Full Length Research Paper

Isolation and expression pattern of COR15b and KIN1 genes in watermelon and pumpkin

Kang Guozhang¹,²*, Zhu Zhonghou², Guo Tiancai¹ and Ren Jiangping¹

¹Henan Agricultural University; Zhengzhou 450002, China.
²Henan Provincial Engineering Research Center for Watermelon Breeding, Luoyang 450002, China.

Accepted 9 October, 2009

COR15b and KIN1 (COR 6.5) genes encode polypeptides of 15 KDa and 6.5 KDa, respectively. They are involved in the dehydration tolerance mechanisms and play important role under cold stress. cDNA sequences of COR15b and KIN1 genes were first isolated from leaves of watermelon (Citrullus lanatus) and pumpkin (Cucurbita moschata). Sequencing results indicated that the open reading fragments (ORF) of COR15b in watermelon (ClCOR15b) and KIN1 in pumpkin (CmKIN1) were 348 and 426 bp, which encoded 116 and 141 amino acids, respectively. The putative amino acids of ClCOR15b shared 98.58% identities to AtCOR15b in Arabidopsis, but ClCOR15b had only 80.85% identities to AtCOR15b because there appeared two mutations at the positions of 220 (C/T) and 418 (T/A) in ClCOR15b and T/A mutation produced a transcript end codon (TAA), which led to a lack of 26 amino acids. Similar with KIN1 in Arabidopsis (AtKIN1), ORFs of both KIN1 in watermelon (ClKIN1) and KIN1 in pumpkin (CmKIN1) were 198 bp, encoding two short polypeptides of 65 amino acids. The putative amino acids of ClKIN1 and CmKIN1 shared 98.48 and 90.51% identities to AtKIN1 respectively, although they also contained some mutation sites. Real-time quantitative PCR results indicated that, during cold stress condition, transcripts of CmCOR15b, ClKIN1 and CmKIN1 significantly increased, suggesting that they could take part in the cold tolerance. However, ClCOR15b kept stable during cold stress, implying that its role during cold stress could be changed because of the lacked sequence.

Key words: Citrullus lanatus; Cucurbita moschata, COR15b, KIN1, cold tolerance.

INTRODUCTION

Plants have evolved diverse adaptive mechanisms that enable them to tolerate abiotic stresses, such as low temperature. It has been reported that cold acclimation could increase the cold tolerance in response to low, non-freezing temperatures (Thomashow, 2001). And many studies indicates that the enhancement of cold tolerance that occurs during cold acclimation is due, in part, to the action of cold-regulated genes and CBF/DREB transcription factors are key regulators for expression of many cold-regulated genes (Stockinger et al., 1997; Jaglo-Ottosen et al., 1998; Liu et al., 1998; Nakayama et al., 2007).

Some of cold-regulated genes have been assigned to known classes of proteins. For example, many cold-induced hydrophilic polypeptides belong to the hydrophilin family, which includes late embryogenesis abundant (LEA) proteins. These hydrophilins may protect enzymes against the effects of water limitation in vitro (Reyes et al., 2005). In Arabidopsis, two small hydrophilic polypeptide, designated as COR15 and COR 6.5, have been widely elucidated.

COR15a encodes a 15 KDa protein with substantial similarities in its amino acid sequence to those encoded by LEA genes. It is located in thestromal compartments of chloroplasts and is involved in the dehydration tolerance mechanisms of cold-stressed plants. Over-expression of the COR15a gene can reduce the propensity of membranes to form hexagonal-phase lipids during freezing stress and enhance the cold tolerance (Lin and Thomashow, 1992; Artus et al., 1996; Steponkus et al., 1998; Zhou et al., 2009). A homolog of the COR15a gene (COR15b) (with 82% amino acid similarity to COR15a) has also been discovered in Arabidopsis thaliana. And transcripts for both COR15b and COR15a

*Corresponding author. E-mail: zkangg@163.com.
increase dramatically in response to low temperature (Wilhelm and Thomashow, 1993).

KIN1 is an up-regulated gene during cold acclimation and *KIN1* from Arabidopsis thaliana is particularly interesting because it codes for a 6.5 KDa polypeptide that bears some compositional similarity to the fish Ala-rich antifreeze proteins. This similarity as well as its increased expression during cold acclimation has led to the speculation that *KIN1* might be involved in cold tolerance in plants (Wang et al., 1994).

So far, studies on *COR15b* and *KIN1* genes have mainly been focused on *Arabidopsis* plants. Here, cDNA sequences of *COR15b* and *KIN1* genes were cloned from watermelon and pumpkin plants and their transcript levels during cold stress period were further explored. This is the first report on *COR15b* and *KIN1* genes in watermelon and pumpkin plants.

MATERIALS AND METHODS

Plant materials and chilling stress

Seedlings of watermelon (*Citrullus lanatus* cv. Xiaolan) and pumpkin (*Cucurbita moschata* cv. Hongmiben) were grown in pots in soil and sand mixture (8:1), which were placed in plastic growth chambers (30/22 °C day/night, 75% of RH; 12-h photoperiod with a PPFD of 250 µmol m⁻² s⁻¹). Three leaf stage of uniform and healthy watermelon and pumpkin seedlings (about 14 cm high) were selected for experiments.

Some watermelon and pumpkin seedling were transferred to a climatic chamber (a PPFD of 150 µmol m⁻² s⁻¹, a 12 h photoperiod and a relative humidity of 70%) to subject cold stress for 3 d at 8 °C.

RNA extraction and molecular cloning

Total RNAs of the last fully developed leaves after 1 day of cold stress were isolated using Trizol (Sigma). The primers for cloning cDNA sequences containing ORFs for *COR15b* and *KIN1* were designed according to *COR15b* (NM-121601) and *KIN1* (NM-121601) in Arabidopsis, respectively. The specific primers used for *COR15b* amplification were: ATCTCATTGTTCTCATCT (forward primer) and GTTGAATCGCCAGGTGTT (reverse primer) and cycle parameters were 95 °C for 3 min, 35 cycles of 95 °C 30 s, 56 °C for 30 s, 72 °C for 1 min and an extension of 72 °C for 8 min. Primers used for *KIN1* were TCTCACTCATGACCCAAAC (forward primer) GACCCGAATCGCTACTTG (reverse primer) and cycle parameters were 95 °C for 5 min, 45 cycles of 95 °C 40 s, 58 °C for 40 s, 72 °C for 1 min and an extension of 72 °C for 10 min.

The amplified fragments were isolated from gels, purified using GeneClean (Takara) and cloned into pMD 20-T vector (Takara). Some watermelon and pumpkin seedling were transferred to a climatic chamber (a PPFD of 150 µmol m⁻² s⁻¹, a 12 h photoperiod and a relative humidity of 70%) to subject cold stress for 3 d at 8 °C.

RESULTS

Quantification of the transcripts of *COR15b* and *KIN1* genes by real-time quantification PCR

The last fully developed leaves from cold-stressed and control (at 30/22 °C) leaves of watermelon and pumpkin plants were harvested directly into liquid nitrogen and stored at -80 °C. Three separate samples of cold stress treatment and control were used for real-time PCR.

First strand cDNAs of the above samples were synthesized from 2 µg of total RNA using the first cDNA synthesis kit (Takara). A serial dilution of 100, 50, 5, 0.2 and 0.04 ng of first strand cDNA was used for all transcripts to generate a standard curve by plotting the threshold cycle (CT) values against log (ng cDNA) and to ensure that the efficiencies of the individual transcripts were equal. The log10 value of the dilution was plotted against the CT (threshold cycle) values obtained. For each sample, the amount of the *COR15b* and *KIN1* transcript was expressed relative to the amount of *Actin* transcript. The copy number of *COR15b*, *KIN1* and *Actin* genes were calculated according to its molecular weight and then converted into the copy number based on Avogadro's number by the formula: number of copies = (amount (ng) × 6,022 × 10²³) / (length (bp) × 1 × 10³ × 650). The pairs of specific primers were used to amplify the *Actin* in watermelon and pumpkin plants were TGGACTCTGGTGATGTTG (forward primer) and ATGAGGGATGTCGGAAA3 (reverse primer). The pairs of specific primers used to measure the transcript levels of *COR15b* were TTTCGTCACGATAAGA (forward primer) and TTCCATCGT GCGAAGGT (reverse primer). And the pairs of primers were to measure the transcript levels of *KIN1* were TGTTTCTG TGGAAAC (forward primer) and ACCCGAATCCTTCTTTG (reverse primer), respectively. Using these two pairs of primers, 103 and 143 bp cDNA fragments were amplified, respectively.

Cloning of *COR15b* and *KIN1* genes in watermelon and pumpkin plants and sequence analysis

Based on the reported *AtCOR15b* (NM-129814) and *AtKIN1* (NM-121601) gene, respectively, the predicted cDNA fragments of *COR15b* and *KIN1* were amplified from watermelon and pumpkin plants (Figure 1). The sequencing showed that the amplified fragments of *COR15b* from both watermelon (*CICOR15b*) and pumpkin (*CmCOR15b*) were 505 bp. The fragments of *KIN1* from watermelon (*CikIN1*) and pumpkin (*CmKIN1*) plants were 276 and 275 bp, respectively. ORF of *CICOR15b* and *CmCOR15b* were 348 and 342 bp, respectively. ORFs of both *CikIN1* and *CmKIN1* were 198 bp (Figures 2 and 3).

Compared with *AtCOR15b*, *CICOR15b* cDNA sequence had two mutations at positions of 220 bp (C/T) and 418 bp (T/A). C/T mutation only resulted in an amino acid change (H/Y) at position of 50. However, T/A mutation formed a transcript end codon (TA). Accordingly, putative protein sequence of *CICOR15b* had only 115 amino acids, 26 amino acids fewer than those of *AtCOR*.
and 355 (G/A), but the two mutations only brought higher identity (98.58%) to those of AtKIN1 and CmKIN1 proteins. Phylogenetic analysis of ClCOR15b, CmCOR15b, ClKIN1 and CmKIN1 proteins (Figure 5). Because of these base mutations, putative amino acids of ClCOR15b and CmCOR15b showed higher identity (98.58%) to those of AtCOR15b (NM-129814), TaCOR15b (FJ594771), CbCOR15b (AY437888) and BnCOR15b (U14665). Compared with CmCOR15b, however, CICOR15b had higher homology to AtCOR15b (NM-129814).

Phylogenetic tree generated from the amino acid sequences of some plant KIN genes also showed their division into three main classes (Figure 7). Both ClKIN1 and CmKIN1 belonged to Class I and they were clustered together AtKIN1 (NM-121601), AtKIN (NM-121602) and AtKIN (X15147). CmKIN1 had higher identity to NM-121601 and X151474, but CmKIN1 had higher homology to NM-121602.

Expression Patterns of COR15b and KIN1 genes in leaves of in watermelon and pumpkin plants during cold stress

Real-time quantification PCR was undertaken to investigate the transcript levels of COR15b and KIN1 genes in watermelon and pumpkin plants under 8°C cold stress condition. During cold stress periods, the transcripts of CmCOR15b, CIKIN1 and CmKIN1 genes in watermelon and pumpkin plants increased rapidly and significantly higher than those at 30/22 7°C conditions (Figure 8). During cold stress periods, however, CICOR15b transcripts increased slightly and kept stable.

DISCUSSION

In this paper, cDNA sequences of COR15b and KIN1 genes were first isolated from watermelon and pumpkin plants (Figures 1, 2 and 3). Sequence analysis indicated that putative amino acids of CmCOR15b, CIKIN1 and CmKIN1 shared high identities to AtCOR15b and AtKIN1, respectively (Figures 4, 5, 6 and 7), although there were some base mutations in their sequences. It has been reported that transcript levels of AtCOR15b and AtKIN1 increased quickly in response to low temperature and were speculated to take part in the cold tolerance (Wilhelm and Thomashow, 1993: Wang et al., 1994). In this paper, during cold stress, transcript levels of CmCOR15b, CIKIN1 and CmKIN1 genes also increased dramatically (Figure 8), suggesting they could take part in cold tolerance in these plants.

Compared with AtCOR15b, however, putative amino acid sequence of CICOR15b lacked a fragment of 26 amino acids because of a mutation (T/A), which brought about a transcript end codon (TAA) (Figure 2). Accordingly, putative amino acids of CICOR15b protein shared low identity to those of AtCOR15b (80.85%) (Figure 4). Its transcript expression patterns differed temporally from CmCOR15b (Figure 8) and AtCOR15b.
1993). This inferred that its role during cold stress could be changed because of the lacked sequence and this needed to be further explored.

Figure 2. Comparison of cDNA sequences encoding COR15b among watermelon (CiCOR15b), pumpkin (CrCOR15b) and Arabidopsis (AtCOR15b, NM-129814). The transcript start codon (ATG) and end codon (TGA) are shown in asterisks or pane.
Figure 3. Comparison of cDNA sequences encoding KIN1 among watermelon (ClKIN1), pumpkin (CmKIN1) and Arabidopsis (AtKIN1). The transcript start codon (ATG) and end codon (TGA) are shown in asterisks.

Figure 4. Comparisons on putative amino acid sequences of COR15b among watermelon (ClCOR15b), pumpkin (CmCOR15b) and Arabidopsis (AtCOR15b).

Figure 5. Comparisons on putative amino acid sequences of KIN1 among watermelon (ClKIN1), pumpkin (CmKIN1) and Arabidopsis (AtKIN1).

Figure 6. Phylogenetic tree of the predicted ClCOR15b and CmCOR15b proteins and other known COR proteins as created using the neighborjoining method in DNAMAN. GenBank database accession numbers of the displayed COR genes are as follows:
Arabidopsis thaliana, NM-129814 and NM-129815; Thellungiella salsuginea, EU285582; Triticum aestivum, FJ594771; Capsella bursa-pastoris, AY437888; Draba alpina, EFS32304; Arabis pumila, AY587559; Brassica napus, U14665 and Draba draboides, EFS32317.

Figure 7. Phylogenetic tree of the predicted ClKIN1 and CmKIN1 proteins and other known KIN proteins as created using the neighbor-joining method in DNAMAN. GenBank database accession numbers of the displayed KIN genes are as follows: Arabidopsis thaliana NM-121601, NM-121602, X151474 and X62281; Brassica campestris Z24737; Brassica napus AF297471 and AF297472.

Figure 8. Transcript levels of ClCOR15b, CmCOR15b, ClKIN1 and CmKIN1 genes under 8°C cold stress conditions. The relative levels of ClCOR15b, CmCOR15b, ClKIN1 and CmKIN1 transcripts were measured by densitometric scanning of the qutoradiogram. The expression of ClCOR15b, CmCOR15b, ClKIN1 and CmKIN1 transcripts were normalized to the expression of β-actin. The values are means (SD) of three replications and the means were tested using LSD at P<0.05.

ACKNOWLEDGMENT

This work was financially supported by the Key Transgenic Item of China (No. 2009ZX08002-21B).

REFERENCES

Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF (1996). Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc. Natl. Acad. Sci. USA, 93: 13404-13409.
Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 280: 104-106.

Lin C, Thomashow MF (1992). DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene COR15 and characterization of the COR15 polypeptide. Plant Physiol, 99: 519-525.

Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K (2007). Arabidopsis cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. Plant Physiol. 144: 513-523.

Stockinger EJ, Gilmour SJ, Thomashow MF (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA, 94: 1035-1040.

Thomashow MF (2001). So what’s new in the field of plant cold acclimation? Lots! Plant Physiol. 125: 89-93.

Wang H, Georges F, Pelcher LE, Saleem M, Cutler AJ (1994). A 5.3-Kilobase genomic fragment from Arabidopsis thaliana containing kin1 and cor6.6. Plant Physiol. 104: 291-292.

Wilhelm KS, Thomashow MF (1993). Arabidopsis thaliana cor15b, an apparent homologue of cor15a, is strongly responsive to cold and ABA, but not drought. Plant Mol. Biol. 23: 1073-1077.

Zhou DW, Zhou J, Meng LH, Wang QB, Xie H, Guan YC, Ma ZY, Zhong Y, Chen F, Liu JQ (2009). Duplication and adaptive evolution of the COR15 genes within the highly cold-tolerant Draba lineage (Brassicaceae). Gene, 441: 36-44.