Cosmic ray air showers from sphalerons

Gustaf Brooijmansa,*, Peter Schichtelb,e, Michael Spannowskyb,*

\textit{a} Physics Department, Columbia University, New York, NY 10027, United States
\textit{b} Institute for Particle Physics Phenomenology, Department of Physics, Durham University, DH1 3LE, United Kingdom

\section*{Article Info}

Article history:
Received 25 April 2016
Received in revised form 27 July 2016
Accepted 15 August 2016
Available online 18 August 2016
Editor: A. Ringwald

\section*{Abstract}

The discovery of the Higgs boson marks a key ingredient to establish the electroweak structure of the Standard Model. Its non-abelian gauge structure gives rise to, yet unobserved, non-perturbative baryon and lepton number violating processes. We propose to use cosmic ray air showers, as measured, for example, at the Pierre Auger Observatory, to set a limit on the hadronic production cross section of sphalerons. We identify several observables to discriminate between sphaleron and QCD induced air showers.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

\section*{1. Introduction}

The recent discovery of the Higgs boson [1,2] was the last missing piece to establish the Standard Model of particle physics as effective theory describing interactions at $\mathcal{O}(1)$ TeV. The Standard Model is predicted to give rise to non-perturbative solutions at energies of $\mathcal{O}(\alpha_s^2 m_W)$ TeV $\simeq \mathcal{O}(10)$ TeV which can result in the production of many quarks, leptons and electroweak gauge bosons. This production of multiple electroweak gauge bosons can occur with [3–5] or without [6–8] baryon and lepton number violating (BLNV) processes. The latter can be indicative for the existence of electroweak sphalerons [9], unstable solutions of the classical action of motion for the Standard Model's $SU(2)\times U(1)$ that are interpolating between topologically distinct vacua. Their discovery would yield direct implications for the observed matter-anti-matter asymmetry of the universe [10–12]. However, whether these processes can be observed at the LHC or a future collider remains an open question as their production cross section is largely theoretically unknown [13–18].

Phenomenologically lepton-number-violating processes with many gauge bosons would give rise to striking signatures at hadron colliders, easily distinguishable from Standard Model backgrounds generated in perturbatively describable interactions: events with many leptons, missing energy and large H_T are expected [19,20]. Thus, the limiting factor to study non-perturbative solutions of the Standard Model gauge group is the centre-of-mass energy of the initial state particles and the sphaleron production cross section. While the LHC with up to $\sqrt{s} = 14$ TeV is unlikely to be able to induce these processes, a future proton–proton collider with $\sqrt{s} \simeq 100$ TeV might be able to [21].

Intriguingly, ultra high energy cosmic rays (UHECRs) provide us with a natural source for proton–nucleon collisions, where the most energetic ones, $E = 10^{11}$ GeV, reach collision energies with nucleons in the atmosphere of $\sqrt{s} \simeq \sqrt{2m_NE} \simeq 500$ TeV. In this paper we study whether the striking signatures of BLNV processes induced by sphalerons can be observed at ground-based detection experiments, e.g. the Pierre Auger Observatories.

Previous work aimed at setting limits on new physics using cosmic ray interactions has either predominantly focused on exploiting primary and secondary neutrinos [22–25] or hadronic shower particles [26]. An alternative way of setting a limit to sphaleron production at Auger was proposed in [27]. The authors advise to use the deeply penetrating horizontal-showers to earth-skimming-showers ratio as measure, see also [28,29]. These showers originate from ultra high energetic neutrinos and their ratio is sensitive to the neutrino cross section. However, their limits still rely on the experimentally poorly known neutrino flux and the so-called ‘holy grail’ function for the sphaleron production cross section [14]. As sphaleron production is a non-perturbative process, the precise calculation of its production cross section is very challenging and new approaches resulting in widely different estimates have been advocated recently [18]. Hence, to be as model-independent as possible we will abstain from making a definite assumption on the parametric dependence of the sphaleron production cross-section.

We instead propose to study hybrid measurements of the longitudinal shower profile together with the flux of muons at ground level. Furthermore, we show the intense imprint the hard process

* Corresponding authors.

\textit{E-mail addresses:} gustbroo@phys.columbia.edu (G. Brooijmans), peter.schichtel@durham.ac.uk (P. Schichtel), michael.spannowsky@durham.ac.uk (M. Spannowsky).

http://dx.doi.org/10.1016/j.physletb.2016.08.030

0370-2693/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
leaves in the shower distributions of muons at ground level initiated by proton–proton interactions in the atmosphere. Here we exploit the fact that these two observables react in a very distinct manner to the ultra high energy processes in the upper atmosphere. The longitudinal shower profile is sensitive to the number of final state objects sharing the total initial energy. We will show that the muon flux, once the primary energy is fixed, is sensitive to the particle multiplicity of the initial state. Therefore, our findings are straightforwardly generalisable to black-hole and multi-resonance production processes.

In the following section we first discuss our analysis framework and the potential final states induced. We then compare these signatures with existing data as measured by the Auger Observatory and derive actual limits on the production cross section of sphaleron processes in the second section of this paper. In the last section we extend the analysis assuming more detailed shower data was accessible. Finally we provide a summary of our findings.

2. Elements of the analysis

Calculating processes involving multi-vector boson final states accompanied by several quarks and leptons is a very difficult task in proton–proton collisions. Not only because the phase space is very complex, but also because in our case the final state is induced by a non-perterurbative hard process.

For the signal events we use HERWIG [15,30] as implemented in HERWIG [31], specifically designed to generate BLNV processes. The BLNV process we study induces a change in baryon and lepton number $\Delta B = \Delta L = -3$ and is assumed to be

$$qq \rightarrow 7q + 3\bar{q} + n_\nu W/Z + n_B H,$$

(1)

where the incoming quarks and one outgoing antiquark are of first generation, and three outgoing antiquarks are of each of the second and third generations.

While it is for sphaleron-induced processes not necessary to involve electroweak bosons, it was suggested that production cross sections are enhanced if many electroweak bosons $O(1/\alpha_W)$ are produced in association with the fermions [3-5,32,33]. Hence we select $n_\nu = 24$ and $n_B = 0$ in our simulation.

To compute observables for Auger we further process the events with CORSIKA [34] version 4.7. As default interaction models we chose QGSJET [35] and GHEISHA [36]. The proton induced QCD background we compute with HERWIG as well. To make sure that HERWIG handles the signal and background collisions correctly we let CORSIKA also simulate primary collisions on its own and compare to our HERWIG results. We find very good agreement, for example in the spatial number distribution of secondaries over all energies. Iron induced QCD collisions, used as baseline for heavy primaries, are computed with CORSIKA alone. We shower 1000 primary events for each sample considered in the following. We use an example interaction point with 45 degree inclination and 18.3 km altitude. We checked that the sensitivity remains largely unchanged when varying these values.

3. Observables and limits from Auger

The probability to produce a sphaleron in proton–proton collisions from high-energetic proton-cosmic rays is readily parameterised by

$$P_{\text{sphal}} = A \sigma_{\text{sphal}} / \sigma_T,$$

(2)

\footnote{This can be done independently via longitudinal evolution.}

\footnote{We use the vertical optical depth here and not the SLANT depth.}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Distribution of X_{max} for QCD proton (blue) and iron (green), as well as sphaleron (red) induced events at a primary energy of 1 EeV. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)}
\end{figure}

where $A = 14.6$ is the average atomic mass of a nucleus of air [26] and σ_T is the total cross section of a proton with the air. The numerical value for σ_T for centre-of-mass collision energies \sqrt{s} corresponding to EeV primaries we quote from [37] to be 505 ± 22 (stat) $^{+78}_{-75}$ (sys) mb.

The Auger Observatory is a ground-based cosmic ray detector. It uses a surface detector array (SD) consisting of 1600 water Cherenkov detectors covering an area of 3000 km2 and a fluorescence detector (FD) to study detailed properties of cosmic ray showers in the atmosphere. The combination of SD and FD allows the sampling of electrons, photons and muons at ground level and the measurement of the longitudinal development of air showers [38,39].

The number distribution of particles in longitudinal direction can be measured by the FD system. It follows the Gaisser–Hillas function [40]. X_{max} denotes the atmospheric depth, where the number of electro-magnetic particles reaches its maximum. It can be used to measure the nature of cosmic rays [41]. In Fig. 1 we show the distribution of X_{max} for QCD (proton and iron induced) and sphalerons at $E = 1$ EeV. While the proton induced QCD is clearly distinguishable from the sphalerons the iron one is not. This is connected to the fact that the presence of a sphaleron induces a high-multiplicity final state. Therefore, the total available energy is shared between these final state particles causing a similar effect as for the nucleons building up iron. To remedy this fact we also study the radial muon distribution p_T on ground level in Fig. 2. Therefore we compute the expected number of muons between 500 and 600 meter distance from the shower core. Here we find a complementary pattern. The sphalerons re-assemble the proton induced QCD events, while iron is clearly distinguishable. This encourages us to use these two observables as input for a cut and count analysis.

Furthermore, we note that the mean values depend for both observables not only on the short scale physics but also on the collision energy, angle and interaction height. While the dependence on the angle is rather strong this does not pose a problem as the incident angle can be measured well by Auger.2 The dependence
on the collision height only becomes significant when the uncertainty on the primary interaction exceeds several kilometres. Primary altitude as well as energy are measured well by Pierre Auger.

In Table 1 we show the expected average of \(X_{\text{max}} \) and \(\rho_{\mu} \) for different collision energies for both types of QCD as well as spheralon induced events. In the first row we show a possible choice of cut values for these observables. The third sub-row in each of the different physics scenarios presents the corresponding survival probabilities for that channel.

In principle the width can be used to differ between protons and heavy nuclei as well [42]. However, we do not find any sensitivity here.

Table 1

\(X_{\text{max}} \)	\(\rho_{\mu} \)			
\(E_{\text{cut}} \)	\(\rho_{\text{cut}} \)	8	9	10
proton QCD	\(X_{\text{max}} \)	495	550	600
\(\rho_{\mu} \)	41	28	23	
iron QCD	\(X_{\text{max}} \)	485 ± 28	540 ± 29	588 ± 36
\(\rho_{\mu} \)	33.4 ± 6.7	25.9 ± 5.7	21.1 ± 5.3	
spheralon	\(X_{\text{max}} \)	525 ± 32	572 ± 32	615 ± 34
\(\rho_{\mu} \)	5.6 ± 2.4	25.6 ± 6.2	21.0 ± 5.3	
\(\rho_{\mu} \)	0.16	0.19	0.25	

We estimate that Auger has 10000–15000 suitable events by now. Cutting at 50% signal efficiency yields approximately a 20% background efficiency, see Table 1. The limit on the spheralon cross section is therefore 0.0010–0.0012 × \(\sigma_{T} \), e.g., \(\sigma_{\text{spheralon}} \leq 600 \mu \). Furthermore, a dedicated spheralon analysis could also take lower energy data \((E \approx 10^{17} \text{ eV}) \) into account, where the difference between spheralons and QCD is more pronounced. Additionally Auger may design less stringent shower quality cuts streamlined for a dedicated spheralon analysis. Auger could therefore be in a position to limit the spheralon cross section to the level of few micro barn.

4. Shower observables for improved limits

So far we have shown that Auger is able to set an upper limit on the spheralon cross section using a simple cut and count approach for the longitudinal shower profile together with the muon flux at ground level. However, we expect a structural imprint in each cosmic ray shower itself, which we can possibly connect to the short distance physics during the collision. It is therefore our aim in this section to identify additionally discriminating observables in air showers. These will not be simply reconstructible from the Auger detectors, but rather show the great power of cosmic ray showers as window to new physics. We hope to trigger discussion in the experimental community concerning the practical feasibility of such measurements. In the following we only use showers with zero inclination and fix the height of the primary collision to 18.3 km. We neglect iron induced events.

In Fig. 3 we plot the expected average energy a muon carries when reaching the Cherenkov chambers. We observe a huge difference between the spheralon induced events and QCD. To trace back this difference we first exploit the expected energy distribution per event, see Fig. 4. QCD and spheralons look exactly the same except for the high energy region, where the spheralon distributions are enhanced. Indeed, as we show in Fig. 5, it is almost exclusively the highest energy muon which induces this difference. To learn more we also plot the radial energy distribution in Fig. 6. Again QCD and spheralon events almost agree completely except...
for the shower core. We can therefore conclude that a sphaleron event will most likely be accompanied by a very highly energetic muon within its shower core. Tagging this one muon constitutes a powerful method to observe sphaleron induced air showers. In addition we note that sphaleron events are significantly bigger than QCD events, see Fig. 6. While all energy of QCD events is confined in a radius of less than 10 km around the primary collision point, sphaleron events can induce air showers with radii of 100 km and more. Some of the quarks and gauge bosons in the sphaleron decay can have large transverse momenta. Although the flux of muons is small in the most outer part of the air shower, it can be used as a smoking gun signature for sphalerons.

While the former observables are difficult to measure, as they are relying on the experiment’s ability to measure the muons’ energy, their structure is rather simple. Let us now assume that we have a perfect detector layer on the ground, able to measure the spatial and energetic distribution of all muons of the air shower.

To search for structural differences we can cluster the muons with a jet algorithm, a very promising strategy at the LHC [45]. We use an anti-kt algorithm in spherical coordinates as implemented in FastJet [46] with radius parameter R = 0.2. This choice guarantees good performance in the forward region as well as circular jet shapes when projected onto a sphere. However, due to the practical necessity of including a thinning procedure during air shower evolution, we are confronted with a structural problem: the thinning algorithm (over)simplifies the kinematics of soft muons. To avoid a strong sensitivity of our observables to badly modelled soft particles, we only allow muon clusters with E > 10 GeV to be recombined into jets.

In Fig. 7 we show the number of muon-jets, an observable with sensitivity to decay structure. However, we can observe no difference between both hypothesis. The situation changes once we sum over the two leading jets in energy and compute the invariant

\[E_{\text{invariant}} = E_{\text{leading}} + E_{\text{subleading}}. \]

\[E_{\text{leading}} > 10 \text{ GeV}, \]
5. Conclusions and outlook

Using X_{max}, a well known air shower observable, and the muon flux at ground level ρ_{μ}, we are able to set an upper limit on the sphaleron cross section of $\sigma_{\text{sphaleron}} \leq 600 \mu$b assuming an amount of 10000–15000 events recorded by Pierre Auger. We encourage the experimentalists to perform a dedicated sphaleron analysis which might set even more stringent limits of the order of several μb.

Furthermore, we note that measurements, which rely solely on X_{max} [43,44,47–50], can not be used straightforward to determine the primary composition. Complementary information is mandatory as otherwise SM sphalerons cannot be entangled from heavy nuclei. For example, [51] presents such a measurement, where a discrepancy between the measured and predicted X_{max} and the muon flux data was found. While the measurement of X_{max} indicates cosmic rays are predominantly protons at energies of 10^{18} eV the muon flux is consistent with a relatively pure iron sample over the entire energy range. Hence, the combination of X_{max} and muon flux can be used to set tight limits for sphalerons.

In the second part of this letter we introduce new air shower observables connected to the energy distribution of the muons and show that sphaleron events are most likely to have at least one very hard muon in their shower core. Any experiment to measure these hard muons could help to identify sphaleron events in air showers. A second observable we identified to provide a strong discrimination between sphaleron and QCD events is the radial size of the air shower.

In the last part of the paper we use jet clustering, a technique well developed in collider physics, on air shower muons. We demonstrate that we can recover the powerful discriminating behaviour observed before for the energy distribution. However, from a technical point of view the thinning algorithm poses an obstacle. Because the algorithm is computer wise necessary we propose an enhancement, where, for example, the particles are not just dropped but clustered to ghost particles to have directional information available as well. This, however, is clearly a field of further study.

We hope to initiate discussion in the community about the technological feasibility of such measurements. Even if one eventually concludes that the Auger Observatory will not be able to exploit these observables, it might be intriguing to use the wide and densely packed coverage of smart phones [52] to search for non-perturbative solutions of the Standard Model.

Acknowledgements

We thank Martin Erdmann, Valya Khoze and Ralf Ulrich for helpful discussions. We thank Brian Webber for assistance with HERBVI. We thank Tanguy Pierog for assistance with CORSIKA. P.S. acknowledges support by the European Union as part of the FP7 Marie Curie Initial Training Network MCanTTN (PITN-GA-2012-315877).

References

[1] Aad, G., et al., ATLAS Collaboration, Phys. Lett. B 716 (2012) 1, arXiv:1207.7214 [hep-ex].
[2] Chatrchyan, S., et al., CMS Collaboration, Phys. Lett. B 716 (2012) 30, arXiv:1207.7235 [hep-ex].
[3] A. Ringwald, Nucl. Phys. B 330 (1990) 1.
[4] G. Espinosa, Nucl. Phys. B 343 (1990) 310.
[5] L.D. McLerran, A.I. Vainshtein, M.B. Voloshin, Phys. Rev. D 42 (1990) 171.
[6] J.M. Cornwall, Phys. Lett. B 243 (1990) 271.
[7] H. Goldberg, Santa Fe SSC Workshop 1990:0175-187, Phys. Lett. B 246 (1990) 445.
[8] H. Goldberg, Phys. Rev. D 45 (1992) 2945.
[9] F.R. Klinkhamer, N.S. Manton, Phys. Rev. D 30 (1984) 2212.
[10] V.A. Guzyn, V.A. Rubakov, M.E. Shaposhnikov, Phys. Lett. B 155 (1985) 36.
[11] V.A. Rubakov, M.E. Shaposhnikov, Usp. Fiz. Nauk 166 (1996) 493, Phys. Usp. 39 (1996) 461, arXiv:hep-ph/9602208 [hep-ph].
[12] A.G. Cohen, D.B. Kaplan, A.E. Nelson, Annu. Rev. Nucl. Part. Sci. 43 (1993) 27, arXiv:hep-ph/9302210 [hep-ph].
[13] V.V. Khoze, A. Ringwald, Nucl. Phys. B 355 (1991) 351.
[14] V.V. Khoze, A. Ringwald, Phys. Lett. B 259 (1991) 106.
[15] M.J. Gibbs, A. Ringwald, B.R. Webber, J.T. Zadrozny, Z. Phys. C 66 (1995) 285, arXiv:hep-ph/9406266.
[16] A. Ringwald, J. High Energy Phys. 10 (2003) 008, arXiv:hep-ph/0307034.
[17] E.L. Bezrukov, D. Levkov, C. Rebel, V.A. Rubakov, P. Tiryakoy, Phys. Rev. D 68 (2003) 036005, arXiv:hep-ph/0304180 [hep-ph].
[18] S.H.H. Tye, S.S.C. Wong, Phys. Rev. D 92 (2015) 054005, arXiv:1505.03690 [hep-ph].
[19] A. Ringwald, Phys. Lett. B 555 (2003) 227, arXiv:hep-ph/0212099.
[20] J. Ellis, K. Sakurai, arXiv:1601.03654 [hep-ph], 2016.
[21] V.V. Khoze, A. Ringwald, Talk at workshop: BSM physics opportunities at 100 TeV, 2014.
[22] D.A. Morris, A. Ringwald, Astropart. Phys. 2 (1994) 43, arXiv:hep-ph/9308269 [hep-ph].
[23] A. Ringwald, H. Tu, Phys. Lett. B 525 (2002) 135, arXiv:hep-ph/0111042 [hep-ph].
[24] Z. Fodor, S.D. Katz, A. Ringwald, H. Tu, Phys. Lett. B 561 (2003) 191, arXiv:hep-ph/0303080 [hep-ph].
[25] J.J. Illana, M. Masip, D. Meloni, Phys. Rev. Lett. 93 (2004) 151102, arXiv:hep-ph/0402279 [hep-ph].
[26] J.J. Illana, M. Masip, D. Meloni, Phys. Rev. D 75 (2007) 055002, arXiv:hep-ph/0611036.
[27] L.A. Anchordoqui, H. Goldberg, D. Gora, T. Paul, M. Roth, S. Sarkar, L. Winders, Phys. Rev. D 82 (2010) 043001, arXiv:1004.3190 [hep-ph].
[28] L. Anchordoqui, T. Han, D. Hooper, S. Sarkar, Astropart. Phys. 25 (2006) 14, arXiv:hep-ph/0508312.
[29] T. Han, D. Hooper, Phys. Lett. B 582 (2004) 21, arXiv:hep-ph/0307120 [hep-ph].
[30] M.J. Gibbs, B.R. Webber, Comput. Phys. Commun. 90 (1995) 369, arXiv:hep-ph/9504232 [hep-ph].
[31] G. Marchesini, B.R. Webber, G. Abbiendi, L.G. Knowles, M.H. Seymour, L. Stanco, Comput. Phys. Commun. 67 (1992) 465.
[32] P.B. Arnold, L.D. McLerran, Phys. Rev. D 37 (1988).
[33] T. Akiba, S. Kikuchi, T. Yanagida, Phys. Rev. D 38 (1988) 1937.
[34] D. Heck, G. Schatz, J. Knapp, T. Thouw, J. Capdevielle, CORSIKA: a Monte Carlo code to simulate extensive air showers, Tech. Rep., 1998.
