ORIGINAl ARTICLE

Association between serotonin transporter genotype, brain structure and adolescent-onset major depressive disorder: a longitudinal prospective study

K Little1,2,3, CA Olsson3,4, S Whittle5,6, GJ Youssef1,7, ML Byrne1, JG Simmons1, M Yücel7, DL Foley5 and NB Allen1,3,5,8

The extent to which brain structural abnormalities might serve as neurobiological endophenotypes that mediate the link between the variation in the promoter of the serotonin transporter gene (S-HTTLPR) and depression is currently unknown. We therefore investigated whether variation in hippocampus, amygdala, orbitofrontal cortex (OFC) and anterior cingulate cortex volumes at age 12 years mediated a putative association between S-HTTLPR genotype and first onset of major depressive disorder (MDD) between age 13–19 years, in a longitudinal study of 174 adolescents (48% males). Increasing copies of S-alleles were found to predict smaller left hippocampal volume, which in turn was associated with increased risk of experiencing a first onset of MDD. Increasing copies of S-alleles also predicted both smaller left and right medial OFC volumes, although neither left nor right medial OFC volumes were prospectively associated with a first episode of MDD during adolescence. The findings therefore suggest that structural abnormalities in the left hippocampus may be present prior to the onset of depression during adolescence and may be partly responsible for an indirect association between S-HTTLPR genotype and depressive illness. S-HTTLPR genotype may also impact upon other regions of the brain, such as the OFC, but structural differences in these regions in early adolescence may not necessarily alter the risk for onset of depression during later adolescence.

Translational Psychiatry (2014) 4, e445; doi:10.1038/tp.2014.85; published online 16 September 2014

INTRODUCTION

Depressive disorders are common and debilitating, have a multifaceted etiology and often emerge during adolescence.1,2 Recent efforts to understand the underlying biological basis of susceptibility to depression have focused on genetic risk factors.3,4 However, comprehensive genome-wide association studies have had little success in identifying risk loci, with no replicated findings to date.5 Increasingly, researchers are returning to more theoretically guided approaches based on biological systems implicated in depression. Such an approach can extend from candidate gene to whole-pathway analyses.6 It is widely accepted that abnormal serotonergic function is implicated in the onset and course of depressive disorders.5 The serotonin transporter gene (SLC6A4, synonyms: 5-HTT, SERT) controls transporter enzyme production and is a key regulator of serotonergic neurotransmission. Furthermore, the effects of genetic variation at this loci have been shown to interact with environmental stressors, such as child maltreatment,9,10 however, this has not been consistently demonstrated,11 suggesting a need for further refinement of research methodologies.

Detection of genetic risk could be enhanced by consideration of endophenotypes that occur at an intermediate stage in the causal pathway from a distal gene to the overt expression of disease.12,13 Brain structure and brain function have been identified as particularly promising endophenotypes for depression, given the findings suggesting they are highly heritable14,15 and the reported associations between the volume and activity of specific brain regions and the disorder.16,17 In particular, variation in the volume of brain structures involved in emotional processing and stress responses, including the hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC) and amygdala, have been theorized to have a role in mood disorders.18,19 Specifically, volume reductions in the hippocampi,20–23 the ACC24 and the OFC25,26 have been consistently documented in patients with major depressive disorder (MDD). Smaller hippocampal and ACC volumes have also been linked to poorer clinical outcomes longitudinally.26–28 Studies of the association between amygdala volume and depression have been somewhat more conflicting, with a recent meta-analysis indicating volume deficits in MDD patients compared to healthy controls,29 although some earlier meta-analyses have indicated no structural difference between these groups.23,30 These brain regions are also densely innervated by serotonergic neurons originating primarily in the dorsal and median raphe nuclei.31 Emerging evidence from imaging genetics studies of mood disorders suggests that variations in serotonergic neurotransmission, due in part to S-HTTLPR genotype, may be associated with variations in these brain structures, although current findings present a somewhat inconsistent picture.18 Findings on the hippocampus have been equivocal, with the majority of studies failing to identify differences in hippocampal...
S-HTTLPR, brain structure and depression
K Little et al

volumes associated with the S-HTTLPR genotype in healthy individuals (for example, Eker et al.,2 Taylor et al.,3 Frodl et al.4,35). However, one study with a large sample has reported that individuals homozygous for the S-allele had significantly smaller left hippocampal volumes than those homozygous for the L-allele.26 With regard to MDD, there have been reports of smaller14 larger15,36 and equivalent volumes16 in S-allele carriers compared to their L-allele homozygous counterparts.

There have been more consistent reports of smaller ACC structures in psychiatrically healthy S-allele carriers compared to L-homozygous individuals.36–38 No apparent genotypic effects have been observed in individuals currently experiencing MDD; however, MDD patients homozygous for the L allele have been found to have reduced ACC volumes compared to psychiatrically healthy controls with the same genotype.36

Furthermore, there is some evidence suggesting decreased amygdala volumes (as well as reduced functional connectivity between the amygdala and the perigenual ACC) in S-allele carriers.37,39 However, opposite40 and null38 findings have also been documented, albeit in smaller samples. Evidence of an impact of S-HTTLPR on OFC volumes in humans is currently limited, with only one study to date showing S-allele-associated volume deficits in the left OFC, in psychiatrically healthy individuals.38

A key unresolved issue is the extent to which these brain structural abnormalities might serve as endophenotypes that mediate the putative link between S-HTTLPR and depression. In general, a given variable may be regarded as a mediator to the extent that it accounts for the relationship between the predictor and the outcome. Because endophenotypes occur at an intermediate stage in the causal pathway from a distal gene to overt expression of disease, a mediation model is often assumed (for example, Waldman,41 Munafò,42 and Hyde et al.43) but has rarely been tested explicitly within the field of imaging genetics (see Nikolova et al.44 for a notable exception). To our knowledge, there are no imaging genetic studies of this nature that have examined depression as an outcome. Studies so far have rather remained siloed, investigating either gene–brain structure or brain structure–depression relationships, and have not systematically tested mediation relationships within the same sample. There are also a limited number of longitudinal studies that have been able to examine whether neuroanatomic abnormalities are prospectively associated with later occurrence of the disorder (for example, Rao et al.45).

Thus, the purpose of the current study was to examine whether S-HTTLPR genotypes predict variations in brain volumes in early adolescence, and whether these variations in turn prospectively predicted an onset of MDD in a 6-year follow-up period. We directly tested the hypotheses that (i) S-allele carriers would demonstrate reduced volumes of the hippocampus, ACC, amygdala and OFC, (ii) that smaller volumes of each of these structures would be prospectively associated with MDD onset, and, critically, (iii) that variation in brain structure would statistically mediate the association between S-HTTLPR genotype and MDD onset.

MATERIALS AND METHODS
Participants and procedures
The current analyses are based on a subsample of 174 participants (71% of the total sample, 83 male) from the longitudinal Orygen Adolescent Development Study (ADS), conducted in Melbourne, Australia, who had provided a genetic sample during the course of their participation. The recruitment and screening of ADS participants has been reported previously.46 These analyses draw on all four waves of ADS data collection: wave 1 (W1; M age 12.7 years, range 11.4–13.7 years) included a structural magnetic resonance scan and a diagnostic interview that assessed for current and lifetime mood disorders to exclude participants with a history of an episode of major depression. The diagnostic interview was repeated at waves 2, 3 and 4 (W2–W4), which were conducted −2.5, 4 and 6 years after W1, respectively. The W2–W4 diagnostic interviews assessed for current MDD and any new episodes since the date of the last assessment.

Measures
MDD onset. MDD was measured at each of the four study waves by the Kiddie-Schedule for Affective Disorders and Schizophrenia for School-Age Children, Present and Lifetime version (K-SADS-PL), a semistructured diagnostic interview that assesses current and lifetime symptoms and diagnoses of Axis I disorders in youths aged 6–18 years. Diagnostic interview data from each of the time points were used to construct a variable indicating whether participants had experienced their first occurrence of an episode of MDD between the W1 and W4 time points. Owing to attrition, this variable was able to be calculated for 138 of the 174 participants in the current study, and there were no differences between these participants and the 37 participants with missing data according to gender, χ²(1) = 0.25, P = 0.6, socio-economic status, t(172) = 0.99, P = 0.34, and W1 depression symptoms (as measured by the Centre for Epidemiological Symptoms–Depression scale), t(160) = 0.77, P = 0.49. A total of 36 participants had experienced their first onset of MDD between W1 and W4. Of these participants, 30 met criteria for one (or more) other lifetime psychiatric disorders compared to 34 of the 101 participants who did not experience an onset of MDD during adolescence (Supplementary Table 1).

Neuroimaging
One-hundred and twenty-five participants of the current sample completed a structural magnetic resonance imaging (MRI) scan at W1, using a 3-Tesla GE scanner. Details regarding image acquisition, image preprocessing and tracing protocols for morphometric analysis can be found in Supplementary Information. Briefly, the guidelines for tracing the amygdala and hippocampus were adapted from those described by Velakoulis et al.46 Watson et al.’s protocol40 was used to separate the amygdala from the hippocampus (see Supplementary Figure 1). The boundaries of the OFC were based on a previously published method by Riffkin et al.47 In accordance with Bartholomeusz et al.,48 medial and lateral OFC regions were separated with the medial orbital sulcus49 (see Supplementary Figure 2). The boundaries of the ACC were based on a previously published method,50 which defines separate limbic and paralimbic regions according to individual differences in the morphology of the cingulate, paracingulate and superior rostral sulci (see Supplementary Figure 3).

Intrarater and intrarater reliabilities were assessed by means of the intraclass correlation coefficient (absolute agreement) using 10 brain images from a separate MRI database established for this purpose. Intraclass correlation coefficient values were deemed acceptable for all ROIs (29 of the 36 ROIs were < 0.90 and none < 0.75), as shown in Supplementary Table 1. All brain structural measures were corrected for whole-brain size separately by gender by means of a covariance adjustment method51 and converted from mm³ to cm³.

Genotyping
Saliva was collected from participants for genetic analysis using an ORAGENE saliva pot (www.dnagenotek.com). The methods used for PCR amplification and visualization by gel electrophoresis were as described by Edenberg and Reynolds.52 The genotype distribution for S-HTTLPR (LL: n = 54, SL: n = 83, SS: n = 37) was in Hardy–Weinberg equilibrium (χ²(1, N = 174) = 0.24, NS).

Statistical analysis
We used path analysis to test a multiple mediator model, with serotonin transporter genotype as an ordinal independent variable (IV), the left and right structures of a specific brain region of interest (corrected for whole brain volume) as continuous mediators, and MDD onset as the binary dependent variable (DV). Alterations in the normal asymmetry of brain regions, particularly limbic structures such as the hippocampus, have been implicated in depression, generally evidenced by greater reductions in the left, compared to the right, structure (for example, Merwaal et al.53 and Bremner et al.54). Research, however, has tended to examine left and right structures separately, making it difficult to know whether asymmetrical changes have occurred, or whether there are bilateral changes that
concluded that the indirect effect is statistically significant. As both the left and right structures of a particular brain region would be expected to be related, their residuals were covaried in the model. Additional mediational analyses that included the covariates of adolescent gender, ethnicity, full-scale IQ and age at time of the MRI scan were conducted, but did not alter the pattern of results and hence are not reported.

Listwise deletion because of missing data would have resulted in only 98 cases remaining in the analysis due to non-participation in either the MRI at wave 1 or the psychiatric interview at waves 2, 3 or 4. Little’s MCAR test was non-significant, $\chi^2(163) = 179.54$, $P = 0.178$. We therefore used pairwise deletion (the default when using the WLSMV estimator in Mplus) to account for missing data. Pairwise deletion has been shown to be unbiased when data are missing completely at random.65

RESULTS

Table 1 presents mean brain volumes for each brain region considered in the current analyses before correction for whole brain volume.

For all analyses, the total effect of 5-HTTLPR on MDD onset (path c, that is, not controlling for ROI volumes) was non-significant (95% CI: -0.49 to 0.14, $\beta = -0.18$, s.e. = 0.16, $P > 0.05$). Each of the direct associations between 5-HTTLPR and MDD onset (path c', that is, controlling for the relevant ROI volumes), 5-HTTLPR and the ROI volumes (path a), as well as between the ROI volumes and MDD onset (path b), can be seen in Table 2. In all path models, the direct effect of 5-HTTLPR on MDD onset (path c') was non-significant.

Table 1. Means and standard deviations (s.d.) of regional brain volumes (before correction for whole brain volume) in cm3

Brain Region	Full Sample (N = 125) M	s.d.	MDD Onset (N = 26) M	s.d.	No MDD Onset (N = 79) M	s.d.
Left hippocampus	2.77 ± 0.33		2.70 ± 0.35		2.77 ± 0.33	
Right hippocampus	2.95 ± 0.34		2.94 ± 0.35		2.91 ± 0.33	
Left amygdala	1.82 ± 0.26		1.86 ± 0.25		1.89 ± 0.25	
Right amygdala	1.83 ± 0.28		1.75 ± 0.24		1.85 ± 0.29	
Left medial OFC	7.55 ± 1.80		7.13 ± 1.47		7.62 ± 2.00	
Right medial OFC	7.19 ± 1.71		6.80 ± 1.27		7.27 ± 1.87	
Left lateral OFC	12.41 ± 3.04		11.81 ± 3.31		12.63 ± 3.00	
Right lateral OFC	13.33 ± 2.75		13.00 ± 2.63		13.50 ± 2.92	
Left limbic ACC	4.98 ± 1.68		5.44 ± 1.38		4.77 ± 1.68	
Right limbic ACC	5.77 ± 1.91		5.51 ± 1.99		5.99 ± 1.87	
Left paralimbic ACC	5.33 ± 1.99		4.73 ± 1.72		5.47 ± 2.14	
Right paralimbic ACC	4.79 ± 1.80		4.79 ± 1.55		4.67 ± 1.89	

Abbreviations: ACC, anterior cingulate cortex; MDD, major depressive disorder; OFC, orbitofrontal cortex.

© 2014 Macmillan Publishers Limited Translational Psychiatry (2014), 1 – 8
Increasing copies of the S-allele predicted smaller left hippocampal volume (path a₁). Smaller left hippocampal volumes also predicted increased risk for MDD onset (path b₁). Bias-corrected 95% confidence intervals showed that smaller left hippocampal volume significantly mediated the relationship between S-allele copies and risk for MDD onset (indirect effect = 0.14, 95% CI: 0.009–0.42, s.e. = 0.10).

The association between S-allele copies and right hippocampal volume (path a₂) was not significant; however, larger right hippocampal volumes were predictive of increased risk for depression (path b₂).

Increasing copies of the S-allele of 5-HTTLPR predicted both smaller left and right medial OFC volumes (paths a₃ and a₄); however, the associations between left medial OFC volume and MDD onset (path b₃) and between right medial OFC volume and MDD onset (path b₄) were non-significant; therefore mediation analyses were not conducted.

There was a trend (P < 0.10) towards increasing copies of the S-allele predicting smaller left limbic ACC volume, and a significant relationship (P < 0.05) between smaller left limbic ACC volume and decreased risk for MDD onset. Bias-corrected 90% confidence intervals indicated that left limbic ACC volume mediated the relationship between serotonin transporter genotype and risk for MDD onset (indirect effect = −0.06, 90% CI: −0.17 to −0.01, s.e. = 0.05), which is statistically significant at the 0.10 level. There were no significant findings relating to the right limbic ACC.

Given these results, further analyses were conducted on rostral, dorsal and ventral regions of the limbic ACC, which indicated that the finding obtained for the left limbic ACC was localized to the rostral region, such that a greater number of S-alleles was associated with smaller volumes of the left rostral limbic ACC, and that, in turn, smaller rostral limbic ACC volumes were associated with decreased risk for depression onset at trend level. The indirect pathway was also significant at trend level according to bias-corrected confidence intervals (indirect effect = −0.06, 90% CI: −0.17 to −0.003, s.e. = 0.05), suggesting possible mediation of the relationship between serotonin transporter genotype and risk for MDD onset by rostral limbic ACC volume. There were no significant findings relating to the right rostral limbic ACC. 5-HTTLPR did not predict left or right dorsal or ventral limbic ACC volumes, nor were these volumes related to risk for MDD onset. Mediation analyses for these regions were therefore not conducted.

5-HTTLPR did not predict left or right amygdala volume, left or right lateral OFC volumes, and left or right paralimbic ACC volume,
not were these volumes related to risk for MDD onset. Mediation analyses were therefore not conducted for these ROIs.

Scatter plots of significant gene–ROI and ROI–MDD onset associations are provided in Supplementary Figures 4.

DISCUSSION
The aim of the current study was to investigate whether the volume of the hippocampus, ACC, amygdala and OFC mediated an association between variation in the serotonin transporter gene and a first onset of MDD in a large sample of adolescents using a longitudinal, prospective design. The findings are summarized in Figure 2. Our results support the role of left hippocampal volume deficits in early adolescence as salient mediators of the link between serotonin transporter genotype and increased risk for MDD onset in later adolescence. Specifically, we found that an increasing number of S-allele copies were associated with smaller left hippocampal volume, and smaller left hippocampal volume was in turn associated with increased risk of experiencing a first onset of MDD. Right hippocampal volume did not significantly mediate the pathway from 5-HTTLPR genotype to MDD onset, although larger right hippocampal volume did predict an increased risk of a depressive episode.

These results provide evidence that neurobiological factors may partly underlie the link between serotonin transporter genotype and depression. Furthermore, our finding that the S-allele predicted smaller left hippocampal volumes in early adolescence prior to illness onset is consistent with previous findings of a volume deficit in these structures in S-allele carriers.32,33,36 Our finding that volume reductions in the hippocampus are associated with depression onset, but also predate its occurrence, also concords with suggestions that hippocampal volume deficits are one of the most consistently observed structural aberrations in depression.19–23 and that this anomaly may represent a vulnerability factor that is present prior to emergence of mood disorder.45,68

The hippocampal region has been found to have moderate concentrations of the serotonin transporter.69 An in vivo positron emission tomography study has revealed a strong leftward asymmetry in serotonin transporter distribution in the hippocampus,70 suggesting greater expression of the serotonin transporter gene in the left hippocampal structure. Higher concentrations of serotonin transporters in the left compared to the right hemisphere may explain why serotonin transporter genotype was predictive of left hippocampal volume only in the current study. The hippocampus is known to be involved in the regulation of the stress response, specifically in the inhibition of the hypothalamic–pituitary–adrenal (HPA) axis.71–73 Smaller hippocampal volumes associated with S-carrier status may affect negative feedback inhibition of the HPA axis, which could result in HPA hyperactivity. Alternatively, the S-allele may be associated with greater stress responsivity in the form of higher basal cortisol or a greater cortisol response,74 which may have neurotoxic, atrophying effects on the hippocampus,75 in turn increasing the risk for depression.

The finding that left and right volumes have opposite effects on the onset of MDD may initially seem inconsistent with previous studies that have found bilateral reductions in hippocampal volume that were predictive of depression. As far as we are aware, however, our study is unique in having considered the relative contribution of the left and right hippocampi to depression (that is, controlling for hippocampal volume in one hemisphere while assessing the effect of the volume in the other hemisphere). This renders it difficult to directly compare our findings with those of previous studies, which have focused on absolute volume in each hemisphere. It may still be worth noting that a number of these studies documented substantially greater left hippocampal volume reductions compared to the right in depression,57,58 including child- or adolescent-onset depression,76,77 raising the possibility that the presence of asymmetry in this region may have a role in the disorder. The implication of the finding of a difference in the directionality of the relationship between the left and right hippocampal volume with depression onset is unclear but is intriguing given suggestions that asymmetries in the limbic system, including the hippocampus, are associated with hemisphere asymmetries.78 and there are suggestions that the right hemisphere may be more dominant in processing of negative emotions while the left hemisphere may be more dominant in processing of positive emotions.79,80 It is not implausible that changes to asymmetry may have consequences for emotional processing that alters the risk for depression.

Possession of a greater number of S-allele copies also predicted both smaller left and right medial OFC volumes, although neither medial nor lateral OFC volumes (whether on the left or on the right) were prospectively associated with a MDD during adolescence. The finding that serotonin transporter genotype was associated with variation in medial but not lateral OFC volumes is consistent with the fact that the medial region of the OFC shows strong connections to limbic structures involved in emotion processing and reward, such as the amygdala, dorsolateral prefrontal cortex and ACC.81,82 One factor that may be relevant to the lack of a prospective relationship between OFC volume and onset of depression is the time at which OFC volumes were measured. The OFC, which is thought to have an important role in inhibitory control and reward-based decision-making,83 undergoes significant remodelling throughout adolescence and early

Figure 2. Summary of significant findings. A greater S-allele load was found to predict smaller left hippocampal volume, smaller left rostral limbic anterior cingulate cortex (ACC) volume, and smaller left and right medial orbitofrontal cortex (OFC) volumes. Smaller left but larger right hippocampal volumes predicted an increased probability of major depressive disorder (MDD) onset. There was a trend for smaller left rostral ACC volume to be associated with a decreased probability of MDD onset.
adulthood, and it has been suggested that abnormalities in the maturation in this region may contribute to the etiology of depression. Given that the OFC has not yet fully developed at 11–13 years old, it is possible that differences in OFC volume across adolescence may be more predictive of depression at a later age.

There was also evidence that an increasing number of S-allele copies predicted smaller left (but not right) rostral limbic ACC volume, a finding that accords with the results of previous investigations of this particular gene–brain linkage. Somewhat surprisingly, there was a trend for smaller left (but not right) rostral limbic ACC volume to be associated with decreased risk of depression onset during adolescence (or, alternatively, that larger left rostral limbic ACC volumes were associated with increased risk for depression onset), and the mediating pathway from the 5-HTTLPR genotype to the left rostral limbic ACC volume to depression onset was also significant at the trend level. The presence of an association between larger rostral limbic ACC volume and depression onset in the current study is somewhat inconsistent with past research, which has generally suggested that volume deficits are associated with depression. It is important to note, however, that evidence supporting the presence of smaller ACC volumes prior to illness onset comes exclusively from a few studies that have examined brain structure in high-risk samples, which are defined by the presence of a family history of depressive disorder (for example, Boes et al. The lack of evidence supporting amygdala volume as an intermediate phenotype between serotonin transporter gene and depression onset is perhaps somewhat unsurprising, given the heterogeneous findings regarding the association between 5-HTTLPR and amygdala structure, and between amygdala structure and depression. These null findings may reflect a need to take additional mediating or moderating factors, such as psychosocial risks (for example, stressful life events, trauma, family environment and peer relationships), into account. Our research group has previously found that amygdala volume and parenting interact to predict depressive symptoms. The structure of the amygdala is thought to be highly plastic to environmental changes and behavioral manipulations, and there is also indication that alterations in amygdala volume may occur during the course of depression, for example, raising the possibility that structural differences in this region could represent the epiphene-nomena of, or consequential change associated with, the disorder rather than a premorbid vulnerability factor.

A number of study limitations must be acknowledged. First, examining brain structure in an adolescent sample at only one time point renders it impossible to determine whether these findings reflect stable differences present prior to illness onset or abnormal developmental changes that emerge during early adolescence. Second, the current investigation also did not take into account the contribution of environmental factors, such as stressful life events, trauma, parenting and peer relationships to these associations. Hippocampal volume has been found to be affected by environments that are regarded as often having an etiological role in the development of depression, for example, early life adversity, such as abuse or neglect, as well as more normative caregiving experiences. Both increased depression risk and hippocampus diminishments have been documented in S-carriers who have experienced severe childhood adversity. Future studies may wish to consider how potential mediating paths such as those documented here might be moderated by these relevant developmental risk or protective factors. A third point for consideration is the higher rates of other lifetime psychiatric conditions in the group of participants who experienced an onset of MDD compared with participants who did not. Although comorbidity with depression is extremely common (for example, Merikangas et al. and Rohde et al.) it limits our ability to attribute the observed relationships to depression specifically as opposed to the presence of psychopathology more generally. Finally, it should be noted that, although these results would not survive Bonferroni adjustment, the magnitude of the difference in left hippocampus volume between individuals who experienced an onset of depression and those who did not is comparable to that found by a meta-analysis examining hippocampal atrophy in first episode depression patients. Given the large effect sizes required to survive the loss of power associated with such a conservative test as the Bonferroni adjusted significance test and that the effects of individual genes on the risk for psychiatric disorder tend to be small, we would contend that uncorrected results retain valuable information that would otherwise potentially be lost to Type 2 error.

In summary, despite much supposition about the extent to which brain structures involved in the stress response and emotion regulation might serve as intermediate phenotypes in the pathway from the serotonin transporter gene to depression, for example, Savitz and Drevets, and Scharinger et al., these indirect relationships had not been formally assessed prior to the present study. Our results provide evidence that during early adolescence structural abnormalities in the left hippocampus and, potentially, the left rostral limbic ACC may exist prior to onset of depression and may be partly responsible for the link between 5-HTTLPR genotype and depressive illness.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

Neuroimaging analysis was facilitated by the Neuropsychiatry Imaging Laboratory at the Melbourne Neuropsychiatry Centre. The authors would like to acknowledge the Brain Research Institute for support in acquiring the neuroimaging data, and Keith Byron, PhD, and Healthscope Pathology for support in analyzing genetic data. We would also like to sincerely thank the participating families for their loyal support of the Orygen Adolescent Development Study. Funding for this analysis was supported through grants from the Colonial Foundation, the National Health and Medical Research Council (NHMRC) (NHMRC Program Grant 350241) and the Australian Research Council (ARC) (ARC Discovery Grant DP0878136). Keriann Little is supported by an Australian Postgraduate Award. Associate Professor Craig Olsson is supported by an Australian Research Council Fellowship (ARC DORA DP1311459). Dr Sarah Whittle is supported by an NHMRC Career Development Fellowship (ID: 1007716). Dr Debra Foley is supported by the Colonial Foundation (Australia). Prof Murat Yücel is supported by an NHMRC Fellowship Award (ID: 10219T3).

REFERENCES

1 Lewinsohn PM, Rohde P, Seeley JR. Major depressive disorder in older adolescents: prevalence, risk factors and clinical implications. Clin Psychol Rev 1998; 18: 765–794.
2 Merikangas KR, He JP, Burstein M, Swanson SA, Avenevoli S, Cui L et al. Lifetime prevalence of mental disorders in U.S. adolescents: results from the National Comorbidity Survey Replication–Adolescent Supplement (NCS-A). J Am Acad Child Adolesc Psychiatry 2010; 49: 980–989.
3 Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000; 157.
4 Levinson DF. The genetics of depression: a review. Biol Psychiatry 2006; 60: 84–92.
5 Consortium MDDWGofPG. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 2013; 18: 497–511.
6 Collins FS, Guyer MS, Chakravarti A. Variations on a theme: cataloging human DNA sequence variation. Science 1997; 278: 1580–1581.
7 Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 516–517.
8 Jans LAW, Riedel WJ, Markus CR, Blokkland A. Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry 2007; 12: 522–543.
Frodl T, Zill P, Baghai T, Schule C, Rupprecht R, Zetzsche T et al. Reduced hippocampal volume associated with the long variant of the tri- and diallelic serotonin transporter polymorphism in major depression. Am J Med Genet Part B Neuropsychiatr Genet 2008; 147B: 1003–1007.

Frodl T, Koutsouleri N, Bottlender R, Born C, Jäger M, Mörgenthaler M et al. Reduced gray matter brain volumes are associated with variants of the serotonin transporter promoter gene in major depression. Mol Psychiatry 2008; 13: 1093–1101.

Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 2005; 8: 828–834.

Canli T, Omura K, Haas BW, Fallgatter A, Constable RT, Lesch KP. Beyond affect: a role for genetic variation of the serotonin transporter in neuroactivation during a cognitive attention task. Proc Natl Acad Sci USA 2005; 102: 12224–12229.

Pezawas L, Meyer-Lindenberg A, Goldman AL, Verchinski BA, Chen G, Kolachana BS et al. Evidence of biologic epistasis between BDNF and SLC6A4 and implications for depression. Mol Psychiatry 2008; 13: 709–716.

Schehr H, Gruber O, Menzel P, Schneider-Axmann T, Kemmer C, Usher J et al. 5-HTTLPR genotype influences amygdala volume. Eur Arch Psychiatry Clin Neurosci 2009; 259: 212–217.

Waldman ID. Statistical approaches to complex phenotypes: evaluating neuropsychological endophenotypes for attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1347–1356.

Munafo MR. Candidate gene studies in the 21st century: meta-analysis, moderation, Genes Brain Behav 2006; 5: 3–8.

Hoye LW, Bogdan R, Harris AR. Understanding risk for psychopathology through imaging gene-environment interactions. Trends Cogn Sci 2011; 15: 417–427.

Kolblouska YS, Singhie EI, Drabant EM, Harris AR. Reward-related ventral striatum reactivity mediates gender-specific effects of a galanin remote enhancer haplotype on problem drinking. Genes, Brain Behav 2013; 12: 516–524.

Rao U, Chen L-A, Bidesi AS, Shad MU, Thomas MA, Hammen CL. Hippocampal changes associated with early-life adversity and vulnerability to depression. Biol Psychiatry 2010; 67: 357–374.

Yap MBH, Allen NB, Ladouceur C. Maternal socialization of positive affect: the impact of inhibition on adolescent emotion regulation and depression symptomatology. Child Dev 2008; 79: 1415–1431.

Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P et al. Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 1997; 36: 980–988.

Velakoulis D, Pantelis C, McGorry PD, Dudgeon P, Brewer W, Cook M et al. Hippocampal volume in first-episode psychosis and chronic schizophrenia: a high-resolution magnetic resonance imaging study. Arch Gen Psychiatry 1999; 56: 133–141.

Velakoulis D, Wood SJ, Wong MTH, McGorry PD, Yung A, Phillips L et al. Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry 2006; 63: 139–149.

Watson C, Andermann F, Glor P, Jones-Gotman M, Peters T, Evans A et al. Anatomical basis of amygdaloid and hippocampal volume measurement by magnetic resonance-imaging. Neurology 1992; 42: 1743–1750.

Riffkin J, Jüel C, Marruff P, Wood SJ, Soulsby B, Oliev J et al. A manual and automated MRI study of anterior cingulate and orbitofrontal cortices, and caudate nucleus in obsessive-compulsive disorder: comparison with health controls and patients with schizophrenia. Psychiatry Res 2015; 138: 99–113.

Bartholomew CS, Whittle S, McGorry P, Velakoulis D, Pantelis C, Wood SJ. Orbitofrontal cortex sulcal patterns in first episode schizophrenia: preliminary findings. Schizophr Res 2010; 117: 222–223.

Chivaars MM, Petrides M. Orbitofrontal sulci of the human and macaque monkey brain. J Comp Neurol 2000; 422: 35–54.

Fornito A, Yücel M, Wood SJ, Proffitt T, McGorry PD, Velakoulis D et al. Morphology of the paracingulate sulcus and executive cognition in schizophrenia. Schizophr Res 2006; 88: 192–197.

Free SL, Bergin PS, Fish DR, Cook MJ, Shorvon SD, Stevens JM. Methods for normalization of hippocampal volumes measured with MR. Am J Neuroradiol 1995; 16: 637–643.

Edenberg HJ, Reynolds J. Improved method for detecting the long and short promoter alleles of the serotonin transporter gene HTL (SLC6A4). Psychiatr Genet 1998; 6: 193–195.

Mervaala E, Förh J, Könönen M, Valkonen-Korhonen M, Vainio P, Partanen K et al. Quantitative MRI of the hippocampus and amygdala in severe depression. Psychol Med 2000; 30: 117–125.

Bremner JD, Narayan M, Anderson ER, Stahl LB, Miller HL, Charney DS. Hippocampal volume reduction in major depression. Am J Psychiatry 2000; 157: 115–118.
59 Muthén BK, Muthén BO. Mplus User’s Guide. 6th edn. Muthén & Muthén: Los Angeles, CA, 1998–2011.
60 MacKinnon DP, Lockwood CM, Brown CH, Wang W, Hoffman JM. The intermediate endpoint effect in logistic and probit regression. ClinTrials 2007; 4: 499–513.
61 Bryan A, Schmiegelow SF, Broaddus MR. Mediation analysis in HIV/AIDS research: estimating multivariate path analytic models in a structural equation modeling framework. AIDS Behav 2007; 11: 365–383.
62 MacKinnon DP, Fairchild AJ. Current directions in mediation analysis. Curr Dir Psychol Sci 2009; 18: 16–20.
63 MacKinnon DP, Fairchild AJ, Fritz MS. Mediation analysis. Ann Rev Psychol 2007; 58: 593–614.
64 Hayes AF. Introduction to Mediation. Moderation and Conditional Process Analysis: A Regression-based Approach. Guildford Press: New York, 2013.
65 Shout PE, Bolger N. Mediation in experimental and non-experimental studies: New procedures and recommendations. Psychol Meth 2002; 7: 422–445.
66 Little RJA. A test of missing completely at random for multivariate data with missing values. J Am Stat Assoc 1988; 83: 1198–1202.
67 Enders C, Bandalos D. The relative performance of Full Information Maximum Likelihood estimation for missing data in structural equation models. Struct Eq Mod 2001; 8: 430–457.
68 Chen MC, Hamilton JP, Gotlib IH. Decreased hippocampal volume in healthy girls at risk of depression. Arch Gen Psychiatry 2010; 67: 270–276.
69 Varnás K, Haldin C, Häkan H. Autoradiographic distribution of serotonin and receptor subtypes in human brain. Hum Brain Mapp 2004; 22: 246–260.
70 Kranz GS, Hahn A, Baldinger P, Haeser D, Philippe C, Kaufmann U et al. Cerebral serotonin transporter asymmetry in females, males and male-to-female transsexuals measured by PET in vivo. Brain Struct Funct 2014; 219: 171–183.
71 Dedovic K, Duchesne A, Andrews J, Engert V, Prouessner JC. The brain and the stress axis: the neural correlates of cortisol regulation in response to stress. Neuroimage 2009; 47: 864–871.
72 Prouessner JC, Dedovic K, Proussner M, Lord C, Buss C, Collins L et al. Stress regulation in the central nervous system: evidence from structural and functional neuroimaging studies in human populations. Psychoneuroendocrinology 2010; 35: 179–191.
73 Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev 1991; 12: 118–134.
74 Miller R, Wankel I, Stalder T, Kirshbaum C, Alexander N. The serotonin transporter gene-linked polymorphic region (5-HTTLPR) and cortisol stress reactivity: a meta-analysis. Mol Psychiatry 2013; 18: 1018–1024.
75 Sapolsky RM, Krey LC, McEwen BS. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocrin Rev 1986; 7: 284–301.
76 MacMillan S, Szeszko PR, Moore GJ, Madden R, Lorch E, Ivey J et al. Increased amygdala: hippocampal volume ratios associated with severity of anxiety in pediatric major depression. J Child Adolesc Psychopharmacol 2003; 13: 65–73.
77 MacMaster FP, Kusumakar V. Hippocampal volume in early onset depression. BMC Med 2004; 2: 2.
78 Hsu G, Yang X, Yuan T-F. Hippocampal asymmetry: differences in structures and functions. Neurochem Res 2013; 38: 453–460.
79 Davidson RJ. Anterior cerebral asymmetry and the nature of emotion. Brain Cogn 1992; 20: 125–151.
80 Alves NT, Fukusima SS, Aznar-Casanova JA. Models of brain asymmetry in emotional processing. Psychol Neurosci 2008; 1: 63–66.
81 Carmichael ST, Price JL. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 1995; 363: 642–664.
82 Carmichael ST, Price JL. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 1995; 363: 615–641.
83 Riddervikhøf KR, van den Wildenberg WP, Segalowitz SJ, Carter CS. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn 2004; 56: 129–140.
84 Blakemore S-J, Choudhury S. Development of the adolescent brain: implications for executive function and social cognition. J Child Psychol Psychiatry 2006; 47: 296–312.
85 Andersen SL, Teicher MH. Stress, sensitive periods and maturational events in adolescent depression. Trends Neurosci 2000; 41: 183–191.
86 Boes AD, McCormick LM, Coryell WH, Napolous P. Rostral anterior cingulate cortex volume correlates with depressed mood in normal healthy children. Biol Psychiatry 2008; 63: 391–397.
87 Yap MBH, Whittle S, Yuel M, Sheeper L, Pantelas C, Simmons JG et al. Interaction of parenting experiences and brain structure in the prediction of depressive symptoms in adolescents. Arch Gen Psychiatry 2008; 65: 1377–1385.
88 Sapolsky R. Stress and plasticity in the limbic system. Neurochem Res 2003; 28: 1735–1742.
89 Holzel BK, Carmody J, Evans KC, Hoge EA, Dusek JA, Morgan L et al. Stress reduction correlates with structural changes in the amygdala. Soc Cogn Affect Neurosci 2010; 5: 11–17.
90 Zatorre RJ, Fields RD, Johansen-Berg H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 2012; 15: 528–536.
91 Sheline YI, Gado MH, Price JL. Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport 1998; 9: 2023–2028.
92 Teicher MH, Anderson CM, Polcari A. Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proc Nat Acad Sci USA 2012; 109: E563–E572.
93 Vythilingam M, Heim C, Newport J, Miller AH, Anderson E, Bronen R et al. Childhood trauma associated with smaller hippocampal volume in women with major depression. Am J Psychiatry 2002; 159: 2072–2080.
94 Luby JL, Barch DM, Belden A, Gaffrey MS, Tillman R, Babb C et al. Maternal support in early childhood predicts larger hippocampal volumes at school age. Proc Nat Acad Sci USA 2012; 109: 2854–2859.
95 Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301: 386–389.
96 Frodl T, Reinhold E, Koutsoulis E, Donohoe G, Bandy B, Reiser M et al. Childhood stress, serotonin transporter gene and brain structures in major depression. Neuropsychopharmacology 2010; 35: 1383–1390.
97 Everaerd D, Gerritsen L, Rijpma M, Frodl T, van Oostrom I, Franke B et al. Sex modulates the interactive effect of the serotonin transporter gene polymorphism and childhood adversity on hippocampal volume. Neuropsychopharmacology 2012; 37: 1848–1855.
98 Rohde P, Lewinsohn PM, Klein DN, Seeley JR, Gau JM. Key characteristics of major depressive disorder occurring in childhood, adolescence, emerging adulthood, and adulthood. Clin Psychol Sci 2013; 1: 41–53.
99 Nakagawa S. A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav Ecol 2004; 15: 1044–1045.
100 Jennions MD, Muller AP. A survey of the statistical power of research in behavioural ecology and animal behavior. Behav Ecol 2003; 14: 438–445.
101 Almasy L, Blangero J. Endophenotypes as quantitative risk factors for psychiatric disease: rationale and study design. Am J Med Genet Part B: Neuropsychiatr Genet 2001; 105: 42–44.

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)
Author/s:
Little, K; Olsson, CA; Whittle, S; Youssef, GJ; Byrne, ML; Simmons, JG; Yuecel, M; Foley, DL; Allen, NB

Title:
Association between serotonin transporter genotype, brain structure and adolescent-onset major depressive disorder: a longitudinal prospective study

Date:
2014-09-01

Citation:
Little, K; Olsson, CA; Whittle, S; Youssef, GJ; Byrne, ML; Simmons, JG; Yuecel, M; Foley, DL; Allen, NB, Association between serotonin transporter genotype, brain structure and adolescent-onset major depressive disorder: a longitudinal prospective study, TRANSLATIONAL PSYCHIATRY, 2014, 4

Persistent Link:
http://hdl.handle.net/11343/58752

File Description:
Published version