Nuclear Pairing in the T=0 channel revisited

E. Garrido1, P. Sarriguren1, E. Moya de Guerra1, U. Lombardo2, P. Schuck3, H.J. Schulze4

1 Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas, Serrano 123, E-28006 Madrid, Spain
2 Dipartimento di Fisica, Università di Catania, 57 Corso Italia, I-95129 Catania, Italy
3 Institut de Physique Nucléaire, Université Paris-Sud, F-91406 Orsay Cedex, France
4 Departament d’Estructura i Constituents de la Matèria, Universitat de Barcelona Av. Diagonal 647, E-08028 Barcelona, Spain

(December 15, 2021)

Recent published data on the isoscalar gap in symmetric nuclear matter using the Paris force and the corresponding BHF single particle dispersion are corrected leading to an extremely high proton-neutron gap of $\Delta \sim 8$ MeV at $\rho \sim 0.5\rho_0$. Arguments whether this value can be reduced due to screening effects are discussed. A density dependent delta interaction with cut off is adjusted so as to approximately reproduce the nuclear matter values with the Paris force.

In a recent publication[1] the possibility to reproduce the gap in nuclear matter, as obtained e.g. from the Paris NN force, by an effective density dependent zero range force, was investigated. Supplied with an energy cut off such effective forces turned indeed out to be able to reproduce very reasonably the gap values in the isospin $T=0$ and $T=1$ channels over the whole relevant range of densities. The adjustments were performed on previously published solutions of the gap equation using Brueckner-Hartree-Fock results for the single particle spectra[2]. Such effective forces may possess some analogies with similar ones frequently used in recent structure calculation of superfluid nuclei[3]. Unfortunately, due to the subtleties connected with the numerical solution of the gap equation, the published results in the $T=0$ channel were not accurate enough so that the corresponding gap is underestimated in[2,4] by about 20%. It is the purpose of this note to give the corrected results for the gap in the $T=0$ channel and also to readjust the corresponding density-dependent δ-force. We also discuss again the issue whether screening affects the $T=1$ and $T=0$ channels differently.

In Fig.1 we show the correct result for the isoscalar gap as obtained with the Paris force[4] using two independent numerical codes. We also checked that the Argonne V14 force[5] gives practically the same result. What is striking is the giant gap value of ~ 8 MeV at maximum, which is of the same order as the Fermi energy at the corresponding density. Even around saturation, Δ is still of the order of several MeV. This is clearly a strong coupling situation as expected from the fact that at low density the n-p Cooper pair turns into the deuteron wave function[6]. The above values are actually much more compatible with earlier calculations of the critical temperature in Ref.[6] than the previous results[2]. Indeed, considering the usual relation $\Delta = 1.76 T_c[7]$, quantitative agreement between the results of[4] and the ones in Fig.1 is obtained. In order to obtain an estimate of the typical magnitude of the isoscalar gap in a finite nucleus, we apply the local density approximation and average the local gap over the density at the Fermi energy. This procedure has given reliable estimates of the average energy dependent gap in the isovector channel[8]. We therefore calculate

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Pairing gap versus Fermi momentum for symmetric nuclear matter in the T=0 channel from the Paris potential.}
\end{figure}
\[
\Delta = \frac{\int d^3 r \Delta(k_F(r)) k_F(r)}{\int d^3 r k_F^2(r)},
\]

where the local Fermi momentum is defined as
\[
k_F(r) = \sqrt{\left(\mu - V(r)\right) 2m/\hbar^2},
\]

with \(\mu\) the chemical potential. We take the same single particle potential \(V(r)\) as in the Paris force and the result for e.g. \(N=Z=35\) is that \(\Delta\) is of the order of 3 MeV. Compared to the neutron-neutron and proton-proton channels this is a very high value.

We already discussed in [1] and show again in Fig. 2 that the use of the Paris force in conjunction with the k-mass, \(m^*/m\), yields gap values as a function of density which are globally very similar to the ones of the Gogny force for \(T=1\) and therefore, the use of a bare force seems not unreasonable in the \(T=1\) channel. The fact that \(\Delta\) for \(T=1\) drops off quite a bit faster close to saturation for the Paris force than for the Gogny D1S force may be attenuated in a finite nucleus to quite some extent, since a certain averaging over all densities \(\rho < \rho_0\) takes place.

Therefore the needed medium renormalization of the bare force seems to be of minor importance in the \(T=1\) channel. However, the situation may not be the same for \(T=0\) pairing. The extremely strong \(T=0\) pairing stems essentially from the fact that with respect to the \(T=1\) channel the tensor force is acting additionally. Without the tensor force \(np\) (\(T=0\)) and \(nn\) (\(T=1\)) pairing would be of comparable magnitude. The screening of the tensor force in the medium is, however, still a controversial subject [1]. On the other hand, even for very low densities where screening should not be so important, \(T=0\) pairing remains strong. Therefore, there may be a good chance that the new heavier exotic nuclei with \(N = Z\) experience quite pronounced \(np\) superfluidity. This may well be the cause for the so called Wigner energy of the nuclear mass formula, since it can be shown [1] that away from symmetric nuclei, \(T=0\) pairing looses very quickly its strength.

Let us now proceed to the readjustment of the effective \(T=0\) delta force. We use the standard ansatz [11]

\[
v(r_1', r_2') = v_0 \left\{ 1 - \eta \left[\rho \left(\frac{r_1 + r_2}{2} \right) / \rho_0 \right] \right\} \times \delta(r_1' - r_2') (1 + P_\tau) / 2.
\]

With the above density-dependent zero range force, the gap equation reads

\[
\int_0^{\epsilon_C} d\epsilon \sqrt{\frac{\epsilon}{(\epsilon - \epsilon_F)^2 + \Delta^2}}.
\]

In Fig. 3 we present two fits for the above ansatz, one of the fits is obtained from the following parameters: \(\alpha = 0.2\), \(\eta = -0.10\) and a cut off energy \(\epsilon_C = 60\) MeV (see Ref. [1]), using the effective mass \(m^*/m\) as obtained from the Gogny force. The other fit is obtained by using a bare mass and parameters \(\alpha = 0.90\), \(\eta = 0.40\) and \(\epsilon_C = 60\) MeV.

As one can see in Fig. 3, the fit obtained using the bare mass is able to reproduce the microscopic calculation up to the highest values of \(k_F\) (\(k_F \sim 1.7\) fm\(^{-1}\)), while the fit obtained using the effective mass breaks down at lower densities corresponding to \(k_F \sim 1.35\) fm\(^{-1}\). The reason for this different behavior can be traced back to the dependence on the effective mass inside the integral of the gap equation. It turns out that in order to get a solution of the gap equation [1], the energy cut off \(\epsilon_C\) should be larger than the Fermi energy \(\epsilon_F\). Otherwise no value of \(\Delta\) satisfies the equation. In the case of the energy cut off used in Figs. 3 and 4 (\(\epsilon_C = 60\) MeV)”.

1Of course it cannot be excluded that the medium completely re-shuffles the distribution of gap values, still reproducing experimental pairing phenomena in finite nuclei.
MeV), the largest k_F reachable is $k_F \sim 1.7$ fm$^{-1}$ when bare masses are used, but only $k_F \sim 1.35$ when effective masses are used instead. Therefore, we plot in Figs. 3 and 4, the fits obtained only up to those values of k_F, when $m^*/m \neq 1$. Nevertheless, the fits cover all the physically relevant range of densities from zero to saturation ($\rho_0 = 0.16$ fm$^{-3}$).

In principle, in the T=0 channel, v_0 should be chosen such that the deuteron binding energy is reproduced in free space. However, we have found that with this condition the fit obtained is very poor. Therefore, for a given energy cut ϵ_C, we vary the parameter v_0 from the value that produces a bound state at zero energy $v_0 = -(\hbar^2/m)(2\pi^2/\sqrt{2m\epsilon_C})$, up to the value that produces the bound state at the deuteron energy [1], and choose the best fit. The fits in Fig. 3 have been obtained with $v_0 = -480$ MeV fm3 as it corresponds to a bound state at zero energy. This reduces the value of the gap at low densities but improves significantly the fit at higher energies. On the other hand, as we shall see in Fig. 4, the value of v_0 is chosen between the two extreme values considered, bound state at zero energy and at the deuteron energy. In any case, the values used for v_0 are quoted in each case.

In Fig. 4 we present a similar fit for the case with $m^*/m \neq 1$, however, suppressing the density dependence completely, that is $\eta = 0$. Since this parameter was already small for the case in Fig. 3 the fit is still acceptable and only a slight deterioration at the low density end is visible. Let us mention also that the use of the bare mass $m^* = m$ allows an excellent fit of the microscopically calculated gap values at all densities (see Fig. 3). However, realistic calculations of finite nuclei are rarely performed with the bare nucleon mass.

As a first guess we may try to use the effective pairing force obtained with the present fit also for finite nucleus calculations. This will give a rough account of whether the use of a bare force in a finite nucleus is at all reasonable in the T=0 channel. We would, however, like to point out that the expression of Eq.(3) for finite nuclei may not give precise reproduction of the results one would obtain with a direct use of the Paris force in the gap equation. Indeed, in the mean time, we compared in the T=1 channel the results of the genuine Gogny force and its density dependent δ-force substitute elaborated in [12] in a half infinite matter calculation [12]. Preliminary results show that the detailed surface dependence of the gap and of the anomalous density seem to be quite different in both cases. However, integrated quantities like the correlation energy may still be rather similar.

Of course, it should be interesting for the future to derive also an effective finite range force in the T=0 channel which is as efficient as the Gogny force for T=1 pairing. In fact the Gogny force has never been used for np pairing. However, since in this channel the density dependent
zero range force enters, one has to introduce an additional cut off which is an unknown adjustable parameter.

In summary we give corrected values of the \(np \) \((T=0) \) gap in nuclear matter using the Paris force together with Brueckner-Hartree-Fock single-particle energies. An extremely high value of \(\Delta \sim 8 \text{ MeV} \) at \(\rho \sim 0.5\rho_0 \) is obtained, leading to a gap value in finite nuclei of \(\sim 3 \text{ MeV} \). Arguments are advanced that the pairing force in the \(T=0 \) channel may be more strongly screened than in the \(T=1 \) channel. We then adjust a density-dependent \(\delta \)-force to the nuclear matter gap values. The fit is reasonably successful for densities below saturation.

ACKNOWLEDGMENTS

This work was supported in part by DGESIC (Spain) under Contract number PB98-0676, by the Groupement de Recherche: Noyaux Exotiques, CNRS-IN2P3, and by the programs Estancias de científicos y tecnólogos extranjeros en España, SGR98-11 (Generalitat de Catalunya), and DGICYT (Spain) no. PB98-1247.

[1] E. Garrido, P. Sarriguren, E. Moya de Guerra, and P. Schuck, Phys. Rev. C 60 (1999) 064312.
[2] M. Baldo, U. Lombardo and P. Schuck, Phys. Rev. C 52 (1995) 975.
[3] J. Terasaki, H. Flocard, P.H. Heenen and P. Bonche, Nucl. Phys. A621 (1997) 706.
[4] M. Lacombe, B. Loiseaux, J.M. Richard, R. Vinh Mau, J. Côté, D. Pirès and R. de Tourreil, Phys. Rev. C 21 (1980) 861.
[5] R.W. Wiringa, R.A. Smith, and T.L. Ainsworth, Phys. Rev. C 29 (1984) 1207.
[6] T. Alm, G. Röpke, and M. Schmidt, Z. Phys. A337 (1990) 355.
[7] A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill (1971).
[8] P. Schuck and K. Taruishi, Phys. Lett. B 385 (1996) 12.
[9] D.C. Zheng and L. Zamick, Ann. Phys. (N.Y.), 206 (1991) 106.
[10] W. Satula and R. Wyss, Phys. Lett. B 393 (1997) 1; W. Satula, D.J. Dean, J. Gary, S. Mizutori and W. Nazarewicz, Phys. Lett. B 407 (1997) 103; G. Röpke, A. Schnell, P. Schuck, and U. Lombardo, Phys. Rev. C 61 (2000) 024306.
[11] G.F. Bertsch and H. Esbensen, Ann. Phys. (N.Y.) 209 (1991) 327.
[12] M. Farine et al., to be published.