INTRODUCTION

Drimia elata Jacq. is an important and well-known medicinal plant in South Africa. Van et al. [1] provide an excellent introduction to the ethnomedicinal properties of D. elata and several other important medicinal plants in South Africa. D. elata is an ingredient of at least two traditional herbal concoctions in South Africa, known as “imbize phuzwato” and “intelezi” that are sold commercially in the country. A herbal tonic, imbize phuzwato is made from a mixture of roots, bulbs, rhizomes, and leaves of Acokanthera oppositifolia (Lam.) Codd, Aster bakanus Burtt Davy ex C.A. Sm., Corchorus asplenifolius Burch., Cyrtanthus obliquus (L.f.) Aiton, Paspalum physodes (Jacq.) Raf. ex Speta, Erica sema cordatum E.Mey., Gnidia kraussiana Meisl. var. kraussiana, Gomphocarpus fruticosus (L.) W.T. Aiton, Gunnera perpensa L., Hypericum aethiopicum Thumb., Ledebouria spp., Lycopodium clavatum L., Monorica balsamina L., Rubia cordifolia L., Scadoxus puniceus (L.) Friis and Nordal, Stephania abyssinica (Quart.-Dill. and A. Rich.) Walk., Tetradenia riparia (Hochst.) Codd, Vitellaria opposis marginata (N.E.Br.) Aubrèè, Watsonia densiflora Bak., and Zanthoxylum capense (Thunb.) Harv. [2,3]. The concoction is used as an energizing and detoxifying tonic used against general body pains, stress, constipation, arthritis, kidney problems, high blood pressure, and to increase sexual prowess [2,3]. D. elata is also an ingredient of “intelezi” whose plant species composition varies from region to region of South Africa. Intelezi is used to protect households from evil spirits and lightning, and also to chase away, ward off or root out evil spirits [4].

D. elata is the third most popular bulbous medicinal plant used in South African traditional therapy [5] and is one of the most wild-harvested species sold in the informal economy trade in the Eastern Cape [6,7], Gauteng [8-10], KwaZulu-Natal [8,11], Limpopo [12], and the Western Cape [13,14] provinces in South Africa. Research by Ndawonde et al. [15] showed that D. elata bulb was sold by >50.0% of the traders in KwaZulu-Natal Province, while Philander et al. [14] revealed that bulbs of the species were sold by 35.0% of the traders in the Western Cape province, with 60.48 kg of the bulb fetching US$26.21. Earlier research by Dold and Cocks [6] revealed that D. elata is among the most frequently traded species in the Eastern Cape Province with 113.9 kg as the mean quantity traded per trader per annum with a kilogram of the bulb fetching US$3.36. Marshall [16] argued that D. elata is scarce and heavily traded in South Africa, characterized by a high monetary value in the country. Due to increasing demand for the species, D. elata is managed in herbal medicine home gardens in the Eastern Cape [17], Limpopo [18-20], and the Western Cape [14] provinces. Research by Wiersum et al. [17] revealed that D. elata is among the ten most frequently cultivated herbal medicines in medicinal home gardens in the Eastern Cape Province. It is, therefore, within this context that the current study was undertaken aimed at summarizing the medicinal uses, phytochemical, and ethnopharmacological properties of D. elata so as to evaluate its therapeutic importance throughout its distributional range.

BOTANICAL PROFILE AND DESCRIPTION OF D. ELATA

The genus Drimia Jacq. is a large group of deciduous geophytes belonging to the family Asparagaceae, previously included in the Hyacinthaceae family. The family of Hyacinthaceae is divided into four monophyletic subfamilies, namely Hyacinthoideae, Ornithogaloideae, Ozingoideae, and Urgineoideae [21]. At present, this family is considered as a subfamily Scilloideae in the expanded Asparagaceae sensu [22,23]. The species in each subfamily synthesize specialized secondary metabolites with Hyacinthoideae synthesizing homoisoflavanes and triterpenoids, Ornithogaloideae (cardenolides and steroidal glycosides), and Urgineoideae synthesizing bufadienolides [23]. The subfamily Urgineoideae has flat or winged seeds characterized by brittle, loosely adhering test a comprising genera Bowiea Harv. ex Hook. f. and Drimia [24]. The genus Drimia is described by Manning et al. [24,25] in an inclusive and broad sense, including genera such as Litanthus Harv., Mucinea M. Pinter et al., Rhadamantus Salisb., Rhodocodon Baker, Sagittanthera Mart-Azorín et al., Thurnanthes C. H. Wright, Tenicra Raf., and Urginea Steinh. The taxonomy of genus Drimia has always...
been difficult with several species treated under genus *Uruginea* until Jessop [26] reduced *Uruginea* to a synonym of *Drinia*. The genus consists of about 100 bulbous species distributed in Southern Africa through tropical Africa to the Mediterranean, Asia, and Madagascar [24]. Synonyms of *D. elata* include *D. alta* R.A. Dyer, *D. citrius* Jacq. ex Willd., *D. purpurascens* J. Jacq., *D. robusta* Baker, *D. villosa* (Lindl.) Kunth, *D. zombensis* Baker, *Idotea elata* Kunth, *I. citrius* (Jacq. ex Willd.) Kunth, *I. purpurascens* (J. Jacq.) Kunth, *I. robusta* (Baker) Kunzle, and *I. villosa* (Lindl.) Kunth [1,27-31].

D. elata is a geophyte with large underground bulb, strap-shaped leaves and long, slender flowering stalk which grows up 1.8 m in height [1,27-29,31]. The flowers are tubular, whitish to purple in color with the tips of the petals characteristically reflexed and the stamens fused into a narrow tube [1]. *D. elata* has been recorded in grassland, often among micks at an altitude ranging from 15 m to 2,500 m a.s.l. [28]. The species has been recorded in Botswana, Angola, Malawi, Kenya, South Africa, Swaziland, Zambia, South Sudan, Tanzania, Sudan, Uganda, Zimbabwe, and Mozambique [1,27-31] (Fig. 1).

MEDICINAL USES OF D. ELATA

The medicinal applications recorded from literature were classified into ten medical categories following the Economic Botany Data Collection Standard [32] with some changes proposed by Macía et al. [33] and Grucu et al. [34]. This review showed that *D. elata* is used for treating several medicinal conditions, particularly general ailments, blood and cardiovascular system, reproductive system and sexual health, urinary system, infections and infestations, digestive system, respiratory system, and muscular-skeletal system disorders (Fig. 2). *D. elata* is used as herbal medicine against three out of five diseases categorized by the World Health Organization (WHO) as the top five killer diseases in sub-Saharan Africa in 2012. These diseases include human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS), lower respiratory tract infections, and diarrheal diseases [35]. Most medicinal uses are linked to the bulb and leaf or the entire plant in ritual or magical uses, and the species is also used mixed with other plant species (Table 1). Research by Gurib-Fakim [36] and Maroyi [37,38] revealed that traditional medicines are often prepared by combining several different plant species to effect synergistic properties or to initiate an interaction with a relevant molecular target.

PHYTOCHEMICAL CONSTITUENTS OF D. ELATA

D. elata is characterized by cardiac glycosides, particularly bufadienolides. All the bufadienolides that have been isolated from *D. elata* are collated in Table 2. Kellerman et al. [59,60] argued that bufadienolide containing plants are toxic to livestock with an estimated 33% of plant-related mortality in cattle in South Africa attributed to this compound. Van et al. [61] argued that there is a danger of accidental poisoning or that people may be harmed if bulbs of *D. elata* are used indiscriminately as rubbing the bulb scales or leaves on bare skin produces a stinging and irritating effect and a skin rash is produced. However, bufadienolides are known to have a wide range of biological activities including anti-tumor, antiproliferative, and cytotoxic activities [62-68].

Koorbanally et al. [69] identified aromatic acids, 4-hydroxy-3-methoxybenzoic acid, 3,4-dihydroxybenzoic acid, and trans-3-(4-hydroxyphenyl)-2-propenoic acid from the ethyl acetate bulb extract of *D. elata*. Matotoka and Masoko [70] identified flavonoids, phlobatannins, saponins, tannins, and terpenoids from the *D. elata* bulb (Table 3). Similarly, Matotoka and Masoko [41] identified alkaloids, flavonoids, saponins, steroids, tannins, and terpenoids from a herbal mixture of *D. elata* bulb mixed with leaves of *Monsonia angustifolia*, *Sarcostemma vinninale* and *Vahlia capensis*, *Kirkia wilmsii* (leaves, roots, and twigs), and *Hypoxis hemerocallidea* (corm).

Okem et al. [71] argued that *D. elata* bulbs obtained from the herbal medicine informal markets in Pietermaritzburg, KwaZulu-Natal Province in South Africa contained high levels of heavy metals, with aluminum, cadmium, manganese, and chromium being above the WHO recommended safety levels (Table 3). Quantities of mineral elements and phytochemical compounds isolated from *D. elata* are listed in Table 3.

PHARMACOLOGICAL PROPERTIES OF D. ELATA

Pharmacological studies on *D. elata* bulb and leaf extracts exhibited potent in vitro pharmacological activities including acetylcholinesterase enzyme inhibitory [2], antibacterial [2,43,50,70-80], antifungal [2,76], antimycobacterial [50], anticancer [81], anti-inflammatory [2,72,82,83], antioxidant [43,70], hemagglutinating [84], and cytotoxicity [43] activities.

Acetylcholinesterase enzyme inhibitory activities

Ndhlala et al. [2] investigated the acetylcholinesterase enzyme inhibitory activities of aqueous bulb extracts of *D. elata* using the enzyme isolated from electric eels with galanthamine as the positive control. The extract showed moderate AChE inhibitory activity of 50.0% with half maximal inhibitory concentration (IC50) value of 487.4±8.0 µg/mL [2]. The ability of *D. elata* bulb extracts to inhibit acetylcholinesterase shows potential therapeutic potential of the species in the management of memory loss and neurodegenerative disorders.

Antibacterial activities

Luyt et al. [72] evaluated antibacterial activities of aqueous, ethyl acetate, and ethanol bulb and leaf extracts of *D. elata* against Bacillus.
Medicinal use	Parts of the plant used	References
Blood and cardiovascular system	Bulbs or imbiza phuzwata concoction	[2,3,39-42]
Blood purification	Bulbs mixed with leaves, roots, and twigs of Kirkia wilmsii Eng., Hypoxis herero callidea Fisch., C. A. Mey. and Avé-Lall. (corms), Monsonia angustifolia E. Mey. ex A. Rich. (leaves), and leaves of Sarcostemma movinale (L.) Br. and Vahlia capensis (L. f.) Thunb.	[43]
Hypertension	Bulbs hold	[2,3,19,44]
Digestive system	Bulbs mixed with leaves, roots, and twigs of Kirkia wilmsii, Hypoxis eroca lidea (corms), Monsonia angustifolia (leaves), and leaves of Sarcostemma movina, and Vahlia capensis	[43]
Constipation	Imbiza phuzwata concoction	[2,3]
Emetic	Bulbs	[37,45-47]
General ailments	Bulbs	[48]
Angina pain	Bulbs	[48]
Body pains	Imbiza phuzwata concoction	[2,3]
Energizing tonic	Imbiza phuzwata concoction	[2,3]
Fever	Bulbs and leaves or bulbs mixed with roots of Artemisia afrjaca ex Wild., Siphonochilus aethiopicus (Schweinf.) B. L. Burtt and Erythrina caffra Thunb.	[45,49,50]
Headache	Bulbs	[1]
Heart tonic	Bulbs	[47]
Internal sores	Bulbs	[41]
Sores	Bulbs and leaves	[51]
Stress	Imbiza phuzwata concoctions	[2,3]
Infections and infestations	Bulbs mixed with twigs of Sarcostemm avinale (L.) R. Br. and roots of Elaeodendron transvaalense (Burtt Davy), R. H. Archer, Elephant rhizo elephantina (Burch.) Skeels and Zanthoxyllum capense (Thunb). Harv. and bark of Sclerocarya birrea (A. Rich.) Hochst.	[19,52,53]
STIs	Bulbs mixed with roots of Elaeodendron transvaalense, Elephant rhizo elephantina (roots), Sarcostemm avinale (twigs), Sclerocarya birrea (bark), and Zanthoxyllum capense (root)	[55]
Tuberculosis	Bulbs or bulbs mixed with roots of Callilepis isalauerea DC, Croton menyharthii Pax, Senna Italica Mill. and bulb of Siphonochilus aethiopius (Schweinf.) B. L. Burtt or bulbs mixed with the bark of Warburgia asalutaris (G. Bertol.) Chiov. or bulbs mixed with leaves of Ricinus communis L. or bulbs mixed with roots of Dioica anomala Sond. and bulb of Eucomis autumnalis (Mill.) Chitt.	[48,50]
Muscular-skeletal system	Bulbs and imbiza phuzwata concoction	[2,3,39]
Arthritis	Bulbs	[41]
Back pain	Bulbs	[41]
Edema	Bulbs	[1]
Inflammation	Bulbs and leaves	[51]
Muscle pain	Bulbs	[41]
Swelling	Bulbs	[39]
Pain	Bulbs and leaves or bulb mixed with leaves, roots, and twigs of Kirkia wilmsii, Hypoxis herero callidea (corm), Monsonia angustifolia (leaves), and leaves of Sarcostemma vimaline and Vahlia capensis	[43,46,51]
Reproductive system and sexual health	Imbiza phuzwata concoction or bulbs mixed with leaves, roots, and twigs of Kirkia wilmsii, Hypoxis herero callidea (corm), Monsonia angustifolia (leaves), and leaves of Sarcostemma vimaline and Vahlia capensis	[2,4,3]
Aphrodisiac	Imbiza phuzwata concoction or bulbs mixed with leaves, roots, and twigs of Kirkia wilmsii, Hypoxis herero callidea (corm), Monsonia angustifolia (leaves), and leaves of Sarcostemma vimaline and Vahlia capensis	[2,4,3]
Erectile dysfunction	Bulbs	[56]
Impotence	Bulbs	[19,57]
Infertility	Bulbs	[1,18,19,57]

(Contd...)
Table 1: (Continued)

Medicinal use	Parts of the plant used	References
Blocked nose	Bulbs or bulbs mixed with roots of *Artemisia afra,* *Siphonochilus aethiopicus,* and *Erythrina caffra*	[50]
Chest pains	Bulbs and leaves or bulbs mixed with leaves of *Lippia javanica* (Burm. f.) Spreng.*	[48-50]
Colds	*transvaalense* (Burtt Davy) R. H. Archer Bulbs and leaves	[45,46,49]
Cough	Bulbs mixed with leaves of *Lippia javanica*	[50]
Expectorant	Bulbs	[45,47]
Runny nose	Bulbs mixed with leaves of *Lippia javanica*	[50]
Ritual or magical uses	*Intelezi* herbal concoction	[4,45]
Protect households from evil spirits and lightning, and also to chase away, ward off or root out evil spirits		
Urinary system	Leaves	[1,15,58]
Bladder complaints	Leaves	[1,15,58]
Kidney problems	*Impiza phuzwata* concoction	[2,3]
Uterus problems	Bulbs and leaves	[1,15,58]

HIV: Human immunodeficiency virus, AIDS: Acquired immune deficiency syndrome, STIs: Sexually transmitted infections

Table 2: Bufadienolides isolated from *D. elata* bulb using NMR spectroscopy

Bufadienolides	Extract	References
Proscillaridin A	Chloroform: isopropanol	[72,73]
Scilliroside	Chloroform or chloroform-n-butanol	[74]
12β-hydroxyacetylscilliroside	Chloroform or chloroform-n-butanol	[74]
12β-hydroxyacetylscilliroside	Chloroform or chloroform-n-butanol	[74]
Hellebrigenin-3-0-β-glucoside	Chloroform or chloroform-n-butanol	[74]
16β-hydroxyhellebrigenin	Chloroform or chloroform-n-butanol	[74]
16β-hydroxyhellebrigenin-3-O-β-glucoside	Chloroform or chloroform-n-butanol	[74]
5β,16β-dihydroxybufalin-3-O-β-glucoside	Chloroform or chloroform-n-butanol	[74]
6β-acetoxy-3β,12β,14β-tetrahydroxybufalin-4,20,22-trienolide (12β-hydroxyscilliroside)	Dichloromethane	[75]
14β-hydroxybufalin-4,20,22-trienolide 3β-0-(α-L-rhamnopyranosyl)[(1→4)]-β-glucopyranosyl [1→3]-α-L-rhamnopyranoside [1→6] (bufalin)	Dichloromethane	[75]
6β-acetoxy-3β,12β,14β-trihydroxy-12-oxobufalin-4,20,22-trienolide	Dichloromethane	[69]
6β-acetoxy-3β,12β,14β-tetrahydroxybufalin-4,20,22-trienolide (12β-hydroxyscilliroside)	Dichloromethane	[69]

NMR: Nuclear magnetic resonance

subtilis, *Escherichia coli*, *Klebsiella pneumoniae*, *Micrococcus luteus*, *Pseudomonas aeruginosa*, *Staphylococcus aureus*, and *Staphylococcus epidermidis* using disk-diffusion assay with neomycin (2 μg/ml) as the positive control. Only ethyl acetate bulb extract was active against *B. subtilis*, *K. pneumoniae*, *M. luteus*, *P. aeruginosa*, and *S. aureus* with inhibition ratios ranging from 0.1 to 0.63 [72]. Ncube et al. [76] evaluated antibacterial activities of aqueous, dichloromethane, ethanolic, and petroleum ether extracts of bulb and leaves of *D. elata* between spring, summer, autumn, and winter seasons against *Bacillus subtilis*, *S. aureus*, *E. coli*, and *K. pneumoniae* using the microdilution bioassay with neomycin (μg/ml) as the positive control. The extracts were active in all seasons except for winter when the leaves are not available showing minimum inhibitory concentration (MIC) values ranging from 0.8 mg/ml to 12.25 mg/ml [76]. Ndhlala et al. [2] evaluated the antibacterial activities of aqueous, petroleum ether, dichloromethane, and ethanol bulb extracts of *D. elata* against *Bacillus subtilis*, *E. coli*, *K. pneumoniae*, and *S. aureus* using the microdilution bioassay with neomycin as the positive control. The extracts showed activities with MIC values ranging from 0.8 to 4.0 mg/ml [2]. Baskann et al. [77] evaluated the antibacterial activities of ethanol bulb, leaf, shoot, and stemlet extracts of *in vitro* and *ex vitro* regenerated *D. elata* in comparison to naturally-grown plants against *S. aureus*, *Enterococcus faecalis*, *E. coli*, and *P. aeruginosa* using the microdilution method with neomycin (100 μl) as the positive control. All extracts exhibited activities with MIC values ranging from 0.2 mg/ml to 12.5 mg/ml [77]. Okem et al. [71] evaluated antibacterial activities of ethanol stem bulb extracts of *D. elata* against *E. coli* and *S. aureus* using microdilution assay with neomycin (2 μg/ml) as the positive control. The extracts exhibited activities with MIC values ranging from 0.63 mg/ml to 12.5 mg/ml [71]. Okem et al. [78] evaluated the effects of cadmium and aluminum accumulation on antibacterial activities of ethanol stem bulb extracts of *D. elata* against *E. coli* and *S. aureus* using microdilution assay with neomycin (2 μg/ml) as the positive control. The control extracts exhibited MIC values of 0.8 mg/ml and 0.8 mg/ml against *S. aureus* and *E. coli*, respectively, while antibacterial activities decreased in extracts exposed to increasing heavy metal stress with MIC values ranging from 0.8 mg/ml to 12.5 mg/ml [78]. Madisha [50] evaluated the antibacterial activities of ethanol, methanol, hydroethanol, and dichloromethane bulb extracts of *D. elata* against *Bacillus cereus*, *E. faecalis*, *E. coli*, *Neisseria gonorrhoeae*, *Proteus vulgaris*, *P. aeruginosa*, *Shigella flexneri*, *S. aureus*, *Staphylococcus epidermidis*, and *Vibrio parahaemolyticus* using agar well dilution method and streak plate disc diffusion assays. The extracts revealed varying degrees of activities with the zone of inhibition values ranging from 0.0 mm to 19.0 mm and MIC values ranging from 0.1 mg/ml to 12.5 mg/ml. Madisha [50] also evaluated the antibacterial activities of ethanol and hydroethanol bulb extracts of *D. elata* mixed with roots of *Elephantorrhiza elephantina* and leaves of *Aloe marlothii* and *Maurea angolensis* against *B. cereus*, *E. faecalis*, *E. coli*, *N. gonorrhoeae*, *P. vulgaris*, *P. aeruginosa*, *S. flexneri*, *S. aureus*, *S. epidermidis*, and *V. parahaemolyticus* using agar well dilution method and streak plate disk diffusion assays. The extracts exhibited activities against tested pathogens with MIC values ranging from 0.4 mg/ml to 16.5 mg/ml [50]. Matotoka and Masoko [70] evaluated antibacterial activities of acetone and hexane extracts of *D. elata* bulb against *S. aureus*, *E. faecalis*, *E. coli*, and *P. aeruginosa* using the broth
microdilution assay. The extracts exhibited activities against E. faecalis and P. aeruginosa with MIC values ranging from 0.6 mg/ml to 2.5 mg/ml and total activities ranging from 3.3 mL/g to 13.3 mL/g [70]. Baskaran et al. [79] evaluated antibacterial activities of the aqueous bulb and root extracts of ex vitro grown D. elata derived from somatic embryogenesis against Bacillus subtilis, E. faecalis, M. luteus, S. aureus, E. coli, K. pneumonia, and P. aeruginosa using microtiter bioassay with neomycin (µg/ml) as a positive control. The extracts exhibited activities with MIC values ranging from 0.4 mg/ml to 6.3 mg/ml [79]. Kandari [80] evaluated antibacterial activities of aqueous, dichloromethane, and ethanol bulb extracts of D. elata subjected to vermicompost leachate at different concentrations against Bacillus subtilis, S. aureus, and E. coli using microdilution assay. The extracts exhibited activities with MIC values ranging from 0.4 mg/ml to 6.3 mg/ml [80]. Matotoka et al. [81] investigated the antifungal activity of aqueous, petroleum ether, dichloromethane, and ethanol bulb extracts of D. elata against C. albicans using the microdilution assay with amphotericin B as the positive control. The extracts exhibited activities with MIC and MFC values ranging from 3.1 to 6.3 mg/ml and 6.3 mg/ml to 12.5 mg/ml [2].

Antimycobacterial activities

Madisha [50] evaluated the antituberculous activity of ethanol, methanol, hydroethanol, and dichloromethane bulb extracts of D. elata against Mycobacterium tuberculosis, Mycobacterium smegmatis, Mycobacterium peregrinum, and Mycobacterium haemophilus using agar well dilution method and streak plate disc diffusion assays. The extracts revealed varying degrees of activities with the zone of inhibition values ranging from 9.0 mm to 21.0 mm and MIC values ranging from 0.1 mg/ml to 12.5 mg/ml [50]. Madisha [50] also evaluated the antituberculous activity of ethanol and methanol bulb extracts of D. elata against Mycobacterium tuberculosiosis and Mycobacterium peregrinum, M. haemophilus, and Mycobacterium smegmatis using agar well dilution method and streak plate disc diffusion assays. The extracts exhibited activities against tested pathogens with MIC values ranging from 0.1 mg/ml to 1.6 mg/ml [50]. These findings show the potential of D. elata in the treatment and management of respiratory problems such as blocked nose [48], chest pains [46-48], colds [43,44,47], cough [48], and runny nose [50].

Anticancer activities

Fouche et al. [81] evaluated in vitro anticancer activities of dichloromethane: methanol (1:1) of the whole plant of D. elata against a panel of three human cell lines (breast MCF7, renal TK10, and melanoma UACC62). The extract exhibited total growth inhibition values ranging from 6.3 µg/ml to 29.6 µg/ml. The extracts were screened against human cancer cell lines organized into sub-panels representing leukemia, melanoma, cancer of the lung, colon, kidney, ovary, central nervous system, breast, and prostate. The extract exhibited total

Table 3: Mineral and phytochemical composition of D. elata

Mineral and phytochemical composition	Values	Plant parts	References
Aluminum (mg/kg dry weight)	559.8–1595.0	Bulbs	[70,71]
Arsenic (mg/kg dry weight)	1.8	Bulbs	[71]
Boron (mg/L)	3.0	Bulbs	[70]
Cadmium (mg/kg dry weight)	0.01–0.06	Bulbs	[71]
Calcium (mg/L)	19.0	Bulbs	[70]
Cobalt (mg/L)	0.04	Bulbs	[70]
Copper (mg/kg dry weight)	5.6–11.3	Bulbs	[71]
Chromium (mg/kg dry weight)	7.8–12.0	Bulbs	[71]
Flavonoids (µg of quercetin equivalent/g extract)	0.54–15.0	Bulbs and leaves	[43,71,76]
Gallotannin (µg gallic acid equivalent/g dry weight)	4.0–7.0	Bulbs and leaves	[76]
Iron (mg/L)	0.15	Bulbs	[70]
Iron (mg/kg dry weight)	593.0–1634.0	Bulbs	[71]
Lead (mg/kg dry weight)	0.2–1.2	Bulbs	[71]
Magnesium (mg/L)	28.0	Bulbs	[70]
Manganese (mg/kg dry weight)	60.7–145.8	Bulbs	[70,71]
Mercury (mg/kg dry weight)	0.04–0.8	Bulbs	[71]
Molybdenum (mg/L)	0.02	Bulbs	[70]
Nickel (mg/kg dry weight)	4.2–10.0	Bulbs	[71]
Phosphorus (mg/L)	24.0	Bulbs	[70]
Potassium (mg/L)	53.0	Bulbs	[70]
Silicon (mg/L)	4.0	Bulbs	[70]
Sodium (mg/L)	56.0	Bulbs	[70]
Sulfur (mg/L)	7.0	Bulbs	[70]
Tannin (mg of gallic acid equivalent/g extract)	4.5–9.6	Bulbs and leaves	[43,76]
Tin (mg/kg dry weight)	31.4–79.8	Bulbs	[71]
Total phenolics (mg gallic acid equivalent/g dry weight)	0.05–2.5	Bulbs and leaves	[43,71,76]
Total saponins (mg diosgenin equivalent/g dry weight)	5.0–17.0	Bulbs and leaves	[76]
Total steroidal saponin (mg diosgenin equivalent/g dry weight)	1.0–4.5	Bulbs and leaves	[76]
Zinc (mg/L)	0.1	Bulbs	[70]
Zinc (mg/kg dry weight)	34.1–102.6	Bulbs	[71]
growth inhibition values of 1.1 μg/ml against ovarian (OVCAR-3), 1.4 μg/ml against central nervous system cancer; CNSC SF-539 and 1.4 μg/ml against non-small cell lung cancer; NSCLC A549/ATCC [81]. The documented anti-cancer activities may be attributed to bufadienolides as these compounds are known to have anti-cancer activities [62-68].

Anti-inflammatory activities

Lupt et al. [72] evaluated anti-inflammatory activities of aqueous, ethyl acetate, and ethanol bulb and leaf extracts of *D. elata* using the cyclooxygenase assay with indomethacin as the positive control. The bulb extracts inhibited cyclooxygenase with inhibition ranging from 69.0% to 98.0% which was comparable to 94% exhibited by indomethacin, the positive control [72]. Stafford et al. [82] evaluated anti-inflammatory activities of aqueous, ethanol, and hexane bulb extracts of *D. elata* by assessing their ability to inhibit cyclooxygenase (COX)-1 enzymes. The ethanol extract showed high inhibition level of 96.0% which decreased to 76.0% of the COX-1 enzyme after 90 days of storage while aqueous extract showed 61.0% inhibition which decreased to 0% of the COX-1 enzyme after 90 days of storage [82]. Ndhlala et al. [2] investigated the anti-inflammatory effects of aqueous, dichloromethane, ethanol, and petroleum ether bulb extracts of *D. elata* using COX-1 and COX-2 inhibitory bioassays. The aqueous and ethanol extracts showed percentage inhibition of over 80.0% and 48.0%, respectively, for COX-1 while only the aqueous extract showed moderate inhibition of over 55.0% for COX-2 enzyme [2]. Ncube et al. [83] evaluated the anti-inflammatory activities of aqueous, dichloromethane, ethanol, and petroleum ether bulb and leaf extracts of *D. elata* collected in spring, summer, autumn, and winter seasons by assessing their ability to inhibit COX-1 and COX-2 enzymes. The dichloromethane and petroleum ether bulb and leaf extracts in all seasons except for winter when the leaves are not available showed moderate to high inhibition levels ranging from 58.0% to 94.1% of the COX-1 enzyme. A similar trend was observed for COX-2 enzyme with inhibition levels ranging from 52.8% to 91.2% [83]. These findings support the traditional use of *D. elata* as herbal medicine for back pain [39], body pains [2,3], inflammation [51], muscle pain [41], pain [43,46,51], and swelling [39].

Antioxidant activities

Matotoka and Masoko [70] evaluated antioxidant activities of acetone and hexane extracts of *D. elata* bulb using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. The hexane extracts exhibited antioxidant activities [70]. Matotoka and Masoko [43] evaluated antioxidant activities of an herbal mixture of *D. elata* bulb together with leaves of *M. angustifolia*, *S. viminalis*, and *V. capensis*, *K. wilmsii* (leaves, roots, and twigs), and *H. hemerocallidea* (corn) using the DPPH free radical scavenging assay and ferric reducing power measuring assay with L-ascorbic acid as the positive control. The free radical scavenging activity showed that the herbal concoction exhibited moderate antioxidant activities. The ferric reducing power measuring the reduction of Fe3+ to Fe2+ revealed that the herbal concoction exhibited good reducing activity compared to L-ascorbic acid, the positive control [43]. The documented antioxidant activities of the bulb extracts of *D. elata* are probably due to flavonoids, gallotannins, phenolics, saponins, and tannins which have been isolated from the species [43,71,76].

Hemagglutinating activities

Gaidamashvili and Van Staden [84] evaluated hemagglutinating activities of aqueous bulb extracts of *D. elata* toward fresh and glutaraldehyde-treated rabbit erythrocytes using the hemagglutination and hapten inhibition assays. The extracts yielded hemagglutinating activity which was detected in the crude protein extracts at the minimal concentrations of 19.9 mg/ml. The was inhibited by 200 mM lactose along with major inhibition by D(+)-trehalose, >DL arabinose, and D fructose [84]. The documented information on hemagglutinating activities and the identification of proteins from *D. elata* may be useful for future characterization of the species extracts in developing pharmaceutical products.

Cytotoxicity activities

Matotoka and Masoko [43] evaluated cytotoxicity activities of an herbal mixture of *D. elata* bulb together with leaves of *M. angustifolia*, *S. viminalis*, and *V. capensis*, *K. wilmsii* (leaves, roots, and twigs), and *H. hemerocallidea* (corn) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide calorimetric assay with actinomycin D as the negative control. The cytotoxic concentration (CC50) values of all the concoctions were above the highest concentration used (1000 μg/ml) and Actinomycin D; the negative control exhibited CC50 value of 0.6 μg/ml [43]. The documented cytotoxicity activities exhibited by *D. elata* extracts may be attributed to bufadienolides as these compounds are known to have cytotoxic activities [64,65].

CONCLUSION

Based on information about *D. elata* that has been documented in this review, there appear to be research gaps on ethnomedicinal uses, and potential toxic components of the species can be managed.

AUTHOR’S CONTRIBUTIONS

The author declares that this work was done by the author named in this article.

CONFLICTS OF INTEREST

The author declares that there are no conflicts of interest regarding the publication of this paper.

ACKNOWLEDGMENTS

The author would like to express his gratitude to the National Research Foundation (NRF), South Africa and Govan Mbeki Research and Development Centre (GMRDC), University of Fort Hare for financial support to conduct this study.

REFERENCES

1. Van Wyk BE, Oudshoom BV, Geracie N. Medicinal Plants of South Africa. Pretoria: Briza Publications; 2013.
2. Ndhlala AR, Finnie JF, Van Staden J. Plant composition, pharmacological properties and mutagenic evaluation of a commercial zulu herbal mixture: Imbiza ephuzwato. J Ethnopharmacol 2011;133:663-74.
3. Maroyi A. From traditional usage to pharmacological evidence: Imbiza ephuzwato. J Ethnopharmacol 2011;133:663-74.
4. Stafford et al. 2012;82:4-10.
5. Williams VL, Balkwill K, Witkowski ET. Unraveling the commercial market for medicinal plants and plant products on the Witwatersrand, South Africa. Econ Bot 2000;54:310-37.
6. Dold AP, Cocks ML. The trade in medicinal plants in the Eastern Cape Province, South Africa. S Afr J Sci 2002;98:589-97.
Province, South Africa. Afr J Tradit Complement Altern Med 2013; 10:331-9.
58. Pujol J. Natur Africa: The Herbalist Handbook, African Flora, Medicinal Plants. Durban: Jean Pujol Natural Healers Foundation; 1990.
59. Kellerman TS, Coetzee JA, Naude TW. Plant Poisonings and Mycotoxicoses of Livestock in Southern Africa. Cape Town: Oxford University Press; 1988.
60. Kellerman TS, Naude TW, Fourie N. The distribution, diagnosis and estimated economic impact of plant poisonings and mycotoxicoses in South Africa. Onderstepoort Vet J 1996;63:65-90.
61. Van Wyk BE, Van Heerden F, Van Oudtshoorn B. Poisonous Plants of South Africa. Pretoria: Briza Publications; 2005.
62. Kupchan SM, Hemingway RJ, Hemingway JC. The isolation and stereochemistry of bryophyllin-A, a novel potent cytotoxic bufadienolide from Bryophyllum pinnatum. Chem Pharm Bull (Tokyo) 1988;36:1615-7.
63. Kupchan SM, Ognyanov I, Moniot JL. Tumor inhibitors. 64. Isolation and structural elucidation of novel bufadienolides, the cytotoxic principles of Bersama abyssinica. Bioorg Chem 1971;1:13-31.
64. Yamagishi T, Yan XZ, Wu PY, McPhail DR, McPhail AT, Lee KH, et al. Structure and stereochemistry of bryophyllin-A, a novel potent cytotoxic bufadienolide orthoacetate from Bryophyllum pinnatum. J Nat Prod 1989;52:1071-9.
65. Supratman U, Fujita T, Akiyama K, Hayashi H, Murakami A, Sakai H, et al. Anti-tumorpromoting activity of bufadienolides from Kalanchoe pinnata and Antirrhinum majus. Biotechnol Biochem. 2001;65:947-9.
66. Moodley N, Crouch NR, Mulholland DA. Bufadienolides from Drimia macrocentra and Urginea riparia (Hyacinthaceae: Urgineoideae). Phytochemistry 2001;58:557-61.
67. Krenn L, Staph V, Kopp B. Bufadienolides from Drimia robusta BAK. Sci Pharm 2000;68:421-7.
68. Pohl T, Koobanally C, Crouch NR, Mulholland DA. Bufadienolides from Drimia robusta and Urginea altissima (Hyacinthaceae). Phytochemistry 2001;58:557-61.
69. Krenn L, Staph V, Kopp B. Bufadienolides from Drimia robusta BAK. Sci Pharm 2000;68:421-7.
70. Matotoka MM, Masoko P. Evaluation of herbal concoctions sold at Ga Maja (Limpopo Province) in South Africa and in vitro pharmacological evaluation of plants used to manufacture the concoctions. J Evidence Based Complement Altern Med 2017;22:805-15.
71. Okem A, Southway C, Stirk WA, Street RA, Finnie JF, Van Staden J. Heavy metal contamination in South African medicinal plants: A cause for concern. S Afr J Bot 2014;93:125-30.
72. Luyt RP, Jager AK, Van Staden J. The rational usage of Drimia robusta BAK. In traditional medicine. S Afr J Bot 1999;65:291-4.
73. Luyt RP, Jager AK, Van Staden J. Bufadienolides in vitro derived Drimia robusta plants. S Afr J Bot 1999;65:443-5.
74. Krenn L, Staph V, Kopp B. Bufadienolides from Drimia robusta BAK. Sci Pharm 2000;68:421-7.
75. Krenn L, Staph V, Kopp B. Bufadienolides from Drimia robusta and Urginea altissima (Hyacinthaceae). Phytochemistry 2001;58:557-61.
76. Krenn L, Staph V, Kopp B. Bufadienolides from Drimia robusta and Urginea altissima (Hyacinthaceae). Phytochemistry 2001;58:557-61.
77. Baskaran P, Singh S, Van Staden J. In vitro propagation, prosclialaridin A production and antibacterial activity in Drimia robusta. Plant Cell Tissue Organ Cult 2013;114:259-67.
78. Okem A, Southway C, Stirk WA, Street RA, Finnie JF, Van Staden J. Effect of cadmium and aluminum on growth, metabolite content and biological activity in Drimia elata (Jacq.) Hyacinthaceae. S Afr J Bot 2015;98:142-7.
79. Baskaran P, Kumari A, Van Staden J. Analysis of the effect of plant growth regulators and organic elicitors on antibacterial activity of Eucomis autumnalis and Drimia robusta ex vitro-grown biomass. Plant Growth Regul 2018;85:143-51.
80. Kandari LS. Effect of vermicompostleachate on biomass and antibacterial properties of five bulbous medicinal plants: A case study from Kwa Zulu Natal, South Africa. Iran J Sci Technol Trans A Sci 2018;42:1049-56.
81. Fouche G, Garg GM, Pillay P, Kolesnikova N, Maharaj VJ, Senabe J. In vitro anticancer screening of South African plants. J Ethnopharmacol 2008;119:455-61.
82. Stafford GI, Ja’ger AK, Van Staden J. Effect of storage on the chemical composition and biological activity of several popular South African medicinal plants. J Ethnopharmacol 2005;97:107-15.
83. Ncube B, Finnie JF, Van Staden J. Seasonal variation in antimicrobial and phytochemical properties of frequently used medicinal bulbous plants from South Africa. S Afr J Bot 2011;77:387-96.
84. Gaidamashvili M, Van Staden J. Effect of vermicompostleachate on biomass and antibacterial properties of five bulbous medicinal plants: A case study from Kwa Zulu Natal, South Africa. Iran J Sci Technol Trans A Sci 2018;42:1049-56.
85. Krenn L, Staph V, Kopp B. Bufadienolides from Drimia robusta and Urginea altissima (Hyacinthaceae). Phytochemistry 2001;58:557-61.
86. Krenn L, Staph V, Kopp B. Bufadienolides from Drimia robusta and Urginea altissima (Hyacinthaceae). Phytochemistry 2001;58:557-61.
87. Krenn L, Staph V, Kopp B. Bufadienolides from Drimia robusta and Urginea altissima (Hyacinthaceae). Phytochemistry 2001;58:557-61.
88. Krenn L, Staph V, Kopp B. Bufadienolides from Drimia robusta and Urginea altissima (Hyacinthaceae). Phytochemistry 2001;58:557-61.
89. Krenn L, Staph V, Kopp B. Bufadienolides from Drimia robusta and Urginea altissima (Hyacinthaceae). Phytochemistry 2001;58:557-61.
90. Krenn L, Staph V, Kopp B. Bufadienolides from Drimia robusta and Urginea altissima (Hyacinthaceae). Phytochemistry 2001;58:557-61.