A Compact Virtual-Source Model for Carbon Nanotube Field-Effect Transistors in the Sub-10-nm Regime—Part II: Extrinsic Elements, Performance Assessment, and Design Optimization

Chi-Shuen Lee, Eric Pop, Senior Member, IEEE, Aaron D. Franklin, Senior Member, IEEE, Wilfried Haensch, Fellow, IEEE, and H.-S. Philip Wong, Fellow, IEEE

Abstract—We present a data-calibrated compact model of carbon nanotube (CNT) field-effect transistors (CNTFETs) including contact resistance, direct source-to-drain and band-to-band tunneling currents. The model captures the effects of dimensional scaling and performance degradations due to parasitic effects and is used to study the trade-offs between the drive current and leakage current of CNFETs according to the selection of CNT diameter, CNT density, contact length, and gate length for a targeted contact gate pitch. We describe a co-optimization study of CNFET device parameters near the limits of scaling with physical insight, and project the CNFET performance at the 5-nm technology node with an estimated contacted gate pitch of 31 nm. Based on the analysis including parasitic resistance, capacitance, and tunneling leakage current, a CNT density of 180 CNTs/μm will enable CNFET technology to meet the ITRS target of drive current (1.33 mA/μm), which is within reach of modern experimental capabilities.

Index Terms—carbon nanotube (CNT), carbon-nanotube field-effect transistor (CNFET or CNTFET), compact model, technology assessment, contact, tunneling.

I. INTRODUCTION

Semiconducting single-walled carbon nanotube (CNT) field-effect transistors (CNFETs) have shown promise for extending CMOS technology scaling into the sub-10-nm technology nodes [1-3] owing to CNTs’ near-ballistic carrier transport [4-5] and ultra-thin body (1-2 nm), which provides superior electrostatic control over the channel and enables further scaling of the gate length (L_g) below 10 nm [3,6]. While CNFETs have superior intrinsic electronic properties, they suffer from imperfections, such as the difficulty of acquiring extremely high-purity semiconducting CNTs [7], hysteresis of the current-voltage (I-V) characteristics [8], and variations of material and devices [9]. Techniques to overcome these imperfections at the system level have been reported in [10] at modest cost of area and energy consumption.

In this paper, we focus on two specific issues: parasitic metal-CNT contact resistance (R_c) and direct source-to-drain tunneling (SDT) current (I_{SDT}). Obtaining low R_c between metals and low-dimensional materials has been recognized as one of the most challenging yet critical requirements for high performance transistors [11-12]. Furthermore, as L_g scales below 10 nm, I_{SDT} may become significant and cause high leakage power [2,13-14]. While previous works employed rigorous yet computationally intensive modeling methods to study these issues [2,15], here we develop analytical models for R_c and I_{SDT} in CNFETs and study their impacts on the device performance. This paper is organized as follows: models for R_c and I_{SDT} calibrated to experiments and numerical simulations are described in Sections II and III, respectively. These extrinsic elements are then integrated with the intrinsic model developed in [16] based on the virtual-source (VS) approach to arrive at a complete VS-CNFET model; in Section IV, CNFET performance is evaluated at the 5-nm technology node corresponding to a contacted gate pitch $L_{pitch} = 31$ nm and metal-1 pitch $L_{M1} = 25.2$ nm. By comparing the drive current against the 2013 International Technology Roadmap for Semiconductors (ITRS) target [17], requirements of CNT density for CNFETs is presented as a guide for technology development; in Section V, we discuss the assumptions of the model and analysis as well as suggestions for future experimental works. The models presented in this paper are calibrated to the data from experiments and numerical simulations based on non-equilibrium Green’s function (NEGF) quantum transport. Therefore, this work aims to provide realistic insight into the potentials and challenges of the CNFET technology. Due to the limited space, the complete derivation of all the equations is detailed in [31]; here we only discuss the physics and key results.

1These two challenges are not unique to CNFETs, but are also challenges of all scaled FETs. The simplicity of the CNT band structure makes this a model system for gaining insight into these challenges for other materials as well.
II. PARASITIC RESISTANCE

The CNFET parasitic resistance considered in this work consists of two components: the parasitic metal-CNT contact resistance (R_c) and the resistance in the source/drain (S/D) extensions (R_{ext}), as illustrated in Fig. 1. In general, metal-CNT R_c is determined by three factors: Schottky barrier height (ϕ_b), interface quality (i.e. metal-CNT adhesion), and physical contact length (L_c). In [18], Fermi-level pinning is predicted to be insignificant in metal-CNT contacts and thus ϕ_b is proportional to the CNT band gap (E_g) [19]:

$$E_g = \frac{2E_p a_{cc}}{d}$$

(1)

where $E_p = 3$ eV is the tight-binding parameter, $a_{cc} = 0.142$ nm is the carbon-carbon distance in CNTs, and d is the CNT diameter. Corrections to (1) could be made due to band gap renormalization as discussed in [16], but they do not alter the core of the model presented here. Chen et al. experimentally demonstrated an exponential increase in R_c with $1/d$ [20], attributed to the increase in ϕ_b; other authors showed that lower R_c can be achieved with Pd rather than Au contacts, despite their similar work functions [4, 21]. This advantage is attributed to better wettability at the Pd-CNT interface, the importance of which was also clarified by a recent study with several contact metals [22]. In the models presented here we include the dependence of R_c on d, but not that of the interface wettability or adhesion (which could also be influenced by polymer residue from fabrication); the dependence of R_c on L_c was experimentally studied in [22-23] and can be phenomenologically modeled by the transmission line model [25]:

$$2R_c = R_Q \sqrt{\frac{1 + \frac{4}{\lambda_c g_r R_Q}}{\coth \left(\frac{L_c}{L_T} \right) - 1}}$$

(2a)

$$L_T = \left[\frac{g_r R_Q}{ \lambda_c + \frac{g_r R_Q}{2} } \right]^{1/2}$$

(2b)

where L_T is the current transfer length, $R_Q = h/(4q^2)$ ≈ 6.5 kΩ is the quantum resistance of the CNT (lowest band, doubly degenerate with two spins), q is the elementary charge, h is Planck’s constant, λ_c is the charge carrier mean-free-path (MFP) in the CNT under the metal contact, and g_r is the coupling conductance between the CNT and the metal contact. Note that in (2a), R_Q is subtracted on the right-hand side because R_Q is considered the intrinsic property associated with the interfaces between the 1D CNT channel with the metal S/D contacts [24].

As a result, R_c is a parasitic component. In [25], λ_c and g_r are constant empirical parameters; whereas in this paper, g_r is related to ϕ_b so as to account for the experimental observation of the increase in R_c as d decreases [20] by:

$$g_r = g_{co} \exp \left(-\frac{\phi_c}{E_{co}} \right)$$

(3a)

$$\phi_c = E_g / 2 - (\phi_m - \phi_b)$$

(3b)

where ϕ_m and ϕ_b are work functions of the contact metal and the CNT, respectively, and g_{co} and E_{co} are empirical parameters. In analogy to the calculation of transmission coefficient through a metal-to-bulk-semiconductor Schottky contact [26], the E_{co} in (3a) characterizes the width of the energy barrier at metal-to-bulk-semiconductor interface: the smaller the E_{co}, the wider the barrier, and the more sensitive the g_r to the ϕ_b. Note that (3b) is for p-type contacts. For n-type contacts, the (3b) should be modified to $\phi_c = E_g / 2 + (\phi_m - \phi_b)$.

There are three empirical parameters to be determined in (2) and (3): λ_c, g_{co}, and E_{co}. The extraction of these three parameters goes as follows: (i) the R_c calculated by (2) and (3) is included into the intrinsic current model described in [16] to generate the on-state current (I_{on}) compared against the data from [20] in Fig. 2a. From the slope of I_{on} vs. $1/d$, $E_{co} = 32$ meV is extracted; (ii) Eq. (2) is fitted to the R_c vs. L_c data from [23] in Fig. 2b, where $\lambda_c = 380$ nm and $g_r = 2$ μS/nm are extracted (same as the result in [25]) for $d = 1.2$ nm with Pd as the contact metal; (iii) substituting $\phi_m = 5.1$ eV for Pd, $\phi_b = 4.7$ eV for intrinsic CNTs, $E_g = 0.71$ eV for $d = 1.2$ nm, and $g_r = 2$ μS/nm into Eq. (3a) and (3b), $g_{co} = 0.49$ μS/nm is obtained. In Fig. 2a, we observe that the I_{on} drops even faster as $1/d$ increases beyond a certain point (for the Al contact as example, the I_{on} decreases more rapidly as $1/d > 1$ nm2). This “accelerated downturn” can be explained as follows: when $1/d$ is small and g_r is large, $L_T < L_c$ in (2) and $\coth(L_c/L_T) \approx 1$. Therefore, R_c increases with $(1/g_r)^{1/2} \propto \exp[1/(2d)]$; as $1/d$ increases and g_r becomes small, $L_T >> L_c$.

![Diagram](image-url)
and $\coth(L_c/L_T) \approx L_T/L_c$, and R_c increases with $1/g_c \propto \exp(1/d)$. This accelerated downturn is observed in both the experimental data and the model (2) and (3), which strengthens the validity of the R_c model. As shown in Fig. 3, in the region where L_c and/or d are small, R_c increases drastically, which severely degrades the drive current and can cause large variation in the presence of variations in L_c and d. The impact of L_c and d on the CNFET performance is discussed in Section IV.

The other component R_{ext} is derived from the one-dimensional (1D) Landauer formula [24]:

$$R_{ext} = \frac{1}{G} - R_0$$ \hspace{1cm} (4a)

$$G = \frac{4q^2}{h} \int_{E_F}^{\infty} \left(\frac{\lambda_i(E)}{L_{ext} + \lambda_i(E)} \right) \frac{\partial f(E, E_{F})}{\partial E} dE$$ \hspace{1cm} (4b)

$$n_{sd} = \int_{E_F}^{\infty} g(E) f(E, E_{F}) dE$$ \hspace{1cm} (4c)

where G is the CNT conductance at low fields, L_{ext} is the length of the S/D extensions (see Fig. 1), E_F is the conduction band edge, E_F is the Fermi level, E is the energy of free electrons referenced to E_F, f is the Fermi-Dirac distribution function, $g(E)$ is the CNT density of states (DOS), n_{sd} is the doping density in the S/D extensions, and λ_i is the carrier MFP in CNTs representing the aggregate effect of optical phonon and acoustic phonon scattering as introduced in [27]. R_0 is subtracted from $1/G$ in (4a) because G is the total conductance including the contact resistance, which has already been considered in the R_c model. Because λ_i has a complex expression [27], Eq. (4b) cannot be integrated analytically. Therefore, an empirical expression of R_{ext} is employed here:

$$R_{ext} = R_{ext0} - \frac{L_{ext}}{d_{ext} n_{sd}^\alpha}$$ \hspace{1cm} (5)

where R_{ext0}, α_d, and α_n are the empirical fitting parameters. The form of (5) is inspired by the observations that: (i) for heavily doped CNTs, the carrier transport becomes more diffusive and thus $R_{ext} \propto L_{ext}/n_{sd}$ in a manner analogous to the Drude model; (ii) λ_i is proportional to d according to [27]. Eq. (5) is then fitted to the numerical results given by (4) as shown in Fig. 4, where $R_{ext0} = 35 \Omega$, $\alpha_d = 2$, and $\alpha_n = 2.1$ are extracted. Eq. (5) agrees well with (4) at low n_{sd} region but underestimates R_{ext} at high n_{sd} region. However, when n_{sd} is large, $R_{ext} \ll R_c$ so the discrepancy is negligible. The dashed lines in Fig. 4 represent the results when λ_i is a constant instead of being dependent on energy and CNT diameter. In such a case, R_{ext} exhibits less sensitivity to d and higher sensitivity to n_{sd}.

III. TUNNELING LEAKAGE CURRENT

According to the 2013 ITRS projections [17], the L_d of MOSFETs should eventually scale below 10 nm. At such a small L_d, quantum mechanical tunneling from the source to drain becomes appreciable. Several simulation works predicted that at $L_d \approx 5-10$ nm, I_{SDT} will become prominent and severely degrade the subthreshold swing (SS) of MOSFETs [2,13-14]. Nonetheless, observation of SDT has been reported only in a few experiments, e.g. a Si MOSFET with $L_d = 8$ nm, using temperature-dependent measurements [28]. Whether the ultimate scaling limit of L_d is set by I_{SDT} is still not clear because of the lack of experimental evidence, and because the answer also depends on the precise geometry of the FET. However, to fully exploit the excellent electrostatic control of the ultra-thin CNTs, the L_d of CNFETs is likely to be aggressively scaled down until the leakage current becomes intolerable. It is thus important to develop a model that takes into account the impact of I_{SDT} in the sub-10-nm technology nodes.

Two tunneling mechanisms are considered here: SDT and band-to-band tunneling (BTBT) at the drain side. The SDT can be further divided into two parts: the intra-band SDT (intra-SDT), the tunneling from conduction band (CB) to CB, and the inter-band SDT (inter-SDT), the tunneling from CB to valence band (VB) to CB. The BTBT is the tunneling from source VB to drain CB, as illustrated in Fig. 5. While n-type FETs are used as examples throughout this paper, the model can be easily applied to p-FETs by properly changing the polarity of the terminal voltages, due to the symmetry of the CNT CB and VB. All tunneling currents are computed by the 1D Landauer formula [24]:

$$I = \frac{4q}{h} \int (E) \left(f(E, E_{F}) - f(E, E_{F}) \right) dE$$ \hspace{1cm} (6)
where T_e is the tunneling probability, and E_{ir} and E_{id} are Fermi levels at the source and the drain, respectively. T_e is calculated by the Wentzel–Kramers–Brillouin (WKB) approximation [29]:

$$ T_e(E) = \exp\left(-2\int_{x_i}^{x_o} \kappa(x) \, dx \right) $$ \hspace{1cm} (7)

where κ is the imaginary wavenumber in CNTs, $v_F \approx 10^6 \text{ m/s}$ is the Fermi velocity, x_i and x_o are the positions where the electrons “tunnel” in and out the energy barrier, respectively (see Fig. 5). Eq. (7) is then recast as following for the convenience of calculations:

$$ T_e(E) = \exp\left[-\frac{2\pi E}{\hbar v_F} t_s(E) \right] $$ \hspace{1cm} (8)

To calculate T_e, analytical models for $E_e(x)$ are first discussed.

The circles in Fig. 6 are the E_e profile calculated by the numerical simulation based on the NEGF quantum transport [30], which simulates a CNFET with a cylindrical gate-all-around (GAA) device structure and heavily doped S/D extensions. Two features are observed in the simulated E_e profile: (i) a curvy profile around the top of $E_e(x)$ and (ii) gradual tails extending into the S/D extensions. Three different analytical models of $E_e(x)$ are examined here: (i) a rectangular profile (named RECT in Fig. 6); (ii) two connected exponential functions to model the curvy top of $E_e(x)$ (named EXPS in Fig. 6):

$$ E_e(x) = \begin{cases}
E_{ir} + v_F x, & -L_d / 2 < x < 0 \\
E_{dd} + v_F x, & 0 < x < L_d / 2 + L_d
\end{cases} $$ \hspace{1cm} (9)

where u’s and v’s are fitting coefficients, λ is the electrostatic length scale discussed in [16], and L_d is an empirical parameter functioning like an extension of the L_d that captures the finite Debye length and the gate fringing field (see Fig. 6); (iii) a piecewise function to describe both the curvy top and the tails of $E_e(x)$ (named PIECE in Fig. 6):

$$ E_e(x) = \begin{cases}
E_{ir} + b e^{-(x+L_d)/\lambda_d} + c, & x < -L_d / 2 \\
E_{dd} + a e^{-x/\lambda} + b e^{-(x-L_d)/\lambda_d} - L_d / 2, & L_d / 2 < x < L_d / 2 \\
E_{dd} + b e^{-(x-L_d)/\lambda_d} + c, & x > L_d / 2
\end{cases} $$ \hspace{1cm} (10)

where the analytical expressions of T_e in (8) are detailed in [31, Eq. (28)-(36)]. I_{SDT} is then calculated by (6) numerically.

I_{SDT} calculated by the numerical simulation [30] is compared against the three different $E_e(x)$ models individually in Fig. 7a-c. As shown in Fig. 7a, the RECT model does not fit the data well in the high V_{gs} region (i.e. near-threshold), because it fails to capture the characteristic of the curvy top of E_e, resulting in an underestimate of I_{SDT}; in the low V_{gs} region (i.e. deep subthreshold region), the RECT model overestimates I_{SDT} due to the disregard of the tails of the E_e profile; in Fig. 7b, the EXPS model fits the data well at high V_{gs} but overestimates I_{SDT} at low V_{gs} because it also fails to capture the tails; finally in Fig. 7c, the PIECE model gives the best fitting result because it considers both the curvy top and the tails. Although the use of a piecewise function in (10) could potentially result in convergence issues when implemented in Verilog-A [32], because when a large-scale circuit is simulated in an environment like SPICE, extraordinarily large biases may be applied on the device terminals, which can potentially lead to discontinuities in (10). As a result, the EXPS model will be used to calculate I_{SDT} in the following analysis. Although the EXPS model overestimates I_{SDT} in the deep subthreshold region, it can still give accurate results in the subthreshold region and warn the user of an imminent significant impact of I_{SDT} when the L_d becomes too short. Besides, the EXPS model is more computationally efficient.

As shown in [33], the presence of I_{SDT} significantly degrades the SS and increases the leakage power of CNFETs. To explore potential ways to lower I_{SDT}, Figs. 8a and 8b illustrate how I_{SDT} is affected by d, n_d, and the dielectric constant of the sidewall spacer k_{spa} (see Fig. 1): (i) as shown in Fig. 8a, I_{SDT} increases exponentially with d, because k in (7) is proportional to E_e. By utilizing small-diameter CNTs, tunneling leakage can be effectively mitigated, but it also leads to lower drive current due to larger R_e and lower carrier mobility and velocity [16]; (ii) a decrease of n_d from 1 nm$^{-1}$ to 0.6 nm$^{-1}$ can reduce I_{SDT} by a factor of 3.5, because as n_d decreases, the CB edge at the source is raised relative to the Fermi level, and thus less carriers are available to tunnel from the source through the barrier to the drain (see the Fig. 8a inset). However, lower n_d gives higher R_{ext}; (iii) as shown in the Fig. 8b inset, higher k_{spa} results in stronger gate-to-extension fringe field and leads to a wider energy barrier. To model the effect of the fringe field caused by
different k_{spa}’s, L_o in (9) and implicitly in (10) is empirically related to k_{spa} and the gate oxide thickness t_{ox}:

$$L_o = (0.0263 k_{spa} + 0.056) t_{ox} \quad (11)$$

As shown in Fig. 8b, increasing k_{spa} from 2 to 16 can reduce I_{SDT} by a factor of 12 for $L_g = 10$ nm and $d = 1$ nm. However, increasing k_{spa} also causes larger parasitic capacitances and degrades the circuit speed [34]. These results indicate that lowering I_{SDT} may degrade the speed performance (i.e. increase delay), a manifestation of the energy-delay trade-offs. Note that (11) is a first-order approximation and the empirical coefficients are determined by fitting the I_{SDT} model to the numerical simulation based on a GAA cylindrical structure [30] for different k_{spa} and t_{ox}. While (11) could be changed for different device geometries, the trend should remain the same.

The BTBT current (I_{BTBT}) is modeled in a similar approach to I_{SDT}, except that the E_c is modeled differently:

$$E_c(x) = u e^{-\lambda_{BTBT} x} \quad (12)$$

where u and λ_{BTBT} are fitting parameters. Eq. (12) is employed to model the decaying E_c profile at the gate-drain junction (see Fig. 5). Substituting (12) into (8) gives:

$$t_b(E) = \int_0^\infty \sqrt{1 - \left(2 u e^{-\lambda_{BTBT} x} - E \right) / E_c(x)} \, dx \quad (13)$$

$$x_i = \lambda_{BTBT} \ln \left(\frac{E + E_c(x)}{u} \right), \quad x_o = \lambda_{BTBT} \ln \left(\frac{E}{u} \right)$$

By changing variables, a closed-form expression of t_b is obtained:

$$t_b = \lambda_{BTBT} \pi \left(\zeta + \sqrt{\zeta^2 - 1} \right) \quad (14)$$

where $\zeta = -2E/E_g - 1$ (see [31] for detailed derivation). I_{BTBT} is then obtained by integrating (6) numerically. The modeled I_{BTBT} is compared against the numerical simulation in Fig. 9a and 9b. Similar to the discussion of the effect of gate-to-drain fringe

fields when modeling I_{SDT}. I_{BTBT} is also a function of k_{spa}: The higher the k_{spa}, the stronger the fringe fields, the more gradual the E_c profile at the gate-drain junction, and the smaller the I_{BTBT}. Empirically, $\lambda_{BTBT} (nm) = 0.092 k_{spa} + 2.13$ is determined by fitting the I_{BTBT} model to the numerical simulation result. Note that phonon-assisted and trap-assisted tunneling [35] are not considered in this model, so $I_{BTBT} = 0$ when $V_{ds} < E_g$. In addition, since the tunneling model presented in this paper are calibrated to the NEGF-based numerical simulation with a relatively simple GAA cylindrical device structure [30] assuming ballistic transport, the model aims to provide a trend instead of accurate results.

IV. CNFET PERFORMANCE ASSESSMENT

The intrinsic elements of the VS-CNFT model introduced in [16] is then combined with the extrinsic elements described in Sections II and III to assess the CNFET design space and performance. A representative I_d vs. V_{gs} curve given by the complete VS-CNFT model separately identifying the current components—thermionic emission, direct SDT, and BTBT currents—is shown in Fig. 10. It can be seen that tunneling currents can dominate over the thermionic emission current in the subthreshold region.

In this section, we demonstrate the capability of the VS-CNFT model by optimizing L_g, L_c, L_{ext}, and CNT diameter to minimize the CNFET gate delay (t_{gate}) and estimating the requirement for CNT density $p_{CNT} \equiv 1/s$, where s is the spacing between CNTs. See Fig. 1) to meet the ITRS targets of drive current. For advanced CMOS technology, the dimensional scaling is no longer simply the scaling of L_g but a multi-variable optimization that targets a technology pacing objective. Fig. 11 shows the dimensional scaling trend of major foundries as well as the projections down to the so-called 5-nm technology node by linear extrapolation. While foundries tend to scale the metal-
1 pitch (L_{Mi}) and the contacted gate pitch (L_{pitch}, illustrated in Fig. 1) at different paces, the "geometric" pitch $L_{GP} \equiv (L_{Mi}/L_{pitch})^{1/2}$ scales at a relatively consistent pace. Here we use this L_{GP} to pace the advancement of logic technology. The CNFET performance is evaluated at the 5-nm node corresponding to $L_{GP} = 28.1$ nm, $L_{Mi} = 25.2$ nm, and $L_{pitch} = 31.1$ nm; the “2023” node of the 2013 ITRS projections [17] is used as a reference point, which also predicts L_{Mi} will be scaled down to 25.2 nm in 2023 for high performance logic. The corresponding ITRS parameters—supply voltage $V_{dd} = 0.71$ V, and EOT = 0.51 nm—are used as the inputs to the VS-CNFET model. Furthermore, a GAA device structure is assumed (see Fig. 1) in the following analysis.

Under the constraint of a fixed L_{pitch}, trade-offs exist between L_g, L_c, and L_{ext} at the device-level: (i) scaling down L_g helps to improve the device speed because of lower intrinsic capacitance and higher drive current, but also increases the off-state current I_{off}, defined as the I_d at $V_{gs} = 0$ and $V_{ds} = V_{dd}$ and thus the static power. Hence there exists an optimal L_g to balance the speed and power consumption; (ii) L_c is preferred to be as long as possible in order to lower the R_c (ignoring the possible increase in the parasitic capacitance at the circuit-level); (iii) scaling down L_{ext} helps to reduce R_{ext} but drastically increase the parasitic capacitance (C_{par}). For CNFETs, R_{ext} is negligible compared to R_c in general, so L_{ext} is preferred to be large.

In Fig. 12, L_g, L_c, and L_{ext} are optimized under the constraints of $L_{pitch} = 31$ nm and $I_{off} = 100$ nA/μm (by adjusting the flat-band voltage V_{fb}) to minimize $\tau_{gate} = (L_gC_{inv} + C_{par})V_{dd}/I_{on}$, where C_{par} is calculated by the analytical models of [36], in which the gate-to-extension fringe capacitance (C_{ext}) and gate-to-contact capacitances (C_{g_c}) are considered (see Fig. 1). $\rho_{c_t} = 100$ CNTs/μm is assumed. The optimal design is arrived at $L_g = 11.7$ nm, $L_c = 12.9$ nm, and $L_{ext} = 3.2$ nm. Because the optimization goal is to minimize τ_{gate} and R_c is the major limiter of the drive current, L_g is scaled down until I_{off} becomes intolerable and L_{ext} is scaled down until C_{par} becomes too large, in order to save space for L_c. It is worthwhile noting that while the optimal design may vary as different parameters (e.g. CNT diameter) are used, the shape of the contour in Fig. 12 remains the same.

It appears in Fig. 12 here that L_c cannot scale below 11 nm in order to keep $I_{off} > 100$ nA/μm, mainly due to SDT. Since SDT highly depends on CNT diameter, the impact of CNT diameter is studied in Fig. 13: Fig. 13a shows I_{off} vs. I_d for different diameters. A minimum I_{off} for each d is observed by sweeping V_{fb}, as V_{fb} starts increasing, I_{off} decreases exponentially because both thermionic emission and intra-SDT currents decrease; as V_{fb} further increases beyond a certain point, inter-SDT starts to increase and becomes dominant, so I_{off} increases. The larger the diameter, the higher the I_{off}. In addition, for small-diameter CNTs, reducing V_{fb} does not improve I_{off} effectively, because the R_c is so large that the I_{off} is dominated by the resistance of contacts rather than the channel. In Fig. 13b, we co-optimize CNT diameter, L_g, L_c, and L_{ext} to minimize τ_{gate} under different constraints of I_{off}. Each point along the curves has different optimized L_g, L_c, and L_{ext}. The optimal diameter increases as the constraint of I_{off} increases, indicating that large-diameter CNTs are suitable for high performance applications while small-diameter CNTs are suitable for low power applications.
to be a challenge. Variations in CNT pitch can degrade CNFET performance and reduce circuit yield. The issue of CNT variations has been discussed in [10] and is out of the scope of this paper.

To estimate the \(\rho_{\text{cnt}} \) required for CNFETs to deliver enough drive current (assuming no variations), Fig. 14 shows \(I_{\text{on}} \) vs. \(\rho_{\text{cnt}} \) with a fixed \(I_{\text{off}} = 100 \text{ nA/\mu m} \); \(d = 1.2 \text{ nm} \) is used for the analysis because it is the diameter measured in the experiments that the model is calibrated to [16]; \(L = 11.7 \text{ nm} \) and \(L_c = 12.9 \text{ nm} \) are used according to the optimization result from Fig. 12. At \(L_c = 12.9 \text{ nm}, 2R_c \approx 70 \text{ k\Omega per CNT, and } \rho_{\text{cnt}} \approx 180 \text{ CNTs/\mu m} \) is needed in order to meet the 2013 ITRS target of \(I_{\text{on}} = 1.33 \text{ mA/\mu m} \) (corresponding to \(L_{\text{M1}} = 25.2 \text{ nm} \)); whereas when \(R_c \) can be reduced to zero, the required \(\rho_{\text{cnt}} \) can be lowered to 40 CNTs/\mu m.

V. DISCUSSION

The analysis in Section IV exhibits the potential of scalability of CNFETs down to \(L_{\text{pitch}} = 31 \text{ nm} \) and capability of delivering high drive current with on/off ratio > 10³. It is important to review the assumptions made in the analysis: (i) the interface between the gate dielectric and the CNTs are assumed to be perfect, i.e. hysteresis of the I-V characteristics [8] is negligible, and the short-channel effect (e.g. SS degradation and DIBL) is determined purely by electrostatics. Recent progress in CNT-dielectric interface includes the use of \(\text{Y}_2\text{O}_3 \) and \(\text{La}_2\text{O}_3 \) as gate dielectrics to reduce the interface traps [40-41] and interface passivation to alleviate the hysteresis [8,42]. (ii) The CNTs are assumed to be perfectly aligned and equally spaced. The imperfect alignment and variation in the CNT spacing result in delay variations and potential functional failures. Process techniques to achieve good CNT alignment have been improved over the years [43]; design techniques can be employed to overcome these imperfections at modest cost of area and energy consumption [10]. Nonetheless, improvement in the material is still strongly desired. (iii) The CNTs in a single device are assumed to be identical in diameter, carrier mobility and velocity. However, Cao et al. measured the distribution of CNT diameter and mobility [9], showing that the variations are not negligible. As these imperfections are considered, the projections described in Section IV need to be adjusted, but the general conclusion should remain unchanged (e.g. trade-off between contact resistance and tunneling currents due to the selection of CNT diameter).

Since CNT diameter is shown to have great impact on \(R_c, ISDT \), and thus the CNFET performance, we next revisit the model and discuss its validity. The dependence of \(R_c \) on \(d \) is characterized in (3) by \(E_{\text{dd}} \), which can be viewed (loosely) as the inverse of the Schottky barrier width at the metal-CNT contacts. Smaller \(E_{\text{dd}} \) leads to higher sensitivity of \(R_c \) to CNT diameter. In this paper, \(E_{\text{dd}} = 32 \text{ meV} \) is extracted from [20]. However, detailed experimental studies on the dependence of \(R_c \) on \(d \) are still lacking, and whether small-diameter CNTs will lead to such a large \(R_c \) (see Fig. 3) that the drive current of CNFETs becomes too small for practical applications needs to be verified by more careful investigation. On the other hand, though large-diameter CNTs can give lower \(R_c \), it also causes high tunneling leakage current. As shown in Fig. 8, \(ISDT \) increases drastically as \(d \) increases. The model of tunneling currents developed in Section III is calibrated to the numerical simulation [30]. However, to date, only a few experimental works have observed \(ISDT \) in Si-MOSFET with \(L_g = 8 \text{ nm} \) [28], and experimental observation of \(ISDT \) in CNFETs has not been reported yet. For a CNFET with \(L_g = 9 \text{ nm} \) and \(d \approx 1.3 \text{ nm} \), as reported in [3], \(ISDT \) is expected to be appreciable, but has not yet been clearly observed. One manifestation of \(ISDT \) is the degradation of inverse subthreshold slope (SS). Temperature-dependent measurement of SS can be helpful to identify the existence of \(ISDT \); if \(ISDT \) is not prominent, the SS will decrease as the temperature goes down; if \(ISDT \) is significant, the SS will not decrease but remain relatively unchanged as the temperature goes down, as described in [28]. Since large-diameter CNTs can provide higher drive current, research on whether the tunneling current in scaled CNFETs is tolerable or not is of crucial importance, and temperature-dependent measurement is suggested to be an effective means to identify the existence of \(ISDT \).

VI. CONCLUSION

We present data-calibrated analytical models for metal-CNT contact resistance, direct source-to-drain and band-to-band tunneling leakage currents in CNFETs, which are integrated with the intrinsic model elements to arrive at a complete CNFET model for performance assessment. We predict that a density of 180 CNTs/\mu m is required to meet the ITRS targets of off-state and on-state currents at the 5-nm technology node corresponding to 25.2 nm metal-1 pitch and 31 nm contacted gate pitch assuming no variations; in contrast, a density of 40 CNTs/\mu m would be enough if the parasitic contact resistance can be eliminated. Experimental demonstrations of >100 CNTs/\mu m are available today [38], but whether these are sufficient for highly scaled CNFETs remains to be seen, depending on \(R_c \) optimization and diameter selection, as discussed in this study. In-depth study of \(R_c \) and its dependence on \(d \) is highly desirable in order to identify further device design points for CNFET technology in the sub-10-nm nodes.

ACKNOWLEDGMENT

The authors would like to thank Prof. L. Wei (Waterloo), Prof. S. Rakheja (NYU), G. Hills (Stanford), Prof. S. Mitra...
REFERENCES

[1] H.-S. P. Wong, S. Mitra, D. Akinwande, C. Beasley, C. Yang, H. Y. Chen, X. Chen, G. Close, J. Deng, A. Hazeghi, J. Liang, A. Lin, L. S. Liyanage, J. Luo, J. Parker, N. Patil, M. Shulaker, H. Wei, L. Wei and J. Zhang, “Carbon nanotube electronics—Materials, devices, circuits, design, modeling, and performance projection,” IEDM Tech. Dig., pp. 23.1.1-23.1.4, 2011.

[2] M. Luisier, M. Lundstrom, D. Antoniadis, and J. Bokor, “Ultimate device scaling: intrinsic performance comparisons of carbon-based, InGaAs, and Si fi eld-effect transistors for 5 nm gate length,” IEDM Tech. Dig., pp. 11-14, 2011.

[3] A. Franklin, M. Luisier, S.-J. Han, G. Tulevsiki, C. Breslin, L. Gignac, M. Lundstrom and W. Haensch, “Sub-10 nm Carbon Nanotube Transistor,” Nano Lett., vol. 12, no. 2, pp. 758-762, Feb. 2012.

[4] A. Javey, J. Guo, W. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon nanotube fi eld-effect transistors,” Nature, vol. 424, pp. 654-657, Aug. 2003.

[5] D. Mann, A. Javey, J. Kong, Q. Wang, and H. Dai, “Ballistic Transport in Metallic Nanotubes with Reliable Pt Ohmic Contacts,” Nano Lett., vol. 3, no. 11, pp. 1541-1544, Oct. 2003.

[6] G. Fiori, G. Iannaccone, and G. Klimeck, “A Three-Dimensional Simulation Study of the Performance of Carbon Nanotube Field-Effect Transistors With Doped Reservoirs and Realistic Geometry,” IEEE Trans. Electron Devices, vol. 53, no. 8, pp. 1782-1788, Aug. 2006.

[7] G. Tulevsiki, A. Franklin, and A. Avci, “High Purity Isolation and Quantification of Semiconducting Carbon Nanotubes via Column Chromatography,” ACS Nano, vol. 7, no. 4, pp. 2971-2976, Mar. 2013.

[8] A. Franklin, G. Tulevsiki, S.-J. Han, D. Shahjirdi, Q. Cao, H.-Y. Chen, H.-S. P. Wong and W. Haensch, “Variability in Carbon Nanotube Transistors: Improving Device-to-Device Consistency,” ACS Nano, vol. 6, no. 2, pp. 1109-1115, Jan. 2012.

[9] Q. Cao, S.-J. Han, G. Tulevsiki, A. Franklin, and W. Haensch, “Evaluation of Impurity Effect Mobility and Contact Resistance of Transistors That Use Solution-Processed Single-Walled Carbon Nanotubes”, ACS Nano, vol. 6, no. 7, pp. 6471-6477, 2012.

[10] J. Zhang, A. Lin, N. Patil, H. Wei, L. Wei, H.-S. P. Wong and S. Mitra, “Robust Digital VLSI using Carbon Nanotubes,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 31, no. 4, pp. 453-471, Apr. 2012.

[11] F. Léonard and A. Talin, “Electrical contacts to one- and two-dimensional nanomaterials,” Nature Nanotechnol., vol. 6, pp. 773-784, Dec. 2011.

[12] J. Svensson and E. B. Campbell, “Schottky barriers in carbon nanotube-metal contacts,” J. Appl. Phys., vol. 110, pp. 111101, 2011.

[13] J. Wang, and M. Lundstrom, “Does source-to-drain tunneling limit the ultimate scaling of MOSFET’s?” IEDM Tech. Dig., pp. 29.2.1-29.2.4, 2002.

[14] L. Chang and C. Hu, “MOSFET scaling into the 10 nm regime,” in Nanoelectronics Workshop, pp. 351-355, 2000.

[15] Y. Perebeinos, J. Tersoff, and W. Haensch, “Schottky-to-Ohmic Crossover in Carbon Nanotube Transistor Contacts”, Phys. Rev. Lett., vol. 111, pp. 236802, 2013.

[16] C.-S. Lee, E. Pop, A. Franklin, W. Haensch, and H.-S. P. Wong, “A Compact Virtual-Source Model for Carbon Nanotube Field-Effect Transistors in the Sub-10 nm Regime—Part I. Intrinsic Elements,” IEEE Trans. Electron Devices, 2015 (submitted).

[17] International Technology Roadmap for Semiconductors, 2013. http://www.itrs.net/Links/2013ITRS/Home2013.htm

[18] F. Léonard and J. Tersoff, “Role of Fermi-Level Pinning in Nanotube Schottky Diodes,” Phys. Rev. Lett., vol. 84, no. 20, pp.4693-4696, 2000.

[19] J. Mintmire and C. White, “Universal Density of States for Carbon Nanotubes,” Phys. Rev. Lett., vol. 81, pp. 2506-2509, Sep. 1998.

[20] Z. Chen, J. Appenzeller, J. Knoch, Y.-M. Lin, and P. Avouris, “The Role of Metal-Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors,” Nano Lett., vol. 5, no. 7, pp.1497-1502, 2005.