Comparison of compact induction with parabolic induction

Henniart Guy, Vigneras Marie-France

December 1, 2011

Abstract

Let F be any non archimedean locally compact field of residual characteristic p, let G be any reductive connected F-group and let K be any special parahoric subgroup of $G(F)$. We choose a parabolic F-subgroup P of G with Levi decomposition $P = MN$ in good position with respect to K. Let C be an algebraically closed field of characteristic p. We choose an irreducible smooth C-representation V of K. We investigate the natural intertwiner from the compact induced representation $\text{c-Ind}^{G(F)}_K V$ to the parabolically induced representation $\text{Ind}^{G(F)}_P (\text{c-Ind}^{M(F)}_{M(F) \cap K} V_{N(F) \cap K})$. Under a regularity condition on V, we show that the intertwiner becomes an isomorphism after a localisation at a specific Hecke operator. When F has characteristic 0, G is F-split and K is hyperspecial, the result was essentially proved by Herzig. We define the notion of K-supersingular irreducible smooth C-representation of $G(F)$ which extends Herzig’s definition for admissible irreducible representations and we give a list of K-supersingular irreducible representations which are supercuspidal and conversely a list of supercuspidal representations which are K-supersingular.

Contents

1 Introduction 1
2 Generalities on the Satake homomorphisms 4
3 Representations of $G(k)$ 8
4 Representations of $G(F)$ 12
 4.1 Notations .. 12
 4.2 S' is a localisation ... 12
 4.3 Decomposition of the intertwiner 14
5 Hecke operators 15
 5.1 Definition of Hecke operators 15
 5.2 Compatibilities between Hecke operators 16
6 Main theorem 19
7 Supersingular representations of $G(F)$ 22

1 Introduction

Let F be a non archimedean locally compact field of residual characteristic p, let G be a reductive connected F-group and let C be an algebraically closed field of characteristic
p. We are interested in smooth admissible C-representations of $G(F)$. Two induction techniques are available, compact induction $\text{c-Ind}^{G(F)}_{K}$ from a compact open subgroup K of $G(F)$ and parabolic induction $\text{Ind}_{P(F)}^{G(F)}$ from a parabolic subgroup $P(F)$ with Levi decomposition $P(F) = M(F)N(F)$. Here we want to investigate the interaction between the two inductions.

More specifically assume that $G(F) = P(F)K$ and $P(F) \cap K = (M(F) \cap K)(N(F) \cap K)$. We construct (Proposition 2.1) for any finite dimensional smooth C-representation V of K, a canonical intertwiner

$$I_0 : \text{c-Ind}^{G(F)}_{K} V \to \text{Ind}_{P(F)}^{G(F)}(\text{c-Ind}^{M(F)}_{M(F) \cap K} V_{N(F) \cap K}),$$

where $V_{N(F) \cap K}$ stands for the $N(F) \cap K$-coinvariants in V, and a canonical algebra homomorphism

$$S' : \mathcal{H}(G(F), K, V) \to \mathcal{H}(M(F), M(F) \cap K, V_{N(F) \cap K}),$$

where as in [HV], the Hecke algebra $\mathcal{H}(G(F), K, V)$ is $\text{End}_{G(F)}\text{c-Ind}^{G(F)}_{K} V$ seen as an algebra of double cosets of K in G, and similarly for $\mathcal{H}(M(F), M(F) \cap K, V_{N(F) \cap K})$. By construction

$$(I_0(\Phi(f)))(g) = S'(\Phi)(I_0(f)(g)),$$

for $f \in \text{c-Ind}^{G(F)}_{K} V, \Phi \in \mathcal{H}(G(F), K, V), g \in G(F)$. Let V^* be the contragredient representation of V. We constructed in [HV] a Satake homomorphism

$$S : \mathcal{H}(G(F), K, V^*) \to \mathcal{H}(M(F), M(F) \cap K, (V^*)^{N(F) \cap K}),$$

and we show that S' and S are related by a natural anti-isomorphism of Hecke algebras (Proposition 2.4).

We study further I_0 in the particular case where K a special parahoric subgroup and V is irreducible. Such a V is trivial on the pro-p-radical K_+ of K. The quotient K/K_+ is the group of k-points of a connected reductive k-group G_k, so that we can use the theory of finite reductive groups in natural characteristic. We write $K/K_+ = G(k)$. The image of $P(F) \cap K = P_0$ in $G(k)$ is the group of k-points of a parabolic subgroup of G_k. We write $P_0/P_0 \cap K_+ = P(k)$, and we use similar notations for M and N and for the opposite parabolic subgroup $P = MN$ (Section 2.1). We choose a maximal F-split torus S in M such that K stabilizes a special vertex in the apartment of $G(F)$ associated to S. We choose an element $s \in S(F)$ which is central in $M(F)$ and strictly N-positive, in the sense that the conjugation by s strictly contracts the compact subgroups of $N(F)$. There a unique Hecke operator T_M in $\mathcal{H}(M(F), M_0, V_{N(k)})$ with support in M_0s and value at s the identity of $V_{N(k)}$.

Proposition 1.1. (Proposition 4.4) The map S' is a localisation at T_M.

This means that S' is injective, T_M belongs to the image of S', and is central invertible in $\mathcal{H}(M(F), M_0, V_{N(k)})$, and

$$\mathcal{H}(M(F), M_0, V_{N(k)}) = S'(\mathcal{H}(G(F), K, V))[T_M^{-1}].$$

This comes from an analogous property of S proved in [HV]. We look now at the localisation Θ of I_0 at T_M

$$\mathcal{H}(M(F), M_0, V_{N(k)}) \otimes_{\mathcal{H}(G(F), K, V), S'} \text{c-Ind}^{G(F)}_{K} V \to \text{Ind}_{P(F)}^{G(F)}(\text{c-Ind}^{M(F)}_{M(F) \cap K} V_{N(k)}).$$

Our main theorem is

Theorem 1.2. (Theorem 4.4) Θ is injective, and Θ is surjective if and only if V is M-coregular.
This result was essentially proved by Herzig [Herzig, Abe], when F has characteristic 0, G is F-split and K is hyperspecial. In the theorem, $P = MN$ is the opposite parabolic subgroup of P, and we say that V is M-coregular if for $h \in K$ which does not belong to P_0P_0, the image of $hV^{N(k)}$ in $V_{N(k)}$ is 0. See Definition 3.6 and Corollary 3.20 for an equivalent definition. As in Herzig and Abe, we define in the last chapter the notion of a K-supersingular irreducible smooth C-representation of $G(F)$. We see our main theorem as the first step towards the classification of irreducible smooth C-representations of $G(F)$ in terms of supersingular ones.

To prove the theorem, we follow the method of Herzig and we decompose I_0 as the composite $I_0 = \zeta \circ \xi$ of two $G(F)$-equivariant maps, the natural inclusion ξ of $c\text{-Ind}_K^{G(F)} V$ in $c\text{-Ind}_K^{G(F)} c\text{-Ind}_P^{G(k)} V$, and

$$\zeta : c\text{-Ind}_K^{G(F)} c\text{-Ind}_P^{G(k)} V \to \text{Ind}_{P(F)}^{G(F)}(c\text{-Ind}_{M(F)\cap K}^{M(F)} V_{N(k)}) ,$$

is a natural map associated to the quotient map $c\text{-Ind}_P^{G(k)} V \to N_{N(k)}$ (see 2 below). We write P for the parahoric subgroup inverse image of $P(k)$ in K and T_P for the Hecke operator in $\mathcal{H}(G(F), P, V_{N(k)})$ of support PS and value at s the identity of $V_{N(k)}$. With no regularity assumption on V we prove

$$\zeta \circ T_P = T_M \circ \zeta .$$

Seeing $c\text{-Ind}_K^{G(F)} c\text{-Ind}_P^{G(k)} V = c\text{-Ind}_P^{G(F)} V_{N(k)}$ and $\text{Ind}_{P(F)}^{G(F)}(c\text{-Ind}_{M(F)\cap K}^{M(F)} V_{N(k)})$ as $C[T]$-modules via T_P and T_M, the map ζ is $C[T]$-linear and we prove (Corollary 6.6):

Theorem 1.3. The localisation at T of ζ is an isomorphism.

To study ξ, we consider the Hecke operator T_G in $\mathcal{H}(G(F), K, V)$ with support KsK and value at s the natural projector $V \to V^{N(k)}$, and the Hecke operator $T_{K,P}$ from $c\text{-Ind}_P^{G(F)} V_{N(k)}$ to $c\text{-Ind}_K^{G(F)} V$ of support KsP and value at s given by the natural isomorphism $V_{N(k)} \to V^{N(k)}$. With no regularity assumption on V we prove

$$T_{K,P} \circ \xi = T_G .$$

Assuming that V is M-coregular we prove:

$$\xi \circ T_{K,P} = T_P$$

$$S'(T_G) = T_M .$$

Seeing $c\text{-Ind}_K^{G(F)} V$ as a $C[T]$-module via $T_G = (S')^{-1}(T_M)$, the map ξ is $C[T]$-linear and

Theorem 1.4. The localisation at T of ξ is injective; it is an isomorphism if and only if V is M-coregular.

Our main theorem follows.

A motivation for our work is the notion of K-supersingularity for an irreducible smooth C-representation π of $G(F)$ (that we do not suppose admissible).

Definition 1.5. We say that π is K-supersingular when

$$\mathcal{H}(M(F), M_0, V_{N(k)}) \otimes_{\mathcal{H}(G(F), K, V), S'} \text{Hom}_{G(F)}(c\text{-Ind}_K^{G(F)} V, \pi) = 0$$

for any irreducible smooth C-representation V of K and any standard Levi subgroup $M \neq G$.

Hence \(\pi \) is \(K \)-supersingular when the localisations at \(T_M \) of

\[
\text{Hom}_{G(F)}(\text{c-Ind}_K^{G(F)} V, \pi)
\]

are 0 for all \(V \) and all \(M \neq G \).

When \(\pi \) is admissible, this definition is equivalent to: No character of the center \(Z(G(F), K, V) \) of \(\mathcal{H}(G(F), K, V) \) contained in \(\text{Hom}_{G(F)}(\text{c-Ind}_K^{G(F)} V, \pi) \) extends via \(S' \) to a character of \(Z(M(F), M_0, V_N(k)) \) for all \(V \subset \pi|_K, M \neq G \).

Equivalently: The localisations at \(T_M \) of the characters of \(Z(G(F), K, V) \) contained in

\[
\text{Hom}_{G(F)}(\text{c-Ind}_K^{G(F)} V, \pi)
\]

are 0 for all \(V \subset \pi|_K, M \neq G \).

Herzig and Abe when \(G \) is \(F \)-split, \(K \) is hyperspecial and the characteristic of \(F \) is 0 ([Herzig] Lemma 9.9), used this property to define \(K \)-supersingularity.

The properties of \(K \)-supersingularity and of supercuspidality (not being a subquotient of \(\text{Ind}_P^{G(F)} \tau \) for some irreducible smooth \(C \)-representation \(\tau \) of \(M(F) \neq G(F) \)) are equivalent when \(G \) is \(F \)-split, \(K \) is hyperspecial and the characteristic of \(F \) is 0. With the main theorem, we obtain a partial result in this direction in our general case.

Theorem 1.6. Let \(\pi \) be an irreducible smooth \(C \)-representation of \(G(F) \).

i. If \(\pi \) is isomorphic to a subrepresentation or is an admissible quotient of \(\text{Ind}_P^{G(F)} \tau \) as above, then \(\pi \) is not \(K \)-supersingular.

ii. If \(\pi \) is admissible and

\[
\mathcal{H}(M(F), M_0, V_N(k)) \otimes_{\mathcal{H}(G(F), K, V), S'} \text{Hom}_{G(F)}(\text{c-Ind}_K^{G(F)} V, \pi) \neq 0
\]

for some \(L \)-coregular irreducible subrepresentation \(V \) of \(\pi|_K \) and some standard Levi subgroups \(M \subset L \neq G \), then \(\pi \) is not supercuspidal.

2 Generalities on the Satake homomorphisms

In this first chapter we consider a rather general situation, where \(C \) is any field. We consider a locally profinite group \(G \), an open subgroup \(K \) of \(G \) and a closed subgroup \(P \) of \(G \) satisfying “the Iwasawa decomposition” \(G = K P \). We choose a smooth \(C[K] \)-module \(V \). As in [HV], assume that \(P \) is the semi-direct product of a closed invariant subgroup \(N \) and of a closed subgroup \(M \), and that \(K \) is the semi-direct product of \(K \cap N \) by \(K \cap M \). We also impose the assumptions

(A1) Each double coset \(K g K \) in \(G \) is the union of a finite number of cosets \(K g' \) and the union of a finite number of cosets \(g'' K \) (the first condition is equivalent to the second by taking the inverses).

(A2) \(V \) is a finite dimensional \(C \)-vector space.

The smooth \(C[K] \)-module \(V \) gives rise to a compactly induced representation \(\text{c-Ind}_K^{G(F)} V \) and a smooth \(C[P] \)-module \(W \) gives rise to the full smooth induced representation \(\text{Ind}_P^{G(F)} W \). We consider the space of intertwiners

\[
\mathcal{J} := \text{Hom}_{G}(\text{c-Ind}_K^{G(F)} V, \text{Ind}_P^{G(F)} W).
\]

By Frobenius reciprocity for compact induction (as \(K \) is open in \(G \)), the \(C \)-module \(\mathcal{J} \) is canonically isomorphic to \(\text{Hom}_K(V, \text{Res}_K^{G} \text{Ind}_P^{G} W) \); to an intertwiner \(I \) we associate the function \(v \mapsto I[1, v]_K \) where \([1, v]_K \) is the function in \(\text{c-Ind}_K^{G(F)} V \) with support \(K \) and value \(v \) at 1. By the Iwasawa decomposition and the hypothesis that \(K \) is open in \(G \), we get by restricting functions to \(K \) an isomorphism of \(C[K] \)-modules from \(\text{Res}_K^{G} \text{Ind}_P^{G} W \)
onto \(\text{Ind}_K^P(\text{Res}_P^G W) \). Using now Frobenius reciprocity for the full smooth induction \(\text{Ind}_K^P \) from \(P \cap K \) to \(K \), we finally get a canonical \(C \)-linear isomorphism

\[
\mathcal{J} \simeq \text{Hom}_{P \cap K}(V, W)
\]

(we now omit mentioning the obvious restriction functors in the notation); this map associates to an intertwiner \(I \) the function \(v \mapsto (I[1, v])_K(1) \).

We could have proceeded differently, first applying Frobenius reciprocity to \(\text{Ind}_P^G W \), getting \(\mathcal{J} \simeq \text{Hom}_P(\text{c-Ind}_K^P V, W) \), then identifying \(\text{Res}_P^G \text{c-Ind}_K^P V \) with \(\text{c-Ind}_K^P V \), and finally applying Frobenius reciprocity to \(\text{c-Ind}_K^P V \). In this way we also obtain an isomorphism of \(\mathcal{J} \) onto \(\text{Hom}_{P \cap K}(V, W) \), which is readily checked to be the same as the preceding one.

Assume also that \(W \) is a smooth \(C[M] \)-module, seen as a smooth \(C[P] \)-module by inflation. Then \(\text{Ind}_P^G W \) is the "parabolic induction" of \(W \), and \(\text{Hom}_{P \cap K}(V, W) \) identifies with \(\text{Hom}_{K \cap M}(V_{N \cap K}, W) \), where \(V_{N \cap K} \) is the space of coinvariants of \(N \cap K \) in \(V \). With that identification, an intertwiner \(I \) is sent to the map from \(V_{N \cap K} \) to \(W \) sending the image \(\tau \) of \(v \in V \) in \(V_{N \cap K} \) to \((I[1, v])_K(1) \). By Frobenius reciprocity again \(\text{Hom}_{K \cap M}(V_{N \cap K}, W) \) is isomorphic to \(\text{Hom}_M(\text{c-Ind}_{K \cap M}^M V_{N \cap K}, W) \), so overall we obtain an isomorphism

\[
j : \mathcal{J} = \text{Hom}_G(\text{c-Ind}_K^G V, \text{Ind}_P^G W) \to \text{Hom}_M(\text{c-Ind}_{K \cap M}^M V_{N \cap K}, W),
\]

which associates to \(I \in \mathcal{J} \) the \(C[M] \)-linear map sending \([1, \tau]_{M \cap K}\) to \((I[1, v])_K(1)\).

The isomorphism \(j \) is natural in \(V \) and \(W \). The functor \(W \to \text{Hom}_G(\text{c-Ind}_K^G V, \text{Ind}_P^G W) \) from the category of smooth \(C[M] \)-modules to the category of \(C[M] \)-modules is representable by \(\text{c-Ind}_{K \cap M}^M V_{N \cap K} \), and \(\text{End}_G(\text{c-Ind}_K^G V) \) embeds naturally in the ring of endomorphisms of the functor. By Yoneda’s Lemma ([HS] Prop. 4.1 and Cor. 4.2), we have an algebra homomorphism

\[
\mathcal{S} : \text{End}_G(\text{c-Ind}_K^G V) \to \text{End}_M(\text{c-Ind}_{K \cap M}^M V_{N \cap K})
\]

such that the diagram

\[
\begin{array}{ccc}
\text{Hom}_G(\text{c-Ind}_K^G V, \text{Ind}_P^G W) & \xrightarrow{j} & \text{Hom}_M(\text{c-Ind}_{K \cap M}^M V_{N \cap K}, W) \\
\downarrow{\delta} & & \downarrow{s'(b)} \\
\text{Hom}_G(\text{c-Ind}_K^G V, \text{Ind}_P^G W) & \xrightarrow{\mathcal{S}'(b)} & \text{Hom}_M(\text{c-Ind}_{K \cap M}^M V_{N \cap K}, W)
\end{array}
\]

is commutative for any \(W \). We have \(j(I \circ b) = j(I) \circ \mathcal{S}'(b) \) for \(b \in \text{End}_G(\text{c-Ind}_K^G V) \).

By the naturality of \(j \) in \(W \), for any homomorphism \(\alpha : W' \to W \) of smooth \(C[M] \)-modules we have a commutative diagram

\[
\begin{array}{ccc}
\text{Hom}_G(\text{c-Ind}_K^G V, \text{Ind}_P^G W') & \xrightarrow{j'} & \text{Hom}_M(\text{c-Ind}_{K \cap M}^M V_{N \cap K}, W') \\
\downarrow{\text{Ind}(\alpha)} & & \downarrow{\alpha} \\
\text{Hom}_G(\text{c-Ind}_K^G V, \text{Ind}_P^G W) & \xrightarrow{j} & \text{Hom}_M(\text{c-Ind}_{K \cap M}^M V_{N \cap K}, W)
\end{array}
\]

for any \(V \). For \(W = W' \) we obtain \(j((\text{Ind}_P^G a) \circ I) = a \circ j(I) \) for \(a \in \text{End}_M(W) \).

For \(W' = \text{c-Ind}_{K \cap M}^M V_{N \cap K} \), we write \(j' = j_0 \).

\[
j_0 : \text{Hom}_G(\text{c-Ind}_K^G V, \text{Ind}_P^G(\text{c-Ind}_{K \cap M}^M V_{N \cap K})) \to \text{End}_M(\text{c-Ind}_{K \cap M}^M V_{N \cap K})
\]
We define I_0 in $\text{Hom}_G(\text{c-Ind}^G_K V, \text{Ind}_P^G(\text{c-Ind}_K^M V_{N\cap K}))$ such that $j_0(I_0)$ is the unit element of $\text{End}_M(\text{c-Ind}_K^M V_{N\cap K})$. We have

$$j_0((\text{Ind}_P^G a) \circ I_0) = \alpha$$

for all α in $\text{Hom}_M(\text{c-Ind}_K^M V_{N\cap K}, W)$. For $W = W' = \text{c-Ind}_K^M V_{N\cap K}$, we obtain

$$(3) \quad j_0((\text{Ind}_P^G a) \circ I_0) = a .$$

for $a \in \text{End}_M(\text{c-Ind}_K^M V_{N\cap K})$. For $b \in \text{End}_G(\text{c-Ind}_K^G V)$ we have

$$(4) \quad \mathcal{S}'(b) := j_0(I_0 \circ b) .$$

Applying j_0^{-1} to this equality we deduce from [3]

$$(5) \quad I_0 \circ b = (\text{Ind}_P^G \mathcal{S}'(b)) \circ I_0$$

for $b \in \text{End}_G(\text{c-Ind}_K^G V)$. Summarizing we have proved

Proposition 2.1. (i) The map

$$\mathcal{S}' : \text{End}_G(\text{c-Ind}_K^G V) \to \text{End}_M(\text{c-Ind}_K^M V_{N\cap K})$$

is an algebra homomorphism such that $I_0 \circ b = (\text{Ind}_P^G \mathcal{S}'(b)) \circ I_0$ for $b \in B$.

(ii) We have for α in $\text{Hom}_M(\text{c-Ind}_K^M V_{N\cap K}, W)$,

$$j((\text{Ind}_P^G \alpha) \circ I_0) = \alpha .$$

(iii) We have $j(I \circ b) = j(I) \circ \mathcal{S}'(b)$ for $b \in B$ and I in $\text{Hom}_G(\text{c-Ind}_K^G V, \text{Ind}_P^G W)$.

Remark 2.2. i. An intertwiner I in $\text{Hom}_G(\text{c-Ind}_K^G V, \text{Ind}_P^G W)$ is determined by the values $(I[1,v]_K)(1)$ in W, for all $v \in V$, by the Iwasawa decomposition $G = PK$. We have

$$(I_0[1,v]_K)(1) = [1,v]_{M\cap K} .$$

ii. So far we have not used that V is finite dimensional.

We now want to interpret the previous results in terms of actions of Hecke algebras.

By Frobenius reciprocity $B = \text{End}_G(\text{c-Ind}_K^G V)$ identifies with $\text{Hom}_K(V, \text{Res}_G^K \text{c-Ind}_K^G V)$, as a C-module; to $\Phi \in B$ we associate the map $v \mapsto \Phi_v := \Phi([1,v]_K)$; from Φ then, we get a map $G \to \text{End}_C V$, $g \mapsto \{v \mapsto \Phi_v(g)\}$. In this way we identify B with the space $\mathcal{H}(G,K,V)$ of functions Φ from G to $\text{End}_C V$ such that

(i) $\Phi(kgk') = k \circ \Phi(g) \circ k'$ for k, k' in K, g in G, where we have written k, k' for the endomorphisms $v \mapsto kv, v \mapsto k'v$ of V;

(ii) The support of Φ is a finite union of double cosets KgK.

The algebra structure on $\mathcal{H}(G,K,V)$ obtained from that of B is given by convolution

$$\Phi \ast \Psi(g) = \sum_{h \in G/J} \Phi(h) \Psi(h^{-1} g) = \sum_{h \in J \setminus G} \Phi(gh^{-1}) \Psi(h)$$

(the term $\Phi(h) \Psi(h^{-1} g)(v)$ vanishes, for fixed g, outside finitely many cosets $K h$, so that the sum makes sense). Moreover the action of $\mathcal{H}(G,K,V)$ on $\text{c-Ind}_K^G V$ is also given by convolution

$$\Phi \ast f(g) = \sum_{h \in G/J} \Phi(h)(f(h^{-1} g)) = \sum_{h \in J \setminus G} \Phi(gh^{-1})(f(h)) .$$
Proposition 2.3. The homomorphism $S' : \mathcal{H}(G,K,V) \rightarrow \mathcal{H}(M,K \cap M,V_{N \cap K})$ is given by

$$S'(\Phi)(m)(\varpi) = \sum_{n \in (N \cap K) \setminus N} \Phi(nm)(v) \text{ for } m \in M, v \in V,$$

where bars indicate the image in $V_{N \cap K}$ of elements in V.

Proof. As $[1,\varpi]_{M \cap K} = I_o[1,v]_K(1)$ we have for $v \in V$,

$$S'\Phi \ast [1,\varpi]_{M \cap K} = S'(\Phi) \ast (I_o[1,v]_K(1)) = (S'(\Phi)I_o([1,v]_K))(1) = I_o(\Phi \ast [1,v]_K)(1).$$

We write the element $I_o(\Phi[1,v]_K)(1)$ of c-Ind$^M_{M \cap K} V_{N \cap K}$ as a finite sum of $m^{-1}[1,w_m]_{K \cap M}$ for m running over a system of representatives of $(P \cap K)/P$. As

$$(I_o(h^{-1}[1,v_h])(1)) = (h^{-1}I_o[1,v_h])(1) = (I_o[1,v_h])(h^{-1}) = h^{-1}((I_o[1,v_h])(1)) = m_{h^{-1}}[1,\varpi],$$

where m_h is the image of h in M, and $m_{h^{-1}} = m_h^{-1}$, we obtain

$$w_m = \sum_{n \in (N \cap K) \setminus N} [1,\varpi_{mn}] = \sum_{n \in (N \cap K) \setminus N} \Phi(nm)(v).$$

In [HV] we constructed a Satake homomorphism

$$S : \mathcal{H}(G,K,V) \rightarrow \mathcal{H}(M,K \cap M,V_{N \cap K}), \quad S(\Phi)(m)(v) = \sum_{n \in (N \cap K)} \Phi(mn)(v),$$

for $v \in V_{N \cap K}$. To compare S' with S we need to take the dual. Remark that K acts on the dual space $V^* = \text{Hom}_C(V,C)$ of V via the contragredient representation, and that the dual of V^* is isomorphic to V by our finiteness hypothesis on V. It is straightforward to verify that the map

$$\iota : \mathcal{H}(G,K,V^*) \rightarrow \mathcal{H}(G,K,V), \quad \iota(\Phi)(g) := (\Phi(g^{-1}))^t,$$

where the upper index t indicates the transpose, is an algebra anti-isomorphism. We denote A^0 the opposite ring of a ring A. A ring morphism $f : A \rightarrow B$ defines a ring morphism $f^0 : A^0 \rightarrow B^0$ such that $f^0(a) = f(a)$ for $a \in A$. We view ι as an isomorphism from $\mathcal{H}(G,K,V^*)$ onto $\mathcal{H}(G,K,V)^0$. The linear forms on V which are $(N \cap K)$-fixed identify with the linear forms on $V_{N \cap K}$,

$$(V_{N \cap K})^* \simeq (V^*)^{N \cap K}.$$

This leads to an algebra isomorphism

$$\iota_M : \mathcal{H}(M,M \cap K,(V^*)^{N \cap K}) \rightarrow \mathcal{H}(M,M \cap K,V_{N \cap K})^0.$$

The following proposition describes the relation between the Satake homomorphism S attached to V^* and the homomorphism S' attached to V.

Proposition 2.4. The following diagram is commutative

\[
\begin{array}{ccc}
\mathcal{H}(G,K,V^*) & \xrightarrow{S} & \mathcal{H}(M,M \cap K,(V^*)^N) \\
\downarrow & & \downarrow \\
\mathcal{H}(G,K,V) & \xrightarrow{S^0} & \mathcal{H}(M,M \cap K,V_{N \cap K})
\end{array}
\]

Proof. For \(v \in V \) of image \(\tau \) in \(V_{N \cap K} \) we have:

\[
((\iota_M \circ S)\Phi)(m)(\tau) = (S(\Phi)(m^{-1})^t(\tau) = \sum_{n \in N/(N \cap K)} \Phi(m^{-1}n)^t(v)
\]

\[
= \sum_{n \in (N \cap K) \setminus N} \Phi((nm)^{-1})^t(v) = (S^0 \circ \iota)^t(\tau).
\]

\[\square\]

3 Representations of \(G(k) \)

Let \(C \) be an algebraically closed field of positive characteristic \(p \), let \(k \) be a finite field of the same characteristic \(p \) and of cardinal \(q \), and let \(G \) be a connected reductive group over \(k \). We fix a minimal parabolic \(k \)-subgroup \(B \) of \(G \) with unipotent radical \(U \) and maximal \(k \)-subtorus \(T \). Let \(S \) be the maximal \(k \)-split subtorus of \(T \), let \(W = W_G = W(S,G) \) be the Weyl group, let \(\Phi = \Phi_G \) be the roots of \(S \) with respect to \(U \) (called positive), \(\Delta \subseteq \Phi \) the subset of simple roots. For \(a \in \Phi \), let \(U_a \) be unipotent subgroup denoted in (\cite{BT} 5.1) by \(U(a) \). A parabolic \(k \)-subgroup \(P \) of \(G \) containing \(B \) is called standard, and has a unique Levi decomposition \(P = MN \) with Levi subgroup \(M \) containing \(T \). The standard Levi subgroup \(P = MU = UM \) is determined by \(M \). There exists a unique subset \(\Delta_M \subseteq \Delta \) such that \(M \) is generated by \(T, U_a, U_{-a} \) for \(a \) in the subset of \(\Phi \) generated by \(\Delta_M \). This determines a bijection between the subsets of \(\Delta \) and the standard parabolic \(k \)-subgroups of \(G \).

Let \(\overline{B} = TU \) be the opposite of \(B = TU \), and \(\overline{P} = MN \) the opposite of \(P \). We have \(\overline{B} = w_0 Bu_0^{-1} \) where \(w_0 = u_0^{-1} \) is the longest element of \(W \). The roots of \(S \) with respect to \(\overline{U} \), i.e. the positive roots for \(\overline{U} \), are the negative roots for \(U \). The simple roots for \(\overline{U} \) are \(-a \) for \(a \in \Delta \).

For \(a \in \Delta \) let \(G_a \subseteq G \) be the subgroup generated by the unipotent subgroups \(U_a \) and \(U_{-a} \). Let \(T_a := G_a \cap T \).

Definition 3.1. Let \(\alpha \in \Delta \) be a simple root of \(S \) in \(B \) and let \(\psi : T(k) \to C^* \) be a \(C \)-character of \(T(k) \). We denote by

\[
\Delta_\psi := \{ a \in \Delta \mid \psi(T_a(k)) = 1 \}
\]

the set of simple roots \(\alpha \) such that \(\psi \) is trivial on \(T_a(k) \).

Example 3.2. \(G = GL(n) \). Then \(T = S \) is the diagonal group and the groups \(T_a \) for \(a \in \Delta \) are the subgroups \(T_i \subseteq T \) for \(1 \leq i \leq n-1 \), with coefficients \(x_i = x_{i+1}^{-1} \) and \(x_j = 1 \) otherwise. When \(k = F_2 \) is the field with 2 elements, \(T(k) \) is the trivial group.

Let \(V \) be an irreducible \(C \)-representation of \(G(k) \). When \(P = MN \) is a standard parabolic subgroup of \(G \), we recall that the natural action of \(M(k) \) on \(V^P(k) \) is irreducible (\cite{CE} Theorem 6.12). In particular, taking the Borel subgroup \(B = TU \), the dimension of the vector space \(V^U(k) \) is 1 and the group \(T(k) \) acts on \(V^U(k) \) by a character \(\psi_V \).
Proposition 3.3. The stabilizer in $G(k)$ of the line $V^{U(k)}$ is $P_V(k)$ where $P_V = M_V N_V$ is a standard parabolic subgroup of G associated to a subset $\Delta_V \subset \Delta_{\psi_V}$.

Proof. [Curtis] Theorem 6.15.

Corollary 3.4. The dimension of V is 1 if and only if $P_V = G$.

Proof. If the dimension of V is 1, then $V = V^{U(k)}$ and $P_V = G$. Conversely if $P_V = G$ the line $V^{U(k)}$ is stable by $G(k)$ hence is equal to the irreducible representation V.

Corollary 3.5. When $P = MN$ is a standard parabolic subgroup of G, the dimension of $V^{N(k)}$ is equal to 1 if and only if $P \subset P_V$.

Remark 3.6. i. The group P_V measures the irregularity of V. A 1-dimensional representation V is as little regular as possible ($P_V = G$), and V is as regular as possible when $P_V = B$.

ii. The group P_V depends on the choice of B. Two minimal parabolic k-subgroups of $G(k)$ are conjugate in $G(k)$ and for $g \in G(k)$, the stabilizer of $V^{gU(k)g^{-1}} = gV^{U(k)}$ is gP_Vg^{-1}. But the inclusion $P \subset P_V$ depends only on P because

$$gB(k)g^{-1} \subset P(k)$$

is equivalent to $g \in P(k)$

([Bki] chapitre IV, §2, 2.5, Prop. 3). The inclusion $P_V \subset P$ depends also only on P, for the same reason.

Definition 3.7. We say that

i. V is M-regular when the stabilizer $P_V(k)$ in $G(k)$ of the line $V^{U(k)}$ is contained in $P(k)$,

ii. V is M-coregular when the stabilizer $\overline{P}_V(k)$ in $G(k)$ of the line $V^{U(k)}$ is contained in $\overline{P}(k)$.

We recall the classification of the C-irreducible representations V of $G(k)$.

Theorem 3.8. The isomorphism class of V is characterized by ψ_V and $\Delta_V \subset \Delta_{\psi_V}$. For each C-character ψ of $T(k)$ and each subset $J \subset \Delta_{\psi}$ there exists a C-irreducible representation V of $G(k)$ such that $\psi_V = \psi, \Delta_V = J$.

Proof. ([Curtis] Theorem 5.7).

Definition 3.9. (ψ_V, Δ_V) are called the parameters of the irreducible C-representation V of $G(k)$.

Example 3.10. The irreducible representations V with $\psi_V = 1$ are classified by the subsets of Δ. They are the special representations called sometimes the generalized Steinberg representations. We denote by Sp_P the special representation V such that $\Delta_V = \Delta_M$ with $P = MN$. The representation Sp_G is the trivial character and Sp_B is the Steinberg representation.

For a standard parabolic subgroup $P = MN$, the irreducible C-representation $V^{N(k)}$ of $M(k)$ is associated to ψ_V and to $\Delta_V \cap \Delta_M$.

Proposition 3.11. The M-regular irreducible C-representations V of $G(k)$ are in bijection with the irreducible representations of $M(k)$ by the map $V \mapsto V^{N(k)}$. Those representations V with $M_V = M$ correspond to the characters of $M(k)$.
Proof. For a given irreducible representation W of $M(k)$ of parameter (ψ_W, Δ_W) with $\Delta_W \subset \Delta_{\psi_W} \cap \Delta_M$, where $\Delta_{\psi_W} \subset \Delta$ is the set of $a \in \Delta$ with ψ_W trivial on $T_a(k)$, the number of isomorphism classes of irreducible C-representations V of $G(k)$ with V isomorphic to W, is equal to the number of subsets of Δ that do not belong to $\Delta_{\psi_W} \cap \Delta_M$. Only one of them satisfies $\Delta_V \subset \Delta_M$. There is a unique (modulo isomorphism) V with $V \simeq W$ if and only if ψ_W is not trivial on $T_a(k)$, for all $a \in \Delta - \Delta_M$. \hfill \Box

The parameters (ψ_V, Δ_V) depend on the choice of the pair (T, U). The parameters $(\overline{\psi}_V, \overline{\Delta}_V)$ of V for the opposite pair (T, U) are:

Lemma 3.12. $\overline{\psi}_V = w_0(\psi_V)$, $\overline{\Delta}_V = w_0(\Delta_V)$.

Proof. As $\overline{B} = w_0Bw_0^{-1}$, the torus $T(k)$ acts by the character $w_0(\psi_V)$ on the line $V^{\overline{U}(k)}$ and $\overline{P}_V = w_0P_Vw_0^{-1}$ is the stabilizer of the line $V^{\overline{U}(k)}$. Hence the subset $\overline{\Delta}_V$ of simple roots is equal to $w_0(\Delta_V) \subset -\Delta$. \hfill \Box

The contragredient representation V^* is irreducible and its parameters for the pair (T, U) are:

Lemma 3.13. $\psi_{V^*} = w_0(\psi_V)^{-1}$, $\Delta_{V^*} = -w_0(\Delta_V)$.

Proof. By Lemma 3.12 it is equivalent to describe the parameters $(\overline{\psi}_V, \overline{\Delta}_V)$ for the opposite pair (T, U). The direct decomposition $V = V^{U(k)} \oplus (1 - \overline{U}(k))V$ implies

$$(V^*)^{\overline{U}(k)} = (V^{\overline{U}(k)})^* \simeq (V^{U(k)})^*.$$

The group $T(k)$ acts on the line $V^{U(k)}$ by the character ψ_V and on $(V^{U(k)})^*$ by the character $\overline{\psi}_V = \psi_V^{-1}$. Hence $\psi_{V^*} = \psi_V^{-1}$.

The space $(V^*)^{\overline{U}(k)}$ is the subspace of elements on V^* vanishing on $(1 - \overline{U}(k))V$. This space is stable by $M_V(k)$ because the direct decomposition of V for B is the same than for P_V (Remark 3.14). Hence $M_V \overline{U} \subset \overline{P}_V$, equivalently $-\Delta_V \subset \overline{\Delta}_V = w_0(\Delta_{V^*})$. As V is isomorphic to the contragredient of V^* and $-w_0$ is an involution on Δ, we have also the inclusion in the other direction. \hfill \Box

Remark 3.14. In general, $-w_0$ does not act by id on Δ (for example for $G = GL(3)$), hence the stabilizer \overline{P}_V of $V^{\overline{U}(k)}$ in $G(k)$ is not the opposite of P_V, the M-regularity of V is not equivalent to the M-coregularity of V. The M-regularity of V is equivalent to the M-coregularity of V^*.

Proposition 3.15. We have the $M(k)$-equivariant direct decomposition:

$$V = V^{N(k)} \oplus (1 - \overline{N}(k))V^{N(k)} = V^{N(k)} \oplus (1 - \overline{N}(k))V.$$

Proof. (CE Theorem 6.12). \hfill \Box

Remark 3.16. The decomposition is the same for $P = P_V$ than for $P = B$ because $V^{U(k)} = V^{N_U(k)}$ by definition de P_V.

Proposition 3.17. For $g \in G(k)$, the image of $gV^{U(k)}$ in $V^{\overline{U}(k)}$ is not 0 if and only if $g \in \overline{P}(k)P_V(k)$.

Proof. It is clear that the non vanishing condition on g depends only on $\overline{P}(k)gP_V(k)$ and that the image is not 0 when $g = 1$. We prove that the image of $gV^{U(k)}$ in $V^{\overline{U}(k)}$ is 0 when g does not belong to $\overline{P}(k)P_V(k)$.

a) We reduce to the case where G_{der} is simply connected by choosing a z-extension defined over k,

$$1 \to R \to G_1 \to G \to 1,$$
where $R \subset G_1$ is a central induced k-subtorus and G_1 is a reductive connected k-group with $G_{1,\text{der}}$ simply connected. The sequence of rational points

$$1 \rightarrow R(k) \rightarrow G_1(k) \rightarrow G(k) \rightarrow 1$$

is exact. The parabolic subgroups of G_1 inflated from P, P' are $P_1 = M_1N, P'_1 = M'_1N'$ where $1 \rightarrow R \rightarrow M_1 \rightarrow M \rightarrow 1$ and $1 \rightarrow R \rightarrow M'_1 \rightarrow M' \rightarrow 1$ are z-extensions defined over k. We consider V as an irreducible representation of $G_1(k)$ where $R(k)$ acts trivially. The image of $G_1(k) - \mathcal{P}_1(k)P'_1(k)$ in $G(k)$ is $G(k) - \mathcal{P}(k)P'_1(k)$. For $g_1 \in G_1(k) - \mathcal{P}_1(k)P'_1(k)$ of image $g \in G(k) - \mathcal{P}(k)P'_1(k)$, the image of $g_1V^{N'(k)}$ in $V_{N'(k)}$ is 0 if and only if the image of $gV^{N'(k)}$ in $V_{N(k)}$ is 0.

b) The proposition can be reformulated in terms of Weyl groups because the equality depends only on the image of g in $\mathcal{P}(k)\backslash G(k)/P'(k) = W_M\backslash W/W_{M'}$. We denote \dot{w} a representative of $w \in W$ in $G(k)$. The proposition says that the image of $\dot{w}V^{N'(k)}$ in $V_{N(k)}$ is 0 if $w \in W$ does not belong to $W_MW_{M'}$ under the hypothesis that $W_{\dot{V}} = W_M$ or $W_{\dot{V}} = W_{M'}$ or $W_{\dot{V}} \subset W_M \cap W_{M'}$.

c) We suppose that G_{der} is simply connected. Then we recall that V is the restriction of an irreducible algebraic representation $F(\nu)$ of G of highest weight ν equal to a q-restricted character of T (?? Appendix 1.3). The stabilizer $W_{\dot{V}}$ of ν in W is $W_{\dot{V}}$, $F(\nu)^{N}$ is the irreducible algebraic representation $F(\nu)$ of M of highest weight ν, and is equal to the sum of all weight spaces $F(\nu)_{\mu}$ with $\nu - \mu \in \mathbb{Z}\Phi_M$; for $w \in W$, $w\nu$ is a weight of $F(\nu)^{N}$ if and only if $w \in W_MW_{\dot{V}}$. (Herzig Lemma 2.3, and proof of lemma 2.17 in the split case). The space $V^{N'(k)}$ is the restriction of $F(\nu)^{N}$.

We deduce that the decomposition $V = V^{N'(k)}(1 - \mathcal{N}'(k))V$, the weights of V in $V^{N'(k)}$ and the weights in $(1 - \mathcal{N}'(k))V$ are distinct; the weights of $V_{N(k)}$ and of $V^{N'(k)}$ are the same; the image of $wV^{N'(k)}$ in $V_{N(k)}$ is 0 if and only if there exists a weight μ in $F(\nu)^{N'}$ such that $w(\mu)$ is a weight of $F(\nu)^{N}$.

This implies that, for $g \in G(k)$, the image of $gV^{U(k)}$ in $V_{N(k)}$ is 0 if and only if $g \in \mathcal{P}(k)P_{\dot{V}}(k)$.

\[\mathbb{Q}\]

Corollary 3.18. Let $P' = M'N'$ be another standard parabolic subgroup. The image of $gV^{N'(k)}$ in $V_{N(k)}$ is not 0 if and only if $g \in \mathcal{P}(k)P_{\dot{V}}(k)P'(k)$.

Proof. We have $V^{N'(k)} = \sum_{h \in M'(k)} hV^{U(k)}$ because the right hand side is $N'(k)$-stable and $V^{N'(k)}$ is an irreducible representation of $M'(k)$.

\[\mathbb{Q}\]

Remark 3.19. We have $\mathcal{P}P_{\dot{V}}P' = \mathcal{P}P'$ if and only if $M_V \subset \mathcal{P}P'$. This is true when V is M-regular or M'-regular. The reverse is true when $P = P'$ but not in general. The property $M_V \subset \mathcal{P}P'$ can be translated into equivalent properties in the Weyl group: $W_{\dot{V}} \subset W_MW_{M'}$, or in the set of simple roots: $\Delta_{\dot{V}} \subset \Delta_M \cup \Delta_{M'}$ and any simple root in $\Delta_{\dot{V}} \cap \Delta_M$ which is not in $\Delta_{M'}$ is orthogonal to any simple root in $\Delta_{\dot{V}} \cap \Delta_{M'}$ which is not in Δ_M.

In our study of Hecke operators we will use the following particular case:

Corollary 3.20. i. The restriction to $V_{N(k)}$ of the quotient map $V \rightarrow V_{N(k)}$ is an isomorphism.

ii. For $g \in G(k)$, the image of $gV_{N(k)}$ in $V_{N(k)}$ is not 0 if and only if $g \in P(k)\mathcal{P}(k)\mathcal{P}(k)$.
4 Representations of $G(F)$

4.1 Notations

Let C be an algebraically closed field of positive characteristic p, let F be a local non-archimedean field of finite residue field k of characteristic p and of ring of integers o_F and uniformizer p_F, and let G be a reductive connected group over F. We fix a minimal parabolic F-subgroup B of G with unipotent radical U and maximal F-split F-subtorus S. The group B has the Levi decomposition $B = ZU$ where Z is the G-centralizer of S. Let $\Phi(S,U)$ be the set of roots of S in U (called positive for U) and $\Delta \subset \Phi(S,U)$ the subset of simple roots. A parabolic k-subgroup P of G containing B is called standard (for U), and has a unique Levi decomposition $P = MN$ with Levi subgroup M containing Z (called standard), and unipotent radical $N = P \cap U$. The group $(M \cap B) = Z(M \cap U)$ is a minimal parabolic F-subgroup of M and $\Delta_M = \Delta \cap \Phi(S,M \cap U)$ are the simple roots of $\Phi(S,M \cap U)$. This determines a bijection between the subsets of Δ, the standard parabolic k-subgroups of G, and their standard Levi subgroups.

The natural homomorphism $v : S(F) \to \text{Hom}(X^*(S), \mathbb{Z})$, where $X^*(S)$ is the group of F-characters of S, extends uniquely to an homomorphism $v : Z(F) \to \text{Hom}(X^*(S), \mathbb{Q})$ with kernel the maximal compact subgroup of $Z(F)$. For a standard Levi subgroup M, we denote by $Z(F)^{+M}$ the monoid of elements z in $Z(F)$ which are M-positive, i.e.

$$a(v_Z(z)) \geq 0 \text{ for all } a \in \Delta - \Delta_M.$$

When these inequalities are strict, z is called strictly M-positive. Analogously we define the monoid $Z(F)^{-M}$ of elements in $Z(F)$ which are M-negative, and the strictly M-negative elements.

Let $\overline{B} = Z\overline{U}$ be the opposite parabolic subgroup of B of unipotent radical \overline{U}. The standard Levi subgroups for U and for \overline{U} are the same. The roots of S in \overline{U} are the positive roots for \overline{U} and the negative roots for U; the set $\overline{\Delta}$ of simple positive roots for \overline{U} is the set $-\Delta$ of simple negative roots for U. The monoid $Z(F)^{+M}$ of elements in $Z(F)$ which are M-positive for U is the set of elements in $Z(F)$ which are M-negative for \overline{U}.

In the building of the adjoint group G_{ad} over F we choose a special vertex in the apartment attached to S and we write K for the corresponding special parahoric subgroup, as in [HV] 6.1. The quotient of K by its pro-p-radical K_+ is the group of k-points of a connected reductive k-group G_k. The group K/K_+ is $G_k(k)$. For $H = B, S, U, Z, P, M, N$, the image in $G_k(k)$ of $H(F) \cap K$ is the group of k-points of a connected k-group H_k. Note that B_k is a minimal parabolic subgroup of G_k, S_k is a maximal k-split torus in B_k, Z_k being the centralizer of S_k in G_k, is a maximal k-subtorus of B_k, $B_k = Z_kU_k$ is a Levi decomposition, there is a bijection between Δ and the set Δ_k of simple roots of S_k (with respect to U_k), P_k is a standard parabolic subgroup of G_k, of standard Levi subgroup M_k and unipotent radical N_k, the set Δ_{k,M_k} of simple roots of S_k in M_k is the image of Δ_M by the bijection above. We shall usually suppress the indices k from the notation, write $H_0 = H(F) \cap K$. With the notations of the chapter on representations of $G(k)$, we have $T(k) = Z(k)$.

We now fix V an irreducible C-representation of $G(k)$ of parameters (ψ_V, Δ_V) (Definition 3.9), a standard parabolic subgroup $P = MN$ different from G and an element $s \in S(F)$ which is central in $M(F)$ and strictly M-positive.

4.2 S' is a localisation

We see also V as a smooth C-representation of K, trivial on K_+. We apply Proposition 2.1 to the group $G(F)$, the compact subgroup K, and the closed subgroup $P(F) =$
Definition 4.2. A ring morphism $ \phi : A \to B $ is a localisation at $ b \in B $ if $ f $ is injective, $ b \in f(A) $ is central and invertible in $ B $, and $ B = f(A)[b^{-1}] $.

There exists a Hecke operator $ T_Z $ central in $ \mathcal{H}(Z(F)^+ \cap Z_V^+, T_0, V_{U(k)}) $ of support $ Z_0s $ such that $ T_Z(s) = 1 $, because $ s $ is positive and belongs to $ S(F) $ contained in $ Z_V^+ $. The algebra $ \mathcal{H}(Z(F)^+ \cap Z_V^+, T_0, V_{U(k)}) $ is obtained from the algebra $ \mathcal{H}(Z(F)^+ \cap Z_V^+, Z_0, V_{U(k)}) $ by inverting the Hecke operator $ T_Z $ because, for any $ M $-positive element $ z \in Z(F) $ there exists a positive integer $ n $ such that $ s^n z $ belongs to $ Z(F)^+ $, because $ s \in S(F) $ is strictly $ M $-positive.

There exists a unique Hecke operator in $ \mathcal{H}(M(F), M_0, V_{N(k)}) $ of support $ M_0s $ with value $ \text{id}_{V_{N(k)}} $ at $ s $, because $ s $ is central in $ M(F) $ and contained in $ Z_V^+ $.

Definition 4.3. We denote by $ T_M $ the Hecke operator in $ \mathcal{H}(M(F), M_0, V_{N(k)}) $ with support $ M_0s $ and value $ \text{id}_{V_{N(k)}} $ at $ s $.

$ M(F) \cap N(F) $. As $ K $ is a special parahoric subgroup, the Iwasawa decomposition $ G(F) = P(F) \cap K $ is valid. We get a $ G(F) $-equivariant linear map

$$ I_0 : \text{c-Ind}_{K}^{G(F)} V \to \text{Ind}_{P(F)}^{G(F)} (\text{c-Ind}_{M_0}^{M(F)} V_{N(k)}) $$

which satisfies $ I_0(bf) = S'(b)I_0(f) $ for $ b \in \mathcal{H}(G(F), K, V) $, $ f \in \text{c-Ind}_{K}^{G(F)} V $, for an algebra homomorphism

$$ S' = S'_{M,G} : \mathcal{H}(G(F), K, V) \to \mathcal{H}(M(F), M_0, V_{N(k)}) $$

given by Proposition 2.3. To study the intertwiner homomorphism $ \mathcal{H}(8) $ which satisfies $ \mathcal{H}(S) $, we need to know more about the morphism $ S' $. We use the Satake morphism $ S $ and Proposition 2.4. We denote by $ S'_{S} $ and $ S_{G} $ the morphisms $ S'_{S} $ and $ S_{G} $ in Proposition 2.3 when $ M = Z $. We analogously define $ S'_{M} $ and $ S_{M} $ with a commutative diagram:

$$
\begin{array}{ccc}
\mathcal{H}(M, M_0, (V^*)_0) & \overset{S_{M}}{\longrightarrow} & \mathcal{H}(Z, Z_0, (V^*)_0) \\
\downarrow & & \downarrow \\
\mathcal{H}(M, M_0, V_{N(k)}) & \overset{S'_{M}}{\longrightarrow} & \mathcal{H}(Z, Z_0, V_{U(k)})
\end{array}
$$

By Proposition 2.4 the morphism $ S' $ is injective and

$$ S'_{G} = S'_{M} \circ S' $$

because the Satake morphism $ S $ is injective and satisfies $ S_{G} = S_{M} \circ S $.

We see $ \psi_{V^*} $ as a smooth character of $ Z_0 $ (Lemma 3.13). Let $ Z_{V^*} $ be the stabilizer of $ \psi_{V^*} $ in $ Z(F) $,

$$ Z_{V^*} = \{ z \in Z(F) \} \mid \psi_{V^*}(z x z^{-1}) = \psi_{V^*}(x) \text{ for all } x \in Z_0 \}. $$

Proposition 4.1. The image of the map $ S'_{G} : \mathcal{H}(G(F), K, V) \to \mathcal{H}(Z(F), Z_0, V_{U(k)}) $ is equal to $ \mathcal{H}(Z(F)^+ \cap Z_{V^*}, Z_0, V_{U(k)}) $.

Proof. The image of $ S'_{G} $ is $ \mathcal{H}(Z(F)^- \cap Z_{V^*}, Z_0, (V^*)_0) $ [HV]. Use Proposition 2.3.

Analogously, the image of $ S'_{M} $ is $ \mathcal{H}(Z(F)^+ \cap Z_{V^*}, Z_0, V_{U(k)}) $.

}\]
The Hecke operator T_M is central and invertible in $\mathcal{H}(M(F), M_0, V_{N(k)})$; it acts on $\text{c-Ind}^{M(F)}_{M_0} V_{N(k)}$ by $T_M([1, \mathfrak{m}]_{M_0}) = s^{-1}[1, \mathfrak{m}]_{M_0}$ for $v \in V$.

We also denote by T_M the $G(F)$-homomorphism of $\text{Ind}^{G(F)}_{P(F)}(\text{c-Ind}^{M(F)}_{M_0} V_{N(k)})$, such that $T_M(f)(g) = T_M(f(g))$ for $f \in \text{Ind}^{G(F)}_{P(F)}(\text{c-Ind}^{M(F)}_{M_0} V_{N(k)})$ and $g \in G(F)$.

Using Proposition 4.4 we see that

\begin{equation}
S'_M(T_M) = T_Z,
\end{equation}

because $(U \cap M)(F)z \cap M_0 s = ((U \cap M)(F)zs^{-1} \cap M_0)s = (U_0 \cap M_0)z s^{-1}$ if $zs^{-1} \in Z_0$ and is 0 otherwise. The Hecke operator T_M belongs to the image of S', because T_Z belongs to the image of S'_M by construction, S' is injective and we have (9), (8). We have shown:

Proposition 4.4. The map S' is a localisation at T_M.

In (9), we consider the map I_0 as a $C[T]$-linear map, T acting on the left side by $(S')^{-1}(T_M)$ and on the right side by T_M. By Proposition 4.4 the localisation of I_0 at T is the $G(F)$ and $\mathcal{H}(M(F), M_0, V_{N(k)})$-equivariant map

\begin{equation}
\Theta : \mathcal{H}(M(F), M_0, V_{N(k)}) \otimes_{\mathcal{H}(G(F), K, V)}, S' \text{ c-Ind}^{G(F)}_K V \to \text{Ind}^{G(F)}_{P(F)}(\text{c-Ind}^{M(F)}_{M_0} V_{N(k)}) .
\end{equation}

We will prove that the localisation of I_0 at T is an isomorphism when V is M-coregular. With Proposition 4.4 this implies our main theorem:

Theorem 4.5. Θ is injective, and Θ is surjective if and only if V is M-coregular.

4.3 Decomposition of the intertwiner

To go further, following Herzig, we write the intertwiner I_0 as a composite of two $G(F)$-equivariant linear maps

\begin{equation}
\xymatrix{ c\text{-Ind}^{G(F)}_K V \ar[rr]^-{\xi} \ar[rd]_-{I_0} & & \text{Ind}^{G(F)}_{P(F)}(\text{c-Ind}^{M(F)}_{M_0} V_{N(k)}) \ar[ld]^-{\zeta} \\
& \text{c-Ind}^{G(F)}_{P(F)} V_{N(k)} & }
\end{equation}

which we now define. In this diagram, \mathcal{P} is the inverse image in K of $P(k)$; it is a parahoric subgroup of $G(F)$ with an Iwahori decomposition with respect to M,

\begin{equation}
\mathcal{P} = N_0 M_0 \overline{N}_{0,+} , \quad \overline{N}_{0,+} := \overline{N}(F) \cap K_+ .
\end{equation}

The transitivity of the compact induction implies that

\begin{equation}
c\text{-Ind}^{G(F)}_P V_{N(k)} = c\text{-Ind}^{G(F)}_K (c\text{-Ind}^{G(k)}_{P(k)} V_{N(k)}) .
\end{equation}

Definition 4.6. The map ξ is the image by the compact induction functor $c\text{-Ind}^{G(F)}_K$ of the natural embedding $V \to c\text{-Ind}^{G(F)}_{P(F)} V_{N(k)}$. For $v \in V$, $\xi([1, v]_K)$ is the function in $c\text{-Ind}^{G(F)}_P V_{N(k)}$ of support contained in K and value $[1, kv]_P$ at $k \in K$.

The map ζ sends $[1, \mathfrak{m}]_P$, for $v \in V$, to the function in $\text{Ind}^{G(F)}_{P(F)}(\text{c-Ind}^{M(F)}_{M_0} V_{N(k)})$ of support contained in $P(F)\mathcal{P} = P(F)\overline{N}_{0,+}$ and is the constant function with value $[1, \mathfrak{m}]_{M_0}$ on $\overline{N}_{0,+}$.
Remark 4.7. Later we will use that, for \(g \in G(F) \), \(\zeta(g^{-1}[1,\pi]_p) \) has support in \(P(F)P \) which contains 1 if and only if \(g \in \mathcal{P}P(F) \). Consequently, for \(f \in c\text{-Ind}_p^{G(F)} V_{N(k)} \), the element \(\zeta(f)(1) \) depends only on the restriction of \(f \) to \(\mathcal{P}P(F) \).

Lemma 4.8. \(I_0 = \zeta \circ \xi \).

Proof. This is clear on the definitions of \(I_0, \xi, \zeta \).

Lemma 4.9. The map \(\xi \) is injective.

Proof. As \(V \) is irreducible and \(V_{N(k)} \neq 0 \), the map \(V \to c\text{-Ind}_p^{G(k)} V_{N(k)} \) is injective. As the functor \(c\text{-Ind}_p^{G} \) is exact, the map \(\xi \) is injective.

As \(P \neq G \), we have
\[
c\text{-Ind}_k^{G(F)} V \neq c\text{-Ind}_p^{G(F)} V_{N(k)} ,
\]
hence \(\xi \) is not surjective.

5 Hecke operators

In this chapter we introduce Hecke operators associated to our fixed element \(s \in S(F) \) central in \(M(F) \) and strictly \(M \)-positive, and we show the compatibility of these Hecke operators with the maps \(\xi, \zeta, S' \) (sometimes we need to suppose that \(V \) is \(M \)-coregular).

The space of \(G(F) \)-equivariant homomorphisms from \(c\text{-Ind}_k^{G(F)} V \) to \(c\text{-Ind}_p^{G(F)} V_{N(k)} \), is isomorphic to the space \(\mathcal{H}(G(F), P, K, V, V_{N(k)}) \) of functions \(\Phi : G(F) \to \text{End}_C(V, V_{N(k)}) \) satisfying
(i) \(\Phi(jgj') = j \circ \Phi \circ j' \) for \(j \in P, j' \in K \),
(ii) \(\Phi \) vanishes outside finitely many double cosets \(P\backslash K \).

We call \(\Phi \) an Hecke operator. We shall usually use the same notation for the Hecke operator and for the corresponding \(G(F) \)-equivariant homomorphism, defined by: for all \(v \in V \),
\[
[1, v]_K = \sum_{g \in \mathcal{P} \backslash G(F)} g^{-1}[1, \Phi(g)(v)]_P .
\]
The map \(\xi \) corresponds to the Hecke operator of support \(K \) and value at 1 the projection \(v \mapsto \pi : V \to V_{N(k)} \).

In the same way, the space of \(G(F) \)-equivariant homomorphisms \(c\text{-Ind}_p^{G(F)} V_{N(k)} \to c\text{-Ind}_k^{G(F)} V \), corresponds to a space \(\mathcal{H}(G(F), K, \mathcal{P}V_{N(k)}, V) \) of functions \(G(F) \to \text{Hom}_C(V_{N(k)}, V) \).

5.1 Definition of Hecke operators

Definition 5.1. We denote by \(T_G \) the Hecke operator in \(\mathcal{H}(G(F), K, V) \) with support \(K \backslash sK \) such that \(T_G(s) \in \text{End}_C(V) \) is the natural projector of image \(V^S_{(k)} \), factorizing by the quotient map \(V \to V_{N(k)} \) (Proposition \(5.7 \)).

This Hecke operator exists (\cite{HV} 7.3 Lemma 1), because \(s \in S(F) \) is positive and belongs to \(Z_{\mathcal{L}} \). The Hecke operator \(T_M \) could have been defined in the same way as \(T_G \). We shall prove later that \(S'(T_G) = T_M \) when \(V \) is \(M \)-coregular.

We define now Hecke operators \(T_P \) in \(\mathcal{H}(G(F), P, V_{N(k)}) \) and \(T_{K, P} \) in \(\mathcal{H}(G(F), K, \mathcal{P}V_{N(k)}, V) \) generalizing the Hecke operators \(T_G \) and \(T_M \).
Proposition 5.2. (i) There exists a unique Hecke operator T_P in $\mathcal{H}(G(F), \mathcal{P}, V_{N(k)})$ with support $\mathcal{P}s\mathcal{P}$ and value at s the identity of $V_{N(k)}$.

(ii) There exists a unique Hecke operator $T_{K,P}$ in $\mathcal{H}(G(F), K, \mathcal{P}, V_{N(k)}, V)$ with support $Ks\mathcal{P}$ such that $T_{K,P}(s) : V_{N(k)} \to V$ is given by the isomorphism $\varphi : V_{N(k)} \to V_{\mathcal{N}(k)}$ deduced from Proposition 3.15.

Proof. (i) By the condition (i) for Hecke operators, it suffices to check that for $h, h' \in \mathcal{P}$, the relation $hs = sh'$ implies that the actions of h and of h' on $V_{N(k)}$ are the same. By the Iwahori decomposition, we have

$$sPs^{-1} = sN_0M_0N_0s^{-1} = sN_0s^{-1}M_0sN_0s^{-1}$$

as s is central in $M(F)$, and h and h' have the same component in M_0.

(ii) It suffices to check that for $h \in K, h' \in \mathcal{P}$, the relation $hs = sh'$ implies that $h'(\varphi(\mathcal{P})) = \varphi(h(\mathcal{P}))$ for all $v \in V$. As s is central in $M(F)$ and strictly M-positive we have

$$sPs^{-1} \subset N_0sN_0s^{-1}$$

and $K \cap sPs^{-1} \subset N_0sM_0N_0$.

The elements $h \in N_0sM_0N_0$ and h' have the same component in M_0. \qed

5.2 Compatibilities between Hecke operators

In this section, we prove the following result:

Proposition 5.3. i. The left diagram

$$\begin{array}{ccc}
c-\text{Ind}^{G(F)}_K V & \xrightarrow{\xi} & c-\text{Ind}^{G(F)}_P V_{N(k)} \\
T_G & & T_{K,P} \\
c-\text{Ind}^{G(F)}_K V & & c-\text{Ind}^{G(F)}_K V \\
\end{array}$$

is commutative; the right diagram is commutative when V is M-coregular.

ii. The diagram

$$\begin{array}{ccc}
c-\text{Ind}^{G(F)}_P V_{N(k)} & \xrightarrow{\xi} & \text{Ind}^{G(F)}_{P(F)} (c-\text{Ind}^{M(F)}_{M_0} V_{N(k)}) \\
T_P & & T_M \\
c-\text{Ind}^{G(F)}_P V_{N(k)} & & c-\text{Ind}^{G(F)}_P V_{N(k)} \\
\end{array}$$

is commutative.

iii. $S'(T_G) = T_M$ when V is M-coregular.

By the $(G(F))$-homomorphisms corresponding to ξ, T_G, T_P and $T_{K,P}$, satisfy for $v \in V$,

$$\xi : [1, v]_K \mapsto \sum_{g \in \mathcal{P}\setminus K} g^{-1}[1, g\mathcal{P}]_\mathcal{P},$$

$$T_G : [1, v]_K \mapsto \sum_{g \in K\setminus KsK} g^{-1}[1, T_G(g)(v)]_K,$$

$$T_P : [1, \mathcal{P}]_\mathcal{P} \mapsto \sum_{g \in \mathcal{P}\setminus \mathcal{P}s\mathcal{P}} g^{-1}[1, T_P(g)(\mathcal{P})]_\mathcal{P},$$

$$T_{K,P} : [1, \mathcal{P}]_\mathcal{P} \mapsto \sum_{g \in K\setminus KsK} g^{-1}[1, T_{K,P}(g)(\mathcal{P})]_K.$$
The formula for T_P and for $T_{K,P}$ simplify, using (12):

$$PsP = P_{sN_0+} \quad \text{and} \quad KsP = KsN_0+,$$
and, for g in sN_0+, we have $T_P(g)(\overline{\pi}) = \overline{\pi}$ and $T_{K,P}(g)(\overline{\pi}) = \varphi(\overline{\pi})$ by the property (i) of the Hecke operators, because this is true for $g = s$ and N_0+ acts trivially on $V_{N(k)}$.

The formula for T_G also simplifies: clearly the surjective map $h \mapsto sh : K \to sK$ induces a bijection

$$(K \cap s^{-1}Ks) \setminus K \to K \setminus KsK.$$

We remark that $K \cap s^{-1}Ks$ is contained in P (HV 6.13 Proposition) and that the inclusion $N_{0+} \subset P$ induces a bijection

$$s^{-1}N_0s \setminus N_{0+} \to (K \cap s^{-1}Ks) \setminus P.$$

This is a consequence of the Iwahori decomposition (12) and of the fact that s is strictly M-positive. The group N_{0+} acts trivially on V and $T_G(s)(v) = \varphi(\overline{\pi})$ for $v \in V$.

We deduce that:

$$T_P : [1,\overline{\pi}]_P \mapsto \sum_{\overline{\pi} \in s^{-1}N_0s \setminus N_{0+}} \overline{\pi}^{-1}s^{-1}[1,\overline{\pi}]_P ,$$

$$T_{K,P} : [1,\overline{\pi}]_P \mapsto \sum_{\overline{\pi} \in s^{-1}N_0s \setminus N_{0+}} \overline{\pi}^{-1}s^{-1}[1,\varphi(\overline{\pi})]_K ,$$

$$T_G : [1,v]_K \mapsto \sum_{h \in P \setminus K} h^{-1} \sum_{\overline{\pi} \in s^{-1}N_0s \setminus N_{0+}} \overline{\pi}^{-1}s^{-1}[1,\varphi(\overline{hv})]_K .$$

$T_P([1,\overline{\pi}]_P)$ is the function in $c\text{-Ind}_P^{G(F)} V_{N(k)}$ of support PsP equal to $\overline{\pi}$ on sN_0+, $T_{K,P}([1,\overline{\pi}]_P)$ is the function in $c\text{-Ind}_K^{G(F)} V$ of support KsP equal to $\varphi(\overline{\pi})$ on sN_0+, $T_G([1,v]_K)$ is the function in $c\text{-Ind}_K^{G(F)} V$ of support contained in KsK equal to $\varphi(\overline{hv})$ on sh for all $h \in K$.

We see on these formula that the left diagram in i is commutative:

$$T_G = T_{K,P} \circ \xi .$$

When v lies in $V_{\overline{N}(k)}$, φ disappears from the formula of $T_{K,P}([1,\overline{\pi}]_P)$, because $\varphi(\overline{\pi}) = v$, hence:

$$T_{K,P}([1,\overline{\pi}]_P) = \sum_{\overline{\pi} \in s^{-1}N_0s \setminus N_{0+}} \overline{\pi}^{-1}s^{-1}[1,\overline{\pi}]_K .$$

Remark 5.4. When $v \in V_{\overline{N}(k)}$ and $g \in G(k)$ we have $\overline{gv} \neq 0$ if and only if $g \in \overline{P}(k)\overline{P}_V(k)$ (Corollary 5.20). We have $\overline{P}(k)\overline{P}_V(k) = M(k)\overline{P}_V(k)$. The inverse image in K of $\overline{P}_V(k)$ is a parahoric subgroup \overline{P}_V acting on $V_{\overline{N}(k)}$ by a character that we still denote $\overline{\psi}_V$. For $h \in \overline{P}_V(k)$ we have $hv = \overline{\psi}_V(h)v$ and $\varphi(hv) = \overline{\psi}_V(h)v$. In the formula for $\xi([1,v]_K)$ or $T_G([1,v]_K)$, we can replace the sum over $P \setminus K$ by a sum over $P \cap \overline{P}_V \setminus \overline{P}_V$, and we obtain for $v \in V_{\overline{N}(k)}$:

$$\xi([1,v]_K) = \sum_{h \in P \cap \overline{P}_V \setminus \overline{P}_V} \overline{\psi}_V(h)h^{-1}[1,\overline{\pi}]_P ,$$

$$T_G([1,v]_K) = \sum_{h \in P \cap \overline{P}_V \setminus \overline{P}_V} \overline{\psi}_V(h)h^{-1} \sum_{\overline{\pi} \in s^{-1}N_0s \setminus N_{0+}} \overline{\pi}^{-1}s^{-1}[1,v]_K .$$
Remark 5.5. When \(v \in V^{\overline{N}(k)}\) and \(V\) is also the function \(\xi([1,v])\) with value \([1,\nu]_p\), hence under our hypothesis on \((v, V)\):

\[T_G([1,v]_K) = \text{the function in } c\text{-Ind}_K^{G(F)} V \text{ of support contained in } Ks\overline{N}_0 = v \text{ on } s\overline{N}_0,\]

\[(26) \quad \xi([1,v]_K) = \sum_{\nu \in N_{0+} \setminus \overline{N}_0} \nu^{-1}[1,\nu]_p,\]

\[(27) \quad T_G([1,v]_K) = \sum_{\nu \in s^{-1}N_{0+} \setminus \overline{N}_0} \nu^{-1}s^{-1}[1,v]_K.\]

\[(28) \quad (\xi \circ T_K)_p([1,\nu]_p) = \sum_{\nu \in s^{-1}N_{0+} \setminus \overline{N}_0} \nu^{-1} \sum_{\nu \in N_{0+} \setminus \overline{N}_0} \nu^{-1}[1,\nu]_p = \sum_{\nu \in s^{-1}N_{0+} \setminus \overline{N}_0} \nu^{-1}s^{-1}[1,\nu]_p.\]

Comparing (19) and (28) we see that:

\[(29) \quad T_p = \xi \circ T_K, p.\]

When \(V\) is \(M\)-coregular, the right diagram in i is commutative.

Remark 5.5. When \(v \in V^{\overline{N}(k)}\) and \(V\) is \(M\)-coregular, we compute easily:

\[(\xi \circ T_G)([1,v]_K) = \sum_{\nu \in s^{-1}N_{0+} \setminus \overline{N}_0} \nu^{-1}s^{-1} \sum_{\nu \in N_{0+} \setminus \overline{N}_0} \nu^{-1}[1,\nu]_p = \sum_{\nu \in s^{-1}N_{0+} \setminus \overline{N}_0} \nu^{-1}s^{-1}[1,\nu]_p,\]

\[(T_p \circ \xi)([1,v]_K) = \sum_{\nu \in N_{0+} \setminus \overline{N}_0} \nu^{-1} \sum_{\nu \in s^{-1}N_{0+} \setminus \overline{N}_0} \nu^{-1}s^{-1}[1,\nu]_p = \sum_{\nu \in s^{-1}N_{0+} \setminus \overline{N}_0} \nu^{-1}s^{-1}[1,\nu]_p,\]

\[(T_K, p \circ \xi)([1,v]_K) = \sum_{\nu \in N_{0+} \setminus \overline{N}_0} \nu^{-1} \sum_{\nu \in s^{-1}N_{0+} \setminus \overline{N}_0} \nu^{-1}s^{-1}[1,v]_K = \sum_{\nu \in s^{-1}N_{0+} \setminus \overline{N}_0} \nu^{-1}s^{-1}[1,v]_K,\]

We consider now the diagram ii. with \(\zeta\), without restriction on \(V\). We have

\[(30) \quad \zeta \circ T_p = T_M \circ \zeta\]

because:

\[(T_M \circ \zeta)([1,\nu]_p)\] is the function \(f_p\) of support \(P^\nu_{0+}\) and constant on \(\overline{N}_{0+}\) with value \(s^{-1}[1,\nu]_{M_0}\), because \((\xi([1,\nu])_p)\) is the function \(f_p\) of support \(P\overline{N}_{0+}\) and constant on \(\overline{N}_{0+}\) with value \([1,\nu]_{M_0}\) and \(T_M([1,\nu]_{M_0}) = s^{-1}[1,\nu]_{M_0}\).

By (19), \((\zeta \circ T_p)([1,\nu]_p) = \sum_{\nu \in s^{-1}N_{0+} \setminus \overline{N}_{0+}} \nu^{-1}s^{-1} \zeta([1,\nu]_p).\) Hence \((\zeta \circ T_p)([1,\nu]_p)\) is also the function \(f_{\nu}\) of support \(P\overline{N}_{0+}\) and constant on \(\overline{N}_{0+}\) with value \(s^{-1}[1,\nu]_{M_0}\).

Proof of iii. We proved that \(\xi \circ T_{p,K} = T_p\) when \(V\) is \(M\)-coregular. As in general \(T_{p,K} \circ \xi = T_G\), one deduces \(\xi \circ T_G = T_p \circ \xi\). As we always have \(\zeta \circ T_p = T_M \circ \zeta\), we obtain

\[\zeta \circ \xi \circ T_G = \zeta \circ T_p \circ \xi = T_M \circ \zeta \circ \xi.\]
i.e. \(I_0 \circ T_G = T_M \circ I_0 \). This implies \(S'(T_G) = T_M \).

This ends the proof of Proposition 5.3.

We can have \(S'(T_G) = T_M \) even when the representation \(V \) is not \(M \)-coregular. The trivial representation \(V \) is never \(M \)-coregular because \(M \neq G \).

Remark 5.6. For any choice of \(s \in M(F) \) strictly \(M \)-positive we have \(S'(T_G) = T_M \), when \(G = GL(2, F) \), \(B = P = MN \) the upper triangular subgroup, \(M \) the diagonal subgroup, \(K = GL(2, o_F) \) and \(V \) the trivial representation of \(GL(2, k) \).

Proof. For \(t \in M(F) \), the value of \(S'(1_{KsK}) \) at \(t \) is the image in \(C \) of the integer

\[
 n_s(t) := |\{ b \in F/o_F \mid nbt \text{ in } KsK \} , \quad n_b := \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} .
\]

The integer \(n_s(t) \) depends only on \(sM_0 \). We claim that \(n_s(s) = 1 \) and \(n_s(t) \equiv 0 \) modulo \(p \) for \(t \) not in \(sM_0 \); this implies \(S'(T_G) = T_M \). It suffices to check that the claim is true for \(s_p^n \) with

\[
 s_p := \begin{pmatrix} p_F & 0 \\ 0 & 1 \end{pmatrix}
\]

and \(n > 1 \), because \(s \) belongs to \(\cup_{n \geq 1} Z(G)M_0s_p^n \) where \(Z(G) \) is the center of \(G(F) \).

It is well known that the double coset \(Ks_pK \) is a disjoint union of the \(p + 1 \) cosets \(Ks_p \) and \(K \begin{pmatrix} 1 & a \\ 0 & p_F \end{pmatrix} \) for \(a \) in system of representatives of \(o_F/p_Fo_F \), and more generally

\(Ks_p^nK \) is a disjoint union of the cosets \(K \begin{pmatrix} p_F^u & a \\ 0 & p_F^r \end{pmatrix} \) for \(a \in o_F/p_F^r o_F \) and for \(u, r \in \mathbb{N} \) with \(u + r = n \). It is more convenient to write

\[
 \begin{pmatrix} p_F^u & a \\ 0 & p_F^r \end{pmatrix} = n_{c, s_p^{u-r}} \text{ with } s_p^{u-r} := \begin{pmatrix} p_F^u & 0 \\ 0 & p_F^r \end{pmatrix}
\]

for \(c = ap_F^{-r} \in p_F^{-r} o_F/o_F \).

As \(nbt \) and the representatives \(n_{c, s_p^{u-r}} \) of the cosets \(K \setminus Ks_pK \) all belong to \(B(F) \), \(n_{s_p^n}(t) \) is also the number of \(b \in F/o_F \) such that \(nbt \in \cup_{c, u, r} M_0n_{c, s_p^{u-r}} \). Hence \(n_{s_p^n}(t) \neq 0 \) is equivalent to \(t \in M_0s_p^n \) and in this case

\[
 n_{s_p^n}(t) = n_{s_p^n}(s_p^{u-r}) = |p_F^{-r} o_F/o_F| = q^r
\]

is equal to 1 if \(t \in M_0s_p^n \) and is divisible by \(p \) otherwise. \(\square \)

6 Main theorem

The main theorem is a corollary of the following proposition:

Proposition 6.1. The map \(\xi \) is injective; when \(V \) is \(M \)-coregular, the image of \(\xi \) contains \(T_P(c \text{-Ind}^G_F V_{N(k)}) \).

The kernel of the map \(\zeta \) is the \(T_{F'}^{-} \)-torsion part of \(c \text{-Ind}^G_F V_{N(k)} \) and the representation \(c \text{-Ind}^G_F(c \text{-Ind}^M_F V_{N(k)}) \) is generated by

\[
 (T_{M}^{n} \circ \zeta)([1, T])\quad \text{for all } n \in \mathbb{Z}
\]

for any fixed non-zero element \(T \in V_{N(k)} \).
For the map ξ, the proposition follows from (Lemma 1.3 and 29). The next three lemma will be used in the proof for the map ζ.

Lemma 6.2. The map ζ is injective on the set of functions $f \in \text{c-Ind}_P^{G(F)} V_{N(k)}$ with support in $PZ(F)^+M K$.

Proof. Let f such that $\zeta(f) = 0$ with support in $PZ(F)^+K$. We claim that $f = 0$ on $PP(F)$. This implies that $f = 0$ because $G(F) = P(F)K$ and for $k \in K$ the function $k^{-1}f$ satisfies the same conditions as f. To prove the claim, we use only that $\zeta(f)(1) = 0$ in $\text{c-Ind}_{M_0}^{M_0} V_{N(k)}$. As $\zeta(f)(1)$ depends only on the restriction of f to $PP(F)$, we assume as we may, that the support of f is contained in $PP(F)$. The support of f is a finite disjoint union of $Pz_i k_i$ for $z_i \in (F)^+$ and $k_i \in K$, with $z_i k_i \in PP(F)$. We have $PP(F) = N_{0, +} F P(F)$ hence $k_i \in z_i^{-1} N_{0, +} z_i F(P)$. As z_i is positive, $z_i^{-1} N_{0, +} z_i \subset N_{0, +}$. This implies that we can suppose $k_i \in P(F) \cap K$. As $P(F) \cap K = N_0 M_0$ and z_i is positive, we can suppose $k_i \in M_0$. We proved that the support of f is a finite disjoint union of $Pz_i k_i$ for $z_i \in (F)^+$ and $k_i \in M_0$. Taking the intersection with $M(F)$, the sets $M(F) \cap Pz_i k_i$ are also disjoint. Writing

$$f = \sum_i (z_i k_i)^{-1} [1, v_i] p$$

we have $\zeta(f)(1) = \sum_i (z_i k_i)^{-1} [1, v_i] M_0$, and $\zeta(f)(1) = 0$ is equivalent to $v_i = 0$ for all i. \[\square\]

Lemma 6.3. (i) A basis of the open compact subsets of the compact space $P(F) \backslash G(F)$ is given by the $G(F)$-translates of $P(F) \backslash P(F) N_{0, +} s^n$, for all $n \in \mathbb{N}$.

(ii) For any subset $X \subset G(F)$ with finite image in $P \backslash G(F)$ there exists a large integer $n \in \mathbb{N}$ such that $s^n X \subset PZ(F)^+M K$.

Proof. See Herzig [Herz] Lemma 2.20.

(i) The compact space $P(F) \backslash G(F)$ is the union of the right $G(F)$-translates of the big cell $P(F) \backslash P(F) N(F)$ which is open, the $s^{-n} N_{0, +} s^n$ for $n \in \mathbb{N}$ form a decreasing sequence of open subgroups of $N(F)$ converging to 1.

(ii) Let \mathcal{N} be the normalizer of S in G and let B be the inverse image of $B(k)$ in K (an Iwahori subgroup). Then $(G(F), B, \mathcal{N}(F))$ is a generalized Tits system [HV]. We have:

a) $G(F) = BN(F)B$,

b) for $\nu \in \mathcal{N}(F)$ there a finite subset X_ν in $\mathcal{N}(F)$ such that, for all $\nu' \in \mathcal{N}(F)$, we have

$$\nu' B \nu \subset \bigcup_{x \in X_\nu} B \nu' x B.$$

c) As the parahoric group K is special, for any $\nu \in \mathcal{N}(F)$ there exists $z \in Z(F)$ such that $\nu K = z K$ because K contains representatives of the Weyl group.

We deduce from a) and c) that $G(F) = BN(F)K$. We write, as we may, X as a finite union $X = \bigcup_i P z_i k_i$ with $z_i \in Z(F), k_i \in K$. We deduce from b) that, for any index i, there are finitely many $n_{i,j} \in \mathcal{N}(F)$ such that $z B z_i \subset \bigcup_j B z n_{i,j} B$ for all $z \in Z(F)$. It follows that

$$z P z_i k_i \subset P_{0, +} N_{0, +} z_i k_i \subset \bigcup_j P z n_{i,j} K$$

as $N_{0, +} \subset B$. We choose $z_{i,j} \in Z(F)$ such that $z_{i,j} K = n_{i,j} K$, as we may by c). There exists $n \in \mathbb{N}$ such that $s^n z_{i,j} \in Z(F)^{+M}$ for all i, j. Hence $s^n X \subset \bigcup_j P s^n z_{i,j} K \subset PZ(F)^{+M} K$.

\[\square\]

Let σ be a smooth C-representation of $M(F)$. For any non-zero $y \in \sigma$, there exists a function $f_y \in \text{Ind}_{P(F)}^{G(F)} \sigma$ of support $P(F) N_{0, +}$ and value y on $N_{0, +}$ because the multiplication $P(F) \times N_{0, +} \to P(F) N_{0, +}$ is an homeomorphism.
Lemma 6.4. Let \(\sigma \) be a smooth \(C \)-representation of \(M(F) \) generated by an element \(x \). Then the representation \(\text{Ind}_{P(F)}^{G(F)} \sigma \) is generated by the functions \(f_{s^{-n}x} \) of support \(P(F)N_{0+,s} \) and value \(s^{-n}x \) on \(N_{0+,s} \), for all \(n \in \mathbb{Z} \).

Proof. By Lemma 6.3 we reduce to show that any function \(f_{n,mx} \in \text{Ind}_{P(F)}^{G(F)} \sigma \) of support contained in \(P(F)N_{0+,s}x \) equal to \(mx \) on \(N_{0+,s}x \), for \(n \in \mathbb{N} \) and \(m \in M(F) \), is contained in the subrepresentation generated by \(f_{s^{-r}x} \) for all \(r \in \mathbb{Z} \). The function \(m^{-1}f_{n,mx} \) has support in \(P(F)P(F)N_{0+,s}^{n} \) and value \(s^{-n}x \) on the compact open subset \(m^{-1}s^{-n}N_{0+,s}^{n}m \) of \(N(F) \); this set is a finite disjoint union of \(s^{-n}N_{0+,s}^{n}\pi \) with \(\pi \in (N(F) \right) \) and \(n' \in \mathbb{N} \). For a non-zero \(y \in \sigma \), the function \((s^{n}\pi)^{-1}f_{y} \in \text{Ind}_{P(F)}^{G(F)} \sigma \) has support \(P(F)N_{0+,s}^{n}\pi \) and value \(s^{-n'}y \) on \(s^{-n}N_{0+,s}^{n}\pi \). The sum of \((s^{n}\pi)^{-1}f_{s^{-n}x} \) is equal to \(m^{-1}f_{n,mx} \).

To analyse the image of \(\zeta \), we take in Lemma 6.3 the representation \(\sigma = \text{c-Ind}_{M_{0}}^{M(F)} V_{N(k)} \) generated by \(x = [1,\overline{\pi}]_{M_{0}} \), for any non-zero fixed \(\pi \in V_{N(k)} \), and we note that for \(n \in \mathbb{Z} \), by definition 4.3 and 4.6,

\[
(T_{M}^{n} \circ \zeta)([1,\overline{\pi}]_{\overline{\pi}}) = f_{s^{-n}x}
\]

We obtain that the representation \(\text{Ind}_{P(F)}^{G(F)} (\text{c-Ind}_{M_{0}}^{M(F)} V_{N(k)}) \) is generated by the elements \((T_{M}^{n} \circ \zeta)([1,\overline{\pi}]_{\overline{\pi}})\) for all \(n \in \mathbb{Z} \).

We consider now an element \(f \) in the kernel of \(\zeta \). The function \(f \) vanishes outside of a compact set \(X \) of finite image in \(P \backslash G(F) \). We choose the integer \(n \in \mathbb{N} \) such that \(s^{n}X \subset PZ(F)^{+}K \) (Lemma 6.3 ii). The support of \(T_{M}^{n} \) is \(Ps^{n}P \) by 12 and the positivity of \(s \). The support of \(T_{P}^{n}(f) \) is contained in \(Ps^{n}X \) hence in \(PZ(F)^{+}K \). By Lemma 6.2 we conclude that \(T_{P}^{n}(f) = 0 \). This ends the proof of Proposition 6.1.

Corollary 6.5. The kernel of \(I_{0} = \zeta \circ \xi \) is the space of \(T_{P}^{\infty} \)-torsion elements in \(\text{c-Ind}_{K}^{G(F)} V \) identified via \(\zeta \) to a subspace of \(\text{c-Ind}_{K}^{G(F)} \text{c-Ind}_{P(k)}^{G(k)} V_{N(k)} \).

In the diagram (11) the representations are \(C[T] \)-modules, where \(T \) acts as on the middle space by \(T_{K,P} \), on the right space by \(T_{M} \) and on the left space by \((S')^{-1}(T_{M}) \). Proposition 6.3 tells us that:

The map \(\zeta \) is \(C[T] \)-linear.

When \(V \) is \(M \)-coregular, the map \(\xi \) is \(C[T] \)-linear and \((S')^{-1}(T_{M}) = T_{G} \).

Corollary 6.6. i. The \(T \)-localisation \(\zeta_{T} \) of \(\zeta \) is an isomorphism.

ii. When \(V \) is \(M \)-coregular, the \(T \)-localisation \(\zeta_{T} \) of \(\xi \) is an isomorphism.

The map \(\Theta \) is the \(T \)-localisation of \(I_{0} = \zeta \circ \xi \). By i., the map \(\Theta = \zeta_{T} \circ \xi_{T} \) is an isomorphism if and only if \(\zeta_{T} \) is an isomorphism. The map \(\Theta \) is always injective (as \(\xi \) is injective) and surjective if and only if \(\xi_{T} \) is surjective.

We prove now the converse of Corollary 6.6 ii.

Proposition 6.7. When \(\xi_{T} \) is surjective, \(V \) is \(M \)-coregular.

Proof. 1) Set \(\tau_{G} := (S')^{-1}(T_{M}) \). Par definition, \(I_{0} \circ \tau_{G} = T_{M} \circ I_{0} \), hence

\[
\zeta \circ \xi \circ \tau_{G} = T_{M} \circ \zeta \circ \xi = \zeta \circ T_{P} \circ \xi
\]

As the localisation \(T \) of \(\zeta \) is injective, \(\xi \circ \tau_{G} = T_{P} \circ \xi \) modulo \(T_{P}^{\infty} \)-torsion.

2) The surjectivity of \(\xi_{T} \) means that for all \(f \in \text{c-Ind}_{P(F)}^{G(F)} V_{N(k)} \) there exists an \(n \in \mathbb{N} \) such that \(T_{P}^{n}(f) \) belongs in the image of \(\xi \) (one can change \(n \) by any \(n' \geq n \)). As the representation is generated by \([1,x]_{P} \) for \(x \in V_{N(k)} \), the hypothesis is that there exists an \(n \in \mathbb{N} \) such that \(T_{P}^{n}([1,x]_{P}) \) belongs in the image of \(\xi \) for all \(x \in V_{N(k)} \). The Hecke operator \(T_{P}^{n} \) is analogous to the Hecke operator \(T_{P} \) but associated to \(s^{n} \) instead of \(s \). Replacing \(s \) by \(s^{n} \) we can work under the hypothesis: \(T_{P}([1,x]_{P}) \) belongs in the image of \(\xi \) for all \(x \in V_{N(k)} \).
3) The support of $T_{p}(1, x|p)$ is contained in $P_{s}P = P_{s}N_{0+}$ and if

$$T_{p}(1, x|p) = \xi(f)$$

for some $f \in c\text{-Ind}^{G(F)}_{K_{F}} V$, the support of f must be contained in $K_{s}P = K_{s}N_{0+}$. Writing $K_{s}P$ as a disjoint union of cosets $K_{s}m_{i}$ with $m_{i} \in N_{0+}$, and $f = \sum_{i} c_{i} [1, v_{i}] K$ for a choice of non-zero $v_{i} \in V$ and a finite set of indices i. The equality (31) means that, for each index i, v_{i} satisfies the two conditions a) and b): for any k in K,

a) if $k s m_{i} \in P_{s}P$, i.e., $k s m_{i} = h s m$ with $h \in P$ and $m \in N_{0+}$, then $h v_{i} = h x$,

b) if $k s m_{i} \notin P_{s}P$ then $h v_{i} = 0$.

4) We show that the condition a) implies that $v_{i} = \phi(x)$ where $\phi(x) \in V_{N(k)}$ lifts x.

We have $k = h s m^{-1}_{i} s^{-1}$ and $s m^{-1}_{i} s^{-1} \in \overline{N}(F) \cap K = \overline{N}_{0}$, hence $h \in P_{s} N_{0}$. Conversely if $k = h \nu$ with $h \in P$ and $\nu \in \overline{N}_{0}$, then $k s m^{-1}_{i} = h s s^{-1} \nu s m^{-1}_{i}$ and $s^{-1} \nu s \in N_{0+}$ because s is strictly M-positive. The condition a) means that for any $h \in P$ and any $\nu \in \overline{N}_{0}$ we have $h \nu v_{i} = h x$. As $h \in P$ we have $h \nu v_{i} = h m v_{i}$ and the condition a) is equivalent to $m v_{i} = x$ for all $\nu \in \overline{N}_{0}$. Writing $v_{i} = \phi(x) + w_{i}$, the $\overline{N}(k)$-submodule W of V generated by w_{i} is contained in the kernel of $v \mapsto m$. If $W \neq 0$ then $W \overline{N(k)} \neq 0$ and we get a contradiction. Hence $W = 0$ and $v_{i} = \phi(x)$.

5) We interpret now the condition b) which says that if k does not belong to $P_{s}N_{0}$, then $k \phi(x) = 0$, and this for all $x \in V_{N(k)}$. Hence the image of $g \overline{N(k)}$ in $V_{N(k)}$ is 0 for all g not belonging to $P(k) \overline{N(k)}$. By Corollary 3.20 this implies

$$P(k) \overline{N(k)} \subset P(k) \overline{N(k)}$$

hence the M-coregularity of V by Corollary 3.19.

This ends the proof of our main theorem (Theorem 4.6).

Remark 6.8. When V has dimension 1 and is given by a character ϵ of K, the map Θ is not surjective because V is not M-coregular as $\overline{P_{V}} = G \neq \overline{P}$. If there exists a character ϵ_{M} of $M(F)$ equal to ϵ on M_{0} (such a character ϵ_{M} does not always exist), one can consider the composite of I_{0} with the surjective natural map

$$\psi : \text{Ind}^{G(F)}_{P(F)}(c\text{-Ind}^{M(F)}_{M_{0}} \epsilon) \to \text{Ind}^{G(F)}_{P(F)} \epsilon_{M}.$$

In the case where ϵ extends to a character ϵ_{G} of $G(F)$, the image of $\psi \circ I_{0}$ is the subrepresentation ϵ_{G} of dimension 1 of $\text{Ind}^{G(F)}_{P(F)} \epsilon_{M}$. The map $\psi \circ \Theta$ is also non surjective.

But in the case where ϵ does not extend to a character ϵ_{G} of $G(F)$, the map $\psi \circ \Theta$ can be surjective. For example, $\psi \circ \Theta$ is surjective when $\text{Ind}^{G(F)}_{P(F)} \epsilon_{M}$ is irreducible. This is the case, for any choice of ϵ_{M}, when $G = U(2, 1)$ with respect to an unramified quadratic extension of F, B is a Borel subgroup and K is a special non hyperspecial parahoric subgroup Remark; this is also the case when $G(F) = GL(2, D)$ with a quaternion skew field over F, B is the upper triangular subgroup and $K = GL(2, O_{D})$ [LY].

7 Supersingular representations of $G(F)$

We introduce first the notion of K-supersingularity for an irreducible smooth representation π of $G(F)$. Then we recall the notion of supercuspidality. We expect that supercuspidality is equivalent to K-supersingularity, at least for admissible representations. We will give some partial results in this direction. Finally, when π is admissible we give an equivalent definition of K-supersingularity which coincides with the definition given by Herzig and Abe when G is F-split, K is hyperspecial and the characteristic of F is 0.
Let \(\pi \) be an irreducible smooth \(C \)-representation of \(G(F) \). For any smooth irreducible \(C \)-representation \(V \) of \(K \), we consider
\[
\text{Hom}_{G(F)}(\text{c-Ind}^{G(F)}_{K} V, \pi)
\]
as a right module for the Hecke algebra \(\mathcal{H}(G(F), K, V) \).

Remark 7.1. The representation \(\pi|_K \) contains an irreducible subrepresentation \(V \), i.e. by adjunction and the irreducibility of \(\pi \),
\[
\text{Hom}_{G(F)}(\text{c-Ind}^{G(F)}_{K} V, \pi) \neq 0,
\]
because a non-zero element \(v \in \pi \) being fixed by an open subgroup of \(K \), generates a \(K \)-stable subspace of finite dimension, and any finite dimensional smooth \(C \)-representation of \(K \) contains an irreducible subrepresentation.

We recall some elementary facts on localisation.

Let \(f : A \to B \) be an injective ring morphism which is a localisation at \(b \in f(A) \) central and invertible in \(B = f(A)[b^{-1}] \) (Def. 4.2).

A right \(B \)-module \(V \) considered as a right \(A \)-module via \(f \), is called the restriction of \(V \). An homomorphism \(\varphi \) of right \(B \)-modules considered as an homomorphism of right \(A \)-modules is called the restriction of \(\varphi \).

A right \(A \)-module \(V \) induces a right \(B \)-module \(V \otimes_{A,B} B \), called the localisation of \(V \) at \(b \). An homomorphism \(\varphi \) of right \(A \)-modules induces an homomorphism \(\varphi \otimes \text{id} \) of \(B \)-modules called the localisation of \(\varphi \) at \(b \).

A right \(A \)-module where the action of \(f^{-1}(b) \) is invertible is canonically a right \(B \)-module and the homomorphisms \(\text{Hom}_{A}(V, V') \) and \(\text{Hom}_{B}(V, V') \) are the same for such \(A \)-modules \(V \) and \(V' \).

Lemma 7.2. The restriction and the localisation at \(b \) are equivalence of categories, inverse to each other, between the category of right \(B \)-modules and the category of right \(A \)-modules where the action of \(f^{-1}(b) \) is invertible.

Proof. Clear. \(\square \)

We consider now the localisation
\[
S' = S'_{M,G} : \mathcal{H}(G(F), K, V) \to \mathcal{H}(M(F), M_0, V_{N(k)})
\]
at \(T_M \) (Proposition 4.4).

By Theorem 4.5, the localisation of the left \(\mathcal{H}(G(F), K, V) \)-module \(\text{c-Ind}^{G(F)}_{K} V \) at \(T_M \) is isomorphic to \(\text{Ind}^{G(F)}_{P(F)}(\text{c-Ind}^{M(F)}_{M_0} V_{N(k)}) \) when \(V \) is \(M \)-coregular.

Definition 7.3. An irreducible smooth \(C \)-representation \(\pi \) of \(G(F) \) is called \(K \)-supersingular when the localisations of the right \(\mathcal{H}(G(F), K, V) \)-module
\[
\text{Hom}_{G(F)}(\text{c-Ind}^{G(F)}_{K} V, \pi)
\]
at \(T_M \) are 0, for all irreducible smooth \(C \)-representations \(V \) of \(K \) and all standard Levi subgroup \(M \neq G \).

For a given \(M \), the condition means that, for any non-zero \(f \in \text{Hom}_{G(F)}(\text{c-Ind}^{G(F)}_{K} V, \pi) \) there exists \(n \in \mathbb{N} \) such that \(S'^{-1}(T^M_M)(f) = 0 \). The condition does not depend on the choice of \(T_M \), as it is equivalent to :
\[
\mathcal{H}(M(F), M_0, V_{N(k)}) \otimes_{\mathcal{H}(G(F), K, V), S'} \text{Hom}_{G(F)}(\text{c-Ind}^{G(F)}_{K} V, \pi) = 0.
\]

23
Definition 7.4. An irreducible smooth C-representation π of $G(F)$ is called supercuspidal, if π is not isomorphic to a subquotient of $c\text{-Ind}^{G(F)}_{P(F)} \tau$ for irreducible smooth C-representation τ of $M(F)$ where $M \neq G$.

The definition does not depend on the minimal parabolic F-subgroup B of G used to define the standard parabolic subgroups, as all such B’s are conjugate in $G(F)$.

Let V be an irreducible smooth C-representation of K and let σ be a smooth C-representation of $M(F)$ for some standard Levi subgroup $M \neq G$. Our first result concerns the T_M-localisation of the right $\mathcal{H}(G(F), K, V)$-module

$$\text{Hom}_{G(F)}(c\text{-Ind}^{G(F)}_K V, \text{Ind}^{G(F)}_{P(F)} \sigma) .$$

Proposition 7.5. i. $V \subset (\text{Ind}^{G(F)}_{P(F)} \sigma)|_K$ if and only if $V_{N(k)} \subset \sigma|_{M_0}$.

ii. In this case, the action of $S'^{-1}(T_M)$ on $\text{Hom}_{G(F)}(c\text{-Ind}^{G(F)}_K V, \text{Ind}^{G(F)}_{P(F)} \sigma)$ is invertible.

Proof. i follows from the Frobenius adjunction isomorphism

$$\text{Hom}_K(V, \text{Ind}^K_{P_0} \sigma) \to \text{Hom}_{M_0}(V_{N(k)}, \sigma) .$$

ii follows from Proposition 2.4.

Our results on the comparison between K-supersingular and supercuspidal irreducible smooth C-representations of $G(F)$ are:

Theorem 7.6. Let $M \neq G$ be a standard Levi F-subgroup and let τ be an irreducible smooth C-representation of $M(F)$.

i. An irreducible subrepresentation of $\text{Ind}^{G(F)}_{P(F)} \tau$ is not K-supersingular.

ii. An admissible irreducible quotient of $\text{Ind}^{G(F)}_{P(F)} \tau$ is not K-supersingular.

iii. An admissible irreducible smooth C-representation π of $G(F)$ such that the localisation of the right $\mathcal{H}(G(F), K, V)$-module

$$\text{Hom}_{G(F)}(c\text{-Ind}^{G(F)}_K V, \pi)$$

at T_M is not 0 for some L-coregular irreducible subrepresentation V of $\pi|_K$ and some standard Levi subgroup $M \subset L \neq G$, is not supercuspidal.

Proof. i. The last proposition implies that an irreducible subrepresentation of $\text{Ind}^{G(F)}_{P(F)} \tau$ is not K-supersingular.

ii. Let π be an irreducible quotient of $\text{Ind}^{G(F)}_{P(F)} \tau$. We choose an irreducible smooth C-representation W of M_0 such that the irreducible representation τ is a quotient of $c\text{-Ind}^{M(F)}_{M_0} W$. Then π is a quotient of $\text{Ind}^{G(F)}_{P(F)}(c\text{-Ind}^{M(F)}_{M_0} W)$. We consider the unique irreducible M-coregular representation V of $G(k)$ such that $V_{N(k)} \simeq W$ (Proposition 3.11). By our main theorem (Theorem 4.5):

$$\text{Ind}^{G(F)}_{P(F)}(c\text{-Ind}^{M(F)}_{M_0} W) \simeq \mathcal{H}(M(F), M_0, V_{N(k)}) \otimes_{\mathcal{H}(G(F), K, V), S'} c\text{-Ind}_K^{G(F)} V .$$

we deduce:

$$\text{Hom}_{G(F)}(\mathcal{H}(M(F), M_0, V_{N(k)}) \otimes_{\mathcal{H}(G(F), K, V), S'} c\text{-Ind}_K^{G(F)} V, \pi) \neq 0 .$$

Claim: If π is admissible, this implies

$$\mathcal{H}(M(F), M_0, V_{N(k)}) \otimes_{\mathcal{H}(G(F), K, V), S'} \text{Hom}_{G(F)}(c\text{-Ind}_K^{G(F)} V, \pi) \neq 0 .$$
Hence \(\pi \) is not \(K \)-supersingular. The claim follows from elementary algebra and will be proved later 7.7.

iii. The localisation of \(\text{Hom}_{G(F)}(\text{c-Ind}_K^{G(F)}V, \pi) \) at \(T_L \) is not 0 because the localisation of \(\text{Hom}_{G(F)}(\text{c-Ind}_K^{G(F)}V, \pi) \) at \(T_M \) is not 0, by transitivity of the localisation: the localisation at \(T_M \) is equal to the localisation at \(T_M \) of the localisation at \(T_L \). Equivalently

\[
\mathcal{H}_{L,V,\pi} := \mathcal{H}(L(F), L_0, V_{N'(k)}) \otimes_{\mathcal{H}(G(F), K,V), S_{L,G}} \text{Hom}_{G(F)}(\text{c-Ind}_K^{G(F)}V, \pi)
\]

is not 0 because \(\mathcal{H}_{M,V,\pi} \neq 0 \). This follows from the transitivity relation

\[
\mathcal{H}_{M,V,\pi} = \mathcal{H}(M(F), M_0, V_{N(k)}) \otimes_{\mathcal{H}(L(F), L_0, V_{N'(k)}), S'_{M,L}} \mathcal{H}_{M,V,\pi}
\]

which is deduced from the transitivity \(S'_{M,G} = S'_{M,L} \circ S'_{L,G} \).

The non-zero space

\[
\text{Hom}_{G(F)}(\text{c-Ind}_K^{G(F)}V, \pi)
\]

contains a simple right \(\mathcal{H}(G(F), K, V) \)-submodule \(\mathcal{N} \) because \(\pi \) is admissible.

The irreducible representation \(\pi \) is a quotient of

\[
(32) \quad \mathcal{N} \otimes_{\mathcal{H}(G(F), K, V)} \text{c-Ind}_K^{G(F)}V
\]

As \(V \) is \(L \)-coregular, \(\mathcal{N} \) is the restriction of a simple \(\mathcal{H}(L(F), L_0, V_{N'(k)}) \)-module, still denoted by \(\mathcal{N} \), and the representation \((32)\) is isomorphic to

\[
(33) \quad \mathcal{N} \otimes_{\mathcal{H}(L(F), L_0, V_{N'(k)})} \text{Ind}_{Q(F)}^{G(F)}(\text{c-Ind}_{L_0}^{L(F)}V_{N'(k)})
\]

by Theorem 4.5. This last representation is isomorphic to \(\text{Ind}_{Q(F)}^{G(F)}\sigma \) where

\[
(34) \quad \sigma := \mathcal{N} \otimes_{\mathcal{H}(L(F), L_0, V_{N'(k)})} \text{c-Ind}_{L_0}^{L(F)}V_{N'(k)}
\]

is a smooth representation of \(L(F) \). The center of \(L(F) \) embeds naturally in the center of the Hecke algebra \(\mathcal{H}(L(F), L_0, V_{N'(k)}) \) and acts by a character on the simple \(\mathcal{H}(L(F), L_0, V_{N'(k)}) \)-module \(\mathcal{N} \) [VigD]. Hence \(\sigma \) has a central character.

The admissible irreducible representation \(\pi \) is a quotient of \(\text{Ind}_{Q(F)}^{G(F)}\sigma \) where \(\sigma \) has a central character. By Proposition 7.8 below, \(\pi \) is a quotient of \(\text{Ind}_{Q(F)}^{G(F)}\tau \) for an admissible irreducible smooth \(C \)-representation \(\tau \) of \(L(F) \). As \(Q \neq G \), the representation \(\pi \) is not supercuspidal.

\[\square\]

Remark 7.7. Proof of the claim.

Proof. We denote \(A = \mathcal{H}(G(F), K, V), T = T_M \in A, B = A[T^{-1}], X = \text{c-Ind}_K^{G(F)}V \). We suppose

\[
\text{Hom}_G(B \otimes_A X, \pi) \neq 0,
\]

and we want to prove that \(B \otimes_A \text{Hom}_G(X, \pi) \neq 0 \) provided that \(\text{Hom}_G(X, \pi) \) is finite dimensional (which is the case if \(\pi \) is admissible).

We consider the natural linear map

\[
r : \text{Hom}_G(B \otimes_A X, \pi) \to \text{Hom}_G(X, \pi), \quad \varphi \mapsto (x \mapsto \varphi(1 \otimes x)).
\]

The space \(\text{Hom}_G(B \otimes_A X, \pi) \) is naturally a right \(B \)-module hence a right \(A \)-module by restriction. The map \(r \) is \(A \)-linear:

\[
r(\varphi a)(x) = (\varphi a)(1 \otimes x) = \varphi(a \otimes x) = \varphi(1 \otimes ax) = r(\varphi)(ax) = (r(\varphi)a)(x),
\]
for $a \in A, x \in X, \varphi \in \text{Hom}_G(B \otimes_A X, \pi)$. Consequently, the image $\text{Im}(r)$ is an A-submodule of $\text{Hom}_G(X, \pi)$. We remark that $T \text{Im}(r) = \text{Im}(r)$ because $r(\varphi) = r(\varphi T^{-1})T$ for $\varphi \in \text{Hom}_G(B \otimes_A X, \pi)$.

We show now that our hypothesis implies that $\text{Im}(r)$ is not 0. Indeed, let $\varphi \neq 0$ in $\text{Hom}_G(B \otimes_A X, \pi)$. There exists $b \in B$ and $x \in X$ such that $\varphi(b \otimes x) \neq 0$. Writing $b = T^{-n}a$ with $n \in \mathbb{N}$ and $a \in A$ we get $\varphi(T^{-n}a \otimes x) = \varphi T^{-n}(1 \otimes ax) \neq 0$ so that $r(\varphi T^{-n}) \neq 0$.

We assume now that $\text{Hom}_G(X, \pi)$ is finite dimensional. Then $\text{Im}(r)$ is also finite dimensional then T induces an automorphism of $\text{Im}(r)$ so that $B \otimes_A \text{Im}(r) \neq 0$. The localisation being an exact functor, $B \otimes_A \text{Hom}_G(X, \pi) \neq 0$.

\[\square \]

Proposition 7.8. Let π be an admissible irreducible smooth C-representation of $G(F)$ which is a quotient of $\text{Ind}_{P(F)}^{G(F)} \sigma$ for a smooth C-representation σ of $M(F)$ with a central character. Then there exists an admissible irreducible smooth C-representation τ of $M(F)$ such that π is a quotient of $\text{Ind}_{P(F)}^{G(F)} \tau$.

When the characteristic of F is 0, Herzig ([Herzig](#)) Lemma 9.9) proved this proposition using the \mathcal{P}-ordinary functor $\text{Ord}_{\mathcal{P}}$ introduced by Emerton ([Emerton](#)). His proof contains four steps:

1. As σ is locally Z_M-finite, we have

 $$\text{Hom}(\text{Ind}_{P(F)}^{G(F)} \sigma, \pi) \simeq \text{Hom}_{M(F)}(\sigma, \text{Ord}_{\mathcal{P}} \tau).$$

2. As π is admissible, $\text{Ord}_{\mathcal{P}} \tau$ is admissible.

3. As $\text{Ord}_{\mathcal{P}} \tau$ is admissible and non-zero, it contains an admissible irreducible subrepresentation τ.

4. As $\text{Ord}_{\mathcal{P}}$ is the right adjoint of $\text{Ind}_{P(F)}^{G(F)}$ in the category of admissible representations, we obtain that π is a quotient of $\text{Ind}_{P(F)}^{G(F)} \tau$.

The proof is valid without hypothesis on the characteristic of F; we checked carefully that the Emerton’s proof of the steps 1, 2, 4 never uses the characteristic of F. Only the proof of step 3 given by Herzig has to be replaced by a characteristic-free proof.

Lemma 7.9. An admissible smooth C-representation of $G(F)$ contains an admissible irreducible subrepresentation.

Proof. For any admissible smooth C-representation of $G(F)$, the dimension of π^H is a positive finite integer for any open pro-p-subgroup H. In a subrepresentation π_1 of π such that the right $H(G(F), H, \text{id})$-module π_1^H has minimal length, the subrepresentation generated by π_1^H is irreducible. \[\square \]

This ends the proof of Proposition hence of the theorem.

Remark 7.10. When π is an admissible smooth C-representation of G, then

$$\text{Hom}_{G(F)}(\text{c-Ind}_K^{G(F)} V, \pi)$$

is finite dimensional hence it is 0 or contains a simple $\mathcal{H}(G(F), K, V)$-module.

An irreducible smooth C-representation π of $G(F)$ such that $\text{Hom}_{G(F)}(\text{c-Ind}_K^{G(F)} V, \pi)$ contains a simple $\mathcal{H}(G(F), K, V)$-module \mathcal{N}, has a central character. This follows from:

1. The center of $\mathcal{H}(G(F), K, V)$ acts on \mathcal{N} by a character $\text{VigD}.r$
2. π is quotient of $\mathcal{N} \otimes_{\mathcal{H}(G(F), K, V)} \text{c-Ind}_K^{G(F)} V$.

26
We want now to show that the K-supersingularity of an admissible irreducible representation of $G(F)$ can also be defined using the characters of the center $\mathcal{Z}(G(F), K, V)$ of $\mathcal{H}(G(F), K, V)$ appearing in $\text{Hom}_{G(F)}(\text{c-Ind}_K^G(F)V, \pi)$.

We consider the localisation

$$\mathcal{Z}(G(F), K, V) \to \mathcal{Z}(M(F), M_0, V_{N(k)}) .$$

at T_M obtained by restriction to the centers of the localisation S' at T_M (Proposition 4.4).

Proposition 7.11. Let π be an admissible irreducible smooth C-representation of $G(F)$. The following properties are equivalent:

i. π is K-supersingular,

ii. The localisation at T_M of any simple $\mathcal{H}(G(F), K, V)$-submodule of

$$\text{Hom}_{G(F)}(\text{c-Ind}_K^G(F)V, \pi)$$

is 0, for all standard Levi subgroups $M \neq G$.

iii. The localisation at T_M of any character of $\mathcal{Z}(G(F), K, V)$ contained in

$$\text{Hom}_{G(F)}(\text{c-Ind}_K^G(F)V, \pi)$$

is 0, for all standard Levi subgroups $M \neq G$.

Proof. We suppose first π only irreducible and we denote $H_V := \text{Hom}_{G(F)}(\text{c-Ind}_K^G(F)V, \pi)$ for simplicity; we suppose $H_V \neq 0$.

We note that the localisation of H_V at T_M as a $\mathcal{H}(G(F), K, V)$-module, and as a $\mathcal{Z}(G(F), K, V)$-module, are isomorphic to $\mathcal{Z}(M(F), M_0, V_{N(k)})$-modules.

The localisation at T_M is an exact functor hence if the localisation of H_V at T_M is 0, the same is true for the simple $\mathcal{H}(G(F), K, V)$-submodules of H_V and the characters of $\mathcal{Z}(G(F), K, V)$ contained in H_V.

We suppose now π admissible. Then H_V is finite dimensional and admits a finite Jordan-Hölder filtration as a $\mathcal{H}(G(F), K, V)$-module (or as a $\mathcal{Z}(G(F), K, V)$-module).

The localisation of H_V at T_M is not 0 if and only if the localisation at T_M of one of the simple quotients of H_V as a $\mathcal{H}(G(F), K, V)$-module (or as a $\mathcal{H}(G(F), K, V)$-module) is not 0.

Each character of $\mathcal{Z}(G(F), K, V)$ appearing as a subquotient of H_V also embeds in H_V because $\mathcal{Z}(G(F), K, V)$ is a finitely generated commutative algebra over the algebraically closed field C. The finite dimensional space H_V is the direct sum of its generalized eigenspaces $(H_V)_\chi$ with eigenvalue an algebra homomorphism $\chi : \mathcal{Z}(G(F), K, V) \to C$.

Hence the localisation of H_V at T_M is not 0 if and only if the localisation at T_M of a character of $\mathcal{Z}(G(F), K, V)$ contained in H_V is not 0.

The characters of $\mathcal{Z}(G(F), K, V)$ contained in H_V are the central characters of the simple $\mathcal{H}(G(F), K, V)$-submodules of H_V.

The localisation at T_M of a simple $\mathcal{H}(G(F), K, V)$-submodule is not 0 if and only if the localisation at T_M of its central character is not 0.

\[\square\]

Herzig and Abe when G is F-split, K is hyperspecial and the characteristic of F is 0 ([Herzig] Lemma 9.9), used the property iii to define the K-supersingularity of π irreducible and admissible.
References

[Abe] Abe Noriyuki: *On a classification of admissible irreducible modulo \(p \) representations of a \(p \)-adic split reductive group*. Preprint 2011.

[Ramla] Abdellatif Ramla: *Autour des représentations modulo \(p \) des groupes réductifs \(p \)-adiques de rang 1*. Thesis in preparation.

[BL] Barthel Laure and Livne Ron: *Irreducible modular representations of \(GL_2 \) of a local field*. Duke Math. J. Volume 75, Number 2 (1994), 261-292.

[Bki] Bourbaki Nicolas: *Groupes et algèbres de Lie, chapitres 4,5 et 6*. Hermann 1968.

[BTII] Bruhat F. et Tits J.: *Groupes réductifs sur un corps local*. Inst. Hautes Études Scient. Publications Mathématiques Vol. 60 (1984), part II, pp. 197-376.

[CE] Cabanes Marc and Enguehard Michel: *Representation theory of finite reductive groups*. Cambridge University Press 2004.

[Curtis] Curtis C. W.: *Modular representations of finite groups with split \((B,N)\)-pairs*. In *Seminar on Algebraic groups and related finite groups* Lecture Notes in Math, 131, Springer-Verlag 1970, Chapter B.

[Emerton] Emerton Matthew: *Ordinary parts of admissible representations of \(p \)-adic reductive groups I*. Astérisque 331, 2010, p. 355-402.

[HV] Henniart Guy and Vigneras Marie-France: *A Satake isomorphism for representations modulo \(p \) of reductive groups over local fields*. Preprint 2011.

[Herzig] Herzig Florian: *The classification of admissible irreducible modulo \(p \) representations of a \(p \)-adic \(GL_n \)*. To appear in Inventiones Math.

[HerzigW] Herzig Florian: *The weight in a Serre-type conjecture for tame \(n \)-dimensional Galois representations*. Duke Math. J. 149 (1): 37-116, 2009.

[HS] Hilton P.J., Stammbach U.: *A Course in Homological Algebra*. GTM 4 , 1971. Springer-Verlag

[Ly] Ly Tony: *Irreducible representations modulo \(p \) representations of \(GL(2,D) \)*. In preparation.

[VigD] Vigneras Marie-France: *Représentations irréductibles de \(GL(2,F) \) modulo \(p \)*. In L-functions and Galois representations, ed. Burns, Buzzard, Nekovar, LMS Lecture Notes 320 (2007)

[VLivre] Vignéras Marie-France: *Représentations \(\ell \)-modulaires d’un groupe réductif \(p \)-adique avec \(\ell \neq p \)*. PM 137. Birkhauser (1996).

Guy Henniart
Univ. Paris–Sud, Laboratoire de Mathématiques d’Orsay
Orsay Cedex F–91405 ; CNRS, UMR 8628, Orsay Cedex F–91405
Guy.Henniart@math.u-psud.fr

Vignéras Marie-France
Université de Paris 7, Institut de Mathematiques de Jussieu, 175 rue du Chevaleret, Paris 75013, France,
vigneras@math.jussieu.fr