Model Selection for Mixture Models Using Perfect Sample

Sadegh Fallahigilan¹, Abdolreza Sayyareh*⁺

¹ Razi University
⁺ Toosi University of Technology

Received: 6/17/2018 Approved: 7/20/2019

Abstract. We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixture distribution as a complete-data (bivariate) distribution by prediction of missing data variable (unobserved variable) and show that this ideas is applicable to use Vuong’s test for select optimum mixture model when number of components are known (fixed) or unknown. We have considered AIC and BIC based on the complete-data distribution. The performance of this method is evaluated by Monte-Carlo method and real data set, as Total Energy Production.

Keywords. finite mixture model; perfect sample; model selection; missing data variable; Vuong’s test

MSC 2010: 62F03.

* Corresponding author
1 Introduction

The mixture models are one of the most important statistical models, and also the most technically challenging. See, Everitt and Hand (1981); Titterington et al. (1985) have provided the properties of minimum-distance estimators for mixture models, especially for estimation of the weights, McLachlan and Basford (1988); McLachlan and Peel (2004) introduced a lot of algorithms that have been published to fit mixture models, and Redner and Walker (1984), have extended the regular assumptions in Wald (1948) for well-specified mixture model using some assumptions. Model selection is an important step in most empirical work and, accordingly, there exists a vast literature devoted to this issue. Model selection for mixture model can be viewed in two situations. First is about determining the number of components by hypothesis testing when two rival mixture models are nested and second is selecting optimum model between two rival non-nested mixture models with equal number of components under which the rival models are well-specified or mis-specified. In many practical situations, the number of components in a mixture distribution is unknown. Determining the number of components in a mixture distribution is an important but difficult problem. It is well known that the likelihood ratio statistic for testing the number of components in a mixture model fails to have the classical chi-squared distribution, since under the null hypothesis, the mixing proportions lie on the boundary of the parameter space and the parameters are not identifiable under the model of null hypothesis. Ghosh and Sen (1985) obtained the limiting distribution under a separation condition. The separation condition turned out to be unnecessary, which was shown by Chernoff and Lander (1995) for binomial mixtures, and in general by Chen et al. (2001); Dacunha-Castelle and Gassiat (1999) and others. Chen et al. (2001); Chen and Kalbfleisch (2005) developed a modified likelihood approach which they showed to be simple to use and to have good performance in many situations. Feng and McCulloch (1994) performed a simulation study to demonstrate their claim that the simulated null distribution of the likelihood ratio statistic for testing a single normal against a mixture of two normal distributions depends on the choice of restrictions imposed on the component variances. Lo et al. (2001) extended the work of Vuong (1989) by applying the Vuong’s test to allow comparisons between rival models with different numbers of components. They showed that the likelihood ratio statistic is asymptotically distributed as a weighted sum of independent chi-squared random variables with one de-
gree of freedom. It is important to note that Jeffries (2003) pointed out that the conditions for the Lo-Mendell-Rubin (LMR) likelihood ratio test Theorem are not generally satisfied in the mixture modeling context when the parameters are in boundary of parameter space. When the null hypothesis of LMR is true, the parameters of the additional component hypothesized under the alternative hypothesis does not exist. Therefore, they don’t have a unique maximum in parameter space, which is a violation of one of the assumptions presented in Lo et al. (2001). Despite this flaw, LMR has been widely used and has been shown to be effective in recovering the number of underlying components, Nylund et al. (2008); Morgan (2015); Morgan et al. (2016). Lo (2005) performed a simulation study to normal mixture with unequal variances and he confirmed the results of Lo et al. (2001). Also, Sayyareh (2016) considers a finite mixture of the known criterion to the model selection problem to answer to the question, how could infinite set of all possible models that could have given rise to data, be narrowed down to a reasonable set of statistical models. He has proposed two types of coefficients for the mixture criterion, one based on the density and another one based on the risk function. Fallahigilan and Sayyareh (2016) have selected model for mixture distribution with the Vuong’s test, AIC and BIC, based on simulation study. Wichitchan et al. (2018) apply the idea of goodness of fit (GOF) testing procedure to finite mixture models and investigate their performance when performing hypothesis testing of mixture models for different types of alternative hypotheses.

The aim of the current paper is to give a method to model selection in mixture issue using Vuong’s statistic and model selection criteria. In Section 2, the idea is to altering mixture model distribution and its development it to a complete-data (bivariate) distribution. In section 3 we propose a test procedure based on an extension of the Theorem which have introduced by Vuong (1989). We extend the Vuong (1989) has likelihood ratio test for model selection, AIC and BIC. We use the Vuong’s test to show when the rival models are nested, based on certain regularity assumptions, the limiting distribution of the likelihood ratio statistic is a weighted sum of independent χ^2 random variables, and a normal distribution when the rival models are non-nested. These results do not require that either of the rival models be well-specified. Section 4 consider a discussion on this approach in more details. In particular, using the results of Sections 2 and 3, we shall obtain very simple tests and information criteria for selecting among two rival models. Numerical results, compression between our method with LMR.
likelihood ratio test and Kolmogorov-Smirnov test based on Wichitchan et al. (2018) and also data analysis for Total Energy Production data set are presented in Section 5. There is a discussion about total energy production for 10 top Total Energy Production Rankings, in United State of America. Our basic verification show that this data has a finite mixture model. So we extend the known statistical test to find an optimum model between some nested, non-nested and mis-specified rival models.

\section{Development of the Mixture Models}

Finite mixture distributions have been used widely in the modern statistics. Consider a population made up of \(m \) subgroups, mixed at random in proportion to the relative group sizes \(\tau_1, \ldots, \tau_m \). Assume that interest lies in some random feature \(X \) which is heterogeneous across and homogeneous within the subgroups. Due to heterogeneity, \(X \) has a different probability distribution in each group, usually assumed to arise from the same parametric family \(h(x|\phi) \), however, with the parameter \(\phi \) differing across the groups. The groups may be labelled through a discrete indicator variable \(Z \) taking values in the set \(1, \ldots, m \). When sampling randomly from such a population, we may record not only \(X \), but also the group indicator \(Z \). The probability of sampling from the group labelled \(Z \) is equal to \(\tau_j \), whereas conditional on knowing \(Z \), \(X \) is a random variable following the distribution \(h(x|\phi_j) \) with \(\phi_j \) being the parameter in group \(Z \). The joint density \(h(x, z) \) is given by

\[
h(x, z) = h(x|z)h(z).
\]

A finite mixture distribution arises if it is not possible to record the group indicator \(Z \); what we observe is only the random variable \(X \).

Let \(X = (X_1, \ldots, X_n)^T \in \mathbb{R}^k \) denote a random vector with size \(n \), where \(X_i \) is a \(k \)-dimensional random vector and is independent and identically distributed random vector with mixture distribution function \(H(x|\Upsilon) = \int_{-\infty}^{x} h(t|\Upsilon)dt \) where

\[
h(x_i|\Upsilon) = \sum_{j=1}^{m} \tau_j h_j(x_i|\phi_j), \; x_i \in \mathbb{R}^k, \; \phi_j \in \Phi_j \subseteq \mathbb{R}^p; \; j = 1, \ldots, m \quad (1)
\]

is probability density and \(m \) is the number of components of the mixture and each \(\tau_j \) is non-negative quantities that sums to one. The quantities \(\tau_1, \ldots, \tau_m \)
are called the mix proportions or weights. The function of any components,
\[h_1(x|\phi_1), \ldots, h_m(x|\phi_m) \]
are the same parametric density functions by \(\phi_j \in \Phi_j \subseteq \mathbb{R}^{p_j} \) where \(\phi_j \) is the vector of unknown parameters in the postulated form for the \(j \)th component and \(p_j \) is the number of parameters in \(j \)th component. So we consider (1) as definition of \(m \)-component mixture (incomplete-data) density function with parameter space
\[\Delta = \{ (\tau_1, \ldots, \tau_m, \phi_1, \ldots, \phi_m) : \sum_{j=1}^{m} \tau_j = 1, \tau_j \geq 0, \phi_j \in \Phi_j \text{ for } j = 1, \ldots, m \} \]
and \(\Upsilon = \{ (\tau_1, \ldots, \tau_{m-1}, \phi_1, \ldots, \phi_m) \} = \{ \xi_1, \ldots, \xi_{\ell_0} \} \); \(\Upsilon \in \Delta \subseteq \mathbb{R}^{\ell_0} \) where \(\Upsilon \) is the vector of all unknown parameters in the mixture model and \(\ell_0 \) is the dimension of \(\Upsilon \) that is \(\ell_0 = m - 1 + \sum_{j=1}^{m} p_j \).

It is well known that the mixture model can be seen as an incomplete-data structure model, where the complete-data is given by
\[(X, Z) = \{ (X_1, Z_1), \ldots, (X_n, Z_n) \} \]
and \(Z_i \) represent the missing data variable which can be thought of as the component label of the feature vector \(X_i \). It is convenient to work with a \(m \)-dimensional-label vector \(Z_i \) in place of the single categorical variable \(Z_i \), where the \(j \)th element of \(Z_i \), \(Z_{ij} \), is defined to be one or zero, according to whether the component of origin of \(X_i \) in the mixture is equal to \(j \) or not \((j = 1, \ldots, m)\). Thus \(Z_i \) is distributed according to a multinomial distribution consisting of one draw on \(m \) categories with probabilities \(\tau_1, \ldots, \tau_m \); that is,
\[P(Z_i = z_i) = \tau_1^{z_{i1}} \cdots \tau_m^{z_{im}} \]
or
\[Z_i \sim \text{Multinomial}(1, \tau_1, \ldots, \tau_m). \]

Then one can write the mixture density in the complete-data form as,
\[h(x_i, z_i|\Upsilon) = \prod_{j=1}^{m} (\tau_j h_j(x_i|\phi_j))^{z_{ij}}. \]
According \(Z \), we have found an alternative method for mixture models based on a complete-data distribution of \(X \) and \(Z \). So, we could write mixture model in fully categorized, complete-data observation \((X, Z)\), with complete-data density function (2) in family of \(H_Y = \{h(x, z|\Upsilon) : \Upsilon \in \Delta\} \). The first advantage this model is that we could write closed and linear form for log-likelihood function. The second advantage is about identifiability of mixture models. In a family of finite mixture distribution \(H_Y' = \{h(x|\Upsilon) : \Upsilon \in \Delta\} \) one has to distinguish among three types of non-identifiability. Non-identifiability due to invariance to relabeling the components of the mixture distribution, Redner and Walker (1984), and non-identifiability due to potential overfitting, Crawford (1994). The last type of non-identifiability is a generic property of a certain class of mixture distributions (like finite mixtures of uniform distributions), Teicher (1961). In the following, we will avoid last type of models.

According Yakowitz and Spragins (1968); Titterington et al. (1985) we can not use identifiability definition for mixture model. We assume that all weights are positive, \(0 < \tau_1 < \cdots < \tau_m < 1 \) and for each mixture the component parameters are distinct in the weak sense defined, \(\phi_1 < \cdots < \phi_m \) (this strong constraint rules out many interesting mixtures if \(\phi_j \) contained all element of parameters. e.g. in the two-component normal mixture these restrictions are \(0 < \tau_1 < \tau_2 < 1 \) and \(\mu_1 < \mu_2 \) or \(0 < \tau_1 < \tau_2 < 1 \) and \(\sigma_1 < \sigma_2 \).

So, we modified this conditions for arbitrary element of parameters. Then these assumptions ensure that \(h(x|\Upsilon_1) = h(x|\Upsilon_2) \) implies \(\Upsilon_1 = \Upsilon_2 \).

Third advantage is, this model contains more information about the unknown parameters than observed data. Now, let \(\sigma_Y \) be the \(\sigma \)-finite measure on \(Y \). The vector \(Y \) denote a random vector which is partitioned to \(Y = (X, Z) \). Let \((X, \sigma_X) \) and \((Z, \sigma_Z) \) be the measurable space associated with \(X \) and \(Z \). Let \(H_Y^0 \) be true distribution of \(Y \). Based on regularity assumptions given in Vuong (1989) as Assumptions 1-6. We have explained some of these Assumptions as follow.

Assumption 1. The random vector \(Y \) is independent and identically distributed, \(i.i.d. \), with common true underlying distribution \(H_Y^0 \) on \((Y, \sigma_Y) \) with measurable Radon-Nikodym density \(h(\cdot) \).

Now we consider two rival parametric families of mixture distributions with complete-data form: \(F_\Gamma = \{f(y|\Gamma) : \Gamma \in \Omega \in \mathbb{R}^l\} \) and \(G_\Psi = \{g(y|\Psi) : \Psi \in \Lambda \in \mathbb{R}^p\} \). These rival models can be nested or non-nested. Also, both, only one or neither can be well-specified. Each rival models must be satisfied
Vuong’s (1989) Assumptions 2 to 5 that stated in terms of \(F \). It is clear that similar Assumptions are made on \(G \).

According Vuong’s Assumptions ensures the existence of the matrices:

\[
\begin{align*}
A_f(\Gamma_\star) &= \langle E_h(\nabla^2 \log f(Y|\Gamma_\star)) \rangle \\
A_g(\Psi_\star) &= \langle E_h(\nabla^2 \log g(Y|\Psi_\star)) \rangle \\
B_f(\Gamma_\star) &= \langle E_h((\nabla_\Gamma \log f(Y|\Gamma_\star)) \nabla_\Gamma(\log f(Y|\Gamma_\star))^T) \rangle \\
B_g(\Psi_\star) &= \langle E_h((\nabla_\Psi \log g(Y|\Psi_\star)) \nabla_\Psi(\log g(Y|\Psi_\star))^T) \rangle \\
B_{fg}(\Gamma_\star, \Psi_\star) &= B_{gf}(\Psi_\star, \Gamma_\star) = \langle E_h((\nabla_\Gamma \log f(Y|\Gamma_\star)) \nabla_\Psi(\log g(Y|\Psi_\star))) \rangle
\end{align*}
\]

The expectation under \(h(\ldots) \), \(E_h \), denote the expectation with respect to the true distribution of \(Y \) and the value \(\Gamma_\star \) is called pseudo-true value of \(\Gamma \) for rival model \(F \). Similarly, \(\Psi_\star \) denotes the pseudo-true value of \(\Psi \) for \(G \).

2.1 Estimation of Missing Data Variable

The EM algorithm is a broadly applicable algorithm that provides an iterative procedure for computing MLE’s in situations where, but for the absence of some additional data, MLE would be straightforward. The EM algorithm approaches the problem of solving the incomplete-data log likelihood equation indirectly by proceeding iterative in terms of the complete-data log likelihood function.

One can write the log-likelihood

\[
\log f(x|\Gamma) = \log f(y|\Gamma) - \log \kappa_f(z_f|x; \Gamma) \Rightarrow \\
\log L(\Gamma) = \log L_c(\Gamma) - \log \kappa_f(z_f|x; \Gamma),
\]

where \(\log L(\Gamma) \) and \(\log L_c(\Gamma) \) are incomplete-data and complete-data log likelihood functions. On taking the expectations of both sides of (3) with respect to the conditional distribution \(\kappa_f(z_f|x; \Gamma^{(k)}) \) using the fit \(\Gamma^{(k)} \) for \(\Gamma \), we have that

\[
\log L(\Gamma) = E_{\kappa_f(z_f|x; \Gamma^{(k)})}(\log L_c(\Gamma)|x) - E_{\kappa_f(z_f|x; \Gamma^{(k)})}(\log \kappa_f(Z_f|x; \Gamma)) \Rightarrow \\
= Q(\Gamma; \Gamma^{(k)}) - H(\Gamma; \Gamma^{(k)}).
\]

More specifically, let \(\Gamma^{(0)} \) be some initial value for \(\Gamma \). Then we have for estimating parameters using EM algorithm as;
\begin{itemize}
 \item \textbf{E-step:} Calculation $Q(\Gamma; \Gamma^{(k)})$.
 \item \textbf{M-step:} Choose $\Gamma^{(k+1)}$ to be any value of $\Gamma \in \Omega$ that maximizes $Q(\Gamma; \Gamma^{(k)})$.
\end{itemize}

The \textit{E-} and \textit{M-}steps are alternated repeatedly until the difference

$$L(\Gamma^{(k+1)}) - L(\Gamma^{(k)})$$

by an arbitrarily small amount in the case of convergence of the sequence of likelihood values $\{L(\Gamma^{(k)})\}$ where $k = 0, 1, \ldots$. In reality, Z_f is unknown but yet we could find a prediction of the missing data variable Z_f. Kazakos (1977), Scott and Symons (1971) and Symons (1981) introduced many ways for predicate Z_f. We have selected the predictor of Z_f in last iteration of EM algorithm in terms of mean squared error. As McLachlan and Peel (2004) point out, the corresponding a classification distribution is

$$E_{\kappa_f(z_f | x; \Gamma)}(Z_{jf} | x) = P(Z_{jf} | x; \Gamma) = \frac{\alpha_{j_f} f(x | \theta_{j_f})}{f(x | \Gamma_n)}. \quad (5)$$

After parameter estimation with EM algorithm, the predicted classifications are given by (5) in the last iterative. For convenience, write

$$\hat{z}_{jf} = E_{\kappa_f(z_f | x; \Gamma_n)}(Z_{jf} | x) = \frac{\hat{\alpha}_{j_f} f(x | \hat{\theta}_j)}{f(x | \Gamma_n)}, \quad (6)$$

for $j = 1, \ldots, m$. In some applications it is desirable to harden a posterior classifications and the most popular way to do this is to report maximum a posterior (MAP) classifications, i.e.

$$MAP(\hat{z}_{jf}) = \begin{cases}
 1 & j = \operatorname{argmax}_h \{\hat{z}_{h_f}\} \\
 0 & \text{otherwise}.
\end{cases} \quad (7)$$

\section{Model Selection}

In this section, based on Vuong (1989), we obtain the asymptotic distribution of the complete-data likelihood ratio (CLR) statistic under Vuong’s Assumptions 1 to 5 and also we extend AIC, BIC for complete-data form of mixture distribution.

In the other hand, one can write \textit{E-step} in the last iterative based on
previous section

\[
\log L(\Gamma) = E_{\kappa_f(\hat{z}_f|x;\hat{\Gamma}_n)}(\log f(X, Z_f|\Gamma)|x) \Rightarrow \\
\log L(\hat{\Gamma}_n) = E_{\kappa_f(\hat{z}_f|x;\hat{\Gamma}_n)}(\log f(X, Z_f|\hat{\Gamma}_n)|x).
\]

(8)

Lemma 1. Given Vuong’s Assumptions 1 to 3 and Equation (8):

\[
\frac{1}{n} \sum_{i=1}^{n} E_{\kappa_f(z_f|x;\hat{\Gamma}_n)}(\log f(X_i, Z_i|\hat{\Gamma}_n)|x) \xrightarrow{a.s.} E_h(\log f(X, Z_{sf}|\Gamma_*))
\]

(9)

where \(z_{sf} \) is pseudo true value of \(z_f \).

Similarly for \(G \)

\[
\log L(\Psi) = E_{\kappa_g(z_g|x;\Psi)}(\log L_c(\Psi)|x) - E_{\kappa_g(z_g|x;\Psi)}(\log \kappa_g(Z_g|x;\Psi))
\]

\[= Q(\Gamma;\Gamma^{(k)}) - H(\Gamma;\Gamma^{(k)})
\]

(10)

and in the last iterative of \(E \)-step

\[
\log L(\Psi_n) = E_{\kappa_g(z_g|x;\hat{\Psi}_n)}(\log g(X, Z_g|\hat{\Psi}_n)|x) \Rightarrow \\
\log L(\hat{\Psi}_n) = E_{\kappa_g(z_g|x;\hat{\Psi}_n)}(\log g(X, Z_g|\hat{\Psi}_n)|x),
\]

(11)

where \(\hat{z}_{jg} = E_{\kappa_g(z_g|x;\hat{\Psi}_n)}(Z_{jg}|x) = \frac{\hat{\theta}_{jg}(x|\hat{\phi}_j)}{g(x|\hat{\Psi}_n)}. \)

Corollary 1. Given \(\hat{z}_{jf} \) and \(\hat{z}_{jg} \) we have;

\[
E_{\kappa_{gf}(\hat{z}_f|x;\hat{\Gamma}_n)}(\log f(X, Z_f|\hat{\Gamma}_n)|x) = \log f(x, \hat{z}_f|\hat{\Gamma}_n)
\]

(12)

\[
E_{\kappa_{lg}(\hat{z}_g|x;\hat{\Psi}_n)}(\log g(X, Z_g|\hat{\Psi}_n)|x) = \log g(x, \hat{z}_g|\hat{\Psi}_n).
\]

(13)

Lemma 2. Given Vuong’s Assumptions 1 to 3 and Equations (8), (11), (12)
and (13)

\[\frac{1}{n} \text{CLR}(\hat{\Gamma}_n, \hat{\Psi}_n) = \frac{1}{n} \sum_{i=1}^{n} \{ \mathbb{E}_{\kappa_f(z_i|\hat{x}_i;\hat{\Gamma}_n)}(\log f(X_i, Z_{if}|\hat{\Gamma}_n)|x) \\
- \mathbb{E}_{\kappa_g(z_i|\hat{x}_i;\hat{\Psi}_n)}(\log g(X_i, Z_{ig}|\hat{\Psi}_n)|x) \} = \frac{1}{n} \sum_{i=1}^{n} \{ \log f(x_i, \hat{z}_{if}|\hat{\Gamma}_n) \\
- \log g(x_i, \hat{z}_{ig}|\hat{\Psi}_n) \} \xrightarrow{a.s.} \mathbb{E}_h(\log \frac{f(X, Z_{if}|\Gamma_s)}{g(X, Z_{ig}|\Psi_s)}).
\]

(14)

Given all assumptions in Redner and Walker (1984), Vuong’s Assumptions 1 to 5 and Lemma 1 and 2 we could supposed \(\lim_{k \to \infty} \Gamma^{(k)}_n = \Gamma_n \) and \(\Gamma_n \xrightarrow{a.s.} \Gamma_s \) as \(n \to \infty \). Also, the MLE is consistent for \(\Gamma_s \), and is asymptotically normally distributed with asymptotic covariance matrix \(A_f^{-1}(\Gamma_s)B_f(\Gamma_s)A_f^{-1}(\Gamma_s) \). Similar properties hold for the MLE \(\hat{\Psi}_n \) of \(\Psi_s \). As a matter of fact, \(\hat{\Gamma}_n \) and \(\hat{\Psi}_n \) are jointly asymptotically normal with asymptotic covariance matrix that can be consistently estimated using the sample analogs of \(A_l(\cdot) \), \(B_l(\cdot) \) and \(B_{fg}(\Gamma_s, \Psi_s) \) where \(l = f, g \) are evaluated at \((\hat{\Gamma}_n, \hat{\Psi}_n) \), Vuong (1989).

Based on Vuong (1989), we obtain the asymptotic distribution of the complete-data likelihood ratio (CLR) statistic under null hypothesis \(H_{fg}^0 : \mathbb{E}_h(\log f(X, Z_{if}|\Gamma_s)) = \mathbb{E}_h(\log g(X, Z_{ig}|\Psi_s)) \), that verify two family of mixture models are equivalent. against,

\[H_f^1 : \mathbb{E}_h(\log f(X, Z_{if}|\Gamma_s)) > \mathbb{E}_h(\log g(X, Z_{ig}|\Psi_s)), \]

which means that the rival model \(F \) is better than \(G \), or

\[H_g^1 : \mathbb{E}_h(\log f(X, Z_{if}|\Gamma_s)) < \mathbb{E}_h(\log g(X, Z_{ig}|\Psi_s)), \]

which means that the rival model \(G \) is better than \(F \).

The Vuong’s Assumption 1 to 6 ensure that variance of \(\log \frac{f(y|\Gamma_s)}{g(y|\Psi_s)} \) exists. Following, we restate Theorem 3.3 from Vuong (1989), based on the complete-data form of mixture density. Consider \(Y = (X, Z_l) \) where \(l = f, g \) having complete-data density. One difference between Vuong’s test and this work is that the marginal density is parametric density. Based on Vuong (1989) we use following Theorem.
Theorem 1. Under Vuong’s Assumptions 1 to 5
(a) If two rival models are nested, then

\[2\text{CLR}(\hat{\Gamma}_n, \hat{\Psi}_n) \xrightarrow{D} M_{\ell+j}(\cdot; \lambda_*) \]

where \(M_{\ell+j}(\cdot; \lambda_*) \) is the weighted sum of Chi-square distribution and \(\lambda_* \) is the vector of \(\ell + j \) eigenvalues of

\[W = \begin{bmatrix} -B_f(\Gamma_*) A_f^{-1}(\Gamma_*) & -B_{fg}(\Gamma_*, \Psi_*) A_g^{-1}(\Psi_*) \\ -B_{gf}(\Psi_*, \Gamma_*) A_f^{-1}(\Gamma_*) & -B_g(\Psi_*) A_g^{-1}(\Psi_*) \end{bmatrix} \]

(b) If two rival models are non-nested and Vuong’s Assumption 6 holds, then

\[n^{-\frac{1}{2}}\text{CLR}(\hat{\Gamma}_n, \hat{\Psi}_n) - n^{-\frac{1}{2}}E_h[\log \frac{f(Y|\Gamma_*)}{g(Y|\Psi_*)}] \xrightarrow{D} N(0, \omega_n^2) \]

where \(\omega_n^2 = \text{Var}_h(\log \frac{f(Y|\Gamma_*)}{g(Y|\Psi_*)}) = \text{Var}_h(\log \frac{f(X,Z_{sf}|\Gamma_*)}{g(X,Z_{sg}|\Psi_*)}) \).

In practice, \(\lambda_* \) can consistently estimated by \(\hat{\lambda}_n \), that is estimated by replacing the matrices (16) by sample averages evaluated at \(\hat{\Gamma}_n \) and \(\hat{\Psi}_n \); for example

\[A_f^b(\hat{\Gamma}_n) = (n^{-1} \sum_{i=1}^n \nabla^b_k \log f(x_i, \tilde{z}_{if}|\Gamma) \mid_{\Gamma=\hat{\Gamma}_n}) \xrightarrow{a.s.} A_f(\Gamma_*) \]

and so on.

Lemma 3. Given Vuong’s Assumptions 1 to 3 and 6 and Corollary 1

\[\hat{\omega}_n^2 \xrightarrow{a.s.} \omega_*^2. \]

So, \(\hat{\omega}_n^2 \) is a strongly consistent estimator for \(\omega_*^2 \), that is

\[\hat{\omega}_n^2 = \frac{1}{n} \sum_{i=1}^n \left[\log \frac{f(x_i, \tilde{z}_{if}|\hat{\Gamma}_n)}{g(x_i, \tilde{z}_{ig}|\hat{\Psi}_n)} \right]^2 - \frac{1}{n} \sum_{i=1}^n \log \frac{f(x_i, \tilde{z}_{if}|\hat{\Gamma}_n)}{g(x_i, \tilde{z}_{ig}|\hat{\Psi}_n)} \]

On the other hand, one of the basic tools to model selection is class of

\[J. Statist. Res. Iran 15 (2018): 173–212 \]
information criteria. Akaike (1973) has defined his information criterion as:

\[AIC = -2 \sum_{i=1}^{n} \log \sum_{j=1}^{m} \hat{\alpha}_j f(x_i | \hat{\theta}_j) + 2\ell \]

In this context, the Akaike information criterion for mixture and complete-data distributions are respectively:

\[AIC = -2 \sum_{i=1}^{n} \log \sum_{j=1}^{m} \hat{\alpha}_j f(x_i | \hat{\theta}_j) + 2\ell \]

and

\[AIC_b = -2 \sum_{i=1}^{n} \sum_{j=1}^{m} \log \hat{z}_{ij} f(\log \hat{\alpha}_j + \log f(x_i | \hat{\theta}_j)) + 2(\ell + 1) \]

Schwarz (1978) introduces his information criterion as a competitor to the AIC:

\[BIC = -2 \log-likelihood \ function + (number \ of \ parameters)(\log n). \]

Similarly, the Schwarz information criterion for mixture and complete-data distributions are respectively:

\[BIC = -2 \sum_{i=1}^{n} \log \sum_{j=1}^{m} \hat{\alpha}_j f(x_i | \hat{\theta}_j) + \ell \log(n). \]

and

\[BIC_b = -2 \sum_{i=1}^{n} \sum_{j=1}^{m} \log \hat{z}_{ij} f(\log \hat{\alpha}_j + \log f(x_i | \hat{\theta}_j)) + (\ell + 1) \log(n) \]

Obviously, because of the prediction of variable Z, we add the number of parameters \(\ell \) in the \(AIC_b \) and \(BIC_b \).

4 Discuss in More Detail about Vuong’s Test

In Section 2, it is suggested using complete-data form of mixture models. In this section, we shall discuss this approach in more detail. In particular, using the results of Sections 2 and 3, we will extend Vuong’s test for selecting among
two rival models whether they are nested (for testing number of component) or non-nested when both, only one or neither can be well-specified.

4.1 Nested Models: Testing Number of Components

In this subsection, we consider the case where the models F and G are nested and may or may not contain the true underlying distribution. In this case, we have supposed all the component distributions in two rival models, F and G are from the same parametric family. Furthermore, we assume that the parameter m is unknown. We postulate that the first rival model, G have m_0-component and second rival model, F have m_1-component, where m_0 and m_1 are known constants with $m_0 < m_1$. Note that a m_0-component mixture distribution is nested within a m_1-component mixture distribution when two rival models come from the same parametric family. So, we can use Theorem 1(a) for this situation.

Assumption 2. There exists a function $\nu(\cdot)$ from Ω to \mathbb{R}^ℓ such that, for almost all y, $g(y|\Psi) = f(y|\nu(\Psi))$ for $\Psi \in \mathbb{R}^\ell$.

Assumption 2 states that any complete-data mixture density $g(y|\Psi)$ is also a complete-data mixture density $f(y|\Gamma)$ for some Γ in Ω. Since $\nu(\Psi)$ is included in Ω then $g(y|\Psi)$ is nested in $f(y|\Gamma)$. As a matter of fact, the alternative to the null hypothesis H_{fg}^0 is H_{fg}^1 inasmuch H_{fg}^0 can never occur because the rival model $g(y|\Psi)$ can never be better than $f(y|\Gamma)$. Hence, our testing reduces to the smaller model is equivalent to or worse than the larger model, but in this situation when two rival models are equivalent we select the smaller model because of the number of parameters.

Theorem 2. Given Vuong’s Assumptions 1 to 5 and Assumption 1, under null hypothesis:

(a) If F is mis-specified

$$2\text{CLR}(\hat{\Gamma}_n, \hat{\Psi}_n) \xrightarrow{D} M_{\ell+j}(\cdot; \hat{\lambda}_n),$$

(b) If rival models are well-specified

$$2\text{CLR}(\hat{\Gamma}_n, \hat{\Psi}_n) \xrightarrow{D} \chi^2_{\ell-j}(\cdot).$$

J. Statist. Res. Iran 15 (2018): 173–212
It is carried out by choosing a critical value from $M_{t+1}(\cdot: \hat{\phi}_n)$ or $\chi^2_{t-1}(\cdot)$ when rival models are mis-specified or well-specified respectively and by rejecting the hypothesis that the models are equivalent if twice CLR statistic is greater than this critical value for choosing H^f in favour of H^g.

4.2 Non-nested Models

In this subsection, we consider the case where the models F and G are non-nested and may or may not contain the true underlying distribution. This situation can accrue when we know the number of components are equal and specified but the rival models are from the non-nested parametric families. Since the complete-data models F and G do not need to more assumptions. So based on Theorem 1(b);

Theorem 3. Given Young’s Assumptions 1 to 5 and null hypothesis, if two rival models are non-nested, then

$$\frac{n^{-\frac{1}{2}} CLR(\hat{\Gamma}_n, \hat{\Psi}_n)}{\hat{\omega}_n} \overset{D}{\rightarrow} N(0,1).$$

(20)

Theorem 3 provide very simple tests for mixture model selection. Since, we can chosen a critical value c from the standard normal distribution. If the value of statistic (20) is higher than c then we rejects the null hypothesis and we say rival model F is better than rival model G. Similarly, if it is smaller than $-c$ then we say rival model G is better than rival model F.

5 Simulaion Study

In the remaining, we decide whether two rival mixture models are equivalent or which of them is optimum to estimate the true model. Simulation studies were conducted to investigate the finite sample properties of the test. The maximum likelihood estimates of the parameters and prediction of missing data variable were obtained by the EM algorithm. In this section, we do simulation study to show that, Vuong’s test could select the optimum mixture model when mixture of density functions write in complete-data form. Also, we try to show different between AIC_b, BIC_b with AIC, BIC. We consider the data generating probabilities as mixtures of normal (MN_t), mixtures of log-normal (MLN_t), mixtures of Weibull (MW_t), mixture of Gamma (MG_t)
Table 1. Different situations for generating data set

True model	D_1	D_2	D_3
$M2N_1$	$(0.3,0.1,1,1,1)$	$(0.3,0.1,2,1)$	$(0.3,0.1,3,1)$
$M2E_1$	$(0.3,1,4)$	$(0.3,0.5,7)$	$(0.3,1,5,1)$
$M3N_1$	$(0.2,0.4,0,1,1,1,2,1)$	$(0.3,0.4,0,1,1,3,1)$	$(0.3,0.4,0,1,3,1,6,1)$
$M4N_1$	$(0.3,0.3,0.2,0,1,1,2,1,5,1)$	$(0.3,0.3,0.2,0,1,2,1,12,1)$	$(0.3,0.3,0.2,0,1,3,1,8,1,12,1)$
$M4E_1$	$(0.3,0.3,0.2,0,1,2,1,1,4,8)$	$(0.3,0.3,0.2,0,1,5,2,6)$	$(0.3,0.3,0.2,0,1,1,1,5,1)$
$M4G_1$	$(0.2,0.3,0.10,20,13,20,17,20,43,20)$	$(0.2,0.3,0.10,20,15,20,30,20,60,20)$	$(0.2,0.3,0.10,20,30,20,40,20,80,20)$
$M4W_1$	$(0.2,0.3,0.2,5,8,12,8,18,8,40)$	$(0.2,0.3,0.2,5,8,12,6,18,6,43,9)$	$(0.2,0.3,0.2,5,8,12,4,18,6,43,9)$

Note: $M2N_1$: mixture of two normal, $M2E_1$: mixture of two exponential, $M3N_1$: mixture of three normal, $M4N_1$: mixture of four normal, $M4E_1$: mixture of four exponential, $M3G_1$: mixture of three Gamma, $M4G_1$: mixture of four Gamma and $M4W_1$: mixture of four Weibull distributions. We generate 10000 Monte-Carlo data sets of sample sizes $n = 50, 80, 200, 500$.

5.1 Simulations Study for Nested Models: Testing Number of Components

In this subsection, we do simulation study to show that how can select the mixture model with optimum component when the true underlying model is well-specified or mis-specified. For more competition, we calculated non-parametric test as Kolmogorov-Smirnov test, KS-test, AIC, BIC, AIC_b and BIC_b criteria. We used 12 configurations, based on four sample sizes, 50, 80, 200 and 500, and three values of D_i, $i = 1, 2, 3$ where D_i generate the different mixture model for each of true underlying models. Table 2 shows D_i for each underlying true mixture models.

Table 2 shows the simulated significance levels for Vuong’s test and KS-test, at $\alpha = 0.05$ for 12 configurations, based on four sample sizes, 50, 80, 200 and 500, and three values of D_i, $i = 1, 2, 3$. In row 1, we have consid-
ered random sample which drawn from the two-component normal mixture distributions, \(m = 2 \) with \(\alpha_1 < \alpha_2, \mu_1 < \mu_2 \) and \(\sigma_1 = \sigma_2 \) in three values \(D_1, D_2 \) and \(D_3 \). For example, the data is generated from parameters \(D_1 \), Table 2. Although, data come from a mixture model with two-component but the density plot is look like normal, Figure 1, a. In \(D_2 \) and \(D_3 \), the difference between mean of components has been increased, Figures 1, b and c, respectively. Therefore, we choose two competing models, mixture of two normal \(M_2N \) and mixture of three normal \(M_3N \), based on Figures 1, a, b and c. As we can see for any sample size, Under p-value of Vuong’s test, we accept null hypothesis when the two-component are not well separated, that is \(D_1 \) or \(D_2 \) and the two-components, \(D_3 \), are well separated. So, we say two rival models are equivalent but we select two-component normal mixture model as optimum model because of number of parameters. Next, in the similarly way, we considered random sample which has been drawn from the two-component exponential mixture distributions in three values \(D_1, D_2 \) and \(D_3 \). So, we choose two competing models, mixture of two exponential \(M_2E \) and mixture of three exponential \(M_3E \). Under p-value of Vuong’s test we accept null hypothesis when the two-components are not well separated, that is \(D_1 \) or \(D_2 \) and the two-components are well separated, \(D_3 \), for any sample size. We next considered random sample which has been drawn from the three-component normal mixture distributions, \(m = 3 \) with \(\alpha_1 < \alpha_2 < \alpha_3, \mu_1 < \mu_2 < \mu_3 \) and \(\sigma_1 = \sigma_2 = \sigma_3 \) in three values \(D_1, D_2 \) and \(D_3 \), as true underlying models. Based on Figures 2 d, e and f, we choose two competing models, mixture of two normal \(M_2N \) and mixture of three normal \(M_3N \). Here, Under p-values of Vuong’s test we reject null hypothesis and select the mixture of three normal distributions at the 5 percent levels of significance respect to Theorem 2 when the three-components are not well separated, that is \(D_1 \) or \(D_2 \) and the three-components are well separated, \(D_3 \), for any sample size expect \(D_1 \) with \(n = 50 \), see Figure 1 d, e and f. Similarly, in rows 4 to 7, Vuong’s test select the rival models that are equal to the true underlying mixture model according number of components. Furthermore, in row 7, the true mixture of four Weibull distribution is mis-specified. Comparisons of the actual level to the nominal level for each sample size indicate that the \(KS \)-test can not select the optimum models and almostly, all models are equivalent for any sample size. Furthermore, we have calculated \(\text{AIC}_b, \text{BIC}_b \) and \(\text{AIC}, \text{BIC} \) information criteria for more competitions, Tables 3 and 4 respectively. In rows 1 and 2, according true distributions and rival models and three value \(D_i, i = 1, 2, 3 \), \(\text{AIC} \) and \(\text{BIC} \) criteria select the rival
model $M2N$ and $M2E$, as optimum models. In this situation, the results of AIC and BIC criteria equal to AIC_b and BIC_b. As we see in the Figure 1 and according to the true model, $M2N$, the shapes of the true models have one mode in each situations D_1, D_2 and it has two modes for D_3. As we have seen, the information criteria have selected the model with less components, $M2N$ and $M2E$. In other rows, Table 6, 7 the AIC and BIC are different from the AIC_b, BIC_b and the model selection test. In row 3, although the true model is three-components normal distribution, $M3N$, but the shapes of true model are one mode and two mode, for D_1 and D_2 respectively, see Figure 1, d and e. We see that the model selection test and AIC_b, BIC_b select the rival model, $M3N$, as optimum model. Tables 2 and 3, while AIC and BIC select the rival model, $M2N$. For D_3, the true model has three modes, see Figure 1, d. In this situation, the results of AIC and BIC are equal to AIC_b, BIC_b and model selection test. Similarly, in rows 4 to 7, AIC and BIC have the same behavior. Furthermore, in row 7, the rival models are mis-specified according the true underlying model. In this situation AIC, BIC and AIC_b, BIC_b select the same rival model as $M4G$. So, we can say, when the true underlying model is well separated (D_3) the AIC, BIC, AIC_b, BIC_b and the model selection test make the same decision. In the other situations, D_1, D_2, the model selection test, AIC_b and BIC_b select the correct rival model than the AIC and BIC. We can see from Table 5 that the power of the test depends on the difference between component local parameters and sample sizes. Furthermore, we can see the test power increases uniformly as the difference between two local parameters increases (D_3) and is low when the components are not well separated (D_1). Indeed, the power of test are increasing when we reject null hypothesis, sample size increase and components are well separated.

5.2 Simulations Study for Non-nested Models

In previous subsection, we select the mixture model with optimum component when two rival models are nested. The second case will be worse when two rival models are non-nested. In this subsection, our goal is to pay attention to this problem. Table 6 summarizes the situation under which both rival mixture models have equal numbers of component and they are non-nested. In row 1, we considered four random sample which has drawn from the two-component normal mixture distribution with size 50, 80, 200 and 500; the mixing proportion α was set to 0.3 and μ_1, μ_2, $\sigma_1 = \sigma_2$ were set...
Table 2. p-value of KS-test and Vuong’s test.

True model	Rival model	test	50	80			
	D1	D2	D3	D1	D2	D3	
M3N	KS-test	0.5487	0.9667	0.8693	0.8219	0.4383	0.8219
M2N_t	Vuong’s test	0.9686	0.9767	0.9780	0.9894	0.9895	0.9896
M2N	KS-test	0.8693	0.5487	0.3959	0.4383	0.6953	0.6953
M3E	KS-test	0.7166	0.8693	0.7235	0.9794	0.7103	0.7501
M2E_t	Vuong’s test	1	1	1	1	1	1
M2E	KS-test	0.7166	0.6221	0.4512	0.3307	0.6412	0.5231
M3N_t	KS-test	0.5487	0.8693	0.9667	0.922	0.8219	0.9794
M3N	Vuong’s test	1	0.0090	0.0097	0.0003	0.0001	0.0049
M2N	KS-test	0.7166	0.9667	0.9667	0.9794	0.922	0.2424
M4N_t	KS-test	0.7166	0.7166	0.8693	0.922	0.9979	0.9794
M4N	Vuong’s test	0.0012	0.0006	0.0000	0.0035	0.0004	0.0000
M3N	KS-test	0.8693	0.9667	0.9765	0.5625	0.8219	0.9752
M4E	KS-test	0.8693	0.5487	0.8695	0.6953	0.6215	0.6953
M4E_t	Vuong’s test	0.0062	0.0037	0.0001	0.0051	0.0000	0.0000
M3E	KS-test	0.5487	0.8693	0.8658	0.4383	0.5871	0.2424
M4G_t	KS-test	0.9977	0.9977	0.3959	0.5625	0.922	0.3307
M4G	Vuong’s test	0.0002	0.0007	0.0122	0.0001	0.0091	0.0033
M3G	KS-test	0.3959	0.2719	0.8693	0.9220	0.6953	0.8219
M4G_t	KS-test	0.1124	0.8693	0.8693	0.9794	0.5625	0.8219
M4W_t	Vuong’s test	0.0027	0.0057	0.0062	0.0082	0.0490	0.0006
M3G	KS-test	0.3959	0.1786	0.2719	0.922	0.8219	0.2424
True model	Rival model	test	200	500			
------------	------------	---------	-------	-------			
M3N	KS-test	0.5945	0.843	0.5945	0.9600	0.7699	0.7184
M2N1	Vuong's test	0.9896	0.9991	0.9998	1	1	1
M2N	KS-test	0.1565	0.9078	0.955	0.4595	0.3291	0.6654
M3E	KS-test	0.8211	0.8123	0.7631	0.9231	0.8610	0.7801
M2E1	Vuong's test	1	1	1	1	1	
M2E	KS-test	0.6102	0.7551	0.6201	0.7567	0.8212	0.6651
M3N	KS-test	0.1565	0.9078	0.955	0.7699	0.8632	0.9895
M3N1	Vuong's test	0.0001	0.0001	0.0219	0.0000	0.0000	0.0000
M2N	KS-test	0.5107	0.7654	0.3613	0.8186	0.3696	0.7184
M3E	KS-test	0.9228	0.2203	0.3275	0.5085	0.1294	0.5085
M4N	KS-test	0.3613	0.4324	0.9078	0.7699	0.6654	0.6654
M4N1	Vuong's test	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
M3N	KS-test	0.6808	0.4324	0.3613	0.7184	0.1114	0.5085
M4E	KS-test	0.8643	0.7920	0.5441	0.6654	0.9959	0.6787
M4E1	Vuong's test	0.0044	0.0000	0.0000	0.0001	0.0000	0.0000
M3E	KS-test	0.9228	0.2203	0.3275	0.5085	0.1294	0.7184
M4G	KS-test	0.5107	0.4324	0.9078	0.9987	0.8186	0.9347
M4G1	Vuong's test	0.0004	0.0007	0.0045	0.0000	0.0000	0.0000
M3G	KS-test	0.0956	0.9550	0.4324	0.4131	0.08152	0.05873
M4G	KS-test	0.5107	0.8430	0.9550	0.4131	0.9600	0.7184
M4G1	Vuong's test	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
M3G	KS-test	0.5945	0.1565	0.1235	0.5085	0.9022	0.8544

J. Statist. Res. Iran 15 (2018): 173–212
Table 3. AIC_b and BIC_b information criteria based on complete-data variable

True model	Rival model	Information criterion	D₁	D₂	D₃	D₄	D₅
M₂N₁	AIC_b	192 Model Selection for Mixture Models 192	192.0823	201.8087	210.5351	219.2615	228.9879
	BIC_b		207.0823	216.8087	225.5351	234.2615	243.9879
M₂N₁	AIC_b		192.0823	201.8087	210.5351	219.2615	228.9879
	BIC_b		207.0823	216.8087	225.5351	234.2615	243.9879

Note: * shows the select models.
Table 3. (continued)

True model	Rival model	Information criterion	D_1	D_2	D_3	D_1	D_2	D_3

M_{2N_t}
- AIC_c: 711.7823
 - BIC_c: 719.7814
 - D_1: 845.9098
 - D_2: 858.9834
 - D_3: 1634.1231
 - D_1: 1780.7823
 - D_2: 2168.1712
- AIC_c: 703.3671
 - BIC_c: 705.3681
 - D_1: 993.9428
 - D_2: 1020.9453
 - D_3: 1711.9321
 - D_1: 1999.1473
 - D_2: 2158.9812

M_{2E_t}
- AIC_c: 165.3466
 - BIC_c: 205.7361
 - D_1: 231.2544
 - D_2: 414.6572
 - D_3: 480.3018
 - D_1: 515.0554
 - D_2: 735.5318
- AIC_c: 147.9737
 - BIC_c: 161.6657
 - D_1: 212.2145
 - D_2: 412.8297
 - D_3: 572.5401
 - D_1: 620.5277
 - D_2: 674.3176
 - D_3: 691.1960

M_{3N_t}
- AIC_c: 840.7991
 - BIC_c: 867.8941
 - D_1: 1062.9333
 - D_2: 1945.8922
 - D_3: 1999.0192
 - D_1: 2080.8983
 - D_2: 2371.9883
- AIC_c: 860.1389
 - BIC_c: 910.8941
 - D_1: 1100.9883
 - D_2: 1999.2223
 - D_3: 2020.8292
 - D_1: 2110.1728
 - D_2: 2450.1491

M_{4N_t}
- AIC_c: 1002.7887
 - BIC_c: 1015.6741
 - D_1: 1032.4568
 - D_2: 1206.4909
 - D_3: 2001.9093
 - D_1: 2080.9112
 - D_2: 2129.0091
- AIC_c: 1081.1923
 - BIC_c: 1099.1922
 - D_1: 1121.8001
 - D_2: 1180.8222
 - D_3: 2091.8112
 - D_1: 2118.7990
 - D_2: 2265.1150

M_{3E_t}
- AIC_c: 673.4519
 - BIC_c: 699.3898
 - D_1: 712.0280
 - D_2: 1280.8720
 - D_3: 1560.9670
 - D_1: 1850.9290
 - D_2: 2014.9867
- AIC_c: 680.2928
 - BIC_c: 700.0927
 - D_1: 778.8488
 - D_2: 1384.4470
 - D_3: 1680.2810
 - D_1: 1917.3360
 - D_2: 2204.5804

M_{4E_t}
- AIC_c: 343.3866
 - BIC_c: 365.1248
 - D_1: 569.8909
 - D_2: 779.5598
 - D_3: 1267.3506
 - D_1: 1422.2811
 - D_2: 1505.0081
- AIC_c: 381.8819
 - BIC_c: 399.1100
 - D_1: 710.1411
 - D_2: 961.8812
 - D_3: 1250.5534
 - D_1: 1405.0081
 - D_2: 1595.3245

M_{3G}
- AIC_c: 654.5729
 - BIC_c: 681.0272
 - D_1: 658.8327
 - D_2: 668.9993
 - D_3: 1551.1128
 - D_1: 1576.8223
 - D_2: 1581.1283
- AIC_c: 830.1313
 - BIC_c: 855.2311
 - D_1: 856.8911
 - D_2: 969.8131
 - D_3: 1917.8919
 - D_1: 1985.8737
 - D_2: 2031.9991

M_{4G}
- AIC_c: 645.6572
 - BIC_c: 681.0227
 - D_1: 658.8372
 - D_2: 668.9993
 - D_3: 1551.1128
 - D_1: 1576.8223
 - D_2: 1581.1283
- AIC_c: 830.1313
 - BIC_c: 855.2311
 - D_1: 856.8911
 - D_2: 969.8131
 - D_3: 1917.8919
 - D_1: 1985.8737
 - D_2: 2031.9991

Note: * shows the select models.

J. Statist. Res. Iran 15 (2018): 173–212
Table 4. AIC and BIC information criteria

True model	Rival model	Information criterion	50	80
M3N	AIC	D1	159.368	173.5643
	BIC	D2	174.638	195.7831
M2Nt	AIC	D3	155.950*	172.4763*
	BIC	D4	165.510*	186.2711*
M2E	AIC	D5	32.6897	193.5643
	BIC	D6	174.638	214.8906
M2Et	AIC	D7	26.889*	172.4763*
	BIC	D8	65.883*	186.2711*
M3Nt	AIC	D9	187.652	201.5467
	BIC	D10	202.590	223.1585
M3N	AIC	D11	185.8852*	199.3485*
	BIC	D12	195.445*	220.0125*
M4N	AIC	D13	225.381	233.4283
	BIC	D14	230.248	252.6306
M4Nt	AIC	D15	220.8012*	219.8677*
	BIC	D16	226.3527*	245.9239*
M4E	AIC	D17	159.866	170.2253
	BIC	D18	171.2647	196.6994
M4Et	AIC	D19	156.484*	169.9660*
	BIC	D20	160.046*	178.0601*
M4G	AIC	D21	50.3806	90.6947
	BIC	D22	65.4128	100.8149
M4Gt	AIC	D23	32.4436*	88.0248*
	BIC	D24	53.7209*	91.6491*
M4G	AIC	D25	163.9201*	165.2389*
	BIC	D26	184.9526*	185.0912*
M4G	AIC	D27	196.058	210.6743
	BIC	D28	211.3820	223.8015

Note: * shows the select models.

© 2018, SRTC Iran
Table 4. (continued)

True model	Rival model	Information criterion					
		D_1	D_2	D_3	D_1	D_2	D_3
M_{2N_1}	AIC	619.3370*	716.9855*	763.4512*	1493.7790*	1713.4900*	1974.1587*
M_{2N_2}	BIC	635.3285*	683.1862*	729.9428*	1544.8520*	1734.5090*	1929.1758*
M_{3E}	AIC	81.5124*	716.9855*	763.4512*	183.4396*	1713.4900*	1974.1587*
M_{3E}	BIC	88.1090*	716.9855*	763.4512*	191.8831*	1734.5090*	1929.1758*
M_{3N_1}	AIC	730.2270	866.3458	937.2738*	1629.2514	1701.1000	1796.1282*
M_{3N_1}	BIC	756.6134	912.1412	957.3823*	1758.1520	1742.5128	1801.0025*
M_{4N}	AIC	697.1364*	875.5240*	940.8907	1621.8360	1692.5149*	1862.2800
M_{4N}	BIC	713.6280*	902.3690*	963.6603	1642.6110*	1711.2561*	1815.0906
M_{4N_1}	AIC	825.3919	831.4283	742.1284*	1833.1281	1844.3952*	1871.8251*
M_{4N_1}	BIC	830.2492	852.6306	769.3216*	1855.6281	1870.3825*	1895.8240*
M_{4E}	AIC	729.8012*	719.8677*	854.5491	1423.0240*	1660.5010	1879.6028
M_{4E}	BIC	726.3527*	745.9229*	875.5279	1642.0012*	1875.3069	1952.3875
M_{4E_1}	AIC	593.5356*	689.8897*	1364.1120	1472.9670*	1723.1480*	3347.0060*
M_{4E_1}	BIC	610.0500*	706.3801*	1380.6030	1494.0090*	1744.3210*	3481.5790*
M_{4G}	AIC	343.3806	565.8090	802.8193*	972.3012	1101.8010	1228.4370*
M_{4G}	BIC	365.4128	647.8099	816.0923*	949.6659	1116.0128	1274.7930*
M_{4G_1}	AIC	332.4306	572.9851*	813.9289	960.1420*	1051.9273*	1395.7440
M_{4G_1}	BIC	353.7298*	628.1749*	889.8288	930.8669*	1090.8173*	1429.4630
M_{4W}	AIC	649.2790*	653.8198*	663.5138*	1547.8260*	1564.7801*	1579.6650*
M_{4W}	BIC	676.5614*	682.8532*	699.8513*	1573.8970*	1574.1204*	1575.7380*
M_{4W_1}	AIC	826.2116	853.8902	875.6029	1972.9450	1986.9025	2011.3600
M_{4W_1}	BIC	852.5981	872.8895	901.9894	2066.6670	2026.3098	2045.0850

Note: * shows the select models.
Table 5. Power of Vuong’s test

Sample size	Different situations	α	M2N_1t	M2E_1t	M3N_1t	M4N_1t	M4E_1t	M4G_1t	M4W_1t
50	D1	0.01	0.1694	0.1756	0.1832	0.7861	0.7825	0.7531	0.7547
		0.05	0.2372	0.2896	0.2569	0.7925	0.7999	0.7546	0.7658
		0.10	0.2711	0.3201	0.3011	0.8014	0.8023	0.7890	0.7891
	D2	0.01	0.1523	0.1725	0.7631	0.7516	0.8601	0.8131	0.8201
		0.05	0.2261	0.2745	0.7768	0.7798	0.8721	0.8473	0.8402
		0.10	0.2631	0.2864	0.7899	0.8051	0.8950	0.8248	0.8654
80	D3	0.01	0.1379	0.1562	0.8512	0.8624	0.9021	0.8976	0.9096
		0.05	0.2586	0.2678	0.8690	0.8644	0.9154	0.9051	0.9167
		0.10	0.2951	0.3025	0.8989	0.9498	0.9342	0.9378	
200	D2	0.01	0.1412	0.1602	0.7539	0.9672	0.9698	0.8981	0.9074
		0.05	0.2601	0.3012	0.7651	0.9732	0.9899	0.9136	0.9208
		0.10	0.3061	0.3201	0.7948	0.9801	0.9915	0.9351	0.9312
500	D3	0.01	0.1769	0.1870	0.9349	0.8539	0.8741	0.8353	0.8369
		0.05	0.2323	0.2504	0.9561	0.8851	0.8999	0.8447	0.8518
		0.10	0.2911	0.3102	0.9710	0.9824	0.9901	0.9095	0.9041
800	D2	0.01	0.1475	0.1608	0.8112	0.9836	0.9840	0.9252	0.9368
		0.05	0.2786	0.3087	0.8396	0.8905	0.9877	0.9331	0.9460
		0.10	0.3275	0.3501	0.8501	0.9836	0.9898	0.9460	0.9553
500	D3	0.01	0.2032	0.2402	0.8061	0.8071	0.8366	0.8052	0.8096
		0.05	0.2611	0.3088	0.8520	0.8766	0.8442	0.8596	0.8499
		0.10	0.3301	0.3677	0.8970	0.8496	0.8677	0.8731	0.8728

© 2018, SRTC Iran
Figure 1. Results of Table 2 for rows 1, 3 and D_1, D_2, D_3 when sample size is 500.

-4, 3 and 1 respectively, (0.3,-4,1,3,1), as true underlying model. Therefore, we choose two competing models, mixture of two normal $M2N$ and mixture of two Cauchy $M3C$, based on Figures 2, a, b and c. Under p-value

\[J. \text{Statist. Res. Iran} \text{ 15} (2018): 173-212 \]
of Vuong’s test, we reject null hypothesis at the 1 percent significance level and based on Vuong’s statistic, we select the mixture of two normal distributions as optimum model for all sample sizes, \(AIC_b, BIC_b \) and \(AIC, BIC \) confirm this result, Tables 7 and 8 respectively. Next, we considered random sample which has drawn from the mixture of two log-normal and mixture of two Weibull distributions as true underlying models; (0.2,1,0.1,2,0.2) and (0.4,3,0.5,9,3) respectively. In each rows, we choose two competing models, mixture of two Gamma \(M2G \) and mixture of two log-normal \(M3LN \) when data come from mixture of two log-normal \(M3LN_t \). To compare the rival models, we see that in well-specified cases (row 2), based on p-value at the 1 percent significance level, Vuong’s test indicates that two-components log-normal mixture as optimum model, \(AIC_b, BIC_b \) and \(AIC, BIC \) confirm this result for any sample size. Similarly, the two-components Gamma distributions are optimum models when the true models is mis-specified (row 3), \(M2W_t \), but \(AIC \) and \(BIC \) select the \(M2LN \) as optimum model when sample size is small. However \(AIC_b, BIC_b \) and model selection test select the two-components Gamma distributions. In this situation, the comparison between \(AIC_b, BIC_b \) and \(AIC, BIC \) when the rival models are non-nested, have the same result. Comparisons of the p-values for each sample size indicate that the \(KS \)-test can not select a optimum model because all models are equivalent. In this case the power of test growing when sample size increase for each rows when \(\alpha = 0.05 \).

5.3 Comparisons with LMR Tests and Proposed Test

We performed simulation studies to compare the performances of the proposed test and the Lo-Mendell-Rubin (LMR) likelihood ratio test in terms of the observed significance level. The observed LMR p-value and the observed CLR p-value were estimated from \(10^4 \) replications for each random sample. Following Vuong (1989), Lo et al. (2001) showed that the likelihood ratio statistic is asymptotically distributed as a weighted sum of independent chi-squared random variables with one degree of freedom. They conducted simulation studies for the case of a single normal versus a two-component normal mixture where samples were generated from the standard normal distribution and the case of a two-component normal mixture versus a three-component normal mixture where samples were generated from the two-component normal mixture. Their simulation results showed that the test works well for testing the number of components in a homoscedastic normal mixture with
Table 6. p-value of KS test and Vuong’s test and power of Vuong’s test

True model	Rival model	Statistical test	50	80	200	500
$M2N^*$	KS-test	0.9667	0.9794	0.3613	0.9022	
$M2N_t$	Vuong’s test	5.0747	7.2997	7.4336	12.4652	
	p-value	0.0027	0.0004	0.0000	0.0000	
	Power of test	0.9719	0.9741	0.9827	1	
$M2C$	KS-test	0.5487	0.5625	0.5107	0.2262	
$M2LN_t$	Vuong’s test	-2.996	-3.8995	-4.5533	-9.3653	
	p-value	0.0081	0.0012	0.0000	0.0000	
	Power of test	0.9613	0.9854	1	1	
$M2LN^*$	KS-test	0.9667	0.9794	0.5107	0.8632	
$M2G^*$	KS-test	0.9667	0.9220	0.9550	0.4595	
$M2W_t$	Vuong’s test	2.9723	3.6068	4.5466	7.4894	
	p-value	0.0085	0.0003	0.0000	0.0000	
	Power of test	0.9480	0.9855	0.9941	1	
$M2LN$	KS-test	0.7166	0.1202	0.0322	0.0007	

Note: $M2N$: mixture of two normal, $M2C$: mixture of two Cauchy, $M2LN$: mixture of two log-normal, $M2G$: mixture of two Gamma and $M2W$: mixture of two Weibull. * Shows the select models based on Vuong’s test.

Table 7. AIC_b and BIC_b information criteria

True model	Rival model	Criteria	information	50	80	200	500
$M2N$	AIC_b	219.1923*	359.9992*	850.3431*	2105.2231*		
	BIC_b	230.0122*	377.8123*	878.9123*	2135.3772*		
$M2N_t$	AIC_b	242.9982	439.7878	911.9134	2260.3455		
$M2C$	BIC_b	250.1398	448.5222	929.5611	2276.9911		
$M2LN_t$	AIC_b	211.9988	356.8877	804.9881	2001.3343		
$M2LN$	BIC_b	220.3421	374.8871	824.7774	2040.8899		
$M2G$	AIC_b	206.6544*	348.9912*	788.2333*	1990.8444*		
$M2LN$	BIC_b	211.4588*	359.5774*	809.2884*	2010.3342*		
$M2W_t$	AIC_b	83.3443*	148.7784*	359.9999*	881.7781*		
$M2LN$	BIC_b	95.8988*	159.9911*	388.6556*	900.7784*		

Note: * Shows the select models.
suggested adjustment to the likelihood ratio statistic. Lo et al. (2001) showed that, under some regularity conditions, the likelihood ratio test statistic denoted by $2LR$ for testing $H_0^f: E_h\{\log f(X|\Gamma_*)\} = E_h\{\log g(X|\Psi_*)\}$ against $H_1^f: E_h\{\log f(X|\Gamma_*)\} > E_h\{\log g(X|\Psi_*)\}$ is asymptotically distributed as a weighted sum of $\ell + \gamma$ independent χ^2 random variables under the null hypothesis, where ℓ and γ are unknown parameters of F_Γ and G_Ψ, respectively. They also show that the convergence rate of $2LR$ to the limiting distribution is very slow and suggested using the modified likelihood ratio statistic, LMR, $2LR^*(\hat{\Gamma}_n, \hat{\Psi}_n) = \frac{2LR(\hat{\Gamma}_n, \hat{\Psi}_n)}{1 + (\ell + \gamma) \log n}$ where $2LR(\Gamma_n, \Psi_n) = \sum_{i=1}^n \left(\log \frac{f(x_i|\Gamma_n)}{g(x_i|\Psi_n)} \right)$ to achieve reasonable accuracy. Table 9 gives the simulated significance levels for the proposed test and the LMR test for testing a single normal versus a mixture of two normal when the true distribution is standard normal. The results show that the significance levels accepted the null hypothesis for both tests when $\alpha = 0.05$. Table 10 give the simulated significance levels for the proposed test and the LMR test for testing a mixture of two normal versus a mixture of three normal when the true distribution is mixture of two normal where samples were generated from the two-component normal mixture base on Table 1. The results show that the significance levels accepted the null hypothesis for both tests when $\alpha = 0.05$.
Table 9. Simulated significance levels for the proposed and LMR tests for testing a single normal versus a mixture of two normal based on 10^4 replications for each sample size at $\alpha = 0.05$

Test procedure	50	75	100	200
proposed test	1	1	1	1
LMR test	0.8808	0.9081	0.9403	0.9690

Table 10. Simulated significance levels for testing a proposed and LMR tests for testing a mixture of two normal versus a mixture of three normal based on 10^4 replications for each sample size at $\alpha = 0.05$

Test procedure	D_1	D_2	D_3	D_1	D_2	D_3
proposed test	0.9999	0.9999	0.9611	0.9998	1	0.7231
LMR test	0.9999	0.9992	0.9999	1	1	0.9875

Continued on next Table.

Table 10. (continued)

Test procedure	D_1	D_2	D_3	D_1	D_2	D_3
proposed test	0.9547	1	1	1	1	1
LMR test	0.4882	0.9998	0.9978	0.9999	0.9880	0.9450

J. Statist. Res. Iran 15 (2018): 173–212
Figure 2. Results of Table 6 for each rows when sample size is 500

5.4 Total Energy Production Analysis

Here, we present a data analysis of Total Energy Production obtained by the U.S. Energy Information Administration’s (EIA) State Energy Data System (SEDS) for 10 top Total Energy Production Rankings, in United State of America. Energy sources are also measured by their heat content, generally expressed in Billion British thermal units (Billion Btu). For illustrative purpose, we will be considering the data of total energy production of Table 11 from 1960 to 2013, \((n = 540)\). Summary of data is given in Table 11 and Figure 3. This plot shows a strong relationship supporting the appropriateness of the some mixture distribution. So for more comparison, first we purpose adaptation normal mixture versus Cauchy mixture and log-normal mixture versus folded normal mixture models \((MFN)\) as competing models, rows 1 and 5, Table 12. First, we estimate parameters of distributions and missing
Table 11. Summary of data

Rankings	State	Sample size	Mean	Sd	Median	Min	Max
1	Texas	54	1272000	2240779	1239000	918000	1740000
2	Wyoming	54	4685000	3310105	3738000	1018000	5880000
3	Pennsylvania	54	2662000	712108.7	2596000	430800	1649000
4	West Virginia	54	1209000	207204.8	1208000	824400	1649000
5	Oklahoma	54	2798000	372107.9	2882000	2073000	3386000
6	North Dakota	54	633400	439662	669600	197500	2632000
7	Colorado	54	1168000	767796.7	831600	405600	2921000
8	Louisiana	54	6676000	3622799	6676000	2313000	1414000
9	Illinois	54	1925000	248559.7	1899000	1506000	2520000
10	New Mexico	54	2165000	440682.3	2156000	239100	2780000

data variable based on EM algorithm and then calculate our statistic. Based on Subsection 4.2, we reject null hypothesis at the 1 percent significance level and based on Vuong’s statistic, we select the mixture of eight normal distributions and mixture of eight folded normal distributions as optimum model for rows 1 and 6 respectively, \(AIC_b \), \(BIC_b \) and \(AIC, BIC \) confirm these results. Also, for more deliberation about number of component consider the different situations, in rows 2, 3, 4 and 5 about number of component in normal mixture distributions and in rows 7, 8, 9, 10 about number of component in folded normal mixture distributions. Based on Subsection 4.1, Under p-values for Vuong’s test we reject null hypothesis and select the mixture of seven normal distributions, in row 2, and mixture of eight normal distributions at the 5 percent significance level respect to our test, in rows 3, 4 and 5 respectively. Similarly in row 7, we select the mixture of seven folded normal distributions and mixture of eight folded normal distributions at the 5 percent levels of significance, in rows 8, 9 and 10 respectively. On the other hand, \(KS \)-test result select both rival models in each test and instead of we use \(AIC_b \) and \(BIC_b \) criteria that they confirm our results. Therefore, we can select mixture of eight normal and mixture of eight folded normal distributions as optimum model based on our test with respect to support \(\mathbb{R} \) and \(\mathbb{R}^+ \) respectively. Obviously, if we want to select one model between two above models, we can used \(AIC_b \) and \(BIC_b \), see Table 11, and select mixture of eight folded normal distribution because it has smaller information criteria.
Table 12. Values of Vuong’s statistic, p-value of Vuong’s statistic and KS-test, AIC and BIC.

Row	Competing model	Vuong statistic	p-value of Vuong’s test	p-value of KS-test	AIC_b	BIC_b	AIC	BIC
1	$M8N^*$	0.9685	0.0001	17319.08*	17417.79*	17213.06*	17311.76*	
	$M8C$	0.5478	18458.75	18157.15	18378.99	18066.22		
2	$M7N^*$	0.8569	17579.22	17665.05*	17207.08	17292.91		
	$M6N$	0.7469	17665.50	17738.46	17204.55	17277.51		
3	$M7N$	0.8569	17579.22	17665.05	17207.08	17292.91		
	$M8N^*$	0.9685	17319.08*	17417.79*	17213.06	17311.76		
4	$M9N$	0.6587	17429.01	17553.47	17218.51	17330.09		
	$M8N^*$	0.9685	17319.08*	17417.79*	17213.06	17311.76		
5	$M9N$	0.5981	17429.01	17553.47	17214.57	17339.03		
	$M8N^*$	0.9685	17319.08*	17417.79*	17213.06	17311.76		
6	$M8LN$	0.6894	17431.08	17529.79	17375.42	17474.13		
	$M8FN^*$	0.9881	16899.07*	16997.78*	17155.33	17254.04		
7	$M7FN^*$	0.8426	17235.47*	17321.30*	17140.54	17189.11		
	$M6FN$	0.6829	18547.51	17985.98	17103.67	17031.65		
8	$M8FN^*$	0.9881	16899.07*	16997.78*	17155.33	17254.04		
	$M7FN$	0.8426	17235.47	17321.30	17140.54	17189.11		
	$M9FN$	0.8594	17052.80	17164.38	17182.66	17279.76		
9	$M8FN^*$	0.9881	16899.07*	16997.78*	17155.33	17254.04		
	$M10FN$	0.8125	17098.23	17222.68	17250.79	17275.24		
10	$M8FN^*$	0.9881	16899.07*	16997.78*	17155.33	17254.04		

Note: * Shows the select models.
6 Conclusion

We have proposed an altering mixture model distribution to a complete-data distribution using missing data variable and have shown that our idea is applicable to use Voung’s test for select optimum mixture models when number of components are known (fixed) or unknown. Indeed, this form of complete-data distribution have some privileges than mixture distribution; including, closed and linear form for log-likelihood function, identifiability of parameter space of mixture models, the complete-data set \((X, Z)\) contains more information about the unknown parameter than observed data. We can to easy check all assumptions in White (1982) and Vuong (1989). Voung’s statistic is simpler than other tests in model selection theory. This explains why Voung’s test is a popular test in model selection. One different between Voung (1989) test and this work is that the marginal density in this work is parametric density. Also, we see that \(AIC_b\) and \(BIC_b\) select the better model than \(AIC\) and \(BIC\). In part of data analysis, although real data have positive value but maybe we select adapted normal mixture as optimum model.

Acknowledgment

I would like to thank Editor and referees for their valuable comments and suggestions that have greatly improved the presentation of the paper.
References

Akaike, H. (1973). Information Theory and an Extension of Maximum Likelihood Principle. Second International Symposium on Information Theory, Akademia Kiado, 267-281.

Chen, H., Chen, J. and Kalbfleisch, J.D. (2001). A Modified Likelihood Ratio Test for Homogeneity in the Finite Mixture Models. Journal of the Royal Statistical Society. Series B (Statistical Methodology). 63, 19-29.

Chen, J. and Kalbfleisch, J.D. (2005). Modified Likelihood Ratio Test in Finite Mixture Models with a Structural Parameter. Journal of statistical Planning and Inference, 129, 93-107.

Chernoff, H. and Lander, E. (1995). Asymptotic Distribution of the Likelihood Ratio Test that a Mixture of Two Binomials is a Single Binomial. Journal of Statistical Planning and Inference, 43, 19-40.

Crawford, S.L. (1994). An Application of the Laplace Method to Finite Mixture Distributions. Journal of the American Statistical Association, 89, 259-267.

Dacunha-Castelle, D. and Gassiat, E. (1999). Testing the Order of a Model using Locally Conic Parametrization: Population Mixtures and Stationary ARMA Processes. The Annals of Statistics, 27, 1178-1209.

Everitt, B.S. and David, J. Hand (1981). Finite Mixture Distributions. Monographs on Applied Probability and Statistics. Chapman and Hall, London, New York.

Fallahigilan, S. and Sayyareh, A. (2016). Finite Mixture Model Selection for Total Energy Consumption. International Journal of Energy and Statistics, 4.

Feng, Z.D. and McCulloch, C.E. (1994). On the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture with Unequal Variances. Biometrics, 1158-1162.

Ghosh, J.H. and Sen, P.K. (1985). On the Asymptotic Performance of the Log Likelihood Ratio Statistic for the Mixture Model and Related Results. In: Le Cam, L.M., Olshen, R.A. (Eds.) Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, vol. II. Wadsworth, Monterey, pp. 789-806.

Jeffries, N.O. (2003). A Note on Testing the Number of Components in a Normal Mixture. Biometrika, 90, 991-994.

Kazakos, D. (1977). Recursive Estimation of Prior Probabilities using a Mixture. IEEE Transactions on Information Theory, 23, 203-211.

Lo, Y. (2005). Likelihood Ratio Tests of the Number of Components in a Normal Mixture with Unequal Variances. Statistics & probability letters, 71, 225-235.
Lo, Y., Mendell, N.R. and Rubin, D.B. (2001). Testing the Number of Components in a Normal Mixture. *Biometrika*, 88, 767-778.

McLachlan, G.J. and Basford, K.E. (1988). *Mixture Models: Inference and Applications to Clustering*, 84.

McLachlan, G. and Peel, D. (2004). *Finite Mixture Models*. John Wiley & Sons.

Morgan, G.B. (2015). Mixed Mode Latent Class Analysis: An Examination of Fit Index Performance for Classification. *Structural Equation Modeling: A Multidisciplinary Journal*, 22, 76-86.

Morgan, G.B., Hodge, K.J. and Baggett, A.R. (2016). Latent Profile Analysis with Nonnormal Mixtures: A Monte Carlo Examination of Model Selection using Fit Indices. *Computational Statistics & Data Analysis*, 93, 146-161.

Nylund, K.L., Asparouhov, T. and Muthen, B.O. (2008). Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study: Erratum.

Redner, R.A. and Walker, H.F. (1984). *Mixture Densities, Maximum Likelihood and the EM Algorithm*. SIAM review, 26, 195-239.

Sayyareh, A. (2016). Admissible Set of Rival Models based on the Mixture of Kullback-Leibler Risks. *JSRI*, 13, 59-88

Schwarz, G. (1978). Estimating the Dimension of a Model. *The Annals of Statistics*, 6, 461-464.

Scott, A.J. and Symons, M.J. (1971). Clustering Methods based on Likelihood Ratio Criteria. *Biometrics*, 387-397.

Symons, M.J. (1981). Clustering Criteria and Multivariate Normal Mixtures. *Biometrics*, 35-43.

Teicher, H. (1961). Identifiability of Mixtures. *The Annals of Mathematical Statistics*, 32, 244-248.

Titterington, D.M., Smith, A.F.M. and Makov, U.E. (1985). *Statistical Analysis of Finite Mixture Distributions*. Wiley, New York.

Vuong, Q.H. (1989). Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses. *Econometrica: Journal of the Econometric Society*, 307-333.

Wald, A. (1948). Estimation of a Parameter when the Number of Unknown Parameters Increases Indefinitely with the Number of Observations. *The Annals of Mathematical Statistics*, 220-227.

J. Statist. Res. Iran 15 (2018): 173-212
White, H. (1982). Maximum Likelihood Estimation of Misspecified Models. *Econometrica: Journal of the Econometric Society*, 1-25.

Wichitchan, S., Yao, W. and Yang, G. (2018). Hypothesis Testing for Finite Mixture Models. *Computational Statistics & Data Analysis*.

Yakowitz, S.J. and Spragins, J.D. (1968). On the Identifiability of Finite Mixtures. *The Annals of Mathematical Statistics*, 209-214.

Appendix

Proof of Lemma 1: Given Young’s Assumptions 1 to 3 and the strong law of large numbers Theorem,

\[
\frac{1}{n} \sum_{i=1}^{n} E_{\kappa_0}(z_i | x, \Gamma_0) \left(\log f(X, Z_j | \hat{\Gamma}_0) \right) \xrightarrow{a.s.} E_h(E_{\kappa_0}(z_j | x, \Gamma_0)(\log f(X, Z_j | \Gamma_0) | x))
\]

Since by (2)

\[
E_h(E_{\kappa_0}(z_j | x, \Gamma_0)(\log f(X, Z_j | \Gamma_0) | x)) = E_h \left(\sum_{j=1}^{m} (\log \alpha_j + \log f(X | \theta_j)) E_{\kappa_0}(z_j | x, \Gamma_0)(Z_j | x) \right)
\]

(21)

On the other hand

\[
E_{\kappa_0}(z_j | x, \Gamma_0)(Z_j | x) = \sum_{z_j = 0 \lor 1} z_j f_{\kappa_0}(z_j | x, \Gamma_0) = \alpha_{js} f(X | \theta_j) f(x | \Gamma_0) = z_j f
\]

since (21)

\[
E_h(E_{\kappa_0}(z_j | x, \Gamma_0)(\log f(X, Z_j | \Gamma_0) | x)) = E_h \left(\sum_{j=1}^{m} (\log \alpha_j + \log f(X | \theta_j)) E_{\kappa_0}(z_j | x, \Gamma_0)(Z_j | x) \right)
\]

\[
= E_h \left(\sum_{j=1}^{m} (\log \alpha_j + \log f(X | \theta_j)) Z_{js} f \right)
\]

\[
= E_h(\log f(X, Z_{sf} | \Gamma_0)).
\]
Proof of Lemma 2: From the proof of Lemma 1 and the strong law of large numbers Theorem, we can write similarly:

\[
\frac{1}{n} \sum_{i=1}^{n} E_{\kappa_g(\tilde{z}_g|x;\Psi_n)}(\log g(X_i, Z_{ig}|\Psi_n)|x) = \frac{1}{n} \sum_{i=1}^{n} \log g(x_i, \tilde{z}_{ig}|\Psi_n) \xrightarrow{a.s.} E_h(\log g(X, Z_{sg}|\Psi_s)).
\]

Similarly, other parts are easy.

Proof of Theorem 1: From a Taylor expansion of \(\log L_c(\Gamma_s)\) around \(\hat{\Gamma}_n\), we obtain:

\[
\log L_c(\Gamma_s) = \log f(x, z_f|\Gamma_s) = \log f(x, \tilde{z}_f|\Gamma_n) + \nabla_\Gamma \log f(x, \tilde{z}_f|\Gamma_n)|_{\Gamma=\hat{\Gamma}_n} (\Gamma - \hat{\Gamma}_n) + \frac{1}{2} (\Gamma - \hat{\Gamma}_n)' \nabla^2_\Gamma \log f(x, \tilde{z}_f|\Gamma_n)|_{\Gamma=\hat{\Gamma}_n} (\Gamma - \hat{\Gamma}_n) + o_p(1) \tag{22}
\]

according the strong law of large numbers Theorem and Voung’s Assumption 4, we have

\[
\frac{1}{n} \sum_{i=1}^{n} \nabla^2_\Gamma \log f(x, \tilde{z}_f|\Gamma_n)|_{\Gamma=\hat{\Gamma}_n} \xrightarrow{a.s.} E_h\{\nabla^2_\Gamma \log f(x, z_f|\Gamma_s)\} = A_f(\Gamma_s)
\]

so

\[
\log L_c(\Gamma_s) = \log f(x, \tilde{z}_f|\hat{\Gamma}_n) + \frac{n}{2} (\Gamma - \hat{\Gamma}_n)' A_f(\Gamma_s)(\Gamma - \hat{\Gamma}_n) + o_p(1). \tag{23}
\]

Similarly, we have;

\[
\log L_c(\Psi_s) = \log f(x, \tilde{z}_g|\tilde{\Psi}_n) + \frac{n}{2} (\Psi - \tilde{\Psi}_n)' A_g(\Psi_s)(\Psi - \tilde{\Psi}_n) + o_p(1).
\]

Since \(CLR(\Gamma_s, \Psi_s) = \log L_c(\Gamma_s) - \log L_c(\Psi_s)\), we obtain;

\[
CLR(\hat{\Gamma}_n, \hat{\Psi}_n) = CLR(\Gamma_s, \Psi_s) - \frac{n}{2} (\Gamma - \hat{\Gamma}_n)' A_f(\Gamma_s)(\Gamma - \hat{\Gamma}_n) \tag{24}
\]

\[
+ \frac{n}{2} (\Psi - \hat{\Psi}_n)' A_g(\Psi_s)(\Psi - \hat{\Psi}_n) + o_p(1).
\]
To prove (a), we note that $\text{CLR}(\Gamma, \Psi) = 0$ if two rival models be nested. Part (a) by Vuong’s Lemma A and Lemma 2 obtain:

$$2\text{CLR}(\hat{\Gamma}_n, \hat{\Psi}_n) = n(\Gamma - \hat{\Gamma}_n)' A_f(\Gamma)(\Gamma - \hat{\Gamma}_n) + n(\Psi - \hat{\Psi}_n)' A_g(\Psi) + o_p(1)$$

$$= \left[\begin{array}{c} \sqrt{n}(\Gamma - \hat{\Gamma}_n) \\ \sqrt{n}(\Psi - \hat{\Psi}_n) \end{array} \right] \left[\begin{array}{cc} -A_f(\Gamma) & 0 \\ 0 & A_g(\Psi) \end{array} \right]$$

$$\times \left[\begin{array}{c} \sqrt{n}(\Gamma - \hat{\Gamma}_n) \\ \sqrt{n}(\Psi - \hat{\Psi}_n) \end{array} \right] + o_p(1).$$

Then one can check that

$$W = \left[\begin{array}{cc} -A_f(\Gamma) & 0 \\ 0 & A_g(\Psi) \end{array} \right]$$

$$\times \left[\begin{array}{cccc} A_f^{-1}(\Gamma) B_f(\Gamma) A_f^{-1}(\Gamma) & A_f^{-1}(\Gamma) B_f(\Gamma, \Psi) A_g^{-1}(\Psi) \\ A_g^{-1}(\Psi) B_f(\Psi, \Gamma) A_f^{-1}(\Gamma) & A_g^{-1}(\Psi) B_g(\Psi) A_g^{-1}(\Psi) \end{array} \right].$$

to prove (b) we note that $\sqrt{n}(\Gamma - \hat{\Gamma}_n)$ and $\sqrt{n}(\Psi - \hat{\Psi}_n)$ are $O_p(1)$. Thus (24) we obtain;

$$n \frac{1}{2} \text{CLR}(\hat{\Gamma}_n, \hat{\Psi}_n) - n \frac{1}{2} E_h(\log \frac{f(X, Z_{sf} | \Gamma_n)}{g(X, Z_{sg} | \Psi_n)}) = n \frac{1}{2} (\text{CLR}(\Gamma, \Psi)$$

$$- E_h(\log \frac{f(X, Z_{sf} | \Gamma_n)}{g(X, Z_{sg} | \Psi_n)})) + o_p(1).$$

But from the multivariate Central Limit Theorem, the first term in the right-hand side converges in distribution to $N(0, \omega_n^2)$. This variance is finite given Vuong’s Assumption 6 and the Cauchy-Schwartz inequality. Part (b) follows.

Proof of Lemma 3: We know that

$$\omega_n^2 = \frac{1}{n} \sum_{i=1}^{n} \left[\log \frac{f(x_i, \tilde{z}_{sf} | \hat{\Gamma}_n)}{g(x_i, \tilde{z}_{sg} | \hat{\Psi}_n)} \right]^2 - \frac{1}{n} \sum_{i=1}^{n} \left[\log \frac{f(x_i, \tilde{z}_{sf} | \hat{\Gamma}_n)}{g(x_i, \tilde{z}_{sg} | \hat{\Psi}_n)} \right]^2$$

© 2018, SRTC Iran
and

$$\omega_s^2 = \text{Var}_h(\log \frac{f(X,Z_{sf}|\Gamma_s)}{g(X,Z_{sg}|\Psi_s)})$$

Given Young’s Assumptions 1 to 3 and the strong low of large numbers

Theorem and Corollary 1

$$\frac{1}{n} \sum_{i=1}^{n} \log f(x_i, z_{if}|\hat{\Gamma}_n) \xrightarrow{a.s.} E_h(\log f(X,Z_{sf}|\Gamma_s))$$

and

$$\frac{1}{n} \sum_{i=1}^{n} \log g(x_i, z_{ig}|\hat{\Psi}_n) \xrightarrow{a.s.} E_h(\log g(X,Z_{sg}|\Psi_s))$$

Since

$$\frac{1}{n} \sum_{i=1}^{n} \frac{\log f(x_i, z_{if}|\hat{\Gamma}_n)}{g(x_i, z_{ig}|\hat{\Psi}_n)} \xrightarrow{a.s.} E_h(\log \frac{f(X,Z_{sf}|\Gamma_s)}{g(X,Z_{sg}|\Psi_s)})$$

Similarly

$$\frac{1}{n} \sum_{i=1}^{n} \left(\frac{\log f(x_i, z_{if}|\hat{\Gamma}_n)}{g(x_i, z_{ig}|\hat{\Psi}_n)} \right)^2 \xrightarrow{a.s.} E_h(\log \frac{f(X,Z_{sf}|\Gamma_s)}{g(X,Z_{sg}|\Psi_s)})^2$$

Proof of Theorem 2 and 3: Straightforward from Theorem 1 (a) and (b), respectively.
