Separation Axioms in N_{nc} Topological Spaces via N_{nc} e-open Sets

V. Sudha 1, A. Vadivel 2 and S. Tamilselvan 3

1 Department of Mathematics, Periyar Government Arts College, Cuddalore, Tamil Nadu-607 001, India
2 Department of Mathematics, Government Arts College (Autonomous), Karur, Tamil Nadu - 639 005, India and
3 Mathematics Section (FEAT), Annamalai University, Annamalainagar, Tamil Nadu-608 002, India

E-mail: 1 sudhasowjimath@gmail.com, 2 avmaths@gmail.com and 3 tamil-au@yahoo.com

Abstract. The main idea of this research is to define a new neutrosophic crisp points in neutrosophic crisp topological space namely $(N_{nc}P_N)$, the concept of N_{nc} limit point was defined using $(N_{nc}P_N)$, with some of its properties, the separation axioms $(N_{nc}e\tau_i$-space $(i = 0, 1, 2)$ were constructed in neutrosophic crisp topological space using $(N_{nc}P_N)$ and examine the relationship between them in details.

Keywords and phrases: Keywords: N_{nc} topological spaces, N_{nc} limit point, separation axioms.

1. Introduction

Smarandache’s neutrosophic system have wide range of real time applications for the fields of Computer Science, Information Systems, Applied Mathematics, Artificial Intelligence, Mechanics, decision making, Medicine, Electrical & Electronic, and Management Science etc [1, 2, 3, 4, 20, 21]. Topology is a classical subject, as a generalization topological spaces many types of topological spaces introduced over the year. Smarandache [16] defined the Neutrosophic set on three component Neutrosophic sets (T-Truth, F-Falsehood, I-Indeterminacy). Neutrosophic topological spaces (nts’s) introduced by Salama and Alblowi [11]. Lellies Thivagar et al. [9] was given the geometric existence of N topology, which is a non-empty set equipped with N arbitrary topologies. Lellis Thivagar et al. [10] introduced the notion of N_{nc}-open (closed) sets and N_{nc} topological spaces. Al-Hamido [5] explore the possibility of expanding the concept of neutrosophic crisp topological spaces into N-neutrosophic crisp topological spaces and investigate some of their basic properties. Several generalized forms of strongly open and strongly closed functions in topological spaces have been introduced and investigated over the course of years. Certainly, it is hard to say whether one form is more or less important than another. Functions and of course strongly open and strongly closed functions stand among the most important and most researched points in the whole of mathematical science. Various interesting problems arise when one considers openness and closeness. Its importance is significant in various areas of mathematics and related sciences. In 2008, Erdal Ekici [7] introduced a new class of generalized open sets called e-open sets and studied several fundamental and
interesting properties of \(e\)-open sets and introduced a new class of continuous functions called \(e\)-continuous functions into the field of topology. In 2020, Vadivel and co-authors [18, 19] the concept of \(N\)-neutrosophic \(\delta\)-open, \(N\)-neutrosophic \(\delta\)-semiopen, \(N\)-neutrosophic \(\delta\)-preopen and \(N\)-neutrosophic \(e\)-open sets are introduced.

Salama et al. [12, 14] put some basic concepts of the neutrosophic crisp set and their operations, and because of their wide applications and their grate flexibility to solve the problem, we used these concepts to define new types of neutrosophic points, that we called neutrosophic crisp points (briefly, \(ncpt\)’s). Finally, we used these points (\(ncpt\)’s) to define the concept of neutrosophic crisp \(e\) limit point, with some of its properties and construct the separation axioms (\(N_{nc}\epsilon_T\) space, \(i = 0, 1, 2\)) in neutrosophic crisp topological and examine the relationship between them in details.

2. Preliminaries

Salama and Smarandache [15] presented the idea of a neutrosophic crisp set in a set \(U\) and defined the inclusion between two neutrosophic crisp sets, the intersection (union) of two neutrosophic crisp sets, the complement of a neutrosophic crisp set, neutrosophic crisp empty (resp., whole) set again and discover a few properties.

Definition 2.1 Let \(U\) be a non-empty set. Then \(H\) is called a neutrosophic crisp set (in short, \(ncs\)) in \(U\) if \(H\) has the form \(H = (H_1, H_2, H_3)\), where \(H_1, H_2, H_3\) are subsets of \(U\).

The neutrosophic crisp empty (resp., whole) set, denoted by \(\phi_n\) (resp., \(U_n\)) is an \(ncs\) in \(U\) defined by \(\phi_n = (\phi, \phi, U)\) (resp. \(U_n = (U, U, \phi)\)). We will denote the set of all \(ncs\)'s in \(U\) as \(ncS(U)\). In particular, Salama and Smarandache [13] classified a neutrosophic crisp set as the followings.

A neutrosophic crisp set \(H = (H_1, H_2, H_3)\) in \(U\) is called a neutrosophic crisp set of Type 1 (resp. 2 & 3) (in short, \(ncs\)-Type 1 (resp. 2 & 3)), if it satisfies \(H_1 \cap H_3 = H_2 \cap H_3 = H_3 \cap H_1 = \phi\) (resp. \(H_1 \cap H_2 = H_2 \cap H_3 = H_3 \cap H_1 = \phi\) and \(H_1 \cup H_2 \cup H_3 = U\) & \(H_1 \cap H_2 \cap H_3 = \phi\) and \(H_1 \cup H_2 \cup H_3 = U\)). \(ncS_1(U)\) (\(ncS_2(U)\) and \(ncS_3(U)\)) means set of all \(ncs\) Type 1 (resp. 2 and 3).

Definition 2.2 Let \(H = (H_1, H_2, H_3), M = (M_1, M_2, M_3) \in ncS(U)\). Then \(H\) is said to be contained in (resp. equal to) \(M\), denoted by \(H \subseteq M\) (resp. \(H = M\)), if \(H_1 \subseteq M_1, H_2 \subseteq M_2\) and \(H_3 \subseteq M_3\) (resp. \(H \subseteq M\) and \(M \subseteq H\)); \(H^c = (H_3, H_2, H_1)\); \(H \cap M = (H_1 \cap M_1, H_2 \cap M_2, H_3 \cap M_3)\); \(H \cup M = (H_1 \cup M_1, H_2 \cup M_2, H_3 \cup M_3)\). Let \((U_j)_{j \in J} \subseteq ncS(U)\), where \(U_j = (H_{j_1}, H_{j_2}, H_{j_3})\). Then \(\bigcap_{j \in J} U_j\) (simply \(\bigcap U_j\)) = \((\bigcap H_{j_1}, \bigcap H_{j_2}, \bigcup H_{j_3})\); \(\bigcup_{j \in J} U_j\) (simply \(\bigcup U_j\)) = \((\bigcup H_{j_1}, \bigcup H_{j_2}, \bigcap H_{j_3})\).

The following are the quick consequence of Definition 2.2.

Proposition 2.1 [8] Let \(L, M, O \in ncS(U)\). Then

(i) \(\phi_n \subseteq L \subseteq U_n\),

(ii) if \(L \subseteq M\) and \(M \subseteq O\), then \(L \subseteq O\),

(iii) \(L \cap M \subseteq L\) and \(L \cap M \subseteq M\),

(iv) \(L \subseteq L \cup M\) and \(M \subseteq L \cup M\),

(v) \(L \subseteq M\) iff \(L \cap M = L\),

(vi) \(L \subseteq M\) iff \(L \cup M = M\).

Likewise the following are the quick consequence of Definition 2.2.

Proposition 2.2 [8] Let \(L, M, O \in ncS(U)\). Then
Remark 2.1
(a) \((DeMorgan’s laws)\) :
\[L \cup (M \cap O) = (L \cup M) \cap O,\]
\[L \cap (M \cup O) = (L \cap M) \cup O,\]
(b) \((Absorption laws)\) :
\[L \cup (L \cap M) = L,\]
\[L \cap (L \cup M) = L.\]
(c) In general, \(L \cup L^c = U,\) \(L \cap L^c = \phi.\)

Proposition 2.3 \[8\] Let \(L \in ncS(U)\) and let \((L_j)_{j \in J} \subseteq ncS(U).\) Then
(i) \((\bigcap L_j)^c = \bigcup L_j^c, (\bigcup L_j)^c = \bigcap L_j^c,\)
(ii) \(L \cap (\bigcup L_j) = \bigcup (L \cap L_j), L \cup (\bigcap L_j) = \bigcap (L \cup L_j).\)

Definition 2.3 \[6\] Let \(U\) be a non-empty set and the \(nc\) sets \(H \& M\) in the form \(H = \langle H_1, H_2, H_3 \rangle, M = \langle M_1, M_2, M_3 \rangle\) then the additional new ways for the intersection, union and inclusion between \(H \& M\) are
\(H \cap M = (H_1 \cap M_1, H_2 \cap M_2, H_3 \cap M_3)\)
\(H \cup M = (H_1 \cup M_1, H_2 \cup M_2, H_3 \cup M_3)\)
\(H \subseteq M \iff H_1 \subseteq M_1, H_2 \subseteq M_2 \text{ and } H_3 \subseteq M_3.\)

Definition 2.4 \[6\] For all \(u, v, w\) belonging to a non-empty set \(U.\) Then the \(nc\) points related to \(u, v, w\) are defined as follows:
(i) \(u_{P_1} = \langle \{ u \}, \phi, \phi \rangle\), is called a \(ncpt\) \((ncpt_{P_1})\) in \(U.\)
(ii) \(v_{P_2} = \langle \phi, \{ v \}, \phi \rangle\), is called a \(ncpt\) \((ncpt_{P_2})\) in \(U.\)
(iii) \(w_{P_3} = \langle \phi, \phi, \{ w \} \rangle\), is called a \(ncpt\) \((ncpt_{P_3})\) in \(U.\)

The set of all \(nc\) points \((ncpt_{P_1}, ncpt_{P_2}, ncpt_{P_3})\) is denoted by \(ncPt.\)

Definition 2.5 \[6\] Let \(U\) be a non-empty set and \(u, v, w \in U.\) Then the \(ncpt:\)
(i) \(u_{P_1}\) is belonging to the \(nc\) set \(L = \langle L_1, L_2, L_3 \rangle\), denoted by \(u_{P_1} \in L,\) if \(u \in L_1,\) wherein \(u_{P_1}\) does not belong to the \(nc\) set \(L\) denoted by \(u_{P_1} \notin L,\) if \(u \notin L_1.\)
(ii) \(v_{P_2}\) is belonging to the \(nc\) set \(L = \langle L_1, L_2, L_3 \rangle,\) denoted by \(v_{P_2} \in L,\) if \(v \in L_2.\) In contrast \(v_{P_2}\) does not belong to the \(nc\) set \(L,\) denoted by \(v_{P_2} \notin L,\) if \(v \notin L_2.\)
(iii) \(w_{P_3}\) is belonging to the \(nc\) set \(L = \langle L_1, L_2, L_3 \rangle,\) denoted by \(w_{P_3} \in L,\) if \(w \in L_3.\) In contrast \(w_{P_3}\) does not belong to the \(nc\) set \(L,\) denoted by \(w_{P_3} \notin L,\) if \(w \notin L_3.\)

Remark 2.1 \[6\] If \(L = \langle L_1, L_2, L_3 \rangle\) is a \(nc\) set in a non-empty set \(U\) then:
\(L \setminus u_{P_1} = \langle L_1 \setminus \{ u \}, L_2, L_3 \rangle, L \setminus u_{P_1}\) means that the component \(L\) does not contain \(u_{P_1}.\)
\(L \setminus v_{P_2} = \langle L_1, L_2 \setminus \{ v \}, L_3 \rangle, L \setminus v_{P_2}\) means that the component \(L\) does not contain \(v_{P_2}.\)
\(L \setminus w_{P_3} = \langle L_1, L_2, L_3 \setminus \{ u \} \rangle, L \setminus w_{P_3}\) means that the component \(L\) does not contain \(w_{P_3}.\)

Remark 2.2 \[6\] If \(L = \langle L_1, L_2, L_3 \rangle\) is a \(nc\) set in a non-empty set \(U\) then:
\(L = (\langle u_{P_1} : u_{P_1} \in L \rangle) \cup (\langle v_{P_2} : v_{P_2} \in L \rangle) \cup (\langle w_{P_3} : w_{P_3} \in L \rangle) = (\langle \{ u \}, \phi, \phi : u \in U \rangle) \cup (\{ v \}, \phi, \phi : v \in U \rangle) \cup (\{ w \}, \phi, \phi : w \in U \rangle)\)
\(L = \langle \{ u_{P_1} : u_{P_1} \in L \rangle \cup \langle v_{P_2} : v_{P_2} \in L \rangle \cup \langle w_{P_3} : w_{P_3} \in L \rangle = \langle \{ u \}, \phi, \phi : u \in U \rangle \cup \langle \{ v \}, \phi, \phi : v \in U \rangle \cup \langle \{ w \}, \phi, \phi : w \in U \rangle).\)
Definition 2.6 [13] A neutrosophic crisp topology (briefly, ncT) on a non-empty set U is a family τ of nc subsets of U satisfying the following axioms

(i) $\phi_n, U_n \in \tau$.
(ii) $H_1 \cap H_2 \in \tau \ \forall \ H_1 \ & H_2 \in \tau$.
(iii) $\bigcup_a H_a \in \tau$, for any $\{H_a : a \in J\} \subseteq \tau$.

Then (U, τ) is a neutrosophic crisp topological space (briefly, ncTs) in U. The τ elements are called neutrosophic crisp open sets (briefly, ncos) in U. A ncs C is closed set (briefly, ncs) iff its complement C^c is ncos.

Definition 2.7 [5] Let U be a non-empty set. Then $nc\tau_1, nc\tau_2, \ldots, nc\tau_N$ are N-arbitrary crisp topologies defined on U and the collection $N_{nc}\tau = \{S \subseteq U : S = (\bigcup_{j=1}^N H_j) \cup (\bigcap_{j=1}^N L_j), H_j, L_j \in nc\tau_j\}$ is called N neutrosophic crisp (briefly, nc) topology on U if the axioms are satisfied:

(i) $\phi_n, U_n \in N_{nc}\tau$.
(ii) $\bigcap_j U_j \in N_{nc}\tau \ \forall \ \{U_j\}_{j=1}^n \subseteq N_{nc}\tau$.
(iii) $\bigcup_j U_j \in N_{nc}\tau \ \forall \ \{U_j\}_{j=1}^n \subseteq N_{nc}\tau$.

Then $(U, N_{nc}\tau)$ is called a N_{nc}-topological space (briefly, N_{nc}ts) on U. The $N_{nc}\tau$ elements are called N_{nc}-open sets (N_{nc}os) on U and its complement is called N_{nc}-closed sets (N_{nc}cs) on U. The elements of U are known as N_{nc}-sets ($N_{nc}s$) on U.

Definition 2.8 [5] Let $(U, N_{nc}\tau)$ be any N_{nc}ts. Let H be an $N_{nc}s$ in $(U, N_{nc}\tau)$. Then H is said to be a N_{nc}-regular open [17] set (briefly, N_{nc}ros) if $H = N_{nc}\text{int}(N_{nc}\text{cl}(H))$. The complement of an N_{nc}ros is called an N_{nc}-regular closed set (briefly, N_{nc}rcs) in U.

The family of all N_{nc}ros (resp. N_{nc}rcs) of U is denoted by N_{nc}ROS(U) (resp. N_{nc}RCS(U)).

Definition 2.9 [18] A set H is said to be a

(i) $N_{nc}\delta$ interior of H (briefly, $N_{nc}\delta\text{int}(H)$) is defined by $N_{nc}\delta\text{int}(H) = \bigcup\{S : S \subseteq H \ & S$ is a N_{nc}ros$\}$.
(ii) $N_{nc}\delta$ closure of H (briefly, $N_{nc}\delta\text{cl}(H)$) is defined by $N_{nc}\delta\text{cl}(H) = \bigcup\{u \in U : N_{nc}\text{int}(N_{nc}\text{cl}(L)) \cap H \neq \phi, u \in L \ & L$ is a N_{nc}os$\}$.

Definition 2.10 A set H is said to be a

(i) $N_{nc}\delta$-open (briefly, $N_{nc}\delta o$) set [18] if $H = N_{nc}\delta\text{int}(H)$.
(ii) N_{nc}e-open (briefly, N_{nc}eo) set [19] if $H \subseteq N_{nc}\text{cl}(N_{nc}\delta\text{int}(H)) \cup N_{nc}\text{int}(N_{nc}\delta\text{cl}(H))$.

The complement of an N_{nc}dos (resp. N_{nc}eos) is called an $N_{nc}\delta$ (resp. N_{nc}e) closed set (briefly, N_{nc}dos (resp. N_{nc}eos)) in U.

The family of all N_{nc}eos (resp. N_{nc}ecs) of U containing a point $u \in U$ is denoted by N_{nc}eOS(U, u) (resp. N_{nc}eCS(U, u)). The family of all N_{nc}dos (resp. N_{nc}ecs, N_{nc}eos and N_{nc}ecs) of U is denoted by N_{nc}dos(U) (resp. N_{nc}dCS(U), N_{nc}eos(U) and N_{nc}eCS(U)).

Definition 2.11 [6] Let $(U, N_{nc}\tau)$ be N_{nc}ts, $P \in N_{nc}$pt in U, a N_{nc} set $L = \{L_1, L_2, L_3\} \in N_{nc}eOS(U)$ is called N neutrosophic crisp e neighbourhood (briefly, N_{nc}enhd) of P in $(U, N_{nc}\tau)$ if $P \in L$.

4
3. $N_{nc}e$ limit point

Definition 3.1 Let (U, N_{nc}) be N_{nc}ts, $P \in N_{nc}pt$ in U, a N_{nc} set $L = \langle L_1, L_2, L_3 \rangle \in N_{nc}eOS(U)$ is called $N_{nc}eohd$ of P in (U, N_{nc}), if there is $N_{nc}eo$ set $H = \langle H_1, H_2, H_3 \rangle$ containing P such that $H \subseteq L$.

Every $N_{nc}eohd$ of any point $P \in N_{nc}pt$ in U is $N_{nc}eohd$ of P, but in general the inverse is not true.

Example 3.1 Let $U = \{u, v, w\}$, $N_{nc} = \{\phi_N, U_N, H, L, C\}$, $N_{nc} = \{\phi_N, U_N\}$. $H = \{\{u\}, \phi, \phi\}$, $L = \{\{v\}, \phi, \phi\}$, $C = \{\{v, w\}, \phi, \phi\}$, then we have $2_{nc} = \{\phi_N, U_N, H, L, C\}$. If we take $U = \{\{u, v\}, \{w\}, \phi\}$. Then $C = \{\{u, v\}, \phi, \phi\}$ is an $N_{nc}eo$ set containing $p = w_{P_1} = \{\{u\}, \phi, \phi\}$ and $C \subseteq U$. That is U is a $N_{nc}eohd$ of p in (U, N_{nc}), while it is not a $N_{nc}eohd$ of p.

Definition 3.2 Let (U, N_{nc}) be N_{nc}ts and $L = \langle L_1, L_2, L_3 \rangle$ be N_{nc} set of U. A $N_{nc}pt P$ in U is called a $N_{nc}e$ limit point (briefly, $N_{nc}ept$) of $L = \langle L_1, L_2, L_3 \rangle$ if every $N_{nc}eo$ set containing P must contains at least one $N_{nc}pt$ of L different from P. It is easy to say that the $N_{nc}pt P$ is not $N_{nc}ept$ of L if there is a $N_{nc}eo$ set O of P and $P \cap (O \backslash P) = \phi_n$.

Definition 3.3 The set of all $N_{nc}ept$’s of a N_{nc} set L is called $N_{nc}e$ derived set of L, denoted by $N_{nc}eD(L)$.

Example 3.2 In Example 3.1, if we take $D = \{\{u, v\}, \phi, \phi\}$. Then $p = w_{P_1} = \{\{u\}, \phi, \phi\}$ is the only $N_{nc}ept D$, i.e. $N_{nc}eD(D) = \{w_{P_1}\}$.

Remark 3.1 (i) Let L be any N_{nc} set of U, if $P = \{\{u\}, \phi, \phi\} \in N_{nc}eOS(U)$ in any $N_{nc}ts (U, N_{nc})$, then $P \in N_{nc}eD(L)$.

(ii) Let L be any N_{nc} set of U, the following facts is true:

$N_{nc}eD(L) \not\subseteq L$, $L \not\subseteq N_{nc}eD(L)$, and sometimes $N_{nc}eD(L) \cap L = \phi_n$ or $N_{nc}eD(L) \cap L \neq \phi_n$.

(iii) In any $N_{nc}ts (U, N_{nc})$, we have $N_{nc}eD(\phi) = \phi_n$.

Theorem 3.1 Let (U, N_{nc}) be N_{nc}ts and $L = \langle L_1, L_2, L_3 \rangle$ be a N_{nc} set of U, then L is $N_{nc}e$ set if $N_{nc}eD(L) \subseteq L$.

Proof. Let L be $N_{nc}e$ set, then $(U \backslash L)$ is $N_{nc}eo$ set this implies that for each $N_{nc}pt P \in N_{nc}Pt$ in $(U \backslash L)$, $P \notin L$, there is a $N_{nc}eo$ set O of P and $O \subseteq (U \backslash L)$. Since $L \cap (U \backslash L) = \phi_n$, then P is not $N_{nc}ept$ of L, thus $O \cap L = \phi_n$, which implies that $P \notin N_{nc}eD(L)$. Hence $N_{nc}eD(L) \subseteq L$.

Conversely, assume that $P \notin N_{nc}eD(L)$, implies that P is not $N_{nc}ept$ of L, hence, there is a $N_{nc}eo$ set O of P and $O \cap L = \phi_n$ which means that $O \subseteq (U \backslash L)$ and since $(U \backslash L)$ is a $N_{nc}eo$ set. Hence L is $N_{nc}e$ set.

Theorem 3.2 Let (U, N_{nc}) be N_{nc}ts, L, O be a N_{nc} sets of U, then the following properties hold:

(i) $N_{nc}eD(\phi_n) = \phi_n$

(ii) If $L \subseteq O$, then $N_{nc}eD(L) \subseteq N_{nc}eD(O)$

(iii) $N_{nc}eD(L \cap O) \subseteq N_{nc}eD(L) \cap N_{nc}eD(O)$

(iv) $N_{nc}eD(L \cup O) = N_{nc}eD(L) \cup N_{nc}eD(O)$.

Proof. (i) The proof is, directly.

(ii) Assume that $N_{nc}eD(L)$ be a N_{nc} set containing a $N_{nc}pt P \in N_{nc}Pt$ then by Definition 3.2, for each $N_{nc}eo$ set V of P, we have $L \cap V \backslash P \neq \phi_n$, but $L \subseteq O$, hence $O \cap V \backslash P \neq \phi_n$, this means that $P \in N_{nc}eD(O)$. Hence, $N_{nc}eD(L) \subseteq N_{nc}eD(O)$.

(iii) Since
\[L \cap O \subseteq L, \text{ then by (ii) } N_{nc}eD(L \cap O) \subseteq N_{nc}eD(L) \]
(1)
\[L \cap O \subseteq O, \text{ implies } N_{nc}eD(L \cap O) \subseteq N_{nc}eD(O) \]
(2)
from (1) \& (2) \(N_{nc}eD(L \cap O) \subseteq N_{nc}eD(L) \cap N_{nc}eD(O) \).

(iv) Let \(P \in N_{nc}Pt \) such that \(P \notin N_{nc}eD(O) \), then either \(P \notin N_{nc}eD(L) \) and \(P \notin N_{nc}eD(O) \), then there is a \(N_{nc}o \) set \(K \) of \(P \) and \(L \cap K \not\subseteq \phi_n \) and \(O \cap K \not\subseteq \phi_n \), this implies that \((L \cup O) \cap K \not\subseteq \phi_n \), i.e \(P \notin N_{nc}eD(L \cup O) \), hence
\[N_{nc}eD(L \cup O) \subseteq N_{nc}eD(L) \cup N_{nc}eD(O). \]
(3)

Conversely, since \(L \subseteq L \cup O, O \subseteq L \cup O, \) then by property (ii) \(N_{nc}eD(L) \subseteq N_{nc}eD(L \cup O) \) and \(N_{nc}eD(O) \subseteq N_{nc}eD(L \cup O) \), thus
\[N_{nc}eD(L \cup O) \supseteq N_{nc}eD(L) \cup N_{nc}eD(O) \]
(4)
from (3) and (4) we have \(N_{nc}eD(L \cup O) = N_{nc}eD(L) \cup N_{nc}eD(O) \).

Remark 3.2 In general, the inverse of property (ii) \& (iii) in Theorem 3.2 is not true. The following examples act as an evidence to this claim.

Example 3.3 Let \(U = \{u, v, w\}, \) \(\text{nc}\tau_1 = \{\phi_N, U_N, H\}, \) \(\text{nc}\tau_2 = \{\phi_N, U_N\}, \) \(H = \{\phi, \{u\}, \phi\}, \) then we have \(2_{nc}\tau = \{\phi_N, U_N, H\}. \) If we take \(L = \{\phi, \{u\}, \phi\}, C = \{\phi, \{v\}, \phi\}, \) \(2_{nc}eD(L) = \{\phi, \{v\}, \phi\}, 2_{nc}eD(C) = \{\phi, \{v\}, \phi\}, \) and \(2_{nc}eD(H) \subseteq 2_{nc}eD(C) \), but \(L \not\subseteq C \).

Example 3.4 In Example 3.3, \(2_{nc}eD(H \cap C) = \phi. \) Therefore, \(2_{nc}eD(H \cap C) \neq 2_{nc}eD(H) \cap 2_{nc}eD(C) \).

Theorem 3.3 For any \(N_{nc} \) set \(L \) over the universe \(U, \) then \(N_{nc}ecl(L) = L \cup N_{nc}eD(L) \).

Proof. Let us first prove that \(L \cup N_{nc}eD(L) \) is a \(N_{nc}ec \) set that is \(U_n \cap (U_n \setminus N_{nc}eD(L)) \) is a \(N_{nc}eO \) set. Now for a \(N_{nc}Pt \) \(P \in (U_n \setminus L) \cap (U_n \setminus N_{nc}eD(L)), \) then \(P \notin (U_n \setminus L) \) and \(P \notin (U_n \setminus N_{nc}eD(L)), \) thus \(P \notin L \) and \(P \notin N_{nc}eD(L). \) So by Definition 3.3, there is a \(N_{nc} \) set \(R \) of \(P \) such that \(R \cap L = \phi_n, \) hence \(R \subseteq U_n \setminus L \). Now for each \(P_1 \in R, \) then \(P_1 \notin N_{nc}eD(L), \) then \(R \cap N_{nc}eD(L) = \phi_n, \) this implies that \(R \subseteq U_n \setminus N_{nc}eD(L), \) i.e \(R \subseteq (U_n \setminus L) \cap (U_n \setminus N_{nc}eD(L)). \) Thus \((U_n \setminus L) \cap (U_n \setminus N_{nc}eD(L)) \) is a \(N_{nc}ecl \) of all its elements and hence \((U_n \setminus L) \cap (U_n \setminus N_{nc}eD(L)) \) is a \(N_{nc}eO \) set and thus \(L \cup N_{nc}eD(L) \) is a \(N_{nc}ec \) set containing \(L, \) therefore \(N_{nc}ecl(L) \subseteq L \cup N_{nc}eD(L). \) Since \(N_{nc}ecl(L) \) is a \(N_{nc}ec \) set (see Definition 3.3) and \(N_{nc}ecl(L) \) contains all its \(N_{nc}ecl \). Thus \(N_{nc}eD(L) \subseteq N_{nc}ecl(L) \) and \(L \subseteq N_{nc}ecl(L), \) hence \(N_{nc}ecl(L) = L \cup N_{nc}eD(L) \).

4. Separation axioms in a \(N_{nc} \) topological space

Definition 4.1 A \(N_{nc}eCl (U, N_{nc}\tau) \) is called:

(i) \(P_1-N_{nc}e\tau_0 \)-space if \(\forall u_{P_1} \neq v_{P_1} \in U \exists a \ N_{nc}eO \) set \(O \) in \(U \) containing one of them but not the other.

(ii) \(P_2-N_{nc}e\tau_0 \)-space if \(\forall u_{P_2} \neq v_{P_2} \in U \exists a \ N_{nc}eO \) set \(O \) in \(U \) containing one of them but not the other.

(iii) \(P_3-N_{nc}e\tau_0 \)-space if \(\forall u_{P_3} \neq v_{P_3} \in U \exists a \ N_{nc}eO \) set \(O \) in \(U \) containing one of them but not the other.

(iv) \(P_4-N_{nc}e\tau_1 \)-space if \(\forall u_{P_4} \neq v_{P_4} \in U \exists a \ N_{nc}eO \) sets \(O_1, O_2 \) in \(U \) such that \(u_{P_1} \in O_1, \) \(v_{P_1} \not\subseteq O_1 \) and \(u_{P_1} \not\subseteq O_2, v_{P_1} \not\subseteq O_2. \)
(v) P_2-$N_{nc}e\tau_1$-space if $\forall u_{P_2} \neq v_{P_2} \in U \exists$ a $N_{nc}e\sigma$ sets O_1, O_2 in U such that $u_{P_2} \in O_1$, $v_{P_2} \notin O_1$ and $u_{P_2} \notin O_2$, $v_{P_2} \in O_2$.

(vi) P_3-$N_{nc}e\tau_1$-space if $\forall u_{P_3} \neq v_{P_3} \in U \exists$ a $N_{nc}e\sigma$ sets O_1, O_2 in U such that $u_{P_3} \in O_1$, $v_{P_3} \notin O_1$ and $u_{P_3} \notin O_2$, $v_{P_3} \in O_2$.

(vii) P_1-$N_{nc}e\tau_2$-space if $\forall u_{P_1} \neq v_{P_1} \in U \exists$ a $N_{nc}e\sigma$ sets O_1, O_2 in U such that $u_{P_1} \in O_1$, $v_{P_1} \notin O_1$ and $u_{P_1} \notin O_2$, $v_{P_1} \in O_2$ with $O_1 \cap O_2 = \phi$.

(viii) P_2-$N_{nc}e\tau_2$-space if $\forall u_{P_2} \neq v_{P_2} \in U \exists$ a $N_{nc}e\sigma$ sets O_1, O_2 in U such that $u_{P_2} \in O_1$, $v_{P_2} \notin O_1$ and $u_{P_2} \notin O_2$, $v_{P_2} \in O_2$ with $O_1 \cap O_2 = \phi$.

(ix) P_3-$N_{nc}e\tau_2$-space if $\forall u_{P_3} \neq v_{P_3} \in U \exists$ a $N_{nc}e\sigma$ sets O_1, O_2 in U such that $u_{P_3} \in O_1$, $v_{P_3} \notin O_1$ and $u_{P_3} \notin O_2$, $v_{P_3} \in O_2$ with $O_1 \cap O_2 = \phi$.

Definition 4.2 A $N_{nc}e\sigma\tau$ is called:

(i) $N_{nc}e\sigma_0$-space if $(U, N_{nc}e\sigma\tau) = P_1$-$N_{nc}e\sigma_0$-space, P_2-$N_{nc}e\sigma_0$-space and P_3-$N_{nc}e\sigma_0$-space.

(ii) $N_{nc}e\sigma\tau_1$-space if $(U, N_{nc}e\sigma\tau) = P_1$-$N_{nc}e\sigma_1$-space, P_2-$N_{nc}e\sigma_1$-space and P_3-$N_{nc}e\sigma_1$-space.

(iii) $N_{nc}e\sigma\tau_2$-space if $(U, N_{nc}e\sigma\tau) = P_1$-$N_{nc}e\sigma_2$-space, P_2-$N_{nc}e\sigma_2$-space and P_3-$N_{nc}e\sigma_2$-space.

Remark 4.1 For a $N_{nc}e\sigma\tau\tau$ $(U, N_{nc}e\sigma\tau)$

(i) Every $N_{nc}e\sigma_0$-space is P_1-$N_{nc}e\sigma_0$-space.

(ii) Every $N_{nc}e\sigma_0$-space is P_2-$N_{nc}e\sigma_0$-space.

(iii) Every $N_{nc}e\sigma_0$-space is P_3-$N_{nc}e\sigma_0$-space.

(iv) Every $N_{nc}e\sigma_1$-space is P_1-$N_{nc}e\sigma_1$-space.

(v) Every $N_{nc}e\sigma_1$-space is P_2-$N_{nc}e\sigma_1$-space.

(vi) Every $N_{nc}e\sigma_1$-space is P_3-$N_{nc}e\sigma_1$-space.

(vii) Every $N_{nc}e\sigma_2$-space is P_1-$N_{nc}e\sigma_2$-space.

(viii) Every $N_{nc}e\sigma_2$-space is P_2-$N_{nc}e\sigma_2$-space.

(ix) Every $N_{nc}e\sigma_2$-space is P_3-$N_{nc}e\sigma_2$-space.

(x) Every $N_{nc}e\sigma_2$-space is $N_{nc}e\sigma_0$-space.

(xi) Every $N_{nc}e\sigma_2$-space is $N_{nc}e\sigma_1$-space.

But not conversely.

Proof. The proof is directly from Definition 4.2.

The inverse of Remark 4.1 is not true, the following example explain this state.

Example 4.1 Let $U = \{u, v\}, N_{nc}=1 = \{\phi_N, U_N, H\}, N_{nc}=2 = \{\phi_N, U_N\}, H = \{\{u\}, \phi, \phi\}$, then we have $2_{nc\tau} = \{\phi_N, U_N, H\}, \sigma_1 = \{\phi_N, U_N, L\}, \sigma_2 = \{\phi_N, U_N\}, L = \{\phi, \{v\}, \phi\}$, then we have $2_{nc\sigma} = \{\phi_N, U_N, C\}, \mu_1 = \{\phi_N, U_N, C\}, \mu_2 = \{\phi_N, U_N\}, C = \{\phi, \phi, \{u\}\}$, then we have $2_{ncH} = \{\phi_N, U_N, C\}$.

(i) $(U, 2_{nc\tau})$ is P_1-$2_{nc\sigma}$ and it is not $2_{nc\tau_1}$-space.

(ii) $(U, 2_{nc\sigma})$ is P_2-$2_{nc\tau_1}$-space but it is not $2_{nc\tau_0}$-space.

(iii) $(U, 2_{nc\mu})$ is P_3-$2_{nc\tau_2}$-space but it is not $2_{nc\tau_0}$-space.

Example 4.2 Let $U = \{u, v\}, N_{nc}=1 = \{\phi_N, U_N, H, L\}, N_{nc}=2 = \{\phi_N, U_N\}, H = \{\{u\}, \{v\}, \phi\}$, then we have $2_{nc\tau} = \{\phi_N, U_N, H, L\}, \sigma_1 = \{\phi_N, U_N, C, D\}, \sigma_2 = \{\phi_N, U_N\}, C = \{\phi, \phi, \{u\}\}, D = \{\phi, \phi, \{v\}\}$, then we have $2_{nc\sigma} = \{\phi_N, U_N, C, D\}$.

(i) $(U, 2_{nc\tau})$ is P_1-$2_{nc\tau_1}$ (resp. P_1-$2_{nc\tau_2}$)-space but it is not $2_{nc\tau_1}$ (resp. $2_{nc\tau_2}$)-space.

(ii) $(U, 2_{nc\sigma})$ is P_2-$2_{nc\tau_1}$ (resp. P_2-$2_{nc\tau_2}$)-space but it is not $2_{nc\tau_1}$ (resp. $2_{nc\tau_2}$)-space.
(iii) \((U, 2_{nc}) \) is \(P_3\)-\(2_{nc} e \tau_1 \) (resp. \(P_3\)-\(2_{nc} e \tau_2 \))-space but it is not \(2_{nc} e \tau_1 \) (resp. \(2_{nc} e \tau_2 \))-space.

Example 4.3 Let \(U = \{u, v\}, \ 2_{nc} \tau_1 = \{\phi_N, U_N, H, L, C\}, \ 2_{nc} \tau_2 = \{\phi_N, U_N\}, \ H = \{\{u\}, \phi, \phi\}, \ L = \langle \phi, \{v\}, \phi \rangle, \ C = \langle \phi, \phi, \{u\} \rangle \), then we have \(2_{nc} \tau = \{\phi_N, U_N, H, L, C\} \). Then \((U, 2_{nc} \tau) \) is \(2_{nc} e \tau_0 \)-space but not \(2_{nc} e \tau_1 \)-space.

Example 4.4 Let \(U = \{u, v\}, \ 2_{nc} \tau_1 = \{\phi_N, U_N, H, L\}, \ 2_{nc} \tau_2 = \{\phi_N, U_N\}, \ H = \{\{u\}, \phi, \phi\}, \ L = \{\{u, v\}, \phi, \phi\} \), then we have \(2_{nc} \tau = \{\phi_N, U_N, H, L\} \). Then \((U, 2_{nc} \tau) \) is \(2_{nc} e \tau_1 \)-space but not \(2_{nc} e \tau_2 \)-space.

5. Conclusion

In this paper we have defined a new \(N_{nc} \) points in \(N_{nc} \) limit point, with some of its properties. Further, we constructed the separation axioms \((N_{nc} e \tau_i\text{-space } i = 0, 1, 2) \) in \(N_{nc} \) topological and examine the relationship between them in details.

References

[1] Abdel-Basset M, Chang V, Mohamed M and Smarandache F 2019 A Refined Approach for Forecasting Based on Neutrosophic Time Series Symmetry vol 11 457.

[2] Abdel-Basset M, Manogaran G, Gamal A and Chang V 2019 A Novel Intelligent Medical Decision Support Model Based on Soft Computing and IoT IEEE Internet of Things Journal.

[3] Abdel-Basset M, and Mohamed M 2019 A novel and powerful framework based on neutrosophic sets to aid patients with cancer Future Generation Computer Systems vol 98 pp 144-153.

[4] Abdel-Basset M, Gamal A, Manogaran G and Long H V 2019 A novel group decision making model based on neutrosophic sets for heart disease diagnosis Multimedia Tools and Applications pp 1-26.

[5] Al-Hamido R K, Gharibah T, Jafari S and Smarandache F 2018 On neutrosophic crisp topology via \(N \)-topology Neutrosophic Sets and Systems vol 23 pp 96-109.

[6] Al-Nafee A B, Al-Hamido R K and Smarandache F 2019 Separation axioms in neutrosophic crisp topological Spaces Neutrosophic Sets and Systems vol 25 pp 25-32.

[7] Erdal Ekici 2008 On \(e \)-open sets, \(DP^* \)-sets and \(DP^e \)-sets and decomposition of continuity The Arabian Journal for Science and Engineering vol 33 pp 271-282.

[8] Hur K, Lim P K, Lee J G and Lee J 2017 The category of neutrosophic crisp sets Annals of Fuzzy mathematics and Informatics vol 14 pp 43-54.

[9] Lellis Thivagar M, Ramesh V, Arockia M D 2016 On new structure of \(N \)-topology Cogent Mathematics (Taylor and Francis) vol 3 pp 1204104.

[10] Lellis Thivagar M, Jafari S, Antonyssamy V and Sutha Devi V 2018 The ingenuity of neutrosophic topology via \(N \)-topology Neutrosophic Sets and Systems vol 19 pp 91-100.

[11] Salama A A and Albouli S A 2012 Generalized neutrosophic set and generalized neutrosophic topological spaces Journal computer sci. engineering vol 2 pp 31-35.

[12] Salama A A 2013 Neutrosophic Crisp Points and Neutrosophic Crisp Ideals Neutrosophic Sets and Systems vol 1 pp 50-54.

[13] Salama A A, Smarandache F and Kroumov V 2014 Neutrosophic crisp sets and neutrosophic crisp topological spaces Neutrosophic Sets and Systems vol 2 pp 25-30.

[14] Salama A A, Smarandache F and Valeri Kroumov 2014 Neutrosophic Crisp Sets and Neutrosophic Crisp Topological Spaces Neutrosophic Sets and Systems vol 2 pp 25-30.

[15] Salama A A and Smarandache F 2015 Neutrosophic crisp set theory Educational Publisher Columbus Ohio USA.

[16] Smarandache F 2020 Neutrosophy and neutrosophic logic First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA.

[17] Vaidivel A and John Sundar C 2020 \(\gamma \)-Open Sets in \(N_{nc} \)-Topological Spaces Advances in Mathematics: Scientific Journal vol 9 pp 2197-2202.

[18] Vaidivel A and John Sundar C \(N_{nc,\delta} \)-open sets Submitted.

[19] Vaidivel A and Thangaraja P \(e \)-open sets \(N_{nc} \) Topological Spaces Submitted.

[20] Venkateswaran Rao V and Srinivasa Rao Y Neutrosophic Pre-open sets and Pre-closed sets in Neutrosophic Topology International Journal of chemTech Research vol 10 pp 449-458.

[21] Wadei F, Al-Omeri and Saeid Jafari 2019 Neutrosophic pre-continuity multifunctions and almost pre-continuity multifunctions Neutrosophic Sets and Systems vol 27 pp 53-69.