Diaporthe is paraphyletic

Yahui Gao1,2*, Fang Liu*, Weijun Duan3, Pedro W. Crous4,5, and Lei Cai1,2

1State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
2University of Chinese Academy of Sciences, Beijing 100049, P.R. China; corresponding author e-mail: cail@im.ac.cn
3Ningbo Academy of Inspection and Quarantine, Zhejiang 315012, P.R. China
4Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
5Department of Microbiology and Plant Pathology, Tree Protection Co-operative Programme, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa

*These authors contributed equally to this work.

Abstract: Previous studies have shown that our understanding of species diversity within Diaporthe (syn. Phomopsis) is limited. In this study, 49 strains obtained from different countries were subjected to DNA sequence analysis. Based on these results, eight new species names are introduced for lineages represented by multiple strains and distinct morphology. Twelve Phomopsis species previously described from China were subjected to DNA sequence analysis, and confirmed to belong to Diaporthe. The genus Diaporthe is shown to be paraphyletic based on multi-locus (LSU, ITS and TEF1) phylogenetic analysis. Several morphologically distinct genera, namely Mazzantia, Ophiodiaporthe, Postulomyces, Phaeocystostroma, and Stenocarpella, are embedded within Diaporthe s. lat., indicating divergent morphological evolution. However, splitting Diaporthe into many smaller genera to achieve monophyly is still premature, and further collections and phylogenetic datasets need to be obtained to address this situation.

INTRODUCTION

Species of Diaporthe are known as important plant pathogens, endophytes or saprobes (Udayanga et al. 2011, Gomes et al. 2013). They have broad host ranges, and occur on many plant hosts, including cultivated crops, trees, and ornamentals (Diogo et al. 2010, Thompson et al. 2011, Gomes et al. 2013, Huang et al. 2015). Some Diaporthe species are responsible for severe diebacks, cankers, leaf-spots, blights, decay or wilts on different plant hosts, several of which are economically important (Mostert et al. 2001, Van Rensburg et al. 2006, Thompson et al. 2011, Gomes et al. 2013), leading to serious diseases and significant yield losses (Santos et al. 2011). For example, Diaporthe helianthi is the cause of one of the most important diseases of sunflower (Helianthus annuus) worldwide, and has reduced production by up to 40 % in Europe (Masirevic & Gulya 1992, Thompson et al. 2011). Diaporthe neoviticola and D. vitimegaspora, the causal agents of leaf-spot and swelling arm, are known as severe pathogens of grapevines (Vitis vinifera) (Van Niekerk et al. 2005). Úrbez-Torres et al. (2013) indicated that D. neoviticola was one of the most prevalent fungi isolated from grapevine perennial cankers in declining vines. Diaporthe scabra has been reported causing cankers and dieback on London plane (Platanus acerifolia) in Italy (Grasso et al. 2012). Symptoms of umbel browning and necrosis caused by D. angeliace have been regularly observed on carrots in France, resulting in seed production losses since 2007 (Ménard et al. 2014). Avocado (Persea americana), cultivated worldwide in tropical and subtropical regions, is threatened by branch cankers and fruit stem-end rot diseases caused by D. foeniculina and D. stenlis (Guarnaccia et al. 2016). Furthermore, species of Diaporthe are commonly introduced into new areas as endophytes or latent pathogens along with plant produce. For instance, Torres et al. (2016) reported D. rudis causing stem-end rot in avocados in Chile, which was imported via avocado fruit from California (USA). Some endophytes have been shown to act as opportunistic plant pathogens. Diaporthe foeniculina (syn. P. theicola), which is a common endophyte, has been shown to cause stem and shoot cankers on sweet chestnut (Castanea sativa) in Italy (Annesi et al. 2015, Huang et al. 2015). Because of this unique ecology and potential role as plant pathogens, it is of paramount importance to accurately identify species of Diaporthe to facilitate disease surveillance, control, and trade.

The initial species concept of Diaporthe based on the assumption of host-specificity, resulted in the introduction of more than 1000 names (http://www.indexfungorum.org/Names/Names.asp); (Gomes et al. 2013, Gao et al. 2016). In recent years, however, a polyphasic approach employing multi-locus DNA data together with morphology and ecology has been employed for species delimitation in the genus
(Udayanga et al. 2011, Gomes et al. 2013). The nuclear ribosomal internal transcribed spacer (ITS), the translation elongation factor 1-α (TEF1), β-tubulin (TUB), histone H3 (HIS), and calmodulin (CAL) genes are the most commonly used molecular loci for the identification of Diaporthe spp. (Dissanayake et al. 2015, Udayanga et al. 2015, Huang et al. 2015, Santos et al. 2017). Furthermore, molecular marker aids are being used to rapidly identify Diaporthe species which tend to be morphologically conserved (Udayanga et al. 2012, Tan et al. 2013, Lombard et al. 2014, Thompson et al. 2015, Huang et al. 2015). However, defining species boundaries remains a major challenge in Diaporthe (Huang et al. 2015), which may be a consequence of limited sampling or the use of DNA loci with insufficient phylogenetic resolution (Liu et al. 2016). It has therefore been proposed that new species in the genus should be introduced with caution, and that multiple strains from different origins should be subjected to a multi-gene phylogenetic analysis to determine intraspecific variation (Liu et al. 2016).

The generic relationships of Diaporthe with other genera in Diaporthaceae remain unclear. The family name Diaporthaceae was established by Wehmeyer (1926) to accommodate Diaporthe, Mazzantia, Melanoconis, and some other genera, mainly based on morphological characters such as the position, structure, and arrangement of ascomata, stroma, and spore shapes. Castlebury et al. (2002) reported that Diaporthaceae comprised Diaporthe and Mazzantia based on LSU DNA sequence data, removing other genera to different families in Diaporthales. Additional genera subsequently placed in the Diaporthaceae include Leucodiaporthe (Vasilyeva et al. 2007), Stenocarpella (Crous et al. 2006), Phaeocytostroma (Lamprecht et al. 2011), Ophiidiaporthe (Fu et al. 2013), and Pustulomyces (Dai et al. 2014). All the above genera were represented by a few species or are monotypic. Although they appeared to be morphologically divergent from Diaporthe, their phylogenetic relationships remain unclear.

About 991 names of Diaporthe and 979 of Phomopsis have been established to date (http://www.indexfungorum.org/Names/Names.asp). Among them, many old epithets lack molecular data, and few morphological characters can be used in species delimitation, making it difficult to merge these names to advance to the one name scenario (Rossman et al. 2014, 2015). In China, more than 50 plant pathogenic Phomopsis species have been published to date (Chi et al. 2007). In order to stabilize these species names in the genus Diaporthe, here we introduce 12 new combinations for Phomopsis species that have been subjected to DNA sequencing, and whose phylogenetic position has been resolved in Diaporthe in the present study.

The objectives of this study were: (1) to examine the phylogenetic relationships of Diaporthe with other closely related genera in Diaporthaceae; (2) to introduce new species in Diaporthe; and (3) to transfer Phomopsis species described from China to Diaporthe based on morphological and newly generated molecular data.

MATERIAL AND METHODS

Isolates

Strains were isolated from leaves of both symptomatic and healthy plant tissues from Yunnan, Zhejiang, and Jiangxi Provinces in China. A few other strains were obtained via the Ningbo Entry-Exit Inspection and Quarantine Bureau, which were isolated from imported plants from other countries. Single spore isolations were conducted from diseased leaves with visible fungal sporulation following the protocol of Zhang et al. (2013), and isolation from surface sterilized leaf tissues was conducted following the protocol of Gao et al. (2014). Fungal endophytes were isolated according to the method described by Liu et al. (2015). The Diaporthe strains were primarily identified from the other fungal species based on cultural characteristics on PDA, spore morphology, and ITS sequence data. Type specimens of new species were deposited in the Mycological Herbarium, Microbiology Institute, Chinese Academy of Sciences, Beijing, China (HMAS), with ex-type living cultures deposited in the China General Microbiological Culture Collection Center (CGMCC).

Morphological analysis

Cultures were incubated on PDA at 25 °C under ambient daylight and growth rates were measured daily for 7 d. To induce sporulation, isolates were inoculated on PNA (pine needle agar; Smith et al. 1996) containing double-autoclaved (30 min, 121°C, 1 bar) healthy pine needles and incubated at a room temperature of ca. 25 °C (Su et al. 2012). Cultures were examined periodically for the development of conidiomata and perithecia. Conidia were taken from pycnidia and mounted in sterilized water. The shape and size of microscopic structures were observed and noted using a light microscope (Nikon Eclipse 80i) with differential interference contrast (DIC). At least 10 conidiomata, 30 conidiophores, alpha and beta conidia were measured to calculate the mean size and standard deviation (SD).

DNA extraction, PCR amplification and sequencing

Isolates were grown on PDA and incubated at 25 °C for 7 d. Genomic DNA was extracted following the protocol of Cubero et al. (1999). The quality and quantity of DNA was estimated visually by staining with GelRed after 1 % agarose gel electrophoresis. The primers ITS5 and ITS4 (White et al. 1990) were used to amplify the internal transcribed spacer region (ITS) of the nuclear ribosomal RNA gene operon, including the 3’ end of the 18S nRNA, the first internal transcribed spacer region, the 5.8S nRNA gene; the second internal transcribed spacer region and the 5’ end of the 28S nRNA gene. The primers EF1-728F and EF1-986R (Carbone & Kohn 1999) were used to amplify part of the translation elongation factor 1-α gene (TEF1), and the primers CYLH3F (Crous et al. 2004) and H3-1b (Glass & Donaldson 1995) were used to amplify part of the histone H3 (HIS) gene. The primers T1 (O'Donnell & Cigelnik 1997) and Bt2b (Glass & Donaldson 1995) were used to amplify the beta-tubulin gene (TUB); the additional combination of Bt2a/Bt2b (Glass & Donaldson 1995) was used in case of amplification failure of the T1/Bt2b primer pair. The primer pair CAL228F/CAL737R
Table 1. Sources of isolates and GenBank accession numbers used in the phylogenetic analyses of *Diaporthaceae*.

Species names*	Culture collection no.	Isolation sources	Country	GenBank Accession Numbers	References
D. acaciigena	CBS 129521 (ex-type)	Acacia retinodes	Australia	KC343005 - KC343731	Gomes et al. (2013)
D. ampelina	FAU 586	Vitis sp.	USA: New York	- AF439635 - - -	-
D. angelicae	CBS 111592	Heracleum spondylium	Austria	KC343027 - KC343753	Gomes et al. (2013)
	AR 3724	Heracleum spondylium	Austria	KC343026 - KC343752	Gomes et al. (2013)
D. apiculata	LC 3418 (ex-type)	Camellia sinensis	China	KP267896 KY011852 KP267970	This study
D. arecae complex	LC 3452	Camellia sinensis	China	KP267850 KY011839 KP267924	This study
	LC 4155	Rhododendron sp.	China	KY011895 KY011879 KY011906	This study
	LC 4159	Rhododendron sp.	China	KY011896 KY011880 KY011907	This study
D. biguttus	LC 4164	Unknown host	China	KY011897 KY011881 KY011908	This study
D. compacta	LC 1106 (ex-type)	Lithocarpus glaber	China	KB576262 KB576285	This study
D. discoidispora	LC 3503	Camellia sinensis	China	KY011887 KY011854 KY011898	This study
D. ellipicola	LC 3198 (ex-type)	Lithocarpus glaber	China	KB576270 KB576245	This study
D. ellipicola	LC 3205	Camellia sinensis	China	KB714499 KB714511	This study
D. ellipicola	LC 3206	Camellia sinensis	China	KB714500 KB714512	This study
	CBS 109767	Acer campestre	Austria	KC343075 - KC343801	Gomes et al. (2013)
D. fusicola	LC 1126	Lithocarpus glaber	China	KB576281 KB576256	This study
D. hongkongensis	LC 0778	Lithocarpus glaber	China	KB576263 KB576238	This study
D. incompleta	LC 0784	Lithocarpus glaber	China	KB576210 KB576245	This study
D. liriodendri	LC 0812	Smilax china	China	KB576207 KB576237	This study
D. lucida	LC 6706	Camellia sinensis	China	KB576287 KB576242	This study
D. mahothocarpi	LC 0732	Mahonia bealei	China	KB576297 KB576242	This study
D. masirevicii	LC 0763 (ex-type)	Lithocarpus glaber	China	KB576297 KB576242	This study
D. neoarctii	CBS 109490	Ambrosia trifida	USA: New Jersey	KC343145 - KC343871	Gomes et al. (2013)
D. oncostoma	CBS 109741	Robinia pseudoacacia	Russia	KC343161 - KC343887	Gomes et al. (2013)
D. oraccinii	LC 3166 (ex-type)	Camellia sinensis	China	KB576263 KB576238	This study
D. ovoicicola	LC 1128 (ex-type)	Lithocarpus glaber	China	KB576287 KB576242	This study
D. penetriteum	LC 3215	Camellia sinensis	China	KB576287 KB576242	This study
D. perjuncta	LC 3353 (ex-type)	Camellia sinensis	China	KB576297 KB576242	This study
D. perjuncta	LC 3394	Camellia sinensis	China	KB576297 KB576242	This study

Species names include *Diaporthe* and *Spicaria*.
Species names*	Culture collection no.	Isolation sources	Country	GenBank Accession Numbers	References
D. pseudophoenicicola	LC 6150	Phoenix canariensis	China	KY011891 KY011865 KY011902	This study
	LC 6151	Phoenix canariensis	China	KY011892 KY011866 KY011903	This study
D. pseudophoenicicola	CBS 109742	Acer pseudoplatanus	Austria	KC343185 - KC343911	Gomes et al. (2013)
	CBS 109760	Acer pseudoplatanus	Austria	KC343186 - KC343912	Gomes et al. (2013)
	CBS 109784	Prunus padus	Austria	KC343187 - KC343913	Gomes et al. (2013)
D. rudis	LC 6147	Dendrobenthamia japonica	USA	KY011890 KY011864 KY011901	This study
D. undulata	LC 6145	Ilex aquifolium	China	KY011889 KY011863 KY011900	This study
D. velutina	LC 4414	Lithocapussp.	China	KX986789 KY011882 KY999180	This study
	LC 4419	Neolitsea sp.	China	KX986789 KY011883 KY999181	This study
D. xishuangbanica	LC 6707	Camellia sinensis	China	KX986783 KY011860 KY999175	This study
	LC 6744	Camellia sinensis	China	KX986784 KY011862 KY999176	This study
D. yunnanensis	LC 6168	Coffea sp.	China	KX986796 KY011867 KY999188	This study
Diaportha sp.	LC 3156	Camellia sinensis	China	KP267912 KY011855 KP267986	This study
	LC 6170	Coffea sp.	China	KX986786 KY011856 KY999174	This study
	LC 6171	Solanum melongena	China	KX986788 KY011882 KY999180	This study
	LC 6232	Theobroma cacao	China	KX986797 KY011868 KY999189	This study
Mazzantia napelli	AR 3498	Aconitum vulparia	Austria	-	AF408368 EJ222017 Castlebury et al. (2002)
OphiodyaORTH Sp.	BCRC 34961	Cyathea lepifera	Taiwan	JX570889 JX570891	KC65406 Fu et al. (2013)
Phaeocytostroma ambiguum	CPC 17071	Zea mays	South Africa	FR748036 - FR748068	Lamprecht et al. (2011)
	CPC 17072	Zea mays	South Africa	FR748037 FR748096 FR748069	Lamprecht et al. (2011)
Ph. plurivorum	CBS 113835	Helianthus annuus	Portugal	FR748046 FR748104 FR748078	Lamprecht et al. (2011)
Ph. sacchari	CBS 275.34	-	Japan	FR748047 FR748105 FR748079	Lamprecht et al. (2011)
Ph. megalosporum	CBS 284.65	Rice-field soil	India	FR748045 FR748103 FR748077	Lamprecht et al. (2011)
Pustulomyces bambusicola	MFLUCC 11-0436	on dead culm of bamboo	Thailand	-	KF806753 KF806755 Dai et al. (2014)
Stenocarpella macrospora	CBS 117560	Rain damaged Bt maize hybrid, 2003-04 season	South Africa	FR748048 DQ377934 -	Lamprecht et al. (2011)
S. maydis	CBS 117558	Traditional/landrace maize from 2003/04 season	South Africa	FR748051 DQ377936 FR748080	Lamprecht et al. (2011)
Valsa ambiens	CFCC 89894	Pyrus bretschneideri	China	KR045617 KR045699 KU710912	Fan et al. (2014)

*New species described in this paper are shown in bold.
Diaporthe is paraphyletic

(Carbone & Kohn 1999) and LR0R/LR5 primer pair (Rytas & Mark 1990) were used to amplify the calmodulin gene (CAL) and the LSU rDNA, respectively. Amplification reactions of 25 μL were composed of 10 × EasyTaq buffer (MgCl$_2$ included; Transgen, Beijing), 50 μM dNTPs, 0.2 μM of each forward and reverse primers (Transgen), 0.5 U EasyTaq DNA polymerase (Transgen) and 1–10 ng of genomic DNA. PCR parameters were as follows: 94 °C for 5 min, followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at a suitable temperature for 30 s (52 °C for ITS and LSU, 56 °C for CAL, HIS, TEF1 and TUB), extension at 72 °C for 30 s and a final elongation step at 72 °C for 10 min. DNA sequencing was performed by Omogenetics Company, Beijing.

Phylogenetic analyses

The DNA sequences generated with forward and reverse primers were used to obtain consensus sequences using MEGA v. 5.1 (Tamura et al. 2011), and subsequently aligned using MAFFT v. 6 (Katoh & Toh 2010); alignments were manually edited using MEGA v. 5.1 when necessary. Two datasets were employed in the phylogenetic analyses. LSU, ITS and TEF1 loci were selected to infer the generic relationships within Diaporthaceae (Table 1), with Valsa ambiens as outgroup. All available sequences of Diaporthe species were included in the dataset of combined ITS, HIS, TEF1, TUB, and CAL regions to infer the interspecific relationships within Diaporthe (Table 2) with Diaporthella corylina as outgroup. Maximum likelihood (ML) gene trees were estimated using the software RAxML v. 7.4.2 Black Box (Stamatakis 2006, Stamatakis et al. 2008). The RAxML software selected the GTR model of nucleotide substitution with the additional options of modelling rate heterogeneity (Γ) and proportion invariant sites (I). Bayesian analyses (critical value for the topological convergence diagnostic set to 0.01) were performed on the concatenated loci using MrBayes v. 3.2.2 (Ronquist et al. 2012) as described by (Crous et al. 2006) using nucleotide substitution models for each data partition selected by jModeltest (Darriba et al. 2012) and MrModeltest v. 2.3 (Nylander 2004). Bayesian analyses were launched with random starting trees for 10 000 000 generations, and Markov chains were sampled every 1000 generations. The first 25 % resulting trees were discarded as burn-in. The remaining trees were summarized to calculate the posterior probabilities (PP) of each clade being monophyletic. Trees were visualized in FigTree v. 1.1.2 (http://tree.bio.ed.ac.uk/software/). New sequences generated in this study were deposited in NCBI’s GenBank nucleotide database (www.ncbi.nlm.nih.gov; Table 1).

RESULTS

Collection of Diaporthe strains

Twenty-one Diaporthe strains including presumed plant pathogens and endophytes were isolated from 11 different host plant species (Table 2) collected from three provinces (Jiangxi, Yunnan, Zhejiang) in the northern part of China. In addition, 28 strains were isolated from the plant samples inspected by Jiangsu Entry-Exit Inspection and Quarantine Bureau.

The paraphyly of Diaporthe

Phylogenetic analysis was conducted with 224 sequences derived from 76 ingroup taxa from Diaporthaceae with Valsa ambiens as the outgroup (Table 1). The combined alignment comprised 1 817 characters including gaps (795 for LSU, 558 for ITS, 464 for TEF1). Based on the results of the Mrmodeltest, the following priors were set in MrBayes for the different data partitions: GTR+Γ model with gamma-distributed rates were implemented for LSU and ITS, HKY+Γ model with invariable-distributed rates were implemented for TEF1. The Bayesian analysis lasted 7 × 106 generations and the consensus tress and posterior probabilities were calculated from the trees left after discarding the first 25 % generations for burn-in (Fig. 1).

The generic relationships of Mazzantia, Ophiidiaporthe, Phaeocytostroma, Pustulomyces, and Stenocarpella with Diaporthe from this analysis are shown in Fig. 1. The topology and branching order of the phylogenetic trees inferred from ML and Bayesian methods were essentially similar. Five genera from Diaporthaceae did not form discrete clades from Diaporthe species but are scattered in the latter, although the family remains monophyletic. The paraphyletic nature of Diaporthe, however, is demonstrated (Fig. 1). Ophidiaporthe formed a well resolved and distinct clade represented by strain YMJ 1364, and clustered together with the ex-type culture of D. sclerotioides (CBS 296.67) (BPP 0.99, MLBS: 90). Stenocarpella, represented by S. maydis and S. macrospora, was well supported (BPP 1, MLBS = 96) and closely related to several species of Phaeocytostroma. Mazzantia, however, was poorly supported for its phylogenetic position in Diaporthaceae (Fig. 1).

Phylogenetic analyses of the combined datasets of Diaporthe species

In total, 1089 sequences derived from 273 ingroup taxa were combined and Diaporthella corylina was used as outgroup. A total of 2783 characters including gaps (568 for CAL, 554 for HIS, 523 for ITS, 636 for TEF1 and 456 for TUB) were included in the multi-locus dataset, comprising sequences generated from this study and others downloaded from GenBank (Table 2). For the Bayesian inference, GTR+Γ model was selected for CAL, HIS and ITS, HKY+Γ for TEF1 and TUB through the analysis of Mrmodeltest. The maximum likelihood tree conducted by the GTR model confirmed the tree topology and posterior probabilities of the Bayesian consensus tree.

The topology and branching order for the phylogenetic trees inferred from ML and Bayesian methods were essentially similar (Fig. 2). Based on the multi-locus phylogeny and morphology, 49 strains were assigned to 13 species, including eight taxa which we describe here as new (Fig. 2).
Fig. 1. Phylogenetic tree of the family Diaporthaceae from a maximum likelihood analysis based on the combined multi-locus dataset (ITS, LSU, TEF1). The ML bootstrap values ≥ 70 %, bayesian probabilities BPP ≥ 0.90 are marked above the branches. The tree is rooted with Valsa ambiens.
Diaporthe is paraphyletic

Fig. 2. Phylogenetic tree of the genus *Diaporthe* from a maximum likelihood analysis based on the combined multi-locus dataset (CAL, HIS, ITS, TEF1, TUB). The ML bootstrap values ≥ 70 %, bayesian probabilities BPP ≥ 0.90 are marked above the branches. The tree is rooted with *Diaporthella corylina*. The novel species are highlighted.
Fig. 2. (Continued).
Diaporthe is paraphyletic

Fig. 2. (Continued).
Fig. 2. (Continued).
Table 2. Sources of isolates and GenBank accession numbers used in the phylogenetic analyses of *Diaporthe*. Newly sequenced material is indicated in bold type.

Species names*	Culture collection no.	Isolation sources	Host family	GenBank Accession Numbers	References			
D. acaciigena	CBS 129521 (ex-type)	Acacia retinodes	Mimosaceae	KC343005 KC343731 KC343973 KC343489 KC343247	Gomes et al. (2013)			
D. acerina	CBS 137.27	Acer saccharum	Aceraceae	KC343006 KC343732 KC343974 KC343490 KC343248	Gomes et al. (2013)			
D. acutispora	CGMCC 3.18285 = LC 6160	Coffea sp., endophyte	Rubiaceae	XXXX XXXX XXXX XXXX XXXX	This study			
D. alleghaniensis	CBS 495.72 (ex-type)	Betula alleghaniensis, branches	Betulaceae	XXXX XXXX XXXX XXXX XXXX	Gomes et al. (2013)			
D. alnea	CBS 137.46 (ex-type)	Alnus sp.	Betulaceae	XXXX XXXX XXXX XXXX XXXX	Gomes et al. (2013)			
D. amelia	CBS 114015	Pyrus communis	Rosaceae	XXXX XXXX XXXX XXXX XXXX	Gomes et al. (2013)			
D. amelina	CBS 111458	Vitis vinifera	Vitaceae	AF230751 AY753006 JX270542	Gomes et al. (2013)			
D. amygdali	CBS 126679 (ex-type)	Prunus dulcis	Rosaceae	XXXX XXXX XXXX XXXX XXXX	Gomes et al. (2013)			
D. anacardi	CBS 123979 (ex-epitype)	Anacardium occidentale	Anacardiaceae	XXXX XXXX XXXX XXXX XXXX	Gomes et al. (2013)			
D. angelicae	CBS 111592 (ex-epitype)	Heracleum spathylodium	Apiaceae	XXXX XXXX XXXX XXXX XXXX	Gomes et al. (2013)			
D. apiculata	LC 4152	Camellia, leaf	Theaceae	XXXX XXXX XXXX XXXX XXXX	Gao et al. (2016)			
D. arctii	CBS 136.25	Arctic sp.	Arecaceae	XXXX XXXX XXXX XXXX XXXX	Lombard et al. (2014)			
D. areca	CBS 553.75	Citrus sp., fruit	Rutaceae	XXXX XXXX XXXX XXXX XXXX	Lombard et al. (2014)			
D. arengae	CBS 114979 (ex-type)	Areca catechu, fruit	Arecaceae	XXXX XXXX XXXX XXXX XXXX	Lombard et al. (2014)			
D. asheiola	CBS 136967, CPC 15608, (ex-type)	Vaccinium ashei	Ericaceae	KJ160562 KJ160594 KJ160518	Lombard et al. (2014)			
D. aspalathi	CBS 136968, CPC 16611	Vaccinium ashei	Ericaceae	KJ160563 KJ160595 KJ160519	Lombard et al. (2014)			
D. australafricana	CBS 11186	Vitis vinifera	Vitaceae	XXXX XXXX XXXX XXXX XXXX	Lombard et al. (2014)			
D. baccae	CBS 136971	Vaccinium corimbosum	Ericaceae	KJ160564 KJ160596	Lombard et al. (2014)			
D. clavata	CBS 136972 (ex-type)	Vaccinium corimbosum	Ericaceae	KJ160565 KJ160597	Lombard et al. (2014)			
Species name	Culture collection no.	GenBank Accession Numbers	ITS	TEF1	TUB	HIS	CAL	References
--------------	------------------------	---------------------------	-----	-----	-----	-----	-----	------------
D. batatas	CBS 122.27	KC343716						Gao et al. (2013)
D. becerru	CBS 652.97	KC343733						Gomes et al. (2013)
D. betulae	CBS 133.183 (ex-type)	KC343729						Gomes et al. (2013)
D. biguttus	CBS 114.347	KC343731						Gomes et al. (2013)
D. biguttus	CBS 133.183 (ex-type)	KC343732						Gomes et al. (2013)
D. brasilensis	CBS 176.55	KC343738						Gomes et al. (2013)
D. caldarii	CBS 122.27	KC343716						Gao et al. (2013)
D. cauliflora	CBS 652.97	KC343733						Gomes et al. (2013)
D. chlorosticta	CBS 133.183 (ex-type)	KC343729						Gomes et al. (2013)
D. clavata	CBS 114.347	KC343731						Gomes et al. (2013)
D. clavata	CBS 133.183 (ex-type)	KC343732						Gomes et al. (2013)
D. clavata	CBS 176.55	KC343738						Gomes et al. (2013)
D. chlorosticta	CBS 652.97	KC343733						Gomes et al. (2013)
D. chlorosticta	CBS 133.183 (ex-type)	KC343729						Gomes et al. (2013)
D. chlorosticta	CBS 176.55	KC343738						Gomes et al. (2013)
D. chlorosticta	CBS 652.97	KC343733						Gomes et al. (2013)
Table 2. (Continued).

Species names	Culture collection no.	Isolation sources	Host family	GenBank Accession Numbers	References
D. citriasiana	ZJUD 30 (ex-type)	Citrus unshiu, dead wood	Rutaceae	JQ954645	Huang et al. (2015)
	ZJUD 33	Citrus paradise, stem-end rot fruit	Rutaceae	JQ954658	Huang et al. (2015)
	ZJUD 34	Citrus sp.	Rutaceae	JQ954648	Huang et al. (2015)
	ZJUD 35	Citrus unshiu, dead wood	Rutaceae	JQ954649	Huang et al. (2015)
	ZJUD 36	Citrus unshiu, dead wood	Rutaceae	JQ954649	Huang et al. (2015)
	LC3083 (ex-type)	Camellia sinensis, leaf, endophyte	Theaceae	KP267854	Gao et al. (2016)
	LC3084	Camellia sinensis, leaf, endophyte	Theaceae	KP267855	Gao et al. (2016)
D. convolvuli	CBS 124654	Convolvulus arvensis	Convolvulaceae	KC343054	Huang et al. (2015)
D. crataegi	CBS 114435	Crataegus oxyacantha	Rosaceae	KC343055	Gomes et al. (2013)
D. crotalariae	CBS 162.33 (ex-type)	Crotalaria spectabilis	Fabaceae	KC343056	Gomes et al. (2013)
D. cuppatae	CBS 117499	Aspalathus linearis	Fabaceae	KC343057	Gomes et al. (2013)
D. cynaroidis	CBS 122676	Protea cynaroides	Proteaceae	KC343058	Gomes et al. (2013)
D. cytosporella	AR 5149	Citrus sinensis	Rutaceae	KC843309	Udayanga et al. (2014b)
D. decedens	CBS 114281	Corylus avellana	Corylaceae	KC343060	Gomes et al. (2013)
	CBS 109772	Corylus avellana	Corylaceae	KC343061	Gomes et al. (2013)
D. detrusa	CBS 109770	Berberis vulgaris	Berberidaceae	KC343062	Gomes et al. (2013)
	CBS 114652	Berberis vulgaris	Berberidaceae	KC343063	Gomes et al. (2013)
D. discoidispora	ZJUD 87, CGMCC 3.17254	Citrus sinensis	Rutaceae	KJ490622	Huang et al. (2015)
	ZJUD 89, CGMCC 3.17255	Citrus sinensis	Rutaceae	KJ490624	Huang et al. (2015)
D. ellipicola	CGMCC 3.18287 = LC 4802	Elaeagnus glabra, pathogen	Elaeagnaceae	KX999779	This study
	LC 4806	Elaeagnus glabra, pathogen	Elaeagnaceae	KX999780	This study
D. eugeniae	CBS 133811 (ex-type)	Schinus terebinthifolius	Anacardiaceae	KC343065	Gomes et al. (2013)
	LGMF 911	Schinus terebinthifolius	Anacardiaceae	KC343066	Gomes et al. (2013)
D. eres	ARS193, CBS 13859 (ex-epitype)	Ulmus laevis	Ulmaceae	KJ210529	Udayanga et al. (2014a)
	CBS 113470	Castanea sativa	Fagaceae	KJ210530	Udayanga et al. (2014a)
D. fibrosa	CBS 444.82	Eugenia aromatica, leaf	Myrtaceae	KC343084	Gomes et al. (2013)
	CBS 109751	Rhamnus cathartica	Rhamnaceae	KC343099	Gomes et al. (2013)
	CBS 113830	Rhamnus cathartica	Rhamnaceae	KC343100	Gomes et al. (2013)
Table 2. (Continued).

Species names*	Culture collection no.	Isolation sources	Host family	GenBank Accession Numbers	References
D. foeniculina	CBS 116957	Pyrus pyrifolia	Rosaceae	KC343103 KC343829 KC344071 KC343587 KC343345	Gomes et al. (2013)
	CBS 187.27 (ex-type of P. theicola)	Camellia sinensis, leaves and branches	Theaceae	KC343107 KC343833 KC344075 KC343591 KC343349	Gomes et al. (2013)
	CBS 123208	Foeniculum vulgare	Apiaceae	KC343104 KC343830 KC344072 KC343588 KC343346	Gomes et al. (2013)
D. fraxiniangustifolia	BRIP 54781 (ex-epitype)	Fraxinus-angustifolia subsp. oxycapa	Oleaceae	JX862528 JX852534 KF170920	Tan et al. (2013)
D. ganjae	CBS 180.91 (ex-type)	Cannabis sativa, dead leaf	Cannabaceae	KC343112 KC343838 KC344075 KC343596 KC343349	Gomes et al. (2013)
D. gardeniae	CBS 288.56	Gardenia florid, stem	Rubiaceae	KC343113 KC343839 KC344076 KC343597 KC343355	Gomes et al. (2013)
D. gulyae	BRIP 55657a (ex-type)	Helianthus annusus	Asteraceae	JF431299 JN645603 KJ197271	Thompson et al. (2015)
D. helianthi	CBS 344.94	Helianthus annusus	Asteraceae	KC343114 KC343840 KC344082 KC343598 KC343356	Gomes et al. (2013)
D. helicis	AR 5211	Hedera helix	Araliaceae	KC343115 KC343841 KC344083 KC343599 KC343357	Gomes et al. (2013)
D. hickoriae	CBS 145.26 (ex-epitype)	Carya glabra	Juglandaceae	KC343116 KC343844 KC344086 KC343602	Gomes et al. (2013)
D. hongkongensis	CBS 114434	Dichroa febrifuga, fruit	Hydrangeaceae	KC343119 KC343845 KC344087 KC343603 KC343356	Gomes et al. (2013)
D. hordei	CBS 481.92	Hordeum vulgare	Poaceae	KC343120 KC343846 KC344088 KC343604 KC343357	Gomes et al. (2013)
D. impulsa	CBS 141.27	Sorbus aucuparia	Rosaceae	KC343121 KC343847 KC344089 KC343605 KC343358	Gomes et al. (2013)
D. incompleta	CGMCC 3.18288 = LC 6754	Camellia sinensis, pathogen	Theaceae	KC986794 KC999186 KC999226 KC999265 KC999289	This study
	LC 6706	Camellia sinensis, pathogen	Theaceae	KC986793 KC999185 KC999264 KC999288	This study
D. inconspicua	CBS 133813 (ex-type)	Maytenus ilicifolia, endophytic in petiole	Celastraceae	KC343123 KC343849 KC344091 KC343607 KC343365	Gomes et al. (2013)
D. infecunda	CBS 133812 (ex-type)	Schinus terebinthifolius	Anacardaceae	KC343126 KC343852 KC344094 KC343610 KC343368	Gomes et al. (2013)
	LGMF 908	Schinus terebinthifolius	Anacardaceae	KC343127 KC343853 KC344095 KC343611 KC343369	Gomes et al. (2013)
D. kongii	BRIP 54031 (ex-type)	Helianthus annusus	Asteraceae	JF431301 JN645797 KJ197272	Thompson et al. (2011)
D. lichicola	BRIP 54900 (ex-type)	Litchi chinensis	Sapindaceae	JX862533 JX862539 KF170925	Tan et al. (2013)
D. longicicola	CGMCC 3.17089 (ex-type)	Lithocarpus glabra	Fabaceae	KF576267 KF576242 KF576291	- Gao et al. (2015)
D. longicolla	FAU 599	Glycine max	Fabaceae	KJ509728 KJ590767 KJ610883 KJ659188	- Udayanga et al. (2015)
D. longispora	CBS 194.36 (ex-type)	Ribes sp.	Grossulariaceae	KC343135 KC343861 KC344103 KC343619 KC343377	Gomes et al. (2013)
D. lusitanicae	CBS 123212 (ex-type)	Foeniculum vulgare	Apiceae	KC343136 KC343862 KC344104 KC343620	Gomes et al. (2013)
D. macintoshii	BRIP 55604a	Rapistrum rugosum	Brassicaceae	KJ197290 KJ197251 KJ197269	Thompson et al. (2015)
D. mahothocarpus	CGMCC 3.15181	Lithocarpus glabra	Fabaceae	KC153096 KC153087	- Gao et al. (2014)
D. manihotia	CBS 505.76	Manihot utilisima, leaves	Euphorbiaceae	KC343138 KC343864 KC344106 KC343622 KC343380	Gomes et al. (2013)
Table 2. (Continued)

Species names*	Culture collection no.	Isolation sources	Host family	GenBank Accession Numbers	References
D. maritima	NB 3657-71 (ex-type)	Picea rubens needle Pinaceae		KU574614 - - Y. Tanney et al. (2016)	
D. masirevi- ci	BRIP 57892a (ex-type)	Helianthus annuus Asteraceae		KJ197277 - - L. Huang et al. (2015)	
D. mayteni	CBS 133.22	Maytenus ilicicolia Celastraceae		KC343139 KC343865 KC344107 KC343623 KC343381 Gomes et al. (2013)	
D. megalospo- ra	CBS 143.27	Sambucus canadensis Caprifoliaceae		KC343140 KC343866 KC344108 KC343624 KC343382 Gomes et al. (2013)	
D. melonis	CBS 507.18I (ex-type)	Glycine soja Fabaceae		KC343141 KC343867 KC344109 KC343625 KC343383 Gomes et al. (2013)	
D. middle- tonii	BRIP 57329	Chrysanthemoides monilifera subsp. rotundata Rosaceae		KJ197278 - - B. Thompson et al. (2015)	
D. miriciae	BRIP 55662c (ex-type)	Glycine max Fabaceae		KJ197277 - - L. Huang et al. (2015)	
D. musigena	CBS 127.29	Musa sp., leaves Musaceae		KC343143 KC343870 KC344111 KC343627 KC343384 Gomes et al. (2013)	
D. neilliae	CBS 144.22	Spiraea sp. Rosaceae		KC343144 KC343871 KC344112 KC343628 KC343385 Gomes et al. (2013)	
D. neoarctii	CBS 109.29	Ambrosia trifida Asteraceae		KC343145 KC343872 KC344113 KC343629 KC343386 Gomes et al. (2013)	
D. neoraoniko- yaporum	MFLUCC 14-1136	Tectona grandis Verbenaceae		JX862530 JX862536 KF170922 - KF170921 Doilom et al. (2017)	
D. nobilis	CBS 127.29	Glycine max Fabaceae		KJ197278 - - L. Huang et al. (2015)	
D. nomurai	CBS 157.29	Morus sp., leaves Moraceae		KC343145 KC343870 KC344111 KC343627 KC343384 Gomes et al. (2013)	
D. nothofagi	BRIP 54801 (ex-type)	Nothofagus cunninghamii Fagaceae		JX862530 JX862536 KF170922 - KF170921 Doilom et al. (2017)	
D. novem	CBS 127.29	Glycine max Fabaceae		KJ197278 - - L. Huang et al. (2015)	
D. oraccini- ii	LC 3186 (ex-type)	Camellia sinensis Theaceae		KP267863 KP267856 KP267858 KP293464 Gao et al. (2016)	

Diaporthe is paraphyletic
Table 2. (Continued).

Species names*	Culture collection no.	Isolation sources	Host family	GenBank Accession Numbers	References	
D. ovalispora	ZJUD 93, CGMCC 3.17256	Citrus limon	Rosaceae	KJ490628 KJ490507 KJ490449 KJ490570	Huang et al. (2015)	
D. oxe	CBS 133186 (ex-type)	Maytenus ilicifolia	Celastraceae	KC343164 KC343890 KC344132 KC343648 KC343406	Gomes et al. (2013)	
D. ovifera	CBS 133187	Maytenus ilicifolia	Celastraceae	KC343165 KC343891 KC344133 KC343649 KC343407	Gomes et al. (2013)	
D. padi var. padi	CBS 114200	Prunus padus	Rosaceae	KC343169 KC343895 KC344137 KC343653 KC343411	Gomes et al. (2013)	
D. oxe	CBS 114649	Alnus glutinosa	Betulaceae	KC343170 KC343896 KC344138 KC343654 KC343412	Gomes et al. (2013)	
D. paxensei	CBS 133184 (ex-type)	Maytenus ilicifolia	Celastraceae	KC343171 KC343897 KC344139 KC343655 KC343413	Gomes et al. (2013)	
D. pascoei	BRIP 54847 (ex-type)	Persica americana	Lauraceae	JX862532 JX862538 KF170924	-	Tan et al. (2013)
D. penetriteum	LC 3353	Camellia sinensis, leaf	Theaceae	KP714505 KP714517 KP714529 KP714493	-	Gao et al. (2016)
D. perjuncta	LC 3394	Camellia sinensis, leaf	Theaceae	KP267893 KP267967 KP293473 KP293547	-	Gao et al. (2016)
D. perjuncta	CBS 109745 (ex-type)	Ulmus glabra	Ulmaceae	KC343172 KC343898 KC344140 KC343656 KC343414	Gomes et al. (2013)	
D. penicillata	CBS 124030	Malus pumila, bark	Rosaceae	KC343149 KC343875 KC344117 KC343633 KC343391	Gomes et al. (2013)	
D. perseae	CBS 151.73	Persea gratissima, young fruit	Lauraceae	KC343173 KC343899 KC344141 KC343657 KC343415	Gomes et al. (2013)	
D. phaseolorum	AR 4203, CBS 139281	Phaseolus vulgaris	Fabaceae	KJ590735 KJ590739 KJ610890 KJ659220	-	Huang et al. (2015)
D. podocarpini	CGMCC 3.18281 = LC 6155	Podocarpus macrophyllus, endophyte	Podocarpaceae	XX986774 XX999167 XX999207 XX999246 XX999278	This study	
D. podocarpini	LC 6144	Podocarpus macrophyllus, endophyte	Podocarpaceae	XX986773 XX999166 XX999206 XX999245	-	This study
D. podocarpini	LC 6194	Podocarpus macrophyllus, endophyte	Podocarpaceae	XX986765 XX999156 XX999196 XX999236 XX999275	-	This study
D. podocarpini	LC 6197	Podocarpus macrophyllus, endophyte	Podocarpaceae	XX986777 XX999170 XX999210 XX999240 XX999279	-	This study
D. podocarpini	LC 6200	Podocarpus macrophyllus, endophyte	Podocarpaceae	XX986769 XX999161 XX999201 XX999240 XX999276	-	This study
D. pseudomangiferae	CBS 101339 (ex-type)	Olea europaea, endophytes	Oleaceae	XX986771 XX999164 XX999204 XX999243 XX999277	This study	
D. pseudophoenicicolae	CBS 388.89	Mangifera indica, peel of fruit	Anacardiaceae	KC343181 KC343907 KC344149 KC343665 KC343423	Gomes et al. (2013)	
D. pseudophoenicicolae	CBS 462.69 (ex-type)	Phoenix dactylifera, dead tops of green leaves	Anacardiaceae	KC343182 KC343908 KC344150 KC343666 KC343424	Gomes et al. (2013)	
D. pterocarpus	MFLUCC 10-0571	Pterocarbus indicus	Papilionaceae	JQ619899 JX275416 JX275460	-	Udayanga et al. (2012)
D. pterocarpus	MFLUCC 10-0575	Pterocarbus indicus	Papilionaceae	JQ619901 JX275418 JX275462	-	Udayanga et al. (2012)
Diaporthe is paraphyletic

Species names*	Culture collection no.	Isolation sources	Host family	GenBank Accession Numbers	References	
D. pterocarpica	MFLUCC 10-0580a (ex-type)	*Pterocarpus indicus*	Papilionaceae	JQ619887 JX275403 JX275441 - JX197433	Udayanga et al. (2012)	
D. pterocarpica	MFLUCC 10-0580b	*Pterocarpus indicus*	Papilionaceae	JQ619888 JX275404 JX275442 - JX197434	Udayanga et al. (2012)	
D. pulla	CBS 338.89	*Hedera helix*	Araliaceae	KC343152 KC343878 KC344120 KC343636 -	Udayanga et al. (2014a)	
D. pulla	CBS 109742	*Acer pseudoaplatanus*	Aceraceae	KC343185 KC343911 KC344153 KC343669 KC343427	Gomes et al. (2013)	
D. pulla	CBS 109760	*Acer pseudoaplatanus*	Aceraceae	KC343186 KC343912 KC344154 KC343670 KC343428	Gomes et al. (2013)	
D. raonikayaporum	CBS 133182 (ex-type)	*Spondias mombin*	Anacardiaceae	KC343188 KC343914 KC344156 KC343672 KC343430	Gomes et al. (2013)	
D. rhoina	CBS 146.27	*Rhus toxicodendron*	Anacardiaceae	KC343189 KC343915 KC344157 KC343673 KC343431	Gomes et al. (2013)	
D. rudis	CBS 113201 (ex-type)	*Vitis vinifera*	Vitaceae	KC343234 KC343960 KC344202 KC343718 KC343476	Machingambi et al. (2015)	
D. rudis	CBS 114011	*Vitis Vinifera*	Vitaceae	KC343235 KC343961 KC344203 KC343718 KC343477	Machingambi et al. (2015)	
D. saccarata	CBS 116311 (ex-type)	*Protea repens, cankers*	Proteaceae	KC343190 KC343916 KC344158 KC343674 KC343435	Gomes et al. (2013)	
D. sackstonii	BRIP 54669b (ex-type)	*Helianthus annuus*	Asteraceae	KJ197287 KJ197249 KJ197267 -	-	Gomes et al. (2013)
D. salicicola	BRIP 54825 (ex-type)	*Salix purpurea*	Salicaceae	JX862531 JX862537 KF170923 -	-	Gomes et al. (2013)
D. scobina	CBS 133181 (ex-type)	*Schinus terebinthifolius*, endophytic in leaf	Anacardiaceae	KC343191 KC343917 KC344159 KC343675 KC343433	Tan et al. (2013)	
D. sclerotioides	CBS 133181 (ex-type)	*Schinus terebinthifolius*, endophytic in leaf	Anacardiaceae	KC343192 KC343918 KC344160 KC343676 KC343434	Thompson et al. (2015)	
D. sojae	CBS 116017	*Euphorbia nutans*	Euphorbiaceae	KC343195 KC343921 KC344163 KC343679 KC343437	Gomes et al. (2013)	
D. sojae	CBS 116017	*Glycine max*	Fabaceae	KJ590719 KJ590762 KJ610875 KJ659208 -	-	Gomes et al. (2013)
D. sterilis	CBS 193.36	-	-	FJ889448 GQ250324 - -	-	Lombard et al. (2014)
D. stictica	CBS 370.54	*Buxus sampvirens, dead twig*	Buxaceae	KC343321 KC343938 KC344180 KC343696 KC343454	Lombard et al. (2014)	
D. subclavata	ZJUD 83, CGMCC 3.17253	*Citrus grandis cv. Shatianyou*	Rosaceae	KJ490618 KJ490497 KJ490439 KJ490560 -	Udayanga et al. (2011)	
Table 2. (Continued).

Species names†	Culture collection no.	Isolation sources	Host family	GenBank Accession Numbers	References	
† ZJUD 95, CGMCC 3.17257	Citrus unshiu	Rosaceae	KJ490630 KJ490509 KJ490451 KJ490572	-	Gomes et al. (2013)	
† D. subordinaria	CBS 101711	Plantago lanceolata	Plantaginaceae	KC343213 KC343939 KC344181 KC343697 KC343455	Huang et al. (2015)	
† D. tecoma	CBS 464.90	Plantago lanceolata	Plantaginaceae	Kc343214 KC343940 KC344182 KC343698 KC343456	Huang et al. (2015)	
† D. tectonia	MFLUCC 12-0777	Tabelua sp.	Bignoniacae	KU712430 KU743935 KU743977 - KU749345	Gomes et al. (2013)	
† D. tectonopsis	MFLUCC 14-1138	Tabelua grandis	Verbenaceae	KU712439 KU743976 - KU743954	Doilom et al. (2017)	
† D. tectonigena	MFLUCC 12-0767	Tabelua grandis	Verbenaceae	KU712432	Doilom et al. (2017)	
† D. terebinthifolii	CBS 534.93 (ex-type)	Schinus terebinthifolius	Anacardiaceae	KC343216 KC343942 KC344184 KC343700 KC343458	Doilom et al. (2017)	
† D. toxica	CBS 133.180	Schinus terebinthifolius	Anacardiaceae	KC343220 KC343946 KC344188 KC343704 KC343462	Udayanga et al. (2012)	
† D. tulliensis	BRIP 62248a	Theobroma cacao	Sterculiaceae	KR936130 KR936133 KR936132 - -	Gomes et al. (2013)	
† D. velutina	CGMCC 3.18286 = LC 6624	Neolitsea sp., pathogen	Lauraceae	KX986789 KX999190 KX999230 KX999269	Huang et al. (2015)	
† LC 8110	Unknown host, pathogen	-	KY491545 KY491555 KY491565 -	-	Huang et al. (2015)	
† LC 8111	Unknown host, pathogen	-	KY491546 KY491566 -	-	This study	
† D. unshiensis	ZJUD 51, CGMCC 3.17568	Fortunella margarita	Rutaceae	KJ490586 KJ400465 KJ490407 KJ490528 -	This study	
† ZJUD 52, CGMCC 3.17569	Citrus unshiu	Rosaceae	KJ490587 KJ400466 KJ490408 KJ490529 -	-	This study	
† D. vaccinii	CBS 160.32 (ex-type)	Oxycoccus macrocarpos	Ericaceae	KC343228 KC343954 KC344196 KC343712 KC343470	Huang et al. (2015)	
† CBS 118571	Vaccinium corymbosum	Ericaceae	KC343223 KC343949 KC344191 KC343701 KC343459	Huang et al. (2015)		
† D. vawdreyi	BRIP 57887a	Psidium guajava	Sterculiaceae	KR936126 KR936129 KR936128 -	-	Gomes et al. (2013)
† D. velutina	CGMCC 3.18286 = LC 4421	Neolitsea s.p., pathogen	Lauraceae	KX986790 KX999182 KX999223 KX999261	Crous et al. (2015)	
† LC 4419	Neolitsea s.p., pathogen	Lauraceae	KX986789 KX999181 KX999222 KX999260 KX999286	-	Crous et al. (2015)	
† LC 4641	Callerya cinerea, pathogen	Fabaceae	KX986792 KX999184 KX999225 KX999263 KX999287	-	This study	
† LC 4788	Unknown host, pathogen	-	KX986785 KX999177 KX999218 KX999296 KX999285	-	This study	
† LC 6708	Camellia sinensis, pathogen	Theaceae	KX986787 KX999179 KX999220 KX999258	-	This study	
† D. virgilia	CMW 40755 (ex-type)	Solanum melongena	Solanaceae	KC343229 KC343955 KC344197 KC343713 KC343471	-	This study
† LC 5519	Virginia oroboides	Unknown	-	KP247573 -	-	This study
Diaporthe is paraphyletic

Table 2. (Continued).

Species names	Culture collection no.	Isolation sources	Host family	GenBank Accession Numbers	References				
				ITS	**TEF1**	**TUB**	**HIS**	**CAL**	
D. woodii	CBS 558.93	Lupinus sp.	Fabaceae	KC343244 - KC343970 - KC344212 - KC343728 - KC343486	Gomes et al. (2013)				
D. woolworthii	CBS 148.27	Ulmus americana	Ulmaceae	KC343245 - KC343971 - KC344213 - KC343729 - KC343487	Gomes et al. (2013)				
D. xishuangbanica	CGMCC 3.18282= LC 6707	*Camellia sinensis*, pathogen	Theaceae	KX986783 - KX999175 - KX999216 - KX999255	This study				
D. xishuangbanica	LC 6744	*Camellia sinensis*, pathogen	Theaceae	KX986784 - KX999176 - KX999217	-	This study			
D. yunnanensis	CGMCC 3.18289 = LC6168	Coffea sp., endophytes	Rubiaceae	KX986796 - KX999188 - KX999228 - KX999267 - KX999290	This study				
	LC 8106	*Coffea* sp., endophytes	Rubiaceae	KY491541 - KY491551 - KY491561	-	KY491571	This study		
	LC 8107	*Coffea* sp., endophytes	Rubiaceae	KY491542 - KY491552 - KY491562	-	KY491572	This study		
Diaporthe sp.	LC 6496	*Camellia sinensis*, endophytes	Theaceae	KX986781 - KX999173 - KX999214 - KX999253 - KX999283	Gomes et al. (2013)				
	LC 6512	*Camellia sinensis*, endophyte	Theaceae	KX986782 - KX999174 - KX999215 - KX999254 - KX999284	This study				
	LC 6232	*Theobroma cacao*, endophyte	Sterculiaceae	KX986797 - KX999189 - KX999229 - KX999268 - KX999291	This study				
	LC 8108	*Theobroma cacao*, endophyte	Sterculiaceae	KY491543 - KY491553 - KY491563	-	KY491573	This study		
	LC 8109	*Theobroma cacao*, endophyte	Sterculiaceae	KY491544 - KY491554 - KY491564	-	KY491574	This study		
	LC 6623	Unknown host, pathogen	-	KX986795 - KX999187 - KX999227 - KX999266	This study				
	LC 8114	Unknown host, pathogen	-	KY491549 - KY491559 - KY491569	-	-	This study		
	LC 8115	Unknown host, pathogen	-	KY491550 - KY491560 - KY491570	-	This study			
	LGMF 947	Glycine max, seed	Fabaceae	KC343203 - KC343929 - KC344171 - KC343687 - KC343445	Gomes et al. (2013)				
	CBS 119639	Man, abscess	-	KC343202 - KC343928 - KC344170 - KC343687 - KC343444	Gomes et al. (2013)				
Diaporthe sp. 1	CGMCC 3.18292 = LC 0771	*Alnus* sp., pathogen	Betulaceae	KX986799 - KX999191 - KX999231 - KX999270 - KX999282	This study				
Diaporthe sp. 2	CGMCC 3.18291 = LC 6140	*Acer* sp., endophyte	Aceraceae	KX986799 - KX999191 - KX999231 - KX999270 - KX999282	This study				
	LC8112	*Acer* sp., endophyte	Aceraceae	KX986799 - KX999191 - KX999231 - KX999270 - KX999282	This study				
	LC8113	*Acer* sp., endophyte	Aceraceae	KX986799 - KX999191 - KX999231 - KX999270 - KX999282	This study				
Diaporthe collinea	CBS 121124	Corylus sp., dying stems	Corylaceae	KC343004 - KC343730 - KC343972 - KC343488 - KC343246	Gomes et al. (2013)				
P. conorum	CBS 587.79	Pirus pentaphylla	Pinaceae	KC343153 - KC343879 - KC344121 - KC343637 - KC343395	Gomes et al. (2013)				
P. emicis	BRIP 45089a (ex-type)	Emex australis	Polygonaceae	JF957784 - JX275414 - JX275458	-	JX197449	Udayanga et al. (2012)		
P. fukushii	CBS 116863	Pirus pyrifolia	Rosaceae	KC343147 - KC343873 - KC344115 - KC343631 - KC343389	Gomes et al. (2013)				
	BRIP 45089b	Emex australis	Polygonaceae	JQ619898 - JX275415 - JX275459	-	JX197450	Udayanga et al. (2012)		

*: not provided in literatures.
TAXONOMY

Diaporthe acutispora Y.H. Gao & L. Cai, *sp. nov.*

MycoBank MB820679

(Fig. 3)

Etymology: Named after the acute spores.

Diagnosis: *Diaporthe acutispora* is phylogenetically distinct and morphologically differs from species reported from the host genera *Coffea* and *Camellia* in the larger conidiophores and alpha conidia (Table 3).

Type: China: Yunnan Province: Aini Farm, on healthy leaves of *Coffea* sp., 20 Sep. 2014, W.J. Duan (HMAS 247086 – holotype, dried culture; CGMCC 3.18285 = LC 6161 – ex-type culture).

Description: On PNA: Conidiomata pycnidial, globose, brownish, embedded in tissue, erumpent at maturity, 99–473 µm diam, often with a yellowish conidial cirrus exuding from the ostioles. Conidiophores 10–34.5 × 2–3 µm, cylindrical, hyaline, septate, branched, straight or slightly curved, tapering towards the apex. *Alpha conidia* abundant in culture, 7–10.5 × 2–3 µm (\(\bar{X} = 8.4 \pm 0.7 \times 2.6 \pm 0.2, n = 30\)), aseptate, hyaline, elliptoidal to fusoid, multi-guttulate. *Beta conidia* not observed.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 7.5 mm diam/d. Colony entirely white at surface, reverse with pale brown pigmentation, white, fluffy aerial mycelium.

Additional material examined: China: Yunnan Province: Xishuangbanna, on healthy leaves of *Camellia sasanqua*, 20 Sep. 2014, W.J. Duan, culture LC 6142; ibid. culture LC 6160.

Diaporthe elaeagni-glabrae Y.H. Gao & L. Cai, *sp. nov.*

MycoBank MB820680

(Fig. 4)

Etymology: Named after the host species *Elaeagnus glabra*.

Diagnosis: *Diaporthe elaeagni-glabrae* can be distinguished from the closely related species *D. elaeagni* (96 % in ITS, 93 % in *TEF1*, 94 % in *TUB*, 96 % in *HIS*, and 94 % in *CAL*) and *D. stictica* (96 % in ITS, 95 % in *TEF*, 97 % in *TUB*, 96 % in *HIS*, and 96 % in *CAL*) (Fig. 2). *Diaporthe elaeagni-glabrae* differs from other species recorded from *Elaeagnus* in the significantly longer alpha conidia (Table 3).

Type: China: Jiangxi Province: on diseased leaves of *Elaeagnus glabra*, 5 Sep. 2013, Y.H. Gao (HMAS 247089 – holotype, dried culture; CGMCC 3.18287 = LC 4802 – ex-type culture).
Table 3. Synoptic characters of *Diaporthe* spp. referred to in this study.

Host genera	Species	Conidiomata (μm)	Conidiophores (μm)	Alpha conidia (μm)	Beta conidia (μm)	References
Coffea	*P. coffeae*	200–250	12–16 × 2	8–9 × 2.5	-	Uecker (1988)
Camellia	*D. acutispora*	99–473	10–34.5 × 2–3	6.9–10.4 × 2.1–3.1	-	This study
	D. amygdali	160–220 × 120–300	7.4–36.3 × 1.5–3.2	(4.18–6.27–6.32(–9.64) × (1.63–2.36–2.38(–3.31)	-	Diogo et al. (2010)
	D. apiculata	74–195 (–416)	9.0–12.5 × 1.5–2.5	6.5–10 × 2–3	(20.0–25.0–39.0 × 1.0–1.5	Gao et al. (2016)
	D. compacta	237–350	6.0–12.5 × 1.5–2.5	6–7.5 × 2–3	20.0–24.5 × 1.0–1.5	Gao et al. (2016)
	D. discoidispora	200 × 118	8.9–23.4 × 1.3–2.7	5.6–8 × 2.1–3.2	21.2–38.7 × 0.9–1.6	Huang et al. (2015)
	D. eres	200–250	10–15 × 2–3	(6–8.5(–9) × 3–4	(18–22–28(29) × 1–1.5	Udayanga et al. (2014b)
	D. foeniculacea	560 × 350	10–13 × 1.5–3	(5.4–6.8–7–(–9) × (2–)2.3–2.4(–3.1)	(16.8–19.6–21–24.2) × (1.1–1.3–1.4(-1.7)	Phillips (2003)
	D. foeniculina	400–700	9–15(–18) × 1–2	(7.5–)8.5–9(–9.2) × (2–)2.3–2.5(–2.7)	(20–22–28(29) × (1.1–1.4–1.6(–2)	Udayanga et al. (2014c)
	D. hongkongensis	to 200	5–12 × 2–4	(5–)6–7(–8) × (2–)2.5(–3)	18–22 × 1.5–2	Gomes et al. (2013)
	D. oraccinii	400	10.5–22.5 × 1–2	5.5–7.5 × 0.5–2	24.5–31.0 × 1.0–1.5	Gao et al. (2016)
	D. penetriteum	176–486	13–21.5 (–27) × 1–2	4.5–5.5 × 1.5–2.5	16.5–27.5 × 1.0–2.0	Gao et al. (2016)
	D. uckerae	150–200	(9–)12–28(–30) × 1.5–2.5	(6–)4–8(–8.6) × (2–)2.3–3	-	Udayanga et al. (2014a)
	D. xishuangbanica	180–310	13–34.5 × 1.5–3	7–9.5 × 2.5–3.5	-	This study
	D. yunnanensis	195–880	-	3–6.5 × 1–2.5	13.5–33.5 × 1–1.5	This study
	P. acaciicola	-	-	7–9 × 3–3.5	-	Diedicke (1911)
	P. theae	40 × 25	-	6–8 × 1.5–2	18–24 × 0.75	Petch (1925)
Elaeagnus	*P. amoldae*	900 × 500	6–12 × 1–2	5.5–11 × 1.5–2	15–20	Uecker (1988)
	P. elaeagni	500–750	20–25 × 1–1.5	6–10 × 2–3	-	Uecker (1988)
	P. elaeagnicola	175–413 × 83–185	10.0–22.5 × 1.5–2.7	6.0–7.4 × 1.7–2.2	19–43 × 0.7–1.2	Chang et al. (2005)
	P. elaeagni-glabrae	330–1170	16–28 × 1.5–2.5	6–13 × 1.5–3	7.5–22.5 × 1–2	This study
	D. incompleta	207–650	8–22 × 1–2.5	-	19–44 × 0.5–1.5	This study
Neolitsea	*D. valutina*	69–428	10–23 × 1–2.5	5.5–10 × 2–2.5	11–27.5 × 0.5–1.5	This study

AR, DP, FAU: Isolates in culture collection of Systematic Mycology and Microbiology Laboratory, USDA-ARS, Beltsville, Maryland, USA; BCRC: Bioresource Collection and Research Center, Taiwan; BRIP: Australian plant pathogen culture collection, Queensland, Australia; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CFCC: China Forestry Culture Collection Center, China. CGMCC: China General Microbiological Culture Collection; CMW: culture collection (CMW) of the Forestry and Agricultural Biotechnology Institute; CPC: working collection of Pedro Crous maintained at the Westerdijk Institute; LGMF: Culture collection of Laboratory of Genetics of Microorganisms, Federal University of Paraña, Curitiba, Brazil; LC: Working collection of Lei Cai, housed at Institute of Microbiology, CAS, China; MFLUCC: Mae Fah Luang University Culture Collection; ZJUD: Zhe Jiang University, China.
Description: On PDA: Conidiomata globose, to 330–1170 µm, erumpent, with slightly elongated black necks, yellowish or dirty white, spiral conidial cirri extruding from ostioles. Conidiophores 16–28 × 1.5–2.5 µm, cylindrical, phialidic, septate, branched, sometimes inflated. Alpha conidia 6–13 × 1.5–3 µm (X = 8.3 ± 1.4 × 2.2 ± 0.3, n = 30), hyaline, fusiform or oval, usually biguttulate. Beta conidia 7.5–22.5 × 1–2 µm (X = 15.1 ± 3.5 × 1.2 ± 0.2, n = 40), hyaline, filiform, smooth, curved, base truncate.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 7 mm diam/d. Colony pale yellowish, greenish to brownish at the centre, reverse pale yellowish and brownish at the centre with age. Aerial mycelium white, sparse, fluffy, with irregular margin and visible conidiomata at maturity.

Additional material examined: China: Jiangxi Province: on diseased leaves of Elaeagnus glabra, 5 Sep. 2013, Y.H. Gao, culture LC 4806.

Diaporthe helianthi Munt.-Cvetk. et al., Nova Hedwigia 34: 433 (1981).

(Fig. 5)

Description: Sexual morph not produced. Conidiomata pycnidial globose to subglobose, dark brownish to black, erumpent or immersed in medium, translucent conidia exuded from the ostioles, 110–380 µm diam. Conidiophores cylindrical, straight or sinuous, apical or base sometimes swelling, 11.5–23.5 × 1.8–3.5 µm (X = 16 ± 3 × 2.5 ± 0.5, n = 30). Beta conidia filiform, hamate or slightly curved, base truncate, tapering towards one apex, 11.5–32 × 0.5–2 µm (X = 20 ± 7.5 × 1 ± 0.4, n = 20). Alpha conidia not observed.

Culture characters: Cultures on PDA at 25 °C in dark, with 12/12 h alternation between daylight and darkness pure white (surface) and pale yellow to cream (reverse). Colony pellicular, forming less pigmented sectors, with concentric rings of gummy mycelium. Growth rate was 10.5 mm diam/d.

Material examined: Ukraine: from seeds of Helianthus annuus, 30 Oct. 2015, W.J. Duan culture LC 6173. – Japan: Lagerstroemia indica, 30 Oct. 2015, W.J. Duan, culture LC 6185.

Notes: Diaporthe helianthi, responsible for stem canker and grey spot disease of sunflower (Helianthus annuus) (Mutanola-Cvetkovic et al. 1981), has been listed in the Chinese quarantine directory. There is increasing evidence that this serious sunflower pathogen is being quickly and globally disseminated with international trade. The cases reported here were intercepted from imported sunflower seeds from Ukraine and Lagerstroemia indica from Japan.
Diaporthe is paraphyletic

Diaporthe incompleta Y.H. Gao & L. Cai, sp. nov.
MycoBank MB820681
(Fig. 6)

Etymology: Named after the absence of alpha conidia.

Diagnosis: *Diaporthe incompleta* is phylogenetically distinct and differs morphologically from other species recorded from *Elaeagnus* and *Camellia* in the much longer beta conidia (Table 3).

Type: China: Yunnan Province: Xishuangbanna, on diseased of *Elaeagnus glabra*, 19 Apr. 2015, F. Liu (HMAS 247088 – holotype, dried culture; CGMCC 3.18288 = LC 6754 – ex-type culture).

Description: Conidiomata pycnidial, subglobose to globose, brownish to black, 207–650 µm diam, cream to pale luteous conidial droplets exuding from the central ostioles. *Conidiophores* 8–22 × 1–2.5 µm, cylindrical, hyaline, septate, unbranched, smooth, slightly curved, tapering towards apex. *Alpha conidia* not observed. *Beta conidia* 19–44 × 0.5–1.5 µm (X = 30.5 ± 8.7 × 1.1 ± 0.4, n = 30), smooth, hyaline, filiform, base subtruncate, straight or curved.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 16.5 mm diam/d. Colony entirely white, flat, reverse pale yellowish, becoming brownish zoned at the centre with age. Aerial mycelium white, cottony, margin lobe, conidiomata visible at maturity.

Additional material examined: China: Yunnan Province: Xishuangbanna, on diseased leaves of *Camellia sinensis*, 19 Apr. 2015, F. Liu, culture LC 6706.
Diaporthe incompleta (CGMCC 3.18288). A. Leaves of host plant; B–C. 7-d-old culture; D. Conidiomata; E–F. Conidiophores; G. Beta conidia. Bars: D = 100 µm; E–G = 10 µm.

Diaporthe podocarpi-macrophylli Y.H. Gao & L. Cai, sp. nov.
MycoBank MB820682
(Fig. 7)

Etymology: Named after the host plant *Podocarpus macrophyllus*.

Diagnosis: *Diaporthe podocarpi-macrophylli* can be distinguished from the phylogenetically closely related species *D. pseudophoenicicola* (97 % identity in ITS, 90 % in TEF1, 98 % in TUB, 97 % in HIS, and 97 % in CAL). Morphologically, *D. podocarpi-macrophylli* differs from other species occurring on the host genera *Podocarpus* and *Olea*, i.e. *D. cinerascens* and *Phomopsis podocarpi* in its wider and shorter alpha co-
Diaporthe is paraphyletic

nidia and the presence of beta conidia (Chang et al. 2005, Gomes et al. 2013; https://nt.ars-grin.gov/fungaldatabases/).

Type: **Japan**: on healthy leaves of *Podocarpus macrophyllus*, 20 Sep. 2014, W.J. Duan (HMAS 247084 – holotype, dried culture; CGMCC 3.18281 = LC 6155 – ex-type culture).

Description: Conidiomata pycnidial in culture on PDA, solitary or aggregated, deeply embedded in the PDA, erumpent, dark brown to black, 222–699 µm diam, yellowish translucent conidial drops exuding from the ostioles. **Alpha conidiophores** 6–18 × 1.5–3 µm (\(\bar{x} = 12.3 \pm 2.6 \times 2.1 \pm 0.3, n = 30\)), hyaline, septate, branched, cylindrical, straight to sinuous, sometimes inflated, occurring in dense clusters. **Beta conidiophores** 10.5–27 × 1.5–2.5 µm (\(\bar{x} = 15.3 \pm 4.3 \times 2.1 \pm 0.3, n = 30\)), cylindrical to clavate, hyaline, septate, branched, smooth, straight. **Alpha conidia** 3.5–8.5 × 1–3 µm (\(\bar{x} = 6.3 \pm 1.7 \times 2.1 \pm 0.7, n = 50\)), unicellular, aseptate, fusiform, hyaline, usually biguttulate and acute at both ends. **Beta conidia** 8.5–31.5 × 0.5–2 µm (\(\bar{x} = 19.5 \pm 7.1 \times 1.1 \pm 0.4, n = 30\)), hyaline, aseptate, eguttulate, filiform, curved, tapering towards both ends, base truncate.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 12.5 mm diam/d. Colony at first white, becoming cream to yellowish, flat, with dense and felted mycelium, reverse pale brown with brownish dots with age, with visible solitary or aggregated conidiomata at maturity.

Fig. 7. Diaporthe podocarpi-macrophylli (CGMCC 3.18281). A–B. 30-d-old culture on PDA; C. Conidiomata; D–F. Conidiophores; G–I. Alpha and beta conidia. Bars: C = 100 µm; D–I = 10 µm.
Diaporthe undulata Y.H. Gao & L. Cai, **sp. nov.**
MycoBank MB820683

Fig. 8. Diaporthe undulata (CGMCC 3.18293). **A.** Leaves of host plant; **B–C.** 30-d-old culture on PNA medium; **D.** Conidiomata; **E.** Conidiophores; **F–G.** Alpha conidia. Bars: **D =** 100 µm; **E–G =** 10 µm.

Additional material examined: **Japan:** on healthy leaves of *Podocarpus macrophyllus*, 20 Sep. 2014, W.J. Duan, culture LC 6141; *ibid.* culture LC 6144; *ibid.* culture LC 6156; *ibid.* culture LC 6157. – **China:** Zhejiang Province: on healthy leaves of *P. macrophyllus*, 10 Jul. 2015, W.J. Duan, culture LC 6194; *ibid.* culture LC 6195; *ibid.* culture LC 6196; *ibid.* culture LC 6197; *ibid.* culture LC 6198; *ibid.* culture LC 6199; *ibid.* culture LC 6200; *ibid.* culture LC 6201; *ibid.* culture LC 6202; *ibid.* culture LC 6235. – **Italy:** on healthy leaves of *Olea europaea*, 20 Sep. 2014, W.J. Duan, culture LC 6229.

Diaporthe undulata Y.H. Gao & L. Cai, **sp. nov.**
MycoBank MB820683

Etymology: Named after the colony’s undulate margin.

Diagnosis: *Diaporthe undulata* differs from the most closely related species, *D. biconispora*, in several loci (94 % in ITS, 84 % in *TEF1*, and 93 % in *TUB*), and from other *Diaporthe* species in the obpyriform conidiophores and shorter and wider alpha conidia (Table 3).

Type: **China-Laos border:** on diseased leaves of unknown host, 19 Apr. 2014, F. Liu (HMAS 247091 – holotype, dried culture; CGMCC 3.18293 = LC 6624 – ex-type culture).

Description: Conidiomata pycnidial, irregular, embedded in the needle, erumpent, necks, hairy, 282–543 µm long, coated with short hyphae, one to several necks forming from a single pycnidium. Conidiophores obpyriform, hyaline, phialidic, septate, branched, 5–17.5 × 2–3 µm (\(T = 9.7 \pm 4.0 \times 2.4 \pm 0.5, n = 20\)). Alpha conidia ellipsoid, hyaline, biguttulate, rounded at both ends, 5–6.5 × 2–3 (\(T = 5.8 \pm 0.4 \times 2.3 \pm 0.3, n = 50\)). Beta conidia not observed.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 10.5 mm diam/d. Colony entirely white, reverse pale yellowish and dark brownish at the centre with age. Aerial mycelium white, cottony, dense, with undulate margin and visible conidiomata at maturity.

Additional material examined: **China-Laos border:** unknown host, 19 Apr. 2014, F. Liu, culture LC 8110; *ibid.* culture LC 8111.

Diaporthe velutina Y.H. Gao & L. Cai, **sp. nov.**
MycoBank MB820684

Fig. 9.

Etymology: Named after the felted colony.

Diagnosis: *Diaporthe velutina* is distinguished from *D. anacardii* in the ITS, *TEF1*, *TUB* and *HIS* loci (99 % in ITS, 95 % in *TEF1*, 99 % in *TUB*, and 98 % in *HIS*), and from
Diaporthe is paraphyletic

other Diaporthe species reported from Camellia sinensis in the more variable size of the alpha conidia (Table 3).

Type: China: Jiangxi Province: on diseased leaves of Neolitsea sp., 5 Sep. 2013, Y.H. Gao (HMAS 247087 – holotype, dried culture; CGMCC 3.18286 = LC 4421 – ex-type culture).

Description: Conidiomata pycnidial, globose, black, embedded in PDA, aggregated in clusters, 69–428 µm diam, cream translucent drop of conidia exuded from the central ostioles. Conidiophores 10–23 × 1–2.5 µm, cylindrical, hyaline, branched, densely aggregated, slightly tapering towards the apex, sometimes slightly curved. Alpha conidia 5.5–10 × 2–2.5 µm (X = 6.9 ± 0.9 × 2.2 ± 0.2, n = 50), unicellular, aseptate, hyaline, fusoid to ellipsoid or clavate, bi-guttulate or multi-guttulate. Beta conidia 11–27.5 × 0.5–1.5 µm (X = 16.1 ± 5.0 × 0.8 ± 0.4, n = 30), smooth, hyaline, apex acutely rounded, curved.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 18.75 mm diam/d. Colony entirely white, surface mycelium greyish to brownish at the centre, dense, felted, conidiomata erumpent at maturity, reverse centre yellowish to brownish.

Additional material examined: China: Jiangxi Province: Yangling, on diseased leaves of Neolitsea sp., 5 Sep. 2013, Y.H. Gao, culture LC 4419; ibid. culture LC 4422; Gannan Normal University, unknown host, 23 Apr. 2013, Q. Chen, culture LC 4788; Fengshan, on diseased leaves of Callerya cinea, 5 Sep. 2013, Y.H. Gao, culture LC 4641. Yunnan Province: Xishuangbanna, on diseased leaves of Camellia sinensis, 19 Apr. 2015, F. Liu, culture LC 6708; loc. cit., on healthy leaves of C. sinensis, 21 Apr. 2015, F. Liu, culture LC 6519.

Diaporthe xishuangbanica Y.H. Gao & L. Cai, sp. nov.

MycoBank MB820685
(Fig. 10)

Etymology: Named after the locality, Xishuangbanna.

Diagnosis: Diaporthe xishuangbanica can be distinguished from the phylogenetically closely related *D. tectonigena* in several loci (98 % in ITS, 90 % in TEF1, and 96 % in TUB)
Diaporthe yunnanensis Y.H. Gao & L. Cai, sp. nov.
MycoBank MB820686
(Fig. 11)

Etymology: Named after the location where the fungus was collected, Yunnan Province.

Diagnosis: Diaporthe yunnanensis can be distinguished from the phylogenetically closely related D. siamensis (96 % in ITS, 91 % in TEF1, and 94 % in TUB) (Fig. 2), and from other Diaporthe species reported on the genus Camellia in the smaller alpha conidia (Table 3).

Type: China: Yunnan Province: Xishuangbanna, on healthy leaves of Coffea sp., 20 Sep. 2014, W.J. Duan (HMAS 247096 – holotype, dried culture; CGMCC 3.18289 = LC 6168 – ex-type culture).

Description: Conidiomata pycnidial, 195–880 µm diam, globose or irregular, erumpent, solitary or aggregated together, dark brown to black. Conidia exuding from the pycnidia in white to cream drops. Conidiophores cylindrical, straight or slightly curved. Alpha conidia 3–6.5 × 1–2.5 µm (\(\bar{x} = 5.5 \pm 1 \times 2 \pm 0.5, n = 30\)), fusiform, hyaline, biguttulate, with one end obtuse and the other acute. Beta conidia 13.5–33.5 × 1–1.5 µm (\(\bar{x} = 27.5 \pm 5.5 \times 1.5 \pm 0.3, n = 30\)), hyaline,

Additional material examined: China: Yunnan Province: Xishuangbanna, on diseased leaves of Camellia sinensis, 19 Apr. 2015, F. Liu, culture LC 6707 (CGMCC 3.18282).
Diaporthe is paraphyletic

Culture characters: Colonies on PDA flat, with a moderate growth rate of 5.5 mm diam/d, with abundant dirty white and yellowish pigmented mycelium, dry, felted, extensive thin, and in reverse the centre cream, with zone rings of pale to dark brownish pigmentation.

Additional material examined: China: Yunnan Province: Xishuangbanna, on healthy leaves of Coffea sp., 20 Sep. 2014, W.J. Duan, culture LC 8106; ibid. culture LC 8107.

Diaporthe sp. 1
(Fig. 12)

Description: Conidiomata pycnidial, subglobose to globose, dark brown to black, deeply embedded in the substrate, scattered on the substrate surface, embedded in PDA, clusters in group of 2–7 pycnidia, 268–509 µm, yellowish drop of conidia diffusing from the central ostioles. Conidiophores 6.5–19.5 × 1–3 µm, cylindrical, hyaline, septate, branched, straight to sinuous, base inflated, slightly tapering towards the apex. Alpha conidia 7.5–13.5 × 2–3.5 µm (\(\bar{X} = 9.9 \pm 1.4 \times 2.8 \pm 0.4, n = 30 \)), unicellular, hyaline, fusoid to ellipsoid or clavate, two or several large guttulae observed, base subtruncate. Beta conidia 15–40.5 × 1–2.5 µm (\(\bar{X} = 26.0 \pm 5.8 \times 1.8 \pm 0.5, n = 30 \)), smooth, hyaline, curved, base subtruncate, tapering towards one apex.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 7.83 mm diam/day. Colony entire, white to dirty pink, cottony, sparse, brownish to black conidiomata erumpent at maturity, coated with white hypha, granular at margin, reverse pale brown, with brownish dots when maturity.

Material examined: China: Zhejiang Province: Gutianshan Nature Reserve (29°20´ N 118°14´ E), on leaves of Alnus mill, Jan. 2010, Y.Y. Su (culture CGMCC 3.18292 = LC 0771).

Notes: The present culture belongs to the Diaporthe eres complex, which is reported from a very wide range of host plants and includes mostly opportunistic pathogens or secondary invaders on saprobic host substrata (Udayanga et al. 2014a, Gao et al. 2016). Species delimitation in this complex is currently unclear. Udayanga et al. (2015) accepted nine phylogenetic species in the D. eres complex, including D. alleghaniensis, D. alnea, D. bicincta, D. celastrina, D. eres, D. helicis, D. neilliae, D. pulla, and D. vaccinia. Gao et al. (2016) examined 17 isolates belonging to the D. eres 7-d-old culture on PDA; C. Conidiomata; D. Conidiophores; E. Alpha and beta conidia; F. Beta conidia. Bars: C = 100 µm; D–F = 10 µm.

Fig. 11. Diaporthe yunnanensis (fCGMCC 3.18289). A–B. 7-d-old culture on PDA; C. Conidiomata; D. Conidiophores; E. Alpha and beta conidia; F. Beta conidia. Bars: C = 100 µm; D–F = 10 µm.
complex, and reported that many presented intermediate morphology among “species” and the phylogenetic analyses often resulted in ambiguous clades with short branch and moderate statistical support. The identification of taxa in this group remains unresolved.
Diaporthe is paraphyletic

Diaporthe sp. 2

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate, slow, 3.83 mm diam/d. Colony low, convex, entire white to yellowish, reverse brownish. Aerial mycelia white, dry, downy, with near-circular margin.

Material examined: **Japan:** on leaves of *Acer* sp., 20 Sep. 2014, W.J. Duan, culture CGMCC 3.18291 = LC 8112; *culture LC 8113.*

Notes: Although three isolates clustered in a clade distinctly different from known species in the genus included, they are not formally described because they were sterile. *Diaporthe* sp. 2 shares a low homology to the most closely related species, *D. rhoina* (95% in ITS, 87% in TEF1, 97% in TUB, 94% in HIS, and 95% in CAL). Five *Diaporthe* species are so far only known from the sterile state, including *D. endophytica, D. inconspicuca, D. infecunda, D. asheiica, and D. steriliis* (Gomes et al. 2013, Lombard et al. 2014).

Diaporthe averrhoae (C.Q. Chang et al.) Y.H. Gao & L. Cai, **comb. nov.**

MycoBank MB821437

Basionym: Phomopsis averrhoae C.Q. Chang et al., *Mycosistema* 24: 6 (2005).

Type **China:** Fujian Province: on living branches of Averrhoa carambola, Y.H. Cheng (SCHM 3605 – holotype; AY618930, ITS sequence derived from the holotype SCHM 3605).

Diaporthe camptothecae (C.Q. Chang et al.) Y.H. Gao & L. Cai, **comb. nov.**

MycoBank MB821438

Basionym: Phomopsis camptothecae C.Q. Chang et al., *Mycosistema* 24: 145 (2005).

Type **China:** Hunan Province: on living branches of Campotheca acuminate, L.J. Luo (SCHM 3611 – holotype; AY622996, ITS sequence derived from the holotype SCHM 3611).

Diaporthe chimonanthi (C.Q. Chang et al.) Y.H. Gao & L. Cai, **comb. nov.**

MycoBank MB821439

Basionym: Phomopsis chimonanthi C.Q. Chang et al., *Mycosistema* 24: 146 (2005).

Type **China:** Hunan Province: on living branches of Chimonanthus praecox, C.Q. Chang (SCHM 3614 – holotype; AY622993, ITS sequence derived from the holotype SCHM 3614).

Diaporthe eucommiae (F.X. Cao et al.) Y.H. Gao & L. Cai, **comb. nov.**

MycoBank MB821440

Basionym: Phomopsis eucommiae F.X. Cao et al., *J. Middle-South China Forestry Coll.* 10: 34 (1990); as ‘eucommi’.

Type **China:** Guangdong Province: from leaves of Eucommia ulmoides, F.X. Cao (SCHM 0020 – holotype; AY601921, ITS sequence derived from the holotype SCHM 0020).

Diaporthe eucommiiicola (C.Q. Chang et al.) Y.H. Gao & L. Cai, **comb. nov.**

MycoBank MB821441

Basionym: Phomopsis eucommiiicola C.Q. Chang et al., *Mycosistema* 24: 147 (2005).

Type **China:** Hunan Province: on living branches of Eucommia ulmoides and Styrax hypoglauca, L.J. Luo (SCHM 3607 – holotype; AY578071, ITS sequence derived from the holotype SCHM 3607).

Diaporthe glabae (C.Q. Chang et al.) Y.H. Gao & L. Cai, **comb. nov.**

MycoBank MB821443

Basionym: Phomopsis glabae C.Q. Chang et al., *Mycosistema* 24: 8 (2005).

Type **China:** Fujian Province: on living branches of Bougainvillea glabra, Y.H. Cheng (SCHM 3622 – holotype; AY601918, ITS sequence derived from the holotype SCHM 3622).

Diaporthe lagerstroemiae (C.Q. Chang et al.) Y.H. Gao & L. Cai, **comb. nov.**

MycoBank MB821444

Basionym: Phomopsis lagerstroemiae C.Q. Chang et al., *Mycosistema* 24: 148 (2005).

Type **China:** Hunan Province: on living branches of Lagerstroemia indica, C.Q. Chang (SCHM 3608 – holotype; AY622994, ITS sequence derived from the holotype SCHM 3608).

Diaporthe liquidambaris (C.Q. Chang et al.) Y.H. Gao & L. Cai, **comb. nov.**

MycoBank MB821446

Basionym: Phomopsis liquidambaris C.Q. Chang et al., *Mycosistema* 24: 9 (2005).

Type **China:** Fujian Province: on living branches of Liquidambar formosana, Y.H. Cheng (SCHM 3621 – holotype; AY601919, ITS sequence derived from the holotype SCHM 3621).

Diaporthe loropetali (C.Q. Chang et al.) Y.H. Gao & L. Cai, **comb. nov.**

MycoBank MB821448

Basionym: Phomopsis loropetali C.Q. Chang et al., *Mycosistema* 24: 148 (2005).

Type **China:** Hunan Province: on living branches of Loropetaleum chinense, C.Q. Chang (SCHM 3615 – holotype; AY601917, ITS sequence derived from the holotype SCHM 3615).

Diaporthe magnoliicola Y.H. Gao & L. Cai, **nom. nov.**

MycoBank MB821459

Replaced name: Phomopsis magnoliae M.M. Xiang et al., *Mycosistema* 21: 501 (2002).
Type: China: Guangdong Province: on leaves of Magnolia coco, Z.D. Jiang (SCHM 3001 – holotype; AY622995, ITS sequence derived from the holotype SCHM 3001).

Note: The epithet magnoliae is occupied, so Diaporthe magnolicola is proposed as a replacement name.

Diaporthe michelina (C.Q. Chang et al.) Y.H. Gao & L. Cai, **comb. nov.**
MycoBank MB821460
Basionym: Phomopsis michelina C.Q. Chang et al., Mycosistema 24: 9 (2005); as ‘micheliana’.

Type: China: Fujian Province: on living branches of Michelia alba, Y.H. Cheng (SCHM 3603 – holotype; AY620820, ITS sequence derived from the holotype SCHM 3603).

Diaporthe phyllanthicola (C.Q. Chang et al.) Y.H. Gao & L. Cai, **comb. nov.**
MycoBank MB821461
Basionym: Phomopsis phyllanthicola C.Q. Chang et al., Mycosistema 24: 10 (2005).

Type: China: Fujian Province: on living branches of Phyllanthus emblica, Y.H. Cheng (SCHM 3680 – holotype; AY620819, ITS sequence derived from the holotype SCHM 3680).

DISCUSSION

In this study, eight new species of *Diaporthe* are introduced, having been isolated from various plant hosts collected in different countries. Twelve *Phomopsis* species described from China were subjected to molecular analysis, and transferred to *Diaporthe* to conform to the “one fungus one name” rule (Udayanga et al. 2011, Rossman et al. 2016). To address the taxonomy of the other *Phomopsis* species described from China, neo- or epitypes will need to be designated to resolve their position and confirm their placement in *Diaporthe*.

Previous taxonomic studies in *Diaporthe* (syn. *Phomopsis*) have been primarily based on morphology, which has been shown to be unnatural in reflecting evolutionary history due to the simple and plastic morphological characters (Gao et al. 2015). The same applies to many other genera of ascomycetes. For example, species referred to *Phoma* have been shown to be highly polyphyletic and scattered throughout at least six families within *Pleosporales* (Aveskamp et al. 2010, Chen et al. 2015). Although *Diaporthe* was previously thought to be monophyletic based on its typical and unique *Phomopsis* asexual morph and diaporthalean sexual morph (Gomes et al. 2013), a paraphyletic nature is revealed in the present study (Fig. 1). Several genera, notably *Ophidiaparthe* (Fu et al. 2013), *Pustulomyces* (Dai et al. 2014), *Phaeocytostroma*, and *Stenocarpella* (Lamprecht et al. 2011), are shown to be embedded in *Diaporthe s. lat.*, none of which present an independent lineage from *Diaporthe* as currently circumscribed (Fig. 1). These genera were established based on their morphological characteristics (Vasilyeva et al. 2007, Lamprecht et al. 2011, Fu et al. 2013, Dai et al. 2014). For example, *Ophidiaparthe* produces only one type of globose or subglobose conidia that differs from the dimorphic (fusiform and filiform) conidia of *Diaporthe* (Fu et al. 2013); *Phaeocytostroma* and *Stenocarpella* produce pigmented alpha conidia which differ from the hyaline conidia of *Diaporthe* (Lamprecht et al. 2011); *Pustulomyces* produces larger, straight or sigmoid conidia (Dai et al. 2014). *Phaeocytostroma* and *Stenocarpella* were originally suspected to be members of *Botryosphaeriaceae* (*Botryosphaeriales*) because of their pigmented alpha conidia and diploidea-like morphology (Crous et al. 2006). However, they were subsequently allocated to *Diaporthales* based on phylogenetic analysis (Lamprecht et al. 2011), which is confirmed in this study.

The large “*Diaporthe*” clade embedded with the heterogeneous genera *Ophidiaparthe*, *Pustulomyces*, *Phaeocytostroma*, and *Stenocarpella* is probably a typical example of divergent evolution in morphological characters. Such an evolution could have been driven by host and/or environmental adaptations. For example, the monotypic *Ophidiaparthe* is associated with *Cytisus lepidula* (a fern), while *Pustulomyces* is bambusicolous (Dai et al. 2014). On the contrary, none of the previously named over 1900 *Diaporthe / Phomopsis* species was recorded from a fern or *Bambusaceae* (https://nt.ars-grin.gov/fungaldatabases/). It is therefore reasonable to speculate that the speciation of *Ophidiaparthe* and *Pustulomyces*, as well as the distinctly different morphologies from their close *Diaporthe* allies, are the consequences of evolutionary adaption to new hosts. Similarly, *Phaeocytostroma* and *Stenocarpella* are mainly restricted to maize (*Zea mays*), causing root stalk and cob rot (Stovold et al. 1996, Lamprecht et al. 2011).

Splitting *Diaporthe* into many smaller genera would achieve monophyletic groupings, but would also create many additional problems. The “new genera” split from *Diaporthe* would have no recognisable morphological distinctions in either sexual or asexual morphs. In addition, splitting *Diaporthe* into many smaller genera will result in numerous name changes, which is certainly an unfavourable option for both mycologists and plant pathologists.

Diaporthe has long been well-known to include plant pathogens, some on economically important hosts, such as *Helianthus annuus* (sunflower; Thompson et al. 2011) and *Glycine max* (soybean; Santos et al. 2011). However, the number of known endophytic *Diaporthe* species has increased rapidly in recent years (Huang et al. 2015, Gao et al. 2016). Wang et al. (2013) concluded that our current knowledge of the ecology and biology of endophytic *Diaporthe* species is just the “tip of the iceberg”. In 2013, a new sterile endophytic species, *Diaporthe endophytica*, was formally named (Gomes et al. 2013). The research on *Citrus* conducted by Huang et al. (2015) recorded seven apparently undescribed endophytic *Diaporthe* species. Inspection of *Diaporthe* species on *Camellia sinensis* resulted in the description of four new and five known species, all occurring as endophytes (Gao et al. 2016). Because many of these plant pathogenic *Diaporthe* species are commonly encountered as sterile endophytes, a multigene DNA database will be essential to aid in their future identification.

Accurate identification of fungal pathogens is the basis of quarantine and disease control (Udayanga et al. 2011).
Thompson et al. (2011) reported significant damage to sunflower in Australia caused by Diaporthe helianthi which was originally only known from Europe (former Yugoslavia), and is apparently an invasive species in Australia. Diaporthe helianthi is listed in the Chinese quarantine directory, and has long been considered a predominant disease limiting production in Europe (Desanlis et al. 2013). Duan et al. (2016) reported this pathogen on sunflower seeds imported from Ukraine into China. Here, we report another interception of D. helianthi from Lagerstroemia indica imported from Japan to China. This serves as additional evidence of how quickly serious pathogens such as Diaporthe can be distributed as endophytes or latent pathogens with global trade.

ACKNOWLEDGEMENTS

We thank all the members in LC’s lab for help and assistance. This work was supported by grants from the National Natural Science Foundation of China (NSFC 31110103906), and the Ministry of Science and Technology, China (MOST 2014FY120100).

REFERENCES

Annesi T, Luongo L, Vitale S, Galli M, Belisario A (2015) Characterization and pathogenicity of Phomopsis theicola anamorph of Diaporthe foeniculina causing stem and shoot cankers on sweet chestnut in Italy. Journal of Phytopathology 164: 412–416.

Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Studies in Mycology 65: 1–60.

Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556.

Castlebury LA, Rossman AY, Jaklitsch WJ, Vasilyeva L (2002) A new species of Diaporthe from Lagerstroemia indica imported from Japan to China. Studies in Mycology 49: 1017–1031.

Chang CQ, Cheng YH, Xiang MM, Jiang ZD (2005) New species of Phomopsis on woody plants in Fujian Province. Mycosistema 24: 6–11.

Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW (2015) Resolving the Diaporthaceae, Diaporthales, as revealed by morphology and molecular analyses. Cryptogamie, Mycologie 35: 63–72.

Dai DQ, Wijayawardene NN, Bhat DJ, Chukeatirote E, Bahkali AH, et al. (2014) Pustulomyces gen. nov. accommodated in Diaporthaceae, Diaporthales, as revealed by morphology and molecular analyses. Cryptogamie, Mycologie 35: 63–72.

Dissanayake AJ, Liu M, Zhang W, Chen Z, Udayanga D, et al. (2015) Morphological and molecular characterisation of Diaporthaceae species associated with grapevine trunk disease in China. Fungal Biology 119: 283–294.

Dooi M, Dissanayake AJ, Wanasinghe DN, Boonmee S, Liu JK, et al. (2017) Microfungi on Tectona grandis (teak) in northern Thailand. Fungal Diversity 82: 107–182.

Du Z, Fan XL, Hyde KD, Yang Q, Liang YM, et al. (2016). Phylotyping and morphology reveal two new species of Diaporthe from Betula spp. in China. Phytotaxa 269: 90–102.

Duan WJ, Duan LJ, Chen XF, Cai L (2016) Identification of the quarantine fungus Diaporthe helianthi from the corn seeds imported from Ukraine. Mycosistema 35: 1503–1513.

Fan XL, Hyde KD, Udayanga D, Wu XY, Tian CM (2015) Diaporthaceae rostrata, a novel ascomycete from Juglans mandshurica associated with walnut dieback. Mycological Progress 14: 82.

Fan XL, Tian CM, Qin Y, Liang YM, You CJ, et al. (2014) Cytospora from Salix in northern China. Mycotaxon 129: 303–315.

Fu CH, Hsieh HM, Chen CY, Chang TT, Huang YM, et al. (2013) Ophiodiaporthe cyathae gen. et sp. nov., a diaporthalean pathogen causing a devastating wilt disease of Cyathula lepifera in Taiwan. Mycologia 105: 861–872.

Gao YH, Sun W, Su YY, Cai L (2014) Three new species of Phomopsis in Gunisan nature reserve in China. Mycological Progress 13: 111–121.

Gao YH, Su YY, Sun W, Cai L (2015) Diaporthe species occurring on Lithocarpus glabra in China, with descriptions of five new species. Fungal Biology 119: 295–309.

Gao YH, Liu F, Cai L (2016) Unravelling Diaporthe species associated with Camellia. Systematics and Biodiversity 14: 102–117.

Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330.

Gomes R, Glienke C, Videira S, Lombard L, Groenewald J, et al. (2013) Diaporthaceae: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31: 1–41.

Grasso FM, Marini M, Vitale A, Frraro G, Granata G (2012) Canker and dieback on Platanus acerifolia caused by Diaprhothe scabra. Forest Pathology 42: 510–513.

Guarnaccia V, Vitale A, Civillieri G, Aiello D, Usca A, et al. (2016) Characterisation and pathogenicity of fungal species associated with branch cankers and stem-end rot of avocado in Italy. European Journal of Plant Pathology 146: 963–976.
Huang F, Udayanga D, Wang X, Hou X, Mei X, et al. (2015) Endophytic Diaporthe associated with Citrus: A phylogenetic reassessment with seven new species from China. Fungal Biology 119: 331–347.

Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26: 1899–1900.

Lampretch SC, Crous PW, Groenewald JZ, Tewoldemedhin YT, Marasas WF (2011) Diaportheae associated with root and crown rot of maize. IMA Fungus 2: 13–24.

Diedicke H (1911) Die Gattung Phomopsis. Annales Mycologici 9: 8–35.

Liu F, Wang M, Damm U, Crous PW, Cai L (2016) Species boundaries in plant pathogenic fungi: a Colletotrichum case study. BMC Evolutionary Biology 16: 81.

Liu F, Weir BS, Damm U, Crous PW, Wang Y, et al. (2015) Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia 35: 63–86.

Lombard L, Van Leeuwen GCM, Guarnaccia V, Polizzi G, Van Rijswick PC, et al. (2014) Diaporthe species associated with Vaccinium, with specific reference to Europe. Phytopathologia Mediterranea 53: 287–299.

Machingambi NM, Dreyer LL, Oberlander KC, Roux J, Roets F (2015) Death of endemic Virgilia oroboides trees in South Africa caused by Diaporthe virgiliae sp. nov. Plant Pathology 64: 1149–1156.

Masirevic S, Gulya T (1992) Sclerotinia and Phomopsis Ménard L, Brandeis PE, Simoneau P, Poupard P, Sérandat I, Dreyer LL, Oberlander KC, Roux J, Roets F (2015) Masirevic S, Gulya T (1992) Sclerotinia and Phomopsis

Lamprecht SC, Crous PW, Groenewald JZ, Tewoldemedhin YT, Marasas WF (2011) Diaportheae associated with root and crown rot of maize. IMA Fungus 2: 13–24.

Diedicke H (1911) Die Gattung Phomopsis. Annales Mycologici 9: 8–35.

Liu F, Wang M, Damm U, Crous PW, Cai L (2016) Species boundaries in plant pathogenic fungi: a Colletotrichum case study. BMC Evolutionary Biology 16: 81.

Liu F, Weir BS, Damm U, Crous PW, Wang Y, et al. (2015) Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia 35: 63–86.

Lombard L, Van Leeuwen GCM, Guarnaccia V, Polizzi G, Van Rijswick PC, et al. (2014) Diaporthe species associated with Vaccinium, with specific reference to Europe. Phytopathologia Mediterranea 53: 287–299.

Machingambi NM, Dreyer LL, Oberlander KC, Roux J, Roets F (2015) Death of endemic Virgilia oroboides trees in South Africa caused by Diaporthe virgiliae sp. nov. Plant Pathology 64: 1149–1156.

Masirevic S, Gulya T (1992) Sclerotinia and Phomopsis — two devastating sunflower pathogens. Field Crops Research 30: 271–300.

Ménard L, Brandeis PE, Simoneau P, Poupad P, Sérandat I, et al. (2014) First report of umbel browning and stem necrosis caused by Diaporthe angelicae in Canada. Mycological Research 118: 306–308.

Su YY, Qi YL, Cai L (2012) Induction of sporulation in plant pathogenic fungi. Mycologia 104: 22–30.

Su YY, Qi YL, Cai L (2012) Induction of sporulation in plant pathogenic fungi. Mycologia 104: 22–30.

Tan Y, Edwards J, Grice K, Shivas R (2013) Molecular phylogenetic analysis reveals six new species of Diaporthe from Australia. Fungal Diversity 61: 251–260.

Thompson S, Tan Y, Young A, Neate S, Aitken E, et al. (2011) Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species. Persoonia 27: 80–89.

Thompson S, Tan Y, Shivas R, Neate S, Morin L, et al. (2015) Green and brown bridges between weeds and crops reveal novel Diaporthe species in Australia. Persoonia 35: 39–49.

Torres C, Camps R, Aguirre R, Besoaín X (2015) First report of Diaporthe rudis in Chile causing Stem-End rot on ‘Hass’ avocado fruit imported from California, USA. Plant Disease 100: 1951.

Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2014a) Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eurasiensis species complex. Fungal Diversity 67: 203–229.

Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2015) The Diaporthe sojae species complex: phylogenetic re-assessment of pathogen associated with soybean, cucurbits and other field crops. Fungal Biology 119: 383–407.

Udayanga D, Castlebury LA, Rossman AY, Hyde KD (2014b) Species limits in Diaporthe: molecular re-assessment of D. citri, D. cytopsoredina, D. foeniculacea and D. rudis. Persoonia 32: 83–101.

Udayanga D, Liu X, McKenzie EHC, Chukeatirote E, Bahkali AHA, et al. (2011) The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Diversity 50: 189–225.
Diaporthe is paraphyletic

Udayanga D, Liu X, Mckenzie EHC, Chukeatirote E, Hyde KD (2012) Multi-locus phylogeny reveals three new species of Diaporthe from Thailand. Cryptogamie, Mycologie 33: 295–309.

Uecker FA (1988) A World list of Phomopsis names with notes on nomenclature, morphology and biology. Mycological Memoir 13:1–231.

Úrbez-Torres JR, Peduto F, Smith RJ, Gubler WD (2013) Phomopsis dieback: a grapevine trunk disease caused by Phomopsis viticola in California. Plant Disease 97: 1571–1579.

Van Niekerk JM, Groenewald JZ, Farr DF, Fourie PH, Halleen F, et al. (2005) Reassessment of Phomopsis species on grapevines. Australasian Plant Pathology 34: 27–39.

Van Rensburg JCJ, Lamprecht SC, Groenewald JZ, Castlebury LA, Crous PW (2006) Characterisation of Phomopsis spp. associated with die-back of rooibos (Aspalathus linearis) in South Africa. Studies in Mycology 55: 65–74.

Vasilyeva LN, Rossman, AY, Farr DF (2007) New species of the Diaporthales from eastern Asia and eastern North America. Mycologia 99: 916–923.

Wang J, Xu X, Mao L, Lao J, Lin F, et al. (2013) Endophytic Diaporthe from southeast China are genetically diverse based on multi-locus phylogeny analyses. World Journal of Microbiology and Biotechnology 30: 237–243.

Wehmeyer LE (1926) A biologic and phylogenetic study of stromatic Sphaeriales. American Journal of Botany 13: 575–645.

Stovold GE, Newfield A, Priest MJ (1996) Root and stalk rot of maize caused by Phaeocytostroma ambiguum recorded for the first time in New South Wales. Australasian Plant Pathology 25: 50–54.

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to methods and applications. (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds): 315–322. San Diego: Academic Press.

Tanney JB, Mcmullin DR, Green BD, Miller JD, Seifert KA (2016) Production of antifungal and antiinsectan metabolites by Picea endophyte Diaporthe maritima sp. nov. Fungal Biology 120: 1448–1457.

Zhang K, Su YY, Cai L (2013) An optimized protocol of single spore isolation for fungi. Cryptogamie, Mycologie 34: 349–356.