Clinical, demographic and histopathological prognostic factors for urothelial carcinoma of the bladder

Ulku Kucuk¹, Emel Ebru Pala¹, Ebru Cakir¹, Ozlem Sezer¹, Umit Bayol¹, Rauf Taner Divrik², Ozgur Cakmak³

¹Izmir Tepecik Research and Training Hospital, Department of Pathology, Izmir, Turkey
²Sifa University Medical Faculty, Department of Urology, Izmir, Turkey
³Izmir Tepecik Research and Training Hospital, Department of Urology, Izmir, Turkey

Citation: Kucuk U, Pala EE, Cakir E, Sezer O, Bayol U, Divrik RT, Cakmak O. Clinical, demographic and histopathological prognostic factors for urothelial carcinoma of the bladder. Cent European J Urol. 2015; 68: 30-36.

INTRODUCTION

Urothelial carcinoma of the bladder (UCB) is the second most common genitourinary malignancy and is associated with a heterogeneous clinical outcome [1-4]. Radical cystectomy (RC) with bilateral pelvic lymph node dissection (PLND) is currently the gold standard treatment for muscle-invasive UCB [1, 5-9]. Unfortunately, 40% of patients with organ-confined disease at the time of cystectomy subsequently suffer recurrence. Several studies have evaluated the risk factors for recurrence and survival after cystectomy. Advanced pathologic stage, nodal involvement, grade and urinary obstruction have been reported as prognostic factors for survival and recurrence. However, some bladder cancer cases of similar stage and grade have demonstrated variable clinical outcomes after RC, so many attempts have been made to determine new and reliable prognostic factors [10-14]. The aim of the present study is to evaluate the influence of clinical and detailed histopathological pa-

Key Words: urothelial carcinoma of the bladder • overall survival • tumor necrosis • histology
parameters including age, gender, tumor stage, grade, tumor differentiation, necrosis, lymphovascular invasion (LVI), perineural invasion (PNI) and concomitant carcinoma in situ (CIS), on outcomes of patients with UCB treated with RC.

MATERIAL AND METHODS

A total of 84 patients who underwent RC (n = 11) and radical cystoprostatectomy (n = 73) for muscle-invasive bladder cancer (MIBC) at our institute between 2007-2013, were included in the study. Of the total, 79 underwent standard PLND. Bladder cancer was diagnosed histopathologically by transurethral resection in all patients before cystectomy. RC and standard PLND were performed using the standard technique. Surgical specimens were re-examined by 2 genitourinary pathologists applying a standardized reporting protocol. Tumor staging and grading were standardized according to the American Joint Committee on Cancer and World Health Organization. Tumor differentiation, depth of tumor invasion, necrosis, LVI, PNI and concomitant CIS were assessed histopathologically.

Statistically analyses of prognostic effects of age (65 years), gender, smoking status, pathologic tumor stage, lymph node metastasis (LNM), tumor differentiation, LVI, PNI and necrosis on overall survival (OS) were performed. Univariate OS after RS were estimated using the Kaplan-Meier method and log-rank statistics. Multivariate Cox regression models addresses OS after RS. The chi-square test was used to determine correlations among the variables. Statistical significance was set at p <0.05. Statistical analyses were performed with SPSS v.15.

RESULTS

The mean age at diagnosis was 66.1 (min. 42, max. 84) and there were 75 (89.3%) males and 9 (10.7%) females. Of the 84 patients, 38 (45.2%) were under 65 years, whereas 46 (54.8%) were over 65 years. Mean tumor diameter was 3.66 cm (min: 0.70 cm, max: 8 cm). The average overall follow-up time was 17.6 months (SD ± 15.1). At the time of analysis, 33 (39.3%) patients were alive with disease, whereas 51 (60.7%) were dead. In 75 patients with available habitual data, 64 (85.3%) were recorded as heavy smokers. The pathologic tumor stages were 4 (4.8%), 8 (9.5%), 20 (23.8%), 37 (44%) and 15 (17.9%) for Ta, T1, T2, T3 and T4 respectively. Of the patients with Ta and T1 tumors who had an extensive mass, which could not be totally excised by TUR, or intensive gross hematuria, underwent RC. Of the total 84 cases, 79 underwent standard PLND and LNM was detected in 25 patients (29.8%).

Of the 84 cases, 82 were high grade on histopathological examination. Both of the low grade tumors were stage Ta and exhibited no tumor necrosis, CIS, LVI and PNI. One of the patients was alive and the other one died of a non-tumoral cause.

The histologic type was pure urothelial carcinoma (UC) in 46 (54.8%) cases. Of the 38 (45.2%) cases which showed divergent differentiations or components, 26 (68.4%) had squamous differentiation, 7 (18.4%) sarcomatoid, 1 (2.6%) glandular differentiation, 1 (2.6%) clear cell, 1 (2.6%) neuroendocrine, 1 (2.6%) micropapillary and 1 (2.6%) squamous plus sarcomatoid components.

Concomitant CIS was observed in 30 (30.7%) tumors. 41 (48.8%) cases showed tumor necrosis, 44 (52.4%) PNI and 61 (72.3%) LVI. Demographic, clinical and pathological characteristics are summarized in Table 1.

The relationship of tumor necrosis with pathologic tumor stage and LNM was evaluated. Accordingly, tumor necrosis was found in 25% (1/4) of Ta tumors, 25% (2/8) of T1 tumors, 50% (10/20) of T2 tumors, 48.6% (18/37) of T3 tumors and 66.7% (10/15) of T4 tumors. No statistically significant relationship was found between tumor necrosis and pathologic tumor stage.

Clinicopathologic factors	Category	n (%)	p values	
Age	>65	46 (54.8%)		0.001
Gender	Male	75 (89.3%)		0.23
Pathologic stage	Ta	4 (4.8%)		0.15
Lymph node status	N0	54 (64.3%)		0.001
Histopathologic Differentiation	Absence	46 (54.8%)		0.011
LVI	Absence	23 (27.7%)		0.37
PNI	Absence	40 (47.6%)		0.06
UCIS	Absence	54 (64.3%)		0.24
Tumor necrosis	Absence	43 (51.2%)		0.025

Table 1. Univariate analysis of demographic, clinical and pathological characteristics for overall survival.
stage (p = 0.32). Tumor necrosis was found in 60% (15/35) of N1 cases, 46.3% (25/54) of N0 cases and 20% (1/5) of Nx cases. No statistically significant relationship was found between tumor necrosis and LNM (p = 0.21).

The evaluation of OS data revealed that 55.6% (5/9) of female patients, and 37.3% (28/75) of male cases were alive. There was no statistically significant relationship between OS and gender (p = 0.23).

In this study, 57.9% (22/38) of the patients aged ≤65 years and 23.9% (11/46) of patients aged >65 were alive. The rate of OS in patients aged ≤65 years was statistically significantly higher than those aged >65 years (p < 0.001) (Figure 1).

On the other hand, 36.4% (4/11) of non-smokers and 45.3% (29/64) of smokers were alive. No statistically significant relationship was noted between smoking and OS (p = 0.81).

With regard to pathological tumor stage, 75% (3/4) of Ta patients, 75% (6/8) of T1 patients, 40% (8/20) of T2 patients, 37.8% (14/37) of T3 patients, and 13.3% (2/15) of T4 patients were alive. The cause of death in the Ta and T1 patients was not related to the primary tumor. No statistically significant re-
stage and the presence of LNM have been reported to be the most important prognostic factors [1, 2, 12]. However, reports of different clinical outcomes, in patients with similar stages of disease following RC, have prompted the investigation of other factors that may affect prognosis.

A number of studies have reported that the prognosis of UC in females is much worse than that in males [5, 15-18]. A large European epidemiological study of 1.2 million patients reported that the 5-year cancer-specific mortality was 30% lower in females, which, however, was not the case in bladder carcinomas. The study also demonstrated that UC followed a more aggressive clinical course in females than that in males [5]. Horstmann et al. reported that, in a MICB series of 455 patients, 129 of whom were females, the 10-year survival was lower in females compared to that in males [19]. Aggressive tumor biology in females is considered to be responsible for shorter survival [5]. In our series, where most patients were males (89.3%), there were only 9 female patients and there was no statistically significant difference between OS and gender (p = 0.23). The absence of a statistically significant relationship between gender and OS can be attributed to the small number of female patients in this study.

In a study by Mitra et al., where 259 tumors with tumor differentiation were compared with pure UCB, the OS was lower in patients with differentiation and aged >65 years [13]. In our series, the rate of OS was higher in patients aged ≤65 years (57.9%) compared to those aged >65 years (23.9%) and the difference was statistically significant (p <0.001).

Previous studies have demonstrated that tobacco consumption and the number of cigarettes smoked per day are associated with advanced tumor stage and grade in newly-diagnosed UCB [14, 20]. A study of 1506 patients with UCB by Rink et al., reported the association between smoking and cancer-specific mortality, which, however, lost its significance on multivariate analysis [14]. In the mentioned study, cumula-

Variable	Levels	Hazard Ratio	95% CI Lower Bound	95% CI Upper Bound	p value
Age (>65)	≤65 years	2.969	1.550	5.684	0.001
	>65 years				
Lymph node metastasis	N0	2.204	1.223	3.970	0.009
	N1				
Differentiation	Negative	2.116	1.173	3.818	0.013
	Positive				
Tumor necrosis	Negative	1.601	0.878	2.917	1.124
	Positive				
We would really appreciate it if you could provide the natural text representation of this document.
the level of statistical significance (p = 0.21). Similarly, advanced tumor stage was associated with an increased rate of tumor necrosis, but no statistically significant relationship was found due to the small number of patients in our study (p = 0.32). Numerous cytogenetic, molecular, genetic and immunohistologic studies revealed similar molecular changes in CIS and invasive UC [4]. The presence of isolated or concomitant CIS carries a higher risk of the disease progressing to MIBC [29]. There are numerous studies reporting that the presence of CIS and concomitant non-invasive UC following RC is associated with a poor clinical course [4]. On the other hand, a study by Nuhn et al. of 3973 patients treated with RC, reported no association between concomitant CIS and clinical outcome and the prognostic value of concomitant CIS in UCB could not be confirmed [4]. Similarly in our study no statistically significant difference was noted in OS between the patients with and without concomitant CIS (p = 0.24).

CONCLUSIONS

Advanced age (>65), LNM, tumor differentiation and tumor necrosis were found to be independent prognostic risk factors associated with OS after RC. Tumor necrosis did not remain significant on multivariate analysis. The presence of concomitant CIS had no effect on prognosis. These additional factors, which may explain the different clinical course in patients with similar tumor stage and lymph node status, should be taken into consideration in treatment planning.

References

1. Bruins HM, Arends TJH, Peikman M, Hulsbergen-van de Kaa H, van der Heijden AG, Witjes JA. Radical cystectomy in a Dutch University Hospital: Long term outcomes and prognostic Factors in a homogenous surgery-only series. Clin Genitourinaty Cancer. 2013; 12: 190-195.

2. Stein JP, Lieskovsky G, Cote R, Groshen S, Feng AC, Boyd S, et al. Radical cystectomy in the treatment of invasive bladder cancer: Long-term results in 1,054 patients. J Clin Oncol. 2001; 19: 666-675.

3. May M, Bastian PJ, Brookman-May S, Fritsche HM, Tilki D, Otto W, et al. Gender-specific differences in cancer-specific survival after radical cystectomy for patients with urothelial carcinoma of the urinary bladder in pathologic tumor stage T4a. Urol Oncol. 2013; 31: 1141-1147.

4. Nuhn P, Bastian PJ, Novara G, Svatek RS, Karakiewicz P, Skinner E, et al. Concomitant carcinoma in situ in cystectomy specimens is not associated with clinical outcomes after surgery. Urol Int. 2011; 87: 42-48.

5. Otto W, May M, Fritsche HM, Dragun D, Aziz A, Gierth M, et al. Analysis of sex differences in cancer-specific survival and perioperative mortality following radical cystectomy: Results of a large German multicenter study of nearly 2500 patients with urothelial carcinoma of the bladder. Gend Medi. 2012; 9: 481-489.

6. Honma I, Masumori N, Sato E, Takayanagi A, Takahashi A, Itoh N, et al. Local recurrence after radical cystectomy for invasive bladder cancer: An analysis of predictive factors. Urology. 2004; 64: 744.

7. Wright JL, Lin DW, Porter MF. The association between extent of lymphadenectomy and survival among patients with lymph node metastases undergoing radical cystectomy. Cancer. 2008; 112: 2401-2408.

8. Lotan Y, Gupta A, Shariat SF, Palapattu GS, Vazina A, Karakiewicz PI, et al. Lymphovascular invasion is independently associated with overall survival, cause-specific survival and local and distant recurrence in patients with negative lymph nodes at radical cystectomy. J Clin Oncol. 2005; 23: 6533-6539.

9. May M, Stef C, Brookman-May S, Otto W, Gilfrich C, Roigas J, et al. Gender-dependent cancer-specific survival following radical cystectomy. World J Urol. 2012; 30: 707-713.

10. Hong SK, Kwak C, Jeon HG, Lee E, Lee SE. Do vascular, lymphatic and perineural invasion have prognostic implications for bladder cancer after radical cystectomy? Urology. 2005; 65: 696-702.

11. Zigeuner R, Shariat SF, Margulis V, Karakiewicz PI, Roscino M, Weizer A, et al. Tumor necrosis is an indicator of aggressive biology in patients with urothelial carcinoma of the upper urinary tract. Eur Urol. 2010; 57: 575-581.

12. Xylinas E, Rink M, Robinson BD, Lotan Y, Babjuk M, Bristuda A, et al. Impact of histological variants on oncological outcomes of patients with urothelial carcinoma of the bladder treated with radical cystectomy. Eur J Cancer. 2013; 49: 1889-1897.

13. Mitra AP, Bartsch CC, Bartsch G, Miranda G, Skinner EC, Daneshmand S. Does presence of squamous and glandular differentiation in urothelial carcinoma of the bladder at cystectomy portend poor prognosis? An intensive case-control analysis. Urol Oncol. 2014; 32: 117-127.

14. Rink M, Zabor EC, Furberg H, Xylinas E, Ehdai B, Novara G, et al. Impact of smoking and smoking cessation on outcomes in bladder cancer patients treated with radical cystectomy. Eur Urol. 2013; 64: 456-464.

15. Fajkovic H, Halpern JA, Cha EK, Bahadori A, Chromecki TF, Karakiewicz PI, et al. Impact of gender on bladder cancer incidence, staging and prognosis. World J Urol. 2011; 29: 457-463.

16. Cao D, Vollmer RT, Luly J, Jain S, Roytman TM, Ferris CW, et al. Comparison of 2004 and 1973 World Health Organization grading systems and their relationship to pathologic staging for predicting long-term prognosis in patients with urothelial carcinoma. Urology. 2010; 76: 593-599.

17. Stenzl A, Cowan NC, De Santis M, Kuczyk MA, Merseburger AS, Ribal MJ, et al. Treatment of muscle-invasive and metastatic bladder cancer: update of the EAU guidelines. Eur Urol. 2011; 59: 1009-1018.
18. Babjuk M, Oosterlinck W, Sylvester R, Kaasinen E, Böhle A, Palou-Redorta J, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Eur Urol. 2011; 59: 997-1008.

19. Horstmann M, Witthuhn R, Falk M, Stenzl A. Gender-specific differences in bladder cancer: a retrospective analysis. Gend Med. 2008; 5: 385-394.

20. Freedman ND, Silverman DT, Hollenbeck AR, Schatzkin A, Abnet CC. Association between smoking and risk of bladder cancer among men and women. JAMA. 2011; 306: 737-745.

21. Reznikoff CA, Sarkar S, Julicher KP, Burger MS, Puthenveettil JA, Jarrard DF, et al. Genetic alterations and biological pathways in human bladder cancer pathogenesis. Urol Oncol. 2000; 5: 191-203.

22. Hara S, Miyake H, Fujisawa M, Okada H, Arakawa S, Kamidono S, et al. Prognostic variables in patients who have undergone radical cystectomy for transitional cell carcinoma of bladder. Jpn J Clin Oncol. 2001; 31: 399-402.

23. Stein JP, Quek ML, Skinner DG. Lymphadenectomy for invasive bladder cancer. I. Historical perspective and contemporary rationale. BJU Int. 2006; 97: 227-231.

24. Chalasani V, Chin JL, Izawa JJ. Histologic variants of urothelial bladder cancer and nonurothelial histology in bladder cancer. Can Urol Assoc J. 2009; 3: 193-198.

25. Black PC, Brown GA, Dinney CP. The impact of variant histology on the outcome of bladder cancer treated with curative intent. Urol Oncol. 2009; 27: 3-7.

26. Leissner J, Koeppen C, Wolf HK. Prognostic significance of vascular and perineural invasion in urothelial bladder cancer treated with radical cystectomy. J Urol. 2003; 169: 955-960.

27. Ennis RD, Petrylak DP, Singh P, Bagnella E, O’Toole KM, Benson MC, et al. The effect of cystectomy and perioperative methotrexate, vinblastine, doxorubicin and cisplatin chemotherapy on the risk and pattern of relapse in patients with muscle invasive bladder cancer. J Urol. 2000; 163: 1413-1418.

28. Ord JJ, Agrawal S, Thamboo TP, Roberts I, Campo L, Turley H, et al. An investigation into the prognostic significance of necrosis and hypoxia in high grade and invasive bladder cancer. J Urol. 2007; 178: 677-682.

29. Shariat SF, Palapattu GS, Karakiewicz PI, Rogers CG, Vazina A, Bastian PJ, et al. Concomitant carcinoma in situ is a feature of aggressive disease in patients with organ-confined TCC at radical cystectomy. Eur Urol. 2007; 51: 152-160.