MAGNETOHYDRODYNAMIC TURBULENCE AND COSMIC-RAY REACCELERATION IN GALAXY CLUSTERS

Andrey Beresnyak1,2, Hao Xu1,3, Hui Li1, and Reinhard Schlickeiser2

1 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2 Ruhr-Universität Bochum, D-44780 Bochum, Germany
3 Center for Astrophysics and Space Science, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

Received 2012 June 5; accepted 2013 May 17; published 2013 June 25

ABSTRACT

Cosmological MHD simulations of galaxy cluster formation show a significant amplification of seed magnetic fields. We developed a novel method to decompose cluster magnetized turbulence into modes and showed that the fraction of the fast mode is fairly large, around one-fourth in terms of energy. This is larger than that was estimated before, which implies that cluster turbulence interacts with cosmic rays rather efficiently. We propose a framework to deal with electron and proton reacceleration in galaxy clusters that includes feedback on turbulence. In particular, we establish a new upper limit on proton and electron fluxes based on turbulence intensity. These findings, along with detailed modeling of reacceleration, will help to reconcile the observed giant radio halos and the unobserved diffuse γ-ray emission from these clusters.

Key words: acceleration of particles – galaxies: clusters: intracluster medium – turbulence

Online-only material: color figures

1. INTRODUCTION

Galaxy clusters are the largest virialized objects in the universe. An important component of galaxy clusters is the intracluster medium (ICM), a hot gas between galaxies which is fully ionized and contains magnetic fields and cosmic rays (CRs). A number of observational techniques are used to detect various components of the ICM. Sunyaev–Zeldovich effect (e.g., Molot et al. 2005) and soft X-ray observations (e.g., see a review by McNamara & Nulsen 2007) are used to estimate hot gas temperature and density, while radio observations of Faraday rotation in the ICM measure magnetic fields (e.g., Eilek & Owen 2002; Bonafede et al. 2010; Govoni et al. 2006, 2010). Radio observations of megaparsec scale diffuse radio emissions, so-called radio halos, which are mostly found in merging clusters (Cassano et al. 2010), indicate the presence of clusterwide relativistic electrons in the ICM (e.g., Schlickeiser et al. 1987; Carilli & Taylor 2002; Ferrari et al. 2008; Giovannini et al. 2009; Feretti et al. 2012; van Weeren et al. 2012).

The diffuse γ-ray emission from the ICM, which should come from interactions of the proton component of CRs and the gas, however, is not yet observed (Ackermann et al. 2010). As the lower limits to diffuse γ-ray emission are becoming better, it is harder to explain both diffuse radio halos and the lack of diffuse γ-ray emission within a simple paradigm of the radio emission produced by secondary electrons (Jeltema & Profumo 2011; Donnert et al. 2011; Brunetti et al. 2012). Since the lifetimes of synchrotron electrons are much shorter than their mixing time in the cluster, the in situ reacceleration mechanism is very desirable. One of such mechanisms being considered is a turbulent second-order acceleration (see, e.g., Brunetti & Lazarian 2011a). Radio relics seen in some clusters (see, e.g., van Weeren et al. 2010) are thought to be associated with large-scale shocks. The explanation of radio halos as shocks in projection, however, can be excluded based on geometric arguments (Brunetti et al. 2008) or numerical simulations (Hoeft et al. 2008; Skillman et al. 2011; Vazza et al. 2011). The second-order acceleration by turbulence, therefore, should be considered as a viable candidate. The acceleration rate, which is proportional to $(v_A/c)^2$ in the second-order mechanism, was considered marginal in spiral galaxies, where $v_A \sim 10$–20 km s$^{-1}$ and the escape times from the relatively thin disk are short. In galaxy clusters, however, the Alfvénic speeds are higher $v_A \sim 100$ km s$^{-1}$ and the diffusion timescales are much longer due to their enormous size.

The early theoretical model seeking to explain the spectrum of the diffuse radio halo of the Coma cluster by Schlickeiser et al. (1987) used the combination of first- and second-order Fermi acceleration and radiative synchrotron and inverse Compton losses to produce a volume-integrated frequency spectrum which could be approximated as $I(v) \propto v^{3(-1/2)} \exp(-v/v_c)$, with parameters Γ and v_c, defined in the aforementioned paper, depending on the details of the embedded shocks and the functional dependence of the diffusion coefficients in energy. The above spectrum fits observations better than the single- and double-power-law characteristic of the primary (Jaffe 1977; Rephaeli 1977) and secondary electron models (Jaffe 1977; Dennison 1980). The cutoff frequency depends on a number of parameters such as magnetic field, density, spatial diffusion coefficient, and the level of the background radiation field. Although a small fraction of galaxy clusters have radio halos (Feretti et al. 2012), this fraction is higher for bright clusters (Giovannini et al. 1999; Cassano et al. 2007). The importance of cluster mergers for radio halos has been pointed out by Tribble (1993), Petrosian (2001), and Brunetti et al. (2001).

As a technique complementary to observations, full cosmological simulations of cluster formation and evolution, including mergers from infalling objects and accretion of gas, are becoming more and more popular recently (see, e.g., Nagai et al. 2007; Borgani & Kravtsov 2009; Dolag & Stasyszyn 2009; Xu et al. 2010; Donnert et al. 2011, etc). These simulations produce magnetic fields which are roughly consistent with the observed
rotation measures (see, e.g., Dolag et al. 2005; Xu et al. 2012). Thus, one can hope to elicit the properties of small-scale ICM turbulence and predict the effects of second-order acceleration. Obviously, it is impossible to reach scales of CR gyroradius in a cosmological cluster simulation, so the subgrid model of turbulence has to be adopted.

In Section 2 we discuss the origin of cluster magnetic field; in Section 3 we present the setup of our cosmological simulations; in Section 4 we describe compressible turbulence in the ICM; in Section 5 we propose a novel technique to decompose ICM turbulent perturbations into MHD modes; in Section 6 we discuss diffusive CR acceleration by the fast mode; and in Section 7 we summarize our findings.

2. SMALL-SCALE DYNAMO

The strength of primordial magnetic fields is still unknown with the upper bound around 10^{-9} G (Paololetti & Finelli 2011; Schleicher & Miniati 2011). Assuming that clusters formed as a result of a gravitational collapse of an unmagnetized gas, a proper mechanism of generating observed magnetic fields in the ICM has to be pointed out. Taking into account that the cluster volume is several cubic megaparsecs, the magnetic field provided directly by galactic winds and active galactic nucleus (AGN) lobes are grossly insufficient and the observed field has to be amplified in situ by cluster turbulence. Typically, the outer scales of cluster magnetic fields estimated from observations (Carilli & Taylor 2002) are much smaller than turbulence outer scales, which is why cluster dynamo is normally the small-scale dynamo. Also, generating large-scale fields, i.e., larger than an outer scale of turbulence, such as those observed in spiral galaxies, requires many (typically hundreds) dynamical timescales of turbulence on the driving scale, which is impossible in the ICM, where dynamical timescale is comparable with the age of the universe.

Although Coulomb mean-free path (mfp) of a thermal particle in the ICM is very large, 10–100 kpc, it is believed that the actual mfp is much smaller due to magnetic fields and turbulence. Indeed, the Larmor radius of a thermal particle in a 1 μG field is 10^{-9} pc and even if we assume that particles stream freely along tangled magnetic field, the mfp will be greatly reduced. Further reduction of mfp is very likely due to scattering by collective effects (Schekochihin & Cowley 2006; Lazarian & Beresnyak 2006; Schekochihin et al. 2008; Brunetti & Lazarian 2011b), with estimates of the mfp between 10^{-3} and 10^{-9} pc. The cluster environment, therefore, is unlikely to be kinetic viscous, as was commonly suggested before based on Coulomb mfp, but rather a high- Reynolds number (Re) turbulent environment, with self-similar scalings for velocity covering many orders of magnitude. While the kinematic dynamo, which ignored the backreaction of the magnetic field, has been studied extensively, due to the relative simplicity of the approach, the nonlinear small-scale dynamo received less attention. In high-Re environments, kinematic dynamo saturates very quickly, giving way to the nonlinear regime.

Nonlinear small-scale dynamo has been studied extensively only recently. In particular, numerical simulations have established that the saturated state of such dynamo is relatively unaffected by Re, as long as Re is large (Haugen et al. 2004). It was suggested that the small-scale dynamo in large Re flows could be universal (Schlüter & Biermann 1950; Schekochihin & Cowley 2007) and this was supported by further numerical and analytical studies (Cho et al. 2009; Beresnyak et al. 2009), in particular the universality of the homogeneous small-scale dynamo based on turbulence locality has been argued in Beresnyak (2012). Although real clusters are not homogeneous, small-scale turbulence could be considered approximately homogeneous on scales which are much smaller than the cluster size. In this case, the growth rate of magnetic energy is proportional to the solenoidal turbulence dissipation rate with a coefficient of around 0.05 (Beresnyak 2012).

Full self-consistent MHD simulations of galaxy cluster formation, such as those presented here, are, in principle, able to model the small-scale dynamo in clusters. However, due to the much lower effective Re, such simulations tend to prolong the initial exponential growth period. A balance have to be found between realistic magnetic injection mechanism, such as AGN activity in Xu et al. (2010) or galaxy winds in Donnert et al. (2009) and the aforementioned artificial delay of growth. Since the magnetic fields obtained in simulations by Xu et al. (2012) that we use in this paper are consistent with observations, we will assume that they adequately reproduce the small-scale dynamo action in clusters.

3. CLUSTER SIMULATIONS

The galaxy cluster studied in this paper is the simulation A in Xu et al. (2010). This simulation is performed using the cosmological MHD code with adaptive mesh refinement (AMR) ENZO+MHD (Collins et al. 2010). The simulation here uses an adiabatic equation of state, with the ratio of specific heat being 5/3, and does not include heating and cooling physics or chemical reactions, which are not important in this research.

The initial conditions of the simulation are generated at redshift $z = 30$ from an Eisenstein & Hu (1999) power spectrum of density fluctuation in a ΛCDM universe with parameters $h = 0.73$, $\Omega_m = 0.27$, $\Omega_b = 0.044$, $\Omega_\Lambda = 0.73$, and $\sigma_8 = 0.77$. These parameters are close to the values from WMAP3 observations (Spergel et al. 2007). The simulation volume is $(256 \ h^{-1} \text{Mpc})^3$, and it uses a 1283 root grid and two level nested static grids in the Lagrangian region where the cluster forms. This gives an effective root grid resolution of 5123 cells ($\sim 0.69 \text{Mpc})$ and dark matter particle mass resolution of $1.07 \times 10^{10} \text{M}_\odot$. During the course of the simulation, eight levels of refinements are allowed beyond the root grid, for a maximum spatial resolution of $7.8125 \ h^{-1} \text{kpc}$. The AMR is applied only in a region of $(\sim 43 \text{Mpc})^3$, where the galaxy cluster forms near the center of the simulation domain. The AMR criteria in this simulation are follows. During the cluster formation, but before the magnetic fields are injected, in addition to the density refinement, the refinement is controlled by baryon and dark matter density. After magnetic field injections, all the regions where magnetic field strengths are higher than $5 \times 10^{-8} \text{G}$ are refined to the highest level.

The magnetic field initialization is using the same method in Xu et al. (2008, 2009) as the original model proposed by Li et al. (2006) assuming that the magnetic fields are from the outburst of an AGN. We have the magnetic fields injected at redshift $z = 3$ in the most massive halo of $1.5 \times 10^{15} \text{M}_\odot$. We assume that the magnetic fields are from $\sim 10^8 \text{M}_\odot$ supermassive black hole with about 1% of outburst energy in magnetic form. There is

\footnote{Lower bounds based on the argument that Fermi did not observe GeV photons from inverse Compton scattering of the CMB by the electron–positron pair cascade has been suggested by Neronov & Vovk (2010) and Tavecchio et al. (2010), but has been debated recently by the beam instability argument by Broderick et al. (2012) and Schlickeiser et al. (2012). However, another lower bound of $\delta B = 10^{-19} \text{G} \text{n}^{-1} \text{cm}^{-3} \text{K}^{-3/4}$ based on basic plasma processes has been proposed recently by Schlickeiser (2012).}
The simulated cluster is a massive cluster with its basic properties at redshift $z = 0$ as follows: $R_{\text{virial}} = 2.16 \text{ Mpc}$, $M_{\text{virial(total)}} = 1.25 \times 10^{15} M_\odot$, $M_{\text{virial(gas)}} = 1.86 \times 10^{14} M_\odot$, and $T_{\text{virial}} = 7.65 \text{ keV}$. This cluster is already relaxed at the current epoch in the sense of X-ray and density distribution, but the turbulence is still excited by recent minor mergers. The final current epoch in the sense of X-ray and density distribution, but $z \sim 1.9 \times 10^{60}$ erg magnetic energy put into the ICM. A previous study (Xu et al. 2010) has shown that the injection redshifts and magnetic energy are not important to the distributions of the ICM magnetic fields at low redshifts.

Estimating mode ratios is a fairly challenging task, because the magnetic field in clusters is tangled and has no global mean field component, so global Fourier transforms of turbulent fields over the whole cluster could not be decomposed into modes. Also, doing global Fourier transforms in a datacube containing a whole cluster is rather meaningless, since all quantities strongly depend on the distance to the cluster center. Thus, the power spectra obtained from such transforms will be severely contaminated by large-scale gradients. In this paper, we propose and use a local decomposition method based on structure functions (SFs). This is the first time such a method is used with the ICM MHD turbulence. This method also allows us to reduce the error associated with the fact that the cluster is not uniform and any measurement will include large-scale gradients associated with the cluster shape. In particular, all global velocity measurements are contaminated by global accretion flow. The attempts to subtract this flow based on careful modeling of the averaged flow have not been either simple or reliable.

We are using SFs averaged over shells around a cluster center to avoid contamination by large-scale gradients. In principle, shells should be elliptic, as most real clusters are significantly non-spherical. In this paper, which mostly serves as a demonstration of the method we picked relatively spherical simulated cluster and we are averaging over spherical shells. Significant substructure, i.e., subclusters within a cluster will also be problematic for our method and will probably require some sort of masking procedure.

The second-order SF is directly related to the power spectrum in the homogeneous case, e.g., the second-order SF scaling r^m corresponds to the power spectrum scaling of k^{-m-1} ($0 < m < 2$). In the inhomogeneous case, the SF will act as a good proxy for determining the local power spectrum of turbulence. The main idea of our method is to use volume-averaged SF in shells centered on the cluster center. We are able to do so because the SF is a local measurement. We used five shells with radii increasing linearly by 300 kpc for each shell. Figure 2 shows

4. COMpressible MHD TURBuLence IN THE ICM

These simulations reveal that the dominant mechanism of the excitation of the clusterwide turbulence in the galaxy cluster medium is cluster mergers (see, e.g., Vazza et al. 2011; Xu et al. 2010; Donnert et al. 2011). Since the typical infall velocity and the typical thermal sound speed are related to virial velocity, they are of the same order, so the infall is slightly supersonic, generating a sizable amount of compressive perturbations and, possibly, weak shocks. Another mechanism could be due to bringing hot plasma inside cooler core environment, where the hot gas will become buoyant and produce convective turbulence and mixing in the center.

Speaking of turbulence in the ICM, a simplified approach is often taken when a turbulence is characterized by the local characteristic gas velocity (Iapichino & Niemeyer 2008; Vazza et al. 2009; Donnert et al. 2011). This will not be sufficient, however, if one wants to address the issue of second-order acceleration. Indeed, the quasi-incompressible component of MHD turbulence, consisting of slow and Alfvén modes tend to become progressively more anisotropic on smaller scales (Goldreich & Sridhar 1995) and, in a test particle limit, effectively decouples from CRs (Chandran 2000; Yan & Lazarian 2002, 2004). Therefore, we want to know the fraction of the fast mode, produced by cluster turbulence, which until now has not been reliably estimated. In this paper, we will estimate the ratio of turbulent energy in each mode from simulation data and our subgrid model of turbulence will assume independent energy cascades for each mode as in Cho et al. (2003).6

The second-order SF is directly related to the power spectrum in the homogeneous case, e.g., the second-order SF scaling r^m corresponds to the power spectrum scaling of k^{-m-1} ($0 < m < 2$). In the inhomogeneous case, the SF will act as a good proxy for determining the local power spectrum of turbulence. The main idea of our method is to use volume-averaged SF in shells centered on the cluster center. We are able to do so because the SF is a local measurement. We used five shells with radii increasing linearly by 300 kpc for each shell. Figure 2 shows

6 The question of the mode coupling is beyond the scope of this paper, however, a few comments could be made. In particular, the absence of energy exchange between slow and Alfvénic mode on small scales in a weakly compressible case can be argued on rigorous basis, even if the interaction between modes is strong, i.e., perturbative theory is impossible, see, e.g., Goldreich & Sridhar (1995), and Beresnyak (2011).
adiabatic simulations, the bremsstrahlung cooling in the center, that if we assume that the cluster center is as hot as in our years. This is a reasonable number for a quiet cluster. Note corresponds to the turbulence decay times of several billion turbulence is only weakly compressive. Our energy fluxes & Pouquet1998). We can apply this method because cluster reiterates the need to use local measurement, rather than the global method to calculate these quantities in shells around cluster center, since all quantities depend strongly on the distance to the center.

Figure 2. Second-order structure functions, characterizing kinetic (solid) and magnetic (dashed) energy density in clusters. Here $\rho_a, \rho_b, v_a, v_b, B_a, B_b$ are the quantities taken at points a and b, separated by distance l. The middle point between a and b lies within a shell, whose number is indicated above the data. The outer radius of nth shell is $n \times 300$ kpc. We use the structure function method to calculate these quantities in shells around cluster center, therefore mitigating the effects strongly inhomogeneous with density changing several orders of magnitude from the center to the outskirts of the cluster. In this paper, we use a hybrid approach based on both Fourier transforms and SFs. As was described in previous sections, since SFs are local measurements, we can calculate them in shells around the cluster center, therefore mitigating the effects associated with large-scale gradient along the radius.

As cluster turbulence exists in a very hot gas, $\sim 10^7$ K, the gas pressure is typically higher than dynamic pressure in most of the volume, resulting in subsonic turbulence with $M_s \ll 1$. Out of three MHD modes, the Alfvén mode is precisely incompressible, due to \mathbf{k} being perpendicular to both \mathbf{B} and δv. Slow and fast modes are both compressible, but the slow mode is almost incompressible in the subsonic, high-\beta case. We can, therefore, split modes in two groups; one of them is an almost incompressible Alfvén and slow mode and the other is a fully compressible fast mode. In the high-\beta case, the fast mode speed is close to the sonic speed c_s and the dispersion relation is almost isotropic.

Figure 4 shows the structure of the modes using contours of the second-order SF plotted with the x-axis corresponding to the direction along the magnetic field and the y-axis to the perpendicular direction. The contours approximate the averaged shape of “turbulent eddies.” We see that Alfvénic and slow modes show fairly small anisotropy along B, which is due to the fact that we have a very short inertial range for MHD turbulence (below MHD scale). The fast mode shows slight inverse anisotropy. It was often assumed earlier that the fast mode turbulence is intrinsically isotropic. It is not true, however, since the weak cascade of the fast mode consists of independent turbulence, i.e., the case of $\delta B \sim B$. This approach works in the interstellar medium (ISM) of spiral galaxies where the turbulent component of the field is comparable with the mean-field component (see, e.g., Schlickeiser 2002). In galaxy clusters such an approach is impossible due to the lack of a global mean field. The wavelet technique has been proposed to deal with this difficulty in Kowal & Lazarian (2010). The wavelet technique is computationally expensive, however, and requires datacubes with reduced resolution. Also, it has only been applied to homogeneous turbulence. The case of cluster turbulence is especially difficult, not only because cluster turbulence has no mean magnetic field, but also because it is strongly inhomogeneous with density changing several orders of magnitude from the center to the outskirts of the cluster. In this paper, we use a hybrid approach based on both Fourier transforms and SFs. As was described in previous sections, since SFs are local measurements, we can calculate them in shells around the cluster center, therefore mitigating the effects associated with large-scale gradient along the radius.

As cluster turbulence exists in a very hot gas, $\sim 10^7$ K, the gas pressure is typically higher than dynamic pressure in most of the volume, resulting in subsonic turbulence with $M_s \ll 1$. Out of three MHD modes, the Alfvén mode is precisely incompressible, due to \mathbf{k} being perpendicular to both \mathbf{B} and δv. Slow and fast modes are both compressible, but the slow mode is almost incompressible in the subsonic, high-\beta case. We can, therefore, split modes in two groups; one of them is an almost incompressible Alfvén and slow mode and the other is a fully compressible fast mode. In the high-\beta case, the fast mode speed is close to the sonic speed c_s and the dispersion relation is almost isotropic.

Figure 4 shows the structure of the modes using contours of the second-order SF plotted with the x-axis corresponding to the direction along the magnetic field and the y-axis to the perpendicular direction. The contours approximate the averaged shape of “turbulent eddies.” We see that Alfvénic and slow modes show fairly small anisotropy along B, which is due to the fact that we have a very short inertial range for MHD turbulence (below MHD scale). The fast mode shows slight inverse anisotropy. It was often assumed earlier that the fast mode turbulence is intrinsically isotropic. It is not true, however, since the weak cascade of the fast mode consists of independent turbulence, i.e., the case of $\delta B \sim B$. This approach works in the interstellar medium (ISM) of spiral galaxies where the turbulent component of the field is comparable with the mean-field component (see, e.g., Schlickeiser 2002). In galaxy clusters such an approach is impossible due to the lack of a global mean field. The wavelet technique has been proposed to deal with this difficulty in Kowal & Lazarian (2010). The wavelet technique is computationally expensive, however, and requires datacubes with reduced resolution. Also, it has only been applied to homogeneous turbulence. The case of cluster turbulence is especially difficult, not only because cluster turbulence has no mean magnetic field, but also because it is strongly inhomogeneous with density changing several orders of magnitude from the center to the outskirts of the cluster. In this paper, we use a hybrid approach based on both Fourier transforms and SFs. As was described in previous sections, since SFs are local measurements, we can calculate them in shells around the cluster center, therefore mitigating the effects associated with large-scale gradient along the radius.

5. MODE DECOMPOSITION IN MHD TURBULENCE

MHD mode decomposition in turbulence, based on Fourier transforms, has been used before by Cho & Lazarian (2002, 2003) and Cho et al. (2003). In these papers, the global Fourier transform provided a global wavevector \mathbf{k} for each Fourier mode. The global mean field \mathbf{B}, together with global wavevector \mathbf{k} and $\mathbf{k} \times \mathbf{B}$, define the frame in which decomposition is made. For example, the Alfvén mode eigenvector is along $\mathbf{k} \times \mathbf{B}$ and the slow and fast modes are in the $\mathbf{k} \cdot \mathbf{B}$-plane. The necessity of using global \mathbf{k} and \mathbf{B} limits the applicability of the method. In particular, the above method was used to study trans-Alfvénic
is along the magnetic field, while the y-axis is perpendicular to the field. The unit of the structure function is 10^{14} cm2 s$^{-2}$, and the unit of length on the x- and y-axes is the box size, which is 3 Mpc. Alfvénic and slow mode eddies show small anisotropy along B, and the anisotropy is small due to very short range of MHD scales, as the MHD scale is close to dissipation scale. The fast mode shows slight inverse anisotropy. (A color version of this figure is available in the online journal.)

![Figure 4. Second-order structure functions of Alfvénic (left), slow (middle), and fast (right) mode, calculated with respect to the local mean magnetic field, the x-axis is along the magnetic field, while the y-axis is perpendicular to the field. The unit of the structure function is 10^{14} cm2 s$^{-2}$, and the unit of length on the x- and y-axes is the box size, which is 3 Mpc. Alfvénic and slow mode eddies show small anisotropy along B, and the anisotropy is small due to very short range of MHD scales, as the MHD scale is close to dissipation scale. The fast mode shows slight inverse anisotropy. (A color version of this figure is available in the online journal.)](image)

6. IMPLICATIONS FOR CR ACCELERATION

In this section, we briefly outline the consequences of the significant amount of fast mode found in our cluster simulations. We use simplified expressions for second-order acceleration, dropping out numerical factors of the order of unity. A more detailed calculation of acceleration, although based on the above-mentioned analytical estimate of the amplitude of the fast mode, can be found in Brunetti & Lazarian (2011a, 2011b). We also expect additional factors from the fact that the fast mode, excited by cluster turbulence, is not exactly isotropic.

Second-order acceleration by turbulence has been suggested as a process that provides additional energy to secondary electrons and allows them to produce an observable amount of radio emission. Energetically, it is hard to support large amounts of fast electrons just by protons alone, and even if it were possible, such sources will have much brighter cores than observed (see, e.g., Donnert et al. 2011). The attractiveness of second-order acceleration models is that it will produce relatively featureless radio halos, similar to the observed halos,
since turbulence is volume-filling. If, on the other hand, most of the acceleration happens in the accretion shocks, they will produce a different observed morphology, due to relatively short lifetimes of synchrotron electrons. Indeed, so-called radio relics, which morphologically resemble large-scale shocks, have been observed in some clusters (Ensslin et al. 1998).

Second-order acceleration is a diffusion of particles in the momentum space due to collision with magnetic irregularities. The original mechanism, proposed by Fermi (1949), assumed collisions with large-scale clouds, while turbulence models assume resonant interaction with MHD modes. The flux of particles through momentum space due to momentum diffusion is defined as $F = -4\pi p^2 D_{pp} \partial f/\partial p$, where we assumed isotropy and have used the momentum diffusion coefficient D_{pp} already integrated over the pitch angle. This D_{pp} is equivalent to A_2 from Schlickeiser (2002). This term provides acceleration, as long as $\partial f/\partial p < 0$, which is normally satisfied. The estimate of momentum diffusion due to the interaction with fast mode as $D_{pp} = p^2 v_s L_{\text{M}}^{1/2} e^{-1} (pc/eB)^{-1/2}$, where L_{M} is the MHD scale (see, e.g., Schlickeiser 2002; Yan & Lazarian 2004). We dropped out all factors of the order of unity, although they can also be absorbed in the parameter L_{M}. If we assume that this process is dominant over space diffusion and losses, then the stationary solution will correspond to $F = \text{const}$ which suggests that $f \sim p^{-3.5/2}$, corresponding to the energy distribution $E_p = 4\pi p^2 f \sim p^{-1/2}$, a very flat spectral index, compared with observed spectral indices which are between -2 and -4. This flatness is an inevitable feature of second-order acceleration, because particles try to diffuse to higher p where there is a larger phase volume. If escape due to diffusion is taken into account, the result is virtually unchanged as long as particles are well-trapped, i.e., acceleration timescales are smaller than the diffusive escape timescales. If, on the other hand, escape is more efficient, the second-order acceleration will only slightly modify the injected particle distribution (see, e.g., Schlickeiser 2002). The radio emission spectra of halos are rather steep, which suggests steep particle distributions and it would seem that second-order acceleration will either be inefficient or produce particle distributions that are clearly incompatible with the observed ones. However, in practice a variety of other effects have to be taken into account. Synchrotron cooling is one of these effects, and it could be expressed as $F = -4\pi p^2 \dot{p} f$, where $\dot{p} \sim p^2$. This will result in a cutoff of accelerated distribution, in the form $E_{p,c} \sim p^{-1/2} \exp(-p/p_c)^{3/2}$, where p_c is a cutoff momentum. This cutoff will result in a steeper emitted radio spectra and these spectra can be mistakenly identified as produced by steep E_p distributions.

We argue, however, that another process of fundamental importance is operating in second-order acceleration, which is the back-reaction of particles to turbulence. Indeed, there is an energetic constraint that requires that CRs should not extract more energy than that is available in the turbulent cascade. If this condition is ignored and turbulent spectra are postulated to be power law, an excessive amount of particle heating will be obtained. The turbulent cascade can produce classic self-similar solutions, such as $\delta B^2 \sim k^{-1/2}$ for the fast mode, only when the back-reaction to turbulence is ignored and the energy flux is due to fluid nonlinearity alone and is constant through all scales. In practice, this condition will be quickly broken by the feedback of CRs.

It appears that the distribution function for protons will necessarily be time-dependent with the highest energy growing in time. The feedback argument will only limit the density of CRs at each energy, but will not prevent acceleration to higher energies. Another puzzle is the boundary condition at low energies. On one hand, highly rarefied cluster medium subjects fast mode to efficient collisionless damping, so that the turbulent cascade terminates at fairly large scales (Brunetti & Lazarian 2007). The acceleration starting with low energies is, therefore, impossible and suitable injection mechanism should be devised. To further complicate the issue, the collective plasma effects that will decrease mp and inhibit collisionless damping have been brought into the picture (Brunetti & Lazarian 2011a, 2011b). This discussion is relevant to the question of what is the minimum energy of the CR particle that would allow it to be reaccelerated. In this paper, we do not deal with this fairly complex issue. Instead we argue below that, given enough time, high energy protons will start extracting a considerable fraction of the cascade energy on much larger scales than the scale of damping by the thermal ICM. For these high energy particles thermal damping will be irrelevant, however, it is clear that damping must affect low energies and the overall time evolution of particle spectra.

An absolute upper limit on second-order acceleration could be obtained by assuming that the energy extracted on each scale should not exceed large-scale turbulent dissipation rate ϵ. As the flux of energy in accelerated particles can be expressed as $F_E = p c F = -4\pi p^2 \dot{p} f/\partial p$, this upper limit will result in an upper limit on $E_p < p^{-1.5}$, which is steeper than constant particle flux solution, suggesting that unless second-order acceleration is limited by losses or escape, it will eventually be limited at high energies by back reaction to turbulence. Assuming that protons take most of the turbulent energy the E_p will be limited from above by

$$E_p < \epsilon v_A^2 L_M p_0^{-1/2} p^{-3/2},$$

where L_M is the MHD scale of fast-mode turbulence, $p_0 \approx 12eBL_M/c$. The transition to steeper spectra possibly generated by other mechanisms happens at a momentum p_{dt}, which will be determined by the total turbulent energetic history of the cluster and is approximately related to the temperature on the outskirts of the cluster. Assuming turbulence pumping 30% of the time with the dissipation rate of ϵ during the age of the universe t_A, we obtain the expression $p_{dt} = p_0 (0.15 t_A v_A^2 / cL_M^2)$. Numerically it could be estimated assuming $v_A \approx 10^4$ cm s$^{-1}$ and $L_M \sim 60$ kpc as $p_{dt} \sim 2 \times 10^{-6} p_0 \sim 2 \times 10^{15}$ eV/c, so the maximum proton gyroradius is still much smaller than MHD scale L_M. As we see, UHECR protons, with energies above 10^{18} eV cannot be produced by this mechanism. This is due to second-order acceleration being a rather inefficient acceleration mechanism.

As for the electrons, their cutoff energy p_e will be determined by the balance between synchrotron cooling and momentum diffusion as $p_e = m_e \epsilon (16\pi^2 e^2 B_{\text{M}} c^2 / \sigma_T^2 L_M B_{\text{M}}^2 / v_A c)^{1/3}$, where $B_{\text{M}} = (B^2 + B_{\text{IC}}^2)^{1/2}$ includes equivalent $B_{\text{IC}} \sim 3(1 + z)^2 \mu$G to account for inverse Compton losses on CMB and synchrotron losses. Using parameters from above, $p_e \sim 4 \times 10^{10} m_e$, which corresponds to synchrotron cutoff of 20 GHz (weaker emission above the cutoff will be due to secondary electrons constantly produced by pion decay). The sketch of the electron and proton spectra is presented in Figure 6. The sharp cutoff in electron spectra, associated with transition from the spectrum of accelerated electrons to the spectrum of secondary electrons could explain the relatively steep spectra of radio emission from radio halos.
Figure 6. Spectra of electrons and protons, reaccelerated by fast mode turbulence in the galaxy cluster. The proton spectrum is limited from above by absolute energetic constraint of Equation (2). The \(e/p \) ratio initially corresponds to the injection \(e/p \) ratio till the electron synchrotron suppression at \(p_s \). This ratio will increase later due to secondary \(e/p \) production. For higher energies \(e/p \) ratio is smaller, as electron spectrum is in equilibrium between production directly from protons and synchrotron losses.

7. SUMMARY

The nonthermal radiation from hot conductive ICM is explained by the presence of accelerated particles. It is plausible that the cause of acceleration, in the case of radio halos, is not large-scale accretion shocks, but rather volumetric turbulence that is produced by constant mergers and buoyancy of the cluster medium. This turbulence is currently being investigated by cosmological MHD simulations as being a source of both magnetic fields and accelerated particles. The key to situ acceleration of electrons and protons is the MHD fast mode which effectively scatter particles and diffusively accelerate them. We propose a novel method to extract the fast mode from MHD simulation and estimate the efficiency of acceleration and scattering. An important limit, imposed by the energy flux constraint of the fast mode turbulence, leads to a spectrum which is steeper than one would naively assume from diffusive acceleration. Moreover, this spectrum has an exponential cutoff at relatively low energies for electrons which could explain very soft radio spectra typically observed for diffuse radio halos. A more detailed calculation of the particle distribution in space and simulated radio maps will be presented in a future publication.

A.B. is grateful to Gianfranco Brunetti and Julius Donnert for illuminating discussions. A.B. was supported by Humboldt Fellowship at the Ruhr-Universität Bochum and Los Alamos Director’s Fellowship. H.X. and H.L. are supported by the LDRD and IGPP programs at LANL and by DOE/Office of Fusion Energy Science through CMSO. R.S. acknowledges partial support by the Deutsche Forschungsgemeinschaft (grant Schl 201/25-1). We thank anonymous referee for meticulous comments.

REFERENCES

Ackermann, M., Ajello, M., Allafort, A., et al. 2010, ApJL, 717, L71
Beresnyak, A. 2011, PhRvL, 106, 075001
Beresnyak, A. 2012, PhRvL, 108, 035002

Beresnyak, A., Jones, T. W., & Lazarian, A. 2009, ApJ, 707, 1541
Bonafede, A., Feretti, L., Murgia, M., et al. 2010, A&A, 513, A30
Borgani, S., & Kravtsov, A. 2009, ASL, 4, 104
Broderick, A. E., Chang, P., & Pfrommer, C. 2012, ApJ, 752, 22
Brunetti, G., Blasi, P., Reimer, O., et al. 2012, MNRAS, 426, 956
Brunetti, G., Giacintucci, S., Cassano, R., et al. 2008, Natur, 455, 944
Brunetti, G., & Lazarian, A. 2007, MNRAS, 378, 245
Brunetti, G., & Lazarian, A. 2011a, MNRAS, 410, 127
Brunetti, G., & Lazarian, A. 2011b, MNRAS, 412, 817
Brunetti, G., Setti, G., Feretti, L., & Giovannini, G. 2001, MNRAS, 320, 365
Carilli, C. L., & Taylor, G. B. 2002, ARA&A, 40, 319
Cassano, R., & Brunetti, G. 2005, MNRAS, 357, 1313
Cassano, R., Brunetti, G., Setti, G.,Govoni, F., & Dolag, K. 2007, MNRAS, 378, 1565
Cassano, R., Ettori, S., Giacintucci, S., et al. 2010, ApJL, 721, L82
Chandran, B. D. G. 2000, PhRvL, 84, 4656
Cho, I., & Lazarian, A. 2002, PhRvL, 88, 245001
Cho, J., & Lazarian, A. 2003, MNRAS, 345, 325
Cho, J., Lazarian, A., & Vishniac, E. T. 2003, in Lecture Notes in Physics, Vol. 614, Turbulence and Magnetic Fields in Astrophysics, ed. E. Falgarone & T. Passot (Berlin: Springer), 56
Cho, J., Vishniac, E. T., Beresnyak, A., Lazarian, A., & Ryu, D. 2009, ApJ, 693, 1449
Collins, D. C., Xu, H., Norman, M. L., Li, H., & Li, S. 2010, ApJS, 186, 308
Dennison, B. 1980, ApJL, 239, L93
Dolag, K., Grasso, D., Springel, V., & Tkachev, I. 2005, JCAP, 01, 009
Dolag, K., & Stasyszyn, F. 2009, MNRAS, 398, 1678
Donnert, J., Dolag, K., Brunetti, G., & Cassano, R. 2013, MNRAS, 429, 3564
Donnert, J., Dolag, K., Cassano, R., & Brunetti, G. 2011, MmSAI, 82, 623
Donnert, J., Dolag, K., Lesch, H., & Müller, E. 2009, MNRAS, 392, 1008
Eilek, J. A., & Owen, F. N. 2002, ApJ, 567, 202
Eisenstein, D. J., & Hu, W. 1999, ApJ, 511, 5
Ensslin, T. A., Biermann, P. L., Klein, U., & Kohle, S. 1998, A&A, 332, 395
Feretti, L., Giovannini, G., Govoni, F., & Murgia, M. 2012, A&ARv, 20, 54
Fermi, E. 1949, PhRv, 75, 1169
Ferrari, C., Govoni, F., Schindler, S., Bykov, A. M., & Rephaeli, Y. 2008, SSRv, 134, 93
Giovannini, G., Bonafede, A., Feretti, L., et al. 2009, A&A, 507, 1257
Giovannini, G., Tordi, M., & Feretti, L. 1999, NewA, 4, 141
Goldreich, P., & Sridhar, S. 1995, ApJ, 438, 763
Govoni, F., Dolag, K., Murgia, M., et al. 2010, A&A, 522, A105
Govoni, F., Murgia, M., Feretti, L., et al. 2006, A&A, 460, 425
Haugen, N. E., Brandenburg, A., & Dobler, W. 2004, PhRvE, 70, 016308
Hoeft, M., Brandenburg, M., Yepes, G., Gottlöber, S., & Schwope, A. 2008, MNRAS, 391, 1511
Iapichino, L., & Niemeyer, J. C. 2008, MNRAS, 388, 1089
Jaffe, W. J. 1977, ApJ, 216, 212
Jeltema, T. E., & Profumo, S. 2011, ApJ, 728, 53
Kowal, G., & Lazarian, A. 2010, ApJ, 720, 742
Lazarian, A., & Beresnyak, A. 2006, MNRAS, 373, 1195
Li, H., Lapenta, G., Finn, J. M., Li, S., & Colgate, S. A. 2006, ApJ, 643, 92
Mcmara, B. R., & Nulsen, P. E. J. 2007, ARA&A, 45, 117
Motl, M. P., Hallman, E. J., Burns, J. O., & Norman, M. L. 2005, ApJL, 623, L63
Nagai, D., Vikhlinin, A., & Kravtsov, A. V. 2007, ApJ, 655, 98
Neronov, A., & Vovk, I. 2010, Sci, 328, 73
Paoletti, D., & Finelli, F. 2011, PhRvD, 83, 123533
Petrosian, V., 2001, ApJ, 557, 360
Poltario, H., & Fouquet, A. 1998, PhRvE, 57, R21
Rephaeli, Y. 1977, ApJL, 212, 608
Schekochihin, A. A., & Cowley, S. C. 2006, PhPl, 13, 056501
Schekochihin, A. A., & Cowley, S. C. 2007, Turbulence and Magnetic Fields in Astrophysical Plasmas (Berlin: Springer), 85
Schekochihin, A. A., Cowley, S. C., Kulsrud, R. M., Rosin, M. S., & Heinemann, T. 2008, PhRvL, 100, 081301
Schleicher, D. R. G., & Miniati, F. 2011, MNRAS, 418, L143
Schlickeiser, R. 2002, Cosmic Ray Astrophysics (Berlin: Springer)
Schlickeiser, R. 2012, PhRvL, 109, 261101
Schlickeiser, R., Ibscher, D., & Supsar, M. 2012, ApJ, 758, 102
Schlickeiser, R. 2002, Cosmic Ray Astrophysics (Berlin: Springer)
Tribble, P. C. 1993, MNRAS, 263, 31
van Weeren, R. J., Röttgering, H. J. A., Brüggen, M., & Hoeft, M. 2010, Sci, 330, 347
van Weeren, R. J., Röttgering, H. J. A., Rafferty, D. A., et al. 2012, A&A, 543, A43
Vazza, F., Brunetti, G., Gheller, C., Brunino, R., & Brüggen, M. 2011, A&A, 529, A17

Yan, H., & Lazarian, A. 2002, PhRvL, 89, B1102
Yan, H., & Lazarian, A. 2004, ApJ, 614, 757