Development of Chemistry Learning Intruments Based on Reading Questiong And Answering Strategy Mixed With Creative Problem Solving

W. Samudera¹, W. Wildan²*, S. Hadisaputra², G. Gunawan³

¹ Magister Program of Science Education, University of Mataram. Jalan Majapahit No. 62, Lombok, 83125, Indonesia
² Chemistry Education Study Program, University of Mataram. Jalan Majapahit No. 62, Lombok, 83125, Indonesia
³ Physics Education Study Program, University of Mataram. Jalan Majapahit No. 62, Lombok, 83125, Indonesia

* samuderawawan@gmail.com

Abstract. This study aims to produce chemistry learning intruments based on Reading Questioning and Answering (RQA) strategy mixed with Creative Problem Solving (CPS) on acid-base topic to improve students' critical thinking skills. The product development is based on the 4D model which is limited to 3 stages: define, design and develop. The feasibility test of learning instruments was carried out. The percentage of the feasibility of the syllabus, lesson plan, eligibility of student worksheet, and the percentage of critical thinking intruments are 80 %, 77 %, 82 %, and 75 %, respectively. The total percentage of all developed instrument items is 78.8 %. In conclusion, feasibility study shows that the chemical learning intruments based on RQA-CPS is categorized as feasible.

1. INTRODUCTION

The 21st century requires a transformation of education as a whole so that the quality of teachers is built that is able to advance knowledge, training, student equity, and student achievement [1]. Indonesia faces more severe challenges in the development of 21st century education, because it is already in the era of development of the massive open online courses (MOOCs) [2]. 21st century education emphasizes readiness in facing the industrial revolution 4.0 which emphasizes on "the future of education" [3]. Education 4.0 focuses on four components, one of which is having good critical skills and having good problem solving skills [4].

Education does not only prepare students to continue their studies at a higher level, but is also able to solve the challenges and problems faced by students who need critical thinking. Research results put Indonesia at number 4 from the bottom in TIMSS (Trends in International Mathematics and Science) [5]. This shows that Indonesian students only master basic theories of knowledge in the fields of biology, chemistry, and physics at low cognitive levels [6].

Some research results indicate that the use of appropriate learning methods influences students' critical thinking skills and has a positive impact on student learning outcomes [7,8]. Furthermore, the use of appropriate teaching methods influences students' critical thinking skills [9,10]. In facilitating the development of critical thinking skills, it is necessary to develop RQA-CPS strategy.

The results of the study show that reading activity is effective and makes it easier for students to get detailed information [11]. The RQA learning model is better than the conventional learning model [12]. However, the application of this model has a weakness in the training of student cooperation and collaboration attitudes. This weakness can be reduced by the integration with the Creative Problem Solving (CPS) learning model.

Hajiyakhchali's research [13] suggests that the use of the CPS model can improve critical thinking skills and student problem solving. Robitah's research [14], that the CPS model provides opportunities for students to
think critically and organize ideas creatively. The CPS model was developed to improve rational and systematic skills in solving problems [15]. This model also encourages to have a positive outlook and responsibility in problem solving that is in accordance with the style and orientation of the problem [16].

The integration of these two models is expected to be able to optimize the empowerment of students' critical thinking skills and train students' ability to cooperate, as well as enhance collaboration between students. Based on these elaborations, students' critical thinking skills through the RQA-CPS model are expected to provide information that supports the integration of the two models in an effort to empower students' critical thinking skills.

2. METHOD

This research type is Research and Development in which research method used to produce certain products, and test their feasibility. The 4D development model was applied for this research and it was limited to 3 stages: define, design, develop [17]. This study focused on product development in the RQA-based chemical learning instruments combined with CPS on acid-base topic.

The product validation data from the validator is then calculated by using the following formula:

\[
\text{Validity Percentage} = \frac{\text{Validator Total Score}}{\text{Maximum Score}} \times 100\%
\]

The level of instrument validation [18] is depicted in Table 1.

Score Validation Range (%)	Level of Validation
0 – 20	Very Low
21 – 40	Low
41 – 60	Enough
61 – 80	High
81 – 100	Very High

3. RESULTS AND DISCUSSION

The learning instruments have been developed on the acid-base topic for chemistry learning in high school level. This learning instruments was developed based on the principles of learning instrument design. It is found that the developed learning instruments based RQA-CPS is feasible to be applied. The students are expected no longer trap in learning of theories and concepts only, but with RQA-CPS-based learning, students will be triggered to be confronted with daily activities/reality during learning processes and student is actively involve in learning.

The results of the feasibility analysis of the learning instruments RQA-CPS based learning devices were obtained through questionnaires. The instruments were validated by 2 experts to assess the feasibility of the product being developed. The feasibility test is depicted in Figure 1.
Figure 1 shows the feasibility test of the learning device product. The percentage of the feasibility of the syllabus is 80%, the percentage of the feasibility of the lesson plan is 77%, the percentage of eligibility of student worksheets is 82.5%, and the percentage of critical thinking instruments is 75.5%. The total percentage of all product items developed is 78.8%. Thus, it can be concluded that the developed chemical learning instruments based on RQA-CPS is categorized as feasible.

This finding is reinforced by the Aisya, Corebima, & Mahana research [19], that in RQA-CPS learning there is an individual critical thinking process then through group discussions both in pairs and larger group students will gain a correct understanding of the concept. Furthermore, RQA-CPS learning improves students’ critical thinking skills because there is a scaffolding process between students which is carried out in student collaboration to solve problems [20].

4. CONCLUSION

The RQA-based chemistry learning instruments combined with the developed CPS is considered feasible. Thus, the product developed is suitable for use as an alternative in the process of learning acid-base topic. This research will continue in the stages of practicality and effectiveness of the learning devices developed.

5. ACKNOWLEDGMENTS

We express our gratitude to all those who have helped the research process, including a team of expert validators that provided input on development research.

REFERENCES

[1] Sbderstrbrm, T., From, J., Lhqvist, J & Tornquist, A. (2011). From distance to online education: Educational management in the 21st century. Annual Conference Dublin.
[2] Hadiz, & D. Dhakidae. (2017). Social Science and Power in Indonesia (pp. 57-90). Singapore: Institute of Southeast Asian Studies.
[3] Suradisastra, K. (2006). Agriculture cooperative in Indonesia. Agriculture Cooperatives in Asia: Innovation and Opportunities in the 21st century. Seoul: National Agricultural.
[4] Dwingingrum, A, S, I. (2017). The Role of Families in 21st Century Education. Faculty of Education Yogyakarta State University.
[5] U.S. Department of Education. (2016). Highlights From TIMSS And TIMSS Advanced. NCES 2017-002.
[6] Pacific Policy Research Center. (2010). 21st century skills for students and teachers. Honolulu: Kamehameha Schools Research & Evaluation Division
[7] Ocak, I. (2018). The Relationship between Teacher Candidates’ Views of the Nature of Science and Their Problem Solving Skills. International Journal of Instruction, 11(3), 419-432.
[8] Andayani, Y., Hasidaputra, S., & Hasnawati, H. (2018, September). Analysis of the Level of Conceptual Understanding. In Journal of Physics: Conference Series (Vol. 1095, No. 1, p. 012045). IOP Publishing.
[9] Rahdar, A., Pourghaz, A., & Marziyeh, A. (2018). The Impact of Teaching Philosophy for Children on Critical Openness and Reflective Skepticism in Developing Critical Thinking and SelfEfficacy. International Journal of Instruction, 11(3), 539-556.
[10] Ramandha, M. E. P., Andayani, Y., & Hasidaputra, S. (2018, October). An analysis of critical thinking skills among students studying chemistry using guided inquiry models. In AIP Conference Proceedings (Vol. 2021, No. 1, p. 080007). AIP Publishing.
[11] Rosyida, F., & Ghufron, M. A. (2018). Herringbone and Tri Focus Steve Snyder Technique: The Techniques for Teaching Reading Comprehension Viewed from Students’ Reading Habit. International Journal of Instruction, 11(3), 603-616.
[12] Corebima, A.D. (2016). Learning Biology in Indonesia is not for Life. Paper presented at the XIII National Seminar on Biology Education FKIP UNS. Proceedings of Biology Education Conference, 13 (1), 8-22.
[13] Hajiyakhchali, A. (2013). The effects of Creative Problem Solving Process Training on Academic Wellbeing of Shahid Chamran University Students. Near East University, Cyprus, 2 (54): 54.
[14] Robitah, A. (2014). The Influence of Inquiry-Based Biological Learning Model and Creative Problem Solving (CPS) Against the Ability of Creative Thinking, Scientific Process Skills and Cognitive Learning Outcomes of Class X Students. Thesis Not Published. Malang: Malang State University.
[15] D’Zurilla, T.J., Nezu, A.M. (2007). Problem-Solving Therapy: A Positive Approach to Clinical Intervention. Springer, New York.
[16]. D’Zurilla, T.J., Nezu, A.M. (2010). Problem-solving therapy. In: Dobson, K.S. (Ed.), Handbook of Cognitive-Behavioural Therapies. Guilford Press, New York, pp. 197–225.
[17] Thiagarajan, S., Semmel, D., & Senmel, M. (1974). Instructional Development for Training Teachers of Exceptional Children: A Sourcebook, Retrieved 10 March, 2017.
[18] Widoyoko, S. (2009). Learning Program Evaluation. Yogyakarta: Pustaka Pelajar.
[19] Aisya, Corebima, & Mahana. (2017). Relationship Between Pretest and Posttest High School Critical Thinking Skills in Class X Biological Learning Through RQA Learning Model Combined with CPS in Malang City. Proceedings of the National Science Education Seminar (SNPS).
[20] Mamu, H. D. (2014). The Effect of Learning Strategies, Academic Capabilities and Their Interactions on Critical Thinking Skills and Biological Science Cognitive Learning Outcomes. Journal of Science Education, 2 (1): 1-11.