Gradient estimates for the porous medium type equations and fast diffusion type equations on complete noncompact metric measure space with compact boundary

Xiangzhi Cao†

October 4, 2022

Abstract

In the paper, we derive Li-Yau gradient estimates and Souplet Zhang type estimates of the following equation

\[u_t = \Delta_x u^p + \lambda u + A(u), \]

Contents

1 Introduction 2
2 Preliminary 3
3 Li–Yau type gradient estimate for \(p > 1 \) 4
4 Li-Yau gradient estimates for \(p < 1 \) 18
5 Souplet-Zhang type estimates for \(p > 1 \) 28
6 Souplet-Zhang type estimates for \(p < 1 \) 35
7 Elliptic estimate 43

*School of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
†Email: aaa7756kijlp@163.com
on complete noncompact metric measure space \((M, g, e^{-\xi}dv_g)\) with compact boundary. We will also give the local gradient estimates of the equation
\[
\Delta_{\xi}(u^p) + \lambda u + A(u) = 0,
\]
on complete noncompact manifold with compact boundary.

Keywords: Gradient estimate; PME equation; Fast diffusion equation;
MSC 2010: 58E15; 58E20 ; 53C27

1 Introduction

The following equation
\[
u_t = \Delta u^p,
\]
has been studied deeply. When \(p = 1\), it is heat equation, when \(p > 1\) it is called porous medium equation(PME), when \(p < 1\) it is called fast diffusion equation(FDE). One can find more information of FDE and reference therein in the book [7]. One can find more about the theory of PME and reference therein in the book [27]. Li [12] studied the Porous medium equations on Riemmannian manifold. Huang and Li [13] considered Li-Yau type gradient estimates of porous medium equation for Witten Laplacian. Zhu [34] obtained the Hamilton type gradient estimates for PME equation. Zhu [33] dirived the Hamilton type gradient estimates of fast diffusion equation. However, the above results hold on open manifold. When \((M, g)\) is complete noncompact manifold with boundary, there are few research results in this field. More information about porous medium equation can be found in [22][3, 4, 15, 20, 21, 26] and reference therein. One can refer to [3, 20, 21, 26]and reference therein for the gradient estimates for PME equation along Ricci flow. One can refer to [2, 10, 19, 28]and reference therein about the research of fast diffusion equation. Qiu[22] considered the gradient estimates of the equation
\[
u_t = \Delta_V u^p,
\]
for \(V\)-laplacian which is the gernalization of Witten laplacian. In this paper, we consider the gradient estimates of (1.1) on metric measure space \((M^n, g, e^{-\xi}dv)\) where the metric \(g\) is fixed.

Recently, Kunikawa and Sakurai [17] established Yau and Souplet-Zhang type gradient estimates on Riemannian manifolds with boundary under Dirichlet boundary condition.
Their main method is to use the Reilly formula in [23] and comparison theorem in [16]. Later, Wu et al. [9, 8, 30] considered more general equation and generalized the work [17].

Motivated by Kunikawa and Sakurai’s work, Dung et al. [8] derived gradient estimates for \(f \)-laplacian equation \(\Delta_f u = 0 \) on metric measure space with boundary. Their proof relies on the comparison theorem in [24] and Reilly formula in [9]. Later, Dung and Wu [9] improved the results in [8] by relaxing the Ricci curvature conditions. Furthermore, Fu and Wu [11] studied more general parabolic equation \(u_t = \Delta_x u + au \ln u \) and obtained Hamilton type estimates, generalized Theroem 1.4 in [8].

Inspired by Kunikawa and Sakurai’s work ([17]), Wu et al.’s work ([11]) and Zhao’s work ([6]), we mainly consider the Li-Yau gradient estimates of the following equation

\[
u_t = \Delta_x u^p + \lambda u + A(u), \quad t \in (-\infty, 0],
\]

(1.1)
on metric measure space \((M, g, e^{-\xi}dv_g)\) with compact boundary using the method of [12]. We will also study the Hamilton type gradient estimates of the equation (1.1) using two different auxillary functions. However, the cutoff function is constructed by the distance from the boundary.

Zhao [32] studied the gradient estiamtes of the equation

\[
\Delta_V u^p + \lambda u = 0, \quad p \geq 1.
\]
on complete noncompact manifold. One can refer to [1][14][18][5]on gradient estimates about \(V \)-Laplacian on Riemannian manifolds. Wu et.al [8] has considered the case that \(V = \nabla f, \lambda = 0, A = 0, p = 1 \) on complete noncompact manifold with compact boundary. For generalization of Theorem 1.3 in [8], we will derive the local gradient estimates for

\[
\Delta_x (u^p) + \lambda u + A(u) = 0, \quad p \geq 1,
\]

(1.2)
on complete noncompact metric measure space with compact boundary. In this paper, we will combine the methods in [32], [8], [12], [13], [34] and [33].

2 Preliminary

Throughout the paper, we use the same notation as that in [31] for the study the equation (1.1), let \(u \) solves (1.1), \(f = \log u, \hat{A} = \frac{A(u)}{u} = \hat{A}(f) \). In the proof, we will need the following lemmas.
Lemma 2.1 (c.f. Lemma 2.5 in [29]). Let \((M^n, g, e^{-f}dv)\) be an \(n\)-dimensional complete smooth metric measure space with the compact boundary \(\partial M\). There exists a smooth cut-off function \(\psi = \psi(\rho, t) \equiv \psi(\rho_{\partial M}(x), t)\) supported in \(Q_{R,T}(\partial M)\) and a constant \(C_\epsilon > 0\) depending only on \(0 < \epsilon < 1\) such that

(i) \(0 \leq \psi(\rho, t) \leq 1\) in \(Q_{R,T}(\partial M)\) and \(\psi(\rho, t) = 1\) in \(Q_{R/2,T/2}(\partial M)\).

(ii) \(\psi\) is decreasing as a radial function of parameter \(r\).

(iii)
\[
\frac{|\psi_t|}{\psi^{1/2}} \leq \frac{C}{T}, \quad |\psi_{\rho}| \leq \frac{C_\epsilon \psi^\epsilon}{R} \quad \text{and} \quad |\psi_{\rho\rho}| \leq \frac{C_\epsilon \psi^\epsilon}{R^2},
\]

where \(C > 0\) is a universal constant.

Lemma 2.2 (c.f. Proposition 2.2 in [9]). Let \((M, g, e^{-\xi}dv)\) be a complete smooth metric measure space with compact boundary \(\partial M\). For any \(u \in C^\infty(M)\), we have

\[
\frac{1}{2} (|\nabla u|^2)_\nu = u_\nu [\Delta_\xi u - \Delta_{\partial M,\xi} (u|_{\partial M}) - H_{\xi} u_\nu] + g_{\partial M} (\nabla_{\partial M} (u|_{\partial M}), \nabla_{\partial M} u_\nu) \quad \text{and} \quad \nabla_{\partial M} (u|_{\partial M}), \nabla_{\partial M} (u|_{\partial M}),
\]

where \(\nu\) is the unit normal vector field of the boundary.

3 Li–Yau type gradient estimate for \(p > 1\)

In the section, we mainly consider the following equation on metric measure space \((M, g, e^{-\xi}dv_g)\),

\[
u = \Delta_\xi u^p + A(u).
\]

Theorem 3.1. Let \((M, g, e^{-\xi}dv_g)\) be an \(n\)-dimensional, complete metric measure space with compact boundary. For \(K, L \geq 0\), we assume \(H_{\partial M,\xi} \geq -L\), where \(H_{\partial M,\xi} = H_{\partial M} + \langle \nabla \xi, \nu \rangle\), \(\nu\) is the unit normal vector field of the boundary, \(LM > p - 1\). Let \(u\) be a positive solution to the heat equation (3.1) on \(Q_{R,T}(\partial M) := B_R(\partial M) \times [-T, 0]\). For \(W > 0\), let us assume \(u < W\). We further assume that \(u\) satisfies the Dirichlet boundary condition (i.e., \(u(\cdot, t)|_{\partial M}\) is constant for each fixed \(t \in [-T, 0]\)), and \(u_{\nu} \geq 0\) and \(u_t \leq \frac{p-1}{p} A(u), u_t = 0\) over \(\partial M \times [-T, 0]\).

\[
\text{Ric}^\xi_{\partial M} \geq -K g.
\]

Then for any \(\alpha > 1\), there exists a positive constant \(\tilde{C} > 0\) depending only on \(n, \alpha\) such
that on $Q_{R/2,T/4}(\partial M)$,

$$
\frac{|\nabla v|^2}{v} - \frac{v_t}{v} \leq \frac{1}{(\frac{1}{\alpha} + (3M + 1)\epsilon M_{p-T})} \left[\frac{1}{4 (\frac{2(\alpha-1)}{\alpha^2})} \left(\frac{2p}{p-1} M^{rac{1}{2}} \right)^2 \frac{C}{R^2} - \frac{D_1}{\alpha} \right] + \left[\frac{1}{(\frac{1}{\alpha} + (3M + 1)\epsilon M_{p-T})} \left(\frac{C^2 M^2}{2\epsilon R^2} + \frac{C^2}{4\epsilon T^2} + \frac{C^2}{4\epsilon} (K^2 + L^4) M \right) \right] \\
+ \alpha (p-1) \frac{M}{4p-1} \|\nabla \Delta \xi\|_\infty^2 - \psi^2 \frac{2}{m(p-1)} \left(1 - \frac{1}{\epsilon} \right) \hat{A}^2 \\
+ \left(\inf_{Q_{R,T}(\partial M)} v \right)^{-1} (LM - p + 1)^2,$$

where $v = \frac{p}{p-1} u^{p-1}$, $M = (p-1) \sup_{Q_{R,T}(\partial M)} v$, ϵ is a small positive constant such that $\frac{M(3M+1)}{p-1} \epsilon > 0$, D_1 and D_2 are defined by (3.27).

Remark 3.1. In fact, M can be pW^{p-1}. When $A(u) = au + bu \log u$, then $A = a + b \log u$ which can be estimated in term of M if u has positive lower bound. Then D_1 and D_2 can be further simplified. So, our theorem can be applied to this case. One can also consider the other special $A(u)$ to get the corollary.

Proof. We let $v = \frac{p}{p-1} u^{p-1}$, $\mathcal{L} = \partial_t - (p-1) v \Delta \xi$. By (1.1), we get that

$$
v_t = pu^{p-2}u_t = pu^{p-2}(\Delta \xi u^p + A(u)) \\
= pu^{p-2}(pu^{p-1}\Delta \xi u + p(p-1)u^{p-2} |\nabla u|^2 - A(u)).
$$

A direct computation shows that

$$
\Delta \xi v = \Delta v + \langle \nabla \xi, \nabla v \rangle = \nabla (pu^{p-2} \nabla u) + \langle \nabla \xi, pu^{p-2} \nabla u \rangle \\
= (pu^{p-2} \nabla \nabla u) + (p - 2)u^{p-3} \nabla u \nabla u + \langle \nabla \xi, pu^{p-2} \nabla u \rangle \\
= pu^{p-2}(\Delta u + \langle \nabla \xi, \nabla u \rangle) + (p - 2)u^{p-3} |\nabla u|^2.
$$

This implies that

$$
(p-1)v \Delta \xi v = pu^{p-1}(pu^{p-2}(\Delta u + \langle \nabla \xi, \nabla u \rangle) + (p - 2)u^{p-3} |\nabla u|^2) \quad (3.3)
$$

By (7.9) and (3.2), we have

$$
\partial_t v = (p-1)v \Delta \xi v + |\nabla v|^2 + (p-1)v \hat{A}(u), p > 1.
$$
Thus
\[\mathcal{L}v = |\nabla v|^2 + (p - 1)v\hat{A}(u), \quad p > 1, \]
and
\[\frac{\partial_t v}{v} = (p - 1)\Delta_\xi v + \frac{|\nabla v|^2}{v} + (p - 1)\hat{A}(u). \]
Let \(F = \frac{|\nabla v|^2}{v} - \alpha \frac{\nabla v}{v} - \phi, \alpha > 1 \), in order to compute \(\mathcal{L}(F) \), we need to compute \(\mathcal{L}v_t \) and \(\mathcal{L}(|\nabla v|^2) \).
\[
\mathcal{L}v_t = (\partial_t - (p - 1)v\Delta_\xi)v_t
= ((p - 1)v\Delta_\xi v + |\nabla v|^2 + (p - 1)v\hat{A}(u))_t - (p - 1)v\Delta_\xi v_t
= (p - 1)v_t \Delta_\xi v + 2(\nabla v, \nabla v)_t + (p - 1)v_t \hat{A}(u) + (p - 1)v\hat{A}_u u_t, \tag{3.4}
\]
and
\[
\mathcal{L}(|\nabla v|^2) = 2\nabla v\nabla v_t - 2(p - 1)v\Delta_\xi |\nabla v|^2
\leq 2\nabla v\nabla v_t - (p - 1)v \left(\frac{1}{m}|\Delta_\xi v|^2 + \langle \nabla v, \nabla \Delta_\xi v \rangle + \text{Ric}^m_v(\nabla v, \nabla v) \right)
= 2\left(\nabla v, \nabla \left((p - 1)v\Delta_\xi v + |\nabla v|^2 + (p - 1)v\hat{A} \right) \right)
- (p - 1) \left(\frac{1}{m}|\Delta_\xi v|^2 + \langle \nabla v, \nabla \Delta_\xi v \rangle + \text{Ric}^m_v(\nabla v, \nabla v) \right)
= 2\langle \nabla v, ((p - 1)v\nabla \Delta_\xi v + \nabla |\nabla v|^2) \rangle + (p - 1)|\nabla v|^2 \hat{A} + (p - 1)v\hat{A}_u \nabla u \nabla v
\]
\[
- 2(p - 1)v \left(\frac{1}{m}|\Delta_\xi v|^2 + \text{Ric}^m_v(\nabla v, \nabla v) \right)
= 2(p - 1)|\nabla v|^2 \Delta_\xi v + 2\langle \nabla v, \nabla |\nabla v|^2 \rangle + (p - 1)|\nabla v|^2 \hat{A} + (p - 1)v\hat{A}_u \nabla u \nabla v
\]
\[
- \frac{2(p - 1)}{m}v|\Delta_\xi v|^2 - 2(p - 1)v \text{Ric}^m_v(\nabla v, \nabla v). \tag{3.5}
\]
Using the formula (see [13, (2.4)]),
\[
\mathcal{L} \left(\frac{f}{g} \right) = \frac{1}{g} \mathcal{L}(f) - \frac{f}{g^2} \mathcal{L}(g) + 2(p - 1)v \nabla \left(\frac{f}{g} \right) \nabla \log g, \quad \forall f, g \in C^\infty(M).
\]
Hence, on the one hand, we have

\[
\begin{align*}
\mathcal{L} \left(\frac{v_t}{v} \right) &= (p - 1)v_t \Delta v + 2 \langle \nabla v, \nabla v_t \rangle + (p - 1)v_t \hat{A}(u) + (p - 1)v \hat{A}_u u_t \\
&= \frac{v_t (|\nabla v|^2)}{v^2} + 2(p - 1)v \nabla \left(\frac{v_t}{v} \right) \nabla \log v \\
&= (p - 1)\frac{v_t \Delta v}{v} + 2 \langle \nabla v, \nabla v_t \rangle - \frac{v_t (|\nabla v|^2)}{v^2} + 2(p - 1)v \left(\nabla \left(\frac{v_t}{v} \right), \nabla \log v \right) \\
&+ \frac{(p - 1)v_t \hat{A}(u) + (p - 1)v \hat{A}_u u_t}{v}.
\end{align*}
\]

On the other hand, we have

\[
\begin{align*}
\mathcal{L} \left(\frac{|\nabla v|^2}{v} \right) &= \frac{1}{v} \mathcal{L}(|\nabla v|^2) - \frac{|\nabla v|^2}{v^2} \mathcal{L}(v) + 2(p - 1)v \nabla \left(\frac{|\nabla v|^2}{v} \right) \nabla \log v, \\
&\leq \frac{1}{v} \left(2(p - 1)|\nabla v|^2 \Delta v + 2 \langle \nabla v, \nabla |\nabla v|^2 \rangle + (p - 1)|\nabla v|^2 \hat{A} + (p - 1)v \hat{A}_u \nabla u \nabla v \\
&\quad - \frac{2(p - 1)}{m} v |\Delta v|^2 - 2(p - 1)v \text{Ric}_v^m(\nabla v, \nabla v) \right) \\
&\quad - \frac{|\nabla v|^2}{v^2} \frac{1}{v} (|\nabla v|^2) + 2(p - 1)v \nabla \left(\frac{|\nabla v|^2}{v} \right) \nabla \log v, \\
&= 2(p - 1)\frac{1}{v} |\nabla v|^2 \Delta v + 2 \frac{1}{v} \langle \nabla v, \nabla |\nabla v|^2 \rangle + \frac{(p - 1)|\nabla v|^2 \hat{A} + (p - 1)v \hat{A}_u \nabla u \nabla v}{v} \\
&\quad - \frac{2(p - 1)}{m} |\Delta v|^2 - 2(p - 1) \text{Ric}_v^m(\nabla v, \nabla v) \\
&\quad - \frac{|\nabla v|^4}{v^2} + 2(p - 1)v \nabla \left(\frac{|\nabla v|^2}{v} \right) \nabla \log v.
\end{align*}
\]

Recombining, we have

\[
\begin{align*}
\mathcal{L} \left(\frac{|\nabla v|^2}{v} \right) - \alpha \mathcal{L} \left(\frac{v_t}{v} \right) - \alpha' \frac{v_t}{v} - \phi' \\
&\leq 2(p - 1)\frac{1}{v} |\nabla v|^2 \Delta v + 2 \frac{1}{v} \langle \nabla v, \nabla |\nabla v|^2 \rangle \\
&\quad - \frac{2(p - 1)}{m} |\Delta v|^2 - 2(p - 1) \text{Ric}_v^m(\nabla v, \nabla v) \\
&\quad - \frac{|\nabla v|^4}{v^2} + 2(p - 1)v \nabla \left(\frac{|\nabla v|^2}{v} \right) \nabla \log v.
\end{align*}
\]
\[-\alpha \left((p - 1) \frac{v_t \Delta \xi v}{v} + 2 \frac{\langle \nabla v, \nabla v_t \rangle}{v} - \frac{v_t (|\nabla v|^2)}{v^2} + 2(p - 1)v \left \langle \nabla \left(\frac{v_t}{v} \right), \nabla \log v \right \rangle \right) \]

\[+ \alpha \frac{(p - 1)v_t \hat{A}(u) + (p - 1)v \hat{A}_u u_t}{v} \]

\[+ \frac{(p - 1)|\nabla v|^2 \hat{A} + (p - 1)v \hat{A}_u \nabla u \nabla v}{v} + \alpha (p - 1) \left \langle \nabla v, \nabla \Delta \xi \right \rangle \]

\[- \alpha' \frac{v_t}{v} - \phi'. \]

So, we have

\[L \left(\frac{|\nabla v|^2}{v} \right) - \alpha L \left(\frac{v_t}{v} \right) - \alpha' \frac{v_t}{v} - \phi' \]

\[\leq 2(p - 1) \frac{1}{v} |\nabla v|^2 \Delta \xi v - \frac{2(p - 1)}{m} |\Delta \xi v|^2 + 2 \frac{1}{v} \left \langle \nabla v, \nabla |\nabla v|^2 \right \rangle \]

\[- 2(p - 1) \operatorname{Ric}_V(v, \nabla v) - \frac{|\nabla v|^4}{v^2} + 2(p - 1)v \nabla \left(\frac{|\nabla v|^2}{v} \right) \nabla \log v \]

\[- \alpha (p - 1) \frac{v_t \Delta \xi v}{v} - 2\alpha \frac{\langle \nabla v, \nabla v_t \rangle}{v} + \alpha \frac{v_t (|\nabla v|^2)}{v^2} - 2(p - 1)v \left \langle \nabla \left(\frac{v_t}{v} \right), \nabla \log v \right \rangle \] (3.8)

\[+ \alpha \frac{(p - 1)v_t \hat{A}(u) + (p - 1)v \hat{A}_u u_t}{v} \]

\[+ \frac{(p - 1)|\nabla v|^2 \hat{A} + (p - 1)v \hat{A}_u \nabla u \nabla v}{v} \]

\[- \alpha' \frac{v_t}{v} - \phi'. \]

By the formula between (2.7) and (2.8) in [13], we have

\[-2\alpha \frac{\langle \nabla v, \nabla v_t \rangle}{v} + 2 \frac{1}{v} \left \langle \nabla v, \nabla |\nabla v|^2 \right \rangle = 2(F + \phi) \frac{|\nabla v|^2}{v} + 2 \left \langle \nabla v, \nabla F \right \rangle \] (3.9)

and

\[-2\alpha (p - 1)v \left \langle \nabla \left(\frac{v_t}{v} \right), \nabla \log v \right \rangle + 2(p - 1)v \nabla \left(\frac{|\nabla v|^2}{v} \right) \nabla \log v = 2(p - 1) \nabla v \nabla F, \]

(3.10)

By (3.8), we have
\[\mathcal{L} \left(\frac{|\nabla v|^2}{v} \right) - \alpha \mathcal{L} \left(\frac{v_t}{v} \right) - \frac{\alpha}{v} v_t - \phi' \leq - \frac{2(p-1)}{m} |\Delta_{\xi} v|^2 - 2(p-1) \text{Ric}_V^m(\nabla v, \nabla v) - \alpha v_t \Delta_{\xi} v + \frac{\alpha v_t (|\nabla v|^2)}{v^2} \]

\[+ \left(2(p-1) \frac{1}{v} |\nabla v|^2 \Delta_{\xi} v - \frac{|\nabla v|^4}{v^2} - \alpha (p-1) \frac{v_t \Delta_{\xi} v}{v} + \alpha \frac{v_t (|\nabla v|^2)}{v^2} \right) \]

\[+ \left(2p \nabla v \nabla F + 2 \left(\frac{|\nabla v|^2}{v} - \alpha \frac{v_t}{v} \frac{|\nabla v|^2}{v} \right) - \alpha' \frac{v_t}{v} - \phi' \right) \]

\[+ \alpha \frac{(p-1)v_t \hat{A}(u) + (p-1)v \hat{A}_u u_t}{v} + \frac{(p-1)|\nabla v|^2 \hat{A} + (p-1)v \hat{A}_u \nabla u \nabla v}{v}. \]

Similar to [13, (2.9)], we also have

\[\left(2(p-1) \frac{1}{v} |\nabla v|^2 \Delta_{\xi} v - \frac{|\nabla v|^4}{v^2} - \alpha (p-1) \frac{v_t \Delta_{\xi} v}{v} + \alpha \frac{v_t (|\nabla v|^2)}{v^2} \right) \]

\[= 2 \frac{1}{v} |\nabla v|^2 \left(\frac{v_t}{v} - \frac{|\nabla v|^2}{v} - \hat{A} \right) - \frac{|\nabla v|^4}{v^2} - \alpha \frac{v_t}{v} \left(\frac{v_t}{v} - \frac{|\nabla v|^2}{v} - \hat{A} \right) \]

\[+ \alpha \frac{v_t (|\nabla v|^2)}{v^2} \]

\[= (2\alpha + 2) \frac{v_t}{v} \frac{|\nabla v|^2}{v} - 3 \frac{|\nabla v|^4}{v^2} - \alpha \left(\frac{v_t}{v} \right)^2 + \hat{A} \left(\alpha \frac{v_t}{v} - 2 \frac{|\nabla v|^2}{v} \right). \]
In the end, by (3.11), (3.12), we get

\[
\mathcal{L} \left(\frac{\nabla v}{v} \right) - \alpha \mathcal{L} \left(\frac{v_t}{v} \right) - \alpha' \frac{v_t}{v} - \phi' \\
\leq - \frac{2(p-1)}{m} |\nabla \xi v|^2 - 2(p-1) \text{Ric}_V^m(\nabla v, \nabla v) \\
+ \left(2\alpha + 2 \right) \frac{v_t}{v} \left(\frac{\nabla v}{v} \right) - 3 \frac{\nabla v}{v}^2 - \alpha \left(\frac{v_t}{v} \right)^2 + \hat{A}(\alpha \frac{v_t}{v} - 2 \frac{|\nabla v|^2}{v}) \\
+ \left(2p \nabla v \nabla F + 2 \left(\frac{|\nabla v|^2}{v} - \alpha \frac{v_t}{v} \right) \frac{|\nabla v|^2}{v} \right) - \alpha' \frac{v_t}{v} - \phi' \\
= - \frac{2(p-1)}{m} |\nabla \xi v|^2 - 2(p-1) \text{Ric}_V^m(\nabla v, \nabla v) \\
+ \left(2p \nabla v \nabla F - \left(\frac{v_t}{v} - \frac{|\nabla v|^2}{v} \right)^2 + (1 - \alpha) \left(\frac{v_t}{v} \right)^2 \right) - \alpha' \frac{v_t}{v} - \phi' \\
+ \frac{\alpha(p-1)v_t \hat{A}(u) + (p-1)v \hat{A}_u u_t}{v} \\
+ \frac{(p-1)|\nabla v|^2 \hat{A} + (p-1)v \hat{A}_u \nabla u \nabla v}{v} + \hat{A}(\alpha \frac{v_t}{v} - 2 \frac{|\nabla v|^2}{v}) \\
+ \alpha(p-1) \left(\nabla v, \nabla \nabla \xi \right) \\
\tag{3.13}
\]

In the sequel of this section, we take \(\phi = 0 \), let \(\tilde{F} = \frac{|\nabla v|^2}{v} - \alpha \frac{\nabla v}{v} \). Let \(G = \psi \tilde{F} \), it is easy to see that

\[
\mathcal{L}(G) = \psi \mathcal{L}(\tilde{F}) + \tilde{F} \mathcal{L}(\psi) - 2(p-1)v \left(\nabla \psi, \nabla \tilde{F} \right). \\
\tag{3.14}
\]

Computing directly, we have

\[
\tilde{F} \mathcal{L}(\psi) = (\partial_t \psi - (p-1)v \Delta \psi) \tilde{F} = \left(\frac{\partial_t \psi \psi}{\psi} - (p-1)v \frac{\Delta \psi}{\psi} \right) G \\
\tag{3.15}
\]

and

\[
- 2(p-1)v \left(\nabla \psi, \nabla \tilde{F} \right) = 2(p-1)v \frac{\nabla \psi, \nabla \psi}{\psi^2} G. \\
\tag{3.16}
\]

Noticing that

\[
\frac{\partial_t v}{v} - \frac{|\nabla v|^2}{v} = (p-1) \Delta \xi v + \hat{A} v.
\]

\[10\]
By (3.13), we infer that

\[
L(\tilde{F}) \leq - \frac{2(p-1)}{m}|\Delta_v v|^2 + \alpha(p-1)2\langle h, \text{Hess} v \rangle - 2(p-1) \text{Ric}^m_v(\nabla v, \nabla v) \\
+ \left[2p \nabla v \nabla F - \left((p-1)\Delta_v v + \hat{A}\right)^2 + (1 - \alpha)\left(\frac{v_t}{v}\right)^2\right] - \alpha'\frac{v_t}{v} \\
+ \alpha(p-1)v_t\hat{A}(u) + (p-1)v\hat{A}_u u_t \\
+ \frac{(p-1)|\nabla|^2\hat{A} + (p-1)v\hat{A}_u \nabla u \nabla v}{v} + \hat{A}\left(\alpha\frac{v_t}{v} - 2\frac{|\nabla v|^2}{v}\right) \\
+ \alpha(p-1)\langle \nabla v, \nabla \Delta \xi \rangle.
\]

(3.17)

As we know,

\[
|\text{Hess} v|^2 \geq \frac{(\Delta_v v)^2}{m} - \frac{1}{m-n}\langle \nabla v, \nabla \phi \rangle^2, m \geq n.
\]

Noticing also that

\[
- \frac{2(p-1)}{m}|\Delta_v v|^2 - \left((p-1)\Delta_v v + \hat{A}\right)^2 \\
= - \frac{1}{m(p-1)}\left(\frac{\partial v}{v} - \frac{|\nabla v|^2}{v} - \hat{A}\right)^2 - \left(\frac{\partial v}{v} - \frac{|\nabla v|^2}{v}\right)^2 \\
\leq - \left(\frac{1}{m(p-1)}(1 - \epsilon) + 1\right)\left(\frac{\partial v}{v} - \frac{|\nabla v|^2}{v}\right)^2 - \left(\frac{1}{m(p-1)}\right)(1 - \frac{1}{\epsilon})\hat{A}^2. \\
\]

(3.18)

\[
= -\frac{1}{\tilde{a}}\left(\frac{1}{\alpha^2}\tilde{F}^2 + \frac{2(\alpha - 1)}{\alpha^2}\tilde{F} |\nabla v|^2 + \left(\frac{\alpha - 1}{\alpha}\right)^2 |\nabla v|^4\right) \\
- \left(\frac{2}{m(p-1)}\right)(1 - \frac{1}{\epsilon})\hat{A}^2.
\]

where \(\tilde{a} = \left(\frac{2}{m(p-1)}(1 - \epsilon) + 1\right)^{-1}\).
Set $M = (p - 1) \sup_{B_{\bar{p}}(x_0) \times [-T, 0]} v$. By (3.17) and $\alpha > 1$, it follows that

$$\psi L(\bar{F}) \leq 2\psi MK \frac{|\nabla v|^2}{v} - \psi \frac{1}{\alpha} \left(\frac{1}{\alpha^2} \bar{F}^2 + \frac{2(\alpha - 1)}{\alpha^2} \bar{F} \frac{|\nabla v|^2}{v} + \frac{1}{\alpha} \frac{|\nabla v|^4}{v^2} \right)$$

$$- \psi \frac{2}{m(p - 1)} (1 - \frac{1}{\epsilon}) \hat{A}^2$$

$$+ \left(2\psi \frac{p}{(p - 1)^2} M^{\frac{1}{2}} \frac{|\nabla v|}{v^{\frac{1}{2}}} \frac{|\nabla \psi|}{\psi^{\frac{1}{2}}} G + (1 - \alpha) \psi \left(\frac{v t}{v} \right)^2 \right) - \alpha \frac{v t}{v} \psi$$

$$+ \psi \alpha \frac{(p - 1)}{v} \frac{v t \hat{A}(u) + (p - 1)v \hat{A}_u u_t}{v}$$

$$+ \psi \frac{(p - 1)}{v} |\nabla v|^2 \hat{A} + \frac{(p - 1)v \hat{A}_u \nabla u \nabla v}{v} + \psi \hat{A} \left(\frac{v t}{v} - 2 \frac{|\nabla v|^2}{v} \right)$$

$$+ \psi \alpha (p - 1) \left(\nabla v, \nabla \Delta \xi \right).$$

By (3.19), we have

$$0 \leq \mathcal{L}(G) = \psi^2 \mathcal{L}(\bar{F}) + \psi \bar{F} \mathcal{L}(\psi) - 2(p - 1) \psi v \left(\nabla \psi, \nabla \bar{F} \right)$$

$$\leq 2\psi^2 MK \frac{|\nabla v|^2}{v} - \psi^2 \frac{1}{\alpha} \left(\frac{1}{\alpha^2} \bar{F}^2 + \frac{2(\alpha - 1)}{\alpha^2} \bar{F} \frac{|\nabla v|^2}{v} + \frac{1}{\alpha} \frac{|\nabla v|^4}{v^2} \right)$$

$$- \psi^2 \frac{2}{m(p - 1)} (1 - \frac{1}{\epsilon}) \hat{A}^2.$$
at \((x_1, t_1)\), we have

\[
0 \leq \mathcal{L}(G)
\]

\[
\leq 2\psi^2 MK \frac{\lvert \nabla v \rvert^2}{v} - \psi^2 \frac{1}{\tilde{a}^2} \bigg(\frac{1}{\alpha^2} \tilde{F}^2 + \frac{2(\alpha - 1)}{\alpha^2} \tilde{F} \frac{\lvert \nabla v \rvert^2}{v} + \frac{(\alpha - 1)^2}{\alpha^2} \frac{\lvert \nabla v \rvert^2}{v^2} \bigg) \\
- \psi^2 \left(\frac{2}{m(p-1)} \left(1 - \frac{1}{\epsilon} \right) \tilde{A}^2 \right) \\
+ \psi^2 \left(2 \frac{p}{(p-1)^{3/2}} \frac{\sqrt{\psi}}{\lvert \psi \rvert^2} G + (1 - \alpha) \psi \frac{(v_t)^2}{v} \right) \\
+ \psi^2 \frac{(p-1)v\tilde{A} u_t}{v} + \psi^2 (p-1)v\tilde{A} u \frac{\nabla u \nabla v}{v} + (\psi^2 \tilde{A}^2 - \alpha' \psi^2 - (p-1)\tilde{A} \alpha \psi^2) \frac{v_t}{v} \\
+ \left(-2 \tilde{A} \psi^2 + \psi^2 (p-1)\tilde{A} \frac{\lvert \nabla v \rvert^2}{v} + \psi^2 \alpha (p-1) \langle \nabla v, \nabla \Delta \xi \rangle \right) \\
+ \psi \left(\frac{\partial \psi}{\psi} - (p-1) v \frac{\Delta \xi \psi}{\psi} \right) G + \psi 2(p-1)v \frac{\langle \nabla v, \nabla \psi \rangle}{\psi^2} G.
\]

(3.21)

Since

\[
\psi^2 \alpha (p-1) \langle \nabla v, \nabla \Delta \xi \rangle \\
\leq \psi^2 \alpha (p-1) \frac{\lvert \nabla v \rvert^2}{v} + \psi^2 \alpha (p-1) \frac{1}{4p-1} M \frac{\lvert \nabla \Delta \xi \rvert^2}{\lvert \nabla \xi \rvert}. \quad (3.22)
\]

\[
= \psi^2 \alpha (p-1) \frac{\lvert \nabla v \rvert^2}{v} + \psi^2 \alpha (p-1) \frac{1}{4p-1} M \frac{\lvert \nabla \Delta \xi \rvert^2}{\lvert \nabla \xi \rvert}.
\]

Similar to the argument in [8], we estimate the terms on the last line of (3.21) using Lemma 2.1,

\[
\left(-((p-1)v \Delta \xi - \partial_t) \psi + 2(p-1)v \langle \nabla \psi, \nabla \psi \rangle \frac{1}{\psi} \right) G
\]

\[
\leq -((p-1)v (G \partial_t \psi \Delta \xi \rho \partial_t \psi + G \partial^2 \psi) + G \partial_t \psi) + \epsilon \psi G^2 + \frac{C^{3/4}_4}{\epsilon R^4}
\]

\[
\leq M \left(\epsilon \psi G^2 + \frac{(KR + L)^2 \lvert \partial_t \psi \rvert^2}{4 \epsilon} \right) + M \left(\epsilon \psi G^2 + \frac{1 \lvert \partial^2 \psi \rvert^2}{4 \epsilon} \right) + \left(\epsilon \psi F^2 + \frac{1 \lvert \partial \psi \rvert^2}{4 \epsilon} \right)
\]

\[
+ \epsilon M \psi G^2 + M \frac{C^{3/4}_4}{\epsilon R^4}
\]

\[
\leq 3 M \epsilon \psi G^2 + \frac{C^{1/4}_2}{4 \epsilon} \psi \frac{1}{R^4} + \frac{C^2}{4 \epsilon} \frac{1}{T^2} + \frac{C^2}{4 \epsilon} \frac{(KR + L)^2}{R^2} \psi^{1/2}
\]

\[
\leq 3 \epsilon v G^2 + \frac{C^{1/4}_2}{4 \epsilon} \frac{1}{R^4} + \frac{C^2}{4 \epsilon} \frac{1}{T^2} + \frac{C^2}{4 \epsilon} \frac{(KR + L)^2}{R^2}
\]
\[\leq (3M + 1)\epsilon vG^2 + \frac{C_2}{2\epsilon} \frac{M}{R^4} + \frac{C^2}{4\epsilon} \frac{1}{T^2} + \frac{C^2}{4\epsilon} (K^2 + L^4) M, \]

where the constant \(C_2 \) is the same as that in Lemma 2.1.

Since \(u_t = \frac{1}{p}u^{2-p}v_t \), we have

\[\psi^2 \alpha \frac{(p - 1)v \dot{A}_u u_t}{v} \leq \psi^2 \alpha \frac{1}{p} u^{2-p} M \frac{v_t}{v} \]

\[\leq \psi^2 \alpha \frac{1}{p} \left(\frac{M}{p} \right)^{\frac{2}{p} - \frac{2}{p'}} \left(- \frac{F}{\alpha} + \frac{1}{\alpha} \frac{|\nabla v|^2}{v} - \frac{\phi}{\alpha} \right) \]

(3.23)

Noticing that \(\nabla u = \frac{1}{p} u^{2-p} \nabla v \), so we have

\[\psi^2 (p - 1) v \dot{A}_u \frac{\nabla u \nabla v}{v} = \psi^2 (p - 1) v \frac{1}{p} u^{2-p} \frac{|\nabla v|^2}{v} \leq \psi^2 M \frac{1}{p} \left(\frac{M}{p} \right)^{\frac{2}{p} - \frac{2}{p'}} \frac{|\nabla v|^2}{v}. \]

(3.24)

Plugging the above estimates into (3.21), we have

\[0 \leq \mathcal{L}(G) = \psi^2 \mathcal{L}(\tilde{F}) + \tilde{F} \mathcal{L}(\psi) - (p - 1) v \left(\nabla \psi, \nabla \tilde{F} \right) \]

\[\leq 2\psi^2 MK \frac{|\nabla v|^2}{v} - \psi^2 \frac{1}{\alpha} \left(\frac{1}{\alpha^2} \tilde{F}^2 + \frac{2(\alpha - 1)}{\alpha^2} \tilde{F} \frac{|\nabla v|^2}{v} + \left(\frac{\alpha - 1}{\alpha} \right)^2 \frac{|\nabla v|^4}{v^2} \right) \]

\[- \psi^2 \frac{2}{m(p - 1)} (1 - \frac{1}{\epsilon}) \dot{A}^2. \]

\[+ \psi^2 \left(\frac{2}{(p - 1)^2} M \frac{1}{p} \frac{|\nabla v|}{v} \frac{|\nabla \psi|}{\psi} G + (1 - \alpha) \psi \left(\frac{v_t}{v} \right)^2 \right) \]

\[+ \psi^2 \alpha \frac{1}{p} \left(\frac{M}{p} \right)^{\frac{2}{p} - \frac{2}{p'}} \left(- \frac{F}{\alpha} + \frac{1}{\alpha} \frac{|\nabla v|^2}{v} - \frac{\phi}{\alpha} \right) \]

\[+ \psi^2 M \frac{1}{p} \left(\frac{M}{p} \right)^{\frac{2}{p} - \frac{2}{p'}} \frac{|\nabla v|^2}{v} \]

\[+ (\hat{A} \psi^2 - \alpha' \psi^2 - (p - 1) \hat{A} \alpha \psi^2) \left[- \frac{F}{\alpha} + \frac{1}{\alpha} \frac{|\nabla v|^2}{v} - \frac{\phi}{\alpha} \right] \]

\[+ \left(- 2 \hat{A} \psi^2 + \psi^2 (p - 1) \hat{A} \right) \frac{|\nabla v|^2}{v} \]

\[+ \left[\psi^2 \alpha (p - 1) \frac{|\nabla v|^2}{v} + \psi^2 \alpha (p - 1) \frac{1}{4p - 1} \frac{M}{\|\nabla \Delta \xi\|_\infty^2} \right] \]

\[+ \left(3M + 1 \right) \epsilon vG^2 + \frac{C_2}{2\epsilon} \frac{M}{R^4} + \frac{C^2}{4\epsilon} \frac{1}{T^2} + \frac{C^2}{4\epsilon} (K^2 + L^4) M. \]

(3.25)
which can be simplified using the fact that \(\frac{w}{v} = - \frac{F}{\alpha} + \frac{1}{\alpha} \frac{\| \nabla v \|^2}{v} - \frac{\phi}{\alpha} \), we get

\[
0 \leq \mathcal{L}(G) = \psi^2 \mathcal{L}(\tilde{F}) + \tilde{F} \mathcal{L}(\psi) - 2(p-1)v \left\langle \nabla \psi, \nabla \tilde{F} \right\rangle \\
\leq 2\psi^2 MK \frac{\| \nabla v \|^2}{v} - \psi^2 \frac{1}{\alpha} \left(\frac{1}{\alpha^2} \tilde{F}^2 + \frac{2(\alpha-1)}{\alpha^2} \tilde{F} \frac{\| \nabla v \|^2}{v} + \frac{\alpha-1}{\alpha} \frac{\| \nabla v \|^4}{v^2} \right) \\
- \psi^2 \left(\frac{2}{m(p-1)} \right)(1 - \frac{1}{\epsilon}) \hat{A}^2 + (1 - \alpha) 2\psi \left(\frac{F^2}{\alpha^2} + \frac{1}{\alpha^2} \frac{\| \nabla v \|^4}{v^2} + \frac{\phi^2}{\alpha^2} \right) \\
+ \psi^2 \frac{p}{(p-1)^{\frac{3}{2}}} M^{\frac{1}{2}} \frac{\| \nabla v \|}{v^{\frac{1}{2}}} \frac{|\nabla \psi|}{v} G + D_1 \left[- \frac{F}{\alpha} + \frac{1}{\alpha} \frac{\| \nabla v \|^2}{v} \right] + D_2 \frac{\| \nabla v \|^2}{v} \\
+ \left((3M+1) \epsilon v G^2 + \frac{C^2}{2} \frac{M}{R^4} + \frac{C^2}{4} \frac{1}{T^2} + \frac{C^2}{4} \left(K^2 + L^4 \right) M \right) \\
+ \alpha(p-1) \frac{1}{4p-1} \| \nabla \Delta \xi \|_\infty^2,
\]

where

\[
D_1 = \psi^2 (\hat{A} \alpha - \alpha' - (p-1) \hat{A} \alpha + \alpha \frac{1}{p} \left(\frac{M}{p} \right)^{\frac{2-p}{p-1}} M) \\
D_2 = \psi^2 \left(-2 \hat{A} + (p-1) \hat{A} + M \frac{1}{p} \left(\frac{M}{p} \right)^{\frac{2-p}{p-1}} + \alpha(p-1) \right).
\]

We can further simplify (3.26),

\[
0 \leq \mathcal{L}(G) \leq - \frac{1}{\alpha^2} \frac{1}{\alpha} \frac{G^2}{v} - \psi^2 \frac{1}{\alpha^2} \frac{2(\alpha-1)}{\alpha^2} \tilde{F} \frac{\| \nabla v \|^2}{v} - \psi^2 \frac{1}{\alpha^2} \frac{(\alpha-1)^2}{\alpha} \frac{\| \nabla v \|^4}{v^2} \\
+ \psi^2 \frac{p}{(p-1)^{\frac{3}{2}}} M^{\frac{1}{2}} \frac{\| \nabla v \|}{v^{\frac{1}{2}}} \frac{|\nabla \psi|}{v} G - D_1 \frac{F}{\alpha} + \\
+ \left(D_2 + D_1 \frac{1}{\alpha} + 2\psi^2 MK \right) \frac{\| \nabla v \|^2}{v} \\
+ \left((3M+1) \epsilon v G^2 + \frac{C^2}{2} \frac{M}{R^4} + \frac{C^2}{4} \frac{1}{T^2} + \frac{C^2}{4} \left(K^2 + L^4 \right) M \right) \\
+ \alpha(p-1) \frac{1}{4p-1} \| \nabla \Delta \xi \|_\infty^2 - \psi^2 \frac{2}{m(p-1)} \left(1 - \frac{1}{\epsilon} \right) \hat{A}^2.
\]
Similar to the derivation of (2.16) in [13]

\[- \psi \frac{12(\alpha - 1)}{\alpha^2} G \frac{\lVert \nabla v \rVert^2}{v^2} + \frac{2p}{(p - 1)^{3/2}} \psi^{1/2} M^{1/2} \frac{\lVert \nabla \psi \rVert}{\psi^{1/2}} G \leq \frac{1}{4} \left(\frac{12(\alpha - 1)}{\alpha^2} \right) \left(\frac{2p}{(p - 1)^{3/2}} \psi^{1/2} M^{1/2} \frac{\lVert \nabla \psi \rVert}{\psi^{1/2}} \right)^2 \frac{C}{R^2} G, \tag{3.29}\]

and

\[- \psi^2 \frac{1}{\alpha} (\frac{\alpha - 1}{\alpha})^2 \frac{\lVert \nabla v \rVert^4}{v^2} + \left(D_2 + D_1 \frac{1}{\alpha} + 2\psi^2 MK \right) \frac{\lVert \nabla v \rVert^2}{v} \leq \frac{1}{4} \left(\frac{1}{\alpha} \left(\frac{\alpha - 1}{\alpha} \right)^2 \right) \left(D_2 + D_1 \frac{1}{\alpha} + 2\psi^2 MK \right)^2. \tag{3.30}\]

Thus, plugging the above inequality into (3.28), we can get

\[
\frac{1}{a^2} G^2 \leq (3M + 1)\epsilon v C^2 + \frac{C^2}{2\epsilon} M + \frac{C^2}{4\epsilon} T^2 + \frac{C^2}{4\epsilon} (K^2 + L^4) M \\
+ \alpha (p - 1) \frac{1}{4} \frac{M}{p - 1} \lVert \nabla \Delta \xi \rVert^2 - \psi^2 \left(\frac{2}{m(p - 1)} (1 - \frac{1}{\epsilon}) \right) \hat{A}^2 \\
- \frac{D_1}{\alpha} G + \frac{1}{4} \left(\frac{1}{\alpha} \left(\frac{\alpha - 1}{\alpha} \right)^2 \right) \left(\frac{2p}{(p - 1)^{3/2}} \psi^{1/2} M^{1/2} \frac{\lVert \nabla \psi \rVert}{\psi^{1/2}} \right)^2 \frac{C}{R^2} G \\
+ \frac{1}{4} \left(\frac{1}{\alpha} \left(\frac{\alpha - 1}{\alpha} \right)^2 \right) \left(D_2 + D_1 \frac{1}{\alpha} + 2\psi^2 MK \right)^2. \tag{3.31}\]

By the inequality \(ax^2 - bx - c \leq 0 \), we have \(x \leq \frac{b}{a} + \left(\frac{c}{a} \right)^{\frac{1}{2}} \). This implies that

\[
G \leq \frac{1}{\left(\frac{1}{a^2} - (3M + 1)\epsilon v \right)} \left[\frac{1}{4} \left(\frac{1}{\alpha} \left(\frac{\alpha - 1}{\alpha} \right)^2 \right) \left(\frac{2p}{(p - 1)^{3/2}} \psi^{1/2} M^{1/2} \frac{\lVert \nabla \psi \rVert}{\psi^{1/2}} \right)^2 \frac{C}{R^2} - \frac{D_1}{\alpha} \right] \\
+ \left[\frac{1}{\left(\frac{1}{a^2} - (3M + 1)\epsilon v \right)} \left(\frac{C^2}{2\epsilon} M + \frac{C^2}{4\epsilon} T^2 + \frac{C^2}{4\epsilon} (K^2 + L^4) M \\
+ \alpha (p - 1) \frac{1}{4} \frac{M}{p - 1} \lVert \nabla \Delta \xi \rVert^2 - \psi^2 \left(\frac{2}{m(p - 1)} (1 - \frac{1}{\epsilon}) \right) \hat{A}^2 \\
+ \frac{1}{4} \left(\frac{1}{\alpha} \left(\frac{\alpha - 1}{\alpha} \right)^2 \right) \left(D_2 + D_1 \frac{1}{\alpha} + 2\psi^2 MK \right)^2 \right]^{\frac{1}{2}}. \]
Case 2: the maximal point \((x_1, t_1) \in \partial M \times [-T, 0]\), on \(\partial M \times [-T, 0]\), we have assumed that
\[
u_t \leq \frac{p-1}{p} A(u), \quad \nu_t = 0, \partial M \times [-T, 0).
\]
So, we have
\[
f_t + q + \hat{A} \leq 0,
\]
at \((x_1, t_1)\), by Hopf maximum principle, we have
\[
F_\nu = (\frac{\left|\nabla v\right|^2}{v})_\nu \geq 0.
\]
Note that \(\left|\nabla v\right|^2 = v^2\), on \(\partial M \times [-T, 0]\), and
\[
\frac{\partial \ell v}{v} = (p-1)\Delta_\xi v + \frac{\left|\nabla v\right|^2}{v} + (p-1)\hat{A}(u)
\]
\[
\left(\frac{\left|\nabla v\right|^2}{v}\right)_\nu = \frac{\left|\nabla v\right|^2}{v} - \frac{\left|\nabla v\right|^2}{v^2} \nu = \frac{\left|\nabla v\right|^2}{v} - \frac{v^2}{v^2}
\]
\[
\frac{v_\nu (\Delta_\xi v - H_\xi v_\nu)}{v} - \frac{v^2}{v^2}
\]
\[
= \frac{v_\nu (\frac{v_t}{v} - (p-1)\hat{A} - \frac{\left|\nabla v\right|^2}{v}) - H_\xi \frac{v^2}{v} - \frac{v^2}{v^2}.
\]
Thus, we have
\[
\frac{v_\nu (\frac{v_t}{v} - (p-1)\hat{A} - \frac{\left|\nabla v\right|^2}{v}) - H_\xi \frac{v^2}{v} - \frac{v^2}{v^2} \geq 0.
\]
Since \(H_\xi \geq -L\), we get
\[
- \frac{1}{(p-1)} v^3 + Lv^2 v_\nu - v^2 \geq 0,
\]
thus, we have
\[
\frac{1}{(p-1)} v^3 - LM \frac{v^2}{(p-1)} + v^2 \leq 0,
\]
so there exists a constant \(C'\) such that
\[
0 < v_\nu \leq LM - p + 1.
\]
(3.32)
So at \((x_1, t_1) \in \partial M \times [-T, 0]\), we have
\[
F \leq (\inf v)^{-1}(LM - p + 1)^2.
\]
(3.33)
Remark 3.2. From the (5.4), we see that if \(L = 0 \), then the maximum point cannot occur on the boundary.

\[\square \]

4 Li-Yau gradient estimates for \(p < 1 \)

Theorem 4.1. Let \((M, g, e^{-\xi}dv_g)\) be an \(n \)-dimensional, complete metric measure space with compact boundary. For \(K, L \geq 0 \), we assume \(H_{\partial M, \xi} \geq -L \), where \(H_{\partial M, \xi} = H_{\partial M} + \langle \nabla \xi, \nu \rangle \), \(\nu \) is the unit normal vector field of the boundary. Let \(u \) be a positive solution to the heat equation \((1.1)\) on \(Q_{R,T}(\partial M) := B_R(\partial M) \times [-T, 0] \) with \(p \in (1 - \frac{2(1+\epsilon)}{m}, 1) \).

For \(W > 0 \), let us assume \(u < W \). We further assume that \(u \) satisfies the Dirichlet boundary condition (i.e., \(u(\cdot, t)|_{\partial M} \) is constant for each fixed \(t \in [-T, 0] \)), and \(u_t \geq 0 \) and \(u_t \leq \frac{p-1}{p} A(u), u_t = 0 \) over \(\partial M \times [-T, 0] \).

\[\text{Ric}_\xi^m \geq -Kg. \]

Then for any \(\alpha > 1 \), there exists a positive constant \(\tilde{C} > 0 \) depending only on \(n, \alpha \) such that on \(Q_{R/2,T/4}(\partial M) \),

\[
\frac{|
abla v|^2}{v} - \frac{\alpha v_t}{v} \leq \frac{1}{\Psi} \left[\frac{D_{11}}{\alpha} - \frac{\tilde{a} \alpha^2 p^2 M}{2\epsilon_1 (1-\tilde{a})(1-\alpha)(1-p)} R^2 \right] \\
+ \left\{ \frac{1}{\Psi} \left[\frac{C^2 M}{2\epsilon_1 R^4} + \frac{C^2 1}{4\epsilon T^2} + \frac{C^2}{4\epsilon} (K^2 + L^4) M \right] \\
+ \frac{1}{2}(1-\alpha)(1-\alpha - \tilde{a}) \right\}^{1/2} \\
+ \left(\inf_{Q_{R,T}(\partial M)} (-\nu)^{-1} (-LM - p + 1)^2 \right),
\]

where \(\Psi = \frac{1}{-\alpha^2} A(\epsilon_1, \epsilon_2) - (3M + 1) \frac{M}{1-p} \epsilon, v = \frac{M}{p-1} \mu^{p-1}, C' \) determined by inequality (6.1) depends on \(R, \lambda_R, \gamma_R, \alpha, M := (1-p) \sup_{Q_{R,T}(\partial M)} v < \frac{R}{1-p}, \tilde{a} = \left(\frac{2}{m(p-1)} \right)(1+\epsilon) + 1 \)\(^{-1} \), \(\epsilon \) is a small positive constant such that \(\Psi > 0 \). The functions \(D_1 \) and \(D_2 \) are defined by (4.16).

Remark 4.1. One can refer to Remark 3.1.
Proof. Let \(v = \frac{p}{p-1} u^{p-1} \), \(\mathcal{L} = \partial_t - (p-1)v \Delta_\xi \). Then by (7.9) and (3.2), we have

\[
\partial_t v = (p-1)v \Delta_\xi v + |\nabla v|^2 + (p-1)v \hat{A}(u), \quad p < 1,
\]

thus

\[
\mathcal{L}v = |\nabla v|^2 + (p-1)v \hat{A}(u), \quad p < 1,
\]

and

\[
\frac{\partial_t v}{v} = (p-1)\Delta_\xi v + \frac{|\nabla v|^2}{v} + (p-1)\hat{A}(u).
\]

Let

\[
F = \frac{|\nabla v|^2}{v} - \alpha \frac{v_t}{v} - \phi, \quad \alpha > 1
\]

Using the fact that \(p < 1 \), along the same line as that in section 3, it is not hard to see that

\[
\mathcal{L}(F) \geq -\frac{2(p-1)}{m} |\Delta_\xi v|^2 - 2(p-1) \text{Ric}_V^m(\nabla v, \nabla v)
\]

\[
+ \left(2p v_t \nabla F - \left(\frac{v_t}{v} - \frac{|\nabla v|^2}{v} \right)^2 + (1 - \alpha) \left(\frac{v_t}{v} \right)^2 \right) - \alpha' \frac{v_t}{v} - \phi'
\]

\[
+ \alpha \frac{(p-1)v_t \hat{A}(u) + (p-1)v \hat{A}_u u_t}{v} + (p-1) \nabla v \nabla \hat{A} \left(\frac{v_t}{v} - 2 \frac{|\nabla v|^2}{v} \right)
\]

\[
+ \alpha (p-1) \langle \nabla v, \nabla \Delta_\xi \rangle
\]

Thus, we have

\[
\mathcal{L}(-F) \leq \frac{2(p-1)}{m} |\Delta_\xi v|^2 + 2(p-1) \text{Ric}_V^m(\nabla v, \nabla v)
\]

\[
- \left(2p v_t \nabla F - \left(\frac{v_t}{v} - \frac{|\nabla v|^2}{v} \right)^2 + (1 - \alpha) \left(\frac{v_t}{v} \right)^2 \right) + \alpha \frac{v_t}{v}
\]

\[
- \alpha \frac{(p-1)v_t \hat{A}(u) + (p-1)v \hat{A}_u u_t}{v} - (p-1) \frac{v_t \hat{A} \left(\frac{v_t}{v} - 2 \frac{|\nabla v|^2}{v} \right)}{v}
\]

\[
- \alpha (p-1) \langle \nabla v, \nabla \Delta_\xi \rangle
\]

We take \(\phi = 0 \), let \(\bar{F} = \frac{|\nabla v|^2}{v} - \alpha \frac{v_t}{v} \). Let \(G = -\psi \bar{F} \)

\[
\mathcal{L}(G) = \psi \mathcal{L}(-\bar{F}) - \bar{F} \mathcal{L}(\psi) + 2(p-1)v \left(\nabla \psi, \nabla \bar{F} \right)
\]
However, noticing that
\[-\tilde{F} \mathcal{L}(\psi) = - (\partial_t \psi - (p-1)v \Delta \psi) \tilde{F} = \left(\frac{\partial_t \psi}{\psi} - (p-1)v \frac{\Delta \psi}{\psi} \right) G, \quad (4.4)\]
and
\[2(p-1)v \left\langle \nabla \psi, \nabla \tilde{F} \right\rangle = 2(p-1)v \frac{\langle \nabla \psi, \nabla \psi \rangle}{\psi^2} G. \quad (4.5)\]
Noticing that
\[\frac{\partial_t v}{v} - |\nabla v|^2 = (p-1) \Delta \xi v + \hat{A}. \]
From (4.2), we can get
\[L(-\tilde{F}) \leq \frac{2(p-1)}{m} |\Delta \xi v|^2 + 2(p-1) \text{Ric}^m_v(\nabla v, \nabla v) \]
\[- 2p \nabla v \nabla F - \left((p-1) \Delta \xi v + \hat{A} \right)^2 + (1 - \alpha) \left(\frac{\nabla_t}{v} \right)^2 \alpha \frac{\nabla_t}{v} \]
\[- \alpha (p-1)v \nabla v \xi (u) + (p-1)v \xi u \xi t \]
\[- \alpha (p-1)(\nabla v, \nabla \Delta \xi). \]
Noticing that
\[\frac{2(p-1)}{m} |\Delta \xi v|^2 + \left((p-1) \Delta \xi v + \hat{A} \right)^2 \]
\[= \frac{1}{m(p-1)} \left(\frac{\partial_t v}{v} + \frac{|\nabla v|^2}{v} - \hat{A} \right)^2 + \left(\frac{\partial_t v}{v} - \frac{|\nabla v|^2}{v} \right)^2 \]
\[\leq \left(\frac{1}{m(p-1)} (1 + \epsilon) + 1 \right) \left(\frac{\partial_t v}{v} + \frac{|\nabla v|^2}{v} \right)^2 + \frac{1}{m(p-1)} (1 + \frac{1}{\epsilon}) \hat{A}^2 \]
\[= \tilde{a} \left(\frac{\tilde{F}^2}{\alpha^2} + \frac{2(\alpha - 1)}{\alpha^2} \tilde{F} \frac{|\nabla v|^2}{v} + \frac{\alpha - 1}{\alpha}^2 \frac{|\nabla v|^4}{v^2} \right) \]
\[+ \left(\frac{2}{m(p-1)} (1 + \frac{1}{\epsilon}) \hat{A}^2, \right)\]
where \(\tilde{a} = \left(\frac{2}{m(p-1)} (1 + \epsilon) + 1 \right)^{-1}.\)
set $M = (1 - p) \sup_{B_\epsilon(x_0) \times [-T,0]} v$. By (4.6), we have

$$
\psi L(-\tilde{F}) \leq 2\psi M K \frac{|\nabla v|^2}{v} + \frac{1}{\alpha^2} \tilde{F}^2 + \frac{2(\alpha - 1)}{\alpha^2} \frac{|\nabla v|^2}{v} + \frac{(|\nabla^2 v|^2)}{v^2} + \psi \left(\frac{2}{m(p-1)} \right) (1 - \frac{1}{\epsilon}) \hat{A}^2
$$

$$
+ \psi \left(\frac{2}{m(p-1)} \right) (1 - \frac{1}{\epsilon}) \hat{A}^2
$$

$$
+ \left(2\psi \frac{p}{(1 - p)^2} M^\frac{1}{2} \frac{|\nabla v|}{|--v|} \frac{|\nabla \psi|}{|\psi|} G - (1 - \alpha) \psi \frac{v_t}{v} \right) + \alpha \frac{v_t}{v} \psi
$$

$$
- \psi \alpha (p - 1) |\nabla v|^2 \hat{A} + (p - 1) v \hat{A}_u \nabla v - \psi \hat{A} \frac{v_t}{v} - 2 \frac{|\nabla v|^2}{v}.$$

Next we use the cut off function ψ in Lemma 2.1, set $G = -\psi \tilde{F}$ we may assume G is positive and attains its maximum point at (x_1, t_1) in $Q_{R,T}(\partial M)$. Firstly, we consider the case that $x_1 \notin \partial M$, by maximum principle, we have

$$
\Delta \xi(G) \leq 0, G_t \leq 0 \quad \text{and} \quad \nabla(GF) = 0,
$$

at (x_1, t_1), we have

By (4.8), we have

$$
0 \leq L(G) = \psi^2 L(-\tilde{F}) - \tilde{F} L(\psi) + 2(p - 1) v \left(\nabla \psi, \nabla \tilde{F} \right)
$$

$$
\leq \left[2\psi^2 M K \frac{|\nabla v|^2}{v} + \psi \frac{1}{\alpha^2} \tilde{F}^2 + \frac{2(\alpha - 1)}{\alpha^2} \frac{|\nabla v|^2}{v} + \frac{(|\nabla^2 v|^2)}{v^2} \right] + \psi \left(\frac{2}{m(p-1)} \right) (1 - \frac{1}{\epsilon}) \hat{A}^2
$$

$$
- \psi^2 \alpha (p - 1) v_t \hat{A}(u) + (p - 1) v \hat{A}_u v_t
$$

$$
- \psi^2 \alpha (p - 1) |\nabla v|^2 \hat{A} + (p - 1) v \hat{A}_u \nabla v - \psi \hat{A} \frac{v_t}{v} - 2 \frac{|\nabla v|^2}{v}.
$$

$$
- \psi^2 \alpha (p - 1) \left(\nabla \psi, \nabla \Delta \xi \right)
$$

$$
+ \psi \left(\frac{\partial \psi}{\psi} - (p - 1) v \frac{\Delta \psi}{\psi} \right) G + 2(p - 1) v \frac{\nabla \psi, \nabla \psi}{\psi} G.
$$

(4.9)
\[0 \leq \mathcal{L}(G) = \psi^2 \mathcal{L}(-\tilde{F}) - \tilde{F} \mathcal{L}(\psi) + 2(p-1)v \left\langle \nabla \psi, \nabla \tilde{F} \right\rangle \]

\[\leq 2\psi^2 MK \frac{\left| \nabla v \right|^2}{v^\alpha} + \psi^2 \frac{1}{a^2} \left(\frac{1}{\alpha^2} \tilde{F}^2 + \frac{2(\alpha - 1)}{\alpha^2} \tilde{F} \frac{\left| \nabla v \right|^2}{v} + \left(\frac{\alpha - 1}{\alpha} \right)^2 \frac{\left| \nabla v \right|^4}{v^2} \right) \]

\[+ \psi^2 \left(\frac{2}{m(p-1)}(1 + \frac{1}{\epsilon}) \hat{A}^2 \right) \]

\[- \psi^2 \left(2 \frac{p}{(1-p)^2} M \frac{1}{v^\alpha} \frac{\left| \nabla v \right|}{v} \frac{\left| \nabla \psi \right|}{v} G + (1 - \alpha) v \left(\frac{\partial \nabla v}{\nabla \psi} + \frac{\nabla v}{\nabla \psi} \right)^2 \right) \]

\[+ \left\{ \psi^2 \alpha \frac{(p-1)v \hat{A} \nabla v}{v} - \psi^2 (p-1) v \hat{A} \frac{\nabla v}{v} + \psi^2 (p-1) \left(-\hat{A} \alpha + \hat{A} \psi^2 \right) \frac{v}{v} \right\} \]

\[+ \psi^2 \alpha (p-1) \left(\nabla \psi, \nabla \Delta \xi \right) \]

\[+ \psi \left(\frac{\partial \nabla \psi}{\psi} - (p-1) v \frac{\Delta \xi}{\psi} \right) G + \psi^2 (p-1) v \left\langle \nabla \psi, \nabla \psi \right\rangle G. \]

(4.10)

Since

\[\psi^2 \alpha (p-1) \left(\nabla \psi, \nabla \Delta \xi \right) \]

\[\leq \psi^2 \alpha (1-p) \frac{\left| \nabla v \right|^2}{v} + \psi^2 \alpha (1-p) \frac{M}{4p-1} \left\| \nabla \Delta \xi \right\|_{\infty}. \]

(4.11)

Similar to the argument in [8], By Lemma 2.1,

\[\left((p-1)v \Delta \xi - \partial_t \psi + 2(p-1)v \nabla \psi, \nabla \psi \right) \frac{1}{\psi} \]

\[\leq \psi^2 \alpha (p-1)v \left(G \partial_t \psi \Delta \xi \rho_{\theta M} + G \partial^2_t \psi \right) + G \partial_t \psi \right) + \epsilon \psi G^2 + \frac{C^4_{3/4}}{\epsilon R^4} \]

\[\leq M \left(\epsilon \psi G^2 + \frac{(KR + L)^2}{4} \left| \frac{\partial v}{\psi} \frac{v^2}{\psi} \right| \right) + \left(\psi^2 \alpha (p-1)v \nabla \psi, \nabla \psi \right) \frac{1}{\psi} \]

\[+ \epsilon M \psi G^2 + \frac{C^4_{3/4}}{\epsilon R^4} \]

\[\leq 3M \epsilon \psi G^2 + \frac{C^2_{3/4}}{4 \epsilon R^4} \psi^{1/2} + \frac{C^2_{3/4}}{4 \epsilon T^2} + \frac{C^2_{3/4}}{4 \epsilon R^4} \frac{(KR + L)^2}{\psi^{1/2}} \]

\[\leq 3 \epsilon v G^2 + \frac{C^2_{3/4}}{4 \epsilon R^4} \frac{1}{T^2} + \frac{C^2_{3/4}}{4 \epsilon T^2} + \frac{C^2_{3/4}}{4 \epsilon R^4} \frac{(KR + L)^2}{\psi^{1/2}} \]

\[\leq (3M + 1) \epsilon v G^2 + \frac{C^2_{3/4}}{2 \epsilon R^4} M + \frac{C^2_{3/4}}{4 \epsilon T^2} + \frac{C^2_{3/4}}{4 \epsilon R^4} (K^2 + L^4) M, \]
where the constant C_4, C is the same as that in Lemma 2.1.
Noticing that $u_t = \frac{1}{p}u^{2-p}v_t$, $\nabla u = \frac{1}{p}u^{2-p}\nabla v$, By (3.24),(3.23)

\[-\psi^2 \alpha \frac{(p-1)v\hat{A}_u u_t}{v} \leq \psi^2 \alpha \frac{1}{p}u^{2-p}Mv_t \leq \psi^2 \alpha \frac{1}{p} \left(\frac{M}{p} \right)^{\frac{2-p}{p-1}} M \left| -\frac{F}{\alpha} + \frac{1}{\alpha} \frac{|\nabla v|^2}{v} - \frac{\phi}{\alpha} \right|, \tag{4.12} \]

and

\[-\psi^2 (p-1)v\hat{A}_u \frac{\nabla u \nabla v}{v} = \psi^2 (1-p)\frac{1}{p}u^{2-p}\frac{|\nabla v|^2}{v} \leq \psi^2 M \frac{1}{p} \left(\frac{M}{p} \right)^{\frac{2-p}{p-1}} \frac{|\nabla v|^2}{v} \tag{4.13} \]

Plugging the above estimates into (4.10), we have

\[0 \leq \mathcal{L}(G) \leq 2\psi^2 MK \frac{|\nabla v|^2}{v} + \psi^2 \frac{1}{\alpha} \left(\frac{1}{\alpha^2} \tilde{F}^2 + \frac{2(\alpha-1)}{\alpha^2} \tilde{F} \frac{|\nabla v|^2}{v} + \frac{(\alpha-1)^2}{\alpha^2} \frac{|\nabla v|^4}{v^2} \right) \]

\[+ \psi^2 \left(\frac{2}{m(p-1)} + \frac{1}{\epsilon} \hat{A}(u)^2 \right) \]

\[- \psi^2 \left(\frac{2}{(1-p)^{\frac{1}{2}}} M \frac{1}{\psi} \frac{|\nabla v|}{v} \psi G + (1-\alpha)\psi((v_t)^2) \right) \]

\[+ \psi^2 \alpha \frac{1}{p} \left(\frac{M}{p} \right)^{\frac{2-p}{p-1}} M \left| -\frac{F}{\alpha} + \frac{1}{\alpha} \frac{|\nabla v|^2}{v} \right| \]

\[+ \psi^2 M \frac{1}{p} \left(\frac{M}{p} \right)^{\frac{2-p}{p-1}} \frac{|\nabla v|^2}{v} \]

\[+ (-\hat{A}\alpha \psi^2 + \alpha' \psi^2 - (p-1)\hat{A}\alpha \psi^2) \left(-\frac{F}{\alpha} + \frac{1}{\alpha} \frac{|\nabla v|^2}{v} - \frac{\phi}{\alpha} \right) \]

\[+ \left(2\hat{A}\psi^2 - \psi^2 (p-1)\hat{A} \right) \frac{|\nabla v|^2}{v} \]

\[+ \left[\psi^2 \alpha (1-p) \frac{|\nabla v|^2}{v} + \psi^2 \alpha (1-p) \frac{1}{4p-1} \frac{M}{\alpha} \|\nabla \Delta \xi\|_\infty \right] \]

\[+ \left(3M + 1 \right) \epsilon vG^2 + \frac{C_4^2}{2\epsilon} M + \frac{C_4^2}{4\epsilon} \frac{1}{T} + \frac{C_4^2}{4\epsilon} \left(K^2 + L^4 \right) M \right). \]

Since

\[\frac{v_t}{v} = -\frac{F}{\alpha} + \frac{1}{\alpha} \frac{|\nabla v|^2}{v} - \frac{\phi}{\alpha}. \]
So we get
\[0 \leq \mathcal{L}(G) \]
\[\leq 2\psi^2 MK \frac{\nabla v^2}{v} + \psi^2 \frac{1}{\tilde{a}} \left(\frac{1}{\alpha^2} \tilde{F}^2 + \frac{2(\alpha - 1)}{\alpha^2} \tilde{F} \frac{|\nabla v|^2}{v} + (\frac{\alpha - 1}{\alpha})^2 |\nabla v|^4 \right) \]
\[+ \psi^2 \left(\frac{2}{m(p - 1)} \right) (1 + \frac{1}{\epsilon}) \tilde{A}^2 \]
\[- (1 - \alpha) \psi \left(\frac{F^2}{\alpha^2} + \frac{1}{\alpha^2} \frac{|\nabla v|^4}{v^2} + \frac{2}{\alpha^2} \tilde{F} \frac{|\nabla v|^2}{v} \right) \]
\[- \psi^2 \frac{p}{(p - 1)^2} M^2 \frac{|\nabla v||\nabla \psi|}{v^2} G \]
\[+ D_1 \left[- \frac{F}{\alpha} + \frac{1}{\alpha} \frac{|\nabla v|^2}{v} \right] + + D_2 \frac{|\nabla v|^2}{v} \]
\[+ \left((3M + 1)\psi G^2 + \frac{C^4_2 M}{2\epsilon R^2} + \frac{C^2}{4\epsilon T^2} + \frac{C^2}{4\epsilon} (K^2 + L^4) M \right) \]
\[+ \alpha(1 - p) \frac{M}{4p - 1} \|\nabla \Delta \xi\|_{\infty}^2, \]

where
\[D_1 = (- \hat{A} \alpha \psi^2 + \alpha' \psi^2 - (p - 1) \hat{A} \alpha \psi^2 + \psi^2 \frac{1}{p} \left(\frac{M}{p} \right)^{\frac{2 - p}{p - 1}} M \) \]
\[D_2 = \left(2 \hat{A} \psi^2 - \psi^2 (p - 1) \hat{A} + \left(\alpha(1 - p) \psi^2 M \frac{1}{p} \left(\frac{M}{p} \right)^{\frac{2 - p}{p - 1}} \right) \right) \]

We can simplify (4.15),
\[0 \leq \mathcal{L}(G) \leq \left(\frac{1}{\alpha^2} - \frac{2(1 - \alpha)}{\alpha^2} \right) \tilde{G}^2 + \psi^2 \frac{1}{\alpha^2} |\nabla v|^4 \frac{2(\alpha - 1)}{\alpha^2} \tilde{F} \frac{|\nabla v|^2}{v} + \psi^2 \left(\frac{1}{\tilde{a}} (\frac{\alpha - 1}{\alpha})^2 - 2 \right) \frac{1}{\alpha} \tilde{g} \]
\[+ \psi^2 \frac{p}{(1 - p)^2} M^2 \frac{|\nabla v||\nabla \psi|}{v^2} G \]
\[+ D_1 \frac{F}{\alpha} + \left((3M + 1)\psi G^2 + \frac{C^4_2 M}{2\epsilon R^2} + \frac{C^2}{4\epsilon T^2} + \frac{C^2}{4\epsilon} (K^2 + L^4) M \right) \]
\[+ \alpha(1 - p) \frac{M}{4p - 1} \|\nabla \Delta \xi\|_{\infty}^2 + \psi^2 \frac{2}{m(p - 1)} \left(1 + \frac{1}{\epsilon} \right) \tilde{A}^2. \]

Similar to the derivation of (2.21) in [13]
\[\psi^2 (D_1 + D_2 + 2MK) \frac{|\nabla v|^2}{v^2} \]
\[\leq - \epsilon_1 \psi^2 \frac{1}{\alpha^2} (1 - \alpha) (1 - \alpha - \tilde{a}) \frac{|\nabla v|^4}{v^2} - \frac{1}{\epsilon_1} \tilde{a} \alpha^2 (p - 1)^2 \psi^2 (D_1 + D_2 + 2MK)^2 \frac{2}{(1 - \alpha)(1 - \alpha - \tilde{a})}. \]
and

$$
2 \frac{p}{(1 - p)^2} M^2 \psi^2 G \frac{|\nabla v|}{(-v)^2} \psi^2, \\
\leq - \varepsilon_2 \frac{2}{\bar{a} \alpha^2} (1 - \bar{a})(1 - \alpha) \psi G \frac{|\nabla v|^2}{-v} - \frac{\bar{a} \alpha^2 p^2 M}{2 \varepsilon_2 (1 - \bar{a})(1 - \alpha)(1 - p)} \frac{|\nabla \psi|^2}{\psi} G.
$$

(4.18)

thus, plugging the above inequalities into (3.28), we can get

$$
0 \leq \mathcal{L}(G) \leq \left(\frac{1}{\bar{a} \alpha^2} - \frac{1 - \alpha}{\alpha^2} \right) \mathcal{G}^2 - \frac{1}{\bar{a} \alpha^2} 2 \psi (1 + \varepsilon_2) ((1 - \bar{a})(1 - \alpha) \psi G) \frac{|\nabla v|^2}{-v} \\
+ (1 - \varepsilon_1) \frac{\psi^2}{\bar{a} \alpha^2} (1 - \alpha)(1 - \alpha - \bar{a}) \frac{|\nabla v|^4}{v^2} \\
- D_{11} \frac{G}{\alpha} + \left((3M + 1) \varepsilon v G^2 + \frac{C^2}{2 \epsilon} \frac{M}{R^4} + \frac{C^2}{4 \epsilon} \frac{1}{T^2} + \frac{C^2}{4 \epsilon} (K^2 + L^4) M \right) \\
+ \alpha (p - 1) \frac{1}{4^p - 1} \left\| \nabla \Delta \xi \right\|_\infty^2 + \psi^2 \left(\frac{2}{m(p - 1)} \right)(1 + \frac{1}{\epsilon}) \hat{A}^2. \\
- \frac{1}{\epsilon_1} \bar{a} \alpha^2 (p - 1)^2 \psi^2 (D_1 + D_2 + 2MK)^2 \\
- \frac{\bar{a} \alpha^2 p^2 M}{2 \varepsilon_2 (1 - \bar{a})(1 - \alpha)(1 - p)} \frac{|\nabla \psi|^2}{\psi} G,
$$

(4.19)

where $D_{11} = (-\hat{A} \alpha \psi^2 + \alpha' \psi^2 - (p - 1) \hat{A} \alpha \psi^2 + \psi^2 \alpha \frac{M}{p} \left(\frac{M}{p} \right)^{\frac{p}{p-1}} M)$. As that in [13, (2.22)], we take $\varepsilon_1, \varepsilon_2$ such that

$$
[1 - \bar{a}(1 - \alpha)] - \frac{(1 + \varepsilon_2)^2 (1 - \bar{a})^2 (1 - \alpha)}{(1 - \varepsilon_1)(1 - \alpha - \bar{a})} := A(\varepsilon_1, \varepsilon_2) > 0.
$$

Similar to the derivation of (2.21) in [13], we deal with the first three terms on the right hand side (4.19), notice that $\bar{a} < 0$, we have

$$
\frac{1}{-\bar{a} \alpha^2} A(\varepsilon_1, \varepsilon_2) \mathcal{G}^2
$$

$$
\leq \frac{D_{11}}{\alpha} G + \left((3M + 1) \varepsilon v G^2 + \frac{C^2}{2 \epsilon} \frac{M}{R^4} + \frac{C^2}{4 \epsilon} \frac{1}{T^2} + \frac{C^2}{4 \epsilon} (K^2 + L^4) M \right) \\
+ \alpha (p - 1) \frac{1}{4^p - 1} \left\| \nabla \Delta \xi \right\|_\infty^2 - \psi^2 \left(\frac{2}{m(p - 1)} \right)(1 + \frac{1}{\epsilon}) \hat{A}^2. \\
- \frac{1}{\epsilon_1} \bar{a} \alpha^2 (p - 1)^2 \psi^2 (D_1 + D_2 + 2MK)^2 \\
- \frac{\bar{a} \alpha^2 p^2 M}{2 \varepsilon_2 (1 - \bar{a})(1 - \alpha)(1 - p)} \frac{|\nabla \psi|^2}{\psi} G,
$$

(4.20)

25
which can be rewritten as

\[
\begin{aligned}
&\leq \left(\frac{D_{11}}{\alpha} - \frac{\tilde{a}a^2 p^2 M}{2\varepsilon_2 (1 - \tilde{a})(1 - \alpha)(1 - p) R^2} C \right) G \\
&+ \left(\frac{C^2}{4\varepsilon} R^4 + \frac{C^2}{4\varepsilon} \frac{1}{T^2} + \frac{C^2}{4\varepsilon} (K^2 + L^4) M \right) \\
&+ \alpha (p - 1) \frac{M}{4p - 1} \| \nabla \Delta \xi \|^2 - \psi^2(\frac{2}{m(p - 1)})(1 - \frac{1}{\varepsilon}) \hat{A}^2 \\
&- \frac{1}{\varepsilon_1} \tilde{a}a^2 (p - 1)^2 \psi^2 (D_1 + D_2 + 2MK)^2)
\end{aligned}
\]

By the inequality \(ax^2 - bx - c \leq 0 \), we have \(x \leq \frac{b}{a} + \left(\frac{c}{a} \right)^{\frac{1}{2}} \). This implies that at \((x_1, t_1)\), we have

\[
G \leq \left[\frac{D_{11}}{\alpha} - \frac{\tilde{a}a^2 p^2 M}{2\varepsilon_2 (1 - \tilde{a})(1 - \alpha)(1 - p) R^2} C \right] \\
+ \left(\frac{1}{\Psi} \left(\frac{C^2}{4\varepsilon} R^4 + \frac{C^2}{4\varepsilon} \frac{1}{T^2} + \frac{C^2}{4\varepsilon} (K^2 + L^4) M \right) \\
+ \alpha (p - 1) \frac{M}{4p - 1} \| \nabla \Delta \xi \|^2 - \psi^2(\frac{2}{m(p - 1)})(1 - \frac{1}{\varepsilon}) \hat{A}^2 \\
- \frac{1}{\varepsilon_1} \tilde{a}a^2 (p - 1)^2 \psi^2 (D_1 + D_2 + 2MK)^2]) \right]^\frac{1}{2},
\]

where \(\Psi = \frac{1}{\tilde{a}a^2} A(\varepsilon_1, \varepsilon_2) - (3M + 1) \frac{M}{1 - p} \) is positive if \(\varepsilon \) is sufficiently small.

Case 2: the maximal point \((x_1, t_1) \in \partial M \times [-T, 0)\). On \(\partial M \times [-T, 0)\), we have assumed that

\[
u \leq \frac{p - 1}{p} A(u), \quad u_t = 0, \partial M \times [-T, 0).
\]

Hence,

\[
f_t + q + \hat{A} \leq 0,
\]

at \((x_1, t_1)\), by Hopf maximum principle, we have

\[
F_\nu = (\frac{1}{\partial v})^2 \geq 0.
\]

Note that

\[
|\nabla v|^2 = v_\nu^2, on \quad \partial M \times [-T, 0),
\]
and
\[\frac{\partial_t v}{v} = (p - 1)\Delta v + \frac{|\nabla v|^2}{v} + (p - 1)\hat{A}(u). \]

Notice that
\[\left(\frac{|\nabla v|^2}{v} \right)_v = \frac{(|\nabla v|^2)_v - |\nabla v|^2}{v^2} v_v = \frac{(|\nabla v|^2)_v}{v^2} - \frac{v^2_v}{v^2} v_v = \frac{v_v(\Delta v - H v_v)}{v} - \frac{v^2_v}{v^2}. \]

Thus, we have
\[\frac{v_v}{(p - 1)v} \left(\frac{v_v}{v} - (p - 1)\hat{A} - \frac{|\nabla v|^2}{v} \right) - H v_v \frac{v^2_v}{v} - \frac{v^2_v}{v^2} \leq 0. \]

Since \(H \leq -L \), we get
\[-\frac{1}{(p - 1)} v^3_v + vv^2_v L - v^2_v \leq 0. \]

Hence, we have
\[\frac{1}{1 - p} v^3_v + LM \frac{v^2_v}{1 - p} - v^2_v \leq 0. \]

Thus there exists a constant \(C' \) such that
\[0 < v_v \leq 1 - p - LM. \] (4.22)

So at \((x_1, t_1) \in \partial M \times [-T, 0)\), we have
\[F \leq (\inf(-v))^{-1} \left(\frac{LM}{p - 1} - p + 1 \right)^2 \] (4.23)

Remark 4.2. From the (5.4), we see that if \(L = 0 \), then the maximum point cannot occur on the boundary.
5 Souplet-Zhang type estimates for \(p > 1 \)

Theorem 5.1. Let \((M, g, e^{-\xi} dv_g)\) be an \(n\)-dimensional complete noncompact metric measure space with compact boundary. For \(K \geq 0 \), we assume \(\text{Ric}_\xi^m \geq -K \) and \(H_{\partial M, \xi} \geq L \). Let \(u \) be a positive solution to the heat equation (1.1) on \(Q_R, T := B_R(\partial M) \times [-T, 0] \) with \(p \in (1, 1 + \frac{1}{\sqrt{2n+1}}) \). For \(A > 0 \), let us assume \(u < A \). We further assume that \(u \) satisfies the Dirichlet boundary condition (i.e., \(u(\cdot, t) |_{\partial M} \) is constant for each fixed \(t \in [-T, 0] \)), and \(u, v \geq 0 \) and \(\partial_t u \leq 0 \) over \(\partial M \times [-T, 0] \). Then there exists a positive constant \(C_n > 0 \) depending only on \(n \) such that on \(Q_{R/2, T/4} \),

\[
\frac{|\nabla v|}{v^{\frac{2}{p}}} \leq \frac{2K(1-p)(p-1)^{\beta-2}M^{2-\beta} + \left((\beta + 2)|\lambda| + \beta |\hat{A}|\right)(p-1)\gamma v^{1-\beta}}{\frac{3}{4} - (3M + 1)\gamma M^{1-\beta} - \frac{3}{4}\epsilon^4 |\nabla \xi|^{\frac{4}{3}}} + \left(\frac{\mathcal{O}}{\frac{3}{4} - (3M + 1)\gamma M^{1-\beta} - \frac{3}{4}\epsilon^4 |\nabla \xi|^{\frac{4}{3}}}\right)^{\frac{1}{2}} + \frac{Lv^{1-\frac{4}{3}}}{\beta + \frac{1}{M}},
\]

where \(v = \frac{p}{p-1} w^{p-1}, M := (p-1) \sup_{Q_{R,T}(\partial M)} v, \beta \) is a constant satisfies \(\beta^2 - \frac{p-2}{p-1} \beta + \frac{n}{2} < 0 \) and

\[
\mathcal{O} = \left(\frac{C^2_4}{2\epsilon} M^4 + \frac{C^2}{4\epsilon} \frac{1}{T^2} + \frac{C^2_4}{4\epsilon} (K^2 + L^4) M\right)\gamma M^{1-\beta} + \gamma \left(2 - 2(1-p)\beta\right)^4 M^{4-2\beta} \frac{1}{R^4} + \frac{1}{4\epsilon^4} \left(2 \left(\frac{M}{1-p}\right)^{2-\frac{4}{3}} M^2\right)^4.
\]

Remark 5.1. When we take special \(A(u) \) and \(\lambda \), the upper bound can be simplified.

Proof. Let \(\omega = \frac{|\nabla v|^2}{v^{\beta}} \), by (1.1), we have

\[
\partial_t v = (p-1) v \Delta \xi v + |\nabla v|^2 + \lambda (p-1) v + (p-1) v \hat{A}(u), p > 1.
\]
Computing directly, we get

\[
\begin{align*}
 w_t &= \frac{(\partial_t |\nabla v|^2)}{v^{\beta}} - \beta \frac{|\nabla v|^2 v_t}{v^{\beta+1}} \\
 &= \frac{2 \left\langle \nabla v, \nabla \left((p-1)v\Delta_x v + |\nabla v|^2 + \lambda (p-1)v + (p-1)v \hat{A}(u) \right) \right\rangle}{v^{\beta}} \\
 &\quad - \beta \frac{\left| \nabla v \right|^2 \left((p-1)v\Delta_x v + |\nabla v|^2 + \lambda (p-1)v + (p-1)v \hat{A}(u) \right)}{v^{\beta+1}} \\
 &= \frac{2 \left\langle \nabla v, \nabla \left((p-1)v\Delta_x v + |\nabla v|^2 \right) \right\rangle}{v^{\beta}} + \frac{2 \left\langle \nabla v, \lambda (p-1)\nabla v + ((p-1)\hat{A}\nabla v + (p-1)v \nabla \hat{A}(u)) \right\rangle}{v^{\beta}} \\
 &\quad - \beta \frac{\left| \nabla v \right|^2 (\lambda (p-1)v + (p-1)v \hat{A})}{v^{\beta+1}}.
\end{align*}
\]

It follows that

\[
\mathcal{L} \omega = ((p-1)v\Delta_x \omega - \partial_t) \omega
\]

\[
= \left((p-1)v \left(\frac{\Delta_x |\nabla v|^2}{v^{\beta}} - 2(1) \frac{\left\langle \nabla v, \nabla |\nabla v|^2 \right\rangle}{v^{\beta+1}} - \beta \frac{\left| \nabla v \right|^2 \Delta_x v}{v^{\beta+1}} + \beta (1) \frac{\left| \nabla v \right|^4}{v^{\beta+2}} \right) \right)
\]
\[
- \left\{ \frac{2 \left\langle \nabla v, \nabla \left((p-1)v\Delta_x v + |\nabla v|^2 \right) \right\rangle}{v^{\beta}} + \frac{2 \left\langle \nabla v, \lambda (p-1)\nabla v + ((p-1)\hat{A}\nabla v + (p-1)v \nabla \hat{A}(u)) \right\rangle}{v^{\beta}} \right\}
\]
\[
- \beta \frac{\left| \nabla v \right|^2 (\lambda (p-1)v + (p-1)v \hat{A})}{v^{\beta+1}}
\]
\[
= \left((p-1)v \frac{\Delta_x |\nabla v|^2}{v^{\beta}} - 2(p-1)v \beta \frac{\left\langle \nabla v, \nabla |\nabla v|^2 \right\rangle}{v^{\beta+1}} - (p-1)v \beta \frac{\left| \nabla v \right|^2 \Delta_x v}{v^{\beta+1}} + (p-1)v \beta (1) \frac{\left| \nabla v \right|^4}{v^{\beta+2}} \right)
\]
\[
- \left\{ \frac{2 \left\langle \nabla v, \nabla \left((p-1)v\Delta_x v + |\nabla v|^2 \right) \right\rangle}{v^{\beta}} \right\}
\]
\[
- \beta \frac{\left| \nabla v \right|^2 (\lambda (p-1)v + (p-1)v \hat{A})}{v^{\beta+1}}
\]
\[
- \beta \frac{2 \left\langle \nabla v, \lambda (p-1)\nabla v + ((p-1)\hat{A}\nabla v + (p-1)v \nabla \hat{A}(u)) \right\rangle}{v^{\beta}} \right\}.
\]

So, we get
\[
\mathcal{L} \omega = \left((p-1)v \frac{\Delta \xi |\nabla v|^2}{v^{\beta+1}} - 2(p-1)v \beta \frac{\langle \nabla v, \nabla |\nabla v|^2 \rangle}{v^{\beta+1}} + (p-1)v \beta (\beta + 1) \frac{|\nabla v|^4}{v^{\beta+2}} \right) \\
- 2(p-1) \frac{\langle \nabla v, \nabla (v \Delta \xi v) \rangle}{v^\beta} - 2 \frac{\langle \nabla v, \nabla |\nabla v|^2 \rangle}{v^\beta} \\
+ \beta \frac{|\nabla v|^4}{v^{\beta+1}} \\
- \beta \frac{|\nabla v|^2 \left(\lambda (p-1)v + (p-1)v \hat{A} \right)}{v^{\beta+1}} - 2 \frac{\langle \nabla v, \lambda (p-1) \nabla v + \lambda (p-1) \nabla (v \hat{A} (u)) \rangle}{v^\beta} \\
= \left((p-1)v \frac{\Delta \xi |\nabla v|^2}{v^{\beta-1}} + (2 - 2(p-1)\beta) \frac{\langle \nabla v, \nabla |\nabla v|^2 \rangle}{v^\beta} \right) \\
+ ((p-1)\beta (\beta + 1) - \beta) \frac{|\nabla v|^4}{v^{\beta+1}} - 2(p-1) \frac{\langle \nabla v, (\nabla \Delta \xi v) \rangle}{v^{\beta-1}} - 2(p-1) \frac{|\nabla v|^2 \Delta \xi v}{v^\beta} \\
+ \Phi_1,
\]

where
\[
\Phi_1 = - \frac{|\nabla v|^2 \left(\lambda (p-1)v + (p-1)v \hat{A} \right)}{v^{\beta+1}} - 2 \frac{\langle \nabla v, \lambda (p-1) \nabla v + \lambda (p-1) \nabla (v \hat{A} (u)) \rangle}{v^\beta}.
\]

By Bochner formula, we have
\[
= \left((p-1)v \frac{\nabla^2 |v|^2}{v^{\beta-1}} + \text{Ric} \langle \nabla v, \nabla v \rangle + \langle \nabla v, \nabla \Delta \xi v \rangle \right) + (2 - 2(p-1)\beta) \frac{\langle \nabla v, \nabla |\nabla v|^2 \rangle}{v^\beta} \\
+ ((p-1)\beta (\beta + 1) - \beta) \frac{|\nabla v|^4}{v^{\beta+1}} - 2(p-1) \frac{\langle \nabla v, (\nabla \Delta \xi v) \rangle}{v^{\beta-1}} - 2(p-1) \frac{|\nabla v|^2 \Delta \xi v}{v^\beta} \\
+ \Phi_1
\]
\[
= \left(2(p-1) \frac{|\nabla^2 |v|^2| + \text{Ric} \langle \nabla v, \nabla v \rangle}{v^{\beta-1}} + (2 - 2(p-1)\beta) \langle \nabla \omega, \nabla v \rangle \right) \\
+ \left((2 - 2(p-1)\beta) \frac{|\nabla v|^4}{v^{\beta+1}} + ((p-1)\beta (\beta + 1) - \beta) \frac{|\nabla v|^4}{v^{\beta+1}} - 2(p-1) \frac{|\nabla v|^2 \Delta \xi v}{v^\beta} \right) + \Phi_1
\]
\[
= \left(2(p-1) \frac{\text{Ric} \langle \nabla v, \nabla v \rangle}{v^{\beta-1}} + (2 - 2(p-1)\beta) \langle \nabla \omega, \nabla v \rangle \right) \\
+ \left(\beta (2 - 2(p-1)\beta) + (p-1)\beta (\beta + 1) - \beta \right) \frac{|\nabla v|^4}{v^{\beta+1}} - 2(p-1) \frac{|\nabla v|^2 \Delta \xi v}{v^{\beta+1}} + 2(p-1) \frac{|\nabla^2 v|^2}{v^{\beta-1}}
\]
\begin{align*}
+ \beta \lambda (p-1) \frac{|\nabla v|^2}{v^\beta} & - 2\lambda (p-1) \frac{\langle \nabla v, \nabla v \rangle}{v^\beta} \\
\geq \left(2(p-1) \frac{\operatorname{Ric}^m_{V}(\nabla v, \nabla v)}{v^{\beta-1}} + (2 - 2(p-1) \beta) \langle \langle \nabla \omega, \nabla v \rangle \rangle \\
+ \left(\beta (2 - 2(p-1) \beta) + (p-1) \beta (\beta + 1) - \beta \right) \frac{|\nabla v|^4}{v^{\beta+1}} - 2(p-1) \frac{|\nabla v|^2 \Delta v}{v^\beta} + 2(p-1) \frac{1}{m} \frac{|\Delta v|^2}{v^{\beta-1}} \right) \\
+ \Phi_1.
\end{align*}

By Young’s inequality, the above formula is

\begin{align*}
= \left(2(p-1) \frac{\operatorname{Ric}^m_{V}(\nabla v, \nabla v)}{v^{\beta-1}} + (2 + 2(p-1) \beta) \langle \langle \nabla \omega, \nabla v \rangle \rangle \\
+ \left(\beta (2 + 2(p-1) \beta) - \frac{m(p-1)}{2} + (p-1) \beta (\beta + 1) + \beta \right) \frac{|\nabla v|^4}{v^{\beta+1}} - 2(p-1) \frac{\langle V, \nabla v \rangle |\nabla v|^2}{v^{\beta-1}} \\
+ \Phi_1 - 2(p-1) \frac{\langle \nabla f, \nabla v \rangle |\nabla v|^2}{v^{\beta-1}}.
\end{align*}

That is

\begin{align*}
\mathcal{L} \omega \geq -2K(p-1) v \omega + (2 + 2(p-1) \beta) \langle \langle \nabla \omega, \nabla v \rangle \rangle + \frac{1}{\gamma} v^{\beta-1} \omega^2 \\
+ \left(\beta (\lambda - \hat{A})(p-1) - 2\lambda (p-1) - 2K \right) \omega - 2(p-1) \frac{\langle \nabla f, \nabla v \rangle |\nabla v|^2}{v^{\beta-1}}
\end{align*}

where

\begin{equation}
\frac{1}{\gamma} = \beta (2 + 2(p-1) \beta) - \frac{m(p-1)}{2} + (p-1) \beta (\beta + 1) + \beta = -(p-1)(\beta^2 - \frac{p-2}{p-1} \beta + \frac{n}{2}),
\end{equation}

which is positive since \(p \in (1, 1 + \frac{1}{\sqrt{2n+1}}) \). One can refer to [34, page 203].

Next we use the cut off function \(\psi \) in Lemma 2.1, set \(G = \psi \omega \) we may assume \(G \) attains its maximum point at \((x_1, t_1) \) in \(Q_{R,T}(\partial M) \). Firstly, we consider the case that \(x_1 \notin \partial M \), by maximum principle, we have

\[\Delta \xi (G) \leq 0, G_t \leq 0 \quad \text{and} \quad \nabla (\psi \omega) = 0, \]
at \((x_1, t_1)\), we have
\[
0 \geq \mathcal{L}(\psi \omega) = \psi \mathcal{L}(\omega) + \omega \mathcal{L}(\psi) + 2(1 - p)v \langle \nabla \psi, \nabla \omega \rangle.
\]

Multiplying both sides by \(\psi\), we have
\[
0 \geq \mathcal{L}(\psi \omega) = \psi^2 \mathcal{L}(\omega) + G \mathcal{L}(\psi) + 2(1 - p)v \langle \nabla \psi, \nabla \psi \rangle G.
\]

By Theorem 6.1 in [24] or Theorem 2.1 in [8], we have
\[
\gamma ((1 - p)v \Delta \xi \psi) G \leq (1 - p)vG \left(\frac{(KR + L)^2}{4} \frac{1}{\psi} \right) + 2(1 - p)v \langle \nabla \psi, \nabla \psi \rangle G.
\]

Thus, we have
\[
\left(((1 - p)v \Delta \xi - \partial_t) \psi + 2(1 - p)v \langle \nabla \psi, \nabla \psi \rangle \frac{1}{\psi} \right) G
\leq (3M + 1)\epsilon \psi G^2 + \frac{C^2}{4\epsilon} \left(\frac{M}{1 - p} \right)^{2 - 2\beta} \frac{M^2}{R^4} \psi^{1/2},
\]

where the constant \(C_{\frac{3}{4}}\) is the same as that in Lemma 2.1.

\[
-\gamma v^{1-\beta} G \partial_t \psi \leq \epsilon \psi G^2 + \frac{1}{4} \frac{\epsilon \psi}{\psi} \leq 3\epsilon \psi G^2 + \frac{C^2}{4\epsilon} \frac{1}{T^2},
\]

where the constant \(C\) is the same as that in Lemma 2.1.

Thus, we have
\[
\gamma 2(1 - p)v^{2-\beta} \langle \nabla \psi, \nabla \psi \rangle \frac{1}{\psi} G \leq \epsilon \psi G^2 + \gamma^2 \frac{C^2}{4\epsilon} \left(\frac{M}{1 - p} \right)^{2 - \beta} M^2 \frac{\psi^{1/2}}{R^4},
\]

where the constant \(C_{\frac{3}{4}}\) is the same as that in Lemma 2.1.
Multiplying both sides by $\gamma v^{1-\beta}$, we get
\[
G^2 \leq (3M + 1)\gamma v^{1-\beta} \epsilon \psi G^2 + \left(\frac{C^2}{4} \frac{M}{2\epsilon R^4} + \frac{C^2}{4} \frac{1}{4\epsilon T^2} + \frac{C^2}{4} \frac{(K^2 + L^4) M}{4\epsilon} \right) \gamma v^{1-\beta} + 2K(1-p)v^{2-\beta}\psi G + \gamma v^{1-\beta} (2 - 2(1-p)\beta) G (\langle \nabla \psi, \nabla v \rangle)
\]
\[
+ 2\gamma v^{1-\beta} \omega^2 (1-p) \left(\frac{\nabla f, \nabla v}{v^{\beta-1}} \right) |\nabla v|^2 - \left(\beta(\lambda - \hat{A})(1-p) - 2\lambda(1-p) - 2K \right) \gamma v^{1-\beta} \psi G.
\]

(5.3)

We can estimate the terms on the right hand side of (5.3) as that in [33, (2.4)-(2.10)] or [34, (2.6)-(2.10)]
\[
2K(p-1)v^{2-\beta}\psi G \leq 2K(p-1)(p-1)^{\beta-2} M^{2-\beta} \psi G,
\]
and
\[
\gamma v^{1-\beta} (2 + 2(p-1)\beta) G (\nabla \psi, \nabla v) \leq \gamma \left(\frac{M}{p-1} \right)^{1-\beta} (2 + 2(p-1)\beta) G |\nabla \psi| |\nabla v| \leq \gamma M^{1-\beta} (2 + 2(p-1)\beta) G |\nabla \psi| \omega \frac{\omega}{v^{\beta}} = \gamma M^{1-\beta} (2 + 2(p-1)\beta) \psi |\nabla \psi| \omega \frac{\omega}{v^{\beta}} \leq \frac{3}{4} G^2 + \gamma^4 (2 + 2(p-1)\beta)^4 M^{2-\beta} \frac{1}{R^4}.
\]

We also have
\[
2\gamma \omega^2 v^{1-\beta} (p-1) \left(\frac{\nabla \xi, \nabla v}{v^{\beta-1}} \right) |\nabla v|^2 = 2\omega^2 v^{2-\beta} (1-p) \left(\frac{\nabla \xi, \nabla v}{v^{\beta}} \right) |\nabla v|^2 = 2\omega^2 v^{2-\beta} (1-p) \langle \nabla \xi, \nabla v \rangle \omega \leq 2\frac{1}{C_1} (\frac{M}{1-p})^{2-\frac{3}{2}\beta} M^2 |\nabla \xi| \psi \frac{1}{\sqrt{\beta}} G^\frac{3}{2}
\]
\[
\leq \frac{3}{4} \epsilon \frac{\psi}{v^{\beta}} |\nabla \xi| \frac{1}{\sqrt{\beta}} G^2 + \frac{1}{4\epsilon C_1} \left(2(\frac{M}{1-p})^{2-\frac{3}{2}\beta} M^2 \right)^4.
\]

According to the above inequalities, we have
\[
G^2 \leq (3M + 1)\gamma v^{1-\beta} \epsilon \psi G^2 + \left(\frac{C^2}{2\epsilon} \frac{M}{R^4} + \frac{C^2}{4\epsilon} \frac{1}{T^2} + \frac{C^2}{4\epsilon} \frac{(K^2 + L^4) M}{4\epsilon} \right) \gamma v^{1-\beta} + 2K(1-p)(p-1)^{\beta-2} M^{2-\beta} \psi G + \frac{1}{4} G^2 + C \gamma (2 - 2(1-p)\beta) M^{4-\beta} \frac{1}{R^4}
\]
\[
+ 2\gamma v^{1-\beta} \omega^2 (1-p) \left(\frac{\nabla f, \nabla v}{v^{\beta-1}} \right) |\nabla v|^2 - \left(\beta(\lambda - \hat{A})(1-p) - 2\lambda(1-p) - 2K \right) \gamma v^{1-\beta} \psi G.
\]

33
According to the above inequalities, we have
\[
G^2 \leq (3M + 1)\gamma v^{1-\beta} \psi G^2 + \left(\frac{C^2}{2\epsilon} M^4 + \frac{C^2}{4\epsilon} \frac{1}{T^2} + \frac{C^2}{4\epsilon} \left(K^2 + L^4 \right) M \right) \gamma v^{1-\beta} \\
+ 2K(1-p)(p-1)^{2-\beta} M^2 \psi G + \frac{1}{4} G^2 + C\gamma (2 - 2(1-p)\beta) M^{4-2\beta} \frac{1}{R^4} \\
+ \frac{3}{4} \epsilon \frac{1}{2} |V|^\frac{1}{2} \psi^2 G^2 + \frac{1}{4\epsilon^4 C_1^4} \left(2 \left(\frac{M}{1-p} \right)^2 - \frac{3}{4} \beta M^2 \right)^4 \\
- \left(\beta (\lambda - \hat{A})(1-p) - 2\lambda(1-p) \right) \gamma v^{1-\beta} \psi G.
\]
We can infer that
\[
\left(\frac{3}{4} - (3M + 1)\gamma M^{1-\beta} \epsilon - \frac{3}{4} \epsilon \frac{1}{2} |V|^\frac{1}{2} \right) G^2 \\
\leq \left(\frac{C^2}{2\epsilon} M^4 + \frac{C^2}{4\epsilon} \frac{1}{T^2} + \frac{C^2}{4\epsilon} \left(K^2 + L^4 \right) M \right) \gamma M^{1-\beta} \\
+ C\gamma (2 - 2(1-p)\beta) M^{4-2\beta} \frac{1}{R^4} + \frac{1}{4\epsilon^4 C_1^4} \left(2 \left(\frac{M}{1-p} \right)^2 - \frac{3}{4} \beta M^2 \right)^4 \\
+ \left[2K(1-p)(p-1)^{2-\beta} M^{2-\beta} - \left(\beta (\lambda - \hat{A}) - 2\lambda \right) (1-p) \gamma v^{1-\beta} \right] \psi G.
\]
By quadratic formula, we have
\[
G(x_1, t_1) \leq \frac{2K(1-p)(p-1)^{2-\beta} M^{2-\beta} - \left(\beta (\lambda - \hat{A}) - 2\lambda \right) (1-p) \gamma v^{1-\beta}}{\frac{1}{4} - (3M + 1)\gamma M^{1-\beta} \epsilon - \frac{3}{4} \epsilon \frac{1}{2} |V|^\frac{1}{2}} \\
+ \frac{\mathcal{O}}{\left(\frac{1}{4} - (3M + 1)\gamma M^{1-\beta} \epsilon - \frac{3}{4} \epsilon \frac{1}{2} |V|^\frac{1}{2} \right)^{\frac{1}{2}}},
\]
where
\[
\mathcal{O} = \left(\frac{C^2}{2\epsilon} M^4 + \frac{C^2}{4\epsilon} \frac{1}{T^2} + \frac{C^2}{4\epsilon} \left(K^2 + L^4 \right) M \right) \gamma M^{1-\beta} \\
+ C\gamma (2 - 2(1-p)\beta) M^{4-2\beta} \frac{1}{R^4} + \frac{1}{4\epsilon^4 C_1^4} \left(2 \left(\frac{M}{1-p} \right)^2 - \frac{3}{4} \beta M^2 \right)^4.
\]
Secondly, we consider the case that \(x_1 \in \partial M \)
\[
0 \leq \omega_n = -\beta v^{-\beta-1} v_n |\nabla v|^2 + v^{-\beta} (|\nabla v|^2)_n \\
= -\beta v^{-\beta-1} v_n^3 + v^{-\beta} v_n (\Delta v - H_v v) \\
= -\beta v^{-\beta-1} v_n^3 + v^{-\beta} v_n \left(\frac{\partial v}{(1-p)v} + \frac{|\nabla v|^2}{(1-p)v} - \lambda - \hat{A} - H_v v \right).\]
Since
\[(p - 1)\frac{u_t}{u} \leq \lambda + \hat{A}.
\]
Thus, we have
\[\beta v^{-\beta - 1}v^3_n + v^{-\beta}v_n(-\frac{|\nabla v|^2}{(1 - p)v} - L v_n) \leq 0.\]
which yields,
\[(\beta - \frac{1}{(1 - p)v})v^{-\beta - 1}v^3_n - L v^{-\beta}v^2_n \leq 0,\]
which is
\[(\beta - \frac{1}{(1 - p)v})v^{-1}v_n - L \leq 0.\]
So, we have
\[\omega_{\frac{1}{2}} \leq \frac{Lv^{1 - \frac{\beta}{2}}}{\beta + \frac{1}{M}}.\]

6 Souplet-Zhang type estimates for \(p < 1\)

Theorem 6.1. Let \((M, g, e^{-\xi}dv_g)\) be an \(n\)-dimensional complete noncompact metric measure space with compact boundary. For \(K \geq 0\), we assume \(\text{Ric}_\xi^n \geq -K\) and \(H_{\partial M, \xi} \geq L\). Let \(u\) be a positive solution to the heat equation (1.1) on \(Q_{R,T}(\partial M) := B_R(\partial M) \times [-T, 0]\) with \(p \in (1 - \frac{2}{n}, 1)\). For \(A > 0\), let us assume \(u < A\). We further assume that \(u\) satisfies the Dirichlet boundary condition (i.e., \(u(\cdot, t)\big|_{\partial M}\) is constant for each fixed \(t \in [-T, 0]\)), and \(u_\nu \geq 0\) and \(\partial_t u \leq 0\) over \(\partial M \times [-T, 0]\). Then there exists a positive constant \(C_n > 0\) depending only on \(n\) such that on \(Q_{R/2,T/4}\),

\[\frac{|\nabla v|}{v^{\frac{\beta}{2}}} \leq \frac{2K(1-p)(p-1)^{\beta - 2}M^{2-\beta} - (\beta(\lambda - \hat{A}) - 2\lambda) (1-p)\gamma v^{1-\beta}}{\frac{3}{4} - (3M + 1)\gamma M^{1-\beta}\epsilon - \frac{\beta}{2}\epsilon^\frac{4}{7}|V|^{\frac{4}{7}}} \]
\[+ \left(\frac{O}{\frac{3}{4} - (3M + 1)\gamma M^{1-\beta}\epsilon - \frac{\beta}{2}\epsilon^\frac{4}{7}|V|^{\frac{4}{7}}}\right)^{\frac{1}{2}} + \frac{Lv^{1 - \frac{\beta}{2}}}{\beta + \frac{1}{M}},\]
where \(v = -\frac{p}{p-1}u^{p-1} \), \(M := (1-p) \sup_{Q_{r,t}(\partial M)} v \), \(\beta \) is an arbitrary constant which satisfies \(\beta^2 - \frac{2-p}{1-p}\beta + \frac{n}{2} < 0 \), \(O \) is defined by

\[
\left(\frac{C^2}{2} \frac{M}{R^4} + \frac{C^2}{4\epsilon} \frac{1}{T^2} + \frac{C^2}{4\epsilon} (K^2 + L^4) \right) \gamma M^{1-\beta} + \frac{\beta}{\gamma} (2 - 2(1-p)\beta)^4 M^{4-2\beta} \left(\frac{1}{R^4} + \frac{1}{4\epsilon^4} \right) \left(\frac{2(1-p)}{1-p} \right)^{2 - \frac{2}{\beta}} M^2.
\]

Remark 6.1. When we take special \(A(u) \) and \(\lambda \), the upper bound can be simplified and get the corollary.

Proof. In this section, we let \(1 - \frac{2}{n} < p < 1 \), we set

\[
v = -\frac{p}{p-1}u^{p-1}, \quad \omega = \frac{\|\nabla v\|^2}{v^{\beta}}
\]

Let \(\mathcal{L} \omega = ((1-p)v\Delta - \partial_t)\omega \). thus

\[
\partial_t v = (1-p)v\Delta v - |\nabla v|^2 + \lambda(p-1)v + (p-1)v\hat{A}, p < 1. \tag{6.1}
\]

Now we can do the similar caculations as in section 5 , by (6.1),

\[
w_t = \frac{(\partial_t |\nabla v|^2)}{v^{\beta}} - \beta \frac{|\nabla v|^2 v_t}{v^{\beta+1}} = 2 \frac{\langle \nabla v, \nabla ((1-p)v\Delta v - |\nabla v|^2 + \lambda(p-1)v + (p-1)v\hat{A}) \rangle}{v^{\beta}} - \beta \frac{|\nabla v|^2 ((1-p)v\Delta v - |\nabla v|^2 + \lambda(1-p)v + (1-p)v\hat{A})}{v^{\beta+1}}
\]

\[
= 2 \frac{\langle \nabla v, \nabla ((1-p)v\Delta v - |\nabla v|^2) \rangle}{v^{\beta}} + 2 \frac{\langle \nabla v, \lambda(p-1)\nabla v + (p-1)\nabla (v\hat{A}(u)) \rangle}{v^{\beta}}
\]

\[
- \beta \frac{|\nabla v|^2 ((1-p)v\Delta v - |\nabla v|^2)}{v^{\beta+1}} + \frac{|\nabla v|^2 (\lambda(p-1)v + (p-1)v\hat{A})}{v^{\beta+1}}.
\]

It is easy to see that

\[
w_j = \frac{2v_i v_{ij}}{v^{\beta}} - \beta \frac{v_i^2 v_j}{v^{\beta+1}}. \tag{6.2}
\]
So, we have
\[
\Delta \xi \omega = \Delta w + \langle V, \nabla \omega \rangle = \frac{\Delta \xi |\nabla v|^2}{v^\beta} - 4\beta \frac{\langle \nabla v, \nabla |\nabla v|^2 \rangle}{v^{\beta+1}} - \beta \frac{\nabla v^2 \Delta \xi v}{v^{\beta+1}} + \beta(\beta + 1) \frac{|\nabla v|^4}{v^{\beta+2}}.
\]
Thus, we can infer that
\[
\mathcal{L} \omega = ((1 - p)v \Delta \xi \omega - \partial_t) \omega = (1 - p)v \left(\frac{\Delta \xi |\nabla v|^2}{v^\beta} - 2\beta \frac{\langle \nabla v, \nabla |\nabla v|^2 \rangle}{v^{\beta+1}} - \beta \frac{\nabla v^2 \Delta \xi v}{v^{\beta+1}} + \beta(\beta + 1) \frac{|\nabla v|^4}{v^{\beta+2}} \right)
\]
\[- \left((1 - p)v \langle \nabla v, \nabla ((1 - p)v \Delta \xi v - |\nabla v|^2) \rangle + 2 \left(\langle \nabla v, \lambda(p - 1) \nabla v + (p - 1) \nabla (v \hat{A}(u)) \rangle \right) \right)
\]
\[- \beta \frac{|\nabla v|^2 ((1 - p)v \Delta \xi v - |\nabla v|^2)}{v^{\beta+1}} \nabla \rho^{\beta+1}
\]
\[- \beta \left(\lambda(p - 1)v + (p - 1)v \hat{A} \right)
\]
\[- \beta \frac{|\nabla v|^4}{v^{\beta+1}} \right) + (1 - p)\frac{\Delta \xi |\nabla v|^2}{v^{\beta-1}} - 2 \left((1 - p)\frac{\langle \nabla v, \nabla |\nabla v|^2 \rangle}{v^\beta} + (1 - p)\frac{\nabla v^2 \Delta \xi v}{v^{\beta+1}} + \frac{\nabla v^2 \Delta \xi v}{v^\beta} \right)
\]
\[- \beta \frac{|\nabla v|^4}{v^{\beta+1}} \right) + \beta(\lambda + \hat{A})(1 - p) \frac{|\nabla v|^2}{v^\beta} - 2\lambda(p - 1) \frac{\langle \nabla v, \nabla v \rangle}{v^\beta} - \frac{2(p - 1)\nabla (v \hat{A}(u))}{v^\beta}.
\]
By Bochner formula, it is equal to
\[
\left((1 - p)v \frac{|\nabla^2 v|^2 + \mathcal{R}(\nabla v, \nabla v) + \langle \nabla v, \nabla \Delta \xi v \rangle}{v^{\beta-1}} + (2 - 2(1 - p)\beta) \frac{\langle \nabla v, \nabla |\nabla v|^2 \rangle}{v^\beta} \right)
\]
\[- \beta(\lambda + \hat{A})(1 - p) \frac{|\nabla v|^2}{v^\beta} - 2\lambda(p - 1) \frac{\langle \nabla v, \nabla v \rangle}{v^\beta} - \frac{2(p - 1)\nabla (v \hat{A}(u))}{v^\beta}.
\]

By Bochner formula, it is equal to
\[
\left((1 - p)v \frac{|\nabla^2 v|^2 + \mathcal{R}(\nabla v, \nabla v) + \langle \nabla v, \nabla \Delta \xi v \rangle}{v^{\beta-1}} + (2 - 2(1 - p)\beta) \frac{\langle \nabla v, \nabla |\nabla v|^2 \rangle}{v^\beta} \right)
\]
\[- \beta(\lambda + \hat{A})(1 - p) \frac{|\nabla v|^2}{v^\beta} - 2\lambda(p - 1) \frac{\langle \nabla v, \nabla v \rangle}{v^\beta} - \frac{2(p - 1)\nabla (v \hat{A}(u))}{v^\beta}.
\]

37
\[
\begin{align*}
&= \left(2(1-p)\frac{|\nabla^2 \nu|^2 + \text{Ric}_v(\nabla \nu, \nabla \nu)}{v^{\beta-1}} + (2 - 2(1-p)\beta) \langle \nabla \omega, \nabla \nu \rangle \right)
\end{align*}
\]

\[
(2 - 2(1-p)\beta) \left(+ \beta \frac{|\nabla v|^4}{v^{\beta+1}} + ((1-p)\beta(\beta+1) - \beta) \frac{|\nabla v|^4}{v^{\beta+1}} - 2(1-p)\frac{|\nabla v|^2 \Delta \xi}{v^\beta} \right)
\]

\[
+ \beta(\lambda + \hat{A})(1-p)\frac{|\nabla v|^2}{v^\beta} - 2\lambda(p-1)\frac{\langle \nabla v, \nabla v \rangle}{v^\beta} - 2(p-1)\nabla(v\hat{A}(u))
+ (2 - 2(1-p)\beta) \left(+ \beta \frac{|\nabla v|^4}{v^{\beta+1}} + ((1-p)\beta(\beta+1) - \beta) \frac{|\nabla v|^4}{v^{\beta+1}} - 2(1-p)\frac{|\nabla v|^2 \Delta \xi}{v^\beta} \right)
\]

\[
+ \beta(\lambda + \hat{A})(1-p)\frac{|\nabla v|^2}{v^\beta} - 2\lambda(p-1)\frac{\langle \nabla v, \nabla v \rangle}{v^\beta} - 2(p-1)\nabla(v\hat{A}(u))
\]

\[
\geq 2(1-p)\frac{\text{Ric}_\xi(\nabla \nu, \nabla \nu)}{v^{\beta-1}} + (2 - 2(1-p)\beta) \langle \nabla \omega, \nabla \nu \rangle
+ \left(\beta(2 - 2(1-p)\beta) + (1-p)\beta(\beta+1) - \beta \right) \frac{|\nabla v|^4}{v^{\beta+1}} - 2(1-p)\frac{|\nabla v|^2 \Delta \xi}{v^\beta}
\]

\[
+ 2(1-p)\frac{1}{m} \frac{|\Delta v|^2}{v^{\beta-1}} + \Phi_1,
\]

where

\[
\Phi_1 = \beta(\lambda + \hat{A})(1-p)\frac{|\nabla v|^2}{v^\beta} - 2\lambda(p-1)\frac{\langle \nabla v, \nabla v \rangle}{v^\beta} - 2(p-1)\nabla(v\hat{A}(u))
\]
By Young’s inequality, we can get
\[
\begin{align*}
&= \left(2(1-p)\frac{\text{Ric}^m_{\xi}(\nabla v, \nabla v)}{v^{\beta-1}} + (2 - 2(1-p)\beta) \left(\langle \nabla \omega, \nabla v \rangle\right) \right) + \frac{\left|\nabla v\right|^4}{v^{\beta+1}} - 2(1-p)\frac{\langle V, \nabla v \rangle |\nabla v|^2}{v^{\beta-1}} \\
&+ \Phi_1 \\
&\geq -2K(1-p)v\omega + (2 - 2(1-p)\beta) \left(\langle \nabla \omega, \nabla v \rangle\right) \\
&+ \left(\beta(2 - 2(1-p)\beta) - \frac{n(1-p)}{2} + (1-p)\beta(\beta + 1) - \beta\right) v^{\beta-1}\omega^2 \\
&+ \Phi_1 - 2(1-p)\frac{\langle V, \nabla v \rangle |\nabla v|^2}{v^{\beta-1}},
\end{align*}
\]
where we have used the condition that \(\text{Ric}^m_{\xi} = \text{Ric} + \nabla^2 \xi \geq -K\) in the last inequality, we can choose a suitable \(\beta\) such that (see [33])
\[
\frac{1}{\gamma} := \beta(2 - 2(1-p)\beta) - \frac{n(1-p)}{2} + (1-p)\beta(\beta + 1) - \beta = -(1-p)\left(\beta^2 - \frac{2-p}{1-p} + \frac{n}{2}\right),
\]
where we have used the fact that \(p \in \left(1 - \frac{2}{n}, 1\right)\). We can conclude that
\[
\mathcal{L}\omega \geq -2K(1-p)v\omega + (2 - 2(1-p)\beta) \left(\langle \nabla \omega, \nabla v \rangle\right) + \frac{1}{\gamma} \omega^{\beta-1}\omega^2 \\
+ \left(\beta(\lambda - \hat{A})(1-p) - 2\lambda(1-p)\right) \omega - 2(1-p)\frac{\langle \nabla f, \nabla v \rangle |\nabla v|^2}{v^{\beta-1}}.
\]
Next we use the cut off function \(\psi\) in Lemma 2.1, set \(G = \psi\omega\) we may assume \(G\) attains its maximum point at \((x_1, t_1)\) in \(Q_{R,T}(\partial M)\). Firstly, we consider the case that \(x_1 \notin \partial M\), by maximum principle, we have
\[
\Delta_{\xi}(G) \leq 0, G_t \leq 0 \quad \text{and} \quad \nabla(\psi\omega) = 0,
\]
at \((x_1, t_1)\), we have
\[
0 \geq \mathcal{L}(\psi\omega) = \psi\mathcal{L}(\omega) + \omega\mathcal{L}(\psi) + 2(1-p)v \langle \nabla \psi, \nabla \omega \rangle.
\]
Multiplying both sides by \(\psi\), we have
\[
0 \geq \mathcal{L}(\psi\omega) = \psi^2\mathcal{L}(\omega) + G\mathcal{L}(\psi) + 2(1-p)v \frac{\langle \nabla \psi, \nabla \psi \rangle}{\psi} G.
\]
By Theorem 6.1 in [24] or Theorem 2.1 in [8], we have
\[
\gamma ((1-p)v \Delta_{\xi}\psi) G \leq (1-p)vG \left(\partial_{\xi}\psi \Delta_{\xi} \rho_{\partial M} + \partial_{\xi}^2 \psi\right)
\]
Thus, we have

\[
\leq M \left(\epsilon \psi G^2 + \frac{(KR + L)^2 |\partial_v^2|}{4 \epsilon} \right) + M \left(\epsilon \psi G^2 + \frac{1}{4 \epsilon} |\partial_v^2| \right)
\]

\[
\leq 3M \epsilon \psi G^2 + \frac{C_3^2}{4 \epsilon} \psi^{1/2} + \frac{C_3^2 (KR + L)^2}{4 \epsilon} \psi^{1/2}
\]

\[
\leq 3\epsilon \psi G^2 + \frac{C_3^2}{4 \epsilon} \frac{1}{R^4} + \frac{C_3^2 (KR + L)^2}{R^2},
\]

and

\[
-\gamma v^{1-\beta} G \partial_t \psi \leq \epsilon \psi G^2 + \frac{1}{4 \epsilon} |\partial_t \psi|^2 \leq 3 \epsilon \psi G^2 + \frac{C_3^2}{4 \epsilon T^2},
\]

and

\[
\gamma^2 (1 - p) v^{2-\beta} \langle \nabla \psi, \nabla \psi \rangle \frac{1}{\psi} G \leq \epsilon \psi G^2 + \gamma^2 \frac{C_3^2}{4 \epsilon} \frac{M}{1 - p} 2 \psi^{1/2} M^2 \psi^{1/2} R^4. \tag{6.3}
\]

Thus, we have

\[
\left((1 - p) v \Delta \xi - \partial_t \right) \psi + 2(1 - p) v \langle \nabla \psi, \nabla \psi \rangle \frac{1}{\psi} G \right) \leq (3M + 1) \epsilon \psi G^2 + \frac{C_3^2 M}{2 \epsilon R^4} + \frac{C_3^2}{4 \epsilon T^2} + \frac{C_3^2 (K^2 + L^4)}{4 \epsilon} M,
\]

where we have used the fact that \(\frac{1}{1-f} \leq 1, \frac{f}{1-f} \leq 1, f < 0.\)

\[
\frac{1}{\gamma} v^{\beta-1} G^2 \leq (3M + 1) \epsilon \psi G^2 + \frac{C_3^2 M}{2 \epsilon R^4} + \frac{C_3^2}{4 \epsilon T^2} + \frac{C_3^2 (K^2 + L^4)}{4 \epsilon} M
\]

\[
+ 2K(1 - p) v \psi G + (2 - 2(1 - p) \beta) G \langle \nabla \psi, \nabla v \rangle + 2 \psi^{2(1 - p)} \frac{\langle \nabla f, \nabla v \rangle |\nabla v|^2}{v^{\beta-1}}
\]

\[
- \left(\beta(\lambda - \hat{\lambda})(1 - p) - 2\lambda(1 - p) \right) \psi G.
\]

Multiplying both sides by \(\gamma v^{1-\beta}, \) we get

\[
G^2 \leq (3M + 1) \gamma v^{1-\beta} \epsilon \psi G^2 + \left(\frac{C_3^2 M}{2 \epsilon R^4} + \frac{C_3^2}{4 \epsilon T^2} + \frac{C_3^2 (K^2 + L^4)}{4 \epsilon} M \right) \gamma v^{1-\beta}
\]

\[
+ 2K(1 - p) v^{2-\beta} \psi G + \gamma v^{1-\beta} \left(2 - 2(1 - p) \beta \right) G \langle \nabla \psi, \nabla v \rangle
\]

\[
+ 2 \gamma v^{1-\beta} \psi^2 (1 - p) \frac{\langle \nabla f, \nabla v \rangle |\nabla v|^2}{v^{\beta-1}} - \left(\beta(\lambda - \hat{\lambda})(1 - p) - 2\lambda(1 - p) - 2K \right) \gamma v^{1-\beta} \psi G
\]

Similar to the derivation of (5.4) (5.5) (5.6), we also have

\[
2K(1 - p) v^{2-\beta} \psi G \leq 2K(1 - p)(1 - p)^{\beta-2} M^{2-\beta} \psi G, \tag{6.4}
\]

40
We can infer that
\[\gamma v^{1 - \beta} (2 - 2(1 - p)\beta) G (\langle \nabla \psi, \nabla v \rangle) \leq \gamma \left(\frac{M}{1 - p} \right)^{1 - \beta} (2 - 2(1 - p)\beta) G |\nabla \psi| |\nabla v| \]
\[\leq \gamma M^{1 - \beta} (2 - 2(1 - p)\beta) G |\nabla \psi| \omega^{\frac{1}{2}} v^{\frac{2}{2}} \]
\[= \gamma M^{1 - \beta} (2 - 2(1 - p)\beta) \psi |\nabla \psi| \omega^{\frac{3}{2}} \]
\[\leq \frac{3}{4} G^2 + \gamma^4 (2 - 2(1 - p)\beta)^4 M^{4 - 2\beta} \frac{1}{R^4}. \]

We also have
\[2\gamma \psi^2 v^{1 - \beta} (1 - p) \frac{\langle \nabla \xi, \nabla v \rangle |\nabla v|^2}{\psi^{\beta - 1}} = 2\psi^2 v^{2 - 2\beta} (1 - p) (\nabla \xi, \nabla v) |\nabla v|^2 \]
\[= 2\psi^2 v^{2 - \beta} (1 - p) (\nabla \xi, \nabla v) \omega \]
\[\leq 2 \left(\frac{M}{1 - p} \right)^{2 - \beta} \frac{M^2 |\nabla \xi| \psi^\frac{3}{2} G^2}{4} \]
\[\leq \frac{3}{4} e^\frac{4}{3} |\nabla \xi| \psi^2 G^2 + \frac{1}{4e^4} \left(2 \left(\frac{M}{1 - p} \right)^{2 - \beta} M^2 \right)^4. \]

According to the above inequalities, we have
\[G^2 \leq (3M + 1) \gamma v^{1 - \beta} \epsilon G^2 + \left(\frac{C^2}{4} \frac{M}{R^4} + \frac{C^2}{4} \frac{1}{T^2} + \frac{C^2}{4} \frac{K^2 + L^4}{M} \right) \gamma v^{1 - \beta} \]
\[+ 2K(1 - p)(p - 1)^{\beta - 2} M^{2 - \beta} \psi G + \frac{3}{4} G^2 + \gamma^4 (2 - 2(1 - p)\beta)^4 M^{4 - 2\beta} \frac{1}{R^4} \]
\[+ \frac{3}{4} e^\frac{4}{3} |V|^\frac{1}{2} \psi^2 G^2 + \frac{1}{4e^4 C^4} \left(2 \left(\frac{M}{1 - p} \right)^{2 - \beta} M^2 \right)^4 \]
\[- \left(\beta(\lambda - \tilde{\lambda})(1 - p) - 2\lambda(1 - p) \right) \gamma v^{1 - \beta} \psi G. \]

We can infer that
\[\left(\frac{1}{4} - (3M + 1) \gamma M^{1 - \beta} \epsilon - \frac{3}{4} e^\frac{4}{3} |\nabla \xi| \frac{1}{2} \right) G^2 \]
\[\leq \left(\frac{C^2}{4} \frac{M}{R^4} + \frac{C^2}{4} \frac{1}{T^2} + \frac{C^2}{4} \frac{K^2 + L^4}{M} \right) \gamma M^{1 - \beta} \]
\[+ \gamma^4 (2 - 2(1 - p)\beta)^4 M^{4 - 2\beta} \frac{1}{R^4} + \frac{1}{4e^4} \left(2 \left(\frac{M}{1 - p} \right)^{2 - \beta} M^2 \right)^4 \]
\[+ 2K(1 - p)(p - 1)^{\beta - 2} M^{2 - \beta} - \left(\beta(\lambda - \tilde{\lambda}) - 2\lambda(1 - p) \right) \gamma v^{1 - \beta} \right) \psi G. \]
We can choose sufficiently small ϵ which depends on M, β, p and the upper bound of $|\nabla \xi|$ such that $\frac{1}{4} - (3M + 1)\gamma M^{1-\beta}\epsilon - \frac{3}{4} \epsilon \frac{\gamma}{3} |\nabla \xi|^{\frac{2}{3}} > 0$. By quadratic formula, we have

$$G(x_1, t_1) \leq \frac{2K(1-p)(1-p)^{2-\beta}M^{2-\beta} + \left((\beta + 2)|\lambda| + \beta |\hat{A}|\right) (1-p) \gamma v^{1-\beta}}{\frac{1}{4} - (3M + 1)\gamma M^{1-\beta}\epsilon - \frac{3}{4} \epsilon \frac{\gamma}{3} |\nabla \xi|^{\frac{2}{3}}}$$

$$+ \left(\frac{\mathcal{O}}{\frac{3}{4} - (3M + 1)\gamma M^{1-\beta}\epsilon - \frac{3}{4} \epsilon \frac{\gamma}{3} |\nabla \xi|^{\frac{2}{3}}}\right)^{\frac{1}{2}},$$

where

$$\mathcal{O} = \left(\frac{C^2}{2\epsilon} M + \frac{C^2}{4\epsilon} + \frac{C^2}{4\epsilon} (K^2 + L^4) M\right) \gamma M^{1-\beta}$$

$$+ \gamma^4 (2 - 2(1-p)\beta)^4 M^{4-2\beta} \frac{1}{R^4} + \frac{1}{4\epsilon^4 C_1^4} \left(2\left(\frac{M}{1-p}\right)^{2-\beta} M^2\right)^4.$$

Secondly, we consider the case that $x_1 \in \partial M$

$$0 \leq \omega_n = -\beta v^{-\beta-1} v_n |\nabla v|^2 + v^{-\beta} (|\nabla v|^2)_n$$

$$= -\beta v^{-\beta-1} v_n^3 + v^{-\beta} v_n (\Delta v - H \xi v_n)$$

$$= -\beta v^{-\beta-1} v_n^3 + v^{-\beta} v_n \left(\frac{\partial v}{1-p} + \frac{|\nabla v|^2}{(1-p)v} - \lambda - \hat{A} - H \xi v_n\right).$$

since

$$(p-1)\frac{u_t}{u} \leq \lambda + \hat{A}.$$}

Thus, we have

$$\beta v^{-\beta-1} v_n^3 + v^{-\beta} v_n (-\frac{|\nabla v|^2}{(1-p)v} - Lv_n) \leq 0,$$

which yields,

$$(\beta - \frac{1}{(1-p)v})v^{-\beta-1} v_n^3 - Lv^{-\beta} v_n^2 \leq 0,$$

which is

$$(\beta - \frac{1}{(1-p)v})v^{-1} v_n - L \leq 0.$$

So, we have

$$\omega^{\frac{1}{3}} \leq \frac{Lv^{1-\frac{2}{3}}}{\beta + \frac{1}{M}}.$$
7 Elliptic estimate

In this section, we study the following equation

\[\Delta_\xi (u^p) + \lambda u + A(u) = 0, \quad p \geq 1. \quad (7.1) \]

Lemma 7.1 (c.f. (2.1) and (2.2) in [32]). (1) For any \(a, b \in \mathbb{R} \) and \(\alpha > 0 \), we have

\[(a + b)^2 \geq \frac{a^2}{1 + \alpha} - \frac{b^2}{\alpha}, \quad (7.2) \]

and equality holds if and only if \(b = -\frac{\alpha}{1 + \alpha} a \);

(2) for any \(a, b \in \mathbb{R} \) and \(\delta \in (0, 1) \), we have

\[(a + b)^2 \leq \frac{a^2}{\delta} + \frac{b^2}{1 - \delta}, \quad (7.3) \]

and equality holds if and only if \(b = \frac{1 - \delta}{\delta} a \).

Let \(\phi = |\nabla u|_u \), we have the following lemma,

Lemma 7.2. Let \(u \) be the solution of (1.2), we have

\[
\Delta_\xi \phi \geq B_1 \phi^3 - B_2(u) \phi^{-1} - \left(K + \frac{1}{p} \hat{A}_u u^{2-p} \right) \phi - 2 \left(p - \frac{1}{(k-1)(1+\beta)} \right) \frac{\langle \nabla u, \nabla \phi \rangle}{u} \\
- \frac{\nabla \lambda}{p} \left(\inf_{B_R(\partial M)} u \right)^{1-p},
\]

where
\[
B_1 = \left(\frac{1}{(k-1)(1+\beta)} - \frac{(p-1)^2}{(k-1)(1+\beta)} - 2\mu(p-1)^2 - \mu(p-2)^2 \right) ,
\]
\[
B_2(u) = \left(\frac{\lambda^2 \left(\inf_{B_R(\partial M)} u \right)^{2-2p}}{(k-1)\beta(1-\delta)p^2} + \frac{\lambda^2 \left(\inf_{B_R(\partial M)} u \right)^{2-2p}}{4\mu p^2} + \frac{\hat{A}_u - \lambda^2 \left(\inf_{B_R(\partial M)} u \right)^{2-2p}}{4\mu p^2} \right).
\]

Proof. By (7.1), we have

\[pu^{p-1} \Delta_\xi u + p(p-1)u^{p-2}|\nabla u|^2 + \lambda u + A(u) = 0. \quad (7.5) \]

Thus, we get

\[
\Delta_\xi u = -(p-1)\frac{|\nabla u|^2}{u} - \lambda \frac{u^{2-p}}{p} - \frac{A(u)}{pu^{p-1}}, \quad (7.6)
\]
This implies that
\[
\langle \nabla u, \nabla \Delta \xi u \rangle \geq -(p - 1) |\nabla |u|^2 - \left(\frac{\lambda}{p}(2 - p)u^{1-p} + \frac{\nabla \lambda \nabla u}{p} u^{2-p} + \frac{1}{p} \hat{A}_u u^{2-p} + \frac{2-p}{p} \hat{A}u^{1-p} \right) |\nabla u|^2, \tag{7.7}
\]
where we have used the condition \(p \geq 1 \) and Young’s inequality (see [32]). By Bochner formula and (7.7), we get
\[
|\nabla u| \Delta \xi |\nabla u| \geq |\text{Hess } u|^2 - p |\nabla |u|^2 + \text{ Ric }_\xi (\nabla u, \nabla u)
- \left(\frac{\lambda}{p}(2 - p)u^{1-p} + \frac{1}{p} \hat{A}_u u^{2-p} + \frac{2-p}{p} \hat{A}u^{1-p} \right) |\nabla u|^2 - \frac{\nabla \lambda \nabla u}{p} u^{2-p}. \tag{7.8}
\]
Notice that
\[
|\text{Hess } u|^2 - p |\nabla |u|^2 \geq \sum_{i=2}^{n} u_{ii} + \frac{1}{n-1} \left(\sum_{i=2}^{n} u_{ii} \right)^2 - (p - 1) \sum_{j=1}^{n} u_{1j}^2, \tag{7.9}
\]
In the sequel, we let \(V = \nabla \xi \),
\[
- \sum_{i=2}^{n} u_{ii} = -\Delta u + u_{11} = -\Delta f + u_{11} + \langle \nabla f, \nabla u \rangle
= (p - 1) \frac{|\nabla u|^2}{u} + \frac{\lambda}{p} u^{2-p} + u_{11} + V^1 u_1 + \frac{A(u)}{pu^{p-1}} \tag{7.10}
= (p - 1) u_{11}^2 u + \frac{\lambda}{p} u^{2-p} + u_{11} + V^1 u_1 + \frac{A(u)}{pu^{p-1}}.
\]
By using (7.2) twice, we obtain for any \(\alpha = \frac{k-n}{n-1} \) and \(\beta > 0 \), the following inequality
\[
\frac{1}{n-1} \left(\sum_{i=2}^{n} u_{ii} \right)^2 \geq \frac{1}{k-1} \left((p - 1) \frac{u_{11}^2}{u} + \frac{\lambda}{p} u^{2-p} + u_{11} + V^1 u_1 + \frac{A(u)}{pu^{p-1}} \right)^2
- \frac{1}{k-n} \left(V^1 u_1 \right)^2
\geq \frac{1}{k-1} \left[\frac{u_{11}^2}{1+\beta} - \frac{1}{\beta} \left((p - 1) \frac{u_{11}^2}{u} + \frac{\lambda}{p} u^{2-p} + \frac{A(u)}{pu^{p-1}} \right)^2 \right] - \frac{1}{k-n} \left(V^1 u_1 \right)^2, \tag{7.11}
\]
By (7.9), we have
\[
|\text{Hess } u|^2 - p|\nabla|\nabla u|^2 \geq \left[\frac{1}{(k - 1)(1 + \beta)} - (p - 1) \right] |\nabla|\nabla u|^2 - \frac{(p - 1)^2|\nabla u|^4}{(k - 1)^2\delta_1\delta u^2} \tag{7.12}
\]
\[- \frac{\lambda^2 u^{4-2p}}{(k - 1)\delta_1(1 - \delta)p^2} - \frac{A(u)u^{2-p}}{(k - 1)\beta(1 - \delta_1)p^2} - \frac{1}{k - n} V^b \otimes V^b(\nabla u, \nabla u),
\]
where we have used the inequality (7.3) twice.

Thus, we have
\[
|\nabla u|\Delta_u|\nabla u| \geq \left[\frac{1}{(k - 1)(1 + \beta)} - (p - 1) \right] |\nabla|\nabla u|^2 - \frac{(p - 1)^2|\nabla u|^4}{(k - 1)^2\delta_1\delta u^2} \tag{7.13}
\]
\[- \frac{\lambda^2 u^{4-2p}}{(k - 1)\delta_1(1 - \delta)p^2} - \frac{A(u)u^{2-p}}{(k - 1)\beta(1 - \delta_1)p^2} + \text{Ric}_\xi(\nabla u, \nabla u) \tag{7.14}
\]
\[- \left(\frac{\lambda}{p}(2 - p)u^{1-p} + \frac{1}{p}\frac{\hat{A}_u u^{2-p}}{2 - p}\frac{\hat{A}_u u^{1-p}}{u} \right) |\nabla u|^2 - \frac{\nabla_\lambda \nabla u}{p}u^{2-p}.
\]

Using
\[
\Delta_u|\nabla u| = u\Delta\phi + 2 \langle \nabla u, \nabla \phi \rangle + \phi\Delta_u u,
\]
and
\[
\Delta_u u = -(p - 1)\frac{|\nabla u|^2}{u} - \frac{A(u)}{p w^{p-1}},
\]
we can infer from (7.13),
\[
\Delta_u \phi = \Delta\phi \frac{|\nabla u|}{u} + 2 \langle \nabla u, \nabla \phi \rangle + \phi \Delta_u u
\]
\[= \Delta\phi \frac{|\nabla u|}{u} + \frac{2}{u} \langle \nabla u, \nabla \phi \rangle + \frac{2}{u^2} \left[(p - 1)\frac{|\nabla u|^2}{u} \right] \tag{7.15}
\]
\[\geq \frac{1}{u|\nabla u|} \left[\left(\frac{1}{(k - 1)(1 + \beta)} - (p - 1) \right) |\nabla|\nabla u|^2 - \frac{(p - 1)^2|\nabla u|^4}{(k - 1)^2\delta_1\delta u^2} \tag{7.16}
\]
\[- \frac{\lambda^2 u^{4-2p}}{(k - 1)\delta_1(1 - \delta)p^2} - \frac{A(u)u^{2-p}}{(k - 1)\beta(1 - \delta_1)p^2} + \text{Ric}_\xi(\nabla u, \nabla u) \tag{7.17}
\]
\[- \left(\frac{\lambda}{p}(2 - p)u^{1-p} + \frac{1}{p}\frac{\hat{A}_u u^{2-p}}{2 - p}\frac{\hat{A}_u u^{1-p}}{u} \right) |\nabla u|^2 - \frac{\nabla_\lambda \nabla u}{p}u^{2-p} \right] \tag{7.18}
\]
\[\geq \frac{1}{u|\nabla u|} \left[\left(\frac{1}{(k - 1)(1 + \beta)} - (p - 1) \right) |\nabla|\nabla u|^2 - \frac{(p - 1)^2|\nabla u|^4}{(k - 1)^2\delta_1\delta u^2} \right] \tag{7.19}
\]
\[- \frac{\lambda^2 u^{4-2p}}{(k - 1)\delta_1(1 - \delta)p^2} - \frac{A(u)u^{2-p}}{(k - 1)\beta(1 - \delta_1)p^2} + \text{Ric}_\xi(\nabla u, \nabla u) \tag{7.20}
\]
\[- \left(\frac{\lambda}{p}(2 - p)u^{1-p} + \frac{1}{p}\frac{\hat{A}_u u^{2-p}}{2 - p}\frac{\hat{A}_u u^{1-p}}{u} \right) |\nabla u|^2 - \frac{\nabla_\lambda \nabla u}{p}u^{2-p} \right] \tag{7.21}
\]
\[- \frac{2}{u} \langle \nabla u, \nabla \phi \rangle + \frac{1}{u^3} \frac{\nabla u^3}{u^3} + \frac{2 - p}{u}\frac{\hat{A}_u u^{1-p}}{p} \phi + \frac{A(u)}{p w^{p-1}} \frac{\nabla u}{u^2} \tag{7.22}
\]
\[
\begin{align*}
&\geq \left[\frac{1}{(k-1)(1+\beta)} - (p-1) \right] \frac{1}{u| \nabla u|} | \nabla | \nabla u| \| - (p-1)^2 \frac{1}{(k-1)\beta \delta_1 \delta} \phi^3 \\
&\quad - \frac{\lambda^2 u^{2-2p}}{(k-1)\beta(1-\delta)p^2 \phi^{-1}} - \frac{A(u)u^{2-p} \lambda u^{1-p}}{(k-1)\beta(1-\delta)p^2 u | \nabla u|} - K \phi - \left(\frac{\lambda}{p} (2-p)u^{1-p} + \frac{1}{p} \hat{A}_u u^{2-p} + \frac{2-p}{p} \hat{A} u^{1-p} \right) \phi - \left(\frac{\nabla \lambda u}{p} \right) u^{1-p}
\end{align*}
\]

where we have used the formula in [25, page 19]

\[
\frac{2}{u} \langle \nabla u, \nabla \phi \rangle = (2-\epsilon) \frac{\langle \nabla u, \nabla \phi \rangle}{u^2} + \epsilon \frac{\langle \nabla u, | \nabla u| \rangle}{u^2} - \epsilon | \nabla u| \frac{3}{u^3}
\]

\[
\leq (2-\epsilon) \frac{\langle \nabla u, \nabla \phi \rangle}{u} + \epsilon \frac{\langle \nabla u, \nabla u| u \rangle}{u^2} - \epsilon \phi^3,
\]

and

\[
\frac{| \nabla | \nabla u| \|}{u | \nabla u|} \geq 2 \frac{| \nabla u| \cdot | u \nabla u|}{u^2} - | \nabla u| \frac{3}{u^3}.
\]

Take \(\epsilon = 2(\frac{1}{(k-1)(1+\beta)} - (p-1))\), we have

\[
\Delta \xi \phi \geq \left(\frac{1}{(k-1)(1+\beta)} - (p-1)^2 \frac{1}{(k-1)\beta \delta_1 \delta} \right) \phi^3 \\
\qquad - \frac{\lambda^2 u^{2-2p}}{(k-1)\beta(1-\delta)p^2 \phi^{-1}} - \frac{A(u)u^{2-p} \lambda u^{1-p}}{(k-1)\beta(1-\delta)p^2 u | \nabla u|} - K \phi - \left(\frac{\lambda}{p} (2-p)u^{1-p} + \frac{1}{p} \hat{A}_u u^{2-p} + \frac{2-p}{p} \hat{A} u^{1-p} \right) \phi - \left(\frac{\nabla \lambda u}{p} \right) u^{1-p}
\]

By Young’s inequality, we have

\[
\frac{\lambda(p-1)u^{1-p}}{p} \phi \geq -\mu(p-1)^2 \phi^3 - \frac{\lambda^2 u^{2-2p}}{4\mu p^2} \phi^{-1},
\]

46
\[
\lambda (p-2)u^{1-p} \phi \geq -\mu (p-2)^2 \phi^3 - \frac{\lambda^2 u^{2-2p}}{4\mu p^2} \phi^{-1},
\]

\[
\frac{|\nabla \lambda|(p-1)u^{1-p}}{p} \phi \geq -\mu (p-1)^2 \phi^3 - \frac{|\nabla \lambda|^2 u^{2-2p}}{4\mu p^2} \phi^{-1},
\]

\[
-\frac{2-p}{p} \dot{A} u^{1-p} \phi + \frac{A(u)}{pu^p} \phi = \frac{p-1}{p} \dot{A} u^{1-p} \phi \geq -\mu (p-1)^2 \phi^3 - \frac{\dot{A}^2 u^{2-2p}}{4\mu p^2} \phi^{-1},
\]

and

\[
-\frac{|\nabla \lambda|}{p} u^{1-p} \geq \frac{|\nabla \lambda|}{p} (\inf_{B_R(\partial M)} u)^{1-p}, \quad (7.18)
\]

and

\[
\frac{A(u)u^{2-p}}{(k-1)\beta(1-\delta_1)p^2 u|\nabla u|} \geq \frac{A(u)u^{-p}}{(k-1)\beta(1-\delta_1)p^2} \phi^{-1}. \quad (7.19)
\]

Using the above formula, we have

\[
\Delta_{\xi} \phi \geq \left(\frac{1}{(k-1)(1+\beta)} - \frac{(p-1)^2}{(k-1)\beta \delta_1 \delta} - 2\mu (p-1)^2 - \mu (p-2)^2 \right) \phi^3 - \left(\frac{\lambda^2 u^{2-2p}}{(k-1)\beta \delta_1 \delta} + \frac{A(u)u^{-p}}{(k-1)\beta(1-\delta_1)p^2} \right) - \frac{\dot{A}^2 u^{2-2p}}{4\mu p^2} + \frac{\lambda^2 u^{2-2p}}{4\mu p^2} \phi^{-1} - \left(K + \frac{1}{p} \dot{A} u^{2-p} \right) \phi - 2 \left(p - \frac{1}{(k-1)(1+\beta)} \right) \frac{\langle \nabla u, \nabla \phi \rangle}{u} - \frac{|\nabla \lambda|}{p} (\inf_{B_R(\partial M)} u)^{1-p}. \quad (7.20)
\]

It is not hard to see that we can take \(\delta \in (0, 1), \delta_1 \in (0, 1), \mu > 0 \) such that

\[
\frac{1}{(k-1)(1+\beta)} - \frac{(p-1)^2}{(k-1)\beta \delta_1 \delta} - 2\mu (p-1)^2 - \mu (p-2)^2 > 0,
\]

we take \(\beta = \sigma, \delta_1 = \frac{1}{2}, \delta = \frac{(1+\sigma)^2}{\sigma} (p-1)^2, \mu = \frac{\sigma}{(k-1)(1+\sigma)^2(p-1)^2}, \) it suffices to prove that

\[
\frac{1}{(k-1)(1+\beta)} - \frac{(p-1)^2}{(k-1)\beta \delta_1 \delta} - 3\mu (p-1)^2 = \frac{\sigma^2 - (1 + \frac{1}{\delta_1})\sigma + 1 - \delta_1}{(1+\sigma)^3(k-1)} > 0,
\]

which is positive if \(\sigma > \frac{1+\frac{2}{\delta_1}+\sqrt{(1+\frac{2}{\delta_1})^2-4(1-\delta_1)}}{2} \). \(\square \)

Theorem 7.1. Let \((M, g, e^{-\xi}dv_g)\) be an n-dimensional, complete noncompact metric measure space with compact boundary. For \(K, L \geq 0\), we assume \(\text{Ric}^k \geq -K\) and \(H_\xi \geq -L\), \(L^2 \geq 4p(\frac{\lambda}{p\nu} + \frac{\dot{A}(b)}{p\nu^{b-1}})\). Let \(u : B_R(\partial M) \to (0, \infty)\) be the solution of (1.2) with
Dirichlet boundary condition (i.e. $u = b$ on ∂M) and $1 \leq p \leq 1 + \frac{1}{(1 + \sigma)(k - 1)}$, $\sigma > \max\{\frac{1 + \frac{1}{\sigma_1}}{2}, \frac{1}{\sigma_1(k - 1)^2}\}$, $\delta_1 \in (0, 1)$ is a small constant such that $(1 + \frac{1}{\delta_1})^2 - 4(1 - \delta_1) \geq 0$. We assume that its derivative u_ν in the direction of the outward unit normal vector ν is nonnegative over ∂M. Then we have

$$\frac{|\nabla u|}{u} \leq L + \sqrt{\frac{L^2 - 4p(\frac{\lambda}{\rho\sigma - \nu} + \frac{\hat{A}(b)}{\rho\sigma - \nu})}{2p}} + C'\frac{4}{3}R^{-2}. \tag{7.21}$$

where constant C' which depends on $K, L, \inf_{B_R(\partial M)} u, \sup_{B_R(\partial M)}(\hat{A}_u)$.

Remark 7.1. When $A(u) = au \log u$, then $\hat{A}_u = a$.

Proof. Let

$$F = (R^2 - \rho^2)\phi.$$

We assume that F attains its maximum at \bar{x}. We first consider the case where $\bar{x} \in B_R(\partial M) \setminus \partial M$. Then at \bar{x} we have

$$\nabla F = 0, \Delta \xi F \leq 0,$$

thus, at \bar{x}, we have

$$\frac{\Delta \xi \phi}{\phi} - \frac{\Delta \rho^2}{R^2 - \rho^2} - 2\frac{\rho^2}{(R^2 - \rho^2)^2} \leq 0.$$

By (7.4), we get

$$0 \geq \frac{\Delta \phi}{\phi} - \frac{\Delta \rho^2}{R^2 - \rho^2} - 2\frac{\rho^2}{(R^2 - \rho^2)^2} \leq 0.$$

$$\geq B_1\phi^2 - B_2(u)\phi - \left(K + \frac{1}{p} \hat{A}_u u^{2-p} - 4p - \frac{1}{(k - 1)(1 + \beta)}\right)\frac{\rho^2}{(R^2 - \rho^2)^2} \leq 0. \tag{7.22}$$

Thus, we have

$$0 \geq \frac{\Delta \phi}{\phi} - \frac{\Delta \rho^2}{R^2 - \rho^2} - 2\frac{\rho^2}{(R^2 - \rho^2)^2} \leq 0.$$
0 \geq B_1 F^2 - \left(K + \frac{1}{p} \hat{A}_u u^{2-p} \right) (R^2 - \rho_{\partial M}^2)^2
\nonumber
- B_2(u) (R^2 - \rho_{\partial M}^2)^4 F^{-2} - 4 \left(p - \frac{1}{(k-1)(1+\sigma)} \right) F
\nonumber
- \frac{|\nabla \lambda|}{p} \left(\inf_{B_R(\partial M)} u \right)^{1-p} (R^2 - \rho_{\partial M}^2)^2 - \Delta \rho_{\partial M}^2 (R^2 - \rho_{\partial M}^2) - 2|\nabla \rho_{\partial M}^2|^2.

(7.23)

However, since Ric^\xi \geq -K, H^\xi \geq -L, K, L \geq 0, we have

\nonumber
\Delta \xi \rho_{\partial M}^2 = 2|\nabla \rho_{\partial M}^2|^2 + \rho_{\partial M} \Delta \rho_{\partial M}
\nonumber
\leq 2 + 2\rho (KR + L) \leq (2 + 2KR^2 + 2LR).

(7.24)

Using this, (7.23) implies that

0 \geq B_1 F^2 - \left(K + \frac{1}{p} \hat{A}_u u^{2-p} \right) R^4
\nonumber
- B_2(u) R^8 F^{-2} - 4 \left(p - \frac{1}{(k-1)(1+\sigma)} \right) F
\nonumber
- \frac{|\nabla \lambda|}{p} \left(\inf_{B_R(\partial M)} u \right)^{1-p} R^4 - (2 + 2KR^2 + 2LR)R^2 - 8R^2.

(7.25)

Thus, we have

0 \geq B_1 F^4 - 4 \left(p - \frac{1}{(k-1)(1+\sigma)} \right) F^3 - B_2(u) R^8
\nonumber
- \left(K + \frac{1}{p} \sup_{B_R(\partial M)} (\hat{A}_u) \left(\inf_{B_R(\partial M)} u \right)^{2-p} \right) R^4 F^2
\nonumber
- \left(\frac{|\nabla \lambda|}{p} \left(\inf_{B_R(\partial M)} u \right)^{1-p} R^4 + (2 + 2KR^2 + 2LR)R^2 + 8R^2 \right) F^2.

(7.26)

Therefore, there exists constant \(C' \) which depends on \(K, L, \inf_{B_R(\partial M)} u, \sup_{B_R(\partial M)} (\hat{A}_u)u \) such that

\frac{3}{4} R^2 \sup_{B_R(x_0)} \frac{\nabla u}{u} \leq C'.

Therefore, we have

\sup_{B_R(x_0)} \frac{\nabla u}{u} \leq C' \frac{4}{3} R^{-2}.

If \(\bar{x} \in \partial M \), By lemma 2.2
0 \leq (\phi^2)_\nu = (|\nabla \log u|^2)_\nu = 2(\log u)_\nu (\Delta_\xi \log u - H_\xi(\log u)_\nu), \quad (7.27)
where we have used the fact that $u = b$, on ∂M. A direct computation shows that
\[\Delta_\xi \log u = \frac{\Delta_\xi u}{u} - \frac{|\nabla u|^2}{u^2} \tag{7.28} \]
and
\[\Delta_\xi u^p + \lambda u + A(u) = pu^{p-1}\Delta_\xi u + p(p-1)u^{p-2}|\nabla u|^2 + \lambda u + A(u) = 0. \]
Thus, we have
\[pu^{p-1}\Delta_\xi u + p(p-1)u^{p-2}|\nabla u|^2 + \lambda + \hat{A} = 0, \]
and
\[\frac{\Delta_\xi u}{u} + (p-1)u^{-1}|\nabla u|^2 - \frac{\lambda}{pu^{p-1}} - \frac{\hat{A}}{pu^{p-1}} = 0. \]
By (7.28), we get that
\[\Delta_\xi \log u = -(p-1)\frac{|\nabla u|^2}{u^2} - \frac{\lambda}{pu^{p-1}} - \frac{\hat{A}}{pu^{p-1}} = \frac{|\nabla u|^2}{u^2}. \]
Thus, (7.27) can be rewritten as
\[
0 \leq (\phi^2)_\nu = (|\nabla \log u|^2)_\nu \\
= 2(\log u)_\nu \left(-(p-1)\frac{|\nabla u|^2}{u^2} - \frac{\lambda}{pu^{p-1}} - \frac{\hat{A}}{pu^{p-1}} - H_\xi(\log u)_\nu \right).
\]
This yields
\[
(p-1)\frac{|\nabla u|^2}{u^2} + \frac{\lambda}{pu^{p-1}} + \frac{\hat{A}}{pu^{p-1}} + \frac{|\nabla u|^2}{u^2} + H_\xi(\log u)_\nu \leq 0.
\]
Since at $\bar{x} \in \partial M, u = b, H_\xi \geq -L, L \geq 0$, we get
\[
pu_\nu^2 - Lu_\nu \leq -\frac{\lambda}{pu^{p-1}} - \frac{\hat{A}(b)}{pu^{p-1}}.
\]
By quadratic formula, we get
\[
0 \leq \frac{u_\nu}{u} \leq \frac{L + \sqrt{L^2 - 4p(\frac{\lambda}{pu^{p-1}} + \frac{\hat{A}(b)}{pu^{p-1}})}}{2p}.
\]
References

[1] B Abdênago and S. A. Kelson. Gradient estimate for eigenfunctions of the operator Δ_V. *Differential Geometry and its Applications*, 60:147–155, 2018.

[2] Sümeyye Bakim, Gisèle Ruiz Goldstein, Jerome A. Goldstein, and Ismail Kömbe. Fast diffusion equations on Riemannian manifolds. *Differential Integral Equations*, 33(9-10):507–526, 2020.

[3] Huai-Dong Cao and Meng Zhu. Aronson-Bénilan estimates for the porous medium equation under the Ricci flow. *J. Math. Pures Appl. (9)*, 104(4):729–748, 2015.

[4] Jeongwook Chang and Jinho Lee. Harnack-type inequalities for the porous medium equation on a manifold with non-negative Ricci curvature. *Internat. J. Math.*, 23(4):1250009, 12, 2012.

[5] Q. Chen and H. Qiu. Gradient estimates and Harnack inequalities of a nonlinear parabolic equation for the V-Laplacian. *Annals of Global Analysis and Geometry*, 50(1):47–64, 2016.

[6] Q. Chen and G. Zhao. Li–Yau type and Souplet–Zhang type gradient estimates of a parabolic equation for the V-Laplacian. *Journal of Mathematical Analysis and Applications*, page S0022247X18302610, 2018.

[7] Panagiota Daskalopoulos and Carlos E. Kenig. *Degenerate diffusions. Initial value problems and local regularity theory*, volume 1 of *EMS Tracts Math*. Zürich: European Mathematical Society (EMS), 2007.

[8] Ha Tuan Dung, Nguyen Thac Dung, and Jiayong Wu. Sharp gradient estimates on weighted manifolds with compact boundary. *Communications on Pure and Applied Mathematics*, 20(12):4127–4138, 2021.

[9] Nguyen Thac Dung and Jia-Yong Wu. Gradient estimates for weighted harmonic function with Dirichlet boundary condition. *Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods*, 213:9, 2021. Id/No 112498.

[10] Ghodratallah Fasihi-Ramandi. Hamilton’s gradient estimate for fast diffusion equations under geometric flow. *AIMS Math.*, 4(3):497–505, 2019.
[11] Xuenan Fu and Jia-Yong Wu. Gradient estimates for a nonlinear parabolic equation with dirichlet boundary condition. *Kodai Mathematical Journal*, 45(1):96–109, 2022.

[12] Guangyue Huang, Zhijie Huang, and Haizhong Li. Gradient estimates for the porous medium equations on riemannian manifolds. *Journal of Geometric Analysis*, 23(4):1851–1875, 2013.

[13] Guangyue Huang and Haizhong Li. Gradient estimates and entropy formulae of porous medium and fast diffusion equations for the Witten Laplacian. *Pacific J. Math.*, 268(1):47–78, 2014.

[14] Guangyue Huang and Zhi Li. Liouville type theorems of a nonlinear elliptic equation for the V-Laplacian. *Analysis and Mathematical Physics*, 8:123–134, 2018.

[15] Guangyue Huang and Bingqing Ma. Hamilton’s gradient estimates of porous medium and fast diffusion equations. *Geometriae Dedicata*, 188(1):1–16, 2017.

[16] Atsushi Kasue. A laplacian comparison theorem and function theoretic properties of a complete riemannian manifold. *Japanese journal of mathematics. New series*, 8(2):309–341, 1982.

[17] Keita Kunikawa and Yohei Sakurai. Yau and souplet-zhang type gradient estimates on riemannian manifolds with boundary under dirichlet boundary condition. *Proceedings of the American Mathematical Society*, 2022.

[18] Li and Yi. Li-yau-hamilton estimates and bakry-emery ricci curvature. *Nonlinear Analysis*, 113:1–32, 2015.

[19] Hailong Li, Haibo Bai, and Guangying Zhang. Hamilton’s gradient estimates for fast diffusion equations under the Ricci flow. *J. Math. Anal. Appl.*, 444(2):1372–1379, 2016.

[20] Bingqing Ma and Jing Li. Gradient estimates of porous medium equations under the Ricci flow. *J. Geom.*, 105(2):313–325, 2014.

[21] Li Ma and Ingo Witt. Discrete Morse flow for Ricci flow and porous medium equation. *Commun. Nonlinear Sci. Numer. Simul.*, 59:158–164, 2018.

[22] Hongbing Qiu. Gradient estimates of a general porous medium equation for the V-Laplacian. *Kodai Math. J.*, 43(1):16–41, 2020.
[23] Robert C Reilly. Applications of the hessian operator in a riemannian manifold. *Indiana University Mathematics Journal*, 26(3):459–472, 1977. 3

[24] Yohei Sakurai. Concentration of 1-lipschitz functions on manifolds with boundary with dirichlet boundary condition. *arXiv preprint arXiv:1712.04212*, 2017. 3, 32, 39

[25] Richard Schoen and Shing-Tung Yau. *Lectures on differential geometry*, volume 1 of *Conf. Proc. Lect. Notes Geom. Topol*. Cambridge, MA: International Press, 1994. 46

[26] Li-ju Shen, Sha Yao, Guang-ying Zhang, and Xin-an Ren. Gradient estimates for porous medium equations under the Ricci flow. *Appl. Math. J. Chinese Univ. Ser. B*, 31(4):481–490, 2016. 2

[27] J.L Vázquez. *The Porous Medium Equation*. in: Oxford Mathematical Monographs, The Clarendon Press, Oxford Univ. Press., 2007. 2

[28] Wen Wang, Rulong Xie, and Pan Zhang. Some Gradient Estimates and Liouville Properties of the Fast Diffusion Equation on Riemannian Manifolds. *Chinese Ann. Math. Ser. B*, 42(4):529–550, 2021. 2

[29] Jia-Yong Wu. Differential harnack inequalities for nonlinear heat equations with potentials under the ricci flow. *Pacific Journal of Mathematics*, 257(1):199–218, 2012. 4

[30] Jia-Yong Wu. Elliptic gradient estimates for a nonlinear heat equation and applications. *Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods*, 151:1–17, 2017. 3

[31] Guangwen Zhao. Gradient estimates and Harnack inequalities of a parabolic equation under geometric flow. *J. Math. Anal. Appl.*, 483(2):123631, 24, 2020. 3

[32] Guangwen Zhao. Gradient estimates of a nonlinear elliptic equation for the V-Laplacian. *Arch. Math. (Basel)*, 114(4):457–469, 2020. 3, 43, 44

[33] Xiaobao Zhu. Hamilton’s gradient estimates and Liouville theorems for fast diffusion equations on noncompact Riemannian manifolds. *Proc. Amer. Math. Soc.*, 139(5):1637–1644, 2011. 2, 3, 33, 39
[34] Xiaobao Zhu. Hamilton’s gradient estimates and liouville theorems for porous medium equations on noncompact riemannian manifolds. *Journal of Mathematical Analysis and Applications*, 402:201–206, 2013. 2, 3, 31, 33