The microbiome-metabolome crosstalk in the pathogenesis of respiratory fungal diseases

Samuel M. Gonçalvesa,b, Katrien Lagrouc,d, Cláudio Duarte-Oliveiraa,b, Johan A. Maertense, Cristina Cunhaa,b, and Agostinho Carvalhoa,b

aLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; bICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal; cDepartment of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium; dDepartment of Laboratory Medicine and National Reference Center for Medical Mycology, University Hospitals Leuven, Leuven, Belgium; eDepartment of Hematology, University Hospitals Leuven, Leuven, Belgium

ARTICLE HISTORY
Received 2 September 2016
Revised 31 October 2016
Accepted 2 November 2016

ABSTRACT
Filamentous fungi of the genus \textit{Aspergillus} are responsible for several superficial and invasive infections and allergic syndromes. The risk of infection and its clinical outcome vary significantly even among patients with similar predisposing clinical factors and pathogen exposure. There is increasing evidence that the individual microbiome supervises the outcome of the host-fungus interaction by influencing mechanisms of immune regulation, inflammation, metabolism, and other physiological processes. Microbiome-mediated mechanisms of resistance allow therefore the control of fungal colonization, preventing the onset of overt disease, particularly in patients with underlying immune dysfunction. Here, we review this emerging area of research and discuss the contribution of the microbiota (and its dysbiosis), including its immunoregulatory properties and relationship with the metabolic activity of commensals, to respiratory fungal diseases. Finally, we highlight possible strategies aimed at decoding the microbiome-metabolome dialog and at its exploitation toward personalized medical interventions in patients at high risk of infection.

KEYWORDS
antifungal immunity; aspergillosis; fungal disease; host genetics; metabolome; microbiome; personalized medicine

Introduction
Aspergillosis comprises a wide spectrum of fungal diseases caused by \textit{Aspergillus} spp. with clinical manifestations that range from colonization, to allergic syndromes, to invasive forms of infection.1 The increased success of solid organ and stem-cell transplantation and cancer chemotherapy has, paradoxically, resulted in a rapidly expanding population of immunocompromised patients, which display a distinctive susceptibility to invasive aspergillosis (IA).2 Patients suffering from chronic obstructive pulmonary disease (COPD) or influenza infection under intensive care are also at risk of developing IA.3,4 Besides invasive disease, patients with asthma or cystic fibrosis (CF) are prone to develop fungal-induced allergic airway diseases, the most severe form being allergic bronchopulmonary aspergillosis (ABPA).5 In addition, chronic pulmonary aspergillosis (CPA) is a typical feature of patients with pre-existing cavities caused by tuberculosis or COPD.6

The excessive prescription of antifungal drugs and the emergence of resistant strains, as well as the remarkable burden conveyed by these diseases to the healthcare systems have driven efforts at an improved understanding of their pathogenesis. An emerging body of evidence has highlighted the significant role of the pulmonary microbiome in inflammation, metabolism, and other physiological processes that regulate the antifungal immune response and condition host susceptibility to diseases caused by \textit{Aspergillus} spp. (Fig. 1).

The microbiota is defined as the ecological community of commensal, symbiotic and pathogenic organisms that inhabit the lungs,7,8 and it includes 6 predominant phyla: Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria and Cyanobacteria.8 Despite such diversity, the microbial density in the lungs is estimated at around 10^4 bacterial cells/mL,9 a considerably lower value than that reported for the oral cavity (10^{11}/mL),10 skin (10^7/cm2),11 or gut (10^{12}/mL).12 Until recently, the lung was thought to be a sterile organ mainly because of limitations of standard microbial culture techniques to mimic the lung habitat. The development of cutting-edge molecular methods for the quantification and sequencing of bacterial DNA has revealed however that the Airways harbour a unique...
dynamic microbiota,13 with Bacteroidetes and Firmicutes being the most predominant phyla,14,15 highlighting the need to accommodate an additional layer of complexity in the pathogenesis of respiratory diseases.

Despite recent research in this field, the existence of a resident lung microbiota has still to be clearly demonstrated.9,16-18 The healthy lung occasionally contains bacterial species traditionally associated with the oral cavity,7,9,17,19 suggesting that the local microbiota likely reflects the migration of bacterial communities from neighboring niches.20 Differences in commensal and pathogenic microbial loads in the airways are therefore possibly influenced by the rate at which new bacterial species enter the lung and the rate at which these are able to colonize or go extinct. Although healthy and diseased lungs are equally reachable by microbes from the surrounding environment, the mucociliary clearance often impaired in many chronic inflammatory airway diseases21 may represent a major permissive factor for adaption and establishment of species colonizing the lower airways.20 The persistence of specific oral taxa in diseased lungs may also occur due to the establishment of a pro-inflammatory microenvironment.22

The co-evolution of the microbiota with the innate immune system and its various microbe-sensing pattern recognition receptors (PRRs) has resulted in elaborate crosstalk mechanisms through which both systems control mutual homeostasis.23,24 While microbial recognition by PRRs is required for a stable microbial composition, the presence (and activity) of the microbiota is, in turn, necessary for the development and function of the immune system.25,26 When working properly, this immune system-microbiota coalition promotes protective responses to pathogens, establishes tolerance to innocuous antigens and controls the overgrowth of indigenous pathobionts.27 This is further supported by studies in newborn mice that disclosed important developmental dynamics in the lung microbiota associated with the microbiome-metabolome crosstalk to host immunity against \textit{A. fumigatus}. The function of the immune system is regulated by the microbiota and its metabolic activity, whereas the diversity of the microbiota and its commensal nature are kept under control by the immune system. The gut dysbiosis is often associated with the outgrowth of the yeast \textit{C. albicans} that, in turn, leads to the development of allergic airway responses to \textit{A. fumigatus} mediated by Th2 cells, M2-polarized macrophages capable of producing inflammatory mediators such as prostaglandin E2 (PGE\textsubscript{2}), and eosinophils. Segmented filamentous bacteria (SFB) are known to regulate Th17 immunity locally in the gut but also in the lung in response to \textit{A. fumigatus}, and gut microbiota-derived metabolites such as short-chain fatty acids (SCFAs) have been identified as master regulators of pulmonary immune responses. In addition to these, lactobacilli are able to degrade tryptophan into immunoregulatory metabolites and induce the production of IL-22 to sustain immune tolerance to \textit{C. albicans}. The microbial communities inhabiting the lung are, in turn, able to regulate gut immunity, for example by promoting the expansion of IFN-\gamma-producing Th1 cells and recruitment to the gut, and inducing IgA class switch recombination and systemic humoral responses. Some of the bacterial species in the lung, most notably \textit{P. aeruginosa}, interact directly (and indirectly via metabolites, including volatile organic compounds, VOCs) with \textit{A. fumigatus}, contributing to the establishment of a permissive environment for fungal colonization, and under certain conditions, to overt disease.
with a specific population of T regulatory cells (Tregs) conferring tolerance to bacterial antigens derived from the populating communities.28

Many genetic defects of PRRs have been associated with susceptibility to infectious diseases.29 Likewise, several associations between genetic defects in innate immunity and risk of aspergillosis have been disclosed.30,31 Given that many microbial taxa are highly heritable and that a strong genetic component defines the human microbiota,32 an intricate interaction between host genetics, the microbiota and its metabolic products, and the mucosal immune system is proposed. In this review, we discuss the regulatory crosstalk of the gut and lung microbiota and its inherent metabolic activity in the context of respiratory fungal diseases.

The gut-lung microbiota axis and pathogenesis of fungal diseases

The homeostasis in the composition of the normal flora in the respiratory tract is essential to prevent the expansion of species with pathogenic potential.33 When dysbiosis occurs due to underlying pulmonary diseases, immune system dysfunction, or defects in the ciliary activity of the mucous pulmonary epithelium, fungal colonization in the lungs may become uncontrolled and exacerbate into overt fungal disease. Thus, the underlying conditions typically associated with aspergillosis and their altered microbiome profiles could provide significant insights into microbiota-driven mechanisms of pathogenesis (Fig. 2).

The complex communities of microbiota that inhabit environments such as the lung, skin, or gut are now appreciated for their role in maintaining organ, tissue, and immune homeostasis through both compartmentalized and systemic control of immunity to pathogens. For example, protective immunity against cutaneous leishmaniasis was found to critically depend on the skin, but not the gut, microbiota and its ability to regulate T-cell function downstream of interleukin (IL)-1 receptor (IL-1R).34 Activation of IL-1R by commensal microbiota-derived signals appears to be one major mechanism providing control of host immunity. Indeed, IL-1R antagonist (IL-1Ra)-deficient mice can be protected from spontaneous arthritis by housing under germ-free conditions,35 suggesting that the microbiome is responsible for the inflammatory phenotype underlying arthritis and other autoimmune diseases.

In other situations, it is well established that dysbiosis of the gut microbiota can influence immune responses at distal sites, including the lung.36 The disruption of the microbiota following antibiotic treatment and concomitant gut colonization by *Candida albicans* was found to drive potent CD4(+) T-cell-mediated allergic airway responses to *A. fumigatus*.37 In contrast, the therapeutic administration of probiotics to primates has been shown to increase the frequency of immunoglobulin (Ig)A-expressing B-cells in the colon and lymph nodes, likely contributing to mucosal immunity.38 More recently, the microbiota was also found to regulate the ability of lung dendritic cells (DCs) to induce IgA class-switch recombination and elicit protective gastrointestinal immune responses.39 Taken together, these findings highlight important implications of the microbiota in regulating protective immunity conferred by vaccination.

Invasive aspergillosis

COPD has recently been acknowledged as an important risk factor for IA in critically ill patients.40,41 Because of the impairment in mucociliary clearance that may influence the balance between persistence and elimination of bacterial communities,42 understanding the contribution of the lung microbiome to the development of IA in this
setting is of great interest. Despite the lack of coherence between the many studies investigating the pulmonary microbiome in COPD, mostly due to sampling variability and heterogeneous therapeutic regimens, recent studies agree that specific bacterial populations, such as Haemophilus spp., Streptococcus spp. and Staphylococcus spp., are enriched in the airways of patients suffering from COPD. In addition, the large FUNGI-COPD study reported that Aspergillus spp. were frequently isolated from the sputum of COPD patients during acute exacerbations and that the concomitant isolation of Pseudomonas aeruginosa contributed to fungal colonization. Nevertheless, and with the existing data, the question remains as to what extent the pulmonary dysbiosis in COPD accommodates fungal colonization and ultimately contributes to the development of IA. Patients infected with influenza, particularly the H1N1 strain, represent another group of non-neutropenic patients at risk of IA. Microbiome analyses revealed an enrichment in the abundance of the Firmicutes and Proteobacteria phyla (particularly Pseudomonas spp.) in the lungs of patients infected with H1N1. Thus, H1N1 appears to skew the lung microbiome toward a permissive profile likely favoring secondary invasive infections including IA. In this regard, it is noteworthy that the characteristics of the pulmonary microbiota are aligned with distinct innate cell gene expression profiles after lung transplantation. Whereas a non-polarized activation of macrophages was associated with a balanced microbial community, inflammatory and remodelling profiles of these immune cells were instead linked with bacterial dysbiosis.

Allergic bronchopulmonary aspergillosis

Chronic airway colonization by fungi has been reported in CF patients. In this setting, the main clinical manifestation of fungal disease is ABPA, characterized by a severe hypersensitivity reaction to Aspergillus spp. Recent studies targeting the composition of the airway microbiota showed a complex microbial diversity, with P. aeruginosa, Staphylococcus aureus, Haemophilus influenzae, and Burkholderia cepacia representing the most abundant bacterial species, and Candida and Aspergillus, the most common fungal genera. This unique environment, together with the pulmonary function in CF patients due to mucus formation, oxygen tension and inflammatory cell recruitment, might favor the formation of bacterial and fungal biofilms and influence pathogenicity. Of interest, some gut symbionts are able to cooperate with other commensals through a dedicated cross-feeding enzyme system, allowing them both to survive in the gut. For example, Bacteroides ovatus is able to digest polysaccharides at a cost to itself, while benefiting other species.

Another important microbial interaction that takes place in the CF lung is the one between P. aeruginosa and A. fumigatus. A number of studies have proposed an antagonistic relationship between these organisms triggered by direct contact and release of small molecules affecting quorum-sensing networks (e.g., pyocyanin) and influencing the ability of A. fumigatus to germinate and develop biofilms. In contrast, antibiotic treatment targeting P. aeruginosa decreases the detection of Aspergillus spp. in sputum samples. It will be interesting to assess in the future whether the fungus is also able to manipulate the polymicrobial flora in CF via its own metabolites. Of note, both A. fumigatus and P. aeruginosa are bound by the soluble PRR pentraxin 3 (PTX3), which in turn favors their recognition and clearance by the innate immune system. Importantly, genetic variants influencing PTX3 expression in the lung have been associated with P. aeruginosa colonization in CF patients and IA in stem-cell and lung transplant recipients. Taken together, these observations suggest that PTX3 acts as a master regulator of microbiota homeostasis in the lung and that, under specific circumstances (e.g., the CF lung microenvironment), commensals may be able to subvert PTX3 expression in order to control conflicting species.

Fungal-induced allergic airway disease

Few studies to date have demonstrated a link between the microbiome and fungal-induced allergic airway disease or asthma. One example regards the antibiotic-induced disruption of the gut microbiota and colonization with C. albicans, and the ensuing allergic airway response to A. fumigatus, but not invasive disease, associated with enhanced T helper (Th)2 cytokines and eosinophilia. Whether an enhanced priming of innate immunity receptors (e.g., dectin-1) resulting from the fungal outgrowth in the gut is specifically associated with the distal repercussions observed remains unexplored. For example, the microbiota are a source of peptidoglycan that persistently stimulates the innate immune system via the nucleotide oligomerization domain (NOD)1 receptor and enhances the killing of Streptococcus pneumoniae and S. aureus, ultimately establishing a mechanism of systemic immunomodulation by the microbiota.

More recently, gut dysbiosis induced by antibiotic treatment was found to promote allergic airway inflammation by shifting macrophage polarization in the lung toward the alternatively activated M2 phenotype. Of note, antibiotic treatment resulted in the overgrowth of a
commensal species of _Candida_ in the gut triggering increased plasma concentrations of prostaglandin E₂ (PGE₂). Suppression of PGE₂ synthesis with cyclooxygenase inhibitors suppressed M2 macrophage polarization and decreased allergic airway inflammatory cell infiltration in antibiotic-treated mice. Taken together, these findings suggest that alterations in the composition and diversity of both the gut microbiome and mycobio-

Microbiota-mediated regulation of antifungal immunity

An optimal host defense against _Aspergillus_ relies primarily on professional phagocytes, such as neutrophils, macrophages and monocytes, and specific T-cell populations, including Th1, Th17 and Tregs that control the extent and the nature of the immune response. Evidence indicates that the impact of host-commensal microbe interactions reaches far beyond the local environment and influences peripheral innate and adaptive immune function. Accordingly, the intestinal microbiota has an immunoregulatory function expanding from the gut and may play a significant role in pulmonary diseases such as the various forms of aspergillosis. In particular, segmented filamentous bacteria (SFB) were found to be critically required for the induction of Th17 cells to produce IL-17 and IL-22 in the gut, particularly due to their ability to adhere to intestinal epithelial cells. Importantly, the role of intestinal SFB in the generation of pulmonary Th17 cells during experimental _A. fumigatus_ infection was recently confirmed, an effect that was associated with systemic IL-1R signaling. Of note, Th17 cells and IL-17 receptor signaling were also found to reciprocally regulate the SFB burden, allowing a precise control of dysbiosis, Th17 immunity and susceptibility to autoimmune inflammation. It remains to be elucidated whether the lung microbiota also contains microorganisms with similar Th17-polarizing capacity as the SFB in the gut that might influence antifungal immunity in the lung.

The increased susceptibility of patients with influenza to IA suggests that the influenza virus itself is able to modulate the homeostatic microbiome and predispose to fungal disease. The gut microbiota, particularly neomycin-sensitive bacteria, regulates the immune defense against respiratory tract influenza A virus. The fact that, in these conditions, a protective interferon (IFN)-γ production was impaired in antibiotic-depleted mice may suggest that the same bacterial populations may influence protective Th1 immunity in response to _A. fumigatus_ directly or indirectly via the control of viral loads, ultimately predisposing to IA. In this regard, it is noteworthy that influenza infection also promotes alterations in the intestinal microbiota with a reduction in _Lactobacillus_ spp. and _Lactococcus_ spp., and an outgrowth of Enterobacteriaceae. This dysbiosis is mediated by IFN-γ-producing T-cells derived from the lung and recruited to the small intestine, an effect that is accompanied by the expansion of pathogenic Th17 cells in the gut underlying intestinal injury. Thus, it is plausible that IL-17 responses arising in the gut may further impact lung disease. The gut microbiota is also a critical regulator of type I IFN production during pulmonary viral infection and these are key cytokines involved in antifungal immunity, suggesting that the gut microbiota has indeed the potential to influence antifungal immunity. Whether the viral infection contributes to fungal disease or is merely a side-effect of the microbiota-induced immunological dysfunction is still unknown.

The gut microbiota has the capacity to alter pulmonary Th2 responses and predispose to allergic syndromes. Alterations in the gut microbiome by antibiotic treatment and delivery of _C. albicans_-induced immunoregulatory signals has been found to mediate allergic airway responsiveness to _A. fumigatus_ even in the absence of systemic antigen priming. Under these circumstances, the frequency of eosinophils and mast cells is increased, together with IL-5, IL-13, IgE, and mucus-secreting cells. In this regard, IL-22 was also found to play an important role in experimental fungal-induced asthma. Besides Th17 cells, natural killer cells and innate lymphoid cells (ILCs) are able to produce IL-22 and have been implicated in the pathogenesis of asthma. Specifically, ILCs are emerging as one key immune population with the ability to orchestrate microbiome-mediated immune regulation. Thus, it is not surprising that IL-22 also acts as a master regulator of mucosal immunity with important roles in controlling the diversity of microbial communities, including colonization by _C. albicans_. Of note, caspase recruitment domain-containing protein (CARD)9-deficient mice were found to display a profound gut dysbiosis associated with the inability of _Lactobacillus_ spp. to metabolize tryptophan and induce expression of IL-22. Thus, these data confirm that host genes affect the composition and function of the gut microbiota through the production of microbial metabolites, and points to the existence of a profound dysbiosis in patients harbouring mutations in the CARD9 gene suffering from severe fungal infections. In addition, sensing of fungal components via CARD9-mediated pathways may also be proposed as one key mechanism affecting the metabolic activity of the microbiota.

The fungal microbiome (mycobiome) is thought to represent as little as 0.1% of the total microbiome.
Potentially pathogenic fungi such as *Aspergillus* spp. and *Candida* spp. are contained within the microbiome and are believed to expand and potentially contribute to disease upon disturbances in the environment or when the host is immunocompromised. Mice lacking dectin-1, the innate immune receptor for β-glucans present in the fungal cell wall, showed an increased susceptibility to colitis as the result of an increased proportion of opportunistic fungi belonging to the *Candida* and *Trichosporon* genera and impaired immune responses to these commensal fungi. The fact that dectin-1 also recognizes β-glucans from *A. fumigatus* raises the interesting possibility that a disruption at this level may also impact the pulmonary microbiome and the local immune response to the fungus. Indeed, genetic variants affecting dectin-1 have already been associated with the risk of developing IA in haematological patients and recipients of stem-cell transplantation. In the future, the investigation of the microbiome of dectin-1-deficient patients might provide further insights into the genetic regulation of microbiota composition and function.

The microbiome-metabolome crosstalk

Nutrients and molecules derived from the metabolic activity of the microbiota may also provide signals to the host and potentially modulate antifungal immunity. The short-chain fatty acids (SCFAs), products of the intestinal microbiota that are recognized by the G-coupled protein receptor GPR43 expressed on innate immune cells, illustrate the pivotal role of microbial metabolites in the regulation of host immune responses. Mice lacking GPR43 were shown to be unable to resolve intestinal inflammation during experimental colitis, thereby demonstrating a molecular link between a host immune receptor and the microbiome-dependent environment. Most importantly, SCFAs produced in the gut were found to regulate immune responses in the lung, since GPR43-deficient mice also displayed a more inflammatory allergic response during experimental asthma. By feeding mice with fermentable fibers, the composition of both the gut and lung microbiota changed (in particular the ratio of Firmicutes and Bacteroidetes phyla), leading to an increase in the levels of circulating SCFAs that conferred protection against house dust mite-induced allergic pulmonary inflammation. In particular, the SCFA propionate endorsed hematopoiesis and led to the generation of a population of lung DCs with enhanced phagocytic capacity and less capable of priming pathogenic Th2 responses. Contrary to what is mentioned above, these effects were mediated by GPR41 and not GPR43, thus pointing to intricate immunological specificities in the recognition of SCFAs. This is further highlighted by the recent finding that another SCFA, butyrate, is consumed by colonocytes in the gut to protect intestinal progenitor cells, therefore disclosing a mechanism contributing to the maintenance of intestinal anatomy and homeostasis.

Another metabolic pathway whereby tryptophan metabolites produced by *Lactobacillus reuterii* in the gut microbiota regulate mucosal immunity has also been identified. The tryptophan derivative produced, indole-3-aldehyde, acts as an aryl hydrocarbon receptor ligand that contributes to the expression of IL-22 and allows commensal colonization by *C. albicans*. Of note, the tryptophan metabolism and downstream production of IL-22 were also found to regulate tolerance to *C. albicans* in the vaginal microbiome and functional genetic variants affecting these pathways were associated with the development of recurrent vulvovaginal candidiasis. Whether tryptophan metabolites also display systemic effects remains to be elucidated. In any case, *Lactobacillus* spp., including *L. reuterii* but also *L. rhamnosus*, have been found to dampen allergic airway responses by inducing the expansion of Tregs. In addition, tryptophan catabolism was found to be required for a proper Th1/Treg balance and lung homeostasis in mouse models of CF. Altogether, these data provide evidence about the role of the gut microbiome in regulating antifungal immunity in the lung and that manipulating SCFAs or Treg function might be a therapeutic option for fungal-induced allergic pulmonary inflammation.

In the CF lung, *P. aeruginosa* is able to produce metabolites with important consequences in its interaction with *A. fumigatus*. Recently, molecular networking-based metabolomics revealed that the chemical makeup of the CF sputa comprises xenobiotics, specialized metabolites from *P. aeruginosa* and host sphingolipids. Importantly, the microbial metabolites did not match those produced by laboratory cultures. For example, the quinolone signal from *P. aeruginosa* was readily detectable from cultured strains, but absent from sputum, even when its precursor molecules were present, thus suggesting that the metabolism of *P. aeruginosa in vivo* critically relies on signals provided by the chemical nature of the CF lung environment. As for the host sphingolipids, these contain the inflammatory mediator ceramide and may therefore have a potential role in the perpetuation of inflammation in CF. Importantly, facultative anaerobes such as *P. aeruginosa* are able to reduce the nitrogen in the reactive species released by inflammatory cells and use it to thrive within the chronically inflamed airways.

The volatile fraction of the metabolome, composed by volatile organic compounds (VOCs) is also critical for the understanding of the pathogenesis of respiratory diseases. In this regard, it was recently shown that *P.
P. aeruginosa and *A. fumigatus* can interact not only directly, but at a distance via volatile-mediated communication.\(^{101}\) VOCs produced by *P. aeruginosa*, including dimethyl sulphide, dimethyl disulphide, 2,5-dimethylpyrazine and others were found to promote the growth of *A. fumigatus*, suggesting that the fungus requires sulfur uptake, provided at least in part, by exploiting the metabolism of *P. aeruginosa*. On the other hand, VOCs such as camphene, \(\alpha\)- and \(\beta\)-pinene, and limonene, and the sesquiterpene compounds \(\alpha\)- and \(\beta\)-trans-bergamotene, are specifically produced by *A. fumigatus* and can be distinguished from other pathogenic aspergilli, thus representing a novel, non-invasive, breath-based diagnostic approach.\(^{102}\)

Another important step toward a better understanding of the interaction between the microbiome and its host was recently provided by the association between the faecal levels of several secreted proteins, including the human \(\beta\)-defensin-2, calprotectin and chromogranin A, with microbial composition, diversity and functional richness.\(^{103}\) Thus, not only do microbiota-derived metabolites regulate the immune system, but signals stemming from the host are also important in defining the homeostatic balance of the bacterial communities in the gut. This provides support to the notion that disruption of this dichotomy in either side might be detrimental for the activation of protective immune responses and may underlie susceptibility to disease.

Translating the microbiome-metabolome dialog into clinical application

Prompt and accurate diagnosis is crucial to a favorable outcome of respiratory fungal diseases, particularly IA. Although the introduction of molecular and serological diagnostic techniques into clinical practice has improved our diagnostic ability, considerable variability in performance still exists. Currently, the host-fungus interaction is being exploited to project more efficient and reliable fungal diagnostics\(^ {104}\) and efforts are being devoted to the implementation of clinical models aimed at the prediction of infection in high-risk patients.\(^ {105}\) Recent advances allowing us to collect more data on DNA sequences and metabolites are increasing our understanding of the relationship between the microbiota and associated metabolites at a whole-systems level. Determining the relative abundance of metabolically active bacteria and the metabolome composition during fungal infection is certain to contribute to the design of diagnostic strategies and tailored prescription of antifungals.

The post-engraftment expansion of Gammaproteobacteria in the gut of recipients of allogeneic hematopoietic stem-cell transplantation was found to be predictive of common pulmonary complications and mortality,\(^ {106}\) raising the attractive possibility of using microbiota-derived information in the management of patients at high risk of fungal disease. The potential for clinical application of the microbiota was elegantly highlighted by the clinical trial that determined that treating recurrent *Clostridium difficile* infection using duodenal infusion of healthy donor feces was significantly more effective than the use of vancomycin.\(^ {107}\) In chronic respiratory diseases, such as COPD or CF, the manipulation of the lung microbiota could also be regarded as a valid adjunctive therapeutic strategy aimed at further improving airway clearance and the ability to restrict microbial migration and establishment in the lungs. Although the direct inhalation of probiotics may not be clinically viable, the strategic manipulation of microbiota-derived metabolites with immunomodulatory activity, antibiotics or quorum-sensing molecule inhibitors may be a potentially promising therapeutic option in the treatment of respiratory fungal diseases whose pathogenesis is associated, at least in part, with perturbations in the lung microbiota. In addition, several studies have described beneficial effects of enterically administered probiotics in the prevention of upper respiratory tract infections,\(^ {108}\) although it remains to be assessed whether benefit was conveyed via direct modification of the lung microbiota or indirectly via gut-mediated effects on systemic immune responses. Furthermore, by understanding the interaction between host genetics and microbiota composition in the context of fungal infection, the manipulation of the individual flora for a given host genome as a suitable therapeutic strategy is envisaged.

Conclusions

In this review, we have provided an up-to-date overview of the current knowledge on the role of the microbiota in the immunopathogenesis of respiratory fungal diseases, with a particular emphasis on aspergillosis. Increasing evidence supports a role for gut (and lung) dysbiosis in deregulated immune responses and inflammation, leading to the disruption of the balance between fungal colonization and overt disease. Although this is an active field of research, there is relatively limited overlap in the conclusions from different studies and few of them have directly related the described dysbiosis with a biological function in the pathogenesis of fungal disease. This limitation is mostly attributed to discrepancies between studies in terms of sampling procedures, sequencing approaches, and enrolment of patients with heterogeneous clinical traits. However, several bacterial populations have been shown to be involved in more than one clinical condition intrinsically associated with predisposition to fungal disease and these could serve as a starting point for the functional studies that are needed to make
the translation to new microbiome-based diagnostics and therapeutics in patients at risk. This will improve our insights into the various roles of the microbiota and its metabolic profiles and their potential as novel targets in respiratory fungal diseases.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Funding

This work was supported by a Mérieux Research Grant 2016 from Institut Mérieux, the Northern Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-014545-FEDER-000013), and by Fundação para a Ciência e Tecnologia (FCT) (IF/00735/2014 to A.C., and SFRH/BPD/96176/2013 to C.C.).

References

[1] Segal BH. Aspergillosis. N Engl J Med 2009; 360:1870-84; PMID:19403905; https://doi.org/10.1056/NEJMra0808853

[2] Pfäffler MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 2010; 36:1-53; PMID:20088682; https://doi.org/10.3109/10408410903241444

[3] Taccone FS, Van den Abeele AM, Bulpa P, Missiet B, Meersseman W, Cardoso T, Paiva JA, Blasco-Navalpetro M, De Laere E, Dimopoulos G, et al. Epidemiology of invasive aspergillosis in critically ill patients: clinical presentation, underlying conditions, and outcomes. Crit Care 2015; 19:7; PMID:25928694; https://doi.org/10.1186/s13054-014-0722-7

[4] Wauters J, Baar I, Meersseman P, Meersseman W, Dams K, De Paepe R, Lagrou K, Wilmer A, Jorens P, Hermans G. Invasive pulmonary aspergillosis is a frequent complication of critically ill HIV1 patients: a retrospective study. Intens Care Med 2012; 38:1761-8; https://doi.org/10.1007/s00134-012-2673-2

[5] King J, Brunel SF, Warris A. Aspergillus infections in cystic fibrosis. J Infect 2016; 72 SupplSS50-5; PMID:27177733; https://doi.org/10.1016/j.jinf.2016.04.022

[6] Denning DW, Cadre J, Beigelman-Aubry C, Ader F, Chakrabarti A, Blot S, Ullman AJ, Dimopoulos G, Lange C; European Society for Clinical Microbiology and Infectious Diseases and European Respiratory Society. Chronic pulmonary aspergillosis: rationale and clinical guidelines for diagnosis and management. Eur Respir J 2016; 47:45-68; https://doi.org/10.1183/13993003.00583-2015

[7] Dickson RP, Huffnagle GB. The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog 2015; 11:e1004923; PMID:26158874; https://doi.org/10.1371/journal.ppat.1004923

[8] O’Dwyer DN, Dickson RP, Moore BB. The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol 2016; 196:4839-47; PMID:27260767; https://doi.org/10.4049/jimmunol.1600279

[9] Charlson ES, Bittinger K, Chen J, Diamond JM, Li H, Collman RG, Bushman FD. Assessing bacterial populations in the lung by replicate analysis of samples from the upper and lower respiratory tracts. PLoS One 2012; 7:e42786; PMID:22970118; https://doi.org/10.1371/journal.pone.0042786

[10] Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci U S A 2016; 113: E791-800; PMID:26811460; https://doi.org/10.1073/pnas.1522149113

[11] Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol 2011; 9:244-53; PMID:21407241; https://doi.org/10.1038/nrmicro2537

[12] Sommer F, Backhed F. The gut microbiota–masters of host development and physiology. Nat Rev Microbiol 2013; 11:227-38; PMID:23435359; https://doi.org/10.1038/nrmicro2974

[13] Marsland BJ, Gollwitzer ES. Host-microorganism interactions in lung diseases. Nat Rev Immunol 2014; 14:827-35; PMID:25421702; https://doi.org/10.1038/nri3769

[14] Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, Flores SC, Fontenot AP, Ghidein E, Huang L, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 2013; 187:1067-75; https://doi.org/10.1164/rccm.201210-1913OC

[15] Segal LN, Alekseyenko AV, Clemente JC, Kulkarni R, Wu B, Gao Z, Chen H, Berger KI, Goldring RM, Rom WN, et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 2013; 1:19; PMID:24450871; https://doi.org/10.1186/2049-2618-1-19

[16] Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, Beck JM, Curtis JL, Huffnagle GB. Analysis of the upper respiratory tract microbiota as the source of the lung and gastric microbiotas in healthy individuals. mBio 2015; 6: e00037; PMID:25736890; https://doi.org/10.1128/mBio.00037-15

[17] Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, Collman RG. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 2011; 184:957-63; https://doi.org/10.1164/rccm.201104-0655OC

[18] Venkataraman A, Bassis CM, Beck JM, Young VB, Curtis JL, Huffnagle GB, Schmidt TM. Application of a neutral community model to assess structuring of the human lung microbiome. mBio 2015; 6: e02284-14; PMID:25604788; https://doi.org/10.1128/mBio.02284-14

[19] Beck JM, Young VB, Huffnagle GB. The microbiome of the lung. Transl Res 2012; 160:258-66; PMID:22683412; https://doi.org/10.1016/j.trsl.2012.02.005

[20] Whiteson KL, Bailey B, Bergkessel M, Conrad D, Delhaes L, Felts B, Harris JK, Hunter R, Lim YW, Maughan H, et al. The upper respiratory tract as a microbial source for pulmonary infections in cystic fibrosis. Parallels from island biogeography. Am J Respir Crit Care Med 2014; 189:1309-15; https://doi.org/10.1164/rccm.201312-2129PP
Chilvers MA, Rutman A, O’Callaghan C. Functional analysis of cilia and ciliated epithelial ultrastructure in healthy children and young adults. Thorax 2003; 58:333-8; PMID:12668798; https://doi.org/10.1136/thorax.58.4.333

Segal LN, Clemente JC, Tsay JC, Korolov SB, Keller BC, Wu BG, Li Y, Shen N, Ghevin E, Morris A, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol 2016; 1:16031; PMID:27572644; https://doi.org/10.1038/nmicrobiol.2016.31

Thaiss CA, Levy M, Suez J, Elinav E. The interplay between the innate immune system and the microbiota. Curr Opin Immunol 2014; 26:41-8; PMID:24556399; https://doi.org/10.1016/j.coi.2013.10.016

Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature 2016; 535:65-74; PMID:27383981; https://doi.org/10.1038/nature18847

Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012; 489:231-41; PMID:22972296; https://doi.org/10.1038/nature11551

Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hennabi D, Enot DP, Pfirsichk C, Enghlom C, Piett MJ, et al. The intestinal microbiota modulates the anti-cancer immune effects of cyclophosphamide. Science 2013; 342:971-6; PMID:24264990; https://doi.org/10.1126/science.1240537

Kamada N, Chen XY, Inohara N, Nunez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 2013; 14:685-90; PMID:23778796; https://doi.org/10.1038/ni.2608

Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R, McCoy KD, Nicod LP, Lloyd CM, Marsland BJ. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med 2014; 20:642-7; PMID:24813249; https://doi.org/10.1038/nm.3568

Netea MG, Wijmenga C, O’Neill LA. Genetic variation in Toll-like receptors and disease susceptibility. Nat Immunol 2012; 13:535-42; PMID:22610250; https://doi.org/10.1038/ni.2284

Cunha C, Aversa F, Romani L, Carvalho A. Human genetic susceptibility to invasive aspergillosis. PLoS Pathog 2013; 9:e1003434; PMID:23950708; https://doi.org/10.1371/journal.ppat.1003434

Wojtowicz A, Bochud PY. Host genetics of invasive Aspergillus and Candida infections. Semin Immunopathol 2014; 37:173-86; PMID:25404122

Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Bleikhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, et al. Human genetics shape the gut microbiome. Cell 2014; 159:789-99; PMID:25417156; https://doi.org/10.1016/j.cell.2014.09.053

Kolwijk E, van de Veerdonk FL. The potential impact of the pulmonary microbiome on immunopathogenesis of Aspergillus-related lung disease. Eur J Immunol 2014; 44:3156-65; https://doi.org/10.1002/eji.201344404

Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, et al. Compartamentalized control of skin immunity by resident commensals. Science 2012; 337:1115-9; PMID:22837383; https://doi.org/10.1126/science.1225152

Abdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF, Radstake TR, Heuvelmans-Jacobs M, Akira S, Nicklin MJ, Ribeiro-Dias F, et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest 2008; 118:205-16; PMID:18060042; https://doi.org/10.1172/JCI32639

Noverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut? Trends Microbiol 2004; 12:562-8; PMID:15539116; https://doi.org/10.1016/j.tim.2004.10.008

Noverr MC, Noggle RM, Toews GB, Huffnagle GB. Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun 2004; 72:4996-5003; PMID:15321991; https://doi.org/10.1128/IAI.72.9,4996-5003.2004

Manuzak JA, Hensley-McBain T, Zevin AS, Miller C, Cubas R, Agullo B, Gile J, Richert-Sphuler L, Patilea G, Estes JD, et al. Enhancement of microbiota in healthy macaques results in beneficial modulation of mucosal and systemic immune function. J Immunol 2016; 196:2401-9; PMID:26826246; https://doi.org/10.4049/jimmunol.1502470

Ruane D, Chorny A, Lee H, Faith J, Pandey G, Shan M, Simchoni N, Rahman A, Garg A, Weinstein EG, et al. Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses. J Exp Med 2016; 213:53-73; PMID:26712806; https://doi.org/10.1084/jem.20150567

Delsuc C, Cottereau A, Frealle E, Bienvenu AL, Dessein R, Jarraud S, Dumitrescu O, Le Maréchal M, Wallet F, Friggeri A, et al. Putative invasive pulmonary aspergillosis in critically ill patients with chronic obstructive pulmonary disease: a matched cohort study. Crit Care 2015; 19:421; PMID:26631029; https://doi.org/10.1186/s13054-015-1140-1

Meersseman W, Lagrou K, Maertens J, Van Wijngaerden E. Invasive aspergillosis in the intensive care unit. Clin Infect Dis 2007; 45:205-16; PMID:17578780; https://doi.org/10.1086/518852

Huang YJ, Erb-Downward JR, Dickson RP, Curtis JL, Huffnagle GB, Han MK. Understanding the role of the microbiome in chronic obstructive pulmonary disease: principles, challenges, and future directions. Transl Res 2016; [in press]; pii: S1931-5244(16)30100-1

Cameron SI, Lewis KE, Huws SA, Lin W, Hegarty MJ, Lewis PD, Mur LA, Pachebat JA. Metagenomic sequencing of the chronic obstructive pulmonary disease upper bronchial tract microbiome reveals functional changes associated with disease severity. PLoS One 2016; 11:e0149095; PMID:26872143; https://doi.org/10.1371/journal.pone.0149095

Gallana A, Aguirre E, Rodriguez JC, Cabello P, Santibanez M, Candela I, Llaverio J, García-Pinto C, López F, Ruiz M, et al. Sputum microbiota in moderate versus severe patients with COPD. Eur Respir J 2014; 43:1787-90; PMID:24311775; https://doi.org/10.1183/09031936.00191513

Wang Z, Bafadhel M, Haldar K, Spivak A, Mayhew D, Miller BE, Tal-Singer R, Johnston SL, Ramsheh MY, Barer MR, et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J 2016; 47:1082-92; PMID:26917613; https://doi.org/10.1183/13993003.01406-2015
[46] Huerta A, Soler N, Esperatti M, Guerrero M, Menendez R, Gimeno A, Zalacain R, Mir N, Aguado JM, Torres A. Importance of Aspergillus spp. isolation in Acute exacerbations of severe COPD: prevalence, factors and follow-up: the FUNGI-COPD study. Respir Res 2014; 15:17; https://doi.org/10.1186/1465-9921-15-17

[47] Leung RK, Zhou JW, Guan W, Li SK, Yang ZF, Tsui SK. Modulation of potential respiratory pathogens by pH1N1 viral infection. Clin Microbiol Infect 2013; 19:930-5; PMID:23167452; https://doi.org/10.1111/1469-0691.12054

[48] Bernasconi E, Pattaroni C, Koutsokera A, Pison C, Kessler R, Benden C, Soccal PM, Magnan A, Aubert JD, Marsland BJ, et al. Airway microbiota determines innate cell inflammatory or tissue remodeling profiles in lung transplantation. Am J Respir Crit Care Med 2016; 194:1252-1263; PMID:27248293

[49] Willger SD, Grim SL, Dolben EL, Shipunova A, Mir M, Ashare A, et al. Characterization and quantification of the fungal microbiome in serial samples from individuals with cystic fibrosis. Microbiome 2014; 2:40; PMID:25408892; https://doi.org/10.1186/2049-2618-2-40

[50] Lipuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 2010; 23:299-323; PMID:20375354; https://doi.org/10.1128/CMR.00068-09

[51] Delhaes L, Monchy S, Frealle E, Hubans C, Salleron J, Leroy S, Prevotat A, Wallet F, Wallaert B, De-Cas E, et al. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community–implications for therapeutic management. PLoS one 2012; 7:e36313; PMID:22558432; https://doi.org/10.1371/journal.pone.0036313

[52] Hogan DA, Gladfelter AS. Editorial overview: host-microbe interactions: fungi: heterogeneity in fungal cells, populations, and communities. Curr Opin Microbiol 2015; 26:7-9; https://doi.org/10.1016/j.mib.2015.07.003

[53] Kim SH, Clark ST, Surendra A, Copeland JK, Wang PW, Ammar R, Collins C, Tullis DE, Nlisow C, Hwang DM, et al. Global analysis of the fungal microbiome in cystic fibrosis patients reveals loss of function of the transcriptional repressor Nrg1 as a mechanism of pathogen adaptation. PLoS Pathog 2015; 11:e1005308; PMID:26550391; https://doi.org/10.1371/journal.ppat.1005308

[54] Nguyen LD, Visconti E, Delhaes L. The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol 2015; 6:89; PMID:25762987

[55] Boisvert AA, Cheng MP, Sheppard DC, Nguyen D. Microbial biofilms in pulmonary and critical care diseases. Ann Thorac Soc 2016; 13:1615-23; PMID:27348071; https://doi.org/10.1515/AnnalsATS.201603-194FR

[56] Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature 2016; 533:255-9; PMID:27111508; https://doi.org/10.1038/nature17626

[57] Mowat E, Paterson S, Fothergill JL, Wright EA, Ledson MJ, Walshaw MJ, Brockhurst MA, Winstanley C. Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am J Respir Crit Care Med 2011; 183:1674-9; PMID:21297072; https://doi.org/10.1164/rccm.201009-1430OC

[58] Mowat E, Rajendran R, Williams C, McCulloch E, Jones B, Lang S, Ramage G. Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. FEMS Microbiol Lett 2010; 313:96-102; PMID:20964704; https://doi.org/10.1111/j.1574-6968.2010.02130.x

[59] Baxter CG, Rautemaa R, Jones AM, Webb AK, Bull M, Mahenthiralingam E, Denning DW. Intravenous antibiotics reduce the presence of Aspergillus in adult cystic fibrosis sputum. Thorax 2013; 68:652-7; PMID:23513028; https://doi.org/10.1136/thoraxjnl-2012-202412

[60] Garlanda C, Jaillon S, Doni A, Bottazzi B, Mantovani A. PTX3, a humoral pattern recognition molecule at the interface between microbe and matrix recognition. Curr Opin Immunol 2016; 38:39-44; PMID:26650391; https://doi.org/10.1016/j.coi.2015.11.002

[61] Chiarini M, Sabelli C, Melotti P, Garlanda C, Savoldi G, Mazza C, Padoan R, Plebani A, Mantovani A, Notarangelo LD, et al. PTX3 genetic variations affect the risk of Pseudomonas aeruginosa airway colonization in cystic fibrosis patients. Genes Immun 2010; 11:665-70; PMID:20927127; https://doi.org/10.1038/gene.2010.41

[62] Cunha C, Aversa F, Lacerda JF, Busca A, Kurzai O, Grube M, Löffler J, Maertens JA, Bell AS, Inforzato A, et al. Genetic PTX3 deficiency and aspergillosis in stem cell transplantation. N Engl J Med 2014; 370:421-32; PMID:24476432; https://doi.org/10.1056/NEJMoa1211161

[63] Cunha C, Monteiro AA, Oliveira-Coelho A, Kuhne J, Rodrigues F, Sasaki SD, Schio SM, Camargo JJ, Manto- vani A, Carvalho A, et al. PTX3-based genetic testing for risk of aspergillosis after lung transplant. Clin Infect Dis 2015; 61:1893-4; PMID:26261201; https://doi.org/10.1093/cid/civ679

[64] Wojtowicz A, Lecompte TD, Bibert S, Manuel O, Rueger S, Berger C, Boggian K, Cusini A, Garzoni C, Hirsch H, et al. PTX3 polymorphisms and invasive mold infections after solid organ transplant. Clin Infect Dis 2015; 61:619-22; PMID:25977268; https://doi.org/10.1093/cid/civ386

[65] Clarke TB, Davis KM, Lysenko ES, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota. Front Microbiol 2015; 6:1085; PMID:26508216; https://doi.org/10.3389/fmicb.2015.01085

[66] Kim YG, Udayanga KG, Totsuka N, Weinberg JB, Nunez R, Ivanov, II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, et al. Induction of intestinal Th17 cells by segmented filamentous
bacteria. Cell 2009; 139:485-98; PMID:19836068; https://doi.org/10.1016/j.cell.2009.09.033

[70] Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S, Suda W, Imaoka A, Setoyama H, Nagamori T, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 2015; 163:367-80; PMID:26411289; https://doi.org/10.1016/j.cell.2015.08.058

[71] McAleer JP, Nguyen NL, Chen K, Kumar P, Ricks DM, Binnie M, Armentrout RA, Pociask DA, Hean A, Yu A, et al. Pulmonary Th17 antifungal immunity is regulated by the gut microbiome. J Immunol 2016; 197:97-107; PMID:27217583; https://doi.org/10.4049/jimmunol.1502566

[72] Kumar P, Monin L, Castillo P, Elsegeiny W, Horne W, Eddens T, Vikram A, Good M, Schoenborn AA, Bibby K, et al. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity 2016; 44:659-71; PMID:26982366; https://doi.org/10.1016/j.immuni.2016.02.007

[73] Ichinohe T, Pang JK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A 2011; 108:5354-9; PMID:21402903; https://doi.org/10.1073/pnas.1019378108

[74] Wang J, Li F, Wei H, Lian ZX, Sun R, Tian Z. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation. J Exp Med 2014; 211:2397-410; PMID:25369695; https://doi.org/10.1084/jem.20140625

[75] Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T, Sonnenberg GF, Paley MA, Antenus M, Williams KL, Erikson J, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 2012; 37:158-70; PMID:22705104; https://doi.org/10.1016/j.immuni.2012.04.011

[76] Ramirez-Ortiz ZG, Lee CK, Wang JP, Boon L, Specht CA, Levitz SM. A nonredundant role for plasmacytoid dendritic cells in host defense against the human fungal pathogen Aspergillus fumigatus. Cell Host Microbe 2011; 9:415-24; PMID:21575912; https://doi.org/10.1016/j.chom.2011.04.007

[77] Schuh JM, Power C, Proudfoot AE, Kunkel SL, Lukacs NW, Hogaboam CM. Airway hyperresponsiveness, but not airway remodeling, is attenuated during chronic pulmonary allergic responses to Aspergillus in CCR4−/− mice. FASEB J 2002; 16:1313-5.

[78] Lilly LM, Gessner MA, Dunaway CW, Metz AE, Schwiebert L, Weaver CT, Brown GD, Steele C. The beta-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22. J Immunol 2012; 189:3653-60; PMID:22933634; https://doi.org/10.4049/jimmunol.1201797

[79] Yu S, Kim HY, Chang YJ, DeKruijff RH, Umetu DT. Innate lymphoid cells and asthma. J Allergy Clin Immunol 2014; 133:943-50; quiz 51; PMID:24679467; https://doi.org/10.1016/j.jaci.2014.02.015

[80] Sonnenberg GF, Artis D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity 2012; 37:601-10; PMID:23084357; https://doi.org/10.4049/jimmunol.2012.10.003

[81] Zelante T, Iannitti RG, Cunha C, De Luca A, Giovaninni G, Pieraccini G, Zecchi R, D’Angelo C, Massi-Benedetti C, Fallarino F, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013; 39:372-85; PMID:23973224; https://doi.org/10.1016/j.immuni.2013.08.003

[82] Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa B, Bridonneau C, Jegou S, Hoffmann TW, Natividad JM, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 2016; 22:598-605; PMID:27158904; https://doi.org/10.1038/nm.4102

[83] Glocker EO, Hennigs A, Nabavi M, Schafer AA, Wollner C, Salzer U, Pfeifer D, Veelken H, Warnatz K, Tahami F, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 2009; 361:1727-35; PMID:19864672; https://doi.org/10.1056/NEJMoa0810719

[84] Lanternier F, Pathan S, Vincent QB, Liu L, Cypowyj S, Prando C, Migaud M, Taibi L, Ammar-Khodja A, Boudghene Stambouli O, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med 2013; 369:1704-14; PMID:24131138; https://doi.org/10.1056/NEJMoa1208487

[85] Huffnagle GB, Noverr MC. The emerging world of the fungal microbiome. Trends Microbiol 2013; 21:334-41; PMID:23685069; https://doi.org/10.1016/j.tim.2013.04.002

[86] Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner FR, Dubinsky M, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 2012; 336:1314-7; PMID:22674328; https://doi.org/10.1126/science.1221789

[87] Steele C, Papaka RR, Metz A, Pop SM, Williams DL, Gordon S, Kolls JK, Brown GD. The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog 2005; 1:e42; PMID:16344862; https://doi.org/10.1371/journal.ppat.0010042

[88] Chai LY, de Boer MG, van der Velden WJ, Plantinga TS, van Spriel AB, Jacobs C, Halkes CJ, Vonk AG, Blijlevens NM, van Dissel JT, et al. The Y238X stop codon polymorphism in the human beta-glucan receptor dectin-1 and susceptibility to invasive aspergillosis. J Infect Dis 2011; 203:736-43; PMID:21242599; https://doi.org/10.1093/infdis/jiq102

[89] Sainz J, Lupianez CB, Segura-Catena J, Vazquez L, Rios F, Oyonarte S, Hemminki K, Försti A, Jurado M. Dectin-1 and DC-SIGN polymorphisms associated with invasive pulmonary Aspergillosis infection. PLoS One 2012; 7:e32273; PMID:22384201; https://doi.org/10.1371/journal.pone.0032273

[90] Cunha C, Di Ianni M, Bozza S, Giovannini G, Zaregalla S, Zelante T, D’Angelo C, Pierini A, Pitzurra L, Falzetti F, et al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood 2010; 116:5394-402; PMID:20807886; https://doi.org/10.1182/blood-2010-04-279307
[91] McKenzie CI, Mackay CR, Macia L. GPR43 - A prototypic metabolite sensor linking metabolic and inflammatory diseases. Trends Endocrinol Metabol 2016; 26:511-2.

[92] Maslowsky KM, Vieira AT, Ng A, Kranich J, Sierra F, Yu D, Schilten HC, Rolf MS, Mackay F, Artis D, et al. Regulation of inflammatory responses by gut microbiota and chemotactrant receptor GPR43. Nature 2009; 461:1282-6; PMID:19865172.

[93] Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014; 20:159-66; PMID:24390308.

[94] Kaiko GE, Ryu SH, Koupes OI, Collins PL, Solnica-Krezel L, Pearce EJ, Pearce EL, Olzt EM, Stappenbeck TS. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 2016; 165:1708-20; PMID:27264604.

[95] De Luca A, Carvalho A, Cunha C, Iannitti RG, Pitzurra L, Giovannini G, Mencacci A, Bartolommei L, Moretti S, Massi-Benedetti C, et al. IL-22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis. PLoS Pathog 2013; 9:1003486; PMID:23853597.

[96] Jang SO, Kim HJ, Kim YJ, Kang MJ, Kwon JW, Seo JH, Kim HY, Kim BJ, Yu J, Hong SJ. Asthma prevention in murine cystic fibrosis is linked to indoleamine 2,3-dioxygenase deficiency but corrected by kynurenines. Am J Respir Crit Care Med 2013; 187:609-20; PMID:23306541.

[97] Iamnitti RG, Carvalho A, Cunha C, De Luca A, Giovannini G, Casagrande A, Zelante T, Vacca C, Fallarino F, Puccetti P, et al. Th17/Treg imbalance in murine cystic fibrosis is linked to indoleamine 2,3-dioxygenase deficiency but corrected by kynurenines. Am J Respir Crit Care Med 2013; 187:609-20; PMID:23306541.

[98] Quinn RA, Phelan VV, Whiteson KL, Garg N, Bailey BA, Lim YW, Conrad DJ, Dorrestein PC, Rohrer FL. Microbial, host and xenobiotic diversity in the cystic fibrosis sputum metabolome. ISME J 2016; 10:1483-98; PMID:26623545.

[99] Quinn RA, Mcllroy DP, Courau S, Crociani J, Dufour C, Le Vacon F, Carton T. Beneficial effects of probiotics in upper respiratory tract infections and their mechanical actions to antagonize pathogens. J Appl Microbiol 2012; 113:1305-18; PMID:22788970; https://doi.org/10.1111/j.1365-2672.2012.05394.x.

[100] Scales BS, Dickson RP, Huffnagle GB. A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs. J Leukoc Biol 2016; 100:943-950; PMID:27365534.

[101] Briard B, Heddergott C, Latge JP. Volatile compounds emitted by pseudomonas aeruginosa stimulate growth of the fungal pathogen aspergillus fumigatus. mBio 2016; 7:e00219; PMID:26980832.

[102] Koo S, Thomas HR, Daniels SD, Lynch RC, Fortier SM, Shea MM, Rearden P, Comolli JC, Baden LR, Marty FM. A breath fungal secondary metabolite signature to diagnose invasive aspergillosis. Clin Infect Dis 2014; 59:1733-40; PMID:25342502.

[103] Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Muyagic Z, Vila AV, Falony G, Vieira-Silva S, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016; 352:565-9; PMID:27126040.

[104] Oliveira-Coelho A, Rodrigues F, Campos A Jr., Lacerda JF, Carvalho A, Cunha C. Paving the way for predictive diagnostics and personalized treatment of invasive aspergillosis. Front Microbiol 2015; 6:411; PMID:25999936.

[105] Stanzani M, Lewis RE, Fiaichini M, Ricci P, Tumietto F, Viale P, Ambretti S, Baccarani M, Cavo M, Vianelli N. A risk prediction score for invasive mold disease in patients with hematological malignancies. PLoS one 2013; 8:e75531; PMID:24086555.

[106] Harris B, Morjaria SM, Littmann ER, Geyer AL, Stover DE, Barker JN, Giralt SA, Taur Y, Pamer EG. Gut microbiota predict pulmonary infiltrates after allogeneic hematopoietic cell transplantation. Am J Respir Crit Care Med 2016; 194:450-63; PMID:26886180; https://doi.org/10.1164/rccm.201507-1491OC.

[107] van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoidel EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijsjen JG, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013; 368:407-15; PMID:23323867; https://doi.org/10.1056/NEJMoa1205037.

[108] Popova M, Molimard P, Courau S, Crociani J, Dufour C, Le Vacon F, Carton T. Beneficial effects of probiotics in upper respiratory tract infections and their mechanical actions to antagonize pathogens. J Appl Microbiol 2012; 113:1305-18; PMID:22788970; https://doi.org/10.1111/j.1365-2672.2012.05394.x.

[109] Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lung diseases. Lancet 2014; 384:691-702; PMID:25152271; https://doi.org/10.1016/S0140-6736(14)61336-3.

[110] Gollwitzer ES, Marsland BJ. Microbiota abnormalities in inflammatory airway diseases - Potential for therapy. Pharmacol Ther 2014; 141:32-9; https://doi.org/10.1016/j.pharmthera.2013.08.002.

[111] Huang YJ, Lynch SV. The emerging relationship between the airway microbiota and chronic respiratory disease: clinical implications. Expert Rev Respir Med 2011; 5:809-21; https://doi.org/10.1586/ers.11.76.