Crystal structure and Hirshfeld analysis of (1aS,3aR,4aS,5aR)-15-acetoxylinden-7(11),8-trieno-12,8-lactone

Qiang-Qiang Lu, Xin-Wei Shi,* Ya-Fu Zhou, Xin-Ai Cui and Hong Wang

Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, People’s Republic of China. *Correspondence e-mail: sxw@ms.xab.ac.cn

The structure of the title compound, C_{17}H_{20}O_{4} [systematic name: (1aS,3aR,4aS,5aR)-15-(acetoxy)linden-7(11),8-trieno-12,8-lactone or (4aR,S,5aR,6aS,6bR)-5-(acetoxy)methyl]-4a,5,5a,6,6a,6b-hexahydro-3,6b-dimethylcyclopenta[2,3]-indeno[5,6-b]furan-2(4H)-one, ent-chloranthalactone C], a natural product isolated from the whole plant *Chloranthus japonicus* Sieb., is a typical lindenane-type sesquiterpenoid. The molecule comprises a bicyclo[3.1.0]hexane ring (A/B system) bearing an acetoxymethyl (C-4) group, a bicyclo[4.3.0]nonane ring (B/C system) containing a double bond (C-8/9) and a chiral quaternary carbon (C-10), and a 7(11)-en-12,8-olide structural moiety on the cyclohexan-8-ene (C ring). In the tetracyclic skeleton, the 1,3-cyclopropane ring has a β-configuration, and atoms H-5 and H_{3-14} have α- and β-orientations, respectively. In the crystal, the molecules are assembled into a two-dimensional network by weak O···H/H···O interactions. Hirshfeld surface analysis illustrates that the greatest contributions are from H···O (55.2%), O···H/H···O (34.6%) and C···H/H···C (8.9%) contacts.

1. Chemical context

Lindenanolides are precursors for various sesquiterpene dimer derivatives (Uchida *et al.*, 1980; Wang *et al.*, 2009; Shi *et al.*, 2016). Inspired by the clinical application of artemisinin, these compounds have become a products library for screening antimalarial drugs (Dondorp *et al.*, 2010; Zhou *et al.*, 2017). The roots of *Chloranthus japonicus* (called Yinxiancao) were reported to exhibit antifungal and anti-inflammatory activities, and have been used as traditional Chinese medicine to treat malaria (Kawabata & Mizutani, 1989). Chlorantha-lactone C was characterized as an α,β,γ,δ-unsaturated γ-lactone and was converted into desacetyl enol lactone hydrate and ketoalcohol under moderate alkaline conditions (Uchida *et al.*, 1980). Because of the unique stereostructure in lindenane, these lactone derivatives have been studied extensively and serve as precursors for screening cytotoxicity against mouse lymphosarcoma, liver cancer and human cervical cancer cells, the expression of cell adhesion molecules and the mode of antiplasmodial agents (Uchida *et al.*, 1980; Zhang *et al.*, 2012; Zhou *et al.*, 2017). Based on the antiwiggler activity, we are currently searching for a biological pesticide preparation to inhibit flyblow breeding in vegetable production (Shi *et al.*, 2016) and report here the structure of the title compound.

2. Structural commentary

The molecular structure of the title compound is shown in Scheme 1 and Fig. 1. This compound consists of a novel...
C8—C7 are the same at 155.5 (4)°, respectively. The torsion angles C5—C6—C11—C12 and C2—C3—C4—O2, which were 179.9 (3)° and 177.6 (4)°, respectively, indicate the geometric stability of the B/C and C/D ring junctions. In addition, the main A/B/C/D skeleton and the acetoxymethyl system (atoms C15–C17/O3/O4) are not coplanar, the torsion angles C15—O3—C16—C17 and C15—O3—C16—O4 being −175.9 (3)° and 2.8 (6)°, respectively.

D—H · · · A	D—H	H···A	D···A	D—H · · · A
C8—H8A···O1i	0.97	2.81	3.481 (5)	127
C11—H11···O3ii	0.98	2.54	3.497 (5)	167
C13—H13C···O1iii	0.96	2.60	3.499 (5)	157
C13—H13B···O4iv	0.96	2.61	3.530 (6)	160
C14—H14A···O2v	0.96	2.76	3.530 (5)	138
C17—H17C···O3vi	0.96	2.86	3.478 (5)	124

Symmetry codes: (i) x, y, z; (ii) x + 1, y, z; (iii) x + 1/2, −y + 1/2, −z + 1; (iv) x, y + 1, z; (v) −x + 2, y −1/2, −z + 1/2.

polycyclic framework embedded with a sterically congested cyclopentane ring (B), an unusual trans-5/6 ring junction and an angular methyl group. The chiral quaternary C atom at the 10-position is located on the same side of the B ring plane as the cyclopropane ring and the 4-acetoxymethyl and 5-hydrogen are positioned on the other side. The positions of the substituents can be described as having a β-configuration for the cyclopropane ring at the 1,3-positions, axial for the H atom at the 5-position and bisectional for the methyl H atom at the chiral quaternary C atom in the 10-position. Two cyclic olefinic bonds are located between atoms C2 and C3, and between atoms C4 and C5, and are attached to the cyclohexane (C) and cyclopentanolactone (D) rings, respectively. The torsion angles C9—C10—C11—C12 and C12—C10—C11—C6 of 115.2 (4)° and −115.2 (4)°, respectively, describe the geometric metamerism of the junction between cyclopropane ring A and cyclopentane ring B. The difference in configuration of the oxygen-containing groups can be confirmed by the torsion angles C7—C9—C10—O3 and C1—O1—C1—O2—C4, which were 179.9 (3)° and −179.0 (4)°, respectively. The torsion angles C5—C6—C11—C12 and C2—C3—C8—C7 are the same at 155.5 (4)°, indicating the conformational stability of the A/B and C/D ring junctions. Also, the C2—C3—C4—C5 and C8—C3—C4—O2 torsion angles are 177.1 (4)° and 177.2 (3)°, respectively, and the O2—C1—C2—C4 and C14—C2—C3—C4 torsion angles are 179.9 (3)° and −178.9 (4)°, respectively, and describe the geometric characteristics of the C and D rings. In the title molecule, the central six-membered lindenane sesquiterpenoid ring has a half-chair conformation, with puckering parameters (Cremer & Pople, 1975; Luger & Bülow, 1983) of Q1 = 0.3387 (11) Å, θ = 49.11 (19)° and ψ = 167.3 (2)°. Furthermore, the C9—C7—C8—C3 and C5—C4—O2—C1 torsion angles [−178.6 (3)° and −177.6 (4)°, respectively] indicate the geometric stability of the B/C and C/D ring junctions. In addition, the main A/B/C/D skeleton and the acetoxymethyl system (atoms C15–C17/O3/O4) are not coplanar, the torsion angles C15—O3—C16—C17 and C15—O3—C16—O4 being −175.9 (3)° and 2.8 (6)°, respectively.

3. Supramolecular features

In the crystal of the title compound, the molecules are linked via multiple C—H···O weak hydrogen bonds, generating two-dimensional (2D) layers propagating along the c-axis direction (Fig. 2 and Table 1). Details of the hydrogen-bonding interactions and the symmetry codes are given in Table 1.

4. Hirshfeld surface analysis

Hirshfeld surface analysis was performed and the associated fingerprint plots, providing a 2D view of the intermolecular interactions within the molecular crystals, were generated using CrystalExplorer (Version 21.5; Spackman et al., 2021), with a standard resolution of the three-dimensional (3D) d norm surfaces plotted over a fixed colour scale of −0.1253 (red) to yellow band.

![Figure 1](image_url)

Figure 1
The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

![Figure 2](image_url)

Figure 2
The packing of molecules in the crystal structure of the title compound, viewed along the c direction (C—H···O hydrogen bonds are shown as green dashed lines).
1.4046 (blue) arbitrary units (Fig. 3). The intense red spots symbolize short contacts and negative d_{norm} values on the surface are related to the presence of C—H···O hydrogen bonds in the crystal structure. This result corresponds to the results obtained from the solid crystalline structure with the formation of hydrogen bonds. Weak C···H/C/H/C contacts are shown by dim red spots (Fig. 4). The 2D fingerprint plots for the H···H, H···O/O···H, and H···C/C···H contacts are shown in Fig. 5. H···H interactions play an integral role in the overall crystal packing, contributing 55.2%, and are located in the middle region of the fingerprint plot. The most significant H···O/O···H contacts contribute 34.6% to the Hirshfeld surface and the proportion of weak H···C/C···H contacts is 8.9%.

5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2021; Groom et al., 2016) for the same carbon ring skeleton as the title compound yielded only one molecule, 5-[(tert-butyldimethylsilyl)oxy]-3,6b-dimethyl-4a,5,5a,6,6a,6b-hexahydrocyclopropane[2,3]indeno[5,6-b]furan-2(4H)-one (CCDC reference 804060; Qian & Zhao, 2011), which has a (tert-butyldimethylsilyl)oxy group attached to ring A of the carbon skeleton.

6. Isolation and crystallization
The title sesquiterpenoid was isolated as a colourless solid from the EtOAc soluble fraction of *C. japonicus* by chromatography over silica gel, and eluted with a mixture of ethyl acetate and hexane (1:20 to 5:1 v/v gradient) to yield the title compound. Crystals were obtained after recrystallization from
acetone or chloroform–methanol (6:1 v/v) at room temperature by slow evaporation over a period of a few days. 1H NMR (500 MHz, chloroform-d): δ 6.22 (1H, s, H-9), 4.20 (2H, d, J = 6.1 Hz, H-11), 2.63 (1H, d, J = 13.0 Hz, H2-21 (2H, m), 2.09 (3H, s, COCH3), 1.87 (3H, br s, H-13), 1.73 (1H, tt, J = 10.1, 4.9 Hz), 1.53 (1H, td, J = 8.1, 3.8 Hz), 1.30 (1H, ddd, J = 11.9, 8.0, 3.7 Hz), 0.91 (1H, d, J = 3.8, 2.1 Hz), 0.89 (3H, s, H-15), 0.83 (1H, td, J = 8.4, 6.0 Hz). 13C NMR (125 MHz, chloroform-d): δ 171.34 (OCOCH3 or C14), 173.11 (OCOCH3 or C12), 149.69 (C-8), 148.41 (C-7), 122.47 (C-11), 120.13 (C-9), 66.23 (C-15), 60.45 (C-5), 43.11 (C-4), 42.15 (C-10), 27.47 (C-1), 22.87 (C-6), 22.48 (C-3), 21.25 (OCOCH3 or C-14), 21.21 (OCOCH3 or C14), 17.15 (C-2), 8.83 (C-13).

7. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically (C–H = 0.96–0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) for CH hydrogens or 1.5Ueq(C) for methyl H atoms.

Acknowledgements
The authors thank Hubei Normal University and Nian Zhao for recording the X-ray crystallographic data for the crystals.

Funding information
Funding for this research was provided by: Natural Science Basic Research Program of Shaanxi (grant Nos. 2020JM-708 and 2021JQ-968); Science and Technology Program of Shaanxi Academy of Sciences (grant Nos. 2018nk-01 and 2018k-11); Xi’an Science and Technology Plan Project (grant No. 20NYYF0043).

References
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1358-1367.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Dondorp, A. M., Yeung, S., White, L., Nguon, C., Day, N. P., Socheat, D. & von Seidlein, L. (2010). Nat. Rev. Microbiol. 8, 272–280.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Kawabata, J. & Mizutani, J. (1989). Agric. Biol. Chem. 53, 203–207.
Luger, P. & Bülow, R. (1983). J. Appl. Cryst. 16, 431–432.
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
Qian, S. & Zhao, G. (2011). Synlett, pp. 722–724.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Shi, X. W., Lu, Q. Q., Pescitelli, G., Ivišić, T., Zhou, J. H. & Gao, J. M. (2016). Chirality, 28, 158–163.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.
Uchida, M., Koike, Y., Kusano, G., Kondo, Y., Nozoe, S., Kabuto, C. & Takemoto, T. (1980). Chem. Pharm. Bull. 28, 92–102.
Wang, X. C., Wang, L. L., Ouyang, X., Ma, S. P., Liu, J. H. & Hu, L. H. (2009). Helv. Chim. Acta, 92, 313–320.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Zhang, M., Wang, J. S., Oyama, M., Luo, J., Guo, C., Ito, T., Inuma, M. & Kong, L. Y. (2012). J. Asian Nat. Prod. Res. 14, 708–712.
Zhou, B., Wu, Y., Dalal, S., Merino, E. F., Liu, Q. F., Xu, C. H., Yuan, T., Ding, J., Kingston, D. G. I., Cassera, M. B. & Yue, J. M. (2017). J. Nat. Prod. 80, 96–107.
Crystal structure and Hirshfeld analysis of (1aS,3aR,4aS,5aR)-15-acetoxy-linden-7(11),8-trieno-12,8-lactone

Qiang-Qiang Lu, Xin-Wei Shi, Ya-Fu Zhou, Xin-Ai Cui and Hong Wang

Computing details

Data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(4aR,5S,5aR,6aS,6bR)-5-(Acetoxymethyl)-4a,5,5a,6,6a,6b-hexahydro-3,6b-dimethylcyclopropa[2,3]indeno[5,6-b]furan-2(4H)-one

Crystal data

C_{17}H_{20}O_{4}
Mr = 288.33
Orthorhombic, P2_{1}2_{1}2_{1}

a = 6.7641 (3) Å
b = 6.9254 (3) Å
c = 31.4538 (14) Å

V = 1473.42 (11) Å³
Z = 4

F(000) = 616

Data collection

Bruker SMART CCD diffractometer
phi and omega scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

2576 independent reflections
1857 reflections with I > 2σ(I)

Θmax = 25.0°, Θmin = 2.6°
h = −7→8
k = −8→6
l = −32→37

Refinement

Refinement on F²

Least-squares matrix: full
R[F² > 2σ(F²)] = 0.051
wR(F²) = 0.117
S = 1.05

2576 reflections
193 parameters
0 restraints

Hydrogen site location: inferred from neighbouring sites
H-atoms parameters constrained

w = 1/[σ²(Fo²) + (0.0466P)² + 0.380P]
where P = (Fo² + 2Fc²)/3
(Δ/σ)max < 0.001
Δρmax = 0.30 e Å⁻³
Δρmin = −0.21 e Å⁻³

Absolute structure: Flack x determined using 574 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)

Absolute structure parameter: 0.10 (8)
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U_iso*/U_eq
O1	0.1658 (5)	0.5144 (4)	0.54793 (8)	0.0745 (9)
O2	0.1329 (4)	0.5303 (4)	0.47683 (7)	0.0537 (7)
O3	0.9151 (4)	0.1520 (4)	0.31668 (8)	0.0566 (8)
O4	0.9315 (6)	−0.1600 (5)	0.32844 (14)	0.1261 (18)
C1	0.2446 (6)	0.5140 (6)	0.51366 (12)	0.0536 (10)
C2	0.4539 (6)	0.4960 (5)	0.50214 (10)	0.0480 (9)
C3	0.4648 (5)	0.4991 (5)	0.45952 (10)	0.0418 (8)
C4	0.2650 (5)	0.5215 (5)	0.44282 (11)	0.0442 (9)
C5	0.2143 (5)	0.5386 (5)	0.40250 (11)	0.0447 (10)
H5	0.0829	0.5495	0.3942	0.054*
C6	0.3810 (5)	0.5396 (5)	0.37059 (10)	0.0389 (9)
C7	0.5465 (5)	0.4057 (5)	0.38746 (10)	0.0387 (9)
H7	0.4802	0.2839	0.3944	0.046*
C8	0.6345 (5)	0.4765 (6)	0.42937 (10)	0.0426 (9)
C9	0.6749 (5)	0.3603 (5)	0.34836 (10)	0.0414 (9)
H9	0.7586	0.4713	0.3414	0.050*
C10	0.5169 (6)	0.3322 (6)	0.31409 (11)	0.0503 (10)
H10	0.4988	0.2025	0.3023	0.060*
C11	0.3340 (6)	0.4435 (6)	0.32784 (11)	0.0506 (11)
H11	0.2047	0.3818	0.3243	0.061*
C12	0.4461 (6)	0.5003 (7)	0.28864 (10)	0.0613 (11)
H12A	0.3853	0.4739	0.2613	0.074*
H12B	0.5235	0.6181	0.2897	0.074*
C13	0.4477 (6)	0.7496 (5)	0.36559 (12)	0.0523 (11)
H13A	0.3469	0.8217	0.3511	0.078*
H13B	0.5679	0.7539	0.3494	0.078*
H13C	0.4701	0.8050	0.3932	0.078*
C14	0.6127 (7)	0.4764 (6)	0.53450 (12)	0.0650 (12)
H14A	0.6047	0.3512	0.5475	0.098*
H14B	0.5968	0.5743	0.5558	0.098*
H14C	0.7393	0.4911	0.5211	0.098*
C15	0.8003 (6)	0.1832 (5)	0.35511 (11)	0.0488 (10)
H15A	0.8877	0.2019	0.3792	0.059*
H15B	0.7171	0.0720	0.3608	0.059*
C16	0.9745 (5)	−0.0230 (6)	0.30723 (13)	0.0550 (10)
C17	1.1017 (6)	−0.0305 (7)	0.26893 (12)	0.0660 (12)
H17A	1.2179	0.0462	0.2735	0.099*
H17B	1.0301	0.0192	0.2450	0.099*
-------	--------	--------	--------	--------
H17C	1.1394	−0.1619	0.2635	0.099*

Atomic displacement parameters (\(\AA^2\))

	\(U_1^{11}\)	\(U_2^{12}\)	\(U_3^{13}\)	\(U_4^{14}\)	\(U_5^{15}\)
O1	0.106 (2)	0.074 (2)	0.0437 (16)	0.017 (2)	0.0283 (16)
O2	0.0592 (16)	0.0591 (17)	0.0427 (15)	0.0035 (15)	0.0182 (13)
O3	0.076 (2)	0.0422 (16)	0.0520 (16)	0.0031 (15)	0.0267 (16)
O4	0.137 (4)	0.058 (2)	0.184 (4)	0.013 (2)	0.101 (3)
C1	0.080 (3)	0.040 (2)	0.040 (2)	0.013 (2)	0.014 (3)
C2	0.069 (3)	0.036 (2)	0.039 (2)	0.002 (2)	0.0037 (19)
C3	0.054 (2)	0.0344 (19)	0.0366 (19)	0.000 (2)	0.0037 (17)
C4	0.049 (2)	0.043 (2)	0.040 (2)	0.000 (2)	0.0113 (18)
C5	0.038 (2)	0.052 (2)	0.044 (2)	−0.003 (2)	0.0027 (17)
C6	0.0395 (19)	0.045 (2)	0.0324 (18)	−0.0053 (18)	0.0005 (16)
C7	0.042 (2)	0.040 (2)	0.0340 (19)	−0.0054 (18)	0.0046 (17)
C8	0.044 (2)	0.047 (2)	0.0366 (18)	−0.003 (2)	−0.0007 (16)
C9	0.045 (2)	0.041 (2)	0.039 (2)	−0.0055 (18)	0.0052 (18)
C10	0.054 (2)	0.058 (3)	0.039 (2)	−0.005 (2)	0.005 (2)
C11	0.044 (2)	0.068 (3)	0.040 (2)	−0.011 (2)	0.0019 (18)
C12	0.061 (2)	0.091 (3)	0.0322 (19)	−0.002 (3)	−0.0002 (18)
C13	0.057 (3)	0.048 (2)	0.052 (2)	−0.006 (2)	0.000 (2)
C14	0.093 (3)	0.058 (3)	0.044 (2)	0.004 (3)	−0.006 (2)
C15	0.062 (2)	0.046 (2)	0.039 (2)	−0.001 (2)	0.015 (2)
C16	0.047 (2)	0.048 (3)	0.070 (3)	−0.006 (2)	0.013 (2)
C17	0.063 (3)	0.071 (3)	0.064 (3)	0.006 (3)	0.014 (2)

Geometric parameters (\(\AA\), °)

	O1—C1	1.202 (4)	C9—C15	1.507 (5)
	O2—C1	1.388 (4)	C9—C10	1.530 (5)
	O2—C4	1.396 (4)	C9—H9	0.9800
	O3—C16	1.311 (5)	C10—C12	1.492 (6)
	O3—C15	1.453 (4)	C10—C11	1.520 (5)
	O4—C16	1.196 (5)	C10—H10	0.9800
	C1—C2	1.467 (6)	C11—C12	1.500 (5)
	C2—C3	1.343 (4)	C11—H11	0.9800
	C2—C4	1.486 (5)	C12—H12A	0.9700
	C3—C4	1.458 (5)	C12—H12B	0.9700
	C3—C8	1.497 (5)	C13—H13A	0.9600
	C4—C5	1.319 (5)	C13—H13B	0.9600
	C5—C6	1.509 (5)	C13—H13C	0.9600
	C5—H5	0.9300	C14—H14A	0.9600
	C6—C13	1.531 (5)	C14—H14B	0.9600
	C6—C11	1.534 (5)	C14—H14C	0.9600
	C6—C7	1.548 (5)	C15—H15A	0.9700
	C7—C8	1.528 (4)	C15—H15B	0.9700
C7—C9 1.538 (5) C16—C17 1.481 (5)
C7—H7 0.9800 C17—H17A 0.9600
C8—H8A 0.9700 C17—H17B 0.9600
C8—H8B 0.9700 C17—H17C 0.9600
C1—O2—C4 106.7 (3) C11—C10—C9 107.7 (3)
C16—O3—C15 119.3 (3) C12—C10—H10 118.1
O1—C1—O2 120.4 (4) C11—C10—H10 118.1
O1—C1—C2 130.5 (4) C9—C10—H10 118.1
O2—C1—C2 109.0 (3) C12—C11—C10 59.2 (3)
C3—C2—C1 107.4 (3) C12—C11—C6 120.1 (3)
C3—C2—C14 130.2 (4) C10—C11—C6 107.5 (3)
C1—C2—C14 122.4 (3) C12—C11—H11 118.2
C2—C3—C4 108.1 (3) C10—C11—H11 118.2
C2—C3—C8 132.3 (3) C6—C11—H11 118.2
C4—C3—C8 119.6 (3) C10—C12—C11 61.1 (3)
C5—C4—O2 124.5 (3) C10—C12—H12A 117.7
C5—C4—C3 126.6 (3) C11—C12—H12A 117.7
O2—C4—C3 108.8 (3) C10—C12—H12B 117.7
C4—C5—C6 116.5 (3) C11—C12—H12B 117.7
C4—C5—H5 121.8 H12A—C12—H12B 114.8
C5—C6—C13 107.0 (3) C6—C13—C14 109.5
C5—C6—C7 115.2 (3) C6—C13—H13A 109.5
C13—C6—C7 112.5 (3) C6—C13—H13B 109.5
C5—C6—C11 108.0 (3) H13A—C13—H13B 109.5
C13—C6—C11 113.1 (3) H13A—C13—H13C 109.5
C11—C6—C13 101.0 (3) H13B—C13—H13C 109.5
C8—C7—C9 122.4 (3) C2—C14—H14A 109.5
C8—C7—C6 112.7 (3) C2—C14—H14B 109.5
C9—C7—C6 104.9 (3) H14A—C14—H14B 109.5
C8—C7—H7 105.2 H14A—C14—H14C 109.5
C9—C7—H7 105.2 H14B—C14—H14C 109.5
C6—C7—H7 105.2 O3—C15—C9 107.7 (3)
C3—C8—C7 106.3 (3) O3—C15—C10 110.2
C3—C8—H8A 110.5 C9—C15—H15A 110.2
C7—C8—H8A 110.5 O3—C15—H15B 110.2
C3—C8—H8B 110.5 C9—C15—H15B 110.2
C7—C8—H8B 110.5 H15A—C15—H15B 108.5
H8A—C8—H8B 108.7 O4—C16—O3 122.2 (4)
C15—C9—C10 112.9 (3) O4—C16—C17 124.5 (4)
C15—C9—C7 111.8 (3) O3—C16—C17 113.3 (4)
C10—C9—C7 101.2 (3) C16—C17—H17A 109.5
C15—C9—H9 110.2 C16—C17—H17B 109.5
C10—C9—H9 110.2 H17A—C17—H17B 109.5
C7—C9—H9 110.2 C16—C17—H17C 109.5
C12—C10—C11 59.7 (3) H17A—C17—H17C 109.5
C12—C10—C9 120.2 (4) H17B—C17—H17C 109.5
C4—O2—C1—O1 −178.9 (4) C4—C3—C8—C7 −21.5 (5)
C4—O2—C1—C2 0.5 (4) C9—C7—C8—C3 −178.6 (3)
O1—C1—C2—C3 178.5 (4) C6—C7—C8—C3 55.0 (4)
O2—C1—C2—C3 −0.8 (5) C8—C7—C9—C15 69.2 (4)
O1—C1—C2—C14 −0.9 (7) C6—C7—C9—C15 −161.0 (3)
O2—C1—C2—C14 179.8 (3) C8—C7—C9—C10 −170.4 (3)
C1—C2—C3—C4 0.7 (5) C6—C7—C9—C10 −40.5 (3)
C14—C2—C3—C4 −179.9 (4) C15—C9—C10—C12 −151.0 (3)
C1—C2—C3—C8 −176.5 (4) C7—C9—C10—C12 89.3 (4)
C14—C2—C3—C8 2.9 (7) C15—C9—C10—C11 144.3 (3)
C1—O2—C4—C3 0.0 (4) C7—C9—C10—C11 24.6 (4)
C1—O2—C4—C5 −0.9 (7) C9—C10—C11—C12 115.2 (4)
C2—C3—C4—C5 177.1 (4) C12—C10—C11—C12 −115.2 (4)
C8—C3—C4—C5 −5.3 (6) C9—C10—C11—C6 0.0 (4)
C2—C3—C4—O2 −0.4 (4) C5—C6—C11—C12 155.4 (4)
C8—C3—C4—O2 177.2 (3) C13—C6—C11—C12 32.3 (5)
O2—C4—C5—C6 175.6 (3) C6—C11—C12—C10 −140.6 (3)
C3—C4—C5—C6 −1.5 (6) C5—C6—C11—C10 14.6 (4)
C4—C5—C6—C7 33.5 (4) C9—C10—C11—C6 93.8 (4)
C5—C6—C7—C8 −62.8 (4) C6—C11—C12—C10 93.4 (4)
C13—C6—C7—C8 55.4 (4) C16—O3—C15—C9 −153.7 (3)
C11—C6—C7—C8 175.8 (3) C10—C9—C15—O3 66.5 (4)
C5—C6—C7—C9 161.8 (3) C7—C9—C15—O3 179.9 (3)
C13—C6—C7—C9 −80.0 (3) C15—O3—C16—O4 2.8 (6)
C11—C6—C7—C9 40.5 (3) C15—O3—C16—C17 −175.9 (3)
C2—C3—C8—C7 155.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C8—H8· ·O1ⅰ	0.97	2.81	3.481 (5)	127
C11—H11···O3ⅱ	0.98	2.54	3.497 (5)	167
C13—H13C···O1ⅲ	0.96	2.60	3.499 (5)	157
C13—H13B···O4ⅳ	0.96	2.61	3.530 (6)	160
C14—H14A···O2ⅹ	0.96	2.76	3.530 (5)	138
C17—H17C···O3ⅹⅰ	0.96	2.86	3.478 (5)	124

Symmetry codes: (ⅰ) x+1/2, −y+1/2, −z+1; (ⅱ) x−1, y, z; (ⅲ) x+1/2, −y+3/2, −z+1; (ⅳ) x, y+1, z; (ⅹ) −x+2, y−1/2, −z+1/2.