Supporting information

Self-recovering dual cross-linked hydrogels based on bioorthogonal click chemistry and ionic interactions

Henan Zhan, Shanshan Jiang, Anika M. Jonker, Imke A. B. Pijpers, Dennis W. P. M. Löwik

Fig. S1 Oscillatory strain sweep measurements of different dual cross-linked hydrogel compositions (normalization to a strain of 0.1%).

Fig. S2 Storage moduli (G’ value) of CC (100c), PC (100p) and DC (xyp/yya) hydrogels after two times of mechanical rupture. (n = 3; * p<0.033, ** p<0.002, ***p<0.001, one-way Anova)
Fig. S3 Swelling ratios of pure chemical, physical and DC hydrogels at 1 h, 3 h, 7 h and 24 h. (n = 3; * p<0.033, ** p<0.002, one-way Anova)

Fig. S4 Dry mass of PC and DC hydrogels at 1 h and 24 h.

Fig.S5 Cryo-SEM images of star-PEG-DBCO/star-PEG-N₃ (20 mg/mL, left) and star-PEG-AA/Ca²⁺ (30 mg/mL, right) cross-linked hydrogel systems. The scale bars represent 10 μm.
Fig. S6 Mesh size distribution of hydrogels.
Fig. S7 Cryo-SEM images of the 100% physically cross-linked hydrogels at different polymer concentration. The scale bars represent 10 μm.

Fig. S8 Cryo-SEM images of the 100% physically cross-linked hydrogel systems at different Ca\(^{2+}\) concentration (1 eq polymer combined with 10 eq, 15 eq, 20 eq, 30 eq or 40 eq Ca\(^{2+}\)). The scale bars represent 10 μm.
Fig. S9 Confocal microscopy images of cell morphology after 5-day culture inside different hydrogel systems.

Fig. S10 MALDI-TOF spectra of star-PEG-alendronic acid.
Fig. S11 31P NMR spectra of star-PEG-alendronic acid.

Figure S12. MALDI-TOF spectra of star-PEG-DBCO.

Fig. S13 1H NMR spectra of star-PEG-DBCO.
Fig. S14 Mass spectrometry spectra of azido-RGDS.
Fig. S15 MALDI-TOF spectra of (A) star-PEG-N₃, (B) star-PEG-RGDS-N₃ and (C) star-PEG-CF-N₃.
Fig. S16 1H NMR spectra of (A) star-PEG-N$_3$, (B) star-PEG-RGDS-N$_3$ and (C) star-PEG-CF-N$_3$.