FAST TRACK COMMUNICATION

Nonlinear dynamics of a position-dependent mass-driven Duffing-type oscillator

Bijan Bagchi, Supratim Das, Samiran Ghosh and Swarup Poria

Department of Applied Mathematics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, India

E-mail: bbagchi123@rediffmail.com, supratimiitkgp@gmail.com, sran-g@yahoo.com and swarup-p@yahoo.com

Received 8 October 2012, in final form 26 November 2012
Published 21 December 2012
Online at stacks.iop.org/JPhysA/46/032001

Abstract
We examine some nontrivial consequences that emerge from interpreting a position-dependent mass (PDM)-driven Duffing oscillator in the presence of a quartic potential. The propagation dynamics is numerically studied and the sensitivity to the PDM-index is noted. Remarkable transitions from a limit cycle to chaos through period doubling and from a chaotic to a regular motion through intermediate periodic and chaotic routes are demonstrated.

PACS numbers: 05.45.-a, 03.50.Kk, 03.65.−w

(Some figures may appear in colour only in the online journal)

While position-dependent (effective) mass (PDM) quantum mechanical systems have repeatedly received attention in many areas of physics (such as, for instance, in the problems of compositionally graded crystals [1], quantum dots [2], nuclei [3], quantum liquids [4], metal clusters [5], etc, see also [6–13] for theoretical developments and references therein), interest in classical problems having a PDM is a relatively recent and rapidly developing subject [14–23]. The simplest case of a PDM classical oscillator has been approached by several authors [16–20]. In what follows, we demonstrate that a PDM ascribed Duffing oscillator provides an attractive possibility of defining a dynamical system that exhibits various features of bifurcations, chaos and regular motions. To be specific, we will focus on the following equation of motion which emerges from a Lagrangian of the form [24]

\[L = \frac{1}{2} \left(\frac{1}{1 + \xi x^2} \right) \left(\ddot{x}^2 - \omega_0^2 x^2 \right), \quad \xi \in \mathbb{R}, \]

(1)

(where an overhead dot indicates a time derivative) namely

\[(1 + \xi x^2)\ddot{x} - \xi xx'^2 - \omega_0^2 x = 0. \]

(2)

The above equation represents a special type of nonlinear oscillator which can be reduced to a first-order form by effecting a change in the variable \(x \) [24]. The latter equation can be
immediately solved yielding periodic solutions. Hence, the absolute regularity of the motion does not depend on the specific value of ξ.

Classically, when the mass is position dependent, Newton’s equation of motion gets modified to

$$m(x)\ddot{x} + m'(x)x^2 = 0$$

(where the prime indicates a spatial derivative) in the absence of any external force term. When compared with (2), the following profile of the mass function comes out:

$$m(x) := \frac{1}{\sqrt{1 + \xi x^2}}$$

on ignoring the presence of the harmonic term $\omega_0^2 x$ to effect such a comparison. In (4), we have scaled the constant mass to unity. Note that it is also possible to deal with other mass functions [15, 20] but for concreteness we focus on (4) in the rest of this communication.

In [20], an attempt was made to construct the underlying Lagrangian, wherein the PDM system (3) is acted upon by a force F that could be dependent on the position x, velocity \dot{x} and time t:

$$F(x, \dot{x}, t) := \frac{dp}{dt} = m'(x)\dot{x}^2 + m(x)\ddot{x},$$

where $p = m(x)\dot{x}$ is the linear momentum. They have found that, in addition to the kinetic energy T, a reacting thrust \tilde{R} is at play as well:

$$\tilde{R}(x, \dot{x}, t) := -\frac{1}{2}m'(x)\dot{x}^2,$$

where \tilde{R} is essentially a non-inertial force. Assuming that F can be split as $F = F(x) + \tilde{R}(x, \dot{x}, t)$, where $F(x)$ is controlled by a scalar potential function $F = -\frac{\partial V}{\partial x}$, the Lagrangian form of (5) obeys

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = \tilde{R}, \quad L = T - V.$$

Corresponding to the above L which is $L = \frac{1}{2}m(x)\dot{x}^2 - V(x)$, the Hamiltonian reads $H = \frac{p^2}{2m(x)} + V(x)$. These are of standard text-book forms\(^1\) with $m = m(x)$.

We stress that the non-potential force term \tilde{R} has to depend on the velocities; otherwise, they can be identified with the potential force $F(x)$. When written explicitly (7) reads

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}} \right) - \frac{\partial T}{\partial x} = -\frac{\partial V}{\partial x} + \tilde{R}.$$

As an aside, the time rate of change of T can be easily worked out as

$$\frac{dT}{dt} = \frac{d}{dr} \left(\frac{\partial T}{\partial \dot{x}} \dot{x} \right) + \left(\frac{\partial V}{\partial x} - \tilde{R} \right) \dot{x} + \frac{\partial T}{\partial t}$$

from which, for a scleronomic system, it at once follows that the time rate of energy $E(= T + V)$ is given by

$$\frac{dE}{dr} = \ddot{\tilde{R}} \dot{x} = -\frac{1}{2}m'(x)\dot{x}^3 = \frac{1}{2} \frac{\xi x^3}{(1 + \xi x^2)^2 \sqrt{1 + \xi x^2}}.$$

The above equation speaks of the power of the non-potential force. This result is new for PDM systems and of interest. If the power is negative, we encounter dissipative systems.

\(^1\) Quantum mechanically such forms are evidently non-Hermitian [25].

\(^2\)
The purpose of this communication is to develop a mathematical framework that enables us to study the evolution of the PDM system (5) in the presence of an external periodic (non-autonomous) force with an additional damping term moving in a quartic potential. Toward this end, we focus on an extended PDM equation of motion

\[m(x)\ddot{x} + m'(x)x^2 + \omega_0^2 x + \lambda x^3 + \alpha \dot{x} = f \cos \omega t, \]

which reduces to (3) in the absence of all the force terms.

Some remarks are in order [26–28]. For the constant mass case, i.e. \(m(x) = 1 \), (11) goes over to a forced, damped Duffing oscillator which because of the presence of a double-well potential mimics a magneto-elastic mechanical system. The latter is concerned with a beam placed vertically between two magnets with a fixed top end and free to swing at the bottom end. As soon as a velocity is enforced, the beam begins to oscillate eventually coming to rest at an equilibrium point. However, the situation changes when a periodic force is applied: stable fixed points or stable fixed angles no longer occur. In (11), \(\lambda \) is the governing parameter along with the periodic force \(f \cos \omega t \) in the presence of a viscous drag of coupling strength \(\alpha \).

Taking \(m(x) \) as in (4), we obtain from (11) the coupled set of equations

\[
\begin{align*}
\dot{x} &= y, \\
\dot{y} &= \frac{\xi xy^2}{1 + \xi x^2} + \sqrt{1 + \xi x^2}\left[f \cos \omega z - \omega_0^2 x - \lambda x^3 - \alpha y\right], \\
\dot{z} &= w.
\end{align*}
\]

The remarkable behaviour of the dynamical system (12) can be understood by examining the interplay between the amplitude \(f \) of the periodic forcing term and the PDM parameter \(\xi \). Various studies of the corresponding constant-mass case, i.e. when \(\xi = 0 \), have been carried out in the literature (see specifically [29]) and the nonlinear behaviour has been demonstrated including the oscillation modes and the nonlinear resonances, both theoretically and experimentally. For the PDM case, we fix the parameter values to be \(\omega = 1.0, \ \omega_0^2 = 0.25, \ \alpha = 0.2 \) and \(\lambda = 1.0 \) as is standard [23]. Furthermore, we will always assume \(\xi \geq 0 \). We plot in figure 1 the phase diagrams for different values of \(\xi \) including the constant-mass case of \(\xi = 0 \). While in the latter situation we encounter a limit-cycle oscillation, there is a drastic change in the dynamical behaviours as \(\xi \) is increased. For instance, period-four oscillations are observed for \(\xi = 0.2 \), which eventually give way to a chaotic behaviour both for \(\xi = 0.4 \) and \(\xi = 0.6 \) values.

The bifurcation diagram of the system (12) for \(x \) with respect to \(f \) by taking \(\xi = 0.5 \) is presented in figure 2. As soon as the periodic force is applied, limit cycle oscillations lie in the range \(0 < f < 2 \). But with the increase of the amplitude of the forcing term, period-two oscillations set in and survive briefly up to \(f = 4 \). Further stepping up of \(f \) produces period-four and period-eight oscillations ultimately leading to a chaotic behaviour. But such a regime is short-lived because with the \(f \)-value going beyond 7.5, a period-halving bifurcation appears yielding period-three oscillations for \(f > 8 \).

In figure 3, we demonstrate the bifurcation sequence for \(x \) but with respect to \(\xi \) by taking \(f = 5 \). As is evident, the limit cycle turns to period-four oscillations progressing to period-eight and so on running into a chaotic behaviour that lasts for a while before a regular motion takes over. The latter then again yields to a chaotic dynamics and the entire motion subsequently becomes a regular one around \(\xi = 1.9 \). On the other hand, by carrying out a bifurcation analysis for \(x \) with respect to \(\xi \) by taking \(f = 8.0 \), we find from figure 4 that the constant-mass oscillator reveals a chaotic state. But we also note that a subtle interplay between the parameters \(f \) and \(\xi \) produces complicated dynamics from a chaotic phase to periodic oscillations back again to a chaotic character and finally settling into a regular behaviour.
To summarize, we have demonstrated in this communication that given any value of f, if it is confronted with the PDM parameter ξ, remarkable phase transitions occur, such as, for instance, from a limit cycle mode to a chaotic regime through a period-doubling intermediate phase pointing to the sensitivity of the system (11) due to the interplay between f and ξ. The essential distinction between the constant mass and the variable mass case rests in the fact that the presence of the parameter ξ not only enhances the rapidity of such transitions but also
Figure 3. Bifurcation diagram of equation (12) with respect to ξ for $f = 5.0$, $\omega = 1.0$, $\omega_0^2 = 0.25$, $\alpha = 0.2$ and $\lambda = 1.0$.

Figure 4. Bifurcation diagram of equation (12) with respect to ξ for $f = 8.0$, $\omega = 1.0$, $\omega_0^2 = 0.25$, $\alpha = 0.2$ and $\lambda = 1.0$.

initiates complicated nature of bifurcations, of course for a non-zero value of f. Conversely, we also encounter transitions such as from a chaotic phase \rightarrow periodic orbit \rightarrow period doubling \rightarrow chaos \rightarrow regular motion.

Acknowledgments

We thank the anonymous reviewers for their constructive suggestions.
References

[1] Geller M R and Kohn W 1993 Phys. Rev. Lett. 70 3103
[2] Serra L and Lipparini E 1997 Europhys. Lett. 40 667
[3] Ring P and Schuck P 1980 The Nuclear Many-Body Problem (New York: Springer)
[4] de Saavedra F A et al 1994 Phys. Rev. B 50 4248
[5] Puente A, Serra L and Casas M 1994 Z. Phys. D 31 283
[6] Bagchi B, Banerjee A, Quesne C and Tkachuk V M 2005 J. Phys. A: Math. Gen. 38 2929
[7] Bagchi B 2007 J. Phys. A: Math. Theor. 40 F1041
[8] Midya B, Roy B and Roychoudhury R 2010 J. Math. Phys. 51 022109
[9] Mustafa O 2011 J. Phys. A: Math. Theor. 44 355303
[10] Çağ Kap M and Gönül B 2011 J. Math. Phys. 52 122103
[11] Ganguly A, Ioffe M V and Nieto L M 2006 J. Phys. A: Math. Gen. 39 14659
[12] Aydoğdu O, Arda A and Sever R 2011 J. Math. Phys. 53 042106
[13] Ruby V C, Senthilvelan M and Lakshmanan M 2012 J. Phys. A: Math. Theor. 45 382002
[14] Carinena J F, Rañada M F and Santander M 2004 Rep. Math. Phys. 54 285
[15] Carinena J F, Rañada M F and Santander M 2007 Ann. Phys. 322 434
[16] Carinena J F, Rañada M F and Santander M 2005 Two important examples of nonlinear oscillators Proc. 10th Int. Conf. in Modern Group Analysis (Larnaca, Cyprus, 2004) pp 39–46 (arXiv:math-ph/0505028)
[17] Cruz S C y, Negro J and Nieto L M 2007 Phys. Lett. A 369 400
[18] Cruz S C y, Negro J and Nieto L M 2008 J. Phys.: Conf. Ser. 128 012053
[19] Cruz S C y and Rosas-Ortiz O 2009 J. Phys. A: Math. Theor. 42 185205
[20] Cruz S C y and Rosas-Ortiz O 2012 Lagrange equations and spectrum generators algebras of mechanical systems with position-dependent mass arXiv:1208.2300
[21] Choudhury A G and Guha P 2012 SNBNCBS
[22] Ghosh S and Modak S K 2009 Phys. Lett. A 373 1212
[23] Venkatesan A and Lakshmanan M 1997 Phys. Rev. E 55 5134
[24] Mathews P M and Lakshmanan M 1974 Q. Appl. Math. 32 215
[25] Znojil M and Levai G 2012 Phys. Lett. A 376 3000
[26] Lakshmanan M and Rajasekar S 2003 Nonlinear Dynamics: Integrability, Chaos and Patterns (Berlin: Springer)
[27] Guckenheimer J and Holmes P 1983 Nonlinear Oscillator, Dynamical Systems and Bifurcation of Vector Fields (Applied Mathematical Science vol 42) (New York: Springer)
[28] Chua V 2003 Cubic-quintic Duffing oscillators (unpublished)
[29] Donoso G and Ladera C L 2012 Eur. J. Phys. 33 1473