UNSTABLE GRB PHOTOSPHERES AND e^\pm ANNIHILATION LINES

KUNIHITO IOKA,1,2 KOHTA MURASE,3 KENJI TOMA,1 SHIGEHIRO NAGATAKI,4 AND TAKASHI NAKAMURA1

Received 2007 August 9; accepted 2007 October 15; published 2007 November 2

ABSTRACT

We propose an emission mechanism of prompt gamma-ray bursts (GRBs) that can reproduce the observed nonthermal spectra with high radiative efficiencies, >50%. Internal dissipation below a photosphere can create a radiation-dominated thermal fireball. If e^\pm pairs outnumber protons, radiative acceleration of e^\pm pairs drives the two-stream instabilities between pairs and protons, leading to “proton sedimentation” in the accelerating pair frame. Pairs are continuously shock heated by proton clumps, scattering the thermal photons into a broken-power-law shape, with a nonthermal energy that is comparable to the proton kinetic energy, consistent with observations. Pair photospheres become unstable around the radius of the progenitor star where strong thermalization occurs, if parameters satisfy the observed spectral (Yonetoku) relation. Pair annihilation lines are predicted above continua, which could be verified by GLAST.

Subject headings: gamma rays: bursts — gamma rays: theory — radiation mechanisms: nonthermal

1. INTRODUCTION

The emission mechanism of prompt gamma-ray bursts (GRBs) (the most luminous objects in the universe) is still enigmatic despite the recent progress in the Swift era (Mészáros 2006; Zhang 2007). The main issues are (1) the efficiency problem (Ioka et al. 2006; Zhang et al. 2007; Toma et al. 2006) and (2) the cooling problem (Ghisellini et al. 2000; Mészáros & Rees 2000). Problem 1 is that the GRB radiative efficiency, defined by the GRB energy divided by the total energy including the afterglow energy, is too high (>50%) to be produced by the internal shocks. Although the high efficiency may be achieved by a large dispersion in the Lorentz factor of the outflows (Beloborodov 2000; Kobayashi & Sari 2001), this would yield a smaller correlation coefficient for the observed spectral correlations, such as the Amati and Yonetoku relations (Amati 2006; Yonetoku et al. 2004), in so far as the nonthermal (synchrotron or inverse Compton [IC]) processes determine the spectral peak energy. The recent Swift observations make the problem even worse since the early afterglow energy is smaller than expected, raising some of the GRB efficiencies up to >90%. Problem 2 is that the cooling time is much shorter than the dynamical time, making the low-energy spectral slope steeper than the observations.

Motivated by these problems, thermal photosphere models have been proposed in which the outflow energy is internally dissipated and thermalized inside the photosphere (Thompson 1994; Ghisellini & Celotti 1999; Mészáros & Rees 2000; Ramirez-Ruiz 2005). These models have the advantage of stabilizing the peak energy, which is identified with the thermal peak (Thompson et al. 2007). Thermal peaks may actually be associated with up to 30% of long GRBs (Ryde 2005).

However, a simple photosphere model is not compatible with the observation that most GRBs are highly nonthermal. This is one reason that excludes the original fireball model (Paczynski 1986; Goodman 1986). Although Comptonization of the thermal photons via magnetic reconnection and/or turbulence is invoked for nonthermal spectra (Thompson et al. 2007; Giansios & Spruit 2007), the heating mechanism of electrons is largely uncertain.

In this Letter we propose a possible scenario to make photospheres nonthermal. We show that radiatively driven instabilities occur in a radiation-dominated photosphere if e^\pm pairs outnumber protons (baryons). Since radiation selectively pushes pairs rather than protons, the relative velocity between pairs and protons increases, driving the two-stream instability, possibly of the Weibel type (§ 3). This produces the small-scale inhomogeneity of the proton-to-pair ratio, which could grow up to proton clumps, causing shocks with pairs. Shocked pairs scatter thermal photons into the observed nonthermal spectra with energy comparable to the proton kinetic energy, consistent with observations. The unstable pair photosphere may be common since the observations including the Yonetoku relation (Yonetoku et al. 2004) suggest that the instabilities occur around the radius of the progenitor star where strong thermalization occurs (§ 2). Our model employs the radiation-dominated fireball, solving (1) the efficiency problem, and naturally achieves the continuous heating of pairs, solving (2) the cooling problem (§ 4). Pair annihilation lines are predicted above continua, which could enable GLAST to verify the pair photosphere model (Murase & Ioka 2007) (§ 5). We use the unit $k_B = h = 1$ and $Q_e = Q/10^3$ in cgs units unless otherwise stated.

2. PAIR PHOTOSPHERE AND YONETOKU RELATION

Most of the opacity of the fireball photosphere can be provided by e^\pm pairs (Rees & Mészáros 2005; Mészáros et al. 2002; Pe’er & Waxman 2004; Pe’er et al. 2006). The observed GRB spectrum, if extrapolated, has a significant fraction of energy above the pair production threshold (Lithwick & Sari 2001; Baring & Harding 1997; Asano & Inoue 2007; Razzaque et al. 2004; Li & Song 2004). So more pairs can be produced than electrons associated with protons. (Pairs are $m_e^2lm_p$, ∼ 2000 times more abundant if they have the same energy as protons.) We assume that internal dissipation such as shocks produces pairs via nonthermal processes and creates the pair photosphere.

The plasma and photons are subsequently thermalized by scatterings under the photosphere. Assuming that we identify

1 Department of Physics, Kyoto University, Kyoto 606-8502, Japan.
2 Theory Division, KEK (High Energy Accelerator Research Organization), 1-1 Oho, Tsukuba 305-0801, Japan.
3 YITP, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan.

4 Our instability is different from that in Waxman & Piran (1994).
the thermal peak $T_{\text{obs}} = \Gamma T$ with the peak energy of GRBs, we obtain the luminosity $L \sim 4\pi r^2 aT^2 c^3 \Gamma^2$ and hence the comoving size of the photosphere as

$$l_p \equiv r\Gamma \sim 4 \times 10^8 L_{51}^{1/2} T_{\text{obs},2}^{-2} \text{ cm},$$

(1)

where $T_{\text{obs},2} = T_{\text{obs}}/100$ keV and Γ is the bulk Lorentz factor. The optical depth of the pair photosphere is $\tau_p \sim n_e \sigma_T l_p \sim 1$, which yields the comoving number density of pairs as

$$n_\pm \sim 3 \times 10^{15} L_{51}^{1/2} T_{\text{obs},2} \text{ cm}^{-3}.$$

Our model requires that pairs are accelerated by radiation, so that the radiation dominates the pair rest energy, $aT^2 > n_\pm m_e c^2$. We also require that protons are not accelerated by radiation excreted on the associated electrons, which is $(n_e/n_p)aT^4$ since we are considering $n_e \gg n_p$ and $\tau_e \sim n_e \sigma_T l_p \sim 1$, so that $(n_e/n_p)aT^4 < n_p m_p c^2$. With equations (1) and (2), these limit the photospheric radius as

$$1 \times 10^{11} L_{51}^{3/2} T_{\text{obs},2}^{5/8} \text{ cm} < r < 7 \times 10^{11} L_{51}^{3/2} T_{\text{obs},2}^{5/8} \text{ cm}.$$

(3)

If we insert the observed Yonetoku relation $T_{\text{obs}} \propto L^{1/2}$ (Yonetoku et al. 2004) into the above relation, we have a very weak parameter dependence as $\sim L^{-1/8}$. Interestingly, the radius in equation (3) is comparable to the Wolf-Rayet stellar radius $\sim 20 R_\odot$ (Cox 2000). Considering that strong dissipation occurs within the progenitor star via interactions at the jet-star boundary (Zhang et al. 2004), most GRBs could satisfy our model assumptions. Pairs expand to the speed of light within the expansion time $\sim l_p/c$ with the comoving acceleration

$$g \sim \frac{c}{l_p/c} \sim 2 \times 10^{15} L_{51}^{1/2} T_{\text{obs},2} \text{ cm s}^{-2}.$$

(4)

For later use we define the mean proton density \bar{n}_p which satisfies $\bar{n}_p \ll n_p$ for the pair photosphere. In this Letter, we take $n_e/n_p = 10^3$, $T_{\text{obs}} = 100$ keV, $L = 10^{51}$ ergs s$^{-1}$, and $\Gamma = 10^4$ for fiducial parameters. The energy density ratio is then $aT^4 \sim \bar{n}_p m_p c^2 : n_\pm m_e c^2 \sim 1 : 0.4 : 0.2$.

3. WEIBEL INSTABILITY BETWEEN $e^+\,$ AND PROTONS

Radiation selectivity pushes pairs rather than protons because the cross section for scattering is proportional to the inverse square of mass $\sigma_T \propto m^{-2}$. Then the relative velocity between pairs and protons must rise in the initial stage. Here Coulomb collisions between pairs and protons are usually negligible. Collisionless interactions are also absent if the magnetic fields are weak in the initial fireball.

Then the relative velocity between pairs and protons drives the two-stream instability, in particular, of the Weibel type (Weibel 1959). Let us first consider the linear stage of the Weibel instability. The initial distribution function of each component is given by $f_j(x) = (m_j/2\pi T_j)^{1/2} \exp \left[-m_j x^2 + (v_j - V_j^2) x^2 / 2T_j \right]$, where m_j is the mass, T_j is the temperature, and V_j is the relative velocity for each component with $j = e^+, e^-$, p. Initially the system is nonrelativistic. Linearizing the Vlasov-Maxwell equation, we obtain the dispersion relation of the pair-proton plasma as

$$c^2 k^2 = \omega^2 - \sum_j \omega_p^2 + \sum_j \omega_p^2 T_j / T_j [1 + \xi_j Z(\xi_j)],$$

(5)

where $\omega_p^2 = 4\pi n_e q_j^2 m_j$ is the plasma frequency, $Z(\xi) = \pi^{-1/2} \int_{-\infty}^{\infty} d\xi (\xi - \xi^2)^{1/2} e^{\xi^2}$ is the plasma dispersion function, and $\xi_j = \omega/k(2T_j/m_j)^{1/2}$ (Davidson et al. 1972). Note that we are considering the Lorentz frame in which the linearized Vlasov-Maxwell equation is block-diagonal ($D_x = 0$, $\Sigma_j (\omega_p^2/\omega^2)(1 + \xi_j Z(\xi_j))(m_j/T_j)(\omega/k)V_j = 0$).

In the initial stage the relative velocity is small, $m_p V_p^2 \ll T_p$, so that we can simplify equation (5) since $\xi \ll 1$. With $Z(\xi) = \Gamma^{1/2}$ for $\xi \ll 1$, we find the leading order $\omega = (2\pi)^{1/2} k(\Sigma_j \omega_p^2 m_j V_j^2/T_j - c^2 k^2/\Sigma_j \omega_p^2 m_j(T_j)^{1/2})$. Therefore the plasma is unstable ($\partial^2 \omega > 0$) for $0 \leq k^2 \leq k_0^2$, where $k_0 = \omega_p m_p V_p^2/c^2 T_p$. The maximum growth rate is

$$\Im(\omega)_{\text{max}} \sim \left(\frac{8}{27\pi} \frac{\Sigma_j \omega_p^2 m_j V_j^2/T_j}{\Sigma_j \omega_p^2 m_j(T_j)^{1/2}} \right)^{1/2} \frac{m_p V_p^2}{T_p}$$

(6)

for $k_0^2 = \Sigma_j \omega_p^2 m_j V_j^3/3 c^2 T_j = k_0^2/3$. The equation which characterizes our Lorentz frame is also reduced to

$$\sum_j \omega_p^2 m_j V_j \approx \sum_j \omega_p^2 m_j(T_j)^{1/2} V_j = 0.$$

(7)

Let us apply equation (6) to the fireball photosphere. Noting that (1) the pair density dominates the proton density, $n_e \gg n_p$ (§2), (2) the relative velocity is initially smaller than the thermal one, $m_p V_p^2 < T_p < T_e$ $\sim T_p$, and (3) we have $-n_e V_e \sim n_e V_e \sim n_e V_e$ with equation (7) and the charge neutrality $\sum_j q_j n_j V_j = 0$, we find $\Sigma_j \omega_p^2 m_j V_j^2/T_j \sim \omega_p^2 m_j V_j^2/T_j$ and $\omega_p^2 (m_j c^2 T_j)^{1/2} \sim 2\omega_p^2 (m_j c^2 T_j)^{1/2}$. Then the maximum growth rate in equation (6) is reduced to

$$\Im(\omega)_{\text{max}} \sim \left(\frac{2}{27\pi} \omega_p^2 \frac{m_p V_p^2}{m_j V_j^2} \right)^{1/2} \frac{m_p V_p^2}{T_p}$$

$$\sim 2 n_e^{3/2} n_p^{-1} T_p^{-1} (m_j V_j^2 / T_p)^{3/2} \text{ s}^{-1},$$

(8)

where $T_p = T/0.1$ keV and we are assuming $V_e < (T/m_j)^{1/2}$. Note that the proton current direction is different from the pair one, and $|V_e| \sim |V_e| \ll |V_e|$ in the frame given in equation (7). Note also that the Thompson scattering would reduce the growth rate in the initial stage.

Comparing the growth rate $\Im(\omega)_{\text{max}}$ in equation (8) with the acceleration rate $\sim g/V_e$ in equation (4), we find that the latter is larger $\Im(\omega)_{\text{max}} < g/V_e$ under the condition $V_e < (T/m_j)^{1/2} \sim 1 \times 10^7 T_p^{1/2} \text{ cm s}^{-1}$. This means that the relative velocity V_e overtakes the thermal one $(T/m_j)^{1/2}$ before the Weibel instability develops.

Eventually the Weibel instability saturates in the velocity region $(T/m_j)^{1/2} < V_e < c$. Although no nonlinear simulation exists so far for proton streaming in pairs, the proton and pair flows will split into current filaments (cylindrical beam) that are bound by self-generated magnetic fields (Silva et al. 2003; Nishikawa et al. 2003; Kato 2005). Since currents with the same (different) direction attract (repel) each other, protons effectively separate from pairs and temporarily produce the small-scale inhomogeneity of the proton-to-pair ratio.

We note that each current cannot separate completely if the relative velocity V_e is smaller than the thermal one $(T/m_j)^{1/2}$ because the filament radius $\sim k_0^{-1}$ below equation

\[\text{A small fraction of electrons that preserve the charge neutrality exists in the proton filament.} \]
(6) is larger than the plasma skin depth, \(r \sim k_{\text{max}}^{-1} c / \omega_{pp} \), and hence the current \(I = \pi r^2 q_n \nu_p \) exceeds the Alfvén current \(I_A \equiv m_p c^2 \nu_p / q \) (the maximum current limited by the self-generated magnetic field) (Alfvén 1939); i.e., filaments must overlap to reduce the net current. This saturation is the so-called the Alfvén limit (Kato 2005). This is not our case since \(r < c / \omega_{pp} \) for \(\nu_p > (T / m_p)^{1/2} \), i.e., in the particle limit (Kato 2005).

Note also that the late evolution is mainly driven by protons since the kinetic energy of protons dominates that of pairs. The generated magnetic fields are weak \(B^2 / 8 \pi \leq n_p m_v \nu_p^2 / \rho \ll A^{-1} \) at this stage.

4. POSSIBLE SCENARIO FOR NONTHERMALIZATION

We have shown that protons will temporarily separate from pairs on the small scale possibly via the Weibel instability. The subsequent scenario is very speculative but has attractive features that are worth pursuing. Our considerations are in the frame comoving with pairs (that is, almost the same as the frame in eq. (7)). In this frame, particles feel an effective gravity with acceleration \(g \) in equation (4). Unlike pairs that interact with radiation, protons fall down, which may lead to “proton sedimentation” in the pair fireball (see Fig. 1).

Initially protons are trapped by magnetic fields on the scale of the filament radius. We model the inhomogeneity by the proton clumps with the filament size\(^6\) (\(R \sim c / \omega_{pp} \)). Since a clump consists of many particles, the center-of-mass thermal motion is much less than the infall velocity. Also, the acceleration time is comparable to the growth time of the instability, so that the clumps continue falling down and collide with other clumps within \(t_m \sim R / \delta V_c \sim 2 \times 10^{-5} n_p^{1/2} V_{cp}^{-1} \) s, where \(\delta V_c \sim V_c \) is the relative velocity of clumps. Since the Larmor radius is comparable to the clump size, the fluid approximation begins to be valid. Then, we can apply the Stokes law to estimate the terminal infall velocity as \(\nu_p \propto n_p R^2 \). Since the number density of clumps is \(N_c \propto n_p^2 R^{-3} \) (mass conservation) and the cross section for the collision is \(\sigma_c \propto R^2 \), the merger timescale is

\[
\tau_m \sim (N_c \sigma_c \delta V_p)^{-1} \propto R^{-1}.
\]

\(^6\) Magnetic clumps are observed in the particle simulations, although not applicable to our pair-proton case. (Chang et al. 2007).

This leads to runaway growth of clumps because the merger timescale is shorter for larger clumps.

After the terminal velocity exceeds the sonic speed of pairs \(V_c > c_{\text{son}} \), we cannot use the Stokes law but must instead use the momentum balance. Since the pair mass colliding with a proton clump during \(\Delta t \) is \(\Delta M \sim n_p n_{pp} R^2 V_c \Delta t \), momentum conservation gives the velocity change \(\Delta V_c \sim V_c \Delta M / m_p R^3 \). Equating \(\Delta V_c / \Delta t \) with acceleration \(g \), we find the terminal velocity as \(V_c \sim (m_{pp} g R / m_p n_p)^{1/2} \). With \(g \sim c^2 I_c ^{1/2} \) in equation (4), the terminal velocity reaches the light speed \(V_p < c \) when the ratio of clumps to the system size is \(R / R_p \sim m_p n_{pp} / m_{pp} n_p < 1 \). So the final separation between clumps in the vertical direction is about

\[
d \sim \frac{n_p}{n_{pp}} R \sim \frac{n_{pp}}{n_p} m_{pp} \nu_p / m_p n_p. \tag{10}
\]

since the swept-up mass is \(R^2 d n_p / \rho \sim R^4 n_p \).

Collisionless shocks arise as the relative velocity between proton clumps and pairs approaches the speed of light. Pairs are shock heated and accelerated to a power-law distribution \(N(\gamma_p) d \gamma_p \propto \gamma_p^{-\nu} d \gamma_p \) for the pair Lorentz factor \(\gamma_p \geq \gamma_m \sim 1 \), where \(\gamma_m \) is the minimum Lorentz factor. Shocked pairs are pushed sideways and then again shocked by other clumps (see Fig. 1). The timescale between shocks is about \(\sim d / c \) in equation (10), and interestingly this is comparable to the IC cooling timescale,

\[
\tau_c \equiv \frac{L_c}{d c} \propto \frac{\gamma_{pp} m_e c^2}{c \sigma_T U_e}, \tag{11}
\]

for \(\gamma_{pp} \sim 1 \) if the proton energy is comparable to the radiation energy \(\tilde{\gamma}_{pp} m_e c^2 \sim U_e \equiv a T^3 \) (as our parameters), where we use \(\tau_p \sim n_p \sigma_T \mu_p \sim 1 \) in the second equality. Therefore the clumps automatically have the right separation for the continuous heating of pairs. Since a photon is scattered by \(\gamma_p \sim 1 \) pairs once on average for \(\tau_p \sim 1 \), scattered photons have the energy density, \(\cal{R} U_e \sim \tilde{\gamma}_{pp} m_e c^2 \). Thus, the nonthermal component has comparable energy to the proton kinetic energy, consistent with observations.

Neglecting multiple scatterings since \(\tau_e \sim 1 \), we can calculate the observed IC spectrum as in Figure 2 (Sari & Esin 2001), which also peaks at the thermal peak \(\nu \sim T_{\text{th}} \) for \(p > 2 \) because \(\gamma_m \sim 1 \). The ratio of the IC peak flux to the thermal
one is $F_{\nu,\max}/F_{\nu,\max} \sim n_\gamma m_p c^2 U_\gamma$ (~ 1 for our parameters). At high frequencies $\nu > \nu_{\text{obs}}$, the IC spectrum has a cooling spectrum $\propto \nu^{-\delta}$ since the cooling is faster than the heating, $t_c < d/c$, for $\gamma_\gamma > 1$. At low frequencies $\nu < \nu_{\text{obs}}$, the Rayleigh-Jeans spectrum $\propto \nu^2$ is modified to $\propto \nu$ by downscatterings. Therefore the total (IC plus thermal) spectrum is roughly a broken power law peaking at and resembles the observed GRB spectrum, although the low-energy photon index is slightly harder.

5. PREDICTIONS OF e^\pm ANNIHILATION LINES AND OTHERS

We can prove that the pair photosphere accompanies the pair annihilation line that is detectable above the power-law continuum if $\gamma_\gamma \sim 1$. Let us assume that the continuum exceeds the annihilation line, $n_\gamma > n_\gamma$, where n_γ (n_γ) is the number density of continuum (line) photons at the line energy. On the pair photosphere, $n_\gamma \sigma_\gamma T_\gamma \sim 1$, we have $n_\gamma \sigma_\gamma 1 \sim n_\gamma$ because the pairs annihilate once on average in the dynamical time, $n_\gamma \sigma_\gamma 1/c \sim -n_\gamma \sigma_\gamma \tau_{\nu} \sim n_\gamma$. (Svensson 1987). Then the optical depth to the pair production is larger than unity,

$$\tau_{\nu} \sim n_\gamma \sigma_\gamma \tau_{\nu} > n_\gamma \sigma_\gamma 1 \sim n_\gamma \sigma_\gamma 1 \sim 1,$$

and hence the continuum photons create more pairs than the existing pairs. However this contradicts with the definition of the pair photosphere. Therefore the assumption $n_\gamma > n_\gamma$ is wrong and the annihilation line should stand out from the continuum. As is clear from the above proof, the line flux is comparable to the continuum one when pairs are created from the continuum photons.

Although the outflow with $\Gamma \sim 10^5$ may have little interaction with the star because of the small sideways expansion, this fast outflow can make pairs via internal shocks with the slow outflow ahead of it, which could effectively interact with the star and enhance the internal shocks. The Yonetoku relation $T_{\text{obs}} \sim L^{1/2}$ (Yonetoku et al. 2004) can be derived from equation (1) if the photosphere appears at the stellar radius $r \sim$ constant, as suggested below equation (3), and if $\Gamma \sim L^{1/2}$. The latter condition is satisfied if the mass flux of slow outflow is proportional to its Lorentz factor, $\dot{M} \sim \Gamma$, since the Lorentz factor after internal shocks is about $\Gamma \sim (M \Gamma \dot{M} / M)^{1/2} \sim (M \Gamma \dot{M} / M)^{1/2} \sim (\Gamma M c^2)^{1/2} \sim L^{1/2}$. We can test $\Gamma \sim L^{1/2}$ since Γ is determined by the annihilation lines.

Our model predicts the following:

1. (Nonthermal energy) \sim (proton energy) \sim (afterglow energy) and hence thermal peaks may stand out for GRBs with $\gtrsim 90\%$ efficiencies, although the superposition of thermal peaks from several pulses could make the peaks unclear.

2. A low-energy index that is comparable to the observed hardest one. Superpositions of pulses or incomplete thermalization may produce a softer index.

3. Dim optical flashes from reverse shocks (Li et al. 2003), consistent with recent observations.

4. Polarization in the nonthermal component (except for the thermal peak) produced by IC scatterings.

5. High-energy cosmic rays and neutrinos since protons might be also accelerated at shocks.

Particle simulations with pairs and protons are needed to verify our model. Other plasma instabilities, such as the electrostatic two-stream instability or the drift-wave instability with the initial magnetic fields, may also generate the initial proton inhomogeneity.

We thank K. Asano and T. Kato for useful comments. This work is supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, numbers 18740147 (K. I.), 19104006 and 19740139 (S. N.), and 19540283 and 19047004 (T. N.).

REFERENCES

Alfvén, H. 1939, Phys. Rev., 55, 425
Amati, L. 2006, MNRAS, 372, 233
Asano, K., & Inoue, S. 2007, ApJ, in press (arXiv:0705.2910)
Baring, M. G., & Harding, A. K. 1997, ApJ, 491, 663
Beloborodov, A. M. 2000, ApJ, 539, 125
Chang, P., Spitkovsky, A., & Arons, J. 2007, ApJ, in press (arXiv:0704.3832)
Cox, A. N. 2000, Allen’s Astrophysical Quantities (4th ed.; New York: AIP)
Davidson, R. C., Hammer, D. A., Haber, L., & Wagner, C. E. 1972, Phys. Fluids, 15, 317
Ghisellini, G., & Celotti, A. 1999, ApJ, 511, L93
Ghisellini, G., Celotti, A., & Lazzati, D. 2000, MNRAS, 313, L1
Gianinni, D., & Spruit, H. C. 2007, A&A, 469, 1
Goodman, J. 1986, ApJ, 308, L47
Ioka, K., Toma, K., Yamazaki, R., & Nakamura, T. 2006, A&A, 458, 7
Kato, T. N. 2005, Phys. Plasmas, 12, 080705
Koba, K., & Sari, R. 2001, ApJ, 551, 934
Li, Z., Dai, Z. G., Lu, T., & Song, L. M. 2003, ApJ, 599, 380
Li, Z., & Song, L. M. 2004, ApJ, 608, L17
Lithwick, Y., & Sari, R. 2001, ApJ, 555, 540
Mészáros, P. 2006, Rep. Prog. Phys., 69, 2259
Mészáros, P., Ramirez-Ruiz, E., Rees, M. J., & Zhang, B. 2002, ApJ, 578, 812
Mészáros, P., & Rees, M. J. 2000, ApJ, 530, 292
Murase, K., & Ioka, K. 2007, preprint (arXiv:0708.1370)
Nishikawa, K.-I., et al. 2003, ApJ, 595, 555
Paczyński, B. 1986, ApJ, 308, L43
Pe’er, A., Mészáros, P., & Rees, M. J. 2006, ApJ, 642, 995
Pe’er, A., & Waxman, E. 2004, ApJ, 613, 448
Ramirez-Ruiz, E. 2005, MNRAS, 363, L61
Razzaque, S., Mészáros, P., & Zhang, B. 2004, ApJ, 613, 1072
Rees, M. J., & Mészáros, P. 2005, ApJ, 628, 847
Ryde, F. 2005, ApJ, 625, L95
Sari, R., & Esin, A. A. 2001, ApJ, 548, 787
Silva, L. O., et al. 2003, ApJ, 596, L121
Svensson, R. 1987, MNRAS, 227, 403
Thompson, C. 1994, MNRAS, 270, 480
Thompson, C., Mészáros, P., & Rees, M. J. 2007, ApJ, 666, 1012
Toma, K., Ioka, K., Yamazaki, R., & Nakamura, T. 2006, ApJ, 640, L139
Waxman, E., & Piran, T. 1994, ApJ, 433, L85
Weibel, E. S. 1959, Phys. Rev. Lett., 2, 83
Yonetoku, D., Murakami, T., Nakamura, T., Yamazaki, R., Inoue, A., & Ioka, K. 2004, ApJ, 609, 935
Zhang, B. 2007, Chinese J. Astron. Astrophys., 7, 1
Zhang, B., et al. 2007, ApJ, 655, 989
Zhang, W., Woosley, S. E., & Heger, A. 2004, ApJ, 608, 365