The galaxy stellar mass–star formation rate relation: evidence for an evolving stellar initial mass function?

Romeel Davé*

Department of Astronomy, University of Arizona, Tucson, AZ 85721, USA

Accepted 2007 December 14. Received 2007 December 11; in original form 2007 October 1

ABSTRACT

The evolution of the galaxy stellar mass–star formation rate relationship \((M_\star - \text{SFR}) \) provides key constraints on the stellar mass assembly histories of galaxies. For star-forming galaxies, \(M_\star - \text{SFR} \) is observed to be fairly tight with a slope close to unity from \(z \sim 0 \rightarrow 2 \), and it evolves downwards roughly independently of \(M_\star \). Simulations of galaxy formation reproduce these trends, broadly independent of modelling details, owing to the generic dominance of smooth and steady cold accretion in these systems. In contrast, the observed amplitude of the \(M_\star - \text{SFR} \) relation evolves markedly differently than in models, indicating either that stellar mass assembly is poorly understood or that observations have been misinterpreted. Stated in terms of a star formation activity parameter \(\alpha_{\text{sf}} \equiv (\dot{M}_\star / \text{SFR}) / (\text{Hubble} - 1 \ \text{Gyr}) \), models predict a constant \(\alpha_{\text{sf}} \sim 1 \) out to redshifts \(z \sim 4+ \), while the observed \(M_\star - \text{SFR} \) relation indicates that \(\alpha_{\text{sf}} \) increases by approximately three times from \(z \sim 2 \) to today. The low \(\alpha_{\text{sf}} \) (i.e. rapid star formation) at high \(z \) not only conflicts with models, but also difficult to reconcile with other observations of high-\(z \) galaxies, such as the small scatter in \(M_\star - \text{SFR} \), the slow evolution of star-forming galaxies at \(z \sim 2-4 \) and the modest passive fractions in mass-selected samples. Systematic biases could significantly affect measurements of \(M_\star \) and SFR, but detailed considerations suggest that none are obvious candidates to reconcile the discrepancy. A speculative solution is considered in which the stellar initial mass function (IMF) evolves towards more high-mass star formation at earlier epochs. Following Larson, a model is investigated in which the characteristic mass \(\dot{M} \) where the IMF turns over increases with redshift. Population synthesis models are used to show that the observed and predicted \(M_\star - \text{SFR} \) evolution may be brought into broad agreement if \(\dot{M} = 0.5 \ (1+z)^2 \left(\text{M}_\odot \right) \) out to \(z \sim 2 \). Such IMF evolution matches recent observations of cosmic stellar mass growth, and the resulting \(z = 0 \) cumulative IMF is similar to the ‘paunchy’ IMF favoured by Fardal et al. to reconcile the observed cosmic star formation history with present-day fossil light measures.

Key words: stars: luminosity function, mass function – galaxies: evolution – galaxies: formation – galaxies: high-redshift – cosmology: theory.

1 INTRODUCTION

How galaxies build up their stellar mass is a central question in galaxy formation. Within the broadly successful cold dark matter scenario, gas is believed to accrete gravitationally into growing dark matter haloes, and then radiative processes enable the gas to decouple from non-baryonic matter and eventually settle into a star-forming disc (e.g. Mo, Mao & White 1998). However, many complications arise when testing this scenario against observations, as the stellar assembly of galaxies involves a host of other processes including star formation, kinetic and thermal feedback from various sources, and merger-induced activity, all of which are poorly understood in comparison to halo assembly.

A key insight into gas accretion processes is the recent recognition of the importance of ‘cold mode’ accretion (Birnboim & Dekel 2003; Katz et al. 2003; Keres et al. 2005), where gas infalling from the intergalactic medium (IGM) does not pass through an accretion shock on its way to forming stars. Simulations and analytic models show that cold mode dominates global accretion at \(z \gtrsim 2 \) (Keres et al. 2005), and dominates accretion in all haloes with masses \(\lesssim 10^{12} \text{M}_\odot \) (Birnboim & Dekel 2003; Keres et al. 2005).

The central features of cold mode accretion are that it is (i) rapid, (ii) smooth and (iii) steady. It is rapid because it is limited by the free-fall time and not the cooling time; it is smooth because most of the accretion occurs in small lumps and not through major mergers (Murali et al. 2001; Keres et al. 2005; Guo & White 2008) and it is steady because it is governed by the gravitational potential of the slowly growing halo. A consequence of cold mode accretion...
is that the star formation rate (SFR) is a fairly steady function of time (e.g. Finlator et al. 2006; Finlator, Davé & Oppenheimer 2007), which results in a tight relationship between the stellar mass (M_*) and the SFR. Hence, simulations of star-forming galaxies generically predict a tight relationship with $M_\star \propto \text{SFR}$ that evolves slowly with redshift. In detail, a slope slightly below unity occurs owing to the growth of hot haloes around higher mass galaxies that retards accretion.

The stellar mass–SFR ($M_*-\text{SFR}$) relation for star-forming galaxies has now been observed out to $z \sim 2$, thanks to improving multiwavelength surveys. As expected from models, the relationship is seen to be fairly tight from $z \sim 0-2$, with a slope just below unity and a scatter of $\lesssim 0.3$ dex (Daddi et al. 2007a; Elbaz et al. 2007; Noeske et al. 2007a). It also evolves downwards in amplitude to lower redshift in lock step fashion, suggesting a quiescent global quenching mechanism such as a lowering of the ambient cosmic density, again as expected in models. The range of data used to quantify this evolution is impressive: Noeske et al. (2007a) used the AEGIS multiwavelength survey in the Extended Groth Strip to quantify the $M_*-\text{SFR}$ relation from $z \sim 1 \rightarrow 0$; Elbaz et al. (2007) used the Great Observatories Origins Deep Survey at $z \sim 0.8-1.2$ and Sloan Digital Sky Survey (SDSS) spectra at $z \sim 0$ and Daddi et al. (2007a) used star-forming BzK-selected galaxies with Spitzer, X-ray and radio follow-up to study the relation at $z \sim 1.4-2.5$. In each case, a careful accounting was done of both direct ultraviolet (UV) and re-radiated infrared (IR) photons to measure the total galaxy SFR, paying particular attention to contamination from active galactic nuclei (AGN) emission (discussed in Section 4). Multiwavelength data covering the rest-optical were employed to accurately estimate M_*. This broad agreement in $M_*-\text{SFR}$ slope, scatter, and qualitative evolution between model predictions and these data lends support to the idea that cold mode accretion dominates in these galaxies.

Yet all is not well for theory. Closer inspection reveals that the amplitude of the $M_*-\text{SFR}$ relation evolves with time in a way that is inconsistent with model expectations. This disagreement is fairly generic, as shown in Section 2, arising in both hydrodynamic simulations and semi-analytic models, and is fairly insensitive to feedback implementation. The sense of the disagreement is that going to higher redshifts, the observed SFRs are higher and/or stellar masses lower, than predicted in current models.

The purpose of this paper is to understand the implications of the observed $M_*-\text{SFR}$ relation for our theoretical view of how galaxies accumulate stellar mass. In Section 3, it is argued that $M_*-\text{SFR}$ amplitude evolution implies a typical galaxy star formation history (SFH) that is difficult to reconcile with not only model expectations, but also other observations of high-z galaxies. Possible systematic effects that may bias the estimation of SFR and M_* are considered in Section 4, and it is argued that none of them are obvious candidates to explain the discrepancy. Finally, a speculative avenue for reconciliation is considered, namely that the stellar initial mass function (IMF) has a characteristic mass that evolves with redshift (Section 5). This model is constrained based on the $M_*-\text{SFR}$ relation in Section 6. The implications for such an evolving IMF are discussed in Section 7. Results are summarized in Section 8. A Λ cold dark matter (ΛCDM) cosmology with $\Omega = 0.25$ and $H_0 = 70 \text{ km s}^{-1} \text{Mpc}^{-1}$ is assumed throughout for computing cosmic time-scales.

2 $M_*-\text{SFR}$: MODELS VERSUS OBSERVATIONS

To begin, the observed $M_*-\text{SFR}$ relation is compared with model predictions, in order to understand the origin of the relation. The primary simulations used are cosmological hydrodynamic runs with Gadget-2 (Springel 2005) incorporating momentum-driven outflows, which uniquely match a wide variety of IGM and galaxy observations (e.g. Davé, Finlator & Oppenheimer 2006; Oppenheimer & Davé 2006; Finlator & Davé 2007). The new simulations include stellar recycling assuming a Chabrier IMF, by returning gas (and metals) into the ambient reservoir, in addition to the usual heating, cooling and star formation, and feedback recipes (Springel & Hernquist 2003; Oppenheimer & Davé 2006). Outflow parameters are computed based on properties of galaxies identified with an on-the-fly group finder. These and other improvements that go towards making simulations more realistic down to $z = 0$ are described in Oppenheimer & Davé (2008). Two runs to $z = 0$ are considered here, each with 256 h^{-1} dark matter and an equal number of gas particles, in cubic volumes of 32 and $64 h^{-1}$ Mpc (comoving) on a side. The assumed cosmology is ΛCDM with $\Omega_m = 0.3$, $\Omega_\Lambda = 0.7$, $H_0 = 69 \text{ km s}^{-1} \text{Mpc}^{-1}$, $\Omega_b = 0.048$ and $\sigma_8 = 0.83$. The resolved galaxy population, defined here as those with stellar masses greater than 64 gas particle masses, is limited by stellar masses of 2.5×10^9 and $2 \times 10^{10} \, M_{\odot}$ in the two volumes (this is somewhat more conservative than in Finlator et al. 2006, in order to ensure accurate SFRs).

To explore the impact of feedback parameters, simulations with two other outflow models are considered, namely one with no outflows and one with the Springel & Hernquist (2003) ‘constant wind’ outflow model, taken from the suite of outflow runs described in Oppenheimer & Davé (2006). These runs have $32 h^{-1}$ Mpc box sizes with 2×256^3 particles, and they were evolved only down to $z = 2$. Their cosmology is slightly different, having $\sigma_8 = 0.9$ from first-year Wilkinson Microwave Anisotropy Probe parameters, but this is not a large effect at the epochs considered here.

In hydrosimulations, SFRs and stellar masses are obtained by summing over particles in galaxies identified using the group finder Spline Kernel Interpolative DENMAX (SKID; http://www-bpce.astro.washington.edu/tools/skid.html); see Keres et al. (2005) for details. Gas particles that have high enough density to form stars in simulations, a point that will figure prominently in Section 4. Note that these hydrosimulations do not include any feedback from active galactic nuclei (AGN), or any process that explicitly truncates star formation in massive galaxies, hence they do not reproduce the evolution of passive galaxies. Here, the focus is on star-forming galaxies only, with the assumption that galaxies are quickly squelched to become passive and so do not appear in star forming selected samples (e.g. Salim et al. 2007). Since all galaxies in our simulations would be observationally classified as star forming, no cuts are made to the simulated galaxy population.

To complement the hydrosimulations, results for $M_*-\text{SFR}$ are taken from the Millennium simulation plus semi-analytic model (‘Millennium SAM’) light cones of Kitzbichler & White (2007), as fit by Daddi et al. (2007a) and Elbaz et al. (2007). Besides being a completely different modelling approach, the Millennium SAM also includes AGN feedback that broadly reproduces the observed passive galaxy population and its evolution. Additionally, a different semi-analytic model based on the Millennium simulation by De Lucia & Bialac (2007) was examined, to see if variations in semi-analytic prescriptions can result in significant differences in $M_*-\text{SFR}$. It was found that the De Lucia & Bialac (2007) model produced a somewhat shallower slope than the Kitzbichler & White (2007) model, which, for example, at $z \sim 2$ resulted in a smaller offset from observations at $M_* \sim 10^{10} \, M_{\odot}$, but a larger one at $M_* \sim$
The early simulated SFHs are characterized by a rapid rise in star formation to \(z \approx 6 \), corresponding to rapid early halo growth (Li et al. 2007). Next, there is a period of roughly constant star formation from \(z \sim 6 \rightarrow 2 \); this will be the key epoch for this work. Finally, at \(z \lesssim 2 \) the SFRs decline modestly, with more massive systems showing greater decline. This pattern reflects the changing balance between the growth of potential wells being able to attract more matter, and cosmic expansion which lowers the ambient IGM density and infall rates. It is qualitatively similar to the SFH inferred for the Milky Way. In the models, the fact that the SFH depends weakly on \(M_* \) gives rise to \(M_* \propto SFR \), and the fact that merger-driven starbursts are not significant growth path for galaxy stellar mass (Keres et al. 2005; Guo & White 2008) gives rise to the small scatter. In detail, a slope slightly below unity occurs because more massive galaxies tend to have their accretion curtailed by hot haloes (e.g. Keres et al. 2005), resulting in ‘natural downsizing’ (Steinmetz, van den Bosch & Dekel 2006).

Note that the SFRs of individual galaxies in simulations do not drop by a large amount over a Hubble time. Even for the most massive star-forming galaxies today, the SFR in simulations drops a approximately four to five times amplitude offset. The Millennium SAM has a slope that remains near the \(z = 0 \) value, hence it is somewhat shallower than observed at \(z \sim 2 \), but the amplitude evolves slowly much like in the hydrosimulations. The rapid evolution in observed \(M_* \), SFR amplitude has been noted by several authors (Papovich et al. 2006; Noeske et al. 2007a), along with the fact that it is more rapid than in the Millennium SAM (Daddi et al. 2007a; Elbaz et al. 2007). The new aspect demonstrated here is that the disagreement persists for current hydrodynamic simulations, and as will be shown in the next section this is true regardless of the main free parameter in such models, namely feedback implementation.

The slope and scatter are a direct reflection of the similarity in the shape of galaxy SFHs among various models and at various masses. For a galaxy observed at time \(t_0 \), neglecting mass loss from stellar evolution,

\[
M_*(t_0) = \int_{t_0}^{0} SFR(t) \, dt = \int_{t_0}^{0} \frac{SFR(t)}{SFR(t_0)} \, dt. \tag{1}
\]

The integral depends purely on the form of the SFH up to \(t_0 \). So long as the SFH form does not vary significantly with \(M_* \), the slope of \(M_* \), SFR will be near unity, and so long as the current SFR is similar to the recent past-averaged one, the scatter will be small. As pointed out by Noeske et al. (2007b), the observed tight scatter of \(\lesssim 0.3 \) dex implies that the bulk of star-forming galaxies cannot be undergoing large bursts; this will be discussed further in Section 3. This is consistent with a fairly steady mode of galaxy assembly as generically predicted by cold mode accretion. Note, however, that the reverse conclusion does not necessarily hold, in the sense that a slope near unity is not uniquely indicative of a steady mode of galaxy formation; other scenarios (such as the staged galaxy formation model of Noeske et al. 2007b) can be constructed to reproduce a slope near unity, as discussed in Section 3.

Example galaxy SFHs from the 32 \(h^{-1} \) Mpc momentum-driven outflow hydrosimulation are shown in the lower right-hand panel of Fig. 1, for a range of \(z = 0 \) stellar masses from \(10^{11} \) to \(10^{10.5} M_\odot \), in 100 Myr bins. They are remarkably self-similar, and generally quite smooth. The increased variance in smaller galaxies owes to discreteness effects in spawning star particles (these SFHs are computed from the history of galaxy star particles rather than the instantaneous SFH at each time); the true scatter in instantaneous SFR increases only mildly at small masses, from \(\sim 0.2 \) dex at \(M_* \gtrsim 10^{10.5} M_\odot \) to \(\sim 0.3 \) dex at \(M_* \gtrsim 10^{10} M_\odot \), as shown in Fig. 1.

The integral depends purely on the form of the SFH up to \(t_0 \). So long as the SFH form does not vary significantly with \(M_* \), the slope of \(M_* \), SFR will be near unity, and so long as the current SFR is similar to the recent past-averaged one, the scatter will be small. As pointed out by Noeske et al. (2007b), the observed tight scatter of \(\lesssim 0.3 \) dex implies that the bulk of star-forming galaxies cannot be undergoing large bursts; this will be discussed further in Section 3. This is consistent with a fairly steady mode of galaxy assembly as generically predicted by cold mode accretion. Note, however, that the reverse conclusion does not necessarily hold, in the sense that a slope near unity is not uniquely indicative of a steady mode of galaxy formation; other scenarios (such as the staged galaxy formation model of Noeske et al. 2007b) can be constructed to reproduce a slope near unity, as discussed in Section 3.

10^{11} M_\odot. Since the results are qualitatively similar, only the Kitzbichler & White (2007) models are discussed further. While there are many more semi-analytic models in the literature, and perhaps even some that are in better agreement with the \(M_* \), SFR relation, it is beyond the scope of this work to consider them all.

Fig. 1 (first three panels) shows the \(M_* \), SFR relation at \(z = 0, 1, 2 \) in simulations, compared to parametrizations from observations (blue lines) by Elbaz et al. (2007) \((z \approx 0, 1)\) and Daddi et al. (2007a) \((z \approx 2)\). The observed scatter of 0.3 dex (Daddi et al. 2007a; Elbaz et al. 2007; Noeske et al. 2007a) is indicated by the dashed blue lines. It is worth noting that other \(z \sim 2 \) observations suggest a larger scatter (Shapley et al. 2005; Papovich et al. 2006), so the observational picture on this is not entirely settled. Finally, the green lines show the Kitzbichler & White (2007) Millennium SAM results, which generally track the hydrosimulation results, particularly in amplitude which will be the key aspect.

At \(z = 0 \), the relations are generally in agreement, though the observed slope of \(M_* \propto SFR^{0.77} \) is somewhat shallower than that predicted by the hydrosimulations \((\approx 0.9)\). The Millennium SAM produces excellent agreement at \(z = 0 \), having broadly been tuned to do so. By \(z = 1 \), the predicted hydrosimulation slopes are similar to that observed by Elbaz et al. (2007) though steeper than seen by Noeske et al. (2007a), but more importantly the amplitude is low by approximately two to three times. At \(z = 2 \), this trend continues, with...
only by a factor of few since \(z = 2 \), and smaller galaxies show essentially no drop. Meanwhile, the amplitude of \(M_\ast - \text{SFR} \) drops by nearly an order of magnitude in the models, and even more in the data. So the amplitude evolution owes predominantly to the growth of \(M_\ast \) of individual galaxies. In other words, models indicate that the \(M_\ast - \text{SFR} \) relation does not evolve downwards in SFR so much as upwards in \(M_\ast \).

Overall, while the slope and scatter of the \(M_\ast - \text{SFR} \) relation are in broad agreement, there is a stark and generic discrepancy in the amplitude evolution between the models and data. The agreement in slope and scatter is an encouraging sign that our understanding of gas accretion processes is reasonably sound. Examining the discrepancy in amplitude evolution is the focus of the remainder of this paper.

3 Evolution of the Star Formation Activity Parameter

The amplitude evolution of \(M_\ast - \text{SFR} \) can be recast in terms of the time-scale for star formation activity. Models generally predict that galaxies have \(M_\ast / \text{SFR} \sim t_H \), where \(t_H \) is the Hubble time, perhaps reduced by 1 Gyr because few stars were forming at \(z \geq 6 \), as seen, for example, in the lower right-hand panel of Fig. 1.

A convenient parametrization is provided by the star formation activity parameter\(^1\) defined here as the dimensionless quantity \(\alpha_d \approx (M_\ast / \text{SFR})(t_H - 1 \text{ Gyr}) \). Physically, this may be regarded as the fraction of the Hubble time (minus a Gyr) that a galaxy needs to have formed stars at its current rate in order to produce its current stellar mass. Note that \(\alpha_d \) is, in general, a function of \(M_\ast \).

Fig. 2 shows \(\alpha_d(z) \) for simulations and observations, top panel showing values at \(M_\ast = 10^{10.7} M_\odot \), bottom panel showing values at \(M_\ast = 10^{10} M_\odot \). The values for models have been obtained by fitting power laws to simulated galaxies' \(M_\ast - \text{SFR} \). The momentum-driven outflow hydro simulation results are shown as the red circles, while cyan and magenta circles show results for no winds and the wind model of Springel & Hernquist (2003) at \(z = 2 \), respectively. The outflow model has only a mild effect on \(\alpha_d \), because the form of the SFHs is broadly similar regardless of outflows, even though the total amount of stars formed is significantly different (Oppenheimer & Davé 2006). The most dramatic outlier among models is the high-mass bin of the no-wind simulation, where the rapid gas consumption in large galaxies results in lower current SFRs relative to the past-averaged one (i.e. natural downsizing); this actually makes \(\alpha_d \) larger and the discrepancy with observations worse. Millennium SAM results are quite similar to the hydro runs, again showing little evolution in \(\alpha_d \), although the shallower slope results in a somewhat smaller \(\alpha_d \) for the lower mass bin. Overall, it is remarkable that regardless of methodology or feedback processes, all models predict \(\alpha_d \) to be around unity with little evolution from \(z = 4 \rightarrow 0 \), regardless of stellar mass. This suggests that \(\alpha_d \sim 1 \) is a generic consequence of smooth and steady cold accretion dominating the growth of these galaxies.

In contrast, the observed \(M_\ast - \text{SFR} \) relation yields a rapidly rising \(\alpha_d = 0.19 \rightarrow 0.31 \rightarrow 0.75 \) from \(z = 2 \rightarrow 1 \rightarrow 0 \) at \(10^{10.7} M_\odot \). Values at \(10^{10} M_\odot \) are slightly lower but show similar rapid evolution. The dramatic difference between observed and predicted amplitude evolution either indicates a significant misunderstanding in our basic picture of galaxy assembly, or else that observations have been misinterpreted in some way. Given the currently uncertain state of the galaxy formation theory, one might be inclined towards the former, and call into question the entire picture of cold mode-dominated accretion. However, it turns out that the rapidly declining \(\alpha_d \) also results in uncomfortable conflicts with other observations of high-redshift galaxies. To see this, let us discard the idea of cold mode accretion, or any preconceived theoretical notion, and ask: what possible SFHs for these galaxies could yield \(\alpha_d \) rising with time as observed? One scenario is to postulate that observed high-\(z \) galaxies are progressively more dominated by bursts of star formation. Indeed, some models have suggested that bursts may comprise a significant portion of the high-\(z \) galaxy population (e.g. Kolatt et al. 1999). However, as Noeske et al. (2007a) points out, this seems unlikely given the tightness of the \(M_\ast - \text{SFR} \) relation. They argue that the observed scatter of 0.3 dex at \(z \sim 1 \) implies that most star-forming galaxies have current SFRs \(\lesssim \approx 2-3 \) of their quiescent value, and that the mean of the relation represents the quiescent 'main sequence' of galaxy assembly. Few galaxies between this main sequence and the passive population are seen, suggesting rapid movement between the two populations. At \(z \sim 2 \), the constraints are even more severe, as Daddi et al. (2007a) measure a 1σ scatter of 0.29 dex (0.16 dex interquartile), while the observed \(\alpha_d \approx 0.2 \) implies they are bursting

\(^1\) This is similar but not identical to the 'maturity parameter' of Scoville et al. (2007).
at approximately five times their quiescent rate. Since these observations are able to probe SFRs down to \(\sim 10 \, M_\odot \, \text{yr}^{-1} \), moderate stellar mass (\(M_\ast \gtrsim 10^{10.5} \, M_\odot \)) galaxies with \(\alpha_d \sim 1 \) would have been seen if present, but are not. The only way the burst scenario would work is if all observed galaxies somehow conspire to be bursting at approximately the same level, which seems highly contrived. Hence, bursts do not seem to be a viable way to produce low \(\alpha_d \).

Another possible scenario is that models simply need to begin forming stars at a later epoch. This would effectively lower \(\alpha_d \) as defined here, while still maintaining a fairly constant SFR as required by the observed scatter. Theoretically, such a scenario is easier said than done, as the epoch where galaxy formation begins is not a free parameter even in semi-analytic models, but rather is governed by halo formation times that are well constrained by current cosmological parameters. Such a scenario would require overwhelmingly strong feedback at early epochs, far stronger than even the strong feedback present in, for example, hydrodynamisms that match observed \(z \sim 4-7 \) galaxy SFRs (Davé et al. 2006; Bouwens et al. 2007), in order for copious dense gas to be present in early haloes yet not form stars. Still, in the spirit of discarding any theoretical preconceptions, 'delayed galaxy formation' appears to be a viable solution.

However, quantitative consideration of delayed galaxy formation leads to significant problems when confronted by other observations. At \(z = 2, \alpha_d \approx 0.2 \) implies that (constant) star formation began roughly 0.5 Gyr prior – which corresponds to \(z \sim 2.3! \) Of course, it cannot be true that all galaxies began forming stars at \(z \sim 2.3 \), as many star-forming galaxies are seen at significantly higher redshifts (e.g. Bouwens et al. 2007). Indeed, both the cosmic SFR (e.g. Hopkins & Beacom 2006; Fardal et al. 2007) and the rest-UV luminosity function (Reddy et al. 2007) are observed to be fairly constant between \(z \sim 4 \rightarrow 2 \). So it appears galaxies were forming stars quite vigorously at \(z \gg 2.3 \). Even if galaxies smoothly ramped up their star formation to values observed at \(z \sim 2 \), they would still need to start at \(z \approx 2.7 \).

If most galaxies cannot have such a low \(\alpha_d \), perhaps the observed systems represent only a small subset of galaxies at \(z \sim 2 \), and the rest are simply unseen. Since current surveys identify both UV-luminous and red, dusty star-forming galaxies, it must be that the unseen galaxies are passive, or else so extremely extincted that they only show up in, for example, submillimetre surveys. For the latter case, Reddy et al. (2005) found that the cosmic SFR has a relatively minor contribution from such severely extincted systems that escape BzK/Lyman Break Galaxy selection at \(z \sim 2 \), so they are not likely to be the dominant growth mode for galaxies. Moreover, this actually exacerbates the \(M_\ast \)–SFR problem, because it provides a mode to form many more stars beyond what is formed quiescently, which would make the expected stellar masses even higher than just from the quiescent mode.

Hence, the unseen galaxies must be passive, or forming stars at some undetectably low rate. In the currently popular downsizing scenario (Cowie et al. 1996), these systems would have formed their stars earlier in a rapid mode, and have now attenuated their star formation through some feedback process so as not to be selected in star-forming samples. Perhaps by \(z \sim 2 \), downsizing is already well underway, and the observed galaxies only represent the small fraction of systems that have just recently begun forming stars and will soon be quenched.

While qualitatively sensible, the 'unseen passive galaxies' model is once again quantitatively inconsistent with other observations of high-\(z \) galaxies. Perez-Gonzalez et al. (2007) used a Spitzer/Infrared Array Camera (IRAC)-selected sample to determine that the star-forming BzK (sBzK) selection technique, i.e. the one employed by Daddi et al. (2007a) to measure \(M_\ast \)–SFR at \(z \sim 2 \), encompasses 88 per cent of their galaxies (2691/3044) from 1.6 < \(z < 2.5 \). This is remarkably efficient, significantly more so than e.g. the Lyman break or Distant Red Galaxy selection techniques in obtaining a stellar mass-limited sample. Their stellar mass completeness is estimated to be \(\sim 75 \) per cent above \(M_\ast \gtrsim 10^{10.3} \, M_\odot \) for passively evolving galaxies. Putting these together, this means that conservatively at least two-third of all galaxies above this mass threshold are selected as sBzK galaxies, and hence less than one-third are unseen passive galaxies. In contrast, the observed \(M_\ast \)–SFR relation at \(z \sim 2 \) implies \(\alpha_d \approx 0.2 \), meaning that \(\sim 80 \) per cent of galaxies should be unseen (passive), or else the duty cycle of such objects should be \(\sim 20 \) per cent. This assumes galaxies began significant activity \(\sim 1 \) Gyr after the big bang, and that \(\alpha_d = 0.2 \) at \(z > 2 \); the latter is again conservative, as an extrapolation would indicate that \(\alpha_d \) should be even lower at \(z \sim 2 \). Hence, it does not appear that sBzK selection misses nearly enough systems to make the unseen passive galaxies scenario viable to explain \(\alpha_d(z \sim 2) \).

Another way to accommodate the low scatter, unity slope and rapid evolution in \(M_\ast \)–SFR is to propose that galaxies evolve along the \(M_\ast \)–SFR relation, as proposed by Daddi et al. (2007a). At \(z \sim 2, \alpha_d = 0.2 \) implies that galaxies must be growing very quickly. Rapid growth means that for any given galaxy, the amplitude of \(M_\ast \)–SFR is essentially unchanging. Now since SFR \(\propto M_\ast = \int \text{SFR} \, dt \), an unchanging amplitude implies a solution of

\[
\text{SFR} = C \exp(t / \tau) \implies M_\ast = C \tau \exp(t / \tau) = \tau \, \text{SFR}.
\]

(2)

In other words, in this scenario, galaxies have exponentially growing SFRs and stellar masses! This growth would presumably continue until star formation is truncated by some feedback mechanism, probably when \(M_\ast \gtrsim 10^{11} \, M_\odot \). While at first this 'exponentially growing galaxies' idea may seem incredible, of all the scenarios it actually comes closest to reconciling all the high-\(z \) galaxy data.

One way to test this scenario is to consider the evolution of the number densities \(n \) of galaxies. The \(e \)-folding time of stellar mass growth is given by \(\tau = M_\ast / \text{SFR} \). Assuming (conservatively) that \(\alpha_d = 0.2 \) remains constant at \(z \gtrsim 2 \), then \(\tau \propto t \sim 1 \) Gyr. A simple calculation shows that there are, e.g. five \(e \)-folding times (or \(2.2 \) decades of growth) from \(z = 3.5 \rightarrow 2 \). For a given mass \(M_\ast, n(M_\ast) \) at \(z = 2 \) should then be similar to \(n(M_\ast/10^{2}) \) at \(z = 3.5 \) (neglecting mergers). Fontana et al. (2006) measured the number density of galaxies with \(M_\ast = 10^{11} \, M_\odot \) at \(z \sim 2 \) to be \(7 \times 10^{-4} \, \text{Mpc}^{-3} \), and those with \(M_\ast = 10^{8.5} \, M_\odot \) at \(z = 3.5 \) have \(n = 3 \times 10^{-3} \, \text{Mpc}^{-3} \) (based on an extrapolation of their fits) and stellar mass functions from Emsler, Feulner & Hopp (2008) yield similar values. Hence, if face value current data suggest that the stellar mass function does not evolve quite as rapidly as expected in this scenario.

Still there are substantial uncertainties in the observed stellar mass function at such low masses and high redshifts, so a factor of a few discrepancy is not compelling enough to rule out the exponentially growing galaxies scenario.

Another scenario that has been shown to reproduce \(M_\ast \)–SFR evolution is the staged galaxy formation model of Noeske et al. (2007b). Here, a delay is introduced in the onset of galaxy formation that is inversely related to the galaxy mass. Hence, large mass objects form

\[^2 \text{Technically, the fact that } \tau \text{ changes with time means that the assumption of a constant } M_\ast \text{–SFR amplitude in equation (2) is invalid; however, a simple evolutionary model accounting for this yields virtually identical results.} \]
early and quickly, while small ones start forming later over longer time-scales. This is similar to the exponentially growing galaxies scenario in the sense that the latter implicitly assumes a sort of delay, because galaxies must accumulate lots of gas in their halo without forming stars in order to have a sufficient gas reservoir to then consume exponentially. Hence, it may be possible to constrain staged galaxy formation with similar measurements of the stellar mass function to higher z; this is being investigated by K. Noeske (private communication). If either exponentially growing or staged galaxy formation is correct, this would indicate that star formation at early epochs does not scale with gas density as seen locally (Kennicutt 1998), or else that cold gas is somehow prevented from accumulating in haloes as expected from growth of structure.

In summary, the small α_{sf} at $z \sim 2$ implied by the M_\star–SFR amplitude is difficult to reconcile with the observed scatter in M_\star–SFR, the observed evolution of star-forming galaxies to higher redshifts, and the observed fraction of passive galaxies. Taken together, the last data all point to the idea that observed star-forming galaxies represent the majority of galaxies at intermediate masses ($\sim 10^{10}$–$10^{11} \, M_\odot$) at $z \sim 2$, and have been quiescently forming stars over much of a Hubble time, i.e. $\alpha_{\text{sf}} \sim 1$. While designer models of stellar assembly cannot be excluded, they would be highly unexpected, and would require substantial revision to our understanding of how gas accumulates and forms stars in hierarchical structure formation. The general difficulty in reconciling the data together with the models’ preference for $\alpha_{\text{sf}} \sim 1$ suggests an uncomfortable situation that bears investigation into alternative solutions.

4 SYSTEMATIC EFFECTS IN M_\star AND SFR DETERMINATIONS

Determining M_\star and SFR from broad-band observations is fraught with a notoriously large number of systematic uncertainties that could alter the values of α_{sf} inferred from observations. Here, it is considered whether such systematics could be responsible for the low value of α_{sf} at high z, particularly focusing on the Daddi et al. (2007a) analysis at $z \sim 2$ since that is where the discrepancies from model expectations and the range of possible systematics are greatest. SFRs there are generally estimated by summing rest-UV flux (uncorrected for extinction) with 24-μm flux. For objects that are anomalously high or low in 24 μm to dust-corrected UV-SFR estimations, they use the dust-corrected UV or 24 μm estimate, respectively; however, only one-third of their sample are anomalous in that sense. Meanwhile, stellar masses are estimated from SED fitting: using multiband photometry or spectra, one fits model stellar population templates (in their case, Bruzual & Charlot 2003), varying: using multiband photometry or spectra, one fits model stellar population while still having a high current SFR, it must be that such galaxies formed many stars early, then sat around not forming stars until a recent flare-up; however, this scenario suffers the same difficulties as the delayed galaxy formation model. Hence, one cannot self-consistently alter the SFHs to hide a large amount of very old stars in these galaxies.

Instead, it may be possible to appeal to some systematic reduction in the inferred SFR. Why might the true SFR be lower than estimated? One possibility is that the extinction corrections being used for UV-estimated SFRs are too excessive. Now recall that for the majority of galaxies, Daddi et al. (2007a) estimated the SFR from the uncorrected UV plus 24-μm flux, so for those cases the extinction correction is not relevant; it is only relevant for the $\lesssim 25$ per cent that are ‘mid-IR excess’ systems. For those, there may be room to alter the extinction law such that the extinction inferred from the UV spectral slope is overestimated. Daddi et al. (2007a), like most studies of actively star-forming galaxies, use the Calzetti et al. (2000) law. Using instead a Milky Way or Large Magellanic Cloud (LMC) law would indeed yield less extinction for a given UV spectral slope, but the typical reduction is less than of a factor of 2. So it seems unlikely that extinction alone is causing the low α_{sf} even in the minority mid-IR excess objects, unless the extinction law were dramatically different than anything seen in the local universe.

Another possibility is that there is an additional contribution to the rest-UV flux besides star formation. The obvious candidates are AGN, which are common in $z \sim 2$ star-forming galaxies. While Papovich et al. (2006) found that only $\lesssim 25$ per cent of $M_\star > 10^{11} \, M_\odot$ galaxies at $z \sim 2$ have X-ray detectable AGN, Daddi et al. (2007b) identified obscured AGN through their mid-IR excess, and found that they appear in ~ 50 of galaxies at $M_\star > 4 \times 10^{10} \, M_\odot$, and dominate the overall AGN population at $z \sim 2$. Importantly, they also found (in agreement with previous studies, e.g. Papovich et al. 2006) that smaller mass galaxies have a lower AGN fraction, as expected theoretically (Hopkins et al. 2007). Recall that Daddi et al. (2007a) used UV fluxes to estimate SFR in such mid-IR excess objects, and by comparison with X-ray data they estimated that such an inferred SFR is unlikely to be wrong by a significant factor. Moreover, since AGN are increasingly rare in smaller mass systems, it would be an odd coincidence if they mimicked the relation $M_\star \propto \text{SFR}^{1.9}$ so tightly. Like the burst model, this represents a fine-tuning problem, where AGN have to contribute a very
specific amount to the inferred SFR at each mass scale for no obvious physical reason. This cannot be ruled out, but seems a priori unlikely.

It is also possible that AGN could be present in galaxies that are not mid-IR excess systems. The strong dichotomy in the X-ray properties suggests there is not a continuum of AGN, and that AGNs are limited to mid-IR excess systems (e.g. Daddi et al. 2007b). However, there exist AGN templates where the contribution to rest-UV and rest 8-μm flux are broadly comparable to that in star-forming galaxies (Dale et al. 2006). These could be mistaken for ‘normal’ star-forming systems, whereas in fact the dominant flux is from AGN. Still, once again, to mimic the tight M_\ast–SFR relation would require AGN to be contaminating the SFR estimate at a similar level at all stellar masses. Moreover, if they are dominating the UV flux then they should appear as central point sources, but Hubble/ACS imaging of sBzK galaxies generally do not show such bright central sources (M. Dickinson, private communication). Hence, while AGN are certainly present, it seems unlikely that they are a major contaminant for UV-derived SFRs.

A perhaps even more troublesome issue is the use of rest-8μ (i.e. 24 μ at $z \sim 2$) as a SFR indicator. This is quite uncertain, because the dominant flux at those wavelengths is from polycyclic aromatic hydrocarbon (PAH) emission features, whose nature is not well understood. As Smith et al. (2007) point out, there is more than a factor of 2 scatter in SFR indicators that assume a fixed (local) PAH template. Moreover, owing to PAH features moving in and out of bands, standard photometric redshift uncertainties of $\Delta z/(1 + z) \sim 0.1$ can result in up to an order of magnitude error in inferred SFRs. On the other hand, the tight scatter in the $z \sim 2M_\ast$–SFR relation would seem to limit the amount of scatter owing to PAH feature variations, or else be an indication that UV light dominates over PAH emission (though the latter is not what is seen locally; Smith et al. 2007). Calzetti et al. (2007) note that 8-μm emission has a substantial metallicity dependence, but it is in the sense that lower metallicities have lower emission, so their SFR would be underestimated by using solar metallicity calibrations. So while it is conceivably that some unknown reason causes PAH emission per unit star formation to be systematically higher in high-z galaxies compared to local ones, thereby causing the SFR to be overestimated, but there are no obvious indications that this would mimic a tight M_\ast–SFR relation.

Finally, the observed SFR and M_\ast’s in Daddi et al. (2007a) are inferred assuming a Salpeter IMF. Assuming instead a Chabrier (2003) or Kroupa (2001) IMF would result in shifting both M_\ast and SFR down by ~ 0.15 dex (Elbaz et al. 2007). Hence, to first order it makes no difference as long as the M_\ast–SFR slope is around unity (E. Daddi, private communication). Fundamentally, this is because at high-z both stellar mass and SFR indicators are driven by light from stars $\sim 0.5M_\odot$, and favoured present-day Galactic IMFs generally agree on the shape above this mass. Hence, more substantial IMF variations would be required.

In summary, there are no obvious paths to systematically alter M_\ast and SFR determination to make up the required approximately three to five times difference in σ_{SFR} at $z \sim 2$. It is true that many of these systematics cannot be ruled out entirely, and it may be possible that a combination of such effects could explain part or even all of the difference. It is also possible that locally calibrated relations to estimate M_\ast and SFR may be substantially different at high z for unknown and unanticipated reasons. The reader is left to assess the plausibility of such scenarios. The view taken here is that the difficulty in obtaining a straightforward solution motivates the consideration of more exotic possibilities.

5 AN EVOLVING IMF?

One possible way to alter M_\ast–SFR evolution is to invoke an IMF that is in some direct or indirect way redshift-dependent. The key point is that most direct measures of the SFR actually trace high-mass star formation, while stellar mass is dominated by lower mass stars. Hence by modifying the ratio of high- to low-mass stars formed, i.e. the shape of the IMF, it is possible to alter the M_\ast–SFR relation. The possibility of a varying IMF has been broached many times in various contexts (e.g. Larson 1998; Ferguson, Dickinson & Papovich 2002; Fardal et al. 2007; Lacey et al. 2007), though typically as a last resort scenario. It is highly speculative as there is no clear-cut evidence at present that supports a time- or space-varying IMF, but it is worth investigating in light of growing observational and theoretical arguments in its favour.

As Kroupa (2001) points out, a universal IMF is not to be expected theoretically, though no variations have been unequivocally detected in local studies of star-forming regions. The average Galactic IMF appears to be well represented by several power laws, steepest at $>1M_\odot$, then significantly shallower at $<0.5M_\odot$ with a turnover at $<0.1M_\odot$ (see review by Kroupa 2007). Forms that follow this include the currently favoured Kroupa (2001) and Chabrier (2003) IMFs. But deviations are seen, at least at face value. The nearby starburst galaxy M82 appears to have an IMF deficient in low-mass stars (Rieke et al. 1980, 1993). A similarly bottom-light IMF is inferred in the highly active Arches cluster near the Galactic Centre, suggesting that vigorous star formation makes the IMF top heavy (e.g. Figuer 2005). Also, the young LMC cluster R136 shows a flattening in the IMF below $\sim 2M_\odot$ (Sirianni et al. 2000). There are hints that presently active star clusters form more low-mass stars compared to the disc-averaged 5 Gyr-old IMF (Kroupa 2007), suggesting that the IMF was weighted towards heavier stars at lower metallicities and/or earlier times. Even if the IMF shape is universal, larger star-forming regions may produce more high-mass stars simply because they have enough material to aggregate into larger stars (Weidner & Kroupa 2006).

Hence, there are hints of IMF variations, albeit controversial and interestingly they consistently go in the direction of having a higher ratio of massive to low-mass stars in conditions similar to those in high-z galaxies. Compared to present-day star-forming systems, galaxies at high-z have far higher star formation surface densities than the Galactic disc (Erb et al. 2006c), have higher gas content and hence presumably more massive star-forming clouds (Erb et al. 2006b) and have somewhat lower metallicities (Savaglio et al. 2005; Erb et al. 2006a). Larson (1998) and Fardal et al. (2007) list other pieces of circumstantial evidence that favour early-top-heavy IMFs. So while there are no direct observational evidences or strong theoretical arguments for it, it is not inconceivable that the IMF in high-z galaxies may be more top-heavy or bottom-light3 than the present-day Galactic IMF.

Such an IMF would have three main effects on the M_\ast–SFR relation: it would increase the output of UV flux per unit stellar mass formed; it would cause more stellar mass loss from stellar evolution and the mass recycling would provide a larger gas reservoir with which to form stars. All three effects go towards reconciling theoretical expectations with observations of the M_\ast–SFR relation.

3 The distinction between top-heavy and bottom-light IMFs is mostly semantic. Here, the convention is used that top-heavy means a high-mass slope that is less steep than the local Salpeter value, while bottom-light means that the high-mass slope remains similar but low-mass stars are suppressed.
SFR inferred by assuming a standard IMF would be an overestimate, since many fewer low-mass stars are formed per high-mass star. Increased recycling losses would lower the theoretical expectations for the amount of stellar mass remaining in these galaxies, bringing them more into line with observed stellar masses. Recycled gas would increase the available reservoir for new stars, effectively delaying star formation in galaxies and pushing models towards the ‘delayed galaxy formation’ scenario. Hence, even modest evolution in the IMF could, in principle, reconcile the observed and theoretically expected α_d evolution.

6 A SIMPLE IMF EVOLUTION MODEL

How is the IMF expected to evolve with time? This is difficult to predict since no ab initio theory for the IMF exists today. But a simple conjecture by Larson (1998, 2005) may have some empirical value. He notes that there is a mass scale of $\sim 0.5 \, M_\odot$ below which the Galactic IMF becomes flatter (Kroupa, Tout & Gilmore 1993; Kroupa 2001; Chabrier 2003), and at which point the mass contribution per logarithmic bin $(dM/d\log M)$ is maximized. Larson uses simple thermal physics arguments to show that this characteristic IMF mass scale (\bar{M}_{IMF}) is related to the minimum temperature T_{min} of molecular clouds, measured today to be around 8 K. In that case, if the temperature in the interstellar media (ISM) of high-z galaxies is higher, this characteristic mass will shift upwards, resulting in an IMF that is more bottom-light.

To generate a crude IMF evolution model, let us assume that the $\bar{M}_{\text{IMF}} \propto (1+z)^{1/4}$, where z is some unknown parameter whose value is set by the various effects above. Larson (1985) predicted analytically that $\bar{M}_{\text{IMF}} \propto T_{\text{min}}^{3/5}$, while recent numerical experiments by Jappsen et al. (2005) found a less steep scaling of T_{min}. So, for example, an evolution that scaled purely with cosmic microwave background (CMB) temperature would yield $\gamma = 1.7$. However, other factors may cause an increased ISM temperature, e.g. elevated disc SFR rates causing more supernova heat input; lower cooling rates owing to lower metallicities and/or photoionization from a stronger metagalactic UV flux (e.g. Scott et al. 2002).

The approach adopted here is to treat γ as a free parameter, to be constrained using the observed evolution of α_d. The assumption is that $\alpha_d(z = 0) = 0$ reflects the present-day Galactic IMF, while $\alpha_d(z > 0)$ is inferred to be lower purely because of the assumption of a non-evolving IMF, whereas in reality $\alpha_d(z)$ (at any given mass) is constant as expected in models.

An ‘evolving Kroupa’ IMF is defined in which

$$\bar{M}_{\text{IMF}} = 0.5 (1+z)^\gamma \, M_\odot. \tag{3}$$

Above \bar{M}_{IMF}, the IMF has a form $dN/d\log M \propto M^{-1.3}$, while below it scales as $M^{-0.3}$. Note that the current Galactic IMFs also have a turn-down at masses below 0.1 M_\odot; the present analysis provides no constraints in this regime, as the stellar mass formed there is a small fraction of the total. The exact form of the IMF is not critical here; Kroupa (2001) is chosen for its convenient explicit parametrization in terms of \bar{M}_{IMF}, but the analysis below could equally well have been done with the similar Chabrier IMF.

The goal of the evolving IMF is to increase the ratio of the SFR of high-mass stars (SFR_{high}) to total stellar mass formed, such that the inferred $\alpha_d(z)$ is non-evolving. Note that different probes such as UV luminosity, Hz emission and mid-IR emission trace slightly different regimes of high-mass star formation, but so long as the high-mass IMF slope remains fixed, the relative ratios of such emission should be constant. So, for example, in order to produce no evolution in α_d from $z \sim 0 \rightarrow 2 \rightarrow 2$ at $10^{10} \, M_\odot$, the factors by which $f = SFR_{\text{high}}/M_*$ must be raised are 1.9 at $z = 1$ and 3.3 at $z = 2$, relative to a standard Kroupa IMF (cf. Fig. 2). Hence, γ must be chosen to match these factors.

What value of γ would produce such evolution? To determine this, the PEGASE.2 (Fioc & Rocca-Volmerange 1997) population synthesis model is employed, taking advantage of its feature allowing user-definable IMFs. PEGASE outputs a variety of quantities as a function of time from the onset of star formation, given an input SFH. The assumed SFH is taken to be exponentially declining with a 10 Gyr decay time and starting 1 Gyr after the big bang, in order to approximate a typical model SFH. An example of such a SFH is shown as the magenta line in the lower right-hand panel Fig. 1, normalized to a SFR of $2 \, M_\odot \, \text{yr}^{-1}$ today; as is evident, it is quite similar to typical SFHs from the simulations, at least for moderate stellar masses. A constant SFH was also tried, and the results were not significantly different. Besides the input SFH, all other parameters are taken as the PEGASE default values. No dust extinction is assumed.

The PEGASE output quantities specifically used here are the stellar mass M_*, and the unextincted 1650 Å luminosity (L_{1650}). The latter is used as a proxy for SFR_{high}. Using these, it is possible to compute f for any given assumed IMF at any given time. Note that PEGASE accounts for both stellar mass accumulation and mass loss owing to stellar evolution, but does not account for the impact of recycled gas. By varying \bar{M}_{IMF}, it is possible to estimate f for any assumed γ, and thereby determine what value of γ would yield no α_d evolution.

In practice, determining $f \equiv SFR_{\text{high}}/M_*$ at any epoch requires integrating the mass growth up to that epoch for an evolving IMF. To do so, first PEGASE models are computed for a wide range of \bar{M}_{IMF} values. Then, the following procedure is used.

(i) A value of γ is selected;

(ii) the following integral is computed:

$$M_*(t_0) = \int_0^{t_0} \frac{\Delta M}{\Delta t} \, (\bar{M}_{\text{IMF}}, t) \, dt, \tag{4}$$

where $\Delta M/\Delta t$ is the stellar mass growth rate at time t taken from PEGASE models interpolated to the appropriate \bar{M}_{IMF} as given in equation (3);

(iii) L_{1650} is taken at time t from PEGASE, and $f \equiv f_{1650}(t)/M_*(t_0)$ is computed (the subscript ‘ev’ stands for ‘evolving’);

(iv) similarly, $f_{\text{Kroupa}}(t_0)$ is computed for a standard Kroupa IMF, where $\bar{M}_{\text{IMF}} = 0.5 \, M_\odot$;

(v) the ratio $f_{\text{ev}}(t)/f_{\text{Kroupa}}(t_0)$ is computed, and compared to the factors needed to produce no α_d evolution.

The results of this procedure are shown in Fig. 3, namely $f_{\text{ev}}/f_{\text{Kroupa}}$ as a function of redshift for several values of γ. The values by which the M_*-SFR relation needs to be adjusted to produce no α_d evolution at $z = 0.45, 1, 2$ are indicated by the symbols: squares are for $M_* = 10^{10} \, M_\odot$, triangles for $10^{10.5} \, M_\odot$ and circles for $10^{11} \, M_\odot$. These are computed from published fits to M_*-SFR (Daddi et al. 2007a; Elbaz et al. 2007; Noeske et al. 2007a). Because the M_*-SFR relation becomes shallower with time, the required adjustment factors are generally smaller at lower masses.

Fig. 3 shows that $\gamma = 2$ provides a reasonable fit to the required IMF evolution for typical star-forming galaxies at $M_* = 10^{10} \, M_\odot$. The implied values of \bar{M}_{IMF} are 2 and 4.5 M_\odot at $z = 1, 2$, respectively. Note that there is no a priori reason why a single value of γ should fit at all redshifts considered, so the good fit supports the form of \bar{M}_{IMF} evolution assumed in equation (3).
Figure 3. Evolution of the ratio of high-mass SFR to stellar mass, for the evolving Kroupa IMF equation (3) relative to a standard Kroupa IMF, normalized to unity at \(z = 0 \). The curves are computed from PEGASE.2 models for different values of \(\gamma \), as described in Section 6. The data points are from fits to the observed \(M_\ast - \text{SFR} \) relation at \(z = 0.45, 1, 2 \) (described and shown in Fig. 2) at stellar masses of \(10^{10.5} \text{M}_\odot \) (squares), \(10^{10} \text{M}_\odot \) (triangles) and \(10^{9.5} \text{M}_\odot \) (circles). The required evolution is reasonably well fit by \(\gamma = 2 \), i.e. \(\dot{M}_{\text{IMF}} = 0.5(1+z)^2 \text{M}_\odot \). Long and short dashed–dot models show results for the Larson (1998) scenario where the minimum temperature of molecular clouds is set by the CMB temperature, and \(\dot{M}_{\text{IMF}} \propto T_{\text{CMB}}^3 \), where \(\beta = 3.35 \) (Larson 1985) and \(\beta = 1.7 \) (Jappsen et al. 2005), respectively. Because the CMB temperature does not exceed the local minimum temperature in molecular clouds of \(8 \text{K} \) until \(z \gtrsim 2 \), this scenario does not yield substantial evolution at \(z \lesssim 2 \).

As a check, an independent method for determining \(\dot{M}_{\text{IMF}} \) evolution was explored that is less comprehensive, but conceptually more straightforward. Here, the high-mass SFR is assumed to be unchanged, while observations of stellar mass are assumed to reflect stars near the main-sequence turn–off mass (\(M_{\text{turn–off}} \)), since red optical light is dominated by giant stars. For an evolving Kroupa IMF, to obtain a reduction of a factor of 4, \(\dot{M}_{\text{IMF}} \) must be taken as an illustrative example rather than a well-motivated model.

The same procedure can be applied to the scenario proposed by Larson (1998), where the CMB temperature is solely responsible for setting a floor to the ISM temperature. In that case, \(T_{\text{CMB}} = \text{MAX}(T_{\text{CMB}}, 8 \text{K}) \) and \(\dot{M}_{\text{IMF}} \propto T_{\text{CMB}}^3 \). Larson (1985) predicted \(\beta = 3.35 \), while Jappsen et al. (2005) found \(\beta = 1.7 \). The results of this scenario for these two values of \(\beta \) are shown as the long and short dotted–dashed lines, respectively, in Fig. 3. As is evident, this IMF evolution is not nearly sufficient to reconcile the observed and predicted \(\alpha_{\text{d}} \) evolution out to \(z \sim 2 \), mainly because \(T_{\text{CMB}} \) only exceeds \(8 \text{K} \) at \(z > 1.93 \), and hence \(\dot{M}_{\text{IMF}} \) does not change from \(z \sim 0 \)–2.

Note that since CMB heating of the ISM is subdominant at all redshifts, the assumed form of IMF evolution (equation 3, scaling as \(T_{\text{CMB}}^3 \)) is not physically well motivated. While the evolution out to \(z \sim 2 \) is well fit by such a form, it could be that the form changes at higher \(z \), or that it should be parametrized as some other function of \(z \). For instance, if it is the vigorousness of star formation activity that determines \(\dot{M}_{\text{IMF}} \), perhaps IMF evolution actually reverses at very high redshifts. For lack of better constraints, the form for IMF evolution in equation (3) will be assumed at all \(z \), but this should be taken as an illustrative example rather than a well-motivated model.

This analysis also makes predictions for \(\alpha_{\text{d}} \) at \(z > 2 \) that would be inferred assuming a standard (non-evolving) IMF. For instance, Fig. 3 implies that at \(10^{10} \text{M}_\odot, \alpha_{\text{d}}(z = 3) = 0.13 \) and \(\alpha_{\text{d}}(z = 4) = 0.12 \). Notably, the evolution slows significantly at \(z \gtrsim 3 \), and actually reverses at \(z \gtrsim 4 \), though the simple SFH assumed in the PEGASE modelling may be insufficiently realistic to yield valid results at \(z \gtrsim 4 \). Any such extrapolation of this IMF evolution should be made with caution, as the \(M_\ast - \text{SFR} \) relation only constrains it out to \(z \sim 2 \). However, in the next section this will be compared to observations that suggest that such IMF evolution may be reasonable out to \(z \sim 3 \).
complementary observations. The precise IMF shape is not well constrained, it is certainly possible that an IMF with different behaviour, for instance an evolving high-mass slope (e.g. Baldry & Glazebrook 2003), could produce the same α_{ev} evolution. The only requirements are that it produces the correct ratio of high-mass stars relative to low-mass stars as a function of redshift, and that (unlike e.g. the merger-induced top-heavy IMF suggested by Lacey et al. 2007) applies to the bulk of star-forming galaxies at any epoch.

7 IMPLICATIONS OF AN EVOLVING IMF

What are the observational implications of such an evolving IMF at early epochs? Surprisingly few, as it turns out, so long as the massive end of the IMF remains unaffected. This is because, as mentioned before, virtually all measures of high-z star formation, be they UV, IR or radio, trace light predominantly from high-mass stars. Feedback energetics and metallicities likewise reflect predominantly massive star output. Hence, so long as an IMF preserves the same high-mass SFR, it is expected to broadly preserve the successes of understanding the relationship between the rest-UV properties of galaxies (e.g. Davé et al. 2006; Bouwens et al. 2007), cosmic metal pollution (e.g. Oppenheimer & Davé 2006; Davé & Oppenheimer 2007), feedback strength and Type II supernova rates.

The main difference caused by such IMF evolution is in stellar mass accumulation rates. High-z measures of stellar mass are therefore critical for testing this type of scenario. Drory et al. (2005) determined the stellar mass function evolution from a K-band survey out to $z \sim 5$, but at even moderately high redshifts the rest-frame light is actually quite blue, so their stellar mass estimates implicitly involve a significant IMF assumption. The high-z stellar mass–metallicity relation (Erb et al. 2006a) has the potential to test the IMF; if the evolving IMF is correct, the good agreement found versus recent models (Brooks et al. 2007; Finlator & Davé 2007; Kobayashi, Springel & White 2007) would perhaps not stand, and, in particular, many more metals would have to be driven out of galaxies of a given M_* via outflows (i.e. the ‘missing metals’ problem would get worse; Davé & Oppenheimer 2007). Type Ia supernova rates at high z would be lowered; the apparent turn-down in Type Ia rates at $z > 1$ argued by Hopkins & Beacom (2006) as being indicative of a long Type Ia delay time of 3 Gyr, may instead be accommodated via a more canonical short delay time coupled with an evolving IMF. These are examples of the types of observations that could potentially constrain IMF evolution.

The SFRs inferred for high-redshift galaxies by assuming present-day IMFs would have to be revised downwards for an evolving IMF. A quantitative estimate of the reduction in SFRs from the standard to evolving IMF case is provided by the ratio $f_{\text{ev}}/f_{\text{st}}$ as a function of redshift from Fig. 3. Specifically, the ‘true’ cosmic SFR (assuming the evolving IMF is correct) is the one currently inferred assuming a non-evolving IMF, divided by the curve for a particular value of γ, say $\gamma = 2$.

Fig. 5 shows the cosmic SFR with data points compiled by Hopkins (2004), and the fit by Hopkins & Beacom (2006). It also schematically illustrates the effect of an evolving IMF by dividing the Hopkins & Beacom (2006) fit by the $f_{\text{ev}}/f_{\text{st}}$ curve for $\gamma = 2$. Note that Hopkins & Beacom (2006) used a Salpeter IMF to infer SFRs, so these correction factors (derived for a Kroupa IMF) are not exact, but should be reasonably close. Fig. 5 shows that the cosmic SFR peak shifts to later epochs in the evolving IMF case. The total stellar mass formed in the Universe is reduced by 55 per cent by $z = 0$ and 75 per cent by $z = 2$, compared to a standard IMF.

Interestingly, some current observations seem to prefer an IMF at early epochs that is more top-heavy or bottom-light, and perhaps a later epoch of cosmic star formation than generally believed. Hopkins & Beacom (2006) noted that the integral of the cosmic SFR exceeds the stellar mass currently detected by a factor of 2, assuming a Salpeter IMF. Borch et al. (2006) also noted such tension, but suggested that switching from Salpeter to a Chabrier or Kroupa IMF might go significantly towards reconciling the difference, little evidence exists for IMF evolution to $z \lesssim 1$ (Bell et al. 2007). But to higher redshifts, observations by Rudnick et al. (2006) of stellar mass density evolution to $z \sim 3$ suggest that mass build-up is peaked towards significantly later epochs than in current models that broadly match the observed cosmic SFR. Baldry & Glazebrook (2003), updating an analysis done by Madau, Pozzetti & Dickinson (1998), found that the cosmic SFH and present-day cosmic luminosity density are best reconciled using an IMF slope that is slightly more top-heavy than Salpeter (-1.15 versus -1.35), and significantly more top-heavy than e.g. Kroupa et al. (1993). Heavens et al. (2004) suggest from an archaeological analysis of SDSS spectra that the cosmic SFR peaked at $z \sim 0.6$ rather than the more canonical $z \sim 2$. Van Dokkum & van der Marel (2007) find that it is easier to understand early-type fundamental plane evolution at $z \lesssim 1$ with a slightly top-heavy IMF (as also argued by Renzini 2005). Intra-cluster medium metallicities indicate that stars formed in clusters at early epochs either had higher yields than today, or else formed with a top-heavy IMF (Portinari et al. 2004). Lucatello et al. (2005) and Tumlinson (2007) suggest that the abundance of carbon-enhanced metal-poor stars is indicative of a more top-heavy IMF at early times in our Galaxy. Chary (2007) finds that an IMF slope more top-heavy than Salpeter is required to produce enough early photons to reionize the Universe. While it should be pointed out that a large number of observations are consistent with a universal IMF, whenever a
discrepancy exists, it is invariably in the sense of favouring an IMF with more massive stars at early times.

Fardal et al. (2007) did perhaps the most careful work on trying to reconcile fossil light measures with redshift-integrated measures of stellar mass. Extending the analyses of Baldry & Glazebrook (2003) and Hopkins & Beacom (2006) by including extragalactic background light (EBL) constraints, they found that no standard IMF (Kroupa, Chabrier, Salpeter, etc.), is able to reconcile at the $\sim 3\alpha$ level the cosmic SFH, the present-day K-band luminosity density and the EBL. They examined how the IMF might be altered to make these observations self-consistent, and found that what was required was an IMF that had an excess at intermediate masses (\sim few M_{\odot}) over standard IMFs. This IMF need not be universal, but instead could be a cumulative IMF of all stars that have formed in the Universe, since it was obtained from fossil light considerations.

An example of a concordant IMF is their ‘paunchy’ IMF, shown as the blue dot-dashed line in Fig. 4.

Using the evolving Kroupa IMF, it is possible to compute a cumulative IMF of all star formation in the Universe. This is done by integrating the evolving IMF over cosmic time weighted by the cosmic SFH, which is taken to be the evolving IMF one (blue line) from Fig. 5. The result is shown as the dotted cyan line in Fig. 4. It is similar to the paunchy IMF of Fardal et al. (2007), showing elevated formation rates of intermediate mass stars, though it is slightly more top-heavy. This comparison is preliminary because the EBL and current K-band light trace stellar output differently than the cosmic SFH. Still, it is likely that this evolving IMF will go significantly towards reconciling the various observations considered in Fardal et al. (2007).

Van Dokkum (2007) recently argued for a more top-heavy IMF at early times from the evolution of colours and mass-to-light ratios of early-type galaxies in clusters from $z \sim 0.8 \rightarrow 0$. Parametrizing the evolution in terms of the characteristic mass of a Chabrier IMF, he favoured a characteristic mass that evolves by 20 times from $z \sim 4$ until today; this is consistent with $\dot{M}_{\text{IMF}} \propto (1 + z)^2$ as proposed here. Note that his analysis only applies to stars formed in early-type cluster galaxies, so is not necessarily applicable to all galaxies.

Making the assumption that it is widely applicable, Van Dokkum (2007) determined a cosmic stellar mass growth rate that is broadly consistent with the evolving IMF case shown in Fig. 5 (though in detail it is more peaked towards lower z; see his fig. 13). While many uncertainties are present in the his analysis, it is reassuring that similar IMF evolution is inferred from a completely independent line of argument.

The ultimate test of an evolving IMF is to directly measure the stellar mass build-up in the Universe. Recently, Perez-Gonzalez et al. (2007) and Elsner et al. (2008) did just that using deep Spitzer/IRAC observations that probe near-IR light all the way out to $z \sim 3$. Their data of cosmic stellar mass growth rates as a function of redshift are shown as the magenta and red data points in Fig. 5, respectively (assuming a Salpeter IMF). These data points were obtained by differentiating the stellar mass densities as a function of redshift published in those papers. Although those two samples are independent, both show that the stellar mass growth rate is significantly different than that inferred from the observed cosmic SFH, particularly at $z \gtrsim 2$. Perez-Gonzalez et al. (2007) note that this may favour an IMF weighted more towards massive stars at high redshifts. They mention that utilizing a Chabrier or Kroupa IMF will lessen the discrepancy, but such a reduction is essentially by a fixed factor at all redshifts (modulo minor stellar evolution differences), so even if the normalization is adjusted to agree with the cosmic SFH at $z = 0$, it would still yield significantly lower SFRs at $z \gtrsim 2$.

A major uncertainty in this comparison is that Perez-Gonzalez et al. (2007), in order to integrate up the total stellar mass, assumed a Schechter (1976) faint-end slope that is fixed at $\alpha = -1.2$, even though they cannot directly constrain α at $z \gtrsim 2$. They justify this assumption by noting that there is no evidence for a change in α from $z \sim 0 \rightarrow 2$. But if α becomes progressively steeper with redshift, as suggested by Fontana et al. (2006), it could also reconcile these observations. Note that it would have to steepen quickly, for example, to $\alpha \approx -1.8$ at $z \sim 3$ to reconcile the approximately three times difference, significantly faster than $d\alpha/dz = -0.082$ observed by Fontana et al. (2006) out to $z \sim 4$. Elsner et al. (2008) also found that α does increase with redshifts slightly in one form of their analysis, though again not by enough to explain the discrepancy. Still, the difficulty of constraining the faint-end slope at high z, along with inherent uncertainties in SED fitting, means that these observations cannot be considered definitive proof of a varying IMF. But at least at face value the agreement with the evolving IMF case is quite good.

Wilkins, Tretham & Hopkins (2008) independently determined the cosmic stellar mass growth rate by compiling observations of stellar mass densities from the literature for $z \sim 0–4$ (note that they do not include the Perez-Gonzalez et al. or Elsner et al. data). Carefully accounting for various different systematics, they fit a Cole et al. (2001) form to the implied cosmic SFH (including effects of stellar mass loss), and determine $\rho_*= (0.014 + 0.11z)[1 + (z/1.4)]^{2.2}$, in M_\odot yr$^{-1}$ Mpc$^{-3}$. This relation is shown as the cyan dashed line in Fig. 5; it has been adjusted by $+0.22$ dex to change from the IMF they assumed (similar to Chabrier) to a Salpeter IMF. It agrees well with other observations, and lies significantly below the SFR inferred from high-mass SFR indicators at high z. Wilkins et al. (2008) suggest that an evolving IMF may be the cause, and propose their own form of IMF evolution to explain it. As seen in Fig. 5, the agreement with the evolving IMF proposed here is quite good.

In short, an evolving Kroupa IMF does not obviously introduce any large inconsistencies with high-z galaxy data, and moreover may be preferred based on low-redshift fossil light considerations and observed cosmic stellar mass growth rates. Hence, the amplitude evolution of the M_*-SFR relation may be yet another example of an observation of stellar mass build-up that suggests that the IMF is weighted towards more massive stars at higher redshifts.

8 SUMMARY

Implications of the observed stellar mass–SFR correlation are investigated in the context of current theories for stellar mass assembly. The key point, found here and pointed out in previous studies (Daddi et al. 2007a; Elbaz et al. 2007), is that the amplitude of the M_*-SFR relation evolves much more rapidly since $z \sim 2$ in observations that in current galaxy formation models. It is shown here that this is true of both hydrodynamic simulations and semi-analytic models, and is broadly independent of feedback parameters. In contrast, the slope and scatter of the observed M_*-SFR relation are in good agreement with models.

The tight M_*-SFR relation with a slope near unity predicted in models is a generic result owing to the dominance of cold mode accretion, particularly in early galaxies, which produces rapid, smooth and relatively steady inflow. The slow amplitude evolution arises because star formation starts at $z \gtrsim 6$ for moderately massive star-forming galaxies and continues at a fairly constant or mildly declining level to low z. The large discrepancy in amplitude evolution when compared to observations from $z \sim 2 \rightarrow 0$ hints at some underlying problem either with the models or with the
interpretation of data. A convenient parametrization of the problem is through the star formation activity parameter, \(\alpha_d \equiv (M_*/\text{SFR})/(t_H - 1 \text{ Gyr}) \), where \(t_H \) is the Hubble time. A low value corresponds to a star bursting system, a high value to a passive system and a value near unity to system-forming stars constantly for nearly a Hubble time. In models, \(\alpha_d \) remains constant around unity from \(z = 0-4 \), whereas in observations it rises steadily from \(\lesssim 0.2 \) at \(z \sim 2 \) to close to unity at \(z \sim 0 \).

Several ad hoc modifications to the theoretical picture of stellar mass assembly are considered in order to match \(\alpha_d \) evolution, but each one is found to be in conflict with other observations of high-redshift galaxies. Bursts seem unlikely given the low scatter in \(M_*-\text{SFR} \). Delaying galaxy formation to match \(\alpha_d \) results in such a low redshift for the onset of star formation, it is in conflict with observations of star-forming galaxies at earlier epochs. Hiding a large population of galaxies as passive runs into difficulty when compared to direct observations of the passive galaxy fraction in mass-selected samples at \(z \sim 2 \). Having an exponentially growing phase of star formation or ‘staged’ galaxy formation are perhaps the most plausible solutions from an observational viewpoint, but it is difficult to understand theoretically how such scenarios can arise within hierarchical structure formation. Hence, if observed star-forming galaxies are quiescently forming stars and represent the majority of galaxies at \(z \sim 2 \), as other observations seem to suggest, then it is not easy to accommodate the low \(\alpha_d \) inferred from the \(M_*-\text{SFR} \) amplitude.

Systematic uncertainties in \(M_* \) or SFR determinations could bias results progressively more at high \(z \) in order to mimic evolution in \(\alpha_d \). Various currently debated sources are considered, such as the contribution to near-IR light from TP-AGB stars, extinction corrections, assumptions about SFH, AGN contamination and PAH emission calibration. It may be possible to concoct scenarios whereby several of these effects combine to mimic \(\alpha_d \) evolution, but there are no suggestions from local observations that such scenarios are to be expected. Hence, if systematic effects are to explain the low \(\alpha_d \) at high \(z \), it would imply significant and unexpected changes in tracers of star formation and stellar mass between now and high redshifts.

A solution is proposed that the stellar IMF becomes increasingly bottom-light to higher redshifts. Several lines of arguments are presented that vaguely or circumstantially favour such evolution, though no smoking gun signatures are currently known. A simple model of IMF evolution is constructed, based on the ansatz by Larson (1998) that the minimum temperature of molecular clouds is reflected in the characteristic mass of star formation (\(\dot{M}_{\text{IMF}} \)) where the mass contribution per logarithmic mass bin is maximized. The minimum temperature may increase with redshift owing to a hotter CMB, more vigorous star formation activity, or lower metallicities within early galactic ISMs. In order to reconcile the observed \(\alpha_d \) evolution with theoretical expectations of no evolution, an evolving IMF of the form

\[
\frac{dN}{d \log M} \propto M^{-0.3} \text{ for } M < \dot{M}_{\text{IMF}};
\]

\[
\propto M^{-1.3} \text{ for } M > \dot{M}_{\text{IMF}};
\]

\[
\dot{M}_{\text{IMF}} = 0.5(1 + z)^2 M_\odot
\]

is proposed. The exponent of \(\dot{M}_{\text{IMF}} \) evolution is constrained by requiring no \(\alpha_d \) evolution, through careful modelling with the PEGASE.2 population synthesis code. While the exact form of IMF evolution is not well constrained by present observations, what is required is that the IMF has progressively more high-mass stars compared to low mass at earlier epochs, and that this IMF applies to the majority of star-forming galaxies at any epoch. It is worth noting that this evolving IMF is only constrained out to \(z \sim 2 \) from the \(M_*-\text{SFR} \) relation, though it yields predictions that are consistent with other observations out to \(z \sim 4 \). Extrapolating such evolution to higher redshifts is dangerous, since no observational constraints exist and the precise cause of IMF evolution is not understood.

Implications of such an evolving IMF are investigated. By leaving the high-mass end of the IMF unchanged, recent successes in understanding the connections between high-mass star formation, feedback and metal enrichment are broadly preserved. The cosmic stellar mass accumulation rate would be altered compared to what is inferred from cosmic SFH measurements using a standard IMF. It is shown that an evolving IMF is at face value in better agreement with direct measures of cosmic stellar mass assembly (Perez-Gonzalez et al. 2007; Elsner et al. 2008; Wilkins et al. 2008). Furthermore, the evolving IMF goes towards relieving the generic tension between present-day fossil light measures versus observations of the SFH. In particular, the paunchy IMF favoured by Fardal et al. (2007) in order to reconcile the observed cosmic SFH, present-day K-band luminosity density and extragalactic background light constraints, is qualitatively similar to the cumulative IMF of all stars formed by today in the evolving IMF case. Individually, each argument has sufficient uncertainties to cast doubt on whether a radical solution such as an evolving IMF is necessary. But taken together, the \(M_*-\text{SFR} \) relation adds to a growing body of circumstantial evidence that the ratio of high- to low-mass stars formed is higher at earlier epochs.

It is by no means clear that IMF variations are the only viable solution to the \(M_*-\text{SFR} \) dilemma. The claim here is only that an evolving IMF is an equally (un)likely solution as invoking unknown systematic effects or carefully crafted SFHs in order to explain \(M_*-\text{SFR} \) evolution. It is hoped that this work will spur further efforts, both observational and theoretical, to investigate this important issue.

Future plans include performing a more careful analysis of the evolving IMF in terms of observable quantities, in order to accurately quantify the impact of such IMF evolution on the interpretation of UV, near- and mid-IR light. Also, it is feasible to incorporate such an evolving IMF directly into simulation runs to properly account for gas recycling in such a scenario. Finally, including some feedback mechanism to truncate star formation in massive systems may impact the \(M_*-\text{SFR} \) relation in some way, so this will be incorporated into the hydro simulations.

Observationally, pushing SFR and \(M_* \) determinations to higher redshifts is key; a continued drop in \(\alpha_d \) to \(z \sim 3 \) would rapidly solidify the discrepancies with current models and would also generate stronger conflicts with other observations of high-\(z \) galaxies. Assessing the AGN contribution and extinction uncertainties from high-\(z \) systems is critical for accurately quantifying the light from high-mass star formation, for instance through the use of more direct star formation indicators such as Paschen-\(\alpha \). Pushing observations further into the mid-IR such as to 70 \(\mu \)m, past the PAH bands at \(z \sim 2 \), would mitigate PAH calibration uncertainties in SFR estimates. Obtaining a large sample of spectra for typical high-\(z \) star-forming systems (like cB58; Pettini et al. 2000) would more accurately constrain the SED than broad-band data. All of these programmes push current technological capabilities to their limits and perhaps beyond, but are being planned as facilities continue their rapid improvement.

In summary, owing to the robust form of SFHs in current galaxy formation models, the \(M_*-\text{SFR} \) relation represents a key test of our understanding of stellar mass assembly. Current models reproduce the observed slope and scatter remarkably well, but broadly fail this test in terms of amplitude evolution. Whether this reflects some
fundamental lack of physical insight, or else some missing ingredient such as an evolving IMF, is an issue whose resolution will have a significant impact on our understanding of galaxy formation.

ACKNOWLEDGMENTS

The author is grateful for valuable discussions with Emanuele Daddi, Arjun Dey, Mark Dickinson, David Elbaz, Mark Fardal, Kristian Finlator, Karl Glazebrook, Andrew Hopkins, Dušan Kereš, Janice Lee, Heather Morrison, Kai Noeske, Casey Papovich, Naveen Reddy, Greg Rudnick, J. D. Smith, Pieter van Dokkum, David Weinberg and Steve Wilkins. The author appreciates stimulus from Neal Katz, who been espousing a top-heavy IMF at high redshifts for sometime. The author thanks H.-W. Rix and the Max-Planck Institut für Astronomie for their gracious hospitality while some of this work was being done. The simulations used here were run by Ben D. Oppenheimer on Grendel, our department’s Beowulf system at the University of Arizona, and the Xeon Linux Cluster at the National Centre for Supercomputing Applications. Support for this work, part of the Spitzer Space Telescope Theoretical Research Program, was provided by NASA through a contract issued by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was also provided by NASA through grant number HST-AR-10946 from the Space Telescope Science Institute, which is operated by AURA, Inc. under NASA contract NAS5-26555.

REFERENCES

Baldry I. K., Glazebrook K., 2003, ApJ, 593, 258
Bell E. F., Zheng X. Z., Papovich C., Borsh A., Wolf C., Meisenheimer K., 2007, ApJ, 663, 834
Birnboim Y., Dekel A., 2003, MNRAS, 345, 349
Borch A. et al., 2006, A&A, 453, 869
Bouwens R. J., Illingworth G. D., Franz M., Ford H. C., 2007, ApJ, 670, 928
Brooks A. M., Governato F., Booth C. M., Willman B., Gardner J. P., Wadsley J., Stinson G., Quinn T., 2007, ApJ, 655, L17
Bruzual G. A., 2007, in Rosenberg J. L., Putman M. E., eds, ASP Conf. Ser. Vol. 321, IGM/Galaxy Connection–The Distribution of Baryons at z=0, Kluwer, Dodrecht, p. 185
Keres D., Katz N., Weinberg D. H., Davé R., 2005, MNRAS, 363, 2
Kennicutt R. C., 1998, ApJ, 498, 541
Katz N., Kereš D., Davé R., Weinberg D. H., 2003, in Rosenberg J. L., Putman M. E., eds, ASSL Conf. Ser. Vol. 281, IGM/Galaxy Connection–The Distribution of Baryons at z=0, Kluwer, Dodrecht, p. 185
Keres D., Katz N., Weinberg D. H., Davé R., 2005, MNRAS, 363, 2
Kennicutt R. C., 1998, ApJ, 498, 541
Kitzbichler M. G., White S. D. M., 2007, MNRAS, 376, 2
Kobayashi C., Springel V., White S. D. M., 2007, MNRAS, 376, 1465
Kollataj T. S. et al., 1999, ApJ, 523, L109
Kroupa P., 2001, MNRAS, 322, 231
Kroupa P., 2007, in Valls-Gabaud D., Chavez M., eds, ASP Conf. Ser., Resolved Stellar Populations, in press (astro-ph/0703124)
Kroupa P., Tout C. A., Gilmore G., 1993, MNRAS, 262, 545
Lacey C. G., Baugh C. M., Frenk C. S., Silva L., Granato G. L., Bressan A., 2007, MNRAS, submitted (arXiv:0704.1562)
Larson R. B., 1985, MNRAS, 214, 379
Larson R. B., 1998, MNRAS, 301, 569
Larson R. B., 2005, MNRAS, 359, 211
Li Y., Mo H. J., van den Bosch F. C., Lin W. P., 2007, MNRAS, 379, 689
Larson R. B., 2005, MNRAS, 376, 1265
Lucatello S., Gratton R. G., Beers T. C., Carretta E., 2005, ApJ, 625, 833
Madau P., Pozzetti L., Dickinson M., 1998, ApJ, 498, 106
Maraston C., Daddi E., Renzini A., Cimatti A., Dickinson M., Papovich C., 2004, ApJ, 604, 579
M. E., eds, ASSL Conf. Ser. Vol. 281, IGM/Galaxy Connection–The Distribution of Baryons at z=0, Kluwer, Dodrecht, p. 185
M. E., eds, ASSL Conf. Ser. Vol. 281, IGM/Galaxy Connection–The Distribution of Baryons at z=0, Kluwer, Dodrecht, p. 185
M. E., eds, ASSL Conf. Ser. Vol. 281, IGM/Galaxy Connection–The Distribution of Baryons at z=0, Kluwer, Dodrecht, p. 185
M. E., eds, ASSL Conf. Ser. Vol. 281, IGM/Galaxy Connection–The Distribution of Baryons at z=0, Kluwer, Dodrecht, p. 185
M. E., eds, ASSL Conf. Ser. Vol. 281, IGM/Galaxy Connection–The Distribution of Baryons at z=0, Kluwer, Dodrecht, p. 185
Rudnick G. et al., 2006, ApJ, 650, 624
Salim S. et al., 2007, ApJS, 173, 267
Savaglio S. et al., 2005, ApJ, 635, 260
Schechter P., 1976, ApJ, 203, 297
Scott J. E., Bechtold J., Morita M., Dobrzycki A., Kulkarni V., 2002, ApJ, 571, 665
Scoville N. et al., 2007, ApJS, 172, 150
Shapley A. E., Steidel C. C., Erb D. K., Reddy N. A., Adelberger K. L., Pettini M., Barmby P., Huang J., 2005, ApJ, 626, 698
Sirianni M., Nota A., Leitherer C., De Marchi G., Clampin M., 2000, ApJ, 533, 203
Smith J.-D. T. et al., 2007, ApJ, 656, 770

Springel V., 2005, MNRAS, 364, 1105
Springel V., Hernquist L., 2003, MNRAS, 339, 312
Tumlinson J., 2007, ApJ, 664, L63
van Dokkum P. G., 2007, ApJ, in press (arXiv:0710.0875)
van Dokkum P. G., van der Marel R. P., 2007, ApJ, 655, 30
Weidner C., Kroupa P., 2006, MNRAS, 365, 1333
Wilkins S. M., Trentham N., Hopkins A. M., 2008, MNRAS, in press (arXiv:0801.1594)

This paper has been typeset from a TeX/LaTeX file prepared by the author.