Abstract

Background: Eggplant (Solanum melongena L.) is a member of the Solanaceae family. In spite of its widespread cultivation and nutritional and economic importance, its genome has not as yet been extensively investigated. Few analyses have been carried out to determine the genetic diversity of eggplant at the DNA level, and linkage relationships have not been well characterised. As for the other Solanaceae crop species (potato, tomato and pepper), the level of intra-specific polymorphism appears to be rather limited, and so it is important that an effort is made to develop more informative DNA markers to make progress in understanding the genetics of eggplant and to advance its breeding. The aim of the present work was to develop a set of functional microsatellite (SSR) markers, via an in silico analysis of publicly available DNA sequence.

Results: From >3,300 genic DNA sequences, 50 SSR-containing candidates suitable for primer design were recovered. Of these, 39 were functional, and were then applied to a panel of 44 accessions, of which 38 were cultivated eggplant varieties, and six were from related Solanum species. The usefulness of the SSR assays for diversity analysis and taxonomic discrimination was demonstrated by constructing a phylogeny based on SSR polymorphisms, and by the demonstration that most were also functional when tested with template from tomato, pepper and potato. As a result of BLASTN analyses, several eggplant SSRs were found to have homologous counterparts in the phylogenetically related species, which carry microsatellite motifs in the same position.

Conclusion: The set of eggplant EST-SSR markers was informative for phylogenetic analysis and genetic mapping. Since EST-SSRs lie within expressed sequence, they have the potential to serve as perfect markers for genes determining variation in phenotype. Their high level of transferability to other Solanaceae species can be used to provide anchoring points for the integration of genetic maps across species.
Background

The eggplant (Solanum melongena L.), also known as aubergine or brinjal, belongs to the Solanaceae, but unlike most of the solanaceous crop species, it is endemic to the Old, not the New World. Its progenitor is presumed to have been the African species S. incanum [1], but its centre of domestication and genetic diversity lies in the Indo-Burma region, where it has been grown for at least 1,500 years [2]. Despite its economic and nutritional importance, its genome has been little studied, in contrast to those of the other cultivated solanaceous crops tomato, potato and pepper, in which high density genetic linkage maps have been established [3-6]. The literature contains only a few reports describing RAPD [7], AFLP [8,9] and SSR [10,11] genotyping, a genetic map constructed with AFLP and RAPD markers [12] and a comparative genetic map, based on tomato sequences [13].

Microsatellites (SSRs) are short tandem repeats of simple (1–6 nt) motifs, and their value for genetic analysis lies in their multi-allelism, codominant inheritance, relative abundance, genome coverage and suitability for high-throughput PCR-based platforms [14]. It was long assumed that SSRs were primarily associated with non-coding DNA, but it has now become clear that they are also abundant in the single and low-copy fraction of the genome [15,16]. These latter SSRs are commonly referred to as "genic SSRs" or "EST-SSRs" and are present in 1 to 5% of the expressed plant DNA sequence deposited in public databases. With the increasing volume of publicly available unigene and cDNA sequences emerging from large-scale EST sequencing projects, the conventional need to generate enriched genomic libraries and to perform the necessary sequencing can now be largely bypassed [17]. Genic SSRs tend to be more readily transferable between (related) species or genera than genomic ones, since coding sequence is better conserved than non-coding sequence; however, they do tend to be less informative than conventional SSRs, particularly in the context of related genotypes [18,19]. On the other hand, they provide a powerful means to link the genetic maps of related species, and since many of them are located within genes of known or at least putative function, any allelic variation present can be exploited to generate perfect markers [20].

We present here our progress in the development and preliminary characterization of a set of eggplant SSR markers, derived from public database sequence, along with an evaluation of their experimental and in silico transferability among other solanaceous species.

Results and discussion

SSR motif frequency and distribution

At the time surveyed, the Solanaceae Genomics Network database (SGN; http://www.sgn.cornell.edu) contained 3,181 eggplant ESTs, ordered into 1,841 unigenes (617 contigs and 1,224 singlets). An additional 176 sequences were retrieved from the EMBL sequence database http://www.ebi.ac.uk/embl. The non-redundant sequence pool contained 1,864 sequences representing 743,527 bp of genomic sequence. Within these, 64 contained one or more SSR (70 in total, including 20 mono-, 11 di-, 36 tri-, one tetra- and two hexanucleotide motifs). One sequence contained three SSRs, while ten SSRs were of the compound type (SSR containing stretches of two or more different repeats). The mean separation between two SSRs was ~10.6 kb, equivalent to one SSR per 29 sequences. This distance is somewhat greater than that estimated for several monocotyledenous [15,21] and dicotyledenous [22] species, perhaps because of the greater stringency of the criteria and the lesser size of the sequence dataset.

The properties of the 70 SSR loci identified are summarised in Table 1, classified on the basis of repeat motif and the number of repeat units. Trinucleotides were the most frequent (51.4%), followed by mono- (28.6%) and dinucleotides (15.7%). Tetra- and hexanucleotides were rare. Although trinucleotide motifs are less frequent in genomic libraries, they represent the most common class in expressed sequence [18,23,24], since variation in repeat number does not normally affect downstream peptide sequence, unlike mono-, di-, or tetra-nucleotide motifs, which generate frameshift mutations and therefore are more likely to be selected against [25]. All ten possible trinucleotide motifs were recovered, with AAG/CTT the most frequent (30.6%), as has been seen in other Solanaceae species [26,27] and more generally within plant sequence databases [16,28]. CCG/CGG and AGG/CCT are the most common monocotyledenous EST-SSR motifs [18,24,29] and were under-represented in dicotyledenous species as well as in the present dataset. Kantety et al. [30] have observed that AG/CT predominates among the dinucleotide motifs, presumably reflecting the high frequency of Ala (AGA) and Leu (GAG) (respectively, 8% and 10%) in polypeptides [31]. These motifs represented 45.5% of the eggplant dinucleotide SSRs. The second most abundant motif (36.4%) was AT/AT, which is also well represented among plant EST sequences [32,33]. Most of the mononucleotide repeats (19/20) were A/T.

The total length of the 64 microsatellite containing sequence reached the 31,909 bp. Of this 16,862 bp represented untranslated (UTR) – and 15,047 bp represented protein-coding regions. SSRs were non-randomly distributed among coding regions and UTRs. All of the mononucleotide and majority of the dinucleotide repeats (91%) were associated with UTRs. Mononucleotide repeats were evenly distributed among 5' and 3' UTRs while dimeric ones preferentially associated with 5'UTRs. Triplet repeats were significantly over-represented in coding region
(75%) and among non-coding regions showed more than 3 folds greater frequency in 5’UTRs. Such dominance of trimeric over other SSRs in coding regions can be explained by non-perturbation of the reading frame.

SSR assays and their informativeness
Of the 64 sequences containing one or more SSR, 50 (78%) were amenable to primer design. The markers targeted by EEMS01 to EEMS50 comprised 15 mono-, five di-, 24 tri- and two hexanucleotide simple repeats, together with two di- and two trinucleotide compound loci. The remaining sequences contained either too little flanking sequence, or the sequences themselves were refractory for primer design. Thus, primers amplifying non-redundant loci were designed from about 1.4% of the initial number of database sequences, a success rate comparable to that experienced in other species [23,26,27].

SSR motif	Number of repeats	Total										
	4	5	6	7	8	9	10	11	12	13	14	>15
A/T							2	3	2	12		19
C/G							1					1
AC/CT							1					2
AT/AT							2	2				4
AAC/GTT							1					5
ACC/CTG	2	1										3
AAG/CTT	10						1					11
ATT/ATT							1				3	4
ACC/GGT	2											2
ACT/ATG	3		1									3
AGC/CTG	2		1									4
AGG/CGG							1					6
AGT/ATC	5		1									1
CCG/CGG							1					1
AAAT/ATT							1					1
ACCAG/CTTGTT							1					1
ACCAGG/CGTTGTT							1					1

N								3	2	12		20
NN			4	4	2		1					11
NNN			28	1	3					3	36	
NNNN			1								1	
NNNNNN			1								2	

Total | 70 |

Generally, amplicon size was in agreement with expectation, although EEMS 26, 31, 39 and 41 all amplified a product at least 100 bp larger than expected, presumably because the amplicon included an intron. EEMS12 produced an amplicon of smaller than expected length, perhaps because of the presence of a deletion within the genomic sequence, poor priming specificity amplifying a non-target member of a gene family, or because of minor sequence variation between the amplified copy and the consensus sequence [34]. A total of 116 alleles was amplified from the full genotype panel, with the number of alleles per locus varying between 1 and 9 (mean 3.1) (Table...
3). The greatest variation in amplicon size (180–236 bp) was shown by EEMS28. Both the PIC among the 38 cultivated types (PIC_m) and among the full 44 genotype set (PIC_s) were calculated. PIC_m ranged from 0.05 to 0.68 (mean 0.38 ± 0.12), while PIC_s varied from 0.04 to 0.76 (mean 0.24 ± 0.09). The highest and lowest PIC_m were produced by, respectively, EEMS49 and EEMS20, while EEMS15 had the highest, and EEMS24, 25, 31 and 36 shared the lowest PIC_s. The correlation coefficient between PIC_m and SSR length was 0.6 (p = 0.0001), in agreement with the general trend for long SSRs to be more informative than shorter ones [35]. Trinucleotide motif SSRs were less informative than the dinucleotide types (PICs of 0.16 and 0.26 respectively). The former are typically associated with a low level of variability [18,36]. The overall level of intraspecific polymorphism uncovered (28.2%) is typical [37-39], and compares poorly with the rate achievable by genomic SSR assays [37,40,41].

Table 2: *Solanum melongena* (Sm) genotypes and *Solanum* related wild species (Sr) assayed (shape and skin colour are indicated in bracket).

Species	Genotypes	Use¹	codes
S. melongena	Angiò3 (Long purple)	BL	Sm-1
	Angiò5 (Long green)	BL	Sm-2
	ANK1 (Oval white purple striped)	BL	Sm-3
	ANK2 (Oval white purple striped)	BL	Sm-4
	Anominatori (Long purple)	CV	Sm-5
	Baffa (Oval purple)	CV	Sm-6
	Bianca stirata verde (Small white green striped)	BL	Sm-7
	Buia (Oblong purple-black)	BL	Sm-8
	Cannellina Sarnese (Small long purple)	CV	Sm-9
	CN-2/Qyeqie (Round purple)	CV	Sm-10
	Daizaburo (long purple)	RT	Sm-11
	Diataro (round purple)	RT	Sm-12
	Dourga (Long white)	CV	Sm-13
	DR2 (Long dark purple)	BL	Sm-14
	Gadiak F1 (Long purple)	CV	Sm-15
	GIC (Ooblong purple-black)	BL	Sm-16
	Hympuls (Long purple-black)	CV	Sm-17
	JM (Small elongate light purple)	CV	Sm-18
	Lunga violetta (Long purple)	CV	Sm-19
	Lunga violetta napoletana (Long light purple)	CV	Sm-20
	Maya (Oval purple)	CV	Sm-21
	Mirabelle (Long purple-black)	CV	Sm-22
	Mostruosa di New York (Oval purple)	CV	Sm-23
	Ovale piccola bianca/egg (Small oval white)	BL	Sm-24
	Palermiana (Oval light purple)	CV	Sm-25
	Pusa purple cluster (Small elongate purple)	CV	Sm-26
	Pusa purple long (Long purple)	CV	Sm-27
	Sita 07 (Oval light purple)	BL	Sm-28
	SM19/14 (Long purple)	BL	Sm-29
	Tanindo Subur (Long light purple)	CV	Sm-30
	Tian long (Long purple)	CV	Sm-31
	Tina (Long dark purple)	BL	Sm-32
	Tunsina Baharia (Oval light purple)	CV	Sm-33
	Violetta di Firenze (Oval light purple)	CV	Sm-34
	Violetta lunga semiorto (Long dark purple)	CV	Sm-35
	Zihzung F1 (Long purple)	CV	Sm-36
	305 E40 (Long purple-black)	BL	Sm-37
	67-3 (Oval light purple)	BL	Sm-38

¹BL: breeding line; CV: cultivated variety; RT: rootstock.
Table 3: Allelic variation in 39 SSR loci.

Code	Repeat	FORWARD PRIMER (5’-3’)	REVERSE PRIMER (5’-3’)	Expected size of alleles (bp)	Allele size range (bp)	Nr. of alleles¹	PIC²	SSR position³		
	NA1	NA2	PICm	PICs						
EEMS06	(T)14	TCATGCAGAATTTAATTAATGTA	GAGGTGAGTATCAAGAATGGC	265	268–274	1	4	0	0.174	3’ UTR
EEMS07	(T)13	CCATGCCAGAATTTGGAACCTT	AAGGGAACAGCAGTCACACCC	247	250–260	1	4	0	0.209	3’ UTR
EEMS10	(A)20	TCAAGCAGAACCAGAATGGA	GTAGGGGACGTGATTGACAA	282	266–290	1	4	0	0.174	3’ UTR
EEMS12	(A)16	CCGGCACACTTCACTACATTTTC	ATTTGCTTGGATATCGAATTTTC	158	146–150	2	3	0.097	0.273	5’ UTR
EEMS13	(A)14	TGGATACGGCAGTACAGCTT	GGGGGTCTGCTGTTATAC	140	140	1	1	0	0	5’ UTR
EEMS14	(A)13	GGAATGGACCACCAACCCCTAA	AGAGCTTCCGTCGTTGTTG	277	270–276	1	3	0	0.088	5’ UTR
EEMS15	(C)12	GGAGAAACTCAGCTCAGTGG	CTGGTGCCAATGTCATGAG	292	270–294	5	7	0.645	0.755	3’ UTR
EEMS16	(AC)7	CAAAAATCGGTTCTAACTAACAA	CTTCAAGGAAAAGGGAGG	132	135–141	3	4	0.135	0.260	3’ UTR
EEMS17	(CA)8	TCAGCATGAGCTGGCCAGAG	TGAGTTGTGATCCTGACAA	197	195–197	2	2	0.492	0.499	3’ UTR
EEMS18	(AG)7	GAGAGAATCGAAAATGTGAGAG	GAGGGTCTCAGATGAGG	187	183–187	1	3	0	0.126	CDS
EEMS19	(AT)9	GGCATGACAAATCATACAAACAA	GGTTTGGTAAATCCTGAGGA	173	165–177	1	3	0	0.135	3’ UTR
EEMS20	(AT)8	AACATCGAGCGAGGGTTCGTTT	TGCTGAAATTTACAAAGC	215	211–227	2	4	0.049	0.278	3’ UTR
EEMS21	(AGA)5	TGATGGTGACACCGACACAAG	CTGTCTTCTCAAATCATGTG	131	122–140	1	3	0	0.126	CDS
EEMS22	(AAG)5	GAAGGACGTTGGTCTGCTGGA	CTGGTTCTAATCCGCAAG	162	165–168	1	2	0	0.085	CDS
EEMS23	(TTC)7	CACAAATTTCCCCCTTCTT	CGGTTTGACATGAAAGACCCA	144	145	1	1	0	0	CDS
EEMS24	(CTT)5	CACCTGTGGTGCACCTTGA	CACCGAAGGCAAGAGAAG	221	217–220	1	2	0	0.043	CDS
EEMS25	(CTT)5	CCCATACGTTGCTGCTGAT	GCACCAAAGGCAAGAGAAGA	227	225–230	1	2	0	0.043	CDS
EEMS26	(CTT)5	GACACTCTCTCCATCTCCACT	CGCTTTAGCAGAAGGCGATAA	260	355–360	1	2	0	0.087	CDS
EEMS28	(TAA)21	GACGATGAGCAGCAAGCATAA	TGACTCACAATCTCAGG	219	180–236	7	9	0.665	0.714	3’ UTR
EEMS29	(ATG)5	TCAGTCACATCCATCAGCCG	ATTCCTTTATATTGCAGT	118	120	1	1	0	0	CDS
EEMS30	(TAC)5	TTATCATGACAGCACCAGCG	ATTTATGGAAGGAGGCCCAT	191	189–195	1	2	0	0.087	3’ UTR
EEMS31	(TGG)5	GAGAAATGGCTTCTGTTGCG	TAAACTCAAGGAGGTGCTG	239	330–339	1	2	0	0.043	CDS
EEMS32	(TCA)5	TAAGGAGCTGCTGAGCCGCTT	GTAATGCTTCTCAGCGCTA	151	150	1	1	0	0	CDS
EEMS33	(TCA)5	CTATCTCTCTTCTCTCTCCGG	ATGGTTATGCGACACCATCC	220	222	1	1	0	0	CDS
EEMS34	(TCA)5	GCTTGATCCCCACCAAGAAG	GTTTTACGCTCCCTCAGCATT	276	275–278	2	2	0.123	0.143	CDS
EEMS35	(TCA)5	ATGCGCTTGTGTGAGGAAAG	CACTTGAGAAGCTGGGATG	230	232	1	1	0	0	CDS
EEMS36	(TGT)5	TCTATCATCCCTCACTGCTC	AAGTGCAGGACGACATCATT	117	110–120	1	2	0	0.043	CDS
EEMS37	(TCC)5	CCCTTCTACACACACACTCA	GTTTTGACCTTCCCATCG	117	114–123	2	4	0.375	0.502	CDS
Table 3: Allelic variation in 39 SSR loci. (Continued)

Allele	Repeat Unit	Sequence 1	Sequence 2	Length 1	Length 2	PICm1	PICm2	Location
EEMS38	(CAC)5	TTCAATCGAACTTCGGAACC	ATGACGGTGGATCTCGCTAC	148	135–153	1	3	0
EEMS39	(CTG)5	GGAGAGATGGATCCGAATA	TCTCGACCTTACCTGCATT	166	264–270	1	3	0
EEMS41	(GCA)5	ATTCTGCATTACCGAAGG	GGATTGGTGGGGAATATCA	260	700, 1600	1	1	0
EEMS42	(GCA)6	GCTCAGCAACCAAGATACCA	GTCGGGACTTCATACGATT	152	155–180	1	3	0
EEMS44	(GCC)5	CCTCTAACCCTACTCTTCCTTCT	GTGAAACGTGGTGAGGTCT	216	215	1	1	0
EEMS45	(AGAACC)4	AGCGCTTGTCCAGGCTATAA	TTTCACCATGAGCAATGA	282	279–285	1	2	0,197
EEMS46	(ACCAGC)6	ACCAAACGTGGATCAAAACAA	GGAATGGTTGGTGAAATGG	264	245–265	1	4	0,207
EEMS47	(GCT)5..(TTC)5	CGAACACATTCGCAAATCAC	GCATCACAAGAGGGAAAGG	246	250–253	1	2	0,162
EEMS48	(TAA)20(CGA)8	CAATGCAAAACATGATACCTTCTCCTG	TCGATGTTGTTGCTGCTTCTG	213	223–241	7	9	0,641, 0,677
EEMS49	(TA)12(GA)7	TGAAATGTGAATCATTACCTATATGTTAG	GAAGGGAGGATAGCATTACG	140	145–153	5	5	0,677, 0,677
EEMS50	(TA)9(GA)8	AAAATCAGGCGCTCCTGTGTA	ACATCGTTCGCCCTTATTG	224	218–226	2	4	0,229, 0,377

1 NA1: number of alleles detected among the 38 cultivated types, NA2: number of alleles detected among the full 44 genotype set; 2 PICm: calculated among the 38 cultivated types, PICs: calculated among the full 44 genotype set; 3 CDS: Coding sequence
Genetic diversity revealed by SSR markers

Thiel et al [24] have stressed the limitations surrounding the application of SSR markers for diversity studies, emphasising the possibility of homoplasy (identical allele sizes may not be identical by descent), and have pointed out that allele size differences can also be generated by indel events, as well as by variation in the SSR repeat number. However, the genetic relationships between the accessions of the full genotype panel as displayed by genetic similarity at the SSR level were in good agreement with prior taxonomic classification based on both genomic [9,11] and plastidial markers [42,43]. Thus the cultivated eggplants clustered with an average genetic similarity of 82% (Figure 1). Three pairs of cultivars (‘Tina’ and ‘Dourga’; ‘Sita 07’ and ‘Violetta di Firenze’; ‘Mostruosa di New York’ and ‘305 E40’) and ‘Mirabelle’, ‘DR2’ and ‘Lunga violetta napoletana’ were identical to one another. The cluster closest to the cultivated group contained both S. viarum and S. sodomaeum, with a mean genetic differentiation of ~50% from the cultivated germplasm. The S. torvum accession was more distant (mean genetic similarity 39%). The third cluster contained the remaining species S. sisymbriifolium, aethiopicum and integrifolium which shared a mean genetic similarity of 56%.

The EEMS primers were also applied to amplify template from potato, tomato and pepper, which all belong to the Solanaceae. To minimise non-specific amplification, the same stringency level for PCR was applied as with eggplant template. About 54% (21 of the primer pairs) generated a detectable amplicon from at least one of the three species; ten of 21 amplified all three templates, seven amplified potato and tomato but not pepper DNA, two tomato and pepper but not potato, and one each amplified only from potato and tomato.

The principal co-ordinate analysis (PCO) analysis illustrates the genetic relationships between the members of the genotype panel (Figure 2). The first three principal coordinates accounted for ~54% of the overall genetic variation, with each in turn contributing 34.2%, 10.3% and 9.4%. The first co-ordinate distinguished the cultivated forms from the allied genotypes, while the second allowed the separation of each related eggplant genotypes.

BLAST analyses

Of the 39 functional SSR markers, all but EEMS45 were developed from anonymous eggplant unigene sequences, 25 of which share significant homology to Arabidopsis thaliana proteins of unknown function. EEMS45 lies within a chloroplast phosphate transporter gene (Table 4). Using the source eggplant sequences as a BLASTN query (the target database has been described in the 'Method' section), 24 (61.5%) of the markers identified highly conserved orthologs, with a frequency negatively correlated with phylogenetic distance from eggplant [44]. EEMS15, EEMS21, EEMS24, EEMS39, and EEMS45 had homologous counterparts with known function. Sequences containing homologous microsatellite motifs in conserved positions were found in 15 potato, 10 tomato and 1 pepper orthologs (Table 4). Contrasting results are reported in literature on the transferability of microsatellite markers across members of the Solanaceae [26,45,46]. The high level of transferability between the seven Solanum spp. mirrors the experience in other groups of plants [47]; furthermore we detect a low level of intraspecific polymorphism which seems to confirm the conclusion that EST-SSRs are highly conserved across species [48].

Conclusion

In eggplant, as in pepper and tomato [3,49,50], the level of intraspecific DNA marker polymorphism is rather limited. Nunome et al [11] constructed a genetic map in eggplant based on RAPD and AFLP markers, but only 8.3% of the RAPD primers were informative, and even the AFLP primer combinations were only able to deliver a mean of 2.4 polymorphisms each. We have shown that an in silico analysis of the albeit limited quantity of publicly available eggplant DNA sequence has enabled the development of a set of functional SSR markers. Because these sequences are derived from the expressed portion of the genome, they are relevant for assaying functional diversity in populations or germplasm collections. Most of the EEMS SSRs are readily transferable to related species, and so can be exploited as anchor markers for comparative mapping and evolutionary studies.

Methods

Mining of SSR-containing sequences and primer design

In all, 3,357 eggplant sequences were retrieved from the SGN and EMBL nucleotide databases, using the Sequence Retrieval System (SRS6, http://srs.ebi.ac.uk/). A stand-alone nucleotide database was built for local BLAST2 searches [51]. PolyA and polyT tracts were removed, by applying the criterion that no 50 bp window contain a run of ten A’s or ten T’s. ClustalW [52] alignment was used to eliminate redundancy, by setting the following two criteria: (i) where a cluster contained two or more identical sequences, the longest was retained, and (ii) where the members of a cluster fell into recognisable sub-groups, only one member of each sub-group was retained. Sequences composed entirely of SSR motif (i.e., lacking any flanking sequence) were discarded, since their uniqueness could not be established, and in any case, primer design is not possible. SSR-containing sequences were identified using MISA software [24], a Perl script which allows both perfect and compound SSRs to be detected. A sequence was considered an SSR where a motif
Figure 1
UPGMA dendrogram. Analysis of the 44 genotype set, based on 116 EST-SSR alleles. Sample codes are described in Table 2.
was repeated at least 12 times (1 nt motif), seven times (2 nt) or five times (3–6 nt), allowing for only one mismatch. For compound repeats, the maximum default interruption (spacer) length was set at 100 bp.

Primer pairs were designed from the flanking sequences, using PRIMER3 software [53] in batch mode via the p3_in.pl and p3_out.pl Perl5 scripts within the MISA package. The target amplicon size was set as 100–300 bp, the optimal annealing temperature as 60°C, and the optimal primer length as 20 bp. The resulting markers were each assigned the prefix EEMS (EST Eggplant MicroSatellite).

Local BLASTN analyses were carried out using all EEMS sequences as queries. The target database contained 1,524,584 entries derived from a variety of solanaceous species, retrieved from the EMBL sequence database (Release 93).

Plant material, DNA extraction and PCR

EEMS informativeness was evaluated using a panel of 44 accessions, made up from 38 cultivated eggplant varieties, breeding lines and rootstocks, and six related wild *Solanum* species (Table 2). Cross-species transferability was tested against tomato, pepper and potato DNA. DNA was isolated from young leaves using the method described by Doyle and Doyle [54]. PCR amplification was carried out in 20 μl reactions, each containing 10 ng genomic DNA, 10 nmol/L Tris-HCl (pH 8.3), 50 mmol/L KCl, 2.5 mmol/L MgCl2, 0.5 U Taq polymerase, 0.2 mmol/L dNTP, 200 nmol/L unlabeled reverse primer and 200 nmol/L IRD700-labelled forward primer. A touchdown PCR protocol was applied, consisting of a 94°C/5 min denaturation, 11 cycles of 94°C/30 s, 60°C/30 s decreasing by 0.5°C per cycle, and 72°C/60 s, followed by 30 cycles of 94°C/30 s, 55°C/30 s and 72°C/60 s. The success of each amplification was monitored by analysis of the reaction product following 2% agarose gel electrophoresis, and successful

Figure 2

Biplot of the Principal co-ordinates analysis. Analysis based on microsatellite data depicting the genetic relationship among the 44 *Solanum* genotypes.
Table 4: Homology relationships of the EEMS markers.

Marker	SGN Unigene ID	Homologous Arabidopsis peptide	Homologous ESTs in tomato, potato or pepper (GenBank ID)	Annotation	e-value	SSR in the same position
EEMS06	U206099		DNS587316 47382.1 Late Blight-Challenged Tubers Solanum tuberosum cDNA clone 47382	e-100		+
			AW029731 EST272986 tomato callus, TAMU Lycopersicon esculentum cDNA clone cLEC28K19	7e-80		+
EEMS07	U206473	At3g55570.1	CV506255 72934.1 Mixed Floral Solanum tuberosum cDNA clone 72934	2e-77		+
			CAS525885 KS12063A07 KS12 Capsicum annuum cDNA	1e-75		+
			AK224899 Solanum lycopersicum cDNA, clone: FC25DG07, HTC in fruit	6e-65		+
EEMS10	U206024		CK274806 EST720884 potato abiotic stress cDNA library Solanum tuberosum cDNA clone POADJ52	e-164	+	+
EEMS14	U205878	AtCg000070.1	DQ347958 Solanum bulbocastanum cultivar PT29 chloroplast, complete genome	0.0		+
			DQ347959 Lycopersicon esculentum cultivar LA3023 chloroplast, complete genome	0.0	+	+
			ER831875 PPTC658TF Solanum tuberosum RHPOTKEY BAC ends Solanum tuberosum genomic clone RHPOTKEY138_J19, genomic survey sequence	0.0	+	+
EEMS15	U207285	At1g15820.1	BI435095 EST37856 P. infestans-challenged potato leaf, compatible reaction Solanum tuberosum cDNA clone PPCBZ49	e-139		+
			M32605 Tomato chlorophyll a-binding protein (Cab10A) gene	e-124		+
EEMS17	U206974	At5g53360.1	AA824717 CT008.3K Tomato Leaf cDNA from cv. VFNT cherry Lycopersicon esculentum cDNA clone CT008	1e-71	+	+
			DNS587261 47295.1 Late Blight-Challenged Tubers Solanum tuberosum cDNA clone 47295	3e-60		+
EEMS18	U205890	At1g08200.1	BI932492 EST552381 tomato flower, 8 mm to preanthesis buds Lycopersicon esculentum cDNA clone cTOC23G14	0.0		+
EEMS20	U206004	At5g52990.1	DQ284462 Solanum tuberosum clone 072A05 RNA-binding protein AKIPI1-like mRNA	e-148		+
EEMS21	U207374	At3g56860.3	DQ284462 Solanum tuberosum clone 072A05 RNA-binding protein AKIPI1-like mRNA	e-148		+
EEMS22	U206874	At1g07790.1	AC204499 Solanum tuberosum chromosome 6 clone RHPOTKEY069B12	e-129	+	+
Table 4: Homology relationships of the EEMS markers. (Continued)

EEMS	Accession	Description
AI778436	EST239315 tomato susceptible, Cornell Lycopersicon esculentum cDNA clone cLESSG8	e-127 +
CAS24430	KS12037D12 KS12 Capsicum annum cDNA, mRNA sequence	e-111
EEMS23	U207287 At2g25080.1 BQ113411	EST598987 mixed potato tissues Solanum tuberosum cDNA clone STMCN43
	ES890426 LET011F7_2003-09-27_1/ LET011F7_A12_1 Solanum lycopersicum trichomes	e-114 +
EEMS24	U205612 At5g59910.1 DQ268853	Solanum tuberosum clone 167E08 histone H2B-like protein mRNA
EEMS25	U205886 At5g59910.1 BG643224	EST511418 tomato shoot/meristem Lycopersicon esculentum cDNA clone cTOF26P12 5' sequence
	CV501903	66441.1 Mixed Floral Solanum tuberosum cDNA clone 66441
EEMS26	U205659 At5g05270.2 CK262774	EST708852 potato abiotic stress cDNA library Solanum tuberosum cDNA clone POABI35
EEMS28	U205759 At5g20950.2 BG643224	Solanum lycopersicum cDNA, clone: FA10BF05, 5' end, expressed in maturing fruit
EEMS29	U206036 At5g38050.1 BP777982	EST615947 Generation of a set of potato cDNA clones for microarray analyses mixed potato tissues Solanum tuberosum cDNA clone STMGW83
EEMS30	U206347 BQ508532	Solanum lycopersicum cDNA, clone: LEFL1008CF04, 5' end, expressed in leaf
	CV469914	42678.1 Common Scab-Challenged Tubers Solanum tuberosum cDNA clone 42678
	DB680885	Solanum lycopersicum cDNA, clone: LEFL1008CF04, 5' end, expressed in leaf
EEMS31	U206031 At2g27710.2 CK861590	32687 ln vitro Root Solanum tuberosum cDNA
EEMS32	U207015 At4g19430.1 AC215407	32687 ln vitro Root Solanum tuberosum cDNA
EEMS33	U205935 At1g62045.1 CK861590	Solanum lycopersicum Tomato chromosome 2, C02H8a0167J21, complete sequence.
EEMS37	U206679 At5g64280.1 CK277760	EST723838 potato abiotic stress cDNA library Solanum tuberosum cDNA clone POAEI72
EEMS38	U205635 At2g21660.1 A482858	EST242181 tomato shoot, Cornell Lycopersicon esculentum cDNA clone cLEB3D24 similar to RNA binding protein
EEMS39	U206514 At5g51120.1 A482858	EST242181 tomato shoot, Cornell Lycopersicon esculentum cDNA clone cLEB3D24 similar to RNA binding protein
EEMS41	U205902 At3g04940.1	
amplicons were separated by denaturing 6% polyacrylamide gel electrophoresis on a LI-COR Gene ReadIR 4200 device, as described by Jackson and Matthews [55]. Determination of amplicon size was achieved by including an IRD700-labelled 50–350 bp ladder in each well. The data were collected by e-Seq software (DNA Sequencing and Analysis Software) v3.0.

Data analysis
The polymorphism information content (PIC) of an SSR combines the number of alleles and their frequency distribution within a population [56]. For the present purposes, it was estimated as by Anderson et al. [57]. The SSR products were scored as band presence (1) and absence (0), thus generating a binary matrix. The binary data matrix was used to compute pair-wise similarity coefficients [58], and the similarity matrices obtained were utilized to construct a UPGMA-based dendrogram [58]. Principal co-ordinate analysis (PCO) was carried out to display the multi-dimensional relationship between accessions. All analyses were performed using the NYSYS software package v2.10 [60].

Authors’ contributions
SL and GLR planned and supervised the work. AS carried out SSR mining, primer design and amplification; LT and GLR provided plant materials; EP carried out the analysis of data. All the authors contributed to the final version of the manuscript.

References
1. Daunay MC, Lester RN, Ano G: Cultivated eggplants. In tropical plant breeding Edited by: Charpier A, Jacquot M, Hamon S, Nicolas D. Oxford university press, Oxford; 2001:200-225.
2. Hinata H: Eggplant (Solanum melongena L.). In Biotechnology in agriculture and Forestry, Crop I Volume 2. Edited by: Bajaj YPS. Springer, Berlin; 1986:363-370.
3. Barchi L, Bonnet J, Boudet C, Signoret P, Nagy I, Lanteri S, Palloix A, Lefebvre V: A high-resolution intraspecific linkage map of pepper (Capsicum annuum L.) and selection of reduced RIL subsets for fast mapping. Genome 2007, 50:51-60.
4. Jacobs JME, Van Eck HJ, Arens P, Verkerk-Bakker B, Hekkert HJM, Bastiaanssen A, El-Kharbotly A, Pereira E, Jacobsen E, Steikema WJ: A genetic map of potato (Solanum tuberosum) integrating

Table 4: Homology relationships of the EEMS markers. (Continued)
molecular markers, including transponsons, and classical markers. TAG 2004, 91:289-300.
5. Teal MW, Pringle JP, Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND: High density molecular linkage maps of the tomato and potato genomes. Genetics 1992, 132:1141-1160.
6. Livingstone KD, Solonkey VK, Chubey JR, Wijk RV, John MK: Genomic mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 1999, 152:1183-1202.
7. Karhaloo JL, Brauner S, Gottlieb LD: Analysis of genomic linkage and variation in potato (Solanum tuberosum L.). Theor Appl Genet 1995, 90:767-770.
8. Mace ES, Lester RN, Gebhardt CG: AFLP analysis of genetic relationship among the cultivated eggplant (Solanum melongena L.) and wild relatives (Solanum). Theor Appl Genet 1999, 99:626-633.
9. Nunome T, Suwabe K, Iketani H, Hirai M: Identification of microsatellites in expressed sequence tags of dicotyledonous species. BMC Genomics 2007, 12:1141-1160.
10. Livingstone KD, Solonkey VK, Chubey JR, Wijk RV, John MK: Genomic mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 1999, 152:1183-1202.
11. Nunome T, Ishiguro K, Yoshida T, Hirai M: Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers. Trends Biotech 2001, 19:97-200.
12. Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD: Nonmume T, Ishiguro K, Yoshida T, Hirai M: Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.). Theor Appl Genet 2004, 108:197-208.
13. Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD: A comparative genetic linkage map of Eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 2002, 161:1679-1711.
14. Powell W, Machray G, Provann J: Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1996, 1:215-222.
15. Morganst H, Hanafey M, Powell W: Microsatellites are preferentially associated with nonrepetitive DNA in plant genome. Nat Genet 2002, 30:194-200.
16. Toth G, Gaspari Z, Jurka J: Microsatellites in different eukaryotic genomes: survey and analysis. Genom Res 2000, 10:967-981.
17. Varschney RK, Sigmund R, Boerner A, Korzun V, Stein N, Sorrells M, Langridge P, Graner A: Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci 2005, 168:195-202.
18. Cho YG, Andhary M, Tatemykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayer N, Cartinhour S: Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa). Theor Appl Genet 2000, 100:713-722.
19. Chabane K, Aplet A, Cordeiro GM, Valkoun J, Henry RJ: EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Resour Crop Evol 2005, 52:903-909.
20. Andersens JR, Lubbersdett T: Functional markers in plants. Trends Plant Sci 2003, 8:554-560.
21. Varschney RK, Thiel T, Stein N, Langridge P, Graner A: In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 2002, 7:537-546.
22. Kumpatla PS, Mukhopadhyay S: Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species. Genome 2005, 48:985-998.
23. Chen C, Zhou P, Choi YA, Huang S, Gmitter FG Jr: Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet 2006, 112:1248-1257.
24. Thiel T, Michael AM, Varshney RK, Graner A: Exploiting EST databases for the development and characterization of gene-derived SSR markers in barley (Hordeum vulgare L.). Theor Appl Genet 2003, 106:411-422.
25. Metzgar D, Byfoot J, Willis C: Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res 2000, 10:72-80.
26. Nagy I, Sjgael A, Sasvaci Z, Roder M, Ganal M: Development, characterization, and transferability to other Solanaceae of microsatellite markers in pepper (Capsicum annuum L.). Genome Res 2007, 19:668-688.
27. Portis E, Nagy I, Sasvaci Z, Stgabe A, Barchi L, Lanteri S: The design of Capsicum spp. SSR assays via analysis of in silico DNA sequence, and their potential utility for genetic mapping. Plant Science 2007, 172:640-648.
28. Katti MK, Prabhakar KR, Gupta VS: Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 2001, 18:1161-1167.
29. Chen ECL: Maize simple repetitive DNA sequences: abundance and allele variation. Genome 1996, 39:866-873.
30. Kanety RV, Rola ML, Matthews DE, Sorrells ME: Data mining for simple sequence repeats in expressed sequence tags from barely, maize, rice, sorghum and wheat. Plant Mol Biol 2002, 48:501-510.
31. Lewin BV: Genes, Oxford University Press, New York; 1994.
32. Lagercrantz U, Ellequin H, Andersson L: The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 1993, 21:1111-1115.
33. Loingen M, Olivi F, Morel S, Soudriele P: Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 2000, 100:809-805.
34. Weber JL: Informativeness of human (dC-dA)n,(dG-dT)n polymorphisms. Genomics 1990, 7:524-530.
35. Liewkwattanaewain C, Ritland C, El-Kassaby YA, Ritland K: Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 2004, 109:361-369.
36. Eujayl I, Sorrells ME, Baum AP, Wolters P, Powell W: Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 2002, 104:399-407.
37. Park YH, Alabady MS, Ullot B, Siller E, Willams TA, Yu J, Stelly DM, Kohel RJ, El-Shiemy OM, Cantrell RG: Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Genet Genom 2005, 274:248-254.
38. Han Z, Giao W, Song Y, Zhang T: Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboresum in allotetraploid cotton. Mol Genet Genom 2004, 272:308-327.
39. Reddy OUK, Peper AE, Abdurrahmonov I, Saha S, Jenkins JN, Brooks T, Deolek Y, Ei ZK, KM: New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cotton Sci 2001, 5:103-113.
40. Nguyen TB, Giband M, Brottier T, Risterucci AM, Lacompe JA: Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 2004, 109:167-175.
41. Ishikih S, Uchiyama T, Tashiro Y, Miyaizaki S: RFLP analysis of a PCR amplified region of chloroplast DNA in eggplant and related Solanum species. Euphytica 1998, 102:295-299.
42. Ishihaki S, Suzuki S, Yamashita K: RFLP analysis of mitochondrial DNA in eggplant and related Solanum species. Genetic research and crop evolution 2003, 50:133-137.
43. Olimstead RG, Palmer JD: Implications for the phylogeny, classification, and biogeography of Solanum from cpDNA restriction site variation. Sys Bot 1997, 22:521-529.
44. Provann J, Powell W, Waugh R: Microsatellite analysis of relationships within cultivated potato (Solanum tuberosum). Theor Appl Genet 1996, 92:1078-1084.
45. Smulders MJM, Bredemeijer G, Ruskortekaas W, Arens P, Vosman B: Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 1997, 94:264-272.
46. Varshney RK, Graner A, Sorrells ME: Genic microsatellite markers: their characteristics, development and application to plant breeding and genetics. Trends Biotech 2005, 23:48-55.
47. Scott KD, Egler P, Seaton P, Rossetto M, Aplet EM, Lee LS, Henry RJ: Analysis of SSRs derived from grape ESTs. Theor Appl Genet 2000, 100:723-726.
48. Portis E, Nervo G, Cavallanti F, Barchi L, Lanteri S: Multivariate analysis of genetic relationships between Italian pepper landraces. Crop Sci 2006, 46:2517-2525.
49. Mazzucato A, Papa R, Bitocchi E, Mosconi P, Nanni L, Negri V, Picarella ME, Siligato F, Sorensi GP, Tiranti B, Veronesi F: Genetic
diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet 2008, 5:657-669.

51. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.

52. Thompson JD, Higgins DG, Gibson TJ: Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weighting matrix choice. Nucleic Acids Res 1994, 22:4673-4680.

53. Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology 2000:365-386 [http://frodo.wi.mit.edu/primer3/primer3_www.html]. Humana Press, Totowa NJ.

54. Doyle JJ, Doyle JL: Isolation of plant DNA from fresh tissue. Focus 1990, 12:13-14.

55. Jackson JA, Matthews D: Modified inter-simple sequence repeat PCR protocol for use in conjunction with the Li-Cor gene Imager(D2) DNA analyzer. BioTechniques 2000, 28:914-917.

56. Bostein D, White RL, Skolnick M, Davis RW: Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 1980, 32:314-331.

57. Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrels ME: Optimizing parental selection for genetic linkage maps. Genome 1992, 36:181-186.

58. Nei M, Li WH: Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 1979, 76:5269-5273.

59. Sneth P, Sokal RR: Numerical taxonomy. Freeman WH, San Francisco 1973.

60. Rohlf FJ: NTSYS-pc Numerical Taxonomy and Multivariate Analysis System version 2.02 User Guide. 1998.