Negative conversion of autoantibody profile in chronic hepatitis B: A case report

Xun Zhang, Qin-Xiu Xie, Dong-Mei Zhao

ORCID number: Xun Zhang 0000-0002-1636-6950; Qin-Xiu Xie 0000-0002-3384-1274; Dong-Mei Zhao 0000-0003-2559-5357.

Author contributions: Zhang X collected primary data, searched the literature and drafted the manuscript; Xie QX performed percutaneous liver puncture and organized pathological images; Zhao DM contributed to reviewing the manuscript, data analysis and preparation of tables; All authors have read and approve the final manuscript.

Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.

Conflict-of-interest statement: The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and

Abstract

BACKGROUND
Autoimmune antibodies are detected in many diseases. Viral infections are accompanied by several immunopathological manifestations. Some autoimmune antibodies have been associated with the immune response induced by virus or drugs. Thus, a comprehensive diagnosis of chronic hepatitis B combined with autoimmune hepatitis is required, and immunosuppressant or antiviral therapy should be carefully considered.

CASE SUMMARY
We present a case of a patient who had negative transformation of autoimmune antibodies during chronic active hepatitis B. A 50-year-old female who had a history of asymptomatic hepatitis B virus carriers for more than 10 years presented to the hospital with the complaint of weakness for 1 wk. Blood tests revealed elevated liver enzymes; the detection of autoantibodies was positive. Hepatitis B viral load was 7210000 IU/mL. The patient started tenofovir alafenamide fumigate 25 mg daily. Liver biopsy was performed, which was consistent with chronic active hepatitis B. The final diagnosis of the case was chronic active hepatitis B. The autoimmune antibodies turned negative after 4 wk of antiviral therapy. The patient recovered and was discharged with normal liver function. There was no appearance of autoantibodies, and liver function was normal at regular follow-ups.

CONCLUSION
Autoimmune antibodies may appear in patients with chronic active hepatitis. It is necessary to differentiate the diagnosis with autoimmune hepatitis.

Key Words: Autoantibodies; Autoimmune hepatitis; Chronic hepatitis B; Immune
Core Tip: This case involved dynamic changes in autoantibodies in the pathogenesis of hepatitis B. The patient showed positive hepatitis B surface antigen, which can cause an autoimmune phenomenon during the clearance of hepatitis B virus (HBV). Liver pathology was performed to differentiate from autoimmune hepatitis. It is possible that the virus has a role in inducing immune responses in HBV infection. This is closely related to hepatocyte injury caused by HBV infection, which is mainly mediated by immunity. Autoantibodies can appear during viral hepatitis, and the combination of liver pathology and dynamic monitoring is required.

INTRODUCTION

Host immune responses induced by hepatitis B virus (HBV) infection substantially drive disease progression and significantly influence the efficacy of antiviral treatments in HBV-infected individuals. Some studies have shown that non-virus-specific inflammatory cells within the liver may also actively participate in HBV-associated liver pathogenesis.

We report a case of autoimmune antibody transformation from positive to negative during the course of HBV and refer to the relevant literature to explain the related reasons for the dynamic changes in these autoantibodies. Liver pathology can help diagnosis and differentiate between viral hepatitis and autoimmune hepatitis (AIH), which plays an important role in the treatment strategy.

AIH may have an association with some pathogens[1]. Although a few investigations associated with autoantibody positivity in patients with chronic hepatitis C have been reported, autoantibody positivity in patients with chronic hepatitis B are rare in the literature[2]. In this case, the antinuclear antibody (ANA) profile included anti-SSA antibody, anti-SSB antibody, anti-liver/kidney microsomal-1 antibody (LKM-1) and anti-soluble liver antigen/liver-pancreas antibodies in a patient with chronic hepatitis B became negative during the clearance of HBV.

CASE PRESENTATION

Chief complaints

A 50-year-old female who had a history of positive hepatitis B surface antigen for more than 10 years presented to The Infectious Department of our hospital complaining of aggravating anorexia and fatigue. During her presentation in The Infectious Department, she had nausea and vomit symptoms.

History of present illness

The patient’s symptoms started a week ago with gradually increasing gastrointestinal symptoms including anorexia and nausea. Her liver function tests showed elevated transaminases.

History of past illness

She had a past medical history of being a carrier of HBV for more than 10 years without antiviral treatment. She had no cardiac function abnormalities, arterial hypertension or diabetes mellitus. She had no negative drug history, and no alcohol intake.
Personal and family history
The patient reported that her four siblings were infected with HBV, her mother died from hepatocellular carcinoma, and her father was in good physical condition.

Physical examination
After admission, the patient’s temperature was 36.6 °C, heart rate was 91 bpm, respiratory rate was 20 breaths per minute, blood pressure was 145/104 mmHg and oxygen saturation in room air was 99%. The patient was 160 cm tall and weighed 53 kg. The clinical examination revealed light scleral icterus without any other pathological signs.

Laboratory examinations
A series of tests were performed after admission to The Infectious Disease Department. Blood analysis revealed the following: Alanine aminotransferase, 575 U/L; Aspartate aminotransferase, 593 U/L; Total bilirubin, 108.3 μmol/L; Alkaline phosphatase 116 IU/L; Positive hepatitis B surface antigen, anti-LKM-1 > 1:80; Positive anti-soluble liver antigen/liver-pancreas; Positive anti-mitochondrial antibody; and Positive anti-SSA antibody and anti-SSB antibody.

Imaging examinations
The structure of hepatic lobules is unclear. The hematoxylin and eosin staining showed varying degrees of hepatocyte edema with moderate to severe piecemeal necrosis and scattered eosinophilic bodies (Figure 1A, arrows). Small bile duct in the portal area was accompanied by lymphocyte-predominant inflammation with a small amount of eosinophil infiltration (Figure 1A, filled triangles).

Immunohistochemistry analysis of liver tissue: The proliferation of small bile ducts in the portal area were obvious (Figure 1B, arrows), with more infiltration of lymphocytes and plasma cells and positive marker detection including hepatitis B surface antigen (+), HBcAg (+-), bile duct epithelium (CK19+), IgG (+), and IgG4 (-) combined hepatocellular and cholangiocarcinoma. Findings were consistent with mild chronic hepatitis compatible with HBV infection, without histological stigmata of autoimmunity (Figure 1B).

Mesh fiber staining of liver tissue: The reticular fiber staining showed that the hepatic lobular stent was significantly damaged (Figure 1C, arrows). The characteristic floral ring structure of AIH was not seen (Figure 1C).

Masson staining of liver tissue: The portal area was enlarged with fibrosis, the formation of bridging fiber band was visible in the focal area, and collagen fiber proliferated in the portal area by Masson staining (Figure 1D, arrows).

FINAL DIAGNOSIS
Chronic active hepatitis B (pathological grade and stage: G3S3).

TREATMENT
The patient, following her clinical manifestations and laboratory tests in our department, was started on tenofovir alafenamide fumarate 25 mg QD orally without corticosteroids. Other transfusion treatment including compound magnesium isoglycyrrhizinate and reduced glutathione was used for more than 20 d until nucleic acid testing was performed, and autoantibodies were found to be positive and liver biopsy was performed. According to the pathology of hepatic tissue, it did not meet the diagnostic criteria of AIH. Blood work showed completely normal liver enzymes and decreased HBV viral load.

OUTCOME AND FOLLOW-UP
The comprehensive medical treatment was successfully accomplished by improving liver function and antiviral therapy with tenofovir alafenamide fumarate tablets 25 mg
Table 1 Laboratory values on admission and during hospital course

Parameters	Day 1	Day 7	Day 15	Day 25	2 mo	Reference ranges
WBC (× 10^9/L)	3.05	4.18	4.93	3.76	556	3.5-9.5
PLT (× 10^9/L)	101	93	102	112	216	125-350
AST (U/L)	593	224	75	28	34	0-34
ALT (U/L)	575	266	89	26	28	0-49
ALP (U/L)	112	132	116	79	76	45-129
GGT (U/L)	58	134	113	55	36	0-38
LDH (U/L)	267	208	159	159	221	120-246
ALB (g/L)	34.8	34.3	28.9	33.7	27.8	35.0-53.0
TBIL (μmol/L)	39.30	45.90	108.30	51.45	11.30	5.00-21.00
DBIL (μmol/L)	22.50	33.20	84.92	37.37	8.09	0-6.80
HBV-DNA (copies/mL)	7.21 × 10^8	1.62 × 10^4	≤ 500	≤ 500	Negative (< 1.80)	
HBsAg (IU/mL)	> 52000	3373	135	< 0.05	< 20	< 20
ANA	< 1.80	< 1.80	< 1.80	< 1.80	Negative (< 1.80)	
Anti-SM (RU/mL)	41.17	< 20	< 20	< 20	< 20	< 20
Anti-SS-A (RU/mL)	42.70	< 20	< 20	< 20	< 20	< 20
Anti-SS-B (RU/mL)	176.31	< 20	< 20	< 20	< 20	< 20
CENTRO (RU/mL)	39.59	< 20	< 20	< 20	< 20	< 20
AMA-M2 (RU/mL)	19.99	25.87	< 20	< 20	< 20	< 20
LKM-1 (RU/mL)	223.38	> 400	< 20	< 20	< 20	< 20
SLA/LP (RU/mL)	39.61	43.04	< 20	< 20	< 20	< 20
SP100 (RU/mL)	16.26	20.59	< 20	< 20	< 20	< 20
Anti-HCV	Negative	Negative	Negative	Negative	Negative	Negative
HAV-IgM	Negative	Negative	Negative	Negative	Negative	Negative
HEV-IgM	Negative	Negative	Negative	Negative	Negative	Negative
Anti-HIV	Negative	Negative	Negative	Negative	Negative	Negative

ALB: Albumin; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AMA-M2: Anti-mitochondrial antibody subtype II; AST: Aspartate transaminase; CENTRO: Anti-centromere B antibody; DBIL: Direct bilirubin; GGT: Glutamyltransferase; HAV: Hepatitis A virus; HBsAg: Hepatitis B surface antigen; HBV: Hepatitis B virus; HCV: Hepatitis C virus; HEV: Hepatitis E virus; LDH: Lactate dehydrogenase; LKM-1: Anti-liver/kidney microsomal-1 antibody; SLA/LP: Anti-soluble liver antigen/liver-pancreas; SP100: Anti-SP100 antibody; TBIL: Total bilirubin; WBC: White blood cell.

QD orally during hospitalization and follow-up (at least 5 years). The process of liver puncture was accomplished smoothly. The antiviral effect was remarkable, and liver enzymes levels dropped significantly (Table 1). Some positive markers were retested, and the markers of AIH were negative (Table 1). The patient recovered well and was discharged from the hospital 25 d after the treatment. At a follow-up visit, 12 wk later (2 mo after hospital discharge), the patient was asymptomatic, there was no appearance of autoantibodies, and liver function was normal (Table 1). The patient continued to take the antiviral drug and maintained regular follow ups every 6 mo for 5 years.

DISCUSSION

Autoantibodies can be detected in patients with chronic hepatitis B or hepatitis C infection. Acay et al[3] reported that 67 patients with chronic hepatitis B who had a positive ANA rate was 12%. Many cases reports have shown that autoimmune markers can be detected in patients with hepatitis C[4]. Other hepatitis viruses like
hepatitis A or hepatitis E can also act as triggers of autoimmune phenomena or diseases\(^5\). Some studies have shown that autoimmune markers were identified in adult patients\(^6\). HBV infection has been presented with circulating non-organ-specific autoantibodies associated to a variety of immunopathological manifestations\(^7\). This included smooth muscle antibody, ANA and anti-LKM1\(^8\). The serologic autoimmune phenomenon was also reported in patients who had received treatment with interferon\(^9\). At present, the role of immune factors in the pathogenesis of chronic hepatitis B has been widely recognized\(^10\). A cohort study was conducted to study the detection of autoantibodies in patients diagnosed with chronic hepatitis B. The result showed that low level titers of antibodies were detected in 8 of 47 patients (17%) with treatment-naive, histologically proven chronic hepatitis B\(^11\). Another study showed a similar positive rate in chronic hepatitis B or C\(^3\). This may indicate some interaction mechanisms occur during the period of immunity elimination. Some researchers have indicated that there is more than a single mechanism responsible for viral autoimmunity\(^13\). It was shown that viral hepatitis such as hepatitis A virus, hepatitis C virus or hepatitis E virus may have triggered an autoimmune response in many cases\(^14\).

However, detection of autoantibodies in chronic liver disease does not necessarily indicate a diagnosis of AIH. The presence of a homogenous pattern of antibodies may be more relevant. It is believed that there are many kinds of specific autoantibodies in patients with AIH\(^16\). The characteristic of AIH is the presence of interface hepatitis, which shows inflammation of hepatocytes at the junction of the portal tract and hepatic parenchyma. According to the simplified criteria for AIH diagnosis, hepatocellular rosette formation is a typical histological feature of AIH\(^16\). Although the precise mechanisms of AIH are unknown, environmental factors may trigger disease onset in genetically predisposed individuals.

Several observations in many cases suggest that an extractable nuclear antigen antibody profile was prevalent in patients with chronic hepatitis B, and it was strongly correlated with both compensated and decompensated cirrhosis\(^17\). Liver biopsy was

Figure 1 Imaging examinations results. A: In the hematoxylin and eosin staining of liver tissue, the structure of hepatic lobules was unclear. The hematoxylin and eosin staining showed varying degrees of hepatocyte edema with moderate to severe piecemeal necrosis and scattered eosinophilic bodies (arrows). Small bile ducts in the portal area were accompanied by lymphocyte-predominant inflammation and a small amount of eosinophil infiltration (filled triangles); B: The proliferation of small bile ducts in the portal area were obvious (arrows) with more infiltration of lymphocytes and plasma cells and positive marker detection including hepatitis B surface antigen (+), HBcAg (+), bile duct epithelium (CK19+), IgG (+), and IgG4 (-) combined hepatocellular and cholangiocarcinoma. Findings were consistent with mild chronic hepatitis compatible with hepatitis B virus infection, without histological stigmata of autoimmunity; C: Mesh fiber staining of liver tissue showed that the hepatic lobular stent was significantly damaged (arrows). The characteristic floral ring structure of autoimmune hepatitis was not seen; D: Masson staining of liver tissue showed the portal area was enlarged with fibrosis, the formation of the bridging fiber band was visible in the focal area, and collagen fiber was proliferating the portal area (arrows).
carried out showing signs of severe fragmented necrosis and fibrogenesis, and lymphocyte and plasmocyte infiltrations were observed. Based on a simplified diagnostic scoring system for AIH, AIH is generally divided into type 1 (AIH-1) and type 2 (AIH-2). The autoantibodies related to AIH-1 mainly include ANA, anti-smooth muscle antibody, anti-soluble liver antigen/liver-pancreas and anti-neutrophil antibody; the autoantibodies related to AIH-2 mainly include anti-LKM antibody and anti-liver cytosol type 1. The appearance of autoantibodies in the pathogenesis of chronic HBV infection is also one of the manifestations of autoimmune disorders. In general, the human immune system starts to recognize antigens and gradually produces increasing affinity of the relevant antibody after antigen exposure. T follicular helper cells can be over the augmented capacity to help B cells for antibody secretion, which can induce liver inflammation and the production of antibodies in extrahepatic manifestations.

In the 1980s, some studies showed that glucocorticosteroid pretreatment therapy can clear the makers of viral replication in patients with chronic HBV infection, but in a large trial, the glucocorticosteroid did not indicate any beneficial effect of prednisone pretreatment. It is recommended that antiviral drugs are the major therapy for chronic active hepatitis B based on the current guidelines. Our case showed that the antibody titers vary from gradually decreased to disappeared along with treatment. This also reminded us that an autoantibody is not a specific marker for the diagnosis during autoimmune liver diseases. Some specific antibodies can also be found in patients with viral hepatitis, drug-related hepatitis and alcoholic and nonalcoholic fatty liver disease. The effect of steroids is unclear in such cases; thus, treatment with steroids should be delayed until HBV is appropriately suppressed.

There is likely a role for induced immune responses with chronic HBV and hepatitis C virus infection. One generally accepted hypothesis is that the molecular stimulation between exogenous antigens and autoantigens leads to the destruction of immune tolerance. The most reported association between hepatitis and AIH is documented for chronic hepatitis C virus. Gregorio et al. observed that the majority of patients infected with hepatitis C virus generated smooth muscle antibody or ANA, which reacted to mimicking molecular mimicry of amino acid sequences between regions of the hepatitis C virus polyprotein and regions of some smooth muscle proteins. We think that the dynamic change of autoantibodies indicates that an immune reaction occurs in the process of spontaneous clearance of HBV.

CONCLUSION

Some autoimmune pathological processes are accompanied by liver inflammation. Although autoantibodies were initially positive in our patient, detection of autoantibodies in chronic liver disease did not necessarily indicate a diagnosis of AIH, likely because of an autoimmune interaction and the production of a variety of heterophile antibodies during the course of the immune response. There are theories suggesting that some interaction mechanisms and immune responses occur during the period of chronic active HBV infection.

ACKNOWLEDGEMENTS

We greatly appreciate the patient, her family and the medical staff involved in this study.

REFERENCES

1. Christen U, Hintermann E. Pathogens and autoimmune hepatitis. Clin Exp Immunol 2019; 195: 35-51 [PMID: 30113082 DOI: 10.1111/cei.13263]
2. Vergani D, Mieli-Vergani G. Autoimmune manifestations in viral hepatitis. Semin Immunopathol 2013; 35: 73-85 [PMID: 23010889 DOI: 10.1007/s00281-012-0328-6]
3. Acay A, Demir K, Asik G, Tunay H, Acarturk G. Assessment of the Frequency of Autoantibodies in Chronic Viral Hepatitis. Pak J Med Sci 2015; 31: 150-154 [PMID: 25878633 DOI: 10.12669/pjms.311.6053]
4. Cacciato V, Casagrande E, Bodini G, Furnari M, Marabotto E, Grillo F, Giannini EG. Eradication of hepatitis C virus infection disclosing a previously hidden, underlying autoimmune hepatitis: Autoimmune hepatitis and HCV. Ann Hepatol 2020; 19: 222-225 [PMID: 32029393 DOI: 10.4103/0974-6442.298131]
Zhang X et al. Conversion of autoantibody in chronic HBV infection

10.1016/j.adhep.2019.11.006

5 Terzìroli Beretta-Piccoli B, Ripellino P, Gobbi C, Cerny A, Baserga A, Di Bartolomeo C, Bihl F, Deleodardi G, Melidona L, Grondona AG, Mieli-Vergani G, Vergani D, Muratori L; Swiss Autoimmune Hepatitis Cohort Study Group. Autoimmune liver disease serology in acute hepatitis E virus infection. J Autoimmun 2018; 94: 1-6 [PMID: 30336842 DOI: 10.1016/j.jaut.2018.07.006]

6 Shepherd SM, Lyon WK. Gingival bleeding: initial presentation of prostatic cancer. J Fam Pract 1990; 30: 98-100 [PMID: 2294167]

7 Maya R, Gershwin ME, Shoenfeld Y. Hepatitis B virus (HBV) and autoimmune disease. Clin Rev Allergy Immunol 2008; 34: 85-102 [PMID: 18270862 DOI: 10.1007/s12016-007-8013-6]

8 Gregorio GV, Jones H, Choudhuri K, Vignente A, Bortolotti F, Mieli-Vergani G, Vergani D. Autoantibody prevalence in chronic hepatitis B virus infection: effect in interferon alfa. Hepatology 1996; 24: 520-523 [PMID: 8781317 DOI: 10.1002/hep.510240309]

9 Iijima Y, Kato T, Miyakawa H, Ogino M, Mizuno M, Sugihara K, Ando T, Fujiwara K, Orito E, Ueda R, Mizokami M. Effect of interferon therapy on Japanese chronic hepatitis C virus patients with anti-liver/kidney microsome autoantibody type 1. J Gastroenterol Hepatol 2001; 16: 782-788 [PMID: 11446887 DOI: 10.1046/j.1440-1746.2001.02513.x]

10 Tseng TC, Huang LR. Immunopathogenesis of Hepatitis B Virus. J Infect Dis 2017; 216: S765-S770 [PMID: 29156047 DOI: 10.1093/infdis/jtx356]

11 Şener AG, Aydin N, Ceylan C, Kardar S. [Investigation of antinuclear antibodies in chronic hepatitis B patients]. Mikrobiyol Bul 2018; 52: 420-430 [PMID: 30522427 DOI: 10.5578/nmb.67262]

12 Şener AG, Afşar İ. Infection and autoimmune disease. Rheumatol Int 2012; 32: 3331-3338 [PMID: 22811010 DOI: 10.1007/s00296-012-2451-z]

13 Patel I, Ching Companioni R, Bansal R, Vyas N, Catalanò C, Aron J, Walfish A. Acute hepatitis E presenting with clinical feature of autoimmune hepatitis. J Community Hosp Intern Med Perspect 2016; 6: 3334 [PMID: 27978286 DOI: 10.3402/jchmp.v6.33342]

14 Sebode M, Weiler-Normann C, Liwinski T, Schramm C. Autoantibodies in Autoimmune Liver Disease-Clinical and Diagnostic Relevance. Front Immunol 2018; 9: 609 [PMID: 29636752 DOI: 10.3389/fimmu.2018.00609]

15 Czaia AJ. Autoantibodies in autoimmune liver disease. Adv Clin Chem 2005; 40: 127-136 [PMID: 16355922 DOI: 10.1016/s0065-2423(05)40004-9]

16 Gurung A, Assis DN, McCarty TR, Mitchell KA, Boyer JL, Jain D. Histologic features of autoimmune hepatitis: a critical appraisal. Hum Pathol 2018; 82: 51-60 [PMID: 30041025 DOI: 10.1016/j.humpath.2018.07.014]

17 Lin XQ, Sheng L, Xiao X, Wang QX, Miao Q, Guo CJ, Hua J, Ma X. [Analysis of clinical diagnosis and treatment in chronic hepatitis B patients with combined with autoimmune hepatitis]. Zhonghua Gan Zang Bing Za Zhi 2020; 28: 351-356 [PMID: 32403889 DOI: 10.3760/cma.j.cn110113-20190120-00020]

18 Hennes EM, Zeniya M, Czaia AJ, Parés A, Dalekos GN, Krawitt EL, Porta G, Robert BM, Hofer L, Bianchi FB, Shibata M, Schramm C, Eisenmann de Torres B, Galle PR, McFarlane I, Dienes HP, Lohse AW; International Autoimmune Hepatitis Group. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 2008; 48: 169-176 [PMID: 18537184 DOI: 10.1002/hep.22322]

19 Lindor KD, Bowlus CL, Boyer J, Levy C, Mayo M. Primary Biliary Cholangitis: 2018 Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology 2019; 69: 394-419 [PMID: 30070375 DOI: 10.1002/hep.30145]

20 Song H, Tan G, Yang Y, Cui A, Li H, Li T, Wu Z, Yang M, Lv G, Chi X, Niu J, Zhu K, Crispe IN, Su L, Tu Z. Hepatitis B Virus-Induced Imbalance of Inflammatory and Antiviral Signaling by Differential Phosphorylation of STAT1 in Human Monocytes. J Immunol 2019; 202: 2266-2275 [PMID: 30842274 DOI: 10.4049/jimmunol.1800848]

21 Bolstad N, Warren DJ, Nustad K. Heterophilic antibody interference in immunometric assays. Best Pract Res Clin Endocrinol Metab 2013; 27: 647-661 [PMID: 23046436 DOI: 10.1016/j.beem.2013.05.011]

22 Leś Y, Hu T, Song X, Nie H, Chen M, Chen W, Zhou Z, Zhang D, Hu H, Hu P, Ren H. Production of Autoantibodies in Chronic Hepatitis B Virus Infection Is Associated with the Augmented Function of Blood CXCX5+CD4+ T Cells. PLoS One 2016; 11: e0162241 [PMID: 27612199 DOI: 10.1371/journal.pone.0162241]

23 Weller IV, Bassendine MF, Murray AK, Craxi A, Thomas HC, Sherlock S. Effects of prednisolone/azathioprine in chronic hepatitis B viral infection. Gut 1982; 23: 650-655 [PMID: 7095559 DOI: 10.1136/gut.23.8.650]

24 Perrillo RP, Schiff ER, Davis GL, Bodenheimer HC Jr, Lindsay K, Payne J, Dienstag JL, O'Brien C, Tamburro C, Jacobson IM, Sampliner R, Feit D, Leffkowitz J, Kuhns M, Meschevitz C, Sanghvi B, Albrecht J, Gibas A; Hepatitis Interventional Therapy Group. A randomized, controlled trial of interferon alfa-2b alone and after prednisone withdrawal for the treatment of chronic hepatitis B. The Hepatitis Interventional Therapy Group. N Engl J Med 1990; 323: 295-301 [PMID: 2195346 DOI: 10.1056/NEJM199008023230503]

25 Idilman R. The summarized of EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. Turk J Gastroenterol 2017; 28: 412-416 [PMID: 28936972 DOI: 10.5152/tg.2017.20817]

26 Marconcelli ML, Fayad L, Shiozawa MB, Dantas-Corrêa EB, Lueba Schiavon LD, Narciso-Schiavon JL. Autoantibody profile in individuals with chronic hepatitis C. Rev Soc Bras Med Trop 2013; 46:
Zhang X et al. Conversion of autoantibody in chronic HBV infection

147-153 [PMID: 23740063 DOI: 10.1590/0037-8682-0039-2013]

27 Gregorio GV, Choudhuri K, Ma Y, Pensati P, Iorio R, Grant P, Garson J, Bogdanos DP, Vegnente A, Mieli-Vergani G, Vergani D. Mimicry between the hepatitis C virus polyprotein and antigenic targets of nuclear and smooth muscle antibodies in chronic hepatitis C virus infection. Clin Exp Immunol 2003; 133: 404-413 [PMID: 12930368 DOI: 10.1046/j.1365-2249.2003.02229.x]

28 Zhang Z, Zhang JY, Wang LF, Wang FS. Immunopathogenesis and prognostic immune markers of chronic hepatitis B virus infection. J Gastroenterol Hepatol 2012; 27: 223-230 [PMID: 22004062 DOI: 10.1111/j.1440-1746.2011.06940.x]
