Coupling of Proadipocyte Growth Arrest and Differentiation. II. A Cell Cycle Model for the Physiological Control of Cell Proliferation

ROBERT E. SCOTT, BRYAN J. HOERL, JOHN J. WILLE, JR., DAGNE L. FLORINE, BRUCE R. KRAWISZ, and KANKATSU YUN
Section of Experimental Pathology, Departments of Anatomic Pathology and Cell Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905. Dr. Krawisz's present address is the Department of Pathology, Barnes Hospital, St. Louis, Missouri.

ABSTRACT Experimental evidence is presented that supports a cell cycle model showing that there are five distinct biological processes involved in proadipocyte differentiation. These include: (a) growth arrest at a distinct state in the G1 phase of the cell cycle; (b) nonterminal differentiation; (c) terminal differentiation; (d) loss of the differentiated phenotype; and (e) reinitiation of cell proliferation. Each of these events is shown to be regulated by specific human plasma components or other physiological factors. At two states designated GD and GD', coupling of growth arrest and differentiation is shown to occur. We propose that these mechanisms for the coupling of growth arrest and differentiation are physiologically significant and mimic the regulatory processes that control stem cell proliferation in vivo.

Cell proliferation in vivo and in vitro can be regulated by the coupling of growth arrest and cell differentiation (7, 8, 11, 12, 16). The mechanisms that control the coupling process have been studied using BALB/c 3T3 T proadipocytes which differentiate into fat cells in culture (5, 10, 16). We established that, before expression of the adipocyte phenotype, growth arrest must occur at a state in the G1 phase of the cell cycle, designated GD, and that GD is distinct from other G1 growth arrest states, including those induced by density-dependent growth inhibition, growth factor deprivation, and nutrient deprivation (16). Only GD-arrested cells: (a) can express the differentiated phenotype in the absence of DNA synthesis (16); (b) can be stimulated to proliferate when exposed to methyl isobutyl xanthine (16); and (c) are sensitive to a cytotoxic effect of 8-bromo cyclic AMP (6). The GD arrest state is also distinct from other G1 states on the basis of topographical analysis (19). In previous studies, however, it has been difficult to distinguish other possible stages in the differentiation process because of technical limitations.

In the preceding paper (10) we described a new culture system that induces proadipocyte GD arrest and differentiation. It was established that culture of low density proadipocytes in heparinized medium containing human plasma induces GD arrest and differentiation in a rapid, highly efficient, and parasynchronous manner. With this method it is now possible to perform more detailed studies on the mechanisms that regulate the coupling process. Data are presented in this paper which provide the basis for a new model that shows that five distinct biological processes are involved in proadipocyte differentiation and that coupling of growth arrest and differentiation occurs at two states, designated GD and GD'.

MATERIALS AND METHODS

General

The BALB/3T3 T proadipocyte cell line was used in this study. To induce GD arrest and differentiation, T3T cells were cultured in heparinized Dulbecco's modified Eagle's medium (DME) containing either 25% human plasma or human plasma fractions as described (10). The methods used to measure [3H]thymidine incorporation by autoradiography and to perform flow microfluorimetric analysis of the DNA content to characterize cell cycle distribution have been previously described (10, 16), as have the assays used to determine morphological differentiation (10, 16). The activity of glycerol-3-phosphate dehydrogenase (9) was also used as an assay for adipocyte differentiation, because it has recently been shown that, under selected culture conditions, cells can undergo enzymatic differentiation in the absence of morphological differentiation (17). The density of undifferentiated and differentiated cells was quantitated by microscopic analysis using calibrated eyepieces; cell counts assayed between 300 and 500 cells for each specimen.

Preparation of Human Plasma Fractions

Citrate anticoagulated platelet-poor human plasma was prepared from human blood obtained by venipuncture as described (10). It was then fractionated by either of the two methods. The first method of human plasma fractionation was...
previously described in detail (10). Briefly, citrate anticoagulated plasma was adsorbed repeatedly with barium chloride. This produced barium adsorbed plasma (BaP) and plasma components bound to the barium citrate precipitate. Sequential elution of the barium adsorbed plasma components with sodium citrate and ethylenediamine tetraacetic acid produced two fractions designated CEP and EDTAP, respectively.

A second method was developed to produce another fraction with different biological activity. With this method the pH at which the barium adsorption was performed was changed from pH 7.8 to 8.7. More specifically, citrate anticoagulated human plasma was adjusted to pH 8.7 with 1 N NaOH, barium chloride was then added slowly to a final concentration of 0.1 M. The pH was readjusted to 8.7 and continually stirred at 4°C for 30 min. The suspension was then centrifuged at 3600 g for 25 min at 4°C. The sediment was finally partially solubilized by addition of 0.9% NaCl-0.02 M sodium citrate. This suspension was stirred for 45 min at 4°C and then sedimented as above. The supernatant, which was extensively dialyzed against 6.5 mM sodium citrate-citric acid buffer (pH 7.4), was designated CEPH. Other methods of procedure are described in detail in the preceding paper (10).

RESULTS

The culture of rapidly growing low density proadipocytes in heparinized medium containing human plasma induces growth arrest and differentiation. The studies described in this paper were designed to establish: (a) if reversible growth arrest at a distinct state in the G1 phase of the cell cycle precedes differentiation; (b) if the differentiation process involves nonterminal and terminal phases; (c) if nonterminally differentiated cells can be induced to dedifferentiate; and (d) if G0-arrested and dedifferentiated cells can be induced to reinitiate cell proliferation.

Growth Arrest at the G0 State

The culture of proadipocytes in heparinized medium containing human plasma induces growth arrest at a distinct state in the G1 phase of the cell cycle, G0, and their subsequent differentiation (10, 16). In order to further establish that G0 is a specific phase in the coupling process, we attempted to identify experimental conditions that would induce and maintain cells in the G0 arrest state in the absence of differentiation and in the absence of DNA synthesis. Three criteria were used to establish that cells were at the G0 state. First, cells had to have a 2 N DNA content, which is characteristic of cells growth arrested in the G1 phase of the cell cycle. Second, cells had to show mitogenic responsiveness to methyl isobutyl xanthine (MIX) (16). Third, the cells had to be capable of expressing the adipocyte phenotype without DNA synthesis (16). The latter two biological characteristics distinguish G0 arrested cells from cells arrested at other states in the G1 phase of the cell cycle (16).

Since adsorption of citrated human plasma with barium chloride removes its differentiation-promoting activity, we tested to determine if the culture of proadipocytes in heparinized medium containing barium adsorbed plasma (BaP) induces cells to growth arrest at G0 without subsequently expressing a differentiated phenotype. The data presented in Tables I-III support this possibility. Table I shows that culture of proadipocytes in heparinized medium containing BaP induces the growth arrest in >90% of the cells in the G1 phase of the cell cycle. Growth arrest under these culture conditions occurs within 3 d, and the kinetics of growth arrest assayed by decreased incorporation of [3H]thymidine into DNA were comparable to those observed when proadipocytes were cultured in heparinized DME containing complete human plasma. We also observed that cells could be maintained at G0 in this medium for intervals as long as 2 wk without loss of viability and without loss of the G0 associated characteristics described in detail in the preceding paper (10).

Table I

Cell cycle distribution	G1 %	S %	G0/M %
Rapidly growing cells	54	24	22
Cells growth-arrested in BaP	93	3	4

The distribution of cell populations in various phases of the cell cycle was determined by flow microfluorography using a FACS IV apparatus (see Materials and Methods). BaP designates heparinized DME containing 25% barium adsorbed human plasma. Cells were assayed during exponential growth or after culture in BaP for either 4 or 8 d. Comparable results were obtained for both specimens cultured in heparinized medium containing BaP.

Table II

Growth arrest medium supplement	Labeled nuclei %
0.5% FCS	5
25% BaP	46
25% HP	42

Cells were growth-arrested by culture in DME-0.5% fetal calf serum (FCS) for 4-6 d or by culture in heparinized DME containing either barium adsorbed human plasma (BaP) or complete human plasma (HP) for 4 to 8 d. To the culture medium was then added methyl isobutyl xanthine, final concentration 5 x 10^-4 M, and [3H]thymidine. Cells were incubated in this medium for 48 h and were then fixed and processed for autoradiographic analysis to determine the extent of DNA synthesis. The data represent the percent labeled nuclei in MIX-treated cells minus the percent labeled nuclei in untreated cells.

Table III

Treatment	Adipocyte differentiation %	Fat cells/cm²	Labeled nuclei %
BaP alone	5	23	1
BaP x 4 d, then CEP	52	280	6
BaP x 8 d, then CEP	65	325	3

Cells were cultured in heparinized medium containing BaP for 4 or 8 d. CEP was then added together with [3H]thymidine and the cells were cultured for 12 additional days; at 4-d intervals cultures were fed fresh heparinized medium containing BaP or BaP and CEP in addition to [3H]thymidine. The cells were then fixed in formaldehyde-glutaraldehyde and prepared for autoradiography. The extent of adipocyte differentiation was assayed both before and after autoradiography with comparable results. The percent labeled nuclei included all cells that incorporate [3H]thymidine from the time that CEP was added until termination of the experiment.

in Tables II and III. These characteristics included mitogenic responsiveness to MIX and the capacity to differentiate without DNA synthesis. The data in Table II show that cells growth-arrested by culture in heparinized medium containing BaP respond to the mitogenic effect of MIX in a manner similar to cells G0-arrested by culture in heparinized medium containing complete human plasma. This is in contrast to cells growth-arrested in G1 following serum deprivation; such cells are not sensitive to MIX-induced mitogenesis.

The data in Table III provide additional support for the conclusion that proadipocytes can be arrested and maintained...
in the differentiation-competent G₀ arrest state by culture in heparinized medium containing BaP. The data show that after addition of CEP to cells G₁ growth-arrested in heparinized medium containing BaP, differentiation proceeds without loss of proliferative capacity. We interpret these data to support the conclusion that G₀ arrest and differentiation are separable events.

Nonterminal and Terminal Differentiation

Studies were next performed to determine if the differentiation of proadipocytes is a terminal or a nonterminal process. We first assayed whether adipocyte differentiation in heparinized DME containing human plasma is tightly coupled to the loss of proliferative potential. The data in Fig. 1 show that there is approximately a 3-d lag between expression of the adipocyte phenotype and loss of proliferative potential, i.e., terminal differentiation. This suggests that a stage of nonterminal differentiation must exist. For example, Fig. 1 shows that on the sixth day, when approximately 50% of the cells are differentiated, 95% can be induced to incorporate [³H]thymidine into DNA. However, after the 12th day, minimal proliferation of differentiated cells can be detected.

To substantiate the possibility that there is a nonterminal phase of adipocyte differentiation, we attempted to identify experimental conditions that would limit the terminal phase of differentiation and thereby enrich cultures in nonterminally differentiated cells. We found that the culture of low density cells in heparinized DME containing a plasma fraction designated CEPH achieved this result. Table IV presents data on the relative ability of human plasma, BaP, and CEPH to induce adipocyte differentiation. It shows that heparinized medium containing only CEPH can induce differentiation comparable to that observed in heparinized medium containing whole plasma. The culture of proadipocytes in medium containing CEPH was also found to induce G₁ growth arrest. Flow microfluorimetric analysis of such cells showed the following cell cycle distribution: G₁, 87%; S, 3%; G₂/M, 10%.

The data in Table V establish that heparinized DME containing CEPH selectively induces nonterminal adipocyte differentiation at a state we have designated G₀'. If cells are cultured in heparinized DME containing CEPH for 8 d or longer, they differentiate but can be induced to lose the differentiated phenotype when exposed to retinoic acid or other select drugs; they can also be induced to synthesize DNA if subsequently fed 30% fetal calf serum (FCS) (Table V and Fig. 2A). By contrast, retinoic acid does not induce significant numbers of cells cultured in heparinized DME containing complete human plasma for 10–12 d to lose the differentiated phenotype. Addition of mitogens, such as 30% serum, also does not induce the latter cells to incorporate [³H]thymidine (Fig. 1).

These observations suggest that nonterminal and terminal adipocyte differentiation are distinct phases in the coupling process and that CEPH lacks the plasma components required for terminal differentiation. The data presented in Table VI support this conclusion. They show that nonterminally differentiated cells cultured in heparinized medium containing CEPH can be converted to a terminally differentiated state by addition of complete human plasma, or the plasma fractions designated BaP or EDTAP, but not by CEP.
Loss of the Differentiated Phenotype

The data reported in Table V and Fig. 2 show that nonterminally differentiated cells can be induced to lose the differentiated phenotype and reinitiate cell proliferation. These two events are separable processes because the data show that, although 67% of nonterminally differentiated cells cultured in heparinized medium containing CEPH can be induced to lose the differentiated phenotype during a 3-d interval in retinoic acid, <1% of the cells incorporate [3H]thymidine into DNA during this interval. Reinitiation of proliferation of cells induced to dedifferentiate by retinoic acid requires treatment with serum or other mitogenic agents (Fig. 2). Loss of the differentiated phenotype and reinitiation of proliferation are, therefore, separate phases in the coupling process. Under selected experimental conditions it is also possible to induce nonterminally differentiated adipocytes to proliferate without loss of the differentiated phenotype (data not shown).

Reinitiation of Cell Proliferation

Cells which have G1-arrested but which have not expressed the adipocyte phenotype can also be induced to reinitiate proliferation and traverse the cell cycle by addition of a variety of mitogens directly to the differentiation-promoting medium. The data in Table VII list these mitogens. They include epidermal growth factor, phorbol myristate acetate, methyl iso-butyl xanthine, 30% fetal calf serum, and a cyst fluid, designated TuGF, which was derived from tumors induced by implantation of BALB/c 3T3 cells on plastic plates into syngeneic mice (4, 15).

Table VI
Requirements for Specific Plasma Factors to Induce Terminal Adipocyte Differentiation

Heparinized DME additives	Condition A	Condition B		
	Control	Treated	%	%
Adipocytes/cm²				
CEPH	1,875	600	68	70
CEPH and CEP			68	68
CEPH and BaP	2,375	1,500	37	0
CEPH and HP	2,200	1,850	16	0
CEPH and EDTAP	2,775	2,125	23	

Condition A: Low density cells were cultured in heparinized DME containing 25% CEPH for 12 d with prior feedings at 4-d intervals. On the 12th day an aliquot of complete human plasma (HP), barium adsorbed human plasma (BaP), or the EDTA eluate of barium adsorbed plasma components (EDTAP) was added. The concentration of these additives was equivalent to that calculated to be present in 25% HP. The ability of the adipocytes, cultured under various conditions, to lose the differentiated phenotypes was tested 3-d later by removal of the differentiation-promoting medium and culture of the cells in DME containing 10% fetal calf serum. Loss of the differentiated phenotype is expressed as the percent decrease in the density of fat cells. It was determined by analysis of the number of fat cells/cm² present before (control) and 3-d after addition of DME-FCS (treated). Cell density analysis showed that loss of the differentiated phenotypes was not associated with any cytotoxicity. Condition B: Comparable results were obtained when retinoic acid (10-20 μg/ml) was used to induce loss of the adipocyte phenotype. In these studies low density cells were cultured in heparinized medium containing CEPH for 8 d with feeding at 4-d intervals. On the eighth day the cultures were refed medium containing either HP, BaP or CEP. On the 12th day retinoic acid was added, and loss of the differentiated phenotype was scored 3-d later. Retinoic acid caused some cytotoxicity under these culture conditions. Cytotoxicity was, however, found not to account totally for loss of the adipocyte phenotype. Even if the assumption is made that cytotoxicity affected only differentiated cells, calculations established that retinoic acid induced >20% of adipocytes to lose the differentiated phenotype.

Correlation Between Morphological and Enzymatic Differentiation

Studies were also performed to establish that the morphological criteria for adipocyte differentiation used in this paper...
correlate well with enzymatic differentiation assayed by increased activity of glyceraldehyde-3-phosphate dehydrogenase. These experiments were performed because of the possibility that under certain culture conditions adipocytes might fail to accumulate intracellular triglyceride and, therefore, appear undifferentiated, even though they were differentiated by the criteria of containing high levels of lipogenic enzymes (17). The data in Table VIII show that there is an excellent correlation between morphological and enzymatic differentiation of cells at various phases of coupling processes. This further establishes the validity of data reported in this paper which show that the coupling of proadipocyte growth arrest and differentiation is a multistep process that is primarily mediated at two states, designated G₀ and G₀′.

DISCUSSION

These results show that there are at least five biological processes involved in the control of proadipocyte differentiation.

Table VII

Mitogen	Labeled nuclei
	%
Epidermal growth factor (100 ng/ml)	70
Tumor growth factor (25%)	85
Phorbol myristate acetate (100 ng/ml)	50
Fetal calf serum (10 or 30%)	90
Methyl isobutyl xanthine (2.5-5.0 x 10⁻⁴ M)	45

Proadipocytes G₀-arrested by culture at low density in heparinized DME containing 25% human plasma for 4 d were treated with the listed additives. The data are expressed as mean values of experimental specimens (n > 3) minus control specimens.

Table VIII

Growth or differentiated state	Enzymatic differentiation: *glycerol-3-phosphate dehydrogenase activity
% Fat cells	μmol NADH oxidized/min/mg protein x 10⁻²
Rapidly growing (3 d in serum)	0
G₀-arrested (8 d in BaP)	5
G₀-arrested (4 d in HP)	15
Differentiated (11 d in HP)	75
Nonterminally differentiated (8 d in CEPH)	50
Dedifferentiated (8 d in CEPH, 4 d in RA)	5

Column one lists the growth or differentiation state of the cells that were assayed. The duration of culture and the various media that were employed to derive these cells are given parenthetically.

*The term "dedifferentiated" is used as an abbreviation to designate those nonterminally differentiated cells that have been induced to lose the adipocytic phenotype. The sensitivity of the enzyme assay permitted detection of activity greater than 400 μmol NADH oxidized/min/mg protein. Data are expressed as the mean of triplicate determinations plus or minus standard error of the mean.

Three processes promote differentiation and are regulated by physiological human plasma components. These include: (a) growth arrest at a distinct state in the G₁ phase of the cell cycle; (b) nonterminal differentiation; and (c) terminal differentiation. Two processes antagonize the differentiation process. These include: (a) the reinitiation of proliferation of arrested cells; and (b) the dedifferentiation and proliferation of nonterminally differentiated cells. A schematic model for the relationship of these stages in the control of proadipocyte proliferation and differentiation is presented in Fig. 3.

The model illustrates that G₀ and G₀′ are states at which coupling of the control of cell proliferation and differentiation can be mediated. Cells growth-arrested at G₀ for example, have three potentialities. They can remain G₀-arrested; they can be induced to reinitiate proliferation (Fig. 3, arrow 5); or they can be induced to nonterminally differentiate (Fig. 3, arrow 2). Nonterminally differentiated cells at the G₀′ state also have three potentialities. They can remain nonterminally differentiated; they can dedifferentiate and/or reinitiate proliferation (Fig. 3, arrows 4 and 5); or they can terminal differentiate (Fig. 3, arrow 3).

It is our hypothesis that the coupling of proadipocyte growth arrest and differentiation mediated at G₀ and G₀′ mimics physiological growth regulation, because in vivo the control of stem cell proliferation is coupled to expression of a differentiated phenotype by apparently similar mechanisms (7, 8, 11). For example, in hematopoietic and gastrointestinal stem cells, G₀ growth arrest has been shown to occur before differentiation (8, 11). In vivo stages of nonterminal and terminal differentiation have also been identified and it has been shown that the reinitiation of proliferation of such nonterminally differentiated cells can be preceded by a dedifferentiation phase. These latter results were obtained on studies of hepatocytes (1-5).

These observations provide support for the physiological relevance for our model for the coupling of growth arrest and differentiation. Although the coupling process may vary in other cell types, we suggest that our model for the coupling of growth arrest and differentiation will be more useful in explaining the pathogenesis of human disease states. In previous models for growth control (13, 18), for example, our model for growth control can form the basis for the hypothesis that in vivo and in vitro cellular aging results from acceleration in the terminal differentiation process, which is regulated at G₀′, and
that neoplastic transformation results from defective coupling of growth arrest and differentiation mediated at G0 or G1' (14, 20).

The authors thank Patricia Hart for excellent secretarial assistance and Michael A. Zschunke who performed the enzyme assays.

This work was supported by National Institutes of Health grant CA 28240 and by the Mayo Foundation to R. E. Scott.

Received for publication 30 November 1981, and in revised form 15 April 1982.

REFERENCES

1. Becker, F. F., and B. P. Lane. 1965. Regeneration of the mammalian liver. I. Autophagocytosis during dedifferentiation of the liver cell in preparation for cell division. Am. J. Pathol. 47:763-801.
2. Becker, F. F., and B. P. Lane. 1966. Regeneration of the mammalian liver. II. Surface alterations during dedifferentiation of the liver cell in preparation for cell division. Am. J. Pathol. 48:183-190.
3. Becker, F. F., and B. P. Lane. 1966. Regeneration of the mammalian liver. IV. Evidence on the role of cytoplasmic alterations in preparation for mitosis. Am. J. Pathol. 49:227-235.
4. Boone, C. W., and R. E. Scott. 1980. Plate-induced tumors of BALB/3T3 cells exhibiting foci of differentiation into pericytes, chondrocytes and fibroblasts. J. Supramol. Struct. 14:233-240.
5. Diamond, L., T. G. O'Brien, and G. Rovera. 1977. Inhibition of adipose conversion of 3T3 fibroblasts by tumor promoters. Nature (Lond.), 269:247-249.
6. Fiorine, D. L., B. J. Hoerl, and R. E. Scott. 1982. Growth arrest of proadipocytes at a distinct predifferentiation G0 state associated with cytotoxic responsiveness to 8-bromo cyclic AMP. Cell Differ. In press.
7. Ham, R. G., and M. J. Veennett. 1980. In Models of Development. The C. V. Mosby Co., St. Louis, MO. 317-428.
8. Iversen, O. H., R. Bjerknes, and F. Devik. 1968. Kinetics of cell renewal, cell migration and cell loss in the hairless mouse dorsal epidermis. Cell Tissue Kinet. 1:351-367.
9. Konsal, L. F., and U. T. Jensen. 1974. Genetic and developmental control of multiple forms of L-glycerol-3-phosphate dehydrogenase. J. Biol. Chem. 249:7775-7781.
10. Krausz, B. R., and R. E. Scott. 1982. Coupling of proadipocyte growth arrest and differentiation. I. Induction by heparinized medium containing human plasma. J. Cell Biol. 94:394-399.
11. Limha, L. G., R. J. Lord, T. M. Drexer, E. G. Wright, and T. A. Allen. 1978. Interrelationship of differentiation and proliferation control in hematopoietic stem cells. In Cell Differentiation and Neoplasia. G. F. Saunders, editor. Raven Press, New York. 179-209.
12. Nadal-Guasch, B. 1978. Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell. 15:835-844.
13. Pardee, A. B. 1974. A restriction point for control of normal animal cell proliferation. Proc. Natl Acad Sci. U. S. A. 71:1286-1290.
14. Rheinwald, J. G., and M. A. Beckett. 1980. Defective terminal differentiation in culture as a consistent and selectable character of malignant human keratinocytes. Cell. 22:629-632.
15. Scott, R. E., and C. W. Boone. 1980. Promotion of smooth surface tumorigenesis by phorbol myristate acetate in BALB/3T3 cells and BALB/3T3 T proadipocytes. J. Natl. Cancer Inst. 66:733-736.
16. Scott, R. E., D. L. Fiorine, J. J. Wille, Jr., and K. Yun. 1982. Coupling of growth arrest and differentiation at a distinct state in the G0 phase of the cell cycle: G1. Proc. Natl. Acad Sci. U. S. A. 79:845-849.
17. Spiegelman, B. M., and H. Green. 1981. Cyclic AMP-mediated control of lipogenic enzyme synthesis during adipocyte differentiation of 3T3 cells. Cell. 24:503-510.
18. Smith, J. A., and E. Martin. 1977. Do cells cycle? Proc. Natl Acad Sci. U. S. A. 74:1263-1267.
19. Wille, J. J., Jr., and R. E. Scott. Topography of the predifferentiation G0 growth arrest state relative to other growth arrest states in the G1 phase of the cell cycle. J. Cell. Physiol. In press.
20. Yuspa, S. H., and D. L. Morgan. 1981. Mouse skin cells resistant to terminal differentiation associated with initiation of carcinogenesis. Nature (Lond.), 293:72-74.

SCOTT ET AL. Model for Physiological Control of Cell Proliferation

405