Heterosis for Yield and Its Components in Rainy Season Tomato (Solanum lycopersicum L.) under Coastal Plain Zone of Odisha, India

Rojalin Pradhan1*, Alok Nandi2, P. Tripathy1, G.S. Sahu1 and K. Mallikarjuna Rao1

1Department of Vegetable Science, College of Agriculture, Orissa University of Agriculture and Technology, Bhubaneswar-751003, Odisha, India
2Department of Horticulture, Institute of Agricultural Sciences, Siksha-O-Anusandhan (Deemed to be University), Bhubaneswar-751029, Odisha, India

*Corresponding author

ABSTRACT

Tomato grown during the main season (winter) causes a glut of produce in the market and its sale price is also very low. But the crop grown in rainy season has a better demand and is much remunerative for the farmer. Therefore, the present experiment was undertaken to develop and identify tomato hybrids well adapted to the rainy season. The experiment was conducted at the All India Co-ordinated Research Project on Vegetable Crops, Orissa University of Agriculture and Technology, Bhubaneswar. Forty five F1 hybrids were developed by crossing 10 divergent parental lines in half diallel fashion during 2016-17 (winter). The 45 F1 hybrids along with the 10 parents were evaluated in Randomised Block Design with three replications during the rainy season of 2017. Significant differences among genotypes were obtained for all the characters studied. The crosses BT 22-4-1xBT 429-1-1, TOBW-3xBT 215-3-3-1, BT 22-4-1xBT 306-1-2 and BT 317xBT 215-3-3-1 were found to be superior combinations as they exhibited significant heterosis percent for yield per plant over mid parent and better parent. BT 2xBT 215-3-3-1(11.72%) was found to be best. BT 317xBT 215-3-3-1(21.30%) was found to be best for average fruit weight character. The high yielding F1 hybrids (BT 22-4-1xBT 429-1-1), (TOBW-3xBT 215-3-3-1) and (BT 317xBT 215-3-3-1) which expressed 59.74%, 52.67% and 31.28% heterosis for yield over better parent may be recommended for commercial exploitation.

Keywords
Tomato, Off-season, Rainy season, kharif, Heterosis

Article Info
Accepted: 20 June 2019
Available Online: 10 July 2019

Introduction

Tomato (Solanum lycopersicum) is considered a nutritional powerhouse among the vegetables grown around the world (Chattopadhyay et al., 2013). Tomatoes are used either as fresh fruits or in the form of various processed products such as paste, whole peeled tomatoes, tomato powder and various forms of juices and soups (Grandillo et al., 1999). Tomato is universally treated as ‘Protective food’ since it is a rich source of minerals, vitamins, antioxidants and organic acids. Recent studies indicate that lycopene that gives the ripe tomato its bright red color, is a very effective natural antioxidant and...
quencher of free radicals (Simon, 1992). Since the discovery of hybrid vigour by Shul (1908), a tremendous progress has been made in the development of potential hybrids in tomato. Heterosis in tomato was first observed by Hedrick and Booth (1968) for higher yield and more number of fruits. Since then, heterosis for yield, its components and quality traits were extensively studied. Singh et al., (2002) reviewed about heterosis research on tomato. Recent studies on heterosis in tomato were carried out by Islam et al., (2012).

The pace at which the F1 hybrids of tomato are gaining popularity, it is demanding now to obtain such hybrids in public sector also, which have excellent quality and yield stability. Efforts were being made to increase its productivity by developing superior varieties. The improvement in different quantitative and qualitative traits in tomato through heterosis breeding was observed by Tiwari and Lal (2004). Tomato hybrids perform differently under different agro-climatic conditions.

Tomato grown during the main season (winter) causes a glut of produce in the market and its sale price is also very low. But the crop grown in rainy season has a better demand and is much remunerative for the farmer.

Hence, the present investigation was undertaken to identify the best parental combination or hybrid combination having high heterosis in rainy season in this coastal zone of Odisha.

Materials and Methods

A set of 10 x 10 half diallel crosses of tomato excluding reciprocals were evaluated along with their ten parents (BT 2, BT 106, BT 317, BT 22-4-1, BT 306-1-2, BT 413-1-2, BT 429-1-1, BT 305-2-4-2, TOBW-3, BT 215-3-3-1) in a randomized block design with three replications at the experimental farm of All India Coordinated Research Project on Vegetable Crops (ICAR), OUAT, Bhubaneswar. Seeds were sown in nursery bed on 20.06.2017 and seedlings were transplanted on 20.07.2017. Plant to plant spacing was 40 cm and row to row spacing was 50 cm. Eighteen plants were accommodated in each plot having 1.8m x 2.4m plot size. Recommended cultural practices were followed to raise a good crop.

Observations were recorded on 5 randomly taken plants of parents and F1s for the characters viz., plant height, days to 1st flowering, number of fruits per plant, fruit length, fruit diameter, average fruit weight, fruit yield per plant. Heterosis over better parent and mid-parent for different characters under study were calculated as per standard procedures (Singh, 1990).

Heterosis over better parent (heterobeltiosis) and mid parent (relative heterosis) were estimated by the formulae

\[
\text{Relative Heterosis} (%) = \frac{(F_1 - MP)}{MP} \times 100
\]

\[
\text{Heterobeltiosis} (%) = \frac{(F_1 - BP)}{BP} \times 100
\]

Where, F1 = Mean performance of cross.
BP = Mean performance of better parent
MP = Mean performance of mid parent.

Significance of heterosis was tested with the help of standard error using ‘t’ test.

Results and Discussion

There were significant differences among the parental lines with respect to different characters studied including yield per plant.
Plant height

With respect to plant height, range of heterosis varied from -11.68% to 26.70% over mid parent and -21.64% to 11.72% over better parent. Out of 45 F1 hybrids, 24 crosses showed positive heterosis over mid parent and 4 over better parent for plant height. The F1 hybrids BT 2xBT 215-3-3-1 showed maximum heterosis over mid parent (26.70%), and F1 hybrid BT 2xBT 215-3-3-1 over better parent (11.72%). Positive heterosis for this trait has also been reported by Singh and Asati (2011), Kumari and Sharma (2011) and Ahmed et al., (2011) (Table 1).

Days to first flowering

For days to first flowering, range of heterosis varied from -14.60% to -5.11% over mid parent and -15.58% to -6.17% over better parent. Out of all 45 F1 hybrids, 17 hybrids showed negative heterosis over mid parent, out of which BT 2xBT 306-1-2 exhibited highest significant negative heterosis over mid parent (-14.60%) and 24 hybrids showed significant negative heterosis over better parent, out of which BT 2xBT 305-2-4-2 exhibited highest significant negative heterosis over better parent (-15.58%). In accordance with the present finding, Singh and Singh (1993), Joshi & Thakur (2003) also observed earliness in heterotic combinations of tomato.

Number of fruits / plant

The extent of heterosis for number of fruits per plant varied from 38.78% to -22.61% over mid parent, and 18.99% to -43.10% over better parent. Ten hybrids showed positive heterosis over mid parent, out of which BT 413-1-2xBT 215-3-3-1 expressed highest heterosis over mid parent (38.78%); five hybrids showed positive heterosis over better parent, out of which TOBW-3xBT 215-3-3-1 exhibited highest heterosis over better parent (18.99%). Similar observations were also made by Joshi & Thakur (2003) and Kumar et al., (2012) with a different set of material in tomato.

Average fruit weight

With respect to average fruit weight, range of heterosis varied from 36.96% to -28.61% over mid parent and 31.34% to -36.55% over better parent. Out of 45 F1 hybrids, 21 crosses showed positive heterosis over mid parent, and 14 crosses over better parent. The F1 hybrid BT 2xBt 106 showed maximum heterosis over mid parent (36.96%) and BT 2 x BT 106 over better parent (31.34%), followed by BT 317xBT 215-3-3-1 for both cases respectively with values of 24.85% and 21.30%. These results are in consonance with Sundaram et al., (1994), and Dharmatti et al., (2006) and Kumari and Sharma (2011).

Fruit length

For fruit length, range of heterosis varied from 45.73% to -23.27% over mid parent and 38.75% to -30.14% over better parent. The highest significant positive heterosis was noted in 26 and 18 hybrids over mid parent and better parent respectively. The F1 hybrid BT 22-4-1xBT 429-1-1 expressed maximum heterosis over mid parent (45.73%) and better parent (38.75%). Dev et al., (1994) and Chattopadhyay and Paul (2012) also reported significant positive heterosis for fruit length in tomato.

Fruit girth

The extent of heterosis for fruit diameter varied from 54.49% to -16.86% over mid parent and 49.35% to -27.28% over better parent. 21 hybrids showed positive heterosis over mid parent, out of which BT 317xBt 215-3-3-1 expressed highest heterosis over mid parent (54.49%) (Table 2).
Table 1: Estimates of heterosis over MP and BP for plant height, days to 1st flowering, number of fruits/plant and average fruit weight

Sl no	Crosses	Percent heterosis of plant height	Percent heterosis of days to 1st flowering	Percent heterosis of number of fruits/plant	Percent heterosis of average fruit weight(g)			
		MP	BP	MP	BP	MP	BP	
1	P1 XP 2	-6.49 **	-9.52 **	-0.25	-11.34 **	36.96 **	31.34 **	
2	P1 XP 3	-7.52 **	-7.52 **	-5.79	-23.73 **	21.77 **	5.9	
3	P1 X P4	-5.52 *	-7.36 *	8.26	-8.86	7.13 *	7.09	
4	P1 XP 5	-14.60 **	-15.15 **	-5.06	-9.72	-18.96 **	-22.93 **	
5	P1 XP 6	-5.49 *	-7.82 **	0.72	-15	1.16	-6.43	
6	P1 X P7	-10.04 **	-10.82 **	-6.03	-17.42 **	23.77 **	20.19 **	
7	P1 X P8	22.66 **	9.54 **	-0.5	-12.11 **	20.86 **	12.64 **	
8	P1 X P9	-10.78 **	-12.81 **	23.87 **	13.74 *	-28.61 **	-36.55 **	
9	P1 X P10	-6.43 *	-8.66 **	9.48	0.94	-1.4	-12.05 **	
10	P2 X P3	-9.43 **	-11.11 **	-3.37	-13.21 **	-13.68 **	-22.08 **	
11	P2 X P4	-4.57	-5.86	-1.56	-7.5	14.71 **	10.04 **	
12	P2 X P5	-3.15	-5.7	-22.08 **	-27.44 **	13.11 **	12.13 **	
13	P2 X P6	-7.63 **	-12.76 **	-13.83 **	-33.87 **	0.3	-10.72 **	
14	P2 X P7	-3.84	-6.17	-4.05	-5.28	9.28 **	7.87 **	
15	P2 X P8	2.52	1.36	4.44	3.7	-4.74	-7.54	
16	P2 X P9	-0.87	-6.20 **	6.31	2.57	24.46 **	14.94 **	
17	P2X P10	4.59	3.64	-13.71 **	-17.10 **	20.75 **	11.94 **	
18	P3 X P4	-5.58 *	-8.56 **	-20.72 **	-24.47 **	12.31 **	-2.3	
19	P3 X P5	4.41 *	-9.21 **	0.69	-16.26 **	-3.78	-12.46 **	
20	P3 X P6	-6.47 **	-15.64 **	-10.66	-36.31 **	-12.51 **	-28.77 **	
21	P3 X P7	4.69	-3.52	-6.55	-15.09 **	-6.55 *	-16.61 **	
22	P3 X P8	-0.7	-3.62	-2.82	-12.16 **	6.60 *	-1.09	
23	P3 X P9	3.11	-4.13	4.35	-9.20 *	-19.55 **	-21.53 **	
24	P3 X P10	2.34	-0.45	21.86 **	5.63	24.85 **	21.30 **	
25	P4 X P5	-6.51 **	-13.25 **	-8.00 **	-9.21 **	11.05 **	-2.37	
26	P4 X P6	-11.28 **	-18.79 **	-4.12	-43.10 **	3.91	-3.91	
27	P4 X P7	-3.79	-4.85	17.89 **	12.15 *	20.43 **	16.99 **	
28	P4X P8	-2.93	-3.15	3.29	-2.29	-6.3	-12.64 **	
29	P4 X P9	-0.43	-4.55	5.3	-4.31	-3.48	-14.18 **	
30	P4 X P10	4.52	4.05	7.55	-2.65	2.96	-8.13 *	
31	P5 X P6	-9.98 **	-12.76 **	-6.68	-24.40 **	0.27	-11.43 **	
32	P5 X P7	-5.05	-5.26	-20.30 **	-26.68 **	-0.95	-3.07	
33	P5 X P8	-4.23	-5.7	16.88 **	8.12	3.72	1.53	
34	P5 X P9	2.13	-0.83	3.95	0.17	15.56 **	7.59	
35	P5 X P10	3.56	3.54	-0.45	2.19	9.3	19.65 **	11.82 **
36	P6 X P7	-5.11	-8.23 **	-11.64 **	-32.79 **	8.89 *	-1.95	
37	P6 X P8	-3.88	-8.23 **	5.53	-19.41 **	10.46 **	-4.21	
38	P6 X P9	1.86	1.65	38.78 **	9.68	-0.62	-17.47 **	
39	P6 X P10	-2.38	-7.00 **	38.78 **	9.68	-5.35	-21.15 **	
40	P7 X P8	-4.7	-6.17 **	-7.92	-8.46	-4.86	-8.81 *	
41	P7 X P9	1.49	-1.65	12.19 *	6.91	13.41 **	3.51	
42	P8 X P9	-2.81	-7.02 *	16.99 **	12.11 *	1.15	-3.91	
43	P8 X P10	-3.85	-4.07	18.25 **	12.83 *	20.29 **	14.72 **	
44	P9 X P10	-1.73	-6.20 **	19.52 **	18.99 **	21.87 **	21.38 **	

BP, better parent; MP, mid parent; SE, Standard error of mean
SE for heterosis over MP and BP = 2.3238, 2.6833, 1.987, 2.2944, 1.0903, 1.259, 0.8944, 1.0328
Table 2: Estimates of heterosis over MP and BP for fruit length (cm), fruit girth (cm) and yield/peerl (g)

Sl no	Entries	Percent heterosis of fruit length (cm)	MP	BP	Percent heterosis of fruit girth (cm)	MP	BP	Percent heterosis of yield/plant (g)	MP	BP
1	P1 X P2	26.46**	26.04**	12.42 **	11.12 *	38.31 **	29.95 **			
2	P1 X P3	-0.79	-14.70 **	5.98	-8.45 *	-20.11 **	-43.60 **			
3	P1 X P4	-8.50 *	-9.48 *	4.65	1.7	9.68	-2.69			
4	P1 X P5	18.92 **	12.88 **	12.14 **	5.46	30.30 **	20.05 **			
5	P1 X P6	25.86 **	18.80 **	44.50 **	37.09 **	1.84	-28.99 **			
6	P1 X P7	0.3	-4.08	3.69	2.89	7	4.98			
7	P1 X P8	-17.92 **	-22.98 **	0.69	-10.86 **	24.05 **	17.77 *			
8	P1 X P9	-2.49	-13.47 **	3.93	-9.59	5.31	-10.78			
9	P1 X P10	-2.54	-16.34 **	0.62	-7.47	13.04	1.69			
10	P2 X P3	31.19**	13.12**	18.48**	3.36	-18.28 **	-39.99 **			
11	P2 X P4	-1.5	-2.23	-1.52	-3.19	13.94 *	7.17			
12	P2 X P5	2.96	-1.96	8.93*	3.57	24.58 **	8.43			
13	P2 X P6	23.11 **	15.85 **	35.21 **	26.87 **	36.08 **	-8.36			
14	P2 X P7	17.95 **	13.11 **	24.71 **	24.23 **	28.14 **	22.60 **			
15	P2 X P8	7.83 *	1.5	11.51 **	-0.26	18.62 **	17.32 **			
16	P2 X P9	36.75 **	21.71 **	23.87 **	8.84*	40.66 **	25.88 **			
17	P2 X P10	19.65 **	3	20.71 **	12.20 **	23.67 **	18.04 **			
18	P3 X P4	-13.90 **	-25.29 **	-8.29 *	-18.79 **	-30.37 **	-46.66 **			
19	P3 X P5	-20.15 **	-28.09 **	-14.11 **	-21.58 **	-24.92 **	-49.43 **			
20	P3 X P6	-12.59 **	-28.37 **	20.50 **	-0.41	-45.05 **	-68.06 **			
21	P3 X P7	-5.09	-20.98 **	-6.32	-18.54 **	-21.19 **	-43.73 **			
22	P3 X P8	-23.27 **	-30.14 **	1.86	-0.98	-19.94 **	-41.61 **			
23	P3 X P9	16.16 **	12.03**	5.05	4.18	-24.71 **	-40.02 **			
24	P3 X P10	22.03 **	21.78**	54.48**	44.22**	73.24**	31.28**			
25	P4 X P5	31.67**	26.28**	54.49**	49.35**	64.15**	35.63**			
26	P4 X P6	28.29**	19.89**	-21.20**	11.91 *	15.86 ns	-24.37**			
27	P4 X P7	45.73**	38.75**	51.11**	47.98**	77.02**	59.74**			
28	P4 X P8	12.17 **	6.33	48.25 **	34.67 **	26.67**	17.91**			
29	P4 X P9	5.63	-5.37	0.42	-10.43*	-2.20 ns	-7.26			
30	P4 X P10	-8.13 *	-20.42 **	-13.57 **	-18.35 **	4.04 ns	2.44			
31	P5 X P6	1.95	-8.36 *	-9.60*	-19.07**	28.96 *	-5.33			
32	P5 X P7	29.04**	18.09**	-9.12*	-13.90**	29.60**	17.34*			
33	P5 X P8	-9.65 **	-10.74 **	-10.29 **	-15.90 **	42.85**	25.51 **			
34	P5 X P9	8.10 *	0.66	7.16	-1.42	18.19 **	-6.33			
35	P5 X P10	5.04	-5.58	15.50**	12.77**	30.66 **	9.31			
36	P6 X P7	34.91**	32.27**	2.77	-3.22	43.12 **	-1.27			
37	P6 X P8	24.72 **	10.91 **	-14.02 **	-27.28 **	74.92**	18.47**			
38	P6 X P9	8.81 *	-8.17 *	12.08**	-6.76	44.23 **	-8.13			
39	P6 X P10	5.66	-13.55 **	6.31	-6.81	63.16 **	7.3			
40	P7 X P8	29.25 **	16.99 **	-16.86 **	-25.89 **	27.81 **	23.59 **			
41	P7 X P9	39.11 **	19.35**	3.81	-9.09*	35.56**	16.68**			
42	P7 X P10	12.37 **	-6.60 *	10.01*	1.89	31.91**	20.72**			
43	P8 X P9	7.34 *	1.1	-22.55**	-24.10**	10.3	-2.25			
44	P8 X P10	9.81 *	-0.2	25.00**	19.90**	37.98**	30.33**			
45	P9 X P10	29.35**	24.51**	51.68**	42.70**	63.39**	52.67**			

BP, better parent; MP, mid parent; SE, Standard error of mean
SE for heterosis over MP and BP = 0.1451, 0.1676, 0.1411, 0.1629, 21.2794, 24.5714
Again 10 hybrids showed positive heterosis over better parent, out of which BT 22-4-1xBT 429-1-1 exhibited highest heterosis over better parent (49.35%). Dev et al., (1994) also observed significant positive heterosis for fruit girth in different cross combination of tomato.

Yield / plant

Heterosis for yield per plant varied from 77.02% to -45.05% over mid parent and 59.74% to -68.06% over better parent respectively. Significant positive heterosis was recorded in 29 crosses over mid parent. However, 19 crosses expressed significant heterosis in desirable direction over better parent. Maximum heterosis over mid parent was recorded in BT 22-4-1xBT 429-1-1 (77.02%) followed by BT 22-4-1xBT 306-1-2 (64.15%) and TOBW-3xBT 215-3-3-1 (63.39%). Whereas highest heterosis over better parent was exhibited by BT 22-4-1xBT 429-1-1 (59.74%) which was followed by TOBW-3xBT215-3-3-1 (52.67%), BT 22-4-1xBT 306-1-2 (35.63%) and Bt 317xBT 215-3-3-1 (31.28%).

High positive heterosis for yield/plant was also reported by Wang et al., (1998), Dudi & Sanwal (2004), Gul et al., (2011) and Ahmad et al., (2011).

The crosses BT 22-4-1xBT 429-1-1, TOBW-3xBT 215-3-3-1, BT 22-4-1xBT 306-1-2 and BT 317xBT 215-3-3-1 were found to be best heterosis combinations as they exhibited significant heterosis percent for yield per plant over mid parent and better parent. The high yielding F1 hybrid (BT 22-4-1xBT 429-1-1), (TOBW-3xBT 215-3-3-1) and (BT 317xBT 215-3-3-1) were expressed 59.74%, 52.67% and 31.28% heterosis for yield over better parent may be recommended for commercial exploitation.

Acknowledgement

The authors acknowledge with thanks the facilities and funds provided by the All India Coordinated Research Project on Vegetable Crops (ICAR), Orissa University of Agriculture and Technology, Bhubaneswar, Odisha, India as well as University Grants Commission.

References

Ahmad, S., Quamruzzaman, A. K. M., and Islam, M. R. 2011. Estimation of heterosis in tomato (Solanum lycopersicum L.). Bangladesh Journal Agriculture Research 36(3): 521-527.

B.D. Singh, 1990. Fundamentals of Genetics. Kalyani Publishers, Ludhiana.

Chattopadhyay A, Chakraborty I, Siddique W. 2013. Characterization of determinate tomato hybrids: Search for better processing qualities. *Journal of Food Processing and Technology* 4: 222.

Chattopadhyay, A., and Paul, A. 2012. Studies on heterosis for different fruit quality parameters in tomato. *International Journal of Agriculture Environment Biotechnology* 5(4): 405-410.

Dev, H., Rattan, R.S. and Thakur, M. C.1994. Heterosis in tomato. *The Horticulture Journal* 7 (2): 125-132.

Dharmatti PR, Kulkarni GP and Patil RV (2006). Heterosis for yield and bacterial wilt incidence in tomato. *J. Asian Hort.* 8: 151-154.

Dudi, B. S., and Sanwal, S. K. 2004. Evaluation for potential F1 hybrids of tomato in respect of fruit yield and components traits. *Haryana Journal Horticulture Science* 33 (1-2): 98-99.

Grandillo S, Zamir D and Tanksky SD. 1999. Genetic improvement of processing tomatoes: A 20 years perspective *Euphytica* 110: 85-97.
Gul, R, Rahman, H. U., Khalil, I. H. Shah, S. M. A., and Ghafoor, A. 2011. Estimate of heterosis in tomato (Solanum lycopersicum L.). Bangladesh Journal of Agriculture Research 36(3): 521-527.

Hedrick UP and Booth NO 1968. Mendelian characters in tomato. Proc. Am. Soc. Hort. Sci. 5: 19-24.

Islam MR, Ahmd S and Rahman MM. 2012. Heterosis and qualitative attributes in winter tomato (Solanum lycopersicum L.) hybrids. Bangladesh J. Agric. Res. 37(1): 39-48.

Joshi, A., and Thakur, M.C. 2003. Exploitation of heterosis for yield and yield contributing traits in tomato (Lycopersicon esculentum Mill.). Progressive Horticulture 35: 64-68.

Kumari S and Sharma MK (2011). Exploitation for yield and its contributing traits in tomato, Solanum Lycopersicum L. Int. J. Farm Sci. 1(2): 45-55.

Panse V.G. and Sukhatme, P.V. 1967. Statistical methods for Agriculture workers. Indian council of Agriculture, New Delhi.

Shull GH 1908. The composition of field maize. Rep. Am. Breeder’s Assoc. 4: 296-301.

Simon JA 1992. Vitamin C and cardiovascular disease. A review. J. Amer Cell Nutr. 11: 107-125.

Singh JP, Joshi A and Singh VP 2002. Heterosis breeding in tomato a review. Progressive Hort. 34(2): 161-167.

Singh, A.K., and Asati, B.S. 2011. Combining ability and heterosis studies in tomato under bacterial wilt condition. Bangladesh J. Agric. Res. 36(2): 313-318.

Singh, R. K., and Singh, V. K. 1993. Heterosis breeding in tomato (Lycopersicon esculentum Mill.). Annals of Agriculture Research 14: 416-420.

Sundaram, K. S., Irlappan, I., and Thamburaj, S. 1994. Heterosis in two parent, three parent and four parent crosses of tomato (Lycopersicon esculentum Mill.). South Indian Horticulture 42 (5): 309-313.

Tiwari A and Lal G. 2004. Studies on heterosis for quantitative and qualitative characters in tomato (Lycopersicon esculentum Mill.) Progr. Horti. 36(1): 123-127.

Wang, L., Wang, M., Ying, S., Shoping, T., and Yu, Q. H. 1998. Genetic and correlation studies on quantitative characters in processing tomato. Advances in Horticulture 2: 378-383.

How to cite this article:

Rojalin Pradhan, Alok Nandi, P. Tripathy, G.S. Sahu and Mallikarjuna Rao, K. 2019. Heterosis for Yield and Its Components in Rainy Season Tomato (Solanum lycopersicum L.) under Coastal Plain Zone of Odisha, India. Int.J.Curr.Microbiol.App.Sci. 8(07): 2511-2517. doi: https://doi.org/10.20546/ijcmas.2019.807.310