Chapter 3

Thermal conductivity of glasses and disordered crystals

A.I. Krivchikova and A. Jeżowski

B. Verkin Institute for Low Temperature Physics and Engineering of the NAS of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine

krivchikov@ilt.kharkov.ua

Institute of Low Temperature and Structure Research, PAS, 2 Okolna Str., 50-422 Wroclaw, Poland

A.Jezowski@int.pan.wroc.pl

Among the many physical properties, the amorphous state manifests itself in the most spectacular way in heat transport. Anomalously low thermal conductivity, its low-temperature dependence as a function of temperature, the presence of a plateau of thermal conductivity, all are definitely different when compared with the ordered state of crystals. For this reason, the microscopic mechanisms from which these surprising behaviors may emerge have been the subject of intensive theoretical research and even more extensive experimental research. These investigations have led to the detection of a huge range of disordered materials with somewhat similar properties, which have become a rich base for various physical interpretations. In this chapter we present the last 50 years of the history of experimental research together with the key theoretical physics scenarios.
1. Introduction

This chapter deals with experimental studies of the thermal conductivity κ of solids, which is characterized by a unique temperature dependence of the same type, the so-called glass-like thermal conductivity, in a wide range from ultralow to high (1000 K) temperatures. The turning point in the understanding of glassy behavior of the thermal conductivity was the pioneering work of Zeller and Pohl in 1971. For the first time they undertook a joint measurement of low-temperature thermal properties (heat capacity and thermal conductivity) of several structural glasses such as SiO_2, GeO_2, multi-component structural glass Pyrex, and aluminogermanate, as well as amorphous Se, in a temperature range from 0.05 to 100 K. A comparative analysis of the obtained results and literature data for a large number of amorphous substances of various nature allowed the authors to reach the fundamental conclusion that the low-temperature behavior of the thermal properties of amorphous substances is rather insensitive to the chemical composition of the material and is quite different from the behavior of the corresponding crystals, and that cannot therefore be explained in the framework of collective excitations of a phonon gas in a crystal lattice. They found a direct correlation between the additional linear-in-temperature contribution to the heat capacity and the thermal conductivity quadratic dependence $\kappa \sim T^2$. This allowed them to formulate the problem of low-temperature anomalies of disordered solids, which was the inspiration for plenty of new experimental research not only of thermal properties, but also of others, among them dielectric, acoustic, structural and mechanical ones. Schematic dependences of reduced heat capacity C/T^3 and glass-like thermal conductivity of a disordered solid on its reduced temperature, around the temperature of the boson peak (see Chapters 2, 8 and 9) T_{max}, are shown in Fig. 1.

2. Low-temperature thermal conductivity data

To date, thermal conductivity has been investigated in more than 100 amorphous solids and in more than 80 crystalline substances, in which glass-like behavior takes place. Studies performed after the work of
Zeller and Pohl can be divided into several stages, that we separate by
decades in the following.

2.1. Studies in the decade 1971-1980

The initial period (from 1971 to 1980) was primarily associated with
experimental work on the measurement of the thermal conductivity of
typical amorphous substances and glasses: polymers1-12; chalcogenide
glasses13,14; structural glasses14-19; metallic glasses20-22; amorphous
solids23-25; radiation damaged crystals26; mixtures of glass oxides27.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig1.png}
\caption{Schematic dependences of reduced heat capacity C/T^3 (a) and glass-like thermal
conductivity (b) of a disordered solid on its reduced temperature T/T_{max}, below and
above the temperature of the boson peak T_{max}. The thermal conductivity quadratic factor
is β^2 and the plateau thermal conductivity is κ_{pl}.}
\end{figure}
The above cited works show that thermal conductivity of amorphous solids (obtained in various ways) exhibits some universal behavior, which is due to the interaction (resonant scattering) of acoustic excitations with a set of localized low-energy excitations according to the well-known phenomenological tunneling model of Anderson, Halperin and Varma28, and of Phillips29, at least at the lowest temperatures (see Section 3.1. below).

In the same period, in the first review of the thermal conductivity of polymers12, it was noted that “the temperature dependence for all amorphous polymers is approximately equal in magnitude and characterized by a T^2 dependence below 0.5 K, a plateau region between 5 and 15 K and a slow increase at yet higher temperatures”.

\textbf{2.2. Studies in the decade 1981-1990}

In the 1980’s decade – the second important period – an exciting event emerged, namely, the detection of glass-like behavior not only in new amorphous substances, but also in crystalline structures, such as ferroelectrics, ionic conductors, crystals with orientational disorder, as well as in radiation-damaged crystals. Many experimental investigations revealed new features of glass-like behavior in the κ-plateau and high-temperature increase in molecular glasses, mixture of glass oxides, chalcogenide glasses, disordered crystals, as well as in a variety of metal glasses and in many modern – at that time – polymers and structural glasses. The search also began for explanation of which external factors (pressure, electric field, radiation, variation in composition of polymeric and quasicrystalline materials), affect the glass-like behavior in a wide temperature range. Information had appeared on the nature of the thermal activation driving of the high-temperature dependence of thermal conductivity in clathrate hydrates30. Among others, the following works were published in this decade: ferroelectric crystals31-37; Pb(Sc$_{0.5}$Nb$_{0.5}$)O$_3$ under electric field38; tourmaline in pyroelectric state39; PbZrO$_3$ in pyroelectric state, antiferroelectric40; ionic conductors and ceramics31,41-44; orientational glasses45-49; mixtures of glass oxides50-54; molecular glasses55,56; clathrate compounds30,57-59; quasicrystals60; radiation damaged solids61,62; amorphous solids63-67; structural glasses53,56,68,69;
Thermal conductivity of glasses and disordered crystals

SiO$_2$ porous70,71; SiO$_2$ aerogel72; SiO$_2$+Ne73,74; chalcogenide glasses75; polymers$^{56,76-85}$; electron-irradiated epoxy resin86, epoxy resin under pressure87; metallic glasses$^{88-97}$.

In the same period, a large number of reviews$^{75,85,98-109}$ were published, in which the results of many experimental investigations of different properties, including thermal conductivity of glasses, disordered crystals and glassy crystals were presented. In Ref. 102, new data on the glass-like behavior of thermal conductivity in metallic and insulating glasses, and in crystalline disordered solids, were discussed. The glass-like thermal conductivity of complex inclusion crystals with orientational disorder, clathrate hydrates at high temperatures and under pressure, was discussed in Ref. 103. Another review104 stressed that the low temperature glassy properties of disordered crystals exhibit the same anomalous behavior as found in amorphous solids. However, these did not provide a definitive answer to the main problem. “There is no final answer to the main problem. The major problem is of course the microscopic nature of the tunneling entity.”105 In Ref. 106 there were reviewed some inorganic ferroelectrics, antiferroelectrics and pyroelectrics, which display glass-like thermal properties at low and ultralow temperatures. It was found107 that glass-like behavior of thermal conductivity in ferroelectric single crystals of relaxor-type is sensitive to an electric field.

A review by Phillips108 covered a wide range of experimental and theoretical studies of two-level or tunneling states in glasses and concluded: “A convincing microscopic description of a tunneling state in any amorphous material remains a problem to tax the solid state physicist.” Cahill and Pohl75 showed that in amorphous and highly-disordered solids, the picture of quantized vibrations exhibits serious deficiencies at high frequencies. Greig85 noted that there is not any ‘universal’ thermal conductivity behavior in semi crystalline polymers. Also, several general reviews of experimental works were published, concerning anomalous very-low-energy properties of nonmetallic solids and their theoretical interpretation.$^{98-102,105,110}$
2.3. Studies in the decade 1991-2000

In the following stage (during the 1990’s decade), it was first discovered that a complex polycrystalline filled skutterudite111 \(\text{Ir}_4\text{NdGe}_3\text{Sb}_9 \) containing weakly bound atoms in some crystal nodes, and almost-crystalline three-component metal structures called quasicrystals, show glasslike behavior. Pioneering works were done in the study of the extreme effects of pressure, radiation, and electric field on thermal conductivity of glasses, polymers and crystals. At that time, evidence emerged that the thermal conductivity of porous \(\text{SiO}_2 \) aerogel anomalously depends on its density. It was also revealed that thermal conductivity of metallic glasses at high temperatures presents the same regularity as structural glasses and amorphous films. Crystalline clathrate compounds, significantly different in chemical bonding, display the usual glassy behavior. Further, it was found that orientationally-disordered crystals of both inorganic and organic substances, as well as molecular glasses, present all the characteristic features of the glass-like behavior of thermal conductivity. Studies of a large number of both single crystals and mixed crystals revealed only new quantitative features of the glass-like behavior of the universal temperature dependence of thermal conductivity in a wide range of temperatures. For example thermal conductivity of disordered solids slightly increases with increasing density. Data on the small Bridgman parameter \(g \approx 2/3 \) for a group of polymer substances were obtained112-115 and later confirmed116,117.

The following works were published in this decade: quasicrystals118-120, skutterudites111, amorphous solids121,122, \(\alpha \)-Si porous123, radiation damaged crystals: neutron-irradiated C124; structural glasses: \(\text{SiO}_2 \) film125,126, \(\text{Al}_2\text{O}_3 \) film127, aerogel \(\text{SiO}_2 \)128,129, densified \(\text{SiO}_2 \)130, \(\text{SiO}_2 \) under pressure131; mixtures of glass oxides132,133; polymers112-115,134-146; molecular glasses147; orientational glasses134,149,150; clathrate compounds151-157; metallic glasses158,159; ferroelectric crystals160-165.

As in the previous period, several general reviews of experimental works were published132,166-178. These reviews were related to anomalous very-low-energy properties of metallic and nonmetallic glass and disordered crystals, either under normal condition or under pressure. They also dealt with theoretical interpretation within the framework of
the soft-potential model171,179,180, which is able to explain the glassy anomalies in the specific heat and the thermal conductivity in a much wider low-temperature range. Other works considered the phonon-glass electron-crystal concept175, or a lower limit to the thermal conductivity of solids181. This experimentally observed lower limit to the thermal conductivity of solids was ascribed to the minimum thermal conductivity earlier proposed by Einstein, in which the elastic energy propagates in a random walk among the atoms which are vibrating with random phases.

2.4. Studies in the decade 2001-2010

In the fourth stage, i.e. in the first decade of the new millennium, considerable efforts were directed to experimental and theoretical studies of crystals with a different kind of dynamic, static, orientational, positional, polaronic, and other kinds of disorder (see Fig. 2). At this stage, researchers revealed various new crystals with both weak and strong interatomic forces, in which glass-like behavior of thermal conductivity takes place. It became clear that the \(\kappa \)-plateau can manifest itself not only in the low-temperature region (4—10 K), but also in the medium-temperature region (20—50 K) in the case of metallic glasses, quasicrystals, in some semiconductor clathrate crystals and in some ferroelectrics and ceramics. In the temperature range above the “plateau”, the thermal conductivity of quasicrystals is described by the Arrhenius type equation. At that time, it has been suggested that avoiding the crossing between heat carrying acoustic modes and the low lying optical modes182-184 can influence glass-like behavior of thermal properties. The following works were published in this decade: clathrate compounds185-203,245, quasicrystals203-208, orientational glasses209-211, skutterudites and other rattling structures212,214, ferroelectric crystals215,216,244, ceramics217, molecular glasses213,217-220, amorphous solids221-225, structural glasses226-229, chalcogenide glasses230,231, polymers232-235, films236, metallic glasses237,239, others: ZrHfTiNiSn240, zeolite NaX241, (La\(_{1-x}\)Yb\(_x\))\(_2\)Zr\(_2\)O\(_7\)242.
Also several general reviews of experimental and theoretical works were published182,214,248-254. In Ref. 250, attention was drawn to “... the fact that the low-energy excitations in numerous disordered crystals resemble very closely those found in amorphous solids also strongly suggests a picture in which lack of long-range order per se is not the cause of the low-energy excitations. But in that case, what is important?” Using the example of over 60 different compositions, it was shown that T^2 dependence of thermal conductivity is universal and is dominated by phonons that are resonantly scattered by the low-energy excitations in the frame of the tunneling model.

Fig.2. Glass-like thermal conductivity of different glasses and disordered crystals: SiO$_2$ (Refs. 16,56); polymers PMMA, PS (Ref. 15); molecular glass C$_2$D$_2$OD (Ref. 243); orientational glass (KBr)$_{75}$(CN)$_{25}$ (Ref. 47); ferroelectric crystal PMN (Ref. 244), SrBaTaO (Ref. 296); clathrate compounds SGG (Ref. 153), BGG (Ref. 245) and CuZnSbSn (Ref. 246); single crystal Y$_2$O$_3$:ZrO$_2$ (Ref. 247).
2.5. Studies in the decade 2011-2020

In the fifth stage, which comprises this last decade, the study of glass-like behavior in new organic and inorganic crystals of various thermoelectric materials, deuterated substances, porous amorphous films and glasses, unusual ceramics, and ferroelectrics is actively continuing. In this period, new representatives appeared in the discussed large family of “glass-like” behavior, for example, BSA, myoglobin proteins, T₄B₂O₇ spin-liquid, disordered layered structures and organic metal anisotropic single crystals, cyanate ether resin, HMS ribbon, nanofiber and nanocrystals. It has been established that deuteration leads to an increase in the high-temperature thermal conductivity of clathrate hydrates, amorphous water, and molecular glasses. A relevant line of current research was noted in the review of Chang and Zhao where the relationship between anharmonicity and low thermal conductivity in thermoelectrics was summarized. Several strategies which yield anharmonicity were also suggested, including lone pair electron, resonant bonding and the rattling model found in clathrates and skutterudites with cage-like structure.

The following main works were published in this decade: biomaterials; clathrate compounds; quasicrystals; orientational glasses; amorphous solids; structural glasses; polymers; metallic glasses; ferroelectric crystals; ceramics; others: layered crystal structure of NaZn₄Sb₃; T₂B₂O₇ spin liquid; silica zeolite; Si nanowires; boron carbide nanowires; lead halide perovskite nanowires; amorphous nanowires; SiN films; a-Si₃N₄ nanowires; Si nanocrystals; HMS ribbon; θ-(BEDT-TTF)₂Mzn(SCN)₄; Ln₃NbO₇(Ln=Dy,Y,Er,Yb); CH₃NH₃PbBr₃ nanowire; hydroxyapatite nanoparticles; nanostructures; and nanostructures.

Also several general reviews of experimental and theoretical works have been published. In Refs. 326,328 important correlations between the properties at very low temperatures and at moderately low temperatures in glasses are discussed in the frame of soft-potential model and other theoretical approaches. In Ref. 327 the authors discussed recent advances in materials engineering to control thermal conductivity and
stated that “... good progress has been made with materials possessing rattling atoms or complex unit cells”. A similar statement can be made on the basis of another review\(^\text{329}\), which presents a large variety of properties of phonon-glass electron-crystal thermoelectric clathrates. The thermal properties under pressure and the transition behavior of several host-guest inclusion compounds (urea, thiourea, Dianin’s compound, clathrate hydrates and hydroquinone) have been reviewed in Ref. 330. There, the unusual glass-like thermal conductivity of inclusion compounds was found to be of great technological and fundamental importance to seek for improved thermoelectrical materials, despite the fact that the origin of their glass-like thermal conductivity is not understood. In another review\(^\text{331}\), it can be read: “Recently, however, a growing number of studies have re-examined the thermal properties of amorphous semiconductors, such as amorphous Si. These studies, which included both computational and experimental work, have revealed that phonon transport in amorphous materials is perhaps more complicated than previously thought”. On the other hand, De Angelis et al. \(^\text{333}\) have reviewed the theory and computational modeling approaches that can be applied to disordered materials and discussed corresponding experimental techniques. They concluded that “... important questions lay on the horizon for better understanding thermal transport when disorder is present and tremendous progress is possible in the next few decades.”

3. Theoretical descriptions

Disordered solids haven’t translation symmetry and therefore Peierls’s theoretical picture that heat carriers are the crystalline excitation of propagating vibrational waves seems to break. To explain this anomalous behavior of an amorphous solid, various phenomenological models were developed that introduced a number of low-energy excitations: tunneling two-level systems (TLS), relaxation systems and low-frequency quasilocal vibrational states, in addition to acoustic continuous-medium excitations. The temperature dependence of the thermal conductivity is linked to the nature of the energy transport which is quantified by
Thermal conductivity of glasses and disordered crystals

ballistic propagation and thermal diffusivity of collective excitations in a disordered solid. According to the Standard Tunneling Model and the Soft-Potential Model, in ballistic regime or in a quasiparticle picture, continuous-medium acoustic excitations are strongly resonant scattered by TLS excitations and quasi-local vibrations. A harmonic theory of thermal transport in glasses was proposed by Allen and Feldman in year 1989: an additional thermal diffusive regime or wave interference picture was implemented where heat is carried by new carriers, the coupling of high-energy vibration modes being named diffusons and locons. Allen-Feldman approaches, however, do not always provide physical insight into how the modes are actually contributing to the thermal conductivity.

The thermal conductivity of complex ordered crystals displays a glass-like low-temperature behavior (the universal \(T^2 \) dependence predicted by the tunneling model) and a glass-like high-temperature behavior (decay milder than the universal \(T^{-1} \) dependence predicted by the phonon gas model). It should be noted one review that outlined theoretical computational modern approaches, summarized the progress in understanding materials with disorder, and highlighted open questions.

3.1. Standard Tunneling Model

The Standard Tunneling Model was proposed by Anderson, Halperin and Varma, and by Phillips in 1972 to describe many aspects of the universal low temperature properties of amorphous solids. Two level tunneling states (TLS) with a constant density of states as defects of an elastic continuum were postulated. For an elastic continuum such as a glass, the thermal conductivity \(\kappa(T) \) is given by the standard expression obtained from the well-known phonon-gas kinetic equation, and using the Debye approximation for the density of states of the sound waves transporting heat. The thermal conductivity quadratic dependence \(\kappa = \beta T^2 \) is evaluated on the assumption of strongly resonant scattering of continuous-medium excitations by TLS excitations. One obtains:

\[
\kappa(T) = \frac{k_B^2}{6\pi h^3} \left(\sum \frac{\rho_{s_a}}{P_{s_a}^2} \right) T^2 = \frac{k_B^2}{6\pi h^3} \left(\sum \frac{1}{C_{s_a}^2} \right) T^2, \tag{1}
\]
with

\[C_\alpha = \frac{\overline{P} \gamma^2}{\rho s^2} \] \hspace{1cm} (2)

where \(\alpha \) is the polarization of phonons, \(\overline{P} \) is the spectral density of the tunneling states, and \(\gamma \) is the sound excitation-TLS coupling. \(\rho \) and \(s \), respectively, represent the mass density and the properly sound velocity.

3.2. Soft-Potential Model

For temperatures between 1 and 10 K, the anomalous behavior of thermal conductivity that manifests itself by the appearance of a temperature-independent plateau, as well as a concomitant increase in heat capacity well above that corresponding to the Debye model, was the subject of conflicting explanations. The explanations have been now rationalized on phenomenological grounds by means of a generalization of the tunneling model known as the soft-potential model (SPM) \(^{180,344,345}\) and also as soft-mode model\(^{346}\).

In the model of soft potentials, glass is considered as an elastic medium with specific structural defects, the particle motion of which can be not only harmonic, but also anharmonic. It has been shown to be able to account for the plateau of the thermal conductivity on the basis of the assumption of resonant scattering of sound waves from localized low-frequency vibrations. The soft-potential model describing elementary excitations in a wide range of energies introduces a characteristic energy \(W \) (often expressed in K), which assigns the energy scale in the classification of elementary excitations in the harmonic soft potential. According to Ref. 180, \(\kappa(T) \) is described by a universal function in the representation of a normalized temperature (reduced temperature) \(u = T/W \), which can be read

\[\kappa(T) = \frac{6k_B^3}{\pi \hbar^2} \frac{W^2}{C_s} \frac{T^2}{1.1W^2 + 0.7TW + 3T^2} \] \hspace{1cm} (3)

The dimensionless parameter \(C \) takes on a fairly narrow interval \(10^{-3} \div 10^{-4} \) and characterizes the strength of the interaction of TLS with sound excitations at averaged sound velocity \(s \).

The expression (3) allows us to relate the observed three characteristics—the plateau in thermal conductivity (\(\kappa_{pl} \)), the thermal conductivity quadratic factor (\(\beta \)), a characteristic energy (\(W \))—to each other in the following form:

\[
\frac{\kappa_{pl}}{\beta W^2} \approx \frac{1}{3}.
\]

(4)

The ratio (4) is in good agreement with experimental data for disordered solids of different nature in the range of parameters \(\kappa_{pl} \approx 10^{-3} \div 1 \) Wm\(^{-1}\)K\(^{-1}\) , \(\beta \approx 0.01 \div 0.1 \) Wm\(^{-1}\)K\(^{-3}\) and \(W \approx 0.5 \div 15 \) K.

4. Recapitulation

The large amount of materials described above, in which glass-like thermal conductivity is observed, raises the question of finding common physical patterns, and also raises the question of the factors influencing the character of this property.

A lot of work has clearly demonstrated a correlation\(^{31}\) between the maximum temperature \(T_{max} \) (boson peak) in the reduced heat capacity \(C/T^3 \) and temperature “glass-like” plateau in the thermal conductivity.\(^{15,31,179,326,347,350,361}\) This unambiguous correlation was observed both in joint and independent measurements of the heat capacity and thermal conductivity of glasses and amorphous solids of different nature, as well as in complex crystals with disorder, for example: \textit{amorphous solids}\(^{1,24,222,224}\), \textit{chalcogenide glasses}\(^{54,75,231,351,352}\),...
clathrate compounds, ferroelectric crystals, ionic conductors, metallic glasses, mixture of glass oxides, molecular glasses, orientational glasses, radiation solids, polymers, (also under pressure); structural glasses, other materials.

The correlation Boson peak–plateau persists after external and internal effects on a solid when varying factors such as pressure, annealing, electric field, neutrons irradiation or electrons irradiation. The position and size of the plateau depends on the porosity of the solid and on the concentration of the solvent in the two-component solid solution.

However, it should be noted that there is also a skeptical view on the existence of a direct correlation between the specific features of heat capacity and thermal conductivity, which can be expressed in the following quote: “Our most important conclusion is that the “reincrease” of thermal conductivity above the plateau region is attributable to heat carried by “diffusion” modes in much the way imagined by Birch, Clark, and Kittel, and that the plateau is a simple crossover region, not requiring any new physics to explain. In particular, we believe that “excess modes” (also known as a “Boson peak”) is not a necessary ingredient to explain the plateau. Amorphous silicon seems to lack these “excess modes” but still to have a plateau.”

But the following fact seem to contradict the above statements. Namely, the correlation Boson peak–plateau can be clearly seen if we represent the dependence of thermal conductivity on the temperature normalized to the temperature of the maximum of the boson peak. In the \(T \approx T_{\text{max}} \) region, the \(\kappa(T) \) exhibits systematically a plateau. This circumstance can be used for a new definition of the term “glass-like thermal conductivity”.

The glass-like thermal conductivity can be characterized by the following four features:

(i) \(\kappa(T) \) is proportional to \(\beta T^{2-\delta} \) (\(\delta = 0 \div 0.2 \)) at \(T \ll T_{\text{max}} \). (ii) There is a plateau region the plateau thermal conductivity \(\kappa_{\text{pl}}(T) \approx \text{const} \) near \(T_{\text{max}} \).
(iii) $\kappa(T)$ has a rising inflection point above the plateau from $T > T_{\text{max}}$.

(iv) A saturating regime where $\kappa(T)$ is independent of T for $T > 10T_{\text{max}}$. It is to be emphasized that the κ-plateau is very sensitive to external factors. From a large set of experimental results, we can distinguish in principle the following effects that affect the thermal conductivity:

- Low temperature $T^{2-\delta}$ effect – most of the data in the literature in the temperature range 0.1–1 K report a $\delta > 0$, but for $T < 0.1$ K $\delta \approx 0$: $\text{SiO}_2^{17,228}$, SBN^{173}, $\text{B}_2\text{O}_3^{228}$, PVC^{232}, $\text{Zr}_{52.5}\text{Ti}_{13}\text{Cu}_{17.8}\text{Ni}_{14.6}\text{Al}_{10.293}$, Polyimide292. A nearly linear specific heat and a thermal conductivity roughly proportional to T^2 ($\kappa(T) = \beta T^2$) are common features of glass-like behavior. As thermal conductivity is concerned, not only is this universality qualitative but also quantitative250. For many different glassy solids the universal T^2 temperature dependence

![Fig. 3. Glass-like temperature thermal conductivity depending on scaled temperature by the T_{max} for glasses and crystalline materials (see the symbols in the caption of Fig. 2).](image)
of the thermal conductivity is in reasonable agreement with the prediction of the tunneling model. The values of the coefficient β for the T^2 dependence are located in a rather confined interval the thermal conductivity quadratic factor $\beta \approx 0.01 \pm 0.1 \text{ Wm}^{-1}\text{K}^{-3}$. The experimental results of thermal conductance of amorphous nanowires between 0.05 K and 5K show a uniform quadratic dependence on the temperature.311,312

- The effect of pressure – increase of heat conductivity in the κ-plateau area with increase in external pressure, as observed for epoxy resin87, SBN160, epoxy resin140, PC145, PS141.

- The effect of irradiation – a change in the thermal conductivity at the κ-plateau with increasing dose: falling for epoxy resin88; rising for SiO\textsubscript{2}19,27.

- Electric field effect (poling) – increase of thermal conductivity in the κ-plateau region with an increase in the magnitude of the electric field: Pb(Sc\textsubscript{0.5}Nb\textsubscript{0.5})O\textsubscript{3}, SBN35,38,162, Pb(Mg\textsubscript{1/3}Nb\textsubscript{2/3})O\textsubscript{3}162,359.

- The “shoulder effect” – a transformation of the plateau into a curve with a slightly increasing slope is observed in two-component substances: 0.9SiO\textsubscript{2}:0.1GeO\textsubscript{2} and 0.925SiO\textsubscript{2}:0.075Ti\textsubscript{2}O\textsubscript{133}, (1-x)B\textsubscript{2}O\textsubscript{3}:xNa\textsubscript{2}O52, Ge\textsubscript{x}As\textsubscript{0.4-x}S\textsubscript{0.6}231, Fe\textsubscript{0.4}Ni\textsubscript{0.4}P\textsubscript{0.14}B\textsubscript{0.06}91, and PMN\textsubscript{1-x}[PbTiO\textsubscript{3}]\textsubscript{x}215.

- Porosity effect – decrease of heat conductivity in the κ-plateau area with an increase in porosity: see Refs.11,70,129,227,278,356.

- Cross-link density effect – increase of thermal conductivity in the κ-plateau area with a decrease of cross-link density: epoxy resin78,79,81,136,357, PS84.

- Annealing effect – a change of thermal conductivity in the κ-plateau under the action of annealing: falling for PC360; rising for SiO\textsubscript{2}73.

- The effect of deuteration – an increase in the value of high-temperature thermal conductivity in deuterated substances (above the plateau): THF + 17D\textsubscript{2}O154, C\textsubscript{2}D\textsubscript{3}OD243, a-ice255.

This huge amount of work on glass-like behavior over the last 50 years shows how fascinating it was and still is the problem. Many
common features and analogies have been found, e.g. the resonant phonon scattering by localized excitations and the concept of a lower limit to the thermal conductivity. But, despite the fact that so many interesting results, including thermal conductivity data, have been collected, the question about the nature of observed anomalies in so significantly different objects remains open.

References

1. R. C. Zeller and R. O. Pohl, Thermal conductivity and specific heat of noncrystalline solids, Physical Review B. 4(6), 2029 (1971).
2. R.B. Stephens, G.S. Cieloszyk and G.L. Salinger, Thermal conductivity and specific heat of non-crystalline solids: polystyrene and polymethyl methacrylate, Physics Letters A. 38(3), 215–217 (1972).
3. T. Scott and M. Giles, Dislocation scattering in Teflon at low temperatures, Physical Review Letters. 29(10), 642–643 (1972).
4. H. Abe and K. I. Koga, Thermal conductivity of some practical insulators around 100 mK, Japanese Journal of Applied Physics. 16(9), 1583–1587 (1977).
5. T. A. Scott, J. de Bruin, M. M. Giles and C. Terry, Low-temperature thermal properties of nylon and polyethylene, Journal of Applied Physics. 44(3), 1212–1216 (1973).
6. S. Burgess and D. Greig, The low-temperature thermal conductivity of polyethylene, Journal of Physics C: Solid State Physics. 8(11), 1637–1648 (1975).
7. C. L. Choy and D. Greig, The low-temperature thermal conductivity of a semi-crystalline polymer, polyethylene terephthalate, Journal of Physics C: Solid State Physics. 8(19), 3121–3130 (1975).
8. G. S. Cieloszyk, M. T. Cruz and G. L. Salinger, Thermal properties of dielectric solids below 4 K I—polycarbonate, Cryogenics. 13(12), 718–721 (1973).
9. K. W. Garrett and H. M. Rosenberg, The thermal conductivity of epoxy-resin/powder composite materials, Journal of Physics D: Applied Physics. 7(9), 1247–1258 (1974).
10. D. S. Matsumoto, C. L. CL Jr. Reynolds and A. C. Anderson, Thermal boundary resistance at metal-epoxy interfaces, Physical Review B. 16(8), 3303–3307 (1977).
11. M. P. Zaitlin and A. C. Anderson, Phonon thermal transport in noncrystalline materials, Physical Review B. 12(10), 4475–4486(1975).
12. C. L. Choy, Thermal conductivity of polymers, Polymer. 18(10), 984–1004 (1977).
13. R. Flasck and H. K. Rockstad, The thermal conductivity of some chalcogenide glasses, *Journal of Non-Crystalline Solids*. 12(3), 353–356 (1973).
14. A. J. Leadbetter, A. P. Jeapes, C. G. Waterfield and R. Maynard, Conduction thermique des verres aux basses temperatures, *Journal de Physique*, 38(1), 95–99 (1977).
15. R. B. Stephens, Low-temperature specific heat and thermal conductivity of noncrystalline dielectric solids, *Physical Review B*. 8(6), 2896–2905 (1973).
16. D. H. Damon, Thermal conductivity of vitreous silica at low temperatures, *Physical Review B*. 8(12), 5860–5865 (1973).
17. J. C. Lasjaunias, A. Ravex, M. Vandorpe and S. Hunklinger, The density of low energy states in vitreous silica: specific heat and thermal conductivity down to 25 mK, *Solid State Communications*. 17(9), 1045–1049 (1975).
18. R. B. Stephens, Intrinsic low-temperature thermal properties of glasses, *Physical Review B*. 13(2), 852–865 (1976).
19. H. V. L’hønysen and M. Platte, Low temperature thermal properties and intrinsic defects in vitreous silica, *Zeitschrift f?r Physik B Condensed Matter*. 36(2), 113–120 (1979).
20. J. R. Matey and A. C. Anderson, Low-temperature thermal conductivity of an amorphous palladium silicon alloy, *Journal of Non-Crystalline Solids*. 23(1), 129–137 (1977).
21. J. E. Graebner, B. Golding, R. J. Schutz, F. S. L. Hsu and H. S. Chen, Low-temperature properties of a superconducting disordered metal, *Physical Review Letters*. 39(23), 1480–1483 (1977).
22. J. R. Matey and A. C. Anderson, Phonon transport in glassy metals below 100 K, *Physical Review B*. 16(8), 3406–3410 (1977).
23. H. V. L’hønysen and F. Steglich, Low-Temperature Thermal Conductivity of Amorphous Germanium, *Physical Review Letters*. 39(22), 1420–1423 (1977).
24. D. P. Jones, N. Thomas and W. A. Phillips, The low-temperature thermal properties of amorphous arsenic, *Philosophical Magazine B*. 38(3), 271–288 (1978).
25. M. Meissner and D. Wobig, Specific Heat and Thermal Conductivity of Trigonal and Vitreous Selenium in the Temperature Range 3–300 K, *The Physics of Selenium and Tellurium*. 68–73 (1979).
26. T. L. Smith, J. Anthony and A. C. Anderson, Effect of neutron irradiation on the density of low-energy excitations in vitreous silica, *Physical Review B*. 17(12), 4997–5008 (1978).
27. F. Canal, M. C. Schmidt, J. P. Redoules and P. Carrara, Influence of phase separation on the thermal conductivity of potassium borosilicate glasses between 1 and 10 K, *Journal of Non-Crystalline Solids*. 21(1), 73–84 (1976).
28. P. W. Anderson, B. I. Halperin, and C. M. Varma, Anomalous low-temperature thermal properties of glasses and spin glasses, *Philosophical Magazine*. 25(1), 1–9 (1972).
29. W. A. Phillips, Tunneling states in amorphous solids, *Journal of Low Temperature Physics*. 7(3–4), 351–360 (1972).
30. P. Andersson and R.G. Ross, Effect of guest molecule size on the thermal conductivity and heat capacity of clathrate hydrates, *Journal of Physics C: Solid State Physics*. 16(8), 1423–1432 (1983).
31. D. A. Ackerman, D. Moy, R. C. Potter, A. C. Anderson and W. N. Lawless, Glassy behavior of crystalline solids at low temperatures, Physical Review B. 23(8), 3886–3893 (1981).
32. J. J. De Yoreo, R. O. Pohl and G. Burns, Low-temperature thermal properties of ferroelectrics, Physical Review B. 32(9), 5780–5784 (1985).
33. E. Fischer, W. H?ssler, E. Hegenbarth and V.I. Fritsberg, Amorphous behaviour of PLZT demonstrated by thermal conductivity measurements, Physica Status Solidi (A). 66(2), K169–K171 (1981).
34. E. Fischer, W. H?ssler and E. Hegenbarth, Glass-like behaviour in the thermal conductivity of Sr1–xBax(Nb2O6) single crystal, Physica Status Solidi A. Applied Research. 72(2), K169–K171 (1982).
35. W. H?ssler, and E. Hegenbarth, Glasslike behaviour of thermal conductivity at ferroelectric single crystals op relaxor-type, Ferroelectrics Letters Section. 4(4), 117–121 (1985).
36. W. N. Lawless, Glasslike properties of ferroelectrics at low temperatures, Ferroelectrics. 43(1), 223–228 (1982).
37. E. Fischer, Dielectric and thermal properties of relaxation ferroelectrics at low temperatures, Phys. Status Solidi A. 1986 (JINR-E8-86-98).
38. H. E. Zimmer, J. Engert, F. Frach, I. Henning, D. Chat, R. Oszolins, and E. Hegenbarth, Glasslike behaviour of polycrystalline Pb(Sc0.5Nb0.5)O3 at low temperatures, Ferroelectrics Letters Section. 7(5), 113–120 (1987).
39. W. N. Lawless, and R. K. Pandey, Glasslike thermal conductivity of tourmaline at low temperatures, Solid state communications. 52(10), 833–835 (1984).
40. W. N. Lawless, Glasslike thermal properties of antiferroelectric PbZrO3 at low temperatures, Physical Review B. 30(11), 6555–6559(1984).
41. W. N. Lawless, and T. K. Gupta, Thermal properties of tetragonal ZrO2 at low temperatures, Physical Review B. 28(10), 5507–5510 (1983).
42. F. J. Walker and A. C. Anderson, Low-energy excitations in yttria-stabilized zirconia, Physical Review B. 29(10), 5881–5890 (1984).
43. M. N. Regueiro, D. Castello, M. A. Izbizky, D. Esparza and C. D’ovidio, Anomalous thermal conductivity of La2–xSrxCuO4: Possibility of a polaronic glass, Physical Review B. 36(16), 8813–8815 (1987).
44. T. Kopte, and E. Hegenbarth, Thermal Conductivity of High-Tc YBCO Ceramics in Magnetic Fields up to 10 T, Physica Status Solidi (a). 120(2), 547–555 (1990).
45. E. Bonjour, R. Calemczuk, R. Lagnier and B. Salce, Low temperature thermal properties of cyclohexanol: a glassy crystal system, Le Journal de Physique Colloques. 42(C6), C6–63 (1981).
46. D. Moy, J. N. Dobbs, and A. C. Anderson, Low-temperature properties of the orientational glass KBr1–x(CN)x, Physical Review B. 29(4), 2160–2165 (1984).
47. J. J. De Yoreo, W. Knaak, M. Meissner and R. O. Pohl, Low-temperature properties of crystalline (KBr)1–x(KCN)x: A model glass, Physical Review B. 34(12), 8828–8842 (1986).
48. D. G. Cahill, and R. O. Pohl, Low-energy excitations in the mixed crystal Ba2+LaF2–x, Physical Review B. 39(14), 10477–10480 (1989).
49. L. N. Yadon, C. I. Nicholls, and D. G. Haase, Thermal conductivity of solid N2–Ar alloys, Physical Review B. 40(7), 5215–5217 (1989).
50. K. A. McCarthy, H. H. Sample and W. G. D. Dharmaratna, The thermal conductivity of three fluorozirconate glasses, *Journal of Non Crystalline Solids*. 64, 445–448 (1984).
51. W. M. MacDonald, A. C. Anderson and J. Schroeder, Low-temperature behavior of potassium and sodium silicate glasses, *Physical Review B*. 31(2), 1090–1101 (1985).
52. R. Villar, M. L. de la Torre, and S. Vieira, Low-temperature thermal conductivity of sodium borate glasses, *Physical Review B*. 34(10), 7394–7395 (1986).
53. B. Hanna and R.G. Bohn, The thermal conductivity of \(\text{Li}_2\text{O} \cdot \text{Al}_2\text{O}_3 \cdot n \text{SiO}_2 \) glasses between 5 and 100 K, *Journal of Applied Physics*. 64(8), 3911–3914 (1988).
54. A. Avogadro, S. Aldrovandi, G. Carini, and A. Siri, Specific heat and thermal conductivity of ionic conductors and chalcogenide glasses at low temperatures, *Philosophical Magazine B*. 59(1), 33–42 (1989).
55. N. O. Birge, Specfic-heat spectroscopy of glycerol and propylene glycol near the glass transition, *Physical Review B*. 34(3), 1631–1642 (1986).
56. D. G. Cahill and R. O. Pohl, Thermal conductivity of amorphous solids above the plateau, *Physical Review B*. 35(8), 4067–4073 (1987).
57. R. G. Ross, and P. Andersson, Clathrate and other solid phases in the tetrahydrofuran–water system: thermal conductivity and heat capacity under pressure, *Canadian Journal of Chemistry*. 60(7), 881–892 (1982).
58. N. Ahmad, and W. A. Phillips, Thermal conductivity of ice and ice clathrate, *Solid State Communications*. 63(2), 167–171 (1987).
59. J. S. Tse and M. A. White, Origin of glassy crystalline behavior in the thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate, *The Journal of Physical Chemistry*. 92(17), 5006–5011 (1988).
60. J. J. Freeman, K. J. Dahlhauser, A. C. Anderson and S. J. Poon, Low-temperature thermal conductivity of glassy and icosahedral Pd-U-Si alloys, *Physical Review B*. 35(5), 2451–2452 (1987).
61. J.W. Gardner, and A.C. Anderson, Low-temperature specific heat and thermal conductivity of neutron-irradiated crystalline quartz, *Physical Review B*. 23(2), 474–482 (1981).
62. A. K. Raychaudhuri, and R. O. Pohl, Thermal conductivity of neutron-irradiated silica, *Solid State Communications*. 44(5), 711–714 (1982).
63. J. E. Graebner and L. C. Allen, Tunneling systems in amorphous germanium, *Physical Review Letters*. 51(17), 1566–1569 (1983).
64. M. Mertig, G. Pompe, and E. Hegenbarth, Specific heat of amorphous silicon at low temperatures, *Solid State Communications*. 49(4), 369–372 (1984).
65. G. Pompe, and E. Hegenbarth, Thermal conductivity of amorphous Si at low temperatures, *Physica Status Solidi (b)*. 147(1), 103–108 (1988).
66. J. E. Graebner, and L. C. Allen, Thermal conductivity of amorphous germanium at low temperatures, *Physical Review B*. 29(10), 5626–5633 (1984).
67. J. E. Graebner, B. Golding, L. C. Allen, J. C. Knights and D. K. Biegelsen, Thermal properties of a–Si:H at low temperatures, *Physical Review B*. 29(6), 3744–3746 (1984).
68. R. O. Pohl, Some facts, old and new, about the low temperature thermal properties of noncrystalline solids, *Phase Transitions*. 5, 239–260 (1985).
69. V. I. Sviridenko, V. A. Medvedev, N. P. Rybkin, and V. G. Gorbunova, The thermal conductivity of KV fused silica at 2–300° K, Measurement Techniques. 30(5), 454–458 (1987).
70. T. C. Hsieh, W. M. MacDonald, and A. C. Anderson, Low-temperature thermal conductivity of porous Vycor, Journal of Non-Crystalline Solids. 46, 437–440 (1981).
71. W. N. Lawless, A. C. Anderson, and F. Walker, Glasslike thermal and dielectric properties of Cd$_2$Nb$_2$O$_7$ at low temperatures, Ferroelectrics. 37(1), 627–629 (1981).
72. R. Calemczuk, L. Jaqmin, G. P. Singh, K. Dransfeld, and R. Vacher, Experimental evidence for the existence of two-level-tunneling systems in the glassy crystalline state of cyclohexanol, Physical Review B. 29(6), 3767–3769 (1984).
73. H. V. L’Heureux, H. R?sing, and W. Sander, Structural relaxation effects on the low-temperature properties of vitreous silica, Zeitschrift f?r Physik B Condensed Matter. 60(2-4), 323–330 (1985).
74. G. X. Mack and A. C. Anderson, Low-temperature behavior of vitreous silica containing neon solute, Physical Review B. 31(2), 1102–1106 (1985).
75. D. G. Cahill and R. O. Pohl, Lattice vibrations and heat transport in crystals and glasses, Annual Review of Physical Chemistry. 39(1), 93–121 (1988).
76. D. M. Finlayson, P. Mason, J.N. Rogers, and D. Greig, The thermal conductivity and specific heat of extruded polyethylene below 1K, Journal of Physics C: Solid State Physics. 13(9), L185–L188 (1980).
77. A. K. Hasen and K. S. Dubey, Lattice thermal conductivity of polyvinyl acetate at low temperatures, Solid State Communications. 38(12), 1185–1187 (1981).
78. C. I. Nicholls, and H. M. Rosenberg, The effects of cross-link length on the thermal properties of epoxy-resins from 1.5 to 80 K, Physica B+C. 108(1-3), 1015–1016 (1981).
79. S. Kelham and H. M. Rosenberg, The thermal conductivity and specific heat of epoxy-resin from 0.1-80K, Journal of Physics C: Solid State Physics. 14(12), 1737–1749 (1981).
80. F. J. Walker and A. C. Anderson, Thermal conductivity and specific heat of a glass–epoxy composite at temperatures below 4 K, Review of Scientific Instruments. 52(3), 471–472 (1981).
81. C. I. Nicholls and H. M. Rosenberg, The excitation spectrum of epoxy resins; neutron diffraction, specific heat and thermal conductivity at low temperatures, Journal of Physics C: Solid State Physics. 17(7), 1165–1178 (1984).
82. W. Scheinber and M. P?ckel, ?, Physica Status Solidi (a). 87(2), 543–547 (1985).
83. J. D. Boyer, J. C. Lasjaunias, R. A. Fisher, and N. E. Phillips, The low-temperature specific heat of PTFE (Teflon) at pressures to 5.2 kbar, Journal of Non-Crystalline Solids. 55(3), 413–432 (1983).
84. J. X. Mack, J. J. Freeman, A. C. Anderson, and D. Greig, Low temperature thermal conductivity of polystyrene, Journal of Non-Crystalline Solids. 91(3), 391–401 (1987).
85. D. Greig, Low temperature thermal conductivity of polymers, Cryogenics. 28(4), 243–247 (1988).
86. K. Jahn, M. Jückel, and W. Meyer, Thermal conductivity and dielectric properties at low temperatures of an epoxy-resin after electron-irradiation, Cryogenics. 23(3), 160–162 (1983).
87. J. M. Grace and A. C. Anderson, Low-temperature specific heat and thermal conductivity of a glassy polymer under applied pressure, Physical Review B. 40(3), 1901–1916 (1989).
88. D.M. Herlach, E.F. Wassermann, and J. Kührner, Heat conductivity of amorphous PdCuSi alloys containing Fe and Mn impurities, Physical Review B. 24(6), 3204–3210 (1981).
89. J. J. Freeman and A. C. Anderson, Thermal conductivity of amorphous solids, Physical Review B. 34(8), 5684–5690 (1986).
90. R. Van den Berg, S. Grondey, J. Kührner, and H. Löhneysen, Low temperature thermal properties of amorphous Mg_{0.7}Zn_{0.3}, Solid State Communications. 47(2), 137–140 (1983).
91. G. Pompe, M. Gaafar, P. Böttner, and T. Francke, Low temperature thermal conductivity of amorphous (Fe, Ni, Co)(P, B, Si) alloys and their change by heat treatment, Physica Status Solidi (b). 119(2), 579–587 (1983).
92. Van den Berg, R. Grondey, S. Kührner, J. and Löhneysen, H. Low temperature thermal properties of amorphous Mg_{0.7}Zn_{0.3}, Solid state communications. 47(2), 137–140 (1983).
93. J. C. Lasjaunias, A. Ravex, O. Laborde, and O. Bethoux, Thermal and superconducting properties of Zr-based amorphous alloys; effect of structural relaxation, Physica B+C. 126(1-3), 126–133 (1984).
94. A. Jezowski, J. Mucha, and G. Pompe, Thermal conductivity of the amorphous alloy Fe_{40}Ni_{40}P_{14}B_{6} between 80 and 300 K, Journal of Physics D: Applied Physics. 20(11), 1500–1506 (1987).
95. P. Svoboda, and P. Vařek, Low-temperature properties of amorphous (Mo_{1-x}Ru_{x})_{0.8}P_{0.2} alloys, Zeitschrift für Physik B Condensed Matter. 70(3), 361–369 (1988).
96. P. Bellessa, Low temperature properties, low-energy excitations in amorphous metals, Le Journal de Physique Colloques. 41(C8), C8–723 (1980).
97. W.A. Phillips, Properties, A.S.L.T. Topics in current physics, Vol. 24. Springer, New York (1981).
98. B. Golding, J. E. Graebner, and L. C. Allen, The thermal conductivity plateau in disordered systems, Phonon Scattering in Condensed Matter V. Springer, Berlin, Heidelberg (1986).
99. A. Bhattacharyya, A tunnelling-state model for the specific heat capacity and thermal conductivity of amorphous materials at low temperatures, Contemporary Physics. 22(1), 117–127 (1981).
100. H. V. Löhneysen, Low energy excitations in amorphous metals. Physics Reports, 79(5), 161–212 (1981).
101. R. G. Ross, P. Andersson, B. Sundqvist, and G. Backstrom, Thermal conductivity of solids and liquids under pressure, Reports on Progress in Physics. 47(10), 1347–1402 (1984).
104. A. C. Anderson, Low temperature glassy properties of disordered crystals, *Phase Transitions: A Multinational Journal*. 5(4), 301–316 (1985).

105. R. Hanfland and A. K. Raychaudhuri, Thermal and elastic anomalies in glasses at low temperatures, *Progress in low temperature physics*. 9, 265–344 (1986).

106. W. N. Lawless, Recent Topics in Ferroelectrics at Low Temperatures: Quantum, Vibronic, and Glasslike Properties, *Japanese Journal of Applied Physics*. 24(S2), 94–98 (1985).

107. W. Hüssler, and E. Hegenbarth, Glasslike behaviour of thermal conductivity at ferroelectric single crystals op relaxor-type, *Ferroelectrics Letters Section*. 4(4), 117–121 (1985).

108. W. A. Phillips, Two-level states in glasses, *Reports on Progress in Physics*. 50(12), 1657–1708 (1987).

109. Y. M. Galperin, V. G. Karpov, and V. I. Kozub, Localized states in glasses, *Advances in Physics*. 38(6), 669–737 (1989).

110. R. G. Ross, P. Andersson and G. Bëckström, Unusual PT dependence of thermal conductivity for a clathrate hydrate, *Nature*. 290(5804), 322–323 (1981).

111. G.S. Nolas, G.A. Slack, D.T. Morelli, T.M. Tritt and A.C. Ehrlich, The effect of rare-earth filling on the lattice thermal conductivity of skutterudites, *Journal of Applied Physics*. 79(8), 4002–4008 (1996).

112. S. P. Andersson and O. Andersson, Thermal conductivity, heat capacity, and compressibility of atactic poly (propylene) under high pressure, *International Journal of Thermophysics*. 18(3), 845–864 (1997).

113. S. P. Andersson, O. Andersson and G. Bëckström, Thermal conductivity of amorphous Teflon (AF 1600) at high pressure, *International Journal of Thermophysics*. 18(1), 209–219 (1997).

114. S. P. Andersson and O. Andersson, Volume dependence of thermal conductivity and isothermal bulk modulus up to 1 GPa for poly (vinyl acetate), *Journal of Polymer Science Part B: Polymer Physics*. 36(9), 1451–1463 (1998).

115. S. P. Andersson and O. Andersson, Volume dependence of thermal conductivity and bulk modulus for poly (propylene glycol), *Journal of Polymer Science Part B: Polymer Physics*. 36(2), 345–355 (1998).

116. F. Kikuchi, T. Takahashi and K. Koyama, Temperature and pressure dependence of thermal conductivity measurement of polystyrene and polycarbonate, *Journal of Macromolecular Science, Part B*. 42(5), 1097–1110 (2003).

117. O. Andersson and A. Inaba, Thermal conductivity of crystalline and amorphous ices and its implications on amorphization and glassy water, *Physical Chemistry Chemical Physics*. 7(7), 1441–1449 (2005).

118. M.A. Chernikov, A. Bianchi and H.R. Ott, Low-temperature thermal conductivity of icosahedral Al_{70}Mn_{20}Pd_{20}, *Physical Review B*. 51(1), 153–158 (1995).

119. K. Edagawa, M. A. Chernikov, A. D. Bianchi, E. Felder, U. Gubler, and H. R. Ott, Low-Temperature Thermodynamic and Thermal-Transport Properties of Decagonal Al_{96}Cu_{4}Co_{5}, *Physical Review Letters*. 77(6), 1071–1074 (1996).

120. A. D. Bianchi, F. Bommei, E. Felder, M. Kenzelmann, M. A. Chernikov, L. Degiorgi, H. R. Ott, and K. Edagawa, Low-temperature thermal and optical
properties of single-grained decagonal Al-Ni-Co quasicrystals, Physical Review B. 58(6), 3046–3056 (1998).
121. D. G. Cahill, M. Katiyar, and J. R. Abelson, Thermal conductivity of a-Si:H thin films, Physical Review B. 50(9), 6077–6081 (1994).
122. D. G. Cahill, M. Katiyar, and J. R. Abelson, Heat transport in micron thick a-Si:H films, Philosophical Magazine B. 71(4), 677–682 (1995).
123. G. Gesele, J. Linsmeier, V. Drach, J. Fricke, and R. Arens-Fischer, Temperature-dependent thermal conductivity of porous silicon, Journal of Physics D: Applied Physics. 30(21), 2911–2916 (1997).
124. D. T. Morelli, T. A. Perry, J. W. Vandersande, and C. Uher, Glasslike thermal transport in heavily irradiated diamond, Physical Review B. 48(5), 3037–3041 (1993).
125. D. G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3ω method, Review of Scientific Instruments. 61(2), 802–808 (1990).
126. S. M. Lee, D. G. Cahill, Heat transport in thin dielectric films, Journal of applied physics. 81(6), 2590–25955 (1997).
127. D. G. Cahill, S. M. Lee and T. I. Selinder, Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings, Journal of applied physics. 83(11), 5783-5786 (1998).
128. D. Posselt, J. K. Kjems, A. Bernasconi, T. Sleator, and H. R. Ott, The thermal conductivity of silica aerogel in the phonon, the fracton and the particle-mode regime, Europhysics Letters. 16(1), 59–65 (1991).
129. P. Scheuerpflug, H. J. Morper and G. Neubert, Low-temperature thermal transport in silica aerogels, Journal of Physics D: Applied Physics. 24(8), 1395–1403 (1991).
130. D. M. Zhu and K. I. Cheong, Thermal transport in densified amorphous solids, Physica B: Condensed Matter. 219, 317–319 (1996).
131. M. Jöckel, K. Wagner, and E. Hegenbarth, Low-temperature thermal conductivity of vitreous silica under high pressure, Physica B: Condensed Matter. 219, 308–310 (1996).
132. D. G. Cahill, S. K. Watson, and R. O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Physical Review B. 46(10), 6131–6140 (1992).
133. D. M. Zhu and T. Kosugi, Thermal conductivity of GeO2-SiO2 and TiO2-SiO2 mixed glasses, Journal of Non-Crystalline Solids. 202(1–2), 88–92 (1996).
134. D. M. Zhu and A. C. Anderson, Low-temperature thermal conductivity of a glassy epoxy-epoxy composite, Journal of Low Temperature Physics. 80(3–4), 153–160 (1990).
135. A. Licea-Claverie, M. M?ller, M. Jöckel, and K. F. Arndt, Low-temperature thermal conductivity of diolmodified epoxies, Polymer Bulletin. 24(4), 421–427 (1990).
136. M. Jöckel, M. M?ller, A. L. Claverie, and K. F. Arndt, Thermal conductivity of modified epoxy resins with different cross-link densities at low temperatures, Cryogenics. 31(4), 228–230 (1991).
137. M. Jöckel, Thermal properties of polymer/particle composites at low temperatures, Cryogenics. 35(11), 713–716 (1995).
138. A. Nittke, M. Scherl, P. Esquinazi, W. Lorenz, J. Li, and F. Pobell, Low temperature heat release, sound velocity and attenuation, specific heat and
Thermal conductivity of glasses and disordered crystals

thermal conductivity in polymers, Journal of Low Temperature Physics. 98(5–6), 517–547 (1995).
139. J. E. De Oliveira, A. Azevedo, and F. L. A. Machado, Thermal and structural properties of the MY750 Epoxy diluted with xylene, Solid State Communications. 95(11), 781–785 (1995).
140. K. I. Cheong, D. M. Zhu, and E. W. Hellmuth, Thermal transport in a glassy polymer after being compressed at high pressure, Journal of Non-Crystalline Solids. 204(2), 158–163 (1996).
141. R. Geilenkeuser, T. Porschberg, M. Jackel, and A. Gladun, Influence of high pressure on thermal properties of amorphous polystyrene, Physica B: Condensed Matter. 263, 276–279 (1999).
142. S. P. Andersson and R. G. Ross, Thermal conductivity and heat capacity per unit volume of poly (methyl methacrylate) under high pressure, International Journal of Thermophysics. 15(5), 949–962 (1994).
143. E. Duval, T. Achibat, A. Boukenter, B. Varrel, R. Calemuczuk, and B. Salce, Low-energy excitations in polyvinyl chloride: Raman scattering and thermal properties, Journal of Non-Crystalline Solids. 190(3), 258–263 (1995).
144. M. Jöckel, F. V. Schoenebeck, U. Escher, and A. Gladun, Low-temperature thermal properties of amorphous polycarbonate, Czechoslovak Journal of Physics. 46(4), 2249–2250 (1996).
145. M. Jöckel, F. Weise, J. Opitz, and R. Geilenkeuser, Influence of hydrostatic pressure on the thermal properties of polymers at low temperatures, Cryogenics. 38(1), 105–108 (1998).
146. G. Ventura, E. Gottardi, I. Peroni, A. Peruzzi, and G. Ponti, Low temperature thermal conductivity of polyamide-imide, Nuclear Physics B Proceedings Supplements. 78, 571–572 (1999).
147. M. S. Love, and A. C. Anderson, Influence of structural relaxation on the low-temperature thermal conductivity of ancient natural glasses, Journal of Low Temperature Physics. 84(1–2), 19–36 (1991).
148. S. K. Watson and R. O. Pohl, Low-temperature glasslike properties in (NaCl)_{1–x}(NaCN). Physical Review B. 51(13), 8086–8101 (1995).
149. S. Vieira, M. A. Ramos, Q. W. Zou, and C. Talon, Low-temperature thermal properties of molecular glasses and crystals, Phase Transitions: A Multinational Journal. 64(1–2), 87–102 (1997).
150. J. F. Berret, M. Meissner, S. K. Watson, R. O. Pohl, and E. Courtens, Glasslike thermal properties and isotope effect in Rb_{1–x}(NH_{4})_{x}H_{2}PO_{4} mixed crystals, Physical Review Letters. 67(1), 93–96 (1991).
151. N. Ahmad, C. J. Adkins, and W. A. Phillips, Heat capacity and thermal conductivity of LiCl.7H_{2}O, Journal of Physics: Condensed Matter. 5(24), 4007–4012 (1993).
152. G. S. Nolas, J. L. Cohn, and G. A. Slack, Effect of partial void filling on the lattice thermal conductivity of skutterudites, Physical Review B. 58(1), 164–170 (1998).
153. J. L. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf, and G. A. Slack, Glasslike heat conduction in high-mobility crystalline semiconductors, Physical Review Letters. 82(4), 779–782 (1999).
154. O. Andersson, and H. Suga, Thermal conductivity of normal and deuterated tetrahydrofuran clathrate hydrates, Journal of Physics and Chemistry of Solids. 57(1), 125–132 (1996).
155. M. Zakrzewski, and M. A. White, Thermal conductivities of a clathrate with and without guest molecules, *Physical Review B*. **45**(6), 2809–2817 (1992).

156. D. Michalski, and M. A. White, Thermal Conductivity of a Clathrate with Restrained Guests: The CCl₄ Clathrate of Dianin's Compound, *The Journal of Physical Chemistry*. **99**(11), 3774–3780 (1995).

157. D. Michalski, and M. A. White, Thermal conductivity of an organic clathrate: Possible generality of glasslike thermal conductivity in crystalline molecular solids, *The Journal of Chemical Physics*. **106**(1), 6202–6203 (1997).

158. C. L. Choy, K. W. Tong, H. K. Wong, and W. P. Leung, Thermal conductivity of amorphous alloys above room temperature, *Journal of Applied Physics*. **70**(9), 4919–4925 (1991).

159. R. Schmidt, T. Franke, and P. H?ussler, Thermal conductivity of Cu₃Sn₁₋ₓ films at low temperatures, *Physica B: Condensed Matter*. **263**, 296–298 (1999).

160. K. Wagner, and E. Hegenbarth, Thermal conductivity of Strontium-Barium-Niobat under high pressure and at low temperatures, *Ferroelectrics Letters Section*. **16**(3–4), 95–102 (1993).

161. B. Salce, J. L. Gravil, and L. A. Boatner, Disorder and thermal transport in undoped KTaO₃, *Journal of Physics: Condensed Matter*. **6**(22), 4077–4092 (1994).

162. E. Hegenbarth, Glasslike behaviour of ferroelectrics at low temperatures, *Ferroelectrics*. **168**(1), 25–37 (1995).

163. M. Fahland, G. Mattausch, and E. Hegenbarth, Thermal conductivity measurements on (PbₓBa₁₋ₓ)Sc₁₋ₓNbₓO₃, *Ferroelectrics*. **168**(1), 9–16 (1995).

164. J. Suchaniez, A. Jeżowski, and R. Poprawski, Low-Temperature Thermal and Dielectric Properties of Naₓ₂₋₉Baₓ₂₋₉TiO₃, *Physica Status Solidi (a)*. **169**(2), 209–215 (1998).

165. H. Fujishiro, and M. Ikebe, Two-level-like anomalous phonon scattering in LaₓSrₓCuO₄ and La₁₋ₓSrₓMnO₃, *Physica B: Condensed Matter*. **263**, 691–694 (1999).

166. U. T. H?chli, K. Knorr, and A. Loidl, Orientational glasses, *Advances in Physics*. **39**(5), 405–615 (1990).

167. H. L?hneysen, Thermal properties of amorphous metals, *Materials Science and Engineering: A*. **133**, 51–58 (1991).

168. R. G. Ross, Thermal conductivity and disorder in nonmetallic materials, *Physics and Chemistry of Liquids*. **23**(4), 189–210 (1991).

169. Y. K. Godovsky, *Thermophysical properties of polymers*. Springer-Verlag, Heidelberg (1992).

170. I. A. Smirnov and V. S. Oskotski, Thermal conductivity of rare earth compounds, *Handbook on the Physics and Chemistry of Rare Earths*. **16**, 107–224 (1993) DOI: 10.1016/S0168-1273(05)80017-0

171. M. A. Ramos, L. Gil, A. Bringer, and U. Buchenau, The Density of Tunneling and Vibrational States of Glasses within the Soft-Potential Model, *Physica Status Solidi (a)*. **135**(2), 477–492 (1993).

172. B. C. Sales, D. Mandrus, and R.K. Williams, Filled skutterudite antimonides: a new class of thermoelectric materials, *Science*. **272**(5266), 1325–1328 (1996).

173. G. Mattausch, T. Felsner, E. Hegenbarth, B. Kluge, and S. Sahling, Glassy properties of the relaxor ferroelectric strontium barium niobate at low temperatures, *Phase Transitions: A Multinational Journal*. **59**(4), 189–223 (1996).
Thermal conductivity of glasses and disordered crystals

174. F. J. Bermejo, G. J. Cuello, E. Courtens, R. Vacher, and M. A. Ramos, Comment on “High Frequency Dynamics of Glass Forming Liquids at the Glass Transition”, Physical Review Letters. 81(17), 3801 (1998).

175. G. S. Nolas, D. T. Morelli, and T. M. Tritt, Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications, Annual Review of Materials Science. 29(1), 89–116 (1999).

176. M. A. White, Thermal conductivities of molecular materials, Journal of Thermal Analysis and Calorimetry. 57(3), 765–771 (1999).

177. A. D. Bianchi, Thermal and transport properties of quasicrystals (Doctoral dissertation, ETH Zurich) (1999).

178. D.G. Cahill, Heat transport in dielectric thin films and at solid-solid interfaces, Microscale Thermophysical Engineering. 1(2), 85-109 (1997).

179. D. A. Parshin, Soft potential model and universal properties of glasses, Physica Scripta. 49A, 180–185 (1993).

180. M.A. Ramos and U. Buchenau, Low-temperature thermal conductivity of glasses within the soft-potential model, Physical Review B. 55(9), 5749–5754 (1997).

181. D.G. Cahill, R.B. Stephens, R.H. Tait, S. K. Watson, and R. O. Pohl, Thermal conductivity and lattice vibrations in glasses. In eds. C. J. Cremers and H. A. Fine, Thermal conductivity, Vol. 21, pp. 3–16, Plenum Press, New York (1990).

182. M. I. Klinger and A. M. Kosevich, Soft-mode-dynamics model of acoustic-like high-frequency excitations in boson-peak spectra of glasses, Physics Letters A. 280(5–6), 365–370 (2001)

183. E. Duval, A. Mermet, and L. Savioit, Boson peak and hybridization of acoustic modes with vibrations of nanometric heterogeneities in glasses, Physical Review B. 75(2), 024201–9 (2007).

184. M. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. Andersen, K. Lefmann, J. Andreasson, C. R. Bahl, and B. B. Iversen, Avoided crossing of rattler modes in thermoelectric materials, Nature materials. 7(10), 811–815 (2008).

185. B. C. Sales, B. C. Chakoumakos, R. Jin, J. R. Thompson, and D. Mandrus, Structural, magnetic, thermal, and transport properties of X$_3$Ga$_4$Ge$_{10}$ (X= Eu, Sr, Ba) single crystals, Physical Review B. 63(24), 245113–8 (2001).

186. S. Paschen, W. Carrillo-Cabrera, A. Bentien, V. H. Tran, M. Baenitz, Y. Grin, and F. Steglich, Structural, transport, magnetic, and thermal properties of Eu$_3$Ga$_4$Ge$_{10}$, Physical Review B. 64(21), 214404–11 (2001).

187. G. S. Nolas, J. L. Cohn, J. S. Dyck, C. Uhler, and J. Yang, Transport properties of polycrystalline type-I Sn clathrates, Physical Review B. 65(16), 165201–5 (2002).

188. S. Paschen, V. Pacheco, A. Bentien, A. Sanchez, W. Carrillo-Cabrera, M. Baenitz, B.B. Iversen, Y. Grin, and F. Steglich, Are type-I clathrates Zintl phases and ‘phonon glasses and electron single crystals?’, Physica B: Condensed Matter. 328(1–2), 39–43 (2003).

189. A. Bentien, M. Christensen, J. D. Bryan, A. Sanchez, S. Paschen, F. Steglich, G. D. Stucky, and B. B. Iversen, Thermal conductivity of thermoelectric clathrates, Physical Review B. 69(4), 045107–5 (2004).
190. L. Qiu, I. P. Swainson, G. S. Nolas, and M. A. White, Structure, thermal, and transport properties of the clathrates $\text{Sr}_8\text{Zn}_8\text{Ge}_{38}$, $\text{Sr}_8\text{Ga}_{16}\text{Ge}_{30}$, and $\text{Ba}_8\text{Ga}_{16}\text{Si}_{30}$. Physical Review B. 70(3), 035208–8 (2004).

191. O. Andersson, V. Murashov, and M. A. White, Thermal conductivity and heat capacity of diamin's clathrates under pressure, The Journal of Physical Chemistry B. 106(1), 192–196 (2002).

192. G. S. Nolas, M. Beekman, J. Gryko, G.A. Lamberton Jr, T. M. Tritt, and P. F. McMillan, Thermal conductivity of elemental crystalline silicon clathrate Si 136, Applied Physics Letters. 82(6), 910–912 (2005).

193. A. I. Krivchikov, V. G. Manzhelii, O. A. Korolyuk, B. Y. Gorodilov, and O. O. Romantsova, Thermal conductivity of tetrahydrofuran hydrate, Physical Chemistry Chemical Physics. 7(5), 728–730 (2005).

194. A. I. Krivchikov, B. Y. Gorodilov, O. A. Korolyuk, V. G. Manzhelii, H. Conrad, and W. Press, Thermal conductivity of methane-hydrate, Journal of low temperature physics. 139(5-6), 693–702 (2005).

195. I. Fujita, K. Kishimoto, M. Sato, H. Anno, and T. Koyanagi, Thermoelectric properties of sintered clathrate compounds $\text{Sr}_8\text{Ga}_{16}\text{Ge}_{30-x}$ with various carrier concentrations, Journal of Applied Physics. 99(9), 093707–8 (2006).

196. A. I. Krivchikov, B. Y. Gorodilov, O. A. Korolyuk, V. G. Manzhelii, O. O. Romantsova, H. Conrad, W. Press, J.S. Tse, and D.D. Klug, Thermal conductivity of Xe clathrate hydrate at low temperatures, Physical Review B. 73(6), 064203–6 (2006).

197. M. Beekman, W. Schnelle, H. Borrmann, M. Baitinger, Y. Grin, and G.S. Nolas, Intrinsic Electrical and Thermal Properties from Single Crystals of Na 24 Si 136, Physical Review Letters. 104(1), 018301–4 (2010).

198. E.J. Rosenbaum, N.J. English, J.K. Johnson, D.W. Shaw, and R.P. Warzinski, Thermal conductivity of methane hydrate from experiment and molecular simulation, The Journal of Physical Chemistry B. 111(46), 13194–13205 (2007).

199. K. Suekuni, M.A. Avila, K. Umeo, and T. Takabatake, Cage-size control of guest vibration and thermal conductivity in $\text{Sr}_8\text{Ga}_{16}\text{Si}_{30-x}\text{Ge}_x$, Physical Review B. 75(19), 195210–6 (2007).

200. J.V. Zaikina, W. Schnelle, K.A. Kovnir, A.V. Olenev, Y. Grin, and A.V. Shevelkov, Crystal structure, thermoelectric and magnetic properties of the type-I clathrate solid solutions $\text{Sn}_{24}\text{P}_{19.3(2)}\text{Br}_x\text{I}_{8-x}$ ($0 \leq x \leq 8$) and $\text{Sn}_{24}\text{P}_{19.3(2)}\text{Cl}_x\text{I}_{8-x}$ ($0 \leq x \leq 8$), Solid State Sciences. 9(8), 664–671 (2007).

201. M.A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Takabatake, $\text{Ba}_8\text{Ga}_{16}\text{Sn}_{30}$ with type-I clathrate structure: Drastic suppression of heat conduction, Applied Physics Letters. 92(4), 041901–3 (2008).

202. K. Suekuni, M.A. Avila, K. Umeo, H. Fukuoka, S. Yamanaka, T. Nakagawa, and T. Takabatake, Simultaneous structure and carrier tuning of dimorphic clathrate $\text{Ba}_8\text{Ga}_{16}\text{Sn}_{30}$, Physical Review B. 77(23), 235119–8 (2008).

203. E. Thompson, P.D. Vu, and R.O. Pohl, Glasslike lattice vibrations in the quasicrystal $\text{Al}_{122}\text{Pd}_{20.7}\text{Mn}_{72.2}$, Physical Review B. 62(17), 11437–11443 (2000).

204. K. Giann?, A.V. Sologubenko, L. Liechtenstein, M.A. Chernikov, and H.R. Ott, Low-temperature thermoelectric power and thermal conductivity of two icosahedral Al-Pd-Re quasicrystals, Ferroelectrics. 250(1), 249–252 (2001).
205. Y.K. Kuo, J.R. Lai, C.H. Huang, W.C. Ku, C.S. Lue, and S.T. Lin, Thermoelectric properties of binary Cd-Yb quasicrystals and Cd$_2$Yb, Journal of Applied Physics. 95(4), 1900–1905 (2004).

206. J. Dolnišek, S. Vrtnik, M. Klanjšek, Z. Jagličič, A. Smontara, I. Smiljančič, A. Bilušič, Y. Yokoyama, A. Inoue, and C.V. Landauro, Intrinsic electrical, magnetic, and thermal properties of single-crystalline Al$_6$Cu$_{13}$Fe$_{13}$ icosahedral quasicrystal: Experiment and modeling, Physical Review B. 76(5), 054201–9 (2007).

207. I. Smiljančič, A. Smontara, A. Bilušič, N. Barišić, D. Stanić, J. Lukatela, J. Dolnišek, M. Feuerbacher, and B. Grushko, Thermal and electrical conductivities in Al-based complex metallic alloys, Philosophical Magazine. 88(13–15), 2155–2162 (2008).

208. Y.K. Kuo, N. Kaurav, W.K. Syu, K.M. Sivakumar, U.T. Shan, S.T. Lin, Q. Wang, and C. Dong, Transport properties of Ti-Zr-Ni quasicrystalline and glassy alloys, Journal of Applied Physics. 104(6), 063705–3 (2008).

209. A.I. Krivchikov, A.N. Yushchenko, V.G. Manzhelii, O.A. Korolyuk, F.J. Bermejo, R. Fernández-Perea, C. Cabrillo, and M.A. González, Scattering of acoustic phonons in disordered matter: A quantitative evaluation of the effects of positional versus orientational disorder, Physical Review B. 74(6), 060201–4 (2006).

210. C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, Ultralow thermal conductivity in disordered, layered WSe$_2$ crystals, Science. 315(5810), 351–353 (2007).

211. V. G. Manzhelii, O.A. Korolyuk, F.J. Bermejo, R. Fernández-Perea, C. Cabrillo, and M.A. González, Scattering of acoustic phonons in disordered matter: A quantitative evaluation of the effects of positional versus orientational disorder, Physical Review B. 74(6), 060201–4 (2006).

212. G.S. Nolas, T.J.R. Weakeley, J.L. Cohn, and R. Sharma, Structural properties and thermal conductivity of crystalline Ge clathrates, Physical Review B. 61(6), 3845–3850 (2000).

213. K. Takahata, Y. Iguchi, D. Tanaka, T. Itoh, and I. Terasaki, Low thermal conductivity of the layered oxide (Na, Ca)Co$_2$O$_4$: Another example of a phonon glass and an electron crystal, Physical Review B. 61(19), 12551–12555 (2000).

214. C. Uher, Skutterudites: Prospective novel thermoelectrics, Semiconductors and Semimetals. 69, 139–253 (2001).

215. M. Tachibana, K. Sasame, H. Kawaji, T. Atake, and E. Takayama-Muromachi, Thermal signatures of nanoscale inhomogeneities and ferroelectric order in [PbZn$_{1/3}$Nb$_{2/3}$O$_3$], [PbTiO$_3$], Physical Review B. 80(9), 094115–7 (2009).

216. M. Tachibana, and E. Takayama-Muromachi, Thermal conductivity and heat capacity of the relaxor ferroelectric [PbMg$_{1/3}$Nb$_{2/3}$O$_3$], [PbTiO$_3$], Physical Review B. 79(10), 100104–4 (2009).

217. C. Talon, Q.W. Zou, M.A. Ramos, R. Villar, and S. Vieira, Low-temperature specific heat and thermal conductivity of glycerol, Physical Review B. 65(1), 012203–4 (2001).

218. A.I. Krivchikov, A.N. Yushchenko, O.A. Korolyuk, F.J. Bermejo, R. Fernández-Perea, I. Bustinduy, and M.A. González, Effects of resonant phonon scattering from internal molecular modes on the thermal conductivity of molecular glasses, Physical Review B. 77(2), 024202–7 (2008).

219. A.I. Krivchikov, I.V. Sharapova, O.A. Korolyuk, O.O. Romansova, and F.J. Bermejo, Experimental evidence of the role of quasi-localized phonons in the
thermal conductivity of simple alcohols in orientationally ordered crystalline
phases, Low Temperature Physics. 35(11), 891–897 (2009).
220. J.H. Phills, M.B. Johnson, and M.A. White, Origins of ultralow thermal
conductivity in bulk [6, 6]-phenyl-C 61-butyric acid methyl ester
(PCBM), Physical Chemistry Chemical Physics. 18(2), 1185–1190 (2016).
221. O. Andersson, and H. Suga, Thermal conductivity of amorphous ices, Physical
Review B. 65(14), 140201–4(R) (2002).
222. B.L. Zink, and F. Hellman, Specific heat and thermal conductivity of low-stress
amorphous Si–N membranes, Solid State Communications. 129(3), 199–204
(2004).
223. B. Revaz, B.L. Zink, and F. Hellman, Si-N membrane-based microcalorimetry:
Heat capacity and thermal conductivity of thin films, Thermochimica Acta.
432(2), 158–168 (2005).
224. B.L. Zink, R. Pietri, and F. Hellman, Thermal conductivity and specific heat of
thin-film amorphous silicon, Physical Review Letters. 96(5), 055902–1–
055902-4 (2006).
225. X. Liu, J.L. Feldman, D.G. Cahill, R.S. Crandall, N. Bernstein, D.M. Photiadis,
M.J. Mehl, and D.A. Papaconstantopoulos, High thermal conductivity of a
hydrogenated amorphous silicon film, Physical Review Letters. 102(3),
035901–4 (2009).
226. D. Rosenberg, D. Natelson, and D.D. Osheroff, Thermal Conductivity in
Glasses Below 1 K: New Technique and Results, Journal of Low Temperature
Physics. 120(3–4), 259–268 (2000).
227. S.K. Watson, and R.O. Pohl, Low-energy lattice vibrations of porous silica
glass, Physical Review B. 68(10), 104203–11 (2003).
228. H.Y. Hao, M. Neumann, C. Enss, and A. Fleischmann, Contactless technique
for thermal conductivity measurement at very low temperature, Review of
Scientific Instruments. 75(8), 2718–2725 (2004).
229. A. Netsch, A. Fleischmann, and C. Enss, Thermal conductivity in glasses with
a phononic crystal like structure. In Journal of Physics: Conference
Series (Vol. 92, No. 1, 012130) (2007).
230. B. Terziyska, H. Misiorek, E. Vateva, A. Jeżowski, and D. Arsova, Low-
temperature thermal conductivity of Ge_xAs_yS_z glasses, Solid state
communications. 134(5), 349–353 (2005).
231. B. Terziyska, E. Vateva, and D. Arsova, 2007, April. Low-temperature
contributions to the specific heat of Ge_xAs_yS_z glasses. In AIP Conference
Proceedings (Vol. 899, No. 1, 589–589).
232. L. Risegari, M. Barucci, E. Olivieri, and G. Ventura, Low temperature thermal
conductivity of PVC, Journal of Low Temperature physics. 144(1–3), 49–59
(2006).
233. A.L. Woodcraft, and A. Gray, December. A low temperature thermal
conductivity database, In Aip conference proceedings (Vol. 1185, No. 1, 681–
684) (2009).
234. M. Barucci, E. Olivieri, E. Pasca, L. Risegari, and G. Ventura, Thermal
conductivity of Torlon between 4.2 and 300 K, Cryogenics. 45(4), 295–299
(2005).
235. M. Barucci, E. Gattardi, E. Olivieri, E. Pasca, L. Risegari, and G. Ventura,
Low-temperature thermal properties of polypropylene, Cryogenics. 42(9), 551–
555 (2002).
236. C. Hu, M. Kiene and P.S. Ho, Thermal conductivity and interfacial thermal resistance of polymeric low k films, *Applied Physics Letters*, 79(25), (4121-4123) (2001).
237. Y. Tian, Z.Q. Li, and E.Y. Jiang, Low temperature specific heat and thermal conductivity of bulk metallic glass (Cu_{50}Zr_{50})_{33}Al_{6}, *Solid State Communications*. 149(37–38), 1527–1530 (2009).
238. Z. Zhou, C. Uher, D. Xu, W.L. Johnson, W. Gannon, and M.C. Aronson, On the existence of Einstein oscillators and thermal conductivity in bulk metallic glass, *Applied Physics Letters*. 89(3), 031924–3 (2006).
239. Y.K. Kuo, K.M. Sivakumar, C.A. Su, C.N. Ku, S.T. Lin, A.B. Kaiser, J.B. Qiang, Q. Wang, and C. Dong, Measurement of low-temperature transport properties of Cu-based Cu-Zr-Ti bulk metallic glass, *Physical Review B*. 74(1), 014208–7 (2006).
240. M.B. Tang, and J.T. Zhao, Low temperature transport and thermal properties of half-Heusler alloy Zr_{0.25}Hf_{0.25}Ti_{0.5}NiSn, *Journal of Alloys and Compounds*. 475(1–2), 5–8 (2009).
241. M.B. Jakubinek, B.Z. Zhan, and M.A. White, Temperature-dependent thermal conductivity of powdered zeolite NaX, *Microporous and mesoporous materials*. 103(1–3), 108–112 (2007).
242. C. Wan, W. Zhang, Y. Wang, Z. Qu, A. Du, R. Wu, and W. Pan, Glass-like thermal conductivity in ytterbium-doped lanthanum zirconate pyrochlore, *Acta Materialia*. 58(18), 6166–6172 (2010).
243. A.I. Krivchikov, F. J. Bermejo, I. V. Sharapova, O. A. Korolyuk, and O. O. Romantsova, Deuteration effects in the thermal conductivity of molecular glasses, *Low Temperature Physics*. 37(6), 517–523 (2011).
244. M. Tachibana, T. Kolodiazhnyi, and E. Takayama-Muromachi, Thermal conductivity of perovskite ferroelectrics, *Applied Physics Letters*. 93(9), 092902–3 (2008).
245. M.A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Takabatake, Glasslike versus crystalline thermal conductivity in carrier-tuned Ba_{5}Ga_{16}X_{30} clathrates (X= Ge, Sn), *Physical Review B*. 74(12), 125109–8 (2006).
246. K. Suekuni, H. I. Tanaka, F. S. Kim, K. Umeo, and T. Takabatake, Glasslike versus Crystalline Thermophysical Properties of the Cu–S based Minerals: Tetrahedrite and Colusite, *Journal of the Physical Society of Japan*. 84(10), 103601–4 (2015).
247. E. I. Salamatov, A. V. Taranov, E. N. Khazanov, E. V. Charnaya, and E. V. Shevchenko, Transport characteristics of phonons and the specific heat of Y_{2}O_{3}: ZrO_{2} solid solution single crystals, *Journal of Experimental and Theoretical Physics*. 125(5), 768–774 (2017).
248. S. Hunklinger, and C. Enss, Tunneling systems in crystalline and amorphous solids, *Insulating and Semiconducting Glasses*. 499–551 (2000).
249. G.S. Nolas, G.A. Slack, and S.B. Schujman, Semiconductor clathrates: A phonon glass electron crystal material with potential for thermoelectric applications, *Semiconductors and Semimetals*. 69, 255–300 (2001).
250. R.O. Pohl, X. Liu, and E. Thompson, Low-temperature thermal conductivity and acoustic attenuation in amorphous solids, *Reviews of Modern Physics*. 74(4), 991–1013 (2002).
251. V. Murashov, and M.A. White, Thermal conductivity of insulators and glasses, *Thermal Conductivity*, 93–104 (2004).
252. T.M. Tritt, ed. Thermal conductivity: theory, properties, and applications (2005).
253. R.O. Pohl, Lattice vibrations of glasses, *Journal of Non-Crystalline Solids*. 352(32–35), 3363–3367 (2006).
254. G.P. Johari, and O. Andersson, Vibrational and relaxational properties of crystalline and amorphous ices, *Thermochemica Acta*. 461(1–2), 14–43 (2007).
255. O. Andersson, Thermal conductivity of normal and deuterated water, crystalline ice, and amorphous ices, *The Journal of Chemical Physics*. 149(12), 124506–8 (2018).
256. C. Chang, and L.D. Zhao, Anharmonicity and low thermal conductivity in thermoelectrics, *Materials Today Physics*. 4, 50–57 (2018).
257. B.M. Foley, C.S. Gorham, J.C. Duda, R. Cheaito, C.J. Szwejekowski, C. Constantin, B. Kaehr, and P.E. Hopkins, Protein thermal conductivity measured in the solid state reveals anharmonic interactions of vibrations in a fractal structure, *The Journal of Physical Chemistry Letters*. 5(7), 1077–1082 (2014).
258. U. Aydemir, C. Candolfi, A.Ormeci, Y. Oztan, M. Baitinger, N. Oeschler, F. Steglich, and Y. Grin, Low-temperature thermoelectric, galvanomagnetic, and thermodynamic properties of the type-I clathrate Ba₈Au₄Si₄₆-x, *Physical Review B*. 84(19), 195137–14 (2011).
259. S. Mano, T. Onimaru, S. Yamanaka, and T. Takabatake, Off-center rattling and thermoelectric properties of type-II clathrate (K, Ba)₂₃Ga, Sn, □₃₆ single crystals, *Physical Review B*. 84(21), 214101–6 (2011).
260. W. Li, and N. Mingo, Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe₄Sb₁₂ due to the flat avoided-crossing filler modes, *Physical Review B*. 91(14), 144304–6 (2015).
261. F. Sui, H. He, S. Bobev, J. Zhao, F.E. Osterloh, and S.M. Kauzlarich, Synthesis, structure, thermoelectric properties, and band gaps of alkali metal containing type I clathrates: A₈Ga₄Si₃₈ (A= K, Rb, Cs) and K₂Al₄Si₃₈, *Chemistry of Materials*. 27(8), 2812–2820 (2015).
262. S. Christensen, M.S. Schm?kel, K.A. Borup, G.K. Madsen, G.J. McIntyre, S.C. Capelli, M. Christensen, and B.B. Iversen, “Glass-like” thermal conductivity gradually induced in thermoelectric Sr₉Ga₄Ge₃, clathrate by off-centered guest atoms, *Journal of Applied Physics*. 119(18), 185102–11 (2016).
263. P.F. Lory, S. Pailli?é, V.M. Giordano, H. Euchner, H.D. Nguyen, R. Ramlau, H. Borrmann, M. Schmidt, M. Baitinger, M. Ikeda, and P. Tome?, Direct measurement of individual phonon lifetimes in the clathrate compound Ba₈₋₄Ge₄₋₃Au₄₋₃₃, *Acta Materialia*. 129, 521–531 (2017).
264. P. Tome?, T. Himmelbauer, A. Sidorenko, X. Yan, A. Prokofiev, and S. Paschen, Physical properties of the type-I clathrate phase Ba₉₋₄Eu₄Au₄Si₄₆₋₃₃, *Acta Materialia*. 129, 521–531 (2017).
265. P. Popčević, D. Stanic, Ž. Bihar, A. Bilušić, and A. Smontara, Heat Transport in Aluminum-Based Quasicrystals i-AlPdMn, i-AlCuFe, and d-AlCoNi, *Israti Journal of Chemistry*. 51(11–12), 1340–1348 (2011).
266. A.I. Krivchikov, O.A. Korolyuk, L.V. Sharapova, J.J. Tamarit, F.J. Bermejo, L.C. Paro, M. Rovira-Esteva, M.D. Ruiz-Martin, A. Jezowski, J. Baran, and N.A. Davydova, Effects of internal molecular degrees of freedom on the
Thermal conductivity of glasses and disordered crystals

thermal conductivity of some glasses and disordered crystals, *Physical Review B*. **85**(1), 014206–10 (2012).

267. J.F. Gebbia, M.A. Ramos, D. Szewczyk, A. Jezowski, A.I. Krivchikov, Y.V. Horbatenko, T. Guidi, F.J. Bermejo, and J.L. Tamarit, Glassy anomalies in the low-temperature thermal properties of a minimally disordered crystalline solid, *Physical Review Letters*. **119**(21), 215506–6 (2017).

268. G.P. Johari, O. Andersson, and B. Sundqvist, Instability and thermal conductivity of pressure-densified and elastically altered orientationnal glass of Buckminsterfullerene, *The Journal of Chemical Physics*. **148**(14), 144502–8 (2018).

269. M. Hassaine, M.A. Ramos, A.I. Krivchikov, I.V. Sharapova, O.A. Korolyuk, and R.J. Jiménez-Riobóo, Low-temperature thermal and elastoacoustic properties of butanol glasses: Study of position isomerism effects around the boson peak, *Physical Review B*. **85**(10), 104206–11 (2012).

270. T. P?rez-Castañeda, R.J.J. Riobóo, and M.A. Ramos, Low-temperature thermal properties of a hyperaged geological glass, *Journal of Physics: Condensed Matter*. **25**(29), 295402–10 (2013).

271. A.I. Krivchikov, and O. Andersson, Thermal Conductivity of Triphenyl Phosphite’s Liquid, Glassy, and Glacial States, *The Journal of Physical Chemistry B*. **120**(10), 2845–2853 (2016).

272. O. Andersson, and G.P. Johari, Thermal conductivity of Glycerol’s liquid, glass, and crystal states, glass-liquid-glass transition, and crystallization at high pressures, *The Journal of Chemical Physics*. **144**(6), 064504–10 (2016).

273. H.S. Yang, D.G. Cahill, S. Liu, J.L. Feldman, R.S. Crandall, B.A. Sperling, and J.R. Abelson, Anomalously high thermal conductivity of amorphous Si deposited by hot-wire chemical vapor deposition, *Physical Review B*. **81**(10), 104203–7 (2010).

274. X. Liu, J.L. Feldman, D.G. Cahill, H.S. Yang, R.S. Crandall, N. Bernstein, D.M. Photiadis, M.J. Mehl, and D.A. Papaconstantopoulos, Anomalously high thermal conductivity of amorphous silicon films prepared by hot-wire chemical vapor deposition, *Chinese Journal of Physics*. **49**(1), 359–368 (2011).

275. K. Valalaki, and A.G. Nassiopoulou, Low thermal conductivity porous Si at cryogenic temperatures for cooling applications, *Journal of Physics D: Applied Physics*. **46**(29), 295101–9 (2013).

276. K. Valalaki, and A.G. Nassiopoulou, Thermal conductivity of highly porous Si in the temperature range 4.2 to 20 K, *Nanoscale Research Letters*. **9**(1), 318–6 (2014).

277. O. Andersson, and Y. Nakazawa, Transitions in pressure collapsed clathrate hydrates, *The Journal of Physical Chemistry B*. **119**(9), 3846–3853 (2015).

278. Z.G. Cheng, and M.H. Chan, Threefold reduction in thermal conductivity of Vycor glass due to adsorption of liquid 4He, *New Journal of Physics*. **15**(6), 063030–8 (2013).

279. A. Gurlo, E. Ionescu, R. Riedel, and D.R. Clarke, The Thermal Conductivity of Polymer-Derived Amorphous Si–O–C Compounds and Nano-Composites, *Journal of the American Ceramic Society*. **99**(1), 281–285 (2016).

280. S.N. Zhang, J. He, T.J. Zhu, X.B. Zhao, and T.M. Tritt, Thermal conductivity and specific heat of bulk amorphous chalcogenides Ge20Te80–xSex (x= 0, 1, 2, 8), *Journal of Non-Crystalline Solids*. **355**(2), 79–83 (2009).
281. G. Ventura, and V. Martelli, Low temperature thermal conductivity of PVC, Astroparticle, Particle And Space Physics, Detectors And Medical Physics Applications. 145–149 (2010).
282. A.L. Woodcraft, V. Martelli, and G. Ventura, Thermal conductivity of Tecamax® SRP from millikelvin temperatures to room temperature, Cryogenics. 50(2), 66–70 (2010).
283. T. Seidl, A. Plotnikov, E. Mustafin, R. Lopez, D. Severin, E. Floch, C. Trautmann, A. Golubev, A. Smolyakov, D. Tommasini, and W. Ensinger, Influence of swift heavy ion beams and protons on the dielectric strength of polyimide, Polymer degradation and stability. 97(11), 2396–2402 (2012).
284. O. Andersson, and G.P. Johari, Effect of pressure on thermal conductivity and pressure collapse of ice in a polymer-hydrogel and kinetic unfreezing at 1 GPa. The Journal of Chemical Physics. 134(12), 124903–10 (2011).
285. J.C. Duda, P.E. Hopkins, Y. Shen, and M.C. Gupta, Exceptionally low thermal conductivities of films of the fullerene derivative PCBM, Physical Review Letters. 110(1), 015902–5 (2013).
286. X. Wang, V. Ho, R.A. Segalman, and D.G. Cahill, Thermal conductivity of high-modulus polymer fibers, Macromolecules. 46(12), 4937–4943 (2013).
287. V. Singh, T.L. Bouger, A. Weathers, Y. Cai, K. Bi, M.T. Pettes, S.A. McMenamin, W. Lv, D.P. Resler, T.R. Gattuso, and D.H. Altman, High thermal conductivity of chain-oriented amorphous polythiophene, Nature nanotechnology. 9(5), 384–390 (2014).
288. G. Ventura and M. Perfetti, Thermal properties of solids at room and cryogenic temperatures, Springer Netherlands, (2014).
289. P. Limelette, B. Schmaltz, D. Brault, Gouineau, M. Autret-Lambert, C. Roger, S. Grimal, V. and Tran Van, F. Conductivity scaling and thermoelectric properties of polyaniline hydrochloride, Journal of Applied Physics. 115(3), 033712–6 (2014).
290. S. Nakamura, T. Fujii, S. Matsukawa, M. Katagiri, and H. Fukuyama, Specific heat, thermal conductivity, and magnetic susceptibility of cyanate ester resins—An alternative to commonly used epoxy resins, Cryogenics. 95, 76–81 (2018).
291. L. Dong, Q. Xi, D. Chen, J. Guo, T. Nakayama, Y. Li, Z. Liang, J. Zhou, X. Xu, and B. Li, Dimensional crossover of heat conduction in amorphous polyimide nanofibers, National Science Review. 5(4), 500–506 (2018).
292. M. Daal, N. Zobrist, N. Kellaris, B. Sadoulet, and M. Robertson, Properties of selected structural and flat flexible cabling materials for low temperature applications, Cryogenics. 98, 47–59 (2019).
293. D.S. Rothfus?, Thermische Eigenschaften von supraleitenden massiven metallischen Gl?fern bei ultratiefen Temperaturen (Doctoral dissertation) (2013).
294. V.V.E. Pryadun, D.V. Louzguine-Luzgin, L.V. Shvanskaya, and A.N. Vasiliev, Thermoelectric properties of Au-based metallic glass at low temperatures, JETP letters. 101(7), 465–468 (2015).
295. T. Kolodziejczyk, H. Sakurai, O. Vasylykiv, H. Borodianska, and Y. Mozharivskyj, Abnormal thermal conductivity in tetragonal tungsten bronze Ba3Nb6O17, Sr3Nb6O17, Applied Physics Letters. 104(11), 111903–3 (2014).
296. M. Tachibana, Thermal conductivity of Aurivillius compounds Bi2WO6, SrBi2Ta2O9, and Bi2Ti3O12, Solid State Communications. 211, 1–3 (2015).
Thermal conductivity of glasses and disordered crystals

297. B. M. Foley, E. A. Paisley, C. DiAntonio, T. Chavez, M. Blea-Kirby, G. Brennecka, J. T. Gaskins, J. F. Ihlefeld, and P. E. Hopkins, Phonon scattering mechanisms dictating the thermal conductivity of lead zirconate titanate (PhZr1−xTiO3) thin films across the compositional phase diagram, Journal of Applied Physics. 121(20), 205104–15 (2017).

298. B. Ramachandran, K.K. Wu, Y.K. Kuo, and M.R. Rao, Phonon thermal transport and phonon–magnon coupling in polycrystalline BiFeO3 systems, Journal of Physics D: Applied Physics. 48(11), 115301–7 (2015).

299. F. Drymiotis, T. Drye, D. Rhodes, Q. Zhang, J.C. Lashey, Y. Wang, S. Cavathorne, B. Ma, S. Lindsey, and T. Tritt, Glassy thermal conductivity in the two-phase Cu3Ag3–SbSeTe2 alloy and high temperature thermoelectric behavior, Journal of Physics: Condensed Matter. 22(3), 035801–5 (2009).

300. M.D. Nielsen, V. Ozolins, and J.P. Heremans, Lone pair electrons minimize lattice thermal conductivity, Energy & Environmental Science. 6(2), 570–578 (2013).

301. P. Wu, M.Y. Hu, X.Y. Chong, and J. Feng, The glass-like thermal conductivity in ZrO2-Dy3TaO7 ceramic for promising thermal barrier coating application, Applied Physics Letters. 112(13), 131903–5 (2018).

302. T.J. Zhu, S.N. Zhang, S.H. Yang, X.B. Zhao, Improved thermoelectric figure of merit of self-doped Ag84GeTe5 compounds with glass-like thermal conductivity, physica status solidi. 4(11), 317-9(2010).

303. D. Hitchcock, Unusually Low Thermal Conductivity in the Argyrodite Ag8GeTe5 Attributed to Strong Anharmonicity, All Dissertations1414, Clemson University (2014).

304. J.L. Braun, C.M. Rost, M. Lim, A. Giri, D.H. Olson, G.N. Kotsonis, G. Stan, D.W. Brenner, J.P. Maria, and P.E. Hopkins, Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides, Advanced Materials. 30(51), 1805004-8 (2018).

305. V. Gvozdetskyi, B. Owens-Baird, S. Hong, T. Cox, G. Bhaskar, C. Harmer, Y. Sun, F. Zhang, C.Z. Wang, K.M. Ho, and J.V. Zaikina, From NaZn4Sb3 to HT-Na1−xZn4−ySb3: panoramic hydride synthesis, structural diversity, and thermoelectric properties, Chem. Mater. 31(21), 8695-8707 (2019).

306. Q.J. Li, Z.Y. Zhao, C. Fan, F.B. Zhang, H.D. Zhou, X. Zhao, and X.F. Sun, Phonon-glass-like behavior of magnetic origin in single-crystal Tb2Ti2O7, Physical Review B. 87(21), 214408–6 (2013).

307. J. Fang, Y. Huang, C.M. Lew, Y. Yan, and L. Pilon, Temperature dependent thermal conductivity of pure silica MEL and MFI zeolite thin films, Journal of Applied Physics. 111(5), 054910–6 (2012).

308. C. Blanc, A. Rajabpour, S. Volz, T. Fournier, and O. Bourgeois, Phonon heat conduction in corrugated silicon nanowires below the Casimir limit, Applied Physics Letters. 103(4), 043109–5 (2013).

309. Q. Zhang, Z. Cui, Z. Wei, S. Y. Chang, L. Yang, Y., Zhao,Y. Yang, Z. Guan,Y. Jiang, J. Fowlk, J. Yang, D. Xu, Y. Chen, T. Xu and D. Li, Defect facilitated phonon transport through kinks in boron carbide nanowires, Nano letters. 17(6), 3550-3555 (2017).

310. Y. Wang, R. Lin, P. Zhu, Q. Zheng, Q. Wang, D. Li, and J. Zhu, Cation dynamics governed thermal properties of lead halide perovskite nanowires, Nano letters. 18(5), 2772-2779 (2018).
311. A. Tavakoli, C. Blanc, H. Ftouni, K. J. Lulla, A. D. Fefferman, E., Collin, & O. Bourgeois, Universality of thermal transport in amorphous nanowires at low temperatures. Physical Review B. 95(16), 165411-6 (2017).

312. A. Tavakoli, K. Lulla, T. Crozes, N. Mingo, E. Collin, & O. Bourgeois, Heat conduction measurements in ballistic 1D phonon waveguides indicate breakdown of the thermal conductance quantization, Nature communications. 9(1), 4287-8 (2018).

313. A. Tavakoli, C. Blanc, H. Ftouni, K. J. Lulla, A. D. Fefferman, E., Collin, and O. Bourgeois, Thermal conductivity of silicon nitride membranes is not sensitive to stress, Physical Review B. 92(12), 125439–7 (2015).

314. A. Tavakoli, C. Blanc, H. Ftouni, K.J. Lulla, A.D. Fefferman, E. Collin, and O. Bourgeois, Universality of thermal transport in amorphous nanowires at low temperatures, Physical Review B. 95(16), 165411–6 (2017).

315. T. Hori, and J. Shiomi, Tuning phonon transport spectrum for better thermoelectric materials, Science and technology of advanced materials. 20(1), 10–25 (2019).

316. A. Weathers, J. Carrete, J.P. DeGrave, J.M. Higgins, A.L. Moore, J. Kim, N. Mingo, S. Jin, and L. Shi, Glass-like thermal conductivity in nanostructures of a complex anisotropic crystal, Physical Review B. 96(21), 214202–7 (2017).

317. Y. Wang, R. Lin, P. Zhu, Q. Zheng, Q. Wang, D. Li, and J. Zhu, Cation dynamics governed thermal properties of lead halide perovskite nanowires, Nano letters. 18(5), 2772–2779 (2018).

318. M. T. Buscaglia, F. Maglia, U. Anselmi-Tamburini, D. Marr?, I. Pallecchi, A. Ianculescu,.G.Canu, M. Viviani, M. Fabrizio, V. Buscaglia, Effect of nanostructure on the thermal conductivity of La-doped SrTiO3 ceramics, Journal of the European Ceramic Society. 34(2), 307-316 (2014).

319. E. Dechaumphai, D. Lu, J. J. Kan, J. Moon, E. E. Fullerton, Z., Liu, R. Chen, Ultralow thermal conductivity of multilayers with highly dissimilar debye temperatures, Nano letters. 14(5), 2448-2455 (2014).

320. J. Yang, H., Tang, Y. Zhao, Y. Zhang, J. Li, Z. Ni, Y. Chen, D. Xu, Thermal conductivity of zinc blende and wurtzite CdSe nanostructures, Nanoscale. 7(38), 16071-16078 (2015).

321. B. M. Foley, H. J. Brown-Shaklee, M. J. Campion, D. L. Medlin, P. G. Clem, J. F. Ihlefeld, P. E. Hopkins, Glass-Like Thermal Conductivity of (010)-Textured Lanthanum-Doped Strontium Niobate Synthesized with Wet Chemical Deposition, Journal of the American Ceramic Society. 98(2), 624-628 (2015).
325. L. Li, X. J. Yan, S. T. Dong, Y. Y. Lv, X. Li, S. H. Yao, Y. B. Chen, S. T. Zhang, J. Zhou, Y. H. Lu, M. H. Lu, Y. F. Chen. Ultra-low thermal conductivities along c-axis of naturally misfit layered Bi$_2$[AE]$_2$Co$_2$O$_y$ (AE=Ca, Ca$_{0.5}$Sr$_{0.5}$, Sr, Ba) single crystals, *Applied Physics Letters*, 111(3), 033902–4 (2017).

326. M.I. Klinger. Soft atomic motion modes in glasses: their role in anomalous properties, *Physics Reports*. 492(4–5), 111–180 (2010).

327. E.S. Toberer, L.L. Baranowski, and C. Dames. Advances in thermal conductivity, *Annual Review of Materials Research*. 42, 179–209 (2012).

328. M.I. Klinger. Glassy disordered systems: Glass formation and universal anomalous low-energy properties (2013).

329. T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita. Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory, *Reviews of Modern Physics*. 86(2), 669–716 (2014).

330. a. O. Andersson, and Y. Nakazawa. Thermal properties and transition behavior of host-guest compounds under high pressure, *Current Inorganic Chemistry*. 4(1), 2–18 (2014).

331. M.C. Wingert, J. Zheng, S. Kwon, and R. Chen. Thermal transport in amorphous materials: a review. *Semiconductor Science and Technology*. 31(11), 113003–16 (2016).

332. M. Beekman, and D.G. Cahill. Inorganic Crystals with Glass-Like and Ultralow Thermal Conductivities, *Crystal Research and Technology*. 52(10), 1700114–13 (2017).

333. F. DeAngelis, M.G. Muralleedharan, J. Moon, H.R. Seyf, A.J. Minnich, A.J. McGaughey, and A. Henry. Thermal Transport in Disordered Materials, *Nanoscale and Microscale Thermophysical Engineering*. 1–36 (2018).

334. X. Chen, A. Weathers, J. Carrete, S. Mukhopadhyay, O. Delaire, D.A. Stewart, N. Mingo, S.N. Girard, J. Ma, D.L. Abernathy, and J. Yan. Twisting phonons in complex crystals with quasi-one-dimensional substructures, *Nature communications*. 6, 6723–9 (2015).

335. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, and H.J. Maris. Nanoscale thermal transport. II. 2003–2012, *Applied physics reviews*. 1(1), p.011305 (2014).

336. P. B. Allen, J. L Feldman. Thermal conductivity of glasses: Theory and application to amorphous Si, *Physical review letters*. 62(6), 645–648 (1989).

337. P. B. Allen, J. L Feldman. Thermal conductivity of disordered harmonic solids. *Physical Review B*. 48(17), 12581–12588 (1993).

338. T. Romanova, P. Stachowiak, A. Jezowski, A.I. Krivchikov, G.A. Vdovichenko, A universal T^2 behavior of low temperature thermal conductivity of some simple molecular polycrystals, *Physica B*. 459, 93–96 (2015).

339. A. I. Krivchikov, G. A. Vdovichenko, O. A. Korolyuk, F. J. Bermejo, L. C. Pardo, J. L. Tamarit, and D. Szewczyk. Effects of site-occupation disorder on the low-temperature thermal conductivity of molecular crystals, *Journal of Non-Crystalline Solids*. 407, 141–148 (2015).

340. D. Szewczyk, A. Jezowski, G.A. Vdovichenko, A.I. Krivchikov, F.J. Bermejo, J.L. Tamarit, L.C. Pardo, and J.W. Taylor. Glassy dynamics versus
thermodynamics: the case of 2-adamantanone, *The Journal of Physical Chemistry B*. **119**(26), 8468–8474 (2015).
341. C.H. Lee, A. Nishida, T. Hasegawa, H. Nishiate, H. Kunioka, S. Ohira-Kawamura, M. Nakamura, K. Nakajima, and Y. Mizuguchi, Effect of rattling motion without cage structure on lattice thermal conductivity in LaOBiS$_2$-αSe$_x$, *Applied Physics Letters*. **112**(2), 023903–4 (2018).
342. M. Simoncelli, N. Marzari, and F. Mauri, Unified theory of thermal transport in crystals and glasses, *Nature Physics*. 1 (2019).
343. G. Kumar, F.G. van Gessel, D.C. Elton, and P.W. Chung, Phonon Lifetimes and Thermal Conductivity of the Molecular Crystal α-RDX (2019). *arXiv preprint arXiv:1904.12038*.
344. V.G. Karpov, M.I. Klinger, and P.N. Ignatiev, Atomic tunneling states and low-temperature anomalies of thermal properties in amorphous materials, *Solid State Communications*. **44**(3), 333–337 (1982).
345. U. Buchenau, Y. M. Galperin, V. L. Gurevich, D. A. Parshin, M. A. Ramos, and H. R. Schober, Interaction of soft modes and sound waves in glasses, *Physical Review B*. **46**(5), 2798–2808 (1992).
346. V.G. Karpov, M.I. Klinger, and P.N. Ignatiev, Atomic tunneling states and low-temperature anomalies of thermal properties in amorphous materials, *Solid State Communications*. **44**(3), 333–337 (1982).
347. V.G. Karpov, I. Klinger, and F.N. Ignat’ev, Theory of the low-temperature anomalies in the thermal properties of amorphous structures, *Zh. Eksp. Teor. Fiz*. **57**(2), 439–448 (1983).
348. B. Golding, J.E. Graebner, and L.C. Allen, The thermal conductivity plateau in disordered systems, *Phonon Scattering in Condensed Matter*. V, 23–25 (1986).
349. C.Y. Clare, and J.J. Freeman, Thermal conductivity and specific heat of glasses, *Physical Review B*. **70**(2), 182–185 (1993).
350. L. Gil, M.A. Ramos, A. Bringer, and U. Buchenau, Low-temperature specific heat and thermal conductivity of glasses, *Physical Review Letters*. **70**(2), 182–185 (1993).
351. X. Liu, and H.V. L?hneysen, Low-temperature thermal properties of amorphous As$_x$Se$_{1-x}$, *Physical Review B*. **48**(18), 13486–13494 (1993).
352. J.L. Liu, A. Khitun, K.L. Wang, W.L. Liu, G. Chen, Q.H. Xie, and S.G. Thomas, Cross-plane thermal conductivity of self-assembled Ge quantum dot superlattices, *Physical Review B*. **67**(16), 165333–6 (2003).
353. G. D’Angelo, C. Crupi, G. Tripodo, and G. Salvato, Relation between low-temperature thermal conductivity and the specific heat of cesium borate glasses, *The Journal of Physical Chemistry B*. **114**(7), 2467–2475 (2010).
354. J.W. Gardner, and A.C. Anderson, Low-temperature specific heat and thermal conductivity of neutron-irradiated crystalline quartz, *Physical Review B*. **23**(2), 474–482 (1981).
355. R. Geilenkeuser, T. Porschberg, M. Jackel, and A. Gladun, Influence of high pressure on thermal properties of amorphous polystyrene, *Physica B: Condensed Matter*. **263**, 276–279 (1999).
356. J.M. Grace, and A.C. Anderson, Low-temperature thermal properties of a sol-gel glass, *Physical Review B*. **33**(10), 7186–7191 (1986).
357. A. Licea-Claeverie, M. M’iller, M. J’ckel, and K.F. Arndt, Low-temperature thermal conductivity of diarylmethane ethers, *Polymer bulletin*. **24**(4), 421–427 (1990).
358. P. B. Allen, J. L. Feldman, J. Fabian, and F. Wooten, Diffusons, locons and propagons: Character of atomic vibrations in amorphous Si, *Philosophical Magazine B*. 79(11–12), 1715–1731 (1999).
359. M. Fahland, and E. Hegenbarth, Thermal conductivity of Pb(Mg_{1/3}Nb_{2/3})O_3 under the influence of high electric field, *Ferroelectrics Letters Section*. 15(3-4), 89–96 (1993).
360. W. Scheibner, K. Jahn, D. Jehnichen, M. and P?ckel, Heterogeneous structure of amorphous polycarbonate as determined by low-temperature thermal conductivity measurements, *Acta polymerica*. 37(1), 56–59 (1986).
361. O.A. Korolyuk, A.I. Krivchikov, O.O. Romantsova, Universal temperature dependence of the thermal conductivity of clathrate compounds, molecular crystals and glasses at low temperatures, *Low Temperature Physics*. 46(2), 111–117 (2020).