Introduction

Entamoeba histolytica is an invasive euteric protozoan parasite that causes amebiasis. Globally, diarrheal disease is second only to pneumonia as a leading cause of death in children under five, and intestinal amebiasis is one of the top ten causes of severe diarrhea in the developing world. Amebiasis is more common in malnourished children, a state that afflicts approximately one-third of children in the developing world. In the critical first year of life, 11% of Bangladeshi infants living in poverty suffer from *E. histolytica* diarrhea [1,2]. There is currently no vaccine for this devastating disease, thus an understanding of the human immune response toward the parasite would greatly enhance the ability to develop effective immunotherapies. The host deploys a series of immune defenses against the parasite as it invades the colon. The ameba, however, has developed complex strategies to evade host defenses and promote its own survival. Here, we summarize the dynamics of the interaction of parasite with host and its importance in the pathogenesis of amebiasis (Figure 1).

Innate Immunity

Stomach acid serves as an important first line of defense against enteropathogens through its ability to kill acid-sensitive microorganisms. However, infectious amebic cysts are highly resistant and survive passage through the acidic environment of the stomach. In the intestine, the next layer of innate defense may be the mucus layer, which is thought to act as a protective barrier, preventing *E. histolytica* from invading intestinal epithelial cells (IECs). Mucin, a major constituent of the intestinal mucus layer, is a glycoprotein secreted by goblet cells and submucosal glands. Mucin glycoproteins bind to and inhibit the Gal/GalNAc adherence lectin of the parasite, preventing in vitro adherence and killing of CHO cells [3]. Trophozoites, however, can disrupt the mucus layer by secreting cysteine proteases (CPs) and glycosidases to allow for penetration of the colon mucosa. Specifically, *E. histolytica* cysteine protease-A5 (EhCP-A5) degrades mucin-2 (MUC2) and extracellular matrix (ECM) proteins [4]. The importance of cysteine proteases was demonstrated by an ex vivo human intestinal model, where EhCP-A5–silenced parasites failed to penetrate into the colonic lamina propria [5].

IECs exposed to *E. histolytica* trophozoites secrete potent chemokines, such as IL-8, resulting in immune cell recruitment and infiltration of the lamina propria and intestinal epithelium [6]. Neutrophils are one of the first immune cells to respond to amebic invasion. Neutrophils activated by interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), or lipopolysaccharides (LPS) carry out amebicidal activity in vitro by releasing reactive oxygen species (ROS) [7,8]. Depletion of neutrophils with anti-Gr-1 antibodies resulted in exacerbated intestinal disease in murine models, supporting the protective role of neutrophils in amebiasis [9]. It should be noted, however, that anti-Gr-1 antibodies can deplete other granulocytes such as eosinophils.

Macrophages also play a crucial role in the host response against intestinal amebiasis. Macrophages are amebicidal after stimulation with IFN-γ or TNF-α [10,11]. Several amebic antigens are known to activate these cells via pattern recognition receptors. Toll-like receptor (TLR)-2 expression in macrophages is upregulated when exposed to the Gal/GalNAc lectin of *E. histolytica*, triggering pro-inflammatory cytokine production via NF-κB activation [12]. Macrophages that lack TLR-2 and TLR-4 displayed impaired response to *E. histolytica* lipoproteinidophosphoglycan (LPPG), suggesting that pattern recognition is essential to the immune response [13]. Additionally, *E. histolytica* DNA can activate macrophages through interacting with TLR-9 [14]. Amebicidal activity of macrophages is contributed to by the production of nitric oxide (NO) from L-arginine, which is mediated by macrophage nitric oxide synthase. Inducible nitric oxide synthase (iNOS)–deficient mice were more susceptible to amebic liver abscess and to *E. histolytica*-induced hepaticcytic apoptosis, implicating a critical role for NO in the host defense against amebiasis [15].

Adaptive Immunity: Mucosal Immunoglobulin A and Cell-Mediated Response

The Gal/GalNAc lectin is the major amebic surface adhesion molecule and mediates binding to the colonic mucus layer as well as carbohydrate determinants on a variety of host cells including epithelial cells. The heavy chain of Gal/GalNAc lectin contains the carbohydrate recognition domain (CRD) that is responsible for binding. In both mice and baboons vaccinated against *E. histolytica*, IgA antibodies against Gal/GalNAc lectin correlated with protection [16,17]. In a cohort of preschool children in Dhaka, Bangladesh, mucosal IgA directed at the CRD domain was associated with protection of children from *E. histolytica* infection and disease. Conversely, serum anti-lectin IgG was not associated with protection, but instead was associated with an increased frequency of new *E. histolytica* infections [18].

Cell-mediated interferon gamma (IFN-γ) appears to provide protection from amebiasis through its ability to activate neutrophils and macrophages to kill the parasite. In a prospective study, children’s peripheral blood mononuclear cells (PBMCs) were stimulated with soluble amebic extract and IFN-γ levels were measured. Children with higher IFN-γ production had a...
significantly lower incidence of future *E. histolytica* diarrhea [19]. This finding was supported by murine vaccination studies, which showed that vaccine-induced protection against *E. histolytica* infection could be passively transferred to naïve animals by IFN-γ-producing T cells. In addition to IFN-γ, IL-17 was also shown to contribute to vaccine-induced protection in murine studies [20,21]. These findings suggest an important role for cell-mediated cytokine production in protection from amebiasis.

Mechanisms of Parasite Evasion

Although the host deploys a robust immune response against *E. histolytica*, the parasite has developed a remarkable number of mechanisms to evade these attacks (Figure 1B). While neutrophils are capable of killing ameba, virulent ameba are far more effective at lysing and phagocytosing neutrophils: in vitro, one trophozoite can kill upwards of 3,000 neutrophils [8]. In addition, amebic peroxiredoxin, a 29-kDa surface protein with antioxidant properties, protects the parasite from neutrophil reactive oxygen defenses [22]. *E. histolytica* has also developed several strategies to modulate macrophage responses. Amebic arginase converts L-arginine, a substrate of NOS, to L-ornithine, thereby limiting NO production [8]. IFN-γ released by lymphocytes activates macrophages and PMNs. In addition to IFN-γ and NO, the parasite also produces cytokines that inhibit the respiratory burst of neutrophils (e.g., arginase, which depletes the L-arginine supply that macrophages use to produce NO). Amebic arginase converts L-arginine, a substrate of NOS, to L-ornithine, thereby limiting NO production [8]. Additionally, monocyte locomotion inhibitory factor (MLIF) has been implicated to modulate macrophage function by inhibiting NO [26].

Host Inflammatory Response Contributes to Tissue Damage

An appropriate immune response clears pathogens without causing significant damage to the host tissue. Tissue destruction in amebic colitis arises from both *E. histolytica* cytolytic factors and the resultant gut inflammatory response. While TNF-α stimulates neutrophils and macrophages to release ROS and NO, an excess amount of TNF-α can result in direct damage to host tissue. Higher TNF-α production was recently shown to correlate with *E. histolytica* diarrhea in children. Each 1,000 pg/mL increase of TNF-α correlated with an 18% increased chance of acquiring *E. histolytica* diarrhea [29]. Blocking TNF-α with monoclonal antibodies reduced inflammation and intestinal damage in amebic
infection in the severe combined immunodeficient mouse-human intestinal xenograft (SCID-HU-INT) model [30]. The anti-inflammatory cytokine, interleukin-10 (IL-10), is an important immunoregulator in the intestinal tract. IL-10 counteracts an exaggerated pro-inflammatory immune response by inhibiting the production of inflammatory mediators such as TNF-α. Disruption of the IL-10 gene in mice results in colitis and is used as a model to study inflammatory bowel disease. Additionally, in a phase I trial, transgenic bacteria expressing IL-10 were shown to decrease disease activity in Crohn’s patients [31]. IL-10-deficient C57BL/6 mice are susceptible to amebic colitis, supporting the role of inflammation in *E. histolytica* pathogenesis [20,32].

Host Genetics, Immunity, and Susceptibility to Amebiasis

Millions of people worldwide are colonized with *E. histolytica*, yet only 20% develop symptomatic disease, with highly variable outcomes [33]. Host genetic makeup may explain, in part, why individuals differ in their susceptibility to amebic infection. Leptin, an adipocytokine first characterized for its metabolic effects, is now recognized as an important modulator of the immune system. Normal leptin signaling may mediate resistance to amebiasis via several mechanisms such as stimulating a Th1 response, inducing anti-apoptotic pathways, and promoting tissue repair. In a murine model, leptin-deficient (*ob/ob*) and leptin receptor–deficient (*db/db*) mice were highly susceptible to *E. histolytica* infection, while wild-type C57BL/6 mice were resistant [34]. In a nine year prospective study in a cohort of preschool children in Dhaka, Bangladesh, a single amino acid polymorphism (Q223R) in the leptin receptor was associated with increased susceptibility to *E. histolytica* infection. Children with two arginine alleles (223R) were nearly four times more likely to suffer *E. histolytica* infection as compared to those homozygous for glutamine (223Q). Similarly, mice with at least one 223R allele were significantly more susceptible to amebic infection and exhibited greater levels of intestinal epithelial apoptosis and mucosal destruction following infection [35]. The site of leptin-mediated resistance was localized to the intestinal epithelial cells by tissue-specific knockout. An in vitro model showed that leptin signaling protected human epithelial cells from amebic killing via a STAT3-dependent pathway [36].

Human leukocyte antigens (HLAs) play a crucial role in the immune response and are also highly polymorphic. The ability of specific HLA II alleles to present amebic antigens to CD4+ T cells may alter susceptibility to *E. histolytica*. It was found that children who were heterozygous for the HLA class II *DQB1*/*DQB1* haplotype were more likely to be *E. histolytica* negative [37].

Future Perspectives

Several decades of research have led to an improved understanding of the host immune response to intestinal amebiasis. Despite these advances, fundamental questions remain unanswered. For example, the immune mechanism that explains why only a subset of exposed individuals develops clinical disease is not fully understood. This is arguably one of the most important knowledge gaps to be filled. Additionally, the emerging field of microbiome science opens new avenues for amebic research. The effect of the microbiota on the immune response to *E. histolytica* and/or its virulence is not yet known. The answers to these questions may lay the foundation for developing an effective vaccine against this devastating disease.

Acknowledgments

We apologize to those colleagues whose work could not be included due to space limitations and thank the members of our lab for their critical read of the manuscript.

References

1. Bartelt LA, Lima AAM, Koske M, Peñaforte Yori P, Lee G, et al. (2013) “Barriers” to child development and human potential: the case for including the “neglected enteric protozoa” [NEP], and other enteropathy-associated pathogens in the NTDs. PLoS Negl Trop Dis 7: e2255. doi:10.1371/journal.pntd.0002255.
2. Moual D, Minak J, Alam A, Liu Y, Dai J, et al. (2012) Contribution of enteric infection, altered intestinal barrier function, and maternal malnutrition to infant malnutrition in Bangladesh. Clin Infect Dis 54: 183–192.
3. Chadee K, Petri WA Jr, Innes DJ, Ravdin JJ (1987) Rat and human colonic mucins bind to and inhibit adherence lectin of *Entamoeba histolytica*. J Clin Invest 80: 1245–1254.
4. Lidell ME, Moncada DM, Chadee K, Hanson GC (2006) *Entamoeba histolytica* cystine proteinases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proc Natl Acad Sci U S A 103: 9298–9303.
5. Bansal D, Ave P, Kernes S, Frelux P, Roche O, et al. (2009) An excivo human intestinal model to study *Entamoeba histolytica* pathogenesis. PLoS Negl Trop Dis 3: e551. doi:10.1371/journal.pntd.0000551.
6. Yu Y, Chadee K (1997) *Entamoeba histolytica* stimulates interleukin 8 from human colonic epithelial cells without parasite-enterocyte contact. Gastroenterology 112: 1536–1547.
7. Denis M, Chadee K (1989) Human neutrophils activated by interferon-gamma and tumour necrosis factor-alpha kill *Entamoeba histolytica* trophozoites in vitro. J Leukoc Biol 46: 270–274.
8. Guerzoni RL, Brush J, Ravdin JJ, Sullivan JA, Mandell GL (1981) Interaction between *Entamoeba histolytica* and human polymorphonuclear neutrophils. J Infect Dis 143: 83–93.
9. Ashgarpoor A, Gilchrist C, Baha D, Hamano S, Houpf E. (2005) Resistance to intestinal *Entamoeba histolytica* infection is conferred by innate immunity and G-1 cells. Infect Immun 73: 4522–4529.
10. Lin JY, Seguin R, Keller K, Chadee K (1994) Tumor necrosis factor alpha augments nitric oxide-dependent macrophage cytotoxicity against *Entamoeba histolytica* by enhanced expression of the nitric oxide synthase gene. Infect Immun 62: 1534–1541.
11. Ghdarian E, Denis M (1992) *Entamoeba histolytica* extract and interferon-gamma activation of macrophage-mediated amoebicidal function. Immunology 85: 1–10.
12. Kammanadiniminti SJ, Mann BJ, Duttil L, Chadee K (2004) Regulation of Toll-like receptor-2 expression by the Gal-lectin of *Entamoeba histolytica*. FASEB J 18: 153–157.
13. Makhalakhro-Beiras G, Kirschning CJ, Rosenstein Y, Rocha LM, Riso-Sarabia N, et al. (2005) The innate immune response to *Entamoeba histolytica* lipopolysaccharide is mediated by toll-like receptors 2 and 4. Parasite Immunol 27: 127–137.
14. Ivory CP, Prystajecky M, Jobin G, Chadee K (2008) Toll-like receptor 9-dependent macrophage activation by *Entamoeba histolytica* DNA. Infect Immun 76: 289–297.
15. Seydel KR, Smith SJ, Stanley SL, Jr (2000) Innate immunity to amebic liver abscess is dependent on gamma interferon and nitric oxide in a murine model of disease. Infect Immun 68: 400–402.
16. Houpf E, Barroso L, Lockhart L, Wright R, Cranner G, et al. (2004) Prevention of intestinal amebiasis by vaccination with the *Entamoeba histolytica* Gal/GalNac lectin. Vaccin 22: 611–617.
17. Abol All MD, Wolf R, White GL, Kosanee SD, Carly D, et al. (2012) Efficacy of a Gal/Gal subset vaccine against experimental *Entamoeba histolytica* infection and colitis in baboons (Papio sp.). Vaccine 30: 3068–3075.
18. Haque R, Ali IM, Sack RB, Farr BM, Ramakrishnan G, et al. (2001) Amebiasis and malnutrition in Bangladesh. J Infect Dis 54: 185–192.
19. Houpf E, Barroso L, Lockhart L, Wright R, Cranner G, et al. (2004) Prevention of intestinal amebiasis by vaccination with the *Entamoeba histolytica* Gal/GalNac lectin. Vaccin 22: 611–617.
20. Guo X, Barroso L, Becker SM, Lyerly DM, Vedvick TS, et al. (2009) Protection against intestinal amebiasis by a recombinant vaccine is transferable by T cells and mediated by gamma interferon. Infect Immun 77: 3909–3918.
21. Guo X, Barroso L, Lyerly DM, Petri WA Jr, Houpf EK (2011) CD8+ and CD4+ T cell- and IL-17-mediated protection against *Entamoeba histolytica* induced by a recombinant vaccine. Vaccine 29: 772–777.
22. Davis PH, Zhang X, Guo J, Townsend RR, Stanley SL, Jr (2006) Comparative proteomic analysis of two *Entamoeba histolytica* strains with different virulence phenotypes identifies peroxiredoxin as an important component of amebic virulence. Mol Microbiol 61: 1523–1532.
23. Elnekave K, Siman-Tov R, Ankri S (2003) Consumption of L-arginine mediated by Entamoeba histolytica L-arginase (EhArg) inhibits amoebicidal activity and nitric oxide production by activated macrophages. Parasite Immunol 25: 397–600.

24. Dey I, Keller K, Belley A, Chadee K (2003) Identification and characterization of a cyclooxygenase-like enzyme from Entamoeba histolytica. Proc Natl Acad Sci U S A 100: 13561–13566.

25. Wang W, Chadee K (1995) Entamoeba histolytica suppresses gamma interferon-induced macrophage class II major histocompatibility complex Ia molecule and I-A beta mRNA expression by a prostaglandin E2-dependent mechanism. Infect Immun 63: 1089–1094.

26. Rico G, Leandro E, Rojas S, Gimenez JA, Kretschmer RR (2003) The monocyte locomotion inhibitory factor produced by Entamoeba histolytica inhibits induced nitric oxide production in human leukocytes. Parasitol Res 90: 264–267.

27. Braga LL, Ninomiya H, McCoy JJ, Eacker S, Wiedmer T, et al. (1992) Inhibition of the complement membrane attack complex by the galactose-specific adhesion of Entamoeba histolytica. J Clin Invest 90: 1131–1137.

28. Reed SL, Ember JA, Herdman DS, DiScipio RG, Hugli TE, et al. (1995) The extracellular neutral cysteine proteinase of Entamoeba histolytica degrades anaphylatoxins C3a and C5a. J Immunol 155: 266–274.

29. Peterson KM, Shu J, Duggal P, Haque R, Mondal D, et al. (2010) Association between TNF-alpha and Entamoeba histolytica diarrhea. Am J Trop Med Hyg 82: 620–625.

30. Zhang Z, Mahajan S, Zhang X, Stanley SL Jr (2003) Tumor necrosis factor alpha is a key mediator of gut inflammation seen in amebic colitis in human intestine in the SCID mouse-human intestinal xenograft model of disease. Infect Immun 71: 5353–5358.

31. Braat H, Rottiers P, Hommes DW, Huysgebaert N, Remaut E, et al. (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4: 754–759.

32. Wang S, Agharpour A, Stroup SE, Wynn TA, Leiter EH, et al. (2006) Resistance of C57BL/6 mice to amoebiasis is mediated by nonhemopoietic cells but requires hemopoietic IL-10 production. J Immunol 177: 1208–1213.

33. Haque R, Duggal P, Ali IM, Hossain MB, Mondal D, et al. (2002) Innate and acquired resistance to amoebiasis in Bangladesh children. Infect Dis 186: 547–552.

34. Guo X, Roberts MR, Becker SM, Pedel B, Zhang Y, et al. (2011) Leptin signaling in intestinal epithelium mediates resistance to enteric infection by Entamoeba histolytica. Mucosal Immunol 4: 294–303.

35. Duggal P, Guo X, Haque R, Peterson KM, Ricklefs S, et al. (2011) A mutation in the leptin receptor is associated with Entamoeba histolytica infection in children. J Clin Invest 121: 1191–1198.

36. Marie CS, Verkerke HP, Paul SN, Mackey AJ, Petri WA Jr (2012) Leptin protects host cells from Entamoeba histolytica cytotoxicity by a STAT3-dependent mechanism. Infect Immun 80: 1934–1945.

37. Duggal P, Haque R, Roy S, Mondal D, Sack RB, et al. (2004) Influence of human leukocyte antigen class II alleles on susceptibility to Entamoeba histolytica infection in Bangladeshi children. J Infect Dis 189: 520–526.