ON THE HÖLDER ESTIMATE OF KÄHLER-RICCI FLOW

JIANCHUN CHU AND MAN-CHUN LEE

Abstract. In this work, we study the Hölder regularity of the Kähler-Ricci flow on compact Kähler manifolds with semi-ample canonical line bundle. By adapting the method in the work of Hein-Tosatti on collapsing Calabi-Yau metrics, we obtain a uniform spatial C^α estimate along the Kähler-Ricci flow as $t \to +\infty$.

1. Introduction

In this work, we study the normalized Kähler-Ricci flow which is a family of Kähler metrics satisfying

\begin{align}
\partial_t \omega(t) &= -\text{Ric}(\omega(t)) - \omega(t); \\
\omega(0) &= \omega_0
\end{align}

on a compact Kähler manifold X with semi-ample canonical line bundle K_X, where ω_0 is the initial Kähler metric. In this case, X admits an Iitaka fibration structure given by a holomorphic map $f : X \to \Sigma \subset \mathbb{CP}^N$ with possibly singular fibers and possibly singular base manifold Σ. Let $S \subset \Sigma$ be the union of the set of singular values of f and the singular set of Σ. The regular fibers $f^{-1}(z)$, where $z \in \Sigma \setminus S$, are Calabi-Yau manifolds. The complex dimension of Σ is the Kodaira dimension of X. We focus on the case when $0 < \dim \Sigma < \dim X$, and we let $\dim_{\mathbb{C}} \Sigma = m$ and $\dim_{\mathbb{C}} X = m + n$, so that the Calabi-Yau fibers have complex dimension n.

Under semi-ample assumption, the canonical line bundle is nef and hence the flow exists on $X \times [0, +\infty)$ by the works of [12, 21, 26]. The Kähler-Ricci flow under semi-ample canonical line bundle has been extensively studied by various authors [4, 5, 6, 7, 11, 12, 17, 18, 19, 20, 22, 24, 25, 28, 29, 30, 31]. In [17, 18], Song-Tian proved that the flow converges to a generalized Kähler-Einstein metric in the sense of measure on the base manifold Σ as $t \to +\infty$. The generalized Kähler-Einstein metric ω_Σ satisfies $\text{Ric}(\omega_\Sigma) = -\omega_\Sigma + \omega_{WP}$, where ω_{WP} is the Weil-Petersson form which measures the variation of complex structures of the fibers. It was conjectured that the regularity of convergence can be improved to $C^\infty_{\text{loc}}(f^{-1}(\Sigma \setminus S))$-convergence. This conjecture is still open.

Date: May 5, 2021.
2010 Mathematics Subject Classification. Primary 32Q15; Secondary 53C44.
Key words and phrases. Longtime solution, Kähler-Ricci flow, Hölder regularity.

Research partially supported by NSF grant DMS-1709894 and EPSRC grant number P/T019824/1.
in general, although many progresses have been made. For instances, Tosatti-Weinkove-Yang proved in \cite{25} the $C_0^0(f^{-1}(\Sigma\setminus S))$-convergence of the metric to the generalized Kähler-Einstein metric on the base manifold Σ. In \cite{3}, the second named author and Fong considered the case when the generic fibres are biholomorphic to each other and developed a sharp parabolic Schauder estimate on cylinder using the idea of Hein-Tosatti in \cite{10}, and thus confirmed the above conjecture in the locally product case. More recently, Jian and Song \cite{13} considered the case when $m+n=3$ and proved that the Ricci curvature is uniformly locally bounded. For further discussions, we refer interested readers to \cite{1, 3, 4, 6, 7, 9, 13, 20, 22, 25} and the references therein.

The main goal of this article is to establish the $C_\alpha^\alpha(f^{-1}(\Sigma\setminus S))$-convergence of the flow in the general setting where the fibres are not necessarily biholomorphic to each other.

Theorem 1.1. Suppose that (X, ω_X) is a compact Kähler manifold with semi-ample canonical line bundle and $\omega(t)$ is a normalized Kähler-Ricci flow on X defined by (1.1). Then for any $\alpha \in (0, 1)$ and any compact set $K \subset X \setminus f^{-1}(S)$, there is $C(\alpha, K)$ such that for all $t \in [0, +\infty)$,

$$\|\omega(t)\|_{C^\alpha(K, \omega_X)} \leq C.$$ (1.2)

The proof of Theorem 1.1 adapts the idea in Hein-Tosatti’s work \cite{10} on collapsing Calabi-Yau metrics, and some estimates for Kähler-Ricci flow in earlier works by Fong-Zhang \cite{4}, Song-Tian \cite{19} and Tosatti-Weinkove-Yang \cite{25}.

Acknowledgement: The authors are grateful to Valentino Tosatti and Hans-Joachim Hein for continuous support throughout the work. The authors would also like to thank Frederick Fong for useful discussion.

2. Preliminary

In this section, we collect some known results which will be used in deriving the C^α estimate.

2.1. Local estimates for Kähler-Ricci flow. It is known that when the Kähler-Ricci flow $\omega(t)$ is uniformly equivalent to a fixed Kähler metric, then $\omega(t)$ is bounded in C_k^k for all $k \in \mathbb{N}$. When the Kähler-Ricci flow is with respect to a mildly varying family of complex structures, we need the following parabolic regularization property, which is a slight modification of the elliptic case \cite{10} Proposition 2.3.

Proposition 2.1. For all $n, k, l_0 \in \mathbb{N}$, $\alpha \in (0, 1)$ and $A > 1$, there are $\kappa(n, \alpha)$ and $C(k, n, \alpha, A, l_0) > 0$ such that the following holds. Let $B_1(0)$ be the unit ball in \mathbb{C}^n with the standard Euclidean metric $\omega_{\mathbb{C}^n}$ and J be a complex structure on $B_1(0)$ such that

$$\|J - J_{\mathbb{C}^n}\|_{C^{1, \alpha}(B_1(0))} < \kappa, \quad \|J - J_{\mathbb{C}^n}\|_{C^{k, \alpha}(B_1(0))} \leq A.$$ (2.1)
If \(\omega(t) \) is a family of J-Kähler metrics satisfying
\[
\partial_{t} \omega(t) = -\text{Ric}(\omega(t)) - l \omega(t) \quad \text{on} \quad Q_{1}(0) = B_{1}(0) \times [-1, 0]
\]
for some \(|l| \leq l_{0} \) and
\[
A^{-1} \omega_{\mathbb{C}^{n}} \leq \omega(t) \leq A \omega_{\mathbb{C}^{n}} \quad \text{on} \quad Q_{1}(0),
\]
then we have
\[
\| \omega(t) \|_{C^{k, \alpha}(Q_{1/2}(0))} \leq C(k, n, \alpha, A, l_{0}).
\]

Proof. By re-parametrization of time, we may assume \(l_{0} = 0 \). Thanks to [10, Proposition 2.2], we can find J-holomorphic coordinates on \(B_{3/4}(0) \) which are close to the standard Euclidean coordinates in \(C^{2, \alpha} \) and differing from them by a bounded amount in \(C^{k+1, \alpha} \). In these J-holomorphic coordinates, applying the local estimates of Kähler-Ricci flow in [16], we obtain the required estimate. \(\square \)

2.2. Liouville theorems for Ricci-flat metric

The following Liouville theorems for Ricci-flat metrics will play an important role in analyzing the blow-up model of the Kähler-Ricci flow.

Theorem 2.1 ([15]). Suppose that \(\omega \) is a Ricci-flat Kähler metric on \(\mathbb{C}^{n} \) such that
\[
A^{-1} \omega_{\mathbb{C}^{n}} \leq \omega(t) \leq A \omega_{\mathbb{C}^{n}} \quad \text{on} \quad \mathbb{C}^{n}
\]
for some \(A > 1 \), then \(\omega \) is constant.

When the underlying manifold is a product of \(\mathbb{C}^{n} \) and a compact Calabi-Yau Kähler manifold \(Y \), the following Liouville theorem was proved by Hein [8], see also [14] for an alternative proof using mean value inequality.

Theorem 2.2 ([8][14]). Let \(Y \) be a compact Calabi-Yau Kähler manifold with Ricci-flat metric \(\omega_{Y} \). Suppose that \(\omega \) is a Ricci-flat Kähler metric on \(\mathbb{C}^{n} \times Y \) such that
\[
A^{-1}(\omega_{\mathbb{C}^{n}} + \omega_{Y}) \leq \omega \leq A(\omega_{\mathbb{C}^{n}} + \omega_{Y}) \quad \text{on} \quad \mathbb{C}^{n} \times Y
\]
for some \(A > 1 \) and \(\omega \) is d-cohomologous to \(\omega_{\mathbb{C}^{n}} + \omega_{Y} \), then \(\omega \) is parallel with respect to \(\omega_{\mathbb{C}^{n}} + \omega_{Y} \).

3. \(C^{\alpha} \) estimate of Kähler-Ricci flow

First, let us recall the setting: \(X \) is a compact Kähler manifolds with semiample canonical line bundle, \(f : X^{m+n} \rightarrow \Sigma^{m} \subset \mathbb{CP}^{N} \) is the corresponding Calabi-Yau fibration, and \(S \subset \Sigma \) is the union of the set of singular values of \(f \) and the singular set of \(\Sigma \). By [18], there exists a smooth Kähler metric \(\omega_{\Sigma} \) on \(\Sigma^{n} \setminus S \) satisfying the generalized Kähler-Einstein equation:
\[
\text{Ric}(\omega_{\Sigma}) = -\omega_{\Sigma} + \omega_{\text{WP}},
\]
where \(\omega_{\text{WP}} \) is the smooth semi-positive Weil-Petersson form. By rescaling, we may assume \(B_2(0) \subset \Sigma \setminus S \), where \(B_2(0) = B_{\mathbb{C}^m}(2) \) denotes the Euclidean ball. On \(B_2(0) \), we have \(\omega_{\mathbb{C}^m} = \omega_{\Sigma} + \sqrt{-1} \partial \bar{\partial} u \) for some \(u \in C^\infty(B_2(0)) \). For notational convenience, we still use \(u \) and \(\omega_{\Sigma} \) to denote their pull-backs to \(B_2(0) \times Y \).

The map \(f|_{f^{-1}(B_2(0))} : f^{-1}(B_2(0)) \to B_2(0) \) is a proper surjective holomorphic map with \(n \)-dimensional Calabi-Yau fibers. For each \(z \in B_2(0) \), we write \(X_z = f^{-1}(z) \). For Kähler metric \(\omega_0 \) on \(X \), using Yau’s theorem [27], there is a unique Kähler-Ricci flat metric \(\omega_{F,z} \) on each fibre \(X_z \) which is cohomologous to \(\omega_0|_{X_z} \). We may choose \(\rho \) locally smoothly such that \(\omega_F = \omega_0 + \sqrt{-1} \partial \bar{\partial} \rho \) and \(\omega_F|_{X_z} = \omega_{F,z} \). Following [10], we define the reference closed real \((1,1)\)-form on \(B_2(0) \) by

\[
\omega^s(t) = (1 - e^{-t})\omega_\infty + e^{-t}\omega_F,
\]

where \(\omega_\infty = f^*\omega_{\mathbb{C}^m} \). Note that \(\omega_F \) may be not positive definite along the base directions, and so \(\omega^s(t) \) is not necessarily positive definite for all \(t \geq 0 \). But the Cauchy-Schwarz inequality shows \(\omega^s(t) \) is positive definite for \(t \) sufficiently large, which is what we concern. For convenience, by translation of time, we always assume \(\omega^s(t) > 0 \) for all \(t \geq 0 \), and denote its associated Riemannian metric by \(g^s(t) \).

Suppose that \(\omega^s(t) \) is the normalized Kähler-Ricci flow [11] defined on \(X \times [0, +\infty) \). Let \(g^s(t) \) be the associated Riemannian metric. We use \(\varphi \) to denote the solution of the following ODE:

\[
\dot{\varphi} + \varphi = \log \frac{\omega^s(t)^{m+n}}{e^{-nt}C_n^{m+n}\omega_F^m \wedge \omega^m_{\Sigma}} - u, \quad \varphi(0) = \rho.
\]

Here we recall that \(u \) is the function such that \(\omega_\infty = \omega_{\Sigma} + \sqrt{-1} \partial \bar{\partial} u \). By taking \(\sqrt{-1} \partial \bar{\partial} \) on both sides of (3.3) and using \(\sqrt{-1} \partial \bar{\partial} \log(\omega_F^m \wedge \omega_{\Sigma}^n) = \omega_{\Sigma} \) (see e.g., [23] Section 5.7), we see that

\[
\omega^s(t) = \omega^s(t) + \sqrt{-1} \partial \bar{\partial} \varphi(t) \quad \text{on} \quad (B_2(0) \times Y) \times [0, \infty).
\]

This reduces back to the setting analogous to its elliptic counterpart in [10].

By Ehresmann’s theorem and shrinking \(B_2(0) \) slightly, \(f \) is a smooth fiber bundle. We may choose a trivialization \(\Phi : B_2(0) \times Y \to X \) where \(Y = f^{-1}(0) \) such that \(\Phi|_{\{0\} \times Y} : \{0\} \times Y \to f^{-1}(0) = Y \) is the identity map. On \(B_2(0) \times Y \), we use \(J^2 \) to denote the complex structure inherited from \(X \) via the trivialization \(\Phi \). Then the projection \(\text{pr}_{\mathbb{C}^m} \) is a \(J^2 \)-holomorphic submersion. Let \(J_{YZ} \) denote the restriction of \(J^2 \) to the \(J^2 \)-holomorphic fibre \(\{z\} \times Y \). Note that \(\Phi^*\omega_{F,z} \) is a Ricci-flat \(J_{YZ} \)-Kähler metric on \(\{z\} \times Y \). Let \(g_{YZ} \) be its associated Riemannian metric on \(\{z\} \times Y \). Extend it trivially to the product metric on \(\mathbb{C}^m \times Y \) and define the product shrinking metric \(g_z(t) = g_{\mathbb{C}^m} + e^{-t}g_{YZ} \), which is Kähler with respect to \(J_z = J_{\mathbb{C}^m} + J_{YZ} \). By the trivialization \(\Phi \), we may assume the above complex structures, metrics and the Kähler-Ricci
flow are defined on $B_2(0) \times Y$. We will omit the trivialization for notational convenience.

The main objective of this section is to prove the following C^α estimate of the Kähler-Ricci flow.

Theorem 3.1. For all $\alpha \in (0, 1)$, there is $C > 0$ such that for all $t \in [0, +\infty)$,

$$
\sup_{x=(z,y) \in B_{1/4} \times Y} \sup_{(x',t') \in B_{2\Gamma(t)}((x,t), \frac{1}{2})} |\eta(x, t) - P_{x'}^{g_z(t)}(\eta(x', t))|_{g_z(t)} \leq C,
$$

where $\eta = \sqrt{-1} \partial \bar{\partial} \varphi$ and $P_{x'}^{g_z(t)}$ denotes the $g_z(t)$-parallel transport along the $g_z(t)$-geodesic from x' to x.

Remark 3.1. We note that the Ricci flow $g^*(t)$ is uniformly equivalent to the reference shrinking Riemannian metric $g_z(t)$ by the work of [4]. By standard parabolic regularity theory, the flow is C^k regular in finite time. The major difficulties is the uniformity for all $t > 0$.

To prove Theorem 3.1, we first need the following lower order estimates along the Kähler-Ricci flow.

Lemma 3.1. Under the above setting, there are $C > 0$ and $T > 1$ such that for all $(x, t) \in B_2(0) \times [T, +\infty)$,

(i) $|R_{g^*(t)}| \leq C$;

(ii) $C^{-1}\omega^U(t) \leq \omega^*(t) \leq C\omega^U(t)$;

(iii) $|\nabla (\varphi + \varphi + u)|_{g^*(t)} \leq C$;

(iv) $e^{nt}\omega^m(t) \to C_n \omega_F^m \wedge \omega_{\Sigma}^m$ uniformly on $B_2(0)$ as $t \to +\infty$.

Proof. The uniform boundedness of scalar curvature follows directly from [19 Theorem 1.1]. By [4 Theorem 1.1], the flow $\omega^*(t)$ is uniformly equivalent to the shrinking reference metric $(1 - e^{-t})\omega_\Sigma + e^{-t}\omega_0$ and hence $\omega^U(t)$ on $B_2(0)$. These prove (i) and (ii).

By [19 Proposition 3.1], the function $|\nabla v|_{g^*(t)}$ is uniformly bounded where $v = \log\frac{\omega^m(t)^{m+n}}{e^{-nt\Omega}}$ and Ω is a smooth volume form on X. Since Ω and $\omega_F^m \wedge \omega_\Sigma^m$ are uniformly equivalent on $B_2(0)$, then (iii) follows. The volume convergence (iv) follows from [25 Lemma 3.1].

Next, let us include some important observation from [10]. Choosing a complex coordinate chart $(y^1, ..., y^n)$ on Y, together with complex coordinate chart $(z^1, ..., z^m)$ on $B_2(0)$, (z,y) is a complex coordinate chart on $B_2(0) \times Y$. Since pr_{C^m} is holomorphic with respect to J^2 and J_{z_0}, then

$$
(\text{pr}_{C^m})_* \circ (J^2 - J_{z_0}) = J_{C^m} \circ (\text{pr}_{C^m})_* - J_{C^m} \circ (\text{pr}_{C^m})_* = 0.
$$

Thus, ignoring the distinction between these complex coordinates and their complex conjugates, (3.6) shows

$$
(J^2 - J_{z_0})_{(z,y)} = A(z_0, z, y)dz \otimes \partial_y + B(z_0, z, y)dy \otimes \partial_y,
$$

where $A(z_0, z, y)$ and $B(z_0, z, y)$ are functions on $B_2(0)$.
where A, B are smooth matrix-valued functions with $B(z_0, z_0, y) = 0$. Combining (3.7) with the definitions of $g_{z_0}(t)$ and $g^2(t)$, we see that
\begin{equation}
(g^2(t) - g_{z_0}(t)) \bigg|_{(z,y)}
= e^{-t} \left(C(z_0, z, y) dz \otimes dz + D(z_0, z, y) dz \otimes dy + E(z_0, z, y) dy \otimes dy \right),
\end{equation}
where C, D, E are smooth matrix valued functions with $E(z_0, z_0, y) = 0$. Thanks to the factor e^{-t} in (3.8) and the Cauchy-Schwarz inequality, we can find $C, T > 1$ such that for all $(z, t) \in B \times [T, +\infty)$,
\begin{equation}
C^{-1} g_z(t) \leq g^2(t) \leq C g_z(t).
\end{equation}
By translation of time, we will assume $T = 0$ since we only concern the behaviour of the Kähler-Ricci flow as $t \to +\infty$ by Remark 3.1.

Now, we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. We will follow closely the argument in [10] and adapt the argument in the parabolic setting. Let $B = B_1(0) \subset B_2(0) \Subset \Sigma \setminus S$. In the following, we say a constant is uniform if it is independent of t, and always use C to denote a uniform constant.

For $x = (z, y) \in B \times Y$, we consider the function
\begin{equation}
\mu(x, t) = \left(d^{g_z(t)}(x, \partial(B \times Y))\right)^\alpha \times \sup_{x' \in B^{g_z(t)}(x, \frac{1}{2}d^{g_z(t)}(x, \partial(B \times Y)))} \left| \eta(x, t) - P_{x'x}^{g_z(t)}(\eta(x', t)) \right|_{g_z(x, t)}.
\end{equation}
where $P_{x'x}^{g_z(t)}$ denotes the $g_z(t)$-parallel transport along the $g_z(t)$-geodesic from x' to x. To prove Theorem 3.1, it suffices to show that
\begin{equation}
\sup_{(B \times Y) \times [0, \infty)} \mu(x, t) \leq C
\end{equation}
for some $C > 0$. Suppose on the contrary, we can find sequences $t_i \to +\infty$ and $x_i \in B \times Y$ such that
\begin{equation}
\mu(x_i, t_i) = \sup_{(B \times Y) \times [0, t_i]} \mu(x, t) \to +\infty.
\end{equation}
Let $x_i = (z_i, y_i)$ and $x_i' \in B^{g_{z_i(t_i)}(x_i, \frac{1}{2}d^{g_{z_i(t_i)}}(x_i, \partial(B \times Y)))}$ be the point realizing the supremum in the definition of μ. Define λ_i by
\begin{equation}
\lambda_i^\alpha = \frac{|\eta(x_i, t_i) - P_{x'x_i}^{g_{z_i(t_i)}}(\eta(x_i', t_i))|_{g_z(x_i, t_i)}}{d^{g_{z_i(t_i)}(x_i, x_i')}^\alpha},
\end{equation}
and then
\begin{equation}
\mu(x_i, t_i) = d^{g_{z_i(t_i)}}(x_i, \partial(B \times Y))^\alpha \cdot \lambda_i^\alpha.
\end{equation}
By passing to subsequence, we may assume that
\begin{equation}
x_i \to x_\infty = (z_\infty, y_\infty) \in \overline{B} \times Y.
\end{equation}
Since \(g_z(t_i) = g_{\mathbb{C}^m} + e^{-t_i}g_{Y,z_i} \) and \(t_i \to +\infty \), the metric \(g_z(t_i) \) is shrinking, and so \(d^{g_z(t_i)}(x, \partial(B \times Y)) \) is uniformly bounded from above. Combining this with (3.12) and (3.14), we see that
\[
\lambda_i \to +\infty \quad \text{as} \quad i \to +\infty.
\]
Define the diffeomorphism \(\Psi_i : B_{\lambda_i} \times Y \to B \times Y \) by
\[
\Psi_i(z, y) = (\lambda_i^{-1}z, y),
\]
and pull back the complex structures, metrics, Kähler-Ricci flow and points to \(B_{\lambda_i} \times Y \) via \(\Psi_i \):
\[
\begin{align*}
\hat{J}_i &= \Psi_i^*J_{z_i}; \\
\hat{J}_i^2 &= \Psi_i^*J_i^2; \\
\hat{g}_i(t) &= \lambda_i^2\Psi_i^*g_z(t_i + \lambda_i^{-2}t); \\
\hat{\omega}_i^2(t) &= \lambda_i^2\Psi_i^*\omega^2(t_i + \lambda_i^{-2}t); \\
\hat{\eta}_i(t) &= \lambda_i^2\Psi_i^*\eta(t_i + \lambda_i^{-2}t); \\
\hat{\omega}_i^*(t) &= \hat{\omega}_i^2(t) + \hat{\eta}_i(t); \\
\hat{x}_i &= \Psi_i^{-1}(x_i); \\
\hat{x}_i' &= \Psi_i^{-1}(x_i').
\end{align*}
\]
Then \(\hat{g}_i(t) \) is a Ricci-flat \(\hat{J}_i \)-Kähler product metric, \(\hat{\omega}_i^2(t) \) is a semi-Ricci-flat \(\hat{J}_i^2 \)-Kähler metric and \(\hat{\omega}_i^*(t) \) is a Kähler-Ricci flow with respect to \(\hat{J}_i^2 \). Let \(\hat{g}_i^*(t) \) and \(\hat{g}_i^*(t) \) be the Riemannian metrics associated to \(\hat{\omega}_i^2(t) \) and \(\hat{\omega}_i^*(t) \), then we have the following properties which follow from Lemma 3.1, (3.9) and (3.18):
\[
\begin{align*}
\lambda_i &\geq \hat{g}_i(t) \leq \hat{g}_i^*(t) \leq C\hat{g}_i(t); \\
\lambda_i^{-1} &\geq \hat{g}_i(t) \leq \hat{g}_i^*(t) \leq C\hat{g}_i(t); \\
\hat{g}_i(t) &= g_{\mathbb{C}^m} + \lambda_i^2\hat{e}^{-\lambda_i^{-2}t})g_{Y,z_i}; \\
\hat{\omega}_i^2(t) &= (1 - e^{-\lambda_i^{-2}t})\omega_{\mathbb{C}^m} + \lambda_i^2e^{-\lambda_i^{-2}t}\Psi_i^*\omega_F.
\end{align*}
\]
Recalling the definition of \(\lambda_i \) (3.13) and using (3.18),
\[
\lambda_i^\alpha = \frac{|\eta(x_i, t_i) - \mathbf{P}_{g_z(t_i)}^{g_{x_i}(t_i)}(\eta(x_i', t_i))|_{g_z(x_i, t_i)}}{d^{g_z(t_i)}(x_i, x_i')^\alpha} = \frac{\lambda_i^\alpha}{\frac{d^{g_z(t_i)}(x_i, x_i')^\alpha}{d^{\hat{g}_i(0)}(\hat{x}_i, \hat{x}_i')}^\alpha} \cdot \lambda_i^\alpha,
\]
which implies
\[
\frac{|\hat{\eta}_i(\hat{x}_i, 0) - \mathbf{P}_{\hat{g}_i^*(\hat{x}_i')}^{\hat{g}_i^*(\hat{x}_i')}(\hat{\eta}_i(\hat{x}_i', 0))|_{\hat{g}_i(\hat{x}_i, 0)}}{d^{\hat{g}_i(0)}(\hat{x}_i, \hat{x}_i')^\alpha} = 1.
\]
By (3.19) and \(\hat{\omega}_i^*(t) = \hat{\omega}_i^2(t) + \hat{\eta}_i(t) \), the numerator of (3.21) is uniformly bounded and hence the distance between \(\hat{x}_i \) and \(\hat{x}_i' \) with respect to \(\hat{g}_i(0) \) is
uniformly bounded:
\begin{equation}
\tag{3.22}
d_{B^i(0)}(\hat{x}_i, \hat{x}'_i) \leq C.
\end{equation}

On the other hand, by the definition of \(\mu \) and (3.12),
\begin{equation}
\tag{3.23}
(\mu(\hat{B}_\lambda \times Y)) = \mu(x_i, t_i) \to +\infty.
\end{equation}
This implies that the pointed limit space of
\begin{equation}
\tag{3.24}
(B_\lambda \times Y, \hat{g}_i(0), \hat{x}_i)
\end{equation}
will be complete. By (3.22), we may assume \(\hat{x}_i \) modulo translations in the \(\mathbb{C}^m \) factor. Write \(\delta_i = \lambda_i e^{-t_i/2} \), then
\begin{equation}
\tag{3.25}
\hat{g}_i(0) = g_{\mathbb{C}^m} + \delta_i^2 g_{Y,z_i}.
\end{equation}
By passing to a subsequence, we may assume \(\delta_i \to \delta_{\infty} \in [0, +\infty] \). From the behaviour of \(\hat{g}_i(0) \), there are three cases to be considered:
\begin{enumerate}
\item[(a)] \(\delta_{\infty} = +\infty \);
\item[(b)] \(\delta_{\infty} \in (0, +\infty) \);
\item[(c)] \(\delta_{\infty} = 0 \).
\end{enumerate}
Before splitting into different cases, thanks to (3.7) and (3.15), we always have the following convergence of complex structures:
\begin{equation}
\tag{3.26}
\hat{J}_i, \hat{J}'_i \to J_{\mathbb{C}^m} + J_{Y,z_{\infty}} \text{ in } C^\infty_{\text{loc}}(\mathbb{C}^m \times Y).
\end{equation}

Case (a): \(\delta_{\infty} = +\infty \). In this case, \((B_\lambda \times Y, \hat{g}_i(0), \hat{x}_i) \) converges to \((\mathbb{C}^{m+n}, g_{\mathbb{C}^{m+n}}, 0) \) in the \(C^\infty \)-Cheeger-Gromov sense. More precisely, let \(\hat{y}_i = (\hat{y}_1^n) \) be a holomorphic chart of \(Y \) centred at \(y_{\infty} \) with respect to the complex structure \(J_{Y,z_{\infty}} \).

We may assume \(\hat{y}_i \in B_{\mathbb{C}^n}(1) \) and \(\hat{y}_i \to y_{\infty} = 0 \).

Consider the diffeomorphism \(\Lambda_i : B_\lambda \times B_{\delta_i} \to B_{\lambda_i} \times B_1 \) given by
\begin{equation}
\Lambda_i(z, y) = (z, \delta_i^{-1}y).
\end{equation}
Then (3.26) shows the convergence of the background complex structures:
\begin{equation}
\tag{3.27}
\Lambda_i^* \hat{J}_i, \Lambda_i^* \hat{J}'_i \to J_{\mathbb{C}^{m+n}} \text{ in } C^\infty_{\text{loc}}(\mathbb{C}^{m+n}),
\end{equation}
and (3.8), (3.19) show the convergence of the background metrics:
\begin{equation}
\tag{3.28}
\Lambda_i^* \hat{g}_i(t), \Lambda_i^* \hat{g}'_i(t) \to g_{\mathbb{C}^{m+n}} \text{ in } C^\infty_{\text{loc}}(\mathbb{C}^{m+n} \times (-\infty, 0])
\end{equation}

On the other hand, we write \(\tilde{\omega}_i^*(t) = \Lambda_i^* \tilde{\omega}_i^*(t) \), and then \(\tilde{\omega}_i^*(t) \) solves the approximated Kähler-Ricci flow with respect to the complex structure \(\Lambda_i^* \tilde{J}'_i \):
\begin{equation}
\tag{3.29}
\partial_t \tilde{\omega}_i^*(t) = -\text{Ric}(\tilde{\omega}_i^*(t)) - \lambda_i^{-2} \tilde{\omega}_i^*(t).
\end{equation}
By (3.19) and (3.28), we obtain
\begin{equation}
\tag{3.30}
C^{-1} \omega_{C^{m+n}} \leq \tilde{\omega}_i^*(t) \leq C \omega_{C^{m+n}}
\end{equation}
on any compact subset of \(C^{m+n} \times (-\infty, 0] \) if \(i \) is sufficiently large relative to the compact set. By (3.27), (3.28) and (3.30), we may apply Proposition 2.1 to obtain
\begin{equation}
C^\infty_{\text{loc}}(\mathbb{C}^{m+n} \times (-\infty, 0]) \text{ estimate of } \tilde{\omega}_i^*(t) \text{. Hence, } \tilde{\omega}_i^*(t) \text{ converges}
\end{equation}
to $\tilde{\omega}_\infty^\bullet(t)$ in $C^\infty_{\text{loc}}(\C^{m+n} \times (-\infty, 0])$ which remains uniformly equivalent to the Euclidean metric $\omega_{\C^{m+n}}$ for all $t \leq 0$.

Now, we follow similar argument in [3] to reduce the discussion back to the elliptic case. Using (3.29), $\tilde{\omega}_\infty^\bullet(t)$ solves the Kähler-Ricci flow:

$$\partial_t \tilde{\omega}_\infty^\bullet(t) = -\text{Ric}(\tilde{\omega}_\infty^\bullet(t)).$$

(3.31)

By Lemma 3.1, the scalar curvature of the original Kähler-Ricci flow is bounded, and hence the scalar curvature after parabolic rescaling converges to 0, i.e.,

$$R(\tilde{\omega}_\infty^\bullet(t)) \equiv 0 \text{ on } \C^{m+n} \times (-\infty, 0].$$

(3.32)

Recalling the evolution of scalar curvature along the Kähler Ricci flow:

$$(\partial_t - \Delta)R(\tilde{\omega}_\infty^\bullet(t)) = 2|\text{Ric}(\tilde{\omega}_\infty^\bullet(t))|^2,$$

(3.33)

we conclude that $\tilde{\omega}_\infty^\bullet(t)$ is Ricci-flat, and then $\tilde{\omega}_\infty^\bullet(t) \equiv \tilde{\omega}_\infty^\bullet(0)$ for all $t \leq 0$. Combining this with Theorem 2.1, $\tilde{\omega}_\infty^\bullet(t)$ is constant on $\C^{m+n} \times (-\infty, 0]$.

Define the pull-back geometric quantities by

$$\begin{cases}
\tilde{g}_t(t) = \Lambda_t^* \hat{g}_t(t); \\
\tilde{\eta}_t(t) = \Lambda_t^* \hat{\eta}_t(t); \\
\tilde{x}_i = \Lambda_t^{-1}(\hat{x}_i); \\
\tilde{x}_i' = \Lambda_t^{-1}(\hat{x}_i').
\end{cases}$$

(3.34)

By (3.21) and (3.22), we see that

$$\begin{cases}
d\tilde{g}_t^{(0)}(\tilde{x}_i, \tilde{x}_i') \leq C; \\
\frac{|\tilde{\eta}_t(\tilde{x}_i, 0) - \tilde{P}_{\tilde{x}_i'}(\tilde{\eta}_t(\tilde{x}_i', 0))|_{\tilde{g}_t(\tilde{x}_i, 0)}}{d\tilde{g}_t^{(0)}(\tilde{x}_i, \tilde{x}_i')^\alpha} = 1.
\end{cases}$$

(3.35)

Since $d\tilde{g}_t^{(0)}(\tilde{x}_i, \tilde{x}_i')$ is uniformly bounded, then there is a compact set Ω containing \tilde{x}_i and \tilde{x}_i'. Note that Ω is independent of t. Using the convergence of reference complex structures (3.27) and metrics (3.28), the C^1_{loc} estimate of $\tilde{\omega}_t^\bullet(t)$ from Proposition 2.1 implies

$$|\tilde{\eta}_t(\tilde{x}_i, 0) - \tilde{P}_{\tilde{x}_i'}(\tilde{\eta}_t(\tilde{x}_i', 0))|_{\tilde{g}_t(\tilde{x}_i, 0)} \leq C d\tilde{g}_t^{(0)}(\tilde{x}_i, \tilde{x}_i').$$

(3.36)

Combining this with (3.35),

$$C^{-1} \leq d\tilde{g}_t^{(0)}(\tilde{x}_i, \tilde{x}_i') \leq C.$$

(3.37)

However, $\tilde{\omega}_t^\bullet(t)$ and $\Lambda_t^* \hat{\omega}_t^\bullet(t)$ both converge to a constant real (1,1)-forms in $C^\infty_{\text{loc}}(\C^{m+n} \times (-\infty, 0])$. Using [10, Remark 3.7] and $\tilde{\eta}_t(t) = \tilde{\omega}_t^\bullet(t) - \Lambda_t^* \hat{\omega}_t^\bullet(t)$, (3.35) shows $d\tilde{g}_t^{(0)}(\tilde{x}_i, \tilde{x}_i') \to 0$, which contradicts with (3.37).

Case (b): $\delta_\infty \in (0, +\infty)$. In this case, the blowup limit is $\C^m \times \Omega$. We may assume $\delta_\infty = 1$ without loss of generality. This case is similar to **Case**
(a) except that we don’t need to apply an additional diffeomorphism. Indeed, similar to (3.26), (3.38) shows

\[\hat{g}_i(t), \hat{g}_i^\perp(t) \to g_{C^m} + g_{Y,z_{\infty}} \ \text{in} \ C^\infty_{\text{loc}}(C^m \times Y \times (-\infty, 0]). \]

Thanks to (3.19), (3.26) and (3.38), we may apply Proposition 2.1 to obtain

\[C^\infty_{\text{loc}}(C^m \times Y \times (-\infty, 0]) \]\n
for any \(\lambda > 0 \) estimate of \(\hat{\omega}_i^\bullet(t) \). Hence, \(\hat{\omega}_i^\bullet(t) \) converges to \(\hat{\omega}_i^\bullet(t) \) in \(C^\infty_{\text{loc}}(C^m \times Y \times (-\infty, 0]) \). Then for each \(t \leq 0 \), \(\hat{\omega}_i^\bullet(t) \) is uniformly equivalent to the product form \(\hat{\omega}_i^\bullet(t) = \hat{\omega}_i^\bullet(0) \) is Ricci-flat. Thanks to the uniform equivalence of metrics (3.19) and Theorem 2.2, \(\hat{\omega}_i^\bullet(t) \) is parallel to \(\hat{\omega}_i^\bullet(t) = \hat{\omega}_i^\bullet(0) \) is Ricci-flat. But this will contradict with (3.21) by the same argument of Case (a).

Case (c): \(\delta_{\infty} = 0 \). In this case, the blowup limit is \(C^m \). For \(\hat{x} = (\hat{z}, \hat{y}) \in B_{\lambda_i} \times Y \) and \(\lambda = \lambda_i^{-1} \hat{z} \), we write

\[(\hat{g}_i(\hat{z}) = \lambda_i^2 \hat{y}^* g_{\hat{z}}(t_i + \lambda_i^{-2} t) = \hat{g}_{C^m} + \lambda_i^2 e^{-t_i \lambda_i^{-2} t} g_{Y,z_{\infty}}. \]

By the definition of \(\mu \) and (3.21), for all \(\hat{x} = (\hat{z}, \hat{y}) \in B_{\lambda_i} \times Y \) and \(\hat{x}' \in B^{(\hat{g}_i)_i(\hat{x}, \partial(B_{\lambda_i} \times Y))) \), we have

\[(d^{(\hat{g}_i)_i(\hat{x}, \partial(B_{\lambda_i} \times Y))) \alpha \left| \hat{\eta}(\hat{x}, 0) - P^{(\hat{g}_i)_i(\hat{x}, \partial(B_{\lambda_i} \times Y))) \right| \]

\[\leq \mu(x_i, t_i) = (d^{\hat{g}_i(\hat{x}, \partial(B_{\lambda_i} \times Y))) \alpha, \]

which implies

\[\left| \hat{\eta}(\hat{x}, 0) - P^{(\hat{g}_i)_i(\hat{x}, \partial(B_{\lambda_i} \times Y))) \right| \]

\[\leq C \left(\frac{d^{(\hat{g}_i)_i(\hat{x}, \partial(B_{\lambda_i} \times Y))) \alpha}{d^{\hat{g}_i(\hat{x}, \partial(B_{\lambda_i} \times Y))) \alpha} \right). \]

Recalling that metrics \(\hat{g}_i(0) \) and \(\hat{g}_i(0) \) are uniformly equivalent,

\[\left| \hat{\eta}(\hat{x}, 0) - P^{(\hat{g}_i)_i(\hat{x}, \partial(B_{\lambda_i} \times Y))) \right| \]

\[\leq C \left(\frac{d^{\hat{g}_i(\hat{x}, \partial(B_{\lambda_i} \times Y))) \alpha}{d^{\hat{g}_i(\hat{x}, \partial(B_{\lambda_i} \times Y))) \alpha} \right). \]

For any \(R > 1 \), \(\hat{x} \in B^{\hat{g}_i(\hat{x}, R)} \) and sufficiently large \(i \), (3.23) and (3.42) show

\[\left| \hat{\eta}(\hat{x}, 0) - P^{(\hat{g}_i)_i(\hat{x}, \partial(B_{\lambda_i} \times Y))) \right| \]

\[\leq C \left(\frac{d^{\hat{g}_i(\hat{x}, \partial(B_{\lambda_i} \times Y))) \alpha}{d^{\hat{g}_i(\hat{x}, \partial(B_{\lambda_i} \times Y))) \alpha} \right) \leq C R. \]

Combining this with [10], Lemma 3.6], \(\hat{\omega}_i^\bullet(0) \) have uniformly bounded \(C^\alpha \) norm with respect to any fixed non-collapsing reference metric when \(i \) is sufficiently large. Thus, we may assume \(\hat{\omega}_i^\bullet(0) \to \hat{\omega}_i^\bullet(0) \) in \(C^\beta_{\text{loc}}(C^m \times Y) \) for any \(\beta < \alpha \), where \(\hat{\omega}_i^\bullet(0) \in C^\alpha_{\text{loc}}(C^m \times Y) \) which satisfies the following:
(i) $\hat{\omega}_\infty^*(0)$ is a section of $\text{pr}^{*}_C(\Lambda^{1,1}C^m)$ uniformly equivalent to ω_{C^m};
(ii) $\hat{\omega}_\infty^*(0)$ is $g_{Y,\omega_{\infty}}$-parallel in the fiber directions;
(iii) $\hat{\omega}_\infty^*(0)$ is weakly closed.

The conclusions (i) and (ii) follows from (3.19) and (3.43). The conclusion (iii) is clear due to the uniform convergence and the fact that $\hat{\omega}_i^*(0)$ is closed. Hence, $\hat{\omega}_\infty^*(0)$ is the pull-back under pr^*_C of a weakly closed $(1,1)$-form of class C^α_{loc} on C^m.

To derive contradiction in Case (c), we will prove three claims. First, we rule out $d\hat{g}^0_i(\hat{x}_i, \hat{x}'_i) \to 0$.

Claim 3.1. There is $\varepsilon > 0$ such that for all $i \in \mathbb{N}$,

$$d\hat{g}^0_i(\hat{x}_i, \hat{x}'_i) \geq \varepsilon.$$

Proof of Claim 3.1. Suppose on the contrary, by passing to subsequence, we may assume

$$d_i := d\hat{g}^0_i(\hat{x}_i, \hat{x}'_i) \to 0.$$

Consider the diffeomorphism $\Lambda_i : B_{d_i^{-1} \lambda_i} \times Y \to B_{\lambda_i} \times Y$ given by

$$\Lambda_i(z, y) = (d_i z, y),$$

and define the pull-back geometric quantities by

$$\begin{aligned}
\hat{J}_i & = \Lambda_i^* \hat{J}_i; \\
\tilde{J}_i & = \Lambda_i^* \tilde{J}_i; \\
\hat{g}_i(t) & = d_i^{-2} \Lambda_i^* \hat{g}_i(d_i^2 t); \\
\tilde{g}_i(t) & = d_i^{-2} \Lambda_i^* \tilde{g}_i(d_i^2 t); \\
\hat{\omega}_i^*(t) & = \Lambda_i^* \hat{\omega}_i^*(d_i^2 t); \\
\tilde{\omega}_i^*(t) & = \Lambda_i^* \tilde{\omega}_i^*(d_i^2 t); \\
\hat{x}_i & = \Lambda_i^{-1}(\hat{x}_i); \\
\tilde{x}_i & = \Lambda_i^{-1}(\tilde{x}_i).
\end{aligned}$$

Then

$$d\hat{g}^0_i(\hat{x}_i, \tilde{x}_i) = 1$$

and

$$\hat{\omega}_i^5(t) = (1 - e^{-s})\omega_{C^m} + e^{-s}d_i^{-2} \lambda_i^2 \Lambda_i^* \Psi_i^* \omega_F,$$

where $s = t_i + d_i^2 \lambda_i^{-2} t$. Hence, we can rewrite the equation (3.3) as

$$(\hat{\omega}_i^5 + \tilde{\eta}_i)^{m+n} = e^{\tilde{G}_i + \tilde{H}_i}(\hat{\omega}_i^5)^{m+n},$$

where

$$\begin{aligned}
\tilde{G}_i(t) & = \Lambda_i^* \Psi_i^*(\hat{\phi} + \varphi + u)(s); \\
\tilde{H}_i(t) & = \log \frac{C^m_n \omega_{\Sigma}^m \wedge (e^{-s}d_i^{-2} \lambda_i^2 \Lambda_i^* \Psi_i^* \omega_F)^n}{((1 - e^{-s})\omega_{C^m} + e^{-s}d_i^{-2} \lambda_i^2 \Lambda_i^* \Psi_i^* \omega_F)^{m+n}}.
\end{aligned}$$

(3.48)

(3.49)

(3.50)

(3.51)
Using (3.19) and (3.21),
\begin{align}
|\tilde{\eta}^i(0)|_{\tilde{g}^i(0)} & \leq C; \\
|\tilde{\eta}^i(\tilde{x}, 0) - P_{\tilde{x}, \tilde{x}'}(\tilde{\eta}^i(\tilde{x}', 0))|_{\tilde{g}^i(0)} & = d^i.
\end{align}
(3.52)

For $\tilde{x} = (\tilde{z}, \tilde{y}) \in B_{d_i^{-1}\lambda_i} \times Y$ and $z = d_i\lambda_i^{-1}\tilde{z}$, we write
\begin{align}
(\tilde{g}_i)_{\tilde{z}}(t) & = d_i^{-2}\lambda_i^2 \Lambda_i^* \Psi_i^* g_z(t_i + d_i^2\lambda_i^{-2}t).
\end{align}
(3.53)

Using (3.43), after pulling back via the diffeomorphism Λ_i, we conclude that if i sufficiently large,
\begin{align}
\sup_{\tilde{x}, \tilde{x}' \in B_{\delta_i}(\tilde{x}_i, d_i^{-1})} \frac{|\tilde{\eta}^i(\tilde{x}, 0) - P_{\tilde{x}, \tilde{x}'}(\tilde{\eta}^i(\tilde{x}', 0))|_{(\tilde{g}_i)_{\tilde{z}}(0)}}{d_{\tilde{g}^i(0)}(\tilde{x}, \tilde{x}')} & \leq Cd_i^\alpha.
\end{align}
(3.54)

Decompose $\tilde{\eta}^i(0) = \tilde{\eta}_i^2 + \tilde{\eta}_i'$ where $\tilde{\eta}_i^2$ is the unique $\tilde{g}_i(0)$-parallel $(1, 1)$-form pulled back from \mathbb{C}^m such that $\tilde{\eta}_i^2(\tilde{x}_i) = \tilde{g}_i(\tilde{x}_i, 0)$ is the $\tilde{g}_i(\tilde{x}_i, 0)$ orthogonal projection of $\tilde{\eta}_i(\tilde{x}_i, 0)$ onto $pr^*_i(\Lambda_{1,1}^{1,n})|_{\tilde{x}_i}$. Applying the proof of [10, (5.36)] by freezing the time at 0 and using (3.54), we can find a constant $C > 0$ such that for sufficiently large i,
\begin{align}
|d_i^{-\alpha}\tilde{\eta}_i'(\tilde{x}_i)|_{\tilde{g}_i(\tilde{x}_i, 0)} & \leq C(d_i^{-1}\delta_i)^\alpha.
\end{align}
(3.55)

Write $\varepsilon_i = d_i^{-1}\delta_i$. By passing to a subsequence, we may assume $\varepsilon_i \to \varepsilon_\infty \in [0, +\infty]$. By considering the behaviour of $\tilde{\eta}_i^2(0) = g_{\mathbb{C}^m} + \varepsilon_i^2 g_{Y, \tilde{z}_i}$, there are three distinct cases to be considered: $\varepsilon_\infty = +\infty$; $\varepsilon_\infty \in (0, +\infty)$; $\varepsilon_\infty = 0$. The motivation of the above discussion is to pass $d_i^{-\alpha}\tilde{\eta}_i'$ to a limiting $\sqrt{-1}\partial \bar{\partial}$ exact $(1, 1)$-form on $\mathbb{C}^{m+n}, \mathbb{C}^m \times Y$ or \mathbb{C}^m that is $O(r^\alpha)$ as $r \to +\infty$ and not parallel, where r denotes the corresponding distance function in different settings.

Before analyzing these three cases, we collect some useful estimates which hold in all cases. Using (3.54), (3.55) and $d_i \to 0$, for each $R > 0$ and i sufficiently large, we have
\begin{align}
\sup_{\tilde{x} \in B_{\delta_i}(\tilde{x}_i, R)} |\tilde{\eta}_i'(\tilde{x})|_{\tilde{g}_i(\tilde{x}, 0)} & \leq C\delta_i^\alpha + Cd_i^\alpha R^\alpha.
\end{align}
(3.56)

Following the argument of [10, (5.41)], we define $\tilde{\omega}_i^\# = \tilde{\omega}_i^*(0) - \tilde{\eta}_i'$. Since $\delta_i, d_i \to 0$, then $\tilde{\omega}_i^\#$ is Kähler on $B_{\delta_i}(\tilde{x}_i, R)$ for sufficiently large i. Moreover, its associated Riemannian metric $\tilde{g}_i^\#$ is uniformly equivalent to $\tilde{g}_i(0)$. At time 0, we expand the Monge–Ampère equation (3.50) as
\begin{align}
\text{tr}_{\tilde{\omega}_i^\#} \tilde{\eta}_i' + \sum_{i=2}^{m+n} C_{i}^{m+n} \frac{(\tilde{\eta}_i')(m+n-i)}{(\tilde{\omega}_i^\#)^{m+n}} & = e^{G_i(0) + \tilde{H}_i(0)} \frac{(\tilde{\omega}_i^*(0))^{m+n}}{(\tilde{\omega}_i^\#)^{m+n}} - 1.
\end{align}
(3.57)

Write $e^{K_i} - 1$ for the right hand side.
Subclaim: There is $C > 0$ such that the following holds. For all $R > 0$, there is N such that for all $i > N$ and $\tilde{x}' \in \tilde{B}_{\tilde{g}}(\tilde{x}, R)$,

(i) for $j \geq 2$, $d_i^{-\alpha}|(\tilde{\eta}_i^j(\tilde{x}))^2 - P_{\tilde{x}', \tilde{x}}^j((\tilde{\eta}_i^j(\tilde{x}))^2)|_{\tilde{g}_i(\tilde{x}, 0)} \leq C(\delta_i^\alpha + d_i^\alpha R^\alpha)R^\alpha$;

(ii) $d_i^{-\alpha}|\tilde{\omega}_{\tilde{x}, \tilde{x}}^\#(\tilde{x}_{i}) - P_{\tilde{x}', \tilde{x}}^j(\tilde{\omega}_{\tilde{x}, \tilde{x}}^\#(\tilde{x}'))(\tilde{g}_i(\tilde{x}, 0) \leq Cd_i^{-\alpha}\lambda_i^{-1}R$;

(iii) $d_i^{-\alpha}|e^{\tilde{K}_i(\tilde{x}, 0)} - e^{\tilde{K}_i(\tilde{x}', 0)}| \leq Cd_i^{-\alpha}\lambda_i^{-1}R$.

Proof of Subclaim. The proofs of (i) and (ii) are identical to that of [10, (5.42), (5.43)] by freezing the time at 0 and using (3.7), (3.8), (3.54) and (3.56).

For (iii), the contributions from $\tilde{H}_i(0)$ and $(\tilde{\omega}_i^\alpha(0))^{m+n}/(\tilde{\omega}_i^\#)^{m+n}$ are done in the proof of [10, (5.44)]. It suffices to handle the term $\tilde{G}_i(0)$. We denote $v = \varphi(0) + \varphi(0) + u$. For \tilde{x}' such that $d_{\tilde{g}_i(0)}(\tilde{x}, \tilde{x}') < R$ and sufficiently large i, we have

$$d_i^{-\alpha}|\tilde{G}_i(\tilde{x}_i, 0) - \tilde{G}_i(\tilde{x}', 0)| = |v(\tilde{z}_i, \tilde{y}_i) - v(\tilde{z}_i, \tilde{y}_i)|$$

for some α and $c > 0$. Indeed, since $\tilde{\omega}_i^\#(0) \in C_{loc}^\alpha(\mathbb{C}^m)$ is closed, then it has potential in $C_{loc}^{2\alpha}(\mathbb{C}^m)$. Combining this with (3.61) and standard elliptic bootstrapping argument, $\tilde{\omega}_i^\#(0)$ is smooth. Recalling that $\tilde{\omega}_i^\#(0)$ is uniformly

Claim 3.2. There are two points $\tilde{z}, \tilde{z}' \in \mathbb{C}^m$ such that $\tilde{\omega}_i^\#(\tilde{z}, 0) \neq \tilde{\omega}_i^\#(\tilde{z}', 0)$.

Proof of Claim 3.2. The proof is identical to [10, 5.3.2 Claim 2] by freezing time at 0 and using Claim 3.1 and 3.2.1.

Claim 3.3. The C^α Kähler current $\tilde{\omega}_i^\#(0)$ on \mathbb{C}^m is parallel with respect to Euclidean metric.

Proof of Claim 3.3. The proof is standard and very similar to that in [3, 10]. It suffices to show that

$$\tilde{\omega}_i^\#(0) = \tilde{\omega}_i^\#(0) \text{ weakly on } \mathbb{C}^m$$

for some constant $c > 0$. Indeed, since $\tilde{\omega}_i^\#(0) \in C_{loc}^\alpha(\mathbb{C}^m)$ is closed, then it has potential in $C_{loc}^{2\alpha}(\mathbb{C}^m)$. Combining this with (3.61) and standard elliptic bootstrapping argument, $\tilde{\omega}_i^\#(0)$ is smooth. Recalling that $\tilde{\omega}_i^\#(0)$ is uniformly
equivalent to ω_{cm}, Theorem 2.1 implies $\hat{\omega}_i^0(0)$ is constant, which complete the proof of Claim 3.3.

Next, we prove (3.61). Write $s = t_i + \lambda_i^{-2} t$ and $\psi_i(t) = \lambda_i^2 \Psi_i^* \varphi(s)$. Using (3.3) and (3.18), we have

\[
\begin{align*}
\hat{\omega}_i^0(t) &= (1 - e^{-s})\omega_{cm} + e^{-\lambda_i^{-2} t} \delta_i^* \omega_F + \sqrt{-1} \partial \bar{\partial} \psi_i(t); \\
\hat{\omega}_i^0(t)^{m+n} &= C_{n}^{m+n} e^{\Psi_i^*(\varphi(s))} \delta_i^{2n} (\Psi_i^* \omega_F)^{n} \wedge \omega_{cm}^n.
\end{align*}
\]

where ∂ and $\bar{\partial}$ are with respect to \hat{J}_i^m. Using $z_i \to z_\infty \in \overline{B}$ and (3.7), we have the following convergence:

\[
\hat{J}_i^m \to J_{cm} + J_{Y,z_\infty}, \quad \Psi_i^* \omega_F \to \omega_{Y,z_\infty} \text{ in } C^\infty_{loc}(C^m \times Y).
\]

Then (3.61) follows from (3.62), (3.63) and same argument of [3] which is based on [10]. □

It is clear that Claim 3.2 contradicts with Claim 3.3. This completes the proof of Case (c), and hence Theorem 3.1. □

Proof of Theorem 1.1. The C^0 estimate of $\omega(t)$ follows from [4, Theorem 1.1]. Recalling $g_z(t) = g_{cm} + e^{-t} g_{Y,z_1}$, it is immediate that $P g_z(t) = P g_z(0)$ and $d g_z(t) \leq d g_z(0)$ and $|T| g_z(t) \geq |T| g_z(0)$ for all $t \geq 0$ and contravariant tensor T. Therefore, Theorem 3.1 implies a uniform bound on the $g_z(0)$-Hölder quotient of the Kähler-Ricci flow $\omega(t)$ for any $x, x' \in X$. Thanks to [10, Lemma 3.6], we obtain the required Hölder estimate. □

References

[1] Broder, K., *Collapsing Twisted Kähler-Einstein Metrics*, preprint, arXiv:2003.14009 (2020).
[2] Cao, H.-D., *Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds*, Invent. Math. 81 (1985), no. 2, 359–372.
[3] Fong, F. T.-H.; Lee, M.-C., *Higher-Order Estimates of Long-Time Solutions to the Kähler-Ricci Flow*, preprint, arXiv:2001.11555 (2020).
[4] Fong, F. T.-H.; Zhang, Z., *The collapsing rate of the Kähler-Ricci flow with regular infinite time singularity*, J. Reine Angew. Math. 703 (2015), 95–113.
[5] Fong, F. T.-H.; Zhang, Y., *Local curvature estimates of long-time solutions to the Kähler-Ricci flow*, preprint, arXiv:1903.05939 (2019), to appear in Adv. Math.
[6] Gill, M., *Collapsing of products along the Kähler-Ricci flow*, Trans. Amer. Math. Soc. 366 (2014), no. 7, 3907–3924.
[7] Gross, M.; Tosatti, V.; Zhang, Y., *Geometry of twisted Kähler-Einstein metrics and collapsing*, preprint, arXiv:1911.07315 (2019).
[8] Hein, H.-J., *A Liouville theorem for the complex Monge-Ampère equation on products of manifolds*, Comm. Pure Appl. Math. 72 (2019), no. 1, 122–135.
[9] Hein, H.-J.; Tosatti, V., *Remarks on the collapsing of torus fibered Calabi-Yau manifolds*, Bull. Lond. Math. Soc. 47 (2015), no. 6, 1021–1027.
[10] Hein, H.-J.; Tosatti, V., *Higher-order estimates for collapsing Calabi-Yau metrics*, Camb. J. Math. 8 (2020), no. 4, 683–773.
[11] Jian, W., *Convergence of scalar curvature of Kähler-Ricci flow on manifolds of positive Kodaira dimension*, preprint, arXiv:1805.07884 (2018).
[12] Jian, W.; Shi, Y., A “boundedness implies convergence” principle and its applications to collapsing estimates in Kähler geometry, preprint, arXiv:1904.11261 (2019).
[13] Jian, W.; Song, J., Diameter and Ricci curvature estimates for long-time solutions of the Kähler-Ricci flow, preprint, arXiv:2101.04277 (2021).
[14] Li, C.; Li, J.; Zhang, X., A mean value formula and a Liouville theorem for the complex Monge-Ampère equation. Int. Math. Res. Not. IMRN 2020, no. 3, 853–867.
[15] Riebesehl, D.; Schulz, F., A priori estimates and a Liouville theorem for complex Monge-Ampère equations, Math. Z. 186 (1984), no. 1, 57–66.
[16] Sherman, M.; Weinkove, B., Interior derivative estimates for the Kähler-Ricci flow, Pacific J. Math. 257 (2012), no. 2, 491–501.
[17] Song, J.; Tian, G., The Kähler-Ricci flow on surfaces of positive Kodaira dimension, Invent. Math. 170 (2007), no. 3, 609–653.
[18] Song, J.; Tian, G., Canonical measures and Kähler-Ricci flow. J. Amer. Math. Soc. 25 (2012), no. 2, 303–353.
[19] Song, J.; Tian, G., Bounding scalar curvature for global solutions of the Kähler-Ricci flow, Amer. J. Math. 138 (2016), no. 3, 683–695.
[20] Song, J.; Tian, G.; Zhang, Z., Collapsing behavior of Ricci-flat Kähler metrics and long time solutions of the Kähler-Ricci flow, preprint, arXiv:1904.08345 (2019).
[21] Tian, G.; Zhang, Z., On the Kähler-Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179–192.
[22] Tian, G.; Zhang, Z., Relative volume comparison of Ricci flow and its applications, preprint, arXiv:1802.09508 (2018).
[23] Tosatti, V., KAWE lecture notes on the Kähler-Ricci flow, Ann. Fac. Sci. Toulouse Math. (6) 27 (2018), no. 2, 285–376.
[24] Tosatti, V.; Zhang, Y., Infinite-time singularities of the Kähler-Ricci flow, Geom. Topol. 19 (2015), no. 5, 2925–2948.
[25] Tosatti, V.; Weinkove, B.; Yang, X., The Kähler-Ricci flows, Ricci-flat metrics and collapsing limits, Amer. J. Math. 140 (2018), no. 3, 653–698.
[26] Tsuji, H., Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type, Math. Ann. 281 (1988), no. 1, 123–133.
[27] Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411.
[28] Zhang, Y., Infinite-time singularity type of the Kähler-Ricci flow, to appear in J. Geom. Anal., arXiv:1706.07743 (2017).
[29] Zhang, Y., Infinite-time singularity type of the Kähler-Ricci flow II, to appear in Math. Res. Let., arXiv:1809.01305 (2018).
[30] Zhang, Y., Collapsing limits of the Kähler-Ricci flow and the continuity method, Math. Ann. 374 (2019), no. 1-2, 331–360.
[31] Zhang, Z., Ricci lower bound for Kähler-Ricci flow, Commun. Contemp. Math. 16 (2014), no. 2, 1350053, 11 pp.

(Jianchun Chu) Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208
Email address: jianchun@math.northwestern.edu

(Man-Chun Lee) Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208; Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL
Email address: mclee@math.northwestern.edu, Man.C.Lee@warwick.ac.uk