A Study on Constitutive Model of the Cohesive Soil Considering Soil-Structure Interactions

Haibo Wang¹*, Yongfeng Cheng¹, Zhicheng Lu¹, Zhubing Zhu¹, Yaodong Xue¹ and Shujun Zhang²

¹ China Electric Power Research Institute, Beijing 100192, China
² State Grid Zhejiang Electric Power CO. LTD, Hangzhou 310007, China
Email: wanghaibo3@epri.sgcc.com.cn

Abstract. Transformer is key equipment in the power transmission and transformation system. When the seismic calculation is carried out, the foundation soil is generally considered to be absolutely rigid, and the bottom of the structure is considered as the fixed end, the soil-structure interaction is ignored. This paper is aimed to study the soil-structure interaction’s impact on the seismic performance of the transformer and other power facilities by carrying out cyclic shear test on cohesive soil, simulating the dynamic response of clay soil under the seismic load, and get the nonlinear dynamic characteristics parameters of the soil in the loading process of seismic cycles. On the basis of the study, the fitting equation of the dynamic shear modulus and damping ratio of the soil is put forward through analyzing the cohesive soil dynamic hysteresis constitutive model.

Keywords. Cyclic shear, constitutive model, cohesive soil, seismic effect.

1. Introduction

Extra-high voltage transformers, transforming voltage levels and reducing power energy losses in the power transmission system, are the key equipment in the power transmission system. The destruction of power facilities caused by earthquake will also cause inconvenient for earthquake relief and post-disaster reconstruction work besides the economic loss it caused.

At president, many researches on the seismic performance of electrical equipment has been carried out and fruits have been made at home and abroad [1-9]. But most of these researches take the foundation and the structure separately, assuming that the foundation performs absolute rigidity and the base of the upper structure performs the fixed end, ignoring the influence of the interaction between the foundation and the transformer structure. Actually, the foundation material has the non-absolute rigidity and even has much stronger non-linear deformation property compared to the structural material. There is both a force interaction and a mutual constraint of deformation between the object and the foundation, which in turn causes the mutual transmission and exchange of vibration energy, making a big difference on the dynamic response of the structure between the real practice and the assumption of a rigid foundation.

Many in-depth researches that carried out by scholars at home and abroad proved that the upper structure, the base and the foundation interactions between each other should be taken as a whole, and the dynamic interaction between the three should not be neglected when carrying out structural seismic calculation [10]. Researches includes the shaking table tests of the structure and the overall structural system of the soil in consideration of soil-structure dynamic interaction made by Konagai K [11], and the three-dimensional finite element model of the Shaanxi Information Building in
consideration of soil-structure dynamic interaction advanced by Tao Lei in 2009. Professor Chen in Nanjing Tech University proposed a simplified analysis method to assist in calculating the soil-structure dynamic interaction, the calculation accuracy of this method cannot meet the requirements of seismic calculation as a kind of seismic simplification method, but it can be used to check the results of seismic calculation as a reference [12]. Using Goodman units on the SuperFLUSH software platform and then using an equivalent linear model to represent the nonlinear characteristics of soil, Yin established and made an analysis of the nuclear island model considering the dynamic interaction of soil-structure, but the pile-soil-nuclear island calculation model used for the calculation is a two-dimensional simplified model, which cannot reflect the real reaction of complex nuclear island structures in earthquakes [13]. In summary, scholars at home and abroad believe that the dynamic interaction between the upper structure, the foundation and soil cannot be neglected when performing seismic calculations [14-18]. As the improvement of computer performance, the overall finite element method to analyze the influence of soil-structure interaction is often used in large engineering projects, which treats the structure and the foundation soil body within a certain range as a whole structural system, and then uses the finite element method to discretize the structure and the foundation soil and then analyzes the seismic response of the input ground shaking of the whole structural system, so that the seismic response in anytime under seismic action and the complex nonlinear problems can be solved more conveniently. But the disadvantage is that the amount of the set of equations to be solved will increase dramatically as the overall structure's degrees of freedom increase, and the preparation work required by the computer is large and computationally intensive.

In this paper, the cyclic shear test on cohesive soil, is carried out and the dynamic response of clay soil under the seismic load is simulated, and get the nonlinear dynamic characteristics parameters of the soil in the loading process of seismic cycles. On the basis of the study, the fitting equation of the dynamic shear modulus and damping ratio of the soil is put forward through analyzing the cohesive soil dynamic hysteresis constitutive model.

2. Cyclic Shear Test Studies on Cohesive Soils

2.1. Test Apparatus and Soil Specimens

Soil dynamics test is the basis of the study on dynamic properties of soil, and only through the test under specific conditions can we reveal the different mechanical properties of different types and states of soil for specific soil specimens. Due to the strong nonlinearity of soil, the dynamic characteristics obtained at one strain stage cannot be simply extrapolated to another strain stage, we need to conduct a soil dynamic constitutive test.

Data show that the shear strain of soil in strong earthquakes ranges from about 2×10^{-4} to 2.0×10^{-3}, and the strain of soil at the point of contact with a soil structure will be greater. Therefore, the strain amplitude is usually larger when the dynamic characteristics of the soil are tested indoors, and the cyclic single shear test is an appropriate way to simulate the ideal seismic stress of soil units in the laboratory.

The cyclic single shear system consists of single shear instrument, a sensor and a PC system are showed in figure 1. The single shear instrument includes a servo-controlled brake, a control and data acquisition system, a compressor and specimen preparation equipment. The sensors include a vertical sensor (± 5.0 kN), pressure sensor (1000 kPa), horizontal sensor (± 5.0 kN) and displacement sensor (± 25 mm), and the PC is connected to the data collection system. The thin, laminated copper rings were used to simulate the boundary conditions of the soil specimens, it can bring the shear force with fixed volume and fixed vertical pressure, strain control and stress control. The accuracy of the displacement sensor is 1 μm and that of the force sensor is 0.001 kN. 50 measurement points are recorded for each cycle in the test.
Both in-situ and disturbed soils were tested. Both in-situ and disturbed soils for the same condition were taken from the same layer of silty clay. The disturbed specimens were prepared in accordance with the Specification of Soil Test requirements that the specific natural moisture content and natural density of the silty clay, the specimens should with a diameter of 70 mm and a height of 20 mm, and the specimens were compacted in two layers to ensure the density and uniformity of the specimens. Some of the specimens are showed in figure 2:

2.2. Testing Method
In order to study the dynamic constitutive model of cohesive soil, a cyclic single shear test for cohesive soil was designed.

The test conditions are shown in table 1. Each sample is tested only under primary load amplitude, and the load amplitude of each specimen is gradually increased, and the test results of all specimens in the group are combined to obtain the dynamic stress - dynamic strain curve of the soil under study over the full range of strain.

Specimen number	Applied load (strain)	Number of cycles	Number of specimens
I-1	1×10^{-3}	10	3
I-2	2×10^{-3}	10	3
I-3	4×10^{-3}	10	3
I-4	6×10^{-3}	10	3
I-5	8×10^{-3}	10	3
I-6	2×10^{-2}	10	3
I-7	4×10^{-2}	10	3
I-8	6×10^{-2}	10	3
I-9	8×10^{-2}	10	3
To minimize the influence of human factors in the test, the consistency of all soil samples and the standard operation should be ensured. At the same time, except for the different applied load in the above table, other test conditions should be ensured same. The test conditions were as follows: consolidation pressure 50 kPa, loading in the form of equal amplitude sinusoidal, vibration frequency 1 Hz, consolidation drainage conditions is consolidation without drainage, loading control mode is strain control, and 50 measurement points recorded in each cycle.

The physical property parameters of the soil samples in situ and disturbed soil are shown in tables 2 and 3 respectively.

Table 2. Indicators of physical properties of in-situ soil samples.

Working Conditions	Natural water content w (%)	Natural density ρ(g/cm³)	Porosity ratio e	Plasticity index Ip	Liquidity index IL
I-1	30.9	1.85	0.932	13.8	0.43
I-2	30.9	1.86	0.881	14.2	0.43
I-3	31.3	1.83	0.922	12.9	0.41
I-4	31.2	1.86	0.869	13.4	0.38
I-5	30.6	1.84	0.853	14.5	0.43
I-6	31.2	1.83	0.944	15.4	0.41
I-7	31.0	1.86	0.957	16.5	0.42
I-8	30.6	1.86	0.960	14.1	0.36

Working Conditions	Natural water content w (%)	Natural density ρ(g/cm³)	Porosity ratio e	Plasticity index Ip	Liquidity index IL
I-1	30.5	1.82	0.885	11.72	0.66
I-2	30.4	1.83	0.846	13.29	0.45
I-3	30.6	1.83	0.863	12.83	0.63
I-4	30.8	1.83	0.849	12.91	0.57
I-5	30.5	1.82	0.842	13.17	0.42
I-6	30.9	1.82	0.825	11.82	0.68
I-7	30.8	1.83	0.877	12.84	0.57
I-8	30.5	1.83	0.849	11.79	0.43
I-9	30.8	1.82	0.857	12.37	0.58

2.3. Analysis of Test Results

In the cyclic single shear test, the shear strain γ_d and shear stress τ_d are measured and a hysteresis loop can be made to reflect the relationship between dynamic shear stress and dynamic shear strain at each moment in the cycle, as shown in figure 3. The dynamic shear modulus G_d and damping ratio D can be defined as equation (1) and equation (2), respectively.

$$G_d = \frac{\left| \tau_{d1} \right| + \left| \tau_{d2} \right|}{\left| \gamma_{d1} \right| + \left| \gamma_{d2} \right|}$$ \hspace{1cm} (1)

$$D = \frac{A_0}{\pi A_T}$$ \hspace{1cm} (2)

In the equation (1) and equation (2), τ_{d1}, τ_{d2} represents the maximum dynamic shear stress in both positive and negative direction, Where A_0 is the area of the hysteresis loop, which represents the energy consumed by the soil body during the cycle week, and A_T is the area of the triangle abc.
According to equation (1) and equation (2), the dynamic shear modulus and damping ratio of clay at each shear strain, can be obtained, cyclic single shear test conditions in-situ and disturbed soil test results data are shown in Table 4 and Table 5 respectively.

Table 4. Data log sheet for cyclic single shear test conditions for in-situ soil.

Specimen number	Positive maximum shear strain γ_{d1} (kPa)	Negative maximum shear strain γ_{d2} (kPa)	Positive maximum shear stress τ_{d1} (kPa)	Negative maximum shear stress τ_{d2} (kPa)	Hysteresis area A₀	Triangle abc area Aₜ	Dynamic shear modulus Gd(kPa)	Damping ratio D
I-1	7.02E-04	-7.02E-04	4.152	-4.152	0.001	0.006	5912.177	5.580E-02
I-2	1.86E-03	-1.86E-03	9.735	-9.735	0.009	0.036	5246.469	8.247E-02
I-3	3.81E-03	-3.81E-03	16.924	-16.924	0.042	0.129	4437.752	1.044E-01
I-4	5.73E-03	-5.73E-03	20.656	-20.656	0.100	0.237	3604.649	1.344E-01
I-5	7.70E-03	-7.70E-03	24.989	-24.989	0.181	0.385	3243.633	1.499E-01
I-6	1.96E-02	-1.96E-02	33.779	-33.779	0.670	1.323	1724.572	1.611E-01
I-7	3.96E-02	-3.96E-02	40.742	-40.742	2.003	3.226	1029.176	1.976E-01
I-8	5.96E-02	-5.96E-02	45.333	-45.333	3.701	5.401	761.081	2.182E-01
I-9	7.95E-02	-7.95E-02	50.318	-50.318	5.701	8.003	632.728	2.267E-01

Table 5. Recording of cyclic single shear test data for disturbed soil under cyclic single shear test conditions.

Specimen number	Positive maximum shear strain γ_{d1} (kPa)	Negative maximum shear strain γ_{d2} (kPa)	Positive maximum shear stress τ_{d1} (kPa)	Negative maximum shear stress τ_{d2} (kPa)	Hysteresis area A₀	Triangle abc area Aₜ	Dynamic shear modulus Gd(kPa)	Damping ratio D
I-1	7.002E-04	-7.002E-04	3.484	-3.484	0.001	0.005	4974.918	7.833E-02
I-2	1.880E-03	-1.880E-03	7.898	-7.898	0.009	0.030	4201.670	9.394E-02
I-3	3.896E-03	-3.896E-03	12.260	-12.260	0.036	0.096	3146.945	1.205E-01
I-4	5.829E-03	-5.829E-03	14.617	-14.617	0.073	0.170	2507.773	1.358E-01
I-5	7.793E-03	-7.793E-03	15.563	-15.563	0.096	0.243	1997.049	1.261E-01
I-6	1.979E-02	-1.979E-02	15.970	-15.970	0.413	0.632	807.155	2.078E-01
I-7	3.971E-02	-3.971E-02	16.247	-16.247	1.111	1.290	409.137	2.741E-01
I-8	5.958E-02	-5.958E-02	17.630	-17.630	2.325	2.101	295.889	3.523E-01
I-9	7.955E-02	-7.955E-02	20.094	-20.094	3.903	3.197	252.592	3.886E-01
Next, the test data are processed and analyzed, and the hysteresis curves of in-situ soil and disturbed soil at shear strains of 1×10^{-3} to 8×10^{-3}, 2×10^{-2} to 8×10^{-2}, and 1×10^{-3} to 8×10^{-2} can be obtained. The hysteresis curves of the original soil and the disturbed soil in the shear strain range of 1×10^{-3} to 8×10^{-2} are shown in figure 4 and figure 5, respectively.

![Figure 4](image1.png) ![Figure 5](image2.png)

Figure 4. Hysteresis curves for primary soils-shear strain range $1\times 10^{-3} \sim 8\times 10^{-2}$

When the shear strain is 1×10^{-3} to 8×10^{-3}, the hysteresis curve of the original soil is elliptical; when the shear strain is greater than 2×10^{-2}, the hysteresis curve is an inverse S. As the strain amplitude increases, the hysteresis circle becomes more and more inclined, the enclosed area increases, and the stress-strain relationship of the soil shows strong nonlinearity and hysteresis. Compared with undisturbed soil, when the shear strain range is 1×10^{-3} to 8×10^{-2}, the shear stress of disturbed soil is less than that of undisturbed soil. The loop of the disturbed soil becomes flatter and flatter as the shear strain increases.

When the control shear strain is loaded with equal amplitude, the shear modulus G of the cohesive soil gradually decreases with the increase of the control shear strain γ under the same cycle, and the decrease rate of shear modulus becomes smaller and smaller, and the trend of the dynamic shear modulus of this cohesive soil is consistent with the general feature that of the cohesive soil dynamic shear modulus becomes smaller and smaller with the increase of its shear strain.

3. Selection of the Cohesive Soil Constitutive Model

3.1. The Shear Modulus Fit

The dynamic shear modulus of the soil is expressed using the Darendeli model of the geodynamic constitutive model, it dynamic characteristic curve expressed as equation (3).

$$
\frac{G_d}{G_{d,\text{max}}} = \frac{1}{1 + (\gamma_d / \gamma_{\text{ref}})^{\alpha}}
$$

(3)

where α is the modulus curve attenuation parameter; γ_d is the shear strain amplitude; γ_{ref} is the reference shear strain amplitude; $G_{d,\text{max}}$ is the maximum shear strain; and G_d is the dynamic shear modulus when the dynamic strain amplitude is equal to γ_d.

According to the test data recording sheet, the dynamic shear modulus corresponding to each level of strain is pooled into a dynamic shear modulus-shear strain scatter plot, and the dynamic shear modulus scatter is fitted according to equation (3), and the in-situ and disturbed soils are shown in figures 6 and 7 respectively.
Figure 6. Fit curve for shear modulus of in-situ soil.

Figure 7. Fit curve for disturbed soil shear modulus.

As a result, the dynamic shear modulus parameters for in-situ and disturbed soils are shown in Table 6 below.

Test soil samples	$G_{d_{\text{max}}}$ (kPa)	γ_{ref} (%)	α
in situ soil	6480	0.76	1.011
disturbed soil	5425	0.51	1.226

3.2. Damping Ratio Fit

The damping ratio model of the soil uses the Darendeli model of the soil dynamic characteristic model with the following dynamic characteristic curve shown in equation (4)

$$D = b \left(\frac{G_d}{G_{d_{\text{max}}}} \right)^{0.1} \text{Dmasing} + D_{\text{min}}$$

where D is the damping ratio, D_{masing} represents the expected damping ratio of the Masing hysteresis criterion, D_{min} represents the small strain damping ratio, and b is the damping ratio curve parameter.

According to the test data recording table, the damping ratios corresponding to each level of strain are assembled into a dynamic damping ratio-shear strain scatter plot, and the damping ratio scatter is fitted according to equation (4). The damping ratio curves of the Darendeli model fitted to the in-situ soil and disturbed soil are shown in Figure 8 and Figure 9, respectively, and Table 7 shows the damping ratio parameters of the Darendeli model.
Fit curve of the damping ratio of in-situ soil.

Figure 8. Fit curve of the damping ratio of in-situ soil.

Damping ratio fit curve for disturbed soil.

Figure 9. Damping ratio fit curve for disturbed soil.

Table 7. Damping ratio parameters for in-situ and disturbed soils.

Test soil samples	b	D\(_{\text{max}}\) (%)
in situ soil	0.467	6.490
disturbed land	0.573	4.053

From the above figure, it can be seen that the Darendeli model can better represent the relationship between dynamic shear modulus and damping ratio with dynamic shear strain of the cohesive soil specimen, which reflects the nonlinear dynamic characteristics of the cohesive soil.

4. Conclusion

By carrying out cyclic shear tests on the cohesive soil, the dynamic characteristics of the original soil and disturbed soil parameters were obtained, the hysteresis curve characteristics of the original soil and disturbed soil were analyzed, with the increase of the control shear strain \(\gamma\), the shear modulus \(G\) of the cohesive soil gradually decreases, and the rate of shear modulus reduction is becoming smaller and smaller. (2) Using the dynamic constitutive Darendeli model, the equation for calculating the dynamic shear modulus and damping ratio of the in-situ and disturbed soil and the values of the relevant parameters were obtained.

Acknowledgments

This study is funded by the Scientific Research Program of SGCC: Research on Seismic Technology of UHV Transformer Based on Soil-structure Dynamic Interaction (Grant no. 521104180015).

References

[1] Cheng Y F, Zhu Q J and Lu Z C 2008 Progress and development trend on seismic measures of electric power equipment in transformer substation *Power System Technology* **32**(22) 84-89.

[2] Cheng Y F, Wang H B and Lu Z C 2017 Seismic performance and calculation method of dynamic amplification body research of UHV reactor-bushing system *Proceedings of the CSEE* **37**(20) 6109-6117.

[3] Cheng Y F, Meng X Z, Lu Z C, et al. 2017 Isolation test in reactor of UHV substation *High Voltage Engineering* **43**(3) 814-821.

[4] Qiu N, Cheng Y F, Zhong M, et al. 2015 Progress and prospect of seismic research on 1000kV UHV AC electrical equipment *High Voltage Technology* **41**(5) 1732-1739.

[5] Shang S P, Liu F C and Wang H D 2007 Damping-based nonlinear model of clay under seismic cyclic loading *China Civil Engineering Journal* **40**(3) 74-82.
[6] Wang Z L, Wang Y Q and Han Q Y 1980 Nonlinear model of clay under irregular cyclic shear load Chinese Journal of Geotechnical Engineering 2(3) 10-20.
[7] Li X J and Liao Z P 1989 Visco-elastic-plastic model of soil stress-strain relationship Earthquake Engineering and Engineering Vibration 9(3) 62-72.
[8] Stewart J P, Fenves G L and Seed R B 1999 Seismic soil-structure interaction in buildings. I: Analytical method Journal of Geotechnical and Geoenvironmental Engineering, 125(1) 26-37.
[9] Takewaki I 2004 Bound of earthquake input energy to soil–structure interaction systems Soil Dynamics and Earthquake Engineering 25(7) 741-752.
[10] Todorovska M and Rjoub Y A 2006 Effects of rainfall on soil-structure system frequency: Examples based on poroelasticity and a comparison with full-scale measurements Soil Dynamics and Earthquake Engineering 26(6) 708-717.
[11] Konagai K and Nogami T 1998 Analog circuit to simulate dynamic soil-structure interaction in shaking table test Soil Dynamic and Earthquake Engineering 17 279-287
[12] Maheshwaria B K, Trumana K Z, ElNaggar M H and Gould P L 2004 Three-dimensional nonlinear analysis for seismic soil-pile-structure interaction Soil Dynamics and Earthquake Engineering 24(2) 343-356.
[13] Tao L 2009 Seismic Response Analysis of Foundation-Foundation-High-Rise Building Structure under Different Ground Motion Input Xi'an: Xi'an University of Technology.
[14] Chen G X, Zuo X and Du X L 2013 Simplified analysis method for seismic response of soil-underground structure system Rock and Soil Mechanics 31(S1) 1-7.
[15] Yin X Q, Teng H J and Wang G X 2019 Research on interaction model of pile-soil-nuclear island structure under complex foundation conditions Chinese Journal of Earthquake Engineering 41 (06) 1581-1586+1606.
[16] Guin J and Banerjee P K 1998 Coupled soil-pile-structure interaction analysis under seismic excitation Journal of Structural Engineering 124(4) 434-444.
[17] Wolf J P and Somanini 1986 Approximate dynamic model of embedded foundation in time domain Earthquake Engineering and Structure Dynamic 14(6) 683-703.
[18] Ertugrul T, Changsoon R, John W and Wallace A 2006 Robust macroelement model for soil-pile interaction under cyclic loads Journal of Geotechnical and Geoenvironmental Engineering 132(10) 1304-1314.