Evolution of the ferric reductase domain (FRD) superfamily: modularity, functional diversification, and signature motifs

ZHANG, Xuezhi, et al.

Abstract

A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggest that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif [...]

Reference

ZHANG, Xuezhi, et al. Evolution of the ferric reductase domain (FRD) superfamily: modularity, functional diversification, and signature motifs. PLOS ONE, 2013, vol. 8, no. 3, p. e58126

DOI : 10.1371/journal.pone.0058126
PMID : 23505460

Available at:
http://archive-ouverte.unige.ch/unige:28550

Disclaimer: layout of this document may differ from the published version.
Evolution of the Ferric Reductase Domain (FRD) Superfamily: Modularity, Functional Diversification, and Signature Motifs

Xuezhi Zhang¹, Karl-Heinz Krause², Ioannis Xenarios³45, Thierry Soldati¹, Brigitte Boeckmann3*

1 Department of Biochemistry, Science II, University of Geneva, Geneva, Switzerland, 2 Department of Pathology and Immunology, Central Medical University, University of Geneva, Geneva, Switzerland, 3 SwissProt, Swiss Institute of Bioinformatics, Geneva, Switzerland, 4 Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland, 5 Center for Integrative Genomics (CIG), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland

Abstract

A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggest that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria.

Introduction

All aerobic living organisms face a dilemma when confronted with the need to assimilate the essential element iron. Indeed, iron is the second most abundant metal on earth, yet the primary form found in the environment is the water insoluble and metabolically inactive ferric ion (Fe³⁺) [1]. The introduction and accumulation of dioxygen, into the ancient oceans and atmosphere, by Cyanobacteria completely changed the earth’s initial reductive environment by gradually causing it to become oxidative. As a result, the absorption of bioactive and water soluble ferrous ion (Fe²⁺) became a challenge for all forms of life and left a great impact on evolution [2]. One solution to the dilemma was the emergence of ferric reductases (FRE), which transfer electrons from cytosolic NADPH to extracellular iron ions to generate the reduced form of ferrous ions, which can then be transported across the plasma membrane by specific iron transporters [3,4].

Ferric reductases (FRE) and NADPH oxidases (NOX) are homologs [5]. Indeed, three canonical domains are commonly shared by both protein families: a heme-containing 6 transmembrane (6TM) ferric reductase domain and the two C-terminal cytoplasmic FAD-binding and NADPH-binding domains [6]. This common organization most probably reflects the fact that they catalyze similar reactions: Fe³⁺+e⁻ = Fe²⁺ (ferric reductase) and O₂+e⁻ = O₂⁻ (NADPH oxidase).

NOXs transfer electrons to oxygen to produce short-lived superoxide which is the primary reactive oxygen species (ROS), which is then transformed into various other ROS, such as hydrogen peroxide, hypochlorite or ozone [7]. ROS can also be generated as a byproduct in aerobic metabolisms, typically by mitochondria, peroxisomes, chloroplasts, or cytochrome p-450. In contrast, NOXs are devoted to the generation of biologically functional ROS, which play important roles in innate immunity [8], inter/intra-cellular signaling [9], morphogenesis and development [10,11]. The various physiological and pathophysiological roles of NOX enzymes have been intensively studied and reviewed [7,12].

Detailed bioinformatics analyses highlighted both the gene phylogeny and the structure of family members [13–16]. It was thus shown that ferric reductase domain (FRD) superfamily members exist in a wide variety of organisms, and many species carry multiple gene copies [13]. What is more, structural models have been developed for differing family members and a large number of conserved positions were identified [14]. Various studies inferred the evolutionary relationships of ROS-generating NADPH oxidase families [13–15]. Finally, homologs that possess
only the conserved ferric reductase domain have been identified in bacteria (YedZ) and eukaryotes (STEAP; Six Transmembrane Epithelial Antigen of Prostate) [16].

In the present study, we characterized the evolutionary history of the FRD superfamily. By adding homologs of species from deep-branching nodes of the species tree, we showed that families and subfamilies emerged earlier than had been previously thought. The gene phylogeny is discussed in the context of structural and functional features. Findings to be highlighted include 1) conserved residues predicted to be crucial for NADPH-oxidases; 2) the probable lateral inheritance of the metazoan STEAP family from bacteria and the synchronous loss of the ancient ferric reductases in this clade; 3) the emergence of the NOX family from EF-hand-containing superfamily members; 4) the origin of the FRD superfamily from a bacterial homolog that consists solely of a ferric reductase domain.

Materials and Methods

Data Collection

Eukaryotic homologs of the FRD superfamily were obtained from UniProtKB (release 2011_07) [17,18], by searching – by way of cross-references – for three conserved domains predicted by the Pfam database [19]: the ferric reductase-like transmembrane component (PF01794), the FAD-binding domain (PF08022) and the NADPH-binding domain (PF08305). Further family members were identified in UniProtKB using Blast [20,21]. The dataset was then complemented with homologs predicted by Ensembl (release 63, 30 June 2011), EnsemblMetazoa (release 10, July 2011), EnsemblPlant (release 10, July 2011), EnsemblFungi (release 10, July 2011), and EnsemblProtist (release 10, July 2011). 47 eukaryotic species were selected as representatives of their corresponding taxonomic groups. Finally, homologs from species of deep-branching nodes of the species tree were added. In order to root the tree, we retrieved homologs from UniProtKB with a conserved ferric reductase domain from complete bacterial proteomes. 29 homologs – including long and short homologs from 16 representative bacteria – were selected for further analysis. The dataset is available in the File S1. For the analysis of the full superfamily phylogeny we retrieved the 2876 predicted ferric reductase domains from Pfam (release 26.0, November 2011).

Phylogenetic Analysis

Sequences were aligned using MAFFT (version 6) [22] with parameter settings optimized for data with multiple conserved domains and long gaps (E-INS-i and scoring matrix JTT200) [23]. The gap opening penalty (1.80) and the offset value (0.1) were set above the default. The multiple sequence alignment (MSA) was inspected and edited with JalView (version 2.6.1) [24]. Sequences with long gaps were either replaced by more appropriate isoforms or removed from the alignment. The non-homologous N-terminus of the amino acid sequences was trimmed to the beginning of the conserved ferric reductase domain. From the obtained sequences we constructed a second dataset which included the NOX family and four members of the DUOX family as an outgroup. Both datasets were realigned as described above. From both datasets we constructed different data models from the conserved regions of the alignments. Following this strategy, we tried to obtain phylogenetic signals at different levels of depth in the gene history. The accuracy of the alignments was evaluated with GUIDANCE (version 1.1) [25] and unreliable columns were removed manually, mostly according to the GUIDANCE score. The best-fit models of evolution were determined with ProtTest (version 3.2) [26]. ML phylogenies were calculated for all data models with PhyML 3.0 [27] under the LG amino acid substitution model [20], using eight rate categories which approximated a gamma distribution; the alpha parameter and the proportion of invariable sites were estimated from the dataset. The likelihood was maximized by optimizing the tree topology and branch lengths. The degree of support for internal branches was assessed by the approximate likelihood-ratio test based on the non-parametric Shimodaira-Hasegawa-like procedure (SH-aLRT) as implemented in PhyML.

For the analysis of the superfamily, the sequence redundancy of the predicted ferric reductase domains was reduced to 90% using Jalview. Truncated and dubious sequences were removed and sequences were realigned with MAFFT, using settings optimized for data with one conserved domain and long gaps (E-INS-i) and the scoring matrix JTT200. No other default parameter values were changed. The alignment was edited again with Jalview. This time, the data model was selected in a less stringent way to keep a maximum number of positions for the analysis. Sequence redundancies above 82% were removed from the data model. An ML tree was constructed with PhyML using the same evolutionary model as described above. Phylogenetic trees were inspected and drawn using Archaeopteryx (http://www.phylosoft.org/archaeopteryx).

Protein Sequence Analysis

All sequences were searched for possible transit peptides (SignalP [29], TargetP [30]), transmembrane domains (TMHMM [31], Phobius [32], MEMSAT [33]), homologous, biased and functional regions (InterPro [34], Pfam [35]), and post-translational modifications (NMT [36]). To avoid over-prediction, we considered positive results only, if 1) a region or site was shown to exist or was analyzed in depth in a previous study for at least one family member; 2) predictors had a high specificity or a region or site is predicted by more than one predictor, or 3) the hit was conserved for the majority of members within a clade.

For the identification of conserved sites within transmembrane domains and conserved adjacent regions, representative homologs of the NOX family (NOX1-4 and co-orthologs from Fungi, Annoeobza and Naegleria gruberi), NOX-EF group (EF-hand(s) containing members of the NOX group), ppFRE group (prost and plant homologs of the FRE group), and fuFRE (fungal homologs of the FRE group) families, as well as the bacterial short and long forms and the STEAP family were obtained from the UniProt server and previous datasets. Sequences of each family were aligned using MAFFT. The alignments were then inspected manually and sequences that possessed atypical insertions within the transmembrane domains were removed from the MSA. The monophyletic group of YedZ-like proteins was removed from the MSA of bacterial short forms; in the following the group was treated as a group on its own. Well-aligned regions – including the predicted transmembrane domains (TM3-TM5) – were extracted from the alignments. Finally, sequence conservation logos were constructed from the eight MSAs using the WebLogo server (weblogo.threepluseon.com). The alignments used for this purpose included 443 (bacterial short forms), 107 (bacterial long forms), 75 (STEAP), 22 (bacterial short forms similar to bacterial long forms), 123 (fuFRE), 54 (ppFRE), 66 (NOX-EF), and 54 (NOX) sequences, respectively.

The analyses were performed on the Vital-IT High Performance Computing Center (www.vital-it.ch), mafft.cbrc.jp/alignment/server (MAFFT), guidance.tau.ac.il (GUIDANCE), darwi-n.uvigo.es/software/prottest.html (ProtTest), www.phylogeny.fr [37] (PhyML), www.cbs.dtu.dk/services (SignalP, TargetP,

PLOS ONE | www.plosone.org 2 March 2013 | Volume 8 | Issue 3 | e58126
Phylogeny of the FRD Superfamily

Results and Discussion

Collection of Functional Knowledge

A systematic literature search on experimentally characterized homologs was conducted for NOX homologs and for selected members of the FRE group using PubMed/MEDLINE at www.ncbi.nlm.nih.gov/pubmed and in the reference section of relevant UniProtKB entries.

Results and Discussion

Phylogeny of the FRD Superfamily

At the highest level of structural organization, members of the FRD superfamily are characterized by a common transmembrane ferric reductase domain (Pfam: PF01794) with structural similarity to cytochrome b of the mitochondrial bc1 complex. Our analysis initially focused on eukaryotic homologs, whose superfamily members also possess a dehydrogenase module consisting of an FAD-binding domain (Pfam: PF08022) and an NADPH-binding domain (Pfam: PF08030), both oriented towards the cytoplasm.

Conserved blocks of these homologous regions account for the data model used in the phylogenetic analyses of the eukaryotic genes; the phylogeny of the FRD superfamily is inferred based on the homologous regions of the ferric reductase domain (Figure 1). The many lineage-specific radiations in the eukaryotic clades throughout evolution are striking (Figure 2, and File S2). Hence, the many lineage-specific radiations in the eukaryotic clades throughout evolution are striking (Figure 2, and File S2).

At the highest level of structural organization, members of the FRD superfamily are characterized by a common transmembrane ferric reductase domain (Pfam: PF01794) with structural similarity to cytochrome b of the mitochondrial bc1 complex. Our analysis initially focused on eukaryotic homologs, whose superfamily members also possess a dehydrogenase module consisting of an FAD-binding domain (Pfam: PF08022) and an NADPH-binding domain (Pfam: PF08030), both oriented towards the cytoplasm.

Conserved blocks of these homologous regions account for the data model used in the phylogenetic analyses of the eukaryotic genes; the phylogeny of the FRD superfamily is inferred based on the homologous regions of the ferric reductase domain (Figure 1). The many lineage-specific radiations in the eukaryotic clades throughout evolution are striking (Figure 2, and File S2). Hence, the many lineage-specific radiations in the eukaryotic clades throughout evolution are striking (Figure 2, and File S2).

Clade 2 includes solely fungal metalloreductases (fuFRE), and the topological placement of this branch outside other eukaryotic metalloreductases is notable (Figure 1B). Our analysis includes genes from five representative fungal proteomes, which possess between two and nine homologs. A more comprehensive analysis of this clade – with homologs from 29 eumycotal proteomes – classified members of the FRE group into 24 families [39].

So far, no metazoan cFRE orthologs have been identified. Indeed, animals possess enzymes with the conserved ferric reductase domain and a ferric reductase activity, but this family (STEAP) is probably xenolog to eFRE (Figures 1C and Figure S4-4 in File S1).

In order to root the tree, we examined FRD homologs from prokaryotes (clade 3). This clade is composed of bacterial ferric reductases (bFRE) including the bacterial YedZ family and the eukaryotic STEAP family. Bacterial members can be roughly classified into short and long forms; the short forms consist basically of the ferric reductase domain, and the long forms of all three domains conserved in the eukaryotic families (Figure 3).

According to Pfam cross-references in UniProtKB (release 2011_12), short forms are about 5.5 times more frequent than the long form. Furthermore, some bacterial proteomes seem to contain only a long form, others only a short form, while some have both forms or none at all (Figure 2). Out of 1471 complete bacterial proteomes provided by UniProtKB, only 543 species possess at least one predicted homolog (Figure S4-1 in File S4). Yet we observed no conspicuous correlation between the bacterial taxonomy and the occurrence of homologs (Figure S4-2 in File S4).

During the analysis, we noticed only a few likely cases of HGT from eukaryotes to bacteria. One example is the gene AMI_3152 from the cyanobacterium Acaryochloris marina (strain MBIC 11017) (UniProtKB: B0CEP3), which could have been obtained from an ancestral gene of the NOX5 family (Figure 1C). UniProtKB includes four FRE family members from the archaean domain. A phylogenetic analysis of a prokaryotic dataset reveals that the archaeal genes were probably derived by HGT from bacteria in three independent evolutionary events (Figure S4-3 in File S4).

Modularity and Functional Diversification

The basic structural component of this superfamily is the transmembrane ferric reductase domain that is present in all the analyzed superfamily members. This domain includes four canonical conserved heme-coordinating histidines in transmembrane domain 3 (TM3) and transmembrane domain 5 (TM5). Their positions in the human NOX2 sequence are 101 and 115 (TM3), and 209 and 222 (TM5). The heme close to the cytoplasm is expected to bind to His-101 and His-209, while the heme close...
Figure 1. Maximum likelihood phylogeny of the FRD superfamily. A. Phylogram of the NOX family rooted to DUOX genes (outgroup not shown). The tree topology suggests lineage-specific gene duplications in all major taxonomic clades. The NOX1-3 and NOX4 subfamilies possibly diverged before the emergence of metazoans. B. Phylogeny of eukaryotic gene families of the FRE group and the NOX group. According to this model, the DUOX family and NOX family form sister clades, but not the EF-hands containing protein families NOX5 and DUOX. C. Phylogenetic tree of the FRD superfamily. The tree topology proposes that the metazoan STEAP family (red) emerges from the bacterial clade at the base of the YedZ family. The gene AM1_3152 from the cyanobacterium Acaryochloris marina (strain MBIC 11017) (UniProtKB: B0CEP3) was probably obtained from an ancestral gene of the eukaryotic NOX5 family. Explanation: The names of gene families and gene groups are indicated with curly brackets. Branch colors correspond to those of the listed taxonomic groups.

doi:10.1371/journal.pone.0058126.g001
to the cell surface is expected to bind to His-115 and His-222. Most of the bFRD clade homologs consist solely of this domain, but seven distinct modules have been identified, which contribute to the extension of this simple ‘bacterial structural core’ (Figure 3A, model M7). According to Pfam cross-references in UniProtKB, only about 12% of the bacterial homologs have a predicted architecture similar to eukaryotic metal reductases and NADPH oxidases, comprising the transmembrane ferric reductase domain followed by the cytoplasmic FAD-binding and NADPH-binding domains (Figure 3A, model M1). All in all, nine variations of this...
evolutionary history of the FRD superfamily. An overview of the molecular function of characterized family members is given in Figure 2, and a description of the experimentally confirmed protein functions is available in Table 1.

bFRD: Extensions to a Simple Module

Typical representatives of the ‘one-domain’ homologs from bacteria are members of the YedZ family found in Proteobacteria, which are involved in redox regulation and transmembrane electron transfer [40]. The E.coli homolog of this family has been shown to form an oxidoreductase complex with the soluble catalytic molybdooenzyme YedY [41]. Out of 1,755 currently available bacterial homologs in UniProtKB, YedZ is – to our knowledge – the only characterized family member. bFRD homologs are probably involved in many different biological processes, as can be inferred from the diverse fusion proteins. Six modular extensions to the bacterial structural core have been predicted for members of the bacterial clade and, as a matter of fact, all these domains are related to functions of electron transport and/or exchange. Structural modifications are also observed in homologs of the eukaryotic core family of STEAP, which emerged from the bacterial FRE branch. Like its bacterial homolog, STEAP1 proteins consist only of a ferric reductase domain but its paralogs, STEAP2-4, possess additionally an NADPH-binding domain (‘NADP oxidoreductase corezyme F420-dependent’ domain; Pfam: PF03807) in their N-terminal region. Such a domain architecture has not been predicted for bacterial metal reductases. STEAP family members have been shown to possess both ferric reductase and cupric reductase activities [42,43]. Thus even members of the FRD superfamily, which do not have the three canonical domains, appear to be involved in the same molecular function, but probably using different reaction mechanisms. We compared the conserved amino acids found in the transmembrane domains of both the short and the long forms of bFRD. This revealed that most short forms possess only two (STEAP2-4: His-115, His-222) or three (YedZ, STEAP1: His-115, His-209, His-222) of the conserved histidines and thus probably bind only the surface-proximal heme (Figure 4). Experimental evidence for functional electron transport through the membrane via a single heme is scarce but some evidence has been reported for YedZ [41]. Instead of the cytoplasm-proximal heme-binding histidines we found a well-conserved arginine (TM3) and glutamine (TM5). In contrast, the long forms possess all four conserved histidines. The few short forms that contain all four conserved histidines are found in the direct vicinity of the long forms in our phylogenetic tree. This finding supports the tree topology in that STEAP is more closely related to the bacterial short form, and bacterial long forms are more closely related to eukaryotic homologs.

Most structural modifications are found in orthologs of closely related species, thus indicating that variations of the basic core are generally not persistent in bacteria, a fact which is typical for the evolution of prokaryotic proteins. Hence, the enduring bacterial ‘long form’ might be more efficient than functional equivalents or could have a unique function.

eFRE: Variations in Transmembrane

Most, if not all, fungal metalloducedases (hfFRE) contain at least one predicted transmembrane domain that precedes the three conserved domains of the eukaryotic structural core. The nine Saccharomyces cerevisiae homologs are among the best-studied examples of this group. As they are important components of the high affinity uptake system for iron and copper ions, FRE1 and FRE2 are involved in both ferric and cupric ion reduction. There is evidence that FRE3-6 homologs are specific iron reductases, whereas the FRE7 homolog is a specific copper reductase [44–46]. A recent study shows that yeast YNO1 (AIM14) - one of the 9 yeast FREs - generates ROS and affects both apoptosis and actin cable formation [47]. The function of the N-terminally fused transmembrane region is unknown.

In some ways similar to the fungal metalloducedases, the majority of protist and plant homologs (ppFRE) in this group bear predicted transmembrane regions in addition to those of the ferric reductase domain. Two or six transmembrane domains are found in the N-terminal of these homologs, but additional transmembrane helices are also predicted close to the C-terminus, within the NADPH-binding domain in clade members from Viridiplantae and stramenopiles. A well-studied example is the tissue-specific expression of the eight paralogs of the ferric chelate reductase (FRO) family from Arabidopsis thaliana [3]. Three of these homologs are located in the membrane of organelles: FRO7 in chloroplasts, FRO3 and FRO8 in mitochondria [48,49]. Nevertheless, all these gene copies emerge from the eukaryotic clade and it is therefore unlikely that they originate from an organism's genome.
studies in human and mouse confirmed Ca²⁺-binding. The biologically active structure is generally a pair of EF-hands, and their function in oxidative innate immune defense. At least one instance in calmodulin [53]. A need for regulated ROS production cause conformational changes linked to regulatory functions, as for studied heme-binding proteins involved in oxygen-transport are located within the alpha-helix close to the cell surface. Well-studied heme-binding histidines in transmembrane domain 3 (TM3), and members of the latter group: a histidine in addition to the two NADPH oxidases indicated two positions that are conserved in generation [56,57].

Besides additional transmembrane domains, a single clade of the eFRE group has acquired a new structural module. Members of a subfamily – including seven paralogs from the Heterolobosia N. gruberi and homologs from the stramenopiles Albugo laibachii (UniProtKB: F0X089) and Phytophthora infestans (UniProtKB: D0MU23) – contain one or two extracellular DOMON domains (Pfam: PF03351). The DOMON domain was predicted to possess a hydrophilic pocket that binds heme and sugar [50,51]. It has also been suggested that it participates in an electron-transfer system [50]. A signal peptide was predicted only for a homolog presenting two DOMON domains.

Note that no FRE-EF forms were observed in bacteria and eukaryotes, suggesting that the regulatory EF hand domains were acquired by superoxide-producing NOX enzymes.

preNOX and NOX-EF: Emergence of ROS Generation and Activity Regulation

At the base of the NOX group, homologs from Rhodophyta, stramenopiles and Viridiplantae contain four predicted additional transmembrane helices between the FAD-binding and NADPH-binding domains. One study revealed a potential ROS-generating NADPH oxidase activity for the homolog of the red algae Chondrus crispus, [52]. This experimental evidence is interesting, because with the occurrence of EF-hands at the N-terminus, such homologs are known or expected to produce ROS for specific biological functions. The algae, however, diverged before this domain was acquired.

The functional shift from metallloreductases to ROS-generating NADPH oxidases probably occurred early on in the NOX group and, to some extent, seems to be linked to the occurrence of EF-hands in the N-terminus. The binding of Ca²⁺ to EF-hands can cause conformational changes linked to regulatory functions, as for instance in calmodulin [53]. A need for regulated ROS production is plausible because of the toxicity of the products, as illustrated by their function in oxidative innate immune defense. At least one EF-hand was predicted for all members of the NOX-EF group. As the biologically active structure is generally a pair of EF-hands, and not all predicted EF-hands have the capacity to bind Ca²⁺, representative family members were inspected manually (Cox JA, personal communication). All the studied homologs possessed at least two EF-hands, of which at least one was canonical and hence assumed to be Ca²⁺-binding. Fungal members of the paraphyletic group of NOX-EF have a single Ca²⁺-binding EF-hand motif. They seem to exhibit ROS-generating NADPH oxidase activity and have been suggested to be regulated by Ca²⁺ [15,54,55]. The metazoa NOX5 family members contain four EF-hands, and studies in human and mouse confirmed Ca²⁺-regulated ROS-generation [56,57].

A comparison of the eFRE metal reductases with expected NADPH oxidases indicated two positions that are conserved in members of the latter group: a histidine in addition to the two heme-binding histidines in transmembrane domain 3 (TM3), and a conserved threonine in transmembrane domain 4 (TM4) (Figure 4). In accordance with their sequence position in human NOX2, we refer to these sites as His-119 and Thr-178. His-119 is located within the alpha-helix close to the cell surface. Well-studied heme-binding proteins involved in oxygen-transport are hemoglobin and myoglobin. In both molecules, dioxygen-binding is stabilized by a hydrogen bond to a conserved histidine residue distal to the heme-binding sites [58]. We propose that a similar stabilizing mechanism involving His-119 could apply to the ROS-generating homologs of the superfamily, as this position is conserved in the vast majority of the analyzed homologs of the NOX group. Exceptions were found in species with multiple NOX paralogs, and each of these species’ proteomes presented at least one gene copy that possessed the conserved histidine (His-119).

One of these exceptions is NOXC of D. discoideum. Preliminary studies using a NOXC knockout strain showed reduced levels of stimulated ROS generation in vegetative and starved cells (Zhang X, Soldati T, unpublished data). We therefore assume, that the second conserved residue, Thr-178, is equally important for NADPH oxidase activity, but a gating function seems more likely than oxygen-binding. According to an analysis of the functional roles of catalytic residues [59], threonine has been found to predominantly perform stabilizing functions. Of note is a conserved glycine residue (Gly-179) adjacent to the conserved threonine, which is actually not specific to NOX homologs, but which forms a conserved dipeptide in the probable ROS-generating proteins. Natural variants in human NOX2 have been identified in patients with inheritable disorders related to innate immunity: mutations in His-119 as well as in Gly-179 lead to a chronic granulomatous disease (CGD) phenotype [60,61], and mutations in Thr-178 to Mendelian susceptibility to mycobacterial disease (MSMD) syndrome phenotype [62]. In summary, four conserved positions are probably indicative in distinguishing ROS-generating homologs of the NOX group from presumptive metallocdeuctases: His-101, His-119, Thr-178 and Gly-179.

These findings are key in identifying the point of functional divergence in evolution. The preNOX group diverges at the very base of the NOX group, and includes genes from stramenopiles, red algae as well as green algae and fungi. Except for the fungal genes, all these members lack His-119; green algae even lack the second heme-binding histidine in TM3, but all homologs possess the conserved dipeptide. Hence, the homologs from stramenopiles and rhodophytes – but not the genes of the chlorophytes analyzed here – are likely to possess a ROS-generating activity that is not regulated by Ca²⁺. All other homologs of the NOX-EF group possess two or more EF-hands. In addition, two other structural components are found in members of this group: a domain of unknown function that encompasses the N-terminus of the NADPH oxidase (NADPH-oxidase Ox; Pfam: PF08414) and the heme-containing peroxidase-like domain (Pfam: PF03098). These two additional domains are the hallmark of two separate NOX families. The cytoplasmic NADPH-oxidase domain is attached to the N-terminus of the EF-hands in the RBOH family of land plants. Interestingly, closely related homologs from stramenopiles (RBOH-like) seem to possess EF-hands, but show no predicted domains at the N-terminus. Members of the DUXO family comprise up to three predicted EF-hand motifs, and a further transmembrane domain links to an extracellular peroxidase-like domain. The predicted signal peptide might be required to translocate the peroxidase-like domain to the extracellular space. Members from both families have been biochemically characterized as ROS-generating and Ca²⁺-regulated enzymes, strongly...
Protein, species, UniProtKB identifier	Biological Function	References
Mammalian NOX1-4		
NOX1 human: Q9Y5S8, mouse: Q8CIZ9	Signaling (e.g. smooth muscle proliferation, angiogenesis)	[72–74]
NOX2 human: P04839, mouse: Q61093	Host defense; signaling to limit inflammation and immune activation	[7,75–78]
NOX3 human: Q9HBY0, mouse: Q672J9	Signaling and/or biosynthesis in the inner ear (otoconia formation)	[79,80]
NOX4 rat: Q924V1, mouse: Q9JH18	Signaling (e.g. myofibroblast differentiation, hypoxia response)	[81–83]
Fungal NoxA/B		
NoxA *Epichloe festucae*: Q2PEP0	Maintain mutualistic status with host plant	[84]
NoxA *Botryotinia fuckeliana*: B0BES1	Maintain pathogenicity; develop penetration structure to infect host plant	[85]
NoxA *Emericella nidulans*: Q8J0N4	Sexual development	[86]
NoxA *Magnaporthe grisea*: A6ZIB7	Maintain pathogenicity; develop penetration structure to infect host plant	[87]
NoxA *Neurospora crassa*: A7UW98	Female sexual structure formation; asexual development and hyphal growth	[66]
NoxB *B. fuckeliana*: B0BES2	Maintain pathogenicity; colonize in host plant	[85]
NoxB *M. grisea*: A6ZIB8	Maintain pathogenicity; develop penetration structure to infect host plant	[87]
NoxB *N. crassa*: A7UW98	Spores germination	[66]
Amoebozoan NOX homologs		
NoxA D. discoideum: Q9XY53	Development and spore formation	[10]
NoxB D. discoideum: Q86GL4	Development and spore formation	[10]
NOX-EF		
DUOX1 human: Q9NRD9, mouse: A2AQ92	Thyroid hormone synthesis; mucosal host defense; signaling (e.g. urothelium mechanosensing)	[90–96]
DUOX2 human: Q9NRD8, mouse: A2AQ99	Thyroid hormone synthesis; mucosal host defense	[90–94,96,97]
DUOX Danio rerio: F1QVF2	Signaling (chemotaxis, wound healing)	[98]
DUOX Aedes aegypti: Q17IQ3	Innate immunity; intestinal host defense	[99]
DUOX Anopheles gambiae: Q7Q147	Midgut nitration and apoptosis during invasion of Plasmodium berghei	[100]
DUOX D. melanogaster: Q9QVH2	Innate immunity; signaling (Ca$^{2+}$ channel); protein cross-linking for wing stabilization; epidermal wound healing	[11,101–103]
DUOX1 Caenorhabditis elegans: O61213	Innate immunity; host defense; protein cross-linking in cuticular extracellular matrix	[104–106]
DUOX Lytechinus variegatus: Q5XMJ0	Protein cross-linking in fertilization envelope	[107]
RBHCh Arabidopsis thaliana: O81210	Signaling (Ca$^{2+}$ channel); root cell elongation	[108]
RBHOH A. thaliana: Q9FU0, RBHOF: A. thaliana: O48538	Host-pathogen interaction; signaling (e.g. ROS as second messengers in absicic acid signaling in guard cells)	[109–112]
NOX5 human: Q96PH1	Signaling (e.g. prostate cancer cells, spermatocytes, marginal B lymphocytes)	[113–116]
NOX5 A. gymesi: Q7PNG0	Midgut epithelial nitration and innate immunity	[117]
NOXC D. discoideum: Q54F44	Development and spore formation	[10]
Plant eFRE homologs		
FRO2 A. thaliana: P92949	Fe$^{2+}$ reduction/acquisition in root surface; iron and copper homeostasis; chilling stress tolerance (block ROS signaling during chilling)	[3,118–120]
FRO3 A. thaliana: F414K7	Fe$^{2+}$ reduction/acquisition in root vascular cylinder and shoots (mitochondria); iron and copper homeostasis	[120,121]
FRO4 A. thaliana: Q8W110	Iron and copper homeostasis	[122]
FRO5 A. thaliana: Q9FLW2	Iron and copper homeostasis in root	[120,122]
FRO6 A. thaliana: Q8RW56	Fe$^{3+}$ reduction in shoots (chloroplast); iron and copper homeostasis	[120,121,123]
FRO7 A. thaliana: Q3KTM0	Fe$^{3+}$ reduction/acquisition in chloroplast for photosynthesis; iron and copper homeostasis	[48,120]
FRO8 A. thaliana: Q8VY13	Iron and copper homeostasis in leaves	[120,121]
Fungal eFRE homologs		
FRE1 S. cerevisiae: P32791	Fe$^{3+}$ and Cu$^{2+}$ reduction/acquisition; iron and copper homeostasis	[44,124,125]
FRE2 S. cerevisiae: P36033	Fe$^{3+}$ and Cu$^{2+}$ reduction/acquisition; iron and copper homeostasis	[124,126]
FRE3 S. cerevisiae: Q08905	Fe$^{3+}$ reduction; iron homeostasis	[46,124]
suggesting a conserved regulation pattern within the NOX-EF group (see Table 1).

The NOX Family: ROS Generation and Increasing Complexity of Regulation

Analyses of the extremely divergent domain architectures suggest that two distinct series of events appear to have led to an increased complexity of regulation of ferric reductase domain enzymes. First, as detailed in previous sections, during the early evolution of the superfamily, NOX enzymes acquired longer N-termini with various regulatory and functional domains. Second, the N-terminus was lost subsequent to the gene duplication event that gave rise to the emergence of the NOX1-4 family, which includes the metazoan NOX1-4 homologs, and the independently duplicated co-orthologs of fungi (NOXA, NOXB), Amoebozoa (NOXA, NOXB) and Naegleria. The loss of the EF hand-containing N-termini occurred concomitantly with the emergence of separate cytosolic and membrane bound regulatory subunits. An advantage of multi-domain proteins is the colinear expression of functional units that are essential for a specific cellular task, bypassing the need for coordinated expression of separate gene products. However, a more fine-grained regulation is possible when multiple differentially expressed and regulated subunits assemble into a functional complex.

Developmental steps to a higher regulation complexity from NOX4, to NOX3, NOX1 and NOX2 can be traced in the NOX family. Of all these, the best studied NOX ortholog is NOX2 and its regulatory network has shown to be particularly complex. Indeed, its fine regulation requires an interaction both with the membrane component p22phox and the cytosolic components p47phox and p40phox. Finally, it also associates with a Rac GTPase that is responsible for the activation of the protein complex [15]. As a paradigm for the regulation of this class of enzymes, in the resting state of human NOX2, the proline rich region (PRR) at the N-terminus of p47phox interacts with the N-terminal SH3 domain of p67phox, while the PBI domains of p67phox and p40phox interact with each other. Upon stimulation, GTP-bound Rac interacts with the N-terminal region of p67phox. Due to conformational changes in these cytosolic components, the SH3 domain of p47phox is able to interact with the N-terminal PRR of p22phox, which will further interact with NOX2 and activate its enzymatic function [15]. Only four regulators are needed for the function of NOX1: namely p22phox, the p47phox homolog NOXO1 (NOX1 organizer), the p67phox homolog NOX1A (NOX1 activator), and Rac [15]. It is remarkable that most of these subunits are paralogs of the NOX2 regulators, stressing the importance of differential regulation. In contrast to this, the organization around NOX3 and NOX4 seems to be less tight. Indeed, NOX3 activity is up-regulated either by NOXO1 or by NOX1A, but only p22phox is required for ROS production [63]. NOX4, the most distant paralog to NOX2, requires only p22phox for ROS generation and seems to function independently of further regulators [15,64].

Precursors of the domains that interact with these essential regulatory subunits can already be found in the NOX homologs of unicellular organisms. The two orthologs of Heterolobosa N. gruberi, for instance, contain an SH3 domain (Pfam: PF00018) within their C-terminal NADPH binding domain. Usually, the SH3 domain mediates protein complex assembly via binding to proline rich regions (PRR) of binding partners [65]. Thus, the SH3 domain found within the NADPH-binding domain of N. gruberi NOX homologs suggests that some unknown PRR-containing protein partner is involved in their regulation [15]. Interestingly, an SH3 domain has been identified in the human p67phox, but, alternatively, the homolog of the social amoeba Dictyostelium discoideum carries a functionally analogous WW domain for protein-protein interactions (Pfam: PF00397) [10]. Furthermore, the N-terminus of both homologs consist of four TPR repeats, (Pfam: PF00515), a feature also conserved in fungal NOX regulators (NOXR) found in Pezizomycotina, including Aspergillus nidulans, Neurospora crassa and Epichloe festucae [66,67]. This conserved region mediates interaction with small Rac GTPases, thereby linking these NOX enzymes directly to the regulation by Rho family members [68]. Although it is still not clear which of the many Rac homologs might be involved in the regulation of D. discoideum NOXA and NOXB, Rac1A, -B and -C show the greatest homology with Rac2 in human neutrophils. In addition, all of the Rac2 residues at the interface with p67phox are conserved, suggesting that a similar activation process might also have occurred in D. discoideum [10].

Functional Congruence in Domain Composition, Sequence Divergence at Functional Sites

Domain architectures evolve at different modes in prokaryotes and eukaryotes and our results are characteristic for the two superkingdoms. Prokaryotic proteins generally possess a less complex domain composition than eukaryotes, but undergo fusion and fission events more frequently. Hence, proteins with a more complex domain organization are found in small clades (Figure 3). In contrast, eukaryotic proteins tend to be composed of more domains, but structural alterations can occur stepwise and at a low rate. Thus, to some extent it is possible to trace back evolution based on the continuous increase of structural complexity in proteins from related species. In the case of the FRD superfamily, this leads to a higher structural diversity in eukaryotic homologs than prokaryotic ones. Despite the differing mode of evolution regarding the domain architecture, congruent evolution can be observed with respect to the function of domains that enlarge the

Protein, species, UniProtKB identifier	Biological Function	References
FRE4 S. cerevisiae: P53746	Fe³⁺ reduction; iron homeostasis	[46,124]
FRE5 S. cerevisiae: Q08908	Iron homeostasis	[46]
FRE6 S. cerevisiae: Q12473	Export iron and copper from vacuole; iron and copper homeostasis	[46,127,128]
FRE7 S. cerevisiae: Q12333	Copper homeostasis	[46]
AIM14 S. cerevisiae: P53109	ROS generation; apoptosis; actin cable formation	[47]
FRP1 S. pombe: Q04800	Fe³⁺ reduction/acquisition; iron homeostasis	[129]

Evolution of the FRD Superfamily
bacterial and eukaryotic structural core. First of all, it is likely that the bacterial long forms and the equivalent eukaryotic structural core result from independent fusion events. Furthermore, four distinct domains serve as electron transfer agents (Ferredoxin (Fer2), Rieske, DOMON, peroxidase-like domain) and two distinct domains assist protein-protein interactions (NADPH-oxidase-like domain, SH3). Thus, the reductive function of the ferric reductase domain was most probably conserved over more than two billion years. This assumption is supported by the conservation of the surface-proximal heme-binding histidines in TM3 and TM5. Finally it is notable that domains with equivalent functions can occur on either side of the membrane.

At the sequence level, divergent evolution can be observed at functional sites, which are assumed to reflect changes in substrate selectivity and possibly the reaction mechanism. The functional shift from metal reductase to NADPH oxidase activity probably occurred early on in evolution at the base of the NOX clade. Four amino acids have been identified to distinguish metalloreductases from ROS-generating NADPH oxidases. The replacement of the first canonical heme-spanning histidine by a highly conserved arginine in members of the prokaryotic YedZ family and the eukaryotic STEAP family may indicate a change in the reaction mechanism.

Origin of the FRD Superfamily

The ferric reductase domain may well have emerged from cytochrome b. The phylogeny of the FAD-binding domain suggests the fusion of a ferric reductase domain to a dehydrogenase module (File S5). Based on the likelihood of ancient ferric reductase domain genes copies in archaean genomes, it seems reasonable to expect a bacterial origin of the ferric reductase domain. However, as shown above, only about 37% of all bacterial genomes possess a homolog of the FRD superfamily. Supporting arguments for a bacterial origin of this superfamily are – in particular – the presence of homologs in a broad variety of taxonomic groups compounded by the fact that the ferric reductase activity is only essential for obligate aerobic species that have no access to ferrous ion resources and possess no non-reductive iron uptake system. Furthermore, as a typical operational gene, ferric reductase is not only transferred more easily.

![Figure 5. A model of the evolutionary history of the FRD superfamily.](image-url)

The ancestral system may have used reduced quinol to produce soluble ferrous ions and progressed into a highly regulated system that generates immunologically potent ROS by using NADPH as electron source. doi:10.1371/journal.pone.0058126.g005
between bacteria [69], but is also likely to descend from bacteria early on in eukaryotic evolution [69–71]. Our phylogenetic superfamily tree shows a bacterial and a eukaryotic clade, suggesting a unique event of ancient gene transfer between the superkingdoms. The model is summarized in Figure 5.

Conclusions

This study reveals that the ferric reductase domain superfamily probably originated from a short bacterial homolog that consisted solely of a ferric reductase domain. During evolution these ‘one-domain’ homologs were extended by different modules that either participate in redox systems or are regulatory components. The C-terminal fusion of an FAD- and NADPH-binding domain probably resulted in the core of the long homologs, which are mostly found in eukaryotes. Phylogenetic analysis reveals that the highly diverse number of gene copies per species is derived by extensive lineage-specific gene gain and gene loss throughout evolution. The functional shift from metal reductase to NADPH oxidase activity probably occurred early in evolution at the base of the NOX clade. The generation of potentially toxic ROS is accompanied by increased complexity of regulatory systems. One such regulatory component is p22phox, which appears with the emergence of the NOX family; its origin is still unknown.

Four amino acids have been identified to distinguish metalloreductases from ROS-generating NADPH oxidases. We believe that it might be possible to detect further sites for the construction of even more specific function predictors based on the comparison of clade-specific conservation signatures. Finally, we plan to use conservation signatures for the revision of unresolved nodes. Preliminary results suggest taking the option of classifying the superfamily into three main groups, namely NOX, FRE and YeDZ/STEAP. These and other related issues will be the subject of future interesting studies.

Acknowledgments

The authors wish to thank Jos A. Cox for his help in the analysis of EF-hand domains. A special thanks to Nicolas Salamin for feedback on the manuscript, and to Vivienne Baillie Gerritsen for proofreading it. The authors are grateful to two anonymous reviewers for their valuable comments and suggestions to improve the quality of the study.

Author Contributions

Conceived and designed the experiments: KHK TS BB. Performed the experiments: XZ BB. Analyzed the data: XZ BB TS KHK IX. Wrote the paper: BB XZ KHK TS IX.

Supporting Information

File S1 Sequence data and domain predictions. (XLSX)

File S2 Maximum likelihood phylogeny of eukaryotic gene families of the FRE group and the NOX group. The phylogenetic tree is a detailed presentation of Figure 1B. Tree branches are colored according to the taxonomic classification of the species. (TIFF)

File S3 Exploration of the tree space. Phylogenies of the FRD superfamily from multiple analyses. Gene families are colored in the phylogenetic tree and family names are given. Branch support values of major internal nodes are indicated. (PDF)

File S4 Analysis of bacterial FRD superfamily members. (PDF)

File S5 Evolution of the FRD superfamily from the view of its core domains. (PDF)

References

1. Kosman DJ (2010) Redox cycling in iron uptake, efflux, and trafficking. The Journal of biological chemistry 285: 26729–26735.
2. Crichon RR, Pierre JL (2001) Old iron, young copper: from Mars to Venus. Bioinotestes: an international journal on the role of metal ions in biology, biochemistry, and medicine 14: 99–112.
3. Vasconcelos M, Eckert H, Aranaha V, Grael G, Grusak MA, et al. (2006) Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Planta 224: 1116–1120.
4. Vert G, Grotz N, Deddechamp F, Gaynard F, Guerinot ML, et al. (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant cell 14: 1223–1233.
5. Shutwell KP, Daniels A, Cross AR, Klauser RD, Segal AW (1996) The FRED ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase. The Journal of biological chemistry 271: 14240–14244.
6. Finogold AA, Shutwell KP, Segal AW, Klauser RD, Daniels A (1996) Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. The Journal of biological chemistry 271: 31021–31024.
7. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological reviews 87: 245–313.
8. Brown GD (2011) Innate antifungal immunity: the key role of phagocytes. Nature Reviews Immunology 11: 27–35.
9. Groeger G, Quiney C, Cotter TG (2009) Hydrogen peroxide as a cell-survival signaling molecule. Antioxidants & redox sigaling 11: 2655–2671.
10. Inoue Y, Itoh H, Sugawara M, Minamikawa T, Hayashi T, et al. (2004) NCBI BLAST: a better web interface. Nucleic acids research 32: W3–9.
11.歲ノ伊原 racial EXPLORER helps you building datasets for phylogenetic analysis. BMC evolutionary biology 10: 8.
12. Szymczak M, Baranowski D, Zagozdzon A, Skowronski A (2011) NOX isoforms and reactive oxygen species in vascular health. Molecular intervention 11: 27–35.
13. Boeckmann B, Robinson-Rechavi M, Xenarios I, Desimone C (2011) Conceptual framework and pilot study to benchmark phylogenomic databases based on reference gene trees. Brief Bioinform 12: 423–435.
51. Aravind L (2001) DOMON: an ancient extracellular domain in dopamine
50. Iyer LM, Anantharaman V, Aravind L (2007) The DOMON domains are
49. Jeong J, Connolly EL (2009) Iron uptake mechanisms in plants: Functions of
48. Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, et al. (2008) Chloroplast
46. Martins LJ, Jensen LT, Simon JR, Keller GL, Winge DR (1998)
45. Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A (1996) A
42. Ohgami RS, Campagna DR, McDonald A, Fleming MD (2006) The Steap
41. Brokx SJ, Rothery RA, Zhang G, Ng DP, Weiner JH (2005) Characterization
40. von Rozycki T, Yen MR, Lende EE, Saier MH Jr. (2004) The YedZ family:
35. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, et al. (2012) The Pfam
34. Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, et al. (2012) InterPro
33. Jones DT (2007) Improving the accuracy of transmembrane protein topology
32. Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined
31. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting
30. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting
27. Guindon S, Delsuc F, Dufayard JF, Gascuel O (2009) Estimating maximum
26. Nox1p, a NADPH oxidase that regulates Ca(2+)
25. Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knapp US (2003) Functional analysis of Nox1 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 15: 69–82.
24. Mayer BJ (2001) SH3 domains: complexity in moderation. Journal of cell science 114: 1253–1265.
23. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, et al. (2005)
22. Kumatori A, Faizunnessa NN, Suzuki S, Moriuchi T, Kurozumi H, et al. (2005)
21. Banfi B, Tirone F, Dursun I, Knuiz J, Moskova P, et al. (2004) Mechanism of Ca(2+) activation of the NADPH oxidase 5 (NOX5). J Biol Chem 279: 10535–10541.
20. Ohlon JS, Mathews A, Roblitz RJ, Springer BA, Egeberg KD, et al. (1968) The role of the distal histidine in myoglobin and hemoglobin. Nature 336: 265–266.
19. Holliday GL, Mitchell JB, Thornton JM (2009) Understanding the functional roles of amino acids in enzyme catalysis. J Mol Biol 396: 560–577.
18. Rinnerthaler M, Buttner S, Laun P, Heeren G, Felder TK, et al. (2012)
17. Ueno M, Takeyama K, Miyake S, Sumimoto H (2005) The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase activators and activators. J Biol Chem 280: 23329–23339.
16. Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knapp US (2006) Functional analysis of Nox1 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 15: 69–82.
15. Mayer BJ (2001) SH3 domains: complexity in moderation. Journal of cell science 114: 1253–1265.
14. Papageorge A, Rupaimoole R, Mayer BJ, et al. (2006) The role of the distal histidine in myoglobin and hemoglobin. Nature 336: 265–266.
13. Banfi B, Malgrange B, Khraiw J, Seeger K, Dubuis-Duplain M, et al. (2004) NOX1, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279: 46065–46072.
12. Paravicini TM, Christosbolos S, Drummond GR, Seby CG (2004) Increased NADPH-oxidase activity in newborn rat diabetic neonatal retinopathy models. Diabetologia 47: 1264–1272.
11. Jendrusak VA, Vasilievsky SI, Lw A, Wood A, Zhu N, et al. (2011) NADPH oxidase-2 derived ROS dictates murine DC cytokine-mediated cell fate decisions in diabetic CD4 T helper-cell co-stimulators. PLoS One 6: e19198.
10. Pafintinholo R, Bergstrom RA, Pasunto F, Wabnitz P, Munroe RJ, et al. (2004) Vestibular defects in head-tail mutant results from mutations in Nox5, encoding an NADPH oxidase. Genes & development 18: 480–491.
9. Banfi B, Malgrange B, Khraiw J, Seeger K, Dubuis-Duplain M, et al. (2004) NOX1, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279: 46065–46072.
8. Paravicini TM, Christosbolos S, Drummond GR, Seby CG (2004) Increased NADPH-oxidase activity in newborn rat diabetic neonatal retinopathy models. Diabetologia 47: 1264–1272.
7. Kim KS, Choi HW, Yoon HE, Kim IY (2010) Reactive oxygen species generated by NADPH oxidase 2 and 4 are required for chondrogenic differentiation. The Journal of biological chemistry 285: 46029–46032.
6. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, et al. (2005) NADPH oxidase 4 mediates transforming growth factor-beta-induced
106. Chavez V, Mohri-Shiomi A, Garsin DA (2009) Ce-Duox1/BLI-3 generates NOx. Mucosal immunology 2: 55–69.

105. Edens WA, Finnerty V, Lambeth JD (2007) Regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation. Molecular microbiology 74: 480–496.

104. Meitzler JL, Brandman R, Ortiz de Montellano PR (2010) Perturbed heme iron in thyroid physiology and disease. The Journal of Clinical Endocrinology and Metabolism 86: 4339–4343.

103. Wong JL, Creton R, Wessel GM (2004) The oxidative burst at fertilization is required upon activation of the dual oxidase Udc1. Developmental cell 7: 801–814.

102. Ha EM, Oh CT, Bae YS, Lee WJ (2005) A direct role for dual oxidase in hydrogen peroxide production by fungal NADPH oxidase is required for rice blast disease. Proceedings of the National Academy of Sciences of the United States of America 102: 11772–11777.

101. Ritsick DR, Edens WA, Finnerty V, Lambeth JD (2007) NOx regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation. Molecular microbiology 74: 480–496.

100. Song Y, Driessen N, Costa M, De Deken X, Detours V, et al. (2007) Roles of hydrogen peroxide in thyroid physiology and disease. The Journal of Clinical Endocrinology and Metabolism 92: 3764–3773.

99. Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C (2010) A novel hydrogen peroxide sources supporting mucosal surface host defense. The FASEB journal: official publication of the Federation of American Societies for Experimental Biology 17: 1502–1504.

98. Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale model organizes epithelial cell architecture. Developmental cell 7: 23272–23232.

97. Cardoso LC, Martins DC, Figueiredo MD, Rosenthal D, Vaisman M, et al. (2001) Ca(2+)/nicotinamide adenine dinucleotide phosphate-dependent H(2)O(2) generation is inhibited by iodide in iodine-deficient thyroid. The Journal of Biological Chemistry 276: 37594–37601.

96. Grasberger H, De Deken X, Mayo OB, Raad H, Weiss M, et al. (2012) Mice Arabidopsis thaliana expresses multiple lines of defense to counterattack Erwinia chrysanthemi. Molecular plant-microbe interactions: PMPI 20: 794–805.

95. Donko A, Ruisanchez E, Orient A, Enyedi B, Kapui R, et al. (2010) Urothelial cell metacyclic sarcocystis cati generates by microbial NADPH oxidase NoxA regulate sexual development in T. gondii. The Plant cell 24: 738–761.

94. Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species by fungal NADPH oxidase NoxA regulate growth and apoptosis in DU 145 prostate cancer cells. American journal of physiology Cell physiology 285: C353–C369.

93. Hong J, Behar J, Wands J, Resnick M, Wang IJ, et al. (2010) Bile acid reflux contributes to development of esophageal adenocarcinoma via activation of phosphatidylinositol-3,4,5-trisphosphate 3-kinase alpha and NADPH oxidase NOX1. Cancer Research 70: 1247–1255.

92. Banfi B, Mohan G, Maturana A, Steger K, Hegedus B, et al. (2001) A Ca(2+)/activated NADPH oxidase in testis, sperm, and lymph nodes. The Journal of Biological Chemistry 276: 37594–37601.

91. Zhou X, D, Resnick MB, Behar J, Wands J, et al. (2011) Signaling in H2O2-induced increase in cell proliferation in Barrett’s esophagus adenocarcinoma cells. The Journal of pharmacology and experimental therapeutics 339: 218–227.

90. Oliveira Gde A, Lieberman J, Barillas-Mury C (2012) Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antimalarial modulation. Science 335: 856–859.

89. Robinson NJ, Proctor CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase enzyme is required for iron uptake by Arabidopsis roots. Physiologia plantarum 134: 334–341.

88. Kubo I, Campbell NJ, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223: 1178–1190.

87. Wu H, Li L, Du J, Yuan Y, Cheng X, et al. (2005) Molecular and biochemical characterization of the FRO5 chelate reductase gene family in Arabidopsis thaliana. Plant & cell physiology 46: 1505–1514.

86. Bernal M, Casero D, Singh V, Wilson GT, Grande A, et al. (2012) Transcriptome Sequencing Identifies SFL-Regulated Copper Acquisition Genes FRO4/FRO5 and the Copper Dependence of Iron Homeostasis in Arabidopsis. The Plant cell 24: 738–761.

85. Segmuller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, et al. (2008) Evolution of the FRD Superfamily. Planta 227: 13786–13792.

84. Singh A, Kaur N, Kosman DJ (2007) The metalloreductase Fre6p in Fe-efflux and Cu(II) import into yeast. The Journal of Biological Chemistry 282: 21629–21638.

83. Roy J, Sahu B, Bhattacharya A, Adak N, Sarker SK, et al. (2011) The fusion yeast ferric reductase gene fpr1+ is required for ferric iron uptake and encodes a protein that is homologous to the gp91phox subunit of the human NADPH phagocyte oxidase. Molecular and cellular biology 31: 4342–4350.