Six weeks into the 2019 coronavirus disease outbreak: it is time to consider strategies to impede the emergence of new zoonotic infections

Vijay Harypursat, Yao-Kai Chen
Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing 400036, China.

Coronaviruses have in the past been known to be the etiologic agents of mild upper respiratory infections in humans, similar to the ubiquitous and relatively benign “common cold”-type upper respiratory illnesses induced by the human rhinoviruses in adults and children. Subsequent to the severe acute respiratory syndrome (SARS) outbreak in China 2003, and the Middle East respiratory syndrome (MERS) outbreak in the Middle East in 2012, global concerns regarding the pathogenicity and epidemic/pandemic potential of novel human coronaviruses began to emerge, with some experts predicting that novel coronaviruses could likely again cross the species barrier and present humans with future pandemic-potential infections.[1] These concerns have proven prescient with the emergence, late in 2019, of the 2019 coronavirus disease (COVID-19) or novel coronavirus pneumonia.

Significantly large variety of coronavirus species cause a diverse range of diseases in domesticated and wild mammals and birds, and these animals may also be carriers of and reservoirs for coronaviruses.[2] Six coronavirus species had, before the January 8th, 2020, been known to cause disease in humans. Four species are endemic in human populations, and cause mild common cold symptoms in immunocompetent humans. The two remaining species, SARS-CoV and MERS-CoV, are zoonotic in origin, and their infection of humans may have fatal outcomes. 2019-nCoV is the seventh coronavirus species that is now known to infect humans, is also zoonotic in origin, and is the causative organism for the current viral pneumonia epidemic in China.

Both SARS-CoV and MERS-CoV are believed to have originated from bats, with common masked civets and dromedary camels respectively being intermediary hosts.[3] SARS-like coronaviruses have been isolated from Chinese horseshoe bats, and may attach to and utilize the angiotensin-converting enzyme 2 receptor in human lower respiratory tract cells to gain entry into these cells, thus facilitating transmission to, and initiating infection in, humans.[4] The genomic sequence of 2019-nCoV is strikingly similar to that of SARS-like coronaviruses found in bats, and phylogenetic data from recent genomic studies on bat-associated coronaviruses and 2019-nCoV suggest that bats are the natural reservoir for coronaviruses in general, and 2019-nCoV in particular.[5] It has been postulated that the reservoir for 2019-nCoV is the Chinese horseshoe bat, which is known to host SARS-like coronaviruses. It is now hypothesized that one of the reservoir coronavirus species in bats crossed the species barrier to an intermediate mammal host (presumed to be a masked civet) sold at the wet market at the epicenter of the current epidemic, with subsequent mutation and transmission to humans, initiating the present epidemic of COVID-19.

It has been noted that the two previously known human coronaviruses causing epidemic disease and spread, SARS-CoV and MERS-CoV, had a relatively low rate of spread from an individual infected patient (an index referred to as its basic reproductive number – R°). The R° of SARS was estimated to be around 3, meaning that on average, each infected patient is presumed to spread the virus to three other individuals.[6] It is currently estimated that the R° for 2019-nCoV is between 2.2 and 2.7.[6,7] However, approximately 10% of individuals infected with SARS-CoV and MERS-CoV were associated with a phenomenon referred to as “super spreading,” associated with an R° > 10.[8] Wide transmission and spread of SARS-CoV and MERS-CoV occurred to a large extent by means of super-
spreading events.[8] Human super spreaders for 2019-nCoV have not been identified thus far in limited epidemiological studies conducted in the past 6 weeks of the outbreak.[6] However, clinicians and researchers should be acutely aware of the likelihood for the potential existence of such transmitters of 2019-nCoV infection in the general population, focused, and resolute. It is also abundantly evident that a large quantum of work remains to be done in order for the current public health effort to be successful in containing the present outbreak. Managing this requires international cooperation using traditional and proven public health strategies that ultimately succeeded in the SARS epidemic. It is, however, inevitable that new zoonotic infections will emerge in the future. It is, therefore, an urgent priority for local and international health and wildlife regulatory authorities to structure and implement robust control mechanisms that effectively reduce human exposure to wild game meat and their products. In contrast to Africa, the consumption of wild game meat in Asia is not generally motivated by poverty, hunger, or starvation. The common motivations for the human consumption of wild game meat in Asia are for their purported medicinal value, and the supposed health-enhancing effects of certain varieties of wild game meat, or their products. Specific rare and exotic Asian and other international wild game and their products, are also consumed and offered to guests and influential persons in an effort to project status, prestige, and wealth, depending on the rarity of the animal involved. There is also the existence of wildlife trafficking between Asia and other regions of the world, which has created an international supply and demand chain, with savvy wildlife entrepreneurs marketing wild game meat and products as “traditional specialties,” in their effort to boost sales. The existence of local and international wildlife trade for meat and animal products needs urgent and decisive change. It is fervently hoped that the steadfast efforts by China, in partnership with the international community, will reap positive results with respect to 2019-nCoV control in the future weeks and months. Additionally, urgent international attention to and curtailment of the hitherto unregulated and commonplace trade in wild game, meat and products is essential if a repeat of the human and economic loss, and public fear and social disruption wreaked by the current 2019-nCoV outbreak is to be avoided in the future.

Funding

This work was supported by a grant from the Chongqing Special Research Project for Prevention and Control of Novel Coronavirus Pneumonia (No. cstc2020jcsx-fyzx0074).

Conflicts of interest

None.

References

1. Kindler E, Jonsdottir HR, Muth D, Hammng OJ, Hartmann R, Rodriguez R, et al. Efficient replication of the novel human...
how to cite this article: Harypursat V, Chen YK. Six weeks into the 2019 coronavirus disease outbreak: it is time to consider strategies to impede the emergence of new zoonotic infections. Chin Med J 2020;133:1118-1120. doi: 10.1097/CM9.0000000000000760