The Shape of FCI to Come

Janus J. Eriksen

School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom

E-mail: janus.eriksen@bristol.ac.uk

Abstract

We present a perspective on what the future holds for full configuration interaction (FCI) theory, with an emphasis on conceptual rather than technical details. Upon revisiting the early history of FCI, a number of its key contemporary approximations are compared on as equal a footing as possible, using a recent blind challenge on the benzene molecule as a testbed [Eriksen et al., J. Phys. Chem. Lett., 11, 8922 (2020)]. In the process, we review the scope of applications for which FCI continues to prove indispensable, and the required traits in terms of robustness, efficacy, and reliability its modern approximations must satisfy are discussed. We close by conveying a number of general observations on the merits offered by the state-of-the-art alongside some of the challenges still faced to this day. While the field has altogether seen immense progress over the years—the past decade, in particular—it remains clear that our community as a whole has a substantial way to go in enhancing the overall applicability of near-exact electronic structure theory for systems of general composition and increasing size.
THE SHAPE OF FCI TO COME

DMRG
MBE-FCI
CDFCI
ASCI
ICI
FCGR
FCI-FRI
CAD-FCIQMC
SHCI
In 1989, Knowles and Handy first reported on a truly impressive new implementation of full configuration interaction (FCI) theory capable of performing calculations of unlimited size (sic). A year later, Olsen and co-workers succeeded in passing the billion determinant limit, and the combined achievements of these two groups were long regarded by many in the community as heralding a new age of exact electronic structure theory, spawning a number of additional developments in the area over the following years. Since the 1990s, however, much of the optimism surrounding standard FCI theory has faded. While boundaries continue to be pushed today, it has now become abundantly clear that truly exact theory will never successfully evolve into a widely applicable commodity tool, at least not by means of classical computing, and the emergence of its quantum counterpart is not guaranteed to offer a practical panacea either. In its benchmarking capacity, on the other hand, modern FCI theory has inevitably been transformative in helping to manifest theoretical chemistry as a scientific discipline with unquestionable interpretative and predictive powers. In addition, the availability of versatile FCI codes has been a prime driving force in the realization of high-order many-body perturbation (MBPT) and coupled cluster (CC) theories, studies of their possible divergences, and as the principal component of complete active space self-consistent field (CASSCF) and second-order perturbation theories (for instance, CASPT2 and NEVPT2). As more modern cases in point, new codes equipped with powerful FCI engines continue to be developed to this day.

The identification of the massive sparsity of the FCI wave function has over the years served as inspiration to a number of near approximations to exact theory, not least as a key motivation behind so-called selected CI (SCI) theory. In SCI, only parts of the complete linear expansion of Slater determinants are selected to yield a compact wave function constructed from energetically important determinants alone. Malrieu and co-workers were the first to present an effective realization of the theory in the perturbatively selected configuration interaction (CIPSI) scheme all the way back in 1973. In the wake of the original
paper, the CIPSI algorithm was next improved upon and consolidated, before other practitioners in the field started adapting the underlying principles behind SCI theory.

The idea of sampling the FCI wave function by means of a stochastic rather than a deterministic selection protocol prior to its iterative improvement next followed in a series of works by Greer. In a somewhat similar spirit, the FCI quantum Monte Carlo (FCIQMC) method was introduced by Booth, Thom, and Alavi in 2009 for sampling the FCI wave function in a discrete set of basis states that all share in common the proper antisymmetry of fermionic physics, thereby admitting the efficient amelioration of the infamous sign problem through annihilation of the involved walkers. In combination with the initiator method and semistochastic projector techniques, the resulting i-FCIQMC method has since proven itself accurate and robust across a wide range of applications, encompassing chemical (molecular) Hamiltonians in addition to solid-state systems, allowing these days for simulations of ground as well as excited state energies and properties.

In addition, related stochastic adaptations of perturbation and CC theory have been proposed by Thom et al., given that the full CC (FCC) and FCI solutions obviously coincide despite their different Ansätze. To that effect, Ten-no has published the FCC reduction (FCCR) method, in which cluster projection manifolds and commutator expressions for higher-level excitations are systematically reduced in order to optimally exploit the sparsity of the wave function. By similar virtue of the coincidence of FCI and FCC, Piecuch and co-workers have recently proposed the cluster-analysis-driven FCIQMC (CAD-FCIQMC) method, which—in the spirit of externally corrected CC theory—seeks to leverage the power of the exponential CC Ansatz to relax singles and doubles amplitudes in the presence of triples and quadruples counterparts extracted from FCIQMC wave functions.

In addition to FCIQMC, a manifold of alternative orbital- and real-space QMC methods
exist for the effective treatment of electron correlation, in both molecular and condensed matter systems. In here, we will deliberately restrict our attention to chemical (molecular) Hamiltonians and computational methods that are specifically targeted at the FCI solution in a one-electron basis set of Gaussian functions. To that end, the (phaseless) auxiliary-field QMC (AFQMC) method deserves special mentioning, particularly given its proficiency not only for model systems, but also for molecular problems and basis sets similar in size to those for which all of the aforementioned methods are applicable.

Density matrix renormalization group (DMRG) theory was proposed by White in the early 1990s. Initially introduced as a novel class of wave functions, it has eventually become popular as an iterative optimization procedure for wave functions parameterized in terms of matrix product states (MPSs). The DMRG method was soon applied to quantum chemistry, where it can be viewed as a variational, systematically improvable approximation to FCI. Indeed, its modern influence on electronic structure theory may be appreciated by the numerous reviews and perspectives on the topic that have appeared in the literature from a multitude of groups in the past decade. In terms of applications, DMRG theory excels over most of the methods discussed thus far in the study of strongly correlated systems where it often constitutes a de facto standard in lieu of FCI theory.

In the weakly correlated regime, however, SCI theory has experienced a true renaissance over the past few years, in part stimulated by the availability of scalable computational hardware and to some extent even the early successes of FCIQMC theory. Recent advances include adaptive sampling CI (ASCI), semistochastic heat-bath CI (SHCI), iterative CI with selection (iCI), coordinate descent FCI, fast randomized iteration approaches to FCI, machine-learned CI, adaptive and projector-based CI, tensor product SCI, in addition to modern takes on the CIPSI method as well as hybrids between SCI and FCIQMC theory. The clear majority of these variants operate
by augmenting the traditional SCI formalism with corrections derived from second-order perturbation theory to account for any residue correlation outside the selected variational space, and the resulting methods—on account of their favourable compromise between cost and residual error—have been shown to be capable of yielding a sufficient degree of accuracy and rigour to function as references in larger application and benchmark studies. [266–269]

Finally, there has been a renewed interest in incremental approximations to FCI theory as of late, intended as an alternative way of circumventing the prohibitive, exponential scaling wall of FCI. [270,271] Influenced by Nesbet’s work on generalized Bethe-Goldstone (BG) theory from the 1960s, [272–274] computational strategies based on low-order truncations of many-body expansions (MBEs) have long been in vogue, [275–279] although primarily shaped around formulations that operate in terms of the individual molecular moieties of a supersystem. In a basis of orbitals, however, the original set of ideas has recently been restored in the CEEMBE approach by Ruedenberg and Windus, [280,281] incremental FCI theory by Zimmerman, [282,283] and many-body expanded FCI (MBE-FCI) theory by Eriksen and Gauss. [284, 285] These methods all differ in their scope, applicability, and generality, while sharing in common that they approximate FCI properties without recourse to an explicit sampling of the wave function.

Having covered the current state of affairs, it will prove instructive to compare a selected few of the contemporary methods discussed up until now. To contrast these to one another on as impartial a footing as possible, we begin by recapitulating that the FCI wave function—in a standard basis of Slater determinants—corresponds to a linear, weighted sum over all electron configurations possible from the distribution of \(N\) electrons among \(M\) molecular orbitals (MOs). Typically, albeit not necessarily, [286,287] the wave function is expressed in terms of all possible excitation generators acting on a reference determinant, e.g., that of a preceding Hartree-Fock (HF) calculation, and FCI thus has an exponential (factorial) scaling, not only with respect to the number of electrons of a given system, but also the
extent of the employed one-electron basis set. At the same time, it should be obvious that the FCI wave function will generally contain an exorbitant amount of deadwood when expanded in an extended basis set. By accounting for all possible excitation levels in an entirely unbiased manner, and thus failing to distinguish between its individual components (determinants) in any way as a consequence, the linear FCI expansion is bound to comprise both the best and the worst choice of wave function parametrization. Pragmatic truncation schemes based on excitation levels do nothing to alleviate this problem either, as severe performance degradation follows from the fact that all resulting models are not size extensive.

Under the umbrella definition of SCI, a variety of elaborate schemes have been developed which all filter the wave function along its gradual generation from a reference determinant. Typically, a selection procedure expands a primary configuration space, in which a variational calculation is performed, before a refinement step seeks to prune away all insignificant determinants from it within an iterative algorithm. Specifically, given an importance estimate at the wave function, as well as a set of configurations deemed to couple sufficiently strongly through the Hamiltonian, an improved guess at the wave function is obtained in a diagonalization procedure until convergence is reached. In addition, deterministic or stochastic second-order perturbation theory (PT2)—most often in the Epstein-Nesbet (EN) rather than the standard Møller-Plesset (MP) formulation—is used in the complementary secondary space to account for the residual correlation missing from the variational SCI treatment. On the whole, the various SCI variants discussed above differ from one another in their subtleties, such as how exactly new configurations are chosen upon and how the treatment of perturbation theory is implemented. In general terms, however, they all unite in offering a compact estimate of the FCI wave function at a massively reduced cost, due to the decreased dimension of the primary SCI space over that of the N-electron Hilbert space.

A selected few of the SCI methods mentioned previously—namely, ASCI, SHCI, and
iCI—took part in a recent blind challenge\cite{312} devoted to computing the best possible estimate of the FCI correlation energy for the ubiquitous benzene system\cite{313,314,315} in a standard correlation consistent cc-pVDZ basis set.\cite{319} On account of the blind results presented in Ref. \cite{312}, two notes soon followed, one with corresponding results obtained using the phaseless AFQMC method\cite{320} and another with results of the most modern incarnation of the CIPSI method.\cite{321} Disregarding the former of these two sets of results for now, Figure 1 collects all four available SCI results for the C$_6$H$_6$/cc-pVDZ system. Wherever available, the results in Figure 1 are the updated rather than the blind results from the supporting information (SI) accompanying Ref. \cite{312}. In addition, results of the FCCR method are included, which in its most recent incarnation may too be used in combination with either MP or EN perturbation theory for correcting for operations outside a primary CC excitation manifold.\cite{322}

The left panel of Figure 1 shows the convergence of both the variational (dashed lines) and perturbatively corrected (solid lines) SCI results with an increase of the primary correlation space. On the basis of these results, it is observed how the profiles of the variational
CIPSI, ASCI, and SHCI results all resemble each other, while the corresponding iCI results differ somewhat from this trend. Upon adding the PT2 correction, however, the four sets of results start to coincide. The differences (or lack hereof) in-between the methods are further accentuated in the right panel of Figure 1, which further illustrates one of the key premises on which modern SCI operate, namely, the empirical observation that the total energy often changes with the magnitude of the perturbative correction (i.e., upon reductions to the secondary correlation space) in a near-linear fashion. Similar correlations have been observed to hold true in the case of FCCR results as well, cf. the discussion on extrapolations in Ref. 322.

Figure 2: Extrapolations of SCI/FCCR correlation energies for the benzene/cc-pVDZ system computed by linear or quadratic weighted fits. The red line marks $\Delta E = -863 \text{ mE}_H$.

Figure 2 presents extrapolations of correlation energies, obtained by a weighted fit of the total results to either a linear or quadratic polynomial in the perturbative correction. The weight function used is the inverse square of said correction, as a proxy of the uncertainty associated with the individual data points. The results of each method span an interval, indicating the variance with respect to the number of points used in the extrapolations; in
the linear extrapolations, between 2–4 points are used, whereas between 4–6 points are used in the quadratic fits. By comparing the results in-between the left and right panels of Figure 2, we note that—at least for this system—the extrapolated correlation energies appear very sensitive to the combination of functional form and number of data points. The linear extrapolations are observed to vary the least, while quadratic fits may improve (or deteriorate) results in some cases with respect to what is nowadays regarded as a best estimate, \(\Delta E \approx -863 \text{ mE}_{\text{H}} \). Finally, the quality of an extrapolated result appears not to be directly correlated with the size of the involved extrapolation distance, that is, the extent to which a method relies on extrapolation procedures. For instance, the CIPSI and FCCR methods exhibit similar extrapolation distances, yet the uncertainty in their linear extrapolations are vastly different. Unlike for CIPSI, quadratically extrapolated FCCR results are absent in Figure 2 as only a limited number (4) of FCCR data points have been published to date.

We next turn to stochastic rather than deterministic approaches to FCI. In FCIQMC theory, the FCI wave function is sampled by a QMC propagation of the wave function in the many-electron Hilbert space, with an aim at projecting out the FCI ground state. The wave function coefficients are then simulated by a set of walkers which are allowed to evolve over imaginary time. Its initiator (\(i \)-FCIQMC) and adaptive shift (AS-FCIQMC) formulations are these days used to mitigate the fermionic sign problem, albeit at the expense of an initiator bias in the wave function propagation, and most recently extensions have further been proposed to take advantage of perturbation theory, akin to what was discussed in the context of SCI and FCCR above. On par with SCI, FCIQMC may predominantly be classified as a method intended for performing a focussed sampling of the FCI wave function. However, a fundamental conceptual distinction exists between these two classes of methods. For a gapped Hamiltonian free of any sign problems, the cost of FCIQMC will—assuming a finite Monte Carlo mixing time—not scale exponentially with system size, and this will hold true even in the absence of any pronounced sparsity in the wave function, unlike for
SCI theory. However, in the presence of sign problems, a set of initiator determinants is typically chosen upon from which the propagation is spawned, and for this approximation to be successful, sparsity indeed becomes important. In addition, variational bounds on the stochastic wave function are lost in \(i\)-/AS-FCIQMC—as for SCI methods once these are made reliant on PT2 corrections and extrapolations—through the use of blocking analyses and the fact that correlation energies are computed via a projection formalism.

Instead of computing correlation energies on the basis of a stochastically sampled CI wave function alone, the semi-stochastic CAD-FCIQMC method embeds the available knowledge of highly excited determinants into CC theory. In contrast to tailored CC, the CAD-FCIQMC method makes it possible to extract—by means of cluster decomposition techniques—triples and quadruples CC amplitudes from an FCIQMC wave function. In turn, these enter the CC singles and doubles amplitude equations in an externally corrected manner, yielding relaxed amplitudes from which a deterministic CC energy may be computed from a CCSD-like energy expression. Using once again the recent case of benzene as an illustrative example of the capabilities of both approaches, the AS-FCIQMC method, which corrects for the undersampling bias of noninitiator determinants with respect to the \(i\)-FCIQMC variant, yielded results of \(-864.8 \pm 0.5\) and \(-863.7 \pm 0.3\) \(mE_H\) using 1 and 2 billion stochastic walkers, respectively (with error bars spanned by the stochastic uncertainty). This difference of more than 1 \(mE_H\) now illustrates the nontrivial task of taming the initiator error for systems of this size. Viewing the CAD-FCIQMC method as an \(a\ posteriori\) correction to the underlying wave functions, the latter of the two AS-FCIQMC results was observed to change by a shift of \(+0.3\) \(mE_H\), attesting to the power of the FCC formulation of the FCI problem. Importantly, while CAD-FCIQMC shifts to FCIQMC provide estimates of the infinite imaginary time limit, the CAD enhancement cannot work to ameliorate the intrinsic FCIQMC errors associated with the use of finite walker populations.
With Ref. 312 remaining our primary point of reference, two additional methods—distinctly different from not only all of the previous, but also each other—deserve mentioning, namely, MBE-FCI and DMRG, both of which boast relatively wide application ranges. In the former of these two (MBE-FCI), the FCI correlation energy is decomposed and solved for directly in the MO basis, without recourse to the electronic wave function. By enforcing a strict partitioning of the complete set of MOs into a reference and an expansion space, the residual correlation in the latter of these two spaces is recovered by means of an MBE in the spatial MOs of a given system. A choice of screening procedure is then used to neglect energetically redundant contributions in the expansion towards FCI, until no further incremental contributions may be formed and the MBE is deemed converged. In DMRG, on the other hand, the exponential scaling of SCI and FCIQMC methods with volume is reduced to an exponential scaling in the cross-section area, on account of its variational MPS Ansatz. The space complexity of these states is given by the so-called bond dimension, and besides the option to perform increasingly elaborate DMRG calculations by increasing this parameter, the results of which represent variational upper bounds, it is nowadays also standard procedure to linearly extrapolate correlation energies on the basis of results for increasing dimensions. For the case of benzene in the cc-pVDZ basis set, using the best possible screening protocol and a spatially localized MO basis,337 the MBE-FCI method yielded a result of -863.0 mE_H, albeit at the staggering expense of more than 1M core hours. In the case of DMRG, the lowest variational result was found to be -859.2 mE_H, that is, well below the lowest variational SCI result in Figure 1. A final result of -862.8 mE_H was next obtained by means of extrapolation, exhibiting a very small extrapolation distance of only 3.6 mE_H.

Finally, as a regular feature of the recent series of systematic benchmark studies from the Simons Collaboration on the Many-Electron Problem,338–340 the AFQMC method (in its phaseless formulation) has further been assessed on the problem at hand,320 on the back of the aforementioned blind challenge. Based on either an HF or a CASSCF(6e,6o) trial
wave function, results some margin below the best estimate from Ref. 312 were obtained (-866.1 ± 0.3 and $-864.3 \pm 0.4 \, \text{m}E_{\text{H}}$, respectively). However, additional results in the cc-pVTZ and cc-pVQZ basis sets were also presented, the latter of which corresponds to the combinatorial problem associated with distributing 30 electrons amongst a full 504 orbitals.

The recent resurgence of near-exact electronic structure theory now begs the following tongue-in-cheek question: what connotations should the concept of ‘FCI quality’ reasonably and realistically prompt in practitioners in and around the field? In here, discussions of the matter have been based exclusively on calculations of total correlation energies, but we should obviously bear in mind that relative quantities in general remain of greater chemical interest. In computing these, one may benefit from a cancellation of errors, and in case this is brought about in a systematic rather than fortuitous manner, it might be claimed that a given method indeed captures the underlying physics to a sufficiently high degree. However, is this necessarily the same as crediting said method with being of FCI quality? If not as a true benchmark, what purposes might elaborate near-exact methods otherwise serve?

Given that the scaling of SCI methods remains exponential, regardless of the use of perturbative corrections on top of a variational estimate, it is hard to imagine how these methods will allow for calculations on a significantly larger scale at some point in the future, bar a future paradigm shift in scientific computing. In addition, the relative ease by which these calculations may nowadays be performed (timing-wise) is potentially at odds with the \textit{a priori} accuracy expected of the various methods. We have here highlighted the pronounced variance of perturbatively corrected results that may arise upon extrapolation, as an example of such possible precautions. Another example to this effect is presented in Figure 3, which compares the SHCI benzene results from Figure 1 with results for the chromium dimer from a recent work by Li and co-workers.341 The dissimilarity in basis sets aside,342 the results in Figure 3 show how pronounced differences in extrapolation distances
Figure 3: Computed (intensive) SHCI correlation energies for the Cr$_2$/Ahlrichs-SV and C$_6$H$_6$/cc-pVDZ systems. Dashed (solid) lines denote variational (total) results, respectively. Figure 3 may severely complicate the task of computing correlation energies to within the same level of accuracy for systems differing in not only composition, but importantly also size.

In comparison with SHCI, stochastic alternatives, such as FCIQMC and its CAD-FCIQMC enhancement, potentially offer improved computational scalabilities (in terms of memory requirements, not necessarily in units of compute time), but these approaches ultimately suffer some of the same problems as the SCI methods since difficulties may be encountered in the presence of static or strong electron correlation. These problems can ultimately be traced back to the formulation of such methods in a basis of Slater determinants, and they will be prevalent in incremental approaches as well, such as MBE-FCI theory, except for the cases where suitable reference spaces are chosen upon in this latter class of methods. However, the optimal selection of these spaces has not currently been implemented in a black-box fashion, in the same way as the best possible choice of trial function in an AFQMC simulation is still not universally known (bar the FCI wave function, for which ph-AFQMC is exact).
While the quartic scaling of AFQMC with system size marks an improvement in terms of practicality over many other state-of-the-art approaches, this increase in applicability for mean-field trial functions is potentially brought about at the expense of a slight reduction in overall accuracy. Finally, DMRG theory might then appear to be offering an overall apt compromise between costs and benefits, allowing for treatments of chemical and physical problems across a diverse range of electron correlation. To that end, its scaling alongside a single dimension remains inherently favourable (allowing, e.g., for simulations of stacked benzenes), but the value of a sensible bond dimension is bound to change upon growing all spatial dimensions simultaneously, which is likely to end up impeding its application to much more complex systems than benzene, despite its reduced formal scaling with respect to SCI. This holds true even in conjunction with corrections from perturbation theory, for much the same reasons as discussed for SCI and FCCR theory earlier in our perspective.

At the end of the day, the exponentially scaling quest for the exact solution to the time-independent Schrödinger equation must be restricted in one way or another in order to amplify whatever locality and sparsity exist in the FCI wave function. Phrased differently, a lowering of the complexity of FCI may optimally be achieved through a change of representation, and the crux of the matter is then that all of the methods discussed herein may be viewed as recasting exact theory within different frames, while seeking to preserve formal exactness to the greatest degree possible. In the standard case where the FCI solution lies in the vicinity of that of a mean-field calculation, the most robust yardstick, against which to assess existing as well as near-future methods, is arguably the CC hierarchy of methods. In the overwhelming majority of these, say, chemically relevant systems, high-level CC methods remain relatively well-behaved. To that effect, even a naïve, back-of-the-envelope calculation of the correlation energy of the benzene/cc-pVDZ system, arrived at by simply scaling and extrapolating the results obtained for the smaller N2 system, produced an estimate of about $\Delta E = -863 \text{ mE}_H$, in almost perfect agreement with most of the contributions to the

15
blind challenge in Ref. 312. Provocatively put, a truism of the field is thus that if methods aimed at FCI fail to outperform high-level CC, e.g., the CCSDTQ model,348,349 which is these days affordable for systems the size and nature of benzene,350,351 then work need perhaps be invested in reaching this target as a first stress test, in the case of applications to both single- and multireference systems. This is the sort of realm in which many SCI methods have started to make an impact, as exemplified, e.g., by the recent SHCI study of the entire potential energy surface of Cr$_2$ in Ref. 341. To add to that, it is our opinion that the most pressing challenge faced today by contemporary near-exact methods is concerned with their reliable extension to larger systems, although it would be unreasonable to attempt to draw conclusions directly from, e.g., the isolated case of benzene and scale up. As comparisons to exact FCI necessarily become successively more hypothetical and irrelevant upon moving to increasingly larger systems, new de facto standards must be established. These remain, however, mostly ambiguous for the time being, both for the calculation of correlation energies, but importantly also in the context of derived properties. Such properties are generally more demanding to compute, but arguably more essential in the greater scheme of things.

In summary, what are then the most befitting purposes for near-exact electronic structure theory moving forward? Although our community should without a doubt stay encouraged by the immense progress witnessed over the past decade, recent assessments of the current state-of-the-art have revealed how a number of remaining challenges still persist, first and foremost in the extension of reliable, near-exact correlation methods to larger systems. The rising trend in developing diverse benchmarks will inevitably go some way in assisting the design and calibration of future methods,352 as will early encouragements drawn from revitalizing the idea of transcorrelation353–360 and generalizations of MPSs to tensor network representations in more than one dimension.361–363 However, for contemporary as well as future methods to be able to escape the comfort of their own niche, it might prove crucial to intensify the search for relevant chemical applications where a potential cost penalty can
be justified. Obvious candidates include reactions that involve, e.g., transition metal complexes or the dissociation of (multiple) covalent bonds, but importantly also the simulation of general properties in calculations beyond the application range of high-level CC theory.

Acknowledgments

The Independent Research Fund Denmark is gratefully acknowledged for financial support. The author wishes to thank all of the authors behind Refs. 312, 320, and 321 for their combined work on the benzene benchmark problem. In addition, fruitful comments to an earlier draft of the present work from Garnet K.-L. Chan (Caltech), Cyrus Umrigar (Cornell University), and Jürgen Gauss (Johannes Gutenberg-Universität Mainz) are acknowledged.
References

(1) Knowles, P. J.; Handy, N. C. Unlimited Full Configuration Interaction Calculations. J. Chem. Phys. **1989**, *91*, 2396.

(2) Olsen, J.; Jørgensen, P.; Simons, J. Passing the One-Billion Limit in Full Configuration-Interaction (FCI) Calculations. Chem. Phys. Lett. **1990**, *169*, 463.

(3) Knowles, P. J.; Handy, N. C. A New Determinant-Based Full Configuration Interaction Method. Chem. Phys. Lett. **1984**, *111*, 315.

(4) Knowles, P. J.; Handy, N. C. A Determinant Based Full Configuration Interaction Program. Comput. Phys. Commun. **1989**, *54*, 75.

(5) Knowles, P. J. Very Large Full Configuration Interaction Calculations. Chem. Phys. Lett. **1989**, *155*, 513.

(6) Olsen, J.; Roos, B. O.; Jørgensen, P.; Jensen, H. J. Aa. Determinant Based Configuration Interaction Algorithms for Complete and Restricted Configuration Interaction Spaces. J. Chem. Phys. **1988**, *89*, 2185.

(7) Zarrabian, S.; Sarma, C. R.; Paldus, J. Vectorizable Approach to Molecular CI Problems Using Determinantal Basis. Chem. Phys. Lett. **1989**, *155*, 183.

(8) Harrison, R. J.; Zarrabian, S. An Efficient Implementation of the Full-CI Method Using an $(n-2)$-Electron Projection Space. Chem. Phys. Lett. **1989**, *158*, 393.

(9) Bendazzoli, G. L.; Evangelisti, S. A Vector and Parallel Full Configuration Interaction Algorithm. J. Chem. Phys. **1993**, *98*, 3141.

(10) Rossi, E.; Bendazzoli, G. L.; Evangelisti, S. Full Configuration Interaction Algorithm on a Massively Parallel Architecture: Direct-List Implementation. J. Comp. Chem. **1998**, *19*, 658.
(11) Sherrill, C. D.; Schaefer, III, H. F. The Configuration Interaction Method: Advances in Highly Correlated Approaches. Adv. Quantum. Chem. 1999, 34, 143.

(12) Gan, Z.; Alexeev, Y.; Gordon, M. S.; Kendall, R. A. The Parallel Implementation of a Full Configuration Interaction Program. J. Chem. Phys. 2003, 119, 47.

(13) Gan, Z.; Harrison, R. J. Calibrating Quantum Chemistry: A Multi-Teraflop, Parallel-Vector, Full-Configuration Interaction Program for the Cray-X1. SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing. 2005; p 22.

(14) Fales, B. S.; Levine, B. G. Nanoscale Multireference Quantum Chemistry: Full Configuration Interaction on Graphical Processing Units. J. Chem. Theory Comput. 2015, 11, 4708.

(15) Vogiatzis, K. D.; Ma, D.; Olsen, J.; Gagliardi, L.; de Jong, W. A. Pushing Configuration-Interaction to the Limit: Towards Massively Parallel MCSCF Calculations. J. Chem. Phys. 2017, 147, 184111.

(16) Aspuru-Guzik, A.; Dutoi, A. D.; Love, P. J.; Head-Gordon, M. Simulated Quantum Computation of Molecular Energies. Science 2005, 309, 1704.

(17) Lanyon, B. P.; Whitfield, J. D.; Gillett, G. G.; Goggin, M. E.; Almeida, M. P.; Kassal, I.; Biamonte, J. D.; Mohseni, M.; Powell, B. J.; Barbieri, M.; Aspuru-Guzik, A.; White, A. G. Towards Quantum Chemistry on a Quantum Computer. Nat. Chem. 2010, 2, 106.

(18) Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; Love, P. J.; Aspuru-Guzik, A.; O’Brien, J. L. A Variational Eigenvalue Solver on a Photonic Quantum Processor. Nat. Commun. 2014, 5, 4213.

(19) Kivlichan, I. D.; McClean, J.; Wiebe, C., N. Gidney; Aspuru-Guzik, A.; Chan, G.
K.-L.; Babbush, R. Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. Phys. Rev. X 2018, 8, 011044.

(20) Babbush, R.; Wiebe, N.; McClean, J.; McClain, J. D.; Neven, H.; Chan, G. K.-L. Low-Depth Quantum Simulation of Materials. Phys. Rev. X 2018, 8, 011044.

(21) Cao, Y.; Romero, J.; Olson, J. P.; Degroote, M.; Johnson, P. D.; Kieferová, M.; Kivlichan, I. D.; Menke, T.; Peropadre, B.; Sawaya, N. P. D.; Sim, S.; Veis, L.; Aspuru-Guzik, A. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 10856.

(22) Bauer, B.; Bravyi, S.; Motta, M.; Chan, G. K.-L. Quantum Algorithms for Quantum Chemistry and Quantum Materials Science. arXiv: 2001.03685 2020,

(23) On a quantum computer, measurements of the energy and projections to an arbitrary eigenstate, by phase estimation, is efficient. However, the preparation of a state with sufficient overlap with a particular state, e.g., the exact ground state, in a way such that phase estimation yields a specific eigenstate, will generally be exponential in cost. For further details on this, see, for instance, the recent review in Ref. 22.

(24) Graham, R. L.; Yeager, D. L.; Olsen, J.; Jørgensen, P.; Harrison, R.; Zarrabian, S.; Bartlett, R. Excitation Energies in Be: A Comparison of Multiconfigurational Linear Response and Full Configuration Interaction Calculations. J. Chem. Phys. 1986, 85, 6544.

(25) Bauschlicher Jr., C. W.; Taylor, P. R. Benchmark Full Configuration-Interaction Calculations on H$_2$O, F, and F$^-$. J. Chem. Phys. 1986, 85, 2779.

(26) Bauschlicher Jr., C. W.; Langhoff, S. R.; Taylor, P. R.; Handy, N. C.; Knowles, P. J. Benchmark Full Configuration-Interaction Calculations on HF and NH$_2$. J. Chem. Phys. 1986, 85, 1469.
(27) Bauschlicher Jr, C. W.; Taylor, P. R. Full CI Benchmark Calculations for Molecular Properties. Theor. Chim. Acta 1987, 71, 263.

(28) Bauschlicher Jr, C. W.; Langhoff, S. R. Full Configuration Interaction Benchmark Calculations for Transition Moments. Theor. Chim. Acta 1988, 73, 43.

(29) Bauschlicher Jr., C. W.; Langhoff, S. R. Full Configuration-Interaction Study of the Ionic-Neutral Curve Crossing in LiF. J. Chem. Phys. 1988, 89, 4246.

(30) Bauschlicher Jr., C. W.; Langhoff, S. R. Full Configuration-Interaction Benchmark Calculations for AlH. J. Chem. Phys. 1988, 89, 2116.

(31) Bauschlicher Jr., C. W. Full Configuration Interaction Benchmark Calculations for TiH. J. Phys. Chem. 1988, 92, 3020.

(32) Koch, H.; Harrison, R. J. Analytical Calculation of Full Configuration Interaction Response Properties: Application to Be. J. Chem. Phys. 1991, 95, 7479.

(33) Knowles, P. J.; Stark, K.; Werner, H.-J. A Full-CI Study of the Energetics of the Reaction F + H₂ → HF + H. Chem. Phys. Lett. 1991, 185, 555.

(34) Rossi, E.; Bendazzoli, G. L.; Evangelisti, S.; Maynau, D. A full-Configuration Benchmark for the N₂ Molecule. Chem. Phys. Lett. 1999, 310, 530.

(35) Evangelisti, S.; Bendazzoli, G. L.; Gagliardi, L. Full Configuration Interaction Calculations on Be₂. Chem. Phys. 1994, 185, 47.

(36) Junquera-Hernández, J. M.; Sánchez-Marín, J.; Bendazzoli, G. L.; Evangelisti, S. Full Configuration Interaction Calculation of Be₃. J. Chem. Phys. 2004, 120, 8405.

(37) Vetere, V.; Monari, A.; Scemama, A.; Bendazzoli, G. L.; Evangelisti, S. A Theoretical Study of Linear Beryllium Chains: Full Configuration Interaction. J. Chem. Phys. 2009, 130, 024301.
(38) Vetere, V.; Monari, A.; Bendazzoli, G. L.; Evangelisti, S.; Paulus, B. Full Configuration Interaction Study of the Metal-Insulator Transition in Model Systems: Li\textsubscript{N} Linear Chains (N = 2, 4, 6, 8). J. Chem. Phys. 2008, 128, 024701.

(39) van Mourik, T.; van Lenthe, J. H. Benchmark Full Configuration Interaction Calculations on the Helium Dimer. J. Chem. Phys. 1995, 102, 7479.

(40) Christiansen, O.; Koch, H.; Jørgensen, P.; Olsen, J. Excitation Energies of H\textsubscript{2}O, N\textsubscript{2} and C\textsubscript{2} in Full Configuration Interaction and Coupled Cluster Theory. Chem. Phys. Lett. 1996, 256, 185.

(41) Olsen, J.; Jørgensen, P.; Koch, H.; Balkova, A.; Bartlett, R. J. Full Configuration-Interaction and State of the Art Correlation Calculations on Water in a Valence Double-Zeta Basis with Polarization Functions. J. Chem. Phys. 1996, 104, 8007.

(42) Halkier, A.; Larsen, H.; Olsen, J.; Jørgensen, P.; Gauss, J. Full Configuration Interaction Benchmark Calculations of First-Order One-Electron Properties of BH and HF. J. Chem. Phys. 1999, 110, 734.

(43) Larsen, H.; Olsen, J.; Hättig, C.; Jørgensen, P.; Christiansen, O.; Gauss, J. Polarizabilities and First Hyperpolarizabilities of HF, Ne, and BH from Full Configuration Interaction and Coupled Cluster Calculations. J. Chem. Phys. 1999, 111, 1917.

(44) Larsen, H.; Olsen, J.; Jørgensen, P.; Christiansen, O. Full Configuration Interaction Benchmarking of Coupled-Cluster Models for the Lowest Singlet Energy Surfaces of N\textsubscript{2}. J. Chem. Phys. 2000, 113, 6677.

(45) Braskén, M.; Lindberg, M.; Sundholm, D.; Olsen, J. Full Configuration Interaction Calculations of Electron-Hole Correlation Effects in Strain-Induced Quantum Dots. Phys. Rev. B 2000, 61, 7652.
Braskén, M.; Corni, S.; Lindberg, M.; Olsen, J.; Sundholm, D. Full Configuration Interaction Studies of Phonon and Photon Transition Rates in Semiconductor Quantum Dots. Mol. Phys. 2002, 100, 911.

Larsen, H.; Hald, K.; Olsen, J.; Jørgensen, P. Triplet Excitation Energies in Full Configuration Interaction and Coupled-Cluster Theory. J. Chem. Phys. 2001, 115, 3015.

Thøgersen, L.; Olsen, J. A Coupled Cluster and Full Configuration Interaction Study of CN and CN−. Chem. Phys. Lett. 2004, 393, 36.

Sherrill, C. D.; Leininger, M. L.; Van Huis, T. J.; Schaefer, III, H. F. Structures and Vibrational Frequencies in the Full Configuration Interaction Limit: Predictions for Four Electronic States of Methylene using a Triple-Zeta Plus Double Polarization (TZ2P) Basis. J. Chem. Phys. 1998, 108, 1040.

Dutta, A.; Sherrill, C. D. Full Configuration Interaction Potential Energy Curves for Breaking Bonds to Hydrogen: An Assessment of Single-Reference Correlation Methods. J. Chem. Phys. 2003, 118, 1610.

Abrams, M. L.; Sherrill, C. D. A Comparison of Polarized Double-Zeta Basis Sets and Natural Orbitals for Full Configuration Interaction Benchmarks. J. Chem. Phys. 2003, 118, 1604.

Abrams, M. L.; Sherrill, C. D. Full Configuration Interaction Potential Energy Curves for the \(X^1\Sigma_g^+ \), \(B^1\Delta_g \), and \(B'^1\Sigma_g^+ \) States of \(C_2 \): A Challenge for Approximate Methods. J. Chem. Phys. 2004, 121, 9211.

Sherrill, C. D.; Piecuch, P. The \(X^1\Sigma_g^+ \), \(B^1\Delta_g \), and \(B'^1\Sigma_g^+ \) States of \(C_2 \): A Comparison of Renormalized Coupled-Cluster and Multireference Methods with Full Configuration Interaction Benchmarks. J. Chem. Phys. 2005, 122, 124104.
(54) Pieniazek, P. A.; Arnstein, S. A.; Bradforth, S. E.; Krylov, A. I.; Sherrill, C. D. Benchmark Full Configuration Interaction and Equation-of-Motion Coupled-Cluster Model with Single and Double Substitutions for Ionized Systems Results for Prototypical Charge Transfer Systems: Noncovalent Ionized Dimers. J. Chem. Phys. 2007, 127, 164110.

(55) Auer, A. A.; Gauss, J.; Pecul, M. Full Configuration-Interaction and Coupled-Cluster Calculations of the Indirect Spin-Spin Coupling Constant of BH. Chem. Phys. Lett. 2003, 368, 172.

(56) Gan, Z.; Grant, D. J.; Harrison, R. J.; Dixon, D. A. The Lowest Energy States of the Group-IIIA – Group-VA Heteronuclear Diatomics: BN, BP, AlN, and AlP from Full Configuration Interaction Calculations. J. Chem. Phys. 2006, 125, 124311.

(57) Pitarch-Ruiz, J.; Sánchez-Marín, J.; Velasco, A. M. Full Configuration Interaction Calculation of the Low Lying Valence and Rydberg States of BeH. J. Comp. Chem. 2008, 29, 523.

(58) Pitarch-Ruiz, J.; Sánchez-Marín, J.; Velasco, A. M.; Martin, I. Full Configuration Interaction Calculation of BeH Adiabatic States. J. Chem. Phys. 2008, 129, 054310.

(59) Ramachandran, C. N.; De Fazio, D.; Cavalli, S.; Tarantelli, F.; Aquilanti, V. Revisiting the potential energy surface for the He + H2 → HeH+ + H Reaction at the Full Configuration Interaction Level. Chem. Phys. Lett. 2009, 469, 26.

(60) Li, H.; Feng, H.; Zhang, Y.; Fan, Q.; Peterson, K. A.; Xie, Y.; Schaefer, III, H. F. The Alkaline Earth Dimer Cations (Be2+, Mg2+, Ca2+, Sr2+, and Ba2+). Coupled Cluster and Full Configuration Interaction Studies. Mol. Phys. 2013, 111, 2292.

(61) Knowles, P. J.; Somasundram, K.; Handy, N. C.; Hirao, K. The Calculation of Higher-Order Energies in the Many-Body Perturbation Theory Series. Chem. Phys. Lett. 1985, 113, 8.
(62) Handy, N. C.; Knowles, P. J.; Somasundram, K. On the Convergence of the Møller-Plesset Perturbation Series. Theor. Chim. Acta 1985, 68, 87.

(63) Knowles, P. J.; Handy, N. C. Convergence of Projected Unrestricted Hartee-Fock Møller-Plesset Series. J. Phys. Chem. 1988, 92, 3097.

(64) Olsen, J. The Initial Implementation and Applications of a General Active Space Coupled Cluster Method. J. Chem. Phys. 2000, 113, 7140.

(65) Kállay, M.; Surján, P. R. Higher Excitations in Coupled-Cluster Theory. J. Chem. Phys. 2001, 115, 2945.

(66) Nobes, R. H.; Pople, J. A.; Radom, L.; Handy, N. C.; Knowles, P. J. Slow Convergence of the Møller-Plesset Perturbation Series: The Dissociation Energy of Hydrogen Cyanide and the Electron Affinity of the Cyano Radical. Chem. Phys. Lett. 1987, 138, 481.

(67) Olsen, J.; Christiansen, O.; Koch, H.; Jørgensen, P. Surprising Cases of Divergent Behavior in Møller-Plesset Perturbation Theory. J. Chem. Phys. 1996, 105, 5082.

(68) Christiansen, O.; Olsen, J.; Jørgensen, P.; Koch, H.; Malmqvist, P.-Å. On the Inherent Divergence in the Møller-Plesset Series. The Neon Atom — A Test Case. Chem. Phys. Lett. 1996, 261, 369.

(69) Halkier, A.; Larsen, H.; Olsen, J.; Jørgensen, P. Divergent Behavior of Møller-Plesset Perturbation Theory for Molecular Electric Dipole and Quadrupole Moments. J. Chem. Phys. 1999, 110, 7127.

(70) Olsen, J.; Jørgensen, P.; Helgaker, T.; Christiansen, O. Divergence in Møller-Plesset Theory: A Simple Explanation Based on a Two-State Model. J. Chem. Phys. 2000, 112, 9736.
(71) Larsen, H.; Halkier, A.; Olsen, J.; Jørgensen, P. On the Divergent Behavior of Møller-Plesset Perturbation Theory for the Molecular Electric Dipole Moment. J. Chem. Phys. 2000, 112, 1107.

(72) Leininger, M. L.; Allen, W. D.; Schaefer, III, H. F.; Sherrill, C. D. Is Møller-Plesset Perturbation Theory a Convergent Ab Initio Method? J. Chem. Phys. 2000, 112, 9213.

(73) Kristensen, K.; Eriksen, J. J.; Matthews, D. A.; Olsen, J.; Jørgensen, P. A View on Coupled Cluster Perturbation Theory Using a Bivariational Lagrangian Formulation. J. Chem. Phys. 2016, 144, 064103.

(74) Eriksen, J. J.; Kristensen, K.; Matthews, D. A.; Jørgensen, P.; Olsen, J. Convergence of Coupled Cluster Perturbation Theory. J. Chem. Phys. 2017, 145, 224104.

(75) Olsen, J.; Jørgensen, P. Convergence Patterns and Rates in Two-State Perturbation Expansions. J. Chem. Phys. 2019, 151, 084108.

(76) Roos, B. O. The Complete Active Space Self-Consistent Field Method and its Applications in Electronic Structure Calculations. Adv. Chem. Phys. 1987, 69, 399.

(77) Roos, B. O.; Andersson, K.; Fülscher, M. P. Towards an Accurate Molecular Orbital Theory for Excited States: The Benzene Molecule. Chem. Phys. Lett. 1992, 192, 5.

(78) Olsen, J. The CASSCF Method: A Perspective and Commentary. Int. J. Quant. Chem. 2011, 111, 3267.

(79) Zgid, D.; Nooijen, M. Obtaining the Two-Body Density Matrix in the Density Matrix Renormalization Group Method. J. Chem. Phys. 2008, 128, 144115.

(80) Zgid, D.; Nooijen, M. The Density Matrix Renormalization Group Self-Consistent Field Method: Orbital Optimization with the Density Matrix Renormalization Group Method in the Active Space. J. Chem. Phys. 2008, 128, 144116.
(81) Ghosh, D.; Hachmann, J.; Yanai, T.; Chan, G. K.-L. Orbital Optimization in the Density Matrix Renormalization Group, with Applications to Polyenes and β-Carotene. J. Chem. Phys. **2008**, *128*, 144117.

(82) Liu, F.; Kurashige, Y.; Yanai, T.; Morokuma, K. Multireference *Ab Initio* Density Matrix Renormalization Group (DMRG)-CASSCF and DMRG-CASPT2 Study on the Photochromic Ring Opening of Spiropyran. J. Chem. Theory Comput. **2013**, *9*, 4462.

(83) Nakatani, N.; Guo, S. Density Matrix Renormalization Group (DMRG) Method as a Common Tool for Large Active-Space CASSCF/CASPT2 Calculations. J. Chem. Phys. **2017**, *146*, 094102.

(84) Li Manni, G.; Smart, S. D.; Alavi, A. Combining the Complete Active Space Self-Consistent Field Method and the Full Configuration Interaction Quantum Monte Carlo within a Super-CI Framework, with Application to Challenging Metal-Porphyrins. J. Chem. Theory Comput. **2016**, *12*, 1245.

(85) Smith, J. E. T.; Mussard, B.; Holmes, A. A.; Sharma, S. Cheap and Near Exact CASSCF with Large Active Spaces. J. Chem. Theory Comput. **2017**, *13*, 5468.

(86) Levine, D. S.; Hait, D.; Tubman, N. M.; Lehtola, S.; Whaley, K. B.; Head-Gordon, M. CASSCF with Extremely Large Active Spaces Using the Adaptive Sampling Configuration Interaction Method. J. Chem. Theory Comput. **2020**, *16*, 2340.

(87) Andersson, K.; Malmqvist, P.-Å.; Roos, B. O. Second-Order Perturbation Theory with a Complete Active Space Self-Consistent Field Reference Function. J. Chem. Phys. **1992**, *96*, 1218.

(88) Lorentzon, J.; Malmqvist, P.-Å.; Fülscher, M.; Roos, B. O. A CASPT2 Study of the Valence and Lowest Rydberg Electronic States of Benzene and Phenol. Theor. Chim. Acta **1995**, *91*, 91.
(89) Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.; Malrieu, J.-P. Introduction of \(n \)-Electron Valence States for Multireference Perturbation Theory. J. Chem. Phys. 2001, 114, 10252.

(90) Angeli, C.; Cimiraglia, R.; Malrieu, J.-P. \(n \)-Electron Valence State Perturbation Theory: A Fast Implementation of the Strongly Contracted Variant. Chem. Phys. Lett. 2001, 350, 297.

(91) Angeli, C.; Cimiraglia, R.; Malrieu, J.-P. \(n \)-Electron Valence State Perturbation Theory: A Spinless Formulation and an Efficient Implementation of the Strongly Contracted and of the Partially Contracted Variants. J. Chem. Phys. 2002, 117, 9138.

(92) Kurashige, Y.; Yanai, T. Second-Order Perturbation Theory with a Density Matrix Renormalization Group Self-Consistent Field Reference Function: Theory and Application to the Study of Chromium Dimer. J. Chem. Phys. 2011, 135, 094104.

(93) Saitow, M.; Kurashige, Y.; Yanai, T. Multireference Configuration Interaction Theory Using Cumulant Reconstruction with Internal Contraction of Density Matrix Renormalization Group Wave Function. J. Chem. Phys. 2013, 139, 044118.

(94) Guo, S.; Watson, M. A.; Hu, W.; Sun, Q.; Chan, G. K.-L. \(n \)-Electron Valence State Perturbation Theory Based on a Density Matrix Renormalization Group Reference Function, with Applications to the Chromium Dimer and a Trimer Model of Poly(\(p \)-Phenylenevinylene). J. Chem. Theory Comput. 2016, 12, 1583.

(95) Yanai, T.; Saitow, M.; Xiong, X.-G.; Chalupský, J.; Kurashige, Y.; Guo, S.; Sharma, S. Multistate Complete-Active-Space Second-Order Perturbation Theory Based on Density Matrix Renormalization Group Reference States. J. Chem. Theory Comput. 2017, 13, 4829.

(96) Freitag, L.; Knecht, S.; Angeli, C.; Reiher, M. Multireference Perturbation The-
ory with Cholesky Decomposition for the Density Matrix Renormalization Group. J. Chem. Theory Comput. 2017, 13, 451.

(97) Phung, Q. M.; Wouters, S.; Pierloot, K. Cumulant Approximated Second-Order Perturbation Theory Based on the Density Matrix Renormalization Group for Transition Metal Complexes: A Benchmark Study. J. Chem. Theory Comput. 2016, 12, 4352.

(98) Sharma, P.; Bernales, V.; Knecht, S.; Truhlar, D. G.; Gagliardi, L. Density Matrix Renormalization Group Pair-Density Functional Theory (DMRG-PDFT): Singlet-Triplet Gaps in Polycacenes and Polycetylenes. Chem. Sci. 2016, 10, 1716.

(99) Burton, H. G. A.; Thom, A. J. W. Reaching Full Correlation through Nonorthogonal Configuration Interaction: A Second-Order Perturbative Approach. J. Chem. Theory Comput. 2020, 16, 5586.

(100) Shiozaki, T. BAGEL: Brilliantly Advanced General Electronic-structure Library. WIREs Comput. Mol. Sci. 2018, 8, e1331.

(101) Sun, Q.; Berkelbach, T. C.; Blunt, N. S.; Booth, G. H.; Guo, S.; Li, Z.; Liu, J.; McClain, J. D.; Sayfutyarova, E. R.; Sharma, S.; Wouters, S.; Chan, G. K.-L. PySCF: The Python-Based Simulations of Chemistry Framework. WIREs Comput. Mol. Sci. 2018, 8, e1340.

(102) Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt, N. S.; Bogdanov, N. A.; Booth, G. H.; Chen, J.; Cui, Z.-H.; Eriksen, J. J.; Gao, Y.; Guo, S.; Hermann, J.; Hermes, M. R.; Koh, K.; Koval, P.; Lehtola, S.; Li, Z.; Liu, J.; Mardirossian, N.; McClain, J. D.; Motta, M.; Mussard, B.; Pham, H. Q.; Pulkin, A.; Purwanto, W.; Robinson, P. J.; Ronca, E.; Sayfutyarova, E. R.; Scheurer, M.; Schurkus, H. F.; Smith, J. E. T.; Sun, C.; Sun, S.-N.; Upadhyay, S.; Wagner, L. K.; Wang, X.; White, A.; Whitfield, J. D.; Williamson, M. J.; Wouters, S.; Yang, J.; Yu, J. M.; Zhu, T.; Berkel-
bach, T. C.; Sharma, S.; Sokolov, A. Y.; Chan, G. K.-L. Recent Developments in the PySCF Program Package. J. Chem. Phys. 2020, 153, 024109.

(103) Guther, K.; Anderson, R. J.; Blunt, N. S.; Bogdanov, N. A.; Cleland, D.; Dattani, N.; Dobratz, W.; Ghanem, K.; Jeszenszki, P.; Liebermann, N.; Manni, G. L.; Lozovoi, A. Y.; Luo, H.; Ma, D.; Merz, F.; Overy, C.; Rampp, M.; Samanta, P. K.; Schwarz, L. R.; Shepherd, J. J.; Smart, S. D.; Vitale, E.; Weser, O.; Booth, G. H.; Alavi, A. NECI: N-Electron Configuration Interaction with an Emphasis on State-of-the-Art Stochastic Methods. J. Chem. Phys. 2020, 153, 034107.

(104) Mitrushenkov, A. O.; Dmitriev, Y. Y. Passing the Several Billion Limit in FCI Calculations on a Mini-Computer. A Norm-Consistent Zero CI Threshold Estimate within the Dynamic CI Approach. Chem. Phys. Lett. 1995, 235, 410.

(105) Rolik, Z.; Szabados, Á.; Surján, P. R. A Sparse Matrix Based Full-Configuration Interaction Algorithm. J. Chem. Phys. 2005, 122, 024110.

(106) Fales, B. S.; Seritan, S.; Settje, N. F.; Levine, B. G.; Koch, H.; Martínez, T. J. Large Scale Electron Correlation Calculations: Rank-Reduced Full Configuration Interaction. J. Chem. Theory Comput. 2018, 14, 4139.

(107) Taylor, P. R. Lossless Compression of Wave Function Information Using Matrix Factorization: A “gzip” for Quantum Chemistry. J. Chem. Phys. 2013, 139, 074113.

(108) Bender, C. F.; Davidson, E. R. Studies in Configuration Interaction: The First-Row Diatomic Hydrides. Phys. Rev. 1969, 183, 23.

(109) Whitten, J. L.; Hackmeyer, M. Configuration Interaction Studies of Ground and Excited States of Polyatomic Molecules. I. The CI Formulation and Studies of Formaldehyde. J. Chem. Phys. 1969, 51, 5584.
(110) Huron, B.; Malrieu, J.-P.; Rancurel, P. Iterative Perturbation Calculations of Ground and Excited State Energies from Multiconfigurational Zeroth-Order Wavefunctions. J. Chem. Phys. 1973, 58, 5745.

(111) Evangelisti, S.; Daudey, J.-P.; Malrieu, J.-P. Convergence of an Improved CIPSI Algorithm. Chem. Phys. 1983, 75, 91.

(112) Cimiraglia, R. Second Order Perturbation Correction to CI Energies by Use of Diagrammatic Techniques: An Improvement to the CIPSI Algorithm. J. Chem. Phys. 1985, 83, 1746.

(113) Cimiraglia, R.; Persico, M. Recent Advances in Multireference Second Order Perturbation CI: The CIPSI Method Revisited. J. Comput. Chem. 1987, 8, 39.

(114) Harrison, R. J. Approximating Full Configuration Interaction with Selected Configuration Interaction and Perturbation Theory. J. Chem. Phys. 1991, 94, 5021.

(115) Wulfov, A. L. Passing the One-Quadrillion Limit in FCI Extrapolations on a Personal Computer. Chem. Phys. Lett. 1996, 255, 300.

(116) Illas, F.; Rubio, J.; Ricart, J. M.; Bagus, P. S. Selected Versus Complete Configuration Interaction Expansions. J. Chem. Phys. 1991, 95, 1877.

(117) Daudey, J.-P.; Heully, J.-L.; Malrieu, J.-P. Size-Consistent Self-Consistent Truncated or Selected Configuration Interaction. J. Chem. Phys. 1993, 99, 1240.

(118) Stampfuß, P.; Wenzel, W. Improved Implementation and Application of the Individually Selecting Configuration Interaction Method. J. Chem. Phys. 2005, 122, 024110.

(119) Greer, J. C. Estimating Full Configuration Interaction Limits from a Monte Carlo Selection of the Expansion Space. J. Chem. Phys. 1995, 103, 1821.

(120) Greer, J. C. Monte Carlo Configuration Interaction. J. Comput. Phys. 1998, 146, 181.
(121) Győrffy, W.; Bartlett, R. J.; Greer, J. C. Monte Carlo Configuration Interaction Predictions for the Electronic Spectra of Ne, CH₂, C₂, N₂, and H₂O Compared to Full Configuration Interaction Calculations. J. Chem. Phys. 2008, 129, 064103.

(122) Kelly, T. P.; Perera, A.; Bartlett, R. J.; Greer, J. C. Monte Carlo Configuration Interaction with Perturbation Corrections for Dissociation Energies of First Row Diatomic Molecules: C₂, N₂, O₂, CO, and NO. J. Chem. Phys. 2014, 140, 084114.

(123) Troparevsky, M.; Franceschetti, A. An Optimized Configuration Interaction Method for Calculating Electronic Excitations in Nanostructures. J. Phys.: Condens. Matter 2008, 20, 055211.

(124) Sambataro, M.; Gambacurta, D.; Lo Monaco, L. Iterative Variational Approach to Finite Many-Body Systems. Phys. Rev. B 2011, 83, 045102.

(125) Booth, G. H.; Thom, A. J. W.; Alavi, A. Fermion Monte Carlo Without Fixed Nodes: A Game of Life, Death, and Annihilation in Slater Determinant Space. J. Chem. Phys. 2009, 131, 054106.

(126) Loh, E. Y.; Gubernatis, J. E.; Scalettar, R. T.; White, S. R.; Scalapino, D. J.; Sugar, R. L. Sign Problem in the Numerical Simulation of Many-Electron Systems. Phys. Rev. B 1990, 41, 9301.

(127) Shepherd, J. J.; Scuseria, G. E.; Spencer, J. S. Sign Problem in Full Configuration Interaction Quantum Monte Carlo: Linear and Sublinear Representation Regimes for the Exact Wave Function. Phys. Rev. B 2014, 90, 155130.

(128) Cleland, D.; Booth, G. H.; Alavi, A. Communications: Survival of the Fittest: Accelerating Convergence in Full Configuration-Interaction Quantum Monte Carlo. J. Chem. Phys. 2010, 132, 041103.
(129) Petruzielo, F. R.; Holnes, A. A.; Changlani, H. J.; Nightingale, M. P.; Umrigar, C. J. Semistochastic Projector Monte Carlo Method. Phys. Rev. Lett. 2012, 109, 230201.

(130) Blunt, N. S.; Smart, S. D.; Kersten, J. A. F.; Spencer, J. S.; Booth, G. H.; Alavi, A. Semi-Stochastic Full Configuration Interaction Quantum Monte Carlo: Developments and Application. J. Chem. Phys. 2015, 142, 184107.

(131) Booth, G. H.; Alavi, A. Approaching Chemical Accuracy Using Full Configuration-Interaction Quantum Monte Carlo: A Study of Ionization Potentials. J. Chem. Phys. 2010, 132, 174104.

(132) Booth, G. H.; Cleland, D.; Thom, A. J. W.; Alavi, A. Breaking the Carbon Dimer: The Challenges of Multiple Bond Dissociation With Full Configuration Interaction Quantum Monte Carlo Methods. J. Chem. Phys. 2011, 135, 084104.

(133) Cleland, D.; Booth, G. H.; Overy, C.; Alavi, A. Taming the First-Row Diatomics: A Full Configuration Interaction Quantum Monte Carlo Study. J. Chem. Theory Comput. 2012, 8, 4138.

(134) Daday, C.; Smart, S.; Booth, G. H.; Alavi, A.; Filippi, C. Full Configuration Interaction Excitations of Ethene and Butadiene: Resolution of an Ancient Question. J. Chem. Theory Comput. 2012, 8, 4441.

(135) Booth, G. H.; Cleland, D.; Alavi, A.; Tew, D. P. An Explicitly Correlated Approach to Basis Set Incompleteness in Full Configuration Interaction Quantum Monte Carlo. J. Chem. Phys. 2012, 137, 164112.

(136) Shepherd, J. J.; Booth, G. H.; Grünéis, A.; Alavi, A. Full Configuration Interaction Perspective on the Homogeneous Electron Gas. Phys. Rev. B 2012, 85, 081103(R).

(137) Booth, G. H.; Grünéis, A.; Kresse, G.; Alavi, A. Towards an Exact Description of Electronic Wavefunctions in Real Solids. Nature 2013, 493, 365.
(138) Anderson, R. J.; Booth, G. H. Four-Component Full Configuration Interaction Quantum Monte Carlo for Relativistic Correlated Electron Problems. arXiv:2010.09558 2020,

(139) Holmes, A. A.; Changlani, H. J.; Umrigar, C. J. Efficient Heat-Bath Sampling in Fock Space. J. Chem. Theory Comput. 2016, 12, 1561.

(140) Thomas, R. E.; Booth, G. H.; Alavi, A. Accurate Ab Initio Calculation of Ionization Potentials of the First-Row Transition Metals with the Configuration-Interaction Quantum Monte Carlo Technique. J. Chem. Phys. 2015, 114, 033001.

(141) Blunt, N. S.; Thom, A. J. W.; Scott, C. J. C. Preconditioning and Perturbative Estimators in Full Configuration Interaction Quantum Monte Carlo. J. Chem. Theory Comput. 2019, 15, 3537.

(142) Neufeld, V.; Thom, A. J. W. Accelerating Convergence in Fock Space Quantum Monte Carlo Methods. J. Chem. Theory Comput. 2020, 16, 1503.

(143) Ten-no, S. Stochastic Determination of Effective Hamiltonian for the Full Configuration Interaction Solution of Quasi-Degenerate Electronic States. J. Chem. Phys. 2013, 138, 164126.

(144) Ohtsuka, Y.; Ten-no, S. A Study of Potential Energy Curves from the Model Space Quantum Monte Carlo Method. J. Chem. Phys. 2015, 143, 214107.

(145) Ten-no, S. L. Multi-State Effective Hamiltonian and Size-Consistency Corrections in Stochastic Configuration Interactions. J. Chem. Phys. 2017, 147, 244107.

(146) Overy, C.; Booth, G. H.; Blunt, N. S.; Shepherd, J. J.; Cleland, D.; Alavi, A. Unbiased Reduced Density Matrices and Electronic Properties from Full Configuration Interaction Quantum Monte Carlo. J. Chem. Phys. 2014, 141, 244117.
(147) Thomas, R. E.; Opalka, D.; Overy, C.; Knowles, P. J.; Alavi, A.; Booth, G. H. Analytic Nuclear Forces and Molecular Properties from Full Configuration Interaction Quantum Monte Carlo. *J. Chem. Phys.* **2015**, *143*, 054108.

(148) Blunt, N. S.; Booth, G. H.; Alavi, A. Density Matrices in Full Configuration Interaction Quantum Monte Carlo: Excited States, Transition Dipole Moments, and Parallel Distribution. *J. Chem. Phys.* **2017**, *146*, 244105.

(149) Samanta, P. K.; Blunt, N. S.; Booth, G. H. Response Formalism within Full Configuration Interaction Quantum Monte Carlo: Static Properties and Electrical Response. *J. Chem. Theory Comput.* **2018**, *14*, 3532.

(150) Thom, A. J. W.; Alavi, A. Stochastic Perturbation Theory: A Low-Scaling Approach to Correlated Electronic Energies. *Phys. Rev. Lett.* **2007**, *99*, 143001.

(151) Thom, A. J. W. Stochastic Coupled Cluster Theory. *Phys. Rev. Lett.* **2010**, *105*, 263004.

(152) Franklin, R. S. T.; Spencer, J. S.; Zoccante, A.; Thom, A. J. W. Linked Coupled Cluster Monte Carlo. *J. Chem. Phys.* **2016**, *144*, 044111.

(153) Spencer, J. S.; Thom, A. J. W. Developments in Stochastic Coupled Cluster Theory: The Initiator Approximation and Application to the Uniform Electron Gas. *J. Chem. Phys.* **2016**, *144*, 084108.

(154) Filip, M.-A.; Scott, C. J. C.; Thom, A. J. W. Multireference Stochastic Coupled Cluster. *J. Chem. Theory Comput.* **2019**, *15*, 6625.

(155) Scott, C. J. C.; Di Remigio, R.; Crawford, T. D.; Thom, A. J. W. Diagrammatic Coupled Cluster Monte Carlo. *J. Phys. Chem. Lett.* **2019**, *10*, 925.
(156) Scott, C. J. C.; Di Remigio, R.; Crawford, T. D.; Thom, A. J. W. Theory and Implementation of a Novel Stochastic Approach to Coupled Cluster. arXiv:2008.10514 2020,

(157) Čížek, J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods. J. Chem. Phys. 1966, 45, 4256.

(158) Čížek, J. On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules. Adv. Chem. Phys. 1969, 14, 35.

(159) Paldus, J.; Čížek, J.; Shavitt, I. Correlation Problems in Atomic and Molecular Systems. IV. Extended Coupled-Pair Many-Electron Theory and Its Application to the BH₃ Molecule. Phys. Rev. A 1972, 5, 50.

(160) Shavitt, I.; Bartlett, R. J. Many-Body Methods in Chemistry and Physics: Many-Body Perturbation Theory and Coupled-Cluster Theory; Cambridge University Press: Cambridge, UK, 2009.

(161) Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic-Structure Theory, 1st ed.; Wiley & Sons, Ltd.: West Sussex, UK, 2000.

(162) Xu, E.; Uejima, M.; Ten-no, S. L. Full Coupled-Cluster Reduction for Accurate Description of Strong Electron Correlation. Phys. Rev. Lett. 2018, 121, 113001.

(163) Deustua, J. E.; Shen, J.; Piecuch, P. Converging High-Level Coupled-Cluster Energetics by Monte Carlo Sampling and Moment Expansions. Phys. Rev. Lett. 2017, 119, 223003.

(164) Deustua, J. E.; Magoulas, I.; Shen, J.; Piecuch, P. Communication: Approaching Ex-
act Quantum Chemistry by Cluster Analysis of Full Configuration Interaction Quantum Monte Carlo Wave Functions. J. Chem. Phys. 2018, 149, 151101.

(165) Deustua, J. E.; Yuwono, S. H.; Shen, J.; Piecuch, P. Accurate Excited-State Energetics by a Combination of Monte Carlo Sampling and Equation-of-Motion Coupled-Cluster Computations. J. Chem. Phys. 2019, 150, 111101.

(166) Yuwono, S. H.; Chakraborty, A.; Deustua, J. E.; Shen, J.; Piecuch, P. Accelerating Convergence of Equation-of-Motion Coupled-Cluster Computations Using the Semi-Stochastic CC(P;Q) Formalism. Mol. Phys. Accepted for Publication.

(167) Paldus, J.; Čížek, J.; Takahashi, M. Approximate Account of the Connected Quadruply Excited Clusters in the Coupled-Pair Many-Electron Theory. Phys. Rev. A 1984, 30, 2193.

(168) Stolarczyk, L. Z. Complete Active Space Coupled-Cluster Method. Extension of Single-Reference Coupled-Cluster Method Using the CASSCF Wavefunction. Chem. Phys. Lett. 1994, 217, 1.

(169) Paldus, J.; Planelles, J. Valence Bond Corrected Single Reference Coupled Cluster Approach. I. General Formalism. Theor. Chim. Acta 1994, 89, 13.

(170) Planelles, J.; Paldus, J.; Li, X. Valence Bond Corrected Single Reference Coupled Cluster Approach. II. Application to PPP Model Systems. Theor. Chim. Acta 1994, 89, 33.

(171) Planelles, J.; Paldus, J.; Li, X. Valence Bond Corrected Single Reference Coupled Cluster Approach. III. Simple Model of Bond Breaking or Formation. Theor. Chim. Acta 1994, 89, 59.

(172) Piecuch, P.; Tobola, R.; Paldus, J. Approximate Account of Connected Quadruply
Excited Clusters in Single-Reference Coupled-Cluster Theory via Cluster Analysis of
the Projected Unrestricted Hartree-Fock Wave Function. Phys. Rev. A 1996, 54, 1210.

(173) Peris, G.; Planelles, J.; Paldus, J. Single-Reference CCSD Approach Employing Three-
and Four-Body CAS SCF Corrections: A Preliminary Study of a Simple Model. Int. J. Quantum
Chem. 1997, 62, 137.

(174) Li, X.; Paldus, J. Reduced Multireference CCSD Method: An Effective Approach to
Quasidegenerate States. J. Chem. Phys. 1997, 107, 6257.

(175) Peris, G.; Planelles, J.; Malrieu, J.-P.; Paldus, J. Perturbatively Selected CI as an
Optimal Source for Externally Corrected CCSD. J. Chem. Phys. 1999, 110, 11708.

(176) Li, X.; Paldus, J. Reduced Multireference Coupled Cluster Method with Singles and
Doubles: Perturbative Corrections for Triples. J. Chem. Phys. 2006, 124, 174101.

(177) Blankenbecler, R.; Scalapino, D. J.; Sugar, R. L. Monte Carlo Calculations of Coupled
Boson-Fermion Systems. Phys. Rev. D 1981, 24, 2278.

(178) Reynolds, P. J.; Ceperley, D.; Alder, B.; Lester, J. FixedNode Quantum Monte Carlo
for Molecules. J. Chem. Phys. 1982, 77, 5593.

(179) Reynolds, P. J.; Tobochnik, J.; Gould, H. Diffusion Quantum Monte Carlo. Computers
in Physics 1990, 4, 662.

(180) Foulkes, W. M. C.; Mitas, L.; Needs, R. J.; Rajagopal, G. Quantum Monte Carlo
Simulations of Solids. Rev. Mod. Phys. 2001, 73, 33.

(181) Casula, M.; Filippi, C.; Sorella, S. Diffusion Monte Carlo Method with Lattice Regu-
larization. Phys. Rev. Lett. 2005, 95, 100201.

(182) Dubecký, M. Noncovalent Interactions by Fixed-Node Diffusion Monte Carlo: Conver-
gence of Nodes and Energy Differences vs Gaussian Basis-Set Size. J. Chem. Theory
Comput. 2017, 13, 3626.
(183) Neuscamman, E.; Umrigar, C. J.; Chan, G. K.-L. Optimizing Large Parameter Sets in Variational Quantum Monte Carlo. Phys. Rev. B 2012, 85, 045103.

(184) Neuscamman, E. The Jastrow Antisymmetric Geminal Power in Hilbert Space: Theory, Benchmarking, and Application to a Novel Transition State. J. Chem. Phys. 2013, 139, 194105.

(185) Zhao, L.; Neuscamman, E. A Blocked Linear Method for Optimizing Large Parameter Sets in Variational Monte Carlo. J. Chem. Theory Comput. 2017, 13, 2604.

(186) Sabzevari, I.; Sharma, S. Improved Speed and Scaling in Orbital Space Variational Monte Carlo. J. Chem. Theory Comput. 2018, 14, 6276.

(187) Mahajan, A.; Sharma, S. Symmetry-Projected Jastrow Mean-Field Wave Function in Variational Monte Carlo. J. Phys. Chem. A 2019, 123, 3911.

(188) Sabzevari, I.; Mahajan, A.; Sharma, S. An Accelerated Linear Method for Optimizing Non-Linear Wavefunctions in Variational Monte Carlo. J. Chem. Phys. 2020, 152, 024111.

(189) Mahajan, A.; Sharma, S. Efficient Local Energy Evaluation for Multi-Slater Wave Functions in Orbital Space quantum Monte Carlo. arXiv:2008.06477 2020,

(190) Zhang, S.; Carlson, J.; Gubernatis, J. E. Constrained Path Monte Carlo Method for Fermion Ground States. Phys. Rev. B 1997, 55, 7464.

(191) Zhang, S.; Krakauer, H. Quantum Monte Carlo Method using Phase-Free Random Walks with Slater Determinants. Phys. Rev. Lett. 2003, 90, 136401.

(192) Al-Saidi, W. A.; Zhang, S.; Krakauer, H. Auxiliary-field Quantum Monte Carlo Calculations of Molecular Systems with a Gaussian Basis. Phys. Rev. Lett. 2006, 124, 224101.
(193) Motta, M.; Zhang, S. *Ab Initio* Computations of Molecular Systems by the Auxiliary-Field Quantum Monte Carlo Method. *WIREs Comput. Mol. Sci.* **2018**, *8*, e1364.

(194) Al-Saidi, W. A.; Zhang, S.; Krakauer, H. Bond Breaking with Auxiliary-Field Quantum Monte Carlo. *J. Chem. Phys.* **2007**, *127*, 144101.

(195) Lee, J.; Malone, F. D.; Morales, M. A. An Auxiliary-Field Quantum Monte Carlo Perspective on the Ground State of the Dense Uniform Electron Gas: An Investigation with Hartree-Fock Trial Wavefunctions. *J. Chem. Phys.* **2019**, *151*, 064122.

(196) Liu, Y.; Cho, M.; Rubenstein, B. *Ab Initio* Finite Temperature Auxiliary Field Quantum Monte Carlo. *J. Chem. Theory Comput.* **2018**, *14*, 4722.

(197) Liu, Y.; Shen, T.; Zhang, H.; Rubenstein, B. Unveiling the Finite Temperature Physics of Hydrogen Chains via Auxiliary Field Quantum Monte Carlo. *J. Chem. Theory Comput.* **2020**, *16*, 4298.

(198) Motta, M.; Zhang, S.; Chan, G. K.-L. Hamiltonian Symmetries in Auxiliary-Field Quantum Monte Carlo Calculations for Electronic Structure. *Phys. Rev. B* **2019**, *100*, 045127.

(199) Hao, H.; Shee, J.; Upadhyay, S.; Ataca, C.; Jordan, K. D.; Rubenstein, B. M. Accurate Predictions of Electron Binding Energies of Dipole-Bound Anions via Quantum Monte Carlo Methods. *J. Phys. Chem. Lett.* **2018**, *9*, 6185.

(200) Shee, J.; Arthur, E. J.; Zhang, S.; Reichman, D. R.; Friesner, R. A. Phaseless Auxiliary-Field Quantum Monte Carlo on Graphical Processing Units. *J. Chem. Theory Comput.* **2018**, *14*, 4109.

(201) Shee, J.; Rudshteyn, B.; Arthur, E. J.; Zhang, S.; Reichman, D. R.; Friesner, R. A. On Achieving High Accuracy in Quantum Chemical Calculations of 3d Transition Metal-Containing Systems: A Comparison of Auxiliary-Field Quantum Monte Carlo with
Coupled Cluster, Density Functional Theory, and Experiment for Diatomic Molecules. J. Chem. Theory Comput. 2019, 15, 2346.

(202) Shee, J.; Arthur, E. J.; Zhang, S.; Reichman, D. R.; Friesner, R. A. Singlet-Triplet Energy Gaps of Organic Biradicals and Polyacenes with Auxiliary-Field Quantum Monte Carlo. J. Chem. Theory Comput. 2019, 15, 4924.

(203) Motta, M.; Shee, J.; Zhang, S.; Chan, G. K.-L. Efficient Ab Initio Auxiliary-Field Quantum Monte Carlo Calculations in Gaussian Bases via Low-Rank Tensor Decomposition. J. Chem. Theory Comput. 2019, 15, 3510.

(204) White, S. R. Density Matrix Formulation for Quantum Renormalization Groups. Phys. Rev. Lett. 1992, 69, 2863.

(205) White, S. R. Density-Matrix Algorithms for Quantum Renormalization Groups. Phys. Rev. B 1993, 48, 10345.

(206) White, S. R.; Martin, R. L. Ab Initio Quantum Chemistry using the Density Matrix Renormalization Group. J. Chem. Phys. 1999, 110, 4127.

(207) Mitrushenkov, A. O.; Fano, G.; Ortolani, F.; Lingeri, R.; Palmieri, P. Quantum Chemistry using the Density Matrix Renormalization Group. J. Chem. Phys. 2001, 115, 6815.

(208) Chan, G. K.-L.; Head-Gordon, M. Highly Correlated Calculations with a Polynomial Cost Algorithm: A Study of the Density Matrix Renormalization Group. J. Chem. Phys. 2002, 116, 4462.

(209) Chan, G. K.-L. An Algorithm for Large Scale Density Matrix Renormalization Group Calculations. J. Chem. Phys. 2004, 120, 3172.

(210) Legeza, Ö.; Röder, J.; Hess, B. A. Controlling the Accuracy of the Density-Matrix
Renormalization-Group Method: The Dynamical Block State Selection Approach. Phys. Rev. B 2003, 67, 125114.

(211) Kurashige, Y.; Yanai, T. High-Performance Ab Initio Density Matrix Renormalization Group Method: Applicability to Large-Scale Multireference Problems for Metal Compounds. J. Chem. Phys. 2009, 130, 234114.

(212) Yanai, T.; Kurashige, Y.; Neuscamman, E.; Chan, G. K.-L. Spin-Adapted Density Matrix Renormalization Group Algorithms for Quantum Chemistry. J. Chem. Phys. 2010, 132, 024105.

(213) Moritz, G.; Hess, B. A.; Reiher, M. Convergence Behavior of the Density-Matrix Renormalization Group Algorithm for Optimized Orbital Orderings. J. Chem. Phys. 2005, 122, 024107.

(214) Moritz, G.; Reiher, M. Decomposition of Density Matrix Renormalization Group States into a Slater Determinant Basis. J. Chem. Phys. 2007, 126, 244109.

(215) Boguslawski, K.; Marti, K. H.; Reiher, M. Construction of CASCI-Type Wave Functions for Very Large Active Spaces. J. Chem. Phys. 2011, 134, 224101.

(216) Knecht, S.; Legeza, Ö.; Reiher, M. Communication: Four-Component Density Matrix Renormalization Group. J. Chem. Phys. 2014, 140, 041101.

(217) Sharma, S.; Chan, G. K.-L. Spin-Adapted Density Matrix Renormalization Group Algorithms for Quantum Chemistry. J. Chem. Phys. 2012, 136, 124121.

(218) Chan, G. K.-L.; Sharma, S. The Density Matrix Renormalization Group in Quantum Chemistry. Annu. Rev. Phys. Chem. 2011, 62, 465.

(219) Olivares-Amaya, R.; Hu, W.; Nakatani, N.; Sharma, S.; Yang, J.; Chan, G. K.-L. The Ab-Initio Density Matrix Renormalization Group in Practice. J. Chem. Phys. 2015, 142, 034102.
(220) Chan, G. K.-L.; Keselman, A.; Nakatani, N.; Li, Z.; White, S. R. Matrix Product Operators, Matrix Product States, and *Ab Initio* Density Matrix Renormalization Group Algorithms. *J. Chem. Phys.* **2016**, *145*, 014102.

(221) Schollwöck, U. The Density-Matrix Renormalization Group in the Age of Matrix Product States. *Ann. Phys.* **2011**, *326*, 96.

(222) Wouters, S.; Van Neck, D. The Density Matrix Renormalization Group for *Ab Initio* Quantum Chemistry. *Eur. Phys. J. D* **2014**, *68*, 272.

(223) Szalay, S.; Pfeffer, M.; Murg, V.; Barcza, G.; Verstraete, F.; Schneider, R.; Ledgeza, Ö. Tensor Product Methods and Entanglement Optimization for *Ab Initio* Quantum Chemistry. *Int. J. Quantum Chem.* **2015**, *115*, 1342.

(224) Yanai, T.; Kurashige, Y.; Mizukami, W.; Chalupský, J.; Lan, T. N.; Saitow, M. Density Matrix Renormalization Group for *Ab Initio* Calculations and Associated Dynamic Correlation Methods: A Review of Theory and Applications. *Int. J. Quantum Chem.* **2015**, *115*, 283.

(225) Marti, K. H.; Reiher, M. The Density Matrix Renormalization Group Algorithm in Quantum Chemistry. *Z. Phys. Chem.* **2010**, *224*, 583.

(226) Marti, K. H.; Reiher, M. New Electron Correlation Theories for Transition Metal Chemistry. *Phys. Chem. Chem. Phys.* **2011**, *13*, 6750.

(227) Knecht, S.; Hedegård, E. D.; Keller, S.; Kovyrsin, A.; Ma, Y.; Muolo, A.; Stein, C. J.; Reiher, M. New Approaches for *Ab Initio* Calculations of Molecules with Strong Electron Correlation. *Chimia* **2016**, *70*, 244.

(228) Baiardi, A.; Reiher, M. The Density Matrix Renormalization Group in Chemistry and Molecular Physics: Recent Developments and New Challenges. *J. Chem. Phys.* **2020**, *152*, 040903.
The notion of *strong* (as opposed to *weak*) electron correlation is meant to describe systems dominated by a large number of spin-coupled open-shell configurations.

White, S. R.; Scalapino, D. J. Density Matrix Renormalization Group Study of the Striped Phase in the 2D $t - J$ Model. *Phys. Rev. Lett.* **1998**, *80*, 1272.

Yan, S.; Huse, D. A.; White, S. R. Spin-Liquid Ground State of the $S = 1/2$ Kagome Heisenberg Antiferromagnet. *Science* **2011**, *332*, 1173.

Marti, K. H.; Ondík, I. M.; Moritz, G.; Reiher, M. Density Matrix Renormalization Group Calculations on Relative Energies of Transition Metal Complexes and Clusters. *J. Chem. Phys.* **2008**, *128*, 014104.

Reiher, M.; Wiebe, N.; Svore, K. M.; Wecker, D.; Troyer, M. Elucidating Reaction Mechanisms on Quantum Computers. *Proc. Nat. Acad. Sci.* **2017**, *114*, 7555.

Hachmann, J.; Dorando, J. J.; Avilés, M.; Chan, G. K.-L. The Radical Character of the Acenes: A Density Matrix Renormalization Group Study. *J. Chem. Phys.* **2007**, *127*, 134309.

Kurashige, Y.; Chan, G. K.-L.; Yanai, T. Entangled Quantum Electronic Wavefunctions of the Mn$_4$CaO$_5$ Cluster in Photosystem II. *Nat. Chem.* **2013**, *5*, 660.

Sharma, S.; Sivalingam, K.; Neese, F.; Chan, G. K.-L. Low-Energy Spectrum of Iron-Sulfur Clusters Directly from Many-Particle Quantum Mechanics. *Nat. Chem.* **2014**, *6*, 927.

Zheng, B.-X.; Chung, C.-M.; Corboz, P.; Ehlers, G.; Qin, M.-P.; Noack, R. M.; Shi, H.; White, S. R.; Zhang, S.; Chan, G. K.-L. Stripe Order in the Underdoped Region of the Two-Dimensional Hubbard Model. *Science* **2017**, *358*, 1155.
(238) Tubman, N. M.; Lee, J.; Takeshita, T. Y.; Head-Gordon, M.; Whaley, K. B. A Deterministic Alternative to the Full Configuration Interaction Quantum Monte Carlo Method. J. Chem. Phys. 2016, 145, 044112.

(239) Tubman, N. M.; Freeman, C. D.; Levine, D. S.; Hait, D.; Head-Gordon, M.; Whaley, K. B. Modern Approaches to Exact Diagonalization and Selected Configuration Interaction with the Adaptive Sampling CI Method. J. Chem. Theory Comput. 2020, 16, 2139.

(240) Tubman, N. M.; Levine, D. S.; Hait, D.; Head-Gordon, M.; Whaley, K. B. An Efficient Deterministic Perturbation Theory for Selected Configuration Interaction Methods. arXiv:1808.02049 2018.

(241) Holmes, A. A.; Tubman, N. M.; Umrigar, C. J. Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling. J. Chem. Theory Comput. 2016, 12, 3674.

(242) Sharma, S.; Holmes, A. A.; Jeanmairet, G.; Alavi, A.; Umrigar, C. J. Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory. J. Chem. Theory Comput. 2017, 13, 1595.

(243) Holmes, A. A.; Umrigar, C. J.; Sharma, S. Excited States Using Semistochastic Heat-Bath Configuration Interaction. J. Chem. Phys. 2017, 147, 164111.

(244) Li, J.; Otten, M.; Holmes, A. A.; Sharma, S.; Umrigar, C. J. Fast Semistochastic Heat-Bath Configuration Interaction. J. Chem. Phys. 2018, 149, 214110.

(245) Liu, W.; Hoffmann, M. R. SDS: The ‘Static-Dynamic-Static’ Framework for Strongly Correlated Electrons. Theor. Chem. Acc. 2014, 133, 1481.

(246) Liu, W.; Hoffmann, M. R. iCI: Iterative CI toward full CI. J. Chem. Theory Comput. 2016, 12, 1169.
(247) Lei, Y.; Liu, W.; Hoffmann, M. R. Further Development of SDSPT2 for Strongly Correlated Electrons. Mol. Phys. 2017, 115, 2696.

(248) Zhang, N.; Liu, W.; Hoffmann, M. R. Iterative Configuration Interaction with Selection. J. Chem. Theory Comput. 2020, 16, 2296.

(249) Wang, Z.; Li, Y.; Lu, J. Coordinate Descent Full Configuration Interaction. J. Chem. Theory Comput. 2019, 15, 3558.

(250) Li, Y.; Lu, J. Optimal Orbital Selection for Full Configuration Interaction (OptOrbFCI): Pursuing the Basis Set Limit under a Budget. J. Chem. Theory Comput. 2020, 16, 6207.

(251) Greene, S. M.; Webber, R. J.; Weare, J.; Berkelbach, T. C. Beyond Walkers in Stochastic Quantum Chemistry: Reducing Error Using Fast Randomized Iteration. J. Chem. Theory Comput. 2019, 15, 4834.

(252) Greene, S. M.; Webber, R. J.; Weare, J.; Berkelbach, T. C. Improved Fast Randomized Iteration Approach to Full Configuration Interaction. J. Chem. Theory Comput. 2020, 16, 5572.

(253) Coe, J. P. Machine Learning Configuration Interaction. J. Chem. Theory Comput. 2018, 14, 5739.

(254) Coe, J. P. Machine Learning Configuration Interaction for Ab Initio Potential Energy Curves. J. Chem. Theory Comput. 2019, 15, 6179.

(255) Schriber, J. B.; Evangelista, F. A. Communication: An Adaptive Configuration Interaction Approach for Strongly Correlated Electrons with Tunable Accuracy. J. Chem. Phys. 2016, 144, 161106.

(256) Zhang, T.; Evangelista, F. A. A Deterministic Projector Configuration Interaction
Approach for the Ground State of Quantum Many-Body Systems. J. Chem. Theory Comput. 2016, 12, 4326.

(257) Schriber, J. B.; Evangelista, F. A. Adaptive Configuration Interaction for Computing Challenging Electronic Excited States with Tunable Accuracy. J. Chem. Theory Comput. 2017, 13, 5354.

(258) Schriber, J. B.; Hannon, K. P.; Li, C.; Evangelista, F. A. A Combined Selected Configuration Interaction and Many-Body Treatment of Static and Dynamical Correlation in Oligoacenes. J. Chem. Theory Comput. 2018, 10.1021/acs.jctc.8b00877.

(259) Abraham, V.; Mayhall, N. J. Selected Configuration Interaction in a Basis of Cluster State Tensor Products. J. Chem. Theory Comput. 2020, 16, 6098.

(260) Giner, E.; Scemama, A.; Caffarel, M. Using Perturbatively Selected Configuration Interaction in Quantum Monte Carlo Calculations. Can. J. Chem. 2013, 91, 879.

(261) Giner, E.; Scemama, A.; Caffarel, M. Fixed-Node Diffusion Monte Carlo Potential Energy Curve of the Fluorine Molecule F_2 Using Selected Configuration Interaction Trial Wavefunctions. J. Chem. Phys. 2015, 142, 044115.

(262) Garniron, Y.; Scemama, A.; Giner, E.; Caffarel, M.; Loos, P.-F. Selected Configuration Interaction Dressed by Perturbation. J. Chem. Phys. 2018, 149, 064103.

(263) Loos, P.-F.; Scemama, A.; Blondel, A.; Garniron, Y.; Caffarel, M.; Jacquemin, D. A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks. J. Chem. Theory Comput. 2018, 14, 4360.

(264) Loos, P.-F.; Boggio-Pasqua, M.; Scemama, A.; Caffarel, M.; Jacquemin, D. Reference Energies for Double Excitations. J. Chem. Theory Comput. 2019, 15, 1939.

(265) Blunt, N. S. A Hybrid Approach to Extending Selected Configuration Interaction and
Full Configuration Interaction Quantum Monte Carlo. J. Chem. Phys. 2019, 151, 174103.

(266) Chien, A. D.; Holmes, A. A.; Otten, M.; Umrigar, C. J.; Sharma, S.; Zimmerman, P. M. Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction. J. Phys. Chem. A 2018, 122, 2714.

(267) Hait, D.; Tubman, N. M.; Levine, D. S.; Whaley, K. B.; Head-Gordon, M. What Levels of Coupled Cluster Theory Are Appropriate for Transition Metal Systems? A Study Using Near-Exact Quantum Chemical Values for 3d Transition Metal Binary Compounds. J. Chem. Theory Comput. 2019, 15, 5370.

(268) Loos, P.-F.; Lipparini, F.; Boggio-Pasqua, M.; Scemama, A.; Jacquemin, D. A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Medium Sized Molecules. J. Chem. Theory Comput. 2020, 16, 1711.

(269) Loos, P.-F.; Scemama, A.; Jacquemin, D. The Quest For Highly Accurate Excitation Energies: A Computational Perspective. J. Phys. Chem. Lett. 2020, 11, 2374.

(270) Fulde, P.; Stoll, H. Dealing with the Exponential Wall in Electronic Structure Calculations. J. Chem. Phys. 2017, 146, 194107.

(271) Stoll, H. Toward a Wavefunction-Based Treatment of Strong Electron Correlation in Extended Systems by Means of Incremental Methods. J. Chem. Phys. 2019, 151, 044104.

(272) Nesbet, R. K. Atomic Bethe-Goldstone Equations. I. The Be Atom. Phys. Rev. 1967, 155, 51.

(273) Nesbet, R. K. Atomic Bethe-Goldstone Equations. II. The Ne Atom. Phys. Rev. 1967, 155, 56.
(274) Nesbet, R. K. Atomic Bethe-Goldstone Equations. III. Correlation Energies of Ground States of Be, B, C, N, O, F, and Ne. Phys. Rev. 1968, 175, 2.

(275) Harris, F. E.; Monkhorst, H. J.; Freeman, D. L. Algebraic and Diagrammatic Methods in Many-Fermion Theory, 1st ed.; Oxford University Press, Inc.: New York, USA, 1992.

(276) Xantheas, S. S. Ab Initio Studies of Cyclic Water Clusters (H₂O)_n, n = 1 − 6. II. Analysis of Many-Body Interactions. J. Chem. Phys. 1994, 100, 7523.

(277) Kaplan, I. G.; Santamaria, R.; Novaro, O. Non-Additive Forces in Atomic Clusters. Mol. Phys. 1995, 84, 105.

(278) Stoll, H. The Correlation Energy of Crystalline Silicon. Chem. Phys. Lett. 1992, 191, 548.

(279) Stoll, H. Correlation Energy of Diamond. Phys. Rev. B 1992, 46, 6700.

(280) Stoll, H. On the Correlation Energy of Graphite. J. Chem. Phys. 1992, 97, 8449.

(281) Paulus, B.; Rosciszewski, K.; Gaston, N.; Schwerdtfeger, P.; Stoll, H. Convergence of the Ab Initio Many-Body Expansion for the Cohesive Energy of Solid Mercury. Phys. Rev. B 2004, 70, 165106.

(282) Stoll, H.; Paulus, B.; Fulde, P. On the Accuracy of Correlation-Energy Expansions in Terms of Local Increments. J. Chem. Phys. 2005, 123, 144108.

(283) Friedrich, J.; Hanrath, M.; Dolg, M. Fully Automated Implementation of the Incremental Scheme: Application to CCSD Energies for Hydrocarbons and Transition Metal Compounds. J. Chem. Phys. 2007, 126, 154110.

(284) Dahlke, E. E.; Truhlar, D. G. Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters. J. Chem. Theory Comput. 2007, 3, 46.

49
(285) Leverentz, H. R.; Maerzke, K. A.; Keasler, S. J.; Siepmann, J. I.; Truhlar, D. G.
Electrostatically Embedded Many-Body Method for Dipole Moments, Partial Atomic
Charges, and Charge Transfer. Phys. Chem. Chem. Phys. 2012, 14, 7669.

(286) Mach, T. J.; Crawford, T. D. Computing Optical Rotation via an N-Body Approach.
Theor. Chem. Acc. 2014, 133, 1449.

(287) Gordon, M. S.; Fedorov, D. G.; Pruitt, S. R.; Slipchenko, L. V. Fragmentation Meth-
ods: A Route to Accurate Calculations on Large Systems. Chem. Rev. 2012, 112, 632.

(288) Yao, K.; Herr, J. E.; Parkhill, J. The Many-Body Expansion Combined with Neural
Networks. J. Chem. Phys. 2017, 146, 014106.

(289) Lan, T. N.; Zgid, D. Generalized Self-Energy Embedding Theory. J. Phys. Chem. Lett.
2017, 8, 2200.

(290) Richard, R. M.; Lao, K. U.; Herbert, J. M. Understanding the Many-Body Expansion
for Large Systems. I. Precision Considerations. J. Chem. Phys. 2014, 141, 014108.

(291) Richard, R. M.; Lao, K. U.; Herbert, J. M. Aiming for Benchmark Accuracy with the
Many-Body Expansion. Acc. Chem. Res. 2014, 47, 2828.

(292) Bytautas, L.; Ruedenberg, K. Correlation Energy Extrapolation by Intrinsic Scaling.
I. Method and Application to the Neon Atom. J. Chem. Phys. 2004, 121, 10905.

(293) Bytautas, L.; Ruedenberg, K. The Range of Electron Correlation between Localized
Molecular Orbitals. A Full Configuration Interaction Analysis for the NCCN Molecule.
J. Phys. Chem. A 2010, 114, 8601.

(294) Boschen, J. S.; Theis, D.; Ruedenberg, K.; Windus, T. L. Correlation Energy Extrap-
olation by Many-Body Expansion. J. Phys. Chem. A 2017, 121, 836.
(295) Zimmerman, P. M. Incremental Full Configuration Interaction. J. Chem. Phys. 2017, 146, 104102.

(296) Zimmerman, P. M. Strong Correlation in Incremental Full Configuration Interaction. J. Chem. Phys. 2017, 146, 224104.

(297) Zimmerman, P. M. Singlet-Triplet Gaps through Incremental Full Configuration Interaction. J. Phys. Chem. A 2017, 121, 4712.

(298) Zimmerman, P. M.; Rask, A. E. Evaluation of Full Valence Correlation Energies and Gradients. J. Chem. Phys. 2019, 150, 244117.

(299) Eriksen, J. J.; Lipparini, F.; Gauss, J. Virtual Orbital Many-Body Expansions: A Possible Route towards the Full Configuration Interaction Limit. J. Phys. Chem. Lett. 2017, 8, 4633.

(300) Eriksen, J. J.; Gauss, J. Many-Body Expanded Full Configuration Interaction. I. Weakly Correlated Regime. J. Chem. Theory Comput. 2018, 14, 5180.

(301) Eriksen, J. J.; Gauss, J. Many-Body Expanded Full Configuration Interaction. II. Strongly Correlated Regime. J. Chem. Theory Comput. 2019, 15, 4873.

(302) Eriksen, J. J.; Gauss, J. Generalized Many-Body Expanded Full Configuration Interaction Theory. J. Phys. Chem. Lett. 2019, 10, 7910.

(303) Eriksen, J. J.; Gauss, J. Ground and Excited State First-Order Properties in Many-Body Expanded Full Configuration Interaction Theory. J. Chem. Phys. 2020, 153, 154107.

(304) Shaik, S. S.; Hiberty, P. C. A Chemist’s Guide to Valence Bond Theory, 1st ed.; John Wiley & Sons, Inc., 2007.

(305) Chen, Z.; Wu, W. Ab Initio Valence Bond Theory: A Brief History, Recent Developments, and Near Future. J. Chem. Phys. 2020, 153, 090902.
(306) Jiménez-Hoyos, C. A. Approaching the Full Configuration Interaction Ground State from an Arbitrary Wavefunction with Gradient Descent and Quasi-Newton Algorithms. arXiv:2010.02027 2020,

(307) Ivanic, J.; Ruedenberg, K. Identification of Deadwood in Configuration Spaces through General Direct Configuration Interaction. Theor. Chem. Acc. 2001, 106, 339.

(308) Bytautas, L.; Ruedenberg, K. A Priori Identification of Configurational Deadwood. Chem. Phys. 2009, 356, 64.

(309) Epstein, P. S. The Stark Effect From the Point of View of Schroedinger's Quantum Theory. Phys. Rev. 1926, 28, 695.

(310) Nesbet, R. K. Configuration Interaction in Orbital Theories. Proc. R. Soc. London, Ser. A 1955, 230, 312.

(311) Møller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618.

(312) Eriksen, J. J.; Anderson, T. A.; Deustua, J. E.; Ghanem, K.; Hait, D.; Hoffmann, M. R.; Lee, S.; Levine, D. S.; Magoulas, I.; Shen, J.; Tubman, N. M.; Whaley, K. B.; Xu, E.; Yao, Y.; Zhang, N.; Alavi, A.; Chan, G. K.-L.; Head-Gordon, M.; Liu, W.; Piecuch, P.; Sharma, S.; Ten-no, S. L.; Umrigar, C. J.; Gauss, J. The Ground State Electronic Energy of Benzene. J. Phys. Chem. Lett. 2020, 11, 8922.

(313) Cooper, D. L.; Gerratt, J.; Raimondi, M. The Electronic Structure of the Benzene Molecule. Nature 1986, 323, 699.

(314) Harcourt, R. D. The Electronic Structure of the Benzene Molecule. Nature 1987, 329, 491.

(315) Messmer, R. P.; Schultz, P. A. The Electronic Structure of the Benzene Molecule. Nature 1987, 329, 492.
(316) Gauss, J.; Stanton, J. F. The Equilibrium Structure of Benzene. J. Phys. Chem. A 2000, 104, 2865.

(317) Yang, J.; Hu, W.; Usvyat, D.; Matthews, D. A.; Schütz, M.; Chan, G. K.-L. Ab Initio Determination of the Crystalline Benzene Lattice Energy to Sub-Kilojoule/Mole Accuracy. Science 2014, 345, 640.

(318) Liu, Y.; Kilby, P.; Frankcombe, T. J.; Schmidt, T. W. The Electronic Structure of Benzene from a Tiling of the Correlated 126-Dimensional Wavefunction. Nat. Commun. 2020, 11, 1210.

(319) Dunning Jr., T. H. Gaussian Basis Sets for use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007.

(320) Lee, J.; Malone, F. D.; Reichman, D. R. Note: The Performance of Phaseless Auxiliary-Field Quantum Monte Carlo on the Ground State Electronic Energy of Benzene. arXiv:2008.04736 2020,

(321) Loos, P.-F.; Damour, Y.; Scemama, A. Note: The Performance of CIPSI on the Ground State Electronic Energy of Benzene. arXiv:2008.11145 2020,

(322) Xu, E.; Uejima, M.; Ten-no, S. L. Towards Near-Exact Solutions of Molecular Electronic Structure: Full Coupled-Cluster Reduction with a Second-Order Perturbative Correction. arXiv:2010.01850 2020,

(323) The polyfit() least-squares polynomial fitting function of the NumPy Python module was used throughout in all extrapolations.

(324) Ghanem, K.; Lozovoi, A. Y.; Alavi, A. Unbiasing the Initiator Approximation in Full Configuration Interaction Quantum Monte Carlo. J. Chem. Phys. 2019, 151, 224108.

(325) Blunt, N. S. An Efficient and Accurate Perturbative Correction to Initiator Full Configuration Interaction Quantum Monte Carlo. J. Chem. Phys. 2018, 148, 221101.
(326) Ladóczki, B.; Uejima, M.; Ten-no, S. L. Third-Order Epstein-Nesbet Perturbative Correction to the Initiator Approximation of Configuration Space Quantum Monte Carlo. J. Chem. Phys. 2020, 153, 114112.

(327) Private correspondence with Garnet K.-L. Chan, Caltech, CA, USA.

(328) Flyvbjerg, H.; Petersen, H. G. Error Estimates on Averages of Correlated Data. J. Chem. Phys. 1989, 91, 461.

(329) Kinoshita, T.; Hino, O.; Bartlett, R. J. Coupled-Cluster Method Tailored by Configuration Interaction. J. Chem. Phys. 2005, 123, 074106.

(330) Hino, O.; Kinoshita, T.; Chan, G. K.-L.; Bartlett, R. J. Tailored Coupled Cluster Singles and Doubles Method Applied to Calculations on Molecular Structure and Harmonic Vibrational Frequencies of Ozone. J. Chem. Phys. 2006, 124, 114311.

(331) Veis, L.; Antalík, A.; Brabec, J.; Neese, F.; Legeza, Ö.; Pittner, J. Coupled Cluster Method with Single and Double Excitations Tailored by Matrix Product State Wave Functions. J. Phys. Chem. Lett. 2016, 7, 4072.

(332) Vitale, E.; Alavi, A.; Kats, D. FCIQMC-Tailored Distinguishable Cluster Approach. J. Chem. Theory Comput. 2020, 16, 5621.

(333) Monkhorst, H. J. Calculation of Properties with the Coupled-Cluster Method. Int. J. Quantum. Chem. 1977, 12, 421.

(334) Lehtola, S.; Tubman, N. M.; Whaley, K. B.; Head-Gordon, M. Cluster Decomposition of Full Configuration Interaction Wave Functions: A Tool for Chemical Interpretation of Systems with Strong Correlation. J. Chem. Phys. 2017, 147, 154105.

(335) Paldus, J. Externally and Internally Corrected Coupled Cluster Approaches: An Overview. J. Math. Chem. 2017, 55, 477.
(336) Purvis, III, G. D.; Bartlett, R. J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. *J. Chem. Phys.* **1982**, *76*, 1910.

(337) Pipek, J.; Mezey, P. G. A Fast Intrinsic Localization Procedure Applicable for *Ab Initio* and Semiempirical Linear Combination of Atomic Orbital Wave Functions. *J. Chem. Phys.* **1989**, *90*, 4916.

(338) LeBlanc, J. P. F.; Antipov, A. E.; Becca, F.; Bulik, I. W.; Chan, G. K.-L.; Chung, C.-M.; Deng, Y.; Ferrero, M.; Henderson, T. M.; Jiménez-Hoyos, C. A.; Kozik, E.; Liu, X.-W.; Millis, A. J.; Prokof’ev, N. V.; Qin, M.; Scuseria, G. E.; Shi, H.; Svistunov, B. V.; Tocchio, L. F.; Tupitsyn, I. S.; White, S. R.; Zhang, S.; Zheng, B.-X.; Zhu, Z.; Gull, E. Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms. *Phys. Rev. X* **2015**, *5*, 041041.

(339) Motta, M.; Ceperley, D. M.; Chan, G. K.-L.; Gomez, J. A.; Gull, E.; Guo, S.; Jiménez-Hoyos, C. A.; Lan, T. N.; Li, J.; Ma, F.; Millis, A. J.; Prokof’ev, N. V.; Ray, U.; Scuseria, G. E.; Sorella, E. M.; Stoudenmire; Sun, Q.; Tupitsyn, I. S.; White, S. R.; Zgid, D.; Zhang, S. Towards the Solution of the Many-Electron Problem in Real Materials: Equation of State of the Hydrogen Chain with State-of-the-Art Many-Body Methods. *Phys. Rev. X* **2017**, *7*, 031059.

(340) Williams, K. T.; Yao, Y.; Li, J.; Chen, L.; Shi, H.; Motta, M.; Niu, C.; Ray, U.; Guo, S.; Anderson, R. J.; Li, J.; Tran, L. N.; Yeh, C.-N.; Mussard, B.; Sharma, S.; Bruneval, F.; van Schilfgaarde, M.; Booth, G. H.; Chan, G. K.-L.; Zhang, S.; Gull, E.; Zgid, D.; Millis, A.; Umrigar, C. J.; Wagner, L. K. Direct Comparison of Many-Body Methods for Realistic Electronic Hamiltonians. *Phys. Rev. X* **2020**, *10*, 011041.

(341) Li, J.; Yao, Y.; Holmes, A. A.; Otten, M.; Sun, Q.; Sharma, S.; Umrigar, C. J. Accurate Many-Body Electronic Structure Near the Basis Set Limit: Application to the Chromium Dimer. *Phys. Rev. Research* **2020**, *2*, 012015(R).
(342) Schäfer, A.; Horn, H.; Ahlrichs, R. Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571.

(343) The reported (quartic) scaling of AFQMC is for each step in time. However, the stochastic error intrinsic to the method will generally scale with the size of the system, so the number of time-steps required for the sampling will necessarily depend on how one chooses to measure error. In order to reach a fixed statistical error—regardless of the size of the system—the scaling actually increases to $O(N^6)$. See, for instance, Ref. 203 for additional details.

(344) Guo, S.; Li, Z.; Chan, G. K.-L. A Perturbative Density Matrix Renormalization Group Algorithm for Large Active Spaces. J. Chem. Theory Comput. 2018, 14, 4063.

(345) Guo, S.; Li, Z.; Chan, G. K.-L. Communication: An Efficient Stochastic Algorithm for the Perturbative Density Matrix Renormalization Group in Large Active Spaces. J. Chem. Phys. 2018, 148, 221104.

(346) Mardirossian, N.; McClain, J. D.; Chan, G. K.-L. Lowering of the Complexity of Quantum Chemistry Methods by Choice of Representation. J. Chem. Phys. 2018, 148, 044106.

(347) Chan, G. K.-L.; Kállay, M.; Gauss, J. State-Of-The-Art Density Matrix Renormalization Group and Coupled Cluster Theory Studies of the Nitrogen Binding Curve. J. Chem. Phys. 2004, 121, 6110.

(348) Oliphant, N.; Adamowicz, L. Coupled-Cluster Method Truncated at Quadruples. J. Chem. Phys. 1991, 95, 6645.

(349) Kucharski, S. A.; Bartlett, R. J. The Coupled-Cluster Single, Double, Triple, and Quadruple Excitation Method. J. Chem. Phys. 1992, 97, 4282.
(350) Matthews, D. A.; Stanton, J. F. Accelerating the Convergence of Higher-Order Coupled Cluster Methods. J. Chem. Phys. 2015, 143, 204103.

(351) Matthews, D. A.; Stanton, J. F. Non-Orthogonal Spin-Adaptation of Coupled Cluster Methods: A New Implementation of Methods Including Quadruple Excitations. J. Chem. Phys. 2015, 142, 064108.

(352) Stair, N. H.; Evangelista, F. A. Exploring Hilbert Space on a Budget: Novel Benchmark Set and Performance Metric for Testing Electronic Structure Methods in the Regime of Strong Correlation. J. Chem. Phys. 2020, 153, 104108.

(353) Boys, S. F.; Handy, N. C. The Determination of Energies and Wavefunctions with Full Electronic Correlation. Proc. R. Soc. A Math. Phys. Eng. Sci. 1969, 310, 43.

(354) Handy, N. C. Towards an Understanding of the Form of Correlated Wavefunctions for Atoms. J. Chem. Phys. 1973, 58, 279.

(355) Luo, H.; Alavi, A. Combining the Transcorrelated Method with Full Configuration Interaction Quantum Monte Carlo: Application to the Homogeneous Electron Gas. J. Chem. Theory Comput. 2018, 14, 1403.

(356) Dobrzańczuk, W.; Luo, H.; Alavi, A. Compact Numerical Solutions to the Two-Dimensional Repulsive Hubbard Model Obtained via Nonunitary Similarity Transformations. Phys. Rev. B 2019, 99, 075119.

(357) Cohen, A. J.; Luo, H.; Guther, K.; Dobrzańczuk, W.; Tew, D. P.; Alavi, A. Similarity Transformation of the Electronic Schrödinger Equation via Jastrow Factorization. J. Chem. Phys. 2019, 151, 061101.

(358) Motta, M.; Gujarati, T. P.; Rice, J. E.; Kumar, A.; Masteran, C.; Latone, J. A.; Lee, E.; Valeev, E. F.; Takeshita, T. Y. Quantum Simulation of Electronic Structure with a Transcorrelated Hamiltonian: Improved Accuracy with a Smaller
Footprint on the Quantum Computer. Phys. Chem. Chem. Phys. 2020, DOI: 10.1039/D0CP04106H.

(359) McArdle, S.; Tew, D. P. Improving the Accuracy of Quantum Computational Chemistry Using the Transcorrelated Method. arXiv:2006.11181 2020,

(360) Baiardi, A.; Reiher, M. Transcorrelated Density Matrix Renormalization Group. arXiv:2009.02614 2020,

(361) O’Rourke, M. J.; Li, Z.; Chan, G. K.-L. Efficient Representation of Long-Range Interactions in Tensor Network Algorithms. Phys. Rev. B 2018, 98, 205127.

(362) Li, Z.; O’Rourke, M. J.; Chan, G. K.-L. Generalization of the Exponential Basis for Tensor Network Representations of Long-Range Interactions in Two and Three Dimensions. Phys. Rev. B 2019, 100, 155121.

(363) O’Rourke, M. J.; Chan, G. K.-L. Simplified and Improved Approach to Tensor Network Operators in Two Dimensions. Phys. Rev. B 2020, 101, 205142.