P-concentration dependence of the quasiparticle density of states in BaFe$_2$(As$_{1-x}$P$_x$)$_2$

Tetsuya Iye1,2, Yusuke Nakai1,2, Shunsaku Kitagawa1,2, Kenji Ishida1,2, Hiroaki Ikeda1,2, Shigeru Kasahara3, Takasada Shibauchi1, Yuji Matsuda1 and Takahito Terashima4

1Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
2TRIP, JST, Sanban-cho Bldg., 5, Sanban-cho, Chiyoda, Tokyo 102-0075, Japan
3Research Center for Low Temperature and Materials Sciences, Kyoto University, Kyoto 606-8502, Japan
E-mail: tiye@scphys.kyoto-u.ac.jp

Abstract. 31P-NMR measurements were performed in the iron pnictides BaFe$_2$(As$_{1-x}$P$_x$)$_2$ for $0.07 \leq x \leq 0.64$ in order to investigate evolution of electronic state with isovalent substitution. In general, the spin part of the Knight shift K_{spin} and $(T_cT)^{-1/2}$ are proportional to the quasiparticle density of states at the Fermi level $N(E_F)$ at high temperature where the Korringa relation holds. We found that K_{spin} and $(T_cT)^{-1/2}$ are almost unaffected by the P-substitution, indicating that $N(E_F)$ is nearly constant. These results are quantitatively consistent with our band calculation. We claim that the slight changes of $N(E_F)$ by P-substitution in BaFe$_2$(As$_{1-x}$P$_x$)$_2$ is not enough to explain the T_c variation ranging from 30 K to 0 K, and thus suggest that antiferromagnetic correlations related to the quantum critical character are essential for the high T_c superconductivity.

Despite a large number of experimental and theoretical researches on the physics of recently discovered iron-pnictides [1], the mechanism of high-T_c superconductivity is still under debate. Spin-fluctuation-mediated superconductivity which promotes the s_\pm-wave superconducting gap symmetry with a sign change between electron and hole bands is one of the most promising scenario [2, 3, 4, 5, 6], while orbital-fluctuation-mediated superconductivity whose gap symmetry is s_{++} with no sign change is considered to be another candidate [7]. In case of conventional phonon-mediated superconductivity, T_c is closely related to the quasiparticle density of states at the Fermi level $N(E_F)$ in the form of $T_c = 1.14 \omega_0 e^{-2/gN(E_F)}$, where ω_0 is the characteristic frequency of collective excitations involved in pairing interaction and g is the appropriate dimensional coupling constant. Since there is a possibility that the changes in T_c by chemical substitution and/or physical pressure is attributed to the changes in $N(E_F)$, it should be examined with a proper system to discuss the nature of dominant pairing interaction.

In this sense, we studied BaFe$_2$(As$_{1-x}$P$_x$)$_2$ as such an ideal system. This is because the substitution of isovalent P for As is expected to introduce chemical pressure without doping charge carriers in contrast with hole-doping (Ba$_{1-x}$K$_x$)Fe$_2$As$_2$ and electron-doping Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$. BaFe$_2$(As$_{1-x}$P$_x$)$_2$ shows unconventional superconductivity at $T_c^{\text{max}} = 31$ K ($x \sim 0.30$) [8, 9, 10, 11, 12] with line nodes in the superconducting gap [13, 14, 15, 17, 16, 18]. However, recent ARPES experiment revealed that P-substitution in BaFe$_2$(As$_{1-x}$P$_x$)$_2$ induced significant hole-doping [19]. This result suggests that the iso-valent picture in BaFe$_2$(As$_{1-x}$P$_x$)$_2$
is oversimplified [19], and hence, it is important to investigate the variation of $N(E_F)$ experimentally. Our investigation clarified that $N(E_F)$ remains almost unchanged by P-substitution, while the characteristic temperature of magnetic anomaly θ deduced from $(T_1 T)^{-1}$ largely changes with a sign change across an anticipated quantum critical point. These suggest that the change in antiferromagnetic correlations related to the quantum critical character is more important than the change in $N(E_F)$ for the T_c variation in the P-substituted system.

Samples of BaFe$_2$(As$_{1-x}$P$_x$)$_2$ for $0.07 \leq x \leq 0.64$, consisting of single crystals with average dimensions of $100 \times 100 \times 50 \mu m^3$ were prepared as described elsewhere [9]. 31P-NMR spectra were obtained by sweeping frequency in a fixed magnetic field of 4.12 T at 200 K. The Knight shift K was determined from the peak frequency with respect to the reference material H$_3$PO$_4$ ($K = 0$). The 31P nuclear spin-lattice relaxation rate T_1^{-1} was determined by fitting the time dependence of spin-echo intensity after saturation of nuclear magnetization to a theoretical $I = 1/2$ curve with a single component of T_1.

The resonance frequencies of 31P-NMR spectra consisting of a single line for $0.07 \leq x \leq 0.64$ are temperature-independent in the normal state [10]. The temperature variation of K is shown in Fig.1(a). K in the normal state slightly decrease with increasing P-concentration x. In general, K is composed of the temperature-dependent spin shift K_{spin} and the temperature-independent chemical shift K_{chem}: $K(T) = K_{spin}(T) + K_{chem}$. K_{spin} is related to the uniform spin susceptibility $\chi(q = 0)$ which is proportional to $N(E_F)$, while K_{chem} is unrelated to $N(E_F)$. Since no obvious AFM fluctuations were detected via $(T_1 T)^{-1}$ at high temperatures as seen in Fig.1(b), it would be a good approximation to consider that $(T_1 T)^{-1/2}$ is proportional to $N(E_F)$ at high temperatures, i.e., to assume that the usual Korringa relation holds. Based on the plot of $(T_1 T)^{-1/2}$ against K at 270 K for different x which is shown in the inset of Fig.1(a), we estimated $K_{chem} = 0.018 \pm 0.019 \%$ from the intercept [10]. This value would be reasonable since K_{chem} for 31P in many diamagnetic insulators is of the order of some hundreds of ppm [21]. Using the obtained K_{chem} with an assumption of x-independent K_{chem}, we deduced K_{spin} at 200 K for each x and plotted them in Fig.2(a). Since K_{spin} is proportional to $N(E_F)$, the

![Figure 1](Color online) (a) The temperature dependences of Knight shifts for $0.07 \leq x \leq 0.64$ in BaFe$_2$(As$_{1-x}$P$_x$)$_2$. The black arrow denotes the value of $K_{chem} = 0.018 \pm 0.019 \%$ determined by $(T_1 T)^{-1/2} - K$ plot (inset). (b) The temperature dependences of $(T_1 T)^{-1}$ for $0.07 \leq x \leq 0.64$ in BaFe$_2$(As$_{1-x}$P$_x$)$_2$. The solid lines are the fitting curves to $(T_1 T)^{-1} = a + b(T + \theta)^{-1}$. The inset shows x-dependences of the fitting parameters a and θ, and the dotted line corresponds to 0 K in the right axis.
dependence of K_{spin} suggests that the change in $N(E_F)$ is at most 16 \% for superconducting $0.20 \leq x \leq 0.64$. This result is quantitatively consistent with the change in $N(E_F)$ deduced from $(T_1T)^{-1/2}$ and our band calculation. The calculations by local-density-approximation were performed for nonspin-polarized BaFe$_2$As$_2$ and BaFe$_2$P$_2$, using the WIEN2K package in the APW + local orbital basis [10]. We performed the local-density-approximation calculations for BaFe$_2$As$_2$ with linearly-interpolated $(a, c, z) = [a_0(1-x) + a_1x, c_0(1-x) + c_1x, z_0(1-x) + z_1x]$, where $a_0(1)$, $c_0(1)$, and $z_0(1)$ are the experimental values for the crystallographic parameters of BaFe$_2$As$_2$(BaFe$_2$P$_2$) [9, 26]. The calculated $N(E_F)$ are plotted as a solid line in Fig.2(a), which agree with the experimental results quantitatively.

Low energy spin fluctuations are probed by measuring T_1^{-1}. AFM spin fluctuations are enhanced significantly with decreasing x from $x = 0.64$ where $(T_1T)^{-1}$ is almost constant. The measured $(T_1T)^{-1}$ can be well fit by the equation expected from the self-consistent renormalization (SCR) theory under the existence of two-dimensional (2D) AFM spin fluctuations [22]: $(T_1T)^{-1} = a + b(T + \theta)^{-1}$, which are shown as solid lines in Fig.1(b). The first term is the contribution originating from intraband scattering and is proportional to $N(E_F)^2$, the second term is the contribution of interband AFM spin fluctuation. x-dependence of a and θ are demonstrated in the inset of Fig.1(b). With increasing x, the parameter a decreases slightly whereas θ increases significantly with a sign change around $x \sim 0.33$ where quantum critical point is anticipated.

We plot the x-dependence of $(T_1T)^{-1/2}$ at high temperatures for BaFe$_2$(As$_{1-x}$P$_x$)$_2$, (Ba$_{1-x}$K$_x$)Fe$_2$As$_2$ [23], and Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ [24] to compare the evolution of $N(E_F)$. The K- and Co-substitution induce significant changes in $N(E_F)$, while the P-substitution has little effects on $N(E_F)$. Note that the changes in $N(E_F)$ for superconducting dome region $0.2 \leq x \leq 1$ in (Ba$_{1-x}$K$_x$)Fe$_2$As$_2$ are ~60\% increase and $0.04 \leq x \leq 0.14$ in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ are ~20\% decrease from the value of BaFe$_2$As$_2$, whereas the change in BaFe$_2$(As$_{1-x}$P$_x$)$_2$ is only 11 \% decrease. These results suggest that the $N(E_F)$ change is not a primary role for superconductivity in the “122” compounds. Rather, the AFM fluctuations with the quantum critical character are more important for superconductivity than the $N(E_F)$ change.

Figure 2. (Color online) (a) x-dependence of K_{spin} and 31P ($T_1T)^{-1/2}$ at 270 K of BaFe$_2$(As$_{1-x}$P$_x$)$_2$ and x-evolution of $N(E_F)$ derived from the band calculation. (b) x-dependence of 31P ($T_1T)^{-1/2}$ at 270 K of BaFe$_2$(As$_{1-x}$P$_x$)$_2$, 75As ($T_1T)^{-1/2}$ at 280 K of (Ba$_{1-x}$K$_x$)Fe$_2$As$_2$ [23] and Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ [24], all of which are proportional to $N(E_F)$. The dotted lines are guides to the eye. The vertical axis of 31P ($T_1T)^{-1/2}$ is adjusted to unify the value of BaFe$_2$As$_2$ with that in the right axis.
In summary, we have investigated the P-substitution effect to the electronic state in BaFe$_2$As$_2$ through 31P-NMR. The quasiparticle density of states $N(E_F)$ detected via measuring the spin part of the Knight shifts K_{spin} and the nuclear spin-lattice relaxation rate T_1^{-1} show only slight decrease with increasing P-concentration x, quantitatively consistent with the results of the band calculation. Almost unaffected value of $N(E_F)$ by P-substitution is compared to more rapid changes in $N(E_F)$ caused by K and Co doping. Our experiments clarified that T_c in the “122” system is not mainly determined by the $N(E_F)$ change but by the AFM spin fluctuations.

Acknowledgements

We thank K. Kitagawa and Y. Maeno for experimental supports and valuable discussions. This work was supported by the Grants-in-Aid for Scientific Research on Innovative Areas “Heavy Electrons” (No. 20102006) from MEXT, for the GCOE Program “The Next Generation of Physics, Spun from Universality and Emergence” from MEXT, and for Scientific Research from JSPS.

References

[1] Kamihara Y, Watanabe T, Hirano M, and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Mazin I I, Singh D J, Johannes M D, and Du M H 2008 Phys. Rev. Lett. 101 057003
[3] Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, and Aoki H 2008 Phys. Rev. Lett. 101 087004
[4] Chubukov A V, Efremov D V, and Eremin I 2008 Phys. Rev. B 78 134512
[5] Ikeda H 2008 J. Phys. Soc. Jpn. 77 123707
[6] Graser S, Maier T A, Hirschfeld P J, and Scalapino D J 2009 New J. Phys. 11 025016
[7] Kontani H, and Onari S 2010 Phys. Rev. Lett. 104 157001
[8] Jiang S, Xing H, Xuan G, Wang C, Ren Z, Feng C, Dai J, Xu Z, and Cao G 2009 J. Phys. Condens. Matter 21 S2203
[9] Kasahara S, Shibauchi T, Hashimoto K, Ikeda K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Hirata K, Terashima T, and Matsuda Y 2010 Phys. Rev. B 81 184519
[10] Nakai Y, Iye T, Kitagawa S, Ishida K, Ikeda H, Kasahara S, Shishido H, Shibauchi T, Matsuda Y, and Terashima T 2010 Phys. Rev. Lett. 105 157003
[11] Kim J S, Stewart G R, Kasahara S, Shibauchi T, Terashima T, and Matsuda Y 2010 Phys. Condens. Matter 23 222201
[12] Ishikado M, Nagai Y, Kodama K, Kajimoto R, Nakamura M, Inamura Y, Wakinoto S, Nakamula H, Machida M, Suzuki K, Usui H, Kuroki K, Iyo A, Eisaki H, Arai M, and Shamamoto S 2011 Phys. Rev. B 84 144517
[13] Hashimoto K, Yamashita Y, Kasahara S, Senshu Y, Nakata N, Tonegawa S, Ikeda K, Serafin A, Carrington A, Terashima T, Ikeda H, Shibauchi T, and Matsuda Y 2010 Phys. Rev. B 81 220501(R)
[14] Nakai Y, Iye T, Kitagawa S, Ishida K, Ikeda H, Kasahara S, Shishido H, Shibauchi T, Matsuda Y, and Terashima T 2010 Phys. Rev. B 81 020503(R)
[15] Kim J S, Hirschfeld P J, Stewart G R, Kasahara S, Shibauchi T, Terashima T, and Matsuda Y 2010 Phys. Condens. Matter 23 222201
[16] Suzuki K, Usui H, and Kuroki K 2011 J. Phys. Soc. Jpn. 80 013710
[17] Yamashita M, Senshu Y, Shibauchi T, Kasahara S, Hashimoto K, Watanabe D, Ikeda H, Terashima T, Vekhter I, Vorontsov A B, and Matsuda Y 2011 Phys. Rev. B 84 060507(R)
[18] Zhang Y, Ye Z R, Ge Q Q, Chen F, Jiang J, Xu M, Xie B P, and Feng D L arXiv :1109.0229
[19] Ye Z R, Zhang Y, Xu M, Ge Q Q, Chen F, Jiang J, Xie B P, Hu J P, and Feng D L arXiv :1105.5242
[20] Singh D J 2008 Phys. Rev. B 78 094511
[21] Carter G C, Bennett L H, and Kahan D J 1977 Metallic Shifts in NMR (Progress in Materials Science) vol 20 (Oxford: Pergamon Press)
[22] Moriya T, Takahashi Y, and Ueda K 1990 J. Phys. Soc. Jpn. 59 2905
[23] Hirano M, Yamada Y, Saito T, Nagashima R, Konishi T, Toriyama T, Ohta Y, Fukazawa H, Kohori Y, Furukawa Y, Kihou K, Iyo A, and Eisaki H arxiv :1110.6081
[24] Ning F L, Ahilan K, Imai T, Sefat A S, McGuire M A, Sales B C, Mandrus D, Shen B, and Wen H -I 2010 Phys. Rev. Lett. 104 037001
[25] Kuchinskii E Z, Nekrasov I A, and Sadovskii M V 2010 JETP Lett. 91 518
[26] Rotter M, Tegel M, Johrendt D, Schellenberg I, Hermes W, and Pöttgen R 2008 Phys. Rev. B 78 020503(R)