Plastic Membrane Electrodes of Coated Wire Type for Micro Determination of Quininium Cation in Pharmaceutical Tablets

Laila Abdullah Al Shatti, Hayat Mohammed Marafie and Adel Fahmi Shoukry

Department of General Science, College of Nursing, The Public Authority for Applied Education and Training, Kuwait State

Department of Chemistry, Faculty of Science, Kuwait University, Kuwait State

Abstract: Problem statement: Silver and copper all-solid state wire sensor electrodes of quininium cation with different ion exchangers have been prepared and used in pharmaceutical analysis. A comparative study with a reference method is applied in order to investigate the validity of the proposed method for potentiometric analysis of pharmaceutical compounds containing quinine. Approach: A Nernstian equation was proved for all electrodes of quinine in this research. Potentiometric investigations were carried out to identify the characteristic performance of the electrodes, such as the life span, pH effect and effect of the interfering ions. Chemometric and statistical studies of the chemical analysis of quinine in pharmaceutical compounds were applied using different type of electrodes compared to a reference method. Results: A Polyvinyl Chloride (PVC) membrane electrodes of silver (Ag) and Copper (Cu) Coated Wire Electrodes (CWEs) were prepared for quininium cation (Qn⁺). The ion exchangers were ion-pairs and ion associates of Qn⁺ with different counter-anions, such as reineckate (Rn⁻), phosphotungstate (PT³⁻) and phosphomolybdate (PM³⁻). The Qn-CWEs showed a Nernstian response for a maximum 24 h at 25°C, except with that based on Cu-Qn₃PM. Conclusion/Recommendations: The ion pair QnRn and the ion associates Qn₃PT and Qn₃PM are very efficient ion exchangers for the construction of Qn-CWEs. The performance characteristics (life span, pH effect and the selectivity) proved that such electrodes can be successfully used for the potentiometric micro-determination of Qn₂SO₄ in its pharmaceutical preparation. The analytical application showed that the recoveries and relative standard deviation of different Qn-CWEs reveals a high degree of accuracy and precision. In spite of their high accuracy, the F- test conclude the fact that the reference method is usually more precise than proposed method introduced in this study except for Ag-Qn₃PM electrode. In general, Ag-Qn₃PM CWE showed a discrete behavior regarding accuracy and silver metal preference. Further application of this type of electrodes on different pharmaceutical compounds is recommended to countervail the trends on the performance characteristics and confront the statistical parameters.

Key words: Most ion-Selective Electrodes (ISEs), Phosphotungstic Acid (PTA), polyvinyl chloride, pharmaceuticals samples, Separate Solution Method (SSM), Matched Potential (MPM), pharmaceutical compounds, reference method, plastic membrane

INTRODUCTION

An ion-selective electrode is an electrochemical sensor based on thin films or selective membranes as recognition elements in aqueous solutions. Coated Wire Electrodes (CWEs), introduced by Freiser in the mid-1970s, are prepared by (Pt, Ag, Cu) or graphite-based with any conventional shape, such as wire or disk. The conductor is usually dipped in a solution of PVC and the active substance and the resulting film is allowed to air-dry. They are usually highly sensitive and very easy to use. An ion-selective membrane is the key component of all potentiometric ion sensors. The membrane establishes the preference with which the sensor responds to the analyte in the presence of various interfering ions (Lonsdale, 1982; Wang, 2006; Mirbaghei et al., 2007; Emamieh et al., 2008). Such a membrane is quite similar to liquid phase, because diffusion coefficients for dissolved low molecular weight ion-pairs or ion-associates are in the order of
Fig. 1: Structural formula of quinine

10^{7}-10^{-8} \text{ cm}^2 \text{ sec}^{-1} \text{ (Mikehelson, 1994; Schaller et al., 1994; Jamhour, 2005; Saito et al., 2008). The ion-selective electrode cell may be presented in conventional type or solid state coated wire types (Wang, 2006; Bakker et al., 1999; Bucj, 1978; Abdullah et al., 2010). Most ion-Selective Electrodes (ISEs) developed so far for determination of drugs are based on the use of ion-exchange systems. If the drug involves compounds containing organic cation, different salts are used for their conversion to an electrode-active ion-associate (Ngheim et al., 2006; Koryta, 1977; Stefan et al., 1997; Levenstam et al., 2005; Youging et al., 2005; Aly et al., 2005; Nakatani et al., 2005; Ma et al., 2005).

The CWEs based on ion-associate quininium and Reineckate, phosphotungstate and phosphomolybdate were found to give useful results for determination of quinine in pharmaceuticals samples (Sekula et al., 2006; Kobayashi et al., 2010; Zareh et al., 2001; Kamel and Sayour, 2009). In the reference method, the ISEs of the conventional type for quininium cation have been constructed and their performance characteristics studied (Shoukry et al., 2007). The results were very satisfactory; however the preparation of the electrodes needs multiple steps. This is because all solid state electrodes of the coated wire type are much more easily prepared than the conventional type and have the advantage of not containing internal reference electrode. The present study describes a further search for a satisfactory PVC electrode for determination of Quininium cation based on different metals-coated wire electrodes.

Figure 1, shows the figure of quinine (Dewick, 2009), which is an alkaloid derived from the bark of the cinchona tree. It is a natural white crystalline alkaloid having antipyretic, antimalarial, analgesic and anti-inflammatory properties and a bitter taste. It is a stereoisomer of quinidine, which, unlike quinine, is an anti-arrhythmic. Several analytical methods have been developed for the quantitative determination of this drug. These methodologies include chromatography (Samanidou et al., 2005; 2004), spectrophotometry (Csernak et al., 2006; Hassan, 2008; Tang et al., 2005; Radhi et al., 2010).

MATERIALS AND METHODS

Materials: All chemicals used were of analytical grade. Polyvinyl chloride (PVC) of high molecular weight (Fluka). Dioctyl phthalate (Fluka), ammonium reineckate (Aldrich), phosphomolybdic acid (PMA) (Fluka) and Phosphotungstic Acid (PTA) (Fluka) were used. The Qn-containing tablets quininga (300 mg/tablet) are from Inga Pharma, Bombay. Sampling was carried out by grinding 10 tablets into fine powder, from which replicate samples were taken. All solutions and reagents were prepared in bi-distilled water. The Qn3PT and Qn3PM ion-associates and QnRn ion pair were prepared by a method similar to that previously described (Shoukry et al., 1988). The elemental analysis of the produced ion-exchangers carried out at ANALAB, Faculty of Science, Kuwait University confirmed the stochiometries: (1:1) (Qn: Rn), (3:1) (Qn:PT) and (3:1) (Qn:PM).

Construction of the electrodes: Spectroscopic pure silver or copper wires of 2.00 mm diameter and 12 cm length were tightly insulated by polyethylene tubes, leaving 1.0 cm at one end for coating and 0.5 cm at the other end for connection. The coating solution was prepared by dissolving 8.6, 8.6, or 11.0 mg of the ion-exchanger (QnRn, Qn3PT or Qn3PM, respectively), in 4 ml tetrahydrofuran, 104 mg of PVC and 102 mg of DOP were dissolved. Prior to coating, the polished silver or copper surface was washed with a detergent and water, thoroughly rinsed with deionized water and dried with acetone. Then, the wire was rinsed with chloroform and allowed to dry. Afterward, the wire was coated by quickly dipping it into the coating solution several times and allowing the film left on the wire to dry in air for about 2 min. The process was repeated three times until a plastic membrane of 1.00 mm thickness was formed. The prepared electrodes were preconditioned by soaking them for 1.5 h in 10^{-7} \text{ M QnHCl solution} (Shoukry et al., 2007).

Potentiometric studies and electrochemical systems: Potentiometric measurements were carried out with an Orion, Model 420A pH/mV meter. A Caron circulator thermostat was used to control the temperature of the test solution.
The following electrochemical system was employed:

Ag/AgCl reference electrode| QnCl Test solution |Ag or Cu coated membrane | AgCl | Ag

Construction of the calibration graphs: Suitable increments of standard QnCl solution were added to 50 mL of \(10^{-6}\) M QnCl solution so as to cover the concentration range \(10^{-6} \text{ M} - 1.7 \times 10^{-2} \text{ M}\). In this solution, the sensor and the reference electrode were immersed and the Electro-Motive Force (EMF) was recorded after 10 s, at 25°C for each addition.

Life span of the electrodes: The performance characteristics of the electrodes were investigated as a function of soaking time. For this purpose, the electrode was soaked in a solution with \(10^{-3}\) M in QnCl and the calibration graphs (pQn vs E_mV) were constructed after 0.5, 1, 2 and 24 h.

Effect of pH: The pH effect on the potential values of the electrode system of the quinine test solution was tested by the alteration of pH values using HNO_3 and/or NaOH (0.1-1.0 M each). Graphs of (pH vs E_mV) were plotted showing the effect of pH on different silver or copper coated wire electrodes of the different ion-exchangers.

Selectivity: The selectivity coefficients \(K_{pot}^{Qn,J}z^+\) of the CWEs for quininga pharmaceutical of quinine-respective drug towards the major serum cations (Schenk et al., 2009; Asadi et al., 2009), Na^+, K^+, Mg^{2+} and Ca^{2+} were determined by the Separate Solution Method (SSM) and matched potential (MPM) as described previously (Cosofret, 1991; Umezawa et al., 1995), where the following equation was applied for (SSM):

\[
\log K_{pot}^{Qn,J}z^+ = E_2 - E_1/s + \log [Qn^+] - \log [J^{z+}]^{1/z}
\]

where, \(Qn^+\) is quininium cation; \(J^{z+}\) is the interfering ion; \(E_1\) and \(E_2\) is the electrode potential in \(10^{-3}\) M solution of \(Qn^+\) and \(J^{z+}\), respectively; and \(s\) is the slope of the calibration graph. The reciprocal value of the selectivity coefficient represents the minimum concentration ratio of the interfering ion to the primary ion at which interference start. Table 2 lists the mean selectivity coefficients of Qn-CWEs determined by both (SSM) and (MPM). The selectivity coefficients of the CWEs' values are very small (within maximum \(2.65 \times 10^{-2}\) to the minimum \(3.45 \times 10^{-4}\) for K^+ and Mg^{2+}, respectively). Consequently, it will reflect no interference of the major serum cations. Multiplying
Fig. 2: Calibration graph obtained at 25°C after soaking Ag-QnRn (top) in 10^{-3} M Qn$^+$-solution for a: 0.5, b: 1, c: 2 and d: 24 hours and (below) Cu-QnRn

the selectivity coefficient by the concentration of the interfering ion produces the minimum concentration of the drug that can be detected in the blood serum without interference. Applying this mathematical treatment using the serum concentrations of the cations, it is evident that with down to 4.90×10^{-4}, 1.96×10^{-3}, 3.45×10^{-3} and 8.04×10^{-3} M Qn concentrations, in case of Ag-QnRn electrode and down to 4.00×10^{-4}, 1.81×10^{-3}, 2.88×10^{-6} and 5.64×10^{-6} M Qn concentrations, in case of Cu-QnRn electrode, no interference of Na$^+$, K$^+$, Mg$^{2+}$ and Ca$^{2+}$, respectively, is expected. Homologous calculations of different Qn-CWEs are represented in Table 2.

![Fig. 2: Calibration graph obtained at 25°C after soaking Ag-QnRn (top) in 10^{-3} M Qn$^+$-solution for a: 0.5, b: 1, c: 2 and d: 24 hours and (below) Cu-QnRn](image)

Analytical application: From the results shown in Table 3, it is evident that the measurements in general exhibit low values of standard deviation (s), ranging from 0.64 when using Ag-QnRn to 1.45 when using Cu-QnRn for assaying tablets. The recovery values using Ag-CWEs were 100.9, 97.77 and 97.60 for QnRn, QnP and QnRn, respectively. The recovery values using Cu-CWEs were 93.30, 92.80 and 91.89 for QnRn, QnP and QnRn, respectively. The recovery values obtained for the analysis of Qn in the tablets reflect the high accuracy of the method.

DISCUSSION

Life span of the electrodes: The soaking for up to 24 h for both types of electrodes has no effect on the calibration graph slope (Fig. 2). However, after 24 h soaking, the slope decreases gradually and the linear usable concentration range is greatly affected by soaking shown in Table 1. This may be attributed to gradual leaching of the electro active ion-exchanger from the membrane surface.

Effect of pH: Graphs of (pH vs E_{mv}) show the same trends for all Qn-CWEs (Fig. 3). They have the shape of a plateau form in an average pH range from 3.2-7.6 and the pH decreased in both acidic and basic sides of the curve. This phenomenon allows the Qn-CWEs a good working range in blood serum since the pH of blood ranges from 7.35-7.45. For all Qn-CWEs, it is clear that at pH values extended to lower or higher values than the plateau ranges of the curves, the potential values decrease with decreasing and increasing the pH, respectively.

![Fig. 3: Effect of pH of the test solution on the Qn$^+$ responsive electrode in (a) 1×10^{-3} and (b) 1×10^{-4} M solution at 25°C](image)
Table 1: Effect of soaking on the performance of Qn-electrodes

Soaking time	Slopea	Concentration range (M)	Soaking time	Slopea	Concentration range (M)
0.5 h	48.82	6.30×10⁻⁵-1.70×10⁻²	0.5 h	48.82	6.30×10⁻⁵-1.70×10⁻²
1 h	53.57	4.53×10⁻⁵-1.60×10⁻²	1 h	53.57	4.53×10⁻⁵-1.60×10⁻²
2 h	55.40	6.50×10⁻⁵-1.78×10⁻²	2 h	55.40	6.50×10⁻⁵-1.78×10⁻²
24 h	47.54	6.50×10⁻⁵-1.65×10⁻²	24 h	47.54	6.50×10⁻⁵-1.65×10⁻²

Table 2: Selectivity coefficients K⁺,Qn,Jz⁺ of Qn-responsive metal coated (Ag, Cu) electrodes

Interfering ion	Blood serum Level M	Selectivity coefficient K⁺,Qn,Jz⁺	Mean value	Mean value	dMmin.
Na⁺	0.14	3.53×10⁻⁴	2.84×10⁻⁴	4.90×10⁻⁴	4.00×10⁻⁴
K⁺	0.005	3.92×10⁻⁴	3.62×10⁻⁴	1.96×10⁻⁵	1.81×10⁻⁵
Mg²⁺	0.001	4.35×10⁻⁴	2.88×10⁻⁴	3.45×10⁻⁷	2.88×10⁻⁷
Ca²⁺	0.003	4.68×10⁻⁴	4.18×10⁻⁴	8.04×10⁻⁷	5.64×10⁻⁷

Table 3: Applying three different Qn-responsive electrodes to the determination of Qn in the pharmaceutical tablets, Quininga, using the standard addition method

Ion exchanger	Labeled amount (mg)	Amount found (mg)	(%) Recovery	Reference method (Shoukry et al., 2007)
QnRn	78.29	76.34±1.02	97.60±1.30	93.30±1.86
Qn3PT	78.29	76.52±0.65	97.77±0.87	92.80±0.84
Qn3PM	78.29	79.04±0.639	100.9±0.82	91.89±0.93

The decrease in potential at the acidic side of the curves is most probably due to nitrate ion interface. On the other hand, the decrease in potential at the basic side of the curve is attributed to the decrease of quinine cationic species (Qn⁺) as a result of releasing the free base from the pharmaceutical compound.
Selectivity: The selectivity of an ion pair complex-based membrane depends on the ion exchange process at the membrane test interface and the mobility of the respective ions in the membrane. None of the investigated ions was found to interfere due to small values of the selectivity coefficients in Table 2. The minimum molarities of the drug detected in blood serum without interference by Qn-CWEs were mostly of a micro-scale, except for with Na⁺ cation. This shows that both Ag- and Cu-CWEs are so selective for quininium that they can be used conveniently in the determination of quinin in the pharmaceutical preparations and biological fluids.

Analytical application: The statistical t- and F-tests were used to analyze the data in Table 3, starting from calculating the mean and the standard deviation of each determination for the applied Ag- and Cu-CWEs. The results show that the present CWEs of Ag and Cu are highly accurate (as shown by the recovery values) and highly precise (as revealed by the corresponding standard deviations).

To compare the efficiency of the two metal electrodes with respect to the reference method, the t- and F-test were applied. In making a significant test we are testing the truth of a hypothesis which is known as a null hypothesis, often denoted by H_0. The term null is used to imply that there is no difference between the mean, $x_\bar{}$ and the true values, μ, of the proposed and reference values ($\mu_1 = \mu_2$). In other words, we need to test whether $x_\bar{}$ and $x_\bar{}$ differ significantly from zero by the application of a t-test. The calculated $|t|$ values of Ag-QnRn, Cu-QnRn, Ag-Qn3PT, Cu-Qn3PT and Cu-Qn3PM are each higher than the critical value $t_{7}=2.36$. Accordingly, the difference between the two results of the reference and the proposed methods is significant at 5 % level and the null hypothesis is rejected. In fact, since the critical value of t_7 for 0.01 is about 3.5, the difference is significant at 1 % level except for Ag-Qn3PM. In other words, if the null hypothesis is true, then the probability of such a large difference arising by chance is less than 1%. The Ag-Qn3PM calculated value ($t_7 = 0.76$) is less than the critical value ($t_7 = 2.36$), so the null hypothesis is retained and there is no evidence that using the conventional or Ag-CWE affects the recovery.

Another significance test that describes the precisions of the proposed method with a reference method is the F-test. The F-test is used for comparing whether the difference between two sample variances is significant (i.e., to test H_0: $\sigma_1^2 = \sigma_2^2$). If the null hypothesis is true, then the variance ratio should be close to 1. The F-values calculated were 2.7, 1.37 and 5.423 for Ag-QnRn, Cu-QnRn and Cu-Qn3PM, respectively, which are less than Critical $F_{(3, 4)}$ (6.59). Since the calculated values are less than the critical values of F, the variance of the proposed method is significantly greater than that of the reference method at 5% probability level (i.e., the reference method is more precise). Comparatively, Ag-Qn3PM calculated $F_{(3, 4)}$ (7.08) is higher than critical $F_{(3,4)}$ (6.59), which means that the Ag-Qn3PM is more precise than the reference method. Conversely, the calculated $F_{(4, 3)}$ values were found to be 16.5 and 17.54 for Ag-Qn3PT and Cu-Qn3PT, respectively. The calculated values were higher than critical $F_{(4, 3)}$ (9.12), which mean that (in case of Qn3PT) the reference method is more precise than with Cu-Qn3PT or Ag-Qn3PT.

CONCLUSION

The ion pair QnRn and the ion associates Qn3PT and Qn3PM are efficient ion exchangers for the construction of Qn-CWEs. Such electrodes can be successfully used for the micro determination of Qn2SO4 in its pharmaceutical preparation. The chemometric study concludes that the reference method is usually more than the proposed method except for Ag-Qn3PM. In general, Ag-Qn3PM CWE showed a discrete behavior regarding accuracy and silver metal preference.

ACKNOWLEDGEMENT

The cooperation of Kuwait University-College of Science through the facilities of Analytical Laboratory (ANALAB) with The Public Authority for Applied Education and Training in the integration of the scientific research.

REFERENCES

Abdullah, W., M. Othman, M. Ali and M.S. Islam, 2010. Knowledge representation of ion-sensitive field-effect transistor voltage response for potassium ion concentration detection in mixed potassium/ammonium ion solutions. Am. J. Applied Sci., 7: 81-88. DOI: 10.3844/ajassp.2010.81.88
Aly, A.S., H.H. Sokker, A. Hashem and A. Habiesh, 2005. Preparation of cellulosic membrane containing pyrrolidone moiety via radiation induced grafting and its application in wastewater treatment. Am. J. Applied Sci. 2: 508-513. DOI: 10.3844/ajassp.2005.508.513
Asadi, A., B. Haut, M. Hassim, T. Mohamed and M. Hanafi et al., 2009. Electroosmotic phenomena in organic soils. Am. J. Environ. Sci., 5: 310-314. DOI: 10.3844/ajessp.2009.310.314

Bakker, E., P. Buhlmann and E. Pretsch, 1999. Polymer membrane ion-selective electrodes-what are the limits. Electroanal., 13: 915-933. DOI: 10.1002/(SICI)1521-4109(199909)11:13<915::AID-ELAN915>3.0.CO;2-J

Bucj, R.P., 1978. Ion selective electrodes. Anal. Chem., 50: 17-29. DOI: 10.1021/ac50028a003

Cosofret, V.V., 1991. Drug membrane sensors and their pharmaceutical applications. TrAC Trends Analytical Chem., 10: 298-301. DOI: 10.1016/0165-9936(91)85008-F

Csernak, O., A. Buvari-Barcza and L. Barcza, 2006. Cyclodextrin assisted nanophase determination of alkaloid salts. Talanta, 69: 425-429. DOI: 10.1016/j.talanta.2005.10.010

Dewick, P.M., 2009. Medicinal Natural Products: A Biosynthetic Approach. 3rd Ed., John Wiley and Sons Publisher, Canada, ISBN: 978-0-470-74168-9, pp: 550.

Emamieh, G.D., A. Ameri, S. Najarian and A.T. Golpavgani, 2008. Experimental and theoretical analysis of a novel flexible membrane tactile sensor. Am. J. Applied Sci., 5: 122-128. DOI: 10.3844/ajassp.2008.122.128

Hassan, W., 2008. Determination of ibuprofen and paracetamol in binary mixture using chemometric-assisted spectrophotometric methods. Am. J. Applied Sci., 5: 1005-1012. DOI: 10.3844/ajassp.2008.1005.1012

Jamhour, R.M.A.Q., 2005. New inorganic ion-exchange material for the selective removal of fluoride from potable water using ion-selective electrode. Am. J. Environ. Sci., 1: 1-4. DOI: 10.3844/ajessp.2005.1.4

Kamel, A.H. and H.E.M. Sayour, 2009. Flow-through assay of quinine using solid contact potentiometric sensors based on molecularly imprinted polymers. Electroanal., 21: 2701-2708. DOI: 10.1002/elan.200904699

Kobayashi, Y., M. Habara, H. Ikekazi, R. Chen and Y. Naito et al., 2010. Advanced taste sensors based on artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores. Sensors, 10: 3411-3443. DOI: 10.3390/s100403411

Koryta, J., 1977. Theory and applications of ion-selective electrodes part II. Anal. Chim. Acta., 1: 1-85. DOI: 10.1016/S0003-2670(01)95921-5

Levenstam, A., M.M. Zurauska and A. Hulanicki, 2005. Application of ion-selective electrodes in clinical analysis. Electroanal., 3: 727-734. DOI: 10.1002/elam.1140030802

Lonsdale, H.K., 1982. The growth of membrane technology. J. Memb. Tech., 10: 81-181. DOI: 10.1016/S0376-7388(00)81408-8

Ma, X., R. Yang and G. Li, 2005. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized in poly-3-hydroxybutyrate film. Am. J. Biochem. Biotechnol., 1: 43-46. DOI: 10.3844/ajbbsp.2005.43.46

Mikheelson, K.N., 1994. Ion-Selectice Electrodes in PVC Matrix. Sen. Actuators B: Chem., 18: 31-37. DOI: 10.1016/0925-4005(94)87051-9

Mirbaghei, A., J. Dargahi, S. Najarian, F. and T. Ghomoshe, 2007. Design, fabrication and testing of membrane piezoelectric tactile sensor with four sensing elements. Am. J. Applied Sci., 4: 649-652. ISSN: 1546-9239

Nakatani, H.S., L.V. Santos and C.P. Pelegrine, S.T.M. Gomes and M. Matsushita et al., 2005. Biosensor based on Xanthine oxidase for monitoring hypoxanthine in fish meat. Am. J. Biochem. Biotechnol., 1: 85-89. DOI: 10.3844/ajbbsp.2005.85.89

Ngheim, L.D., P. Morrane, I.D. Potter, J.M. Perera and R.W. Cattrall et al., 2006. Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J. Memb. Sci., 281: 683-692. DOI: 10.1016/j.memsci.2006.03.035

Radhi, M.M., W.T. Tan, M.Z. Rahman and A.B. Kassim, 2010. Voltammetric detection of Mn(II) in blood sample at C60 and MWCNT modified glassy carbon electrodes. Am. J. Appl. Sci., 7: 395-401. DOI: 10.3844/ajassp.2010.395.401

Saito, T., H. Fujimaki and M. Inova, 2008. Calibration and simultaneous monitoring of soil water content and salinity with capacitance and four-electrode probes. Am. J. Environ. Sci., 4: 683-692. DOI: 10.3844/ajessp.2008.683.692

Samanidou, V., E. Evaggelpoulou and I. Padoyannis, 2004. Simple and rapid HPLC method for the determination of quinine in soft drinks using fluorescence detection. J. Liq. Chromatog. Rel. Technol., 27: 2397-2406. DOI: 10.1081/JLC-200028156

Samanidou, V., E. Evaggelpoulou and I. Padoyannis, 2005. Simultaneous determination of quinine and chloroquine anti-malarial agents in pharmaceuticals and biological fluids by HPLC and fluorescence detection. J. Pharm. Biomed. Anal., 38: 21-28. DOI: 10.1016/j.jpba.2004.12.005

Schaller, U., E. Bakker, U.E. Spichiger and E. Pretsch, 1994. Ionic additives for ion-selective electrodes based on electrically charged carriers. Anal. Chem., 66: 391-398. DOI: 10.1021/ac00075a013
Schenk, G.H., R.B. Hahn and A.V. Hartkope, 2009. Introduction to Analytical Chemistry. 2nd Ed, Allyn and Bacon Publish Publisher, London, UK, ISBN: 0205072364, pp: 523.

Sekula, J., J. Everaert, H. Bohets, B. Vissers and M. Pietraszkiewicz et al., 2006. Coated wire potentiometric detection for capillary electrophoresis studied using organic amines, drugs and biogenic amines. Anal. Chem., 78: 3772-3779. DOI: 10.1021/ac060066y

Shoukry, A.F., H.M. Maraffie and L.A. Al Shatti, 2007. Energy dispersive and x-ray photoelectron spectroscopy and electron microscopy of new quininium-plastic membrane electrodes. Annal. Di. Chim., 97: 1117-1127. DOI: 10.1002/adic.200790095

Shoukry, A.F., S.S. Badawy and R. Farghali, 1988. Hexadecylpyridinium-phosphotungstate ion association in construction of a Hexadecylpyridinium cation selective electrode. Anal. Chem., 60: 2399-2402. DOI: 10.1021/ac00172a016

Stefan, R., G.E. Baiulescu and H.Y. Aboul-enien, 1997. Ion-selective membrane electrodes in pharmaceutical analysis. Crit. Rev. Anal. Chem., 27: 307-321. DOI: 10.1080/10408349708050589

Tang, G., Y. Huang and W. Shi, 2005. Reverse micelle-based chemiluminescence system for quinine sulphate. Lumines, 20: 181-186. DOI: 10.1002/bio.816

Umezawa, A.Y., K. Umezawa and S.H. Ato, 1995. Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting K_A, B^{pot} values (Technical Report), Pure Appl. Chem., 67: 507-518. DOI: 10.1351/pac199567030507

Wang, J., 2006. Analytical Electrochemistry. 3rd Ed. John Wiley and Sons Publisher, Canada, ISBN 13: 9780471678793, pp: 272.

Youging, M., C. Jianrong and W. Xiahua, 2006. Construction of a glucose biosensor by immobilizing glucose oxidase within a poly(o-phenylendiamine) covered screen-printed electrode. Online J. Biol. Sci., 6: 18-22. DOI: 10.3844/ojbsci.2006.18.22

Zareh, M.M., E. Malinowska and K. Kasiura, 2001. Plasticized poly(vinyl chloride) membrane electrode for the determination of quinine in soft drinks. Anal. Chim. Acta., 447: 55-61. DOI: 10.1016/s0003-2670(01)01005-4