A new report on gene expression of three killer toxin genes with antimicrobial activity of two killer toxins in Iraq

Najwa Mohammed Jameel Ali Abu-Mejdad, Adnan I. Al-Badran, Abdullah H. Al-Saadoon and Mohammed Hussein Minati

Abstract

Background: The K1, K2, and K28 toxins are usually encoded by several cytoplasmically genetic satellite dsRNAs (M1, M2, and M28), which are encapsulated with virus-like particles (VLPs) and reliant on an additional assembly of assistant yeast viruses (L-A) for their reproduction and encapsidation. Ascomycetous yeast species that have these VLPs are especially attractive targets for finding killer toxins like proteins. This is because the organisms are known in producing a large variety of secondary metabolites and extracellular enzymes, which have medical importance as alternative drugs for resistance bacterial strains, particularly multi-resistance drugs (MRD).

Results: For the first time, 31 type strains of yeasts were tested for killer toxin production in Iraq via the measurement of gene expression of three killer toxin genes (M1, M2, and M28) within the mycovirus in yeasts. All the type strains gave an expression for the three killer toxins with variable levels. The highest expression was recorded for the killer toxin genes in *Torulaspora delbrueckii* followed by *Wickerhamomyces anomalus*. Determined antibacterial activity of two killer toxins appeared with high inhibition zone against pathogenic strains of bacteria. Cytotoxicity against human blood cells was not found. These results considered the first record of killer toxins isolated from type strains in Iraq.

Conclusion: The two typical strains *Torulaspora delbrueckii* and *Wickerhamomyces anomalus* showed the highest level of gene expression for the three killer toxins.

Keywords: Antibacterial activity, Cytotoxicity, Gene expression, Mycovirus, Killer toxins, RT-PCR, Yeasts

Background

Gene expression of killer toxins

The K1, K2, and K28 toxins are usually encoded by several cytoplasmically genetic satellite dsRNAs (M1, M2, and M28), which are encapsulated with virus-like particles (VLPs) and reliant on an additional assembly of assistant yeast viruses (L-A) for their reproduction and encapsidation. The responsibility of M dsRNAs is confined to both killer activity and self-immunity, especially in phenotypic yeast strains that are characteristic in their producing killer toxins (Vepštaité-Monstavičė et al., 2018). Moreover, these toxins are capable of killing yeasts with non-killer activity in addition to yeasts of the reverse killer group, whereas the generating yeasts stay immune to their private toxins and to that formed by other strains of identical killer class. Along with the statements above, the system of killer strains provides a distinctive model for studying as long as infection by L-A virus is accompanying with the existence of a satellite M dsRNA, enveloped in a capsid that is encoded by a helper virus. L-As are independently reproducing viruses that do not need M RNA for their replication (Becker & Schmitt, 2017).

As any virus, the yeast L-A and M viruses exploit the host’s translation machinery to produce proteins for virus capsid assembly, dsRNA replication, and toxin
synthesis. However, dissimilar to other viruses, the yeast virus presence in the cell is symptomless (causes neither growth disadvantage nor death of the cell) (Kyrychenko et al., 2018). The killer phenotype in *Saccharomyces cerevisiae* is strictly associated with the presence of dsRNA viruses belonging to the *Tortiviridae* family, the best characterized class of mycoviruses (Marquina et al., 2002).

Killer toxins of *Candida krusei*, isolated from fermented vegetables, exhibited growth inhibition against *Escherichia coli*, *Staphylococcus aureus*, *Salmonella typhimurium*, and *Bacillus cereus* (Waema et al., 2009). The killer activity of *Saccaromyces cerevisiae* against bacterial strains was reported by Valzano et al. (Valzano et al., 2016). However, the ability of killer toxin from *D. hansenii* DSMZ70238 to kill *Staphylococcus aureus*, *E. coli*, *Klebsiella pneumoniae*, and *Streptococcus pyogenes* was recently demonstrated by Al-Qaysi et al. (Al-Qaysi et al., 2017). Ascomycetous yeast species are especially attractive targets for finding a killer toxin like protein. This is because the organisms are known in producing a large variety of secondary metabolites and extracellular enzymes, which have medical importance as alternative drugs for resistance bacterial strains, especially multi-resistance drugs (MRD) (Liu et al., 2015). However, based on this background, we searched for killer toxins produced by ascomycetous yeasts in soil by using two type strains of yeasts (*Torulaspora delbrueckii* and *Wickerhamomyces anomalus*) as test strains. Therefore, the aim of this study was to identify and measure the level of gene expressions that are responsible for coding to killer toxins in 31 different type strains with antibacterial activity and cytotoxicity of two killer toxins.

Methods

Extraction of total RNA

Total RNA were extracted from each yeast isolate according to the procedure of SV total RNA isolation system (Promega, USA).

Reverse transcription of RNA

Total RNA of 300 ng from each sample was used generated cDNA by GoTaq 2 step RT-qPCR system (Promega, USA). Thermal cycler condition for cDNA synthesis was represented annealing temperature 25 °C for 5 min, incubation 42 °C for 1 h, and inactivate the reverse transcriptase at 70 °C for 15 min with 1 cycle.

Quantitative real-time PCR

The cDNA served as templates for quantitative real-time PCR (qRT-PCR) that was performed by using SYBER-Green PCR core reagents. A total of 30 ng of cDNA of each sample was used to measure the gene expression of M1, M2, M28, and ACT1 as a housekeeping gene and primers for relative gene expression as shown in Table 1.

The volume for each single reaction was GoTaq qPCR Master 10 μl, forward primer 1 μl, reverse primer 1 μl, and cDNA template 8 μl. DNA amplification was performed under the following reaction conditions: an initial heating cycle of 95 °C for 2 min, 40 cycles alternating between denaturation at 95 °C for 15 s, and primer annealing and extension at 60 °C for 15 min. The data was analyzed by calculating the expression level of the genes of interest using cycle threshold number (CT) value. Relative quantification of the expression of M1, M2, and M28 was obtained using ACT1 as housekeeping gene, and the expression level of each gene was calculated according to a Livak method (Livak & Schmittgen, 2001) as follows:

\[
\Delta CT = CT_{(\text{target gene})} - CT_{(\text{reference gene})}
\]

Yeast strains

The killer yeast strains *Torulaspora delbrueckii* and *Wickerhamomyces anomalus* were isolated from soil, Basra, Iraq.

Pathogenic bacteria type strains

E. coli and *Staphylococcus aureus* were obtained as two type strains, and their identification was based on 16

Primer’s name	Primer’s sequence 5’ to 3’	Size	Primer’s orientation
M1	5’-TCAAAAGATCACACAGCCGA-3’	900 bp	Forward
	5’-GATACCATGCTCGCATAGGA-3’		Reverse
M2	5’-AGTGGGTGCTACTCGGCTTA-3’	581 bp	Forward
	5’-CAGCTGGCGCATCTTTGATC-3’		Reverse
M28	5’-CGCACAAGAAGAAGCAGATTGA-3’	865 bp	Forward
	5’-AGGCGCCATCTGATAAAGG-3’		Reverse
Housekeeping gene ACT1	5’-CTTCCGGTAGAACTACTGGT-3’	520 bp	Forward
	5’-CCTACGGACATCGACATCA-3’		Reverse

(Frohloff et al., 2001)
rDNA in bacteriology Lab, Biology Department, College of Science, University of Basra, from burn infections.

Culture media
Yeast malt extract broth (YMB) with 1% SDS: yeast extract 3 g, malt extract 3 g, peptone 5 g, glucose 10 g, SDS 2 gm, and distilled water 1000 ml (Jorgensen et al., 2015). Nutrient agar (Himedia, India) was used for antibacterial activity and activation pathogenic bacteria. Potato dextrose Agar (Oxoid, UK) was used for activating type strains of yeasts.

Isolation and purification of two killer toxins (TK, WK)
During this study, isolation and purification of the two killer toxins (TK and WK) were done by Abu-Mejjad et al. (Abu-Mejjad, 2019).

Antibacterial activity
Susceptibility test of killer toxins as antibacterial
Twenty-five microliters from the suspension of bacteria (*Staphylococcus aureus* and *E. coli*) that was prepared previously was added to the nutrient agar for bacteria and then spread by L-shaped glass spreader. The plates
were left to dry for 15 min at room temperature and then wells with 6-mm diameter were made using cork-borer. After that, 100 µl of killer toxins (TK and WK) at concentration 200 mg/ml DW was added individually to each well and incubated at 37°C for 24 h for bacteria. The results were read by measuring the inhibition zone diameter in mm (Fakruddin et al., 2017). The positive control used in this experiment was tetracycline for bacteria.

Cytotoxicity test
Cytotoxicity of killer toxins against human red blood corpuscles RBCs was tested according to (Hsiao et al., 2014) in a concentration 0.2 g dissolved with phosphate-buffered saline. The phosphate-buffered saline was used as a control sample.

Results
Gene expression detection of three killer toxins (M1, M2, and M28)
The gene expression for killer toxins (KT) were detected by real-time PCR. Extracting total RNA of 31 strains, then cDNA was synthesized for 31 strains from the total RNA for real-time PCR reaction. The results from real-time PCR were illustrated by Ct for killer toxins (M1, M2, and M28 with reference gene ACT) genes for Wickerhamomyces anomalus and Torulaspora delbrueckii. The results showed that the gene expression of M28 for

Table 2	Relative gene expression of M28 gene for 31 strains	
No.	Type strains	Gene expression
1	Wickerhamomyces anomalus	2141218
2	Torulaspora delbrueckii	260333.2
3	Meyerozyma caribbica	205674
4	Cnadida tropicalis	193235.4
5	Lodderomyces elangisporus	145433.5
6	Debaryomyces hansenii	93326.55
7	Geotrichum candididum	72214.45
8	Galactomyces pseudocandidum	48308.85
9	Symmetryospora folicola	42642.37
10	Hanseniaspora uvarum	31651.8
11	Rhodotorula diobovata	30786.28
12	Naganishia albida	28329.16
13	Rhodotorula mucilaginosa	24322.43
14	Nagishiana vishniacil	21469.49
15	Vishnicazyma carnescens	15716.58
16	Yarrowia lipolytica	15076.35
17	Candida glabrata	13682.08
18	Cystobasidium minutum	11425.79
19	Galactomyces reessii	9345.136
20	Naganishia uzbekistanensis	7486.107
21	Naganishia albidosimil	5220.6
22	Tubermediosporon dermatis	4837.346
23	Naganishia liqueficans	4011.706
24	Cystobasidium benticum	2091.033
25	Filobasidium oeiense	2033.853
26	Candida membranifacens	1710.26
27	Wickerhamomyces onychis	1530.726
28	Naganishia adelisi	1530.726
29	Naganishia diffuens	32
30	Aureobasidium melanogenum	97.00586
31	Pichia fermentans	32

Table 3	Relative gene expression of M1 gene for 31 strains	
No.	Type strains	Gene expression
1	Wickerhamomyces anomalus	58251.19395
2	Torulaspora delbrueckii	27175.14288
3	Pichia fermentans	4240.445128
4	Debaryomyces hansenii	1389.162831
5	Symmetryospora folicola	1323.369299
6	Candida membranifacens	837.531708
7	Lodderomyces elangisporus	749.6118763
8	Candida glabrata	588.1335578
9	Naganishia vishniacil	467.8817025
10	Geotrichum candididum	410.1477773
11	Cnadida tropicalis	308.688039
12	Hanseniaspora uvarum	247.2797002
13	Galactomyces pseudocandidum	240.5178238
14	Naganishia adelisi	230.7201184
15	Vishnicazyma carnescens	157.5864894
16	Yarrowia lipolytica	151.1670607
17	Wickerhamomyces onychis	123.6398501
18	Naganishia albidosimil	114.5632091
19	Rhodotorula diobovata	107.6347412
20	Naganishia liqueficans	105.4196502
21	Rhodotorula mucilaginosa	97.6805937
22	Galactomyces reessii	63.11889309
23	Filobasidium oeiense	40.2242798
24	Cystobasidium benticum	3650443891
25	Naganishia uzbekistanensis	31.55944654
26	Meyerozyma caribbica	27.28431654
27	Cutaneotrichosporon dermatis	6408559201
28	Candida membranifacens	3.226567037
29	Naganishia adelisi	0.301451957
30	Naganishia diffuens	0.141610486
31	Aureobasidium melanogenum	0.028955877
two tested strains was highest compared with M1 and M2, which showed less gene expression, respectively, as shown in Figs. 1 and 2.

Meanwhile, the results of M28, M1, and M2 gene expression showed that Wickerhamomyces anomalus and Torulaspora delbrueckii had the highest expression compared to the remaining 29 isolates that appeared in less gene expression, as shown in Tables 2, 3, and 4.

The high value of gene expression was compared with the lowest value to determine the fold change for Wickerhamomyces anomalus. The fold change values for the genes M28, M1, and M2 were 66.913, 2011.714, and 47314.69, respectively, while the fold change of Torulaspora delbrueckii for the genes M28, M1, and M2 were 8.135, 938.497, and 3541,146, respectively. These results clarified the fold change for all genes. The highest fold change value occurred in Wickerhamomyces anomalus compared to Torulaspora delbrueckii. This means that the Wickerhamomyces anomalus has a high ability in production amount compared with Torulaspora delbrueckii, as shown in Table 5.

Table 4 Relative gene expression of M2 gene for 31 strains

No.	Type strains	Gene expression
1	Wickerhamomyces anomalus	35610.13
2	Torulaspora delbrueckii	2665.148
3	Candida tropicalis	12093.36
4	Meyerozyma caribbica	522.7582
5	Hanseniaspora uvarum	146.0178
6	Nagishania vishniaci	73.51669
7	Symmetrospora folica	70.52193
8	Lodderzymes elongisporus	53.81737
9	Galactomyces pseudocandicum	44.01734
10	Cystobasidium minutum	43.71329
11	Geotrichium candidum	35.75319
12	Candida membranifaciens	33.59093
13	Candida glabrata	26.90869
14	Vishniacyma camescens	25.99208
15	Debaryomyces Hansenii	22.00867
16	Rhodotorula mucilaginosa	21.85664
17	Naganishia albidosimilis	19.83532
18	Rhodotorula diobovata	17.5087
19	Naganishia uzbekistanensis	15.34823
20	Yarrowia lipolytica	13.08643
21	Galactomyces reessi	12.295
22	Cystobasidium benticum	9.781122
23	Filobasidium oerense	7.361501
24	Wickerhamomyces oryctis	5.278032
25	Naganishia adeliensis	5.133704
26	Naganishia albida	5.063026
27	Pichia fermentans	3.182146
28	Naganishia liquefaciens	2.496661
29	Naganishia diffuens	1.717131
30	Aureobasidium melanogenum	1.24195
31	Cutaneotrichosporon dermatis	0.752623

Table 5 The fold change of three genes for Wickerhamomyces anomalus and Torulaspora delbrueckii

Isolates	M28 gene	M1 gene	M2 gene
Wickerhamomyces anomalus	66.913	2011.714	47314.69
Torulaspora delbrueckii	8.135	938.497	3541.146

Table 6 Rates of inhibition zone diameters of WK and TK against bacterial clinical isolates.

No.	Bacterial species	Inhibition zone rates (mm)	
		WK	TK
1	Staphylococcus aureus	34	28
2	E. coli	23	20
3	Tetracycline	Zero	Zero

Antibacterial activity of TK and WK killer toxins

The antimicrobial activity of TK and WK compounds at 200 mg/ml was tested against *E. coli* and *Staphylococcus aureus*. The results showed that the WK compound had the higher inhibitory effect against all tested isolates in comparison with TK. The results were also compared with positive control compounds (tetracycline) as antibacterial compound, which was used at 200 mg/ml concentration, as shown in Table 6 and Figs. 3 and 4.

The cytotoxicity test of killer toxin

Table 7 and Fig. 5 show the results of killer toxins that had no toxicity against the human red blood cells with the concentration 0.2 g/ml by using positive control tap water and negative control phosphate-buffered saline (PBS). Our results showed that WK and TK were non-hemolytic for blood and consequently are considered nontoxic to human blood.

Discussion

Relative gene expression

Previous studies such as Rodríguez-Cousiño et al. (Rodríguez-Cousiño et al., 2011) have indicated the role of genes (M1, M2, and M28) in encoding proteins called K1, K2, and K3, which are produced from non-yeast species but are similar in their production of proteins. These genes are important for encoding proteins responsible for lethal activity. In the recent study, two species...
Fig. 3 Antimicrobial activity of TK for Torulaspora delbrueckii against Staphylococcus aureus and E. coli at a concentration of 200 mg/ml

Fig. 4 Antimicrobial activity of WK for Wickerhamomyces anomalus against Staphylococcus aureus and E. coli at a concentration of 200 mg/ml
showed a high expression of these genes compared to the remaining 29 isolates, which showed a less expression.

In general, gene expression (inhibition or stimulation) among different strains may be caused by abiotic factors, such as temperature, salinity, and acidity (Chen & Chou, 2017). This is consistent with the results of the current study, as the isolates were selected from high salinity and acidic soils as well as testing their ability in the lab on salt tolerance using YPGA + NaCl medium. Another explanation is attributed to the influence of competition mechanisms where the yeasts found in an extreme environment, the higher genetic expression of these toxins appeared as a defense mechanism and vice versa (Wisniewski et al., 2007).

Or maybe due to genetic factors as these toxins are coded from different genetic sources. Yeast may express such genes themselves by using their genome, mitochondrial genome, and plasmid or sometimes depend on the coexistent virus, which is found in all members of Eumycota Kingdom (King et al., 2011). However, the predominance of expressed genetic sources differed from strain to another or sometimes the yeasts use more than one source, which affects the level of gene expression negatively or positively. Previous studies have indicated the role of dsRNA in gene expression for three toxins (Ramírez Fernández et al., 2015; Schaffrath et al., 2018) in particular for the two species of fungi (Wickerhamomyces anomalus and Torulaspora delbrueckii). This result is concordant to the present study, which demonstrated the role of symbiotic virus.

Antibacterial activity of TK and WK killer toxins

In this study, the TK and WK toxins with a concentration of 200 mg/ml were tested against 2 clinical isolates. In general, the results showed that the effect of WK was higher than that of TK and the reason may be attributed to the differences in the chemical composition of their compounds and in mechanism action (Becker & Schmitt, 2017). In terms of K28, early studies in the nineties have demonstrated that a specific primary receptor in the cell wall allows rapid K28 absorption via an energy-independent binding mechanism. In contrast, Vadasz et al. (Vadasz et al., 2000) stated that the ionophoric killer toxin (K2) has the ability of killing cells by causing shrinkage as a characteristic of cytosol efflux, which can be seen clearly by an electron microscope. The cytosolic efflux and cell death are the results of initial interaction between yeast toxin and specific cell wall receptors, followed by the formation or activation of endogenous ion channels in the plasma membrane of target cells (Ahmed et al., 1999).

After different purification methods, the standard antibodies were not showing any efficacy against the tested isolates, which were 100% resistant. Our results also showed that the activity of killer toxins against Gram-positive bacteria was higher than those with Gram-negative. This might be attributed to the nature of their wall. Sasaki et al. (Sasaki et al., 1984) studied 150 strains of Saccharomyces for inhibitive activity against Gram-positive and Gram-negative bacteria and found only eleven yeasts inhibiting all tested bacteria. The active mechanism of killer toxins may change the cell cycle arrest in G1 phase, increase the membrane permeability of ions, generate ion channel, damage the plasma membrane, and inhibit the glucan synthesis (Buzzini et al., 2007).

The cytotoxicity of WK and TK killer toxins

The cytotoxicity test is known as one of the most biological evaluation and screening tests that use blood cells in vitro to observe the cell morphological effects by medical materials, such as killer toxins. During this study, the two toxins were not displaying any hemolysis on blood cells. This is in accordance with Rodriguez et al. (Rodriguez et al., 2014), who...
reported that the peptide had no hemolytic effect on the blood cells. Another reason is that the high specificity of killer toxins generated from the producer killer cell may secret toxins binding only with a specific receptor in the sensitive cell resulted from two cells of the same species but they differ genetically (Chang et al., 2015).

Conclusion

The two typical strains *Torulaspora delbrueckii* and *Wickerhamomyces anomalus* showed the highest level of gene expression for the three killer toxins. All isolates of the non-*Saccharomyces cerevisiae* that tested for gene expression of the three toxins gave uneven positive results indicating the presence of mycovirus in all the examined isolates. Also, two purification killer toxins exhibited antibacterial activity with no toxicity against blood cells.

Abbreviations

ACT1: Actin 1; cDNA: Complementary deoxyribonucleic acid; CT: Cycle threshold; dsRNA: Double strand ribonucleic acid; DW: Distilled water; E. coli: Escherichia coli; K1: Killer toxin 1; K2: Killer toxin 2; K28: Killer toxin 28; MRD: Multi-resistance drugs; PBS: Phosphate-buffered saline; qRT-PCR: Quantitative real-time PCR; RNA: Ribonucleic acid; RT-PCR: Reverse transcript polymerase chain reaction; SDS: Sodium dodecyl sulfate; Te: Tetracycline; TK: *Torulaspora delbrueckii* killer toxin; TW: Tap water; UK: United Kingdom; USA: United State America; VLPs: Virus-like particles; Wk: Wickerhamomyces anomalus killer toxin; YPGA: Yeast extract peptone glucose Agar medium.

Acknowledgements

Not applicable

Authors’ contributions

All work was done by NA and MM under the supervision and advice of AA and AA. NA has drafted the work and MM was a major contributor in substantially editing, revising, and writing the manuscript. The authors read and approved the final manuscript.

Funding

Not applicable

Availability of data and materials

Not applicable

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Author details

1 Biology Department, College of Science, University of Basra, Basra, Iraq.
2 Pathological Analyses Department, College of Science, University of Basra, Basra, Iraq.
3 Biology Department, College of Education-Qurna, University of Basra, Basra, Iraq.

Received: 12 June 2020 Accepted: 6 September 2020
Published online: 18 September 2020

References

Abu-Mejdad NM (2019). Isolation and molecular identification of yeasts, study their potential for producing killer toxins and evaluation of toxins activity against some bacteria and pathogenic fungi. Basrah: PhD thesis: 1-249

Ahmed A, Sesti F, Ilan N, Shih TM, Sturley SL, Goldstein SA (1999) A molecular target for viral killer toxin. TOL1 potassium channels. Cell. 99(3):283–291

Al-Qaysi SA, Al-Haideri H, Thabit ZA, Al-Kubahy WA, Ibrahim JA (2017) Production, characterization, and antimicrobial activity of mycoprotein produced by Debaryomyces hansenii DSMZ70238. International journal of microbiology 2017

Becker B, Schmitt M (2017) Yeast killer toxin K28: biology and unique strategy of host cell intoxication and killing. Toxins. 9(10):333

Buziński P, Turchetti B, Vaughan-Martini AE (2007) The use of killer sensitivity patterns for biotyping yeast strains: the state of the art, potentialities and limitations. FEMS Yeast Res 7(6):749–760

Chang S, Leu J, Chang T (2015) A population study of killer viruses reveals different evolutionary histories of two closely related S. cerevisiae sensu stricto strains. Mol Ecol 24(16):4312–4322

Chen PH, Chou J (2017) Screening and identification of yeasts antagonistic to pathogenic fungi show a narrow optimal pH range for antagonistic activity. Plo J Microbiol 66:101–106

Fakruddin M, Hossain MN, Ahmed MM (2017) Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complement Altern Med 17(1)164

Frohloff F, Fichtner L, Jablonsowski D, Breunig KD, Schaffrath R (2001) Saccharomyces cerevisiae Elongator mutations confer resistance to the Klyuveromyces lactis yzymocin. EMBO J 20(8):1993–2003

Hsiao CW, Lo YT, Liu H, Hsiao SC (2014) Real-time cytotoxicity assays in human whole blood. J Vis Exp (93):e51941. https://doi.org/10.3791/51941

Jorgensen J, Pfaller MA, Carroll KC, Funke G, Landry ML, Richter SS, Warnock DW (2015). Manual of clinical microbiology., Eleventh Edition...

King A, Lefkowitz E, Adams MJ, Cantens EB (2011) Virus taxonomy; ninth report of the International Committee on Taxonomy of Viruses: Elsevier

Kyttyzenko A, Tsygarenko K, Olishheva S (2018) Hypovirulence of mycoviruses as a tool for biotechnological control of phytopathogenic fungi. Cytology and Genetics 52(5):374–384

Liu G, Chi Z, Wang G, Wang Z, Li Y, Chi Z (2015) Yeast killer toxins, molecular mechanisms of their action and their applications. Crit Rev Biotechnol 35(2):222–234

Liva KJ, Schmittgen TD (2011) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. methods 25(4):402–408

Marquina D, Santos A, Peinado J (2002) Biology of killer yeasts. Int Microbiol 5(2):87–118

Marquina D, Santos A, Peinado J (2002) Biology of killer yeasts. Int Microbiol 5(2):87–118

Rodriguez A, Villegas E, Montoya-Rosales A, Rivas-Santiago B, Corzo G (2014) Characterization of antibacterial and hemolytic activity of synthetic pandinin 2 variants and their inhibition against Mycobacterium tuberculosis. PloS one 9(7):e101742

Rodriguez-Cousiño N, Maqueda M, Ambrona J, Zamora E, Esteban R, Ramírez M (2011) A new wine *Torulaspora delbrueckii* killer strain with broad antifungal activity and its toxin-encoding double-stranded RNA virus

Sasai T, Watabe J, Kohgo M, Nishikawa N, Matsui Y (1984) Breeding of a brewer’s yeast possessing anticontaminant properties. J AM SOC BREW CHEM 42(4):164–166

Schaafhirt R, Meinhardt F, Klasse R 2018. Yeast killer toxins: fundamentals and applications. Physiology and Genetics: Springer; p. 87-118.

Valdez A, Jagganath D, Pretorius I, Gupthar A (2000) Electron microscopy of the K2 killer effect of Saccharomyces cerevisiae T206 on a mesophilic wine yeast. Antonie Van Leeuwenhoek 78(2):117–122

Valzano M, Cesarini V, Cappelli A, Capone A, Bozic J, Cuccioloni M et al (2016) A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites. Malar J 15(1):21
Vepštaitė-Monstavičė I, Lukša J, Konovalovas A, Ežerskytė D, Stanevičienė R, Strazdaite-Zielenė Ž et al (2018) Saccharomyces paradoxus K66 killer system evidences expanded assortment of helper and satellite viruses. Viruses. 10(10):564
Waema S, Maneesi J, Masniyom P (2009) Isolation and identification of killer yeast from fermented vegetables. Asian Journal of Food and Agro-Industry 2: 126–134
Wisniewski M, Wilson C, Droby S, Chalutz E, Ghaouth A (2007). 29 postharvest biocontrol: new. Biological control: a global perspective: case studies from around the world. 262

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.