John Clifford Barton
1923 – 2002

Obituary and Bibliography
John Clifford Barton

John Barton was one of the founders of particle astrophysics. This experimental science, born in the aftermath of the Second World War and fuelled by developments in electronics and computing, seeks answers to fundamental cosmological problems. Barton was one of the greatest experimentalists, working in deep underground locations all over the world and inspiring a generation of physicists to follow him.

Born in 1923, he was a wartime student at University College London during its evacuation to Bangor. Clearly, wartime requirements influenced the curriculum and he gained a “Certificate of Proficiency in Radio-Physics”, which was to mark out his future path. He graduated in 1943, receiving the Granville Prize, annually awarded to the best Physics graduate of London University. He did his National Service at Marconi in Chelmsford, Essex, working on military electronics. Here he acquired a thorough grounding in the basics of electronic design and construction techniques. After the war he became a PhD student at Birkbeck College, London University, working with E.P. George on cosmic rays. His first experiments were performed at an altitude of 3,457 metres, high on the Jungfraujoch in Switzerland. An amusing aside in the report thanks the director of the Jungfraujoch railway for the loan of 15 tonnes of coal that had been used for absorber. This use of available materials was to become something of a trademark of Barton’s experiments.

In 1954 he began four years at the nascent University College of the West Indies, Jamaica. As well as his teaching, Barton continued his research, measuring the cosmic muon flux as a function of depth in the sea. For this he built a transistorised cosmic-ray “telescope” using Geiger tubes contained in a pressure vessel, which was lowered to depths of 3,000m. Calibrations were made underground at Norton Hill Colliery in Somerset which were Barton’s first experiments in a mine. To record the data he used his own design of tape recorder, capable of recording eight tracks of digital data across standard quarter-inch audio tape. This was the first ever use of digital recording on a scientific experiment.

In 1958, Barton returned to London and became lecturer at Northern Polytechnic, almost immediately publishing his first paper describing a cosmic-ray detector using photomultipliers, which had just become commercially available. Photomultipliers are vacuum tubes which detect faint flashes of light, and their large area of sensitivity and high gain meant that large, robust particle detectors could be built. They are still found at the heart of innumerable physics experiments and huge numbers are used in medical imaging. Barton rapidly became one of the world experts in photomultipliers and their applications. He also had an almost intuitive feel for the “non-imaging” optics needed to carry light to the photomultipliers, and used to say to his students, “Light doesn’t go down a funnel like water does”, when they came up with ideas that didn’t work.

He began a series of experiments to determine the nature of cosmic rays that could penetrate deep underground. These experiments were performed in the “Holborn Laboratory”, a series of rooms deep in Holborn Underground station. A spare platform at Holborn had been converted to offices during the war. Immediately after the war it was used as a staff hostel, and later many of the rooms were used by physicists for experiments needing a deep location. The laboratory rooms were reached through a service door on one of the
Piccadilly Line platforms. They were linked by an extremely narrow corridor, only wide enough for a single person, running along the edge of what had once been the platform. It was a dry and dusty environment and there were occasional problems caused by rodents chewing cables, but it was none the less an extraordinarily convenient site to work. For many measurements Holborn was not deep enough and Barton and his colleagues also ran experiments in Tilmanstone Colliery in Kent and later in the Woodhead Tunnel, a disused railway tunnel under the Pennines.

In the early 1980s Barton started on a series of studies on meteorites. His low background laboratory was ideal for identifying trace radioisotopes produced in the meteorites in space before they hit the earth. This work led on to a search for “superheavy elements”. Theoretical analysis suggested that while nuclides heavier than Uranium were unstable, there would be an “island of stability” around element 114 which would have half-lives long enough to exist in nature. Others had already undertaken searches in a range of samples, particularly meteorites, and some had claimed positive results. Together with a group from Leeds, Barton repeated the experiments and, despite having more sensitive equipment, saw no superheavy elements. Years later, element 114 was made artificially at Darmstadt and was found to have a half-life of 30 seconds, a full 15 orders of magnitude smaller than the original predictions. For Barton this was a vindication of his belief that theoretical predictions must be tested by experiment and that theoreticians are often just plain wrong.

When the Physics Department of what was now the Polytechnic of North London closed in 1984, Barton officially retired, devoting himself to research. He held honorary posts at Birkbeck and at Queen Mary, London University. In 1993 the Holborn Laboratory was closed, following increasing safety concerns in the wake of the King’s Cross fire. Barton transferred his underground laboratory to the Eisenhower Centre, a wartime control centre near Goodge Street, and, when the lease on this expired, to the basement at Queen Mary, not really deep enough but workable. Increasing frailty did not deter him – an ingenious assembly of car jacks enabled him single-handed to move several tonnes of lead shielding, no mean feat in a cramped laboratory packed with chemicals, electronics, computers, domestic appliances such as freezers and all the latest state-of-the-art instruments that he could get his hands on.

He became a member of the team that built the Sudbury Neutrino Observatory (SNO) deep in a Canadian nickel mine. The observatory relies heavily on the use of photomultiplier tubes in a harsh environment that must be as free as possible from radioactive contamination. Barton’s contributions were pivotal and without them SNO’s evidence that neutrinos emitted by the Sun change their “flavour” on their way to the Earth would be much less convincing. In 1988, Neil Spooner, then at Imperial College, London, and Professor Peter Smith of the Rutherford Laboratory were forming a new collaboration to study dark matter and to hunt for the elusive “WIMPS” (weakly interacting massive particles). They knew that they needed a deep site to shield the detectors from cosmic rays and that the Boulby potash mine in North Yorkshire was the deepest mine in Britain. Barton was enthusiastic about this new project and went with Spooner on the site visit to help persuade the mine management to accept an underground laboratory. They were
successful and the Boulby Dark Matter Collaboration came into being, operating a range of dark matter detectors in the rocksalt seams, one kilometre underground. While he never visited the site again, Barton continued to make vital contributions to the collaboration. The new surface building there has recently been named the John Barton Building.

Much of Barton’s pioneering work was made with relatively cheap equipment he built himself, using the very latest technology available to him, but always on a shoestring budget. Once, when asked why he never applied for grants from the Science Research Council, he replied that, if one applied for a grant, then one had to write reports on the grant, irrespective of the scientific results, and that then one ended up believing what one had written in the reports. Most of his career was spent at Northern Polytechnic, in a period when polytechnics rarely did fundamental research. Barton managed to, despite the environment. In 1968 he put together a pack of 50 research papers and submitted them for a DSc at London University, because he wanted to show that it was possible to do good science in a polytechnic with a supportive head of department.

John Barton was a shy, private and unassuming man but you knew within the first minute of meeting him that you were in the presence of an exceptionally talented and intelligent person. He was an enthusiastic walker and always took an annual walking holiday, most recently a strenuous traverse of Corsica. He loved the cinema and chose to live in Hampstead because of the proximity to the Everyman Cinema. Barton worked in his laboratory almost daily until his final illness. On becoming housebound, he bought the first television he had ever owned, typically finding even Bang & Olufsen’s superior specification left much to be desired.

John Clifford Barton, physicist: London 29 September 1923; Senior Lecturer in Physics, University College of the West Indies 1954-58; Lecturer in Physics, Northern Polytechnic (later Polytechnic of North London) 1958-84, Head of Physics Department 1971-84; died London 14 October 2002.

John McMillan

This obituary first appeared in the daily newspaper “The Independent”, London, 29th November 2002.

j.e.mcmillan@sheffield.ac.uk

Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, Great Britain.
Publications

[1] J.C. Barton, E.P. George, and A.C. Jason. Observations of slow mesons and nuclear disintegrations in photographic plates exposed under carbon absorbers. *Proc Phys Soc (London)*, 64A:175–193, 1951. Jungfraujoch Observatory.

[2] J.C. Barton. Observations of the penetrating non-ionizing component of the cosmic radiation. *Proc Phys Soc (London)*, 64A:1042–1054, 1951.

[3] J.C. Barton. *Experiments on the non-ionizing component of cosmic radiation*. PhD thesis, University of London, 1951.

[4] J.C. Barton. East-West asymmetry of moderate energy neutrons in the cosmic radiation. *Proc Phys Soc (London)*, 66A:160–161, 1953.

[5] J.C. Barton. Note on the positive temperature coefficient of the cosmic radiation. *Proc Phys Soc (London)*, 67A:637–639, 1954. [first paper giving affiliation University College of the West Indies, Jamaica].

[6] J.C. Barton. Apparatus for measuring the intensity of cosmic radiation at great depths in the sea. *J Sci Instr*, 32:226–229, 1955.

[7] J.C. Barton. A hodoscoped cosmic ray recorder. *J Sci Instr*, 33:308–311, 1956. [Transistor coincidence circuits (first AND gates). Tape recorder data logging. Norton Hill Colliery, Somerset].

[8] J.C. Barton. Eight-channel recording on 1/4in. magnetic tape with a stationary-tape playback. *J Sci Instr*, 33:415–419, 1956.

[9] J.C. Barton. First passage problem in the theory of multiple scattering. *Proc Phys Soc (London)*, 70A:353–261, 1957.

[10] J.C. Barton, D.A. Campbell, and R.C. Read. An analogue method for studying multiple scattering. *Proc Phys Soc (London)*, 70A:353–261, 1957. [Interesting electro-mechanical analogue computer].

[11] J.C. Barton and J.H. Stockhausen. Time variations of the cosmic ray intensity in Jamaica. *Phil Mag*, 8(3):55–62, 1958.

[12] J.C. Barton. Simple core scaling circuits. *Nucl Instr Meth*, 5:327–331, 1959. [First paper giving Northern Polytechnic affiliation. Counter circuit using transistors and ferrite cores].

[13] J.C. Barton. Resonant scattering of antineutrinos. *Phys Rev Lett*, 5:514, 1960. [5050mwe Lake Shore gold mine, N Ontario].

[14] C.F. Barnaby and J.C. Barton. Performance of large area scintillation counters. *Proc Phys Soc (London)*, 76:745–753, 1960. [First scintillation paper by JCB].
[15] J.C. Barton. Transistor operation of electromechanical registers. *J Sci Instr*, 37:303, 1960.

[16] J.C. Barton. Multiple geiger counter coincidences due to gamma radiation. *Proc Phys Soc (London)*, 77:377–384, 1961.

[17] J.C. Barton. Intensity of the cosmic radiation at great depths underground. *Phil Mag*, 8(6):1271–1283, 1961. [1660, 3280 and 5050 mwe Lake Shore gold mine, N Ontario].

[18] C.F. Barnaby and J.C. Barton. Ageing of plastic scintillators. *J Sci Instr*, 39:176–177, 1962.

[19] J.C. Barton. Multitrack recording on magnetic tape. p182-184, Proc Symposium on Nuclear Instruments, New York, Academic Press, 1962.

[20] J.C. Barton and A. Crispin. Simple logarithmic pulse height analysers. *Nucl Instr Meth*, 16:39–43, 1962.

[21] J.C. Barton, C.F. Barnaby, B.M. Jasani, and C.W. Thompson. Large area liquid scintillator and Čerenkov counters. *J Sci Instr*, 39:360–363, 1962. [Medicinal paraffin].

[22] J.C. Barton. Interactions of high energy muons. *Proc Phys Soc (London)*, 84(2):325–326, 1964.

[23] J.C. Barton, A. Crispin, and M. Slade. Efficiency and transparency of cheap liquid scintillators. *J Sci Instr*, 41:736–739, 1964.

[24] J.C. Barton and C.T. Stockel. A novel type of magnetic recording head. *Radio and Electronic Engineer*, 27(11-15):736–739, 1964. [Digital recording of 60 tracks on 1/4 inch tape].

[25] J.C. Barton. An investigation of cosmic rays underground using a scintillator stack. I. The apparatus. *Proc Phys Soc (London)*, 87:89–100, 1966. [First work at Holborn Laboratory(60mwe). First calorimeter stack].

[26] J.C. Barton. An investigation of cosmic rays underground using a scintillator stack. II. The electromagnetic interactions of high energy muons. *Proc Phys Soc (London)*, 87:101–107, 1966.

[27] J.C. Barton. An investigation of cosmic rays underground using a scintillator stack. III. Muon interactions and the resulting cascade showers. *Proc Phys Soc (London)*, 88:355–371, 1966.

[28] J.C. Barton and A.O. Sanni. Use of pulse shape discrimination with scintillation counters for cosmic ray studies. Proc 9th ICRC, London, Vol 2, p1094-1096, 1966.
[29] J.C. Barton and A. Crispin. Development of scintillation counters based on medicinal paraffin. Proc 9th ICRC, London, Vol 2, p1097-1098, 1966.

[30] J.C. Barton. Some properties of muon showers observed underground. Proc 9th ICRC, London, Vol 2, p621-623, 1966.

[31] J.C. Barton and C.T. Stockel. The non-appearance of charge 2/3 quarks at great depths underground. Phys Lett, 21(3):360, 1966. [Free quark search 2200mwe. Tilmanstone colliery].

[32] J.C. Barton, I.W. Rogers, and M.G. Thompson. Study of the electromagnetic interactions of high energy muons using a large scintillator stack. Proc 9th ICRC, London, Vol 2, p970-972, 1966.

[33] J.C. Barton and M. Slade. Intensity of stopping pions at sea level and underground. Proc 9th ICRC, London, Vol 2, p1006-1008, 1966.

[34] J.C. Barton. Study of cascade showers in lead. Proc 9th ICRC, London, Vol 2, p973-975, 1966.

[35] J.C. Barton, C.T. Stockel, and D.A. Tanfield. Scintillation counter study of cosmic rays deep underground. Proc 9th ICRC, London, Vol 2, p992-996, 1966. [2200mwe Tilmanstone colliery].

[36] J.C. Barton. An investigation of cosmic rays underground using a scintillator stack. IV. An upper limit for the rate of relativistic particles of charge two-thirds. Proc Phys Soc (London), 90:87–90, 1967. [Free quark search].

[37] J.C. Barton and C.T. Stockel. Some problems in the interpretation of underground cosmic-ray data. Can J Phys, 46(2):S318–S323, 1968. Proc 10th ICRC, Calgary.

[38] J.C. Barton. An investigation of cosmic rays underground using a scintillator stack. V. A study of groups of muons penetrating underground. J Phys A, 1:43–54, 1968.

[39] J.C. Barton and C.T. Stockel. A study of muons deep underground. II The rate of energy loss. J Phys A, 2:650–657, 1969.

[40] J.C. Barton, J.P. Betts, and C.M. Pourgourides. Production of muons by the neutral component of the cosmic radiation underground. Proc 6th Interamerican Seminar on Cosmic Rays, La Paz, Bolivia, Vol IV p1029-36, 1970.

[41] J.C. Barton, A.F. Munas, and I.W. Rogers. The lateral distribution of electron photon cascades in rock. Acta Physica Academiae Scientiarum Hungaricae, 29(Suppl 4):253–257, 1970. Proc 11th ICRC, Budapest.

[42] J.C. Barton and A.J. Parsons. Nuclear interactions in caesium iodide produced by cosmic ray muons underground. Acta Physica Academiae Scientiarum Hungaricae, 29(Suppl 4):247–252, 1970. Proc 11th ICRC, Budapest.
[43] J.C. Barton and I.W. Rogers. A study of the production of muon pairs by muons. Acta Physica Academiae Scientiarum Hungaricae, 29(Suppl 4):259–262, 1970. Proc 11th ICRC, Budapest.

[44] J.C. Barton and C.M. Pourgourides. An underground anticoincidence experiment. Acta Physica Academiae Scientiarum Hungaricae, 29(Suppl 4):239–245, 1970. Proc 11th ICRC, Budapest.

[45] J.C. Barton. A simple method of pulse shape discrimination for scintillation counting. Acta Physica Academiae Scientiarum Hungaricae, 29(Suppl 4):403–409, 1970. Proc 11th ICRC, Budapest.

[46] J.C. Barton and P.J. Caines. New design of neutron counter with high efficiency. Acta Physica Academiae Scientiarum Hungaricae, 29(Suppl 4):259–262, 1970. Proc 11th ICRC, Budapest. [ZnS LiF + wavelength shifter].

[47] J.C. Barton, A.F. Munas, and A.G. Wright. Improved ringing coil pulse encoders. Nucl Instr Meth, 92:89–91, 1971.

[48] J.C. Barton. Aperture of counter telescopes for parallel pairs of particles. J Phys A, 4:118–119, 1971.

[49] J.C. Barton and C.M. Pourgourides. A study of the non-ionizing component of the cosmic radiation underground. J Phys A, 5(5):745–762, 1972.

[50] J.C. Barton. Rate of muons stopping underground. Proc 12th ICRC, Hobart, Vol 7, p2825-2828, 1972.

[51] J.C. Barton, I.W. Rogers, and A.G. Wright. Experiments using the scintillator stack technique in the Woodhead Tunnel. Proc 12th ICRC, Hobart, Vol 7, p2842-2847, 1972.

[52] J.C. Barton, C.M. Pourgourides, and I.W. Rogers. Combined charged particle and neutron scintillation detector. Proc 12th ICRC, Hobart, Vol 7, p2902-2905, 1972.

[53] S.S. Al-Rawi, J.C. Barton, Carter P.D., and A.J. Parsons. Underground muons at large zenith angles. Proc 14th ICRC, München, Vol 6, p1880-1885, 1975.

[54] J.C. Barton, Carter P.D., A.J. Parsons, I.W. Rogers, and A.G. Wright. A large underground anticoincidence experiment. Proc 14th ICRC, München, Vol 6, p2155-2160, 1975.

[55] J.C. Barton. Effect of a data buffer on the recorded distribution of time intervals for random events. Nucl Instr Meth, 133:537–544, 1976.

[56] J.C. Barton. Basic physics and statistics of photomultipliers. EMI Electron Tubes Note R/P063, 1977.
[57] J.C. Barton and Ranby P.W. Zinc sulphide scintillator with faster decay. *J Phys E (Sci Instrum)*, 10(5):437–438, 1977.

[58] J.C. Barton, R. Riley, I.W. Rogers, A.J. Parsons, and A.G. Wright. Underground anticoincidence studies. Proc 15th ICRC, Plovdiv, Vol 6, p111-115, 1978.

[59] J.C. Barton. Decay characteristics of inorganic scintillators. *J Phys E (Sci Instrum)*, 11(12):1173–1178, 1978.

[60] J.C. Barton. Programming EEPROMs on a TM990/100M board. *New Electronics*, 12(12):118, 1979.

[61] J.C. Barton, R. Riley, and I.W. Rogers. Time-correlated events in an underground anticoincidence experiment. Proc 16th ICRC, Kyoto, Vol 10, p220-224, 1979.

[62] J.C. Barton. Measurement of cosmogenic nuclides using a multi-crystal gamma-ray coincidence spectrometer. Proc 17th ICRC, Paris, Vol 2, p378-381, 1981. [Recently fallen Mayo Belwa meteorite].

[63] J.C. Barton, A.H. Watson, and A.G. Wright. A direct measurement of the distribution in depth of 26Al in the Estacado meteorite. *Geochimica Cosmochimica Acta*, 46(10):1963–1967, 1982.

[64] J.C. Barton. The time- and space-averaged cosmic ray flux experienced by meteorites. Proc 18th ICRC, Bangalore, Vol 2, p346-349, 1983.

[65] J.C. Barton. The flux of neutrons in underground laboratories. Proc 18th ICRC, Bangalore, Vol 11, p462-465, 1983.

[66] J.C. Barton. The spectrum of neutrons at 60hgm$^{-2}$. Proc 19th ICRC, La Jolla, Vol 8, p98-101, 1985.

[67] A.W.R. Bevan, K.J. McNamara, and J.C. Barton. The Binningup H5 chondrite: a new fall from Western Australia. *Meteoritics*, 23(1):29–33, 1988.

[68] S.F.J. Read et al. Work in the UK on low temperature dark matter detectors. Proc Workshop on Low Temperature Detectors for Neutrinos and Dark Matter II, Editions Frontières, p335-343, 1988.

[69] N.J.C. Spooner et al. Development of underground dark matter detectors in the UK. Proc Workshop on Theoretical and Phenomenological Aspects of Underground Physics, Editions Frontières, p381-386, 1989.

[70] N.J.C. Spooner et al. Development of a dark matter experiment in the UK. Proc 21st ICRC, Adelaide, Vol 10, p264-267, 1990.
[71] J.C. Barton, C.J. Hatton, and J.E. McMillan. A search for superheavy elements in meteorites using a neutron multiplicity detector. J Phys G (Nucl Part Phys), 17(12):1901–1907, 1991.

[72] J.C. Barton, C.J. Hatton, and J.E. McMillan. A novel neutron multiplicity detector using lithium fluoride and zinc sulphide scintillator. J Phys G (Nucl Part Phys), 17(12):1885–1899, 1991.

[73] J.C. Barton. A comparison of sodium iodide and germanium low background counting systems. J Phys G (Nucl Part Phys), 17(suppl):S415–418, 1991.

[74] T.J. Sumner et al. UK underground Dark Matter program at Boulby. 22nd ICRC, Dublin, Vol 4, p722-725, 1991.

[75] K.T Lesko et al. The Sudbury Neutrino Observatory. Revista Mexicana de Fisica, 39(suppl 2):162–168, 1993.

[76] T. Ali et al. Latest limits from the UK underground NaI detector. Proc 29th Rencontre de Moriond: Particle Astrophysics Atomic Physics and Gravitation, Editions Frontieres, p163-167, 1994.

[77] J.C. Barton. Studies with a low-background germanium detector in the Holborn Underground Laboratory. Nucl Instr Meth Phys Res, A354:530–538, 1995. [Last work at Holborn 1993].

[78] J.J. Quenby et al. Results from the first stage of a UK galactic dark matter search using low background sodium iodide detectors. Phys Lett B, 351:70–76, 1995.

[79] J.J. Quenby et al. NaI limits to cold galactic dark matter interaction rates. 24th ICRC, Rome, Vol 1, p874-877, 1995.

[80] T. Ali et al. Recent results from UK dark matter experiments in the Boulby mine. Proc HEP-95, Brussels, World Scientific, p397-398, 1996.

[81] N.J.C. Spooner et al. New dark matter limits from the Boulby NaI detectors. Nucl Phys B, Proc Suppl, 48:64–66, 1996.

[82] P.F. Smith et al. Improved dark matter limits from pulse shape discrimination in a low background sodium iodide detector at the Boulby Mine. Phys Lett B, 379:299–308, 1996.

[83] J.C. Barton. Assessment of heavy radioactive elements in sodium iodide scintillators. Applied Radiation and Isotopes, 47(9):997–1002, 1996.

[84] J.J. Quenby et al. New limits to galactic cold dark matter interaction rates. Astropart Phys, 5(3-4):249–253, 1996.
[85] J.C. Barton and C.B. Stringer. An attempt at dating the Swanscombe skull bones using non-destructive gamma-ray counting. *Archaeometry*, 39(1):205–216, 1997.

[86] J.C. Barton, I.M. Blair, and J.A. Edgington. Actinide content of NaI(Tl) scintillators: determination and prospects for reduction. Proc 1st Int Workshop on the Identification of Dark Matter, IDM1996, World Scientific, p391-396, 1997.

[87] N.J.T. Smith et al. Further reduction in dark matter limits from sodium iodide experiments. Proc 1st Int Workshop on the Identification of Dark Matter, IDM1996, World Scientific, p385-390, 1997.

[88] D.R. Tovey et al. Probing for WIMP interaction rates below 10/kg/day at Boulby mine. Aspects of Dark Matter in Astro and Particle Physics Heidelberg, World Scientific, p499-505, 1997.

[89] J.J. Quenby et al. Current limits on the cold dark matter flux obtained by the UK collaboration. 25th ICRC, Durban, Vol 7, p169-172, 1997.

[90] P.F. Smith et al. Dark matter experiments at the UK Boulby Mine. *Phys Repts*, 307(1-4):275–282, 1998.

[91] T.J. Sumner et al. Current limits on the cold dark matter interaction cross section obtained by the UK collaboration. *Nucl Phys B, Proc Suppl (TAUP97)*, 70:74–78, 1999.

[92] I. Liubarsky and others. Dark matter search at Boulby Mine. Proc 2nd Int Conf, Dark Matter in Astrophysics and Particle Physics, IOP Publishing, Bristol, p780-784, 1999.

[93] N.J.C. Spooner et al. Searches for dark matter at Boulby Mine – investigation of anomalous events in NaI. Proc 3rd Int Workshop on the Identification of Dark Matter, IDM2000, World Scientific, p591-592, 2001.

[94] J.J. Quenby et al. Dark matter experiments at the UK Boulby Mine. 26th ICRC, Denver, paper HE 5.1.10, 1999.

[95] N.J.T. Smith and others. Recent results from the UK dark matter search at Boulby mine. Proc EPS99, Tampere, Finland, 1999.

[96] N.J.C. Spooner et al. NaI dark matter limits and the NAIA D array: a detector with improved sensitivity to WIMPS using unencapsulated NaI. *Phys Lett B*, 473(3-4):330–336, 2000.

[97] J.C. Barton and J.A. Edgington. Analysis of alpha-emitting isotopes in an inorganic scintillator. *Nucl Instr Meth Phys Res*, A443:277–286, 2000.

[98] J. Boger et al. The Sudbury Neutrino Observatory. *Nucl Instr Meth Phys Res*, A449:172–207, 2000.
[99] I. Liubarsky et al. Progress report from the UK dark matter search at Boulby Mine. Nucl Phys B, Proc Suppl, 87:64–66, 2000.

[100] V.A. Kudryavtsev et al. CsI(Tl) for WIMP dark matter searches. Nucl Instr Meth Phys Res, A456:272–279, 2001.

[101] R. Lüscher et al. The potential of liquid xenon for WIMP searches: the ZEPLIN diagnostic array. Nucl Phys B, Proc Suppl, 95:233–236, 2001.

[102] G.R. Ahmad et al. Measurement of $\nu_e + d \rightarrow p + p + e^-$ interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Phys Rev Lett, 87(7):071301, 2001.

[103] V.A. Kudryavtsev et al. UKDMC dark matter search with inorganic scintillators. Proc 3rd Int Workshop on the Identification of Dark Matter, IDM2000, World Scientific, p337-342, 2001.

[104] V.A. Kudryavtsev et al. UKDMC dark matter search with inorganic scintillators. 27th ICRC, Hamburg, p1551-1554, 2001.

[105] J.R. Roberts et al. Present status and future plans of the Boulby Underground Laboratory. Proc 3rd Int Workshop on the Identification of Dark Matter, IDM2000, World Scientific, p591-592, 2001.

[106] N. J. C. Spooner et al. Progress on the Boulby Mine dark matter experiments. Proc Int Symp Sources and Detection of Dark Matter/Energy in the Universe, Springer, p365-377, 2001.

[107] P.F. Smith et al. Future neutrino astrophysics projects at the UK Boulby Mine. Proc Int Symp Sources and Detection of Dark Matter/Energy in the Universe, Springer, p522-539, 2001.

[108] M.J. Lehner et al. Current status of the DRIFT project and UKDMC dark matter search. Proc 3rd Int Conf on Dark Matter in Astro- and Particle Physics, Springer-Verlag, p590-597, 2001.

[109] Q.R. Ahmad et al. Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys Rev Lett, 89(1):011301, 2002.

[110] Q.R. Ahmad et al. Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters. Phys Rev Lett, 89(1):011302, 2002.

[111] V.A. Kudryavtsev et al. Study and suppression of anomalous fast events in inorganic scintillators for dark matter searches. Astroparticle Physics, 17:401–408, 2002.

[112] B. Ahmed et al. The NAIAD experiment for WIMP searches at Boulby Mine and recent results. Astroparticle Physics, 2003. To be published.