Profilo dell’mutazione germinale BRCA1: p.Ile1845fs in un grande gruppo di donne cinesi di Han con cancro al seno

Yu Wu 1,2, Huanhuan Zhang 3, Xiaoling Weng 3,4, Honglian Wang 3, Qinghua Zhou 5, Ying Wu 5, Yi Shen 5 e Zhen Hu 4*

Abstract

Background: Il cancro al seno è una delle principali neoplasie carcinomatose parzialmente causate da fattori di rischio genetici. Le mutazioni germinali del gene BRCA1 sono corpiamente associate con cancro al seno. L’identificazione di mutazioni BRCA1 migliora notevolmente la strategia preventiva e la gestione del cancro al seno. Lo scopo del nostro studio era quello di valutare la frequenza della mutazione deleteria BRCA1: p.Ile1845fs in cancro al seno, nonché la correlazione tra la mutazione p.Ile1845fs e i parametri clinicopatologici e i risultati clinici.

Risultati: Abbiamo selezionato un totale di 23,481 pazienti a rischio clinico con cancro al seno e 6489 controlli sani per la sequenza p.Ile1845fs (che sia di sanger o di sequenziamento a prossima generazione). Identificammo 94 pazienti con cancro al seno (0.40%, 94/23481) e 11 controlli sani (0.17%, 11/6489) portatori della mutazione p.Ile1845fs. La mutazione BRCA1: p.Ile1845fs è stata più frequente nei pazienti con la classificazione molecolare TNBC (20.21%, 19/94) e con una storia familiare (37.23%, 35/94) rispetto ai non-carrier (P = 3.62E-6 e 0.034, rispettivamente). In base ai nostri dati, abbiamo aumentato la frequenza della mutazione p.Ile1845fs e confermato che la mutazione BRCA1: p.Ile1845fs è associata a un rischio aumentato di cancro al seno (OR = 2.36, 95%CI = 1.26–4.89, P = 0.004).

Conclusioni: La mutazione BRCA1: p.Ile1845fs è stata una mutazione frequentemente patologica nel cancro al seno in donne cinesi di Han e i nostri dati possono essere utili per la diagnosi e il trattamento del cancro al seno.

Keywords: Cancro al seno, BRCA1, p.Ile1845fs, Clinicopatologico
Material and methods

A total of 23,481 clinically high-risk breast cancer patients and 6489 healthy controls were recruited at 19 clinical centers in 11 Chinese provinces between 2012 to 2018. Clinicopathological features of the patients, including age, ethnicity, menopausal status, type of tumor, disease stage, lymph nodes and tumor size, were collected. Family history is defined that the breast cancer patients had one or more cancer patients (any kind of cancer) in the first-, second- or third-degree relatives. The control subjects were hospital-based unrelated healthy individuals with no breast cancer or any other cancers. The written informed consents were signed by all participants. The study protocol was approved by the Ethics Committee of all the hospitals involved.

Genomic DNA was extracted from blood specimens using the QIAamp DNA kit (Qiagen). DNA were amplified by multiplex-amplicon PCR and libraries were then prepared using protocols recommended by Illumina. The validated DNA libraries were sequenced on an Illumina sequencing system (Illumina HiSeq X10). Read pairs (fastq data) generated from the sequencing system were aligned with reference sequences (BRCA1: NM_007300.3) and processed for variant calling. The pathogenic variant p.Ile1845fs was validated by sanger sequencing, and we successfully validated the mutation results with 100% concordance.

The statistical analysis were performed using the R program (http://www.r-project.org/). Chi Square test or the Fisher exact test were used to analyze the two-group comparisons and the OR and the corresponding 95% CI were estimated. All data were presented as the mean ± standard deviation (SD). P-values < 0.05 were considered statistically significant.

Results

We analyzed the BRCA1 pathogenic variant, p.Ile1845fs, with breast cancer risk in 23,481 invasive breast cancer cases (46.24 ± 20.11 years) and age-matched 6489 controls (47.33 ± 13.46 years). A total of 94 p.Ile1845fs mutations were identified in 23,481 (0.40%) unselected breast cancer patients and 11 unaffected controls carried p.Ile1845fs mutation (0.17%, 11/6489). In the overall analysis, BRCA1: p.Ile1845fs variant showed a higher frequency in breast cancer cases (0.40%) than in controls (0.17%) with a greater than two-fold increased breast cancer risk (OR = 2.44, 95% CI = 1.12–5.34, P = 0.034, Table 1).

We summarized the clinicopathological characteristics of the 94 patients with BRCA1: p.Ile1845fs variant and 23,387 non-carriers in Table 2. The mean age of these breast cancer patients was 46.16 years (sd = 9.80). The mean age of these non-carriers was 46.25 years (sd = 15.52). Among the 94 BRCA1: p.Ile1845fs variant carriers, 44 (46.81%) patients were diagnosed with estrogen receptor (ER) negative status. 46 (48.94%) patients were detected with progesterone receptor (PR) negative status. 35 (37.23%) patients presented with human epidermal growth factor receptor-2 (HER-2) negative status. 6 (6.38%) patients were classified with Luminal-A molecular typing. 26 (27.66%) patients were classified with Luminal-B molecular typing. 12 (12.77%) patients were classified with HER2 overexpression molecular typing. 19 (20.21%) patients were classified with TNBC (Triple-negative breast cancer) molecular typing. 35 (37.23%) patients had family history. TNBC molecular typing was more frequent in mutation carriers compared with non-carriers (P = 3.62E-6). BRCA1: p.Ile1845fs variant carriers were more likely to have family history of cancer (P = 0.034).

Discussion

In this study we investigated the profiling of the BRCA1: p.Ile1845fs variant in Han Chinese breast cancer. We conducted gene sequencing studies in 23,481 unselected breast cancer cases and 6489 controls and confirmed that BRCA1: p.Ile1845fs variant was associated with increased risk of breast cancer (OR = 2.36, 95%CI = 1.26–4.89, P = 0.004).

BRCA1 is a key factor in the DNA double-strand break repair of other genes that induce human cancers [11, 12]. It plays crucial roles in chromatin remodeling, cell-cycle regulation, and activating DNA repair in response to cellular stress [13, 14]. BRCA1 encodes a 1884-amino-acid-long nuclear protein (NP_009231.2) and is expressed in various tissues including breast tissues. There are more than 1600 known variants in

Table 1 BRCA1: p.Ile1845fs variant in unselected breast cancer cases and controls

Groups	Carriers	Non-carriers	Freq (%)	OR	95% CI	P
Controls	11	6489	0.17	2.36	1.26–4.89	**0.004**
Cases	94	23,481	0.40			

Bold: P<0.05
and its pathogenic variants increase the risks of breast cancer [15, 16]. Our genetic data suggested that BRCA1: p.Ile1845fs was a risk factor for breast cancer with statistically significant OR of 2.36.

Clinicopathological characteristics of BRCA1: p.Ile1845fs variant showed 44 (46.81%) patients were diagnosed with ER negative status, 46 (48.94%) with PR negative status and 35 (37.23%) with HER2 negative status. Based on estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2) status, we found 6 (6.38%) Luminal-A molecular typing patients and 26 (27.66%) Luminal-B molecular typing patients. Luminal A and Luminal B share similarities in prognosis, while Luminal B have lower expression of hormone receptors, higher expression of proliferation markers, and higher histologic grade than luminal A [17, 18]. Triple-negative breast cancer is defined by aggressive clinical behavior and occurs in 10–15% of sporadic breast cancers [19, 20]. There were 19 (20.21%) TNBC molecular typing patients carried p.Ile1845fs variant. Family history of breast or ovarian cancer is a high risk factor for breast cancer and genetic testing is recommend for these patients [21]. Among total 94 BRCA1: p.Ile1845fs variant carriers, 35 (37.23%) patients had family history.

Recently, more studies focus on effective detection of informative biomarkers for advanced development of early diagnosis and appropriate treatment in breast cancer. Arason A et al. showed the profiling of BRCA1 c.4096 + 3A > G and found 8 heterozygous carriers (0.44%) in 1820 unselected breast cancer cases, and 3 (0.15%) in 1968 healthy controls [22]. BRCA1: p.Val1833Met variant was genotyped among 3531 breast cancer patients and 1558 healthy controls using sanger and next generation sequencing, with 27 (0.77%, 27/3531) carriers in cases while no carriers in controls [23].

Our study accord with a pathogenic BRCA1 mutation: p.Ile1845fs and identified 94 carriers (0.40%) in 23,481 breast cancer patients, and 11 (0.17%, 11/6489) in controls. Our findings add to the current knowledge of BRCA1, which will be of use in clinical genetic counselling.

In summary, we described the frequency of BRCA1: p.Ile1845fs mutation and its clinical aspects in our cohort. We have found that BRCA1: p.Ile1845fs variant is associated with risk of breast cancer. Further genetic studies and meta-analyses are warranted to derive more precise risk estimates for BRCA1: p.Ile1845fs variant. And such carriers should be counselled accordingly, with clinical recommendations and personalized risk-reduction primary and secondary cancer prevention strategies.

Abbreviations
BRCA1: Breast cancer susceptibility gene 1; ER: Estrogen receptor; HER-2: Human epidermal growth factor receptor-2; PR: Progesterone receptor; SD: Standard deviation; TNBC: Triple-negative breast cancer

Acknowledgments
This work was supported by AITA medical research institute. We thank Professor Liu Yun for his English language editing. We are grateful to all the medical institutions in China and the medical association for providing us with cancer incidence data.

Authors’ contributions
HZ conceived and designed the experiments. WY, ZH, WX and WH performed the mutation analysis and validation. ZQ, WY and SY gathered patients’ data. WY wrote the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by grants from AITA medical research institute.

Availability of data and materials
The authors declare that the data supporting the findings of this study are available within the article.

Table 2 Clinical characteristics of BRCA1: p.Ile1845fs variant carriers and non-carriers in this study

Variables	Carriers	Non-carriers	P
Age at diagnosis			0.19
≤ 50	52	6943	
> 50	22	4223	
na	20	12,221	
ER status			2.21E-08
Positive	24	11,849	
Negative	44	5622	
na	26	5916	
PR status			1.29E-06
Positive	21	10,630	
Negative	46	6794	
na	27	5963	
HER2 status			0.011
Positive	31	10,264	
Negative	35	6069	
na	28	7054	
Molecular typing			3.62E-06
Luminal-A	6	3726	
Luminal-B	26	8061	
HER2 overexpression	12	2805	
TNBC	19	1743	
na	31	7052	
Family history			
Yes	35	4184	0.034
No	41	8183	
na	18	11,020	
Total	94	23,387	23,481

Bold: P<0.05
Ethics approval and consent to participate
All patients had been signed on the consent form.

Consent for publication
Written informed consents were obtained from patients for publication of their individual details and accompanying images in this manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Department, School of Life Science, Fudan University, Shanghai 200436, People’s Republic of China. 2Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai 200436, People’s Republic of China. 3AITA medical research institute, Shanghai 200000, People’s Republic of China. 4Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai 200032, China. 5Department of surgery, Luwan Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Received: 19 November 2019 Accepted: 19 December 2019
Published online: 31 December 2019

References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017; 67(1):7–30.
2. Lega IC, Lipscombe LL. Review: diabetes, obesity and Cancer - pathophysiology and clinical implications. Endocr Rev. 2019. Epub ahead of print. PMID: 31722374. https://doi.org/10.1210/edrv.br014.
3. DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Golding Sauer A, Jemal A, Siegel RL. Breast cancer statistics, 2019. CA Cancer J Clin. 2019; 69(6):438–51.
4. Mavaddat N, Peock S, Frost D, Ellis S, Platte R, Fineberg E, Evans DG, Izatt L, Eeles RA, Adlard J, et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Nat Canc Inst. 2013;105(11):812–22.
5. Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, van Leeuwen FE, Milne RL, Andrei N, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–16.
6. Sk S, Swamy SN, Premalatha CS, Palavi VR, Gawai R. Abranttumor Perhypermethylating of RASSF1a and BRCA1 in circulating cell-free tumor DNA serves as a biomarker of ovarian carcinoma. Asian Pac J Cancer Prev. 2019; 20(10):2969–74.
7. Walsh T, Casadei S, Coats KH, Stray SM, Higgins J, Roach KC, Mandell J, Lee MK, Cernikova S, et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA. 2006;295(12):1379–88.
8. Kwong A, Chen J, Shin YV, Ho JC, Law FB, Au CH, Chan TL, Ma ES, Ford JM. The importance of analysis of long-range rearrangement of BRCA1 and BRCA2 in genetic diagnosis of familial breast cancer. Cancer genetics. 2015; 208(6):48–54.
9. Meijers-Heijboer H, van Geel B, van Putten WL, Herzen-Lomans SC, Seynaeve C, Menke-Pluymers MB, Bartels CC, Verhoog LC, van den Ouweland AM, Niermeijer MF, et al. Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med. 2001;345(3):159–64.
10. Kwong A, Shin YV, Ho JC, Kang E, Nakamura S, Tee SH, Lee AS, Sng JH, Ginsburg OM, Kuriyan AW, et al. Comprehensive spectrum of BRCA1 and BRCA2 deleterious mutations in breast cancer in Asian countries. J Med Genet. 2016;53(1):1–5.
11. Daza-Martin M, Denham RM, Morris JR. BRCA1-BARD1: the importance of being in shape. Mol Cell Oncol. 2019;6(6):e1656500.
12. Bose M, Sachsenweger J, Laurila N, Parpols AC, Willmann J, Jungwirth J, Groth M, Rapakko K, Nieminen P, Friedl TWP, et al. BRCA1 mislocalization leads to aberrant DNA damage response in heterozygous ABRAXAS1 mutation carrier cells. Hum Mol Genet. 2019. Epub ahead of print. PMID: 31630195. https://doi.org/10.1093/hmg/ddz252.
13. Wu Q, Paul A, Su D, Mehmoood S, Foo TK, Ochi T, Bunting EL, Xia B, Robinson CV, Wang B, et al. Structure of BRCA1-8RCT/Abraxas complex reveals phosphorylation-dependent BRCT dimerization at DNA damage sites. Mol Cell. 2016;61(3):494–48.
14. Kuderkov V, Gindharam S, Subbarao N, Jijagama MB, Peniasamy J, Boggaram S, Sivaswamy AV, Sadasivam G, Podigaru M, Potturi V, et al. Structure-guided synthesis and evaluation of small-molecule inhibitors targeting protein–protein interactions of BRCA1 RBCT domain. ChemMedChem. 2019;14(18):1620–32.
15. Petrucelli N, Daly MB, Feldman GL. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med. 2010;12(3):245–59.
16. Lee A, Moon BI, Kim TH. BRCA1/BRCA2 pathogenic variant breast Cancer: treatment and prevention strategies. Ann Lab Med. 2020;40(2):114–21.
17. Tran B, Bedard PL. Luminal-B breast cancer and novel therapeutic targets. Breast Cancer Res. 2011;13(6):221.
18. Ades F, Zardavas D, Bozovic-Spasojevic I, Pugliano L, Fumagalli D, de Azambuja E, Viale G, Sotiriou C, Piccart M. Luminal B breast cancer: molecular characterization, clinical management, and future perspectives. J Clin Oncol. 2014;32(25):2794–803.
19. Dent R, Trudeau M, Pritchard KI, Schrag D, Linos A, et al. Prophylactic ovariectomy in women at high risk of ovarian cancer. JAMA. 2005;293(16):1993–2001.
20. Runowicz CD, Leach CR, Henry NL, Hensy KS, Mackey HT, Cowens-Alvarado RL, Cannady RS, Pratt-Chapman ML, Edge SB, Jacobs LA, et al. American Cancer Society/American Society of Clinical Oncology breast Cancer survivorship care guideline. J Clin Oncol. 2016;34(6):611–35.
21. Atazon A, Agranarsson SA, Johannesdottir G, Johannsson OT, Hilmansdottir B, Reynolds I, Barkardott B. The BRCA1 c.4096C>T variant: further evidence for pathogenicity and risk modification. Genes. 2019;10(11). PMID: 31683985. https://doi.org/10.3390/genes10110882.
22. Papamitzarelouzou M, Apostolou P, Fostira F, Dimitrakakis C, Loutradis D, Fountzilas G, Yannoukakos D, Konstantopoulou I. Prevalence and founder mutations of BRCA1 and BRCA2 in Greek breast cancer patients. Breast Cancer Res. 2011;13(6):221.
23. Papamitzarelou M, Apostolou P, Fostira F, Dimitrakakis C, Loutradis D, Fountzilas G, Yannoukakos D, Konstantopoulou I. Prevalence and founder mutations of BRCA1 and BRCA2 in Greek breast cancer patients. Breast Cancer Res. 2011;13(6):221.