Tale of two kinases: Protein kinase A and Ca^{2+}/calmodulin-dependent protein kinase II in pre-diabetic cardiomyopathy

Pamela Gaitán-González, Rommel Sánchez-Hernández, José-Antonio Arias-Montaño, Angélica Rueda

Abstract

Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations, including insulin resistance, visceral fat accumulation, and dyslipidemias, which increase the risk for developing cardiovascular disease. Metabolic syndrome is associated with augmented sympathetic tone, which could account for the etiology of pre-diabetic cardiomyopathy. This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustained β_1-adrenergic response in pre-diabetes, focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy. The research reviewed indicates that both protein kinase A and Ca^{2+}/calmodulin-dependent protein kinase II play important roles in functional responses mediated by β_1-adrenoceptors; therefore, alterations in the expression or function of these kinases can be deleterious. This review also outlines recent information on the role of protein kinase A and Ca^{2+}/calmodulin-dependent protein kinase II in abnormal Ca^{2+} handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.

Key Words: Ca^{2+}/calmodulin-dependent protein kinase II; Protein kinase A; Metabolic syndrome; Pre-diabetes; Pre-diabetic cardiomyopathy; β_1-Adrenoceptors

Core Tip: Metabolic syndrome affects heart function leading to pre-diabetic cardiomyopathy. In an attempt to overcome contractility dysfunction, the activity of the
INTRODUCTION

Pre-diabetes, a high-risk state for the development of type 2 diabetes mellitus (DM2), is a condition where glycemia is higher than normal but not yet high enough for DM2 diagnosis[1,2]. According to the American Diabetes Association this condition is identified by laboratory tests, including fasting blood glucose (FBG) values 100-125 mg/dL, glycated hemoglobin in the range of 5.7%-6.4% or 2 h blood glucose values 140-199 mg/dL. (75-g oral glucose tolerance test)[2-4].

Metabolic syndrome (MetS) is considered a pre-diabetic state and currently represents a serious public health problem because of its increasing worldwide prevalence. MetS comprises a cluster of biochemical and physiological alterations that become risk factors for cardiovascular disease (CVD)[3]. Key components of MetS are central obesity, elevated triglyceride levels, low high-density lipoprotein cholesterol levels, high blood pressure, and dysglycemia. Insulin resistance (IR) is the critical factor underlying MetS, although the pathogenesis remains unclear. Furthermore, an important feature of MetS patients is the prevalence of a hyperadrenergic state that could account for the development of cardiac disease[5,6].

For DM2 patients, the term diabetic cardiomyopathy refers to the presence of Ca²⁺ mishandling, cardiomyocyte hypertrophy, apoptosis, and fibrosis, together with abnormal myocardial performance in the absence of hypertension, coronary artery disease, or valvular heart disease[7,8]. Although the clinical entity of pre-diabetic cardiomyopathy still lacks a universally accepted definition, studies have linked pre-diabetes to CVD. Each MetS component represents a risk factor for CVD; in combination, these components increase the rate and severity of CVD as it relates to several conditions including microvascular dysfunction, coronary atherosclerosis and calcification, and cardiac dysfunction, which lead to myocardial infarction and heart failure (HF)[3]. In animal models of pre-diabetes, obesity, IR, and other components of MetS can lead to cardiac dysfunction associated with structural and functional abnormalities (Table 1), implying cardiomyopathy mechanisms different from those of DM2. Furthermore, observational studies and large sample meta-analyses show that pre-diabetes, defined as impaired glucose tolerance, impaired FBG, or raised glycated hemoglobin, was associated with increased risk of CVD[9,10] and HF[11]. Moreover, meta-analysis of longitudinal studies indicates that MetS is linked to increased risk of myocardial infarction, stroke, and CVD, with the risk estimate being higher than that corresponding to its individual components[12,13]. A disturbing finding is that young pre-diabetic patients with evident impaired FBG levels show increased prevalence of left ventricular hypertrophy, reflecting that heart damage is already present at an early phase of glucose metabolism alteration[14]. Patients with obesity, dyslipidemia, or IR (MetS components) are likely to develop similar metabolism-related cardiomyopathy even in the absence of diabetes[15]. However, the mechanisms involved in the pathogenesis of what must be considered pre-diabetic cardiomyopathy remain poorly understood. For the purpose of this review, we will refer to IR-induced cardiomyopathy, obesity-related cardiomyopathy, or MetS-induced cardiomyopathy as ‘pre-diabetic cardiomyopathy.’

Several reviews address the contribution of altered cardiac metabolism to dysfunction[7,15-18]; in this work we focus primarily on the possible link between pre-
Table 1 Characteristics of experimental models of pre-diabetic cardiomyopathy

Animal model	MetS parameters	Cardiovascular dysfunction	Ref.
Dogs			
HFD dogs (80% of calories from fat, 5 wk)	↑ ↑ ↔ + ND ND	↑ Heart rate; ↓ Myocardial oxygen delivery and metabolism; ↓ Cardiac index after exercising, ↑ Aortic pressure	Setty et al[31] and Dincer et al[73]
Rats			
Sucrose-fed Wistar rats (68%, 7-10 wk)	↔ ND ↔ + ND ND	↓ FS; + Systolic dysfunction	Dutta et al[68]
Sucrose-fed Sprague-Dawley rats (68%, 7-10 wk)	↔ ND ↔ + ND ND	↑ Heart hypertension; ↓ FS; + Systolic dysfunction	Hintz et al[67], and Hintz and Rein[72]
Sucrose-fed Wistar rats (30%, 17-24 wk)	↑ ND ↑ + ↑ ND	↔/↑ Heart rate; ↑ Ventricular pressure; ↓ Arrhythmia incidence after reperfusion	Lópeza-Acosta et al[56], and Carvajal and Baños[69]
Sucrose-fed Wistar rats (32%, 10 wk)	↑ ↑ ↔ ND ↑ ↔	↔ Heart hypertension; ↑ FS and EF; ↑ Septum dimension	Vasanji et al[52]
Sucrose-fed Wistar rats (30%, 24 wk)	↑ ↑ ↔ ND ↑ ↔	↔ Heart hypertension; + Systolic dysfunction; ↓ Cardiac cell contraction	Barrera-Lechuga et al[55] and Fernández-Miranda et al[70]
Sucrose-fed Wistar rats (30%, 35 wk)	↑ ↔ ND ND ND ND	↔ Heart rate; ↔ Heart hypertension; ↓ FS	Paulino et al[65]
Sucrose-fed Wistar rats (30%, 16-18 wk)	↑ ↔ ↔ + ↑ ND	+ Systolic dysfunction	Balderas-Villalobos et al[69]
Sucrose-fed Wistar rats (20%, 8 wk)	↑ ND ↔ + ↔ ↓	↓ Heart rate; ↑ SAN rate variability; ↑ SAN fat deposits	Albarado-Ibáñez et al[54]
Sucrose-fed Wistar rats (32%, 16 wk)	↑ ↑ ↑ + ↑ ND	↑ Heart rate; ↑ Heart hypertrophy; ↑ Heart contractility; ↑ Cardiomyocyte lipid deposits; ↑ Aortic pressure	Okatan et al[27,28]
Fructose-fed Wistar rats (10%, 3 wk)	↔ ↔ ↔ + ↑ ↓	↓ Heart rate; ↑ Heart hypertrophy; ↓ FS; ↓ Heart contractility; + Systolic dysfunction; + Diastolic dysfunction; + LV hypertrophy; ↑ Arrhythmia incidence	Sommese et al[55]
HFD Long-Evans rats treated with STZ (40% lard, 21 wk)	↑ ↔ ↑ + ↔ ↔	↔ Heart rate; ↔ Heart hypertrophy; ↔ FS; ↑ Lipid in the myocardium; + Diastolic dysfunction	Koncos et al[62]
Sucrose-fed Wistar rats (30%, 4 mo)	↑ ND ↔ + ↑ ↓	↑ Heart rate; ↔ Heart hypertrophy; + Diastolic dysfunction; ↑ Arrhythmia incidence	Romero-García et al[48] and Landa-Galvan et al[57]
Mice			
Fructose-fed C57Bl/6 mice (10%, 3 wk)	↔ ↔ ↔ + ND ND	↓ FS; + LV hypertrophy; + Systolic dysfunction	Federico et al[71]
HFD C57Bl/6 mice (60% of calories from fat, 8 wk)	↑ ND ↑ ND ↔ ND	↑ Heart rate; ↔ FS; ↑ Arrhythmia incidence	Sánchez et al[63]
HFD FVB-mice (45% of calories from fat, 5 mo)	↑ ↔ ND + ND ND	↔ Heart rate; ↑ Heart hypertrophy; ↓ FS; + Systolic dysfunction	Dong et al[66]

 ↔: No change; ×: Presence; ↓: Decreased; ↑: Increased; BG: Blood glucose; BP: Blood pressure; BW: Body weight; EF: Ejection fraction; FS: Fractional shortening; HDL-C: High-density lipoprotein cholesterol; HFD: High-fat diet; IR: Insulin resistance; LV: Left ventricle; MetS: Metabolic syndrome; SAN: Sinus Atrial Node; STZ: Streptozotocin; TG: Triglycerides; ND: Not determined.

diabetic cardiomyopathy and alterations in the β-adrenergic system and two main downstream signaling effectors: cAMP-dependent protein kinase A (PKA) and Ca\(^{2+}\)/calmodulin-dependent protein kinase II (CaMKII).
In cardiac cells, the expression and activity of key Ca\(^{2+}\) handling proteins involved in excitation-contraction coupling (ECC) are altered in IR and diabetic cardiomyopathy [8]. Under physiological conditions, cardiac ECC begins with Ca\(^{2+}\) influx through L-type voltage-dependent Ca\(^{2+}\) channels. A small influx of Ca\(^{2+}\) activates the intracellular Ca\(^{2+}\) channel/ryanodine receptor (RyR) through a mechanism known as Ca\(^{2+}\)-induced Ca\(^{2+}\) release, eliciting a transient Ca\(^{2+}\) increase in the cytoplasm of the cardiac cell that in turn activates the contractile machinery. Relaxation involves the clearance of intracellular Ca\(^{2+}\) by: (1) Re-uptake into the sarcoplasmic reticulum Ca\(^{2+}\) stores through the activity of the sarcoplasmic reticulum Ca\(^{2+}\) ATPase; and (2) Ca\(^{2+}\) extrusion by the Na\(^{+}/Ca\(^{2+}\) exchanger in the sarcolemma[19].

The β-adrenergic response is the main regulatory pathway of ECC, involving the activation of PKA and CaMKII. These kinases phosphorylate several Ca\(^{2+}\) handling proteins, including L-type voltage-dependent Ca\(^{2+}\) channels, RyRs, and phospholamban (PLN), thereby modifying their activity[20] (Figure 1). In this review, we summarize the recent evidence of alterations in the expression and/or activity of PKA and CaMKII in diet-induced animal models of pre-diabetic cardiomyopathy. This work also emphasizes the prevailing role of CaMKII in the development of myocardial dysfunction associated with pre-diabetes (Figure 1).

β-ADRENERGIC RECEPTOR SIGNALING IN THE HEART: PKA AND CAMKII ACTIVATION

The heart is innervated by parasympathetic and sympathetic fibers that regulate contractility rate and force. Sympathetic innervation of the atria and ventricles is provided by the stellate ganglion, whereas the vagus nerve provides parasympathetic fibers to the sinoatrial node, atrioventricular node, and atria[21].

Sympathetic fibers synthesize and release noradrenaline (NA), while chromaffin cells located in the medulla of adrenal glands synthesize and release adrenaline (A) into the bloodstream. Both catecholamines exert their functional effects through the activation of selective receptors, called adrenoceptors (ARs)[22]. ARs are divided into three families: \(\alpha\), \(\beta\) and \(\delta\). The \(\alpha\)-AR family is composed of \(\alpha_{1A}, \alpha_{1B}\) and \(\alpha_{1D}\) receptors, the \(\alpha\)-AR family by \(\alpha_{2A}, \alpha_{2B}\) and \(\alpha_{2C}\) subtypes, and the \(\beta\)-AR family comprises the \(\beta_{1}, \beta_{2}\) and \(\beta_{3}\) receptors. All three \(\alpha\)-AR subtypes couple predominantly to \(G_{\alpha_{i}}, \alpha_{i}\) proteins; their activation leads to phospholipase C stimulation, activation of protein kinase C, and inositol 1,4,5-trisphosphate-mediated Ca\(^{2+}\) release from intracellular stores[23]. \(\alpha\)-ARs couple to \(G_{\alpha_{o}}, \alpha_{o}\) proteins, reducing cAMP formation, and inhibiting N- and P-type voltage-activated Ca\(^{2+}\) channels[24]. \(\beta\)-ARs mainly couple to \(G_{\alpha_{o}}, \alpha_{o}\) proteins, eliciting adenylyl cyclase (AC) activation and cAMP formation[22] (see below), although stimulation of \(\beta_{1}, \beta_{2}-\) and \(\beta_{3}\)-ARs also activates \(G_{\alpha_{i}}, \alpha_{i}\) proteins[25,26].

The regulation of cardiac function by the sympathetic nervous system via \(\beta\)-ARs is of particular interest because dysregulation of this system has been reported in HF and metabolic disorders such as DM2 and MetS[27-29].

Radioligand binding assays with human heart preparations indicate that cardiac tissues express mainly \(\beta_{1}\) and \(\beta_{2}\)-ARs, which represent 90% of all ARs and are expressed at an 8:2 ratio in both atria and ventricles[30]. There is also evidence for the expression of \(\beta_{2}\)-ARs in cardiomyocytes[26]; however, the \(\beta_{1}\) and \(\alpha_{i}\) subtypes are the main ARs expressed in isolated mouse ventricular cardiomyocytes, with \(\beta_{1}\) and \(\beta_{2}\) ARs expressed by only 5% of cardiomyocytes but with high expression by endothelial cells[31]. These data support the notion that β-adrenergic responses in cardiomyocytes are primarily mediated by \(\beta_{2}\)-ARs.

Furthermore, \(\beta_{2}\)-ARs are located on the surface of all cardiomyocytes, whereas \(\beta_{2}\)-ARs are expressed exclusively at T-tubules. However, in HF, \(\beta\)-AR expression is redistributed so that \(\beta_{2}\)-ARs co-localize with \(\beta_{3}\)-ARs[32], suggesting that \(\beta\)-ARs participate in the cardiac remodeling that underlies the pathogenesis of cardiac diseases.

\(\beta\)-ARs are activated by both NA and A, but the subtypes show different affinity for the endogenous agonists, with rank order of potency: \(\beta_{1}\)-ARs, NA > A; \(\beta_{2}\)-ARs, A > NA; and \(\beta_{3}\)-ARs, NA ≈ A[22]. As mentioned above, agonist-bound \(\beta\)-ARs stimulate AC activity via \(G_{\alpha_{i}}\) proteins. There are nine isoforms of membrane-integral ACs[33]: cardiac tissues primarily express the AC5 and AC6 isoforms[34]. ACs catalyze the synthesis of cAMP from ATP; cAMP directly activates PKA and the exchange protein directly activated by cAMP (Epac). These proteins participate in the activation of CaMKII via PKA-mediated increases in the intracellular Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]) and the Epac/phosphoinositide 3-kinase/Akt/n-nitric oxide synthase pathway,
Figure 1 β-Adrenergic stimulation in the normal heart and pre-diabetic cardiomyopathy. Left panel: β-adrenergic stimulation in the normal heart. In physiological excitation-contraction coupling, membrane depolarization activates L-type voltage-dependent Ca\(^{2+}\) channels, inducing a small Ca\(^{2+}\) influx (I\(_{Ca}\)) that triggers the activation of cardiac ryanodine receptors (RyR2; PDB accession code: 6W0V). This triggers the release of sufficient Ca\(^{2+}\) from the lumen of the sarcoplasmic reticulum to the cytoplasm to elicit contraction. During relaxation, Ca\(^{2+}\) is primarily removed from the cytoplasm by the sarcoplasmic reticulum Ca\(^{2+}\) ATPase (PDB accession code: 6HXB), which reabsorbs Ca\(^{2+}\) into the sarcoplasmic reticulum lumen. Ca\(^{2+}\) is also extruded by the Na\(^+\)/Ca\(^{2+}\) exchanger (PDB accession code: 3US9), while a small amount of Ca\(^{2+}\) is taken up by the mitochondrial calcium uniporter (PDB accession code: 6WDN). Noradrenaline activates β_adrenoceptors (β_ARs, PDB accession code: 6H70) located at the sarcolemma of cardiomyocytes; agonist-bound β_ARs stimulate G proteins and therefore one or more isoforms of adenylyl cyclase (PDB accession code: 6R3Q), leading to cAMP formation and the activation of the cAMP-dependent protein kinase (PDB accession code: 3FHI). Protein kinase A phosphorylates several Ca\(^{2+}\) handling proteins, including RyR2 at Ser\(^{2808}\) and phospholamban (PDB accession code: 2LPF) at Ser\(^{16}\); the latter increases sarcoplasmic reticulum Ca\(^{2+}\) ATPase pump activity. Ca\(^{2+}\) binds to calmodulin, and the complex Ca/calmodulin binds to and activates Ca\(^{2+}\)/calmodulin-dependent protein kinase II (PDB accession code: 3SOA), which phosphorylates RyR at Ser\(^{2814}\) and phospholamban at Thr\(^{17}\). The exchange protein directly activated by cAMP (Epac) is also involved in Ca\(^{2+}\)/calmodulin-dependent protein kinase II activation; however, its role in pre-diabetic cardiomyopathy has not yet been addressed; thus, it is not depicted in the figure. Right panel: β-adrenergic stimulation in pre-diabetic cardiomyopathy. In the presence of obesity, increased triglyceride levels, decreased high-density lipoprotein cholesterol, hypertension, and/or insulin resistance (all Metabolic Syndrome components), and abnormal β_AR activation (associated with either chronic sympathetic tone or changes in β-AR expression) dysregulates excitation-contraction coupling in cardiac cells. Pre-diabetic cardiomyopathy is characterized by abnormal diastolic Ca\(^{2+}\) leak (diastolic dysfunction) due to augmented RyR2 phosphorylation at Ser\(^{2814}\) and Ser\(^{2808}\) in the absence of adrenergic stimulation, generating spontaneous Ca\(^{2+}\) waves that may induce pro-arrhythmogenic events through altered Na\(^{+}/\)Ca\(^{2+}\) exchange activity. In addition, phosphorylated phospholamban (at Ser\(^{39}\) and Thr\(^{17}\)) detaches from sarcoplasmic reticulum Ca\(^{2+}\) ATPase 2a, augmenting its activity; finally, Ca\(^{2+}\) transient amplitude decreases and leads to impaired cell contraction. NA: Noradrenaline; AR: Adrenoceptors; NCX: Na\(^{+}/\)Ca\(^{2+}\) exchanger; AC: Adenylyl cyclase; PKA: Protein kinase A; CaMKII: Ca\(^{2+}\)/calmodulin-dependent protein kinase II; CaM: Calmodulin; RyR: Ryanodine receptor; LTCC: L-type voltage-dependent Ca\(^{2+}\) channels; PLN: Phospholamban; HDL-C: High-density lipoprotein cholesterol; TG: Triglycerides; SERCA: Sarcoplasmic reticulum Ca\(^{2+}\) ATPase.

respectively[35]. In turn, both PKA and CaMKII phosphorylate several proteins involved in cardiac ECC, such as L-type voltage-dependent Ca\(^{2+}\) channels, RyR2, and PLN, leading to increased heart rate and contractile force[19,36].

PKA is a serine/threonine kinase comprising two regulatory (R) and two catalytic (C) subunits. There are four isoforms of the catalytic subunit (Ca, Cβ, Cγ, Cγ) and four isoforms of the regulatory subunit (RILA, RIIα, RIIβ, RIIγ)[57]). The PKA complex is formed by two catalytic subunits and two regulatory subunits; the complexes are named according to the number of the regulatory subunit (i.e. PKA-I and PKA-II). The regulatory subunits contain two cAMP binding sites and a pseudo-substrate domain that binds to the active site of the catalytic subunit in the absence of cAMP. The binding of two cAMP molecules to each regulatory subunit induces a conformational change that promotes the dissociation of the catalytic subunits from the regulatory subunits[38].

Cardiomyocytes express the four isoforms of the PKA regulatory subunits, with the α-isomers being more abundant than the β-isomers[39,40]. By using fluorescence resonance energy transfer-based cAMP reporters, Di Benedetto et al.[41] showed that PKA-I and PKA-II are compartmentalized in cardiomyocytes through their binding to specific A-kinase anchoring proteins. PKA-I is expressed in a tightly striated manner that overlies the sarcomere Z and M lines, whereas PKA-II is strongly expressed in M lines and only slightly in Z lines. β-AR activation with the non-selective agonist
isoproterenol increases cAMP levels primarily in the PKA-II domain, leading to the phosphorylation of the regulatory proteins troponin I and PLN as well as RyR2 at Serine 2808 (Ser²⁸⁰⁸), among other residues. The effect of the latter results in increased RyR2 open probability, although the exact impact on channel function is not clear^[41-43]. Together, these findings suggest that PKA-II, rather than PKA-I, underlies the functional responses mediated by β₁-ARs.

CaMKII also phosphorylates proteins involved in cardiac ECC^[36]. Four CaMKII isoforms (α, β, γ, δ) have been reported; CaMKII-δ is the dominant isoform in cardiomyocytes^[44]. CaMKII is a multimer complex of 12 monomers assembled in two hexameric rings; each monomer consists of an N-terminal domain, an autoinhibitory regulatory region, and a C-terminal domain. Transient increases in [Ca²⁺], are sensed by calmodulin, leading to the assembly of a Ca²⁺/calmodulin complex, which binds to the CaMKII autoinhibitory regulatory domain and induces conformational changes that result in kinase activation and under some pathological conditions in CaMKII autophosphorylation at Thr²⁸¹^[42]. In addition, several other post-translational modifications promote autonomous CaMKII activity, such as oxidation at Met²⁰¹/202, O-GlcNAcylation at Ser²⁸⁰, and S-nitrosylation at Cys²⁰⁶^[35]. Emerging evidence supports a relevant role for Epac as a mediator of cAMP signaling in the heart. There are two Epac isoforms in mammals, Epac1 and Epac2; both contain an N-terminal regulatory domain and a C-terminal catalytic region. Upon cAMP binding, Epac proteins activate the Ras superfamily small GTPases Rap1 and Rap2^[46]. CaMKII can also be activated by Epac2; in rat myocytes, the activation of β₁-ARs, but not β₂-ARs, lead to Epac2-dependent CaMKII-δ stimulation, which results in RyR2 phosphorylation at Ser²⁸⁰⁺. This effect is abolished in CamKII-δ-KO mice, supporting a key role for this CaMKII isoform in cardiac responses mediated by β₁-ARs^[47].

The research reviewed above suggests that both PKA and CaMKII-δ play important roles in β₁-AR-mediated responses and that alterations in the expression or function of these kinases can therefore be detrimental. Moreover, enhanced and sustained β₁-adrenergic stimulation contributes to the development of such pathological conditions as HF^[29]; these alterations may also extend to diabetic and pre-diabetic cardiomyopathy^[28,35,48]. A recent study showed that incubation of isolated mouse cardiomyocytes in high extracellular glucose (30 mmol/L) to mimic acute hyperglycemia leads to O-GlcNAcylation at CaMKII Ser²⁸⁰, and enhanced kinase activity, resulting in RyR2 phosphorylation and pro-arrhythogenic activity^[45]. Despite the availability of several MetS experimental models, pre-diabetic cardiomyopathy has been less studied (see below); the role of PKA and CaMKII in this pathology remains to be elucidated.

ANIMAL MODELS OF PRE-DIABETIC CARDIOMYOPATHY

Very few articles have considered MetS-associated cardiac alterations as pre-diabetic cardiomyopathy^[49], most likely due to the lack of an accepted definition. Based on the graded effect of impaired glucose metabolism on diastolic function, it has been proposed that a morphological intermediate state between normal and diabetic states underlies pre-diabetic heart dysfunction^[30]. One feature that perhaps differentiates pre-diabetic from diabetic cardiomyopathy is the absence of overt structural changes in the heart in the former, although this interpretation is under discussion^[14]. Due to the multifactorial nature of cardiometabolic disease associated with obesity, IR, high blood pressure, high glycemic levels, and hypertriglyceridemia, the selection of an appropriate experimental model bearing the features of diet-induced pre-diabetic cardiomyopathy in humans has proven difficult. Most studies addressing diet-induced cardiometabolic alterations have been performed with laboratory animals under either carbohydrate- or fat and carbohydrate-enriched diets to emulate the Western diet, characterized by the ingestion of refined sugar and high caloric food. However, not all models — indeed, only eight^[27,51-57] of those considered in this work — fulfill the requirement of at least three of the aforementioned criteria to be considered experimental models of MetS (Table 1).

Rats and mice are the most used animals for MetS models based on dietary manipulation; there are comprehensive reviews on this topic^[38,59]. In this review, we focus on animal models with diet-induced pre-diabetic cardiomyopathy. Because the incidence of MetS in human populations is increasing, the establishment of MetS animal models is key to understanding the molecular mechanisms that are altered during the onset of myocardial disease. Although these diet-based experimental
models represent a critical milestone for pre-diabetic cardiomyopathy research, their utility is hampered by discrepancies in biochemical and corporal parameters, along with dissimilar outcomes that might be associated with the type and length of the diet. For instance, for 16 diet-induced models of pre-diabetic cardiomyopathy considered in this review, 10 showed a significant increase in body weight (Table 1), while only four models developed high blood pressure[28,51,53,60]. Also, in good agreement with a seminal report by Reaven[61], a hallmark feature of pre-diabetic cardiomyopathy models is the presence of IR. FBG levels were evaluated in 13 models, but only 4 reported altered values[28,52,62,63]. For dyslipidemia, high blood triglyceride levels were reported for seven models, and only four showed decreased blood high-density lipoprotein cholesterol levels[54,55,57,64] (Table 1).

Importantly, despite the discrepancies in metabolic alterations all these animal models developed pre-diabetic cardiomyopathy, characterized by several cardiac alterations. For instance, increased heart rate was reported in five models[27,48,51,56,63]; however, other studies in which this parameter was evaluated did not report changes[60,62,65,66]. Systolic dysfunction has also been observed, including decreased heart contractility, ventricular pressure, and intracellular Ca²⁺ transient amplitude[27,55,60-67], along with reduced fractional shortening[55,65-67,70-72] (Table 1). Diastolic dysfunction is also manifested by increased diastolic Ca²⁺ leak in the form of Ca²⁺ waves, without altering cytoplasmic Ca²⁺ levels[48,55,62]. To compensate for compromised cardiac output, the heart grows; however, few studies have documented either heart hypertrophy[27,55,66] or left ventricle hypertrophy[55,71]. Interestingly, several pre-diabetic cardiomyopathy models develop increased aortic pressure[27,28,51,73] and high arrhythmia incidence under basal or stressful conditions[48,55,56,63] (Table 1). Of note, rats and mice are the most common animal models for inducing pre-diabetic cardiomyopathy, although pigs and dogs have also been employed because of their greater degree of similarity to human cardiac physiology, including ionic currents that contribute to the cardiac action potential[74]. Ca²⁺ removal mechanisms, and ECC regulatory mechanisms[19]. It is thus essential to select the appropriate experimental model considering the objectives of the study to be performed.

β-AR/AC/cAMP/PKA AXIS IN PRE-DIABETIC CARDIOMYOPATHY

As mentioned above, β-AR activation modulates ECC; cardiac dysfunction can therefore develop following alterations in the signaling pathways triggered by β-AR activation. Several studies have focused on PKA and CaMKII function (Table 2), which are effectors of β-adrenergic responses and the main topic of this review. However, the mechanisms by which the β-adrenergic pathway is disturbed in MetS are not yet clear; thus, it is important to understand how the βAR/AC/cAMP/PKA axis is affected, and how these changes originate or exacerbate cardiac dysfunction. In this section, we will describe the alterations in this signaling pathway reported in MetS and compare them with previous results found in DM.

Pre-diabetic cardiomyopathy can involve over-activation of the β-AR response. Indeed, patients with MetS show increased sympathetic activation, as measured by microneurography[75]; further, a cross-sectional and longitudinal study reported that MetS is associated with increased resting heart rate[76]. Both studies suggest over-activation of sympathetic activity by MetS, and we recently reported increased basal heart rate in the rat sucrose-induced MetS model[48]. Moreover, following the administration of an arrhythmogenic cocktail (caffeine 80 mg/kg and epinephrine 2 mg/kg; intravenously), 80% of the animals developed ventricular fibrillation, which suggests altered β-AR-mediated responses.

The reported alterations could also be related to changes in β-AR expression. For example, two studies in streptozotocin-induced diabetic rats (an experimental model of type 1 DM) reported a reduction in β₁-AR mRNA levels, but increased levels of both β₂- and β₃-AR mRNA. Conversely, the protein content of β₁- and β₂-ARs was reduced but that of β₃-ARs was increased[27,77], suggesting β-AR expression remodeling in the diabetic heart. However, β₁- and β₂-AR protein levels were not affected in a rat model of obesity with IR and hypertriglyceridemia[78] or a diet-induced MetS mouse model[79]. Of note, the study by Okatan et al[27] also evaluated β-AR expression in rats with MetS. The authors reported unaltered mRNA levels but diminished protein levels of β₁- and β₂-ARs, accompanied by normal cardiac function (as evaluated by left ventricle developed pressure following stimulation with NA)[27]. These findings suggest that an increased β-AR-mediated response compensates for the reduction in β₁- and β₂-AR
Table 2 Alterations in protein kinase A in experimental models of pre-diabetes induced by diet

Experimental model	Kinase modification	Functional effects	Ref.
HFD dogs (80% of calories from fat, 5 wk)	ND	↑ RyR2- Ser288 phosphorylation	Dincer et al [73]
Sucrose-fed Sprague-Dawley rats (32%, 10 wk)	↑ PKA activity (kemptide phosphorylation)	↓ PLN-Ser36 phosphorylation	Vasanji et al [52]
Sucrose-fed Wistar rats (30%, 35 wk)	++ expression and activity	++ PLN-Ser38 phosphorylation; ↓ RyR2- Ser288 phosphorylation	Paulino et al [65]
Sucrose-fed Wistar rats (32%, 16 wk)	↑ PKA activity (Thr286 phosphorylation)	↑ RyR2- Ser288 phosphorylation; ↓ PLN-Ser36 phosphorylation	Okatan et al [26]
Fructose-fed Wistar rats(10%, 3 wk)	ND	++ RyR2- Ser288 phosphorylation	Sommese et al [63]
HFD Long-Evans rats treated with STZ (40% lard, 21 wk)	ND	++ PLN-Ser36 phosphorylation	Koncos et al [62]
HFD C57Bl/6 mice (60% of calories from fat, 8 wk)	ND	++ RyR2- Ser288 phosphorylation; ++ PLN-Ser16 phosphorylation	Sanchez et al [63]
Sucrose-fed Wistar rats (30%, 24 wk)	ND	++ RyR2- Ser288 phosphorylation; ++ PLN-Ser16 phosphorylation	Fernández-Miranda et al [70]
Sucrose-fed Wistar rats (30%, 4 mo)	ND	++ RyR2- Ser288 phosphorylation; ++ PLN-Ser16 phosphorylation	Romero-Garcia et al [76]
HFD C57Bl/6N mice (45% of total calories from fat, 8 wk)	ND	++ PLN-Ser16 phosphorylation	Llano-Diez et al [79]

++, No change; ↓, Decreased; ↑, Increased; ND: Not determined; HFD: High-fat diet; PKA: Protein kinase A; PLN: Phospholamban; RyR2: Ryanodine receptor type 2; STZ: Streptozotocin.

expression in MetS. Nevertheless, further research is required to fully elucidate the link between MetS, β$_1$-AR expression, signaling alterations, and cardiac dysfunction.

β-AR stimulation results in AC activation via G$_a$ proteins. However, we found no studies that evaluated G$_a$ expression or activity in MetS experimental models, although decreased G$_a$ protein expression was reported for diabetic Yucatan minipigs [80]. Furthermore, AC activity was normal in ventricular preparations from obese rabbits [81], which would suggest that cAMP intracellular concentration is unchanged; however, AC activity has not been studied in MetS models.

PKA is activated by cAMP and contributes to enhanced heart rate and contractility by phosphorylating several proteins, including RyR2 and PLN. In streptozotocin-induced diabetic mice, both PKA activity and cytosolic PKA catalytic subunit content were reduced [82]. Further, in rat isolated cardiomyocytes, incubation in medium supplemented with high glucose (25.5 mmol/L) reduced PKA activity [83]. Finally, PKA activity diminished along with a reduction in the positive inotropic response induced by isoproterenol in obese diabetic Zucker rats [84]. Together, these studies indicate that hyperglycemic conditions affect PKA function.

Three studies have evaluated PKA activity in pre-diabetic models: Okatan et al [28] and Vasanji et al [52] reported increased kinase activity, but Paulino et al [65] did not detect significant changes (Table 2). PKA activity has also been studied indirectly by determining the phosphorylation levels of PLN (Ser36) or RyR2 (Ser288 in rats; Ser286 in dogs), with contradictory results (Table 2). Two studies reported increased RyR2 phosphorylation [28,73], one a decrease [65], and four lack of effect [48,55,63,70], while reduced PLN-Ser36 phosphorylation was found in two studies [28,52], and six reported no change [48,62,63,65,70,79].

Furthermore, upregulated PKA expression was reported for a genetic MetS model, a double knock-out of LDL-receptor (LDLR-/-) and leptin-deficient (ob/ob) murine model, likely indicating that the genetic background contributes to the phenotype of the pathology [85]. Thus, the observed variations in PKA function could be due to the different conditions to which the animals were exposed, for example, diet composition and length (Table 2).

In summary, several studies found alterations in heart function or cardiomyocyte contraction in diet-induced models of pre-diabetes, which could be associated with altered PKA activity (Table 2). Because only three studies directly evaluated kinase activity [28,52,65] and reported contradictory results, more work is needed to determine the precise role of PKA in pre-diabetic cardiomyopathy. Together, the information reviewed suggests modification of the β-AR/AC/cAMP/PKA signaling...
pathway upstream of PKA or disruption of other effectors of the β-adrenergic response, such as CaMKII, which are not yet broadly studied in MetS. We found no data on PKA alterations in diabetic or pre-diabetic patients; clearly studies addressing this issue would provide valuable information on the pathophysiology of MetS- and diabetes-induced cardiomyopathy.

CAMKII AS A NOVEL TARGET IN PRE-DIABETIC CARDIOMYOPATHY

CaMKII has been proposed as a key contributor to the deleterious effects of chronic β-AR activation in diabetic cardiomyopathy, primarily by exacerbating RyR2-mediated diastolic Ca²⁺ leak[86,87]. Studies in experimental models of IR and fructose-fed-induced pre-diabetic cardiomyopathy have unveiled the role of hyperglycemia and reactive oxygen species in inducing abnormal CaMKII phosphorylation at Thr²⁸⁷ and activation, altering cardiomyocyte intracellular Ca²⁺ handling and promoting cardiac arrhythmic events[55,71,88]. Hyperglycemia leads to CaMKII glycosylation, increasing RyR2-mediated Ca²⁺ leak and reducing sarcoplasmic reticulum Ca²⁺ load in cardiac cells[88]. However, in pre-diabetic cardiomyopathy hyperglycemia is not overt[48]; thus, abnormal CaMKII activation relies on additional mechanisms[48,55]. The length of CaMKII activation relies on the frequency of Ca²⁺ release events, and extended CaMKII activation is also related to autophosphorylation at Thr²⁸⁷, which prevents CaMKII auto-inhibition[87]. In animal models of pre-diabetes, cardiac CaMKII remains active even when the [Ca²⁺] declines, constituting a mechanism for anomalous CaMKII activation (Table 3)[48,55,87]. CaMKII phosphorylates RyR2 at Ser²⁸⁴; CaMKII abnormal activation can therefore induce higher activity of RyRs even at diastolic Ca²⁺ levels, leading to increased spontaneous Ca²⁺ wave frequency and propensity to spontaneous cardiomyocyte contraction and arrhythmias[48,55]. Of note, CaMKII activity was determined only in one study[52] (Table 3); therefore, further studies are needed.

In spontaneously hypertensive rats, which could be considered a genetic model of MetS, the knock-out of Camk2n1 (SHR-Camk21⁻/⁻), a peptide that regulates the association of Ca²⁺/calmodulin with CaMKII, reduced kinase activity in the heart, thereby improving cardiac function[89]. Interestingly, the effect of deleting CaMKII-in sucrose-induced cardiac dysfunction has not yet been evaluated.

In heart disease, CaMKII has been implicated in ECC disorders that lead to cardiac dysfunction[90]; in particular, CaMKII overactivation is associated with the appearance of arrhythmias linked to abnormal Ca²⁺ handling[91-93].

As mentioned above, phosphorylation at Ser²⁸⁴ by abnormal CaMKII activation induces RyR2 hyperactivity. Thus, preventing RyR phosphorylation by a point mutation (Ser²⁸¹⁴Ala) that inactivates the phosphorylation site of CaMKII circumvents the development of HF induced by transverse aortic constriction in mice [94]. In contrast, a mutation that mimics RyR2 constitutive activation by CaMKII exacerbates arrhythmogenesis and sudden cardiac death in mice with HF[95]. Moreover, in mice with HF, knock-out of the CaMKII Y¹ isoforms protects against cardiac dysfunction and fibrosis induced by pressure overload and β-adrenergic stimulation[96,97]. Of note, in two diet-induced pre-diabetic cardiomyopathy models, pharmacological inhibition of CaMKII prevents Ca²⁺ mishandling and RyR dysregulation[48,55].

Notably, post-translational modifications (specifically, oxidation, O-glycosylation, and phosphorylation) of CaMKII are increased in heart samples of diabetic patients[88, 98,99], suggesting altered kinase activity. As for PKA, research on the possible role of CaMKII alterations in diabetic or pre-diabetic patients is required to increase our understanding of the pathophysiology of MetS- and diabetes-induced cardiomyopathy.

CONCLUSION

MetS is a serious public health problem with increased risk for CVD and DM2, leading to cardiac dysfunction in the form of pre-diabetic cardiomyopathy. This, in turn, stimulates the β-adrenergic response with inotropic and chronotropic positive effects that initially compensate the deficient heart contraction but that eventually become deleterious in chronic disease.
Table 3 Alterations in Ca2+/calmodulin-dependent protein kinase II in experimental models of pre-diabetes induced by diet

Experimental model	CaMKII alterations	Functional effects	Ref.
Sucrose-fed Sprague-Dawley rats (32% 10 wk)	↑ CaMKII activity (autocamtide phosphorylation)	↓ PLN-Thr17 phosphorylation	Vasanji et al\[52\]
Fructose-fed Wistar rats (10%, 3 wk)	↑ CaMKII oxidation; ↔ CaMKII expression	↑ RyR2-Ser2814 phosphorylation	Sommese et al\[55\]
Sucrose-fed Wistar rats (30%, 4 mo)	↑ CaMKII-Thr287 phosphorylation; ↔ CaMKII expression	↑ RyR2-Ser2814 phosphorylation	Romero-Garcia et al [46]
HFD Long-Evans rats treated with STZ (40% lard, 21 wk)	↔ CaMKII-Thr287 phosphorylation; ↔ CaMKII expression	↔ PLN-Thr17 phosphorylation	Koncsos et al\[62\]

↔: No change; ↓: Decreased; ↑: Increased; CaMKII: Ca2+/calmodulin-dependent protein kinase II; HFD: High-fat diet; PLN: Phospholamban; RyR2: Ryanodine receptor type 2; STZ: Streptozotocin.

There is evidence supporting the hypothesis that MetS alters β-adrenergic signaling, but it is still not clear how β-adrenergic signaling is affected in diet-induced MetS models. β-ARs are the more abundant isoform in cardiomyocytes and are the primary mediators of the β-adrenergic response under physiological conditions. However, the link between MetS, β-AR expression and signaling alterations and cardiac dysfunction remains to be fully established.

β-AR stimulation leads to PKA and CaMKII activation, and MetS could involve kinase overactivation. For PKA, the available data indicate overactivation, no change, or reduced activity; further research is clearly needed. For CaMKII, the evidence suggests a critical role in the development of pre-diabetic cardiomyopathy; understanding the mechanisms that dysregulate CaMKII activity in MetS would therefore contribute importantly to elucidating the molecular basis of cardiac dys-function.

Importantly, the majority of the information reported in this review was generated with small rodent models; further studies are required in animal models that more closely approximate human cardiac physiology.

Future perspectives

Several issues remain to be addressed in investigating the possible effect of MetS on β-adrenergic signaling pathways in cardiomyocytes and actions on PKA and CaMKII activity. For instance, the role of Epac2, which is also activated by β-AR stimulation, has not been elucidated in pre-diabetic cardiomyopathy. Furthermore, it is not well established whether MetS modifies β-AR expression by cardiomyocytes or what role receptor desensitization might play in the hyper-adrenergic state induced by the syndrome. An additional relevant question is whether MetS induces post-translational modifications in CaMKII that result in an altered activity. Additional knowledge would allow for laying the foundation for the rational design of targeted therapies to prevent or treat the development of pre-diabetic cardiomyopathy.

ACKNOWLEDGEMENTS

We thank Dr. Frank EM for English proofreading and critical comments to improve this work.

REFERENCES

1 Li T, Li G, Guo X, Li Z, Yang J, Sun Y. The influence of diabetes and prediabetes on left heart remodeling: A population-based study. J Diabetes Complications 2021; 35: 107771 [PMID: 33144026 DOI: 10.1016/j.jdiacomp.2020.107771]

2 American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021; 44: S15-S33 [PMID: 32298413 DOI: 10.2337/dc21-S002]

3 Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res 2017; 183: 57-70 [PMID: 28130064 DOI: 10.1016/j.trsl.2017.01.001]

4 Echouffo-Tcheugui JB, Selvin E. Prediabetes and What It Means: The Epidemiological Evidence. Annu Rev Public Health 2021; 42: 59-77 [PMID: 33355476 DOI:]
Gaitán-González P et al. PKA and CaMKII in pre-diabetic cardiomyopathy

10.1146/annurev-publichealth-090419-102644

5 Dincer UD. Cardiac ryanodine receptor in metabolic syndrome: is JTV519 (K201) future therapy? Diabetes Metab Syndr Obes 2012; 5: 89-99 [PMID: 22563249 DOI: 10.2147/DMSO.S30005]

6 De Pergola G, Giorgino F, Benigno R, Guida P, Giorgino R. Independent influence of insulin, catecholamines, and thyroid hormones on metabolic syndrome. Obesity (Silver Spring) 2008; 16: 2405-2411 [PMID: 18719673 DOI: 10.1083/oby.2008.382]

7 Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ Res 2018; 122: 624-638 [PMID: 29449364 DOI: 10.1161/CIRCRESAHA.117.311586]

8 Pereira L, Ruiz-Hurtado G, Rueda A, Mercadier JJ, Benitah JP, Gómez AM. Calcium signaling in diabetic cardiomyocytes. Cell Calcium 2014; 56: 372-380 [PMID: 25120537 DOI: 10.1016/j.cca.2014.08.004]

9 Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ 2016; 355: i5953 [PMID: 27881363 DOI: 10.1136/bmj.i5953]

10 Cai X, Zhang Y, Li M, Wu JH, Mai L, Li J, Yang Y, Hu Y, Huang Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis. BMJ 2020; 370: m2297 [PMID: 32669282 DOI: 10.1136/bmj.m2297]

11 Mai L, Wen W, Qiu M, Liu X, Sun L, Zheng H, Cai X, Huang Y. Association between prediabetes and adverse outcomes in heart failure. Diabetes Obes Metab 2021 [PMID: 34227220 DOI: 10.1111/dom.14490]

12 Gami AS, Witt BI, Howard DE, Erwin PJ, Gami LA, Somers VK, Montori VM. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol 2007; 49: 403-414 [PMID: 17258085 DOI: 10.1016/j.jacc.2006.09.032]

13 Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, Schiffrin EL, Eisenberg MJ. The metabolic syndrome and cardiovascular risk: a systematic review and meta-analysis. J Am Coll Cardiol 2010; 56: 1113-1132 [PMID: 20863953 DOI: 10.1016/j.jacc.2010.05.034]

14 De Marco M, de Simone G, Roman MJ, Chinalli M, Lee ET, Calhoun D, Howard BV, Devereux RB. Cardiac geometry and function in diabetic or prediabetic adolescents and young adults: the Strong Heart Study. Diabetes Care 2011; 34: 2300-2305 [PMID: 21873564 DOI: 10.2337/dc11-0191]

15 Nakamura M, Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. J Physiol 2020; 598: 2977-2993 [PMID: 30891585 DOI: 10.1113/JP276747]

16 Ormazabal V, Nair S, Elféky O, Agyauo C, Salomon C, Zufiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 2018; 17: 122 [PMID: 30170598 DOI: 10.1186/s12937-018-0762-4]

17 Piché ME, Tchemoff A, Després JP. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ Res 2020; 126: 1477-1500 [PMID: 32437302 DOI: 10.1161/CIRCRESAHA.120.316101]

18 Hsiao YC, Wu CC. Dyslipidemia and Cardiometabolic Syndrome. Cardio Metabolic Syndr J 2021; 1: 18 [DOI: 10.51789/cmj.2021.1.e2]

19 Bers DM. Cardiac excitation-contraction coupling. Nature 2002; 415: 198-205 [PMID: 11805843 DOI: 10.1038/415198a]

20 Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 2005; 97: 1314-1322 [PMID: 16269653 DOI: 10.1161/01.RES.0000194329.41863.89]

21 Fuster V, Harrington RA, Narula J, Eapen ZJ. Hurst’s The Heart. 4th ed. McGraw-Hill Education/Medical, 2017

22 Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA; CGTP Collaborators. The CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors. Br J Pharmacol 2019; 176 Suppl 1: S21-S141 [PMID: 31710717 DOI: 10.1111/bph.14748]

23 Cotechella S. The α1-adrenergic receptors: diversity of signaling networks and regulation. J Recept Signal Transduct Res 2010; 30: 410-419 [PMID: 20954794 DOI: 10.1039/B007999X.2010.518152]

24 Gyires K, Zádor ZS, Török T, Mátys P. alpha2-Adrenoceptor subtypes-mediated physiological, pharmacological actions. Neurochem Int 2009; 55: 447-453 [PMID: 19477210 DOI: 10.1016/j.neuci.2009.05.014]

25 Devile E, Xiang Y, Gould D, Kobilka B. Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. Mol Pharmacol 2001; 60: 577-583 [PMID: 11502890]

26 Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H. Functional beta3-adrenoceptor in the human heart. J Clin Invest 1996; 98: 556-562 [PMID: 8755668 DOI: 10.1172/JCI118823]

27 Okatan EN, Kizil S, Gokturk H, Can B, Turan B. High-carbohydrate diet-induced myocardial remodelling in rats. Curr Res Cardiol 2015; 2: 5-10 [DOI: 10.4172/2368-0512.1000020]

28 Okatan EN, Durak AT, Turan B. Electrophysiological basis of metabolic-syndrome-induced cardiac dysfunction. Can J Physiol Pharmacol 2016; 94: 1064-1073 [PMID: 27322594 DOI: 10.1139/cjpp-2015-0511]

29 Dridi H, Kushnir A, Zaik R, Yuan Q, Melville Z, Marks AR. Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target. Nat Rev Cardiol 2020; 17:
Brodde OE. Beta-1- and beta-2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 1991; 43: 203-242 [PMID: 16772200]

Myagmar BE, Flynn JM, Cowley PM, Swigart PM, Montgomery MD, Thai K, Nair D, Gupta R, Deng DX, Hosoda C, Melov S, Baker AJ, Simpson PC. Adrenergic Receptors in Individual Ventricular Myocytes: The Beta-1 and Alpha-IB Are in All Cells, the Alpha-1A Is in a Subpopulation, and the Beta-2 and Beta-3 Are Mostly Absent. Circ Res 2017; 120: 1103-1115 [PMID: 28229977 DOI: 10.1161/CIRCRESAHA.117.310520]

Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Purh H, Lohse MJ, Koechev VE, Harding SE, Gorelik J. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 2010; 327: 1653-1657 [PMID: 20815685 DOI: 10.1126/science.1185988]

Hanoun J, Defer N. Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 2001; 41: 145-174 [PMID: 11264454 DOI: 10.1146/annurev.pharmtox.41.1.145]

Göttle M, Geduhn J, König B, Gille A, Höcherl K, Seifert R. Characterization of mouse heart adenylyl cyclase. J Pharmacol Exp Ther 2009; 329: 1156-1165 [PMID: 19307450 DOI: 10.1124/jpet.109.150953]

Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 127: 246-259 [PMID: 30633874 DOI: 10.1016/j.yjmcc.2019.01.001]

Grimm M, Brown JH. Beta-adrenergic receptor signaling in the heart: role of CaMKII. J Mol Cell Cardiol 2010; 48: 322-330 [PMID: 19883653 DOI: 10.1016/j.yjmcc.2009.10.016]

Turnham RE, Scott JD. Protein kinase A catalytic subunit isoform PRKACA; History, function, and physiology. Gene 2016; 577: 101-108 [PMID: 26887111 DOI: 10.1016/j.gene.2015.11.052]

Su Y, Dostmann WR, Herberg FW, Durick K, Xuong NH, Ten Eyck L, Taylor SS, Varughese KI. Regulator subunit of protein kinase A structure, deletion mutant with cAMP binding domains. Science 1995; 269: 807-813 [PMID: 7638597 DOI: 10.1126/science.7638597]

Krall J, Taskén K, Staheli J, Jahnsen T, Movsesian MA. Identification and quantification of cAMP-dependent protein kinase R subunit isoforms in subcellular fractions of failing myocardium. J Mol Cell Cardiol 1999; 31: 971-980 [PMID: 10336837 DOI: 10.1006/jmcc.1999.0926]

Scholten A, van Veen TA, Vos MA, Heck AJ. Diversity of cAMP-dependent protein kinase isoforms and their anchoring proteins in mouse ventricular tissue. J Proteome Res 2007; 6: 1705-1717 [PMID: 17432891 DOI: 10.1021/pr060601a]

Di Benedetto G, Zoccarato A, Lissandron V, Terrin A, Li X, Houslay MD, Baillie GS, Zoccarato A. Epac and PKA: a tale of two intracellular cAMP receptors. Cell 2003; 112: 48-58 [PMID: 12634364 DOI: 10.1016/S0092-8674(03)00847-8]

Huke S, Bers DM. Ryanodine receptor phosphorylation at Serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochem Biophys Res Commun 2008; 367: 80-85 [PMID: 18575143 DOI: 10.1016/j.bbrc.2008.08.084]

Gray CB, Keller Brown J. CaMKIIdelta subtypes: localization and function. Front Pharmacol 2014; 5: 15 [PMID: 24575042 DOI: 10.3389/fphar.2014.00015]

Lu S, Liao Z, Lu X, Katschinski DM, Mercola M, Chen J, Keller Brown J, Molkentin JD, Bossuyt J, Bers DM. Hyperglycemia Acutely Increases Cytosolic Reactive Oxygen Species via O-linked GlcNAcylation and CaMKII Activation in Mouse Ventricular Myocytes. Circ Res 2020; 126: e80-e96 [PMID: 32134364 DOI: 10.1161/CIRCRESAHA.119.316288]

Cheng X, Ji Z, Tsalkova T, Mei F. Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochim Biophys Sin (Shanghai) 2008; 40: 651-662 [PMID: 18604457 DOI: 10.1111/j.1745-7270.2008.00438.x]

Pereira L, Cheng H, Liao DH, Na L, van Oort RJ, Brown JH, Wehrens XH, Chen J, Bers DM. Epac2 mediates cardiac β1-adrenergic-dependent sarcoplasmic reticulum Ca2+ leak and arrhythmia. Circulation 2013; 127: 913-922 [PMID: 23363825 DOI: 10.1161/CIRCULATIONAHA.112.148619]

Romero-Garcia T, Landa-Galvan HV, Pavon N, Mercado-Morales M, Valdivia HH, Rueda A. Autonomous activation of CaMKII exacerbates diastolic calcium leak during beta-adrenergic stimulation in cardiomyocytes of metabolic syndrome rats. Cell Calcium 2020; 91: 102267 [PMID: 32920522 DOI: 10.1016/j.ceca.2020.102267]

Carvajal K, Balderas-Villalobos J, Bello-Sanchez MD, Phillips-Farfan B, Molina-Muñoz T, Aldana-Quintero H, Gómez-Viquez NL. Ca(2+)-mibeadling and cardiac dysfunction in obesity and insulin resistance: role of oxidative stress. Cell Calcium 2014; 56: 408-415 [PMID: 25168907 DOI: 10.1016/j.ceca.2014.08.003]

Stahenberg R, Edelmann F, Mende M, Kocksämper A, Düngen HD, Scherer M, Kochen MM, Binder L, Herrmann-Lingen C, Schönbrunn L, Gelbrich G, Hasenfuss G, Liese B, Wachter R. Association of glucose metabolism with diastolic function along the diabetic continuum. Diabetologia 2010; 53: 1331-1340 [PMID: 20386878 DOI: 10.1007/s00125-010-1718-8]

Sety S, Sun W, Tune JD. Coronary blood flow regulation in the prediabetic metabolic syndrome. Basic Res Cardiol 2003; 98: 416-423 [PMID: 14556087 DOI: 10.1007/s00395-003-0418-7]

Vasanji Z, Cantor EJ, Jurie D, Moyen M, Netticadan T. Alterations in cardiac contractile...
performance and sarcoplasmic reticulum function in sucrose-fed rats is associated with insulin resistance. *Am J Physiol Cell Physiol* 2006; 291: C772-C780 [PMID: 16973823 DOI: 10.1152/ajpcell.00086.2005]

53 **Barrera-Lechuga TP**, Guerrero-Hernández A, Arias-Montaño JA, Rueda A. Impaired function of cardiac ryanodine receptors in an experimental model of metabolic syndrome. *Biophys J* 2010; 98: 106A-107A [DOI: 10.1016/j.bpj.2009.12.592]

54 **Albarado-Ibañez A**, Avelino-Cruz JE, Velasco M, Torres-Jácome J, Hiriart M. Metabolic syndrome remodels electrical activity of the sinoatrial node and produces arrhythmias in rats. *PLoS One* 2013; 8: e76534 [PMID: 24250786 DOI: 10.1371/journal.pone.0076534]

55 **Sommese L**, Valverde CA, Blanco P, Castro MC, Rueda OV, Kaetzel M, Dedman J, Anderson ME, Mattiazzi A, Palomeque J. Ryanodine receptor phosphorylation by CaMKII promotes spontaneous Ca(2+)-release events in a rodent model of early stage diabetes: The arrhythmogenic substrate. *Int J Cardiol* 2016; 202: 394-406 [PMID: 26432489 DOI: 10.1016/j.ijcard.2015.09.022]

56 **López-Acosta O**, de Los Angeles Fortis-Barrera M, Barrios-Mayá MA, Ramírez AR, Aguilar FJA, El-Hafidi M. Reactive Oxygen Species from NADPH Oxidase and Mitochondria Participate in the Proliferation of Aortic Smooth Muscle Cells from a Model of Metabolic Syndrome. *Oxid Med Cell Longev* 2018; 2018: 5835072 [PMID: 30671170 DOI: 10.1155/2018/5835072]

57 **Landa-Galvan HV**, Rios-Castro E, Romero-García T, Rueda A, Olivarres-Reyes JA. Metabolic syndrome diminishes insulin-induced Akt activation and causes a redistribution of Akt-interacting proteins in cardiomyocytes. *PLoS One* 2020, 15: e0228115 [PMID: 31995605 DOI: 10.1371/journal.pone.0228115]

58 **Panchal SK**, Brown L. Rodent models for metabolic syndrome research. *J Biomed Biotechnol* 2011; 2011: 351982 [PMID: 21253582 DOI: 10.1155/2011/351982]

59 **Wong SK**, Chin KY, Suahinni FH, Fairs A, Ima-Nirwana S. Animal models of metabolic syndrome: a review. *Nutr Metab (Lond)* 2016; 13: 65 [PMID: 27708685 DOI: 10.1186/s12986-016-0123-9]

60 **Carvajal K**, Baños G. Myocardial function and effect of serum in isolated heart from hypertriglyceridemic and hypertensive rats. *Clin Exp Hypertens* 2002; 24: 235-248 [PMID: 12069355 DOI: 10.1081/ceh-12004228]

61 **Reaven GM**. Banting lecture 1988. Role of insulin resistance in human disease. *Diabetes* 1988; 37: 1595-1607 [PMID: 3056758 DOI: 10.2337/db.37.12.1595]

62 **Konesos G**, Varga ZV, Baranyai T, Boengler K, Rohrbach S, Li L, Schlüter KD, Schreckenberg R, Radovits T, Oláh A, Mátayá C, Lux Á, Al-Khrasani M, Deres L, Tretter L, Helyes Z, Nunn JM, Ren J. Metallothionein prevents high-fat diet induced cardiac dysfunction: role of mitochondrial oxidative stress. *Am J Physiol Heart Circ Physiol* 2011; 301: H927-H943 [PMID: 21252147 DOI: 10.1152/ajpheart.00049.2016]

63 **Sánchez G**, Araneda F, Peña JP, Finkelstein JP, Riquelme JA, Montecinos L, Barrientos G, Llanos P, Pedrozo Z, Said M, Bull R, Donoso P. High-Fat-Diet-Induced Obesity Produces Spontaneous Ventricular Arrhythmias and Increases the Activity of Ryanodine Receptors in Mice. *Int J Mol Sci* 2018; 19 [PMID: 29439401 DOI: 10.3390/ijms19020532]

64 **Carvajal K**, Baños G, Moreno-Sánchez R. Impairment of glucose metabolism and energy transfer in the rat heart. *Mol Cell Biochem* 2003; 249: 157-165 [PMID: 12956411 DOI: 10.1007/978-1-4614-9236-9_20]

65 **Paulino EC**, Ferreira JC, Bechara LR, Tsutsui JM, Mathias W Jr, Lima FB, Casarini DE, Cicogna AC, Brum PC, Negrol CE. Exercise training and caloric restriction prevent reduction in cardiac Ca2+-handling protein profile in obese rats. *Hypertension* 2010; 56: 629-635 [PMID: 20644006 DOI: 10.1161/HYPERTENSIONAHA.110.156141]

66 **Dong F**, Li Q, Sreejayan N, Nunn JM, Ren J. Metallothionein prevents high-fat diet induced cardiac contractile dysfunction: role of peroxisome proliferator activated receptor gamma coactivator 1alpha and mitochondrial biogenesis. *Diabetes* 2007; 56: 2201-2212 [PMID: 17575086 DOI: 10.2337/db06-1596]

67 **Hintz KK**, Aberle NS, Ren J. Insulin resistance induces hyperleptinemia, cardiac contractile dysfunction but not cardiac leptin resistance in ventricular myocytes. *Int J Obes Relat Metab Disord* 2003; 27: 1196-1203 [PMID: 14513067 DOI: 10.1038/sj.ijo.0802389]

68 **Dutta K**, Podolin DA, Davidson MB, Davidoff AJ. Cardiomyocyte dysfunction in sucrose-fed rats is associated with insulin resistance. *Diabetes* 2001; 50: 1186-1192 [PMID: 11334425 DOI: 10.2337/diabetes.50.5.1186]

69 **Balderas-Villalobos J**, Molina-Muñoz T, Mailloux-Salinas P, Bravo G, Carvajal K, Gómez-Viquez NL. Oxidative stress in cardiomyocytes contributes to decreased SERCA2a activity in rats with metabolic syndrome. *Am J Physiol Heart Circ Physiol* 2013; 305: H1344-H1353 [PMID: 23997093 DOI: 10.1152/ajpheart.00211.2013]

70 **Fernández-Miranda G**, Romero-García T, Barrera-Lechuga TP, Mercado-Morales M, Rueda A. Impaired Activity of Ryanodine Receptors Contributes to Calcium MisHandling in Cardiomyocytes of Metabolic Syndrome Rats. *Front Physiol* 2019; 10: 520 [PMID: 31114513 DOI: 10.3389/fphys.2019.00520]

71 **Federico M**, Portiansky EL, Sommese L, Alvarado FJ, Blanco PG, Zanuzzi CN, Dedman J, Kaetzel M, Wehrens XHT, Mattiazzi A, Palomeque J. Calcium-calmodulin-dependent protein kinase mediates the intracellular signalling pathways of cardiac apoptosis in mice with impaired glucose tolerance. *J Physiol* 2017; 595: 4089-4108 [PMID: 28105734 DOI: 10.1113/JP273714]
Hintz KK, Ren J. Prediabetic insulin resistance is not permissive to the development of cardiac resistance to insulin-like growth factor I in ventricular myocytes. *Diabetes Res Clin Pract* 2002; 55: 89-98 [PMID: 11796174 DOI: 10.1016/S0168-8227(01)00325-0]

Dinçer UD, Araiza A, Knudson JD, Shao CH, Bidasee KR, Tune JD. Dysfunction of cardiac ryanodine receptors in the metabolic syndrome. *J Mol Cell Cardiol* 2006; 41: 108-114 [PMID: 16793060 DOI: 10.1016/j.yjmcc.2006.04.015]

Nerbonne JM, Kass RS. Molecular physiology of cardiac repolarization. *Physiol Rev* 2005; 85: 1205-1253 [PMID: 16138911 DOI: 10.1152/physrev.00002.2005]

Grassi G, Dell’Oro R, Quarti-Trevano F, Scoppelliti F, Seravalle G, Paleri F, Gambla PL, Mancia G. Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. *Diabetologia* 2005; 48: 1359-1365 [PMID: 15933859 DOI: 10.1007/s00125-005-1798-z]

Jiang X, Liu X, Wu S, Zhang GQ, Peng M, Wu Y, Zheng X, Ruan C, Zhang W. Metabolic syndrome is associated with and predicted by resting heart rate: a cross-sectional and longitudinal study. *Heart* 2015; 101: 44-49 [PMID: 25179964 DOI: 10.1136/heartjnl-2014-305685]

Dinçer UD, Bidasee KR, Güner S, Tay A, Özelcikay AT, Altan VM. The effect of diabetes on expression of beta1-, beta2-, and beta3-adrenoreceptors in rat hearts. *Diabetes* 2001; 50: 455-461 [PMID: 11272160 DOI: 10.2337/diabetes.50.2.455]

Ferron AJ, Jacobsen BB, Sant'Ana PG, de Campos DH, de Tomasi LC, Luvizotto Rde A, Cicolga AC, Leopoldo AS, Lima-Leopoldo AP. Cardiac Dysfunction Induced by Obesity Is Not Related to β-Adrenergic System Impairment at the Receptor-Signalling Pathway. *PLoS One* 2015; 10: e0138605 [PMID: 26390297 DOI: 10.1371/journal.pone.0138605]

Llano-Diez M, Sinclair J, Yamada T, Zong M, Fauconnier J, Zhang SJ, Katz A, Jardemark K, Westerblad H, Andersson DC, Lanner JT. The Role of Reactive Oxygen Species in β-Adrenergic Signaling in Cardiomyocytes from Mice with the Metabolic Syndrome. *PLoS One* 2016; 11: e0167090 [PMID: 27907040 DOI: 10.1371/journal.pone.0167090]

Roth DA, White CD, Hamilton CD, Hall JL, Stanley WC. Adrenergic desensitization in left ventricle from streptozotocin diabetic swine. *J Mol Cell Cardiol* 2002; 34: 985-996 [PMID: 12234768 DOI: 10.1006/jmcc.2002.2015]

Jiang C, Carillion A, Na N, De Jong A, Feldman S, Lacorte JM, Bonnefont-Rousselot D, Riou B, Wang GQ, Peng M, Wu Y, Zheng X, Ruan C, Zhang W. Metabolic syndrome resistance to insulin-like growth factor I in ventricular myocytes. *Diabetologia* 2005; 48: 1359-1365 [PMID: 15933859 DOI: 10.1007/s00125-005-1798-z]

Yakubova A, Jerseys P, Donner C, Hahn S, Wang Y, Flad A, Nünsch S, Dahm B, Zingrilli A, Gehlert S, Jaeger S, R༔m H. Modification of the β-Adrenoceptor Expression by Diabetes in the Heart. *Front Pharmacol* 2014; 5: 59 [PMID: 24765077 DOI: 10.3389/fphar.2014.00059]

Erickson JR. Mechanisms of CaMKII Activation in the Heart. *Front Pharmacol* 2014; 5: 59 [PMID: 24765077 DOI: 10.3389/fphar.2014.00059]

Nyberg B, Heinrichs M, eAMP-dependent Protein Kinase (PKA) Signaling Is Impaired in the Diabetic Heart. *J Biol Chem* 2015; 290: 29250-29258 [PMID: 26468277 DOI: 10.1074/jbc.M115.681767]

Dutta K, Embrock M, Zelis P. Impaired β-Adrenoceptor function contributes to impaired SERCA function and is linked to the pathogenesis of glucose-induced cardiomyopathy. *J Mol Cell Cardiol* 2002; 34: 985-996 [PMID: 12234768 DOI: 10.1006/jmcc.2002.2015]

Jiang C, Carillion A, Na N, De Jong A, Feldman S, Lacorte JM, Bonnefont-Rousselot D, Riou B, Wang GQ, Peng M, Wu Y, Zheng X, Ruan C, Zhang W. Metabolic syndrome resistance to insulin-like growth factor I in ventricular myocytes. *Diabetologia* 2005; 48: 1359-1365 [PMID: 15933859 DOI: 10.1007/s00125-005-1798-z]

Yakubova A, Thomore L, Svetchiniv D, Zwarts L, Walstek V, Laenen G, Oosterlinck W, Morave U, Dehaspe L, Van Houdt J, Cortés-Calabuig À, De Moor B, Callaerts P, Herijgers P. ACE-inhibition induces a cardioprotective transcriptional response in the metabolic syndrome heart. *Sci Rep* 2018; 8: 16169 [PMID: 30385846 DOI: 10.1038/s41598-018-34547-9]

Grimm M, Ling H, Willeford A, Pereira L, Gray CB, Erickson JR, Sarma S, Respress JL, Wehrens BH, Brown JH. CaMKII: A Ca2+/calmodulin-regulated protein kinase that mediates β-adrenergic effects on RyR2 phosphorylation and SR Ca2+ leak. *J Mol Cell Cardiol* 2015; 85: 282-291 [PMID: 26080362 DOI: 10.1016/j.yjmcc.2015.06.007]

Erickson JR. Mechanisms of CaMKII Activation in the Heart. *Front Pharmacol* 2014; 5: 59 [PMID: 24765077 DOI: 10.3389/fphar.2014.00059]
Gaitán-Gonzále P et al. PKA and CaMKII in pre-diabetic cardiomyopathy

Discov Today Dis Mech 2010; 7: e117-e122 [PMID: 21503275 DOI: 10.1016/j.ddmec.2010.07.005]

94 Respess JL, van Oort RJ, Li N, Rolim N, Dixit SS, deAlmeida AC, Voigt N, Lawrence WS, Skapura DG, Skárdal K, Wilsöft U, Wieland T, Ai X, Pogwizd SM, Dobrev D, Wehrens XH. Role of RyR2 phosphorylation at S2814 during heart failure progression. Circ Res 2012; 110: 1474-1483 [PMID: 22511749 DOI: 10.1161/CIRCRESAHA.112.268094]

95 van Oort RJ, McCauley MD, Dixit SS, Pereira L, Yang Y, Respess JL, Wang Q, De Almeida AC, Skapura DG, Anderson ME, Bers DM, Wehrens XH. Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 2010; 122: 2669-2679 [PMID: 21098440 DOI: 10.1161/CIRCULATIONAHA.110.982298]

96 Kreusser MM, Lehmann LH, Karanov S, Hoting MO, Oehl U, Kohlhaas M, Reil JC, Neumann K, Schneider MD, Hill JA, Dobrev D, Maack C, Maier LS, Gröne HJ, Katus HA, Olson EN, Backs J. Cardiac CaM Kinase II genes δ and γ contribute to adverse remodeling but redundantly inhibit calcineurin-induced myocardial hypertrophy. Circulation 2010; 130: 2669-2679 [PMID: 21098440 DOI: 10.1161/CIRCULATIONAHA.110.982298]

97 Weinreuter M, Kreusser MM, Beckendorf J, Schreiter F, Lehmann LH, Hofmann KP, Rostosky JS, Diemert N, Xu C, Volz HC, Jungmann A, Nickel A, Stiecht C, Gretch N, Maack C, Schneider MD, Gröne HJ, Müller OJ, Katus HA, Backs J. CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury. EMBO Mol Med 2014; 6: 1231-1245 [PMID: 25193975 DOI: 10.15252/emmm.201403848]

98 Daniels LJ, Wallace RS, Nicholson OM, Wilson GA, McDonald FJ, Jones PP, Baldi JC, Lamberts RR, Erickson JR. Inhibition of calcium/calmodulin-dependent kinase II restores contraction and relaxation in isolated cardiac muscle from type 2 diabetic rats. Cardiovasc Diabetol 2018; 17: 89 [PMID: 29903013 DOI: 10.1186/s12933-018-0732-x]

99 Luo M, Guan X, Luczak ED, Lang D, Kutschke W, Gao Z, Yang J, Glynn P, Sossalla S, Swaminathan PD, Weiss RM, Yang B, Rokita AG, Maier LS, Efimov IR, Hund TJ, Anderson ME. Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Invest 2013; 123: 1262-1274 [PMID: 23426181 DOI: 10.1172/JCI65268]
