Distinguishing biological from technical sources of variation by leveraging multiple methylation datasets

Mike Thompson¹, Zeyuan Johnson Chen¹, Elior Rahmani¹, and Eran Halperin¹,²,³,⁴

¹Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
²Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
³Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, CA, USA
⁴Department of Biomathematics, University of California Los Angeles, Los Angeles, CA, USA
Abstract

DNA methylation remains one of the most widely studied epigenetic markers. One of the major challenges in population studies of methylation is the presence of global methylation effects that may mask local signals. Such global effects may be due to either technical effects (e.g., batch effects) or biological effects (e.g., cell-type composition, genetics). Many methods have been developed for the detection of such global effects, typically in the context of Epigenome-wide association studies. However, current unsupervised methods do not distinguish between biological and technical effects, resulting in a loss of highly relevant information. Though supervised methods can be used to estimate known biological effects, it remains difficult to identify and estimate unknown biological effects that globally affect the methylome. Here, we propose CONFINED, a reference-free method based on sparse canonical correlation analysis that captures replicable sources of variation—such as age, sex, and cell-type composition—across multiple methylation datasets and distinguishes them from dataset-specific sources of variability (e.g., technical effects). Consequently, we demonstrate through simulated and real data that by leveraging multiple datasets simultaneously, our approach captures several replicable sources of biological variation better than previous reference-free methods and is considerably more robust to technical noise than previous reference-free methods. CONFINED is available as an R package as detailed at https://github.com/cozygene/CONFİNED.

1 Introduction

While technological advances have provided a surplus of methylation datasets, analyses of these datasets are often complicated by innumerable possible sources of variability [1,2]. In particular, Epigenome-wide association studies (EWAS) and studies that aim to implicate observed methylation signal to phenotypic variance are particularly at risk for false associations due to unknown drivers of the observed signal that globally affect the epigenome [3–5]. For example, age is correlated with a large number of methylation sites [6], and thus if not corrected for, association between a specific methylation site and a phenotype may be primarily driven by a confounder such as age. In order to alleviate this problem, it is crucial to elucidate and account for the sources that globally affect the methylation patterns in the genome.

Sources of global methylation effects can be either technical or biological, and may also be measured or unmeasured. In the case of technical sources, most typical are batch effects, or variation resulting from different technicians or conditions during the data-preparing steps [7]. These sources should undoubtedly be identified and accounted for in analyses, for example by balancing cases, controls, and samples from different datasets, including measured potential confounders as covariates, regressing out the sources of confounding signals if they are measured, or otherwise estimating these potential sources of technical effects and accounting for their estimates [8].

The case of biological sources is more complex; biological sources of variation such as age, sex, cell-type composition, genetics, ethnicity, co-morbidities, or responses to environmental factors like medication intake or smoking status indeed affect the global methylation patterns in the genome, and they are also often correlated to the phenotype of interest [6,9,13]. However, due to logistical limitations, often only a few of these sources of biological variation are measured in a given study; moreover, it is often the case that some of the sources of variation that are
correlated with the phenotype are unknown and hence unmeasured.

Unlike technical effects, there is much debate over the best practice of using these biological sources of variation in a model (e.g., [3][11][14][15]), since one can argue that identifying these sources is an important ingredient in understanding the disease mechanism. Moreover, identifying these biological sources of variation may be useful in prediction algorithms related to the studied phenotype. In other words, it is debatable whether one should include biological sources of variation in their model—considering the additional sources as confounders—or to simply derive a model considering only the observed signal and accounting for the technical effects [16].

To capture signal corresponding to specific biological sources of variation, reference-based methods have been proposed. In the case of methylation, one commonly researched source of biological variability is cell-type composition. Houseman et al. developed an approach to estimate the true cell-type proportions in methylation datasets using “methylation signatures” (estimates of cell-type-specific methylation levels) [17]. Reference-based methods and methods that leverage prior statistics, however, are limited to known sources of variability for which such reference data exists. In many cases, either the sources of variability are unknown, or there is no reference data that can be utilized for these methods (e.g., factors such as diet and exposure to air pollution [18][20], and tissues such as solid tumors or adipose [21]). In such cases, reference-based methods cannot be used.

In an attempt to overcome the above limitations, many reference-free methods [21][27], have been proposed. These methods attempt to find a linear transformation of the variability of interest, and use this transformed version of the signal as a surrogate or covariate to control for their effects in EWAS or other analyses. Though these methods can correct for cell-type composition in EWAS [25][28][29] and may also capture other sources of variability, they are limited by the fact that it is impossible to know whether their components reflect biological or technical signal (Figure 1). While technical signal is not of interest and should be accounted for in the analysis, the biological signal can provide useful insights about underlying biological phenomena, for instance by being used to model the interaction with the methylation signal.

![Single-matrix decomposition methods](image1)

Figure 1. *CONFINED* compared to previous factorization approaches. Previous reference-free methods based on single-matrix decompositions (e.g. principal component analysis, non-negative matrix factorization) capture the dominant sources of variability which may be composed of both biological and technical effects (left). Here, we propose a method to capture solely biological variability (right).
In this paper, we propose a reference-free method that disentangles the technical sources of variation from the biological sources of variation. Our method is based on the observation that the same biological sources of variation typically affect different studies that are performed under the same conditions (e.g., on the same tissue type), while technical variability is study-specific. Thus, unlike previous unsupervised methods that utilize single-matrix decomposition techniques to account for covariates in methylation data, we propose the use of canonical correlation analysis (CCA), which captures shared signal across multiple datasets. In brief, CCA finds shared structure between two datasets by finding maximally-correlated linear transformations of the datasets and is used across many fields including cognitive science [30], psychology [31], and imaging [32]. CCA has traditionally been used in the context of genomics to capture genome-wide similarities between different genomic measurements (e.g., gene expression and genetics [33,34], gene expression and copy number alterations [35,36]) for the same set of individuals. As opposed to this traditional use of CCA, our method, named CONFINED (CCA ON Features for INter-dataset Effect Detection), searches for genome-wide similarities between one methylation profile across two sets of individuals. By instead searching across a single genomic profile, we capture shared structure inherent to the underlying biology of the datasets.

We evaluated the performance of CONFINED through both simulated and real data. Our evaluations demonstrate that CONFINED captures signal from only biologically replicable sources of variability. We show, as examples, improvement over previous methods by comparing their performance in capturing methylation signal due to cell-type composition, age, and sex in several whole-blood datasets. We also demonstrate that the features selected by CONFINED recapitulate biological functionality inherent to both datasets. For example, when pairing two whole-blood datasets together, the sites best ranked by CONFINED were significantly enriched for immune cell function. In summary, we highlight CONFINED’s ability to provide insight into shared relationships between datasets, as well as capture signal from both measured and unmeasured biological sources of variability despite noise arising from technical variation.

2 Results

A brief summary of CONFINED We developed CONFINED to capture biological sources of variability in methylation datasets. As input, CONFINED takes two matrices with the same number of rows (methylation sites) but not necessarily the same number of columns (individuals), k the number of components to produce, and t the number of CpG sites to use, or in other words, a sparsity parameter. As output, CONFINED produces components that can be used to model biological sources of variability for each input dataset.

Notably, CONFINED is based on CCA which considers two datasets simultaneously. Intuitively, canonical correlation analysis performs a decomposition of two matrices simultaneously, and hence finds linear combinations of features that define biological variation present in both datasets. Conversely, previous methods that decompose one matrix at a time essentially look for linear combinations of features that preserve dominant structure in a single dataset, and this structure may be a combination of both biological and technical signal. Thus, leveraging the shared structure of two datasets through CCA is crucial. Nonetheless, there are two substantial differences between CONFINED and traditional uses of CCA in genomic studies. First, CONFINED looks for shared structure of one methylation profile across two sets of individuals
rather than looking for shared structure in one set of individuals across two sets of genomic measurements. Second, \textit{CONFINED} performs a feature selection procedure that is critical to detect the shared sources of variability across the different datasets.

\textbf{CONFINED distinguishes between technical and biological signal: Real data analysis with simulated batch effects} In the context of capturing biological signal, one of the main limitations of single-matrix decomposition methods (e.g., PCA, ReFACTor \cite{refactort}, PEER \cite{peer}, non-negative matrix factorization \cite{nnmf}), is that some of the components they capture may be reflective of batch effects or technical noise specific to a dataset. For instance, PCA and methods based on PCA, such as ReFACTor \cite{refactort} and penalized matrix decomposition (PMA) \cite{pma}, consider directions in the data that explain the most variability, but this variability is not limited to strictly global biological or replicable effects in the individual datasets. This issue may also be present in PEER \cite{peer}, which includes a probabilistic version of factor analysis, as the latent factors driving the data may also include some effect from technical variability. Similarly, in non-negative matrix factorization (NNMF) \cite{nnmf} a data matrix is decomposed as a linear combination of different components, and some of the signal of the data matrix may be deconstructed by a component that captures technical variation. Intuitively, \textit{CONFINED} should be robust to dataset-specific technical effects as it only looks for shared structure across datasets.

![Performance comparison with dataset-specific noise](image)

Figure 2. Cell-composition accuracy in the presence of simulated technical noise. We added simulated batch effects to two datasets and compared the ability of \textit{CONFINED}, ReFACTor \cite{refactort}, PEER \cite{peer}, PMA \cite{pma}, and non-negative matrix factorization to capture cell-type composition in whole-blood \cite{wholeblood}. We considered the R^2 value from linear regression as a metric of accuracy. The results of each method were quantitatively similar across both datasets. To illustrate that \textit{CONFINED} captures only replicable biological signal, we simulated batch effects for two whole-blood methylation datasets from Hannum et al. \cite{hannum} and Liu et al. \cite{liu} and compared our method to several earlier methods based on single-matrix decomposition. In this setting, we generated dataset-specific noise with low-rank structure and added it to each of the datasets prior to running any feature selection or method. We then used the datasets with added noise to capture cell-proportion estimates of the original datasets as reported by the method proposed by Houseman et al. \cite{houseman}. Houseman et al. proposed a reference-based method for estimating proportions of immune cells in whole-blood methylation data by leveraging dif-
ferentially methylated regions of DNA to form methylation signatures for individual cell-types. They then use these signatures to obtain cell proportion estimates for several immune cells (CD4 T cells, CD8 T cells, B cells, natural killer cells, monocytes and granulocytes). In our experiments, we captured the estimates from the Houseman algorithm using several components from each of the methods (Figure 2).

In these experiments, we varied the magnitude as well as the rank of the noise (Supplementary Methods). Across all combinations of magnitude and rank, the components produced by CONFINED were more correlated with the Houseman estimates than the components produced by previous reference-free methods (Figure 2).

CONFINED finds biological sources of variability with high accuracy: Analysis across multiple real datasets We evaluated CONFINED using the whole-blood methylation datasets from Hannum et al. [39] and Liu et al. [40] as well as a dataset from Lunnon et al. [41] containing brain tissue samples. Along with their methylation data were measured sources of biological variation including patients’ disease status, age, sex and location from which the brain sample was taken. In addition to evaluating CONFINED’s ability to capture the measured biological factors, we also evaluated its performance on an unmeasured source of variation, cell-type composition. While we focused on using two datasets corresponding to the same tissue type in several analyses, we note that the studied phenotypes in the datasets were different (e.g., Hannum et al. studied aging whereas Liu et al. studied Rheumatoid arthritis). As we show below, using CONFINED we were able to produce components that correlated with both the measured and unmeasured sources of biological signal across all datasets.

![Figure 3. A comparison of CONFINED and previous reference-free methods.](image)

We used each methods’ components to capture cell-type proportions as estimated by Houseman across CD4 T cells, CD8 T cells, monocytes, B cells, natural killer cells, and granulocytes (left); monocytes (center); and natural killer cells (right) in whole-blood data from an aging study (Hannum et al. [39]).

First, we evaluated CONFINED against other reference-free methods when capturing unmeasured biological sources of variability in two whole-blood datasets. In one experiment, we used CONFINED to capture cell-type composition, which was unmeasured in both studies. We treated cell-type proportion estimates from the reference-based algorithm of Houseman et
al. as the ground-truth. CONFINED outperformed all of the previous methods we tested, with pronounced differences in its estimation of the composition of monocytes and natural killer cells (Figure 3).

We also used CONFINED’s components to capture measured sources of biological variation across tissue-types (Figure 4). In these experiments, we paired a whole-blood dataset first with another whole-blood dataset, and second, with a dataset composed from brain tissue. Notably, the accuracy of CONFINED to capture each source of signal varied depending on the pairing of the tissue-type (i.e. blood-blood vs. blood-brain) and the sparsity parameter used.

In the whole-blood dataset, CONFINED’s components captured age, sex, and patient status (i.e. patient or normal phenotypes) with accuracy $R^2_{\text{age}} > .74$, $R^2_{\text{sex}} > .70$, and $R^2_{\text{pat}} > .35$ respectively (Figure 4). PMA had the highest performance among previous methods, but was greatly outperformed by CONFINED (Supplementary Methods Figure 11). Notably, using relatively less sparsity to capture age and sex achieved greater accuracy, however this trend was not necessarily observed when using lower sparsity for capturing cell-type composition or patient status.

![Biological factors of blood and brain datasets (5k)](image)

![Biological factors of blood and brain datasets (200k)](image)

Figure 4. Biological drivers of variability captured by CONFINED We paired a whole-blood dataset with another whole blood dataset (not shown) and with a brain dataset to capture measured sources of variability in each dataset. The subscript indicates with which tissue-type the dataset was paired. The R^2 for each source of variability was calculated using 10 CONFINED components for high (5000, left) and low (200000, right) levels of sparsity.

When pairing the blood dataset with the brain dataset, CONFINED’s components were correlated with some of the whole-blood dataset’s measured biological factors with slightly less strength than when pairing it with a dataset of the same tissue type ($R^2_{\text{age}} > .27$, $R^2_{\text{sex}} > .39$, $R^2_{\text{pat}} > .35$) (Figure 4), possibility suggesting a different architecture for genome-wide variation across the different tissues. Moreover, the cell-type composition accuracy for the blood dataset when paired with the brain dataset was still relatively high (average $R^2_{\text{cell}} = .54$). This may be due to the fact that several types of cells in the brain (e.g. T cells and glia) also harbor immune function. Therefore, the immune function of cells in the brain and immune cells in the blood may follow similar pathways that could be reflected in the epigenome. The
biological sources of variability in the brain dataset were captured with overall less accuracy than the whole-blood biological sources of variability, but the location from which the brain samples were taken was captured with high accuracy ($R^2_{\text{brain}} > .77, R^2_{\text{sex}} > .33, R^2_{\text{age}} > .21$).

Gene ontology of CONFINED’s methylation sites We evaluated the biological significance of the features selected by CONFINED using the R package missMethyl [44]. For a given set of methylation sites, missMethyl tests for enrichment in gene ontology (GO) pathways by first mapping the sites to genes (weighing the genes based on the number of sites that map to them), then performing a test built off of Wallenius’ noncentral hypergeometric distribution. In order to avoid potential biases resulting from the parametric assumptions in the model of missMethyl, we performed permutation testing using its reported p-values. Our test yielded significant enrichment for various ontologies across each pair of datasets (Table 1).

Ontology term	p-value (permutation)	p-value (missMethyl)
Immune system process	.001	6.9e−18
Immune response	.001	1.0e−15
Regulation of immune response	.026	3.0e−11

When we paired two whole-blood datasets, the highest ranked features by CONFINED were enriched for pathways generally involved with the immune response, leukocyte activation, and defense response. Notably, most of the significantly enriched pathways were related to the immune system or signaling (Table 1). These results underscore the importance of CONFINED’s sparsity and provide support for CONFINED’s ability to capture biologically meaningful signal.

Pairing the blood and brain datasets, we observed somewhat similar results, but with less significance. The most enriched pathways in the blood-brain pair included several immune system or hematopoietic processes, but the less enriched pathways were primarily different than when pairing the two blood datasets. The pathways in the blood-brain pair were generally not significantly enriched using permutation testing, unless we used a relatively lower level of sparsity.

3 Methods

A brief explanation of canonical correlation analysis We first explain the general idea of canonical correlation analysis (CCA) [45]. In the simplest terms, CCA maximizes the correlation of two matrices via linear transformations. CCA takes as input two matrices X_1 of dimension $n \times m_1$ and X_2 of dimension $n \times m_2$ where $n > m_1$ and m_2. In other words, both matrices have the same number of rows, but not necessarily the same number of columns. CCA then attempts to find m_1- and m_2-length vectors a_1 and a_2, such that the correlation of X_1a_1 and
X_2a_2 is maximized:

$$\max_{a_1, a_2} \text{corr}(X_1a_1, X_2a_2) \quad (1)$$

The solutions a_1 and a_2 are obtained from the first eigenvectors of subsequently generated matrices, as detailed by Hardoon et al. [46]. We define the products X_1a_1 and X_2a_2 as the first canonical variables and let $u_1 = X_1a_1$ and $u_2 = X_2a_2$. We can find additional pairs of canonical variables with subsequently less correlation under the constraint that each pair of canonical variables is orthogonal to each other. Notably, there are $\min\{m_1, m_2\}$ eigenvectors, thus there are $\min\{m_1, m_2\}$ canonical variables. We define the collection of canonical variables for each dataset as follows:

$$U_1 = X_1A_1 \quad U_2 = X_2A_2 \quad (2)$$

For completeness, we derive and include a tutorial for canonical correlation analysis in the Supplementary Methods and Information section.

A formal description of CONFINED

CCA has been used in genomics in many instances [47–49]. In these cases the rows correspond to individuals, while the columns correspond to features of genomic measurements. For example, each feature could be the expression of a specific gene in one matrix, and in the other matrix it could be the genotype allele, i.e., in this case X_1 corresponds to a gene expression matrix, and X_2 corresponds to a genotype matrix, but both measurements have been taken on the same set of individuals. In CONFINED, we transpose the problem. Rather than searching for shared directions between two sets of genomic measurements, we instead search for shared directions of the same type of genomic measurement (in our case, methylation), but across two sets of individuals. Moreover, since we find that in practice many sources of variability in methylation only act on a fraction of the methylation sites in the genome [12, 22], CONFINED uses sparsity by limiting the analysis to a fraction of the methylation sites in the genome. We note that our method shares similarities with a recent application of CCA to single-cell expression datasets [50]. However, unlike this method, we search for shared structure across two sets of individuals rather than two sets of cells, and we assume the number of genomic features is larger than the number of individuals (or cells).

Formally, CONFINED takes as input two matrices, X_1 with dimension $m \times n_1$ and X_2 with dimension $m \times n_2$, of m measured methylation sites for n_1 and n_2 individuals respectively. In addition, it takes as input a sparsity parameter t, a dimensionality parameter l, and an output parameter specifying the number of components to generate k. To generate its components, CONFINED first selects the t most informative features then runs CCA on these t features:

1. Obtain U_1 and U_2 both of size $m \times \min\{n_1, n_2\}$ following Equations (1) and (2).
2. Construct \tilde{U}_1 and \tilde{U}_2 both of dimension $m \times l$ from the first l columns of U_1 and U_2 respectively.
3. Generate a low-rank approximation of each dataset:

$$\tilde{X}_1 = \tilde{U}_1\tilde{U}_1^T X_1 \quad \tilde{X}_2 = \tilde{U}_2\tilde{U}_2^T X_2 \quad (3)$$

4. For each site j in dataset i compute a score based on its correlation between itself and its low-rank approximation:

$$S_i^{(j)} = \text{corr}(X_i^{(j)}, \tilde{X}_i^{(j)}) \quad (4)$$
5. Rank the sites with the highest inter-dataset score:

\[S_1^{(j)} + S_2^{(j)} \]

6. Perform CCA using the sites with the top \(t \) scores, returning \textit{CONFINED} components \(X_1^{[t]T}U_1^{[t]} \) of size \(n_1 \times k \) for \(X_1 \) and \(X_2^{[t]T}U_2^{[t]} \) of size \(n_2 \times k \) for \(X_2 \).

We set \(l \) as the number of pairs of canonical variables with correlation greater than a threshold \(\lambda \), or 1 in the case that no pairs have this correlation. In practice, we set \(\lambda \) to .95 and found this threshold using cross-validation (Supplementary Methods Figure 9). By finding the sites that are best approximated by a low-rank, correlated transformation, we therefore assume that the sites with the highest scores will be representative of features that are functionally shared (i.e. correlated) between the datasets. This step is analogous to one taken by ReFACTor \cite{22}, only that we leverage the correlated subspace of the two datasets rather than a single variable subspace. Though we emphasize that \textit{CONFINED} can be used for general sources of global biological variation, for the purpose of comparing a single use-case of \textit{CONFINED} to other methods, we empirically fit a rule for selecting the optimal \(t \) for cell-type composition in whole-blood datasets as a linear function of the number of individuals in \(X_1 \) and \(X_2 \) (Supplementary Methods Figure 9).

\textit{CONFINED} is available as an R package at \url{https://github.com/cozygene/CONFINED}. The calculations in the R package were optimized with C++ code using \texttt{Rcpp} and \texttt{RcppArmadillo}. Also included with the package is an ultra-fast function for performing CCA.

Simulations We evaluated the performance of \textit{CONFINED} using a simulated study. For the simulations, we generated \(\hat{X}_i \) for every dataset \(X_i \):

\[\hat{X}_i = X_i + Z_iW_i^T \]

Where \(Z_i \) is a random matrix of “scores” of size \(m \times r \) with every entry \(z_{jk} \) drawn from the standard normal distribution and \(W_i \) is a matrix of “weights” of size \(n_i \times r \) where every entry \(w_{jk} \) is drawn from the standard uniform distribution and each column \(w_i^{(k)} \) is standardized to have norm 1.

In doing so, we add some structured, normally distributed noise that is specific to each dataset. By varying the number and length of the weight vectors \(w_i^{(k)} \), we can also control the rank and magnitude of the structured noise. Intuitively, this noise emulates technical variation, as each dataset will have its own unique set of weight vectors.

Permutation testing To validate the enrichment results reported by \texttt{missMethyl} \cite{44}, we performed permutation testing. \texttt{missMethyl} takes as input a set (i.e. sample) of CpG sites used to test for enrichment of gene ontology pathways, along with the population from which the sample of CpG sites was chosen. For the purpose of the permutation tests, our sample of CpG sites consisted of the top \(t \) sites reported by \textit{CONFINED}, and the population of CpG sites was made up of the \(m \) sites in the input matrices. For each number of sites \(t \), we ran \texttt{missMethyl} 1000 times, using a random selection of \(t \) sites from the \(m \) sites of the input datasets at each iteration. We then compared the permutation p-values to the p-values from using the top \(t \) \textit{CONFINED} sites.
Datasets Throughout our experiments, we used publicly available data generated from the Illumina Infinium Human Methylation 450k chip. Our analyses focused on four whole-blood datasets: (1) an analysis of Rheumatoid arthritis patients and controls with 659 individuals from Liu et al. [40] (2) a study of aging with 656 individuals from Hannum et al. [39] (3) (4) analysis and re-analysis of schizophrenia with 847 and 675 samples from Hannon et al. [51] in addition to a dataset from Lunnon et al. with brain tissue from 122 individuals that was used to study Alzheimer’s disease [41]. All analyses were performed on the beta values from the methylation data. We followed filtering procedures from other works that also used the same datasets, including the removal of consistently methylated or unmethylated sites [22]. Prior to running any analyses, we filtered out methylation sites with standard deviation less than .02.

4 Discussion

Here, we propose CONFINED, a sparse-CCA-based method to capture biologically replicable signal by leveraging shared structure between datasets. Specifically, we showed its use and improved accuracy over other methods in the context of capturing cell-type composition between datasets of the same tissue type. We also showed how it can be used to capture other sources of biological signal shared across datasets. Moreover, we provide evidence that CONFINED can be used as a feature selection mechanism, prioritizing features that are functionally shared between datasets.

Across several datasets we demonstrated that CONFINED accurately captured global biological sources of variability. In the case of cell-composition, the components produced by CONFINED better captured cell-type composition across all cell-types in methylation datasets (of the same tissue-type) than previous reference-free methods that were designed for capturing signal from cell-type composition. Additionally, CONFINED’s components captured other replicable sources of variability such as age and disease-status. While cell-type composition was better captured when using a pair of datasets of the same tissue-type, we note that other biological factors may be better captured when pairing two datasets of different tissue types. Our results provide grounds for CONFINED as a means to capture replicable signal from biological sources across datasets.

Additionally, CONFINED is robust to technical variability. Through simulations, we demonstrated that CONFINED accurately captures biological signal in the presence of strong, dataset-specific technical noise. Other methods that leverage decompositions of single matrices produced components corresponding to the simulated technical noise (Supplementary Information), but the components produced by CONFINED were unaffected by the simulated noise. Therefore, leveraging multiple datasets through CONFINED can provide researchers a way to robustly account for signal arising from technical variation.

Though we learned a linear rule for selecting the sparsity parameter (i.e. the number of features) in the specific case of capturing cell-type composition in methylation whole-blood datasets (Supplementary Methods Figure [9]), we emphasize that the selection of the sparsity parameter in other cases may be non-trivial. Evaluating CONFINED on multiple datasets and sources of biological variability aside from cell-type composition, we found that the optimal sparsity parameter for cell-type composition may not be optimal for other covariates of interest. For instance, with a pair of blood datasets, sex was better captured as the number of features
increased. This may be due to the fact that specific biological functions—such as the immune response—may be confined to several thousand methylation sites, whereas changes in methylation patterns due to more broad characteristics—such as age or sex—are more minute, and thus require more information or sites to capture. We therefore suggest future investigations take place and considerations about underlying biology be taken into account for selecting the optimal sparsity for biological signal aside from cell-type composition.

We also showed the utility of(CONFINED) as an unbiased way of selecting informative and potentially biologically relevant methylation sites. Intuitively, as CCA finds shared structure between datasets, this structure should be reflective of biological mechanisms that are common to a pair of datasets. In our experiments, CONFINED found methylation sites that capture the shared variability across different blood tissues, and this set of sites was significantly enriched for immune function. Similarly, for the brain-blood pair, we observed enrichment for some immune and hematopoietic function, but the enrichment was generally not significant. Thus, our results suggest that our feature selection method may be useful in highlighting pathways that are similar across two datasets.

A similar concept to CONFINED has been previously introduced in the context of single-cell RNA-sequencing [50]. However, mathematically, the problem Butler et al. solve is different as the number of “individuals” (in their case, cells) in single-cell RNA is much larger than the number of features (genes), whereas in our setting, the number of individuals is much smaller than the number of features (methylation sites). Moreover, we show that a simple application of CCA does not suffice in the case of methylation, and thus CONFINED performs feature selection prior to performing CCA. In other words, CONFINED utilizes sparsity.

In summary, our results suggest that CONFINED will be a useful tool in capturing effects of biological variability as well as highlighting shared cellular mechanisms across multiple datasets. The components from CONFINED can be used in downstream analyses that wish to model only the biological signal of a methylation dataset, or to include certain biological signals as confounders in statistical analyses. We suggest future research into the selection of t, the number of informative sites to use for recovering signal for specific biological factors, as well as research into which pairs of phenotypes or datasets may be useful in extracting signal for specific biological drivers of variability.

References

[1] Florian Schmidt, Markus List, Engin Cukuroglu, Sebastian Khler, Jonathan Gke, and Marcel H Schulz. An ontology-based method for assessing batch effect adjustment approaches in heterogeneous datasets. Bioinformatics, 34(17):i908–i916, 2018.
[2] Jovana Maksimovic, Johann A Gagnon-Bartsch, Terence P Speed, and Alicia Oshlack. Removing unwanted variation in a differential methylation analysis of illumina humanmethylation450 array data. Nucleic acids research, 43(16):e106–e106, 09 2015.
[3] Karin B Michels, Alexandra M Binder, Sarah Dedeurwaerder, Charles B Epstein, John M Greally, Ivo Gut, E Andreas Houseman, Benedetta Izzi, Karl T Kelsey, Alexander Meissner, Aleksandar Milosavljevic, Kimberly D Siegmund, Christoph Bock, and Rafael A Irizarry. Recommendations for the design and analysis of epigenome-wide association studies. Nature Methods, 10:949 EP –, 09 2013.
[4] Ino D. Karemaker and Michiel Vermeulen. Single-cell dna methylation profiling: Technologies and biological applications. *Trends in Biotechnology*, 36(9):952 – 965, 2018.

[5] Andrew E. Jaffe and Rafael A. Irizarry. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. *Genome Biology*, 15(2):R31, Feb 2014.

[6] Steve Horvath. Dna methylation age of human tissues and cell types. *Genome Biology*, 14(10):3156, 2013.

[7] Johann A. Gagnon-Bartsch and Terence P. Speed. Using control genes to correct for unwanted variation in microarray data. *Biostatistics*, 13(3):539–552, 2012.

[8] Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha, Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly, and Rafael A. Irizarry. Tackling the widespread and critical impact of batch effects in high-throughput data. *Nature Reviews Genetics*, 11:733 EP –, 09 2010.

[9] Ken Lee and Zdenka Pausova. Cigarette smoking and dna methylation. *Frontiers in Genetics*, 4:132, 2013.

[10] Paula Singmann, Doron Shem-Tov, Simone Wahl, Harald Grallert, Giovanni Fiorito, So-Youn Shin, Katharina Schramm, Petra Wolf, Sonja Kunze, Yael Baran, Simonetta Guarerra, Paolo Vineis, Vittorio Krogh, Salvatore Panico, Rosario Tumino, Anja Kretschmer, Christian Gieger, Annette Peters, Holger Prokisch, Caroline L. Relton, Giuseppe Matullo, Thomas Illig, Melanie Waldenberger, and Eran Halperin. Characterization of whole-genome autosomal differences of dna methylation between men and women. *Epigenetics & Chromatin*, 8(1):43, Oct 2015.

[11] James Flanagan. *Epigenome-Wide Association Studies (EWAS): Past, present, and future*, volume 1238. 11 2015.

[12] Elior Rahmani, Liat Shenhav, Regev Schweiger, Paul Yousefi, Karen Huen, Brenda Eskenazi, Celeste Eng, Scott Huntsman, Donglei Hu, Joshua Galanter, Sam S. Oh, Melanie Waldenberger, Konstantin Strauch, Harald Grallert, Thomas Meitinger, Christian Gieger, Nina Holland, Esteban G. Burchard, Noah Zaitlen, and Eran Halperin. Genome-wide methylation data mirror ancestry information. *Epigenetics & Chromatin*, 10(1):1, 2017.

[13] Joshua M Galanter, Christopher R Gignoux, Sam S Oh, Dara Torgerson, Maria Pinyanes, Neeta Thakur, Celeste Eng, Donglei Hu, Scott Huntsman, Harold J Farber, Pedro C Avila, Emerita Brigino-Buenaventura, Michael A LeNoir, Kelly Meade, Denise Serebrisky, William Rodriguez-Cintrón, Rajesh Kumar, Jose R Rodriguez-Santana, Max A Seibold, Luisa N Borrell, Esteban G Burchard, and Noah Zaitlen. Differential methylation between ethnic sub-groups reflects the effect of genetic ancestry and environmental exposures. *eLife*, 6:e20532, jan 2017.

[14] Elior Rahmani, Noah Zaitlen, Yael Baran, Celeste Eng, Donglei Hu, Joshua Galanter, Sam Oh, Esteban G Burchard, Eleazar Eskin, James Zou, and Eran Halperin. Correcting for cell-type heterogeneity in dna methylation: a comprehensive evaluation. *Nature Methods*, 14:216 EP –, 02 2017.

[15] Shijie C Zheng, Stephan Beck, Andrew E Jaffe, Devin C Koestler, Kasper D Hansen, Andres E Houseman, Rafael A Irizarry, and Andrew E Teschendorff. Correcting for cell-type heterogeneity in epigenome-wide association studies: revisiting previous analyses. *Nature Methods*, 14:216 EP –, 02 2017.

[16] Joanna D Holbrook, Rae-Chi Huang, Sheila J Barton, Richard Saffery, and Karen A Lillicrop. Is cellular heterogeneity merely a confounder to be removed from epigenome-wide
association studies? *Epigenomics*, 9(8):1143–1150, 2019/01/13 2017.

[17] Eugene Andres Houseman, William P. Accomando, Devin C. Koestler, Brock C. Christensen, Carmen J. Marsit, Heather H. Nelson, John K. Wiencke, and Karl T. Kelsey. DNA methylation arrays as surrogate measures of cell mixture distribution. *BMC Bioinformatics*, 13(1):86, May 2012.

[18] Andrew E. Teschendorff and Caroline L. Relton. Statistical and integrative system-level analysis of DNA methylation data. *Nature Reviews Genetics*, 19:129 EP –, 11 2017.

[19] Stephanie Lovinsky-Desir and Rachel L. Miller. Epigenetics, asthma, and allergic diseases: a review of the latest advancements. *Current allergy and asthma reports*, 12(3):211–220, 06 2012.

[20] Andrea Baccarelli, Robert O. Wright, Valentina Bollati, Letizia Tarantini, Augusto A. Litonjua, Helen H. Suh, Antonella Zanobetti, David Sparrow, Pantel S. Vokonas, and Joel Schwartz. Rapid DNA methylation changes after exposure to traffic particles. *American Journal of Respiratory and Critical Care Medicine*, 179(7):572–578, 2009. PMID: 19136372.

[21] E. Andres Houseman, Molly L. Kile, David C. Christiani, Tan A. Ince, Karl T. Kelsey, and Carmen J. Marsit. Reference-free deconvolution of DNA methylation data and mediation by cell composition effects. *BMC Bioinformatics*, 17(1):259, Jun 2016.

[22] Elior Rahmani, Noah Zaitlen, Yael Baran, Celeste Eng, Donglei Hu, Joshua Galanter, Sam Oh, Esteban G Burchard, Eleazar Eskin, James Zou, and Eran Halperin. Sparse PCA corrects for cell-type heterogeneity in epigenome-wide association studies. *Nature Methods*, 13:443 EP –, 03 2016.

[23] James Zou, Christoph Lippert, David Heckerman, Martin Aryee, and Jennifer Listgarten. Epigenome-wide association studies without the need for cell-type composition. *Nature Methods*, 11:309 EP –, 01 2014.

[24] Pavlo Lutsik, Martin Slawski, Gilles Gasparoni, Nikita Vedeneev, Matthias Hein, and Jörn Walter. Medecom: discovery and quantification of latent components of heterogeneous methyolomes. *Genome Biology*, 18(1):55, Mar 2017.

[25] Elior Rahmani, Regev Schweiger, Liat Shenhav, Theodora Wingert, Ira Hofer, Eilon Gabel, Eleazar Eskin, and Eran Halperin. Bayescc: a Bayesian framework for estimating cell-type composition from DNA methylation without the need for methylation reference. *Genome Biology*, 19(1):141, Sep 2018.

[26] Eugene Andres Houseman, John Molitor, and Carmen J. Marsit. Reference-free cell mixture adjustments in analysis of DNA methylation data. *Bioinformatics*, 30(10):1431–1439, 2014.

[27] Elior Rahmani, Noah Zaitlen, Yael Baran, Celeste Eng, Donglei Hu, Joshua Galanter, Sam Oh, Esteban G Burchard, Eleazar Eskin, James Zou, and Eran Halperin. Correcting for cell-type heterogeneity in DNA methylation: a comprehensive evaluation. *Nature Methods*, 14:218 EP –, 02 2017.

[28] James M. Flanagan. *Epigenome-Wide Association Studies (EWAS): Past, Present, and Future*, pages 51–63. Springer New York, New York, NY, 2015.

[29] Elior Rahmani, Regev Schweiger, Brooke Rhead, Lindsey A. Criswell, Lisa F. Barcellos, Eleazar Eskin, Saharon Rosset, Sriman Sankaraman, and Eran Halperin. Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology. *bioRxiv*, 2018.

[30] Pedro Silva Moreira, Nadine Correia Santos, Nuno Sousa, and Patrício Soares Costa. The use of canonical correlation analysis to assess the relationship between executive functioning and verbal memory in older adults. *Gerontology & geriatric medicine*, 1:2333721415602820;
2333721415602820–2333721415602820, 08 2015.

[31] Alissa Sherry and Robin K. Henson. Conducting and interpreting canonical correlation analysis in personality research: A user-friendly primer. Journal of Personality Assessment, 84(1):37–48, 02 2005.

[32] Sami Sieranoja, Md Sahidullah, and Tomi Kinnunen. Audiovisual synchrony detection with optimized audio features. 2018.

[33] Brielin C. Brown, Nicolas L. Bray, and Lior Pachter. Expression reflects population structure. PLOS Genetics, 14(12):e1007841–, 12 2018.

[34] Elena Parkhomenko, David Tritchler, and Joseph Beyene. Sparse canonical correlation analysis with application to genomic data integration. Statistical Applications in Genetics and Molecular Biology, 9, 2009.

[35] Daniela M Witten, Robert Tibshirani, and Trevor Hastie. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics (Oxford, England), 10(3):515–534, 07 2009.

[36] Charlotte Soneson, Henrik Liljebjörn, Thoas Fioretos, and Magnus Fontes. Integrative analysis of gene expression and copy number alterations using canonical correlation analysis. BMC Bioinformatics, 11(1):191, 2010.

[37] Oliver Stegle, Leopold Parts, Richard Durbin, and John Winn. A bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eqtl studies. PLOS Computational Biology, 6(5):1–11, 05 2010.

[38] E Andres Houseman, Molly L Kile, David C Christiani, Tan A Ince, Karl T Kelsey, and Carmen J Marsit. Reference-free deconvolution of dna methylation data and mediation by cell composition effects. BMC bioinformatics, 17:259; 259–259, 06 2016.

[39] Gregory Hannum, Justin Guinney, Ling Zhao, Li Zhang, Guy Hughes, SriniVas Sadda, Brandy Klotzle, Marina Bibikova, Jian-Bing Fan, Yuan Gao, Rob Deconde, Menzies Chen, Indika Rajapakse, Stephen Friend, Trey Ideker, and Kang Zhang. Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular cell, 49(2):359–367, 01 2013.

[40] Yun Liu, Martin J Aryee, Leonid Padyukov, M Daniele Fallin, Espen Hesselberg, Arni Runarsson, Lovisa Reinius, Nathalie Acevedo, Margaret Taub, Marcus Ronninger, Klementy Shchetyinsky, Annika Scheynius, Juha Kere, Lars Alfredsson, Lars Klareskog, Tomas J Ekström, and Andrew P Feinberg. Epigenome-wide association data implicate dna methylation as an intermediary of genetic risk in rheumatoid arthritis. Nature Biotechnology, 31:142 EP –, 01 2013.

[41] Katie Lunnon, Rebecca Smith, Eilis Hannon, Philip L De Jager, Gyan Srivastava, Manuela Volta, Claire Troakes, Safa Al-Sarraj, Joe Burrage, Ruby Macdonald, Daniel Condliffe, Lorna W Harries, Pavel Katsel, Vahram Haroutunian, Zachary Kaminsky, Catharine Joachim, John Powell, Simon Lovestone, David A Bennett, Leonard C Schalkwyk, and Jonathan Mill. Methylomic profiling implicates cortical deregulation of ank1 in alzheimer’s disease. Nature Neuroscience, 17:1164 EP –, 08 2014.

[42] Joost Smolders, Kirstin M. Heutinck, Nina L. Fransen, Ester B. M. Remmerswaal, Pleun Hombrink, Ineke J. M. ten Berge, RenéA. W. van Lier, Inge Huitinga, and Jörg Hamann. Tissue-resident memory t cells populate the human brain. Nature Communications, 9(1):4593, 2018.

[43] Sae-Bom Jeon, Hee Jung Yoon, Se-Ho Park, In-Hoo Kim, and Eun Jung Park. Sulfatide, a
major lipid component of myelin sheath, activates inflammatory responses as an endogenous stimulator in brain-resident immune cells. *The Journal of Immunology*, 181(11):8077–8087, 2008.

[44] Belinda Phipson, Jovana Maksimovic, and Alicia Oshlack. **missmethyl**: an r package for analyzing data from illumina’s humanmethylation450 platform. *Bioinformatics*, 32(2):286–288, 2016.

[45] HAROLD HOTELLING. Relations between two sets of variates*. *Biometrika*, 28(3-4):321–377, 12 1936.

[46] David R. Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation analysis: An overview with application to learning methods. *Neural Computation*, 16(12):2639–2664, 2018/12/09 2004.

[47] Tessel E Galesloot, Kristel van Steen, Lambertus A L M Kiemeneij, Luc L Janss, and Sita H Vermeulen. A comparison of multivariate genome-wide association methods. *PLoS one*, 9(4):e95923; e95923–e95923, 04 2014.

[48] Michael Inouye, Samuli Ripatti, Johannes Kettunen, Leo-Pekka Lyytikäinen, Niku Oksala, Pirkka-Pekka Laurila, Antti J Kangas, Pasi Soininen, Markku J Savolainen, Jorma Viikari, Mika Kähönen, Markus Perola, Veikko Salomaa, Olli Raitakari, Terho Lehtimäki, Marja-Riitta Taskinen, Marjo-Riitta Järvelin, Mika Ala-Korpela, Aarno Palotie, and Paul I W de Bakker. Novel loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. *PLoS genetics*, 8(8):e1002907; e1002907–e1002907, 08 2012.

[49] Anna Cichonska, Juho Rousu, Pekka Marttinen, Antti J Kangas, Pasi Soininen, Terho Lehtimäki, Olli T Raitakari, Marjo-Riitta Järvelin, Veikko Salomaa, Mika Ala-Korpela, Samuli Ripatti, and Matti Pirinen. metacca: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis. *Bioinformatics (Oxford, England)*, 32(13):1981–1989, 07 2016.

[50] Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalexi, and Rahul Satija. Integrating single-cell transcriptomic data across different conditions, technologies, and species. *Nature Biotechnology*, 36:411 EP –, 04 2018.

[51] Eilis Hannon, Emma Dempster, Joana Viana, Joe Burrage, Adam R. Smith, Ruby McDonald, David St Clair, Colette Mustard, Gerome Breen, Sebastian Therman, Jaakko Kaprio, Timothea Toulopoulou, Hilleke E. Hulshoff Pol, Marc M. Bohlken, Rene S. Kahn, Igor Nenadic, Christina M. Hultman, Robin M. Murray, David A. Collier, Nick Bass, Hugh Gurling, Andrew McQuillin, Leonard Schalkwyk, and Jonathan Mill. An integrated genetic-epigenetic analysis of schizophrenia: evidence for co-localization of genetic associations and differential dna methylation. *Genome Biology*, 17(1):176, Aug 2016.
5 Supplementary Methods and Information

A brief tutorial on canonical correlation analysis

In the simplest terms, CCA attempts to maximize the correlation of two matrices via linear transformations. CCA takes as input two matrices X_1 of dimension $n \times m_1$ and X_2 of dimension $n \times m_2$ where $n > m_1$ and m_2. In other words, both matrices have the same number of rows but not necessarily the same number of columns. CCA then attempts to find m_1- and m_2-length vectors a_1 and a_2, such that the correlation of X_1a_1 and X_2a_2 is maximized:

$$\max_{a_1, a_2} \text{corr}(X_1a_1, X_2a_2)$$

To produce a_1 and a_2, we first obtain vectors b_1 and b_2, the eigenvectors corresponding to the largest eigenvalues of the following matrices (where X_1 and X_2 are column-centered):

$$M_1 = \frac{1}{n} (X_1^T X_1)^{-1/2} (X_1^T X_2)(X_2^T X_2)^{-1/2} (X_2^T X_1)(X_1^T X_1)^{-1/2}$$

$$M_2 = \frac{1}{n} (X_2^T X_2)^{-1/2} (X_2^T X_1)(X_1^T X_1)^{-1/2} (X_1^T X_2)(X_2^T X_2)^{-1/2}$$

The vectors a_1 and a_2 are then obtained from a simple change of basis of b_1 and b_2 respectively:

$$a_1 = \left(\frac{1}{n} X_1^T X_1\right)^{-1/2} b_1$$

$$a_2 = \left(\frac{1}{n} X_2^T X_2\right)^{-1/2} b_2$$

The products X_1a_1 and X_2a_2 are referred to as the first canonical variables of the input matrices, and we let $u_1 = X_1a_1$ and $u_2 = X_2a_2$. CCA can produce up to $\min\{m_1, m_2\}$ pairs of canonical variables from the remaining eigenvectors, however, the first pair of canonical variables (corresponding to the largest eigenvalue) has the greatest correlation.

When seeking the second and subsequent pairs of canonical variables, one additional restriction is introduced—the new canonical variables must be orthogonal to all the previous ones:

$$\text{corr}(u_{1}^{(i)}, u_{1}^{(j)}) = \text{corr}(u_{2}^{(i)}, u_{2}^{(j)}) = 0 \quad i < j$$

Given this constraint, the solution for the i^{th} pair of canonical variables conveniently follows the same formula as the first pair, only that we substitute the eigenvector corresponding to the i^{th} largest eigenvalue for the eigenvector corresponding to the largest eigenvalue. We then column-wise concatenate all $u_{i}^{(j)}$ for each dataset to obtain two matrices (U_1 and U_2) of canonical variables of size $m \times \min\{m_1, m_2, n\}$. The canonical variables are ordered such that their correlation (which is proportional to their corresponding eigenvalue) is in decreasing order:

$$\text{corr}(u_{1}^{(i)}, u_{2}^{(i)}) > \text{corr}(u_{1}^{(j)}, u_{2}^{(j)}) \quad i < j$$

Additionally, the canonical variables have the properties that each of their variances equal 1, and the covariance of $u_{1}^{(i)}$ and $u_{1}^{(j)}$ (and $u_{2}^{(i)}$ and $u_{2}^{(j)}$) is equal to 0 when $i \neq j$:

$$\frac{1}{n} U_1^T U_1 = I, \quad \frac{1}{n} U_2^T U_2 = I$$
To reiterate, the basic goal of CCA is to find a_1 and a_2 such that $\text{corr}(X_1 a_1, X_2 a_2)$ is maximized. There are $\min\{m_1, m_2\}$ such vectors for each pair of datasets, yielding $\min\{m_1, m_2\}$ pairs of canonical variables.

Feature selection

In this section, we compare the feature selection steps taken by CONFINED (a type of sparse CCA) and ReFACTor (a type of sparse PCA). Given input matrices of size $m \times n_1$ and $m \times n_2$, or more generally for the single-matrix decomposition case $m \times n$.

1. Our features are selected in the following manner.
 - i. Obtain U_1 and U_2 both of size $m \times \min\{n_1, n_2\}$ following Equations (1) and (2).
 - ii. Construct \tilde{U}_1 and \tilde{U}_2 from the first l columns of U_1 and U_2 respectively.
 - iii. Generate a low-rank approximation of each dataset:

 $$\tilde{X}_1 = \tilde{U}_1 \tilde{U}_1^T X_1 \quad \tilde{X}_2 = \tilde{U}_2 \tilde{U}_2^T X_2$$

 - iv. For each site j in dataset i compute a score based on its correlation between itself and its low-rank approximation:

 $$S_i^{(j)} = \text{corr}(X_i^{(j)}, \tilde{X}_i^{(j)})$$

 - v. Rank the sites with the highest average inter-dataset score:

 $$\frac{S_1^{(j)} + S_2^{(j)}}{2}$$

 - vi. Use the top t most correlated sites for X_1 and X_2 when performing CCA.

2. ReFACTor selects CpG sites in the following way:
 - i. Compute the singular value decomposition (SVD) of a matrix X and to obtain V, the left singular vectors of X.
 - ii. Construct \tilde{V} by taking the first l columns of V.
 - iii. Construct a low-rank approximation of X:

 $$\tilde{X} = \tilde{V} \tilde{V}^T X$$

 - iv. Find the sites that are most correlated between the original dataset and their low-rank approximations.
 - v. Use the top t most correlated sites for X when performing PCA.

Notably, the features selected by our method are important to both datasets. In both datasets, the features are well-represented in a low-dimensional, correlated subspace. In ReFACTor, the features are selected if they are well approximated by the first few principal components in one specific dataset’s variable subspace. Performing feature selection based on a single-matrix decomposition method does not consider that some of the first few principal components in a dataset may be driven by batch effects.
Comparison of PCA and CONFINED using CONFINED-selected features

Considering that CONFINED may better capture cell composition than single-matrix decompositions as it looks at characteristics shared between datasets, we provide a direct comparison of the accuracy of the top-performing single-matrix decomposition method for capturing cell-type composition, ReFACTor, and CONFINED using the same feature selection for both methods. We generated the rankings of features as detailed in the feature selection subsection. Even when ReFACTor uses the features generated by CONFINED, it captured cell-composition with lower correlation than CONFINED (Figure 5).

Figure 5. Comparison of methods based on CCA and PCA. We compared the performance of CONFINED and ReFACTor when both methods used the same features obtained in our feature selection process. On the left, the performance of each method on dataset GSE40279 (Hannum et al. [39]) as we varied the number of features. On the right, a comparison of the accuracy of both methods using the the sparsity parameter calculated from cross validation (Supplementary Methods Figure 9).
Single matrix decomposition on the union of two matrices

In this analysis, we evaluated the best-performing single-matrix method for capturing cell-type composition—ReFACTor—against *CONFINED*, using the union of the two input matrices to *CONFINED* as the input for the ReFACTor. To do this, we simply column-wise concatenated he individuals from one dataset to the other, so that the dimension of the new input matrix was $m \times (n_1 + n_2)$. We ran ReFACTor while also supplying it with a covariate as the `covfile` argument a vector that indicated from which dataset the individual originated from (e.g. 0 for dataset1 and 1 for dataset2). We ran *CONFINED* using the learned rule for selecting the sparsity parameter since the experiment was evaluating each method’s ability to capture cell-type accuracy.

![Figure 6](image.png)

Figure 6. Single-matrix method using the union of two matrices. In this experiment we used datasets GSE40279 (Hannum et al. [39]) and GSE42861 (Liu et al. [40]). In green, the cell-type composition accuracy of *CONFINED* for dataset GSE40279, in turquoise the accuracy of ReFACTor when using as input the union of the two datasets, and in blue the performance of ReFACTor when just using GSE40279.
Batch effect simulations

Consider one model of principal components analysis:

\[X = ZW^T + \epsilon \]

Where \(X \) is a data matrix of size \(n \times p \), \(W \) is a \(p \times k \) matrix containing the \(k \) principal components of \(X \) (eigenvectors of the covariance matrix of \(X \)), \(Z \) is a \(n \times k \) matrix of scores for each principal component, and \(\epsilon \) is an \(n \)-length vector containing noise. Intuitively, by finding the eigenvectors corresponding to the top \(k \) eigenvalues of the covariance matrix of \(X \), we are finding the directions that explain the most variance in the data. While we might expect that cell counts or some other phenotype might be driving the variance of methylation data, variance in biological data is often confounded by different measurement protocols or human error—in other words, batch effects.\[7\] Therefore, the top \(k \) directions of variance in a dataset may correspond to batch effects, or the observed variance in the data may simply be due to different protocols used to produce the data. For our simulations, we generated noise for each dataset \(X_i \) following the previously described structure:

\[\hat{X}_i = X_i + Z_iW_i^T \]

Where \(Z_i \) is a random matrix of “scores” of size \(m \times r \) with every entry \(z_{jk} \) drawn from the standard normal distribution and \(W_i \) is a matrix of “weights” of size \(n_i \times r \) where every entry \(w_{jk} \) is drawn from the standard uniform distribution and each column \(w_i^{(k)} \) is standardized to have norm 1.

In doing so, we add some structured, normally distributed noise that is specific to each dataset. By varying the number and length of the weight vectors \(w_i^{(k)} \), we can also control the rank and magnitude of the structured noise. Intuitively, this noise emulates technical variation, as each dataset will have its own unique set of weight vectors.

To elucidate the consequences of the simulated batch effects on PCA-based methods, we

![Figure 7. Batch-effect signal captured by ReFACTor. Here, we examine what portion of the artificial noise is captured by ReFACTor. After adding rank-7-structured noise with different strengths to each dataset, we ran ReFACTor with default settings and examined the correlation between the top 7 ReFACTor components and noise vectors.](image-url)
examined the correlation of ReFACTor’s components and the simulated weight vectors. Regressing the artificial noise vectors onto the ReFACTor components, we observe high R^2 values. Additionally, if the noise we introduced had rank k and large strength (norm), it was captured by exactly the top k ReFACTor components. In cases where the norm of the weight vector was relatively low, ReFACTor’s components still captured some of the signal corresponding to the batch effects. These results emphasize that single-matrix decomposition methods may produce components whose signal also includes noise from technical variation.
Comparison of CONFINED and previous reference-free methods to predict cell-type composition

In this section, we show the results for all of the cell-types that we included when evaluating cell-type composition accuracy. For the ground truth, we considered the cell-type proportion estimates from the reference-based method of Houseman et al. [17]. We used the first 10 components from each method to predict the Houseman estimates.

![Comparison plots](image)

Figure 8. Cell-wise comparison of prediction accuracy between CONFINED and previous methods. Here, we compare CONFINED and previous reference-free methods to capture Houseman estimates for 6 immune cell-types using 10 components for each method using a whole-blood dataset from Hannum et al. [39].
Cross validation for cell-type composition

Notably, our method has two hyper-parameters, \(t \) the number of sites to include, and \(l \) the rank of the transformation used to obtain the informative sites. In this section, we explain how we chose values for both of the hyper-parameters. As a reminder, we pick the sites most correlated between their original data matrix and their low-rank approximation, e.g. \(X \) and \(\tilde{X} \) (where \(\tilde{X} = X^T U[1 : l] U^T [1 : l] \)). We will first explain how we choose \(l \).

1. Perform CCA on the input matrices
2. Define \(\lambda \) to be some threshold \([0, 1]\)
3. Set \(l \) to the number of canonical variables of \(U_1 \) and \(U_2 \) that have correlation \(\geq \lambda \), i.e. the number of pairs of columns of \(U_1 \) and \(U_2 \) whose correlation is greater than or equal to \(\lambda \)
4. If no canonical variables have correlation \(\geq \lambda \), set \(l = 1 \).

We next detail our cross-validation process. We will assume we have \(l \) and a ranked list of our features:

1. First, we store a partition of the data for validation purposes.
 - i. Hold out one third of the sites of each matrix, storing \(X_{1\text{validate}} \) and \(X_{2\text{validate}} \), size \(\frac{m}{3} \times n_1 \) and \(\frac{m}{3} \times n_2 \) respectively
2. Using the remaining two thirds of the data, \(X_{1\text{train}} \) and \(X_{2\text{train}} \), we will perform training and testing procedures.
 - i. Randomly split the input matrices \(X_{1\text{train}} \) and \(X_{2\text{train}} \) into two halves: \(X_{1\text{train}} \) and \(X_{1\text{test}} \), and \(X_{2\text{train}} \) and \(X_{2\text{test}} \) such that each matrix has \(\frac{m}{3} \) sites and their corresponding \(n_i \) individuals.
 - ii. On the \(\text{train} \) partitions of the data, run \(\text{CONFINED} \) using the top \(t \) features to obtain \(A_{1\text{train}} \) and \(A_{2\text{train}} \), the canonical loadings for \(X_{1\text{train}} \) and \(X_{2\text{train}} \) respectively.
 - iii. Find the top \(t \) sites of the \(\text{test} \) data partitions and subset the \(\text{test} \) data partitions to size \(t \times n_i \) where \(n_i \) is the number of individuals in that dataset.
 - iv. Using \(A_{1\text{train}} \) and \(A_{2\text{train}} \), obtain the \(t \times n_i \) canonical variables \(U_{1\text{test}} \) and \(U_{2\text{test}} \): \(X_{1\text{test}} A_{1\text{train}} \) and \(X_{2\text{test}} A_{2\text{train}} \) respectively.
 - v. Use \(X_{1\text{test}}^T U_{1\text{test}} \) and \(X_{2\text{test}}^T U_{2\text{test}} \) to predict cell-type composition for each individual in the \(\text{test} \) partition of the dataset.
3. After learning the optimal parameters \(t^* \) and \(l^* \), perform our method on the \(\text{validation} \) partition of the datasets.

In this setting, we essentially learn the axes of the most correlated space for the sites of the \(\text{train} \) datasets, and then leverage this space on the \(\text{test} \) datasets to estimate cell-type composition. The canonical weights used for each \(\text{test} \) partitions were obtained without using data from any of the samples in the \(\text{test} \) partitions.

We performed our method on \(\text{train} \) and \(\text{test} \) partitions of the data (2 above) while varying both the value of \(t \) and the threshold \(\lambda \). For each combination of \(t \) and \(\lambda \), we randomly split the data 10 times, then took the average of the \(R^2 \) value when using the first 10 components to capture cell-type composition as a metric of accuracy. Regressing \(t \) in the best performing set of hyperparameters onto the number of individuals in the datasets, we learned a rule for selecting \(t \) in the case of predicting cell-composition in a pair of blood datasets:

\[
t = 728.1403 + \min(n_1, n_2) \times 0.5936 + \max(n_1, n_2) \times 1.4559
\]
Figure 9. R^2 of the testing partitions of the data through varying t and λ. We varied the number of sites to use (bottom axis) and the correlation threshold (side axis) of canonical variables to include in the feature selection step of our method. Each row is a pair of datasets used as input to our method. The number of individuals in datasets GSE40279 (Hannum et al. [39]) and GSE42861 (Liu et al. [40]) was 650 and 658 respectively.
Permutation testing

To validate the enrichment results reported by missMethyl, we performed permutation testing. missMethyl takes as input a set (i.e. sample) of CpG sites used to test for enrichment of gene ontology pathways, along with the population from which the sample of CpG sites was chosen. For the purpose of the permutation tests, our sample of CpG sites consisted of the top t sites reported by CONFINED, and the population of CpG sites was made up of the m sites in the input matrices. In this context, we varied t, the number of features to use, and compared the enrichment p-values when using the top t features sorted by CONFINED and t randomly selected features. We specifically compare the p-values of the top three most enriched pathways when using t CONFINED sites and the single most enriched pathway when using t randomly selected sites from the size m CpG population. The number of features we tested ranged from 1000 to 10000 with a step size of 1000, and we performed 1000 permutations at each number of features. In this experiment, we focused on a blood-blood pair of datasets (Liu et al. [40], Hannum et al. [39]).

Figure 10. Permutation testing for gene ontology pathway summary statistics. In green are the top three pathways when choosing the top t CONFINED-ordered sites. The red line indicates the average (left) and minimum (right) of 1000 p-values of the top ontology pathway from t randomly selected sites.
Measured covariates across multiple methods

In this section, we compare the performance of CONFINED to previous methods designed to capture cell-type composition in methylation datasets. Notably, the aim of several of the previous methods (ReFACTor, NNMF) is simply to capture cell-type composition accuracy, and they do not have an emphasis on other global sources of variation such as age, sex, or environment. For CONFINED, we used as input datasets from Hannum et al. [39] and Liu et al. [40], all other single-matrix decomposition methods used just the dataset from Liu et al. as input. We used 10 components from each method to predict each source of variability. Single-matrix methods slightly outperformed CONFINED in the case of predicting patient status (i.e. if that patient had arthritis or not), however this may be because this signal is captured best by even greater sparsity than using just 5000 features. Further, the phenotypes studied in each dataset were different (e.g., Hannum et al. studied aging whereas Liu et al. studied Rheumatoid arthritis), but CONFINED looks for shared characteristics across datasets, which may have only been signal corresponding to controls. CONFINED greatly outperformed other methods when capturing both age and sex and performed best for these factors using a large number of features (i.e. low sparsity). This may be an indicator that changes in observed methylation signal due to age or sex are rather subtle, and require many sites to capture. Interestingly, when CONFINED used 5000 sites, age was captured with much greater accuracy than sex.

Figure 11. Correlation of measured sources of global variation with components from CONFINED and single-matrix methods. Here, we compare CONFINED and previous reference-free methods to capture measured sources of variation global in a whole-blood dataset from Liu et al. [40].