Low \textit{ABCB1} Gene Expression Is an Early Event in Colorectal Carcinogenesis

Vibeke Andersen\textsuperscript{1,2,3,*}, Ulla Vogel\textsuperscript{4}, Sine Godiksen\textsuperscript{5}, Franz B. Frenzel\textsuperscript{5}, Mona Sæbø\textsuperscript{6}, Julian Hamfjord\textsuperscript{7}, Elin Kure\textsuperscript{7,8,*}, Lotte K. Vogel\textsuperscript{5,9}

\textsuperscript{1} Medical Department, Hospital of Southern Jutland, Aabenraa, Denmark, \textsuperscript{2} Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark, \textsuperscript{3} Medical Department, Regional Hospital Viborg, Viborg, Denmark, \textsuperscript{4} National Research Centre for the Working Environment, Copenhagen, Denmark, \textsuperscript{5} Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark, \textsuperscript{6} Telemark University College, Faculty of Arts and Sciences, Department of Environmental and Health Studies, Telemark, Norway, \textsuperscript{7} Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway

\section*{Abstract}

The \textit{ABCB1/MDR1} gene product \textit{ABCB1}/P-glycoprotein is implicated in the development of colorectal cancer (CRC). \textit{NFKB1} encodes transcription factors regulating expression of a number of genes including \textit{ABCB1}. We have previously found association between the \textit{ABCB1} C-rs3789243-T polymorphism and CRC risk and interactions between the \textit{ABCB1} C-rs3789243-T and C3435T polymorphisms and meat intake in relation to CRC risk (Andersen, BMC Cancer, 2009, 9, 407). \textit{ABCB1} and \textit{NFKB1} mRNA levels were assessed in intestinal tissue from 122 CRC cases, 101 adenoma cases (12 with severe dysplasia, 89 with mild-to-moderate dysplasia) and from 18 healthy individuals, together with gene polymorphisms in \textit{ABCB1} and \textit{NFKB1}. \textit{ABCB1} mRNA levels were highest in the healthy individuals and significantly lower in mild/moderate and severe dysplasia tissue (P \textless 0.05 for both), morphologically normal tissues close to the tumour (P \textless 0.05), morphologically normal tissue at a distance from the tumour (P \textless 0.05) and CRC tissue (P \textless 0.001). Furthermore, \textit{ABCB1} mRNA levels were lower in adenomas and carcinomas compared to morphologically normal tissue from the same individuals (P \textless 0.01). The \textit{ABCB1} C-rs3789243-T and \textit{NFKB1} -94ins/del homozygous variant genotypes were associated with low \textit{ABCB1} mRNA levels in morphologically normal sigmoid tissue from adenoma cases (P \textless 0.05 for both). \textit{NFKB1} mRNA levels were lower in both tumour and normal tissue from cancer patients (P \textless 0.001) as compared to healthy individuals but we were unable to show association between \textit{NFKB1} -94ins/del genotype and \textit{NFKB1} mRNA levels. This study suggests that low \textit{ABCB1} mRNA levels are an early event in CRC development and that the two polymorphisms affect \textit{ABCB1} mRNA levels whereas low \textit{NFKB1} mRNA levels occur later in carcinogenesis. Low \textit{ABCB1} protein levels may promote colorectal carcinogenesis through increasing intracellular exposure to carcinogenic \textit{ABCB1} substrates.

\section*{Introduction}

Colorectal cancer (CRC) constitutes the second most common cancer in the Western world and the prevalence is expected to increase due to demographic trends and adaptation to westernized lifestyle in developing countries. In the Western world, one in 20 will develop CRC before the age of 75.

\textit{ABCB1}/P-glycoprotein is a membrane protein, encoded by \textit{ABCB1/MDR1}, which transports substrates from the enterocytes to the intestinal lumen, thereby, restricting the exposure of the enterocytes to the substrates of the \textit{ABCB1} transporter. Known substrates include various xenobiotics and endogenous compounds such as cholesterol, IL-1\textbeta, IL-2, IL-4, and IFN\gamma [1]. The \textit{ABCB1} has been implicated in intestinal carcinogenesis in animal models and in epidemiological studies. \textit{Abcb1/mdr1a} knock-out mice develop colitis and later intestinal adenocarcinomas [2] suggesting that the absence of \textit{ABCB1} confers risk of inflammation-related CRC. In human, \textit{ABCB1} polymorphisms are associated with risk of CRC in some but not all studies [3–6]. The \textit{ABCB1} intron 3 C-rs3789243-T is a marker polymorphism and was found to be associated with risk of CRC in a prospective, population-based study (OR = 1.52, 95\%CI 1.12–2.06) [3]. Similarly, a meta-analysis of case-control studies found an increased risk of CRC among carriers of the combined C3435T and G2677T/A wildtype alleles in Caucasians (OR = 1.22, 95\%CI 1.03–1.44). In a subsequent study, the C3435T polymorphism was assessed in three large cohorts [5]. The C3435T C-allele was associated with a low risk of CRC (OR = 0.79, 95\%CI 0.66–0.96) in the cohort from Southwest Germany (1809 cases) and a high risk, although not statistically significant, in the cohort from Northern Germany (2169 cases) whereas no change of risk was found in the Czech cohort (699 cases) [5].

\textit{ABCB1} levels in solid tumours have been determined in a few studies [7–9]. \textit{ABCB1} protein levels were found to be low in CRC.
tissue compared to well-differentiated tissue in archival material from 51 cancer patients estimated by immunohistochemistry [8]. Also, ABCB1 mRNA and protein levels were found to be lowered in renal cell carcinoma tissue compared to normal looking cortex in 82 nephrectomised cancer patients [7]. In the German study, the variant alleles of C2677T/A, and G3435T polymorphisms were associated with high ABCB1 mRNA levels in normal renal tissue [7]. In contrast, the variant alleles of 2677T and 3435T polymorphisms were associated with low mRNA levels in 73 normal liver tissue sample from Chinese patients [10]. Although intestinal ABCB1 transport activity can be determined using a model substrate [11], this has not been done on cancer cells or cancerous tissue.

The MDR1 gene has a TATA box-less promoter regulated by a large number of factors including pregnane X receptor (PXR) and nuclear factor-κB (NF-κB). The NFKB1 -94ins/del polymorphism is a four nucleotide insertion/deletion polymorphism in the promoter region of NFKB1 leading to lower transcription levels and lower protein levels of the NF-κB subunits p50 and p105 [12]. Genetically determined low NF-κB p50 levels were associated with an increased risk of CRC among Danes, whereas genetic variation in PXR was not associated with CRC risk [13].

In the present study our aim was to assess the intestinal levels of ABCB1 and NFKB1 mRNA in adenoma and CRC cases and in control subjects in order to characterize the role of ABCB1 in the development of CRC. Furthermore, we assessed the impact of genetic variants in ABCB1 and NFKB1 on the ABCB1 mRNA levels in morphologically normal and affected colon tissues.

Materials and Methods

Study Cohort

The KAM (Kolorektalkreft, arv og miljø) cohort is based on the screening group of the Norwegian Colorectal Cancer Prevention study (the NORCCAP study) in the county of Telemark and a series of clinical CRC cases operated at Telemark Hospital (Skien) and Ullevål University Hospital (Oslo) [14,15]. In short, 20,780 healthy men and women, 50–64 years of age, drawn at random from the population registry in Oslo (urban) and the county of Telemark (mixed urban and rural) were invited to have a flexible sigmoidoscopy screening examination. The KAM cohort is based on an ethnically homogeneous group of Norwegian origin.

The KAM biobank consists of samples from individuals with adenomas in the large intestine (991 adenomas and 53 hyperplastic polyps), 234 cases with CRC and 400 controls, defined as individuals with normal findings at flexible sigmoidoscopy screening. The study was performed in accordance with the Helsinki Declaration. The Regional Ethics Committee and the Data Inspectorate approved the KAM study (S-98190, 2009/2021). The ID number for the study is NCT00119912 at ClinicalTrials.gov. All participants gave verbal and written informed consent.

Biological Material

In the present study, blood samples were available from 167 cases with carcinomas, 990 cases with adenomas and 400 controls. Intestinal tissue was available from 121 cases with carcinoma, 100 cases with adenomas and 18 controls with normal endoscopic findings. From individuals with adenomas, control tissue was sampled 30 cm above the anus. From patients with carcinomas, two samples of morphologically normal tissue were taken from the surgical specimen. One sample was taken adjacent to the cancer (normal tissue 2) and the other sample was taken as distant from the cancer as possible (normal tissue 1). Complete samples were available from 75 cases with mild-moderate dysplasia, 11 cases with severe dysplasia, and 99 CRC cases. The histology of the adenomas was examined independently by two histopathologists, who categorised the degree of dysplasia as either mild/moderate (n = 87) or severe (n = 13). Consensus was reached in all cases. Carcinomas were classified according to Dukes staging.

Table 1. Characteristics of study participants.

|                                | Controls<sup>2</sup> | Individuals with Mild/Moderate Dysplasia | Individuals with Severe Dysplasia | Individuals with Carcinomas |
|--------------------------------|----------------------|----------------------------------------|----------------------------------|-----------------------------|
| Total number of persons in the study | 18                   | 89                                     | 12                               | 122                         |
| Number of men/women            | 6/12                 | 63<sup>1/2</sup>26                     | 6/6                              | 62<sup>1/5</sup>33          |
| Mean age ± SD                  | 56.8±4.5             | 56.9±3.6                               | 55.1±3.1                         | 69.4±11.9<sup>1</sup>        |

<sup>1</sup>There were significantly more males in the group with mild dysplasia and colorectal cancer compared to the group of healthy individuals (p<0.001, Chi squared test).

<sup>2</sup>The age is significant higher among patients with CRC compared to the three other groups (Kruskal-Wallis and Dunn’s Multiple Comparison test, p<0.001).

<sup>3</sup>Normal endoscopy.

doi:10.1371/journal.pone.0072119.t001
Table 2. *ABCB1* mRNA levels in morphologically non-affected and affected tissues normalised to the β-actin mRNA level.

| Variable | mRNA level in morphologically normal tissues Mean ± S.D. | p* | mRNA level in adenomas/carcinomas Mean ± S.D. | p* | p* |
|----------|--------------------------------------------------------|----|---------------------------------------------|----|----|
| Controls | 0.012±0.008                                           |    |                                             | 0.05<0.001 | 0.01<0.001 |
| Individuals with mild/moderate dysplasia | 0.009±0.004 | NS | 0.005±0.004 | <0.05 | <0.001 |
| Individuals with severe dysplasia | 0.009±0.03 | NS | 0.003±0.002 | <0.05 | <0.001 |
| Cancer patients | 0.009±0.014 (normal tissue 1) | <0.05 | 0.003±0.005 | <0.001<0.001 |
| | 0.007±0.009 (normal tissue 2) | <0.05 | | |

NS = not significant.

*p*-value for the comparison to the expression levels in normal tissue from healthy individuals using Kruskal Wallis and Dunns Multiple Comparison test.

*p*-value for the comparison of the expression levels in normal and affected tissue from the same individual using Paired Student’s t-test.

doi:10.1371/journal.pone.0072119.002

Real-time Reverse Transcription Polymerase Chain Reaction

The tissue samples were frozen as soon as possible after surgery and stored in liquid nitrogen until RNA purification. Total RNA was purified from tissue as recommended by the manufacturer using E.Z.N.A. Total RNA Kit II (cat no. R6834-02, Omega BioTek) and the RNase Free DNase kit I (cat no. E1091-01). cDNA synthesis was performed on approximately 200 ng RNA per 20 μl using the High-Capacity cDNA Archive Kit (part.no. 4375222, Applied Biosystems). Quantitative real time RT-PCR for *ABCB1* was performed on the ABI7300 sequence detection system (Applied Biosystems) in Universal PCR Master Mix (part.no 4326614, Applied Biosystems) using 240 nM probe and 200 nM primers. Primers and probe were: *ABCB1* forward 5'-CTG AGA CAG GAT GTG AGT TGG TTT-3'; *ABCB1* reverse 5'-CTT GGA ACC TAT AGC CCC TTT AA-3'; *ABCB1* probe 5'-FAM-ACC ACT GGA GCA TTG ACT ACC AGG C-BHQ-3'. NFKB1: forward primer: 5'-CAC GAA TGA CAG AGG CGT GTA-3'; reverse: 5'-GGA TTA GCT CTT TTT CCC GAT CT-3'; NFKB1-probe: 5'-FAM-CTC TTG GTG CAC CCT GAC GTT GCC-BHQ-3'.

Primers were designed within different exons and with the probe covering an exon-exon border to prevent amplification of genomic DNA (*ABCB1*) or with a primer covering an exon-exon border (*NFKB1*). Primers and probes were obtained from TAGCopenhagen (Denmark). The endogenous β-actin control was obtained using a pre-developed assay (part.no 4310881E) from Applied Biosystems. In a validation experiment, a dilution of genomic DNA (probe covering an exon-exon border to prevent amplification of 

Genotyping

Genomic DNA was isolated from blood samples according to standard procedures. *ABCB1* C-rs3789243-T genotyping data was retrieved from Andersen et al. [6]. *ABCB1* C3435T (rs1045642) and *NFKB1* -94ins/del (rs1045642) were genotyped by KBioscience (kbioscience.co.uk). For *ABCB1*, C was considered as the wildtype allele even though it was not the major allele, since this is the commonly used nomenclature.

Statistics

GraphPad Prism 4 was used for the statistic calculations. The data were not adjusted for gender since the incidence ratio of CRC between the genders is 1:1 in Norway. Kruskal Wallis and Dunns Multiple Comparison test was used to compare the mRNA level of all intestinal tissues and Paired Student’s t-test was used for comparison of affected tissue and normal tissue using the continuity correction.

Results

*ABCB1* mRNA Levels in Intestinal Tissue

Study participants are described in Table 1. *ABCB1* mRNA levels were significantly lowered in dysplastic tissue (P<0.01), morphologically normal tissues 1 and 2 from cancer patients (P<0.01, for both) and tumour tissue (P<0.001) compared to healthy individuals (Figure 1). In order to elucidate whether *ABCB1* mRNA levels are diminished as an early event in colorectal carcinogenesis, individuals with adenomas were further subdivided into mild/moderate dysplasia (N = 89) and severe dysplasia (N = 12) (Table 2). Table 2 shows a low level of *ABCB1* mRNA already in mild/moderate dysplasia which is maintained at a low level throughout carcinogenesis. Comparing *ABCB1* mRNA levels, a significantly lower mRNA level was found in the mild/moderate adenoma, severe adenoma and CRC tissues (Table 2) as compared to morphologically normal tissue from the same individuals. There was no correlation between the *ABCB1* mRNA levels and age, gender or Duke’s stage of the carcinoma (Dukes stage A (n = 19), stage B (n = 47), and stage C (n = 29)).

Genetic Polymorphisms and *ABCB1* mRNA Levels

Figure 2 shows *ABCB1* mRNA levels in intestinal adenoma cases (left panel) and carcinoma cases (right panel) subdivided by *ABCB1* C-rs3789243-T, C3435T, and *NFKB1* -94ins/del genotypes, respectively. In morphologically normal sigmoid tissue from the intestinal adenoma cases, significantly lower *ABCB1* mRNA levels were found for carriers of the *ABCB1* C-rs3789243-T variant homozygous genotype compared to the homozygous wildtype carriers (P<0.05). Furthermore, the *NFKB1* del/del genotype was associated with low *ABCB1* mRNA level compared with the heterozygous genotype (P<0.05). Similar trends, however not
Figure 2. Relation between ABCB1 C-rs3789243-T, C3435T and NFKB1 -94ins/del polymorphisms and ABCB1 mRNA level in morphologically normal and affected intestinal tissue from individuals with adenomas (left panel) and CRC (right panel). The number of individuals with each genotype is indicated in brackets above the column. *P-value <0.05.
doi:10.1371/journal.pone.0072119.g002
NFKB1 mRNA Levels in Intestinal Tissue

Generally the NFKB1 mRNA levels were significantly lower in tissues from cancer patients but unaffected in individuals with dysplasia. NFKB1 mRNA levels were significantly lower in morphologically normal tissues 1 and 2 from cancer patients, and tumour tissue (P<0.001 for all) compared to healthy individuals (Figure 3). We found no difference between affected and non-affected tissue in individuals with dysplasia or cancer patients (Table 3). There was no correlation between the NFKB1 mRNA levels and age, gender, or Duke’s stage of the carcinoma.

Table 3. NFKB1 mRNA levels in morphologically normal and affected tissues normalised to the β-actin mRNA level.

| Variable | mRNA level in morphologically normal tissues ± S.D. | p* | mRNA level in adenomas/carcinomas Mean ± S.D. | Mean P* | p# |
|----------|---------------------------------------------------|----|---------------------------------------------|--------|----|
| Controls | 0.020±0.004                                       |    | 0.021±0.006                                 | NS     | NS |
| Individuals with mild/moderate dysplasia | 0.019±0.004 | NS | 0.013±0.005                                 | <0.001 | NS |
| Cancer patients | | | | | |
| Normal tissue (1) | 0.014±0.008 (normal tissue 1) | <0.001 | 0.013±0.005 | <0.001 | NS |
| Normal tissue (2) | 0.014±0.008 (normal tissue 2) | <0.001 | " | NS | NS |

NS = not significant.

*p-value for the comparison to the expression levels in tissue from healthy individuals using Kruskal Wallis and Dunn’s Multiple Comparison test.

#p-value for the comparison of the expression levels in normal and affected tissue from the same individual using Paired Student’s t-test.

doi:10.1371/journal.pone.0072119.003
polymorphisms make identification of causal variants difficult [17]. Thus, it is most likely that the polymorphism is biologically non-functional and the detected association with ABCB1 mRNA levels is caused by linkage to one or more functional polymorphisms [17]. The studied NFKB1 ATTG ins/del polymorphism is a functional region in the promoter region of NFKB1 encoding the p50 and p105 subunits of NF-κB. The deletion abolishes a transcription factor binding site in the promoter region and leads to lower NF-κB p50 synthesis [12]. However, we found no association between NFKB1 ins/del genotype and NFKB1 mRNA levels. It seems contradictory that we are able to find association between the NFKB1 -94ins/del polymorphism and ABCB1 mRNA levels but not with NFKB1 mRNA levels. The reason might be that even relatively small differences in p50 protein levels may be sufficient to change transcription rates of target genes as shown by Kaban et al. [12]. Alternatively, it may be due to the relative low number of individuals analysed. Expression of C-reactive protein is known to be activated by the NF-κB p50 dimer and the NFKB1 ins/del polymorphism was previously shown to be associated with blood levels of C-reactive protein in a study group of more than 1800 women [18].

Furthermore, our results suggests that the observed low ABCB1 mRNA level in adenoma tissue must be caused by changes is the concentration of transcription factors other than NF-κB p50 as NFKB1 mRNA levels was unchanged in adenoma tissue.

In individuals with adenomas, we found that carriers homozygous for the ABCB1 C-rs3789243-T and NFKB1-94 deletion variant alleles have significantly lower ABCB1 mRNA levels in morphologically normal tissue suggesting that these polymorphisms cause lower ABCB1 mRNA levels. In contrast, ABCB1 mRNA levels in the carcinogenic tissue and the morphologically normal tissue surrounding the tumour are lowered independently of the studied polymorphisms in ABCB1 and NFKB1 (Figure 1 and 2) suggesting any regulation by these polymorphisms is lost once adenomas have been formed. In a prospective Danish study, carriers of the NFKB1 -94 deletion and the ABCB1 intron 3 C-rs3789243-T variant alleles were at 1.45 and 1.55-fold higher risk of CRC, respectively, than carriers of the corresponding homozygous wildtype (95%CI 1.10–1.92, P=0.03 and 95%CI 1.12–2.06, P=0.03, respectively) [3,19]. In the same studies, interactions between ABCB1 and NFKB1 polymorphisms and intake of red and processed meat in relation to CRC risk were found [3,13]. ABCB1 C3435T homozygous C-allele carriers, ABCB1 C-rs3789243-T allele carriers and NFKB1 -94 deletion carriers were at high risk of CRC by meat intake (P for interaction = 0.02, 0.01, and 0.03, respectively).

At present, it is not clear how meat intake interacts with ABCB1 in relation to CRC development [19]. There are no known dietary carcinogens identified as ABCB1 substrates. Studies of abcb1 knock-out mice strongly suggest that abcb1 deficiency drives an inflammation-related carcinogenesis. The same mechanism may be important in human which is suggested by the identification of ABCB1 as a ‘risk gene’ in inflammatory bowel diseases [20].

This study used a case-control design. Because our hypothesis was biologically based, we did not correct for multiple analyses [21]. A main strength of the study is the relatively large sample size. However, in the light of the obtained P-values and the number of statistical tests performed, we cannot exclude that some of our positive findings may be due to chance.

In conclusion, this study suggests that low ABCB1 mRNA expression is an early event in CRC development. ABCB1 mRNA levels are associated with genetic variation in ABCB1. Furthermore, low levels of NFKB1 encoding NFκB p50, which is involved in regulation of ABCB1 expression is a late event in carcinogenesis. Low ABCB1 levels may promote CRC by increasing intracellular exposure to carcinogenic or inflammatory ABCB1 substrates. Further studies on the functional role of ABCB1 in carcinogenesis are warranted.

Author Contributions

Conceived and designed the experiments: VA UV LV. Performed the experiments: FBF. Analyzed the data: SG LV VA. Contributed reagents/materials/analysis tools: MS JH EK. Wrote the paper: VA. Rose the funding: VA.

References

1. Mizutani T, Masuda M, Naki E, Furumiy K, Togawa H, et al. (2008) Genuine functions of P-glycoprotein (ABCB1). Curr Drug Metab 9: 167–174.
2. Johnson RL, Fleet JC. (2012) Animal models of colorectal cancer. Cancer Metastasis Rev. 102.15.
3. Andersen V, Ostergaard M, Christensen J, Overvad K, Tjonneland A, et al. (2007) Influence of polymorphisms of ABCB1 and ABCC2 on mRNA and protein expression in normal and cancerous kidney cortex. Pharmacogenomics J 7: 56–1318.
4. He T, Mo A, Zhang K, Liu L. (2011). ABCB1/MDR1 polymorphism and colorectal cancer risk: a meta-analysis of case-controlled studies. Colorectal Dis 10–1318.
5. Damla D, Sainz J, Patrini B, Vodicka L, Naccarati A. et al. (2012) A comprehensive investigation on common polymorphisms in the MDR1/ABCB1 transporter gene and susceptibility to colorectal cancer. PLoS ONE 7: e32784.
6. Andersen V, Agerstjerne T, Jensen D, Ostergaard M, Saebo M, et al. (2009) The multidrug resistance 1 (MDR1) gene and interaction with meat intake in relation to risk of colorectal cancer in a Danish prospective case-cohort study. BMC Cancer 9: 407.
7. Haenisch S, Zimmermann U, Dauert E, Wruck CJ, Dauert P, et al. (2007) Association between the ATTG ins/del polymorphism and intake of red and processed meat in relation to colorectal cancer risk: a meta-analysis of case-control studies. Colorectal Dis 10–1318.
8. De Is, De Pa, Sesto C, Barbi F, Bussani R, et al. (2008) ABCB1 gene polymorphisms and expression of P-glycoprotein and long-term prognosis in colorectal cancer. Anticancer Res 28: 3921–3928.
9. Linn SC, Giaccone G (1995) MDR1/P-glycoprotein expression in colorectal cancer. Eur J Cancer 31A: 1291–1294.
10. Shou W, Wang D, Zhang K, Wang B, Wang Z, et al. (2012) Gene-Wide Characterization of Common Quantitative Trait Loci for ABCB1 mRNA Expression in Normal Liver Tissues in the Chinese Population. PLoS ONE 7: e46295.
11. Larsen UL, Hvidahl OL, Guldberg NC, Erikson J, Jakobsen P, et al. (2007) Human intestinal P-glycoprotein activity estimated by the model substrate digoxin. Scand J Clin Lab Invest 67: 123–134.
12. Karan AD, Okasaki T, Panduyas GI, Gallegos T, Potter P, et al. (2004) Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 13: 33–45.
13. Larsen AD, Christensen J, Overvad K, Tjonneland A, Vogel U (2010) Polymorphisms in NFKB1, PXR, LXR and risk of colorectal cancer in a prospective study of Danes. BMC Cancer 10: 484.
14. Gondal G, Grotem K, Holst B, Brethauer M, Eide T, et al. (2005) Lifestyle-related risk factors and chemoprevention for colorectal neoplasia: experience from the large-scale NORCAP screening trial. Eur J Cancer Prev 14: 373–379.
15. Skjelbred CF, Saebo M, Hjortaker A, Grotem T, Hausten L, et al. (2007) Meat, vegetables and genetic polymorphisms and the risk of colorectal carcinomas and adenomas. BMC Cancer 19: 720–220.
16. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16: 1215.
17. Kroetz DL, Pauli-Magnus C, Hodges LM, Huang CC, Kawamoto M, et al. (2003) Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenomics 13: 481–494.
18. Vogel U, Jensen MK, Due KM, Rimm EB, Wallin H, et al. (2011) The NFKB1 ATTG ins/del polymorphism and risk of coronary heart disease in three independent populations. Atherosclerosis 219: 200–204.
19. Andersen V, Holst R, Vogel U (2012) Systematic review: diet-gene interactions and the risk of colorectal cancer. Aliment Pharmacol Ther 10.
20. Ostergaard M, Ernst A, Laborious R, Daghie E, Krapul B, et al. (2009) Cyclooxygenase-2, multidrug resistance 1, and breast cancer resistance protein gene polymorphisms and inflammatory bowel disease in the Danish population. Scand J Gastroenterol 44: 65–73.
21. Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ 316: 1236–1236.