Vibrational Study of 13C-enriched C$_{60}$ Crystals

Michael C. Martin1, J. Fabian1, J. Godard2, P. Bernier3, J.M. Lambert3, and L. Mihaly1

1Department of Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3800

2Laboratoire de Physique des Solides, Université Paris-Sud, F-91405 Orsay, France

3Groupe de Dynamique des Phases Condensées, Université des Sciences et Techniques du Languedoc, 9F-34060 Montpellier, France

(14 September 1994, revised 1 November 1994, Accepted to Phys. Rev. B)

Abstract

The infrared (IR) spectrum of solid C$_{60}$ exhibits many weak vibrational modes. Symmetry breaking due to 13C isotopes provides a possible route for optically activating IR-silent vibrational modes. Experimental spectra and a semi-empirical theory on natural abundance and 13C-enriched single crystals of C$_{60}$ are presented. By comparing the experimental results with the theoretical results, we exclude this isotopic activation mechanism from the explanation for weakly active fundamentals in the spectra.

PACS: 74.30.-j, 74.30.Jw, 74.70.Wz
The availability of high quality C\textsubscript{60} single crystals has provided an opportunity for the detailed study of weak vibrational features in the infrared (IR) and Raman spectra of this molecular solid. Recent studies identified some of these modes as being weakly activated symmetry-forbidden modes in IR1-3 and Raman4,5 measurements. Second-order combination modes were also observed in these spectra. These results enabled the authors to use group theoretical arguments to extract candidates for all 46 vibrational modes of C\textsubscript{60} from the experimental data2,4.

Since the icosahedral (I\textsubscript{h}) symmetry of the isolated fullerene molecule allows for only four IR active modes, this symmetry must be broken by some agent. Possible mechanisms for activating such “silent” modes include 13C isotopic impurities, Van der Waals forces from other C\textsubscript{60} molecules (crystal field effects), anharmonicity, electric field gradients at surface boundaries, impurities, and dislocations. Several previous works1,2,4,6 have argued that 13C isotope substitution is a likely agent for activating silent modes since for the natural abundance of 13C, about one half of all C\textsubscript{60} molecules would have at least one 13C which would break the I\textsubscript{h} symmetry and activate all the vibrational modes. In the present study, we experimentally and theoretically explore this idea by studying C\textsubscript{60} crystals made from natural abundance and 13C-enriched C\textsubscript{60}.

The natural abundance 13C single crystals were sublimated as described previously2 from well cleaned C\textsubscript{60} powder commercially produced7. Typical crystals have dimensions \(\sim 1 \times 1 \times 0.5\) mm. The 8\% 13C-enriched crystals were sublimated from enriched soot prepared as reported earlier8 and their chemical and crystallographic quality were checked by high-resolution 13C solid state nuclear magnetic resonance (NMR)9. The isotope enrichment was determined by mass spectrometry, showing that the mass distribution follows a Poisson function. A Bomem MB-155 FTIR spectrometer was used to obtain 2cm-1 resolution IR spectra in the 400-5000cm-1 energy range. The infrared spectra presented here were obtained at room temperature with the crystals mounted over a small aperture with a minimal amount of silver paste. The spectra are referenced to spectra obtained through the empty aperture. The IR spectra of such thick crystals has been shown to be independent of
atmosphere, so for experimental simplicity the crystals in this study were exposed to air.

The probability that a C_{60} molecule has n 13C atoms is given by the Poisson distribution, p_n, in agreement with the mass spectrometry of the 8%-enriched 13C samples. This function is presented in Figure 1 for C_{60} molecules made from natural abundance carbon (1.108% 13C) and from 8% 13C-enriched carbon. The natural abundance probability curve shows that about one third of the molecules will have exactly one 13C atom which will weakly break the icosahedral symmetry of pure 12C$_{60}$. From the 8% probability function we learn that only about 1% of C_{60} molecules will be pure 12C$_{60}$; most will have 3 to 7 13C atoms per fullerene.

The IR data are presented in Figure 2. The uppermost curve is the transmission of a natural abundance C_{60} single crystal, as published previously. The four IR-active F_{1u} vibrational modes are observed to be completely saturated around their known positions of 527, 576, 1182, and 1427 cm$^{-1}$. All other observed absorptions are due to IR-forbidden fundamental vibrations or second (or higher) order modes which have become weakly active in the crystal. One of the weak modes at 710 cm$^{-1}$ was fitted in a previous study; its intensity (proportional to the square of the plasma frequency of the Lorentz oscillator, ω_p^2) is approximately one order of magnitude smaller than that of a typical F_{1u} mode.

The middle curve of Figure 2 displays the IR spectrum of an 8% 13C-enriched C_{60} crystal. When comparing this spectrum with that of the natural abundance crystal (top curve of Fig. 2), the primary changes observed are that all of the visible modes have broadened and slightly softened. Note, however, that the relative intensities of the weakly active fundamental and higher order vibrational modes do not change significantly. Nearly all the features of the 8% enriched sample transmission spectrum can be modeled by simply broadening the spectrum obtained for the natural abundance crystal using the functions from Figure 1 and assuming the energy of a mode is proportional to $1/\sqrt{m}$ (like in a simple “ball and spring” model). (This relation between mode broadening and mass distribution was described in greater detail for the $A_g(2)$ Raman fundamental by Guha et al.) Carrying this procedure out by applying the 8% Poisson distribution point by point to the top spectra of Fig. 2 we obtain
the bottom curve of Figure 2. A careful comparison of the measured 8% enriched spectrum and the spectrum generated from the broadening reveals that they are indeed very well matched, indicating that 13C substitutions change the frequency of the mode, but do not influence the intensity. Raman spectra obtained on these samples in which forbidden and higher order modes are observed give the same results.

If the fundamental modes are being activated by symmetry breaking due to isotopic substitutions, one would expect the 13C-enriched samples to have greater symmetry breaking, and therefore greater IR-activity for originally silent modes. To test this, we used a theoretical model of C_{60} based on the bond-charge model of Onida and Benedek (the only change was to use the better experimental values of 1.4 Å for the hexagon-hexagon (6-6) bond length and 1.45 Å for the pentagon-hexagon (5-6) bond length). The vibrational frequencies calculated with this model are within 3% of the experimental IR and Raman mode frequencies.

The calculation of the IR intensity of a given mode requires, in principle, the knowledge of the electronic eigenstates of the deformed molecule. To avoid the numerical complexity of such an approach we used an approximate procedure, based on the experimentally known IR intensities of the four allowed F_{1u} modes and on the calculated vibrational eigenvectors of the isotopically changed molecule. When expanded in terms of the original eigenvectors of the pure 12C molecule, some or all of the new eigenvectors had components in the directions of the original F_{1u} eigenvectors. Each degenerate species of the unperturbed F_{1u} eigenvectors are chosen to carry their dipole moments in the Cartesian x, y, and z directions. The intensity of each of the four IR-active F_{1u} modes was then taken from experiment and are denoted A_1, A_2, A_3, and A_4. The IR-intensity of mode l is then calculated using

$$I_l = \sum_{i=1}^{3} \left(\sum_{j=1}^{4} \sqrt{A_j} \tilde{Q}_{jl}^i \right)^2,$$

(1)

where \tilde{Q}_{jl}^i is the component of eigenmode l in the direction of the the i^{th} degenerate mode of the original $F_{1u}(j)$ eigenvector; i sums over the triple degeneracies and j sums over the four F_{1u} modes. The isotopic content is modeled by a Monte Carlo simulation: each of the
60 carbon atoms is given a ^{13}C or a ^{12}C mass with appropriate probabilities representing the natural abundance or ^{13}C-enrichment (1.108% and 8% ^{13}C, respectively). The dynamical matrix for the resultant molecule was then diagonalized to calculate the eigenvectors, and Eqn. [1] was applied. For a given isotope concentration, this process is repeated until a general sampling of all possible ^{13}C configurations is calculated and the results are averaged together. For the natural abundance case, there are relatively few possible configurations, but for the 8% ^{13}C-enriched case, there are a huge number of configurations. We sampled over 15,000 possible configurations for the 8% case, which should suffice to obtain the correct trends.

We plot the resultant calculated IR-intensity for 1.108% and 8% ^{13}C C_{60} molecules in Figure 3. The Lorentzian widths of all modes have been taken to be uniformly 3cm$^{-1}$. The four F_{1u} modes in Figure 3 have peak heights of approximately 2000 ($\omega_p^2 \sim 5000\text{cm}^{-1}$), so the intensities of the weakly activated modes are approximately a factor of 10^4 smaller. This is in contrast to the experimentally observed intensity ratio of only a factor of ~ 10. Furthermore, the average intensity of the weakly activated modes increases by a factor of 4.45 in the 8% enriched calculation compared to the natural abundance calculation, but no similar increase was seen in the experiment. Very similar theoretical results are given in a recent detailed calculation of the effects of isotopes on the vibrations of C_{60}.

We must therefore conclude that isotopic activation of previously silent modes is not the symmetry-breaking mechanism in C_{60}.

Since the isotope effect is eliminated, the forbidden modes must be activated by another symmetry breaking mechanism. Surface effects can be ruled out since the phenomenon is independent of sample thickness. Defects in the bulk, like dislocations or vacancies are also less likely, since the measurements on samples under pressure, or samples subjected to plastic deformation by pressure do not exhibit a dramatic change in these weak lines. Oxygen bound to the fullerenes has been excluded since the number and strength of the weak vibrational modes are unchanged when obtained from C_{60} crystals that have never been exposed to oxygen. Impurities in the crystals are a possibility, however we point out
that crystals made from different \(C_{60} \) sources and using various growing conditions result in exactly identical IR spectra in every feature. A remaining serious candidate is the symmetry breaking due to the first neighbor interactions between the \(C_{60} \) molecules in the solid.

The first question is, how is it possible that most of the weak fundamentals are visible at room temperature, when the X-ray structure is face centered cubic, with one fullerene molecule per unit cell. In this state the molecules are rotating rapidly and the symmetry breaking crystal fields fluctuate with this rotation. To clarify this issue, we performed a simple model calculation with a fluctuating external potential breaking the symmetry of an otherwise symmetric arrangement of atoms. All other interactions with the surroundings were represented by a damping constant. We found that a forbidden mode is activated (i.e. the system absorbs energy from the external oscillating electric field in a resonance like fashion) as long as the correlation time of the fluctuations is not shorter than the lifetime of the resonance (which, in our calculation, was determined by the damping constant).

To apply this idea to the present case, we need to know the natural lifetime of a particular vibrational mode, and the correlation time of the fluctuations of neighbors. The first parameter can be estimated from the linewidth of the well resolved \(F_{1u} \) vibrational modes as measured in detail by Homes et al. To avoid complications due to the “inhomogeneous broadening” we take a linewidth from the measurement below the orientational ordering transition temperature \((\gamma = 0.5 \text{cm}^{-1}) \) and obtain a lifetime of 60psec. At higher temperatures the lifetime decreases, therefore this is an upper limit. On the other hand the rotational diffusion constant was determined by neutron scattering measurements as \(D_R = 1.4 \times 10^{10} \text{sec}^{-1} \) at \(T=260\text{K} \), right above the rotational phase transition. This implies that a 60 degree rotation takes about 130psec, which is indeed longer than the upper limit to our estimated resonance lifetime.

According the the neutron scattering data, the rotational diffusion constant increases by a factor of two, to \(2.8 \times 10^{10} \text{sec}^{-1} \) at 520K. However, the lifetime of the resonance is also expected to decrease. In an insulator, the primary channel of phonon decay is due to the
interaction between the phonons, and the enhanced population of the phonon states leads to shorter lifetimes at higher temperatures. These considerations lead to an experimentally verifiable prediction: at higher temperatures the “forbidden” lines should either disappear (if the lifetime of the resonance has a weak temperature dependence) or the integrated intensities will not change while the lines broaden (so that the lifetime stays shorter than the fluctuation time). To test this prediction, we measured the IR spectrum of a crystal at elevated temperatures. All observed modes do broaden without a significant change in line intensities up to a temperature of 650K.

Below $T \sim 250K$, the orientational ordering transition temperature, the halting of free rotation of the C_{60} molecules leads to a crystal structure with four fullerenes in the unit cell. In this structure all the ungerade modes of the molecule are allowed in the IR by symmetry. The ideal Pa$\bar{3}$ structure retains a center of inversion symmetry at the center of each C_{60} molecule and thus the gerade modes are still IR-forbidden. However there is a “defect orientation” in the actual structure which will break this inversion symmetry in a significant portion of the C_{60} molecules.

According to these arguments there is reason to believe that the nearest neighbor surroundings of the molecules provide the symmetry breaking necessary for the activation of the forbidden modes. This mechanism is supported by the fact that many of the weakly active modes exhibit a sharp change when cooled through the orientational ordering phase transition. On the other hand the characteristic temperature dependence of the “defect orientation” fraction should lead to a gradual decrease in the intensity of the weakly active IR lines originating from the gerade modes (in particular Raman modes), and this was not seen in our experiments.

To summarize, we have shown that isotopic symmetry reduction is not the activating mechanism for symmetry forbidden vibrational modes in C_{60} as has been previously proposed. We have shown that crystal field effects can explain the weak modes both above and below the orientational ordering transition temperature, but further experimental and theoretical work is required to fully understand the nature of the symmetry breaking in
fullerene crystals.

ACKNOWLEDGMENTS

We are grateful to P.B. Allen, S. Pekker, P. Stephens, A. Rosenberg and G. Sawatzky for enlightening conversations. This work has been supported by NSF grants DMR 9202528 (MCM,LM) and DMR 9118414 (JF), and from CNRS through the Groupe de Recherche 1019 (JG, PB, JML).
REFERENCES

1 K.-A. Wang, A.M. Rao, P.C. Eklund, M.S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B 48, 11375 (1993).

2 Michael C. Martin, Xiaoqun Du, John Kwon and L. Mihaly, Phys. Rev. B 50, 173 (1994).

3 K. Kamarás, L. Akselrod, S. Roth, A. Mittelbach, W. Hönle, and H.G. von Schnering, Chem. Phys. Lett. 214, 388 (1993); K. Kamarás, K. Matsumoto, M. Wojnowski, and E. Schönherr, to be published.

4 Z.-H. Dong, P. Zhou, J.M. Holden, P.C. Eklund, M.S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B 48, 2862 (1993).

5 P.H.M. van Loosdrecht, P.J.M. van Bentum, M.A. Verheijen, and G. Meijer, Chem. Phys. Lett. 198, 587 (1992).

6 P.C. Eklund, M.S. Dresselhaus, G. Dresselhaus, D. Inomata, K. Nakao, and Riichiro Saito, Molecular Materials (1994).

7 SES Research Inc., 6008 West 34th Street, Suite H, Houston, TX 77092, USA.

8 A. Zahab, J.L. Sauvajol, L. Firlej, R. Aznar, and P. Bernier, J. Phys. I, France 2, 7 (1992).

9 R. Kerkoud, P. Auban-Senzier, J. Godard, D. Jerome, J.-M. Lambert, and P. Bernier, C.R. Acad. Sci. Paris, 318, Série II, 159 (1994).

10 S. Guha, J. Menendez, J.B. Page, G.B. Adams, G.S. Spencer, J.P. Lehman, P. Giannozzi, S. Baroni, Phys. Rev. Lett. 72, 3359 (1994).

11 A. Rosenberg and C. Kendziora, preprint.

12 G. Onida and G. Benedek, Europhys. Lett. 18, 403 (1992); Erratum, Ibid 99, 343 (1992).

13 K. Hedberg, L. Hedberg, D.S. Bethune, C.A. Brown, H.C. Dorn, R.D. Johnson, and M. de Vries, Science 254, 410 (1991).
Michael C. Martin, Daniel Koller, and Laszlo Mihaly, Phys. Rev. B 47, 14607 (1993).

Y. Tanaka, M. Tokumoto, and Y. Sugawara, Fullerene Science and Technology 3, (1995) in print.

R.M. Flemming, A.P. Ramirez, M.J. Rosseinsky, D.W. Murphy, R.C. Haddon, S.M. Zahurak and A.V. Makhija, Nature 352, 787 (1991).

L. Mihaly and Michael C. Martin, to be published.

C.C. Homes, P.J. Horoyski, M.L.W. Thewalt, and B.P. Clayman, Phys. Rev. B 49, 7052 (1994); L.R. Narasamihan, D.N. Stoneback, A.F. Hebard, R.C. Haddon, and C.K.N. Patel, ibid 46, 2591 (1992); V.S. Babu and M.S. Seehra, Chem. Phys. Lett. 68, 1176 (1992).

R. Tycko, G. Dabbagh, R.M. Fleming, R.C. Haddon, A.V. Makhija, and S.M. Zahurak, Phys. Rev. Lett. 67, 1886 (1991); D.A. Neuman, J.R.D. Copley, R.L. Cappelletti, W.A. Kamitakahara, R.M. Lindstrom, K.M. Creegan, D.M. Cox, W.J. Romanow, N. Coustel, J.P. McCauley, N.C. Maliszewskyi, J.E. Fischer, and A.B. Smith Phys. Rev. Lett. 67, 3808 (1991).

P.A. Heiney, J.E. Fisher, A.R. McFhie, W.J. Romanow, A.M. Denenstein, J.P. McCauley, Jr., A.B. Smith, III, and D. Cox, Phys. Rev. Lett. 66, 2911 (1991).

G. Dresselhaus, M.S. Dresselhaus, and P.C. Eklund, Phys. Rev. B 45, 6923 (1992).

W.I.F. David, R.M. Ibberson, T.J.S. Dennis, J.P. Hare, and K. Prassides, Europhys. Lett. 18, 225 (1992); W.I.F. David, R.M. Ibberson, J.C. Matthewman, K. Prassides, T.J.S. Dennis, J.P. Hare, H.W. Kroto, R. Taylor, and D.R.H. Walton, Nature 353, 147 (1991).
FIGURES

FIG. 1. Plot of the probability function that a C\textsubscript{60} molecule has \(n\) \(^{13}\text{C}\) and \((60-n)\) \(^{12}\text{C}\) atoms for the natural abundance of \(^{13}\text{C}\) and for 8\% enriched samples as measured in the present study.

FIG. 2. IR spectra of C\textsubscript{60} single crystals; the two upper curves have been vertically offset for clarity. The top spectra is from a crystal made from natural abundance \(^{13}\text{C}\) C\textsubscript{60}. The middle curve is the spectra of an 8\% \(^{13}\text{C}\)-enriched C\textsubscript{60} crystal. The bottom curve is generated from the top curve using a simple model of frequency shift and the mass distribution given from Figure 1 for 8\% enrichment.

FIG. 3. Calculated IR intensities of vibrational modes in C\textsubscript{60} with 1.108\% and 8\% isotopic substitution. The four IR-active \(F\textsubscript{1u}\) modes have intensities of \(\sim 2000\) which are well off scale; the scale is chosen so that the weakly activated symmetry-forbidden modes can be seen.