, industrial crops and products, 1-10.

[4] Narayana, A. D. S., RAangaswamy, K. T., Shankarapa, K. S., Maruthi, M. N., Reddy, L. C. N., Rekha, A. R., Murthy and K. V. K. (2007). Distinct begomovirus closely related to cassava mosaic viruses cause Indian Jatropha Mosaic Disease, International Journal of virology 3: 1-11.

[5] Ouattara, B., Ndir, K. N., Gueye, M. C., Diedhiou, I., Barnaud, A., Foncetta, D., Cisse, N., Akpo, E. L. and Diouf, D. (2014). Genetic diversity of Jatropha curcas L. in Senegal compared with exotic accessions based on microsatellite markers, Genet Resour Crop Evol, 6.

[6] [Heller, J. (1996). Physic nut, Jatropha curcas L., International Plant Genetic Resources. Institute (IPGRI), Rome 1996].

[7] Openshaw, K. (2000). A review of Jatropha curcas: an oil plant of unfulfilled promise, Biomass & Bioenergy, 19 1-15.

[8] Divakara, B. N., Upadhyaya, H. D., Wani, S. P. and Gowda, C. L. L. (2009). Biology and genetic improvement of Jatropha curcas L.: A review, Applied Energy.

[9] Lama, A. D., Klemola, T., Saloniemi, I., Niemelä, P. and Vuorisalo, T. (2017). Factors affecting genetic and seed yield variability of Jatropha curcas (L.) across the globe: A review, Energy for Sustainable Development, 42 170-182.

[10] Sama, H., Ouattara, B., Hilou, A., Derra, A.-N., Yelemou, B. and Hien, V. (2018b). Variability of morpho-metric traits and oleaginous biofuel potential of Jatropha curcas L. (Euphorbiaceae) seeds in Burkina Faso, African Journal of Agricultural Research, 13: 2911-2918.

[11] Tiendrebeogo, F. K., Sawadogo, N., Nanema, R. K., Traore, E., Batione-Kando, P., ZONGO, J-D. and Sawadogo, M. (2016a). Evaluation de la diversite genetique du pourghere (Jatropha curcas l.) au Burkina Faso, International Journal of Innovation and Applied Studies, 16: 155-165.

[12] Tiendrebeogo, F. K., Sawadogo, N., NANEMA, R. K., Batione-Kando, P., Ouedraogo, M. H. A., and Sawadogo, M. (2016). Evaluation of morpho-metric characteristics of fruits and oil content of seeds of Jatropha curcas L. in Burkina Faso international Journal of Plant, animal and Environment Sciences, 6: 145-155.

[13] Draz, I. S., Abou-Elseoud, M. S., Alaa-Eldin, O. A.-E., El-Bebany and A. F. (2015). Screening of wheat genotypes for leaf rust resistance along with grain yield, Annals of Agricultural Science, 2015.

[14] Sama, H., Sambi, P. A. E. D., Hilou, A., Bonzi, S. and Somda, I. (2018a). Biochemical Resistance Mechanism Study of Jatropha Curcas (Euphorbiaceae) Against Lasiodiplodia Theobromae, a Leaf Blight and Necrosis Agent, Journal of Agriculture and Crops, 4: 176-185.

[15] Sama, H., Hilou, A., Bonzi, S. and Somda, I. (2019). Major Leaf Diseases and Pathogenicity of Fungal Flora Associated with Jatropha curcas L. Foliar Diseases in Burkina Faso, Asian Plant Research Journal, 1-10.

[16] Setti, B., Benchekih, M. and Henni, J. E. (2015). Survival analysis for estimating risk factors in incubation period of Didymella pinoade on pea (Pisum sativum L.), African Journal of Microbiology Research, 9: 604-610.

[17] Hernández-Cubero, L. C., Ampofo, P., Montes, J. M. and Voegele, R. T. (2017). Identification of pathogenic fungi and preliminary screening for resistance in Jatropha curcas L. germplasm, European Journal of Plant Pathology, 149: 325-336.

[18] Basha, S. D. and Sujatha, M. (2010). Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and SSR markers and development of population-specific SCAR markers, Euphytica 2007 375–386.

[19] Efendi, R., Sunarti, S., Musa, Y., Bdr, M. F., Rahim, M. D. and Azrai, M. (2015). Selection of Homozygosity and Genetic Diversity of Maize Inbred using Simple Sequence Repeats (SSRs) Marker, International Journal of Current Research in Biosciences and Plant Biology, 23: 19-28.

[20] Zongo, A., Nana, A. T., Sawadogo, M., Konate, A. K., Sankara, P., Ntare, B. R. A. and Haile, D. (2017). Variability and Correlations among Groundnut Populations for Early Leaf Spot, Pod Yield, and Agronomic Traits, Agronomy, 7: 1-11.

[21] Kaushik, N., Deswal, R. P. S., Malik, S. A. and Kumar, K. (2015). Genetic variation and heritability estimation in Jatropha curcas L. progenies for seed yield and vegetative traits, Journal of Applied and Natural Science, 7: 567-573.

[22] Wen, Y., Tang, M., Sun, D., Zhu, H., Wei, J., Chen, F. and Tang, L. (2012). Influence of Climatic Factors and Soil Types on Seed Weight and Oil Content of Jatropha Curcas in Guangxi, China, Procedia Environmental Sciences 12: 439-444.

[23] Maes, W., Achten, W., Raes, D., Samson, R. and Muys, B. (2009). Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress, Journal of Arid Environments 73: 877-884.
[24] Abdul, S. D. (2011). Expression of the Wheat Leaf Rust Resistance Gene Lr34 alone and in combination with other Leaf Rust Genes against UK isolates of Puccinia triticina, Emirates Journal of Food and Agriculture 5: 413-423.

[25] Ndir, K. N., Kane, M., Ouattara, B., Bayala, R. A and Diedhiou, I. (2013). Variability in seed traits, oil content and genetic diversity in local and exotic accessions of Jatropha curcas L. in Senegal, African Journal of Biotechnology, 12: 5267-5277.