Impact of germ cell ablation on the activation of the brain–pituitary–gonadal axis in precocious Atlantic salmon (*Salmo salar* L.) males

Helge Tveiten1 | Kristian Karlsen1 | Tina Thesslund2 | Gunhild S. Johansson2 | Dhivya B. Thiyagarajan1 | Øivind Andersen2,3

1Norwegian College of Fishery Science, The Arctic University of Norway, Tromsø, Norway
2Nofima, Tromsø, Norway
3Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway

Correspondence
Helge Tveiten, The Arctic University of Norway, N-9037 Tromsø, Norway.
Email: helge.tveiten@uit.no

Present address
Kristian Karlsen, Lerøy Aurora AS, Stortorget 1, N-9267, Tromsø, Norway.

Funding information
Norwegian Seafood Research Fund (FHF), Project no 901459

Abstract
The germ cells are essential for sexual reproduction by giving rise to the gametes, but the importance of germ cells for gonadal somatic functions varies among vertebrates. The RNA-binding dead end (Dnd) protein is necessary for the specification and migration of primordial germ cells to the future reproductive organs. Here, we ablated the gametes in Atlantic salmon males and females by microinjecting *dnd* antisense gapmer oligonucleotides at the zygotic stage. Precocious maturation was induced in above 50% of both germ cell-depleted and intact fertile males, but not in females, by exposure to an off-season photoperiod regime. Sterile and fertile males showed similar body growth, but maturing fish tended to be heavier than their immature counterparts. Pituitary *fshβ* messenger RNA levels strongly increased in maturing sterile and fertile males concomitant with the upregulated expression of Sertoli and Leydig cell markers. Plasma concentrations of 11-ketotestosterone and testosterone in maturing sterile males were significantly higher than the basal levels in immature fish, but lower than those in maturing fertile males. The study demonstrates that germ cells are not a prerequisite for the activation of the brain–pituitary–gonad axis and sex steroidogenesis in Atlantic salmon males, but may be important for the maintenance of gonadal somatic functions.

KEYWORDS
androgens, dead end, germ cells, Leydig cells, puberty, Sertoli cells

1 | INTRODUCTION

The development of primordial germ cells (PGCs) into gametes is an essential feature of sexual reproduction in animals (Hansen & Pelegri, 2021; Johnson & Alberio, 2015). During early embryogenesis, the PGCs migrate to the genital ridges and undergo meiosis to generate oocytes or sperm in the developing ovary or testis (Richardson & Lehmann, 2010). Whereas signals from gonadal somatic cells are universally needed to direct germ cell development, the requirement for germ cells in gonadal development and maintenance of tissue integrity...
seems to vary among vertebrates (DeFalco & Capel, 2009; Rios-Rojas et al., 2015). The current view is that germ cell signaling is important for fetal ovary development, but is not required for testis development, although many conflicting studies exist (Rios-Rojas et al., 2015). For example, germ cell-depleted female mice showed no defects in the ovarian somatic function and the steroidogenic function was maintained despite significantly reduced gonadotropin follicle-stimulating hormone (Fsh) levels (Maatouk et al., 2012; McNelly et al., 2000). Male mice lacking germ cells had decreased number of Sertoli cells and upregulated testicular expression of androgenic enzymes suggesting abnormal high testosterone production (Rios-Rojas et al., 2016). In the red-eared slider turtle (Trachemys scripta), removal of germ cells by busulfan did not influence sex determination or morphological differentiation of the fetal gonads (DiNapoli & Capel, 2007), while the germ cells in Xenopus laevis are crucial during ovarian development, but are not necessary for testis formation (Piprek et al., 2012). In teleost fish, the importance of germ cells for the gonadal sex differentiation varies between species. Germ cells are a prerequisite for female development in zebrafish (Danio rerio), medaka (Oryzias latipes), and mackerel (Scomber australasicus) as ablation of PGCs results in phenotypic, though sterile, males only (Kawamura et al., 2020; Kurokawa et al., 2007; Siegfried & Nüsslein Volhard, 2008; Slanchev et al., 2005; Weidinger et al., 2003). In comparison, PGC ablation failed to affect the sexual fate of gonadal somatic cells in loach (Misgurnus anguillicaudatus), goldfish (Carassius auratus), grass puffer (Takifugu albopombeus), and salmons, which could develop as either phenotypic males or females (Fujihara et al., 2022; Fujimoto et al., 2010; Goto et al., 2012; Wargelius et al., 2016; Yoshikawa et al., 2020; Yoshizaki et al., 2016). In zebrafish, removal of germ cells led to incomplete masculinization of the brain despite normal sex steroid levels (Pradhan & Olsson, 2018), while dnd-knockout Atlantic salmon (Salmo salar) males and females showed basal plasma sex steroid concentrations and low gene expression levels along the brain–pituitary–gonadal (BPG) axis at the seawater stage (Kleppe et al., 2017). Hence, the germ cells were concluded to be required for pubertal activation of the gonadal steroidogenesis in Atlantic salmon.

Similar to other vertebrates, the reproduction cycle of teleosts is regulated by the BPG axis, whereby the gonadotropin-releasing hormone (GnRH) stimulates the production of the pituitary gonadotropins Fsh and luteinizing hormone (Lh), which regulate the gametogenesis and steroidogenesis (Weltzien et al., 2004; Wootton & Smith, 2014). Most vertebrates synthesize two or three GnRH variants of which GnRH3, or salmon GnRH, seems to be the main activator of gonadotropin secretion in salmonids (Amano, Ikuta, et al., 1997; Dickey & Swanson, 2000). In teleosts, Fsh is the main gonadotropin in early stages of maturation and regulates spermatogenesis and sex steroidogenesis in males by controlling Sertoli and Leydig functions (Campbell et al., 2003; Gomez et al., 1999; Planas & Swanson, 1995; Prat et al., 1996; Sohn et al., 1999). Fsh activates the release of the teleost-specific insulin-like growth factor 3 (IGF3) from Sertoli cells (Li et al., 2021; Nóbrega et al., 2015), and suppresses the production of anti-Müllerian hormone (Amh) exerting inhibitory effects on spermatogenesis and steroidogenesis (Morais et al., 2017; Pfennig et al., 2015; Skaar et al., 2011). Leydig cells are the primary source of androgens, and the synthesis requires the coordinated action of conserved steroidogenic enzymes (Miller, 1988). 11-Ketotestosterone (11-KT) is the major sex steroid in all stages of spermatogenesis in teleosts, while testosterone (T) works through positive feedback mechanisms on the hypothalamus and pituitary (Amano, Ikuta, et al., 1997; Borg, 1994; Rege et al., 2019).

Anadromous salmonids exhibit high plasticity in life history strategies and the males show extreme variability in age and size at puberty (reviewed by Mobley et al., 2021). Salmonid males can mature already at the parr stage, during smoltification in freshwater or as postsmolt after seawater transfer, while maturation in females commonly occur at the postsmolt stage in the sea (Baum et al., 2005; Fjelldal et al., 2018; Fleming, 1996; Heinimaa & Erkinaro, 2004; Klemetsen et al., 2003). The percentage of precocious males varies widely in different populations, ranging from completely absent to all individuals sampled and is likely caused by environmental and genetic factors (Mobley et al., 2021). Since not all males usually undergo early maturation, Atlantic salmon is an excellent model for studying pubertal changes in the BPG axis in fish of same age and origin. Early maturation is a common problem in salmon aquaculture by compromising somatic growth, harvest quality, and fish welfare, and farmed escapees might threaten wild salmon populations (Bolstad et al., 2021; Taranger et al., 2010). These problems could at least partly be solved by producing sterile salmon lacking germ cells at large scale using the bath immersing technology established in zebrafish (Wong & Zohar, 2015). However, possible effects on gonadal sex steroid levels, somatic growth, and behavior need to be evaluated before introducing germ cell-free fish in aquaculture. Here, we examined the requirement of germ cells for the activation of the BPG axis and functions of the gonadal somatic cells in Atlantic salmon by comparing germ cell-depleted and intact fertile males comprising both immature and early maturing individuals at the freshwater stage.

2 | RESULTS

2.1 | Absence of PGC markers and gametes in dnd-knockdown salmon

Microinjection of dnd-antisense gapmers in fertilized Atlantic salmon eggs resulted in undetectable messenger RNA (mRNA) levels (Ct > 33) of dnd and vasa in 92% of the testes and ovaries examined about 2 years after the treatment. All fish in this study was evaluated for gonadal expression of dnd and vasa, and only those with undetectable levels were considered as sterile fish. In comparison, both germ cell markers were expressed in the intact gonads of the fertile males and females with significantly higher dnd transcript levels in the females and with a similar, although not statistically significant, sex divergent trend for vasa (Figure 1). Neither dnd nor vasa had any clear temporal expression pattern.

Evaluation by histology and immunohistochemistry revealed that the string-like gonads of the dnd-knockdown males and females were lacking gametes and no Vasa protein were visible (Figure 2a,b).
FIGURE 1 Temporal changes in gonadal relative expression of the germ cell marker genes *dnd* (a) and *vasa* (b) in fertile female (♀ *n* = 8–16) and fertile male (♂ *n* = 9–16) Atlantic salmon during exposure to continuous light for 0 (WK 0), 3 (WK 3), and 6 (WK 6) weeks at 10°C in freshwater. Before long day treatment, all fish were exposed to a short-day photoperiod of 6 h of light (L) and 18 h of dark (D) (6L:18D) for 8 weeks. Box-whisker plots show medians, minimum, and maximum values (whiskers) and the interquartile range (box) of the values. Dots outside whiskers are data "outliers." Differences between groups within samplings are indicated by different lowercase letters (*p* < 0.05). Differences across samplings within groups are indicated by different uppercase letters (*p* < 0.05). For clarity, letters are omitted when no significant differences were found within datasets.

FIGURE 2 Immunohistochemical analysis of germ cell-specific Vasa (red staining) in Atlantic salmon gonads. (a) *dnd*-knockdown male, (b) *dnd*-knockdown female, (c) fertile male with undifferentiated spermatogonia, (d) fertile male with differentiated spermatogonia, and (e) fertile female with previtellogenic oocytes as the most advanced stage of development. Negative controls are inserted. Scale bar = 60 µm.
Temporal changes in pituitary fshβ relative gene expression in immature fertile (n = 6–13), immature sterile (n = 8–11), maturing fertile (n = 9), and maturing sterile (n = 9) male Atlantic salmon during exposure to continuous light for 0 (WK 0), 3 (WK 3), and 6 (WK 6) weeks at 10°C in freshwater. Differences between groups within samplings are indicated by different lowercase letters (p < 0.05). Differences across samplings within groups are indicated by different uppercase letters (p < 0.05). For clarity, letters are omitted when no significant differences were found within datasets.

The testicular tubuli and Sertoli cells in the germ cell-free testes were further examined below, while the presence of granulosa cells in the germ cell-free ovaries was suggested by the high cyp19a1a expression (data not shown). The fertile males and females showed prominent Vasa staining of the germ cells in the morphologically normal testes and ovaries (Figure 2c–e). In the ovary, previtellogenic oocytes was the most advanced oocyte stage found in fertile females, while the intact testes were either dominated by undifferentiated or differentiated spermatogonia. This suggested that the fertile males comprised immature and early maturing individuals that was confirmed in the analyses of the BPG axis below.

2.2 Activation of BPG axis in sterile and fertile males

Pubertal changes in the expression of genes along the BPG axis in sterile and fertile fish were quantified by quantitative polymerase chain reaction (qPCR). Pituitary fshβ were expressed at low levels in both fertile and sterile males at the initiation (WK 0) and at WK 3, but after 6 weeks (WK 6), fertile males displayed a clear bimodal frequency distribution in fshβ mRNA levels. Those individuals belonging to the upper mode (fshβ relative expression >10, n = 9, or 60%) were evaluated as having initiated maturation, while those in the lower mode (fshβ relative expression <0.4, n = 6) were characterized as being immature fertile males. Sterile males displayed a very similar bimodal frequency distribution in fshβ mRNA levels and, by using the same “cut off” parameters as for fertile fish, they were classified as maturing (n = 9, or 53%) or immature (n = 8) fish. The high and low fshβ transcript levels in the maturing and immature sterile males, respectively, were not significantly different from their fertile counterparts. Based on the above, all fish sampled at WK 0 and WK 3 were classified as immature. The pituitary lhb mRNA levels were low during the study and showed no systematic variations between or within the different groups (p > 0.05, data not shown). Neither fertile nor sterile females displayed any significant increase or clear modalities in fshβ mRNA levels (p > 0.05; data not shown). This, together with histology sections showing previtellogenic oocytes as the most advanced stage of development of the intact fertile ovaries, and with plasma T and E2 concentrations below 1 ng·ml⁻¹ (which clearly did not change over time, p > 0.05; data not shown), all females were classified as immature. Females were hence omitted from any further evaluation of other indices of BPG-axis activation in this study.

The gnrh3a and gnrh3b paralogs were expressed at low levels in the brain at the initiation of the long day treatment (WK 0) and at WK 3, but both paralogs showed large individual variations in the maturing males at WK 6 (Figure 4). The expression of gnrhr4a and gnrhr4b showed no significant changes in the brain during the study, while the pituitary gnrhr4b levels were upregulated in immature fertile males at WK 6 (data not shown). Fertile and sterile males had similar gonadal fshr mRNA levels before the onset of puberty, but the expression was downregulated in the fertile males at WK 6 (Supporting Information: Figure S1).

2.3 Sertoli cell activity

The upregulated fshβ expression in the maturing sterile and fertile males was accompanied by downregulated amh expression in the maturing fertile males, but not in the sterile males displaying similar levels as the immature fish (Figure 5a). These changes occurred concomitantly with strongly increased testicular igf3 mRNA levels in both maturing sterile and fertile fish, while low levels were recorded in immature males (Figure 5b). To account for the relative over-representation of somatic cells in the germ cell-free testis, we calculated the ratio of amh and igf3 mRNA levels, which was strongly negatively associated with the fshβ mRNA levels and separated the four male groups at the final sampling point (Figure 5c).

The testicular structure was maintained in the germ cell-depleted males, but the testicular tubuli were much thinner and contained less Sertoli cells compared to the intact testis (Figure 6, Table 1). The tubular cross-sectional area and the number of Sertoli cells increased significantly in the fertile, but not in the sterile, males during maturation.

2.4 Leydig cell activity

Plasma 11-KT and T concentrations increased in both sterile and fertile males during early maturation, but the fertile individuals showed significantly higher levels than the sterile fish at the final sampling point (Figure 7a,b). The immature males had low androgen levels of about 1 ng·ml⁻¹ throughout the study. We further examined
the steroidogenic capacity of fertile and sterile males by evaluating the gene expression of key androgenic enzymes (Supporting Information: Figure S2a). Both sterile and fertile males showed elevated mRNA levels of the key steroidogenic acute regulatory protein (StAR) throughout the study without any changes at the onset of maturation ($p > 0.05$). CYP17a1 (P450c17) catalyzes the conversion of the progesterone to androstenedione, and the coding cyp17a1a gene was expressed at significantly higher levels in the sterile than in the fertile males during maturation (Supporting Information: Figure S2b). CYP11B1 (11β-hydroxylase) and 11β-HSD catalyze the conversion of T to 11-KT. Fertile males expressed cyp11b1 at significantly higher levels than sterile males at WK 0 and...
WK 3, but the levels tended to decrease in both groups over time and did not differ between any of the groups at final sampling (p > 0.05, Supporting Information: Figure S2c). Expression of 11β-hsdB2 did not change over time and was not influenced by initiated maturation (p > 0.05, Supporting Information: Figure S2d). The Leydig cell marker wnt5a was expressed at high levels in both immature and maturing sterile males at final sampling point compared to the fertile counterparts, whereas the insl3b transcript levels were significantly increased in the fertile males, particularly during maturation (Figure 8a,b).

2.5 | Body biometrics

The germ cell-depleted sterile males had lower gonadosomatic index (GSI) than the fertile males, except at the first sampling point, and mean GSI increased significantly during maturation in fertile, but also in sterile males and was 0.13% and 0.03%, respectively, at final sampling (Figure 9a). At this point, GSI differed significantly between the four male groups and was higher in immature fertile males than in maturing sterile individuals. Body weight increased from about 200 g to 350 g during the experiment (Figure 9b). Fertile and sterile males showed no significant difference in body weight, but the maturing fertile and sterile individuals tended to be heavier than their immature counterparts at final sampling point. Furthermore, the condition factor (CF) was similar in fertile and sterile males during the study, but maturing fertile and sterile males showed significantly higher CF than their immature counterparts at final sampling (Figure 9c).

3 | DISCUSSION

Transient inactivation of Dnd in Atlantic salmon embryos resulted in lifelong loss of the germ cells in the sterile males and females. Furthermore, the study revealed that the germ cells were not required for the activation of the BPG axis in precocious males exposed to an off-season photoperiod regime. Both sterile and fertile males showed increased gene expression of pituitary Fshβ and key Sertoli and Leydig cell-specific factors together with elevated plasma androgen concentrations, which are all hallmark indicators of puberty onset in salmonid males (Campbell et al., 2003; Maugars & Schmitz, 2008; Middleton et al., 2019; Schulz et al., 2019). In contrast to the disorganized ovarian structure, the germ cell-free testis formed a normal architecture with intact tubuli structure and functional somatic cells. However, the maturing sterile and fertile males showed important differences that may shed light on the interactions between germ cells and somatic cells. The Sertoli cell population were lower and did not increase in numbers in maturing germ cell-depleted testes when compared to the maturing fertile fish, in agreement with the reduced Sertoli cell numbers and tubuli cross section in mutant mice devoid of germ cells (Rios-Rojas et al., 2016). The Sertoli cells are able to support a limited number of germs cells, and Sertoli cell proliferation is the primary factor responsible for the

Male subgroups	Sertoli cell number	Tubuli cross-sectional area (mm²)
Immature sterile	9.6 ± 0.6a	0.6 ± 0.05a
Maturing sterile	10.2 ± 0.6a	1.0 ± 0.07a
Immature fertile	16.4 ± 0.9b	2.0 ± 0.34b
Maturing fertile	19.4 ± 0.4c	2.9 ± 0.24c

Note: Mean ± SEM, n = 5–6 within each group of fish. Different lowercase letters within columns indicate statistical difference (p < 0.05) between groups of fish.

![Figure 7](image-url) Temporal changes in 11-ketotestosterone (a) and testosterone (b) plasma concentrations (ng·ml⁻¹) in immature fertile (n = 5–12), immature sterile (n = 7–13), maturing fertile (n = 9), and maturing sterile (n = 8) male Atlantic salmon during exposure to continues light for 0 (WK 0), 3 (WK 3), and 6 (WK 6) weeks at 10°C in freshwater. Differences between groups within samplings are indicated by different lowercase letters (p < 0.05). Differences across samplings within groups are indicated by different uppercase letters (p < 0.05). For clarity, letters are omitted when no significant differences were found within datasets.
increase in testis size and sperm production in teleosts, similar to mammals (Meroni et al., 2019; Schulz et al., 2015). In teleosts, the igf3-mediated proliferation of Sertoli cells and differentiating divisions of spermatogonia was suggested to be coordinated by germ-Sertoli cell communication (Safian, Bogerd et al., 2018). Accordingly, the igf3 expression was upregulated in both maturing sterile and fertile males, but only the latter showed increased number of Sertoli cells during early maturation. In comparison, germ cell-signaling towards Sertoli cells was proposed in rat wherein the production of the Sertoli-specific growth factor glial cell line-derived neurotrophic factor was modulated by the density of undifferentiated spermatogonia (Johnston et al., 2011).

Fsh was proposed to trigger a balanced activation of self-renewal and differentiation of undifferentiated spermatogonia by the coordinated actions of Wnt5a, Igf3, Insl3, and Amh (Safian et al., 2019; Safian, Ryane, et al., 2018). In contrast to sterile males, the maturing fertile males displayed strongly upregulated insl3 expression that was correlated with the wnt5a transcript levels (Supporting Information: Figure S3). The low insl3 expression in the germ cell-depleted testis could be explained by the function of Ins13 acting as germ cell survival factor (Crespo et al., 2021). Moreover, the stimulatory effect of Fsh on insl3 mRNA levels was shown to be inhibited by Amh (Skaar et al., 2011), which was strongly downregulated only in the maturing fertile males. In mouse, germ cell-depleted males showed upregulated gene expression of Ins13 (Rios-Rojas et al., 2016), which through neofunctionalization has adopted an important role in testicular descent into the mammalian scrotum (Huang et al., 2012; Nef & Parada, 1999; Park et al., 2008). The Leydig cell-derived Wnt5a plays a conserved function by promoting the proliferation and accumulation of undifferentiated spermatogonia (Cantú et al., 2016; Safian et al., 2019; Safian, Ryane, et al., 2018; Yeh et al., 2011). In chicken, overexpression of wnt5a activated the Wnt signaling pathway.
regulating the differentiation of embryonic stem cells into spermato-
gonal stem cells in vitro (He et al., 2018). We, therefore, suggest that
the upregulated wnt5a expression in both immature and maturing
sterile males is induced by a local feedback loop due to the absence
of undifferentiated spermatogonia that is supported by the fine-
tuned coordination of the Wnt signaling pathway in germ cells and
somatic cells (Cantú et al., 2016).

Steroidogenic activity of the Leydig cells was demonstrated in
the sterile salmon males by the upregulated expression of key
steroidogenic enzymes and elevated plasma androgen concentrations
during early maturation. The lower androgen levels in sterile than in
fertile males are probably related to the negative feedback loops
between sex hormones and Amh reported in Atlantic salmon and
zebrafish (Melo et al., 2015; Pfennig et al., 2015; Skaar et al., 2011).
The simple fact that GSI was much lower in maturing sterile fish (c.
four times) than maturing fertile, even after accounting for germ cell
loss, which appear to constitute 20%–25% of all cells in male testes of
this stage (Gührap et al., 2020, for references), may also have
contributed to reduced sex steroid production. Although the germ
cells are evidently not indispensable for the activation of the gonadal
steroidogenesis in salmon males, we found reduced plasma androgen
concentration (less than 1 ng·ml⁻¹) in the maturing sterile males after
seawater transfer, in contrast to high 11-KT levels up to 55 ng/ml in a
fertile male with running milt (data not shown). This is consistent with
the basal sex steroid levels measured in dnd-knockout salmon males
in seawater and likely explains the contradicting conclusion that germ
cells are required for sex steroid production in Atlantic salmon
(Kleppe et al., 2017). We suggest that the maturing sterile males
failed to complete maturation after seawater transfer as previously
reported in fertile salmon males (Fraser et al., 2019) due to
inadequate positive feedback exerted by the androgens on the
pituitary gonadotropins (Antonopoulou et al., 1999; Borg et al., 1998;
Fontaine et al., 2020).

The strong increase in fshβ mRNA levels in the maturing males
was not accompanied by any significant upregulation of the brain
gnRh3 paralogs. Accordingly, precocious musu salmon (Oncorhynchus
masou) showed no changes in the salmon (s) GnRH content in
telencephalon, while the pituitary concentrations of sGnRH and
GTHs increased during maturation (Amano et al., 1994). Among the
six GnrH receptor paralogs expressed in the Atlantic salmon
pituitary, the expression of gnrhr4a (gnrhr2bb) was moderately
upregulated concomitant with increased fshβ levels in maturing
salmon parr, but was exclusively localized in lhβ expression cells
(Cliaia et al., 2020). The present study revealed no differences
between immature and maturing males in the pituitary expression of
gnrhr4a and gnrhr4b, but the latter paralog tended to be upregulated
in immature sterile males. Teleost GnRH isoforms seem to play
various functions in the brain, pituitary, and gonads (Amano et al., 1992; Soverchia et al., 2007) that should be further examined,
including spatio-temporal expression studies of the different ligands
and receptors. It should be noted that the increased fshβ expression
ocurred in the sterile and fertile salmon males without any
upregulation of the gonadal fshr levels. Accordingly, the receptors
for gonadotropin and androgens did not seem to be relevant for the
entry into puberty in precocious salmon males, but were already
present and ready to respond to their ligands (Schulz et al., 2019).

Both sterile and fertile maturing males in this study tended to
grow better and had higher CF than their immature counterparts. In
salmonids, energy stores and the rate of energy acquisition during
spring seem to be important determinants of whether an individual
will mature in the following autumn (Dutil, 1986; Good &
Davidson, 2016). In salmon aquaculture, faster growth in maturing
than in immature fish during the early part of the reproductive cycle
(before rapid gonad growth) (Åknes et al., 1986; Hunt et al., 1982;
Rowe & Thorpe, 1990; Tveiten et al., 1996) is used to maximize
biomass production. Thus, maintaining the ability of sterile males to
mount a maturation induced growth response, despite later lack of
gonad development, is commercially important and biologically
interesting.

The endocrine mechanisms underlying the differences in body
growth between maturing and nonmaturing salmonid fish are not
well understood, but sex steroids (Berglund et al., 1992; Hunt
et al., 1982; Tveiten et al., 1998; Youngson et al., 1988) and their
possible influence on thyroid status (reviewed by Cyr & Eales, 1996)
may be implicated. These studies corroborate well with findings in
our study where elevated plasma sex steroid concentrations (c.
2–10 ng·ml⁻¹) recorded in both sterile and fertile males appear
positively correlated with body mass and CF.

4 | CONCLUSION

The Dnd gene silencing in Atlantic salmon resulted in the ablation of
germ cells in males and females. The BPG axis was activated in
precocious maturing sterile and fertile males displaying similar gene
expression patterns that differed from the immature status of the
nonmaturing males. Elevated plasma androgen concentrations and
upregulated expression of key steroidogenic enzymes in both sterile
and fertile males during early maturation strongly indicate that the
germ cells are not a prerequisite for the activation of gonadal
steroidogenesis. However, termination of maturation in the sterile
males after seawater transfer was suggested due to reduced
androgen levels. Furthermore, the number of Sertoli cells increased
only in the maturing fertile males, indicating that germ-gonadal cell
communication is essential for maintaining the gonadal functions.

5 | MATERIALS AND METHODS

5.1 | Fish and experimental setup

The study was conducted at the Aquaculture Research Station at
Kårivika, Tromsø, in northern Norway using full sibling Atlantic salmon
originating from egg and milt delivered by AquaGen breeding
company. Germ cell ablation was achieved by microinjecting
“Gapmer” antisense oligonucleotides targeting the dnd mRNA at
the one-cell stage in late October 2016. Microinjection was under-
taken according to Škugor, Slanchev et al. (2014) and Škugor, Tveiten et al. (2014) with slight modification. Briefly, one-cell stage
fertilized eggs were aligned in a custom-made setup and micro-
jected into the cell at a Gapmer concentration of 5 μM using a
pressurized microinjector (World Precision Instruments Ltd.). Injection
volumes were optically adjusted to about 5% of the cell volume.
Gapmers induce RNAse-H mediated mRNA degradation of the
targeted mRNA (reviewed by Crooke et al., 2021). The dnd-
 knockdown, referred to as germ cell-depleted or sterile, and intact
fertile fish were fed standard feed (Nutra ST, Nutra XP and Nutra
Olympic from Skretting AS) from the start-feeding stage and were
held under standard hatchery conditions (fed by disc feeders
24°C until August 2018. The fish were individually tagged with a
passive-integrated transponder tag in Week 34, and about 360 fish
totally were transferred into six 500-L freshwater tanks for triplicate
analysis. According to established protocols (Fjelldal et al., 2011;
Strand et al., 2018), smolitication was induced by exposing the fish
to a photoperiod of daily 6 h light (6L:18D) and water temperature
5–6°C for 8 weeks followed by continuous light and 10°C from
24.10. throughout the experiment. 10–12 fishes were randomly
sampled from each tank at three time points: after 0 (WK 0, 24.10),
after 3 (WK 3, 14.11), and after 6 weeks (WK 6, 05.12),
aesthetized in Benzoak™ and killed using an overdose (1 ml/L).
Blood was sampled from the caudal vasculature using vacutainer
tubes (Vacutainer™ containing 34 IU Li-heparin. Plasma was
pipetted off after centrifugation and frozen at −20°C until further
analyses. Body weight (nearest 0.5 g) and length (mm) were
recorded to calculate CF according to the formula (CF = weight
(g) × 100 × (length (cm)²)⁻¹. The fish was kept on ice before being
opened for dissection of brain, pituitary and gonads, which were
transferred to RNAlater (Ambion; 1:10 volume ratio) and stored at
−20°C after 4°C overnight. The gonads were weighed before being
bisedected with one part fixed in PFA for histology and immuno-
histochemistry, and the other part submerged in RNAlater for gene
expression analyses. GSI was calculated as gonad weight (nearest
0.001 g) × body weight⁻¹) × 100.

From August 2018, a subgroup of individually tagged sterile and
fertile fish was maintained under similar tank and feeding conditions
as described above, but exposed to natural photoperiod (69°39′N)
and temperature (3–12°C) in freshwater until smoltification in
April–May 2019. The fish were then transferred to full strength
seawater (34 ppt) and maintained at natural photoperiod and
temperature (3–10°C). In May 2020, they were moved to net pens
at the sea cage facility and held under the same photoperiod and
natural temperature conditions until sampling in October 2020.
Blood samples were taken from five fish of each group (see
Section 2) for measuring sex steroids as described above. At this
time, a 4-years-old Atlantic salmon held under culture conditions will
become sexually mature.

5.2 | Histology and immunohistochemistry

Formalin-fixed gonad tissues from sterile and fertile males (n = 6–10 per group) were processed overnight in Tissue
Processor (Logos; Milestone). Paraffin embedded tissues were
sectioned (2 μm) using a rotary microtome (Leica) and stained with
hematoxylin and eosin (Merck) in auto-stainer (Leica) at the
Norwegian Veterinary Institute, Harstad. All slides were then
analyzed at Nofima, Tromsø, using light microscopy and the QuPath
(Quantitative Pathology & Bioimage Analysis) software. Germ cells
were detected by immunohistochemical analysis of a subset of
gonads using polyclonal rabbit antibodies against Atlantic salmon
Vasa (Škugor et al., 2016) as primary antibodies and the ImmPRESS
polymerized reporter enzyme staining system (Vector) with horse-
radish peroxidase anti-rabbit immunoglobulin G as secondary anti-
body according to manufacturer’s protocol. Sections treated without
the primary antibody were used as negative controls.

5.3 | Sertoli cell number and tubuli size

Sertoli cells in the testicular tubuli of sterile and fertile testes were
counted in immunostained sections to avoid any misinterpretation of
cell types. Ten tubuli from 5 to 6 individuals of each male group
(immature sterile, mature sterile, immature fertile, and mature
fertile males) were used for calculating mean Sertoli cell numbers.
Tubular cross-sectional area was calculated according to the
formula πr² where the diameter (i.e., radius) was determined from
the average of two measurements of the same tubuli approxi-
mately perpendicular to each other. Mean cross-sectional area was
calculated from measurement of 10 different tubuli from 5 to 6
fish of each group.

5.4 | Sex steroid analyses

Plasma concentrations of 11-KT, testosterone (T), and oestradiol-17β
(E2) were quantified by means of radioimmunoassay (RIA), as
described by Schulz (1985). Assay characteristics and cross-
reactivities of E2 and T antisera have previously been examined
by Frantzen et al. (2004), and the 11-KT antiserum by Johnsen
et al. (2013). In short, nonconjugated steroids were extracted from
300 μl blood plasma with 4 ml diethyl ether under vigorous shaking
for 4 min. Subsequently, the aqueous phase was frozen in liquid
nitrogen and the organic phase was then transferred to a new glass
tube kept in a water bath at 45°C until all ether was evaporated.
Steroids were reconstituted by adding 900 μl of RIA-buffer and
then assayed for each of the sex steroids. A total of 79 individual
male plasma samples were analyzed for both T and 11-KT, whereas
66 female samples were analyzed for both T and E2, covering all
(with a very few exceptions) individuals subject to gene expression
analyses.
RNA extraction and complementary DNA synthesis

Total RNA was extracted from brain, pituitary, and gonads using conventional TRIzol method. Briefly, organs were homogenized in a TissueLyser (Qiagen) using steel beads with Trizol (Invitrogen). Homogenized samples were treated with chloroform, and RNA was precipitated with isopropanol. The RNA pellet was washed with 80% ethanol and dissolved in nuclease-free water. Genomic DNA contaminant was removed with DNase treatment using TURBO DNAfree TM Kit (Thermo Fisher Scientific) according to the manufacturer protocol. The quality and concentration of the RNA were determined spectrophotometrically by Nano Drop (Nano Drop Technologies). The measured A260/A280 ratio of 1.9–2.0 indicated high purity RNA.

RNA sample was reverse-transcribed with High-Capacity RNA-to-cDNA™ Kit (Thermo Fisher Scientific) using 200 ng RNA in 20 μl reaction volumes. Negative control without reverse transcriptase enzyme was used for examination of any genomic DNA contamination. The reaction was incubated in a thermocycler for 37°C for 60 min and stopped by heating at 95°C for 5 min before hold at 4°C.

The synthesized complementary DNA (cDNA) was diluted 1:40 and used as a template for qPCR analysis.

qPCR analysis

qPCR was used to measure relative expression of genes along the BPG axis. Specific primers were designed using Primer blast (NCBI) and Integrated DNA Technologies for amplification of 18 target genes and 3 reference genes (Table 2). The amplification efficiency of each primer pair was calculated using a twofold dilution series of a cDNA mixture according to the equation:

\[E = 10^{(-1/\text{slope})} \]

(Pfaffl, 2001). The melting peak for each amplicon was inspected to check for unwanted amplification products. A control reaction to verify the absence of genomic DNA was conducted on three randomly selected RNA samples. The qPCR was run in duplicates in 7500HT sequence Detection system (Applied Biosystems) using the following recommended parameters: Standard run mode with 40 cycles at 50°C for 2 min, 95°C for 10 min, and 60°C for 1 min. Following by the melt curve stage at 95°C for 15 s, 60°C for 1 min, and 95°C for 15 s. Cₜ threshold was set between 0.1 and 0.2. Each

Table 2 qPCR primer sequences and amplification efficiency of the genes examined in Atlantic salmon

Gene name	Forward primer 5′-3′ sequence	Reverse primer 5′-3′ sequence	Efficiency
Dnd (JN712911)	CACAAGGGAGGGAGCAACTG	GCACAAGGGAGGGACACTG	1.83
Vasa (JN712912)	CCAGTACAGAAGCATGGCATTC	CCGTTTTCCAGATCCAGTCT	1.92
Igf3 (XM_014146080.1)	GACCGACCGACAAGATGCA	GCAAGGCACAATATGGAGTACA	1.95
Amh (NM_001123585.1)	CAGTCACCTCCTGAGCCTTACC	CAAACTTAATCCTTTCATTTAC	1.82
Cyp19a1a (XM_014175249)	TCAACAGAACCCCTGAGTAC	GCTCCCCCTACCTATAGCAGT	2.19
Cyp17a1 (XM_014154002.1)	TCCCCATGGCTACAGGTCTTC	CTGGTTTGGAGGACGAGGATT	2.16
Fshβ (XM_014126341.1)	TCACGGGACGCTACCCATTCA	GCTCTTGCAACCGGTATGA	1.78
LHβ (XM_014179761.1)	TACAGTGAGAGCCACGCTGA	CACAGTGCAAGAGGATTT	2.1
GnRH3a (XM_014206827.1)	GAGAGGCTGCTAGAGGCAT	ATGGTGATAGTGATGCTGAAA	1.83
GnRH3b (NM_001123667.1)	GAGAAGATATCTCCCAGAGCTCCTTA	TACAGGAGCTGAGGAGGAGGA	1.76
GnRH4a (MF073197.1)	ATATGAAGCCGACGTTAGA	TGAAGGTGTAGCGATGGT	2.0
GnRH4b (MF073197.1)	ATTTTTAGCTAGCTTCTT	TCTCATGCTAATGCTT	1.96
Fshr (NM_001123610.1)	CACAGGAGCCGCTGTGTA	GTGCCCTTGGCTTGCTGTA	1.94
11βhsd2 (XM_045714152)	GCTGCTAGTGAGACCAGCGAG	GCCAGTGATGAGACAG	1.89
STAR (XM_014171084)	ATGGACCCCAAAGACCAAGA	GGGATCCAGGCTTTTAAATC	1.86
Cyp11b (XM_045699349)	GGAATGGCAGCTGCTGCT	AGGCTGAGGAGGAGGAG	1.97
Wnt5 (XM_014134623.1)	TAGCCAGGCTGCTGCTGCTTA	TGGGCTTTGGCTTGCTGCT	1.96
Ins13 (MF062497)	GTGACCCACACAGGTAAT	CTGCTTCTCGTCTCGT	1.82
EF1-a (AF321836)	CGCCAAATGGGCTCGTG	TCAACCATTGGCTTAC	2.02
β-actin (BT059604)	CAGCCCTCTTCTCTGCTTA	CGTCAACCTCTCTGCTGTTG	2.03
18S (AJ427629)	TGTGCCGCTAGAGGGAATT	CGAACCCTTCAGCTTCTGC	1.94

Abbreviation: qPCR, quantitative polymerase chain reaction.
well contained Fast SYBR Green PCR Master Mix, 500 nM final concentration of each primer, 5µl diluted cDNA (1:40) and nuclease free water (Ambion) to a final reaction volume of 15µl. All data were collected by the 7500 Software and Analysis Software (Applied Biosystem) and exported to Microsoft Excel for further analyses. The Pfaffl method was used to calculate relative expression (Pfaffl, 2001). The geometric mean (Vandesompele et al., 2002) of the three reference genes B1-actin, elongation factor 1α (ef1α), and ribosomal protein 18S were used to normalize the gene expression and remove nonbiological variation. Values from the control fish was used as calibrator as denoted by Pfaffl (2001).

5.7 | Statistics

All statistical analyses were performed with SYSTAT 13 software (SYSTAT 13 © 2009; SYSTAT Software Inc.). A Shapiro–Wilk test was used for testing normality and the Levene’s test was used for testing homoscedasticity. The quantile range method (Q = 1.5; tail 0.25) was used to identify outliers. Most data, except body weight and CF, were log transformed to meet test criteria. Differences in morphometric data, plasma sex steroid concentrations, and gene expression were analyzed for statistical significance by one- or two-way analysis of variance (ANOVA), followed by a Sidak multiple comparison test. Since maturing fish was first discovered at the last sampling point, only immature fish was subject to two-way ANOVA (time, fertility, and the interaction time × fertility). Normality for three of the plasma testosterone data sets was not obtained, and a nonparametric Kruskal–Wallis test followed with a Conover–Inman test for all pairwise comparison was used for this variable. For GSI and igf3 expression, homogeneity of variance was not possible to meet, and a Game–Howell multiple comparison test was used. Although log-transformed data was used for statistical evaluation, the original/actual data are presented in the figures as box plots. Weight and CF are presented as mean ± standard errors of mean. Complete datasets for all variables for each individual was not always possible to achieve, and number of fish within groups may, therefore, differ slightly between variables investigated.

ACKNOWLEDGMENTS
The authors would like to acknowledge Eli B. Jenssen and Marius Aspen for technical assistance with fish sampling and sample preparation. We greatly recognize the excellent care of the fish by Ivar Nevermo and Hugo Tøløfsen at Tromsø Aquaculture Research Station. At last, we would like to acknowledge Krasimir Slanchev for his participation in the original germ cell ablation and production of the sterile fish. This study was supported by Norwegian Seafood Research Fund, Project No. 901459.

CONFLICT OF INTEREST
The authors declare no conflict of interest.
Crespo, D., Assis, L., Zhang, Y. T., Safian, D., Furmanek, T., Skaftnesmo, K., Norberg, B., Ge, W., Choi, Y. C., den Broeder, T. M. J., Legler, J., Bogerd, J., & Schulz, R. W. (2021). Insulin-like 3 affects zebrafish spermatogenic cells directly and via Sertoli cells. Communications Biology, 4, 204. https://doi.org/10.1038/s42003-021-01708-y

Crooke, S. T., Liang, X. H., Baker, B. F., & Crooke, R. M. (2021). Antisense technology: A review. Journal of Biological Chemistry, 296, 100416.

Cyr, D. G., & Eales, J. G. (1996). Interrelationships between thyroidal and reproductive endocrine systems in fish. Reviews in Fish Biology and Fisheries, 6, 165–200.

DeFalco, T., & Capel, B. (2009). Gonad morphogenesis in vertebrates: Divergent means to a convergent end. Annual Review of Cell and Developmental Biology, 25, 457–482.

Dickey, J. T., & Swanson, P. (2000). Effects of salmon gonadotropin-releasing hormone on follicle stimulating hormone secretion and subunit gene expression in coho salmon (Oncorhynchus kisutch). General and Comparative Endocrinology, 118, 436–449. https://doi.org/10.1006/gcen.2000.7482

DiNapoli, L., & Capel, B. (2007). Germ cell depletion does not alter the morphogenesis of the fetal testis or ovary in the red-eared slider turtle (Trachemys scripta). Journal of Experimental Zoology, 308, 236–241.

Dutil, J. (1996). Energetic constraints and spawning interval in the anadromous Arctic char (Salvelinus alpinus). Copeia, 1986, 945–955. https://doi.org/10.2307/1445291

Fjelldal, P. G., Hansen, T., & Huang, T. S. (2011). Continuous light and elevated temperature can trigger maturation both during and immediately after smoltification in male Atlantic salmon (Salmo salar). Aquaculture, 321, 93–100.

Fjelldal, P. G., Schulz, R. W., Nilsen, T. O., Andersson, E., Norberg, B., Hansen, T. J. (2018). Sexual maturation and smoltification in domesticated Atlantic salmon (Salmo salar)—Is there a developmental conflict? Physiological Reports, 6(17), e13809. https://doi.org/10.14814/phy2.13809

Fleming, I. A. (1996). Reproductive strategies of Atlantic salmon: Ecology and evolution. Reviews in Fish Biology and Fisheries, 6, 379–416.

Fontaine, R., Royan, M. R., von Krogh, K., Weltzien, F. A., & Baker, D. M. (2020). Direct and indirect effects of sex steroids on gonadotrope cell plasticity in the telost fish pituitary. Frontiers in Endocrinology, 11, 605068.

Frantzen, M., Arnesen, A. M., Damsgård, B., & Tveiten, H. (2004). Effects of photoperiod on sex steroids and gonad maturation in Arctic char. Aquaculture, 240, 561–574. https://doi.org/10.1016/j.aquaculture.2004.07.013

Fraser, T. J. K., Fjelldal, P. G., Schulz, R. W., Norberg, B., & Hansen, T. J. (2019). Termination of puberty in out-of-season male Atlantic salmon smolts. Comparative Biochemistry and Physiology A, 232, 60–66.

Fujihara, R., Katayama, N., Sadaie, S., Miwa, M., Matias, G. A. S., Ichida, K., Fuji, W., Naito, K., Hayashi, M., & Yoshizaki, G. (2022). Production of germ cell-less rainbow trout by dead end gene knockout and their rescue of germ cells in dnd crispant embryos opens the possibility to produce inherited sterility in Atlantic salmon. Scientific Reports, 10, 18042. https://www.nature.com/articles/s41598-020-74876-2

He, N., Wang, Y., Zhang, C., Wang, M., Wang, Y., Zuo, Q., Zhang, Y., & Li, B. (2018). Wnt signaling pathway regulates differentiation of chicken embryonic stem cells into spermatogonial stem cells via Wnt5a. Journal of Cellular Biochemistry, 119, 1689–1701.

Heinimaa, S., & Erkinaro, J. (2004). Characteristics of mature male parr in the northermost Atlantic salmon populations. Journal of Fish Biology, 64, 219–226. https://doi.org/10.1111/j.1095-8649.2004.00308.x

Huang, Z., Rivas, B., & Agoulnik, A. I. (2012). Insulin-like 3 signaling is important for testicular descent but dispensable for spermatogenesis and germ cell survival in adult mice. Biology of Reproduction, 87, 143.

Hunt, S. M. V., Simpson, T. H., & Wright, R. S. (1982). Seasonal changes in the levels of 11-oxygensterone and testosterone in the serum of male salmon, Salmo salar L., and their relationship to growth and maturation cycle. Journal of Fish Biology, 20, 105–119.

Johnsen, H., Tveiten, H., Torgersen, J. S., & Andersen, Ø. (2013). Divergent and sex-dimorphic expression of the paralogs of the Sox9-Amh-Cyp19a1 regulatory cascade in developing and adult Atlantic cod (Gadus morhua L.). Molecular Reproduction and Development, 80, 358–370.

Johnson, A. D., & Alberio, R. (2015). Primordial germ cells: The first cell lineage or the last cells standing? Development, 142, 2730–2739. https://doi.org/10.1242/dev.113993

Johnston, D. S., Olivas, E., DiCandelerio, P., & Wright, W. W. (2011). Stage-specific changes in GDNF expression by rat Sertoli cells: A possible regulator of the replication and differentiation of stem spermatogonia. Biology of Reproduction, 85, 763–769.

Kawamura, W., Tani, R., Yahagi, H., Kamio, S., Morita, T., Takeuchi, Y., Yazawa, R., & Yoshizaki, G. (2020). Suitability of hybrid mackerel (Scomber australasicus × S. japonicus) with germ cell-less sterile gonads as a recipient for transplantation of bluefin tuna germ cells. General and Comparative Endocrinology, 295, 113525.

Klemetsen, A., Amundsen, P. A., Dempson, J. B., Jonsson, B., Jonsson, N., O’Connell, M. F., & Mortensen, E. (2003). Atlantic salmon Salmo salar L. brown trout Salmo trutta L. and Arctic char Salvelinus alpinus L.: A review of aspects of their life histories. Ecology of Freshwater Fish, 12, 1–59.

Kleppe, L., Andersson, E., Skaftnesmo, K. O., Edvardsen, R. B., Fjelldal, P. G., Norberg, B., Bogerd, J., Schulz, R. W., & Wargelius, A. (2017). Sex steroid production associated with puberty is absent in germ cell-free salmon. Scientific Reports, 7, 12584. https://doi.org/10.1038/s41598-017-12936-w

Kurokawa, H., Saito, D., Nakamura, S., Katoh-Fukui, Y., Ohta, K., Baba, T., Morohashi, K., & Tanaka, M. (2007). Germ cells are essential for sexual dimorphism in the medaka gonad. Proceedings of the National Academy of Sciences of the United States of America, 104, 16958–16963. https://doi.org/10.1073/pnas.0609932104

Li, M., Liu, Z., Kang, T., Li, M., Wang, D., Cheng, C. H. K., & Wang, D. (2021). Igf3: A novel player in fish reproduction. Biology of recirculation aquaculture system environments. Journal of the World Aquaculture Society, 47, 605–632.

Goto, R., Saito, T., Takeda, T., Fujimoto, T., Takagi, M., Arai, K., & Yamada, E. (2012). Germ cells are not the primary factor for sexual fate determination in goldfish. Developmental Biological, 370, 98–109.

Gürdal, H., Skaftnesmo, K. O., Kjrner-Semb, E., Straume, A. H., Kleppe, L., Schulz, R. W., Edvardsen, R. B., & Wargelius, A. (2020). Rescue of germ cells in dnd crispant embryos opens the possibility to produce inherited sterility in Atlantic salmon. Scientific Reports, 10, 18042. https://www.nature.com/articles/s41598-020-74876-2

Hansen, C. L., & Pelegri, F. (2021). Primordial germ cell specification in vertebrate embryos: Phylogenetic distribution and conserved molecular features of preformation and induction. Frontiers in Cell Development and Biology, 9, 730332. https://doi.org/10.3389/fcell.2021.730332
Maatouk, D. M., Saunders, P. T. K., Taggart, M., Crafie, M., Cooke, H. J., & McNeill, A. S. (2000). Loss of oocytes in dazl knockout mice results in maintained ovarian steroidogenic function but altered gonadotropin secretion in adult males. Endocrinology, 141, 4284–4294.

Melo, M. C., van Dijk, P., Andersson, E., Nilsen, T. O., Fjelldal, P. G., Male, R., Niijenhuis, W., Bogerd, J., de France, L. R., Taranger, G. L., & Schulz, R. W. (2015). Androgens directly stimulate spermatogonial differentiation in juvenile Atlantic salmon (Salmo salar). General and Comparative Endocrinology, 211, 52–61. https://doi.org/10.1016/j.ygcen.2014.11.015

Meroni, S. B., Galardo, M. N., Rindone, G., Gorga, A., Riera, M. F., & Cicogorra, S. B. (2019). Molecular mechanisms and signaling pathways involved in Sertoli cell proliferation. Frontiers in Endocrinology, 10, 224. https://doi.org/10.3389/fendo.2019.00224

Middleton, M. A., Larsen, D. A., Dickeya, J. T., & Swanson, P. (2019). Evaluation of endocrine and transcriptomic markers of male maturation in winter-run Steelhead Trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 281, 30–40. https://doi.org/10.1016/j.ygcen.2019.05.010

Miller, W. L. (1988). Molecular biology of steroid hormone synthesis. Endocrine Reviews, 9, 295–318.

Mobley, K. B., Akyanat, T., Czorlich, Y., House, A., Kurko, J., Miettinen, A., Moustakas-Verho, J., Salgado, A., Sinclair-Waters, M., Verta, J. P., & Primmer, C. R. (2021). Maturation in Atlantic salmon (Salmo salar, Salminidae): A synthesis of ecological, genetic, and molecular processes. Reviews in Fish Biology and Fisheries, 31, 523–571. https://doi.org/10.1007/s11160-021-09656-w

Morais, R. D. V. S., Crespo, D., Nóbrega, R. H., Lemos, M. S., van de Kant, H. J. G., de France, L. R., Male, R., Bogerd, J., & Schulz, R. W. (2017). Antagonistic regulation of spermatogonial differentiation in zebrafish (Danio rerio) by Igf3 and Amh. Molecular and Cellular Endocrinology, 454, 112–124. https://doi.org/10.1016/j.mce.2017.06.017

Nef, S., & Parada, L. F. (1999). Cryptorchidism in mice mutant for Ins3I. Nature Genetics, 22, 295–299.

Nóbrega, R. H., de Souza Morais, R. D. V., Crespo, D., de Waal, P. P., de France, L. R., Schulz, R. W., & Bogerd, J. (2015). Fsh stimulates spermatogonial proliferation and differentiation in zebrafish via Igf3. Endocrinology, 156, 3804–3817.

Park, J. I., Semyonov, J., Chang, C. L., Yi, W., Warren, W., & Hsu, S. Y. T. (2008). Origin of Ins3-mediated testicular descent in therian mammals. Genome Results, 18, 974–985. https://doi.org/10.10111/gr.7119108

Pfafl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45. https://doi.org/10.1093/nar/29.9.e45

Pfennig, F., Standke, A., & Gutzeit, H. O. (2015). The role of Amh signaling in teleost fish—Multiple functions not restricted to the gonads. General and Comparative Endocrinology, 223, 87–107. https://doi.org/10.1016/j.ygcen.2015.09.025

Piprek, R. P., Pecio, A., Kubiak, J. Z., & Szymura, J. M. (2012). Differential effects of busulfan on gonadal development in five divergent anuran species. Reproductive Toxicology, 34, 393–401.

Planas, J. V., & Swanson, P. (1995). Maturation-associated changes in the response of the salmon testis to the steroidogenic actions of gonadotropins (GTH I and GTH II) in vitro. Biology of Reproduction, 52, 697–704.

Pradhan, A., & Olsson, P. E. (2018). Germ cell depletion in zebrafish leads to incomplete masculinization of the brain. General and Comparative Endocrinology, 265, 15–21.

Prat, F., Sumpter, J. P., & Tyler, C. R. (1996). Validation of radio-immunoassays for two salmon gonadotropins (GTH I and GTH II) and their plasma concentrations throughout the reproductive cycle in male and female rainbow trout (Oncorhynchus mykiss). Biology of Reproduction, 54, 1375–1382.

Rege, J., Garber, S., Conley, A. J., Elsey, R. M., Turcu, A. F., Auchus, R. J., & Rainey, W. E. (2019). Circulating 11-oxygenated androgens across species. Journal of Steroid Biochemistry, 190, 242–249.

Richardson, B. E., & Lehmann, R. (2010). Mechanisms guiding primordial germ cell migration: Strategies from different organisms. Nature Reviews Molecular Cell Biology, 11, 37–49.

Rios-Rojas, C., Bowles, J., & Koopman, P. (2015). On the role of germ cells in mammalian gonad development: Quiet passengers or back-seat drivers? Reproduction, 149, R181–R191.

Rios-Rojas, C., Spiller, C., Bowles, J., & Koopman, P. (2016). Germ cells influence cord formation and leydig cell gene expression during mouse testis development. Developmental Dynamics, 245, 433–444.

Rowe, D. K., & Thorpe, J. E. (1990). Differences in growth between maturing and non-maturing male Atlantic salmon Salmo salar L., parr. Journal of Fish Biology, 36, 643–658.

Saftian, D., Bogerd, J., & Schulz, R. W. (2018). Igf3 activates β-catenin signaling to stimulate spermatogonial differentiation in zebrafish. Journal of Endocrinology, 238, 245–257. https://doi.org/10.1530/JOE-18-0124

Saftian, D., Bogerd, J., & Schulz, R. W. (2019). Regulation of spermatogonial development by Fsh: The complementary roles of locally produced Igf and Wnt signaling molecules in adult zebrafish testis. General and Comparative Endocrinology, 284, 113244. https://doi.org/10.1016/j.ygcen.2019.113244

Saftian, D., Ryane, N., Bogerd, J., & Schulz, R. W. (2018). Fsh stimulates Leydig cell Wnt5a production, enriching zebrafish type A spermatagonia. Journal of Endocrinology, 239, 351–363. https://doi.org/10.1530/JOE-18-0447

Schulz, R. (1985). Measurement of five androgens in the blood of immature and maturing Male rainbow trout, Salmo gairdneri (Richardson). Steroids, 46, 717–726.

Schulz, R. W., Nóbrega, R. H., Morais, R. D. V. S., de Waal, P. P., Franca, L. R., & Bogerd, J. (2015). Endocrine and paracrine regulation of zebrafish spermatogenesis: The Sertoli cell perspective. Animal Reproduction, 12, 81–87.

Schulz, R. W., Taranger, G. L., Bogerd, J., Niijenhuis, W., Norberg, B., Male, R., & Andersson, E. (2019). Entry into puberty is reflected in changes in hormone production but not in testicular receptor expression in Atlantic salmon (Salmo salar). Reproductive Biology and Endocrinology, 17, 48. https://doi.org/10.1186/s12958-019-0493-8

Siegfried, K. R., & Nüsslein-Volhard, C. (2008). Germ line control of female sex determination in zebrafish. Developmental Biology, 324, 277–287. https://doi.org/10.1016/j.ydbio.2008.09.025

Skaa, K. S., Nóbrega, R. H., Magarakai, A., Olsen, L. C., Schulz, R. W., & Male, R. (2011). Proteolytically activated, recombinant anti-Müllerian hormone inhibits androgen secretion, proliferation, and differentiation of spermatogonia in adult zebrafish testis organ cultures. Endocrinology, 152, 3527–3540. https://doi.org/10.1210/en.2010-1469

Škugor, A., Slanchev, K., Torgerson, J. S., Tveiten, H., & Andersen, Ø. (2014). Conserved mechanisms for germ cell-specific localization of nanos3 transcripts in teleost species with aquaculture significance. Marine Biotechnology, 16, 256–264.

Škugor, A, Tveiten, H., Johnsen, H., & Andersen, Ø. (2016). Multiplicity of Buc copies in Atlantic salmon contrasts with loss of the germ cell...
Weidinger, G., Stebler, J., Slanchev, K., Dumstrei, K., Wise, C., Lovell-Badge, R., Thise, C., Thise, B., & Raz, E. (2003). Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Current Biology, 13, 1429–1434.

Weltzien, F.-A., Andersson, E., Andersen, Ø., Shalchian-Tabrizi, K., & Norberg, B. (2004). The brain–pituitary–gonadal axis in male teleosts, with special emphasis on flatfish (Pleuronectiformes). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 137, 447–477. https://doi.org/10.1016/j.cbpa.2003.11.007

Wong, T. T., & Zohar, Y. (2015). Production of reproductively sterile fish by a non-therapeutic gene silencing technology. Scientific Reports, 5, 15822. https://doi.org/10.1038/srep15822

Woolton, R. J., & Smith, C. (2014). Endocrinology of reproduction, Reproductive biology of teleost fishes (Ch. 5, pp. 81–126). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118891360

Yeh, J. R., Zhang, X., & Nagano, M. C. (2011). Wnt5a is a cell-extrinsic factor that supports self-renewal of mouse spermatogonial stem cells. Journal of Cell Science, 124, 2357–2366. https://doi.org/10.1242/jcs.080903

Yoshikawa, H., Ino, Y., Kishimoto, K., Koyakumaru, H., Saito, T., Kinoshita, M., & Yoshiura, Y. (2020). Induction of germ cell deficiency in grass puffer by dead end 1 gene knockdown for use as a recipient in surrogate production of tiger puffer. Aquaculture, 526, 735385.

Yoshizaki, G., Takashiba, K., Shimamori, S., Fujinuma, K., Shikina, S., Okutsu, T., Kume, S., & Hayashi, M. (2016). Production of germ cell deficient salmonids by dead end gene knockdown, and their use as recipients for germ cell transplantation. Molecular Reproduction and Development, 83, 298–311.

Youngson, A. F., McLay, H. A., Wright, R. S., & Johnstone, R. (1988). Steroid hormone levels and patterns of growth in the early part of the reproductive cycle of adult Atlantic salmon (Salmo salar L.). Aquaculture, 69, 145–157.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Tveiten, H., Karlsen, K., Thesslund, T., Johansson, G. S., Thiyagarajan, D. B., & Andersen, Ø. (2022). Impact of germ cell ablation on the activation of the brain–pituitary–gonadal axis in precocious Atlantic salmon (Salmo salar L.) males. Molecular Reproduction and Development, 89, 471–484. https://doi.org/10.1002/mrd.23635