INTRODUCTION
Herbal plants are used in traditional medicine systems because of its medicinal values. These plants are the source of raw material in pharmaceutical industries. Melothria maderaspatana Linn. is one among them. It belongs to the family Cucurbitaceae. It is an annually monoecious herb which was found in India at hilly region. The myths of medicine claim that it is a good diuretic stomachic, gentle claims anti-inflammatory, antipyretic sudorific, and antiflatulent besides its use in biliousness and vertigo. A preliminary study was conducted to characterize phytochemicals present in M. maderaspatana, a plant drug used in traditional medicines [1]. It is called Musumusukkai in Tamil [2]. It is used in Siddha medicine against a variable disease [3]. An ethno botanical study of medicinal plants used in Villupuram regions of Tamil Nadu was conducted [4]. This review paper deals with the pharmacological studies which have been exploded.

ANTIBACTERIAL ACTIVITY
Harshiny et al. synthesized silver nanoparticles using leaf extract of M. maderaspatana and conjugate ceftriaxone. Results showed conjugated ceftriaxone with silver nanoparticles have better antioxidant and antimicrobial effect as compared to unconjugated nanoparticles [5]. Riyazullah et al. conducted the study that showed soil and environment were major factors which have tendency to affect the activity of medicinal plants. They collected M. maderaspatana from India and Sri Lanka and tested their antibacterial and antifungal activity using different organic extracts and result proved that ciprofloxacin used as a standard for antibacterial activity and clotrimazole used as a standard for antifungal activity [6]. Hemamalini and Varma proved antimicrobial activity of methanolic leaf extract and petroleum ether extract and results showed that methanolic extract was more effective [7].

ANTIOXIDANT ACTIVITY
Harshiny et al. confirmed the antioxidant activity of M. maderaspatana by 2,2-diphenyl-1-picrylhydrazil (DPPH) assay [5]. They studied antioxidant activity of Melothria on sham-operated and uninephrectomized DOCA-salt-induced hypertensive rats. They concluded that M. maderaspatana showed antioxidant activity [8]. This study showed that aqueous extract of M. maderaspatana was evaluated in vitro antioxidant activity by radical scavenging assays against DPPH, hydrogen peroxide, hydroxyl radical, and ABTS and result proved that Melothria extracts effectively scavenge all radicals [9]. Examined the antioxidant activity using a methanolic leaf extract to evaluate DPPH assay and results showed that EC 50 value was <10 μg/mL [10]. They evaluated different fractions of Melothria and concluded ethyl acetate fraction showed a better activity. Confirmation was done by measuring the flavonoid content using total phenolic content and DPPH assay [11].

Studied antioxidant activities from roots, stems, leaves, and fruits of M. maderaspatana using acetone and methanol extracts and results showed methanolic extract gave a higher yield than an acetone extract [12]. They studied free radical scavenging activity of Melothria and found that the leaves were showing maximum dose-dependent activity [13].

LARVICIDAL ACTIVITY
Chitra et al. tested the larvicidal activity of silver nanoparticles were synthesized using leaf aqueous extract against Culex quinquefasciatus and Aedes aegypti. Result showed synthesized silver nanoparticles have predominant larvicidal activity [14].

ANTIULCEROGENIC ACTIVITY
Gomathy et al. investigated the precautionary effect of ethanolic extract of M. maderaspatana against doxethacin-induced gastric ulcer in rats. Results proved that the ethanolic extract of Melothria has the ability to decrease acidity and increase mucosal defense in gastric area [15].

ANTIDIABETIC ACTIVITY
Srilatha and Ananda investigated in vitro anti-diabetic activity of the phenolics and extract such as phloroglucinol and quercetin and results proved that it can be used as an antidiabetic nutraceutical [16]. Balaraman et al. evaluated antihyperglycemic effect of M. maderaspatana in the streptozotocin (STZ) diabetic rats and compared with activity Coccinia indica [17]. Petrus tested the antidiabetic activity of M. maderaspatana [18].

ANTHYPERLIPIDEMIC EFFECT
Veeramani et al. studied crude ethanolic extract of M. maderaspatana leaf to test its antihyperlipidemic effect in DOCA-salt hypertensive rats and concluded that it can be used in protecting the liver, kidney, and heart against DOCA-salt [19]. Balaraman et al. evaluated the hypolipidemic effect of aerial parts of M. maderaspatana in the STZ-diabetic rats and result proved that extract showed effective recovery of biochemical parameters and decreased body weight in treating animals [17]. Pandey et al. studied that the evaluation of hypolipidemic
ANTIHYPERTENSIVE EFFECT

Veeramani et al. investigated the antihypertensive effect of *M. maderaspatana* and *O. octandra*. They found that

ANTITUMOR POTENTIALS

Jayantilaka et al. studied the potential of an aqueous extract of *M. maderaspatana* against CCl4-induced hepatic injury. They concluded that the aqueous extract reduced the damage caused by CCl4.

ANTIBACTERIAL EFFECT

Chitra et al. tested the antibacterial activity of *M. maderaspatana* against *C. albicans* and *E. coli*. They found that the extract inhibited the growth of these bacteria.

ANTIFUNGAL EFFECT

Balaraman AK, Singh J, Dash S, Naskar A, Maity TK, Evaluation of antioxidant activity of different fractions of *M. maderaspatana*. Asian J Chem 2011;23(5):2207-11.

REFERENCES

1. Sinha BN, Thanigavelan J, Basu SP, Sukumar E. Studies on Melothria maderaspatana (Linn.) Cogn. Anc Sci Life 1996;15:238-40.
2. Imani RA, Priya BL, Chitra R, Shalini K, Sharan V, Chandrasekerrani D, et al. In vitro antiplatelet activity guided fractionation of aerial parts of Melothria maderaspatana. Indian J Pharm Sci 2006;68(5):668-70.
3. Sinha BN, Sasmal D, Basu SP. Pharmacological studies on Melothria maderaspatana. Fitoterapia 1997;68(1):75-8.
4. Sankaranarayanan M, Arthanareeswaran K, Kalaichelvan PT, Deccaraman M, Vijayalakshmi M, et al. Ethnobotanical study of medicinal plants used by traditional users in Villupuram district of Tamil Nadu, India. J Med Plants Res 2010;4(12):1089-101.
5. Harshiny M, Matheswaran M, Arthanareeswaran G, Kumar S, Rajasree S. Enhancement of antibacterial properties of silver nanoparticles-cetirixone conjugate through Mukia maderaspatana leaf extract mediated synthesis. Ecotoxicol Environ Saf 2015;121:135-41.
6. Riyazullah MS, Sivakumar V, Raja PP. Comparative antimicrobial activity of aerial parts of Melothria maderaspatana of Indian and Sri Lankan origin. Int J Pharmatech Res 2010;2(4):2343-6.
7. Hemamalini K, Varma MV. Antimicrobial activity of methanolic leaf extracts of Melothria maderaspatana Linn. Pharmacognonline 2007;3:322-6.
8. Veeramani C, Aristatible B, Pushpavalli G, Pugalendi KV. Effects of Melothria maderaspatana leaf extract on antioxidant status in sham-operated and uninephrectomized DOCA-salt hypertensive rats. Saudi J Biol Sci 2011;18(1):99-105.
9. Raja B, Pugalendi KV. Evaluation of antioxidant activity of Melothria maderaspatana in vitro. Cent Eur J Biol 2010;5(2):224-30.
10. Prakash NK, Bhuvanesswari S, Sripriya N, Prasanna R, Bhagya R, et al. Antioxidant activity of common plants of Northern Tamil Nadu, India. Int J Pharm Pharm Sci 2014;6(4):128-32.
11. Balaraman AK, Singh J, Dash S, Naskar A, Maity TK. Evaluation of antioxidant activity of different fractions of Melothria maderaspatana. Asian J Chem 2011;23(5):2207-11.
12. Sovvathararajan K, Joseph JM, Rajendrakumar D, Manian S. In vitro antioxidant characteristics of different parts of Melothria maderaspatana (L.) Cogn. Int J Pharm Pharm Sci 2010;2:117-22.
13. Choudhary S, Tanwer BS, Singh T, Vijayavergia R. Total phenolic, total flavonoid content and the DPPH free radical scavenging activity of Melothria maderaspatana (Linn.) Cogn. Int J Pharm Pharm Sci 2013;3(5):296-8.
14. Chitra G, Balasubramani R, Ramkumar R, Sowmyi R, Perumal P. Mukia maderaspatana (Cucurbicaceae) extract-mediated synthesis of silver nanoparticles to control Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 2015;114(4):1407-15.
15. Gomathy G, Venkatesan D, Palani S. Gastroprotective potentials of the ethanol extract of Mukia maderaspatana against indomethacin-induced gastric ulcer in rats. Nat Prod Res 2015;29:2107-11.
16. Srilatha BR, Ananda S. Antidiabetic effects of Mukia maderaspatana and its phenolics. An in vitro study on glucoseogenesis and glucose uptake in rat tissues. Pharm Biol 2014;52:597-602.
17. Balaraman AK, Singh J, Dash S, Maity TK. Antihyperglycemic and hypolipidemic effects of Melothria maderaspatana and Coccinia indica in streptozotocin induced diabetes in rats. Saudi Pharm J 2010;18:173-8.
18. Petrus A, Mukia maderaspatana (Linn.) M. Roemer. A potentially antidiabetic and vasoprotective functional leafy-vegetable. Pharmacogn J 2012;4(34):1-12.
19. Veeramani C, Al-Namair KS, Chandramohan G, Alsaif MA, Pugalendi KV. Antihyperlipidemic effect of Melothria maderaspatana leaf extracts on DOCA-salt induced hypertensive rats. Asian Pac J Trop Med 2012;5(6):434-9.
20. Pandey D, Pandey S, Hemalatha S. Hypolipidemic activity of aqueous extract of Melothria maderaspatana. Pharmacol Online 2010;3:76-83.
21. Veeramani C, Al-Namair KS, Chandramohan G, Alsaif MA, Alhamdan AA, Pugalendi KV. Antihypertensive effect of Melothria maderaspatana leaf fractions on DOCA-salt-induced hypertensive rats and identification of compounds by GC-MS analysis. J Nat Med 2012;66(2):302-10.
22. Veeramani C, Aristatle B, Pushpavalli G, Pugalendi KV. Antihypertensive efficacy of Melothria maderaspatana leaf extract on sham-operated and uninephrectomized DOCA-salt hypertensive rats. J Basic Clin Physiol Pharmacol 2010;21(1):27-41.

23. Thabrew MI, de Silva KT, Labadie RP, de Bie PA, van der Berg B. Immunomodulatory activity of three Sri-Lankan medicinal plants used in hepatic disorders. J Ethnopharmacol 1991;33(1-2):63-6.

24. Jayatilaka KA, Thabrew MI, Pathirana C, De Silva DG, Perera DJ. An evaluation of the potency of Osbeckia octandra and Melothria maderaspatana as antihepatotoxic agents. Planta Med 1989;55(2):137-9.

25. Veeramani C, Al-Numair KS, Chandramohan G, Alsaif MA, Pugalendi KV. Renal protective effect of Melothria maderaspatana leaf fraction on uninephrectomized deoxycorticosterone acetate-salt hypertensive rats. Prog Nutr 2014;16(3):204-11.

26. Thabrew MI, Gove CD, Hughes RD, McFarlane IG, Williams R. Protection against galactosamine and tert-butyl hydroperoxide induced hepatocyte damage by Melothria maderaspatana extract. Phytother Res 1995;9(7):513-7.

27. Jayatilaka KA, Thabrew MI, Perera DJ. Effect of Melothria maderaspatana on carbon tetrachloride-induced changes in rat hepatic microsomal drug-metabolizing enzyme activity. J Ethnopharmacol 1990;30(1):97-105.

28. Veeramani C, Al-Numair KS, Chandramohan G, Alsaif MA, Pugalendi KV. Effect of ethyl acetate fraction of Melothria maderaspatana leaf on membrane bound ATPases in DOCA-salt induced hypertensive rats. Prog Nutr 2015;17(4):331-8.

29. Raja B, Kaviarasam K, Arjunan MM, Pugalendi KV. Effect of Melothria maderaspatana leaf-tea consumption on blood pressure, lipid profile, anthropometry, fibrinogen, bilirubin, and albumin levels in patients with hypertension. J Altern Complement Med 2007;13(3):349-54.

30. Srinivasan S, Indumathi D, Sujatha M, Sujithra K, Muruganathan U. Novel synthesis, characterization and antibacterial activity of silver nanoparticles using leaf extract of Melothria maderaspatana (Linn.) cong. Int J Pharm Pharm Sci 2016;8(6):104-9.

31. Srinithya B, Muthuraman MS. An overview on the biological perspectives of Sida cordifolia Linn. Ar. Int J Pharm Pharm Sci 2014;6(11):15-7.

32. Godipurge SS, Biradar NJ, Biradar JS, Mahurkar N. Chemical composition and hepatoprotective effects of polyphenolic fraction from Rivea hypocrateriformis in paracetamol induced liver damage in wistar albino rats. Int J Pharm Pharm Sci 2016;8(10):228-34.