ON THE CYCLIC TORSION OF ELLIPTIC CURVES OVER CUBIC NUMBER FIELDS (III)

JIANG ANG

ABSTRACT. This is the third part of a series of papers discussing the cyclic torsion subgroup of elliptic curves over cubic number fields. For $N = 39$, we show that $\mathbb{Z}/N\mathbb{Z}$ is not a subgroup of $E(K)_{\text{tor}}$ for any elliptic curve E over a cubic number field K.

In [12], the author conjectured that $\mathbb{Z}/N\mathbb{Z}$ is not a cyclic torsion subgroup of the Mordell-Weil group of any elliptic curve over a cubic number field for 24 values of N: 22, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 39, 40, 42, 45, 49, 55, 63, 65, 77, 91, 121, 143, 169.

The cases $N = 55, 65, 77, 91, 143, 169$ were proved in the first part [12] of this series of papers using refinements of a criterion originally due to Kamienny. The cases $N = 22, 25, 40, 49$ were proved in the second part [13] of this series of papers with the help of Kato’s result about the Birch and Swinnerton-Dyer conjecture on modular abelian varieties. In this paper, we prove the $N = 39$ case, which is

Theorem 0.3.

Let N be a positive integer. Throughout this paper, $X_1(N)$ (resp. $X_0(N)$) denotes the modular curve over \mathbb{Q} associated to the congruence subgroup $\Gamma_1(N)$ (resp. $\Gamma_0(N)$). $Y_1(N)$ (resp. $Y_0(N)$) denotes the corresponding affine curve without cusps. $J_1(N)$ (resp. $J_0(N)$) denotes the Jacobian of $X_1(N)$ (resp. $X_0(N)$).

Let $X_0(N)^{(d)}$ be the d-th symmetric power of $X_0(N)$. Suppose K is a number field of degree d over \mathbb{Q} and $x \in X(K)$. Let x_1, \ldots, x_d be the images of x under the distinct embeddings $\tau_i : K \rightarrow \mathbb{C}, 1 \leq i \leq d$. Define

$$\Phi : X_0(N)^{(d)} \rightarrow J_0(N)$$

by $\Phi(P_1 + \cdots + P_d) = [P_1 + \cdots + P_d - d\mathfrak{x}]$ where $[\]$ denotes the divisor class.

Any point of $Y_1(N)$ is represented by $(E, \pm P)$, where E is an elliptic curve and $P \in E$ is a point of order N. Any point of $Y_0(N)$ is represented by (E, C), where E is an elliptic curve and $C \subset E$ is a cyclic subgroup of order N. The covering map $\pi : X_1(N) \rightarrow X_0(N)$ sends $(E, \pm P)$ to $(E, \langle P \rangle)$, where $\langle P \rangle$ is the cyclic subgroup generated by P.

Let K be a number field with ring of integers \mathcal{O}_K, $\varphi \subset \mathcal{O}_K$ a prime ideal lying above p, $k = \mathbb{F}_q = \mathcal{O}_K/\varphi$ its residue field. Let A be an abelian variety over K and $P \in A(K)$ a point of order N. Let \tilde{A} be the fibre over k of the Néron model of A.
and let $\tilde{P} \in \tilde{A}(k)$ be the reduction of P. The following lemma (see, for instance, \cite{Li} §7.3 Proposition 3) shows that \tilde{P} has order N when $p \nmid N$.

Lemma 0.1. Let m be a positive integer relatively prime to $\text{char}(k)$. Then the reduction map $A(K)[m] \rightarrow \tilde{A}(k)$ is injective.

For a square-free N, the order $h_0(N)$ of $J_0(N)^c$ can be calculated by the following formula due to Takagi \cite{11}:

\begin{equation}
(0.1)
 h_0(N) = \frac{2^f 12a_2a_3}{d} \prod_{\chi \neq 1} \frac{1}{24} \prod_{p|N} (p + \chi([p]))
\end{equation}

where f is the number of the prime factors of $N = p_1 \cdots p_f$, $d = (12, p_1 - 1, \cdots, p_f - 1)$, $a_2 = 2$ if $2|N$ and N has a prime factor p with $p \equiv 3$ mod 4, $a_2 = 1$ otherwise, $a_3 = 3$ if $3|N$ and N has a prime factor p with $p \equiv 2$ mod 3, $a_3 = 1$ otherwise, χ runs through all nontrivial characters of the group T (consisting of all the positive divisors of N and isomorphic to $(\mathbb{Z}/2\mathbb{Z})^f$) and p runs through all prime factors of N.

Of the remaining 14 cases of N, 6 are square-free. The order $h_0(N)$ of $J_0(N)^c$ is calculated and listed in Table 1.

N	26	30	33	35	39	42
$h_0(N)$	$3 \cdot 7$	$2^6 \cdot 3$	$2^4 \cdot 5^2$	$2^4 \cdot 3$	$2^3 \cdot 7$	$2^8 \cdot 3^2$

The following specialization lemma follows from the classification of Oort-Tate \cite{10} on finite flat group schemes of rank p (or more generally the classification of finite flat group schemes of type (p, \cdots, p) by Raynaud \cite{9}). If the group scheme is contained in an abelian variety, this lemma follows from elementary properties of formal Lie groups (see, for example, the Appendix of Katz\cite{5}).

Lemma 0.2 (Specialization Lemma). Let K be a number field. Let $\wp \subset O_K$ be a prime above p. Let A/K be an abelian variety. Suppose the ramification index $e_\wp(K/Q) < p - 1$. Then the reduction map $\Psi : A(K)_{\text{tor}} \rightarrow A(\overline{\mathbb{F}_p})$ is injective.

Using the same method as that in \cite{13} to show the finiteness of $J_1(N)(\mathbb{Q})$, we can verify that $J_0(N)(\mathbb{Q})$ is finite for certain N. For the 24 cases we are interested in, Table 2 is the result of calculations in Magma \cite{6}. The second column t is the number of non-isogenous modular abelian varieties in the decomposition $J_0(N) = \bigoplus_{i=1}^t A_i^{m_i}$. The third column list the dimension d_i and multiplicity m_i of each A_i (we omit m_i if $m_i = 1$). The fourth column verifies non-vanishing of L-series at 1 (a mark T means $L(A_i, 1) \neq 0$ is verified, otherwise we place a mark F).

Theorem 0.3. If $N = 39$, then $\mathbb{Z}/N\mathbb{Z}$ is not a subgroup of $E(K)_{\text{tor}}$ for any elliptic curve E over a cubic number field K.
Table 2. Decomposition of $J_0(N)$

N	t	$d_i(m_i)$	$L(A_i, 1) \neq 0$
169	3	2, 3, 3	T, F, T
121	6	1, 1, 1, 1, 1	F, T, T, T, T, T
49	1	1	T
25	1	0	$-$
27	1	1	T
32	1	1	T
143	5	1, 4, 6, 1, 1	F, T, T, T, T
91	4	1, 1, 2, 3	F, F, T, T
65	3	1, 2, 2	F, T, T
39	2	1, 2	T, T
26	2	1, 1	T, T
77	6	1, 1, 2, 1, 1	F, T, T, T, T, T
55	4	1, 2, 1, 1	T, T, T
33	3	1, 1, 1	T, T, T
22	2	1, 1	T, T
35	2	1, 2	T, T
63	4	1, 2, 1, 1	T, T, T, T
42	5	1, 1, 1, 1, 1	T, T, T, T, T
28	2	1, 1	T, T
45	3	1, 1, 1	T, T, T
30	3	1, 1, 1	T, T, T
40	3	1, 1, 1	T, T, T
36	1	1	T
24	1	1	T

Proof. Let $p = 3$ and $N' = N/p$. Let K be a cubic field and \wp a prime of K over p. As shown in the proof of Lemma 3.6 of [12], we can always choose \wp such that the residue field $k = O_K/\wp$ has degree 1 or 3 over F_p. Suppose $x = \pi(E, \pm P) \in Y_0(N)(K)$, then E cannot have additive reduction since $N > 4$.

If k has degree 3, then $e_{\wp}(K/Q) = 1 < p - 1$, by Lemma [12] E has multiplicative reduction since $N > (1 + \sqrt{3})^2$. If k has degree 1, by Lemma 0.1 E also has multiplicative reduction since $N' > (1 + \sqrt{3})^2$.

Since E has multiplicative reduction at \wp, then x specializes to a cusp of $\tilde{X}_0(N)$. Recall the notation of τ_i and x_i, $1 \leq i \leq 3$. Then $\tau_i(K)$ is also a cubic field with prime ideal $\tau_i(\wp)$ over p and residue field $k_i = k$. And $\tau_i(E)$ also has multiplicative reduction at $\tau_i(\wp)$. This means all the images x_1, x_2, x_3 of x specialize to cusps of $\tilde{X}_0(N)$. Let c_1, c_2, c_3 be the cusps such that

$$x_i \otimes \mathbb{F}_p = c_i \otimes \mathbb{F}_p, \quad 1 \leq i \leq 3$$

We know all the cusps of $X_0(N)$ are defined over $\mathbb{Q}(\zeta_N)$ [8]. As is seen in Table 1 the order of $J_0(N)^\vee$ is $2^3 \cdot 7$. Therefore by Lemma 0.1 the specialization map

$$\Psi : J_0(N)(\mathbb{Q}(\zeta_N))_{tor} \longrightarrow J_0(N)(\mathbb{F}_p)$$

is injective.
We know $x_1 + x_2 + x_3$ is \mathbb{Q}-rational. The data in Table 2 show the finiteness of $J_0(N)(\mathbb{Q})$. So $[x_1 + x_2 + x_3 - 3\infty]$ is in $J_0(N)(\mathbb{Q}(\zeta_N))_{\text{tor}}$. By a theorem of Manin [7] and Drinfeld [2], the difference of two cusps of $X_0(N)$ has finite order in $J_0(N)$. So $[c_1 + c_2 + c_3 - 3\infty]$ is also in $J_0(N)(\mathbb{Q}(\zeta_N))_{\text{tor}}$. Therefore

$$\Psi([x_1 + x_2 + x_3 - 3\infty]) = \Psi([c_1 + c_2 + c_3 - 3\infty])$$

implies

$$[x_1 + x_2 + x_3 - 3\infty] = [c_1 + c_2 + c_3 - 3\infty]$$

Since $X_0(N)$ is not trigonal [4], then similar reasoning as in the proof of Proposition 1 in Frey [3] shows that $x_1 + x_2 + x_3 = c_1 + c_2 + c_3$. This is a contradiction because we assume x is a noncuspidal point.

\[\square\]

\textbf{References}

[1] S. Bosch, W. Lütkebohmert & M. Raynaud, \textit{Néron models.} Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 21, Springer-Verlag, Berlin, 1990.

[2] V. G. Drinfeld, \textit{Two theorems on modular curves.} Funkcional. Anal. i Priložen. 7 (1973), no. 2, 83–84.

[3] G. Frey, \textit{Curves with infinitely many points of fixed degree.} Israel J. Math. 85 (1994), no. 1–3, 79–83.

[4] Y. Hasegawa & M. Shimura, \textit{Trigonal modular curves.} Acta Arith. 88 (1999), no. 2, 129–140.

[5] N. M. Katz, \textit{Galois properties of torsion points on abelian varieties.} Invent. Math. 62 (1981), no. 3, 481–502.

[6] Magma: \url{http://magma.maths.usyd.edu.au/magma/}

[7] Y. I. Manin, \textit{Parabolic points and zeta functions of modular curves.} Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66.

[8] A. P. Ogg, \textit{Rational points on certain elliptic modular curves.} Analytic number theory (Proc. Sympos. Pure Math., Vol XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 221–231. Amer. Math. Soc., Providence, R.I., 1973.

[9] M. Raynaud, \textit{Schémas en groupes de type \((p, \ldots, p)\).} Bull. Soc. Math. France 102 (1974), 241–280.

[10] J. Tate & F. Oort, \textit{Group schemes of prime order.} Ann. Sci. École Norm. Sup. (4) 3 (1970), 1–21.

[11] T. Takagi, \textit{The cuspidal class number formula for the modular curves $X_0(M)$ with M square-free.} J. Algebra 193 (1997), 180–213.

[12] J. Wang, \textit{On the cyclic torsion of elliptic curves over cubic number fields.} J. Number Theory 183 (2018), 291–308.

[13] J. Wang, \textit{On the cyclic torsion of elliptic curves over cubic number fields (II).} The Journal de Théorie des Nombres de Bordeaux 31 (2019), 663–670.

JIAN WANG, \textit{College of Mathematics, Jilin Normal University, Siping, Jilin 136000, China}

\textit{E-mail address:} blandye@gmail.com