To E or Not to E: Numerical Nuances of Global Coronal Models

Michaela Brchnelova1, Blažej Kužma1, Barbara Perri1, Andrea Lani1, and Stefaan Poedts1,2

1Centre for Mathematical Plasma Astrophysics, KU Leuven, 3001 Leuven, Belgium; michaela.brchnelova@kuleuven.be
2Institute of Physics, University of Maria Curie-Skłodowska, Pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland

Received 2022 May 3; revised 2022 August 29; accepted 2022 August 31; published 2022 November 11

Abstract

In recent years, global coronal models have experienced an ongoing increase in popularity as tools for forecasting solar weather. Within the domain of up to 21.5 R_\odot, magnetohydrodynamics (MHD) is used to resolve the coronal structure using magnetograms as inputs at the solar surface. Ideally, these computations would be repeated with every update of the solar magnetogram so that they could be used in the ESA Modeling and Data Analysis Working Group magnetic connectivity tool (http://connect-tool.irap.omp.eu/). Thus, it is crucial that these results are both accurate and efficient. While much work has been published showing the results of these models in comparison with observations, not much of it discusses the intricate numerical adjustments required to achieve these results. These range from the details of boundary condition formulations to adjustments as large as enforcing parallelism between the magnetic field and velocity. By omitting the electric field in ideal MHD, the description of the physics can be insufficient and may lead to excessive diffusion and incorrect profiles. We formulate inner boundary conditions that, along with other techniques, reduce artificial electric field generation. Moreover, we investigate how different outer boundary condition formulations and grid design affect the results and convergence, with special focus on the density and radial component of the B-field. The significant improvement in accuracy of real magnetic map–driven simulations is illustrated for an example of the 2008 eclipse.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamical simulations (1966); Active solar corona (1988); Heliosphere (711); Space weather (2037)

1. Introduction

Global coronal models based on computational fluid dynamics (CFD) methods applied to magnetohydrodynamics (MHD) equations are becoming a widely used tool to aid solar weather predictions (see, e.g., Usmanov 1996; Linker et al. 1999; van der Holst et al. 2014; Pinto & Rouillard 2017; Mikić 2018; Réville 2020, and referenced therein). In these models, solar photospheric magnetic map data are used to prescribe the radial component of the magnetic field on the inner boundary of the domain, representing the lower corona, and then MHD equations are solved in the rest of the domain. This domain typically extends over roughly 21 R_\odot beyond which faster and more idealized heliospheric codes, such as EUHFORIA (a code for space weather predictions of the solar wind and coronal mass ejection, CME, evolution; see, e.g., Pomoell & Poedts 2018; Scolini et al. 2018, 2019; Poedts 2020), can be coupled to the rest of the solar system to study the propagation of the coronal features.

Since in this case, the outer boundary data resulting from the MHD simulation are used as input for EUHFORIA (see an example of such application in Samara et al. 2021) or other codes to detect possible geomagnetic storms, it is crucial that the features (e.g., coronal streamers) in the MHD solutions are accurately resolved. To this end, the boundary conditions (BCs) must be formulated appropriately and the numerical phenomena arising in the simulations understood and possibly avoided, which is the aim of this paper. One such problematic numerical phenomenon arises from the fact that the ideal (single-fluid) MHD equations are only a simplified version of a more detailed multifluid description of solar plasmas. Unlike multifluid models, they solve for the electric field only implicitly, without resolving it in absolute terms. It is shown in this paper that not properly accounting for the electric field in ideal MHD when formulating the inner BC leads to a loss of accuracy and sharpness in the results and, in the worst case scenario, even completely incorrect profiles.

Determining realistic values of the electric field in the solar corona is problematic. While there exist techniques to estimate the photospheric electric field, such as inversion from the observed V- and B-fields (see, for example, the work of Lumme 2016), getting the estimate of the electric field in the corona is not possible in this way, as we do not have direct observations of the magnetic field. The magnitude of the electric field in the quiet corona is typically expected to be very small owing to the conductivity of the solar wind plasma (Kislov 2022), at least outside of regions of large velocities, where even a small misalignment between the velocity and the magnetic field could cause large E-fields. For that reason, magnetostatic solutions, in which the electric fields relax to zero, are also used to represent and predict the coronal behavior (Contopoulos et al. 2011). Locally, however, the electric field can be enhanced by, for example, reconnection events in the current sheets or coronal holes; see Zank et al. (2014) or Zharkova & Khabarova (2015). Parallel electric field generation due to Alfvén or fast magnetosonic waves was also predicted by, for example, Kaghavshili (2012), in which case the predicted magnitudes range from 1×10^{-2} to 1×10^{-3} mV m^{-1}.

In our setup, we are looking at a steady-state background corona, where we would expect the resulting electric field to be very small. This is because modeling of the abovementioned E-field enhancing effects cannot be done properly for two reasons. One is that our simulation is not time-dependent to
model waves, and the other is that the majority of the reconnection events observed in our simulations are driven by excessive numerical diffusion instead of being physical, as will be shown later in the paper.

To obtain sharp features and ensure a physical alignment of the \(V \)- and \(B \)-fields, the parallelism can be enforced artificially. This can be done by, for example, aligning the resulting \(B \)-field with the velocity starting from a certain distance from the Sun. A second option, recently proposed by Sokolov et al. (2021), consists of solving reduced ideal MHD equations. However, neither of these two approaches may be easy to implement into an existing numerical code, because the former requires overriding the \(B \)-field solutions during computation (which is far from trivial in, e.g., time-implicit solvers like ours, in which both the system Jacobian matrix and the right-hand side vector would need to be manipulated in complex ways), and the latter requires completely altering the ideal MHD formulation. Some other techniques can be used, however, to reduce the artificial \(E \)-field generation and thus improve the sharpness and accuracy of the features. It will be shown that, for instance, one of the most crucial elements is the formulation of the inner BC.

Even though the outer BC is supersonic and hence, in theory, should not have much effect on the solution in the domain, we will show that this is not true. Most authors, when referring to the outer BCs of coronal models, mention that the state values of the boundary cells are “extrapolated” to the ghost cells (see, for example, Pomoell et al. 2011). However, the manner in which this extrapolation is performed affects the solution significantly. As will be shown in this paper, aspects such as the orientation and topology of the \(B \)-field lines of streamers can be directly manipulated depending on how the magnetic field is extrapolated into the ghost cells.

Finally, many of these undesired effects can be reduced by a careful grid design (see Brchnelova et al. 2022), which is another crucial aspect that will be discussed. This grid type limits the extent to which the outer BC can affect the domain and the coupling to heliospheric codes such as EUHFORIA. All of these abovementioned aspects are discussed in this paper.

This paper is organized as follows. In Section 2, better insight into the origins of the \(E \)-field problem is provided through the comparison of the full multifluid MHD and the ideal MHD equations. For the sake of completeness, the solver used in this study is also presented. In Section 3, the mechanisms of the artificial \(E \)-field generation in our simulations are identified, and their effects on the solution are demonstrated on a steady-state dipole case. It is shown that this mostly relates to the electric field production on the inner boundary; thus, this effort leads to outlining recommendations on the formulation of the inner BC. With the inner BC discussed, in Section 4, the outer BC is addressed, where the effects of various extrapolation laws are analyzed. It is also shown that it is not possible to prescribe a universally correct law for the entire domain, leading to the introduction of a new type of grid that can help reduce the outer BC–related effects in problematic regions. Finally, in Section 5, the proposed techniques are applied to a data-driven simulation of the global corona during the 2008 solar eclipse. The last section concludes our work and summarizes recommendations for procedures that could be standardized for global coronal models in the future.

2. Theoretical Context

Before diving into the design of BCs, we should first better understand the problem at hand. First, the solver we work with in this paper is introduced; afterward, the origin of the \(E \)-field issue is illustrated by comparing the full multifluid model equations with the ideal MHD equations.

2.1. Introduction to the COCONUT Solver

The ideal MHD solver used in this paper is COCONUT, a solver based on the Computational Object-Oriented Libraries for Fluid Dynamics (COOLFluiD) platform. The latter has been developed over many years for scientific multiphysics simulations (Kimpe et al. 2005; Lani et al. 2006, 2013), including high-speed flows, radiation, thermochemical nonequilibrium, and plasma flows (see, e.g., Lani et al. 2011, 2014; Santos & Lani 2016; Alonso Asensio et al. 2019, and references therein). The details of the ideal MHD model for global coronal modeling, its verification, and initial validation are presented in Perri et al. (2022), where more details about the numerical setup can be found. Unlike the majority of global coronal models, this solver relies upon an implicit scheme, i.e., the backward Euler time discretization scheme, for steady-state simulations. This allows it to converge much faster compared to explicit schemes, as the Courant–Friedrichs–Lewy (CFL) number can largely exceed the value of 1 (up to 1000 or more, depending on the test case) during the computation. This feature makes it a promising tool for real-time data-driven solar simulations. The solver also works with unstructured grids, which allows us to experiment with grid resolutions and topologies to optimize the solver performance (see Brchnelova et al. 2022). In the future, we also plan to integrate adaptive mesh refinement (Ben Ameur & Lani 2021) and high-order flux reconstruction algorithms (Vandenhoek & Lani 2019) into this model, which would dramatically increase the accuracy (potentially up to 10th order) on coarser grids and possibly accelerate the convergence of the solver even further.

The code uses a second-order accurate finite volume discretization along with the hyperbolic divergence cleaning to ensure that the divergence of the \(B \)-field stays zero. The MHD equations are solved on arbitrarily unstructured grids in a non-dimensional form. The full form can be found in Perri et al. (2022), along with the formulation of the baseline BCs. In this study, however, the rotation is not considered. The reference values are set to

\[
\rho_{\text{ref}} = 1.67 \times 10^{-13} \text{ kg m}^{-3}, \quad B_{\text{ref}} = 2.2 \times 10^{-4} \text{ T},
\]

with \(V_{\text{ref}} \) computed to be the Alfvén velocity \((4.5 \times 10^{5} \text{ m s}^{-1})\), while the length scales and coordinates are non-dimensional according to the solar radius.

All of the simulations in this paper, unless otherwise specified, were performed without the use of a limiter and with the fifth subdivision level icosahedron-based spherical mesh with prisms (see Brchnelova et al. 2022 for details) with roughly 300,000 elements. The surface of the spherical shell domain, starting from 1.1 to 21.5 \(R_{\odot} \), is shown in Figure 1 along with a cut-through showing the radial discretization. When other grids are used in the paper (e.g., the grid designed to minimize outer BC effects introduced later), it will be mentioned explicitly.

Finally, before proceeding to the physics, the convergence of the solver should be touched upon. When discussing residual
levels in the text, the following definition of a residual is used:

$$\text{res}(a) = \log \sqrt[1]{\sum_{i} (a_i^t - a_i^{t+1})^2}, \quad (2)$$

where a is the relevant physical quantity, i is the spatial index, and t is the temporal index during the pseudo-time stepping. In general, the velocity and the magnetic field components are monitored during convergence. The simulation is typically considered converged when the velocity residual drops below -3 to -4. For comparison analyses in this paper, however, the residual was brought down to -10 in V_x to ensure that the differences observed in the flow field are indeed due to the investigated aspects (e.g., the BCs) and not to insufficient convergence. It could be argued that looking at the squares of absolute value differences might bias our focus to regions where these values are by default higher, e.g., the outer boundaries, when it comes to the velocity field. For this reason, however, we also monitor the other residuals, like the pressure, density, and magnetic field, where the higher values are generally near the inner boundary instead. Via ensuring that all of the residuals are sufficiently small, the evaluation of convergence is more or less balanced over the domain.

Now that the basic numerics have been discussed, the physics can be elaborated on in further detail.

2.2. The Origin of the E-field Problem

To outline the role of the electric field and why it should be addressed in the inner BC design, it is instructive to show the full MHD equations considering both ion (subscript “i”) and electron (subscript “e”) fluids separately, as they both contribute to the generation and removal of the electric field owing to their charges. The resulting two-fluid model, in a dimensional form, can be formulated as follows (see, e.g., Meier & Shumlak 2012). The (pre-)Maxwell equations read

$$\nabla \times E = -\frac{\partial B}{\partial t}, \quad \nabla \times B = \mu_0 J, \quad (3)$$

$$\nabla \cdot B = 0, \quad \nabla \cdot E = \sigma / \epsilon_0, \quad (4)$$

where σ is the charge density ($\sigma = n_i q_i + n_e q_e$), and J is the electric current density ($J = n_i q_i V_i + n_e q_e V_e$). For our two species, here ions and electrons, the continuity equations can be written as

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i V_i) = 0 \quad \text{and} \quad \frac{\partial n_e}{\partial t} + \nabla \cdot (n_e V_e) = 0, \quad (5)$$

respectively. The momentum conservation is, for electrons,

$$\frac{\partial}{\partial t} (m_e n_e V_e) + \nabla \cdot (m_e n_e V_e V_e + P_e) = -en_e (E + V_e \times B) + m_e n_e g + R_e^{ei}, \quad (6)$$

and for ions,

$$\frac{\partial}{\partial t} (m_i n_i V_i) + \nabla \cdot (m_i n_i V_i V_i + P_i) = en_i (E + V_i \times B) + m_i n_i g + R_i^{ei}, \quad (7)$$

where P is the pressure, g is the gravitational acceleration, and R_e^{ei} and R_i^{ei} are the collisional momentum terms. If the collisional frequency between ions and electrons can be approximated through

$$\nu_{ei} \sim \nu_{ei} \sim \frac{m_e}{m_i} \nu_{ei} \sim \frac{Z^2 e^4 n_i m_i^{1/2} \ln \Lambda_{ei}}{(4\pi \epsilon_0)^2 m_i T_e^{3/2}}, \quad (8)$$

with $\ln \Lambda$ being the Coulomb logarithm and a Z of 1, then the momentum collisional exchange terms can be computed...
Finally, the energy conservation reads
\[
\frac{\partial \Psi_e}{\partial t} + \nabla \cdot (\Psi_e V_e + V_e \cdot P_e + h_e) = V_e \cdot (-en_i E + m_e n_e g + R^{ie}_e) + Q^{ie}_e,
\]
and
\[
\frac{\partial \Psi_i}{\partial t} + \nabla \cdot (\Psi_i V_i + V_i \cdot P_i + h_i) = V_i \cdot (en_i E + m_i n_i g + R^{ie}_i) + Q^{ie}_i,
\]
in which \(\Psi_e\) and \(\Psi_i\) are the total internal energies of the electrons and ions, and \(Q^{ie}_e\) and \(Q^{ie}_i\) are the collisional work terms between the two species,
\[
Q^{ie}_e = \frac{1}{2}(R^{ie}_e \cdot (V_e - V_i)) + 3n_i \nu_{ie} k_B (T_e - T_i),
\]
and
\[
Q^{ie}_i = \frac{1}{2}(R^{ie}_i \cdot (V_i - V_e)) + 3n_i \nu_{ie} k_B (T_i - T_e).
\]

In the model presented above, the electric field \(E\) is typically one of the primitive variables that is solved for. In Equations (10) and (11), we can see, for example, the tendency of the two-fluid MHD to respond to existing electric fields via their dynamics, as the two fluids react to the present \(E\)-field in opposite ways. Charge separation, which can result from this response, is, by itself, a mechanism to create an opposing electric field; see Equations (3) and (4). Looking at Equations (10) and (11), the \(E\)-field can also be a major contributor to the fluids' energy budgets if it has a nonzero value and is not perpendicular to the fluids’ velocity field.

However, the form of the MHD equations that we generally use in global coronal models is simplified through a variety of assumptions to the single-fluid ideal MHD equations. In particular, assuming nonrelativistic flows, the displacement current and electrostatic force are ignored in MHD. As a result, the electric field and current density adopt a secondary role, as they can be eliminated from the equations; i.e., they can simply be computed from the other variables without solving a differential equation \((E = -V \times B\) and \(J = \nabla \times B / \mu_0\)). The MHD equations then read (here in a nondimensional form, as also used in our code)
\[
\frac{d\rho}{dt} + \nabla \cdot (\rho V) = 0,
\]
\[
\frac{d(\rho V)}{dt} + \nabla \cdot \left(\rho V \otimes V + I \left(\frac{B^2}{8\pi} - \frac{B \otimes B}{4\pi}\right)\right) = \rho g,
\]
\[
\frac{dB}{dt} + \nabla \times (-V \times B) = 0,
\]
where \(\rho\) is the density, \(V\) is the velocity, \(V\) is the electric field, and \(B\) is the magnetic field. The Lorentz force term \(\rho \nabla \times (V \times B)\) is zero, since the cross product of two vectors is orthogonal to both vectors. The term \(\rho \nabla \cdot (V \otimes V)\) represents the dilatation of the fluid, and the term \(\rho g\) represents the gravitational force. The term \(\nabla \cdot (\rho V \otimes V)\) represents the viscous dissipation, and the term \(\nabla \cdot (\rho V \otimes V + I \left(\frac{B^2}{8\pi} - \frac{B \otimes B}{4\pi}\right))\) represents the magnetic diffusion. The term \(\rho g\) represents the gravitational force, and the term \(\nabla \times (-V \times B)\) represents the magnetic diffusion.
product enters the energy equation, ultimately, this does not only directly affect the B- and V-fields but, as will be shown later, also other hydrodynamic variables, such as temperature.

3. Formulating the Inner BCs through E-field Analysis

Now that the E-field issue has been introduced, first, the sources of the spurious E-field in the simulations are described. Next, the inner BC is reformulated in order to reduce the magnitude of this spurious E-field. Results are shown for the steady dipole for both large E-field and low E-field cases, through the comparison of which the effects of the E-field and the impact of the new BC can be studied. Comparison of the results will point to another issue, the effect of numerical diffusion causing reconnection, which will be briefly discussed afterward.

3.1. Mechanisms of E-field Generation

Let us first look at the major sources of the E-field in the simulations. Since the domain investigated here is spherical, the analysis from here on will be interpreted using the spherical coordinate system, r, θ, and φ. During our analysis, the main possible sources were identified as follows:

1. the initial conditions,
2. the inner and outer BCs,
3. internal physical processes such as reconnection, and
4. the mesh topology and domain discretization.

The first two points will be primarily discussed in this paper. The third point represents an actual physical process and is thus not something numerical adjustments can (or should) influence. As will be shown later in this paper, in some cases, premature magnetic reconnection can actually be triggered by the other aspects, and in such a case, it can also be considered as the result of the artificial electric field rather than its source. The last point refers to the fact that the currently applied mesh, created as a radially outward extruded icosahedral surface, has local patches of larger distortion, skewness, and nonorthogonality. This can lead to the generation of artificial fluxes, giving rise to mesh-related remnants in the solution. To first separate these mesh-related artifacts, a technique was employed in which after the first simulation, the mesh was rotated (here by 30° in the positive φ direction) and the simulation repeated (see the procedure in Brchnelova et al. 2022). This means that in the second simulation, the mesh artifacts occur at different locations in the domain and thus can be easily identified and corrected for, if needed, using interpolation from the two solutions at the problematic locations.

In our case, through this technique, it was found that the radial and azimuthal components of the electric field in the solution of the steady dipole were mostly related to the mesh. An example of the E_θ remnants is shown in Figure 2, where the electric field changes polarity once the mesh is rotated by 30° in the positive φ direction. The same was observed for E_φ. In general, both of these components had very small values compared to the total E-field magnitude. This is expected when looking at the magnetic field of the nonrotating dipole (which has a negligible φ-component) and Equation (17). These two components will thus not be analyzed extensively from here on.

However, the E_φ (poloidal) component was a hundredfold larger and did not change polarity with the rotation of the mesh (see Figure 3), demonstrating that this was created due to things other than the mesh. As it is the dominant component, it is the focus of our analysis in the rest of the paper, as far as the dipolar field is concerned.

The evolution of E_φ during the transient in one of the simulations is shown in Figure 4. The features that were introduced at the zeroth iteration (left; green arrows), created at the initial state, largely remain in the simulation even after 100 iterations (as shown in the right panel). In this case, the reason the initial state had a nonzero E-field is because the initial velocity profile came from a piecewise linear fit of Parker’s wind solution, while the initial B-field came from a potential field source surface (PFSS) solution, and these two were not parallel. Furthermore, an additional E_φ contribution coming from the BC
develops around the inner boundary during the iterative process toward steady state, as highlighted in the right panel of Figure 4 with blue arrows. What is shown in Figure 4 already indicates two possible strategies for reducing the artificial E-field, namely by (1) ensuring that the initial state is completely E-field-free (set $V_0 \times B_{PSS} = 0$) and (2) adjusting the inner BC to produce a minimum contribution to the E-field.

3.2. Comparing Large E and Low E BC Formulations

While the fact that the E-field exists and evolves in the simulations has been shown, what it actually means for the steady-state solution has not yet been demonstrated. Whether or not some E-field exists at the initial state depends heavily on the solver, and it is an issue that can be easily fixed in most cases. Therefore, this aspect is not discussed further. Instead, focus will be placed on the formulation of the inner BC.

In this subsection, we will consider two separate cases. The simulation that was shown in the previous paragraphs, with the BC producing the E-field, is the first case, indicated here as the “large E” simulation. The BC used here was taken from the code Wind-Predict (Réville et al. 2015; Perri et al. 2018) and is one of the standard formulations for global coronal models. In
Herein, the value of 1935.07 m s\(^{-1}\) are the radial, azimuthal, and poloidal velocities on the boundary where the \(B_x\) and azimuthal components of the magnetic field were set according to the PFSS solution, originally expressed in Cartesian coordinates:

\[
B_{r,b} = \frac{x_b}{r_b} B_{r,PFSS} + \frac{y_b}{r_b} B_{\theta,PFSS} + \frac{z_b}{r_b} B_{z,PFSS},
\]

\[
B_{\theta,b} = \frac{x_b z_b}{\rho_b r_b} B_{r,PFSS} + \frac{y_b z_b}{\rho_b r_b} B_{\theta,PFSS} - \frac{\rho_b}{r_b} B_{z,PFSS},
\]

where the \(b\) subscript refers to the boundary location, and, in the instances of coordinate transforms, \(\rho_b\) represents \(\sqrt{x_b^2 + y_b^2}\). Then, the velocity condition is formulated such that the poloidal flux is removed. Thus, with

\[
V_{r,b} = \frac{1935.07}{(B_{\text{ref}} / \sqrt{\mu_0 \rho_{\text{ref}}})}, \quad B_{\text{pol}} = \sqrt{B_{r,b}^2 + B_{\theta,b}^2},
\]

\[
\text{and} \quad V_{\|} = V_{r,b} \frac{B_{r,b}}{B_{\text{pol}}},
\]

the radial, azimuthal, and poloidal velocities on the boundary are

\[
V_{r,b} = V_{\|} B_{r,b}, \quad V_{\theta,b} = V_{\|} B_{\theta,b}, \quad \text{and} \quad V_{\phi,b} = 0.
\]

The observed velocity patches in the equatorial regions are due to magnetic reconnection. The expected profile of the magnetic field lines around a solar dipole with an outflow can be found, for example, in Pneuman & Kopp (1971). While most of the magnetic field lines remain open, depending on the magnetic field strength, there is a magnetic reconnection forming a current sheet at distances of 1–3 \(R_\odot\) in the equatorial region. This collimated sheet then propagates throughout the heliosphere. In our simulations, however, we see an additional reconnection in this current sheet.

Due to the finite discretization and the presence of some unavoidable artificial diffusion, when the current sheet reaches a certain minimum thickness, it reconnects, creating an “X-point” in the \(B\)-field lines, opening these lines up behind it. Where exactly (and if) this happens depends on a variety of factors, such as the BCs, the \(B\)-field strength, and the grid
How the flow field responds to this X-point is the cause of the qualitative differences in the velocity profiles in Figure 5. In the “large E" case, the velocity field does not follow the magnetic field lines well. Thus, even though the B-field changes topology, the velocity profile remains more or less undisturbed as it propagates outward. As a result, the magnetic reconnection does not show in the final velocity field. For the “low E" run, this is not the case, as here the velocity field follows the magnetic field, so it also responds to the change in its topology. This can be more clearly seen in Figure 6, where the edge of the domain is plotted with \(V_x \) in the background and with the B-field lines plotted on the top. Behind the X-point, the B-field lines start to open up.

This showcased “ballooning” of the streamers due to numerical diffusion is not physical, though it might be stabilizing for most simulations. However, it can present problems later on, when, for example, determining magnetic connectivity: if we trace a magnetic field line from the Earth (or another point of interest in the heliosphere) back to the Sun, it could get trapped in this diverging region instead of finding its way to the solar surface and the corresponding photospheric features. In addition, if we project this \(B_z \) on the outer surface, in the regions where the current sheet started to diverge, the sign of the \(B_z \) field might be incorrect. Additional postprocessing of CFD results might be required to avoid these problems when coupling to heliospheric codes as a result.

The more diffused profile of the “large E" case, especially around the central region, is shown better as a close-up in Figure 7. Considering that the two simulations use exactly the same grid, and none of them uses a flux limiter (which would include excessive numerical dissipation), minimizing the E-field leads to a substantial improvement in the resolution of the features. This difference can mean that perhaps a coarser grid could be used in production runs while achieving the same accuracy, which would save computational resources.

In order to visualize how much the E-field has changed between the two cases via the adjustment of the inner BC, in Figure 8, the \(E_x \) is shown. The color bar of each subplot is adjusted to show the main features.

Some regions of a locally larger E-field are still observed in the “low E" case, mainly following the mesh on the surface. Despite that, the E-field is everywhere in the domain at least 50 times smaller than the E-field of the simulation without the adjusted BC (right). For the improved case, in the domain, the E-field follows the structure of the streamers, which is where it is most difficult for the velocity and magnetic fields to align. In the other case, the E-field structure in the domain is mostly spherical, since it is mostly the inner spherical BC generating it.

The sharpness and magnitude of the velocity field are, however, not the only aspects that were found to change significantly through the reduction of the E-field. It was also found that the density and pressure profiles (and thus also the derived temperature profile) were different both qualitatively and quantitatively. Before the adjustment, the temperature (here computed as the ratio of the nondimensional pressure and density) was enhanced in the regions of strong magnetic field, i.e., around the poles for the case of a dipole; see the right panel of Figure 9. After the adjustment, the temperature was instead following the streamers around the equatorial regions (see the left panel of the same figure).

The density profile was also found to be more pronounced for the “low E" simulations; see Figure 10. This might significantly aid the accuracy of procedures such as white-light imaging, where the density is the parameter to be integrated along the line of sight.

Lastly, convergence impacts should be discussed, as computational speed is, next to physical accuracy, a crucial feature of global coronal modeling and any space weather
simulation in general. In general, with the new formulation, the steady dipole case required two to three times more iterations in order to reach the same final residual. As we are mostly interested in realistic magnetic map–driven applications, however, a worse convergence of the dipole case is of relatively little importance. When running a variety of real magnetic map–based cases as discussed in Kuzma et al. (2022), it was observed that the adjusted BC led to easier convergence when using maps, especially those of the higher l_{max}. For a constant CFL of 2 for the 2008 eclipse used later in this paper, the convergence is compared for the two inner BC formulations in terms of a V_x residual in Figure 11. After the initial jump in the residual, the two simulations converge to the same residual of $−4$ after roughly the same number of iterations. The initial larger residuals in the run with the adjusted inner BC are due to the changing B_θ, as it is released from the PFSS solution value.

3.3. Presence of the X-point and Current Sheet Stability

Before moving into further investigation of the BCs, the issue of the presence of the X-point in our CFD simulations, as mentioned in the discussion of Figure 5, should be addressed. It is also important to discuss this phenomenon because it provides a context for the analysis of the outer BC formulations, mentioned later on in the paper.
The (additional) reconnection of the B-field lines that we have observed is also normal in other numerical codes, not just COCONUT (e.g., see the comparison between our code and Wind-Predict in Perri et al. 2022, where the same behavior is observed in the solution of Wind-Predict). As found during our numerical experiments, beyond the BCs and the limiter, it is mostly dependent on the grid resolution; with increasing resolution, the reconnection point occurs further away from the Sun. Table 1 shows the location of this reconnection point (in terms of solar radii) for four different grids.

1. The coarse/coarse 300,000 grid: 5120 surface elements, 65 radial steps.
2. The coarse/fine 980,000 grid: 5120 surface elements, 192 radial steps.
3. The fine/coarse 1.3 million grid: 20,480 surface elements, 65 radial steps.
4. The fine/fine 3.9 million grid: 20,480 surface elements, 192 radial steps.

In Table 1, levels are used in order to express the longitudinal/latitudinal discretization. Level 5 refers to the fifth-level subdivision of the elementary icosahedron from which the mesh is derived with 5120 surface elements. Level 6 refers to the sixth-level subdivision with 20,480 surface elements.

Figure 9. Temperature distribution (here expressed simply as a ratio of pressure and density) of the steady dipole as resolved in the “low E” (left) and “large E” (right) cases.

Figure 10. Logarithmic density profiles of the “low E” (left) and “large E” (right) simulations.
By simply refining the domain (without any changes to the physics of the simulation), from Table 1, it can be observed that the X-point moves almost twice the distance away from the solar surface. Thus, it can be inferred that the reconnection occurs mainly due to the finite discretization, with its location depending on the amount of numerical diffusion in the domain.

In addition, it was found that the behavior and shape of the current sheet (and thus also the location of the reconnection point) also depend on the amount of the B-field divergence in the flow field. By default, in our simulations, for the B-field divergence cleaning constant, we use a value of 1, leading to the amount of divergence of B to be on the order of -4 to -5 (nondimensional). With lower values of the cleaning constant, it was observed that the amount of divergence of the B-field decreased; see Figure 12, where the logarithm of the absolute value of $\nabla \cdot B$ (nondimensional) is shown. The BC treatment for ϕ (homogeneous Neumann or Dirichlet) on

![Figure 11. Comparison of the convergence in the V_x component between the two eclipse cases computed with and without an E-field generating boundary.](image)

![Figure 12. The amount of $\nabla \cdot B$ in the numerical solution, depending on the selection of the divergence cleaning constant (1 on the left, 0.4 on the right), is shown in terms of the logarithm of the absolute value of $\nabla \cdot B$ (nondimensional).](image)

Table 1
The Position of the Reconnection Point in the Domain for a Steady Dipole (in Terms of Solar Radii) as a Function of Mesh Resolution

No. of Cells (millions)	Lat./Long.	Radial	X-point (solar radii)
0.3	Level 5	Coarse	7.2
1.0	Level 5	Fine	8.4
1.3	Level 6	Coarse	8.1
3.9	Level 6	Fine	13.3

The Astrophysical Journal Supplement Series, 263:18 (23pp), 2022 November
shows that once the unstable oscillation is activated, the current sheet stops being continuous and forms mass lumps that are ejected outward.

However, decreasing the value of the cleaning constant below a certain threshold destabilizes the simulation. The particular value that causes this most likely depends on the specific scheme, the mesh, and the BCs; in our case, it is around a value of 0.3. The simulation reaches a certain minimum residual, following which the residual increases again and starts to oscillate indefinitely. What this means for the simulation is that the current sheet becomes unstable. The reconnection region starts to move forward and backward between iterations (on the current mesh, generally oscillating between 5 and 10 \(R_S \)), creating lumps of mass that are ejected outward. To illustrate this, the projection of the radial velocity on the outer surface (where the passing lumps are the most visible) is shown in Figure 13. We should note that this kind of unstable structure is actually visible in the observations of the solar wind, although they appear for more physical reasons outlined earlier, such as coupling to EUHFORIA or magnetic connectivity studies. It is thus important to lower the amount of numerical diffusion as much as computationally feasible and move this reconnection point as close to the outer boundary as we can, which can, to some extent, be realized through the outer BCs.

The projection of \(V_r \) in meters per second on the outer surface of the domain before (left) and during (right) the unstable current sheet residual oscillation shows that once the unstable oscillation is activated, the current sheet stops being continuous and forms mass lumps that are ejected outward.

Figure 13. The projection of \(V_r \) in meters per second on the outer surface of the domain before (left) and during (right) the unstable current sheet residual oscillation.

\[\nabla \cdot B \]

\[B_x, B_y, B_z, V_x, V_y, V_z, p, \phi \]
extended via either zero gradient (the ghost state being equal to the inner state, where the distances of the inner cell center and the ghost cell center to the boundary are equal), a function of radius or density, or both. The formulations of the specific functions for the velocity and magnetic field were taken (apart from the last expression in Equation (26)) from Talpeau et al. (2022). The following expressions for density

\[\rho = \text{cst. or } \rho r^2 = \text{cst. or } \rho r^3 = \text{cst.} \]

velocity

\[V_r = \text{cst. } V_\theta = \text{cst. } V_\varphi = \text{cst.} \]

magnetic field

\[B_r = \text{cst. } B_\theta = \text{cst. } B_\varphi = \text{cst.} \]

were combined into nine different cases, as summarized in Table 2. In the Table, “G” refers to the ghost state, “I” to the inner state, and “B” to the location on the boundary. To achieve continuity in temperature, the pressure was extrapolated in the same way as the density. The magnetic configuration was again dipolar for easier evaluation. All of these cases were simulated with the same CFL law (starting from 2 with the CFL doubling every few hundred iterations up to 128) for controlling the convergence to steady state, making comparisons between them possible.

For each simulation, the \(V_r \) profiles were compared, as well as the maximum \(V_r \) value and the location of the X-point in the \(B \)-field lines, since its location generally directly corresponded to the divergence of the field lines near the outer boundary. The evaluation of the exact location of the X-point has an uncertainty of approximately \(\pm 0.05 R_s \), since it was determined by eye inspection of the solution in visualization software. In addition, the total time of each simulation required to reach the \(V_s \) residual of \(-10\) was also measured to compare the convergence. The results for the nine cases are given in Table 3.

From observing the convergence alone, it can be quickly concluded that the divergence cleaning parameter \(\phi \) must be set to zero via the Dirichlet BC instead of being extrapolated via zero gradient, given that the fifth simulation never converged. The results presented in Table 3 were taken at the \(V_s \) residual of roughly \(-2.5\). It was further tested to see which Dirichlet formulation is better—setting \(\phi_g = 0 \) or \(\phi_b = 0 \)—but both led to roughly the same convergence and solution, with the former giving a slightly larger divergence of the \(B \)-field lines near the outer boundary. The convergence of the other cases, in terms of the computational resources needed, was almost the same.

According to the results in Table 3, if we consider the other two evaluated parameters alone (the maximum \(V_r \) and the location of the X-point), the following points can be further raised.

1. From comparing cases 3 and 4 and 6 and 7. Whether we extrapolate \(B_\varphi \) via zero gradient or radius is of no consequence (at least for the nonrotating dipole, where \(B_\varphi \) is negligible).
2. From comparing cases 7 and 8 and 8 and 9. The \(B_r \) should be extended via a function of radius (here \(r^{-2} \)) instead of a zero gradient (this will be revisited in the subsection below).
3. From comparing cases 2 and 8 and 4 and 6. Whether we extrapolate \(V \) via zero gradient or the given laws is of barely any consequence.
Figure 14. Comparison of logarithms of different distance functions (inverse cubic in red, inverse square in green, and inverse 2.5 power-law profile in blue) with the behavior of the logarithm of the nondimensional density vs. the distance from the Sun (in solar radii). The profiles were designed to intersect at 21.5 \(R_\odot \) to allow for slope analysis.

4. From comparing cases 1 and 2. The density (and pressure) should be extrapolated as a function of radius (here \(r^{-2} \)).

5. From comparing cases 6 and 9. The density (and pressure) extended via \(r^{-3} \) give lower maximum speeds.

Obviously, simply observing the location of the X-point alone is insufficient to justify the variable prescription to make the case physical. Nevertheless, these results are a good indication of which condition the behavior of the solution is very sensitive to and which it is not. Especially the extrapolation of the radial magnetic field component seem to have a profound effect on the magnetic field line topology, judging from the shifting of the reconnection location. In addition, the formulation of the extrapolation of density also affects the maximum speeds in the domain. Thus, these two aspects will be elaborated on in more detail in the following subsections.

4.2. Density Profile Analysis

While Table 3 indicates that the density extrapolation affects the maximum speed in the domain, it is still not clear whether a more physically accurate result is given by the inverse square, inverse cube, or perhaps some other law. Most of the available coronal models use the inverse square extension (see, for example, Talpeau et al. 2022), as this represents a flow that is expanding spherically with a uniform radial speed. However, from the \(V_r \) contours shown in, for example, Figure 5, it is apparent that the flow is still accelerating near the outer boundary, making the uniform-flow assumption incorrect. In addition, it will be shown later that in some regions of the domain of data-driven cases, the flow is expanding superradially. For these reasons, a steeper descent of \(\rho \) could be expected.

In order to determine which formulation is more accurate, an extended grid analysis was performed, where the computational domain radius was set to 30 \(R_\odot \), and the cells around 21.5 \(R_\odot \) were more refined radially to capture the local gradients better. This way, the outer BC was relatively far away from this region; thus, the undisturbed density profile at 21.5 \(R_\odot \), that would exist at this location without the presence of the boundary could be investigated. The setup was otherwise equivalent to case 9 from the parametric study described above.

Initially, the \(1/r^2 \) and \(1/r^3 \) profiles were compared to the nondimensional density. For easier comparison of the local slopes, the logarithms of the profiles were used for the analysis. These logarithms were plotted around the region of interest at 21.5 \(R_\odot \), where they were made to intersect with the logarithmic nondimensional density profile as extracted from the CFD solution. The results are shown in Figure 14, where the green profile is the inverse square distance function, and the red profile is the inverse cubic distance function.

It was observed that the actual CFD density slope lay roughly in the middle between the inverse cube and inverse squared profiles, and thus also a new profile, the function of \(1/r^{-2.5} \) was added, shown as the blue line in Figure 14. It can be easily concluded that this profile matches the density slope at the given radius almost perfectly. With this power law used as the outer BC for density, the maximum radial velocity reached for the steady dipole (now again modeled in the 21.5 \(R_\odot \) domain) is 2.82E+05 m s\(^{-1}\), considering the same resolution as used for the cases in Table 2.

4.3. Magnetic Field Analysis

The same analysis was performed on the magnetic field BC. For a flow that is not expanding superradially, the magnitude of \(B_r \) should be roughly decreasing with \(r \). Capturing the correct gradient of \(B_r \) is important, as it also strongly affects how \(B_\theta \) and \(B_\phi \) are resolved. To demonstrate the difference that the extrapolation of \(B_r \) alone causes, we compare \(B_r \) and \(B_\theta \) between cases 2 and 3 from Table 2 by evaluating the differences \(B_{r,\text{diff}} = B_{r,2} - B_{r,3} \) and \(B_{\theta,\text{diff}} = B_{\theta,2} - B_{\theta,3} \) in Figure 15. From this figure, two observations can be made. First, as a result of the outer BC formulation, \(B_r \) changes not only near the boundary but also inside of the domain. Second, it is apparent that \(B_\theta \) also changes as a result of the \(B_r \) extrapolation, despite the fact that the condition for \(B_\theta \) remained unchanged.

The consequences this has on the flow field and topology can be easily visualized when comparing the resulting magnetic field lines in Figure 16. One of the field lines from case 2 is outlined in red and then projected onto the domain of case 3, where it is compared to a case 3 field line in blue that starts at the same point on the boundary. This illustrates that the field lines of case 3 are less divergent, especially close to the outer edge.

The fact that the outer BC affects the magnetic topology so extensively even inside of the domain is concerning, especially since we cannot always ensure that there are no regions where the flow would expand superradially (as will be shown later in a magnetogram-driven case).

4.4. A BC-independent Grid?

As shown in the previous two sections, correct formulations of the BCs are not always straightforward and can affect the flow in the entire domain. Especially for cases where the BC formulations cannot be formulated universally, it would be useful to have additional tools to reduce the extrapolation error.
The larger the region of extrapolation (the ghost cell), the larger the extrapolation errors are, which can then also considerably spoil the solution in the rest of the domain. In the original grid that has been used so far, the last cell has a radial size of roughly $1 \, R_e$, meaning that the center of the ghost cell is $0.5 \, R_e$ away from the boundary. If the last grid cell is made even larger, the effects become even more pronounced. Inverting this logic, with a very small edge cell, the ghost cell center is also very close to the boundary; thus, the extrapolation errors should be limited.

Moreover, the results on the outer boundary are very important from the perspective of coupling and transferring the CFD results to other software. Thus, not knowing how much of an effect the BC formulation can have on these results (at least locally), we no longer deem it safe to apply these BCs exactly at the location from which the solution is to be read. It would thus be better practice to extend the domain beyond the coupling location of $21.5 \, R_{\odot}$ to make sure that the solution at the coupling location is not significantly affected in case the BC formulation is inadequate.

Figure 15. Differences $B_{r,diff} = B_{r,2} - B_{r,3}$ (left) and $B_{\theta,diff} = B_{\theta,2} - B_{\theta,3}$ (right) between cases 2 and 3 as a result of using different B_r extrapolations.

Figure 16. Comparison of the shape of the “ballooning” current sheet of cases 2 and 3 as a result of a different B_r formulation. For easier comparison, the red line following a case 2 B-field line (left) is projected onto the case 3 flow field (right), where the same line (starting and ending at the same point on the boundary) is followed in blue.
For this reason, an experimental grid was set up, which extends up to 25 R_\odot and has a very small cell on the outer edge to demonstrate that the extrapolation error depends on the extrapolation distance. With this new grid, cases 1 and 9 (i.e., the cases with arguably the largest differences between them in outer BC formulations) were rerun and compared. The new mesh is shown in Figure 17, along with the 21.5 R_\odot location and the boundary detail.

For both grids (the original and the new one), the relative differences (in absolute scale) in V_r between the two cases were evaluated. These relative differences are plotted in Figure 18, on the left for the original grid and the right for the new grid. Once again, we can see that on the former mesh with the large ghost cell (on the left), the outer BC formulation affects the solution even very close to the Sun. The differences with the new mesh are not even properly visible with the color scale.

Figure 18. Relative difference in V_r, (in the absolute sense) between cases 1 and 9 with the ordinary (left) and new (right) mesh. Before, the differences in the formulation of the BC between cases 1 and 9 led to relatively large differences in the velocity profile. With the improved mesh with smaller extrapolation effects, this is no longer the case.
adjusted for the old grid, as they are 10–100 times smaller in magnitude everywhere in the domain. Clearly, with this new mesh design with a small ghost cell, the relative differences between the cases due to different extrapolation formulations are much lower. In Figure 19, we can also see that with the new mesh design, the artificial divergence of the magnetic field lines near the outer boundary decreased.

It should be noted that this grid was designed in this way to merely demonstrate the effects of the size of the ghost cell. The fact that the last cell is so much smaller than the neighboring cell, with such a large aspect ratio difference, could, in practice, cause problems with convergence. If that happens, a more gradual decrease in cell size near the outer boundary might be required at the cost of having to include more cells and thus increasing the computational demands. In our case, however, with this grid, we have so far not observed any convergence problems even when resolving solar maxima, nor we have noticed any significant reduction in the computation speed.

The abovementioned analysis of the inner and outer BCs considered a dipolar case only. To see how well the results of this analysis hold for a real case, the same analysis was repeated on a magnetogram-driven simulation.

5. Application to a Magnetic Map–Driven Simulation

Having analyzed BC formulations on a simple dipole simulation, it is essential to also look at realistic magnetic map–driven simulations, as these are the main intended applications for global coronal modeling. To this end, the solar eclipse from 2008 was investigated, the magnetic map of which (in combination with the PFSS solution for B_0) is shown in Figure 20. The magnetic map used was an MDI map with an l_{max} of 25 (Scherrer et al. 1995). The projections used are the same as for the dipole, where a vertical cut (at $y = 0$ in the Cartesian system) was made. This projection is preferred unless observational comparisons must be made, since from the previous analysis of the dipole, in this configuration, it is already known where the mesh artifacts are located.

First, let us observe the effects of the inner BCs and the artificial E-field. Exactly as for the dipole, “low E” and “large E” simulations were run.

Similar to the dipolar results shown previously, these adjustments to the BC allowed the simulation to arrive at a result with a much lower E-field (locally at least 20 times lower everywhere in the domain) compared to the original “large E” BC defined in Equations (22)–(24); see Figure 21. This directly translated into a very different temperature profile, see Figure 22, which was similar to the case of the dipole.

These two results were compared to the 2008 eclipse observations by M. Druckmüller, P. Aniol, and V. Rušín in Figure 23. In an ideal-case scenario, we could employ techniques such as white-light imaging to compare our results to the photos of the corona. However, since at this stage, we are still working with a polytropic model without any additional heating terms, the magnetic field is a much more reliable indicator of simulation accuracy compared to the density (which is required for white-light imaging). To perform this comparison using the magnetic field with as much objectivity as possible, we adopt the approach of Wagner et al. (2022), where we focus on the resolution of streamers as the decisive factor. This is because of the fact that in the future, it is expected that these simulations will also be used to compute the evolution of flux ropes (which will be seeded on the inner boundary) for modeling of CMEs, as well as the propagation of the solar energetic particles. Both of these aspects are essential elements for space weather forecasting and heavily depend on the resolution of the background coronal dynamics, such as streamers.

Figure 19. Demonstration of how the new grid design (right) with a small ghost cell can help prevent excessive opening of the streamers observed with the original grid (left) with the same outer BCs.
In Figure 23, the first row shows the radial velocity contours in the background and the magnetic field lines plotted on top of them, which were initiated randomly but in the same places for both simulations. The “low E” simulation is on the right, while the “large E” is on the left. In the second, third, and fourth rows of the figure, we can see the comparison of the angle of the main streamer, the extent of the streamer, and the size of the streamers, respectively. These aspects as determined from the observation are indicated in red, and for each simulation result, the corresponding aspects are indicated in pale blue in the respective subfigures. The size of the streamers was determined at $1.3 \, R_\odot$ with an offset from the surface, just like in the case of Wagner et al. (2022). This offset was used due to the fact that the size of the streamers too close to the surface is mostly dependent on the magnetogram type and its resolution, while further away, the determination of the size from the observation becomes more and more difficult.

The biggest difference between the two models is already observable from the first row. It is the fact that, in the case with the large electric field (on the left side of the figure), the B-field lines are closed and round and do not copy the observed sharp streamers well. As a result, for example, the SE feature in the case of the “large E” seems to only consist of closed field lines, rather than forming a sheet surrounded by open field lines as shown in the observations. The same holds for the dominant western feature. Apart from the upper western feature, the new BC can also better reproduce the angle of the streamers (second row). This result also better matches the extent of the streamers.
logarithm of the absolute value of \(B_r \) was determined by the magnetic field from the MHD equations, which can be seen that setting the initial state and the inner boundary conditions allows for the generation of artificial field lines. We have examined the \(B_r \) profile along one such streamer, the lower left high-intensity streamer of the 2008 map. In this analysis, the corrected, extended, small ghost cell grid was used for the map simulation; thus, the slope at 21.5 \(R_\odot \) should not be heavily affected by the presence and formulation of the outer BCs. The cut and corresponding \(B_r \) profile are shown in Figure 25. Here, to determine the center of the streamer along which the \(B_r \) profile was extracted, the logarithm of the absolute value of \(B_r \) is shown in the background of the contour plot. The location of the smallest \(\log_{10}(B_r) \) corresponds to the location of the current sheet, as was determined by the magnetic field lines.

Figure 25 shows that along this streamer, \(B_r \) no longer follows the inverse squared profile but decreases much more steeply. Actually, the slope, as shown from the fitting curve, lies somewhere between the third and fourth inverse power. In the case of the dipole, prescribing the descent of \(B_r \) with a smaller power resulted in the streamers opening up more than in the case of an accurate prescription. In this case, we see the same effect, with the difference that here, even the \(1/r^2 \) law is insufficiently steep. This is, however, only limited to the region of the streamer.

Thus, having a grid that limits the effect that the extrapolation can have on the \(B \)-field topology, such as the grid introduced in the previous section, is truly an advantage. To demonstrate the effects of the grid alone, the 2008 map results on an ordinary grid with the \(r^{-2} \) extrapolation were compared to the 2008 map results for the improved grid with small ghost cells, also using the \(r^{-2} \) extrapolation. The magnetic field lines (along with the absolute value of \(B_0 \)) are shown in Figure 26, where the most prominent, lower left streamer is shown.

It is clear that the extrapolation error with the original grid leads to excessive divergence of the streamlines near the boundary due to the insufficient extrapolation power. The same locally incorrect BC with the improved grid, however, does not show this excessive divergence, as the angle of the \(B \)-field lines does not change near the boundary.

In summary, from the magnetic map–based application, it can be seen that setting the initial state and the inner boundary to produce no electric field leads to quantitatively and qualitatively different solutions, with more physical temperature profiles, sharper streamers, and a better reproduction of the observational data. Using a grid that limits the errors due to extrapolation on the outer boundary, on the other hand, prevents excessive divergence of the streamers without the need to locally modify the extrapolation laws.

6. Conclusions and Recommendations

In this study, we have focused on the numerical aspects of global coronal modeling. We started with the inner BC, which we got through an analysis of the ideal MHD formulation compared to the full multifluid MHD. Due to the removal of the magnitude of the \(E \)-field from the MHD equations, which in practice represents how well the magnetic and velocity structures are aligned and focused, the ideal MHD equations can lead to qualitatively and quantitatively very different results simply depending on the initial state and BC formulations. It is thus important to monitor the \(E \)-field in the simulations and aim to reduce the amount of it generated artificially. Two different
techniques to avoid excessive E-field were discussed in this paper: (i) ensuring that the simulation is initiated from a completely E-field free state and (ii) adjusting the inner BC to prevent the generation of the E-field on the inner surface.

Here the two types of simulation cases were compared: one with a large electric field in the domain and one with a low electric field. It was shown that the artificially generated E-field leads to streamers being resolved less accurately on the same grid. Furthermore, it was also found that the resulting temperature profile had a fundamentally different shape when the E-field was minimized compared to the simulation with the spurious E-field-generating BC. The new temperature profile followed the structures of the streamers instead of the magnetically enhanced regions.

Briefly, we have also discussed the problem of additional reconnection in the domain due to numerical diffusion. We have shown that the location of the region where this happens depends on the refinement of the grid and the amount of magnetic field divergence in the domain.

Next, the outer BCs were discussed. Since many formulations are now in use in which the variables are extrapolated to the ghost cells or onto the outer boundary, a parametric study was conducted to study the effects of these formulations in a systematic way. Nine different cases were compiled, where the BC formulations were varied for the velocity, magnetic field, pressure, density, and divergence cleaning parameter. Several conclusions were reached from this study, with some of the most notable being that:

1. the divergence cleaning parameter needs a zero Dirichlet outer BC for the simulation to converge;
2. as long as the divergence cleaning parameter is set through a zero Dirichlet condition, the convergence performance of the other cases with varying outer BC formulations was almost the same; and

Figure 23. Comparison of the results of the 2008 simulation with “low E” (right) and “large E” (left) setups with the observations using the framework by Wagner et al. (2022).
3. the aspects that seem to affect the solution the most are the extrapolation formulations of density and the radial B_r field component.

Afterward, the extrapolation of ρ and B_r was investigated in more detail. This was done through running an extended-domain simulation up to $30 R_\odot$, such that the undisturbed profiles of these variables at the intended boundary, at $21.5 R_\odot$, could be studied. It was found that at this distance, the density decreases roughly with $r^{-2.5}$ for our conditions, and that the formulation of the B_r outer BC can affect the magnetic field topology in the entire rest of the domain, which can be problematic in case we locally obtain superradially expanding flow. To further limit outer BC extrapolation errors beyond their careful formulation, an additional technique was presented: a new grid design. This design has very small cells in the outermost radial layer, such that the ghost cells are also very small and very close to the boundary. In this fashion, the extrapolation errors due to the BC formulation are limited, as the magnitude of the extrapolation errors depends on the extrapolation distance. In addition, this grid extends beyond $21.5 R_\odot$, which is the location from which the CFD solution should be transferred to another (heliospheric) code, to $25 R_\odot$.

Thanks to this extension, even if there are still some effects due...
...to inaccurate outer boundaries, they are not likely to affect the solution that is used as an input to other codes.

Finally, all of the proposed adjustments were studied in the real magnetic map case of the 2008 eclipse in order to allow for directly comparing our numerical results with observed coronal structures. Using the new inner BC, the \(E\)-field in the solution was found to be reduced by more than 20 times and thus allowed for a much sharper resolution of the coronal features on the same mesh. The agreement between adjusted, sharper coronal features and observational data increased significantly. The \(B\)_\text{r} profile analysis was repeated, not in a quiet region as before but along one of the streamers in the solution on the larger grid with a small ghost cell. Along this streamer, the \(B\)_\text{r} profile became much steeper compared to the quiet regions, and extrapolations with power laws of \(-3\) to \(-4\) would have to be applied locally, as the extrapolation through the inverse square law led to excessive streamline divergence on the ordinary grid. This divergence was, however, prevented when the new grid type was used instead.

Much work is still required to develop a highly accurate and computationally efficient global coronal model that could work effortlessly on arbitrary real-time data. A number of different models are currently in development globally, experimenting with a variety of numerical schemes, geometries, grids, and MHD formulations, trying to push forward the frontier of the current state of the art. As we have noticed, however, many times it is the small details in the numerical settings, such as a specific BC formulation, that can drastically improve the performance or resolution of the model. For that reason, it is very important to keep paying attention to these small details and their effects and to share these observations with the community if possible. In future work, we hope to further investigate the behavior of ideal MHD CFD for global coronal modeling from the numerical perspective, for example, focusing on topics such as determining the minimum required spatial resolution or the effects of using different types of magnetic maps and map-smoothing functions. Once the solver is optimized to run with reasonable accuracy and reliability, we aim to replace the steady-state magnetic maps with time-dependent simulations and flux rope injections. In addition, we also aim to develop a multifluid version that will resolve ions, electrons, and neutrals as separate fluids.

The authors want to thank Fan Zhang for collaboration and constructive comments and insights. This work has been granted by the AFSOR basic research initiative project FA9550-18-1-0093. This project has also received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 870405 (EUHFORIA 2.0) and the ESA project “Heliospheric modeling techniques” (contract No. 400013080/20/NL/CRS). These results were also obtained in the framework of the projects C14/19/089 (C1 project Internal Funds KU Leuven), G.0D07.19N (FWO-Vlaanderen), SIDC Data Exploitation (ESA Prodex-12), and Belspo project B2/191/P1/SWIM. The resources and services used in this work were provided by the VSC (Flemish Supercomputer Centre), funded by the Research Foundation—Flanders (FWO) and the Flemish Government. SOHO is a project of international cooperation between ESA and NASA.

Software: COOLFluiD (Kimpe et al. 2005; Lani et al. 2006, 2013; https://github.com/andreulani/COOLFluiD/wiki).

ORCID iDs

Michaela Brchnelova @ https://orcid.org/0000-0003-0874-2669
Blážej Kužma @ https://orcid.org/0000-0001-9438-9333
Barbara Perri @ https://orcid.org/0000-0002-2137-2896
Andrea Lani @ https://orcid.org/0000-0003-4017-215X
Stefaan Poedts @ https://orcid.org/0000-0002-1743-0651
References

Alonso Asensio, I., Alvarez Laguna, A., Aissa, M. H., et al. 2019, CoPhC, 239, 16
Ben Ameur, F., & Lani, A. 2021, CoPhC, 261, 107700
Brchnelova, M., Zhang, F., Perri, B., Lani, A., & Poedts, S. 2022, JIPhPh, 88, 905880205
Contopoulos, I., Kalapotharakos, C., & Kalapotharakos, M. K. 2011, SoPh, 269, 351
Kaghashvili, E. 2012, JGRA, 117, A10103
Kimpe, D., Lani, A., Quintino, T., Poedts, S., & Vandewalle, S. 2005, in Recent Advances in Parallel Virtual Machine and Message Passing Interface, ed. D. K. B Di Martino & J. J Dongarra (Berlin: Springer), 520
Kislov, R. A. 2022, Univ, 8, 152
Kuzma, B., Poedts, S., Lani, A., et al. 2022, ApJ, submitted
Lani, A., Mena, J. G., & Deconick, H. 2011, in 20th AIAA CFD Conf. (Reston, VA: AIAA), AIAA–2011–3546
Lani, A., Quintino, T., Kimpe, D., et al. 2006, Sci. Progr., 14, 393058
Lani, A., Villedieu, N., Bensassi, K., et al. 2013, in 21st AIAA CFD Conf. (Reston, VA: AIAA), AIAA 2013–2589
Lani, A., Yalim, M. S., & S., P. 2014, CoPhC, 185, 2538
Linker, J. A., Mikić, Z., Biesecker, D. A., et al. 1999, JGR, 104, 9809
Lumme, E. 2016, PhD thesis, Univ of Helsinki
Meier, E. T., & Shumlak, U. 2012, PhPl, 19, 072508
Mikić, Z. E. A. 2018, NatAs, 2, 913
Perri, B., Brun, A. S., Réville, V., & Strugarek, A. 2018, JIPhPh, 84, 765840501
Perri, B., Leitner, P., Brchnelova, M., et al. 2022, ApJ, 936, 19
Pinto, E. F., & Rouillard, A. P. 2017, ApJ, 838, 89
Pneuman, G. W., & Kopp, R. A. 1971, SoPh, 18, 258
Poedts, S. E. A. 2020, JSWSC, 10, 57
Pomoell, J., & Poedts, S. 2018, JSWSC, 8, A35
Pomoell, J., Vainio, R., & Kissmann, R. 2011, ASTRA, 7, 387
Réville, V., Brun, A. S., Matt, S. P., Strugarek, A., & Pinto, R. F. 2015, ApJ, 798, 116
Réville, V. E. A 2020, ApJS, 246, 24
Samara, E., Pinto, R. F., Magdalenić, J., et al. 2021, A&A, 648, A35
Santos, P. D., & Lani, A. 2016, CoPhC, 202, 253
Scherrer, P. H., Bogart, R. S., Bush, R. I., et al. 1995, SoPh, 162, 129
Scolini, C., Rodriguez, L., Mierla, M., Pomoell, J., & Poedts, S. 2019, A&A, 626, A122
Scolini, C., Verbeke, C., Poedts, S., et al. 2018, SpWea, 16, 754
Sokolov, I. V., Zhao, L., & Gombosi, T. I. 2022, ApJ, 926, 102
Talpeanu, D. C., Poedts, S., ÕHuys, E., & Mierla, M. 2022, A&A, 658, A56
Usmanov, A. V. 1996, in AIP Conf. Proc. 382, Proc. of the Eighth Int. Solar Wind Conf.: Solar Wind Eight, ed. D. Winterhalter et al. (Melville, NY: AIP), 141
van der Holst, B., Sokolov, I. V., Meng, X., et al. 2014, ApJ, 782, 81
Vandenhoeck, R., & Lani, A. 2019, CoPhC, 242, 1
Wagner, A., Asvestari, E., Temmer, M., Heinemann, S. G., & Pomoell, J. 2022, A&A, 657, A117
Zank, G. P, Le Roux, J. A, Webb, G. M., Dosh, A., & Khabarova, O. 2014, ApJ, 797, 18
Zharkova, V., & Khabarova, O. 2015, AnGeo, 33, 457