Evidence on Pulmonary Rehabilitation and the Challenges Faced in Low- and Middle-Income Countries: A Systematic Qualitative Review

Rebecca Farah (r.farah@maastrichtuniversity.nl)
CAPRI, Maastricht University Medical Center, Maastricht University

Wim Groot
CAPRI, Maastricht University Medical Center, Maastricht University

Milena Pavlova
CAPRI, Maastricht University Medical Center, Maastricht University

Research Article

Keywords: global health, pulmonary rehabilitation, low-income countries, low-middle-income countries, prevention

Posted Date: December 6th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1086429/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

In low-income countries (LIC) and low-middle-income countries (LMIC), the burden of chronic obstructive pulmonary disease (COPD) has increased due to the lack of prevention and the presence of barriers to enter rehabilitation programs. The aim of this systematic review is to analyze the evidence on pulmonary rehabilitation (PR) in LIC and LMIC.

Methods

A systematic literature review was conducted. Four electronic databases were searched for qualitative and quantitative studies that documented the presence of PR in LIC and LMIC. We report our findings following the Prisma guidelines. In addition, grey literature was also searched. Articles not in English, presenting a point of view and/or not treating an adult population (< 18 years old) were excluded from the review. Data were extracted by one reviewer and synthesized in the form of tables. Tables present individual characteristics of the PR reported within countries, including country of origin, study design, population attending, intervention (kind of program setting), frequency and duration of a program established (if available), with health outcomes. The PICO framework was used for every country with reported PR to assess population, intervention, comparison and outcomes found. This systematic review is registered on Prospero: CRD42020141655.

Results

In total, 47 publications were included in the review. In LIC, PR for HIV-infected patients was most frequently reported, while in LMIC, PR for COPD patients was most frequent. Duration and frequency of treatments reported were also different in LIC and LMIC. Health outcomes on cardiopulmonary function were established in all publications. Results found that the implementation of PR in LMIC is ongoing. The most important barriers to access are the lack of funds and know-how among professional healthcare givers.

Conclusion

Findings suggest that the literature on PR is scarce in LIC and LMIC. Structured or non-structured rehabilitation programs for patients suffering from COPD, HIV and Tuberculosis, are infrequently available. Strategic policy initiatives to diminish barriers and challenges are needed to implement more PR programs in LIC and LMIC.

Background

Low-income countries (LIC) and low-middle-income countries (LMIC) are facing limitations in their healthcare sector funding. Subsequently, pulmonary rehabilitation (PR) is either absent or lacks resources. Studies conducted have found that a cost-effective pulmonary rehabilitation program (PRP) is a multidisciplinary and non-pharmacological approach that decreases hospitalization rates, infection, depression and even mortality. PR has also shown to have benefits in treating diseases other than chronic obstructive pulmonary disease (COPD).

According to the World Health Organization, barriers to access to PR are an important feature of healthcare systems in many countries. Of the 56.4 million deaths worldwide, COPD claimed 3.2 million lives in 2015. To reduce the burden of this disease, PR must be implemented and leading causes of deaths worldwide due to pulmonary diseases must be addressed. The availability of rehabilitation care in pulmonary areas is well described for high-income countries (HIC). In LIC and LMIC, this is still limited and scattered.

The aim of this systematic review is first to identify the evidence on PR availability in LIC and LMIC, and second, to explore the differences between programs’ settings, health outcomes, patients who participated as well as the duration and frequency of PR. Third, to address the different challenges to overcome in implementing PR in LIC and LMIC.

Methods

To identify PR in LIC and LMIC and the barriers to access to such programs, we conducted a systematic literature review. We conducted this review in accordance with PRISMA statement. This protocol for this systematic review was registered on Prospero: CRD42020141655.

Keywords and combinations of keywords (component) were used for the literature search. Search terms included “pulmonary rehabilitation “ or one of its synonyms, namely “pulmonary physiotherapy” and “rehabilitation treatment”; as well as synonyms of “barriers to access pulmonary rehabilitation treatment”; and “LIC” and “LMIC”. Components with the name of each country listed in the new ATLAS' World Bank 2019-2020 fiscal list (Appendix A), were used independently along with the above search components.
We used the above combinations of search terms in each of the following databases: EMBASE, Medline, PubMed, and ScienceDirect. Only research reported in English was included. Articles were selected if published in the period starting from January 2000 till December 2019 (the date of the final search). Abstracts and clinical-case studies were not included. The initial screening was based on article titles and abstracts. The second screening was based on the full text. Articles were categorized as eligible for the review if they reported the presence and features of PR, or access to such programs in LIC and LMIC. If the same author(s) reported the study in different forms, e.g. as abstract or point of view, we only consider the form that presented the most complete information on the study.

Unpublished literature (grey literature) was included and limited to the two first pages on google that cover more recent grey literature for each country.

An additional electronic search was done on selected local websites for countries where literature was unavailable. Specifically, local associations and international organization websites were visited to find records on PR availability in the selected countries, where we found reports on the presence of PR according to the initial databases search. The content selected for the review was analyzed qualitatively following the directed content analysis method. Results were organized in the form of tables complemented by a narrative description of the results. The main themes used in the directed content analysis were: research designs, PR features and access-related challenges in LIC and LMIC. Characteristics of the programs were presented based on the PICO tool. The PICO acronym refers to the population, intervention, comparison and outcomes of a (usually quantitative) article. It is commonly used to identify components of clinical evidence for systematic reviews in evidence-based medicine and is endorsed by the Cochrane Collaboration.

We assessed the research designs of the studies included in the review and their findings in qualitative terms only. We checked the quality of our review using the PRISMA 2009 Checklist (Appendix B).

Results

The initial search in the databases provided 21,694 hits for global access to rehabilitation in addition to a set of 7 records for LIC and 50 for LMIC identified through the grey literature search among sources like local organizations of rehabilitation. Hits were then reduced to 351 articles by limiting the search to access to PR specifically. All articles not in English, published before the year 2000 and not related to PR – which added up to 184 articles – were excluded. Thus, 167 records were used in the screening. Of the aforementioned, 84 articles were excluded. Namely, 62 did not cover access, 18 were about tele-rehabilitation, and 4 were excluded for other reasons. Thus, 83 full-text articles remained in the review.

Of the 83 articles assessed for eligibility, we found 47 research articles on PR, which we included in the review and 36 articles were excluded for not covering pulmonary rehabilitation. Of these studies, 20 articles were related to access to PR, 3 articles were related to home-based PR, and 24 articles were related to PR health outcomes. These articles have been selected for this review.

Figure 1 shows the flow diagram of the selection of the studies.

Study designs reported in the publications reviewed

The articles in the review showed several methodological issues with small sampling along with poor descriptions of PR data collection and analysis. For example, the PRP was not at a multidisciplinary level, or risk of bias appeared during data gathering.

Programs reported in the publications reviewed

All key data gathered through our review have been summarized in two tables. Table 1 presents results for LIC and Table 2 presents results for LMIC. For every country included in these tables, we found studies reporting the absence or presence of PR, including education sessions for healthcare professionals or awareness campaigns about PR for the population.

Number of studies found	Number of studies selected	References	
Congo, Dem. Republic	1	1	20
Nepal	7	3	21-23
Tanzania	1	1	24
Uganda	10	3	24-26

As shown in Table 1, for four LIC – Congo, Nepal, Tanzania and Uganda we found studies that reported on the presence or project of PR. The programs are in outpatients setting in Congo, Nepal and Uganda. A PR program is under implementation in Tanzania as well as in Nepal for...
inpatients. The patients treated are COPD, asthma and post TB in Congo and Tanzania. The duration of the PR is about 12 weeks in outpatient cafe and the frequency of the sessions are 3 times a week in Congo. Three studies (2 RCTs and one qualitative study) report a duration of the program of twice a week during 6 weeks in Uganda. In addition, workshops on the future development of PR have been conducted among physicians in Nepal.

Table 2

Countries	N research found	N selected	References
Bangladesh	4	3	27-30
Egypt, Arab Rep	72	4	31-34
India	23	8	61-69
Kyrgyz Republic	3	3	35-37
Nigeria	6	2	40-41
Pakistan	28	78-88	42-46
Philippines	3	89-112	57-60
Tunisia	26	113-119	52-55
Ukraine	39	120-125	47-51
Vietnam	4	126-129	24,38
Zimbabwe	4	130	24,56

Table 2 shows the presence of PR reported in 11 LMIC, namely Bangladesh, Egypt, India, Kyrgyz Republic, Nigeria, Pakistan, Philippines, Tunisia, Ukraine, Vietnam and Zimbabwe. We found 3 types of PR: outpatients, inpatients and home-based. The population treated are mild to severe COPD and post TB patients. Characteristics of the programs presented in Table 1 and 2 are described in the subsequent sub-sections (see Table 3 and 4). We used the PICO framework for every country with the presence of PR to assess the population, intervention, comparison and outcomes of the study found.

Table 3 and 4 also present the individual characteristics of PR reported, including country of origin, pathology of patients attending, program setting type, frequency and duration of a program established with health outcomes.
Table 3
Review Findings in the Low-Income Courtiers according to PICO's schemas.

Country	Reference	Types of setting	Population	Intervention	Comparison	Outcomes	Study design
Congo	20	Outpatients	Asthma + COPD	PR 12 weeks	Asthma/COPD	FEV, QoL, walking distance	RCT
Nepal	21	inpatient PR project development	Physicians	workshop on future PR development	moderate-severe COPD/CG	dyspnea, QMS, SpO2	workshop
	22	Outpatients	COPD	3 weeks PR	moderate-severe COPD/CG	dyspnea, QMS, SpO2	RCT
	23	Outpatients	COPD	PR during 12 weeks	moderate-severe COPD	6MWT, FEV1	RCT
Tanzania	24	project of implementation of PR design	TBD (CLD & p-TB)	TBD and implemented	moderate-severe COPD	6MWT, FEV1	project of implementation
Uganda	24	Outpatients	post-TB	6 weeks PR, twice weekly PR	TBD and implemented	6MWD, QoL, sit to stand test	RCT
	25	Outpatients	p-TBLD	6 weeks-twice weekly PR	p-TBLD	QoL, exercises capacity, respiratory outcomes	RCT
	26	Outpatients	CLD (=post-TB, HIV, smoking)	6 weeks, twice weekly PR	qualitative study (interview at baseline)	improvement in functional ability, social and	qualitative study

- RCT: Randomized Controlled Trial
- Workshop
Table 4
Review Finding in the Low-Middle Income Countries according to PICOs schemas.

COUNTRY	References	Study design	Types of setting	Population	Intervention	Comparison	Outcomes
Bangladesh	27	RCT	Outpatients	moderate COPD	PR during 2 months (30 min HB), twice daily	PR group/CG group FVC and FEV1 of PR group	
	28	RCT	Outpatients	moderate COPD	PR during 2 months (30 min HB), twice daily	PR group/CG group FVC and FEV1 of PR group	6MWD, SpO2%, dyspnea and fatigue
	29	Systematic review	Syst Review	LMICs			
Egypt	31	RCT	Outpatients	stable ILD	PR 2 months, twice weekly	PR group / CG	dyspnea, HRQoL, exercises
	32	RCT	Outpatients	IPF	PR 2 months, 3x weekly	PR group	dyspnea, HRQoL, exercises
	33	RCT	Home-based PR & COPD	PR 2 months with HB daily PRP	PR group / CG	6MWD, HRQL, CRQ-SAS and SF36 scores	
Kyrgyz Republic	35	Project	project FRESH AIR	COPD in rural clinic and hospitals			
	36	qualitative study	qualitative study interview	COPD			
	37	Project	Adaptation of PR within music, singing, dancing	Post TBLD RCTs			
Nigeria	40	cross-sectional	Physicians Knowledge survey	Physicians	20 items survey	/	Good Knowledge of PR and willingness to incorporate PR into their scope of care
	41	RCT	Outpatients	severe COPD	PR 6 weeks outpatient, twice weekly	PR group	HRQL, Shuttle walking distance, A, D,
COUNTRY	References	Study design	Types of setting	Population	Intervention	Comparison	Outcomes
-----------	------------	--------------	------------------	------------	---	------------	---------------------------------------
Pakistan	42	RCT	inpatients	severe COPD	Ga (O2+ medicines), GB (PR with NIPPV + O2+ medicines)	GA/GB	6MWD, HRQL, PaO2, PaCO2, dyspnea
	43	RCT	outpatients	mild to severe COPD	Ga (conventional trt) GB (conventional trt +PR during 4 months G)	Ga/GB	GB outcomes > GA outcomes HRQL, Borg, 6MWD, SaO2
	44	RCT	outpatients	mild to moderate COPD	HB PR during 7 weeks, 3 times a week	CG (receiving weekly phone calls and PR Group with weekly phone calls)	Nurses can implement PR, encourage and follow patients
Tunisia	52	RCT	Outpatients		to investigate the effect of neuromuscular stimulation +PR	ENMS +PR =G1 and PR=G2	better 6MWD and balance for G1
	54	RCT	prospective	COPD and healthy subjects	to examine the effect of PR on balance in COPD patients and healthy subject	Physical activity increases muscle strength	PR improves TUG, BBS, UST, TINETTI
	53	RCT	Outpatients	COPD and healthy subjects	to analyze the effect of PR on the balance of anabolic/catabolic hormone	training 3 days/week for 8 weeks	6MWD in both groups, dyspnea, HR
	55	RCT	Outpatients	COPD and healthy subjects	to evaluate the impact of 12 weeks PR on 6MWT for COPD and healthy subjects	improvement for both group	PR= 3 times a week during 6 months
Zimbabwe	56	RCT	TB		to evaluate trt done for TB patients	no PR was ordered and need to be implemented and PR induces an improvement of	
	24	Project	project to implement	To implement PR program			
Vietnam	38	Project	fresh air study				
	24	Project	PR to be implemented				
Ukraine	47	RCT	Prospective study	COPD stage III and IV	analysis of medical records of COPD patients from different areas	no PR included in the trt plan only drugs	
	48	RCT					
	49	RCT	TB patients	PR in different level of TB patients	TB patients	PR need to be ordered in post TB, and during the active phase of TB	

Notes:
- RCT: Randomized Controlled Trial
- PR: Pulmonary Rehabilitation
- 6MWD: 6-Minute Walk Distance
- HRQL: Health-Related Quality of Life
- PaO2, PaCO2: Arterial Oxygen and Carbon Dioxide Partial Pressures
- TUG: Timed Up and Go Test
- BBS: Berg Balance Scale
- UST: Unity of Support Test
- TINETTI: Tinetti Balance Confidence Scale
| COUNTRY | References | Study design | Types of setting | Population | Intervention | Comparison | Outcomes |
|---------|------------|--------------|------------------|------------|--------------|------------|----------|
| | 50 | RCT | RCT | CHF & COPD | Conventional trt and as yogic breathing as PR +conventional trt | CG / PR= IG | both group dyspnea, exercise tolerance |
| | 51 | RCT | use BODE index to determine PR effectiveness | COPD and Obesity | PR for COPD and obesity patients | diet, Physical exercises need to be added for COPD patients with obesity |
| Philippines | 57 | RCT | RCT | COPD <70% mild to moderate | PR (aerobic + strength training exercise) | 9 patients | 6MWD, dyspnea, HRQL |
| | 58 | RCT | outpatient | COPD and Non-COPD patients | PR for 8-week PR | COPD/Non-COPD patients | 6MWD, muscle fatigue and shortness of breath |
| | | | prospective cohort study | stable COPD | stable COPD | stable COPD | better improvement non-copd > copd |
| | 59 | RCT | outpatient | stable COPD | PR for 4-weeks twice weekly | stable COPD | FVC, 6MWT |
| | 60 | RCT | RCT care program | stable COPD | PR 4-weeks with additive high-intensity muscle training in PR | stable COPD | HRQL, exercise capacity, inspiratory muscle |
| India | 61 | RCT | Outpatient | CLIPTB* | PR | None | 6MWD |
| | | | | | *CLIPTB= chronic lung impairment post tuberculosis | |
| | 62 | systematic review | systematic review | COPD | | | to stimulate enrollment to PR in India |
| | 63 | RCT | Outpatients | ILD* | PR for 8-weeks | / | 6MWD, Muscle strength, HRQL, Dyspnea |
| | | | | stable COPD | PR for 8-weeks | / | 6MWD, HRQL, Dyspnea, exercise capacity |
| | 65 | cross sectional study | cross sectional survey | COPD | Awareness | / | to increase awareness and education of PR |
| | 66 | RCT | Home-based outpatient | COPD | PR for 4-weeks HB | COPD/CG | 6MWD, Dyspnea, fatigue, |
References

Study design	Population	Intervention	Comparison	Outcomes
RCT	COPD II, III level	30 min exercises twice daily	Yoga group/CG PR	Yoga group dyspnea, fatigue, 6MWD > CG
RCT	COPD	1 single session of education, bronchial hygiene, exercises before 6 months to 1-year HB PR	/	health status of the patient

Types of Setting

- **Inpatient**: Programs were reported in India and the Philippines. We did not find the exact number of PR settings and their location. It was necessary to visit the website of every rehabilitation program or medical institution to obtain the essential data for this review. India has a Lung Center as well as associations for cardiovascular treatment and PR for inpatients and outpatients. In India, we found an "Indian Association of Respiratory Care" (IARC) in Amrita Hospitals in Delhi, as well as a Lung India journal which is the official publication of the Indian Chest Society.

- **Outpatient**: Studies conducted in Uganda and Zambia have shown that the most common PR setting is outpatient care. In Congo, India, Egypt, the Philippines, Nigeria, and Tunisia, most of the programs are available in an outpatient setting. Specifically, in Kinshasa, 38 patients in two hospitals were treated who had bronchial asthma (n=14) and COPD (n=24). Patients were treated three times a week for twelve weeks. COPD patients improved their FEV1 significantly compared with asthma patients.

- **Home-based**: PR was reported in Egypt and India. In Egypt, a study evaluated the effect of a two-month, home-based program with outpatient supervision every two weeks, with tolerance exercises and health-related quality of life (HRQOL) using Arabic-translated generic and specific questionnaires in 39 COPD patients. The two-month home-based PR was found to be an effective non-pharmacological intervention for COPD patients due to health outcomes on the quality of life and better cardiopulmonary function.

An Indian study incorporating 6 weeks of home-based PR was effective in increasing exercise endurance in patients with lung infections. Another Indian study evaluated the effect of home-based PR in COPD patients in rural areas, including 40 patients who completed the PR and 20 who were excluded in PRP which composed the control group. Results showed that the 6MWT had an average increase of 75.72 meters in the study group, while an average decrease of 2.1 meters in the control group. Results were statistically significant (p<0.005).

In another Indian home-based study of forty patients of stable COPD having severe airflow obstructions were divided into control and experimental groups randomly. Exercises of 30 minutes duration were performed at home twice daily for four weeks with supervision. Domiciliary PR for four weeks results in significant improvement in the quality of life and exercise tolerance, even without improvement in Force Expiratory Volume in one second (FEV1).
Patients attending PR

In Uganda, patients-participants included lung tuberculosis (TB), HIV but not COPD24–26. Results of the studies reviewed suggest most of the patients treated are suffering from respiratory diseases like COPD in Congo, India, Philippine, Nigeria, and Tunisia20,22,23. In Tunisia, in a study on COPD patients, the intervention group underwent balance training 3 times a week for 6 months in addition to the standard PR. The control group received 6 months of the standard PR only. Balance-training incorporated into a standard PRP significantly improved balance test score in COPD patients53,54.

Frequency and duration of the program

In Uganda, PR duration varied from 4-8 weeks for patients who are HIV infected24–26. The program's frequency varied from 2-4 weeks and the program length of stay diverged from 4-24 weeks.

In Ukraine, the results of a study showed that PR should be applied at all disease stages, starting at the stationary phase and continuing during the outpatient and homecare phases. A recommendation of this study was that the session's exercise duration should be no more than 30 minutes 3–5 times a week for 8–12 weeks [49].

In India, PR was available of different durations and frequencies according to the program setting, phase and medical establishment's policy60–69. Also, in Maghreb and in Tunisia, one study done on COPD men who were clinically stable and underwent PR one session per day twice a week for eight weeks reported improvement55.

Health outcomes

Evidence on health outcomes established in studies reviewed was based on 6MWT, FEV1, and the Quality-of-Life questionnaire. As previously mentioned in Kinshasa, after the rehabilitation program, COPD patients improved their FEV1 score significantly compared with asthma patients20.

In Nigeria, anxiety and depression levels have been assessed, and an outpatient program for the rehabilitation of patients with severe ventilatory impairment due to COPD was conducted. Patients entered a 6-week outpatient program during which they attended twice weekly 2.5-hour sessions. There was a significant reduction in the depression and patients' anxiety levels after the program. Walking distance also improved significantly and was maintained at the improved level for six months41. A cohort study was conducted in Philippine, a 6MWT as well as a symptom-limited exercise testing was done at baseline and at the end of the eight-week program. After an 8-week rehabilitation program, results showed an improvement in exercise tolerance, shortness of breath and muscle fatigue in patients with pulmonary diseases throughout the studied population, according to the Philippines association of cardiovascular rehabilitation58.

Awareness campaign and education initiatives about PR

In countries where PR is not reported yet, we found awareness programs and/or education sessions for healthcare givers and for the population. Awareness campaigns aimed to increase healthcare providers' education to implement and refer patients to the program when efficient. Results showed that PR is highly recommended in Madagascar, Rwanda, Senegal, Tanzania and Zimbabwe24. In addition, some projects on PR's are in process in Africa.

In Nepal, the internal medicine society organized a workshop on PR in August 2016 to educate professional healthcare providers and physicians about the importance and benefits of PR21. In addition, SOLID Nepal, a community-based pulmonary health support a project for 3 years and a COPD control-Promotion of comprehensive PR was established in February 2019. This project was implemented in the Bhaktapur district and the purpose of this project was to improve quality of life of COPD patients by providing PR to the population24.

In Bangladesh, the engagement of stakeholders can improve research prioritization, implementation, and outcomes. The organization of stakeholder engagement aimed to support the implementation of PR for patients with chronic respiratory diseases27–29. Raising awareness of the benefits of PR between stakeholders is a step forward in the implementation of PR. Understanding the views of patients, public health officials, policymakers, politicians, religious leaders help to create support for PR.

In India, a cross-sectional survey was executed to evaluate awareness through a COPD-awareness questionnaire65. Also, studies show that PR was going to be implemented in Rwanda, Senegal and Zimbabwe for HIV-infected patients24.

Overall, studies concluded that patient-awareness campaigns enabled patients to acquire better self-management skills, helped reduce the severity and frequency of disease's exacerbations, prevents hospitalizations and improved the patients' HRQoL.

Barriers to access PR

In Zambia, a research team developed the international rollout of a larger evaluation trial, which incorporated centers in Uganda, Tanzania and Zambia24. In Nigeria, a study conducted by Akinremi et al. sought to investigate physicians' knowledge and perceived barriers to PR in Nigeria. Five
top barriers to PR identified included unavailable/insufficient rehabilitation specialists, lack of rehab equipment, non-availability of institutionalized documented PR protocols, inadequate training on PR and cost of care to patients40.

Discussion

This paper has reviewed the evidence on PRP in LIC and LMIC. Additionally, it has outlined differences in PRP in terms of duration and frequency. Barriers reported in this study are not limited to one type or context, and extend to individual, health, financial and environmental factors. PRP are most frequently established under medical supervision in an “outpatient center” design program in LMIC.

In LIC, we observed that the average duration of the programs varied from 4-8 weeks for patients treated, who were HIV infected patients. In LMIC, the frequency of PRP reported, differed from 2 to 4 weeks. A program length of stay (duration) diverges from 4 to 24 weeks in LMIC.

According to one study, PR in HIC and LMIC has a median length of 9 weeks with 2.5 sessions a week. The duration of each session is between 1-2 hours per session. Most of the programs in Europe and the USA are also outpatient70.

According to our results depicted in Table 1 and 2, we found health outcomes on HRQOL and 6MWD in 2 LIC as well. Additionally, in LMIC, we found more health outcomes on cardiopulmonary function.

Barriers to access to pulmonary rehabilitation programs

We found that PRP reported in LIC and LMIC, vary widely in terms of duration and location71. PR faced four major barriers, which include individual, financial, organization of healthcare and environmental barriers. Individual barriers, including cultural factors, lack of information about diseases and treatments, self-management underuse, over-reliance on pharmacological care, and use of unproven alternative therapies, act as a determinant for the patient’s adherence to the program in low and middle-income countries. In addition, no covering of the program by the local government and no funds to implement PR is a major barrier to overcome in LIC and LMIC.

Patients’ health status is a major barrier to adherence. Disease severity plays a significant role and influences attendance and adherence to PR in every country. The level of the disease (use of long-term oxygen therapy) and COPD exacerbation are important limitations to their attendance71. Current smokers tend to be less inclined to adopt health promotion behaviors which is a strong predictor of both attendance and adherence to PR72. In LIC, patients who lived alone were less likely to attend PR73.

In HIC, PR benefits are correlated with smoking status (active-smoking), depression, lower levels of social support, female gender, FEV\textsubscript{1} and low HRQOL and extremes of age of patients are important determinants of joining the programs72,73. The demographic feature of the patient, such as mobility conditions, longer traveling distance to reach hospitals and location to the rehabilitation’s clinic are the most important reasons for adherence.71 Graves et al. found that patients living further than 25 minutes from a PR center were less likely to attend a PR education session while patients were more likely to adhere to a program if they lived closer to PRP in every country74,75.

In LIC and LMIC, the most common barriers found are at a financial level, including poverty, poor education, and infrastructure or no clinics due to a lack of public health priority, implementation costs of PR, and lack of data on morbidity and mortality for every country on pulmonary diseases. Unsustainable generalizations across cultures and healthcare systems explain why management guidelines developed in HIC are difficult to implement in LIC and LMIC. The lack of funds and ineffective governance do not support the implementation of programs and building outpatient rehabilitation programs. Also, no reimbursement is available in LIC and LMIC, which complicates the attendance and adherence to the program if a center does exist.

The final inherent barrier is the organization of healthcare services. Professional healthcare providers are the main referrals and need awareness and training about PR to limit the use of basic medications and start sending patients to PRP in LIC and LMIC. Poor education of referrals on the management of COPD, non-existence of supply and distribution infrastructure are important barriers to the program.

Comparison with studies in HIC

Literature on PR in HIC is more significant and much larger compared to that in LIC and LMIC. Plenty of national surveys, international reviews, and meta-analyses have been conducted in HIC. For example, in 2014, one study reviewed differences in the content and organizational aspects of PR in HIC. A 12-question survey was completed by PR representatives of 430 centers from 40 countries from Europe (43.7%) or North America (43.5%). Findings demonstrated large differences among PR across continents in all surveyed aspects, including the setting, case-mix of individuals with a chronic respiratory disease, the composition of the PR team, completion rates, methods of referral and types of reimbursement.

In the US, there are over 230 PR (copdfoundation.org). In Canada, a report from the Canadian Thoracic society conducted an online survey in all the hospitals to identify PR, which also confirms the high availability of PRP. In HIC, HRQOL, 6MWT and dyspnea are identified as the three most important outcomes.
An important challenge to add: is the implementation of PR in LMICs during the Covid-19 pandemic. The presence of cost-effective programs will be an added value to Covid-19 survivors. A home-based PRP may overcome barriers in the treatment post coronavirus in LIC and LMIC countries. A call of action is needed to implement PR in LMICs with the help of HIC’s experts.

Strength and limitations of the review

Our results are bound by certain limitations as well as supported by strengths. A major limitation is that for a lot of countries, information is unavailable. For 28 LIC and 49 LMIC we were unable to find any information. Another limitation was the exclusion of non-English literature, which means that some relevant publications from non-English speaking countries and might have been excluded in this review. The financial barrier in LIC that bounds the implementation of PR centers and training of professional healthcare providers is another limitation. Additionally, PR might be implemented in some countries but not analyzed and reported in the literature. The risk of bias across studies included a lack of researches conducted in LIC, especially in LMIC.

Conclusion

Our review shows that only a few studies are available for LIC and LMIC on PR, especially on access to such programs. Literature is thin or nearly “absent”. Evidence on access to PR and barriers faced by patients is also sparse. There is a need for research in this area to provide evidence for policies to decrease the burden of pulmonary diseases and to prevent infections, thus, increasing quality of life and health of patients. This review shows that there is evidence on the efficacy of PR in the management of persons living with HIV and AIDS in developing countries, COPD patients and Covid-19 survivors. For other patient’s groups, these are absent, indicating gaps in research. “A call for action” and imperative invitations for funds are required to decrease the burden of diseases and increase the quality of life of suffering patients in LIC and LMIC.

Abbreviations

COPD: chronic obstructive pulmonary diseases
ERS: European Respiratory Society
PRP: Pulmonary Rehabilitation Program
PR: Pulmonary Rehabilitation
HRQoL: Health related Quality of life
QoL: Quality of life
LIC: Low-income country
MIC: Middle-income country
Trt: treatment
LMIC: Low-Middle-income country
HIC: High-income country
TB: Tuberculosis
CLD: Chronic Lung Disease
WHO: World Health Organization
AACVPR: American Association of Cardiovascular & Pulmonary Rehabilitation
GOLD: Global initiative for Obstructive lung disease
FEV1: FEV1 is the maximal amount of air you can forcefully exhale in one second.
6MWT: a six-minute walking test
6MWD: six-minute walking distance
SGRQ: ST GEORGE’S RESPIRATORY QUESTIONNAIRE
Declarations

a) Ethics approval and consent to participate: Not Applicable. The protocol for this systematic review was registered on Prospero: CRD42020141655.

b) Consent for publication: Not Applicable

c) Availability of data and materials: All data generated or analysed during this study are included in this published article [and its supplementary information files].

d) Competing interests: The authors have no competing financial and non-financial interests to report in this paper.

e) Funding: The authors have no funding to report for this study

f) Authors’ contributions:

RF conducted the analysis of the literature

RF, WG, MP prepared tables and figures

RF, WG, MP wrote the main manuscript text

RF, WG, MP reviewed the manuscript

g) Acknowledgments: Not Applicable

h) Authors’ information (optional)

Rebecca Farah* (corresponding author)

Department of Health Services Research; CAPHRI; Maastricht University Medical Center; Faculty of Health, Medicine and Life Sciences; Maastricht University; The Netherlands

Wim Groot

Department of Health Services Research; CAPHRI; Maastricht University Medical Center; Faculty of Health, Medicine and Life Sciences; Maastricht University; The Netherlands

Milena Pavlova

Department of Health Services Research; CAPHRI; Maastricht University Medical Center; Faculty of Health, Medicine and Life Sciences; Maastricht University; The Netherlands

References

1. Troosters T, van der Molen, Polkey M, Rabinovich R.A, Vogiatzis I, Weisman I, and Kulich K. 2013. Improving physical activity in COPD: towards a new paradigm. Respir Res. 14:115.

2. Hill K, Vogiatzis I, Burtin C. The importance of components of pulmonary rehabilitation, other than exercise training, in COPD. Eur Respir Rev 2013; 22: 405–413.

3. Spruit MA, Singh SJ, Garvey C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013;188: e13-64.

4. Huppmann P, Sczepanski B, Boensch M, et al. Effects of inpatient pulmonary rehabilitation in patients with interstitial lung disease. Eur Respir J 2013; 42: 444–453.

5. Seymour JM, Spruit MA, Hopkinson NS, Natanek SA, Man WD, Jackson A, Gosker HR, Schols AM, Moxham J, Polkey MI, Wouters EF. The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur Respir J. 2010;36: 81–8.

6. Gloeckl R, Marinov B, Pitta F. Practical recommendations for exercise training in patients with COPD. Eur Respir Rev 2013; 22: 178–186.

7. Ofir D, Laveneziana P, Webb KA, Lam YM, O’Donnell DE. Mechanisms of Dyspnea during cycle exercise in symptomatic patients with gold stage I chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177: 622–9.

8. Blanco I, Santos S, Gea J, et al. Sildenafil to improve respiratory rehabilitation outcomes in COPD: a controlled trial. Eur Respir J 2013; 42: 982–992.

9. Gouzi F, Préfaut C, Abdellaoui A, et al. Blunted muscle angiogenic training-response in COPD patients versus sedentary controls. Eur Respir J 2013; 41: 806–814.
10. Puhan MA, Gimeno-Santos E, ScharplatzM, Troosters T, Walters EH, Steurer J. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2011;10:CD005305.

11. Vestbo J et al. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American Journal of Respiratory and critical care Medicine. 2013;187(4):347–36

12. Paddison JS, Effing TW, Quinn S, et al. Fatigue in COPD: association with functional status and hospitalisations. Eur Respir J 2013; 41: 565–570.

13. Ries AL, Bauldoff GS, Carlin BW, Casaburi R, Emery CF, Mahler DA, et al. (2007). Pulmonary rehabilitation: Joint ACCP/AACVPR evidence based clinical practice guidelines. Chest;131(5 Suppl):4S-42S.

14. Holland AE, Wadell K, Spruit MA. How to adapt the pulmonary rehabilitation programme to patients with chronic respiratory disease other than COPD. Eur Respir Rev 2013; 22: 577–586.

15. Rochester CL, Fairburn C, Crouch RH. Pulmonary rehabilitation for respiratory disorders other than chronic obstructive pulmonary disease. Clin Chest Med. 2014;35 :369–89.

16. World health organization. The global burden of disease:2004 update online, http://www.who.int/mediacentre/factsheets/fs310/en

17. Al-t-Khaled N,Enarson D, Bousquet J.(2001). Chronic respiratory diseases in developing countries: the burden and strategies for prevention and management. World health organization review.

18. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

19. Oh EG. The effect of home-based pulmonary rehabilitation in patients with chronic lung disease. Int J Nurs Stud. 2003 Nov;40(8): 873–9.

20. Muzembo Ndunudo J, Nakaduluku Bikuku H, Frans A. (2001). Respiratory rehabilitation in patients with bronchial asthma and chronic obstructive pulmonary disease (COPD) in Kinshasa.Rev.Pneumol.Clin. Jun;57(3):209–18 (congo)

21. Workshop on PRP. Nepal society of internal medicine Venue Kathmandu University Teaching Hospital, Dhulikhel, Kavre Starting Date: 2016-04-08

22. Machado A, Oliveira A, Valente C, Burtin C, Marques A. Effects of a community-based pulmonary rehabilitation programme during acute exacerbations of chronic obstructive pulmonary disease - A quasi-experimental pilot study. Pulmonology. 2020 Jan-Feb;26(1):27–38. doi: 10.1016/j.pulmoe.2019.05.004. Epub 2019 Jun 1. PMID: 31164288.

23. Prakash, V, Gogineri, S, Kumar, R, & Shaik, M (2013). Six Minute Walk Test as a Monitoring tool in Chronic Obstructive Pulmonary Diseases on Pulmonary Rehabilitation. Journal of advances in International Medicine, 2(2), 35–41. https://doi.org/10.3126/jaim.v2i2.8774

24. Jones R, Kirenga J B, Katagira W, Singh J S, Pooler J, Okwera A, Creanor S, Barton A. A pre–post intervention study of pulmonary rehabilitation for adults with post-tuberculosis lung disease in Uganda. Int J Chron Obstruct Pulmon Dis. 2017; 12: 3533–3539

25. Jones R, Kirenga B, Pooler et al. A development study of pulmonary rehabilitation for patients with chronic lung diseases in Uganda. European Respiratory Journal 2016 48: PA858; DOI: 10.1183/13993003.congress-2016. PA 858

26. Pooler J et al. (2016). A qualitative study on the development of pulmonary rehabilitation for patients with chronic lung disease in Kampala, Uganda. European Respiratory Journal 2016 48: PA3964; DOI: 10.1183/13993003.congress:-PA3964

27. Ahmed, M. N., Begum, S., Sultana, S., and Ali, T. (2014). Effects of Pulmonary Rehabilitation on Lung Functions in Patients with COPD. Journal of Bangladesh Society of Physiologist, 8(2), 70–76. https://doi.org/10.3329/jbsp.v8i2.18657

28. Ahmed, M.N., Begum S.,and Ali T.(2014). Effect of Pulmonary Rehabilitation on Exercise Tolerance in Patients with COPD.J Bangladesh Soc Physiol.2014,December;9(2):65-71

29. Habib, G.M,Rabinovich,R, Divgi,K et al. Systematic review (protocol) of clinical effectiveness and models of care of low-resource pulmonary rehabilitation. NPJ Prim. Care Respir. Med.29,10(2019). http://doi.org/10.1038/s41533-019-0122-1

30. Habib G et al. Engaging with stakeholders in a research programme to promote implementation of pulmonary rehabilitation in Bangladesh: challenges and opportunities. J Glob Health 2020;10 :10 :020384

31. El-Komy HM, Awad M, Mansour W, Elsayed EI. Impact of pulmonary rehabilitation on patients with interstitial lung diseases: an Egyptian experience. Egypt J Bronchol 2019;13 :219–25

32. Rifaat N, Anwar E, Ali M, Y, Ellabban A, Hasan A.A. Value of pulmonary rehabilitation in patients with idiopathic pulmonary brosis. Egyptian Journal of chest diseases and tuberculosis. (2014)

33. Ghanem M, Elaal EA, Mehany M, Tolba K. Home-based pulmonary rehabilitation program: Effect on exercises tolerance and quality of life in chronic obstructive pulmonary diseases patients. Ann Thorac Med. 2010,5(1): 18–25. doi:10.4103/1817-1737.58955

34. Daabas R, Hassan M, Zidan M. Endurance and strength training in pulmonary rehabilitation for COPD patients. Egyptian Journal of Chest Diseases and Tuberculosis. (2016). http://dzrj.com/2016/07/003

35. University of Plymouth. Pulmonary rehabilitation in Crete, Vietnam and Kyrgyzstan (FRESH AIR programme).2018. 2018

36. Philip EJ K, Akylibekov A, Stambaeva B, Sooronaev T, Jones R. Music, Dance and Harmonica for people with COPD. Respiratory Care (2019),64 (3) 359:Https://doi.org/10.4187/respcare.06701
62. Sharma BB, Singh V. Pulmonary rehabilitation: An overview. Lung India. 2011 Oct;28(4):276–84. doi: 10.4103/0970-2113.85690. PMID: 22084542; PMCID: PMC3213715.

63. Devani P, Pinto N, Jain P, Prabhudesai P, Pandey A. Effect of Pulmonary Rehabilitation (PR) Program in Patients with Interstitial Lung Disease (ILD)-Indian scenario. J Assoc Physicians India. 2019 Mar;67(3):28–33. PMID: 31304702.

64. Ragaselvi S, Janmeja AK, Aggarwal D, Sidana A, Sood P. Predictors of response to pulmonary rehabilitation in stable chronic obstructive pulmonary disease patients: A prospective cohort study. J Postgrad Med. 2019 Apr-Jun;65(2):101–106. doi: 10.4103/jpgm.JPGM_433_18. PMID: 31036780; PMCID: PMC6515786.

65. Thakrar R, Alaparthi GK, Kumar SK, Vaishali K, Zulfeequer CP, Aanad R. Awareness in patients with COPD about the disease and pulmonary rehabilitation: A survey. Lung India. 2014 Apr;31(2):134–8. doi: 10.4103/0970-2113.129837. PMID: 24778475; PMCID: PMC3999672.

66. Singh V, Khandelwal DC, Khandelwal R, Abusaria S. Pulmonary rehabilitation in patients with chronic obstructive pulmonary disease. Indian J Chest Dis Allied Sci. 2003 Jan-Mar;45(1):13-7. PMID: 12683707.

67. Ranjita R, Hankey A, Nagendra HR, Mohanty S. Yoga-based pulmonary rehabilitation for the management of dyspnea in coal miners with chronic obstructive pulmonary disease: A randomized controlled trial. J Ayurveda Integr Med. 2016 Jul-Sep;7(3):158–166. doi: 10.1016/j.jaim.2015.12.001. Epub 2016 Aug 18. PMID: 27545747; PMCID: PMC5052394.

68. Bhattacharyya P, Ghosh R, Saha D, Chakraborty B, Bhattacharyya P, Sarma M, Mazumdar S, Chatterjee K, Chowdhury A. The impact on health status in short- and long-terms of a novel and non-orthodox real-world COPD rehabilitation effort in rural India: an appraisal. Int J Chron Obstruct Pulmon Dis. 2018 Oct 15;13:3313–3319. doi: 10.2147/COPD.S160665. PMID: 30410321; PMCID: PMC6197216.

69. Panigrahi A, Sohani S, Amadi C, Joshi A. Role of music in the management of chronic obstructive pulmonary disease (COPD): a literature review. Technol Health Care. 2014;22(1):53-61. doi: 10.3233/THC-130773. PMID: 24398814.

70. Singh SJ, Halpin DMG, Salvi S, Kirenga BJ, Mortimer K. Exercise and pulmonary rehabilitation for people with chronic lung disease in LMICs: challenges and opportunities. Lancet Respir Med. 2019 Dec;7(12):1002–1004. doi: 10.1016/S2213-2600(19)30364-9. Epub 2019 Oct 16. PMID: 31629670.

71. Troosters T, Hornikx M, Demeyer H, Camillo CA, Janssens W. Pulmonary rehabilitation: timing, location, and duration. Clin Chest Med. 2014 Jun ;35(2):303–11. doi: 10.1016/j.ccm.2014.02.002. Epub 2014 Apr 12. PMID: 24874126.

72. Spitzer K. et al. Participation in Pulmonary Rehabilitation after hospitalization for chronic obstructive pulmonary disease among Medicare beneficiaries. Annals of the American thoracic Society 2018. https://doi.org/10.1513/AnnalsATS.201805-332OC

73. Brighton, L. J., Bristowe, K., Bayly, J., Ogden, M., Farquhar, M., Evans, C. J., Man, W., & Maddocks, M. (2020). Experiences of Pulmonary Rehabilitation in People Living with Chronic Obstructive Pulmonary Disease and Frailty. A Qualitative Interview Study. *Annals of the American Thoracic Society*, 17(10), 1213–1221. https://doi.org/10.1513/AnnalsATS.201910-800OC

74. Hayton C et al. Barriers to pulmonary rehabilitation: Characteristics that predict patient attendance and adherence. Respiratory Medicine (2013) 107, 401–407

75. Guo, S. E., & Bruce, A. (2014). Improving understanding of and adherence to pulmonary rehabilitation in patients with COPD: a qualitative inquiry of patient and health professional perspectives. *PloS one*, 9(10), e110835. https://doi.org/10.1371/journal.pone.0110835
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- supplementaryfile.docx