Epidemiology Note

Estimation of lifetime cumulative incidence and mortality risk of gastric cancer

Yukari Taniyama1, Kota Katanoda2,*, Hadrien Charvat3, Megumi Hori2, Yuko Ohno1, Shizuka Sasazuki3, and Shoichiro Tsugane4

1Department of Mathematical Health Science, Graduate School of Medicine, Osaka University, Osaka, 2Division of Cancer Statistics Integration, Center for Cancer Control and Information Services, National Cancer Center, 3Division of Prevention, and 4Center for Public Health Sciences, National Cancer, Tokyo, Japan

*For reprints and all correspondence: Kota Katanoda, Center for Cancer Control and Information Services, National Cancer Center, 5-1-1 Tsukiji Chuo-ku Tokyo 104-0045 Japan. E-mail: kkatanod@ncc.go.jp

Received 24 April 2017; Editorial Decision 12 August 2017; Accepted 23 August 2017

Abstract

Objective: To estimate cumulative incidence and mortality risk for gastric cancer by risk category.

Methods: Risk was classified into four types according to the presence/absence of Helicobacter pylori infection and chronic atrophic gastritis: in order of lowest to highest risk, Group A: H. pylori (−) and atrophic gastritis(−); Group B: H. pylori(+) and atrophic gastritis(−); Group C:H. pylori(+) and atrophic gastritis(+); and, Group D: H. pylori(−) and atrophic gastritis(+). We used vital statistics for the crude all-cause and crude gastric cancer mortality rates in 2011 and data from population-based cancer registries (the Monitoring of Cancer Incidence in Japan) for gastric cancer incidence in 2011. For relative risk and prevalence, we used the results of a meta-analysis integrating previous studies and data from the Japan Public Health Center-based Prospective Study for the Next Generation, respectively (baseline survey 2011–16). We calculated the crude incidence and mortality rates and estimated the cumulative risk using a life-table method.

Results: The estimated lifetime cumulative incidence risk was 11.4% for men and 5.7% for women. The estimated risk for Groups A, B, C and D was 2.4%, 10.8%, 26.7% and 35.5% for men, and 1.2%, 5.5%, 13.5% and 18.0% for women, respectively. Similarly, the estimated lifetime cumulative mortality risk was 3.9% for men and 1.8% for women. The estimated risk of mortality for Groups A, B, C and D was 0.8%, 3.6%, 9.0% and 12.0% for men, and 0.4%, 1.7%, 4.2% and 5.7% for women, respectively.

Conclusions: Our results may be useful for designing individually tailored prevention programs.

Key words: Helicobacter pylori, incidence, mortality, risk, stomach neoplasms

Introduction

Cancer is the top cause of death among Japanese people. Half of Japanese people will develop cancer over their lifetime, and one in four men and one in six women will die from cancer (1,2). While the age-standardized incidence and mortality rates of gastric cancer are decreasing for both men and women, gastric cancer has the highest incidence for men and the third-highest incidence for women of any cancer. Furthermore, the gastric cancer mortality is second-highest for men and third-highest for women of any cancer (1).

Infection with Helicobacter pylori (H. pylori), excessive sodium intake, and smoking are established risk factors for gastric cancer (3–5).

The presence or absence of risk factors that are strongly associated with gastric cancer, such as H. pylori infection, greatly affects individual disease risk, and such information is necessary for tailored disease prevention. Individually tailored disease prevention refers to an individual engaging in health and medical behavior that is dependent on their own disease risk, or being provided with health and medical services in accordance with their individual
disease risk. When devising individual preventive measures, it is vital to quantify disease risk in accordance with the risk factors that apply to the individual. While there have been attempts to calculate cumulative disease risk by risk factors for gastric, colorectal and liver cancer, these methods used data from a single cohort study (6–8). As results are dependent on the cohort population that was used, bias may have arisen from the entire population. An alternative way is to combine data from descriptive epidemiology, which involved constantly monitoring disease incidence risk in the entire population, with data from analytical epidemiology, which involved quantifying disease incidence risk ratios by individual risk factors. This allows us to calculate disease risk depending on the presence of risk factors in a population for which more applicable extrapolation would be possible than those of previous studies.

The aim of this study was to calculate the cumulative incidence and mortality risk for gastric cancer by four risk classification types based on the presence/absence of H. pylori infection and chronic atrophic gastritis, by combining data from population-based surveillance and cohort studies.

Methods
Risk category
Risk category was classified into four groups (A, B, C and D) according to the presence/absence of H. pylori infection and chronic atrophic gastritis (9). H. pylori infection was determined by serum levels of IgG antibodies to H. pylori, and atrophic gastritis was diagnosed by serum levels of pepsinogen I and pepsinogen II (6,10–12).

Table 1. Summary of characteristics for four previous studies

Reference	Study period	Study subjects	Event	No. of subjects by risk categorya	No. of incidence cases by risk categorya
Watabe 10	1995–97b	Men and women	≥39	Incidence 3324 2134 1082 443	7 6 18 12
Mizuno 11	1987–96	Men and women	≥35	Incidence 642 1094 1054 69	2 15 41 3
Yoshida 12	1994–2011	Men 40–59	Incidence 965 2328 1329 33	2 37 44 4	
Charvat 6	1993–2009	Men and women	40–69	Incidence 5408 5608 7417 595	12 104 272 24

aGroup A: H. pylori (HP) negative [−]/atrophic gastritis (AG) negative [−], Group B: HP positive [+] / AG [−], Group C: HP [+] / AG [−]; Group D: HP [−]/ AG [−].

bThe period was for registration of the study subjects. The mean of duration of follow up was reported 4.7 years in Watabe et al. (10).

Table 2. Distribution by age for each risk group (Unit %)

Risk categorya	Distribution by ageb
	0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–74 75+
A	99 95 89.5 85.5 80 65 55 50 50
B	1 4 8 11 15 20 20 15 15
C	0 1 2 3 4 13 20 25 25
D	0 0 0.5 0.5 1 2 5 10 10

aGroup A: H. pylori (HP) negative [−]/atrophic gastritis (AG) negative [−], Group B: HP positive [+] / AG [−], Group C: HP [+] / AG [−], Group D: HP [−]/ AG [−].

bThe prevalence of individuals aged 0–9 years was defined as 99% for Group A, and the prevalence of age groups from 10 to 39 years old was interpolated by applying a linear regression model to the prevalence of age groups of 0–9 and 40–49 years old. The prevalence of individuals aged 40–74 years was obtained from the Japan Public Health Center-based Prospective Study for the Next Generation data. The prevalence of individuals aged 75 years or older was assumed to be the same as that of individuals aged 70–74 years.

Data source
Vital statistics were used to calculate the crude all-cause and crude gastric cancer mortality rates (13). For the gastric cancer crude incidence rate, we used the national estimates of the Monitoring of Cancer Incidence in Japan data (14). All data were from 2011 (13,14). Group-specific relative risk estimates were obtained by meta-analysis of four previously published studies conducted in the Japanese population (6,10–12). Details of four previous studies are shown in Table 1. Meta-analysis of risk measures pertaining to multiple risk groups should take into account the fact that group-specific relative risk estimated in each study are correlated. Consequently, we performed a multivariate meta-analysis using the methodology described in Woods et al. (15). Heterogeneity between studies was accounted for by the inclusion of a random effect. Prevalence for each risk group was determined based on the Japan Public Health Center-based Prospective Study for the Next Generation data, as shown in Table 2 (baseline survey 2011–16) (16). Life-table method is the way to accumulate age-specific crude incidence and mortality rates at particular time. Considering the consistency with the property of the life-
table method, we used age-specific prevalence of \(H. pylori\) infection during the period including the calendar year 2011. Prevalence was investigated in individuals aged 40–74 years old, as cancer tends to develop later in life. Age was stratified into 10-year periods for analysis. There was no actual or extrapolate data for the prevalence of \(H. pylori\) infection to individuals aged 0–39 years and 75 years or older, so we assumed as follows. In this study, the prevalence of individuals aged 0–9 years was defined as 99% for Group A, and the prevalence of age groups from 10 to 39 years old was interpolated by applying a linear regression model to the prevalence of age groups of 0–9 and 40–49 years old. We hypothesized that the prevalence of individuals aged 75 years or older was the same as that of individuals aged in their 70–74 years old.

Statistical analysis

To calculate the crude gastric cancer incidence and mortality rates for each risk group, crude gastric cancer incidence and mortality rates in Japanese people overall were apportioned using relative risk and prevalence for each risk group (17). Using the following formula, in which Absolute Rate Reference is crude incidence and mortality rates for Group A, and Absolute Rate All is crude incidence and mortality rates for all groups. In addition, RR\(_i\) is relative risk in the risk group \((i = a,b,c,d)\) and Prev\(_i\) is prevalence in the risk group \((i = a,b,c,d)\), we calculated the crude incidence and mortality rates for Group A, which was used as the reference group. We calculated crude incidence and mortality rates for Groups B, C, and D using the crude incidence and mortality rates for Group A and relative risk for each group.

\[
\text{Absolute Rate Reference} = \frac{\text{Absolute Rate All}}{(1 + \sum_i ((\text{RR}_i - 1) \times \text{Prev}_i))}
\]

To estimate cumulative incidence and mortality rate for gastric cancer by risk category, we created a life chart for a population in which cancer did not develop, estimated figures for incidence and deaths by age range in this life table, and accumulated these for all age ranges (18).

Results

The results of relative risk by meta-analysis are shown in Table 3. Similar to the result of previous studies, relative risk increased in the high-risk groups.

Lifetime cumulative incidence risk for gastric cancer was estimated to be 11.4% (1-in-9 people) for men and 5.7% (1-in-18 people) for women. The lifetime cumulative incidence risk increased markedly from the lowest-risk to the highest-risk group. As shown in Table 4, the estimated risk for men was 2.4% (1-in-42 people) for Group A, 10.8% (1-in-9 people) for Group B, 26.7% (1-in-4 people) for Group C, and 35.5% (1-in-3 people) for Group D. As shown in Table 5, the estimated risk for women was 1.2% (1-in-83 people) for Group A, 5.5% (1-in-18 people) for Group B, 13.5% (1-in-7 people) for Group C, and 18.0% (1-in-6 people) for Group D. Although the cumulative incidence risk in Group D was markedly higher than in other groups, the cumulative incidence risk in 10-year-olds by the time they reached 40 years of age was less than 1% for both men and women in all groups.

Similarly, the lifetime cumulative mortality risk for gastric cancer was estimated to be 3.9% (1-in-26 people) for men and 1.8% (1-in-56 people) for women. As shown in Table 6, the estimated risk for men was 0.8% (1-in-125 people) for Group A, 3.6% (1-in-28 people) for Group B, 9.0% (1-in-11 people) for Group C, and 12.0% (1-in-8 people) for Group D. As shown in Table 7, the estimated risk for women was 0.4% (1-in-250 people) for Group A, 1.7% (1-in-59 people) for Group B, 4.2% (1-in-24 people) for Group C, and 5.7% (1-in-18 people) for Group D. As for lifetime cumulative incidence risk, lifetime cumulative mortality risk increased markedly in both men and women in higher risk groups.

Discussion

In this study, we calculated the cumulative incidence and mortality risk for gastric cancer by risk classifications and sex.

Our results confirmed that there was a large difference in lifetime cumulative risk between Group A (lowest risk) and Group D (highest risk). In Group D, lifetime cumulative incidence risk of gastric cancer was 35.5% (1-in-3 people) for men, which was three-times higher than the lifetime risk of developing site-specific cancers among the entire population (11%, 10% and 10% for gastric, colorectal and lung cancer, respectively) (1). For women in Group D, the estimated lifetime cumulative incidence of gastric cancer was 18.0% (1-in-6 people), which equated to almost double the lifetime cumulative risk of developing breast and colorectal cancers among the entire population (9% and 8%, respectively) (1). Since there is a large difference in lifetime cumulative incidence risk according to risk category, risk estimation needs to be done for each risk group separately.

According to the latest guideline published by the National Cancer Center (20), citizens aged 50 years or older are encouraged to undergo organized gastric cancer screening using endoscopy or X-ray examination conducted at municipalities or workplaces; from

Table 3. Summary estimates of relative risk for each risk group

Study	Ref. (Year)	Risk category^a	A	B	C	D
		RR^b (95% CI)	RR^b (95% CI)	RR^b (95% CI)	RR^b (95% CI)	RR^b (95% CI)
Watabe	10 (2005)	1.00 Reference	1.10 (0.40–3.40)	6.00 (2.40–14.50)	8.20 (3.20–21.50)	
Mizuno	11 (2010)	1.00 Reference	4.20 (0.96–18.40)	11.23 (2.71–46.51)	14.81 (2.47–88.80)	
Yoshida	12 (2013)	1.00 Reference	8.90 (2.70–54.70)	17.70 (5.40–108.60)	69.70 (13.60–502.90)	
Chavvat	6 (2016)	1.00 Reference	7.58 (4.16–13.79)	13.86 (7.76–24.75)	14.09 (7.03–28.26)	
Results of meta-analysis		1.00 Reference	4.47 (1.83–10.03)	11.06 (4.86–25.58)	14.78 (6.46–38.21)	

^aGroup A: \(H. pylori\) (HP) negative [+]/atrophic gastritis (AG) negative [-], Group B: HP positive [+]/AG [-], Group C: HP [+] /AG [-], Group D: HP [-]/AG [+] .

^bRR, relative risk.
that perspective, public policies are only taking age-related risk into consideration. In addition to aging, we showed that gastric cancer risk differs greatly depending on the presence of risk factors, such as *H. pylori* infection and chronic atrophic gastritis. Although the presence of *H. pylori* increases risk, it has been suggested that eradication of *H. pylori* lowers the risk of gastric cancer (19). The results of this study are useful for setting intervention targets for primary and secondary prevention of gastric cancer. Further, although we only

Table 4. Cumulative incidence risk for gastric cancer in each risk group (men) (Unit %)

Risk category	Current age (years)	Attained age (years)	Overall	0	9	19	29	39	49	59	69	79	Lifetime

Table 5. Cumulative incidence risk for gastric cancer in each risk group (women) (Unit %)

Risk category	Current age (years)	Attained age (years)	Overall	0	9	19	29	39	49	59	69	79	Lifetime

*Overall: We do not stratify risk. Group A: *H. pylori* (HP) negative [−]/atrophic gastritis (AG) negative [−], Group B: HP positive [+]/AG [−], Group C: HP [+] /AG [−]/atrophic gastritis (AG) negative [−], Group D: HP [−] /AG [+] .

examined gastric cancer, this method can be applied to other cancers for which strong risk factors are established.

Our results of cumulative incidence risk of gastric cancer were generally higher than the results of a previous study (6). A possible reason is the difference of crude incidence rates between two studies; we used the national estimates of age-specific crude incidence rates in 2011; while the previous study used the Japan Public Health Center (JPHC) cohort II data followed-up between 1993 and 1994 and 2009. Crude gastric incidence rates in 2011 were known to be current risk factor, for which strong risk factors are established.
higher than those in the years around 2000, especially among old age groups. The geographical difference may have also affected the difference in crude incidence rates. Another possibility is the difference in *H. pylori* prevalence. While we used the prevalence data from the JPHC-NEXT study (baseline survey 2011–16), the previous study used the prevalence data at the baseline survey of JPHC cohort II (1993,1994). Lower prevalence of high-risk groups in our data may have resulted in higher risk of estimates, as described below.

The present study has several strengths over previous studies (6–8). First, we calculated lifetime cumulative risk, which provides useful information for determining the timing of the preventive intervention. Second, our study targeted the entire Japanese population, so the results can be generalized.

Our study has several limitations. First, we adopted an indirect method to estimate the crude incidence and mortality rates stratified by risk category. However, the data for overall crude incidence and mortality rates were obtained from population-based Japanese national data,
and the data for relative risks were derived from a meta-analysis of Japanese studies. Second, our prevalence data for each risk group had some uncertainty. The prevalence of each risk group within each age group changes according to birth year, and the results will depend on which calendar year is chosen for the prevalence data. When we adopted prevalence data from earlier calendar years, in which there was a higher prevalence of high-risk individuals, the cumulative risk was lower compared with our reported results. This is because fixed values were used for the crude incidence and mortality rates in the entire population and for the relative risk of each risk group. Also, we estimated prevalence of H. pylori infection to individuals aged 75 years or older in 2011 from the previous study (21). The results were between 30% and 50%, which showed no big difference compared with prevalence in our study. Furthermore, we performed sensitivity analysis to calculate lifetime cumulative incidence risk by altering prevalence of Group A for individuals aged 75 years or older from 30% to 50%. Results indicated that the absolute change of lifetime cumulative incidence risk for Group D was 6% at maximum. Thus it was reasonable to consider prevalence data used in our study was appropriate. Third, we only considered H. pylori infection and atrophic gastritis as risk factors for gastric cancer occurrence. This is because the relative risk of gastric cancer occurrence due to excessive sodium intake and smoking is much lower than that for H. pylori infection and atrophic gastritis (4,5). Therefore, we consider that the effect of excessive sodium intake and smoking was not so large. Finally, we estimated the risk without considering individuals who had accepted the eradication therapy against H. pylori. In 2011, application of H. pylori eradication was covered only for people who had gastric and duodenal ulcer (22). Therefore, we considered that the number of such people in the year was so small. Also, the purpose of this study was the estimation of the risk before the intervention, thus we did not estimate the risk after intervention of H. pylori eradication therapy. However, it is necessary to estimate the risk after H. pylori eradication therapy to assess the effect of the intervention for policy making.

In conclusion, we estimated lifetime cumulative incidence and mortality risk for gastric cancer by risk category. The results of this study may be useful for designing individually tailored prevention programs.

Funding
This work was supported by Grants-in-aid for the Cancer Control Policy from the Ministry of Health, Labour and Welfare, Japan (H26-Ganseisaku-Shitei-002, H26-Ganseisaku-Ippan-013). The funder had no role in the design or conduct of the study; collection, management, analysis, or interpretation of the data; or preparation, review, or approval of the manuscript.

Conflict of interest statement
None declared.

References
1. Recent Cancer Statistics: Center for Cancer Control and Information Services, National Cancer Center. http://ganjoho.jp/reg_stat/statistics/statat/summary.html (20 December 2016, date last accessed) (in Japanese).
2. Kamo K, Katanoda K, Matsuda T, Marugame T, Ajiku W, Sobe T. Lifetime and age-conditional probabilities of developing or dying of cancer in Japan. Jpn J Clin Oncol 2008;38:571–76.
3. Cancer Prevention for Japanese: Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center. http://epi.ncc.go.jp/en/can_prev/321/189.html (20 December 2016, date last accessed).
4. Tsugane S, Sasazuki S. Diet and the risk of gastric cancer: review of epidemiological evidence. Gastric Cancer 2007;10:75–83.
5. Nishino Y, Inoue M, Tsuji I, et al. Tobacco smoking and gastric cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol 2007;37:800–7.
6. Chavvat H, Sasazuki S, Inoue M, et al. Prediction of the 10-year probability of gastric cancer occurrence in the Japanese population: the JPHC study cohort II. Int J Cancer 2016;138:320–31.
7. Ma E, Sasazuki S, Iwasaki M, et al. Japan Public Health Center-based Prospective Study Group. 10-Year risk of colorectal cancer: development and validation of a prediction model in middle-aged Japanese men. Cancer Epidemiol 2010;34:534–41.
8. Michikawa T, Inoue M, Sawada N, et al. Japan Public Health Center-based Prospective Study Group. Development of a prediction model for 10-year risk of hepatocellular carcinoma in middle-aged Japanese: the Japan Public Health Center-based Prospective Study Cohort II. Prev Med 2012;55:137–43.
9. Inoue K, Fujisawa T, Haruma K. Assessment of degree of health of the stomach by concomitant measurement of serum pepsinogen and serum Helicobacter pylori antibodies. Int J Bio Markers 2010;25:207–12.
10. Watabe H, Mitsushima T, Yamaji Y, et al. Predicting the development of gastric cancer from combining Helicobacter pylori antibodies and serum pepsinogen status: a prospective endoscopic cohort study. Gut 2005;54:764–8.
11. Mizuno S, Miki I, Ishida T, et al. Prescreening of a high-risk group for gastric cancer by serologically determined Helicobacter pylori infection and atrophic gastritis. Dig Dis Sci 2010;55:3132–37.
12. Yoshida T, Kato J, Inoue I, et al. Cancer development based on chronic active gastritis and resulting gastric atrophy as assessed by serum levels of pepsinogen and Helicobacter pylori antibody titer. Int J Cancer 2014;134:1445–57.
13. Vital Statistics Japan 2011: Health and Welfare Statistics Association. http://www.e-stat.go.jp/SGL/estate/StatTopPortal.do (20 December 2016, date last accessed) (in Japanese).
14. The Monitoring Cancer Incidence in Japan: Center for Cancer Control and Information Services, National Cancer Center. http://ganjoho.jp/reg_stat/statistics/dli (20 December 2016, date last accessed) (in Japanese).
15. Woods BS, Hawkins N, Scott DA. Network meta-analysis on the log-hazard scale, combining count and hazard ratio statistics accounting for multi-arm trials: a tutorial. BMC Med Res Methodol 2010;10:54.
16. Summary result of baseline survey of the Japan Public Health Center-based Prospective Study for the Next Generation: Epidemiology and Prevention Division, National Cancer Center. http://epi.ncc.go.jp/jphcnext/aggregate/aggregateBase/individual.html?entry_id=3 (8 March 2017, date last accessed) (in Japanese).
17. Liu BQ, Petro R, Chen ZM, et al. Emerging tobacco hazards in China: 1. Retrospective proportional mortality study of one million deaths. BMJ 1998;317:1411–22.
18. Kamo K, Kaneko S, Yoshimura K, Sobe T. Lifetime cancer risk evaluation in Japan. J Health Welfare Stat 2005;52:21–6. (in Japanese).
19. Lee YC, Chiang TH, Chou CK, et al. Association between Helicobacter pylori eradication and gastric cancer incidence: a systematic review and meta-analysis. Gastroenterology 2016;150:1113–24.
20. Guidelines for gastric cancer screening based on efficacy assessment: Cancer Screening Division, National Cancer Center, http://canscreen.ncc.go.jp/pdf/guideline2014_150421.pdf (12 July 2017, date last accessed) (in Japanese).
21. Watanabe M, Ito H, Hosono S, et al. Declining trends in prevalence of Helicobacter pylori infection by birth-year in a Japanese population. Cancer Sci 2015;106:1738–43.
22. Shimoyama T, Sugano K. Subject of eradication therapy. Jpn J Helicobacter Res 2013;15:Suppl:13–5. (in Japanese).