Protein kinase C/ζ (PRKCZ) Gene is associated with type 2 diabetes in Han population of North China and analysis of its haplotypes

Yun-Feng Li, Hong-Xia Sun, Guo-Dong Wu, Wei-Nan Du, Jin Zuo, Yan Meng, Fu-De Fang

Abstract

AIM: To identify the susceptible gene(s) for type 2 diabetes in the previously mapped region, 1p36.33-p36.23, in Han population of North China using single nucleotide polymorphisms (SNPs) and to analyze the haplotypes of the gene(s) related to type 2 diabetes.

METHODS: Twenty three SNPs located in 10 candidate genes in the mapped region were chosen from public SNP domains with bioinformatic methods, and the single base extension (SBE) method was used to genotype the loci for 192 sporadic type 2 diabetes patients and 172 normal controls, implying a possible association with the disease. Interestingly, there are 5 serial makers in the p terminal region, 1p36.33-36.23, showed the linkage, which strongly suggests that there might be susceptible genes residing in this region[2].

In order to clone the susceptible genes in the 1p36.33-36.23 region, we conducted a linkage relative study by using single nucleotide polymorphism (SNP), and observed that three SNPs extending about 7kb were in the same haplotype block and there was a significant difference in their haplotype frequencies between case and control groups, which further proves that the PRKCZ gene is a susceptible gene for type 2 diabetes.

INTRODUCTION

Type 2 diabetes is a highly heterogeneous multifactorial disease with both genetic and environmental determinants and an uncertain mode of inheritance. It is characterized by hyperglycaemia due to defects in insulin secretion and action[1]. Now there are 143 millions people with the disease and more than 15 millions diabetic patients in China. In addition, the prevalence of diabetes is still increasing. The belief that type 2 diabetes has strong genetic determinants is based on several lines of evidence, including the high concordance rate among MZ twins[2,3], the marked difference in disease rate between populations[4-6], and the close correspondence between admixture rate and disease prevalence in hybrid populations[7,8]. In addition, there are evidences for major gene(s) influencing diabetes or its specific clinical manifestations, such as glucose concentration, 2-h postprandial insulin level, and age at onset of diabetes[9-11]. However, the mode of inheritance of type 2 diabetes appears to be variable across populations, suggesting a complex genetic mechanism underlying the disease.

In our previous genome-wide screening, we detected the possible susceptibility gene loci located on chromosomes 1, 12, 18 and 20 in Han population of North China. The 4 regions on chromosome 1 (1p36, 1p31, 1q22, 1q42-43) showed strong evidences of linkage with type 2 diabetes. Interestingly, there are 5 serial markers in the p terminal region, 1p36.33-36.23, showed the linkage, which strongly suggests that there might be susceptible genes residing in this region[2].

RESULTS: Among the 23 SNPs, 8 were found to be common in Chinese Han population. Allele frequency of one SNP, rs436045 in the protein kinase C/ζ gene (PRKCZ) was statistically different between the case and control groups (P<0.05). Furthermore, haplotypes at five SNP sites of PRKCZ gene were identified.

CONCLUSION: PRKCZ gene may be associated with type 2 diabetes in Han population in North China. The haplotypes at five SNP sites in this gene may be responsible for this association.

Li YF, Sun HX, Wu GD, Du WN, Zuo J, Shen Y, Qiang BQ, Yao ZJ, Wang H, Huang W, Chen Z, Xiong MM, Meng Y, Fang FD.
for sex and age, were enrolled in a case-control study. The criteria for diagnosis of diabetes mellitus conformed to those of World Health Organization. Informed consent was obtained from each subject, and the study was performed with the approval of the Ethical Committee of Peking Union Hospital. Genomic DNA was isolated from the blood samples by conventional phenol and chloroform methods. Their final concentrations were all adjusted to 20 ng/µl.

SNP-searching in the 1p36.33-36.23 region

23 SNPs in 10 genes located in or near the 1p36.33-36.23 region were selected from the NCBI SNP database (www.ncbi.nlm.nih.gov/SNP) for genotyping. All these genes were either glucose metabolism-related or lipid metabolism-related or involved in signal transduction pathways.

Primer design

The Primer3.0 program (http://zeno.well.ox.ac.uk:8080/eztbin/primer3_www.cgi) was used to design three primers to every SNP site. One pair of primers was used to amplify the fragments including the SNP site from genomic DNA. The third primer was designed to carry out the single base extension (SBE) reaction,[13] and this primer should be near the upstream of the SNP site, and could be used to anneal with the template. We then carried out a multiplex polymerase chain reaction (PCR). We designed eight different SBE primers according to different SNPs. The primers’ lengths were 18, 22, 26, 30, 34, 38, 42 and 46 bp, respectively, with Tm between 60 °C-80 °C.

PCR and purification of the products

The touch-down PCR was carried out. The reaction system was 10 µl mixture containing 50 ng genomic DNA, 3 mMol/L Mg²⁺, 0.3 mMol/L dNTP, 1 U AmpliTaq Gold. The reaction conditions were denaturation at 94 °C for 12 min, then 15 cycles of denaturation at 94 °C for 30 s, annealing at 63 °C for 30 s, extension at 72 °C for 40 s, with the annealing temperature being decreased 0.5 °C every cycle. After 15 cycles, the reaction conditions were denaturation at 94 °C for 30 s, annealing at 56 °C for 30 s, extension at 72 °C for 40 s, for 25 cycles, then extension at 72 °C for 10 min. The excess primers and dNTPs were removed by adding exonuclease 1 (1 U), USB, OHIO, USA) and calf intestine alkaline phosphatase (1.5 U, Boehringer Mannheim, Germany) to the PCR reaction mixture and incubating it at 37 °C for 1 h, and then at 95 °C for 15 min to inactivate the enzymes.

SBE reaction and identification of genotypes

SBE reaction was carried out on the purified PCR products using SBE primer (100 nm), Joe-ddATP (30 nm), Fam-ddGTP (30 nm), Tamra-ddCTP (30 nm), Rox-ddUTP (150 nm) and Thermosequenase (1 U, Amersham Pharmacia, USA). The reaction conditions were denaturation at 95 °C for 30 s, annealing at 50 °C for 30 s, extension at 60 °C for 40 s, for a total of 35 cycles, followed by extension at 60 °C for 3 min.

One µl of SBE products in loading buffer (2 µl) was electrophoresed in the ABI377 sequencers. The length of the products was compared with differently colored luciferin marking a DNA complex with different lengths (i.e.19, 23, 27, 31, 35, 39, 43 and 47 bp). The SNP’s genotype was determined by the color and length of each line. Then the PCR products were sequenced to check the SBE genotypes.

Statistical analysis

Hardy-Weinberg equilibrium[14] was tested for each genotyped locus. Using SPSS10.0 program, we compared the difference in allele frequency between cases and controls with χ² test.

SNP genotype in PRKCZ gene and haplotype analysis

The SNPs in PRKCZ gene were found from the NCBI SNP database according to gene name and 16 SNPs upstream and downstream of rs436045 were selected and genotyped. For SNP genotyping in PRKCZ gene and analysis of the haplotypes, the association analysis was carried out as follows: (1) Hardy-Weinberg equilibrium analysis; (2) The allele association analysis using SPSS10.0 program; (3) The linkage disequilibrium analysis and haplotype analysis were performed to find the haplotype related to type 2 diabetes. Genotyping results were chosen from the 24 normal controls to calculate the number of individuals with different haplotypes using the Phase program. The above results were transformed into a FASTA file analyzed using DnaSP3.5 program (http://www.bio.ub.es/~julio/DnaSP.html). The degree of linkage disequilibrium between each SNP pair (D’ and r²) and the minimum number of recombination events and their locations were calculated in order to determine the haplotype block structure of these loci. The number of haplotypes and the number of individuals with different haplotypes in each haplotype block in both case and control groups were calculated by the DnaSP3.5 program again to search for the disease-associated haplotypes.

RESULTS

Results of 23 SNPs in both case and control groups analyzed by SPSS program

Of the 23 candidate SNPs tested, one was failed to be amplified from genomic DNA (rs586965) and three were heterozygous in all the samples tested (rs5251, rs15431 and rs15854). We deduced that these three were false SNPs due to paralogous sequences. In the remaining 20 candidates, 7 SNPs were homozygous in all the samples (rs91350, ss91351, rs9117, rs5259, rs228691, rs228677 and rs170633), suggesting that they might not be true polymorphisms. Four SNPs (rs1801131, rs14311, rs5254 and rs609805) had minor allele frequencies of less than 15 % and thus were discarded. The remaining 8 SNPs (rs1801133, rs436045, rs228648, rs11740, rs262669, rs228669, rs170629 and rs161825) were genotyped in both case and control groups. Their minor allele frequencies ranged from 26.3 % to 43.16 % and all belonged to the transition type. All the SNPs were studied in the Hardy-Weinberg equilibrium. SPSS analysis showed that the allele frequency of one SNP, namely rs436045 in an intron of PRKCZ gene, was statistically different between case and control groups (Table 1).

Results of SNP genotype in PRKCZ gene and haplotype analysis

Sixteen SNPs in the upstream and downstream of rs436045 in PRKCZ gene were selected, and genotyped. Then the results were analyzed. (1) Hardy-Weinberg equilibrium analysis. (2) The allele frequencies analysis, χ² analysis showed the difference between the case and controls (Table 2). (3) Linkage disequilibrium analysis and haplotype analysis were used to find the haplotype related to type 2 diabetes.

To search for the disease-associated haplotypes, haplotypes were constructed by linkage disequilibrium mapping in the region. The results were analyzed using DnaSP3.5. The recombination analysis showed that the minimum number of recombination events was three and they were detected between [rs1878745, rs1467217], [rs1467217, rs1401126], [rs1401126, rs411021]. From the results, we believed that 10 SNPs from rs411021 to rs262642 in 13 loci were in the linkage disequilibrium. They were in the same haplotype block. Further analysis on the frequencies of haplotypes formed by alleles of the 10 loci in case and control groups showed that a more
significant difference existed in the frequencies of different haplotypes (Table 3). There were mainly 4 haplotypes in the control group, accounting for 98.3% of the total, suggesting that these loci were in the same haplotype block. But there were many more different haplotypes with variable frequencies in the case group. Analysis using the DnaSP3.5 program showed that recombination events existed between [rs809912, rs262669], [rs262669, rs262662], [rs262662, rs381664], [rs381664, rs262650] and [rs262650, rs262642], suggesting that only rs411021, rs436045, rs427811, rs385039 and rs809912 were in the same haplotype block in the case group (Figure 1). The haplotypes containing these five loci were further analyzed in the two groups. The results showed that there were mainly two haplotypes and their frequencies were significantly different in the two groups (Table 4).

Table 1 SPSS analysis results of genotyped SNPs in case and control group

SNP	Allele	Case	Control	Frequency of allele	P value	OR
rs11740	C	129	245	0.978	0.345	
	T	110	208	0.346		
rs161285	A	216	140	0.917	0.393	
rs170629	G	261	119	0.710	0.313	
rs228648	A	113	297	0.029	0.276	
rs262669	G	244	502	0.351		
rs436045	A	264	110	0.455	0.294	
rs1801133	G	224	502	0.351		

Table 3 Difference in frequencies of haplotypes formed by alleles of the 10 loci in case and control groups

Haplotypes	Frequency (%)
CGTAGTCCTGC	63.5
TGGATGCCAC	22.5
CGTAGTCTGC	7.8
TGGATCCAT	4.5
CGTAGCTGC	0.8
CGGAGTCTGC	0.4
CAGAGTCCAT	0.4
CGTAGGCTTCA	0
CGTAGTTGGT	0
CGTAGTCTTAT	0

Table 4 Difference in frequencies of haplotypes formed by alleles of the 5 loci in case and control groups

Haplotypes	Frequency (%)
CGTAG	81.0%
TGGAG	22.5%
GTGAG	0.5%
TAGGG	0.2%
CGGAG	0.3%
TAGGGAG	0.3%
TGGAGG	0.3%

DISCUSSION

In our previous genome-wide screening, we detected the possible susceptible gene loci located on chromosomes 1, 12, 18 and 20 in Han people of North China. Especially, the four regions on chromosome 1 (1p36, 1p31, 1q22 and 1q42-43) showed strong evidence of linkage with type 2 diabetes. Interestingly, five serial makers in the p terminal region, 1p36.33-36.23, showed the linkage, strongly suggesting that there may be susceptible
among about 50 kilobasepairs region, and the recombination there was a slight difference between case and control groups. So we suggested that PRKCZ might be a susceptible gene for type 2 diabetes.

Protein kinase C zeta (PRKCZ) is a member of the PKC family of serine/threonine kinases, which consists of at least 10 structurally related enzymes that have been implicated in a variety of cellular processes. PRKCZ gene belongs to the αPKC subfamily and is thought to function downstream of phosphatidylinositol 3-kinase (PI 3-kinase) in the insulin signal pathway and to contribute to the translocation of the protein encoded by GLUT4. The activated PRKCZ products can accelerate glucose transport during insulin action on rat skeletal muscle and adipocytes. In addition, PRKCZ may participate in a negative feedback pathway by phosphorylating insulin receptor substrate-1 (IRS-1) and impairing its ability to activate phosphatidylinositol 3-kinase in response to insulin. Insulin-stimulated glucose transport is defective in type 2 diabetes, and this defect is ameliorated by thiazolidinediones and lowering of blood glucose by chronic insulin therapy or short-term fasting. Rosiglitazone treatment, insulin treatment, and fasting can reverse the defects in PRKCZ-zeta/lambda activation by insulin in GK rat muscles and adipocytes and increase glucose transport in GK rat adipocytes, suggesting that insulin-sensitizing modalities may similarly improve defects in insulin-stimulated glucose transport at least partly by correcting defects in insulin-induced activation of PRKCZ-zeta/lambda[14]. The above may explain our results.

It is the essential prerequisite for localizing genes associated to disease on the base of the multitude to study linkage disequilibrium (LD) model in detail of the multitude. Now there are still some controversies on the LD capacity. The computer imitating[22] and the experience data[23] all showed that the LD would elongate several kilo basepair near some common SNP, while some other data showed that the LD would elongate more sometimes beyond 100 kilo basepairs[24-26]. Some new research data showed that the LDs would exist in the genomic DNA as the block structure, they would be broken up by the recombination spot[27-30]. Understanding the LD structure is very important for LD analysis, and for carrying out studies on disease-related mutations, population genetics, and the human genomes project. Haplotype blocks are very important for LD. Once a haplotype block is identified in some sequences, different alleles based on it can be selected for LD analysis. So, haplotype block is a very effective method to test the genomic DNA fragments associated with diseases.

Blocks are defined according to the genetic content, not according to how the information is produced and why it exists. Thus, there is no strictly limit in the definition of blocks, which may have different according to different population. Now there are no very accurate methods to construct haplotype blocks. When we constructed the blocks, we classified a set of SNPs, which have a high linkage disequilibrium but have no recombination, into one block under the condition of the capacity of LD and the recombination spots for every two SNPs.

In order to further study PRKCZ associated with diseases, a set of SNPs located in the upstream and downstream from rs436045 in PRKCZ gene were selected to conduct a case-control study and LD analysis. The results showed that the frequencies of many sites’ alleles were significantly different between case and control groups. LD analysis and recombination analysis were further carried out, and the results showed that there was a slight difference between case and control groups. The LD capacity was very high between rs411021 to rs262642 among about 50 kilobasepairs region, and the recombination frequency was very low, suggesting that these SNPs existed in one haplotype block. In cases, however, the LD capacity was very high only in five SNPs from rs411021 to rs809912, within the about 7 kilobasepairs region. The haplotypes containing these five loci were further analyzed in the two groups. The results showed that there were mainly two haplotypes with frequencies very different between the two groups. The frequency of CGTAG haplotype was significantly increased while that of TAGGA haplotype decreased in the case group (P<0.01), suggesting that CGTAG and TAGGA might be disease-associated haplotypes. In conclusion, PRKCZ gene may be associated with type 2 diabetes in Han population of North China. The haplotypes at five SNP sites in this gene may be responsible for this association.

REFERENCES

1. DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 1992; 15: 318-368
2. Barnett AH, Leslie RD, Pyke DA. Chlordpropamide-alcohol flushing and proteinuria in non-insulin-dependent diabetics. Diabetologia 1981; 20: 87-93
3. Newman B, Selby J, King MC, Stenenda C, Fabrizs R, Friedman GD. Concordance for type 2 (non-insulin dependent) diabetes mellitus in male twins. Diabetologia 1987; 30: 763-768
4. Zimmet P. Epidemiology of diabetes and its macrovascular manifestations in Pacific populations: the medical effects of social progress. Diabetes Care 1979; 2: 144-153
5. Dziehl AK, Stern MP. Special health problems of Mexican-Americans: obesity, gallbladder disease, diabetes mellitus, and cardiovascular disease. Adv Intern Med 1989; 34: 73-96
6. McKiegu PM, Shah B, Marmot MG. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet 1991; 337: 382-386
7. Brosseau JD, Eekkema RC, Crawford AC, Abe TA. Diabetes among the three affiliated tribes: correlation with degree of Indian inheritance. Am J Public Health 1979; 69: 1277-1278
8. Knowler WC, Williams RC, Pettitt DJ, Steinberg AG. Mgm; 5, 13, 14 and type 2 diabetes mellitus: an association in American Indians with genetic admixture. Am J Hum Genet 1988; 43: 520-526
9. Hanson RL, Elston RC, Pettitt DJ, Bennett PH, Knowler WC. Segregation analysis of non-insulin-dependent diabetes mellitus in Pima Indians: evidence for a major-gene effect. Am J Hum Genet 1995; 57: 160-170
10. Mitchell BD, Kammerer CM, O’Connell P, Harrison CR, Manire M, Shipman P, Moyer MP, Stern MP, Frazier ML. Evidence for linkage of postchallenge insulin levels with intestinal fatty acid-binding protein (FA BP2) in Mexican-Americans. Diabetes 1995; 44: 1046-1053
11. Stern MP, Mitchell BD, Blangero J, Reinhart L, Kammerer CM, Harrison CR, Shipman PA, O’Connell P, Frazier ML, MacCluer JW. Evidence for a major gene for type II diabetes and linkage analyses with selected candidate genes in Mexican-American s. Diabetes. 1996; 45: 563-568
12. Du W, Sun H, Wang H, Qiang B, Shen Y, Yao Z, Gu J, Xiong M, Huang W, Chen Z, Zuo J, Hua X, Gao W, Sun Q, Fang F. Confirmation of susceptibility gene loci on chromosome 1 in Northern China Han families with type 2 diabetes. Chin Med J ed 2001; 114: 876-878
13. Lindblad-Toh K, Winchester E, Daly MJ, Wang DG, Hirschhorn JN, LavoiiJette J, ArdlieK, Reid DE, Robinson E, Shlr P, Shah N, Thomas D, Fan JB, Gingersas T, Warrington J, Patil N, Hudson TJ, Landner ES. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nat Genet 2000; 24: 381-386
14. Cannings C, Edwards AW. Expected genotypic frequencies in a small sample deviation from Hardy-Weinberg equilibrium. Am J Hum Genet 1969, 21: 245-247
15. Standea M, Galloway L, Karan P, Bandyopadhyay G, Moscat J, Farasse RV. Protein kinase C-ζ, as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes potential role in glucose transport. J Biol Chem 1997; 272: 30075-30082
16. Standea M, Bandyopadhyay G, Sajan MP, Cong L, Quon M.
Farese RV. Okadaic acid activates atypical protein kinase C (zeta/lambda) in rat and 3T3/L1 adipocytes. An apparent requirement for activation of Glut4 translocation and glucose transport. J Biol Chem 1999; 274: 14074-14078

17 Etgen GJ, Valasek KM, Broderick CL, Miller AR. In vivo adenoviral delivery of recombinant human protein kinase C-ζ stimulates glucose transport activity in rat skeletal muscle. J Biol Chem 1999; 274: 22139-22142

18 Tremblay F, Lavigne C, Jacques H, Marette A. Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C(ζ/λ) activities. Diabetes 2001; 50: 1901-1910

19 Ravichandran LV, Esposito DL, Chen J, Quon MJ. Protein kinase C-ζ phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin. J Biol Chem 2001; 276: 3543-3549

20 Liu YF, Paz K, Herschkovitz A, Alt A, Tennenbaum T, Sampson SR, Ohba M, Kuroki T, LeRoith D, Zick Y. Insulin stimulates PKCζ-mediated phosphorylation of insulin receptor substrate-1 (IRS-1). A self-attenuated mechanism to negatively regulate the function of IRS proteins. J Biol Chem 2001; 276: 14459-14465

21 Kanoh Y, Bandypadhyay G, Sajan MP, Standaert ML, Farese RV. Rosiglitazone, insulin treatment, and fasting correct defective activation of protein kinase C-zeta/lambda by insulin in vastus lateralis muscles and adipocytes of diabetic rats. Endocrinology 2001; 142: 1595-1605

22 Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 1999; 22: 139-144

23 Dunning AM, Durocher F, Healey CS, Teare MD, McBride SE, Carlonagno F, Xu CF, Dawson E, Rhodes S, Ueda S, Lai E, Luben RN, Van Rensburg EJ, Maniernaama A, Kataja V, Rennart G, Dunham I, Purvis I, Easton D, Ponder BA. The extent of linkage disequilibrium in four populations with distinct demographic histories. Am J Hum Genet 2000; 67: 1544-1554

24 Abecasis GR, Noguchi E, Heinemann A, Traherne JA, Bhattacharyya S, Leaves NI, Anderson GG, Zhang Y, Lench NJ, Carey A, Cardon LR, Moffatt MF, Cookson WO. Extent and distribution of linkage disequilibrium in three genomic regions. Am J Hum Genet 2001; 68: 191-197

25 Taillon-Miller P, Bauer-Sardina I, Saccone NL, Putzel J, Laitinen T, Cao A, Kerej, Pilia G, Rice JP, Kwok PY. Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nat Genet 2000; 25: 324-328

26 Collins A, Lonjou C, Morton NE. Genetic epidemiology of single-nucleotide polymorphisms. Proc Natl Acad Sci U S A 1999; 96: 15173-15177

27 Goldstein DB. Islands of linkage disequilibrium. Nat Genet 2001; 29: 109-111

28 Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 2001; 29: 217-222

29 Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G, Ueda H, Cordell HJ, Eaves IA, Dudbridge F, Twells RC, Payne F, Hughes W, Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E, Tuomilehto J, Gough SC, Clayton DG, Todd JA. Haplotype tagging for the identification of common disease genes. Nat Genet 2001; 29: 233-237

30 Rioux JD, Daly MJ, Silverberg MS, Lindblad K, Steinhardt H, Cohen Z, Delmonte T, Kocher K, Miller K, Guschanow S, Kulbokas Ej, O’ Leary S, Winchester E, Dewar K, Green T, Stone V, Chow C, Cohen A, Langelier D, Lapointe G, Gaudet D, Faith J, Branco N, Bull SB, McLeod RS, Griffiths AM, Bittoun A, Greenberg GR, Lander ES, Siminovitch KA, Hudson TJ. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29: 223-228

Edited by Xia HHX and Wang XL