Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates from Egyptian Patients

Reem M Hassan
Cairo University Kasr Alainy Faculty of Medicine

Sherifa T Salem
Cairo University Kasr Alainy Faculty of Medicine

Saly Ismail Mostafa Hassan
Cairo University Kasr Alainy Faculty of Medicine

Asmaa Hegab (asmahgab@kasralainy.edu.eg)
Cairo University Kasr Alainy Faculty of Medicine

Yasmine S Elkholy
Cairo University Kasr Alainy Faculty of Medicine

Research

Keywords: carbapenem resistant A. baumannii (CR-AB), blaOXA-23, ISAba1, blaNDM-1 and bla KPC

DOI: https://doi.org/10.21203/rs.3.rs-123397/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Acinetobacter baumannii (A. baumannii) represents a global threat owing to its ability to resist most of the currently available antimicrobial agents. Moreover, emergence of carbapenem resistant A. baumannii (CR-AB) isolates limits the available treatment options. Enzymatic degradation by variety of β-lactamases, have been identified as the most common mechanism of carbapenem resistance in A. baumannii. The alarming increase in the prevalence of CR-AB necessitates continuous screening and molecular characterization to appreciate the problem. The present study was performed to assess the prevalence and characterize carbapenemases among 206 CR-AB isolated from various clinical specimens collected from different intensive care units at Kasr Al-Aini Hospital.

All isolates were confirmed to be A. baumannii by detection of the blaOXA-51-like gene. Molecular screening of 13 common Ambler class bla carbapenemases genes in addition to insertion sequence (IS-1) upstream OXA-23 was performed by using four sets of multiplex PCR, followed by identification using gene sequencing technology. Among the investigated genes, the prevalence of blaOXA-23, and blaOXA-58 were 77.7%, and 1.9%, respectively. The ISAb1 was detected in 10% of the blaOXA-23 positive isolates. The prevalence of metallo-β-lactamases (MBLs) studied; blaNDM-1, blaSPM, blaVIM, blaSIM-1 were 11.7%, 6.3%, 0.5%, and 0.5% respectively. One of class A; bla KPC was detected in 10.7% of the investigated isolates. blaOXA-24/40, blaIMP, blaGES, blaVEB and blaGIM were not detected in any of the studied isolates. Moreover, 18.4% of the isolates have shown to harbor two or more of the screened bla genes. We concluded that the most prevalent type of β-lactamases genes among CR-AB isolates collected from Egyptian patients were blaOXA-23 followed by blaNDM-1 and blaKPC.

Background:

A. baumannii has been identified as an opportunistic nosocomial pathogen, which is tolerant to wide ranges of temperature, pH, and humidity and is able to survive on dry surfaces for months, so it is recognized as a real challenge to infection control measures (1). It causes a wide variety of infections including pneumonia, urinary tract infection, skin and soft tissue infections, central line associated bloodstream infections and others (2).

A. baumannii represents a global threat owing to its ability to resist most of the currently available antimicrobial agents including β- lactams, fluoroquinolones and aminoglycosides (3). Un-regulated use of antibiotics in healthcare settings results in emergence of multidrug- resistance added to the intrinsic resistance of A. baumannii especially in intensive care units (4). Moreover, emergence of carbapenem resistant A. baumannii isolates limit the available treatment options for such infections (5).

The most common mechanism responsible for carbapenem resistance among A. baumannii is enzymatic degradation by variety of β-lactamases, the four β-lactamase classes (A, B, C and D) have been detected in A. baumannii (6, 7, 8)
Two intrinsic types of β-lactamases can be identified in almost all A. baumannii isolates; AmpC-type cephalosporinases and OXA-51/69 variants. Both of which are chromosomally located, and have little impact on carbapenems, if any (9).

However, higher carbapenem hydrolysis rates have been reported to result from the acquisition of insertion sequences (ISs) that affect the expression of blaOXA genes encoding oxacillinases (10). These elements are the most abundant transposable elements capable of causing mutations and rearrangements in the genome, contributing to the spread of resistance and virulence determinants among bacterial species (11). Insertion sequence A. baumannii-1 (ISAba1) upstream blaOXA-51 like genes, belong to the IS4 family and has been associated with increased gene expression and hence carbapenem resistance (8, 12).

Till date, carbapenem-hydrolyzing class D β-lactamases, the so called (CHDLs) also named oxacillinases (OXAs) for their effect on oxacillin (13) seem to be the most common mechanism of carbapenem resistance in A. baumannii (8). Class D β-lactamases, includes six subgroups:

The intrinsic OXA-51 and the acquired OXA-23-like, OXA-58-like, OXA-24/40-like, OXA-235-like and OXA-143-like β-lactamases (13).

Additionally, class B β-lactamases, also known as MBLs play a less important yet more potent role in carbapenem resistance among A. baumannii isolates (14).

Four MBLs are known in A. baumannii: New Delhi metallo-β-lactamase (NDM), Imipenemase (IMP), Seoul Imipenemase (SIM) and Verona integron-encoded metallo-β-lactamase (VIM) (14, 15). Two variants of NDM (NDM-1 and NDM-2) have been reported in A. baumannii clinical isolates in Egypt (16, 17).

On the contrary of class B and D, few of class A including K. pneumonia carbapenemase (KPC) type enzymes; blaKPC and blaGES were also incriminated of carbapenem resistance among A. baumannii (18).

Other ESBLs were identified among A. baumannii isolates and confer resistance to broad spectrum cephalosporins e.g. blaPER, blaVEB and others (19).

Despite of the global increase at alarming rates of CR-AB, few studies were devoted to this organism in Egypt (20, 21, 22). More data are crucial to appreciate the problem objectively and to control further evolution of CR-AB.

The aim of the present study was to characterize and to assess the prevalence of carbapenemases among 206 CR-AB clinical isolates from Egyptian patients.

Methods:
This cross sectional study involved a total of 206 clinical, non-duplicate, isolates of CR-AB, which were collected over one year duration from December 2018 to December 2019. The research study was approved by the institutional Review Board of Kasr Al-Aini Hospital and the Research Ethics Committee at Faculty of Medicine, Cairo University.

I. Bacterial Isolates:

The isolates were collected at the central microbiology laboratory at Kasr Al-Aini Hospital. The isolates were obtained from different clinical specimens, including wound swabs, respiratory secretions, blood cultures, urine samples and others including body fluid and drains collected from inpatients admitted at intensive care units and other different departments at Kasr Al-Aini Hospital.

The isolates were identified phenotypically by colonial morphology, Gram-staining and conventional biochemical testing. All isolates grown as lactose non fermenter colonies on MacConkey agar, showing Gram negative coccobaciili were preliminary identified as *Acinetobacter* spp. (23).

II. Carbapenem susceptibility testing:

Demonstration of carbapenem susceptibility among all of the initially identified *Acinetobacter* clinical isolates was conducted by the standard disc diffusion technique on Müller-Hinton agar using imipenem and meropenem discs (Oxoid, Basingstoke, United Kingdom), and interpreted following the Clinical and Laboratory Standards Institute (CLSI) (24).

III. Molecular Identification

All CR-AB isolates were selected and submitted to DNA extraction by the heat shock method, followed by genotypic identification of *A. baumannii* by detection of the blaOXA-51-like gene (25). The 206 isolates were confirmed to be *A. baumannii* were further investigated.

IV. Molecular detection of different carbapenemases encoding genes and insertion sequence (IS) blaOXA-23

Four sets of multiplex PCR were done including common Ambler class bla genes that cause carbapenem resistance; multiplex 1 included blaOXA-23, blaOXA-24 and blaOXA-58 (26, 27), multiplex 2 included blaVIM, blaKPC and blaIMP, multiplex 3 included blaGES, blaPER and blaVEB (28), while multiplex 4 contained blaGIM, blaSIM-1, blaSPM and blaNDM-1 (28, 29). Presence of IS*Aba1* upstream of blaOXA-23 was investigated using IS*Aba1*F/OXA-23-likeR (12). PCR was performed using PCR-EZ D-PCR Master Mix (Bio Basic Inc., Canada) in a Bio-Rad Thermal Cycler PTC-200. Briefly, an initial denaturation step of 95 °C for 15 min, followed by 30 cycles of denaturation at 94 °C for 30 sec, an annealing temperature dependent on the melting temperature of the primer pair (multiplex I and IS*Aba1*F/OXA-23-likeR: 52 °C; multiplex II and III: 57 °C and multiplex IV: 60 °C) and extension at 72 °C for 90 sec, followed by the final extension step at 70 °C for 10 min. A negative control (sterile nuclease free water) was included for all PCR assays. Amplified PCR products were purified using PureLink® PCR Purification Kit (Invitrogen,
Carlsbad, CA, USA) according to manufacturer’s instructions. A BigDye Terminator v3.1 cycle sequencing kit (Applied Biosystems, Foster City, CA, USA) was used to sequence the PCR amplified products from the positive cases according to manufacturer’s instructions. The sequenced products were run on a 3500 Genetic Analyzer (Applied Biosystems). Sequences were compared with those available in the GenBank database using the basic local alignment search tool (BLAST, www.ncbi.nlm.nih.gov).

Results:

A total of 206 clinical isolates of CR-AB were collected from different clinical specimens mainly from different ICUs (n = 154, 74.8%) at Kasr Al-Aini Hospital. Most of the CR-AB detected were isolated from wound swabs (n = 77), respiratory secretions (n = 56), blood cultures (n = 37), and urine samples (n = 27) (Table 1).

All isolates were confirmed to be *A. baumannii* by detecting blaOXA-51-like gene among all (100%) the studied isolates (Table 2).

Among the investigated genes, class D blaOXA-23 was the most commonly detected gene (77.7%) and the *ISAba1* was detected only in 10% of the blaOXA-23 positive isolates.

One of the MBLs; blaNDM was detected in 11.7%, and one of class A; blaKPC was detected in 10.7% of the investigated isolates. Other carbapenemases were detected at lower frequencies. However, five of the investigated genes (blaOXA-24, blalMP, blages, blaveb and blagim) were not detected in any of the studied isolates (Table 2).

Although most of the studied CR-AB isolates were detected in specimens from different ICUs, there was no significant difference in the prevalence of the investigated genes in clinical specimens collected from the ICUs and specimens collected from other departments (Table 3).

Moreover, 18.4% of the isolates (n = 38) have shown to harbor two or more of the tested bla genes (Table 4).

Discussion:

Outlining the genetic background of carbapenem resistance among 206 *A. baumannii* isolates collected from Kasr Al Aini Hospital, one of the largest tertiary care hospitals in Egypt, was the main scope of the present study. As proved by other studies, bla OXA-51, is an oxacillinase present in all *A. baumannii* isolates. Luckily, it is too weak to confer by itself carbapenem resistance. However, it is frequently used to confirm the identity of *A. baumannii* (27, 30). All the investigated isolates of our study were confirmed to harbor this gene.

In concordance with many other studies, the most common carbapenemase gene was found to be blaOXA-23 that belongs to Class D β-lactamases. In the present study, it was detected in 77.7% of the
investigated isolates. In Egypt, a study in Zagazig University Hospitals reported that 90% of 50 carbapenem resistant *A. baumannii* isolates were detected to harbor blaOXA-23 (31). Obviously the higher carriage rate in the later study may be attributed to the fact that all isolates were collected from surgical ICUs, whereas in our study the investigated isolates were isolated from both ICU and non ICU settings. Other studies in Egypt and Saudi Arabia showed higher prevalence rate (100%) of blaOXA-23 among carbapenem resistant *A. baumannii* isolates (32, 33). IS*Aba1* was detected upstream blaOXA-23 gene only in 10% of the blaOXA-23 positive isolates. These findings confirmed that the blaOXA-23 gene could be located on the chromosome or on a plasmid (34). We can conclude that the current worldwide dissemination of the blaOXA-23 gene is associated with different genetic structures and plasmids. The dynamic spread of blaOXA-23 will make it difficult to control because this spread is not associated with a single entity (35).

Within the same class; class D β-lactamases, blaOXA-58 was detected only among 1.9% of our studied isolates. Closely related to our results, other studies in Egypt, in USA, and in Palestine could detect blaOXA-58 among 1.4%, 2%, and 3% respectively among carbapenem resistant *A. baumannii* investigated isolates (22, 36, 37). However, another Egyptian study couldn't find the former gene among any of their studied carbapenem resistant *A. baumannii* isolates (38). Although, a higher blaOXA-58 prevalence was reported among carbapenem resistant *A. baumannii* isolates in Egypt (9.1%) (39) and Algeria (14.7%) (40). Therefore, more studies are needed from different region in Egypt and moreover from different countries before we can conclude that the prevalence of blaOXA-58 is low among carbapenem resistant *A. baumannii.*

Till date the most common carbapenem-hydroryzing class D β-lactamases (CHDLs) and, to a lesser extent, MBLs. Although MBLs has been reported in sporadic parts of the world (41), most of MBLs were first described in *A. baumannii* in Egypt (16, 17, 42) then emerged in the middle east (43). In the present study MBLs were detected in 19% of the investigated isolates; with blaNDM accounts for 11.7%, blaSPM 6.3%, blaVIM 0.5%, and blaSIM 0.5%. Nevertheless, in the present study, none of the *A. baumannii* isolates were found to harbor blaIMP, nor blaGIM.

In Egypt many authors have reported different prevalence of MBLs in *A. baumannii*. Elkasaby and El Sayed Zaki, (2017) reported that among 280 *A. baumannii* isolates collected from Egyptian patients admitted to Mansoura University Hospital ICU, 95% harbored MBLs, of which, blaIMP accounted for 95.7%. However, the authors didn't investigate blaNDM among the studied isolates (21). Another Egyptian study has detected blaNDM among 66.7% of 50 *A. baumannii* isolates. Yet, the former study didn't find neither blaIPM nor blaVIM among the tested isolates (31). Another study in Egypt has shown that blaNDM accounted for carbapenem resistance in 27.58%, and blaVIM in 10.3% of studied isolates (20). Two MBLs: blaVIM and blaNDM were detected in 100% and 12.1% respectively in seventy four CR-AB investigated isolates, collected from different clinical specimens at Alexandria University Hospital (32). In Palestine Handal and colleagues reported that *blaNDM* was detected among 5.8% of 69 carbapenem resistant *A. baumannii* isolates (37).
In the present study, two of the Class A carbapenemases, namely blaKPC and blaGES were tested. While none of isolates were shown to harbor blaGES, blaKPC was detected in 10.7% of the investigated isolates. Closely related results were detected in other Egyptian studies. bla KPC were not detected among 40 carbapenem resistant *A. baumannii* isolates collected from 2 hospitals in Egypt (22, 31, 32), while blaGES was detected among 50% of the investigated isolates in the later same study (32).

Conclusions:

We can conclude that the worldwide spread of carbapenem-resistant *A. baumannii* has become a real global health threat. Among the investigated isolates in the present study CR-AB were confirmed by detection of blaOXA-51. Class D carbapenemase blaOXA-23 was the most prevalent followed by blaNDM-1 belonging to class B MBLs and class A blaKPC. In this study, IS*Aba1* was detected upstream 10% of blaOXA-23 positive isolates only which indicates that the spread of resistance among *Acinetobacter* isolates could be either chromosomal or plasmid- mediated. Further investigations should be continue to appreciate the reality of the problem of multi-drug resistant *A. baumannii*.

Abbreviations

A. baumannii

Acinetobacter baumannii

CR-AB
carbapenem resistant *A. baumannii*

IS-1
insertion sequence

MBLs
metallo-β-lactamases

IS*Aba1*
Insertion sequence *A. baumannii*-1

CHDLs
carbapenem-hydrolyzing class D β-lactamases

NDM
New Delhi metallo-β-lactamase

IMP
Imipenemase

SIM
Seoul Imipenemase

VIM
Verona integron-encoded metallo-β-lactamase

KPC
K. pneumonia carbapenemase
CLSI
Clinical and Laboratory Standards Institute

Declarations

Ethics approval and consent to participate:
Not applicable

Consent for publication:
Not applicable

Availability of data and materials:
The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests:
No competing interests

Funding:
No funding

Author Contributions:
Reem M Hassan designed the study. Reem M Hassan, Sherifa T Salem and Saly Ismail Mostafa Hassan MB implemented the study at their Departments. Reem M Hassan performed the statistical analysis. Asmaa Sayed Hegab and Yasmine S Elkholy wrote the manuscript. All authors gave important input and commented on the manuscript. All authors approve the manuscript.

Acknowledgements:
Not applicable

References

1. Kramer A., Schwebke I., Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. *BMC Infectious Diseases*. 2006; 6(130).
2. Cai Y., Chai D., Wang R., Liang B., Bai N. Colistin resistance of *Acinetobacter baumannii* clinical reports, mechanisms and antimicrobial strategies. *Journal of Antimicrobial Chemotherapy*. 2012; 67(7):1607-15.
3. Peleg A. Y., Seifert H., Paterson D. L. *Acinetobacter baumannii*: emergence of a successful pathogen. *Clinical Microbiology Reviews*. 2008; 21(3):538-82.

4. Almasaudi S.B. *Acinetobacter* as nosocomial pathogens: epidemiology and resistance features. *Saudi J Biol Sci*. 2018; 25(3):586-96.

5. Fattouh M., El-din A.N. Emergence of carbapenem resistant *Acinetobacter baumannii* in the intensive care unit in Sohag University hospital, Egypt. *Int J Curr Microbiol App Sci*. 2014; 3(4):732-44.

6. Paton R., Miles R.S., Hood J., Amyes S.G. ARI 1: Beta-lactamase-mediated imipenem resistance in *Acinetobacter baumannii*. *Int J Antimicrob Agents*. 1993, Feb; 2 (2):81-7.

7. Scaife W., Young H.K., Paton R.H., Amyes S.G. Transferable imipenem-resistance in *Acinetobacter* species from a clinical source. *J Antimicrob Chemother*. 1995; 36(3):585-.

8. Poirel L., Nordmann P. Carbapenem resistance in *Acinetobacter baumannii*: mechanisms and epidemiology. Clin Microbiol Infect. 2006; 12:826-836.

9. Héritier C., Poirel L., Fournier P.E., Claverie J.M., Raoult D., Nordmann P. Characterization of the naturally occurring oxacillinase of *Acinetobacter baumannii*. *Agents Chemother*. 2005; 49(10), 4174-79.

10. Peleg A. Y., Seifert H., Paterson D. L. *Acinetobacter baumannii*: emergence of a successful pathogen. *Clinical Microbiology Reviews*. 2008; 21(3):538-82.

11. Vandecraena J., Chandlerc M., Aertsenb A., Houdta R.V. The impact of insertion sequences on bacterial genome plasticity and adaptability. *Critical Reviewes in Microbiology*. 2017; 43 (6): 709-30.

12. Turton J.F., Ward M.E., Woodford N., Kaufmann M.E., Pike R., Livermore D.M., Pitt T.L. The role of ISAba1 in expression of OXA carbapenemase genes in *Acinetobacter baumannii*. *FEMS Microbiol. Lett*. 2006; 258(1), 72-7.

13. Poirel L., Naas T., Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother. 2010: 54(1):24–

14. Walsh T.R., Toleman M.A., Poirel L., Nordmann P. Metallo- β-lactamases: the quiet before the storm? Clin Microbiol Rev 2005; 18: 306–25.

15. Bonnin R., Poirel L., Naas T., Pirs M., Seme K., Schrenzel J., Nordmann P. Dissemination of New Delhi metallo-β-lactamase-1-producing *Acinetobacter baumannii* in Europe. *Clin Microbiol Infect*. 2012; 18(9): 362-5.

16. Hrabák J., Štolbová M., Študentová V., Fridrichová M., Chudáčková E., Zemlickova H. NDM-1 producing *Acinetobacter baumannii* isolated from a patient repatriated to the Czech Republic from Egypt, July 2011.Eurosurveillance. 2012; 17(7):1–3.

17. Kaase M., Nordmann P., Wichelhaus T.A., Gatermann S.G., Bonnin R.A., Poirel L.NDM-2 carbapenemase in *Acinetobacter baumannii* from Egypt. J Antimicrob Chemother. 2011; 66(6):1260–2.

18. Pogue J.M., Mann T., Barber K.E., Kaye K.S. Carbapenem-resistant *Acinetobacter baumannii*: epidemiology, surveillance and management. Exp Rev Anti infect Ther. 2013; 11: 383–393.
19. Bonnin R.A., Potron A., Poirel L., Lecuyer H., Neri R., Nordmann P. PER-7, an extended-spectrum beta-lactamase with increased activity toward broad-spectrum cephalosporins in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011; 55:2424–2427.

20. Kamel N. A., El-Tayeb W. N., El-Ansary M. R., Mansour M. T., Aboshanab K. M. Phenotypic screening and molecular characterization of carbapenemase-producing gram-negative bacilli recovered from febrile neutropenic pediatric cancer patients in Egypt. PLoS One 2018; 13(8).

21. Alkasaby N. M., and El Sayed Zaki M. (2017). Molecular study of Acinetobacter baumannii isolates for metallo-beta-lactamas and extended-spectrum-beta-lactamas genes in intensive care unit, Mansoura university hospital, Int. J. Microbiol. 2017; 3925868.

22. Al-Agamy M.H., Khalaf N.G., Tawfick M.M., Shibl A.M., Kholy A.E. Molecular characterization of carbapenem-insensitive Acinetobacter baumannii in Egypt. Int J Infect Dis. 2014; 22:49–54.

23. Constantiniu S., Romaniuc A., Iancu L.S., Filimon R., Tarași I. Cultural and biochemical characteristics of Acinetobacter spp strains isolated from hospital units. J Prev Med. 2004; 12 (3–4):35–42.

24. Clinical and Laboratory Standards Institute Guidelines. M100-S28 performance standards for antimicrobial susceptibility testing. 2018

25. Turton J.F., Woodford N., Glover J., Yarde S., Kaufmann M.E., Pitt T.L. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this Species. J Clin Microbiol. 2006; 44: 2974-2976.

26. Woodford N., Ellington M.J., Coelho J.M., Turton J.F., Ward M.E., Brown S., Amyes S.G., Livermore D.M. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter Int J Antimicrob Agents. 2006; 27: 351–353.

27. Mostachio A.K., Van Der Heidjen I., Rossi F., Levin A.S., Costa S.F. Multiplex PCR for rapid detection of genes encoding oxacillinases and metallo-β-lactamases in carbapenem resistant AcinetobacterJournal of Medical Microbiology. 2009; 58(11):1522–1524.

28. Dallenne C., Da Costa A., Decré D., Favier C., Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010; 65: 490–495.

29. Voets G.M., Fluit A.C., Scharringa J., Stuart J.C., Leverstein-van Hall M.A. A set of multiplex PCRs for genotypic detection of extended-spectrum β-lactamases, carbapenemases, plasmid-mediated AmpC β-lactamases and OXA β-lactamases. Int J Antimicrob Agents. 2011; 37: 356–359.

30. Evans B.A., Amyes S.G.OXA β-lactamases. Clinical Microbiology Reviews. 2014; 27(2): 241–263.

31. Ramadan, R. A., Gebriel, M. G., Kadry, H. M., and Mosallem, A. Carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: characterization of carbapenemase genes and E-test evaluation of colistin-based combinations. Drug Resist. 2018; 11: 1261–1269.

32. Abouelfetouh A., Torky A.S. and Aboulmagd E. Phenotypic and genotypic characterization of carbapenem-resistant Acinetobacter baumannii isolates from Egypt. Antimicrobial Resistance and Infection Control. 2019; 8:185.
33. El-Mahdy T. S., Al-Agamy M. H., Al-Qahtani A. A., and Shibl A. M. Detection of blaOXA-23-like and blaNDM-1 in *Acinetobacter baumannii* from the eastern region, Saudi Arabia. *Drug Resist.* 2014; 23: 115–121.

34. Kulkosky J., Jones K. S., Katz R. A., Mack J. P., Skalka A. M. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. *Mol. Cell. Biol.* 1992; 12: 2331–2338.

35. Mugnier P. D., Poirel L., Nordmann P. Functional Analysis of Insertion Sequence IS*Aba1*, Responsible for Genomic Plasticity of *Acinetobacter baumannii*. *Journal of Bacteriology.* 2009; 191 (7): 2414-18.

36. Huang X.Z., Cash D. M., Chahine M. A., Nikolich M. P., Craft D. W. Development and validation of a multiplex TaqMan real-time PCR for rapid detection of genes encoding four types of class D carbapenemase in *Acinetobacter baumannii*. *Journal of Medical Microbiology* 2012; 61: 1532-37.

37. Handal R., Qunibi L., Sahouri I., Juhari M., Dawodi R., Marzouqa H., Hindiyeh M. Characterization of Carbapenem-Resistant *Acinetobacter baumannii* Strains Isolated from Hospitalized Patients in Palestine. *Int J Microbiol.* 2017; 1-7.

38. Benmahmod A.B., Said H.S., Ibrahim R.H. Prevalence and mechanisms of carbapenem resistance among *Acinetobacter baumannii* clinical isolates in Egypt. *Microb Drug Resist.* 2018; 25(4):480-8.

39. Al-Hassan L., El Mehallawy H., Amyes S. Diversity in *Acinetobacter baumannii* isolates from paediatric cancer patients in Egypt. *Clin Microbiol Infect.* 2013; 19(11):1082–8.

40. Touati M., Diene S.M., Racherache A., Dekhil M., Djahoudi A., Rolain J.M. Emergence of blaOXA-23 and blaOXA-58 carbapenemase-encoding genes in multidrug-resistant *Acinetobacter baumannii* isolates from University Hospital of Annaba, Algeria. *Int J Antimicrob Agents.* 2012; 40(1):89–

41. Abbott I., Cerqueira G.M., Bhuiyan S., Peleg A.Y. Carbapenem resistance in *Acinetobacter baumannii*: laboratory challenges, mechanistic insights and therapeutic strategies. *Expert Rev Anti Infect Ther.* 2013; 11:395–409.

42. Mohamed N.M., Raafat D. Phenotypic and genotypic detection of metallo-beta-lactamases in imipenem-resistant *Acinetobacter baumannii* isolated from a tertiary hospital in Alexandria, Egypt. *Res J Microbiol.* 2011; 6:750–60.

43. Espinal P., Poirel L., Carmeli Y, Kaase M., Pal T., Nordmann P., Vila J. Spread of NDM-2-producing *Acinetobacter baumannii* in the Middle East. *J Antimicrob Chemother.* 2013; 68:1928–30.

Tables

Table (1): Distribution of *A. baumannii* isolates among different clinical specimens

Clinical Specimen
Table 2: Distribution of different bla gene classes and genes among the CR-AB isolates

bla class	bla gene	A. baumannii isolates
		N (%)
Class A	blaKPC	22 (10.7%)
	blaGES	0 (0.0%)
Class B	blaVIM	1 (0.5%)
	blaIMP	0 (0.0%)
	blaGIM	0 (0.0%)
	blaSPM	13 (6.3%)
	blaSIM-1	1 (0.5%)
	blaNDM-1	24 (11.7%)
Class D	blaOXA-51	206 (100%)
	blaOXA-23	160 (77.7%)
	blaOXA-24/40	0 (0.0%)
	blaOXA-58	4 (1.9%)
Other beta-lactamases	blaPER	2 (1.0%)
	blaVEB	0 (0.0%)
	ISAb1 upstream of blaOXA-23	16 (7.8%)

Table 3: Difference in distribution of bla genes among CR-AB isolates from ICU and
Non-ICU clinical specimens

bla gene	ICU- Clinical specimens N (%)	Non-ICU Clinical Specimens N (%)	P-value
OXA-23	125 (81.2%)	35 (67.3%)	0.038
OXA- 58	3 (1.9%)	1 (1.9%)	1.000
VIM	1 (0.6%)	0 (0.0%)	1.000
KPC	13 (8.4%)	9 (17.3%)	0.073
PER	1 (0.6%)	1 (1.9%)	0.442
SPM	12 (7.8%)	1 (1.9%)	0.191
SIM-1	1 (0.6%)	0 (0.0%)	1.000
NDM-1	16 (10.4%)	8 (15.4%)	0.332
ISABA1	10 (6.5%)	6 (11.5%)	0.240

Table 4: CR-AB isolates harbor more than one of the bla genes:

bla genes	CR-AB isolates harbor more than one Bla genes (N=38)
OXA-23, KPC	10
OXA-23, NDM	6
OXA-23, SPM	6
OXA23, KPC, NDM	6
OXA-58, NDM	3
OXA-23, PER	2
OXA-23, NDM, SPM	2
OXA-23, SIM	1
OXA-23, OXA-58, KPC	1
OXA-23, NDM, VIM	1
