Exponential and strong ergodicity for one-dimensional symmetric stable jump diffusions

Tao Wang*
School of Mathematical Sciences, Beijing Normal University,
Laboratory of Mathematics and Complex Systems, Ministry of Education
Beijing 100875, China

Abstract
We obtain explicit criteria for both exponential ergodicity and strong ergodicity for one-dimensional time-changed symmetric stable processes with $\alpha \in (1, 2)$. Explicit lower bounds for ergodic convergence rates are given.

Keywords and phrases: Stable process; time change; Dirichlet eigenvalue; strong ergodicity; exponential ergodicity; Green function.

Mathematics Subject classification(2020): 60G52 35P15 47A 75 60H20

1 Introduction and main results
Let $X := (X_t)_{t \geq 0}$ be a symmetric α-stable process on \mathbb{R} with infinitesimal generator $\Delta^{\alpha/2} := -(-\Delta)^{\alpha/2}$, $\alpha \in (0, 2)$, where $-(-\Delta)^{\alpha/2}$ is the fractional Laplacian operator. It is well known that X is pointwise recurrent (i.e. it hits single points almost surely) if and only if $\alpha \in (1, 2)$ (see [19, Remark 43.12]), but it is not ergodic since the invariant measure is Lebesgue measure which is infinite.

Consider the following stochastic differential equation:
\begin{equation}
 dY_t = \sigma (Y_{t-}) dX_t,
\end{equation}
where σ is a strictly positive continuous function on \mathbb{R}. By [11, Proposition 2.1], there is a unique weak solution $Y = (Y_t)_{t \geq 0}$ to the SDE (1), and Y can also be expressed as a time change process $Y_t := X_{\zeta_t}$, where
\[\zeta_t := \inf \left\{ s > 0 : \int_0^s \sigma(X_u)^{-\alpha} \, du > t \right\}.\]
By [8, Section 1.2], the generator of Y is $L = \sigma^\alpha \Delta^{\alpha/2}$ which is symmetric with respect to its invariant measure $\mu(dx) = \sigma(x)^{-\alpha} dx$.

*Email: wangtao@mail.bnu.edu.cn
Note that a time change does not change the recurrence (cf. [8, Theorem 5.2.5]). When \(\alpha \in (1, 2) \), \(Y \) is pointwise recurrent, so that it is Lebesgue irreducible (see [18, Page 42] for the definition). Thus by [18, Proposition 4.1.1 and Theorem 4.2.1], \(Y \) is ergodic whenever \(\mu(\mathbb{R}) < \infty \).

Throughout this paper, we study explicit criteria for both exponential ergodicity and strong ergodicity for this process \(Y \). Furthermore, we obtain explicit estimates for ergodic convergence rates.

Now we assume that \(\mu(\mathbb{R}) < \infty \). Let \(\pi(dx) := \mu(dx)/\mu(\mathbb{R}) \). By [8, Section 1], the associated regular Dirichlet form \((\mathcal{E}, \mathcal{F}) \) of \(Y \) on \(L^2(\pi) \) is given by

\[
\mathcal{E}(f, g) = \frac{1}{2} \int_{\mathbb{R}} \int_{\mathbb{R}} (f(x) - f(y))(g(x) - g(y)) \frac{C_{\alpha} dx dy}{|x - y|^{1+\alpha}}, \quad f, g \in \mathcal{F},
\]

where

\[
\mathcal{F} = \{ u \in L^2(\pi) : \mathcal{E}(u, u) < \infty \},
\]

and \(C_{\alpha} = \frac{\alpha}{\sqrt{\pi} \Gamma(1/2) \Gamma((1+\alpha)/2)} \).

Denote by \((P_t)_{t \geq 0} \) the semigroup of \(Y \), \(\pi(f) := \int_{\mathbb{R}} f d\pi \) and \(||f||_{L^2(\pi)} := (\pi(f^2))^{1/2} \). We say that the process \(Y \) is exponentially ergodic (or \(L^2 \)-exponentially convergent), if there exists \(\lambda_1 > 0 \), such that for any \(f \in L^2(\pi) \),

\[
||P_t f - \pi(f)||_{L^2(\pi)} \leq e^{-\lambda_1 t} ||f - \pi(f)||_{L^2(\pi)},
\]

see [4, (1.2)] for the definition and [4, Page 158–160,(h) and (i)] for the equivalence between exponential ergodicity and \(L^2 \)-exponential convergence. The optimal constant \(\lambda_1 \) in (4) is equal to the spectral gap

\[
\lambda_1 = \text{gap}(\mathcal{E}) := \inf \{ \mathcal{E}(f, f) : f \in \mathcal{F}, \pi(f^2) = 1, \pi(f) = 0 \},
\]

see [4] for more details.

Our first result is the explicit criterion for exponential ergodicity and the explicit estimate for \(\lambda_1 \).

Theorem 1 (Exponential ergodicity). \(Y \) is exponentially ergodic if and only if

\[
\delta := \sup_x |x|^\alpha - 1 \int_{\mathbb{R}\setminus(|x|, |x|)} \sigma(y)^{-\alpha} dy < \infty.
\]

Furthermore,

\[
\lambda_1 \geq \frac{1}{4\omega_{\alpha} \delta},
\]

where

\[
\omega_{\alpha} := \frac{1}{\cos(\pi \alpha/2) \Gamma(\alpha)} > 0.
\]

For any open set \(B \subset \mathbb{R} \), define the local Dirichlet eigenvalue by

\[
\lambda_0(B) = \inf \{ \mathcal{E}(f, f) : f \in \mathcal{F}, \pi(f^2) = 1 \text{ and } f|_{B^c} = 0 \}.
\]

In particular, denote by \(\lambda_0 := \lambda_0(\{0\}^c) \).
\(\lambda_0(B) \) is the bottom of spectrum for the part Dirichlet form \((\mathcal{E}, \mathbb{F}^B)\) (see Section 2 for more detail). The probabilistic meaning of \(\lambda_0(B) \) is the \(L^2 \)-decay rate for the killed semigroup \(P^B_t \) (see Section 2 for the definition), i.e.

\[
\| P^B_t g \|_{L^2(\pi)} \leq e^{-\lambda_0(B)t} \| g \|_{L^2(\pi)}, \quad \text{for any } g \in L^2(\pi).
\]

\(\lambda_0(B) \) and \(\lambda_1 \) are closely related. By [7, Theorem 1.4] or [21, Theorem 1.1], we know that if \(\pi(B^c) > 0 \), then \(\lambda_1 \leq \lambda_0(B)/\pi(B^c) \). According to [3, Proposition 3.2], \(\lambda_1 \geq \lambda_0 \). Indeed, the sufficiency of Theorem 1 is based on the following result.

Theorem 2 (Dirichlet eigenvalues).

1. If

\[
\delta_+ := \sup_{x > 0} x^{-1} \int_x^{\infty} \sigma(z)^{-\alpha} dz < \infty,
\]

then

\[
\lambda_0((0, \infty)) \geq \frac{(\alpha - 1) \Gamma(\alpha/2)^2}{4 \delta_+}.
\]

2. If

\[
\delta := \sup_{x} |x|^{-1} \int_{\mathbb{R}\setminus(-|x|,|x|)} \sigma(y)^{-\alpha} dy < \infty,
\]

then

\[
\frac{2}{\omega_\alpha} \left(\frac{1}{\delta_+} + \frac{1}{\delta_-} \right) \geq \lambda_0 \geq \frac{1}{4 \omega_\alpha \delta},
\]

where \(\omega_\alpha \) is given by (5) and

\[
\delta_- := \sup_{x > 0} x^{-1} \int_{-\infty}^{-x} \sigma(z)^{-\alpha} dz.
\]

Next, we study the strong ergodicity for \(Y \). For this, let \(\| \nu \|_{\text{Var}} := \sup_{|f| \leq 1} |\nu(f)| \) be the total variation of a signed measure \(\nu \), and \(P_t(x, \cdot) \) be the transition function. We say that \(Y \) is **strongly ergodic**, if there exist constants \(1 < C < \infty \) and \(\kappa > 0 \), such that

\[
\sup_{x \in \mathbb{R}} \| P_t(x, \cdot) - \pi \|_{\text{Var}} \leq Ce^{-\kappa t}.
\]

The optimal convergence rate

\[
\kappa = \lim_{t \to \infty} \frac{1}{t} \log \sup_{x \in \mathbb{R}} \| P_t(x, \cdot) - \pi \|_{\text{Var}},
\]

see [15] for more details.

Theorem 3 (Strong ergodicity). \(Y \) is strongly ergodic if and only if

\[
I := \int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx < \infty.
\]

Moreover, the optional convergence rate \(\kappa \) in the strong ergodicity satisfies

\[
\kappa \geq \frac{1}{\omega_\alpha I} > 0.
\]
Remark 4. (1) Note that when \(\alpha = 1 \), the process \(Y \) is neighborhood recurrent but not pointwise recurrent (see [11, Section 3.3]; also see [13, Theorem I.1.5] for the criteria of general Lévy processes). Therefore, in this case, the Green operator \(U^{(0)} \) killed on hitting the origin, which is important for the proofs of Theorem 1 and Theorem 3, is not valid, for example, \(U^{(0)}1 = \infty \).

(2) Our criteria are somehow comparable with those in the special case \(\alpha = 2 \), the time-changed Brownian motion on \(\mathbb{R} \). In the latter, the process is exponentially ergodic if and only if

\[
\delta_1 := \sup_{x \geq 0} x \int_{\mathbb{R}\setminus[-x,x]} \sigma(z)^{-2}dz < \infty,
\]

and \(\lambda_1 \geq \lambda_0 \geq (4\delta_1)^{-1} \), while it is strongly ergodic if and only if

\[
\int_{\mathbb{R}} \sigma(x)^{-2} |x|^{\alpha-1}dx < \infty.
\]

See [6, Table 5.1 and Theorem 5.8].

(3) By [11, Table 2], for \(\alpha > 1 \), \(\pm \infty \) is entrance boundary if and only if (7) holds. Therefore, Theorem 3 indicates that for a pointwise recurrent time-changed symmetric stable process, the strong ergodicity is equivalent to entrance at \(\pm \infty \).

By using Lyapunov functions, [8, Theorem 1.7] obtained some sufficient conditions for exponential ergodicity and strong ergodicity, which now can be derived by our Theorems 1 and 3.

Corollary 5. \(Y \) is exponentially ergodic if

\[
A_1 := \liminf_{|x| \to \infty} \frac{\sigma(x)}{|x|} > 0,
\]

and \(Y \) is strongly ergodic if

\[
A_2 := \liminf_{|x| \to \infty} \frac{\sigma(x)}{|x|^\gamma} > 0
\]

for some constant \(\gamma > 1 \).

Proof. From [8], there exists \(N_1 > 0 \) such that for any \(x > N_1 \), \(\sigma(x) \geq A_1|x|/2 \), so that

\[
\delta \approx \sup_{|x| > N_1} |x|^{\alpha-1} \int_{\mathbb{R}\setminus[-|x|,|x|]} \sigma(y)^{-\alpha}dy \leq \frac{2^\alpha}{(\alpha - 1)A_1^{\alpha}} < \infty,
\]

where the symbol “\(A \approx B \)” means that there exists \(0 < c_1, c_2 < \infty \), such that \(c_1B \leq A \leq c_2B \). Then \(Y \) is exponentially ergodic by Theorem 1.

From [10], there exists \(N_2 > 0 \) such that for any \(|x| > N_2 \), \(\sigma(x) \geq A_2|x|^\gamma/2 \), so that

\[
I \approx \int_{|x| > N_2, |x|^\gamma} \sigma(x)^{-\alpha} |x|^{\alpha-1}dx \leq \frac{2^\alpha N_2^{\alpha(1-\gamma)}}{\alpha(\gamma - 1)A_2^{\alpha}} < \infty.
\]

Then \(Y \) is strongly ergodic by Theorem 3.

Actually, if \(\sigma \) is a polynomial, then we have explicit results for the ergodicity and the convergence rates of \(Y \).
Corollary 6. Consider the polynomial case: \(\sigma(x) = (1 + |x|)^\gamma \).

(1) \(Y \) is ergodic if and only if \(\gamma > 1/\alpha \).

(2) For \(\gamma > 1 \),
\[
\frac{2(\alpha \gamma - 1)^{\alpha \gamma} (\alpha (\gamma - 1))^{\alpha(1-\gamma)}}{\omega_\alpha (\alpha - 1)^{\alpha-1}} \geq \lambda_0 \geq \frac{(\alpha \gamma - 1)^{\alpha \gamma} (\alpha (\gamma - 1))^{\alpha(1-\gamma)}}{8 \omega_\alpha (\alpha - 1)^{\alpha-1}}.
\]
and for \(\gamma = 1 \),
\[
\frac{2(\alpha - 1)}{\omega_\alpha} \geq \lambda_0 \geq \frac{\alpha - 1}{8 \omega_\alpha}.
\]

(3) \(Y \) is exponentially ergodic if and only if \(\gamma \geq 1 \). Moreover,
\[
\lambda_1 \geq \frac{(\alpha \gamma - 1)^{\alpha \gamma} (\alpha (\gamma - 1))^{\alpha(1-\gamma)}}{8 \omega_\alpha (\alpha - 1)^{\alpha-1}}
\]
for \(\gamma > 1 \) and \(\lambda_1 \geq (\alpha - 1)/8 \omega_\alpha \) for \(\gamma = 1 \).

(4) \(Y \) is strongly ergodic if and only if \(\gamma > 1 \). Furthermore, \(\kappa \geq (\gamma - 1)/2 \omega_\alpha \).

Proof. (1) Note that \(\mu(\mathbb{R}) = \int_\mathbb{R} (1 + |x|)^{-\alpha \gamma} dx < \infty \) if and only if \(\gamma > 1/\alpha \).

(2) For \(\gamma > 1 \), a direct calculation shows that \(\delta = 2 \delta_+ = 2 \delta_- \) and
\[
\delta_+ = \sup_x |x|^{\alpha-1} \int_{|x|}^{\infty} (y + 1)^{-\alpha \gamma} dy = \frac{(\alpha - 1)^{\alpha-1}}{(\alpha \gamma - 1)^{\alpha \gamma} (\alpha (\gamma - 1))^{\alpha(1-\gamma)}} > 0. \tag{10}
\]
Hence by Theorem 2
\[
\frac{2(\alpha \gamma - 1)^{\alpha \gamma} (\alpha (\gamma - 1))^{\alpha(1-\gamma)}}{\omega_\alpha (\alpha - 1)^{\alpha-1}} \geq \lambda_0 \geq \frac{(\alpha \gamma - 1)^{\alpha \gamma} (\alpha (\gamma - 1))^{\alpha(1-\gamma)}}{8 \omega_\alpha (\alpha - 1)^{\alpha-1}}.
\]
For \(\gamma = 1 \), we have \(\delta = 2 \delta_+ = 2 \delta_- \) and
\[
\delta_+ = \sup_x |x|^{\alpha-1} \int_{|x|}^{\infty} (y + 1)^{-\alpha} dy = \lim_{|x| \to \infty} \frac{|x| + 1}{\alpha - 1} \frac{|x|^{\alpha-1}}{\alpha - 1} = \frac{1}{\alpha - 1} > 0. \tag{11}
\]
So by Theorem 2
\[
\frac{2(\alpha - 1)}{\omega_\alpha} \geq \lambda_0 \geq \frac{\alpha - 1}{8 \omega_\alpha}.
\]

(3) By \((10), (11)\) and Theorem 1 we obtain the lower bound for \(\lambda_1 \), and see that if \(\gamma \geq 1 \), \(Y \) is exponentially ergodic.

If \(1/\alpha < \gamma < 1 \), then
\[
\delta = \sup_x 2|x|^{\alpha-1} \int_{|x|}^{\infty} (y + 1)^{-\alpha \gamma} dy = \lim_{|x| \to \infty} \frac{2}{\alpha \gamma - 1} |x|^{\alpha-1} (|x| + 1)^{1-\alpha \gamma} = \infty,
\]
hence by Theorem 1 \(Y \) is exponentially ergodic if and only if \(\gamma \geq 1 \).

(4) Note that for \(1/\alpha < \gamma \leq 1 \),
\[
I \geq 2 \int_0^1 \frac{x^{\alpha-1}}{(1 + x)^{\alpha \gamma}} dx + 2 \int_1^\infty \frac{x^{\alpha-1}}{(1 + x)^{\alpha \gamma}} dx
\]
\[
\geq \frac{1}{\alpha 2^{\alpha \gamma - 1}} + \frac{1}{2^{\alpha \gamma - 1}} \int_1^\infty x^{\alpha - 1 - \alpha \gamma} dx = \infty,
\]
while for \(\gamma > 1 \), \(I \leq 2 \alpha^{-1}(\gamma - 1)^{-1} < \infty \). Thus Theorem 3 gives that \(Y \) is strongly ergodic if and only if \(\gamma > 1 \), and \(\kappa \geq (\omega_\alpha I)^{-1} \geq \alpha (\gamma - 1)/2 \omega_\alpha \).

\[\square\]
2 Killed process, Green function and time change

We first recall some definitions and properties. Given an open set $B \subset \mathbb{R}$, denote by
\[\tau_B := \inf \{ t > 0 : Y_t \notin B \} \]
the first exit time from B of the time-changed symmetric stable process Y. Let Y^B be the sub-process of Y killed upon leaving B, whose transition function is
\[P^B_t(x, A) := \mathbb{P}_x [Y_t \in A, t < \tau_B], \]
for any $x \in B$, and Borel set $A \subset \mathbb{R}$.

The Green potential measure of the killed process Y^B starting from x is a Borel measure defined by
\[U^B(x, dy) := \int_0^\infty P^B_t(x, dy) dt. \]
The Green operator U^B is given by
\[U^B f(x) := \int_B f(y)U^B(x, dy), \quad x \in \mathbb{R}, \]
for $f \in \mathcal{B}(\mathbb{R})$ with $U^B|f| < \infty$.

Recall that $(\mathcal{E}, \mathcal{F})$ is the Dirichlet form of Y given by (2) and (3). Denote by $(\mathcal{E}, \mathcal{F}^B)$ the part Dirichlet form, where
\[\mathcal{F}^B := \{ f \in \mathcal{F}, \tilde{f} = 0, \text{ q.e. on } B^c \}, \]
q.e. stands for quasi-everywhere, and \tilde{f} is a quasi-continuous modification of f (cf. [17, Section 2.2]).

By [17, Theorem 3.5.7], $(\mathcal{E}, \mathcal{F}^B)$ is a symmetric regular Dirichlet form, and Y^B is the process associated with $(\mathcal{E}, \mathcal{F}^B)$.

Note that for any nonempty set B, $(\mathcal{E}, \mathcal{F}^B)$ is a transient Dirichlet form. By [17, Theorem 1.3.9], for any f with $\int_{\mathbb{R}} |f(x)|U^B|f|(x)\pi(dx) < \infty$, we have $U^B f \in \mathcal{F}^B$, and for any $u \in \mathcal{F}^B$,
\[\mathcal{E}(U^B f, u) = \int fud\pi. \quad (12) \]

Let $\lambda_0(B)$ be the bottom of spectrum for $(\mathcal{E}, \mathcal{F}^B)$:
\[\lambda_0(B) := \inf \{ \mathcal{E}(f, f) : f \in \mathcal{F}^B, \pi(f^2) = 1 \}. \]
Denote by $C_0(B)$ the space of continuous functions with compact support on B. Since \mathcal{F}^B is the closure of $C_0(B) \cap \mathcal{F}$ in \mathcal{F}, we have
\[\lambda_0(B) = \inf \{ \mathcal{E}(f, f) : f \in C_0(B) \cap \mathcal{F}, \pi(f^2) = 1 \} \]
\[= \inf \{ \mathcal{E}(f, f) : f \in \mathcal{F}, \pi(f^2) = 1 \text{ and } f|_{B^c} = 0 \}. \quad (13) \]
We call $\lambda_0(B)$ the local Dirichlet eigenvalue on B.

Let U^B_X be the Green operator of X on B and $G^B_X(\cdot, \cdot)$ be the Green (density) function of X, i.e. for any $x, y \in \mathbb{R}$,
\[U^B_X(x, dy) = G^B_X(x, y)dy. \]
Denote by τ^B_X the first exit time from
and define the additive functional $A_t := \int_0^t \sigma(X_s)^{-\alpha} \, ds$. Then by the basic transform formula for time-change (see [2, Lemma A.3.7]), we have for any $K \in \mathcal{B}(\mathbb{R})$,

$$U_B(x, K) = \mathbb{E}_x \left[\int_0^{\tau^B} 1_K(Y_t) \, dt \right] = \mathbb{E}_x \left[\int_0^\infty 1_{\{Y_t \in K, t < \tau^B\}} \, dt \right] = U_B^X(\sigma^{-\alpha} 1_K)(x).$$

Hence for any $f \in \mathcal{B}(\mathbb{R})$ with $U_B|f| < \infty$,

$$U_B f(x) = U_B^X(\sigma^{-\alpha} f)(x) = \int_K f(y) G_B^X(x, y) \sigma(y)^{-\alpha} \, dy.$$

Since $G_B(\cdot, \cdot)$ can be represented by the Green function of X, the estimate of $G_B(\cdot, \cdot)$ is obtained from $G_B^X(\cdot, \cdot)$.

For the one-dimensional symmetric α-stable process X with $\alpha \in (1, 2)$, its Green function $G_B^X(\cdot, \cdot)$ for an open set B can be expressed explicitly. For example:

1. ([1, Lemma 4]) $B = \mathbb{R}\setminus\{0\}$:
 $$G_X^{[0,\infty)}(x, y) = \frac{\omega_\alpha}{2} \left(|y|^{\alpha-1} + |x|^{\alpha-1} - |y-x|^{\alpha-1} \right),$$

2. ([10, (11)]) $B = [-1, 1]^c$:
 $$G_X^{[-1,1]^c}(x, y) = c_\alpha \left(|x-y|^{\alpha-1} h \left(\frac{|xy| - 1}{|x-y|} \right) - (\alpha - 1) h(x) h(y) \right),$$

3. ([2, Page 388]) $B = (0, \infty)$:
 $$G_X^{(0,\infty)}(x, y) = \frac{1}{\Gamma(\alpha/2)^2} |x - y|^{\alpha-1} J_\alpha \left(\frac{x \wedge y}{|x-y|} \right),$$

where $J_\alpha(t) := \int_0^t [s(s+1)]^{\alpha/2-1} \, ds$.

3 Exponential ergodicity

It is well known that the exponential ergodicity for a reversible Markov process is equivalent to the existence of the spectral gap λ_1, and we can turn this problem to the estimate of the local Dirichlet eigenvalue $\lambda_0(B)$ for some open set B.
By \[7\] Theorem 1.4 or \[21\] Theorem 1.1, we have an upper bound for \(\lambda_1\) by using \(\lambda_0(B)\):
\[
\lambda_1 \leq \frac{\lambda_0(B)}{\pi(B)} , \text{ for any open set } B \text{ with } \pi(B^c) > 0, \tag{19}
\]
and by \[3\] Proposition 3.2, \(\lambda_1 \geq \lambda_0(\{0\}^c)\). Therefore, to prove exponential ergodicity, our strategy is to estimate the local Dirichlet eigenvalues.

To estimate the upper bound and lower bound of \(\lambda_0(B)\), according to the definition \([6]\) and \([20]\) Theorem 3.2], we have the following variational formula for \(\lambda_0(B)\).

Lemma 7 (Variational formula for the local Dirichlet eigenvalue). Assume that \(B\) is a nonempty open subset of \(\mathbb{R}\). Then
\[
\inf_{f \in C_b(B)}\sup_{x \in B} \frac{f(x)}{U^B f(x)} \geq \lambda_0(B) \geq \sup_{f \in C_b(B)}\inf_{x \in B} \frac{f(x)}{U^B f(x)},
\]
where \(C_b(B)\) is the space of all bounded continuous functions on \(B\).

Proof. First we consider the upper bound. Note that for \(f \in C_b(\mathbb{R})\), \(\int_{\mathbb{R}} |f(x)|U^B f(x)\pi(dx) < \infty\). By \([17]\) Theorem 1.3.9], we see that \(U^B f \in \mathcal{P}^B\), and \(\mathcal{P}^B\) holds. Thus by the definition \([6]\),
\[
\lambda_0 \leq \frac{\mathcal{E}(U^B f, U^B f)}{\pi((U^B f)^2)} = \frac{\int U^B f \pi(dx)}{\pi((U^B f)^2)} \leq \sup_{x \in B} \frac{f(x)}{U^B f(x)}.
\]
So we get the upper bound by the arbitrariness of \(f \in C_b(\mathbb{R})\).

For the lower bound, by \([17]\) Theorem 3.5.7(ii)], \(Y^B\) is also a Hunt process, thus it is a right continuous Markov process. Hence by the proof of \([20]\) Lemma 2.2], for any \(f \in C_b(B)\),
\[
\tilde{L}^B U^B f(x) = \beta U^B f(x) - f(x), \tag{20}
\]
where \(U^B f := \int_0^\infty e^{-\beta t} P^B f(x) dt\) and \(\tilde{L}^B\) is the weak generator for \(Y^B\) (see \([20]\) Definition 2.1]). Therefore, by \([20]\) Theorem 3.2] and \(20\),
\[
\lambda_0(B) \geq \inf_{x \in B} \left(-\frac{\tilde{L}^B U^B f}{U^B f} \right) (x) = \inf_{x \in B} \frac{f(x)}{U^B f(x)} - \beta \geq \inf_{x \in B} \frac{f(x)}{U^B f(x)} - \beta.
\]
Now we obtain the lower bound by letting \(\beta \to 0\). \(\square\)

3.1 Estimates for the local Dirichlet eigenvalues

In this section, our main aim is to estimate the bounds of the local Dirichlet eigenvalues on \(\mathbb{R} \setminus \{0\}\) and \((0, \infty)\) by using \([6]\) and Lemma 7.

Before stating the main results, we recall the so-called II-operator
\[
\Pi(f)(x) := \frac{1}{f(x)} U_0 f(x), \quad f \in \{g : g \in C([0, \infty]), g(0) = 0, g > 0\} \tag{21}
\]
constructed by M.F. Chen (cf. \([6]\) Section 6.2]) for diffusion operator
\[
A = a(x) \frac{d^2}{dx^2} + b(x) \frac{d}{dx}
\]
on half line, where \(a > 0 \) and \(b \) are continuous on \([0, \infty)\),

\[
U_0 f(x) := \int_0^x e^{-C(y)} \left(\int_y^\infty f(z)\nu(dz) \right) dy,
\]

\(C(x) = \int_1^x \frac{b(t)}{a(t)}dt \) and \(\nu(dx) = \frac{e^{C(x)}}{a(x)}dx \) is the reversible measure. By choosing

\[f = \sqrt{\varphi} := \int_0^x e^{-C(t)}dt \]

in \((21), \) \([6, \) Theorem 6.1\) gives the explicit estimate for the Dirichlet eigenvalue

\[\lambda_0 \geq \inf_x (\sqrt{\varphi}(x))^{-1} \geq (4\eta)^{-1}, \]

where \(\eta := \sup_{x > 0} \varphi(x)\pi([x, \infty)). \)

We interpret the II-operator from a new viewpoint. It is well known that \(U_0 f(x) \) is the classical solution of ordinary differential equation \(-A(U_0 f) = f\) with Dirichlet boundary condition \(U_0 f(0) = 0\), and \(\varphi(x) = \int_0^x e^{-C(t)}dt \) is the harmonic function of \(A \) with \(\varphi(0) = 0\).

By choosing the square root of harmonic function in the II-operator, we obtain the lower bound for \(\lambda_0 \) of diffusion operator.

Now we construct the II-operator for time-changed symmetric stable process \(Y \). Let

\[U^{(0)} := U^{(0)c} \]

be the Green operator of \(Y \) killed upon \(\{0\}^c \), by \((12), \) \(v := U^{(0)} f \) is a weak solution of \(-Lv = f\) on \(L^2(\pi) \) with \(v(0) = 0\).

Naturally, we define the II-operator by

\[\Pi(f)(x) := \frac{1}{f(x)}U^{(0)} f(x), \quad \text{for } f \in \mathcal{G} := \{g : g \in C(\mathbb{R}), U^{(0)}|g| < \infty, g(0) = 0, g > 0\}. \]

Lemma 8. For any \(x \in \mathbb{R} \) and \(f \in \mathcal{G} \),

\[\Pi(f)(x) \leq \frac{(\alpha - 1)\omega_\alpha}{f(x)} \int_0^{[x]} z^{\alpha-2} \left(\int_{\mathbb{R}\setminus(-z,z)} f(y)\sigma(y)^{-\alpha} dy \right) dz. \]

Proof. By the property of time change \((14)\), for any \(f \) with \(U^{(0)}|f| < \infty\),

\[U^{(0)} f(x) = \int_\mathbb{R} G^{(0)c}_x (x, y) f(y)\sigma(y)^{-\alpha} dy. \]

By an elementary inequality (see \((14, \) Lemma 4.2)):

\[|y|^{\alpha-1} + |x|^{\alpha-1} - |y - x|^{\alpha-1} \leq 2(|x| \wedge |y|)^{\alpha-1}, \quad 1 < \alpha < 2, \quad (22) \]

we obtain that for any \(x, y \neq 0\),

\[G^{(0)c}_x (x, y) = \frac{\omega_\alpha}{2} \left(|y|^{\alpha-1} + |x|^{\alpha-1} - |y - x|^{\alpha-1} \right) \leq \omega_\alpha (|y| \wedge |x|)^{\alpha-1}. \]

Then for any \(f \) with \(U^{(0)}|f| < \infty\),

\[U^{(0)} f(x) \leq \omega_\alpha \int_\mathbb{R} (|y| \wedge |x|)^{\alpha-1} f(y)\sigma(y)^{-\alpha} dy \]

\[= \omega_\alpha \left(\int_{\mathbb{R}\setminus(-|x|,|x|)} |x|^{\alpha-1} f(y)\sigma(y)^{-\alpha} dy + \int_{-|x|}^{[x]} |y|^{\alpha-1} f(y)\sigma(y)^{-\alpha} dy \right) \]

\[= (\alpha - 1)\omega_\alpha \int_0^{[x]} z^{\alpha-2} \left(\int_{\mathbb{R}\setminus(-z,z)} f(y)\sigma(y)^{-\alpha} dy \right) dz. \]
Let \(h_0(x) = (\omega_n/2)|x|^{\alpha-1} \) be the harmonic function for \(P^{(0)c}_t \) on \(\mathbb{R} \setminus \{0\} \) (see Example 1.1). By choosing \(f(x) = \sqrt{h_0(x)} \), we have the following upper estimate:

Lemma 9. If

\[
\delta := \sup_x |x|^{\alpha-1} \int_{\mathbb{R} \setminus (-|x|,|x|)} \sigma(z)^{-\alpha} \, dz < \infty,
\]

then for any \(x \in \mathbb{R} \),

\[
\Pi(\sqrt{h_0})(x) \leq 4\omega_\alpha \delta.
\]

Proof. Note for any \(y > 0 \),

\[
\int_{\mathbb{R} \setminus (-y,y)} |z|^{(\alpha-1)/2} \sigma(z)^{-\alpha} \, dz = \int_y^\infty z^{(\alpha-1)/2} \sigma(z)^{-\alpha} \, dz + \int_{-\infty}^{-y} (-z)^{\alpha-1/2} \sigma(z)^{-\alpha} \, dz.
\]

By using integration by parts, for any \(y > 0 \), we have

\[
\int_y^\infty z^{(\alpha-1)/2} \sigma(z)^{-\alpha} \, dz = - \int_y^\infty z^{(\alpha-1)/2} \, d\mu((z, \infty))
\]

\[
\leq y^{(\alpha-1)/2} \mu((y, \infty)) + \frac{\alpha - 1}{2} \int_y^\infty z^{(\alpha-3)/2} \, d\mu((z, \infty)) \, dz,
\]

while

\[
\int_{-\infty}^{-y} (-z)^{(\alpha-1)/2} \, d\mu(\cdot) = \int_y^\infty z^{(\alpha-1)/2} \sigma(-z)^{-\alpha} \, dz = - \int_y^\infty z^{(\alpha-1)/2} \, d\mu((\infty, -z))
\]

\[
\leq y^{(\alpha-1)/2} \mu((\infty, -y)) + \frac{\alpha - 1}{2} \int_y^\infty z^{(\alpha-3)/2} \, d\mu((\infty, -z)) \, dz.
\]

Therefore,

\[
\int_{\mathbb{R} \setminus (-y,y)} |z|^{(\alpha-1)/2} \, d\mu(\cdot) \leq y^{(\alpha-1)/2} \mu((-y, y)) + \frac{\alpha - 1}{2} \int_y^\infty z^{(\alpha-3)/2} \, d\mu((-z, z)^c) \, dz.
\]

Note the definition of \(\delta \) gives

\[
\int_{\mathbb{R} \setminus (-y,y)} |z|^{(\alpha-1)/2} \, d\mu(\cdot) \leq \frac{\delta}{y^{(\alpha-1)/2}} + \frac{\delta(\alpha - 1)}{2} \int_y^\infty z^{-(\alpha+1)/2} \, dz = \frac{2\delta}{y^{(\alpha-1)/2}}.
\]

Finally we have

\[
\Pi(\sqrt{h})(x) \leq \frac{(\alpha - 1)\omega_\alpha}{|x|^{(\alpha-1)/2}} \int_0^{|x|} z^{\alpha-2} \frac{2\delta}{z^{(\alpha-1)/2}} \, dz = 4\omega_\alpha \delta.
\]

Next, we consider the local Dirichlet eigenvalue on half-line. According to [2, Lemma 5],

\[
\frac{(\alpha - 1)\Gamma(\alpha/2)^2 G^{(0,\infty)}_X(x, y)}{(x \land y)^{\alpha-1}} \leq 1.
\]
For any f with $U^{(0,\infty)}|f| < \infty$, it follows from \textbf{(14)} that
\[
U^{(0,\infty)}f(x) = U_X^{(0,\infty)}(f\sigma^{-\alpha})(x) = \int_0^\infty C_X^{(0,\infty)}(x, y)f(y)\sigma(y)^{-\alpha}dy
\leq \frac{1}{(\alpha - 1)\Gamma(\alpha/2)^2}\int_0^\infty (x \wedge y)^{\alpha - 1}f(y)\sigma(y)^{-\alpha}dy
\leq \frac{1}{(\alpha - 1)\Gamma(\alpha/2)^2}(\int_0^x y^{\alpha - 1}f(y)\sigma(y)^{-\alpha}dy + \int_x^\infty x^{\alpha - 1}f(y)\sigma(y)^{-\alpha}dy)
\leq \frac{1}{\Gamma(\alpha/2)^2}\int_0^x z^{\alpha - 2}\left(\int_z^\infty f(y)\sigma(y)^{-\alpha}dy\right)dz.
\]
By defining
\[
\Pi^+(f)(x) := \frac{1}{f(x)}U^{(0,\infty)}f(x) = \frac{1}{\Gamma(\alpha/2)^2f(x)}\int_0^x z^{\alpha - 2}\left(\int_z^\infty f(y)\sigma(y)^{-\alpha}dy\right)dz,
\]
a similar argument to Lemma \textbf{9} gives the following estimate.

Lemma 10. If
\[
\delta_+ := \sup_{x > 0}x^{\alpha - 1}\int_x^\infty \sigma(z)^{-\alpha}dz < \infty,
\]
then
\[
\Pi^+(\varphi)(x) \leq \frac{4}{\Gamma(\alpha/2)^2(\alpha - 1)}\delta_+,
\]
where $\varphi(x) = x^{(\alpha - 1)/2}$.

To obtain the lower bounds of the local Dirichlet eigenvalues, we use the following approximation, which is modified from \textbf{[3], Lemma 3.4} for jump process.

Lemma 11. Let A be an open subset of \mathbb{R}, and $\{A_m\}_{m=1}^\infty$ be a sequence of bounded open subsets such that $A_m \uparrow A$. Then we have
\[
\lambda_0(A) = \lim_{m \to \infty} \lambda_0(A_m).
\]

Proof. Since $A_m \subset A$, by the definition of the local Dirichlet eigenvalue (\textbf{3}), we have $\lambda_0(A) \leq \lambda_0(A_m)$. So we only need to prove $\lambda_0(A) \geq \lim_{m \to \infty} \lambda_0(A_m)$.

By \textbf{(13)}, for every $m \geq 1$, there is $f_m \in C_0(A) \cap \mathcal{F}$, $\pi(f_m^2) = 1$, such that
\[
\lambda_0(A) \geq \mathcal{E}(f_m, f_m) - \frac{1}{m} \geq \lambda_0(K_m) - \frac{1}{m},
\]
where $K_m := \text{supp} f_m \subset A$ is the compact support of f_m.

Since $A_m \uparrow A$, for each m, there exists k_m which satisfies that $k_m \uparrow \infty$ as $m \to \infty$, such that $K_m \subset A_{k_m}$, so then $\lambda_0(A_{k_m}) \leq \lambda_0(K_m)$. By combining it with (\textbf{23}), we have
\[
\lambda_0(A) \geq \lambda_0(A_{k_m}) - \frac{1}{m}.
\]
Due to the monotonicity of $\{A_m\}$, the required assertion follows by letting $m \to \infty$. □
Now we establish the estimates for the local Dirichlet eigenvalues.

Proof of Theorem 2. Let \(A = (0, \infty) \) (or \(\mathbb{R} \setminus \{0\} \)) and \(A_n = (-n, n) \cap A \), for \(n \geq 1 \). Denote by \(Y_i^n \) the killed process on \(A_n \).

Since the continuous function is bounded on \(A_n \), by Lemma 7, we have for any \(f \in C(A_n) \),

\[
\lambda_0(A_n) \geq \inf_{x \in A_n} \frac{f(x)}{U^{A_n} f(x)}.
\]

It is clear that \(U^{A_n} f \leq U^A f \) by noting \(\tau_{A_n} \leq \tau_A \). By Lemma 11, \(\lambda_0(A) = \lim_{n \to \infty} \lambda_0(A_n) \), so

\[
\lambda_0(A) = \lim_{n \to \infty} \lambda_0(A_n) \geq \inf_{n \to \infty} \inf_{x \in A_n} \frac{f(x)}{U^A f(x)}.
\]

In the case of \(A = (0, \infty) \) and \(A_n = (0, n) \), by letting \(f(x) = x^{(\alpha-1)/2} \), we have

\[
\lambda_0((0, \infty)) \geq \lim_{n \to \infty} \inf_{x \in (0, n)} \frac{f(x)}{U^{(0, \infty)} f(x)} \geq \inf (\Pi^+(f)(x))^{-1} \geq \left[\frac{4}{\Gamma(\alpha/2)^2(\alpha - 1)} \right]^{-1} = \frac{(\alpha - 1)\Gamma(\alpha/2)^2}{4\delta};
\]

in the case of \(A = \mathbb{R} \setminus \{0\} \), and \(A_n = (-n, n) \setminus \{0\} \), by letting \(f(x) = |x|^{(\alpha-1)/2} \), we have

\[
\lambda_0 \geq \lim_{n \to \infty} \inf_{x \in (0, n)} \frac{f(x)}{U^{(0)} f(x)} \geq \inf (\Pi(f)(x))^{-1} \geq \frac{1}{4\omega_2 \delta}.
\]

Next we estimate the upper bound. For this, we assume that \(\lambda_0 > 0 \), otherwise, the conclusion is trivial.

Since

\[
\| P_t^{(0)c} g \|_{L^2(\pi)} \leq e^{-\lambda_0 t} \| g \|_{L^2(\pi)},
\]

we have that

\[
\| U^{(0)} g \|_{L^2(\pi)} \leq \lambda_0^{-1} \| g \|_{L^2(\pi)},
\]

which implies that \((\mathcal{E}^{(0)c}, \mathcal{F}^{(0)c}) \) is transient, and

\[
\int g U^{(0)} g \, d\pi \leq \| g \|_{L^2(\pi)} \| U^{(0)} g \|_{L^2(\pi)} \leq \frac{1}{\lambda_0} \| g \|_{L^2(\pi)}^2 < \infty.
\]

By [17, Theorem 1.3.9], we have \(U^{(0)} g \in \mathcal{F} \), and (12) holds. Hence

\[
\mathcal{E}(U^{(0)} g, U^{(0)} g) = \int g U^{(0)} g \, d\pi.
\]

According to the definition of \(\lambda_0 \),

\[
\lambda_0 \leq \frac{\mathcal{E}(U^{(0)} g, U^{(0)} g)}{\| U^{(0)} g \|_{L^2(\pi)}^2} = \frac{\int g U^{(0)} g \, d\pi}{\| U^{(0)} g \|_{L^2(\pi)}^2} \leq \sup_{x > 0} \frac{g(x)}{U^{(0)} g(x)} + \sup_{x < 0} \frac{g(x)}{U^{(0)} g(x)}.
\]

(24)

Note that for \(xy > 0 \),

\[
|y|^{\alpha-1} + |x|^{\alpha-1} - |y-x|^{\alpha-1} \geq (|x| \wedge |y|)^{\alpha-1}, \ 1 < \alpha < 2,
\]

12
so for $x > 0$,
\[
U^{(0)} g(x) \geq \frac{\omega_\alpha}{2} \int_{0}^{\infty} (x \land y)^{\alpha - 1} g(y) \sigma(y)^{-\alpha} dy, \tag{25}
\]
while for $x < 0$,
\[
U^{(0)} g(x) \geq \frac{\omega_\alpha}{2} \int_{-\infty}^{0} (- (x \lor y))^{\alpha - 1} g(y) \sigma(y)^{-\alpha} dy. \tag{26}
\]
Fix $x_0 > 0$ and choose
\[
g(x) = \begin{cases}
(x \land x_0)^{\alpha - 1}, & x \geq 0, \\
|x \lor (-x_0)|^{\alpha - 1}, & x \leq 0.
\end{cases}
\]
Then $g \in L^2(\pi)$ and $g(0) = 0$. For $x > 0$, by (25),
\[
\frac{U^{(0)} g(x)}{g(x)} \geq \frac{\omega_\alpha}{2} \frac{1}{(x \land x_0)^{\alpha - 1}} \int_{x \land x_0}^{\infty} (x \land y)^{\alpha - 1} (y \land x_0)^{\alpha - 1} \sigma(y)^{-\alpha} dy \\
\geq \frac{\omega_\alpha}{2} \int_{x \land x_0}^{\infty} (y \land x_0)^{\alpha - 1} \sigma(y)^{-\alpha} dy \geq \frac{\omega_\alpha}{2} \int_{x_0}^{\infty} (y \land x_0)^{\alpha - 1} \sigma(y)^{-\alpha} dy \\
\geq \frac{\omega_\alpha}{2} x_0^{\alpha - 1} \int_{x_0}^{\infty} \sigma(y)^{-\alpha} dy.
\]
For $x < 0$, by (26),
\[
\frac{U^{(0)} g(x)}{g(x)} \geq \frac{\omega_\alpha}{2} \frac{1}{|x \lor (-x_0)|^{\alpha - 1}} \int_{-\infty}^{x \lor (-x_0)} (- (x \lor y))^{\alpha - 1} |y \lor (-x_0)|^{\alpha - 1} \sigma(y)^{-\alpha} dy \\
\geq \frac{\omega_\alpha}{2} \int_{-\infty}^{x \lor (-x_0)} |y \lor (-x_0)|^{\alpha - 1} \sigma(y)^{-\alpha} dy \geq \frac{\omega_\alpha}{2} \int_{-\infty}^{-x_0} |y \lor (-x_0)|^{\alpha - 1} \sigma(y)^{-\alpha} dy \\
\geq \frac{\omega_\alpha}{2} x_0^{\alpha - 1} \int_{-\infty}^{-x_0} \sigma(y)^{-\alpha} dy.
\]
Now combining (24), (27), and (28), we obtain the desired result.

\[
\square
\]

3.2 Proof of Theorem 1

By combining Theorem 2 with (5), we prove the criterion for exponential ergodicity, and bounds for spectral gap λ_1.

Proof of Theorem 1. The sufficiency and the estimate for lower bound of λ_1 follow from $\lambda_1 \geq \lambda_0$ and Theorem 2, so it remains to show the necessity and the upper bound.

First, without loss of generality, assume that
\[
d_+ := \sup_{x > 0} x^{\alpha - 1} \int_{x}^{\infty} \sigma(y)^{-\alpha} dy = \infty.
\]
Let h be the harmonic function for $P_l^{([-1,1]^c)}$ given by (17). Note that for any $x \in \mathbb{R}$,
\[
x^{\alpha - 1} \int_{x}^{\infty} \sigma(y)^{-\alpha} dy < \infty, \quad \text{and} \quad \lim_{x \to \infty} \frac{h(x)}{x^{\alpha - 1}} = \frac{1}{\alpha - 1}.
\]

13
So $\delta_+ = \infty$ means that

$$\delta_+(x) := h(x) \int_x^\infty \sigma(y)^{-\alpha} \, dy \to \infty, \text{ as } x \to \infty. \quad (29)$$

By [10, Lemma 3.3], for any $x \notin [-1,1]$,

$$\lim_{y \to \infty} G_{x}^{[-1,1]^c}(x,y) = K_\alpha h(x), \quad (30)$$

where K_α are given by

$$K_\alpha = \frac{2c_\alpha (1 - \frac{\alpha}{2}) \Gamma \left(\frac{\alpha}{2} \right)}{\Gamma \left(1 - \frac{\alpha}{2} \right)} \int_1^\infty \frac{h'(v)}{1 + v} \, dv < \infty.$$

Thus there exists some constant $N_1 > 1$, such that for any $y > N_1$,

$$G_{x}^{[-1,1]^c}(x,y) \geq \frac{1}{2} K_\alpha h(x), \quad x \notin [-1,1].$$

For any fixed $x_0 > N_1$, let $h^{x_0}(x) := h(x \wedge x_0)$, and $u^{x_0}(x) := (U^{[-1,1]^c} h^{x_0})(x)$. Note that

$$u^{x_0}(x) = U_{X}^{[-1,1]^c} (h^{x_0} \sigma^{-\alpha}) (x) \geq \int_{x_0}^\infty G_{x}^{[-1,1]^c}(x,y) h^{x_0}(y) \mu(\,dy) \geq \frac{K_\alpha}{2} h(x_0) \int_{x_0}^\infty \mu(\,dy) \frac{h(x_0)}{2} \delta_+ (x_0) \geq \frac{K_\alpha}{2} h^{x_0}(x_0) \delta_+ (x_0).$$

Hence

$$\langle u^{x_0}, h^{x_0} \rangle = \left(\langle u^{x_0} \rangle^2, \frac{h^{x_0}}{u^{x_0}} \right)_\pi \leq \|u^{x_0}\|_2^2 \pi \left(\frac{K_\alpha}{2} \delta_+ (x_0) \right)^{-1} < \infty,$$

where $\langle \cdot, \cdot \rangle_\pi$ is the inner product on $L^2(\pi)$. By [17, Theorem 1.3.9], we have $u^{x_0} \in \mathcal{F}$ and $\mathcal{E}(u^{x_0}, u^{x_0}) = \langle h^{x_0}, u^{x_0} \rangle_\pi$. According to the definition of the local Dirichlet eigenvalue,

$$\lambda_0([-1,1]^c) \leq \frac{\mathcal{E}(u^{x_0}, u^{x_0})}{\|u^{x_0}\|_{L^2(\pi)}^2} = \frac{\langle u^{x_0}, h^{x_0} \rangle_\pi}{\|u^{x_0}\|_{L^2(\pi)}^2} \leq \left(\frac{K_\alpha}{2} \delta_+ (x_0) \right)^{-1}. \quad (31)$$

Therefore, by letting $x_0 \to \infty$, from (29), we obtain that $\lambda_0([-1,1]^c) = 0$ which implies that Y is non-exponentially ergodic.

4 Strong ergodicity

To prove the strong ergodicity of Y, we need to estimate the uniform bounds for the first moment of hitting time.

Proof of Theorem 3

By a similar argument to [14, Lemma 2.1], we know that strong ergodicity implies that for any closed set $B \subset \mathbb{R}$ with $\pi(B) > 0$, $\sup_x \mathbb{E}_x \tau_B < \infty$. So for the necessity, we only need to prove $\sup_x \mathbb{E}_x \tau_{[-1,1]^c} = \infty$ under the assumption $I = \infty$. According to (30) and the symmetry of $G_{x}^{[-1,1]^c}(x,y)$, we have

$$\lim_{x \to \infty} G_{x}^{[-1,1]^c}(x,y) = K_\alpha h(y), \quad (32)$$
where $K\alpha$ is defined by

$$K\alpha = \frac{2c_\alpha \left(1 - \frac{\alpha}{2}\right) \Gamma \left(\frac{\alpha}{2}\right)}{\Gamma \left(1 - \frac{\alpha}{2}\right)} \int_1^\infty \frac{h'(v)}{1 + v} \, dv < \infty.$$

Therefore, by Fatou’s lemma and (32),

$$\sup_x E_x \tau_{[-1,1]} = \sup_x \int_{[0,1]} \liminf_{x \to \infty} G_{[-1,1]}^{(x, y)}(x, y) \sigma(y)^{-\alpha} dy \geq \int_1^\infty \liminf_{x \to \infty} G_{[-1,1]}^{(x, y)}(x, y) \sigma(y)^{-\alpha} dy = \int_1^\infty K\alpha h(y) \sigma(y)^{-\alpha} dy \geq \frac{K\alpha}{(\alpha - 1)} \int_1^\infty (y^{\alpha - 1} - 1) \sigma(y)^{-\alpha} dy = \infty.$$

The sufficiency and the lower bound for convergence rate are proved by [16, Theorem 4.3]. We survey the proof below for the readers’ convenience. By (14), we have

$$M_0 := \sup_x E_x \tau_{(0)} = \sup_x \int_{[0,1]} U_{(0)}(x, y) \, dy = \sup_x \int_{[0,1]} G_{(0)}^{(x, y)}(x, y) \sigma(y)^{-\alpha} dy.$$

According to (22), we have

$$M_0 \leq \omega_\alpha \int_{[0,1]} |y|^{\alpha - 1} \sigma(y)^{-\alpha} dy = \omega_\alpha I. \quad (33)$$

Note that $\lambda_1 \geq \lambda_0$, and $\lambda_0^{-1} \leq M_0$ (see [12, Lemma 3.2]). Therefore, by [16, Theorem 1.2 (R2)], $\kappa \geq \min\{\lambda_1, M_0^{-1}\} = M_0^{-1} \geq (\omega_\alpha I)^{-1}$, so Y is strongly ergodic.

Acknowledgements

The author thanks Prof. Yong-Hua Mao for valuable conversations of this paper. This work is supported in part by the National Key Research and Development Program of China (2020YFA0712900), the National Natural Science Foundation of China (Grant No.11771047) and the project from the Ministry of Education in China.

References

[1] K. Bogdan and T. Zak. On Kelvin transformation. *J. Theoret. Probab.*, 19(1):89–120, 2006.

[2] H. Byczkowska and T. Byczkowski. One-dimensional symmetric stable Feynman-Kac semigroups. *Probab. Math. Stat.*, 21(2):381–404, 2001.

[3] M. F. Chen. Explicit bounds for the first eigenvalues. *Sci. in China Ser. A*, 43:1051–1059, 2000.
[4] M.F. Chen. Estimate of exponential convergence rate in total variation by spectral gap. *Acta Math. Sinica (N.S.),* 14(1):9–16, 1998.

[5] M.F. Chen. The principal eigenvalue for jump processes. *Acta Math. Sin. (Engl. Ser.),* 16(3):361–368, 2000.

[6] M.F. Chen. *Eigenvalues, inequalities, and ergodic theory.* London: Springer, 2004.

[7] M.F. Chen and F.Y. Wang. Cheeger’s inequalities for general symmetric forms and existence criteria for spectral gap. *Ann. Probab.,* 28(1):235–257, 2000.

[8] Z.Q. Chen and J. Wang. Ergodicity for time-changed symmetric stable processes. *Stoch. Proc. Appl.,* 124(9):2799–2823, 2014.

[9] Z.Q. Chen and M. Fukushima. *Symmetric Markov processes, time change, and boundary theory.* Princeton: Princeton Univ. Press, 2012.

[10] L. Doring, A.E. Kyprianou, and P. Weissmann. Stable processes conditioned to avoid an interval. *Stoch. Proc. Appl.,* 130:471–487, 2020.

[11] L. Doring and A.E. Kyprianou. Entrance and exit at infinity for stable jump diffusions. *Ann. Probab.,* 48(3):1220–1265, 2020.

[12] A. Grigor’yan and A. Telcs. Two-sided estimates of heat kernels on metric measure spaces. *Ann. Probab.,* 40:1212–1284, 2012.

[13] A.E. Kyprianou. Stable Lévy processes, self-similarity and the unit ball. *ALEA, Lat. Am. J. Probab. Math. Stat.,* 15:617–690, 2018.

[14] Y.H. Mao. Strong ergodicity for Markov processes by coupling methods. *J. Appl. Probab.,* 39:839–852, 2002.

[15] Y.H. Mao. Convergence rates in strong ergodicity for Markov processes. *Stoch. Proc. Appl.,* 116:1964–1976, 2006.

[16] Y.H. Mao and T. Wang. Convergence rates in strong ergodicity by hitting times and L^2-exponential convergence rates. see ArXiv 2102.07069.

[17] Y. Oshima. *Semi-Dirichlet forms and Markov processes.* Berlin: De Gruyter Studies in Mathematics, 2013.

[18] G. Da Prato and J. Zabczyk. *Ergodicity for infinite-dimensional systems.* Cambridge: Cambridge University Press, 1996.

[19] K. Sato. *Lévy processes and infinitely divisible distributions.* Cambridge Studies in Advanced Mathematics 68. Cambridge: Cambridge Univ. Press, 1999.

[20] Y. Shiozawa and M. Takeda. Variational formula for Dirichlet forms and estimates of principal eigenvalues for symmetric α-stable processes. *Potential Anal.,* 23:135–151, 2005.

[21] F.Y. Wang. Existence of the spectral gap for elliptic operators. *Ark. Math.,* 37(2):395–407, 1999.
[22] K. Yano. Excursions away from a regular point for one-dimensional symmetric Lévy processes without Gaussian part. Potential Anal., 32(4):305–341, 2010.