Coupled dark energy model inspired from general conformal transformation

Wittaya Thipaksorn, Stharporn Sapa, and Khampee Karwan

1The Institute for Fundamental Study “The Tah Poe Academia Institute”, Naresuan University, Phitsanulok 65000, Thailand
2Northern College, Tak 63000, Thailand
3Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand

We study the coupled dark energy model constructed from the general conformal transformation in which the coefficient of the conformal transformation depends on both the scalar field and its kinetic term. Under this conformal transformation, the action for subclass of degenerate higher-order scalar-tensor (DHOST) theories is related to the Einstein-Hilbert action. The evolution of the background universe has the scaling fixed point which corresponds to acceleration of the universe at late time. For the choices of parameters which make the late-time scaling point stable, the fixed point corresponding to φ-matter-dominated-era (φMDE) is a saddle point, and the universe can evolve from radiation dominated epoch through φMDE before reaching the scaling point at late time with the cosmological parameters which satisfy the observational bound. During the φMDE, the effective equation of state parameter is slightly positive, so that one of possible mechanisms for alleviating the H_0 tension can be achieved. In this coupled dark energy model, the effective gravitational coupling for dark matter perturbations on small scales can be smaller than that in the ΛCDM model. Therefore a growth rate of the dark matter perturbations is suppressed compared with the ΛCDM model, which implies that the $σ_8$ tension could be alleviated.

Keywords: coupled dark energy model, general conformal transformation, evolution of the background universe, growth of the matter density perturbations

I. INTRODUCTION

One of challenges in cosmology is to explain the cosmic acceleration at late time which could be a consequence of unknown forms of dark energy or deviation from Einstein gravity on large scales [1-6]. To avoid the cosmological constant problem due to extremely large difference of the value of cosmological constant from theoretical predictions and from observations, dark energy should be dynamical energy component. However, the dynamical dark energy encounters the problem why the...
energy density of dark energy is comparable with that for dark matter at late time even though they evolve differently. This problem of dark energy is the coincidence problem which could be alleviated if there are attractors corresponding to the cosmic acceleration at late time \[7, 8\]. Such attractors can exist under the assumption that dark energy is coupled to cold dark matter (CDM) \[9-12\].

Possible models of coupled dark energy are inspired from the frames transformation in theories of gravity. The interaction between dark energy and CDM can be inspired from the conformal transformation \[13-17\] and disformal transformation \[18-26\]. When the transformation coefficient depends on the scalar field only, the coupling due to conformal transformation leads to a coupling between field and energy density of CDM which corresponds to a energy transfer between the dark components \[9, 27\]. For the coupling from disformal transformation, the velocity perturbations and the time derivative of density perturbation in CDM can be eliminated from the effective coupling term in the evolution equation on small scales. As a result, the effective coupling term depends only on the perturbations in energy density of CDM similar to the coupling from the conformal transformation \[28\].

The effects of the disformal coupling appear at the background level through the modification of the cosmic expansion and the coefficient of the perturbed coupling term. The growths of the matter perturbations on small scales for these two types of coupled dark energy models are higher than that for ΛCDM model \[28, 29\].

The interaction between the dark components can also be arisen from a coupling between the field derivative $\partial_{\mu}\phi$ and a CDM four velocity u^μ in the action \[30-40\]. This form of the coupling can lead to a pure momentum transfer between the dark components. Interestingly, it can reduce the effective gravitational coupling relevant to the growth of CDM perturbations, and therefore a growth of matter perturbations on small scales is suppressed \[30, 31, 36, 41\].

The suppression of the matter growth rate in this class of coupled dark energy models potentially alleviates σ_8 tension, where σ_8 is the amplitude of matter perturbation inside comoving radius $8h^{-1}\text{Mpc}$, $h = H_0/100$ and H_0 is the Hubble expansion rate at present. Even though the ΛCDM model satisfies the observational data well, it suffers from the tension of the σ_8 between the Cosmic Microwave Background (CMB) and shear lensing analyses \[42, 43\]. The estimated σ_8 from CMB data is larger than that from shear lensing analyses. Since the σ_8 tension arises in ΛCDM model, the σ_8 tension could be solved if the growth of matter perturbations is suppressed compared with that for ΛCDM.

The other interesting feature of the coupled dark energy models is the existence of the scaling fixed points \[30, 44\]. These points can describe the accelerated expansion of the universe at late time as well as the matter dominated epoch. The scaling point that can represent the matter dominated epoch is the ϕMDE point in which there is a small density fraction of dark energy during matter domination.
The coincidence problem could be alleviated if the universe can evolve from the radiation dominated epoch through the \(\phi \text{MDE} \) which should be a saddle point and then reach the attractor corresponding to cosmic acceleration at late time.

The existence of the \(\phi \text{MDE} \) potentially resolves the \(H_0 \) tension as follows. The \(H_0 \) tension is the discrepancy of the estimated \(H_0 \) from CMB [45] and that from the local measurements of the expansion rate of the universe. The \(H_0 \) from CMB data analysis which is based on \(\Lambda \text{CDM} \) is lower than that from local measurements by more than 3\(\sigma \) [46]. Hence, to solve the \(H_0 \) tension, the dynamics of the universe should be different from that for \(\Lambda \text{CDM} \). The resolutions from modification of the late-time expansion of the universe [47–49] are tightly constrained by baryon acoustic oscillations (BAO) [50–52]. Potential resolution of the \(H_0 \) tension is based on the modification of the dynamics of the universe during the last scattering epoch and matter domination by early dark energy [53–55]. In these models, the sound horizon at the last scattering is reduced and therefore the CMB acoustic peaks shift to smaller angular scales. Then the location of the acoustic peaks can shift to the larger angular scales and match with the data when \(H_0 \) increases [55]. Possible other resolutions can be found in [56, 57].

For coupled dark energy models with \(\phi \text{MDE} \), a small fraction of energy density for dark energy during the \(\phi \text{MDE} \) rises the effective equation of state parameter \(w_{\text{eff}} = \Omega_{\phi} w_{\phi} = \Omega_{\phi} \) to slightly positive. Here, \(\Omega_{\phi} \) and \(w_{\phi} \) are the density parameter and equation of state parameter of scalar-field dark energy. The positive effective equation of state parameter during matter domination can also shift the CMB acoustic peaks to smaller angular scales leading to a higher \(H_0 \) [30]. However, the cosmic evolution from radiation domination through \(\phi \text{MDE} \) towards acceleration epoch cannot be achieved in the models of coupled dark energy inspired from the conformal transformation [44]. This sequence of evolutions can be realized in the coupled dark energy model in which the coupling term consists of \(Z \equiv u^\mu \partial_\mu \phi \) [30].

From the above discussion, we see that the coupled dark energy model containing \(Z \) in the coupling term could solve both \(H_0 \) and \(\sigma_8 \) tensions. This inspires us to study the coupled dark energy model from the general conformal transformation, in which the coefficient of the transformation depends on both the scalar field and its kinetic term. We are interested in whether the \(H_0 \) and \(\sigma_8 \) tensions can be alleviated in this model. Different from the cases of usual conformal and disformal couplings, the time derivative of the density perturbations in CDM appears in the effective coupling term for this model of coupled dark energy. Hence, this could differently affect the growth of matter perturbations on small scales.

This paper is organized as follows. In Sec. II, we study the coupling between dark energy and dark matter inspired by the general conformal transformation in which the conformal coefficient depends
both on scalar field and its kinetic term. We investigate the evolution of background universe in Sec. III and study the growth of matter perturbations on small scales in IV. We give the conclusion in V.

II. COUPLED DARK ENERGY MODEL FROM GENERAL CONFORMAL TRANSFORMATION

Let us consider the general conformal transformation defined by

\[
\bar{g}_{\mu\nu} = C(X, \phi)g_{\mu\nu},
\]

where the coefficient of the conformal transformation \(C\) depends on the scalar field \(\phi\) and its kinetic term \(X \equiv -\tilde{g}^{\alpha\beta}\partial_{\alpha}\phi\partial_{\beta}\phi/2\). This form of the conformal transformation transforms the Einstein-Hilbert action to the action of DHOST theories in the class where the propagation speed of gravitational waves is equal to speed of light and gravitational waves do not decay to dark energy perturbations \([58, 59]\). From the above metric transformation, we have

\[
\bar{g}^{\mu\nu} = \frac{1}{C(X, \phi)}g^{\mu\nu}.
\]

In order to construct the coupled dark energy model inspired from the conformal transformation, we suppose that the dark energy is in the form of a scalar field \(\phi\) involving the conformal transformation, and therefore the interaction between the dark energy and the dark matter arises when the Lagrangian of the dark matter depends on the metric \(\bar{g}_{\mu\nu}\) defined in Eq. (1). Hence, the model of coupled dark energy can be described by the action in which the gravitational part of the action is written in terms of the metric \(g_{\mu\nu}\) while the part of the coupled matter is written in terms of \(\bar{g}_{\mu\nu}\) as

\[
S = \int d^4x \left[\sqrt{-g} \left(\frac{1}{2} R + P(X, \phi) + \mathcal{L}_M(g_{\mu\nu}) \right) + \sqrt{-\bar{g}} \mathcal{L}_c(\bar{g}_{\mu\nu}, \psi, \psi_{\mu}) \right],
\]

where we have set \(1/\sqrt{8\pi G} = 1\), \(R\) is the Ricci scalar, \(g\) is the determinant of the metric \(g_{\mu\nu}\), \(P(X, \phi) \equiv X - V(\phi)\), \(V(\phi)\) is the potential of the scalar field, \(\mathcal{L}_M\) is the Lagrangian of ordinary matter including baryon and radiation, \(\mathcal{L}_c\) is the Lagrangian of dark matter, \(\psi\) is the matter field and \(\psi_{\mu}\) is the partial derivative of the field. Varying this action with respect to \(g_{\alpha\beta}\), we obtain the Einstein equation in the form

\[
G^{\alpha\beta} = T^{\alpha\beta}_\phi + T^{\alpha\beta}_c + T^{\alpha\beta}_M,
\]

where \(G^{\alpha\beta}\) is the Einstein tensor computed from \(g_{\mu\nu}\), and the energy-momentum tensors for scalar field and matter are defined in unbarred frame as

\[
T^{\mu\nu}_\phi = \frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}P(\phi, X))}{\delta g_{\mu\nu}}, \quad T^{\mu\nu}_M = \frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}\mathcal{L}_M)}{\delta g_{\mu\nu}}, \quad T^{\mu\nu}_c = \frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}\mathcal{L}_c)}{\delta g_{\mu\nu}}.
\]
From these definitions of the energy-momentum tensor and $\nabla_{a} G^{\alpha\beta} = 0$ as well as the conservation of the energy-momentum tensor for the ordinary matter, we have $\nabla_{a} (T_{\phi}^{\alpha\beta} + T_{c}^{\alpha\beta}) = 0$. Here, ∇_{a} is the covariant derivative compatible with the metric $g_{\alpha\beta}$. However, we see that the energy-momentum tensors of dark energy and dark matter do not separately conserve because the Lagrangian of dark matter depends on field ϕ. Since the metric tensor does not depends on ψ, variation of the action with respect to ψ yields

$$\tilde{\nabla}_{a} T_{c}^{\alpha\beta} = 0,$$

where $\tilde{\nabla}_{a}$ is defined from barred metric. This implies the conservation of $T_{c}^{\alpha\beta}$ in the barred frame. The energy-momentum tensor in the barred frame is related to that in the unbarred frame defined in Eq. (6) through the relation

$$T_{c}^{\alpha\beta} = \sqrt{-\bar{g}} \frac{\delta \bar{g}_{\rho\sigma}}{\delta \bar{g}_{\alpha\beta}} \frac{2}{\sqrt{-\bar{g}}} \frac{\delta (\sqrt{-\bar{g}} L_{c})}{\delta \bar{g}_{\rho\sigma}} = \sqrt{-\bar{g}} \frac{\delta g_{\rho\sigma}}{\delta g_{\alpha\beta}} T_{c}^{\rho\sigma}.$$

(8)

Varying the action with respect to the field ϕ, we obtain the evolution equation for scalar field as

$$\nabla_{a} \nabla^{a} \phi - V_{,\phi} + Q = 0,$$

where a subscript $_{,\phi}$ denotes derivative with respect to the field ϕ. The coupling term Q in the above equation is a result from a variation of the dark matter action $\int d^{4}x \sqrt{-\bar{g}} L_{c}$ in Eq. (3) with respect to ϕ. The variation of this part of the action can be computed as

$$\delta \int d^{4}x \sqrt{-\bar{g}} L_{c} = \int d^{4}x \delta \phi \left\{ \frac{\sqrt{-\bar{g}}}{2} T_{c}^{\alpha\beta} C_{,\phi} g_{\alpha\beta} + \frac{1}{2} \nabla_{\sigma} \left(\sqrt{-\bar{g}} T_{c}^{\alpha\beta} g_{\alpha\beta} C_{,\phi} \phi^{(\sigma)} \right) \right\},$$

(10)

where the subscript $_{,X}$ denotes derivative with respect to X and $\phi^{(\sigma)} \equiv \partial^{\sigma} \phi$. Using Eq. (8), we have

$$\sqrt{-\bar{g}} T_{c}^{\alpha\beta} = C \sqrt{-\bar{g}} T_{c}^{\alpha\beta} - \frac{1}{2} C_{,X} \phi^{(\sigma)} \phi^{(\sigma)} \bar{g}_{\rho\sigma} T_{c}^{\rho\sigma}.$$

(11)

Applying $g_{\alpha\beta}$ to the both side of the above equation, and setting $T_{c} \equiv g_{\alpha\beta} T_{c}^{\alpha\beta}$, we can write the above equation as

$$\sqrt{-g} T_{c} = (C + C_{,X} X) \sqrt{-g} g_{\rho\sigma} T_{c}^{\rho\sigma},$$

(12)

which yields

$$\sqrt{-g} g_{\alpha\beta} T_{c} = \frac{\sqrt{-g} T_{c}}{C + C_{,X} X}.$$

(13)

Using this relation, we can write Eq. (10) as

$$\delta \int d^{4}x \sqrt{-g} L_{c} = \int d^{4}x \sqrt{-g} \delta \phi \left\{ \frac{C_{,\phi}}{2(C + C_{,X} X)} T_{c} + \frac{1}{2} \nabla_{\beta} \left(\frac{C_{,X}}{C + C_{,X} X} \phi^{(\beta)} T_{c} \right) \right\}. $$

(14)
Combining this equation with Eq. (9), we get
\[\nabla_a \nabla^a \phi - V_\phi = -\Gamma T_c - \nabla_\beta \left(\Xi \phi T_c \rho \right) \equiv -Q, \]
where \(\Gamma \equiv C_\phi / [2(C + C_X X)] \) and \(\Xi \equiv C_X / [2(C + C_X X)] \). Eq. (15) can be written in terms of the energy-momentum tensor as
\[\nabla_a T^a_{\beta \phi} = -Q \phi, \]
where \(T^a_{\beta \phi} \) is the energy-momentum tensor of the scalar field. According to the conservation of the total energy-momentum tensor, the above equation gives
\[\nabla_a T^a_{\beta c} = Q \phi. \]
In the case of a conformal transformation in which the conformal coefficient \(C \) depends only on the field \(\phi \), we have \(C_X = 0 \) and therefore Eq. (15) reduces to the equation for the case of usual conformal transformation. When \(C_X \) is not vanish, the coupling term \(Q \) contains coupling between the field derivative and the energy density as well as between the field derivative and the derivative of energy density of CDM. The latter form of the coupling can lead to different effects on cosmic evolution and the growth of matter perturbations compared with the usual conformal coupling case.

III. EVOLUTION OF THE BACKGROUND UNIVERSE

In this section, we study effects of the interaction between dark energy and dark matter due to the general conformal transformation on the evolution of the background universe. Using the Friedmann-Lemaître-Robertson-Walker (FLRW) metric,
\[ds^2 = -dt^2 + a^2 \delta_{ij} dx^i dx^j, \]
where \(\delta_{ij} \) is the Kronecker delta, and supposing that the scalar field is homogeneous and other matter components in the universe are described by perfect fluid, Eqs. (15) and (17) become
\[\ddot{\phi} + 3H \dot{\phi} + V_\phi = \bar{Q}, \]
and
\[\dot{\rho}_c + 3H \rho_c = -\bar{Q} \dot{\phi}. \]
Here, \(\rho_c \) is the energy density of dark matter, \(H \equiv \dot{a}/a \) is the Hubble parameter, a dot denotes a derivative with respect to time \(t \), and
\[\bar{Q} = -\Gamma \rho_c + (\dot{\phi} + 3H \phi) \Xi \rho_c + 2\Xi \dot{\phi} \rho_c + 2\Xi X \dot{\phi} \rho_c + \Xi \phi \rho_c. \]
We see that the interaction term \bar{Q} in the above equation depends on $\ddot{\phi}$ and $\dot{\rho}_c$. Hence, we combine Eqs. (19) and (20) to write the evolution equations for ϕ and ρ_c in the forms

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi} = Q_0, \quad \text{and} \quad \dot{\rho}_c + 3H\rho_c = -\dot{\phi}Q_0.$$ \hspace{1cm} (22)

Here, we define the effective coupling term as

$$\tilde{Q}_0 \equiv \frac{Q_0}{\rho_c} = \frac{\Theta V\phi + 3H\Theta\phi - 2X\Xi\phi + \Gamma}{\Theta\rho_c - 2X\Xi - 1},$$ \hspace{1cm} (23)

where $\Theta \equiv \Xi + 2X\Xi X$. Since the energy-momentum tensors of baryon and radiation are separately conserve, in the background universe the conservation of these energy-momentum tensors yields

$$\dot{\rho}_b = -3H\rho_b, \quad \text{and} \quad \dot{\rho}_r = -4H\rho_r,$$ \hspace{1cm} (24)

where ρ_b and ρ_r are the energy density of baryon and radiation.

A. Autonomous equations

Let us compute the autonomous equations by defining the dimensionless dynamical variables as

$$x = \frac{\phi}{\sqrt{6H}}, \quad y = \frac{V}{3H^2}, \quad \Omega_c = \frac{\rho_c}{3H^2},$$

$$\Omega_b = \frac{\rho_b}{3H^2}, \quad \Omega_r = \frac{\rho_r}{3H^2},$$ \hspace{1cm} (25)

and the dimensionless functions as

$$z = \frac{C_x}{C}H^2, \quad \lambda = \frac{V_{,\phi}}{V},$$

$$\gamma = \Gamma, \quad \chi = \Xi H^2.$$ \hspace{1cm} (26)

In terms of the above dimensionless variables, the Friedmann equation gives

$$1 = x^2 + y + \Omega_c + \Omega_b + \Omega_r.$$ \hspace{1cm} (28)
From the above dimensionless variables, we obtain autonomous equations from Eq. (22) as

\[x' = -x \frac{H'}{H^2} + \frac{\sqrt{6} (r + \lambda y)}{6x^3 + 3 \sqrt{6} (r + \lambda y) + 2 \lambda y z} \]

\[x' = \frac{\sqrt{6} \lambda y + 2 \lambda y z - 2 y \frac{H'}{H^2}}{3} \]

\[z' = 6x \left(\frac{C_x}{C} \right) \left(\frac{x H}{H^2} + x + \sqrt{6} \frac{C_x}{C} \phi + 2z \frac{H}{H^2} \right) \]

\[\Omega_x' = -2 \Omega_x \frac{H}{H^2} - \frac{36x^3 (3x^2 z + 1) (6x + \sqrt{6} \lambda y \chi_x)}{36x^2 \Omega_x (3x^2 z + 1) \chi_x + 3z \Omega_z - 12x^2 z - 2} \]

\[- \frac{12 \sqrt{6} (3x^2 z + 1) \chi_x + 18 \lambda x^2 + 6}{36x^2 \Omega_x (3x^2 z + 1) \chi_x + 3z \Omega_z - 12x^2 z - 2} \]

\[- \frac{9 \left(12 (3x^4 + x^2) \chi_x + 3z \Omega_z - 12x^2 z - 2 \right) \Omega_x^2}{36x^2 \Omega_x (3x^2 z + 1) \chi_x + 3z \Omega_z - 12x^2 z - 2} \]

where a prime denotes a derivative with respect to \(N = \ln a \)

\[\frac{H}{H^2} = \frac{1}{2} \left(\Omega_x - 2x^2 + 4y - 4 \right) \]

From Eq. (24), we get

\[\Omega_b' = -3 \Omega_b - 2 \frac{H}{H^2} \Omega_b \]

\[\Omega_r' = -4 \Omega_r - 2 \frac{H}{H^2} \Omega_r \]

Let us consider the denominator of the terms in Eqs. (29) and (32). The denominators of all terms except the terms which are proportional to \(\frac{H}{H^2} \) are the same and can vanish when

\[\chi_x = \frac{3z \Omega_x - 12x^2 z - 2}{36x^2 \Omega_x (3x^2 z + 1)} \]

This suggests that \(x' \) and \(\Omega_x' \) can be infinite when the above equation is satisfied. To ensure that the background universe properly evolves, the situations in which the above equation is satisfied have to be avoided.

To perform further analysis, we use the coefficient \(C \) in the simple form that could reveal main features of this form of coupling. Since the coupling terms in the evolution equations depend on derivatives of \(C \) with respect to \(\phi \) and \(X \), the coefficient \(C \) should be a polynomial function of \(X \). Moreover, the following autonomous equations can be a complete set of equations if the coupling term \(\Omega_0 \) given in Eq. (23) does not depend on \(\phi \). Hence, we choose the potential of the scalar field and coefficient \(C \) in the forms

\[V(\phi) = V_0 e^{\lambda \phi}, \quad C(\phi, X) = C_0 e^{\lambda_1 \phi} \left[1 + e^{\lambda_2 \phi} \left(\frac{X}{\Lambda_0} \right)^{\lambda_3} \right] \]
where $C_0, \lambda_1, \lambda_2$ and λ_3 are dimensionless constants, while V_0 and Λ_0 are constants with the same dimension as X. According to Eq. (27), the above form of the potential implies that λ is a dimensionless constant. For this form of C, Eq. (36) gives

$$\lambda_3 = \frac{27x^2z^2\Omega_c + 3z\Omega_c + 36x^4z^2 + 18x^2z + 2}{6z\Omega_c}. \quad (38)$$

For the case of positive λ_3, we get $z > 0$ according to the definition in Eq. (27). This suggests that the above equation can be satisfied if $\lambda_3 > 0$. This implies that x' and Ω'_{c} can be infinite at some time during the evolution of the universe if λ_3 is positive. Based on the numerical investigation, the divergence of x' and Ω'_{c} can be avoided if $\lambda_3 < 1$.

B. Fixed points

Since we are interested in the fixed points corresponding to the matter dominated epoch and the late-time universe, we ignore the contribution from the radiation energy density in the dynamical analysis. To compute the fixed points, we also drop the contribution from baryon because Eq. (34) has fixed points at $\Omega_b = 0$ and at $\dot{H}/H^2 = -3/2$. The first point can be reached in the future while the second point corresponds to the matter dominated epoch. The second point is not exactly compatible with ϕMDE because the ϕMDE requires $\dot{H}/H^2 = -3(1 + w_{\text{eff}})/2 \lesssim -3/2$ during matter domination. Hence, to study the ϕMDE point in the dynamical analysis, we drop the contribution from the baryon energy density. However, it will be shown in the numerical integration that the inclusion of baryon energy density does not forbid the existence of ϕMDE, because we still get $\Omega'_b \sim 0$ when $\dot{H}/H^2 \lesssim -3/2$.

Ignoring the contributions from radiation and baryon energy density, Eq. (28) gives

$$\Omega_c = 1 - x^2 - y. \quad (39)$$

Substituting this expression into Eq. (33), we get

$$\frac{\dot{H}}{H^2} = -\frac{3}{2} (x^2 - y + 1). \quad (40)$$

Setting $y' = 0$, Eq. (30) is satisfied by two solutions which correspond to the fixed points $y_c = 0$ and

$$\frac{\dot{H}}{H^2} = \frac{3}{2} \lambda x_c, \quad (41)$$

where the subscript c denote evolution at the fixed point.
1. Field dominated point and scaling point

We first consider the fixed point $y_c \neq 0$. We can compute y at the fixed point by matching Eq. (40) with Eq. (41) which yields

$$y_c = \sqrt{\frac{2}{3}} \lambda x_c + x_c^2 + 1. \tag{42}$$

Substituting Eqs. (39), (41) and (42) into Eqs. (29) and (31), then inserting resulting equations, and finally setting $x' = z' = 0$, we obtain the equations for the fixed points,

$$0 = -\sqrt{6} \lambda \lambda_3 + (\lambda \lambda_1 - 2 (\lambda^2 + 3)) \lambda_3 x_c + \sqrt{6} \lambda_3 (\lambda_1 - \lambda (9 z_c + 2)) x_c^2$$
$$+ 3 (-2 \lambda^2 \lambda_3^2 + (-5 \lambda^2 + \lambda_1 \lambda - 2 \lambda_2 \lambda - 18) \lambda_3 + \lambda \lambda_2) z_c x_c^3$$
$$+ 3 \sqrt{6} z_c (-2 \lambda_3 \lambda_2 + \lambda_2 + \lambda_3 (\lambda_1 - \lambda (2 \lambda_3 + 6 z_c + 5))) x_c^4 - 9 ((\lambda^2 + 12) \lambda_3 - 3 \lambda \lambda_2) z_c^2 x_c^5$$
$$+ 9 \sqrt{6} (3 \lambda_2 - \lambda \lambda_3) z_c^2 x_c^6, \tag{43}$$
$$0 = \frac{\sqrt{6}}{\lambda_3} (\lambda_2 + \lambda \lambda_3) x_c z_c (\lambda_3 - 3 x_c^2). \tag{44}$$

From Eq. (44), we can solve for z_c as

$$z_c = 0 \quad \text{and} \quad z_c = \frac{\lambda_3}{3 x_c^2}. \tag{45}$$

We concentrate on the second solution rather than $z_c = 0$ solution, because the $z_c = 0$ solution corresponds to the case where the kinetic dependence of C is negligible, i.e. $z = C_{x}/C = 0$. In addition to the above solutions, Eq. (44) is also satisfied by the condition $\lambda_2 + \lambda \lambda_3 = 0$. However, this case can be viewed as a special case of solutions in Eq. (45), so that we will not discuss this case in detail.

Inserting the second fixed point of z from the above equation into Eq. (45), we obtain two fixed points of variable x as

$$x_c = \left\{ \frac{-\lambda}{\sqrt{6}} \frac{\lambda_3 (2 \lambda_3 + 1)}{\lambda_1 + \lambda_2 - \lambda (3 \lambda_3 + 2)} \right\}. \tag{46}$$

Inserting x_c from above equation into Eq. (42), we obtain

$$y_c = \left\{ 1 - \frac{\lambda^2}{6} \right\} + \frac{6 (2 \lambda_3 + 1)^2}{(\lambda_1 + \lambda_2 - \lambda (3 \lambda_3 + 2))^2} + \frac{2 \lambda (2 \lambda_3 + 1)}{\lambda_1 + \lambda_2 - \lambda (3 \lambda_3 + 2)}. \tag{47}$$

From x_c and y_c, we can compute the density parameter and equation of state of scalar field at the fixed points from the definitions $\Omega_\phi \equiv x^2 + y$ and $w_\phi \equiv (x^2 - y)/\Omega_\phi$ as

$$\Omega_{\phi c} = \frac{12 (2 \lambda_3 + 1)^2}{(\lambda_1 + \lambda_2 - \lambda (3 \lambda_3 + 2))^2} + \frac{2 \lambda (2 \lambda_3 + 1)}{\lambda_1 + \lambda_2 - \lambda (3 \lambda_3 + 2)} + 1, \tag{48}$$
$$w_{\phi c} = \frac{1}{3} (\lambda^2 - 3), -\frac{\lambda_1 + \lambda_2 + \lambda \lambda_3}{(\lambda_1 + \lambda_2 - \lambda (3 \lambda_3 + 2)) \left(\frac{12 (2 \lambda_3 + 1)^2}{(\lambda_1 + \lambda_2 - \lambda (3 \lambda_3 + 2))^2} + \frac{2 \lambda (2 \lambda_3 + 1)}{\lambda_1 + \lambda_2 - \lambda (3 \lambda_3 + 2)} + 1 \right)}. \tag{49}$$
We see that the first pair of \((x_c, y_c)\) corresponds to the field dominated point, while the second pair corresponds to the scaling point. From the above equations, we can write \(\lambda\) in terms of \(w_{\phi c}\) for the case of field dominated point as

\[
\lambda = \sqrt{3(w_{\phi c} + 1)},
\]

which is the same as that for the field-dominated solution for uncoupled quintessence with exponential potential. For the scaling point, we write \(\lambda\) and \(\lambda_1\) in terms of \(\Omega_{\phi c}\) and \(w_{\phi c}\) by solving Eq (48) and (49) for \(\lambda\) and \(\lambda_1\). The results are

\[
\lambda = \pm \sqrt{3(w_{\phi c} \Omega_{\phi c} + 1)} \sqrt{(w_{\phi c} + 1) \Omega_{\phi c}},
\]

\[
\lambda_1 = -\lambda_2 \pm \frac{\sqrt{3} \left(-3\lambda_3 w_{\phi c} \Omega_{\phi c} - 2w_{\phi c} \Omega_{\phi c} + \lambda_3\right)}{\sqrt{(w_{\phi c} + 1) \Omega_{\phi c}}},
\]

Using the above equations, we can compute the values of \(\lambda\) and \(\lambda_1\) from \(\lambda_2, \lambda_3, w_{\phi c}\) and \(\Omega_{\phi c}\). The values of \(w_{\phi c}\) and \(\Omega_{\phi c}\) can be specified based on observational constraints, i.e., if we suppose that the scaling point corresponds to the late-time universe, we can set \(w_{\phi c} = -0.99\) and \(\Omega_{\phi c} = 0.7\). This suggests that to perform further analysis, we need to specify only the parameters \(\lambda_2\) and \(\lambda_3\) instead of all parameters of the model \(\lambda, \lambda_1, \lambda_2\) and \(\lambda_3\). As a result, the cases where the fixed points do not satisfy the observational constraints can be excluded in our analysis. Inserting \(\lambda\) and \(\lambda_1\) from the above equations into Eqs. (46) and (47), we obtain

\[
x_c = \pm \sqrt{\frac{1}{2} \Omega_{\phi c} (1 + w_{\phi c})} \quad \text{and} \quad y_c = \frac{1}{2} \Omega_{\phi c} (1 - w_{\phi c}).
\]

2. Kinetic dominated point and \(\phi\)MDE point

We now consider the point \(y_c = 0\). For this point, Eq. (40) gives

\[
\frac{\dot{H}}{H^2} = -\frac{3}{2} \left(x_c^2 + 1\right).
\]

Inserting \(y_c = 0\) and Eq. (54) into Eqs. (29) and (31) and performing the same procedures as those for Eqs. (43) and (44), we obtain

\[
0 = \left(1 - x_c^2\right) \left[\sqrt{6}\lambda_1 \lambda_3 + 3\lambda_3 \left((6\lambda_3 - 3) z_c + x_c + 3\sqrt{6} (-2\lambda_3 \lambda_2 + \lambda_2 + \lambda_1 \lambda_3) z_c x_c^2
\right.

+ 9\lambda_3 z_c (2\lambda_3 - 9 z_c + 5) x_c^3 + 27\sqrt{6}\lambda_2 z_c^2 x_c^4 + 27\lambda_3 z_c^2 x_c^5\right],
\]

\[
0 = -\frac{1}{\lambda_3} z_c \left(3\lambda_3 \left(x_c^2 + 1\right) - \sqrt{6}\lambda_2 x_c\right) \left(\lambda_3 - 3x_c^2 z_c\right).
\]

In the following consideration, we use a superscript \((\phi)\) to denote the quantities corresponding to the fixed point \(y_c = 0\), which will be seen in the subsequent considerations that this point can play a role
of ϕMDE. From Eq. (56), we obtain z at the fixed point as

$$z_c^{(\phi)} = 0 \quad \text{and} \quad z_c^{(\phi)} = \frac{\lambda_3}{3(x_c^{(\phi)})^2},$$

(57)

which are similar to the case of scaling point. Substituting the second solution for $z_c^{(\phi)}$ into Eq. (56), we can solve for $x_c^{(\phi)}$ as

$$x_c^{\text{kinetic}} = \pm 1, \quad \text{and} \quad x_c^{(\phi)} = -\frac{\lambda_1 + \lambda_2}{\sqrt[6]{3(3\lambda_3 + 2)}} + \frac{\sqrt[6]{\lambda_1^2 + 2\lambda_2\lambda_1 + \lambda_2^2 + 6\lambda_3 (3\lambda_3 + 2)}}{\sqrt[6]{3(3\lambda_3 + 2)}}. \quad (58)$$

The first two solutions are kinetic-dominated points, while the other solutions correspond to ϕMDE points. We insert $x_c^{(\phi)}$ into the definition of Ω_{ϕ}, we get the expression for Ω_{ϕ} at $y_c = 0$ in the form

$$\Omega_{\phi_c}^{(\phi)} = \left[1, 1, \frac{\left(\lambda_1 + \lambda_2 + \sqrt[6]{\lambda_1^2 + 2\lambda_2\lambda_1 + \lambda_2^2 + 6\lambda_3 (3\lambda_3 + 2)}}{6(3\lambda_3 + 2)}} \right]^2,$$

$$\left(\frac{\lambda_1 + \lambda_2 - \sqrt[6]{\lambda_1^2 + 2\lambda_2\lambda_1 + \lambda_2^2 + 6\lambda_3 (3\lambda_3 + 2)}}{6(3\lambda_3 + 2)}} \right]^2. \quad (59)$$

Since $y = 0$ at these fixed points, we get $w_{eff}^{(\phi)} = 1$. Hence, the effective equation of state parameter $w_{eff} = \Omega_{\phi} w_{\phi} = \Omega_{\phi_c}^{(\phi)}$ is slightly positive during the ϕMDE. Similar to scaling fixed point, we write λ_1 in terms of $\Omega_{\phi_c}^{(\phi)}, \lambda_2$ and λ_3 using Eq. (59) as

$$\lambda_1^{(\phi)} = -\lambda_2 \mp \sqrt{\frac{3}{2} \left[3\lambda_3 \Omega_{\phi_c}^{(\phi)} + 2\Omega_{\phi_c}^{(\phi)} - \lambda_3 \right]} \quad (60)$$

In the following consideration, we use the subscripts $-$ and $+$ to indicate the selected sign in the expressions which contain \pm or \mp. As an example, if we apply this notation to Eq. (58), we get

$$x_c^{(\phi)} = -\frac{\lambda_1 + \lambda_2}{\sqrt[6]{3(3\lambda_3 + 2)}} + \frac{\sqrt[6]{\lambda_1^2 + 2\lambda_2\lambda_1 + \lambda_2^2 + 6\lambda_3 (3\lambda_3 + 2)}}{\sqrt[6]{3(3\lambda_3 + 2)}}. \quad (61)$$

Using such notation, the possible expressions of λ and λ_1 for the scaling points can be expressed as follows: according to Eqs. (51) and (52), there are two possible forms of λ and λ_1 such that $(\lambda, \lambda_1) = (\lambda_-, \lambda_{1-})$ and $(\lambda_+, \lambda_{1+})$. For ϕMDE point, Eq. (58) shows that there are two possible forms of $x_c^{(\phi)}$, i.e., $x_c^{(\phi)}$ and $x_c^{(\phi)+}$. Each of them leads to two possible choices of λ_1 given in Eq. (60).

C. Stability

We now consider stability of the fixed points considered in the previous section by linearizing the autonomous equations (29) - (31) around the fixed points. Before performing the linearization, we set $\Omega_c = 1 - x^2 - y$ and use C from Eq. (37). The linearized equations can be written in the matrix.
form, and the stability of the deviation around the fixed points can be estimated from the signs of the eigenvalues of the Jacobian matrix defined by

$$J_{ij} = \left. \frac{\partial x'_i}{\partial x'_j} \right|_{\text{fixed point}},$$

where $x_i = (x, y, z)$.

1. **Field dominated point**

We first consider the field dominated point in which x and y at fixed point are given by the first solution in Eqs. (46) and (47), while z at the fixed point is the second solution in Eq. (45). The eigenvalues for this case are

$$\mu_1 = 3\lambda_3(1 + w_{\phi c}) + \lambda_2 \sqrt{3(1 + w_{\phi c})},$$

$$\mu_2 = -\frac{3}{2} (1 - w_{\phi c}),$$

$$\mu_3 = \frac{\lambda_3 (9w_{\phi c} - 3) + 6w_{\phi c} - \sqrt{3}(\lambda_1 + \lambda_2) \sqrt{1 + w_{\phi c}}}{4\lambda_3 + 2},$$

where we have expressed λ in terms of w_{ϕ} at the fixed point using Eq. (50). One can check that the field dominated point is stable when both of the following conditions are satisfied

$$\lambda_3 < -\frac{\lambda_2}{\sqrt{3}c_1},$$

$$\lambda_1 \begin{cases} < -\frac{2w_{\phi c}(2\sqrt{3}\lambda_3 - 3\sqrt{w_{\phi c} + 1})}{\sqrt{3}(w_{\phi c} + 1)} & \text{for } \lambda_3 < -1/2 \\ > -\frac{2w_{\phi c}(2\sqrt{3}\lambda_3 - 3\sqrt{w_{\phi c} + 1})}{\sqrt{3}(w_{\phi c} + 1)} & \text{for } \lambda_3 > -1/2 \end{cases}.$$

Since μ_2 is always negative when $w_{\phi c} < 1$ which is the case for scalar field with standard kinetic term, the field dominated points cannot be unstable.

2. **Scaling fixed point**

For the scaling point in which the expressions for x_c and y_c are given in Eq. (53), the eigenvalues are

$$\mu_1 = 3\lambda_3 \left(1 + w_{\phi c}\Omega_{\phi c} \right) + \lambda_2 \sqrt{3\Omega_{\phi c}(1 + w_{\phi c})},$$

$$\mu_2 = -\frac{3}{4} (1 - w_{\phi c}\Omega_{\phi c}) + 3\sqrt{r_a/r_b},$$

and

$$\mu_3 = -\frac{3}{4} (1 - w_{\phi c}\Omega_{\phi c}) - 3\sqrt{r_a/r_b},$$

where

$$r_a = \lambda_3 \left(w_{\phi c}^2 (2w_{\phi c} + 1) \Omega_{\phi c}^2 + (-3w_{\phi c}^2 - 18w_{\phi c} + 16) \Omega_{\phi c}^2 + (16w_{\phi c} - 15) \Omega_{\phi c} + 1 \right)$$

$$+ \Omega_{\phi c} \left(w_{\phi c}^2 (w_{\phi c} + 1) \Omega_{\phi c}^2 - 2 \left(w_{\phi c}^2 + 5w_{\phi c} - 4 \right) \Omega_{\phi c} + 9w_{\phi c} - 7 \right),$$

$$r_b = 16 \left(\lambda_3 \Omega_{\phi c} + 2\lambda_3 w_{\phi c}\Omega_{\phi c} + w_{\phi c}\Omega_{\phi c} + \Omega_{\phi c} + \lambda_3 \right).$$
FIG. 1: Plots of the real parts of μ_2 and μ_3 for scaling fixed point. In the plots, $w_{pc} = -0.99$ and $\lambda_2 = 1$. The lines I and II represent the real part of μ_2 while the lines III and IV represent the real part of μ_3. The lines I and III show the cases of $\Omega_{pc} = 0.65$ while the lines II and IV show the cases of $\Omega_{pc} = 0.95$.

In the above eigenvalues, we have written λ and λ_1 in terms of w_{pc} and Ω_{pc} using Eqs. (51) and (52). The fixed point x_{c+} and x_{c-} in Eq. (53) lead to the same μ_2 and μ_3 but different μ_1. The first eigenvalue can be negative when

$$\lambda_3 < \pm \frac{\lambda_2 \sqrt{3\Omega_{pc}(1 + w_{pc})}}{3(1 + w_{pc}\Omega_{pc})}. \quad (69)$$

The eigenvalues μ_2 and μ_3 in Eq. (68) can be infinite if $r_b = 0$ which occurs when

$$\lambda_3 = \lambda_{3b} = -\frac{(w_{pc} + 1) \Omega_{pc}}{2w_{pc}\Omega_{pc} + \Omega_{pc} + 1}. \quad (70)$$

The real parts of both μ_2 and μ_3 can be ensured to be negative if the ratio $r_a/r_b < 0$. To check the sign of this ratio, we also compute λ_3 at which $r_a = 0$. It can be shown that $r_a = 0$ when

$$\lambda_3 = \lambda_{3a} = -\frac{\Omega_{pc} \left(w_{pc}^2 (w_{pc} + 1) \Omega_{pc}^2 - 2 \left(w_{pc}^2 + 5w_{pc} - 4 \right) \Omega_{pc} + 9w_{pc} - 7 \right)}{w_{pc}^2 (2w_{pc} + 1) \Omega_{pc}^3 + \left(-3w_{pc}^2 - 18w_{pc} + 16 \right) \Omega_{pc}^2 + (16w_{pc} - 15) \Omega_{pc} + 1}. \quad (71)$$

For $\Omega_{pc} > 0.6$ and $w_{pc} \gtrsim -1$, the coefficient of λ_3 in Eq. (67) is negative while that in Eq. (68) is positive. Hence, $r_b < 0$ when $\lambda_3 < \lambda_{3b}$ while $r_a < 0$ when $\lambda_3 > \lambda_{3a}$. Since $\lambda_{3a} < \lambda_{3b}$, the ratio r_a/r_b is negative when $\lambda_3 < \lambda_{3a}$ or $\lambda_3 > \lambda_{3b}$. As a result, the scaling point is stable when $\lambda_3 < \lambda_{3a}$ or $\lambda_3 > \lambda_{3b}$ for suitable choice of λ_2 according to Eq. (69). For the case $\lambda_3 \in (\lambda_{3a}, \lambda_{3b})$, we have to evaluate μ_2 and μ_3 numerically. The real parts of μ_2 and μ_3 for some choices of Ω_{pc} are plotted in Fig. [I]. From this figure, the real parts of the eigenvalues weakly depend on λ_2.
Matching these two equations, we get the relation between λ for some ranges of λ. This means that these kinetic points can be saddle point, and therefore these points could be reached in more detail.

We next consider the MDE points given by Eq. (58). The eigenvalues for these fixed points are complicated and their values consist of many possible cases according to the range of λ_1, λ_2 and λ_3. However, if we are interested in the case where the MDE is followed by accelerating epoch described by scaling points, we have to demand that λ_1 from Eq. (52) is equal to that from Eq. (60).

Matching these two equations, we get the relation between $\Omega_{\phi}^{(\phi)}$ and $\Omega_{\phi c}$ as

$$\Omega_{\phi c}^{(\phi)} = \frac{A + |\lambda_3 (3w_{\phi c} \Omega_{\phi c} - 1) - 1| \mp \sqrt{B}}{(3\lambda_3 + 2)^2 (w_{\phi c} + 1) \Omega_{\phi c}}$$

where

$$A = \lambda_3^2 (9w_{\phi c}^2 \Omega_{\phi c}^2 - 3 (w_{\phi c} - 1) \Omega_{\phi c} + 1) + 2 \lambda_3 \Omega_{\phi c} \left(6w_{\phi c}^2 \Omega_{\phi c} - w_{\phi c} + 1\right) + 4w_{\phi c}^2 \Omega_{\phi c}^2$$

$$B = \lambda_3^2 \left(9w_{\phi c}^2 \Omega_{\phi c}^2 + 6\Omega_{\phi c} + 1\right) + 4 \lambda_3 \Omega_{\phi c} \left(3w_{\phi c}^2 \Omega_{\phi c} + 1\right) + 4w_{\phi c}^2 \Omega_{\phi c}^2.$$

The right-hand side of Eq. (73) could be infinite when λ_3 is equal to $-2/3$. Nevertheless, if we take the limit $\lambda_3 \to -2/3$, Eq. (73) gives

$$\Omega_{\phi c}^{(\phi)} = \frac{1}{2} (w_{\phi c} + 1) \Omega_{\phi c}, \quad \Omega_{\phi c}^{(\phi)} = \infty.$$

Hence, from now we consider only $\Omega_{\phi c}^{(\phi)}$ which will be denoted by $\Omega_{\phi c}^{(\phi)}$. It follows from Eq. (73) that $\Omega_{\phi c}^{(\phi)}$ can have an imaginary part if B is negative which occurs when

$$\frac{2 \left(-3w_{\phi c}^2 \Omega_{\phi c}^2 - \sqrt{\Omega_{\phi c}^2 - w_{\phi c}^2 \Omega_{\phi c}^2 - \Omega_{\phi c}}\right)}{9w_{\phi c}^2 \Omega_{\phi c}^2 + 6\Omega_{\phi c} + 1} < \lambda_3 < \frac{2 \left(-3w_{\phi c}^2 \Omega_{\phi c}^2 + \sqrt{\Omega_{\phi c}^2 - w_{\phi c}^2 \Omega_{\phi c}^2 - \Omega_{\phi c}}\right)}{9w_{\phi c}^2 \Omega_{\phi c}^2 + 6\Omega_{\phi c} + 1}.$$

For $w_{\phi c} = -0.99$, the above condition becomes $-0.45 < \lambda_3 < -0.41$ and $-0.51 < \lambda_3 < -0.47$ when $\Omega_{\phi c} = 0.65$ and $\Omega_{\phi c} = 0.95$, respectively. To ensure that the scaling points are stable, we choose λ_3 in the ranges $\lambda_3 < \lambda_{3a}$ or $\lambda_3 > \lambda_{3b}$. For $w_{\phi c} = -0.99$, we have $(\lambda_{3a}, \lambda_{3b}) = (-0.57, -0.01)$ and $(-0.57, -0.13)$ when $\Omega_{\phi c} = 0.65$ and $\Omega_{\phi c} = 0.95$. Hence, for $\lambda_3 < \lambda_{3a}$ or $\lambda_3 > \lambda_{3b}$, $\Omega_{\phi c}^{(\phi)}$ is real. In the
FIG. 2: Plots of $\Omega^{(\phi)}_{\phi c}$ as a function of λ_3. The solid line shows the case $\Omega_{\phi c} = 0.65$, while the dashed line shows the case $\Omega_{\phi c} = 0.95$. In the plots, $w_{\phi c} = -0.99, \lambda_2 = 1$ and λ_3 lies within the range $\lambda_3 \leq -2/3$ and $0 < \lambda_3 \leq 1$. The plots are not sensitive to λ_2.

The case where $w_{\phi c} \gtrsim -1$ and $\Omega_{\phi c} > 0.65$, Eq. (73) gives $\Omega^{(\phi)}_{\phi c} \lesssim 10^{-3}$. According to the numerical values of λ_{3a} and λ_{3b}, we restrict λ_3 within the ranges $\lambda_3 \leq -2/3$ and $0 < \lambda_3 \leq 1$ in the following analysis, where the upper bound $\lambda_3 \leq 1$ is imposed to avoid divergence of x' and Ω' which can occur when λ_3 satisfies Eq. (38).

The quantity $\Omega^{(\phi)}_{\phi c}$ is the value of Ω_{ϕ} at the ϕMDE point. We plot this quantity as a function of λ_3 in Fig. 2. We note that λ_1 in Eqs. (52) and (60) can be matched only for suitable conditions for λ_3. For example, we obtain the same expression for $\Omega^{(\phi)}_{\phi c}$ when we solve for it from the equations which are constructed by matching λ_{1+} from Eq. (52) with either $\lambda_{1+}^{(\phi)}$ or $\lambda_{1-}^{(\phi)}$ from Eq. (60). However, if we compute the numerical value of $\Omega^{(\phi)}_{\phi c}$ from Eq. (73) for given values of $\Omega_{\phi c}, w_{\phi c}, \lambda_2$ and λ_3, and insert the result back into Eq. (60), the numerical value of λ_{1+} will be equal to $\lambda_{1-}^{(\phi)}$ when $\lambda_3 \leq -2/3$ while it will be equal to $\lambda_{1-}^{(\phi)}$ when $\lambda_3 > 0$. Moreover, $|x_{c-}^{(\phi)}| < 1$ and $|x_{c+}^{(\phi)}| > 1$ for the former case while $|x_{c-}^{(\phi)}| > 1$ and $|x_{c+}^{(\phi)}| < 1$ for the latter case. The case where $|x_{c}^{(\phi)}| > 1$ is not physically relevant case. We summarize the matching of λ_1 and $\lambda_{1}^{(\phi)}$ and the conditions on λ_3 in Tab. II. We now investigate the eigenvalues of the ϕMDE points based on the choices of parameters in Tab. II. The first eigenvalues of all cases are simple and are shown in Tab. III. From the table, we see that the eigenvalues could be negative depending on the sign of λ. Nevertheless, the terms λ are multiplied by $\sqrt{\Omega^{(\phi)}_{\phi c}}$ which is in order of 10^{-2}, so that these terms have no sufficient contribution to make the eigenvalues negative. For these ϕMDE points, the polynomial for the eigenvalues is complicated. Fortunately, the first eigenvalue takes the simple form, so we can reduce the order of the polynomial by dividing the polynomial with $(\mu_1 - \mu)$. The resulting polynomial is second order in μ, which can
Scaling = ϕMDE

Matching Cases	λ_1 = $\lambda_1^{(\phi)}$	λ_3	$x_1^{(\phi)}$	λ_1	λ				
I	λ_1^+ = $\lambda_1^{(\phi)}$	$\lambda_3 \leq -2/3$	$	x_1^{(\phi)}	< 1$ and $	x_2^{(\phi)}	> 1$	< 0	< 0
II	λ_1^+ = $\lambda_1^{(\phi)}$	$\lambda_3 > 0$	$	x_1^{(\phi)}	> 1$ and $	x_2^{(\phi)}	< 1$	> 0	> 0
III	$\lambda_1^- = \lambda_1^{(\phi)}$	$\lambda_3 \leq -2/3$	$	x_1^{(\phi)}	> 1$ and $	x_2^{(\phi)}	< 1$	> 0	> 0
IV	$\lambda_1^- = \lambda_1^{(\phi)}$	$\lambda_3 > 0$	$	x_1^{(\phi)}	< 1$ and $	x_2^{(\phi)}	> 1$	< 0	> 0

TABLE I: Matching of λ_1 from Eqs. (52) and (60) and the required conditions on λ_3. The fourth column shows the magnitude of $x_1^{(\phi)}$. The fifth and the sixth columns present the signs of λ_1 and λ computed from Eqs. (52) and (51). The main conclusions from the table do not change if $|\lambda_2| \sim O(1)$, $w_{\phi c} \gtrsim -1$ and $\Omega_{\phi c} > 0.65$.

First eigenvalue	Cases I and II	Cases III and IV
μ_1	$\lambda \sqrt{6\Omega_{\phi c}^{(\phi)} + 3(\Omega_{\phi c}^{(\phi)} + 1)}$	$-\lambda \sqrt{6\Omega_{\phi c}^{(\phi)} + 3(\Omega_{\phi c}^{(\phi)} + 1)}$

TABLE II: The first eigenvalues for all possible matching cases.

be written in the form

$$\mu^2 + a_1 \mu + a_2 = 0,$$

where a_1 and a_2 are complicated functions of the parameters and $\Omega_{\phi c}^{(\phi)}$. Since $\Omega_{\phi c}^{(\phi)} \simeq 10^{-3}$, we expand a_1 and a_2 around $\Omega_{\phi c}^{(\phi)} = 0$ up to $\Omega_{\phi c}^{(\phi)}$ as shown in Eqs. (79) – (82).

cases I and II:

$$a_1 = \frac{3}{2} - \lambda_1 \sqrt{6\Omega_{\phi c}^{(\phi)}} + \left(-24\lambda_3 + \frac{6}{\lambda_3} - \frac{3}{2} \right) \Omega_{\phi c}^{(\phi)} + \ldots,$$

$$a_2 = -\frac{9}{2} + \frac{3}{\Omega_{\phi c}^{(\phi)}} \left[\lambda_1 \lambda_3 (\lambda_3 - 5) + 3\lambda_2 (\lambda_3 + 1) \right] \sqrt{\Omega_{\phi c}^{(\phi)}} + \frac{3}{\lambda_2^2 (\lambda_3 - 1)} \lambda_2 \lambda_3 (\lambda_3 + 1) + \lambda_1 \lambda_2 a_2 b - 2 \left(\lambda_2^2 (\lambda_3 + 1) - 3\lambda_3 a_2 c \right) \Omega_{\phi c}^{(\phi)} + \ldots,$$

cases III and IV:

$$a_1 = \frac{3}{2} + \lambda_1 \sqrt{6\Omega_{\phi c}^{(\phi)}} + \left(-24\lambda_3 + \frac{6}{\lambda_3} - \frac{3}{2} \right) \Omega_{\phi c}^{(\phi)} + \ldots,$$

$$a_2 = -\frac{9}{2} - \frac{3}{\Omega_{\phi c}^{(\phi)}} \left[\lambda_1 (\lambda_3 - 5) \lambda_3 + 3\lambda_2 (\lambda_3 + 1) \right] \sqrt{\Omega_{\phi c}^{(\phi)}} + \frac{3}{\lambda_2^2 (\lambda_3 + 1)} \lambda_2 (\lambda_3 - 5) (\lambda_3 + 1) + \lambda_1 \lambda_2 a_2 b + 2 \left(\lambda_2^2 (\lambda_3 + 1) - 3\lambda_3 a_2 c \right) \Omega_{\phi c}^{(\phi)} + \ldots,$$

where $a_2 b = 2\lambda_3^2 - 3\lambda_3 + 1$ and $a_2 c = 2\lambda_3^2 - 2\lambda_3^2 + 3\lambda_3 + 1$. The solutions of Eq. (78) are

$$\mu_\pm = -\frac{a_1 \pm \sqrt{a_1^2 - 4a_2}}{2}.$$
From these solutions we see that the real part of at least one solution is negative if $a_1 > 0$. If $a_1 < 0$, the real part of one solution is negative when $a_2 < 0$. According to Eqs. (79) and (81) and the sign of λ_1 in Tab. I, the main contributions to a_1 for the cases I and III are positive. As a result, the real part of at least one eigenvalue for each case is negative. For the cases II and IV, it follows from Eqs. (80) and (82) together with the sign of λ_1 and the range of λ_3 in Tab. I, that the main contributions to a_2 can be negative. However, to ensure that a_2 is negative, we suppose that $|\lambda_2| < |\lambda_1|$ and impose the additional condition $\lambda_3 \leq 1$ which is required to avoid divergence of x' and Ω_ϕ'. This suggests that the real part of one eigenvalue for each case is negative. From the above discussion, we conclude that the ϕMDE point can be saddle for λ_3 given in the table, $\lambda_3 \leq 1, |\lambda_2| \sim O(1)$ and for $w_{\phi c}, \Omega_{\phi c}$ satisfying the observational bound, e.g., $w_{\phi c} = -0.99$ and $\Omega_{\phi c} > 0.65$.

D. Evolution from the ϕMDE point to scaling point

We now numerically study the evolution of the background universe through the fixed points discussed in the previous sections. The evolution equations used in the numerical integration are obtained by substituting Eq. (37) into Eqs. (29) – (32). To illustrate some results in the previous sections, the evolutions of Ω_ϕ for various values of λ_3 are plotted in Fig. 3. In the figure, we set $\lambda_2 = 1, \Omega_b = 0$ and specify λ and λ_1 by setting $\Omega_{\phi c} = 0.7$ and $w_{\phi c} = -0.99$. From the figure, we see that the fixed point $\Omega_\phi = \Omega_{\phi c} = 0.7$ can be reached at late-time. From the numerical investigation, the whole evolution of Ω_ϕ weakly depends on λ_2, and the late-time evolution is robust under the change of initial conditions. We next add the contribution from the energy density of baryon into the numerical integration by setting $\Omega_b \sim 0.022$ at present. The evolutions of Ω_ρ, Ω_c and Ω_ϕ for $\lambda_3 = -3/2$ are plotted in Fig. 4. In these plots, we set $\lambda_2 = 1$. The parameters λ and λ_1 are specified by setting $\Omega_{\phi c} = 0.95$ and $w_{\phi c} = -0.99$. We set $\Omega_{\phi c}$ to be larger than the observational bound for the present value of Ω_ϕ because this scaling point can be reached in the future when $\Omega_b \sim 0$. From the figure we see that the universe evolves from the radiation domination to ϕMDE point and then evolves towards the scaling point at late time with $\Omega_\phi \rightarrow 0.95$ and $\Omega_b \rightarrow 0$. This pattern of the evolution is achieved for wide ranges of λ_2 and initial conditions. Before reaching the late-time attractor, the cosmic evolution can pass the point $\Omega_\rho \simeq 0.68, \Omega_c \simeq 0.3$ and $\Omega_b \simeq 0.022$ at present as required by observations.

IV. GROWTH OF DENSITY PERTURBATIONS

In this section, we consider the growth of density perturbations of matter on small scales. To compute the evolution equations for the perturbations, we use the metric perturbation in the Newtonian
FIG. 3: Evolutions of Ω_ϕ for various values of λ_3. In the plots, $1 + Z = 1/a$.

FIG. 4: The left panel shows the evolutions of $\Omega_r, \Omega_\phi, \Omega_c$ and Ω_ϕ, while the right panel shows the evolution of w_ϕ. The ϕMDE takes place around $1 + Z \sim 20$.

gauge written in the form

$$ds^2 = -(1 + 2\Psi)\, dt^2 + a^2 (1 - 2\Psi)\, \delta_{ij} dx^i dx^j,$$

where Ψ is the metric perturbation and the anisotropic perturbations are omitted. The field ϕ is decomposed into the background and perturbed parts as

$$\phi \to \phi + \delta \phi,$$
where ϕ on the right-hand side of the arrow denotes the homogeneous background part of the field while $\delta \phi$ denotes the perturbed part. Applying these decompositions to Eq. (15), we obtain the evolution equation for the field perturbations as

$$\delta \ddot{\phi} + 3H (\delta \dot{\phi} - 2 \Psi \dot{\phi}) + \left(V_{,\phi\phi} + \left(\frac{k}{a} \right)^2 \right) \delta \phi - 2 \ddot{\Psi} - 4 \dot{\Psi} \dot{\Psi} = \delta Q,$$

where the perturbations in the coupling δQ is given by

$$\delta Q = \delta Q_S + \left(-\dot{Q}_0 \Phi \Xi - \dot{\phi} (2X \Xi,\phi X + \Xi,\phi) + 2X \Xi,\phi \phi - \Gamma,\phi \right) \delta \phi$$
$$+ \left[-\dot{Q}_0 \Theta + \dot{\phi} (2X \Xi,\phi X + 2 \Xi,\phi - \Gamma,\phi) + \dot{\phi} (2X \Xi,\phi X + 3 \Xi,\phi) \right] \delta \phi$$
$$+ \Theta \dot{\phi} - 6H \dot{\phi} (X \Xi,\phi + \Xi) \Psi - \Xi (2 \dot{\phi} \Psi + 4 \dot{\phi} \Psi)$$
$$- 2X \left(\phi \Xi,\phi \dot{\phi} - \Xi,\phi \phi + 2 \Xi,\phi - \Gamma,\phi + 2X \Xi,\phi \dot{\phi} + \Xi,\phi \dot{\phi} \right) \Psi + \phi \Xi,\phi \dot{\Psi} \right).$$

Here, δQ_S contains the dominant contribution to δQ on small scales which its expression is given by

$$\delta Q_S = \Xi \left(\frac{k}{a} \right)^2 \delta \phi + \left[-2 \dot{Q}_0 X \Xi + 2 \Xi,\phi - \Gamma + \Theta \dot{\phi} \right] \delta \phi + \phi \Xi,\phi \dot{\phi},$$

where k is the comoving wave number of the perturbation modes. The density contrast $\delta_c \equiv \delta \rho_c / \rho_c$, where $\delta \rho_c$ and ρ_c are the perturbations in energy density and background energy density of CDM. The term δQ_S is obtained from the fact that on small scales, $|\delta \phi|$ and $|H \delta \phi|$ are much smaller than $|k^2 \delta \phi / a^2|$ and $|H \dot{\delta} c|$ as well as $|\dot{\delta} c|$ are much larger than the Ψ terms. The latter approximation follows from the perturbed Einstein equation on small scales:

$$\left(\frac{k}{a} \right)^2 \Psi = -\frac{3}{2} H^2 (\Omega_c \delta_c + \Omega_b \delta_b),$$

where $\delta_b \equiv \delta \rho_b / \rho_b$ is the density contrast of baryon. In the above equation, the small contributions from the perturbations in the energy density of radiation and dark energy are neglected. On small scales, Eq. (86) becomes

$$\left(\frac{k}{a} \right)^2 \delta \phi = \delta Q_S.$$

Combining the above equation with Eq. (88), we get

$$\left(\frac{k}{a} \right)^2 \delta \phi = \rho_c \delta \tilde{Q},$$

where the effective coupling term in the perturbed universe is

$$\delta \tilde{Q} = \frac{(2X \tilde{Q}_0 \Xi - 2X \Xi,\phi + \Gamma - \Theta \dot{\phi}) \delta_c - \phi \Xi,\phi \delta_c}{\Xi \rho_c - 1}.$$

We see that there is the term that is proportional to $\dot{\delta} c$ in the effective coupling term, this term vanishes when the transformation coefficient C does not depend on X. The evolution equations for the
perturbations in energy density and velocity \(v_c \) of CDM are computed from Eq. (17). The resulting equations are given by

\[
\dot{\delta}_c - 3\Psi - \left(\frac{k^2}{a} \right) v_c = \phi \tilde{Q}_0 \delta_c - \frac{\phi}{\rho_c} \frac{\delta Q}{\rho_c} - \tilde{Q}_0 \delta \phi, \tag{93}
\]

and we get

\[
\dot{v}_c + (H - \phi \tilde{Q}_0) v_c + \frac{1}{a} \Psi = \frac{\tilde{Q}_0}{a} \delta \phi. \tag{94}
\]

Since we concentrate on small scales perturbations, we replace \(\delta Q/\rho_c \) in Eq. (95) by \(\delta \tilde{Q} \) from Eq. (92) and keep only the dominant terms on small scales. The resulting equation is

\[
\dot{\delta}_c - \left(\frac{k^2}{a} \right) \frac{3\Xi \rho_c - 1}{3\Xi \rho_c - 2X \Xi - 1} v_c = \phi \frac{\Theta V_{\phi} + 3H \Theta \phi - 2X \Xi \phi + \Gamma}{\Theta \rho_c - 2X \Xi - 1} \delta_c + \frac{2\phi X \Xi \phi - \phi \Gamma + \Theta \phi \phi}{3\Xi \rho_c - 2X \Xi - 1} \delta_c \equiv \Delta \delta_c. \tag{95}
\]

It can be checked that if the coefficient of the conformal transformation solely depends on the field \(\phi \), \(\Delta \) vanishes. Hence, \(\Delta \) describes effects of the coupling due to general conformal transformation on the growth of matter perturbations. To discuss the influences of \(\Delta \) on the matter perturbations, we suppose that \(|\lambda_2| \sim \mathcal{O}(1) \), \(\lambda_3 \) lies with in the ranges shown in Tab. I and the evolution of \(z \) does not much deviate from the fixed point \(z = \lambda_3/z^2 \). Based on this assumption, we have \(H^2 \Xi = z/(2 + 6z^2) \sim \mathcal{O}(1/(6z^2)) \) and \(2h^2 \Xi_X \sim -4/(3z^2) \), so that \(\Theta \) is negative and \(|\rho_c \Theta| \sim |\rho_c \Xi| \sim \mathcal{O}((\Omega_c/z^2) \gg 1 \). For \(\Gamma \), we have \(\Gamma \sim \lambda_1/(2 + 6z^2) \sim \lambda/6 \lambda_3 \), while we have \(|X \Xi \phi| \ll 1 \). From Eq. (52), we can check that the second term on the right hand side is the dominant term because we always set \(w_{\phi c} = -0.99 \). To simplify our analysis, we suppose that \(\Omega_{\phi c} > 0.65 \) and impose the additional condition for the positive \(\lambda_3 \) to be \(1/2 \leq \lambda_3 \leq 1 \). Hence, Eq. (52) implies that \(\lambda_1 \) has the same sign as \(\lambda_3 \) while \(\lambda_1 \) and \(\lambda_3 \) have opposite signs. As a result, \(\Gamma \) is positive when \(\lambda_1 = \lambda_1 \) and becomes negative when \(\lambda_1 = -\lambda_1 \). From our numerical investigation, the sign of \(\phi \) is preserved through the cosmic evolution. It follows from Eqs. (52) and (53) that \(\phi \) is positive for \(\lambda_1 = -\lambda_1 \) and negative for \(\lambda_1 = -\lambda_1 \). Hence, the term \(\phi \Gamma \), which gives the dominant contribution to the numerators of \(\Delta \), is positive. For the denominators of \(\Delta \), the dominant contributions come from \(\Theta \rho_c \) and \(\Xi \rho_c \), which are negative and positive, respectively. According to the above analysis, the dominant contribution to \(\Delta \) is negative and therefore this term suppresses the growth of \(\delta_c \).

To perform the numerical investigation, we compute the evolution equation for the CDM perturbation \(\delta_c \) by differentiating Eq. (95) with respect to time. The time derivative of \(v_c \) in the resulting equation is eliminated using Eq. (94). Finally, the remaining \(v_c \) terms can be eliminated using Eq. (95), and we get

\[
\delta''_c + C_1 \delta'_c - \frac{3}{2} (G_{cc} \Omega_c \delta_c + G_{cb} \Omega_b \delta_b) = 0, \tag{96}
\]

where \(C_1, G_{cc} \) and \(G_{cb} \) are the functions of \(x, y, z, \Omega_c, \Omega_b \) and parameters of the model. The expressions for these coefficients, especially \(G_{cc} \), are lengthy, so that their explicit forms are not shown here.
FIG. 5: Plots of G_{cc} as a function of Z. The lines I and II represent the cases where $(\lambda_3, \Omega_{\phi c}, w_{\phi c}) = (1/2, 0.96, -0.99)$ and $(-3/2, 0.99, -0.99)$, respectively. For these lines, $\lambda_2 = 1$. The line III represents the case of usual conformal coupling ($z = 0$) with $(\lambda, \lambda_1) = (-1/10, -2/10)$. In all plots, $\Omega_b \simeq 0.022, \Omega_c \simeq 0.3$ and $\Omega_\phi \simeq 0.68$ at present.

Since $\Omega_c > \Omega_b$, the contribution to the evolution of δ_c from G_{cc} is larger than that from G_{cb}. Hence, the effective gravitational coupling relevant to CDM perturbations on small scales is dominated by G_{cc}. The numerical value of G_{cc} is shown in Fig. 5. We see that after the matter dominated epoch, G_{cc} for the coupled model from general conformal transformation is smaller than unity, while G_{cc} from the usual conformal coupling is larger than unity. Since $G_{cc} = 1$ for ΛCDM model, the effective gravitational coupling is suppressed in the coupled dark energy model inspired from general conformal transformation. This suggests the weaker growth of CDM perturbations on small scales which can be estimated by numerically solving Eq. (96). In order to solve Eq. (96), we have to know the evolution equation for δ_b. Since the energy-momentum tensor of the baryon is separately conserved, the evolution equation for the density contrast of baryon on small scales takes the usual form as

$$\delta''_b + \left(2 + \frac{\dot{H}}{H^2}\right)\delta'_b - \frac{3}{2} (\Omega_b \delta_b + \Omega_c \delta_c) = 0 .$$

We solve Eqs. (96) and (97) numerically based on the parameters in Fig. 5. The evolutions of δ_c/a are plotted in Fig. 6. In the figure, we normalize δ_c/a such that it is unity at the present. From the figure, we see that δ_c/a for the coupled dark energy model from general conformal coupling is larger than that for ΛCDM model in the early epoch. This implies that the growth of CDM perturbations is weaker in this coupled dark energy model. To estimate how much the σ_8 tension can be resolved in the coupled dark energy model with general conformal coupling, we have to perform a likelihood analysis which we leave for a future work.
FIG. 6: Evolutions of δ_c/a. The choices of parameters for the lines I, II and III are the same as those for the lines in Fig. 5. The line IV represents the case of ΛCDM with $\Omega_b \simeq 0.022$, $\Omega_c \simeq 0.3$ and $\Omega_\Lambda \simeq 0.68$ at present.

V. CONCLUSIONS

In this work, we have studied coupled dark energy model inspired from general conformal transformation in which the transformation coefficient depends on both scalar field and its kinetic term. The effective coupling term consists of the multiplication between the derivative of the scalar field and the energy density as well as between the derivative of the scalar field and derivative of energy density of CDM which can lead to different influences on the growth of matter perturbations compared with the usual conformal coupling case.

The scaling solutions can exist in this coupled dark energy model. The solution which corresponds to the ϕMDE can be a saddle point, while the solution for the cosmic acceleration at late time can be attractor. The background universe can evolve from the radiation dominated epoch through the ϕMDE towards the cosmic acceleration epoch at late time. This sequence of the evolution can be achieved for the cosmological parameters which satisfy the observational bounds. The existence of the ϕMDE modifies the effective equation of state parameter during the matter dominated epoch, such that the H_0 from the CMB analysis for this model could be larger than that for the ΛCDM model, which potentially solves the H_0 tension. However, the actual likelihood analysis is required to estimate how much the H_0 tension can be resolved.

The growth of the linear matter perturbations on small scales for this coupled dark energy model is weaker than that for the ΛCDM model. This is a consequence of the reduction of the effective gravitational constant relevant to the CDM perturbations on small scales. The suppression of the growth of CDM perturbations on small scales suggests that the σ_8 tension could be alleviated in this model. However, to investigate whether this model of coupled dark energy can actually solve the H_0
and σ_8 tensions, a full likelihood analysis is needed which we leave for a future work.

Acknowledgement

WT was supported by Royal Thai Government Scholarship (Ministry of Higher Education, Science, Research and Innovation) for his Ph.D. study. KK is supported by Fundamental Fund from National Science, Research and Innovation Fund under the grant ID, P2565B202. The authors thank the referee for a comment on a momentum transfer.

[1] E. J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys., D 15, 1753 (2006), [arXiv:hep-th/0603057].
[2] T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis, Phys. Rept. 513, 1 (2012), [arXiv:1106.2476 [astro-ph.CO]].
[3] K. Bamba, S. Capozziello, S. Nojiri and S. D. Odintsov, Astrophys. Space Sci. 342, 155 (2012), [arXiv:1205.3421[gr-qc]].
[4] D. Huterer and D. L. Shafer, Prog. Phys. 81, 016901 (2018), [arXiv:1709.01091 [astro-ph.CO]].
[5] Mustapha Ishak, Living Reviews in Relativity 22, 1 (2019), [arXiv:1806.10122 [astro-ph.CO]].
[6] Zhen Zhang, Class. Quantum Grav. 39 015003 (2022), [arXiv:2112.04149 [gr-qc]].
[7] I. Zlatev, L. Wang and P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999), [arXiv:astro-ph/9807002].
[8] P. J. Steinhardt, L. Wang and I. Zlatev, [arXiv:astro-ph/9812313].
[9] L. Amendola, Phys. Rev. D 62, 043511 (2000), [arXiv:astro-ph/9908023].
[10] B. Wang, et al., Rep. Prog. Phys. 79, 096901 (2016) [arXiv:1603.08299[astro-ph.CO]].
[11] T. Elsa M., N. Ana and N. N. J., Phys. Rev. D 100, 043539 (2019), [arXiv:1903.06028[gr-qc]].
[12] P. Patrocinio, N. Ulises and D. Roberto, Eur. Phys. J. C 81, 1062 (2021), [arXiv:2104.07690[gr-qc]].
[13] V. Faraoni, E. Gunzig, P. Nardone, Fund. Cosmic Phys. 20, 121 (1999), [arXiv:gr-qc/9811047].
[14] D. Kaiser, Phys. Rev. D 81, 084044 (2010), [arXiv:1005.1159[gr-qc]].
[15] M. Wright, Phys. Rev. D 93, 103002 (2016), [arXiv:1602.05764[gr-qc]].
[16] D. Gal’tsov, Eur. Phys. J. C 80, 443 (2020), [arXiv:2001.03221[gr-qc]].
[17] E. M. Teixeira, A. Nunes and N. J. Nunes, Phys. Rev., D 100, 043539 (2019), [arXiv:1903.06028[gr-qc]].
[18] D. Bettoni, S. Liberati, Phys. Rev., D 88, 084020 (2013), [arXiv:1306.6274[gr-qc]].
[19] J. Sakstein, Phys. Rev. D 91, 024036 (2015), [arXiv:1409.7296[astro-ph.CO]].
[20] S. Tsujikawa, [arXiv:1506.08561[gr-qc]].
[21] J. Sakstein and S. Verner, Phys. Rev. D 92, 123005 (2015), [arXiv:1509.05679[gr-qc]].
[22] C. van de Bruck and J. Morrice, JCAP 1504, 036 (2015), [arXiv:1501.03073[gr-qc]].
[23] K. Karwan and S. Sapa, Eur. Phys. J. C 77, 352 (2017), [arXiv:1611.05324[gr-qc]].
[24] A. Dusoye, A. de la Cruz-Dombriz, P. Dunsby, N. J. Nunes JCAP 03, 002 (2021), [arXiv:2006.16962[gr-qc]].
[25] L. G. Gómez, Y. Rodriguez, and J. P. B. Almeida, [arXiv:2103.11826[gr-qc]].
[26] L. G. Gómez, [arXiv:2202.07027[gr-qc]].
[27] C. van de Bruck, J. Mifsud, J. P. Mimosa, and N. J. Nunes, JCAP 11, 031 (2016), [arXiv:1605.03834[gr-qc]].
[28] S. Sapa, K Karwan, and D. F. Mota, Phys. Rev. D 98, 023528 (2018), [arXiv:1803.02299[astro-ph.CO]].
[29] V. Pettorino and C. Baccigalupi Phys. Rev. D 77, 103003 (2008), [arXiv:0802.1086[astro-ph]].
[30] L. Amendola, S. Tsujikawa, JCAP 06, 020 (2020), [arXiv:2003.02688[gr-qc]].
[31] A. Pourtsidou, C. Skordis and E. J. Copeland, Phys. Rev. D 88, 083505 (2013), [arXiv:1307.0458[astro-ph.CO]].
[32] C. G. Boehmer, N. Tamanini and M. Wright, Phys. Rev. D 79, 023528 (2018), [arXiv:1803.02299[gr-qc]].
[33] C. G. Boehmer, N. Tamanini and M. Wright, Phys. Rev. D 91, 123003 (2015), [arXiv:1502.04030[gr-qc]].
[34] C. Skordis, A. Pourtsidou and E. J. Copeland, Phys. Rev. D 91, 083537 (2015), [arXiv:1502.07297[astro-ph.CO]].
[35] T. S. Koivisto, E. N. Saridakis and N. Tamanini, JCAP 1509, 047 (2015), [arXiv:1505.07556[astro-ph.CO]].
[36] A. Pourtsidou and T. Tram, Phys. Rev. D 94, 043518 (2016), [arXiv:1604.04222[astro-ph.CO]].
[37] J. Dutta, W. Khylep and N. Tamanini, Phys. Rev. D 95, 023515 (2017), [arXiv:1701.00744[gr-qc]].
[38] M. S. Linton, A. Pourtsidou, R. Crittenden and R. Maartens, JCAP 04, 043 (2018), [arXiv:1711.05196[astro-ph.CO]].
[39] R. Kase and S. Tsujikawa, Phys. Rev. D 101, 063511 (2020), [arXiv:1910.02699[gr-qc]].
[40] F. N. Chamings, A. Avgoustidis, E. J. Copeland, A. M. Green and A. Pourtsidou, Phys. Rev. D 101, 043531 (2020), [arXiv:1912.09858[astro-ph.CO]].
[41] R. Kase and S. Tsujikawa, Phys. Lett. B 804, 135400 (2020) [arXiv:1911.02179[gr-qc]].
[42] C. Heymans et al., Mon. Not. Roy. Astron. Soc. 427, 146 (2012), [arXiv:1210.0032[astro-ph.CO]].
[43] H. Hildebrandt et al., Mon. Not. Roy. Astron. Soc. 465, 1454 (2017), [arXiv:1606.05338[astro-ph.CO]].
[44] L. Amendola, M. Quartin, S. Tsujikawa, and I. Waga, "Phys. Rev. D 74, 023525 (2006), [arXiv:astro-ph/0605488[astro-ph]].
[45] P. A. R. Ade, et al., Planck Collaboration, A&A, 594, A13 (2016), [arXiv:1502.01589[astro-ph.CO]].
[46] A. G. Riess, et al., ApJ 876, 85 (2019), [arXiv:1903.07603[astro-ph.CO]].
[47] E. D. Valentino and F. R. Bouchet, JCAP 10, 011 (2016), [arXiv:1609.00328[astro-ph.CO]].
[48] S. Kumar and R. C. Nunes, Phys. Rev. D 94, 123511 (2016), [arXiv:1608.02454[astro-ph.CO]].
[49] E. D. Valentino, A. Melchiorri and O. Mena, Phys. Rev. D 96, 043503 (2017), [arXiv:1704.08342[astro-ph.CO]].
[50] F. Beutler, et al., Mon. Not. Roy. Astron. Soc. 416, 3017 (2011), [arXiv:1106.3366[astro-ph.CO]].
[51] A. J. Ross, et al., Mon. Not. Roy. Astron. Soc. 449, 835 (2015), [arXiv:1409.3242[astro-ph.CO]].
[52] S. Alam, et al., Mon. Not. Roy. Astron. Soc. 470, 2617 (2017), [arXiv:1607.03155[astro-ph.CO]].
[53] T. Karwal and M. Kamionkowski, Phys. Rev. D 94, 103523 (2016), [arXiv:1608.01309[astro-ph.CO]].
[54] E. Mörtsell and S. Dhawan, JCAP 09, 025 (2018) [arXiv:1801.07260[astro-ph.CO]].
[55] V. Poulin, T. L. Smith, T. Karwal, M. Kamionkowski, Phys. Rev. Lett. 122, 221301 (2019), [arXiv:1811.04083[astro-ph.CO]].
[56] A. Banerjee, et al., Phys. Rev. D 103, 081305 (2021), [arXiv:2006.00244[astro-ph.CO]].
[57] C. Krishnan, et al., Class. Quantum Grav. 38 184001 (2021), [arXiv:2105.09790[astro-ph.CO]].
[58] M. Zumalacárregui and J. García-Bellido, Phys. Rev. D 89, 064046 (2014), [arXiv:1308.4685[gr-qc]].
[59] P. Creminelli, M. Lewandowski, G. Tambalo, and F. Vernizzi, JCAP 12, (2018) 025, [arXiv:1809.03484 [astro-ph.CO]].