Phytochemicals, biological activity, and industrial application of lotus seedpod (Receptaculum Nelumbinis): A review

Yi-Fei Wang¹, Zi-Chun Shen¹, Jing Li¹, Tian Liang¹, Xiao-Fan Lin¹, Yan-Ping Li², Wei Zeng³, Qi Zou¹, Jian-Lin Shen¹ and Xiao-Yin Wang¹,⁴*

¹School of Public Health and Health Management, Gannan Medical University, Ganzhou, China, ²Scientific Research Center, Gannan Medical University, Ganzhou, China, ³School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China, ⁴Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China

Lotus (Nelumbo nucifera Gaertn.) is a well-known food and medicinal plant. Lotus seedpod (Receptaculum Nelumbinis) is the by-products during lotus products processing, which is considered as waste. Numerous studies have been conducted on its phytochemicals, biological activity and industrial application. However, the information on lotus seedpod is scattered and has been rarely summarized. In this review, summaries on preparation and identification of phytochemicals, the biological activities of extracts and phytochemicals, and applications of raw material, extracts and phytochemicals for lotus seedpod were made. Meanwhile, the future study trend was proposed. Recent evidence indicated that lotus seedpods extracts, obtained by non-organic and organic solvents, possessed several activities, which were influenced by extraction solvents and methods. Lotus seedpods were rich in phytochemicals categorized as different chemical groups, such as proanthocyanidins, oligomeric procyanidins, flavonoids, alkaloids, terpenoids, etc. These phytochemicals exhibited various bioactivities, including ameliorating cognitive impairment, antioxidation, antibacterial, anti-glycative, neuroprotection, anti-tyrosinase and other activities. Raw material, extracts and phytochemicals of lotus seedpods could be utilized as sources for biochar and biomass material, in food industry and as dye. This review gives well-understanding on lotus seedpod, and provides theoretical basis for its future research and application.

KEYWORDS
lotus seedpod, phytochemicals, health benefits, potential application, food by-product
Introduction

 Nelumbo nucifera Gaertn. (also named as lotus), belonging to the mono-generic family Nelumbonaceae, is widely distributed in Asia, Americas and Oceania (1). Lotus has been cultivated as vegetable, functional food, and herb medicine for over 2,000 years (2). According to the phytomorphology, it can be divided into different parts, such as leaf, flower, stamen, rhizome, seed, seedpod and plume (2). Almost every part can be used, and most of them are recorded in the “Chinese Pharmacopoeia” (3). Among them, rhizome and seed are the main edible parts, which are popularly consumed as vegetables or functional foods due to their delicious taste and great nutritive and non-nutritive values (2).

 Lotus seedpod (Receptaculum Nelumbinis) is the mature receptacle of lotus house (seen in Figure 1), and is usually regarded as by-products during lotus seed processing. As one of the non-edible parts of lotus, its production is almost equivalent to the edible parts (4). In the Traditional Chinese medicine, lotus seedpod can be used for treating excessive menstrual bleeding and as hemostatic (5). According to the 2015 edition of “Chinese Pharmacopoeia,” lotus seedpod charcoal (a processed product of lotus seedpod) has the usage in treating hemorrhage, urine blood, hemorrhoids bleeding, postpartum stasis, lochia, etc. However, this charcoal has gradually faded out of the market as the progress of medical science and technology. On account of lack adequate understanding on lotus seedpods, most of them are generally considered as wastes and are thrown away in the open or incinerated. This not only causes significant wastes of resources, but also brings heavy pollutions to environment. In this light, reusing the sources lotus seedpods into high value-added products is of great value.

 In the past decades, more and more attention has been paid to phytochemicals, biological activity and industrial application of lotus seedpods. A variety of phytochemicals have been derived and identified from lotus seedpods, including proanthocyanidins (6), oligomeric procyanidins (7), polyphenols (8), flavonoids and others (9). Numerous studies have demonstrated that extracts and phytochemicals of lotus seedpods possessed various biological activities, such as ameliorating cognitive impairment (10–12), antioxidation (8, 9, 13, 14), antibacterial (15–17), anti-glycative (7, 18, 19) and anti-diabetes (20). Due to the good biological activities and superior physicochemical property, raw material, extracts and phytochemicals of lotus seedpods have been increasingly applied in food and other industries (21–23). Despite of multiple researches have been carried out to lotus seedpods, the information concerning it was scattered. In contrast, summary information on other parts of lotus like seeds (1, 24) and leaf (25) have been reported. However, the review on lotus seedpods is rare.

 Hence, in this article, the information on phytochemicals, biological activity and industrial application of lotus seedpods was systematically summarized. Meanwhile, the future study trend about lotus seedpods was proposed. This work gives well-understanding on lotus seedpod, and provides theoretical basis for research as well as exploitation and application of it, which is helpful to the protection of lotus seedpod sources.
Preparation and identification of phytochemicals from lotus seedpods

Extracts of lotus seedpods can be mainly obtained by water (9, 14, 26–29) and organic (ethanol, methanol, glycerol, n-hexane, chloroform, ethyl acetate, butanol, acetone-water, etc.) (8, 13, 29–37) solvents. However, these traditional organic solvents methods have the limitations as low efficiency, low yield and potential environmental hazards, and water is not effective in extracting moderately polar and non-polar compounds (14). Subcritical water might be a good choice to overcome the drawback of water extraction. Anyway, water and ethanol are widely used as the extraction solvents. Chemical component analysis indicated that contents of total phenolics, flavonoids and proanthocyanidins in lotus seedpods extracts were in the range of 32.1∼607.6, 42.8∼862.7 and 10.6∼331.0 mg/g extract, respectively (35). In order to increase the recovery rate of phenolic compounds from lotus seedpod, ultrasound- and gas-assisted extraction methods can be applied (13, 36). Among them, the proanthocyanidins can be sequentially extracted by organic reagent like ethyl acetate to obtain the oligomeric procyanidins, which includes 10.9% catechin, 9.1% epicatechin, 53.6% dimer, 19.5% trimer and 1.9% tetramer (38, 39).

Before phytochemicals identification, the above-mentioned lotus seedpods extracts are usually purified by organic solvent (n-BuOH or ethyl acetate) fractionation (8, 35, 39–44), column (silica gel column, AB-8 macroporous resin or S8 resin column) adsorption (14, 35, 39, 40, 42–47), and Sephadex LH-20 column chromatography (35, 40, 46, 47). The lotus seedpods extracts extracts before and after purification can be identified by electrospray ionization-mass spectrometry (ESI-MS) (34, 35, 46), nuclear magnetic resonance spectrometer (NMR) (34, 35, 47, 48), high-performance liquid chromatography (HPLC)/electrospray ionization tandem mass spectrometry (ESI-MS-MS) (9), HPLC-diode array detector (DAD)-ESI-MS (8), HPLC-ESI-MS (14, 49), LC-MS (38, 44), HPLC-DAD (40), HPLC-DAD-MS (50), ultra-performance liquid chromatography triple-time of flight (UPLC-TOF/MS) (45, 51) and/or UPLC-quadrupole (Q) TOF-MS (41) methods. However, the analyses of phytochemicals might be limited by the capacity of the identification database, as above-mentioned detection methods depended deeply on standard secondary spectra database (41). Having considering that used standards and the compounds in the database are limited, the completeness and accuracy of identification of phytochemicals by these methods are a little insufficient. The combination of targeted/untargeted metabolomics analysis and comparison with standards might be applied to improve this.
Up to date, more than 94 compounds have been well-identified from lotus seedpods, as summarized in Table 1. Except the most reported two phytochemicals (proanthocyanidins and oligomeric procyanidins), the identified compounds can be generally classified into flavonoids, alkaloids, terpenoids, organic acids, steroids, esters and others (8, 14, 35, 40, 41, 45, 46). According to Table 1, the flavonoids are mostly identified in lotus seedpods. Meanwhile, Lee et al. (9) have found that the contents of 8 flavonoids included myricetin-3-galactoside, quercetin-3-glucuronide, isoorientin, isorhamnetin-3-glucuronide, isorhamnetin-3-glucoside, quercetin, kaempferol and isorhamnetin, were 11.52, 122.44, 29.44, 30.27, 29.73, 0.42, 2.01, and 0.80 mg/100 g respectively in lotus seedpod water extracts. Moreover, chemical structures of some compounds identified in lotus seedpods have been proposed, as illustrated in Figure 2.

Different preparation methods produced differences in the chemical structures of phytochemicals from lotus seedpods. In the study taken by Wu et al. (35), five compounds have been respectively obtained from n-ButOH extracts of lotus seedpods by silica gel column chromatography with different CH$_2$Cl$_2$-MeOH elution ratios and Sephadex LH-20 column chromatography. These five compounds have different chemical structures, which have been identified to be hyperoside, isoorientin, quercetin-3-O-β-D-glucuronide, isorhamnetin-3-O-β-D-galactoside and syringetin-3-O-β-D-glucoside. On the other hand, extracts of lotus seedpods from different production places have been found to contain different chemical compositions. Another study of Wu et al. (40) has indicated that 50% ethanol of 20 lotus seedpods samples, collected from different regions (Fujian, Jiangxi, Zhejiang, Beijing, Jiangsu, Hubei, Hebei, and Hebei) of China, showed different contents of these five compounds. An investigation conducted by Liu et al. (50) has demonstrated that hyperoside and isoorientin in methanol extracts of 11 lotus seedpods samples, from different localities of Jiangning County, Fujian province, China, exhibited different chemical fingerprints. Otherwise, different sources of lotus seedpods also contained different chemical compositions. The research of Limwachiranon et al. (45) has implied that lotus seedpods from three commonly consumed cultivars (Shilhehua, Jianlian and liyebailian) showed differences in phenolic, flavonoid, and proanthocyanidins contents.

### Biological activity of water extracts from lotus seedpods

Water extracts from lotus seedpods have been proven to exert antioxidation (9, 14, 29), anti-cancer (14), anti-melanogenic (27), anti-inflammatory (28) and hepatoprotection (26) activities.

In terms of the antioxidation activity, chemical assays have indicated that water extracts from lotus seedpods had scavenging effects on DPPH, ABTS and NO$_2^-$ radicals, and ferric reducing ability (14, 29). A cell experiment has demonstrated that the extracts could dose-dependently improved the survival and function of rat pancreatic RIN-m5F cells induced by H$_2$O$_2$ through down-regulation of apoptosis and up-regulation of autophagy, revealing as increasing protein expressions of LC3II, Atg5/12, p62, class III PI3K, Bclin-1 and p-Bad/Bad, and decreasing protein expressions of active-caspase-3 and cleavage PARP-1 along with Bax/Bcl-2 ratio (9). Regarding to anti-melanogenic effect, water extracts of lotus seedpods could inhibit melanin synthesis in α-melanocyte stimulating hormone-induced B16F10 cells and in UVB-induced mice, which involved both PKA and p38 signaling pathways (27). In the cell experiment, the extracts decreased protein expressions of p-PKA/PKA, p-p38/p38, p-CREB/CREB and MITF, and protein and mRNA expressions of tyrosinase, TRP-1 and MC1R of B16F10 cells. In the animal experiment, the extracts reduced protein expressions of tyrosinase, TRP-1, TRP-2, p-PKA/PKA and p-p38/p38 in ears of mice. As to anti-inflammatory action, water extracts of lotus seedpods exerted protective effects against LPS-induced HepG2 cells and LPS-induced mice via NF-κB and p38 signaling pathways (28). In the cell experiment, the extracts could lessen mRNA expressions of IL-6, COX-2 and iNOS, and protein expressions of COX-2, iNOS, NF-κB, IKK, p-IκB/IκB, p-p38/p38, TLR4 and MyD88 of HepG2 cells. In the animal experiment, the extracts could decrease protein expressions of COX-2, iNOS, NF-κB, IKK, p-IκB/IκB and p-p38/p38 in liver of mice. To hepatoprotection effect, water extracts of lotus seedpods reduced lipid accumulation and lipotoxicity in oleic acid-induced HepG2 cells through anti-apoptotic and anti-autophagy mechanisms, showing as adding Bcl-2 protein expression, and lowering protein expressions of LC3-II/LC3-I, Atg5/12, active-caspase-3/8/9, cleaved PARP, Bax and mitochondrial membrane depolarization, as well as Bax/Bcl-2 ratio (26). Additionally, water extract from lotus seedpods had anti-proliferation effect on HepG2 cells (14).

On the other hand, subcritical water extracts from lotus seedpods have been determined to reveal antioxidation activity, showing as scavenging DPPH, ABTS and NO$_2^-$ radicals and ferric reducing ability, and anti-cancer effect against cell proliferation of HepG2 cells (14).
| Class       | Compound number | Name of compounds                  | Preparation method                                                                 | Formula      | Identification method                                      | References |
|------------|-----------------|-------------------------------------|-------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------|------------|
| Flavonoids | 1               | Hyperoside                          | 75% ethanol extraction, n-BuOH fractionation, and silica gel column and Sephadex LH-20 column chromatography | C_{21}H_{20}O_{12} | ESI-MS, $^1$H NMR and $^{13}$C NMR or HPLC-DAD            | (35, 40)   |
|            | 2               | Isoquercitrin                        |                                                                                     | C_{21}H_{20}O_{12} | 464.38                                                    |            |
|            | 3               | Quercetin-3-O-β-D-glucuronide        |                                                                                     | C_{21}H_{21}O_{13} | 487.44                                                    |            |
|            | 4               | Isothamnetin-3-O-β-D-galactoside     |                                                                                     | C_{21}H_{17}O_{13} | 477.36                                                    |            |
|            | 5               | Syringetin-3-O-β-D-glucoside         |                                                                                     | C_{23}H_{24}O_{13} | 508.44                                                    |            |
|            | 6               | Catechin                            | Subcritical water extraction and AB-8 macroporous resin adsorption chromatography     | C_{15}H_{14}O_{6} | 290.27                                                    | (14)       |
|            | 7               | Cyanidin-3-O-glucoside               |                                                                                     | C_{21}H_{21}O_{11} | 449.39                                                    |            |
|            | 8               | Kaempferol-3-O-glucuronide           |                                                                                     | C_{21}H_{18}O_{12} | 462.37                                                    |            |
|            | 9               | Isothamnetin                         |                                                                                     | C_{16}H_{12}O_{7}  | 316.27                                                    |            |
|            | 10              | Kaempferol                           | 50% ethanol extraction and ethyl acetate fractionation                              | C_{12}H_{10}O_{6} | 286.24                                                    | (8, 41)    |
|            | 11              | Quercetin                            |                                                                                     | C_{15}H_{10}O_{7}  | 302.24                                                    |            |
|            | 12              | Kaempferol glycosides                | 70% acetone extraction and S8 resin adsorption chromatography                        | C_{21}H_{10}O_{10} | 432.38                                                    | (45)       |
|            | 13              | Myricetin-3-glucoside                |                                                                                     | C_{21}H_{20}O_{12} | 480.38                                                    |            |
|            | 14              | Myricetin                            |                                                                                     | C_{15}H_{10}O_{8}  | 318.24                                                    |            |
|            | 15              | Rutin                                |                                                                                     | C_{21}H_{14}O_{6}  | 610.53                                                    |            |
|            | 16              | Myricetin-3-glucuronide              |                                                                                     | C_{20}H_{13}O_{12} | 448.34                                                    |            |
|            | 17              | Procyanidin dimer A                  |                                                                                     | C_{20}H_{14}O_{12} | 576.51                                                    |            |
|            | 18              | Syringetin-3-glucuronide             |                                                                                     | C_{23}H_{22}O_{14} | 522.42                                                    |            |
|            | 19              | Quercetin glycosides                 |                                                                                     | C_{19}H_{16}O_{9}  | 388.33                                                    |            |
|            | 20              | Kaempferol-3-galactoside             |                                                                                     | C_{23}H_{16}O_{9}  | 388.33                                                    |            |
|            | 21              | Isothamnetin-3-neohesperidose        |                                                                                     | C_{28}H_{22}O_{16} | 624.55                                                    |            |
|            | 22              | Isothamnetin-3-glucoside             |                                                                                     | C_{22}H_{12}O_{12} | 478.41                                                    |            |
|            | 23              | Syringetin glycosides                |                                                                                     | C_{22}H_{22}O_{12} | 508.44                                                    |            |
|            | 24              | Procyanidin tetramer A/B             |                                                                                     | C_{31}H_{14}O_{31} | 1162.97                                                   |            |
|            | 25              | Procyanidin trimmer A/B              |                                                                                     | C_{26}H_{18}O_{21} | 804.67                                                    |            |
|            | 26              | Procyanidin dimer A                  |                                                                                     | C_{20}H_{13}O_{12} | 592.51                                                    |            |
|            | 27              | Cyaniding-3-galactoside              |                                                                                     | C_{21}H_{13}O_{11} | 449.39                                                    |            |
|            | 28              | Isothamnetin-3-glucuronide           |                                                                                     | C_{22}H_{21}O_{13} | 492.39                                                    |            |
|            | 29              | Dio-7-rutinoside                     |                                                                                     | C_{28}H_{32}O_{15} | 608.55                                                    |            |
|            | 30              | Apigenin glycosides                  |                                                                                     | C_{26}H_{20}O_{14} | 564.50                                                    |            |
|            | 31              | Isothamnetin 3,7-di-O-β-glucopyranoside | 95% ethanol extraction, silica gel column and Sephadex LH-20 column chromatography | C_{28}H_{32}O_{17} | 640.55                                                    | $^1$H NMR,$^{13}$C NMR and ESI-MS (46) |            |
|            | 32              | (-)-Epigallocatechin                  |                                                                                     | C_{15}H_{14}O_{6}  | 290.27                                                    |            |
|            | 33              | Procyanidin B2                       |                                                                                     | C_{20}H_{20}O_{12} | 578.53                                                    |            |
|            | 34              | 2,3-trans-Dihydromorin               |                                                                                     | C_{15}H_{12}O_{7}  | 304.26                                                    |            |

(Continued)
| Class          | Compound number | Name of compounds                                      | Preparation method               | Formula                  | \(M_w\) (Da)\(^9\) | Identification method | References |
|---------------|-----------------|--------------------------------------------------------|----------------------------------|--------------------------|----------------------|------------------------|------------|
| 35            | Kaempferol-3-O-rutinoside | C_{27}H_{38}O_{15}                                     | 80% ethanol extraction            | 594.53                   |                      | UPLC-QTOF-MS           | (41)       |
| 36            | Patuletin-7-O-[6′- (2-Methylbutyryl)]-glucopyranoside | C_{26}H_{28}O_{14}                                     | 80% ethanol extraction            | 564.50                   |                      | UPLC-QTOF-MS           | (41)       |
| 37            | Apin            | C_{26}H_{28}O_{14}                                     | 80% ethanol extraction            | 564.50                   |                      | UPLC-QTOF-MS           | (41)       |
| 38            | Kaeempferol-3-O-glucopyranosyl-2′-O-β-D-xlyopyranoside | C_{26}H_{28}O_{14}                                     | 80% ethanol extraction            | 596.50                   |                      | UPLC-QTOF-MS           | (41)       |
| 39            | Taxifolin       | C_{26}H_{28}O_{14}                                     | 80% ethanol extraction            | 564.50                   |                      | UPLC-QTOF-MS           | (41)       |
| 40            | Isorhamnetin-3-O-rutinoside | C_{28}H_{32}O_{18}                                     | 80% ethanol extraction            | 624.55                   |                      | UPLC-QTOF-MS           | (41)       |
| 41            | Cosmosin        | C_{21}H_{18}O_{9}                                      | 80% ethanol extraction            | 432.38                   |                      | UPLC-QTOF-MS           | (41)       |
| 42            | Apigenin        | C_{20}H_{10}O_{5}                                      | 80% ethanol extraction            | 270.24                   |                      | UPLC-QTOF-MS           | (41)       |
| 43            | Nepirin         | C_{22}H_{24}O_{12}                                     | 80% ethanol extraction            | 478.41                   |                      | UPLC-QTOF-MS           | (41)       |
| 44            | Quercetin-3-O-β-D-glucuronide-6′-methyl ester         | C_{22}H_{32}O_{13}                                     | 80% ethanol extraction            | 492.39                   |                      | UPLC-QTOF-MS           | (41)       |
| 45            | Patuletin       | C_{16}H_{12}O_{3}                                      | 80% ethanol extraction            | 332.27                   |                      | UPLC-QTOF-MS           | (41)       |
| 46            | Luteolin        | C_{22}H_{22}O_{3}                                      | 80% ethanol extraction            | 286.24                   |                      | UPLC-QTOF-MS           | (41)       |
| 47            | Morin           | C_{22}H_{22}O_{3}                                      | 80% ethanol extraction            | 302.24                   |                      | UPLC-QTOF-MS           | (41)       |
| 48            | Tricin          | C_{22}H_{22}O_{3}                                      | 80% ethanol extraction            | 320.29                   |                      | UPLC-QTOF-MS           | (41)       |
| Alkaloids     | 49              | Armpavine                                              | 80% ethanol extraction            | 313.40                   |                      | UPLC-QTOF-MS           | (41)       |
| 50            | Linsamine       | C_{19}H_{12}O_{3}                                      | 80% ethanol extraction            | 610.75                   |                      | UPLC-QTOF-MS           | (41)       |
| 51            | N-Methylcoctaurine | C_{18}H_{24}NO_{3}                                     | 80% ethanol extraction            | 299.37                   |                      | UPLC-QTOF-MS           | (41)       |
| 52            | Pseudo-purpurin | C_{17}H_{20}O_{3}                                      | 80% ethanol extraction            | 300.22                   |                      | UPLC-QTOF-MS           | (41)       |
| 53            | Nuciferine      | C_{18}H_{22}O_{3}                                      | 80% ethanol extraction            | 295.38                   |                      | UPLC-QTOF-MS           | (41)       |
| 54            | Tetrandrine     | C_{18}H_{22}O_{12}                                     | 80% ethanol extraction            | 622.76                   |                      | UPLC-QTOF-MS           | (41)       |
| 55            | Lyciscanine     | C_{18}H_{22}O_{3}                                      | 80% ethanol extraction            | 291.31                   |                      | UPLC-QTOF-MS           | (41)       |
| 56            | Morphine        | C_{17}H_{22}O_{3}                                      | 80% ethanol extraction            | 285.34                   |                      | UPLC-QTOF-MS           | (41)       |
| Terpenoids    | 57              | Ursolic acid                                           | 80% ethanol extraction            | 414.71                   |                      | UPLC-QTOF-MS           | (41)       |
| 58            | Hedegagenin     | C_{16}H_{24}O_{4}                                      | 80% ethanol extraction            | 472.71                   |                      | UPLC-QTOF-MS           | (41)       |
| 59            | Ursolic acid    | C_{16}H_{24}O_{3}                                      | 80% ethanol extraction            | 454.69                   |                      | UPLC-QTOF-MS           | (41)       |
| 60            | Glycyrrhetinic acid | C_{18}H_{26}O_{4}                                     | 80% ethanol extraction            | 470.69                   |                      | UPLC-QTOF-MS           | (41)       |
| 61            | Ganoderic acid H | C_{16}H_{24}O_{3}                                      | 80% ethanol extraction            | 572.70                   |                      | UPLC-QTOF-MS           | (41)       |
| 62            | Ganoderic acid G | C_{16}H_{24}O_{3}                                      | 80% ethanol extraction            | 532.67                   |                      | UPLC-QTOF-MS           | (41)       |
| 63            | Soyasapogenol B | C_{16}H_{24}O_{3}                                      | 80% ethanol extraction            | 458.72                   |                      | UPLC-QTOF-MS           | (41)       |
| 64            | Ganodericil F   | C_{16}H_{24}O_{3}                                      | 80% ethanol extraction            | 454.69                   |                      | UPLC-QTOF-MS           | (41)       |
| 65            | Ceanothic acid  | C_{16}H_{24}O_{4}                                      | 80% ethanol extraction            | 486.69                   |                      | UPLC-QTOF-MS           | (41)       |
| 66            | 3-O-β-D-glucopyranosyl-dammar-3β,12β,20R,25-tetraol  | C_{16}H_{24}O_{3}                                      | 80% ethanol extraction            | 640.90                   |                      | UPLC-QTOF-MS           | (41)       |
| Organic acids | 67              | Pseudo-ginsenoside RT4                                 | 95% ethanol extraction, silica gel column and Sephadex LH-20 column chromatography | 654.88                   |                      | UPLC-QTOF-MS           | (41)       |
| 68            | Palmitic acid   | C_{18}H_{32}O_{2}                                      | 95% ethanol extraction, silica gel column and Sephadex LH-20 column chromatography | 256.43                   |                      | UPLC-QTOF-MS           | (41)       |
| 69            | Citric acid     | C_{6}H_{12}O_{7}                                       | 80% ethanol extraction            | 192.12                   |                      | UPLC-QTOF-MS           | (41)       |
| 70            | Cheilodonc acid | C_{7}H_{12}O_{6}                                       | 80% ethanol extraction            | 184.10                   |                      | UPLC-QTOF-MS           | (41)       |
| 71            | p-Coumaric acid | C_{6}H_{12}O_{7}                                       | 80% ethanol extraction            | 164.16                   |                      | UPLC-QTOF-MS           | (41)       |
| 72            | Isovanillic acid| C_{6}H_{12}O_{7}                                       | 80% ethanol extraction            | 168.15                   |                      | UPLC-QTOF-MS           | (41)       |
| 73            | Phellibaumin A  | C_{10}H_{12}O_{7}                                      | 80% ethanol extraction            | 352.30                   |                      | UPLC-QTOF-MS           | (41)       |
| 74            | Sanleng acid    | C_{18}H_{34}O_{5}                                      | 80% ethanol extraction            | 330.46                   |                      | UPLC-QTOF-MS           | (41)       |
related to downregulation of activity and protein expression of melanocyte stimulating hormone-induced B16F10 cells was 2 the ethanol extracts revealed cytoprotection on H activity (8, 29, 34, 35). A cell experiment has shown that H exhibited scavenging effects on DPPH, ABTS, OH, O d demonstrated that ethanol extracts from lotus seedpods anti-melanogenic (33) and anti-inflammatory (31) actions. to exhibit antioxidation (8, 29, 34, 35), anti-cancer (8, 32), from lotus seedpods Biological activity of ethanol extracts α effect, inhibition of the extract on melanin synthesis in and mRNA expressions (32). Regarding to anti-melanogenic and decrease of PARP protein expression as well as Axl protein increase of cleavage PARP and γ A549 and H460 cells via downregulation of Axl, illustrating as cancer activity, ethanol extracts from lotus seedpods exerted RAW264.7 cells and reduced MDA level (34). In terms of anti- antioxidation activities in scavenging DPPH and ABTS radicals obtained by these solvents (except acetone-water) exerted irradiation (37) and cardioprotection effects (30). The extracts been shown to possess antioxidation (13, 29, 36), anti- antioxidation (8, 29, 34, 35), and ferric reducing ability (13, 29, 36). Acetone-water extract anti-proliferation effect on HepG2, LNcap, A549 and H460 cells (8, 32). Thereinto, the extracts induced cell apoptosis of anti-melanogenic action, ethanol extracts from lotus seedpods exerted anti-inflammatory action, MAPKs, NF-κB and Nrf2/HO-1 pathways were regulated by the extracts to LPS-induced RAW264.7 cells, which showing as increasing protein expressions of Nrf2 and HO-1, and decreasing protein expressions of iNOS, COX-2, p-p38/p38, p-ERK/ERK, p-JNK/JNK, p65 and p-p65 (31).

**Biological activity of ethanol extracts from lotus seedpods**

Ethanol extracts from lotus seedpods have been indicated to exhibit antioxidation (8, 29, 34, 35), anti-cancer (8, 32), anti-melanogenic (33) and anti-inflammatory (31) actions.

With regard to antioxidation effect, chemical assays have demonstrated that ethanol extracts from lotus seedpods exhibited scavenging effects on DPPH, ABTS, OH, O and H radicals, ferric reducing ability and metal ion chelating activity (8, 29, 34, 35). A cell experiment has shown that the ethanol extracts revealed cytoprotection on H-induced RAW264.7 cells and reduced MDA level (34). In terms of anti-cancer activity, ethanol extracts from lotus seedpods exerted anti-proliferation effect on HepG2, LNcap, A549 and H460 cells (8, 32). Thereinto, the extracts induced cell apoptosis of A549 and H460 cells via downregulation of Axl, illustrating as increase of cleavage PARP and γ-H2AX protein expressions, and decrease of PARP protein expression as well as Axl protein and mRNA expressions (32). Regarding to anti-melanogenic effect, inhibition of the extract on melanin synthesis in α-melanocyte stimulating hormone-induced B16F10 cells was related to downregulation of activity and protein expression of tyrosinase (33). As to anti-inflammatory action, MAPKs, NF-κB and Nrf2/HO-1 pathways were regulated by the extracts to LPS-induced RAW264.7 cells, which showing as increasing protein expressions of Nrf2 and HO-1, and decreasing protein expressions of iNOS, COX-2, p-p38/p38, p-ERK/ERK, p-JNK/JNK, p65 and p-p65 (31).

**Biological activity of other extracts from lotus seedpods**

Methanol, glycerol, n-hexane, chloroform, ethyl acetate, butanol and acetone-water extracts from lotus seedpods have been shown to possess antioxidation (13, 29, 36), anti-irradiation (37) and cardioprotection effects (30). The extracts obtained by these solvents (except acetone-water) exerted antioxidation activities in scavenging DPPH and ABTS radicals and ferric reducing ability (13, 29, 36). Acetone-water extract of lotus seedpods showed anti-irradiation effect against 60Co irradiation-induced mice, behaving as increments of survival time, activities of SOD, CAT and GPX in liver, levels of white blood cells, red blood cells, platelets and hemoglobin, and spleen weight and index, and reduction of LPO level in liver and chromosomal aberrations in the bone marrow, to

### TABLE 1 (Continued)

| Class          | Compound number | Name of compounds | Preparation method | Formula | $M_w$ (Da)$^a$ | Identification method | References |
|----------------|-----------------|-------------------|--------------------|--------|---------------|----------------------|------------|
| Steroids       | 80              | Neoglycerin acetate | 80% ethanol extraction | C_25H_44O_2 | 458.68 | UPLC-QTOF-MS | (41) |
|                | 81              | Duscosterol       |                    | C_24H_36O_2 | 576.86 |                    |            |
|                | 82              | 24-Methylcholesterol |                    | C_25H_40O_2 | 398.67 |                    |            |
|                | 83              | Corhisterol       |                    | C_25H_40O_2 | 410.68 |                    |            |
|                | 84              | Stigmast-4-ene-3,6-diene |                    | C_26H_42O_2 | 426.68 |                    |            |
| Esters         | 85              | Ethyl hexadecanoate | 80% ethanol extraction | C_26H_44O_2 | 284.48 | UPLC-QTOF-MS | (41) |
|                | 86              | Diisobutyl phthalate |                    | C_26H_42O_2 | 278.35 |                    |            |
| Others         | 87              | Hexadecan-2-ol    | 95% ethanol extraction, silica gel column and Sephadex LH-20 column chromatography | C_18H_34O_2 | 242.44 | ^1H NMR, ^3C NMR and ESI-MS | (46) |
|                | 88              | Pentadecan-3-ol   |                    | C_15H_30 | 228.42 |                    |            |
|                | 89              | Pentadecane       |                    | C_15H_30 | 212.42 |                    |            |
|                | 90              | Futoamide        | 80% ethanol extraction | C_14H_22NO_3 | 301.39 | UPLC-QTOF-MS | (41) |
|                | 91              | Cireneol G        |                    | C_22H_36O_2 | 266.42 |                    |            |
|                | 92              | Isoquinolinolcarboxi-midamidine,3,4-dihydro-N-3,6,9,12,15,18,21,24-octaoxapentacos-1-yld |                    | C_27H_36N_4O_3 | 541.69 |                    |            |
|                | 93              | N-Isobutyl-2E,4E-octadecadienamide |                    | C_22H_41NO | 335.57 |                    |            |
|                | 94              | Pheophytin a      |                    | C_35H_52N_4O_5 | 671.22 |                    |            |

$^a$ $M_w$ was calculated on the basis of C, H, O, and N atomic mass as 12.011, 1.00794, 15.9994, and 14.006747, respectively.

Wang et al. 10.3389/fnut.2022.1022794
mice (37). 100% methanol extract had cardioprotection effect on Ang II-induced H9c2 cells through suppression of PKC-ERK signaling pathways, which exhibiting as declinations of protein expressions of NFATc-1, ANP, BNP, MLC2, NOX2, NOX4, p-NF-κB/NF-κB, AT1R, RAGE, PKC, p-PKC and p-ERK1/2 (30).

**Comparison on biological activities of different extracts from lotus seedpods**

Extracts from lotus seedpods acquired with different solvents and methods had distinctions in biological activities. Antioxidation activities of 80% ethanol, n-hexane, chloroform, ethyl acetate, butanol and water extracts from lotus seedpods have been investigated in the study of Kim and Shin (29). The results suggested that these extracts had different flavonoid and proanthocyanidin contents, and the scavenging activities on DPPH and ABTS radicals and ferric reducing ability for them were 94.319, 33.387, 85.263, 76.099, 93.944% and 94.587, 92.937, 9.781, 93.940, 85.755, 93.184% and 93.184%, and 1.551, 0.410, 0.905, 1.099, 1.431, and 1.448 respectively, at the concentration of 0.8 mg/mL. The findings of Yan et al. (14) have manifested that subcritical water extract (SWE) and hot water extract (HWE) from lotus seedpods contained different polyphenol (815.4 and 785.6 mg GAE/g DW, respectively) and flavonoid (1012.05 and 932.56 mg RE/g DW) contents. The SWE showed significantly higher scavenging activities of DPPH, ABTS and NO\textsuperscript{2−} radicals and ferric reducing ability, along with antiproliferative activity on HepG2 cells, as compared to the HWE.

Moreover, the study taken by Bao et al. (36) has made comparisons on the antioxidant activities of extracts from lotus seedpods by four extraction means, including ultrasonic coupled with glycerol (UG), ultrasonic using water (UW), water bath incubation with glycerol (WG) and water bath.
incubation using water (WW). The results displayed that the extract gained by UG had the relatively highest scavenging activities on DPPH and ABTS radicals and ferric reducing ability. Another investigation of them implied that extract from lotus seedpods obtained by gas-assisted combined with glycerol approach exhibited obvious higher scavenging effects on DPPH and ABTS radicals along with ferric reducing ability than that acquired by WG (13).
Biological activity of phytochemicals from lotus seedpods

Phytochemicals from lotus seedpods have been determined to reveal a variety of biological activities, including ameliorating cognitive impairment (10–12, 52–61), antioxidation (4, 5, 62–64), antibacterial (15–17, 65), anti-glycative (7, 18, 19), neuroprotection (48, 46), anti-tyrosinase (46, 47), retinal protection (6), anti-insomnia (67), anti-cancer (68), immunomodulatory (69), ameliorating intestinal injury (70), anti-diabetes (20), regulating lipid homeostasis (38), anti-inflammatory (71) and α-glucosidase inhibitory (4) activities.

Biological activity of proanthocyanidins from lotus seedpods

Recently, proanthocyanidin is one of the mostly investigated phytochemicals from lotus seedpods. They have been implied to possess ameliorating cognitive impairment (11, 12, 52–61), antioxidation (62–64), neuroprotection (10, 48, 46), retinal protection (6), anti-insomnia (67), anti-cancer (68) and immunomodulatory (69) activities, as displayed in Figure 3B and Supplementary Table 1.

Animal studies have indicated that proanthocyanidins from lotus seedpods ameliorated cognitive impairment of D-galactose- (12), extremely low frequency electromagnetic fields- (11, 56, 57), scopolamine- (52–55) or alcohol-induced mice (52), senescence-accelerated mice (61), and aged rats (58–60). In terms of D-galactose-induced mice model, the ameliorating cognitive impairment action of the proanthocyanidins correlated with reverse of oxidative damage, prevention of Aβ overproduction and suppression of NO production, appearing as enhancements of SOD and GPX activities in brain, reductions of Aβ1–42, NO and MDA levels and AchE, MAO-B, iNOS and nNOS activities in brain, and declinations of nerve cell apoptosis and p53 protein expression in hippocampus (12). Regarding to extremely low frequency electromagnetic fields-induced mice model, Ca2+/CaMK II/CREB/BDNF and DG/PKC/MAPK signaling pathways involved in the ameliorating cognitive impairment effect of the proanthocyanidins (11, 57). The proanthocyanidins increased protein expressions of CaMKII, PKCα, BDNF and p-ERK1/2, and decreased concentrations of Ca2+, IP3, DAG, glutamate, GABA and [Ca2+]i, and protein expressions of Gi, PKA, PKCζ, PP2B, ASK1, NR2B, p-CREB and p-JNK1/2, in hippocampus of mice. Moreover, the action was also related to improvement of antioxidant status, showing as increasing activities of SOD, CAT and GPX, and decreasing levels of MDA and NO and activity of NOS, in serum and hippocampus of mice (56). As to scopolamine- or alcohol-induced mice model, the ameliorating cognitive impairment action of the proanthocyanidins was correlated with improvement of antioxidant ability and cholinergic activity, exhibiting as elevating T-AOC level and activities of SOD and GPX, lessening levels of MDA, MAO-B, AchE and NO, activities of MPO, AchE, tNOS, nNOS and iNOS, and nNOS mRNA expression, in hippocampus, brain, serum and/or colon (52–55). For senescence-accelerated mice model, the ameliorating cognitive impairment effect of the proanthocyanidins was in connection with boost of antioxidant level, reflecting as enhancing GSH level and SOD and GPX activities, and reducing NO and MDA levels and nNOS and total NOS activities in brain and/or serum (61). To aged rats model, the ameliorating cognitive impairment effect of the proanthocyanidins correlated with changes of NO system (60), activation of hippocampal CREB through ERK-mediated signaling pathway (59) and rejuvenation of antioxidant and cholinergic systems (58). The proanthocyanidins elevated levels of GSH, T-AOC, AchE and ACh, activities of CAT and GPX, protein expressions of p-CREB, BDNF, p-ERK42/ERK44, and p-ERK44/ERK44 and iNOS, and mRNA expressions of iNOS and BDNF, and declined levels of NO and MDA and activities of tNOS and iNOS in hippocampus and/or cerebral cortex of rats.

A chemical assay has shown that proanthocyanidins of lotus seedpods exhibited antioxidation activity in scavenging DPPH and ABTS radicals along with ferric reducing ability (62). A further cell experiment has suggested that the proanthocyanidins could relieve oxidative damage in H2O2-induced HUVECs, appearing as increasing activities of SOD and GPX and production of NO, and decreasing levels of MDA and ET-1 (62). Animal experiments have proven that the proanthocyanidins exerted antioxidation action in aged rats (64) and extremely low frequency electromagnetic fields-induced mice (63). In terms of aged rats model, the proanthocyanidins promoted the activities of SOD, CAT, GPX and level of GSH, and lessened TBA5c content, in serum, heart, liver, kidney, lung or muscle (64). Regarding to extremely low frequency electromagnetic fields-induced mice model, the proanthocyanidins aggrandized activities of SOD, CAT, GPX, GR and GST, and lowered MDA level, in serum and cerebral cortex (65).

Cell experiments have revealed that proanthocyanidins of lotus seedpods possessed neuroprotection activity against amyloid-β-induced PC12 cells (10), extremely low frequency electromagnetic fields-induced primary cultured rat hippocampal neurons (66) and methyl mercuric chloride-induced neuron/astrocyte co-cultured cells (48). The activity was realized through inhibitions of oxidative stress and mitochondrial apoptotic pathway, and activation of CREB/BDNF signaling pathway. The proanthocyanidins raised levels of GSH, T-AOC and mitochondrial membrane potential, activities of SOD and GPX, protein expressions of p-CREB/CREB, BDNF, p-AKT/AKT, p-ERK/ERK, Bcl-xL, Bcl-2,
SOD1/SOD2, Bcl-xL, Nrf2, HO-1, nuclear Nrf2, β-III-Tubulin, SYN and Arc and mRNA expression of BDNF, and down-regulated concentrations of LDH, MDA, Ca^{2+} and ROS, and protein expressions of Bad, Bax and caspase-3/-9 along with Bax/Bcl-2 ratio (10, 48, 66).

Animal experiment has demonstrated that proanthocyanidins of lotus seedpods reflected retinal protection against light exposure-induced rats through anti-oxidative stress, anti-apoptosis and neuroprotective effects, displaying as improving activities of SOD and GPx and mRNA and protein expressions of Bcl-2, and lowering retinal apoptosis, mRNA expressions of caspase-3, p53 and Bax, and protein expressions of pro-caspase-3, cleaved caspase-3, p53 and Bax (6). The proanthocyanidins exerted anti-insomnia effect to rats by regulating NO/ADMA/DDAH pathway, showing as increasing levels of 5-HT, GABA and NO, and protein and mRNA expressions of DDAH1, DDAH2 and nNOS, and decreasing levels of NE, Glu, ADMA and 8-isoprostane, in brain (67). Proanthocyanidins from lotus seedpods exhibited immunomodulatory effect against extremely low frequency electromagnetic fields-induced mice, and increased protein expressions of IL-2, IL-6, IL-10, INF-γ and Bcl-xL, and DNA contents, and decreased protein expressions of TNF-α and caspase-3/9 along with Bax/Bcl-2 ratio and apoptotic splenocytes in spleen (69). Otherwise, cell experiment has showed that proanthocyanidins from lotus seedpods possessed anti-cancer activity in HepG2 cells through inducing autophagy and ROS generation (68).

In addition, there are some connects between the different bioactivities of proanthocyanidins from lotus seedpods. The retinal protection of proanthocyanidins against light exposure-induced rats was realized partly through their antioxidation and neuroprotection activities (6). Ameliorating cognitive impairment action of proanthocyanidins was reported to be related to their antioxidation effects in D- galactose-, scopolamine-, alcohol and scopolamine, senescence-accelerated or extremely low frequency electromagnetic field exposure-induced mice (12, 52–54, 56, 61) as well as cognitively impaired aged rats (58). The neuroprotection of proanthocyanidins was associated with their antioxidation action in extremely low frequency electromagnetic field-induced primary cultured hippocampal neurons (66) and methyl mercuric chloride-induced neuron/astrocyte co-cultured cells (18).

**Biological activity of oligomeric procyanidins from lotus seedpods**

Oligomeric procyanidin is another one of the mostly studied phytochemicals from lotus seedpods. They have been demonstrated to show antibacterial (15–17, 65), anti-glycative (7, 18, 19), ameliorating intestinal injury (70), anti-diabetes (20), antioxidation (5) and regulating lipid homeostasis (38) activities, as indicated in Figure 3C and Supplementary Table 1.

Oligomeric procyanidins of lotus seedpods showed antibacterial activity in vitro and in vivo. The oligomeric procyanidins had the minimal inhibitory concentrations on *Escherichia coli* K88ac, F18ac, 10899 and BL21 as 0.80, 1.20, 1.25, and 1.25 mg/mL, respectively (17, 65). Moreover, synergistic effect was observed between the oligomeric procyanidins and water-soluble *Portia cocos* polysaccharides or carboxymethyl pachyman in inhibitory effect on *Escherichia coli* (16, 17). The antibacterial mechanism of oligomeric procyanidins on *Escherichia coli* has been disclosed to be increments of extracellular alkaline phosphatase, ROS production, activities of SOD and CAT and mRNA expressions of sodA, soxR, oxyR and oxyS (15). Further study has indicated that the oligomeric procyanidins reflected antibacterial activity against high-lactose diet-induced mice by enhancing abundances of *Lactobacillus* and *Bifidobacterium*, and lessening populations of *Escherichia coli* and *Enterococcus* in feces (15). On the other hand, the oligomeric procyanidins ameliorated intestinal injury against enterotoxigenic *Escherichia coli*-infected diarrhea mice (70). This effect was related to the modulation of TLR4-MAPK signaling pathway, reflecting as increasing protein and mRNA expressions of ZO-1, claudin-1 and occludin, and decreasing protein expressions of p-p38, p-INK1/2 and p-ERK1/2 and RNA expressions of TNF-α, IL-8, IL-1β, IL-6, CD14, TLR4, p38 and NF-κB in jejunum/ileum.

Oligomeric procyanidins from lotus seedpods exerted anti-glycative activity on Caco-2 cells treated with digestive fluid (19), high-AGEs diet-induced mice (7) and high-fat diet-induced rats (18). RAGE-p38MAPK-NF-κB signaling pathway was involved in their activities. In the animal experiments, the oligomeric procyanidins decreased protein expressions of NF-κB, p38MAPK, p-p38MAPK, RAGE and p65NF-κB, and mRNA expressions of TNF-α, IL-6, NADPH, COX and RAGE in liver of mice or rats induced by high-AGEs diet or high-fat diet (7, 18). In the cell experiment, the oligomeric procyanidins reduced protein expressions of RAGE, p-p38MAPK, p65NF-κB and p-p65NF-κB, and mRNA expressions of NADPH, TNF-α, IL-6, ICAM-1 and VCAM-1 of Caco-2 cells treated with digestive fluid (19). Moreover, absorption and metabolism of oligomeric procyanidins from lotus seedpods have been investigated in the study of Wu et al. (72). Eight metabolites, including (+)-catechin, caffeic acid, syringic acid, 3-hydroxybenzoic acid, 3-hydroxyphenylacetic acid, 3-hydroxyphenylpropionic acid, ferulic acid and m-coumaric acid, have been detected in in urine of rats after 24 h post-administration of 300 mg/kg body weight of the oligomeric procyanidins. Among them, (+)-catechin had much better inhibition activity on AGE formation and methylglyoxal scavenging effect, while syringic acid showed the best scavenging ability on DPPH radical. Furthermore, Wu et al. (49) have compared the inhibitory effects of oligomeric procyanidin from lotus seedpods and...
its three main monomers [(+)-catechin, (-)-epicatechin and
(-)-epigallocatechin gallate] on releases of AGE and CML
formation in simulated gastrointestinal digestion, for studying
the structure-activity relationship. The results indicated that
(-)-epigallocatechin gallate exhibited the strongest activities.

Animal experiment has shown that oligomeric procyanidins
from lotus seedpods possessed anti-diabetes action against
streptozotocin-induced mice by attenuating mTOR signaling
and enhancing glucose homeostasis (20). This action was related
to enhancement of protein expressions of GLUT2, GK, p-AKT,
PKCβ, FoxO1a, p-FoxO1a and GLUT1 and mRNA expressions of
PEPCK, G-6-Pase, SREBP-1c, ACC1, FAS, SCD1 and S6K1, in liver, skeletal muscle, white adipose tissue and/or
brown adipose tissue. Chemical assays have revealed that the
oligomeric procyanidins had antioxidation action in scavenging
·OH, O₂⁻ and H₂O₂ radicals (5). Animal investigation has
suggested that the oligomeric procyanidins regulated the lipid
profile of high fat/sucrose diet-induced rats by suppressing the
lipogenesis-related gene expressions, such as SREBP-1c,
FAS, ACC1, PPARγ and CD36, and elevating phase II drug
metabolism enzyme SULT2B1b gene expression (38).

Additionally, some connects between the different
bioactivities of oligomeric procyanidin could be found. Wu et al. (7, 18, 19, 72) have argued that anti-glycative
activity of oligomeric procyanidins from lotus seedpods is
positively correlated to their antioxidation capacities. The study
taken by Tang et al. (70) has indicated that the antioxidant
mechanism involved the ameliorating intestinal injury
activity of oligomeric procyanidins from lotus seedpods
on Enterotoxigenic Escherichia coli infected diarrhea mice.

Applications of raw material,
extracts and phytochemicals of
lotus seedpods

Applications of lotus seedpods

Lotus seedpods can be applied as sources for biochar (21,
73–76) and biomass material (22, 77–80).

As a source of biochar, lotus seedpods can be used to
constitute sensor (74), absorber (21, 73, 75, 81) and
detector (76). A portable, flexible, outdoor and inexpensive
sensing platform for hyperin has been established by lotus
seedpods biochar and molybdenum disulfide, using a green co-
hydrothermal approach (74). Lotus seedpod-derived biochar
can be used for producing available and effective biosorbents
for cadmium (73), methylene blue (81) and 17 β-estradiol
(21), along with Co₃O₄ microwave absorbent (75). Otherwise,
a carbon quantum dots was synthesized on the basis of lotus
seedpod by hydrothermal synthesis method, which could be
utilized for Fe(III) detection (76).

In terms of using for biomass material, lotus seedpod is high-stable electrode material for supercapacitors (22, 78,
80). Meanwhile, lotus seedpod-derived hard carbon with
hierarchical porous structure is a stable anode for sodium-ion
batteries (79). Otherwise, an efficient metal-free catalyst derived
from lotus seedpod exhibited excellent oxygen reduction
reaction (77).

Biological activity of others
phytochemicals from lotus seedpods

Others phytochemicals like β-sitosterol, quercetin,
kaempferol and polysaccharides from lotus seedpods have been
indicated to have anti-tyrosinase (46, 47), anti-inflammatory
(71), antioxidation (4) and α-glucosidase inhibitory (4)
effects. β-sitosterol, quercetin 3-O-β-D-glucopyranoside and
kaempferol 3-O-β-D-glucopyranoside from lotus seedpods
have been determined to be tyrosinase inhibitors (46, 47) as
shown in Supplementary Table 1. A (E)-9-Octadecenoic acid
ethyl ester from lotus seedpods showed anti-inflammatory
effect against LPS-induced RAW264.7 cells, and the effect
was realized through regulating MAPKs and NF-κB signaling
pathways, which displaying as up-regulations of NF-κB nuclear
translocation, protein expressions of ERK, p38 and JNK,
and protein and mRNA expressions of iNOS and COX2
(71). Flavonol glycosides fractionated from extracts of lotus
seedpods, namely hyperoside, isoquercitrin, quercetin-3-O-
β-D-glucuronide, isorhamnetin-3-O-β-D-galactoside and
syringetin-3-O-β-D-glucoside, appeared scavenging activities
on ABTS and DPPH radicals (35). Our previous study has
indicated that water-extracted polysaccharides from dried
lotus seedpods possessed good scavenging effects on ABTS,
DPPH and ·OH radicals, and an obvious inhibitory effect on
α-glucosidase activity (4).

Applications of lotus seedpods extracts
and phytochemicals

Applications of lotus seedpods extracts
and phytochemicals

Lotus seedpod extracts (8, 82), proanthocyanidin (83, 84)
and oligomeric procyanidin (5, 19, 23, 43, 44, 49, 72, 85, 86)
can be used in food industry. Lotus seedpod extracts can inhibit
lipid oxidation. 80% ethanol extract and water extract reduced
the acid value, peroxide value and TBARS level of lard (82). 50%
ethanol extract decreased the peroxidation level of linoleic acid
(8). Moreover, conjugate complexes produced by lotus seedpod
proanthocyanidin and whey protein have potential applications
in emulsions (83, 84). Lotus seedpod proanthocyanidin-whey
protein complexes improved the chemical stability of β-
carotene nanoemulsions (84). Lotus seedpod proanthocyanidin

Applications of lotus seedpods extracts
and phytochemicals

Lotus seedpod extracts (8, 82), proanthocyanidin (83, 84)
and oligomeric procyanidin (5, 19, 23, 43, 44, 49, 72, 85, 86)
can be used in food industry. Lotus seedpod extracts can inhibit
lipid oxidation. 80% ethanol extract and water extract reduced
the acid value, peroxide value and TBARS level of lard (82). 50%
ethanol extract decreased the peroxidation level of linoleic acid
(8). Moreover, conjugate complexes produced by lotus seedpod
proanthocyanidin and whey protein have potential applications
in emulsions (83, 84). Lotus seedpod proanthocyanidin-whey
protein complexes improved the chemical stability of β-
carotene nanoemulsions (84). Lotus seedpod proanthocyanidin
was grafted to whey protein isolate for creating nature-derived antioxidant emulsifiers, which had good DPPH radical scavenging activity and ferric reducing ability.

Inhibition of AGEs formation is an important application for lotus seedpod oligomeric procyanidin in food systems, such as bovine serum albumin-glucose, lactose-lysine and yogurt systems. Meanwhile, addition of lotus seedpod oligomeric procyanidin increased the growth of *Lactobacillus* and yogurt systems. Moreover, lotus seedpod oligomeric procyanidin and its three monomers including catechin, epicatechin and epigallocatechin gallate could inhibit AGEs release from glycated casein during gastrointestinal digestion. At the same time, lotus seedpod oligomeric procyanidin and catechin could also enhance the scavenging effects of digestive fluid on DPPH, OH and ABTS radicals and its ferric reducing ability.

On the other hand, lotus seedpod oligomeric procyanidin is beneficial to the storage and process of food. Lotus seedpod oligomeric procyanidin could decline the peroxide values of lard or soybean oil. Lotus seedpod oligomeric procyanidin possessed inhibitory effect on the retrogradation property of rice starch.

Beside, oligomeric procyanidin extracted from lotus seedpod has been used to dye the tussah silk fabric.

### Conclusion and perspectives

Lotus seedpod is a promising food and medicine source. Extracts of lotus seedpods obtained by non-organic and organic solvents exerted antioxidation, anti-cancer, anti-melanogenic, anti-inflammatory, anti-irradiation, cardioprotection and hepatoprotection activities. Meanwhile, extraction solvents and methods have influences on the activities. Diversity phytochemicals are responsible for these bioactivities, such as proanthocyanidins, oligomeric procyanidins, flavonoids, alkaloids, terpenoids, organic acids, steroids, esters and others. Some of phytochemicals have been well-identified by modern analytical techniques, and chemical structures of some phytochemicals have been proposed. Moreover, chemical assays as well as cell and animal experiments have demonstrated that phytochemicals (especially proanthocyanidins and oligomeric procyanidins) from lotus seedpods exhibited broad-spectrum biological activities, including ameliorating cognitive impairment, antioxidation, antibacterial, anticytotoxic, neuroprotection, anti-tyrosinase, retinal protection, anti-insomnia, anti-cancer, immunomodulatory, ameliorating intestinal injury, anti-diabetes, regulating lipid homeostasis, anti-inflammatory and α-glucosidase inhibitory effects. Furthermore, raw material, extracts and phytochemicals of lotus seedpods have been applied as sources for biochar and biomass material, in food industry, and as dye. In contrast, the biological activities of other phytochemicals from lotus seedpod; biological activities of extracts and phytochemicals from lotus seedpods mostly focused on proanthocyanidins and oligomeric procyanidin, the biological activities of other phytochemicals from lotus seedpod; biological activities of extracts and phytochemicals from lotus seedpods have been indicated in chemical assays as well as cell and animal experiments, but have not been demonstrated by clinical research; the action mechanisms about the relevant activities of extracts and phytochemicals from lotus seedpods are unclear as they have been preliminarily explored.

### Author contributions

Y-FW: conceptualization, investigation, visualization, and writing—original draft. Z-CS and JL: investigation and visualization. TL, J-LS, and X-FL: investigation. Y-PL: project administration and funding acquisition. WZ: writing—review and editing. QZ: funding acquisition. X-YW: project administration, writing—review and editing, supervision, and funding acquisition. All authors contributed to the article and approved the submitted version.

### Funding

This work was gratefully supported by the Science and Technology Research Project of Jiangxi Provincial...
Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

1. Zhang Y, Lu X, Zeng SX, Huang XH, Guo ZB, Zheng YF, et al. Nutritional composition, physiological functions and processing of lotus (%u2018Nelumbo nucifera Gaertn.%u2019) seeds: a review. Phytochem Rev. (2015) 14:321–34. doi: 10.1007/s11101-015-9401-9
2. Chen GL, Zhu MZ, Gao MQ. Research advances in traditional and modern use of Nelumbo nucifera: phytochemicals, health-promoting activities and beyond. Crit Rev Food Sci. (2019) 59:5189–209. doi: 10.1080/10408398.2018.1553846
3. Limwachiranon J, Huang H, Shi ZH, Li L, Luo ZS. Lotus flavonoids and phenolic acids: health promotion and safe consumption dosages. Compr Rev Food Saf. (2018) 17:455–71. doi: 10.1111/1541-4337.12333
4. Wu HW, Shu LP, Liang T, Li YP, Liu YX, Zhong XL, et al. Extraction optimization, physicochemical property, antioxidant activity, and α-glucosidase inhibitory effect of polysaccharides from lotus seedpods. J Sci Food Agr. (2022) 102:4695–702. doi: 10.1002/jsfa.11755
5. Ling ZQ, Xie BJ, Yang EL. Isolation, characterization, and determination of antioxidative activity of oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn. J Agr Food Chem. (2005) 53:2441–5. doi: 10.1021/jf043235p
6. Wang JM, Yu T, Sheng LQ, Zhang H, Chen F, Zhu J, et al. Lotus seedpod proanthocyanidins protect against light-induced retinal damage via antioxidative stress, anti-apoptosis, and neuroprotective effects. Med Sci Monitor. (2021) 27:e935000. doi: 10.12659/MSM.935000
7. Wu Q, Feng YN, Ouyang Y, Liang YG, Zhao KQ, Wang Y, et al. Inhibition of advanced glycation end products formation by lotus seedpod oligomeric procyanidins through RAGE–MAPK signaling and NF-κB activation in high-AGEs-diet mice. Food Chem Toxicol. (2021) 156:112481. doi: 10.1016/j.fct.2021.112481
8. Shen YB, Guan YF, Song X, He JL, Xie ZX, Zhang YW, et al. Polyphenols extract from lotus seedpod (%u2018Nelumbo nucifera Gaertn.%u2019): phenolic compositions, antioxidant, and antiproliferative activities. Nutr Food Sci. (2019) 7:3062–70. doi: 10.1002/fsn3.1165
9. Lee MS, Chiau CC, Wang CP, Wang TH, Chen JH, Lin HH. Flavonoids identification and pancreatic β-cell death activity of lotus seedpod. Antioxid Bascl. (2020) 9:658. doi: 10.3390/antiox9060658
10. Huang H, Yan PP, Sun TP, Mo XX, Yin JW, Li PJ, et al. Procyanidins extracted from lotus seedpod ameliorate amyloid-β-induced toxicity in rat pheochromocytoma cells. Oxid Med Cell Longev. (2018) 2018:4572893. doi: 10.1155/2018/4572893
11. Zhang HH, Dai YY, Cheng YX, He YQ, Manyakara Z, Duan YQ, et al. Influence of extremely low frequency magnetic fields on Ca2+ signaling and double messenger system in mice hippocampus and reversal function of procyanidins extracted from lotus seedpod. Biocembr. (2017) 38:436–46. doi: 10.1002/bem.22058
12. Gong YS, Gao J, Hu K, Gao YQ, Xie BJ, Sun ZD, et al. Ameliorative effect of lotus seedpod proanthocyanidins on cognitive impairment and brain aging induced by D-galactose. Exp Gerontol. (2016) 74:21–8. doi: 10.1016/j.ejger.2015.11.020
13. Bao NN, Rashid MM, Jiang BL, Zhai KF, Luo ZS. Green and efficient extraction approach for phenolophenyl recovery from lotus seedpods (receptacular nelsumina). gas-assisted combined with glycerol. ACS omega. (2021) 6:26722–31. doi: 10.1021/acsomega.0c04190
14. Yan Z, Zhang HH, Dazh CS, Zhang JX, Diao CR, Ma HL, et al. Subcritical water extraction, identification, antioxidant and antiproliferative activity of polyphenols from lotus seedpod. Sep Purif Technol. (2020) 236:116217. doi: 10.1016/j.seppur.2019.116217
15. Wang JY, Xie BJ, Sun ZD. The improvement of carboxymethyl β-glucan on the antibacterial activity and intestinal flora regulation ability of lotus seedpod procyanidins. LWT. (2021) 157:110441. doi: 10.1016/j.lwt.2020.110441
16. Wang JY, Bie M, Zhou WJ, Xie BJ, Sun ZD. Interaction between carboxymethyl pachyman and lotus seedpod oligomeric procyanidins with superior synergistic antibacterial activity. Carbod Polym. (2019) 212:11–20. doi: 10.1016/j.carbpol.2019.02.030
17. Wang JY, Zhang WJ, Tang CE, Xiao J, Xie BJ, Sun ZD. Synergistic effect of B-type oligomeric procyanidins from lotus seedpod in combination with water-soluble Flora cocs polysaccharides against E. coli and mechanism. J Funct Foods. (2018) 48:1334–43. doi: 10.1016/j.jff.2018.07.015
18. Wu Q, Li SY, Li XP, Sui Y, Yang Y, Djon LH, et al. Inhibition of advanced glycation end product formation by lotus seedpod oligomeric procyanidins through RAGE–MAPK signaling and NF-κB activation in high-AGEs-diet mice. Food Chem Toxicol. (2021) 156:112481. doi: 10.1016/j.fct.2021.112481
19. Wu Q, Zhao KQ, Chen YY, Ouyang Y, Feng YN, Li S, et al. Effect of lotus seedpod oligomeric procyanidins on AGEs formation in simulated gastrointestinal tract and cytotoxicity in Caco-2 cells. Food Funct. (2021) 12:3527–38. doi: 10.1039/d0fo03152f
20. Li XP, Sui Y, Wu Q, Xie BJ, Sun ZD. Attenuated mTOR signaling and enhanced glucose homestasis by dietary supplementation with lotus seedpod oligomeric procyanidins in streptozotocin (STZ)-induced diabetic mice. J Agric. Food Chem. (2017) 65:6998–99. doi: 10.1021/acs.jafc.7b01082
21. Wu Q, Zhao KQ, Chen YY, Ouyang Y, Feng YN, Li S, et al. Effect of lotus seedpod oligomeric procyanidins on AGEs formation in simulated gastrointestinal tract and cytotoxicity in Caco-2 cells. Food Funct. (2021) 12:3527–38. doi: 10.1039/d0fo03152f

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnut.2022.1022794/full#supplementary-material
25. Wang ZY, Cheng Y, Zeng MM, Wang Z, Qin F, Wang YZ, et al. Lotus (Nelumbo nucifera Gaertn.) leaf: a narrative review of its phytoconstituents, health benefits and food industry applications. Trends Food Sci Tech. (2021) 112:631–50. doi: 10.1016/j.tifs.2021.04.033

26. Liu YT, Lai YH, Lin HH, Chen JH. Lotus seedpod extracts reduced lipid accumulation and lipotoxicity in hepatocytes. Nutrients. (2019) 11:2895. doi: 10.3390/nu11092895

27. Hou JY, Lin HH, Li TS, Tseng CY, Wong YC, Chen JH. Anti-melanogenesis effects of lotus seedpod in vitro and in vivo. Nutrients. (2020) 12:3535. doi: 10.3390/nu12113535

28. Tseng HC, Tsai PM, Chou YH, Lee YC, Lin HH, Chen JH. In vitro and in vivo protective effects of flavonol-enriched lotus seedpod extract on lipopolysaccharide-induced hepatic inflammation. Am J Chin Med. (2019) 47:753–76. doi: 10.1142/S0192415X19500083

29. Kim MJ, Shin HS. Antioxidative effect of lotus seed and seedpod extracts. Food Sci Biotechnol. (2012) 21:1761–6. doi: 10.1007/s10068-012-0234-7

30. Cho S, Cho HW, Woo KW, Jeong J, Lim J, Park S, et al. Nelumbo nucifera receptaculum extract suppresses angiotensin II-induced cardiomyocyte hypertrophy. Molecules. (2019) 24:1647. doi: 10.3390/molecules24091647

31. Lee EJ, Seo YM, Kim YH, Chung C, Sung HJ, Sohn HY, et al. Anti-inflammatory activities of ethanol extracts from leaf, seed, and seedpod of Nelumbo nucifera. J Life Sci. (2019) 29:436–41. doi: 10.5352/jlsr.2019.29.4.436

32. Kim NY, Yang JI, Kim S, Lee C. Lotus (Nelumbo nucifera) seedpod extract inhibits cell proliferation and induces apoptosis in non-small cell lung cancer cells via downregulation of Ad. J Food Biochem. (2021) 45:13601. doi: 10.1111/jfbc.13601

33. Shin HJ, Kim M, Shin BS, Bae S, Shin HJ, Kim M, et al. Anti-melanogenic effect of lotus seed and seedpod extracts via downregulation of tyrosinase stability in B16F10 murine melanoma cells. Asian J Beauty Cosmetol. (2022) 20:111–20.

34. Hu WC, Wang GC, Shen T, Wang YN, Hu BR, Wang XE, et al. Chemical composition, antioxidant and cytoprotective activities of lotus receptacle. Hortic Environ Biotechnol. (2015) 56:712–20. doi: 10.3380/ijhbc.01501-0094-1

35. Wu YB, Zheng LJ, Wu JG, Chen TT, Yi J, Wu JZ. Antioxidative activities of extract and fractions from receptaculum nelumbinis and related flavonol glycosides. Int J Mol Sci. (2012) 13:7163–73. doi: 10.3390/ijms13067163

36. Bao NN, Wang D, Fu XZ, Xie HJ, Gao GZ, Luo ZS. Green extraction of phenolic compounds from lotus seedpod (receptaculum nelumbinis) assisted by ultrasound coupled with glyceral. Food Sci. (2021) 10.239. doi: 10.1007/s10068-020-020359

37. Duan YQ, Zhang HH, Xie BJ, Yan Y, Li J, Xu F, et al. Whole body radioprotective activity of an aceton–water extract from the seedpod of Nelumbo nucifera Gaertn. seedpod. Food Chem Toxicol. (2010) 48:3734–4. doi: 10.1016/j.fct.2010.09.008

38. Li XP, Chen Y, Li SY, Chen M, Xiao J, Xie BJ, et al. Oligomeric proanthocyanidins from lotus seedpod regular lipid homostasis partially by modifying fat emulsification and digestion. J Agr Food Chem. (2019) 67:4524–34. doi: 10.1021/acs.jafc.9b04149

39. Xiao JS, Xie BJ, Cao YP, Wu H, Sun ZD, Xiao D. Characterization of oligomeric proanthocyanidins and identification of queretin glucouronide from lotus (Nelumbo nucifera Gaertn.) seedpod. J Agric Food Chem. (2012) 60:2825–9. doi: 10.1021/jf20333e

40. Wu YB, Zheng LJ, Yi J, Wu JG, Chen TT, Wu JZ. Quantitative and chemical fingerprint analysis of receptaculum nelumbinis based on HPLC–DAD–MS combined with chemometrics. J Chromatogr. (2016) 13:618–24. doi: 10.1016/j.chemosphere.2015.11.009

41. Xu JQ, Rong S, Xie BJ, Sun ZD, Zhang L, Wu HL, et al. Procyanidins extracted from the lotus seedpod ameliorate scopolamine-induced memory impairment in mice. Phytother Res. (2009) 23:1742–7. doi: 10.1002/ptr.2837

42. Duan YQ, Wang ZG, Zhang HH, He YQ, Lu RZ, Zhang R, et al. The preventive effect of lotus seedpod procyanidins on cognitive impairment and oxidative damage induced by extremely low frequency electromagnetic field exposure. Food Funct. (2014) 5:1412–62. doi: 10.1039/c3fo00116a

43. Duan YQ, Wang ZG, Zhang HH, He YQ, Fan R, Cheng YX, et al. Extremely low frequency electromagnetic field exposure causes cognitive impairment associated with alteration of the glutamate level, MAPK pathway activation and decreased CREB phosphorylation in mice hippocampus: reversal by procyanidins extracted from the lotus seedpod. Food Funct. (2014) 5:2289–97. doi: 10.1039/c4fo00253d

44. Xu JQ, Rong S, Xie BJ, Sun ZD, Zhang L, Wu HL, et al. Enhancement of antioxidant and cholinergic systems contributes to the effect of procyanidins extracted from the lotus seedpod ameliorating memory impairment in cognitively impaired aged rats. Eur Neuropsychopharmacol. (2019) 29:851–60. doi: 10.1016/j.euroneuro.2019.07.006

45. Xu JQ, Rong S, Xie BJ, Sun ZD, Deng QC, Wu HL, et al. Memory impairment in cognitively impaired aged rats associated with decreased hippocampal CREB phosphorylation: reversal by procyanidins extracted from the lotus seedpod. J Gerontol A Biol. (2016) 61:933–40. doi: 10.1093/gerona/glw094

46. Xu JQ, Rong S, Xie BJ, Sun ZD, Deng QC, Bao W, et al. Changes in the nitric oxide system contribute to effect of procyanidins extracted from the lotus seedpod ameliorating memory impairment in cognitively impaired aged rats. Rejuven Res. (2013) 16:33–43. doi: 10.1089/rej.2010.1076

47. Gong YS, Liu LG, Xie BJ, Liao YC, Yang EL, Sun ZD. Amlodipine like effect of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice. Behav Brain Res. (2008) 194:100–7. doi: 10.1016/j.bbr.2008.06.029

48. Qin Y, Sun Y, Li JQ, Xie RF, Deng ZY, Chen HB, et al. Characterization and antioxidant activities of proanthocyanidins from lotus seedpod, mangosteen pericarp, and camellia flower. Int J Food Prop. (2017) 20:1621–32. doi: 10.1080/10942942.2016.1215997

49. Luo XP, Chen M, Duan YQ, Duan WY, Zhang HH, He YQ, et al. Preventive effect of lotus seedpod procyanidins on oxidative stress in mice induced by extremely low-frequency electromagnetic field exposure. Biomed Pharmacother. (2018) 102:640–8. doi: 10.1016/j.biopha.2016.06.005
66. Xu QJ, Rong S, Xie BJ, Sun ZD, Zhang L, Wu HL, et al. Procyanidins extracted from the lotus seedpod ameliorate age-related antioxidant deficit in aged rats. J Gerontol A Biol. (2010) 65:236–41. doi: 10.1093/gerona/glp211

67. Duan YQ, Xu JQ, Rong S, Xie BJ, Zong Q, Sun ZD. Procyanidin B2 from lotus seedpod regulate NO/ADMA/NOAH pathway to treat insomnia in rats. Fund Clin Pharmacol. (2019) 33:549–57. doi: 10.1111/fcpx.12462

68. Duan YQ, Xu H, Luo X, Zong Q, Sun ZD, et al. Procyanidins from Nelumbo nucifera Gaertn. Seedpod induce autophagy mediated by reactive oxygen species generation in human hepatoma G2 cells. Biomed Pharmacother. (2016) 80:155–52. doi: 10.1016/j.biopha.2016.01.039

69. Zhang HH, Cheng YX, Luo XP, Duan YQ. Protective effect of procyanidins extracted from the lotus seedpod on immune function injury induced by extremely low frequency electromagnetic field. Biomed Pharmacother. (2016) 82:364–72. doi: 10.1016/j.biopha.2016.05.021

70. Tang CE, Xie BJ, Zong Q, Sun ZD. Proanthocyanidins and probiotics combination supplementation ameliorate intestinal inflammatory responses in enterotoxicogen Escherichia coli infected diarrhea mice. J Funct Foods. (2019) 62:103521. doi: 10.1016/j.jff.2019.103521

71. Xie CQ, Wang SF, Cao MY, Xiong W, Wu L. (E)-9-octadecenoic acid ethyl ester derived from lotus seedpod ameliorates inflammatory responses by regulating MAPKs and NF-kB signalling pathways in LPS-Induced RAW264.7 macrophages. Evid Based Compil Altern Med. (2022) 2022:6731360. doi: 10.1155/2022/6731360

72. Wu Q, Li SY, Li XP, Fu XY, Su Y, Guo TT, et al. A significant inhibitory effect on advanced glycation end product formation by catechin as the major metabolite of lotus seedpod oligomeric procyanidins. Nutrients. (2014) 6:3230–44. doi: 10.3390/nu6033230

73. Chen Z, Liu T, Tang J, Zheng ZL, Wang HM, Shao Q, et al. Characteristics and mechanisms of cadmium adsorption from aqueous solution using lotus seedpod-derived biochar at two pyrolytic temperatures. Environ Sci Pollut Res Int. (2018) 25:11854–66. doi: 10.1007/s11356-018-1460-4

74. Rao LM, Zhu YF, Duan ZS, Xue T, Duan XM, Wen YP, et al. Lotus seedpods biochar decorated molybdenum disulfide for portable, flexible, outdoor and inexpensive sensing of hyperin. Chemosphere. (2020) 101:134595. doi: 10.1016/j.chemosphere.2020.134595

75. Qin YJ, Ni C, Xie XR, Zhang JJ, Wang BL, Wu HT, et al. Multiple reflection and scattering effects of the lotus seedpod-based activated carbon decorated with Co3O4 microwave absorbent. J Colloid Interf Sci. (2021) 602:344–54. doi: 10.1016/j.jcis.2021.06.048

76. Xie ZL, Sun JF, Zhou ZJ, Xia SB. Lotus seedpod-based carbon quantum dots: preparation, characterization and application for Fe(III) detection. Mater Technol. (2021) 55:141–7. doi: 10.17222/mat.2020.160

77. Zheng B, Wang JX, Pan ZR, Wang XJ, Liu SX, Ding SQ, et al. An efficient metal-free catalyst derived from waste lotus seedpod for oxygen reduction reaction. J Porous Mat. (2020) 27:637–46. doi: 10.1016/j.jporamat.2019.08846-3

78. Pu J, Kong W, Lu CC, Wang ZH. Directly carbonized lotus seedpod shells as high-stable electrode material for supercapacitors. Ionics. (2015) 21:809–16. doi: 10.1007/s11581-014-1225-x

79. Wu E, Zhang MH, Bai Y, Wang XR, Dong RQ, Wu C. Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries. ACS Appl Mater Intor. (2019) 11:12554–61. doi: 10.1021/acsami.9b01419

80. Hu L, Liu S, Pan VT, Huang LY, Cui QJ, Huang YJ, et al. Preparation of super activated carbon from various parts of Nelumbo nucifera and its application as electrode material in supercapacitors. Int J Electrochem Sci. (2021) 16:21065. doi: 10.20964/2021.06.48

81. He QL, Wang HY, Zhang J, Zou ZC, Zhou J, Yang K, et al. Lotus seedpod as a low-cost biomass for potential methylene blue adsorption. Water Sci Technol. (2016) 74:2560–8. doi: 10.2166/wst.2016.423

82. Lee S, Shin HS. Effect of lotus seed and seedpod extracts on oxidative stability against lard during storage. J Korean Soc Appl Biol Chem. (2015) 58:53–60. doi: 10.1007/s13765-015-0006-1

83. Chen YS, Huang FH, Xie BJ, Sun ZD, McClements DJ, Deng QC. Fabrication and characterization of whey protein isolates-lotus seedpod proanthocyanin conjugate: its potential application in oxidizable emulsions. Food Chem. (2021) 346:128680. doi: 10.1016/j.foodchem.2020.128680

84. Chen YS, Zhang RJ, Xie BJ, Sun ZD, McClements DJ, Luo J. Lotus seedpod proanthocyanidin-whey protein complexes: impact on physical and chemical stability of ß-carotene nanoemulsions. Food Res Int. (2020) 127:108738. doi: 10.1016/j.foodres.2019.108738

85. Chen YS, Huang FH, McClements DJ, Xie BJ, Sun ZD, Deng QC. Oligomeric procyanidin nanoliposomes prevent melanogenesis and UV radiation-induced skin epithelial cell (HFF-1) damage. Molecules. (2020) 25:1458. doi: 10.3390/molecules25061458

86. Feng NJ, Shen Y, Hu CQ, Tan JY, Huang Z, Wang C, et al. Inhibition of advanced glycation end products by yogurt lotus seedpod oligomeric procyanidin. Front Nutr. (2021) 8:781998. doi: 10.3389/fnut.2021.781998

87. He HL, Wang YS, Liu JR, Zhou N, Zhao YH, Yu ZC. A natural dye extract from lotus seedpod for dyeability and functional property of tussah silk fabric. Pigm Technol. (2021) 50:545–53. doi: 10.1108/PRT-10-2020-0107