Corrigendum

Urbanization signatures in strong versus weak precipitation over the Pearl River Delta metropolitan regions of China
Weibiao Li, Sheng Chen, Guixing Chen, Weimin Sha, Cong Luo, Yerong Feng, Zhiping Wen and Baomin Wang
2011 Environ. Res. Lett. 6 034020

Received 8 November 2011
Published 15 December 2011

The first part of the first sentence of the acknowledgments section should read:
‘This work was supported by China National Basic Research (973) Program 2009CB421404...’
Urbanization signatures in strong versus weak precipitation over the Pearl River Delta metropolitan regions of China

Weibiao Li1,4, Sheng Chen1, Guixing Chen2, Weimin Sha2, Cong Luo3, Yerong Feng3, Zhiping Wen1 and Baomin Wang1

1 Department of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
2 Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
3 Guangzhou Central Meteorological observatory, Guangzhou 510080, People’s Republic of China
4 Address for correspondence: Department of Atmospheric Sciences, Sun Yat-sen University, 135 Xiangangxi Road, Guangzhou 510275, People’s Republic of China.

E-mail: eeslwb@mail.sysu.edu.cn (Weibiao Li)

Received 25 March 2011
Accepted for publication 2 August 2011
Published 19 August 2011
Online at stacks.iop.org/ERL/6/034020

Abstract

We assess the issues of urban effects on the precipitation over the Pearl River Delta (PRD) metropolitan regions of China. The spatial and temporal variations of strong versus weak precipitation over the PRD and surrounding nonurban areas are investigated. The results show that the urbanization signatures in strong precipitation are significantly different from those in weak precipitation over the urban areas. The PRD experiences more strong precipitation but less weak precipitation compared to surrounding nonurban regions. In addition, the strong precipitation over the PRD displays a pronounced seasonal variation. The seasonality of weak precipitation, however, is much weaker over the PRD compared to the surrounding nonurban regions. Moreover, a strengthening in the precipitation intensity, a reduction in the rainfall frequency and an increase in the convective precipitation as well as the afternoon precipitation are found over the urban areas, which are probably associated with the abundance in strong precipitation and the deficit in weak precipitation over the PRD.

Keywords: urbanization effects, precipitation, Pearl River Delta of China

1. Introduction

The Pearl River Delta (PRD), Zhu Jiang Delta or Zhusanjiao, in Guangdong province of China, is the low-lying area surrounding the Pearl River estuary where the Pearl River flows into the South China Sea. It is one the largest metropolitan regions in the world containing a total area of about 11300 square kilometers and having a population over 52 million (Guangdong Statistical Bureau2006, 2009). During the past three decades, as one of the major engines in propelling the rapid economic development of China, the PRD has experienced a rapid expansion of urban areas. Accompanying the urbanization is the rapid change in land surfaces. Satellite remote sensing has shown that there has been much more urban or built-up land and much less agricultural land over the PRD than in the surrounding areas for the last decade (Weng2002, Seto et al 2002, Seto and Fragkias 2005).

The differences in land surfaces properties between the urban and surrounding rural areas have been proved to have significant effects on the local climate. A well-recognized phenomenon of the urban climate is the urban heat island (UHI; see the review by Collier 2006), characterized by a temperature contrast between a city and its surrounding rural areas. Recently, the influences of urbanization on the local precipitation are causing increasing concern. An
Intergovernmental Panel on Climate Change report (Trenberth et al. 2007) highlighted the growing body of research linking urban related processes and regional precipitation. Increases in precipitation due to urban effects are typically observed at distances between 30 and 75 km from the city center (Landsberg 1970, Sanderson and Gorski 1978, Bornstein and Lin 2000, Shepherd et al. 2002, Shepherd 2006, Mote et al. 2007, Hand and Shepherd 2009, Halton et al. 2009). Moreover, a number of recent studies (Hand and Shepherd 2009, Kishtawal et al. 2010, Tomohiko et al. 2011) have reported a significantly increasing trend in the frequency of heavy rainfall climatology over the urban regions.

Compared with those for other metropolitan regions in the world, the urbanization effects of the PRD on precipitation are seldom investigated. On the basis of the observational data for 1988–96, Kaufmann et al. (2007) suggested that urbanization in the Pearl River Delta of China has reduced local precipitation because of the changes in surface hydrology. Seto and Kaufmann (2009) further indicated that the reduction in precipitation induced by the urban land cover change over the PRD occurs mainly during the winter months. This finding differs from previous results concerning the enhancement of precipitation by the urbanization. Some other recent studies reported an increase in precipitation and severe thunderstorms over the Pearl River Delta (Meng et al. 2007, Zhang et al. 2009).

Despite the above mentioned results providing evidence that convection and precipitation can be enhanced or initiated by urban regions, the urbanization effects of the PRD on the local precipitation still remain elusive.

It has become known from the synoptic theory that the mechanisms of strong precipitation are different from those of weak precipitation. For example, the strong (weak) precipitation is sensitive (insensitive) to the temperature lapse rate (Takemi 2010). Therefore, the urban effects on strong precipitation should be different from those on weak precipitation. However, the assessment of the urban effects on the extreme (strong or weak) precipitation has been lacking until now. Here we divide the precipitation into strong precipitation and weak precipitation to examine the urban effects on the local extreme precipitation.

The remainder of the paper is organized as follows. The data employed in this study and the background of the PRD are presented in section 2. Section 3 presents the results on the urbanization signatures in strong versus weak precipitation over the PRD. A summary is provided in section 4.

2. Data and the background of the Pearl River Delta

Given the historical scarcity and uneven distributions of in situ measurements over the PRD, data from the Tropical
Rainfall Measuring Mission (TRMM) satellite observations were employed to identify the urbanization signature in precipitation. The satellite rainfall estimates have been used to provide more uniform and continuous data for investigating the urbanization effects on precipitation (e.g., Shepherd et al. 2002). The major data sets used in this study are described as follows.

2.1. TRMM 3B42 adjusted merged-infrared precipitation (1998–2009)

TRMM 3B42 version 6 provides high spatial ($0.25^\circ \times 0.25^\circ$) and high temporal (3 h) precipitation data. These data are created by blending passive microwave data collected by the TRMM Microwave Imager (TMI), the Special Sensor Microwave Imager (SSM/I), the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), the Advanced Microwave Sounding Unit B (AMSU-B), and the IR data collected by the International Constellation of Geosynchronous Earth Orbit (GEO), based on calibration with the precipitation estimate of the TMI–PR combined algorithm (Huffman et al. 1995, Huffman 1997). Although TRMM precipitation radar (PR) provides the most directly measured surface rainfall estimates for many applications, the swath width of the PR is around 1/3 of the TMI swath width, resulting in significantly poorer sampling for many climate applications. Therefore, we choose 3B42 rather than the PR related data set in this study.

2.2. TRMM 3A12 monthly convective and stratiform precipitation (1998–2009)

In order to understand the convective and stratiform rainfall situations, TRMM TMI level-3 data set 3A12 is also used
in this study. The 3A12 data set is an accumulation of the TRMM 2A12 TMI retrieval algorithm. This data set contains monthly mean values of the convective rainfall rate as well as the stratiform rainfall rate. The 2A12 algorithm used for this product is based on the technique of Kummerow et al. (2001).

Our study region is the Pearl River Delta (PRD), which is located in the southern Chinese province of Guangdong. The PRD is anchored by the cities of Guangzhou, Foshan, Jiangmen, Zhaoqing, Dongguan, Huizhou, Zhongshan, Zhuhai, Macao, Shenzhen and Hong Kong. The Pearl River Delta Region occupies the low-lying areas alongside the Pearl River estuary where the river flows into the South China Sea. It can be defined in geographic terms as a triangle with the eastward leg extending about 120 km from Guangzhou to Hong Kong and with a westward leg of about the same length from Guangzhou to Macao. The ma in metropolitan region of the PRD is located in (22.25°N–23.5°N, 112.25°E–114.5°E). Features of urbanization over the PRD are shown in figure 1.

The PRD has a dry season during a temperate winter and two rainy seasons (Ding and Wang 2008), the first rainy season (or pre-summer rainy season) occurring in April–June dominated by the mid-latitude weather systems, and the second rainy season (or post-flooding season) occurring in July–September dominated by the tropical weather systems. The dual-peak pattern of precipitation over South China is one of the most unique climate features over the sub-tropical East Asia monsoon regions (Ding 1994).

3. Results

In this study, ‘strong precipitation’ (‘weak precipitation’) refers to the precipitation with rain rates above (below) average in TRMM 3B42. Figure 2 shows the spatial distributions of strong precipitation and weak precipitation averaging from 1998 to 2009 based on TRMM 3B42. It is interesting to note that the spatial distributions of the strong precipitation are totally different from those of weak precipitation over the PRD. In cases of the strong precipitation (figure 2(a)), the high-value areas are located over the PRD, indicating that the PRD experiences much more strong precipitation compared to surrounding nonurban regions. In cases of the weak precipitation (figure 2(b)), however, the low-value areas are located in the PRD, suggesting that the PRD experiences much less weak precipitation compared to surrounding nonurban regions.

To see the long term variations of the strong and weak precipitation associated with the rapid urbanization over the

Figure 3. Spatial distributions of heavy rainfall (≥50 mm day⁻¹) based on rain gage data for 1968–77, 1978–87, 1988–97, 1998–2007. The red circle indicates the location of the Pearl River Delta. Units: mm.

1968-1977

1978-1987

1988-1997

1998-2007
Figure 4. Time–longitude cross-section of the monthly mean strong precipitation (rain rates above average) (a) and weak precipitation (rain rates below average) (b) along the center longitude (23°N) of the PRD. The PRD metropolitan regions are located between 112.25°E and 114.5°E. Units: mm h⁻¹.
It is of note in figure 4(a) that the strong precipitation displays a much more pronounced seasonal variation over the PRD compared to surrounding nonurban regions, with a strong maximum in April–June and a weak minimum in January–February. It is suggested that the urbanization effects on the strong precipitation of the PRD are most efficient during the pre-summer rainy season (April–June) which is dominated by the mid-latitude weather systems. During the post-flooding season which is dominated by the tropical weather systems, however, the urbanization signature in the strong precipitation is negligible. In cases of weak precipitation, the seasonal variation is much weaker over the PRD compared to the surrounding nonurban regions (figure 4(b)). The mechanism involved needs further investigation.

Precipitation frequency and intensity are important factors related to the strong and weak precipitation. Figure 5 shows the annual precipitation frequency and precipitation intensity averaging from 1998 to 2009 based on TRMM 3B42 data. Here, the annual precipitation frequency is defined as the annual number of precipitation times in TRMM 3B42; the precipitation intensity is obtained through dividing the annual total precipitation by the precipitation times in TRMM 3B42. It is noted in figure 5(a) that the annual precipitation frequency over the PRD is substantially lower than for the surrounding nonurban area, suggesting that the urbanization effects of the PRD may lead to less frequent precipitation occurrence over the urban areas. On the other hand, the precipitation intensity is much stronger over the PRD compared to the surrounding nonurban areas (figure 5(b)). Therefore, the abundance in strong precipitation and the deficit in weak precipitation over the PRD are probably associated with the reduction in rainfall frequency and the strengthening in precipitation intensity over the urban areas.
Figure 6. Spatial distributions of convective rainfall (a) and stratiform rainfall (b) from TRMM 3A12 for 1998–2009. Units: mm h\(^{-1}\). The inset box shows the locations of the PRD metropolitan regions (22.25°N–23.5°N, 112.25°E–114.5°E). Units: mm h\(^{-1}\).

As revealed by the basic synoptic theory, the strong precipitation generally originates from convective clouds, while the weak precipitation is usually related to stratiform clouds. To see whether there are any differences between the convective and stratiform precipitations over the PRD, we plotted the spatial distributions of convective precipitation and stratiform precipitation on the basis of TRMM 3A12 (figure 6). It is noted in figure 6 that there are high-value areas of convective precipitation over the PRD (figure 6(a)). Another significant area of convective precipitation west of the PRD box is associated with the Yunkai Mountains (1274 m). However, the stratiform precipitation (figure 6(b)) over the PRD is almost the same as for the surrounding nonurban areas. It is suggested that the urbanization effect of the PRD seems to significantly enhance the convective rainfall rather than the stratiform rainfall, which is also associated with the increase in strong precipitation over the PRD. A number of previous studies (e.g., Stallins and Bentley 2006, Rose et al 2008, Shem and Shepherd 2009) were conducted and emphasized the urban effects on lightning or thunderstorms. They concluded that urbanization may result in an enhancement of lightning or thunderstorms. Lightning or thunderstorms and convective precipitation originate from the same initial convective and microphysical processes. Therefore, our results concerning the increase in the convective precipitation over the PRD are reasonable.

Recent studies have shown that the diurnal rainfall pattern is strongly modulated by the effects of urbanization (Burian and Shepherd 2005, Mote et al 2007). To see more aspects of the precipitation variability related to the increase in strong precipitation and decrease in weak precipitation over the PRD, we investigated the diurnal variations of the precipitation over these regions. Figure 7 shows the diurnal variations of precipitation along center longitude (113.0°E) and center latitude (23°N) of the PRD based on the TRMM 3B42 data for 1998–2009. It is noted in figure 7 that there are substantial
Figure 7. Diurnal variations of precipitation along the center longitude (113.0°E) (a) and latitude (23°N) (b) of the PRD during 1998–2009 based on TRMM 3B42 data. The PRD metropolitan regions are located in (22.25°N–23.5°N, 112.25°E–114.5°E). Units: mm h$^{-1}$.

4. Summary

Taking into account the differences of the mechanisms between strong and weak precipitation, we assess the issue of the urbanization effects of the PRD on the local precipitation by dividing the precipitation into two types: strong precipitation and weak precipitation. Interestingly, the spatial and temporal variations of strong precipitation are significantly different from those of weak precipitation over the PRD. The PRD experiences more strong precipitation and less weak precipitation compared to the surrounding nonurban regions. The strong precipitation over the PRD displays a pronounced seasonal variation, with a strong maximum in April–June and a weak minimum in January–February. The seasonality of weak precipitation is much weaker over the PRD compared to the surrounding nonurban regions.

The abundance in strong precipitation and the deficit in weak precipitation over the PRD are associated with the other precipitation features over the urban areas. The precipitation frequency over the PRD is substantially lower than for the surrounding nonurban area, suggesting that the urbanization effects of the PRD may lead to less frequent precipitation occurrence over the urban areas. On the other hand, the precipitation intensity is much stronger over the
PRD compared to the surrounding nonurban areas. Moreover, there are substantial differences in the precipitation diurnal variations between the PRD and surrounding nonurban areas. The afternoon precipitation and the convective precipitation are much more pronounced over the PRD than the surrounding nonurban areas.

As shown in other studies, the urbanization not only modifies the exchange of heat, water and momentum between the land surface and overlying atmosphere (Crun zen 2004) but also changes the composition of the atmosphere over urban areas (Pataki et al. 2003). Which are the dominant factors causing the local precipitation anomalies over urban areas? The evidence provided in this paper concerning the abundance in strong precipitation and the deficit in weak precipitation over the urban areas may highlight the studies of the related mechanisms as regards the urban environment’s impact (land use, aerosols, thermal properties) on precipitation.

Acknowledgments

This work was supported by the project 2007BAC03A02 of the National Key Technology R&D Program, the National Natural Science Foundation of China (NSFC) project 40875020 and the NSFC joint fund project U0733002. TRMM data used in this study were processed by the TRMM Science Data and Information System (TSDIS) and the TRMM Office, and are archived and distributed by the Goddard Distributed Active Archive Center.

References

Bornstein R and Lin Q 2000 Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies Atmos. Environ. 34 507–16
Burian S J and Shepherd J M 2005 Effect of urbanization on the diurnal rainfall pattern in Houston Hydrol. Processes 19 1089–103
Collier C G 2006 The impact of urban areas on weather Q. J. R. Meteorol. Soc. 132 1–25
Crun zen P J 2004 New directions: the growing urban heat and pollution island effect—impact on chemistry and climate Atmos. Environ. 38 3539–40
Ding Y H 1994 Monsoons Over China (London: Kluwer Academic) pp 12–26, 135–6
Ding Y H and Wang Z Y 2008 A study of rainy seasons in China Meteorol. Atmos. Phys. 100 121–38
Guangdong Statistical Bureau 2006 Guangdong Statistical Yearbook 2006 (Beijing: China Statistics Press) (in Chinese)
Guangdong Statistical Bureau 2009 Guangdong Statistical Yearbook 2009 (Beijing: China Statistics Press) (in Chinese)
Halmon N, Levin Z and Alper P 2009 Temporal rainfall fluctuations in Israel and their possible link to urban and air pollution effects Environ. Res. Lett. 4 025001
Hand I M and Shepherd J M 2009 An investigation of warm-season spatial rainfall variability in Oklahoma City: possible linkages to urbanization and prevailing wind J. Appl. Meteorol. Climatol. 48 251–69
Huffman G J 1997 Estimates of root-mean-square random error for finite samples of estimated precipitation J. Appl. Meteorol. 36 1191–201
Huffman G J, Adler R F, Rudolph B, Schneider U and Keehn P 1995 Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information J. Clim. 8 1284–95
Kaufmann R K, Seto K C, Schneider A, Liu Z, Zhou L and Wang W 2007 Climate response to rapid urban growth: evidence of a human-induced precipitation deficit J. Clim. 20 2299–306
Kishiwat C M, Niyogi D, Tewari M, Pielke R A Sr and Shepherd J M 2010 Urbanization signature in the observed heavy rainfall climatology over India Int. J. Climatol. 30 1908–16
Kummerow C, Hong Y, Olson W S, Yang S, Adler R F, McCollum J, Ferraro R, Petty G, Shin D B and Wilheit T T 2001 The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors J. Appl. Meteorol. 40 1801–40
Landsberg H E 1970 Man-made climate changes Science 170 1265–74
Meng W G, Yan J H and Yu H B 2007 Possible impact of urbanization on severe thunderstorms over Pearl River Delta Chin. J. Atmos. Sci. 31 364–76 (in Chinese)
Mote T L, Lacke M C and Shepherd J M 2007 Radar signatures of the urban effect on precipitation distribution: a case study for Atlanta, Georgia Geophys. Res. Lett. 34 L20710
Pataki D E, Bowling D R and Ehleringer J R 2003 Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: anthropogenic and biogenic effects J. Geophys. Res. 108 4735
Rose L S, Stallins J A and Bentley M L 2008 Concurrent cloud-to-ground lightning and precipitation enhancement in the Atlanta, Georgia (USA) urban region Earth Interact. 111–30
Sanderson M I and Gorski R 1978 The effect of metropolitan Detroit-Windsor on precipitation J. Appl. Meteorol. 17 423–7
Seto K C and Fragkias M 2005 Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics Landscape Ecology 20 871–88
Seto K C and Kaufmann R K 2009 Urban growth in South China and impacts on local precipitation Fifth Urban Research Symp. (Marseille, June 2009)
Shen W and Shepherd M 2009 On the impact of urbanization on summertime thunderstorms in Atlanta: two numerical model case studies Atmos. Res. 92 172–89
Shepherd J M 2006 Evidence of urban-induced precipitation variability in arid climate regimes J. Arid Environ. 67 607–28
Shepherd J M, Pierce H and Negri A J 2002 Rainfall modification by major urban areas: observations from spaceborne rain radar on the TRMM satellite J. Appl. Meteorol. 41 689–701
Stallins J A and Bentley M L 2006 A descriptive GIS-based assessment of urban cloud-to-ground flash distribution for Atlanta, Georgia Appl. Geogr. 26 242–59
Takemi T 2010 Dependence of the precipitation intensity in mesoscale convective systems to temperature lapse rate Atmos. Res. 96 273–85
Tomohiko I, Takeki I and Hiroshi M 2011 Diagnostic study of the effects of a large city on heavy rainfall as revealed by an ensemble simulation: a case study of central Tokyo, Japan J. Appl. Meteorol. Climatol. 50 713–28
Trenberth K E et al 2007 Observations: surface and atmospheric climate change Climate Change 2007: The Physical Science Basis ed S Solomon et al (Cambridge: Cambridge University Press) pp 235–336
Weng Q 2002 Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modeling J. Environ. Manag. 64 273–84
Zhang Q, Chong Y X, Becker S, Zhang Z, Chen Y D and Coulbath M 2009 Trends and abrupt changes of precipitation extremes in the Pearl River basin China Atmos. Sci. Lett. 10 132–44