Global molecular epidemiology and genetic diversity of Fusarium, a significant emerging group of human opportunists from 1958 to 2015

Abdullah MS Al-Hatmi1,2,3, Ferry Hagen4, Steph BJ Menken2, Jacques F Meis4,5 and G Sybren de Hoog1,2,6,7

INTRODUCTION

Fusarium infections are a major challenge with respect to the diagnosis and treatment, especially in neutropenic patients. Disseminated infections may be fatal and are a considerable source of increased healthcare costs. A major area of concern is the intrinsic resistance to a broad range of antifungals,1 which is a characteristic of Fusarium. During the past decade, the F. solani complex has received special interest because of the increasing numbers of infections worldwide.2 More than 300 cases of Fusarium keratitis were associated with contaminated contact lens cleaning solution, causing outbreaks between 2005 and 2007, where members of the F. solani species complex played a major role.3 Furthermore, reservoirs of infectious Fusarium species in hospital environments, especially plumbing and water systems, have been reported.4

Although human fusariosis was only recognized since the late 1950s and endemic areas are mostly located in tropical and subtropical countries,5 their global significance has only recently come into focus within the past three decades. Etiological agents differ in antifungal susceptibility,6 virulence profiles, geographic distribution, ecological niches, life cycle, host and mycotoxin production.7 Although agents of fusariosis are mostly environmental,8 the potential of nosocomial transmission has recently been raised,9 especially with reference to the high mortality rate of ~90% in patients with prolonged and severe neutropenia.10

The burden of disease has not been established, but numerous clinical case series and case reports provide an estimate of the magnitude of the problem. Most published studies have focused on prevalence in single healthcare centers.10–16 Nucci et al.17 reported 233 cases from different hospitals on a global scale. Mohammed et al.18 reported 26 cases from the United States and reviewed 97 cases from the literature, and Horn et al.12 described 65 cases from the North American Path Alliance Registry. A major problem in comparative studies is the subdivision of the classical species into a series of molecular siblings, which renders the older literature without sequence data uninterpretable. Despite the current clinical importance of the organism, the phylogenetic relationships among species, varieties and geographical groups in Fusarium are currently elusive. Hence, the re-interpretation of these data in the light of modern molecular phylogeny is compulsory.

Molecular phylogenetic studies have led to the description of many Fusarium species with clinical relevance. These include members of the F. solani species complex, namely, F. falciforme, F. keratoplasticum, F. oxysporum, and F. fujikuroi.
F. lichenicola, F. petroliophilum, F. pseudosieriforme and F. solani (FSSC5), which is also known as Fusisporium solani and Fusarium haplotype ‘6’. The F. oxysporum species complex (FOSC) contains three lineages, which are involved in fusariosis and still have not been formally introduced as taxonomic species. The F. fujikuroi species complex includes F. acutatum, F. ananatum, F. anthophilum, F. anidyaizi, F. fujikuroi s.s., F. globosum, F. guttiforme, F. musae, F. napsiforme, F. nygamai, F. verticillioides, F. proliferatum, F. ramarum, F. sacchari, F. subglutinosus, F. temperatum and F. thapsinum. Although rare, species of other Fusarium lineages are emerging as potential opportunistic pathogens, for example, in the F. incarnatum-equiseti species complex (FIESC; F. incarnatum and F. equiseti), the F. dimerum species complex (F. dimerum, F. delphinioides and F. penzei). The F. chlamydosporum species complex, the F. sambucinum species complex (F. armeniacum, F. brachygibbosum, F. langetheiae and F. sporotrichioides) and the F. tricinctum species complex (F. acuminatum and F. flaccifermum). Over the past decade, the number of cases of fusariosis has increased worldwide, but there are only a few reports describing the molecular epidemiology; therefore, the aim of the present study is to introduce a hypothetical system that permits the interpretation and use of at least a part of the literature where sequence data are lacking. Pre-molecular publications, which include interpretable case reports and geographical information, were collected. Subsequently, available Fusarium strains that were collected worldwide and deposited during the past century in the CBS-KNAW, Fungal Biodiversity Centre, culture collection Utrecht, The Netherlands, were sequenced and re-identified with current diagnostic technology, which enables the phylogenetic analysis of the human–pathogenic Fusarium species. These data were then compared with published materials and their distribution with the assumption that their distributions in each region had remained unaltered.

MATERIALS AND METHODS

Fungal strains

A total of 127 strains collected from clinical samples (n = 74; 58.3%; collected between 1978 and 2015) and strains collected from the environment (n = 53; 41.7%; collected between 1929 and 2015) were analyzed. All of the strains were maintained under the name ‘Fusarium’ in the reference collection of CBS-KNAW, Utrecht, the Netherlands. The data regarding geographic origins and sources of isolation are listed in Table 1. All of the available type strains were included. Stock cultures were maintained on slants of 2% malt extract agar at 24 °C. The strains were assigned to a clinical subgroup and an environment subgroup.

DNA extraction

DNA was extracted following the Quick Cetyl trimethylammonium bromide (CTAB) protocol. A total of 1–10 mm³ fungal material was transferred to 2 mL screw-capped tubes prefilled with 490 μL of 2 × CTAB buffer and 6–10 acid-washed glass beads. A total of 10 μL of proteinase K was added and mixed thoroughly on a MoBio vortex (MO BIO Laboratories, Inc., Carlsbad, CA, USA) for 10 min. Then, 500 μL of chloroform:isoamylalcohol (24:1) was added and shaken for 2 min after incubation for 60 min at 60 °C. The tubes were centrifuged for 10 min at 14 000 rpm, and the supernatant was collected in a new Eppendorf tube. To ~400 μL of the DNA sample, 2/3 vol (~270 μL) of ice-cold isopropanol was added and centrifuged again at 14 000 rpm for 10 min, and the upper layer was dissolved in 1 mL ice-cold 70% ethanol. The tubes were centrifuged again at 14 000 rpm for 2 min, air-dried and resuspended in 50 μL TE buffer. The quality of the genomic DNA was verified by running 2–3 μL on a 0.8% agarose gel. Then, the DNA was quantified with a NanoDrop 2000 spectrophotometer (Thermo Fisher, Wilmington, DE, USA), and the samples were stored at −20 °C until ready for analysis.

DNA amplification and sequencing

The following two gene regions were amplified directly from the genomic DNA: the second largest subunit of RNA polymerase (RPB2; Reeb et al.19) and the translation elongation factor-1α (TEF1α; O’Donnell et al.20) were amplified and sequenced following the methods published by Saleh et al.16 The PCR reactions were performed in a volume of 12.5 μL containing 1.25 μL of 10× PCR buffer, 7.5 μL of water, 0.5 μL of dNTP mix (2.5 mM), 0.25 μL of each primer (10 pmol), 0.05 μL of Taq polymerase (5 U/μL), 0.7 μL of dimethylsulphoxide and 1 μL of template DNA (100 ng/μL). The amplification was performed with the ABI Prism 2720 thermal cycler (Applied Biosystems, Foster City, CA, USA). The cycling conditions included 1 cycle of 5 min at 94 °C, 10 cycles of 45 s at 94 °C, 45 s at 55 °C and 1.5 min at 72 °C, 30 cycles of 45 s at 94 °C, 45 s at 52 °C and 1.30 min at 72 °C; a post elongation step of 6 min at 72 °C for TEF1 (EF1, EF2) and a pre-denaturation for 3 min at 95 °C, 5 cycles of 45 s at 95 °C, 45 s at 58 °C and 2 min at 72 °C, 5 cycles of 45 s at 95 °C, 45 s at 56 °C and 2 min at 72 °C, 30 cycles of 45 s at 95 °C, 45 s at 52 °C and 2 min at 72 °C, and a post elongation step of 8 min at 72 °C for RPB2 (SF2 and 7cR). The PCR products were visualized by electrophoresis on 1% (w/v) agarose gels. The sequencing PCR was performed as follows: 1 min at 95 °C followed by 30 cycles consisting of 10 s at 95 °C, 5 s at 50 °C and 2 min 60 °C. The reactions were purified with Sephadex G-50 fine (GE Healthcare Bio-Sciences, Uppsala, Sweden), and the sequencing was conducted on an ABI 3730xl automatic sequencer (Applied Biosystems) with a BigDye v3.1 terminator cycle sequencing kit (Applied Biosystems).

Identification

The strains were identified by BLAST in GenBank, Fusarium MLST (http://www.cbs.knaw.nl/fusarium/)20 and the FUSARIUM-ID (http://isolate.fusariumdb.org/)21 databases. In addition, the phylogenetic placements with species/haplotypes within species complexes were verified with available databases that are specific for Fusarium.

Phylogenetic analyses

Sequences of TEF1 and RPB2 were undertaken to extend the genetic characterization of 127 isolates of Fusarium species previously characterized in terms of morphological characteristics. The sequences were edited using SeqMan in the Lasergene package (DNAstar, Madison, WI, USA). A phylogenetic approach was used to investigate the relationship between 65 strains of Fusarium species including type and reference strains. The sequences were aligned using MAFFT v. 7.127 (http://mafft.cbrc.jp) followed by manual adjustments with MEGA v. 6.2.22 A combined alignment was constructed for RPB2 and TEF1 for both the reference and test strains. The best-fit model of evolution was determined by MEGA v. 6.2.22 A bootstrapped maximum-likelihood analysis was performed using RAXMLVI-HPC v. 7.0.323 as implemented on the Cipres portal (http://www.phylo.org/),24 with non-parametric bootstrapping using 1000 replicates. Detailed analyses of medically important strains were compared in relation with their clinical cases. For instance, F. solani actually represents a complex (that is, the F. solani species complex).
CBS number	Species name	Country	Source	GenBank accession number
CBS 130548	F. acutatum	Iran	Onychomycosis (Human)	KR071756
CBS 113964	F. acutatum	Egypt	Environmental	KR071759
CBS 739.97	F. acutatum	India	Environmental	KR071757
CBS 401.97	F. acutatum	India	Environmental	KR071755
CBS 402.97	F. acutatum	India	Environmental	KR071754
CBS 118517	F. ananatum	South Africa	Environmental	KR071761
CBS 118518	F. ananatum	South Africa	Environmental	KU711690
CBS 118516	F. ananatum	South Africa	Environmental	KU711680
CBS 184.29	F. ananatum	Unknown	Environmental	KR071762
CBS 256.93	F. andiyazi	Cuba	Environmental	KR071719
CBS 119857	F. andiyazi	South Africa	Environmental	KP662901
CBS 737.97	F. anthropophilum	Germany	Environmental	KU711685
CBS 222.76	F. anthropophilum	Germany	Environmental	KU711685
CBS 118585	F. anthropophilum	USA	Environmental	KR071764
CBS 119859	F. anthropophilum	New Zealand	Environmental	KR071765
CBS 961.87	F. concolor	South Africa	Environmental	KR071773
CBS 676.94	F. concolor	South Africa	Environmental	KR071774
CBS 111770	F. concolor	Spain	Keratitis (Human)	KU711719
CBS 111770	F. delphinooides	India	Keratitis (Human)	KU711775
CBS 135550	F. dimerum	Mexico	Keratitis (Human)	KU711721
CBS 135552	F. equiseti	Mexico	Keratitis (Human)	KU711723
CBS 135553	F. equiseti	Mexico	Keratitis (Human)	KU711722
CBS 135532	F. falciforme	Mexico	Keratitis (Human)	KU711737
CBS 135533	F. falciforme	Mexico	Keratitis (Human)	KU711738
CBS 135521	F. falciforme	Mexico	Keratitis (Human)	KU711733
CBS 135520	F. falciforme	Mexico	Keratitis (Human)	KU711732
CBS 135526	F. falciforme	Mexico	Keratitis (Human)	KU711734
CBS 135524	F. falciforme	Mexico	Keratitis (Human)	KU717351
CBS 135558	F. falciforme	Mexico	Keratitis (Human)	KU717356
CBS 135559	F. falciforme	Mexico	Keratitis (Human)	KU717357
CBS 135513	F. falciforme	Mexico	Keratitis (Human)	KU717245
CBS 135512	F. falciforme	Mexico	Keratitis (Human)	KU717245
CBS 135522	F. falciforme	Mexico	Keratitis (Human)	KU717255
CBS 135523	F. falciforme	Mexico	Keratitis (Human)	KU717265
CBS 135528	F. ficicrescens	Iran	Environmental	KP662898
CBS 125177	F. ficicrescens	Iran	Environmental	KP662899
CBS 125178	F. ficicrescens	Iran	Environmental	KP662900
CBS 125181	F. ficicrescens	Iran	Environmental	KP662900
CBS 449.95	F. fujikuroi	France	Environmental	KR071742
CBS 257.52	F. fujikuroi	Japan	Environmental	KU711678
CBS 262.54	F. fujikuroi	India	Environmental	KR071744
CBS 221.76	F. fujikuroi	Taiwan	Environmental	KR071741
CBS 130402	F. fujikuroi	USA	Human skin (Human)	KU711677
CBS 121864	F. fujikuroi	USA	Environmental	KR071743
CBS 119855	F. fujikuroi	USA	Environmental	KU711679
CBS 454.97	Fusarium sp	Sudan	Environmental	KU711697
CBS 483.94	Fusarium sp	Australia	Environmental	KU711698
CBS 119850	Fusarium sp	Australia	Environmental	KU711699
CBS 135528	F. keratoplasticum	Mexico	Keratitis (Human)	KU717432
CBS 135528	F. keratoplasticum	Mexico	Keratitis (Human)	KU717432
CBS 135527	F. keratoplasticum	Mexico	Keratitis (Human)	KU717432
CBS 135531	F. keratoplasticum	Mexico	Eumycetoma (Human)	KU717432
CBS 135530	F. keratoplasticum	Mexico	Eumycetoma (Human)	KU717432
CBS 135529	F. keratoplasticum	Mexico	Keratitis (Human)	KU717432
CBS number	Species name	Country	Source	GenBank accession number
------------	--------------	---------	--------	-------------------------
dH21918/F605	F. keratoplasticum	Netherlands	Nail infection (Human)	KU711746 KU604344
dH22043/F609	F. keratoplasticum	Netherlands	Foot infection (Human)	KU711747 KU604341
CBS 748.97	F. napiforme	Namibia	Environmental	KU711748 KU604346
CBS 674.94	F. napiforme	Australia	Environmental	KU711749 KU604347
CBS 135139	F. napiforme	India	Keratitis (Human)	KU711750 KU604348
CBS 135140	F. napiforme	India	Keratitis (Human)	KU711751 KU604349
dH 21772/F602	F. oxysporum	Netherlands	Nail infection (Human)	KU711752 KU604350
dH22047/F611	F. oxysporum	Netherlands	Nail infection (Human)	KU711753 KU604351
CBS 135560	F. oxysporum	Mexico	Keratitis (Human)	KU711754 KU604352
CBS 135561	F. oxysporum	Mexico	Keratitis (Human)	KU711755 KU604353
CBS 463.91	F. oxysporum	Germany	Nail infections (Human)	KU711756 KU604354
CBS 135515	F. petroliphilum	Mexico	Keratitis (Human)	KU711757 KU604355
CBS 135518	F. petroliphilum	Mexico	Keratitis (Human)	KU711758 KU604356
CBS 135519	F. petroliphilum	Mexico	Keratitis (Human)	KU711759 KU604357
CBS 135535	F. petroliphilum	Mexico	Keratitis (Human)	KU711760 KU604358
CBS 135514	F. petroliphilum	Mexico	Mycotic keratitis (Human)	KU711761 KU604359
CBS 187.34	F. phyllophorum	UK	Environmental	KU711762 KU604360
CBS 246.61	F. phyllophorum	USA	Environmental	KU711763 KU604361
CBS 480.77	F. proliferatum	Netherlands	Environmental	KU711764 KU604362
CBS 182.32	F. proliferatum	USA	Environmental	KU711765 KU604363
CBS 183.29	F. proliferatum	Japan	Environmental	KU711766 KU604364
CBS 184.33	F. proliferatum	Guyana	Environmental	KU711767 KU604365
CBS 125014	F. proliferatum	USA	Deep infection (Human)	KU711768 KU604366
CBS 131391	F. proliferatum	Australia	Environmental	KU711769 KU604367
CBS 133030	F. proliferatum	Iran	Onycomycosis (Human)	KU711770 KU604368
CBS 135547	F. proliferatum	Mexico	Keratitis (Human)	KU711771 KU604369
CBS 135549	F. proliferatum	Mexico	Keratitis (Human)	KU711772 KU604370
CBS 116324	F. proliferatum	Spain	Keratitis (Human)	KU711773 KU604371
CBS 130179	F. proliferatum	USA	Deep infection (Human)	KU711774 KU604372
CBS 135142	F. sacchari	India	Corneal ulcer (Human)	KU711775 KU604373
CBS 135143	F. sacchari	India	Corneal ulcer (Human)	KU711776 KU604374
CBS 135144	F. sacchari	India	Corneal ulcer (Human)	KU711777 KU604375
CBS 135145	F. sacchari	India	Corneal ulcer (Human)	KU711778 KU604376
CBS 223.76	F. sacchari	India	Environmental	KU711779 KU604377
CBS 134.73	F. sacchari	Guyana	Environmental	KU711780 KU604378
CBS 131369	F. sacchari	Australia	Environmental	KU711781 KU604379
CBS 121683	F. sacchari	India	Endophthalmitis (Human)	KU711782 KU604380
CBS 135563	F. solani (FSSC5)	Mexico	Hyalohyphomycosis (Human)	KU711783 KU604381
CBS 135564	F. solani (FSSC5)	Mexico	Hyalohyphomycosis (Human)	KU711784 KU604382
CBS 135565	F. solani (FSSC5)	Mexico	Hyalohyphomycosis (Human)	KU711785 KU604383
CBS 119831	F. subglutinans	New Guinea	Environmental	KU711786 KU604384
CBS 747.97	F. subglutinans	USA	Environmental	KU711787 KU604385
CBS 135538	F. temperatum	Mexico	Pulmonary infection (Human)	KU711788 KU604386
CBS 135539	F. temperatum	Mexico	Pulmonary infection (Human)	KU711789 KU604387
CBS 135540	F. temperatum	Mexico	Keratitis (Human)	KU711790 KU604388
CBS 135541	F. temperatum	Mexico	Keratitis (Human)	KU711791 KU604389
CBS 776.96	F. hispinum	USA	Environmental	KU711792 KU604390
CBS 733.97	F. hispinum	South Africa	Environmental	KU711793 KU604391
CBS 130176	F. hispinum	Italy	Human mycetoma (Human)	KU711794 KU604392
CBS 119833	F. hispinum	USA	Environmental	KU711795 KU604393
CBS 109077	F. hispinum	Ethiopia	Environmental	KU711796 KU604394
AFLP
The *Fusarium* strains were subjected to amplified fragment length polymorphism (AFLP) genotyping using a previously described method. However, for the amplification of the DNA fragments, the selective residues (underlined) of the HpyCH4IV-primer (5’-GAT GAG TCC TGA CTA ATG AG-3’) and MseI-primer (5’-Flu-GTA GAC TGC GTA CCC GTAC-3’; MseI-C-selective primer) were replaced. The amplicons were diluted 20 × with double-distilled \(H_2O \); 1 μL of the diluted amplicon was then added to a mixture of 8.9 μL \(ddH_2O \) and 0.1 μL LIZ600 (Applied Biosystems) followed by a heating step for 1 min at 100 °C and cooling to 4 °C. The AFLP fragment analysis was conducted using an ABI3500xL Genetic Analyzer (Applied Biosystems) according to the manufacturer’s instructions. The raw data were then inspected visually after importation into BioNumerics v7.5 (Applied Maths, Sint Martens-Latem, Belgium) and analyzed by an Unweighted Pair Group Method with Arithmetic Mean clustering using the Pearson correlation coefficient. The analysis was restricted to DNA fragments in the range of 40–400 bp. The final AFLP dendrograms were based on the combination of sequencing and the AFLP data of both dendrograms.

Meta-analysis
The authors analyzed the existing medical literature on human cases of fusariosis from 1958 until December 2015. The authors conducted a systematic literature search using PubMed, and the terms *Fusarium* and 'fusariosis' were used for the search and both were also used as MeSH words and free words. Studies were only included that reported data for the individual cases because data provided in aggregate often lacked specific information for individual cases. Only cases with either histologically or culturally proven *Fusarium* infection were included. A total of 388 case reports in ~ 265 published studies were collected on a worldwide basis. The numbers are approximate because some cases have been used in repeated publications. Only cases with either histologically or culturally proven *Fusarium* infection were included (Supplementary Reference S1).

RESULTS
Types of articles
A total of 388 cases of fusariosis from 1958 until December 2015 were used in the literature data analysis. This included articles that were mostly single case reports, two patient cases and a series of cases of fusariosis. The reported cases of fusariosis were identified from all over the world, and particularly from tropical and subtropical countries with a large agrarian population such as Brazil, China, Colombia, India and Mexico. The other areas with frequent fusariosis were Australia, South Africa, Turkey and the Americas. *Fusarium* infections have also been reported from different countries in eastern and western Europe.

Patient characteristics. An overview of the cases of fusariosis published in the medical literature, which includes the great majority of cases published to date, is provided in Table 2. The majority of patients were male (\(n = 253; 65.2\% \); mean 41 years; range three months–83 years). Over a third of the patients (\(n = 143; 36.9\% \)) had various underlying conditions at the time when the *Fusarium* infection was diagnosed. Causes of immunosuppression were hematological diseases and hematologic malignancies (\(n = 122; 31.4\% \)) and cancer of the solid organs (\(n = 17; 4.8\% \)). Other causes of immunosuppression were medication (\(n = 140; 36\% \)), which included antibiotic (\(n = 34; 8.8\% \)) and steroid treatment (\(n = 10; 2.6\% \)). Pathogen introduction was ranked as trauma (\(n = 18; 4.6\% \)), indwelling catheters (\(n = 2; 0.5\% \)), nasogastric tubes (\(n = 2; 0.5\% \)) and dialysis (\(n = 3; 0.77\% \)). No metabolic disorders, such as diabetes, were recorded in association with infection.

Type of infections
Infections due to *Fusarium* were predominantly found to be superficial and subcutaneous (\(n = 174; 44.8\% \)), occurring on the skin (\(n = 62; 16\% \)), eyes (\(n = 66; 17\% \)) and nails (\(n = 25; 6.4\% \)). Deep infections involved bone, joint and lung (\(n = 4; 1\% \)), heart (\(n = 3; 0.77\% \)), and peritoneum (\(n = 2; 0.5\% \)). The sum of the invasive and disseminated cases was \(n = 109 (28\% \)), some of which were associated with fungemia (\(n = 25; 6.4\% \)) or disseminated disease with brain abscesses (\(n = 4; 1\% \); Table 2).

Treatment
An overview of the reported treatment of the cases of fusariosis is shown in Table 3. The most widely used antifungal agent was amphotericin B deoxycholate (\(n = 198; 51\% \)), followed by liposomal amphotericin B (\(n = 45; 11.6\% \)), voriconazole (\(n = 42; 10.8\% \)),...
Table 2 Characteristics of 388 patients with fusariosis and literature cases from 1958 until 2015

Characteristic	Number of patients
Total	388
Age, years (range)	3 months – 82 years
Sex, M:F:unknown	253 (65.3%): 125 (32.2%): 10 (2.5%)

Underlying condition

Transplantation	
Liver	5 (1.2%)
Lung	4 (1%)
Bone marrow	29 (7.5%)
Multivisceral	1 (0.25%)
Kidney	3 (0.77%)
Heart	4 (1%)
Stem cells	38 (9.8%)

Trauma/burns | 27 (7%) |

Foreign body | 18 (4.6%) |

Contact lens | 4 (1%) |

Catheter | 2 (0.5%) |

Graft | 3 (0.77%) |

Nasogastric tube | 3 (0.77%) |

Dialysis | 4 (1%) |

Cancer | |

Hematologic | 122 (31.4%) |

Solid organ | 17 (4.8%) |

Medication | |

Antibiotics | 140 (36%) |

Steroids | 34 (8.8%) |

No | 20 (5%) |

Site of infection

Superficial | |

Skin | 62 (16%) |

Eye | 66 (17%) |

Nail | 25 (6.44) |

Bone | 4 (1%) |

Joint | 4 (1%) |

Lung | 4 (1%) |

Endocarditis | 3 (0.77%) |

Peritoneum | 2 (0.5%) |

Perinephric abscess | 2 (0.5%) |

Disseminated | 109 (28%) |

Blood | 25 (6.4%) |

Brain | 4 (1%) |

Abbreviations: female, F; male, M.

5-flucytosine (n = 30; 7.7%), itraconazole (n = 26; 6.7%), fluconazole (n = 25; 6.4%) and ketoconazole (n = 19; 4.9%).

The antifungal combinations used in treating fusariosis were given either as a two- or a three-drug combination. The most frequently used combination of two drugs was amphotericin B with voriconazole (n = 24; 6%), followed by amphotericin B with 5-flucytosine (n = 20; 5%), amphotericin B with ketoconazole (n = 4; 1%) and amphotericin B with fluconazole (n = 4; 1%). Other combinations were used in one or two cases. Triple combinations were used in 14 cases (n = 14; 3.6%). In addition, surgery with antifungal treatment was used in 80 cases (20.6%). In addition to antifungal therapy and surgery, granulocyte transfusions or granulocyte–colony-stimulating factor transfusions were also used. Only seven isolates were associated with cases where no treatment was reported (Table 3). It was not possible to look at the changes in treatment over time, although the authors assume that azole treatments have increased while AmB has declined. With the current guidelines, liposomal amphotericin B (n = 45; 11.6%) and voriconazole (n = 42; 10.8%) are very similar according to the data from the reported cases.

Genetic analysis

A total of 127 Fusarium strains deposited in the CBS-KNAW collection were partially sequenced for RPB2 and TEF1. The resulting two phylogenies yielded almost identical topologies with similar
resolution. Almost all of the strains of known species in all complexes of Fusarium formed independent clades in each tree. A concatenated tree (Figure 1), including all major human–pathogenic complexes of Fusarium, was based on 146 selected sequences. The lengths of the generated sequence data were 795 and 507 bp for RPB2 and TEF1, respectively. Of the 1302 nucleotides sequenced, 720 (55.1%) were constant, 551 (42.2%) were parsimony informative and 576 (44.1%) were variably and parsimony non-informative using MEGA v. 6.2.22

The combined tree was subdivided into several species complexes with high bootstrap values (Figure 1). Seven clades represented human opportunists within the F. solani species complex. Thirteen groups represented opportunistic species in the F. fujikuroi species complex with smaller human-associated clusters in the FOSC and to a lesser extent in the F. chlamydosporum, F. polyphialidicum (syn. F. concolor), F. dimerum and F. incarnatum species complexes. Strains CBS 454.97, CBS 483.94 and CBS 119850 were identified morphologically as F. napiforme but formed a separate cluster that was different from the three strains including the type strain of F. napiforme (Figure 1).

The AFLP profiles contained ~ 50 – 60 fragments in the range of 40 – 400 bp. The AFLP dendrogram comprised seven main clusters at the species complex level and additional subgroups within the main species clusters revealed genetic diversity within each species complex (Figure 2). However, the profiles did not significantly vary between the F. solani species complexes, such as F. falciforme, F. keratoplasticum, F. lichenicola F. petroliphilum and F. pseudensiforme, whereas there was significant AFLP variation between isolates within the F. fujikuroi species complex with separate profiles for each species and within other species complexes of F. chlamydosporum, F. concolor, F. dimerum, F. incarnatum-equiseti and F. oxysporum.

When comparing the AFLP clusters with the distribution of DNA sequence lineages, the groups were largely concordant. Groups 1 – 7 matched with previous identifications using RPB2 and TEF1 sequences. The Fusarium concolor species complex had one clinical subgroup, the F. dimerum species complex had two and the Fusarium fujikuroi species complex consisted of 16 clinical subgroups (15 named subgroups and 1 unnamed molecular lineage). The FIESC had a single clinical group, the FOSC was divided into two subgroups and the F. solani species complex comprised six named and one unnamed subgroup. The AFLP clusters and subclusters were almost identical to the sequencing identifications except for few strains within the

![Figure 1](image-url) A phylogenetic tree resulting from the RAxML analysis for the RPB2 and TEF1 genes. The total alignment length is 1302 bp. A maximum-likelihood analysis was performed using RAxML with non-parametric bootstrapping using 1000 replicates. The numbers above the branches are bootstrap support values ≥ 0.70. The outgroup was the epitype (ET) strain of F. dimerum CBS 108944.
Figure 2 Clustering of the amplified fragment length polymorphism banding pattern of *Fusarium* spp. combined with a sequence analysis of *RPB2* and *TEF1* constructed by Bionumerics v7.5 (Applied Maths). The dendrogram was generated using the Unweighted Pair Group Method with Arithmetic Mean algorithm.

Emerging Microbes & Infections
of human Fusarium infections.10–13,27–34 The 127 Fusarium strains from the current study were collected from 26 countries in six continents and included clinical and environmental strains and isolates from cold blooded animals. Of these, Australia, Brazil, India, Mexico and the USA were among the top 10 countries with the highest Fusarium infections based on clinical isolates in the CBS collection. Not surprisingly, 75 of the 127 patients from this study acquired their infection in one of these countries. Although human opportunists were highlighted in many studies focusing on specific regions of the world and specific types of infections,10–13,27–34 the 127 Fusarium strains from the current study were collected from 26 countries in six continents and included clinical and environmental strains and isolates from cold blooded animals. Of these, Australia, Brazil, India, Mexico and the USA were among the top 10 countries with the highest Fusarium infections based on clinical isolates in the CBS collection. Not surprisingly, 75 of the 127 patients from this study acquired their infection in one of these countries.

Previously, the majority of the clinically relevant Fusarium species were classified as two species complexes that in the past were referred to as a single species, *F. oxysporum* and *F. solani*.35 Approximately 80% of human infections are caused by members of both species complexes,36 but a significant share of infections is caused by the following novel species complex members: *F. dimerum*, *F. falkumori* and *F. incarnatum-equiseti*. Within the *F. solani* complex, there are six recognized species and one unnamed lineage (FSSC6) clinically involved in fusariosis (Figure 1). Of these species, *F. falciforme* (*n* = 14/127 cases; 11%) was the dominant species in our study and mainly isolated from keratitis cases in Brazil, India and Mexico. Recently, Hassan et al.13 showed that the majority of keratitis cases (*n* = 46/65 cases; 70.7%) were *F. falciforme*. This species is emerging as one of the most virulent Fusarium species associated with fusariosis and keratitis.15,36,37

In the 2005–2006 mycotic keratitis outbreaks in Southeast Asia and North America that were associated with a contact lens cleaning solution, *F. petrophilum* and *F. keratoplasticum* were the most common species,36 which is consistent with the current study. The AFLP genotypic variability was higher in the environmental species than in the clinical species. A potential explanation is that not all environmental genotypes are sufficiently adapted to the host tissue and are not selected or perhaps a sampling effect is involved. Zhang et al.35 studied the *F. solani* species complex, specifically those species that cause infections in humans and plants, and concluded that clinical isolates often shared multi-locus haplotypes with isolates from different environmental sources, including hospital locations. An increase of fusariosis among immunosuppressed patients was noted in the bone marrow transplant unit and among patients with superficial infections in a hospital in Rio de Janeiro, Brazil.38 These authors concluded that this increase might be due to airborne conidia circulating in this geographical region. Short et al.36 concluded that there is no evidence that clinical isolates differ from those collected from other sources.

The large diversity of the FOSC is not completely resolved, and it is not yet known whether the species have one or several phylogenetic origins or whether a single species or a species complex is concerned. From a traditional taxonomic point of view, *F. oxysporum* isolates are differentiated from each other based on the pathogenicity as *formae speciales*, but this has been shown to be an unreliable approach.8 In addition, the species delimitation was for the FOSC, and at least 26 sequence types within the complex were involved in human infections.39 Our FOSC clinical isolates were distributed throughout the complex, although some clustering was found in the clade marked ‘sequence type 33’, which is based on TEF1 alone, and this sequence type is considered the most common clade that contains clinical *F. oxysporum* strains. The remaining species complexes of *F. chlamydosporum*, *F. concolor*, *F. dimerum* and *F. incarnatum-equiseti* form separate clusters in the highly resolved sequence-based maximum likelihood tree (Figure 1).

The FIESC compromises 28 phylogenetically distinct lineages,34 and only 2 are named and mainly involved in human infections (*F. incarnatum* and *F. equiseti*).40 Although several members of the FIESC were included in the CDC Fusarium keratitis outbreak investigations, these species have not yet been observed to occur in epidemics or cause outbreaks. Concerning geography, 51 clinical isolates were recovered from the United States, and this revealed that phylogenetically diverse human opportunists are well represented in North America.40 In our study, three clinical *F. equiseti* strains originated from Mexico, and this might suggest that species of this complex are common in this region. The virulence of members of the FIESC has been ascribed to their production of type A and B trichothecene mycotoxins.39

F. dimerum and *F. delphinoideos* belong to the *F. dimerum* species complex, and both were isolated from superficial and disseminated infections.15 In our data set, a supported clade of FDSC matching with the AFLP data mainly contained strains from India, and this might suggest a regional prevalence. *F. chlamydosporum* was reported in disseminated infections in patients with aplastic anemia and lymphocytic lymphoma from the United States.41,42 CBS 111770 (*F. concolor*) is the only clinical strain in the *F. concolor* species complex, and it was reported in a keratitis case from Spain.43

By comparing AFLP and MLST data, *F. falkumori* and *F. keratoplasticum* appear to be widely distributed, at least in Mexico, North America, Europe and India, with dominancy in superficial infections, including keratitis and onychomycosis. *F. petrophilum* is the second most diverse species and is also frequently involved in disseminated infections. *F. solani sensu stricto*, ‘5’, which was recently described as *Fusiporium (Fusarium) solani* (FSSC5),7 contains strains such as CBS 135559, CBS 135564 and CBS 135565, which originate from Mexico, and shows significant occurrence in keratitis cases. This species was also recently reported in Asia (India and Qatar).13,16 Given the large distances of identical strains occurring in many different countries, airborne distribution seems likely. However, the presence of *F. incarnatum, F. equiseti* and *F. chlamydosporum* in clinical samples...
Emerging Microbes & Infections

10

from various infections in North America remains puzzling but can perhaps be explained by sampling effects.

As previously noted, the F. fujikuroi complex contains the highest number of species. In our study, 15 supported clades were recognized in all of the molecular analyses (Figures 1 and 2). Nearly all of the clades have various geographic distributions. Within the F. fujikuroi species complex, F. proliferatum and F. verticillioides were the dominant clinically relevant species, having a global distribution and dominating in disseminated infections. F. sacchari is the second most prevalent species and was often isolated from keratitis restricted to India. Although F. nygmaei and F. napiforme are the most multidrug-resistant species within the F. fujikuroi complex, their presence in human infections is rare. F. acutatum was reported from nail infections in four cases in Qatar, showed a low degree of variability and has been suggested to be clonal. These results emphasize that F. acutatum is an emerging human opportunist, which thus far was only detected in Asia. Sequence analysis of RPB2 and TEF1, and AFLP showed that the strains CBS 119850, CBS 483.94 and CBS 454.97 were nested within the F. fujikuroi complex and close to F. nygmaei and F. anidyi, forming a well-supported monophyletic branch suggestive of a novel species.

Deep fusariosis is rare in healthy individuals; a single brain infection has been reported. Local infections may occur after a direct inoculation or tissue breakthrough by trauma or the entrance of foreign bodies. The treatment of superficial infections is usually successful and requires surgery, the removal of the foreign body and antifungal therapy. The most important risk factors for severe fusariosis are prolonged neutropenia and T-cell immunodeficiency in patients suffering from a hematological malignancy. Fusarium infections in the majority of these cases were due to neutropenia. Furthermore, in solid organ transplant recipients and cancer patients with neutropenia, infections due to Fusarium spp. increased and led to disseminated infection. Patients develop painful skin lesions, which vary from papules to nodules with or without central necrosis. In the majority of disseminated infections, secondary skin lesions led to a diagnosis in >50% of the patients and preceded fungemia by ~5 days. In contrast to aspergillosis, fusariosis frequently shows positive blood cultures because Fusarium conidia are hydrophilic and allow dissemination. Comparing fusariosis with mucormycosis, solid tumors and diabetes do not seem to be important risk factors. Only 17 (4.8%) cases were found in patients with solid tumors, and seven infections were reported in patients with diabetes mellitus. No underlying conditions were observed in 20 (5%) of the cases.

Fusarium treatment depends on the site of infection. Surgery with antifungals was used in 80 cases (20.6%). Disseminated fusariosis in immunocompromised patients is usually treated with amphotericin B and voriconazole as the first-line therapy, which is suggested by recent guidelines. In our literature review, most antifungal therapy was amphotericin B deoxycholate, followed by liposomal amphotericin B and voriconazole. The most commonly used combination is amphotericin B/voriconazole followed by amphotericin B/S-flucytosine. Triple combinations were used in 14 cases with different antifungals.

The major findings of the present study include the following: (i) human-associated fusaria were nested within seven species complexes (that is, F. chlamydosporum, F. concolor, F. dimerum, F. fujikuroi, F. incarnatum-equisetii, F. oxysporum and F. solani), (ii) the three most common species presented in both the clinical and environmental groups are F. falciforme and F. keratothrix (members of F. solani species complex) followed by F. oxysporum (FOSC), (iii) most of the reported Fusarium species in this study were shared among the patients and the environment, and this might be due to the colonization of some patients with Fusarium isolates from the environment; hence, there is genetic similarity between the clinical and environmental isolates of the same Fusarium species, and (iv) the species distributions show some evidence of geographical clustering among some of the species studied, although the present study is limited by an over-representation of isolates from Mexico and India.

ACKNOWLEDGEMENTS

This study was partially funded by the Ministry of Health, Oman (Formal Agreement NO 28/2014). Abdullah MS Al-Hatmi received a PhD scholarship from the Ministry of Health, Oman.

1. Al-Hatmi AM, Meis JF, de Hoog GS. Fusarium: molecular diversity and intrinsic drug resistance. PLoS Pathog 2016; 12: e1005464.
2. Nucci M, Varon AG, Garnica M et al. Increased incidence of invasive fusariosis with cutaneous portal of entry. Brazil. Emerg Infect Dis 2013; 19: 1567–1572.
3. Mukherjee PK, Chandra J, Yu C et al. Characterization of Fusarium keratitis outbreak isolates: contribution of biofilms to antimicrobial resistance and pathogenesis. Invest Ophthalmol Vis Sci 2012; 53: 4450–4457.
4. Short DP, O’Donnell K, Zhang N et al. Widespread occurrence of diverse pathogenic types of the fungus Fusarium in bathroom plumbing drains. J Clin Microbiol 2011; 49: 4264–4272.
5. O’Donnell K, Sutton DA, Fottergiel A et al. Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. J Clin Microbiol 2008; 4: 2477–2490.
6. Al-Hatmi AMS, Meletiadis J, Curfs-Breuker I et al. Fusarium oxysporum species complex populations: genetic similarity between the clinical and environmental isolates. Mycol Res 2016; 109: 806–819.
7. Garcia M, Nucci M. Epidemiology of fusariosis. Curr Fungal Infect Rep 2013; 7: 301–305.
8. Nucci M, Daylan Cilo B, Al-Hatmi AM, Seyedmousavi S et al. Invasive fungal diseases in haematopoietic cell transplant recipients and in patients with acute myeloid leukaemia or myelodysplasia in Brazil. Clin Microbiol Infect 2013; 19: 745–751.
9. Nucci M, Al-Anise E. Cutaneous infection by Fusarium species in healthy and immunocompromised hosts: implications for diagnosis and management. Clin Infect Dis 2002; 35: 909–920.
10. Horn DL, Freifeld AG, Schuster MG et al. Treatment and outcomes of invasive fusariosis: review of 65 cases from the PATH Alliance registry. Mycoses 2014; 57: 652–658.
11. Hassan AS, Al-Hatmi AMS, Shobana CS et al. Antifungal susceptibility and phylogeny of opportunistic members of Fusarium species causing keratitis. J Antimicrob Chemother 2016; 71: 953–955.
12. Schroes H-J, Samuels GJ, Zhang N et al. Epiphyllization of Fusarium (Fusarium) solani and its assignment to a common phylogenetic species in the Fusarium solani species complex. Mycologia 2016; 108: 806–819.
13. Hassan AS, Al-Hatmi AMS, Shobana CS et al. Antifungal susceptibility and phylogeny of opportunistic members of Fusarium species causing keratitis. J Antimicrob Chemother 2016; 71: 953–955.
14. Nucci M, Daylan Cilo B, Al-Hatmi AM, Seyedmousavi S et al. Emergence of fusariosis in a university hospital in Turkey during a 20-year period. Eur J Clin Microbiol Infect Dis 2015; 34: 1683–1691.
15. Guereva-Suarez M, Cano-Lina JF, de Garcia MCC et al. Genotyping of Fusarium isolates from onychomycosis in Colombia: detection of new species within the Fusarium solani species complex and in vitro antifungal susceptibility testing. Mycopathologia 2016; 181: 165–174.
16. Salah H, Al-Hatmi AMS, Theelen B et al. Phylogenetic diversity of human pathogenic Fusarium and emergence of uncommon virulent species. J Infect 2015; 71: 658–666.
17. Nucci M, Marr KA, Vehreschild MJ et al. Improvement in the outcome of invasive fusariosis in the last decade. Clin Microbiol Infect 2014; 20: 580–585.
18. Mohammad M, Anagnostou T, Desalarios A et al. Fusarium infection: report of 26 cases and review of 97 cases from the literature. Medicine 2013; 92: 305–316.
19. Reeb V, Lutzoni F, Roux C. Contribution of RPB2 to multilocus phylogenetic studies of Fusarium species causing keratitis. Mycol Res 2017; 121: 194–208.
20. O’Donnell K, Sutton DA, Rinaldi MG et al. Genetic diversity of human pathogenic members of the Fusarium oxysporum complex inferred from multilocus DNA sequence data and amplified fragment length polymorphism analyses: evidence for the recent dispersion of a geographically widespread clonal lineage and nosocomial origin. J Clin Microbiol 2004; 42: 5109–5120.
21. Nucci M, Murillo F, Crestani M et al. Fusarium keratitis: report of two cases with unusual clinical presentations. Clin Exp Ophthalmol 2006; 34: 297–300.
22. Donnell K, Sutton DA, Rinaldi MG et al. Genetic diversity of human pathogenic members of the Fusarium oxysporum complex inferred from multilocus DNA sequence data and amplified fragment length polymorphism analyses: evidence for the recent dispersion of a geographically widespread clonal lineage and nosocomial origin. J Clin Microbiol 2004; 42: 5109–5120.
23. Nucci M, Garcia M, Gloria AB et al. Invasive fungal diseases in haematopoietic cell transplant recipients and in patients with acute myeloid leukaemia or myelodysplasia in Brazil. Clin Microbiol Infect 2013; 19: 745–751.
Supplementary Information for this article can be found on the Emerging Microbes & Infections website (http://www.nature.com/emi)