**Research Article**

**New Relations Involving an Extended Multiparameter Hurwitz-Lerch Zeta Function with Applications**

H. M. Srivastava, Sébastien Gaboury, and Richard Tremblay

1. *Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W 3R4*
2. *Department of Mathematics and Computer Science, University of Quebec at Chicoutimi, Chicoutimi, QC, Canada G7H 2B1*

Correspondence should be addressed to Sébastien Gaboury; s1gabour@uqac.ca

Received 28 February 2014; Accepted 16 April 2014; Published 13 May 2014

Academic Editor: Shamsul Qamar

Copyright © 2014 H. M. Srivastava et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We derive several new expansion formulas involving an extended multiparameter Hurwitz-Lerch zeta function introduced and studied recently by Srivastava et al. (2011). These expansions are obtained by using some fractional calculus methods such as the generalized Leibniz rules, the Taylor-like expansions in terms of different functions, and the generalized chain rule. Several (known or new) special cases are also given.

1. Introduction

The Hurwitz-Lerch zeta function $\Phi(z, s, a)$ which is one of the fundamentally important higher transcendental functions is defined by (see, e.g., [1, page 121 et seq.; see also [2] and [3, page 194 et seq.])

\[
\Phi(z, s, a) := \sum_{n=0}^{\infty} \frac{z^n}{(n + a)^s},
\]

\( (a \in \mathbb{C} \setminus \mathbb{Z}^0; s \in \mathbb{C} \text{ when } |z| < 1; \mathfrak{R}(s) > 1 \text{ when } |z| = 1 ).
\]  

\(1\)

The Hurwitz-Lerch zeta function contains, as its special cases, the Riemann zeta function $\zeta(s)$, the Hurwitz zeta function $\zeta(s, a)$, and the Lerch zeta function $\xi(s, \xi)$ defined by

\[
\xi(s, \xi) := \sum_{n=0}^{\infty} e^{2\pi i n \xi(n + a)^s} = \Phi(e^{2\pi i \xi}, s, 1) \quad (\mathfrak{R}(s) > 1; \xi \in \mathbb{R}),
\]

\(4\)

respectively.

The Hurwitz-Lerch zeta function is connected with other special functions of analytic number theory such as the polylogarithmic function (or de Jonquières function) $L_i(z)$:

\[
L_i(z) := \sum_{n=1}^{\infty} \frac{z^n}{n^i} = z\Phi(z, s, 1)
\]

\(5\)

\((s \in \mathbb{C} \text{ when } |z| < 1; \mathfrak{R}(s) > 1 \text{ when } |z| = 1)\)

and the Lipschitz-Lerch zeta function $\phi(\xi, a, s)$ (see [1, page 122, Equation 2.5 (11)])

\[
\phi(\xi, a, s) := \sum_{n=0}^{\infty} e^{2\pi i n \xi(n + a)^s} = \Phi(e^{2\pi i \xi}, s, a)
\]

\(6\)

\((a \in \mathbb{C} \setminus \mathbb{Z}^0; \mathfrak{R}(s) > 0 \text{ when } \xi \in \mathbb{R} \setminus \mathbb{Z}; \mathfrak{R}(s) > 1 \text{ when } \xi \in \mathbb{Z}).
\)

The Hurwitz-Lerch zeta function $\Phi(z, s, a)$ defined in (7) can be continued *meromorphically* to the whole complex $s$-plane,
except for a simple pole at $s = 1$ with its residue $1$. It is well known that

$$\Phi(z, s, a) = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} e^{-at} dt$$

($\Re(a) > 0$; $\Re(s) > 0$ when $|z| \leq 1$ (z ≠ 1);

$$\Re(s) > 1$$ when $z = 1$).

Motivated by the works of Goyal and Laddha [4], Lin and Srivastava [5], Garg et al. [6], and others, Srivastava et al. [7] (see also [8]) investigated various properties of a natural multiparameter extension and generalization of the Hurwitz-Lerch zeta function $\Phi(z, s, a)$ defined by (7) (see also [9]). In particular, they considered the following functions:

$$\Phi(\rho_1, \ldots, \rho_p, \sigma_1, \ldots, \sigma_q)(z, s, a) := \sum_{n=0}^\infty \left( \prod_{j=1}^p (\rho_j)^n \right) \left( \prod_{j=1}^q (\sigma_j)^n \right) \frac{z^n}{(n+a)^s}$$

with

$$V^* := \left( \prod_{j=1}^p \rho_j \right) \cdot \left( \prod_{j=1}^q \sigma_j \right)$$

$$\Delta := \sum_{j=1}^q \sigma_j - \sum_{j=1}^p \rho_j$$

$$\Xi := s + \sum_{j=1}^q \mu_j - \sum_{j=1}^p \lambda_j + \frac{d-q}{2}$$

Here, and for the remainder of this paper, $(\lambda)_n$ denotes the Pochhammer symbol defined, in terms of the gamma function, by

$$(\lambda)_n := \frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}$$

with $(0)_0 := 1$ and assumed tacitly that the $\Gamma$-quotient exists (see, for details, [10, page 21 et seq.]).

In their work, Srivastava et al. [7, page 504, Theorem 8] also proved the following relation for the function $\Phi(\rho_1, \ldots, \rho_p, \sigma_1, \ldots, \sigma_q)(z, s, a)$:

$$\Phi(\rho_1, \ldots, \rho_p, \sigma_1, \ldots, \sigma_q)(z, s, a) = \sum_{n=0}^\infty \left( \prod_{j=1}^p (\rho_j)^n \right) \left( \prod_{j=1}^q (\sigma_j)^n \right) \frac{z^n}{(n+a)^s}$$

provided that both sides of (11) exist.

**Definition I.** The $\Pi(z)$ involved in the right-hand side of (11) is the generalized Fox's $H$-function introduced by Inayat-Hussain [II, page 4126]

$$\Pi(z) = \Pi(z) \cdot \Pi(z) \cdot \Pi(z) \cdot \Pi(z)$$

The parameters

$$A_j > 0 \ (j = 1, \ldots, p), \quad B_j > 0 \ (j = 1, \ldots, p),$$

(13)
and the exponents
\[ \alpha_j \quad (j = 1, \ldots, p), \quad \beta_j \quad (j = 1, \ldots, q) \]  
(14)
can take noninteger values and \( \mathfrak{Q} = \mathfrak{Q}_{\text{range}} \) is a Mellin-Barnes type contour starting at the point \( \tau - i\infty \) and terminating at the point \( \tau + i\infty \) \((\tau \in \mathbb{R})\) with the usual indentations to separate one set of poles from the other set of poles.

Buschman and Srivastava [12, page 4708] established that the sufficient conditions for the absolute convergence of the contour integral in (12) are given by
\[ \Lambda := \sum_{j=1}^{m} B_j + \sum_{j=1}^{n} |\alpha_j| A_j - \sum_{j=m+1}^{q} |\beta_j| B_j - \sum_{j=m+1}^{p} A_j > 0 \]  
(15)
and the region of absolute convergence is
\[ |\arg(z)| < \frac{1}{2} \pi \Lambda. \]  
(16)
Note that when
\[ \alpha_1 = \cdots = \alpha_n = 1, \quad \beta_{m+1} = \cdots = \beta_q = 1, \]  
(17)
the \( H \)-function reduces to the well-known Fox's \( H \)-function (see [13]).

This paper is devoted to extending several interesting results obtained recently by Srivastava et al. [14] (see also [15, 16]) to the extended multiparameter Hurwitz-Lerch zeta function \( \Phi_{\lambda_1, \ldots, \lambda_p, \mu_1, \ldots, \mu_q}(z, s, a) \) introduced and studied by Srivastava et al. [7]. In Section 2, we give the representation of the fractional derivatives based on the Pochhammer's contour of integration. Section 3 aims at recalling some major fractional calculus theorems, that is, two generalized Leibniz rules and three Taylor-like expansions as well as a fundamental relation linked to the generalized chain rule for the fractional derivatives. In the two remaining sections, we, respectively, present and prove the main results of this paper and we give some special cases.

### 2. Pochhammer Contour Integral Representation for Fractional Derivative

The most familiar representation for the fractional derivative of order \( \alpha \) of \( z^p f(z) \) is the Riemann-Liouville integral [17] (see also [18–20]); that is,
\[ D_0^\alpha \left[ z^p f(z) \right] = \frac{1}{\Gamma(-\alpha)} \int_0^z f(\xi) \xi^p (\xi - z)^{-\alpha-1} d\xi \]  
(18)
\[ (\Re(\alpha) < 0; \Re(p) > 1), \]
where the integration is carried out along a straight line from 0 to \( z \) in the complex \( \xi \)-plane. By integrating by part \( m \) times, we obtain
\[ D_0^\alpha \left[ z^p f(z) \right] = \frac{d^m}{dz^m} \left[ D_0^{\alpha-m} \left[ z^p f(z) \right] \right]. \]  
(19)

This allows us to modify the restriction \( \Re(\alpha) < 0 \) to \( \Re(\alpha) < m \) (see [20]).

Another representation for the fractional derivative is based on the Cauchy integral formula. This representation, too, has been widely used in many interesting papers (see, for example, the works of Osler [21–24]).

The relatively less restrictive representation of the fractional derivative according to parameters appears to be the one based on the Pochammer's contour integral introduced by Lavoie et al. [25] and Tremblay [26].

**Definition 2.** Let \( f(z) \) be analytic in a simply connected region \( \mathcal{R} \) of the complex \( z \)-plane. Let \( g(z) \) be regular and univalent on \( \mathcal{R} \) and let \( g^{-1}(0) \) be an interior point of \( \mathcal{R} \). Then, if \( \alpha \) is not a negative integer, \( p \) is not an integer, and \( z \) is in \( \mathcal{R} \setminus \{ g^{-1}(0) \} \), we define the fractional derivative of order \( \alpha \) of \( g(z)^p f(z) \) with respect to \( g(z) \) by
\[ D_0^\alpha \left\{ \left[ g(z) \right]^p f(z) \right\} \]
\[ = e^{-ip\pi} \left( 1 + \alpha \right) \frac{4\pi \sin(p\pi)}{\Gamma(1+\alpha)} \int_{C(z, g^{-1}(0), g^{-1}(0), F(a), F(a))} \frac{f(\xi) [g(\xi)]^p g'(\xi)}{[g(\xi) - g(z)]^{\alpha+1}} d\xi. \]
(20)

For nonintegers \( \alpha \) and \( p \), the functions \( g(\xi)^p \) and \( [g(\xi) - g(z)]^{\alpha+1} \) in the integrand have two branch lines which begin, respectively, at \( \xi = z \) and \( \xi = g^{-1}(0) \), and both branches pass through the point \( \xi = a \) without crossing the Pochhammer contour \( P(a) = \{ C_1 \cup C_2 \cup C_4 \cup C_5 \} \) at any other point as shown in Figure 1. Here \( \hat{F}(a) \) denotes the principal value of the integrand in (20) at the beginning and the ending point of the Pochhammer contour \( P(a) \) which is closed on the Riemann surface of the multiple-valued function \( F(\xi) \) (see Figure 2).

**Remark 3.** In Definition 2, the function \( f(z) \) must be analytic at \( \xi = g^{-1}(0) \). However, it is interesting to note here that if
we could also allow \( f(z) \) to have an essential singularity at \( \xi = g^{-1}(0) \), then (20) would still be valid.

Remark 4. In case the Pochhammer contour never crosses the singularities at \( \xi = g^{-1}(0) \) and \( \xi = z \) in (20), then we know that the integral is analytic for all \( p \) and for all \( \alpha \) and for \( z \) in \( \mathbb{R} \setminus \{ g^{-1}(0) \} \). Indeed, in this case, the only possible singularities of \( D_g^p(z) g(z)^p f(z) \) are \( \alpha = -1, -2, \ldots \) and \( p = 0, \pm 1, \pm 2, \ldots \), which can directly be identified from the coefficient of the integral (20). However, by integrating by parts \( N \) times the integral in (20) by two different ways, we can show that \( \alpha = -1, -2, \ldots \) and \( p = 0, 1, 2, \ldots \) are removable singularities (see, for details, [25]).

In their work, Srivastava et al. [7] made use of the following fractional calculus result obtained by Srivastava et al. [27, page 97, Equation (2.4)]:

\[
D^\nu \left\{ z^\lambda \Phi_{\lambda_1,\ldots,\lambda_p,\mu_1,\ldots,\mu_q}^{(\rho_1,\ldots,\rho_p,\sigma_1,\ldots,\sigma_q)} \right\} = z^{\lambda-1} \Phi_{\lambda_1,\ldots,\lambda_p,\mu_1,\ldots,\mu_q}^{(\rho_1,\ldots,\rho_p,\sigma_1,\ldots,\sigma_q)} \left( z^{\nu}, s, a \right) \]

This fractional calculus formula was obtained by using the Riemann-Liouville representation for the fractional derivative. Adopting the Pochhammer based representation for the fractional derivative, these last restrictions become \( \kappa + \nu - 1 \) not a negative integer, and \( \kappa > 0 \).

The parameters involved in the fractional derivative formula (22) can be specialized to deduce other results. For example, setting \( p - 1 = q = 1 \) in (22) and making the following substitutions \( \rho_1 \mapsto \rho, \rho_2 \mapsto \sigma, \sigma_1 \mapsto \kappa, \lambda_1 \mapsto \lambda, \lambda_2 \mapsto \mu, \) and \( \mu_1 \mapsto \nu \) lead to

\[
D^\nu \left\{ z^{\nu-1} \Phi_{\lambda,\mu,\nu}^{(\rho,\sigma)} \right\} = \frac{\Gamma(\nu)}{\Gamma(\nu+1)} z^{\nu-1} \Phi_{\lambda,\mu,\nu}^{(\rho,\sigma)} \left( z^{\nu}, s, a \right) \]

(\( \nu \) not a negative integer; \( \nu > 0 \).)

\[
\times \left\{ z^\lambda \Phi_{\lambda_1,\ldots,\lambda_p,\mu_1,\ldots,\mu_q}^{(\rho_1,\ldots,\rho_p,\sigma_1,\ldots,\sigma_q)} \right\} \]

(\( \nu \) not a negative integer; \( \nu > 0 \).)
Furthermore, if we put $\rho = \sigma = \kappa = 1$ in (23), then we obtain
\[
D_{z}^{\nu-\tau} \left\{ z^{\nu-1} \Phi_{\mu, \nu}^{(1,1,1)} (z, s, a) \right\} = \frac{\Gamma (v)}{\Gamma (\nu)} z^{\nu-1} \Phi_{\mu, \nu}^{(1,1,1)} (z, s, a)
\]
\[
= \frac{\Gamma (v)}{\Gamma (\nu)} \Gamma (\nu) \Gamma (\mu) z^{\nu-1} P_{\nu}^{(1,1,1)} (z)
\]
\[
\times \left[ -z \left\{ (1 - \lambda, 1), (1 - \mu, 1), (1 - a, 1); s \right\} \right.
\]
\[
\left. \left\{ (0, 1), (1 - \tau, 1), (1 - a, 1); s \right\} \right) \right) \right) \right.
\]
\[
\left. \left( v \text{ not a negative integer; } \kappa > 0 \right) . \right)
\]

Finally, letting $\lambda = \nu$ in (24), this yields after elementary calculations
\[
\Phi_{\nu}^{(z, s, a)} = \frac{\Gamma (v)}{\Gamma (\nu)} \Gamma (\nu) \Gamma (\mu) z^{\nu-1} P_{\nu}^{(1,1,1)} (z)
\]
\[
\times \left[ -z \left\{ (1 - \nu, 1), (1 - \mu, 1), (1 - a, 1); s \right\} \right.
\]
\[
\left. \left\{ (0, 1), (1 - \tau, 1), (1 - a, 1); s \right\} \right) \right) \right) \right.
\]
\[
\left. \left( \nu \text{ not a negative integer; } \kappa > 0 \right) . \right)
\]

Another fractional derivative formula that will be very useful in this work is given by the following formula:
\[
D_{z}^{\alpha} \left\{ z^{\beta} \Phi_{\lambda, \mu, \nu}^{(r, \rho, \sigma, \ldots, \rho)} (z, s, a) \right\} = \frac{\Gamma (1 + \beta)}{\Gamma (1 + \beta - \alpha)} z^{\beta-\alpha}
\]
\[
\times \Phi_{\lambda, \mu, \nu}^{(r, \rho, \sigma, \ldots, \rho)} (z, s, a)
\]
\[
\left( \beta \text{ not a negative integer, } \kappa > 0 \right) . \right)
\]

This last result can be established with the help of the following well known formula [28, page 83, Equation (2.4)]:
\[
D_{z}^{\alpha} \left\{ z^{p} \right\} = \frac{\Gamma (1 + p)}{\Gamma (1 + p - \alpha)} z^{p-\alpha} \left( \Re (p) > -1 \right) .
\]

Adopting the Pochhammer based representation for the fractional derivative modifies the restriction to the case when $p$ is not a negative integer.

### 3. Some Fundamental Theorems Involving Fractional Calculus

In this section, we recall six fundamental theorems related to fractional calculus that will play central roles in our work. Each of these theorems is the generalized Leibniz rules for fractional derivatives, the Taylor-like expansions in terms of different types of functions, and a fundamental formula related to the generalized chain rule for fractional derivatives.

First of all, we give two generalized Leibniz rules for fractional derivatives. Theorem 5 is a slightly modified theorem obtained in 1970 by Osler [22]. Theorem 6 was given, some years ago, by Tremblay et al. [29] with the help of the properties of Pochhammer’s contour representation for fractional derivatives.

**Theorem 5.** (i) Let $\mathcal{R}$ be a simply connected region containing the origin. (ii) Let $u(z)$ and $v(z)$ satisfy the conditions of Definition 2 for the existence of the fractional derivative. Then, for $\Re (p + q) > -1$ and $\gamma \in \mathbb{C}$, the following Leibniz rule holds true:
\[
D_{z}^{\alpha} \left\{ z^{p+q} u (z) v(z) \right\} = \sum_{n=-\infty}^{\infty} \left( \frac{\alpha}{\gamma + n} \right) D_{z}^{\alpha-\gamma-n}
\]
\[
\times \left\{ z^{p} u (z) \right\} D_{z}^{\gamma+n} \left\{ z^{q} v(z) \right\} .
\]

**Theorem 6.** (i) Let $\mathcal{R}$ be a simply connected region containing the origin. (ii) Let $u(z)$ and $v(z)$ satisfy the conditions of Definition 2 for the existence of the fractional derivative. (iii) Let $\mathcal{U} \subset \mathcal{R}$ be the region of analyticity of the function $u(z)$ and let $\mathcal{V} \subset \mathcal{R}$ be the region of analyticity of the function $v(z)$. Then, for
\[
z \neq 0, \quad z \in \mathcal{U} \cap \mathcal{V}, \quad \Re (1 - \beta) > 0,
\]

the following product rule holds true:
\[
D_{z}^{\alpha} \left\{ z^{p+q-1} u (z) v(z) \right\} = \frac{z \Gamma (1 + \alpha) \sin (\beta \pi) \sin (\mu \pi)}{\sin ([\alpha + \beta - \mu] \pi) \sin ([\beta - \mu] \pi)} \sin (\gamma \pi) \sin ([\gamma + \nu] \pi)
\]
\[
\times \sum_{n=-\infty}^{\infty} \frac{D_{z}^{\alpha+\gamma-n} \left\{ z^{p+q-1} u (z) \right\}}{\Gamma (2 + \alpha + \nu - n)} D_{z}^{\gamma+n} \left\{ z^{q} v(z) \right\} .
\]

Next, in 1971, Osler [30] established the following generalized Taylor-like series expansion involving fractional derivatives.

**Theorem 7.** Let $f(z)$ be an analytic function in a simply connected region $\mathcal{R}$. Let $\alpha$ and $\gamma$ be arbitrary complex numbers and
\[
\theta (z) = (z - z_{0}) q (z)
\]
with $q(z)$ a regular and univalent function without any zero in $\mathcal{R}$. Let $a$ be a positive real number and
\[
K = \{ 0, 1, \ldots, c \}
\]
\[
\{ c \} \text{ the largest integer not greater than } c \} .
\]

Let $b$ and $z_{0}$ be two points in $\mathcal{R}$ such that $b \neq z_{0}$ and let
\[
\omega = \exp \left( \frac{2 \pi i}{a} \right) .
\]
Then the following relationship holds true:
\[
\sum_{k \in K} c^{-k} \omega^{-k} f \left( \theta^{-1} \left( \theta \left( z \cdot \omega^k \right) \right) \right)
\]
\[
= \sum_{n=0}^{\infty} \frac{[\theta(z)]^{m+n} \cdot D_{z-b}^{m+n} \left\{ f (z) \cdot (z - z_0)^{m+n+1} \right\} \bigg|_{z = z_0}}{\Gamma(m + y + 1)} \cdot \left( \begin{array}{l}
\text{in particular, if } 0 < c \leq 1 \text{ and } \theta(z) = (z - z_0), \text{ then } k = 0 \\
\text{and the formula (34) reduces to the following form:}
\end{array} \right)
\]
\[
f (z) = c \sum_{n=0}^{\infty} \frac{(z - z_0)^{c+m+y}}{\Gamma(cn + y + 1)} \cdot D_{z-b}^{c+m+y} \left\{ f (z) \right\} \bigg|_{z = z_0}.
\tag{35}
\]
This last formula (35) is usually referred to as the Taylor-Riemann formula and has been studied in several papers [23, 31–34].

We next recall that Tremblay et al. [35] obtained the power series of an analytic function \( f(z) \) in terms of the rational expression \( ((z - z_1)/(z - z_2)) \), where \( z_1 \) and \( z_2 \) are two arbitrary points inside the region \( \mathcal{R} \) of analyticity of \( f(z) \). In particular, they obtained the following result.

**Theorem 8.** (i) Let \( c \) be real and positive and let
\[
\omega = \exp \left( \frac{2\pi i}{a} \right).
\tag{36}
\]
(ii) Let \( f(z) \) be analytic in the simply connected region \( \mathcal{R} \) with \( z_1 \) and \( z_2 \) being interior points of \( \mathcal{R} \). (iii) Let the set of curves
\[
\{ C(t) : C(t) \subset \mathcal{R}, 0 < t \leq r \}
\tag{37}
\]
be defined by
\[
C(t) = C_1(t) \cup C_2(t)
\]
\[
= \left\{ z : \lambda_t \left( z_1, z_2, z \right) = \lambda_t \left( z_1, z_2, \frac{z_1 + z_2}{2} \right) \right\},
\tag{38}
\]
where
\[
\lambda_t \left( z_1, z_2, z \right) = \left\{ z - \left( \frac{z_1 + z_2}{2} \right) + t \left( \frac{z_1 - z_2}{2} \right) \right\}
\tag{39}
\]
which are the Bernoulli type lemniscates with center located at \( (z_1 + z_2)/2 \) and with double-loops in which one loop \( C_1(t) \) leads around the focus point
\[
\frac{z_1 + z_2}{2} + \left( \frac{z_1 - z_2}{2} \right) t,
\tag{40}
\]
and the other loop \( C_2(t) \) encircles the focus point
\[
\frac{z_1 + z_2}{2} - \left( \frac{z_1 - z_2}{2} \right) t,
\tag{41}
\]
for each \( t \) such that \( 0 < t \leq r \). (iv) Let
\[
\left\{ (z - z_1)(z - z_2)^{\lambda} = \exp \left( \lambda \ln \left( \left( (z - z_1)(z - z_2) \right) \right) \right) \right\}
\tag{42}
\]
denote the principal branch of that function which is continuous and inside \( C(r) \), cut by the respective two branch lines \( L_+ \) defined by
\[
L_+ = \left\{ z : z = z_1 + z_2 \cdot t \left( \frac{z_1 - z_2}{2} \right) \right\} \quad (0 \leq t \leq 1),
\tag{43}
\]
such that \( \ln((z - z_1)(z - z_2)) \) is real when \( (z - z_1)(z - z_2) > 0 \). (v) Let \( f(z) \) satisfy the conditions of Definition 2 for the existence of the fractional derivative of \( (z - z_2)^p f(z) \) of order \( \alpha \) for \( z \in \mathcal{R} \{ L_1 \cup L_2 \} \), denoted by \( D_{z-x}^{\alpha} ((z - z_2)^p f(z)) \), where \( \alpha \) and \( p \) are real or complex numbers. (vi) Let
\[
K = \left\{ k : k \in \mathbb{N}, \arg \left( \lambda_t \left( z_1, z_2, \frac{z_1 + z_2}{2} \right) \right) \right\}
\_tag{44}
\]
\[
\leq \arg \left( \lambda_t \left( z_1, z_2, \frac{z_1 + z_2}{2} \right) \right) + \frac{2\pi k}{a},
\tag{44}
\]
Then, for arbitrary complex numbers \( \mu, \nu, \gamma \) and for \( z \) on \( C_1(t) \) defined by
\[
\xi = \frac{z_1 + z_2}{2} + \frac{z_1 - z_2}{2} \sqrt{1 + e^{2i\theta}} \quad ( -\pi < \theta < \pi),
\tag{45}
\]
for each \( t \) such that \( 0 < t \leq r \). (iv) Let
\[
\left\{ (z - z_1)(z - z_2)^{\lambda} = \exp \left( \lambda \ln \left( \left( (z - z_1)(z - z_2) \right) \right) \right) \right\}
\tag{42}
\]
denote the principal branch of that function which is continuous and inside \( C(r) \), cut by the respective two branch lines \( L_+ \) defined by
\[
L_+ = \left\{ z : z = z_1 + z_2 \cdot t \left( \frac{z_1 - z_2}{2} \right) \right\} \quad (0 \leq t \leq 1),
\tag{43}
\]
such that \( \ln((z - z_1)(z - z_2)) \) is real when \( (z - z_1)(z - z_2) > 0 \). (v) Let \( f(z) \) satisfy the conditions of Definition 2 for the existence of the fractional derivative of \( (z - z_2)^p f(z) \) of order \( \alpha \) for \( z \in \mathcal{R} \{ L_1 \cup L_2 \} \), denoted by \( D_{z-x}^{\alpha} ((z - z_2)^p f(z)) \), where \( \alpha \) and \( p \) are real or complex numbers. (vi) Let
\[
K = \left\{ k : k \in \mathbb{N}, \arg \left( \lambda_t \left( z_1, z_2, \frac{z_1 + z_2}{2} \right) \right) \right\}
\_tag{44}
\]
\[
\leq \arg \left( \lambda_t \left( z_1, z_2, \frac{z_1 + z_2}{2} \right) \right) + \frac{2\pi k}{a},
\tag{44}
\]
Then, for arbitrary complex numbers \( \mu, \nu, \gamma \) and for \( z \) on \( C_1(t) \) defined by
\[
\xi = \frac{z_1 + z_2}{2} + \frac{z_1 - z_2}{2} \sqrt{1 + e^{2i\theta}} \quad ( -\pi < \theta < \pi),
\tag{45}
\]
for each \( t \) such that \( 0 < t \leq r \). (iv) Let
\[
\left\{ (z - z_1)(z - z_2)^{\lambda} = \exp \left( \lambda \ln \left( \left( (z - z_1)(z - z_2) \right) \right) \right) \right\}
\tag{42}
\]
Tremblay and Fugère [36] developed the power series of an analytic function \( f(z) \) in terms of the function \((z - z_1)(z - z_2)\), where \(z_1\) and \(z_2\) are two arbitrary points inside the analyticity region \( \mathcal{R} \) of \( f(z) \). Explicitly, they showed the following theorem.

**Theorem 9.** Under the assumptions of Theorem 8, the following expansion formula holds true:

\[
\sum_{k \in K} c_k z^{-k} = \sum_{k \in K} \left[ \frac{\theta(z)}{(z-z_1)(z-z_2)} \right]^{\alpha-1} \left( \frac{\theta(z)}{z-z_1} \right)^{\beta-1} \times f(z) \left( \begin{array}{c} \theta(z) \\ z-z_1 \end{array} \right) \]

As special case, if we set \( \alpha = 1 \) and \( \beta = 1 \), we obtain

\[
f(z) = cz^{-\beta}(z-z_1)^{\alpha} \times \sum_{n=-\infty}^{\infty} \frac{\sin[(\beta-cn-\gamma)\pi]}{\sin((\beta+c-\gamma)\pi)} \left( z-z_1 \right) \left( z-z_2 \right) \left( z-w \right) f(z) |_{z=z_1}(w-z_2) \left( \begin{array}{c} \theta(z) \\ z-w \end{array} \right) \]

**Theorem 10.** Let \( f(g^{-1}(z)) \) and \( f(h^{-1}(z)) \) be defined and analytic in the simply connected region \( \mathcal{R} \) of the complex \( z \)-plane and let the origin be an interior or boundary point of \( \mathcal{R} \). Suppose also that \( g^{-1}(z) \) and \( h^{-1}(z) \) are regular univalent functions on \( \mathcal{R} \) and that \( h^{-1}(0) = g^{-1}(0) \). Let \( \phi f(g^{-1}(z))dz \) vanish over simple closed contour in \( \mathcal{R} \cup \{0\} \) through the origin. Then the following relation holds true:

\[
D_{g(z)}^\alpha \left\{ f(z) \right\} = D_{h(z)}^\alpha \left\{ f(z) \left[ \frac{h(w)-h(z)}{g(w)-g(z)} \right]^{\alpha+1} \right\}_{w=z} \]

The relation (51) allows us to obtain very easily known and new summation formulas involving special functions of mathematical physics.

By applying relation (51), Gaboury and Tremblay [37] proved the following corollary which will be useful in the next section.

**Corollary 11.** Under the hypotheses of Theorem 10, let \( p \) be a positive integer. Then the following relation holds true:

\[
z^p \Omega^\alpha_{p} \left\{ f(z) \right\} = p(z^{p-1})^\alpha \times \sum_{n=-\infty}^{\infty} \frac{\sin[(\beta-cn-\gamma)\pi]}{\sin((\beta+c-\gamma)\pi)} \left( z-z_1 \right) \left( z-z_2 \right) \left( z-w \right) f(z) |_{z=z_1}(w-z_2) \left( \begin{array}{c} \theta(z) \\ z-w \end{array} \right) \]

where

\[
\Delta_k = (z_1-z_2)^2 + 4V(\omega^k \theta(z)), \quad V(z) = \sum_{r=1}^{\infty} D_z^{-1} \left[ \left( q(z) \right)^{-r} \right] |_{z=0} z^r \]

\[
\theta(z) = (z-z_1)(z-z_2)q((z-z_1)(z-z_2)).
\]

As special case, if we set \( 0 < c \leq 1 \), \( q(z) = 1 \), \( \theta(z) = (z-z_1)(z-z_2)(z-\omega) \), and \( z_2 = 0 \) in (48), we obtain

\[
f(z) = cz^{-\beta}(z-z_1)^{\alpha} \times \sum_{n=-\infty}^{\infty} \frac{\sin[(\beta-cn-\gamma)\pi]}{\sin((\beta+c-\gamma)\pi)} \left( z-z_1 \right) \left( z-z_2 \right) \left( z-\omega \right) f(z) |_{z=z_1}(\omega-z_2) \left( \begin{array}{c} \theta(z) \\ z-\omega \end{array} \right) \]

Finally, Osler [21, page 290, Theorem 2] discovered a fundamental relation from which he deduced the generalized chain rule for the fractional derivatives. This result is recalled here as Theorem 10.

**Theorem 10.** Let \( f(g^{-1}(z)) \) and \( f(h^{-1}(z)) \) be defined and analytic in the simply connected region \( \mathcal{R} \) of the complex \( z \)-plane and let the origin be an interior or boundary point of \( \mathcal{R} \). Suppose also that \( g^{-1}(z) \) and \( h^{-1}(z) \) are regular univalent functions on \( \mathcal{R} \) and that \( h^{-1}(0) = g^{-1}(0) \). Let \( \phi f(g^{-1}(z))dz \) vanish over simple closed contour in \( \mathcal{R} \cup \{0\} \) through the origin. Then the following relation holds true:

\[
D_{g(z)}^\alpha \left\{ f(z) \right\} = D_{h(z)}^\alpha \left\{ f(z) \left[ \frac{h(w)-h(z)}{g(w)-g(z)} \right]^{\alpha+1} \right\}_{w=z} \]

The relation (51) allows us to obtain very easily known and new summation formulas involving special functions of mathematical physics.

By applying relation (51), Gaboury and Tremblay [37] proved the following corollary which will be useful in the next section.

**Corollary 11.** Under the hypotheses of Theorem 10, let \( p \) be a positive integer. Then the following relation holds true:

\[
z^p \Omega^\alpha_{p} \left\{ f(z) \right\} = p(z^{p-1})^\alpha \]

where

\[
g(z) \Omega^\alpha_{p} \left\{ \cdots \right\} := \frac{\Gamma(\beta)}{\Gamma(\alpha)} \left( g(z) \right)^{\frac{1}{\beta}} D_{g(z)}^\alpha \left\{ \left( g(z) \right)^{\frac{1}{\beta}} \cdots \right\}.
\]

4. Relations Involving the Extended Multiparameters Hurwitz-Lerch Zeta Function \( \Phi_{\lambda_1,\ldots,\lambda_p,\rho_1,\ldots,\rho_q}^{\rho_1,\ldots,\rho_p,\sigma_1,\ldots,\sigma_q} (z, s, a) \)

In this section, we present the new expansion formulas involving the extended multiparameters Hurwitz-Lerch zeta function \( \Phi_{\lambda_1,\ldots,\lambda_p,\rho_1,\ldots,\rho_q}^{\rho_1,\ldots,\rho_p,\sigma_1,\ldots,\sigma_q} (z, s, a) \).
Theorem 12. Under the hypotheses of Theorem 5, the following expansion formula holds true:
\[
\Phi_{\lambda_1, \ldots, \lambda_p, \mu_1, \ldots, \mu_q, \nu} (z^\nu, s, a) = \frac{\Gamma (\nu) \Gamma (1 + \nu - \tau) \sin (\nu \pi)}{\Gamma (\nu) (1 - \nu - \theta - 1)} \times \left( \sum_{n=-\infty}^{\infty} \left( \frac{\nu \pi}{\nu + n} \sin \left( \left( \nu + n \right) \frac{\pi}{\nu} \right) \right) \times \sin \left( \left( \theta + \nu \right) \frac{\pi}{\nu} \right) \right) \times \Phi_{\lambda_1, \ldots, \lambda_p, \mu_1, \ldots, \mu_q, \nu} (z^\nu, s, a) \times (\Gamma (2 + \nu - \tau + \nu - n) \Gamma (\nu + n))^{-1},
\]
provided that both members of (57) exist.

Proof. Upon first substituting \( \mu \mapsto \theta \) and \( \nu \mapsto \gamma \) in Theorem 6 and then setting
\[
\alpha = \nu - \tau, \quad u(z) = z^{-\beta}\]
\[
v(z) = \Phi_{\lambda_1, \ldots, \lambda_p, \mu_1, \ldots, \mu_q} (z^\nu, s, a),
\]
in which both \( u(z) \) and \( v(z) \) satisfy the conditions of Theorem 6, we have
\[
D_z^{-\tau} \left\{ z^{\nu-1} \Phi_{\lambda_1, \ldots, \lambda_p, \mu_1, \ldots, \mu_q} (z^\nu, s, a) \right\} = \frac{\Gamma (\nu) z^{-\tau} \Gamma (\nu - \nu - \theta - 1) \sin \left( \left( \nu + \nu - \beta - \theta \right) \frac{\pi}{\nu} \right) \sin \left( \left( \theta + \nu \right) \frac{\pi}{\nu} \right)}{\Gamma (\nu) (1 - \nu - \theta - 1)} \times \left( \sum_{n=-\infty}^{\infty} \left( \frac{\nu \pi}{\nu + n} \sin \left( \left( \nu + n \right) \frac{\pi}{\nu} \right) \right) \times \sin \left( \left( \theta + \nu \right) \frac{\pi}{\nu} \right) \right) \times \Phi_{\lambda_1, \ldots, \lambda_p, \mu_1, \ldots, \mu_q, \nu} (z^\nu, s, a) \times (\Gamma (2 + \nu - \tau + \nu - n) \Gamma (\nu + n))^{-1},
\]
provided that both members of (57) exist.
Proof. Setting \( f(z) = \Phi^{\rho_{1},...,\rho_{p},\sigma_{1},...,\sigma_{q}}(z^x, s, a) \) in Theorem 7 with \( b = y = 0, 0 < c \leq 1 \), and \( \theta(z) = z - z_0 \), we have

\[
\Phi^{\rho_{1},...,\rho_{p},\sigma_{1},...,\sigma_{q}}_{\lambda_{1},...,\lambda_{p},\mu_{1},...,\mu_{q}}(z^x, s, a)
= c \sum_{n=\infty}^{\infty} \frac{D_{z}}{n^{\lambda_{1}+\cdots+\lambda_{p}+\mu_{1}+\cdots+\mu_{q}}} \left( z(z - z_0)^{\lambda_1 + \cdots + \lambda_p} \right) \left( z(z - z_0)^{\mu_1 + \cdots + \mu_q} \right) (z^x, s, a) \bigg|_{z = z_1, w = z}. \tag{70}\]

Thus, by combining (66) and (67), we are led to assertion (64) of Theorem 15.

Theorem 16. Under the hypotheses of Theorem 9, the following expansion formula holds true:

\[
\Phi^{\rho_{1},...,\rho_{p},\sigma_{1},...,\sigma_{q}}_{\lambda_{1},...,\lambda_{p},\mu_{1},...,\mu_{q}}(z^x, s, a)
= cz^{\beta} \Gamma(\beta + cn + \gamma) \frac{\sin((\beta - cn - \gamma) \pi) e^{i\pi(n+1)|z(z - z_1)/z|^\gamma}}{\sin((\beta + c - \gamma) \pi) \Gamma(1 - \alpha + cn + \gamma)} \times \Phi^{\rho_{1},...,\rho_{p},\sigma_{1},...,\sigma_{q}}_{\lambda_{1},...,\lambda_{p},\mu_{1},...,\mu_{q}}(z^x, s, a) \bigg|_{z = z_1}. \tag{68}\]

provided that both sides of (68) exist.

Proof. Setting \( f(z) = \Phi^{\rho_{1},...,\rho_{p},\sigma_{1},...,\sigma_{q}}(z^x, s, a) \) in Theorem 9 with \( z_2 = 0, 0 < c \leq 1, q(z) = 1 \), and \( \theta(z) = (z - z_1)(z - z_2) \), we find that

\[
\Phi^{\rho_{1},...,\rho_{p},\sigma_{1},...,\sigma_{q}}_{\lambda_{1},...,\lambda_{p},\mu_{1},...,\mu_{q}}(z^x, s, a)
= cz^{\beta} \Gamma(\beta + cn + \gamma) \frac{\sin((\beta - cn - \gamma) \pi) e^{i\pi(n+1)|z(z - z_1)/z|^\gamma}}{\sin((\beta + c - \gamma) \pi) \Gamma(1 - \alpha + cn + \gamma)} \times \Phi^{\rho_{1},...,\rho_{p},\sigma_{1},...,\sigma_{q}}_{\lambda_{1},...,\lambda_{p},\mu_{1},...,\mu_{q}}(z^x, s, a) \bigg|_{z = z_1}. \tag{69}\]

provided that both sides of (69) exist.
With the help of the relation in (26), we have

\[
D_z^{-\alpha+\gamma} \left[ z^{-\alpha+\gamma} (z + w - z_1) \right]_{z = z_1, w = z} = (z - z_1) D_z^{-\alpha+\gamma} \left[ z^{-\alpha+\gamma} \Phi_{\lambda_1, \lambda_2, \mu_1, \mu_2} (z^s, s, a) \right]_{z = z_1} + D_z^{-\alpha+\gamma} \left[ z^{-\alpha+\gamma} \Phi_{\lambda_1, \lambda_2, \mu_1, \mu_2} (z^s, s, a) \right]_{z = z_1}.
\]

Thus, by combining (70) and (71), we obtain desired result (68).

Finally, from Corollary II given in the preceding section, we obtain the following new relation involving the extended multiparameters Hurwitz-Lerch zeta function \( \Phi_{\lambda_1, \lambda_2, \mu_1, \mu_2} (z, s, a) \).

**Theorem 17.** Under the hypotheses of Corollary II, let \( k \) be a positive integer. Then the following relation holds true:

\[
\Phi_{\lambda_1, \lambda_2, \mu_1, \mu_2} (z, s, a) = \frac{k \Gamma (\beta) \Gamma (\alpha)}{\Gamma (\alpha) \Gamma (\beta + k - 1 \alpha)} \sum_{n=0}^{\infty} \left( \prod_{j=1}^{P} \left( \lambda_j \right)_{\nu_j} \left( \mu_j \right)_{\nu_j} \right)^n \left( \frac{\alpha}{\alpha + n} \right)^n \left( \frac{\beta}{\beta + (k - 1) \alpha + n} \right)^n \left( \frac{z^s}{z} \right)^n \times (z^s, s, a).
\]

where \( \lambda > 0 \) and \( F_D^{(n)} \) denotes the Lauricella function of \( n \) variables defined by [38, page 60]

\[
F_D^{(n)} [a, b_1, \ldots, b_n; x_1, \ldots, x_n] = \sum_{m_1, \ldots, m_n=0}^{\infty} \left( a \right)_{m_1} \cdots \left( a \right)_{m_n} \left( \frac{b_1}{b_1} \right)_{m_1} \cdots \left( \frac{b_n}{b_n} \right)_{m_n} (x_1, \ldots, x_n).
\]

provided that both sides of (72) exist.

**Proof.** Putting \( p = k \) and letting \( f(z) = \Phi_{\lambda_1, \lambda_2, \mu_1, \mu_2} (z, s, a) \) in Corollary II, we get

\[
z^s \Omega^{\alpha}_x \Phi_{\lambda_1, \lambda_2, \mu_1, \mu_2} (z, s, a) = \frac{k}{(z^{k-1})^x} \sum_{q=0}^{\infty} \left( \prod_{j=1}^{P} \left( \lambda_j \right)_{\nu_j} \left( \mu_j \right)_{\nu_j} \right)^n \left( \frac{z^s}{z} \right)^n \times (z^s, s, a).
\]

With the help of the definition of \( z \Omega^{\alpha}_x \) given by (53), we find for the left-hand side of (74) that

\[
z^s \Omega^{\alpha}_x \Phi_{\lambda_1, \lambda_2, \mu_1, \mu_2} (z, s, a) = \Phi_{\lambda_1, \lambda_2, \mu_1, \mu_2}^{(1)} (z, s, a).
\]

We now expand each factor in the product in (74) in power series and replace extended multiparameters Hurwitz-Lerch zeta function by its series representation. We thus find for the right-hand side of (74) that

\[
k (z^{k-1})^x z^{s \Omega^{\alpha}_x} \times \left\{ \sum_{n=0}^{\infty} \left( \prod_{j=1}^{P} \left( \lambda_j \right)_{\nu_j} \left( \mu_j \right)_{\nu_j} \right)^n \left( \frac{z^s}{z} \right)^n \times (z^s, s, a) \right\}_{z = z_1}.
\]
5. Corollaries and Consequences

We conclude this paper by presenting some special cases of the main results. These special cases and consequences are given in the form of the following corollaries.

Setting \( k = 3 \) in Theorem 17, we obtain the following corollary.

**Corollary 19.** Under the hypotheses of Theorem 17, the following expansion formula holds true:

\[
\Phi_{\rho_1, \ldots, \rho_p; \lambda, \sigma_1, \ldots, \sigma_q}^{(3)}(z, s, a) = 3 \Gamma(\beta + \alpha) \Gamma(3\alpha) \Gamma(\beta + (k - 1)\alpha) \sum_{\substack{n \geq 0 \ n\ell \geq 0 \ \mu_j \geq 0 \ \sigma_j \geq 0}} \left( \begin{array}{c} (\lambda_j, 1)_{n\ell_j} \\ (\mu_j, 1)_{n\sigma_j} \end{array} \right) \frac{(3\alpha)_n}{(\beta + \alpha)_n (n + a)^2} \frac{z^n}{n!} \cdot \prod_{j=1}^{p} \frac{1}{(\rho_j)_n} \prod_{j=1}^{p} \frac{(1 - \beta, 1 - \lambda_j, 1 - \alpha_j; \alpha_j + 1, 1 - \beta_j, 1 - \lambda_j; \sigma_j + 1; 1, 1 - \sigma_j; 0)_{m_j}}{m_j! m_k! m_l!}.
\]

Finally, by combining (75) and (76), we obtain the result (72) asserted by Theorem 17.

\[ \Box \]

**Remark 18.** Each of the previous theorems can be written in terms of \( \mathcal{H} \)-function given in Definition 1. For instance, if we make use of (11), then Theorem 17 becomes

\[
\mathcal{H}_{\rho_1, \ldots, \rho_p; \lambda, \sigma_1, \ldots, \sigma_q}^{(3)}(z, s, a) = \frac{k \Gamma(\beta) \Gamma(\alpha) \Gamma(k\alpha)}{\Gamma(\beta + (k - 1)\alpha)} \sum_{\substack{n \geq 0 \ n\ell \geq 0 \ \mu_j \geq 0 \ \sigma_j \geq 0}} \left( \begin{array}{c} (\lambda_j, 1)_{n\ell_j} \\ (\mu_j, 1)_{n\sigma_j} \end{array} \right) \frac{(k\alpha)_n}{(\beta + (k - 1)\alpha)_n (n + a)^2} \frac{z^n}{n!} \cdot \prod_{j=1}^{p} \frac{1}{(\rho_j)_n} \prod_{j=1}^{p} \frac{(1 - \beta, 1 - \lambda_j, 1 - \alpha_j; \alpha_j + 1, 1 - \beta_j, 1 - \lambda_j; \sigma_j + 1; 1, 1 - \sigma_j; 0)_{m_j}}{m_j! m_k! m_l!}.
\]

(76)

where \( F_1 \) denotes the first Appell function defined by [38, page 22]

\[
F_1 \left[ a, b_1, b_2; c; x_1, x_2 \right] = \sum_{\substack{m_1, m_2 \geq 0 \ n_1, n_2 \geq 0 \ \mu_1 \geq 0 \ \sigma_1 \geq 0 \ \mu_2 \geq 0 \ \sigma_2 \geq 0}} \frac{(a)_m (b_1)_{m_1} (b_2)_{m_2} (c)_m x_1^{m_1} x_2^{m_2}}{m_1! m_2!} \cdot \prod_{j=1}^{p} \frac{1}{(\rho_j)_n} \prod_{j=1}^{p} \frac{(1 - \beta, 1 - \lambda_j, 1 - \alpha_j; \alpha_j + 1, 1 - \beta_j, 1 - \lambda_j; \sigma_j + 1; 1, 1 - \sigma_j; 0)_{m_j}}{m_j! m_k! m_l!}.
\]

(77)

provided that both sides of (78) exist.

Setting \( p - 1 = q = 1, \kappa = 1, \) and making the following substitutions \( \rho_1 \mapsto \rho, \rho_2 \mapsto \sigma, \sigma_1 \mapsto \eta, \lambda_1 \mapsto \lambda, \lambda_2 \mapsto \mu, \) and \( \mu_1 \mapsto \nu \) in Theorem 14 lead to the following expansion formula given recently by Srivastava et al. [14].

(78)
Corollary 20. Under the hypotheses of Theorem 14, the following expansion formula holds true:

\[
\Phi_{\lambda, \rho, \nu, \mu}^{(p, q, x)}(z, s, a) = e \sum_{n=-\infty}^{\infty} (z_0)^{\gamma n} (z - z_0)^{\alpha n} G_{\lambda, \rho, \nu, \mu}^{(p, q, x)}(z, s, a)
\]

for \( z \) such that \(|z - z_0| = |z_0| \) and provided that both members of (80) exist.

Remark 21. The function \( \Phi_{\lambda, \rho, \nu, \mu}^{(p, q, x)}(z, s, a) \), which occurs in Corollary 20 above, as well as its multiparameter generalizations, was introduced and investigated in a series of papers by Srivastava et al. (see [7, page 491, Equation (1.20)]; see also [8, 9, 39]) and is defined as follows:

\[
\Phi_{\lambda, \rho, \nu, \mu}^{(p, q, x)}(z, s, a) = \sum_{n=0}^{\infty} \left( \frac{\lambda_n(m_n)}{n!} \right) \frac{z^n}{(n+a)^s}
\]

where \( \lambda, \mu, \rho, \nu, \kappa, \sigma \in \mathbb{R}^+ \);

\( \lambda - \rho - \sigma > -1 \) when \( s, z \in \mathbb{C} \);

\( \lambda - \rho - \sigma = -1, s \in \mathbb{C} \) when \(|z| < \rho^s \sigma^\sigma \kappa^{s} \);

\( \lambda - \rho - \sigma = -1, \Re(s + v - \lambda - \mu) > 1 \) when \(|z| = \rho^s \).

(81)

Putting \( p - 1 = q = 1, \lambda = 1, \) and setting \( \rho_1 = \rho_2 = \sigma_1 = 1, \lambda_1 = \mu, \) and \( \mu_1 = \mu_1 \) in Theorem 15 reduce to the following expansion formula given recently by Gaboury [15, Equation (4.4)].

Corollary 22. Under the hypotheses of Theorem 15, the following expansion formula holds true:

\[
\Phi_{\mu}^{\ast}(z, s, a) = c z^{-\alpha} (z - z_1)^{\beta} \eta^\gamma \sum_{n=-\infty}^{\infty} e^{i\pi n (n+1)} \frac{\sin[(\alpha + cn + \gamma)\pi]}{\sin[(\alpha - cn + \gamma)\pi]} G_{\lambda, \rho, \nu, \mu}^{(p, q, x)}(z_1, s, a)\]

(82)

for \( z \) on \( C_{1}(1) \) defined by

\[
z = \frac{z_1}{2} + \frac{z_1}{2} \sqrt{1 + e^{i\theta}} \quad (-\pi < \theta < \pi),
\]

provided that both sides of (82) exist.

Remark 23. The function \( \Phi_{\mu}^{\ast}(z, s, a) \), which occurs in Corollary 22 above, was introduced and studied by Goyal and Laddha [4, page 100, Equation (1.5)] and is defined as follows:

\[
\Phi_{\mu}^{\ast}(z, s, a) := \sum_{n=0}^{\infty} \left( \frac{\lambda_n(m_n)}{n!} \right) \frac{z^n}{(n+a)^s}
\]

\( \mu \in \mathbb{C}; \sigma \in \mathbb{C} \backslash \mathbb{Z}^0; s \in \mathbb{C} \) when \(|z| < 1; \)

\( \Re(s - \mu) > 1 \) when \(|z| = 1 \).

Setting \( s = 0, \kappa = 1, p \mapsto p + 1, \) and \( q \mapsto q + 1 \) with

\[
\rho_1 = \cdots = \rho_p = 1, \quad \lambda_{p+1} = \rho_{p+1} = 1, \quad \sigma_1 = \cdots = \sigma_q = 1, \quad \mu_{q+1} = \beta, \quad \sigma_{q+1} = \alpha
\]

the function \( \Phi_{\mu}^{\ast}(z, s, a) \) reduces to Theorem 16, we deduce the following expansion formula.

Corollary 24. Under the hypotheses of Theorem 16, the following formula holds true:

\[
\frac{1}{\Gamma(\beta)} \prod_{p=1}^{p+1} \phi_{\mu_1}^{\ast}(\lambda_{1,1}, \ldots, \lambda_{1,1}, \lambda_{1,1}, 1, 1, 1); \left( \mu_1, 1, 1, 1, \mu_1, 1, 1, \beta, 0 \right) z
\]

(83)

\[
\times \sum_{n=-\infty}^{\infty} \frac{\sin((\beta - cn - \gamma)\pi)}{\sin((\beta + cn - \gamma)\pi)} \Gamma(1 - \alpha + cn + \gamma)
\]

(84)

\[
\times G_{\lambda, \rho, \nu, \mu}^{(p, q, x)}(z_1, s, a)
\]

(85)

for \( z \) on \( C_{1}(1) \) defined by

\[
z = \frac{z_1}{2} + \frac{z_1}{2} \sqrt{1 + e^{i\theta}} \quad (-\pi < \theta < \pi),
\]

provided that both sides of (82) exist.

The function \( \Phi_{\mu}^{\ast}(z, s, a) \) involved in the left-hand side of (86) is the Fox-Wright function \( (l, m) \in \mathbb{N}_0^l \) with \( l \) numerator parameters \( a_1, \ldots, a_l \) and \( m \) denominator parameters \( b_1, \ldots, b_m \) such that

\[
a_j \in \mathbb{C} \quad (j = 1, \ldots, l),
\]

(86)

\[
b_j \in \mathbb{C} \backslash \mathbb{Z}^0 \quad (j = 1, \ldots, m),
\]
defined by (see, for details, [17, 40])
\[
\Psi^\ast_m \left[ \left( a_1, A_1; \ldots, a_l, A_l; B_1, B_1; \ldots, B_m, B_m \right); z \right] \\
\hspace{0.5cm} := \sum_{n=0}^{\infty} \left( \prod_{j=1}^{m} (b_j)_{B_j} \cdot \cdots \cdot (b_m)_{B_m} \right) n! \left( a_1 \right)_{A_1} \left( a_2 \right)_{A_2} z^n
\]
(89)

where the equality in the convergence condition holds true for suitably bounded values of \(|z|\) given by
\[
|z| < \left( \prod_{j=1}^{l} \frac{A_j - 1}{A_j} \right) \left( \prod_{j=1}^{m} \frac{B_j}{B_j} \right).
\]
(90)

In our series of forthcoming papers, we propose to consider and investigate analogous expansion formulas and other results involving the \(\lambda\)-extensions of the generalized Hurwitz-Lerch zeta functions. These functions have been investigated recently by Srivastava et al. [41] (see also [42]).

**Conflict of Interests**

The authors declare that there is no conflict of interests regarding the publication of this paper.

**References**

[1] H. M. Srivastava and J. Choi, *Series Associated with the Zeta and Related Functions*, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.

[2] H. M. Srivastava, "Some formulas for the Bernoulli and Euler polynomials at rational arguments," *Mathematical Proceedings of the Cambridge Philosophical Society*, vol. 129, no. 1, pp. 77–84, 2000.

[3] H. M. Srivastava and J. Choi, *Zeta and q-Zeta Functions and Associated Series and Integrals*, Elsevier Science Publishers, Amsterdam, The Netherlands, 2012.

[4] S. P. Goyal and R. K. Laddha, "On the generalized Riemann zeta functions and the generalized Lambert transform," *Ganita Sansads*, vol. 11, no. 2, pp. 99–108, 1997.

[5] S.-D. Lin and H. M. Srivastava, "Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations," *Applied Mathematics and Computation*, vol. 154, no. 3, pp. 725–733, 2004.

[6] M. Carg, K. Jain, and S. L. Kalla, "A further study of general Hurwitz-Lerch zeta function," *Algebras, Groups and Geometries*, vol. 25, no. 3, pp. 311–319, 2008.

[7] H. M. Srivastava, R. K. Saxena, T. K. Pogány, and R. Saxena, "Integral and computational representations of the extended Hurwitz-Lerch zeta function," *Integral Transforms and Special Functions*, vol. 22, no. 7, pp. 487–506, 2011.

[8] H. M. Srivastava, "Some families of mixed multilateral generating relations," *Journal of Rajasthan Academy of Physical Sciences*, vol. 1, no. 1, pp. 1–6, 2002.

[9] H. M. Srivastava, "Some generalizations and basic (or \(q\)-) extensions of the Bernoulli, Euler and Genocchi polynomials," *Applied Mathematics & Information Sciences*, vol. 5, no. 3, pp. 390–444, 2011.

[10] H. M. Srivastava and H. L. Manocha, *A treatise on generating functions*, Ellis Horwood Series: Mathematics and Its Applications, Ellis Horwood, Chichester, UK; John Wiley & Sons, New York, NY, USA, 1984.

[11] A. A. Inayat-Hussain, "New properties of hypergeometric series derivable from Feynman integrals. II. A generalisation of the H function," *Journal of Physics. A. Mathematical and General*, vol. 20, no. 13, pp. 4119–4128, 1987.

[12] R. G. Buschman and H. M. Srivastava, "The H function associated with a certain class of Feynman integrals," *Journal of Physics A: Mathematical and General*, vol. 23, no. 20, pp. 4707–4710, 1990.

[13] H. M. Srivastava, K. C. Gupta, and S. P. Goyal, *The H-Functions of One and Two Variables with Applications*, South Asian Publishers, New Delhi, India, 1982.

[14] H. M. Srivastava, S. Gaboury, and A. Bayad, "Expansion formulas for an extended Hurwitz-Lerch zeta function obtained via fractional calculus," preprint 2014.

[15] S. Gaboury, "Some relations involving generalized Hurwitz-Lerch zeta function obtained by means of fractional derivatives with applications to Apostol-type polynomials," *Advances in Difference Equations*, vol. 2013, article 361, pp. 1–13, 2013.

[16] S. Gaboury and A. Bayad, "Series representations at special values of generalized Hurwitz-Lerch zeta function," *Abstract and Applied Analysis*, vol. 2013, Article ID 975615, 8 pages, 2013.

[17] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006.

[18] A. Erdélyi, "An integral equation involving Legendre functions," *SIAM Journal on Applied Mathematics*, vol. 12, pp. 15–30, 1964.

[19] J. Liouville, "Mémoire sur le calcul des différentielles à indices quelconques," *Journal de l’École Polytechnique*, vol. 13, pp. 162–183, 1832.

[20] M. Riesz, "L’intégrale de Riemann-Liouville et le problème de Cauchy," *Acta Mathematica*, vol. 81, pp. 1–223, 1949.

[21] T. J. Osler, "The fractional derivative of a composite function," *SIAM Journal on Mathematical Analysis*, vol. 1, pp. 288–293, 1970.

[22] T. J. Osler, "Leibniz rule for fractional derivatives generalized and an application to infinite series," *SIAM Journal on Applied Mathematics*, vol. 18, pp. 658–674, 1970.

[23] T. J. Osler, *Leibniz rule, the chain rule and Taylor's theorem for fractional derivatives* [Ph.D. thesis], New York University, 1970.

[24] T. J. Osler, "Mathematical notes: fractional derivatives and Leibniz rule," *The American Mathematical Monthly*, vol. 78, no. 6, pp. 645–649, 1971.

[25] J.-L. Lavoie, R. Tremblay, and T. J. Osler, "Fundamental properties of fractional derivatives via Pochhammer integrals," in *Fractional Calculus and Its Applications (Proc. Internat. Conf., Univ. New Haven, West Haven, Conn., 1974)*, B. Ross, Ed., vol. 457 of Lecture Notes in Math., pp. 323–356, Springer, Berlin, Germany, 1975.
[26] R. Tremblay, *Une Contribution à la Théorie de la Dérivée Fractionnaire [Ph.D. thesis]*, Laval University, Québec, Canada, 1974.

[27] H. M. Srivastava, S.-D. Lin, and P.-Y. Wang, “Some fractional-calculus results for the $H$-function associated with a class of Feynman integrals,” *Russian Journal of Mathematical Physics*, vol. 13, no. 1, pp. 94–100, 2006.

[28] K. S. Miller and B. Ross, *An Introduction to the Fractional Calculus and Fractional Differential Equations*, John Wiley & Sons, New York, NY, USA, 1993.

[29] R. Tremblay, S. Gaboury, and B.-J. Fugère, “A new Leibniz rule and its integral analogue for fractional derivatives,” *Integral Transforms and Special Functions*, vol. 24, no. 2, pp. 111–128, 2013.

[30] T. J. Osler, “Taylor’s series generalized for fractional derivatives and applications,” *SIAM Journal on Mathematical Analysis*, vol. 2, pp. 37–48, 1971.

[31] G. H. Hardy, “Riemann’s form of Taylor’s series,” *Journal of the London Mathematical Society*, vol. 20, pp. 48–57, 1945.

[32] O. Heaviside, *Electromagnetic Theory*, vol. 2, Dover Publishing, New York, NY, USA, 1950.

[33] B. Riemann, *Versuch einer allgemeinen Auffassung der Integration und Differentiation*, The Collected Works of Bernhard Riemann, Dover Publishing Company, New York, NY, USA, 1953.

[34] Y. Watanabe, “Zum Riemanschen binomischen Lehrsatz,” *Proceedings of the Physico-Mathematical Society of Japan*, vol. 14, pp. 22–35, 1932.

[35] R. Tremblay, S. Gaboury, and B.-J. Fugère, “Taylor-like expansion in terms of a rational function obtained by means of fractional derivatives,” *Integral Transforms and Special Functions*, vol. 24, no. 1, pp. 50–64, 2013.

[36] R. Tremblay and B.-J. Fugère, “The use of fractional derivatives to expand analytical functions in terms of quadratic functions with applications to special functions,” *Applied Mathematics and Computation*, vol. 187, no. 1, pp. 507–529, 2007.

[37] S. Gaboury and R. Tremblay, “Summation formulas obtained by means of the generalized chain rule for fractional derivatives,” preprint 2014.

[38] H. M. Srivastava and P. W. Karlsson, *Multiple Gaussian Hypergeometric Series*, Ellis Horwood Series: Mathematics and Its Applications, Ellis Horwood, Chichester, UK; John Wiley & Sons, New York, NY, USA, 1985.

[39] H. M. Srivastava, D. Jankov, T. K. Pogány, and R. K. Saxena, “Two-sided inequalities for the extended Hurwitz-Lerch zeta function,” *Computers & Mathematics with Applications*, vol. 62, no. 1, pp. 516–522, 2011.

[40] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, *Higher Transcendental Functions. Vols. I, II*, McGraw-Hill Book, New York, NY, USA, 1953.

[41] H. M. Srivastava, M.-J. Luo, and R. K. Raina, “New results involving a class of generalized Hurwitz-Lerch zeta functions and their applications,” *Turkish Journal of Analysis and Number Theory*, vol. 1, pp. 26–35, 2013.

[42] H. M. Srivastava, “A new family of the $\lambda$-generalized Hurwitz-Lerch zeta functions with applications,” *Applied Mathematics & Information Sciences*, vol. 8, no. 4, pp. 1485–1500, 2014.
