Analytic study of the three-urn model for separation of sand

G. M. Shim, B. Y. Park, J. D. Noh, and Hoyun Lee
Department of Physics, Chungnam National University, Daejeon 305-764, Korea
(Dated: June 12, 2018)

We present an analytic study of the three-urn model for separation of sand. We solve analytically
the master equation and the first-passage problem. We find that the stationary probability distribu-
tion obeys the detailed balance and is governed by the free energy. We find that the characteristic
lifetime of a cluster diverges algebraically with exponent 1/3 at the limit of stability.

PACS numbers: 45.70.–n,68.35.Rh
Keywords: granular, urn model, master equation, critical phenomena, symmetry breaking.

I. INTRODUCTION

A granular system consisting of macroscopic particles exhibits extremely rich phenomena, which has been stud-
ied both experimentally and theoretically [1]. One of such interesting phenomena is the spatial separation of
shaken sand. In the experiment by Schlichting and Nordmeier [2], granular particles are prepared in a box which
is mounted on a shaker and separated into two equal parts by a wall. There is a slit on a wall through which par-
ticles can move from one compartment to the other. Under a certain shaking condition, the granular particles simulta-
neously separate into dense and dilute regions, which will not occur for gaseous particles, due to the dissipative
nature of the macroscopic particle collision.

The emergence of symmetry breaking in shaken sand was first explained by Eggers using a hydrodynamic ap-
proach [3], and later by Lipowski and Droz using an urn model which is supposed to capture the essence of the
experimental system [4]. In the urn model, \(N\) granular particles are distributed into \(L\) urns. And each particle
can jump from one urn to another with the probability controlled by a parameter, called an effective tempera-
ture, which depends explicitly on the density of particles in each urn. The dissipative nature of the particle col-
lision is incorporated into the model with the density-dependent effective temperature.

The urn model is simple enough to allow extensive numerical calculations [5, 6] as well as analytical studies [7, 8]. The two-urn \((L = 2)\) model shows a rich structure with symmetric, mixed, and asymmetric phases sep-
arated with continuous and discontinuous transitions as well as the tricritical point. In the symmetric phase par-
ticles are distributed equally in each urn, while the symmetry is broken in the asymmetric phase. In the mixed
phase, both the symmetric and asymmetric states are stable. It was also found that the characteristic time which
it takes to reach the symmetric state from an asymmetric state is given by the same free energy function which gov-
ers the stationary probability distribution [7]. Coppex et al. also numerically investigated the three-urn model
to find the absence of continuous transition [8]. They also obtained that the characteristic time at the limit of
stability diverges algebraically as the number of particles increases (see also Ref. [8]).

In this paper, we present the results of an analytic study to the master equation and the characteristic time
scale in the three-urn model. We solve the master equation in the thermodynamic limit to find that the solution
shows a nature of deformed wave. We also obtain the stationary probability distribution in a finite system, which
interestingly obeys the detailed balance. Combining the knowledge of the characteristic scales of those distribu-
tion and the mean-field flux equation, we obtain the scaling property of the characteristic time scale at the limit of
stability.

The paper is organized as follows. In Sec. II we briefly review the model and its master equation. In Sec. III
we present the analytic solution of the master equation in the thermodynamic limit and the analytic expression
of the stationary probability distribution. In Sec. IV we investigate the scaling law of the characteristic time scale.
Section V is devoted to conclusions and discussions.

II. MODEL AND ITS MASTER EQUATION

The model introduced by Coppex et al. [8] is defined as follows. \(N\) particles are distributed between three urns,
and the number of particles in each urn is denoted as \(N_1, N_2,\) and \(N_3 = N - N_1 - N_2\), respectively. At each time of
updates one of the \(N\) particles is randomly chosen. Let \(n\) be a fraction of the total number of particles in the urn
which the selected particle belongs to. With probability \(\exp(-\frac{1}{T(n)})\) the selected particle moves to a randomly
chosen neighboring urn. \(T(n) = T_0 + \Delta(1 - n)\) is the effective temperature of an urn with particles \(nN\) that
measures the strength of fluctuations in the urn. For more detailed description of the model, we refer readers to Ref. [8].

It is easy to derive the master equation for the probability distribution \(p(N_1, N_2, N_3, t)\) that there are \(N_1\) par-
ticles in urn \(i\) at time \(t\)

\[
p(N_1, N_2, N_3, t + 1) =
F\left(\frac{N_1 + 1}{N}\right) \frac{1}{2} \left(p(N_1 + 1, N_2 - 1, N_3, t) + p(N_1 + 1, N_2, N_3 - 1, t)\right)
\]
$$+ F \left(\frac{N_2 + 1}{N} \right) \left(\frac{1}{2} \left(p(N_1 - 1, N_2 + 1, N_3, t) + p(N_1, N_2 + 1, N_3 - 1, t) \right) \right) + F \left(\frac{N_3 + 1}{N} \right) \left(\frac{1}{2} \left(p(N_1 - 1, N_2, N_3 + 1, t) + p(N_1, N_2 - 1, N_3 + 1, t) \right) \right) + \left[1 - \frac{3}{N} \left(\frac{N_i}{N} \right) \right] p(N_1, N_2, N_3, t), \tag{1}$$

where $F(n) = n \exp(-\frac{1}{T \langle n \rangle})$ measures the flux of particles leaving the given urn. Here we introduced for convenience the notation $p(N_1, N_2, N_3, t) = 0$ if $N_1 + N_2 + N_3 \neq N$ or any N_i's is either less than 0 or greater than N.

Let's denote the occupancies of the urns by $n_i = N_i/N$. The time evolution of the averaged particle occupancies is governed by the equations

$$\langle n_i \rangle_{t+1} = \langle n_i \rangle_t + \frac{1}{N} \langle \mathcal{F}_i(\vec{n}) \rangle_t,$$

where $\langle \cdots \rangle_t = \sum_{N_1, N_2, N_3} \langle \cdots \rangle p(N_1, N_2, N_3, t)$, and $\mathcal{F}_i(\vec{n}) = \frac{1}{2} \sum_{k=1}^{3} F(n_k) - \frac{1}{2} F(n_i)$. The unit of time may be chosen so that there is a single update per a particle on average. Scaling the time by N, expanding Eq. (2) with respect to $1/N$, and using the mean-field approximation in evaluating the average, we get

$$\frac{d}{dt} n_i(t) = \mathcal{F}_i(\vec{n}(t)). \tag{3}$$

where $n_i(t) = \langle n_i \rangle_t$.

Detailed analysis on the existence of the stable stationary solutions of Eq. (3) was done by Coppex et al. 3. We here display their phase diagram in Fig. 1 to make our paper as self-contained as possible. The stable symmetric solution ($n_1 = n_2 = n_3$) exists in region I, III, and IV while the stable asymmetric solution ($n_1 > n_2 = n_3$) exists in region II, III and IV. Note that Eq. (3) is obtained with mean-field approximation that $\langle \mathcal{F}(\vec{n}) \rangle = \mathcal{F}(\vec{n})$. However, as will be shown later, the relation becomes exact for the delta-peaked initial probability distribution, so is the phase diagram.

III. THE SOLUTION OF THE MASTER EQUATION

We are mainly interested in investigating the properties of the infinite system. Consider the thermodynamic limit $N \to \infty$ with the occupancies of the urns n_i being fixed. Representing the probability distribution by n_i instead of N_i, scaling the time by N, expanding Eq. (4) with respect to $1/N$, and keeping the terms up to the first order, we arrive at the partial differential equation

$$\frac{\partial}{\partial t} p(\vec{n}, t) + \frac{\partial}{\partial n_1} [\mathcal{F}_1(\vec{n}) p(\vec{n}, t)] + \frac{\partial}{\partial n_2} [\mathcal{F}_2(\vec{n}) p(\vec{n}, t)] = 0. \tag{4}$$

Here we would like to remind that $n_3 = 1 - n_1 - n_2$ so that the independent variables are n_1, n_2.

Note that Eq. (4) may be interpreted as the continuity equation for the probability with velocity $(\mathcal{F}_1, \mathcal{F}_2)$. Since the velocity is already given as a function of \vec{n}, the solution to Eq. (4) can be formally found as follows. Time evolution of a point located at $\vec{r} = (x, y, 1 - x - y)$ at $t = 0$ is determined by the Eq. (4). We denote it by $\vec{R}(t; \vec{r})$. We show its typical trajectories in Fig. 2. In the symmetric phase (region I in Fig. 1) there is only the stable fixed point corresponding to the symmetric state so that every trajectory flows to that point. This is shown in Fig. 2(a). Figure 2(b) shows a typical behavior for the asymmetric phase (region II in Fig. 1). In this case, there are three stable fixed points corresponding to the asymmetric states and one unstable fixed points corresponding to the symmetric state as well as three saddle points. The trajectories are separated by the separatrices denoted by dashed lines. Finally Fig. 2(c) shows a typical behavior for the mixed phase (region III and IV in Fig. 1). There are one stable symmetric fixed point and three asymmetric fixed points as well as three saddle points. The trajectories flowing toward the stable fixed points are separated by the separatrices.

Since the continuity equation implies that the probability at point \vec{r} evolves according to $\vec{R}(t; \vec{r})$, we obtain a formal solution of Eq. (4)

$$p(\vec{n}, t) = \int dx dy p(\vec{r}, 0) \delta^{(2)} \left(\vec{n} - \vec{R}(t; \vec{r}) \right). \tag{5}$$
FIG. 2: Typical trajectories of Eq. (3). We plotted the trajectories in the diagonal plane of a unit cube so that each variable \(n_i \) is treated in the same way. (a) \(\Delta = 0.5, T_0 = 0.5 \) (symmetric phase) (b) \(\Delta = 0.25, T_0 = 0.05 \) (asymmetric phase) (c) \(\Delta = 1.0, T_0 = 0.1 \) (mixed phase). The stable, the unstable, and the saddle point are represented with a filled circle, a filled square, and a cross, respectively.

It implies that the initial probability distribution in the basin of attraction associated with a stable fixed point will eventually accumulate at that point. As a consequence, in the long time limit \(t \rightarrow \infty \) the probability distribution becomes a sum of delta peaks at the stable fixed points denoted by \(\vec{n}_i \):

\[
p(\vec{n}, \infty) = \sum_i p_i \delta^{(2)}(\vec{n} - \vec{n}_i),
\]

where \(p_i \) are the sum of the initial probabilities in the basin of attraction associated with \(\vec{n}_i \).

Now we will consider another limit in the master equation (11), namely take the long time limit \(t \rightarrow \infty \) before we take the limit \(N \rightarrow \infty \). That is, we are looking for the stationary probability distribution for a finite system. Though this limit may not properly reflect the properties of the infinite system, we expect it will reveal interesting properties of the system concerning the characteristic times (See [6] in two-urn case.).

Let’s first take the long time limit of \(t \rightarrow \infty \) in Eq. (11). In this limit we may drop off the time dependence in the probability distribution, which now takes the form

\[
\begin{align*}
F\left(\frac{N_1 + 1}{N}\right)p(N_1 + 1, N_2 - 1, N_3) - F\left(\frac{N_2}{N}\right) & + \\
F\left(\frac{N_2 + 1}{N}\right)p(N_1, N_2 + 1, N_3 - 1) - F\left(\frac{N_3}{N}\right) & + \\
F\left(\frac{N_3 + 1}{N}\right)p(N_1 - 1, N_2, N_3 + 1) - F\left(\frac{N_1}{N}\right) & + \\
F\left(\frac{N_1 + 1}{N}\right)p(N_1 + 1, N_2, N_3 - 1) - F\left(\frac{N_2}{N}\right) & + \\
F\left(\frac{N_3 + 1}{N}\right)p(N_1, N_2 - 1, N_3 + 1) - F\left(\frac{N_3}{N}\right) & + \\
F\left(\frac{N_2 + 1}{N}\right)p(N_1 - 1, N_2 + 1, N_3) - F\left(\frac{N_1}{N}\right) & = 0(7)
\end{align*}
\]

In contrast to the corresponding equation (13) in the two-urn model [1], it does not show a simple tridiagonal structure. However, we can show that the stationary probability distribution determined by Eq. (7) obeys the detailed balance

\[
F\left(\frac{N_1 + 1}{N}\right)p(N'_1, N'_2, N'_3) = F\left(\frac{N_2}{N}\right)p(N_1, N_2, N_3),
\]

where \(\{i, j, k\} = \{1, 2, 3\} \) and \(N'_i = N_i + 1, N'_j = N_j - 1, N'_k = N_k \). We also would like to note that this kind of relation is obeyed in two-urn model. Equation (7) essentially tells us that probability distribution with \(N_j \) is given by that with \(N_j - 1 \), which is in turn given by that with \(N_j - 2 \), and so on. Repeatedly using Eq. (7) with \(i = 1 \) or 2 and \(i - 3 \), we obtain

\[
p(N_1, N_2, N_3) = \frac{\prod_{k=1}^{N_1+N_2} F\left(\frac{N-k+1}{N}\right)}{\prod_{i=1}^{N_1} F\left(\frac{i}{N}\right) \prod_{j=1}^{N_2} F\left(\frac{j}{N}\right)} p(0,0,N),
\]

where \(p(0,0,N) \) appears as an overall factor to normalize the probabilities so that we get

\[
p(0,0,N) = \left[1 + \sum_{N_1=0}^{N} \sum_{N_2=0}^{N-N_1} \frac{\prod_{k=1}^{N_1+N_2} F\left(\frac{N-k+1}{N}\right)}{\prod_{i=1}^{N_1} F\left(\frac{i}{N}\right) \prod_{j=1}^{N_2} F\left(\frac{j}{N}\right)} \right]^{-1}.
\]
Now let’s take the limit $N \to \infty$. With $\frac{N}{\tau} = n_1$, $\frac{N}{\tau} = n_2$, and scaling the probability distribution by N^2, the stationary probability distribution for large N now becomes

$$\phi(n) \approx \frac{e^{NG(n)}}{\int_0^1 dx \int_0^{1-x} dy e^{NG(n)}} , \quad (10)$$

where

$$G(n) = \int_0^{n_1+n_2} dt [\ln F(1-t)]$$

$$- \int_0^{n_1} dt [\ln F(t)] - \int_0^{n_2} dt [\ln F(t)] . \quad (11)$$

We will call $G(n)$ the (negative) free energy function.

In the limit $N \to \infty$, the main contribution to the stationary probability distribution comes only from the maximum of $G(n)$, and it becomes the sum of delta peaks. The maximum of $G(n)$ occurs when

$$\frac{\partial}{\partial n_1} G(n) = \frac{\partial}{\partial n_2} G(n) = 0 \quad (12)$$

or

$$F(n_1) = F(n_2) = F(n_3) . \quad (13)$$

This condition is equivalent to the stationary condition of the flux equation ϕ. Note that in region II only the three stable asymmetric solutions having the same maximum exist, while in region I only the symmetric solution is stable. Therefore the stationary probability distribution has the triple peaks in region II and only the central peak in region I. In region III and IV both the symmetric and the asymmetric solutions are stable so that the maximum of $G(n)$ should be determined by comparing its values at the stable fixed points. The crossover of the maximum point occurs when both values coincide. This implies that the transition between the triple peaks and the central single peak in the probability distribution is determined by the condition $\Delta G = G(n_0) - G(1/3, 1/3, 1/3) = 0$, where n_0 is one of the stable asymmetric fixed points. This condition yields a line that separates two regions III and IV.

IV. CHARACTERISTIC TIME SCALE

One of the interesting phenomena in sands separated by compartments is a sudden collapse of a granular cluster. It is observed experimentally that a granular cluster with majority of sand grains in a single compartment remains stable for a long time until it collapses abruptly and diffuses over all compartments. The urn model proposed in Ref. displays the same phenomenon: In region I a granular cluster is stable up to a time scale τ, after which sand particles are distributed uniformly over all boxes. Approaching the phase boundary I-IV, the characteristic time scale diverges. At the phase boundary, it is found numerically that τ scales as $\tau \sim N^z$ with $z \approx 0.32$. In this section, the scaling law for the characteristic time τ at and near the phase boundary is derived analytically.

The master equation in Eq. ϕ in the large N limit does not contain a diffusive term. It implies that a delta-peaked probability distribution remains delta-peaked during time evolution, which enabled us to write down the formal solution in Eq. ϕ. The dispersion-less nature also guarantees that the mean field approximation in Eq. ϕ for the occupancy n_i becomes exact as long as the initial values of n_i’s are prescribed. Hence we can study the dynamics of the granular cluster using Eq. ϕ with the initial condition $n_1 = n_2 = 0$ and $n_3 = 1$.

With $n_1 = n_2 = n$ and $n_3 = 1 - 2n$, one can rewrite Eq. ϕ as

$$\dot{n} = V(n) = \frac{1}{2} (F(1-2n) - F(n)) \quad (14)$$

with the initial condition $n(t = 0) = 0$. The cluster dynamics is then determined from the property of the flow function $V(n)$. In the inset of Fig. 1 we show the plots of the flow function at different values of T_0 with $\Delta = 0.3$ fixed. At $\Delta = 0.3$, the critical point separating the region I and VI is given by $T_0 = T_0c = 0.1698 \cdots$. For $T_0 > T_0c$, $n = 1/3$ is the unique stationary state solution; n grows from zero to $1/3$ to reach the symmetric state with $n_0 = n = n_3 = 1/3$. Note that there exists a local minimum in $V(n)$ at $0 < n < 1/3$ where the flow velocity is minimum. Hence the value of n remains at the intermediate value $n \approx n_0$ for a long time, and then converges to $n = 1/3$ quickly. It turns out that the sudden collapse of a granular cluster is due to the local minimum in $V(n)$. The characteristic time scale or the life time τ is given by

$$\tau = \int_0^{n_0} \frac{dn}{V(n)} . \quad (15)$$

As $T_0 \to T_0^+$, the minimum flow velocity $V(n_0)$ decreases and hence τ increases. The asymmetric solution with $n_1 = n_2 < n_3$ emerges at $T = T_0c$ when $V(n_0) = 0$ and τ diverges.

The scaling law for the characteristic time scale is determined from the analytic property of $V(n)$ near $T_0 \simeq T_0c$ and $n \simeq n_0$. One can expand as $V(n) \simeq a(n - n_0)^2 + b(T_0 - T_0c)$, where a and b are constants of order one and all higher order terms in $(T_0 - T_0c)$ are irrelevant. Inserting it into Eq. ϕ, one obtains that the characteristic time scale diverges as $\tau \sim (T_0 - T_0c)^{-1/2}$ (see also Ref. ϕ). At $T_0 = T_0c$, the granular system approaches the asymmetric state algebraically in time as $|n - n_0| \sim t^{-1}$ whose life time τ diverges. That is to say, the asymmetric state is stable in the $N \to \infty$ limit.

However, for finite N, the system could evolve into the symmetric state at $T_0 = T_0c$ with the help of statistical fluctuations in n. Indeed, the probability distribution p has a finite dispersion for finite N, even though...
it becomes a sum of delta peaks for infinite N. In order to estimate the order of magnitude of fluctuations in n, we investigate the stationary probability distribution in Eq. (11) at $T_0 = T_{bc}$ in detail. Near the asymmetric state with $n_1 = n_2 = n$ and $n_3 = 1 - 2n$, the (negative) free energy function in Eq. (11) is written as

$$G(n) = \int_0^{2n} dt \ln F(1 - t) - 2 \int_0^n dt \ln F(t).$$

Now we expand it near $n = n_0$ to yield $G(n) = G(n_0) + G'(n_0)(n - n_0) + \frac{1}{2}G''(n_0)(n - n_0)^2 + \frac{1}{3}G'''(n_0)(n - n_0)^3 + \cdots$. After straightforward calculations, one can show that

$$G'(n_0) = 2 \ln(F(1 - 2n_0)/F(n_0)) \quad (16)$$

$$G''(n_0) = \frac{2}{F(n_0)} V'(n_0) \quad (17)$$

$$G'''(n_0) = \frac{2}{F(n_0)} V''(n_0). \quad (18)$$

Note that $G'(n_0) = G''(n_0) = 0$ since $V(n_0) = V'(n_0) = 0$. Therefore, the (negative) free energy function can be approximated as $G(n) \simeq c(n - n_0)^3$ with a constant c, and hence the probability distribution as $p_n(n) \simeq e^{cN(n - n_0)^3}$ up to a normalization constant.

The stationary probability distribution suggests that the magnitude of the fluctuation in n near n_0 is of order $\delta n \sim N^{-1/3}$. With the help of the fluctuation, the granular system could get away from the asymmetric state when $|n(t) - n_0| \sim \delta n$, and flow into the symmetric state. Therefore the characteristic time scale is given by $\tau \simeq \int_0^{n_0 - \delta n} dt/V(t)$, which results in $\tau \sim N^z$ with the dynamic exponent

$$z = 1/3. \quad (19)$$

Our analytic result confirms the numerical result $z \simeq 0.32$ reported in Ref. [3].

V. CONCLUSIONS

We analytically investigate the three-urn model introduced by Coppex et al. [5] We formally solve the master equation of the model in the thermodynamic limit and find how the probability distribution evolves. In the long time limit, the probability distribution becomes delta peaks only at the stable fixed points. The strength of a delta peak is equal to the sum of initial probabilities in the basin of attraction associated with that fixed point.

We solve exactly the stationary probability distribution where we take the long time limit before we take thermodynamic limit. We find the distribution obeys the detailed balance. Regardless of the initial probability distribution it shows triple peaks or a single central peak depending on the parameters of the system. The final formula of the stationary probability distribution resembles that of the equilibrium systems, where the transition from the triple peaks to the single peak is determined by the condition that free energies of two phases become equal.

We also obtain the exact scaling law for the characteristic time scale τ which it takes to reach the symmetric state from an asymmetric state near and at the phase boundary I-VI. In the symmetric phase (region I), the granular cluster is unstable and τ is finite. It grows as one approach the phase boundary as $\tau \sim (T_0 - T_{bc})^{-1/2}$. At $T_0 = T_{bc}$, the characteristic time diverges algebraically as $\tau \sim N^z$ with the dynamic exponent $z = 1/3$.

[1] L. P. Kadanoff, Rev. Mod. Phys. 71, 435 (1999).
[2] H. J. Schlichting and V. Nordmeier, Math. Naturwiss. Unterr. 49, 323 (1996).
[3] J. Eggers, Phys. Rev. Lett. 83, 5322 (1999).
[4] A. Lipowski and M. Droz, Phys. Rev. E 65, 031307 (2002).
[5] F. Coppex, M. Droz, and A. Lipowski, Phys. Rev. E 66, 011305 (2002).
[6] G. M. Shim, B. Y. Park, and H. Lee, Phys. Rev. E 67, 011301 (2003).
[7] I. Bena, F. Coppex, M. Droz, and A. Lipowski, Phys. Rev. Lett. 91, 160602 (2003).
[8] D. van der Meer, K. van der Weele, and D. Lohse, Phys. Rev. Lett. 88, 174302 (2002).