Data Article

Data on identification of primary and secondary metabolites in aqueous extract of *Verbascum betonicifolium*

Maria Luísa Serralheiro\(^a,b,\ast\), Rita Guedes\(^a\), Sezan R. Fadel\(^c\), Hamdi Bendif\(^d,e\)

\(^a\) BioISI – Biosystems E Integrative Sciences Institute, University of Lisbon, Faculty of Sciences, Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
\(^b\) Department of Chemistry and Biochemistry, University of Lisbon, Faculty of Science, Campo Grande, 1749-016 Lisboa, Portugal
\(^c\) Technical University of Dresden, Bergstrasse 66, 01069 Dresden, Germany
\(^d\) Natural and Life Sciences Department, Faculty of Sciences, University of M’sila, 28000 M’sila, Algeria
\(^e\) Laboratoire d’Ethnobotanique et des Substances Naturelles, Département des Sciences Naturelles, Ecole Normale Supérieure (ENS), Kouba, 16308 Alger, Algeria

A B S T R A C T

Tentative identification of primary and secondary metabolites in aqueous extracts from aerial parts of *Verbascum betonicifolium* Kuntze was done. This plant belongs to the Scrophulariaceae family and is used for several treatments in folk medicine. One of the processes commonly used to prepare this plant for consumption is boiling with water during approximately 20 minutes, that is, a decoction process. After filtration, this decoction was analysed in search for bioactive metabolites. The analysis was carried out by Electro-Spray Ionization (ESI) and High-Resolution Mass Spectrometry (HRMS) was done using a Quadrupole Time-of-Flight (QToF, Impact II, Bruker), coupled to an Ultra High-Performance Liquid Chromatography (UHPLC, ELUTE autosampler, Bruker). The analysis was done in the negative mode (ESI-) and the identification was accomplished using the molecular formula suggestions from the Data Analysis.
4.4™ software from Bruker and some databases, like Metlin and PubChem, always confirming with MS/MS results. These data can be used for finding biomarkers between Verbascum ssp or to complementary medicine practitioners to get a scientific based knowledge of their results. These data are the unpublished supplementary materials related to “Bioactivities of Iridoids and flavonoids present in decoctions from aerial parts of Verbascum betonicifolium” (Fadel et al., 2020, submitted).

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license.

(http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject	Analytical Chemistry
Specific subject area	Complementary and Alternative Medicines; Natural Products Metabolomics
Type of data	Figure
How data were acquired	Table
Data format	Raw (Figure)
Parameters for data collection	Secondary data: obtained from raw data (Table)
Mass spectrometer conditions:	ion spray voltage, –3.5 kV; nebulizer gas (N₂), 2.0 bars; dry gas (N₂), 4.0 L·min⁻¹; dry heater, 200 °C; collision cell energy, 5.0 eV; end plate offset, 500 V. The internal calibration was performed using the high-precision calibration mode (HPC) and a solution that consisted of 250 mL H₂O, 250 mL iPrOH, 750 μL acetic acid, 250 μL formic acid and 0.5 mL 1N NaOH solution, introduced to the ion source via a 20 μL loop before the sample enter the mass spectrometer, through a six-port valve. Data acquisition was performed in full scan positive mode in the range of m/z 50–1500, acquisition rate of 1 Hz. The Auto MS/MS mode was used to confirm the fragment ions. The liquid chromatography mass spectrometry (LC-MS) acquisition data were processed using the Data Analysis 4.4™ software, to extract the mass spectral features from samples raw data. Chromatograms with the retention times for several compounds leaving the chromatographic column, with different exact masses, could be obtained and each mass peak fragmentation could be searched for.
Data source location	Lisbon/Portugal/BioISI (mass spectrometry facility)/Universidade de Lisboa. Faculdade de Ciências/Latitude 38°45′26.09″ N; Longitude 9°9′24.02″W. http://dx.doi.org/10.17632/y4g36252cm.1
Data accessibility	Authors’ names
Related research article	Sezan R. Fadel, Hamdi BendI, Laura Guedes, Rebeca Andre, Rita Pacheco, Rita Guedes, Karim Merabti, Mohamed Djamal Miara, Maria Luisa Serralheiro
Title	Bioactivities of Iridoids and flavonoids present in decoctions from aerial parts of Verbascum betonicifolium (under evaluation)

1. Value of the data

- These data give the experimental conditions for separation and identification of leaves’ metabolites from plants aqueous extracts.
- Researchers working on plant metabolites and practitioners of natural medicines may have a scientific base for the results obtained.
• These data may be used by other researchers to compare secondary metabolites in plants of the same family, helping to find biomarkers between the species.

2. Data description

Data from analysis by LC-MS/MS of the aqueous extract of the areal part of *Verbascum betonicifolium* prepared as decoction, in the negative mode, is shown in Fig 1.

3. Experimental design, materials and methods

[Offer a complete description of the experimental design and methods used to acquire these data. Please provide any programs or code files used for filtering and analyzing these data. It is very important

The 23 compounds indicated in Fig 1 were identified using the molecular formula suggested from the Data Analysis™ software and confirming by MS/MS analysis. The molecular formulas and the MS/MS fragments obtained for each proposed compound, as well its experimental mass and the respective error difference from the exact mass (ppm) are indicated in Table 1. Table 1 also has a tentative drawing of the structures to give an insight into its molecular design. These structures will help to explain any enzyme inhibitory activity and the antioxidant activity that may be detected with this extract when the enzyme inhibitory activity whose active site structure is known [1] and will help to propose through docking studies which will be the most appropriate inhibitor for the enzyme under evaluation.

4. Experimental design, materials and methods

The plant was collected in Algeria and prepared according to the process described in [1]. After filtration of the decoction, the aqueous extract was lyophilized, and a powder was obtained. For LC-MS/MS analysis, 1 mg was dissolved in MilliQ water (Millipore) and the vial was introduced in the autosampler. A chromatographic column Intensity Solo 2 RP-18, 100 x 2.1 mm, 2.0 μm column (Bruker, Bremen, Germany) was used. The elution conditions were described in [1], briefly: 5 μL were injected (auto injector) and a flow rate of 0.250 mL/min for the elution was used. The column was kept at 35°C and the samples at 10°C. The eluting gradient was composed of gradient of water with 0.1% formic acid (eluent A) and acetonitrile with 0.1% formic acid (eluent B) as follows: 0 min – 95% A; 1.5 min – 95% A; 13.5 min – 25% A; 18.5 min – 0% A; 21.5 min – 0% A; 23.5 min – 95% A; 30 min – 95% A. The chromatographic equipment
Table 1
Tentative identification of compounds present in mucilage-free extract by High Resolution Mass Spectrometry (HRMS), using LC-MS/MS, in the ESI negative mode.

RT (min)	[M-H]−	Formula	Error (ppm)	MS/MS product ions	Proposed compound	Putative structure
1	1.1	C₄H₆O₅	−1.3	115 (10 %); 72 (84.2 %); 71 (100 %); 59 (27.5 %)	malic acid	
2	1.3	C₆H₁₂O₇	1.1	89 (8.7 %); 87 (23 %); 85 (18.5 %); 75 (100 %); 72 (24 %); 71 (22.6 %); 59 (71.7 %); 57 (9.1 %)	gluconic acid	
3	1.8	C₆H₈O₇	1.8	111 (77.3 %); 87 (100 %); 85 (30.7 %); 67 (7.1 %); 59 (15.2 %); 57 (28.1 %)	citric acid	
4	1.8	C₄H₁₀O₇	0.0	199 (2 %); 155 (6 %); 127 (13 %); 119 (8 %); 115 (30 %); 83 (100 %)	6-O-acetylascorbic acid	

(continued on next page)
Table 1 (continued)

RT (min)	[M-H]-	Formula	Error (ppm)	MS/MS product ions	Proposed compound	Putative structure
5	1.9	407.1195	0.0	181 (19 %); 163 (17 %); 151 (23 %); 113 (11 %)	unedide	![unedide](image)
6	2.5	391.1245	0.2	183 (23 %); 165 (26 %); 139 (14 %); 101 (7 %)	shanzhiside	![shanzhiside](image)

(continued on next page)
RT (min)	[M-H]⁻	Formula	Error (ppm)	MS/MS product ions	Proposed compound	Putative structure
7	3.9	C₁₆H₂₆O₁₂	1.8	183 (100%); 179 (25%); 165 (44%); 121(7%)	glycoside derivative^a	
8	4.1	C₁₆H₂₆O₁₁	0.3	175 (19%); 127 (21%); 132 (3%); 113 (4%)	Methyl scutelloside	![Methyl scutelloside](image.png)
9	5.1	C₁₆H₁₈O₉	−1.3	191 (100%)	chlorogenic acid	![Chlorogenic acid](image.png)

(continued on next page)
Table 1 (continued)

RT (min)	[M-H]−	Formula	Error (ppm)	MS/MS product ions	Proposed compound	Putative structure
10	5.7	C_{27}H_{26}O_{18}	0.4	461 (40.3 %); 285 (100 %)	luteolin 7-glucuronosyl-(1-2)-glucuronide	
11	5.8	C_{27}H_{26}O_{17}	1.0	445 (41%); 269 (100%)	apigenin 7-glucuronosyl-(1-2)-glucuronide	
12	6.1	C_{30}H_{38}O_{17}	0.1	354 (1 %); 325 (3.4 %); 179 (8 %); 161 (55 %); 135 (31 %)	taxifolin derivative	
Table 1 (continued)

RT (min)	[M-H]⁻	Formula	Error (ppm)	MS/MS product ions	Proposed compound	Putative structure
13	6.5	623.1997	-2.4	623 (40.5 %); 461 (11.7 %); 161 (100 %); 133 (33.7 %)	verbascoside	![Verbascoside](image)
14	6.6	447.0932	0.2	447 (32.1 %); 285 (100 %); 284 (31 %); 227 (16 %); 201 (10.6 %); 133 (10.3 %); 107 (14.3 %)	luteolin 7-O-glucoside	![Luteolin 7-O-glucoside](image)
15	6.6	461.0722	0.7	285 (100 %); 133 (16.6 %)	luteolin 7-O-glucuronide	![Luteolin 7-O-glucuronide](image)
16	6.6	653.2082	0.8	653 (100 %); 377 (39.4 %); 309 (11.3 %); 163 (74.6 %); 145 (89.6 %); 119 (52.5 %); 117 (23.7 %)	saccatoside	![Saccatoside](image)

(continued on next page)
Table 1 (continued)

RT (min)	[M-H]⁻	Formula	Error (ppm)	MS/MS product ions	Proposed compound	Putative structure
17	6.7	401.1819	1.0	221 (15 %); 195 (1 %); 162 (1 %); 71 (28 %); 59 (47 %)	sauroposide	sauposide
18	6.8	683.2154	5.6	407 (41 %); 193 (60 %); 163 (11 %); 160 (65 %); 149 (9 %)	Scropheanosi de II	
19	7.1	431.0981	0.7	-	apigenin 7-O-glucoside	
20	7.2	445.0770	1.4	269 (100 %); 117 (16.3 %)	apigenin 7-galactoronide	

(continued on next page)
Table 1 (continued)

RT (min)	[M-H]−	Formula	Error (ppm)	MS/MS product ions	Proposed compound	Putative structure
21	8.4	285.0398	2.2	285 (100 %); 217 (9.1 %); 201 (6.7 %); 199 (11.3 %); 175 (10.8 %); 151 (15.9 %); 149 (7.3 %); 133 (41.4 %); 132 (12.4 %);	luteolin	![luteolin structure]
22	9.2	269.0456	−0.2	269 (100 %); 227 (31.9 %); 165 (19.7 %); 159 (6.9 %); 151 (70.6 %); 149 (34.6 %); 117 (60.8 %); 107 (24.3 %);	apigenin	![apigenin structure]
23	11.7	293.1759	0.2	236 (28 %); 221 (100 %)	phytuberin	![phytuberin structure]

\[a\]: 1-[(2R,3R,4S,5S,6R)-2-[(3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-3,4,5-trihydroxy-6-(hydroxymethyl)-3-methyloxan-2-yl]prop-2-en-1-one

\[b\]: 5-Hydroxy-7-(2-hydroxyethoxy)-2-(3-hydroxy-4-methoxyphenyl)-3-[(2R,3S,4R,5R,6S)-3,4,5-trihydroxy-6-[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyethyl]oxan-2-yl]oxy-2,3-dihydrochromen-4-one
was an ELUTE autosampler (UHPLC) from Bruker (Bremen, Germany) coupled to an Ultra-High-Resolution Quadrupole Time-of-Flight mass spectrometer (UHR-QToF, Impact II) also from Bruker (Bremen, Germany). The mass analysis was carried out with the parameters indicated in [2], briefly: the mass spectrometer was operated in the negative mode with the following parameters: ion spray voltage, −3.5 kV; nebulizer gas (N₂), 2.0 bars; dry gas (N₂), 8.0 Lmin⁻¹; dry heater, 200 °C; collision cell energy, 5.0 eV; end plate offset, 500 V. Calibration of masses was done by internal calibration method using a solution that consisted of 250 mL H₂O, 250 mL iPrOH, 750 μL acetic acid, 250 μL formic acid and 0.5 mL 1N NaOH solution, on the HPC mode. The calibration solution was introduced into the ion source via a 20 μL loop, before the sample enter the mass spectrometer, through a six-port valve. The acquisition was performed in full scan mode in the 50–1500 m/z range, with an acquisition rate of 1 Hz. The Auto MS/MS mode was used to confirm the fragment ions. The LC-MS acquired data were processed using Data Analysis 4.4™ software (Bruker) to extract the mass spectral features from the sample raw data. The suggestion of chemical formulas according to the exact mass was done using the Data Analysis™ software. These suggestions were verified using online search in the databases Metlin (https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage), in the simple search mode, and PubChem (https://pubchem.ncbi.nlm.nih.gov/) and confirmed through MS/MS analyses. For this analysis, the «Fragmentation Explorer» from Data Analysis™ software was used.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

Sezan Fadel thanks the ERASMUS exchange of students Program between the Technical University of Dresden, Dresden, Germany and Faculty of Science of the University of Lisbon, Portugal; Rita Guedes thanks BioISI for the Master Grant. This work was funded by the Portuguese Foundation for Science and Technology, FCT, through the Research Unit grant UIDB/04046/2020 and UIDP/04046/2020 to BioISI; project PTDC/BIA-BQM/28355/2017; BioISIMassSPEC Facility.

References

[1] S.R. Fadel, H. Bendif, L. Guedes, R. André, R. Pacheco, K.Merabti R.Guedes, M.L.Serralheiro M.D.Miara, Bioactivities of Iridoids and flavonoids present in decoctions from aerial parts of Verbascum betonicifolium, Eur. J. Integr. Med. (2020) under reviewing.

[2] L. Guedes, P. Reis, M. Machuqueiro, A. Ressaissi, R. Pacheco, M.L. Serralheiro, Bioactivities of Centaurium erythraea (Gentianaceae) decoctions: antioxidant activity, enzyme inhibition and docking studies, Molecules 24 (2019) 1–18 https://doi.org/doi:10.3390/molecules24203795.