Topics in Electroweak Physics

A. Sirlin*

*Department of Physics, New York University, 4 Washington Place, NY 10003, United States

We briefly discuss five topics in Precision Electroweak Physics: i) the recently proposed Effective Scheme of Renormalization, ii) evidence for electroweak bosonic corrections derived from the radiative correction \(\Delta r_{\text{eff}} \), iii) an approach to estimate the scale of new physics in a hypothetical Higgs-less scenario, iv) simple and accurate formulae for \(s_{\text{eff}}^2, M_W, \Gamma_2 \), and their physical applications, v) a recent proposal concerning the field renormalization constant for unstable particles.

1. Effective Scheme of Renormalization

Precise calculations in the Standard Model (SM) are based on a number of renormalization frameworks. Two of the most frequently employed are: 1) the On-Shell Scheme (OS) [1–3] 2) the \(\overline{\text{MS}} \) approach [4]. The OS scheme is “very physical” in the sense that the renormalized parameters are identified with physical, scale-independent observables, such as \(\alpha, G_F, M_Z, M_W, \ldots \). The \(\overline{\text{MS}} \) approach is frequently applied in a hybrid version, with couplings defined by \(\overline{\text{MS}} \) subtractions, but retaining physical masses. It employs scale-dependent parameters such as \(s^2 = \sin^2 \theta(\mu) \), \(c^2(\mu) \) (usually evaluated at \(\mu = M_Z \)) and exhibits very good convergence properties [5]. It plays an important role in the analysis of Grand Unified Theories. However, it leads to a residual scale dependence in finite orders of perturbation theory (PT). Very recently, a novel approach, called the Effective Scheme of Renormalization (EFF), was proposed [6,7]. It shares the good convergence properties of the \(\overline{\text{MS}} \) scheme, but it eliminates the residual scale dependence in finite orders of PT. A distinguishing feature is that the basic electroweak mixing parameter (EWMP) is directly identified with \(s_{\text{eff}}^2 \equiv \sin^2 \theta_{\text{eff}} \), employed by the Electroweak Working Group (EWWG) to describe the on-resonance asymmetries measured at LEP and SLC. It may be evaluated by means of the basic relation [6–8]

\[
s_{\text{eff}}^2 c_{\text{eff}}^2 = \frac{\pi \alpha}{\sqrt{2} G_F M_Z^2 (1 - \Delta r_{\text{eff}})} ,
\]

where \(\Delta r_{\text{eff}} \) is the relevant radiative correction. In order to calculate \(\Delta r_{\text{eff}} \) the following strategy was followed:

i) Since current calculations of \(s_{\text{eff}}^2 \) incorporate two-loop effects enhanced by powers \((M_Z^2/M_W^2)^n \) (with \(n = 1, 2 \)), we first express \(\Delta r_{\text{eff}} \) in terms of corrections \(\Delta \hat{r}_W, \Delta \hat{\rho}, \Delta \hat{k} \) and \(\hat{f} \), for which the irreducible contributions of this order have been evaluated [9,10].

ii) To ensure the absence of a residual scale dependence, we use scale-independent couplings, such as \(c^2, s_{\text{eff}}^2, G_F, M_Z^2 \), retain only two-loop effects enhanced by factors \((M_Z^2/M_W^2)^n \) (\(n = 1, 2 \)), and employ a simple definition of the EWMP, identified with \(s_{\text{eff}}^2 \). In particular, \(s^2 \) can be expressed in terms of \(s_{\text{eff}}^2 \) by means of the relation

\[
s_{\text{eff}}^2 = \left[1 + \frac{\hat{c}^2}{s_{\text{eff}}^2} \Delta \hat{k} (M_Z^2, \mu) \right] s^2(\mu) ,
\]

where \(\Delta \hat{k}(q^2, \mu) \) is an electroweak form factor [11]. The analysis leads to the expression [6]:

\[
\Delta r_{\text{eff}} = \Delta \hat{r}_W - \frac{\hat{c}^2}{s_{\text{eff}}^2} \left[\Delta \hat{\rho} - \Delta \hat{k} \left(1 - \frac{s_{\text{eff}}^2}{c_{\text{eff}}^2} \right) \right] + \frac{\hat{c}^2}{s_{\text{eff}}^2} \left[2 \Delta \hat{\rho} - (\Delta \hat{\rho})_{\text{lead}} - \hat{f} + \Delta \hat{k} \frac{s_{\text{eff}}^2}{c_{\text{eff}}^2} \right] ,
\]
where $\Delta \hat{\rho} \equiv \text{Re} [A_{WW}(M_W^2) - c^2 A_{ZZ}(M_Z^2)] / M_W^2$,

\[x_t = 3G_F M_t^2 / (8\sqrt{2}\pi^2), \quad \Delta \hat{r}_W = -2\delta e / e + (c^2/s^2) f, \quad (\Delta \hat{\rho})_{\text{lead}} = (3/64\pi^2) M_t^2 / M_W^2, \]

\[\hat{f} \equiv (ReA_{WW}(M_W^2) - A_{WW}(0)) / M_W^2 + V_W + M_W^2 B_W, \quad A_{WW} \text{ and } A_{ZZ} \text{ are the } W \text{ and } Z \text{ self-energies modulo a factor } c^2/s^2, \quad V_W \text{ and } B_W \text{ are vertex and box corrections contributing to } \mu \text{-decay, and } \delta e \text{ stands for the charge renormalization counterterm.} \]

It is understood that, in Eq. (3), s^2 is replaced everywhere by s^2_{eff}. The corrections $\Delta \hat{r}_W$, $\Delta \hat{k}$, and \hat{f} depend also on $c^2 = M_W^2 / M_Z^2$. In order to obtain an expression that depends solely on $s^2_{\text{eff}} = 1 - s^2_{\text{eff}}$, M_W^2 is replaced by $c^2 M_Z^2$; in two-loop contributions, c^2 is replaced by c^2_{eff}, since the difference is of third order; in one-loop corrections, a Taylor expansion about $c^2 = c^2_{\text{eff}}$ is made, in conjunction with the one-loop expression for $c^2 - c^2_{\text{eff}}$. The corresponding expression for M_W is given in Ref. [6]. An interesting feature is that the calculation of s^2_{eff} is completely decoupled from that of M_W, while the s^2_{eff} results are employed to calculate M_W. The results for the leptonic partial widths Γ_l of the Z have been recently obtained [12]. A detailed comparison shows that, for $M_H = 100 \text{ GeV}$, the difference $|s^2_{\text{eff}}(\overline{MS}) - s^2_{\text{eff}}(\text{EFF})|$ of the \overline{MS} and EFF calculation of s^2_{eff} is $\lesssim 10^{-5}$ over the range $30 \text{ GeV} \leq \mu \leq 200 \text{ GeV}$ and exhibits a maximum at $\mu \approx 70 \text{ GeV}$. In the M_W case, one finds $|M_W(\overline{MS}) - M_W(\text{EFF})| \leq 1 \text{ MeV}$ over the range $50 \text{ GeV} \leq \mu \leq 205 \text{ GeV}$ and a maximum at $\mu \approx 100 \text{ GeV}$. At $\mu = 300 \text{ GeV}$, the differences amount to $\approx 3 \times 10^{-5}$ and 3 MeV, respectively. These findings give support to the choice $\mu = M_Z$ in the \overline{MS} calculations of observables in the resonance region. It should be pointed out, however, that this satisfactory state of affairs holds when the corrections of $\mathcal{O}(\alpha^2(M_t/M_W)^2)$ are included. If these contributions are excluded, $M_W(\overline{MS})$ is a monotonically decreasing function of μ over the range $30 \text{ GeV} \leq \mu \leq 500 \text{ GeV}$ [13], and the choice of scale is very ambiguous. In summary, the EFF approach has the virtue of eliminating the scale ambiguity which, in some cases, may create a significant theoretical uncertainty.

2. Evidence for Electroweak Bosonic Corrections

It turns out that Δr_{eff} is very sensitive to electroweak bosonic contributions (EWBC), i.e. corrections involving virtual bosons: W, Z, H, $\phi's$. They are subleading numerically, but very important conceptually! One way to obtain sharp evidence for these corrections is to measure Δr_{eff}. Using the current experimental value $(s^2_{\text{eff}})_{\exp} = 0.23149 \pm 0.00017$ and Eq.(1), we find $(\Delta r_{\exp})_{\text{eff}} = 0.06047 \pm 0.00048$. On the other hand, subtracting the EWBC, the theoretical evaluation leads to: $(\Delta r_{\text{eff}})_{\text{subtr}} = 0.05106 \pm 0.00083$. The difference is 0.00941 ± 0.00096, thus providing evidence for the presence of EWBC at the 9.8 σ level [5,8,14]!

3. The Higgs-less Scenario

The corrections Δr_{eff} and Δr have been also employed to discuss the scale of new physics in a hypothetical scenario in which the Higgs boson is absent [15]. At the one-loop level, the Higgs boson contribution to Δr_{eff} is a complicated function of $\xi = M_H^2 / M_Z^2$, given in Ref. [15]. It may be written in the form

\[(\Delta r_{\text{eff}})_{H} = \frac{\alpha}{4\pi} \frac{3}{2} (\frac{5}{3} - \frac{3}{2} c^2) \left(\frac{1}{n - 4} + C + \ln \frac{M_Z}{\mu} \right), \]

where the first term is the divergent part and the second one is the \overline{MS}-renormalized contribution evaluated at $\mu = M_Z$ ($C = [\gamma - \ln 4\pi]/2$, $\mu = 't$ Hooft scale). Subtracting $(\Delta r_{\text{eff}})_{H}$ from Δr_{eff} we have

\[\Delta r_{\text{eff}} - (\Delta r_{\text{eff}})_{H} = \Delta r_{\text{eff}} - (\Delta r_{\text{eff}})_{\overline{MS}} \]

\[- \frac{\alpha}{4\pi} \frac{3}{2} (\frac{5}{3} - \frac{3}{2} c^2) \left(\frac{1}{n - 4} + C + \ln \frac{M_Z}{\mu} \right) \]

Clearly, Eq.(5) is divergent and scale dependent. We now conjecture that contributions from unknown new physics (NP) cancel the divergence and scale dependence of Eq.(5). Thus, the NP contribution to Δr_{eff} must be of the form:

\[X = \frac{\alpha}{4\pi} \frac{3}{2} \left(\frac{5}{3} - \frac{3}{2} c^2 \right) \left(\frac{1}{n - 4} + C + \ln \frac{M_Z}{\mu} \right), \]
We note that in the \overline{MS} renormalization approach, the term proportional to $\ln M/\mu$ represents the NP contribution to Δr_{eff} at scale μ. If the NP is characterized by a scale Λ, we may decompose

$$\ln \frac{M}{\mu} = \ln \frac{\Lambda}{\mu} + K,$$

where the term involving $K \equiv \ln \frac{M}{\mu}$ represents the NP contribution to Δr_{eff} at scale Λ. Adding X to $\Delta r_{\text{eff}} - (\Delta r_{\text{eff}})_{\text{H}}$ we find the expression for Δr_{eff} in the new scenario (NS) in which the Higgs boson contribution has been replaced by new physics:

$$\Delta r_{\text{eff}} \left(\Delta \right)_{\text{NS}} = \left(\Delta r_{\text{eff}} \right)_{\text{H}} + \frac{\alpha}{4\pi} \frac{\Lambda^5}{c^2} \frac{3}{2} \ln \frac{M}{M_Z}.$$

(8)

The last term represents the NP contribution to Δr_{eff} at scale M_Z. Calculating $\Delta r_{\text{eff}} - (\Delta r_{\text{eff}})_{\text{H}}$ and equating $(\Delta r_{\text{eff}})_{\text{NS}} = (\Delta r_{\text{eff}})_{\text{exp}}$, we can determine $\ln \frac{M}{M_Z}$. Employing $\Delta \alpha_h^{(5)} = 0.02761 \pm 0.00036$ and the other experimental inputs, one finds

$$\ln \frac{M}{M_Z} = 0.307 \pm 0.485,$$

(9)

which corresponds to a central value $M_c = 124$ GeV and a 95% CL upper bound $M^\text{95} = 275$ GeV. If the model-dependent constant K is positive, we see from Eq.(7) that Λ is sharply bounded: $\Lambda \leq 275$ GeV @ 95% CL. Instead, if $K < 0$, Λ is not bounded by these considerations. Thus, we can group the NP models into two classes, according to the sign of K. Furthermore, if for instance $\Lambda = 1$ TeV, we have

$$\ln \frac{M}{M_Z} = 2.395$$

and we find from Eqs.(7,9) that $K = -2.088 \pm 0.435$. Thus, for such Λ values, a substantial cancellation of logarithmic and constant terms is required [15,16]. Similar results are obtained from the corresponding analysis of Δr [15].

4. Simple formulae for s_{eff}, M_W, Γ_l

Simple formulae that reproduce accurately the numerical results of the codes in the range 20 GeV $\leq M_H \leq 300$ GeV, probed by recent experiments, have been presented [12]. They are of the form:

$$s_{\text{eff}}^2 = (s_{\text{eff}}^0) + c_1 A_1 + c_2 A_2$$

and

$$M_W = M_W^0 - d_1 A_1 - d_2 A_2$$

where Γ_l is given by

$$\Gamma_l = \Gamma_l^0 - g_1 A_1 - g_2 A_2$$

and

$$\Gamma_l = \frac{\alpha}{4\pi} \frac{\Lambda^5}{c^2} \frac{3}{2} \ln \frac{M}{M_Z}.$$

(10)

where A_1, A_2 are the model-dependent constant terms. Similar results are obtained from recent calculations. Using Eq. (10) in the EFF scheme and $(s_{\text{eff}}^2)_{\text{exp}} = 0.23419 \pm 0.00017$, one finds $M_H = 124.82 \pm 0.52$ GeV and a 95% CL upper bound $M^\text{95} = 280$ GeV. Instead, Eq. (11) and $(M_W)_{\text{exp}} = 80.451 \pm 0.033$ GeV lead to $M_H = 23 \pm 23$ GeV, $M^\text{95} = 122$ GeV. Thus, M_W constrains M_H much more sharply than s_{eff}. It is important to note that the M^95 value derived from M_W, and the direct exclusion bound $M_H > 140$ GeV @ 95% CL, suggest a very narrow window for M_H! One may also extract A_1 from $(s_{\text{eff}}^2)_{\text{exp}}$ and Eq. (10), to predict M_W via Eq. (11): $(M_W)_{\text{indir}} = 80.374 \pm 0.025$ GeV, which is close to the corresponding value $(M_W)_{\text{indir}} = 80.379 \pm 0.023$ GeV obtained in the global analysis [17], and differs from $(M_W)_{\text{exp}}$ by 1.86 σ. Finally, we may use simultaneously Eq. (10-12) in conjunction with $(s_{\text{eff}}^2)_{\text{exp}}, (M_W)_{\text{exp}}$, and $(\Gamma_l)_{\text{exp}}$ to obtain $M_H = 97^{+66}_{-41}$ GeV, $M^\text{95} = 223$ GeV, to be compared with $M_H = 85^{+54}_{-34}$ GeV, $M^\text{95} = 196$ GeV in the recent EWWG fit.

The current determination of $(s_{\text{eff}}^2)_{\text{exp}}$ has χ^2/d.o.f. $= 10.6/5$, corresponding to a CL of only 6%, and shows an intriguing dichotomy: the leptonic observables ($A_l(SLD), A_l(P_-), A_l^{(0,1)})$ lead to $(s_{\text{eff}}^2)_l = 0.23113 \pm 0.00021$, while the value from the hadronic ones ($A_l^{(0,1)} , A_l^{(0,1)} , < Q^2 >$) is $(s_{\text{eff}}^2)_h = 0.23220 \pm 0.00029$. Thus, there
is a 3σ difference between the two determinations! Furthermore, from $(s_{eff}^2)_{t}$ one finds $M_H = 59^{+50}_{-29}$ GeV, $M_H^{0} = 158$ GeV, closer to the result from $(M_W)_{\text{exp}}$. If $(s_{eff}^2)_{t} - (s_{eff}^2)_{h}$ reflects a statistical fluctuation, one possibility is to enlarge the error by $[\chi^2/d.o.f.]^{1/2}$ (PDG prescription), leading to $s_{eff}^2 = 0.23149 \pm 0.00025$. Interestingly, increasing the error in s_{eff}^2 leads to smaller M_H^{0} in the combined s_{eff}^2-M_W-Γ_t analysis: 223 GeV \rightarrow 201 GeV! The reason is that this procedure gives enhanced weight to the M_W input, which prefers a smaller M_H. If $(s_{eff}^2)_{t} - (s_{eff}^2)_{h}$ is due to new physics involving the (t, b) generation, a substantial, tree-level change in the $Zb_R\bar{b}_R$ coupling is required [18]. If the discrepancy were to settle on the leptonic side, a scenario with light \tilde{e}_L would improve the agreement with the electroweak data and the direct lower bound on M_H [19].

It has been pointed out by several people that, if the central values of M_t and M_W remain as they are now, but the errors shrink sharply as expected at Tevatron/LHC or even much better at LC + GigaZ, a discrepancy would be established with the SM, that can be accommodated in the MSSM!

The comparison of the calculations of s_{eff}^2, M_W, and Γ_t in the EFF, \overline{MS}, and OS frameworks has been applied to study the scheme dependence and to estimate the theoretical error arising from the truncation of the perturbative series [12]. Including QCD uncertainties, the theoretical errors have been estimated to be $\delta s_{eff}^2 \approx 6 \times 10^{-5}$ and $\delta M_W \approx 7$ MeV.

5. Field Renormalization Constant for Unstable Particles

In Ref. [20], it was proposed that the first problem can be solved by considering the complex valued position $\bar{\sigma}$ of the propagator’s pole, which is gauge invariant. We have: $\bar{\sigma} = M_0^2 + A(\bar{\sigma})$, where M_0 is the bare mass and $A(s)$ the self-energy. Decomposing $\bar{\sigma} = m_2^2 - i m_2 \Gamma_2$, where m_2 and Γ_2 are real, one identifies m_2 and Γ_2 with the mass and width of the particle:

$$m_2^2 = M_0^2 + \text{Re} A(\bar{\sigma}),$$

$$m_2 \Gamma_2 = -\text{Im} A(\bar{\sigma}).$$

In Ref. [21], it was proposed that the second problem can be solved by defining the field renormalization constant \bar{Z} by means of the normalization condition

$$m_2 \Gamma_2 = -\bar{Z} \text{Im} A(m_2^2),$$

which, in conjunction with Eq. (14), leads to

$$\bar{Z}^{-1} = 1 + \frac{\text{Im} (A(\bar{\sigma}) - A(m_2^2))}{m_2 \Gamma_2}.$$

In the narrow width approximation, the r.h.s. of Eq. (16) becomes $1 - \text{Re} A'(m_2^2) \approx 1 - \text{Re} A'(M^2)$, where M^2 is the on-shell mass, and \bar{Z} reduces to the conventional expression. We note that: i) \bar{Z}, defined by Eq. (16), involves a finite difference, rather than a derivative, thus avoiding the threshold problem; ii) using Eq. (16) we see that the r.h.s. of Eq. (15) is gauge invariant, since it equals $m_2 \Gamma_2$ as a mathematical identity. It was also shown that the use of Eq. (16) removes unphysical threshold singularities in the relation between on-shell and pole widths [22].}

This approach has been recently discussed in the framework of renormalization theory [23, 24]. Dividing the unrenormalized transverse propagator $-i Q_{\mu\nu} [s - M_0^2 - A(s)]^{-1}$ ($Q_{\mu\nu} = g_{\mu\nu} - q_\mu q_\nu/q^2$) by \bar{Z}, and introducing $S(s) \equiv \bar{Z} A(s)$, $\delta M^2 \equiv \text{Re} S(\bar{\sigma})$, $\bar{Z} \equiv 1 - \delta \bar{Z}$, we obtain the renormalized propagator:

$$D = -i Q_{\mu\nu} / (s - m_2^2 - S(\bar{\sigma})), $$

where

$$S(\bar{\sigma}) = S(s) - \delta M^2 + \delta \bar{Z}(s - m_2^2)$$

stands for the renormalized self-energy. Since δM^2 and $\delta \bar{Z}$ are real, they should be chosen so
that \(\text{Re} \, S^{(r)}(s) \) is ultraviolet convergent to all orders. Once this is done, \(\text{Im} \, S^{(r)}(s) = \text{Im} \, S(s) = \hat{Z} \, \text{Im} \, A(s) \) must also be convergent, since there are no additional counterterms available. This means that \(\hat{Z} \) may be defined by imposing an appropriate normalization condition on \(\text{Im} \, S(s) \). A particularly simple one is

\[
\text{Im} S(m_2^2) = -m_2 \Gamma_2, \tag{19}
\]

which coincides with Eq. (15)! It was proposed independently in Ref. [21] to solve the threshold and gauge-dependence problems, and in Ref. [24] to implement a systematic order by order removal of the ultraviolet divergences in \(S^{(r)}(s) \). In Ref. [23] it was also emphasized that in this formulation one can derive closed and exact expressions for the mass and field-renormalization counterterms, to wit

\[
\delta M^2 = \text{Re} \, S(\bar{s}) ; \quad \delta \hat{Z} = \frac{\text{Im} \left[S(\bar{s}) - S(m_2^2) \right]}{m_2 \Gamma_2}. \tag{20}
\]

In many cases, \(\Gamma_2 = \mathcal{O}(g^2) \), where \(g \) is a generic gauge coupling. If \(\delta M^2 \) and \(\delta \hat{Z} \) admit expansions in powers of \(\Gamma_2 \), they can be expressed as series involving \(R \equiv \text{Re} \, S(s) \), \(I \equiv \text{Im} \, S(s) \), and their powers and derivatives evaluated at \(s = m_2^2 \). These expansions of Eq. (20) coincide with the order by order analysis in Ref. [24]. However, in other important instances, such as the photonic corrections to the \(W \) self-energy, such expansions are ill-defined and lead to power-like infrared divergences! In such cases one should employ the exact formulae in Eq. (20), which lead to sensible expressions for \(\delta M^2 \), \(\delta \hat{Z} \), and the renormalized propagator [23].

REFERENCES

1. A. Sirlin, Phys. Rev. D22, 971 (1980).
2. K. I. Aoki, Z. Hioki, M. Konuma, R. Kawabe and T. Muta, Prog. Theor. Phys. Suppl. 73, 1 (1982).
3. A. Hollik, Fortsh. Phys. 38, 165 (1990), and refs. cited therein.
4. See, for example, G. Degrassi, S. Fanchiotti and A. Sirlin, Nucl. Phys. B351, 49 (1991), and refs. cited therein.
5. A. Sirlin, hep-ph/0209079, to be published in Journal of Physics G.
6. A. Ferroglia, G. Ossola and A. Sirlin, Phys. Lett. B507, 147 (2001).
7. A. Ferroglia, G. Ossola and A. Sirlin, Novel Approach to Renormalize the Electroweak Sector of the Standard Model, Contribution to the 20th International Symposium on Lepton and Photon Interactions at High Energies, Rome, Italy, July 2001, arXiv:hep-ph/0106094.
8. A. Sirlin, Proc. of the 19th Intl. Symp. on Photon and Lepton Interactions at High Energy LP99, ed. J.A. Jaros and M.E. Peskin, 398 (2000).
9. G. Degrassi, P. Gambino and A. Vicini, Phys. Lett. B383, 219 (1996).
10. G. Degrassi, P. Gambino and A. Sirlin, Phys. Lett. B394, 188 (1997).
11. P. Gambino and A. Sirlin, Phys. Rev. D49, R1160 (1994).
12. A. Ferroglia, G. Ossola, M. Passera and A. Sirlin, Phys. Rev. D65, 113002 (2002).
13. G. Degrassi, P. Gambino, M. Passera, and A. Sirlin, Phys. Lett. B418, 209 (1998).
14. P. Gambino and A. Sirlin, Phys. Rev. Lett. 73, 621 (1994).
15. B. A. Kniehl and A. Sirlin, Eur. Phys. J. C16, 635 (2000).
16. G. Altarelli, arXiv:hep-ph/9912291.
17. G. Myatt, LEP and SLD Electroweak Working Group, Preliminary [03-15-02].
18. W.J.Marciano, Phys. Rev. D 60, 093006 (1999); M. S. Chanowitz, Report LBNL-43248, arXiv:hep-ph/9905478.
19. G. Altarelli, F. Caravaglios, G. F. Giudice, P. Gambino and G. Ridolfi, JHEP 0106, 018 (2001).
20. A. Sirlin, Phys. Rev. Lett. 67, 2127 (1991).
21. B. A. Kniehl, C. P. Palisoc and A. Sirlin, Nucl. Phys. B 591, 296 (2000).
22. B. A. Kniehl, C. P. Palisoc and A. Sirlin, Phys. Rev. D 66, 057902 (2002).
23. B. A. Kniehl and A. Sirlin, Phys. Lett. B 530, 129 (2002).
24. M. L. Nekrasov, Phys. Lett. B 531, 225 (2002).