1. Introduction

The enterobacterial catabolite repressor/activator (Cra) protein is a pleiotropic regulator that controls expression of a large number of metabolic genes in response to the flux of central glycolytic intermediates [1,2]. In particular, the Cra protein of *Escherichia coli* (CraEC) represses transcription of genes such as *fruB*, *fbpA*, *pykA*, *pykF*, *acnB*, *edd*, *eda*, *mitA* and *gapB* [1–3] while stimulating expression of others e.g., *ppsA*, *fbp*, *pckA*, *acnA*, *icd*, *aceA*, and *aceB* [1–7, 10]. The Cra protein was first identified as repressor of the fructose operon (*fruBKA*; [11]) thereby the earlier (and synonymous) name FruR. But, which is the metabolite sensed by Cra, the levels of which report on the status of carbon metabolic fluxes? The first hints to answer this question came from a number of studies published in the 90s demonstrating that the effects of Cra on transcription can be counteracted in *vitro* by μM levels of fructose-1-phosphate (F1P) as well as by concentrations of fructose-1,6-bisphosphate (FBP) above 5 mM [1, 4, 11, 12]. However, the response of CraEC to high levels of FBP has been a matter of controversy in the literature, as some studies have suggested that in *vitro* assays of the regulator to this effector could be misleading due to contamination with F1P [11]. In contrast, other Authors claim that FBP is a genuine CraEC effector [4, 13] and that the glycolytic flux of...
E. coli is sensed by the interaction of the CraEC with FBP independently of the carbon source used [13,14]. However, the functions of Cra in other species are less clear, as the regulator is also present in bacteria that hardly adopt a metabolic regime (i.e., no glycolytic activity) that produces high FBP levels.

The metabolically versatile soil bacterium Pseudomonas putida is one of such cases. In one hand, the central biochemical routes generate F1P only when cells grow on fructose (Fig. 1a and Supplementary Fig. S1; [15]). Moreover, as this bacterium lacks phosphofructokinase, FBP can be produced exclusively only either an upward reaction of trioses back to their cognate hexose, or by phosphorylation of fructose 1-P by FruK (Fig. 1a). Structural, biochemical and physical studies have revealed that the Cra protein ortholog of P. putida strain KT2440 (CraPP; 74% similarity and 48% identity with the CraEC; [16]) regulates the fruBKA operon (Fig. 1b) encoding the fructose phosphotransferase system PTSFru [16,17] and also that F1P is its preferred metabolic effector [16]. Specifically, electrophoretic mobility shift assays (EMSA) showed that as little as 1 μM of F1P prevented binding of purified CraPP to the PfruB promoter DNA. In contrast no effects on the CraPP-DNA complex were brought about by any other metabolite tested at the concentrations up to 1 mM. Isothermal titration calorimetry (ITC) experiments with the same protein revealed also that F1P binding to CraPP occurs with a 1:1 stoichiometry and a very high affinity ($K_D \approx 200$ nM). But consistently with the EMSA experiments, neither FBP nor glucose-6-phosphate (G6P) generated any ITC signal when mixed with CraPP [16]. Finally, while diffracting CraPP-F1P co-crystals are easy to produce, it has not been possible thus far to generate CraPP-FBP counterparts. Taken together, the data above suggest that there is no interaction of FBP with the CraPP protein, at least at effector concentrations ≤ 1 mM. Still, the literature reports that intracellular pools of FBP and other glycolytic intermediates can go in bacteria up to >15 mM under some physiological conditions [18]. Therefore, the published experiments do not altogether rule out that other compounds can also be physiological effectors of CraPP.

In view of the uncertainty on the role of FBP as agonist of CraPP we set out to clarify unequivocally the nature of the metabolic signal that lets this regulator to detach in vivo from its genomic binding sites. By using a suite of biochemical, computational and genetic approaches we show that no metabolite other than F1P may act as an effector of CraPP. Since F1P is generated in P. putida exclusively from exogenously added fructose, we argue that CraPP is the main transducer of the presence of this sugar in the medium into up/down downregulation of a large number of genes, whether directly (i.e., via interaction with genomic CraPP-binding sites) or indirectly through the action of proteins of the PTSFru system encoded by fruBKA.

2. Results and discussion

2.1. Binding of CraPP protein to DNA fragments containing single and double operators

The conditions of reference for examining the influence of various glycolytic intermediates in the attachment of CraPP to its genomic operators [16] is shown in Fig. 2a. The test involves 3 components: the CraPP protein purified to homogeneity [16], a 290 bp radioactively labeled DNA fragment spanning the single operator for the regulator found in the PfruB promoter (Fig. 1b; [16,17]) and F1P as an effector. Consistently with previous data (i) as little as 50 nM protein suffices to bind 100% of the target

![Fig. 1. Metabolic regulation of the fructose operon of P. putida. (a) Generation of F1P and FBP upon entry of hexoses in the metabolic network of P. putida. F1P is produced from extracellular fructose, which enters the cell through the PTSFru system (FruBA). FBP is generated also from fructose by phosphorylation of F1P by FruK. When growing on glucose or succinate the lack of phosphofructokinase [15] makes FBP to be produced exclusively through a back reaction of trioses into hexoses. Relevant enzymes and transformations are indicated (see Supplementary Fig. S1 for an expanded metabolic map). (b) Regulatory region of the fruBKA operon of P. putida. Note the organization of the genes and the PfruB promoter containing one Cra operator (the quasi-palindromic 5’TTAAACGTTTCA3’ sequence in red). While F1P de-represses the promoter by releasing Cra binding to PfruB, the role of FBP is less clear. Numbers flanking the operon indicate the genomic coordinates of the fruB fruK fruA operon of P. putida KT2440.](image-url)
for Cra instead of the one used before. The rationale of this choice is that one can expand the effector sensitivity of a regulatory device by changing the affinity of the cognate transcription factor (TF) for DNA rather than altering the effector-protein interaction proper. In this way, a residual responsiveness of the TF to an effector becomes well detectable if the affinity for the target operator is artificially enhanced [19]. In our case, the alternative probe is a 290 bp DNA fragment corresponding to the regulatory region of fructose operon of E. coli (Supplementary Fig. S2) which is known to contain two site (O₁ 5'TGAAAGTTCC3'; O₂ 5'TGAA TCGTTC3') that are cooperatively bound by the regulator [11]. Fig. 3a shows how the CraPP protein interacts with such a target DNA with two binding sites and the disrupting effect of adding F1P. The two retarded bands that show in the gel are explained as the result of CraPP binding to either one (complex I) or both operators (complex II) in the labeled DNA probe. When the EMSAs were repeated with high FBP and G6P concentrations (Fig. 3b), the results indicated much more clearly than in the case of the single-operator probe (cf. Fig. 2b) that both glycolytic intermediates could revert the protein-DNA interactions. These results are compatible with earlier observations by Ramseier et al. [11] in that the transcriptional repression caused by Cra could be relieved in vitro by ≥5 mM FBP. Still, as these effector concentrations are at the upper limit and beyond those reported in the literature [18] there is a legitimate doubt of whether the action of FBP on CraPP binding to DNA reflects a genuine, specific regulatory occurrence. Alternatively, they could be the result of using artifically high effector concentrations that lead to non-reliable effects. The in vitro and in vivo experiments below were designed to shed light on this outstanding question.

2.2. Interactions of CraPP with FBP and G6P are unspecific

In order to shed light on the nature of Cra effector(s), the interaction parameters of purified CraPP with the two principal candidate metabolites were examined by means of isothermal titration microcalorimetry (ITC) as explained in the Methods section. The benchmark for these tests was the ITC signals brought about by the interaction of the same CraPP used in the EMSA experiments with the bona fide effector F1P. Prior to microcalorimetric assays of the protein a number of buffer titrations were carried out to identify the maximal concentration of a compound that give rise to acceptable dilution heats. For the compounds studied, such concentration was found to be 1 mM. The reference titration of Cra with F1P under such conditions is shown in Fig. 4b (equivalent to ITC curve 1 in Fig. 4c). This control reproduced faithfully the results reported in [16]; F1P binding to CraPP caused favourable enthalpy changes, the effector-protein complex had an apparent stoichiometry of one F1P/monomer, and the Kᵢ ≈ 200 nM. When this experiment was repeated with FBP or G6P heat changes were identical to the buffer titration with this ligand, indicating an absence of binding (curves 1 of Fig. 4a and b). Note that under the experimental conditions used the final ligand concentration in the cell was of 175 μM, which implies that a low-affinity interaction cannot be detected. Increasing the concentration of the ligand was not possible due to large dilution heats at the concentrations above 1 mM for all metabolites studied. To visualize a potential low-affinity interaction between FBP and Cra, an alternative strategy was chosen in which a mixture of 12 μM CraPP with 5 mM of FBP was titrated with a mixture of 0.45 μM F1P in 5 mM FBP. If FBP bound to Cra with an affinity in the lower mM range, the presence of this ligand at Cra would alter the thermodynamic parameters of F1P as mentioned above (Fig. 4b). However, this was not the case because the titration pattern of the CraPP-FBP mixture with F1P (curve II in Fig. 4c) revealed thermodynamic parameters close to the titration of CraPP with F1P-only (ITC curve 1).
Miller assay [20] that uses the super-sensitive β-Galacto-Light PlusTM luminescent substrate of the enzyme [21].

Since *P. putida* cannot internalize phosphorylated sugars F1P/FBP, these effectors could not be added directly to the medium for examining their action in *vivo*. Instead, as the metabolic map of *P. putida* KT2440 has been determined ([15,22,23]; Supplementary Fig. S1) we considered to manipulate intracellular levels of F1P or FBP by growing the cells on distinct substrates. Significant concentrations of F1P can be brought about by simply growing cells on fructose, because this hexose becomes transformed instantly into F1P upon transport through the PTSPP system (Fig. 1a; [17]). However, growth in the same sugar also leads to generation of low-nM concentrations of FBP (~1.3 mM, Fig. 5a), what makes interpretation of any fruB- lacZ induction result impossible. Therefore, we attempted to increase the concentration of FBP, while keeping F1P levels to the lowest achievable in *vivo*. Analysis of FBP in sucrose-grown and glucose-grown cells revealed levels of this effector in the range 60 μM and 275 μM, respectively (Fig. 5a). Since, according to the metabolic models of *P. putida*, F1P can only be generated by fructose (Supplementary Fig. S1), any fruB- lacZ activity of cells grown on either sucrose or fructose should be traced to the effect of FBP. Inspection of the results of Fig. 5b indicated that the fruB- lacZ was strongly induced as expected in fructose-grown cells and not induced at all in sucrose cultures. These extreme values set the upper and the lower limits of activity of the reporter fusion, as there was a plenty of an optimal inducer (F1P, fructose) and very low concentrations of the candidate effector (FBP, succinate). However, in the presence of glucose reporter cells nearly tripled the readout of β-galactosidase as compared to succinate conditions (Fig. 5c). Since FBP cannot be formed under these conditions, the result suggested that the levels of FBP detected in these cells could induce the PfruB Promoter and thus be an authentic physiological effector of CraPP. The data shown in Fig. 6, however, ruled out altogether this possibility. In this case, we repeated the same experiment with glucose but using a ΔfruB mutant as the host of the fruB- lacZ reporter system. This strain is unable to transport fructose and therefore cells exclude any possible trace of this sugar that may contaminate the glucose added to the medium. When β-galactosidase was measured in the ΔfruB strain, the differences between succinate and glucose altogether disappeared (Fig. 6a). To ensure that the lack of fruB entirely prevented the entry of fructose in the medium we run a control experiment in which succinate-grown cells having or lacking a *fruB* mutant as the host of the fruB- lacZ reporter system. This strain was strongly induced as expected in fructose-grown cells – while clarifying the induction result impossible. Therefore, we transferred the low-copy number plasmid pMCH1[17] to *P. putida* KT2440. This plasmid carries a translational fusion fruB- lacZ which allows the readout of CraPP binding in vivo to the promoter of the fruBKA operon. In the absence of metabolic effectors, CraPP binds strongly its operator in the region of the PfruB promoter (Fig. 1) and represses production of β-galactosidase [16,17]. On the contrary, when CraPP metabolic agonists release repression, the lacZ fusion is transcribed and the reporter is expressed. In order to measure accurately β-galactosidase we adopted a variant of the...
out either that the effect of FBP and G6P on the CraPP protein in vitro (Figs. 2 and 3) could be due to traces of F1P in the corresponding preparations.

The results above on the exclusivity of F1P as the physiological Cra effector raise the issue of their generalization to bacteria other than P. putida. While in this species the TF seems to have specialized in controlling fructose uptake, the orthologs in other bacteria (in particular, E. coli) have been found to respond to both F1P and FBP and behave as sensors of the glycolytic flux [13]. In order to identify the structural basis for such functional divergence in otherwise very similar proteins, we resorted to molecular modeling for comparing the interaction details of the CraPP and its enterobacterial counterpart (i.e., the E. coli protein CraEC) with their effectors F1P and FBP.

2.4. Molecular docking exposes the exclusivity of F1P as the metabolic effector of CraPP

In order to analyze the binding potential of F1P and FBP to CraPP, we performed separate docking of these metabolites into the X-ray structure of the regulator available in the RSCB PDB database using as a reference the counterpart TF from E. coli. Since the crystal structures included the two monomers of the functional protein (chain A and chain B; [16]), the molecular docking was performed separately into either of them (Fig. 7). We first addressed the docking of CraPP complexed with F1P (PDB: 3O75; [16]), which revealed 19 possible favorable binding modes to the chain A and 20 to the chain B (Supplementary Table S1). For each chain, the predicted binding types that matched experimentally the way of interaction with F1P were found to rank the first and the second by their lowest binding energies and were the most prevalent among all calculated binding modes (40.4% and 37.6%). When the same structure (PDB: 3O75) was tested for FBP binding, the docking identified 26 binding modes to the chain A and 24 to the chain B (Supplementary Table S2). While the simulated binding modes of FBP to either chain ranked the first and the third by their lowest energies, their occurrences (15.2% and 10.4%, respectively) were far less frequent in comparison to F1P. We then explored binding of the same effectors to the effector-free crystal structure of CraPP (PDB: 3O74; [16]), what resulted in 13 possible binding modes to the chain A and 17 to the chain B (Table S3). The simulations of binding energies in this case ranked very closed to those derived from the 3O75 structure, but the occurrences of each binding mode to effector-free CraPP were less frequent (8.4% and 7.6% to the chain A and B, respectively), thereby indicating a probable conformational adaptation of Cra induced upon F1P binding. Docking of FBP into the 3O74 structure resulted in 20 possible binding modes to the chain A and 19 to the chain B (Supplementary Table S4). These modes ranked the second and the sixth by their lowest binding energies, but, as above, their occurrences (13.2% to the chain A and 8.4% to the chain B) changed only slightly in comparison with the results obtained for 3O75 structure. Finally, we simulated the binding of F1P and FBP to the effector-free crystal structure of the protein of E. coli (PDB: 2IKS, unpublished). In one case, docking of F1P into 2IKS resulted in 47 binding modes to the chain A and 46 to the chain B (Supplementary Table S5), which possessed the seventh and the thirty-first lowest binding energies. The same with FBP yield 73 possible binding modes to the chain A and 58 to the chain B (Supplementary Table S6), ranking the thirty-sixth and the thirty-seventh by their binding energies. Interestingly, the binding occurrences of both F1P (3.2% and 0.4% to the chain A and B) and FBP (0.8% and 0.4%) to CraEC were quite rare in comparison to CraPP.

Table 1 shows the overview for the molecular docking results of F1P and FBP into the three different crystal Cra structures averaged over the two polypeptide chains. The data indicate that (i) binding of either effector into the binding site of any of the Cra variants tested is thermodynamically favored and (ii) F1P is always preferred over FBP irrespective of the Cra type. While the difference between the energy released by of F1P and FBP binding to CraPP was as high as ~2 kcal/mol, the breach decreased by half (~1 kcal/mol) in the case of to CraEC. This accounts for the extraordinary selectivity of CraPP for F1P ($K_D = 209 \pm 20$ nM) as compared
to the E. coli’s counterpart. The higher binding promiscuity of CraEC is further supported by significantly larger number of possible binding modes of both docked effectors as well as lower probability of their calculated binding modes.

2.5. Molecular dynamics of F1P and FBP bound to CraPP

To gain a further insight on the selectivity of CraPP for its physiological effector we run simulations of the interactions of F1P and FBP bound to the CraPP structure (PDB: 3O75) and the CraEC (PDB: 2IKS). Once reaching a constant temperature, the dynamically simulated systems were found to be equilibrated based on the stable values of energies, density, gyration radius and the mean root square deviation of protein backbone atoms, over the entire length of the production molecular dynamics simulation (data not show). The binding free energy calculated by MM-PBSA and the normal mode analysis for all four investigated complexes are shown in Supplementary Table S7. In good agreement with the data of docking calculations presented above, the favorable free binding energies confirm that both F1P and FBP can bind to either Cra variant. However, the divergence between the free binding energy of F1P and FBP (Supplementary Table S7) is significantly larger in the case of CraPP (−7.2 ± 2.5 kcal/mol) than E. coli’s CraEC (−3.8 ± 1.1 kcal/mol). Such differences imply a difference of six orders of magnitude in the affinity of CraPP for each of the effectors as compared to the 3 orders of magnitude in the case of CraEC. These analyses both account for the extreme selectivity of CraPP towards F1P and explain why the E. coli’s protein has, otherwise, a broader effector range in vivo that reaches out physiological fluctuations of FBP [13].

3. Conclusions

Inspection of the crystal structure of CraPP [16] along with the suite of biochemical and biophysical tests presented in this work reveal without a doubt, that F1P is the one and only metabolic

Fig. 5. Metabolic control of PfruB activity. (a) FBP levels in P. putida growing on glycolytic (fructose and glucose) and gluconeogenic (succinate) substrates. Wild-type cells of P. putida KT2440 were grown in M9 media with the substrate indicated until the mid-exponential phase and then processed for measuring FBP levels by HPLC-MS as described in the Section 4. The data shown correspond to three independent samples, the error bars representing the standard deviations of the mean. (b) PfruB activity in cells grown on succinate, glucose and fructose as the sole C source. A schematic diagram of the fruB-lacZ gene fusion borne by reporter plasmid pMCH1 is sketched on top. Note the very high activity in cells grown on fructose in contrast with those in succinate or glucose. (c) Blowup of lacZ readout of P. putida (pMCH1) cells growing on succinate or glucose.

Fig. 6. Effect of ΔfruB on the activity of a fruB-lacZ fusion. PfruB activity in P. putida (pMCH1) cells lacking the fruB gene growing in (a) glucose with increasing concentrations (10 and 100 μM) of fructose and (b) succinate with increasing concentrations (10 and 100 μM) of fructose. (c) PfruB activity in wild type cells grown with succinate plus fructose. β-Galactosidase activity was measured with Galacton-Plus as described in the Section 4. Note that lacZ levels of the ΔfruB strain remain unchanged regardless of succinate or glucose, plausibly due to the inability of cells to internalize fructose and thus generate F1P.
physiological effector of the ortholog TF that is native of P. putida. This is in contrast with the situation for the enterobacterial counterpart where FBP is one of the physiological agonists of the regulator. Since FBP is a key metabolite of the standard E. coli EMP pathway, its levels are considered a proxy of the glycolytic course and CraEC, a flux sensor [13]. In contrast, P. putida lacks the EMP route and intracellular FBP concentrations are not sufficient to elicit de-repression of the $fruB$ promoter. Moreover, according to current metabolic models for this microorganism, F1P is formed in vivo only as a result of fructose phosphorylation by the PTS system [Supplementary Fig. S1; [15,17]]. Since the P. putida genome contains > 50 Cra boxes with the potential to control a suite of cellular functions (Supplementary Table S8), we suggest that fructose is an important environmental signal for this bacterium beyond its mere status of being a C source, an issue that deserves further studies. In any case, it seems clear that Cra (i) is used in different bacteria for sensing dis-similar physiological conditions and that (ii) such functional re-assignment can be brought about by subtle modifications of its binding parameters to possible effectors. In our case, it is likely that otherwise orthologous Cra versions have been co-opted in different hosts to regulate target genes in response to unlike metabolic inputs. Such a regulatory exaptation [26] thus provides a rationale of how both TFs and their cognate regulons can dramatically diversify in different bacteria.

4. Materials and methods

4.1. Bacterial strains, plasmids, culture media, and growth conditions

All P. putida strains were derived from P. putida KT2440 [27]. $\Delta fruB$ strain was reported previously [17] and was constructed using the protocol described by Martínez-García et al. [28]. P. putida and E. coli strains were cultured at 30 °C and 37 °C, respectively, in an aerated orbital shaker at 170 rpm. The rich medium used to grow all strains of this study was Luria-Bertani (LB; [29]). Where indicated, P. putida strains were also cultured in minimal medium M9 [20], supplemented with 0.2% (w/v) fructose, glucose or succinate as the sole carbon and energy source added, if necessary with 50 µg/ml kanamycin (K_{m}). Broad host range pMCH1 plasmid containing a P_{fruB}-lacZ reporter translational fusion has been described previously [17]. Both plasmids were separately transformed in P. putida KT2440 and its $\Delta fruB$ variant [17] as required.

4.2. Measurements of β-galactosidase activity

The extremely sensitive Galacton-Light Plus™ system (Applied Biosystems) was employed for measuring β-galactosidase levels in lacZ+ P. putida cells. To this end, each strain under examination was pregrown in M9 with glucose or succinate to ensure retention of the reporter plasmids and then diluted to an OD$_{600}$ ~0.05. Once bacteria had reached OD$_{600}$ ~0.3–0.6, the cells of 0.5 ml of each culture were spun down (2 min, 14,000 g) and the pellet resuspended in 200 µl of lysis buffer (100 mM potassium phosphate pH 7.8, 0.2% Triton X-100). The mixtures were subjected to two freeze-thaw cycles in liquid nitrogen and clarified by centrifugation 1 min at 14,000×g. 20 µl of the supernatant were then deposited in the wells of microtiter plates, added with 80 µl of reaction buffer (100 mM sodium phosphate, pH 8.0, 1 mM MgCl$_2$, 0.05). The extremely sensitive Galacton-Light Plus™ system (Applied Biosystems) was employed for measuring β-galactosidase levels in lacZ+ P. putida cells. To this end, each strain under examination was pregrown in M9 with glucose or succinate to ensure retention of the reporter plasmids and then diluted to an OD$_{600}$ ~0.05. Once bacteria had reached OD$_{600}$ ~0.3–0.6, the cells of 0.5 ml of each culture were spun down (2 min, 14,000×g) and the pellet resuspended in 200 µl of lysis buffer (100 mM potassium phosphate pH 7.8, 0.2% Triton X-100). The mixtures were subjected to two freeze-thaw cycles in liquid nitrogen and clarified by centrifugation 1 min at 14,000×g. 20 µl of the supernatant were then deposited in the wells of microtiter plates, added with 80 µl of reaction buffer (100 mM sodium phosphate, pH 8.0, 1 mM MgCl$_2$, 0.05). The extremely sensitive Galacton-Light Plus™ system (Applied Biosystems) was employed for measuring β-galactosidase levels in lacZ+ P. putida cells. To this end, each strain under examination was pregrown in M9 with glucose or succinate to ensure retention of the reporter plasmids and then diluted to an OD$_{600}$ ~0.05. Once bacteria had reached OD$_{600}$ ~0.3–0.6, the cells of 0.5 ml of each culture were spun down (2 min, 14,000×g) and the pellet resuspended in 200 µl of lysis buffer (100 mM potassium phosphate pH 7.8, 0.2% Triton X-100). The mixtures were subjected to two freeze-thaw cycles in liquid nitrogen and clarified by centrifugation 1 min at 14,000×g. 20 µl of the supernatant were then deposited in the wells of microtiter plates, added with 80 µl of reaction buffer (100 mM sodium phosphate, pH 8.0, 1 mM MgCl$_2$, 0.05).
1X Galacton-Plus® and incubated for 30 min. Samples were then added with 125 µl of Accelerator-II Sapphire-II™ and light emission recorded for 30 s in a luminometer following the instructions of the commercial supplier. All the enzymatic measurements presented through this paper are the result of at least six biological replicates.

4.3. Gel retardation assays

The \(P_{\text{flu}} \) probe used for these tests containing a single Cra binding site was amplified from plasmid pMCH1 with oligonucleotides 5′PfruB (5′-CGATTTTCCGTGATTACCGG3′) and 3′PfruC (5′-CGGA ATTCGACCTTCCTTTTGCACTTCCC3′, an engineered EcoRI site is underlined). The equivalent \(P_{\text{flu}} \) probe with two Cra binding sites was similarly amplified from the purified genomic DNA of \(E. coli \) W3110 by using oligonucleotides 5′PfruBcoli (5′-CTGA TA AGC GATTTCATCCAGGC3′) and 3′PfruCcoli (5′-CGGAATTCGCCTTT CTITGTCTCCGGCC3′; the EcoRI site underlined). In both cases, the amplified DNA was digested with EcoRI and the resulting 290 bp fragments were 3′-end labelled by filling-in the EcoRI-digested overhangs by the Klenow fragment of \(E. coli \) DNA polymerase as reported previously [30]. The retardation reactions were set in TRRC buffer (20 mM Tris/HCl, pH 7.5, 10% glycerol, 2 mM mercaptoethanol and 50 mM KCl) and contained 0.05 nM DNA probe, 250 µg/ml BSA, 50 mM nitrilotriacetic Hsi-Cra protein (produced as described in [16]) and concentrations 1-15 mM of effectors in a final volume of 9 µl. After incubation of the retardation mixtures for 20 min at room temperature, the mixtures were analyzed by electrophoresis in 5% polyacrylamide gels buffered with 0.5X TBE (45 mM Tris/ borate, 1 mM EDTA). The gels were dried on Whatman 3MM paper and exposed to X-Ray Film (Konica Minolta).

4.4. Isothermal titration microcalorimetry (ITC)

ITC experiments were performed on a VP microcalorimeter (MicroCal, Northampton, MA, USA) at 25 °C. Prior to experiments, Cra was thoroughly dialyzed in 25 mM Tris-HCl, 50 mM NaCl, 1 mM DTT, pH 8.0. After the protein solution was then clarified trough a 0.45 µm filter and its concentration was determined by UV absorption spectroscopy using and extinction coefficient of 1.217 × 10³ M⁻¹ cm⁻¹ at 280 nm [31]. Effectors were prepared by diluting pure powdered products in filtered dialysis buffer so that the ligand and protein solvent were the same. Titration with F1P (positive control) involved 4.8 µl injections of 0.5 mM F1P into a 12 µM protein solution. On the other hand, titration with FBP and G6P involved 14.4 µl injections of 1 mM FBP (or G6P) into a 12 µM protein solution. For competition experiments a mixture of 5 mM of FBP with 12 µM of Cra protein was titrated with a mixture of 0.45 µM of F1P and 5 mM of FBP. For all the experiments, the mean enthalpies measured from injection of the ligand and protein solvent were the same. Titration with F1P allowed full coverage of Cra binding site. Both ligands were then docked separately into the binding sites of each chain of all structures using AutoDock 4.2 [38,39]. 250 docking calculations were performed for each ligand employing the Lamarckian Genetic algorithm with the following parameters: initial population size 300, maximum of 30,000 generations, elitism value 1, mutation rate 0.02, and cross-over rate 0.8. The maximum of energy evaluations were set to 10,000,000. The local search was based on pseudo Solis and Wets algorithm with a maximum of 300 iterations per local search [40]. Energy of unbound system was estimated as the internal energy of the unbound extended conformation determined from Lamarckian Genetic Algorithm search. Final orientations from every docking run were clustered with a clustering tolerance for the root-mean-square positional deviation of 1.5 Å.

4.5. Determination of FBP concentrations by liquid chromatography mass spectrometry

For quantification of FBP, \(P. putida \) KT2440 were pregrown in M9 medium with 0.2% (w/v) fructose, glucose or succinate as required and then re-inoculated in the same media to a starting OD₆₀₀ = 0.05. Cultures were then let grow until exponential phase, at which point the biomass corresponding to 0.5-0.6 mg of cellular dry weight (CDW, 4 ml of culture to OD₆₀₀ ~ 0.5-0.6) of triplicate samples was collected by centrifugation (13,000×g, 30 sec) and the bacterial pellets immediately frozen in liquid nitrogen until further processing. At that point, samples were extracted three times with 0.5 ml 60% (v/v) ethanol buffered with 10 mM ammonium acetate pH 7.2 at 78 °C for 1 min as described previously [32,33]. After each extraction step, biomass was separated by centrifugation for 1 min at 13,000×g. The three liquid extracts of each sample were pooled prior to drying at 120 µbar to complete dryness and then stored at −80 °C. Samples were then resuspended in 20 µl of MilliQ water, sealed in 96-well plates, submitted to LC-MS and the data analyzed as described previously [33].

4.6. Molecular docking calculations

The molecular models of F1P and FBP were prepared and energy-minimized in the Avogadro 1.0.2 package [34]. The procedure involved 500 steps of steepest descent followed by 500 steps of conjugate gradient using the GAFF force field [35]. The crystal structures were downloaded from RCSB PDB database under following PDB codes: 2IKS (effector-free Cra from \(E. coli \), 3074 (effector-free Cra from \(P. putida \), and 3075 (Cra from \(P. putida \) complexed with F1P). All crystallographic water molecules were removed and hydrogen atoms were added to the proteins by H++ server at pH 8.0 using the default settings [36]. Gaussier charges and AutoDock 4.2 atom types were assigned to protein and ligand structures by MGLTools [37]. During docking procedure, the receptor binding site was represented by the set of atomic and electrostatic grid maps calculated by AutoGrid 4.2 [38,39]. Individual chains of Cra structures were aligned to the chain A of 3074 structure using PyMol 1.4.1 (http://pymol-molecular-graphics-system.soft112.com) and the grid maps were set to 80 × 80 × 80 grid points with spacing 0.25 Å centered at the position of C2 atom of F1P bound to chain A of 3075. This setting of the grid maps allows full coverage of Cra binding site. Both ligands were then docked separately into the binding sites of each chain of all structures using AutoDock 4.2 [38,39]. 250 docking calculations were performed for each ligand employing the Lamarckian Genetic algorithm with the following parameters: initial population size 300, maximum of 30,000 generations, elitism value 1, mutation rate 0.02, and cross-over rate 0.8. The maximum of energy evaluations were set to 10,000,000. The local search was based on pseudo Solis and Wets algorithm with a maximum of 300 iterations per local search [40]. Energy of unbound system was estimated as the internal energy of the unbound extended conformation determined from Lamarckian Genetic Algorithm search. Final orientations from every docking run were clustered with a clustering tolerance for the root-mean-square positional deviation of 1.5 Å.

4.7. Molecular dynamics simulations

The F1P-3075, FBP-3075, F1P-2IKS and FBP-2IKS complexes obtained by the molecular docking were used as the initial structures for the molecular dynamics simulations. Crystallographic waters were put back to their original positions with the exception of water molecules overlapping with the docked effectors. AM1-BCC atomic partial charges [41] and the force field parameters for F1P and FBP were generated with the Antechamber module of AMBER11 [42,43] using the total charges of −2 e and −4 e for F1P and FBP, respectively. Using Tleap module of AMBER11, the systems were neutralized by adding 8, 10, 16 and 18 Na⁺ ions to F1P-3075, FBP-3075, F1P-2IKS and FBP-2IKS complexes, respectively. Using the same module, an octahedral of TIP3P water molecules [44] was added to the distance of 10 Å from any solute
atom in the systems. Energy minimization and molecular dynamics simulations were carried out in PMEMD module of AMBER11 using ff99SB force field [45] for a protein and GAFF force field [35] for the ligands. Initially, the investigated systems were minimized by 500 steps of steepest descent followed by 500 steps of conjugate gradient in five rounds of decreasing harmonic restraints. The restraints were applied as follows: 500 kcal mol\(^{-1}\) Å\(^{-2}\) on all heavy atoms of a protein, and then 500, 125, 25 and 0 kcal mol\(^{-1}\) Å\(^{-2}\) on the backbone atoms only. Molecular dynamics simulations employed periodic boundary conditions, the particle mesh Ewald method for treatment of the electrostatic interactions [46,47], 10 Å cutoff for nonbonded interactions, and 2 fs time step with the SHAKE algorithm to fix all bonds containing hydrogens [48]. Equilibration simulations consisted of two steps: (i) 20 ps of gradual heating from 0 to 300 K under constant volume, using a Langevin thermostat with collision frequency of 1.0 ps\(^{-1}\), and with harmonic restraints of 5.0 kcal mol\(^{-1}\) Å\(^{-2}\) on the position of all protein and effector atoms, and (ii) 2000 ps of unrestrained molecular dynamics at 300 K using the Langevin thermostat, and constant pressure of 1.0 bar using pressure coupling constant of 1.0 ps. Finally, production molecular dynamics simulations were run for 10 ns with the same settings as the second step of equilibration simulations. Coordinates were saved in 1 ps interval, and the trajectories were analyzed using P trajectories of AMBER11, and visualized in PyMol 1.4.1 (see above) and VMD 1.8.9 [49].

4.8. Calculation of the binding free energy

The free energy for the binding of potential effectors to the individual proteins was calculated by the Molecular Mechanics/Poissont Boltzmann Surface Area (MM-PBSA) method using MMPBSA.py script of AMBER11 [50]. The polar solvation free energy contributions were determined by grid based finite-difference solution of the Poisson–Boltzmann equation using psbs [51] program of AMBER11. The setting of the Poisson–Boltzmann calculations was following: ionic strength of 75 mM, grid spacing of 0.5 Å, the internal and external dielectric constants of 1 and 80, respectively, and modified Bondi radii [52] for ligands. The nonpolar solvation free energy contribution was estimated as proportional to the solvent accessible surface area using the LCPO method [53]. The entropy change upon effector binding was evaluated using the normal-mode analysis implemented in NAB module of AMBER11 using distance-dependent dielectric of 4\(\varepsilon_0\). The energy was calculated over 10,000 snapshots extracted from a single production molecular dynamics simulation of a complex, and the entropy contribution was calculated from 100 snapshots evenly sampled from the snapshots employed in the energy calculation.

Acknowledgements

Authors are indebted to Tobias Führer and Uwe Sauer (ETH Zürich) for help with measurements of central metabolites. This study was supported by the BIO and FEDER CONSOLIDER-INGENIO programme of the Spanish Ministry of Science and Innovation, the MICROME, ST-FLOW and ARISYS Contracts of the EU, the PROMT Project of the CAM, the European Regional Development Fund (CZ.1.05/2.1.00/01.0001) and the Grant Agency of the Czech Republic (P503/12/0572). CERT-SC and MetaCentrum are acknowledged for providing access to their computing facilities (C1.05/3.2.00/08.0144 and LM2010005). J.B. was supported by the C21.07/2.3.00/30.0037 Program of the European Social Fund and the Czech Republic. Authors declare no conflict of interest.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.fob.2014.03.013.

References

1. Saier Jr., M.H. and Ramseier, T.M. (1996) The catabolite repressor/activator (Cra) protein of enteric bacteria. J. Bacteriol. 178, 3411–3417.
2. Ramseier, T.M. (1996) Cra and the control of carbon flux via metabolic pathways. Res. Microbiol. 147, 489–493.
3. Ow, D.S., Lee, R.M., Nissom, P.M., Philip, R., Oh, S.K. and Yap, M.G. (2007) Inactivating FruR global regulator in plasmid-bearing Escherichia coli alters metabolic gene expression and increases growth rate. J. Biotechnol. 131, 261–269.
4. Bleidig, S.A., Ramseier, T.M. and Saier Jr., M.H. (1996) FruR mediates catabolite activation of pyruvate kinase (pkk) gene expression in Escherichia coli. J. Bacteriol. 178, 280–283.
5. Sarkar, D., Siddiquee, K.A., Arauozo-Bravo, M.J., Oba, T. and Shimizu, K. (2008) Effect of cra gene knockout together with eed and iICR genes knockout on the metabolism in Escherichia coli. Arch. Microbiol. 190, 559–571.
6. Geese, R.H., van der Pluijm, J. and Postma, P.W. (1989) The repressor of the PEP:fructose phosphotransferase system is required for the transcription of the pps gene of Escherichia coli. Mol. Genet. 218, 348–352.
7. Negre, D., Oudot, C., Prost, J.F., Murakami, K., Ishihama, A., Cozzone, A.J. and Corty, J.C. (1998) FruR-mediated transcriptional activation at the ppsA promoter of Escherichia coli. J. Mol. Biol. 276, 355–365.
8. Corty, J.C., Negre, D., Scarch, M., Ramseier, T.M., Vartak, N.B., Reiter, J., Saier Jr., M.H. and Cozzone, A.J. (1994) In vitro asymmetric binding of the pleiotropic regulatory protein, FruR, to the ace operator controlling glyoxylate shunt enzyme synthesis. J. Biol. Chem. 269, 14885–14891.
9. Prost, J.F., Negre, D., Oudot, C., Murakami, K., Ishihama, A., Cozzone, A.J. and Corty, J.C. (1999) Cra-dependent transcriptional activation of the icd gene of Escherichia coli. J. Bacteriol. 181, 893–898.
10. Ramseier, T.M., Chien, S.Y. and Saier Jr., M.H. (1996) Cooperative interaction between Cra and Fnr in the regulation of the cydAB operon of Escherichia coli.Curr. Microbiol. 33, 270–274.
11. Ramseier, T.M., Negre, D., Corty, J.C., Scarch, M., Cozzone, A.J. and Saier Jr., M.H. (1993) In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. J. Mol. Biol. 234, 28–44.
12. Ramseier, T.M., Bleidig, S., Michotey, V., Feghali, R. and Saier Jr., M.H. (1995) The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli. Mol. Microbiol. 16, 1157–1169.
13. Kotte, O., Zaug, J.B. and Heinemann, M. (2010) Bacterial adaptation through distributed sensing of metabolic fluxes. Mol. Sys. Biol. 6, 355.
14. Kochanowski, K., Volkmer, B., Gerosa, L., Haverkorn van Rijswick, J.R., Schmidt, A. and Heinemann, M. (2013) Functioning of a metabolic flux sensor in Escherichia coli. Proc. Natl. Acad. Sci. USA 110, 1130–1135.
15. Chavarria, M., Kleinj, R.J., Sau, U., Pfluger-Grau, K., Casasnovas, J.M. and de Lorenzo, V. (2012) Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. mBio 3. e00028–00012.
16. Chavarria, M., Santiago, C., Platero, R., Krell, T., Casasnovas, J.M. and de Lorenzo, V. (2011) Fructose 1-phosphate is the preferred effector of the metabolic regulator Cra of Pseudomonas putida. J. Biol. Chem. 286, 9351–9359.
17. Chavarria, M., Fuhrer, T., Sau, U., Pfluger-Grau, K. and de Lorenzo, V. (2013) Cra regulates the cross-talk between the two branches of the phosphotransferase/phosphotransferase system of Pseudomonas putida. Environ. Microbiol. 15, 121–132.
18. Bennett, B.D., Kimball, E.H., Gao, M., Osterhout, R., Van Dien, S.J. and Rabinowitz, J.D. (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599.
19. Silva-Rocha, R. and de Lorenzo, V. (2012) Broadening the signal specificity of prokaryotic promoters by modifying cis-regulatory elements associated with a single transcription factor. Mol. BioSys. 8, 1950–1957.
20. Miller, J.H. (1972) Experiments in molecular genetics. Cold Spring Harbor, N.Y.
21. Jacob, F. and Magath, L.T. (1991) A chemiluminescent assay for quantitation of beta-galactosidase in the femtogram range: application to quantitation of beta-galactosidase in lacZ-transfected cells. Anal. Biochem. 199, 119–124.
22. Bogalas, J., Palsson, B.O. and Thiele, I. (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440. (N746 as a cell factory. BMC Syst. Biol. 2, 79.
23. Puchalka, J., Oberhardt, M.A., Cadinho, M., Bielecka, A., Regenhardt, D., Timmis, K.N., Papin, J.A. and Schmidt, A. (2009) In silico reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput. Biol. 4, e1000210.
24. McMurtry, J.E. and Begley, T.P. (2005) The organic chemistry of biological pathways. Roberts and Company Publishers, Colorado.
25. Wrolstad, R.E. (2012) Food Carbohydrate Chemistry. John Wiley & Sons Inc, West Sussex, UK.
[26] Milanesio, P., Arce-Rodriguez, A., Munoz, A., Calles, B. and de Lorenzo, V. (2011) Regulatory exaptation of the catabolite repression protein (CcpA)-cAMP system in Pseudomonas putida. Environ. Microbiol. 13, 324–339.

[27] Nelson, K.E., Weinell, C., Paulsen, I.T., Dodson, R.J., Hilbert, H., Martins dos Santos, V.A., Fouts, D.E., Gill, S.R., Pop, M., Holmes, M., Brinkac, L., Beanan, M., DeBoy, R.T., Daughtery, S., Kolonay, J., Madupu, R., Nelson, W., White, O., Peterson, J., Khouri, H., Hance, L., Chris Lee, P., Holtzapple, E., Scanlan, D., Tran, K., Mozarez, A., Utterback, T., Rizzo, M., Lee, K., Kosack, D., Moestl, D., Wedler, H., Lauber, J., Stjepandic, D., Hoheisel, J., Straetz, M., Heim, S., Kiewitz, C., Eisen, J.A., Timmins, K.N., Dusterhoft, A., Tumboller, B. and Fraser, C.M. (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4, 799–808.

[28] Martinez-Garcia, E. and de Lorenzo, V. (2011) Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ. Microbiol. 13, 2702–2716.

[29] Sambrook, J., Maniatis, T. and Fritsch, T. (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, N.Y.

[30] Barragan, M.J., Blazquez, B., Zamarron, M.T., Mancheno, J.M., Garcia, J.L., Diaz, E. and Carmona, M. (2005) BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J. Bacteriol. 280, 10683–10694.

[31] Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D. and Bairoch, A. (2005) Protein Identification and Analysis Tools on the ExPASy Server in: The Poteomics Protocols Handbook (Walker, J.M., Ed.), pp. 571–607, Humana Press.

[32] Fuhrer, T. and Sauer, U. (2009) Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J. Bacteriol. 191, 2112–2121.

[33] Buescher, J.M., Moco, S., Sauer, U. and Zamboni, N. (2010) Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal. Chem. 82, 4403–4412.

[34] Barragan, M.J., Blazquez, B., Zamarron, M.T., Mancheno, J.M., Garcia, J.L., Diaz, E. and Carmona, M. (2005) BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J. Bacteriol. 280, 10683–10694.

[35] Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. and Buescher, J.M., Moco, S., Sauer, U. and Zamboni, N. (2010) Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal. Chem. 82, 4403–4412.

[36] Barragan, M.J., Blazquez, B., Zamarron, M.T., Mancheno, J.M., Garcia, J.L., Diaz, E. and Carmona, M. (2005) BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J. Bacteriol. 280, 10683–10694.

[37] Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. and Buescher, J.M., Moco, S., Sauer, U. and Zamboni, N. (2010) Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal. Chem. 82, 4403–4412.

[38] Barragan, M.J., Blazquez, B., Zamarron, M.T., Mancheno, J.M., Garcia, J.L., Diaz, E. and Carmona, M. (2005) BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J. Bacteriol. 280, 10683–10694.

[39] Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. and Buescher, J.M., Moco, S., Sauer, U. and Zamboni, N. (2010) Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal. Chem. 82, 4403–4412.

[40] Barragan, M.J., Blazquez, B., Zamarron, M.T., Mancheno, J.M., Garcia, J.L., Diaz, E. and Carmona, M. (2005) BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J. Bacteriol. 280, 10683–10694.

[41] Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. and Buescher, J.M., Moco, S., Sauer, U. and Zamboni, N. (2010) Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal. Chem. 82, 4403–4412.

[42] Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. and Buescher, J.M., Moco, S., Sauer, U. and Zamboni, N. (2010) Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal. Chem. 82, 4403–4412.

[43] Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. and Buescher, J.M., Moco, S., Sauer, U. and Zamboni, N. (2010) Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal. Chem. 82, 4403–4412.

[44] Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. and Buescher, J.M., Moco, S., Sauer, U. and Zamboni, N. (2010) Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal. Chem. 82, 4403–4412.