Over-the-Air Design of GAN Training for mmWave MIMO Channel Estimation

Akash S. Doshi\textdagger, Manan Gupta\textdagger, and Jeffrey G. Andrews\textdagger, Fellow, IEEE

Abstract—Future wireless systems are trending towards higher carrier frequencies that offer larger communication bandwidth but necessitate the use of large antenna arrays. Signal processing techniques for channel estimation currently deployed in wireless devices do not scale well to this “high-dimensional” regime in terms of performance and pilot overhead. Meanwhile, training deep learning-based approaches for channel estimation requires large labeled datasets mapping pilot measurements to clean channel realizations, which can only be generated offline using simulated channels. In this paper, we develop a novel unsupervised over-the-air (OTA) algorithm that utilizes noisy received pilot measurements to train a deep generative model to output beamspace MIMO channel realizations. Our approach leverages Generative Adversarial Networks (GAN), while using a conditional input to distinguish between Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) channel realizations. We also present a federated implementation of the OTA algorithm that distributes the GAN over multiple users and greatly reduces the user side computation. We then formulate channel estimation from a limited number of pilot measurements as an inverse problem and reconstruct the channel by optimizing the input vector of the trained generative model. Our proposed approach significantly outperforms Orthogonal Matching Pursuit on both LOS and NLOS channel models, and EM-GM-AMP—an Approximate Message Passing algorithm—on LOS channel models, while achieving comparable performance on NLOS channel models in terms of the normalized channel reconstruction error. More importantly, our proposed framework has the potential to be trained online using real noisy pilot measurements, is not restricted to a specific channel model and can even be utilized for a federated OTA design of a dataset generator from noisy data.

Index Terms—Channel estimation, compressed sensing, deep generative models, generative adversarial networks (GAN), mmWave MIMO, over-the-air (OTA).

I. INTRODUCTION

A. Motivation

Channel estimation (CE) in 6G and beyond will increasingly be performed for larger antenna arrays at both the base station (BS) and user (UE), increasing the dimensionality and complexity of the problem, as future communication systems tend towards progressively higher carrier frequencies in the mmWave and sub-THz range [1], [2]. While channel estimation at sub-6 GHz in practical wireless deployments is usually performed using Least Squares (LS) or minimum mean squared error (MMSE) estimators [3], these do not scale to higher carrier frequencies which require large antenna arrays.

At higher carrier frequencies, the beamspace sparsity of MIMO channels is exploited to perform beam alignment—steering the antenna arrays at the BS and UE to maximize SNR. Due to latency constraints, the number of candidate beams used to perform beam alignment is relatively small, limiting the SNR achieved. Consequently, researchers have been actively investigating learning-based approaches with an eye to improving both CE and beam alignment in this “high-dimensional” regime. A common drawback of such attempts has been the requirement of large datasets of clean channel realizations for training. Such training datasets are either generated using statistical channel models or through ray-tracing for a given physical environment. What is desirable is a learning-based CE or beam alignment algorithm that can be trained using received (noisy) pilot measurements alone. This will eliminate performance losses stemming from inaccurate channel modelling and allow for online updates to the learned models.

Deep generative modelling [4] is a powerful unsupervised learning tool that can be used to implicitly learn complex probability distributions. Recently, it has also been utilized for solving inverse problems, i.e., reconstructing an unknown signal or image from observations [5]. The forward process mapping the signal to the observation is typically non-invertible, hence it is impossible to uniquely reconstruct the signal in the absence of some prior knowledge [6]. A trained deep generative network can be used to encode such a prior. In this paper, we describe a novel over-the-air approach based on deep generative modelling to learn the high-dimensional channel distribution from noisy pilot measurements and subsequently use the trained generative networks to accurately reconstruct the beamspace representation of the channel from compressive pilot measurements.

B. Related Work

Channel measurements indicate that mmWave MIMO channels are sparse in their beamspace representation [7] due to clustering of the paths into small, relatively narrowbeam...
clusters. To exploit this sparsity (that LS and MMSE cannot), several papers have provided a sparse formulation of mmWave CE in both the angular [8] and delay-Doppler domain [9] and subsequently employed Orthogonal Matching Pursuit (OMP) [10] and Basis Pursuit Denoising [11] for sparse channel reconstruction. Approximate Message Passing (AMP) [12] and its variants such as EM-GM-AMP [13] and VAMP [14] have also proved to be robust compressed sensing (CS)-based approaches to sparse channel estimation [15], [16].

CS-based approaches suffer from the drawback of assuming exact sparsity in the DFT basis, and result in poor channel reconstruction if the cross-correlation in the columns of the sensing matrix is high [17]. Meanwhile deep learning-based approaches to channel estimation have been making rapid advancements. A plethora of papers recently [18], [19], [20], [21], [22] have designed supervised deep learning techniques that provide pilot measurements as input to a neural network (NN) that outputs the desired channel. These suffer from the drawback of requiring a labeled dataset to train, and hence have to be trained offline. To circumvent the requirement of a labeled dataset, we designed an unsupervised CE algorithm [23], [24] that trained a deep generative network to output channel realizations using Generative Adversarial Networks (GAN) [25]. Our proposed algorithm used the trained generative network for high-dimensional CE from a small number of pilots and provided a compressed representation of the estimated channel which could be used for channel reconstruction at the BS. By employing posterior sampling via Langevin dynamics in combination with a generative prior [26] for channel estimation, [27] has further improved upon the performance of [23], albeit at the cost of a significantly increased execution time which could run contrary to the block fading assumption made in their exposition. The generative CE algorithm of [23] was also applied to wideband channel estimation in [28], at the cost of designing a separate generative model for each transmit and receive antenna pair, thus not exploiting spatial correlation. GAN has also been utilized in [29], [30], [31] to model the received pilot measurements in place of channel realizations.

However, the aforementioned generative channel estimation techniques and other works performing generative channel modelling [32] require a large dataset of clean channel realizations to train a GAN. In addition, our prior work [23] has the following two limitations: i) Antenna spacing of $\lambda_c/10$ (where $\lambda_c = c/f_c$ and f_c is the carrier frequency) in place of the conventional $\lambda_c/2$ was assumed to generate high spatial correlation in channel realizations and ii) the GAN was trained and its performance evaluated only on channels with a strong LOS component.

C. Contributions

We propose a design for an over-the-air (OTA) implementation of GAN training and generative channel estimation. We utilize received pilot measurements, instead of clean channel realizations, to train a Conditional Wasserstein GAN with no assumptions on the channel model or line-of-sight conditions. We propose several new ideas that while collectively overcoming the key real-world limitations of the initial work done in [23], also set forth a new distributed design strategy – FedPilotGAN – as elaborated in our contributions below.

Beam-space Generative Channel Estimation: In order to relax the antenna spacing constraint from $\lambda_c/10$ to the conventional $\lambda_c/2$, we propose to solve generative channel estimation in the beamspace domain. This helps to exploit the angular clustering in mmWave MIMO channels, while simultaneously not imposing any constraints on the sparsity of the beamspace representation as is the case in traditional CS algorithms. Moreover, we demonstrate the advantage of using deep generative models over CS based approaches for solving inverse problems by showing that a trained generative prior eliminates the need for careful tuning of the sensing matrices.

Training Wasserstein GANs for LOS and NLOS Channels: In [23], we trained a Wasserstein GAN (WGAN) on channels with a dominating Line-of-Sight (LOS) component. By training the generator to output beamspace channel representations and improving the performance of WGAN using Gradient Penalty (GP) [33], we train generative models for a range of LOS and Non-Line-of-Sight (NLOS) MIMO channels with varying degrees of approximate sparsity in their beamspace representation. Subsequently, we train a single Conditional Wasserstein GAN (CWGAN) that takes as conditional input the channel’s LOS/NLOS state to output samples from the entire aforementioned range of channels.

Training a GAN from Noisy Pilot Measurements: In order to overcome the requirement of a dataset of clean channel realizations, we present a novel GAN architecture – Pilot GAN – that combines LS channel estimation with Ambient GAN [34] to train a generative model to output MIMO channel realizations given a dataset of full-rank noisy pilot measurements in a hybrid mmWave architecture. We also provide insights into the range of measurement models under which the Pilot GAN framework is applicable.

Federated Pilot GAN: We describe a federated implementation of Pilot GAN – FedPilotGAN – to facilitate distributed GAN training from noisy pilot measurements over multiple users. This helps to reduce the UE side computation and move the computationally intensive generator training to the BS without impacting the performance of generative channel estimation, as will be demonstrated in Section VI-C. We also highlight the ability of FedPilotGAN to design a dataset generator at a server (BS) using only noisy realizations collected at multiple users – without transmitting data realizations between the server and the users.

Pilot Conditional GAN: We combine the aforementioned Pilot GAN with the CWGAN architecture to train a conditional generative model from noisy pilot measurements. Furthermore, we train a neural network (NN) to determine the LOS/NLOS state of the channel based on pilot measurements, and use its output as input to the conditional generator, thus designing an OTA GAN training algorithm based on pilot measurements. The resulting trained conditional generator is then used to perform CE from compressive pilot measurements across a variety of high-dimensional MIMO channels.
D. Notation & Organization

We use bold uppercase \(\mathbf{A} \) to denote a matrix and bold lowercase \(\mathbf{a} \) to denote a vector, unless stated otherwise. \(A[i,j] \) represents the element of \(\mathbf{A} \) located at the \(i \)th row and \(j \)th column. \(||A||_2 \) is the Frobenius norm of \(\mathbf{A} \) and \(||\mathbf{a}||_0 \) denotes the number of non-zero entries in \(\mathbf{a} \). \(\text{diag}(\mathbf{A}_1, \ldots, \mathbf{A}_N) \) represents a block diagonal matrix whose diagonal entries are given by \(\{\mathbf{A}_1, \ldots, \mathbf{A}_N\} \). \(\mathbf{A} \) is a vector obtained by stacking the columns of \(\mathbf{A} \) as defined in (3), we will utilize GCE to solve (49) + (47) – (48) ∈ \(\mathbf{A} \) given \(\mathbf{y} \). In other words, recovering \(\mathbf{H} \) from \(\mathbf{y} \) given \(\mathbf{A} \) is an inverse problem. In Section III, we will describe an algorithm to solve this inverse problem using a deep generative prior.

III. Generative Channel Estimation (GCE)

Deep generative models \(\mathbf{G} \) are feed-forward neural networks (NN) that take as input a low dimensional vector \(\mathbf{z} \in \mathbb{R}^d \) and output high dimensional matrices \(\mathbf{G}(\mathbf{z}) \in \mathbb{R}^{c \times l \times w} \) where \(d \ll c \times l \times w \). Such a model can be trained to take a i.i.d. Gaussian vector \(\mathbf{z} \) as input and produce samples from complicated distributions, such as human faces [4]. One powerful method for training generative models is using Generative Adversarial Networks (GAN) [25].

In [23], we developed an algorithm that utilized compressed sensing using deep generative models [5] to perform MIMO channel estimation. We trained \(\mathbf{G} \) to output channel realizations \(\mathbf{H} \) from a given distribution, and then utilized \(\mathbf{G} \) to recover \(\mathbf{H} \) from compressive pilot measurements \(\mathbf{y} \). However, we experimentally demonstrated that a reduced antenna spacing of \(\lambda_o/10 \) in the antenna arrays at the transmitter and receiver was key to training \(\mathbf{G} \) successfully. We attributed this to the high spatial correlation generated in channel realizations by such an antenna spacing, making it easier for \(\mathbf{G} \) to learn the underlying channel distribution.

In this paper, we will utilize the following key insight to output channel realizations with the conventional \(\lambda_o/2 \) antenna spacing: beamspace representation of mmWave MIMO channels have high spatial correlation due to clustering in the angular domain. Neglecting grid quantization error and assuming uniformly spaced linear arrays at the transmitter and receiver, under a virtual channel model [11], the array response matrices are given by the unitary DFT matrices \(\mathbf{A}_T \in \mathbb{C}^{N_{Nt} \times N_t} \) and \(\mathbf{A}_R \in \mathbb{C}^{N_{Nr} \times N_r} \) respectively. Then, we can represent \(\mathbf{H} \) as
\[
\mathbf{H} = \mathbf{A}_R \mathbf{H} \mathbf{A}_T^H
\]
\[
= \left((\mathbf{A}_R^H)^\top \otimes \mathbf{A}_R \right) \mathbf{H}_v. \tag{4}
\]
We will train \(\mathbf{G} \) to output samples of \(\mathbf{H}_v \), i.e., \(\mathbb{P}_G \) converges to \(\mathbb{P}_\mathbf{H}_v \) as GAN training progresses. Note that unlike compressed sensing (CS) algorithms that require \(\mathbf{H}_v \) to have a small number of non-zero measurements in order to be recoverable [36], we impose no such constraints on \(\mathbf{G}(\mathbf{z}) \). However, we will experimentally validate in Section VI that outputting \(\mathbf{H}_v \) instead of \(\mathbf{H} \) enables \(\mathbf{G} \) to directly exploit the clustering in angular domain to successfully learn a generative prior.

Subsequently, given a trained generator \(\mathbf{G} \) and pilot measurements \(\mathbf{y} \) as defined in (3), we will utilize GCE to solve the following optimization problem
\[
\mathbf{z}^* = \arg \min_{\mathbf{z} \in \mathbb{R}^d} ||\mathbf{y} - \mathbf{A}_M \mathbf{G}(\mathbf{z})||_2^2 + \lambda_{\text{reg}} ||\mathbf{z}||_2^2, \tag{5}
\]
where \(\mathbf{A}_M = (\mathbf{A}_T^H \mathbf{F})^\top \otimes \mathbf{W}^H \mathbf{A}_R \) and \(\lambda_{\text{reg}} \) is a regularization parameter. Note that \(\mathbf{G} \) represents a function mapping from \(\mathbb{R}^d \) to \(\mathbb{C}^{N_{N_t} \times N_t} \). An illustration of the framework is shown in...
and Opt denotes any first order optimizer.

Fig. 1. Generative Channel Estimation Framework. η denotes the step size and Opt denotes any first order optimizer.

Fig. 1. The regularizer is aimed at enforcing the L2 norm constraint on \(\mathbf{z} \) in [5]. The beamspace channel estimate is then given by \(\mathbf{H}_{\text{v,est}} = \mathbf{G}(\mathbf{z}) \). The performance metric used to assess the quality of \(\mathbf{H}_{\text{v,est}} \) is the normalized mean square error (NMSE), defined as

\[
\text{NMSE} = \mathbb{E} \left[\frac{||\mathbf{H}_v - \mathbf{H}_{\text{v,est}}||_2^2}{||\mathbf{H}_v||_2^2} \right],
\]

where the expected value is over the underlying probability distribution of the channel. It should be noted that since \(\mathbf{A}_R \) and \(\mathbf{A}_T \) are unitary matrices, the NMSE is the same in the beamspace (\(\mathbf{H}_{\text{v,est}} \)) and spatial (\(\mathbf{H}_{\text{est}} \)) domain. The NMSE, as defined in (6), will also serve as an indirect measure of the quality of the prior learnt by a GAN. For an elaborate discussion on GCE, please refer to [23].

IV. GAN ARCHITECTURES

In this section, we will present three different GAN architectures - (i) Wasserstein GAN with Gradient Penalty (WGAN-GP), (ii) Conditional Wasserstein GAN (CWGAN) and (iii) a new novel GAN architecture called Pilot GAN. We will present all three architectures in the context of narrowband MIMO channel generation (refer Remark 1), in keeping with the GCE framework outlined in Section III. In other words, we will assume that the generator in all GAN architectures will output the beamspace MIMO channel representation given by (4). Then we will describe how the second and third GAN architectures can be combined to form Pilot Conditional GAN, that in combination with the LOS Predictor presented in Section IV-D, can be trained OTA at the receiver across a range of channel models.

Remark 1: Extension to wideband channels could be performed by using GCE for each pilot subcarrier and subsequently interpolating between subcarriers. Comprehensive practical evaluation in [37] has shown minimal performance gain in employing DL-based CE techniques over the OFDM resource grid.

A. Wasserstein GAN With Gradient Penalty

A Wasserstein Generative Adversarial Network (WGAN) [38] consists of two deep neural networks - a generator \(\mathbf{G}(\cdot; \theta_G) \) with weights \(\theta_G \) and a critic \(\mathbf{D}(\cdot; \theta_D) \) with weights \(\theta_D \) - whose weights are optimized so as to solve the following min-max problem:

\[
\min_{\mathbf{G}} \max_{\mathbf{D}} \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_D}(\mathbf{x}) \mathbf{D}(\mathbf{x}) - \mathbb{E}_{\mathbf{z} \sim \mathbb{P}_G}(\mathbf{z}) \mathbf{D}(\mathbf{G}(\mathbf{z})),
\]

where \(\mathbb{D} \) is the set of 1-Lipschitz functions and \(\mathbb{P}_r \) is the data distribution. The original GAN [25] is famously known to suffer from mode collapse [39], i.e., \(\mathbb{P}_G \) collapses to a delta function centered around the mode of the input data distribution. In [38], they attribute this behaviour to the use of the KL (Kullback-Leibler) or JS (Jensen-Shannon) divergence during training, and instead propose using the Wasserstein-1 distance. They show that sequences of probability distributions that converge under Wasserstein-1 are a superset of sequences convergent under KL or JS divergence, making WGAN more robust to mode collapse.

WGAN with Gradient Penalty (WGAN-GP) [33] improves the performance of WGAN by incorporating a penalty on the norm of random samples \(\mathbf{x} \sim \mathbb{P}_r \) as a soft version of the Lipschitz constraint. In this paper, we will be utilizing both WGAN and WGAN-GP, depending on which training procedure yields better performance (further details in Section VI). In case of WGAN, the Lipschitz constraint \(\mathbf{D} \in \mathbb{D} \) in (7) is enforced by clipping \(\theta_D \) to be between \((-\tau, \tau)\), where \(\tau \) is the clipping constant. In case of WGAN-GP, the Lipschitz constraint is enforced by adding

\[
L_{\text{GP}}(\theta_d) = \mathbb{E}_{\mathbb{P}_r} \left[||\nabla_\mathbf{x} \mathbf{D}(\mathbf{x}; \theta_d)||_2^2 - 1 \right]^2
\]

to the objective in (7), where \(\mathbf{x} \) are points sampled uniformly along straight lines joining pair of points sampled from the data distribution \(\mathbb{P}_r \) and the generator distribution \(\mathbb{P}_G \), since enforcing the gradient penalty over all possible inputs to \(\mathbf{D} \) is intractable [33].

A unified algorithm capturing the training of both WGAN and WGAN-GP in the context of channel generation is outlined in Algorithm 1 by utilizing an indicator \(\mathbb{I}_{\text{GP}} \) to indicate if WGAN-GP was chosen or not. We update the critic and generator weights, \(\theta_D \) and \(\theta_G \), using calls to Subroutine 2 and 3 respectively, in Algorithm 1. Both subroutines will be used in all subsequent GAN training algorithms. As part of updating the critic in Algorithm 1, we note that the gradient penalty is enforced only along straight lines between pairs of points sampled from the beamspace channel distribution \(\mathbb{P}_{\mathbf{H}} \) and the generator distribution \(\mathbb{P}_G \). In Section VI-A, we will highlight the NMSE improvement obtained by using WGAN-GP instead of WGAN.

B. Conditional Wasserstein GAN

The WGAN in [23] was trained on channel realizations drawn from a single distribution which was characterized by a very strong Line-of-Sight (LOS) component. Moreover, training on such a channel distribution provides no indication of the generator’s ability to learn more complex multi-path

1While the objective in (5) could be mistaken for LASSO, it is significantly different. Please refer to Section IV-E in [23] for a LASSO formulation of the sparse channel estimation problem.

2WGAN does not refer to this as a discriminator since it is not trained to classify, i.e., there is no Sigmoid activation in the final layer of a critic NN.

3A differentiable function \(f \) is said to be \(\alpha \)-Lipschitz if \(||\nabla f(x)||_2 \leq \alpha \forall x. \)
channels. In this section, we will present a Conditional WGAN (CWGAN) design that will have the ability to be trained on channel realizations drawn from a plurality of distributions, each yielding channel realizations with varying degrees of approximate sparsity in the beamspace domain.

We combine the architecture of Conditional GAN [40] with the training procedure of WGAN outlined in Algorithm 1 to develop CWGAN. While we will describe the NN architectures of the generator and discriminator in Section V-B, we have depicted how they are modified to accept as an input a condition in Fig. 2. For now, we assume that we are provided with a binary label \(\chi \) indicating whether the channel we are trying to estimate is LOS (\(\chi = 1 \)) or NLOS (\(\chi = 0 \)). We will present different techniques to overcome this assumption during training and testing in Section IV-D. The condition \(\chi \) is then passed through a learnable Embedding\(^4\) layer, that embeds an integer as a high dimensional vector, followed by a linear and reshaping layer that has output dimensions \((c_x, l, w)\) as shown in Fig. 2. This embedded output is then appended along the channel dimension to Linear(z)

Algorithm 1: Wasserstein GAN

for \(n_g \) iterations do

Sample minibatch of \(m \) beamspace channel realizations \(\{(H_i^{(0)})_{l=1}^m, \epsilon_{i}^{(0)}\}_{i=1}^m \sim \mathcal{P}_H \), latent variables \(\{z^{(i)}_{l=1}^m \sim \mathbb{R}_z \) and random numbers \(\epsilon_{i}^{(0)} \sim U[0, 1] \).

\[
\bar{H}_i = G(z; \theta_g),
\]

\[
\hat{H}_i = \epsilon \hat{H}_i + (1 - \epsilon) \tilde{H}_i.
\]

\[
\theta_d = \text{Update}_D(\bar{H}_i, \hat{H}_i, \tilde{H}_i, \mathbb{R}_G, m, \gamma, \tau, \beta; \theta_d)
\]

Sample minibatch of \(m \) latent variables \(\{z^{(i)}_{l=1}^m \sim \mathbb{R}_z \), \(\theta_g = \text{Update}_G(G(z; \theta_g), m, \gamma; \theta_g)
\]

Subroutine 2: \(\theta_d = \text{Update}_D(\mathbb{X}_G, \mathbb{X}_G, \mathbb{X}_G, \mathbb{R}_G, m, \gamma, \tau, \beta; \theta_d)
\]

\[
L(\theta_d) = \frac{1}{m} \sum_{i=1}^{m} D(x^{(i)}_G; \theta_d) - D(x^{(i)}_G; \theta_d)
\]

if \(\mathbb{R}_G \) == 1

\[
L(\theta_d) = L(\theta_d) + \beta \left(||\nabla_{x^{(i)}_G} D(x^{(i)}_G; \theta_d)||_2 - 1 \right)^2
\]

\[
\theta_d = \theta_d - \gamma \text{RMSProp} (\nabla_{\theta_d} L(\theta_d))
\]

if \(\mathbb{R}_G \) == 0

\[
\theta_d = \text{clip}(\theta_d, -\tau, \tau)
\]

Subroutine 3: \(\theta_g = \text{Update}_G(\mathbb{X}_G, m, \gamma; \theta_g)
\]

\[
\% \ x_G \ \text{will be a function of} \ \theta_g
\]

\[
L(\theta_g) = \frac{1}{m} \sum_{i=1}^{m} -D(x^{(i)}_G)
\]

\[
\theta_g = \theta_g - \gamma \text{RMSProp} (\nabla_{\theta_g} L(\theta_g))
\]

\[
\text{shape} (c_z, l, w) \ \text{to yield an input of size} \ (c_z + c_x, l, w) \ \text{that is passed through the remaining deep convolutional generative network. A similar procedure is followed while inputting} \ \chi \ \text{to the critic.}
\]

We now need to modify the WGAN training procedure outlined in Algorithm 1 to incorporate the conditional input. To this end, we simply sample \(\{(H_i^{(0)})_{l=1}^m, \chi_{l=1}^m \sim \mathcal{P}_H \), and utilize \(\{\chi_{l=1}^m \in \{0,1\} \) as input to \(G \) for computing \(\hat{H}_v \) and as input to \(D \) for computing \(L(\theta_d) \). Despite \(\{\chi_{l=1}^m \in \{0,1\} \) being input to \(D \), the derivative \(\nabla_{H_v} L(\theta_d) \) remains only w.r.t \(\hat{H}_v \). Subsequently, we randomly sample \(m \) labels from \(\{0,1\} \) Bernoulli Ber(0.5) distribution and utilize these as the conditional input to both \(G \) and \(D \) for computing \(L(\theta_g) \).

C. Pilot GAN

A large dataset of clean channel realizations was required to train a WGAN in [23]. Such a dataset can only be generated offline via simulation tools such as the MATLAB 5G Toolbox or Wireless InSite\(^5\) and limits the applicability and adaptability of the trained generative models in practical deployments. Instead, we need to develop a framework to train GANs directly from noisy pilot measurements \(y \), as defined in (3). To this end, we will combine LS CE (refer Remark 2) and Ambient GAN [34] in order to train a GAN from full rank received pilot measurements and call this framework Pilot GAN. First we present a brief overview of Ambient GAN and the conditions under which it can provably recover the true underlying data distribution.

Ambient GAN: Ambient GAN [34] was designed with the objective of training a GAN given only lossy measurements of images from the distribution of interest. It was based on the following key idea: rather than distinguish a real image from a generated image as is traditionally done in a GAN, the Ambient GAN discriminator must distinguish a real measurement from a simulated measurement of a generated image, assuming the measurement process is known. They considered a wide variety of measurement processes, for example convolution with a kernel, additive noise, and projection on a random Gaussian vector, and demonstrated that Ambient GAN trained a generator that produced images with good visual quality in spite of the noisy measurement processes.

\(^4\)https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

\(^5\)https://www.remcom.com/wireless-insite-em-propagation-software/
The space of permissible measurement processes was determined by the following condition: there should be a unique data distribution P_r consistent with the observed measurement distribution P_y. In other words, there must be an invertible mapping between P_r and P_y even though the map from an individual image to its measurement may not be invertible.

Combining LS CE and Ambient GAN: In Section II, we described how the rank of the measurement matrix A is bounded by N_s^2, even if $N_p > N_s$. Hence, let us assume that $N_p = N_s$. In order to obtain a set of full rank measurements, we will consider $K = [N_s/N_p]$ consecutive transmissions each with a different $(F[i], S[i], W[i])$ triplet. Assuming the channel H remains constant over K consecutive transmissions, we can stack the K received signals to write $y^{[1 : K]}$ as

$$
\begin{bmatrix}
S[1]^T F[1]^T \otimes W[1]^H \\
S[2]^T F[2]^T \otimes W[2]^H \\
\vdots \\
S[K]^T F[K]^T \otimes W[K]^H
\end{bmatrix}
+ H W_K
\begin{bmatrix}
[n[1]^T] \\
[n[2]^T] \\
\vdots \\
[n[K]^T]
\end{bmatrix}
\begin{bmatrix}
I_{N_p} \otimes W[1]^H \\
0 \\
\vdots \\
0
\end{bmatrix}
W_K
\begin{bmatrix}
0 \\
\vdots \\
0 \\
I_{N_p} \otimes W[K]^H
\end{bmatrix}
$$

(9)

By appropriately sampling the entries of $F[i], S[i]$ and $W[i]$ for all $i \in [K]$, we can ensure that the stacked measurement matrix $A[1 : K]$ has full rank $N_s N_p$. Hence, the beamspace LS channel estimate is given by

$$
H_{v,LS} = H_v + \xi,
$$

(10)

where ξ is a zero-mean complex Gaussian random vector of covariance Σ such that

$$
\Sigma^\frac{1}{2} = (A^T \otimes A_K^T)(A[1 : K])^\dagger \text{diag}(\{I_{N_p} \otimes W[i]^H\}_{i=1}^K),
$$

(11)

where $(A[1 : K])^\dagger$ denotes the pseudo-inverse of $A[1 : K]$. The pseudo-inverse provides for $K > N_s/N_p$, if $K = N_s/N_p$, this simply reduces to $(A[1 : K])^{-1}$. In Ambient GAN terms, $H_{v,LS}$ is the lossy measurement, while the measurement process is additive complex Gaussian noise with covariance Σ. Subsequently, training an Ambient GAN now simply involves adding noise of the same covariance Σ, as given by (11), to $G(z)$. Given that these are pilot transmissions, we can assume that the transmitter and receiver have agreed upon a set of K $(F[i], S[i], W[i])$ triplets, that are known to both. Since $\Sigma = f((F[i], S[i], W[i])) \text{diag}(\{I_{N_p} \otimes W[i]^H\}_{i=1}^K)$, we can easily generate complex Gaussian noise of the desired covariance Σ and add it to the output of the generator to generate fake beamspace LS channel estimates $G_{v,LS}$ as shown in Fig. 3. Having thus performed LS CE to obtain the dataset $\{H_{v,LS}^{(i)}\}$, and added correlated noise to the generator output to obtain $\{G_{v,LS}^{(i)}\}$, we can perform the same WGAN training procedure outlined in Algorithm 1 to train the Pilot GAN.

Throughout the exposition of Pilot GAN, we have assumed full-rank pilot measurements in order to perform LS CE. This can be attributed to the usage of Ambient GAN which requires there to be a unique distribution P_{Hv} consistent with the observed pilot measurements P_Y. It can be easily shown that additive noise preserves distributional invertibility (refer [34, Sec. 10.3]). However, if we were to multiply H_v by a compressive measurement matrix A, we cannot express P_Y as a unique function of P_{H_v}, even in the noiseless setting (refer Appendix A). Hence, we have utilized full-rank pilot measurements for training Pilot GAN, even though it is important to note that during inference the generative model uses compressive measurements for channel estimation.

Federated Pilot GAN: In a setting where $U > 1$ UEs are connected to a single BS, we can easily extend the Pilot GAN training to a federated implementation by utilizing the following insight – only the critic training requires the $\{H_{v,LS}^{(i)}\}$ dataset, the generator training on the other hand does not [41]. Hence we can train the generator G at the BS in a centralized fashion, while the critic training is carried out locally at the UEs and its gradient updates are averaged at the BS. The training procedure for Federated Pilot GAN is presented in Algorithm 4. In summary, we assume that each UE u periodically accumulates a small dataset of D beamspace LS channel estimates and uses that to train its critic D_u. After each UE has performed n_u critic training iterations, it transmits the critic weights $\theta_{d,u}$ to the BS where they are averaged to obtain θ_d and used to train G, following which both θ_d and θ_D are broadcast to all UEs. Since G is typically significantly more complex than D (refer Table III), this ensures that the bulk of the training is carried out at the BS.

It should be noted that we assume error free transmission of the federated updates in both the uplink and downlink, which can be achieved by utilizing sub-6 GHz channels for these transmissions as is commonly done in Carrier Aggregation in 5G systems, i.e., utilizing a lower bandwidth channel at a lower f_c along with mmWave.

Remark 2: Unlike channel estimation, generative model training is not a latency sensitive operation. Consequently, waiting K transmissions to obtain a LS channel estimate to train Pilot GAN should not be misinterpreted as implying that LS channel estimation can be used to benchmark the performance of GCE.

Remark 3: If we were to transmit the training data to the BS and perform the entire GAN training at the BS, each UE would transmit D channel realizations, amounting to $2DN_sN_r$ full-resolution numbers. On the other hand, using FedPilotGAN,
Algorithm 4: Federated Pilot GAN With U UEs

for number of rounds do
 UE u accumulates D beamspace LS channel estimates $\{\mathbf{H}^{(i)}_{u,L,S} \}_{i=1}^{D}$ ∀ $u \in [U]$
 for l training iterations do
 BS broadcasts θ_{d} and θ_{d} to all UEs
 for $u = 1:U$ do
 $\theta_{d,u} = \theta_{d}$
 for n_{u} iterations do
 Sample minibatch \mathbf{B}_{u} of size m/U from $\{\mathbf{H}^{(i)}_{u,L,S} \}_{i=1}^{D}$, latent variables $\{\mathbf{z}^{(i)}_{u} \}_{i=1}^{m} \sim \mathbb{P}_{z}$ and random numbers $\{\mathbf{e}^{(i)}_{u} \}_{i=1}^{m} \sim U[0, 1]$
 $\mathbf{G}_{v,L,S} = \mathbf{G}(\mathbf{z}, \gamma) + \mathcal{CN}(0, \Sigma)$, with Σ given by (11).
 $\mathbf{B}_{u} = \mathbf{e}_{u} \mathbf{B}_{u} + (1 - \mathbf{e}) \mathbf{G}_{v,L,S}$.
 $\theta_{d,u} = \text{Update}_{D}(\mathbf{G}_{v,L,S}, \mathbf{B}_{u}, \hat{\mathbf{B}}_{u}, \mathbf{G}_{v,L,S})$.
 $\mathbf{G}_{v,L,S} = \mathbf{G}(\mathbf{z}, \gamma, \beta; \theta_{d,u})$
 end
 UE u sends $\theta_{d,u}$ in uplink to BS
 $\theta_{d} = (1/U) \sum_{u=1}^{U} \theta_{d,u}$
 Sample minibatch of m latent variables $\{\mathbf{z}^{(i)} \}_{i=1}^{m} \sim \mathbb{P}_{z}$
 $\mathbf{G}_{v,L,S} = \mathbf{G}(\mathbf{z}, \theta_{d}) + \mathcal{CN}(0, \Sigma)$, with Σ given by (11).
 $\theta_{d} = \text{Update}_{G}(\mathbf{G}_{v,L,S}, m, \gamma; \theta_{d})$
 end
 end
end

each UE would transmit the weights of D l times every round, amounting to $|D|/l$ full-resolution numbers, where $|D|$ denotes the number of trainable weights in D. By appropriately choosing D and l, FedPilotGAN can be demonstrated to reduce the uplink communication overhead. Moreover, the communication overhead can be further reduced by the quantization and pruning of neural networks [42], [43].

D. Pilot Conditional GAN With LOS Predictor

Having presented a framework for training a generative model from pilot measurements, the sensible next step would be to combine the CWGAN framework presented in Section IV-B with the Pilot GAN framework of Section IV-C to train a generative model from pilot measurements of all LOS and NLOS channels. However, prior to doing that, we will present a simple supervised learning-based technique to determine the LOS/NLOS label χ from the received full-rank pilot measurements $\mathbf{y}[1 : K]$.

1) LOS Predictor: Since we assume full-rank pilot measurements, the beamspace LS channel estimates $\mathbf{H}_{v,L,S}$ are noisy versions of \mathbf{H}_{v}. Given that we expect to distinguish between LOS and NLOS channel realizations by looking at the number and magnitude of non-zero entries in the beamspace representation \mathbf{H}_{v}, we simply train a NN $\mathcal{L}_{c}(:; \theta_{L})$ in a supervised fashion to take as input $\mathbf{H}_{v,L,S}$ and output $\mathbb{P}(\mathbf{H}_{v,L,S} \in \text{LOS})$. Given LOS ground truth labels, such a NN can be trained using the binary cross entropy (BCE) loss6 and the condition χ is given by

$$\chi = \frac{1}{2} (1 + \text{sgn}(2\mathcal{L}(\mathbf{H}_{v,L,S}; \theta_{L}) - 1)).$$

It may appear that the supervised training of an LOS Predictor is at odds with the overarching goal of this paper to design an OTA training procedure. However, the minimal loss in accuracy of the LOS predictor during inference, when trained on only a subset of the CDL channel models as demonstrated in Section VI-D, will reinforce the practicality of the proposed approach.

As explained in Section IV-C, we require full rank pilot measurements to perform LS CE. While such pilot measurements would be available during Pilot GAN training, the measurements received while performing GCE would be compressive. However, the requirement of an LOS predictor during GCE can be easily circumvented by modifying the optimization in (5) to

$$\mathbf{z}^{*} = \min_{\chi \in [0, 1]} \arg \min_{\mathbf{z} \in \mathbb{R}^{d}} \| \mathbf{y} - \mathbf{A}_{\chi} \mathbf{G}^{*}(\mathbf{z}, \chi) \|_{2}^{2} + \lambda_{\text{reg}} \| \mathbf{z} \|_{2}^{2}.$$

Note that since $\chi \in [0, 1]$, it only increases the complexity by a constant factor of 2.

2) Pilot Conditional GAN: Having designed a LOS predictor, we now present a unified algorithm to train a generative model from noisy full-rank pilot measurements that is applicable across all MIMO channel models – PCGAN. The technique is summarized in Algorithm 5.

It is worth emphasising the completely unsupervised and OTA nature of this GAN implementation (aside from the usage of the LOS Predictor). Having received pilot measurements $\mathbf{y}[1 : K]$, we first compute the beamspace LS channel estimate $\hat{\mathbf{H}}_{v,L,S}$. These channel estimates are used to train a conditional Wasserstein GAN. Subsequently, for CE, we will extract the conditional generator \mathbf{G} and compute the beamspace channel estimate $\hat{\mathbf{G}}(\mathbf{z}^{*})$ from compressive pilot measurements \mathbf{y} by solving (13). Hence we have utilized pilot measurements to train a channel estimator as well as perform channel estimation.

V. SIMULATION DETAILS

A. Data Generation & Pre-Processing

MIMO channel realizations have been generated using the MATLAB 5G Toolbox. Specifically, in accordance with 3GPP TR 38.901 [44], we have generated training and test datasets consisting of an equal number of realizations of all categories of CDL channels, i.e., CDL-A, B, C (which are NLOS) and CDL-D, E (which are LOS). The channel simulation parameters are summarized in Table I. Since we assume a narrowband block fading model in this paper, we simply extract the (N_{r}, N_{t}) matrix corresponding to the first subcarrier and first OFDM symbol from the $(14, 12, N_{r}, N_{t})$ channel realizations generated by MATLAB. The aforementioned channel realizations will be used to generate LS channel estimates, as defined in (10), which in turn will be used to populate the datasets employed for simulating the OTA training procedures of Algorithms 4 and 5.

6https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
Algorithm 5: Pilot Conditional GAN With LOS Predictor

\[\mathcal{L}(\cdot; \theta_L) \]

for number of training iterations do

for \(n_k \) iterations do

Sample minibatch of \(m \) beamspace LS channel estimates \(\{\mathbf{H}^{(i)}_{\chi,LS}\}_{i=1}^{m} \), latent variables \(\{z^{(i)}\}_{i=1}^{m} \sim \mathbb{P}_z \), and random numbers \(\{\epsilon^{(i)}\}_{i=1}^{m} \sim U[0, 1] \).

Compute \(\{\chi^{(i)}\}_{i=1}^{m} \) using (12).

\(\mathbf{G}_{v,LS} = \mathbf{G}(z, \chi) + \mathcal{C}\mathcal{N}(0, \Sigma) \), with \(\Sigma \) given by (11).

\[\hat{\mathbf{H}}_{v,LS} = \mathbf{e}[\mathbf{H}_{v,LS} + (1 - \mathbf{e})\mathbf{G}_{v,LS}] \]

\[\mathbf{d} = \text{Update}_G([\mathbf{G}_{v,LS}, \mathbf{H}_{v,LS}, \chi], [\mathbf{H}_{v,LS}, \chi], \mathbf{v}, \mathbf{m}, \mathbf{r}, \mathbf{v}, \mathbf{t}, \mathbf{\beta}; \theta_G) \]

Sample minibatch of \(m \) latent variables \(\{\chi^{(i)}\}_{i=1}^{m} \sim \mathbb{P}_\chi \) and conditions \(\{\chi^{(i)}\}_{i=1}^{m} \sim \text{Ber}(0.5) \).

\(\mathbf{G}_{v,LS} = \mathbf{G}(z, \chi; \theta_G) + \mathcal{C}\mathcal{N}(0, \Sigma) \), with \(\Sigma \) given by (11).

\[\theta_G = \text{Update}_G([\mathbf{G}_{v,LS}, \chi], m, \mathbf{r}; \theta_G) \]

We will compute a single \(\mu[i, j] \) and \(\sigma[i, j] \) for each \((i, j) \in [N_t] \times [N_r] \) over the entire training dataset of each experiment. Such statistics can be computed from the dataset of beamspace LS channel estimates \(\{\mathbf{H}^{(i)}_{\chi,LS}\} \) in an OTA training procedure. In lieu of (14), the operations \(\mathbf{G}(\cdot) \) and \(D(\cdot, \chi) \) will implicitly be used to denote \(\mathbf{SN}^{-1}(\mathbf{G}(\cdot)) \) and \(\mathbf{D}(\mathbf{SN}^{-1}(\cdot), \chi) \) respectively throughout the paper without exception. Here SN denotes the operation of stacking the real and imaginary part followed by normalization using \(\{\mu[i, j], \sigma[i, j]\}_{i,j} \) and \(\mathbf{SN}^{-1} \) corresponds to unnormalization followed by unstacking to generate a complex-valued output.

B. Neural Network Architectures & Training

Hyperparameters

The basic neural network architectures of the generator \(\mathbf{G} \), critic \(\mathbf{D} \) and LOS Predictor \(\mathcal{L} \) have been detailed in Table II. All layers and their corresponding parameters are described in notation standard to PyTorch [45] and the notation has been explained in Appendix D. Since the critic and the LOS Predictor have similar architectures, we have merged their representations and used the indicator \(L \) to indicate layers that are only in the LOS Predictor and not the critic. In particular, the critic in a WGAN-GP implementation cannot have batch normalization since it invalidates the gradient penalty computation during critic training (refer [33, Sec. 4.4]). All BatchNorm2D layers have momentum = 0.8 [38] and Conv2D layers have bias = False. We utilize \(d = 65 \) for \(z \in \mathbb{R}^d \) (refer Appendix B for an empirical justification).

In order to extend the generator and critic architectures to the conditional setting, we employ an Embedding(2, 10) layer in both. This layer learns a 10-dimensional embedding for \(\chi = 0 \) and \(\chi = 1 \). Subsequently, \(\mathbf{G} \) passes this embedding through Linear(10, \(N_tN_r/16 \)) and Reshape(1, \(N_t/4 \), \(N_r/4 \)) before concatenating it to Linear(\(z \)) of size \((127, N_t/4, N_r/4) \) as shown in Fig. 2. Similarly, \(\mathbf{D} \) passes the embedding through Linear(10, \(N_tN_r \)) and Reshape(1, \(N_t \), \(N_r \)) before concatenating it to the input of size \((2, N_t, N_r) \). Table III contains the total number of parameters in \(\mathbf{G} \) and \(\mathbf{D} \) in both the conditional and unconditional setting, along with the LOS Predictor \(\mathcal{L} \).

In Algorithm 1, 4 and 5, we set \(n_k = 5 \), \(\beta = 10 \), \(\tau = 0.01 \) and \(\gamma = 0.00005 \) [33, 38]. We utilize a minibatch size of \(m = 200 \) in all GAN training. For performing GCE, we utilize an Adam [46] optimizer with a step size \(\eta = 0.1 \), \(\lambda_{\text{reg}} = 0.001 \) and iteration count 100. We also determined empirically that resetting the RMSProp optimizer for the critic at every training iteration improved the performance of Algorithm 1 (refer Appendix C).

C. Compressed Sensing (CS) Baselines

We compare the performance of GCE with a few standard CS baselines. It should be noted that the objective of this paper is to design an OTA GAN training procedure for CE, while using GCE to perform channel estimation. As described in Section I-B, there have been recent works in the deep generative domain [26], [27] that have the potential to further
improve the performance and robustness of CE using generative networks. Analyzing the performance and viability of such methods for mmWave MIMO CE is left for future work.

i) Orthogonal Matching Pursuit (OMP): As described in [11], OMP minimizes $\|Hv\|_0$ subject to $\|y - A_{sp}Hv\|_2 \leq \sigma$. To prevent overfitting to the noise, OMP must be stopped when the energy in the residual is less than σ^2.

ii) EM-GM-AMP: We utilize the Approximate Message Passing algorithm EM-GM-AMP [13], which accepts as input y and A_{sp}, and recovers the channel estimate Hv.

Note that unlike the CS baselines, whose number of iterations depend on the SNR level, GCE is run for a constant number of iterations at all SNR without its performance being impacted. Moreover, in our prior work [23], we had included an additional baseline – Lasso. Lasso minimizes $\|Hv\|_1$ – an ℓ_1 convex relaxation of $\|Hv\|_0$. However, Lasso was found to outperform OMP for small values of N_p/N_t, while not outperforming EM-GM-AMP. More importantly, Lasso was 2 orders of magnitude slower than GCE and OMP, which rendered it not useful for channel estimation. Hence we have omitted Lasso from the baselines in this paper.

VI. RESULTS & DISCUSSION

In this section, we will present and analyze the results for each GAN architecture presented in Section IV in sequence, before concluding with results from PCGAN. The performance metric used to assess the quality of the channel estimate will be the NMSE as defined in (6). We will primarily be presenting two figures/tables for each architecture: GCE-based NMSE as a function of i) GAN training iterations at a fixed SNR and ii) SNR for a given generative model. All figures that plot NMSE vs training iterations have been evaluated at an SNR of 15 dB and we will utilize $N_s = 16$, $N_p = 25$, $N_{\text{bit},t} = 6$ and $N_{\text{bit},r} = 2$, unless otherwise stated. For a detailed computational complexity analysis of GCE and its computational benefit over OMP, Lasso and EM-GM-AMP, please refer to [23].

A. WGAN-GP

We design a separate generator for each of the five CDL channel models by training a WGAN-GP ($\lambda_{GP} = 1$) using Algorithm 1 for 60000 training iterations. The smoothed\(^9\) plot of NMSE vs training iterations is shown in Fig. 4(a). We have also highlighted the gain of using WGAN-GP over WGAN in Fig. 4(b). Using Fig. 4(a), we extract the trained generator with the lowest NMSE for each channel model (refer Remark 4) and plot NMSE vs SNR in Fig. 5. Furthermore, in Table IV, we have compared the GCE based NMSE with the baselines outlined in Section V-C at three distinct SNR $\{ -5, 0, 10 \}$ dB\(^10\).

We observe that across CDL channel models, the performance of GCE is consistently $B < C < A < E < D$. This is in agreement with the decreasing number of rays/clusters and the increasing magnitude of the LOS component in Hv as we go from left to right (refer Table 7.7.1 of [44] for the precise channel profiles). Moreover, GCE consistently outperforms OMP, while also outperforming EM-GM-AMP for all CDL models excluding CDL-B, for which the performance of GCE and EM-GM-AMP are approximately similar. It should be noted that the NMSEs of the baselines do not scale well with SNR, owing to the grid quantization

\(^9\)Figures have occasionally been smoothed using a Hanning window of size 6 to improve readability, as and where mentioned.

\(^10\)SNR $= -5$ dB is a commonly utilized minimum SNR threshold for initial access [47].
error [11] as well as the inadequate number of pilot measurements. GCE also significantly outperforms both baselines at all SNR for LOS channels – CDL-D and CDL-E.

Remark 4: All WGAN models designed in Section IV are trained to directly minimize $L(\theta_d)$ and maximize $-L(\theta_g)$, not to minimize NMSE. While [38] has noted that the learning curves of a WGAN are empirically seen to correlate well with observed sample quality, this does not imply that the NMSE will decrease smoothly with training iterations as will be evident in most NMSE vs training iteration plots in this paper. NMSE convergence smoothness will be further degraded when we use noisy data in Pilot GAN and PCGAN in Sections VI-C and VI-D respectively.

Impact of mutual coherence of the sensing matrix $\mu(A)$: Consider the standard CS problem – determine x given $y = Ax + n$ with $A \in \mathbb{R}^{m \times n}$ and $m < n$. Suppose $A = [a_1, \ldots, a_n]$, then the mutual coherence of A is given by

$$\mu(A) = \max_{i,j;i\neq j} \frac{|a_i^H a_j|}{||a_i||_2 ||a_j||_2}.$$

Compressed sensing using generative models [5], [48] typically employs measurement matrices A whose entries are i.i.d. and chosen from simple random distributions such as Gaussian or sub-Gaussian. Consequently, it is highly likely that A is a full-rank matrix with low cross correlation among its columns. In other words, $\text{rank}(A) = m$ with high probability, and the mutual coherence $\mu(A)$ will be low. For a given $\mu(A)$, if x satisfies $||x||_0 < \frac{1}{(\frac{1}{\mu(A)} + 1)}$, then there exists a unique x with the given L_0 norm that satisfies $y = Ax$ [17]. Hence low mutual coherence decreases the reconstruction error of x.

![Diagram](image-url)
Owing to the low $\mu(A)$, we believe that [5] fails to truly convey the advantage of using generative models for compressed sensing over other traditional CS baselines for CE.

In Section III, we defined the measurement matrix as $A_{sp} = (A^H H F S) T \otimes W^H A_R$, with rank($A_{sp}$) $\leq N_s^2$. By varying N_s from 1 to 16 for $N_p = 16$ and $N_p = 25$, we observe that $\mu(A_{sp}) \geq 0.75$ in Fig. 6(a). This implies that a unique H_v can be recovered by OMP only if $||H_v||_0 < 2$. This is consistent with our observations in Table IV, where OMP performs quite poorly. Meanwhile, GCE significantly outperforms OMP, showing that the rich generative prior compensates for the high mutual coherence of A_{sp}. Thus, GCE eliminates the need for careful tuning of the entries of A_{sp} to minimize $\mu(A_{sp})$ as is done in [11].

However, the performance of GCE also improves if we improve the mutual coherence. In Fig. 6(b), we can observe that for the same rank at $N_s = 16$, when the value of $\mu(A_{sp})$ is higher for $N_p = 16$ than $N_p = 25$, GCE does attain a lower NMSE with $N_p = 25$.

B. CWGAN

We now design a single conditional generative model by training a CWGAN ($1_{GP} = 0$) as outlined in Section IV-B for 100,000 training iterations. For CWGAN, we assume that the LOS/NLOS ground truth label χ is known while performing GCE. The smoothed plot of NMSE vs training iterations is shown in Fig. 7(a), and the plot of NMSE vs SNR for the best generative model (determined using Fig. 7(a)) is shown in Fig. 7(b). The degradation in average NMSE compared to the individually trained WGAN-GP models increases from 0.5 dB at -5 dB SNR to 1.7 dB at 0 dB SNR to 2.6 dB at 10 dB SNR. However, GCE using CWGAN continues to outperform OMP at all the aforementioned SNR for CDL A-E, and even outperforms EM-GM-AMP for CDL-A, D and E, with the gain being largest for LOS channel models (~ 6 dB) and ~ 0.7 dB for CDL-A.

The reduction in gain on switching to a conditional model can be attributed to the simple binary condition being utilized. For instance, CDL-A and CDL-B are both NLOS channel models, but have significantly different beamspace representations. We are actively investigating the possibility of introducing a learnable condition into the GAN framework such that the condition more accurately reflects the estimated degree of approximate sparsity in H_v.

C. Pilot GAN

We consider two cases, $U = 1$ and $U = 4$, where U is the number of UEs associated with a BS, and utilize full-rank pilot measurements, i.e., of rank $N_t N_r$ for training in both cases with $1_{GP} = 1$.

1) $U = 1$: We train Pilot GAN as outlined in Section IV-C for 60,000 training iterations. We investigate the noise tolerance of Pilot GAN by training a generative model for CDL-A.
at $\text{SNR} = \{10, 20, 30, 40\}$ dB. The SNR value will determine the variance σ^2 of each term in $\mathbf{n}[1 : K]$ in (9) during training. The smoothed plot of NMSE vs training iterations is shown in Fig. 8(a), and the plot of NMSE vs SNR in Fig. 8(b). From Fig. 8(a), we can see that the NMSE at a training SNR of 40 dB is roughly similar to the noiseless case, while the NMSE convergence at a training SNR of ≤ 20 dB is significantly degraded. However, the NMSE improves at SNR ≤ -10 dB over WGAN-GP for all training SNR, where WGAN-GP in Fig. 8(b) denotes training on clean channel realizations. This could be a possible advantage of training with noisy data.

While this might seem a high SNR threshold to meet, two points can be noted: i) Training a single generative model for a larger class of CDL channels could potentially reduce the SNR induced degradation, as we will see in Section IV-D and ii) Practical wireless deployments [49] use precoders and combiners attuned to channel realizations from a few time-slots ago, which yields significantly better link SNR than random precoders and combiners.

2) $U = 4$: We train Federated Pilot GAN as outlined in Algorithm 4 for 600 rounds on CDL-A, with $D = 500$ and $m = 200$. Instead of fixing the link SNR, we perform a network level simulation using the parameters outlined in Table V. We fix the large scale path loss for the duration of the simulation, and assume it is known at the UE. We investigate the impact of two factors on the NMSE convergence vs rounds – i) noise in LS channel estimate and ii) BS-UE communication frequency. To analyze i), we consider perfect channel estimates, i.e., $H_{v,LS} = H_v$ for training the GAN, and refer to this as “FedGAN”, while the GAN trained on LS channel estimates generated using the parameters in Table V is referred to as “FedPilotGAN”. In order to study ii), we change the number of critic updates (n_d in Algorithm 4) while keeping the total number of training iterations equal to the centralized Pilot GAN implementation. We consider $n_d = 5$ and $n_d = 20$ which in turn implies $l = 100$ and $l = 25$ respectively. Note that $n_d = 20$ also involves performing 4 generative updates per training iteration instead of 1, to have a fair comparison.

The smoothed plot of NMSE vs rounds is shown in Fig. 9. From the performance of “FedGAN” with $n_d = 5$, as contrated with CDL-A in Fig. 4(a), we can ascertain that simply moving to a federated implementation did not have any detrimental impact on the NMSE achieved. However, noise in the LS channel estimates worsens the NMSE by ~ 2 dB. Furthermore, lowering the BS-UE communication frequency by a factor of 4 worsens the NMSE by ~ 0.8 dB. Such a trade-off between performance and BS-UE communication frequency as well as between performance and noise in the training data are to be expected in a federated setting [50].

Applications of Federated Pilot GAN: The applicability of FedPilotGAN is not restricted to building a generative channel estimator in an OTA fashion as is the focus in this paper. Here we describe a federated design of a (clean) data generator from noisy data realizations. Consider a BS (server) that
The NMSE on the LOS channel models degrades by ~ 2 dB for training SNR 30 dB and ~ 3.5 dB for training SNR 20 dB compared to CWGAN. Meanwhile, the NMSE on the NLOS channel models CDL-B and CDL-C is practically unaffected compared to CWGAN, and more interestingly, a better model has been learnt at the lower 20 dB training SNR for CDL-B. PCGAN based GCE continues to outperform OMP for both training SNR, while outperforming EM-GM-AMP for the LOS channel models and being similar for CDL-A.

E. Complexity Analysis

In our prior work [23], we analyzed the computational complexity of GCE and contrasted it with OMP and EM-GM-AMP. Note that the complexity of both a forward and backward pass through a CNN are $O(N_lN_r)$ – backward propagation takes roughly twice the time of forward propagation for a CNN [53] and the complexity of a forward pass through G or D is $O(N_lN_r)$ [23]. Given that each NN based operation in Algorithm 5 can be expressed as either a forward or backward pass through a CNN, and the remaining are matrix additions, the big-O complexity of one iteration of PCGAN, given the dataset $\{H_{n,LS}\}$, is $O(N_lN_r)$. However, such an analysis has its limitations – i) it does not account for the batch size m, which is practically constrained by the parallel compute capacity of a GPU and ii) the big-O complexity simply upper bounds a forward pass by $O(N_lN_r)$, while the actual complexity may be significantly lower.

VII. Conclusion & Future Directions

In this paper, we have presented a novel OTA formulation for training a GAN to learn the MIMO channel distribution for a range of LOS and NLOS channel models in accordance with the 3GPP standard [44]. We designed a LOS Predictor to determine whether the received pilot measurements originated from a LOS or a NLOS channel, and used the conditional output as input to a generative model, while the critic in the GAN was trained to distinguish between real and generated LS channel estimates. Subsequently, we utilized the trained generative model to perform generative channel estimation in the beamspace domain from compressive pilot measurements. While the individually trained WGANs outperformed both CS baselines – OMP and EM-GM-AMP – PCGAN was able to outperform OMP while outperforming EM-GM-AMP on LOS channel models and achieving competitive results on NLOS channels.

As part of future work, channel estimation using generative networks could potentially be performed in the presence of transmit non-linearities as well using the robust median-of-means estimator designed in [48]. We could also improve the performance of GCE, and obtain a more accurate comparison with CS baselines, by using over-sampled DFT matrices to construct the sensing matrix. There are also several research directions one could pursue to improve the practicality and applicability of the GAN training framework designed in this paper. In order to remove the assumption of block fading, we would need to train recurrent GANs [54] that produce a sequence of temporally correlated channel realizations. As
explained in Section VI-B, the LOS predictor does not provide a sufficiently accurate indicator of the estimated degree of sparsity in the channel being reconstructed. Hence, we could instead train 3 GANs – for low, medium and high levels of beamspace sparsity – and then learn a classifier that will indicate which generative model to utilize [55]. Furthermore, we have not considered the degradation owing to quantization of the received signal, and incorporating CS based techniques for channel estimation from quantized pilot measurements [56] in combination with generative models [57] is an exciting future direction. Finally, one could look into combining GCE and GAN training to remove the requirement of full-rank pilot measurements for training Pilot GAN [58].

APPENDIX A

PROOF OF SECTION IV-C

Consider noiseless pilot measurements \(y = A_{sp} H_y \) such that \(N_p N_s < N_t N_r \). As explained in Section II, this implies that we cannot recover a unique \(H_y \) given only \(y \). Let us utilize the LQ decomposition of \(A_{sp} \) to represent it as \(A_{sp} = (L 0)Q \) where \(L \) is a \(N_p N_s \times N_p N_s \) lower triangular matrix and \(Q \) is an \(N_t N_r \times N_t N_r \) unitary matrix. Hence we have

\[
y = (L 0)QH_y = (L 0) \begin{bmatrix} h_{Q,1} \\ h_{Q,2} \end{bmatrix}.
\]

(15)

where \(h_{Q,1} \) contains the first \(N_p N_s \) entries of \(QH_y \) and \(h_{Q,2} \) contains the remaining. Denote \(H_{Q,1} = QH_y \). Since \(Q \) is invertible, there is a one-to-one mapping between the \(p_{H_{Q,1}}(\cdot) \) and \(p_{H} \). However, \(y \) is only a function of \(h_{Q,1} \). In fact, since \(L \) is lower triangular, we can compute \(h_{Q,1} \) from \(y \) by elementary row operations. Hence all pdfs of the form

\[
p_{H_{Q,1}}(\cdot) = \frac{p_{Y}(\cdot)}{\det(J_y(h_{Q,1}))} p_{H_{Q,2}}(\cdot),
\]

(16)

where \(J_y(h_{Q,1}) \) is the Jacobian of \(y \) evaluated at \(h_{Q,1} \), map to the same \(p_{H} \). Note that (16) may not even include the ground truth \(p_{H_{Q,1}}(\cdot) \) if \(p_{H_{Q,1}}(\cdot) \) is not a result of the same between \(p_{Y} \) and \(p_{H} \), proving Ambient GAN [34] and by extension – Pilot GAN – cannot be trained with compressive measurements.

APPENDIX B

OPTIMAL VALUE OF \(d \) FOR \(z \in \mathbb{R}^d \)

Given that 3GPP TR 38.901 [44] defines CDL-B to have the largest number of rays/clusters among all CDL models with only a weak LOS component, and consequently has the highest NMSE, we determine the optimal value of \(d \) by training a WGAN-GP on CDL-B. The smoothed plot of NMSE vs training iterations is shown in Fig. 12 for varying values of \(d \). The NMSE decreases going from \(d = 55 \) to \(d = 65 \), but increases on going to \(d = 75 \). Hence we have chosen \(d = 65 \) as the optimal latent dimension.

A. Effect of Resetting Critic Optimizer

Training instability in GANs can also be attributed to early critic convergence, which reduces the incentive for
TABLE VI
DESCRIPTION OF PYTORCH LAYERS

Layer	Description
Linear(a, b)	Linearly transforms incoming data of length a to output data of length b.
Conv2D$(a, b, (c, d), \text{stride}= e)$	Applies a 2D convolution over an input signal consisting of a channels using a 2D kernel of size $c \times d$ and a stride of size e to transform it to an output signal consisting of b channels.
Upsample(a)	Upsamples width and height by a factor of a.
Dropout(a)	Randomly zeroes some of the input elements with probability a.
BatchNorm2D(a)	Applies Batch Normalization over a 4D input having a channels as described in [59].
ZeroPad2D(a, b, c, d)	Pads the input tensor boundaries with zeros. Adds a and b zero columns to the left and right, and c and d zero rows in the top and bottom.

Fig. 12. NMSE vs Training Iterations for WGAN trained on CDL-B as a function of d.

Fig. 13. NMSE Training Iterations for WGAN trained on CDL-A to observe impact of resetting critic optimizer (RO).

B. Layer Notation

Each layer utilized in the generator and discriminator architectures presented in Section V-B has been described in detail in Table VI.

ACKNOWLEDGEMENT

The authors would like to thank Chris Dick at NVIDIA for arranging the donation of a DGX Station A100 workstation to accelerate the training carried out in this work, and his feedback on this work.

REFERENCES

[1] T. S. Rappaport et al., “Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond,” IEEE Access, vol. 7, pp. 78729–78757, 2019.
[2] H. Elayan, O. Amin, R. M. Shubair, and M.-S. Alouini, “Terahertz communication: The opportunities of wireless technology beyond 5G,” in Proc. IEEE Int. Conf. Adv. Commun. Technol. Netw. (CommNet), Apr. 2018, pp. 1–5.
[3] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks: Spectral, energy, and hardware efficiency,” in Foundations and Trends in Signal Processing, Hanover, MA, USA: Now Publ., Inc., Nov. 2017.
[4] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” in Proc. ICLR, Nov. 2015, pp. 1–16.
[5] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using generative models,” in Proc. Int. Conf. Mach. Learn. (ICML), Aug. 2017, pp. 537–546.
[6] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett, “Deep learning techniques for inverse problems in imaging,” IEEE J. Sel. Areas Inf. Theory, vol. 16, no. 5, pp. 2748–2759, May 2017.
[7] W. U. Bajwa, A. Sayeed, and R. Nowak, “Compressed channel sensing: A new approach to estimating sparse multipath channels,” Proc. IEEE, vol. 98, no. 6, pp. 1058–1076, Jun. 2010.
[8] W. U. Bajwa, A. Sayeed, and R. Nowak, “Sparse multipath channels: Modeling and estimation,” in Proc. IEEE Digit. Signal Process. Educ. Workshop, Jan. 2009, pp. 320–325.
[9] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831–846, Oct. 2014.
[10] R. Méndez-Rial, C. Rusu, N. González-Prelcic, A. Alkhateeb, and R. W. Heath, “Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches?” IEEE Access, vol. 4, pp. 254–267, 2016.
[11] P. A. Eliaisi, S. Rangan, and T. S. Rappaport, “Low-rank spatial channel estimation for millimeter wave cellular systems,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 2748–2759, May 2017.
[12] S. Rangan, “Generalized approximate message passing for estimation with random linear mixing,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2011, pp. 2168–2172.
[13] J. P. Vila and P. Schniter, “Expectation-maximization Gaussian-mixture approximate message passing,” IEEE Trans. Signal Process., vol. 61, no. 19, pp. 4658–4672, Oct. 2013.
[14] S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate message passing,” IEEE Trans. Inf. Theory, vol. 65, no. 10, pp. 6664–6684, Oct. 2019.
[15] C.-K. Wen, S. Jin, K.-K. Wong, J.-C. Chen, and P. Ting, “Channel estimation for massive MIMO using Gaussian-mixture Bayesian learning,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1356–1368, Mar. 2015.
[16] P. Sun, Z. Wang, and P. Schniter, “Joint channel-estimation and equalization of single-carrier systems via bilinear AMP,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2772–2785, May 2018.

[17] M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: From theory to applications,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4053–4085, Sep. 2011.

[18] Y. Yang, F. Gao, X. Ma, and S. Zhang, “Deep learning-based channel estimation for doubly selective fading channels,” IEEE Access, vol. 7, pp. 36579–36589, 2019.

[19] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Deep learning-based channel estimation for beamspace mmWave massive MIMO systems,” IEEE Wireless Commun. Lett., vol. 7, no. 5, pp. 852–855, Oct. 2018.

[20] X. Rui, L. Wei, and X. Xu, “Model-driven channel estimation for OFDM systems based on image super-resolution network,” in Proc. Int. Conf. Signal Process. (ICISP), Oct. 2020, pp. 804–808.

[21] P. Dong, H. Zhang, G. Y. Li, I. S. Gaspar, and N. NaderiAlizadeh, “Deep CNN-based channel estimation for mmWave massive MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 5, pp. 989–1000, Sep. 2019.

[22] C.-J. Chan, J.-M. Kang, and I.-M. Kim, “Deep learning-based channel estimation for massive MIMO systems,” IEEE Wireless Commun. Lett., vol. 8, no. 4, pp. 1228–1231, Aug. 2019.

[23] E. Balevi, A. Doshi, A. Jalal, A. Dimakis, and J. G. Andrews, “High dimensional channel estimation using deep generative networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 18–30, Nov. 2020.

[24] A. Doshi, E. Balevi, and J. G. Andrews, “Compressed representation of high dimensional channels using deep generative networks,” in Proc. IEEE Signal Process. Adv. Wireless Commun. (SPAWC), May 2020, pp. 1–5.

[25] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Int. Conf. Adv. Neural Inf. Process. Syst., Dec. 2014, pp. 2672–2680.

[26] A. Jalal, M. Arvinte, G. Daras, E. Price, A. G. Dimakis, and J. Tamir, “Robust compressed sensing MRI with deep generative priors,” in Proc. Int. Conf. Adv. Neural Inf. Process. Syst., vol. 34, Dec. 2021, pp. 14938–14954.

[27] M. Arvinte and J. I. Tamir, “Score-based generative models for robust channel estimation,” Nov. 2021, arXiv:2111.08177.

[28] E. Balevi and J. G. Andrews, “Wideband channel estimation with a generative adversarial network,” IEEE Trans. Wireless Commun., vol. 20, no. 5, pp. 3049–3060, May 2021.

[29] T. J. O’Shea, T. Roy, N. West, and B. C. Hibburn, “Physical layer communications system design over-the-air using adversarial networks,” in Proc. 26th Eur. Signal Process. Conf. (EUSIPCO), Sep. 2018, pp. 520–532.

[30] H. Ye, G. Y. Li, B.-H. F. Juang, and K. Sivanesan, “Channel agnostic end-to-end learning based communication systems with conditional GAN,” in Proc. IEEE GC Wkshps, Dec. 2018, pp. 1–5.

[31] S. Dörner, M. Henninger, S. Cammerer, and S. ten Brink, “WGAN-based autoencoder training over-the-air,” in Proc. IEEE 21st Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), May 2020, pp. 1–5.

[32] T. Orekondy, A. Behboodi, and J. B. Soriaga, “MIMO-GAN: Generative MIMO channel modeling,” in Proc. IEEE Int. Conf. Commun., Mar. 2022, pp. 5322–5328.

[33] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training of Wasserstein GANs,” in Proc. Int. Conf. Adv. Neural Inf. Process. Syst., Dec. 2017, pp. 5769–5779.

[34] A. Bora, E. Price, and A. G. Dimakis, “AmbientGAN: Generative models from lossy measurements,” in Proc. ICLR, Feb. 2018, pp. 1–22.

[35] K. Venugopal, A. Alkhateeb, N. G. Precic, and R. W. Heath, “Channel estimation for hybrid architecture-based wideband millimeter wave systems,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1996–2009, Sep. 2015.

[36] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse overcomplete representations in the presence of noise,” IEEE Trans. Inf. Theory, vol. 52, no. 1, pp. 6–18, Jan. 2006.

[37] Y. Zhang et al., “DeepWiPHY: Deep learning-based receiver design and dataset for IEEE 802.11ax systems,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 1590–1618, Mar. 2020.

[38] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in Proc. Int. Conf. Mach. Learn. (ICML), Dec. 2017, pp. 214–223.

[39] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton, “VEEGAN: Reducing mode collapse in GANs using implicit variational learning,” in Proc. Int. Conf. Adv. Neural Inf. Process. Syst., Dec. 2017, pp. 3308–3318.

[40] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” Nov. 2014, arXiv:1411.1784.
Manan Gupta received the B.Tech. degree in electronics and communication engineering from the Indian Institute of Technology Guwahati in 2017, and the M.S. degree in electrical engineering from the University of Texas at Austin in 2020, where he is currently pursuing the Ph.D. degree in electrical engineering with the 6G@UT Research Center and Wireless Networking and Communications Group. He has held internship positions with the Indian Institute of Science, Bengaluru; Nokia Bell Labs, Naperville, IL, USA; and VMware, Palo Alto, CA, USA. His research interests broadly lie in the intersection of machine learning and wireless networks. He was the recipient of the Institute Merit Scholarship for Best Academic Performance in 2013, the George J. Heuer Jr. Fellowship by the Cockrell School of Engineering in 2017, and the Qualcomm Innovation Fellowship in 2021.

Jeffrey G. Andrews (Fellow, IEEE) received the B.S. degree (with High Distinction) in engineering from Harvey Mudd College, and the M.S. and Ph.D. degrees in electrical engineering from Stanford University.

He is the Truchard Family Chair of Engineering and the Director of 6G@UT with the University of Texas at Austin. He developed CDMA systems with Qualcomm, and has served as a Consultant with Samsung, Nokia, Qualcomm, Apple, Verizon, AT&T, Intel, Microsoft, Sprint, and NASA. He has coauthored the books Fundamentals of WiMAX (Prentice-Hall, 2007) and Fundamentals of LTE (Prentice-Hall, 2010). He is an ISI Highly Cited Researcher and has been the co-recipient of 15 paper awards, including the 2016 IEEE Communications Society & Information Theory Society Joint Paper Award, the 2014 IEEE Stephen O. Rice Prize, the 2014 and 2018 IEEE Leonard G. Abraham Prize, the 2011 and 2016 IEEE Heinrich Hertz Prize, and the 2010 IEEE ComSoc Best Tutorial Paper Award. He received the 2015 Terman Award, the NSF CAREER Award, and the 2019 IEEE Kiyo Tomiyasu Technical Field Award. He was the Editor-in-Chief of the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS from 2014 to 2016, the Chair of the IEEE Communications Society Emerging Technologies Committee from 2018 to 2019, and is the Founding Chair of the Steering Committee for the IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, amongst other IEEE leadership roles.