Infrared spectrum, apt charges and mulliken of hartree-fock methods protonated rhodochrosite crystal

Ricardo Gobato¹, Marcia Regina Risso Gobato², Alireza Heidari* and Abhijit Mitra⁴

¹Laboratory of Biophysics and Molecular Modelling Genesis, State Secretariat of Education of Parana, 86130-000, Parana, Brazil
²Green Land Landscaping and Gardening, Seedling Growth Laboratory, 86130-000, Parana, Brazil
³Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
⁴Department of Marine Science, University of Calcutta, 35 B.C. Road Kolkata, 700019, India

Abstract

The rhodochrosite as crystal oscillator for being an alternative to those of quartz. The rhodochrosite (MnC0₃) shows complete solid solution with siderite (FeC0₃), and it may contain substantial amounts of Zn, Mg, Co, and Ca. Through an unrestricted Hartree-Fock (UHF) computational simulation, Compact effective potentials (CEP), the infrared spectrum of the protonated rhodochrosite crystal, CH₃MnO₈, and the load distribution by the unit molecule by two widely used methods, Atomic Polar Tensor (APT) and Mulliken, were studied. The rhodochrosite crystal unit cell of structure CMnO₈, where the load distribution by the molecule was verified in the UHF CEP-4G (Effective core potential (ECP) minimal basis), UHF CEP-31G (ECP split valence) and UHF CEP-121G (ECP triple-split basis). The largest load variation in the APT and Mulliken methods were obtained in the CEP-121G basis set, with δ = 2.922 e δ = 2.650 u.a., respectively, being δ_{APT} > δ_{Mulliken}. The maximum absorbance peaks in the CEP-4G, CEP-31G and CEP-121G basis set are present at the frequencies 2172.23 cm⁻¹, with a normalized intensity of 0.65; 2231.4 cm⁻¹ and 0.45; and 2177.24 cm⁻¹ and 1.0, respectively. Later studies could check the advantages and disadvantages of rhodochrosite in the treatment of cancer through synchrotron radiation, such as one oscillator crystal.

Introduction

The rhodochrosite as crystal oscillator for being an alternative to those of quartz. The rhodochrosite (MnC0₃) shows complete solid solution with siderite (FeC0₃), and it may contain substantial amounts of Zn, Mg, Co, and Ca. The electric charge that accumulates in certain solid materials, such as crystals, certain ceramics, and biological matter such as bone, DNA and various proteins in response to applied mechanical stress, phenomenon called piezoelectricity [1].

Through an unrestricted Hartree-Fock (UHF) computational simulation, Compact effective potentials (CEP), the infrared spectrum of the protonated rhodochrosite crystal, CH₃MnO₈, and the load distribution by the unit molecule by two widely used methods, Atomic Polar Tensor (APT) and Mulliken, were studied. The rhodochrosite crystal unit cell of structure CMnO₈, where the load distribution by the molecule was verified in the UHF CEP-4G (Effective core potential (ECP) minimal basis), UHF CEP-31G (ECP split valence) and UHF CEP-121G (ECP triple-split basis).

The electronic oscillator circuit that uses the mechanical resonance of a vibrating crystal of piezoelectric material to create an electrical signal with a precise frequency is a crystal oscillator. The most common type of piezoelectric resonator used is the quartz crystal, so oscillator circuits incorporating them became known as crystal oscillators [2]. Quartz crystals are manufactured for frequencies from a few tens of kilohertz to hundreds of megahertz. More than two billion crystals are manufactured annually. Most are used for consumer devices such as wristwatches, clocks, radios, computers, cellphones, signal generators and oscilloscopes [3-12].

But other crystals such as rhodochrosite also have piezoelectric properties. The rhodochrosite as crystal oscillator for being an alternative to those of quartz. The rhodochrosite (MnC0₃) shows complete solid solution with siderite (FeC0₃), and it may contain substantial amounts of Zn, Mg, Co, and Ca. The Kutnohorite [CaMn(C0₃)₂] is a dolomite group mineral intermediary between rhodochrosite and calcite [3-12].

The Figure 1 is one photography the Rhodochrosite stone from China.

Methods

Hartree-Fock Methods

The Hartree-Fock self-consistent method [14-20] is based on the one-electron approximation in which the motion of each electron in the effective field of all the other electrons is governed by a one-particle Schrodinger equation. The Hartree-Fock approximation takes into account of the correlation arising due to the electrons of the same spin, however, the motion of the electrons of the opposite spin remains uncorrelated in this approximation. The methods beyond self-consistent field methods, which treat the phenomenon associated

*Correspondence to: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, E-mail: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@aisi-usa.org

Key words: rhodochrosite, quartz crystal, hartree-fock methods, apt, mulliken, effective core potential

Received: June 03, 2020; Accepted: June 18, 2020; Published: June 22, 2020
with the many-electron system properly, are known as the electron correlation methods.

The vast literature associated with these methods suggests that the following is a plausible hierarchy:

\[ \text{HF} \ll \text{MP2} < \text{CISD} < \text{CCSD} < \text{CCSD(T)} < \text{FCI} \]

The extremes of 'best', FCI, and 'worst', HF, are irrefutable, but the intermediate methods are less clear and depend on the type of chemical problem being addressed. [14] The use of HF in the case of FCI was due to the computational cost.

The molecular Hartree-Fock wave function is written as an antisymmetrized product (Slater determinant) of spin-orbitals, each spin-orbital being a product of a spatial orbital \( \phi_i \) and a spin function (either \( \alpha \) or \( \beta \)).

The expression for the Hartree-Fock energy of a diatomic or polyatomic molecule with only closed shells is

\[ E_{\text{HF}} = 2 \left( \langle \phi_i | \phi_i \rangle \| e^2 / r_{ij} \| \phi_i | \phi_i \rangle \right) - \left( \langle \phi_i | \phi_i \rangle \| 2 e^2 / r_{ij} \| \phi_i | \phi_i \rangle \right) \]

\[ f_i = -\left( e^2 / 2 m_e \right) \nabla_i^2 - Z e^2 / r_i \]

can be used to give \( \langle D | \tilde{H}_d | D \rangle \).

Therefore, the Hartree-Fock energy of a diatomic or polyatomic molecule with only closed shells is

\[ E_{\text{HF}} = 2 \left( \langle \phi_i | \phi_i \rangle \| H_{\text{core}} \| \phi_i | \phi_i \rangle \right) + \langle \phi_i | \phi_i \rangle \| V_{\text{NN}} \| \phi_i | \phi_i \rangle \]

\[ \mathbf{w}_{i\alpha\beta} \equiv \langle \phi_i | \mathbf{P}_{\text{tot}} | \phi_i \rangle \equiv \langle \phi_i | \mathbf{P}_{\text{tot}} \mathbf{I} | \phi_i \rangle = \sum_{\nu} \mathbf{P}_{\nu} \langle \phi_i | \mathbf{P}_{\nu} | \phi_i \rangle \]

\[ J_{ii} \equiv \langle \phi_i | \phi_i \rangle \| e^2 / r_{ij} \| \phi_i | \phi_i \rangle \]

\[ K_{ii} \equiv \langle \phi_i | \phi_i \rangle \| 2 e^2 / r_{ij} \| \phi_i | \phi_i \rangle \]

and

where the one-electron-operator symbol was changed from \( \hat{f}_i \) to \( \hat{H}_{\text{core}} \).

Mulliken Load

Mulliken’s loads are derived from the Mulliken population analysis and provide means for estimating partial atomic charges from numerical chemistry calculations, particularly those based on the linear combination of atomic orbitals. If the coefficients of the basic functions in the molecular orbital are \( C_{\mu i} \), the basic function \( \phi \) in the orbital molecular, the coefficients of the density matrix are:

\[ \mathbf{d}_{\mu \nu} = 2 \sum_{\alpha \beta} C_{\mu \alpha} C_{\beta \nu} \]

for a compact closed system in which each molecular orbital is doubly occupied. The population matrix \( \mathbf{P} \) therefore has the following coefficients:

\[ P_{\mu \nu} = \langle DS \| \nu \rangle \]

\( S \) is the overlay matrix for basic functions. The sum of the set of terms of \( P_{\mu \nu} \) is \( N \) - the total number of electrons. The Mulliken population analysis aims first of all to distribute the \( N \) electrons on all the basic functions. This is done by taking the diagonal elements of \( S_{\mu \nu} \) and factorizing the non-diagonal elements equally between the two appropriate basic functions. Non-diagonal terms including \( \mathbf{d}_{\mu \nu} \) and this simplifies the operation to a sum on a line. This defines the gross orbital population (GOB) as:

\[ c_{\alpha \beta} = \sum_{\nu} \mathbf{P}_{\mu \nu} \]

The terms \( c_{\alpha \beta} \) lie on \( N \) and then divide the total number of electrons between the basic functions. It then remains to sum these terms on all the basic functions of a given atom \( A \) in order to obtain the gross atomic population (GAP). The integral of the \( \text{GAP}_A \) terms also gives \( N \). The load, \( Q_A \), is then defined as the difference between \( Z_A \), the nuclear charge and \( \text{GAP}_A \) for an atom except that \( \sum_{\alpha \beta} \) replaces \( Z_{/1} \) in \( \hat{f}_i \). Hence

\[ E = \langle D | \mathbf{H} | D \rangle = 2 \left( \langle \phi_i | \phi_i \rangle \| f_i \| \phi_i | \phi_i \rangle \right) + \langle \phi_i | \phi_i \rangle \| 2 f_i \| \phi_i | \phi_i \rangle \]

where

\[ J_{ii} = \langle \phi_i | \phi_i \rangle \| e^2 / r_{ij} \| \phi_i | \phi_i \rangle \]

\[ K_{ii} = \langle \phi_i | \phi_i \rangle \| 2 e^2 / r_{ij} \| \phi_i | \phi_i \rangle \]

and

Figure 1. Rhodochrosite stone from China [13]
Infrared spectrum, apt charges and Mulliken of Hartree-Fock methods protonated rhodochrosite crystal

The general expression for the Atomic Polar Tensor (APT) is:

\[ \nabla_{\mu}P = q_{\mu}E + \sum_{\alpha} (\mathbf{R}_{\alpha})_{\mu} - \sum_{\mu<\nu} \sum_{\alpha} (\mathbf{R}_{\alpha})_{\mu} (\mathbf{R}_{\alpha})_{\nu} - \sum_{\alpha<\beta} \sum_{\mu} (\mathbf{R}_{\alpha})_{\mu} (\mathbf{R}_{\beta})_{\mu} \]

where \( E \) is the identity matrix and each term of the APT is represented by a 3 X 3 matrix. The four contributions in the above equation can be identified according to Person, Coulson, and Mulliken terminology as charge, charge flux, atomic dipole flux, and homopolar dipole flux. Comparing with the CCFO model, the difference introduced in this work lies in the fact that the overlap term has been decomposed into two flux contributions (atomic dipole and homopolar dipole fluxes).

In eq. for \( \nabla_{\mu}P \), the first two terms are the only classical contributions, one of them being the Mulliken net charge of atom \( a \) in its equilibrium position, \( R_a \), and the other being the "charge flux" corresponding to charge migration as the chemical bond involving the \( a \) atom has been distorted. The sum over all atoms, \( A \), implies there is electronic density deformation involving all the atoms in the molecule. These two terms have already been well discussed by Person, Zilles, and other \([28-30]\). The atomic dipole flux can be separated into two parts if the gradient of the density matrix and center of charge integrals are taken inside the parentheses:

\[ -\sum_{\mu<\nu} 2(\mathbf{R}_{\alpha})_{\mu} (\mathbf{R}_{\alpha})_{\nu} \]

and

\[ -\sum_{\alpha<\beta} 2(\mathbf{R}_{\alpha})_{\mu} (\mathbf{R}_{\beta})_{\mu} \]

the first of the two terms in equation

\[ -\sum_{\alpha<\beta} 2(\mathbf{R}_{\alpha})_{\mu} (\mathbf{R}_{\beta})_{\mu} \]

involves only the atom for which the APT is being calculated because only these \( \phi_{\alpha} \) depend on \((r-R_a)\).

Hardware and Software

For calculations a computer models were used: Intel\textsuperscript{®} Core\textsuperscript{™} i3-3220 CPU @ 3.3 GHz x 4 processors \([31]\), Memory DDR3 4 GB, HD SATA WDC WD7500 AZEK-00RKA0 750.1 GB and DVD-RAM SATA GH24NS9 ATAPI, Graphics Intel\textsuperscript{®} Ivy Bridge \([32]\).

For calculations of computational dynamics, the Ubuntu Linux version 16.10 system was used \([33]\) and the software used for the molecular dynamics was GAMESS \([16,34]\).

Results and discussion

The Figure 2 show on cell structure of a protonated rhodochrosite crystal of structure Stoichiometric is \( \text{CH}_19 \text{Mn}_6 \text{O}_8 \), obtained after molecular dynamics via unrestricted Hartree-Fock method, in basis set CEP-4G, CEP-31G and CEP-121G \([35-96]\).

The Figures 3 (A-D) show the normalized absorption spectrum as a function of the vibrational frequencies of the protonated rhodochrosite crystal for UHF-CEP-4G basis set, UHF-CEP-31G and UHF-CEP-121G.
The rhodochrosite crystal unit cell of structure $\text{CMn}_6\text{O}_8$, where the load distribution by the molecule was verified in the unrestricted Hartree-Fock method, UHF CEP-4G (Effective core potential (ECP) minimal basis), UHF CEP-31G (ECP split valance) and UHF CEP-121G (ECP triple-split basis), through the analysis of APT and Mulliken loads [97-103].

The rhodochrosite unit cell was protonated, then presented the structure $\text{CH}_{19}\text{Mn}_6\text{O}_8$ for the study with ab initio methods with +4 multiplicity. The displacement of charges by the molecule was analyzed to verify the site of molecular action.

The load distribution by the protonated crystal is evaluated in Table (1), and its vibrational frequencies in Table 2.

The largest load variation in the APT and Mulliken methods were obtained in the CEP-121G base set, with $\delta = 2.922$ e $\delta = 2.650$, respectively, being $\delta_{\text{APT}} > \delta_{\text{Mulliken}}$, in all sets of calculated bases, Table 1.

The Table 2 show the maximum absorbance peaks in the CEP-4G, CEP-31G and CEP-121G set basis are present at the frequencies 2172.23...
Table 1. Load shifting on given basis sets of the Mulliken and APT method

| Basis Sets | Mulliken | APT |
|------------|----------|-----|
|            | Charge*  | δ   | Charge* | δ   |
| CEP-4G     | -1.064   | 2.128 | -1.366  | 2.732 |
| CEP-31G    | -1.034   | 2.068 | -1.362  | 2.724 |
| CEP-121G   | -1.325   | 2.650 | -1.461  | 2.922 |

*±1.602 176 634 × 10**−19 C (Coulomb)

Table 2. Peaks maximum absorption intensity by the frequency given. Absorbance frequency as a function of vibrational frequencies of protonated rhodochrosite crystal for UHF-CEP-4G basis set, UHF-CEP-31G and UHF-CEP-121G

| ν (cm⁻¹) | I (%) |
|----------|-------|----------|-------|----------|-------|----------|-------|
| CEP-4G   | 2172.23 | 64.9904 | 2043.25 | 51.7671 | 2193.11 | 41.6608 | 2242.97 | 36.4643 |
| CEP-31G  | 2172.23 | 45.3589 | 1891.26 | 41.6207 | 2027.77 | 40.3978 | 1926.32 | 38.0064 |
| CEP-121G | 2172.23 | 100.0000 | 2261.98 | 87.0553 | 1947.03 | 83.1151 | 1778.57 | 51.6624 |

ν = Frequency (cm⁻¹); I = Normalized Intensity (%)
cm$^{-1}$, with a normalized intensity of 65%; 2231.4 cm$^{-1}$ and 45.4%; and 2177.24 cm$^{-1}$ and 100%, respectively.

### Analysis

The Mulliken load method in the UHF-CEP-4G base set; UHF-CEP-31G and UHF-CEP-121G are sufficient to show that the sites of action of the rhodochrosite crystal structure are found in three Oxygen-linked Manganese atoms, which are attached to the central Carbon atom, as well as these. Oxygen atoms and the central carbon.

These Manganese atoms show a slight negative to neutral load shift in the CEP-4G base set, neutral to positive in the CEP-31G and CEP-121G base set at the Mulliken charges, Figure 4.

The charge displacement is strong in the oxygen atoms, especially those near the central carbon, with negative load in all set basis studied, both in the APT and Mulliken charges.

The central carbon atom on all set basis is positively charged in both APT and Mulliken load, except Mulliken in CEP-31G, which is neutral.

As might be expected from the charges by APT, the strong positive load manganese atoms, the strong negative load oxygen, the positively charged carbon atom. The manganese atom farthest from the carbon atom has a slight positive to neutral load shift.

The Mulliken load method presents a better result when compared to the APT, in the studied set basis, for protonated rhodochrosite crystal, with a smaller load variation $\delta = 2.650$ u.a for CEP-121G.

The absorption peaks are in a Gaussian between the frequencies 1620 cm$^{-1}$ and 2520 cm$^{-1}$, Figure 3D.

The largest load variation in the APT and Mulliken methods were obtained in the CEP-121G base set, with $\delta = 2.922$ and $\delta = 2.650$, respectively, being $\delta_{\text{APT}} > \delta_{\text{Mulliken}}$, in all sets of calculated basis, Table 1.

### Conclusion

The absorption peaks are in a Gaussian between the frequencies 1620 cm$^{-1}$ and 2520 cm$^{-1}$.

The Mulliken load method presents a better result when compared to the APT, in the studied set basis, for protonated rhodochrosite crystal, with a smaller load variation $\delta = 2.650$ u.a for CEP-121G.

The maximum absorbance peaks in the CEP-4G, CEP-31G and CEP-121G set bases are present at the frequencies 2172.23 cm$^{-1}$, with a normalized intensity of 0.65, 2231.4 cm$^{-1}$ and 0.454 and 2177.24 cm$^{-1}$ and 1.0 respectively.

Later studies could check the advantages and disadvantages of rhodochrosite in the treatment of cancer through synchrotron radiation, such as one oscillator crystal.

### References

1. F. James Holler, Douglas A. Skoog and Stanley R. Crouch. Principles of Instrumental Analysis (6th ed.). Cengage Learning, 200, p. 9. ISBN 978-0-495-01201-6.
2. Fox Electronics. Quartz Crystal Theory of Operation and Design Notes. Oscillator Theory of Operation and Design Notes. 2008. Available in: April 16, 2019. URL: https://web.archive.org/web/20101205023851/http://www.foxonline.com/techdata.htm
3. R. E. Newnham. Properties of materials. Anisotropy, Symmetry, Structure. Oxford University Press, New York, 2005.
4. C. D. Gribele and A. J. Hall. A Practical Introduction to Optical Mineralogy. 1985.
5. Creative Commons. (CC-BY 4.0). Wikipedia. The Free Encyclopedia, May 2019. URL: https://creativecommons.org/licenses/by/4.0/.
6. Ricardo Gobato, Marcia Regina Rossio Gobato, Alireza Heidari. Rhodochrosite as Crystal Oscillator. Am J Biomed Sci & Res. 2019 - 3(2). AJBSR. 000659. DOI: 10.34297/AJBSR.2019.03.000659.
7. Ricardo Gobato, Marcia Regina Rossio Gobato, Alireza Heidari. Calculation by UFF method of frequencies and vibrational temperatures of the unit cell of the rhodochrosite crystal International Journal of Advanced Chemistry, 7 (2) (2019) 77-81. doi:10.14419/ijac.v7i1.29176
8. Ricardo Gobato, Marcia Regina Rossio Gobato, Alireza Heidari. Rhodochrosite as Crystal Oscillator. June 17, 2019. URL: https://www.researchgate.net/publication/333175260_Rhodochrosite_as_Crystal_Oscillator/enrichid=rgrq-26dd5b5be6e33df98c00042058725-XXIVenrichSource=Y292ZXJQWdOzXMzMgznZVhNNjBuZuo3NzA3NDE0MTkJMy3ODRAMTU2Mj德3MDQ43Qjw0- A%3D3D%3D&el=1_x_2&_esc=publicationCoverPdf.
9. Ricardo Gobato, Marcia Regina Rossio Gobato, Alireza Heidari. Calculation by UFF method of frequencies and vibrational temperatures of the unit cell of the rhodochrosite crystal International. viXra.org, Chemistry, viXra:1908.0295. http://vixra.org/abs/1908.0295.
10. Ricardo Gobato, Marcia Regina Rossio Gobato, Alireza Heidari. Calculation by UFF method of frequencies and vibrational temperatures of the unit cell of the rhodochrosite crystal International. viXra.org, Chemistry, viXra:1908.0295. http://vixra.org/abs/1908.0295.

---

Dent Oral Maxillofac Res, 2020 doi: 10.15761/DOMR.1000353

Volume 6: 6-8
33. Ubuntu (operating system), https://en.wikipedia.org/wiki/Ubuntu (operating_system), Available in: August 31, 2018.

34. M. S. Gordon and M. W. Schmidt. Advances in electronic structure theory: GAMESS a decade later. Theory and Applications of Computational Chemistry: the first forty years. Elsevier, C. E. Dykstra, G. Frenking, K. S. Kim and G. E. Scuseria (editors), pages 1167–1189, 2005. Amsterdam.

35. R. Gobato, A. Gobato, D. F. G. Fedrigo, “Inorganic arrangement crystal beryllium, lithium, selenium and silicon”. In XIX Semana da Fisica. Simposio Comemorativo dos 40 anos do Curso de Fisica da Universidade Estadual de Londrina, Brazil, 2014. Universidade Estadual de Londrina (UEL).

36. R. Gobato, “Benzoicain, um estudo computacional”, Master’s thesis, Universidade Estadual de Londrina (UEL), 2008.

37. R. Gobato, “Study of the molecular geometry of Caramboxin toxin found in star flower (Averrhoa carambola l.)”, Parana J. Sci. Educ, 3(1)-1-9, January 2009.

38. R. Gobato, D. F. G. Fedrigo, A. Gobato, D. F. G. Fedrigo, D. F. G. Fedrigo, “Molecular electrostatic potential of the main monoterpenoids compounds found in oil Lemon Tahiti - Citrus Lantifolia Var Tahiti”. Parana J. Sci. Educ, 1(1)-1-10, November 2015.

39. R. Gobato, D. F. G. Fedrigo, A. Gobato, “Aldolcoppyrone, Barberine, Chelerythrine, Copines, Dihydrosanguinarine, Protopine and Sanguinarine. Molecular geometry of the main alkaloids found in the seeds of Argemone Mexicana Lin”. Parana J. Sci. Educ., 1(2):7–16, December 2015.

40. R. Gobato, A. Heidari, “Infrared Spectrum and Sites of Action of Sanguinarine by Molecular Mechanics and ab initio Methods”, International Journal of Atmospheric and Oceanic Sciences. Vol. 2, No. 1, 2018, pp. 1-9. doi:10.11648/j.iosj.20180101.11

41. R. Gobato, D. F. G. Fedrigo, A. Gobato, “Molecular geometry of alkaloids present in seeds of mexican prickly poppy”. Cornell University Library: Quantitative Biology, Jul 15, 2015. arXiv:1507.05042.

42. R. Gobato, A. Gobato, D. F. G. Fedrigo, A. Gobato, “Study of the molecular electrostatic potential of D-Pinitol an active hypoglycemic principle found in Spring flower Three Marys (Bougainvillea species).”, J. Biomembrane with a Combination of the Elements Be, Li, Se, Si, C and H”, J. Nanomed Res, 7 (4): 241-252, 2018.

43. S. K. Agarwal, S. Roy, P. Pramanick, P. Mitra, R. Gobato, A. Mitra, “Marsilea quadrifolia: A floral species with unique medicinal properties”, Parana J. Sci. Educ., v.4, n.5, (15-20), July 1, 2018.

44. Mitra, S. Zaman, R. Gobato. “Indian Sundarban Mangroves: A potential Carbon Scrubbing System”. Parana J. Sci. Educ., v.4, n.4, (7-29), June 17, 2018.

45. R. Gobato, M. Simões F., “Alternative Method of Spectroscopy of Alkali Metal BeLi2SeSi”, “Ubuntu (operating system)”, https://www.researchgate.net/publication/326201181, 2018. Available in: ResearchGate, See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326201181.

46. R. Gobato, A. Heidari, A. Mitra, “The Liotropic Indicatrix”, 2012, 114 p. Thesis (Doctorate in Physics).

47. R. Gobato, A. Gobato, D. F. G. Fedrigo, “Molecular electrostatic potential of the main monoterpenoids compounds found in oil Lemon Tahiti - Citrus Lantifolia Var Tahiti”. Parana J. Sci. Educ, 1(1)-1-10, November 2015.

48. R. Gobato, D. F. G. Fedrigo, A. Gobato, “Aldolcoppyrone, Barberine, Chelerythrine, Copines, Dihydrosanguinarine, Protopine and Sanguinarine. Molecular geometry of the main alkaloids found in the seeds of Argemone Mexicana Lin”. Parana J. Sci. Educ., 1(2):7–16, December 2015.

49. R. Gobato, A. Heidari, “Infrared Spectrum and Sites of Action of Sanguinarine by Molecular Mechanics and ab initio Methods”, International Journal of Atmospheric and Oceanic Sciences. Vol. 2, No. 1, 2018, pp. 1-9. doi:10.11648/j.iosj.20180101.11

50. R. Gobato, D. F. G. Fedrigo, A. Gobato, “Molecular geometry of alkaloids present in seeds of mexican prickly poppy”. Cornell University Library: Quantitative Biology, Jul 15, 2015. arXiv:1507.05042.

51. R. Gobato, A. Gobato, D. F. G. Fedrigo, A. Gobato, “Study of the molecular electrostatic potential of D-Pinitol an active hypoglycemic principle found in Spring flower Three Marys (Bougainvillea species).”, J. Biomembrane with a Combination of the Elements Be, Li, Se, Si, C and H”, J. Nanomed Res, 7 (4): 241-252, 2018.

52. S. K. Agarwal, S. Roy, P. Pramanick, P. Mitra, R. Gobato, A. Mitra, “Marsilea quadrifolia: A floral species with unique medicinal properties”, Parana J. Sci. Educ., v.4, n.5, (15-20), July 1, 2018.

53. Mitra, S. Zaman, R. Gobato. “Indian Sundarban Mangroves: A potential Carbon Scrubbing System”. Parana J. Sci. Educ., v.4, n.4, (7-29), June 17, 2018.

54. R. Gobato, M. Simões F., “Alternative Method of Spectroscopy of Alkali Metal BeLi2SeSi”, “Ubuntu (operating system)”, https://www.researchgate.net/publication/326201181, 2018. Available in: ResearchGate, See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326201181.

55. R. Gobato, A. Heidari, A. Mitra, “The Liotropic Indicatrix”, 2012, 114 p. Thesis (Doctorate in Physics).

56. R. Gobato, A. Heidari, A. Mitra, “The Liotropic Indicatrix”, 2012, 114 p. Thesis (Doctorate in Physics).
73. Heidari, R., Gobato, R., “Evaluating the Effect of Anti-Cancer Nano Drugs Dosage and Reduced Leukemia and Polycythemia Vera Levels on Trend of the Human Blood and Bone Marrow Cancers under Synchrotron Radiation”, Trends in Res, Vol 2 (2): 1–9, 2019.

74. Heidari, R., Gobato, R., “Assessing the Variety of Synchrotron, Synchrocyclotron and LASER Radiations and Their Roles and Applications in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment”, Trends in Res, Volume 2, Issue 1: 1–8, 2019.

75. Heidari, R., Gobato, R., “Pros and Cons Controversy on Malignant Human Cancer Cells, Tissues and Tumors Transformation Process to Benign Human Cancer Cells, Tissues and Tumors”, Trends in Res, Volume 2, Issue 1: 1–8, 2019.

76. Heidari, R., Gobato, R., “Three-Dimensional (3D) Simulations of Human Cancer Cells, Tissues and Tumors for Using in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment as a Powerful Tool in Human Cancer Cells, Tissues and Tumors Research and Anti-Cancer Nano Drugs Sensitivity and Delivery Area Discovery and Evaluation”, Trends in Res, Volume 2, Issue 1: 1–8, 2019.

77. Heidari, R., Gobato, R., “Investigation of Energy Production by Synchrotron, Synchrocyclotron and LASER Radiations in Human Cancer Cells, Tissues and Tumors and Evaluation of Their Effective on Human Cancer Cells, Tissues and Tumors Treatment Trend”, Trends in Res, Volume 2, Issue 1: 1–9, 2019.

78. Heidari, R., Gobato, M. R. R., A. Heidari, “Storm Vortex in the Center of Paraná State on June 6, 2017: A Case Study”, Slovenian Journal of Scientific Research, Vol. 2, No. 2, Pages 24–31, 2019.

80. Gobato, R., M. R. R., A. Heidari, “Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Study of the Nano Molecule C13H20BeLi2SeSi Using ab initio and Hartree–Fock Methods in the Basis Set RHF/C–pVTZ and RHF/6–311G** (3df, 3pd): An Experimental Challenge to Chemists”, Chemistry Reports, Vol. 2, No. 1, Pages 1–26, 2019.

81. Gobato, R., M. R. R., Gobato, A. Mitta, “New Nano-Molecule Kurumi–C13H 20BeLi2SeSi/C13H19BeLi2SeSi, and Raman Spectroscopy Using ab initio, Hartree–Fock Method in the Base Set CC–pVTZ and 6–311G** (3df, 3pd)”, J Anal Pharm Res. 8 (1): 1–6, 2019.

82. Gobato, R. M. R. R., Gobato, A. Heidari, “Evidence of Tornado Storm Hit the Counties of Rio Branco do Ivaí and Rosario de Ivaí, Southern Brazil”, Sci Lett 7 (1), 9 Pages, DOI: 10.34297/AJBSR.2019.02.000594.

83. D. L. Graf, Rhodochrosite, Crystallographic tables for the rhombohedral carbonates, American Mineralogist 46 (1961) 1283-1316.

84. E. N. Maslen, V. A. Streilev, N. R. Streileva, N. Ishiawara, Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3, Acta Crystallographica B51 (1995) 929-939.

85. R. Wyckoff, The crystal structures of some carbonates of the calcite group, American Journal of Science 50 (1920) 317-360.

86. D. Marcus, D. E. Hanwell, D. C. Curtis, T. V. Lonie, E. Zurek, G. R. Hutchison, “Avogadro: An advanced semantic chemical editor, visualization, and analysis platform” Journal of Cheminformatics 2012, 4:17.

87. F. Cisowski, Phys. Rev. Lett., 1989, 62, 1469.

88. Paul von Ragu Schleyer, Encyclopedia of computational chemistry, New York, J. Wiley, 1998.

90. Suresh Kumar Agarwal, Sitangshu Roy, Prosenjit Pramanick, Prosenjit Mitra, Ricardo Gobato and Abhijit Mitra. Parana Journal of Science and Education. V ol. 4, No. 5, 2018, pp. 24-28.

91. Ricardo Gobato and Marcia Regina Riso Gobato, “Evidence of Tornadoes Reaching the Countries of Rio Branco do Ivaí and Rosario de Ivaí, Southern Brazil on June 6, 2017”, Climatol Weather Forecasting 2018, 6/4. DOI: 10.4172/2332-2594.1000242.

92. Ricardo Gobato. “New Nano-Molecule Kurumi and Raman Spectroscopy using ab initio, Hartree–Fock Method” Am J Biomed Sci & Res. 2019 - 2(4). AJBSR. MS.ID.000594. DOI: 10.34297/AJBSR.2019.02.000594.

93. Shampa Mitra, Abhijit Mitra, “Water quality of the River Ganga in and around the city of Kolkata during and after Goddess Durga immersion”, Parana Journal of Science and Education, Vol. 4, No. 9, 2018, pp. 1-7.

94. Ozan Yarman, Metin Arik, Ricardo Gobato, Tolga Yarman, Clarification of “Overall Relativistic Energy” According to Yarman’s Approach.”, Parana Journal of Science and Education., v.4, n.8, 2018, pp. 1-10.

95. Sufia Zaman, Utpal Pal, Ricardo Gobato, Aleksander Gobato, Abhijit Mitra. “The Changing Trends of Climate in Context to Indian Sundarbans”, Parana Journal of Science and Education, Vol. 4, No. 7, 2018, pp. 24-28.

96. Suresh Kumar Agarwal, Sitangshu Roy, Prosenjit Pramanick, Prosenjit Mitra, Ricardo Gobato and Abhijit Mitra. Parana Journal of Science and Education. Vol. 4, No. 5, 2018, pp. 15-20.

97. Ricardo Gobato and Marcia Regina Riso Gobato, “Evidence of Tornadoes Reaching the Countries of Rio Branco do Ivaí and Rosario de Ivaí, Southern Brazil on June 6, 2017”, Climatol Weather Forecasting 2018, 6/4. DOI: 10.4172/2332-2594.1000242.

98. Ricardo Gobato. “New Nano-Molecule Kurumi and Raman Spectroscopy using ab initio, Hartree–Fock Method” Am J Biomed Sci & Res. 2019 - 2(4). AJBSR. MS.ID.000594. DOI: 10.34297/AJBSR.2019.02.000594.

99. R. Wyckoff, The crystal structures of some carbonates of the calcite group, American Journal of Science 50 (1920) 317-360.

100. D. Marcus, D. E. Hanwell, D. C. Curtis, T. V. Lonie, E. Zurek, G. R. Hutchison, “Avogadro: An advanced semantic chemical editor, visualization, and analysis platform” Journal of Cheminformatics 2012, 4:17.

101. J. Cioslowski, Phys. Rev. Lett., 1989, 62, 1469.

102. Paul von Ragu Schleyer, Encyclopedia of computational chemistry, New York, J. Wiley, 1998.

103. Mulliken, R. S. “Electronic Population Analysis on LCAO-MO Molecular Wave Functions.” J. The Journal of Chemical Physics. (1955). 23 (10): 1833–1840. Bibcode:1955JChPh..23.1833M. doi:10.1063/1.1740588.

104. G. Czismadia, Theory and Practice of MO Calculations on Organic Molecules, Elsevier, Amsterdam, 1976.

105. W. J. Stevens, H. Basch, and M. Krauss, “Compact effective potentials and efficient shared-exponent basis-sets for the 1st-row and 2nd-row atoms,” J. Chem. Phys., 81 (1984) 6026-33. DOI: 10.1063/1.447604.

106. W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, “Relativistic compact effective potentials and efficient, shared-exponent basis-sets for the 3rd-row, 4th-row, and 5th-row atoms,” Can. J. Chem., 70 (1992) 612-30. DOI: 10.1139/v92-085

107. T. R. Cundari and W. J. Stevens, “Effective core potential methods for the lanthanides,” J. Chem. Phys., 98 (1993) 5555-65. DOI: 10.1063/1.464902.