Production of the excited charm mesons D_1 and D_2^* at HERA

NPB 866, 229 (2013)

Andrii Verbytskyi, Kyiv Institute for Nuclear Research, on behalf of the ZEUS collaboration

DIS2013, Marseille, France
April 22, 2013
Introduction
Zeus at Hera

HERA:
- Collider experiments: H1 and Zeus;
- ep collisions at $E_{CMS} = 318$ GeV.

ZEUS: ~ 0.5 fb$^{-1}$ collected data,
- 130 pb$^{-1}$ between 1992 and 2000 (HERA-I);
- 370 pb$^{-1}$ between 2003 and 2007 (HERA-II).
Heavy quarks at HERA

Boson-gluon fusion:

The goal is to obtain:

- all possible excited charm meson masses, widths and angular distributions;
- branching ratios;
- charm quark fragmentation fractions.

Up to $\sim 5 \times 10^9$ c-quarks: enough for ground and excited charm analysis.
Excited charm meson spectrum

Reconstructed states:
- $c\bar{u}$: $D_1^0(2420), D_2^{*0}(2460)$
- $c\bar{d}$: $D_1^{*+}(2420), D_2^{*+}(2460)$

The states were reconstructed in their decays to D^0, D^{*+}, D^+ ("ground" states) and pions.
Ground state reconstruction
Almost **90000** D^{*+} candidates! Candidates from the mass window $(0.144 - 0.147$ GeV) are taken for the excited charm mesons analysis.
D^+ and D^0 reconstruction

\[D^+ \rightarrow K^- \pi^+ \pi^+ \]
\[D^0 \rightarrow K^- \pi^+ \]

ZEUSS

Combinations per 2 MeV

- ZEUS (373pb$^{-1}$)
 - Gauss$^{\text{mod.}+\text{bg.}}$
 - background

\[N(D^*) = 39283 \pm 452 \]
\[S(D^*) > 3 \]

MVD allows to use lifetime tagging of displaced vertices.
Neutral excited states
$D^{*+}\pi_\alpha^-$ and $D^+\pi_\alpha^-$ mass spectra and fit

The mass distributions $M(D^{*+}\pi_\alpha)$ and $M(D^+\pi_\alpha)$. The solid curves are the result of a simultaneous fit to the sum of:

- background contribution;
- D_2^0 and D_1^0 relativistic Breit-Wigner \otimes resolution;
- $D(2430)^0$ and $D(2400)^0$ wide states relativistic Breit-Wigner \otimes resolution.
$D^{*+}\pi_\alpha^-$ mass spectra in $\cos\alpha$ bins

The splitting into four bins helps to separate D_1^0, D_2^{*0}. Distribution in α, the angle between π_α and D^0 in D^{*+} CMS, is predicted to be

$$\frac{d\Gamma}{d\cos\alpha} \propto 1 + h \cos^2 \alpha,$$

where h is a helicity parameter.
Neutral states spectroscopy results

	HERA-II1(this)	HERA-I2	PDG3
$M(D_1^0)$, MeV	2423.1 ± 1.5$^{+0.4}_{-1.0}$	2420.5 ± 2.1 ± 0.9	2421.3 ± 0.6
$\Gamma(D_1^0)$, MeV	38.8 ± 5.0$^{+1.9}_{-5.4}$	53.2 ± 7.2$^{+3.3}_{-4.9}$	27.1 ± 2.7
$h(D_1^0)$	7.8$^{+6.7+4.6}_{-2.7-1.8}$	5.9$^{+3.0+2.4}_{-1.7-1.0}$	
$M(D_2^{*0})$, MeV	2462.5 ± 2.4$^{+1.3}_{-1.1}$	2469.1 ± 3.7$^{+1.2}_{-1.3}$	2462.6 ± 0.7
$\Gamma(D_2^{*0})$, MeV	46.6 ± 8.1$^{+5.9}_{-3.8}$	43 fixed	49.0 ± 1.4
$h(D_2^{*0})$	−1 fixed	−1 fixed	

1H. Abramowicz et al. ZEUS Collaboration, *Production of the excited charm mesons D_1 and D_2^{*} at HERA*, Nucl. Phys. B 866, 229-254, (2013).

2S. Chekanov et al. ZEUS Collaboration, *Production of excited charm and charm-strange mesons at HERA*, Eur. Phys. J. C 60, 25, (2009).

3J. Beringer et al., Particle Data Group Collaboration, *Review of Particle Physics (RPP)*, Phys. Rev. D 86 (2012) 010001.
Indication of S- and D-wave mixing

For mixed S/D-wave decay with the relative phase of S- and D-wave amplitudes ϕ and the fraction of S-wave $r = \frac{\Gamma_S}{\Gamma_S + \Gamma_D}$:

$$h = \frac{3(1-r-2\sqrt{2r(1-r)}\cos\phi)}{1+r+2\sqrt{2r(1-r)}\cos\phi}.$$
Charged excited states
$D^0\pi^+$ mass spectrum and fit

The solid curve is the result of a fit to the sum of:

- background contribution;
- D_2^{*+} relativistic Breit-Wigner \otimes resolution;
- D_1^+ and D_2^{*+} feed-downsa

aFeed-downs, the peaking structures appearing in case of incomplete (e.g. missing π^0) reconstruction, are also used for measurements.

$N(D_2^{*+}) = 737 \pm 164$
$N(D_2^{*+})_{FD} = 634 \pm 223$
$N(D_1^+)_{FD} = 759 \pm 183$
$S(D^0) > 0$
Charged states spectroscopy results

	HERA-II (this)	PDG
$M(D_1^+)$, MeV	$2421.9 \pm 4.7^{+3.4}_{-1.2}$	2423.4 ± 3.1
$\Gamma(D_1^+)$, MeV	25 fixed	25 ± 6
$h(D_1^+)$	3 fixed	
$M(D_2^{*+})$, MeV	$2460.6 \pm 4.4^{+3.6}_{-0.8}$	2464.4 ± 1.9
$\Gamma(D_2^{*+})$, MeV	37 fixed	37 ± 6
$h(D_2^{*+})$	-1 fixed	

- Only few previous results on D_1^+ (BABAR and CLEO);
- Good agreement with PDG.
Fragmentation fractions and branching ratios
Fragmentation fractions for excited charm mesons

Fragmentation fraction:

\[f(c \rightarrow D) = \frac{N(D)}{N(c)}. \]

Also:

\[f(c \rightarrow D^{**}) = \frac{N(D^{**})}{N(c)} = \frac{N(D^{**})}{N(D)} f(c \rightarrow D). \]

Extra assumptions on branching ratios, e.g. on sum of charged modes:

\[\mathcal{B}_{D_{2}^{*0} \rightarrow D^{+}\pi^{-}} + \mathcal{B}_{D_{2}^{*0} \rightarrow D^{*+}\pi^{-}} = \frac{2}{3}. \]
Fragmentation fractions

	$f(c \to D_1^0)$	$f(c \to D_2^{*0})$	$f(c \to D_1^+)$	$f(c \to D_2^{*+})$
HERA-II	$2.9 \pm 0.5^{+0.5}_{-0.5}$	$3.9 \pm 0.9^{+0.8}_{-0.6}$	$4.6 \pm 1.8^{+2.0}_{-0.3}$	$3.2 \pm 0.8^{+0.5}_{-0.2}$
HERA-I	$3.5 \pm 0.4^{+0.4}_{-0.6}$	$3.8 \pm 0.7^{+0.5}_{-0.6}$		
OPAL3	$2.1 \pm 0.7 \pm 0.3$	$5.2 \pm 2.2 \pm 1.3$		

- **ZEUS** measurements of fragmentation fractions are the most precise and supports fragmentation universality;
- First measurements of $f(c \to D_1^+)$ and $f(c \to D_2^{*+})$.

3K. Ackerstaff et al., Production of P wave charm and charm - strange mesons in hadronic Z^0 decays, Z. Phys. C 76 (1997) 425
Branching ratios

	$\mathcal{B}_{D_2^{*0} \rightarrow D^+ \pi^-}$	$\mathcal{B}_{D_2^{*+} \rightarrow D^0 \pi^+}$
HERA-II	$1.4 \pm 0.3^{+0.3}_{-0.3}$	$1.1 \pm 0.4^{+0.3}_{-0.2}$
HERA-I	$2.8 \pm 0.8^{+0.5}_{-0.6}$	
PDG	1.56 ± 0.16	$1.9 \pm 1.1 \pm 0.3$
Model A	2.280 ± 0.007	2.266 ± 0.015
Model B	$2.3 \ldots 3.0$	

4. P. Colangelo et. al., New meson spectroscopy with open charm and beauty, Phys. Rev. D 86 (2012) 054024
5. A. F. Falk and M. E. Peskin, Production, decay, and polarization of excited heavy hadrons, Phys. Rev. D 49 (1994) 3320 and others
Conclusions

The following quantities were measured using HERA-II data:

- masses of D_1 and D_2^* states;
- widths of neutral states;
- the fractions of c-quarks hadronising into D_1 and D_2^* (including one of the first measurements of the D_1^+);
- ratios of branching fractions of the two decay modes of the D_2^{*0} and $D_2^{*\pm}$ states;
- helicity parameter of D_1^0, which favours mixing of S- and D-waves in its decays to $D^{*\pm}\pi^\mp$.
Backup: 2D projected decay length significance

\[l_{\text{proj.}xy} = \vec{P}_{xy}(\vec{r}_{\text{prim.}xy} - \vec{r}_{\text{sec.}xy}), \]

\[S = \frac{l_{\text{proj.}xy}}{\sigma(l_{\text{proj.}xy})} \]
What are the feed-downs?

Feed-downs are peaking structures that appear in incomplete reconstruction.

The main condition for the feed-down appearance is an extremely restricted kinematic space for the missing particle.

The reconstructed invariant-mass signal will be shifted from the nominal value and slightly distorted.

A special procedure has been developed to measure the mass parameters from the feed-down signals.