Evidence for cosmic evolution in the spin of the most massive black holes

Alejo Martínez-Sansigre1,2,3 and Steve Rawlings2

1Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX
2Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH
3SEPnet, South-East Physics network

Accepted 2011 August 25. Received 2011 August 25; in original form 2011 March 29

ABSTRACT

We use results from simulations of the production of magnetohydrodynamic jets around black holes to derive the cosmic spin history of the most massive black holes. We assume that the efficiency of jet production is a monotonic function of spin \hat{a}, as given by the simulations, and that the accretion flow geometry is similarly thick for quasars accreting close to the Eddington ratio and for low-excitation radio galaxies accreting at very small Eddington rates. We use the ratio of the comoving densities of the jet power to the radiated accretion power associated with supermassive black holes with $m_\bullet \gtrsim 10^8 M_\odot$ to estimate the cosmic history of the characteristic spin \hat{a}. The evolution of this ratio, which increases with decreasing z, is consistent with a picture where the $z \sim 0$ active galactic nuclei have typically higher spins than those at $z \sim 2$ (with typical values $\hat{a} \sim 0.35$–0.95 and ~ 0.0–0.25, respectively). We discuss the implications in terms of the relative importance of accretion and mergers in the growth of supermassive black holes with $m_\bullet \gtrsim 10^8 M_\odot$.

Key words: black hole physics – galaxies: active – galaxies: jets – galaxies: nuclei – quasars: general – cosmology: miscellaneous.

1 INTRODUCTION

Astrophysical black holes are described by two parameters, mass m_\bullet and spin \hat{a}, defining the structure of space–time within regions close to the event horizon. Every massive galaxy has a supermassive black hole (SMBH) at its centre, and the combination of accretion and coalescence of SMBHs of similar mass, major merging, can lead to a wide spread in spins (e.g. Berti & Volonteri 2008). A possible constraint on the cosmic spin history is the ratio of kinetic to radiated outputs in active galactic nuclei (AGNs), since these are powered by SMBHs.

During accretion on to black holes, the amount of energy available for radiation and for the production of jets is determined by the mass and spin of the black hole, as well as the rate of accretion of matter and the geometry of the accretion flow. More massive black holes can accrete more matter, but those that are spinning rapidly can extract energy more efficiently from the infalling material (e.g. Novikov & Thorne 1973; Blandford & Znajek 1977). In addition, geometrically thick accretion flows can power jets more effectively than thin ones because they are able to sustain more powerful poloidal magnetic fields (e.g. Meier 2001).

In galactic black holes (GBHs), the presence of steady jets occurs typically during low accretion rates (where by low we mean an Eddington ratio $\lambda \equiv m/\dot{m}_{\text{Edd}} \lesssim 10^{-2}$). During transitions to moderate accretion rates, $\lambda \gtrsim 10^{-2}$, the jet is temporarily enhanced in power, and can then become steady, transient or totally absent (Fender, Belloni & Gallo 2004). This is interpreted as a transition from advection-dominated accretion flows (ADAFs; Narayan & Yi 1995) that are geometrically thick and can sustain significant jets to gas-pressure-dominated accretion flows which are thin, with aspect ratios (the ratio of height to radius) ~ 0.01 (Novikov & Thorne 1973).

Quasars and high-excitation radio galaxies are SMBHs accreting at a high fraction of their Eddington limiting luminosity, so that the accretion flow is geometrically thick (Novikov & Thorne 1973, note GBHs with $\lambda \sim 1$ also produce continuous jets, e.g. GR 1915+105; Fender et al. 2004). Low-excitation radio galaxies are SMBHs with very low accretion rates, ADAFs, that have similarly thick accretion flows. The geometry is thus similar at both high and low accretion rates.

SMBHs are known to display a wide range of jet powers with no observable differences in the accretion flow, suggesting that a hidden variable must be controlling the jet power. The ‘spin paradigm’ assumes the black hole spin to be the physical parameter controlling the kinetic output in the form of jets (e.g. Blandford & Znajek 1977; Sikora, Stawarz & Lasota 2007).

GBHs show a similar wide spread in jet powers, but these are not found to correlate with the published estimates of the spins (Fender, Gallo & Russell 2010). If the spin estimates are correct, this provides very stringent evidence against the spin paradigm for GBHs. However, due to the uncertainties in the measurements of
both the black hole spin and the total jet power, the results found by Fender et al. (2010) do not provide robust evidence against the spin paradigm. The reader is referred to section 7.2 of Martínez-Sansigre & Rawlings (2011, hereafter MSR11) for a detailed discussion.

In this Letter, we make the assumption that spin is indeed an important factor in powering jets, following the results of general relativistic magnetohydrodynamic simulations (e.g. Hawley & Krolik 2006). Hence, assuming the spin paradigm to be correct, we present an observational constraint on the evolution of the mean spin of the most massive SMBHs as inferred from a measured cosmic change in the ratio of the power output in jets to the power radiated by AGNs. We adopt a ΛCDM cosmology with the following parameters: $h = H_0/(100 \text{ km s}^{-1} \text{ Mpc}^{-1}) = 0.7$; $\Omega_m = 0.3$ and $\Omega_\Lambda = 0.7$.

2 ASSUMPTIONS

High accretion rates will lead to efficient radiation of the thermal energy originating from viscous forces caused by magnetohydrodynamic turbulence. A fraction ϵ of the accreted energy will be radiated away, and the remaining energy will be advected into the black hole. The bolometric power available for radiation can therefore be described by

$$L_{\text{bol}} = \epsilon \dot{m} c^2,$$

where L_{bol} is the bolometric luminosity due to radiation, \dot{m} is the rate of accretion of mass on to the SMBH and the term ϵ is the radiative efficiency.

The shearing of magnetic fields frozen into the accreting plasma will allow the extraction of electromagnetic energy to power jets. Close to a rotating black hole, the dragging of inertial frames will lead to a higher angular velocity (and hence larger shear), and additional amplification of the magnetic fields occurs by extraction of energy from the rotating black hole. The power available for the production of jets can be described as

$$Q_{\text{jet}} = \eta \dot{m} c^2,$$

where Q_{jet} is the jet power and η is the jet efficiency (e.g. Hawley & Krolik 2006; this is also the same as ϵ_{jet} in Merloni & Heinz 2008). Here it is assumed that η is a function of spin so that rapidly spinning black holes will have a higher jet efficiency.

The AGNs concerned in this Letter are powered by SMBHs accreting either at very low or at very high fractions of their Eddington limiting luminosity (so either $\lambda \lesssim 10^{-2}$ or ~ 1; Willott et al. 2001; McLure et al. 2004; Smolčić et al. 2009). In these two limits of low and high accretion rates, the geometry of the accretion flows will be similar, with aspect ratios $\lesssim 0.1$. Hence, we assume that η is a monotonic function of λ and that variations due to the accretion flow thickness are a secondary effect (see also section 2.2 of MSR11 for more details).

3 THE COMOVING JET POWER AND RADIATED ENERGY

To infer the cosmic spin history of SMBHs, we will use the mean comoving kinetic jet power density from AGNs producing jets, $\rho_{Q_{\text{jet}}}$, and the mean comoving jet power from radiating AGNs, $\rho_{L_{\text{bol}}}$. These quantities can both be measured using

$$\rho_{Q_{\text{jet}}} = \int Q_{\text{jet}} \phi_{Q_{\text{jet}}}(Q_{\text{jet}}, z) \, dQ_{\text{jet}},$$

$$\rho_{L_{\text{bol}}} = \int L_{\text{bol}} \phi_{L_{\text{bol}}}(L_{\text{bol}}, z) \, dL_{\text{bol}},$$

where $\phi_{Q_{\text{jet}}}(Q_{\text{jet}}, z) = d^2N/dQ_{\text{jet}} \, dz$ and $\phi_{L_{\text{bol}}}(L_{\text{bol}}, z) = d^2N/dL_{\text{bol}} \, dz$ are the luminosity functions for Q_{jet} and L_{bol}, respectively, representing the comoving number density of AGNs with a given kinetic jet power or bolometric luminosity, and their evolution with cosmological redshift z.

The jet power can be estimated from the low-frequency radio luminosity density due to synchrotron radiation (e.g. Willott et al. 1999), assuming that the jet output results in energy stored in radio source lobes together with associated and ineluctable work done on the source environment. Adopting standard assumptions for the way this energy is shared between magnetic fields and particles, the work done inflating these lobes as well as typical jet advance speeds and a typical density profile for the intergalactic medium, $\rho_{Q_{\text{jet}}}$ can be estimated from the radio luminosity function $\phi_{\nu}(L_{\nu}, z)$:

$$\left(\frac{\rho_{Q_{\text{jet}}}}{\text{W Mpc}^{-3}} \right) = 3 \times 10^{38} f^{3/2} \int \left(\frac{L_{\nu}}{10^{28}} \right)^{6/7} \phi_{\nu}(L_{\nu}, z) \, dL_{\nu},$$

where L_{ν} is the luminosity density due to synchrotron radiation (e.g. Willott et al. 2001). The term f represents the combination of several uncertainty terms when estimating Q_{jet} from L_{ν} (for example plasma volume filling factor or the fraction of energy in non-radiating particles). An alternative method to estimating jet powers is to estimate the energy stored in cavities in the X-ray-emitting intracluster gas, and both methods agree best for $f \sim 0.1$ (Cavagnolo et al. 2010). We therefore initially take $f = 0.2$, but in Section 4 consider deviations from this assumption.

The radio luminosity function includes two components: the luminosity function for the high radio luminosity classical double sources (Willott et al. 2001) and the luminosity function for the lower radio luminosity AGNs (Smolčić et al. 2009). For the lower radio luminosity AGNs, the luminosity function extends to $z = 1.4$ and only, and we have extrapolated it to $z = 2.0$ using the same functional form for the evolution. The luminosity functions of other AGNs suggest a turnover around $z = 2$, so no further extrapolation is attempted. We neglect any errors in the quantity inside the integral in equation (5) which is reasonable because it is essentially the luminosity density, a quantity dominated by objects near the break in the radio luminosity function: the normalization at this break is directly measured to $z \sim 2$ (Willott et al. 2001; Vardoulaki et al. 2010).

In AGNs, the hard (high-energy) X-ray luminosity originates from inverse-Compton scattering of photons from the accretion flow by a corona of hot electrons, and it is a good tracer of the bolometric luminosity. The X-ray luminosity function $\phi_{L_X}(L_X, z)$ (Silverman et al. 2008) can be used to estimate $\rho_{L_{X}}$:

$$\left(\frac{\rho_{L_{X}}}{\text{W Mpc}^{-3}} \right) = \int (1 + F_{\text{CT}}) C_X L_X \phi_{L_X}(L_X, z) \, dL_X.$$

The factor F_{CT} accounts for the fraction of luminous Compton-thick AGNs missed by the hard X-ray surveys: $F_{\text{CT}} \approx 0.5$ (see e.g. Gilli, Comastri & Hasinger 2007; Martinez-Sansigre et al. 2007), and we adopt an uncertainty (from table 8 of Fiore et al. 2009), so that $F_{\text{CT}} = 0.5 \pm 0.1$. The bolometric correction C_X converts from a monochromatic luminosity to a bolometric luminosity, $L_{\text{bol}} = C_X L_X$: we use the values given by Hopkins, Richards & Hernquist (2007) with, following Martínez-Sansigre & Taylor (2009), an assumed 8 per cent uncertainty.

1 The latter has been converted from 1.4 GHz to 151 MHz assuming $L_{\nu} \propto \nu^{-\alpha}$ with a radio spectral index of $\alpha = 0.75$.
The value of \(\rho_{\text{Qbol}} \) is always dominated by the output from the most massive SMBHs, with \(m_* \gtrsim 10^8 \text{M}_\odot \) at all redshifts (McLure et al. 2004; Smolčić et al. 2009). To ensure that \(\rho_{\text{Lbol}} \) is also dominated by the most massive black holes, we only integrate above X-ray luminosities that can be achieved by SMBHs with \(m_* \gtrsim 10^8 \text{M}_\odot \) accreting at \(\geq 25 \text{ per cent of the Eddington accretion rate} \) (the characteristic value found by McLure & Dunlop 2004).

This evolution of the ratio \(\rho_{\text{Qbol}} / \rho_{\text{Lbol}} \) with redshift \(z \) for the most massive SMBHs (with \(m_* \gtrsim 10^8 \text{M}_\odot \)) is shown in Fig. 1. There is likely some exaggeration of the rise in \(\rho_{\text{Qbol}} / \rho_{\text{Lbol}} \) towards low-\(z \), because of the cut-off assumed in X-ray luminosity, but only by a factor of \(\sim 3 \). At high redshift, we expect it to underestimate \(\rho_{\text{Lbol}} \) by a negligible amount.

4 THE COSMIC SPIN HISTORY

The ratio of \(\rho_{\text{Qbol}} \) to \(\rho_{\text{Lbol}} \) for the most massive black holes (\(\gtrsim 10^8 \text{M}_\odot \)), is then given by

\[
\frac{\rho_{\text{Qbol}}}{\rho_{\text{Lbol}}} = \frac{\eta_{\text{adaf}}}{\eta_{\text{QSO}}} \frac{\rho_{\text{adaf}}}{\rho_{\text{QSO}}},
\]

which includes the comoving density of accretion of the AGNs contributing to \(\rho_{\text{Qbol}} \), namely \(\rho_{\text{adaf}} \) and of AGNs contributing to \(\rho_{\text{Lbol}} \), namely \(\rho_{\text{QSO}} \).

Separating the contribution to \(\rho_{\text{Qbol}} \) from ADAs and quasars,

\[
\rho_{\text{Qbol}} = \eta_{\text{adaf}} \rho_{\text{adaf}} + \eta_{\text{QSO}} \rho_{\text{QSO}}.
\]

In the case of \(\rho_{\text{Lbol}} \), although \(\rho_{\text{adaf}} \ll \rho_{\text{QSO}}, \) in ADAFs \(\rho_{\text{adaf}} \ll \rho_{\text{QSO}} \), so that \(\rho_{\text{Lbol}} \) is totally dominated by quasars and \(\rho_{\text{Lbol}} = \rho_{\text{QSO}} \).

Hence,

\[
\frac{\rho_{\text{Qbol}}}{\rho_{\text{Lbol}}} = \left(\frac{\eta_{\text{adaf}}}{\eta_{\text{QSO}}} \right) \left(\frac{\rho_{\text{adaf}}}{\rho_{\text{QSO}}} \right) + \left(\frac{\eta_{\text{QSO}}}{\rho_{\text{QSO}}} \right). \tag{8}
\]

We consider two approaches to using \(\rho_{\text{Qbol}} / \rho_{\text{Lbol}} \) to constrain the cosmic spin history. The first one is to attempt to use the ratio to find a fiducial spin, under some simplifying assumptions. The second is to compare a parametric model to the observations, to see how well it reproduces them.

In both approaches, the jet efficiency \(\eta \) is described using the results from a set of three-dimensional general relativistic magnetohydrodynamic simulations, which can be approximated as (Hawley & Krolik 2006)

\[
\eta(\hat{a}) \approx 0.002 (1 - |\hat{a}|)^{-1}. \tag{9}
\]

For spin values \(\hat{a} = [0.0, 0.5, 0.998] \), the corresponding jet efficiencies are \(\eta = [0.002, 0.004, 1.00] \). However, our results are very similar if we use other efficiencies from the literature (see supplementary figures and MSR11).

For the radiative efficiency, we assume the Novikov & Thorne (1973) model, which for spins \(\hat{a} = [0.0, 0.5, 0.998] \) has values \(\epsilon = [0.057, 0.082, 0.321] \) for corotating accretion.\(^2\)

4.1 The fiducial cosmic spin

At \(z \gtrsim 1 \), the density of accretion on to ADAs is insignificant compared to the density of accretion on to quasars (e.g. see fig. 9 of MSR11 and fig. 4 of Merloni & Heinz 2008), \(\rho_{\text{adaf}} \ll \rho_{\text{QSO}} \) so that \(\rho_{\text{Qbol}} / \rho_{\text{Lbol}} = \eta_{\text{QSO}} / \rho_{\text{QSO}} \). Therefore, at high redshift, \(\rho_{\text{Qbol}} / \rho_{\text{Lbol}} \) gives a good estimate of the ratio of efficiencies for quasars and, under the spin paradigm, of their typical spin.

At very low redshifts, the comoving density of accretion on to ADAs is comparable to that of quasars, so \(\rho_{\text{adaf}} \approx \rho_{\text{QSO}} \) (Merloni & Heinz 2008; MSR11), in which case \(\rho_{\text{Qbol}} / \rho_{\text{Lbol}} \approx (\eta_{\text{adaf}}/\eta_{\text{QSO}} + 1) \eta_{\text{QSO}} / \rho_{\text{QSO}} \). It is therefore not straightforward to interpret \(\rho_{\text{Qbol}} / \rho_{\text{Lbol}} \) in terms of typical efficiencies, but some progress can be made under the assumption that \(\eta_{\text{adaf}} \gtrsim \eta_{\text{QSO}} \), so that \(\rho_{\text{Qbol}} / \rho_{\text{Lbol}} \gtrsim 2 \eta_{\text{QSO}} / \rho_{\text{QSO}} \). This shows that at \(z \sim 0 \), the ratio \(\rho_{\text{Qbol}} / \rho_{\text{Lbol}} \) will overestimate the typical efficiencies of quasars and ADAs.

Fig. 2 represents a fiducial cosmic spin history of the most massive black holes inferred from \(\rho_{\text{Qbol}} / \rho_{\text{Lbol}} \). It represents the characteristic spin if at a given redshift all SMBHs have the same spin. It is derived by assuming that the first term in equation (8) is negligible, so we expect this figure to provide an accurate estimate at moderate and high redshifts, but to overpredict \(\hat{a}(z) \) at the low redshifts, marked in grey. Overestimating \(\eta / \epsilon \) by a factor of \(>2 \) at \(z \sim 0 \) suggests that the typical spin at \(z \sim 0 \) is \(<0.9 \) rather than \(\sim 0.95 \). Consideration of \(f \) also lead to lower estimates of the typical low-\(z \) spin: re-running our analysis with \(f = 10 \) (rather than \(f = 20 \)) leads to no changes at high-\(z \), but a typical low-\(z \) spin of 0.8. We note that high values of \(f \) are supported

\(^2\) In Section 5, we will discuss the relevance of chaotic accretion. In this paradigm, an average efficiency of co- and counter-rotating accretion should be used (King, Pringle & Hofmann 2008). The results of MSR11 used jet efficiencies from the literature for corotating accretion, so for consistency we limit ourselves to these. The radiative efficiency is determined for quasars, and their spins are close to \(\hat{a} = 0.0 \) (MSR11), so the co- and counter-rotating radiative efficiencies are virtually identical. Therefore, although there is a slight conceptual inconsistency between our model radiative efficiency and our interpretation, in practice it makes no difference to the results.
by X-ray cavity observations undertaken at low radio powers and low redshift, so lower values of \(f \) for the low-\(z \) population are hard to envisage. If we assume that different effects (e.g. \(f \) and underestimating \(\rho_{\text{bud}} \) at low-\(z \)) add to an overall overestimate of \(\rho_{\text{QSO}}/\rho_{\text{bud}} \) by a factor of \(\sim 2 \) (4), this will result in a fiducial spin at \(z \sim 0 \) of \(\bar{a}_{\text{fid}} \sim 0.9 \) (0.7). In these cases, the inferred evolution would be less extreme, but still present.

To test whether this fiducial spin history is consistent with constraints from the radiative efficiency of quasiars (the Sołtan 1982 argument), we compute the luminosity-weighted spin (see also MSR11): \(\bar{a}(\bar{z}) = \int \bar{a}_{\text{fid}}(\bar{z}) \rho_{\text{bud}}(\bar{z}) \, d\bar{z} / \int \rho_{\text{bud}}(\bar{z}) \, d\bar{z} \). The spin history of Fig. 2 yields a luminosity-weighted spin of \(\bar{a}(\bar{z}) = 0.055 \), which corresponds to a radiative efficiency of \(\bar{\epsilon}(\bar{z}) = 0.059 \). This is in good agreement with observational constraints, which typically yield values \(\bar{\epsilon}(\bar{z}) \sim 0.05 \pm 0.10 \) (see e.g. Martínez-Sansigre & Taylor 2009).

4.2 Can we explain \(\rho_{\text{QSO}}/\rho_{\text{bud}} \)?

In MSR11, we inferred a moderate evolution amongst the SMBHs with \(m_\bullet \geq 10^6 \, M_\odot \). This evolution was really driven by the change in relative space densities of two populations: the high Eddington rate SMBHs, or quasiars, which dominate at high redshifts, were found to have spin distributions centred around low spin, \(\bar{a} \sim 0 \). The low Eddington rate SMBHs, or ADAFs, become significant at low redshifts, and these were found to have a bimodal spin distribution, with a peak centred at \(\bar{a} \sim 0 \) and another at \(\bar{a} \sim 1 \). These spin distributions allowed us to explain the local radio luminosity function, as well as explaining its evolution up to \(z \sim 1 \).

The results of MSR11 suggest that the evolution of the mean spin of SMBHs is driven by a transition from a high accretion rate, low spin population, to a low accretion rate population showing a bimodality in spins (and hence a slightly higher mean spin). This evolution was qualitatively similar to that seen in Fig. 2, but it was significantly weaker, changing from \(\bar{a} \sim 0.25 \) at high redshift to \(\sim 0.35 \) at low redshift.

We can test whether the spin distributions we inferred in MSR11 can reproduce the observed evolution in \(\rho_{\text{QSO}}/\rho_{\text{bud}} \). We use these spin distributions to predict how the ratio \(\rho_{\text{QSO}}/\rho_{\text{bud}} \) evolves with redshift using

\[
\left(\frac{\rho_{\text{QSO}}}{\rho_{\text{bud}}} \right)_{\text{pred}} = \left(\frac{\eta_{\text{ADAF}}}{\eta_{\text{QSO}}} \right) \left(\frac{\rho_{\text{ADAF}}}{\rho_{\text{QSO}}} \right) + \left(\frac{\rho_{\text{ADAF}}}{\rho_{\text{QSO}}} \right) \]

Note that the angled brackets indicate expectation values: \(\langle \eta_{\text{ADAF}} \rangle = \int \eta(\hat{a}) P_{\text{ADAF}}(\hat{a}) \, d\hat{a} \), \(\langle \eta_{\text{QSO}} \rangle = \int \eta(\hat{a}) P_{\text{QSO}}(\hat{a}) \, d\hat{a} \), and \(\langle \rho_{\text{QSO}} \rangle = \int \rho(\hat{a}) P_{\text{QSO}}(\hat{a}) \, d\hat{a} \) (7). The variance of the ADADF term is large, due to the bimodal nature, while the variance of the QSO term is small. As mentioned earlier, at \(z \gtrsim 1 \), \(\rho_{\text{QSO}} \gg \rho_{\text{ADAF}} \) so that the QSO term dominates, but at low redshift, \(\rho_{\text{QSO}} \sim \rho_{\text{ADAF}} \).

Fig. 3 shows the resulting evolution of \(\rho_{\text{QSO}}/\rho_{\text{bud}} \) from equation (10) and using the spin distributions from MSR11. At \(z \sim 0 \), the most likely predicted value of \(\rho_{\text{QSO}}/\rho_{\text{bud}} \) is about 0.1 dex higher than the observed value, and at \(z \gtrsim 1 \), it is about 0.3 dex higher. This can be understood since in MSR11 (figs 4 and 7 of that work), we overpredicted the radio luminosity function of high Eddington rate SMBHs, which dominate \(\rho_{\text{QSO}} \) at high redshifts.

The expectation value is systematically slightly higher than the most likely value of \(\rho_{\text{QSO}}/\rho_{\text{bud}} \) shown in Fig. 1, but the curvature is similar and the two figures agree very well within their uncertainties. Similar results are found using other jet efficiencies from the literature (see supplementary figures).

Although the amount of evolution in the mean spin is different, Fig. 2 and the mean spin from MSR11, which can reproduce Fig. 1, agree qualitatively: the typical spin was very low at high redshifts and has increased at low redshifts.

5 Discussion

Using the observed ratio between the comoving densities of jet power and radiation from SMBHs, \(\rho_{\text{QSO}}/\rho_{\text{bud}} \), we have inferred...
that the spin of the SMBHs must be evolving. We have done this in two ways. The first method included some simplifying assumptions to allow us to ‘invert’ the problem. This allowed us to infer a fiducial spin for all SMBHs, and we find that this fiducial spin evolves strongly. The second method consists of comparing some highly parameterized description of the spin distributions, inferred from fitting the local radio luminosity function in our previous work (MSR11). There are no simplifying assumptions, but rather than inferring the evolution of a fiducial spin value, we simply test whether spin distributions previously inferred in MSR11 can explain the observed evolution of $\rho_{\text{Q,ol}}/\rho_{\text{bul}}$: we find that they can explain this evolution very well.

The results from both methods are quantitatively different, in that they differ in the spin values inferred at low redshift. However, the two methods agree qualitatively: a low-spin epoch occurs at $z \gtrsim 1$ and coincides with the period during which the black holes with masses $m_*=10^8 \, M_\odot$ accreted most of their mass (Yu & Tremaine 2002). This epoch is one characterized by high accretion rates on to low-spin objects, while the present-day epoch is one characterized by low accretion rates on to a population of SMBHs with a significant fraction have high spins.

Somewhat counter-intuitively, the epoch of lowest spin corresponds to the epoch of highest accretion. This, however, is consistent instead with the paradigm of ‘chaotic accretion’ (e.g. King et al. 2008): approximately half of the accretion occurs with the disc counter-rotating with respect to the SMBH, hence decreasing the spin of the hole as opposed to the increase brought by a corotating disc.

Chaotic accretion is expected to lead to SMBHs with low spins, $\hat{a} \sim 0.1$ (King et al. 2008), and our result is thus in agreement with black holes being ‘spun down’ at high redshift, when the typical accretion rate was higher, due to the greater available supply of concentrated cold gas in the central regions of the host galaxy (e.g. Obreschkow & Rawlings 2009).

When two black holes of similar mass coalesce, the orbital angular momentum contributes significantly to the final angular momentum of the coalesced black hole, leading to high values of the final spin, typically $\hat{a} \sim 0.7$ (Rezzolla et al. 2008). Hence, mergers of SMBHs of similar mass (major mergers, with mass ratios $\lesssim 4:1$) are expected to provide the ‘spin-up’ mechanism.

SMBHs of mass $\gtrsim 10^8 \, M_\odot$ are hosted by galaxies with bulge masses $\gtrsim 10^{11} \, M_\odot$, typically elliptical galaxies. A significant fraction of these galaxies have undergone major mergers since $z \sim 1$ (Robaina et al. 2010), meaning their central SMBHs will have most likely undergone a major merger too.

Due to the steepness of the mass function above the break in the mass function, our result is most likely dominated by the behaviour of SMBHs hosted by galaxies with masses $\sim 1 \times 10^{11} \, M_\odot$ and reflects their merger history, rather than reflecting that of the rarer, more massive galaxies with $3 \times 10^{11} \, M_\odot$, which seem to have undergone an earlier evolution (Banerji et al. 2010).

The mechanism for spinning up SMBHs, major merging, is present during the entire epoch of $0 \lesssim z \lesssim 2$ since the merging of galaxies with similar masses is also a common occurrence at redshifts $z \sim 2$. However, the centrally concentrated, typically molecular, cold gas content of the merging galaxies, the fuel for accretion, decreases significantly with cosmic time.

It is therefore the gradual disappearance of the ‘braking’ mechanism, chaotic accretion, which determines the increase in the typical spin of the most massive black holes.

ACKNOWLEDGMENTS

We thank R. Houghton, T. Mauch, D. Obreschkow, A. Robaina and S. Shabala, and the anonymous referee for useful discussions. AM-S gratefully acknowledges an STFC Post-Doctoral Fellowship, reference ST/G004420/1. This work was also partly supported by the EC FP6, SKADS.

REFERENCES

Banerji M. et al., 2010, MNRAS, 402, 2264
Berti E., Volonteri M., 2008, ApJ, 684, 822
Blandford R. D., Znajek R. L., 1977, MNRAS, 179, 433
Cavagnolo K. W. et al., 2010, ApJ, 720, 1066
Fender R. P., Belloni T. M., Gallo E., 2004, MNRAS, 355, 1105
Fender R. P., Gallo E., Russell D., 2010, MNRAS, 406, 1425
Fiore F. et al., 2009, ApJ, 693, 447
Gilli R., Comastri A., Hasinger G., 2007, A&A, 463, 79
Hawley J. F., Krolik J. H., 2006, ApJ, 641, 103
Heckman T. M. et al., 2004, ApJ, 613, 109
Hopkins P. F., Richards G. T., Hernquist L., 2007, ApJ, 654, 731
King A. R., Pringle J. E., Hofmann J. A., 2008, MNRAS, 385, 1621
McLure R. J., Dunlop J. S., 2004, MNRAS, 352, 1390
McLure R. J. et al., 2004, MNRAS, 351, 347
Martínez-Sansigre A., Rawlings S., 2011, MNRAS, 414, 1937 (MSR11)
Martínez-Sansigre A., Taylor A. M., 2009, ApJ, 692, 964
Martínez-Sansigre A. et al., 2007, MNRAS, 379, L6
Meier D. L., 2001, ApJ, 548, L9
Merloni A., Heinz S., 2008, MNRAS, 388, 1011
Narayan R., Yi I., 1995, ApJ, 452, 710
Novikov I. D., Thorne K. S., 1973, in Dewitt C., Dewitt B. S., eds, Black Holes. Gordon & Breach, New York, p. 343
Obreschkow D., Rawlings S., 2009, ApJ, 696, L129
Rezzolla L. et al., 2008, Phys. Rev. D, 78, 044002
Robaina A. R. et al., 2010, ApJ, 719, 844
Sikora M., Stawarz Ł., Lasota J.-P., 2007, ApJ, 658, 815
Silverman J. D. et al., 2008, ApJ, 679, 118
Smolčić V. et al., 2009, ApJ, 696, 24
Soltan A., 1982, MNRAS, 200, 115
Vardoulaki E. et al., 2010, MNRAS, 401, 1709
Willott C. J. et al., 1999, MNRAS, 309, 1017
Willott C. J. et al., 2001, MNRAS, 322, 536
Yu Q., Tremaine S., 2002, MNRAS, 335, 965

This paper has been typeset from a T\TeX/\LaTeX\ file prepared by the author.