Numerical analysis for AC losses in single-layer cables composed of rectangular superconducting strips with various lateral J_c distributions

Ryoji Inada, Yuichi Nakamura and Akio Oota

Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 4418580, Japan

E-mail: inada@eee.tut.ac.jp

Abstract. The critical current density (J_c) in the superconducting layer in the typical coated conductor is known to be not uniform along a lateral direction of its cross section. Non-uniformity of J_c values in a superconducting layer is the dominant factors of the AC loss characteristics together with its geometrical shape and arrangement in an actual power device. In this paper, we investigated the AC loss characteristics on the single-layer cable composed of thin rectangular superconducting strips with various lateral J_c distributions through the numerical analysis. In our analysis, several rectangular strips were arranged on a cylindrical former, in a parallel way to the conductor length. Numerical calculation of magnetic field distributions and loss values under AC current transmission were performed, by taking into account the locally-varying J_c values in a tape strand and geometrical factors of cables. The influence of non-uniformity of J_c values along a tape width on loss under AC current transmission in the cable conductors was discussed.

1. Introduction
Recently, the fabrication technologies of coated conductors are growing rapidly, as long sample length of several 100 meter class and high critical current density (J_c) of MA/cm2 class have become available [1–3]. However, it is experimentally confirmed that the J_c values in the superconducting layers in coated conductors are not uniform along a lateral direction of its cross section [4–6]. Since the magnetic field penetration inside the superconductor with large aspect ratio (AR) strongly depends on the J_c distribution along a width direction, AC losses of coated conductors are strongly influenced by the J_c distributions of them [6–9].

For the applications of coated conductors to AC power cables, they will be assembled into cylindrical shapes to obtain desired current capacity [1, 10]. The magnetic field penetration into each coated conductor inside the cable might be influenced not only by the geometrical factor of conductors [11, 12] but also by the non-uniformity of J_c values in strands. Therefore, it is important to examine the AC loss characteristics in cable conductors using thin strip superconductors with non-uniform J_c distributions, for developing cables with low loss values satisfying the practical demand. In this paper, we numerically studied the AC loss characteristics in single-layer cables using rectangular superconductor strips with various lateral J_c distributions along a lateral direction of a tape. The rectangular strips with AR $> 10^3$ and various lateral J_c distributions were used as the strand for assembling the single-layer cable models. Magnetic field distributions and loss values under AC
current transmission were numerically calculated, by taking into account the locally-varying \(J_c \) values in each tape strand and the arrangements of tape strands and geometrical factors of conductors. Based on the calculated results, the influence of non-uniformity of \(J_c \) values of each tape strand on the losses in single-layer cables was discussed.

2. Calculation procedure

The rectangular superconducting strip with its width \((w_{SC})\) of 5.0 mm and thickness \((t_{SC})\) of 2.0 \(\mu\)m was used as the strand for assembling the single-layer cables. The aspect ratio \(AR (= w_{SC}/t_{SC})\) of the tape section is 2500. The critical current \((I_{c})\) of the individual tape was fixed on 125 A, which corresponds to the average critical current density \(J_{c0} (= I_{c}/w_{SC}t_{SC})\) of 1.25 MA/cm\(^2\). As shown in figure 1, four kinds of lateral \(J_c \) distributions (uniform, peaking, trapezoidal and tilting \(J_c \) profiles) were assumed for the calculation. In addition, it was assumed that all tape strands in the cables have same \(J_c \) distributions. 16 pieces of strand were assembled into cylindrical shape and arranged in a parallel way to the conductor axis with the finite gap \(d_{gap}\) (0–1.0 mm) among the adjacent strands. The total \(I_c \) value of the cable is 2 kA. The specifications of single-layer cables are summarized in Table 1.

Magnetic field distributions and AC losses in the single-layer cable were numerically calculated, with taking into account the actual arrangements and the lateral \(J_c \) distributions of strands [7,12–14]. For the calculation, each rectangular strip inside the cable was regarded as the bundle of straight thin 80000 fibers with their cross sectional area \(dS\). The numbers of meshes along a width and a thickness direction of the strand cross section were set to 1600 and 50, respectively. Under the current amplitude \(I_0\) below \(I_c\), a fiber transports a current fragment \(dl = J_c(r)dS\) outside the current free region, while carrying no current inside the current free region. Here, \(J_c(r)\) represents the critical current density at the position \(r\) in the cross section of a rectangular strip. The origin is taken as an arbitrary

Figure 1. Assumed lateral \(J_c \) distributions of a rectangular strip used as a strand in a single-layer cable. The critical current \((I_c)\) of a strip is fixed to 125 A.

Table 1. Specifications of single-layer cable model used for analysis.

Strand	Width of a rectangular strip \(w_s\)	5.0 mm
	Thickness of a rectangular strip \(t_s\)	2.0 \(\mu\)m
	Aspect ratio (AR) of a strip cross section	2500
	Critical current \(I_c\)	125 A
	Average critical current density \(J_{c0} = I_c/w_{SC}t_{SC}\)	\(1.25 \times 10^{10}\) A/m\(^2\)

Single-layer cable	Number of strands \(N\)	16
	Critical current \(I_c\)	2000 A
	Gap between adjacent strands \(d_{gap}\)	0–1.0 mm
	Cable radius \(R\)	11.8–14.1 mm
position in the current free region in a specific strand in the cable. By regarding the cables as the bundle of straight superconductor tapes, the loss density \(Q_d(r) \) per-cycle in the observation point \(r \) in a specific strand in the cable can be expressed as \([7, 12\text{−}14]\)

\[
Q_d(r) = 4J_c(r)\Phi_{\text{total}}(r) = 4J_c(r)\Phi_{\text{self}}(r) + \Phi_{\text{other}}(r)
\]

(1)

Here, \(\Phi_{\text{total}}(r) \) is the total magnetic flux at peak current \(I_0 \) passing through between the current-free region and observation point \(r \), \(\Phi_{\text{self}}(r) \) and \(\Phi_{\text{other}}(r) \) are the magnetic flux at peak current \(I_0 \) generated by the specific strand own and by the other strands, respectively. The shape of current free region in each strand under \(I_0 < I_c \) is determined based on the fact that \(\Phi_{\text{total}}(r) \) shows the minimum at current free region in a tape strand \([7, 12, 13]\). The AC loss values per-unit length of the cable \(P_t \) (W/m) are obtained by integrating \(Q_d(r) \) over the whole part of superconductor region in the cable, so that it is expressed as follows:

\[
P_t = f \int_{\text{Cable}} Q_d(r) dS = 4f \int_{\text{Cable}} J_c(r)\Phi_{\text{self}}(r) + \Phi_{\text{other}}(r) dS
\]

(2)

where \(f \) is the frequency of sinusoidal transport current \(I(t) = I_0\sin(2\pi ft) \). By using equation (2), the \(P_t \) values in the single-layer cable were calculated as a function of the \(I_0 \) values below \(I_c \). In this paper, the \(f \) value was fixed to 50 Hz.

3. Results and discussion

Figure 2 shows the current amplitude dependence of loss values \((P_t) \) in single layer cables \((d_{\text{gap}} = 0.50 \text{ mm}) \) using rectangular superconducting strips with different lateral \(J_c \) distributions. Also shown are the analytical loss values of monoblock model for a solid superconducting cylinder with an outer diameter of 25.5 mm \((= w_S \times N) \) and a wall thickness of 2 \(\mu \text{m} \) \([11, 15]\). As can be seen, the \(P_t \) values for all cables are considerably larger than the analytical values for monoblock model. The deviation of the calculated results from the analytical values becomes remarkable with increasing the current amplitude \(I_0 \). This is mainly attributed to the polygonal cross sectional shapes for actual cables and the finite gaps between adjacent strands \([11, 12]\). In addition, it is also evident that the \(P_t \) values for cables are significantly influenced by the lateral \(J_c \) distributions in each strand. In case that each strand has peaking \(J_c \) distribution, the \(P_t \) values are almost 3 times higher than the case with uniform \(J_c \) distributions at \(I_0 < 1500 \text{ A} \). Next, the \(P_t \) values for the cable using strands with trapezoidal \(J_c \) distribution are close to the values for the case with uniform \(J_c \) distributions at \(I_0 > 1700 \text{ A} \), but they deviate from the results with uniform \(J_c \) at \(I_0 < 1500 \text{ A} \). This deviation becomes more remarkable with decreasing \(I_0 \). These results indicate that the decrease of \(J_c \) values near the edge part of strand causes significant increase of AC losses in single-layer cables. On the other hand, for the case with tilting...
J_c distribution, the P_t values are 50–60% larger than those with uniform J_c distributions in whole current range.

Figure 3 shows the loss values P_t in single-layer cables at various fixed current amplitude I_0, as a function of the gap d_{gap} of adjacent strands. As can be seen, the P_t values for all cables are substantially reduced as the d_{gap} values decrease. The dependence of the P_t values on the d_{gap} values becomes more remarkable at lower current amplitude. Our previous study indicates that the reduction of loss values with decreasing the d_{gap} values is caused by the suppression of magnetic flux passing through at the edge part of each strand [12]. It is also evident that the lateral J_c distributions in strands have strong influence on the losses in cables regardless the d_{gap} values. In higher current range $I_0 > 0.7I_c$, the difference in the P_t values among the cables using strands with different lateral J_c distributions becomes more remarkable with decreasing d_{gap} values below 0.3 mm.

To examine the influence of non-uniformity of J_c values in strands on the losses in single-layer cables, the lateral distributions of loss density per-cycle Q_d on the outer surface of a strand are shown in figures 4 for $I_0 = 0.9I_c$ (= 1800 A) and 5 for $I_0 = 0.48I_c$ (= 960 A), respectively. As can be seen, the most of losses in single-layer cables generates near the edge part of each strand. This is very similar to the case for an isolated rectangular strip [7, 13]. It is also evident that the absolute values of Q_d near the edge part are reduced as the d_{gap} values decrease, which is mainly attributed to the magnetic flux generated by adjacent tapes [12]. The influence of d_{gap} values on the Q_d distributions becomes more

Figure 3. AC losses P_t for single-layer cables plotted against the gap between adjacent strands d_{gap}: (a) $I_0 = 0.9I_c$ (= 1800 A), (b) $I_0 = 0.73I_c$ (= 1460 A) and (c) $I_0 = 0.48I_c$ (= 960 A). In (b) and (c), the analytical values of monoblock model for a superconducting cylinder with an outer diameter of 25.5 mm (= $w_S \times N$) and a wall thickness of 2 μm are shown.
remarkable in lower current amplitude. Furthermore, it is clearly confirmed that the distributions of Q_d of a strand inside the single-layer cable are strongly influenced by the non-uniformity of J_c values in each strand. In the case that each strand has peaking J_c distribution, flux penetration regions with $Q_d > 0$ are significantly extended toward the centre part regardless the I_0 values. This leads to the largest loss values among all the cables shown in figures 2 and 3. For the case with trapezoidal J_c distribution, the losses mainly generate at $|x| > 1.5\text{mm}$ at $I_0 = 0.9I_c$, which is almost same as the case with uniform J_c. At $I_0 = 0.5I_c$, however, the flux penetration regions are extended toward the centre part of strand, as well as the case with peaking J_c distribution. According to this fact, the loss values for the case with trapezoidal J_c distributions become considerably larger than the case with uniform J_c at lower current amplitude $I_0 = 0.5I_c$. Finally, the Q_d distributions for the case with tilting J_c distribution are asymmetrical on the centre of a strand. Comparing with the results for uniform J_c, flux penetration from the right edge part ($x > 0$) with lower J_c becomes deeper, while the penetration from the left edge part ($x < 0$) with higher J_c does shallower. The extension of flux penetration region from right edge part is more significant compared with the suppression of flux penetration from left edge part. Therefore, the loss values for the cable using strand with tilting J_c is larger than the case with uniform J_c, as shown in figures 2 and 3.

![Figure 4](Image1.png)
Figure 4. Distributions of loss density Q_d per-cycle on the broad face of a rectangular strip in single-layer cables at $I_0 = 0.9I_c (= 1800 \text{A})$: (a) $d_{gap} = 0.75 \text{mm}$ and (b) $d_{gap} = 0.30 \text{mm}$.

![Figure 5](Image2.png)
Figure 5. Distributions of loss density Q_d per-cycle on the broad face of a rectangular strip in single-layer cables at $I_0 = 0.48I_c (= 960 \text{A})$: (a) $d_{gap} = 0.75 \text{mm}$ and (b) $d_{gap} = 0.30 \text{mm}$.
From these results, it is suggested that the AC losses in cables composed of coated conductors as strands may be increased by the non-uniform lateral J_c distribution inside each strand. The magnetic flux preferentially penetrates from the lower J_c part inside the strand and large loss generation occurs there. Particularly, the lower J_c values near the edge part of strand than in center part lead to the significant increase of losses. The improvement of uniformity of J_c values along a lateral direction of coated conductor has crucial importance to suppress the AC loss generation inside the cables, together with the optimization of cable structures.

4. Conclusion
We investigated the AC loss characteristics on single-layer cables using rectangular superconductor strips with various lateral J_c distributions through the numerical calculations. The calculations of losses under AC current transmission were performed with taking into account the actual arrangements and the lateral J_c distributions of tape strands in cables. The calculated results show that the loss values in single-layer cables are strongly affected not only by the arrangement of strands inside a cable but also by the non-uniformity of J_c values along a lateral direction of each strand. The lower J_c values near the edge part of a strand lead to the significant increase of losses. This is mainly attributed to the deeper flux penetration in going from the edge part to the center part of each strand. These results indicate that the improvement of uniformity of J_c values along a lateral direction in coated conductors is quite important for reducing the AC loss generated inside the cables, together with the optimization of cable structures.

Acknowledgements
This work was partly supported by Grant-in-Aids for Scientific Research (No. 17206026) from the Japanese Society of the promotion of science (JSPS), and also by that (No. 17760233) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). It was also supported in part from Tokyo Electric Power Company (TEPCO) Research Foundation.

References
[1] Hawsey R A and Christen D K 2006 Physica C 445-448 pp 488–95
[2] Shiohara Y, Kitoh Y and T Izumi 2006 Physica C 445-448 pp 496–503
[3] Ibi A, Fukushima H, Kuriki R, Miyata S, Takahashi K, Kobayashi H, Konishi M, Watanabe T, Yamada Y and Shiohara Y 2006 Physica C 445-448 pp 525–8
[4] Amemiya N, Shinkai, Iijima Y, Kakimoto K and Takeda K 2001 Supercond. Sci. Technol. 14 pp 611–7.
[5] Amemiya N, Maruyama O, Mori M, Kashima N, Watanabe T, Nagaya and S Shiohara Y 2006 Physica C 445-448 pp 712–6
[6] Jiang Z, Amemiya N, Maruyama O and Shiohara Y 2007 Physica C in press
[7] Inada R, Oota A and Fujimoto H 2002 Physica C 378-381 pp 1133–7
[8] Kajikawa K, Mawatari Y, Hayashi T and Funaki K 2004 Supercond. Sci. Technol. 17 pp 555–63.
[9] Tsukamoto O 2005 Supercond. Sci. Technol. 18 pp 596–605.
[10] Mukoyama S, Yagi M, Hirano H, Yamada Y, Izumi T and Shiohara Y 2006 Physica C 445-448 pp 1050–3
[11] Sato S and Amemiya N 2005 Physica C 432 pp 215–22
[12] Inada R, Nakamura Y, Oota A and Fukunaga T 2005 Physica C 426-431 pp 1309–15
[13] Fukunaga T, Inada R and Oota A 1998 Appl. Phys. Lett. 72 pp 3362–4
[14] Norris W T 1970 J. Phys. D: Appl. Phys. 3 pp 489–507
[15] Vellego G and Metra P 1995 Supercond. Sci. Technol. 8 pp 476–83