Additive Tree $O(\rho \log n)$-Spanners from Tree Breadth ρ

Oliver Bendele and Dieter Rautenbach

Institute of Optimization and Operations Research, Ulm University, Germany
{o.liver.bendele,dieter.rautenbach}@uni-ulm.de

Abstract

The tree breadth $tb(G)$ of a connected graph G is the smallest non-negative integer ρ such that G has a tree decomposition whose bags all have radius at most ρ. We show that, given a connected graph G of order n and size m, one can construct in time $O(m \log n)$ an additive tree $O(tb(G) \log n)$-spanner of G, that is, a spanning subtree T of G in which $d_T(u,v) \leq d_G(u,v) + O(tb(G) \log n)$ for every two vertices u and v of G. This improves earlier results of Dragan and Köhler (Algorithmica 69 (2014) 884-905), who obtained a multiplicative error of the same order, and of Dragan and Abu-Ata (Theoretical Computer Science 547 (2014) 1-17), who achieved the same additive error with a collection of $O(\log n)$ trees.

Keywords: additive tree spanner; multiplicative tree spanner; tree breadth; tree length

AMS subject classification: 05C05, 05C12, 05C85

1 Introduction

In the present paper we show how to construct in time $O(m \log n)$, for a given connected graph G of order n and size m, a tree spanner that approximates all distances up to some additive error of the form $O(\rho \log n)$, where ρ is the so-called tree breadth of G [8]. Our result improves a result of Dragan and Köhler [8] who show that one can construct in time $O(m \log n)$ a multiplicative tree $O(\rho \log n)$-spanner for a given graph G as above, that is, we improve their multiplicative error to an additive one of the same order. Our result also improves a result by Dragan and Abu-Ata [6] who show how to efficiently construct $O(\log n)$ collective additive tree $O(\rho \log n)$-spanners for a given graph G as above. Note that they obtain the same additive error bound but require several spanning trees that respect this bound only collectively, more precisely, for every pair of vertices, there is a tree in the collection that satisfies the distance condition for this specific pair. Not restricting the spanners to trees allows better guarantees; Dourisboure, Dragan, Gavoille, and Yan [3], for instance, showed that every graph G as above has an additive $O(\rho n)$-spanner with $O(\rho n)$ edges. For more background on additive and multiplicative (collective) (tree) spanners please refer to [2,5,9,11] and the references therein.

Before we come to our results in Section 2, we collect some terminology and definitions. We consider finite, simple, and undirected graphs. Let G be a connected graph. The vertex set,
edge set, order, and size of G are denoted by $V(G)$, $E(G)$, $n(G)$, and $m(G)$, respectively. The
distance in G between two vertices u and v of G is denoted by $d_G(u, v)$. For a vertex u of G
and a set U of vertices of G, the distance in G between u and U is
\[
d_G(u, U) = \min \{d_G(u, v) : v \in U\},
\]
and the radius $\text{rad}_G(U)$ of U in G is
\[
\min \{ \max \{d_G(u, v) : v \in U\} : u \in V(G)\},
\]
that is, it is the smallest radius of a ball around some vertex u of G that contains all of U.
Note that the vertex u in the preceding minimum is not required to belong to U, and that all
distances are considered within G.

Let H be a subgraph of G. For a non-negative integer k, the subgraph H is k-additive if
\[
d_H(u, v) \leq d_G(u, v) + k
\]
for every two vertices u and v of H. If, additionally, the subgraph H is spanning, that is, it
has the same vertex set as G, then H is an additive k-spanner of G. Furthermore, if, again
additionally, the subgraph H is a tree, then H is an additive tree k-spanner of G. Replacing
the inequality (1) with
\[
d_H(u, v) \leq k \cdot d_G(u, v)
\]
yields the notions of a k-multiplicative subgraph, a multiplicative k-spanner, and a multiplicative
tree k-spanner of G, respectively.

For a tree T, let $B(T)$ be the set of vertices of T of degree at least 3 in T, the so-called
branch vertices, and let $L(T)$ be the set of leaves of T.

A tree decomposition of G is a pair $(T, (X_t)_{t \in V(T)})$, where T is a tree and X_t is a set of
vertices of G for every vertex t of T such that
- for every vertex u of G, the set $\{t \in V(T) : u \in X_t\}$ induces a non-empty subtree of T, and
- for every edge uv of G, there is some vertex t of T such that u and v both belong to X_t.

The set X_t is usually called the bag of t. The maximum radius
\[
\max \{\text{rad}_G(X_t) : t \in V(T)\}
\]
of a bag of the tree decomposition is the breadth of this decomposition, and the tree breadth
$\text{tb}(G)$ of G is the minimum breadth of a tree decomposition of G. While the tree breadth
is an NP-hard parameter, one can construct in linear time, for a given connected graph G, a
tree decomposition of breadth at most $3\text{tb}(G)$, cf. also involving the related notion
of tree length.
2 Results

For a tree \(T \), let \(\rho(T) \) be the maximum depth of a perfect binary tree that is a topological minor of \(T \). In some sense \(\rho(T) \) quantifies how much \(T \) differs from a path.

Our main result is the following.

Theorem 1. Given a connected graph \(G \) of size \(m \) and a tree decomposition \((T, (X_t)_{t\in V(T)})\) of \(G \) of breadth \(\rho \), one can construct in time \(O(m \cdot \rho(T)) \) an additive tree \(8\rho(2\rho(T)+1) \)-spanner of \(G \).

Some immediate consequences of Theorem 1 are the following.

Corollary 2. Given a connected graph \(G \) of order \(n \) and size \(m \), one can construct in time \(O(m \log n) \) an additive tree \(O(\text{tb}(G) \log n) \)-spanner of \(G \).

Proof. As observed towards the end of the introduction, given \(G \), one can construct in linear time a tree decomposition \((T, (X_t)_{t\in V(T)})\) of \(G \) of breadth at most \(3\text{tb}(G) \). Possibly by contracting edges \(st \) of \(T \) with \(X_s \subseteq X_t \), we may assume that \(n(T) \leq n \). Since a perfect binary tree of depth \(b \) has \(2^{b+1} - 1 \) vertices, it follows that \(2^{\text{tb}(T)+1} - 1 \leq n(T) \leq n \), and, hence,

\[
\rho(T) \leq \log_2(n + 1) - 1.
\]

Applying Theorem 1 allows to construct in time \(O(m \cdot \rho(T)) = O(m \log n) \) an additive tree \(24\text{tb}(G)(2 \log_2(n + 1) - 1) \)-spanner of \(G \).

Corollary 3. Given a connected graph \(G \) of order \(n \) and size \(m \) and a multiplicative tree \(k \)-spanner \(T \) of \(G \), one can construct in time \(O(mn) \) an additive tree \(O(k \log n) \)-spanner of \(G \).

Proof. For every vertex \(u \) of \(G \), let \(X_u \) be the set containing all vertices \(v \) of \(G \) with \(d_T(u, v) \leq \left\lceil \frac{\rho}{2} \right\rceil \). Since \(T \) is a multiplicative tree \(k \)-spanner, it follows easily that \((T, (X_t)_{t\in V(T)})\) is a tree decomposition of \(G \) of breadth at most \(\left\lceil \frac{\rho}{2} \right\rceil \), cf. also \(\text{[5]} \). Note that \((X_t)_{t\in V(T)}\) can be determined by \(n \) breadth first searches, each of which requires \(O(m) \) time. Applying Theorem 1 allows to construct in time \(O(m \cdot \rho(T)) = O(m \log n) \) an additive tree \(O(k \log n) \)-spanner of \(G \).

Note that if the tree \(T \) in Theorem 1 is a path, then we obtain an additive tree \(O(\rho) \)-spanner. Kratsch et al. \(\text{[11]} \) constructed a sequence of outerplanar chordal graphs \(G_1, G_2, \ldots \), which limit the extend to which Theorem 1 can be improved. The graph \(G_1 \) is a triangle, and, for every positive integer \(k \), the graph \(G_{k+1} \) arises from \(G_k \) by adding, for every edge \(uv \) of \(G_k \) that contains a vertex of degree 2 in \(G_k \), a new vertex \(w \) that is adjacent to \(u \) and \(v \); cf. Figure 1 for an illustration. It is easy to see \(n(G_k) = 3 \cdot 2^{k-1} \) and that \(\text{tb}(G_k) = 1 \) for every positive integer \(k \); in particular, we have \(k - 1 = \log_2 \left(\frac{n(G_k)}{3} \right) \). Now, Kratsch et al. showed that \(G_k \) admits no additive tree \((k - 1)\)-spanner, that is, the graph \(G_k \) admits no additive tree \(\text{tb}(G_k) \log_2 \left(\frac{n(G_k)}{3} \right) \)-spanner.
Our proof of Theorem 1 relies on four lemmas. The first is a simple consequence of elementary properties of breadth first search.

Lemma 4. Given a connected graph G of size m, a subtree S of G, and a set U of vertices of G, one can construct in time $O(m)$ a subtree S' of G containing S as well as all vertices from U such that

(i) $d_{S'}(u, V(S)) = d_G(u, V(S))$ for every vertex u in U, and

(ii) $L(S') \subseteq L(S) \cup U$.

Proof. The tree S' with the desired properties can be obtained as follows:

- Construct the graph G' from G by contracting S to a single vertex r.
- Construct a breadth first search tree T of G' rooted in r.
- Construct the graph T' from T by uncontracting r back to S.
- Choose S' as the minimal subtree of T' that contains S as well as all vertices from U.

Since T is a breadth first search tree, property (i) follows. Furthermore, by construction, the set of leaves of S' is contained in $L(S) \cup U$, that is, property (ii) follows. The running time follows easily from the running time of breadth first search; in fact, the contraction of S to r can be handled implicitly within a suitably adapted breadth first search.

The following lemma was inspired by Lemma 2.2 in [11]. It will be useful to complete the construction of our additive tree spanner starting from a suitable subtree.

Lemma 5. Given a connected graph G of size m and a ρ-additive subtree S of G such that $d_G(u, V(S)) \leq \rho'$ for every vertex u of G, one can construct in time $O(m)$ an additive tree $(\rho + 4\rho')$-spanner of G.

Proof. Let S' be the spanning tree of G obtained by applying Lemma 4 to G, S, and $V(G) \setminus V(S)$ as the set U. We claim that S' has the desired properties. Therefore, let u and v be any two vertices of G. Let u' be the vertex of S closest to u within S', and define v' analogously. Clearly,
we have that $d_S(u, u') = d_G(u, u') \leq \rho'$, $d_S(v, v') = d_G(v, v') \leq \rho'$, and $d_S(u', v') = d_S(u', v') \leq d_G(u', v') + \rho$. By several applications of the triangle inequality, we obtain

$$d_S(u, v) = d_S(u, u') + d_S(u', v') + d_S(v', v) \leq \rho' + d_G(u', v') + \rho + \rho' \leq d_G(u', u) + d_G(u, v) + d_G(v, v') + \rho + 2\rho' \leq d_G(u, v) + \rho + 4\rho',$$

which completes the proof.

Our next lemma states that $pbt(T)$ can easily be determined for a given tree T, by constructing a suitable finite sequence

$$T_0 \supset T_1 \supset T_2 \supset \ldots \supset T_{d(T)}$$

of nested trees. The construction of this sequence is also important for the proof of our main technical lemma, cf. Lemma 7 below. The sequence starts with T_0 equal to T. Now, suppose that T_i has been defined for some non-negative integer i. If $B(T_i)$ is not empty, then let T_{i+1} be the minimal subtree of T_i that contains all vertices from $B(T_i)$, and continue the construction. Note that in this case

$$B(T_i) = B(T_{i+1}) \cup L(T_{i+1}).$$

Otherwise, if $B(T_i)$ is empty, then T_i is a path of some length ℓ. If $\ell \geq 3$, then let T_{i+1} be the tree containing exactly one internal vertex of T_i as its only vertex, and let $d(T) = i + 1$. Finally, if $\ell \leq 2$, then let $d(T) = i$. Once $d(T)$ has been defined, the construction of the sequence (2) terminates. See Figure 2 for an illustration.

![Figure 2: A sequence $T_0 \subset T_1 \subset T_2 \subset T_3$.](image)

Lemma 6. $pbt(T) = d(T)$ for every tree T.

Proof. The proof is by induction on $d(T)$. If $d(T) = 0$, the statement is trivial. Now, let $d(T) \geq 1$. The construction of (2) immediately implies

$$d(T) = d(T_1) + 1.$$
subdivision of a perfect binary tree, then one can first extend S_1 in such a way that all leaves of S_1 are also leaves of T_1, and then one can grow one further level to the subdivided binary tree by attaching two new paths to each leaf of S_1 using edges in $E(T) \setminus E(T_1)$. This implies \(\text{pbt}(T) \geq \text{pbt}(T_1) + 1 \). Conversely, if S is a subtree of T that is a subdivision of a perfect binary tree, then $S \cap T_1$ contains a subdivision of a perfect binary tree whose depth is one less, that is, we have $\text{pbt}(T_1) \geq \text{pbt}(T) - 1$. Altogether, by induction, we obtain

\[
\text{pbt}(T) = \text{pbt}(T_1) + 1 = d(T_1) + 1 = d(T),
\]

which completes the proof.

The following is our core technical lemma.

Lemma 7. Given a connected graph G of size m and a tree decomposition $(T, (X_t)_{t \in V(T)})$ of G of breadth ρ, one can construct in time $O(m \cdot d(T))$ a $16\rho \cdot d(T)$-additive subtree S of G intersecting each bag of the given tree-decomposition.

Proof. Let the sequence $T_0 \supset T_1 \supset T_2 \supset \ldots \supset T_d$ be as in (2), and let $d = d(T)$. For i from d down to 0, we explain how to recursively construct a subtree S_i of G such that

(i) S_i contains a vertex from bag X_t for every vertex t of T_i,

(ii) for every two distinct leaves u and v of S_i, there are two distinct vertices s and t of T_i that belong to $B(T_i) \cup L(T_i)$ such that $u \in X_s$ and $v \in X_t$, and

(iii) S_i is $16\rho(d - i)$-additive.

Note that S_0 is a subtree of G with the desired properties.

First, we consider $i = d$. The tree T_d has order at most 2, and, since G is connected, there is a vertex u of G that belongs to all bags X_t with $t \in V(T_d)$. Let S_d be the subtree of G containing only the vertex u. Since S_d has order 1, and all vertices of T_d are leaves, properties (ii) and (iii) are trivial for S_d, and property (i) follows from the choice of u. See Figure 3 for an illustration.

![Figure 3: Extending S_i to S_{i-1}, and possible positions of the vertices u, v, $u^{(1)}$, and $v^{(1)}$ explained below.](image)

Now, suppose that S_i has already been defined for some integer i with $d \geq i > 0$. We explain how to construct S_{i-1}. Therefore, let U be an inclusion-wise minimal set of vertices
intersecting every bag X_i such that t is a leaf of T_{i-1} for which S_i does not contain a vertex from X_t. Let S_{i-1} arise by applying Lemma 3 to G, S_i as S, and U. By construction, the subgraph S_{i-1} of G is connected and contains a vertex from every bag X_i such that t is a leaf of T_{i-1}. Since G is connected, basic properties of tree decompositions imply that S_{i-1} satisfies property (i), that is, the vertex set of S_{i-1} intersects every bag of T_{i-1}.

Next, we verify property (ii) for S_{i-1}. Therefore, let u and v be two distinct leaves of S_{i-1}. If u and v are also leaves of S_i, then property (ii) for S_{i-1} follows from property (ii) for S_i using $B(T_i) \cup L(T_i) = B(T_{i-1})$. If u is a leaf of S_i and v is not, then, by Lemma 3(ii), we have $v \in U$. By property (ii) for S_i, the vertex u belongs to a bag X_s such that $s \in B(T_i) \cup L(T_i) = B(T_{i-1})$, and, by the choice of U, the vertex v belongs to a bag X_t such that t is a leaf of T_{i-1} and S_i contains no vertex from X_t. In particular, we have that $u \notin X_t$, which implies that s and t are distinct, that is, property (ii) holds also in this case. Finally, suppose that u and v are both leaves of S_{i-1} but not of S_i. The choice of U as minimal with respect to inclusion implies that property (ii) holds also in this final case. Note that X_s is allowed to contain v and that X_t is allowed to contain u in property (ii).

Finally, we verify the crucial property (iii) for S_{i-1}. Therefore, let u and v be two distinct vertices of S_{i-1}. It is easy to see that in order to verify that S_{i-1} is $16\rho(d - (i - 1))$-additive, it suffices to consider the case where u and v are leaves of S_{i-1}. In fact, if (iii) is violated for u and v, that is, we have $d_{S_{i-1}}(u, v) > d_G(u, v) + 16\rho(d - (i - 1))$, then the path in S_{i-1} between u and v is contained in some path in S_{i-1} between the two leaves \hat{u} and \hat{v} of S_{i-1}, and

$$d_{S_{i-1}}(\hat{u}, \hat{v}) = d_{S_{i-1}}(\hat{u}, u) + d_{S_{i-1}}(u, v) + d_{S_{i-1}}(v, \hat{v}) > d_G(\hat{u}, u) + d_G(u, v) + 16\rho(d - (i - 1)) + d_G(v, \hat{v}) \geq d_G(\hat{u}, \hat{v}) + 16\rho(d - (i - 1)),$$

that is, the two leaves \hat{u} and \hat{v} also violate (iii). Hence, we may assume that u and v are leaves of S_{i-1}. Let P be a shortest path in G between u and v, and let P_{i-1} be the path in S_{i-1} between u and v. Let $u^{(1)}$ be the vertex of S_i that is closest within S_{i-1} to u, and define $v^{(1)}$ analogously. See Figure 3 for an illustration. By Lemma 3(i), we have

$$d_G\left(u, u^{(1)}\right) = d_{S_{i-1}}\left(u, u^{(1)}\right) \text{ and } d_G\left(v, v^{(1)}\right) = d_{S_{i-1}}\left(v, v^{(1)}\right).$$

By (ii) for S_{i-1}, there are two distinct vertices s and t of T_{i-1} that belong to $B(T_{i-1}) \cup L(T_{i-1})$ such that $u \in X_s$ and $v \in X_t$. Let T' be the subgraph of T_{i-1} that is induced by the set of all vertices r of T_{i-1} for which S_i contains a vertex from the bag X_r. Since S_i is connected, it follows from basic properties of tree decompositions that T' is a subtree of T_{i-1}. Since $B(T_{i-1}) = B(T_i) \cup L(T_i) \subseteq V(T_i)$ and, by construction of T_i from T_{i-1}, the path in T_{i-1} between any two distinct leaves of T_{i-1} contains a vertex of T_i, property (i) for S_i implies that T' contains a vertex from the path Q in T_{i-1} between s and t. Let s' be the vertex of T' on Q that is closest within T_{i-1} to s. By the definition of T', there is a vertex $u^{(2)}$ of S_i that belongs
to $X_{s'}$. See Figure 4 for an illustration.

Figure 4: The path Q in T_{i-1} between s and t, the subtree T' of T_{i-1} intersecting Q, and the vertices s' and t'.

Basic properties of tree decompositions imply that $X_{s'}$ contains a vertex from the path P as well as from the path P_{i-1}. Let $u^{(3)}$ be a vertex in $X_{s'} \cap V(P)$, and let $u^{(4)}$ be the first vertex on the path P_{i-1}, when traversed from u towards v, that belongs to $X_{s'}$. See Figure 5 for an illustration.

Figure 5: The shortest paths P in G and P_{i-1} in S_{i-1} between u and v, their intersection with the bags $X_{s'}$ and X_r, the vertices $u^{(4)}$ and $v^{(4)}$, and possible positions of $u^{(3)}$ and $v^{(3)}$.

Suppose, for a contradiction, that $u^{(1)}$ is distinct from $u^{(4)}$, and that $u^{(1)}$ lies closer to u on P_{i-1} than $u^{(4)}$. In this case, the choices of $u^{(1)}$ and $u^{(4)}$ imply that $u^{(1)}$ lies in some bag X_r for a vertex r of T' distinct from s', and that $u^{(1)}$ does not lie in $X_{s'}$. Since s' separates s from r in T_{i-1}, basic properties of tree decompositions imply that P_{i-1} contains a vertex from $X_{s'}$ that is strictly closer to u than $u^{(4)}$, contradicting the choice of $u^{(4)}$. Hence, either $u^{(1)}$ equals $u^{(4)}$, or $u^{(4)}$ lies closer to u on P_{i-1} than $u^{(1)}$.

Since $u^{(2)}$, $u^{(3)}$, and $u^{(4)}$ all belong to the bag $X_{s'}$, which is of radius at most ρ, the pairwise distances of these three vertices within G are at most 2ρ. If $d_G(u^{(1)}, u^{(4)}) > 2\rho$, then connecting u to $u^{(4)}$ via P_{i-1}, and connecting $u^{(4)}$ to S_i via a shortest path in G, which is of length at most 2ρ in view of $u^{(2)}$, yields a contradiction to Lemma 4(i). Hence, we have

\[d_G(u^{(1)}, u^{(4)}) \leq 2\rho, \]

and, thus, we obtain

\[d_G(u^{(1)}, u^{(3)}) \leq d_G(u^{(1)}, u^{(4)}) + d_G(u^{(4)}, u^{(3)}) \leq 4\rho. \]
Now, let \(t' \) be the vertex of \(T' \) on \(Q \) that is closest within \(T_{i-1} \) to \(t \). See Figure 4 for an illustration. Clearly, the vertex \(t' \) lies on the subpath of \(Q \) between \(s' \) and \(t \). Since \(u^{(3)} \in X_{s'} \) and \(v \in X_t \), basic properties of tree decompositions imply that the subpath of \(P \) between \(u^{(3)} \) and \(v \) contains a vertex \(v^{(3)} \) of \(X_v \). See Figure 5 for an illustration. Choosing \(v^{(2)} \) and \(v^{(4)} \) in a symmetric way, and arguing similarly as above, we obtain

\[
d_G(v^{(1)}, v^{(3)}) \leq 4\rho.
\]

By property (iii) for \(S_i \), we have

\[
d_{S_i}(u^{(1)}, v^{(1)}) \leq d_G(u^{(1)}, v^{(1)}) + 16\rho(d - i).
\]

Note that the vertices \(u, u^{(3)}, v^{(3)}, \) and \(v \) appear in this order on \(P \). Altogether, by multiple applications of the triangle inequality, we obtain that

\[
d_{S_{i-1}}(u, v) = d_{S_{i-1}}(u, u^{(1)}) + d_{S_i}(u^{(1)}, v^{(1)}) + d_{S_{i-1}}(v^{(1)}, v)
\]
\[
= d_G(u, u^{(1)}) + d_{S_i}(u^{(1)}, v^{(1)}) + d_G(v^{(1)}, v)
\]
\[
\leq d_G(u, u^{(1)}) + d_G(u^{(1)}, v^{(1)}) + 16\rho(d - i) + d_G(v^{(1)}, v)
\]
\[
\leq d_G(u, u^{(3)}) + d_G(u^{(3)}, u^{(1)})
\]
\[
+ d_G(u^{(1)}, v^{(1)}) + d_G(u^{(3)}, v^{(3)}) + d_G(v^{(3)}, v^{(1)}) + 16\rho(d - i)
\]
\[
+ d_G(v^{(1)}, v^{(3)}) + d_G(v^{(3)}, v^{(1)}) + 16\rho(d - i)
\]
\[
\leq d_G(u, u^{(3)}) + 4\rho + 4\rho + d_G(u^{(3)}, v^{(3)}) + 4\rho + 16\rho(d - i) + 4\rho + d_G(v^{(3)}, v^{(1)})
\]
\[
= d_G(u, v) + 16\rho(d - (i - 1)),
\]

which completes the proof of property (iii) for \(S_{i-1} \).

We proceed to the running time of the described procedure. Clearly, the sequence as in (2) can be determined in time \(O(m \cdot d(T)) \), and the tree \(S_d \) can be obtained in time \(O(m(G)) \). By Lemma 4, given any tree \(S_i \) with \(i > 0 \), the tree \(S_{i-1} \) can be obtained in time \(O(m(G)) \). Altogether, the stated running time follows, which completes the proof.

Theorem 1 now follows immediately by combining Lemma 7 with Lemma 5, choosing \(\rho' \) equal to \(2\rho \) for the latter. Note that, since the tree \(S \) produced by Lemma 7 intersects every bag of the tree decomposition, we have \(d_G(u, V(S)) \leq 2\rho \) for every vertex \(u \) of \(G \).

References

[1] M. Abu-Ata and F.F. Dragan, Metric tree-like structures in real-world networks: an empirical study, Networks 67 (2016) 49-68.

[2] L. Cai and D.G. Corneil, Tree Spanners, SIAM Journal on Discrete Mathematics 8 (1995) 359-387.
[3] V.D. Chepoi and F.F. Dragan, A note on distance approximating trees in graphs, European Journal of Combinatorics 21 (2000) 761-768.

[4] Y. Dourisboure and C. Gavoille, Tree-decompositions with bags of small diameter, Discrete Mathematics 307 (2007) 2008-2029.

[5] Y. Dourisboure, F.F. Dragan, C. Gavoille, and C. Yan, Spanners for bounded tree-length graphs, Theoretical Computer Science 383 (2007) 34-44.

[6] F.F. Dragan and M. Abu-Ata, Collective additive tree spanners of bounded tree-breadth graphs with generalizations and consequences, Theoretical Computer Science 547 (2014) 1-17.

[7] F.F. Dragan, D.G. Corneil, E. Köhler, and Y. Xiang, Collective additive tree spanners for circle graphs and polygonal graphs, Discrete Applied Mathematics 160 (2012) 1717-1729.

[8] F.F. Dragan and E. Köhler, An approximation algorithm for the tree t-spanner problem on unweighted graphs via generalized chordal graphs, Algorithmica 69 (2014) 884-905.

[9] F.F. Dragan, C. Yan, and D.G. Corneil, Collective tree spanners and routing in AT-free related graphs, Journal of Graph Algorithms and Applications 10 (2006) 97-122.

[10] G. Ducoffe, S. Legay, and N. Nisse, On the complexity of computing treebreadth, Algorithmica (2019) https://doi.org/10.1007/s00453-019-00657-7.

[11] D. Kratsch, H.-O. Le, H. Müller, E. Prisner, and D. Wagner, Additive tree spanners, SIAM Journal on Discrete Mathematics 17 (2002) 332-340.