The Prognostic Value of 18F-FDG PET/CT Metabolic Parameters in Predicting Treatment Response Before EGFR TKI Treatment in Patients with Advanced Lung Adenocarcinoma

İlerlemiş Akciğer Adenokarsinomu Olan Hastalarda EGFR TKI Tedavisi Öncesi Tedavi Yanıtını Öngörmede 18F-FDG PET/BT Metabolik Parametrelerinin Prognostik Değeri

Nurşin Agüloğlu1, Murat Akyol2, Halil Kömek3, Nuran Katgı4

1University of Health Sciences Turkey, Dr. Suat Seren Chest Diseases and Surgery Hospital, Clinic of Nuclear Medicine, İzmir, Turkey
2İzmir Bakırçay University Faculty of Medicine, Department of Medical Oncology, İzmir, Turkey
3Gazi Yaşargil Training and Research Hospital, Clinic of Nuclear Medicine, Diyarbakır, Turkey
4University of Health Sciences Turkey, Dr. Suat Seren Chest Diseases and Surgery Hospital, Clinic of Chest Diseases, İzmir, Turkey

Abstract

Objectives: This study makes a retrospective examination of exploring the prognostic value of 18fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) related metabolic-volumetric variables, nutritional status, and immune and inflammatory markers on progression-free survival (PFS) and overall survival (OS) in advanced adenocarcinoma patients with positive epidermal growth factor receptor (EGFR) mutations undergoing EGFR tyrosine kinase inhibitor (TKI) therapy.

Methods: A retrospective examination was made of patients diagnosed with lung adenocarcinoma who underwent 18F-FDG PET/CT imaging for staging maximum four weeks before starting treatment, between January 2015 and July 2020. Included in the study were 68 patients identified histopathologically to have locally advanced/metastatic EGFR mutation-positive adenocarcinoma, and who underwent EGFR TKI therapy. The laboratory data of the patients, obtained 15 days before imaging performed for PET/CT staging, were evaluated.

Results: Metabolic tumor volume, modified Glasgow prognostic score and locally advanced disease were identified as independent prognostic parameters for PFS ($p=0.004$, $p=0.029$, $p=0.016$, respectively). A univariate Cox regression analysis revealed albumin/alkaline phosphatase and tumor size to be significant parameters for prognosis ($p=0.033$, $p=0.043$, respectively). A multivariate Cox regression analysis revealed that none of the parameters were predictive for OS.

Conclusion: The parameters of 18F-FDG PET/CT, especially the volumetric parameters, were found to be strong prognostic factors with statistical significance for predicting PFS. We believe that these parameters are important prognostic markers that should be evaluated together in the management and follow-up of patients with EGFR mutation-positive adenocarcinoma.

Keywords: 18F-FDG PET/CT, lung cancer, adenocarcinoma, EGFR, progression-free survival, overall survival

Öz

Amaç: Çalışmamızda, epidermal büyüme faktörü reseptörü (EGFR) tirozin kinaz inhibitörü (TKI) tedavisi gören pozitif EGFR mutasyonları olan ileri adenokarsinom hastalarında progresyonsuz sağlık (PFS) ve genel sağlık (OS) üzerindeki 18fluor-florodeoksiglukoz (18F-FDG) pozitron emisyon tomografisi/bilgisayarlı tomografı (PET/BT) ile ilgi̇ki̇ metabolik-hacimsel değişikliklerin, nutrisyonel durumunun ve immün ve enfamasyon belirteçlerinin progostik değeri retrospektif bir incelemesini yapmaktadır.

Address for Correspondence: Nurşin Agüloğlu MD, University of Health Sciences Turkey, Dr. Suat Seren Chest Diseases and Surgery Hospital, Clinic of Nuclear Medicine, İzmir, Turkey
Phone: +90 505 273 33 41 E-mail: aguloglunursin@gmail.com ORCID ID: orcid.org/0000-0003-3976-2064
Received: 04.10.2021 Accepted: 10.02.2022

©Copyright 2022 by Turkish Society of Nuclear Medicine
Molecular Imaging and Radionuclide Therapy published by Galenos Yaynevi.
Introduction

Non-small cell lung cancer (NSCLC), triggered by the activation of epidermal growth factor receptor (EGFR) mutations, accounts for approximately 10% of all NSCLC cases (1). Tyrosine kinase inhibitor (TKI) therapy is the first-line treatment for metastatic NSCLC with an EGFR mutation (2). EGFR signaling regulates the pathways of glucose metabolism in EGFR-mutated cancer cells, and EGFR TKIs reduce lactate production and glucose consumption (3). TKIs have been associated with longer progression-free survival (PFS) than chemotherapy in advanced NSCLC with EGFR mutations (2,4). The approved agents for TKI therapy include first-generation EGFR TKIs, erlotinib and gefitinib, and second-generation EGFR TKI, afatinib. The objective response rates to these agents in randomized clinical trials range from 56-74%, and the median time to progression is 9-13 months (5,6,7).

Recently, simple and accessible biomarkers related to systemic inflammation and nutritional status have been developed for predicting prognosis in various cancers (8). While the modified Glasgow prognostic score (mGPS), which is based on serum C-reactive protein (CRP) and albumin (ALB) concentrations, is considered a prognostic factor for most cancers (9), the prognostic nutritional index (PNI), which is calculated on the basis of ALB and total lymphocyte count, is more useful for predicting overall survival (OS) (10).

Lactate dehydrogenase (LDH) is another serum enzyme that is mainly involved in the conversion of pyruvate to lactate, and that has been linked to tumor metabolism (11). Several studies have established elevated LDH levels in various types of cancer, including NSCLC (12,13).

Immune and inflammatory responses have a characteristic significance for developing tumors in the body. Homeostasis and inflammation are among the numerous physiological and pathological pathways in which platelets are involved. There have been many studies associating an elevated platelet count with poor prognosis for various solid cancers, including those of the lung (14). The neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR), which are systemic inflammatory markers, play a prognostic role in many malignancies, such as malignant melanoma, esophageal cancer, prostate cancer, diffuse large B-cell lymphoma, breast cancer, nasopharyngeal cancer and NSCLC (15). There have also been many recent publications reporting the systemic immune-inflammation index (SII), which is based on platelet, lymphocyte and neutrophil counts, to be another important prognostic marker for various cancers (16).

There has been a growing interest in the use of functional imaging in clinical practice (21). This study is conducted to explore the prognostic value of inflammatory markers and metabolic- and volume-based parameters related to 18F-FDG PET/CT on treatment response assessment and outcome prediction, while also establishing the prognostic value of these parameters in adenocarcinoma patients with EGFR mutations.
Materials and Methods
Patients diagnosed with NSCLC who underwent \(^{18}\)F-FDG PET/CT imaging for staging max four weeks before starting treatment between January 2015 and July 2020 were reviewed retrospectively. Subsequently, 68 patients who were found histopathologically to have locally advanced/metastatic EGFR mutation-positive adenocarcinoma and who underwent EGFR TKI therapy were included in the study. Patients were staged based on the TNM classification, according to the 8th edition staging system recommended by the International Association for the Study of Lung Cancer. The final surveillance program will be conducted in December 2020. Excluded from the study were: 1-) Patients with diagnoses other than concurrent cancer; 2-) Patients who underwent surgery or received any treatment (e.g. chemotherapy, radiotherapy) before imaging; 3-) Patients with missing hospital records; 4-) Patients without \(^{18}\)F-FDG uptake at the site of the primary tumor; 5-) Patients with unknown status of EGFR gene mutation; and 6-) Patients who were followed up by an external center. In our retrospective study, the informed consent form was not documented, it was prepared in accordance with the local Clinical Practices guide and the current legislation, approval for the use of the patient data for publication was obtained from University of Health Sciences Turkey, Dr. Suat Seren Chest Diseases and Surgery Hospital Institutional Ethics Committee (approval no: 49109414-604.02).

Assessments
Age, gender and laboratory data (complete blood count, LDH, CRP, alkaline phosphatase (ALP), ALB obtained 15 days before \(^{18}\)F-FDG PET/CT imaging was retrieved from the electronic hospital records. The NLR, PLR, CRP-to-ALB ratio, and serum ALB-to-serum ALP ratio were calculated. The formulas used to calculate the SII and PNI were as follows: SSI = platelet count \times neutrophil count/lymphocyte count; PNI = 10 \times serum ALB level + 0.5 \times lymphocyte count. PNI score was recorded as 0 if PNI \geq 45, and 1 if PNI was <45; mGPS was recorded as 0 if CRP was \leq 10 mg/L, one if CRP was >10 mg/L and ALB \geq 35 g/L, and 2 if CRP was >10 mg/L and alb <35 g/L. The recorded parameters related to \(^{18}\)F-FDG PET/CT imaging included the longest diameter (mm) of the primary mass, MTV (cm\(^3\)), TLG (g/mL \times cm\(^3\)), \(SUV_{\text{max}}\) and \(SUV_{\text{mean}}\).

Positron Emission Tomography/Computed Tomography Protocol
Imaging was performed in a Philips Gemini TF 16-slice combined PET/CT scanner, with the same scanner used for all patients. Following a min 6 hours of fasting, 8-15 mCi \(^{18}\)F-FDG (2.5 MBq/kg body weight) was administered intravenously and the time between intravenous injection and scans was 60±5 minutes. The patient did an intravenous contrast agent. The first CT images (140 kV, 100 mAs, 5 mm sections) and then PET images were acquired. Attenuation-corrected emission data were obtained using non-contrast-enhanced data, extrapolated to 511 keV. PET images were acquired through emission scanning for 1.5 min per bed position, and a wholebody scan from skull vertex to the proximal thigh using 9 or 10 bed positions. The images were reconstructed with iterative algorithms over a 128x128 matrix.

Image Analysis
Hybrid images of the \(^{18}\)F-FDG PET/CT data were analyzed independently by two nuclear medicine specialists. The pattern and degree of primary mass uptake were evaluated and located. A 3D isocountour region of interest was drawn automatically on the lesion with the primary mass uptake in all three planes. While calculating the \(SUV_{\text{max}}\) \(SUV_{\text{mean}}\) and the MTV included in the volume of interest, the area related to the 40% threshold was calculated automatically. TLG was calculated by multiplying MTV by the \(SUV_{\text{mean}}\).

EGFR Mutation Assessment
Tissue samples acquired from paraffin-embedded specimens were collected in 1.5 mL vials, and DNA was extracted using a DNA Sample Preparation Kit (Cobas, Roche Molecular Systems, USA) and reverse transcription-polymerase chain reaction was performed. All procedures were conducted according to the manufacturer’s instructions (Cobas EGFR Mutation Test v2, Roche Molecular Systems, USA).

Statistical Analysis
Data were analyzed using the IBM SPSS Statistics (Version 26.0. Armonk, NY: IBM Corp.) and MedCalc Statistical Software version 16.4.3 (MedCalc Software BV, Ostend, Belgium; https://www.medcalc.org; 2016) software packages. Descriptive statistics were expressed as the unit number (n), percentage (%), mean (x), standard deviation, standard error, median (M), minimum (min) and max values. The performance of prognostic markers in predicting recurrence and survival was evaluated by a receiver operating characteristic curve (ROC) analysis. The survival times of the patients were compared using the log-rank (Mantel-Cox) test of the Kaplan-Meier analysis, based on the optimum cut-off point for the markers found significant in the ROC analysis. Univariate and multivariate Cox regression analyses were used to determine the factors affecting PFS and OS. p values of <0.05 were considered statistically significant.
Results

Patient Characteristics

Among the 68 patients with advanced EGFR-mutated adenocarcinoma were 40 (58.8%) female and 28 (41.2%) male patients, with a median age of 64.5 (31.0-85.0) years. 43 (63.2%) patients of 68 were non-smoker. Of the patients with advanced adenocarcinoma, 15 (22.1%) were classified as locally advanced and 53 (77.9%) as metastatic. Of the total, five (7.3%) patients had mutations in exon 18, 47 (69.1%) in exon 19, and 16 (23.5%) in exon 21. For EGFR TKI, 27 (39.7%) patients underwent afatinib therapy, 35 (51.5%) erlotinib therapy and six (8.8%) gefitinib therapy. During the follow-up, 66.2% of the patients experienced local or metastatic relapse and 13 (19.1%) died from disease progression. Patient characteristics are presented in Table 1.

18F-FDG PET/CT Parameters

Of 68 patients with advanced EGFR mutation adenocarcinoma, the median SUVmax value was 9.81 (3.50-38.10), the median MTV value was 25.66 (1.66-461.12), and the median TLG value was 158.19 (5.88-1826.04). The metabolic and volumetric parameters of the patients, as well as their immune and inflammatory parameters, are presented in Table 1.

Progression-free Survival Analysis

The median PFS was 13.9 (1.9-99.8) months overall. When the continuous variables were evaluated on the ROC curve drawn to determine progression, the analysis results revealed that the parameters with a significant area under the curve (AUC) values were MTV 0.725 [95% confidence interval (CI): 0.630-0.826, p=0.001], TLG 0.728 (95% CI: 0.606-0.828, p<0.001) and NLR 0.653 (95% CI: 0.528-0.765, p=0.019), which were predictive of progression (Table 2). MTV >7.04, TLG >78.68, NLR >4.73, an mGPS score of two and metastatic disease had statistically significantly high sensitivity and specificity in predicting progression (Table 2). Optimum values were determined for MTV, TLG and NLR for use in the determination of progression, and patients were divided into groups based on these values. A Kaplan-Meier analysis revealed MTV, TLG, NLR, gender and locally advanced disease to be significant parameters, and further showing that PFS was significantly shorter in patients with MTV >7.04, TLG >78.68 and NLR >4.73 than in those with low values of these parameters (p=0.001, p=0.003, p=0.001, respectively). Metastatic patients had a shorter PFS than locally advanced patients (p=0.003); and those with an mGPS score of two were found to have a shorter PFS than those with a score of 0 (p=0.009) (Table 3). The univariate Cox regression analysis

Table 1. Patient characteristics
Characteristics
Gender
Female
Male
Age (years)
Mean ± SD
M (min-max)
Stage
Local advanced stage
Metastatic
Pharmaceutical group
Afatinib
Erlotinib
Gefitinib
Exon 18
Exon 19
Exon 21
Relapse
No
Yes
Survival
Alive
Ex
mGPS score
0
2
PNI score
<45
>45
Mean ± SD
Progression-free survival
Overall survival
SUVmax
NLR
TLG
LDH
CRP/ALB
ALB/ALP
NLR
SII
PNI

SD: Standard deviation, min: Minimum, max: Maximum, mGPS: Modified Glasgow prognostic score, PNI: Prognostic nutritional index, SUVmax: Maximum standardized uptake value, MTV: Metabolic tumor volume, TLG: Total lesion glycolysis, LDH: Lactate dehydrogenase, CRP: C-reactive protein, ALB: Albumin, ALP: Alkaline phosphatase, NLR: Neutrophil-to-lymphocyte ratio, SII: Systemic immune-inflammation index, PLR: Platelet-to-lymphocyte ratio.
for systemic inflammation, and nutritional and volumetric parameters identified PLR, SII and tumor size was predictive of PFS (p=0.001, p=0.001, p=0.007, respectively) (Table 3). The Multivariate Cox regression analysis, in turn, identified MTV, mGPS and stage as independent prognostic factors for PFS (p=0.004, p=0.029, p=0.016, respectively) (Table 4). Among the volumetric parameters, MTV was determined to be a representative volumetric parameter; and among the general patient characteristics, age and gender had no statistically significant effect on PFS.

Overall Survival Analysis

The median OS was 21.9 (2.9-99.8) months. Among the general patient characteristics, age and gender had no statistically significant effect on OS.

When the continuous variables were evaluated on the ROC curve drawn according to survival, the parameters with a significant AUC values were MTV 0.715 (95% CI: 0.594-0.817, p=0.007), TLG 0.701 (95% CI: 0.578-0.805, p=0.017), LDH 0.678 (95% CI: 0.554-0.787, p=0.031), CRP/ALB 0.729 (95% CI: 0.607-0.829, p=0.007) and PNI 0.776 (95% CI: 0.658-0.868, p=0.001), which were predictive of survival (MTV >41.02, TLG >384.8, LDH >222, CRP/ALB >3.956, and PNI >41.3 had statistically significantly high sensitivity and specificity in predicting survival (Table 2).

The Kaplan-Meier analysis for survival showed OS to be significantly shorter in patients with MTV >41.02, TLG >384.8, LDH >222 and CRP/ALB >3.956 than in those with low values of these parameters (p=0.001, p=0.002, p=0.040, p=0.001, p=0.001, respectively) (Table 4). A multivariate Cox regression analysis for systemic inflammation, and nutritional and volumetric parameters identified ALB/ALP and tumor size as significant parameters (p=0.033, p=0.043, respectively) (Table 4). The multivariate Cox regression analysis demonstrated that none of the parameters were predictive of OS (Table 4).

Discussion

This study found MTV, a volumetric parameter of 18F-FDG PET/CT performed for staging in 68 patients with advanced EGFR-mutated adenocarcinoma, to be an independent prognostic factor for PFS. We further identified the scoring method for mGPS according to CRP and ALB levels as another significant prognostic factor for PFS. ROC analysis results revealed MTV, TLG and NLR to have statistically high sensitivity and specificity in predicting progression. We believe that these parameters are important prognostic markers that should be evaluated together in the treatment management and follow-up of patients with EGFR mutation-positive advanced adenocarcinomas.

EGFR mutations play a decisive role in the systematic treatment of NSCLC. The treatment of EGFR-mutated NSCLC has improved significantly in recent years, with EGFR-TKIs being the primary therapy for patients with advanced EGFR-mutated NSCLC (22,23). Previous studies have clearly demonstrated the dramatic response of patients with advanced adenocarcinoma to treatment with EGFR TKIs (gefitinib, erlotinib and afatinib). The presence of somatic mutations in the EGFR gene is deemed the best predictor of the response to TKIs (5,24). Gefitinib, erlotinib, afatinib and osimertinib have significantly prolonged the PFS of patients with untreated advanced EGFR-mutated NSCLC, although discussions of the optimal sequence are continuing (25). Patients who are to benefit from EGFR TKI therapy should be selected carefully to avoid such critical side effects as interstitial lung disease (26). The variation in the survival of patients with advanced adenocarcinoma is associated with multiple factors (EGFR mutations, metabolism changes, serum markers and gender). 18F-FDG PET/CT is a promising method and may reveal specific differences in metabolism in contrast to

Table 2. ROC analysis results of prognostic markers according to recurrence and survival status

	AUC (95% CI)	p	Cut-off value	Sensitivity (95% CI)	Specificity (95% CI)
Recurrence status					
MTV	0.725 (0.630-0.826)	0.001	>7.04	95.56 (84.9-99.5)	43.48 (23.2-65.5)
TLG	0.728 (0.606-0.828)	<0.001	>78.68	73.33 (58.1-85.4)	60.87 (38.5-80.3)
N/L	0.653 (0.528-0.765)	0.019	>4.733	35.56 (21.9-51.2)	100.0 (85.2-100.0)
Survival status					
MTV	0.715 (0.594-0.817)	0.007	>41.02	69.23 (38.6-90.9)	75.00 (61.6-85.6)
TLG	0.701 (0.578-0.805)	0.017	>384.8	61.54 (31.6-86.1)	80.36 (67.6-89.8)
LDH	0.678 (0.554-0.787)	0.031	>222	69.23 (38.6-90.9)	69.09 (55.2-80.9)
CRP/ALB	0.729 (0.607-0.829)	0.007	>3.956	76.92 (46.2-95.0)	72.73 (59.0-83.9)
PNI	0.776 (0.658-0.868)	0.001	≤41.3	76.92 (46.2-95.0)	83.64 (71.2-92.2)

ROC: Receiver operating characteristic curve, AUC: Area under curve, MTV: Metabolic tumor volume, TLG: Total lesion glycolysis, LDH: Lactate dehydrogenase, CRP: C-reactive protein, ALB: Albumin, PNI: Prognostic nutritional index, CI: Confidence interval
Table 3. Univariate analysis of factors affecting progression-free survival

	Recurrence Estimate progression-free time (m)	Estimate proportion surviving at the 1/3 year	p value		
	Present (%) Absent (%)	Mean ± SE			
MTV					
≤ 7.04	2	10	79.87 ± 12.27	100/75	0.001*
> 7.04	43	13	21.20 ± 2.45	62.7/49.9	
TLG					
≤ 78.68	12	14	48.73 ± 9.522	78.6/45.3	0.003*
> 78.68	33	9	19.47 ± 2.53	63.2/7.0	
NLR					
≤ 4.73	29	23	37.02 ± 6.03	79.4/49.8	0.001*
> 4.73	16	0	14.55 ± 3.74	37.5/6.3	
Gender					
Female	24	16	36.53 ± 6.70	100/55.9	0.187*
Male	21	7	22.64 ± 3.98	59.4/14.3	
Stage					
Local advanced stage	6	9	56.18 ± 11.87	83.3/31.3/0.0	0.003*
Metastatic	39	14	20.98 ± 2.78	93.3/52.3/43.6	
mGPS score					
0	20	15	36.65 ± 6.56	80.7/33	0.009*
2	25	8	19.54 ± 3.42	57/9.2	

Multivariate analysis of factors affecting progression-free survival

	Odss ratio	95% CI for Odss ratio	p	
	Lower bound	Upper bound		
SUV_{max}	0.995	0.946	1.046	0.839*
SUV_{mean}	0.98	0.897	1.071	0.654*
LDH	0.998	0.994	1.002	0.379*
CRP/ALB	1.014	0.998	1.031	0.095*
ALB/ALP	0.001	0	7938.969	0.392*
PLR	1.002	1.001	1.003	0.001*
Size (cm)	1.225	1.057	1.419	0.007*
SII	1	1	1	0.001*
PNI	0.966	0.932	1.001	0.059*
Age	1.01	0.985	1.035	0.437*
MTV	11.474	2.191	60.096	0.004
TLG	0.675	0.286	1.595	0.371
NLR	0.617	0.216	1.764	0.367
Stage	3.313	1.251	8.771	0.016
mGPS score	1.496	1.042	2.146	0.029
PLR	1.002	0.999	1.004	0.231
Size (cm)	1.127	0.938	1.354	0.202
SII	1	1	1	0.686

* Kaplan Meier test, log rank (Mantel-Cox), c: Cox regression-enter method, SE: Standard Error, CI: Confidence interval, MTV: Metabolic tumor volume, TLG: Total lesion glycolysis, NLR: Neutrophil-to-lymphocyte ratio, SII: Systemic immune-inflammation index, mGPS: Modified Glasgow prognostic score, PNI: Prognostic nutritional index, SUV_{max}: Maximum standardized uptake value, LDH: Lactate dehydrogenase, CRP: C-reactive protein, ALB: Albumin, ALP: Alkaline phosphatase, PLR: Platelet-to-lymphocyte ratio
Table 4. Univariate analysis of factors affecting overall survival

	Dead	Alive	Estimate survival (m)	Estimate proportion surviving at the 1/3 year	p value
	n (%)	n (%)	Mean ± SE		
MTV					
\(\leq 41.02 \)	4	41	2682.80±150.13	92/85.9	0.001\(^k\)
>41.02	9	14	880.10±106.26	69.5/27.8	
TLG					
\(\leq 384.8 \)	5	44	85.77±6.21	89.8/83.3	0.002\(^k\)
>384.8	8	11	26.58±4.51	71.8/28.7	
LDH					
\(\leq 222 \)	4	38	60.57±3.32	88.2/88.2	0.040\(^k\)
>222	9	17	57.44±10.45	79.1/48	
CRP/ALB					
\(\leq 3.956 \)	3	40	91.82±4.44	91.1/91.1	<0.001\(^k\)
>3.956	10	15	21.52±2.10	73.2/15.2	
PNI					
\(\leq 41.3 \)	10	9	19.07±2.7	62.6/0.0	<0.001\(^k\)
>41.3	3	46	93.12±3.75	95.1/92.6	
Stage					
Local advanced stage	1	14	89.49±9.60	85.7	0.065\(^k\)
Metastatic	12	41	47.05±5.10	79.2	
mGPS score					
0	2	33	93.32±4.45	92.7/92.7	0.001\(^k\)
2	11	22	32.43±6.66	76.2/26.1	

Multivariate analysis of factors affecting overall survival

	Odss ratio	95% CI for Odss ratio		
	Lower bound	Upper bound	p	
SUV\(_{\text{max}}\)	0.976	0.884	1.077	0.624\(^c\)
SUV\(_{\text{mean}}\)	0.956	0.806	1.134	0.602\(^c\)
LDH	1.003	0.998	1.009	0.258\(^k\)
ALB/ALP	0	0	0.028	0.033\(^k\)
NLR	1.017	0.928	1.115	0.72\(^k\)
PLR	1.001	0.998	1.003	0.674\(^k\)
Size (cm)	1.282	1.008	1.629	0.043\(^k\)
SII	1	1	1	0.29\(^k\)
Age	0.991	0.948	1.035	0.674\(^k\)
MTV	2.503	0.34	18.416	0.368
TLG	0.357	0.042	3.057	0.347
LDH	1.719	0.326	9.073	0.523
Stage	3.003	0.343	26.249	0.32
mGPS score	1.735	0.458	6.562	0.417
Size (cm)	1.416	0.939	2.135	0.097
ALB/ALP	0	0	449.598	0.088
CRP/ALB	1.896	0.138	26.072	0.633
PNI	0.431	0.064	2.888	0.386

\(^k\): Kaplan Meier test, log rank (Mantel-Cox). \(^c\): Cox regression-enter method. SE: Standard Error, CI: Confidence interval, MTV: Metabolic tumor volume, TLG: Total lesion glycolysis, NLR: Neutrophil-to-lymphocyte ratio, SII: Systemic immune-inflammation index, mGPS: Modified Glasgow prognostic score, PNI: Prognostic nutritional index, SUV\(_{\text{max}}\): Maximum standardized uptake value, LDH: Lactate dehydrogenase, CRP: C-reactive protein, ALB: Albumin, ALP: Alkaline phosphatase
conventional methods when selecting patients with a better prognosis. 18F-FDG PET/CT has been increasingly identified as a prognostic biomarker for various malignancies in the assessment of early responses to treatment (27). Studies have shown that assessment with 18F-FDG PET/CT in NSCLC can predict PFS and OS in patients treated with TKIs in the early period (18,28). In another study, early 18F-FDG PET/CT was reported to predict the histopathological response in NSCLC patients treated with TKIs as neoadjuvant therapy (29).

Several studies (28,29) to date have evaluated the significance of 18F-FDG uptake in the prediction of EGFR mutations in NSCLC, some of which have focused on SUVmax, identifying low SUVmax as an independent predictor of EGFR mutations (30,31,32,33); while in another study, it was emphasized that a high SUVmax was a significant predictor of EGFR mutations (31). It has been suggested that these differences may be attributable to clinicopathological features, and so this study evaluated the metabolic and volumetric parameters from PET/CT with immune, inflammatory and nutritional parameters for assessing PFS and OS, and investigated the effects of these parameters on each other, with MTV and mGPS being identified as the most valuable prognostic parameters for PFS. Compared to other studies, we think that evaluating 18F-FDG PET/CT volumetric-metabolic and immune-inflammatory parameters in patients with NSCLC is more effective in determining the prognosis of the disease.

A recent study emphasized the important role of the systemic inflammation and the immune status of patients in cancer progression. Immune suppression and systemic inflammation at the onset of the disease are associated with a poor prognosis (34), and NLR, PLR, and LDH are the most effective and easily accessible markers for assessing inflammation and immune status (15).

There have been many studies reporting the prognostic value of 18F-FDG PET/CT based on metabolic parameters, not only in lung cancer treated with TKIs (35,36), but also in other lung cancers in general (37,38). Unlike SUVmax, MTV and TLG include metabolic load and disease extent, and thus can have a higher predictive value (39,40,41). Similar to our study, another study reported that 18F-FDG PET/CT volumetric parameters reflect both metabolic and tumor burdens, and thus had higher prognostic value than the metabolic activity values obtained by PET/CT (42,43) and tumor size (44) in lung cancers. Volumetric parameters, such as MTV and TLG, have been extensively studied in recent years. The prognostic role of MTV and TLG was meta-analyzed in patients with NSCLC at different stages (44). Volume-based parameters exhibit advantages in the measurement of metabolic tumor burden. Parameters obtained 18F-FDG PET/CT can be used to select patients at high risk of death and who may benefit from subsequent more aggressive treatments.

Furthermore, our study identified mGPS and NLR as significant prognostic factors for PFS. There have been other studies demonstrating that other available blood-based biomarkers, such as NLR, PLR and mGPS, reflect the inflammatory status associated with cancer, and can be used as prognostic factors in lung cancer (21,45). mGPS, which assesses both systemic inflammation and nutritional status, has been identified as a potential prognostic predictor of lung cancer, as evaluated in many studies (46,47). The utility of NLR as a predictor in cancer patients has not been well studied, although there is increasing evidence that molecular and cellular pathways involve inflammations that contribute to the proliferation, angiogenesis and metastasis of neoplastic cells (48,49). Moreover, circulating neutrophils release various inflammatory cytokines, including tumor necrosis factor-α and interleukin-6, leading to cancer progression (50). It may therefore be reasonable to claim that treatment with EGFR-TKI is more effective in EGFR-mutated NSCLC patients with low NLR than in those with high NLR. Our analysis also suggests that NLR may be associated with PFS in NSCLC patients.

Study Limitations
Our study had certain limitations. The study protocol could not be strictly controlled because of its retrospective nature, although a standard imaging protocol was followed for all patients, and there was no difference due to homogeneous clinical management.

Conclusion
The aim in this study was to determine the optimum prognostic factors for assessing treatment response in advanced EGFR-mutated adenocarcinoma patients treated with TKIs. 18F-FDG PET/CT volumetric parameters were found to have statistical significance in predicting PFS. We believe that these parameters are important prognostic markers that should be evaluated together in the management and follow-up of patients with EGFR-mutated adenocarcinoma. 18F-FDG PET/CT may be considered an appropriate guide when making treatment decisions.

Ethics

Ethics Committee Approval: University of Health Sciences Turkey, Dr. Suat Seren Chest Diseases and Surgery Hospital Institutional Ethics Committee (approval no: 49109414-604.02).

Informed Consent: Consent was received.
Peer-review: Externally peer-reviewed.

Authorship Contributions
Surgical and Medical Practices: M.A., Concept: N.A., Design: N.A., Data Collection or Processing: N.A., H.K., N.K., Analysis or Interpretation: N.A., H.K., Literature Search: N.A., M.A., N.K., Writing: N.A.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The author declared that this study has received no financial support.

References
1. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, Fong KM, Lee H, Toyooka S, Shimizu N, Fujisawa T, Feng Z, Roth JA, Herz J, Minna JD. Gazer AE. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005;97:339-346.
2. Mok TS, Wu YL, Thongprasert S, Yang CH, Fukuoka M; West Japan Oncology Group in collaboration with Groupe Français de Pneumo-Cancérologie. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CT0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 2011;12:121-128.
3. Zhou C, Wu YL, Chen G, Feng J, Liu QX, Wang C, Zhang Y, Wang J, Zhou S, Ren S, Lu S, Zhang L, Hu C, Hu C, Luo Y, Chen L, Ye M, Huang J, Zhi X, Zhang Y, Xiu Q, Ma J, Zhang L, You C. Erlotinib versus chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012;13:239-246.
4. Minami S, Ogata Y, Ihara S, Yamamoto S, Kornuta K. Pretreatment Glasgow prognostic score and prognostic nutritional index predict overall survival of patients with advanced small cell lung cancer. Lung Cancer (Auckl) 2017;8:249-257.
5. Laird BJ, Kaasa S, McMillan DC, Fallon MT, Hjermstad MJ, Fayers P, Klepstad P. Prognostic factors in patients with advanced cancer: a comparison of clinicopathological factors and the development of an inflammation-based prognostic system. Clin Cancer Res 2013;19:5456-5464.
6. Zhou T, Zhao Y, Zhao S, Yang Y, Huang Y, Hou X, Zhao H, Zhang L. Comparison of the prognostic value of systemic inflammation response markers in small cell lung cancer patients. J Cancer 2019;10:1685-1692.
7. Ferreira LM, Hebrant A, Dumont JE. Metabolic reprogramming of the tumor. Oncogene 2012;31:3999-4011.
8. Zhang X, Guo M, Fan J, Lv Z, Huang Q, Han J, Wu E, Hu G, Xu J, Jin Y. Prognostic significance of serum LDH in small cell lung cancer: a systematic review with meta-analysis. Cancer Biomark 2016;16:415-423.
9. Lee DS, Park KR, Kim SJ, Chung MJ, Lee YH, Chang JH, Kang JH, Hong SH, Kim MS, Kim YS. Serum lactate dehydrogenase levels at presentation in stage IV non-small cell lung cancer: predictive value of metastases and relation to survival outcomes. Tumour Biol 2016;37:619-625.
10. Buergy D, Wenz F, Groden C, Brockmann MA. Tumor-platelet interaction in solid tumors. Int J Cancer 2012;130:2747-2760.
11. Deng M, Ma X, Liang X, Zhu C, Wang M. Are pretreatment neutrophil-lymphocyte ratio and platelet-lymphocyte ratio useful in predicting the outcomes of patients with small-cell lung cancer? Oncotarget 2017;8:37200-37207.
12. Hong X, Cui B, Wang M, Yang Z, Wang L, Xu Q. Systemic immune-inflammation index, based on platelet counts and neutrophil-lymphocyte ratio, is useful for predicting prognosis in small cell lung cancer. Tohoku J Exp Med 2015;236:297-304.
13. Dose Schwarz J, Bader M, Jenicke L, Hemminger G, Jänicke F, Avril N. Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J Nucl Med 2005;46:1144-1150.
14. Mileshkin L, Hicks RJ, Mitchell PL, Charu V, Gitlitz BJ, Garcia-Gomez R, Pallares C, Sanchez JM, Porta R, Cobo M, Gardin I, Vera P. Serial assessment of FDG-PET FDG uptake and functional volume during radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC). Radiother Oncol 2012;102:251-257.
15. Davison J, Mercier G, Russo G, Subramaniam RM. PET-based primary tumor volumetric parameters and survival of patients with non-small cell lung carcinoma. AJR Am J Roentgenol 2013;200:635-640.
16. Edet-Sanson A, Dubray B, Doyeux K, Back A, Hapdevy S, Modizewski R, Boyin P, Gardin I, Vera P. Radioimmuno imaging in patients with non-small cell lung cancer using sequential 18F-FDG PET. J Nucl Med 2001;42:1378-1380.
17. Agülöğlu et al. PET/CT Parameters in Lung Cancer Mol Imaging Radionuc Ther 2022;31:104-113.
A, Hodge R, Saggese M, Rukazenkov Y, Soria JC; FLAURA Investigators. Overall survival with osimertinib in untreated, EGF-mutated advanced NSCLC. N Engl J Med 2020;382:41-50.

Maemondo M, Incue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I, Fujita Y, Okinaga S, Hirano H, Yoshimori K, Harada T, Ogura T, Ando M, Miyazawa H, Tanaka T, Saijo Y, Hagisawa K, Morita S, Nukiwa T, North-East Japan Study Group. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGF. N Engl J Med 2010;362:2380-2388.

Takeda M, Nakagawa K. First- and second-generation EGFR-TKIs are all replaced to osimertinib in chemo-Naive EGFR mutation-positive non-small cell lung cancer? Int J Mol Sci 2019;20:146.

Cersosimo RJ. Gefitinib: an adverse effects profile. Expert Opin Drug Saf 2006;5:469-479.

Vansteenkiste J, Fischer BM, Dooms C, Mortensen J. Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review. Lancet Oncol 2004;5:531-540.

Zander T, Scheffler M, Nogova L, Kobe C, Engel-Riedel W, Hellmich M, Papachristou I, Toepelt K, Draube A, Heukamp L, Buercker R, Ko YD, Ullrich RT, Smit E, Boellaard R, Lammerding AA, Hallek M, Jacobs AH, Schlesinger A, Schulte K, Querings S, Stoelben E, Neumaier B, Thomas RK, Dietlein M, Wolf J. Early prediction of nonprogression in advanced non-small-cell lung cancer treated with erlotinib by using [(18)F]fluorodeoxyglucose and [(18)F]fluorothymidine positron emission tomography. J Clin Oncol 2011;29:1701-1708.

Aukema TS, Kappers I, Olmos RA, Codrington HE, van Tinteren H, van Pel R, Klomp HM; NEL Study Group. Is 18F-FDG PET/CT useful for the early prediction of histopathologic response to neoadjuvant erlotinib in patients with non-small cell lung cancer? J Nucl Med 2010;51:1344-1348.

Lv Z, Fan L, Xu J, Wu F; Huang Q, Guo M, Liao T, Liu S, Lan X, Liao S, Geng W, Jin Y. Value of 18F-FDG PET/CT for predicting EGFR mutations and positive ALK expression in patients with non-small cell lung cancer: a retrospective analysis of 849 Chinese patients. Eur J Nucl Med Mol Imaging 2018;45:735-750.

Lee EY, Khong PL, Lee VH, Qian W, Yu X, Wong MF. Metabolic phenotype of stage IV lung adenocarcinoma: relationship with epithelial and endothelial growth factor receptor mutation. Clin Nucl Med 2015;40:e190-e195.

Gu J, Xu S, Huang L, Li S, Wu J, Xu J, Feng J, Liu B, Zhou Y. Value of combining serum carcinoembryonic antigen and PET/CT in predicting EGFR mutation in non-small cell lung cancer. J Thorac Dis 2018;10:723-731.

Guan J, Xiao NJ, Chen M, Zhou WL, Zhang YW, Wang S, Dai YM, Li L, Zhang Y, Li QY, Li XZ, Yang M, Wu HB, Chen LH, Liu Y. 18F-FDG uptake for prediction EGFR mutation status in non-small cell lung cancer. Medicine (Baltimore) 2016;95:e4421.

Pinkerton AW, Kim RY, Robertson AAB, Hirota JA, Wood LG, Knight DA, Cooper MA, O’Neill LAJ, Horvat JC, Hansbro PM. Inflammomas in the lung. Mol Immunol 2017;86:44-55.

van Goor MH, Aukema TS, Schaake EE, Rijna T, Codrington HE, Valdés Olmos RA, Teerstra HJ, van Pel R, Burgers SA, van Tinteren H, Klomp HM. (18)F-fluorodeoxyglucose positron emission tomography versus computed tomography in predicting histopathological response to epidermal growth factor receptor-tyrosine kinase inhibitor treatment in resectable non-small cell lung cancer. Ann Surg Oncol 2014;21:2831-2837.

Benz MR, Herrmann K, Walter F, Garon EB, Reckamp KL, Figlin R, Phelps ME, Weber WA, Zennrin J, Allen-Auerbach MS. (18)F-FDG PET/CT for monitoring treatment responses to the epidermal growth factor receptor inhibitor erlotinib. J Nucl Med 2011;52:1684-1689.

Higashi K, Ueda Y, Arisaka Y, Sakuma T, Namitu Y, Oguchi M, Seki H, Taki S, Tonami H, Yamamoto I. 18F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancer. J Nucl Med 2002;43:39-45.

Imamura Y, Azuma K, Kurata S, Hattori S, Sasada T, Kinoshita T, Okamoto M, Kawayama T, Kaida H, Ishibashi M, Aizawa H. Prognostic value of SUVmax measurements obtained by FDG-PET in patients with non-small cell lung cancer receiving chemotherapy. Lung Cancer 2011;71:49-54.

Chen HH, Chiu NT, Su WC, Guo HR, Lee BE. Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer. Radiology 2012;264:559-566.

Olivier A, Petit Y, Cortot A, Scherpereel A, Hossein-Foucher C. Higher predictive value of tumour and node [18F]FDG PET metabolic volume and TLG in advanced lung cancer under chemotherapy. Nucl Med Commun 2014;35:908-915.

Liao S, Penney BC, Wrobleski K, Zhang H, Simon CA, Kampalthal R, Shih MC, Shimada N, Chen S, Salgia R, Appelbaum DE, Suzuki K, Chen CT, Pu Y. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2012;39:27-38.

Oh JR, Seo JH, Chong A, Min JJ, Song HC, Kim YC, Born HS. Whole-body metabolic tumour volume of 18F-FDG PET/CT improves the prediction of prognosis in small cell lung cancer. Eur J Nucl Med Mol Imaging 2012;39:925-935.

Yoo SW, Kim J, Chong A, Kwon SY, Min JJ, Song HC, Born HS. Metabolic tumor volume measured by F-18 FDG PET/CT can further stratify the prognosis of patients with Stage IV non-small cell lung cancer. Nucl Med Biol 2012;46:286-293.

Im HJ, Pak K, Cheon GJ, Kang KW, Kim SJ, Kim JJ, Chung JK, Kim EE, Lee DS. Prognostic value of volumetric parameters of (18)F-FDG PET in non-small-cell lung cancer: a meta-analysis. Eur J Nucl Med Mol Imaging 2015;42:241-251.

Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol 2015;25:198-213.

Wang J, Wang Q, Chu H, Yao Y. Intrinsic resistance to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer with activating EGFR mutations. Onco Targets Ther 2016;9:3711-3726.

Igawa S, Sasaki J, Otani S, Ishihara M, Takakura A, Katagiri M, Masuda AH, Schlesinger A, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009;30:1073-1081.

Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Cancermetabolism 2009;30:1073-1081.