超伝導共振器のゆっくりとした雑音
Slow noise processes in superconducting resonators

原田裕一 1, J.Burnett 2,3, T.Lindström 2, M.Oxborrow 2, 関根佳明 1, P.Meeson 3, A.Tzalenchuk 2
NTT BRL 1, National Physical Laboratory, UK 2, Royal Holloway, Univ. of London 3

Y.Harada 1, J.Burnett 2,3, T.Lindström 2, M.Oxborrow 2, Y.Sekine 1, P.Meeson 3, A.Tzalenchuk 2
E-mail: harada.yuichi@lab.ntt.co.jp

電荷に起因する緩和時間の長いゆらぎは様々なデバイスで観測されている。特に近年、超伝導量子ビットにおいては、二準位ゆらぎ (TLF)に起因する現象が観測されてきた。

我々は、広帯域幅フィードバック技術を用いて、超伝導マイクロ波共振器において観測したゆっくりとした雑音過程について報告する。

マイクロ波共振器での精密な周波数測定のためには、光学用に使われているバンドパスフィルタを応用し、マイクロ波領域 (5GHz) で 10^9 分の 2 の精度 (≪10 Hz) で測定出来る周波数ロック技術を確立した [1]。この技術を用いて、Nb と超伝導共振器 (図 1) における温度やマイクロ波電力の変化に伴う共振周波数の時間変化を測定した。従来の測定法では時間変化の観測は難しかった。

図 2 は、T = 700 mK において測定を行なった Al 2 O 3 酸化膜の有無による共振周波数の安定度をアラン標準偏差 (σₐ) で示した。ゆっくりとした緩和の解析には、スペクトル密度 (PSD) よりもアラン標準偏差が有利である [1]。酸化膜がある場合（図 2 下）には、短い時間領域 (≪1sec) においては、ホワイト雑音の挙動 (σ₁⁻⁰.⁵) を示し、10 秒以上ではフリッカー雑音 (σ²) が支配的であり、これは低温域 (T = 90 mK) と同様な振舞いである。しかしながら、酸化膜がない場合には、長い時間領域ではフリッカー雑音に代わり、ランダムウォークゆらぎ (σ²) が顕著に現われている。

フリッカー雑音の起源は TLF である。TLF は、個々の不純物準位と超伝導共振器とがコヒーレントな相互作用をすることで起きており、不純物準位密度の増加と共に雑音強度も増加することが分かっている [2]。この相互作用は温度上昇と共に弱くなる。このため、図 2 の上図のようにランダムウォークゆらぎが観測された。この起源として熱的励起の磁束の可能性もあるが、酸化膜を覆われた試料では観測されない。このことから、我々はこのランダムウォークゆらぎが、不純物準位同士の相互作用に起因する不規則な緩和過程と推察している。最近の TLF 理論の拡張 [3] では、不純物準位同士の相互作用から生じるゆっくりとした緩和の存在を示唆しており、我々の結果と一致するものである。

[1] T. Lindstöm, et al., Rev. Sci. Instrum., 82 (2011) 104706.
[2] A. Shnirman, et al., Phys. Rev. Lett., 94 (2005) 1.
[3] L. Faoro and L. B. Ioffe, Phys. Rev. Lett., 109 (2012) 157005.