Robust Principal Component Analysis with Modified One-Step M-Estimator Method

Sriwijayanti¹, Raupong¹ and N Sunusi¹
¹Department of Statistics, Faculty of Mathematics and Natural Sciences, Hasanuddin University

E-mail: wijayantisri29@gmail.com, Raupong.stat.uh@gmail.com, and ntitisanusi@gmail.com

Abstract. Principal component analysis (PCA) is a multiple variable analysis method that aims to reduce the dimensions of the original variable, which are mostly correlated so that new variables that are not correlated are obtained. The data used is criminality data in Indonesia in 2016 which contains outlier data in it. Therefore this study cannot use classic PCA because classic PCA was formed based on a covariant variant matrix that is very sensitive to the existence of outlier data. To overcome this problem, PCA robust is used with the Modified One-Step M-Estimator method with a MADn scale estimator to get the main components that are not much influenced by outliers. Modified One-Step M-Estimator (MOM) is the average remaining value of all extreme values that have been issued. The results obtained are there are 3 main components that can explain 85.19% of the variance of the 7 original variables.

1. Introduction

Principal component analysis (PCA) is formed based on the variance covariance matrix which is very sensitive to the existence of outlier data. Therefore we need a PCA model that can handle outlier data. The purpose of Robust PCA is to get the main components that are not much affected by outliers. The first approach is done by replacing the classic variance covariance matrix with a robust estimator [2]. PCA is a multivariate analysis that is used to reduce the dimensions of large and correlated data to be smaller and not correlated with each other but still maintains a minimum data variance of 80% [3].

One method that can be used to obtain robust estimators is Modified One-Step M-Estimator (MOM). MOM is the average remaining value of all extreme values that have been issued. MOM uses Median Absolute Deviation (MADn) as a standard scale estimator. MADn is a robust measures of central tendency and has been claimed in the literature as the best estimator scale on data containing outliers [4]. Based on the description of the background, the author took the title “Robust Principal Component Analysis with Modified One-Step M-Estimator”.

2. Materials and Methods

2.1. Eigen Value and Vector Value

Eigenvalue is a value that indicates the influence a variable has on the formation of the characteristics of a vector or matrix. If \(A \) is a matrix of size \(n \times n \), then the vector non-trivial \(\mathbf{x} \) at \(\mathbb{R}^n \) is called the eigenvector of \(A \). To get an eigen vector from matrix \(A \) of size \(n \times n \) it can be written as:
\[(A - \lambda I)x = 0 \quad (1)\]

Equation (1) has a non-trivial solution if it satisfies the following equation:

\[\det(A - \lambda I) = 0 \quad (2)\]

Equation (2) is called the characteristic matrix \(A\). The scalars that satisfy this equation are the eigenvalues of \(A\) [1].

2.2. Outliers

According to Johnson & Wichern [3], outliers are one or several unusual observations, which appear not to be included in the pattern of variability produced by other observations. Outliers in the data can cause bias in mean and covariance estimators of data multivariate [9]. One method that can be used to detect outliers in multivariate data is the Mahalanobis distance. Mahalanobis distance is obtained by calculating the distance of each observation of the data center. The use of Mahalanobis distance is not maximal if the data contains more than one outlier observation. This arises due to the influence of masking and swamping. The effect of masking occurs when outliers are not detected as outliers because there are other outliers observations nearby. The effect of swamping occurs when observations not outliers are identified as outliers observations. The effect of masking and swamping can be overcome with robust estimators [7].

One robust estimator is MOM-MADn to estimate the mean vector and covariant variance matrix used to estimate the Mahalanobis distance. The \(i^{th}\) observation is defined as multivariate outlier data if the Mahalanobis distance \(d_{i, (\text{MOM-MADn})}^2\) is greater than the chi-square table value \(x_{p}^2\) on the variable \(p\). The mahalanobis distance square is calculated by the formula [3] as follows:

\[d_{i, (\text{MOM-MADn})}^2 = (x_i - \mu_{\text{MOM-MADn}})^T (x_i - \mu_{\text{MOM-MADn}}) > x_{p}^2\]

With \(\mu_{\text{MOM-MADn}}\) and \(\Sigma_{\text{MOM-MADn}}\) is the average vector and the covariant variant matrix are estimated using the MOM-MADn method.

2.3. Principal Component Analysis

PCA is a multiple variable analysis methods that aims to reduce the dimensions of the original variable which are mostly correlated so that new variables (principal component) are not correlated with each other, where the component is a linear combination of original variables such that it has maximum variance [4]. The principal component formed can be written as follows:

\[K_p = v_p^T \Sigma = v_{p1}z_1 + v_{p2}z_2 + \ldots + v_{pp}z_p \]

or

\[K_p = \begin{bmatrix} K_1^T \\ K_2^T \\ \vdots \\ K_p^T \end{bmatrix} = \begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1p} \\ v_{21} & v_{22} & \cdots & v_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ v_{pp} & v_{px} & \cdots & v_{pp} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_p \end{bmatrix} = VZ \quad (4)\]

with:

1. \[\text{var}(K_p) = \text{var}(v_j^T z) = v_j^T \Sigma v_j\]
 so that
 \[\text{var}(K_p) = v_j^T Z v_j \quad j = 1, 2, \ldots, p\]
 with \(Z = \Sigma Z\)

2. \[\text{cov}(K_j, K_p) = \text{cov}(v_j^T z, v_p^T z) = v_j^T \Sigma v_p = v_j^T Z v_p\]
 So that
2.4. Median Absolute Deviation
MADn is often used as an initial value for a more efficient robust estimator calculation. MADn for random samples n observation \(X_1, X_2, ..., X_n \) is defined as follows [6]:

\[
MAD_n = 1.4826 \text{Med}\left[|X_i - \text{Med}_i|\right] , \quad i = 1, 2, ..., n
\]

with \(\text{Med} \) is the sample median.

2.5. Modified One-Step M-Estimator
MOM is the average remaining value of all extreme values that have been issued. This estimator is derived from the one-step M-estimator Staudte & Sheather [8] after some modification. Mathematically, Wilcox [10] defines the MOM estimator as

\[
\hat{\theta}_j = \frac{\sum_{i=1}^{n} |X_{(i)} - \bar{X}_j|}{n_j - t_2 - t_2}
\]

where:
- \(X_{(i)} \) = is the \(i^{th} \) order observation in the \(j^{th} \) characteristic variable
- \(t_1 \) = is the number of \(X_{(i)} \) that satisfies the criteria \((X_{(i)} - \bar{X}_j) < -K \times MAD_n \)
- \(t_2 \) = is the number of \(X_{(i)} \) that satisfies the criteria \((X_{(i)} - \bar{X}_j) > K \times MAD_n \)
- \(n_j \) = is the size of the data set for each variable
- \(\bar{X}_j \) = is the median of the data in each \(j^{th} \) variable

and the scale estimator is the median absolute deviation \(MAD_n \). The constant \(K = 2.24 \) is motivated to give a good efficiency for the robust scale estimators \(MAD_n \) when the sample is taken from a normal distribution [5].

3. Analysis Method
3.1. Data Source
In this study the data used were simulation data and secondary data on criminality data in Indonesia in 2016 obtained from the 2018 Criminal Statistics book of the Central Statistics Agency (BPS) of the Republic of Indonesia. Criminal data consists of variables calculated from the number of crime cases that occur per 100,000 population consisting of 31 observations and 7 variables.

3.2. Description of Variable
The variables used in this study are:
- \(X_1 \): Number of murder cases
- \(X_2 \): Number of cases of abuse
- \(X_3 \): Number of rape cases
- \(X_4 \): Number of theft cases
- \(X_5 \): Number of cases of damage
- \(X_6 \): Number of cases of narcotics abuse
- \(X_7 \): Number of fraud cases

3.3. Analytical Method
3.3.1. Simulation Methods
The simulation data used is 100 samples and 7 variables. Following are the analysis steps for simulation data:
1. Settings parameters \(\alpha, \beta \), and \(\Sigma \) with value:
is the average vector for outliers, \(\mu_n \) is the average vector for non-outliers, and \(\Sigma \) is the variance covariance matrix.

2. Generating multivariate normal data \(X_{1:n} \sim MN(\mu_n, \Sigma) \) with \(n_1 = 95 \).
3. Generating multivariate normal data for outliers of \(X_{56} \sim MN(\mu_n, \Sigma) \) with the number of outliers \(n_1 = 5 \).
4. Combine the data in point 2 and the data in point 3 that has been raised.
5. Standardize simulation data.
6. Calculate eigenvalues and eigenvectors based on the MOM-MADn method.
7. Determine the number of main components selected based on the percentage of cumulative variance proportions from the MOM-MADn method.
8. Form the principal component based on the formula in Equation (4).
9. Repeat steps two to eight with \(n_2 = 90 \) and outliers of \(n_2 = 10 \).

3.3.2. Methods for Secondary Data
1. Calculate the correlation matrix in the data.
2. Estimating the average vector, the covariant variant matrix and the correlation matrix with the MOM-MADn method with the following algorithm:
 a. Calculate MADn by using Equation (5).
 b. Crimming data outliers on MOM criteria using formulas \(|x_{ij} - \bar{x}_i| > K \times (\text{MAD}_n) \).
 c. Calculate \(\bar{x}_{ij} = (X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}) \) by using Equation (6).
 d. Calculate the mean vector \(\bar{x}_{\text{MOM-MADn}} \) based on points (c).
 e. Calculate the MOM-MADn variance covariance matrix using \(\bar{x}_{\text{MOM-MADn}} \).
 f. Calculate the correlation matrix of the MOM-MADn variance covariance matrix.
3. Calculate the mahalanobis distance for each data, using the formula:
 \[
 d_i^2 = (x_i - \mu_{\text{MOM-MADn}})^T \Sigma_{\text{MOM-MADn}}^{-1} (x_i - \mu_{\text{MOM-MADn}})
 \]
4. Detect outliers by comparing \(d_i^2 \) with the value \(\chi^2_0.025 = 14.06714 \).
5. Standardize criminal data.
6. Calculates eigen values and eigen vectors based on the correlation matrix of the MOM-MADn method using the formula:
 \[
 (\mu - \lambda I)x = 0
 \]
7. Determine the number of principal component selected based on the percentage of cumulative variance proportions from the MOM-MADn method.
8. Form the principal component based on the formula in Equation (4).
9. Interpretation of data

4. Result and Discussion
4.1. Robust Principal Component Analysis Simulation Data
Robust PCA MOM-MADn starting with estimating parameters, namely by replacing $\mathbf{\bar{x}}$ and \mathbf{S} with $\mathbf{\bar{x}}_{MOM-MADn}$ and $\mathbf{S}_{MOM-MADn}$, which is the average vector and variance covariance matrix with the MOM-MADn method. Before estimating the data parameters, it must be standardized first.

4.1.1. Calculate Eigenvalue and Eigenvector

Based on Equation (2) the eigenvalues obtained for simulation data are as follows:

Table 4.1 Eigenvalue Simulation Data
Parameter
λ_1
λ_2
λ_3
λ_4
λ_5
λ_6
λ_7

Based on the formula in Equation (1), the normalized eigenvectors are obtained as follows:

Table 4.2 Eigenvector Simulation Data
Parameter
v_1
v_2
v_3
v_4
v_5
v_6
v_7

The eigenvectors in Table 4.2 are eigenvectors, each of which corresponds to the eigenvalues in Table 4.1, meaning v_j is obtained λ_j, where $j = 1, 2, \ldots, 7$.

4.1.2. Determine the Number of Principal Component

Determination of the number of principal component (PC) formed is based on the percentage of the cumulative variance proportion obtained at least 80% obtained from eigenvalues.

Table 4.3 Proportion of Cumulative Variance and Variance of Simulation Data
Principal Components

5
and Σ. Before estimating parameters the data it must be normalized. Based on the cumulative variance proportions in Table 4.3 it is obtained for simulation data with 5% of the total sample variance. The first, second, and third PC cumulatively have each explained 87.05% of the total sample variance.

4.1.3. Form the Principal Component

Based on the cumulative variance proportions in Table 4.3 it is obtained for simulation data with outliers of 5% and 10% respectively, enough use 3 PC and 2 PC able to explain 87.25% and 87.05% variance of the origin variables.

1. **Simulation data with outliers of 5%**

 To form 3 PC, 3 eigenvectors are needed which correspond to λ_1, λ_2, and λ_3 namely v_1, v_2, and v_3. Based on Equation 2.11 3 PC will be formed which are linear combinations of the origin variables as follows:

 \[
 \begin{align*}
 K_1 &= v_1^T Z = 0.3799 Z_1 + 0.3618 Z_2 + 0.3785 Z_3 + 0.3388 Z_4 + 0.3674 Z_5 + 0.3927 Z_6 + 0.4213 Z_7 \\
 K_2 &= v_2^T Z = -0.2583 Z_1 - 0.0192 Z_2 - 0.3245 Z_3 - 0.0770 Z_4 - 0.4273 Z_5 - 0.4300 Z_6 + 0.0310 Z_7 \\
 K_3 &= v_3^T Z = 0.0556 Z_1 + 0.5642 Z_2 + 0.3955 Z_3 - 0.7439 Z_4 + 0.7744 Z_5 + 0.0870 Z_6 + 0.2697 Z_7
 \end{align*}
 \]

2. **Simulation data with outliers of 10%**

 To form 2 PC, 2 eigenvectors are needed which correspond to λ_1 and λ_2 namely v_1 and v_2. Based on Equation 2.11 2 PC will be formed which are linear combinations of the origin variables as follows:

 \[
 \begin{align*}
 K_1 &= v_1^T Z = 0.3995 Z_1 + 0.3379 Z_2 + 0.3816 Z_3 + 0.3267 Z_4 + 0.3611 Z_5 + 0.3875 Z_6 + 0.4518 Z_7 \\
 K_2 &= v_2^T Z = -0.0455 Z_1 + 0.1352 Z_2 + 0.3200 Z_3 - 0.7739 Z_4 + 0.4329 Z_5 - 0.2773 Z_6 + 0.1182 Z_7
 \end{align*}
 \]

4.2. **Robust Principal Component Analysis Secondary Data**

Robust PCA with the MOM method uses the MADn estimator scale conducted on criminality data in Indonesia in 2016. The first step is to estimate parameters on robust PCA by replacing Σ, μ, and ρ with $\tilde{\Sigma}$, $\tilde{\mu}$, and $\tilde{\rho}$ respectively. Before estimating parameters the data it must be standardized first.

4.2.1. **Outliers Detection**

If mahalanobis distance $d^2_{\text{mahalanobis}}$ > 14.06714 the data will be said as outlier data.

Observation	Province	$d^2_{\text{mahalanobis}}$
1	North Sumatra	24.022
2	Riau	18.059
Based on the detection process, 5 out of 31 observational data were identified as outliers observations. The provinces identified as outliers observations are North Sumatra, Riau, South Sumatra, Metro Jaya, and East Java.

4.2.2. Calculate Eigenvalue and Eigenvector

Based on the formula in Equation (2) the eigenvalue is obtained as follows:

Parameter	Eigen Value
λ_1	4.3663
λ_2	0.9626
λ_3	0.6343
λ_4	0.4530
λ_5	0.2439
λ_6	0.2012
λ_7	0.1387

Based on the formula in Equation (1), the normalized eigenvectors are obtained as follows:

v_1	v_2	v_3	v_4	v_5	v_6	v_7
-0.1631	-0.7344	0.3816	-0.2118	0.1340	0.2111	0.4254
-0.2369	-0.0169	-0.8225	-0.1431	0.2161	0.0759	0.4407
0.3272	0.0124	0.0234	0.8223	0.1555	0.2334	0.3706
-0.3276	0.0171	0.0020	0.1819	-0.8551	-0.1377	0.3304
0.1513	0.5476	0.2266	-0.3814	-0.0908	0.5952	0.3434
-0.4165	0.3960	0.3529	0.0553	0.3998	-0.5035	0.3588
0.7117	-0.0564	-0.0378	-0.2771	-0.1092	-0.5181	0.3628

The eigenvectors in Table 4.6 are eigenvectors which correspond to the eigenvalues in Table 4.5, meaning v_j is obtained from λ_j where $j = 1, 2, \ldots, 7$.

4.2.3. Determine Number of Principal Components

Determination of the number of PCs formed is based on the percentage proportion of cumulative variance obtained at least 80% from eigenvalues.

Principal Component	variance proportion	cumulative variance proportion
1	62.38%	62.38%
2	13.75%	76.13%
3	9.06%	85.19%
4	6.47%	91.66%
5	3.49%	95.15%
6	2.87%	98.02%
7	1.98%	100%
Table 4.7 shows that on the first PC explained 62.38% of the total sample variance. The first and second PC cumulatively explained 76.13% of the total sample variance. The first, second, and third PC cumulatively explained 85.19% of the total sample variance.

4.2.4. Form the Principal Component
Based on the cumulative variance proportion obtained 3 PC which is able to explain 85.19% the variance of the origin variables. Therefore to form PC are needed 3 eigenvectors which correspond to \(\lambda_1, \lambda_2, \) and \(\lambda_3 \), namely:

\[
K_p = v_p^T Z = v_{p1} z_1 + v_{p2} z_2 + \ldots + v_{pp} z_p, \quad p = 1, 2, \ldots, 7
\]

\[
K_1 = v_1^T Z = -0.1631 z_1 - 0.2385 z_2 + 0.3727 z_3 - 0.3276 z_4 + 0.1513 z_5 - 0.4165 z_6 + 0.7117 z_7
\]

\[
K_2 = v_2^T Z = -0.7344 z_1 - 0.0169 z_2 + 0.0124 z_3 + 0.0171 z_4 + 0.5479 z_5 + 0.3960 z_6 - 0.0564 z_7
\]

\[
K_3 = v_3^T Z = 0.5016 z_1 - 0.0229 z_2 + 0.0234 z_3 + 0.0020 z_4 + 0.2266 z_5 + 0.3529 z_6 - 0.0378 z_7
\]

Based on the PC that has been produced, the principal component score will be calculated. The resulting PC score is new variables from PCA results which are linear combinations of the origin variables.

5. Conclusion
Based on the results and discussion, conclusions are obtained as follows:

1. Based on the Modified One-Step M-Estimator method with the MADn estimator scale at criminality data in Indonesia 2016 obtained 5 of 31 observational data that have mahalanobis distance large than chi-square table values \(\hat{\delta}_{MOM-MAD_n} > 14.06714 \) identified as outliers observations, namely: North Sumatra, Riau, South Sumatra, Metro Jaya, and East Java provinces.

2. Reduction of data dimensions using the modified One-Step M-Estimator method with the MADn estimator scale in criminality data in Indonesia in 2016 resulted in 3 principal components which were able to explain 85.19% of the variance of the 7 origin variables, namely: murder cases, persecution cases, rape cases, theft cases, destruction cases, narcotics abuse cases, and fraud cases.

References
[1] Anton, H., & Rorres, C. 2005. Elementary Linear Algebra, Applications Version, Ninth Edition: John Wiley & Sons.
[2] Hubert M, Rousseeuw PJ, Vanden-Branden K. 2005. ROBPCA: A New Approach to Robust Principal Component Analysis. Technometrics. 47: 64-79. Another reference
[3] Johnson, R.A. & Wichern, D.W. 2007. Applied Multivariate Statistical Analysis, Sixth Edition. New Jersey : United States of America.
[4] Melik, H.N. 2017. Robust Linear Discriminant Analysis Using MOM-\(\hat{Q}_n \) And WMOM-\(\hat{Q}_n \) Estimators: Coordinate-Wise Approach. Malaysia : University Utara Malaysia.
[5] Othman, A. R., Keselman, H. J., Padmanabhan, A. R., Wilcox, R. R., & Fradette, K. 2004. Comparing measures of the “ typical ” score across treatment groups. British Journal of Mathematical and Statistical Psychology. 57, 215 - 234.
[6] Rousseeuw, P.J. and C. Croux, 1993. Alternatives to the median absolute deviation. J. Am. Stat. Assoc., 80: 1273-1283.
[7] Rousseeuw, P.J., & Van Zomeren, B.C. 1990. Unmasking multivariate outliers and leverage points. Journal of the American Statistical Association. 85(411), 633-651.
[8] Staudte, R. G., & Sheather, S. J. 1990. Robust estimation and testing: Wiley series in probability and mathematical statistics. New York.
[9] Wang, M., Martin R., Mao, G. 2015. *A Nonsingular Robust Covariance In Multivariat Outlier Detection*. Wilrijk, Belgium: Department of Mathematics and Computer Science, University of Antwerp (UIA).

[10] Wilcox, R., 2002. Multiple comparisons among dependent groups based on a modified one-step M-estimator. *Journal of Applied Statistics.*, 30(10), 1231-1241.