Processing issues in SiC and GaN power devices technology: the cases of 4H-SiC planar MOSFET and recessed hybrid GaN MISHEMT

F. Roccaforte *, G. Greco, P. Fiorenza

* Consiglio Nazionale delle Ricerche – Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII, n. 5 – Zona Industriale, 95121 Catania - Italy

E-mail: fabrizio.roccaforte@imm.cnr.it

Abstract—This paper aims to give a short overview on some relevant processing issues existing in SiC and GaN power devices technology. The main focus is put on the importance of the channel mobility in transistors, which is one of the keys to reduce R_{ON} and power dissipation. Specifically, in the case of the 4H-SiC planar MOSFETs the most common solutions and recent trends to improve the channel mobility are presented. In the case of GaN, the viable routes to achieve normally-off HEMTs operation are briefly introduced, giving emphasis to the case of the recessed hybrid MISHEMT.

Keywords—wide band gap semiconductors, SiC, GaN.

1. Introduction

The worldwide increasing need of electric energy is a serious concern in our society. In fact, the energy consumption in the world is estimated to increase of 40% in the next two decades [1] and the largest fraction (up to 60%) of the consumed energy will be electric energy. Hence, energy efficiency has become a challenge in modern semiconductor power devices technologies, to ultimately reduce the global energy consumption.

Currently, power electronics market is almost entirely based on Silicon (Si) devices [2]. However, Si-based power electronics has reached its performance limits, in terms of maximum power levels, frequency and operation temperatures. Hence, the only way to overcome the physical limits of Si is a radical innovation of the technology for discrete semiconductor power devices.

In this context, due to their excellent physical properties [3], the most popular wide band gap (WBG) semiconductors, silicon carbide (4H-SiC) and gallium nitride (GaN), are considered the best materials to replace Si in the future high efficient power electronics. Fig. 1 shows a graphical comparison of some relevant physical properties of Si, SiC and GaN. As can be seen, the large values of energy gap and critical electric field allow these materials to operate at high breakdown voltages (B_V). The high saturated electron velocity enables superior performances under high frequency operation. Finally, the high thermal conductivity (in the case of SiC) is an important feature that guarantees an easy heat dissipation for operation at high temperature and high current levels.

Fig. 1 Comparison of Si, SiC and GaN relevant properties for power devices applications.

These outstanding properties of SiC and GaN enable to design transistors with a smaller ON-resistance (R_{ON}) and smaller parasitic capacitances with respect to the Si counterparts for a fixed targeted maximum operation voltage. The direct impact of a lower R_{ON} is a reduction of the total power dissipation [4]. Hence, SiC and GaN devices
can find several applications in power electronics in many important fields. To visualize the huge potential of these materials, Fig. 2 depicts the major applications of WBG power devices in a power versus voltage chart. As can be seen the possible application areas enter our daily life, e.g., consumer electronics (PFC/power supply, audio amplifiers,…), EV/HEV automotive components (converters, battery chargers, …), industrial applications (motor drives,…), renewable energies (PV-inverters,…), transportations, etc.

![Fig. 2 Main application areas of SiC and GaN power devices.](image)

Today, while several 4H-SiC and GaN transistors with excellent performances have already reached the market, there are still some important physical problems related to the fabrication processes of these devices, which are still object of intensive investigation by the scientific community.

This paper aims to give a brief overview on some current processing issues encountered in SiC and GaN power devices, with a focus on transistors technology. In particular, the most common approaches to improve the MOS interface quality in 4H-SiC planar MOSFETs are presented, highlighting their advantages and limitations. Moreover, the feasible solutions to achieve normally-off operation in GaN HEMTs are presented, with special attention to the case of the recessed hybrid MISHEMT.

2. 4H-SiC MOSFET

One of the long standing problems in 4H-SiC planar MOSFETs technology is the low inversion channel mobility, especially below 1 kV, i.e., where the channel mobility can represent an important contribution to the total R_{ON}. This latter can be clearly seen in Fig. 3, reporting the specific R_{ON} as a function of the breakdown voltage B_V for different values of the inversion layer channel mobility μ_{FE}.

![Fig. 3 Specific ON-resistance R_{ON} versus breakdown voltage B_V for 4H-SiC MOSFETs, estimated for different values of the channel mobility μ_{FE}.](image)

The problem of the channel mobility in 4H-SiC MOSFETs has been recently reviewed by Cabello et al. [6]. In general, low values of the channel mobility (typically $< 5-10 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$) are obtained with thermal SiO$_2$ gates, due to the high density of interface traps (D_{it}) near the conduction band edge [7,8], determining Coulombic scattering effects by charges trapped at the interface states and inside the oxide [9,10]. Hence, post deposition annealing or innovative gate oxide processes are mandatory to increase the channel mobility and decrease the R_{ON}.

Fig. 4 reports the values of the field effect mobility μ_{FE} of 4H-SiC planar MOSFETs for different treatments of the gate oxide. For a direct comparison of the data, the mobility curves are reported as a function of the difference between the gate voltage and the threshold voltage ($V_{g}-V_{th}$). The mobility curve μ_{FE} of an “untreated” dry oxide is also reported as a reference ($< 5 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$). As
can be seen, the experimental μ_{FE} mobility curves versus gate voltage typically exhibit a maximum (peak mobility) after the threshold voltage V_{th} is reached. Then, the channel mobility slightly decreases with increasing the gate voltage (i.e., with increasing the transversal electric field) due to the dominance of phonon and interface scattering mechanisms [11].

To improve the channel mobility, nitridation processes of the gate oxides, i.e., post-oxidation-annealing (POA) or post-deposition-annealing (PDA) in nitrogen-rich atmospheres (NO or N$_2$O) in the temperature range 1000-1300 °C, have been introduced at the end of the 90’s [12,13,14,15].

During nitridation (N$_2$O or NO) or POCl$_3$ processes, the presence of n-type dopant (i.e., nitrogen and phosphorous) in the annealing atmosphere determines notable electrical changes in the SiO$_2$/SiC interface. In fact, nitrogen and phosphorous atoms can be incorporated in the SiC substrate during annealing, and act as n-type shallow donors in the material [20,21]. Using scanning probe microscopy analyses at the SiO$_2$/SiC interface allowed to demonstrate the “counter doping effect” of the p-type implanted regions in the MOSFET channel [17,22]. These measurements also showed a higher electrically active phosphorous incorporation in POCl$_3$ with respect to the active nitrogen incorporated in N$_2$O [22].

In spite of the high channel mobility, the drawback of the POCl$_3$ annealing is the poor reliability of the gate oxides, caused by the large amount of charge traps in the SiO$_2$ network after a phosphorous incorporation [23]. Some research groups proposed other phosphorous-based processes (POCl$_3$ pre-annealings before oxide deposition, combination of N- and P-based annealings, P-ion-implantation), with promising results in terms of mobility and improvement of the V_{th} stability [18,19,24,25,26]. More recently, channel mobility values >100 cm2V$^{-1}$s$^{-1}$ have been obtained using other group-V elements (e.g., As, Sb), in conjunction with nitric oxide (NO) post-oxidation annealing [27]. However, the μ_{FE} curves of As- or Sb-doped 4H-MOSFETs channels exhibit pronounced maxima at low electric fields, but decrease rapidly at high fields (e.g.$>$10 V). Hence, As- or Sb-counter-doping appears of limited effectiveness in real devices [6].

Another recent approach to increase the...
4H-SiC MOSFET mobility is the use of Boron (B). Okamoto et al. [28] achieved a mobility of about 100 cm2V$^{-1}$s$^{-1}$ using Boron thermal diffusion (by a planar BN diffusion source) into a dry oxide. Since B is an acceptor for SiC, “counter doping” does not occur and cannot explain the increased mobility. Hence, these results were attributed to a stress relaxation of the interface by the incorporation of B-atoms in the SiO$_2$ matrix [29]. This process was recently optimized, by combining the N$_2$O oxinitridation with B-diffusion [30,31]. In this way, a peak mobility of 160 cm2V$^{-1}$s$^{-1}$ has been obtained, while a stable threshold voltage V_{th} at least at room temperature [6].

Finally, the use of alkali or alkaline earth elements (Rb, Cs, Sr, Ba,...) has been proposed to passivate the SiO$_2$/4H-SiC interface states and increase the 4H-SiC MOSFET mobility. These processes typically consist in the deposition of a thin layer of alkali/alkaline-earth material on SiC, followed by the deposition and post-annealing (in O$_2$ or O$_2$/N$_2$ ambient) of SiO$_2$ gate oxide. Among various elements the most promising results were achieved with Sr and Ba, with mobility values of μ_{FE} up to 65 and 110 cm2V$^{-1}$s$^{-1}$, respectively [32,33,34]. It has been also shown that Ba incorporation allows to obtain a threshold voltage stability under stress at 175 °C and 2 MV/cm gate bias. The beneficial role of Ba was explained in term of interface stress release using transmission electron microscopy analysis. In particular, the tensile strain of the SiC region close to the SiO$_2$/SiC interface is released in the presence of an oxidized Ba interlayer. Such an “unstrained” interface is the key factor for the increase of the channel mobility [35,36].

Despite the significant improvements of the channel mobility achievable with the aforementioned approaches, most of these processes are still far to be employed in “real” devices, since they are affected by threshold voltage V_{th} instability issues. Hence, nitridation of the gate oxide remains the process of choice in the fabrication of state-of-the-art 4H-SiC MOSFETs.

3. Normally-OFF GaN HEMTs

In principle, due to its higher critical electric field (Fig. 1) one may expect from GaN a better high voltage operation behavior than SiC. However, a large density of defects is still present in GaN-based materials, which hinders to reach the theoretical electric field strength. Moreover, the lack of high quality large diameter bulk GaN substrates does not allow the realization of power devices with vertical architectures, as needed for a high breakdown voltages at low R_{ON}. Consequently, lateral heterojunction devices are nowadays the preferred solution to fabricate GaN-based transistors. In particular, GaN high electron mobility transistors (HEMTs) are normally-ON devices, due to the presence of the two dimensional electron gas (2DEG) in AlGaN/GaN heterostructures. However, power electronics applications typically require normally-OFF devices, to guarantee fail-safe operation and gate drivers simplicity [37,38,39]. Hence, significant efforts have been devoted in the last decade to develop physical methods to control the 2DEG in the channel and obtain HEMT with a positive threshold voltage V_{th}.

The use of a p-GaN gate is currently the only commercial solution for normally-OFF GaN HEMTs [40]. Greco et al. [41] recently summarized in a review the most relevant processing issues in normally-OFF HEMTs with the p-GaN gate approach. Hence, this layout will be not subject of discussion in the present paper.

Another promising approach consists in the complete removal of the AlGaN barrier under the gate [42,43], creating a metal insulator semiconductor (MIS) recessed-gate hybrid HEMT (MISHEMT). The recessed-gate hybrid MISHEMT enables to have a positive threshold voltage V_{th} of the MIS channel, preserving a low on resistance R_{ON} in the access regions. The most important part of such a device is the recessed channel, in which the carriers mobility is influenced...
by several factors (roughness of the etched surface, defects, quality of the gate insulator, etc). Hence, characterizing the properties of insulator/GaN interface and understanding the mechanisms limiting the channel mobility are key aspects for the progress of the recessed-gate MISHEMTs technology.

Various dielectric materials have been proposed to fabricate recessed-gate normally-OFF hybrid GaN MISHEMTs (SiO$_2$, SiN, Al$_2$O$_3$, AlN/SiN,...) [44,45]. As in the case of standard MOSFET, the field effect mobility μ_{FE} is an important parameter that must be optimized in order to reduce the total device R_{ON} [2].

Similarly to the case of a MOSFET, also in the MISHEMT the field effect mobility μ_{FE} increases with the gate bias V_g up to a maximum $\mu_{FE(peak)}$ and then decreases at high electric fields.

As can be seen in Table 1 the values of peak mobility $\mu_{FE(peak)}$ reported in literature vary approximately in the range 30–250 cm2/V·s, with threshold voltage values V_{th} of 1–2 Volts. The specific on-resistance R_{ON} (taken at gate bias values of $V_g > 15$V) lies in the interval 7–20 Ω·mm.

From these data, it is not simple to find a correlation between the values of $\mu_{FE(peak)}$ and R_{ON}, due to the fact that the reported devices are extremely different (in terms of geometry, recession processes to prepare the channel region, etc.). However, besides its maximum, it is important to have high channel mobility values also at the operative electric field.

Fiorenza et al. [55] investigated the temperature and field dependence of the channel mobility in recessed-gate hybrid GaN MISHEMTs using SiO$_2$ as gate insulator. Fig. 5 reports the peak mobility $\mu_{FE(peak)}$ (the maxima of the μ_{FE} curves) as a function of the temperature for a recessed SiO$_2$/GaN MISHEMT [55]. From this figure, it is possible to see that the experimental $\mu_{FE(peak)}$ data slightly decrease with increasing the measurement temperature. Assuming a formalism analogous to a standard MOSFET, the channel mobility was expressed including in the Matthiessen’s rule different scattering contributions, i.e., the bulk mobility factor (μ_b), the acoustic-phonon scattering (μ_{AC}), the surface roughness scattering (μ_{SR}), and the Coulomb scattering (μ_C) due to interface charges [55].

Gate insulator and thickness	$\mu_{FE(peak)}$ (cm2/V·s)	V_{th} (V)	Ref.
SiN (20nm)	120	5.2	[42]
Al$_2$O$_3$ (30nm)	225	2	[46]
Al$_2$O$_3$ (38nm)	55	3.5	[47]
SiO$_2$ (60nm)	166	3.7	[48]
SiO$_2$ (60nm)	94	2.4	[48]
Al$_2$O$_3$ (10nm)	251	1.7	[49]
Al$_2$O$_3$ (20nm)	148	2.9	[50]
Al$_2$O$_3$ (30nm)	170	3.5	[51]
SiN (2nm)/SiN (15nm)HT	160	2.37	[52]
SiN (17nm) HT	38	1.28	[52]
SiN (20nm)	203	1.2	[53]
Al$_2$O$_3$ (18nm)	65	7.6	[54]
SiO$_2$ (50nm)	110	0.7	[55]
AlN (7nm)/SiN (7nm)	180	1.2	[56]
Al$_2$O$_3$ (5nm)/SiN (25nm)	122	1.7	[57]

Fig. 5. Data on the peak mobility $\mu_{FE(peak)}$ as a function of the temperature for a recessed SiO$_2$/GaN MISHEMT [55].
Fig. 5. Peak mobility values $\mu_{\text{FE(peak)}}$ as a function of the temperature for a recessed hybrid MISHEMT using SiO$_2$ as gate insulator. The experimental data were fitted with a total mobility curve (μ_{TOT}) including the different contributions in the Matthiessen’s rule (μ_{B}, μ_{SR}, μ_{AC}, and μ_{C}). The data are from Ref. [55].

The single contributions to the total mobility depend on several physical features of the insulator/GaN interface (roughness, doping, interface traps, etc.). Some of these parameters can be determined by direct electrical and morphological analyses of the channel region [55]. In particular, using the experimental values of interface trapped charges ($Q_{\text{trap}} = 1.35 \times 10^{12}$ cm$^{-2}$) and surface roughness (RMS = 0.15 nm), determined by C-V and AFM measurements respectively, it was possible to extract the single contributions to the mobility. The total mobility μ_{TOT} and the single contributions are also reported in Fig. 5, and show a good agreement with the experimental data.

The temperature dependence of the peak mobility suggests that the main limiting factors to the carrier flow in the channel are the surface roughness (μ_{SR}), the acoustic phonon (μ_{AC}), and the Coulomb scattering (μ_{C}) contributions. Hence, the optimization of the insulator/GaN interface in the recessed channel in terms of roughness and the interface trap density is a fundamental issue to improve the mobility.

In this context, the structural and electronic quality of the recessed interface could be improved by using an innovative AlN/SiN stack, grown by metal organic chemical vapour deposition (MOCVD), as gate insulating material [56]. In particular, in this case the overall the interface states D_{it} was reduced with respect to the SiO$_2$/GaN MISHEMT, as can be seen in the D_{it} versus energy plot in Fig. 6a. In fact, the total amount of trapped charge in AlN/SiN ($Q_{\text{trap}} = 6.4 \times 10^{11}$ cm$^{-2}$), i.e., the integral of the interface state density over the energy, is less than one half of the value obtained in SiO$_2$ (1.35×10^{12} cm$^{-2}$). This improvement allows the increase of the peak mobility from 110 cm2V$^{-1}$s$^{-1}$ (SiO$_2$ gate dielectric) up to 180 cm2V$^{-1}$s$^{-1}$ (AlN/SiN gate dielectric), shown in Fig. 6b.

The high on/off ratio observed in the case of the transistors employing AlN/SiN makes this system very promising for power switching applications [56]. As conclusive remark, it must be mentioned that channel mobility μ_{FE} and the ON-resistance R_{ON} are not the only parameters to be considered in this technology. In fact, recessed-gate hybrid GaN MISHEMTs are often affected by instability phenomena of the threshold voltage V_{th}, when subjected to gate bias stresses.

These effects are associated to the charge trapping/de-trapping of defects located at the insulator/GaN interface and/or in the bulk of the gate insulator [58].

Fig. 6. (a) Interface state density D_{it} measured both in the SiO$_2$/GaN and AlN/SiN/GaN gates in hybrid MISHEMTs. (b) Channel mobility μ_{FE} as a function of the difference between the gate voltage and the threshold voltage ($V_g - V_{th}$) for recessed-gate hybrid GaN MISHEMTs using SiO$_2$, AlN/SiN and Al$_2$O$_3$ as gate insulators. The data are from Refs. [55,56].
Hence, a careful optimization of the properties of the interface and of the insulating materials is the route towards the achievement of stable MISHEMT devices.

4. Summary

In this paper, a short summary of some processing issues in SiC and GaN power devices technology was given. The main focus is put on transistors, i.e., 4H-SiC MOSFETs and GaN HEMTs. In particular, the importance of the channel mobility has been highlighted for both kind of devices. In 4H-SiC MOSFETs the most common trends to improve the channel mobility reported in literature are presented. Nitridations (NO or N\textsubscript{2}O) remain the best processes to increase the channel mobility, without excessively compromising the device reliability.

In the case of GaN, the recessed hybrid MISHEMT is a currently debated solution to achieve a normally-off HEMT operation. For this technology, the choice of the dielectric and the control of its interface to GaN is fundamental to optimize the channel mobility and avoid a penalization of the R_{ON} and of the V_{th} stability.

Acknowledgments. The authors would like to thank the co-workers at CNR-IMM (F. Giannazzo, R. Lo Nigro, S. Di Franco, C. Bongiorno) for fruitful discussion and technical assistance. Colleagues of STMicroelectronics (F. Iucolano, A. Severino, S. Reina, A. Parisi, M. Saggio, S. Rascunà) are greatly acknowledged for support in device processing and characterization.

This work was partially supported by the ECSEL JU project WInSiC4AP (Wide Band Gap Innovative SiC for Advanced Power), Grant Agreement n. 737483.

References

[1] International Energy Agency (IEA) World Energy Outlook report for 2016 (WEO-2016)

[2] F. Roccaforte, P. Fiorenza, G. Greco, R. Lo Nigro, F. Giannazzo, F. Iucolano, M. Saggio, "Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices" Microelectronic Engineering 187-188, 66-77, 2018.

[3] F. Roccaforte, F. Giannazzo, F. Iucolano, J. Eriksson, M.H. Weng, V. Raineri, “Surface and interface issues in wide band gap semiconductor electronics” Appl. Surf. Sci. 256, 5727-5735, 2010.

[4] S. Dimitrijev, “SiC power MOSFETs: the current status and the potential for future development”, Proc. of 30th Int. Conf. on Microelectronics (MIEL2017), Nis, Serbia, 9-11 October 2017, pagg. 29-34.

[5] J. Baliga “Silicon Carbide Power Devices” World Scientific 2005

[6] M. Cabello, V. Soler, G. Rius, J. Montserrat, J. Rebollo, P. Godignon, Mater. Sci. Semicond. Proc. “Advanced processing for mobility improvement in 4H-SiC MOSFETs: A review” 78, 22-31, 2018.

[7] V.V. Afanas’ev, F. Ciobanu, S. Dimitrijev, G. Pensl, A. Stesmans, “Band alignment and defect states at SiC/oxide interfaces” J. Phys.: Condens. Matter 16, S1839-S1856, 2004.

[8] F. Ciobanu, G. Pensl, V.V. Afanas’ev, A. Schöner, “Low Density of Interface States in n-Type 4H-SiC MOS Capacitors Achieved by Nitrogen Implantation” Mater. Sci. Forum, 483-485, 693-696, 2005.

[9] N.S. Saks, A. K. Agarwal, “Hall mobility and free electron density at the SiC/SiO$_2$ interface in 4H–SiC” Appl. Phys. Lett. 77, 3281, 2000.

[10] E. Arnold, D. Alok, “Effect of interface states on electron transport in 4H-SiC inversion layers” IEEE Trans. Electron Devices 48, 1870-1877, 2001.

[11] A. Frazzetto, F. Giannazzo, P. Fiorenza, V. Raineri, F. Roccaforte, “Limiting mechanism of inversion channel mobility in Al-implanted lateral 4H-SiC metal-oxide semiconductor field-effect transistors” Appl. Phys. Lett. 99, 072117, 2011.

[12] H. Li, S. Dimitrijev, H. B. Harrison, D. Sweatman, “Interfacial characteristics of N_2O and NO nitrided SiO$_2$ grown on SiC by rapid thermal processing” Appl. Phys. Lett. 70, 2028-2030, 1997.

[13] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, M. Di Ventra, S. T. Pantelides, L. C. Feldman, R. A. Weller, “Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H
polytype of silicon carbide” Appl. Phys. Lett. 76, 1713-1715, 2000.

[14] L.A. Lipkin, M.K. Das, J.W. Palmour, “N2O processing improves the 4H-SiC:SiO2 interface” Mat. Sci. Forum 389-393, 985-988, 2002.

[15] C-Y. Lu, J.A. Cooper, T. Tsuji, G. Chung, J.R. Williams, K. McDonald, L.C. Feldman, “Effect of process variations and ambient temperature on electron mobility at the SiO2/4H-SiC interface” IEEE Trans. on Electron Dev. 50, 1582-1588, 2003.

[16] D. Okamoto, H. Yano, K. Hirata, T. Hatayama, T. Fuyuki, “Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide” IEEE Electron Dev. Lett. 31 710-712, 2010.

[17] L.K. Swanson, P. Fiorenza, F. Giannazzo, A. Frazzetto, F. Roccaforte, “Correlating macroscopic and nanoscale electrical modifications of SiO2/4H-SiC interfaces upon post-oxidation-annealing in N2O and POCl3” Appl. Phys. Lett. 101, 193501, 2012.

[18] H. Yano, T. Araoka, T. Hatayama, T. Fuyuki, “Improved Stability of 4H-SiC MOS Device Properties by Combination of NO and POCl3 Annealing” Mat. Sci. Forum 740-742, 727-732, 2013.

[19] Y. K. Sharma, A. C. Ahyi, T. Isaacs-Smith, A. Modic, M. Park, Y. Xu, E. L. Garfunkel, S. Dhar, L. C. Feldman, J. R. Williams, “High-Mobility Stable 4H-SiC MOSFETS Using a Thin PSG Interfacial Passivation Layer” IEEE Elect. Dev. Lett. 34, 175-177, 2013.

[20] T. Umeda, K. Esaki, R. Kosugi, K. Fukuda, T. Ohshima, N. Morishita, J. Isoya, “Behavior of nitrogen atoms in SiC-SiO2 interfaces studied by electrically detected magnetic resonance” Appl. Phys. Lett. 99, 142105, 2011.

[21] R. Kosugi, T. Umeda, Y. Sakuma, “Fixed nitrogen atoms in the SiO2/SiC interface region and their direct relationship to interface trap density” Appl. Phys. Lett. 99, 182111, 2011.

[22] P. Fiorenza, F. Giannazzo, M. Vivona, A. La Magna, F. Roccaforte, “SiO2/4H-SiC interface doping during post-deposition-annealing of the oxide in N2O or POCl3” Appl. Phys. Lett. 103, 153508, 2013.

[23] P. Fiorenza, L.K. Swanson, M. Vivona, F. Giannazzo, C. Bongiorno, A. Frazzetto, F. Roccaforte, “Comparative study of gate oxide in 4H-SiC lateral MOSFETs subjected to post-deposition-annealing in N2O and POCl3” Appl. Phys. A, 115, 333-339, 2014.

[24] T. Akagi, H. Yano, T. Hatayama, T. Fuyuki, “Effect of Interfacial Localization of Phosphorus on Electrical Properties and Reliability of 4H-SiC MOS Devices” Mat. Sci. Forum 740-742, 695-698, 2013.

[25] T. Sledziewski, A. Mihaylov, S. Reshanov, A. Schoener, H.B. Weber, M. Krieger, “Reduction of Density of 4H-SiC/SiO2 Interface Traps by Pre-Oxidation Phosphorus Implantation” Mater. Sci. Forum 778-780, 575-578, 2014.

[26] A. Mihaylov, T. Sledziewski, A. Afanasyev, V. Luchinin, S. Reshanov, A. Schoener, M. Krieger, “Effect of Phosphorus Implantation Prior to Oxidation on Electrical Properties of Thermally Grown SiO2/4H-SiC MOS Structures” Mater. Sci. Forum 806, 133-138, 2014.

[27] A. Modic, G. Liu, A. C. Ahyi, Y. Zhou, P. Xu, M. C. Hamilton, J. R. Williams, L. C. Feldman, S. Dhar, “High Channel Mobility 4H-SiC MOSFETS by Antimony Counter-Doping” IEEE Electron Device Lett. 35, 894-896, 2014.

[28] D. Okamoto, M. Sometani, S. Harada, R. Kosugi, Y. Yonezawa, H. Yano, “Improved Channel Mobility in 4H-SiC MOSFETS by Boron Passivation” IEEE Electron Device Lett. 35, 1176-1178, 2014.

[29] D. Okamoto, M. Sometani, S. Harada, R. Kosugi, Y. Yonezawa, H. Yano, “Effect of boron incorporation on slow interface traps in SiO2/4H-SiC structures” Appl. Phys. A 123, 133, 2017.

[30] M. Cabello, V. Soler, N. Mestres, J. Montserrat, J. Rebollo, J. Millan, P. Godignon, “Improved 4H-SiC N-MOSFET Interface Passivation by Combining N2O Oxidation with Boron Diffusion” Mater. Sci. Forum 897, 352-355, 2017.

[31] M. Cabello, V. Soler, J. Montserrat, J. Rebollo, J. Rafi, P. Godignon, “Impact of boron diffusion on oxynitrided gate oxides in 4H-SiC metal-oxide-semiconductor field-effect transistors” Appl. Phys. Lett. 111, 042104, 2017.

[32] D. J. Lichtenwalner, L. Cheng, S. Dhar, A. Agarwal, J. W. Palmour “High mobility 4H-SiC (0001) transistors using alkali and alkaline earth interface layers” Appl. Phys. Lett. 105, 182107, 2014.

[33] D. J. Lichtenwalner, L. Cheng, S. Dhar, A.K. Argawal, S. Allen, J.W. Palour, “High-Mobility 4H-SiC MOSFETS with Chemically Modified Interfaces” Mater. Sci. Forum 821-823, 749-752, 2015.

[34] D.J. Lichtenwalner, V. Pala. B. Hull, S. Allen. J.W. Palmour, “High-Mobility SiC
MOSFETs with Alkaline Earth Interface Passivation” Mater. Sci. Forum 858, 671-676, 2016.

[35] J.H. Dycus, W. Xu, D.J. Lichtenwalner, B. Hull, J.W. Palmour, J.M. LeBeau, “Structure and chemistry of passivated SiC/SiO2 interfaces” Appl. Phys. Lett. 108, 201607, 2016.

[36] D. Lichtenwalner, J.H. Dycus, W. Xu, J.M. Lebeau, B. Hull, S. Hallen. J.W. Palmour, “Electrical Properties and Interface Structure of SiC MOSFETs with Barium Interface Passivation” Mater. Sci. Forum 897, 163-166, 2017.

[37] K.J. Chen, C. Zhou, “Enhancement - mode AlGaN/GaN HEMT and MIS - HEMT technology” Phys. Status Solidi a, 208 434-438, 2011.

[38] M. Su, C. Chen, S. Rajan, “Prospects for the application of GaN power devices in hybrid electric vehicle drive systems” Semicond. Sci. Technol., 28 074012, 2013.

[39] M.J. Scott, L. Fu, X. Zhang, J. Li, C. Yao, M. Sievers, J. Wang, “Merits of gallium nitride based power conversion” Semicond. Sci. Technol., 28 074013, 2013.

[40] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, R. Udá, T. Tanaka, D. Ueda, “Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation” IEEE Transactions on Electron Device, 54 3393-3399, 2007.

[41] G. Greco, F. Iucolano, F. Roccaforte, “Review of technology for normally-off HEMTs with p-GaN gate” Mater. Sci. Semicond. Process., 78 96-106, 2018.

[42] T. Oka, T. Nozawa, “AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications” IEEE Electron Device Lett., 29 (2008) 668-670, 2008.

[43] H. Kambayashi, Y. Satoh, S. Ootomo, T. Kokawa, T. Nomura, S. Kato, T. P. Chow, “Over 100 A operation normally-off AlGaN/GaN hybrid MOS-HFET on Si substrate with high-breakdown voltage” Solid State Electronics, 54 660-664, 2010.

[44] F. Roccaforte, P. Fiorenza, G. Greco, M. Vionna, R. Lo Ngo, F. Giannazzo, A. Patti, M. Saggio, “Recent advances on dielectrics technology for SiC and GaN power devices” Appl. Surf. Sci., 301 9-18, 2014.

[45] T. Hashizume, K. Nishiguchi, S. Kaneki, J. Kuzmik, Z. Yatabe “State of the art on gate insulation and surface passivation for GaN-based power HEMTs” Mater. Sci. Semicon. Processing 78, 85-95, 2018

[46] K-S. Im, J-B.Ha, K-W. Kim, J-S.Lee, D-S. Kim, S-H. Hahn, J-H. Lee, “Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure With Extremely High 2DEG Density Grown on Silicon Substrate” IEEE Electron Device Lett., 31 192-194, 2010.

[47] K K-W. Im, S-D. Jung, D-S. Kim, H-S. Kang, K-S. Im, J-J. Oh, J-B. Ha, J-K. Shin and J.H. Lee, “Effects of TMAH Treatment on Device Performance of Normally Off Al2O3/GaN MOSFET” IEEE Electron Device Lett., 32 1376-1378, 2011.

[48] H. Kambayashi, Y. Satoh, T. Kokawa, N. Ikeda, T. Nomura and S. Kato, “High field-effect mobility normally-off AlGaN/GaN hybrid MOS-HFET by selective area growth technique” Solid-State Electronics, 56 163-167, 2011.

[49] Y. Wang, M. Wang, B. Xie, C.P. Wen, J. Wang, Y. Hao, W. Wu, K.J. Chen, B. Shen, “High-performance normally-off Al2O3/GaN MOSFET using a wet etching-based gate recess technique.” IEEE Electron Device Lett., 34 1370-1372, 2013.

[50] M. Wang, Y. Wang, C. Zhang, B. Xie, C.P. Wen, J. Wang, Y. Hao, W. Wu, K.J. Chen B. Shen, ”900 V/1.6 m·cm2, normally off Al2O3/GaN MOSFET on silicon substrate,” IEEE Transactions on Electron Devices, 61 (2014) 2035-2040, 2014.

[51] Y. Yao, Z. He, F. Yang, Z. Shen, J. Zhang, Y. Ni, J. Li, S. Wang, G. Zhou, J. Zhong, Z. Wu, B. Zhang, J. Ao, Y. Liu, “Normally-off GaN recessed-gate MOSFET fabricated by selective area growth technique” Appl. Phys. Express, 7 016502, 2014.

[52] M. Hu, Z. Zhang, J. Wei, J. Lei, G. Tang, K. Fu, Y. Cai, B. Zhang, K.J. Chen, “Integration of LPCVD-SiNx gate dielectric with recessed-gate E-mode GaN MIS-FETs: Toward high performance, high stability and long TDBB lifetime,” Proc. IEDM 2016, San Francisco USA, 3-7 December 2016, pagg. 260-263.

[53] Zhang Z., S. Qin, K. Fu, G. Yu, W. Li, X. Zhang, S. Sun, L. Song, S. Li, R. Hao, Y. Fan, Q. Sun, G. Pan, Y. Cai, B. Zhang, “Fabrication of normally-off AlGaN/GaN metal insulator semiconductor high electron mobility transistors by photolithography and gate recess etching in ionic liquid” Appl. Phys. Express, 9 084102, 2016.

[54] Q. Zhou, L. Liu, A. Zhang, B. Chen, Y. Jin, Y. Shi, Z. Wang, W. Chen B. Zhang, “7.6 V threshold voltage high-performance normally-off Al2O3/GaN MOSFET achieved
by interface charge engineering.” IEEE Electron Device Lett., 37 165-168, 2016.

[55] P. Fiorenza, G. Greco, F. Iucolano, A. Patti, F. Roccaforte, “Channel Mobility in GaN Hybrid MOS-HEMT Using SiO2 as Gate Insulator” IEEE Transactions on Electron Devices, 64 2893-2899, 2017.

[56] G. Greco, P. Fiorenza, F. Iucolano, A. Severino, F. Giannazzo, F. Roccaforte, “Conduction Mechanisms at Interface of AlN/SiN Dielectric Stacks with AlGaN/GaN Heterostructures for Normally-off High Electron Mobility Transistors: Correlating Device Behavior with Nanoscale Interfaces Properties” ACS Appl. Mater. Interfaces, 9 35383–35390, 2017.

[57] H. Wang, J. Wang, J. Liu, M. Li, Y. He, M. Wang, M. Yu, W. Wu, Y. Zhou, G. Dai, “Normally-off fully recess-gated GaN metal–insulator–semiconductor field-effect transistor using Al2O3/Si3N4 bilayer as gate dielectrics” Appl. Phys. Express, 10 106502, 2017.

[58] G. Meneghesso, M. Meneghini, C. De Santi, M. Ruzzarin, E. Zanoni, “Positive and negative threshold voltage instabilities in GaN-based transistors” Microelectronics Reliability, 80 257–265, 2018.