A miniature TSV-based branch line coupler using π equivalent circuit model for transmission line

Fengjuan Wang¹, Sa Xiao¹, Xiangkun Yin²a, Ningmei Yu¹, and Yuan Yang¹

Abstract A miniaturized lumped element branch line coupler with π-type equivalent circuit is proposed, the design of branch line coupler has been carried out for S-band. The lumped element in the branch line coupler is realized by TSV, and the coupler is simulated and verified by industrial simulation software HFSS. The results show that the return loss is greater than 19 dB, the isolation is better than 20 dB, and the insertion loss is less than 1.53 dB at the frequency of 2.1-2.4 GHz. The size of the miniature TSV-based branch line coupler is only 0.660×0.630mm²(0.018×0.017λ²).

key words: Branch line coupler; miniaturization; lumped element; Through-silicon via (TSV)
Classification: Electron devices, circuits and modules (Silicon)

1. Introduction

With the development of modern communication technology, the demand for miniaturization and lightweight of communication components is increasing [1], so the study of microwave passive device miniaturization has important significance. As a key element in RF microwave system, branch line couplers are used for power distribution and combination [2-4]. At the lower frequency of the microwave band, the size of a conventional branch line coupler is too large for practical use [5]. Such as in S-band, the disadvantages of traditional branch line couplers with large size are more prominent, while S-band is widely used in communication satellites, weather radars and other fields, and the size requirements are more stringent. By using the method of lumped components can significantly reduce the size, low-temperature co-fired ceramic (LTCC) and integrated passive device (IPD) technology have been introduced recently to achieve a reduction in circuit size[6], but it is difficult to improve the performance due to parasitic effects.

TSV provides low loss vertical electrical connection, so it has been widely studied in recent years [7-11], and it has the advantages of lower loss, smaller size, integrability and good transmission characteristics [12-18], which makes it not only was used as a vertical interconnect in 3D-IC, but also widely used in the passive device manufacturing [19-23]. In this paper, a miniature TSV based branch line coupler for S-band is proposed.

2. Design of TSV-based branch line coupler

The design method of TSV-based branch line coupler was described in this section. Fig.1(a) shows the structure of a branch line coupler consisting of four λ/4 transmission lines [24]. The λ/4 transmission line can be equivalent to a π-type circuit model as shown in Fig. 1(b) [25]. The lumped element value corresponding to the transmission line can be obtained by Eqs. (1) ~ (4).

\[L_1 = L_2 = \frac{Z_0 \sin \theta}{\omega} e^{\frac{-\theta}{2}} \Rightarrow Z_1 = \frac{Z_0}{2\pi f_0} \] \hspace{1cm} (1)

\[L_3 = L_4 = \frac{Z_0 \sin \theta}{\omega} e^{\frac{-\theta}{2}} \Rightarrow Z_3 = \frac{Z_0}{2\pi f_0} \] \hspace{1cm} (2)

\[C_a = \frac{1}{\omega Z_1} \] \hspace{1cm} (3)

\[C_b = \frac{1}{\omega Z_3} \] \hspace{1cm} (4)

the characteristic impedance of transmission line \(Z_1 = 47.57\Omega \), \(Z_2 = 150.15\Omega \) is obtained by odd even mode analysis theory, and the electric length \(\theta = 90° \). The inductance \(L_1 = L_2 = 3.155\mu H \), \(L_3 = L_4 = 9.95\mu H \) and the capacitance \(C_1 = C_2 = C_3 = C_4 = 1.84pF \) were calculated. Thus, the equivalent circuit diagram of the branch line coupler is obtained, as shown in Fig.1(c). The inductor is a spiral structure formed by connecting

¹Shannxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
²School of Microelectronics, Xidian University, Xi’an, Shaanxi 710071, China
a) yinxkwcn@163.com

DOI: 10.1587/elex.18.20210515
Received December 01, 2021
Accepted December 16, 2021
Publicized December 29, 2021
TSV and Redistribution Layer (RDL), as shown in Fig. 2(a). And the capacitor is a double layer interfinger structure implemented by RDL, with two layers interlaced and connected by contact, the number of the fingers in each layer is 28, as shown in Fig. 2(b). According to the design theory above, the coupler is realized by TSV technology, and it has four layers of RDL at the top and one layer of RDL at the bottom, as depicted in Fig. 3.

In this work, the substrate material of TSV is high-resistivity silicon. The dielectric constant of high-resistivity silicon is 11.9, and the resistivity is 1000 \(\Omega \cdot \text{cm} \). RDL is made of copper and embedded in silicon dioxide with a dielectric constant of 3.9.

![Fig. 1 The circuit model.](image)

(a) Traditional branch line coupler (b) \(\pi \)-Equivalent-Circuit Model (c) Circuit model of branch line coupler

![Fig. 2 Models of inductor and capacitor](image)

(a) The model of inductor (b) The model of capacitor

![Fig. 3 The model of TSV-based branch line coupler.](image)

(a) S-parameter simulation of the coupler (b) Phase difference between port 2 and port 3

Fig. 4 The S-parameter and phase difference of the coupler

3. Simulation Results and comparison

The structural parameters of the branch line coupler based on TSV proposed in this paper are listed in Table I. The S-parameter simulation results and the phase difference of the model are shown in Fig.4. According to the results, when the frequency is 2.1-2.4 GHz, the return loss of the coupler is greater than 19 dB, the insertion loss is less than 1.53 dB, and the isolation is greater than 20 dB. The isolation can reach 57.62 dB at the frequency is 2.22 GHz, the bandwidth of 15 dB isolation/return loss is about 30.3%. The simulation results show that the phase imbalance at operating frequency is within 8.5°, and the phase imbalance is mainly caused by parasitic parameters. The proposed branch-line coupler is compared with four conventional structures in Table II. By comparison, the proposed coupler greatly reduced the size, at the same time it has low insertion loss and high isolation.

Couplers \(f_0 \) (GHz) \(f_0 \) (GHz) Range (GHz) RL (dB) IL (dB) Isolation (dB) Size	\(\lambda_s \) (\(\lambda_s \))						
[27]	2.5	2.30-2.83	>15	4.17	>14	1.47×1.53	0.012×0.013
[28]	28	25-30	>14	3.86	>14	1.15×0.98	0.164×0.164
[29]	2.4	2.15-2.47	>15	4	>15	4.216×3.835	0.079×0.071
[30]	24	23-25.5	>13	4.7	>15	8.5×8.5	0.197×0.197
This work	2.4	2.1-2.4	>19	1.43	>20	0.660×0.630	0.018×0.017

4. Conclusion

In this paper, a compact and miniaturized TSV based branch line coupler for S-band is proposed. This structure greatly reduces the size of branch line couplers and ensures low insertion loss and high isolation. The proposed design method can also be extended to other
lumped parameter passive devices.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61774127, 61804112, 61771388, 62174134), the Fok Ying Tung Education Foundation under Grant no. 171112, Shaanxi Innovation Capacity Support Project under Grant nos. 2020KJXX-093 and 2021TD-25.

References

[1] D. A. Letavin: "Miniature branch-line coupler structure analysis," 2017 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), (2017) 99 (DOI: 10.1109/EDM.2017.7981717).
[2] X. Yu and S. Sun: "Design of rf/microwave planar crossovers using pure-series-connected lumped elements," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (2017) 2231 (DOI: 10.1109/APUSNCURSINRM.2017.8073158).
[3] Q. Zhang, Y. Zhou and G. Qian: “A miniaturized directional coupler with high isolation for RFID reader,” 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB). (2016) 1 (DOI: 10.1109/ICUWB.2016.7790496).
[4] J. Jin and F. Xu: “Low-loss, wideband 3dB hybrid coupler based on AMC for 5G millimeter-wave application,” 2019 International Symposium on Antennas and Propagation (ISAP), (2019) 1.
[5] S. Liao et al: “A novel compact-size branch-line coupler,” IEEE Microwave and Wireless Components Letters.15 (2005) 588 (DOI:10.1109/LMWC.2005.855378).
[6] D. Titz et al: “New wideband miniature branch line coupler on IPD technology for beamforming applications,” IEEE Transactions on Components, Packaging and Manufacturing Technology.4 (2014) 911 (DOI: 10.1109/TPCMPT.2014.2311092).
[7] F. Wang, et al.: "A novel guard method of through-silicon-via (TSV)," IEICE Electron. Express 15 (2018) 20180421 (DOI: 10.1587/elex.15.20180421).
[8] L. Qian, et al.: “Through-silicon via-based capacitor and its application in LDO regulator design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27 (2019) 1947 (DOI: 10.1109/TVLSI.2019.2904200).
[9] X. Yin, et al.: “Analytical models of AC inductance and quality factor for TSV-based inductor,” IEICE Electron. Express 18(2021)20210319 (DOI:10.1587/elex.18.20210319).
[10] Q. Lu, et al.: “High-frequency electrical model of through-silicon vias for 3-D integrated circuits considering eddy-current and proximity effects,” IEEE Trans. Compon. Packag. Manuf. Technol. 7 (2017) 2036 (DOI:10.1109/TPCMPT.2017.2741340).
[11] Y. Yang, et al.: “New coaial through silicon via (TSV) applied for three dimensional integrated circuits (3D ICs),” IEICE Electron. Express 13(2016)20160192 (DOI:10.1587/elex.13.20160192).
[12] Y. P. R. Lamy, et al: “RF characterization and analytical modelling of through silicon vias and coplanar waveguides for 3D integration,” in IEEE Transactions on Advanced Packaging.33 (2010) 1072(DOI:10.1109/TADVP.2010.2046166).
[13] T. Lu, et al: "Thermal aware high frequency characterization of large-scale through-silicon via structures," in IEEE Transactions on Components, Packaging and Manufacturing Technology. 4 (2014) 1015 (DOI: 10.1109/TPCMPT.2014.2312136).
[14] F. Wang, G. Wang and N. Yu: "Characteristics of coaxial-annular through-silicon-via in microwave field," 2016 17th International Conference on Electronic Packaging Technology (ICEPT). (2016) 1219 (DOI: 10.1109/ICEPT.2016.7583343).
[15] P. A. Thadesar, et al: “Novel through-silicon via technologies for 3D system integration,” 2013 IEEE International Interconnect Technology Conference IITC. (2013) (DOI: 10.1109/IITC.2013.6615595).
[16] Y. Liu, et al.: “Temperature-dependent characterizations on parasitic capacitance of tapered through silicon via (T-TSV),” IEICE Electron. Express 15(2018)20180878 (DOI:10.1587/elex.15.20180878).
[17] Q. Lu, et al.: “3-D compact 3-dB branch-line directional couplers based on through-silicon via technology for millimeter-wave applications,” IEEE Trans. Compon. Packag. Manuf. Technol. 9 (2019) 1855 (DOI: 10.1109/TPCMPT.2019.2927553).
[18] F. Wang and N. Yu: "An ultracompact butterworth low-pass filter based on coaxial through-silicon vias," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems.25(2017) 1164 (DOI: 10.1109/TVLSI.2016.2620460).
[19] F. Wang, H. Li, and N. Yu: "Fabrication and measurement of 3D LPF based on coaxial TSV," ELECTRONICS LETTERS 55 (2019) 102 (DOI: 10.1049/el.2018.7325).
[20] X. Liu, et al.: “Wideband substrate integrated waveguide bandpass filter based on 3-D ICs,” IEEE Trans. Compon. Packag. Manuf. Technol. 9 (2019) 728 (DOI: 10.1109/TPCMPT.2018.2878863).
[21] F. Wang, et al.: “TSV-based hairpin bandpass filter for 6G mobile communication applications” IEICE Electron. Express 18(2021)20210247(DOI:10.1587/elex.18.20210247).
[22] K. R. Shin, J. Arendell and K. Eilert: "Compact 5G n77 band pass filter with through silicon via (TSV) IPD technology," 2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON)(2019)1(DOI:10.1109/WAMICON.2019.8765433).
[23] F. Wang, V. F. Pavlidis and N. Yu: “Miniaturized SIW bandpass filter based on TSV technology for THz applications,” IEEE Transactions on Terahertz Science and Technology. 4 (2020) 423 (DOI: 10.1109/TTHZ.2020.2974091).
[24] S. Sharma and D. K. Sharma: "Design and simulation of quadrature branch-line coupler for S band applications," 2018 2nd International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE). (2018) 240(DOI: 10.1109/ICMETE.2018.00060).
[25] M. B. Tayel and H. S. Alhakami: “Optimization and design a wideband 3Db multisection quadrature coupler for 2.5GHz,” International Conference on Mobile IT Convergence. (2011) 9.
[26] F. Wang and N. Yu: “Simple and accurate inductance model of 3D inductor based on TSV,” Electron. 52 (2016) 1815.
[27] Y. Lin and J. Lee: "Miniature butler matrix design using glass-based thin-film integrated passive device technology for 2.5-GHz applications," IEEE Transactions on Microwave Theory and Techniques 61 (2013) 2594 (DOI: 10.1109/TMTT.2013.2261540).
[28] J. G. Chi and Y. J. Kim: "A compact wideband millimeter-wave quadrature hybrid coupler using artificial transmission lines on a Glass Substrate," IEEE Microwave and Wireless Components Letters 30 (2020) 1037 (DOI: 10.1109/LMWC.2020.3027921).
[29] T. N. Kuo, et al: "A compact LTCC branch-line coupler using modified-T equivalent-circuit model for transmission line, " IEEE Microwave and Wireless Components Letters 16 (2006) 90 (DOI: 10.1109/LMWC.2005.863194).
[30] T. Djerafi and K. Wu: "Super-compact substrate integrated waveguide cruciform directional coupler," IEEE Microwave and Wireless Components Letters 17 (2007) 7577 (DOI: 10.1109/LMWC.2007.908040)