The Efficacy of Noni Fruit Methanol Extract (Morinda citrofolia) to Brain Derived Neurotrophic Factor (BDNF) on Male Swiss Webster Mice Induced By Immobilization Stress

Eka Febri Zulissetiana 1 and Susilawati2
1 Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Sriwijaya University, Palembang, Indonesia.
2 Department of Clinical Pathology, Faculty of Medicine, Sriwijaya University, Palembang, Indonesia.

E-mail : susilwt78@gmail.com

Abstract. Aging process is associated with declines in certain cognitive abilities such as learning and memory ability and impact on high risk of dementia, physical disability and death. Oxidative stress is believed as basic mechanism of aging process. Morinda citrofolia (Noni fruit) has long been used as a traditional plant in worldwide and was proven empirically in traditional medicine as antioxidant. This study was to determine the effect of noni fruit methanol extract on BDNF levels in white mice of Swiss Webster strain induced by immobilization stress. This research is experimental study with post test only control group design. Male Swiss Webster Mice were induced by immobilization stress and randomized into seven groups (5 mice/groups). The first group was negative control group; Group 2,3,4,5 and 6 was given treatment with varied concentrations of Morinda citrofolia (50, 100, 200, 400 and 800 mg/kgBW). Vitamin E (70 mg/kgBW), standart antioxidant was used as positive control (Group 7). Brain BDNF level of the white mice were measured by using ELISA method. Experiment result showed that treatment with Morinda citrofolia extract (50, 100, 200,400 and 800 mg/kgBW) and Vitamin E 70 mg/kg BW showed a significant differences in BDNF level compare with the negative control rats. There is no significant differences between 200 mg/kgBW Metanol Extract of Morinda citrofolia group and vitamin E (p=0.301;p>0.05). Metanol Extract of Morinda citrofolia could prevent the decrement of BDNF level due to stress.

Keywords: Morinda citrofolia, Noni fruit, BDNF, stress

1. Introduction

Aging process is a gradual and irreversible decrease in the physiological capacity of the body system to the extent of failure and death. Aging is a major cause of decreased brain function such as learning and memory processes (1,2). An increase of the elderly population along with the high life expectancy around the world causing cognitive decline caused by aging has become one of the serious problem in health care system. The decrease of cognitive function will have an impact on the high risk of dementia, physical disability and death (3,4). Aging process is believed to be mediated by oxidative stress. Oxidative stress is a redox state caused by an imbalance between the production and detoxification of reactive oxygen species (ROS) that can cause oxidative damage to lipids and proteins and decrease natural glutathione and antioxidant levels in the synapse of nerve cells (1,5,6).

Brain-derived neurotrophic factor (BDNF) is a neurotropin family that plays a role in the proliferation, differentiation and survival of nerve cells (7). BDNF also protects nerve cells from oxidative stress caused by...
hypoglycaemia, ischemia, hypoxia and ethanol toxicity (8). Stress, both acute and chronic, affects the synthesis of BDNF in the brain. Chronic stress decreases BDNF protein expression (9,10) whereas acute stress is quite the opposite (11,12).

Previous studies have shown that Morinda citrifolia could increase the levels of antioxidant enzymes (13), as well as inhibit the formation of malondialdehyde (MDA) and Nitrit Oxide (NO) (14). The extract of methanol and ethyl acetate of noni fruit can prevent oxidation of Low Density Lipoprotein (LDL) induced by Copper (15) and inhibit oxidation process due to lipid hyperoxidation or superoxide anion (16).

Until now, many studies have been conducted on the antioxidative and antiinflammatory capabilities of noni fruit, so the pharmacological effects of noni fruit as antioxidant and antiinflammatory are also thought to be able to protect the nerve damage caused by oxidative stress so that the need to be studied and examined how the effect of giving extract methanol of Morinda citrifolia against BDNF levels in white mice of swiss strains of male Webster induced chronic immobilized stress.

2. Materials and Methods

2.1 Preparation of Extract
Morinda citrifolia fruits were collected from Tebedak, Ogan Ilir, South Sumatera Indonesia during the month of October 2016. The fruits were washed, blotted, dried and sliced into 100 mesh. Five hundred grams of dried fruit powder were macerated with 1000 ml of methanol for 24 hours, stirring regularly, filtered. The residual residue is macerated again 3 times so that all the substances contained in the mengkudu fruit is extracted. All the filtrate is then collected and evaporated in rotary evaporator.

2.2 Animal and Experimental Design
The research subjects were 35 of Mus Musculus, 10 to 12-week-old male Swiss Webster strain with the weight ranging from 25 to 35 grams, conserved in the Animal House of Medicine Faculty of Sriwijaya University. Each cage housed eight mice fed by food and drinks every day ad libitum. The conservation room was well ventilated with the maintained room temperature of 25 to 30 °C, humidity of 50 % to 60% and the cycle ratio of darkness to brightness of 12:12 hours.

Seven days after acclimatization, the subjects were then randomly divided into four groups with five mice for each. Group 1 was negative control group; group 2,3,4,5 and 6 was given treatment with varied concentrations of Morinda citrifolia (50, 100, 200, 400 and 800 mg/kgBW. Vitamin E (70 mg/kgBW), standart antioxidant was used as positive control (Group 7). All mice were put in a particular plastic canister, specially designed to ensure the mice would stay in dorsal recumbent position without access to food and drink. Such immobilized stress would be applied for two hours (10 am to 12 pm) for 21 consecutive days.

2.3 ELISA Assay
Mice had to be sacrificed 24 hours after the last training session by decapitation to obtain fresh tissues by decapitation procedure without anesthesia as outlined by Institutional Animal Care and Use Committee (IACUC). Brain was separated from the skull and brain stem manually with a scalpel blade and a micro tweezer, then was restored at -80°C. The brain tissue sample was homogenized with blade homogenizer after being added with PBS. Next, the sample was centrifuged with the velocity of 3,000 rpm for 20 minutes in 4°C temperature. BDNF levels of brain tissue were measured by the ELISA method as described in manufacturer's instructions of ELISA kit.
3. Results and Discussion

3.1 Result

The mean BDNF levels for all groups were between (174.8 ± 6.81) and (470.93 ± 10.9) pg/ml.

Vitamin E	BDNF Level (pg/ml)
Aquadest	174.8± 6.81 b
Morinda citrofolia extract 50mg/kgBW	411.40± 8.24 b
Morinda citrofolia extract 100mg/kgBW	413.67± 6.57 b
Morinda citrofolia extract 200mg/kgBW	470.93± 10.9 a
Morinda citrofolia extract 400mg/kgBW	339.67± 8.57 b
Morinda citrofolia extract 800mg/kgBW	234.73± 15.94 b

Table 1 The Efficacy of Morinda citrofolia Extract on BDNF Level (pg/ml)

Independent T Test, a : p > 0,05 vs vitamin A. b : p < 0,05 vs vitamin A; Significance level was determined by one way ANOVA followed by LSD pos-hoc test.

Table 1 showed BDNF Level as negatif control and subjected to Morinda citrofolia extract (50,100,200,400,800 mg/kgBW) and Vitamin E. Treatment either extract and Vitamin E significantly increased BDNF Level (p < 0,05) compare with negative control. But, there was no differences between Vitamin E group and Morinda citrofolia extract 200mg/kgBW groups in BDNF Level after treatment (p = 0,301) p > 0,05.)

![Figure 1 Average Graph of BDNF Level (pg/ml)](image-url)
3.2 Discussion

As the main organ that responds to stress, brain undergoes structural and chemical changes (17). It is a form of brain adaptation (allostasis) in maintaining homeostasis. Although the brain is able to adapt, extreme and repetitive stress exposure can cause brain plasticity abnormalities, while lowering the ability to control stress (allostasis overload). Some forms of brain plasticity include neurogenesis (18), dendrite remodeling (19,20) and synaptic reinforcement (21).

The glucocorticoid hormone is the last effector of the HPA axis that plays an important role in stress management (22). The interactions of glucocorticoids hormones and their receptors affect the expression of some of the genes involved in cell metabolism, the structure and transmission of synapses, such as enzymes, neuropeptides, growth factors, and cell adhesion molecules (23). One candidate who plays an important role in brain plasticity is the brain-derived neurotrophic factor (BDNF) (24). Glucocorticoid hormone has been shown to influence the expression of the BDNF gene (25).

BDNF expression in the brain is strongly influenced by the development of phylogenetic brain, type, intensity and duration of stress, as well as the rhythm of the glucocorticoid hormone in the blood circulation (25). In addition, the role of epigenetic factors, such as CREB as transcription factor, methyl-CpG-binding protein 2 (MeCP2) as transcriptional repressor, Ca2+ ions and other intracellular signaling cascades also affect BDNF gene expression (26,27).

In this study, the cerebroprotective effect of Noni fruit methanol extract on BDNF was clearly demonstrated using stress immobilization model mice. The results of this study showed that the extract of 200mg / kgBW dose of Noni fruit methanol extract showed the highest increase of BDNF, but the increase of dose of methanol extract to 400 mg/kgBW or 800mg/kgBW did not show better improvement than the 200mg/kgBW dose. It was concluded that the effect of Noni fruit methanol extract of 200 mg / kg BW can significantly increase BDNF levels compared to vitamin E and methanol extract of noni fruit on BDNF concentration in this research is flat dose.

The efficacy of Noni fruit (Morinda citrifolia) as a neuroprotector against cell damage caused by oxidative stress has long been proven. It is mediated by the active chemicals contained in noni fruit, including enzymatic antioxidant (Superoxide dismutase, catalase, peroxidase, glutathione reductase, glutathione-s-transferase) and non enzymatic antioxidant (ascorbic acid, alpha tocopherol, vitamin A, flavonoids, phenols and tannins (28). Studies have also reported that Noni fruit extract could also pass the blood brain barrier (29).

Research conducted by Muralidharan et al. (2010) mentioned that giving ethyl acetate fraction of noni fruit in mice with beta-amyloid induced cognitive dysfunction model at dose of 400 mg/kg/day could increased serotonin, dopamine and antioxidant enzyme serum levels (30). According to Pauchauri et al. (2012) giving ethanol extract of noni fruit and ethyl acetate fraction in mice enhanced memory and brain blood flow and decrease oxidative stress and acetylcholinesterase activity (31). The same result is also conveyed by Hussin et al. (2007) who mentioned that giving ethanol extract of noni fruit could inhibit lipid peroxidation where it is characterized by decrease serum MDA level and increased activity of antioxidant enzyme (32).
4. Conclusion
Noni fruit extract of 200mg/kgBW dose was effective in increasing BDNF levels in white mice of Swiss Webster strain induced by immobilized stress which the effect of noni fruits extract on BDNF levels was flat dose.

Acknowledgements
This study was supported by the research grant No 01714/IT2.11/PN.08/2017 funded by the Faculty of Medicine, Sriwijaya University, Palembang, Indonesia

References :

[1] Referencesakul P 2010 Thammasat Medical Journal, 10(3) 311.
[2] Muto I, Oda T and Sudo N 2012 Macroeconomic impact of population aging in japan: A perspective from an overlapping generations model.
[3] Williams KN and Kemper S 2010 Interventions to reduce cognitive decline in aging. Journal of psychosocial nursing and mental health services. 48(5) 42.
[4] Deary I J, Corley J, Gow A J, Harris S E, Houlihan L, Marioni RE, Penke L, Rafnsson S B and Starr JM, 2009. British medical bulletin, 92(1) 135.
[5] Azman A, Koller J and Plesnicar B 1979 Journal of the American Chemical Society, 101(5) 1107
[6] Wang X, Wang, W, Li L, Perry G, Lee HG and Zhu X 2014. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1842(8) 1240.
[7] Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato J I, Goldin A, Izquierdo I and Medina JH, 2008. Proceedings of the National Academy of Sciences 105(7) 2711.
[8] Sun M, Kong L, Wang X, Lu XG, Gao Q and Geller A I 2005 Brain research 1052(2) 119.
[9] Gronli J, Bramham C, Murison R, Kanhema T, Fiske E, Bjorvatn B, Ursin R and Portas CM 2006. Pharmacology Biochemistry and Behavior 85(4) 842
[10] Shi S S, Shao S H, Yuan B P, Pan F and Li Z L 2010. Yonsei medical journal, 51(5) 661.
[11] Molteni R, Calabrese F, Bedogni F, Tongiorgi E, Fumagalli F, Racagni G. and Riva MA, 2006 The The International Journal of Neuropsychopharmacology 9(3) 307.
[12] Bland S T, Schmid MJ, Der-Avakian A, Watkins L R, Spencer R L and Maier S F 2005. Brain Research 1051(1) 90.
[13] Kumar KT, Panda DS, Nanda UN and Khuntia S 2010 Int. J. PharmTech Res, 2(2) 1030
[14] Hussain S, Tamizhselvi R, George L and Manickam V 2016 International journal of stem cells, 9(2) 22.
[15] Kamiya K, Tanaka Y, Endang H, Umar M and Satake T 2004 Journal of agricultural and food chemistry 52(19) 5843
[16] Wang X and Michaelis E K 2010. Frontiers in aging neuroscience, 2.
[17] Radley J J and Morrison J H 2005. Ageing research reviews, 4(2) 271.
[18] Joëls M, Karst H, Krugers H J and Lucassen P J 2007 Frontiers in neuroendocrinology 28(2) 72.
[19] Radley J J, Sisti H M, Hao J, Rocher A, McCall T, Hof P R, McEwen B S and Morrison J H 2004. Neuroscience, 125(1) 1
[20] Goldwater D S, Pavlides C, Hunter RG, Bloss E B, Hof P R, McEwen B S and Morrison JH 2009. Neuroscience, 164(2) 798.
[21] Sapolsky R M 1999 Experimental gerontology 34(6) 721
[22] Tsigos C and Chrousos G P 2002 Journal of psychosomatic research 53(4) 865.
[23] De Kloet E R, Joëls M and Holsboer F 2005. Nature reviews. Neuroscience, 6(6) 463.
[24] Santos AR, Comprido D and Duarte CB 2010. Progress in neurobiology, 92(4) 505.
[25] Suri D and Vaidya VA 2013. Neuroscience 239 196.
[26] Roth TL, Zoladz PR, Sweatt JD and Diamond DM 2011 *Journal of psychiatric research*, 45(7) 919.

[27] Karpova NN, 2014 *Neuropharmacology* 76 709.

[28] Srinivasahan V and Durairaj, B.R.I.N.D.H.A 2014 *International Journal of Pharmacy and Pharmaceutical Sciences*, 6(4) 55.

[29] Vanisree AJ 2012, Technical Bulletin - 09, *World Noni Research Foundation, Chennai and University of Madras, Chennai, Tamil Nadu, India*. 36

[30] Muralidharan P and Srikanth 2010 *Journal of Chemistry* 7(2) 612.

[31] Pachauri SD, Tota S, Khandelwal K, Verma PR, Nath C, Hanif K, Shukla R, Saxena JK, Dwivedi AK 2012. *Journal of ethnopharmacology*. 139(1) 34.

[32] Hussin, M., Abdul-Hamid, A., *Food Chemistry*, 100(2), 535-541.