Facile synthesis of manganese-based complex as cathode materials for conductive-carbon-assisted aqueous rechargeable batteries

Nan Qiu,* Hong Chen, Zhaoming Yang, Sen Sun, Yuan Wang*

Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People’s Republic of China.
E-mail: qiun@scu.edu.cn, wyuan@scu.edu.cn.
Figure S1. The photographs of the cathode film.
Figure S2. SEM images of cathode electrode in the charged/discharged state. a) 1.85V, charged state, b) 1V discharged state.
Figure S3. Electrochemical performance of manganese-based complex in 1M ZnSO$_4$. a) Cycling performance at various current densities (0.1-4.0 A g$^{-1}$). b) Charge and discharge voltage profiles using 1M ZnSO$_4$ as electrolyte at various current densities between 1.0-1.85 V vs. Zn/Zn$^{2+}$.
Table S1. Specific capacity and energy density of manganese-based complex.

Current density (A g\(^{-1}\))	0.1	0.2	0.5	1.0	1.5	2.0	4.0
Discharge capacity (mAh g\(^{-1}\))	248	231	196	175	160	149	131
Energy density (Wh kg\(^{-1}\))	335.0	317.3	261.5	231.0	211.8	197.5	175.0

Table S2. Summary of electrochemical performance of different cathode materials for aqueous rechargeable batteries

Samples	Electrolyte	Energy density base on the active mass of electrode materials	Cycling performance	Reference number
LiMn\(_2\)O\(_4\)	21M LiTFSI	~200 Wh/kg at 24 mA/g	~40 mAh/g, 68% with 1000 cycles at 540 mA/g and 78% with 100 cycles at 18 mA/g	3
LiMn\(_2\)O\(_4\)	0.5 M Li\(_2\)SO\(_4\)	~75 Wh/kg at 500 mA/g	~120 mAh/g, 100% capacity after 1200 cycles at 500 mA/g	4
LiMn\(_2\)O\(_4\)	0.5 M Li\(_2\)SO\(_4\)	~100 Wh/kg at 500 mA/g	37 mAh/g, 93% capacity retained after 10000 cycles at 1000 mA/g	5
NaMnO\(_2\)	2 M CH\(_3\)COONa	~30 Wh/kg at 60 mA/g	37 mAh/g, 75% capacity retained after 500 cycles at 300	6
Na\(_{0.95}\)MnO\(_2\)	0.5M Zn(CH\(_3\)COO)\(_2\)	~84 Wh/kg at 1C	40 mAh/g, 92% capacity retained after 1000 cycles at 4C	7
Amorphous FePO\(_4\)	1M ZnSO\(_4\)	--	96 mAh/g at 10 mA/g	8
ZnMn\(_2\)O\(_4\)	3M Zn(CF\(_3\)SO\(_3\))\(_2\)	~202 Wh/kg at 50 mA/g	~90 mAh/g, 94% capacity retained after 500 cycles at 500 mA/g	2
CuHCF	20mM ZnSO\(_4\)	~95 Wh/kg at 60 mA/g	~55 mAh/g, 96.3% capacity retained after 100 cycles at 60 mA/g	9
Zn\(_2\)[Fe(CN)\(_6\)]	1M ZnSO\(_4\)	100 Wh/kg at 60 mA/g	~65 mAh/g, 76% capacity retained after 100 cycles at 60 mA/g	10
Material	Electrolyte	Capacity (mAh/g)	Rate Capacity (%)	Cycle Life (mA/g)
--------------------------	-----------------	------------------	-------------------	-------------------
α-MnO₂	1M ZnSO₄	195	70%	30 cycles at 10 mA/g
δ-MnO₂	1M ZnSO₄	100	100%	100 cycles at 380 mA/g
α-MnO₂	1M ZnSO₄	252	44%	100 cycles at 83 mA/g
VS₂	1M ZnSO₄	123	98%	200 cycles at 50 mA/g
Na₃MnTi(PO₄)₃	1M Na₂SO₄	58.4	98%	100 cycles at 58.7 mA/g
γ'-MnO₂ with TiB₂	1M ZnSO₄ saturated LiOH	220	55%	40 cycles at 0.5 mA/cm²
γ'-MnO₂ with TiS₂	1M ZnSO₄ saturated LiOH	148	50%	40 cycles at 0.5 mA/cm²
Manganese-based complex	1M ZnSO₄ 0.1M MnSO₄	335	100%	500 cycles at 2000 mA/g

References
1. S. Guo, H. Yu, Z. Jian, P. Liu, Y. Zhu, X. Guo, M. Chen, M. Ishida and H. Zhou, *ChemSusChem*, 2014, 7, 2115-2119.
2. N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu and J. Chen, *J. Am. Chem. Soc.*, 2016, 138, 12894-12901.
3. L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang and K. Xu, *Science*, 2015, 350, 938-943.
4. W. Tang, Y. Hou, F. Wang, L. Liu, Y. Wu and K. Zhu, *Nano Lett.*, 2013, 13, 2036-2040.
5. Q. Qu, L. Fu, X. Zhan, D. Samuelis, J. Maier, L. Li, S. Tian, Z. Li and Y. Wu, *Energy & Environmental Science*, 2011, 4, 3985-3990.
6. Z. Hou, X. Li, J. Liang, Y. Zhu and Y. Qian, *Journal of Materials Chemistry A*, 2015, 3, 1400-1404.
7. B. Zhang, Y. Liu, X. Wu, Y. Yang, Z. Chang, Z. Wen and Y. Wu, Chem. Commun. (Cambridge, U. K.), 2014, 50, 1209-1211.
8. V. Mathew, S. Kim, J. Kang, J. Gim, J. Song, J. P. Baboo, W. Park, D. Ahn, J. Han, L. Gu, Y. Wang, Y.-S. Hu, Y.-K. Sun and J. Kim, NPG Asia Mater, 2014, 6, e138.
9. R. Trocoli and F. La Mantia, ChemSusChem, 2015, 8, 481-485.
10. L. Y. Zhang, L. Chen, X. F. Zhou and Z. P. Liu, Advanced Energy Materials, 2015, 5, 1400930.
11. B. Lee, H. R. Lee, H. Kim, K. Y. Chung, B. W. Cho and S. H. Oh, Chem. Commun. (Cambridge, U. K.), 2015, 51, 9265-9268.
12. C. Xu, B. Li, H. Du and F. Kang, Angew. Chem., Int. Ed., 2012, 51, 933-935.
13. M. H. Alfaruqi, J. Gim, S. Kim, J. Song, D. T. Pham, J. Jo, Z. Xiu, V. Mathew and J. Kim, Electrochem. Commun., 2015, 60, 121-125.
14. M. H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V. Mathew and J. Kim, J. Power Sources, 2015, 288, 320-327.
15. P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An and L. Mai, Advanced Energy Materials, 2017, 1601920.
16. H. Gao and J. B. Goodenough, Angew. Chem., Int. Ed., 2016, 55, 12768-12772.
17. M. Minakshi, D. R. G. Mitchell and K. Prince, Solid State Ionics, 2008, 179, 355-361.
18. M. Minakshi, P. Singh, D. R. G. Mitchell, T. B. Issa and K. Prince, Electrochim. Acta, 2007, 52, 7007-7013.