Searches for high mass dilepton resonances in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS Experiment

Dominick Olivito
University of Pennsylvania
On Behalf of the ATLAS Collaboration

Meeting of the Division of Particles and Fields of the American Physical Society, 2011
Providence, Rhode Island
Theoretical Motivations

- New high mass resonances are predicted in several extensions of the Standard Model
 - Set limits on spin 1 and spin 2 resonances

- **Spin 1**: benchmark is **Sequential Standard Model (SSM)**
 - Z' has same leptonic couplings as SM Z
 - Width scales linearly with mass

- Also consider Grand Unification E_6-inspired models
 - E_6 broken to $SU(5) \times U(1)_\chi \times U(1)_\psi$
 - Z' candidate is linear combination of U(1) gauge bosons:
 \[
 Z'(\theta_{E_6}) = Z'_\chi \cos \theta_{E_6} + Z'_\psi \sin \theta_{E_6}
 \]

- **Spin 2**: benchmark is **Randall-Sundrum (RS) Graviton**
 - See talk by **Evan Wulf** for more info
Large Hadron Collider
Large Hadron Collider

- Located at CERN, Geneva, Switzerland
- pp collider at $\sqrt{s} = 7$ TeV
- Peak instantaneous luminosity:
 - $2 \cdot 10^{33}$ cm2s$^{-1}$ and rising
Large Hadron Collider

- Located at CERN, Geneva, Switzerland
- pp collider at $\sqrt{s} = 7$ TeV
- Peak instantaneous luminosity:
 - $2 \cdot 10^{33}$ cm2s$^{-1}$ and rising
ATLAS Detector
ATLAS Detector

- **Inner Detector**
 - Coverage for $|\eta| < 2.5$

- **Electromagnetic Calorimeter**
 - Central region coverage for $|\eta| < 2.47$
 - Energy resolution (in barrel): 1.1% at 1 TeV

- **Muon Spectrometer**
 - Coverage for $|\eta| < 2.5$
 - Momentum resolution (in barrel): 15% at 1 TeV
Signal and Backgrounds

- Select events with **two leptons of same flavor** (ee, μμ)
- Search for excess above Standard Model expectations in **high invariant mass region**

Main backgrounds

- Drell Yan (irreducible)
- Dibosons (WW, WZ, ZZ)
- Top quark pair production
- SM W+jets
- QCD dijets

Non-prompt muons (including cosmic rays) found to be negligible for muon channel
Electron Selection

- Electrons reconstructed as cluster in EM calorimeter matched with track from Inner Detector

Detailed selection:
- Trigger requiring single “Medium” electron with $E_T > 20$ GeV
- 2 electrons with:
 - $E_T > 25$ GeV
 - $|\eta| < 2.47$, exclude calorimeter crack region $1.37 < |\eta| < 1.52$
 - “Medium” Electron ID
 - Transverse shower shapes
 - Hadronic calorimeter leakage
 - Track quality
 - Track-cluster matching
 - Hit in first pixel layer (“B-layer”)
- Leading electron isolated:
 - $\sum E_T < 7$ GeV within a cone of $\Delta R < 0.2$

Total acceptance*efficiency:
- ~67% for Z' masses above 1 TeV

Robust selection to suppress instrumental background and ensure well-understood leptons
Muon Selection

Robust selection to suppress instrumental background and ensure well-understood leptons

- Muons reconstructed from combination of tracks in Inner Detector and Muon Spectrometer

Detailed selection:
- Trigger requiring single Muon with $p_T > 22$ GeV
- Primary vertex with $|z| < 200$ mm
- 2 muons with:
 - $p_T > 25$ GeV
 - $|\eta| < 2.4$
 - Track quality in Inner Detector
 - Precision hits in all 3 muon stations
 - Hit in non-bending plane
 - Veto on overlapping hits in barrel and endcaps
 - $|d_0| < 0.2$ mm, $|z_0| < 1$ mm
 - Isolation: $\sum p_T^{trk} < 0.05 p_T$ within a cone of $\Delta R < 0.3$
 - Opposite charge

Total acceptance*efficiency:
- $\sim 42\%$ for Z' masses above 1 TeV
Electron QCD Dijet Background

- All backgrounds taken from MC except QCD dijets
- Baseline method is inverted identification:
 - Require two electrons passing looser cuts but failing Medium Electron ID cuts to derive shapes for QCD dijet background
 - QCD dijet invariant mass shape is fit with an empirical function to allow extrapolation to high mass: \(f(x) = p_0 x^{p_1} x^{p_2} \log x \)
 - Normalization is determined using a binned likelihood fit in invariant mass, in the range 70 < \(m_{ee} \) < 200 GeV

\(m_{ee} \) [GeV]	QCD Events
70 – 110	332 +/- 59
110 – 200	191 +/- 75
200 – 400	36 +/- 29
400 – 800	1.8 +/- 1.4
800 – 3000	< 0.05

\[\int L \, dt = 1.08 \text{ fb}^{-1} \]
\(s = 7 \text{ TeV} \)
Electron QCD Dijet Background

- Cross checks and systematics from two other methods:
 - **Fake rates** method derives fake rate for jets to pass Z' selection in dijet data, applies fake rate to dielectron events where one electron passes jet-like cuts
 - **Isolation fit** uses binned likelihood fits in calorimeter isolation
 - **Signal templates** taken from W electrons in data
 - **Background templates** taken from reversing ID cuts in data
 - Leading and subleading electrons are fit separately in bins of invariant mass
 - Results of fits are combined using a system of equations to obtain event level background predictions

![Electron Dijet Background](image-url)
Muon QCD Dijet Background

- All backgrounds also taken from MC except QCD dijets
- Use a **reversed isolation** method:
 - **QCD shapes** from data events with both muons non-isolated:
 - $0.1 < \left(\sum p_T^{trk} \right) / p_T^{\mu \text{on}} < 1.0$ for tracks within a cone of $\Delta R < 0.3$
 - **Normalization** taken from the ratio of isolated to non-isolated dimuon events in QCD (bbar/ccbar) MC

![Graph of ATLAS data and background contributions]

$\int L \, dt = 1.21 \text{ fb}^{-1}$

\(\sqrt{s} = 7 \text{ TeV} \)
Results: Invariant Mass

MC normalized to data in Z peak region
(70 < m_{ℓℓ} < 110 GeV)

No excess observed over SM expectations:
set limits on σB
Event Details:
- Leading electron:
 - E_T: 257 GeV
 - η, ϕ: (-0.76, 1.14)
- Subleading electron:
 - E_T: 207 GeV
 - η, ϕ: (2.05, -2.05)
- m_{ee}: 933 GeV
Systematic Uncertainties

- Reduce background systematics by normalizing MC to data in Z peak region ($70 < m_{\ell\ell} < 110$ GeV)
 - Luminosity and other mass-independent systematics cancel
 - Normalization factor: 0.99
- Uncertainties treated as correlated across all mass bins

Source	dielectrons	dimuons		
	signal	background	signal	background
Normalization	5%	NA	5%	NA
PDFs/α_s	NA	10%	NA	10%
QCD K-factor	NA	3%	NA	3%
Weak K-factor	NA	4.5%	NA	4.5%
Trigger/Reconstruction	negligible	negligible	4.5%	4.5%
Total	5%	11%	7%	12%

Systematic uncertainties on numbers of expected events at $m_{\tau\tau} = 1.5$ TeV
Statistical Method

- Use template shape fitting and Bayesian statistics
- Log likelihood ratio for discovery statistics: \(LLR = -2 \ln \frac{L(S+B)}{L(B)} \)
 - Systematics: nuisance parameters, marginalized
 - 2D likelihood fit in bins of \(\sigma_Z \) and \(M_Z \)
 - Marginalized posterior probability density shown on z-axis below
- P-values: electrons: 24%, muons: 54%
 - No excess: set limits
Spin 1 Combined Limits

\[\text{Observed limit} \begin{array}{cc}
\text{mass [TeV]} & \text{Expected limit [TeV]} \\
Z'_{\text{SSM}} \rightarrow e^+e^- & 1.70 & 1.70 \\
Z'_{\text{SSM}} \rightarrow \mu^+\mu^- & 1.61 & 1.61 \\
Z'_{\text{SSM}} \rightarrow \ell^+\ell^- & 1.83 & 1.83
\end{array} \]

Model	\(Z'_\psi \)	\(Z'_N \)	\(Z'_\eta \)	\(Z'_l \)	\(Z'_S \)	\(Z'_\chi \)
Mass limit [TeV]	1.49	1.52	1.54	1.56	1.60	1.64

95% CL limits set with \textbf{Bayesian method}, flat prior in \(\sigma_{Z'} \).
Spin 2 Combined Limits

Limits for varying coupling k/M_{pl}

Coupling	RS Graviton
0.01	0.03 0.05 0.1
Mass limit [TeV]	0.71 1.03 1.33 1.63

95% CL limits set with **Bayesian method**, flat prior in σ_{G^*}.

Process	Observed limit	Expected limit
$G^* \rightarrow e^+ e^-$	1.51	1.50
$G^* \rightarrow \mu^+ \mu^-$	1.45	1.44
$G^* \rightarrow \ell^+ \ell^-$	1.63	1.63

ATLAS
\[\sqrt{s} = 7 \text{ TeV} \]
$G^* \rightarrow \ell^+ \ell^-$

Limits for a coupling of $k/M_{pl} = 0.1$

Process	Observed limit	Expected limit
$G^* \rightarrow e^+ e^-$	1.51	1.50
$G^* \rightarrow \mu^+ \mu^-$	1.45	1.44
$G^* \rightarrow \ell^+ \ell^-$	1.63	1.63
Conclusions

- No excess above Standard Model expectations seen in high mass dilepton events
 - Set limits on spin 1 and spin 2 models
- With much more data to be collected this year, discoveries may still be lurking...

Required luminosity to see 10 signal events

This talk
Bonus Slides

More details on MC processes

Process	Generator	Order
SSM Z'	PYTHIA	LO*, mass dependent k-factors for NNLO QCD corrections
RS Graviton	PYTHIA	LO*
Drell Yan	PYTHIA	LO*, mass dependent k-factors for NNLO QCD and higher order EW corrections
Dibosons	HERWIG	LO*, scaled to NLO cross section
W+jets	ALPGEN	LO*, scaled to NNLO cross section
Top quark pairs	MC@NLO	NLO, scaled to NNLO cross section
Expected/Observed Events

$m_{e^+e^-}$ [GeV]	70-110	110-200	200-400	400-800	800-3000
DY	258482 ± 410	5449 ± 180	613 ± 26	53.8 ± 3.1	2.8 ± 0.1
$t\bar{t}$	218 ± 36	253 ± 10	82 ± 3	5.4 ± 0.3	0.1 ± 0.0
Diboson	368 ± 19	85 ± 5	29 ± 2	3.1 ± 0.5	0.3 ± 0.1
W+jets	150 ± 100	150 ± 26	43 ± 10	4.6 ± 1.8	0.2 ± 0.4
QCD	332 ± 59	191 ± 75	36 ± 29	1.8 ± 1.4	< 0.05
Total	259550 ± 510	6128 ± 200	803 ± 40	68.8 ± 3.9	3.4 ± 0.4
Data	259550	6117	808	65	3

$m_{\mu^+\mu^-}$ [GeV]	70-110	110-200	200-400	400-800	800-3000
DY	236319 ± 320	5171 ± 150	483 ± 22	40.3 ± 2.5	2.0 ± 0.3
$t\bar{t}$	193 ± 21	193 ± 20	63 ± 6	4.2 ± 0.4	0.1 ± 0.0
Diboson	307 ± 16	69 ± 5	25 ± 2	1.7 ± 0.5	< 0.05
W+jets	1 ± 1	1 ± 1	< 0.5	< 0.05	< 0.05
QCD	1 ± 1	< 0.5	< 0.5	< 0.05	< 0.05
Total	236821 ± 487	5434 ± 150	571 ± 23	46.1 ± 2.6	2.1 ± 0.3
Data	236821	5406	557	51	5
Highest $m_{\mu\mu}$ Event

Event Details:
- Leading muon:
 - p_T: 510 GeV
 - η, ϕ: (0.37, 3.01)
- Subleading muon:
 - p_T: 437 GeV
 - η, ϕ: (0.72, -0.12)
- $m_{\mu\mu}$: 959 GeV
Spin 1 Individual Channel Limits

\[
\text{ee: } \int L \, dt = 1.08 \, \text{fb}^{-1}
\]

\[
\text{μμ: } \int L \, dt = 1.21 \, \text{fb}^{-1}
\]

\(Z'_\text{SSM} \rightarrow e^+e^-\)	1.70	1.70
\(Z'_\text{SSM} \rightarrow \mu^+\mu^-\)	1.61	1.61
\(Z'_\text{SSM} \rightarrow \ell^+\ell^-\)	1.83	1.83
Spin 2 Individual Channel Limits

ATLAS
\(\sqrt{s} = 7 \text{ TeV} \)
G* → ee

Observed limit
- \(k/M_{pl} = 0.1\)
- \(k/M_{pl} = 0.05\)
- \(k/M_{pl} = 0.03\)
- \(k/M_{pl} = 0.01\)

Expected limit
- Expected ± 1σ
- Expected ± 2σ

\(\sigma B [pb]\)

For a coupling of \(k/M_{pl} = 0.1\), the limits are as follows:

Process	Observed limit mass [TeV]	Expected limit mass [TeV]
\(G^* \rightarrow e^+e^-\)	1.51	1.50
\(G^* \rightarrow \mu^+\mu^-\)	1.45	1.44
\(G^* \rightarrow \ell^+\ell^-\)	1.63	1.63

\(\ell: \int L \, dt = 1.08 \text{ fb}^{-1}\) for ee channel

\(\mu: \int L \, dt = 1.21 \text{ fb}^{-1}\) for \(G^* \rightarrow \mu\mu\) channel
Sensitivity: Limit Setting

ATLAS Preliminary (simulation)

95%CL Limit $Z' \rightarrow ee, \mu\mu$

Luminosity [pb$^{-1}$]

Z' Mass [TeV]

- 7 TeV
- 8 TeV
- 9 TeV