Does drought stress modify the effects of plant-growth promoting rhizobacteria on an aboveground chewing herbivore?

Maite Fernández de Bobadilla¹, Julia Friman¹, Nurmi Pangesti¹,², Marcel Dicke¹, Joop J.A. van Loon¹ and Ana Pineda¹,²

¹Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands and ²Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, Wageningen, The Netherlands

Abstract Soil microbes have important effects on the interactions of plants with their environment, by promoting plant growth, inducing resistance to pests or by conferring tolerance to abiotic stress. However, their effects are variable and the factors responsible for this variation are mainly unknown. Our aim was to assess how drought stress modifies the effect of the nonpathogenic rhizobacterium Pseudomonas simiae WCS417r on plant growth and resistance against the generalist leaf-chewing caterpillar Mamestra brassicae. We studied Arabidopsis thaliana Col-0 plants, as well as mutants altered in the biosynthesis of the phytohormones jasmonic acid (JA) and abscisic acid (ABA). Caterpillars did not prefer rhizobacteria-treated plants, independently of drought stress. Rhizobacteria colonization had a variable effect on caterpillar performance, which ranged from positive in one experiment to neutral in a second one. Drought had a consistent negative effect on herbivore performance; however, it did not modify the effect of rhizobacteria on herbivore performance. The effect of drought on herbivore performance was JA-mediated (confirmed with the use of the dde2-2 mutant), but it was still present in the ABA-deficient mutant aba2-1. Plant biomass was reduced by both drought and herbivory but it was enhanced by rhizobacterial colonization. Pseudomonas simiae WCS417r is able to promote plant growth even when plants are suffering herbivory. Nevertheless, the microbial effect on the herbivore is variable, independently of drought stress. To get the best possible outcome from the rhizobacteria-plant mutualism it is important to understand which other factors may be responsible for its context-dependency.

Key words abiotic stress; abscisic acid; crosstalk; induced systemic resistance; jasmonic acid; Pseudomonas simiae

Introduction

In nature, plants are involved in negative interactions with e.g. pathogens and herbivorous insects, but also in positive ones such as those with beneficial microorganisms and beneficial insects (Dicke & Baldwin, 2010; Philippot et al., 2013). In addition, plants have to cope with abiotic stresses, such as drought. Plant growth is reduced by herbivory and drought and importantly, both stresses are predicted to increase in frequency and intensity in the coming years (Massad & Dyer, 2010; Zhao & Running, 2010). However, despite the importance of understanding plant responses to simultaneous biotic or abiotic stresses, these are only recently starting to be unraveled (Mattson
Importantly, the effect of root-associated microbes on herbivorous insects varies from positive (D’Alessandro et al., 2014; Megali et al., 2014) to negative (van Oosten et al., 2008; Pangesti et al., 2016a; Zebelo et al., 2016) and to date we do not fully understand the factors responsible for this variation. Biotic factors such as feeding guild and degree of specialization of the insects have been shown to affect the outcome of plant–microbe interactions. Root-associated microorganisms have generally a positive or neutral effect on phloem feeders and specialist chewers and a negative effect on mesophyll feeders and generalist chewers (Koricheva et al., 2009; Pineda et al., 2010). In contrast, it is less well understood how abiotic factors modulate microbe–plant–insect interactions (Pineda et al., 2013). For instance, soil composition (ratio of sand and peat) and more specifically iron availability seem to be among the factors that affect the enhanced immunity that microbes confer to plants (Pangesti et al., 2014; Zamioudis et al., 2014). Drought was also shown to increase the direct effect that grass endophytes had on herbivores (Vidal, 1996). However, whether drought influences the plant-mediated effects of microbes on herbivores is not yet known and the underlying mechanisms have not been studied.

Plant responses to biotic and abiotic stresses are regulated by signal-transduction pathways under the control of several phytohormones. Feeding by piercing-sucking insects and biotrophic pathogens mainly activate salicylic acid (SA)-dependent responses, whereas jasmonic acid (JA) signaling is mainly activated upon damage by chewing insects and necrotrophic pathogens (Erb et al., 2012; Pieterse et al., 2012). In addition, abscisic acid (ABA) has been known for decades as key regulator of plant responses to abiotic stress, and especially to drought (Fujita et al., 2006; Yoshida et al., 2014). However in the last years it is becoming evident that ABA is also involved in plant responses to herbivory (Vos et al., 2013; Hillwig et al., 2016).

Plants fine-tune their defense responses to multiple stresses through crosstalk between phytohormonal signaling pathways (Pieterse et al., 2012). In Arabidopsis the MYC2-branch of the JA-signaling pathway is activated upon chewing insect feeding resulting in the transcription of the JA-responsive genes VSP1 and VSP2 (Bodenhausen & Reymond, 2007; Verhage et al., 2011; Vos et al., 2013). Interestingly, this MYC2-branch is positively regulated by ABA, and, for instance, the herbivore-induced levels of VSP1 are not observed in the ABA-deficient mutant aba2-1 (Vos et al., 2013). However, how drought affects the cross-talk between ABA and JA signaling pathways and the consequences for herbivores still needs to be unraveled.

Besides its role in plant defenses against herbivorous insects, JA is also involved in induced systemic resistance that is mediated by beneficial rhizosphere bacteria (van der Ent et al., 2009; Pozo et al., 2015). Root-associated microorganisms can induce resistance in systemic tissues (ISR) against pathogens and herbivorous insects through a priming mechanism (Pieterse et al., 2014). Priming is characterized by a faster or stronger activation of plant defenses upon pathogen or insect attack, with lower fitness costs than induced resistance (Conrath et al., 2006; Martinez-Medina et al., 2016). Most cases of microbial-ISR require intact JA- and ET-signaling pathways (Pieterse et al., 2014). However, it is not fully understood whether a functional ABA signaling pathway is required for ISR.

The objective of our study was to assess whether drought modifies the effect of the rhizobacterium Pseudomonas simiae WCS417r (previously known as Pseudomonas fluorescens WCS417r) on Arabidopsis thaliana growth and defenses against the generalist insect herbivore Mamestra brassicae. In addition, we aimed at unraveling the role of JA and ABA in these interactions. The bacterial strain P. simiae WCS417r has been shown to promote plant growth, lateral root formation and root hair formation in Arabidopsis Col-0 plants grown in agar (Zamioudis et al., 2013). Therefore, we expected P. simiae WCS417r to have a positive effect on plant growth in potting soil as well (Pangesti et al., 2016b). However, since rhizobacteria-induced resistance against M. brassicae was variable in our previous studies (Pangesti et al., 2014; Pangesti et al., 2015; Pangesti et al., 2016b), we expected to observe again a variable effect. Additionally, based on previous evidence showing that (1) P. simiae WCS417r-mediated ISR requires an intact JA signal-transduction pathway (Pangesti et al., 2014; Pieterse et al., 2014), (2) that drought induces ABA (Fujita et al., 2006; Yoshida et al., 2014), and (3) that ABA has a synergistic effect on the MYC2-branch of the JA pathway against chewing insects (Vos et al., 2013), we expected drought to strengthen the negative effect of rhizobacteria on herbivore performance.
Materials and methods

Preparation of plants, microbes, and insects

Plants were grown from seeds in a mixture of potting soil and sand (1 : 1, v : v). We used the wild type Arabidopsis thaliana accession Columbia (Col-0). In addition we studied the mutant delayed-dehiscence2-2 (dde2-2), defective in the ALLENE OXIDE SYNTHASE gene (AOS), encoding one of the enzymes in the JA biosynthetic pathway (von Malek et al., 2002). We used the ABA biosynthetic mutant aba2-1, whose gene product ABA2 is implicated in the conversion of xanthoxin to ABA-aldehyde (Pieterse et al., 2016). The soil mixture was autoclaved twice at 121 °C for 20 min with a 24 h interval. All seeds were sterilized by 3 h exposure to chlorine gas, and subsequently sown in Petri dishes on water-saturated filter paper and kept for 3 d at 4°C (van de Mortel et al., 2012).

The rifampicin-resistant nonpathogenic plant growth-promoting rhizobacterial strain Pseudomonas simiae WCS417r (P. s. WCS417r, previously known as Pseudomonas fluorescens WCS417r) (Berendse et al., 2015) was used for induction of induced systemic resistance (ISR). Bacteria were grown on King’s B (KB) medium agar plates containing rifampicin (25 μg/mL) (Pieterse et al., 1996) for 48 h at 28 °C. Bacterial cells were collected, resuspended in 10 mmol/L MgSO₄ and adjusted to a cell density of 1 × 10⁹ cfu/mL (OD₆₀₀ = 1.0). For the rhizobacterial treatment the soil was inoculated with 100 mL of the suspension of P. s. WCS417r per kilogram of soil. An equal amount of 10 mmol/L MgSO₄ was added to the soil for the control treatment. Seeds were sown on the inoculated soil in individual pots and 10 d after sowing, plants were re-inoculated with 1 mL/plant of a suspension with the same bacterial density as described above, and the control plants with 1 mL of 10 mmol/L MgSO₄.

Plants were cultivated in a growth chamber under 8 h : 16 h light : dark at 21 ± 1 °C and 60% ± 10% relative humidity (RH) and watered with 20 mL water 3 times a week, keeping the soil moisture content at 100%. From the second week onwards, plants were fertilized once a week with 10 mL Hyponex® per plant. One week before the bioassays, plants were assigned randomly to the drought treatment, previously named “high drought” (Pineda et al., 2016). In the control treatment, plants were watered 3 times per week. For the drought treatment plants were not watered during a week after which plants were rewatered to 60% of soil water content (Pineda et al., 2016).

Mamestra brassicae L. (Lepidoptera: Noctuidae; Cabbage moth) was reared on Brassica oleracea var. gemmifera cv. Cyrus (Brussels sprouts) in a climate chamber at 22 ± 2 °C, 40%–50% RH, 16 h : 8 h light:dark. Neonate larvae without feeding experience were used in the experiments.

Experiment 1: Effect of rhizobacterial colonization and drought on performance of a generalist insect and expression of marker genes

A. thaliana plants were randomly assigned to different treatments. Plants were treated with rhizobacteria or not, water-stressed or normally watered and inoculated with neonate larvae of Mamestra brassicae or not. All these combinations led to 8 treatments.

(a) Performance of the generalist herbivore M. brassicae and plant performance Three neonate larvae of M. brassicae were transferred to 5-week-old A. thaliana Col-0 plants using a fine paintbrush. All plants were individually confined in plastic containers covered with insect-proof mesh cloth and closed with elastic bands. Larvae were weighed to the nearest 0.001 mg using a microbalance (CP2P, Sartorius AG, Germany) 9 d after infestation. To address the effect of the treatments on plant performance, fresh aboveground plant biomass was measured using an analytical balance. A total of 20 infested plants per treatment were evaluated, whereas 10 plants per uninsected treatment were arranged to assess plant biomass. Bioassays were performed in a growth chamber under 21 ± 1 °C, 60%–70% RH, 16 h : 8 h light:dark.

(b) Expression of defense-related genes The same treatments as described above were used to evaluate the transcript levels of several marker genes of the JA- and ABA-signaling pathways on wild-type Col-0 plants. A total of 12 plants per treatment were prepared, and fully expanded leaves of all the treatments were harvested at 24 h after infestation. For each treatment, 4 biological replicates were used, each consisting of 9 damaged leaves (3 leaves from 3 plants). Leaf samples were immediately frozen by immersion in liquid nitrogen and stored at −80 °C for further RNA extraction. An extra set of plants was prepared to assess leaf damage 48 h after infestation, using transparent paper with square millimeter raster and counting by eye the number of mm² removed by the insect. Total RNA was extracted and purified as indicated by the protocol RNA plant Kit (Bioline, London, UK). Measurement of RNA quality and synthesis of cDNA was performed as explained in Pangesti et al. (2014). Transcript levels of the JA/MYC2-regulated gene VEGETATIVE STORAGE PROTEIN2 (VSP2) and of the ABA and drought stress-responsive gene RAB18 were quantified. As reference genes, GLYCERALDEHYDE-3-
PHOSPHATE DEHYDROGENASE (GAPDH) and F-BOX FAMILY PROTEIN1 (FBOX1) were used. Sequences of gene-specific primers for qRT-PCR are included in supplemental materials. The quality of each primer was determined before qRT-PCR analysis, which was completed following the same procedure as Pangesti et al. (2014). All qRT-PCR experiments were performed in duplicate (technical replicates) and average values were used in the analyses. Thermal cycling conditions were 95 °C for 3 min, followed by 40 cycles of 95 °C for 15 and 45 s at 60 °C. A normalization factor was calculated by geometrically averaging the threshold cycle (Ct) values of the constitutively expressed genes GAPDH and F-BOX. Then the transcript level for each tested gene was calculated relative to the normalization factor using the 2^(-△△Ct) method (Livak & Schmittgen, 2001).

Experiment 2: Corroborating the role of JA/ABA phytohormone signaling pathways in the phytohormone–insect–drought interaction

To assess the role of JA- and ABA-signaling pathways on the effect of P. s. WCS417r and drought on the generalist herbivore M. brassicae, 3 neonate larvae were inoculated on A. thaliana mutants that are defective in the JA (dde2-2) or ABA (aba2-1) signaling pathways. All mutants used in the experiment have the Col-0 background, hence larvae fed on the wild-type Col-0 plants were used as a control to compare herbivore performance. Caterpillars were weighed at 9 d after infesting the plants as explained above. Additionally, leaf damage on Col-0 plants was assessed visually at 3 d postinfestation by using millimeter raster paper. Plants were divided into 2 groups (half of the replicates in each group), so the full experiment was done in 2 consecutive days following exactly the same methodology. A total of 20 infested plants were evaluated, whereas 10 plants per uninfested treatment were arranged to measure plant biomass.

Experiment 3: Preference of M. brassicae larvae

Two-choice experiments were performed by setting 2 plants in a 1 L open container, and placing 10 neonate larvae in the middle of the container. All experiments were conducted in a climatized room (21 ± 2 °C) without windows, and artificial light was provided from above by 4 high-frequency fluorescent tubes (TL-D 58 W Philips, Eindhoven, The Netherlands) at an intensity of 60 ± 5 μmol photons/m²/s (8 h : 16 h light : dark). The position of the containers and of the plants inside these, was randomized. The preference of the neonate larvae was assessed, by counting how many larvae were on each plant after 48 h. The following combinations of plants were used (14–16 replicates for each pair): (1) control versus rhizobacteria-treated plants; (2) control versus drought-stressed plants; (3) rhizobacteria-treated plants versus rhizobacteria-treated plants under drought stress; and (4) drought-stressed plants versus rhizobacteria-treated plants under drought stress.

Statistical analysis

Residuals were first inspected to confirm that the assumptions of linear models were met. To analyze the effect of P. s. WCS417r and drought on herbivore performance, linear mixed models (LMM) were used. Plants were set as a random factor, whereas rhizobacteria and drought treatment were set as fixed factors. To evaluate the effect of P. s. WCS417r and drought on the relative expression of defense-related genes and on plant biomass, 3-way ANOVA was used. Herbivory, drought, and rhizobacterial colonization were set as fixed factors. In order to assess the effect of the treatments on leaf damage, 2-way ANOVA was used, setting drought and rhizobacteria as fixed factors. To analyze preference in the 2-choice tests, we calculated a response ratio for each replicate ([#control]/[#control + #treatment]). This was tested against a null hypothesis value of 0.5 in a 1 sample t-test. Data were analyzed with Genstat (14th Edition, VSN Int., UK).

Results

Rhizobacterial colonization does not affect larval preference but enhances larval performance independently of drought stress

To unravel the effect of drought and rhizobacterial treatments on the preference of a generalist herbivore, we performed several 2-choice experiments with A. thaliana Col-0 (wild type).

When plants were not colonized by rhizobacteria, caterpillars preferred control over drought-stressed plants (t15 = 0.034). However, when plants were treated with rhizobacteria, caterpillars showed no preference (t19 = 0.093). Caterpillars did not show any preference between control and rhizobacteria-treated plants under normal watering conditions (t12 = 0.893) nor under drought conditions (t17 = 0.524).

In a first performance experiment with Col-0 plants (Part a in Materials and methods section), we evaluated the effect of rhizobacteria, drought and the combination of both on the insect herbivore. M. brassicae caterpillars
had a reduced performance on drought-treated plants at 9 d after infestation (LMM; $F_{1,74} = 8.73$, $P = 0.004$; Fig. 1C). In contrast, rhizobacteria colonization had a positive effect on larval mass of the caterpillars (LMM; $F_{1,74} = 10.78$, $P = 0.002$; Fig. 1C). This effect was independent of drought stress, since there was no interaction between the main factors drought and rhizobacteria treatment on larval performance (LMM; $F_{1,74} = 0.00$, $P = 0.984$).

Drought negatively affects larval performance in a JA-dependent manner but independent of ABA, and does not affect the variable rhizobacterial effects

In a second performance experiment (Experiment 3 in Materials and methods section), we studied wild type Col-0 plants together with JA- and ABA-impaired mutant plants to assess the effect of these signaling pathways on the observed effects. Drought again negatively affected the performance of the generalist herbivore *M. brassicae* when feeding on wild type Col-0 plants at 9 d after infestation (LMM; $F_{1,163} = 8.88$, $P = 0.003$; Fig. 2). The same negative effect was observed in the ABA-impaired mutant *aba2-1* (LMM; $F_{1,159} = 23.96$, $P < 0.001$; Fig. 2). However, there was no negative effect of drought on larval performance when the caterpillars fed from the JA-impaired mutant *dde2-2* (LMM; $F_{1,192} = 1.28$, $P = 0.258$; Fig. 2). In contrast to the first experiment, in this experiment rhizobacteria colonization of Col-0 plants had no effect on *M. brassicae* performance (LMM; $F_{1,165} = 0.38$, $P = 0.538$; Fig. 2) nor did it modify the effect of drought (LMM, interaction; $F_{1,167} = 0.01$, $P = 0.926$). A similar lack of effect was observed in the mutants *dde2-2* and *aba2-1* (LMM; *dde2-2*; $F_{1,158} = 3.66$, $P = 0.058$; *dde2-2*; $F_{1,192} = 1.28$, $P = 0.258$; Fig. 2), although in the mutant *aba2-1* there was a trend towards rhizobacteria inducing resistance to *M. brassicae*. There was also no interaction between rhizobacteria and drought (LMM,
interaction; aba2-1: $F_{1,158} = 0.21$, $P = 0.645$; dde2-2: $F_{1,190} = 1.34$, $P = 0.249$).

Rhizobacterial colonization enhances plant growth and decreases plant damage at an early time point

Both drought and herbivory had a negative effect on plant biomass (3-way ANOVA; herbivory: $F_{1,113} = 9.490$, $P = 0.003$; drought: $F_{1,113} = 119.799$, $P < 0.001$; Fig. 3A). In contrast, colonization with *P. s*. WCS417r enhanced plant growth (3-way ANOVA; $F_{1,113} = 18.996$, $P < 0.001$; Fig. 3A). Interestingly, the decrease in plant biomass of plants suffering herbivory was much stronger when plants were not stressed than when plants were exposed to drought (3-way ANOVA; interaction herbivory × drought: $F_{1,113} = 31.435$, $P < 0.001$).

In a first experiment (Experiment 2 in Materials and methods section), caterpillar feeding damage at 2 d after infestation was smaller under either drought or rhizobacterial treatment, however, there was no interaction between the factors (2-way ANOVA: drought: $F_{1,47} = 11.96$, $P = 0.001$; rhizobacteria: $F_{1,47} = 11.42$, $P = 0.002$; interaction: $F_{1,47} = 1.15$, $P = 0.289$; Fig. 3B left). Interestingly, plants that were colonized by rhizobacteria and suffered drought stress had the lowest level of leaf damage (Fig. 3B left). In a second experiment (Experiment 3 in Materials and methods section), leaf damage at 3 d postinfestation was also reduced by drought, however, not by rhizobacterial colonization and there was also no interaction between the factors (2-way ANOVA: drought: $F_{1,39} = 137.73$, $P < 0.001$; rhizobacteria: $F_{1,39} = 0.58$, $P = 0.450$; interaction: $F_{1,39} = 0.21$, $P = 0.647$; Fig. 3B right).

Herbivore-induced transcription of the JA-responsive gene VSP2 is neither primed by rhizobacterial colonization nor by drought stress

Herbivore feeding by the generalist insect *M. brassicae* induced expression of the defense-related gene VSP2 (3-way ANOVA: $F_{1,31} = 39.03$, $P < 0.001$; Fig. 4 left). However, *P. s*. WCS417r did not prime *A. thaliana* plants for an enhanced expression of VSP2, as the expression levels of VSP2 were the same in both control and *P. s*. WCS417r-treated plants (3-way ANOVA: $F_{1,31} = 2.04$, $P = 0.166$; Fig. 4 left). Drought had no effect on the expression levels of VSP2 either ($F_{1,31} = 0.05$, $P = 0.82$; Fig. 4 left). There was no interaction between any of the factors (data not shown).

Expression of the ABA- and drought-regulated gene RAB18 was induced by drought (3-way ANOVA: $F_{1,31} = 7.61$, $P = 0.011$; Fig. 4 right). Herbivory and the rhizobacterial treatment did not affect the expression levels of RAB18 (3-way ANOVA: herbivory: $F_{1,31} = 3.14$, $P = 0.089$; rhizobacteria: $F_{1,31} = 0.00$, $P = 0.967$; Fig. 4 right). The interaction between the factors was not significant (data not shown).

Discussion

Root colonization with beneficial microbes has a differential effect on insects that ranges from positive to negative and to date we do not fully understand the modulators of this variability (Partida-Martinez & Heil, 2011; Pineda et al., 2013; Pangesti et al., 2014). Here we show that, contrary to our expectations, drought is not one of the factors modulating the outcome of the interaction between...
Fig. 3 (A) Fresh aboveground plant biomass (g) of Arabidopsis thaliana Col-0 (wild type) of the plants used in the first performance experiment. Bars represent means ± SE. *P < 0.05, **P < 0.01, ***P < 0.001 (3-way ANOVA, n = 10 for the uninfested plants; n = 20 for the infested plants). (B) Leaf damage (mm²) of the Arabidopsis thaliana Col-0 plants used in the first performance experiment at 2 d postinfestation (right) and second performance experiment at 3 d postinfestation (left). The plants used for the first experiment were used for gene expression analysis. Bars represent means ± SE. **P < 0.01, ***P < 0.001 (2-way ANOVA, n = 10–12 plants).

A. thaliana plants, the rhizobacterium P. simiae WCS417r, and the leaf herbivore M. brassicae. Variability in results is common when studying ecological interactions, especially when not all factors that influence these interactions are understood (Heil, 2014). In our previous studies, we observed a high consistency in a closed system of sterile plate assays, but not in an open system with soil (Pangesti et al., 2014; Pangesti et al., 2015; Pangesti et al., 2016a). In these studies, we always used the same population of A. thaliana Col-0 plants, the herbivore M. brassicae, and the same rhizobacterial strain. Now, after excluding drought as main driver of variability in our system, we propose that the microbial communities (and factors affecting those) that are present in the soil in the open system are probably responsible for the variability we observed in our studies. More studies unraveling what biotic and abiotic factors cause this variability are needed to be able to predict the final outcome of microbe–plant–insect interactions.

Rhizobacterial colonization increased both plant growth and herbivore performance in the first experiment, independently of whether plants were suffering from drought stress. However, when we repeated the experiment rhizobacteria did not affect caterpillar performance. Despite the general pattern suggesting that generalist leaf chewers are negatively affected by beneficial microbes (Koricheva et al., 2009; Pineda et al., 2010), examples of microbes inducing susceptibility to generalist leaf chewers are accumulating (D’Alessandro et al., 2014; Megali et al., 2014; Pangesti et al., 2015). For example, larvae of the generalist insect Spodoptera littoralis had a higher mass and decreased mortality when feeding from tomato plants that were colonized by a mixture of beneficial bacteria, explained by a reduction of induced
Fig. 4 Relative transcript levels of the JA-marker gene VSP2 (left) and of the ABA-marker gene RAB18 (right) in damaged leaves of Arabidopsis thaliana, 24 h after infestation. Data represent means ± SE. For VSP2, induction level in absence of herbivory was lower than 5. Values were normalized relative to the reference genes GAPDH and FBOX and quantified relative to control plants. *P < 0.05, ***P < 0.001 (3-way ANOVA, n = 4).

Plant defenses (JA and the toxic glycoalkaloid tomatine) in microbe-treated plants (Megali et al., 2014). In contrast, most studies on A. thaliana have shown that plant growth-promoting rhizobacteria lead to an increase in the defensive compounds glucosinolates and an associated induced resistance against generalist leaf chewers (van de Mortel et al., 2012; Aziz et al., 2016; Pangesti et al., 2016a). Although we did not investigate plant chemistry in this study, based on those previous studies, the induced susceptibility is more likely to be a result of the microbial-enhanced plant quality rather than to a suppression of defensive compounds.

The expression of the JA/ABA-responsive gene VSP2 and the drought-responsive gene RAB18 was upregulated after herbivore damage and drought respectively. However, P. s. WCS417r colonization did not prime the expression of either VSP2 or RAB18. Our result for VSP2 expression contrasts with previous findings. In other studies, root colonization by P. s. WCS417r primed A. thaliana plants for an enhanced expression of JA-responsive genes such as VSP2, LOX2, PDF1.2 and HEL after pathogen or insect challenge (Pozo et al., 2008; van Oosten et al., 2008; Pangesti et al., 2014). Interestingly, all those studies also observed microbial-induced systemic resistance, whereas in our study we did not observe ISR. The logical question then, is whether whenever microbial-ISR is not observed, plants are also not primed for an enhanced defensive response. The fact that we did not observe priming of defense-related genes in the colonized plants might be linked with the slightly reduced leaf damage and consequently less induction on the rhizobacteria-colonized plants. Experiments with an inducer such as MeJA or mechanical damage plus oral secretions could shed more light on this aspect without incorporating differences in induction as a result of insect behavior.

Interestingly, the negative effect of drought on larval performance disappears in the JA-impaired mutant dde2-2 but not in the aba2-1 mutant, which confirms that the effect of drought on herbivores is JA-mediated and not ABA-mediated. The plant response to osmotic stress involves ABA-dependent and ABA-independent signaling (Yoshida et al., 2014), so our results suggest that the plant response to drought that negatively affects herbivores is mainly regulated by ABA-independent mechanisms. In contrast, JA has been proposed to be the core signal that regulates plant resistance to herbivory (Erb et al., 2012), and here we show that it is also a crucial hormone regulating plant resistance under drought stress. Regarding the role of JA and ABA in plant–rhizobacteria–insect interactions, we could not provide evidence for this because rhizobacteria did not affect the herbivore on the wild-type Col-0 plants when analyzing the mutants. Therefore, the question of whether a functional ABA-mediated response is required to mount rhizobacteria-mediated ISR still remains open.

Plant growth-promoting rhizobacteria are able to promote plant growth and plant defenses. Nevertheless, the outcome of the interaction is variable and drought does not seem to be one of the factors explaining this variability. We first hypothesized that microbes may “help” plants against...
insects only when plans “need help,” drought being one scenario where plants would need such help. We could not provide support for this hypothesis here, a possible reason being that our system included a plant accession and a rhizobacterial strain originating from areas where drought is not common (Lamers et al., 1988; Anastasio et al., 2011). Further work with other systems that have co-evolved in areas suffering from drought stress may find completely different results. Studies addressing additional aspects such as the timing of the interaction or intensity of drought stress would shed light on how the modulators of microbe-plant-insect-interactions function. In addition, plant roots associate not only with 1 bacterium but with a diverse microbial community, the so-called microbiome. There is scant research on the ecological functions of the rhizosphere microbiome, especially on how it modulates the interactions of plants with their biotic and abiotic environment (Philippot et al., 2013). This fundamental knowledge will allow us to advance at using of microbial inoculants in sustainable agricultural practices.

Acknowledgments

We thank Léon Wester, Frans van Aggelen, and André Gidding for rearing the insects. We also would like to thank Saskia C.M. van Wees for providing the mutant aba2-1. This work was supported by the Netherlands Organization for Scientific Research (NWO) (ALW grant No. 822.01.005 to M.D.).

Disclosure

The authors declare that they have no conflict of interest.

References

Anastasio, A.E., Platt, A., Horton, M., Grotewold, E., Scholl, R., Borevitz, J.O. et al. (2011) Source verification of misidentified Arabidopsis thaliana accessions. The Plant Journal, 67, 554–566.

Aziz, M., Nadipalli, R.K., Xie, X., Sun, Y., Suowiec, K., Zhang, J.L. et al. (2016) Augmenting sulfur metabolism and herbivore defense in Arabidopsis by bacterial volatile signaling. Frontiers in Plant Science, 7, 458.

Bennett, A.E., Alers-Garcia, J. and Bever, J.D. (2006) Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. American Naturalist, 167, 141–152.

Berendsen, R.L., Verk, M.C., Stringlis, I.A., Zamioudis, C., Tommassen, J., Pieterse, C.M.J. et al. (2015) Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics, 16, 1–23.

Bodenhausen, N. and Reymond, P. (2007) Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Molecular Plant-Microbe Interactions, 20, 1406–1420.

Conrath, U., Beckers, G.J.M., Flors, V., Garcia-Agustin, P., Jakub, G., Mauch, F. et al. (2006) Priming: getting ready for battle. Molecular Plant-Microbe Interactions, 19, 1062–1071.

Coolen, S., Proietti, S., Hickman, R., Davila Olivas, N.H., Huang, P.P., van Verk, M.C. et al. (2016) Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. The Plant Journal, 86, 249–267.

D’alessandro, M., Erb, M., Ton, J., Brandenburg, A., Karlen, D., Zopfi, J. et al. (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant, Cell & Environment, 37, 813–826.

Davila Olivas, N.H., Coolen, S., Huang, P., Severing, E., Van Verk, M.C., Hickman, R. et al. (2016) Effect of prior drought and pathogen stress on Arabidopsis transcriptome changes to caterpillar herbivory. New Phytologist, 210, 1344–1356.

Dicke, M. and Baldwin, I.T. (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the cry for help. Trends in Plant Science, 15, 167–175.

Erb, M., Meldau, S. and Howe, G.A. (2012) Role of phyto-hormones in insect-specific plant reactions. Trends in Plant Science, 17, 250–259.

Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K. et al. (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9, 436–442.

Heil, M. (2014) Relevance versus reproducibility—solving a common dilemma in chemical ecology. Journal of Chemical Ecology, 40, 315–316.

Hillwig, M.S., Chiozza, M., Casteel, C.L., Lau, S.T., Hohnstein, J., Hernández, E. et al. (2016) Abscisic acid deficiency increases defense responses against Myzus persicae in Arabidopsis. Molecular Plant Pathology, 17, 225–235.

Koricheva, J., Gange, A.C. and Jones, T. (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology, 90, 2088–2097.

Lamers, J., Schippers, B. and Geels, F. (1988) Soil-borne diseases of wheat in the Netherlands and results of seed bacterization with pseudomonads against Gaeumannomyces graminis var. tritici, associated with disease resistance. Cereal breeding related to integrated cereal production. Pudoc, Wageningen, 134–139.
Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. *Methods*, 25, 402–408.

Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C.M., Pozo, M.I. et al. (2016) Recognizing plant defense priming. *Trends in Plant Science*, 21, 818–822.

Massad, T. and Dyer, L. (2010) A meta-analysis of the effects of global environmental change on plant–herbivore interactions. *Arthropod-Plant Interactions*, 4, 181–188.

Mattson, W.J. and Haack, R.A. (1987) The role of drought in outbreaks of plant-eating insects. *Bioscience*, 37, 110–118.

Megali, L., Glauser, G. and Rasmann, S. (2014) Fertilization with beneficial microorganisms decreases tomato defenses against insect pests. *Agronomy for Sustainable Development*, 34, 649–656.

Nguyen, D., Rieu, I., Mariani, C. and Dam, N.M. (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. *Plant Molecular Biology*, 91, 727–740.

Pangesti, N., Pineda, A., Dicke, M. and van Loon, J.J.A. (2014) Variation in plant-mediated interactions between rhizobacteria and caterpillars: potential role of soil composition. *Plant Biology*, 17, 474–483.

Pangesti, N., Reichelt, M., van De Mortel, J.E., Kapsomenou, E., Gershenzon, J., van Loon, J.J.A. et al. (2016a) Jasmonic acid and ethylene signaling pathways regulate glucosinolate levels in plants during rhizobacteria-induced systemic resistance against a leaf-chewing herbivore. *Journal of Chemical Ecology*, 42, 1212–1225.

Pangesti, N., Reichelt, M., Van De Mortel, J.E., Kapsomenou, E., Gershenzon, J., van Loon, J.J.A. et al. (2016b) Jasmonic acid and ethylene signaling pathways regulate glucosinolate levels in plants during rhizobacteria-induced systemic resistance against a leaf-chewing herbivore. *Journal of Chemical Ecology*, 42, 1212–1225.

Pangesti, N., Weldegergis, B.T., Langendorf, B., van Loon, J.J., Dicke, M. and Pineda, A. (2015) Rhizobacterial colonisation of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. *Oecologia*, 178, 1169–1180.

Paré, P.W., Zhang, H., Aziz, M., Xie, X., Kim, M.S., Shen, X. et al. (2011) Beneficial rhizobacteria induce plant growth: mapping signaling networks in *Arabidopsis*. *Soil Biology & Biochemistry: Biocommunication in Soil Microorganisms.* (ed. G. Witzany), pp. 403–412. Springer, Berlin-Heidelberg.

Partida-Martinez, L.P.P. and Heil, M. (2011) The microbe-free plant: fact or artefact? *Frontiers in Plant Science*, 2, 100.

Philippot, L., Raaijmakers, J.M., Lemanceau, P. and van der Putten, W.H. (2013) Going back to the roots: the microbial ecology of the rhizosphere. *Nature Reviews Microbiology*, 11, 789–799.

Pieterse, C.M.J., De Jonge, R. and Berendsen, R.L. (2016) The soil-borne supremacy. *Trends in Plant Science*, 21, 171–173.

Pieterse, C.M.J., van der Does, D., Zamioudis, C., Leon-Reyes, A. and van Wees, S.C.M. (2012) Hormonal modulation of plant immunity. *Annual Review of Cell and Developmental Biology*, 28, 489–521.

Pieterse, C.M.J., van Wees, S.C.M., Hoffland, E., Van Pelt, J.A. and van Loon, L.C. (1996) Systemic resistance in *Arabidopsis* induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. *Plant Cell*, 8, 1225–1237.

Pieterse, C.M.J., Zamioudis, C., Berendsen, R.L., Weller, D.M., van Wees, S.C.M. and Bakker, P.A.H.M. (2014) Induced systemic resistance by beneficial microbes. *Annual Review of Phytopathology*, 52, 347–375.

Pineda, A., Dicke, M., Pieterse, C.M.J. and Pozo, M.J. (2013) Beneficial microbes in a changing environment: are they always helping plants to deal with insects? *Functional Ecology*, 27, 574–586.

Pineda, A., Pangesti, N., Soler, R., Dam, N.M.V., van Loon, J.J.A. and Dicke, M. (2016) Negative impact of drought stress on a generalist leaf chopper and a phloem feeder is associated with, but not explained by an increase in herbivore-induced indole glucosinolates. *Environmental and Experimental Botany*, 123, 88–97.

Pineda, A., Zheng, S.J., van Loon, J.J.A., Pieterse, C.M.J. and Dicke, M. (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. *Trends in Plant Science*, 15, 507–514.

Pozo, M.J., López-Ráez, J.A., Azcón-Aguilar, C. and García-Garrido, J.M. (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. *New Phytologist*, 205, 1431–1436.

Pozo, M.J., van der Ent, S., van Loon, L.C. and Pieterse, C.M.J. (2008) Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in *Arabidopsis thaliana*. *New Phytologist*, 180, 511–523.

Sugio, A., Dubreuil, G., Giron, D. and Simon, J.-C. (2014) Plant–insect interactions under bacterial influence: ecological implications and underlying mechanisms. *Journal of Experimental Botany*, 66, 467–478.

Tariq, M., Rossiter, J.T., Wright, D.J. and Staley, J.T. (2013) Drought alters interactions between root and foliar herbivores. *Oecologia*, 172, 1095–1104.

Timmus, S., Abd El-Daim, I.A., Copolovici, L., Tanilas, T., Kannaste, A., Behers, L. et al. (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. *PLoS ONE*, 9, e96086.

van de Mortel, J.E., De Vos, R.C.H., Dekkers, E., Pineda, A., Guillod, L., Bouwmeester, K. et al. (2012) Metabolic and
transcriptomic changes induced in *Arabidopsis* by the rhizobacterium *Pseudomonas fluorescens* SS101. *Plant Physiology*, 160, 2173–2188.

van der Ent, S., van Wees, S.C.M. and Pieterse, C.M.J. (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. *Phytochemistry*, 70, 1581–1588.

van Oosten, V.R., Bodenhausen, N., Reymond, P., van Pelt, J.A., Van Loon, L.C., Dicke, M. *et al.* (2008) Differential effectiveness of microbially induced resistance against herbivorous insects in *Arabidopsis*. *Molecular Plant-Microbe Interactions*, 21, 919–930.

Verhage, A., Vlaardingerbroek, I., Raaijmakers, C., van Dam, N.M., Dicke, M., van Wees, S.C.M. *et al.* (2011) Rewiring of the jasmonate signaling pathway in *Arabidopsis* during insect herbivory. *Frontiers in Plant Science*, 2, 47.

Vidal, S. (1996) Changes in suitability of tomato for whiteflies mediated by a non-pathogenic endophytic fungus. *Entomologia Experimentalis et Applicata*, 80, 272–274.

von Malek, B., van Der Graaff, E., Schneitz, K. and Keller, B. (2002) The *Arabidopsis* male-sterile mutant dde2-2 is defective in the allene oxide synthase gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. *Planta*, 216, 187–192.

Vos, I.A., Verhage, A., Schuurink, R.C., Watt, L.G., Pieterse, C.M.J. and van Wees, S.C.M. (2013) Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid. *Frontiers in Plant Science*, 4, 539.

Yoshida, T., Mogami, J. and Yamaguchi-Shinozaki, K. (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. *Current Opinion in Plant Biology*, 21, 133–139.

Zamioudis, C., Hanson, J. and Pieterse, C.M.J. (2014) β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in *Arabidopsis* roots. *New Phytologist*, 204, 368–379.

Zamioudis, C., Mastranesti, P., Dhonukshe, P., Blilou, I. and Pieterse, C.M.J. (2013) Unraveling root developmental programs initiated by beneficial *Pseudomonas* spp. bacteria. *Plant Physiology*, 162, 304–318.

Zebelo, S., Song, Y., Kloeper, J.W. and Fadamiro, H. (2016) Rhizobacteria activates (+)-δ-cadinene synthase genes and induces systemic resistance in cotton against beet armyworm (*Spodoptera exigua*). *Plant, Cell & Environment*, 39, 935–943.

Zhao, M.S. and Running, S.W. (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. *Science*, 329, 940–943.

Manuscript received November 22, 2016
Final version received April 10, 2017
Accepted April 26, 2017

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

| Table S1 | Primer sequences used in qRT-PCR. |