Objective: To explore changes in the nutritional status of pediatric cancer patients before and after chemotherapy and evaluate the correlation between deuterium oxide dilution, bioelectric impedance analysis, and anthropometry for assessment of body composition.

Methods: This study included 14 children (aged 5.6 to 13.6 years) and classified them as having hematologic or solid tumors. They had their body composition analyzed according to deuterium oxide, bioelectric impedance, and anthropometric measurements before the first chemotherapy cycle and after three and six months of therapy.

Results: The patients in the hematologic tumor group had an increase in weight, height, body mass index, waist, hip, and arm circumference, subscapular skinfold thickness, and fat mass with the isotope dilution technique during chemotherapy. In the solid tumor group, the children showed a reduction in fat-free mass when assessed by bioimpedance analysis. We found a positive correlation between the triceps skinfold thickness and fat mass determined by bioimpedance analysis and deuterium oxide. The arm muscle circumference correlated with the fat-free mass estimated by bioimpedance analysis and deuterium oxide.

Conclusions: Patients with hematologic tumors had an increase in body weight, height, and fat mass, which was not identified in the solid tumor group. The positive correlation between anthropometry (triceps skinfold thickness and arm muscle circumference), deuterium oxide dilution, and bioelectric impedance analysis shows the applicability of anthropometry in clinical practice.

Keywords: Body composition; Cancer; Child; Anthropometry; Electric impedance; Deuterium oxide.
INTRODUÇÃO

Mudanças no estado nutricional de crianças com câncer são frequentes durante os primeiros meses de tratamento. O estado nutricional está associado à tolerância à quimioterapia, ao número e à intensidade das infecções, e ao prognóstico do câncer na população pediátrica. No entanto, as medidas antropométricas convencionais não conseguem identificar as alterações relacionadas à massa gorda (MG) e massa magra (MM) durante os primeiros meses após o diagnóstico.1,2

Historicamente, o estado nutricional de pacientes com câncer tem sido avaliado por várias medidas objetivas, incluindo aquelas antropométricas (peso, circunferência muscular do braço e dobra cutânea tricipital) e bioquímicas (albumina sérica, ensaios de transferrina e estudos de balanço de nitrogênio).3,4

A análise de impedância bioelétrica (BIA) tornou-se popular ao longo da última década, devido às suas vantagens práticas por não ser invasiva, ser segura, de baixo custo e um método portátil para analisar a composição corporal. A BIA foi validada para analisar a composição corporal e o estado nutricional em diversas populações, incluindo os pacientes de câncer.5

A BIA mede a condutividade do tecido e pode avaliar a água corporal total (ACT). Na ausência de edema ou ascite, a ACT pode ser usada para monitorar a significância da mudança de peso. Essa é uma técnica fácil, confiável e portátil para medir a composição corporal aplicável ao trabalho de campo e menos dispendiosa que o método do oxídio de deutério (D2O).6,7

A diluição isotópica estável de D2O é uma técnica de referência para medir a água corporal total (ACT). Após a ingestão e o equilíbrio de uma dose conhecida de D2O nos compartimentos de água do corpo, a concentração de D2O atua como um marcador para a ACT a partir do qual derivam MM e MG. A técnica de diluição de D2O assume uma constância da fração de hidratação da MM, que varia entre indivíduos e durante o crescimento e desenvolvimento. Essa técnica é um método padrão seguro e bem estabelecido para avaliar os compartimentos de água corporal mesmo durante a infância.8

O padrão de excelência para medir a ACT é a diluição isotópica, mas esse método é apropriado apenas em ambientes de pesquisa.8,9 Estimativas de ACT em crianças, derivadas de medidas feitas por diluição de isótopos, foram propostas, mas a técnica é muito cara e pouco prática. Como resultado, a análise e medidas antropométricas têm sido utilizadas na prática clínica.10

Este estudo teve como objetivo explorar as mudanças no estado nutricional de pacientes com câncer pediátrico antes e após a quimioterapia e avaliar a correlação entre diluição de oxídio de deutério, análise de impedância bioelétrica e antropometria para avaliação da composição corporal.

MÉTODO

Todas as crianças de 5 a 15 anos com câncer tratadas neste hospital de 1º de agosto de 2006 a 30 de novembro de 2007 foram consideradas elegíveis para participar do estudo. Quatorze participantes concordaram em participar assinando o termo de consentimento informado. Foram excluídas as crianças previamente tratadas de câncer, syndrome de Down ou aquelas que não puderam ser avaliadas por medidas antropométricas.

Quatorze crianças (sete meninos e sete meninas) com câncer foram incluídas no estudo e divididas em dois grupos: Grupo de Tumores Hematológicos (n= 7) e Grupo de Tumores Sólidos (n= 7). A idade média no início do estudo foi de 10,13 anos (variação de 5,6 a 13,6). As crianças foram avaliadas de acordo com a ingestão alimentar, antropometria, diluição do deutério e técnicas de BIA na linha de base (M0) e após 3 (M1) e 6 (M2) meses de quimioterapia.

Os dados foram coletados em um hospital de referência. O mesmo investigador fez todas as medições em um momento semelhante para evitar qualquer viés técnico sistemático. Durante a espera entre a administração de oxídio de deutério e a coleta da amostra final de saliva, foram realizadas medidas da análise de impedância bioelétrica e antropométricas. Consequentemente, é provável que o estado de hidratação permaneça inalterado durante todo o período de medição.

Um nutricionista formado aferiu as medidas antropométricas usando técnicas padronizadas. A estatura em pé (0,1 cm) foi medida com um estádiômetro de madeira. O peso corporal (0,01 kg) foi medido com balanças digitais enquanto os sujeitos do estudo usavam roupas leves. O índice de massa corporal (IMC) foi calculado por peso/estatura² (kg/m²). A espessura das dobras cutâneas foi medida em triplicado até o 0,2 mm mais próximo em três locais (bíceps, tríceps e subescapular) usando adipômetro.11 A circunferência do braço foi medida no ponto médio do processo olecrânio da ulna e no processo acromial da escápula em ângulo reto. A circunferência da cintura foi realizada na posição de pé no umbigo. A circunferência do quadril foi medida na posição de pé em torno da parte mais larga dos quadris e nádegas. Todas as medidas das dobras cutâneas foram realizadas na mesma ordem, no lado esquerdo do corpo, que geralmente é a não dominante, incluindo a circunferência do braço. As medidas antropométricas correspondiam à média das triplicatas. O mesmo pesquisador fez todas as medições.

A BIA foi realizada utilizando um analisador de impedância bioelétrica (modelo Biodynamics BIA 450, Biodynamics Corp, EUA). A análise foi realizada enquanto os pacientes estavam deitados em decúbito dorsal em uma maca ou mesa de exame, com os braços e as pernas afastados e não tocando o tronco; as medidas foram realizadas após os indivíduos permanecerem em decúbito dorsal por > 10 min, para que seus fluidos corporais pudessem alcançar o equilíbrio. A pele foi limpa com álcool antes da colocação dos eletrodos e todos os objetos metálicos foram removidos.
dos participantes antes que as medidas fossem aferidas. Todas as avaliações foram realizadas no lado direito do paciente usando a técnica de quatro eletrodos padrão de superfície (tetrapolar) na mão e no pé.13 Um eletrodo foi colocado em uma linha imaginária no osso saliente no lado do dedo mindinho do pulso para cortar a cabeça ulnar da mão direita. Outro eletrodo foi colocado abaixo da articulação do dedo médio na mão direita. Um terceiro eletrodo foi colocado em uma linha imaginária no osso saliente no dedão do lado do tornozelo para dividir o maléolo medial do pé direito. O quarto e último eletrodo foi colocado logo abaixo do dedo médio do pé direito, que é o procedimento padrão para medidas de impedância do corpo. A calibração do instrumento foi verificada diariamente com o uso de resistores padrão adquiridos com o analisador. A mesma pessoa realizou todas as medidas da análise.

Após um jejum de oito horas, os indivíduos receberam diluição de D2O. Os participantes primeiro forneceram uma amostra de saliva em jejum pré-dose para determinar o conteúdo natural de deutério. Em seguida, administrou-se, por via oral, uma dose pesada precisamente equivalente a 0,07 g/kg de peso corporal de D2O (D2O; 99,8% de pureza, Cambridge Isotope Laboratories Inc, Andover, MA) por via oral a cada indivíduo, e uma amostra da dose foi mantida para análise. Amostras de saliva (~2 mL diretamente em pequenos frascos estéreis) foram coletadas imediatamente antes da administração de D2O e, novamente, duas e três horas após a dose de D2O.

O enriquecimento das amostras de saliva foi determinado por Espectrometria de Massa (Europe Scientific Hydra System, Cheshire, Reino Unido) após doze horas em equilíbrio com hidrogênio a 100% em platina catalisada em alumínio. As crianças parecem ter uma fração aquosa mais elevada de MM do que os adultos jovens;13 Portanto, calculamos a MM presumindo que a fração de hidratação da MM depende da idade e do sexo da criança, conforme descrito por Lohman,14 e os valores encontrados variaram entre 73,8 e 79%. O peso foi medido em jejum no início da manhã para todos os cálculos, e a MG foi determinada como a diferença entre a MM e o peso corporal. Todas as amostras de saliva foram armazenadas a -20 °C e enviadas ao Laboratório de Espectrometria de Massas para análise.

O objetivo do estudo e a descrição do protocolo de teste foram explicados a cada sujeito e a seus pais. Os pais de cada participante assinaram o termo de consentimento informado, e os protocolos do estudo foram aprovados e seguiram os requisitos do Comitê de Ética em Pesquisa (HCRP/USP 15411/2005).

As análises foram realizadas no programa Statistical Package for the Social Sciences (SPSS), versão 18.0 (SPSS Inc., Chicago, IL, EUA). Inicialmente, as variáveis continuas foram testadas quanto à normalidade. Os valores foram expressos em mediana (mínimo-máximo), porque a maioria das variáveis apresentou distribuição anormal. Utilizamos o teste t de Friedman. As diferenças entre proporções foram calculadas pelo teste do qui-quadrado. Calculamos correlações com o coeficiente de correlação de classificação de Spearman. Considerou-se uma diferença estatisticamente significante se p <0,05.

RESULTADOS

Vinte e um sujeitos concordaram em participar do estudo. A amostra final do estudo incluiu 14 crianças com câncer, sete do sexo feminino e sete do sexo masculino, com idades variando de 5,6 a 13,6 anos. Sete indivíduos foram excluídos devido a dados incompletos (sem câncer, sem quimioterapia, falecidos, tratamento em outra instituição). A Tabela 1 apresenta uma

Número do paciente	Sexo	Idade (anos)	Diagnóstico
1	M	11	LLA
2	M	13	LMA
3	F	10	LLA
4	F	5	...
5	F	9	...
6	M	10	Linfoma de Hodgkin
7	F	13	Sarcoma sinovial*
8	F	8	Rabdomiossarcoma
9	F	10	Linfoma não Hodgkin
10	F	6	Meduloblastoma metástico
11	F	6	Glioma maligno do tronco cerebral*
12	M	10	LMA + Anemia de Fanconi
13	M	5	Tumor da medula espinhal
14	F	13	Rabdomiossarcoma embrionário
15	M	11	Oligoastrocitoma
16	F	12	...
17	F	13	Germinoma do sistema nervoso central
18	F	6	Sarcoma de Ewing
19	M	10	LMA
20	F	15	...
21	M	6	Germinoma do sistema nervoso central *

F: feminino; M: masculino; LLA: leucemia linfoide aguda; LMA: leucemia mieloide aguda; *pacientes excluídos do estudo [sem quimioterapia (n= 7); faleceram durante o tratamento (n= 11), continuaram o tratamento em outra instituição (n= 21); não tinham um diagnóstico de câncer confirmado (n= 4, 5, 16, 20)].
descrição da amostra de 21 indivíduos, de acordo com idade, sexo e diagnóstico.

A Tabela 2 mostra as características antropométricas das crianças. Os pacientes do Grupo de Tumores Hematológicos aumentaram o peso, a estatura, o IMC, as circunferências da cintura, do quadril e do braço e a espessura das dobras cutâneas subescapulares.

Foi encontrada uma forte correlação entre a espessura das dobras cutâneas do triceps e a MG usando a análise de impedância bioelétrica (r= 0,534; p= 0,049/ r= 0,734; p= 0,007/ r= 0,851; p= 0,000; em M0, M1 e M2, respectivamente) e D2O (r= 0,694; p= 0,006/ r= 0,820; p= 0,000/ r= 0,813; p= 0,001; em M0, M1 e M2, respectivamente), de acordo com a correlação de Spearman.

A circunferência do braço correlacionou-se com a MM em kg estimada pela BIA (r= 0,841; p= 0,000/ r= 0,797; p= 0,001/ r= 0,863; p= 0,000; em M0, M1 e M2, respectivamente) e D2O (r= 0,474; p= 0,087/ r= 0,770; p= 0,001/ r= 0,793; p= 0,001; em M0, M1 e M2, respectivamente) usando a correlação de Spearman.

A MM (kg) estimada pela BIA não apresentou diferença significativa nos três momentos. O D2O mostrou uma diminuição na MG (p= 0,011) e um aumento na MM (kg e %) (p= 0,042 e p= 0,011) durante o tratamento no Grupo de Tumores Hematológicos (Tabela 3).

A correlação de Spearman é forte entre a BIA e o D2O para: MM (kg) (r= 0,955; p ≤0,001/ r= 0,981; p≤0,001/ r= 0,902; p ≤0,001; em M0, M1 e M2, respectivamente), MG (kg) (r= 0,833; p ≤0,001/ r= 0,929; p ≤0,001/ r= 0,940; p ≤0,001; em M0, M1 e M2, respectivamente) e ACT (%) (r= 0,514; p ≤0,001/ r= 0,826; p ≤0,001/ r= 0,836; p ≤0,001; em M0, M1 e M2, respectivamente) (Tabela 3).

Tabela 2 Medidas antropométricas das crianças em cada etapa.

Grupo Tumores Hematológicos (n= 7)	Primeira avaliação (M0)	Segunda avaliação (M1)	Terceira avaliação (M2)	p-valor
Idade (anos)	10,2 (9,9–13,4)	10,4 (10,2–13,7)	10,7 (10,4–13,9)	0,074
Estatura (cm)	150,0 (118,0–162,0)	150,0 (118,5–164,0)	150,5 (119,0–164,0)	0,005*
Peso (kg)	36,3 (17,9–45,7)	39,6 (18,0–52,1)	41,7 (19,4–61,1)	0,004*
IMC (kg/cm²)	16,4 (12,7–19,3)	17,1 (12,8–22,0)	19,8 (13,7–22,7)	0,005*
Circunferência da cintura (cm)	61,0 (52,0–76,0)	69,0 (53,0–81,0)	72,0 (50,0–82,0)	0,018*
Circunferência do quadril (cm)	74,0 (53,5–84,0)	75,0 (54,0–93,0)	81,0 (54,0–101,0)	0,004*
Circunferência do braço (cm)	20,0 (13,0–22,5)	21,0 (13,5–25,0)	21,5 (15,0–27,5)	0,003*
Circunferência muscular do braço (cm)	16,8 (12,1–17,9)	17,2 (12,6–20,0)	18,2 (14,1–20,0)	0,028*

Dobra cutânea

	Tríceps (mm)	Biceps (mm)	Subescapular (mm)
Tríceps (mm)	7,0 (3,0–18,0)	6,0 (2,0–14,0)	6,0 (2,0–14,0)
Biceps (mm)	15,0 (3,0–18,0)	7,0 (3,0–14,0)	7,0 (3,0–16,0)
Subescapular (mm)	14,0 (3,0–25,0)	10,0 (3,0–16,0)	10,0 (5,0–16,0)

Grupo Tumores Sólidos (n =7)	Primeira avaliação (M0)	Segunda avaliação (M1)	Terceira avaliação (M2)	p-valor
Idade (anos)	8,5 (5,6–13,6)	8,8 (5,8–13,8)	9,0 (6,2–14,1)	0,006*
Estatura (cm)	128,0 (111,0–161,0)	128,5 (111,0–163,0)	129,5 (111,0–163,0)	0,062
Peso (kg)	25,8 (17,1–41,3)	32,6 (18,4–47,0)	30,3 (19,0–42,9)	0,127
IMC (kg/cm²)	15,3 (13,9–18,8)	15,3 (14,5–23,8)	15,2 (14,8–21,0)	0,459
Circunferência da cintura (cm)	61,0 (50,0–78,0)	72,0 (53,0–79,0)	65,0 (54,0–71,0)	0,121
Circunferência do quadril (cm)	69,0 (55,0–82,0)	79,0 (56,0–86,0)	75,0 (58,0–83,0)	0,241
Circunferência do braço (cm)	18,5 (16,0–23,0)	19,0 (15,0–24,0)	19,5 (16,0–23,0)	0,630
Circunferência muscular do braço (cm)	16,6 (14,1–18,0)	16,8 (13,4–17,7)	16,7 (14,1–18,2)	0,772

Dobra cutânea

	Tríceps (mm)	Biceps (mm)	Subescapular (mm)
Tríceps (mm)	10,0 (6,0–16,0)	8,0 (4,0–9,0)	7,0 (3,0–12,0)
Biceps (mm)	9,0 (5,0–20,0)	7,0 (4,0–14,0)	8,0 (3,0–18,0)
Subescapular (mm)	11,0 (6,0–20,0)	7,0 (4,0–14,0)	10,0 (4,0–15,0)

Os dados são expressos em valores e intervalos medianos (mínimo, máximo); IMC: índice de massa corporal; cm: centímetro; mm: milímetro; kg: quilograma; Circunferência do braço; Circunferência muscular do braço. *p<0,05. Teste de Friedman.
Tabela 3 Composição corporal das crianças em cada etapa.

Grupo Tumores Hematológicos (n = 7)	Primeira avaliação (M0)	Segunda avaliação (M1)	Terceira avaliação (M2)	p-valor
ACT _{BIA} (L)	19,6 (11,0–28,6)	23,0 (12,4–28,4)	21,2 (11,7–24,6)	0,311
ACT _{D2O} (%)	56,4 (50,5–72,2)	58,5 (53,1–63,7)	50,3 (45,1–54,4)	0,009*
ACT _{BIA} (%)	74,9 (70,3–77,1)	74,6 (71,2–77,5)	73,4 (61,8–74,8)	0,069
MM _{D2O} (kg)	27,9 (2,0–39,6)	33,2 (25,0–39,4)	31,3 (23,8–36,0)	0,042*
MM _{BIA} (kg)	26,9 (14,6–37,1)	30,9 (16,0–38,8)	31,5 (15,6–34,6)	0,115
MM _{D2O} (%)	75,1 (66,3–93,7)	74,5 (69,7–84,5)	66,7 (58,8–72,3)	0,011*
MM _{BIA} (%)	80,2 (70,4–87,7)	80,5 (72,0–88,9)	71,4 (53,2–80,4)	0,069
MG _{D2O} (kg)	8,8 (2,7–15,4)	10,1 (5,6–15,8)	16,3 (11,3–25,2)	0,011*
MG _{BIA} (kg)	5,2 (3,3–8,7)	6,0 (2,0–12,9)	8,5 (3,8–28,6)	0,074
MG _{D2O} (%)	24,9 (6,3–33,7)	25,6 (15,5–30,3)	33,3 (27,7–41,2)	0,011*
MG _{BIA} (%)	19,8 (12,3–29,3)	19,5 (11,1–28,0)	25,0 (19,6–46,1)	0,069

Grupo de Tumores Sólidos (n = 7)				
ACT _{BIA} (L)	20,0 (9,7–23,4)	16,1 (13,1–25,8)	15,9 (13,1–24,3)	0,152
ACT _{D2O} (%)	62,5 (52,2–67,9)	57,2 (39,8–66,8)	53,9 (45,2–66,2)	0,565
ACT _{BIA} (%)	76,2 (70,2–88,0)	72,9 (68,8–80,5)	73,7 (68,6–79,6)	0,867
MM _{D2O} (kg)	21,5 (14,1–31,2)	20,0 (15,8–32,1)	21,3 (16,3–30,6)	0,867
MM _{BIA} (kg)	25,0 (12,6–31,8)	20,9 (16,3–35,4)	20,7 (5,6–33,0)	0,034*
MM _{D2O} (%)	80,1 (71,4–87,5)	75,7 (51,7–85,7)	71,4 (59,8–86,0)	0,368
MM _{BIA} (%)	77,0 (69,9–96,9)	75,3 (60,7–89,2)	71,0 (11,7–86,8)	0,368
MG _{D2O} (kg)	5,1 (3,0–11,8)	9,8 (2,6–15,8)	11,3 (2,7–16,9)	0,368
MG _{BIA} (kg)	4,6 (0,8–13,2)	11,4 (2,1–13,7)	9,9 (2,5–14,3)	0,495
MG _{D2O} (%)	19,9 (12,5–28,7)	24,3 (14,3–48,3)	28,7 (14,0–40,0)	0,368
MG _{BIA} (%)	23,0 (3,1–30,2)	24,7 (10,9–39,3)	29,0 (13,2–88,3)	0,368

Os dados são expressos em valores e taxas medianas (mínimo, máximo); BIA: análise de impedância bioelétrica; D2O: óxido de deutério; MM: massa magra; MG: massa gorda; kg: quilograma; L: litro; ACT: água corporal total. *p<0,05. Teste de Friedman.
Além disso, os pacientes tinham uma porcentagem significativa-mente maior de gordura e massa corporal gorda do que crianças saudáveis.25 O Grupo de Tumores Hematológicos aumentou a MG ao usar D\textsubscript{2}O (p= 0,011). Nossos achados sobre o rápido aumento da MG durante os primeiros meses após o diagnóstico são consistentes com aqueles encontrados em pacientes com leu- cemia linfoblástica aguda (LLA).3 A terapia com glicocorticóides é o padrão para todos os regimes de tratamento. Tais estudos mos-traram que o ganho de peso ocorre imediatamente após o início do tratamento com dexametasona, mas ainda não está claro se o excesso de peso persiste após o tratamento.5,9

As medidas antropométricas foram capazes de prever o estado nutricional no presente estudo, uma vez que estavam bem correlacionadas com o D\textsubscript{2}O. Embora o D\textsubscript{2}O seja ampla-mente aceito como uma medida útil da composição corporal, especial-men te em ambientes de pesquisa, raramente está disponível em países de baixa renda, como o Brasil. No entanto, nesses circunstâncias, a antropometria do braço provou ser valiosa como estimativa do estado nutricional, correlacionan-do-se com importantes resultados clínicos em crianças com câncer.1,16 Alguns estudos também revelaram fortes cor-relações entre a espessura das dobras cutâneas do tríceps e a MG determinada pela BIA ou pelo D\textsubscript{2}O;26-28 o mesmo ocorreu com a MM determinada pela circunferência de massa muscu-lar do braço e a dobra cutânea tricipital.17,29 Outros estudos com crianças e adolescentes com câncer mostram que a MG pode ser prevista com confiança razoável por meio da antro-pometria do braço. Uma boa correlação entre a circunferência do braço e a DXA foi demonstrada.27,30 Esses estudos sugerem que a antropometria pode ser uma ferramenta útil na prática clínica para pacientes pediátricos com câncer. A presente pesquisa recomenda a incorporação da antropometria do braço nos cuidados de rotina das crianças com câncer. Essa prática seria de extrema valia em países de baixa renda, uma vez que se trata de um método de fácil uso, rápido, barato e confiável.

Como limitação do estudo, tem-se a inclusão de um número relativamente pequeno de crianças e a heterogenei-dade da amostra ao considerarmos o diagnóstico subjacente. Entretanto, a presente pesquisa utilizou um dos métodos mais robustos de composição corporal e uma variedade de técnicas mais ampla do que investigações prévias na análise de crianças com câncer. Esses achados respaldam o conceito de que a BIA e a antropometria podem ser utilizadas na prática clínica para uma medição apropriada da composição corporal, especialmente durante as fases iniciais da doença e seu respectivo tratamento.

AGRADECIMENTOS

Os autores agradecem às crianças e às respectivas famílias por sua cooperação entusiástica, bem como ao Prof. Dr. Luiz Gonçaga Tone, Prof. Dr. Carlos Alberto Scridelli, e Dr. Bruno Freire pelo recrutamento dos pacientes.

Financiamento

O estudo recebeu suporte financeiro da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e da Fundação de Apoio ao Ensino, Pesquisa e Assistência (FAEPA).

Conflitos de interesses

Os autores declaram que não há conflitos de interesses.

REFERÊNCIAS

1. Barbosa-Cortés LB, Tapia-Rojas M, López-Aguilar E, Mejía- Aranguré JM, Rivera-Márquez H. Body composition by dilution of deuterium oxide in Mexican children with lymphoma and solid tumors. Nutrition. 2007;23:739-44. https://doi.org/10.1016/j.nut.2007.07.001

2. Brinksma A, Sanderman R, Roobol PF, Sulkers E, Burgerhof JG, de Bont ES, et al. Malnutrition is associated with worse health-related quality of life in children with cancer. Support Care Cancer. 2015;23:3043-52. https://doi.org/10.1007/s00520-015-2674-0

3. Brinksma A, Roobol PF, Sulkers E, Kamps WA, de Bont ES, Boot AM, et al. Changes in nutritional status in childhood cancer patients: a prospective cohort study. Clin Nutr. 2015;34:66-73. https://doi.org/10.1016/j.clnu.2014.01.013

4. Noradilah MJ, Ang YN, Kamaruddin NA, Deurenberg P, Ismail MN, Poh BK. Assessing body fat of children by skinfold thickness, bioelectrical impedance analysis, and dual-energy X-ray absorptiometry: a validation study among Malay children aged 7 to 11 years. Asia Pac J Public Health. 2016;28 (5 Suppl):74S-84S. https://doi.org/10.1177/1010539516641505

5. Fabiansen C, Yaméogo CW, Devi S, Friis H, Kurpad A, Wells JC. Deuterium dilution technique for body composition assessment: resolving methodological issues in children with moderate acute malnutrition. Isotopes Environ Health Stud. 2017;53:344-55. https://doi.org/10.1080/10256016.2017.1295043

6. Hofsteenge GH, Chinapaw MJ, Weijs PJ. Fat-free mass prediction equations for bioelectric impedance analysis compared to dual energy X-ray absorptiometry in obese adolescents: a validation study. BMC Pediatr. 2015;15:158. https://doi.org/10.1186/s12887-015-0476-7

7. Meredith-Jones KA, Williams SM, Taylor RW. Bioelectrical impedance as a measure of change in body composition in young children. Pediatr Obes. 2015;10:252-9. https://doi.org/10.1111/jpo.263
8. Bila WC, Freitas AE, Galdino AS, Ferriolli E, Pfrimer K, Lamounier JA. Deuterium oxide dilution and body composition in overweight and obese school children aged 6-9 years. J Pediatr (Rio J). 2016;92:46-52. https://doi.org/10.1016/j.jped.2015.03.007

9. Murphy AJ, Wells JC, Williams JE, Fiewett MS, Davies PS, Webb DK. Body composition in children in remission from acute lymphoblastic leukemia. Am J Clin Nutr. 2006;83:70-4. https://doi.org/10.1093/ajcn/83.1.70

10. Ben Jemaa H, Mankaï A, Khlifi S, Minaoui R, Ghozzi D, Zediri B, et al. Foot-to-foot bioelectrical impedance accurately tracks direction of adiposity change in overweight and obese 7- to 13-year-old children. Nutr Res. 2015;35:206-13. https://doi.org/10.1016/j.nutres.2014.12.012

11. Salas JD, Laclé-Murray A. Predictive validity of body fat percentage by bioimpedance compared with deuterium oxide dilution in Costa Rican schoolchildren. Am J Human Biol. 2017;29:e23028. https://doi.org/10.1002/ajhb.23028

12. Lukaski HC. Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr. 1987;46:537-56. https://doi.org/10.1093/ajcn/46.4.537

13. Wells JC, Davies PS, Fiewett MS, Cole TJ. Body composition reference charts for UK infants and children aged 6 weeks to 5 years based on measurement of total body water by isotope dilution. Eur J Clin Nutr. 2020;74:141-8. https://doi.org/10.1038/s41366-019-0409-x

14. Lohman TG. Advances in body composition assessment. Champaign: Human Kinetics Publishers; 1992.

15. Ceniccola GD, Castro MG, Piovacari SM, Horie LM, Corrêa FG, Barrere AP, et al. Current technologies in body composition assessment: advantages and disadvantages. Nutrition. 2018;62:25-31. https://doi.org/10.1016/j.nut.2018.11.028

16. Barr RD. Nutritional status in children with cancer: before, during and after therapy. Indian J Cancer. 2015;52:173-5. https://doi.org/10.4103/0019-509X.175827

17. Shah P, Jhaveri U, Idhate TB, Dhingra S, Arolkar P, Zediri M, et al. Development and validation of impedance-based equations for the prediction of total body water and fat-free mass in children aged 8-11 years. Clin Nutr. 2019;38:227-33. https://doi.org/10.1016/j.cjn.2018.01.028

18. Kasvis P, Cohen TR, Loiselle SE, Kim N, Hazell TJ, Vanstone MP, et al. Foot-to-foot bioelectrical impedance accurately tracks direction of adiposity change in overweight and obese 7- to 13-year-old children. Nutr Res. 2015;35:206-13. https://doi.org/10.1016/j.nutres.2014.12.012

19. Butcher A, Kabiri LS, Brewer W, Ortiz A. Criterion validity and sensitivity to change of a pediatric bioelectrical impedance analysis scale in adolescents. Child Obes. 2019;15:142-8. https://doi.org/10.1089/chi.2018.0183

20. Ohta M, Midorikawa T, Kihikara Y, Masuo Y, Sakamoto S, Torii S, et al. Validity of segmental bioelectrical impedance analysis for estimating fat-free mass in children including overweight individuals. Appl Physiol Nutr Metab. 2017;42:157-65. https://doi.org/10.1139/apnm-2016-0137

21. Akhgarjand C, Djafarian K, Rezvani H, Azargashb E, Vafa M. Comparing serum levels of zinc, copper, certain antioxidant vitamins and dietary intakes in acute lymphoblastic leukemia (ALL) patients before and after chemotherapy. Am J Blood Res. 2018;8:21-8.

22. Almeida SM, Furtado JM, Mascarenhas P, Ferraz ME, Silva LR, Ferreira JC, et al. Anthropometric predictors of body fat in a large population of 9-year-old school-aged children. Obes Sci Pract. 2016;2:272-81. https://doi.org/10.1002/osp4.51

23. El Harchaoui I, El Hamdouchi A, Baddou I, El Menchawy I, Benjeddu K, Saeid N, et al. Development and validation of impedance-based bioelectrical impedance analysis equations for prediction total bodywater and fat-free mass using D2O technique in Moroccan children aged between 8 and 11 years old. Eur J Clin Nutr. 2018;72:1663-72. https://doi.org/10.1038/s41430-018-0093-2

24. Pribnow AK, Ortiz R, Báez LF, Mendieta L, Luna-Fineman S. Effects of malnutrition on treatment-related morbidity and survival of children with cancer in Nicaragua. Pediatr Blood Cancer. 2017;64. https://doi.org/10.1002/pbc.25377

25. Smith-Brown P, Morrison M, Krause L, Newby R, Davies PS. Effects of malnutrition on treatment-related morbidity and survival of children with cancer in Nicaragua. Pediatr Blood Cancer. 2017;64. https://doi.org/10.1002/pbc.25390

26. El Harchaoui I, El Hamdouchi A, Baddou I, El Menchawy I, Benjeddu K, Saeid N, et al. Development and validation of bioelectrical impedance analysis equations for prediction total bodywater and fat-free mass using D2O technique in Moroccan children aged between 8 and 11 years old. Eur J Clin Nutr. 2018;72:1663-72. https://doi.org/10.1038/s41430-018-0093-2

27. Pribnow AK, Ortiz R, Báez LF, Mendieta L, Luna-Fineman S. Effects of malnutrition on treatment-related morbidity and survival of children with cancer in Nicaragua. Pediatr Blood Cancer. 2017;64. https://doi.org/10.1002/pbc.25390

28. Kufeldt J, Viehrig M, Schweikert D, Fritsche A, Bamberg M, Adolph M. Treatment of malnutrition decreases complication rates and shortens the length of hospital stays in a radiation oncology department. Strahlenther Onkol. 2018;194:1049-59. https://doi.org/10.1007/s00066-018-1360-9

29. Akhgarjand C, Djafarian K, Rezvani H, Azargashb E, Vafa M. Comparing serum levels of zinc, copper, certain antioxidant vitamins and dietary intakes in acute lymphoblastic leukemia (ALL) patients before and after chemotherapy. Am J Blood Res. 2018;8:21-8.

30. Webber C, Halton J, Walker AY, Young A, Barr RD. The prediction of lean body mass and fat mass from arm anthropometry at diagnosis in children with cancer. J Pediatr Hematol Oncol. 2013;35:530-3. https://doi.org/10.1097/MPH.0b013e3182a06134

© 2020 Sociedade de Pediatria de São Paulo. Publicado por Zeppelini Publishers. Este é um artigo Open Access sob a licença CC BY (https://creativecommons.org/licenses/by/4.0/deed.pt).