The Effects of Gall Bladder Jeonggyeok and Seunggyeok on Radial Pulse Variation in Healthy Human Subjects

Yun Joo Kim, Jae Hui Kang, Kwang Sik Yoon, Seoung Eun Jo, Seo Jin Hong, Gee Won Yun, Seo Young Oh and Hyun Lee

Department of Acupuncture & Moxibustion Medicine, Cheonan Korean Medical Hospital of Daejeon University

Objectives: The purpose of this study is to find parameters to compare the effects of Sa–Am acupuncture with gall bladder jeonggyeok and seunggyeok on radial pulse in healthy subjects.

Methods: 60 healthy subjects participated in this study and divided into the gall bladder jeonggyeok group (GB+ group), the gall bladder seunggyeok group (GB− group) and the control group. Radial pulse was measured by a 3 dimensional pulse imaging system (DMP–3000) before, immediately after, 30 minutes after and 60 minutes after acupuncture on the Cun, Guan and Chi in the GB+, GB− group and at the same time for the control group.

Results:
1. The GB+ and GB− group exhibited significantly increased T, M4/M1 and decreased T1/T, T2/T, T5/T, M1, M2 compared to the control group.
2. The GB+ and GB− group exhibited significantly increased H4, Ad/Ap, RAI/HR and decreased As/Ap, Aw/Ap in the right Guan and decreased pulse power volume/min in the left Guan compared to the control group.
3. The GB− group exhibited significantly decreased M3, M3/M1 and increased M4/M1, M5, M5/M1 compared to the GB+ group. The GB+ group exhibited significantly decreased T4/(T−T4) compared to the GB− group.
4. The GB− group exhibited significantly decreased H1 in the right Guan, Chi, H4, pulse area in the right Chi, H5, pulse power volume/min in the left Chi, right Chi, and increased main peak angle in the right Guan, Chi compared to the GB+ group.

Conclusion: The effect of gall bladder jeonggyeok and seunggyeok in healthy humans may be observed on various parameters. The parameters analyzed in this study may be used to differentiate effects between gall bladder jeonggyeok and seunggyeok on radial pulse. Further studies on the effects of Sa–Am acupuncture using radial pulse are needed.
I. 서론

脈診은 한의학적 진단법인 四診 중 切診에 해당되며1), 脈外에서 순환하는 衛氣와 脈內에서 순환하는 營血을 파악하여 인체의 병리현상을 해석하는 진단법으로 진동의 상태를 분석하여 병의 원인 및 예후를 판단하는데 중요한 수단이다2).

《黃帝內經》3-5)에서 나타난 脈診法의 종류는 三部九候遍診法, 人迎寸口對比診法, 寸口法, 尺膚診法, 南北政脈 등이 있으며, 이 중 손목의 요골경상돌기 근처 동맥의 맥동을 느끼는 寸口法을 가장 보편적인 脈診法으로 사용하고 있 다6).

올바른 진단은 효과적인 치료로 이어지며 또한 예후 판단으로도 이어질 수 있다. 그렇지만 脈診은 한의사의 주관적 경험과 판단에 의한 진단이라는 한계가 있어, 맥진기라는 의료기기를 통한 객관성 확보 및 재현성 확립은 진단 및 치료기술의 상승뿐 아니라 임상 연구의 활성화까지 이끌어낼 수 있을 것으로 생각된다. 최근에는 맥진기의 개발7) 및 이를 통해 측정한 맥파 분석에 대한 다양한 연구8,9)가 진행되고 있다.

舍巖鍼法은 임상적으로 다용되고 있는 鍼法으로 백서모델을 이용한 동물실험 연구10,11), 각종 증례 연구12,13) 및 임상연구14,15) 등은 기존에 많이 진행되어 왔으나 맥파와의 상관성에 대한 연구는 거의 이루어지고 있는 실정이다. 관련 연구로서는 특정 舍巖鍼 시술 후 대조군과의 차이를 비교한 연구16-19)가 있었고, 케이크 알프리에의 舍巖鍼 시술 후 대조군과의 차이를 비교한 연구20)가 있었다. 또한 舍巖鍼의 정격과 승격을 비교한 연구로는 대장정격과 승격21), 간정격과 승격22)에 시술 후 대조군과의 차이를 비교한 연구가 있었으나 임상에서 心膽虛怯, 筋骨疼痛, 積聚, 結核, 자율신경실조증, 오관질환 등에 사용되는23) 담정격과 승격에 대한 연구는 아직 접하지 못하였다.

이에 본 저자는 맥진기를 이용하여 만 20~39세까지의 정상 성인 지원자를 대상으로 담정격 및 담승격 자침 이후 나타난 寸關尺 맥파의 변화를 대조군 및 각각 비교 분석한 결과 및 이론적 지면을 얻었기에 보고하는 바이다.

II. 방법

1. 임상시험 설계

본 임상시험은 단일맹검 무작위배정 대조군 연구 형식이다. 혈식선 선언에 근거하고 있는 대전대학교 천안한방병원 임상시험심사위원회 승인(승인번호 P2012-4)에 실시하였고, 실험 지원자는 실험에 대해 상세한 설명을 듣고 동의서를 작성한 사람에 한하여 시험을 진행하였다.

2. 연구대상 선정

1) 연구대상자 모집

연구대상자는 대전대학교 교내와 교외 광고물을 통해 공개적으로 모집하였고, 연구자의 설명을 듣고 동의서를 작성한 사람에 한하여 시험을 진행하였다.

2) 연구대상자 선정 기준

선정 기준은 현재 신체가 건강하고 현재 치료중인 질병이 없는 만 20세~39세 지원자를 대상으로 하였다.

3) 연구대상자 제외 기준

지원자 중 body mass index(BMI)가 18 kg/m² 미만 또는 32 kg/m² 이상인 자, 수축기 혈압이 150 mmHg 이상거나 이완기 혈압이 60 mmHg 미만인 자, 부정맥이 있는 자, 맥진 측정 부위에 신체적 위해가 있었던 자, 월경 중인 여성, 임산부, 한의학 전공자, 최근 3주 내 혈행개선 관련 약물 복용자, 최근 3개월 내 다른 임상시험 참가자는 제외하였다.

4) 연구대상자 수 산정

본 시험은 舍巖鍼 시술에 따른 맥상 및 맥파변화를 관찰하고 비교하는 탐색적 연구자임 연구이다. 이에 연구대상자 수 산정은 통계적 산출이 아닌 자침 후 요골동맥파의 변화를 분석한 선행 연구들 - Boutouyrie 등25)의 연구(정상인 8명, 환자 19명), Wang 등26-28)의 연구(정상인 15명)을 참고하여 대조군 20명, 담정격 자침군 20명, 담승격 자침군 20명, 총 60명으로 임의 설정하였다.
3. 무작위배정 및 명령

본 임상시험의 피험자 배정은 난수표를 이용한 단순 무작위배정으로 진행하였고, 시술자와 측정자 이외의 연구자가 배정하였다.

시험은 피험자에게 명령이 된 단일명령으로 진행하였고, 측정자는 시술과 비시술을 인지하지 못한 상태에서 맥파를 측정하였다. 수집된 검사결과는 기호화되어 통계 분석자에게 인계되어 분석하였다.

4. 시험방법

1) 맥파 측정

맥파 측정은 대전대학교 경락경혈학교실에서 시행하였으며, 측정자는 비한의학 전공자로 DMP-3000(DAEYOMEDI Co., KOREA)을 사용하여 좌위에서 시행하였다. 시험 장소에 도착한 지원자는 시험에 대해 상세한 설명을 듣고 시험 동의서에 서명 후 30분간 휴식을 취하였다. 맥측정을 규칙적으로 하기 위해 유성펜으로 左右関부위에 확인 가능한 표시를 하고, 左右寸關尺에서 1차 맥측정을 시행하였다. 寸, 關, 尺부위의 설정 시関부위는 요골 경상돌기, 寸부위는 關으로부터 원위부로 약 9분, 尺부위는 근위부로부터 약 9분의 거리에 정하였다.

자침군은 시술이 끝나고 1차 맥측정 시 표시한関을 기준으로 하여 발침 직후, 30분 후, 60분 후에 동일한 방법으로 2차, 3차, 4차 맥측정을 시행하였으며, 대조군도 침대에서 놓임과 동일한 방법으로 2차, 3차, 4차 맥측정을 시행하였다(Fig. 1).

시험이 시행되는 동안 참가자는 안정을 취하였고, 물 이외의 음식물 섭취와 흡연을 금하였다. 시험 장소의 실내 온도는 24~26℃, 습도는 40~60%로 유지하였다.

2) 자침

본 연구에서 침치료 방법은 STandards for Reporting Interventions in Clinical Trials of Acupuncture(STRICTA)를 참고하여 시행하였다.

(1) 침치료에 대한 논거
① 침법의 종류: 슬립진법
② 문헌적 근거: 《침구의학》
③ 침을 적용할 수 있는 정도: 별무

(2) 자침에 대한 상세 내용
① 1회 치료 시 환자당 자침 수: 8개
② 사용한 경혈: 俠谿, 通谷, 竅陰, 商陽, 陽輔, 陽谷
③ 자침 깊이: 2~14mm
④ 유발한 반응: 자침 시 국소적인 득기감
⑤ 치료의 형태: 迎隨補瀉, 圓方補瀉, 九六補瀉
⑥ 침자극의 형태: 도형 다양화
⑦ 침자극의 형태: 0.25 × 30 mm, Dong Bang Acupuncture Co., Korea

(3) 치료 내용
① 치료 횟수: 1회
② 치료 빈도: 1회/1일

(4) 치료의 다른 구성 요소
① 침으로 시행된 다른 중재의 세부 내용: 별무
② 시술자에 대한 지침과 환자에 대한 정보 및 설명을 포함하는 치료 환경과 상황: 특별한 이상 반응이 없는 이상 별무

(5) 시술자의 배경
6년간 한의학 교육 과정을 거쳐 한의사 면허증을 취득한...
후 2년 이상의 임상 경험이 있는 전문수련의 과정 1인
(6) 대조군 및 비교군 중재
대조군은 자침군의 유침 시간과 동일 시간 동안 휴식

5. 맥파 분석

1) 대표맥 추출
측정부에 가하는 압력을 5단계로 나누어 맥파를 측정하였고, 압력 각 단계에서 측정된 맥파 중에서 첫 번째 피크의 크기가 가장 큰 맥파가 대표맥으로 선정되었다(Fig. 2).

2) 분석 요소
중앙센서에서 얻은 대표맥을 분석하여 아래의 변수들을 도출하였다(Fig. 3)[단, pulse power volume은 5개 센서(상하좌우 중앙)에서 측정된 대표맥들로부터 계산함].

(1) 左右 寸關尺 6부위 통합 시간 변수 변화
① T(Pulse Period) : 맥파주기

![Fig. 2. Radial pulse waveforms obtained with 5 levels of applied pressure](http://dx.doi.org/10.13045/acupunct.2016034)

Scale on y-axis means DIV(digital value for pressure).

![Fig. 3. Normal radial pulse waveform](http://dx.doi.org/10.13045/acupunct.2016034)
담정격 및 담승격 자침이 정상 성인의 맥파 변화에 미치는 영향

6. 통계 분석

결과금은 자침 전의 척정감에 대한 자침 후의 변화량으로 하였다. 자침 전, 발침 직후, 30분 후, 60분 후 측정값을 각각 \(M_{before} \), \(M_1 \), \(M_2 \), \(M_3 \)라 했을 때 그 변화량 \(C_n \) 는 다음과 같이 계산하였다.

\[
C_n = M_n - M_{before}
\]

\(M_n \) : 'n'th measured value after acupuncture
\(M_{before} \) : Value measured before acupuncture
\(C_n \) : Change from \(M_{before} \) to \(M_n \)

통계 분석은 SPSS 18.0(PASW statistics 18)을 이용하였고, 결과는 평균값으로 나타내었다. 左右 寸關尺 6부위 통합 시간, 주파수 분석은 repeated measures analysis-of variance(ANOVA) test를 사용하였으며, 각 시점별 군 간 비교는 one way ANOVA를 사용하였고 사후 분석은 least significant difference(LSD) test를 사용하였다. 左右 寸關尺 각 부위별 분석은 시점별로 Kruskal-Wallis를 사용 후 다시 Mann-Whitney U test를 사용하여 군 간을 비교하였다. 유의 검정 수준은 신뢰도 95 % 이상(\(p \)-value < 0.05)으로 하였다.

4) 이상반응

임상시험 중 발생할 수 있는 심계, 현훈, 오심, 자침 부위 혈종 등의 이상 반응은 60명의 연구대상자 모두에서 관찰되지 않았다.

III. 결과

1. 일반적 특성

모집된 피험자의 연령, 키, 몸무게, BMI에서 각 군별로 유의한 차이가 나타나지 않았다(Table 1).

2. 左右 寸關尺 6부위 통합 시간 변수 변화

1) Pulse period(T)

담정격 자침군에서 발침 직후, 발침 30분 후 대조군에 비하여 백파주기가 유의하게 증가하였다. 담승격 자침군에서는 발침 직후, 발침 60분 후 대조군에 비하여 백파주기가 유의하게 증가하였다(Fig. 4).

2) T1/T

담정격 자침군에서 발침 직후와 발침 30분 후 대조군에
비하여 $T1/T$가 유의하게 감소하였으며, 담승격 자침군에서 발침 직후 대조군에 비하여 $T1/T$가 유의하게 감소하였다(Fig. 5).

3) $T2/T$

담정격 자침군에서 발침 직후와 발침 30분 후 대조군에 비하여 $T2/T$가 유의하게 감소하였으며, 담승격 자침군에서 발침 직후 대조군에 비하여 $T2/T$가 유의하게 감소하였다(Fig. 6).

4) $T4/(T-T4)$

담정격 자침군과 담승격 자침군을 비교 분석한 결과 담승격 자침군이 발침 60분 후 담정격 자침군에 비하여 $T4/(T-T4)$에서 유의하게 감소량이 적었다(Fig. 7).

5) $T5/T$

담정격 자침군과 담승격 자침군 모두 발침 직후 대조군에 비하여 $T5/T$가 유의하게 감소하였다(Fig. 8).

Table 1. Baseline Characteristics of Subjects

	control group(n = 20)	GB+ group(n = 20)	GB- group(n = 20)
	Mean ±	Mean ±	Mean ±
Age(year)	21.00 ± 2.17	21.00 ± 1.08	21.05 ± 1.05
Height(cm)	173.17 ± 4.23	170.75 ± 6.43	170.00 ± 6.95
Weight(kg)	67.83 ± 8.91	67.35 ± 4.85	66.05 ± 5.95
BMI(kg/m²)	22.61 ± 2.85	23.14 ± 1.75	22.89 ± 2.24

GB+ : gall bladder Jeonggyeok group.
GB- : gall bladder Seunggyeok group.
BMI : body mass index.

Fig. 4. Effect of gall bladder Jeonggyeok and Seunggyeok on pulse period(T)

Healthy subjects in GB+ and GB- group were given gall bladder Jeonggyeok and gall bladder Seunggyeok respectively for 20 minutes. Those in control group took rest same time without acupuncture. Radial pulse was measured at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of pulse period after acupuncture at each time points was analyzed. Data were expressed by mean(n = 120).

Control : control group.
GB+ : gall bladder Jeonggyeok group.
GB- : gall bladder Seunggyeok group.
* : $p < 0.05$, ** : $p < 0.01$, *** : $p < 0.001$ vs control by ANOVA.
Fig. 5. Effect of gall bladder Jeonggyeok and Seunggyeok on T1/T of radial pulse

Healthy subjects in GB+ and GB- group were given gall bladder Jeonggyeok and gall bladder Seunggyeok respectively for 20 minutes. Those in control group took rest same time without acupuncture. Radial pulse was measured at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of pulse period after acupuncture at each time points was analyzed. Data were expressed by mean(n = 120).

Control : control group.
GB+ : gall bladder Jeonggyeok group.
GB- : gall bladder Seunggyeok group.
* : p < 0.05, ** : p < 0.01, *** : p < 0.001 vs control by ANOVA.

Fig. 6. Effect of gall bladder Jeonggyeok and Seunggyeok on T2/T of radial pulse

Healthy subjects in GB+ and GB- group were given gall bladder Jeonggyeok and gall bladder Seunggyeok respectively for 20 minutes. Those in control group took rest same time without acupuncture. Radial pulse was measured at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of pulse period after acupuncture at each time points was analyzed. Data were expressed by mean(n = 120).

Control : control group.
GB+ : gall bladder Jeonggyeok group.
GB- : gall bladder Seunggyeok group.
* : p < 0.05 vs control by ANOVA.
Fig. 7. Effect of gall bladder Jeonggyeok and Seunggyeok on T4/(T−T4) of radial pulse

Healthy subjects in GB+ and GB− group were given gall bladder Jeonggyeok and gall bladder Seunggyeok respectively for 20 minutes. Those in control group took rest same time without acupuncture. Radial pulse was measured at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of pulse period after acupuncture at each time points was analyzed. Data were expressed by mean(n = 120).

Control : control group.
GB+ : gall bladder Jeonggyeok group.
GB− : gall bladder Seunggyeok group.
† : p < 0.05 vs GB+ by ANOVA.

Fig. 8. Effect of gall bladder Jeonggyeok and Seunggyeok on T5/T of radial pulse

Healthy subjects in GB+ and GB− group were given gall bladder Jeonggyeok and gall bladder Seunggyeok respectively for 20 minutes. Those in control group took rest same time without acupuncture. Radial pulse was measured at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of pulse period after acupuncture at each time points was analyzed. Data were expressed by mean(n = 120).

Control : control group.
GB+ : gall bladder Jeonggyeok group.
GB− : gall bladder Seunggyeok group.
**: p < 0.01 vs control by ANOVA.
3. 左右寸關尺 6부위 통합 주파수 분석 변
수 변화

1) Magnitude of fourier components

첫 번째부터 다섯 번째까지 푸리에 성분의 파폭 (M1~M5)의 변화를 분석하였다.

담정격 자침군에서 대조군에 비하여 M1이 발침 60분 후, M2가 발침 30분 후와 발침 60분 후, M5가 발침 직후와 발
침 60분 후 유의하게 감소하였다. 담승격 자침군에서는 대
조군에 비하여 M1이 발침 직후, 발침 30분 후, 발침 60분
후, M2가 발침 직후와 발침 60분 후, M3가 발침 30분 후

Fig. 9. Effect of gall bladder Jeonggyeok and Seunggyeok on magnitudes of fourier components of radial pulse

Change of magnitudes of Fourier components of radial pulse after acupuncture at each time points was analyzed. Data were expressed by mean (n = 120).

Blank : control group, Dot : gall bladder Jeonggyeok group (GB+), Diagonal : gall bladder Seunggyeok group (GB-).

*: p < 0.05, **: p < 0.01, ***: p < 0.001 vs control by ANOVA.
†: p < 0.05, ††: p < 0.01, †††: p < 0.001 vs GB+ by ANOVA.
와 발침 60분 후 유의하게 감소하였다.

담정격 자침군과 담승격 자침군을 비교 분석한 결과 담승격 자침군에서 담정격 자침군에 비하여 M3가 발침 30분 후와 발침 60분 후 유의하게 감소하였고, M5가 발침 60분 후 유의하게 증가하였다(Fig. 9).

2) Ratio of magnitudes of fourier components

첫 번째 푸리에 성분 파폭에 대한 두 번째부터 다섯 번째까지 푸리에 성분의 비(M2/M1 ~ M5/M1)를 분석하였다.

담정격 자침군에서 대조군에 비하여 M4/M1이 발침 30분 후 유의하게 증가하였다. 담승격 자침군에서는 대조군에 비하여 M3/M1이 발침 30분 후와 발침 60분 후 유의하게 감소하였고, M4/M1이 발침 직후, M5/M1이 발침 60분 후 유의하게 증가하였다(Fig. 10).

담정격 자침군과 담승격 자침군을 비교 분석한 결과 담승격 자침군에서 담정격 자침군에 비하여 M3/M1이 발침 30분 후와 발침 60분 후 유의하게 감소하였고, M4/M1이 발침 직후, M5/M1이 발침 30분 후와 발침 60분 후 유의하게 증가하였다(Fig. 10).

Fig. 10. Effect of gall bladder Jeonggyeok and Seunggyeok on the ratios of magnitudes of fourier components of radial pulse

Change of the ratio of magnitudes of Fourier components of radial pulse after acupuncture at each time points was analyzed. Data were expressed by mean(n = 120).
Blank : control group, Dot : gall bladder Jeonggyeok group GB+, Diagonal : gall bladder Seunggyeok group(GB-),
* : p < 0.05, ** : p < 0.01, *** : p < 0.001 vs control by ANOVA,
† : p < 0.05, †† : p < 0.01, ††† : p < 0.001 vs GB+ by ANOVA,

http://dx.doi.org/10.13045/acupunct.2016034
4. 左右寸關尺 부위별 파형 변수 변화

1) H1

左右寸關尺 6부위에서 H1의 변화를 분석하였다. 담정격 자침군은 발침 30분 후 左寸(L1)에서 대조군에 비하여 H1이 유의하게 증가하였다. 담정격 자침군과 담승격 자침군을 비교 분석한 결과, 발침 직후 右尺(R3)에서 그리고 발침 30분 후 右關(R2)에서 담승격 자침군이 담정격 자침군에 비하여 H1이 유의하게 감소하였다 (Fig. 11).

2) H4

左右寸關尺 6부위에서 H4의 변화를 분석하였다. 담정격 자침군은 발침 직후 左寸(L1)과 右關(R2)에서, 발침 30분 후 右關(R2)에서, 발침 60분 후 右寸(R1)에서 대조군에 비하여 H4가 유의하게 증가하였다. 담정격 자침군은 발침 직후 右關(R2)에서 대조군에 비하여 H4가 유의하게 증가하였다. 담정격 자침군과 담승격 자침군을 비교 분석한 결과, 발침 직후 右尺(R3)에서 담승격 자침군이 담정격 자침군에 비하여 H4가 유의하게 감소하였다 (Fig. 12).

3) H5

左右寸關尺 6부위에서 H5의 변화를 분석하였다. 담정격 자침군은 발침 30분 후 右關(R2)에서 대조군에 비하여 H5가 유의하게 증가하였다. 담정격 자침군은 발침 60분 후 左關(L2)에서 대조군에 비하여 H5가 유의하게 증가하였다. 담정격 자침군과 담승격 자침군을 비교 분석한 결과, 발침 직후 左寸(L1)과 右關(R2)에서 담승격 자침군이 담정격 자침군에 비하여 H5가 유의하게 감소하였다 (Fig. 13).

4) Pulse power volume/min

左右寸關尺 6부위에서 분당 pulse power volume을 분석하였다. 담정격 자침군과 담승격 자침군 모두 발침 30분 후와 발침 60분 후 左關(L2)에서 대조군에 비하여 분당 pulse power volume가 유의하게 감소하였다. 담정격 자침군과 담승격 자침군을 비교 분석한 결과, 발침 직후 左寸(L1)과 右關(R2)에서 담승격 자침군이 담정격 자침군에 비하여 발침 직후 右尺(R3)에서 그 리고 발침 30분 후 左寸(L1)에서 분당 pulse power volume가 유의하게 감소하였다 (Fig. 14).

5) Pulse area(Ap)

左右寸關尺 6부위에서 백파 면적을 분석하였다. 담정격 자침군에서 대조군에 비하여 발침 직후 左寸(L1)에서, 발침 30분 후 左寸(L1)과 右關(R2)에서 백파 면적이 유의하게 증가하였다. 담정격 자침군과 담승격 자침군을 비교 분석한 결과, 담정격 자침군이 발침 직후 右尺(R3)에서 발침 직후 左寸(L1)에서, 발침 30분 후 左寸(L1)과 右關(R2)에서 백파 면적이 유의하게 증가하였다. 담정격 자침군과 담승격 자침군을 비교 분석한 결과, 담정격 자침군이 담승격 자침군에 비하여 백파 면적이 유의하게 감소하였다 (Fig. 15).

6) Systolic pulse area(As/Ap)

左右寸關尺 6부위에서 전체 백파 면적이 대조군에 비하여 유의하게 증가하였다. 담정격 자침군에서 대조군에 비하여 발침 직후와 발침 30분 후 右關(R2)에서 As/Ap가 유의하게 감소하였다. 담승격 자침군에서 대조군에 비하여 발침 직후 右關(R2)에서 As/Ap가 유의하게 감소하였다 (Fig. 16).

7) Diastolic pulse area(Ad/Ap)

左右寸關尺 6부위에서 전체 백파 면적이 대조군에 비하여 유의하게 증가하였다. 담정격 자침군에서 대조군에 비하여 발침 직후와 발침 30분 후 右關(R2)에서 Ad/Ap가 유의하게 증가하였다. 담승격 자침군에서 대조군에 비하여 발침 직후 右關(R2)에서 Ad/Ap가 유의하게 증가하였다 (Fig. 17).

8) High tensioned pulse area(Aw/Ap)

左右寸關尺 6부위에서 전체 백파 면적이 대조군에 비하여 유의하게 증가하였다. 담정격 자침군과 담승격 자침군 모두 발침 60분 후 右關(R2)에서 Aw/Ap가 대조군에 비하여 유의하게 감소하였다 (Fig. 18).

9) Main peak angle

左右寸關尺 6부위에서 주파각의 크기를 분석하였다. 담정격 자침군에서 대조군에 비하여 발침 30분 후 左寸(L1)에서 주파각이 유의하게 감소하였으며, 담승격 자침군에서 대조군에 비하여 발침 직후 右關(R2)에서 주파각이 유의하게 증가하였다. 담정격 자침군과 담승격 자침군을 비교 분석한 결과, 발침 직후 右關(R2)에서 담승격 자침군이 담정격 자침군에 비하여 주파각이 유의하게 증가하였다 (Fig. 19).

10) Radial augmentation index/heart rate(RAI/HR)

左右寸關尺 6부위에서 radial augmentation index/heart rate(RAI/HR)를 분석하였다. 담정격 자침군과 담승격 자침군 모두 발침 직후 右關(R2)에서 RAI/HR가 대조군에 비하여 유의하게 감소하였다 (Fig. 20).
Fig. 11. Effect of gall bladder Jeonggyeok and Seunggyeok on H1 at each measuring points

Radial pulse was measured on 6 different measuring points at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of H1 after acupuncture at each time points on different measuring points was analyzed. Data were expressed by mean(n = 20). L1 : left Cun, L2 : left Guan, L3 : left Chi, R1 : right Cun, R2 : right Guan, R3 : right Chi. Blank : control group, Dot : gall bladder Jeonggyeok group(GB+), Diagonal : gall bladder Seunggyeok group(GB−). * : p < 0.05 vs control by Mann-Whitney U test, † : p < 0.05 vs GB+ by Mann-Whitney U test.

Fig. 12. Effect of gall bladder Jeonggyeok and Seunggyeok on H4 at each measuring points

Radial pulse was measured on 6 different measuring points at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of H4 after acupuncture at each time points on different measuring position was analyzed. Data were expressed by mean(n = 20). L1 : left Cun, L2 : left Guan, L3 : left Chi, R1 : right Cun, R2 : right Guan, R3 : right Chi. Blank : control group, Dot : gall bladder Jeonggyeok group(GB+), Diagonal : gall bladder Seunggyeok group(GB−). * : p < 0.05 vs control by Mann-Whitney U test, † : p < 0.05 vs GB+ by Mann-Whitney U test.
Fig. 13. Effect of gall bladder Jeonggyeok and Seunggyeok on H5 at each measuring points
Radial pulse was measured on 6 different measuring points at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of H5 after acupuncture at each time points on different measuring position was analyzed. Data were expressed by mean(n = 20). L1: left Cun, L2: left Guan, L3: left Chi, R1: right Cun, R2: right Guan, R3: right Chi. Blank: control group, Dot: gall bladder Jeonggyeok group(GB+), Diagonal: gall bladder Seunggyeok group(GB-).
* : p < 0.05 vs control by Mann-Whitney U test.
† : p < 0.05, †† : p < 0.01 vs GB+ by Mann-Whitney U test.

Fig. 14. Effect of gall bladder Jeonggyeok and Seunggyeok on pulse power volume/min at each measuring points
Radial pulse was measured on 6 different measuring points at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of pulse power volume/min after acupuncture at each time points on different measuring position was analyzed. Data were expressed by mean(n = 20). L1: left Cun, L2: left Guan, L3: left Chi, R1: right Cun, R2: right Guan, R3: right Chi. Blank: control group, Dot: gall bladder Jeonggyeok group(GB+), Diagonal: gall bladder Seunggyeok group(GB-).
* : p < 0.05, ** : p < 0.01 vs control by Mann-Whitney U test.
† : p < 0.05 vs GB+ by Mann-Whitney U test.
Fig. 15. Effect of gall bladder Jeonggyeok and Seunggyeok on pulse area at each measuring points
Radial pulse was measured on 6 different measuring points at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of pulse area after acupuncture at each time points on different measuring position was analyzed. Data were expressed by mean (n = 20).
L1 : left Cun, L2 : left Guan, L3 : left Chi, R1 : right Cun, R2 : right Guan, R3 : right Chi.
Blank : control group, Dot : gall bladder Jeonggyeok group (GB+), Diagonal : gall bladder Seunggyeok group (GB-).
* : p < 0.05, ** : p < 0.01 vs control by Mann-Whitney U test.
† : p < 0.05 vs GB+ by Mann-Whitney U test.

Fig. 16. Effect of gall bladder Jeonggyeok and Seunggyeok on systolic pulse area at each measuring points
Radial pulse was measured on 6 different measuring points at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of systolic pulse area after acupuncture at each time points on different measuring position was analyzed. Data were expressed by mean (n = 20).
L1 : left Cun, L2 : left Guan, L3 : left Chi, R1 : right Cun, R2 : right Guan, R3 : right Chi.
Blank : control group, Dot : gall bladder Jeonggyeok group (GB+), Diagonal : gall bladder Seunggyeok group (GB-).
* : p < 0.05 vs control by Mann-Whitney U test.
Fig. 17. Effect of gall bladder Jeonggyeok and Seunggyeok on diastolic pulse area at each measuring points
Radial pulse was measured on 6 different measuring points at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of diastolic pulse area after acupuncture at each time points on different measuring position was analyzed. Data were expressed by mean(n = 20).
L1 : left Cun, L2 : left Guan, L3 : left Chi, R1 : right Cun, R2 : right Guan, R3 : right Chi.
Blank : control group, Dot : gall bladder Jeonggyeok group(GB+), Diagonal : gall bladder Seunggyeok group(GB–).
* : p < 0.05 vs control by Mann–Whitney U test.

Fig. 18. Effect of gall bladder Jeonggyeok and Seunggyeok on high tensioned pulse area at each measuring points
Radial pulse was measured on 6 different measuring points at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of high tensioned pulse area after acupuncture at each time points on different measuring position was analyzed. Data were expressed by mean(n = 20).
L1 : left Cun, L2 : left Guan, L3 : left Chi, R1 : right Cun, R2 : right Guan, R3 : right Chi.
Blank : control group, Dot : gall bladder Jeonggyeok group(GB+), Diagonal : gall bladder Seunggyeok group(GB–).
* : p < 0.05 vs control by Mann–Whitney U test.
Fig. 19. Effect of gall bladder Jeonggyeok and Seunggyeok on main peak angle at each measuring points

Radial pulse was measured on 6 different measuring points at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of main peak angle after acupuncture at each time points on different measuring points was analyzed. Data were expressed by mean(n = 20).

L1 : left Cun, L2 : left Guan, L3 : left Chi, R1 : right Cun, R2 : right Guan, R3 : right Chi.
Blank : control group, Dot : gall bladder Jeonggyeok group(GB+), Diagonal : gall bladder Seunggyeok group(GB-).
*: p < 0.05, **: p < 0.01 vs control by Mann-Whitney U test.
†: p < 0.05 vs GB+ by Mann-Whitney U test.

Fig. 20. Effect of gall bladder Jeonggyeok and Seunggyeok on radial augmentation index/heart rate at each measuring points

Radial pulse was measured on 6 different measuring points at before, right after, 30 minutes after and 60 minutes after acupuncture. Change of radial augmentation index/heart rate after acupuncture at each time points on different measuring position was analyzed. Data were expressed by mean(n = 20).

L1 : left Cun, L2 : left Guan, L3 : left Chi, R1 : right Cun, R2 : right Guan, R3 : right Chi.
Blank : control group, Dot : gall bladder Jeonggyeok group(GB+), Diagonal : gall bladder Seunggyeok group(GB-).
*: p < 0.05, **: p < 0.01 vs control by Mann-Whitney U test.
Ⅳ. 고찰

脈診은 한의학 진단법인 望聞問切 四診 중 切診의 한 수단으로 맥박의 常과 變에 근거하여 인체의 건강상태를 살피고, 질병이 어느 经絡과 臏腑에 있고, 陰陽·寒熱·表裏·虛實 八綱 중 어디에 속하며, 질병의 진퇴와 예후 등을 진단하는데 중요한 의의가 있다 1) . 《靈樞·九鍼十二原》 3) 에서는 “鍼을 쓰려는 모든 경우에 반드시 脈을 먼저 진단하여 氣가 안정되어 있는지, 그렇지 않은지 확인하여야 치료에 들어갈 수 있다”라 하며 脈診의 중요성을 강조하였다.

玄帝內經에서 나타난 맥진법의 종류는 《素問·三部九候論》 4) 의 인체를 上中下 3部로 나누고 3部를 다시 天人地 3候로 나누어 9候를 촉지하는 三部九候脈診法, 《靈樞·終始篇》 3) 의 足陽明胃經이 통하는 人迎과 手太陰肺經이 통하는 寸口를 촉지해 비교하는 人迎寸口對比診法, 《素問·經脈別論》 4) 의 모든 脈이 모이는 곳으로 氣血 운행이 가장 잘 드러나는 寸口에서 진단하는 寸口法, 《素問·脈要精微論》의 肘関節 이하 腕關節 이상의 肌膚에 장부를 배속시켜 진단하는 尺膚診法, 《素問·至眞要大論》의 시공간의 영향을 결부시켜 진단하는 南北政脈 등이 있다. 이후 脈診은 《難經》 31) 에서 “寸口 는 五臟六腑가 시작하고 끝나는 곳이므로 診法을 寸口에서 취하는 것이다.”라 하여 寸口脈만을 이용하여 질병을 진단하는 원리를 설명하였고, 《脈經》 32) 에서 寸關尺의 정의 및 脈의 24가지 형태를 설명함과 더불어 寸關尺 각 부위에 장부를 배속시켰으며, 편리성 및 개괄성의 측면에서 寸口脈診法이 오늘날 가장 보편적인 脈診법으로 사용되고 있다 1) .

寸口脈診의 장부 배속에 대해서는 각가학설이 있으나, 일반적으로 좌우 寸에서는 心·小腸, 肺·大腸, 좌우 關에서는 肝·膽, 脾·胃, 좌우 尺에서는 腎·膀胱, 命門·三焦에 배속되어 그 상태를 반영한다고 하였다.

이에 한의사는 脈診을 통해 환자를 진단하고 예후를 판단하는 한의학의 근거라고도 하며, 脈診을 통해 환자의 생리·병리상태를 조정하여 치료하는 것으로도 볼 수 있다. 이를 통해 환자의 勝격과 逆격의 상태를 확인하고, 환자의 건강 상태를 파악할 수 있다. 또한 이는 환자의 건강 상태를 파악하고, 환자의 건강 상태를 개선하는 데에 큰 도움을 제공한다.

舍巖鍼法 자체의 합리성과 효용성을 입증할 수 있는 연구는 아직까지 보고된 바가 많지 않다. 이러한 단점을 극복하기 위해 맥진기의 사용을 권장하며, 이를 통해 환자의 건강 상태를 파악하고, 환자의 건강 상태를 개선할 수 있는 방법을 찾아내는 것이 중요하다. 한의학의 전통적 치료방식인 舍巖鍼법은 환자의 건강 상태를 파악하고, 환자의 건강 상태를 개선하는 데에 큰 도움을 제공한다. 이를 통해 환자의 건강 상태를 파악하고, 환자의 건강 상태를 개선하는 데에 큰 도움을 제공한다.
전, 발침 직후, 30분 후, 60분 후의 변화를 左右 寸關尺 6 부위의 통합 분석 및 左右 寸關尺 각 부분으로 비교 분석하였다.

左右 寸關尺 6 부위를 통합 분석하여 유의한 차이를 보인 변수는 T, T1/T, T2/T, T4/(T-T4) 및 T5/T 이었다.

백과 시간변수인 T는 담정격 자침군에서 발침 직후, 발침 30분 후 대조군에 비하여 맥파주기가 유의하게 증가하였다. 담승격 자침군에서는 대조군에 비하여 M1이 발침 직후, M2가 발침 30분 후 발침 60분 후, M5가 발침 직후와 발침 60분 후 유의하게 감소하였다. 담승격 자침군에서는 대조군에 비하여 M1이 발침 직후, 발침 30분 후, 발침 60분 후, M2가 발침 직후와 발침 30분 후, M3가 발침 30분 후 발침 60분 후 유의하게 감소하였다. 담승격 자침군과 담승격 자침군을 비교 분석한 결과 담승격 자침군에서 담정격 자침군에 비하여 M3가 발침 30분 후 와 발침 60분 후 유의하게 감소하였고, M5가 발침 60분 후 유의하게 감소하였다.

左右 寸關尺 6 부위를 통합 분석하여 유의한 차이를 보인 변수는 M1, M2, M3, M5, M3/M1, M4/M1, M5/M1이었다.

주파수 분석 영역 분석을 위해 자침 후 측정한 맥파를 고속 푸리에 변환(fast fourier transform, FFT) 후 얻은 측정이 보다 정확한 푸리에 성분을 미리 분석하여 변환하였다. 담정격 자침군에서 대조군에 비하여 M1이 발침 60분 후, M2가 발침 30분 후 와 발침 60분 후, M5가 발침 직후와 발침 60분 후 유의하게 감소하였다. 담승격 자침군에서는 대조군에 비하여 M1이 발침 직후, 발침 30분 후, 발침 60분 후, M2가 발침 직후와 발침 30분 후, M3가 발침 30분 후 와 발침 60분 후 유의하게 감소하였다. 담승격 자침군과 담승격 자침군을 비교 분석한 결과 담승격 자침군에서 담정격 자침군에 비하여 M3가 발침 30분 후 와 발침 60분 후 유의하게 감소하였고, M5가 발침 60분 후 유의하게 감소하였다.

주파수 분석 관련 변수는 담정격 자침군과 담승격 자침군의 규칙적인 변화가 보이지 않았으나 대조군에 비하여 M1, M2가 감소, M4/M1이 증가하였고, 담승격 자침군에서는 단정격 자침군에 비하여 M3, M3/M1이 감소하였고, M5, M5/M1이 증가하였다. 본 시험에서는 단정격 및 단승격 자침군에서 단정격 자침군에 비하여 M3, M5/M1이 발침 30분 후 와 발침 60분 후 유의하게 감소하였고, M4/M1이 발침 직후, M5/M1이 발침 30분 후 와 발침 60분 후 유의하게 감소하였다. 단정격 자침군과 단승격 자침군을 비교 분석한 결과 단승격 자침군에서 단정격 자침군에 비하여 M3, M5/M1이 발침 30분 후 와 발침 60분 후 유의하게 감소하였다.

주파수 분석 관련 변수는 단정격 자침군과 단승격 자침군의 규칙적인 변화가 보이지 않았으나 단승격 자침군에 비하여 M1, M2가 감소, M4/M1이 증가하였고, 단승격 자침군에서는 단정격 자침군에 비하여 M3, M3/M1이 감소하였고, M5, M5/M1이 증가하였다. 본 시험에서는 단정격 및 단승격 자침군에서 단정격 자침군에 비하여 M3, M5/M1이 발침 30분 후 와 발침 60분 후 유의하게 감소하였다. 단정격 자침군과 단승격 자침군을 비교 분석한 결과 단승격 자침군에서 단정격 자침군에 비하여 M3, M5/M1이 발침 30분 후 와 발침 60분 후 유의하게 감소하였다.

Yoon 등39)의 연구에 따르면 각 푸리에 성분의 파폭은 외부 압력에 따라 다르지만 기본 파폭에 대한 각 성분 파폭의 비는 일정하게 유지되었고 개인에 따라 다른 양상을 보여 진단의 도구로써 이용할 수 있다고 하였고, Yim 등40)의 연구에서는 특정 푸리에 성분을 특정 臓腑 와 관련 짓는다 면 해당 파폭에 성분의 역할이 중요할 수 있다고 하였다. 이러한 변수들은 현재 여러 연구26-29)를 통하여 증명을 해나가고 있는 단계지만, 특정 푸리에 성분의 파폭은 의학적 의미를 가진다고 하였고, Yim 등40)의 연구에서는 특정 푸리에 성분을 특정 臓腑 와 관련 짓는다 면 해당 파폭에 성분의 역할이 중요할 수 있다고 하였다. 이러한 변수들은 현재 여러 연구26-29)를 통하여 증명을 해나가고 있는 단계지만, 특정 푸리에 성분의 파폭은 의학적 의미를 가진다고 하였고.
리에 성분 변화에 대한 자료를 분석하고 구축한다면 해당 침 자극이 어느 맥파와 장부에 영향을 미치는지 파악할 수 있을 것이다.

左右 寸關尺 6부위별 맥파 분석에서 유의한 결과를 보인 변수는 H1, H4, H5, pulse power volume/min, pulse area(Ap), systolic pulse area(As/Ap), diastolic pulse area(Ad/Ap), high tensioned pulse area(Aw/Ap), main peak angle, radial augmentation index/heart rate(RAI/HR)이었다.

맥압 관련 변수인 H1는 주파의 크기로 심장수축 시 좌심실이 혈액을 박출할 때 동맥 압력이 빠른 속도로 상승하면서 동맥관의 확장에 의해 만들어진다.[37,38] 측정 결과 맥압 과정에서 발생한 변수는 H1이 유의하게 증가하였다. 담정격 자침군과 담승격 자침군을 비교 분석한 결과 발침 30분 후 左寸에서 맥압의 차이가 유의하게 감소하였다(Fig. 11).

H4는 강중협곡으로 심장압이 대동맥압보다 낮아지면서 판막이 닫히는 순간 나타난다. 이는 외부 저항과 동맥판막 기능에 영향을 끼친다.[37,38] 측정 결과 맥압 과정에서 발생한 변수는 H4가 유의하게 증가하였다. 담정격 자침군은 발침 직후 左寸과 右關, 발침 30분 후 右関, 발침 60분 후 左寸에서 대조군에 비하여 H4가 유의하게 증가하였다. 담승격 자침군은 발침 직후 左寸에서 대조군에 비하여 H4가 유의하게 감소하였다(Fig. 12).

H5는 중박파로 인해 만들어지는 진동으로[37,38] 담정격 자침군은 발침 직후 左寸에서 대조군에 비하여 H5가 유의하게 증가하였다. 담승격 자침군은 발침 60분 후 左關에서 대조군에 비하여 H5가 유의하게 감소하였다(Fig. 13).

Pulse power volume은 5개 센서(상하좌우 중앙)에서 측정된 최대 변위 맥압의 적분값으로 맥의 有力과 無力 상태를 반영하는 지표이다.[37,38] 측정 결과 맥압 과정에서 발생한 변수는 H5가 유의하게 감소하였다. 담정격 자침군은 발침 직후 左寸에서 대조군에 비하여 As/Ap가 유의하게 감소하였다. 담승격 자침군은 발침 직후 右関에서 대조군에 비하여 Ad/Ap가 유의하게 증가하였다(Fig. 14).

맥압 관련 변수에서는 담정격과 담승격 자침으로 대조군에 비해 左關과 右關, 左寸에서의 유의한 변화가 나타났으며, 맥압 자침군에서 발침 과정에서 반도 및 맥박의 감소가 나타났다. 이는 맥압과 담승격 자침의 차이가 대조군에 비해 차이가 나타났다. 이러한 결과는 대조군에서 발침 직후와 발침 30분 후 左關에서의 맥압의 증가 정도를 나타내는 변수로 정상성인의 맥압의 변화에 미치는 영향을 분석한 결과이다.

담정격 및 담승격 침의 성분 변화에 미치는 영향

http://dx.doi.org/10.13045/acupunct.2016034

63
후 左寸에서 주파각이 유의하게 감소하였으며, 담정격 자침군에서 대조군에 비하여 발침 직후 右關에서 주파각이 유의하게 증가하였다. 담정격 자침군과 담승격 자침군을 비교 분석한 결과 발침 30분 후 右關과 右尺에서 담승격 자침군이 담정격 자침군에 비하여 주파각이 유의하게 증가하였다．(Fig. 19)。

맥과 변형 관련 변수는 담정격과 담승격 자침으로 寸關尺 배속 부위상 脾胃와 관련된 右關에서 대조군에 비하여 발침 직후 右關에서 주파각이 유의하게 증가하였다．(Fig. 19)。

혈관 경화도 지표인 radial augmentation index (RAI)는 H1에 대한 H3의 백분율로 정의되며 혈관탄성계수라고도 하여 혈관벽의 순응성에 대한 변수로, 말초에서 측정되는 반사파의 영향을 의미하며, 말초혈관의 지향과 동맥압의 크기에 영향을 받게 되고, 발침 직후 右關에서 RAI/HR가 대조군에 비하여 유의하게 증가하였다．(Fig. 20)。

기존 솟巖鍼과 관련된 맥파연구와 마찬가지로 RAI/HR 항목에서 자침군이 대조군에 비해 유의하게 증가하여 자침에 의해 혈관 노화가 진행된 것으로 생각하였다．(Fig. 20)。

기존 솟巖鍼과 관련된 맥파연구와 마찬가지로 RAI/HR 항목에서 자침군이 대조군에 비해 유의하게 증가하여 자침에 의해 혈관 노화가 진행된 것으로 생각하였다．(Fig. 20)。

이상의 결과를 종합하여 볼 때 담정격 자침군, 담승격 자침군은 대조군에 비하여 主要 膽의 배속 부위인 左關뿐 아니라 相生 관계로 心·小腸의 배속 부위인 左寸, 相剋 관계로 脾·胃의 배속 부위인 右關에서 유의한 변화가 나타났다．

송巖鍼법의 정격과 송격은 그 성격이 상반되는 의미가 있으므로 맥파 분석에서도 상반되는 의미가 있다고みな 되어야 한다． 본 연구에서 담정격 자침군과 담승격 자침군에서 반응되는 경향을 가지면서 유의미한 결과가 나타난 부분은 M3, M3/M1, H1의 右關, 右尺, H5의 右關, pulse power volume/min의 右尺, pulse area의 右關, main peak angle의 右關, 右尺으로 나타났다．변화는 주로 右關, 右尺에서 나타나 膽이 배속된 左關 부위가 아니라 相剋관계인 脾, 大腸이 배속된 부위로서 서로 대조되는 변화를 일으킨 것으로 생각된다．

위 결과로 말미암아 膼腑간의 생리·병리적 기능이 경脈에서 나타나므로 膼腑와 경脈는 相生, 相剋관계 등으로 다양하게 연계되며, 맥파의 변화가 정상 및 79시에 나타나지 않은 것으로 생각되며, 따라서 솟巖鍼법의 맥파에 미치는 영향에 대한 연구는 다음과 같은 직접적 관찰보다는 다른 허혈, 경絡과 관련된 신호와 호적질의 효과를 위해서는 필요하다고 생각된다．

본 연구는 20세부터 39세까지의 정상 성인 지원자를 대상으로 담정격과 담승격 자침이 맥파에 미치는 영향을 비교한 탐색적 연구로써 연구대상이 각 군당 20명, 총 40명으로 그 수가 적고, 대표 맥파만 분석한 점, 담정격과 담승격의 자침으로 인한 변화가 솟巖鍼에 의한 것인지를 명확히 하기 위해서는 각 6주의 자침으로 한 것이지 정확한 결과가 아닌지 아니면 각 6주의 자침으로 한 것인지 정확한 결과가 아닌지, 나머지 각 6주의 자침으로 한 것인지 정확한 결과가 아닌지, 나머지 각 6주의 자침으로 한 것인지 정확한 결과가 아닌지, 나머지 각 6주의 자침으로 한 것인지 정확한 결과가 아닌지 확인하기 어려웠다는 점, 일회성 시술과 반복 시술과의 차이점을 확인하기 어렵다는 점 등이 한계점으로 남는다．

향후 sham 군 등의 다양한 대조군의 연구, 다른 正格, 勝格, 熱格 및 寒格에 관한 연구, 단독穴位의 전후 비교 연구 등 추가적인 연구를 통해 보다 다양한 객관적인 데이터가 필요할 것으로 생각된다．

V. 결론

만 20세부터 30세까지 정상 성인 총 60명을 대상으로 맥주기를 이용하여 담정격과 담승격 자침이 각 6주로 하여 일회성 시술과 반복 시술과의 차이점을 확인하기 어려웠다는 점, 일회성 시술과 반복 시술과의 차이점을 확인하기 어렵다는 점 등이 한계점으로 남는다．

본 연구의 결과를 종합하여 볼 때 담정격 자침군, 담승격 자침군은 左右 寸關尺 통합 분석에서 맥파주기, 주파수가 대조군에 비하여 유의한 결과를 보였다．(Fig. 19)。

에 관해 정성성인 지원자를 대상으로 담정격과 담승격 자침이 각 6주로 하여 일회성 시술과 반복 시술과의 차이점을 확인하기 어려웠다는 점, 일회성 시술과 반복 시술과의 차이점을 확인하기 어렵다는 점 등이 한계점으로 남는다．

본 연구의 결과를 종합하여 볼 때 담정격 자침군, 담승격 자침군은 左右 寸關尺 통합 분석에서 맥파주기, 주파수가 대조군에 비하여 유의한 결과를 보였다．(Fig. 19)。

에 관해 정성성인 지원자를 대상으로 담정격과 담승격 자침이 각 6주로 하여 일회성 시술과 반복 시술과의 차이점을 확인하기 어려웠다는 점, 일회성 시술과 반복 시술과의 차이점을 확인하기 어렵다는 점 등이 한계점으로 남는다．

에 관해 정성성인 지원자를 대상으로 담정격과 담승격 자침이 각 6주로 하여 일회성 시술과 반복 시술과의 차이점을 확인하기 어려웠다는 점, 일회성 시술과 반복 시술과의 차이점을 확인하기 어렵다는 점 등이 한계점으로 남는다．

에 관해 정성성인 지원자를 대상으로 담정격과 담승격 자침이 각 6주로 하여 일회성 시술과 반복 시술과의 차이점을 확인하기 어려웠다는 점, 일회성 시술과 반복 시술과의 차이점을 확인하기 어렵다는 점 등이 한계점으로 남는다．

에 관해 정성성인 지원자를 대상으로 담정격과 담승격 자침이 각 6주로 하여 일회성 시술과 반복 시술과의 차이점을 확인하기 어려웠다는 점, 일회성 시술과 반복 시술과의 차이점을 확인하기 어렵다는 점 등이 한계점으로 남는다．
2. 담정격 자침군과 담승격 자침군 비교에서 膽이 배속된 左關 부위가 아니라 相剋 관계로 胃와 大腸이 배속된 부위인 右關, 右尺에 서로 상반되는 유의한 변화가 나타났다.

VI. References

1. Lee BG, Park YB, Kim TH. Diagnostics of oriental medicine. Seoul: Seongbosa. 2004: 161-84.
2. Lee JH, Jeong KH. Binhomaekhakan. Wonjoo: Yibang Publisher. 2008: 15-32.
3. Hong WS. Hwangjenaegyeongyounchoohaseok. Seoul: Gomoonsa. 1990: 1-10, 57-65.
4. Park CK. Hwangjenaegyeongsomoonjooseok. Gyeonggi: Jipmoondang. 2005: 301-37, 407-28, 429-43.
5. Bae BC. Hwangjenaegyeongsomungeumseok. Seoul: Seongbosa. 1983: 432-63.
6. Yang KY. A study on The assignment of Jangbu to Chon · Gwan · Cheok in Maekyojeongmiron, JKMC, 2009: 22(1): 27-34.
7. Ha IY, Youn YC, Youn DH et al. Comparative Study of Speed, Size and Depth of Pulse on the Traditional Pulse Diagnosis and Pulse Analyzer, Korean J Acupunct, 2011: 28(1): 23-37.
8. Kim GC, Lee JW, Ryu KH, Park DI, Shin WJ, Kang HJ. Study on the Waveform Analysis of Radial Artery Pulse Diagnosis Using Pulse Meter and Analyzer—the Waveform Analysis of Left KWAN Pulse Diagnosis—. JPPKM, 2009: 23(1): 186-91.
9. Kown SM, Kang HJ, Yim YK, Lee YH. A study on floating and sinking pulse by classification of pulse pattern through analysis of P–H volume–curve at 5 applied pressure Levels, Korean J Acupunct, 2010: 27(1): 13-22.
10. Youn DH, Wang KH, Han JH, Park HJ, Na CS. The effects of reduction of acupuncture techniques of five evolutive phase for applying excess in the heart, kidney on blood pressure, cardiac hypertrophy, plasma renin and ANP in hypertensive rat induced by two kidney one clip, Korean J Acupunct, 2005: 22(1): 75-84.
11. Youn DH, Na CS, Choi TJ et al. Effects of five element constitutional acupuncture(Sa–am acupuncture) using needle manipulation to sedate Six Fu–Organ on serum Lipid and Liver function of hyperlipidemic rats induced by high fat diet, Korean J Acupunct, 2008: 25(4): 73-88.
12. Im YG, Hwang WD. A Case Report of Interstitial Cystitis Treated with Sa–am Acupuncture Treatments, The Acupunct, 2012: 29(2): 107-11.
13. Lee SM, Kim SH, Jeong HH et al. Effects of Sa–am Acupuncture Treatment on a ALS(Amyotrophic Lateral Sclerosis) Patient, The Acupunct, 2012: 29(5): 187-95.
14. Lim DJ, Lee HJ, Hwang JH, Cho HS, Kim KH. Study of the Relation of the Autonomic Nerve System and Sa–am Acupuncture Treatment by the Heart Rate Variability, The Acupunct, 2006: 23(5): 207-18.
15. Choi WJ, Lee SG, Son IB, Sun SH. The effects of Sa–am Acupuncture Simpojeongkyeok Treatment on Hwa–byung: Randomized, patient–assessor blind, placebo–controlled acupuncture, pilot clinical trial, Journal of Oriental Neuropsychiatry, 2011: 22(2): 1-14.
16. Kim SJ, Lee H. The effect of Sa–am lung sedating acupuncture on wrist pulse in healthy human subjects, The Acupunct, 2012: 29(2): 43-57.
17. Kim NY, Kang JH, Lee H. The effect of Sa–am lung tonifying acupuncture on radial pulse in healthy human subjects, The Acupunct, 2012: 29(5): 17-29.
18. Choi JY, Kang JH, Yim YK, Lee H. The effect of Sa–am stomach tonifying acupuncture on radial pulse in healthy human subjects, The Acupunct, 2012: 29(6): 57-71.
19. Yoon KS, Lee H. The Effects of Spleen–tonifying Acupuncture on Radial Pulse in Healthy Human Subjects, The Acupunct, 2013: 30(4): 1-14.
20. Lim YK, Lee H, Lee BR, Lee YH, Yoon YJ, Ro...
JY, Effect of Sa–Am Acupuncture on Radial Pulse: A Comparative Study of Stomach–tonification and Spleen–tonification, Korean J Acupunct. 2011; 28(3): 25–32.

21. Kwak KI, Kang JH, Lee H, The Effects of Sa–am Acupuncture on Radial Pulse in Healthy Human Subjects: A Comparative Study on Tonifications of Kidney and Urinary Bladder, The Acupunct, 2015; 32(2): 105–21.

22. Cho E, Lee H, The Effects of Acupuncture on Radial Pulse in Healthy Subjects: A Comparative Study of Large Intestine Tonifying and Sedating, The Acupunct, 2014; 31(3): 7–18.

23. Yuk DJ, Jeon JH, Kim YI, Kim JH, The Effects of Acupuncture on Radial Pulse in Healthy Human Subjects: A Comparative Study of Liver Tonifying and Sedating, The Acupunct, 2015; 32(2): 165–85.

24. Kim GW, Memoir of Sa–am acupuncture, Chorakdang. 2011: 79–91, 497–500.

25. Boutouyrie P, Corvisier R, Azizi M et al, Effects of acupuncture on radial artery hemodynamics: controlled trials in sensitized and naive subjects, Am J Physiol Heart Circ Physiol, 2001; 280(2): 628–33.

26. Wang WK, Hsu TL, Chang HC, Wang YY, Effect of acupuncture at Tsu San Li(ST–36) on the pulse spectrum, Am J Chin Med, 1995; 23(2): 121–30.

27. Wang WK, Hsu TL, Chang HC, Wang YY, Effect of acupuncture at Tai–Tsih(KC–3) on the pulse spectrum, Am J Chin Med, 1996; 24(3–4): 305–13.

28. Wang WK, Hsu TL, Chang HC, Effect of acupuncture at Hsien–Ku(ST43) on the pulse spectrum and a discussion of the evidence for the frequency structure of Chinese medicine, Am J Chin Med, 2000; 28(1): 41–55.

29. Lee HS, Park JB, Seo JC, Park HJ, Lee HJ, Standards for Reporting Interventions in Controlled Trials of Acupuncture: The STRICTA Recommendations, The Acupunct, 2002; 19(6): 134–54.

30. National Institute of Korean Acupuncture & Moxibustion Medicine Society, The acupuncture & moxibustion, Seoul: Jipmoon-dang, 2012: 259–62.

31. Kim SH, Nankyeongbonui, Daejeon: Jomin Publisher, 2009: 1–6.

32. Gao WZ, Ugyeongbyeongwonjinbumyoeong–jojipseong, Beijing: Hwaha Publisher, 1997: 508.

33. Kim JW, Shin SH, Development of pulse diagnosis algorithm, Journal of the Institute of Electronics and Information Engineers, 2010; 37(7): 32–40.

34. Classics in national university of Korean Medicine, Nankyeung, Seoul: Bubin Publisher, 2010: 1–192.

35. Ahn CB, Jang KJ, Yoon HM et al, Study about theoretic basis and clinical guidelines of Sa–Ahm 5 Element acupuncture – I, study about theoretic basis, Journal of Pharmacopunture, 2008; 11(3): 17–31.

36. Chang CS, Ko CW, Lien HC, Chou MC, Effect of electroacupuncture on St. 36 (Zusanli) and LI 10 (Shousanli) acupuncture points on heart rate variability, Am J Chin Med, 2010; 38(2): 231–9.

37. Kim KC, Kang HJ, Pulse medical engineering study and experiment, Seoul: Pulse medical engineering group, 2007: 16–54.

38. Kim KC, Kang HJ, Pulse medical engineering group, Methodology of pulse medical engineering study, Gyeonggi: Daeyomedi, 2008: 83–5.

39. Yoon YJ, Lee MH, Shin HS, Johng HM, Cho JH, Soh KS, Analysis of Fourier Amplitude of Pulse Wave with Varying Contact Pressure, Journal of the society of Alternative Medicine, 1999: 3(1): 173–9.

40. Yim YK, Kang HJ, Lee BR, Yang GY, Lee H, Kim KC, A Study on the Effect of Food Intake on Radial Pulse using Fourier Analysis, Journal of Korean Medicine, 2011; 32(4): 139–48.

41. Kown SM, Kang HJ, Yim YK, Lee YH, A study on floating and sinking pulse by classification of pulse pattern through analysis of P–H volume–curve at 5 applied pressure levels, Korean J Acupunct, 2010; 27(1): 13–22.