On the metric dimension of line graphs

Min Feng Min Xu Kaishun Wang*
Sch. Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, Beijing, 100875, China

Abstract

Let \(G \) be a (di)graph. A set \(W \) of vertices in \(G \) is a resolving set of \(G \) if every vertex \(u \) of \(G \) is uniquely determined by its vector of distances to all the vertices in \(W \). The metric dimension \(\mu(G) \) of \(G \) is the minimum cardinality of all the resolving sets of \(G \). Cáceres et al. \[3\] computed the metric dimension of the line graphs of complete bipartite graphs. Recently, Bailey and Cameron \[1\] computed the metric dimension of the line graphs of complete graphs. In this paper we study the metric dimension of the line graph \(L(G) \) of \(G \). In particular, we show that \(\mu(L(G)) = |E(G)| - |V(G)| \) for a strongly connected digraph \(G \) except for directed cycles, where \(V(G) \) is the vertex set and \(E(G) \) is the edge set of \(G \). As a corollary, the metric dimension of de Bruijn digraphs and Kautz digraphs is given. Moreover, we prove that \(\lceil \log_2 \Delta(G) \rceil \leq \mu(L(G)) \leq |V(G)| - 2 \) for a simple connected graph \(G \) with at least five vertices, where \(\Delta(G) \) is the maximum degree of \(G \). Finally, we obtain the metric dimension of the line graph of a tree in terms of its parameters.

Key words: Metric dimension; resolving set; line graph; de Bruijn digraph; Kautz digraph.

1 Introduction

Let \(G \) be a (di)graph. We often write \(V(G) \) for the vertex set of \(G \) and \(E(G) \) for the edge set of \(G \). A (di)graph \(G \) is (strongly) connected if for any two distinct vertices \(u \) and \(v \) of \(G \), there exists a path from \(u \) to \(v \). In this paper we only consider finite strongly connected digraphs, or undirected simple connected graphs. For two vertices \(u \) and \(v \) of \(G \), we denote the distance from \(u \) to \(v \) by \(d_G(u, v) \). A resolving set of \(G \) is a set of vertices \(W = \{w_1, \ldots, w_m\} \) such that for each \(u \in V(G) \), the vector \(D(u|W) = (d_G(u, w_1), \ldots, d_G(u, w_m)) \) uniquely determines \(u \). The metric dimension of \(G \), denoted by \(\mu(G) \), is the minimum cardinality of all the resolving sets of \(G \).

Metric dimension of graphs was introduced in the 1970s, independently by Harary and Melter \[10\] and by Slater \[13\]. Metric dimension of digraphs was first studied by Chartrand et al. in \[5\] and further in \[6\]. Fehr et al. \[8\] investigated the metric dimension of Cayley digraphs. In graph theory, metric dimension is a parameter that has appeared in various applications, as diverse as network discovery and verification \[2\], strategies for the Mastermind game \[7\], combinatorial optimization \[12\].

*Corresponding author. E-mail address: wangks@bnu.edu.cn
and so on. It was noted in [9] p. 204 and [11] that determining the metric dimension of a graph is an NP-complete problem.

Let $L(G)$ denote the line graph of a (di)graph G. For the complete bipartite graph $K_{m,n}$, Cáceres et al. [3] proved that

$$\mu(L(K_{m,n})) = \begin{cases} \lceil \frac{2(m+n-1)}{3} \rceil, & m \leq n \leq 2m - 1, n \geq 2, \\ n - 1, & n \geq 2m. \end{cases}$$

For the complete graph K_n when $n \geq 6$, Bailey and Cameron [1] proved that $\mu(L(K_n)) = \lceil \frac{2n}{3} \rceil$.

Motivated by these results, in this paper we study the metric dimension of the line graph of a (di)graph. In Section 2, we show that $\mu(L(G)) = |E(G)| - |V(G)|$ for a strongly connected digraph G except for directed cycles. As a corollary, the metric dimension of de Bruijn digraphs and Kautz digraphs, which are two families of famous networks, is given. In Section 3, we prove that $\lceil \log_2 \Delta(G) \rceil \leq \mu(L(G)) \leq |V(G)| - 2$ for a connected graph G with at least five vertices, where $\Delta(G)$ is the maximum degree of G. Finally, we obtain the metric dimension of the line graph of a tree in terms of its parameters.

2 Line graph of a digraph

Let G be a digraph. For a directed edge $a = (x, y)$ of G, we say that x is the head of a and y is the tail of a; we also say that a is the out-going edge of x and the in-coming edge of y. For $x \in V(G)$, we denote the set of all out-going edges of x by $E_G^+(x)$ and the set of all in-coming edges of x by $E_G^-(x)$. The line graph G of the digraph $L(G)$ with the edges of G as its vertices, and where (a, b) is a directed edge in $L(G)$ if and only if the tail of a is the head of b in G. For two distinct vertices $a = (x_1, x_2), b = (y_1, y_2)$ of $L(G)$, we have

$$d_{L(G)}(a, b) = d_G(x_2, y_1) + 1. \quad (1)$$

Note that $\mu(L(G)) = 1$ if G is a directed cycle.

Theorem 2.1 If G is a strongly connected digraph except for directed cycles, then

$$\mu(L(G)) = |E(G)| - |V(G)|.$$

Proof. Let R be a resolving set of $L(G)$ with the minimum cardinality. For each vertex x of G, since G is strongly connected, $E_G^-(x) \neq \emptyset$. If $|E_G^-(x)| \geq 2$, pick two distinct edges $a, b \in E_G^-(x)$. For any $c \in V(L(G)) \setminus \{a, b\}$, since $d_{L(G)}(a, c) = d_{L(G)}(b, c), a \in R$ or $b \in R$. It follows that $|E_G^-(x) \cap R| \geq |E_G^-(x)| - 1$. If $|E_G^-(x)| = 1$, the above inequality is directed. By $R = \bigcup_{x \in V(G)}(E_G^-(x) \cap R)$, we obtain

$$\mu(L(G)) = |R| \geq \sum_{x \in V(G)}(|E_G^-(x)| - 1) = |E(G)| - |V(G)|. \quad (2)$$

Let W be a set obtained from $E(G)$ by deleting one in-coming edge of each vertex of G. Since G is not a directed cycle, $W \neq \emptyset$. We shall prove that W is a resolving
set of $L(G)$. It suffices to show that, for any two distinct edges $a = (x_1, x_2)$ and $b = (y_1, y_2)$ in $E(G)\setminus W$, there exists an edge $c \in W$ such that

$$d_{L(G)}(a, c) \neq d_{L(G)}(b, c).$$

Let A denote the set of all the heads of each edge of W. Pick $z_0 \in A$ satisfying $d_G(x_2, z_0) < d_G(x_2, z)$ for any $z \in A$.

Case 1. $d_G(x_2, z_0) \neq d_G(y_2, z_0)$. Pick $c \in E_G^+(z_0) \cap W$. By (1), (3) holds.

Case 2. $d_G(x_2, z_0) = d_G(y_2, z_0)$. Owing to $a, b \not\in W$, $x_2 \neq y_2$, which implies $z_0 \neq x_2$. Let $P_{x_2, z_0} = (v_0 = x_2, v_1, \ldots, v_k = z_0)$ be a shortest path from x_2 to z_0 and $P_{y_2, z_0} = (u_0 = y_2, u_1, \ldots, u_k = z_0)$ be a shortest path from y_2 to z_0. Suppose i denotes the minimum index such that $v_i = u_i$. Since $d_G(x_2, v_{i-1}) < d_G(x_2, v_i) \leq d_G(x_2, z_0)$, we have $v_{i-1} \not\in A$, which implies $(v_{i-1}, v_i) \not\in W$. Hence $(u_{i-1}, u_i) \in W$ and $u_{i-1} \in A$. Pick $c = (u_{i-1}, u_i)$. By (1), we have

$$d_{L(G)}(a, c) = d_G(x_2, u_{i-1}) + 1$$

$$\geq d_G(x_2, z_0) + 1 = d_G(y_2, z_0) + 1$$

$$\geq d_G(y_2, u_i) + 1 = d_{L(G)}(b, c) + 1$$

$$> d_{L(G)}(b, c),$$

so (3) holds.

Therefore, W is a resolving set of $L(G)$ with size $|E(G)| - |V(G)|$, which implies that $\mu(L(G)) \leq |E(G)| - |V(G)|$. By (2), the desired result follows.

Let K_d be the complete digraph with d vertices. A flowered complete digraph of order d, denoted by K_d^+, is a digraph obtained from K_d by appending a self-loop at each vertex. Let

$$B(d, 1) = K_d^+, \quad B(d, n) = L(B(d, n - 1));$$

$$K(d, 1) = K_{d+1}, \quad K(d, n) = L(K(d, n - 1)).$$

Then $B(d, n)$ is the de Bruijn digraph and $K(d, n)$ is the Kautz digraph. By [14] Chapter 3, $B(d, n)$ and $K(d, n)$ are strongly connected and

$$|V(B(d, n))| = d^n, \quad |E(B(d, n))| = d^{n+1},$$

$$|V(K(d, n))| = d^n, \quad |E(K(d, n))| = d^{n+1} + d^n.$$

As a corollary of Theorem 2.1, we get the metric dimension of de Bruijn digraphs and Kautz digraphs, respectively.

Corollary 2.2 Let integers $d \geq 2$ and $n \geq 1$. Then

(i) $\mu(B(d, n)) = d^{n-1}(d - 1);$

(ii) $\mu(K(d, n)) = \begin{cases}
 d^n, & \text{if } n = 1, \\
 d^{n-2}(d^2 - 1), & \text{if } n \geq 2.
\end{cases}$
3 Line graph of a graph

Let G be a graph with at least two vertices. The line graph of G is the graph $L(G)$ with the edges of G as its vertices, and where two edges of G are adjacent in $L(G)$ if and only if they are adjacent in G.

If G has at most four vertices, it is routine to compute the metric dimension of $L(G)$. Next we shall consider the case $|V(G)| \geq 5$.

Theorem 3.1 If G is a connected graph with at least five vertices, then

$$[\log_2 \Delta(G)] \leq \mu(L(G)) \leq |V(G)| - 2,$$

where $\Delta(G)$ is the maximum degree of G.

Proof. Let v be a vertex of degree $\Delta(G)$, and let $\{f_1, \ldots, f_{\Delta(G)}\}$ be the set of all the edges incident to v. Suppose $W = \{e_1, \ldots, e_{\mu(L(G))}\}$ is a resolving set of $L(G)$ with the minimum cardinality. For each $j \in \{1, \ldots, \mu(L(G))\}$, let $d_j = \min\{d_G(v, w) \mid w \text{ is incident to } e_j\}$. Then $d_{L(G)}(f_i, e_j) = d_j$ or $d_j + 1$. Therefore, the size of $D = \{D(f_i\vert W)\mid i = 1, \ldots, \Delta(G)\}$ is at most $2^{\mu(L(G))}$. Since $D(f_i\vert W) \neq D(f_k\vert W)$ for $i \neq k$, $\Delta(G) \leq 2^{\mu(L(G))}$, which implies the lower bound.

Suppose $|V(G)| = 5$. If G is isomorphic to the path P_5 or the cycle C_5, since $\mu(L(P_5)) = 1$ and $\mu(L(C_5)) = 2$, the upper bound is directed. If G is not isomorphic to P_5 or C_5, then G has a subgraph S isomorphic to $K_{1,3}$. Since $E(S)$ is a resolving set of $L(G)$, $\mu(L(G)) \leq 3$, which implies the upper bound.

Now suppose $|V(G)| \geq 6$. Let T be a spanning tree of G, and let v be a vertex of degree 1 in T. Suppose T_1 is the subgraph of T induced on $V(T) \setminus \{v\}$. We shall prove that $E(T_1)$ is a resolving set of $L(G)$. It suffices to show that, for any two distinct edges $a, b \in E(G) \setminus E(T_1)$, there exists an edge $e \in E(T_1)$ such that

$$d_{L(G)}(a, e) \neq d_{L(G)}(b, e). \tag{4}$$

Case 1. a or b is not incident to v. Without loss of generality, suppose a is not incident to v. Let $a = uv$. Then there exists a unique path $P_{u,v'} = (u_0 = u, u_1, \ldots, u_k = v')$ between u and u' in T where $k \geq 2$. If b is not adjacent to u_0u_1, then (4) holds for $e = u_0u_1 \in E(T_1)$; if b is not adjacent to $u_{k-1}u_k$, then (4) holds for $e = u_{k-1}u_k \in E(T_1)$. Now we assume that b is adjacent to both u_0u_1 and $u_{k-1}u_k$.

Case 1.1. $k = 2$. Then b is incident to u_1. Suppose $b = ux$, where $x \in V(G) \setminus \{u_0, u_1, u_2\}$. Let $S = \{u_0, u_1, u_2, x\}$ and $\overline{S} = V(T_1) \setminus S$. Since $|V(T_1)| = |V(G)| - 1 \geq 5$, there exists an edge $e \in [S, \overline{S}]_{T_1}$, where $[S, \overline{S}]_{T_1}$ is the set of edges between S and \overline{S} in T_1. If e is incident to u_0 or u_2, then $d_{L(G)}(a, e) = 1$ and $d_{L(G)}(b, e) = 2$; if e is incident to u_1 or x, then $d_{L(G)}(a, e) = 2$ and $d_{L(G)}(b, e) = 1$. So (4) holds.

Case 1.2. $k \geq 3$. Note that b is incident to u_1 or u_{k-1}. Without loss of generality, assume that b is incident to u_1. Let $e = u_1u_2 \in E(T_1)$. Then $d_{L(G)}(a, e) = 2 \neq 1 = d_{L(G)}(b, e)$, (4) holds.

Case 2. Both a and b are incident to v. Let $a = vx$, $b = vy$, $S = \{x, y\}$ and $\overline{S} = V(T_1) \setminus S$. Pick $e \in [S, \overline{S}]_{T_1}$. Note that e is not incident to v. Similar to Case 1.1, e satisfies (4).
Therefore, $E(T_1)$ is a resolving set of $L(G)$ with size $|V(G)| - 2$, and the upper bound is valid. \hfill \Box

The lower bound in Theorem 3.1 can be attained if G is a path. The fact that $\mu(L(K_{1,n})) = n - 1$ implies that the upper bound in Theorem 3.1 is tight. It seems to be difficult to improve the bound for general graphs. However, for a tree T, we can obtain the metric dimension of $L(T)$ in terms of some parameters of T.

Let T be a tree. A vertex of degree 1 in T is called an end-vertex. A vertex of degree at least 3 in T is called a major vertex. An end-vertex u of T is said to be a terminal vertex of a major vertex v of T if $d_T(u, v) < d_T(u, w)$ for every other major vertex w of T. A major vertex v of T is an exterior major vertex of T if there exists a terminal vertex of v in T. We denote the set of all the exterior major vertices in T by $\text{EX}(T)$; For $v \in \text{EX}(T)$, we denote the set of all the terminal vertices of v by $\text{TER}(v)$. Let $\sigma(T) = \sum_{v \in \text{EX}(T)} |\text{TER}(v)|$ and $\text{ex}(T) = |\text{EX}(T)|$. Chartrand et al. [4] computed the metric dimension of a tree in terms of $\sigma(T)$ and $\text{ex}(T)$.

Proposition 3.2 (4) If T is a tree that is not a path, then $\mu(T) = \sigma(T) - \text{ex}(T)$.

Finally, we shall compute the metric dimension of the line graph of a tree. If P is a path, then $\mu(L(P)) = 1$.

Proposition 3.3 If T is a tree that is not a path, then $\mu(L(T)) = \sigma(T) - \text{ex}(T)$.

Proof. Let R be a resolving set of $L(T)$ with the minimum cardinality. For a given vertex $v \in \text{EX}(T)$, we claim that

$$\sum_{u \in \text{TER}(v)} |R \cap E(P_{u,v})| \geq |\text{TER}(v)| - 1, \quad (5)$$

where $P_{u,v}$ is the unique path between u and v in T. To the contrary, suppose that there exist two different terminal vertices u_1, u_2 of v such that $R \cap E(P_{u_1,v}) = R \cap E(P_{u_2,v}) = \emptyset$. Let e_1 and e_2 be the edges incident to v in $P_{u_1,v}$ and $P_{u_2,v}$, respectively. For each $e \in R$, we have $d_{L(T)}(e_1, e) = d_{L(T)}(e_2, e)$, contradicting the fact that R is a resolving set of $L(T)$. Hence our claim is valid. Since $|R| \geq \sum_{v \in \text{EX}(T)} \sum_{u \in \text{TER}(v)} |R \cap E(P_{u,v})|$, by (5) we have

$$\mu(L(T)) = |R| \geq \sum_{v \in \text{EX}(T)} (|\text{TER}(v)| - 1) = \sigma(T) - \text{ex}(T). \quad (6)$$

Let W be a set obtained from the end-vertex set of T by deleting one terminal vertex of each exterior major vertex of T. In [4] Theorem 5, Chartrand et al. proved that W is a resolving set of T with size $\sigma(T) - \text{ex}(T)$. Let W_L be the set of all the edges each of which is incident to one vertex of W. Then $|W_L| = |W|$. We will show that W_L is a resolving set of $L(T)$.

For any two distinct edges a and b of T, there exists a unique path

$$(w_0, w_1, \ldots, w_k)$$
such that $a = w_0w_1$ and $b = w_{k-1}w_k$. Since $w_0 \neq w_k$, there exists a vertex $w \in W$ such that $d_T(w_0, w) \neq d_T(w_k, w)$. Without loss of generality, assume that $d_T(w_0, w) < d_T(w_k, w)$. Let e be the edge incident to w. Then $e \in W_L$.

Case 1. $w_1 \in V(P_{w_0, w})$. Then

$$d_{L(T)}(a, e) = d_T(w_0, w) - 1 < d_T(w_k, w) - 1 \leq d_{L(T)}(b, e).$$

Case 2. $w_1 \not\in V(P_{w_0, w})$. Then $(w_k, w_{k-1}, \ldots, w_1, P_{w_0, w})$ is the unique path between w_k and w. It follows that

$$d_{L(T)}(a, e) = d_T(w_0, w) < d_T(w_{k-1}, w) = d_{L(T)}(b, e).$$

Therefore, W_L is a resolving set of $L(T)$, which implies that $\mu(L(T)) \leq \sigma(T) - \text{ex}(T)$. By \[\text{Proposition 3.3}\] and Proposition \[\text{Proposition 3.3}\] $\mu(T) = \mu(L(T))$ for a tree T. It seems to be interesting to characterize a graph G satisfying $\mu(G) = \mu(L(G))$.

Acknowledgement

This research is supported by NSF of China (10871027), NCET-08-0052, and the Fundamental Research Funds for the Central Universities of China.

References

[1] R.F. Bailey and P.J. Cameron, Base size, metric dimension and other invariants of groups and graphs, Bull. London Math. Soc. 43 (2011), 209-242.

[2] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal’ák, and L.S. Ram, Network discovery and verification, IEEE J. on Selected Areas in Communications 24 (2006), 2168-2181.

[3] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara and D.R. Wood, On the metric dimension of Cartesian products of graphs, SIAM J. Discrete Math. 21 (2007), 423-441.

[4] G. Chartrand, L. Eroh, M. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), 99-113.

[5] G. Chartrand, M. Rains and P. Zhang, The directed distance dimension of oriented graphs, Math. Bohemica 125 (2000), 155-168.

[6] G. Chartrand, M. Rains and P. Zhang, On the dimension of oriented graphs, Utilitas Math. 60 (2001), 139-151.

[7] V. Chvátal, Mastermind, Combinatorica 3 (1983), 325-329.

[8] M. Fehr, S. Gosselin and O.R. Oellermann, The metric dimension of Cayley digraphs, Discrete Math. 306 (2006), 31-41.
[9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.

[10] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976), 191-195.

[11] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996), 217-229.

[12] A. Sebő and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2004), 383-393.

[13] P.J. Slater, Leaves of trees, Conger. Numer. 14 (1975), 549-559.

[14] J.M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.