AFFINE STRATIFICATION OF A_4.

ANANT ATYAM

Abstract. We construct an affine stratification for $A_4(\mathbb{C})$ of length 6, in the sense of Roth and Vakil [RV04], which gives us an upper bound of 6 for the cohomological dimension of $A_4(\mathbb{C})$. We conjecture that in general for arbitrary g the cohomological dimension of A_g is equal to $g(g-1)/2$.

1. Introduction

It is well known that the coarse moduli space of principally polarized abelian varieties (ppav) A_g is not a projective variety over \mathbb{C}. Natural compactifications of A_g such as the Satake-Baily-Borel compactification A_g^{bat} [Sat56] and various toroidal compactifications have been constructed, see for example [Nam80],[FC90]. The quasi projectivity of A_g raises interesting questions, regarding its cohomological dimension and related invariants such as the affine covering number and affine stratification number. We address some questions regarding these invariants.

We now introduce some definitions [RV04] to make the comments above precise.

Definition 1. The affine covering number (acn) of a scheme X is one less than the smallest number of open affine sets required to cover X.

Definition 2. The coherent cohomological dimension $\text{cd}(X)$ of a variety X is the smallest i such that $H^j(X, \mathcal{F}) = 0$, for all $j > i$ and for any quasicoherent sheaf \mathcal{F} on X.

Similarly

Definition 3. The constructible cohomological dimension $\text{ccd}(X)$ of a variety X is the smallest i such that $H^j(X, \mathcal{F}) = 0$ for all $j > i$ and for any constructible sheaf \mathcal{F} on X.

Definition 4. An affine stratification of a scheme X is a finite decomposition $X = \sqcup_{k \in \mathbb{Z} \geq 0} Y_{k,i}$ into locally closed affine subschemes $Y_{k,i}$.

Date: December 23, 2013.
where for each $Y_{k,i}$,

$$Y_{k,i} \setminus Y_{k,i} \subseteq \bigcup_{k' > k,j} Y_{k',j}.$$

The length of an affine stratification is the largest k such that $\bigcup_j Y_{k,j}$ is non-empty.

The affine stratification number (asn) of a scheme X is the minimum of the lengths of all possible affine stratifications of X.

The relationship between affine covering number, affine stratification number and cohomological dimension is given by the following theorem.

Theorem 1. [RV04] The coherent cohomological dimension of a scheme X is bounded above by the affine stratification number of the scheme X which in turn is bounded above by the affine covering number of X, i.e., $\text{cd}(X) \leq \text{asn}(X) \leq \text{acn}(X)$. Similarly the constructible cohomological dimension is bounded above by $\text{dim} X + \text{asn}(X)$, i.e. $\text{ccd} X \leq \text{dim} X + \text{asn} X$.

Our main result is the following statement, over \mathbb{C}.

Theorem 2. There exists an affine stratification of $A_4(\mathbb{C})$ of length 6.

Using theorem 1, we get the following corollary:

Corollary 3. The cohomological dimension $\text{cd}(A_4(\mathbb{C})) \leq \text{asn}(A_4(\mathbb{C})) \leq 6$, while the constructible cohomological dimension $\text{ccd}(A_4(\mathbb{C})) \leq 16$.

As an application of the study of the tautological ring of A_g, we also prove the following proposition.

Theorem 4. The affine covering number of A_g for all g is bounded below by $g(g-1)/2$, i.e., $\text{acn}(A_g) \geq g(g-1)/2$.

Remark 5. Let $A_g(F_p)$ denote the moduli space of ppav over a finite field of characteristic p. Oort [Oor97] showed that $A_g(F_p)$ has a complete subvariety Y_p of codimension g — the locus of ppav the scheme of whose p-torsion points is supported at the origin (completeness follows from the fact that \mathbb{G}_m always has non-trivial p-torsion, so that no semiabelic variety can lie in the closure). Since Y_p is complete, we have $\text{cd}(Y_p) = g(g-1)/2$, and thus since Y_p is a closed subvariety of $A_g(F_p)$, it follows that $\text{cd}(A_g(F_p)) \geq \text{cd}(Y_p) = g(g-1)/2$. In particular we have $\text{cd}(A_4(F_p)) \geq 6$.

Remark 6. Oort [Oor97] had conjectured that $A_g(\mathbb{C})$ does not have a complete subvariety of codimension g, this conjecture was proven by Keel and Sadun in [KS03].

Based on Remark 5 and Theorem 4 we make the following conjecture.
Conjecture 1. The cohomological dimension of \(A_g \) in all characteristics is equal to \(g(g - 1)/2 \), i.e. \(\text{cd}(A_g) = g(g - 1)/2 \).

Remark 7. Fontanari and Pascolutti [FP12] constructed an affine open cover of the moduli space \(M_4 \) of curves of genus 4. They did this by carefully constructing three modular forms whose zero loci have an empty intersection in \(M_4 \). Two of the modular forms are combinatorially constructed so as to ensure the vanishing of two theta constants and a third modular form is constructed to avoid the hyperelliptic locus, which is defined in \(M_4 \) by the condition that two theta constants vanish. We will use a similar approach to construct an affine stratification of \(A_4 \), but after some point, our strategy for the construction will diverge from Fontanari and Pascolutti’s approach. Unfortunately the strategy used by Fontanari and Pascolutti will not work for our purposes because of the inherent combinatorial difficulties in understanding vanishing loci of theta constants with characteristics.

Acknowledgements. I would like to thank my advisor Samuel Grushevsky for suggesting this problem to me. I am grateful to Klaus Hulek and Riccardo Salvati Manni for going through the pre-print meticulously and giving valuable comments and suggestions.

2. Notation and Preliminaries

We will exclusively work over \(\mathbb{C} \) and we denote by \(\mathcal{H}_g \) the Siegel upper half space of \(g \times g \) complex symmetric matrices with positive definite imaginary part. There is an action of \(\text{Sp}(g, \mathbb{Z}) \) on \(\mathcal{H}_g \) given by

\[
(\begin{pmatrix} A & B \\ C & D \end{pmatrix}) \circ \tau = (A\tau + B)(C\tau + D)^{-1}.
\]

Here elements of \(\text{Sp}(g, \mathbb{Z}) \) are written in block form and they consist of the integer matrices that preserve the skew symmetric non-degenerate bilinear form given by \(\begin{pmatrix} 0 & 1_g \\ -1_g & 0 \end{pmatrix} \).

We recall that \(A_g \) has the structure of a quasi-projective variety (see [Igu72], [Gru09]) and can also be described as a group quotient \(A_g = \text{Sp}(g, \mathbb{Z})\backslash \mathcal{H}_g \). A scalar modular form of weight \(k \) with respect to a subgroup \(\Gamma \subset \text{Sp}(g, \mathbb{Z}) \) is a holomorphic function \(F : \mathcal{H}_g \to \mathbb{C} \) such that

\[
F((A\tau + B)(C\tau + D)^{-1}) = \det(C\tau + D)^k F(\tau).
\]

for any \(\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma \).
We denote by $\theta_m(z, \tau)$ the \textit{theta function with characteristic} $m = [\delta]$ given by
\begin{equation}
\theta_m(z, \tau) := \sum_{n \in \mathbb{Z}} e^{\pi i ((n+\epsilon/2)^t \tau (n+\epsilon/2) + 2(n+\epsilon/2)^t (z+\delta/2))}.
\end{equation}
Here $[\delta] \in (\mathbb{Z}\setminus 2\mathbb{Z})^{2g}$ and $z \in \mathbb{C}^g$. We shall say m is an \textit{even characteristic} if $e(m) := \epsilon^t \delta = 0 \in \mathbb{Z}_2^g$. We will denote \mathcal{E} to be the set of all even characteristics.

It can easily be checked that $\theta_m(z, \tau)$ is an even function of z if and only if m is an even characteristic. We shall call $\theta_m(0, \tau)$ the \textit{theta constant} with characteristic m. It follows from the above discussion that $\theta_m(0, \tau)$ vanishes identically if m is not an even characteristic. We shall denote \mathcal{E} to be the set of all even theta characteristics in $(\mathbb{Z}\setminus 2\mathbb{Z})^8$.

From now on, whenever we refer to theta constants, it is implicitly understood that we refer to theta constants with even characteristics.

It is known that theta constants are modular forms of weight $1/2$ with respect to a certain subgroup $\Gamma(4, 8) \subset \text{Sp}(g, \mathbb{Z})$\cite{igu72}. For our purposes we will also need the fact that $\theta_m(0, \tau)$ is a modular form of weight 4 with respect to $\Gamma(2) \subset \text{Sp}(g, \mathbb{Z})$. Here $\Gamma(2)$ is the level 2 congruence subgroup of $\text{Sp}(g, \mathbb{Z})$ given by
\begin{equation}
\Gamma(2) := \{ M \in \text{Sp}(g, \mathbb{Z}) \mid M \equiv 1_{2g} \mod 2 \}.
\end{equation}
The \textit{level two cover} of A_g is defined as
\[A_g(2) := \Gamma(2) \backslash H_g. \]
The Galois group of the cover $p : A_g(2) \rightarrow A_g$ is equal to $\text{Sp}(g, \mathbb{Z}\setminus 2\mathbb{Z})$, and the above discussion means that eighth powers of theta constants are sections of an appropriate line bundle on $A_g(2)$.

Under the action of the entire modular group $\text{Sp}(g, \mathbb{Z})(g, \mathbb{Z})$ theta constants transform as follows. We define the affine action of $\text{Sp}(g, \mathbb{Z}\setminus 2\mathbb{Z})$ on theta characteristics by the formula \cite{igu72}
\begin{equation}
\gamma \ast [\epsilon \delta] = \begin{pmatrix} D & C \\ B & A \end{pmatrix} [\epsilon \delta] + \begin{bmatrix} \text{diag } AB^t \\ \text{diag } CD^t \end{bmatrix}.
\end{equation}
for $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{Sp}(g, \mathbb{Z})$, then in this notation, we have
\begin{equation}
\theta_m(0, \gamma \circ \tau)^8 = \det((C\tau + D)^4 \theta_{\gamma \ast m}(0, \tau)^8.
\end{equation}
Thus a polynomial in theta constants defines a modular form for the entire $\text{Sp}(g, \mathbb{Z})(g, \mathbb{Z})$ if it is invariant under the affine action on characteristics.

We shall denote the vector space of scalar modular forms of weight k with respect to $\text{Sp}(g, \mathbb{Z})$ by M_k. There is a natural compactification
of \mathcal{A}_g called the Satake compactification defined by

$$\mathcal{A}^{\text{Sat}}_g := \text{Proj} \bigoplus_{k \in \mathbb{Z} \geq 0} M_k.$$

Thus using the definition, one sees that zero loci of scalar modular forms with respect to $\text{Sp}(g, \mathbb{Z})$ are ample divisors in $\mathcal{A}^{\text{Sat}}_g$. The modular forms that we will consider are all cusp forms i.e. they all vanish identically on the boundary $\mathcal{A}^{\text{Sat}}_g \setminus \mathcal{A}_g$. Thus in particular if $D \subset \mathcal{A}^{\text{Sat}}_g$ is a closed subscheme and if F is a cusp form such that the zero locus $Z(F)$ does not contain any irreducible components of D then $Z(F) \cap D$ is an ample divisor in D and $D \setminus Z(F) \subset \mathcal{A}_g$ is affine.

We will denote $\mathcal{A}^{\text{dec}}_g$ to be the Zariski closed subset of \mathcal{A}_g consisting of decomposable ppav, i.e. ppav that are isomorphic to a product of lower-dimensional ppav. We will denote $\mathcal{A}^{\text{ind}}_g := \mathcal{A}_g \setminus \mathcal{A}^{\text{dec}}_g$ the Zariski open subset of \mathcal{A}_g consisting of ppav that are not isomorphic to a product of lower dimensional ppav. We will denote Hyp_g the locally closed subvariety of \mathcal{A}_g consisting of the hyperelliptic jacobians.

Remark 8. It is worthwhile to recall that Hyp_g is affine. This is seen to be the case as hyperelliptic curves of genus g are double covers of \mathbb{P}^1 branched along $2g + 2$ distinct points on \mathbb{P}^1. Thus a hyperelliptic curve is determined by a choice of $2g + 2$ points on \mathbb{P}^1 up to an action of $\text{Aut}(\mathbb{P}^1)$. Thus Hyp_g can be naturally identified with a finite group quotient of $\mathcal{M}_{0,2g+2}$, here $\mathcal{M}_{0,2g+2}$ denotes the moduli space of ordered $2g + 2$ points on \mathbb{P}^1. The space $\mathcal{M}_{0,2g+2}$ is known to be affine, see for example [HM98].

From now on we will abuse notation and denote $\mathcal{A}_k \times \mathcal{A}_{g-k}$ the closed subset of \mathcal{A}_g consisting of ppav that are isomorphic to a product of a k-dimensional ppav and a $(g-k)$-dimensional ppav. Strictly speaking this is an abuse of notation as we could have used $\mathcal{A}_{g-k} \times \mathcal{A}_k$ to denote this closed subset as well. Thus for example when we write $\mathcal{A}_2 \times \mathcal{A}_2 \subset \mathcal{A}_4$ we really mean $\text{Sym}^2(\mathcal{A}_2) \subset \mathcal{A}_4$.

We will now state a result of Igusa and Salvati Manni on the orbits of tuples of theta characteristics under the action of $\text{Sp}(g, \mathbb{Z} \setminus 2\mathbb{Z})$ given by (5), which we will use in our construction of modular forms.

Theorem 9 ([Igu72], see also [SM94]). *Given two p-tuples of even theta characteristics $I = (m_1, m_2, \ldots, m_p)$ and $J = (n_1, n_2, \ldots, n_p)$, they are in the same orbit of the action of the deck group $\text{Sp}(2g, \mathbb{Z} \setminus 2\mathbb{Z})$ on the set of p-tuples of theta characteristics, if and only if the following conditions hold:
1. Linear relations among even number of terms in I translate to corresponding linear relations in J, i.e., \(m_1 + m_2 + \ldots + m_{2t} = 0 \) if and only if \(n_1 + n_2 + \ldots + n_{2t} = 0 \).

2. \(e(m_1 + m_2 + m_k) = e(n_1 + n_j + n_k) \) \(\forall i, j, k \).

For a given \(k \), let \(n_k \) be the number of theta characteristics in \(E \) of the form
\[
\begin{bmatrix}
e \\
\delta
\end{bmatrix} = \begin{bmatrix}
e_1 & e_2 \\
\delta_1 & \delta_2
\end{bmatrix}
\]
with \(\begin{bmatrix}
e_1 \\
\delta_1
\end{bmatrix} \in (\mathbb{Z} \setminus 2\mathbb{Z})_{odd}^{2k} \) and \(\begin{bmatrix}
e_2 \\
\delta_2
\end{bmatrix} \in (\mathbb{Z} \setminus 2\mathbb{Z})_{odd}^{2(g-k)} \), i.e., \(\epsilon_1 \delta_1 = \epsilon_2 \delta_2 = 1 \in \mathbb{Z} \setminus 2\mathbb{Z} \).

Let \(I \in E^{n_k} \) be a \(n_k \) tuple all of whose characteristics are of the form described above. Then we have the following theorem.

Theorem 10 ([SM94]). Given \(\tau \in \mathcal{H}_g \) then \([\tau]\) corresponds to a ppav that is a product of a ppav of dimension \(k \) and \(g-k \) if and only if \(\exists J = (m_1, m_2, \ldots, m_k) \in E^{n_k} \) in the Sp\((g, \mathbb{Z} \setminus 2\mathbb{Z}) \) orbit of \(I \) with \(\theta_{m_1}(0, \tau) = \theta_{m_2}(0, \tau) = \ldots = \theta_{m_{2t}}(0, \tau) = 0 \).

Consider the universal family \(\pi : X_g \to A_g \). The Hodge bundle \(\mathcal{E} \) is the locally free sheaf on \(A_g \) defined by the sheaf of relative differentials, \(E := \pi_* \Omega^1_{X_g/A_g} \) and let \(\lambda_i \) be the \(i \)’th Chern class of this sheaf. It has been shown by van der Geer [vdG99] and Esnault and Viehweg [EV02] that \(\lambda_1^{g(1-g)/2} \neq 0 \in CH^*_Q(A_g) \). It is also known that Pic\(_Q(A_g) \) is one dimensional for \(g \geq 2 \), [Bor74]. This implies that there does not exist a collection of \(g(g-1)/2 \) divisors in \(A_g \) with an empty intersection. We claim that this implies that \(acn(A_g) \geq g(g-1)/2 \), because of the following lemma.

For \(g \geq 2 \),

Lemma 11. If \(U \) is an open affine subset of \(A_g \), then \(U \subset A_g \setminus D \), where \(D \) is a divisor.

Proof. Let \(i : U \to A_g \) be the inclusion map. We know that Pic\(_Q(A_g) = \mathbb{Q} \lambda_1 [Bor74] \). We also know that since \(A_g \) is normal, Pic\(_Q(U) = 0 \). The only way for \(i^* : \text{Pic}_Q(A_g) \to \text{Pic}_Q(U) \) to be the zero map is if the \(\lambda_1 \) class goes to zero and that can happen only if \(U \) is contained in the complement of the divisor, as removing a higher codimension locus of \(A_g \) does not affect the image of Pic\(_Q(A_g) \).

We have thus proven

Theorem 12. The affine covering number \(acn(A_g) \geq g(g-1)/2 \).

3. Proof of Main Theorem

The proof of Theorem 2 is divided into two steps. The first step consists of writing down three modular forms whose zero loci in \(A_g \)}
intersect in a Zariski closed subset of \mathcal{A}_4 of codimension 3, thus giving us three affine strata. This construction is similar to that of Fontanari and Pascolutti [FP12]. The second step consists of constructing the remaining 4 strata by identifying natural codimension one subvarieties of closures of successive strata.

Proof. Step 1 (Strata induced by zero loci of modular forms):

1st Stratum: Consider the Schottky form defined by the following formula, using the notation in [FP12]

$$F_T := 16 \sum_{m \in \mathcal{E}} \theta_m^{16} - \sum_{m \in \mathcal{E}} (\theta_m^8)^2. \quad (7)$$

Igusa [Igu81b] showed that the zero locus $Z(F_T)$ of F_T is equal to $J_4 \subset \mathcal{A}_4$. We define our first stratum to be

$$X_0 := \mathcal{A}_4 \setminus Z(F_T).$$

2nd Stratum: Consider the Theta null form on \mathcal{A}_4

$$\Theta_{null} = \prod_{m \in \mathcal{E}} \theta_m. \quad (8)$$

From Riemann’s theta singularity theorem it easily follows that the modular form Θ_{null} does not vanish identically on \mathcal{M}_g in any genus. We thus define our second stratum to be

$$X_1 := Z(F_T) \setminus Z(\Theta_{null}).$$

This stratum corresponds to Jacobians of canonical curves of genus four that are given by a complete intersection of a smooth cubic and a smooth quadric. [Dol12]

Remark 13. The group action of $\text{Sp}(g, \mathbb{Z}\setminus2\mathbb{Z})$ on theta characteristics becomes important from the third stratum onwards. The reason for its importance is the following: if $V_1 = Z(\theta_{m_1}^8, \theta_{m_2}^8) \subset \mathcal{A}_g(2)$ and if $V_2 = Z(\theta_{n_1}^8, \theta_{n_2}^8)$, then (6) and Theorem 9 tell us that V_1 and V_2 are equivalent to each other under the action of the Galois group of the cover $\mathcal{A}_g(2) \rightarrow \mathcal{A}_g$.

In general, from the transformation formula for theta constant (6) of theta constants, it follows that if m_i’s and n_i’s satisfy the conditions of Theorem 9, then the Galois group of this level 2 cover conjugates $Z(\theta_{m_1}^8, \theta_{m_2}^8, ..., \theta_{m_k}^8) \subset \mathcal{A}_g(2)$ to $Z(\theta_{n_1}^8, \theta_{n_2}^8, ..., \theta_{n_k}^8) \subset \mathcal{A}_g(2)$. We should mention that R. Varley constructed an example of a set of 10 theta constants vanishing on a level cover of \mathcal{A}_4 that describes a single ppav, which corresponds to the Segre cubic threefold with an even point of order two; i.e., a cubic threefold with 10 nodes [Var86]. The correspondence between cubic threefolds and \mathcal{A}_4 arises due to the work of Donagi
and Smith [DS81], further explored by Izadi [Iza95], which establishes a birational map between \mathcal{A}_4 and a level cover of the moduli of cubic three folds \mathcal{C}. This is in contrast to the situation where a different set of 10 theta constants i.e. one lying in a different orbit of the $\text{Sp}(g, \mathbb{Z})$ action in (5) describes the hyperelliptic locus.

3rd Stratum: Consider the modular form F_1 given by

$$F_1 = \sum_{m \in \mathcal{E}} \frac{\Theta^8_{\text{null}}}{\theta^8_m}.$$

The Zariski closed subset given by $Z(\Theta_{\text{null}}) \cap Z(F_1) \cap Z(F_T)$ can be interpreted as the closed subset of \mathcal{J}_4 where some two theta constants vanish. Igusa [Igu81a] proved that a curve $[C] \in \mathcal{M}_4 \subset \mathcal{A}_4$ is hyperelliptic if and only if two theta constants vanish on the Jacobian of C. On the other hand Theorem 7 and Remark 8 tell us that $A_{4,\text{dec}} \subset Z(F_T) \cap Z(\Theta_{\text{null}}) \cap Z(F_1)$. Hence we see $Z(F_T) \cap Z(\Theta_{\text{null}}) \cap Z(F_1) = Hyp_4 \cup A_{4,\text{dec}}$. We thus define our third stratum to be

$$X_2 := (Z(F_T) \cap Z(\Theta_{\text{null}})) \setminus Z(F_1).$$

This stratum corresponds to Jacobians of canonical curves of genus four that are a complete intersection of a smooth cubic and a singular quadric of rank three. [Dol12]

Remark 14. The two modular forms given by F_1 and Θ_{null} were used by Fontanari and Pascolutti in proving Looijenga’s conjecture for \mathcal{M}_4 [FP12]. They then use another modular form F_H again constructed as a sum of products of theta constants. They then go on to show that this modular form does not intersect $Hyp_4 \subset \mathcal{M}_4$. We will not be able to use F_H to construct our 4th stratum as $Z(F_T, F_1, \Theta_{\text{null}}, F_H) = A_{4,\text{dec}}^4$, since the codimension of $A_{4,\text{dec}}^4 \subset \mathcal{A}_4$ equals to 3, we see that the stratification using F_H is not optimal as we will be using four forms to describe a geometric locus of codimension 3.

Step 2 (Affine stratification constructed by identifying appropriate closed subvarieties)

4th Stratum: Consider the boundary of the previous stratum, which is $X_2 \setminus X_2 = Hyp_4 \cup A_{4,\text{dec}}$. We know that Hyp_g is affine for all g. The boundary of Hyp_4 is equal to $(A_1 \times Hyp_3) \cup (A_2 \times A_2)$. It is known classically that in \mathcal{A}_3, Jacobians of hyperelliptic curves are characterized by the vanishing of a single theta constant, that is to say $Hyp_3 = Z(\Theta_{\text{null}})$. Since moreover A_1 is affine, the product $A_1 \times (\mathcal{A}_3 \setminus Hyp_3)$ is affine, as a product of affine varieties. We thus
define our fourth stratum to be
\[X_3 := Hyp_4 \sqcup (A_1 \times A_3 \setminus Hyp_3) \]

Since \(X_3 \) is a disjoint union of two affine varieties, it is itself affine.

5th Stratum: Consider the boundary of the previous stratum
\[\overline{X_3 \setminus X_3} = (A_2 \times A_2) \cup (A_1 \times Hyp_3). \]

Now recall that that any indecomposable abelian threefold is a Jacobian of a smooth curve; it thus follows that \(Hyp_3 \setminus Hyp_3 = A_1 \times Hyp_2 \), while \(A_2 \times A_2 = M_2^t \times M_2^t \). Thus by remark 5 we see that
\[
(A_2 \times A_2) \setminus (A_1 \times A_1 \times A_2) = M_2 \times M_2.
\]

We know \(M_2 \) to be affine as \(M_2 = Hyp_2 \). On the other hand, we have
\[
(A_2 \times A_2) \cap (A_1 \times Hyp_3) = A_1 \times A_1 \times A_2.
\]

We thus define our fifth stratum to be
\[X_4 := (A_1 \times Hyp_3) \sqcup (M_2 \times M_2). \]

This stratum is seen to be affine as \(A_1 = Hyp_1 \) is affine, as are \(Hyp_3 \) and \(M_2 \).

6th Stratum: Consider the boundary of the previous stratum \(\overline{X_4 \setminus X_4} = A_1 \times A_1 \times A_2 \). Since \(A_1 \) is known to be affine we just need to stratify \(A_2 \). But \(A_2 = M_2^t \), and \(M_2^t = M_2 \sqcup A_1 \times A_1 \). Thus we define our sixth stratum to be
\[X_5 := (A_1 \times A_1 \times A_2) \setminus (A_1 \times A_1 \times A_1 \times A_1). \]

This stratum is affine as it simply equal to \(A_1 \times A_1 \times M_2 \).

7th Stratum: We finally define our seventh stratum to be
\[X_6 := A_1 \times A_1 \times A_1 \times A_1. \]

We then see that \(A_1 \) is affine as \(A_1 = Hyp_1 \), and the theorem is thus proven.

Remark 15. The next question that is natural to consider is if there exists an affine stratification of \(A_5 \). There are a few difficulties in approaching this problem. For one, the geometry of \(M_5 \) in \(A_5 \) is not easily accessible through the machinery of modular forms as \(\text{codim}(M_5 \subset A_5) = 3 \) and it is not known if the Schottky locus is a set theoretic complete intersection in \(A_5 \).
References

[Bor74] A. Borel. Stable real cohomology of arithmetic groups. Ann. Sci. École Norm. Sup. (4), 7:235–272 (1975), 1974.

[DS81] R. Donagi and R. Smith. The structure of the Prym map. Acta Math., 146(1-2):25–102, 1981.

[EV02] H. Esnault and E. Viehweg. Chern classes of Gauss-Manin bundles of weight 1 vanish. K-Theory, 26(3):287–305, 2002.

[FC90] G. Faltings and C.-L. Chai. Degeneration of abelian varieties, volume 22 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1990. With an appendix by David Mumford.

[Igu72] J.-I. Igusa. Theta functions, volume 194 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, 1972.

[Igu81a] J.-I. Igusa. On the irreducibility of Schottky’s divisor. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28(3):531–545 (1982), 1981.

[Igu81b] J.-I. Igusa. Schottky’s invariant and quadratic forms. In E. B. Christoffel (Aachen/Monschau, 1979), pages 352–362. Birkhäuser, Basel, 1981.

[KS03] S. Keel and L. Sadun. Oort’s conjecture for \(\mathcal{A}_g \otimes \mathbb{C} \). J. Amer. Math. Soc., 16(4):887–900 (electronic), 2003.

[Nam80] Y. Namikawa. Toroidal compactification of Siegel spaces, volume 812 of Lecture Notes in Mathematics. Springer, Berlin, 1980.

[Oor97] F. Oort. Canonical liftings and dense sets of CM-points. In Arithmetic geometry (Cortona, 1994), Sympos. Math., XXXVII, pages 228–234. Cambridge Univ. Press, Cambridge, 1997.

[RV04] M. Roth and R. Vakil. The affine stratification number and the moduli space of curves, volume 38 of CRM Proc. Lecture Notes, pages 213–227. Amer. Math. Soc., Providence, RI, 2004.

[SM94] R. Salvati Manni. Modular varieties with level 2 theta structure. Amer. J. Math., 116(6):1489–1511, 1994.

[Var86] Robert Varley. Weddle’s surfaces, humbert’s curves, and a certain 4 dimensional abelian variety. Amer. J. Math., (108):931–952, 1986.

[vdG99] G. van der Geer. Cycles on the moduli space of abelian varieties, pages 65–89. Aspects Math., E33. Vieweg, Braunschweig, 1999.
Mathematics Department, Stony Brook University, Stony Brook, NY 11794-3651, USA.

E-mail address: anant@math.sunysb.edu