New project for precise neutron lifetime measurement at J-PARC

Naoki Nagakura1,a, Katsuya Hirota2, Sei Ieki1, Takashi Ino3, Yoshihisa Iwashita4, Masaaki Kitaguchi5, Ryunosuke Kitahara6, Jun Koga7, Kenji Mishima3, Aya Morishita7, Yasuke Nakano7, Hideyuki Oide8, Hiroki Okabe2, Hitotoshi Otono9, Yoshichika Seki10, Daischiro Sekiba11, Tatsumi Shima12, Hirohiko Shimizu2, Naoyuki Sumi13, Hirochika Sumino13, Kaoru Taketani3, Tatsuhiko Tomita2, Hideaki Uehara7, Takahito Yamada1, Satoru Yamashita14, Mami Yokohashi2, and Tamaki Yoshioka9

1 Department of Physics, Graduate School of Science, The University of Tokyo, Japan
2 Department of Physics, Graduate School of Science, Nagoya University, Japan
3 KEK, High Energy Accelerator Research Organization, Japan
4 Institute for Chemical Research, Kyoto University, Japan
5 Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Japan
6 Department of Physics, Graduate School of Science, Kyoto University, Japan
7 Department of Physics, Graduate School of Science, Kyushu University, Japan
8 Istituto Nazionale di Fisica Nucleare (INFN-Genova), Japan
9 Research Center for Advanced Particle Physics (RCAPP), Kyushu University, Japan
10 J-PARC Center, Japan Atomic Energy Agency, Japan
11 Institute of Applied Physics, University of Tsukuba, Japan
12 Research Center for Nuclear Physics (RCNP), Osaka University, Japan
13 Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan
14 International Center for the Elementary Particle Physics (ICEPP), The University of Tokyo, Japan

Abstract. The decay lifetime of free neutrons (∼880 s) is an important parameter of the weak interaction and for Big Bang Nucleosynthesis. However, results of measurements currently show discrepancies depending on the method used. As most experiments nowadays employ ultra cold neutrons, we have developed a new cold-beam experiment which we perform at the Japan Proton Accelerator Research Complex. As a special feature, a polarized neutron beam is bunched by a spin flip chopper. A time projection chamber operated with He and CO₂ gas, including a well-controlled amount of ³He, is used for detection of the beta-decays of polarized neutrons creating bunches which enter a time projection chamber (TPC) wherein the number of charged decay particles. In the former, UCNs are stored in a chamber for a certain period of time. The neutron lifetime is evaluated by counting the remaining UCNs. In the latter, the cold neutron beam is injected into a decay volume from which one counts the charged decay particles. The average of the most recent results obtained with the UCN method is (879.6 ± 0.6) s, while that deduced from the two most recent in-flight experiments [9,10] using detection of decay protons is (888.0 ± 2.0) s. The 4σ deviation of 8.4 s between these two averages is not understood yet. In order to solve this problem, and since the average value from all previous in-beam measurements is dominated by a single experiment [10], we have developed a new apparatus to perform an in-beam experiment using a different method. Here we report our first experiments carried out at the Japan Proton Accelerator Complex (J-PARC).

1. Introduction

Since the neutron was discovered by J. Chadwick in 1932 [1], many experiments have been conducted to measure its decay lifetime (τn). This is on one hand used as an input for calculations of final abundances of the light elements created in Big Bang Nucleosynthesis in the early universe [2]. In addition, τn is also used to evaluate the V_{ud} element in the Cabbio-Kobayashi-Maskawa (CKM) matrix [3]. The neutron lifetime has been measured mainly by two independent methods: (1) storage of ultra cold neutrons (UCNs), (2) in-beam detection of charged decay particles. In the former, UCNs are stored in a chamber for a certain period of time. The neutron lifetime is evaluated by counting the remaining UCNs. In the latter, the cold neutron beam is injected into a decay volume from which one counts the charged decay particles. The average of the most recent results [4–8] obtained with the UCN method is (879.6 ± 0.6) s, while that deduced from the two most recent in-flight experiments [9,10] using detection of decay protons is (888.0 ± 2.0) s. The 4σ deviation of 8.4 s between these two averages is not understood yet. In order to solve this problem, and since the average value from all previous in-beam measurements is dominated by a single experiment [10], we have developed a new apparatus to perform an in-beam experiment using a different method. Here we report our first experiments carried out at the Japan Proton Accelerator Complex (J-PARC).

2. Measurement principle

A schematic view of the experimental setup is shown in Fig. 1. A spin flip chopper (SFC) fed with a beam of polarized neutrons creates bunches which enter a time projection chamber (TPC) wherein the number of neutron beta-decay events is counted. A small amount of well-calibrated ³He gas allows us to detect neutrons using the reaction ³He(n, p)³H in the TPC for absolute determination of the neutron particle flux. The length of
Figure 1. Schematic view of the experimental setup [11]: (1) exit of polarized beam branch, (2) exit of non-polarized beam branch, (3) exit of low-divergence beam branch of the NOP beamline, (4) lead shield, (5) magnetic super mirror, (6) radio frequency coil, (7, 8) lead shield, (9) neutron shutter (5 mm-thick 6LiF), (10) iron shield, (11) plastic scintillator, (12) lead shield, (13) TPC, (14) beam dump, (15) vacuum chamber.

Figure 2. Principle of the SFC operation. The neutron beam passes through the SFC when no current is applied at the RF coil (Top), and is absorbed when RF current is applied (Bottom).

3. Setup of our experiment at J-PARC

3.1. Beamline

The neutron lifetime experiment is conducted at the BL05 Neutron Optics and fundamental Physics (NOP) beamline, which is one of the 21 neutron beamlines of the Materials and Life Science Experimental Facility (MLF) at J-PARC. We use the polarized beam branch at BL05, whose the polarization was measured to be 94 ~ 97% [14]. The expected neutron particle flux is $4.0 \pm 0.3) \times 10^7 \text{ neutrons/(cm}^2 \cdot \text{s}$ at the designed MLF operation power of 1 MW [15]. The neutron beam can be switched on and off by a shutter made of a 6LiF plate.

3.2. Spin flip chopper

The SFC forms neutron bunches from a polarized neutron beam, employing the basic principle described in Fig. 2. It is composed of radio-frequency (RF) coils and magnetic super mirrors, surrounded by a lead shield. A magnetic field of 1 mT is applied in the vertical direction uniformly throughout the SFC to maintain the neutron polarization. Application of RF current rotates by 180° the polarization of the neutrons passing through the device. The magnetic super mirror selectively reflects only non-flipped neutrons that are subsequently guided further downstream. By switching the RF current on and off, neutron bunches with arbitrary lengths can be formed within a single pulse from the spallation source.

3.3. Time projection chamber

In this experiment, a TPC with a two-dimensional Multi Wire Proportional Chamber (MWPC), which was specially developed in our group [11], was used to detect both
neutron beta-decay and $^3\text{He}(n, p)^3\text{H}$. A picture of the TPC is shown in Fig. 3. Its size is $30\text{ cm} \times 30\text{ cm} \times 96\text{ cm}$, and it is filled with He and CO$_2$ as operation gas. The TPC is made of Polyether ether ketone (PEEK) in order to suppress the background from radioactive isotopes. The inner walls are covered by 6LiF plates, which capture neutrons with little prompt γ-ray emission. A lead shield reduces ambient γ-ray background. The whole setup, except at the bottom, is surrounded by fourteen plastic scintillators which serve for identification of cosmic ray events. The detailed specification of the TPC is listed in Table 1.

Table 1. Basic parameters of the TPC [11].

Parameter	Value
Size	$300 \text{ mm} \times 300 \text{ mm} \times 960 \text{ mm}$
Anode wire (24 ch)	$\phi20 \text{ mm}, 1720 \text{ V}$
Field wire (24 ch)	$\phi50 \text{ mm}, 0 \text{ V}$
Cathode wire (40 ch x 2)	$\phi50 \text{ mm}, 0 \text{ V}$
Electric field	300 V/cm (vertical direction)
Drift velocity	1.0 cm/\mu s
Multiplication factor	5×10^4
Basic gas composition	^4He (85 kPa), CO$_2$ (15 kPa), ^3He (100 mPa)

3.4. Data acquisition system

A schematic diagram of the data acquisition system is shown in Fig. 4. The signals of the TPC and the cosmic ray veto counters were recorded by the Front-end INstrumentation Entity for Sub-detector Specific Electronics (FINESSE) modules in the COnmon Pipelined Electronics (FINESSE) modules in the COmmon Pipelined INstrumentation Entity for Sub-detector Specific Electronics (FINESSE) modules in the COmmon Pipelined

Platform for Electronics Readout (COPPER) system [17]. On 5 COPPER boards, 16 FINESSE ADC modules and 2 FINESSE TDC modules were implemented. Waveforms of 24 anode wires, 24 field wires, and 40 x 2 cathode wires were digitized by the ADC modules. The timing information of TPC signals, veto counters, and a kicker pulse, which represents the time of producing the neutron beam, was digitized by the TDC modules. All digitized data was sent to a computer through ethernet cables. The

![Figure 3. Picture of the TPC [16].](image)

![Figure 4. Schematic diagram of the DAQ circuit [16].](image)

![Figure 5. $^4\text{He}(n, p)^4\text{H}$ reaction events in the TPC in correlation to the neutron TOF.](image)
trigger signal for taking the data was sent to the five COPPER boards when any of the 24 anode wires in the TPC exceeded a threshold voltage of 20 mV, corresponding to 200 eV energy deposit in the TPC. During the data transfer time, which was typically 100 µs per trigger signal, the COPPER modules gave a busy signal and any additional trigger signal was rejected. The trigger signal was also vetoed for 70 µs when any set of 7 plastic scintillators gave signals in coincidence with the TPC signal, in order to avoid triggering to cosmic ray events.

4. Analysis

4.1. Dataset

Table 2 shows the data set of the neutron lifetime measurement acquired between 2014 and 2016. During a total of 11 days, 1.6×10^{11} neutrons entered the TPC. The data was taken for six different values of partial pressure of the 3He gas in the range of 50 mPa to 200 mPa.

4.2. Background subtraction using time of flight

Figure 5 shows a distribution of 3He(n, p)3H reaction events correlated with the neutron time of flight (TOF), for the data with open and closed shutter, respectively. Five peaks formed by the SFC within each pulse from the spallation source can be clearly seen. The constant background, such as cosmic rays and environmental radiation, can be estimated using the data in the sideband region.

4.3. Energy separation

A typical beta-decay event deposits only a few keV/cm in the TPC, whereas the neutron capture reaction deposits a few hundred keV. Accordingly, these two types of events can be well separated using the maximum energy deposited per wire among all field wires. Figure 6 shows distributions of this parameter, in which a threshold energy is set at 25 keV.

4.4. Scattering event analysis

Neutrons are scattered by gas molecules in the TPC with a probability of about 1%. Most of them are captured by 6LiF plates covering the TPC wall. Prompt γ-rays from the plates cause Compton scatterings in the TPC, which become background for beta-decay. A useful characteristics for distinction is that the ionization tracks from background events occur uniformly in the TPC, whereas those from the beta-decays come from locations
Table 3. Result of a single neutron lifetime run and list of parameters entering Eq. (1) for analysis (very preliminary). Experimental data were taken in 2016. The last column describes the respective contribution of each quantity to the uncertainty on τ_n.

Quantity	Value	Units	Uncertainty on τ_n
δ_{He}	358101 ± 635 (stat.) $^{+408}_{-210}$ (sys.)	events	0.18 (stat.) $^{+0.11}_{-0.06}$ (sys.)
S	14432 ± 373 (stat.) $^{+35}_{-18}$ (sys.)	events	2.59 (stat.) $^{+0.19}_{-1.36}$ (sys.)
ϵ_{He}	99.99 $^{+0.00}_{-0.00}$ (sys.)	%	$^{+0.01}_{-0.00}$ (sys.)
ϵ_{β}	93.92 $^{+0.05}_{-0.01}$ (sys.)	%	$^{+0.05}_{-0.01}$ (sys.)
ρ	2287 $^{+10}_{-20}$ (sys.)	10^{38} atoms/m3	$^{+0.42}_{-0.42}$ (sys.)
σ_0	5333 ± 7 (sys.)	10^{29} m2	0.13 (sys.)
v_0	2200	m/s	exact

τ_n = 868.8 ± 22.5 (stat.) $^{+14}_{-9.8}$ (sys.) s

| Table 4. Neutron lifetime results from all the data taken between 2014 and 2016 (very preliminary). |
|-----------|--------|-----|---------------------|
| ID | date | τ_n [s] |
| 1 | 2014/5 | 943.5 ± 25.3 $^{+20.6}_{-11.1}$ |
| 2 | 2015/4 | 904.4 ± 19.6 $^{+13.2}_{-7.6}$ |
| 3 | 2016/4 | 899.5 ± 45.5 $^{+11.7}_{-10.9}$ |
| 4 | 2016/4 | 887.7 ± 22.2 $^{+11.5}_{-10.4}$ |
| 5 | 2016/5 | 879.2 ± 23.5 $^{+11.7}_{-11.7}$ |
| 6 | 2016/6 | 868.6 ± 22.5 $^{+12.9}_{-9.9}$ |
| Combined | | 895.7 ± 9.8 (stat.) $^{+14.2}_{-10.3}$ (sys.) |

Figure 8. Our result of the neutron lifetime along with previous measurements [3]. The average of the two most recent results using the in-beam method (red) is (888.0±2.0) s [9,10], while that using UCN storage (blue) is (879.6±0.6) s [4–8]. The discrepancy of the two averages is 8.4 s (4.0% on the total 3He number density in the TPC).

4.5. Systematic uncertainties

In this section, some of the dominant systematic uncertainties are described.

- Pileup events: During the data taking time of 100 μs per trigger signal, there is a possibility of recording multiple events, which needs to be corrected for. The expected amount of these pileup events is calculated from the time window width and the event rate of the respective signal events. The uncertainty is evaluated to be $+0.4/-1.2$% for the number of the neutron beta-decay events, and currently dominates the total systematic uncertainty.

- 3He contamination in 4He gas: The 4He component of the operation gas of the TPC contains a small amount of 3He (~0.1 ppm). It contributes about 10% to the total 3He pressure in the TPC and therefore needs to be measured precisely, for which we used a mass spectrometer [18]. The stability of this spectrometer led to a systematic uncertainty of 0.3% on the total 3He number density in the TPC.

- Signal separation: As said in Sect. 4.3, the beta-decay events and the 3He(n, p)3H reaction events are separated based on the energy deposit in the TPC. The separation efficiency is limited by the energy calibration accuracy of the TPC (5 ~ 9%), causing a systematic effect of $+0.5/-0.7$%.

5. Result

The neutron lifetime is evaluated independently for six runs performed at different partial pressure of 3He. Table 3 lists the values of all entries to Eq. (1) for one of these runs performed in 2016. The results of all six runs performed between 2014 and 2016 are listed in Table 4. Note that these values and uncertainties are very preliminary. They are consistent with each other. The combined value is 896 ± 10 (stat.) $^{+14}_{-10}$ (sys.) s and is shown along with previous results of other groups in Fig. 8.

6. Summary and discussion

A new neutron lifetime measurement is currently conducted at J-PARC. A spin flip chopper is used to form neutron bunches from the polarized neutron beam to increase the signal-to-noise ratio. A TPC is used as a
beta-decay detector, which also counts the 3He(n, p)3H reaction events simultaneously for the flux evaluation. Our first preliminary result, using the data between 2014 and 2016, is 896 ± 10 (stat.)$^{+14}_{-10}$ (sys.) s. The precision is still ten times worse than our precision goal of 1 s, and several upgrades are planned to improve both the statistical and systematic uncertainties.

The currently employed SFC limits the beam size in the TPC to 2.5 cm × 2 cm. An upgraded device will increase the beam size to 10 cm × 3 cm, corresponding to a 5.3 times larger neutron beam intensity. As shown in Fig. 9, a 100-days measurement will then yield 1 s statistical uncertainty. Since the background originating from neutron scattering causes one of the biggest uncertainties, we also plan to reduce the operation gas pressure of the TPC. Complying with this, a new type of preamplifier with low power consumption is currently being developed and tested in our group.

References

[1] J. Chadwick, Proc. R. Soc. London A: Math. Phys. Eng. Sci. 136, 692 (1932)
[2] M. Pospelov, J. Pradler, Ann. Rev. Nucl. Part. Sci. 60, 539 (2010)
[3] M. Tanabashi et al., (Particle Data Group) Phys. Rev. D 98, 030001 (2018)
[4] W. Mampe, L.N. Bondarenko, V.I. Morozov, Yu. N. Panin, A. I. Fomin, JETP Lett. 57, 82 (1993)
[5] A. Serebrov et al., Phys. Lett. B 605, 72 (2005)
[6] A. Pichlmair, V. Varlamov, K. Schreckenbach, P. Geltenbort, Phys. Lett. B 693, 221 (2010)
[7] A. Steyerl, J.M. Pendlebury, C. Kaufman, S.S. Malik, A.M. Desai, Phys. Rev. C 85, 065503 (2012)
[8] S. Arzumanov et al., Phys. Lett. B 745, 79 (2015)
[9] J. Byrne, P.G. Dawber, Europhys. Lett. 33, 187 (1996)
[10] A.T. Yue et al., Phys. Rev. Lett. 111, 222501 (2013)
[11] Y. Arimoto et al., Nucl. Instrum. Methods Phys. Res. Sect. A 799, 187 (2015)
[12] S.F. Mughabghab, Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections, Z = 1–100 (5th edition), (2006)
[13] R. Kossakowski, P. Grivot, P. Liaud, K. Schreckenbach, G. Azuelos, Nucl. Phys. A 503, 473 (1989)
[14] T. Ino et al., Physica B: Condensed Matter 406, 2424 (2011)
[15] K. Mishima, Neutron network news (Hamon) 25, 156 (2015)
[16] N. Nagakura, Master’s thesis, The University of Tokyo (2016)
[17] Y. Igarashi et al., Nucl. Sci. IEEE Trans. 52, 2866 (2005)
[18] H. Sumino, K. Nagao, K. Notsuji, J. Mass Spectrom. Soc. Japan 49, 61 (2001)