Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Social and health factors associated with adverse treatment outcomes among people with multidrug-resistant tuberculosis in Sierra Leone: a national, retrospective cohort study

Rashidatu Fouad Kamara, Matthew J Saunders, Foday Sahr, Juan E Losa-Garcia, Lynda Foray, Geraint Davies, Tom Wingfield

Summary

Background Multidrug-resistant tuberculosis (MDR-TB) is a global health emergency. We aimed to evaluate treatment outcomes among people with MDR-TB in Sierra Leone and investigate social and health factors associated with adverse treatment outcomes.

Methods This national, retrospective cohort study recruited all people notified with MDR-TB to the Sierra Leone National TB Programme, admitted to Lakka hospital (Lakka, Western Area Rural District, Freetown, Sierra Leone) between April, 2017, and September, 2019. Participants were followed up to May, 2021. People who were eligible but had no social or health data available, or were subsequently found to have been misdiagnosed, were excluded from participation. MDR-TB treatment was with the 2017 WHO-recommended short (9–11 month) or long (18–24 month) aminoglycoside-containing regimens. Multivariable logistic regression models examined associations of programmatic social and health data with WHO-defined adverse treatment outcomes (death, treatment failure, loss to follow-up).

Findings Of 370 notified MDR-TB cases, 365 (99%) were eligible for study participation (five participants were excluded due to lack of social or health data or misdiagnosis). Treatment was started by 341 (93%) of 365 participants (317 received the short regimen, 24 received the long regimen, and 24 received no treatment). Median age was 35 years (IQR 26–45). 263 (72%) of 365 were male and 102 (28%) were female, 71 (19%) were HIV-positive, and 127 (35%) were severely underweight (body-mass index <16·5 kg/m²). Overall, 267 (73%) of 365 participants had treatment success, 95 (26%) had an adverse outcome, and three (1%) were still on treatment in May, 2021. Age 45–64 years (adjusted odds ratio [aOR] 2·4, 95% CI 1·2–5·0), severe underweight (aOR 4·2, 1·9–9·3), untreated HIV (aOR 10, 2·6–40·0), chronic lung disease (aOR 2·0, 1·0–4·2), previously unsuccessful drug-sensitive tuberculosis treatment (aOR 4·3, 1·0–19), and a long regimen (aOR 6·5, 2·3–18·0) were associated with adverse outcomes. A sensitivity analysis showed that prothrombiname resistance (aOR 3·1, 95% CI 1·5–10·0) and aminoglycoside-related complete deafness (aOR 6·6, 1·3–35) were independently associated with adverse outcomes.

Interpretation MDR-TB treatment success in Sierra Leone approached WHO targets and the short regimen was associated with higher success. The social and health factors associated with adverse outcomes in this study suggest a role for integrated tuberculosis, HIV, and non-communicable disease services alongside nutritional and socioeconomic support for people with MDR-TB and emphasise the urgent need to scale up coverage of all-oral aminoglycoside-sparing regimens.

Funding Wellcome Trust, Joint Global Health Trials.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction

Multidrug-resistant tuberculosis (MDR-TB), defined as resistance to both rifampicin and isoniazid, remains a major public health concern, especially in low-income and middle-income countries. In 2019, about half a million new cases of rifampicin-resistant tuberculosis (RR-TB) were diagnosed, of which 78% were MDR-TB. Globally, 3·3% of new tuberculosis cases and 18·0% of previously treated cases are RR-TB or MDR-TB. Only about one of four MDR-TB cases is detected and the patient notified, and of those notified, only 57% achieve treatment success. Moreover, global deaths due to MDR-TB remain high at 182 000 per year, making it a leading cause of death related to antimicrobial resistance globally. MDR-TB is undermining progress towards WHO’s End TB Strategy goal of a reduction in tuberculosis deaths of 90% of 2015 rates by 2030.

Long and toxic MDR-TB treatment regimens including injectable aminoglycosides, which can cause ototoxicity, contribute to low rates of treatment success and high mortality. For those affected, these low rates of treatment success can be due to difficulties maintaining long-term adherence, side effects, and severe socioeconomic impacts. Health system factors also influence MDR-TB...
treatment success rates, especially in low-income and middle-income countries, where national tuberculosis programmes are frequently under-resourced. These factors include inadequate and inconsistent drug supply, non-standardised national MDR-TB treatment guidelines, suboptimal monitoring for clinical response and adverse effects, and limited capacity to provide holistic clinical or socioeconomic support for people with tuberculosis and their household members. Although shorter, all-oral regimens are now the gold standard MDR-TB treatment regimen recommended by WHO, their availability remains scarce and most people with MDR-TB globally receive long regimens.

Sierra Leone is among the 30 high tuberculosis burden countries globally with an estimated incidence of 295 cases per 100,000 population of drug-sensitive tuberculosis and 8.2 cases per 100,000 population of MDR-TB. Between 1991 and 2002, Sierra Leone had a protracted civil war, which negatively impacted an already under-resourced health system. Between 2000 and 2014, drug-sensitive tuberculosis treatment success rates increased and mortality reduced. However, the 2014–16 west Africa Ebola virus disease epidemic negatively affected tuberculosis services and was estimated to cause 2164 additional tuberculosis deaths. More recently, COVID-19-related health system distortion has led to reduced tuberculosis case notification rates.

MDR-TB diagnosis in Sierra Leone is reliant on smear microscopy and molecular testing and there is a dearth of functional laboratory space in which to perform mycobacteriological culture and phenotypic drug sensitivity testing. Case detection is low at 21% for first-episode GeneXpert-confirmed drug sensitive tuberculosis and 2% for first-episode MDR-TB.

In 2016, WHO approved the use of second-line drugs to treat patients with MDR-TB using a revised study design heterogeneity and incomplete recording of social and health factors.

Evidence before this study
We searched PubMed, Embase, Web of Science, Cochrane database, and Google Scholar for systematic reviews and observational, cohort, and randomised controlled trial studies published in English, French, or Spanish between Jan 1, 1980, and June 1, 2021, that reported treatment outcomes of people with multidrug-resistant tuberculosis (MDR-TB). The following search terms were used: ("tuberculosis, multidrug resistant"[MeSH Terms] OR ("tuberculosis"[All Fields] AND "multidrug resistant"[All Fields])) OR ("multi drug resistant tuberculosis"[All Fields] OR "multi"[All Fields] AND "drug"[All Fields] AND "resistant"[All Fields] AND "tuberculosis"[All Fields]) OR ("multiple drug resistant tuberculosis"[All Fields] AND ("treatment outcome"[MeSH Terms] OR ("treatment"[All Fields] AND "outcome"[All Fields])) OR ("treatment"[All Fields] AND "outcomes"[All Fields]) OR ("treatment outcomes"[All Fields]). In pooled analyses, MDR-TB treatment success rates were about 60%, which is lower than the WHO target (≥75%). Factors associated with a higher likelihood of adverse treatment outcomes included male sex, poverty, tuberculosis-related socioeconomic impact, drug or alcohol misuse, underweight, HIV, advanced disease (including pulmonary cavitations and sputum smear positivity), and protracted or extensive drug-resistant tuberculosis. Factors associated with adverse treatment outcomes included economically productive, injectable aminoglycosides. Factors associated with adverse treatment outcomes included economically productive, working age (45–64 years), severe underweight, untreated HIV, chronic lung disease, previous unsuccessful drug-sensitive tuberculosis retreatment, and a long regimen. Most (70%) people with MDR-TB and untreated HIV died, 57% of whom never received tuberculosis treatment. Aminoglycoside-related complete deafness and prothionamide resistance were also independently associated with an adverse outcome.

Added value of this study
To our knowledge, this is the first national cohort study of people with MDR-TB from Sierra Leone, a low-income country with a high tuberculosis burden, and the largest single-country west African MDR-TB cohort reported to date. MDR-TB treatment success rates in Sierra Leone (73%) are comparable to global rates, programmatic rates in other sub-Saharan African countries, and are approaching WHO targets (≥75%). People treated with short (9–11 month) versus long (18–24 month) regimens had better outcomes, despite both involving injectable aminoglycosides. Factors associated with adverse MDR-TB treatment outcomes included economically productive, working age (45–64 years), severe underweight, untreated HIV, chronic lung disease, previous unsuccessful drug-sensitive tuberculosis retreatment, and a long regimen. Most (70%) people with MDR-TB and untreated HIV died, 57% of whom never received tuberculosis treatment. Aminoglycoside-related complete deafness and prothionamide resistance were also independently associated with an adverse outcome.

Implications of all the available evidence
MDR-TB is a leading cause of mortality from antimicrobial resistance. People with MDR-TB who do not recover are more likely to transmit the disease and might also develop pre-extensive or extensive drug-resistant tuberculosis, which are associated with high mortality. Our findings have immediate policy and practice implications in Sierra Leone. These include redesign of care pathways to prioritise scarce resources and provide cost-effective and equitable MDR-TB care, integrated with HIV or non-communicable disease care for cases in which this is possible. The findings reinforce the need for vigilant enquiry and audiometry for aminoglycoside-related ototoxicity and roll-out of all-oral regimens. The use of programmatic data from the National TB Programme and the analytical methods employed could be replicated by other national programmes. Our findings appear to support WHO’s recommendation to consider alternatives to the short MDR-TB treatment regimen in people or geographical areas with prothionamide resistance.
short treatment regimen of 9–11 months, but made a conditional recommendation that alternative regimens be used in people with disease resistant to ethionamide, prothionamide, or pyrazinamide.11,12 In April 2017, Sierra Leone initiated MDR-TB treatment with the WHO short regimen. Using programmatic data collected since April 2017, we did the first national cohort study of people with MDR-TB in Sierra Leone with the aim of investigating the social and health factors associated with adverse MDR-TB treatment outcomes.

Methods
Study design and participants
We did a retrospective cohort study of people notified with MDR-TB between April, 2017, and September, 2019, and admitted to Lakka Hospital. Lakka Hospital is a government-supported hospital that offers care for people with tuberculosis, HIV, and leprosy, situated in Lakka, Western Area Rural District, on the western outskirts of Freetown, Sierra Leone. Any patient with GeneXpert-confirmed RR-TB in Sierra Leone is presumed to have MDR-TB and referred to Lakka Hospital to be admitted for a period of 4–6 months. A small minority of patients (<5%) with positive GeneXpert tests, but without rifampicin resistance, are also referred due to high clinical suspicion of MDR-TB or subsequent Drug Susceptibility Testing (DST) indicating MDR-TB. Discharge is followed by monthly outpatient visits to the hospital to collect tuberculosis medications and for medical evaluation for a further 5–16 months depending on the treatment regimen received. Follow-up and treatment outcome data were collected for all patients included in the cohort until May, 2021.

Sierra Leone national MDR-TB patient categories, adapted from the WHO Drug-resistant TB Treatment Guidelines Update 2016,13 are described as follows. Category 1: unsuccessful drug-sensitive tuberculosis treatment regimen for new patients; people who remain sputum-smear-positive or culture-positive for 5 months or longer during drug-sensitive tuberculosis treatment. Category 2: unsuccessful drug-sensitive tuberculosis retreatment regimen; people who are sputum-smear-positive at 5 months or later during their category 2 retreatment, which includes streptomycin in addition to the first-line drugs. Relapse: people who were previously treated for tuberculosis, declared cured or treatment completed at the end of their most recent course of treatment, and are now diagnosed with a recurrent episode of tuberculosis (either a true relapse or a new episode of tuberculosis caused by reinfection). Treatment after loss to follow-up: people who were previously treated for tuberculosis and whose most recent treatment was interrupted for 2 or more consecutive months. New: no previous history of tuberculosis treatment.

This was a pragmatic, opportunistic cohort study that used routinely collected and deidentified programmatic data. All people with MDR-TB notified to the Sierra Leone National TB Programme and admitted to Lakka Hospital from April 1, 2017, to Sept 1, 2019, were eligible to participate. People who were eligible but had no social or health data available (eg, self-discharged or died before data were collected) or were subsequently found to have been misdiagnosed were excluded from the study.

The study was endorsed by the Sierra Leone National TB Programme and verbal consent to analyse routinely collected, deidentified programmatic data was obtained from all participants during their hospital admission as part of routine care. Ethics approval was obtained from the Ethics Review and Scientific Committee of the Ministry of Health and Sanitation, Government of Sierra Leone.

Procedures
The treatment regimens for patients and their eligibility criteria, and the medications used in each regimen for people with MDR-TB are summarised in the panel.

On admission to Lakka Hospital, programmatic data on age, sex, district of residence, occupation, comorbidities (including HIV, diabetes, chronic renal disease, and chronic lung disease), body-mass index (BMI), and social history (including smoking and incarceration history) were recorded. Further details on study definitions of chronic kidney disease, chronic lung disease, and diabetes; and clinical investigation, management, and adverse effect monitoring can be found in the appendix (p 1). Data collected from participants were anonymised, stored in password-protected Excel files on a secure server of the Sierra Leone National TB Programme, and exported to STATA version 15.

MDR-TB treatment outcomes were recorded according to WHO criteria adapted by Sierra Leone’s National TB Programme (appendix p 2). Adverse treatment outcomes were defined as death, treatment failure, loss to follow-up, and no evaluation. Treatment success was defined as cure or treatment completion. Participants who were still on treatment at the time of analysis were excluded from adverse treatment outcome analyses. Dates of death were not routinely recorded.

Statistical analysis
Baseline social and health data were summarised using numbers and percentages, mean with SDs, and median with IQRs, depending on distribution. Age and BMI were recorded as discrete, continuous variables and subsequently converted to WHO-defined categories for analysis.14 Age categories were younger than 15 years, 15–24 years, 25–44 years, 45–64 years, and 65 years and older. BMI categories were less than 16.5 kg/m² (severely underweight), 16.5–18.49 kg/m² (underweight), 18.5–24.99 kg/m² (normal weight), and 25 kg/m² and higher (overweight).

Details concerning identification of relevant baseline social and health variables for the regression model can be found in the appendix (p 1, 4–5). Using the “mice” STATA package, we did multiple imputation with chained
Panel: MDR-TB short and long treatment regimens in Sierra Leone during the study period

Short regimen (9–11 months)

Drugs used daily in 4–6 month intensive phase
- Kanamycin or capreomycin
- Clofazimine
- Moxifloxacin
- Prothionamide
- Isoniazid (high dose, 600–1500 mg per day)
- Ethambutol
- Pyrazinamide

Drugs used in 5-month continuation phase
- Moxifloxacin
- Clofazimine
- Ethambutol
- Pyrazinamide

Eligibility criteria for selecting treatment regimen
- Proven RR-TB or MDR-TB by microbiological or molecular test
- Category 1: Unsuccessful drug-sensitive tuberculosis treatment regimen of new patients
- Category 2: Unsuccessful drug-sensitive tuberculosis retreatment regimen
- No eligibility criteria for long regimen are met

Long regimen (18–24 months)

Drugs used daily in 8–12 month intensive phase
- Kanamycin or capreomycin
- Levofloxacin
- Prothionamide
- Cycloserine
- Pyrazinamide
- Isoniazid

Drugs used in 12-month continuation phase
- Levofloxacin
- Prothionamide
- Cycloserine

Drugs used in 5-month continuation phase
- Moxifloxacin
- Clofazimine
- Ethambutol
- Pyrazinamide

Drugs used daily in 4–6 month intensive phase
- Kanamycin or capreomycin
- Levofloxacin
- Prothionamide
- Cycloserine
- Pyrazinamide
- Isoniazid

Drugs used in 12-month continuation phase
- Levofloxacin
- Prothionamide
- Cycloserine

Eligibility criteria for selecting treatment regimen
- Lack of conversion of sputum culture to negative at month 6 of short MDR-TB treatment regimen
- Those previously exposed to second-line drugs or substitutes for second-line drugs (eg, streptomycin), with confirmed Drug Susceptibility Testing resistance to these drugs
- Patients with pre-extensively drug-resistant tuberculosis (indicating resistance to rifampicin, isoniazid, plus quinolones or injectable agents) or extensively drug resistant tuberculosis (indicating resistance to rifampicin, isoniazid, quinolones, and injectable agents)
- Patients with extrapulmonary MDR-TB

Individualised regimen
- Injectables switched to bedaquiline
- Drugs substituted to alternatives with favourable side-effect profile within the same WHO A, B, or C group

Eligibility criteria for selecting treatment regimen
- Patients with adverse drug reactions to injectables
- Patients with adverse reactions to other drugs
- Patients with resistance to injectables and other drugs

Equations to replace missing values for all potential predictor variables with missing values (<10%). A univariable analysis was done to estimate the association between each of these variables and adverse treatment outcomes. Unadjusted odds ratios (OR), 95% CIs, and p values were calculated. Subsequently, a multivariable logistic regression including all variables (age, sex, employment, tobacco smoking, BMI, comorbidities [HIV, diabetes, chronic kidney disease, and chronic lung disease], tuberculosis disease severity [chest radiograph findings, sputum smear result], aminoglycoside-related ototoxicity, patient treatment category, and treatment regimen), regardless of their association in univariable logistic regression, was constructed. Adjusted ORs (aOR), 95% CIs, and p values were calculated. Independent variables or subcategories that were associated with adverse treatment outcomes in this multivariable model at a level of p<0.15 were included in a focused model, which was also adjusted for age, sex, and treatment regimen received (eg, short or long). Interaction terms were used to evaluate the effect modification of variables entering the focused multiple logistic regression model with a biologically plausible influence on each other (eg, age and comorbidities), with adverse tuberculosis treatment outcomes using the STATA “mfpigen” command and the likelihood ratio test. p values of less than 0.05 (5%) were considered indicative of a significant interaction.

Missing DST data were above the prespecified threshold of 10% and not included in the imputed multivariable logistic regression model. To investigate key policy issues related to MDR-TB treatment regimens according to DST profile, a sensitivity analysis was done, which consisted of an unimputed univariable and multivariable logistic regression model, which included DST resistance profiles as an independent variable. Given the importance of understanding the influence of HIV co-infection on MDR-TB treatment outcomes, an additional descriptive analysis explored HIV profile, treatment regimen received, and MDR-TB treatment...
outcomes. Finally, a descriptive analysis compared the social and health characteristics of participants who received the short regimen, long regimen, and no treatment.

This study was reported according to STROBE guidelines. Data were analysed with STATA (version 15).

Role of the funding source
The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Results
Of the 370 people diagnosed with MDR-TB during the study period from April 1, 2017, to Sept 1, 2019, 365 (99%) were eligible for the study (one person was excluded due to a misdiagnosis and four were excluded due to lack of social or health factor data). Of these 365 eligible people, 341 (93%) received treatment (24 received the long MDR-TB treatment regimen and 317 received the short regimen; figure). Participants’ individual social and health characteristics, district poverty level, and tuberculosis notification rates, tuberculosis investigations, categories, treatment regimens, aminoglycoside-related ototoxicity, DST profiles, and proportional adverse outcome rates are summarised in table 1. Participants’ median age was 35 years (IQR 26–45), 263 (72%) of 365 were male and 102 (28%) were female, 240 (66%) were underweight, and 71 (19%) had HIV co-infection of whom 51 (72%) were receiving antiretroviral therapy. Baseline DST was not available for 50 (14%) of 365 participants, which precluded DST imputation. Of the 315 participants who underwent DST at baseline, 303 (96%) were resistant to rifampicin and 258 (82%) were resistant to isoniazid. Additionally, 73 (23%) of 314 were resistant to pyrazinamide, and 56 (18%) of 314 were resistant to ethambutol. Resistance was also seen to prothionamide (35 [11%] of 312), capreomycin (9 [3%] of 313), streptomycin (five [2%] of 313), or quinolones (three [1%] of 314).

Unsuccessful first-line treatment (category 1) was the most common patient category (162 [44%] of 365) followed by unsuccessful retreatment (category 2, 66 [18%] of 365). Most participants (317 [87%]) received a short regimen, 24 (6%) received a long regimen, and 24 (7%) received no treatment. Of the 24 patients who received the long regimen, four (17%) were started on a short regimen but transferred to a long regimen during the same tuberculosis episode. For the purposes of analysis, these patients were grouped with those who received long treatment regimen only.

Outcome analysis by patient category and treatment regimen is shown in table 1 and the appendix (pp 4–6). Overall, 267 (73%) of 365 participants had treatment success, 95 (26%) had an adverse outcome, and three (1%) were not evaluated because they remained on treatment in May, 2021. Of the 95 with adverse outcomes, 75 (79%) died, 12 (13%) were lost to follow-up, and eight (8%) did not have sputum conversion. Higher treatment success rates were seen in new (24 [80%] of 30) and category 1 (121 [75%] of 162) participants and those who received short treatment regimens (254 [80%] of 317) versus long (13 [54%] of 24) regimens. Of those who never started treatment, 21 (88%) of 24 died. Descriptive analysis of monthly sputum smear and culture testing during treatment showed that a higher proportion of participants with adverse MDR-TB treatment outcomes had ongoing smear or culture positivity after month 3 of treatment, than did people with MDR-TB who had treatment success. Proportions of smear positivity, smear negativity, and no sputum sample submitted by month of MDR-TB treatment are shown in the appendix (pp 9–12).

The primary imputed, focused multivariable logistic regression analysis showed that the baseline variables independently associated with higher likelihood of adverse treatment outcomes as did people who were HIV negative (aOR 0.94, 0.37–2.4). Participants who had aminoglycoside-related complete deafness (aOR 4.3, 0.86–21.0) or who had chronic kidney disease (aOR 3.5, 0.90–14.0) showed a non-significant association with increased likelihood of adverse treatment outcomes. No independent variables were found to have effect-modifying interactions.
Social characteristics

	Patients with MDR-TB (n=365)	Patients with adverse outcome (n=95)*
Age, years (median, IQR)	35 (26–45)	37 (28–49)
0–14	7 (2%)	2/7 (29%)
15–24	65 (18%)	13/65 (20%)
25–44	194 (53%)	46/194 (24%)
45–65	93 (25%)	32/93 (34%)
65 and older	6 (2%)	2/6 (33%)
Sex		
Male	263 (72%)	63/263 (24%)
Female	102 (28%)	32/102 (31%)
Unemployed	104 (28%)	33/104 (32%)
Ever been incarcerated	12 (3%)	0
Current or ex-smoker	141 (39%)	33/141 (23%)
Body-mass index, kg/m² (median, IQR)	17 (16–19)	16 (14–18)
<16·50 (severely underweight)	127/358 (35%)	47/127 (37%)
16·50–18·49 (underweight)	113/358 (32%)	21/113 (19%)
18·50–24·99 (normal weight)	112/358 (31%)	18/112 (16%)
25 or more (overweight)†	6/358 (2%)	3/6 (50%)
Regional diagnostic hub		
Southern (Bo Regional Hospital)	28 (8%)	9/28 (32%)
Eastern (Kenema Government Hospital)	30 (8%)	7/30 (23%)
Western and National (Lakka)	195 (53%)	49/195 (25%)
North (Makeni Government Hospital)	112 (31%)	30/112 (27%)
District poverty level		
Tertile 1 (poorest)	195 (53%)	49/195 (25%)
Tertile 2	107 (29%)	26/107 (24%)
Tertile 3 (least poor)	63 (17%)	20/63 (32%)
District tuberculosis notification rate (100 000 cases per year)	100 000 cases per year	
<200	44 (12%)	13/44 (30%)
200–400	158 (43%)	38/158 (24%)
>400	163 (45%)	44/163 (27%)

Health characteristics

	Patients with MDR-TB (n=365)	Patients with adverse outcome (n=95)*
HIV		
HIV negative	294 (81%)	67/294 (23%)
HIV positive on antiretroviral therapy	51 (14%)	13/51 (25%)
HIV positive not on antiretroviral therapy	20 (5%)	15/20 (75%)
Diabetes	4 (1%)	1/4 (25%)
Chronic kidney disease	12 (3%)	6/12 (50%)
Chronic lung disease	82/346 (24%)	28/82 (34%)
Chest radiograph (n=347)		
Normal	11/347 (3%)	2/11 (18%)
Severe tuberculosis on chest radiograph	100/347 (29%)	25/100 (25%)
Consolidation	108/347 (31%)	30/108 (28%)
Cavitations	97/347 (28%)	23/97 (24%)
Effusion	45/347 (13%)	14/45 (31%)

* (Continued from previous column)

	Patients with MDR-TB (n=365)	Patients with adverse outcome (n=95)*
Nodular	45/347 (13%)	6/45 (13%)
Fibrosis	44/347 (12%)	13/44 (30%)
Lymphadenopathy	38/347 (11%)	11/38 (29%)
Bronchiectasis	22/347 (6%)	9/22 (41%)
Chronic obstructive pulmonary disease	16/347 (5%)	6/16 (38%)
Pneumothorax	16/347 (5%)	5/16 (31%)
Miliary	8/347 (2%)	3/8 (38%)
Sputum smear		
No smear result	12 (3%)	11/12 (92%)
Negative	53 (15%)	13/53 (25%)
+/–	45 (12%)	17/45 (38%)
1+	61 (17%)	14/61 (23%)
2+	101 (28%)	17/101 (17%)
3+	93 (25%)	23/93 (25%)
GeneXpert		
No GeneXpert result	11 (3%)	15/11 (100%)
Negative	1 (1%)	1/1 (100%)
Positive and rifampicin resistant	353 (97%)	81/353 (24%)
Culture		
No culture result	38 (10%)	28/38 (74%)
Negative	64 (18%)	10/64 (16%)
Positive	263 (72%)	57/263 (22%)
Aminoglycoside-related ototoxicity (n=351)		
None	326/351 (93%)	72/326 (22%)
Partial deafness or tinnitus	15/351 (4%)	4/15 (27%)
Complete deafness	10/351 (3%)	6/10 (60%)
DST		
No DST result (n=50)	50/50 (100%)	33/50 (62%)
Rifampicin resistant (n=315)	302/315 (96%)	60/302 (20%)
Isoniazid resistant (n=315)	258/315 (82%)	54/258 (21%)
Pyrazinamide resistant (n=314)	73/314 (23%)	19/73 (26%)
Ethambutol resistant (n=314)	56/314 (18%)	13/56 (23%)
Prothionamide resistant (n=312)	35/312 (11%)	14/35 (40%)
Para-aminosalicylic acid resistant (n=314)	10/314 (3%)	1/10 (10%)
Capreomycin resistant (n=313)	9/313 (3%)	3/9 (33%)
Streptomycin resistant (n=313)	5/313 (2%)	2/5 (40%)
Quinolone resistant† (n=314)	3/314 (1%)	1/3 (67%)
Treatment category		
Category 1: unsuccessful first treatment	162 (44%)	40/162 (25%)
Category 2: unsuccessful retreatment	66 (18%)	21/66 (32%)
Retreatment after interruption or lost to follow-up	58 (16%)	14/58 (24%)
Relapse	49 (13%)	14/49 (29%)
New	30 (8%)	6/30 (20%)

* (Table 1 continues in next column)
The unimputed multivariable logistic regression sensitivity analysis broadly replicated the associations described in the main regression model, but also showed that prothionamide resistance (aOR 3·9, 1·5–10·0) and aminoglycoside-related complete deafness (aOR 6·6, 1·3–35·0) were independently associated with adverse MDR-TB treatment outcomes (table 3). In this sensitivity analysis, being HIV positive and not on antiretroviral therapy (aOR 5·8, 95% CI 0·77–44·0) or having chronic lung disease (aOR 2·1, 0·92–4·7) showed a non-significant association with adverse MDR-TB treatment outcomes. Additional descriptive analysis showed that, of people with HIV not on ART, 14 (70%) of 20 died, and eight (57%) of the 14 did not receive any MDR-TB treatment (appendix p 3). Complete data of social and health variables by treatment regimen (no treatment, short regimen, and long regimen) are shown in the appendix (pp 4–5).

Discussion

To our knowledge, this is the first study describing the characteristics and treatment outcomes of the national MDR-TB cohort in Sierra Leone since WHO short treatment regimens were rolled out in April, 2017, and the largest single-country west African cohort of people with MDR-TB reported to date. Treatment success rates in this cohort of people with MDR-TB in Sierra Leone were similar to those seen in programmatic settings such as Tanzania and Uganda. However, they were lower than those seen in studies including STREAM. In our cohort, those receiving the long treatment regimen were more likely to have adverse outcomes than were those receiving the short regimen, which has also been described in an unpublished programmatic report from Sierra Leone. However, there was significant heterogeneity in treatment outcomes among people with MDR-TB and we demonstrated that several individual-level social and health factors routinely collected at treatment initiation identified people at highest risk of adverse outcomes. The primary imputed analysis showed that age 45–64 years, severe underweight, untreated HIV, previous unsuccessful drug-sensitive tuberculosis retreatment, chronic lung disease, and long regimen were all independently associated with a higher likelihood of adverse MDR-TB treatment outcomes. The unimputed sensitivity analysis showed that prothionamide resistance and aminoglycoside-related complete deafness were also independently associated with adverse outcomes. These data could be used to support the design and implementation of future targeted interventions to support the most clinically vulnerable. Such interventions might include nutritional support, integrated HIV-TB services, linkage with non-communicable disease management, adverse event monitoring, and targeted active case-finding aiming to mitigate adverse MDR-TB outcomes and increase tuberculosis cure rates in Sierra Leone. Our findings also re-emphasise the urgent need for roll-out of safe and effective short, all-oral regimens in low-income and middle-income countries for the treatment of MDR-TB, increased DST capacity and implementation and, while more evidence is collected, support WHO’s decision to recommend against short regimens in people with ethionamide or prothionamide resistance.

Worse outcomes with the long regimen might relate to challenges adhering to MDR-TB treatment, including adverse effects such as the aminoglycoside-related ototoxicity seen in our cohort, which was independently associated with adverse outcomes in the sensitivity analysis. Other studies such as meta-analyses suggest difficulties adhering to long DR-TB regimens can be mitigated by direct observation treatment throughout treatment. Although direct observation treatment is recommended and implemented in Sierra Leone during the initiation phase, patients are not regularly monitored during the ambulatory community-based continuation phase. In 2021, to complement monthly visits to the MDR-TB health-care facility for clinical review and sputum submission, the Sierra Leone National TB Programme implemented a more decentralised approach to care. This approach has involved opening an MDR-TB treatment unit in the northern region; trained nurses following up people with MDR-TB after discharge until treatment completion through regular home visits, which include checking for symptoms of drug-related toxicity; and covering costs for travel to

Table 1: Social and health characteristics of the study population and prevalence of adverse outcomes

The following table shows the prevalence of adverse outcomes among patients with MDR-TB in the study, stratified by treatment regimen.

Treatment regimen	Patients with MDR-TB (n=365)	Patients with adverse outcome (n=95)*
None	24 (7%)	24/24 (100%)
Short	317 (87%)	60/317 (19%)
Long	24 (7%)	12/24 (46%)

Data are n (%), or n/N (%), unless otherwise specified. For cases in which variable data were incomplete, the category n value in parentheses indicates the number of participants with complete data. Tuberculosis case notifications and poverty levels are those in the district in which the patient was diagnosed before being referred to Lakia Hospital and are taken from nationally published data. Of the 24 patients who received the long regimen, 4 (17%) were started on a short regimen but transferred to a long regimen during the same tuberculosis episode. For chest radiograph findings, multiple findings were possible in the same patient. Sputum smear, GeneXpert, culture, and DST were all recorded at baseline before MDR-TB treatment initiation. MDR-TB=multidrug-resistant tuberculosis. DST=Drug Susceptibility Testing. *362 of 365 people with MDR-TB had a recorded outcome because three people within the population cohort were still on treatment at the time of final analysis. †One participant in the cohort had a body-mass index >30 (obese) and was included in the body-mass index ≥25 (overweight) category. These three participants with MDR-TB plus quinolone resistance were considered to have pre-extensively drug-resistant tuberculosis; there were no participants in this cohort with pre-extensively drug-resistant tuberculosis as defined by the 2016 WHO definition (ie, MDR-TB plus resistance to any fluoroquinolone and at least one aminoglycoside and at least one of amikacin, kanamycin, or capreomycin).
Additionally, the frequency of kidney, liver, and full blood count blood tests and investigations to monitor for drug toxicity (eg, clinical enquiry and audiometry for aminoglycoside-related ototoxicity) during treatment is increasing. More robust empirical evidence is needed on the differential impact on outcomes of community-based or health facility-based direct observation treatment, treatment supporters, and incentives and socioeconomic support.24

A key health factor independently associated with adverse outcomes was untreated HIV. High rates of mortality in HIV-positive people with MDR-TB have been seen in STREAM (17·5%)25 and Trebucq and colleagues’ cohort study of people with MDR-TB from nine African countries (19·8%), especially with concomitant underweight.26 We did not collect data on CD4 count or time to death but hypothesise that newly diagnosed advanced HIV with disseminated tuberculosis disease was responsible for the high mortality seen in our cohort. Importantly, the effect of HIV on adverse MDR-TB treatment outcomes in our study was attenuated by being on antiretroviral therapy, demonstrating the importance of timely HIV diagnosis, integrated HIV-TB services, and access to appropriate antiretroviral therapy. Furthermore, chronic lung disease was significantly associated with adverse outcomes and chronic kidney disease showed a non-significant association, limited by the small number of patients

Social characteristics	Social characteristics	Social characteristics					
Age, years	Age, years	Age, years					
0–14	1·3 (0·2–6·8)	0·77	0·34	0·3 (0·0–3·5)	0·35		
15–24	0·8 (0·4–1·6)	0·53	0·77	0·8 (0·3–2·0)	0·64		
25–44	1 (ref)		1 (ref)	1 (ref)	...		
45–64	1·7 (1·0–3·0)	0·047	2·4 (1·1–5·1)	0·021	2·4 (1·2–5·0)	0·016	
65 and older	1·6 (0·8–9·0)	0·60	1·5 (0·2–13·0)	0·71	1·3 (0·15–11·0)	0·83	
Male sex	0·7 (0·4–1·2)	0·17	0·4 (0·2–1·0)	0·044	0·5 (0·3–1·1)	0·081	
Unemployed or lowest individual income	1·5 (0·9–2·4)	0·13	1·7 (0·8–3·6)	0·14	1·7 (0·8–3·5)	0·15	
Current or ex-smoker	1·0 (0·6–1·7)	0·88	1·4 (0·7–3·0)	0·38	
Nutritional status (body-mass index, kg/m²)	Nutritional status (body-mass index, kg/m²)	Nutritional status (body-mass index, kg/m²)					
<16·50 (severely underweight)	2·9 (1·6–5·3)	0·0010	4·3 (1·9–9·7)	0·0010	4·2 (1·9–9·3)	<0·001	
16·50–18·40 (underweight)	1·2 (0·6–2·3)	0·68	1·3 (0·5–2·1)	0·62	1·4 (0·6–3·1)	0·47	
18·50–24·99 (normal weight)	1 (ref)	...	1 (ref)	...	1 (ref)	...	
25 or more (overweight or obese)	4·6 (0·9–25·0)	0·073	3·2 (0·1–73·0)	0·47	3·4 (0·3–47)	0·35	
Health characteristics	Health characteristics	Health characteristics					
HIV negative	1 (ref)		1 (ref)	1 (ref)	...		
HIV positive on antiretroviral therapy	11 (0·6–2·3)	0·70	0·9 (0·4–2·4)	0·99	0·9 (0·4–2·4)	0·89	
HIV positive not on antiretroviral therapy	10·0 (3·5–29·0)	<0·001	7·9 (1·8–34·0)	0·0060	10·0 (2·6–40·0)	0·0010	
Diabetic	0·9 (0·1–9·1)	0·96	1·2 (0·1–28·0)	0·92	
Chronic kidney disease	2·9 (0·9–9·3)	0·068	3·4 (0·9–14·0)	0·078	3·5 (0·9–14·0)	0·071	
Chronic lung disease	2·1 (1·2–3·4)	0·010	2·0 (0·9–4·1)	0·076	2·0 (1·0–4·2)	0·050	
Disease severity	Disease severity	Disease severity					
Severe chest radiograph	1·2 (0·7–2·1)	0·48	1·0 (0·5–2·2)	0·93	
Baseline smear result	Baseline smear result	Baseline smear result					
Smear negative	1 (ref)		1 (ref)	1 (ref)	...		
Smear +/−	1·8 (0·8–4·5)	0·15	1·3 (0·4–4·1)	0·62	
Smear +	0·9 (0·4–2·1)	0·80	0·8 (0·3–2·7)	0·75	
Smear ++	0·6 (0·3–1·4)	0·24	0·4 (0·3–2·5)	0·79	
Smear +++	1·0 (0·5–2·2)	0·97	1·0 (0·4–2·8)	0·99	
Aminoglycoside-related ototoxicity	None	1 (ref)	...	1 (ref)	...	1 (ref)	...
Partial deafness or tinnitus	1·4 (0·4–4·4)	0·59	1·1 (0·3–4·5)	0·93	1·0 (0·2–4·1)	0·99	
Complete deafness	5·1 (1·4–18·0)	0·013	4·1 (0·8–21·0)	0·090	4·3 (0·9–21·0)	0·076	

(Table 2 continues on next page)
with a diagnosis (n=12). These findings demonstrate the importance of a holistic approach to the management of tuberculosis with linkage to non-communicable disease management services in appropriate cases.

In our cohort, DST resistance to prothionamide was shown to be independently associated with adverse outcome. WHO’s 2019 MDR-TB guidelines recommend against short treatment regimens in people with resistance to pyrazinamide, ethionamide, or prothionamide (or areas with high prevalence of such resistance) due to findings from an individual patient data meta-analysis. By contrast, STREAM and Trebucq and colleagues’ cohort study suggested worse outcomes in people with quinolone and isoniazid resistance.

Multiple imputation was used to impute data for variables with incomplete data including current or ex-smoker (n=12 imputed values), chronic lung disease (n=19), body-mass index (n=7), aminoglycoside-related ototoxicity (n=14), and severe chest radiograph (n=18). Participants still on treatment at the time of analysis (3/365, <1%) were recorded as having a treatment outcome of “not evaluated” and excluded from this analysis. The univariable logistic regression model was unadjusted. Full multivariable logistic regression included all independent variables in the model. Variables that were associated with adverse treatment outcome at a level of p≤0·15 were entered into the focused multivariable logistic regression model. 1 (ref) refers to the reference group for categorical variables. All 24 participants who never started treatment perfectly predicted adverse outcome and were not included in the imputed model’s odds ratio calculations, leaving an available imputed sample of n=338 participants’ data.

Table 2: Multiple imputation univariable and multivariable logistic regression of factors associated with adverse tuberculosis treatment outcome

Patient treatment category	Univariable logistic regression (n=362)	Full multivariable logistic regression (n=335)	Focused multivariable logistic regression (n=338)
New	1 (ref)	1 (ref)	1 (ref)
Retreatment after interruption or lost to follow-up	1 3 (0·5–3·9)	2·4 (0·5–11·0)	2·4 (0·5–11·0)
Relapse	1 6 (0·5–4·8)	3·4 (0·8–15·0)	3·5 (0·8–15·0)
Category 1: unsuccessful first treatment	1 3 (0·5–3·5)	1·9 (0·5–7·4)	1·9 (0·5–7·3)
Category 2: unsuccessful retreatment	1 9 (0·7–5·2)	4·2 (1·0–18·0)	4·3 (1·0–19·0)
Treatment regimen			
Short	1 (ref)	1 (ref)	1 (ref)
Long	3·6 (1·5–8·4)	6·2 (2·2–17·0)	6·5 (2·3–18·0)
None			

Multiple imputation replaced missing data in cases for which this was appropriate, but this was not possible for certain variables, including DST results. However, this
limitation points to a wider issue of a paucity of available MDR-TB data. For example, unlike other countries in west Africa, no DR-TB prevalence study has been done in Sierra Leone. Second, certain comorbidities, such as chronic lung disease, were defined pragmatically without formal diagnosis, which might have influenced the estimates of their association with MDR-TB treatment outcomes. Additionally, data on duration of symptoms, time from diagnosis to treatment initiation, alcohol and elicit substance use, full blood count, and renal and liver function tests were not routinely recorded. Such data could be useful in future analyses to determine the effect of treatment delays, risk behaviours, and organ or system dysfunction on treatment outcomes. Third, although poverty is known to be a major social determinant of tuberculosis, health-care access, and treatment outcomes, the minimal socioeconomic data routinely collected included only self-reported employment and district of residence, both of which are inaccurate measures of poverty in this setting. This situation is similar to many other countries both in sub-Saharan Africa and globally and presents a substantial

Table 3

Social characteristics	Univariable logistic regression (n=362)	Full multivariable logistic regression (n=292)	Focused multivariable logistic regression (n=297)	
	OR (95% CI)	p value	aOR (95% CI)	p value
Age, years				
0–14	1·3 (0·2–6·8)	0·77	3·0 (0·2–46·0)	0·43
15–24	0·8 (0·4–1·6)	0·53	0·9 (0·3–2·8)	0·87
25–44	1 (ref)	1 (ref)	1 (ref)	1·0
45–64	1·7 (1·0–3·0)	0·047	3·2 (1·3–8·0)	0·015
65 years and older	1·6 (0·8–9·0)	0·60	1·3 (0·1–18·0)	0·86
Male sex	0·7 (0·4–1·2)	0·17	0·5 (0·2–1·2)	0·11
Unemployed or lowest individual income	1·5 (0·9–2·4)	0·13	1·0 (0·4–2·6)	0·95
Current or ex-smoker	1·0 (0·6–1·6)	0·96	1·3 (0·5–3·0)	0·50
Nutritional status (body-mass index, kg/m²) (n=355)				
<16·5 (severely underweight)	3·0 (1·6–5·7)	<0·001	6·0 (2·2–16·0)	<0·001
16·5–18·49 (underweight)	1·2 (0·6–2·3)	0·66	1·4 (0·5–4·5)	0·52
18·5–24·99 (normal weight)	1 (ref)			
25 or more (overweight or obese)	5·1 (1·0–27·0)	0·057	8·2 (0·2–30·3)	0·26
Health characteristics				
HIV				
HIV negative	1 (ref)	1 (ref)	1 (ref)	1·0
HIV positive on antiretroviral therapy	1·1 (0·6–2·3)	0·70	1·1 (0·3–3·4)	0·91
HIV positive not on antiretroviral therapy	10·0 (3·5–29·0)	<0·001	7·0 (0·8–6·2)	0·081
Diabetic	0·9 (1·0–9·1)	0·96	1·1 (0·0–39·0)	0·96
Chronic kidney disease	2·9 (0·9–9·3)	0·068	3·0 (0·6–16·0)	0·20
Chronic lung disease (n=343)	2·2 (1·3–3·8)	0·0050	2·4 (1·0–5·8)	0·063
Disease severity				
Severe chest radiograph (n=349)	1·2 (0·7–2·2)	0·43	0·9 (0·4–2·1)	0·80
Basement smear result (n=353)				
Smear negative	1 (ref)	1 (ref)	1 (ref)	1·0
Smear +/−	1·9 (0·8–4·5)	0·15	1·1 (0·2–5·6)	0·88
Smear +	0·9 (0·4–2·1)	0·80	0·9 (0·2–4·1)	0·88
Smear ++	0·6 (0·3–1·4)	0·24	0·9 (0·2–3·6)	0·83
Smear +++	1·0 (0·5–2·2)	0·97	1·4 (0·4–5·1)	0·65
Aminoglycoside-related ototoxicity (n=348)				
None	1 (ref)	1 (ref)	1 (ref)	1·0
Partial deafness or tinnitus	1·3 (0·4–4·1)	0·69	1·7 (0·4–7·7)	0·49
Complete deafness	5·2 (1·4–19·0)	0·012	5·5 (1·0–30·0)	0·053
DST				
Performed	1 (ref)	1 (ref)	1 (ref)	1·0
Not performed	6·3 (3·4–12·0)	<0·001		

(Table 3 continues on next page)
challenge in terms of equity assessment of tuberculosis service provision for people with tuberculosis and MDR-TB by poverty level. Fourth, although there were clinical efforts to monitor and assess patients for side-effects of tuberculosis medications, full side-effect profiles were anecdotally undermeasured and under-reported. Finally, the associations of long treatment regimen and prothionamide with adverse MDR-TB treatment outcome might have been biased by additional unmeasured confounders.

In conclusion, we have presented treatment outcomes of people with MDR-TB in Sierra Leone and showed how adverse outcomes are associated with individual-level social and health data. Our findings can be used to inform the design of MDR-TB treatment services in Sierra Leone and other low-income and middle-income

DST result*	Univariable logistic regression (n=362)	Full multivariable logistic regression (n=292)	Focused multivariable logistic regression (n=297)
Prothionamide resistance (n=312)			
No	1 (ref)	1 (ref)	1 (ref)
Yes	3·1 (1·5–6·5)	4·1 (1·4–12·0)	3·9 (1·5–10·0)
Pyrazinamide resistance (n=314)			
No	1 (ref)	1 (ref)	1 (ref)
Yes	1·5 (0·8–2·8)	1·6 (0·6–4·3)	0·34
Ethambutol resistance (n=314)			
No	1 (ref)	1 (ref)	1 (ref)
Yes	1·2 (0·6–2·4)	1·2 (0·4–3·5)	0·71
Capreomycin resistance (n=313)			
No	1 (ref)	1 (ref)	1 (ref)
Yes	1·9 (0·5–8·0)	3·9 (0·5–32·0)	0·21
Streptomycin resistance (n=313)			
No	1 (ref)	1 (ref)	1 (ref)
Yes	2·6 (0·4–16·0)	7·4 (0·2–28·3)	0·28
Quinolone resistance (n=314)			
No	1 (ref)	1 (ref)	1 (ref)
Yes	7·6 (0·7–85·0)	2·8 (0·1–107·0)	0·57
Para-aminosalicylic acid resistance (n=314)			
No	1 (ref)	1 (ref)	1 (ref)
Yes	0·4 (0·1–3·4)	0·5 (0·0–5·3)	0·53

*Resistance in addition to rifampicin and isoniazid.

Table 3: Unimputed univariable and multivariable logistic regression of factors associated with adverse tuberculosis treatment outcome in participants with a DST result available
countries, and are even more pertinent given the negative impact of the COVID-19 pandemic and its mitigation measures on access to, quality, and coverage of tuberculosis services. These issues, coupled with the predicted increases in tuberculosis morbidity, mortality, and potentially resistance, will challenge progress towards equitable provision of tuberculosis services in Sierra Leone over the coming decade.

Contributors
TW and RFK conceived and designed the study. LF designed the national programme, designed tools, and supported data collection and implementation. RFK and LF collected, collated, and verified the original data. TW and RFK analysed the data. RFK, JEL-G, MJS, GD, and TW interpreted the data. TW and RFK wrote the manuscript. All authors reviewed and edited the final manuscript. All authors had full access to all the data in the study and accept responsibility for the decision to submit for publication.

Declaration of interests
TW is supported by grants from the Wellcome Trust, UK (209075/Z/17/Z) and the Medical Research Council, Department for International Development, and Wellcome Trust (Joint Global Health Trials, MR/V008312/1). All other authors declare no competing interests.

Data sharing
The deidentified National TB Programme data used in this study, and a relevant data dictionary defining each field in the set, can be obtained by contacting the first author and MDR-TB Program Lead at Ministry of Health and Sanitation Sierra Leone, Rashidatu Fouad Kamara (shidakay70@gmail.com).

Acknowledgments
The authors would like to thank the people with multidrug-resistant tuberculosis who took part in this study and the staff of the National TB Programme of Sierra Leone for their hard work, dedication, and collaboration. For the purpose of open access, the authors have applied a Creative Commons Attribution 4.0 International License to this article (https://creativecommons.org/licenses/by/4.0/).

References
1 WHO. Global Tuberculosis Report 2020. 2020. https://www.who.int/publications/i/item/9789240013131 (accessed Feb 23, 2022).
2 O'Neill, J. Tackling drug-resistant infections globally. Final report and recommendations. 2016. Wellcome Trust. 2016. https://amr-review.org/sites/default/files/360518_Final%20Paper_with%20cover.pdf (accessed Feb 23, 2022).
3 WHO. The end TB strategy. Geneva: World Health Organisation, 2015.
4 Johnston JC, Shahidi NC, Sadatsafavi M, Fitzgerald JM. Treatment outcomes of multidrug-resistant tuberculosis: a systematic review and meta-analysis. PLoS One 2009; 4: e6914.
5 Deshmukh RD, Dhande DJ, Sachdeva KS, et al. Patient and provider reported reasons for lost to follow up in MDRTB treatment: a qualitative study from a drug resistant TB Centre in India. PLoS One 2015; 10: e0135802.
6 Jiang WX, Li ZP, Zhao Q, et al. Impacts of a comprehensive tuberculosis control model on the quality of clinical services and the financial burden of treatment for patients with drug-resistant tuberculosis in China: a mixed-methods evaluation. Infect Dis Poverty 2021; 10: 54.
7 WHO. WHO consolidated guidelines on drug-resistant tuberculosis treatment. 2019. https://apps.who.int/iris/handle/10665/311389 (accessed Feb 23, 2022).
8 WHO. WHO Global Tuberculosis Report 2014. 2014. https://apps.who.int/iris/handle/10665/137094 (accessed Feb 23, 2022).
9 Edelstein M, Angelides P, Heymann, DL. Ebola: the challenging road to recovery. Lancet 2015; 385: 2234–35.
10 Papia AS, Dedefo-Mbah ML, Wenzel WS, Galvanzi AP. Effects of response to 2014–2015 Ebola outbreak on deaths from malaria, HIV/ AIDS, and tuberculosis, west Africa. Emerg Infect Dis 2016; 22: 433–41.
11 Lakoh S, Jiba DF, Badelie M, et al. Impact of COVID-19 on tuberculosis case detection and treatment outcomes in Sierra Leone. Top Med Infect Dis 2021; 6: 154.
12 The Global Fund. Global Fund Grants Sierra Leone. The Global Fund, 2015.
13 WHO. World Health Organisation Global Tuberculosis Report 2017. 2017. https://apps.who.int/iris/handle/10665/239366 (accessed Feb 23, 2022).
14 Abdi S, Achar J, Neino MMA, et al. Standardised shorter regimens versus individualised longer regimens for rifampin- or multidrug-resistant tuberculosis. Eur Respir J 2020; 55: 190467.
15 WHO. WHO treatment guidelines for drug-resistant tuberculosis 2016 update. 2016. https://www.who.int/publications/i/item/9789241549639 (accessed Feb 23, 2022).
16 National TB Programme of Sierra Leone. Sierra Leone National Tuberculosis Program guidelines for the treatment of multi-drug resistant tuberculosis. National TB Programme of Sierra Leone, 2016.
17 Bailey KV, Ferro-Luzzi A. Use of body mass index of adults in assessing individual and community nutritional status. Bull World Health Organ 1995; 73: 673.
18 Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 2009; 338: b2393.
19 Leveiri TH, Lekule I, Mollel E, Lyamuya F, Kilonzo K. Predictors of treatment outcomes among multidrug resistant tuberculosis patients in Tanzania. Tuberc Res Treat 2019; 2019: 369018.
20 Baluku JB, Nakanziwbe B, Naloka J, et al. Treatment outcomes of drug resistant tuberculosis patients with multiple poor prognostic indicators in Uganda: a countrywide 5-year retrospective study. J Clin Tuberc Other Mycobact Dis 2021; 23: 100221.
21 Nunn AJ, Rusen ID, Van Deun A, et al. Evaluation of a standardized treatment regimen of anti-tuberculosis drugs for patients with multi-drug-resistant tuberculosis (STREAM): study protocol for a randomized controlled trial. Trials 2014; 15: 153.
22 Hassan AO. TB epidemiological review Sierra Leone. 2020.
23 Kirket KT, Mosey G, Memiah P, Biadgilign S. Treatment outcomes for multidrug-resistant tuberculosis under DOTS-Plus: a systematic review and meta-analysis of published studies. Infect Dis Poverty 2017; 6: 7.
24 Weiss P, Chen W, Cook VJ, Johnston JC. Treatment outcomes from community-based drug resistant tuberculosis treatment programs: a systematic review and meta-analysis. BMC Infect Dis 2014; 14: 333.
25 Nunn AJ, Phillips PFJ, Meredith SK, et al. A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med 2019; 380: 1201–13.
26 Trebucq A, Schwoebel V, Kashongwe Z, et al. Treatment outcome with a short multidrug-resistant tuberculosis regimen in nine African countries. Int J Tuberc Lung Dis 2018; 22: 17–25.
27 Duarte R, Liennoth K, Carvalho C, et al. Tuberculosis, social determinants and co-morbidities (including HIV). Pulmonology 2018; 24: 115–19.
28 Wingfield T, Boccia D, Tovar M, et al. Defining catastrophic costs and comparing their importance for adverse tuberculosis outcome with multi-drug resistance: a prospective cohort study. Peru. PLoS Med 2014; 11: e1001675.
29 Wingfield T, Tovar MA, Huff D, et al. A randomized controlled study of socioeconomic support to enhance tuberculosis prevention and treatment. Peru. Bull World Health Organ 2017; 95: 270–80.
30 Grobler L, Nagpal S, Sudarsanam TD, Sinclair, D. Nutritional supplements for people being treated for active tuberculosis. Cochrane Database Syst Rev 2016; 6: CD006086.