Doppler frequency estimation using maximum likelihood function for low ultrasonic velocity profile

Natee Thong-un1,∗, Wongsakorn Wongsaroj2, Weerachon Treenuson3, Jirasad Chanwutitum1 and Hiroshige Kikura2

1Department of Instrumentation and Electronics Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800 Thailand
2Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2–12–1–N1–7 Ookayama, Meguro-ku, Tokyo, 152–8550 Japan
3Office of Atoms for Peace, Ministry of Science and Technology, 16 Vibhavadi Rangsit Road Bangkok 10900, Thailand

(Received 28 February 2017, Accepted for publication 15 April 2017)

Keywords: Doppler-frequency estimation, Maximum likelihood estimation, Ultrasonic velocity profile

PACS number: 43.30.+m, 43.60.+c, 43.35.Yb [doi:10.1250/ast.38.268]

1. Introduction

In general, the circulating water system with accurate flowrate measurement is a necessary part in nuclear power plants because it can guarantee the stability of the flow-loop control. The important affects of flowrate measurement often reduce accuracy due to pipeline characters, for examples, very large diameter, bent pipes, and double bent pipes. These limitations lead to very complicated water flow after passing, and the conventional flowmeters cannot satisfy for this case. Ultrasonic velocity profile (UVP) method can provide accurate flowrate under the complicated flow as non-symmetrical flow by multiple sensors [1]. UVP is a method to obtain velocity profiles using ultrasonic wave without any installation of sensors inside the pipeline, and it does not need any calibration while the usage. Pulse ultrasound waves are sent from a transducer with a basic frequency \(f_0 \) passing through the streamline with an incident angle \(\theta_W \) along a measurement line as shown in Fig. 1. Then, the ultrasonic pulses with shifted frequency \(f_d \) based on the Doppler principle are reflected back from the surface of particles flowing in the fluid, and they are returned to the original transducer installed on the pipeline’s surface. The Doppler-shifted frequency is proportional to a component \(V_{TX} \) of the velocity \(V_{axial} \) along the measurement line of the particles, where \(c_T \) is a sound velocity in liquids.

\[
V_{TX} = \frac{c_T}{2 f_0} f_d
\]

(1)

Thus, UVP can be obtained by only component along ultrasonic path. By assuming a one-directional flow parallel to the streamline direction, the velocity in the axial direction \(V_{axial} \) can be computed as Eq. (2):

\[
V_{axial} = \frac{V_{TX}}{\sin \theta_T}
\]

(2)

Takeda is the first person to apply the ultrasonic pulsed Doppler method into UVP [2]. The ultrasonic pulsed Doppler method can be computed from the multiple echo signals of pulse repetitions. The several analysis methods including Fast Fourier transform (FFT), the wavelet transform (WT), and the autocorrelation (AC) disturbed with effects of pulse repetitions and noise [3] are evaluated experimentally to achieve the Doppler frequency. The ultrasonic pulsed Doppler method based on the maximum likelihood estimation (MLE) is originally developed for use in blood velocity estimation [4]. However, the maximum likelihood estimation method is far from applying it to UVP. Therefore, this report is the first to apply this technique to the UVP method, and the experimental results can guarantee that MLE is possible on the low velocity. Not only the Doppler frequency is estimated using MLE, but an amplitude’s Doppler echo can be obtained together as well. This ability is superiority when comparing with others which give us only the Doppler frequency measurement. The amplitude estimator leads to further study, for examples, bubble sizes moving in the pipeline, turbidity, and so on. Thus, MLE is an interesting choice of development involving UPV.

2. The maximum likelihood estimation inside a channel width of UPV measurement

An ultrasonic transducer transmits a short emission of ultrasound, which is moving along the measurement line, and then switches over to listening as shown in Fig. 2. While the ultrasonic pulse hits a tiny particle, a part of the ultrasonic energy scatters on particle and echo back, and then other parts of the ultrasonic energy enter into the next measuring volume of particle. Usually, the reflected echoes are recorded at every channel width of the measurement line. We can consider the observed data set \(s[n] \) form the frequency demodulation referred in Fig. 2, including three unknown parameters as shown in Eq. (3):

∗e-mail: thnatee@yahoo.co.th
Fig. 1 Measurement scheme of the UVP measurement.

Fig. 2 Channel width of UVP on a flow with free surface on the several signal processing method including Fast Fourier transform, the autocorrelation, and the maximum likelihood estimation.

\[s[n] = A \sin(2\pi f_d n + \phi) + w[n], \quad n = 0, 1, \ldots, N - 1 \]
(3)

where \(A \) is amplitude, \(f_d \) is Doppler-shifted frequency, and \(\phi \) is phase. If \(w[n] \) is White Gaussian Noise with unknown variance, we first determine the Cramer-Rao Lower Bound (CRLB) to satisfy with equality. The probability density function (PDF) is

\[
p(s; A, f_d, \phi) = \frac{1}{(2\pi \sigma^2)^{N/2}} \exp \left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (s[n] - A \sin(2\pi f_d n + \phi))^2 \right]
\]
(4)

where \(\sigma^2 \) is variance. To achieve the maximum likelihood of the PDF, we should have to minimize \(\Sigma_{n=0}^{N-1} (s[n] - A \sin(2\pi f_d n + \phi))^2 \). If assuming that \(F(A, f_d, \phi) = \Sigma_{n=0}^{N-1} (s[n] - A \sin(2\pi f_d n + \phi))^2 \), we reform

\[
F(A, f_d, \phi) = \sum_{n=0}^{N-1} (s[n] - A \cos \phi \sin(2\pi f_d n) + \sin \phi \cos(2\pi f_d n))^2
\]
(5)

\[
F(A, f_d, \phi) = \sum_{n=0}^{N-1} (s[n] - C_1 \sin (2\pi f_d n))^2 - C_2 \cos (2\pi f_d n)^2
\]
(6)

where \(C_1 = A \cos \phi \) and \(C_2 = A \sin \phi \). Then, we take a square

\[
C_1^2 = A^2 \cos^2 \phi \quad \text{and} \quad C_2^2 = A^2 \sin^2 \phi
\]

We can get two unknown parameters \(A \) and \(\phi \)

\[
A = \sqrt{C_1^2 + C_2^2}
\]
(7)

\[
\phi = \tan^{-1} \frac{C_2}{C_1}
\]
(8)

Again, we let this definition.

\[
x[n] = [1 \cos(2\pi f_d[1]) \cos(2\pi f_d[2]) \ldots \cos(2\pi f_d[N - 1])]^T
\]

\[
y[n] = [0 \sin(2\pi f_d[1]) \sin(2\pi f_d[2]) \ldots \sin(2\pi f_d[N - 1])]^T
\]

Replace \(C_1, C_2, x[n] \) and \(y[n] \) into Eq. (5).

\[
F'(C_1, C_2, f_d) = \sum_{n=0}^{N-1} (s[n] - C_1 x[n] - C_2 y[n])^2
\]

\[
F'(C_1, C_2, f_d) = (s - HA)^T (s - HA)
\]
(9)

where \(s = [s[0] \ s[1] \ldots \ s[N - 1]]^T \), \(H = [y[n] \ x[n]] \), and \(A = [C_1 \ C_2]^T \). We can estimate \(\hat{A} \) by minimizing Eq. (9).

\[
\hat{A} = [\hat{C}_1 \ \hat{C}_2]^T = (H^T H)^{-1} H^T s[n]
\]
(10)

Plugging Eq. (10) into Eq. (9).

\[
F'(\hat{C}_1, \hat{C}_2, f_d) = s^T (I - H(H^T H)^{-1} H^T) s
\]
(11)

\(I \) is an identity matrix and \(I - H(H^T H)^{-1} H^T \) is an idempotent matrix. To find \(f_d \), we need minimizing \(F' \) over \(f_d \) or maximizing \(s^T H(H^T H)^{-1} H^T s \). Therefore, the Doppler frequency is estimated according to Eq. (12).

\[
\hat{f}_d = \max_{f_d \in \text{of}} (s^T H(H^T H)^{-1} H^T s)
\]
(12)

The estimated frequency in Eq. (12) is replaced into Eq. (10) to estimate amplitude \(\hat{A} \) and phase \(\hat{\phi} \).

\[
\hat{A} = \sqrt{\hat{C}_1^2 + \hat{C}_2^2}
\]
(13)

\[
\hat{\phi} = \tan^{-1} \frac{\hat{C}_2}{\hat{C}_1}
\]
(14)

3. Performance analysis with the CRLB

The lowest possible variance of an unbiased estimator can be obtained using the CRLB. The CRLB is definitely equal to the inverse of the Fisher matrix defined as:

\[
\text{var}(f_d) \geq \frac{1}{\text{E} \left[\frac{\partial^2 \ln p(s; A, f_d, \phi)}{\partial f_d^2} \right]} = \frac{12\sigma^2}{2\pi A^2 N (N^2 - 1)}
\]
(15)

\[
\text{var}(\hat{A}) \geq \frac{1}{\text{E} \left[\frac{\partial^2 \ln p(s; A, f_d, \phi)}{\partial A^2} \right]} = \frac{2\sigma^2}{N}
\]
(16)

\[
\text{var}(\hat{\phi}) \geq \frac{1}{\text{E} \left[\frac{\partial^2 \ln p(s; A, f_d, \phi)}{\partial \phi^2} \right]} = \frac{8\sigma^2}{A^2 N}
\]
(17)

where \(\text{E}[\cdot] \) is the expectation. The CRLB evaluates intuitive
Table 1 Comparison of the CRLB and variance of estimators for 20.00 dB SNR.

Estimation	\(f_d \) (kHz)	\(\hat{A} \) (V)	\(\hat{\phi} \) (degree)
Actual parameter	5	1	0
20.00 dB SNR			
Mean	5.0027	0.9995	0.0198
Variance	1.5157 \times 10^{-6}	5.7998 \times 10^{-6}	0.0783
CRLB	3.0286 \times 10^{-7}	4.9680 \times 10^{-6}	1.987 \times 10^{-5}

insights on the unknown parameters. In this case, the estimation focuses on only the Doppler-shifted frequency for the UVP. The variance of any reflected echo per a channel width depends on the SNR and sampling number. The higher SNR and sampling frequency improve the accuracy of parameter estimation. To assess the performance of estimators, a Monte-Carlo simulation was utilized to observe the means and the variances against the CRLB as shown in Table 1. 5 kHz of Doppler-shifted frequency added to a carrier frequency is equal to 0.8489 m/s of the particle’s velocity. The Monte-Carlo simulation results were obtained using 100 trials of repeating with 100 MHz of sampling. Then, the searching method, because of no divergence, was applied to maximize the Doppler-shifted frequency from the minimum frequency 0 kHz up to 10 kHz with 1 Hz of resolution. The simulation results have been observed that the estimated Doppler-shifted frequency, and amplitude can reach a high degree of consistency with the actual parameters. In the case of the phase parameter, the estimator had much more variance than CRLB since the Doppler-shifted frequency and the amplitude parameters were estimated beforehand, and the variances from both the Doppler-shifted frequency and the amplitude were accumulated.

4. Experimental result in UVP

To evaluate MLE for UVP measurement, this section examines the accuracy of the Doppler-shifted frequency estimator, only Eq. (12), in a term of a low constant flowrate 15 liters per minute measured by an electromagnetic flowmeter of Yokogawa shown in Fig. 3, 50 millimeters of the pipe diameter, 45° of the incident angle, and 100 channels along to the measurement line. The velocity profile form MLE was compared with other signal processing methods (FFT and autocorrelation). The FFT and autocorrelation were used widely in the conventional Doppler frequency measurement [3]. The power spectrum of the frequency, \(P(f_k) \), is demonstrated as follows:

\[
P_I = (\Re[X_1] - \Im[X_Q])^2 + (\Re[X_Q] + \Im[X_L])^2 \quad (18)
\]

\[
P_B = (\Re[X_1] + \Im[X_Q])^2 + (\Re[X_Q] - \Im[X_L])^2 \quad (19)
\]

where \(X_1(f_k) \) and \(X_Q(f_k) \) are the discrete Fourier transforms of the frequency demodulation, and \(P_I \) and \(P_B \) are power spectra of forward direction and backward direction, respectively. The value of \(f_d \) can be computed by averaging the spectrum in Eq. (20).

\[
f_d = \frac{\sum_{n=0}^{N_{\text{pulse}}}|f_k(P_I(f_k) - P_B(f_k))|}{\sum_{n=0}^{N_{\text{pulse}}}|P_I(f_k) + P_B(f_k)|} \quad (20)
\]

\(N_{\text{pulse}} \) is a number of pulse repetitions. Next, the autocorrelation method is based on the time domain analysis to compute the phase difference. The autocorrelation function \(R \) is expressed in Eq. (21).

\[
R[n] = \sum_{n=0}^{N_{\text{pulse}}} s[n] \cdot \overline{s[n]} \quad (21)
\]

The Doppler frequency according to the autocorrelation method can be written in Eq. (22).

\[
f_d = \frac{1}{2\pi T_{\text{prf}}} \tan^{-1} \frac{\Im[R[n]]}{\Re[R[n]]} \quad (22)
\]

\(T_{\text{prf}} \) is a period of pulse repetitions. Figure 3 depicts the measurement system constructed for this report. It consists of four hardware packets, an ultrasonic prob of Imasonic, a pulser/receiver of PUL2 Honda Electronics, a 8 bit, 100 MS/s digitizer of NI USB-5133 and a personal computer. The flow condition was set up with 15 liters per minute of the low flowrate. Number of pulse repetitions was 32, the pulse repetition frequency was 2 kHz, and 4 MHz of the basic frequency was adjusted on the pulser/receiver. Figure 4 is the UVP series at 15 liters per minute of flowrate relied on the Fast Fourier transform method, the autocorrelation method, and the maximum likelihood estimation method. The ultrasonic velocity profile of these techniques was converted mathematically to flowrate in as follows

\[
Q = \pi R^2 V(r) \cdot r \quad (23)
\]

where \(R \) is defined as a radius of the pipeline, and \(V(r) \) is the velocity profile on any radius, \(r \), measured from the Doppler frequency methods. Table 2 shows the flowrate measurement derived using UPV of the Fast Fourier transform method, the autocorrelation method, and the maximum likelihood estimation, comparing with the standard flowmeter. The flowrate result solved using UVP of the maximum likelihood estimation is sufficient for accuracy.
5. Conclusion

This paper developed a statistical solution for estimating the UVP measurement relied on the maximum likelihood function from a low constant flowrate. The solution method introduces the Doppler-shifted frequency estimator that allows the velocity profile to be solved efficiently, comparing with the low flowrate. The maximum likelihood estimation is the algorithm of choice for measuring velocity distributions.

References

[1] W. Treenuson, N. Tsuzuki, H. Kikura, M. Aritomi, S. Wada and K. Tezuka, “Accurate flowrate measurement on the double bent pipe using ultrasonic velocity profile method,” J. Jpn. Soc. Exp. Mech., 13, 200–211 (2013).
[2] Y. Takeda, “Development of an ultrasound velocity profile monitor,” Nucl. Eng. Des., 126, 227–284 (1991).
[3] H. Murakawa, K. Sugimoto and N. Takenaka, “Effects of the number of pulse repetitions and noise on the velocity data from the ultrasonic pulsed Doppler method with different algorithms,” Flow Meas. Instrum., 40, 9–18 (2014).
[4] K. W. Ferrara and V. R. Algazi, “A new wideband spread target maximum likelihood estimator for blood velocity estimation — Part 1: Theory,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 38, 1–26 (1991).