Research Article

Phillips-Type q-Bernstein Operators on Triangles

Asif Khan $^{1,} \text{, M. S. Mansoori}^{1,} \text{, Khalid Khan}^{2,} \text{, \ and M. Mursaleen}^{1,3}$

1Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
2School of Computer and System Sciences, SC&SS, J.N.U., New Delhi 110067, India
3Department of Medical Research, China Medical University Hospital, China Medical University (Taiwan), Taichung, Taiwan

Correspondence should be addressed to M. Mursaleen; mursaleenm@gmail.com

Received 27 November 2020; Revised 3 January 2021; Accepted 23 January 2021; Published 22 February 2021

Abstract

The purpose of the paper is to introduce a new analogue of Phillips-type Bernstein operators $(\mathcal{B}_{mnq} f)(u, v)$ and $(\mathcal{B}'_{mnq} f)(u, v)$, their products $(\mathcal{F}_{mnq} f)(u, v)$ and $(\mathcal{G}_{mnq} f)(u, v)$, their Boolean sums $(\delta_{mnq} f)(u, v)$ and $(\mathcal{Q}_{mnq} f)(u, v)$ on triangle \mathcal{T}_h, which interpolate a given function on the edges, respectively, at the vertices of triangle using quantum analogue. Based on Peano’s theorem and using modulus of continuity, the remainders of the approximation formula of corresponding operators are evaluated. Graphical representations are added to demonstrate consistency to theoretical findings. It has been shown that parameter q provides flexibility for approximation and reduces to its classical case for $q = 1$.

1. Introduction and Essential Preliminaries

In 1912, Bernstein constructed polynomials to provide a constructive proof of the Weierstrass approximation theorem [1, 2] using probabilistic interpolation, which is now known as Bernstein polynomials in approximation theory. In computer-aided geometric design (CAGD), the basis of Bernstein polynomials plays a significant role to preserve the shape of the curves and surfaces.

Further, with the development of q-calculus (quantum analogue), the first q-analogue of Bernstein operators (rational) was constructed by Lupas in [3]. In 1997, Phillips [4] initiated another generalization of Bernstein polynomials based on the q-integers (quantum analogue) called q-Bernstein polynomials. The q-Bernstein polynomials attracted a lot of attention and were studied broadly by several researchers. One can find a survey of the obtained results and references on the subject in [5].

Computer-aided geometric design (CAGD) is a discipline which deals with computational aspects of geometric objects. It emphasizes on the mathematical development of curves and surfaces such that it becomes compatible with computers. Popular programs, like Adobe’s Illustrator and Flash, and font imaging systems, such as Postscript, utilize Bernstein polynomials to form what are known as Bézier curves [6–9].

The approximating operators on triangles and their basis have important applications in finite element analysis and computer-aided geometric design [10] etc. Starting with the paper [11] of Barnhill et al., the blending interpolation operators were considered in the papers [12–14].

In this paper, we construct new operators based on quantum analogue of Phillips. Bernstein-type operators also interpolate the value of a given function on the boundary of the triangle. Also, we will discuss some particular cases. Using modulus of continuity and Peano’s theorem, the remainders of the corresponding approximation formulas are evaluated. For more information regarding such operators, their properties and their remainders one can refer to [15–28].

In this paper, we would like to draw attention to the Phillips q-analogue of the Bernstein operators and obtain new results using q-analogue on triangles. To present results by Phillips, we recall the following definitions. For other relevant works, one can see [29].

Let $q > 0$. For any $m = 0, 1, 2, \cdots$, the q-integer $[m]_q$ is defined by

$$[m]_q = 1 + q + \cdots + q^{m-1}, \quad m = 1, 2, \cdots, \quad [0]_q = 0,$$ \quad (1)
and the q-factorial $[m]_q!$ by

$$[m]_q! = [1]_q[2]_q \cdots [m]_q, \quad m = 1, 2, \ldots, [0]_q! = 1. \quad (2)$$

For integers $0 \leq i \leq m$, the q-binomial or the Gaussian coefficient is defined by

$$\binom{m}{i}_q := \frac{[m]_q!}{[i]_q![m-i]_q!}. \quad (3)$$

Clearly, for $q = 1$,

$$[m]_1 = m, [m]_1! = m!, \quad \binom{m}{i} = \binom{m}{i}. \quad (4)$$

The q-binomial coefficients are involved in Cauchy’s q-binomial theorem (cf. [30], Chapter 10, Section 10.2). The first one is a q-analogue as an extension to Newton’s binomial formula:

$$(au + bv)^m = \sum_{i=0}^{m} q^{i(i-1)/2} \binom{m}{i}_q a^{m-i}b^i u^{m-i}v^i. \quad (5)$$

$$(1 + u)(1 + qu) \cdots (1 + q^{m-1}u) = \sum_{i=0}^{m} \binom{m}{i}_q q^{i(i-1)/2} u^i. \quad (6)$$

Following Phillips, we denote

$$b_{m,i}(u, v) = \binom{m}{i}_q \prod_{j=0}^{m-i-1} (1 - q^j u). \quad (7)$$

It follows from (6) that

$$\sum_{i=0}^{m} b_{m,i}(q; u) = 1, \quad u \in [0, 1], \quad (8)$$

for integers $k \geq i \geq 0$. These recurrence relations are satisfied by q-binomial coefficients

$$\binom{k+1}{i}_q = q^{i+1} \binom{k}{i-1}_q + q^i \binom{k}{i}_q, \quad (9)$$

when $q = 1$, both the relations reduce to the Pascal identity. In the next section, we construct quantum analogue of operators studied in [31] on triangles.

2. Construction of New Univariate Operators on Triangle

In [31], the authors considered only the standard triangle sufficient due to affine invariance as

$$\mathcal{T}_h = \{(u, v) \in \mathbb{R}^2 \mid u \geq 0, v \geq 0, u + v \leq h\}, \quad (h > 0). \quad (10)$$

Let $\Delta^u_m = \{i((h - v)/m), i = 0, m\}$ and $\Delta^v_n = \{j((h - u)/n), j = 0, n\}$ be uniform partitions of the intervals $[0, h - v]$ and $[0, h - u]$, respectively.

In 2009, they [31] constructed some univariant Bernstein-type operators on triangle \mathcal{T}_h as follows:

$$(B^u_m f)(u, v) = \sum_{i=0}^{m} p_{m,i}(u, v)f\left(\frac{i}{m}(h - v), v\right), \quad (11)$$

$$(B^v_n f)(u, v) = \sum_{j=0}^{n} q_{n,j}(u, v)f\left(u, \frac{j}{n}(h - u)\right), \quad (12)$$

where

$$p_{m,i}(u, v) = \frac{\binom{m}{i} (h - u - v)^{m-i}}{(h - v)^m}, \quad 0 \leq u + v \leq h, \quad (13)$$

$$q_{n,j}(u, v) = \frac{\binom{n}{j} (h - u - v)^{n-j}}{(h - u)^n}, \quad 0 \leq u + v \leq h, \quad (14)$$

respectively.

Consider a real-valued function f defined on \mathcal{T}_h as done in [31]. Through the point $(u, v) \in \mathcal{T}_h$, one considers the parallel lines to the coordinate axes which intersect the edges $\Gamma^u_i, i = 1, 2, 3$, of the triangle at the points $(0, v)$ and $(h - v, v)$, respectively $(u, 0)$ and $(u, h - u)$ ([31], Figure 1).

Let $\Delta^u_m = \{i((h - v)/m), i = 0, m\}$ and $\Delta^v_n = \{j((h - u)/n), j = 0, n\}$ be uniform partitions of the intervals $[0, h - v]$ and $[0, h - u]$, respectively.

We define the new Phillips-type Bernstein operators $B^u_{m,q}$ and $B^v_{n,q}$ on triangle by using quantum calculus as follows:

$$\left(\mathcal{B}^u_{m,q} f\right)(u, v) = \sum_{i=0}^{m} p_{m,i}(u, v)f\left(\frac{i}{m}(h - v), v\right), \quad (u, v) \in \mathcal{T}_h \setminus (0, h),$$

$$f(0, h), \quad (0, h) \in \mathcal{T}_h,$$

$$\left(\mathcal{B}^v_{n,q} f\right)(u, v) = \sum_{j=0}^{n} q_{n,j}(u, v)f\left(u, \frac{j}{n}(h - u)\right), \quad (u, v) \in \mathcal{T}_h \setminus (h, 0),$$

$$f(h, 0), \quad (h, 0) \in \mathcal{T}_h.$$
where
\[
\hat{p}_{mj}(u, v) = \begin{cases}
1, & \text{if } i = 0, \\
0, & \text{if } i \neq 0,
\end{cases}
\]
for \(m \geq 0\). Therefore, we have
\[
\hat{q}_{mj}(u, v) = \begin{cases}
1, & \text{if } i = m, \\
0, & \text{if } i \neq m.
\end{cases}
\]

Regarding the property (ii), we have
\[
(\hat{B}_{m,q}^{u}e_{i0})(u, v) = \sum_{i=0}^{m} \frac{[i]_q! [m]_q!}{[m]_q!} \frac{u^i (\nu - u)}{[m]_q!},
\]
for \(i = 0, 1, \ldots, m\).

Theorem 1. If \(f\) is a real-valued function defined on \(T_h\), then
(i) \(\hat{B}_{m,q}^{u}f = f\) on \(\Gamma_2 \cup \Gamma_3\)
(ii) \(\hat{B}_{m,q}^{u}e_{i0}(u, v) = u^i, i = 0, 1, \ldots, m\),
(iii) \(\hat{B}_{m,q}^{u}e_{20}(u, v) = u^2 + \frac{(u(h-u-v))}{[m]_q}\).

Proof. By definition, \(\hat{B}_{m,q}^{u}f(0, h) = f(0, h)\). So we will calculate the moments only on \(T_h\) \(\setminus\) \(\{0, h\}\). The interpolation property (i) follows from the relations
\[
\hat{p}_{mj}(0, v) = \begin{cases}
1, & \text{if } i = 0, \\
0, & \text{if } i \neq 0,
\end{cases}
\]
and
\[
\hat{p}_{mj}(h, v) = \begin{cases}
1, & \text{if } i = m, \\
0, & \text{if } i \neq m.
\end{cases}
\]

respectively. These operators reduce to Phillips-type operator on \([0, 1]\). One can note that the bases (15) and (16) of the operators constructed using quantum calculus are different from the bases (12) and (13) of the operators constructed by Blaga and Coman [31]. In cases \(q = 1\), corresponding operators reduce to its classical case on triangles. Now, we generalize various results of [31] in quantum calculus frame.

For the sake of convenience, we use the following notation onwards:

\[
(h - \nu)^m := \sum_{i=0}^{m} \frac{m!}{i!} (h - \nu - q^i u),
\]

\[
(h - u)^n := \sum_{i=0}^{n} \frac{n!}{i!} (h - u - q^i v),
\]
for \(m, n \geq 0\).
Remark 2. In the same way, it can be proved that if \(f \) is a real-valued function defined on \(\mathcal{T}_h \), then
\begin{align*}
(\iota) \quad \mathcal{R}^u_{m,q} f &= f \text{ on } \Gamma_1 \cup \Gamma_3 \\
(ii) \quad (\mathcal{R}^u_{n,q} e_{ij})(u, v) &= \nu^j, j = 0, 1 \text{ (dxe}(\mathcal{R}^v_{n,q}) = 1) \\
(iii) \quad (\mathcal{R}^u_{n,q} e_{02})(u, v) &= \nu^2 + \left(\nu(h - u - v) \right) / [n]_q
\end{align*}

\((\mathcal{R}^u_{n,q} e_{ij}) (u, v) = \begin{cases} u^j \nu^i, & j = 0, 1, i \in \mathbb{N}, \\
u^2 + \nu(h - u - v) / [n]_q, & j = 2, i \in \mathbb{N}.
\end{cases} \)

Based on the following approximation formula

\[f = \mathcal{B}^u_{m,q} f + \mathcal{R}^u_{m,q} f, \]

we present the following results.

Theorem 3. If \(f(., v) \in C[0, h - v] \), then

\[\left| (\mathcal{R}^u_{m,q} f)(u, v) \right| \leq \left(1 + \frac{1}{2\delta} \nu \right) \omega(f(., v) ; \delta), \quad v \in [0, h], \]

where modulus of continuity of the function \(f \) with respect to the variable \(u \) is denoted by \(\omega(f(., v) ; \delta) \).

Further, if \(\delta = 1 / \sqrt{[m]_q} \), then

\[\left| (\mathcal{R}^u_{m,q} f)(u, v) \right| \leq \left(1 + \frac{1}{2} \nu \right) \omega(f(., v) ; \frac{1}{\sqrt{[m]_q}}), \quad v \in [0, h]. \]

Proof. Since by definition, \((\mathcal{B}^u_{m,q}) (0, h) = f(0, h) \) and hence remainder will be zero at \((0, h)\) due to interpolation. We have

\[\left| (\mathcal{R}^u_{m,q} f)(u, v) \right| \leq \sum_{i=0}^{n} \hat{\mu}_{m,i} (u, v) \left| f(u, v) - f \left(\frac{[i]_q (h - v)}{[m]_q} ; v \right) \right|. \]

Since

\[|f(u, v) - f \left(\frac{[i]_q (h - v)}{[m]_q} ; v \right)| \leq \left(\frac{1}{\delta} \right) \nu - \frac{[i]_q (h - v)}{[m]_q} |+1| \omega(f(., v) ; \delta). \]

one obtains

\[\left| (\mathcal{R}^u_{m,q} f)(u, v) \right| \leq \sum_{i=0}^{n} \hat{\mu}_{m,i} (u, v) \left(\frac{1}{\delta} \nu - \frac{[i]_q (h - v)}{[m]_q} |+1| \omega(f(., v) ; \delta) \right) \leq \left[1 + \frac{1}{2} \nu \right] \omega(f(., v) ; \delta) \leq \left[1 + \frac{1}{2} \nu \right] \omega(f(., v) ; \frac{1}{\sqrt{[m]_q}}). \]

As

\[\max_{[m]_q} u(h - u - v) = \frac{h^2}{4}, \]

it follows that

\[\left| (\mathcal{R}^u_{m,q} f)(u, v) \right| \leq \left(1 + \frac{h}{2\delta} \right) \omega(f(., v) ; \delta). \]

For \(\delta = 1 / \sqrt{[m]_q} \), we obtain

\[\left| (\mathcal{R}^u_{m,q} f)(u, v) \right| \leq \left(1 + \frac{h}{2} \nu \right) \omega \left(f(., v) ; \frac{1}{\sqrt{[m]_q}} \right). \]

Theorem 4. If \(f(., v) \in C^2[0, h] \), then

\[(\mathcal{R}^u_{m,q} f)(u, v) = - \frac{u(h - u - v)}{2[m]_q} f^{(2,0)}(\xi, y), \xi \in [0, h - v], \]

where

\[\mathcal{M}_{i,j} f \left(\mathcal{T}_h \right) = \max_{[m]_q} \left| f^{(i,j)} (u, v) \right|. \]

Proof. As \(\text{dex}(\mathcal{R}^u_{m,q}) = 1 \), by Peano’s theorem, one obtains

\[(\mathcal{R}^u_{m,q} f)(u, v) = \int_0^{h-v} \mathcal{K}(u, v ; t) f^{(2,0)} (t, v) dt, \]

where

\[\mathcal{K}(u, v ; t) = \frac{h-v}{2[m]_q} \mathcal{M}_{2,0} f, (u, v) \in \mathcal{T}_h. \]
Remark 5. From (32), it follows that
\[
\mathcal{K}_{20}(u, v; t) := \mathcal{P}_{m,n}^u \left((u - t)_+ \right) \\
= (u - t)_+ - \sum_{i=0}^{m} p_{m,i}(u, v) \left([i]_q h - v - t \right),
\]
(36)
does not change the sign(\(\mathcal{K}_{20}(u, v; t) \leq 0, u \in [0, h - v]\)). By the Mean Value Theorem, it follows that
\[
\left(\mathcal{P}_{m,n}^u f \right)(u, v) = f^{(2,0)}(\xi, v) \int_{0}^{h-v} \mathcal{K}_{20}(u, v; t) dt, \quad \xi \in [0, h - v].
\]
(37)
After an easy calculation, we get
\[
\left(\mathcal{P}_{m,n}^u f \right)(u, v) = -\frac{u(h - u - v)}{2[m]_q} f^{(2,0)}(\xi, v),
\]
(38)
where \(\xi \in [0, h - v]\). By using it in Equation (32), we get
\[
\left| \left(\mathcal{P}_{m,n}^u f \right)(u, v) \right| \leq \frac{h^2}{8[m]_q} \mathcal{M}_{20} f, \quad (u, v) \in \mathcal{F}_h.
\]
(39)
Remark 6. For the remainder \(\mathcal{R}_{n,p}^\nu f\) of the approximation formula
\[
f = \mathcal{P}_{n,p}^u f + \mathcal{R}_{n,p}^\nu f.
\]
(42)
We also have the following:
(A) If \(f(u, \cdot) \in C[0, h - u]\), then
\[
\left| \left(\mathcal{R}_{n,p}^\nu f \right)(u, v) \right| \leq \left(1 + \frac{h}{2\delta \sqrt{[n]_q}} \right) \omega(f(u, \cdot); \delta), \quad u \in [0, h].
\]
(43)
And for \(\delta = 1/\sqrt{[n]_q}\),
\[
\left| \left(\mathcal{R}_{n,p}^\nu f \right)(u, v) \right| \leq \left(1 + \frac{h}{2} \right) \omega\left(f(u, \cdot); \frac{1}{\sqrt{[n]_q}} \right), \quad u \in [0, h].
\]
(44)
(B) If \(f(u, \cdot) \in C^2[0, h]\), then
\[
\left(\mathcal{R}_{n,p}^\nu f \right)(u, v) = -\frac{\nu(h - u - v)}{2[n]_q} f^{(0,2)}(u, \eta), \quad \eta \in [0, h - u],
\]
\[
\left| \left(\mathcal{R}_{n,p}^\nu f \right)(u, v) \right| \leq \frac{h^2}{8[n]_q} \mathcal{M}_{02} f, \quad (u, v) \in \mathcal{F}_h,
\]
(45)
where
\[
\mathcal{M}_{ij} f = \max_{\mathcal{F}_h} \left| f^{(i,j)}(u, v) \right|.
\]
(46)

3. Product Operators
Let \(\mathcal{P}_{m,n} = \mathcal{P}_{m,n}^u \mathcal{P}_{n,q}^\nu\) and \(\mathcal{Q}_{m,n} = \mathcal{P}_{n,q}^\nu \mathcal{P}_{m,n}^u\) be the products of operators \(\mathcal{P}_{m,n}^u\) and \(\mathcal{P}_{n,q}^\nu\).

We have
\[
\left(\mathcal{P}_{m,n,q} f \right)(u, v) = \left\{ \begin{array}{ll}
\sum_{i=0}^{m} \sum_{j=0}^{n} \hat{p}_{m,i}(u, v) \tilde{q}_{n,j} \left([i]_q [j]_q \frac{h - v}{[m]_q [n]_q} \right) f\left([i]_q [j]_q \frac{h - v}{[m]_q [n]_q} h + [i]_q [j]_q v \right), & (u, v) \in \mathcal{F}_h \setminus \{(0, h), (h, 0)\}, \\
f(0, h), & (0, h) \in \mathcal{F}_h, \\
f(h, 0), & (h, 0) \in \mathcal{F}_h.
\end{array} \right.
\]
(47)
Remark 7. The nodes of the operator $\mathcal{P}_{mn,q}$ are the q-analogue of the nodes, which are given in [31], Figure 2, for $i = 0, m; j = 0, n$, and $v \in [0, h]$.

Theorem 8. The product operator $\mathcal{P}_{mn,q}$ satisfies the following relations:

(i) $(\mathcal{P}_{mn,q}) (u, 0) = \mathcal{R}_{mn,q}^u (u, 0)$

(ii) $(\mathcal{P}_{mn,q}) (0, v) = \mathcal{R}_{mn,q}^v (0, v)$

(iii) $(\mathcal{P}_{mn,q}) (u, h - u) = f(u, h - u), u, v \in [0, h]$

The above proofs follow from some simple computation. The property (i) or (ii) implies that $(\mathcal{P}_{mn,q}) (0, 0) = f (0, 0)$.

Remark 9. The product operator $\mathcal{P}_{mn,q}$ interpolates the function f at the vertex $(0, 0)$ and on the hypotenuse $u + v = h$ of the triangle \mathcal{T}_h.

The product operator $\mathcal{Q}_{mn,q}$ given by

$$\mathcal{Q}_{mn,q} (u, v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \tilde{p}_{mn} \left(i, j \right) \tilde{q}_{mn} \left(i, j \right) \tilde{q}_{mn} \left(i, j \right) f \left(\frac{h-u}{m_i}, \frac{n_j}{n_i} \right) \right), \quad (u, v) \in \mathcal{T}_h \setminus \{0, h, (0, 0)\},$$

has the nodes, which are q-analogue of nodes given in [31], Figure 3, for $i = 0, m; j = 0, n, u \in [0, h]$, and the properties:

(i) $(\mathcal{Q}_{mn,q}) (u, 0) = \mathcal{R}_{mn,q}^u (u, 0)$

(ii) $(\mathcal{Q}_{mn,q}) (0, v) = \mathcal{R}_{mn,q}^v (0, v)$

(iii) $(\mathcal{Q}_{mn,q}) (h - v, v) = f(h - v, v), u, v \in [0, h]$

Let us consider the approximation formula

$$f = \mathcal{P}_{mn,q} + \mathcal{R}_{mn,q}^p.$$

Theorem 10. If $f \in C(\mathcal{T}_h)$ and $0 < q \leq 1$, then

$$\left| (\mathcal{Q}_{mn,q}) (u, v) \right| \leq \left(1 + h \right) w \left(f; \frac{1}{\sqrt{|n_i|}}, \frac{1}{\sqrt{|n_j|}} \right), \quad (u, v) \in \mathcal{T}_h.$$

Proof. We have

$$\left| (\mathcal{Q}_{mn,q}) (u, v) \right| \leq \sum_{i=0}^{m} \sum_{j=0}^{n} \tilde{p}_{mn} \left(u, v \right) \tilde{q}_{mn} \left(u, v \right) \tilde{q}_{mn} \left(u, v \right) f \left(\frac{h-u}{m_i}, \frac{n_j}{n_i} \right) \right), \quad (u, v) \in \mathcal{T}_h \setminus \{0, h, (0, 0)\},$$

After some transformations, one obtains

$$\sum_{i=0}^{m} \sum_{j=0}^{n} \tilde{p}_{mn} \left(u, v \right) \tilde{q}_{mn} \left(u, v \right) \tilde{q}_{mn} \left(u, v \right) f \left(\frac{h-u}{m_i}, \frac{n_j}{n_i} \right) \right), \quad (u, v) \in \mathcal{T}_h \setminus \{0, h, (0, 0)\},$$

while

$$\sum_{i=0}^{m} \sum_{j=0}^{n} \tilde{p}_{mn} \left(u, v \right) \tilde{q}_{mn} \left(u, v \right) \tilde{q}_{mn} \left(u, v \right) f \left(\frac{h-u}{m_i}, \frac{n_j}{n_i} \right) \right), \quad (u, v) \in \mathcal{T}_h \setminus \{0, h, (0, 0)\},$$

It follows

$$\left| (\mathcal{Q}_{mn,q}) (u, v) \right| \leq \frac{1}{\delta_1} \sqrt{\frac{|u|}{|n_i|}} + \frac{1}{\delta_2} \sqrt{\frac{|v|}{|n_i|}} + 1 \right) w(f; \delta_1, \delta_2).$$
Figure 1: Operators $R_m^u f$, $R_n^v f$, $P_{mn} f$, and $S_{mn} f$ approximating function on triangular domain for $h = 1$, $m = 6$, $n = 6$, and $q = 0.70$.
Figure 2: Operators $B_m^u f$, $B_n^v f$, $P_{mn} f$, and $S_{mn} f$ approximating function on triangular domain for $h = 1$, $m = 6$, $n = 6$, and $q = 0.99$.

(a) $f(u,v) = \sin(10u) + \cos(5v)$

(b) Operator $B_m^u f$

(c) $B_n^v f$

(d) $P_{mn} f$

(e) $S_{mn} f$
Figure 3: Operators $B^m_{n,q}f$, $B^v_{n,q}f$, $P_{m,q}f$, and $S_{m,q}f$ approximating function on triangular domain for $h = 1$, $m = 15$, $n = 15$, and $q = 0.70$.
Figure 4: Operators $\mathcal{B}_m f$, $\mathcal{B}_n f$, $\mathcal{P}_{mn} f$, and $\mathcal{S}_{mn} f$ approximating function on triangular domain for $h = 1$, $m = 15$, $n = 10$, and $q = 0.99$.

(a) $f(u, v) = \sin(10u) + \cos(5v)$

(b) Operator $B_m^* f$

(c) $B_n^* f$

(d) $P_{mn} f$

(e) $S_{mn} f$
Figure 5: Operators $B_{mn} f$, $B_{m}^n f$, $P_{mn} f$, and $S_{mn} f$ approximating function on triangular domain for $h = 2$, $m = 10$, $n = 10$, and $q = 0.99$.

\[f(u, v) = \sin(10u) + \cos(5v) \]
Since
\[
\frac{u(h - u - v)}{[m]_q} \leq \frac{h^2}{4[n]_q},
\]
\[
\frac{v(h - u - v)}{[n]_q} \leq \frac{h^2}{4[n]_q},
\] for all \((u, v) \in \mathcal{T}_h\).

We have
\[
|\left(\mathcal{R}_{mn,q}^f\right)(u, v)| \leq \left(\frac{h}{2\delta_1\sqrt{[m]_q}} + \frac{h}{2\delta_1\sqrt{[n]_q}} + 1\right)w(f, \delta_1, \delta_2)
\cdot (\mathcal{R}_{mn,q}^f)(u, v) \leq (1 + h)w \left(f, \frac{1}{\sqrt{[m]_q}}, \frac{1}{\sqrt{[n]_q}}\right).
\] (56)

4. Boolean Sum Operators

Let
\[
\mathcal{S}_{mn,q} = \mathcal{B}_{mn,q}^u \oplus \mathcal{B}_{mn,q}^v = \mathcal{B}_{mn,q}^u + \mathcal{B}_{mn,q}^v - \mathcal{B}_{mn,q}^u \mathcal{B}_{mn,q}^v,
\]
\[
\mathcal{T}_{mn,q} = \mathcal{B}_{mn,q}^v \oplus \mathcal{B}_{mn,q}^u = \mathcal{B}_{mn,q}^v + \mathcal{B}_{mn,q}^u - \mathcal{B}_{mn,q}^v \mathcal{B}_{mn,q}^u,
\] (57)

be the Boolean sums of the Phillips-type Bernstein operators \(\mathcal{B}_{mn,q}^u\) and \(\mathcal{B}_{mn,q}^v\).

Theorem 11. For the real-valued function \(f\) defined on \(\mathcal{T}_h\), we have
\[
\mathcal{S}_{mn,q} f \big|_{\partial \mathcal{T}_h} = f \big|_{\partial \mathcal{T}_h}.
\] (58)

Proof. We have
\[
\mathcal{S}_{mn,q} f = \left(\mathcal{B}_{mn,q}^u + \mathcal{B}_{mn,q}^v - \mathcal{B}_{mn,q}^u \mathcal{B}_{mn,q}^v\right)f.
\] (59)

The interpolation properties of \(\mathcal{B}_{mn,q}^u, \mathcal{B}_{mn,q}^v\) together with properties (i)–(iii) of the operator \(\mathcal{P}_{mn,q}\) imply that
\[
(\mathcal{S}_{mn,q} f)(u, 0) = \left(\mathcal{B}_{mn,q}^u f\right)(u, 0) + f(u, 0) - \left(\mathcal{B}_{mn,q}^v f\right)(u, 0) = f(u, 0),
\]
\[
(\mathcal{S}_{mn,q} f)(0, v) = f(0, v) - \left(\mathcal{B}_{mn,q}^v f\right)(0, v) + \left(\mathcal{B}_{mn,q}^u f\right)(0, v) = f(0, v),
\]
\[
(\mathcal{S}_{mn,q} f)(u, h) = f(u, h) - f(u, h - u) + f(u, h - u) - f(u, h - u) = f(u, h - u),
\] for all \(u, v \in [0, h]\).

Let \(\mathcal{R}_{mn,q}^S\) be the remainder of the Boolean sum approximation formula
\[
f = \mathcal{S}_{mn,q} f + \mathcal{R}_{mn,q}^S f.
\] (61)

Theorem 12. If \(f \in C(\mathcal{T}_h)\), then
\[
\left|\left(\mathcal{R}_{mn,q}^f\right)(u, v)\right| \leq \left(1 + \frac{h^2}{2}\right)w \left(f, \frac{1}{\sqrt{[m]_q}}\right) + \left(1 + \frac{h}{2}\right)w \left(f, \frac{1}{\sqrt{[n]_q}}\right) + (1 + h)w \left(f, \frac{1}{\sqrt{[m]_q}}, \frac{1}{\sqrt{[n]_q}}\right),
\] for all \((u, v) \in \mathcal{T}_h\).

Proof. From the equality
\[
f - \mathcal{S}_{mn,q} f = f - \mathcal{B}_{mn,q}^u f + f - \mathcal{B}_{mn,q}^v f - (f - \mathcal{P}_{mn,q} f),
\] we get
\[
\left|\left(\mathcal{R}_{mn,q}^f\right)(u, v)\right| \leq \left|\left(\mathcal{P}_{mn,q} f\right)(u, v)\right| + \left|\left(\mathcal{B}_{mn,q}^u f\right)(u, v)\right| + \left|\left(\mathcal{B}_{mn,q}^v f\right)(u, v)\right|
\] (62)

Now, from (25), (44), and (50), we follow the proof (62).

Remark 13. Analogous relations can be obtained for the remainders of the product approximation formula
\[
f = \mathcal{Q}_{mn,q} f + \mathcal{Q}_{mn,q}^u f = \mathcal{Q}_{mn,q}^v f + \mathcal{Q}_{mn,q}^v f + \mathcal{Q}_{mn,q}^v f,
\] (65)

and for the Boolean sum formula
\[
f = \mathcal{T}_{mn,q} f + \mathcal{R}_{mn,q}^T f = \left(\mathcal{B}_{mn,q} f + \mathcal{B}_{mn,q}^u f\right) + \mathcal{R}_{mn,q}^T f.
\] (66)

5. Graphical Analysis

Let us consider a function for graphical analysis. In Figure 1(a), we have presented the graph of function \(f(u, v) = \sin(10u) + \cos(5v)\) on triangular domain. The graph of Phillips Bernstein operator \(\mathcal{B}_{mn,q}^u f\) based on quantum analogue on triangular domain is shown in Figure 1(b). Similarly, other operators \(\mathcal{B}_{mn,q}^v f, \mathcal{P}_{mn,q} f, \) and \(\mathcal{S}_{mn,q} f\) approximating function are shown in Figures 1(c)–1(e) for various values of \(q, m, n,\) and \(h\). One can observe from Figures 1–5 that operators are approximating function better as \(q\) approaches to 1 for fixed value of \(m\) and \(n\).

Also from these figures, one can observe that operator is approximating function better with increasing values of \(m\) and \(n\) and by fixing \(q\) on triangular domain.
Thus, we have constructed Phillips-type q-Bernstein operators over triangular domain which hold the end point interpolation property on some edges and vertices of triangle. Hence, it can be concluded that after introducing one extra parameter q in Lupas Bernstein operators, we have more modeling flexibility for approximation on triangular domain.

Data Availability

No data are available.

Conflicts of Interest

The authors declare that they have no competing interests.

References

[1] A. Sard, Linear Approximation, vol. 9 of Mathematical Surveys, American Mathematical Society, 1963.
[2] K. Weierstrass, "Über die analytische darstellbarkeit sogenannter willkürlicher functionen einer reellen veränderlichen," Königl. Preussischen Akademie der Wissenschaften zu Berlin, 1885.
[3] A. Lupas, "A q-analogue of the Bernstein operator," Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca, vol. 9, pp. 85–92, 1987.
[4] G. M. Phillips, "Bernstein polynomials based on the q-integers," Annals of Numerical Mathematics, vol. 4, pp. 511–518, 1997.
[5] G. M. Phillips, "A generalization of the Bernstein polynomials based on the q-integers," The ANZIAM Journal, vol. 42, no. 1, pp. 79–86, 2000.
[6] S. A. A. Karim, A. Saaban, V. Skala, A. Ghaflar, K. S. Nisar, and D. Baleanu, "Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation," Advances in Difference Equations, vol. 2020, no. 1, 2020.
[7] H. Oruç and G. M. Phillips, "q-Bernstein polynomials and Bezier curves," Journal of Computational and Applied Mathematics, vol. 151, no. 1, pp. 1–12, 2003.
[8] L.-W. Han, Y. Chu, and Z.-Y. Qiu, "Generalized Bezier curves and surfaces based on Lupas q-analogue of Bernstein operator," Journal of Computational and Applied Mathematics, vol. 261, pp. 352–363, 2014.
[9] R. T. Farouki and V. T. Rajan, "Algorithms for polynomials in Bernstein form," Computer Aided Geometric Design, vol. 5, no. 1, pp. 1–26, 1988.
[10] R. E. Barnhill, "Surfaces in computer aided geometric design: a survey with new results," Computer Aided Geometric Design, vol. 2, no. 1-3, pp. 1–17, 1985.
[11] R. E. Barnhill, G. Birkhoff, and W. J. Gordon, "Smooth interpolation in triangles," Journal of Approximation Theory, vol. 8, no. 2, pp. 114–128, 1973.
[12] R. E. Barnhill and L. Mansfeld, "Error bounds for smooth interpolation in triangles," Journal of Approximation Theory, vol. 11, no. 4, pp. 306–318, 1974.
[13] B. L. Hulme, "A new bicubic interpolation over right triangles," Journal of Approximation Theory, vol. 5, no. 1, pp. 66–73, 1972.
[14] R. J. Renka and A. K. Cline, "A triangle-based C1 interpolation method," Rocky Mountain Journal of Mathematics, vol. 14, no. 1, pp. 223–237, 1984.
[15] T. Acar and A. Aral, "On pointwise convergence of q-Bernstein operators and their q-derivatives," Numerical Functional Analysis and Optimization, vol. 36, no. 3, pp. 287–304, 2014.
[16] T. Acar, A. Aral, and S. A. Mohiuddine, "Approximation by bivariate (p,q)-Bernstein-Kantorovich operators," Iranian Journal of Science and Technology, Transactions A: Science, vol. 42, no. 2, pp. 655–662, 2018.
[17] T. Acar, A. Aral, and I. Raşa, "Iterated Boolean sums of Bernstein type operators," Numerical Functional Analysis and Optimization, vol. 41, no. 12, pp. 1515–1527, 2020.
[18] T. Acar, S. A. Mohiuddine, and M. Mursaleen, "Approximation by (p,q)-Baskakov-Durrmeyer-Stancu operators," Complex Analysis and Operator Theory, vol. 12, no. 6, pp. 1453–1468, 2018.
[19] G. A. Anastassiou and M. A. Khan, "Korovkin type statistical approximation theorem for a function of two variables," Journal of Computational Analysis and Applications, vol. 21, no. 7, pp. 1176–1184, 2016.
[20] D. Barbosu, "On the remainder term of some bivariate approximation formulas based on linear and positive operators," Constructive Mathematical Analysis, vol. 1, no. 2, pp. 73–87, 2018.
[21] A. Holhos, "The product of two functions using positive linear operators," Constructive Mathematical Analysis, vol. 3, no. 2, pp. 64–74, 2020.
[22] A. Kilicman, M. A. Mursaleen, and A. A. H. A. Al-Abied, "Stancu type Baskakov-Durrmeyer operators and approximation properties," Mathematics, vol. 8, no. 7, pp. 1164, 2020.
[23] M. Mursaleen, K. J. Ansari, and A. Khan, "Approximation properties and error estimation of q-Bernstein shifted operators," Numerical Algorithms, vol. 84, no. 1, pp. 207–227, 2020.
[24] M. Mursaleen, K. J. Ansari, and A. Khan, "Corrigendum to: Some approximation results by (p,q)-analogue of Bernstein-Stancu operators" [Appl. Math. Comput. 264(2015)392-402], Applied Mathematics and Computation, vol. 269, pp. 744–746, 2015.
[25] M. Mursaleen, M. Nasiruzzaman, A. Khan, and K. Ansari, "Some approximation results on Bleimann-Butzer-Hahn operators defined by (p,q)-integers," Filomat, vol. 30, no. 3, pp. 639–648, 2016.
[26] D. D. Stancu, "Approximation of bivariate functions by means of some Bernstein-type operators," Multivariate Approximation (Sympos., Univ. Durham, Durham, 1977), pp. 189–208, 1978.
[27] D. D. Stancu, "Evaluation of the remainder term in approximation formulas by Bernstein polynomials," Mathematics of Computation, vol. 17, pp. 270–278, 1963.
[28] D. D. Stancu, "The remainder of certain linear approximation formulas in two variables," Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, vol. 1, pp. 137–163, 1964.
[29] S. Ostrovska, "On the Lupasq-analogue of the Bernstein operator," Rocky Mountain Journal of Mathematics, vol. 36, no. 5, pp. 1615–1629, 2006.
[30] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics and Its Applications, vol. 71, Cambridge University Press, Cambridge, UK, 1999.
[31] P. Blaga and G. Coman, "Bernstein-type operators on triangles," Revue d’Analyse Numérique et de Théorie de l’Approximation, vol. 38, no. 1, pp. 11–23, 2009.