We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,500
Open access books available

177,000
International authors and editors

195M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter

Invasive Alien Flora in and around an Urban Area of India

Samarendra Narayan Mallick, Nirius Xenan Ekka, Sanjeet Kumar and Sudam C. Sahu

Abstract

Invasive alien species are non-native exotic organisms which can disperse and destroy the biodiversity and change the ecosystem. The present study deals with the comprehensive list of invasive alien plants (IAPs) of Rourkela Steel City, Sundargarh, Odisha, with background information on family, habit, and nativity. A total of 165 invasive alien species under 132 genera and 59 families have been recorded. From the nativity study, among 25 geographic regions, the majority of invasive plants reported from American continent (62%) with 103 species. While in life form analysis, the herbs (114 species) are dominant, followed by trees (23 species), shrubs (22 species), climber (5 species), and undershrub (1 species). *Ageratum conyzoides*, *Blumea lacera*, *Cassia alata*, *Lantana camara*, *Cassia tora*, *Parthenium hysterophorus*, *Xanthium* sp., *Datura* sp., *Cardamine scutata*, *Argemone mexicana*, *Grangea maderaspatana*, *Hyptis suaveolens*, and *Gnaphalium polycaulon* are some noxious species found during the study. *Parthenium hysterophorus* is the highly noxious plant which is grown everywhere after *Ageratum conyzoides* and *Lantana camara*. Most of the invasive species are locally used for medicinal purposes as well as for food, fuel, and fodder purposes. A better planning and reporting of the spread of new plants in the area are needed for early identification and control of the invasive alien plant species in different seasons. Since the flora of Sundargarh districts has not been beneficially explored, this study will help in the compilation of flora of Sundargarh district and Rourkela in particular. Further studies will reveal the allelopathic effects on different agricultural crops as well as the different ethnobotanical values.

Keywords: invasive alien plants, biodiversity, utility, urban area, India

1. Introduction

Human beings depend on plants for his daily needs for which several numbers of plants are used to fulfill their purposes. Sometimes to fulfill human needs, plants are introduced intentionally by humans or accidentally from one region to another new region which is nonnative. These introduced plant species are called alien species or exotic species. The alien species invade the new region after well adapted to the environment. The plants which are introduced by human intentionally or accidentally by migration from its natural habitat to another new habit and their localities are known as alien, introduced, and exotic, originated from foreign or nonnative species [25, 33]. They have the potential to grow in any environmental conditions and are easily invasive to the new environment. Preston and Williams...
stated that “Invasive alien plant species (IAPs)” are grown in such a way that they become as more dangerous to sustainable development. As a result, we are facing the great challenge of biodiversity loss all over the globe. These group of plant species act as the main cause for threat to the native biological diversity. They show various effects on the environment and economy of nonnative ecosystems. The exotic or alien plant species not only show negative impacts, but also they have much economic benefits. Now invasion alien species are cultivated to provide food, medicine, fuel, or fodder to local communities [9, 29]. The international trade of the products is helpful for introduction of these invasive alien species. Globally the introduction of IAPs leads to the huge loss of biodiversity and agriculture crops and health problems like respiratory illness [19].

Invasion of plants creates serious problems to the ecosystems by changing the structure, composition, and function of natural ecosystem [15, 17]. The rapid reproduction and growth rate, high dispersal ability, physiological adaptations to new conditions, and ability to survive on various ecosystems are the common characteristics of invasive plants. The IAPs have the ability to associate with human beings very easily. When the invasive plants colonized to grow in new areas, it can change the soil structure and composition of that area. It is reported that the agricultural lands are more threatened by IAPs because they are introduced by the crop seeds, garden plants, and wind breakers [24].

The first and most important step for effective and proper management of IAPs is to collect the baseline data about their invasion status, growth form, and life cycle. Accurately distinguishing between native and alien species is required not only when developing conservation and vegetation management plans but also for improving our understanding of the different components of biodiversity [21]. Rourkela, one of the major steel industrial centers of India and regarded as the industrial capital of Odisha, is situated in the north-eastern part of the state. Rourkela is located in Sundargarh district about 245 km from the shoreline of Bay of Bengal. It is located at 20° 12′ North latitude and 84° 53′ longitude, at the elevation about 219 m above the mean sea level. Due to better communication, abundance of natural mineral resources such as iron ore, limestone, dolomite, water, and other infrastructures in and around Rourkela is the main reason for the starting of industrialization since 1956. Studies on flora of Sundargarh district have not been fully explored. A few reports on flora of Sundargarh district [1, 2, 11, 13, 14] have been published. The study of literatures reveals that survey pertaining to major invasive plant species has not been reported earlier. It is high time to undertake complete survey of the flora of Sundargarh district with special emphasis on IAPs which may not be available in the future due to rapid industrialization. Many species may become endangered in the process of development, and they should be recorded and identified along with their usefulness before their extinction during rapid industrialization. Keeping in view, an attempt has been made in the present study to provide the baseline information on the invasive plant species in and around of Rourkela City of Sundargarh district. It will be helpful in preparation of district flora of Sundargarh.

2. Materials and method

During January 2012 to April 2019, intensive floristic surveys were undertaken in different areas of Rourkela Steel City (Figure 1) in such a way that each location could be studied in every season of the year. A comprehensive list of invasive alien plant species (IAPs) and the interaction with local inhabitants were made to collect the information regarding the various uses of IAPs of the area. Periodic collection of IAPs was made from each locality followed by identification using the available
Invasive Alien Flora in and around an Urban Area of India
DOI: http://dx.doi.org/10.5772/intechopen.88725

floras [6, 30]. The nativity, history, diversity, sources, and mode of introduction of these alien invasive plants were noted from the available literatures. The native ranges of the species were recorded from published literatures [3, 4, 5, 10, 12, 15, 16, 18–20, 24–27, 31, 32, 36, 37, 38]. Plants were categorized according to their life forms as herb, undershrub, shrub, climber, and tree as well as their habit-wise as annual, biennial, and perennial. The studied habitats were wasteland, cultivated field, riverbank, pond bank, home garden, forest, roadside, etc. The economic importance of the IAPs was collected from the local inhabitants and surveyed literatures.

3. Results and discussion

A total of 165 taxa of invasive alien plant species belonging to 132 genera and 59 families have been recorded from the Rourkela Steel City of Odisha (Table 1). The number of dicotyledonous IAPs found is 149 under 118 genera and 50 families, while 15 species of monocotyledons are found under 14 genera and 8 families. From the study, it was found that 114 species (69%) were herbs followed by trees with 23 species (14%), shrub 22 species (13%), climbers 5 species (3%), and undershrubs 1 species (1%) (Figure 2). The life form pattern distribution showed that herbaceous species (114 spp.) were dominant than other life forms (Table 2). The herbs can easily grow in any condition of environment and dominate to others. The habit distribution analysis showed that 56% (92 spp.) were annuals and 44% (73 spp.) were perennials. Table 3 showed the total number of IAPs recorded from the Rourkela Steel City and distributed under different families. From the taxonomic distribution of alien flora, Asteraceae (24 spp.) showed dominant impact among the invasive alien species in this region followed by Caesalpiniaeae (11 spp.), Convolvulaceae (9 spp.), Euphorbiaceae (8 spp.), Amaranthaceae (8 spp.), Poaceae (6 spp.), and Solanaceae (8 spp.), and Fabaceae, Malvaceae, and Verbenaceae represented only 5 spp. each (Table 4). These 10 dominant families contributed 89 species (54%) of the total invasive plant species studied (Figure 3).

The genera Cassia and Ipomoea showed the highest number (six spp. each) followed by Cleome, Euphorbia, Alternanthera, Ludwigia, etc.

The contribution of different geographical regions or the nativity of invasive alien species is shown in Table 3. A total of 25 native geographical regions of IAPs were recorded. The major geographical regions or nativities of IAPs were Tropical
Sl no.	Plant species	Family	Life form	Habit	Nativity	Use
1	*Abelmoschus esculentus* Moench.	Malvaceae	Shrub	P	Trop. Africa	V, Pt
2	*Acacia auriculiformis* A. Cunn. ex Benth.	Mimosaceae	Tree	P	Australia	M, Ave, Sf
3	*Acanthospermum hispidum* DC.	Asteraceae	Herb	A	Brazil	M
4	*Aerva lanata* (L.) Juss. ex. Schult.	Amaranthaceae	Herb	P	Madagascar	M
5	*Aeschynomene indica* L.	Fabaceae	Herb	A	North America	Fu
6	*Ageratum conyzoides* L.	Asteraceae	Herb	A	Trop. America	Nox
7	*Allium cepa* L.	Liliaceae	Herb	A	Mediterranean	M, V
8	*Aloe barbadensis* Mill.	Liliaceae	Herb	P	Mediterranean	M
9	*Alternanthera philoxeroides* (Mart.) Griseb.	Amaranthaceae	Herb	P	Trop. America	V, M
10	*Alternanthera pungens* Kunth	Amaranthaceae	Herb	P	Trop. America	V
11	*Alternanthera sessilis* (Linn) DC.	Amaranthaceae	Herb	P	Trop. America	V, M
12	*Amaranthus spinosus* L.	Amaranthaceae	Herb	A	Trop. America	V
13	*Antigonon leptopus* Hook. & Arn.	Polygonaceae	Climber	P	Trop. S. America	O
14	*Argemone mexicana* L.	Papaveraceae	Herb	A	S. America (seventeenth cent.)	M, Nox
15	*Bauhinia purpurea* L.	Caesalpiniaaceae	Tree	P	West Indies	V
16	*Bidens pilosa* L.	Asteraceae	Herb	A	Trop. America	M, Fo
17	*Blainvillea acmella* (L.) Phillipson	Asteraceae	Herb	A	Trop. America (eighteenth)	M
18	*Blumea lacera* (Burm.f.) DC.	Asteraceae	Herb	A	Trop. America	Nox, M
19	*Borassus flabellifer* L.	Arecaceae	Tree	P	Trop. Africa	Pt, Fu
20	*Bougainvillea spectabilis* Willd.	Nyctaginaceae	Shrub	P	Brazil	O
21	*Caesalpinia pulcherrima* (L.) Sw.	Caesalpiniaaceae	Shrub	P	Trop. America	O
22	*Calotropis gigantea* R. Br.	Asclepiadaceae	Shrub	P	Trop. Africa	M
23	*Calotropis procera* (Ait.) R. Br.	Asclepiadaceae	Shrub	P	Trop. Africa	M
24	*Cannabis sativa* L.	Cannabinaceae	Undershrub	P	Central Asia	M, Sm, Nar
25	*Capsicum annuum* L.	Solanaceae	Shrub	A	Trop. America	F
Sl no.	Plant species	Family	Life form	Habit	Nativity	Use
-------	---------------------------	-----------------	-----------	-------	---------------	-------------
26	Cardamine scutata L.	Brassicaceae	Herb	A	Trop. America	NK, Nox
27	Cardiospermum halicacabum L.	Sapindaceae	Herb	A	Trop. America	M
28	Carica papaya L.	Caricaceae	Tree	P	Mexico	V
29	Cassia alata L.	Caesalpiniaeae	Shrub	P	West Indies	NK, Nox
30	Cassia fistula L.	Caesalpiniaeae	Tree	P	Pantropic	O, M, SF
31	Cassia obtusifolia L.	Caesalpiniaeae	Herb	P	Trop. America	M
32	Cassia occidentalis L.	Caesalpiniaeae	Herb	P	S. America	M
33	Cassia siamea Lamk	Caesalpiniaeae	Tree	P	South East Trop. Asia	Fu, Ave
34	Cassia tora L.	Caesalpiniaeae	Herb	A	S. America	V, M, Nox
35	Casuarina equitifolia Forster & Forster f.	Casuarinacea	Tree	P	Australia	Fu, SF
36	Catharanthus pusillus (Murr.) G. Don.	Apocynacea	Herb	A	Trop. America	NK
37	Catharanthus roseus (Linn) G.Don	Apocynacea	Shrub	P	West Indies	M
38	Celosia argentea L.	Amaranthaceae	Herb	A	Trop. Africa	V, M
39	Chenopodium album L.	Chenopodiaceae	Herb	A	Europe	V
40	Chloris barbata Sw.	Poaceae	Herb	P	Trop. America	Fo, Fu
41	Chromolaena odorata L.	Asterolaeae	Herb	A	Trop. America	M
42	Chrozophora rettleri (Geisel.) Juss.	Euphorbiaceae	Herb	A	Trop. Africa	NK
43	Cleome gynandra L.	Capparaceae	Herb	A	Trop. America	M
44	Cleome monophylla L.	Capparaceae	Herb	A	Trop. Africa	V, M
45	Cleome rutidosperma DC	Capparaceae	Herb	A	Trop. America	NK
46	Cleome viscosa L.	Capparaceae	Herb	A	Trop. America	V, M
47	Convolvulus nervosus Burn.f.	Convolvulaceae	Herb	A	Europe	M
48	Corchorus aetuans L.	Tiliaceae	Herb	A	Trop. America	Fu
49	Crotalaria pallida Ait	Fabaceae	Herb	A	Trop. America	Fi, Fu
50	Crotalaria retusa L.	Fabaceae	Herb	A	Trop. America	Fi, Fu
51	Croton bongolakensis Baill.	Euphorbiaceae	Herb	P	S. America	M
52	Cucumis melo L.	Cucurbitaceae	Climber	A	Iran and N. West	V
Sl no.	Plant species	Family	Life form	Habit	Nativity	Use
-------	-----------------------------------	-------------------	-----------	-------	--------------	---------
53	*Cuscuta reflexa* Roxb.	Cuscutaceae	Herb	A	Mediterranean	M
54	*Cymodoon dactylon* (L.) Pers.	Poaceae	Herb	P	Trop. America	M
55	*Cyperus difformis* L.	Cyperaceae	Herb	P	Trop. America	M
56	*Cyperus iria* L.	Cyperaceae	Herb	P	Trop. America	M
57	*Datura innoxia* Mill.	Solanaceae	Shrub	P	Trop. America	M, Nox
58	*Datura metel* L.	Solanaceae	Shrub	P	Trop. America	M, Nox
59	*Delonix regia* (Boj.) Raf.	Caesalpiniaeae	Tree	P	Madagascar	O, Ave, Sf
60	*Duranta repens* L.	Verbenaceae	Shrub	P	America	O
61	*Echinochloa colona* (L.) Link	Poaceae	Herb	A	Trop. S. America	Fo
62	*Echinochloa crus-galli* Beauv.	Poaceae	Herb	A	Trop. S. America	Fo
63	*Eclipta prostrata* L.	Asteraceae	Herb	A	Trop. America	M
64	*Eichhornia crassipes* (Mart.) Solm.	Pontederiaceae	Herb	P	Trop. America	St
65	*Emilia sonchifolia* (L.) DC.	Asteraceae	Herb	A	Trop. America	V, M
66	*Eucalyptus citriodora* Hook.	Myrtaceae	Tree	P	Australia	M, Fu, Sf
67	*Euphorbia heterophylla* auct. Non L.	Euphorbiaceae	Herb	A	Trop. America	O
68	*Euphorbia hirta* L.	Euphorbiaceae	Herb	A	Trop. America	M
69	*Euphorbia pulcherrima* Willd. ex Klotz	Euphorbiaceae	Shrub	P	Mexico	O
70	*Euphorbia thymifolia* L.	Euphorbiaceae	Herb	P	Trop. America	NK
71	*Evolvulus nummularius* L.	Convolvulaceae	Herb	P	Trop. America	M
72	*Gnaphalium polycaulon* Pers.	Asteraceae	Herb	A	Trop. America	NK, Nox
73	*Gomphrena celosioides* Mart.	Amaranthaceae	Herb	A	S. America	Fo
74	*Gomphrena globosa* L.	Amaranthaceae	Herb	A	America	O
75	*Grandea madрасpamata* L.	Asteraceae	Herb	A	Trop. S. America	NK, Nox
76	*Grevillea robusta* Cunn. ex R.Br.	Proteaceae	Tree	P	Australia	Fu, Sf
77	*Helianthus annuus* L.	Asteraceae	Herb	A	America	O, Oil
Sl no.	Plant species	Family	Life form	Habit	Nativity	Use
-------	--------------------------------	------------------	-----------	-------	-----------	---------
78	Heliotropium indicum L.	Boraginaceae	Herb	A	S. America	M
79	Hibiscus rous-sinensis L.	Malvaceae	Shrub	P	China	M, O
80	Hyptis suaveolens (L.) Poit.	Lamiaceae	Herb	A	Trop. America	M, Nox
81	Impatiens balsamina L.	Balsaminaceae	Herb	A	Trop. America	O
82	Indigofera linnar Ali	Fabaceae	Herb	A	Trop. Africa	M
83	Ipomoea batatas (L.) Lam.	Convolvulaceae	Climber	P	Trop. America	Ft
84	Ipomoea carnea Jacq.	Convolvulaceae	Shrub	P	Trop. America	Fu
85	Ipomoea hedetfolia L.	Convolvulaceae	Herb	A	Trop. America	M
86	Ipomoea obscura (L.) Ker-Gaw	Convolvulaceae	Herb	P	Trop. Africa	NK
87	Ipomoea pros-tigris L.	Convolvulaceae	Herb	A	Trop. East Africa	M
88	Ipomoea quamoclit L.	Convolvulaceae	Herb	P	Trop. America	M
89	Jatropha gossypifolia L.	Euphorbiaceae	Shrub	P	Brazil	M
90	Justicia gendarussa Burm.f.	Acanthaceae	Shrub	P	China	M
91	Kalanchoe pinnata (Lam.) Pers.	Crassulaceae	Herb	P	Trop. Africa	O, M
92	Kigelia pinnata DC	Bignoniaceae	Tree	P	Africa	O, Ave, SF
93	Lagerstroemia indica L.	Lytharaceae	Shrub	P	China	O
94	Lantana camara L.	Verbenaceae	Shrub	P	Trop. America	M, Nox
95	Leonotis nepetifolia (L.) R. Br.	Lamiaceae	Herb	A	Trop. Africa	M
96	Leucaena leucocephala (Lam.) de Wit.	Mimosaceae	Tree	P	Trop. America	Fu, SF
97	Ludwigia adscendens (L.) Hara	Onagraceae	Herb	A	Trop. America	Sb
98	Ludwigia octovalvis (Jacq.) Raven	Onagraceae	Herb	A	Trop. America	M, Sb
99	Ludwigia perennis L.	Onagraceae	Herb	A	Trop. America	M, Sb
100	Malvastrum coronandulianum (L.) Garche	Malvaceae	Herb	A	Trop. America	M, Fi
101	Martynia annua L.	Martyniaceae	Herb	A	Trop. America	M
102	Mecardonia procumbens (Mill.) Small	Verbenaceae	Shrub	A	T. N. America	NK
103	Melochia corchorifolia L.	Sterculiaceae	Herb	A	Trop. America	NK
Sl no.	Plant species	Family	Life form	Habit	Nativity	Use
-------	--------------------------------	-----------------	-----------	-------	----------	--------
104	Merremia vitifolia	Convolvulaceae	Herb	A	Trop. America	NK
105	Mikania micrantha L.	Asteraceae	Herb	A	Trop. America	Nox
106	Mimosa pudica L.	Mimosaceae	Herb	P	Brazil	M
107	Mirabilis jalapa L.	Nyctaginaceae	Herb	P	Peru	O, M
108	Morus australis Poir.	Moraceae	Tree	P	China	Ft
109	Nicotiana tabacum L.	Solanaceae	Herb	A	S. America	Nar, Sm
110	Ocimum canum Sims	Lamiaceae	Herb	A	Trop. America	M
111	Opuntia stricta (Haw.) Haw.	Cactaceae	Shrub	P	Trop. America	NK
112	Oxalis corniculata L.	Oxalidaceae	Herb	A	Europe	M
113	Parthenium hysterophorus L.	Asteraceae	Herb	A	Trop. America	Nox
114	Passiflora foetida L.	Passifloraceae	Climber	P	Trop. S. America	O, M
115	Pedaliuim murex L.	Pedaliaceae	Herb	A	Trop. America	M
116	Peltophorum pterocarpum (DC.)	Caesalpiniaoeae	Tree	P	Malaya	Ave, Sf
	Backer ex K.Heyne					
117	Peperomia pellucida (L.) Kunth	Piperaceae	Herb	A	Trop. S. America	M
118	Peristrophe bicalylata (Retz.)	Acanthaceae	Herb	A	Trop. America	NK
	Nees.					
119	Phoenix sylvestri (L.) Renb.	Arecaceae	Tree	P	Trop. America	Ft, Fu
120	Phylla nodiflora (L.) Greene	Verbenaceae	Herb	A	Trop. America	M
121	Physalis angulata L.	Solanaceae	Herb	A	Trop. America	M, Ft
122	Physalis minimu L.	Solanaceae	Herb	A	Trop. America	M, Ft
123	Piatia stratisotes L.	Arecaceae	Herb	P	Trop. America	M, St
124	Pimelolobium dulce (Roxb.) Benth.	Mimosaceae	Tree	P	Mexico	Ft
125	Phaleria rubra L.	Apocynaceae	Tree	P	S. America	O
126	Portulaca diversa L.	Portulacaceae	Herb	A	Trop. S. America	M, V
127	Portulaca quadrifida L.	Portulacaceae	Herb	A	Trop. America	M, V
128	Quiqualis indica L.	Combretaceae	Climber	P	Malaya	O
129	Rhoeo discolor Hance.	Commelinaeae	Herb	P	Central America	O
130	Richardia scabra L.	Rubiaceae	Herb	A	S. America	NK
131	Ricinus communis L.	Euphorbiaceae	Shrub	P	Africa	M
Invasive Alien Flora in and around an Urban Area of India

DOI: http://dx.doi.org/10.5772/intechopen.88725

Sl no.	Plant species	Family	Life form	Habit	Nativity	Use
132	Ruellia tuberosa L.	Acanthaceae	Herb	A	Trop. America	NK
133	Saccharum spontaneum L.	Poaceae	Herb	A	T. West Asia	Th, Fu, Fo
134	Scoparia dulcis L.	Scrophulariaceae	Herb	A	Trop. America	M
135	Sida acuta Burm.f.	Malvaceae	Herb	A	Trop. America	M
136	Solanum nigrum L.	Solanaceae	Herb	A	Trop. America	M
137	Solanum torvum Sw.	Solanaceae	Shrub	P	West Indies	M
138	Sonchus asper (L.) Hill	Asteraceae	Herb	A	Mediterranean	M
139	Sporobolus comanensis Beauv.	Bignoniaceae	Tree	P	Trop. Africa	Ave, SF
140	Spermacoce articulatis L.	Rubiaceae	Herb	A	Trop. America	NK
141	Sphaeranthus indicus L.	Asteraceae	Herb	A	Trop. Africa	M
142	Spilanthes acmella (L.) L.	Asteraceae	Herb	A	North America	M
143	Spinacia oleracea L.	Chenopodiaceae	Herb	A	Europe	V
144	Stachyrhynchos jamaicensis (L.) Vahl.	Verbenaceae	Herb	A	Trop. America	M
145	Stylosanthes hamata L.	Fabaceae	Herb	A	Trop. Africa	Fo
146	Synedrella nodiflora (L.) Gaertn.	Asteraceae	Herb	A	West Indies	M
147	Tagetes erecta L.	Asteraceae	Herb	A	Mexico	O, M
148	Tagetes patula L.	Asteraceae	Herb	A	Mexico	O, M
149	Tanacetum indicum L.	Asteraceae	Tree	P	Trop. America	Ft
150	Tecoma stans (L.) Juss. ex Kunth	Bignoniaceae	Tree	P	America	O
151	Thevetia peruviana (Pers.) Merrill	Apocynaceae	Tree	P	Trop. America	M
152	Thuya orientalis L.	Cupressaceae	Tree	P	China	O
153	Tribulus terrestris L.	Zygophyllaceae	Herb	A	Trop. America	M
154	Tridax procumbens L.	Asteraceae	Herb	P	Mexico	M
155	Triumfetta pentandra A.Rich.	Tiliaceae	Herb	A	Trop. America	M
156	Turnera uenifolia L.	Turneraceae	Herb	P	Trop. America	O
157	Typha angustata Bory & Chaub.	Typhaceae	Herb	P	Trop. America	Th, Fu, Fo
158	Urena lobata L.	Malvaceae	Herb	A	Trop. Africa	Fib, Fu
159	Vernonia cinerea L.	Asteraceae	Herb	A	S. America	M
160	Waltheria indica L.	Sterculiaceae	Herb	A	Trop. America	M
Diversity and Ecology of Invasive Plants

Figure 2. Habit-wise distribution of invasive alien plant species in Rourkela.

Sl no.	Plant species	Family	Life form	Habit	Nativity	Use
161	Xanthium indicum L.	Asteraceae	Herb	A	Trop. America	M, Nox
162	Xanthium strumarium L.	Asteraceae	Herb	A	Trop. America	M, Fu, Nox
163	Zinnia elegans Jacq.	Asteraceae	Herb	A	Mexico	O
164	Zea mays L.	Poaceae	Herb	A	America	F, Fu, Fo
165	Ziziphus mauritiana Lam.	Rhamnaceae	Tree	P	China	Pt

Note: F, food; FT, fruit; O, ornamental; not known; M, medicinal; Fu, fuel; Fib, fiber; V, vegetable; Sp, species; Nea, noxious; Sm, smoking; Co, compost; Sa, sacred plant; Sb, soil binder; Ch, chemical compounds; Ave, avenue; T, thatching; A, annual; P, perennial.

Table 1. List of invasive alien plant species (IAPs) recorded from Rourkela Steel City, Sundargarh, Odisha.
America 77 species, Tropical South America 7 spp., Central America 1 spp., South America 10 spp., Tropical Africa 15 spp., Mexico 7 spp., and Europe 4 spp. IAPs are having negative impacts on the ecosystem and biodiversity of that region. Besides they are also found to be useful to local inhabitants. From the survey of literatures and interaction with local people about the IAPs, several plant species were used for different purposes like medicine, vegetables, fuels, fodders, etc. The study revealed that 87 spp. are used as medicine, while 18 spp. are used as fuel, 9 spp. used for fodders, and 30 spp. used for ornamental and avenue purposes. A total of 28 spp. were used as edible in the form of fruit, vegetables, oil, etc. Several species like *Argemone mexicana*, *Euphorbia hirta*, *Mimosa pudica*, *Ocimum canum*, *Calotropis* spp., *Croton bonplandianus*, *Catharanthus roseus*, etc. were mostly common medicinal plants used by local people, kabiraj and baidyas, while plants like *Cassia siamea*, *Leucaena leucocephala*, *Kigelia pinnata*, etc. were used for avenue plantation and social forestry. *Cannabis sativa* and *Nicotiana tabacum* were not only used for medicines, but also they are used for smoking as narcotic products. Alien species have been classified into naturalized and noxious species by various

Sl. no.	Nativity	No. of species
1	America	5
2	Central America	1
3	North America	2
4	South America	10
5	Tropical America	77
6	Tropical South America	7
7	Tropical North America	1
8	Africa	2
9	Tropical Africa	15
10	Tropical East Africa	1
11	Brazil	4
12	Australia	4
13	West Indies	5
14	Mexico	7
15	Malaya	2
16	Madagascar	2
17	Europe	4
18	China	6
19	Iran North West	1
20	Pantropic	1
21	Peru	1
22	South East Tropical Asia	1
23	Tropical West Asia	1
24	Central Asia	1
25	Mediterranean	4

Table 3
Different geographic nativities of the invasive alien plants.
Diversity and Ecology of Invasive Plants

Sl. no.	Family	No. of species
1	Acanthaceae	3
2	Amaranthaceae	8
3	Apocynaceae	4
4	Araceae	1
5	Arecaeeae	2
6	Asclepiadaceae	2
7	Asteraceae	24
8	Balsaminaceae	1
9	Bignoniaceae	3
10	Boraginaceae	1
11	Brassicaceae	1
12	Cactaceae	1
13	Caesalpiniaceae	11
14	Cannabinaeeae	1
15	Capparaceae	4
16	Caricaceae	1
17	Casuarinaceae	1
18	Chenopodiaceae	2
19	Combretaceae	1
20	Commelinaceae	1
21	Convolvulaceae	9
22	Crassulaceae	1
23	Cucurbitaceae	1
24	Capparaceae	1
25	Cuscutaceae	1
26	Cyperaceae	2
27	Euphorbiaceae	8
28	Fabaceae	5
29	Lamiaceae	3
30	Liliaceae	2
31	Lytharaceae	1
32	Malvaceae	5
33	Martyniaceae	1
34	Mimosaceae	4
35	Moraceae	1
36	Myrtaceae	1
37	Nyctaginaceae	2
38	Onagraceae	3
39	Oxalidaceae	1
40	Papaveraceae	1
41	Passifloraceae	1
Invasive Alien Flora in and around an Urban Area of India

DOI: http://dx.doi.org/10.5772/intechopen.88725

workers [8, 28, 39]. Many reports say different alien species become noxious after naturalized. *Ageratum conyzoides*, *Blumea lacera*, *Cassia alata*, *Lantana camara*, *Cassia tora*, *Parthenium hysterophorus*, *Xanthium* sp., *Datura* sp., *Cardamine scutata*, *Argemone Mexicana*, *Grangea maderaspatana*, *Hyptis suaveolens*, and *Gnaphalium polycaulon* were some noxious species found during the study. *Parthenium hysterophorus* was one of the highly noxious and abundantly grown plant species next to *Ageratum conyzoides* and *Lantana camara*.

From the taxonomical study, Asteraceae was the most dominant invasive family which dominated all other species due to its adaptive nature of seeds in different areas. The plant species have high reproductive potential to produce minute seeds so fast which disperse in new area through wind, air, and water. From the literature study, it was found that Asteraceae was more invasive in other areas of India [5, 7, 8, 23, 31, 32, 34, 35, 37] and also all over the world. Mallick et al. also found Asteraceae as the most dominating group of weeds among all other plant family groups. *Mikania micrantha*, a climber of Asteraceae, can climb trees and walls easily which inhibit the growth of the trees as well as cover the whole area so rapidly. *Parthenium hysterophorus* was another noxious plant of this family which could cause black fever disease. It grows very rapidly as its seeds disperse and grow so fast in new area which become invasive later. Annuals showed dominance over perennials among the invasive species as annuals complete life cycle and produce seeds to disperse in a short period in a year. Habit-wise distribution showed that herbaceous plants become more invasive than shrubs, climbers, and trees. Herbs have more tolerance to harsh condition and have great viability to grow in any condition which helps to become more invasive than others. Kumar et al. [11] found herbs as the more dominant plant group found in Rourkela flora.

Sl. no.	Family	No. of species
42	Pedaliaceae	1
43	Piperaceae	1
44	Poaceae	6
45	Polygonaceae	1
46	Pontederiaceae	1
47	Portulacaceae	2
48	Proteaceae	1
49	Rhamnaceae	1
50	Rubiaceae	2
51	Sapindaceae	1
52	Scrophulariaceae	1
53	Solanaceae	8
54	Sterculiaceae	2
55	Tiliaceae	2
56	Turneraceae	1
57	Typhaceae	1
58	Verbenaceae	5
59	Zygophyllaceae	1

Table 4. Total number of IAPs’ distributed family-wise species in Rourkela Steel City.
4. Conclusion

The invasive species are nonnative and exotic which are introduced intentionally for different purposes and sometimes accidentally introduced to a new area. The invasive species are more adapted to new areas by rapidly growing and reproducing more biomass than the native plant biodiversity. As a result, they can change the native ecosystem and become threats to the native ecosystem. IAPs also change the quality of soil, nutrient capacity, as well as the biodiversity present inside the soil. After invasion some invasive plants become narrow and noxious which affects the ecosystem with extinction of species and also affects the human health. Public involvement can be used and needed for early detection and reporting of infestations of the spread of new weeds as invasive species in the area. People should aware about the invasive species and its allelopathic effects on the environment and human health. Invasive species are now becoming more serious causing sustainable use of biodiversity and their impacts on invaded environment. Invasive alien plant species diversity in Rourkela of Sundargarh, Odisha, is a threat for the present flora due to their aggressive growth, colonizing ability, and adaptability. After invasion, their population growth increases rapidly in the new ecosystem; as a result they encroach crop fields, wastelands, and barren lands. The increased rate of invasion by alien species directly affects the agricultural economy and the biodiversity. Hence, eradication of IAPs should be done urgently. So awareness among local people is one of the methods to control IAPs. Besides this, the utilization of hidden medicinal potential can make IAPs beneficial to the people of the region. Moreover, the effect of IAPs in the economy, biodiversity, and human health is yet to be assessed. This study is based on diversity of invasive plant species found in different areas of Rourkela. Since the flora of Sundargarh district has not been beneficially and fully explored, this study will help in the compilation of flora of Sundargarh district and Rourkela in particular. Further studies reveal the allelopathic effects of IAPs on different plants, agricultural crops, and their ethnobotanical values.
Acknowledgements

Authors acknowledge the people of Rourkela for their kind cooperation and for sharing valuable information during the study.

Author details

Samarendra Narayan Mallick¹, Nrius Xenan Ekka², Sanjeet Kumar³ and Sudam C. Sahu⁴*

1 Ravenshaw University, Cuttack, Odisha, India

2 School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India

3 Ambika Prasad Research Foundation, Bhubaneswar, Odisha, India

4 Department of Botany, North Orissa University, Baripada, Odisha, India

*Address all correspondence to: sudam_rrl@yahoo.co.in
References

[1] Acharya BC, Khandagiri SN, Mallick SN, Maharana M. A survey of plant diversities in and around Rourkela. In: Proceedings of Env. Seminar, Govt. (Autonomous) College; Rourkela; 2007. pp. 08-24

[2] Acharya BC, Mallick SN, Dehury SS, Khandagiri SN. Survey of herbs in and around Rourkela. In: Proceedings of Env. Seminar, Govt. (Autonomous) College; Rourkela; 2008. pp. 35-54

[3] Acharya BC, Subudhi HN, Panda SP. Check list of economic plants of Rourkela and adjoining regions (Sundargarh district)—Odisha. Bulletin of Pure and Applied Sciences-Botany. 2010;29:53-57

[4] Das K, Duarah P. Invasive alien plant species in the roadside areas of Jorhat, Assam: Their harmful effects and beneficial uses. International Journal of Engineering Research and Applications. 2013;3(5):353-358

[5] Feng J, Zhu Y. Alien invasive plants in China: Risk assessment and spatial patterns. Biodiversity and Conservation. 2010;19:3489-3497

[6] Haines HH. Botany of Bihar and Orissa. Vol. 6. London: Arnold and Sons and West Nirman Ltd; 1921-1925

[7] Heywood V. Patterns, extents, and modes of invasions by terrestrial plants. In: Drake J et al., editors. Biological Invasions: A Global Perspective. New York: Wiley; 1989. pp. 31-60

[8] Huang QQ, Wu JM, Bai YY, Zhou L, Wang GX. Identifying the most noxious invasive plants in China: Role of geographical origin, life form and means of introduction. Biodiversity and Conservation. 2009;18:305-316

[9] Kull CA, Tassin J, Rangan H. Multifunctional, scrubby, and invasive forests? Wattles in the highlands of Madagascar. Mountain Research and Development. 2007;27:224-231

[10] Kumar P, Choudhury AK. Exotic species invasion threats to forests: A case study from the Betla national park, Palamu, Jharkhand, India. Tropical Plant Research. 2016;3(3):592-599

[11] Kumar S, Das G, Shin HS, Kumar P, Patra JK. Diversity of plant species in the steel city of Odisha, India: Ethnobotany and implications for conservation of urban bio-resources. Brazilian Archives of Biology and Technology. 2018;61:1-9

[12] Lai HS, Singh S, Kumar A, Mishra PK, Mishra K. Study of invasive and alien species in Jharkhand, India and its impact on environment. Journal of Ethnobiology and Traditional Medicine. 2012;117:167-177

[13] Mallick SN, Acharya BC. Phytodiversity survey of roadside herbs and their ethnomedicinal values in and around Rourkela Steel Township, Sundargarh, Odisha. Life Sciences Leaflets. 2013;1:46-55

[14] Mandal KK, Khora SS, Kar T. Aquatic angiosperm of Bonai Forest division, Sundargarh district, Odisha. Plant Science Research. 2017;39(1&2):12-18

[15] Maslo S. Preliminary list of invasive alien plant species (IAS) in Bosnia and Herzegovina. Herbologia. 2016;16(1):1-14

[16] Moktan S, Das AP. Diversity and distribution of invasive alien plants along the altitudinal gradient in Darjeeling Himalaya, India. Pleione. 2013;7(2):305-313

[17] Mooney HA, Hobbs RJ, editors. Invasive Species in a Changing World. Washington, D.C., USA: Island Press; 2000
[18] Naidu NT, Kumar OA, Venkaiah M. Invasive alien plant species in tropical forests of Eastern Ghats in northern Andhra Pradesh, India. Indian Forester. 2015;141(4):428-432

[19] Nayak SK, Satapathy KB. Diversity, uses and origin of invasive alien plants in Dhenkanal district of Odisha, India. International Research Journal of Biological Sciences. 2015;4(2):21-27

[20] Negi PS, Hajra PK. Alien flora of Doon valley, northwest Himalaya. Current Science. 2007;92(7):968-978

[21] Preston CD, Pearman DA, Hall AR. Archaeophytes in Britain. Botanical Journal of the Linnean Society. 2004;145:257-294

[22] Preston G, Williams L. Case study: The working for water programme: Threats and successes. Service Delivery Review. 2003;2(2):66-69

[23] Rao RR, Murugan R. Impact of exotic adventive weeds on native biodiversity in India: Implications for conservation. In: Rai LC, Gaur JP, editors. Invasive Alien Species and Biodiversity in India. Varanasi: Banaras Hindu University; 2006. pp. 93-109

[24] Rastogi J, Rawat DS, Chandra S. Diversity of invasive alien species in Pantnagar flora. Tropical Plant Research. 2015;2(2):282-287

[25] Reddy CS, Bagyanarayana G, Reddy KN, Raju VS. Invasive Alien Flora of India. USGS, USA: National Biological Information Infrastructure; 2008

[26] Reddy CS. Catalogue of invasive alien flora of India. Life Science Journal. 2008;5(2):85-87

[27] Reddy CS, Rangaswamy M, Pattanaik C, Jha CS. Invasion of alien species in wetlands of Samaspur bird sanctuary, Uttar Pradesh, India. Asian Journal of Water, Environment and Pollution. 2009;6(3):43-50

[28] Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Dane Panetta F, West CJ. Naturalization and invasion of alien plants: Concepts and definitions. Diversity and Distributions. 2000;6(2):93-107

[29] Roder W, Dorji K, Wangdi K. Implications of white clover introduction in east Himalayan grasslands. Mountain Research and Development. 2007;27:268-273

[30] Saxena HO, Braham M. The Flora of Orissa. Vol. 4. Bhubaneswar, Odisha, India: Orissa Forest Development Corporation Ltd; 1994-1996

[31] Sekar K. Invasive alien plants of Indian Himalayan region—Diversity and implication. American Journal of Plant Sciences. 2012;3:177-184

[32] Sekar CK, Manikandan R, Srivastava SK. Invasive alien plants of Uttarakhand Himalaya. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2012;82(3):375-383

[33] Sharma GP, Singh JS, Raghubanshi AS. Plant invasions: Emerging trends and future implications. Current Science. 2005;88:726-734

[34] Sheikh DK, Dixit AK. Occurrence of invasive plant in three phytogeographical region of Bilaspur district of Chhattisgarh. Annals of Plant Sciences. 2017;6(12):1872-1878

[35] Singh KP, Shukla AN, Singh JS. State-level inventory of invasive alien plants, their source regions and use potential. Current Science. 2010;99(1):107-114

[36] Singh TB, Das AK, Singh PK. Study of alien and invasive flora of valley
district of Manipur and their control. International Journal of Innovative Research in Science, Engineering and Technology. 2015;1(2):616-626

[37] Srivastava S, Dvivedi A, Shykla RV. Invasive alien species of terrestrial vegetation of north eastern Uttar Pradesh. International Journal of Forest Research. 2014;2014:1-9

[38] Udaykumar M, Bharathidasan E, Sekar T. Invasive alien flora of Thiruvallur District, Tamil Nadu, India. Scholars Academic Journal of Biosciences. 2014;2(4):295-306

[39] Wu SH, Hsieh CF, Rejmanek M. Catalogue of the naturalized flora of Taiwan. Taiwania. 2004;49(1):16-31