Ab initio construction of the energy density functional for electron systems with the functional-renormalization-group-aided density functional theory

Takeru Yokota1 and Tomoya Naito$^{2, 3}$

1Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
2Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
3RIKEN Nishina Center, Wako 351-0198, Japan

(Dated: August 4, 2021)

We show an *ab initio* construction of the energy density functional (EDF) for electron systems using the functional renormalization group. The correlation energies of the homogeneous electron gas given in our framework reproduce the exact behavior at high density and agree with the Monte-Carlo data in a wide range of densities. Our analytic technique enables us to get the correlation energies efficiently for various densities, which realizes the determination of EDF in the local density approximation (LDA) without any fitting for physically relevant densities. Applied to the Kohn-Sham calculation for the noble gas atoms, our EDF shows comparable results to those of other conventional ones in LDA.

Introduction. Density functional theory (DFT) [1] is a successful framework to analyze quantum many-body systems providing an efficient way known as the Kohn-Sham (KS) scheme [2] and has been employed in various fields, including condensed matter physics, quantum chemistry, and nuclear physics. DFT is often positioned as a first-principles method. However, most of the energy density functionals (EDFs), which govern the accuracy of DFT calculations, are empirically constructed, and the recipe to systematically construct EDF based on microscopic Hamiltonians has not been established yet [3–5].

In this Letter, we focus on an attempt for the microscopic construction of the EDF put forward in Refs. [6–7], which we call the functional-renormalization-group-aided DFT (FRG-DFT). This is based on the functional renormalization group (FRG) [8–11] (for reviews, see, e.g., Refs. [12–14]), which is an established method for quantum many-body systems: In FRG, one-parameter exact flow equation for the effective action, the quantum counterpart of the classical action, is utilized to non-perturbatively include quantum or thermal fluctuations. Owing to the fact that the EDF can be defined by the effective action $\Gamma[\rho]$ with the local density ρ [17–19], accumulated methods in FRG are expected to be applied to the construction of EDF.

Applications of the FRG-DFT accomplished recently include analysis of the ground states in lower-than-(1 + 1)-dimensional systems [20–23] and (2 + 1)-dimensional homogeneous electron gas [24], excited states of a (1 + 1)-dimensional systems [25], and formalism for superfluid systems [26]. However, there has been no numerical application to the (3 + 1)-dimensional systems yet, which must be achieved to establish the FRG-DFT as a practical method. In particular, as systems for which DFT is frequently employed, the electron systems are one of the most important targets.

The aim of this Letter is the microscopic derivation of the EDF $E[\rho]$ for the spin-unpolarized electron systems with the aid of the FRG-DFT. To our best knowledge, this work is the first numerical application of the FRG-DFT to (3 + 1)-dimensional systems. As a first step of the microscopic construction of the EDF, we consider the exchange-correlation part in the local density approximation (LDA) and aim at the construction of the correlation part. To this end, we apply the FRG-DFT to the (3 + 1)-dimensional homogeneous electron gas (3DHEG), derive the expression for the correlation energy per particle $\varepsilon_{\text{corr}}(r_s)$ by solving the flow equation analytically with employing the second-order vertex expansion, and obtain $\varepsilon_{\text{corr}}(r_s)$ as a function of the Wigner-Seitz radius $r_s = [3/(4\pi \rho)]^{1/3}$. Our $\varepsilon_{\text{corr}}(r_s)$ reproduces the exact behavior at the high-density limit given by the result of Gell-Mann–Brueckner resummation $\varepsilon_{\text{corr}}^{\text{GB}}(r_s)$ [27] and agrees with the results of the diffusion Monte-Carlo (DMC) calculations [28–30] in a wide range of densities.

A concern about the application to (3 + 1)-dimensional systems may be that the coordinate or momentum integrals in the FRG-DFT calculation become time consuming. For 3DHEG, however, we find that the dimension of the integrals can be drastically reduced with analytic techniques, which enables us to obtain $\varepsilon_{\text{corr}}(r_s)$ densely enough to determine the EDF without fitting for physically relevant densities. This is in contrast to other conventional LDA EDFs, most of which are determined based on empirical choice of the fitting function for a few DMC data points.

Furthermore, applying the KS calculation of the ground states of the noble gas atoms, we demonstrate that the EDF constructed from our FRG-DFT data shows comparable results to other conventional LDA EDFs.
In this Letter, Hartree atomic units are employed.

FRG-DFT. We briefly summarize the formalism of FRG-DFT and our analytic results in the 3DHEG, where electrons and background ions neutralizing the system interact to each other via the two-body Coulomb interaction $U(x) = 1/|x|$. Following Refs. [11, 17], we consider the evolution when the inter-particle interaction is gradually turned on. Let us employ a parametrized two-body interaction $U_{\lambda}(x)$ with the evolution parameter λ running from $\lambda = 0$ to 1 and set $U_{\lambda=0}(x) = 0$ and $U_{\lambda=1}(x) = U(x)$ to describe the evolution from the free to the fully interacting systems. Not only the electron-electron but also the electron-ion and ion-ion interactions are substituted by $U_{\lambda}(x)$ so as to keep the system neutral and avoid divergence caused by the Hartree energy during the evolution [24].

The key quantity of the FRG-DFT is the effective action $\Gamma_{\lambda}[\rho]$ for density ρ. To define it, we start from the action depending on λ in the imaginary-time formalism:

$$S_{\lambda}[\psi, \psi^\dagger] = \int_X \psi^\dagger(X_\tau) \left(\frac{\nabla^2}{2} + \nabla^2 \right) \psi(X) + \frac{1}{2} \int_{X,X'} U_{2b,\lambda}(X,X') \rho_{\Delta}(X) \rho_{\Delta}(X').$$

Here, we have introduced $X = (\tau, x)$ and $\int_X = \int d\tau \int dx$ with imaginary time τ and spatial coordinate x, $U_{2b,\lambda}(X,X') = \delta(\tau - \tau') U_{\lambda}(x - x')$, $\psi(X) = \{\psi^\dagger(X), \psi(X)\}$ standing for the electron field with spin up and down, and $\tilde{\rho}_{\Delta}(X) = \tilde{\rho}(X) - n_e$ with the density field $\tilde{\rho}(X) = \psi^\dagger(X) \psi(X)$ and $n_e = 3/(4\pi a^3)$ being the densities of electrons and background ions. The second term includes the electron-electron, electron-ion, and ion-ion interaction terms. We have also introduced $X_\tau = (\tau + \varepsilon, x)$ with an infinitesimal $\varepsilon > 0$ so that the Hamiltonian corresponding to S_{λ} becomes normal ordered [23]. Then, S_{λ} defines $\Gamma_{\lambda}[\rho]$ as

$$\Gamma_{\lambda}[\rho] = \sup J \left(\int_X J(X) \rho(X) - \ln Z_{\lambda}[J] \right),$$

where

$$Z_{\lambda}[J] = \int D\psi D\psi^\dagger e^{-S_{\lambda}[\psi, \psi^\dagger] + \int_X J(X) \tilde{\rho}(X)}$$

is the generating functional for density correlation functions and $\rho(X)$ is an arbitrary density. A notable feature of $\Gamma_{\lambda}[\rho]$ is that it satisfies the variational principle and gives the ground-state energy and density [17, 19], which means that the EDF $E_{\lambda}[\rho]$ is identified with $\Gamma_{\lambda}[\rho]$ as $E_{\lambda}[\rho] = \lim_{\beta \to \infty} \Gamma_{\lambda}[\rho]/\beta$ with the inverse temperature $\beta = \int d\tau$.

The key equation in the FRG-DFT is the evolution equation determining $\Gamma_{\lambda}[\rho]$ [7, 20, 21, 23, 24]:

$$\partial_{\lambda} \Gamma_{\lambda}[\rho] = \frac{1}{2} \int_{X,X'} \partial_{\lambda} U_{2b,\lambda}(X,X') \left[\rho_{\Delta}(X) \rho_{\Delta}(X') + \Gamma_{\lambda}^{-1}(2)[\rho(X', \rho(X') - \rho(X)) \delta(x - x') \right],$$

(1)

where $\rho_{\Delta}(X) = \rho(X) - n_e$ and $\Gamma_{\lambda}^{-1}(2)[\rho, X', X]$ being the inverse of $\rho(\lambda x, \rho(\lambda x))$, which satisfies

$$\int_{X'} \Gamma_{\lambda}^{-1}(2)[\rho(X, X')] \frac{\delta^2 \Gamma_{\lambda}[\rho]}{\delta \rho(X') \delta \rho(X')} = \delta(X - X').$$

Also, X' is defined in the same manner as X_τ but $\varepsilon' \to 0$ limit is taken after $\varepsilon \to 0$ so that $\Gamma_{\lambda}^{-1}(2)[\rho(X', X')]$ can be treated as the density correlation function [23]. The crucial point of Eq. (1) is that it is written in a closed form of $\Gamma_{\lambda}[\rho]$, which provides systematic schemes for the derivation of $\Gamma_{\lambda}[\rho]$.

Practically, the functional differential equation (1) needs to be converted to some numerically solvable equations. Here, we introduce the vertex expansion [3, 7]: The functional Taylor expansion around a homogeneous density $\rho(X) = n_e$ is applied to Eq. (1), which yields a hierarchy of differential equations for density correlation functions [21, 23, 25]. We consider the expansion up to the second order and truncate higher-order terms. The equations up to the second order in the momentum-space representation read

$$\partial_{\lambda} \varepsilon_{gs,\lambda} = \frac{1}{2n_e} \int_{\mathbf{p}} \partial_{\lambda} \tilde{U}_{\lambda}(\mathbf{p}) \left[\int \omega e^{i\omega \varepsilon} \tilde{G}_{\lambda}^{(2)}(P) - n_e \right],$$

(2)

$$\partial_{\lambda} \tilde{G}_{\lambda}^{(2)}(P) = -\partial_{\lambda} \tilde{U}_{\lambda}(\mathbf{p}) \left[\tilde{G}_{\lambda}^{(2)}(P) \right]^2 + C_{\lambda}(P),$$

(3)

where $\tilde{U}_{\lambda}(\mathbf{p})$ is the Fourier transform of $U_{\lambda}(x)$ and $\varepsilon_{gs,\lambda} = \lim_{\beta \to \infty} \Gamma_{\lambda}[n_e]/(\beta N)$ with $N = n_e \int d\mathbf{x}$ being the total particle number is the ground-state energy per particle. Here, we have introduced $P = (\omega, \mathbf{p})$ and $\int_{\mathbf{p}} = \int \omega \int d\mathbf{p}/(2\pi)^3$ with the Matsubara frequency ω and the spatial momentum \mathbf{p}.

$$C_{\lambda}(P) = -\frac{1}{2} \int_{\mathbf{p'}} \partial_{\lambda} \tilde{U}_{\lambda}(\mathbf{p'}) \left[\tilde{G}_{\lambda}^{(4)}(P', -P', P) - \tilde{G}_{\lambda}^{(2)}(0) \tilde{G}_{\lambda}^{(3)}(P', -P') \tilde{G}_{\lambda}^{(3)}(P, -P) \right],$$

(4)

and $\tilde{G}_{\lambda}^{(n)}(P_1, \ldots, P_{n-1})$ being the connected density correlation function. Since $C_{\lambda}(P)$ is composed of higher-order correlation functions, an approximation for it is required. Here, we employ the approximation $C_{\lambda}(P) \approx C_{\lambda=0}(P)$, with which Eqs. (3) and (4) can be solve analytically when $U_{\lambda}(x)$ is chosen as $U_{\lambda}(x) = \lambda U_{\lambda=1}(x)$ [24].
Extracting $\varepsilon_{\text{corr}}$ from $\varepsilon_{\text{gs},\lambda=1}$, we obtain

$$\varepsilon_{\text{corr}}(r_s) = \frac{1}{2n_v} \int_P \left[\ln f(A_P, B_P) - A_P \right], \quad (5)$$

which plays the central role in our construction of the EDF. Here, we have introduced $f(x, y) = \cosh y + (x/y) \sinh y$, $A_P := \tilde{U}(p) G_{\lambda=0}^{(2)}(P)$, and $B_P := \left[\tilde{U}(p) C_{\lambda=0}(P) \right]^{-1/2}$, in which $\tilde{U}(p) = 4\pi/p^2$ is the Coulomb interaction in the momentum representation and $C_{\lambda=0}(P)$ is evaluated from the connected density correlation function in the free system:

$$G_{\lambda=0}^{(n)}(P_1, \ldots, P_{n-1}) = -2 \sum_{\sigma \in S_{n-1}} \int_{P^n} \prod_{k=0}^{n-1} G_{\xi_k=0}^{(2)} \left(\sum_{i=1}^{k} P_{\sigma(i)} + P' \right)$$

with the symmetric group S_{n-1} of order $n - 1$, the two-point propagator of free fermions $G_{\xi_k=0}^{(2)}(P) = ([w - \xi(p)]^{-1} - \xi(p)) := p^2/2 - p_F^2/2$, and the Fermi momentum $p_F = (9\pi^2/4)^{1/3}/r_s$.

Before ending the summary of the formalism, we comment on the behavior of Eq. (5) at the high-density limit $r_s \to 0$: Through the use of the scaling behavior

$$G_{\lambda=0}(P)|_{r_s=0} = G_{\lambda=0}(P)\bigg|_{r_s=1}$$

$$C_{\lambda=0}(P)|_{r_s=0} = C_{\lambda=0}(P)\bigg|_{r_s=1},$$

with the dimensionless momentum $P = (r_s^2 \omega, r_s p)$, the expansion of Eq. (5) with respect to r_s is obtained. From the expansion, one finds that the exact behavior $\varepsilon_{\text{corr}}^{GB}(r_s)$ is reproduced at $r_s \to 0$.

Reduction of dimension of multi-integral. A difficulty in the three-dimensional system may be that the numerical evaluation of multi-integrals with respect to momenta is too costly to get $\varepsilon_{\text{corr}}(r_s)$ for various r_s. We find that this can be circumvented since the dimension of the integral in Eq. (4) can be drastically reduced in an analytic manner.

Using the expression for $G_{\lambda=0}^{(n)}(P_1, \ldots, P_{n-1})$ given in the sentence below Eq. (5) and performing the frequency integral, Eq. (4) becomes

$$C_{\lambda=0}(P) = 2 \sum_{s=0,1}(-1)^{s+1} \int_{P''} \tilde{U}(p'' - sp) \theta_{p''} \theta_p \times \left[D(\omega, p, p') - D(\omega, p', p'') \right]^2, \quad (6)$$

where

$$D(\omega, p, p') = [i\omega - \xi(p' + p) + \xi(p')]^{-1},$$

and $\theta_p = \theta(-\xi(p))$. By using $\tilde{U}(p) = \int d\xi e^{ip\xi}/|\xi|$ and employing the cylindrical coordinates with choosing the direction of p as the direction of the longitudinal axis (z axis), Eq. (6) is rewritten as follows:

$$C_{\lambda=0}(P) = \sum_{s=0,1}(-1)^{s+1} \int_{P''} \int_{-P''} \Delta P r_p(p_s') P_r(p_s) \times \left[D'(\omega, p, p_s') - D'(\omega, p_s, p_s'') - sp \right]^2 \times I(P_r(p_s'), P_r(p_s''), |p_s' - p_s'' + sp|).$$

Here, we have introduced $P_r(p_s') = (p_F^2 - p_s^2)^{1/2}, \quad D'(\omega, p, p_s') = (i\omega + pp_s' + p^2/2)^{-1},$ and

$$I(a, b, c) = \int_0^\infty dr \int_0^\infty J_1 (ar) J_1 (br) K_0 (cr),$$

where $J_1(x)$ and $K_0(x)$ are the Bessel function of the first kind and the modified Bessel function of the second kind, respectively. Then, the integral in $I(a, b, c)$ can be performed analytically [31];

$$I(a, b, c) = \frac{l_1^2(a, b, c) + b^2 \ln \left(1 - \frac{l_1^2(a, b, c)}{b^2} \right) + c^2 \ln \left(1 - \frac{l_1^2(a, b, c)}{c^2} \right)}{2 \left(\sqrt{(b + c)^2 + a^2} - \sqrt{(b - c)^2 + a^2} \right)},$$

Finally, Eq. (7) together with Eq. (8) shows that only a double integral is required for the calculation of $C_{\lambda=0}(P)$. Needless to say, the isotropy reduces the dimension of the integral in Eq. (7).

Results of the correlation energy. The reduction of the dimension of the integral saves the time for the numerical calculation and enables one to obtain $\varepsilon_{\text{corr}}$ for many r_s. The calculation was carried out on 65536 grid points with the logarithmic mesh in $r_s \in [10^{-6} \text{ a.u.}, 100 \text{ a.u.}]$.

Figure 1 shows $\varepsilon_{\text{corr}}(r_s)$ obtained by the FRG-DFT together with $\varepsilon_{\text{corr}}^{GB}(r_s)$ and the DMC results [28,30]. As expected from our analytical discussion, one can see the FRG-DFT result reproduces the exact behavior at the high-density limit given by $\varepsilon_{\text{corr}}^{GB}(r_s)$. The FRG-DFT result is also consistent with the DMC results in a wide range of r_s, and in particular the agreement becomes better as the density increases: The deviations from the results in Ref. [28] are about 2.0% at $r_s = 1 \text{ a.u.}, 6.7\%$ at $r_s = 50 \text{ a.u.},$ and 17% at $r_s = 100 \text{ a.u.}$.

Now we have shown that $\varepsilon_{\text{corr}}(r_s)$ can be obtained in the framework of the FRG-DFT and becomes accurate as the density increases, which is one of the main results of this Letter. In the remaining part, we attempt a construction of the EDF by use of our $\varepsilon_{\text{corr}}(r_s)$.

Construction of the energy density functional. Since $\varepsilon_{\text{corr}}$ are obtained very densely for various r_s in our
scheme, we can construct the LDA EDF $E_{\text{corr}}^{\text{LDA}}[\rho] = \int d\mathbf{x} \rho(\mathbf{x}) \varepsilon_{\text{corr}}(r_s(\rho(\mathbf{x})))$ without any fitting for physically relevant densities. This is in sharp contrast to other conventional EDFs such as VWN \[34\], PZ81 \[35\], and PW92 \[36\], which are determined by fitting the few DMC data obtained by Ceperley and Alder \[28\].

Our functional, which is referred to as the FRG-numerical-table functional (FRG-NT), is constructed as follows: In $r_s \in [10^{-6} \text{ a.u., } 100 \text{ a.u.}]$, $\varepsilon_{\text{corr}}(r_s)$ are determined by the interpolation of the FRG-DFT data. For simplicity, we employ the linear interpolation: the results hardly depend on the choice of the interpolation function. In $r_s < 10^{-6} \text{ a.u.}$, $\varepsilon_{\text{corr}}(r_s)$ is substituted by $\varepsilon_{\text{GB}}(r_s)$. The FRG-DFT data are extrapolated to $r_s \geq 100 \text{ a.u.}$ by a fitting function $\varepsilon_{\text{corr}}(r_s) = \gamma / (1 + \sqrt[3]{r_s} + \beta_2 r_s)$ \[35\]. The fitting parameters are chosen to be $\gamma = 0.0378052$, $\beta_1 = -0.801035$, and $\beta_2 = -0.0306778$, which are obtained by fitting the data in 95 a.u. < $r_s < 100$ a.u.

A remark is in order here: The evaluation of $\varepsilon'_{\text{corr}}(r_s) = d\varepsilon_{\text{corr}}(r_s)/dr_s$ appearing in the KS potential $\delta E_{\text{corr}}^{\text{LDA}}[\rho]/\delta \rho(\mathbf{x}) = [\varepsilon_{\text{corr}}(r_s) - (r_s/3) \varepsilon_{\text{corr}}'(r_s)]_{r_s=r_s(\rho(\mathbf{x}))}$ with the numerical differentiation may cause numerical errors. We evade this by performing the analytic differentiation of Eq. \[5\]:

$$\varepsilon_{\text{corr}}'(r_s) = \frac{1}{2n_s r_s} \int_P \left[g(A_P, B_P) - 2 \ln f(A_P, B_P) \right],$$

(9)

where $g(x, y) = x + (x \cosh y + y \sinh y) / f(x, y)$. To perform the differentiation, we have used $\bar{G}_{\lambda=0}^{(2)}(P)|_{r_s} = r_s^{-1} \bar{G}_{\lambda=0}^{(2)}(P)|_{r_s=1}$, $C_{\lambda=0}(P)|_{r_s} = C_{\lambda=0}(P)|_{r_s=1}$ and rewritten Eq. \[5\] in terms of r_s and quantities independent of r_s. We calculate $\varepsilon_{\text{corr}}'(r_s)$ on the same grid for r_s as $\varepsilon_{\text{corr}}(r_s)$ and determine $\varepsilon_{\text{corr}}'(r_s)$ for arbitrary r_s in the same manner as $\varepsilon_{\text{corr}}(r_s)$.

Additionally, we prepare a functional, which we name FRG-PZ, by fitting the FRG-DFT data with the same function as PZ81

$$\varepsilon_{\text{corr}}(r_s) = \begin{cases} A \ln r_s + B + C r_s \ln r_s + D r_s & r_s < 1 \text{ a.u.}, \\ \gamma / (1 + \beta_1 \sqrt{r_s} + \beta_2 r_s) & r_s \geq 1 \text{ a.u.}, \end{cases}$$

(10)

for the purpose of comparing our functionals to PZ81 and discussing the origin of the deviation between EDFs. Here, $A = 0.0311$ and $B = -0.0480$ reproduce $\varepsilon_{\text{GB}}^{\text{corr}}(r_s)$ at $r_s \to 0$. The remaining parameters C, D, γ, β_1, and β_2 are related to each other through the continuum conditions for $\varepsilon_{\text{corr}}(r_s)$ and $\varepsilon_{\text{corr}}'(r_s)$ at $r_s = 1$ a.u.:

$$\gamma = (1 + \beta_1 + \beta_2) (B + D),$$

(11a)

$$\beta_2 = \frac{-2(A + C)(1 + \beta_1) + 2B\beta_1 + 2D + 3\beta_1 D}{2(A + B + C + 2D)}.$$

(11b)

Table I lists the values of the parameters obtained by the fitting with the conditions Eqs. \[11\] and \[11\].

Table I. Parameters for FRG-PZ. For comparison, the parameters of PZ81 \[35\] are also shown. All the data are shown in the Hartree atomic units.

Parameter	FRG-PZ	PZ81 \[35\]
C	0.0020	0.00173055
D	-0.0116	-0.0100569
γ	-0.1423	-0.175617
β_1	1.0529	1.67669
β_2	0.3334	0.348219

FIG. 1. Correlation energy per particle, $\varepsilon_{\text{corr}}$, of the 3DHEG derived by the FRG-DFT method as a function of r_s. The results derived by the Gell-Mann–Brueckner resummation and the diffusion Monte-Carlo (DMC) calculations are also shown. The DMC results are obtained by subtracting the kinetic and exchange energies \[32, 33\] from the total energies given in Refs. \[28–30\].

![Graph showing correlation energy per particle as a function of Wigner-Seitz radius r_s](image-url)

The fitting parameters are chosen to be $\beta_1 = 0.20$, $\beta_2 = 0.03$, $\gamma = 0.001$, and $\beta_3 = 0.05$. The remaining parameters A and B are determined by fitting the FRG-DFT data with the same function as PZ81.

Benchmark test of the functionals. We apply our EDF to the KS calculation of the ground-state energies of noble gas atoms and compare with other conventional EDFs such as VWN \[34\], PZ81 \[35\], PW92 \[36\], Chachiyo \[37\], revChachiyo \[38\], and GGA-PBE \[39\]. The numerical calculation was carried out by use of ADPACK \[40\].

Figure 2 shows the ground-state energies E_{gs} of Ne, Ar, Kr, Xe, and Rn atoms obtained by each EDF as ratios to the results of PZ81 $E_{\text{PZ81}}^{\text{gs}}$. One can see that the functionals constructed from the FRG-DFT show comparable results to those of other LDA EDFs for every atom. On the other hand, the GGA-PBE results are quite different from those of the LDA EDFs. This suggests that the results of our functional reside near that of the exact LDA EDFs, i.e., the LDA EDF constructed from the exact correlation energy per particle $\varepsilon_{\text{corr}}^{\text{exact}}(r_s)$, as much as other conventional LDA EDFs, and the differences between our functional and other LDA EDFs are insignificant for the accuracy in comparison with the effect of the ignorance of the gradient.

Origins of the difference among functionals. To further understand the difference between LDA EDFs, we inves-
with the reference-driven error $\Delta \epsilon_{\text{corr,ref}}(r_s)$ and fitting-driven error $\Delta \epsilon_{\text{corr,fit}}(r_s)$. Since FRG-NT does not rely on any fitting function,

$$\Delta \epsilon_{\text{corr,fit}}^{\text{FRG-NT}} = 0.$$

The fact that the same fitting scheme is employed for FRG-PZ and PZ81 leads to

$$\Delta \epsilon_{\text{corr,fit}}^{\text{FRG-PZ}}(r_s) = \Delta \epsilon_{\text{corr,fit}}^{\text{PZ81}}(r_s).$$

We also have

$$\Delta \epsilon_{\text{corr,ref}}^i(r_s) = \begin{cases} \Delta \epsilon_{\text{corr,ref}}^{\text{DMC}}(r_s) & (i = \text{VWN}, \text{PZ81}, \text{PW92}), \\ \Delta \epsilon_{\text{corr,ref}}^{\text{FRG}}(r_s) & (i = \text{FRG-NT}, \text{FRG-PZ}), \end{cases}$$

where $\Delta \epsilon_{\text{corr,ref}}^{\text{DMC}}(r_s)$ and $\Delta \epsilon_{\text{corr,ref}}^{\text{FRG}}(r_s)$ are errors stemming from the choice of DMC and FRG data, respectively. By use of these conditions, $\Delta \epsilon_{\text{corr,fit}}^i(r_s)$ and $\Delta \epsilon_{\text{corr,ref}}^{i}(r_s) - \Delta \epsilon_{\text{corr,ref}}^{\text{DMC}}(r_s)$ are estimated from $\epsilon_{\text{corr}}^i(r_s)$.

Figure 4 shows $\Delta \epsilon_{\text{corr,fit}}^i(r_s)$ and $\Delta \epsilon_{\text{corr,ref}}^i(r_s) - \Delta \epsilon_{\text{corr,ref}}^{\text{DMC}}(r_s)$. In $r_s \gtrsim 10$ a.u., the use of fitting affects the value of $\epsilon_{\text{corr}}(r_s)$ more than the choice of the reference data, while these quantities have comparable magnitude in $r_s \lesssim 10$ a.u. This may explain why the comparable results for each functional are obtained in Fig. 3 since $r_s \lesssim 10$ a.u. is physically relevant for atoms.

Conclusion. We presented an *ab initio* construction of the energy density functional (EDF) for three-dimensional electron systems using the functional-renormalization-group-aided density functional theory (FRG-DFT). The derived correlation energies of the homogeneous electron gas agree with the Monte-Carlo results in a wide range of densities reproducing the exact behavior given by the Gell-Mann–Brueckner resummation at the high-density limit. Using the FRG-DFT data

FIG. 2. Ratios of the ground-state energies to that given by PZ81 shown as functions of the atomic number Z.

FIG. 3. Deviations of energies from that given by PZ81 at a fixed density $\rho_{gs}^{\text{PZ81}}(x)$ for each EDF shown as the ratio to the ground-state energy obtained by the EDF.
obtained densely for various densities, we construct the EDF in the local density approximation (LDA) without using any fitting function for physically relevant densities. Applied to the KS calculation of the ground-state energies of the noble gas atoms, our functional shows comparable results to other conventional ones in LDA. Our results show that FRG-DFT can become a practical method contributing to the non-empirical construction of EDFs of realistic quantum many-body systems.

Although we have focused on the case of LDA in this Letter, our formalism is also applicable for the construction of EDFs incorporating the effect of the gradient of density. There are some technical ideas to realize the inclusion of gradient effects, such as the use of the weighted density approximation, which will be presented in a forthcoming paper.

Acknowledgments. The authors acknowledge Osamu Sugino for valuable comments on the manuscript and Ryosuke Akashi, Le Minh Cristian, Haruki Kasuya, Teiji Kunihiro, Peter Maksym, Shinji Tsuneyuki, and Kenichi Yoshida for fruitful discussions. T. Y. was supported by the Grants-in-Aid for JSPS fellows (Grant No. 19J20543). Numerical computations in this work was carried out on Cray XC at the RIKEN iTHEMS program and cluster computers at the RIKEN iTHEMS program.

1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
2. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
3. J. P. Perdew and K. Schmidt, AIP Conf. Proc. 577, 1 (2001)
4. M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, and K. A. Lyssenko, Science 355, 49 (2017)
5. K. P. Kepp, Science 356, 496 (2017)
6. J. Polonyi and K. Saile, Phys. Rev. B 66, 155113 (2002)
7. A. Schwenk and J. Polonyi, in 32nd International Workshop on Cross Properties of Nuclei and Nuclear Excitation: Probing Nuclei and Nucleons with Electrons and Photons (Hirschegg 2004) Hirschegg, Austria, January 11-17, 2004 (2004) pp. 273-282, arXiv:nucl-th/0403011
8. F. J. Wegner and A. Houghton, Phys. Rev. A 8, 401 (1973)
9. K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974)
10. J. Polchinski, Nucl. Phys. B 231, 269 (1984)
11. C. Wetterich, Phys. Lett. B 301, 90 (1993)
12. J. Berges, N. Tetradis, and C. Wetterich, Phys. Rep. 363, 223 (2002)
13. J. M. Pawlowski, Ann. Phys. 322, 2831 (2007)
14. H. Gies, “Introduction to the Functional RG and Applications to Gauge Theories,” in Renormalization Group and Effective Field Theory Approaches to Many-Body Systems edited by A. Schwenk and J. Polonyi (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012) pp. 287–348.
15. W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schönhammer, Rev. Mod. Phys. 84, 299 (2012)
16. N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. Pawlowski, M. Tissier, and N. Wschebor, “The non-perturbative functional renormalization group and its applications,” (2020), arXiv:2006.04853 [cond-mat.stat-mech]
17. R. Fukuda, T. Kotani, Y. Suzuki, and S. Yokojima, Prog. Theor. Phys. 92, 833 (1994)
18. R. Fukuda, M. Komachiya, S. Yokojima, Y. Suzuki, K. Okumura, and T. Inagaki, Prog. Theor. Phys. Suppl. 121, 1 (1995)
19. M. Valieev and G. W. Fernando, “Generalized Kohn-Sham Density-Functional Theory via Effective Action Formalism,” (1997), arXiv:cond-mat/9712247
20. S. Klemel and J. Braun, J. Phys. G 40, 085105 (2013)
21. S. Klemel, M. Pospiech, and J. Braun, J. Phys. G 44, 015101 (2017)
22. H. Liang, Y. Niu, and T. Hatsuda, Phys. Lett. B 779, 436 (2018)
23. T. Yokota, K. Yoshida, and T. Kunihiro, Phys. Rev. C 99, 024302 (2019)
24. T. Yokota and T. Naito, Phys. Rev. B 99, 115109 (2019)
25. T. Yokota, K. Yoshida, and T. Kunihiro, Prog. Theor. Exp. Phys. 2019, 011B01 (2019)
26. T. Yokota, H. Kasuya, K. Yoshida, and T. Kunihiro, Prog. Theor. Exp. Phys. 2021, 013A03 (2020)
27. M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957)
28. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980)
29. F. H. Zong, C. Lin, and D. M. Ceperley, Phys. Rev. E 66, 036703 (2002)
30. G. G. Spink, R. J. Needs, and N. D. Drummond, Phys. Rev. B 88, 085121 (2013)
31. D. Zwilinger, Table of Integrals, Series, and Products (Elsevier Science, 2014).
32. J. C. Slater, Phys. Rev. 81, 385 (1951)
33. G. Mahan, Many-Particle Physics: Physics of Solids and Liquids (Springer US, 2000).
34. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980)
35. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)
36. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)
37. T. Chachiyo, J. Chem. Phys. 145, 021101 (2016)
38. V. V. Karasiev, J. Chem. Phys. 145, 157101 (2016)
39. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
40. T. Ozaki, H. Kino, H. Kawai, and M. Toyoda, “ADPACK Ver.2.2,” http://www.openmx-square.org/adpack_man2.2/ (2011).
41. M.-C. Kim, E. Sim, and K. Burke, Phys. Rev. Lett. 111, 073003 (2013)