CR YAMABE CONSTANT AND INEQUIVALENT CR STRUCTURES

CHANYOUNG SUNG AND YUYA TAKEUCHI

Abstract. The CR Yamabe constant is an invariant of a compact strongly pseudoconvex CR manifold and plays an important role in CR geometry. We show some integral formulae of the CR Yamabe constant. We also construct an infinite-dimensional family of strongly pseudoconvex CR structures with varying CR Yamabe constants and a compact simply-connected manifold admitting two strongly pseudoconvex CR structures with different signs of the CR Yamabe constant.

1. Introduction

The Yamabe problem, which is one of the most important problems in conformal geometry, asks whether there exists a Riemannian metric in a given conformal class minimizing the Yamabe functional. The infimum of this functional defines a conformal invariant called the Yamabe constant. The Yamabe constant is a fundamental invariant in conformal geometry, and there are intensive research on this invariant. It is known that every compact manifold of dimension greater than 2 has a continuous family of conformal structures with all different Yamabe constants. Moreover, every compact manifold of dimension greater than 2 admits a conformal structure with negative Yamabe constant. Furthermore, there exist some integral formulae of this invariant, which have been useful for computing not only the Yamabe constants but also other curvature parts of 3- and 4-manifolds [LeB99, Sun12, Sun21].

Jerison and Lee [JL87] have considered a CR analog of the Yamabe problem, known as the CR Yamabe problem. The CR Yamabe problem asks whether on any compact strongly pseudoconvex CR manifold \((X, H, J)\) of dimension \(2n + 1\), there exists a contact form \(\theta\) minimizing the functional

\[
\mathfrak{F}(\theta) := \frac{\int_X R_\theta \, d\mu_\theta}{\left(\int_X d\mu_\theta\right)^{n/(n+1)}},
\]

where \(R_\theta\) is the pseudohermitian scalar curvature for \(\theta\) and \(d\mu_\theta = \theta \wedge (d\theta)^n\). The infimum \(\lambda(X, H, J)\) of the above functional is an invariant of the CR manifold \((X, H, J)\) and called the CR Yamabe constant of \((X, H, J)\); we will simply write \(\lambda(X)\) when the CR structure on \(X\) is clear from the context. Just as in the Yamabe problem, one has

\[
\lambda(X) \leq \lambda(S^{2n+1}) = 2n(n + 1)\pi
\]

for the standard CR structure on \(S^{2n+1}\), and the CR Yamabe problem is solvable when \(\lambda(X) < \lambda(S^{2n+1})\) [JL87]. There are intensive researches on conditions when \(\lambda(X) < \lambda(S^{2n+1})\) holds for \(X\) not CR equivalent to \(S^{2n+1}\); see [JL88, JL89, CCY14, 2020 Mathematics Subject Classification. 32V20, 32V05, 57K43.

Key words and phrases. CR Yamabe constant, CR manifold, pseudohermitian manifold.

The second author was supported by JSPS KAKENHI Grant Number JP21K13792.
CMY17, Tak20, CMY23] for related results. Every minimizer θ has constant R_{θ}, and when $\lambda(X) \leq 0$, any θ with constant R_{θ} is a CR Yamabe minimizer, which is unique up to a constant. Moreover, an Einstein contact form is also a CR Yamabe minimizer; see Lemma 2.1. In a similar way to the Yamabe constant, the CR Yamabe constant can be written as various integral formulae; see Theorem 3.1. This may be useful for estimating norms of parts of pseudohermitian curvature tensor as in the Riemannian case [Sun21].

It is natural to ask whether a manifold admitting one CR structure has abundant other CR structures with all different CR Yamabe constants or CR structures with negative CR Yamabe constant. In comparison to the Riemannian case, the difficulty lies in imposing the integrability condition to an almost CR structure, which obstructs generic deformations of almost CR structures. In this paper, we will construct an infinite-dimensional family of strongly pseudoconvex CR structures with varying CR Yamabe constants. To this end, we consider an n-dimensional compact Hodge manifold (M,J,ω) with constant scalar curvature. Denote the space of Kähler potentials in the class $[\omega]$ by $K := \{ \varphi \in C^\infty(M) \mid \omega_{\varphi} := \omega + i\partial\bar{\partial}\varphi > 0 \}$ endowed with the C^4-topology, and write F for the subset of $\varphi \in K$ such that ω_{φ} has constant scalar curvature. Let $p: P_M \to M$ be a principal S^1-bundle over M whose Euler class is $-\[\omega\]$. For any $\varphi \in K$, there exists a principal connection θ_φ on P_M such that $d\theta_\varphi/2\pi = p^*\omega_\varphi$. The complex structure J on M induces a strongly pseudoconvex CR structure p^*J on $H_\varphi := \ker \theta_\varphi$; see Proposition 2.2. This gives an infinite-dimensional family of pseudohermitian manifolds $(P_M, H_\varphi, p^*J, \theta_\varphi/2\pi)$ underlying the same manifold P_M.

Theorem 1.1. Let (M,J,ω) be an n-dimensional compact Hodge manifold. Then the map $K \to \mathbb{R}; \quad \varphi \mapsto \lambda(P_M, H_\varphi, p^*J)$ is continuous. Moreover if $\theta_0/2\pi$ is a CR Yamabe minimizer, then

$$\lambda(P_M, H_\varphi, p^*J) < \lambda(P_M, H_0, p^*J) = 2n\pi c_1(M) \cup [\omega]^{n-1}/([\omega]^n/n(n+1)).$$

for any $\varphi \in K \setminus F$. The assumption holds if ω has constant non-positive scalar curvature or it defines a Kähler-Einstein metric.

We will also show the existence of a compact simply-connected manifold admitting two strongly pseudoconvex CR structures with different signs of the CR Yamabe constant.

Theorem 1.2. For each $n \geq 3$, there exists a compact simply-connected $(2n+1)$-manifold X admitting two strongly pseudoconvex CR structures (H,J) and (\tilde{H},\tilde{J}) such that they have different signs of the CR Yamabe constants, and (M,H) and (M,\tilde{H}) are not isomorphic as cooriented contact manifolds.

We remark that the existence of CR structures with different signs of the CR Yamabe constant on a fixed contact structure remains unresolved.

This paper is organized as follows. In Section 2, we recall basic facts on CR manifolds and show that a principal S^1-bundle over a Hodge manifold has a canonical strongly pseudoconvex CR structure. Some integral formulae of the CR Yamabe constant are given in Section 3. In Section 4, we prove the continuity of the CR
Yamabe constant under suitable deformations of CR structures, which will be used for the proof of Theorem 1.1. Section 5 is devoted to constructions of deformations of strongly pseudoconvex CR structures with varying CR Yamabe constants. In Section 6, we give a proof of Theorem 1.2.

2. CR manifolds

An almost CR structure on a smooth \((2n + 1)\)-manifold \(X\) is a pair \((H, J)\) where \(H \subset TX\) is a codimension 1 smooth subbundle with an almost complex structure \(J\). An almost CR structure is called integrable or a CR structure if

\[
\Gamma(T^{1,0}X), \Gamma(T^{1,0}X) \subset \Gamma(T^{1,0}X)
\]

for

\[
T^{1,0}X := \{ v - iJv \mid v \in H \} \subset H \otimes \mathbb{C}
\]

\(T^{0,1}X := \overline{T^{1,0}X}\).

We shall consider only an orientable CR manifold. Then one can choose a smooth real-valued 1-form \(\theta\) annihilating exactly \(H\), which is determined up to multiplication by a nowhere vanishing real-valued function on \(X\). By the integrability condition, \(d\theta\) is \(J\)-invariant; i.e., a \((1,1)\)-form, and hence one can introduce the symmetric bilinear form

\[
L_\theta := d\theta(\cdot, J\cdot)
\]

defined on \(H\), called the Levi form.

A CR manifold \((X, H, J)\) is called strongly pseudoconvex if \(L_\theta\) is definite for some (and hence all) \(\theta\), and a strongly pseudoconvex CR manifold \((X, H, J)\) with a choice of \(\theta\) is called a pseudohermitian manifold. We shall always assume that \(X\) is strongly pseudoconvex and \(\theta\) is chosen so that \(L_\theta\) is positive definite, unless otherwise specified. In this case, the distribution \(H\) is a contact structure on \(X\) with a contact form \(\theta\). Let \(T\) be its Reeb vector field; i.e., the unique vector field satisfying \(\theta(T) = 1\) and \(\iota(T)d\theta = 0\). The Levi form induces a Hermitian metric \(L_\theta^*\) on \(H^*\). The sublaplacian \(\Delta_\theta\) is defined by

\[
\int_X (\Delta_\theta u)\nu \, d\mu_0 = \int_X \left(\frac{\partial}{\partial \nu}|_H, \frac{\partial}{\partial \nu}|_H\right) d\mu_0.
\]

A set of local 1-forms \(\{\theta^1, \ldots, \theta^n\}\) of type \((1,0)\) is called admissible, if its restriction to \(T^{1,0}X\) forms a basis of \(T^{1,0}X^*\) at each point and \(\theta^\alpha(T) = 0\) for all \(\alpha\). For an admissible coframe, we have

\[
d\theta = ih_{\alpha\overline{\beta}}\theta^\alpha \wedge \overline{\theta^\beta},
\]

where \((h_{\alpha\overline{\beta}})\) is a positive-definite hermitian matrix of functions and \(\overline{\theta^\beta} = \overline{\theta^\beta}\). We shall always adopt the Einstein convention and use the matrix \((h_{\alpha\overline{\beta}})\) and its inverse \((h^\alpha_{\overline{\beta}})\) to raise and lower indices. The integrability condition of \(J\) can be rephrased as

\[
d\theta^\alpha \equiv 0 \mod \theta, \theta^\gamma
\]

along with (2.1).

A pseudohermitian manifold carries a canonical linear connection, the Tanaka-Webster connection [Tan75, Web78], whose connection 1-forms \(\omega_{\alpha\overline{\beta}}\) and torsion forms \(\tau^\alpha\) of type \((0,1)\) are uniquely determined by the following relations

\[
d\theta^\beta = \theta^\alpha \wedge \omega_{\alpha\overline{\beta}} + \theta \wedge \tau^\beta, \quad \omega_{\alpha\overline{\beta}} + \omega_{\overline{\beta}\alpha} = dh_{\alpha\overline{\beta}}
\]
together with (2.1). We call τ^α the pseudohermitian torsion. The whole torsion tensor is composed of $\theta \wedge \tau^\gamma$ and $ih_\alpha \theta^\alpha \wedge \theta^\gamma$, and so it is nowhere vanishing.

The covariant differentiation with respect to this connection is given by
\[
\nabla Z^\alpha = \omega^\alpha_\beta \otimes Z^\beta, \quad \nabla \bar{Z}^\alpha = \omega^\alpha_\beta \otimes \bar{Z}_\beta, \quad \nabla T = 0,
\]
where a local frame $\{Z_\alpha\}$ of $T^{1,0}X$ is dual to $\{\theta^\alpha\}$. Its curvature 2-forms $\Omega^\alpha_\beta := d\omega^\alpha_\beta - \omega^\alpha_\gamma \wedge \omega^\gamma_\beta$ may have several types, but one considers only its $(1,1)$-part $R^\alpha_\beta \theta^\rho \wedge \theta^\sigma$ to get its pseudohermitian Ricci tensor $R^\rho_\rho := R^\alpha_\alpha \theta^\rho \wedge \theta^\rho$ by taking its contraction. Finally its pseudohermitian scalar curvature is the metric contraction $R^\rho_\rho = h^{\rho\sigma}R^\rho_\rho$. We say θ to be Einstein if its pseudohermitian torsion is identically zero and its pseudohermitian Ricci curvature is a constant multiple of the Levi form.

Lemma 2.1. Any Einstein contact form is a CR Yamabe minimizer.

Proof. Let (X, H, J) be a compact strongly pseudoconvex CR manifold of dimension $2n + 1$ and θ be an Einstein contact form on X. If the pseudohermitian scalar curvature is non-positive, then it must be a CR Yamabe minimizer. If the pseudohermitian scalar curvature is positive, we may assume that it is equal to $n(2n+1)$ by homothety. Consider the Riemannian metric g_θ on X given by
\[
\label{eq:metric}
g_\theta(U, V) := \frac{1}{2}d\theta(U, J V) + \theta(U)\theta(V), \quad U, V \in TX.
\]
Here we extend J to an endomorphism on TM by $JT = 0$. Note that the volume form of g_θ coincides with $(2^n n!)^{-1} d\mu_\theta$. This g_θ satisfies $\text{Ric}_{g_\theta} = 2ng_\theta$; see [Tak18, Proposition 2.9] for example. The Bishop inequality implies that
\[
\Omega(\theta) = n(n+1)(2^n n! \text{Vol}_{g_\theta}(X))^\frac{1}{n+1} \leq n(n+1)(2^n n! \text{Vol}_{g_\theta}(S^{2n+1}))^\frac{1}{n+1} = 2n(n+1)\pi,
\]
where g_θ is the standard Riemannian metric on S^{2n+1}. Moreover, the equality holds if and only if (X, g_θ) is isometric to (S^{2n+1}, g_0). In addition, if (X, g_θ) is isometric to (S^{2n+1}, g_0), then (X, H, J) is CR isomorphic to the standard CR sphere; see the paragraph after the proof of Proposition 4 in [Wan15]. Therefore (X, H, J) has a CR Yamabe minimizer, and θ is also a CR Yamabe minimizer by [Wan15, Theorem 3]. \hfill \square

An important example of a strongly pseudoconvex CR manifold is a principal S^1-bundle over a Hodge manifold. Given a Hodge manifold (M, J, ω); that is, its Kähler class $[\omega]$ is an integral cohomology class, we consider a principal S^1-bundle $p: P_M \rightarrow M$ whose Euler class is $-[\omega]$. Recall that for any \mathbb{R}-valued principal connection θ on P_M, $d\theta/2\pi$ descends to M and its cohomology class coincides with $[\omega]$. We take a principal connection θ satisfying $d\theta/2\pi = p^*\omega$, and consider the lifted almost complex structure
\[
p^*J: H := \text{Ker } \theta \to H.
\]
Proposition 2.2. The triple \((P_M, H, p^* J)\) is a strongly pseudoconvex CR manifold. Moreover, the pseudohermitian scalar curvature of \((P_M, H, p^* J, \theta/2\pi)\) is equal to \(p^* S(\omega)\), where \(S(\omega)\) is the scalar curvature of \((M, J, \omega)\).

Proof. This result may be well-known for the researchers in Sasakian geometry, but we give a proof for the reader’s convenience. Let \((z^1, \ldots, z^n)\) be a holomorphic local coordinate of \(M\). Then \(\theta^\alpha := p^* dz^\alpha\) defines an admissible coframe. Since \(d\theta^\alpha = p^* ddz^\alpha = 0\), the almost CR structure \((H, p^* J)\) is integrable. Moreover, \(L_\theta(X, X) = d\theta(X, (p^* J)X) = 2\pi\omega(p_\ast X, J(p_\ast X)) > 0\) for any non-zero \(X \in H\), which implies that \((M, H, p^* J)\) is strongly pseudoconvex.

Consider the Tanaka-Webster connection with respect to \(\theta/2\pi\). The Kähler form \(\omega\) is written as \(\omega = i g_{\alpha \overline{\beta}} dz^\alpha \wedge d\overline{z}^\beta\), where \((g_{\alpha \overline{\beta}})\) is a positive definite Hermitian matrix. Since \(d\theta/2\pi = p^* \omega\), we have \(d\theta/2\pi = i(p^* g_{\alpha \overline{\beta}}) \theta^\alpha \wedge \theta^\overline{\beta}\), which implies \(h_{\alpha \overline{\beta}} = p^* g_{\alpha \overline{\beta}}\). The structure equation on the Kähler manifold \((M, J, \omega)\) says that \(0 = d(z^\beta) = dz^\alpha \wedge \phi^\alpha_{\beta}, \quad dg_{\alpha \overline{\beta}} = \phi_{\alpha \beta}^\overline{\gamma} \wedge \phi_{\gamma \alpha}^\overline{\beta}\), where \(\phi^\alpha_{\beta}\) is the Levi-Civita connection 1-form, and so \(d\theta^\beta = \theta^\alpha \wedge (p^* \phi^\alpha_{\beta}), \quad d(p^* g_{\alpha \overline{\beta}}) = p^* \phi^\alpha_{\beta} + p^* \phi_{\beta \alpha}\). Hence the pull-back connection given by \(p^* \phi^\alpha_{\beta}\) coincides with the Tanaka-Webster connection. Note that the pseudohermitian torsion is equal to zero and \(P_M\) is Sasakian.

The curvature 2-forms of the Levi-Civita connection on \((M, J, \omega)\) are given by \(\Phi^\alpha_{\beta} := d\phi^\alpha_{\beta} - \phi^\gamma_{\beta} \wedge \phi^\alpha_{\gamma} = R^\alpha_{\beta \rho \sigma} dz^\rho \wedge d\overline{z}^\sigma\). Its pull-back to \(P_M\) yields \(p^* \Phi^\alpha_{\beta} = d(p^* \phi^\alpha_{\beta}) - (p^* \phi^\gamma_{\beta}) \wedge (p^* \phi^\alpha_{\gamma}) = (p^* R^\alpha_{\beta \rho \sigma}) \theta^\rho \wedge \theta^\overline{\sigma}\), which are the curvature 2-forms of the Tanaka-Webster connection. Hence the pseudohermitian Ricci tensor \(R^\rho_{\overline{\rho}}\) is given by \(p^* R^\rho_{\overline{\rho}} = p^* \text{Ric}_{\rho \overline{\rho}}\), where Ric is the Ricci tensor of \((M, J, \omega)\), and the pseudohermitian scalar curvature is given by \(R^\rho_{\overline{\rho}} = p^* \text{Ric}_{\rho \overline{\rho}} = p^* S(\omega)\), which completes the proof. □
3. Formulae for CR Yamabe constant

As with the Riemannian Yamabe problem, the functional $\mathcal{F}(\theta)$ can be rewritten as a functional on $C^\infty(X, \mathbb{R}_+)$:

$$\mathcal{F}(u^{2/n}\theta) = \frac{\int_X (2 + 2/n)|du|^2 + R_\theta u^2) d\mu_\theta}{(\int_X u^{2+2/n} d\mu_\theta)^{n/(n+1)}},$$

where θ is a fixed contact form and $|du|^2 = L^*_\theta(du|_{1\mathcal{H}}, du|_{\mathcal{H}})$ [JL87]. It follows from this that $\lambda(X) \geq 0$ if $R_\theta \geq 0$. Moreover consider the case $R_\theta > 0$. Suppose to the contrary that $\lambda(X) = 0$. Then there exists a CR Yamabe contact form $\tilde{\theta} = u^{2/n}\theta$ satisfying $R_{\tilde{\theta}} = 0$, which contradicts (3.1). Therefore $\lambda(X) > 0$ if $R_\theta > 0$; see [Wan03, Proposition 3.1] for another proof.

Theorem 3.1. Let (X, H, J) be a compact strongly pseudoconvex CR manifold of dimension $2n+1$. If $\lambda(X) \geq 0$, then for any $r \in [1, \infty]$

$$\lambda(X) \leq \inf_\theta \|R_{\tilde{\theta}}\|_{L^r} \text{Vol}_{\tilde{\theta}}(X)^{\frac{1}{n+1}} \frac{1}{r},$$

where $\text{Vol}_{\tilde{\theta}}(X)$ is the volume of X with respect to $d\mu_{\tilde{\theta}}$. If the CR Yamabe problem is solvable on X, then the equality holds. If $\lambda(X) \leq 0$, then for any $r \in [n+1, \infty]$

$$\lambda(X) = -\inf_\theta \|R_{\tilde{\theta}}\|_{L^r} \text{Vol}_{\tilde{\theta}}(X)^{\frac{1}{n+1}} \frac{1}{r},$$

(3.3)

where $R_{\tilde{\theta}} := \min(R_{\tilde{\theta}}, 0)$, and the two infima are realized only by a CR Yamabe minimizer.

Proof. When $\lambda(X) \geq 0$, the Hölder inequality implies

$$\lambda(X) \leq \frac{\int_X R_{\tilde{\theta}} d\mu_{\tilde{\theta}}}{\text{Vol}_{\tilde{\theta}}(X)^{n/(n+1)}} \leq \|R_{\tilde{\theta}}\|_{L^r} \text{Vol}_{\tilde{\theta}}(X)^{\frac{1}{n+1}} \frac{1}{r},$$

and the equality holds if $\tilde{\theta}$ is a CR Yamabe minimizer.

Now in the case of $\lambda(X) \leq 0$, we use the technique of Besson, Courtois, and Gallot [BCG91]. Let θ be a CR Yamabe minimizer, which is unique up to a constant in this case. Consider another contact form $\tilde{\theta} = u^{2/n}\theta$, where u is a positive smooth function. The Hölder inequality yields

$$\|R_{\tilde{\theta}}\|_{L^r} \text{Vol}_{\tilde{\theta}}(X)^{\frac{1}{n+1}} \frac{1}{r} = \left(\int_X |R_{\tilde{\theta}}|^r d\mu_{\tilde{\theta}}\right)^{\frac{1}{r}} \text{Vol}_{\tilde{\theta}}(X)^{\frac{1}{n+1}} \frac{1}{r} \geq \left(\int_X |R_{\tilde{\theta}}|^r u^{2+2/n} d\mu_{\tilde{\theta}}\right)^{\frac{1}{r}} \left(\int_X u^{2+2/n} d\mu_{\tilde{\theta}}\right)^{-\frac{1}{r+1}} \frac{1}{r} \geq \left(\int_X (-R_{\tilde{\theta}}) u^{2/n} d\mu_{\tilde{\theta}}\right) \text{Vol}_{\tilde{\theta}}(X)^{-\frac{1}{n+1}} \frac{1}{r} \geq \left(\int_X (-R_{\tilde{\theta}}) u^{2/n} d\mu_{\tilde{\theta}}\right) \text{Vol}_{\tilde{\theta}}(X)^{-\frac{1}{n+1}}.$$

Here recall that

$$R_{\tilde{\theta}} = u^{-1-2/n}(R_\theta + (2 + 2/n)\Delta_\theta)u,$$
where Δ_θ is the sublaplacian [JL87]. Therefore
\[
\|R_\theta\|_{L^r} \cdot \text{Vol}_\theta(X)^{-\frac{1}{\pi r}} \\
\geq \left(\int_X (-R_\theta - (2 + 2/n)u^{-1}\Delta_\theta u) \, d\mu_\theta \right) \cdot \text{Vol}_\theta(X)^{-\frac{1}{\pi r}} \\
= \left(\int_X (-R_\theta + (2 + 2/n)u^{-2}|\mu_\theta|^2) \, d\mu_\theta \right) \cdot \text{Vol}_\theta(X)^{-\frac{1}{\pi r}} \\
\geq -\left(\int_X R_\theta \, d\mu_\theta \right) \cdot \text{Vol}_\theta(X)^{-\frac{1}{\pi r}} \\
= -\lambda(X).
\]
This proves
\[
\lambda(X) \geq -\inf_\theta \|R_\theta\|_{L^r} \cdot \text{Vol}_\theta(X)^{-\frac{1}{\pi r}} \geq -\inf_\theta \|R_\theta\|_{L^r} \cdot \text{Vol}_\theta(X)^{-\frac{1}{\pi r}} \frac{1}{\lambda(X)}.
\]
On the other hand,
\[
\lambda(X) = -\|R_\theta\|_{L^r} \cdot \text{Vol}_\theta(X)^{-\frac{1}{\pi r}} = -\|R_\theta\|_{L^r} \cdot \text{Vol}_\theta(X)^{-\frac{1}{\pi r}} \frac{1}{\lambda(X)}
\]
since R_θ is non-positive constant, which proves the two desired formulae together. It remains to decide when the infima are realized. The infimum of (3.2) or (3.3) is realized by $\bar{\theta}$ if and only if the above all inequalities are attained by equalities, which holds if and only if $R_{\bar{\theta}} \equiv R_\theta$ is a non-positive constant (and hence u is a positive constant); i.e., $\bar{\theta}$ is a CR Yamabe minimizer. \hfill \Box

4. CONTINUITY OF THE CR YAMABE CONSTANT

In this section, we prove the continuity of the CR Yamabe constant under suitable deformations of CR structures. Remark that Lemma 4.2 below is a generalization of [Di21, Lemma 5.5].

Proposition 4.1. Let (X, H, J, θ) be a compact pseudohermitian manifold of dimension $2n + 1$. Assume that $(X, H_1, J_1)\in \mathbb{N}$ is a sequence of pseudohermitian structures on X such that $\theta_i \to \theta$ in C^2-topology, and $J_1 \to J$ and $R_{\theta_i} \to R_\theta$ in C^0-topology, where J_1 and J extend to endomorphisms on TX in an obvious way. Then one has $\lambda(X, H_1, J_1) \to \lambda(X, H, J)$.

Proof. Since $\theta_i \to \theta$ in C^2-topology, we may assume that $\theta_i \coloneqq t\theta_i + (1 - t)\theta$ for $t \in [0, 1]$ is a smooth family of contact forms on X. Let T_i^θ be the Reeb vector field of θ_i, which is determined by
\[
\theta_i(T_i^\theta) = 1, \quad \iota(T_i^\theta) d\theta = 0.
\]
Since $\theta_i \to \theta$ in C^2-topology, $\sup_{t \in [0, 1]} \|T_i^\theta - T\|_{C^1} \to 0$. Take the time-dependent vector field $V_i^\theta \in \Gamma(Ker \theta_i)$ satisfying
\[
\iota(V_i^\theta) d\theta_i = (\theta_i - \theta)(T_i^\theta) \theta_i - (\theta - \theta).
\]
It follows from $\sup_{t \in [0, 1]} \|\theta_i - \theta\|_{C^2} \to 0$ and $\sup_{t \in [0, 1]} \|T_i^\theta - T\|_{C^1} \to 0$ that
\[
\sup_{t \in [0, 1]} \|V_i^\theta\|_{C^1} \to 0.
\]
The isotopy $\psi^\theta_t : X \to X$ generated by V_i^θ satisfies $(\psi^\theta_t)^* H_i^\theta = H$ for any $t \in [0, 1]$; see the proof of the Gray stability theorem [Gei08, Theorem 2.2.2]. The equation (4.1)
Lemma 4.2.

Let \((X, H, J, \theta) \) be a compact pseudohermitian manifold of dimension \(2n + 1 \). Assume that \((X, H, J_i, \theta_i)_{i \in \mathbb{N}} \) is a sequence of pseudohermitian structures on \(X \) such that \(\theta_i \to \theta, \ d\theta_i \to d\theta, \ J_i \to J, \) and \(R_{\theta_i} \to R_\theta \) in \(C^0 \)-topology. Then one has \(\lambda(X, H, J_i) = \lambda(X, H, J) \), the statement follows from the Lemma below. \[\square \]

Proof. Without loss of generality, we may assume that \(\text{Vol}_\theta(X) = \text{Vol}_0(X) = 1 \). Since \(R_{\theta_i} \to R_\theta \) in \(C^0 \)-topology, we can find \(K > 0 \) such that \(|R_{\theta_i}| < K \) and \(|R_{\theta_i} - R_\theta| < \varepsilon \) for any \(i \in (0, 1) \), take \(N(\varepsilon) \in \mathbb{Z}_+ \) such that \(i \geq N(\varepsilon) \) implies

\[
(1 + \varepsilon)^{-1}L_\theta < L_{\theta_i} < (1 + \varepsilon)L_\theta, \\
(1 + \varepsilon)^{-1}d\mu_{\theta_i} < d\mu_\theta < (1 + \varepsilon)d\mu_\theta, \\
|\lambda_{\theta_i} - \lambda_\theta| < \varepsilon.
\]

For any \(f \in C^\infty(X, \mathbb{R}) \), we write \(f^+ := \max(f, 0) \) and \(f^- := \min(f, 0) \). Let \(u \in C^\infty(X, \mathbb{R}_+) \). The Hölder inequality yields

\[
\int_X u^2 \, d\mu_\theta \leq \left(\int_X u^{2+2/n} \, d\mu_\theta \right)^{n/(n+2)} \text{Vol}_\theta(X)^{n/(n+2)} = \left(\int_X u^{2+2/n} \, d\mu_\theta \right)^{n/(n+2)}
\]

and

\[
\left| \int_X R^\pm_{\theta_i} u^2 \, d\mu_\theta \right| \leq K \int_X u^2 \, d\mu_\theta \leq K \left(\int_X u^{2+2/n} \, d\mu_\theta \right)^{n/(n+2)}.
\]

It follows from the above inequalities that

\[
\int_X R_{\theta_i} u^2 \, d\mu_\theta \leq \int_X (R_{\theta_i} + \varepsilon) u^2 \, d\mu_\theta \leq (1 + \varepsilon) \int_X R^+_{\theta_i} u^2 \, d\mu_\theta + (1 + \varepsilon)^{-1} \int_X R^-_{\theta_i} u^2 \, d\mu_\theta,
\]

and

\[
(1 + \varepsilon)^{-1} \int_X u^{2+2/n} \, d\mu_\theta \leq \int_X u^{2+2/n} \, d\mu_\theta \leq (1 + \varepsilon) \int_X u^{2+2/n} \, d\mu_\theta.
\]

Thus we have

\[
\mathfrak{g}(u^{2/n} \theta_i)
\]

\[
\leq \int_X ((2 + 2/n) |d\mu_{\theta_i}^2 + R_{\theta_i} u^2 |) \left(\int_X u^{2+2/n} \, d\mu_\theta \right)^{-n/(n+2)}
\]

\[
\leq (1 + \varepsilon)^{2n/(n+1)} \int_X (2 + 2/n) |d\mu_{\theta_i}^2 + (1 + \varepsilon)^{1+n/(n+1)} \int_X (R^+_{\theta_i} + \varepsilon) u^2 \, d\mu_\theta
\]

\[
+ (1 + \varepsilon)^{-1-n/(n+1)} \int_X R^-_{\theta_i} u^2 \, d\mu_\theta \right) \left(\int_X u^{2+2/n} \, d\mu_\theta \right)^{-n/(n+2)}
\]

\[
\leq (1 + \varepsilon)^{2n/(n+1)} \mathfrak{g}(u^{2/n} \theta) + C \varepsilon,
\]
where C is a positive constant independent of u and ε. Taking the infimum yields

$$\lambda(X, H, J) \leq (1 + \varepsilon)^{2+n/(n+1)}\lambda(X, H, J) + C\varepsilon.$$

Since (J, θ) and (J_1, θ_1) are symmetric, we also obtain

$$\lambda(X, H, J) \leq (1 + \varepsilon)^{2+n/(n+1)}\lambda(X, H, J_1) + C\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we have

$$\limsup_{i \to \infty} \lambda(X, H, J_i) \leq \lambda(X, H, J) \leq \liminf_{i \to \infty} \lambda(X, H, J_i),$$

which implies $\lambda(X, H, J_i) \to \lambda(X, H, J)$. \qed

5. Deformations of CR structures with varying CR Yamabe constants

In this section, we construct a family of strongly pseudoconvex CR structures with varying CR Yamabe constants. Let (M, J, ω) be an n-dimensional compact Hodge manifold with constant scalar curvature. Let us write

$$\mathcal{K} := \{ \varphi \in C^\infty(M) \mid \omega_\varphi := \omega + i\partial\bar{\partial} \varphi > 0 \}$$

endowed with the C^4-topology for the space of Kähler potentials in the class $[\omega]$. For any $\varphi \in \mathcal{K}$, we have

$$\int_M \omega_\varphi^n = [\omega]^n, \quad \int_M S(\omega_\varphi) \omega_\varphi^n = 2n\pi c_1(M) \cup [\omega]^{n-1},$$

which are independent of the choice of φ. In particular if ω_φ is a constant scalar curvature Kähler metric, then

$$S(\omega_\varphi) = \frac{2n\pi c_1(M) \cup [\omega]^{n-1}}{[\omega]^n} =: \hat{S}.$$

Set

$$\mathcal{F} := \{ \varphi \in \mathcal{K} \mid S(\omega_\varphi) = \hat{S} \}$$

so that ω_φ is not a constant scalar curvature Kähler metric for any $\varphi \in \mathcal{K} \setminus \mathcal{F}$. It is known that ω_φ is a constant scalar curvature Kähler metric if and only if there exists $F \in \text{Aut}^0(M)$ such that $\omega_\varphi = F^*\omega$ [BB17, Theorem 1.3]. In particular if $\text{Aut}(M)$ is discrete, or equivalently, M admits no non-trivial holomorphic vector fields, then $\mathcal{F} = \mathbb{R}$. More generally, if any holomorphic vector field is parallel, then $\mathcal{F} = \mathbb{R}$. This is because a parallel and holomorphic vector field preserves the Kähler form ω.

For each $\varphi \in \mathcal{K}$, take a principal connection θ_φ on P_M satisfying $d\theta_\varphi/2\pi = p^*\omega_\varphi$, which is given by

$$\theta_\varphi := \theta + \pi p^*d^c \varphi,$$

where $d^c := i(\bar{\partial} - \partial)$. This gives an infinite-dimensional family of pseudohermitian manifolds

$$X_\varphi := (P_M, H_\varphi := \text{Ker} \theta_\varphi, p^*J, \theta_\varphi/2\pi)$$

underlying the same manifold P_M. Integration along fibers yields that

$$\hat{\mathcal{S}}(\theta_\varphi/2\pi) = \int_{P_M} p^* S(\omega_\varphi) (\theta_\varphi/2\pi) \wedge (p^*\omega_\varphi)^n
\left(\int_{P_M} (\theta_\varphi/2\pi) \wedge (p^*\omega_\varphi)^n \right)^{n/(n+1)} = \frac{2n\pi c_1(M) \cup [\omega]^{n-1}}{([\omega]^n)^{n/(n+1)}},$$
which is independent of φ.

Proof of Theorem 1.1. The continuity follows from Proposition 4.1. If $\theta_0 = \theta$ is a CR Yamabe minimizer, then $\lambda(P_M, H, p^*J) = \overline{\delta}(\theta_0/2\pi)$. On the other hand, $p^*S(\omega_\varphi)$ is not constant for any $\varphi \in U \setminus \mathcal{F}$, and so

$$
\lambda(P_M, H, p^*J) < \overline{\delta}(\theta_\varphi/2\pi) = \overline{\delta}(\theta_0/2\pi) = \lambda(P_M, H, p^*J),
$$

which completes the first assertion. If ω has constant non-positive scalar curvature, then so does $\theta/2\pi$, which must be a CR Yamabe minimizer. If ω is a Kähler-Einstein metric, then $\theta/2\pi$ is an Einstein contact form. It follows from Lemma 2.1 that $\theta/2\pi$ is a CR Yamabe minimizer.

In general, it may be cumbersome to have non-trivial \mathcal{F}, since it can be singular and not easy to locate. In fact, we do not have many examples with non-trivial \mathcal{F}. We give some examples of Hodge manifolds with $\mathcal{F} = \mathbb{R}$.

Example 5.1 (Kähler-Einstein manifolds with non-positive scalar curvature). First, a compact complex manifold M with $c_1(M) < 0$ admits a Kähler-Einstein metric in the Kähler class $-c_1(M)$ by the Aubin-Yau theorem [Aub76, Yau78]. Second, the celebrated Calabi-Yau theorem [Yau78] implies that any Kähler class on a compact complex manifold M with $c_1(M) = 0$ in $H^2(M; \mathbb{R})$ is represented by a unique Ricci-flat Kähler metric. Thus we can take any integral Kähler class for our purpose. In these cases, a constant scalar curvature Kähler metric in any Kähler class, if it exists, must be unique [Che00, Theorem 7] and hence $\mathcal{F} = \mathbb{R}$.

Example 5.2 (Fano manifolds). Let M be a Fano manifold; that is, a compact complex manifold with $c_1(M) > 0$. If M admits a Kähler-Einstein metric ω in the Kähler class $c_1(M)$, then $\theta/2\pi$ gives a CR Yamabe minimizer. For example, a complex surface given by a blow-up of $\mathbb{C}P^2$ at m points in general position with $3 \leq m \leq 8$ admits a Kähler-Einstein metric of positive scalar curvature [TY87, Tia90]. Note that the automorphism groups of these surfaces are discrete. As a higher-dimensional example, consider the Fermat hypersurface $F_{n,d} \subset \mathbb{C}P^{n+1}$ of degree $3 \leq d \leq n+1$; that is:

$$
F_{n,d} := \left\{ [z_0 : \cdots : z_{n+1}] \in \mathbb{C}P^{n+1} \left| \sum_{k=0}^{n+1} z_k^d = 0 \right. \right\}.
$$

This $F_{n,d}$ admits a Kähler-Einstein metric [Tia00, Section 6.3]. Note that $F_{n,d}$ has no non-trivial holomorphic vector field [KS58, Lemma 14.2]; see [MM63] for another proof.

Example 5.3 (Scalar-flat but not Ricci-flat surfaces). Take a complex surface S_m obtained by blowing up $\mathbb{C}P^1 \times \Sigma$ at generic m points p_1, \cdots, p_m, where Σ is a compact Riemann surface of genus $g \geq 2$ and $m \geq 3$. It is known that S_m admits a scalar-flat Kähler form $\tilde{\omega}$ [LS93, Theorem 3.11]. Note that S_m does not admit a Ricci-flat Kähler metric since $c_1(S_m)^2 = 8(1-g) - m < 0$. Assume that the projection of $\{p_1, \cdots, p_m\}$ to $\mathbb{C}P^1$ consists of at least 3 points. Since Σ has no non-trivial holomorphic vector fields and any holomorphic vector field on $\mathbb{C}P^1$ vanishing at least 3 points must be trivial, S_m admits no non-trivial holomorphic vector fields also.
It still remains to show that S_m has a scalar-flat integral Kähler class. Since $H^{2,0}(S_m) = 0$, we have $H^{1,1}(S_m; \mathbb{R}) \cong H^2(S_m; \mathbb{Z}) \otimes \mathbb{R}$. The linear operator
\[c_1(S_m) \cup: H^{1,1}(S_m; \mathbb{R}) \to \mathbb{R} \]
has integer coefficients and satisfies $c_1(S_m) \cup [\omega] = 0$. Hence there exists a rational Kähler class μ close enough to $[\omega]$ satisfying $c_1(S_m) \cup \mu = 0$. [LS95, Theorem 1] implies that μ contains a scalar-flat Kähler form ω. Therefore we obtain a scalar-flat integral Kähler class by homothety.

6. Construction of a manifold with different signs of CR Yamabe constants

In this section, we construct a manifold admitting two strongly pseudoconvex CR structures with different signs of CR Yamabe constants. Our construction is based on an exotic smooth structure of a certain complex surface and an adaptation of the technique originated by Ruan [Rua94] and used by Kim and Sung [KS16] to show the existence of inequivalent symplectic structures on certain 6-manifolds.

Let B be the Barlow surface [Bar85, Kot89] and R_8 be a complex surface given by a blow-up of $\mathbb{C}P^2$ at 8 points in general position. The Barlow surface is a simply-connected minimal surface of general type with $q = p_g = 0$ and $c_1(B)^2 = 1$, and contains (-2)-curves so that its canonical line bundle is not ample. But as shown in [CL97, Theorem 7], it has a small deformation with ample canonical line bundle and hence admits a Kähler-Einstein metric of negative scalar curvature by the celebrated Aubin-Yau theorem. By the results of Tian and Yau [TY87, Tia90], R_8 admits a Kähler-Einstein metric of positive scalar curvature. It is well-known that B and R_8 are homeomorphic by Freedman’s classification [Fre82, Theorem 1.5] while they are not diffeomorphic by Kotschick’s theorem [Kot89, Theorem 1].

Remark 6.1. An easier way of proving Kotschick’s theorem by using Seiberg-Witten invariant runs as follows. Since R_8 and B have $b_2^+ = 1$, their Seiberg-Witten invariants for a Spinc structure ξ with $c_1(\xi)^2 > 0$ are well-defined for any small perturbation. The complex surface R_8 admits a metric of positive scalar curvature, so its Seiberg-Witten invariants all vanish. However the Seiberg-Witten invariant of B for the canonical Spinc structure determined by the complex structure is ± 1 [Mor96].

Since the intersection forms of both B and R_8 are indefinite and odd, they are isomorphic to $(1) \oplus 8(-1)$. Wall [Wal62, p.336] has proved that all characteristic vectors with square 1 in $(1) \oplus 8(-1)$ are equivalent. Since the first Chern class of B and R_8 are characteristic with square 1 by Wu’s formula, there is an isomorphism from $H^2(R_8; \mathbb{Z})$ to $H^2(B; \mathbb{Z})$ preserving the intersection form and the first Chern class. This induces an isomorphism
\[\Psi: H^*(R_8 \times \mathbb{C}P^1; \mathbb{Z}) \to H^*(B \times \mathbb{C}P^1; \mathbb{Z}) \]
in the obvious way preserving $H^*(\mathbb{C}P^1; \mathbb{Z})$. We claim that Ψ satisfies the conditions of the following theorem.

Theorem 6.2 ([Jup73, Theorem 1]). Let X and Y be smooth closed simply-connected 6-manifolds with torsion-free homology. Suppose that there is an isomorphism from $H^*(X; \mathbb{Z})$ to $H^*(Y; \mathbb{Z})$ preserving the triple cup product structure $\mu: H^2 \otimes H^2 \otimes H^2 \to \mathbb{Z}$, the second Stiefel-Whitney class, and the first Pontryagin
class. Then there exists an orientation-preserving diffeomorphism from X to Y realizing this algebraic isomorphism.

It is enough to check that Ψ preserves the specified characteristic classes. By the product formula,

$$w_2(R_8 \times \mathbb{C}P^1) = w_2(R_8) + w_1(R_8)w_1(\mathbb{C}P^1) + w_2(\mathbb{C}P^1)$$

$$= c_1(R_8) + 0 + c_1(\mathbb{C}P^1) \mod 2,$$

and likewise for $B \times \mathbb{C}P^1$. Since

$$\Psi(c_1(R_8) + c_1(\mathbb{C}P^1)) = c_1(B) + c_1(\mathbb{C}P^1),$$

Ψ preserves the second Stiefel-Whitney class. Using the fact that $p_1 = c_1^2 - 2c_2$ and the product formula, we have

$$p_1(R_8 \times \mathbb{C}P^1) = c_1(R_8 \times \mathbb{C}P^1)^2 - 2c_2(R_8 \times \mathbb{C}P^1)$$

$$= (c_1(R_8) + c_1(\mathbb{C}P^1))^2 - 2(c_2(R_8) + c_1(R_8)c_1(\mathbb{C}P^1)),$$

and likewise for $B \times \mathbb{C}P^1$. Since Ψ preserves the Euler characteristic; i.e., the alternating sum of Betti numbers, Ψ maps $e(R_8) = c_2(R_8)$ to $e(B) = c_2(B)$. Therefore Ψ preserves the first Pontryagin class too, and we have an orientation-preserving diffeomorphism

$$\psi: R_8 \times \mathbb{C}P^1 \to B \times \mathbb{C}P^1$$

satisfying $\psi^*(c_1(B)) = c_1(R_8)$ and $\psi^*(c_1(\mathbb{C}P^1)) = c_1(\mathbb{C}P^1)$.

Let $n \geq 3$. Take Kähler forms $\omega_1 \in c_1(R_8)$, $\omega_2 \in c_1(\mathbb{C}P^1)$, and $\omega_3 \in nc_1(\mathbb{C}P^{n-3})$ such that

$$\text{Ric}(\omega_1) = 2\pi\omega_1,$$

$$\text{Ric}(\omega_2) = 2\pi\omega_2,$$

$$\text{Ric}(\omega_3) = \frac{2\pi}{n}\omega_3.$$

Then

$$(M := R_8 \times \mathbb{C}P^1 \times \mathbb{C}P^{n-3}, \omega := \omega_1 + \omega_2 + \omega_3)$$

is a Kähler manifold with positive Ricci curvature. Let P_M be the principal S^1-bundle over M whose Euler class is $-\omega$. This P_M admits a connection one-form θ and the lifted CR structure J such that $d\theta/2\pi$ projects down to ω on M. The CR Yamabe constant of $(P_M, H := \text{Ker} \theta, J)$ must be positive by the argument after formula (3.1).

Lemma 6.3. The manifold P_M is simply-connected.

Proof. Let $E \cong \mathbb{C}P^1$ be an exceptional divisor in R_8 and consider it as a complex curve in M. Then the restriction of $-\omega$ to E coincides with the first Chern class of the tautological line bundle over E. Hence $(P_M)|_E \to E$ is a Hopf fibration. Consider the following commutative diagram with exact rows.

$$
\begin{array}{cccccc}
\pi_2((P_M)|_E) & \longrightarrow & \pi_2(E) & \longrightarrow & \pi_1(S^1) & \longrightarrow & \pi_1((P_M)|_E) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\pi_2(M) & \longrightarrow & \pi_1(S^1) & \longrightarrow & \pi_1(P_M) & \longrightarrow & \pi_1(M) = 0
\end{array}
$$

Since $(P_M)|_E \to E$ is a Hopf fibration, $\pi_1((P_M)|_E) = 0$ and $\pi_2((P_M)|_E) = 0$, and so the map $\pi_2(E) \to \pi_1(S^1)$ is an isomorphism. Thus we have $\pi_2(M) \to \pi_1(S^1)$ is surjective and $\pi_1(P_M) = 0$. \qed
On the other hand, let \(\tilde{J}_1 \) and \(-\tilde{\omega}_1 \) be the complex structure and a Kähler form in the class \(-c_1(B) \) giving an Einstein metric of negative scalar curvature on \(B \). Denote by \(\tilde{M}' \) the complex 3-manifold \((B \times \mathbb{C}P^1, (-\tilde{J}_1) \times J_2) \). The two-form \(\tilde{\omega}' = \tilde{\omega}_1 + \omega_2 \) defines a Kähler form on \(\tilde{M}' \) with constant scalar curvature \(-2\pi\). Consider the Kähler manifold

\[
(\tilde{M} := \tilde{M}' \times \mathbb{CP}^{n-3}, \tilde{\omega} := \tilde{\omega}' + \omega_3).
\]

The scalar curvature of this manifold is given by \(-2\pi + 2(n - 3)\pi/n < 0\). Denote by \(\tilde{\psi} \) the diffeomorphism

\[
\psi \times \text{id}_{\mathbb{CP}^{n-3}} : (R_8 \times \mathbb{CP}^1) \times \mathbb{CP}^{n-3} \to (B \times \mathbb{CP}^1) \times \mathbb{CP}^{n-3}.
\]

Then \(\tilde{\psi}^*(\tilde{\omega}) = [\omega] \) since \(\psi^*(\tilde{\omega}') = [\omega_1] + [\omega_2] \). Hence there exists a connection form \(\tilde{\theta} \) of \(P_M \) and the lifted CR structure \(\tilde{J} \) such that \(d\tilde{\theta}/2\pi = \tilde{\psi}^*\tilde{\omega} \). We derive from Proposition 2.2 that \((P_M, \tilde{H} := \text{Ker} \tilde{\theta}, \tilde{J}) \) has negative CR Yamabe constant.

Before the proof of Theorem 1.2, we recall some facts on contact geometry. Two cooriented contact manifolds \((X, H)\) and \((X', H')\) are isomorphic if there exists a diffeomorphism \(\psi : X \to X' \) preserving contact structures and coorientation. Moreover, the first Chern class of a strongly pseudoconvex CR manifold is an invariant of the underlying cooriented contact structure; see [Gei08, Section 2.4] for example.

Proof of Theorem 1.2. It remains to show that \((P_M, H)\) is not isomorphic to \((P_M, \tilde{H})\) as cooriented contact manifolds. Denote by \(p : P_M \to M \) the projection from \(P_M \) to \(M \). Then

\[
c_1(P_M, H, J) = p^*c_1(M), \quad c_1(P_M, \tilde{H}, \tilde{J}) = p^*\tilde{\psi}^*c_1(\tilde{M}).
\]

Now consider the Gysin exact sequence

\[
H^0(M; \mathbb{Z}) = Z \xrightarrow{[\omega]} H^2(M; \mathbb{Z}) \xrightarrow{P} H^2(P_M; \mathbb{Z}).
\]

We first consider the case \(n = 3 \). Since \(c_1(R_8) \) and \([\omega] = c_1(R_8) + c_1(\mathbb{CP}^1)\) are linearly independent in \(H^2(M; \mathbb{Z}) \), we have

\[
c_1(P_M, H, J) = p^*c_1(M) = 0,
\]

\[
c_1(P_M, \tilde{H}, \tilde{J}) = p^*\tilde{\psi}^*c_1(\tilde{M}) = -2p^*c_1(R_8) \neq 0.
\]

Hence \((P_M, H)\) is not isomorphic to \((P_M, \tilde{H})\).

In the remainder of the proof, we assume that \(n \geq 4 \). In this case,

\[
c_1(P_M, H, J) = p^*c_1(M) = -(n - 1)(n - 2)p^*c_1(O_{\mathbb{CP}^{n-3}}(1)).
\]

In particular, \([c_1(P_M, H, J)] = 0\) in \(H^2(P_M; \mathbb{Z})/(n - 1)H^2(P_M; \mathbb{Z}) \). It suffices to show that \([c_1(P_M, \tilde{H}, \tilde{J})] \neq 0\) in \(H^2(P_M; \mathbb{Z})/(n - 1)H^2(P_M; \mathbb{Z}) \). Suppose to the contrary that \([c_1(P_M, \tilde{H}, \tilde{J})] = [p^*\tilde{\psi}^*c_1(\tilde{M})] = 0\) in \(H^2(P_M; \mathbb{Z})/(n - 1)H^2(P_M; \mathbb{Z}) \). Consider the following exact sequence:

\[
H^0(M; \mathbb{Z}) = \mathbb{Z} \xrightarrow{[\omega]} H^2(M; \mathbb{Z})/(n - 1)H^2(M; \mathbb{Z}) \xrightarrow{P} H^2(P_M; \mathbb{Z})/(n - 1)H^2(P_M; \mathbb{Z}).
\]

This yields that there exists \(k \in \mathbb{Z} \) such that

\[
\tilde{\psi}^*c_1(\tilde{M}) + k[\omega] = -c_1(R_8) + c_1(\mathbb{CP}^1) + c_1(\mathbb{CP}^{n-3}) + k[\omega] \in (n - 1)H^2(M; \mathbb{Z})
\]

Hence

\[
\langle -c_1(R_8) + c_1(\mathbb{CP}^1) + c_1(\mathbb{CP}^{n-3}) + k[\omega], a \rangle \equiv 0 \mod n - 1
\]
for any $a \in H_2(M; \mathbb{Z})$. Let $E \cong \mathbb{C}P^1$ be an exceptional divisor in R_8 and consider it as a complex curve in M. Taking $a = [E]$ gives that

$$0 \equiv (-c_1(R_8) + c_1(\mathbb{C}P^1) + c_1(\mathbb{C}P^{n-3}) + k[\omega], [E]) = k - 1 \mod n - 1.$$

Consider also a projective line $L \subset \mathbb{C}P^{n-3}$, which is seen as a complex curve in M. Then

$$0 \equiv (-c_1(R_8) + c_1(\mathbb{C}P^1) + c_1(\mathbb{C}P^{n-3}) + k[\omega], [L]) = (n - 2) + kn(n - 2) \equiv n - 3 \mod n - 1,$$

which is a contradiction.

Acknowledgements

The first author would like to thank Professor Pak Tung Ho for a kind discussion at KIAS, and Professor Chong-Kyu Han for introducing him to CR geometry and warm encouragement on this work.

References

[Aub76] T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 3, Aii, A119–A121.

[Bar85] R. Barlow, A simply connected surface of general type with $p_g = 0$, Invent. Math. 79 (1985), no. 2, 293–301.

[BB17] R. J. Berman and B. Berndtsson, Convexity of the K-energy on the space of Kähler metrics and uniqueness of extremal metrics, J. Amer. Math. Soc. 30 (2017), no. 4, 1165–1196.

[BCG91] G. Besson, G. Courtois, and S. Gallot, Volume et entropie minimale des espaces localement symétriques, Invent. Math. 103 (1991), no. 2, 417–445.

[CCY14] J.-H. Cheng, H.-L. Chiu, and P. Yang, Uniformization of spherical CR manifolds, Adv. Math. 255 (2014), 182–216.

[Che00] X. Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189–234.

[CL97] F. Catanese and C. LeBrun, On the scalar curvature of Einstein manifolds, Math. Res. Lett. 4 (1997), no. 6, 843–854.

[CMY17] J.-H. Cheng, A. Malchiodi, and P. Yang, A positive mass theorem in three dimensional Cauchy-Riemann geometry, Adv. Math. 308 (2017), 276–347.

[CMY23] J.-H. Cheng, A. Malchiodi, and P. Yang, On the Sobolev quotient of three-dimensional CR manifolds, Rev. Mat. Iberoam. 26 (2020), no. 4, 2711–2728.
CR YAMABE CONSTANT AND INEQUIVALENT CR STRUCTURES

[KS58] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures, II, Ann. of Math. (2) 67 (1958), 403–466.

[LeB99] C. LeBrun, Kodaira dimension and the Yamabe problem, Comm. Anal. Geom. 7 (1999), no. 1, 133–156.

[LS93] C. LeBrun and M. Singer, Existence and deformation theory for scalar-flat Kähler metrics on compact complex surfaces, Invent. Math. 112 (1993), no. 2, 273–313.

[LS95] C. LeBrun and S. R. Simanca, On Kähler surfaces of constant positive scalar curvature, J. Geom. Anal. 5 (1995), no. 1, 115–127.

[MM63] H. Matsumura and P. Monsky, On the automorphisms of hypersurfaces, J. Math. Kyoto Univ. 3 (1963/64), 347–361.

[Mor96] J. W. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, vol. 44, Princeton University Press, Princeton, NJ, 1996.

[Rua94] Y. Ruan, Symplectic topology on algebraic 3-folds, J. Differential Geom. 39 (1994), no. 1, 215–227.

[Sun12] C. Sung, Ricci curvature and monopole classes on 3-manifolds, J. Korean Math. Soc. 49 (2012), no. 5, 965–976.

[Sun21] C. Sung, The Weyl functional on 4-manifolds of positive Yamabe invariant, Ann. Global Anal. Geom. 60 (2021), no. 4, 767–805.

[Tak18] Y. Takeuchi, Ambient constructions for Sasakian η-Einstein manifolds, Adv. Math. 328 (2018), 82–111.

[Tak20] Y. Takeuchi, Nonnegativity of the CR Paneitz operator for embeddable CR manifolds, Duke Math. J. 169 (2020), no. 18, 3417–3438.

[Tan75] N. Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9, Kinokuniya Book Store Co., Ltd., Tokyo, 1975.

[Tia00] G. Tian, Canonical metrics in Kähler geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2000. Notes taken by Meike Akveld.

[Tia90] G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101–172.

[TY87] G. Tian and S.-T. Yau, Kähler-Einstein metrics on complex surfaces with $C_1 > 0$, Comm. Math. Phys. 112 (1987), no. 1, 175–203.

[Wal62] C. T. C. Wall, On the orthogonal groups of unimodular quadratic forms, Math. Ann. 147 (1962), 328–338.

[Wan03] W. Wang, Canonical contact forms on spherical CR manifolds, J. Eur. Math. Soc. (JEMS) 5 (2003), no. 3, 245–273.

[Wan15] X. Wang, On a remarkable formula of Jerison and Lee in CR geometry, Math. Res. Lett. 22 (2015), no. 1, 279–299.

[Web78] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), no. 1, 25–41.

[Yau78] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411.

[Zha22] Y. Zhang, The Exponential Map for Time-Varying Vector Fields, ProQuest LLC, Ann Arbor, MI, 2022. Thesis (Ph.D.)–Queen’s University (Canada).

DEPARTMENT OF MATHEMATICS EDUCATION, KOREA NATIONAL UNIVERSITY OF EDUCATION, CHEONGJU, KOREA

Email address: cysung@kias.re.kr

DIVISION OF MATHEMATICS, INSTITUTE OF PURE AND APPLIED SCIENCES, UNIVERSITY OF TSUKUBA, 1-1-1 TENNOODAI, TSUKUBA, IBARAKI 305-8571 JAPAN

Email address: ytakeuchi@math.tsukuba.ac.jp, yuya.takeuchi.math@gmail.com