Supplementary data
Supplementary Methods

Gene-expression analyses

Raw counts from RNA-seq data were calculated using STAR 2.5.2b\(^1\) with the parameter --quantMode GeneCounts. Genes with no count in any sample were discarded. Reads per million mapped reads (RPM) were log2(x+1) transformed and quantile normalized (normalize.quantiles R function).

Expression analysis was performed using weighted correlation network analysis (WGCNA) Bioconductor R routine\(^2\) and unsupervised bi-clustering. For WGCNA soft power was set equal to 12. WGCNA was primarily used to identify and omit genes which expression is mostly related to non-leukemic marrow and blood cells within leukemic samples. WGCNA identified several modules of genes highly correlated, including the brown and the black modules as candidates for containing a large number of genes co-expressed by blood or bone marrow normal cell populations. Analysis of 5 non-leukemic samples, three from blood and two from bone marrow confirmed high expression in those samples. Moreover, expression was inversely related to the percentage of leukemic cells in samples used for molecular analyses. In addition, a large proportion of those genes was annotated by non-redundant genesets from subpopulations of the cell atlas.\(^3\) We showed that maintaining those genes in the list of genes subjected to differential analyses (volcano plot and hypergeometric analysis) had dramatic consequence on interpretation, therefore those genes were omitted. Similar approach was done for the module corresponding to genes expressed by the Y chromosome in male patients. The pink module was identified as highly correlated in cases from the CDX2/UBTF cluster. The lists of genes in these modules are provided in Supplementary Tables 2-5. Other modules were more complex and were not further annotated. For unsupervised bi-clustering, the dChip software was used (http://www.dchip.org/). For data visualization, the Complex Heatmap R routine (Bioconductor, ComplexHeatmap) and the t-distributed stochastic neighbor embedding (tSNE) analysis, R package Rtsne with a perplexity value of 30 was used. Comparison between expression means was analyzed by the moderate T-test (Welch test). Enrichments against gene lists were evaluated by the GSEA method (https://www.gsea-msigdb.orgGSEA, GSEA 4.2.1, version).

RNA-seq mutation detection

RNA-seq data were also used for mutation detection. SAMtools 1.2\(^4\) was used to generate mpileup and variant calling was performed using VarScan2 mpileup2cns 2.4.0.\(^5\) The variants were annotated with Annovar\(^6\) and only exonic non-synonymous variants in 660 cancer genes were considered. High-probability oncogenic mutations were retained by eliminating sequencing/mapping errors and known/possible SNPs based on the available databases.
Targeted next-generation sequencing (NGS)

Targeted NGS was performed on 276 ALL cases in order to identify mutations and copy-number aberrations on a custom panel of 189 known or putative target genes in B-ALL (listed in Supplementary Table 13), using custom capture-based target enrichment (SureSelect, Agilent, Santa Clara, CA, USA) and sequencing on Illumina NextSeq500 platform (Illumina San Diego, CA, USA), as previously described. Capture-based target enrichment and sequencing of a 333 kb region in the 13q12.2 locus (chr13:27,962,069-28,295,338; hg38) was also used to determine deletion breakpoints in B-ALL cases having 13q12.2 deletions. BAM files were examined using the Integrative Genomics Viewer (IGV).

Array-CGH analysis

Array-CGH analysis was performed on 131 ALL cases using Agilent 400K oligonucleotide arrays, following the manufacturer’s recommendations. The arrays were scanned using the SureScan High-Resolution Technology (Agilent Technologies). Data analysis was performed using Agilent Cytogenomics software.

Sequential RNA-DNA FISH

Experiments were performed as previously described. Briefly, PDX cells were spotted on glass slides in presence of ribonucleoside-vanadyl complex (New England Biolabs) and incubated with the CDX2 fluorescent probes in a dark and humid chamber at 37°C overnight (RNA FISH part). Nuclei were counterstained with DAPI. After image acquisition with recording of field coordinates, mounting medium was wash off, slides were incubated in RNaseA (New England Biolabs), post-permeabilized, then denatured before overnight incubation with the Fosmid fluorescent probes in a dark and humid chamber at 42°C (DNA FISH part). Slides were then washed, counterstained, mounted as previously and recorded fields of view were imaged again.

Probe preparation. Probes for CDX2 primary transcripts (hgCDX2 cloned in three part in pSUPER.PKD1.RNAi), Fosmid G248P8885B5 and Fosmid G248P8671B10 were directly labeled by nick translation (Vysis kit, Abbott molecular) using Aminoallyl-dUTP-ATTO-550, 488 and 647, respectively (Jena Bioscience), following manufacturer’s instructions. Around 0.3µg of labeled products was ethanol precipitated with 10µg of Salmon sperm (Thermofisher). 5µg of human Cot-1 DNA (Thermofisher) were also added with the Fosmid probes for subsequent pre-annealing of potential repeated sequences. Pellets were resuspended in 10µl of sterile formamide. Probes were then denatured and either incubated for pre-annealing (Fosmid probes), or kept on ice until hybridization with cells (CDX2 probe). 10µg of 2X hybridization medium (4X SSC, 20% dextran sulfate, 4mg/ml BSA (New England Biolabs), 2mM ribonucleoside-vanadyl complex (New England Biolabs) were added to the probes just prior to overnight hybridization.

Microscopy. 3D-image stacks, with optical sections separated by 0.24µm, were recorded on a IXplore spinning disk microscope (Olympus) with an Orca-flash-4.0 V3 CMOS camera (Hamamatsu) and a 60X
objective. After RNA FISH, coordinates of fields of view were recorded in order to be imaged back after the DNA FISH part. Stacks were analyzed using Image I software.

Patient-derived xenografts (PDX) of CDX2/UBTF ALL

PDX of CDX2/UBTF ALL were established using NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NOD-SCID gamma-null, or NSG) mice\(^9\) according to experimental procedures previously described.\(^10\) Mice were housed and handled in the pathogen-free animal facility Département d’Expérimentation Animale in accordance with the guidelines of the Animal Care and Use Committee (IRSL, Saint-Louis Hospital). Authorization for animal experimentation was obtained, APAFIS#19382-2019022115238547v3, in accordance with French laws. Primary leukemia cells were CD3 depleted from cryopreserved patients’ diagnostic samples and injected intrabone into NSG mice previously irradiated with 1.25 Gy. Engraftment was monitored by flow cytometry analysis of bone marrow aspirates using human PE-CD19 and Pacific Blue-CD45 antibodies (Miltenyi). Mice were euthanized when they reached endpoints set to meet accepted animal care guidelines, and spleen and bone marrow cells were harvested. The stability of CDX2/UBTF ALL-specific transcriptome and genome features upon xenotransplantation was controlled by RNA-seq and capture 13q12.2 NGS on 2 and 1 cases, respectively. Human leukemic cells from PDX were used for RNA-DNA FISH and ChIP-seq experiments.

Chromatin immunoprecipitation sequencing (ChIP-seq)

ChIP assays were performed using iDeal ChIP-seq kit for Transcription Factors (Diagenode) following the manufacturer’s recommendations. Briefly, 3 million cells from PDX or cell lines were incubated for 10 min in 1% formaldehyde in phosphate buffered saline at room temperature, quenched by adding 1/10 volume of glycine. Chromatin was sonicated in 1.5 ml Bioruptor\(^\circledast\) Pico Microtubes using a Bioruptor Pico instrument for 20 cycles of sonication [30sec ON, 30sec OFF]. Immunoprecipitations were performed with H3K27ac antibody (C15410196), H3K4me3 antibody (C15410003) and a normal rabbit IgG control (Diagenode). ChIP-seq libraries were prepared using MicroPlex Library Preparation Kit v3 (Diagenode) according to manufacturer’s instructions. Libraries underwent 75-cycle single-end sequencing on a Nextseq500 (Illumina, San Diego, CA, USA). Sequence reads were mapped to reference genome hg38 using Bowtie 1.0.0 with the following parameters -m 1 --strata --best -y -S -I 40 -p 2. Bigwig files were generated using Homer\(^\circledast\) software makeUCSCfile script with default parameters and scaled to 1e7 reads.

ATAC-seq

ATAC-seq was performed on cell lines using a protocol adapted from Buenrostro et al.\(^{12}\) Briefly, 50000 cells were lysed and nuclei were treated with Nextera Tn5 transposase using the Nextera DNA library kit. DNA was purified and amplified using NEBNext High-Fidelity enzyme (NEB) and primers described in Buenrostro et al.\(^{13}\) Purified libraries were sequenced on an Illumina HiSeq 4000 sequencer as paired-end 100 bases reads by the GenomEast platform. Image analysis and base calling were performed using RTA 2.7.3 and
bcl2fastq 2.17.1.14. Data analysis was performed using the Encode ATA-seq pipeline v1.9.3. Adapter sequences were removed and low-quality ends were trimmed. Sequence alignment was performed into the hg38 assembly of Homo Sapiens genome using Bowtie2 (version 2.2.6)\(^\text{14}\) choosing the zero multi-mapping option. Mitochondrial reads were removed. Fold-enrichment bigwig files were generated with the MACS2\(^\text{15}\) bdgcmp command.

4C-seq

4C-seq was performed following the protocol described in Karasu et al.\(^\text{16}\) Briefly, 10 million cells were fixed then lysed. Nuclei were permeabilized and the chromatin was digested using DpnII enzyme (NEB), circularized using T4 DNA ligase (NEB), digested using Csp6I enzyme (NEB) and recircularized. Inverse PCR was performed using the ExpandTM Long Template PCR System (Roche) and Cdx2 specific primers containing Illumina indexes and adapter sequences: Csp6I primer matches to position hg38 chr13:27,969,087-27,969,104 and DpnII primer to position hg38 chr13:27,969,870-27,969,889 around the transcription start site of **CDX2** gene.

PCR reactions were pooled, primers removed by washing with 1.8x AMPure XP beads, then quantified on a Bioanalyzer (Agilent) before sequencing. Libraries were sequenced on an Illumina HiSeq 4000 sequencer as paired-end 100 bases reads by the GenomEast platform, a member of the ‘France Genomique’ consortium (ANR-10-INBS-0009). Image analysis and base calling were performed using RTA version 2.7.7 and bcl2fastq version 2.20.0.422. All bait sequence (including and downstream of the primer sequence, up to but not including the GATC DpnII site) are trimmed by the demultiplexing Sabre tool (https://github.com/najoshi/sabre), allowing two mismatches, before mapping to hg38 human genome assembly with Bowtie.\(^\text{17}\) Intrachromosomal reads were assigned to DpnII fragments by utility tools coming with the 4See package,\(^\text{18}\) which was also used to visualize the 4C profiles. The interaction with d3 enhancer was called with peakC\(^\text{19}\) robust to various window sizes.

CRISPR/Cas9 interference

The catalytically inactive Cas9 (dead Cas9) fused to the repressor KRAB was used to inactivate the **PAN3** enhancer. Single guide sequences targeted the **PAN3** enhancer were designed using E-CRISpR,\(^\text{20}\) sgEnhancer#1, GCATTTCAGAATGTTTATAG; sgEnhancer#5, GCATTACAATAGGGGTAGAG. sgRNA were inserted into the dCas9-KRAB-T2a-GFP lentiviral backbone using annealed oligos and the BsmBI cloning site of pLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-GFP (plasmid #71237, AddGene).

Lentiviruses were produced with jetPRIME reagents (Polyplus transfection) by co-transfection of viral production plasmids in T150 cm\(^2\) tissue culture flasks containing 2 million HEK-293T cells by flask according to manufacturer’s protocol. As previously described\(^\text{21}\), HEK-293T cells were incubated at 37°C for 18 hours and the medium was replaced with fresh complete Advanced DMEM medium. Viral supernatant was harvested 48 hours later and filtered through a 0.45um HV Durapore membrane (Merck Millipore) and
concentrated by ultra-centrifugation at 24,000 rpm for 2 hours at 4°C. Viral supernatant was resuspended in 1X phosphate-buffered saline (PBS) and stored at -80°C.

NALM16 cells were transduced overnight for 16 hours with lentiviral supernatants of sgEnhancer#1, sgEnhancer#5 or a control with a gRNA sequence not present in the human genome, sgRenilla (GGAACACGGCCGTATTAGGG). Cells were FACS sorted on GFP-expression 72 hours after infection.

RT-qPCR

CDX2 expression level was measured by RT-qPCR performed on the StepOne (Thermo Fisher) using the TaqMan Multiplex Master Mix (Thermo Fisher). Each sample was analyzed in duplicate, and gene expression was normalized relative to the expression of the housekeeping gene ABL1. Primers (forward, F and reverse, R) and probes (P) sequences were: CDX2 F-GCGGAACCTGTGCGAGTG, R-GACTGTAGTGAACTCTTCTCCAGC and P-CGCGCAGCAGTCCCTCG, ABL1 F-TGGAGATAACACTAAGCATAACTAAGGT, R-GATGATTTGCTTTGGGACCCA and P-CCATTTTTGTTGGCTTCACACATT.

Primers and probe for UBTF::ATXN7L3 fusion transcript were: F- AGGAGCAGCAAAGACGTACA, R-GACCAGGTCCCGTGATATCTC and P-AGTCAGAGCGCGTGCTCCACAAGAGTTT.

Western blot

Cells were washed with cold PBS and lysed for 30min with RIPA buffer containing protease and phosphatase inhibitor cocktail (Thermo Scientific). Lysates were centrifuged at 25,000 g for 30 min at 4°C. Protein concentration was quantified with QuantiPro BCA Assay Kit (Sigma). 5µg of the protein extracts were denatured, separated on 4%–15% Mini-PROTEAN TGX gels (BioRad) for 80min at 90-130V and electrotransferred onto 0.2µm PVDF membranes for 30min in a Trans-Blot Turbo equipment (BioRad). Membranes were blocked with 3% fat-free BSA in TBS-T buffer (Tris buffered saline buffer pH 7.5 and 0.1% Tween 20) for 60 min and incubated overnight at 4°C with primary antibodies (CDX2, #12306, Cell Signaling (dilution 1:1000), ATXN7L3, A302-800A, Bethyl (dilution 1:2000), GAPDH, G8795, Sigma (dilution 1:1000) or vinculin antibody, ab130007, Abcam (dilution 1:1000)). After rinsing with TBS-T, membranes were incubated with an HRP-conjugated anti-rabbit or mouse IgG secondary antibody for 60 min. Immunoblots were visualized with SuperSignal™ West Femto Maximum Sensitivity Substrate (Thermo Fisher) and imaged in a Fusion FX equipment (Vilber). Band density for CDX2 protein were normalized against vinculin protein content and analysis performed by the ImageJ software.

Statistical analysis

Comparisons for categorical and continues variables between CDX2/UBTF ALL and other B-ALL were performed with Fisher’s exact test and Mann–Whitney test, respectively. Overall survival (OS) was calculated from the date of diagnosis to the last follow-up date censoring patients alive. The cumulative
incidence of relapse (CIR) was calculated from the complete remission date to the date of relapse, censoring patients alive without relapse at the last follow-up date. Relapse and death in complete remission were considered as competitive events. Univariate and multivariate analyses assessing the impact of categorical and continuous variables were performed with a Cox model. Proportional-hazards assumption was checked before conducting multivariate analyses. The multivariate analysis include age, log(WBC), post-induction MRD (≥10^-4 versus < 10^-4), and CDX2 status as covariates. Statistical analyses were performed with STATA software (STATA 16.1, StataCorp LLC, College Station, TX). All p-values were two-sided, with p < 0.05 denoting statistical significance.
Supplementary Tables

Supplementary Table 1. Comparison between GRAALL-2005/2014 studied and non-studied patients.

	Studied patients (n=723)	Non-studied patients (n=291)	P value
Patient-related characteristics			
Median age, years [range]	38 [18-60]	39 [18-60]	0.62
Gender, M/F (ratio)	400/323 (1.2)	157/134 (1.2)	0.73
Disease-related characteristics			
Median WBC, G/L [range]	9 [0-712]	4 [0-294]	<0.001
BM blast percentage [range]	91 [21-100]	84 [20-98]	0.003
CNS involvement	57/713 (8%)	13/290 (4%)	0.055
Response-related characteristics			
Good PB prednisone response at day 8	582/701 (83%)	253/286 (88%)	0.033
Good BM response at day 15	397/668 (59%)	182/278 (65%)	0.092
Late CR (achieved after induction 2)	24/672 (4%)	8/266 (3%)	0.84
CR (after induction 1 and 2)	672/723 (93%)	266/291 (91%)	0.43
Post-induction MRD ≥ 10^-4	255/542 (47%)	43/119 (36%)	0.033
Post-induction MRD ≥ 10^-3	151/542 (28%)	33/119 (28%)	1.0
Post-remission outcome			
Allo-SCT in first CR	184/672 (27%)	83/266 (31%)	0.26
3-years CIR, % (95% CI)	33.5 (29.8-37.6)	18.7 (14.4-24.1)	<0.001
3-years OS, % (95% CI)	65.9 (62.0-69.5)	69.6 (63.7-74.7)	0.45

M, male; F, female; WBC, white blood cell count; BM, bone marrow; CNS, central nervous system; PB, peripheral blood; CR, complete remission; MRD, minimal residual disease. Allo-SCT, allogeneic stem cell transplantation; CIR, cumulative incidence of relapse; OS, overall survival. Good PB prednisone response at day 8 is defined by less than 1G/L blast. Good BM response at day 15 is defined by less than 5% blast. MRD evaluation was performed by PCR quantification of Ig/TR clono-specific rearrangements according to EuroMRD guidelines.
Supplementary Table 8. Breakpoint coordinates of the 13q12.2 deletions.

Patient Id	Deleted region (hg38)	Oncogenic subtype	Deletion involving FLT3
B_SL7	chr13:28098868-28163018	CDX2/UBTF	Yes
B_SL19	chr13:28098540-28161424	CDX2/UBTF	Yes
B_SL39	chr13:28098526-28149074	CDX2/UBTF	Yes
B_SL43	chr13:28098507-28246295	CDX2/UBTF	Yes
B_SL49	chr13:28098535-28149074	CDX2/UBTF	Yes
B_SL73	chr13:28098864-28158208	CDX2/UBTF	Yes
B_SL79	chr13:28098533-28208033	CDX2/UBTF	Yes
B_SL82	chr13:28098523-28186795	CDX2/UBTF	Yes
B_SL100	chr13:28098536-28140159	CDX2/UBTF	Yes
B_SL139	chr13:28098867-28181482	CDX2/UBTF	Yes
B_SL141	chr13:28098535-28181482	CDX2/UBTF	Yes
B_SL157	chr13:28098860-28140158	CDX2/UBTF	Yes
B_SL160	chr13:28098529-28208035	CDX2/UBTF	Yes
B_SL168	chr13:28098540-28181483	CDX2/UBTF	Yes
B_SL187	chr13:28031725-28141296	CDX2/UBTF	Yes
B_SL220	chr13:28098868-28141296	CDX2/UBTF	Yes
B_SL234	chr13:28098537-28149079	CDX2/UBTF	Yes
B_SL251	chr13:28098542-28166955	CDX2/UBTF	Yes
B_SL271	chr13:28098867-28150357	CDX2/UBTF	Yes
B_SL283	chr13:28098531-28181486	CDX2/UBTF	Yes
B_SL327	chr13:28098868-28143877	CDX2/UBTF	Yes
B_SL366	chr13:28098544-28149074	CDX2/UBTF	Yes
B_SL425	chr13:28098538-28181483	CDX2/UBTF	Yes
CDX2_SL1	chr13:28098537-28181482	CDX2/UBTF	Yes
CDX2_SL2	chr13:28098531-28181486	CDX2/UBTF	Yes
CDX2_SL3	chr13:28098541-28149077	CDX2/UBTF	Yes
B_SL57	chr13:28101793-28242690	Other	No
B_SL78	chr13:28101756-28243897	Other	No
B_SL184	chr13:28101792-28242694	Other	No
B_SL186	chr13:28101756-28166951	Other	No
B_SL188	chr13:28101791-28242689	Other	No
B_SL205	chr13:28101795-28242691	Other	No
B_SL214	chr13:28101763-28166943	ZNF384 fusion	No
B_SL259	chr13:28098857-28246271	ZNF384 fusion	Yes
B_SL287	chr13:28129155-28242695	Other	No
B_SL287	chr13:28114035-28240996	Other	No
B_SL313	chr13:28105013-28151976	Other	No
Supplementary Table 9. CDX2 allelic expression data showing monoallelic expression in all informative CDX2/UTBF cases.

Patient Id	gDNA rs1805108	gDNA rs1805107	mRNA rs1805108	mRNA rs1805107	CDX2 expression
B_SL7	C/A	A/G	A	G	Monoallelic
B_SL19	C/C	A/A	Non informative		
B_SL39	C/A	A/G	A	G	Monoallelic
B_SL43	C/C	A/A	Non informative		
B_SL49	C/C	A/A	Non informative		
B_SL73	C/A	A/G	A	G	Monoallelic
B_SL79	C/A	A/G	A	G	Monoallelic
B_SL82	C/C	A/A	Non informative		
B_SL100	C/C	A/A	Non informative		
B_SL139	C/C	A/A	Non informative		
B_SL141	C/C	A/A	Non informative		
B_SL157	C/A	A/G	C	A	Monoallelic
B_SL160	C/A	A/G	A	G	Monoallelic
B_SL168	C/C	A/A	Non informative		
B_SL187	C/C	A/A	Non informative		
B_SL220	C/C	A/A	Non informative		
B_SL234	C/A	A/A	Non informative		
B_SL251	C/A	A/G	A	G	Monoallelic
B_SL271	A/A	G/G	Non informative		
B_SL283	C/A	A/G	C	A	Monoallelic
B_SL287	C/A	A/G	C	A	Monoallelic
B_SL366	A/A	G/G	Non informative		
B_SL425	C/C	A/A	Non informative		
CDX2_SL1	A/A	G/G	Non informative		
CDX2_SL2	C/A	A/G	NA		
CDX2_SL3	C/A	A/G	A	G	Monoallelic

Supplementary Table 10. RNA-DNA FISH data showing that CDX2 is expressed from the chromosome 13 exhibiting the deletion.

Per nucleus:	N	%
B_SL157		
CDX2 expressed from the WT chromosome	0	0.0
CDX2 expressed from the deleted chromosome	78	61.4
B_SL141		
CDX2 expressed from the WT chromosome	0	0.0
CDX2 expressed from the deleted chromosome	18	15.1

- **CDX2 RNA part**
- **G248P8671810 DNA part**
- **G248P888585 DNA part**

B_SL157: 61.4% of the cells showed CDX2 expression (always from the deleted chromosome).
B_SL141: 15.1% of the cells show CDX2 expression (always from the deleted chromosome).
Supplementary Table 12. Cytogenetic data of the 26 patients with CDX2/UBTF ALL

Patient Id	Karyotype	1q gain (technique)
B_SL7	46,XX,del(1)(p31?q33),del(2)(p?13p22),del(9)(q1?3?q34),?del(12)(p1?3),?del(17)(p?1?),+mar,inc[18]/46,idem,?X[2]	No
B_SL19	46,XY[32]	No
B_SL39	46,XY,del(1)[q41],[t(2;6)[q23?q1?2],?del(6)[6qter?6q23?1q2?3?4?6qter][21]	No
B_SL43	46,XX,del(3)[q2?5],inc[cp8]/46,XX[4]	No
B_SL49	46,XX,del(15)[t(1;15)[p12;p11][15]/46,XX,del(11)[t(?1;11)[p12;p15][3]/46,XX[4]	Yes (karyo, CGH, NGS)
B_SL73	46,XX,del(9)[13q31][24]/46,XX[3]	No
B_SL79	Failure	No
B_SL82	47,XX,?+8,der(1;15)[q10;p10][12]/46,XX[8]	Yes (karyo, CGH, NGS)
B_SL100	46,XX,del(12)[p12][7]/46,sl,t(11;18)[q22?q12][3]/46,del(9)[q2?2?4][5]/46,XX[5]	No
B_SL141	46,XX,del(12)[p12][7]/46,sl,t(11;18)[q22?q12][3]/46,del(9)[q2?2?4][5]/46,XX[5]	No
B_SL157	46,XX[20]	No
B_SL160	46,XX,del(7)[p13][3]/46,XX[8]	No
B_SL168	46,XX,del(1)[q12?q32][6]/46,XX[4]	Yes (karyo)
B_SL187	46,XY,15ps+[20]	Yes (CGH, NGS)
B_SL220	46,XX,del(1)[q2?2?4][3]/46,del(4)[q2?2?4][2]/46,XX[22]	Yes (karyo, CGH, NGS)
B_SL234	46,XY[20]	No
B_SL251	46,XX,del(3)[p22],add(7)[q21],add(12)[q24][5]/46,XX[15]	No
B_SL271	81?95,XXYY,del(1)[q2?2?4][q2?2?4][x2,add(2)[p173][7][3][4],?del(6)[q2?q25][x2?9,16,?20,?5,?3?5?12]/46,XY[1]	Yes (karyo, CGH, NGS)
B_SL283	46,X,Y,?3,?15,?18,?5?mar[5]/46,XY[10]	Yes (CGH, NGS)
B_SL327	46,XX,del(7)[7;13][p171?q21][3]/46,sl,add(3)[q2?7?6],del(9)[q13?31] or [q2?2?3][2]/46,XX[7]	Yes (CGH, NGS)
B_SL366	46,XX,del(18)[1;18][q25?q23][25]	Yes (karyo, CGH, NGS)
B_SL425	46,XX,add(2)[q37],del(9)[q13?q33]<17>/46,XX<3]	Yes (NGS)
CDX2_SL1	92<4n>,XX,?X,?add(7)[x28],?8,del(9)[q13?q22][x2,add(18)[q22][x2,add(2)[p21]/46,XX[4]	No
CDX2_SL2	46,XX,del(4)[t(1;4)[q11?q37][11]/92<4n>,XX,del(9)[q22][4]/46,XX[18]	Yes (karyo, CGH, NGS)
CDX2_SL3	46,XX,inc[3]/42?46,XX,inc,?6?11?mar[3]/46,XY[38]	No

karyo, karyotype; CGH, array comparative hybridization; NGS, next-generation sequencing.
Supplementary Table 14. Full list of mutations identified in CDX2/UBTF ALL.

Patient id	Gene	Mutation	VAF (%)
B_SL7	CXCR4	NM_003467:exon2:c.1013C>G:p.(Ser338Ter)	46.1
B_SL19	U2AF1	NM_001025203:exon2:c.101C>T:p.(Ser34Phe)	22.5
B_SL39	No mutation		
B_SL43	KRAS	NM_033360:exon4:c.351A>T:p.(Lys117Asn)	29.2
B_SL43	DNMT3A	NM_022552:exon16:c.1913C>G:p.(Arg736His)	31.5
B_SL49	CREBBP	NM_004380:exon16:3090_3091insATGA:p.(Gln1031MetfsTer3)	31.5
B_SL49	TP53	NM_000546:exon8:c.782A>G:p.(Lys261Asp)	5.0
B_SL49	CXCR4	NM_003467:exon2:1030_1031insCGGGCCAC:p.(Ser344SerfsTer25)	17.7
B_SL49	CXCR4	NM_003467:exon2:1000C>T:p.(Arg334Ter)	13.1
B_SL49	KRAS	NM_033360:exon4:c.351A>T:p.(Lys117Asn)	29.2
B_SL49	DNMT3A	NM_022552:exon16:c.1913C>G:p.(Arg736His)	31.5
B_SL73	No mutation		
B_SL43	NRAS	NM_002524:exon2:c.35G>A:p.(Gly12Asp)	4.6
B_SL77	No mutation		
B_SL82	DNMT3A	NM_175629:exon14:c.1578C>A:p.(Tyr526Ter)	3.4
B_SL82	CREBBP	NM_004380:exon31:c.6361_6396del:p.(Leu2121_Gly2132del)	9.8
B_SL100	TET2	NM_001127208:exon3:c.2725_2734del:p.(Gln909ArgfsTer9)	35.7
B_SL100	CXCR4	NM_003467:exon2:1000C>T:p.(Arg334Ter)	10.4
B_SL139	PAX5	NM_016734:exon6:c.676_677insAGGGGG:p.(Arg225_Gly226insGluGly)	6.8
B_SL141	No mutation		
B_SL157	No mutation		
B_SL160	NRAS	NM_002524:exon2:c.35G>C:p.(Gly12Ala)	2.6
B_SL160	MEF2C	NM_001193347:exon12:c.1319C>T:p.(Ser440Leu)	21.0
B_SL168	No mutation		
B_SL187	CREBBP	NM_004380:exon26:c.4336C>T:p.(Arg1446Cys)	19.4
B_SL187	CXCR4	NM_003467:exon2:c.952_953insGGG:p.(Thr318ArgfsTer15)	11.6
B_SL220	No mutation		
B_SL234	NRAS	NM_002524:exon2:c.38G>A:p.(Gly13Asp)	35.7
B_SL251	CREBBP	NM_004380:exon3:c.901C>T:p.(Gln301Ter)	39.8
B_SL271	No mutation		
B_SL283	ERG	NM_001243432:exon9:c.801G>A:p.(Trp267Ter)	15.4
B_SL283	FLT3	NM_004119:exon20:c.2503G>T:p.(Asp835Tyr)	29.5
B_SL327	No mutation		
B_SL366	NRAS	NM_002524:exon2:c.35G>C:p.(Gly12Ala)	3.9
B_SL366	KRAS	NM_033360:exon2:c.35G>A:p.(Gly12Asp)	9.7
B_SL425	ARID1A	NM_006015:exon20:c.6259G>A:p.(Gly2087Arg)	36.2
B_SL425	KRAS	NM_033360:exon4:c.436G>A:p.(Ala146Thr)	3.1
B_SL425	CXCR4	NM_003467:exon2:c.1000C>T:p.(Arg334Ter)	13.2
B_SL425	CXCR4	NM_003467:exon2:1004_1005insC:p.(Gly335GlyfsTer9)	16.4
CDX2_SL1	No mutation		
CDX2_SL2	KRAS	NM_033360:exon2:c.35G>C:p.(Gly12Ala)	4.5
CDX2_SL2	PTPN11	NM_002834:exon3:c.214G>A:p.(Ala72Thr)	8.2
CDX2_SL2	CREBBP	NM_004380:exon4:c.1022_1023insCCGC:p.(Ala341AlafsTer10)	8.5
CDX2_SL2	KRAS	NM_033360:exon2:c.38G>A:p.(Gly13Asp)	8.9
CDX2_SL2	RUNX1	NM_001754:exon6:c.584T>C:p.(Ile195Thr)	30.8
CDX2_SL3	No mutation		

VAF, variant allele frequency on targeted NGS, except for CXCR4 mutations detected on RNA-seq data.
Supplementary Table 15. Immunophenotype of CDX2/UBTF ALL.

Patient Id	EGIL group	CD19	CD79a	CD10	CD20	CD22	clgM	CD34	CD38	CD13	CD33
B_SL7	B-II	pos	pos	pos	neg	pos	neg	pos	NA	neg	neg
B_SL19	B-II	pos	pos	pos (54%)	neg	pos	neg	pos	NA	neg	neg
B_SL39	B-II	pos	pos	pos	NA	NA	NA	NA	pos	NA	NA
B_SL43	B-I	pos	pos	neg	neg	pos	neg	neg	pos	neg	neg
B_SL49	B-II	NA	pos	pos (42%)	neg	pos (40%)	neg	NA	NA	neg	neg
B_SL73	B-I	pos	pos	neg	neg	pos	neg	pos	pos	neg	NA
B_SL79	B-I	pos	pos	neg	neg	NA	NA	pos	pos	neg	neg
B_SL82	B-I	pos	neg	neg	neg	pos	neg	pos	NA	neg	neg
B_SL100	B-I	pos	pos	neg	neg	pos	neg	pos	pos	neg	neg
B_SL139	B-I	pos	pos	neg	NA	pos	neg	pos	pos	neg	neg
B_SL141	B-I	pos	pos	neg	neg	neg	pos	NA	neg	neg	neg
B_SL157	B-III	pos	pos	pos	NA	pos	pos	pos	pos	neg	neg
B_SL160	B-I	pos	pos	neg	neg	pos	neg	pos	pos	neg	neg
B_SL168	B-I	pos	pos	neg	neg	pos	neg	pos	pos	neg	neg
B_SL187	B-I	pos	NA	neg	neg	pos	NA	pos	pos	neg	neg
B_SL220	B-II	pos	pos	pos (47%)	neg	pos	neg	pos	pos	neg	neg
B_SL234	B-I	pos	pos	neg	neg	pos	neg	pos	pos	(20%)	NA
B_SL251	B-II	pos	pos	pos (44%)	neg	pos	pos (20%)	NA	NA	neg	neg
B_SL271	B-II	pos	pos	pos (32%)	neg	pos	neg	pos	pos	neg	neg
B_SL283	B-I	pos	pos	neg	pos (20%)	neg	neg	pos	NA	neg	neg
B_SL327	B-I	pos	pos	neg	NA	pos (20%)	NA	pos	pos	neg	neg
B_SL366	B-I	pos	pos	neg	neg	pos	neg	pos	pos	neg	pos (50%)
B_SL425	B-II	pos	pos	pos	pos	pos	neg	pos	NA	neg	neg
CDX2_SL1	B-I	pos	pos	neg	neg	NA	NA	pos	NA	NA	NA
CDX2_SL2	B-II	pos	pos	pos	neg	pos	neg	NA	NA	NA	NA
CDX2_SL3	B-I	NA	neg	neg	pos	NA	pos	NA	pos	neg	neg

EGIL, European Group for the Immunological Characterization of Leukemias; NA, not available. Percentages are indicated in case of partial expression.
Supplementary Figures

Supplementary Figure 1. Flow-chart describing the patients’ cohorts. The cohort of B-ALL analyzed by RNA-seq corresponded to unresolved B-ALL with available material from patients prospectively enrolled in the GRAALL-2005/2014 and EWALL-INO protocols. Additional B-other ALL cases analyzed by RNA-seq or targeted molecular analyses (CDX2 qRT-PCR, 13q12.2 NGS and RT-PCR UBTF::ATXN7L3) for patient care and for whom a CDX2/UBTF ALL was diagnosed were included in the CDX2/UBTF ALL cohort. Patients’ characteristics and outcome of CDX2/UBTF ALL were analyzed within the GRAALL-2005/2014 studied cohort. Comparison between GRAALL-2005/2014 studied (n=723) and non-studied (n=291) patients is provided in Supplementary Table 1. *Patients with non-eligibility criteria, patients who received a different therapy, or who withdrew consent.
Supplementary Figure 2. Gene-expression analyses of RNA-seq data from the cohort of 302 patients allow identification of a novel B-ALL subtype. (A) WGCNA method was used on 6047 genes selected on the basis of variability in their expression (standard deviation >0.9). Several genes’ modules were identified, including one corresponding to genes expressed in erythroid cells (black) and one to genes expressed in myeloid and lymphoid non-leukemic cells (brown), present in patients’ samples in varying percentages, one to genes expressed by the Y chromosome in male patients, and one to genes expressed in the CDX2/UBTF ALL (pink). List of genes for these modules are provided in Supplementary Tables 2-5. (B) Hierarchical bi-clustering was performed on genes selected for based on standard deviation across samples greater than 1.9 and expression equal or greater than 7 in at least 7% of samples, and excluding genes from the WGCNA modules corresponding to genes expressed by non-leukemic cells (black and brown modules) and chromosome Y, resulting in a final list of 235 genes, provided in Supplementary Table 6. (C) Supervised hierarchical clustering using genes from the WGCNA pink module identifies the CDX2/UBTF cluster.
Supplementary Figure 3. CDX2 expression quantified by qRT-PCR in acute leukemias and control cases. CDX2/UBTF ALL patients (n=7), other B-ALL (n=38), T-ALL (n=4), AML (n=13) and normal blood or bone marrow samples (n=5). RNA CDX2 expression measured by RT-qPCR and normalized on ABL1. Comparison analysis was performed by the Wilcoxon rank-sum test.
Supplementary Figure 4. Gene-expression of *UBTF* and *ATXN7L3* in CDX2/UBTF ALL and other B-ALL based on RNA-seq counts. Gene expression was quantified by RNA-seq (log2 of counts normalized using DESeq2’s median of ratios) and comparison analysis was performed by the Wilcoxon rank-sum test.
Supplementary Figure 5. CDX2 expression quantified by qRT-PCR in CDX2/UBTF ALL and cell lines. CDX2/UBTF ALL patients (n=7), NALM16, NB4, K562 and Caco-2/TC7 cell lines. RNA CDX2 expression measured by RT-qPCR and normalized on ABL1.
Supplementary Figure 6. Breakpoint sequences of the 13q12.2 deletion including genomic mapping of RSS-like sequences. Breakpoint sequences were scanned using a position weight matrix generated from the RSS conservation table of Hesse et al22 using the software tool FIMO, part of the MEME suite. B23 A background model of 20% C/G and 30% A/T, a pseudocount of 1 and a threshold p value of 0.001 was used. Conserved sequences and n-diversity are in bold, deleted sequences are in grey, boxes highlight RSS motifs and red bases, bases shared with RSS motifs.

B_SLS7

FLT3

TCATACGTCTAGTGGAAGTGAATGCATTAAT/

+TAA

TTTAAGCCGAAATGCAAGTCAACATAGCAGTCAATC

B_SL19

FLT3

CTATACGTCTAGTGGAAGTGAATGCATTAAT/

+TAA

GTCTTCAGTAATCTGTTCAAGTCAACATAGCAGTCAATC

B_SL39

FLT3

CCATACGTCTAGTGGAAGTGAATGCATTAAT/

+CTA

AGTCTTCAGTAATCTGTTCAAGTCAACATAGCAGTCAATC

B_SL43

FLT3

ATGGTTAGAGAAAAGAGTGGAACATATAAGA/

+AGCT

AAGCTGGACATAGTGGGAGGAGTCAATC

B_SL49

FLT3

CCATACGTCTAGTGGAAGTGAATGCATTAAT/

+GCTA

AGTCTTCAGTAATCTGTTCAAGTCAACATAGCAGTCAATC

B_SL73

FLT3

ATGGTTAGAGAAAAGAGTGGAACATATAAGA/

+AGCT

AAGCTGGACATAGTGGGAGGAGTCAATC

B_SL79

FLT3

TCGCTACGTCTAGTGGAAGTGAATGCATTAAT/

+CTA

TGCTGCTGGAAATCTGTTCAAGTCAACATAGCAGTCAATC

B_SL82

FLT3

ACTGGCAAATCTGCTATGGGAAGTGAATGCATTAAT/

+GAGCT

AAGCTGGACATAGTGGGAGGAGTCAATC

19
B_SL100
FLT3
TGCCATACACTGCTAATGGGAGTGGAAATTGGTG/ GTAAGACACAAAAAAAAAGTTTTGGTTTGC
AGGCTGAGTCTCAAACATCTGCACTTTCTCC
PAN3

B_SL139
FLT3
TGAGTAAAAGAAGGTGGAGAATGGAAATTGGTG/ GTAAGACACAAAAAAAAAGTTTTGGTTTGC
AGGCTGAGTCTCAAACATCTGCACTTTCTCC
PAN3

B_SL141
FLT3
CCATACACTGCTAGGAGTGGAAATTGGTG/ GTAAGACACAAAAAAAAAGTTTTGGTTTGC
AGGCTGAGTCTCAAACATCTGCACTTTCTCC
PAN3

B_SL157
FLT3
TATAATGTGAAATAGATTTGCTAATGGAAGAATGGTGAAGAGAGAGGATGGAGAAGGTTTTGGTTTGC
AGGCTGAGTCTCAAACATCTGCACTTTCTCC
PAN3

B_SL160
FLT3
GAACTGCCATACACTGCTAGTGGGAGTGGAATTGGTGTAAAGAAGGTGGACATAAAAGTTTTGGTTTGC
AGGCTGAGTCTCAAACATCTGCACTTTCTCC
PAN3

B_SL168
FLT3
CAGTCTAGGAGTGGGAGAATGGTGAAGAGAGAGGATGGAGAAGGTTTTGGTTTGC
AGGCTGAGTCTCAAACATCTGCACTTTCTCC
PAN3

B_SL187
FLT3
AAGCAGAAGGATCCACTTGTGCAAAGGCCC
GCACAGTGGGTGGGAGGACAGTGCTGGGGAACTGAAAGAAGGCCAGCGCT
AGGCTGAGTCTCAAACATCTGCACTTTCTCC
PAN3

B_SL220
FLT3
TGAGTAAAAGAAGGTGGAGAATGGAAATTGGTG/ GTAAGACACAAAAAAAAAGTTTTGGTTTGC
AGGCTGAGTCTCAAACATCTGCACTTTCTCC
PAN3

B_SL234
FLT3
ATACACTGCTAGTGGGAGTGGAAATTGGTG/ GTAAGACACAAAAAAAAAGTTTTGGTTTGC
AGGCTGAGTCTCAAACATCTGCACTTTCTCC
PAN3
Supplementary Figure 7. Genetic mapping of all deletions at the 13q12.2 locus and gene expression. (A) Mapping of deletions at 13q12.2 locus identified by capture-based NGS. Deletions sparing FLT3 or not are represented in black and red, respectively. The arrows represent the direction of transcription. (B) Expression analysis of CDX2, URAD, FLT3, and PAN3 according to del13q12.2 status (n=131). Gene expression was quantified by RNA-seq (log2 of counts normalized using DESeq2’s median of ratios) and comparison analysis was performed by the Wilcoxon rank-sum test. (C) Dot-plot of expression data of CDX2 and FLT3 genes based on RNA-seq data according to del13q12.2 status (n=131)
Supplementary Figure 8. HOX genes expression. (A) Hierarchical clustering of the RNAseq cohort according to the expression of CDX2 and HOX genes. (B) Expression analysis of MEIS1, HOXA9 and HOXA10. Gene expression was quantified by RNA-seq (log2 of counts normalized using DESeq2’s median of ratios) and comparison analysis was performed by the Wilcoxon rank-sum test.
Supplementary Figure 9. Outcome analyses of B-ALL patients in the GRAALL2005/2014 trials according to oncogenic subtypes (A) Cumulative incidence of relapse (B) Overall survival.
Supplementary References

1. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*. 2013;29(1):15–21.
2. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. *BMC Bioinformatics*. 2008;9:559.
3. Hay SB, Ferchen K, Chetal K, Grimes HL, Salomonis N. The Human Cell Atlas bone marrow single-cell interactive web portal. *Exp Hematol*. 2018;68:51–61.
4. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. *Bioinformatics*. 2009;25(16):2078–2079.
5. Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. *Genome Res*. 2012;22(3):568–576.
6. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res*. 2010;38(16):e164.
7. Passet M, Boissel N, Sigaux F, et al. PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome. *Blood*. 2019;133(3):280–284.
8. Chaumeil J, Augui S, Chow JC, Heard E. Combined immunoﬂuorescence, RNA ﬂuorescent in situ hybridization, and DNA ﬂuorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation. *Methods Mol Biol*. 2008;463:297–308.
9. Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. *J Immunol*. 2005;174(10):6477–6489.
10. Clappier E, Gerby B, Sigaux F, et al. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. *J Exp Med*. 2011;208(4):653–61.
11. Heinz S, Benner C, Spann N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Mol Cell*. 2010;38(4):576–589.
12. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. *Curr Protoc Mol Biol*. 2015;109:21 29 1-21 29 9.
13. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. *Nat Methods*. 2013;10(12):1213–1218.
14. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods*. 2012;9(4):357–359.
15. Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq (MACS). *Genome Biol*. 2008;9(9):R137.
16. Karasu N, Sexton T. 4C-Seq: Interrogating Chromatin Looping with Circular Chromosome Conformation Capture. *Methods Mol Biol*. 2021;2157:19–34.
17. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol*. 2009;10(3):R25.
18. Ben Zouari Y, Platania A, Molitor AM, Sexton T. 4See: A Flexible Browser to Explore 4C Data. *Front Genet*. 2019;10:1372.
19. Geeven G, Teunissen H, de Laat W, de Wit E. peakC: a flexible, non-parametric peak calling package for 4C and Capture-C data. *Nucleic Acids Res*. 2018;46(15):e91.
20. Heigwer F, Kerr G, Boutros M. E-CRISP: fast CRISPR target site identification. *Nat Methods*. 2014;11(2):122–123.
21. Gachet S, El-Chaar T, Avran D, et al. Deletion 6q Drives T-cell Leukemia Progression by Ribosome Modulation. *Cancer Discov*. 2018;8(12):1614–1631.
22. Hesse JE, Lieber MR, Mizuuchi K, Gellert M. V(D)J recombination: a functional definition of the joining signals. *Genes Dev*. 1989;3(7):1053–1061.
23. Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. *Bioinformatics*. 2011;27(7):1017–1018.