DISTRIBUTED METHODS WITH COMPRESSED COMMUNICATION FOR SOLVING VARIATIONAL INEQUALITIES, WITH THEORETICAL GUARANTEES*

A. Beznosikov
MIPT† HSE, Yandex
Russia

P. Richtárik
KAUST‡
Saudi Arabia

M. Diskin
HSE, Yandex
Russia

M. Ryabinin
HSE, Yandex
Russia

A. Gasnikov
MIPT, HSE§
Russia

ABSTRACT

Variational inequalities in general and saddle point problems in particular are increasingly relevant in machine learning applications, including adversarial learning, GANs, transport and robust optimization. With increasing data and problem sizes necessary to train high performing models across these and other applications, it is necessary to rely on parallel and distributed computing. However, in distributed training, communication among the compute nodes is a key bottleneck during training, and this problem is exacerbated for high dimensional and over-parameterized models. Due to these considerations, it is important to equip existing methods with strategies that would allow to reduce the volume of transmitted information during training while obtaining a model of comparable quality. In this paper, we present the first theoretically grounded distributed methods for solving variational inequalities and saddle point problems using compressed communication: MASHA1 and MASHA2. Our theory and methods allow for the use of both unbiased (such as Randk; MASHA1) and contractive (such as Topk; MASHA2) compressors. We empirically validate our conclusions using two experimental setups: a standard bilinear min-max problem, and large-scale distributed adversarial training of transformers.

1 INTRODUCTION

1.1 THE EXPRESSIVE POWER OF VARIATIONAL INEQUALITIES

Due to their abstract mathematical nature and the associated flexibility they offer in modeling various practical problems of interests, variational inequalities (VI) have been an active area of research in applied mathematics for more than half a century (Korpelevich, 1976; Harker & Pang., 1990; Facchinei & Pang, 2003). It is well known that VIs can be used to formulate and study convex optimization problems, convex-concave saddle point problems and games, for example, in an elegant unifying mathematical framework (Korpelevich, 1976; Bauschke & Combettes, 2017).

Recently, Gidel et al. (2019) pointed out that multi-player games can be cast as VIs, and proposed to study mini-max or non-zero-sum games formulations of GANs (Goodfellow et al., 2014) in this fashion. This allowed them to successfully transfer established insights and well-known techniques from the vast literature on VIs to the study of GANs. In particular, oscillatory behavior of optimization methods (such as SGD) not originally designed to solve VI problems is well understood in the VI literature, and established tools, such as averaging and extrapolation, can be successfully applied to the training of GANs. Besides their usefulness in studying GANs and alternative adversarial learning models (Madry et al., 2018), VIs have recently attracted considerable attention of the machine learning

*The research of Aleksandr Beznosikov and Alexander Gasnikov was supported by the Russian Science Foundation project No. 21-71-30005. The research of Peter Richtárik was supported by the KAUST Research Baseline Funding Scheme.

†Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
‡King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
§National Research University Higher School of Economics, Moscow, Russia.
community due to their ability to model other situations where the minimization of a single loss function does not suffice, such as auction theory (Syrghanis et al., 2015) and robust and multi-agent reinforcement learning (Pinto et al., 2017).

In summary, VIs have recently become a potent tool enabling new advances in practical machine learning situations reaching beyond supervised learning where optimization problems and techniques, which can be seen as special instances of VIs and methods for solving them, reign supreme.

1.2 Training of Supervised Models via Distributed Optimization

On the other hand, in the domain of classical, and hence also much better understood, supervised machine learning characterized by the fact that standard optimization techniques apply and work well, researchers and practitioners face other challenges that are currently beyond the reach of existing VI methods. Indeed, the training of modern supervised machine learning models in general, and deep neural networks in particular, is still extremely challenging. Due to their desire to improve the generalization of deployed models, machine learning engineers need to rely on training datasets of ever increasing sizes and on elaborate over-parameterized models (Arora et al., 2018). Supporting workloads of such unprecedented magnitudes would be impossible without combining the latest advances in hardware acceleration, distributed systems and distributed algorithm design (Verbraeken et al., 2019).

When training such modern supervised models in a distributed fashion, communication cost is often the bottleneck of the training system, and for this reason, a lot of effort was recently targeted at the design of communication efficient distributed optimization methods (Konečný et al., 2016; Smith et al., 2018; Ghosh et al., 2020; Gorbunov et al., 2021). A particularly successful technique for improving the communication efficiency of distributed first order optimization methods is lossy compression. The idea behind this technique is rooted in the observation that in practical implementations it often advantageous to communicate messages compressed via (often randomized) lossy compression techniques instead of communicating the full messages (Seide et al., 2014; Alistarh et al., 2017). If the number of parallel workers is large enough, the noise introduced by compression is reduced, and training with compressed communication will often lead to the comparable test error while reducing the amount of communicated bits, which results in faster training, both in theory and practice (Mishchenko et al., 2019; Gorbunov et al., 2021).

1.3 Two Classes of Compression Operators

We say that a (possibly) stochastic mapping \(Q : \mathbb{R}^d \rightarrow \mathbb{R}^d \) is an unbiased compression operator if there exists a constant \(q \geq 1 \) such that

\[
E|Q(z)| = z, \quad E\|Q(z)\|^2 \leq q\|z\|^2, \quad \forall z \in \mathbb{R}^d.
\]

(1)

Further, we say that a stochastic mapping \(C : \mathbb{R}^d \rightarrow \mathbb{R}^d \) is a contractive compression operator if there exists a constant \(\delta \geq 1 \) such that

\[
E\|C(z) - z\|^2 \leq (1 - 1/\delta)\|z\|^2, \quad \forall z \in \mathbb{R}^d.
\]

(2)

If \(b \) is the number of bits needed to represent a single float (e.g., \(b = 32 \) or \(b = 64 \)), then the number of bits needed to represent a generic vector \(z \in \mathbb{R}^d \) is \(\|z\|_{\text{bits}} := bd \). To describe how much a compression operator reduces its input vector on average, we introduce the notion of expected density, defined via \(\beta := \frac{1}{bd}E\|Q(z)\|_{\text{bits}}, \) where \(\|Q(z)\|_{\text{bits}} \) denotes the number of bits needed to represent the quantized vector \(\bar{Q}(z) \). Note that \(\beta \leq 1 \). For the Rand\(k \) operator (Alistarh et al., 2018; Beznosikov et al., 2020) we have \(q = d/k \) and \(\beta = k/d \).

1.4 Towards Communication-Efficient Distributed Methods for VIs

While classical VI algorithms, such as the extragradient method originally proposed by Korpelevich (1976) and later studied by many authors (Nemirovski, 2004; Juditsky et al., 2008), were not designed to work in a distributed environment, virtually all methods that were (Yuan et al., 2014; Hou et al., 2021; Deng & Mahdavi, 2021; Beznosikov et al., 2019) do not consider the general VI problem, but tackle the special case of saddle-point problems only. Moreover, none of these distributed methods support communication compression, with the exception of the work of Yuan et al. (2014), which
Table 1: An overview of existing methods and their high-level properties. We develop the first provably communication-efficient (via communication compression) algorithms for solving distributed VI problems.

Reference	Solves general VIs?	Supports distributed setup?	Supports Compressed Communication?	Has strong theory?
Korpelevich (1976)	✓	×	×	✓
Nemirovski (2004)	✓	×	×	✓
Goodfellow et al. (2014)	✓ (1)	× (6)	× (7)	× (4)
Yuan et al. (2014)	✓ (1)	✓	×	✓ (3)
Hou et al. (2021)	✓ (1)	✓	× (3)	✓ (3)
Deng & Mahdavi (2021)	✓ (3)	✓	× (2)	✓ (3)
Beznosikov et al. (2021a)	✓ (3)	✓	× (2)	✓ (3)
Beznosikov et al. (2021b)	✓ (3)	✓	× (2)	✓ (3)
Beznosikov et al. (2021c)	✓ (3)	✓	× (2)	✓ (3)
This work	✓	✓	✓	✓

(1) Studies Saddle-Point Problems (SPPs) only.
(2) Achieves communication efficiency without compression but by assuming data similarity/homogeneity; i.e., by dramatically restricting the problem class.
(3) Tries to achieve communication efficiency via performing local steps as popular in Federated Learning (Konečný et al., 2016; McMahan et al. 2016; Li et al. 2020). Employs local methods (such as GD and SCAFFOLD (Karimireddy et al., 2020)).
(4) Does not achieve convergence to the solution, and the convergence criterion may not work simple bilinear saddle problems.
(5) They build upon GD, which diverges for simple bilinear problems.
(6) Uses decentralized architecture.
(7) Compression just by rounding to nearest integer multiples of some constant.
(8) Applies to GANs only.
(9) No theory.

relies on rounding to the nearest integer multiple of a certain quantity. This compression mechanism does not offer theoretical benefits, and does not even lead to convergence to the solution since the errors that are introduced through rounding persist and prevent the method from solving the problem.

2 Summary of Contributions

In this paper, we investigate whether it is possible to design communication-efficient algorithms for solving distributed VI problems by borrowing generic communication compression techniques (1) and (2) from the optimization literature (Seide et al., 2014; Alistarh et al., 2017; Mishchenko et al., 2019; Gorbunov et al., 2021; Richtárik et al., 2021) and adapting and embedding them into established and efficient methods for solving VIs (Korpelevich, 1976; Nemirovski, 2004; Juditsky et al., 2008; Alacaoglu & Malitsky, 2021). Whether or not this is possible is an open problem.

In summary, we design the first provably communication-efficient algorithms for solving general distributed VI problems (see Section 2, Equation 3) in the deterministic (see (4)) and stochastic (see (5)) regimes, supporting both unbiased (MASHA1 = Algorithm 1) contractive (MASHA2 = Algorithm 2) compressors. Our methods are explicitly designed to be variance reduced to achieve better theoretical properties and better practical performance.

In Table 1 we give a high level overview of existing methods for VIs, and contrast them with our methods and results. We now elaborate a bit more:

2.1 Two Distributed Problems: Deterministic and Stochastic

We study two distributed VI problems: i) deterministic, where the monotone operator $F : \mathbb{R}^d \to \mathbb{R}^d$ featured in the VI is the average of M operators $\{F_m\}_{m=1}^{M}$, where M is the number of devices/machines, which can be evaluated in each communication round, and ii) stochastic, where each monotone operator $F_m : \mathbb{R}^d \to \mathbb{R}^d$ has a finite-sum structure on its own, and only a single
Table 2: **Strongly convex - strongly concave case**: Summary of our iteration complexity results for finding an ε-solution for problem (3) in the deterministic (i.e., (4)) and stochastic (i.e., (4)–(5)) setups. In the strongly convex - strongly concave case, convergence is measured by the distance to the solution. In the convex-concave case, convergence is measured in terms of the gap function. **Notation**: $\mu = \text{sum of the coefficients } \mu_F \text{ and } \mu_h \text{ of strong monotonicity of the operator } F \text{ and strong convexity of } h$, $L = \text{maximum of local Lipschitz constants } L_m$, $R = \text{diameter (in Euclidean norm) of the optimization set}$, $R_0 = \text{initial distance to the solution}$, $q = \text{the variance parameter associated with an unbiased compressor (see (1))}$; $\delta = \text{the variance parameter associated with a contractive compressor (see (2))}$; $M = \text{the number of parallel clients/nodes}$; $r = \text{the size of the local dataset (see (5))}$. To simplify the bounds, we assume that the expected density β of the compression operators satisfies $q = 1/\beta$ and $\delta = 1/\beta$ (e.g., this holds for Randk and Topk).

Problem	Algorithm	Strongly convex - strongly concave case
(3)–(4)	MASHA1	$1 + q + \frac{L}{\mu} \sqrt{1 + q + \frac{\mu^2}{M}} \cdot \log \frac{R_0^2}{\varepsilon}$
	MASHA2	$1 + \delta + \frac{\sqrt{2} L}{\mu} + \frac{\sqrt{2} L^2}{\mu^2} \cdot \log \frac{R_0^2}{\varepsilon}$
(3)–(5)	MASHA1	$\max(r, q + 1) + \frac{L}{\mu} \sqrt{\max(r, q) + 1} \cdot (1 + \frac{3}{2}) \cdot \log \frac{R_0^2}{\varepsilon}$
	MASHA2	$\max(r, \delta + 1) + \sqrt{\max(r, q) + 1} \cdot \frac{3 L}{\mu} + \max(r, q + 1) \cdot \frac{3 L^2}{\mu^2} \cdot \log \frac{R_0^2}{\varepsilon}$

Problem	Algorithm	Convex-concave case
(3)–(4)	MASHA1	$\sqrt{1 + q + \frac{R^2}{\varepsilon}} \cdot \frac{L R^2}{\varepsilon}$
	MASHA2	$\frac{L R^2}{\varepsilon}$
(3)–(5)	MASHA1	$\max(r, \delta + 1) \sqrt{1 + \frac{R^2}{\varepsilon}} \cdot \frac{L R^2}{\varepsilon}$

operator in the sum can be evaluated in each iteration. In contrast to previous works, we study general constrained VIs in the distributed setup (see Section 3), and not merely saddle point problems.

2.2 Two new methods with compressed communication: MASHA1 and MASHA2

We develop two extensions of the extragradient/extrastep method of Korpelevich (1976) to distributed VIs depending on whether we use unbiased (1) or contractive (2) compressors, since each type of compressor demands a different algorithmic design and a different analysis. In particular, contractive compressors are notoriously hard to analyze even for optimization problems (Karimireddy et al., 2019, Richtárik et al., 2021). Our method based on unbiased compressors is called MASHA1 (Algorithm 1), and our method based on contraction compressors is called MASHA2 (Algorithm 2). Both are designed to handle the deterministic and also the stochastic setting, and both are enhanced with bespoke variance-reduction techniques for better theoretical and practical performance. Due to space restrictions, we only describe MASHA1 in the main body of the paper, and relegate MASHA2 and the associated theory to Appendix B.

2.3 Theoretical complexity results

We establish a number of theoretical complexity results for our methods, which we summarize in Table 2. We consider the strongly convex - strongly concave regime as well as the more general convex - concave regime. In the first case we obtain linear convergence results ($O(\log 1/\varepsilon)$) in terms of the distance to solution, and in the latter we obtain fast sublinear convergence results ($O(1/\varepsilon)$) in terms of the gap function. The rates for MASHA1 improve with the number of clients M and have weak dependence on the conditioning of the problem.

3 Problem formulation and assumptions

Let us first introduce basic notation. We write $\langle x, y \rangle := \sum_{i=1}^{d} x_i y_i$ to denote the standard Euclidean inner product of vectors $x, y \in \mathbb{R}^d$. This induces ℓ_2-norm in \mathbb{R}^d as usual: $\|x\| := \sqrt{\langle x, x \rangle}$. We also
introduce the proximal operator, defined as \(\text{prox}_g(z) := \arg \min_{u \in Z} \{ g(u) + \frac{1}{2} \| u - z \|^2 \} \), which is well defined for proper lower semicontinuous convex functions \(g : \mathbb{R}^d \to \mathbb{R} \cup \{ +\infty \} \).

3.1 Problem formulation

We study distributed variational inequality (VI) problems of the form

\[
\text{Find } z^* \in Z \text{ such that } \langle F(z^*), z - z^* \rangle + h(z) - h(z^*) \geq 0, \quad \forall z \in Z,
\]

where \(Z \) is a nonempty closed convex subset of \(\mathbb{R}^d \), \(F : \mathbb{R}^d \to \mathbb{R}^d \) is an operator with certain favorable properties (e.g., Lipschitz and monotonicity), and \(h : \mathbb{R}^d \to \mathbb{R} \cup \{ +\infty \} \) is a proper lower semicontinuous convex function. We assume that the training data describing \(F \) is distributed across \(M \) workers/nodes/clients

\[
F(z) := \frac{1}{M} \sum_{m=1}^{M} F_m(z),
\]

where \(F_m : \mathbb{R}^d \to \mathbb{R}^d \) for all \(m \in \{1, 2, \ldots, M\} \), and for some results we further assume that \(F_m \) is of a finite-sum structure as well:

\[
F_m(z) := \frac{1}{r} \sum_{i=1}^{r} F_{m,i}(z).
\]

3.2 Assumptions

Next, we list two key assumptions - both are standard in the literature on VIs.

Assumption 1 (Lipschitzness in mean) For all clients \(m = 1, 2, \ldots, M \), the operator \(F_m(z) : \mathbb{R}^d \to \mathbb{R}^d \) is Lipschitz in mean with constant \(L_m \geq 0 \) on \(Z \). That is,

\[
\frac{1}{r} \sum_{i=1}^{r} \| F_{m,i}(z_1) - F_{m,i}(z_2) \|^2 \leq L_m^2 \| z_1 - z_2 \|^2, \quad \forall z_1, z_2 \in Z.
\]

For problem (4), Assumption 1 is to be interpreted to hold with \(r \) is equal 1, i.e., with \(F_m = F_{m,1} \).

Assumption 2 (Monotonicity and convexity) (SM) Strong monotonicity/strong convexity. There exist non-negative constants \(\mu_F, \mu_h \) such that \(\mu_h + \mu_F > 0 \), and the following statements hold:

\[
\langle F(z_1) - F(z_2), z_1 - z_2 \rangle \geq \mu_F \| z_1 - z_2 \|^2, \quad \forall z_1, z_2 \in Z,
\]

\[
h(z_1) - h(z_2) - \langle \nabla h(z_2), z_1 - z_2 \rangle \geq \frac{\mu_h}{2} \| z_1 - z_2 \|^2, \quad \forall z_1, z_2 \in Z.
\]

(M) Monotonicity/convexity.

\[
\langle F(z_1) - F(z_2), z_1 - z_2 \rangle \geq 0, \quad h(z_1) - h(z_2) - \langle \nabla h(z_2), z_1 - z_2 \rangle \geq 0, \quad \forall z_1, z_2 \in Z.
\]

4 MASHA1: Handling Unbiased Compressors

In this section we present only one of our two new algorithms: MASHA1 (Algorithm 1) - the method that relies on unbiased compressors. Due to lack of space, we include MASHA2 (Algorithm 2) - the method that relies on contractive compressors in the appendix. Both algorithms are presented for two modes: deterministic and stochastic. We denote the lines related to the deterministic regime in blue, and in red - to the stochastic one. Black lines are common to both modes.

4.1 The Algorithm

MASHA1 is a modification of the extra-step method. At the beginning of each iteration of Algorithm 1, each device knows the value of \(F(w^k) \), hence it can calculate \(z^k \) and \(z^{k+1/2} \) locally. Then it sends the compressed version of the difference \(F_m(z^{k+1/2}) - F_m(w^k) \) to the server, and the server does a reverse compressed broadcast. As a result, an unbiased estimate of \(F_m(z^{k+1/2}) - F_m(w^k) \) appears on each node. Then, all devices make a final update on \(z^{k+1} \) and also update the \(w^{k+1} = z^{k+1} \) point if the \(b_k = 1 \) or save it from the previous iteration \(w^k = w^k \). In the case when the point
we need to exchange the full values of $F_m(w^{k+1})$ so that at the beginning of the next iteration the value of $F(w^{k+1})$ is known to all nodes. In the stochastic case, Algorithm 1 has the same form, the only thing that changes is that one need to generate a function number (batch number) from 1 to r. We use a possibly difference compressor on each device and also on the server. To distinguish between them, we will use the following notation: $Q_{m,-dev}, Q_{m-dev}$ and Q_{m-serv}, Q_{m-serv}. Note that, if Q is the identity quantization, i.e., $Q(x) = x$, then MASHA1 is a distributed analogue of the method from Alacaoglu & Malitsky (2021).

Algorithm 1 MASHA1 (handling unbiased compressors)

Parameters: Step size $\gamma > 0$, number of iterations K.

Initialization: Choose $z^0 = w^0 \in \mathcal{Z}$.

Server sends to devices $z^0 = w^0$ and devices compute $F_m(w^0)$ and send to server and get $F(w^0)$

$$w^{k+1} = z^{k+1},$$

for $k = 0, 1, 2, \ldots, K - 1$ do

for each device m in parallel do

$\bar{z}^k = \tau z^k + (1 - \tau) w^k$

$z^{k+1/2} = \text{prox}_{\gamma h}(\bar{z}_k - \gamma F(w^k))$

Generate π_m^k from $\{1, \ldots, r\}$ independently

Compute $F_m(z^{k+1/2})$ and $Q_{m-dev}(F_m(z^{k+1/2}) - F_m(w^k))$ to server

Compute $F_m,z_m^k(z^{k+1/2})$ and $Q_{m-serv}(F_m,z_m^k(z^{k+1/2}) - F_m(w^k))$ to server

end for

for server do

Compute $Q_{m-serv}^{Q} \left(\frac{1}{M} \sum_{m=1}^{M} Q_{m-dev}^{Q}(F_m(z^{k+1/2}) - F_m(w^k)) \right)$ & send to devices

end for

Sends to devices one bit b_k: 1 with probability $1 - \tau$, 0 with with probability τ

end for

for all devices in parallel do

$z^{k+1} = \text{prox}_{\gamma h}(\bar{z}_k - \gamma Q_{m-serv}^{Q} \left(\frac{1}{M} \sum_{m=1}^{M} Q_{m-dev}^{Q}(F_m(z^{k+1/2}) - F_m(w^k)) \right) - \gamma F(w^k))$

$z^{k+1} = \text{prox}_{\gamma h}(\bar{z}_k - \gamma Q_{m-serv}^{Q} \left(\frac{1}{M} \sum_{m=1}^{M} Q_{m-dev}^{Q}(F_m,z_m^k(z^{k+1/2}) - F_m,z_m^k(w^k)) \right) - \gamma F(w^k))$

if $b_k = 1$ then

$w^{k+1} = z^{k+1}$

else

$w^{k+1} = w^k$

end if

end for

end for

It is important to note main differences from minimization problems. For minimization problems, compressed gradient methods are constructed on the gradient descent or the accelerated gradient descent methods. Here, the extragradient method is taken as a basis. In the experiments, we will see the importance of this fact, i.e., gradient descent type methods will diverge even on simple problems. The second key difference is that we need not compress $F_m(z^{k+1/2})$ itself, but the difference $F_m(z^{k+1/2}) - F(w^k)$. We will also see the importance of this approach in the experiments. The later idea is similar to the approach used in the DIANA, VR-DIANA (Mishchenko et al., 2019; Horváth et al., 2019), MARINA (Gorbunov et al., 2021) and EF21 (Richtárik et al., 2021) methods in optimization.

4.2 Theory

We now establish convergence of MASHA1 in both regimes. Our analysis relies on the following Lyapunov function:

$$V_k := \tau \|z^k - z^*\|^2 + \|w^k - z^*\|^2,$$ (10)
This criterion is used in the strongly monotone case. For the general monotone case, another convergence criterion is used - the gap function:

$$\text{Gap}(z) := \sup_{u \in C} [(F(u), z - u) + h(z) - h(u)].$$

(11)

Here we do not take the maximum over the entire set Z (as in the classical version), but over C – a compact subset of Z. Thus, we can also consider unbounded sets Z. This is permissible, since such a version of the criterion is valid if the solution z^* lies in C; for details see the work of Nesterov (2007).

Theorem 1 (Convergence of MASHA1) Let Assumption \(\text{1} \) be satisfied. Then, if one of cases from Assumption \(\text{2} \) is additionally fulfilled, the following estimates hold for the iterates of MASHA1:

- for strongly-monotone/convex case with stepsize $0 < \gamma \leq \min \left\{ \frac{\sqrt{1 - \tau}}{4C_q}, \frac{1 - \tau}{4(\mu_F + \mu_h)} \right\}$ and $C_q := \sqrt{\frac{\mu_F}{3\tau}} \sum_{m=1}^{M} (q_{m}^{\text{dev}} + M - 1)L_m^2$:

$$E [V_K] \leq (1 - \gamma)^{K-1} V_0,$$

- for monotone/convex case with $\gamma \leq \frac{\sqrt{1 - \tau}}{4C_q}:

$$E \left[\text{Gap}(\hat{z}^K) \right] \leq \frac{8 \max_{u \in C} \|z^0 - u\|^2}{\gamma K}, \quad \text{where} \quad \hat{z}^K = \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2}.$$

For proof, see Appendix \(\text{A} \).

An important issue of convergence is the choice of τ. If $\tau = 0$ we have the fastest convergence rate, on the other hand, this means that we must send full F_m in each iteration (because we update u^k). This is disadvantageous from a communication point of view. The next corollaries give the rules for the right choice of τ, as well as the iterative (in deterministic case), oracle (in stochastic) and communication complexities of Algorithm 1 in both cases. The method without quantization (for example, the ordinary distributed extragradient method) in one iteration transmits the number of information proportional to $\Omega(\Omega(bdM))$ bits, then here we measure the communication complexity in in terms of $\Omega(bdM)$.

Corollary 1 (Convergence of MASHA1 in the deterministic case) Let the deterministic problem \(\text{2} - 4 \) be solved by MASHA1 with precision ε. Let Assumption \(\text{1} \) and one of the two cases from Assumption \(\text{2} \) be satisfied. If we choose

$$\tau = 1 - \beta := 1 - \frac{1}{2} \left(\frac{1}{M} \sum_{m=1}^{M} \beta_{m}^{\text{dev}} + \beta_{m}^{\text{serv}} \right),$$

(12)

then we have the following estimates for the total # of iterations and the total # of transferred bits:

- in the strongly-monotone/convex case:

$$O \left(\frac{C_q}{\sqrt{\beta (\mu_F + \mu_h)}} \log \frac{2\|z^0 - z^*\|^2}{\varepsilon} \right) \text{ iters,} \quad O \left(\frac{\sqrt{\pi} C_q}{\mu_F + \mu_h} \log \frac{2\|z^0 - z^*\|^2}{\varepsilon} \right) \text{ bits,}$$

- in the monotone/convex case

$$O \left(\frac{C_q \max_{u \in C} \|z^0 - u\|^2}{\sqrt{\beta \varepsilon}} \right) \text{ iters,} \quad O \left(\frac{\sqrt{\pi} C_q \max_{u \in C} \|z^0 - u\|^2}{\varepsilon} \right) \text{ bits.}$$

One can see that our Algorithm 1 can outperform the uncompressed extragradient method. Let us compare them in the monotone case. The communication complexity of the extragradient method is $O \left(L \max_{u \in C} \|z^0 - u\|^2 \varepsilon^{-1} \right)$. Let us consider the case when $L_m = L$ for all $m \in \{1, 2, \ldots, M\}$ and $q_{m}^{\text{serv}} = q$. Then MASHA1 has communication complexity $O \left(L \max_{u \in C} \|z^0 - u\|^2 \varepsilon^{-1} \sqrt{\beta q^{\text{serv}}(1+q/M)} \right)$. If $\beta q^{\text{serv}}(1+q/M) < 1$, we outperform the standard uncompressed extragradient method.
Corollary 2 (Convergence of MASHA1 in the stochastic case) Let the stochastic problem \((3)\)–\((5)\) be solved by MASHA1 with precision \(\varepsilon\). Let Assumption 17 and one of the two cases from Assumption 2 be satisfied. If we choose
\[
\tau = 1 - \min \left(\frac{1}{2}; \beta\right)
\]
then we have the following estimates for the total \# of oracle calls and the total \# of transferred bits:

- in the strongly-monotone/convex case:
 \[
 \mathcal{O} \left(\max \left(r; \frac{1}{\beta} \right) + \max \left(\sqrt{r}; \sqrt{\beta} \right) \frac{C_q}{(\mu_F + \mu_h)} \right) \log \frac{2\|z^0 - z^*\|^2}{\varepsilon} \text{ calls,} \\
 \mathcal{O} \left(\max \left(1; r\beta \right) + \max \left(\sqrt{r\beta^2}; \sqrt{\beta} \right) \frac{C_q}{\mu_F + \mu_h} \right) \log \frac{2\|z^0 - z^*\|^2}{\varepsilon} \text{ bits,}
 \]

- in the monotone/convex case
 \[
 \mathcal{O} \left(\max \left(r; \frac{1}{\beta} \right) \frac{C_q \max_{a \in C} \|z^0 - u\|^2}{\varepsilon} \right) \text{ calls,} \\
 \mathcal{O} \left(\max \left(\sqrt{r\beta^2}; \sqrt{\beta} \right) \frac{C_q \max_{a \in C} \|z^0 - u\|^2}{\varepsilon} \right) \text{ bits.}
 \]

In the case of a finite sum, in addition to the number of transmitted information, it is not iterations important to us, but the number of calls to the oracle for \(F_{m,r}\). This is due to the fact that it is \(r\) times more expensive to calculate full \(F_m\), and the calculation of \(F_m\) should be avoided. For deterministic case (when \(r = 1\)) estimates from Corollary 2 is the same as in Corollary 1.

5 EXPERIMENTS

5.1 BILINEAR SADDLE POINT PROBLEM

We start our experiments with a distributed bilinear problem:
\[
\min_{x \in \mathbb{R}^d} \max_{y \in \mathbb{R}^d} f(x, y) := \frac{1}{M} \sum_{m=1}^{M} f_m(x, y), \quad f_m(x, y) := x^\top A_m y + a_m^\top x + b_m^\top y + \frac{1}{2} \|x\|^2 - \frac{1}{2} \|y\|^2,
\]
where \(A_m \in \mathbb{R}^{d \times d}, a_m, b_m \in \mathbb{R}^d\). This is a saddle point problem, and \(F\) is written as follows:
\[
F(x, y) := (\nabla_x f(x, y); -\nabla_y f(x, y)).
\]
This operator is \(\lambda\) strongly monotone and, moreover, all functions \(F_m\) are \((\|A_m\|_2 + \lambda)\)-Lipschitz. Therefore, such a distributed problem is well suited for the primary comparison of our methods. We take \(d = 100\) and generate positive definite matrices \(A_m\) and vectors \(a_m, b_m\) randomly.

The purpose of the experiment is to understand whether the MASHA1 and MASHA2 methods are superior to those in the literature. As a comparison, we take QGD with natural dithering [Horvath et al. (2019)], classical error feedback with Top 30% compression, as well as an extra step method, each step of which is used with natural rounding. In MASHA1 (Algorithm 1) we also used natural dithering, in MASHA2 (Algorithm 2) – Top 30%. See results in Figure 1.

Figure 1: Comparison MASHA1 (Algorithm 1) and MASHA2 (Algorithm 2) with existing methods in iterations and in Mbytes.

We see that methods based on gradient descent (QSG and EF) diverge. This confirms that one needs to use method specifically designed for saddle point problems (for example, the extragradient method), and not classical optimization methods. The much slower convergence of the quantized extragradient method shows the efficiency of our approach in which we compress the differences \(F_m(z^{k+1/2}) - F(w^k)\).
5.2 Adversarial Training of Transformers

We now evaluate how compression performs for variational inequalities (and for saddle point problems, as a special case) in a more practically motivated scenario. Indeed, saddle point problems (special case of variational inequalities) have ample applications in machine learning (see Appendix D), including in adversarial training. We consider one of these tasks and train a transformer-based masked language model (Vaswani et al., 2017; Devlin et al., 2019; Liu et al., 2019) using a fleet of 16 low-cost preemptible workers with T4 GPU and low-bandwidth interconnect. For this task, we use the compute-efficient adversarial training regimen proposed for transformers by Zhu et al. (2019); Liu et al. (2020). Formally, the adversarial formulation of the problem is the min-max problem

$$\min_w \max \frac{1}{N} \sum_{n=1}^{N} l(f(w, x_n + \rho_n, y_n)^2 + \lambda \frac{1}{2} ||w||^2 - \beta \frac{1}{2} ||\rho||^2,$$

where w are the weights of the model, $\{(x_n, y_n)\}_{n=1}^{N}$ are pairs of the training data, ρ is the so-called adversarial noise which introduces a perturbation in the data, and λ and β are the regularization parameters. To make our setup more realistic, we train ALBERT-large with layer sharing (Lan et al., 2020), which was recently shown to be much more communication-efficient during training (Ryabinin et al., 2021; Diskin et al., 2021). We train our model on a combination of Bookcorpus and Wikipedia datasets with the same optimizer (LAMB) and parameters as in the original paper (Lan et al., 2020), use the adversarial training configuration of Zhu et al. (2019), and follow system design considerations for preemptible instances (Ryabinin et al., 2021).

In terms of communication, we consider 4 different setups for gradient compression: the “baseline” strategy with uncompressed gradients, full 8-bit quantization (Dettmers, 2015; Lin et al., 2018), mixed 8-bit quantization, and Power compression (Vogels et al., 2019) with rank $r=8$. For mixed 8-bit quantization and Power we only apply compression to gradient tensors with more than 2^{16} elements, sending smaller ones uncompressed. These small tensors represent layer biases and LayerNorm scales (Ba et al., 2016) that collectively amount to $\leq 1\%$ of the total gradient, but can be more difficult to compress than regular weight tensors. Finally, since Power is a biased compression algorithm, we use error feedback (Karimireddy et al., 2019; Richtárik et al., 2021) with a modified formulation proposed by Vogels et al. (2019). For all experimental setups, we report learning curves in terms of the model training objective, similarly to (Fedus et al., 2021; Ryabinin et al., 2021). To better quantify the differences in training loss, we also evaluate the downstream performance for each model on several popular tasks from (Wang et al., 2018) after each model was trained on approximately 80 billion tokens. Finally, we measure the communication efficiency of each proposed strategy by measuring the average wall time per communication round when all 16 workers are active.

The learning curves in Figure 1 (upper) follow a predictable pattern, with more extreme compression techniques demonstrating slower per-iteration convergence. One curious exception to that is full 8-bit quantization, which was unable to achieve competitive training loss. The remaining three setups converge to similar loss values below 2. Both the baseline and mixed 8-bit compression show similar values in terms of downstream performance, with Power compression showing mild degradation. But in terms of information transfer time, methods using compression (especially Power) are significantly superior to the method without compression. This makes it possible to use such techniques to increase the training time without sacrificing quality.
Figure 2: (upper left) ALBERT training objective convergence rate with different compression algorithms; (upper right) ALBERT training objective convergence rate with different compression algorithms (zoomed); (lower) Average wall time per communication round with standard deviation over 5 repetitions and downstream evaluation scores on GLUE benchmark tasks after at 80 billion training tokens ($\approx 10^4$ optimizer steps).

Setup	Averaging time	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST2	STS-B	WNLI
Baseline	8.789 ± 0.032	45.2	81.1	83.0	88.3	88.3	85.7	67.8	85.5	89.0
Full 8-bit	4.422 ± 0.069	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Mixed 8-bit	4.614 ± 0.08	48.8	81.3	88.7	88.1	85.2	64.3	83.3	87.5	88.5
Power	1.571 ± 0.049	43.9	80.5	85.6	86.0	47.2	88.5	88.5	88.5	18.3

REFERENCES

Ahmet Alacaoglu and Yura Malitsky. Stochastic variance reduction for variational inequality methods. *arXiv preprint arXiv:2102.08352*, 2021.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-efficient SGD via gradient quantization and encoding. In *Advances in Neural Information Processing Systems*, pp. 1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric Renggli. The convergence of sparsified gradient methods. In *Advances in Neural Information Processing Systems*, 2018.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration by overparameterization. In *Proceedings of the 35th International Conference on Machine Learning (ICML)*, 2018.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Heinz H. Bauschke and Patrick L. Combettes. *Convex Analysis and Monotone Operator Theory in Hilbert Spaces*. Springer, second edition edition, 2017.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression for distributed learning. *arXiv preprint arXiv:2002.12410*, 2020.

Aleksandr Beznosikov, Pavel Dvurechensky, Anastasia Koloskova, Valentin Samokhin, Sebastian U Stich, and Alexander Gasnikov. Decentralized local stochastic extra-gradient for variational inequalities. *arXiv preprint arXiv:2106.08315*, 2021a.

Aleksandr Beznosikov, Valentin Samokhin, and Alexander Gasnikov. Distributed saddle-point problems: Lower bounds, optimal algorithms and federated GANs. *arXiv preprint arXiv:2010.13112*, 2021b.

Aleksandr Beznosikov, Gesualdo Scutari, Alexander Rogozin, and Alexander Gasnikov. Distributed saddle-point problems under similarity. *arXiv preprint arXiv:2107.10706*, 2021c.

Yuyang Deng and Mehrdad Mahdavi. Local stochastic gradient descent ascent: Convergence analysis and communication efficiency. In *International Conference on Artificial Intelligence and Statistics (AISTATS)*, pp. 1387–1395. PMLR, 2021.

Tim Dettmers. 8-bit approximations for parallelism in deep learning. *ICLR*, 2015.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *NAACL-HLT*, 2019.
Distributed Methods with Compressed Communication for Solving Variational Inequalities

Michael Diskin, Alexey Bukhtiyarov, Max Ryabinin, Lucile Saulnier, Quentin Lhoest, Anton Sinitsin, Dmitriy Popov, Dmitry Pyrkin, Maxim Kashirin, Alexander Borzunov, Albert Villanova del Moral, Denis Mazur, Ilia Kobelev, Yacine Jernite, Thomas Wolf, and Gennady Pekhimenko. Distributed deep learning in open collaborations. CoRR, abs/2106.10207, 2021. URL [https://arxiv.org/abs/2106.10207]

Darina Dvinskikh and Daniil Tiapkin. Improved complexity bounds in wasserstein barycenter problem. In International Conference on Artificial Intelligence and Statistics, pp. 1738–1746. PMLR, 2021.

Francisco Facchinei and Jong-Shi Pang. *Finite-Dimensional Variational Inequalities and Complementarity Problems*. Springer Series in Operations Research. Springer, 2003.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. *arXiv preprint arXiv:2101.03961*, 2021.

Avishek Ghosh, Raj Kumar Maity, Arya Mazumdar, and Kannan Ramchandran. Communication efficient distributed approximate Newton method. In *IEEE International Symposium on Information Theory (ISIT)*, 2020. doi: 10.1109/ISIT44484.2020.9174216.

Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-Julien. A variational inequality perspective on generative adversarial networks. In *International Conference on Learning Representations*, 2019. URL [https://openreview.net/forum?id=r1laEnA5Ym]

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. In *Neural Information Processing Systems*, 2014.

Eduard Gorbunov, Konstantin Burlchenko, Zhihe Li, and Peter Richtárik. MARINA: Faster non-convex distributed learning with compression. In *38th International Conference on Machine Learning*, 2021.

P. T. Harker and J.-S. Pang. Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. *Mathematical programming*, 1990.

Samuel Horvath, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter Richtárik. Natural compression for distributed deep learning. *arXiv preprint arXiv:1905.10988*, 2019.

Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtárik. Stochastic distributed learning with gradient quantization and variance reduction. *arXiv preprint arXiv:1904.05115*, 2019.

Charlie Hou, Kiran K Thekumparampil, Giulia Fanti, and Sewoong Oh. Efficient algorithms for federated saddle point optimization. *arXiv preprint arXiv:2102.06333*, 2021.

Anatoli Juditsky, Arkadii S. Nemirovskii, and Claire Tauvel. Solving variational inequalities with stochastic mirror-prox algorithm, 2008.

Sai Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Suresh. SCAF-FOLD: Stochastic controlled averaging for on-device federated learning. In *International Conference on Machine Learning (ICML)*, 2020.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes signsgd and other gradient compression schemes. In *International Conference on Machine Learning*, pp. 3252–3261. PMLR, 2019.

Jakub Konečný, H. Brendan McMahan, Felix Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. Federated learning: strategies for improving communication efficiency. In *NIPS Private Multi-Party Machine Learning Workshop*, 2016.

G. M. Korpelevich. The extragradient method for finding saddle points and other problems. *Matecon*, 12: 747–756, 1976.

Zhen-Zhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of language representations. In *International Conference on Learning Representations*, 2020.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: challenges, methods, and future directions. *IEEE Signal Processing Magazine*, 37(3):50–60, 2020. doi: 10.1109/MSP.2020.2975749.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing the communication bandwidth for distributed training. In *International Conference on Learning Representations*, 2018. URL [https://openreview.net/forum?id=SkhQHKnW0]
Distributed Methods with Compressed Communication for Solving Variational Inequalities

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon, and Jianfeng Gao. Adversarial training for large neural language models. arXiv preprint arXiv:2004.08994, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. ArXiv, abs/1907.11692, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In International Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb

Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated learning of deep networks using model averaging. arXiv preprint arXiv:1602.05629, 2016.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takač, and Peter Richtárik. Distributed learning with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Arkadi Nemirovski. Prox-method with rate of convergence $o(1/t)$ for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15:229–251, 01 2004. doi: 10.1137/S1052623403425629.

Yurii Nesterov. Dual extrapolation and its applications to solving variational inequalities and related problems. Mathematical Programming, 109(2):319–344, 2007.

Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn. Solving a class of non-convex min-max games using iterative first order methods. arXiv preprint arXiv:1902.08297, 2019.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforcement learning. In International Conference on Machine Learning, 2017.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A new, simpler, theoretically better, and practically faster error feedback. arXiv preprint arXiv:2106.05203, 2021.

Max Ryabinin, Eduard Gorbunov, Vsevolod Plokhotnyuk, and Gennady Pekhimenko. Moshpit sgd: Communication-efficient decentralized training on heterogeneous unreliable devices, 2021.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech dnns. In Fifteenth Annual Conference of the International Speech Communication Association, 2014.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.

V. Smith, S. Forte, C. Ma, M. Takač, M. I. Jordan, and M. Jaggi. CoCoA: A general framework for communication-efficient distributed optimization. Journal of Machine Learning Research, 18:1–49, 2018.

Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E. Schapire. Fast convergence of regularized learning in games. In Neural Information Processing Systems, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S Rellermeyer. A survey on distributed machine learning. ACM Computing Surveys, 2019.

Thijs Vogels, Sai Praneeth Karinireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient compression for distributed optimization. Advances In Neural Information Processing Systems 32 (Nips 2019), 32(CONF), 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461, 2018.
Deming Yuan, Qian Ma, and Zhen Wang. Dual averaging method for solving multi-agent saddle-point problems with quantized information. *Transactions of the Institute of Measurement and Control*, 36(1):38–46, 2014. doi: 10.1177/0142331213487545. URL https://doi.org/10.1177/0142331213487545.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. Freelb: Enhanced adversarial training for natural language understanding. *arXiv preprint arXiv:1909.11764*, 2019.
APPENDIX

CONTENTS

1 Introduction
 1.1 The expressive power of variational inequalities
 1.2 Training of supervised models via distributed optimization
 1.3 Two classes of compression operators
 1.4 Towards communication-efficient distributed methods for VIs

2 Summary of Contributions
 2.1 Two distributed problems: deterministic and stochastic
 2.2 Two new methods with compressed communication: MASHA1 and MASHA2
 2.3 Theoretical complexity results

3 Problem Formulation and Assumptions
 3.1 Problem formulation
 3.2 Assumptions

4 MASHA1: Handling Unbiased Compressors
 4.1 The Algorithm
 4.2 Theory

5 Experiments
 5.1 Bilinear Saddle Point Problem
 5.2 Adversarial Training of Transformers

A Proof of Theorem 1
 A.1 A lemma
 A.2 Deterministic case: Theorem 1
 A.3 Strongly monotone/convex case
 A.4 Monotone/convex case ($\mu_h = 0, \mu_F = 0$)
 A.5 Stochastic case

B MASHA2: Handling Contractive Compressors

C Proof of Theorem 2
 C.1 Strongly monotone case

D Motivating Examples
A Proof of Theorem 1

A.1 A Lemma

Lemma 1 Let \(h \) be \(\mu_h \)-strongly convex and \(z^+ = \text{prox}_{\gamma h}(z) \). Then for all \(x \in \mathbb{R}^d \) the following inequality holds:

\[
(z^+ - z, x - z^+) \geq \gamma \left(h(z^+) - h(x) + \frac{\mu_h}{2} \|z^+ - x\|^2 \right).
\]

Proof: We use \(\gamma \mu \text{-} \text{strong convexity of the function } \gamma h \):

\[
\gamma \left(h(x) - h(z^+) \right) - \langle \gamma \nabla h(z^+), x - z^+ \rangle \geq \frac{\gamma \mu_h}{2} \|x - z^+\|^2.
\]

With definition of prox and necessary optimality condition: \(\gamma \nabla h(z^+) = z - z^+ \), it completes the proof.

In the next theorem we will use the following notation:

\[
g_k = F(w^k), \quad g^{k+1/2} = Q^{\text{serv}} \left[\frac{1}{M} \sum_{m=1}^M Q^{\text{dev}}_m (F_m(z^{k+1/2}) - F_m(w^k)) \right] + F(w^k).
\]

A.2 Deterministic case: Theorem 1

Proof of Theorem 1: By Lemma 1 for \(z^{k+1/2} = \text{prox}_{\gamma h}(z^k - \gamma g^k) \) and \(z^{k+1} = \text{prox}_{\gamma h}(z^k - \gamma g^{k+1/2}) \) with \(x = u \) we get

\[
\langle z^{k+1} - z^k + \gamma g^{k+1/2}, u - z^{k+1} \rangle \geq \gamma \left(h(z^{k+1}) - h(u) + \frac{\mu_h}{2} \|z^{k+1} - u\|^2 \right),
\]

\[
\langle z^{k+1/2} - z^k + \gamma g^k, z^{k+1} - z^{k+1/2} \rangle \geq \gamma \left(h(z^{k+1/2}) - h(z^{k+1}) + \frac{\mu_h}{2} \|z^{k+1} - z^{k+1/2}\|^2 \right).
\]

Then we sum two inequalities and make some rearrangement:

\[
\langle z^{k+1} - z^k + \gamma g^{k+1/2}, u - z^{k+1} \rangle + \langle z^{k+1/2} - z^k + \gamma g^k, z^{k+1} - z^{k+1/2} \rangle \geq \gamma \left(h(z^{k+1/2}) - h(u) + \frac{\mu_h}{2} \|z^{k+1} - z^{k+1/2}\|^2 + \frac{\mu_h}{2} \|z^{k+1} - u\|^2 \right).
\]

Multiplying by 2 and using definition of \(z^k \), we have

\[
2\tau \langle z^{k+1} - z^k, u - z^{k+1} \rangle + 2(1 - \tau) \langle z^{k+1} - w^k, u - z^{k+1} \rangle
+ 2\tau \langle z^{k+1/2} - z^k, z^{k+1} - z^{k+1/2} \rangle + 2(1 - \tau) \langle z^{k+1/2} - w^k, z^{k+1} - z^{k+1/2} \rangle
+ 2\gamma \langle g^{k+1/2} - g^k, z^{k+1/2} - z^{k+1} \rangle + 2\gamma \langle g^{k+1/2}, u - z^{k+1/2} \rangle
\geq 2\gamma \left(h(z^{k+1/2}) - h(u) + \frac{\mu_h}{2} \|z^{k+1} - z^{k+1/2}\|^2 + \frac{\mu_h}{2} \|z^{k+1} - u\|^2 \right).
\]

For the first and second lines we use identity \(2 \langle a, b \rangle = \|a + b\|^2 - \|a\|^2 - \|b\|^2 \), and get

\[
\tau \left(\|z^k - u\|^2 - \|z^{k+1} - z^k\|^2 - \|z^{k+1} - u\|^2 \right)
+ (1 - \tau) \left(\|w^k - u\|^2 - \|z^{k+1} - w^k\|^2 - \|z^{k+1} - u\|^2 \right)
+ \tau \left(\|z^{k+1} - z^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|z^{k+1} - z^{k+1/2}\|^2 \right)
+ (1 - \tau) \left(\|z^{k+1/2} - w^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|z^{k+1} - z^{k+1/2}\|^2 \right)
+ 2\gamma \langle g^{k+1/2} - g^k, z^{k+1/2} - z^{k+1} \rangle + 2\gamma \langle g^{k+1/2}, u - z^{k+1/2} \rangle
\geq 2\gamma \left(h(z^{k+1/2}) - h(u) + \frac{\mu_h}{2} \|z^{k+1} - z^{k+1/2}\|^2 + \frac{\mu_h}{2} \|z^{k+1} - u\|^2 \right).
\]
A small rearrangement gives

\[
(1 + \gamma \mu_h)\|z^{k+1} - u\|^2 \leq \tau \|z^k - u\|^2 + (1 - \tau)\|w^k - u\|^2
- \tau \|z^{k+1/2} - z^k\|^2 - (1 - \tau)\|z^{k+1/2} - w^k\|^2 - (1 + \gamma \mu_h)\|z^{k+1} - z^{k+1/2}\|^2
+ 2\gamma \langle g^{k+1/2} - g^k, z^{k+1/2} - z^{k+1} \rangle - 2\gamma \langle g^{k+1/2}, z^{k+1/2} - u \rangle - 2\gamma \left(h(z^{k+1/2}) - h(u)\right).
\]

By simple fact: \(2\langle a, b \rangle \leq \eta \|a\|^2 + \frac{1}{\eta} \|b\|^2\) with \(a = g^{k+1/2} - g^k, b = z^{k+1/2} - z^{k+1}, \eta = 2\gamma\), we get

\[
(1 + \gamma \mu_h)\|z^{k+1} - u\|^2 \leq \tau \|z^k - u\|^2 + (1 - \tau)\|w^k - u\|^2
- \tau \|z^{k+1/2} - z^k\|^2 - (1 - \tau)\|z^{k+1/2} - w^k\|^2 - \left(\frac{1}{2} + \gamma \mu_h\right)\|z^{k+1} - z^{k+1/2}\|^2
+ 2\gamma^2 \|g^{k+1/2} - g^k\|^2 - 2\gamma \langle g^{k+1/2}, z^{k+1/2} - u \rangle - 2\gamma \left(h(z^{k+1/2}) - h(u)\right).
\]

We now consider the two cases of the theorem separately.

A.3 STRONGLY MONOTONE/CONVEX CASE

Let substitute \(u = z^*\), take full mathematical expectation and get

\[
(1 + \gamma \mu_h)\mathbb{E}\left[\|z^{k+1} - z^*\|^2\right] \leq \tau \mathbb{E}\left[\|z^k - z^*\|^2\right] + (1 - \tau)\mathbb{E}\left[\|w^k - z^*\|^2\right]
- \tau \mathbb{E}\left[\|z^{k+1/2} - z^k\|^2\right] - (1 - \tau)\mathbb{E}\left[\|z^{k+1/2} - w^k\|^2\right] - \left(\frac{1}{2} + \gamma \mu_h\right)\mathbb{E}\left[\|z^{k+1} - z^{k+1/2}\|^2\right]
+ 2\gamma \mathbb{E}\left[\|g^{k+1/2} - g^k\|^2\right] - 2\gamma \mathbb{E}\left[\langle g^{k+1/2}, z^{k+1/2} - z^* \rangle + h(z^{k+1/2}) - h(z^*)\right]
= \tau \mathbb{E}\left[\|z^k - z^*\|^2\right] + (1 - \tau)\mathbb{E}\left[\|w^k - z^*\|^2\right]
- \tau \mathbb{E}\left[\|z^{k+1/2} - z^k\|^2\right] - (1 - \tau)\mathbb{E}\left[\|z^{k+1/2} - w^k\|^2\right] - \left(\frac{1}{2} + \gamma \mu_h\right)\mathbb{E}\left[\|z^{k+1} - z^{k+1/2}\|^2\right]
+ 2\gamma \mathbb{E}\left[\|g^{k+1/2} - g^k\|^2\right] - 2\gamma \mathbb{E}\left[\mathbb{E}\left[\|g^{k+1/2} - z^{k+1/2}\|, z^{k+1/2} - z^*\right] + h(z^{k+1/2}) - h(z^*)\right].
\]

Let us work with \(\mathbb{E}\left[\|g^{k+1/2} - g^k\|^2\right]\), with (1) we get

\[
\mathbb{E}\left[\|g^{k+1/2} - g^k\|^2\right] = \mathbb{E}\left[\|Q^\text{serv}_{1:M} \sum_{m=1}^M Q^\text{dev}_m (F_m(z^{k+1/2}) - F_m(w^k))\|^2\right]
\leq \frac{Q^\text{serv}}{M^2} \mathbb{E}\left[\left\|\sum_{m=1}^M Q^\text{dev}_m (F_m(z^{k+1/2}) - F_m(w^k))\right\|^2\right]
= \frac{Q^\text{serv}}{M^2} \sum_{m=1}^M \mathbb{E}\left[\left\|Q^\text{dev}_m (F_m(z^{k+1/2}) - F_m(w^k))\right\|^2\right]
+ \frac{Q^\text{serv}}{M^2} \sum_{m \neq l} \mathbb{E}\left[\left\|Q^\text{dev}_m (F_m(z^{k+1/2}) - F_m(w^k)); Q^\text{dev}_l (F_l(z^{k+1/2}) - F_l(w^k))\right\|^2\right]
\]
Next we apply (1) and Assumption 2 for the first term and independence and unbiasedness of Q for the second term:

$$
\begin{align*}
\mathbb{E} \left[\|g^{k+1/2} - g^k\|^2 \right] & \leq \frac{q_{\text{serv}}}{M^2} \sum_{m=1}^{M} q_{m}^{\text{dev}} \mathbb{E} \left[\left\| z^{k+1/2} - w^k \right\|^2 \right] \\
& \quad + \frac{q_{\text{serv}}}{M^2} \sum_{m \neq l} \mathbb{E} \left[\langle F_m(z^{k+1/2}) - F_m(w^k) ; F_l(z^{k+1/2}) - F_l(w^k) \rangle \right] \\
& \leq \frac{q_{\text{serv}}}{M^2} \sum_{m=1}^{M} q_{m}^{\text{dev}} \mathbb{E} \left[\left\| z^{k+1/2} - w^k \right\|^2 \right] \\
& \quad + \frac{q_{\text{serv}}}{2M^2} \sum_{m \neq l} \mathbb{E} \left[\|F_m(z^{k+1/2}) - F_m(w^k)\|^2 + \|F_l(z^{k+1/2}) - F_l(w^k)\|^2 \right] \\
& \leq \frac{q_{\text{serv}}}{M^2} \sum_{m=1}^{M} q_{m}^{\text{dev}} \mathbb{E} \left[\left\| z^{k+1/2} - w^k \right\|^2 \right] \\
& \quad + \frac{q_{\text{serv}}}{2M^2} \sum_{m \neq l} \mathbb{E} \left[L_m^2 \|z^{k+1/2} - w^k\|^2 + L_l^2 \|z^{k+1/2} - w^k\|^2 \right] \\
& = \frac{q_{\text{serv}}}{M^2} \sum_{m=1}^{M} q_{m}^{\text{dev}} \mathbb{E} \left[\left\| z^{k+1/2} - w^k \right\|^2 \right] + \frac{q_{\text{serv}}(M - 1)}{M^2} \sum_{m=1}^{M} L_m^2 \mathbb{E} \left[\left\| z^{k+1/2} - w^k \right\|^2 \right] \\
& = \frac{q_{\text{serv}}}{M^2} \left[\sum_{m=1}^{M} (q_{m}^{\text{dev}} + M - 1)L_m^2 \right].
\end{align*}
$$

Let us define new constant $C_q = \sqrt{\frac{q_{\text{serv}}}{M^2} \sum_{m=1}^{M} (q_{m}^{\text{dev}} + M - 1)L_m^2}$ and then connect (16) and (17):

$$(1 + \gamma \mu_h) \mathbb{E} \left[\|z^{k+1} - z^*\|^2 \right] \leq \tau \mathbb{E} [\|z^k - z^*\|^2] + (1 - \tau) \mathbb{E} [\|w^k - z^*\|^2] - \tau \mathbb{E} \left[\left\| z^{k+1/2} - z^k \right\|^2 \right] - (1 - \tau) \mathbb{E} \left[\left\| z^{k+1/2} - w^k \right\|^2 \right] - \left(\frac{1}{2} + \gamma \mu_h \right) \mathbb{E} \left[\left\| z^{k+1} - z^{k+1/2} \right\|^2 \right] - \left(1 - \left(1 - \tau \right) - 2\gamma^2 C_q^2 \right) \mathbb{E} \left[\left\| z^{k+1/2} - w^k \right\|^2 \right] - 2\gamma \mathbb{E} \left[\langle F(z^{k+1/2}) , z^{k+1/2} - z^* \rangle + h(z^{k+1/2}) - h(z^*) \right].$$

The property of the solution (3) gives

$$(1 + \gamma \mu_h) \mathbb{E} \left[\|z^{k+1} - z^*\|^2 \right] \leq \tau \mathbb{E} [\|z^k - z^*\|^2] + (1 - \tau) \mathbb{E} [\|w^k - z^*\|^2] - \tau \mathbb{E} \left[\left\| z^{k+1/2} - z^k \right\|^2 \right] - \left(\frac{1}{2} + \gamma \mu_h \right) \mathbb{E} \left[\left\| z^{k+1} - z^{k+1/2} \right\|^2 \right] - ((1 - \tau) - 2\gamma^2 C_q^2) \mathbb{E} \left[\left\| z^{k+1/2} - w^k \right\|^2 \right] - 2\gamma \mathbb{E} \left[\langle F(z^{k+1/2}) - F(z^*) , z^{k+1/2} - z^* \rangle \right].$$

And by Assumption 2 in strong monotone case we have

$$(1 + \gamma \mu_h) \mathbb{E} \left[\|z^{k+1} - z^*\|^2 \right] \leq \tau \mathbb{E} [\|z^k - z^*\|^2] + (1 - \tau) \mathbb{E} [\|w^k - z^*\|^2] - \tau \mathbb{E} \left[\left\| z^{k+1/2} - z^k \right\|^2 \right] - \left(\frac{1}{2} + \gamma \mu_h \right) \mathbb{E} \left[\left\| z^{k+1} - z^{k+1/2} \right\|^2 \right] - ((1 - \tau) - 2\gamma^2 C_q^2) \mathbb{E} \left[\left\| z^{k+1/2} - w^k \right\|^2 \right] - 2\gamma \mu_F \mathbb{E} \left[\left\| z^{k+1/2} - z^* \right\|^2 \right].$$

17
One the other hand we get
\[\mathbb{E} \left[\|w^{k+1} - z^*\|^2 \right] = (1 - \tau) \mathbb{E} \left[\|z^{k+1} - z^*\|^2 \right] + \tau \mathbb{E} \left[\|w^k - z^*\|^2 \right]. \]

Summing two previous inequalities:
\[
\begin{align*}
\tau \mathbb{E} \left[\|z^{k+1} - z^*\|^2 \right] + \mathbb{E} \left[\|w^{k+1} - z^*\|^2 \right] & \leq \tau \mathbb{E} \left[\|z^k - z^*\|^2 \right] + \mathbb{E} \left[\|w^k - z^*\|^2 \right] \\
- \tau \mathbb{E} \left[\|z^{k+1/2} - z^*\|^2 \right] - \gamma \mu_h \mathbb{E} \left[\|z^{k+1} - z^*\|^2 \right] - \left(\frac{1}{2} + \gamma \mu_h \right) \mathbb{E} \left[\|z^{k+1} - z^{k+1/2}\|^2 \right] & \leq ((1 - \tau) - 2\gamma^2 C_q^2 \tau) \mathbb{E} \left[\|z^{k+1/2} - w^k\|^2 \right] - 2\gamma \mu_F \mathbb{E} \left[\|z^{k+1/2} - z^*\|^2 \right].
\end{align*}
\]

We have Lyapunov function in the left side:
\[
\begin{align*}
\mathbb{E} [V_{k+1}] &= \mathbb{E} \left[\|z^{k+1} - z^*\|^2 \right] + \mathbb{E} \left[\|w^{k+1} - z^*\|^2 \right] \\
& \leq \tau \mathbb{E} \left[\|z^k - z^*\|^2 \right] + \mathbb{E} \left[\|w^k - z^*\|^2 \right] - \tau \mathbb{E} \left[\|z^{k+1/2} - z^*\|^2 \right] \\
& - 2\gamma \mu_F \mathbb{E} \left[\|z^{k+1/2} - z^*\|^2 \right] - \gamma \mu_h \mathbb{E} \left[\|z^{k+1} - z^*\|^2 \right] - \left(\frac{1}{2} + \gamma \mu_h \right) \mathbb{E} \left[\|z^{k+1} - z^{k+1/2}\|^2 \right] \\
& - ((1 - \tau) - 2\gamma^2 C_q^2 \tau) \mathbb{E} \left[\|z^{k+1/2} - w^k\|^2 \right].
\end{align*}
\]

With \(-\|z^{k+1} - z^*\|^2 \leq -\frac{1}{2} \|z^{k+1/2} - z^*\|^2 + \|z^{k+1} - z^{k+1/2}\|^2\) we deduce:
\[
\begin{align*}
\mathbb{E} [V_{k+1}] & \leq \tau \mathbb{E} \left[\|z^k - z^*\|^2 \right] + \mathbb{E} \left[\|w^k - z^*\|^2 \right] - \tau \mathbb{E} \left[\|z^{k+1/2} - z^*\|^2 \right] \\
& - ((1 - \tau) - 2\gamma^2 C_q^2 \tau) \mathbb{E} \left[\|z^{k+1/2} - w^k\|^2 \right] - \gamma \left(2\mu_F + \frac{\mu_h}{2} \right) \cdot (1 - \tau) \mathbb{E} \left[\|z^{k+1/2} - z^*\|^2 \right] - \gamma \left(2\mu_F + \frac{\mu_h}{2} \right) \cdot (1 - \tau) \mathbb{E} \left[\|w^k - z^*\|^2 \right].
\end{align*}
\]

A simple facts: \(\|z^{k+1/2} - z^*\|^2 \geq \frac{1}{2} \|z^k - z^*\|^2 - \|z^{k+1} - z^*\|^2\) and \(\|z^{k+1} - z^*\|^2 \geq \frac{1}{2} \|w^k - z^*\|^2 - \|z^{k+1/2} - w^k\|^2\), gives
\[
\begin{align*}
\mathbb{E} [V_{k+1}] & \leq \tau \mathbb{E} \left[\|z^k - z^*\|^2 \right] + \mathbb{E} \left[\|w^k - z^*\|^2 \right] \\
& - ((1 - \tau) - 2\gamma^2 C_q^2 \tau - \gamma \left(2\mu_F + \frac{\mu_h}{2} \right) \cdot (1 - \tau)) \mathbb{E} \left[\|z^{k+1/2} - w^k\|^2 \right] \\
& - \left(\frac{1}{2} + \gamma \mu_h \right) \mathbb{E} \left[\|z^{k+1} - z^{k+1/2}\|^2 \right] - \left(1 - \gamma \left(2\mu_F + \frac{\mu_h}{2} \right) \right) \mathbb{E} \left[\|z^{k+1/2} - z^*\|^2 \right] \\
& - \gamma \left(\mu_F + \frac{\mu_h}{4} \right) \frac{\gamma}{4} \mathbb{E} \left[\|z^k - z^*\|^2 \right] - \gamma \left(\mu_F + \frac{\mu_h}{4} \right) \cdot (1 - \tau) \mathbb{E} \left[\|w^k - z^*\|^2 \right].
\end{align*}
\]

Next we work with the last line of (18):
\[
\begin{align*}
-\gamma \left(\mu_F + \frac{\mu_h}{4} \right) \mathbb{E} \left[\|z^k - z^*\|^2 \right] - \gamma \left(\mu_F + \frac{\mu_h}{4} \right) \cdot (1 - \tau) \mathbb{E} \left[\|w^k - z^*\|^2 \right] \\
& = -\gamma \left(\mu_F + \frac{\mu_h}{4} \right) \mathbb{E} \left[\|z^k - z^*\|^2 \right] - \gamma \left(\mu_F + \frac{\mu_h}{4} \right) \mathbb{E} \left[\|z^k - z^*\|^2 \right] \\
& - \gamma \left(\mu_F + \frac{\mu_h}{4} \right) \cdot (1 - \tau) \mathbb{E} \left[\|w^k - z^*\|^2 \right] \\
& \leq -\gamma \left(\mu_F + \frac{\mu_h}{4} \right) \mathbb{E} \left[\|z^k - z^*\|^2 \right] - \gamma \left(\mu_F + \frac{\mu_h}{4} \right) \mathbb{E} \left[\|w^k - z^*\|^2 \right] \\
& + \gamma \left(\mu_F + \frac{\mu_h}{4} \right) \mathbb{E} \left[\|z^k - w^k\|^2 \right] - \gamma \left(\mu_F + \frac{\mu_h}{4} \right) \cdot (1 - \tau) \mathbb{E} \left[\|w^k - z^*\|^2 \right] \\
& \leq -\gamma \left(\mu_F + \frac{\mu_h}{4} \right) \mathbb{E} \left[\|z^k - z^*\|^2 \right] + \gamma \left(\mu_F + \frac{\mu_h}{4} \right) \mathbb{E} \left[\|w^k - z^*\|^2 \right] \\
& - \gamma \left(\mu_F + \frac{\mu_h}{4} \right) \mathbb{E} \left[\|z^k - z^*\|^2 \right] + \gamma \left(\mu_F + \frac{\mu_h}{4} \right) \mathbb{E} \left[\|w^k - z^*\|^2 \right] \\
& \leq -\gamma \left(\mu_F + \frac{\mu_h}{4} \right) \mathbb{E} \left[\|z^k - z^*\|^2 \right] - \gamma \left(\mu_F + \frac{\mu_h}{4} \right) \mathbb{E} \left[\|w^k - z^*\|^2 \right] \\
& + \gamma \left(\mu_F + \frac{\mu_h}{4} \right) \mathbb{E} \left[\|z^k - w^k\|^2 \right].
\end{align*}
\]
Substituting this into (18), we get
\[
E[V_{k+1}] \leq \tau E[\|z^k - z^*\|^2] + E[\|w^k - z^*\|^2] \\
- \left((1 - \tau) - 2\gamma^2 C_4^2 - \gamma \left(2\mu_F + \frac{\mu_h}{2} \right) \right) E[\|z^{k+1/2} - w^k\|^2] \\
- \left(\frac{1}{2} + \gamma \mu_F \right) E[\|z^{k+1} - z^{k+1/2}\|^2] - \left(1 - 3\gamma \left(\mu_F + \frac{\mu_h}{4} \right) \right) \tau E[\|z^{k+1/2} - z^k\|^2] \\
- \frac{\gamma}{4} \left(\mu_F + \frac{\mu_h}{4} \right) \tau E[\|z^k - z^*\|^2] - \frac{\gamma}{4} \left(\mu_F + \frac{\mu_h}{4} \right) E[\|w^k - z^*\|^2]. \quad (19)
\]

It remains only to choose \(\gamma \leq \min \left\{ \frac{\sqrt{1 - \tau}}{4\gamma}, \frac{1 - \tau}{4(\mu_F + \mu_h)} \right\} \) and get
\[
E[V_{k+1}] \leq \left(1 - \gamma \cdot \frac{\mu_F + \mu_h}{16} \right) \cdot E[V_k].
\]

Running the recursion completes the proof.

A.4 MONOTONE/CONVEX CASE (\(\mu_h = 0, \mu_F = 0 \))

We start from (15) with additional notation \(\text{gap}(z^{k+1/2}, u) = \langle F(z^{k+1/2}), z^{k+1/2} - u \rangle + h(z^{k+1/2}) - h(u) \):
\[
2\gamma \cdot \text{gap}(z^{k+1/2}, u) + \|z^{k+1} - u\|^2 \leq \tau \|z^k - u\|^2 + (1 - \tau)\|w^k - u\|^2 \\
- \tau \|z^{k+1/2} - z^k\|^2 - (1 - \tau)\|z^{k+1/2} - w^k\|^2 + 2\gamma^2 \|g^{k+1/2} - g^k\|^2 \\
- 2\gamma \langle g^{k+1/2} - F(z^{k+1/2}), z^{k+1/2} - u \rangle.
\]

Adding both sides \(\|w^{k+1} - u\|^2 \) and making small rearrangement we have
\[
2\gamma \cdot \text{gap}(z^{k+1/2}, u) \leq \left[\tau \|z^k - u\|^2 + \|w^k - u\|^2 \right] - \left[\tau \|z^{k+1} - u\|^2 + \|w^{k+1} - u\|^2 \right] \\
- \tau \|w^k - u\|^2 - (1 - \tau)\|z^{k+1} - u\|^2 + \|w^{k+1} - u\|^2 \\
- \tau \|z^{k+1/2} - z^k\|^2 - (1 - \tau)\|z^{k+1/2} - w^k\|^2 + 2\gamma^2 \|g^{k+1/2} - g^k\|^2 \\
- 2\gamma \langle g^{k+1/2} - F(z^{k+1/2}), z^{k+1/2} - u \rangle.
\]

Then we sum up over \(k = 0, \ldots, K - 1 \), take maximum of both sides over \(z \in C \), after take expectation and get
\[
2\gamma \cdot E \left[\max_{u \in C} \sum_{k=0}^{K-1} \text{gap}(z^{k+1/2}, u) \right] \leq \max_{u \in C} \left[\tau \|z^0 - u\|^2 + \|w^0 - u\|^2 \right] \\
+ E \left[\max_{u \in C} \sum_{k=0}^{K-1} \left[-\tau \|w^k - u\|^2 - (1 - \tau)\|z^{k+1} - u\|^2 + \|w^{k+1} - u\|^2 \right] \right] \\
- \sum_{k=0}^{K-1} \left[\tau E[\|z^{k+1/2} - z^k\|^2] + (1 - \tau)E[\|z^{k+1/2} - w^k\|^2] - 2\gamma^2 E[\|g^{k+1/2} - g^k\|^2] \right] \\
+ 2\gamma E \left[\max_{u \in C} \sum_{k=0}^{K-1} \langle g^{k+1/2} - F(z^{k+1/2}), u - z^{k+1/2} \rangle \right].
\]
Applying (17) for $E\left[\|g^{k+1/2} - g^k\|^2\right]$, we get

\[
2\gamma E\left[\max_{u \in C} \sum_{k=0}^{K-1} \text{gap}(z^{k+1/2}, u)\right] \leq \max_{u \in C} \left[\tau \|z^0 - u\|^2 + \|w^0 - u\|^2\right] \\
+ E \left[\max_{u \in C} \sum_{k=0}^{K-1} \left[-\tau \|w^k - u\|^2 - (1 - \tau)\|z^{k+1} - u\|^2 + \|w^{k+1} - u\|^2\right]\right] \\
- \sum_{k=0}^{K-1} \tau E \left[\|z^{k+1/2} - z^k\|^2\right] + (1 - \tau)E \left[\|z^{k+1/2} - w^k\|^2\right] \\
- 2\gamma^2 C_q^2 E \left[\|z^{k+1/2} - w^k\|^2\right] \\
+ 2\gamma E \left[\max_{u \in C} \sum_{k=0}^{K-1} \left(\langle g^{k+1/2} - F(z^{k+1/2}), u - z^{k+1/2}\rangle\right)\right].
\]

With $\gamma \leq \frac{\sqrt{\tau}}{2C_q}$ we get

\[
2\gamma E\left[\max_{u \in C} \sum_{k=0}^{K-1} \text{gap}(z^{k+1/2}, u)\right] \leq \max_{u \in C} \left[\tau \|z^0 - u\|^2 + \|w^0 - u\|^2\right] \\
+ E \left[\max_{u \in C} \sum_{k=0}^{K-1} \left[-\tau \|w^k - u\|^2 - (1 - \tau)\|z^{k+1} - u\|^2 + \|w^{k+1} - u\|^2\right]\right] \\
+ 2\gamma E \left[\max_{u \in C} \sum_{k=0}^{K-1} \left(\langle g^{k+1/2} - F(z^{k+1/2}), u - z^{k+1/2}\rangle\right)\right].
\]

To finish the proof we need to estimate terms in two last lines. We begin with

\[
E \left[\max_{u \in C} \sum_{k=0}^{K-1} \langle F(z^{k+1/2}) - g^{k+1/2}, z^{k+1/2} - u\rangle\right].
\]

Let define sequence v: $v^0 = z^0$, $v^{k+1} = \text{prox}_{\gamma k}(v^k - \gamma k_\delta)$ with $k_\delta = F(z^{k+1/2}) - g^{k+1/2}$. Then we have

\[
\sum_{k=0}^{K-1} \langle \delta^k, z^{k+1/2} - u\rangle = \sum_{k=0}^{K-1} \langle \delta^k, z^{k+1/2} - v^k\rangle + \sum_{k=0}^{K-1} \langle \delta^k, v^k - u\rangle.
\]

By the definition of v^{k+1} (property of prox), we have for all $z \in Z$

\[
\langle v^{k+1} - v^k + \gamma \delta^k, z - v^{k+1}\rangle \geq 0.
\]

Rewriting this inequality, we get

\[
\langle \gamma \delta^k, v^k - z\rangle \leq \langle \gamma \delta^k, v^k - v^{k+1}\rangle + \langle v^{k+1} - v^k, z - v^{k+1}\rangle \\
\leq \langle \gamma \delta^k, v^k - v^{k+1}\rangle + \frac{1}{2}\|v^k - z\|^2 - \frac{1}{2}\|v^{k+1} - z\|^2 - \frac{1}{2}\|v^k - v^{k+1}\|^2 \\
\leq \frac{\gamma^2}{2}\|\delta^k\|^2 + \frac{1}{2}\|v^k - u\|^2 + \frac{1}{2}\|v^{k+1} - u\|^2 - \frac{1}{2}\|v^{k+1} - z\|^2 - \frac{1}{2}\|v^k - v^{k+1}\|^2 \\
= \frac{\gamma^2}{2}\|\delta^k\|^2 + \frac{1}{2}\|v^k - z\|^2 - \frac{1}{2}\|v^{k+1} - z\|^2.
\]

With (21) it gives

\[
\sum_{k=0}^{K-1} \langle \delta^k, z^{k+1/2} - u\rangle \leq \sum_{k=0}^{K-1} \langle \delta^k, z^{k+1/2} - v^k\rangle + \frac{\gamma}{2} \sum_{k=0}^{K-1} \left(\frac{\gamma^2}{2}\|\delta^k\|^2 + \frac{1}{2}\|v^k - u\|^2 - \frac{1}{2}\|v^{k+1} - u\|^2\right) \\
\leq \sum_{k=0}^{K-1} \langle \delta^k, z^{k+1/2} - v^k\rangle + \frac{\gamma}{2} \sum_{k=0}^{K-1} \|\delta^k\|^2 + \frac{1}{2}\|v^0 - u\|^2.
\]
We take the maximum on u and get

$$
\max_{u \in C} \sum_{k=0}^{K-1} \langle \delta^k, z^{k+1/2} - u \rangle \leq \sum_{k=0}^{K-1} \langle \delta^k, z^{k+1/2} - v^k \rangle + \frac{\gamma}{2} \sum_{k=0}^{K-1} \|F(z^{k+1/2}) - g^{k+1/2}\|^2 + \frac{1}{2\gamma} \max_{u \in C} \|v^0 - u\|^2.
$$

Taking the full expectation, we get

$$
\mathbb{E} \left[\max_{u \in C} \sum_{k=0}^{K-1} \langle \delta^k, z^{k+1/2} - u \rangle \right] \leq \mathbb{E} \left[\sum_{k=0}^{K-1} \langle \delta^k, z^{k+1/2} - v^k \rangle \right] + \frac{\gamma}{2} \sum_{k=0}^{K-1} \mathbb{E} \left[\|F(z^{k+1/2}) - g^{k+1/2}\|^2 \right] + \frac{1}{2\gamma} \max_{u \in C} \|v^0 - u\|^2
$$

$$
= \mathbb{E} \left[\sum_{k=0}^{K-1} \mathbb{E} \left[F(z^{k+1/2}) - g^{k+1/2} \mid z^{k+1/2} - v^k \right] , z^{k+1/2} - v^k \right] + \frac{\gamma}{2} \sum_{k=0}^{K-1} \mathbb{E} \left[\|F(z^{k+1/2}) - g^{k+1/2}\|^2 \right] + \frac{1}{2\gamma} \max_{u \in C} \|v^0 - u\|^2
$$

$$
= \frac{\gamma}{2} \sum_{k=0}^{K-1} \mathbb{E} \left[\|F(z^{k+1/2}) - g^{k+1/2}\|^2 \right] + \frac{1}{2\gamma} \max_{u \in C} \|v^0 - u\|^2. \quad (22)
$$

Now let us estimate $\mathbb{E} \left[\max_{u \in C} \sum_{k=0}^{K-1} \left[-\tau \|w^k - u\|^2 - (1 - \tau)\|z^{k+1} + u\|^2 + \|w^{k+1} - u\|^2 \right] \right]$, for this we note that

$$
\mathbb{E} \left[\max_{u \in C} \sum_{k=0}^{K-1} \left[-\tau \|w^k - u\|^2 - (1 - \tau)\|z^{k+1} - u\|^2 + \|w^{k+1} - u\|^2 \right] \right]
$$

$$
= \mathbb{E} \left[\max_{u \in C} \sum_{k=0}^{K-1} \left[-2(1 - \tau)z^{k+1} + \tau w^k - w^{k+1}, u \right] - (1 - \tau)\|z^{k+1}\|^2 - \tau\|w^k\|^2 + \|w^{k+1}\|^2 \right]
$$

$$
= \mathbb{E} \left[\max_{u \in C} \sum_{k=0}^{K-1} \left[-2(1 - \tau)z^{k+1} + \tau w^k - w^{k+1}, u \right] \right]
$$

$$
+ \mathbb{E} \left[\sum_{k=0}^{K-1} - (1 - \tau)\|z^{k+1}\|^2 - \tau\|w^k\|^2 + \|w^{k+1}\|^2 \right].
$$

One can note that by definition w^{k+1}: $\mathbb{E} \left[(1 - \tau)\|z^{k+1}\|^2 + \tau\|w^k\|^2 - \|w^{k+1}\|^2 \right] = 0$, then

$$
\mathbb{E} \left[\max_{u \in C} \sum_{k=0}^{K-1} \left[-\tau \|w^k - u\|^2 - (1 - \tau)\|z^{k+1} - u\|^2 + \|w^{k+1} - u\|^2 \right] \right]
$$

$$
= 2\mathbb{E} \left[\max_{u \in C} \sum_{k=0}^{K-1} \left((1 - \tau)z^{k+1} + \tau w^k - w^{k+1}, -u \right) \right]
$$

$$
= 2\mathbb{E} \left[\max_{u \in C} \sum_{k=0}^{K-1} \left((1 - \tau)z^{k+1} + \tau w^k - w^{k+1}, u \right) \right].
$$
Further, one can carry out the reasoning similarly to chain for (22):

$$
E \left[\max_{u \in C} \sum_{k=0}^{K-1} \left[\tau \| w^k - u \|^2 + (1 - \tau) \| z^{k+1} - u \|^2 - \| w^{k+1} - u \|^2 \right] \right]
\leq \sum_{k=0}^{K-1} E \left[\| (1 - \tau) z^{k+1} + \tau w^k - w^{k+1} \|^2 \right] + \max_{u \in C} \| v^0 - u \|^2
= \sum_{k=0}^{K-1} E \left[\| E_{w_{k+1}}[u^{k+1}] - w^{k+1} \|^2 \right] + \max_{u \in C} \| v^0 - u \|^2
\leq \sum_{k=0}^{K-1} E \left[-\| E_{w_{k+1}}[w^{k+1}] \|^2 + E_{w_{k+1}}[\| w^{k+1} \|^2] \right] + \max_{u \in C} \| v^0 - u \|^2
= \sum_{k=0}^{K-1} E \left[-\| (1 - \tau) z^{k+1} + \tau w^k \|^2 + (1 - \tau) \| z^{k+1} \|^2 + \tau \| w^k \|^2 \right] + \max_{u \in C} \| v^0 - u \|^2
= \sum_{k=0}^{K-1} \tau (1 - \tau) E \left[\| z^{k+1} - w^k \|^2 \right] + \max_{u \in C} \| v^0 - u \|^2.
$$

(23)

Substituting (22) and (23) in (20) we get

$$
2\gamma E \left[\max_{u \in C} \sum_{k=0}^{K-1} \text{gap}(z^{k+1/2}, u) \right] \leq \max_{u \in C} \left[(2 + \tau) \| z^0 - u \|^2 + \| w^0 - u \|^2 \right]
+ \sum_{k=0}^{K-1} \tau (1 - \tau) E \left[\| z^{k+1} - w^k \|^2 \right] + \gamma^2 E \left[\| F(z^{k+1/2}) - g^{k+1/2} \|^2 \right].
$$

(24)

Next we work separately with $E \left[\| F(z^{k+1/2}) - g^{k+1/2} \|^2 \right]$:

$$
E \left[\| F(z^{k+1/2}) - g^{k+1/2} \|^2 \right]
= E \left[Q_{\text{serv}} \left(\frac{1}{M} \sum_{m=1}^{M} Q_m^{\text{dev}}(F_m(z^{k+1/2}) - F_m(w^k)) \right) + F(w^k) - F(z^{k+1/2}) \right]^2
= E \left[Q_{\text{serv}} \left(\frac{1}{M} \sum_{m=1}^{M} Q_m^{\text{dev}}(F_m(z^{k+1/2}) - F_m(w^k)) \right)^2 \right] + E \left[\| F(z^{k+1/2}) - F(w^k) \|^2 \right]
+ E \left[Q_{\text{serv}} \left(\frac{1}{M} \sum_{m=1}^{M} Q_m^{\text{dev}}(F_m(z^{k+1/2}) - F_m(w^k)) \right) ; F(z^{k+1/2}) - F(w^k) \right].
$$

With (17) we get

$$
E \left[\| F(z^{k+1/2}) - g^{k+1/2} \|^2 \right] \leq C_q^2 E \left[\| z^{k+1/2} - w^k \|^2 \right] + E \left[\| F(z^{k+1/2}) - F(w^k) \|^2 \right]
+ E \left[\frac{1}{M} \sum_{m=1}^{M} Q_m^{\text{dev}}(F_m(z^{k+1/2}) - F_m(w^k)) ; F(z^{k+1/2}) - F(w^k) \right]
= C_q^2 E \left[\| z^{k+1/2} - w^k \|^2 \right] + 2E \left[\| F(z^{k+1/2}) - F(w^k) \|^2 \right]
\leq C_q^2 E \left[\| z^{k+1/2} - w^k \|^2 \right] + \frac{2}{M} \sum_{m=1}^{M} L_m^2 \cdot E \left[\| z^{k+1/2} - w^k \|^2 \right].
$$

(25)
With new notation \(L^2 = \frac{1}{M} \sum_{m=1}^{M} L_m^2 \) from (24) and (25) we have

\[
2\gamma \mathbb{E} \left[\max_{u \in C} \sum_{k=0}^{K-1} \text{gap}(z^{k+1/2}, u) \right] \leq \max_{u \in C} \left[(2 + \tau) \| z^0 - u \|^2 + \| w^0 - u \|^2 \right] \\
+ \left(\sum_{k=0}^{K-1} \tau (1 - \tau) \mathbb{E} \left[\| z^{k+1} - w^k \|^2 \right] \right) + \gamma^2 (C_q^2 + 2L^2) \mathbb{E} \left[\| z^{k+1/2} - w^k \|^2 \right].
\]

With \(\gamma \leq \frac{\sqrt{1 - \tau}}{2\sqrt{C_q^2 + 2L^2}} \) we deduce to

\[
2\gamma \mathbb{E} \left[\max_{u \in C} \sum_{k=0}^{K-1} \text{gap}(z^{k+1/2}, u) \right] \leq \max_{u \in C} \left[(2 + \tau) \| z^0 - u \|^2 + \| w^0 - u \|^2 \right] \\
+ (1 - \tau) \sum_{k=0}^{K-1} \left[\mathbb{E} \left[\| z^{k+1} - w^k \|^2 \right] \right] + \mathbb{E} \left[\| z^{k+1/2} - w^k \|^2 \right] \\
\leq \max_{u \in C} \left[(2 + \tau) \| z^0 - u \|^2 + \| w^0 - u \|^2 \right] \\
+ 3(1 - \tau) \sum_{k=0}^{K-1} \left[\mathbb{E} \left[\| z^{k+1} - z^{k+1/2} \|^2 \right] \right] + \mathbb{E} \left[\| z^{k+1/2} - w^k \|^2 \right].
\]

Let us go back to (19) with \(\mu_h = 0, \mu_F = 0, \gamma \leq \frac{\sqrt{1 - \tau}}{4C_q^2} \) and get that

\[
\mathbb{E} [V_{k+1}] \leq \mathbb{E} [V_k] - \left((1 - \tau) - 2\gamma^2 C_q^2 \right) \mathbb{E} \left[\| z^{k+1/2} - w^k \|^2 \right] \\
+ \frac{1}{2} \mathbb{E} \left[\| z^{k+1} - z^{k+1/2} \|^2 \right] \\
\leq \mathbb{E} [V_k] - \frac{(1 - \tau)}{2} \mathbb{E} \left[\| z^{k+1/2} - w^k \|^2 \right] \\
- \frac{(1 - \tau)}{2} \mathbb{E} \left[\| z^{k+1} - z^{k+1/2} \|^2 \right].
\]

Hence substituting this we go to the end of the proof:

\[
2\gamma \mathbb{E} \left[\max_{u \in C} \sum_{k=0}^{K-1} \text{gap}(z^{k+1/2}, u) \right] \leq \max_{u \in C} \left[(2 + 7\tau) \| z^0 - u \|^2 + 7\| w^0 - u \|^2 \right] \\
+ 6 \sum_{k=0}^{K-1} \left[\mathbb{E} [V_k] - \mathbb{E} [V_{k+1}] \right] \\
\leq \max_{u \in C} \left[16\| z^0 - u \|^2 \right].
\]

It remains to slightly correct the convergence criterion by monotonicity of \(F \) and Jensen’s inequality for convex functions:

\[
\mathbb{E} \left[\max_{u \in C} \sum_{k=0}^{K-1} \text{gap}(z^{k+1/2}, u) \right] = \mathbb{E} \left[\max_{u \in C} \sum_{k=0}^{K-1} \left(F(z^{k+1/2}), z^{k+1/2} - u \right) + h(z^{k+1/2}) - h(u) \right] \\
\geq \mathbb{E} \left[\max_{u \in C} \sum_{k=0}^{K-1} \left(F(u), z^{k+1/2} - u \right) + h(z^{k+1/2}) - h(u) \right] \\
\geq \mathbb{E} \left[K \cdot \max_{u \in C} \left(F(u), z^K - u \right) + h(z^K) - h(u) \right] \\
= K \cdot \mathbb{E} \left[\text{Gap}(z^K) \right],
\]
where we additionally use \(\tilde{z}^K = \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2} \). This brings us to

\[
\mathbb{E}[\text{Gap}(\tilde{z}^K)] \leq \frac{8 \max_{n \in C} \|z^0 - u\|^2}{\gamma K}.
\]

Theorem 1 is completely proved for deterministic case.

\[\square\]

A.5 Stochastic case

The case of a finite sum (stochastic) is proved in a similar way. We need to replace \(F_m \) with \(F_{m,\pi^k_m} \).

B MASHA2: Handling Contractive Compressors

Now we present a method for working with biased compression operators – MASHA2. Algorithm 1 and Algorithm 2 are similar. The main and key difference is the error feedback technique \cite{Karimireddy2019}, which is classic for working with biased compressors. To do this, we need to introduce additional sequences the sequence \(e_m \). The purpose of these sequences is to accumulate error - something that is not communicated in previous iterations. Additionally, for Algorithm 2, we consider a simpler setting than for Algorithm 1, namely \(Z = \mathbb{R}^d \) and \(h = 0 \). In this case \(\text{prox}_{\gamma h}(z) = z \). Also, in the case of comps, we compress the information in one direction - the server makes a full broadcast.

Similarly to Theorem 1 we use Lyapunov function

\[\hat{V}_k = \tau \|z^k - z^*\|^2 + \|\hat{w}^k - z^*\|^2, \]

where \(\hat{z}^k = z^k - \frac{1}{M} \sum_{m=1}^{M} e_m^k, \hat{w}^k = w^k - \frac{1}{M} \sum_{m=1}^{M} e_m^k. \]

Theorem 2 Let Assumptions 1 and 2 (SM) be satisfied. Then, if \(\gamma \leq \min \left(\frac{1-\tau}{4\mu_F^2}, \frac{\sqrt{1-\tau}}{605L}, \frac{\mu_F(1-\tau)}{10\tau^2L^2} \right) \), the following estimates holds

\[
\mathbb{E}[\hat{V}_K] \leq (1 - \gamma \cdot \frac{\mu_F}{\tau})^{K-1} \cdot \hat{V}_0.
\]

The proof of the above theorem can be found in Appendix C.

C Proof of Theorem 2

We first introduce useful notation:

\[
\hat{z}^k = z^k - \frac{1}{M} \sum_{m=1}^{M} e_m^k, \quad \hat{z}^{k+1/2} = z^{k+1/2} - \frac{1}{M} \sum_{m=1}^{M} e_m^k, \quad \hat{w}^k = w^k - \frac{1}{M} \sum_{m=1}^{M} e_m^k.
\]

It is easy to verify that

\[
\hat{z}^{k+1} = \hat{z}^{k+1} - \frac{1}{M} \sum_{m=1}^{M} e_m^{k+1}
\]

\[
= \hat{z}^{k+1/2} - \frac{1}{M} \sum_{m=1}^{M} C_m^\text{dev}(\gamma \cdot F_m(\hat{z}^{k+1/2}) - \gamma \cdot F_m(\hat{w}^k) + e_m^k)
\]

\[
- \frac{1}{M} \sum_{m=1}^{M} \left[e_m^k + \gamma \cdot F_m(\hat{z}^{k+1/2}) - \gamma \cdot F_m(\hat{w}^k) - C_m^\text{dev}(\gamma \cdot F_m(\hat{z}^{k+1/2}) - \gamma \cdot F_m(\hat{w}^k) + e_m^k) \right]
\]

\[
= \hat{z}^{k+1/2} - \frac{1}{M} \sum_{m=1}^{M} e_m^k - \gamma \cdot F(z^{k+1/2})
\]

\[
= \hat{z}^{k+1/2} - \gamma \cdot (F(z^{k+1/2}) - F(w^k)).
\]
Algorithm 2 MASHA2 (handling contractive compressors)

Parameters: Stepsize $\gamma > 0$, number f iterations K.

Initialization: Choose $z^0 = w^0 \in \mathbb{Z}$, $e_m^0 = 0$.

Server sends to devices $z^0 = w^0$ and devices compute $F_m(w^0)$ and send to server and get $F(w^0)$

for $k = 0, 1, 2, \ldots, K - 1$ do

for all devices in parallel do

Compute $F_m(z_k)$ and send to server

end for

for server do

Compute Q_{serv} & send to devices

end for

for all devices in parallel do

if $b_m = 1$ then

$w_{k+1} = z_{k+1}$

else

$w_{k+1} = w_k$

end if

end for

end for

Because of such a beautiful property for hat sequences, we will use them in the proof.

Proof of Theorem 2: We start from these two equalities:

$$
\frac{1}{2} \sum_{m=1}^{M} C_m^d(\gamma \cdot F_m(z_k) - \gamma \cdot F_m(w_k) + e_m^k)
$$

$$
\frac{1}{2} \sum_{m=1}^{M} C_m^d(\gamma \cdot F_m(z_{k+1}) - \gamma \cdot F_m(w_{k+1}) + e_m^k)
$$

Using that $\|a + b\|^2 \leq 2\|a\|^2 + 2\|b\|^2$ and (26), we get

$$
\|z_{k+1} - z_k\|^2 \leq \|z_k - z^*\|^2 + 2\|z_k - z^*\| \cdot \|z_{k+1} - z_k\| + \|z_{k+1} - z_{k+1}\|^2 - \|z_{k+1} - z_k\|^2.
$$

(27)
Additionally, here we use that F is L Lipschitz, where $L^2 = \frac{1}{M} \sum_{m=1}^{M} L_m^2$.

Next, (27) with (28) gives
\[
\|\hat{z}^{k+1} - z^*\|^2 \leq \|\hat{z}^k - z^*\|^2 + 2\langle \hat{z}^{k+1} - \hat{z}^k, z^{k+1/2} - z^* \rangle + 2\gamma^2 L^2 \cdot \|z^{k+1/2} - w^k\|^2 + \frac{2}{M} \sum_{m=1}^{M} \|e_m^k\|^2 - \|z^{k+1/2} - \hat{z}^k\|^2. \tag{29}
\]

Now we consider the next inner product $\langle \hat{z}^{k+1} - \hat{z}^k, z^{k+1/2} - z^* \rangle$. Using that
\[
\hat{z}^{k+1} - \hat{z}^k = \hat{z}^{k+1} - \hat{z}^{k+1/2} + \hat{z}^{k+1/2} - \hat{z}^k = -\gamma \cdot (F(\hat{z}^{k+1/2}) - F(w^k)) + z^{k+1/2} - z^k
\]
and optimality condition $F(z^*) = F(z^{k+1/2}) \geq 0$, we get
\[
2\langle \hat{z}^{k+1} - \hat{z}^k, z^{k+1/2} - z^* \rangle = 2\langle -\gamma \cdot F(z^{k+1/2}) - z^k \rangle \
\leq 2\gamma \cdot (F(z^*) - F(z^{k+1/2})), z^{k+1/2} - z^* \rangle \nonumber
\]
\[
+ 2\langle \hat{z}^k - z^k, z^{k+1/2} - z^* \rangle.
\]

C.1 STRONGLY MONOTONE CASE

With Assumption 2 (SM) we obtain
\[
2\langle \hat{z}^{k+1} - \hat{z}^k, z^{k+1/2} - z^* \rangle \leq 2\gamma \cdot (F(z^*) - F(z^{k+1/2})), z^{k+1/2} - z^* \rangle + 2\gamma \cdot (\hat{z}^k - z^k, z^{k+1/2} - z^* \rangle \
\leq -2\mu_F \gamma \|z^{k+1/2} - z^*\|^2 + 2(1-\tau)(\hat{w}^k - \hat{z}^k), z^{k+1/2} - z^* \rangle. \tag{30}
\]
Additionally we use here definition of \hat{z}^k and fact that $\hat{w}^k = \hat{z}^k = w^k$. Combining the obtained inequalities (29) and (30), we have
\[
\|\hat{z}^{k+1} - z^*\|^2 \leq \|\hat{z}^k - z^*\|^2 - 2\mu_F \gamma \|z^{k+1/2} - z^*\|^2 + 2(1-\tau)(\hat{w}^k - \hat{z}^k), z^{k+1/2} - z^* \rangle \
+ 2\gamma^2 L^2 \cdot \|z^{k+1/2} - w^k\|^2 + \frac{2}{M} \sum_{m=1}^{M} \|e_m^k\|^2 - \|z^{k+1/2} - \hat{z}^k\|^2.
\]

The inequality $2(a,b) = \|a + b\|^2 - \|a\|^2 - \|b\|^2$ gives
\[
\|\hat{z}^{k+1} - z^*\|^2 \leq \|\hat{z}^k - z^*\|^2 - 2\mu_F \gamma \|z^{k+1/2} - z^*\|^2 \
+ 2\gamma^2 L^2 \cdot \|z^{k+1/2} - w^k\|^2 + \frac{2}{M} \sum_{m=1}^{M} \|e_m^k\|^2 - \|z^{k+1/2} - \hat{z}^k\|^2 = \|\hat{z}^k - z^*\|^2 - 2\mu_F \gamma \|z^{k+1/2} - z^*\|^2 \
+ (1-\tau)\|\hat{w}^k - z^*\|^2 - (1-\tau)\|\hat{w}^k - z^{k+1/2}\|^2 - (1-\tau)\|z^{k+1/2} - z^*\|^2 \
+ (1-\tau)\|z^{k+1/2} - z^*\|^2 - (1-\tau)\|z^{k+1/2} - z^*\|^2 \
= \tau\|\hat{z}^k - z^*\|^2 + (1-\tau)\|\hat{w}^k - z^*\|^2 - 2\mu_F \gamma \|z^{k+1/2} - z^*\|^2 \
+ 4\gamma^2 L^2 \|\hat{w}^k - z^{k+1/2}\|^2 + 2\gamma^2 L^2 \|w^k - \hat{w}^k\|^2 + \frac{2}{M} \sum_{m=1}^{M} \|e_m^k\|^2 - \tau\|z^{k+1/2} - z^*\|^2
\]
\[
= \tau\|\hat{z}^k - z^*\|^2 + (1-\tau)\|\hat{w}^k - z^*\|^2 - 2\mu_F \gamma \|z^{k+1/2} - z^*\|^2 \
+ 2\gamma^2 L^2 \|\hat{w}^k - z^{k+1/2}\|^2 + 2\gamma^2 L^2 \|w^k - \hat{w}^k\|^2 + \frac{2}{M} \sum_{m=1}^{M} \|e_m^k\|^2 - \tau\|z^{k+1/2} - z^*\|^2.
\tag{31}
\]
Distributed Methods with Compressed Communication for Solving Variational Inequalities

We can weight (31) by p^k and get

$$
\sum_{k=0}^{K} p^k \| \hat{z}^{k+1} - z^* \|^2 \leq \tau \sum_{k=0}^{K} p^k \| \hat{z}^k - z^* \|^2 + (1 - \tau) \sum_{k=0}^{K} p^k \| \hat{w}^k - z^* \|^2 - 2 \mu \gamma \sum_{k=0}^{K} p^k \| \hat{z}^{k+1/2} - z^* \|^2
$$

$$
- (1 - \tau - 4 \gamma^2 L^2) \sum_{k=0}^{K} p^k \| \hat{w}^k - \hat{z}^{k+1/2} \|^2
$$

$$
+ (2 + 4 \gamma^2 L^2) \cdot \sum_{k=0}^{K} p^k \frac{1}{M} \sum_{m=1}^{M} \| e^k_m \|^2 - \tau \sum_{k=0}^{K} p^k \| \hat{z}^{k+1/2} - \hat{z}^k \|^2.
$$

(32)

Next we will take a full expectation from the both side of previous inequality. Since w^{k+1} is chosen,

$$
\mathbb{E} \left[\| \hat{w}^{k+1} - z^* \|^2 \right] = \tau \mathbb{E} \left[\| \hat{w}^k + \frac{1}{M} \sum_{m=1}^{M} (e^{k+1}_m - e^k_m) - z^* \|^2 \right] + (1 - \tau) \mathbb{E} \left[\| \hat{z}^{k+1} - z^* \|^2 \right]
$$

$$
\leq (1 + \eta) \tau \mathbb{E} \left[\| \hat{w}^k - z^* \|^2 \right] + (1 + 1/\eta) \tau \mathbb{E} \left[\left\| \frac{1}{M} \sum_{m=1}^{M} (e^{k+1}_m - e^k_m) \right\|^2 \right]
$$

$$
+ (1 - \tau) \mathbb{E} \left[\| \hat{z}^{k+1} - z^* \|^2 \right],
$$

with weighs it gives

$$
\sum_{k=0}^{K} p^k \mathbb{E} \left[\| \hat{w}^{k+1} - z^* \|^2 \right] \leq (1 + \eta) \tau \sum_{k=0}^{K} p^k \mathbb{E} \left[\| \hat{w}^k - z^* \|^2 \right] + (1 - \tau) \sum_{k=0}^{K} p^k \mathbb{E} \left[\| \hat{z}^{k+1} - z^* \|^2 \right]
$$

$$
+ (1 + 1/\eta) \tau \sum_{k=0}^{K} p^k \mathbb{E} \left[\left\| \frac{1}{M} \sum_{m=1}^{M} (e^{k+1}_m - e^k_m) \right\|^2 \right]
$$

$$
\leq (1 + \eta) \tau \sum_{k=0}^{K} p^k \mathbb{E} \left[\| \hat{w}^k - z^* \|^2 \right] + (1 - \tau) \sum_{k=0}^{K} p^k \mathbb{E} \left[\| \hat{z}^{k+1} - z^* \|^2 \right]
$$

$$
+ 2(1 + 1/\eta) \tau \sum_{k=0}^{K} p^k \cdot \frac{1}{M} \sum_{m=1}^{M} \mathbb{E} \left[\| e^{k+1}_m \|^2 \right]
$$

$$
+ 2(1 + 1/\eta) \tau \sum_{k=0}^{K} p^k \cdot \frac{1}{M} \sum_{m=1}^{M} \mathbb{E} \left[\| e^k_m \|^2 \right]
$$

27
Summing this one and (32), we get

\[
\sum_{k=0}^{K} p^k \left(\tau \| z^{k+1} - z^* \|^2 + \| w^{k+1} - z^* \|^2 \right)
\]

\[
\leq \sum_{k=0}^{K} p^k \left(\tau \| z^k - z^* \|^2 + (1 + \tau \eta) \| w^k - z^* \|^2 \right) - 2\mu_p \gamma \sum_{k=0}^{K} p^k \| z^{k+1} - z^* \|^2
\]

\[
- (1 - \tau - 4\gamma^2 L^2) \sum_{k=0}^{K} p^k \| w^k - z^{k+1/2} \|^2 + \frac{2(1 + 1/\eta)\tau}{p} \sum_{k=0}^{K+1} p^k \frac{1}{M} \sum_{m=1}^{M} \| e_m^k \|^2
\]

\[
+ (2 + 4\gamma^2 L^2 + 2(1 + 1/\eta)\tau) \cdot \sum_{k=0}^{K} p^k \frac{1}{M} \sum_{m=1}^{M} \| e_m^k \|^2 - \tau \sum_{k=0}^{K} p^k \| z^{k+1/2} - z^k \|^2
\]

\[
\leq \sum_{k=0}^{K} p^k \left(\tau \| z^k - z^* \|^2 + (1 + \tau \eta) \| w^k - z^* \|^2 \right) - 2\mu_p \gamma \sum_{k=0}^{K} p^k \| z^{k+1/2} - z^* \|^2
\]

\[
- (1 - \tau - 4\gamma^2 L^2) \sum_{k=0}^{K} p^k \| w^k - z^{k+1/2} \|^2 - \tau \sum_{k=0}^{K} p^k \| z^{k+1/2} - z^k \|^2
\]

\[
+ \left(2 + 4\gamma^2 L^2 + 2(1 + 1/\eta)\tau + \frac{2(1 + 1/\eta)\tau}{p} \right) \cdot \sum_{k=0}^{K} p^k \frac{1}{M} \sum_{m=1}^{M} \| e_m^k \|^2.
\]

Next we will estimate error term:

\[
\frac{1}{M} \sum_{m=1}^{M} \| e_m^{k+1} \|^2 = \frac{1}{M} \sum_{m=1}^{M} \left\| e_m^k + \gamma \cdot F_m(z^{k+1/2}) - \gamma \cdot F_m(u^k) - C_m^\text{dev} (\gamma \cdot F_m(z^{k+1/2}) - \gamma \cdot F_m(u^k) + e_m^k) \right\|^2
\]

\[
\leq \frac{1}{M} \sum_{m=1}^{M} \left\| e_m^k + \gamma \cdot F_m(z^{k+1/2}) - \gamma \cdot F_m(u^k) - C_m^\text{dev} (\gamma \cdot F_m(z^{k+1/2}) - \gamma \cdot F_m(u^k) + e_m^k) \right\|^2
\]

\[
\leq \frac{(1 - 1/\delta)}{M} \sum_{m=1}^{M} \| e_m^k + \gamma \cdot F_m(z^{k+1/2}) - \gamma \cdot F_m(u^k) \|^2
\]

\[
\leq \frac{(1 - 1/\delta)}{M} \sum_{m=1}^{M} (1 + \xi) \| e_m^k \|^2 + (1 + 1/\xi) \cdot \| F_m(z^{k+1/2}) - F_m(u^k) \|^2.
\]

Here we use definition of biased compression and inequality \(\| a + b \|^2 \leq (1 + \xi) \| a \|^2 + (1 + 1/\xi) \| b \|^2 \) (for \(\xi > 0 \)). With \(\xi = \frac{1}{2(\delta - 1)} \) and \(\gamma \leq \frac{1}{4\delta^2} \), we get

\[
\frac{1}{M} \sum_{m=1}^{M} \| e_m^{k+1} \|^2 \leq \frac{1}{M} \sum_{m=1}^{M} \left(1 - 1/\delta \right) \| e_m^k \|^2 + 2\delta \gamma^2 \cdot \| F_m(z^{k+1/2}) - F_m(u^k) \|^2
\]

\[
\leq \left(1 - 1/\delta \right) \frac{1}{M} \sum_{m=1}^{M} \| e_m^k \|^2 + 2\delta \gamma^2 L^2 \cdot \| z^{k+1/2} - w^k \|^2
\]

\[
\leq \left(1 - 1/\delta \right) \frac{1}{M} \sum_{m=1}^{M} \| e_m^k \|^2 + 4\delta \gamma^2 L^2 \cdot \| z^{k+1/2} - w^k \|^2 + 4\delta \gamma^2 L^2 \cdot \frac{1}{M} \sum_{m=1}^{M} \| e_m^k \|^2
\]

\[
\leq \left(1 - 1/\delta \right) \frac{1}{M} \sum_{m=1}^{M} \| e_m^k \|^2 + 4\delta \gamma^2 L^2 \cdot \| z^{k+1/2} - w^k \|^2
\]

\[
\leq \left(1 - 1/\delta \right) \frac{1}{M} \sum_{m=1}^{M} \| e_m^k \|^2 + 4\delta \gamma^2 L^2 \cdot \| z^{k+1/2} - w^k \|^2
\]

\[
\leq 4\delta \gamma^2 L^2 \sum_{j=0}^{k} (1 - 1/\delta)^{k-j} \cdot \| z^{j+1/2} - w^j \|^2.
\]
We weigh the sequence as follows
\[\sum_{k=0}^{K} p^k \cdot \frac{1}{M} \sum_{m=1}^{M} \|e_m^k\|^2, \] where \(p^k \leq p^j (1 + 1/8\delta)^{k-j} \). Then
\[
\sum_{k=0}^{K} p^k \cdot \frac{1}{M} \sum_{m=1}^{M} \|e_m^k\|^2 \leq 4\delta\gamma^2 L^2 \sum_{k=0}^{K} p^k \sum_{j=0}^{k-1} (1 - 1/4\delta)^{k-j-1} \cdot \|z^{j+1/2} - \hat{w}^j\|^2
\]
\[
\leq 4\delta\gamma^2 L^2 \frac{1}{(1 - 1/4\delta)} \sum_{k=0}^{K} p^k (1 + 1/8\delta)^{k-j} (1 - 1/4\delta)^{k-j} \cdot \|z^{j+1/2} - \hat{w}^j\|^2
\]
\[
\leq 4\delta\gamma^2 L^2 \frac{1}{(1 - 1/4\delta)} \sum_{k=0}^{K} p^k (1 - 1/8\delta)^{k-j} \cdot \|z^{j+1/2} - \hat{w}^j\|^2
\]
\[
\leq 4\delta\gamma^2 L^2 \frac{1}{(1 - 1/4\delta)} \sum_{k=0}^{K} p^k \cdot \|z^{k+1/2} - \hat{w}^k\|^2 \cdot \sum_{j=0}^{\infty} (1 - 1/8\delta)^j
\]
\[
\leq 128\delta^2\gamma^2 L^2 \sum_{k=0}^{K} p^k \cdot \|z^{k+1/2} - \hat{w}^k\|^2. \tag{33}
\]

(33) us to the finish line of proof:
\[
\sum_{k=0}^{K} p^k \left(\tau \|z^{k+1} - z^*\|^2 + \|\hat{w}^{k+1} - z^*\|^2 \right)
\]
\[
\leq \sum_{k=0}^{K} p^k \left(\tau \|z^k - z^*\|^2 + (1 + \tau\eta)\|\hat{w}^k - z^*\|^2 \right) - 2\mu_F \gamma \sum_{k=0}^{K} p^k \|z^{k+1/2} - z^*\|^2
\]
\[
- (1 - \tau - 4\gamma^2 L^2) \sum_{k=0}^{K} p^k \|\hat{w}^k - z^{k+1/2}\|^2 - \tau \sum_{k=0}^{K} p^k \|z^{k+1/2} - z^k\|^2
\]
\[
+ \left(2 + 4\gamma^2 L^2 + 2(1 + 1/\eta)\tau + \frac{2(1 + 1/\eta)\tau}{\mu_F} \right) \cdot 128\delta^2\gamma^2 L^2 \sum_{k=0}^{K} p^k \cdot \|z^{k+1/2} - \hat{w}^k\|^2.
\]

With \(\eta = \frac{\mu_F^2}{\tau} \), \(\gamma \leq \frac{1}{\mu_F} \) and \(p \geq 1 \) we have
\[
\sum_{k=0}^{K} p^k \left(\tau \|z^{k+1} - z^*\|^2 + \|\hat{w}^{k+1} - z^*\|^2 \right)
\]
\[
\leq (1 - \mu_F^2/4) \sum_{k=0}^{K} p^k \left(\tau \|z^k - z^*\|^2 + \|\hat{w}^k - z^*\|^2 \right)
\]
\[
- \left(1 - \tau - \mu_F - 800\delta^2\gamma^2 L^2 - 512\delta^2\gamma^4 L^4 \delta^2 - \frac{2048\delta^2\gamma^2 L^2}{\mu_F} \right) \cdot \sum_{k=0}^{K} p^k \cdot \|z^{k+1/2} - \hat{w}^k\|^2.
\]

Choice \(\gamma \leq \min \left(\frac{1-\tau}{4\mu_F}, \frac{\sqrt{\tau}}{900\delta^2 L^2}, \frac{\mu_F(1-\tau)}{1057+2\delta^2 L^2} \right) \) gives
\[
\sum_{k=0}^{K} p^k \left(\tau \|z^{k+1} - z^*\|^2 + \|\hat{w}^{k+1} - z^*\|^2 \right) \leq (1 - \mu_F^2/4) \sum_{k=0}^{K} p^k \left(\tau \|z^k - z^*\|^2 + \|\hat{w}^k - z^*\|^2 \right).
\]

Then we just need to take \(p = 1/(1 - \mu_F^2/4) \) (easy to check that \(p^k \leq p^j (1 + 1/8\delta)^{k-j} \) works) and get
\[
\left(\tau \|z^{K+1} - z^*\|^2 + \|\hat{w}^{K+1} - z^*\|^2 \right) \leq (1 - \mu_F^2/4)^{K+1} \left(\tau \|z^0 - z^*\|^2 + \|\hat{w}^0 - z^*\|^2 \right).
\]

This ends our proof. \qed
D Motivating Examples

Let us motivate the utility of considering VIs in machine learning on a handful of examples.

Lagrangian multipliers and SVM. Lagrange multipliers are a standard approach to solving constrained optimization problems. This technique reduces the original problem to a saddle point problem. This approach is one of the basic and classic for SVM (Shalev-Shwartz & Ben-David, 2014):

\[
\min_{w, b} \max_\lambda \frac{1}{N} \sum_{n=1}^{N} \lambda_n ((w, x_n) + b) - 1 + \frac{\beta}{2} \|w\|^2,
\]

(34)

where \(w\) are the weights of the model, \(b\) – some number, \(\{(x_n, y_n)\}_{n=1}^{N}\) are pairs of the training data and labels, and \(\beta \geq 0\) is a regularization parameter.

GANs. A simple GAN setup consists of two parts: the discriminator \(D\) aimed at distinguishing real samples \(x\) from adversarial ones by giving probability that a sample is real, and the generator \(G\) trying to fool the discriminator by generating realistic samples from random noise \(z\). Following Goodfellow et al. (2014), the value function \(V(G, D)\) used in such a minimax game can be expressed in a saddle point form as

\[
\min_G \max_D V(D, G) := \mathbb{E}_{x \sim p_{data}}[\log D(x)] + \mathbb{E}_{z \sim p_z}[\log(1 - D(G(z)))].
\]

(35)

Adversarial loss. To force a model to be more stable and robust, it can be trained in a constructive way, for example, by introducing adversarial noise (Madry et al., 2017; Nouiehed et al., 2019). For example, the approach of Liu et al. (2020); Zhu et al. (2019) works well in NLP. From the point of view of theory, this latter approach reduces to the saddle point problem

\[
\min_w \max_{\|\rho\| \leq \varepsilon} \frac{1}{N} \sum_{n=1}^{N} l(f(w, x_n + \rho_n, y_n)^2 + \frac{\lambda}{2} \|w\|^2 - \frac{\beta}{2} \|\rho\|^2,
\]

(36)

where \(w\) are the weights of the model, \(\{(x_n, y_n)\}_{n=1}^{N}\) are pairs of the training data and labels, \(\rho\) is the so-called adversarial noise which introduces a perturbation in the data, and \(\lambda > 0\) and \(\beta > 0\) are the regularization parameters. The main difference from a standard approach is in explicit training of \(\rho\) so that the noise from it is harmful, and for \(w\) to adapt to this noise.

Online transport and Wasserstein barycenters Online transport or Wasserstein Barycenter (WB) problem can be rewritten as a saddle point problem (Dvinskikh & Tiapkin, 2021). This representation comes from the dual view on the transportation polytope.