1. Introduction

Let $V := \mathbb{C}^\mathbb{Z}$ be a countable dimensional vector space with fixed basis $\{ u_i | i \in \mathbb{Z} \}$. Consider the Lie algebra $\mathfrak{sl}(\infty)$ of all traceless linear operators in $\mathbb{C}^\mathbb{Z}$ annihilating almost all u_i. Clearly, $\mathfrak{sl}(\infty)$ can be identified with the Lie algebra of traceless infinite matrices with finitely many non-zero entries. We consider $\mathfrak{sl}(\infty)$ as a Kac-Moody Lie algebra associated with Dynkin diagram A_∞. The Chevalley–Serre generators $e_a, f_a, a \in \mathbb{Z}$ of $\mathfrak{sl}(\infty)$ act on V by

$$f_a u_b = \delta_{a,b} u_{b+1}, \quad e_a u_b = \delta_{a+1,b} u_{b-1}. \quad \text{for all } a \in \mathbb{Z}.\,$$

The fermionic Fock space \mathfrak{F} is a simple $\mathfrak{sl}(\infty)$-module with fundamental highest weight ω_{-1}. It has a realization as the “semi-infinite exterior power” $\Lambda^\infty/2 \mathbb{C}^\mathbb{Z}$ which is the span of all formal expressions $u_{i_1} \wedge u_{i_2} \wedge \ldots$ satisfying the conditions $i_j > i_{j+1}$ for all $j \geq 1$ and $i_k = -k$ for sufficiently large k. In this way the highest weight vector is $u_{-1} := u_{-1} \wedge u_{-2} \wedge \ldots$. The famous boson-fermion correspondence identifies \mathfrak{F} with the space of symmetric functions. That in particular implies that \mathfrak{F} has a natural basis $\{ u_\lambda \}$ enumerated by partitions λ (this basis corresponds to Schur functions) where

$$u_\lambda := u_{\lambda_1+1} \wedge u_{\lambda_2+2} \wedge u_{\lambda_3+3} \wedge \ldots.\,$$

Let $t \in \mathbb{Z}$. We denote by \mathfrak{F}^t the simple $\mathfrak{sl}(\infty)$-module with lowest weight $-\omega_{t-1}$. We will use the following realization of \mathfrak{F}^t. Set $V^t = \mathbb{C}^\mathbb{Z}$ with basis $\{ w_i | i \in \mathbb{Z} \}$ and define the action of e_a, f_a on V^t by

$$e_a w_b = \delta_{a,b} w_{b+1}, \quad f_a w_b = \delta_{a+1,b} w_{b-1}. \quad \text{for all } a \in \mathbb{Z}.\,$$

Then \mathfrak{F}^t is the span of all formal expressions $w_{i_1} \wedge w_{i_2} \wedge \ldots$ satisfying the conditions $i_j > i_{j+1}$ for all $j \geq 1$ and $i_k = t - k$ for sufficiently large k. We can enumerate the elements of the basis of \mathfrak{F}^t by partitions

$$w_\mu := w_{\mu_1+t-1} \wedge w_{\mu_2+t-2} \wedge w_{\mu_3+t-3} \wedge \ldots.\,$$

The goal of this paper is to describe the structure of $\mathfrak{F}^t \otimes \mathfrak{F}$. Let us consider $(m, n) \in \mathbb{Z}^2$ such that $m - n = t$. As follows from [PS] $\Lambda^m V^t \otimes \Lambda^n V^t$ is an indecomposable
\(\mathfrak{sl}(\infty)\)-module with simple socle \(S_{m,n}\). To describe this socle consider the contraction map \(c : V \otimes V^\vee \to \mathbb{C}\) given by \(c(w_i \otimes u_j) = (-1)^j \delta_{i,j}\) and extend it to \(c_{m,n} : \Lambda^m V^\vee \otimes \Lambda^n V \to \Lambda^{m-1} V^\vee \otimes \Lambda^{n-1} V\). Then \(S_{m,n}\) is the kernel of \(c_{m,n}\).

Theorem 1.1. (1) The \(\mathfrak{sl}(\infty)\)-module \(R := \mathfrak{F}^\vee_t \otimes \mathfrak{F}\) has an infinite decreasing filtration
\[
R := R^0 \supset R^1 \supset \ldots \supset R^k \supset \ldots
\]
such that \(\cap_k R^k = 0\) and
\[
R^k / R^{k+1} \simeq \begin{cases}
S_{k+t,k} & \text{if } t \geq 0, \\
S_{k,k-t} & \text{if } t < 0.
\end{cases}
\]

(2) Every non-zero submodule of \(R\) coincides with \(R^r\) for some \(r \geq 0\).

The proof of this theorem is based on categorification of \(\mathfrak{F}^\vee_t \otimes \mathfrak{F}\) by the complexified Grothendieck group \(K[V_t]_\mathbb{C}\) of the abelian envelope \(V_t\) of the Deligne category \(\text{Rep}\ GL_t\) explained in [E] and Brundan categorification of \(\Lambda^m V^\vee \otimes \Lambda^n V\) via representation theory of the supergroup \(GL(m|n)\), [B]. We use the symmetric monoidal functor
\[
DS_{m,n} : V_t \to \text{Rep}\ GL(m|n)
\]
for \(m - n = t\). Existence of such functor follows from construction of \(V_t\), see [EHS]. While \(DS_{m,n}\) is not exact, it has a certain property, see Lemma 2.3 below, which allows to define the linear map
\[
ds_{m,n} : K[V_t]_\mathbb{C} \to K_{\text{red}}[\text{Rep}\ GL(m|n)]_\mathbb{C}
\]
where by \(K_{\text{red}}\) we denote the quotient of the Grothendieck group \(K\) by the relation \([\mathbb{C}^0] = -[\mathbb{C}]\) in the category \(\text{Rep}\ GL(m|n)\). Furthermore, \(ds_{m,n}\) is a homomorphism of rings and also a homomorphism of \(\mathfrak{sl}(\infty)\)-modules. We prove that the quotients \(K_{\text{red}}[\text{Rep}\ GL(m|n)]_\mathbb{C}\) form the layers of the radical filtration of \(\mathfrak{F}^\vee_t \otimes \mathfrak{F} \simeq K[V_t]_\mathbb{C}\). Let us warn the reader that the image of \(ds_{m,n}\) is not \(\Lambda^m V^\vee \otimes \Lambda^n V\) but another submodule in \(K_{\text{red}}[\text{Rep}\ GL(m|n)]_\mathbb{C}\). While this submodule has the same Jordan-Hoelder series as \(\Lambda^m V^\vee \otimes \Lambda^n V\), it is not isomorphic to \(\Lambda^m V^\vee \otimes \Lambda^n V\) as an \(\mathfrak{sl}(\infty)\)-module.

The second part of the paper contains calculation of dimensions of certain objects in \(V_t\).

The author was supported by NSF grant DMS-1701532. The author would like to thank Inna Entova-Aizenbud for reading the first version of the paper and pointing out typos and unclear arguments.

2. The category \(\text{Rep}\ GL(m|n)\) and \(DS\) functors

2.1. Translation functors. Let \(\text{Rep}\ GL(m|n)\) denote the category of finite-dimensional \(GL(m|n)\)-modules. Let \(\mu = (a_1, \ldots, a_m|b_1, \ldots, b_n) \in \mathbb{Z}^{m+n}\) satisfy the condition
\[a_1 \geq a_2 \geq \cdots \geq a_m, b_1 \geq b_2 \geq \cdots \geq b_n.\] For every such \(\mu\) there are three canonical objects in \(\text{Rep}\, GL(m|n)\):

1. The simple module \(S(\mu)\) with highest weight \(\mu\);
2. The Kac module \(K(\mu) := U(\mathfrak{gl}(m|n)) \otimes_{U(\mathfrak{p})} S_0(\mu)\), where \(\mathfrak{p}\) is the parabolic subalgebra with Levi subalgebra \(\mathfrak{gl}(m|n)_\mathfrak{p}\), \(S_0(\mu)\) is the simple \(\mathfrak{gl}(m|n)_\mathfrak{p}\)-module with highest weight \(\mu\);
3. The indecomposable projective cover \(P(\mu)\) of \(S(\mu)\).

The category \(\text{Rep}\, GL(m|n)\) is the highest weight category, \([Z]\). We denote by \(\mathcal{J}_\text{red}[\text{Rep}\, GL(m|n)]\) the reduced Grothendieck group of \(\text{Rep}\, GL(m|n)\) and set
\[
\mathcal{J}_{m|n} := \mathcal{J}_\text{red}[\text{Rep}\, GL(m|n)] \otimes_{\mathbb{Z}} \mathbb{C}.
\]

It was a remarkable discovery of J. Brundan that \(\mathcal{J}_{m|n}\) has a natural structure of \(\mathfrak{sl}(\infty)\)-module, \([B]\). To define it let us consider translation functors \(E_a, F_a : \text{Rep}\, GL(m|n) \to \text{Rep}\, GL(m|n)\) defined in the following way. There is a canonical \(\mathfrak{gl}(m|n)\)-invariant map \(\omega : \mathbb{C} \to \mathfrak{gl}(m|n) \otimes \mathfrak{gl}(m|n)\) usually called the Casimir element. Let \(V_{m|n}\) be the standard \(GL(m|n)\)-module and \(M\) be an arbitrary object of \(\text{Rep}\, GL(m|n)\). Let \(\Omega\) be the composition map
\[
\mathbb{C} \otimes M \otimes V_{m|n} \xrightarrow{\omega \otimes \text{id}} \mathfrak{gl}(m|n) \otimes \mathfrak{gl}(m|n) \otimes M \otimes V_{m|n} \xrightarrow{\text{id} \otimes s \otimes \text{id}} \mathfrak{gl}(m|n) \otimes M \otimes \mathfrak{gl}(m|n) \otimes V_{m|n} \xrightarrow{a_M \otimes a_{V_{m|n}}} M \otimes V_{m|n},
\]
where \(s\) is the braiding in \(\text{Rep}\, GL(m|n)\) defined by the sign rule and \(a_M, a_{V_{m|n}}\) are the action maps. Let \(E_a(M)\) be the generalized eigenspace of \(\Omega\) in \(M \otimes V_{m|n}\) with eigenvalue \(a\). Similarly, we define \(F_a(M)\) as the generalized eigenspace of \(\Omega'\) in \(M \otimes V_{m|n}^*\) with eigenvalue \(a\), where \(\Omega'\) is defined as above with substitution of \(V_{m|n}^*\) in place of \(V_{m|n}\).

The following theorem is a direct consequence of results in \([B]\).

Theorem 2.1. (1) \(E_a, F_a\) are non-zero only for \(a \in \mathbb{Z}\);
(2) \(E_a, F_a\) are biadjoint exact endofunctors of \(\text{Rep}\, GL(m|n)\);
(3) Let \(e_a, f_a : J_{m|n} \to J_{m|n}\) be the induced \(\mathbb{C}\)-linear maps. Then \(e_a, f_a\) satisfy the Chevalley-Serre relations for \(A_\infty\). Hence \(J_{m|n}\) is an \(\mathfrak{sl}(\infty)\)-module.
(4) The subspace of \(\Lambda_{m|n} \subset J_{m|n}\) generated by classes of all Kac modules \([K(\mu)]\) is an \(\mathfrak{sl}(\infty)\)-submodule isomorphic to \(\Lambda^m \mathcal{V} \otimes \Lambda^n \mathcal{V}\).

We need the exact description of the socle filtration of \(J_{m|n}\) obtained in \([B, HPS]\), Corollary 29.

Proposition 2.2. The \(\mathfrak{sl}(\infty)\)-module \(J_{m|n}\) has finite length. Furthermore, the socle filtration of \(J_{m|n}\) is given by the formula
\[
\text{soc}^i(J_{m|n})/\text{soc}^{i-1}(J_{m|n}) \simeq S_{m-i+1|n-i+1}^i.
\]
In particular, the socle of \(J_{m|n}\) is a simple \(\mathfrak{sl}(\infty)\)-module isomorphic to \(S_{m|n}\). It is identified with the subspace generated by classes of all projective modules \([P(\mu)]\).
2.2. **DS-functor.** Fix an odd \(x \in \mathfrak{gl}(m|n)\) such that \([x, x] = 0\) and \(\text{rk } x = 1\). Define a functor \(DS_x\) from \(\text{Rep } GL(m|n)\) to the category of vector superspaces by setting
\[
DS_x(M) = \text{Ker} x_M / \text{Im} x_M.
\]
It is shown in [DS] that \(M_x\) has a natural structure of \(GL(m-1|n-1)\)-module and \(DS_x\) is a symmetric monoidal functor
\[
\text{Rep } GL(m|n) \to \text{Rep } GL(m-1|n-1).
\]
Furthermore, although \(DS_x\) is not an exact functor it has the following property pointed out by V. Hinich. For the proof see [HPS] Lemma 30.

Lemma 2.3. Every exact sequence \(0 \to N \to M \to K \to 0\) of \(GL(m|n)\)-modules induces the exact sequence
\[
0 \to E \to DS_x N \to DS_x M \to DS_x K \to E' \to 0
\]
for certain \(E \in \text{Rep } GL(m-1|n-1)\) and \(E' \simeq E \otimes C^{0|1}\).

It follows immediately from Lemma 2.3 that \(DS_x\) induces a homomorphism of complexified reduced Grothendieck groups \(ds_x : J_{m|n} \to J_{m-1|n-1}\). While \(DS_x\) and \(DS_y\) are not isomorphic if \(x\) and \(y\) are not conjugate by the adjoint action of \(GL(m) \times GL(n)\), the homomorphism \(ds_x\) does not depend on a choice of \(x\). In [HR] the homomorphism \(ds_x\) was constructed explicitly in terms of supercharacters and the kernel of \(ds_x\) was computed.

Lemma 2.4.

1. \(DS_x\) commutes with translation functors \(E_a, F_a\) and hence \(DS_x\) induces a homomorphism \(ds_x : J_{m|n} \to J_{m-1|n-1}\) of \(\mathfrak{sl}(\infty)\)-modules.

2. The kernel of \(ds_x\) coincides with \(\Lambda_{m|n}\).

Proof. For (1) see Lemma 32 in [HPS]. For (2) see [HR]. \(\square\)

3. **The category \(V_t\), translation functors and categorification**

3.1. **The Deligne category \(D_t\).** In [DM] Deligne and Milne constructed a family \(\{D_t = \text{Rep } GL_t \mid t \in \mathbb{C}\}\) of symmetric monoidal rigid categories satisfying the following properties:

1. \(D_t\) is a universal additive symmetric monoidal Karoubian category generated by a dualizable object \(V_t\) of dimension \(t\);

2. The indecomposable objects of \(D_t\) are in bijection with bipartitions \(\lambda = (\lambda^+, \lambda^-)\), we denote the corresponding indecomposable objects by \(T(\lambda)\);

3. If \(t \notin \mathbb{Z}\), then \(\dim \text{Hom}(T(\lambda), T(\nu)) = \delta_{\lambda,\mu}\) and hence the category \(D_t\) is an abelian semisimple category;

4. If \(t \in \mathbb{Z}\), and \(m - n = t\), then there exists a (unique up to isomorphism) symmetric monoidal functor \(F_{m|n} : D_t \to \text{Rep } GL(m|n)\) which sends \(V_t\) to \(V_{m|n}\). This functor is full.
The functor $F_{m|n}$ was studied in [CW]. In particular, it was computed on the indecomposable objects of \mathcal{D}_t. We call a bipartition $\lambda = (\lambda^\bullet, \lambda^\circ)$ an $(m|n)$-cross if for there exists $0 \leq k \leq m$ such that $\lambda^\bullet_{k+1} + (\lambda^\circ)_{m-k+1} \leq n$. Here μ^T stands for the conjugate of μ. Denote by $C(m|n)$ the set of all $(m|n)$-crosses.

Theorem 3.1.

1. $F_{m|n}T(\lambda) \neq 0$ if and only if $\lambda \in C(m|n)$.
2. The set $\{F_{m|n}T(\lambda) \mid \lambda \in C(m|n)\}$ is a complete set of pairwise non-isomorphic indecomposable direct summands in tensor powers $V^\otimes_p (V^*_m)^\otimes_q$ for $p, q \geq 0$.

Proof. The first statement is Theorem 8.7.6 in [CW] and the second is the particular case of Theorem 4.7.1 in [CW]. \hfill \Box

3.2. The abelian envelope of \mathcal{D}_t

Let $t \in \mathbb{Z}$. Then \mathcal{D}_t is not abelian. In [EHS] we construct an abelian envelope \mathcal{V}_t of \mathcal{D}_t. We need here some particular features of this construction. Let $m - n = t$ and let $\text{Rep}^k GL(m|n)$ be the abelian full subcategory of $\text{Rep} GL(m|n)$ containing mixed tensor powers $V^\otimes_p (V^*_m)^\otimes_q$ for $p, q \leq k$. The following statement is crucial for our construction.

Lemma 3.2. Let $m, n >> k$ and $x \in \mathfrak{gl}(m|n)_1$ be a self-commuting element of rank 1. Then the restriction of DS_x to $\text{Rep}^k GL(m|n)$ defines an equivalence of the categories $\text{Rep}^k GL(m|n) \to \text{Rep}^k GL(m-1|n-1)$.

That allows us to define the abelian category \mathcal{V}_t^k as the inverse limit $\lim_{\leftarrow} \text{Rep}^k GL(m|n)$. Then set

$$\mathcal{V}_t := \lim_{\leftarrow} \mathcal{V}_t^k.$$

We have an exact fully faithful functor $I : \mathcal{D}_t \to \mathcal{V}_t$. Slightly abusing notation we write $T(\lambda) = IT(\lambda)$.

Lemma 3.3. For every $(m|n)$ such that $m - n = t$ there exists a symmetric monoidal functor $DS_{m|n} : \mathcal{V}_t \to \text{Rep} GL(m|n)$. This functor is not exact but satisfies the condition of Lemma 2.3. Moreover, $DS_{m|n} \circ I$ is isomorphic to $F_{m|n}$.

Proof. It suffices to construct $DS_{m|n} : \mathcal{V}_t^k \to \text{Rep} GL(m|n)$. We identify V_t^k with $\text{Rep}^k GL(m'|n')$ for sufficiently large m', n' and define $DS_{m|n} : \text{Rep}^k GL(m'|n') \to \text{Rep}^k GL(m|n)$ as a composition of the functors $DS_{x_r} \circ DS_{x_{r-1}} \circ \ldots DS_{x_1}$ for some self-commuting rank 1 odd elements $x_i \in \mathfrak{gl}(m+i|n+i)$ with $r = m'-m = n'-n$. Lemma 3.2 ensures that this composition does not depend on the choice of $(m'|n')$ and that passing to the direct limit is well-defined. By construction $DS_{m|n}$ satisfies Lemma 2.3. Finally, $DS_{m|n} \circ I$ is a symmetric monoidal functor from \mathcal{D}_t to $\text{Rep}^k GL(m|n)$ which maps V_t to V_m. Hence by (4) it must be isomorphic to $F_{m|n}$. \hfill \Box

Remark 3.4. Construction of $DS_{m|n}$ given in the above proof depends on a choice of $x_s \in \mathfrak{gl}(m+s,n+s)_1$. Apriori there may be several non-isomorphic functors satisfying the condition of Lemma 3.3. We suspect however that all these functors
Proof. The second assertion is a consequence of (3.1) and (3.2). The first assertion follows from the fact that \(|\lambda| + |\lambda^\circ| \), and \(K(\lambda, \mu) \) has 1-s on the main diagonal.

\[K(\lambda, \mu) = \sum_{\mu \subset \lambda} K(\lambda, \mu)[L(\mu)], \quad [T(\lambda)] = \sum_{\mu \subset \lambda} K(\lambda, \mu)[V(\mu)]. \]

\textbf{3.4. Translation functors and categorical action of} \(\mathfrak{sl}(\infty) \). One readily sees that \(\mathfrak{gl}(V_t) := V_t \otimes V_t^* \) is a Lie algebra object in \(V_t \). Furthermore, there exists a unique canonical morphism \(\omega : 1 \to \mathfrak{gl}(V_t) \). For every \(X \in V_t \) we do have the action morphism \(a_X : \mathfrak{gl}(V_t) \otimes X \to X \). Hence in the same way as for \(\text{RepGL}(m|n) \) we
can define the translation functors E_aX and F_aX as generalized eigenspaces with eigenvalue a for

$$\Omega : X \otimes V_t \xrightarrow{\omega \otimes \text{id}} \mathfrak{gl}(V_t) \otimes \mathfrak{gl}(V_t) \otimes X \otimes V_t \xrightarrow{\text{id} \otimes s \otimes \text{id}} \mathfrak{gl}(V_t) \otimes \mathfrak{gl}(V_t) \otimes X \otimes V_t$$

and

$$\Omega' : X \otimes V^*_t \xrightarrow{\omega \otimes \text{id}} \mathfrak{gl}(V_t) \otimes \mathfrak{gl}(V_t) \otimes X \otimes V^*_t \xrightarrow{\text{id} \otimes s \otimes \text{id}} \mathfrak{gl}(V_t) \otimes \mathfrak{gl}(V_t) \otimes X \otimes V^*_t,$$

respectively.

The following theorem is proven in [E]

Theorem 3.6. Let $t \in \mathbb{Z}$.

1. E_a, F_a are non-zero only for $a \in \mathbb{Z}$;
2. E_a, F_a are biadjoint exact endofunctors of V_t;
3. Let $e_a, f_a : K[V_t]_C \to K[V_t]_C$ be the induced \mathbb{C}-linear maps. Then e_a, f_a satisfy the Chevalley-Serre relations for A_∞. Hence $K[V_t]_C$ is an $\mathfrak{sl}_2(\infty)$-module.
4. There is a unique isomorphism $f : K[V_t]_C \to \mathfrak{g}_t^\vee \otimes \mathfrak{g}^\vee$ of $\mathfrak{sl}_2(\infty)$-modules such that $f([V(\lambda)]) = v_\lambda := w_\lambda \otimes u_\lambda$.

4. Proof of the main theorem

Recall the functor $DS_{m|n}$ defined in Lemma 3.3.

Lemma 4.1. We have the following commutative diagrams of functors:

$$
\begin{array}{ccc}
\mathcal{V}_t & \xrightarrow{E_aF_a} & \mathcal{V}_t \\
DS_{m|n} \downarrow & & \downarrow DS_{m|n} \\
\text{RepGL}(m|n) & \xrightarrow{E_aF_a} & \text{RepGL}(m|n)
\end{array}
$$

Proof. By Lemma 2.4 one has the following commutative diagram

$$
\begin{array}{ccc}
\text{RepGL}(m|n) & \xrightarrow{E_aF_a} & \text{RepGL}(m|n) \\
\downarrow DS & & \downarrow DS \\
\text{RepGL}(m-1|n-1) & \xrightarrow{E_aF_a} & \text{RepGL}(m-1|n-1)
\end{array}
$$

Hence the statement follows from definition of \mathcal{V}_t and the proof of Lemma 3.3.

Corollary 4.2. The induced map $d_{m|n} : K[V_t]_C \to \text{RepGL}(m|n)_{\text{red}}$ is a homomorphism of $\mathfrak{sl}_2(\infty)$-modules.

Lemma 4.3.

1. $d_{m|n}([T(\lambda)]) \neq 0$ if and only if $\lambda \in C(m|n)$.
Theorem 3.1 (1). By Lemma 3.3 we have
Proof.

It can be written as

Corollary 4.4. The quotient $\text{Ker} ds_{m-1|n-1} / \text{Ker} ds_m$ is isomorphic to S_m as an $\mathfrak{sl}(\infty)$-module.

Proof. Let us write $ds_{m-1|n-1} = ds_x ds_m$. Then $\text{Ker} ds_{m-1|n-1} / \text{Ker} ds_m$ is isomorphic to $\text{Im} ds_m \cap \text{Ker} ds_x$. Furthermore Lemma [4.3] implies that $\text{Im} ds_m$ is spanned by $ds_m([T(\lambda)])$ for all $\lambda \in C(m|n)$ and $\text{Im} ds_m \cap \text{Ker} ds_x$ is spanned by classes of all indecomposable projective modules in $\text{Rep} GL(m|n)$. Therefore the statement follows from Proposition [2.2] \hfill \Box

Lemma 4.5.

$\bigcap_{m-n=t} \text{Ker} ds_m = 0$.

Proof. Suppose $ds_m([X]) = 0$ for all m,n such that $m - n = t$. There exists k such that $[X] \in K[Y_t^k]_C$. But $ds_m : K[Y_t^k]_C \to K[\text{Rep} GL(m|n)]_C$ is injective for sufficiently large m,n. Therefore $[X] = 0$. \hfill \Box
Corollary 4.4 and Lemma 4.5 prove Theorem 1.1(1). Indeed, it suffices to put

\[\mathcal{R}_{s}^t := \begin{cases} \ker ds_{k, t-1, k-1} & \text{if } t \geq 0, \\ \ker ds_{k-1, t-1, k-1} & \text{if } t < 0. \end{cases} \]

Now let us prove Theorem 1.1(2). We consider the case \(t \geq 0 \), the case of negative \(t \) is similar. Note that \(\mathcal{R} \) satisfies the following property: for any \(u \in \mathcal{R} \), \(e_a u = f_a u = 0 \) for all but finitely many \(a \). Let \(\mathfrak{t}^-(\text{resp. } \mathfrak{t}^+) \) be the Lie subalgebra of \(\mathfrak{sl}(\infty) \) generated by \(e_a, f_a \) for \(a < s \) (resp., \(a > s \)). Let \(M^+_s := M^v \). Then \(M^+_s \) is a \(\mathfrak{t}^+ \)-module. If \(M \) is a submodule of \(\mathcal{R} \) then \(M = \bigcup_{s \leq 0} M^+_s \) by the above property. In particular, if \(M, N \) are two submodules of \(\mathcal{R} \) such that \(M^+_s = N^+_s \) for all \(s \leq s_0 \), then \(M = N \). A simple computation shows that for any \(s < 0 \)

\[\mathcal{R}_{s}^+ \simeq \Lambda^{-s-1}((V^v)_{s}^+) \otimes \Lambda^{t-s-1}(V^+_s). \]

Note that \(\mathfrak{t}^+ \) is isomorphic to \(\mathfrak{sl}(\infty) \) and \((V^v)^+_s \) and \(V^+_s \) are isomorphic to the standard and costandard \(\mathfrak{t}^+ \)-modules respectively. A description of the lattice of all submodules of \(\mathcal{R}_{s}^+ \) follows immediately from the socle filtration of \(\mathcal{R}_{s}^+ \), see [PS]. Since every layer of this socle filtration is simple, the only submodules of \(\mathcal{R}_{s}^+ \) are members of the socle filtration \(\text{soc}^{r+1}(\mathcal{R}_{s}^+) \) for some \(0 \leq r \leq -1 - s \). Furthermore, \(\text{soc}^{r+1}(\Lambda^{-s-1}((V^v)_{s}^+) \otimes \Lambda^{t-s-1}(V^+_s)) \) is cyclic and is generated by a monomial vector \(x \) such that \(c^{r+1}(x) = 0, c'(x) \neq 0 \) for the contraction map

\[c : \Lambda^k((V^v)^-_s) \otimes \Lambda^{t+k}(V^+_s) \to \Lambda^{k-1}((V^v)^-_s) \otimes \Lambda^{t+k-1}(V^+_s). \]

For any \(p \geq 0 \) set

\[v(p) := (w_{t-1} \land w_{t-2} \land \ldots) \otimes (u_{t+p} \land u_{t+p-1} \land \ldots \land u_{t+1} \land u_{t-p} \land u_{t-p-2} \land \ldots). \]

By above \(\text{soc}^{r+1}(\mathcal{R}_{s}^+) \) is generated by \(v(-r - s - 1) \). Passing to the direct limit for \(s \to -\infty \) we obtain that every submodule of \(\mathcal{R}_{s}^+ \) is generated by \(v(p) \) for some \(p \geq 0 \). Thus, we obtain that every submodule of \(\mathcal{R} \) is generated \(v(p) \). On the other hand, it is not difficult to see that \(\mathcal{R}^v \) is generated by \(v(r) \). The statement follows.

Remark 4.6. The last argument uses presentation of \(\mathcal{R} \) as a direct limit. Indeed, for the directed system of algebras \(\cdots \subset \mathfrak{t}^+_{s} \subset \mathfrak{t}^-_{s-1} \subset \cdots \) (here \(s \to -\infty \)) we get

\[\mathcal{R} = \lim_{\to} \Lambda^{-s+t-1}((V^v)^-_s) \otimes \Lambda^{-s-1}(V^+_s) \]

for \(t \geq 0 \) and similarly

\[\mathcal{R} = \lim_{\to} \Lambda^{-s-1}((V^v)^-_s) \otimes \Lambda^{-s-t-1}(V^+_s) \]

for \(t \leq 0 \).
5. Blocks in \(\mathcal{V}_t \) and dimensions of tilting and standard objects.

The module \(\mathcal{R} \) is a weight \(\mathfrak{sl}(\infty) \)-module. To simplify bookkeeping we embed \(\mathfrak{sl}(\infty) \hookrightarrow \mathfrak{gl}(\infty) \) and define a \(\mathfrak{gl}(\infty) \)-action on \(\mathcal{R} \) in the natural way. We fix the Cartan subalgebra \(\mathfrak{h} \) of the diagonal matrices in \(\mathfrak{gl}(\infty) \), choose the basis \(\{ E_{i,i} \mid i \in \mathbb{Z} \} \) and denote by \(\{ \theta_i \mid i \in \mathbb{Z} \} \) the dual system in \(\mathfrak{h}^* \). It is easy to compute the weight \(\text{wt}(v_\lambda) \) of the monomial vector \(v_\lambda \). Precisely for a bipartition \(\lambda \) define the sets

\[
A(\lambda) := \{ \lambda_i^+ \mid \lambda_i^+ + t - i \neq \lambda_j^- - j \ \forall j \},
\]

\[
B(\lambda) := \{ \lambda_j^- \mid \lambda_j^- + t - j \neq \lambda_i^+ - i \ \forall i \}.
\]

It follows immediately from definition that \(A(\lambda) \) and \(B(\lambda) \) are finite subsets of \(\mathbb{Z} \) and \(|B(\lambda)| - |A(\lambda)| = t \).

Example 5.1. If \(\lambda = (0,0) \) then \(A(\lambda) = \emptyset \), \(B(\lambda) = \{0,1,\ldots,t-1\} \) for \(t > 0 \) and \(A(\lambda) = \{-1,\ldots,t\} \), \(B(\lambda) = \emptyset \) for \(t < 0 \). For \(t = 0 \) \(A(\lambda) = B(\lambda) = \emptyset \).

Then we have

\[
\text{wt}(v_\lambda) = - \sum_{a \in A(\lambda)} \theta_a + \sum_{b \in B(\lambda)} \theta_b.
\]

Theorem 5.2. For a weight \(\theta \) of \(\mathcal{R} \) let \(\mathcal{V}_t^\theta \) denote the full subcategory of \(\mathcal{V}_t \) consisting of objects with simple constituents isomorphic to \(L(\lambda) \) with \(\text{wt}(v_\lambda) = \theta \). Then \(\mathcal{V}_t \) is the direct sum of \(\mathcal{V}_t^\theta \). Moreover, \(\mathcal{V}_t^\theta \) is a block in \(\mathcal{V}_t \) for every \(\theta \).

Proof. Since \(\mathcal{V}_t^k \) is the highest weight category for every \(k \) we have

\[
\text{Ext}^1(L(\lambda), L(\mu)) \neq 0 \Rightarrow [V(\lambda) : L(\mu)] \neq 0 \text{ or } [V(\mu) : L(\lambda)] \neq 0.
\]

On the other hand, since \(V(\lambda) \) is indecomposable all its simple constituents lie in the same block of \(\mathcal{V}_t \). Combinatorial description of the multiplicities \([V(\lambda) : L(\mu)] \neq 0 \) is given in \(\square \). It is clear from this description that \([V(\lambda) : L(\mu)] \neq 0 \) implies \(\text{wt}(v_\lambda) = \text{wt}(v_\mu) \). Let \(\sim \) be the equivalence closure of \([V(\lambda) : L(\mu)] \neq 0 \). Then a simple combinatorial argument implies that \(\lambda \sim \mu \) if and only if \(\text{wt}(v_\lambda) = \text{wt}(v_\mu) \). \(\square \)

Let us denote by \(\dim M \) the categorical dimension of an object \(M \) in \(\mathcal{V}_t \). Since \(DS_{m|n} \) is a symmetric monoidal functor it preserves categorical dimension. Therefore for every \(m, n \) such that \(m - n = t \) we have

\[
\dim M = \text{sdim} DS_{m|n} M.
\]

We call weight \(\theta \) positive (resp., negative) if \(\theta = \sum_{c \in C} \theta_c \) (resp., \(\theta = - \sum_{c \in C} \theta_c \)). In this definition \(\theta = 0 \) is both positive and negative.

Lemma 5.3. (1) If \(\theta \) is neither positive nor negative, then \(\dim M = 0 \) for every object \(M \) in \(\mathcal{V}_t^\theta \).
(2) If $t < 0$ and $\theta = \sum_{c \in C} \theta_c$ is positive (resp., $t \geq 0$ and $\theta = -\sum_{c \in C} \theta_c$ is negative), then for every object M in \mathcal{V}_t^θ we have $\dim M = \kappa(M) q(\theta)$ for some integer $\kappa(M)$ and
\[q(\theta) = \frac{\prod_{a < b, a, b \in C} (b - a)}{\prod_{j=1}^{[\kappa - 1]} j!}. \]

Remark 5.4. If $t = 0$ the only positive (and negative) weight θ is zero and $q(\theta) = 1$.

Proof. Say $t \geq 0$. All weights of $\Lambda_{t|0}$ are negative. Since $d_{s|0} : \mathcal{R} \to \Lambda_{t|0}$ is a homomorphism of $\mathfrak{sl}(\infty)$-modules $d_{s|0}[M] = 0$ for every $M \in \mathcal{V}_t^\theta$. Hence the statement is a consequence of (5.2). Similarly for $t < 0$ we have $d_{s|0^{-t}} : \mathcal{R} \to \Lambda_{0^{-t}}$ is zero since all weights of $\Lambda_{0^{-t}}$ are positive. The proof of (1) is complete.

Let us prove (2). Note in $\Lambda_{t|0}$ and $\Lambda_{0^{-t}}$ all weight spaces are one-dimensional and the corresponding categories of $GL(|t|)$-supermodules are semisimple. Therefore $D_{s|0}M$ (resp., $D_{s|0^{-t}}M$) is a direct sum of several copies of a certain irreducible representation $W(\theta)$ of $GL(|t|)$. The highest weight $\nu(\theta)$ of $W(\theta)$ can be easily expressed in terms of $C = \{c_1 > c_2 > \cdots > c_{|t|}\}$. For $t \geq 0$ $\nu(\theta) = (c_1 + 1 - t, c_2 + 2 - t, \ldots, c_t)$ and for $t < 0$ $\nu(\theta) = (c_1 + 1, \ldots, c_t - t)$. Then by the Weyl dimension formula we have $\text{sdim} W(\theta) = \pm q(\theta)$. This implies (b). \hfill \Box

Remark 5.5. It is proven in [DS] that $D_{s|0} \colon \text{Rep} GL(m|n) \to \text{Rep} GL(m - k|n - k)$ maps a block to a block corresponding to the same weight of $\mathfrak{sl}(\infty)$. Hence $D_{s|0^{-t}}$ induces a functor from a block \mathcal{V}_t^θ to the corresponding block $\text{Rep}^\theta GL(m|n)$. In particular, $D_{s|0}$ (resp., $D_{s|0^{-t}}$) annihilates any object in \mathcal{V}_t^θ if θ is not negative (resp., not positive).

Lemma 5.6. Let $t \geq 0$ (resp., $t < 0$). Then
\[\text{Hom}_{\mathfrak{sl}(\infty)}(\mathcal{R}, \Lambda^t(\mathcal{V})) = \mathbb{C}, \] respectively,
\[\text{Hom}_{\mathfrak{sl}(\infty)}(\mathcal{R}, \Lambda^{-t}(\mathcal{V})) = \mathbb{C}. \]

Proof. Immediate consequence of Theorem 1.1. \hfill \Box

Next we are going to construct a homomorphism $\varphi : \mathcal{R} \to \Lambda^t(\mathcal{V})$, (resp., $\varphi : \mathcal{R} \to \Lambda^{-t}(\mathcal{V})$) by defining it on the monomial basis $v_\lambda = w_\lambda \hat{\otimes} u_\lambda$. Let $t > 0$ and
\[w_\lambda = u_i \wedge u_2 \wedge \ldots, \quad w_\lambda = w_{i_1} \wedge w_{j_2} \wedge \ldots. \]
If $\text{wt}(v_\lambda) = -\theta_{a_1} - \cdots - \theta_{a_t}$ is negative we can write
\[w_\lambda = (-1)^{s(\lambda)} w_{a_1} \wedge \cdots \wedge w_{a_t} \wedge w_{i_1} \wedge \cdots w_{i_2} \wedge, \]
and then set
\[\varphi(v_\lambda) := (-1)^{s(\lambda)} \prod_{i_k \neq k} (-1)^{i_k} w_{a_1} \wedge \cdots \wedge w_{a_t}. \]
If $\text{wt}(v_\lambda)$ is not negative we set $\varphi(v_\lambda) := 0$. The easiest way to see that φ commutes with action of $\mathfrak{sl}(\infty)$ is to realize it as the direct limit as in Remark 4.6. Then φ is the direct limit of contraction maps $\Lambda^{-s-t}(\mathcal{V}) \otimes \Lambda^{-s}(\mathcal{V}) \to \Lambda^t(\mathcal{V})$.

TENSOR PRODUCT OF THE FOCK REPRESENTATION WITH ITS DUAL

11
Similarly, for negative t with $\text{wt}(v_\lambda) = \theta_{a_1} + \cdots + \theta_{a_{-t}}$ we write

$$u_\lambda^o = (-1)^{s(\lambda)}u_{a_1} \wedge \cdots \wedge u_{a_{-t}} \wedge u_{j_1} \wedge \cdots \wedge w_{j_2} \wedge,$$

and we set $\varphi(v_\lambda) = (-1)^{r(\lambda)} \prod_{j_k \neq -k} (-1)^{j_k} u_{a_1} \wedge \cdots \wedge u_{a_{-t}}$. In both cases if $\theta = \text{wt}(\lambda)$ is positive or negative we can write

$$\varphi(v_\lambda) = (-1)^{r(\lambda)}[W(\theta)],$$

for certain $r(\lambda) \in \mathbb{Z}$.

Proposition 5.7. If $t \geq 0$ and θ is negative then dimension of $V(\lambda)$ in \mathcal{V}_t^θ equals $(-1)^{r(\lambda)}q(\theta)$.

If $t < 0$ and θ is positive then dimension of $V(\lambda)$ in \mathcal{V}_t^θ equals $(-1)^{r(\lambda)+\frac{t(t-1)}{2}+\sum_{i=1}^{t} a_i}q(\theta)$.

Proof. First let us see that $ds_{t|0}$ (resp., $ds_{0|-t}$) equals φ. Indeed, if 1 denotes the unit object in \mathcal{V}_t then $DS_{t|0}(1)$ (resp., $DS_{0|-t}(1)$) is the trivial module. Hence $ds_{t|0}$ (resp., $ds_{0|-t}$) coincides with φ on the vacuum vector $v_{0|0}$. Then the statement follows from Lemma 5.6.

Let $t \geq 0$ then $ds_{t|0}(v_{\lambda}) = (-1)^{r(\lambda)}[W(\theta)]$ and $\text{sdim}W(\theta) = q(\theta)$ since $W(\theta)$ is even. This implies the lemma by (5.2).

Let $t < 0$ then $ds_{0|-t}(v_{\lambda}) = (-1)^{r(\lambda)}[W(\theta)]$ and the parity of $W(\theta)$ is equal to the parity of the highest weight $\nu(\theta)$. The latter is equal to the parity of $\sum_{i=1}^{t} a_i + \frac{t(t-1)}{2}$. Hence the lemma.

Remark 5.8. Let us explain how to compute $r(\lambda)$ in terms of weight diagram f_λ (see Section 4.1 in [E]). Recall that $f_\lambda : \mathbb{Z} \to \{<,>,\times,\circ\}$ is defined as follows:

- $f_\lambda(i) = \circ$ if u_i and w_i do not occur in v_λ;
- $f_\lambda(i) = <$ if u_i occurs in v_λ and w_i does not;
- $f_\lambda(i) = >$ if w_i occurs in v_λ and u_i does not;
- $f_\lambda(i) = \times$ if both u_i and w_i occur in v_λ.

We represent f_λ graphically by putting symbol $f_\lambda(i)$ into position i on the number line. By definition $f_\lambda(i) = \circ$ for $i >> 0$ and $f_\lambda(i) = \times$ for $i << 0$. If $\theta = \text{wt}(\lambda)$ is positive then there are no symbols $>$ and if it is negative there are no symbol $<$. Symbols $<, >$ are called the core symbols. The core diagram is obtained from f_λ by replacing all \times-s by \circ-s. Furthermore, $L(\lambda)$ and $L(\mu)$ are in the same block if and only if the core diagrams of λ and μ coincide. Then $s(\lambda)$ equals the sum over all core symbols of the number of \times to the right of that symbol. Now let

$$u(\lambda) = \begin{cases} \sum_{i \geq 0, f_\lambda(i) = \times} i & \text{for } t \geq 0, \\ \sum_{i <- t, f_\lambda(i) = \times} i & \text{for } t < 0 \end{cases}.$$

Then $r(\lambda) = u(\lambda) + s(\lambda)$.

Proposition 5.9. Let θ be negative or positive. There is exactly one up to isomorphism tilting object $T(\lambda)$ in the block \mathcal{V}_t^θ such that $\dim T(\lambda) \neq 0$. This is a unique tilting object in \mathcal{V}_t^θ such that $T(\lambda) \simeq V(\lambda) \simeq L(\lambda)$.
Proof. We start with proving that \(\dim T(\lambda) \neq 0 \) implies \(T(\lambda) \simeq V(\lambda) \) and deal with the case \(t \geq 0 \). The other case is similar. Every \(T(\lambda) \) is a direct summand in \(V_t^{\otimes p} \otimes (V^*_t)^{\otimes q} \), therefore it is an indecomposable summand in \(F_{a_1} \ldots F_{a_q} E_{b_1} \ldots E_{b_q} 1 \). Note that \(1 = V(\emptyset, \emptyset) \). An easy computation shows that for every \(\kappa e_a(v_\kappa) \) and \(f_a(v_\kappa) \) is zero, \(v_\mu \) or a sum \(v_\mu + v_\nu \). Moreover, the latter case is only possible if \(\text{wt}(\kappa) \) is not positive. If \(T(\lambda) \) is not isomorphic to \(V(\lambda) \) then for some \(k \)

\[F_{a_k} \ldots F_{a_q} E_{b_1} \ldots E_{b_q} 1 \in V^0_t \]

for non-positive \(\theta \). Then by Remark 5.5 for some \(k \geq 1 \)

\[DS_{t|0} F_{a_k} \ldots F_{a_q} E_{b_1} \ldots E_{b_q} 1 = 0 \]

and hence

\[DS_{t|0} F_{a_1} \ldots F_{a_q} E_{b_1} \ldots E_{b_q} 1 = 0 \]

But then \(DS_{t|0}(T_\lambda) = 0 \) which implies \(\dim T(\lambda) = 0 \).

From combinatorial description of \(K(\lambda, \mu) \) given in [E] we see that if in \(f_\lambda \) there is \(\circ \) to the left of some \(\times \) then \(K(\lambda, \mu) = 1 \) for at least one \(\mu \neq \lambda \). If the core diagram is fixed then the re is exactly one diagram such that all \(\times \)-s lie to the left of all \(\circ \)-s. That implies uniqueness of \(\lambda \) in every block. We can also characterize \(\lambda \) as the minimal weight in the block. \(\square \)

References

B. J. Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra \(\mathfrak{gl}(m|n) \), J. Amer. Math. Soc. 16 (2003), no. 1, 185–231.

CW. J. Comes, B. Wilson, Deligne’s category \(\text{Rep}(GL_\delta) \) and representations of general linear supergroups, Represent. Theory 16 (2012), 568–609; arXiv:1108.0652.

DM. P. Deligne, J.S. Milne, Tannakian Categories, Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Math. 900 (1982), 101–228.

DS. M. Duflo, V. Serganova, On associated variety for Lie superalgebras, arXiv:math/0507198.

E. I. Entova-Aizenbud, Categorical actions on Deligne’s categories, J. of Algebra 504 (2018), 391–431.

EHS. I. Entova-Aizenbud, V. Serganova, V. Hinich, Deligne categories and the limit of categories \(\text{Rep}(GL(m|n)) \), to appear in IMRN; arXiv:1511.07699.

HR. Crystal Hoyt, Shifra Reif, Grothendieck rings for Lie superalgebras and the Duflo–Serganova functor, Algebra Number Theory 12 (2018), no. 9, 2167–2184.

HPS. Crystal Hoyt, Ivan Penkov, Vera Serganova, Integrable \(\mathfrak{sl}(\infty) \)-modules and the category \(\mathcal{O} \) for \(\mathfrak{gl}(m|n) \). Journal LMS, DOI:10.112/jlms.12176.

PS. I. Penkov, K. Styrkas, Tensor representations of infinite-dimensional root-reductive Lie algebras, in Developments and Trends in Infinite-Dimensional Lie Theory, Progr. Math. 288, Birkhäuser (2011), 127–150.

Z. Y. M. Zou, Categories of finite-dimensional weight modules over type I classical Lie superalgebras, J. of Algebra, 180 (1996),459–482.

DEPT. OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT BERKELEY, BERKELEY, CA 94720

E-mail address: serganov@math.berkeley.edu