Iron Catalyzed Double Bond Isomerization: Evidence for an FeI/FeIII Catalytic Cycle

Callum R. Woof,[a] Derek J. Durand,[b] Natalie Fey,*[b] Emma Richards,*[c] and Ruth L. Webster*[a]

Abstract: Iron-catalyzed isomerization of alkenes is reported using an iron(II) \(\beta\)-diketiminate pre-catalyst. The reaction proceeds with a catalytic amount of a hydride source, such as pinacol borane (HBpin) or ammonia borane (\(\text{H}_3\text{N} \cdot \text{BH}_3\)). Reactivity with both allyl arenes and aliphatic alkenes has been studied. The catalytic mechanism was investigated by a variety of means, including deuteration studies, Density Functional Theory (DFT) and Electron Paramagnetic Resonance (EPR) spectroscopy. The data obtained support a pre-catalyst activation step that gives access to an \(\eta^1\)-coordinated alkene FeI complex, followed by oxidative addition of the alkene to give an FeIII intermediate, which then undergoes reductive elimination to allow release of the isomerization product.

Introduction

Two-electron chemistry within the field of iron catalysis is incredibly rare.[1] We envisioned that if a controlled one electron reduction of an Fe(II) species could be carried out with a well-defined iron pre-catalyst, then it might be feasible to access an oxidative addition (OA)/reductive elimination (RE) (i.e. FeI/FeIII) catalytic cycle to afford activity similar to that typically observed with precious metal congeners. Previous catalytic studies within our group using an iron(II) \(\beta\)-diketiminate complex (hereafter referred to as complex 1) have focused on bond forming transformations (for example hydrophosphination, hydroamination and dehydrocoupling, Scheme 1a). However, double bond isomerization gives the ideal opportunity to explore a unimolecular transformation that relies on a 1,3-hydrogen shift,[2] the simplicity of which may give increased likelihood of OA/RE chemistry (Scheme 1b). Carbon–carbon double bonds are important in synthetic chemistry: they are used to introduce diverse functionality to organic molecules, including pharmaceuticals, and they are also used extensively in the petrochemical-based polymer industry. Double bond isomerization can change the properties of a molecule without the need for stoichiometric exogenous reagents.[3]

Although there are several elegant examples of earth abundant metal-catalyzed isomerization.functionalization (e.g. hydrosilylation,[6] allylic alcohol to ketone[7]), which ultimately provide an energetically favorable driving force for the isomerization step, there are far fewer examples of the use of abundant metal pre-catalysts to only invoke iso-

Scheme 1. a) Previous catalytic reactions undertaken using 1; b) this work.

\[\text{Fe}^\text{I}/\text{Fe}^\text{III} \]

Supporting information and the ORCID identification numbers for the authors of this article can be found under:
https://doi.org/10.1002/chem.202004980.

\[\text{Fe}^\text{I}/\text{Fe}^\text{III} \]

© 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
merization. Isomerization-only processes catalyzed by iron are
dominated by thermodynamically favored cis-to-trans and/or
terminal to internal double bond isomerization. Some of the
earliest examples of iron-catalyzed reactions date back to the
1960’s when Frankel, Emken and Davison reported the use of
Fe(CO)₅ as a catalyst in double bond isomerization in fatty
acids and esters. Triiron dodecacarbonyl was used by Casey
and Cyr to undertake isomerization of 3-ethyl-1-pentene and
detailed mechanistic studies suggested that the reaction likely
proceeded via an Fe(η³-allyl)(H) intermediate. Beyond catalysis
performed using iron carbonyl complexes, von Wangelin has reported isomerization using Fe(acac)₃ with a Grignard
additive at room temperature. More recently, Koh and co-work-
ners have reported an elegant regiodivergent isomerization pro-
cess that uses B₂Pin₂ or PhMe₂SiBpin in conjunction with an
iron catalyst and LiO₂Bu. Mechanistic studies revealed that the
reaction is likely to proceed via an iron-hydride with subse-
quent olefin insertion and β-hydride elimination.

Pertinent to this study, Smith has employed an Fe₁
species, exploiting the propensity for spin crossover, to achieve iron catalyzed
double bond isomerization via a two-electron catalytic cycle.

Results and Discussion
Following a short optimization procedure we found that a co-
catalytic quantity (10 mol %) of pinacol borane (HBpin), ammno
borane (H₃N·BH₃) or dimethylamine borane (Me₂HN·BH₃)
are all similarly competent at transforming allyl benzene (2a)
into β-methylstyrene (3a) with 5 mol % 1 at 60 °C in 16 h
(Table 1, also see Supporting Information for further optimiza-
tion).

Our previous synthetic and theoretical studies with 1 have indicated that hydroboration[14] and transfer hydrogenation[12]
reactions, amongst others, proceed in a redox-neutral manner,
in particular operating via an FeIII hydride. In light of this, we
sought to rule out an alkyl-based mechanism where HBpin or an
alternative reagent serves as a hydride source, forming an iron(II) hydride which can consequently undergo addition
across a double bond and subsequent β-hydride elimination at
the more substituted position. Further investigation was able
to discount this mechanism taking place. Firstly, the iron(II) hy-
dride dimeric species 4 is poor in catalysis (16% conversion to
3a,16 h, 60 °C as opposed to 93% 3a with 1 and HBpin, see
Scheme 2d), contrasting with our dehydrocoupling work.[16]
Adding further hydride source to 4 does lead to catalysis, but

Table 1. Optimization of iron catalyzed double bond isomerization using allylbenzene as the substrate.
Catalyst (5 mol %), additive (10 mol %)
1, none
2, None, HBpin
3, HBpin
4, H₃N·BH₃
5, H₂N·BH₃
6, Me₂HN·BH₃
7, TMP·BH₃
8, PhH₂N·BH₃

Standard reaction conditions: C₆D₆ (0.6 mL), allylbenzene (0.5 mmol), cata-
lyst (0.025 mmol), additive (0.05 mmol), 60 °C, 16 h. Conversion and selec-
tivity determined by in situ ¹H NMR spectroscopy. [a] RT. [b] TMP = 2,2,6,6-
tetramethylpiperidine. 80 °C, 48 h.

Scheme 2. a)–c) Deuterium labelling studies; d) Discounted redox-neutral
catalytic isomerization cycle.
the lack of NMR evidence for 4 forming in situ suggests it is not formed as part of a pathway to an active species. Secondly, deuteriation studies give outcomes contradicting what would be expected for a redox neutral mechanism (Scheme 2).

Firstly, there is no ¹H-incorporation in substrates when using deuteriated hydride sources (Scheme 2a), and full isoretenion is observed in the transformation of α-labelled substrate 2a-d₂ (Scheme 2b) to 3a-d₂. If 1 is activated to form an Fe-hydride (or deuteride) then a small amount of H/D exchange would be expected owing to the intermolecular nature of catalyst activation and H transfer.

Secondly, in a competitive reaction of 2a-d₂ and 2b, isoretenion is again observed (Scheme 2c), indicating hydride transfer is intramolecular rather than intermolecular. At this stage, the deuterium labelling studies closely match the results one would expect from an η¹-allyl mechanism.² Qualitatively, the reactions are observed to change from the dark yellow of 1 to a vivid red, a color that is synonymous with the formation of Fe⁰. Furthermore, upon investigating our proposed catalytic cycle with DFT calculations, we were able to demonstrate that a redox-neutral Fe⁰ catalytic cycle of the form shown in Scheme 2d is disfavored due to an exceptionally high energy barrier for the β-hydride elimination step for the more stable, high-spin quintet surface (ΔG° = 37.4 kcal mol⁻¹, see Supporting Information for details). Evans method NMR analysis gives μ₁/₄ = 5.7 for the pre-catalyst 1, which is consistent with measurements from Hessen of similar Fe⁰ complexes.³ However, addition of HBpin, H₂N-BH₃ or Me₂HN-BH₃ to 1 results in a decrease in the magnetic moment to μ₁/₄ = 5.1. We tentatively attribute this to a shift from pure Fe⁰ to a mix of oxidation/spin states being present. Adding 2a does not appear to affect μ₁/₄ further. At this stage, we feel we have reasonable evidence to rule out the entirely redox-neutral cycle of the form shown in Scheme 2d. No reaction is observed with the radical clock 6-bromo-1-hexene, therefore we are confident that there are no organic radicals present or propagating in solution.

To support the NMR results, X-band CW EPR studies were recorded in benzene:toluene (200:10 µL) frozen solution. A solution of 1 in the absence of substrate indicates the presence of a small amount of high-spin Fe⁰, which we assign to the side formation of FeCl₃ during synthesis of the pre-catalyst (see Supporting Information). Direct addition of 2a to 1 did not lead to any changes in the EPR spectrum (see Supporting Information), indicating no change in oxidation state induced by the alkene. However, upon addition of HBpin or H₂N-BH₃ to 1, the appearance of a well-resolved rhombic signal without any observable hyperfine coupling is observed, consistent with a low spin S = 1/2 iron d² center (Figure 1). Addition of 2a to this mixture does not lead to further spectral changes. Computer simulation of this species revealed the spin Hamiltonian parameters characterized by g = [1.984 2.018 2.200], which is analogous to Holland’s characterization of an Fe⁰ species interacting with benzene, and our previous report of Fe⁰ complexes formed upon reaction of FeCl₃ with aryl/alkyl Grignard reagents.⁴ The Fe⁰ signal is superimposed on a broad signal associated with a high-spin Fe¹ center, vide infra (also see Supporting Information for details). Cyclic Voltammetry was also used to determine whether HBpin, H₂N-BH₃ or Me₂HN-BH₃ are strong enough reductants to convert 1 into an Fe⁰ complex (see Supporting Information for details). Cyclic Voltammetry studies of 1 show two strong reduction peaks. We assign the first to the reduction of our Fe² pre-catalyst to an Fe⁰ species, which we determine to be −1.48 vs. Fc/Fc⁻. The lack of a large peak in the oxidative direction suggests the irreversibility of the Fe⁰/Fe¹ reduction process, potentially ruling out a one-electron oxidation/reduction catalytic cycle. The second peak has a potential of −1.92 vs. Fc/Fc⁻, and we believe it is ligand-based and is unlikely to have significant bearing on the catalytic pathway. The relatively strong reducing potentials of both HBpin and H₂N-BH₃ indicate that such a reduction is thermodynamically feasible.⁵ Because of this, we propose that the active species in catalysis is initially an Fe⁰ species. This complex may be stabilized by either a molecule of solvent, as previously reported, or by a molecule of substrate. Substitution coefficient studies from Holland⁶ on 1a (Scheme 3a) indicate that, once formed, the η¹-allylbenzene complex 1a is more stable, and we therefore believe that if 1a forms, displacement to form 1b is rapid and facile. Wide sweep width NMR spectroscopy of both stoichiometric and catalytic reactions (using HBpin or H₂N-BH₃) give complex spectra that we attribute to
off-cycle or catalytically inactive FeII complexes or FeIII formed by disproportionation of FeII into FeIII and FeII (see Supporting Information for extended discussion). Unfortunately, we have not been able to isolate any key intermediates from reaction mixtures\cite{22} and characterize them crystallographically, and detailed kinetics studies have been hampered by the reaction temperature coupled to the paramagnetic iron center, which have made in situ NMR monitoring challenging. However, in situ UV-vis spectroscopy measurements give \(\lambda_{\text{max}} = 494 \) and 552 nm (for catalysis in the presence of H\textsubscript{2}N-BH\textsubscript{3}) or \(\lambda_{\text{max}} = 497 \) and 547 nm (for catalysis in the presence of H\textsubscript{2}pin); wavelengths that have been linked to both FeII and FeIII \(\beta \)-diketiminate species\cite{21, 23}. Using the method reported by Scheer for the synthesis of the \(\eta^1 \)-toluene analogue of \textit{3a}24, we obtain 87\% \textit{3a} (7.5:1 \textit{trans}:\textit{cis}) after 16 h at 60 °C when 5 mol% of this FeII species is used in catalysis (31% in a 6.3:1 ratio after 2 h); these results are in-line with those obtained using the same conditions with pre-catalyst 1 (5 mol% \textit{L} and 10 mol% H\textsubscript{2}pin, 27%, 5.7:1 ratio after 2 h; and 93%, 7.6:1 ratio after 16 h) and further support the proposal that the reaction proceeds via an FeII species.

To summarize the experimental results thus far: 1 appears to undergo a change in oxidation state in the presence of a hydride source and this is supported by NMR and EPR studies. Electrochemistry indicates that the hydride source can reduce 1 to an FeII species and work from Holland has demonstrated that alkenes are able to form \(\eta^1 \)-FeII complexes (i.e. \textit{1a} and \textit{1b}). An \(\eta^1 \)-arene FeII complex gives similar catalytic results to 1. Deuterium labelling indicates that the hydride is not transferred to the isomerized product and therefore it appears to be acting as a pre-catalyst activator only.

Having ruled out a redox-neutral FeII pathway both experimentally and computationally, we further investigated the isomerization of allylbenzene to \(\beta \)-methylstyrene using DFT calculations. We propose that the reaction proceeds from our active FeII \(\eta^1 \)-alkene species \textit{1b} in the doublet spin-state, via a selectivity-determining oxidative addition of one of the phenyl adjacent C–H bonds to form either of FeII \(\eta^1 \)-allyl species, \textit{1c} or \textit{1c}*. These intermediates then undergo a reductive elimination of the proton onto the terminal carbon to form the FeII allyl species, \textit{1c} or \textit{1c}*. A ligand exchange with the substrate \textit{2a} then yields the major product, trans-\(\beta \)-methylstyrene or the minor product, cis-\(\beta \)-methylstyrene, while also regenerating \textit{1a} (Scheme 3b).

We suggest that the doublet spin state of the complex is largely preserved throughout the catalytic cycle, although we have also investigated the other spin states, with a particular focus on the trans-selective route. While the quartet \textit{1a} was calculated to be more stable than the doublet by 21.0 kcal mol-1, we found, similarly to Smith,27 that the activation barrier for the trans selective oxidative addition on the quartet surface (\(\Delta G^* = 45.0 \) kcal mol-1) was far in excess of what might be considered accessible under the experimental conditions used (see Supporting Information). In addition to this, our EPR results do not support the presence of a quartet FeII species, or a quartet FeIII species.

Starting from our initial species \textit{1b}, rotation of the Ph–C bond to give the appropriate orientation for each oxidative addition is a low-energy process (< 1 kcal mol-1), with the subsequent activation barriers (\(\Delta G^* = 25.7 \) kcal mol-1 for \textit{trans}, \(\Delta G^* = 28.1 \) kcal mol-1 for \textit{cis}) supporting the experimentally observed trans selectivity of the reaction (Table 2). Due to steric interactions arising from the proximity of the substrate phenyl ring to the 2,6-diisopropylphenyl groups on the \(\beta \)- diketiminate ligand, the cis \(\eta^1 \)-allyl product of the oxidative addition, intermediate \textit{1c} \textit{cis} generates an overall positive \(\Delta G \) for that step (+ 19.7 kcal mol-1 relative to \textit{1a}); while the less hindered \textit{1c} \textit{trans} is 2.7 kcal mol-1 more stable than \textit{1c} \textit{cis} and results in a slightly reduced free energy difference, \(\Delta G = + 18.0 \) kcal mol-1, making the formation of \textit{1c} \textit{trans} slightly less reversible than \textit{1c} \textit{cis}. From there, both isomers have relatively small barriers for the reductive elimination (\(\Delta G^* = 2.6 \) kcal mol-1 for \textit{trans} and 4.8 kcal mol-1 for \textit{cis}), the rate determining barrier for both is the oxidative addition, supported by a secondary kinetic isotope effect (\(K_D/K_{\text{ui}} = 1.03 \pm 0.06 \)) observed experimentally. Both the \textit{trans} (− 4.6 kcal mol-1) and \textit{cis} selective (− 3.3 kcal mol-1) isomerization of allylbenzene are calculated to be exothermic overall.

Table 2. Calculated activation barriers \(\Delta G^* \) (kcal mol-1) for the isomerization of allylbenzene for the proposed FeII/FeIII catalytic cycle.

Selectivity	Oxidative addition	Reductive elimination
trans	25.7	2.6
cis	28.1	4.8
The sextet FeII intermediate $1_{C \text{trans}}$ lies below the doublet electronic configuration at our chosen level of theory. As shown on the energy surfaces plotted in Figure 2, the high-spin FeII species detected by EPR is likely to be $1_{C \text{trans}}$ (3.1 kcal mol$^{-1}$ more stable than the doublet), although we concede that computational method effects might affect this prediction. The observed reaction outcome could thus be explained either by considering only the low spin species, or by spin crossovers onto the high spin surface near the oxidative addition step and crossing back onto the low spin pathway near the reduction elimination. Unfortunately, we were unable to locate minimum energy crossing points (MECPs) between these surfaces with the method described by Harvey et al. (see Supporting Information for further details).

To prove utility beyond allyl benzene we have explored a range of substrates (Scheme 4). We have opted to use H$_3$N·BH$_3$ as our hydride source as it is an easy to handle, inexpensive reagent with good sustainability credentials. In most cases there is good selectivity for the trans-styrene product (3a to 3d). However, when the aromatic ring is functionalized with strongly electron donating (3e and 3f) or withdrawing groups (3g and 3h), there is a drop-off in trans-selectivity and the cis product becomes more favorable. We link this, and the drop-off in trans selectivity observed with HBpin (see Table 1), to rate of reaction: reactions of electron donating or withdrawing substrates, or those mediated by HBpin, are slower, meaning there is less opportunity for cis-to-trans isomerization to take place prior to product isolation. Good turnover is observed for the double bond isomerization of β- to α-pinene (3i) and a modest amount of exo- to endo-double bond isomerization is observed for valencene (2j). Unfortunately, no reactivity is observed with secondary and tertiary amine-containing alkenes (diallylamine, N-allylaniline and 4-methyl-diallylaniline), or with 1,1-disubstituted alkenes such as (2-methyl-2-propenyl)benzene or multiple double bond containing terpenes such as β-farnesene (which showed good reactivity during hydroboration studies). We have explored the selectivity obtained for the isomerization of hexene (see Supporting Information) but more forcing reaction conditions are required (80 °C, 48 h, in comparison to 60 °C, 16 h).

Finally, to demonstrate the applicability of this isomerization catalysis to sustainable chemistry, we have utilized our catalysis to afford a key synthetic fragrance and flavor molecule (Scheme 4b). In a reaction sequence involving iron-catalyzed double bond isomerization followed by ozonolysis, we have transformed safrole into piperonal, a floral/vanilla scented compound with both fragrance and synthetic applications.

Conclusions

In summary, we have reported a rare example of iron catalysis likely proceeding through a two-electron oxidation/reduction mechanistic pathway. A catalytic amount of HBpin or H$_3$N-BH$_3$, rather than act as a source of hydride, acts to reduce our FeII pre-catalyst to an FeII species, a proposal supported by EPR and electrochemical studies. An η^1-allyl-type mechanism, proceeding via an FeII/FeI redox active cycle, is supported by deu-
terium labelling and DFT studies, leading to terminal alkenes being isomerized to more substituted products in a trans selective manner. The presence of a redox active catalytic cycle raises the question of whether this chemistry is limited to double bond isomerization, or whether we can exploit this to other two-electron transformations.

Acknowledgements

The EPSRC Centre for Doctoral Training in Catalysis (EP/L016443/1) is thanked for funding CRW and DJD. We thank the EPSRC UK National Mass Spectrometry Facility at Swansea University for MS analysis and the Centre for Computational Chemistry at the University of Bristol for providing access to computing resources. The authors would also like to thank Dr. Josh Tibbetts for assistance with ozonolysis experiments, Professor Frank Marken and Mr. Jack Stewart for helpful discussion on Cyclic Voltammetry studies, and Dr. Danila Gasperini for the preparation of the Fe\(^{1}\) \(\eta^{6}\)-toluene analogue of 1\(^{\alpha}\).

Conflict of interest

The authors declare no conflict of interest.

Keywords: homogeneous catalysis · iron · isomerization · reaction mechanisms · redox chemistry

[1] a) A. Fürstner, ACS Cent. Sci. 2016, 2, 778–789; b) T. L. Makos, J. A. Byers, Inorg. Chem. Front. 2016, 3, 766–790; c) R. Arevalo, P. J. Chirik, J. Am. Chem. Soc. 2019, 141, 9106–9123; d) D. Wei, C. Darcel, Chem. Rev. 2019, 119, 2550–2610.

[2] I. Massad, I. Marek, ACS Catal. 2020, 10, 5793–5804.

[3] M. Hassam, A. Taher, G. E. Arnott, I. R. Green, W. A. L. van Otterlo, Chem. Rev. 2015, 115, 5462–5569.

[4] A. Vasseur, J. Bruffaerts, I. Marek, Nat. Chem. 2016, 8, 209–219.

[5] a) M. L. Scheuermann, E. J. Johnson, P. J. Chirik, Org. Lett. 2015, 17, 2716–2719; b) T. Ogawa, A. J. Ruddy, O. L. Sydora, M. Stradiotto, L. Turcuilet, Organometallics 2017, 36, 417–423; c) C. M. Macaulay, S. J. Gustafson, J. T. Fuller, D.-H. Kwon, T. Ogawa, M. J. Ferguson, R. McDonald, M. D. Lumsden, S. M. Bischof, O. L. Sydora, D. H. Ess, M. Stradiotto, L. Turcuilet, ACS Catal. 2018, 8, 9907–9925; d) X. Yu, H. Zhao, S. Xi, Z. Chen, X. Wang, L. Wang, L. Q. H. Lin, K. P. Loh, M. J. Koh, Nat. Catal. 2020, 3, 585–592.

[6] a) S. C. Bart, E. Lobkovskiy, P. J. Chirik, J. Am. Chem. Soc. 2004, 126, 13794–13807; b) H. Li, M. Achard, C. Bruneau, J.-B. Sortais, C. Darcel, RSC Adv. 2014, 4, 25892–25897.

[7] T. Xia, Z. Wei, B. Spiegelberg, H. Jiao, S. Hinze, J. G. de Vries, Chem. Eur. J. 2018, 24, 4043–4049.

[8] E. N. Franklin, E. A. Emmken, V. L. Davison, J. Am. Oil Chem. Soc. 1966, 43, 307–311.

[9] c) P. C. Casey, C. R. Cyr, J. Am. Chem. Soc. 1973, 95, 2248–2253.

[10] a) L. N. Sukhobok, G. P. Potapov, V. G. Luksha, V. N. Krutii, B. D. Polkowmikov, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1982, 31, 2033–2035; b) M. R. Reddy, M. Periasamy, J. Organomet. Chem. 1995, 491, 263–266; c) K. F. Sawyer, E. A. Glascoe, J. F. Cahan, J. P. Schlegel, C. B. Harris, Organometallics 2008, 27, 4370–4379; d) R. Jennerjahn, R. Jastelli, I. Piras, R. Franke, H. Jiao, M. Bauer, M. Beller, ChemSusChem 2012, 5, 734–739.

[11] M. Mayer, A. Welther, A. Jacobi von Wangelin, ChemCatChem 2011, 3, 1567–1571.

[12] X. Yu, H. Zhao, P. Li, M. J. Koh, J. Am. Chem. Soc. 2020, 142, 18223–18230.

[13] S. A. Lutz, A. K. Hickey, Y. Gao, C. H. Chen, J. M. Smith, J. Am. Chem. Soc. 2020, 142, 15527–15535.

[14] M. Espinal-Viguri, C. R. Woof, R. L. Webster, Chem. Eur. J. 2016, 22, 11605–11608.

[15] M. Espinal-Viguri, S. E. Neale, N. T. Coles, S. A. Macgregor, R. L. Webster, J. Am. Chem. Soc. 2019, 141, 572–582.

[16] D. Gasperini, A. King, N. T. Coles, M. F. Mahon, R. L. Webster, ACS Catal. 2020, 10, 6102–6112.

[17] E. M. Schubert, J. Chem. Educ. 1992, 69, 62.

[18] T. J. Sciaroni, A. Meetsma, B. Hessen, Inorg. Chim. Acta 2006, 359, 1815–1825.

[19] R. B. Bedford, P. B. Brenner, E. Carter, P. M. Cogswell, M. F. Haddow, J. N. Harvey, D. M. Murphy, J. Nunn, C. H. Woodall, Angew. Chem. Int. Ed. 2014, 53, 1804–1808, Angew. Chem. 2014, 126, 1835–1839.

[20] C. Faverio, M. F. Boselli, F. Medici, M. Benaglia, Org. Biomol. Chem. 2020, 18, 7789–7813.

[21] Y. Yu, J. M. Smith, C. J. Flaschenriem, P. L. Holland, Inorg. Chem. 2006, 45, 5742–5751.

[22] a) J. Halpern, Inorg. Chim. Acta 1981, 50, 11–19; b) J. Halpern, T. Okamoto, A. Zakhariev, J. Mol. Catal. 1977, 2, 65–68.

[23] A. Panda, M. Stender, R. J. Wright, M. M. Olmstead, P. Klavins, P. P. Power, Inorg. Chem. 2002, 41, 3909–3916.

[24] F. Spitzer, C. Graßl, G. Balázs, E. M. Zolnhofer, K. Meyer, M. Scheer, Angew. Chem. Int. Ed. 2016, 55, 4340–4344; Angew. Chem. 2016, 128, 4412–4416.

[25] J. N. Harvey, M. Aschi, H. Schwarz, W. Koch, Theor. Chem. Acc. 1998, 99, 95–99.