Severe Epilepsy and Movement Disorder May Be Early Symptoms of TMEM106B-Related Hypomyelinating Leukodystrophy

Robert Solazzi, MD, Marco Moscatelli, MD, Davide Rossi Sebastiano, MD, Laura Canafoglia, MD, Laura Pezzoli, PhD, Maria lascone, PhD, and Tiziana Granata, MD

Neurol Genet 2022;8:e200022. doi:10.1212/NXG.0000000000200022

Abstract

Objective
To report the clinical presentation of the first Italian child affected by hypomyelinating leukodystrophy (HLD) associated with the recurrent variant p.Asp252Asn in the TMEM106B gene.

Methods
The methods included clinical case description, neurophysiologic assessment, brain MRI, and whole-exome sequencing (WES).

Results
The child presented soon after birth with nystagmus and hyperkinetic movement disorder. Focal seizures appeared from 2 months of age and recurred at high frequency, despite several antiseizure medications, and focal epileptic status frequently required IV phenytoin. Control of seizures was achieved at the age of 8 months by the association of high doses of sodium blockers. Clinical picture worsened over time and was characterized by axial hypotonia, failure to thrive requiring gastrostomy, pyramidal sings, and severe secondary microcephaly. MRI performed at ages 2, 6, and 20 months showed diffuse supratentorial and subtentorial hypomyelination; multimodal evoked potentials showed increased latency. WES performed at 6 months of age identified the p.Asp252Asn de novo variant in the TMEM106B gene.

Discussion
Hyperkinetic movement disorders and seizures may be early symptoms of TMEM106B-HLD. Our observation, supported by video EEG recordings, emphasizes that seizures may be difficult to recognize from movement disorders and that epilepsy may be a severe and prominent symptom of the disease. TMEM106B-HLD should be considered in the genetic screening of infants with early-onset seizures and movement disorders.
Case Report

The child now aged 20 months is a female who presented soon after birth with continuous nystagmus of both eyes and a hyperkinetic movement disorder. From 2 months of age, the infant experienced brief paroxysmal events characterized by sudden opisthotonos, limb hypertonus, desperate crying, flushing, and labial cyanosis. The episodes rapidly increased until they occurred several times a day. Initial EEG recordings did not show obvious ictal change during the attacks, which were therefore misdiagnosed as dystonic.

The epileptic origin of these episodes was defined in the following weeks, when more clear focal signs associated (forced conjugate eye and head deviation and ipsilateral eyelid myoclonias) and the EEG showed ictal theta activity (video sequence). Epilepsy rapidly worsened: seizures recurred up to 50 episodes a day, despite several trials with antiseizure medications, and focal epileptic status frequently required IV phenytoin. Seizures control was achieved at 8 months, after the association of high doses of sodium blockers (phenytoin 12 mg/kg/d, carbamazepine 24 mg/kg/d, and lacosamide 7 mg/kg/d). At the age of 14 months a gastrostomy tube was placed for failure to thrive. At our last examination, at 20 months, the clinical picture was characterized by nystagmus, severe axial and limb hypotonia, poor motricity, brisk deep tendon reflexes, and ankle clonus. Speech was absent, despite a good communicative intent. Moreover, severe secondary microcephaly became evident.

EEG now shows sporadic epileptiform elements during sleep. Multimodal evoked potentials showed increased latency with a more severe impairment of visual and somatosensory responses both at ages 6 and 20 months (Figure 1). Diffuse supratentorial and subtentorial hypomyelination, which was suspected at the first MRI at the age of 2 months, was confirmed at ages 6 and 20 months (Figure 2).

The diagnostic workup that included metabolic screening and arrayCGH was unrevealing. At the age of 6 months, genomic DNA was extracted from peripheral blood samples of proband and parents using standard procedures. The exonic regions and flanking splice junctions of the genome were captured using the...
Clinical Research Exome v.2 kit (Agilent Technologies, Santa Clara, CA). Sequencing was performed on a NextSeq500 Illumina system with 150 bp paired-end reads. Reads were aligned to human genome build GRCh37/UCSC hg19 and analyzed for sequence variants using a custom-developed analysis tool. Additional sequencing technology and variant interpretation protocol have been previously described. Coverage on target for the index was $\geq 10\times$ for 98.4% with a mean coverage of 233×. Trio-WES analysis identified the de novo variant NM_018374.4: c.754G>A, p.Asp252Asn in the TMEM106B gene. No significant variants in other genes were detected.

Discussion

We reported the first Italian child affected by HLD associated with the recurrent mutation p.Asp252Asn in the TMEM106B gene.

The clinical picture in our patient was characterized, since the early months of life, by hyperkinetic movement disorder and focal seizures. Both early-onset MD and seizures have already been described in TMEM106B-HLD: episodes of choreoathetosis are described in one of the patients originally reported, and seizures responsive to first-line ASM are described in 2 of the 7 patients published so far. In our case, movement disorder and seizures coexisted, and repeated video-EEG monitoring was required to correctly differentiate from each other. Moreover, the epilepsy course was extremely severe, it was characterized by prolonged focal seizures and focal status epilepticus, refractory to IV benzodiazepine, and required prolonged hospitalization. Our report underscores that early-onset severe epilepsy may be among the major symptoms of HLD. As already suggested in other rare forms of HLD (ARV1 and UFM1-related HLD), we think that TMEM106B-HLD should be included in the differential diagnosis of genetic early-onset encephalopathies with epilepsy.

Study Funding

This work was partially supported by Grants from the Pier-franco e Luisa Mariani Foundation and by the Italian Ministry of Health (RCC).

Disclosure

Relevant conflicts of interests/financial disclosures: nothing to report. Full disclosure form information provided by the authors is available with the full text of this article at Neurology.org/NG.
Publication History
Received by *Neurology: Genetics* April 22, 2022. Accepted in final form July 7, 2022. Submitted and externally peer reviewed. The handling editor was Massimo Pandolfo, MD, FAAN.

Appendix Authors

Name	Location	Contribution
Roberta Solazzi, MD	Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Member of the ERN EpiCARE, Milan, Italy	Major role in the acquisition of data; analysis or interpretation of data
Marco Moscatelli, MD	Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy	Analysis or interpretation of data
Davide Rossi Sebastiano, MD	Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy	Analysis or interpretation of data
Laura Canafoglia, MD	Medical Genetics Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy	Analysis or interpretation of data
Laura Pezzoli, PhD	Medical Genetics Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy	Analysis or interpretation of data
Maria Iascone, PhD	Medical Genetics Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy	Analysis or interpretation of data
Tiziana Granata, MD	Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Member of the ERN EpiCARE, Milan, Italy	Major role in the acquisition of data; analysis or interpretation of data

References

1. Brady OA, Zheng Y, Murphy K, Huang M, Hu F. The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. *Hum Mol Genet*. 2013;22(4):685-695. doi: 10.1093/hmg/dds475.
2. Simons C, Dyment D, Bent SJ, et al. A recurrent de novo mutation in TMEM106B causes hypomyelinating leukodystrophy. *Brain*. 2017;140:3105-3111.
3. Yan H, Kubisiak T, Ji H, Xiao J, Wang J, Burmeister M. The recurrent mutation in TMEM106B also causes hypomyelinating leukodystrophy in China and is a CpG hot spot. *Brain*. 2018;141:e36.
4. Ikemoto S, Hamano SI, Kikuchi K, et al. A recurrent TMEM106B mutation in hypomyelinating leukodystrophy: a rapid diagnostic assay. *Brain Dev*. 2020;42(8):603-606. doi: 10.1016/j.braindev.2020.06.002.
5. Yan H, Ji H, Kubisiak T, et al. Genetic analysis of 20 patients with hypomyelinating leukodystrophy by trio-based whole-exome sequencing. *J Hum Genet*. 2021;66(8):761-768. doi: 10.1038/s10038-020-00896-5.
6. Pezzoni L, Marchetti D, Cereda A, et al. Atypical presentation of pediatric BRAF RASopathy with acute encephalopathy. *Am J Med Genet A*. 2018;176(12):2867-2871. doi: 10.1002/ajmg.a.40635.
7. Darra F, Lo Barco T, Opri R, et al. Migrating focal seizures and myoclonic status in ARV1-related encephalopathy. *Neurol Genet*. 2021;7(3):e593. doi: 10.1212/NXG.0000000000000593.
8. Szücs Z, Fitala R, Nyyzó AR, et al. Four new cases of hypomyelinating leukodystrophy associated with the UFM1 c.-155_-153delTCA founder mutation in pediatric patients of roma descent in Hungary. *Genes (Basel)*. 2021;12(9):1331. doi: 10.3390/genes12091331.
Severe Epilepsy and Movement Disorder May Be Early Symptoms of TMEM106B-Related Hypomyelinating Leukodystrophy

Roberta Solazzi, Marco Moscatelli, Davide Rossi Sebastiano, et al.

Neurol Genet 2022;8;
DOI 10.1212/NXG.0000000000200022

This information is current as of August 29, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://ng.neurology.org/content/8/5/e200022.full.html

References
This article cites 8 articles, 1 of which you can access for free at:
http://ng.neurology.org/content/8/5/e200022.full.html##ref-list-1

Permissions & Licensing
Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://ng.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://ng.neurology.org/misc/addir.xhtml#reprintsus

Neurol Genet is an official journal of the American Academy of Neurology. Published since April 2015, it is an open-access, online-only, continuous publication journal. Copyright Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. All rights reserved. Online ISSN: 2376-7839.