ON THE IRREDUCIBLE REPRESENTATION ALGEBRA OF
THE ALTERNATING GROUP OF DEGREE FOUR

V. BOVDI, V. RUDKO

Abstract. We obtain a description of the irreducible representation algebra
of the alternating group of degree four over the ring of 2-adic integers.

Let G be a finite group and let K be a commutative principal ideal domain. We denote the module M of a K-representation of the group G by the symbol $[M]$. We assume that $[M] = [N]$ if and only if the KG-modules M and N of K-representations are isomorphic. The ring $a(KG)$ of K-representation of the group G is a smallest ring which contains all symbols $[M]$ with the following operations

$[M] + [N] = [M ⊕ N]$,

$[M] · [N] = [M ⊗ N]$,

where $g(m ⊗ n) = g(m) ⊗ g(n), \ (g ∈ G, m ∈ M, n ∈ N)$.

The subring $b(KG) ⊂ a(KG)$ which is generated by $[M]$, where M is a module of the irreducible K-representation of the group G is called the irreducible K-representations ring of G.

The algebras $A(KG) = a(KG) ⊗ Z Q$ and $B(KG) = b(KG) ⊗ Z Q$ over the field of rational numbers Q are called the K-representation algebra of G and the irreducible K-representation algebra of G, respectively.

It is well known that $A(RG)$, where R is the ring of p-adic integers, is finite dimensional if and only if the p-Sylow subgroups of G are cyclic of order p^r, where $r ≤ 2$. This is a classical result of S.D. Berman, P.M. Gudivok, A. Heller and I. Reiner (see Theorem 33.6, [2], p.690).

Although the number of irreducible R-representations of the group G is finite, the algebra $B(RG)$ may be infinite dimensional (see [13],[4]).

In the present paper we obtain a description of the irreducible R-representation algebra of the alternating group A_4 of degree four over the ring R of 2-adic integers. Note that earlier it was known that this algebra is infinite dimensional (see Proposition 13.1, [4], p.108).

Our main result is the following.

Theorem. Let R be the ring of 2-adic integers. The irreducible R-representation algebra $B(RG)$ of the alternating group G of degree 4 isomorphic to

$\mathbb{Q}[x, x^{-1}] ⊕ \mathbb{Q}[x, x^{-1}] ⊕ \mathbb{Q}[x, x^{-1}] ⊕ \mathbb{Q}[x, x^{-1}]$.

Notation. Let G be the alternating group of degree four. Put $a_1 = (1, 2)(3, 4)$, $a_2 = (1, 4)(2, 3)$, $b = (1, 2, 3) ∈ S_4$. Clearly

$G ≅ \langle a_1, b \rangle = H \rtimes \langle b \rangle ≅ (C_2 × C_2) \rtimes C_3$,

1991 Mathematics Subject Classification. Primary: 20C11; Secondary: 16A64, 20C10, 20G05.

Key words and phrases. integral representation, algebra representation.

The research was supported by OTKA No.K68383.
Lemma 1. (see irreducible \(R \))

Let \(L \) be a free \(RG \)-module over the ring \(R \) with \(R \)-basis \(\{e_1, e_2, e_3, e_4\} \) in which \(G \) acts as a permutation group. Let \(d \) be a divisor of 4 and put

\[
L_d = \left\{ \sum_{j=1}^{4} \alpha_j e_j \mid \alpha_j \in R, \quad \sum_{j=1}^{4} \alpha_j \equiv 0 \pmod{d} \right\},
\]

\[
L_0 = R(e_1 + \cdots + e_4), \quad M_d = L_d/L_0.
\]

Obviously \(L_d, L_0 \) and \(M_d \) are \(RG \)-modules and the elements

\[
u_1 = de_1 + L_0, \quad \nu_2 = e_2 - e_1 + L_0, \quad \nu_3 = e_3 - e_2 + L_0
\]

form an \(R \)-basis of \(M_d \). Since \(e_4 \equiv -e_1 - e_2 - e_3 \pmod{L_0} \), it is not difficult to show that the following \(R \)-representation of \(G \)

\[
\Gamma_d : a_1 \mapsto \begin{pmatrix} 1 & 0 & -4d^{-1} \\ 0 & 0 & -1 \end{pmatrix}, \quad a_2 \mapsto \begin{pmatrix} -3 & 4d-1 & 0 \\ -2d & 3 & 0 \\ -d & 2 & -1 \end{pmatrix}, \quad b \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

is afforded by module the \(M_d \).

Note that \(\Gamma_2 \) is equivalent to the following monomial representation

\[
a_1 \mapsto \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad b \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}.
\]

We shall need the following result.

Lemma 1. (see [3]) The representations \(\Gamma_d \), where \(d = 1, 2, 4 \), are irreducible and nonequivalent \(R \)-representations of the group \(G \). Moreover, except these representations and the trivial one \(\tau_0 : g \mapsto 1 \ (g \in G) \), the group \(G \) has only one more irreducible \(R \)-representation:

\[
\tau : a_1 \mapsto E, \quad b \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\]

Lemma 2. Let \(\Gamma = P_0 \oplus P_1 \), where \(P_0 = RGw_0 \), \(P_1 = RGw_1 \) are projective \(RG \)-modules and \(w_0 = \frac{1}{4}(1 + b + b^2) \), \(w_1 = 1 - w_0 \) are orthogonal idempotents. Then the following equations hold

\[
[P_0]^2 = 2[P_0] + [P_1], \quad [P_0][P_1] = 2[P_0] + 3[P_1], \quad [P_1]^2 = 6[P_0] + 5[P_1].
\]

Proof. It is easy to see that \(\chi_{P_0}(b) = 1 \) and \(\chi_{P_1}(b) = -1 \), where \(\chi_{P_1} \) is the character of \(P_1 \). Remember that \(\chi_{P_0 \oplus P_1} = \chi_{P_0} + \chi_{P_1} \), \(\chi_{P_0 \oplus P_1} = \chi_{P_0} \chi_{P_1} \).

If \([P_0]^2 = s[P_0] + t[P_1] \), then \(s - t = 1 \) and \(4s + 8t = 16 \). It follows that \(s = 2 \) and \(t = 1 \), so the first equation is true. The proof of second one is analogues. \(\square \)

Corollary 1. The elements

\[
f_1 = \frac{1}{12}[\Gamma], \quad f_2 = [P_0](1 - f_1), \quad f_3 = (1 - [P_0])(1 - f_1)
\]

are pairwise orthogonal idempotents of the algebra \(\mathcal{A}(RG) \) such that \(f_1 + f_2 + f_3 = 1 \).

Moreover,

\[
\mathcal{A}(KG) f_1 \cong \mathcal{A}(KG) f_2 \cong \mathbb{Q}.
\]

Let \(W \) be a finite group. Assume that for the \(K \)-representations of \(W \) the Krull-Schmidt-Azumaya theorem holds (see Theorem 36.0, [2], p.768). We assume that there exists at least one nonzero indecomposable, non-projective \(KW \)-module of the \(K \)-representation of the group \(W \). For each module \(B \) of the \(K \)-representation
of the group W we consider the K-module $B^* = \text{Hom}_K(B, K)$. Clearly B^* is a KW-module of the K-representation of the group W such that
\[(g \cdot \varphi) \cdot b = \varphi(g^{-1}b), \quad (g \in W, \varphi \in B^*, b \in B).\]

The module B^* is called the contragredient module of B.

Note that each module of the K-representation of W is always a homomorphic image of a free module, and it can be considered as a submodule of a free module, too.

We shall use the following well known result.

Lemma 3. Let $0 \to B \to P \to A \to 0$ be an exact sequence of modules of K-representations of the group W. If P is a projective KW-module and A is an indecomposable non-projective KW-module, then the module B contains only one unique indecomposable nonprojective direct summand B_0. Moreover the sequence $0 \to B_0 \to P_0 \to A \to 0$ is exact for some projective KW-module P_0. There exists a duality corresponding to the exchange of A and B.

Proof. All modules in the lemma are free of finite rank over the ring K. There exists a projective KW-module P and a sequence of indecomposable KW-modules B_1, \ldots, B_s, such that the sequence $0 \to B_1 \oplus \cdots \oplus B_s \to P \to A \to 0$ is exact.

Assume that A_1, \ldots, A_s are KW-modules and P_1, \ldots, P_s are projective KW-modules, such that the sequences $0 \to B_j \to P_j \to A_j \to 0$ are exact for each $1 \leq j \leq s$. Sum them over j and apply Schanuel’s Lemma (Lemma 2.24, [2], p.30), then we obtain that
\[P \oplus A_1 \oplus \cdots \oplus A_s \cong A \oplus P_1 \oplus \cdots \oplus P_s.\]

This yields that A is a direct summand only one of the A_i, says of A_1, so A_2, \ldots, A_s are projective. Then the modules B_2, \ldots, B_s are projective, too. Therefore we have the following exact sequence $0 \to B_0 \oplus P' \to P \to A \to 0$, where P' is projective and B_0 is an indecomposable non-projective KW-module. The following isomorphism of KW-modules hold
\[A \cong P/(B_0 \oplus P') \cong (P/P')/B_0,\]
where P/P' is a projective KW-module.

By the use of the contragredient module we obtain the dual statement. \qed

Obviously, each projective RH-module is free, where $H = Syl_2(G)$. Let M be a module of R-representation of the group H and assume that M does not contain projective summands. By $\Theta(M)$ we denote the kernel (the Green operator, after J.A. Green) of the projective cover of RH-module M (see Lemma 3). The following sequence of RH-modules
\[0 \to \Theta(M) \to F \to M \to 0\]
is exact, where F is a free RH-module of smallest rank. If M is an indecomposable RH-module, then $\Theta(M)$ is indecomposable, too.

Let Δ_0 be the module of the trivial representation $h \mapsto 1$ $(h \in H)$ of H. Put
\[\Delta_n = \Theta(\Delta_{n-1}), \quad \Delta_{-n} = \Delta_n^*, \quad (n = 1, 2, \ldots)\]
where Δ_n^* is the contragredient module to Δ_n.
Lemma 4. The sequence \(0 \to \Delta_n \to (RH)^n \to \Delta_{n-1} \to 0 \) is exact and \(\text{rank}_R(\Delta_n) = 2n + 1 \).

Proof. Let \(\Gamma^n \) be an \(n \)-dimensional module over the ring \(RH \), where \(H = \langle a_1, a_2 \rangle \). In the follows we will treat \(\Gamma^n \) considering as component columns. Denote by \(F_n \) the matrix over the ring \(RH \) with \(n \) rows and \(n + 1 \) columns, in which only the three upper diagonals (if we begin calculation from the main diagonal) are non-zero:

- the main diagonal of \(F_n \) is the first \(n \) element from the following sequence \(F_1 \cup F_1 \cup F_1, \ldots, \) where

 \[
 F_1 = \begin{cases}
 \{a_1 - 1, a_2 - 1, -(a_1 + 1), -(a_2 + 1)\} & \text{if } n \text{ is odd}, \\
 \{a_1 + 1, a_2 + 1, -(a_1 - 1), -(a_2 - 1)\} & \text{if } n \text{ is even}.
 \end{cases}
 \]

- the second diagonal consist of zero elements except the last one which is equal to one of the following elements

 \(a_2 - 1, -(a_1 - 1), a_2 + 1, a_1 + 1 \)

according to the cases \(n \equiv \{1, 2, 3, 0\} \pmod{4} \), respectively.

- the third diagonal consist of \(n - 1 \) elements of the sequence \(F_2 \cup F_2 \cup F_2, \ldots, \) where \(F_2 = \{a_2 - 1, a_1 - 1, a_2 + 1, a_1 + 1\} \).

Example. \(F_4 = \begin{pmatrix}
 a_1 + 1 & 0 & 0 & 0 \\
 0 & a_2 + 1 & a_1 - 1 & 0 \\
 0 & 0 & -(a_1 - 1) & 0 \\
 0 & 0 & 0 & -(a_2 - 1) a_1 + 1
 \end{pmatrix} \)

\(F_5 = \begin{pmatrix}
 a_1 - 1 & 0 & a_2 - 1 & 0 & 0 \\
 0 & a_2 - 1 & 0 & a_1 - 1 & 0 \\
 0 & 0 & -(a_1 + 1) & 0 & a_2 + 1 \\
 0 & 0 & 0 & 0 & a_1 - 1 a_2 - 1
 \end{pmatrix} \).

Let \(V_n \) be a submodule in \(\Gamma^n \) generated by the columns of the matrix \(F_n \). Let \(\varepsilon : \Gamma^n \to V_{n-1} \) be the following epimorphism of modules:

\(\Gamma^n \ni x = (x_1, \ldots, x_n) \mapsto x_1 f_1 + \cdots + x_n f_n \in V_n \),

where \(f_j \) are columns of the matrix \(F_{n-1} \).

It is not difficult to check that \(F_{n-1} F_n = 0 \).

Moreover, any solution of \(\varepsilon(x) = 0 \) belongs to the linear combination of the columns of \(F_n \), so \(x \in V_n \). Therefore, we proved the exactness of the sequence

\(0 \to V_n \to \Gamma^n \to V_{n-1} \to 0 \).

We construct a basis of the \(R \)-module \(V \) in the following way: the first \(n+1 \) elements of the basis are the columns of \(F_n \). Then we take the first \(n \) columns of \(F_n \), which multiply each of them by corresponding element of the sequence \(F_3 \cup F_3 \cup \cdots \cup F_3 \), where \(F_3 = \{a_2 - 1, a_1 - 1, a_2 + 1, a_1 + 1\} \). These columns form the remaining \(n \) elements of the basis.

Consequently we obtain a system of \(2n + 1 \) basis elements of \(R \)-module \(V_n \). By Lemma 3 beginning with \(V_0 \) all \(RH \)-modules \(V_n \) are indecomposable. \(\square \)

Induce the exact sequence of Lemma 4 from the subgroup \(H \) to the group \(G \). In this exact sequence of \(RG \)-modules the middle modules are free, and the \(2^{nd} \) and the \(4^{th} \) terms of the sequence have a decomposition into the direct sums of indecomposable \(RG \)-modules

\(\Delta_n^G = \Delta_{0,n} \oplus \Delta_{1,n} \).
IRREDUCIBLE RING REPRESENTATION

where \(\text{rank}(\Delta_{0,n}) = \text{rank}(\Delta_n) \) and \(\text{rank}(\Delta_{1,n}) = 2 \cdot \text{rank}(\Delta_n) \). Moreover \(\Delta_{0,0} \) and \(\Delta_{1,0} \) are modules of the \(R \)-representations \(\pi_0, \pi \) (see Lemma 1) of \(G \), respectively. It is easy to check that \(\Delta_{0,1} \) and \(\Delta_{1,0} \) are modules of the \(R \)-representations of \(\Gamma_1, \Gamma_4 \) of \(G \), respectively (see Lemma 1). Since

\[
(\Delta^n_G)^H = (\Delta_n)^{(3)}.
\]

the \(RG \)-module \(\Delta_{0,n} \) is a lifting of the \(RH \)-module \(\Delta_n \).

We will use the notation \(\Delta^n = \Delta_{0,n} \).

Lemma 5. The sequences of \(RG \)-modules

\[
0 \to \Delta_{3k} \to \Gamma^k \to \Delta_{3k-1} \to 0,
0 \to \Delta_{3k+1} \to P_0 \oplus \Gamma^k \to \Delta_{3k} \to 0,
0 \to \Delta_{3k+2} \to P_1 \oplus \Gamma^k \to \Delta_{3k+1} \to 0
\]

are exact, where \(\Gamma = RG = P_0 \oplus P_1 \) (see Lemma 2). Moreover

\[
\Delta_{3k} \otimes \Delta_1 = \Delta_{3k+1} \oplus \Gamma^k,
\Delta_{3k+1} \otimes \Delta_1 = \Delta_{3k+2} \oplus P_0 \oplus \Gamma^k,
\Delta_{3k+2} \otimes \Delta_1 = \Delta_{3k+3} \oplus P_1 \oplus \Gamma^k.
\]

Proof. It is easy to see that

\[
\{(a_1 - 1)(a_2 - 1)w_0, (a_1 - 1)w_0, (a_2 - 1)w_0\}
\]

is an \(R \)-basis of the \(RG \)-submodule \(M \subset P_0 \). Obviously, \(P_0/M \cong \Delta_0 \), so we can assume that \(M = \Delta_1 \) and the following sequence

\[
(2) 0 \to \Delta_1 \to P_0 \to \Delta_0 \to 0
\]

is exact. Comparing the values of the characters at \(b \in G \), we get

\[
P_0 \otimes \Delta_1 \cong \Gamma = P_0 \oplus P_1.
\]

Multiplying (2) tensorially by \(\Delta_1 \), we obtain the exact sequence

\[
0 \to \Delta_1 \otimes \Delta_1 \to P_0 \oplus P_1 \to \Delta_1 \to 0,
\]

which is possible only if \(\Delta_1 \otimes \Delta_1 \cong \Delta_2 \oplus P_0 \), so the sequence

\[
0 \to \Delta_2 \to P_1 \to \Delta_1 \to 0.
\]

is exact, too. Multiplying the last sequence again tensorially by \(\Delta_1 \) and using the value of the characters (for example, \(\chi_{\Delta_2}(b) = -1 \)), we can verify the lemma for \(n = 2,3,\ldots \). \(\square \)

Using the contragredient modules we can obtain an analogue of Lemma 5 for the modules \(\Delta_m \) with negative \(m \). As a consequence we have

Corollary 2. In the algebra \(A(RG) \) the following equations hold

\[
[\Delta_n] \cdot [\Delta_m] = [\Delta_{n+m}] = 0 \quad [\Delta_{1,0}] \cdot [\Delta_{1,0}] = 2[\Delta_0] + [\Delta_{1,0}].
\]

Proof. These equations follows from Lemma 5 where \([P_j] = 0 \) and \(f_3 \) from (1). \(\square \)
The group \(H = \langle a_1, a_2 \rangle \cong C_2 \times C_2 \) has the following four linear characters:

\[
\begin{align*}
\delta_0 &: \quad a_1 \mapsto 1, \quad a_2 \mapsto 1; \\
\delta_1 &: \quad a_1 \mapsto -1, \quad a_2 \mapsto 1; \\
\delta_2 &: \quad a_1 \mapsto 1, \quad a_2 \mapsto -1; \\
\delta_3 &: \quad a_1 \mapsto -1, \quad a_2 \mapsto -1.
\end{align*}
\]

It is easy to check that the induced representations \(\delta_G^1, \delta_G^2, \delta_G^3 \) of \(G \) are irreducible and equivalent to the representation \(\Gamma_2 \) (see Lemma 1).

Lemma 6. The following equations hold

\[
[\Delta_1, 0]^2 = [\Delta_1, 0] + [\Delta_0], \quad [L]^2 = [\Delta_0] + [\Delta_1, 0] + 2[L],
\]

where \(L \) is the module of the representation \(\Gamma_2 \) (see Lemma 1) and \(\Delta_0 \) is the trivial \(RG \)-module.

Proof. Using Mackey’s theorem (see Theorem 10.18, [2], p.240) we get

\[
\delta_2^G \otimes \delta_2^G \simeq \sum_{j=0}^{2} (\delta_2 \otimes \delta_2^j)^G,
\]

where \(\delta_2^j(h) = \delta_2(b^{-j}h b^j) \) for \(h \in H \). This yields that \(\delta_2 \otimes \delta_2 = \delta_0, \quad \delta_2 \otimes \delta_1 = \delta_1, \quad \delta_2 \otimes \delta_2^2 = \delta_3, \quad \text{and} \quad \delta_2^G \otimes \delta_2^G = \delta_0^G + \delta_1^G + \delta_3^G. \)

Proof of the Theorem. Let \(\mathfrak{B}'(RG) = \mathfrak{B}(RG) f_3 \). Put

\[
x = [\Delta_1], \quad y = [\Delta_1, 0], \quad z = [L].
\]

We identify \(f_3 \) with the unity 1 of the algebra \(\mathfrak{B}'(RG) \), where \(f_3 \) from [1]. Since \([\Delta_1][\Delta_{-1}]f_3 = f_3 \), we can assume that \([\Delta_{-1}]f_3 = \frac{1}{z} \). By Lemma 6 it follows that

\[
\mathfrak{B}'(RG) = \langle 1, x, \frac{1}{x}, y, z \mid y^2 = y + 2, \quad z^2 = 2z + y + 1 \rangle.
\]

Since \(y^2 - y - 2 = (y - 2)(y + 1) \), we have

\[
\langle 1, x, \frac{1}{x}, y \rangle \cong \mathbb{Q}[x, \frac{1}{x}]/(y^2 - y - 2) \cong \mathbb{Q}[x, \frac{1}{x}] \oplus \mathbb{Q}[x, \frac{1}{x}].
\]

Now the algebra \(\mathfrak{B}'(RG) \cong \mathbb{Q}[x, \frac{1}{x}] \oplus \mathbb{Q}[x, \frac{1}{x}] \oplus \mathbb{Q}[x, \frac{1}{x}] \oplus \mathbb{Q}[x, \frac{1}{x}], \) because

\[
z^2 - 2z - y - 1 = \begin{cases} (z + 1)(z - 3) & \text{for } y = 2; \\ (z - 2)z & \text{for } y = -1. \end{cases}
\]

Finally, since the algebra \(\mathfrak{B}(RG) \) has no projective summands, the map \(u \mapsto uf_3 \) gives the isomorphism \(\mathfrak{B}'(RG) \cong \mathfrak{B}(RG) \). \(\square \)
References

[1] V. F. Barannik, P. M. Gudivok, and V. P. Rudko. On the tensor products of irreducible integral p-adic representations of finite p-groups. Nauk. Visn. Uzhgorod. Univ. Ser. Mat., (1):5–13, 1994.

[2] C. Curtis and I. Reiner. Methods of representation theory. Vol. I. Wiley Classics Library. John Wiley & Sons Inc., New York, 1990. With applications to finite groups and orders, Reprint of the 1981 original, A Wiley-Interscience Publication.

[3] P. M. Gudivok, S. F. Gončarova, and V. P. Rudko. Tensor products of irreducible integral p-adic representations of finite groups. Ukrain. Mat. Zh., 34(6):688–694, 813, 1982.

[4] P. M. Gudivok and V. P. Rudko. Tensor products of representations of finite groups. (Tensor pr oizvedeniya predstavlenij konechnykh grupp). Uzhgorod State University, Uzhgorod, 1985.

[5] L. A. Nazarova. Unimodular representations of the alternating group of degree four. Ukrain. Mat. Zh., 15:437–444, 1963.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF DEBRECEN, H-4010 DEBRECEN, P.O.B. 12, HUNGARY

E-mail address: vbovdi@math.klte.hu