On the Classicality of Broda’s SU(2) Invariants of 4-Manifolds

Louis Crane
Department of Mathematics
Kansas State University
Manhattan, KS 66506-2602

Louis H. Kauffman
Department of Mathematics, Statistics and Computer Science
University of Illinois at Chicago
Chicago, IL 60680

David N. Yetter
Department of Mathematics
Kansas State University
Manhattan, KS 66506-2602

Abstract: Recent work of Roberts [R] has shown that the surgical 4-manifold invariant of Broda [B1] and (up to an unspecified normalization factor) the state-sum 4-manifold invariant of Crane-Yetter [CY] are equivalent to the signature of the 4-manifold. Subsequently Broda [B2] defined another surgical invariant of 4-manifolds in which the 1- and 2- handles are treated differently. We use a refinement of Roberts’ techniques developed in [CKY] to identify the normalization factor to show that the “improved” surgical invariant of Broda [B2] also depends only on the signature and Euler character.

As a starting point, let us first observe that the construction of Crane-Yetter [CY] does not really depend on the use of labels chosen from the irreps of \(U_q(sl_2) \) at the principal \(r^\text{th} \) root of unity: the simple objects of any artinian semi-simple tortile category (cf. [S, Y]) in which all objects are self-dual and the fusion rules are multiplicity free will suffice. In particular, if we restrict to the integer spin (bosonic) irreps, we obtain a construction of a different invariant of 4-manifolds.

In what follows, we use Temperley-Lieb recoupling theory (cf. [KL,L,R]). In particular, arcs are labelled with elements of \(\{0, 1, \ldots, r-2\} \) (twice the spin), \(A = e^{2\pi i/4r}, q = A^2 \), \(\Delta(n) = (-1)^n \frac{2^{n+1} - q^n - q^{n-1}}{q-q^{-1}} \), \(\theta(a,b,c) \) denoted the evaluation of the theta-net with edge labelled \(a, b, \) and \(c \), and \(15j - j \) denotes the evaluation of the Temperley-Lieb version of the Crane-Yetter quantum 15j-symbol (with indices suppressed).

We then adopt the following further notational conventions:

Arcs labelled \(\omega \) denote the linear combination of arcs labelled \(0, 1, \ldots, r-2 \) in which the coefficient of \(i \) is \(\Delta(i) \). Arcs labelled \(\tilde{\omega} \) denote the linear combination of arcs labelled \(0, 2, \ldots, 2\lfloor \frac{r-2}{2} \rfloor \) (even integers) in which the coefficient of \(i \) is \(\Delta(i) \). \(N \) denotes the sum of the squares of the \(\Delta(i)'s \), \(\tilde{N} \) denotes the sum of the squares of the \(\Delta(i)'s \) for \(i \) even. Let \(\kappa \) be as in [KL,R], the evaluation of an \(\omega \) labelled 1-framed unknot divided by the positive square root of \(N \), and let \(\tilde{\kappa} \) be the evaluation of an \(\tilde{\omega} \) labelled 1-framed unknot divided by \(\tilde{N} \).

If \(L \) is a framed link, then \(\tilde{\omega}(L) \) denotes the evaluation of the link with all components labelled \(\tilde{\omega} \). If \(L \) is a set of 4-manifold surgery instructions (cf. Kirby [K]), that is a link \(L \) with a

1Supported by National Science Foundation grant #DMS-9106476
2Supported by National Science Foundation grant #DMS-9205277 and the Program for Mathematics and Molecular Biology of the University of California at Berkeley, Berkeley, CA
3This use of bosonic is a hideous abuse of language—everything in sight has braid statistics—the “bosons” of this paper are the result of q-deforming honest bosons.
distinguished 0-framed unlink \hat{L}, then $\mathcal{B}'(\mathcal{L})$ denotes the evaluation of the link L with all components of \hat{L} (one-handle attachments) colored ω and all other components of L (two-handle attachments) colored $\tilde{\omega}$.

We then have

Lemma 1 $\tilde{\omega}(L)$ is invariant under handle-sliding. $\mathcal{B}'\mathcal{L}$ is invariant under handle-sliding of 1- and 2-handles 1-handles and of 2-handles over 2-handles.

proof: This follows immediately from handle-sliding over components labelled ω and the analysis given in Remark 17 §12.6 of Kauffman/Lins [KL] once it is observed that pairs of bosons only couple to produce bosons. \square

And

Lemma 2 (The bosonic encirclement lemma)

\[
\sum_{j \text{ even}} \sum_{j} = 0
\]

whenever n is even and non-zero.

proof: This follows from the same proof as the encirclement lemma of Lickorish [L] (cf. also Kauffman/Lins [KL]) with the “auxiliary loop” labelled 2 instead of 1. \square

Let

\[
\text{CY}_B(W) = \tilde{N}^{-n_0-n_1} \sum \prod \Delta(\lambda(\sigma)) \prod \frac{\Delta(\lambda(\sigma))}{\theta(\lambda(\tau), \lambda(\tau_0), \lambda(\tau_2))\theta(\lambda(\tau), \lambda(\tau_1), \lambda(\tau_3))} \prod \text{4-simplexes}
\]

de the bosonic Crane-Yetter invariant.

Let $|L|$ (resp. $\nu(L)$, $\sigma(L)$) denote the number of components of a link L (resp. the nullity of the linking matrix of L, the signature of the linking matrix of L).

We can then define a purely bosonic version of Broda’s original invariant by

\[
BR_B(W) = \frac{\tilde{\omega}(L)}{N^{|L|+\sigma(L)}}
\]

where L is the underlying link of a surgery presentation of W; while a bosonic version of the Reshetikhin/Turaev [RT] 3-manifold invariant is given by

\[
I_B(M) = \tilde{\kappa}^{-\sigma(L)} \tilde{N}^{-1|L|+1} \tilde{\omega}(L)
\]

where L is a framed link giving surgery instructions for M.

Applying the two lemmas above in an analysis otherwise identical to that of given by Roberts [R] of the original Broda invariant [B1] shows that
Proposition 3

\[Br_B(W) = \tilde{\kappa}^{\sigma(W)} \]

Similarly it follows from the bosonic encirclement lemma that

\[CY_B(W) = \tilde{N}^{n_0-n_1-n_3} \bar{\omega}(L) \]

where \(n_d \) is the number of \(d \)-simplexes in a triangulation, and \(L \) is the link derived from a triangulation by putting a 0-framed unknot in each tetrahedron, and a loop around each 2-simplex (running mostly through 4-simplexes but linking each tetrahedron’s unknot) after the manner of Roberts [R].

It then follows as in [CKY] that

Proposition 4

\[CY_B(W) = \tilde{\kappa}^{\sigma(W)} N^{\chi(W)/2} \quad (*) \]

Now, Broda’s new invariant is defined by

\[B(W) = \frac{B^!(L)}{N^{n(L)-\nu(L)}} \]

For convenience we first analyse a slightly different normalization (for which the proof of invariance is effectively identical to that for \(B(W) \): let

\[B(W) = \frac{B^!(L)}{N^{n(L)-|L| |N|L|}} \]

Now, it follows from the original encirclement lemma of Lickorish [L] that

\[CY_B(W) = \tilde{N}^{n_0-n_1-n_3} B^!(L) \quad (**) \]

where \(L \) is the surgery instructions given by associating the link \(L \) to the triangulation as above, and letting \(\hat{L} \) be the unlink of loops in the tetrahedra.

Observe that \(B \) is multiplicative under connected sum, and that \(B(S^1 \times S^3) = \tilde{N} \) (an easy calculation). As shown in Roberts [R], \(L \) is a surgery presentation for \(W \# (\#^{n_4-1} S^1 \times S^3) \).

From this and the fact that for \(L \), \(|L - \hat{L}| = n_2 \) and \(|\hat{L}| = n_3 \), we see that

\[\frac{B^!(L)}{N^{n_2-n_3 N_n^3}} = B(W \# (\#^{n_4-1} S^1 \times S^3)) \]

\[= B(W) \tilde{N}^{n_4-1}. \]

Thus

\[B^!(L) = B(W) \tilde{N}^{n_2-n_3+n_4-1} N_n^3. \quad (***) \]

It then follows from (*) , (**) and (***) that

\[B(W) = \tilde{\kappa}^{\sigma(W)} N^{\chi(W)/2-1} \]

To return to Broda’s [B2] original normalization, note that

\[B(W) = B(W)(\tilde{N} N^{-\frac{1}{2}})^{|L-L| - |L| - \nu(L)} \]

From which we obtain
Theorem 5 If W is a connected closed oriented smooth 4-manifold, then

$$B(W) = \kappa(W) \left(\frac{\bar{N}}{N} \right)^{\chi(W) - 1}$$

proof: It suffices to shown that if W is given by the surgery instruction \mathcal{L}, then

$$|L - \dot{L}| - |\dot{L}| - \nu(L) = \chi(W) - 2.$$ But this follows immediately from the observation that $\nu(L)$ is the number of 3-handles attached in completing the construction of W. □

References

[B1] Broda, B., *Surgical invariants of 4-manifolds*, preprint (1993).

[B2] Broda, B., *A Surgical invariant of 4-manifolds*, Proceedings of the Conference on Quantum Topology (D.N. Yetter, ed.), World Scientific, to appear.

[CKY] Crane, L., Kauffman, L. H. and Yetter, D. N., *Evaluating the Crane-Yetter invariant*, e-preprint hep-th/9309063, and to appear Quantum Topology (R. Baadhio and L.H. Kauffman eds.), World Scientific.

[CY] Crane, L. and Yetter, D. N., *A categorical construction of 4D topological quantum field theories*, e-preprint hep-th/9301062, and to appear in Quantum Topology (R. Baadhio and L.H. Kauffman eds.), World Scientific.

[KL] Kauffman, L. H. and Lins, S. L. *Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds*, Princeton University Press, to appear.

[K] Kirby, R., *The topology of 4-manifolds*, SLNM vol. 1374, Springer-Verlag (1989).

[L] Lickorish, W. B. R. *The Temperley-Lieb algebra and 3-Manifold invariants*, preprint (1992).

[RT] Reshetikhin, N. and Turaev, V. G., *Invariants of 3-manifolds via link polynomials and quantum groups*, Invent. Math. **103** (1991), 547-597.

[R] Roberts, J, *Skein theory and Turaev-Viro invariants*, preprint (1993).

[S] Shum, M.-C., *Tortile tensor categories*, Doctoral Dissertation, Macquarie University, 1989.

[Y] Yetter, D.N., *State-sum invariants of 3-manifolds associated to artinian semisimple tortile categories*, Topology and its App., to appear.