Research Article

Prediction of Molar Volumes of the Sudanese Reservoir Fluids

A. A. Rabah¹ and S. A. Mohamed²

¹ Department of Chemical Engineering, University of Khartoum, P.O. Box 321, Khartoum, Sudan
² Department of Petroleum Transportation & Refining Engineering, College of Petroleum Engineering and Technology, Sudan University of Science and Technology, P.O. Box 566, Khartoum, Sudan

Correspondence should be addressed to A. A. Rabah, rabahss@hotmail.com

Received 2 October 2009; Revised 16 February 2010; Accepted 21 February 2010

Academic Editor: Perla B. Balbuena

Copyright © 2010 A. A. Rabah and S. A. Mohamed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper provided important experimental PVT data of the Sudanese reservoir fluids. It includes composition analysis of 11 mixtures and about 148 PVT data points of constant mass expansion (CME) tests at pressures below the bubble point. The datasets are compared with eight equations of state (EOS), namely, Peng Robinson (PR), Soave-Redlich-Kwong (SRK), Lawal-Lake-Silberberg (LLS), Adachi-Lu-Sugie (ALS), Schmidt-Wenzel (SW), Patel-Teja (PT), Modified-Nasrifar-Moshfeghian (MNM), and Harmens-Knapp (HK). The results of comparison reveals that, with the exception of PR and ALS EOSs, all other EOSs yield consistently a higher average absolute percent deviation (AAPD) in the prediction of molar volume; it exceeds 20% by all mixtures. The grand average AAPD of all mixtures is 17 and 16 for PR and ALS, respectively. ALS is selected to represents the mixtures. It is modified by replacing the coefficient (Ω_{b1}) of the parameter (b_1) in the dominator of repulsive term by that of PR. This procedure enhanced the accuracy of ALS by 30 to 90% for individual mixtures and the grand average AAPD is significantly reduced from 16 to about 7.

1. Introduction

In the absence of the experimental PVT study, properties such as isothermal compressibility factor, z-factor, and formation volume factor, are determined from empirically derived correlations or equations of state (EOSs). The correlations are basically developed for crude from certain geographical region with certain hydrocarbon and nonhydrocarbon contents and API. Hence such correlations may not be valid to crude oils of geographical regions other than those for which these correlations have been developed. Although EOSs are generalized correlations, their validity to different crudes varies.

Adepoju [1] has made extensive study on Texas oil and found that Peng Robinson (PR) [2], and Soave-Redlich-Kwong (SRK) [3] give a higher average absolute percent deviation (AAPD) in the prediction of the total volume of reservoir fluids. He obtained a good result when PR and SRK are modified by replacing the repulsion and attraction terms by that of Lawal-Lake-Silberberg (LLS) EOS [4]. Akberzadeh et al. [5] have investigated the Modified-Nasrifar-Moshfeghian (MNM) EOSs, PR, and SRK for Western Canadian heavy oils. They have shown that MNM without any volume correction predicted the densities with accuracy similar to SRK EOS with volume correction.

Jensen [6] found that Adachi-Lu-Sugie (ALS) EOS [7] is the most accurate for prediction of the phase behavior of well-defined hydrocarbon mixtures with and without a considerable content of CO₂ or N₂. The ALS EOS seems to be well suited for calculation of the phase equilibrium of reservoir fluids but often proves to give inaccurate predictions of the densities of hydrocarbon mixtures [8]. By incorporating the volume translation principle of Peneloux et al. [9], ALS equation was found to give good results for hydrocarbon mixtures with and without a considerable content of CO₂ or N₂ [10].

Pedersen et al. [10] developed a characterization procedure for SRK coupled with the volume correction term of Peneloux et al. [9]. This procedure does not need experimental data and generally gives good prediction of saturation...
points and vapor-liquid equilibrium. However, the model frequently calculates a too large liquid precipitation for gas condensate when simulating constant composition expansion experiments. In addition, prediction of liquid density is sometimes inaccurate, they added.

Almehaideb et al. [11] tested crude and gas samples from 17 UAE reservoirs and found that PR EOS predicted the density and bubble point pressure of UAE petroleum reservoir with an error of 9.28%. Yu and Chen [12] have evaluated PR and PT for binary and tertiary nonpolar and polar mixtures. For binary mixtures, the grand average AAPD for PR and RT is 17.20 and 17.04, respectively. For polar mixtures. For binary mixtures, the grand average AAPD for PR and RT is 9.69 and 10.39, respectively. For nonpolar-nonpolar, hydrocarbon-hydrocarbon, nonhydrocarbon-nonhydrocarbon systems are taken as

Table 1: Mixtures composition analysis and reservoir conditions.

Comp.	1	2	3	4	5	6	7	8	9	10	11
N₂	0.350	0.590	0.250	0.227	0.210	1.124	0.330	0.424	0.434	0.092	0.077
CO₂	0.943	0.576	8.700	6.944	4.520	5.428	5.040	0.258	0.311	0.398	0.675
C₁	21.048	41.840	1.750	1.445	1.310	0.926	1.330	25.373	12.893	14.666	29.035
C₂	4.440	11.471	0.160	0.388	0.060	0.104	0.140	2.317	2.508	1.771	10.001
C₃	4.525	7.631	0.110	0.664	0.050	0.444	0.110	0.700	1.176	0.145	7.747
iC₄	3.173	1.384	0.020	0.252	0.020	0.195	0.030	1.524	2.180	0.43	1.229
nC₄	3.287	1.885	0.040	0.392	0.030	0.199	0.060	0.239	0.234	0.03	4.102
iC₅	2.704	1.320	0.010	0.306	0.010	0.169	0.020	2.550	1.497	0.441	1.177
nC₅	2.233	1.687	0.020	0.381	0.020	0.397	0.030	0.119	0.257	0.06	2.249
C₆	3.572	1.903	0.020	0.970	0.030	0.761	0.050	2.623	3.169	1.244	2.736
C₇⁺	53.725	29.713	88.920	88.031	93.740	90.253	92.860	63.873	75.341	80.723	40.972
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

MWC7+ 180.6 204.4 336.50 220.59 320.93 232.61 310.70 151.80 140.82 143.22 275.3
\[γ \] 0.5 0.8 42.43 + MWC7+ 1008 MgC7+ 42.43 + MWC7+ 0.816 0.835 0.895 0.845 0.896 0.852 0.896 0.788 0.775 0.778 0.843

The experimental error in pressure is ±5 psi, temperature is ±0.5°F, and cell volume is ±0.3 cc as reported in PVT studies.

3. Flash Algorithm

Although flash calculation procedure is well documented, Figure 1 shows the Flash algorithm used in this work. The input data include the reservoir pressure \(P_b \), reservoir temperature \(T \), reservoir fluid composition \(z_i \), and the density and the molecular weight of C7+. For pure hydrocarbon and nonhydrocarbon, the critical properties \(T_c, P_c, \omega \), the molecular weight \(MW \), and the acentric factor \(\omega \) are obtained from the generalized properties tables [15]. For C7⁺ the critical properties and the acentric factor are estimated for a given molecular weight and a specific gravity from Lawal-Tododo-Heinze [16] correlations. Binary interaction parameters (BIPs) for hydrocarbon-hydrocarbon, nonhydrocarbon-hydrocarbon, and nonhydrocarbon-nonhydrocarbon systems are taken as

1 and 2 are taken from [14], samples 3 to 11 are presented for the first time. The data also include bubble point pressure, reservoir temperature and molecular weight, and specific gravity of C7⁺. In some PVT reports, the molecular weight of C7⁺ is not available; under such condition it is obtained using the material balance as

\[
M_{C_{7^+}} = \frac{M_a - \sum_{i=1}^{C_{7^+}} z_i M_i}{z_{C_{7^+}}},
\]

where \(M_i \) and \(M_a \) are the component molecular weight and the apparent molecular weight, respectively, and \(z \) is the mole fraction. The plus fraction specific gravity is calculated as

\[
y_{C_{7^+}} = \frac{1.008 M_{C_{7^+}}}{42.43 + M_{C_{7^+}}}.\]
zero because all samples contain small amount of CO₂ and N₂. The vapor and liquid molar volumes are calculated using the flash algorithm. Mathematically, the two-phase flash calculation is the solution of Rachford-Rice equation that satisfies the equal fugacity constraint $\sum (f^L_i/f^V_i - 1)^2 < \epsilon$ \cite{17}. Newton-Raphson iteration scheme was employed. The calculation is initiated with K-value obtained using Wilson correlation. If a convergence is not obtained K-value is modified as $K_{i,n+1} = K_{i,n} f^L_i/f^V_i$ \cite{18}. The flash program is executed for eight EOSs. These are PR, SRK, LLS, ALS, SW, PT, MNM, and HK EOSs.

4. Results and Discussions

To compare EOSs to experimental data, numerous quality measurements based on statistical error analysis are computed. These include the percent deviation (PD), the average absolute percent deviation (AAPD), the minimum absolute percent deviation (APD\textsubscript{min}), the maximum absolute percent deviation (APD\textsubscript{max}), and the grand average AAPD. The percent deviation is defined as

$$PD_i = \frac{V_{exp} - V_{cal}}{V_{exp}} \times 100\%,$$ \hspace{1cm} (3)

and the average absolute percent deviation (AAPD) is defined as

$$AAPD = \frac{1}{N} \sum |PD_i|,$$ \hspace{1cm} (4)

where V_{exp} is experimental molar volume (ft3/lbmole), V_{cal} is the calculated molar volume, and N is the number of the data points.

Table 2 shows a calculation sample of mixture number 9. The rest of the results are given in Tables 6, 7, 8, and 9. Table 3
shows the summary of statistical parameters for all mixtures. It is also shown in Table 3 the reservoir temperature, bubble point pressure, and C1 and C7+ content of each mixture. It should be noted that none of the mixtures at hand contains H2S and they contain a little amount of CO2 and N2. The result of comparison reveals that none of EOSs has a grand average AAPD of less than 16. EOSs such as LLS, HK, MNM, PT and SW yield consistently high AAPD of all mixtures irrespective to their bubble point pressures and C1 and C7+ contents. The rest of EOSs (SRK, PR, and ALS) perform better for mixtures with a higher C1 content than that of a lower C1 however, with few exceptions (e.g., mixture no. 2). In the overall evaluation ALS has the least grand average AAPD (=16) among all tested EOSs.

The reported inaccuracy is not peculiar to Sudanese reservoir fluids but it is rather a known problem associated with EOSs. Many investigators such as Coats and Smart [19] and Ahmed [20], to mention a few, have reported the inaccuracy of EOSs to reservoir fluids. The inaccuracy can be attributed to the following EOSs limitations and plus fraction properties.
Table 3: Summary of statistical parameters.

Mixture no.	SRK	PR	ALS	LLS	HK	MNN	PT	SW	Data points	C1 Mol%	C7+ Mol%	T °F	Pb Paig
1	11.09	9.84	9.45	30.77	23.77	26.08	27.89	26.72	10	21.05	53.73	172	1804.0
2	35.53	12.83	28.84	40.18	34.56	33.63	37.54	37.62	9	41.84	29.71	223	3366.0
3	43.01	30.02	19.10	39.46	30.85	38.33	31.02	29.73	9	1.75	88.92	234	295.0
4	33.27	20.79	19.36	50.10	37.99	42.04	39.76	40.29	15	1.45	88.03	236	344.0
5	41.73	29.03	19.67	41.29	31.32	38.20	32.04	30.83	9	1.31	93.74	231	172.0
6	25.42	13.94	11.50	42.04	29.97	33.88	31.33	31.76	9	1.75	88.92	234	157.10
7	22.25	3.15	27.56	47.70	37.31	38.95	40.66	40.85	11	25.37	63.87	179.3	2364.0
8	7.19	31.00	28.84	50.10	37.99	42.04	39.76	40.66	148				
9	4.57	0.17	0.82										
10	34.38	0.76	13.94	27.81	18.70	23.22	22.22	21.23	6	29.04	40.97	244	1970.3

Grand avr. AAPD: 25.59
APD_{min}: 5.04
APD_{max}: 43.01

*Total number of data points.

Table 4: Calculation samples of mixtures numbers 1 and 6 with ALS in its original and modified forms.

Mixture no.	PV	AAPD	P	V_{exp}	AAPD			
PV exp	Psia	lb/lb mole	Original	Modified	Psia	lb/lb mole	Original	Modified
1	1818.7	2.548	−13.08	−0.18	280.7	4.532	−16.76	−3.17
2	1765.7	2.573	−13.02	−0.24	279.7	4.538	−16.76	−3.19
3	1750.7	2.579	−13.06	−0.31	278.7	4.545	−16.73	−3.19
4	1473.7	2.763	−12.07	−0.17	276.7	4.556	−16.77	−3.25
5	1177.7	3.086	−10.41	−0.25	271.7	4.592	−16.66	−3.25
6	993.7	3.411	−8.90	0.74	267.7	4.621	−16.59	−3.26
7	865.7	3.736	−7.56	1.24	233.7	4.918	−15.13	−2.61
8	769.7	4.062	−6.41	1.69	209.7	5.215	−13.90	−2.09
9	694.7	4.388	−5.42	2.08	175.7	5.810	−11.42	−0.82
10	634.7	4.711	−4.57	2.41	153.7	6.404	−8.60	1.01
11	574.7	5.171	−4.01	2.85	136.7	6.999	−6.16	2.64
12	513.7	5.621	−3.52	3.29	123.7	7.593	−3.82	4.29
13	452.7	6.121	−3.03	3.78	113.7	8.188	−1.50	6.02
14	401.7	6.621	−2.54	4.29	104.7	8.784	0.26	7.27

AAPD: 9.45
APD_{min}: 0.93
APD_{max}: 13.08

Table 5: AAPD of ALS after modification.

Statistical parameters	1	2	3	4	5	6	7	8	9	10	11
AAPD	0.93	19.68	7.51	7.53	6.14	3.29	6.50	15.54	5.16	5.53	1.55
APD_{min}	0.17	17.50	1.18	1.22	4.87	0.82	0.46	14.34	4.30	3.29	0.04
APD_{max}	2.41	20.85	10.81	9.29	8.23	7.27	13.44	16.54	5.60	13.24	3.00
Enhancement %	90.17	31.75	60.66	61.08	68.81	71.39	43.80	43.61	29.95	35.32	88.91
Journal of Thermodynamics

Table 6: PD of mixtures numbers 2 and 3.

P (psia)	\(V_{op} \) (ft³/lbmole)	SRK	PR	ALS	LLS	HK	MNM	PT	SW
Mixture no. 2									
3380.7	1.787	−50.38	−8.17	−30.91	−43.78	−32.05	−34.19	−36.03	−35.68
3181.7	1.807	−49.59	−10.00	−32.37	−45.13	−33.58	−35.52	−37.68	−37.31
2234.7	2.129	−40.75	−12.61	−32.11	−43.41	−34.80	−36.63	−38.65	−38.24
1801.7	2.446	−36.05	−13.29	−30.54	−41.34	−35.00	−33.75	−38.29	−38.26
1551.7	2.765	−32.73	−13.73	−28.98	−39.54	−34.92	−33.07	−37.86	−38.01
1339.7	3.085	−30.21	−13.74	−27.63	−38.23	−34.88	−32.70	−37.51	−37.81
1194.7	3.405	−28.27	−13.79	−26.52	−37.23	−34.82	−32.48	−37.19	−37.59
1079.7	3.725	−26.86	−13.93	−25.66	−36.53	−34.81	−32.40	−36.95	−37.43
764.7	5.078	−24.96	−16.16	−24.81	−36.41	−36.16	−33.88	−37.65	−38.26
Mixture no. 3									
309.7	6.119	−51.65	−35.61	−22.17	−46.35	−36.18	−45.00	−36.33	−38.41
299.7	6.164	−51.82	−36.00	−22.70	−46.72	−36.23	−45.38	−36.77	−35.27
290.7	6.209	−52.07	−36.32	−23.13	−47.03	−36.68	−45.70	−37.15	−35.28
272.7	6.317	−52.14	−36.84	−23.95	−47.48	−37.30	−46.16	−37.36	−35.94
233.7	6.666	−51.10	−36.97	−24.94	−47.32	−37.68	−45.65	−37.74	−36.39
197.7	7.228	−47.75	−34.92	−23.99	−44.24	−35.92	−43.28	−35.99	−34.74
159.7	8.344	−39.27	−28.45	−19.20	−36.86	−29.63	−36.01	−29.70	−28.62
130.7	10.009	−27.17	−18.27	−10.70	−25.63	−19.55	−24.89	−19.63	−18.72
109.7	12.144	−14.08	−6.82	−1.12	−13.50	−8.48	−12.88	−8.54	−7.80

(1) High level of uncertainty in the prediction of the critical properties and theacentric factor of plus fraction which are not measured in the laboratory. Bearing in mind that plus fraction is the main constituent of mixtures. It constitutes more than 75% in most of the mixtures at hand (mixtures no. 3 to no. 7 and mixture no. 9). The inaccuracy in prediction of critical properties andacentric factor is due to the fact that the plus fraction lumps millions of compounds that only few of them (C7 to C36) are known by measurement. Hence it is expected that as the content of the plus fraction in the mixture increases the inaccuracy of EOS increases. This may justify the relatively good performance of SRK, PR and ALS for mixtures of a lower percentage of plus fraction.

(2) The parameters of the attraction term \(a, a(T) \) and covolume \(b \) of EOS are determined based on van der Waal critical point assumption while the reservoirs temperatures in this work (cf. Table 1) are higher than the critical temperatures of \(N_2, CO_2, C_1, \) and \(C_2. \) For mixtures numbers 1, 2, 8, and 11, these components together constitute more than 20% of the said mixture. This means that the applicability limit of EOS is violated and hence the inaccuracy of EOSs is not a surprise.

(3) Lack of information on BIPs of \(N_2-CO_2, N_2-hydrocarbon, \) and \(CO_2-hydrocarbon, \) However, the presence of the nonhydrocarbon components (\(N_2 \) and \(CO_2 \)) is small in the investigated mixtures.

(4) All EOSs used in this work contain three \([a, b, a(T)]\) and four \([a, a(T), b_1 \) and \(b_2 \) or \(c \)] parameters, hence besides the van der Waal critical point conditions, the parameters were determined by regressing experimental data for pure components. The commonly used experimental data for such a purpose include vapor pressure, normal boiling point and density at standard conditions (\(T = 15^\circ C \) and \(P = 1 \) atm). These data are generally for lower molecular weight components. Hence an EOS that developed on these data unlikely will suffice for reservoir fluid which contains a higher molecular weight plus fraction.

Because the inaccuracy of EOSs rests on the four reasons outlined above, a number of methods have been proposed over years to enhance the capability of EOS yet maintaining its original characteristics. These accuracy enhancement methods include the following.

(1) Development of accurate models for the prediction of critical properties andacentric factor of plus fraction.

(2) Application of a volume-translation technique such as Peneloux shift factor to the EOS.

(3) Tuning EOS to experimental data. However, Pedersen [21] warned that “using equation of state parameters “tuned” to one specific property yields unreliable predictions of other thermodynamic properties.”
Table 7: PD of mixtures numbers 4 and 5.

P (psia)	V_{cp} (ft3/lbmole)	SRK	PR	ALS	LLS	HK	MNM	PT	SW
359.7	4.082	−40.11	−25.08	−23.04	−54.75	−41.00	−45.76	−43.22	−43.62
357.7	4.092	−40.00	−25.03	−23.00	−54.70	−40.97	−45.72	−43.19	−43.59
357.7	4.102	−39.90	−24.98	−22.96	−54.66	−40.96	−45.69	−43.17	−43.56
352.7	4.113	−39.89	−25.03	−23.03	−54.75	−41.07	−45.80	−43.27	−43.68
350.7	4.124	−39.76	−24.95	−22.97	−54.67	−41.03	−45.74	−43.22	−43.63
344.7	4.152	−39.66	−24.88	−22.96	−54.68	−41.09	−45.77	−43.26	−43.68
334.7	4.206	−39.16	−24.65	−22.79	−54.48	−41.03	−45.65	−43.16	−43.60
291.7	4.479	−36.95	−23.63	−21.70	−54.06	−40.82	−45.18	−42.77	−43.28
235.7	5.026	−32.82	−21.14	−19.77	−51.48	−38.94	−42.77	−40.56	−41.16
200.7	5.574	−28.75	−18.35	−17.40	−47.58	−36.80	−40.27	−38.19	−38.85
175.7	6.122	−25.13	−15.82	−15.22	−44.58	−34.64	−37.81	−35.85	−36.54
156.7	6.669	−22.10	−13.60	−13.20	−41.91	−32.67	−35.60	−33.74	−34.44
142.7	7.218	−18.94	−11.11	−10.85	−38.83	−30.21	−32.92	−31.16	−31.87
131.7	7.766	−15.87	−8.65	−8.54	−35.72	−27.65	−30.18	−28.51	−29.21

Table 8: PD of mixtures numbers 7 and 8.

P (psia)	V_{cp} (ft3/lbmole)	SRK	PR	ALS	LLS	HK	MNM	PT	SW
210.7	5.73	−23.11	−5.38	−7.24	−45.58	−31.02	−39.24	−31.09	−30.53
196.7	5.839	−22.64	−5.35	−7.90	−46.00	−31.75	−39.23	−31.81	−31.29
190.7	5.893	−22.25	−5.11	−8.18	−46.13	−32.03	−39.46	−32.08	−31.58
179.7	6.001	−22.05	−5.43	−8.76	−46.39	−32.53	−39.85	−32.58	−32.10
153.7	6.325	−21.36	−5.93	−9.71	−46.28	−33.78	−40.78	−33.81	−33.39
115.7	7.098	−21.24	−8.03	−12.93	−46.94	−35.47	−41.76	−35.47	−35.14
86.7	8.185	−21.36	−10.37	−16.35	−46.62	−36.55	−42.01	−36.53	−36.27
52.7	11.076	−24.15	−16.47	−21.43	−44.79	−36.42	−40.32	−36.43	−36.18

Table 7: PD of mixtures numbers 4 and 5.

P (psia)	Mixture no. 4	Mixture no. 5
186.7	6.026	184.7
184.7	6.044	180.7
180.7	6.081	175.7
175.7	6.131	166.7
166.7	6.232	144.7
144.7	6.551	106.7
106.7	7.527	77.7
77.7	9.086	57.7
57.7	11.223	

Table 8: PD of mixtures numbers 7 and 8.

P (psia)	Mixture no. 7	Mixture no. 8
2310.7	1.995	2251.7
2251.7	2.007	2036.7
2036.7	2.058	1867.7
1867.7	2.11	1563.7
1563.7	2.24	1202.7
1202.7	2.502	988.7
988.7	2.764	842.7
842.7	3.028	737.7
737.7	3.292	655.7
655.7	3.556	593.7
593.7	3.812	
In this work ALS EOS which produced the least grand of PR and SRK by replacing their parameters by those has made a significant improvement in the accuracy of the attractive term Yu et al. [22]. This method has made a significant improvement in the accuracy of PR and SRK by replacing their parameters by those of LLS.

Prior to the employment of the modification, ALS is described as

\[P = \frac{RT}{v - b_1} - \frac{a(T)}{(v - b_2)(v + b_3)}, \]

\[b_i = \frac{\Omega_i RT_c}{P_c}, \quad i = 1, 2, 3, \tag{5} \]

\[a(T) = \frac{\Omega_a (RT_c)^3 a(T)}{P_c}, \]

\[\Omega_a = 0.44869 + 0.04024\omega + 0.01111\omega^2 - 0.00576\omega^3, \tag{6a} \]

\[\Omega_{b_1} = 0.08974 - 0.03452\omega + 0.00330\omega^2, \tag{6b} \]

\[\Omega_{b_2} = 0.5 \left[2(1 + \Omega_{b_1}) - 3\Omega_a^{1/3} + \left(4\Omega_a - 3\Omega_a^{2/3} \right)^{1/2} \right], \tag{6c} \]

\[\Omega_{b_3} = 0.5 \left[-2(1 + \Omega_{b_1}) + 3\Omega_a^{1/3} + \left(4\Omega_a - 3\Omega_a^{2/3} \right)^{1/2} \right]. \tag{6d} \]

The modification includes the replacement of the first term of the coefficient \(\Omega_{b_1} \) (cf. (6b)) by that of PR EOS (\(\Omega_b = 0.07780 \)). Hence the modified form of \(\Omega_{b_1} \) is

\[\Omega_{b_1} = 0.07780 - 0.03452\omega + 0.00330\omega^2. \tag{7} \]

Remember that the modification of \(\Omega_{b_1} \) will automatically modify the coefficients \(\Omega_{b_2} \) and \(\Omega_{b_3} \).

Table 4 shows calculation samples of mixtures numbers 1 and 6. Table 5 shows the summary of AAPD for all mixtures after the modification of the ALS parameters. It can be seen...
that the accuracy of ALS enhanced by a factor of 30 to 90%. The grand average AAPD is reduced significantly from 16 to 7.

5. Conclusion

The work provided important information on PVT data on Sudanese reservoir fluids. It includes composition analysis of fraction plus up to C7+ and about 148 data points of CME test (pressure-volume data) at pressures below the bubble point. The paper presents also a modified form of ALS that describes the Sudanese reservoir fluids with a good level of accuracy.

Acknowledgment

The authors acknowledge the support of the Ministry of Energy and Mining, Sudan.

References

[1] O. O. Adepoju, "Coefficient of isothermal oil compressibility for reservoir fluids by cubic equation of state," M.Sc. thesis, University of Texas, Austin, Tex, USA, 2006.
[2] D.-Y. Peng and D. B. Robinson, "A new two-constant equation of state," Industrial and Engineering Chemistry Fundamentals, vol. 15, no. 1, pp. 59–64, 1976.
[3] G. Soave, "Equilibrium constants from a modified Redlich-Kwong equation of state," Chemical Engineering Science, vol. 27, no. 6, pp. 1197–1203, 1972.
[4] A. S. Lawal, E. T. Van der Laan, and R. K. M. Thambayanagam, "Four-parameter modification of the Lawal-Lake-Silberberg equation of state for calculating gas-condensate phase equilibria," in Proceedings of the Annual Technical Conference and Exhibition, Las Vegas, Nev, USA, September 1985, paper SPE 14269.
[5] K. Akbarzadeh, Sh. Ayatollahi, Kh. Nasrifar, H. W. Yarranton, and M. Moshfeghian, "Prediction of the densities of Western Canadian heavy oils and their SARA fractions from the cubic equations of state," Iranian Journal of Science and Technology, Transaction B, vol. 28, no. B6, pp. 695–699, 2004.
[6] B. H. Jensen, Densities, viscosities and phase equilibria in enhanced oil recovery, Ph.D. thesis, Department of Chemical Engineering, the Technical University of Denmark, Lyngby, Denmark, 1987.
[7] Y. Adachi, B. C.-Y. Lu, and H. Sugie, "A four-parameter equation of state," Fluid Phase Equilibria, vol. 11, no. 1, pp. 29–48, 1983.
[8] K. Aasberg-Petersen, Bulk phase properties and phase equilibria for miscible and immiscible oil displacement processes, Ph.D. thesis progress report, Department of Chemical Engineering, the Technical University of Denmark, Lyngby, Denmark, 1989.
[9] A. Peneloux, E. Rauzy, and R. Freze, "A consistent correction for Redlich-Kwong-Soave volumes," Fluid Phase Equilibria, vol. 8, no. 1, pp. 7–23, 1982.
[10] K. Aasberg-Petersen and E. Stenby, "Prediction of thermodynamic properties of oil and gas condensate mixtures," Industrial and Engineering Chemistry Research, vol. 30, no. 1, pp. 248–254, 1991.
[11] R. A. Almehaideb, I. Ashour, and K. A. El-Fattah, "Improved K-value correlation for UAE crude oil components at high pressures using PVT laboratory data," 2003.