Class Conditional Alignment for Partial Domain Adaptation

Mohsen Kheirandishfard, Fariba Zohrizadeh, and Farhad Kamangar

Department of Computer Science and Engineering,
University of Texas at Arlington, USA
{mohsen.kheirandishfard, fariba.zohrizadeh}@mavs.uta.edu farhad.kamangar@uta.edu

Abstract—Adversarial adaptation models have demonstrated significant progress towards transferring knowledge from a labeled source dataset to an unlabeled target dataset. Partial domain adaptation (PDA) investigates the scenarios in which the source domain is large and diverse, and the target label space is a subset of the source label space. The main purpose of PDA is to identify the shared classes between the domains and promote learning transferable knowledge from these classes. In this paper, we propose a multi-class adversarial architecture for PDA. The proposed approach jointly aligns the marginal and class-conditional distributions in the shared label space by minimaxing a novel multi-class adversarial loss function. Furthermore, we incorporate effective regularization terms to encourage selecting the most relevant subset of source domain classes. In the absence of target labels, the proposed approach is able to effectively learn domain-invariant feature representations, which in turn can enhance the classification performance in the target domain. Comprehensive experiments on three benchmark datasets Office-31, Office-Home, and Caltech-Office corroborate the effectiveness of the proposed approach in addressing different partial transfer learning tasks.

I. INTRODUCTION

With the impressive power of learning representations, deep neural networks have shown superior performance in a wide variety of machine learning tasks such as classification [1], [2], object detection [3], [2], [4], etc. These notable achievements heavily depend on the availability of large amounts of labeled training data. However, in many applications, collecting sufficient labeled data is either difficult or time-consuming. One potential solution to reduce the labeling consumption is to build an effective predictive model using readily-available labeled data from a different but related source domain. Such learning paradigm generally suffers from the distribution shift between the source and target domains, which in turn poses a significant difficulty in adapting the predictive model to the target domain tasks. In the absence of target labels, unsupervised domain adaptation (UDA) seeks to enhance the generalization capability of the predictive model by learning feature representations that are discriminative and domain-invariant [5], [6], [7]. Various approaches have been proposed in the literature to tackle UDA problems by embedding domain adaptation modules in deep architectures [8], [9], [10], [11], [12], [13] (see [14] for a comprehensive survey on deep domain adaptation methods). A line of research is developed to align the marginal distributions of the source and target domains through minimizing discrepancy measures such as maximum mean discrepancy [15], [10], central moment discrepancy [16], correlation distance [17], [18], etc. In this way, they can map both domains into the same latent space, which results in learning domain-invariant feature representations. Another strand of research is focused on designing specific distribution normalization layers which facilitate learning separate statistics for the source and target domains [19], [20]. More recently, some research studies have been carried out based on the generative adversarial networks [21] that aim to alleviate the marginal disparities across the domains by adversarially learning domain-invariant feature representations which are indistinguishable for a discriminative domain classifier [22], [23], [24].

Despite the efficacy of the existing UDA methods, their superior performance is mostly limited to the scenarios in which the source and target domains share the same set of labels. With the goal of considering more realistic and practical cases, [25] introduced partial domain adaptation (PDA) as a new adaptation scenario in which the target label space is a subset of the source label space. The main challenge in PDA is to identify and reject the source domain classes
that do not appear in the target domain, known as outlier classes, mainly because they may exert negative impacts on the overall transfer performance [26], [27]. Addressing this challenge enables the PDA methods to transfer models trained on large and diverse labeled datasets (e.g., ImageNet) to small-scale unlabeled datasets from different but related domains.

In this paper, we propose a novel adversarial approach for partial domain adaptation which seeks to automatically reject the outlier source classes and improve the classification confidence on irrelevant samples, i.e., the samples that are highly dissimilar across the domains. The existing PDA methods often align the marginal distributions between the domains in the shared label space. Different from these methods, we propose a novel adversarial architecture that matches class-conditional feature distributions by minimaxing a multi-class adversarial loss function. Moreover, we propose to boost the target domain classification performance by incorporating two novel regularization functions. The first regularizer is a row-sparsity term on the output of the classifier to promote the selection of a small subset of classes that are in common between the source and target domains. The second one is a minimum entropy term which increases the classifier confidence level in predicting the labels of irrelevant samples from both domains. We empirically observe that our proposed approach considerably improves the state-of-the-art performance for various partial domain adaptation tasks on three commonly-used benchmark datasets Office-31, Office-Home, and Caltech-Office.

II. RELATED WORK

To date, various unsupervised domain adaptation (UDA) methods have been developed to learn domain-invariant feature representations in the absence of target labels. Some studies have proposed to minimize the maximum mean discrepancy between the features extracted from the source and target samples [10], [13], [28], [29], [30]. In [31], a correlation alignment (CORAL) method is developed that utilizes a linear transformation to match the second-order statistics between the domains. [32] presented an extension of the CORAL method that learns a non-linear transformation to align the correlations of layer activations in deep networks. Despite the practical success of the aforementioned methods in domain alignment, it is shown that they are unable to completely eliminate the domain shift [32]. Another line of work has proposed to reduce the discrepancy by learning separate normalization statistics for the source and target domains [19], [20], [19] adopts different batch normalization layers for each domain to align the marginal distributions. [20] embeds domain alignment layers at different levels of a deep architecture to align the domain feature distributions to a canonical one.

More recently, adversarial adaptation methods have been extensively investigated to boost the performance of UDA methods [32], [33], [34], [35], [22]. The basic idea behind these methods is to train a discriminative domain classifier for predicting domain labels and a deep network for learning feature representations that are indistinguishable by the discriminator. By doing so, the marginal disparities between the source and target domains can be efficiently reduced, which results in significant improvement in the overall classification performance [32], [35], [23]. Transferable attention for domain adaptation [24] proposed an adversarial attention-based mechanism for UDA, which effectively highlights the transferable regions or images. [36] introduced an incremental adversarial scheme which gradually reduces the gap between the domain distributions by iteratively selecting high confidence pseudo-labeled target samples to enlarge the training set. While the existing UDA models have shown tremendous progress towards reducing domain discrepancy, they mostly rely on the assumption of fully shared label space and generally align the marginal feature distributions between the source and target domains. This assumption is not necessarily valid in partial domain adaptation (PDA) which assumes the target label space is a subset of the source label space.

Great studies have been conducted towards the task of PDA to simultaneously promote positive transfer from the common classes between the domains and alleviate the negative transfer from the outlier classes [27], [25], [37]. Importance weighted adversarial nets [37] develops a two-domain classifier strategy to estimate the relative importance of the source domain samples. Selective adversarial network (SAN) [27] trains different domain discriminators for each source class separately to align the distributions of the source and target domains across the shared label space. Partial adversarial domain adaptation (PADA) [25] adopts a single adversarial network and incorporates class-level weights to both source classifier and domain discriminator for down-weighing the samples of outlier source classes. Example Transfer Network (ETN) [38] improves upon the PADA approach by introducing an auxiliary domain discriminator to quantify the transferability of each source sample.

Despite the efficacy of the existing PDA approaches in various tasks, they often align the marginal distributions of the shared classes between the domains without considering the conditional distributions [25]. [36]. [38]. This may degenerate the performance of the model due to the negative transfer of irrelevant knowledge. To circumvent this issue, we utilize pseudo-labels for the target domain samples and develop a multi-class adversarial architecture to jointly align the marginal and class-conditional distributions (see Figure 1 for more clarification). Inspired by [39], we propose to align labeled source centroid and pseudo-labeled target centroid to mitigate the adverse effect of the noisy pseudo-labels. Similar to [25], we incorporate class-level weights into our cost function to down-weight the contributions of the source samples belonging to the outlier classes. Furthermore, we introduce two novel regularization functions to promote the selection of a small subset of classes that are in common between the source and target domains and enhance the classifier confidence in predicting the labels of irrelevant samples from both domains.
Let \(\{(x_i^s,y_i^s)\}_{i=1}^{n_s} \) be a set of \(n_s \) sample images collected i.i.d from the source domain \(\mathcal{D}_s \), where \(x_i^s \) denotes the \(i \)-th source image with label \(y_i^s \). Similarly, let \(\{(x_i^t)\}_{i=1}^{n_t} \) be a set of \(n_t \) sample images drawn i.i.d from the target domain \(\mathcal{D}_t \), where \(x_i^t \) indicates the \(i \)-th target image. To clarify the notation, let \(\mathcal{X} = \bigcup_{s \in \{s,t\}} \mathcal{X}_s \) be the set of entire images captured from both domains, where \(\mathcal{X}_s = \{x_i^s\}_{i=1}^{n_s} \) and \(\mathcal{X}_t = \{x_i^t\}_{i=1}^{n_t} \). The UDA methods assume the source and target domains possess the same set of labels, denoted as \(\mathcal{C}_s \) and \(\mathcal{C}_t \), respectively. In the absence of target labels, the primary goal of the UDA methods is to learn transferable features that can reduce the shift between the marginal distributions of both domains. One promising direction towards this goal is to train a domain adversarial network \(G_f \) for predicting the domain labels, a feature extractor \(G_f \) to learn domain-invariant feature representations for deceiving the discriminator, and a classifier \(G_y \) that classifies the source domain samples. Training such an adversarial network is equivalent to solving the following optimization problem

\[
\max_{\theta_f} \min_{\theta_d, \theta_y} \frac{1}{n_s} \sum_{x_i^s \in \mathcal{X}_s} L_y(G_y(G_f(x^s; \theta_f); \theta_y), y_i^s) - \frac{\lambda}{n} \sum_{x_i^t \in \mathcal{X}} L_d(G_d(G_f(x^t; \theta_f); \theta_d), d^t),
\]

where \(n = n_s + n_t \) denotes the total number of images, \(\lambda > 0 \) is a regularization parameter, \(y_i^s \) is a one-hot vector denoting the class label of image \(x_i^s \), and \(d^t \in \{0,1\} \) indicates its domain label. \(L_y \) and \(L_d \) are cross-entropy loss functions corresponding to the classifier \(G_y \) and the domain discriminator \(G_d \), respectively. Moreover, variables \(\theta_f \), \(\theta_y \), and \(\theta_d \) are the network parameters associated with \(G_f \), \(G_y \), and \(G_d \), respectively. For the brevity of notation, we drop the reference to the network parameters in the subsequent formulations.

As noted earlier, standard domain adaptation approaches assume that the source and target domains possess the same label space, i.e., \(\mathcal{C}_s = \mathcal{C}_t \). This assumption may not be fulfilled in a wide range of practical applications in which \(\mathcal{C}_s \) is large and diverse (e.g., ImageNet) and \(\mathcal{C}_t \) only contains a small subset of the source classes (e.g., Office-31), i.e., \(\mathcal{C}_t \subset \mathcal{C}_s \).

In such scenarios, it is hard to identify the shared label space between the domains since target labels and target label space \(\mathcal{C}_t \) are unknown during the training procedure. Under this condition, matching the marginal distributions may not necessarily facilitate the classification task in the target domain and a classifier with adaptation may perform worse than a standard classifier trained on the source samples. This is attributed to the adverse effect of transferring information from the outlier classes \(\mathcal{C}_s \setminus \mathcal{C}_t \). Hence, the primary goal in partial domain adaptation is to identify and reject the outlier classes and simultaneously align the conditional distributions of the source and target domains across the shared label space. One of the well-established works toward this goal is Partial Adversarial Domain Adaptation (PADA) \cite{25} which highlights the shared classes and reduces the importance of the outlier classes via the following weighting procedure

\[
\gamma = \frac{1}{n_t} \sum_{i=1}^{n_t} \tilde{y}_i^t,
\]

where \(\tilde{y}_i^t = G_y(G_f(x_i^t)) \) denotes the output of the classifier \(G_y \) to the target sample \(x_i^t \) and it can be considered as a probability distribution over the source label space \(\mathcal{C}_s \). The weight vector \(\gamma \) is further normalized as \(\gamma \leftarrow \gamma \max(\gamma) \) to demonstrate the relative importance of the classes. The weights associated with the outlier classes are expected to be much smaller than that of the shared classes, mainly because the target samples are significantly dissimilar to the samples belonging to the outlier classes. Ideally, \(\gamma \) is expected to be a
vector whose elements are non-zero except those corresponding to the outlier classes. Given that, PADA proposed to down-weight the contributions of the source samples belonging to the outlier classes \(C_v\setminus C_i\) by adding the class-level weight vector \(\gamma\) to both source classifier \(G_y\) and domain discriminator \(G_d\). Therefore, the objective of PADA can be formulated as follows

\[
\max_{\theta_d} \min_{\theta_y} \frac{1}{n_s} \sum_{x^i \in \mathcal{X}_s} \gamma_{c_i} L_d(G_d(G_y(x^i))), d^i, L_d(G_y(x^i)), d^i),
\]

where scalar \(\gamma_{c_i}\) denotes the class weight of sample \(x^i\) and \(c_i = \text{argmax}_{y|C} y^i\) indicates the index of the largest element in vector \(y^i\).

IV. PROPOSED METHOD

Although the weighting scheme (1) is able to effectively match the marginal distributions of the source and target domains in the shared label space, there is no guarantee that the corresponding class-conditional distributions can also be drawn close. This may significantly degenerate the performance of the model due to the negative transfer of irrelevant knowledge. To circumvent this issue, we introduce a novel adversarial architecture to jointly align the marginal distributions of the source and target domains. This may significantly degenerate the performance of the model due to the negative transfer of irrelevant knowledge. To circumvent this issue, we introduce a novel adversarial architecture to jointly align the marginal distributions of the source and target domains.

In what follows, we propose two novel regularization functions to derive more discriminative class weights and to increase the confidence level of the classifier in predicting the labels of the irrelevant samples across both domains.

Motivated by the assumption that the target samples are dissimilar to the samples of the outlier classes, we propose a row-sparsity regularization term that promotes the selection of a small subset of source domain classes that appear in the target domain. This, in turn, encourages the weight vector \(\gamma\) to be a vector of all zeros except for the elements corresponding to the shared classes. This selection regularization can be formulated as follows

\[
|C| \sum_{i=1}^{C_i} \gamma_i \|M_s^i - M_t^i\|_2^2,
\]

where \(M_s^i\) and \(M_t^i\) respectively denote the feature centroids for the \(i^{th}\) class in the source and target domains. These vectors are computed via the following formulas

\[
M_s^i = \frac{1}{|O_i|} \sum_{x^i \in O_i} G_f(x^i), \quad M_t^i = \frac{1}{|O_i|} \sum_{x^i \in O_i} G_f(x^i),
\]

where \(O_i\) is the set of source samples belonging to the \(i^{th}\) class and \(O_i\) denotes the set of target samples assigned to the \(i^{th}\) class.

In what follows, we propose two novel regularization functions to derive more discriminative class weights and to increase the confidence level of the classifier in predicting the labels of the irrelevant samples across both domains.
classifier to generate a sparse output vector with its non-zero entries located at certain indices correspond to the classes shared between the domains. Notice that this regularization term does not directly enforce a specific number of classes to be chosen but rather promotes the network to select a subset of source domain classes.

Besides the outlier classes, the irrelevant samples are inherently less transferable and they may significantly degrade the target classification performance in different PDA tasks. To reduce the negative effect of irrelevant samples in the training procedure, we propose to leverage the following entropy minimization term
\[
L_c(\theta_f, \theta_y) = \frac{1}{n_s} \sum_{x^i \in X_s} \gamma c_i L_y(G_y(G_f(x^i))),
\]
where \(L_y\) is the entropy loss functions corresponding to the classifier \(G_y\). Generally, regularization \(L_c\) encourages the classifier to produce vectors with one dominant element, thus helping the classifier to produce vectors with one dominant element and to transfer knowledge from a source domain with 31 classes to a target domain with 10 classes. The results are reported as the average classification accuracy of the target domain over five independent experiments across six different PDA tasks: \(A \rightarrow W, W \rightarrow A, D \rightarrow W, W \rightarrow D, A \rightarrow D, \) and \(D \rightarrow A\).

Office-Home is a more challenging dataset that contains 15,500 images collected from four distinct domains: Art (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw), where each domain has 65 classes. Example images from this dataset are provided in Figure 3. Following the procedure presented in \[25, 38\], we aim to transfer information from a source domain containing 65 classes to a target domain with 25 classes. The results on this dataset are also reported as the average classification accuracy of the target domain over five independent experiments across twelve pairs of source-target adaptation tasks: Ar \(\rightarrow\) Cl, Ar \(\rightarrow\) Pr, Ar \(\rightarrow\) Rw, Cl \(\rightarrow\) Ar, Cl \(\rightarrow\) Pr, Cl \(\rightarrow\) Rw, Pr \(\rightarrow\) Ar, Pr \(\rightarrow\) Cl, Pr \(\rightarrow\) Rw, Rw \(\rightarrow\) Cl, and Rw \(\rightarrow\) Pr.

Caltech-Office \[6\] is constructed from Caltech-256 \[44\] dataset as the source domain and Office-31 as the target domain. Following the procedure in \[27\], we consider the ten categories shared by Caltech-256 and Office-31 as the shared label space. Denoting the source domain as \(C\), the result on Caltech-Office dataset are reported as the average classification accuracy of the target domain over five independent experiments across three pairs of source-target adaptation tasks: C \(\rightarrow\) W, C \(\rightarrow\) A, and C \(\rightarrow\) D.

We follow the standard evaluation protocols for partial domain adaptation \[27\], \[25\] and compare the performance of CCPDA against several deep transfer learning methods: Reverse Gradient (RevGrad) \[45\], Domain Adversarial Neural Network (DANN) \[42\], Residual Transfer Networks (RTN) \[28\], Adversarial Discriminative Domain Adaptation (ADDA) \[35\], Importance Weighted Adversarial Nets (IWAN) \[37\], Multi-Adversarial Domain Adaptation (MADA) \[23\], Selective Adversarial Network (SAN) \[27\], Partial Adversarial Domain Adaptation (PADA) \[25\], and Example Transfer Network (ETN) \[33\]. Moreover, in order to demonstrate the efficacy brought by different components of the proposed
TABLE I: Classification accuracy of partial domain adaptation tasks on Office-31.

Method	A \rightarrow W	D \rightarrow W	W \rightarrow D	A \rightarrow D	D \rightarrow A	W \rightarrow A	Avg
ResNet	75.59	96.27	98.09	83.44	83.92	84.97	87.05
DANN	73.56	96.27	98.73	81.53	82.78	86.12	86.50
ADDA	75.67	95.38	99.85	83.41	83.63	84.25	87.03
MADA	90.00	97.40	99.60	87.80	70.30	66.40	85.20
RTN	78.98	93.22	85.35	77.07	89.25	89.46	85.56
IWAN	89.15	99.32	99.36	90.45	95.62	94.26	94.69
SAN	93.90	99.32	99.36	94.27	94.15	88.73	94.96
PADA	86.54	99.32	100.0	82.17	92.69	95.41	92.69
ETN	94.52	100.0	100.0	95.03	96.21	94.64	96.73
CCPDA	99.66	100.0	100.0	97.45	95.72	95.71	98.09

TABLE II: Classification accuracy of partial domain adaptation tasks on Office-Home.

Method	Ar\rightarrowCl	Ar\rightarrowPr	Ar\rightarrowRw	Cl\rightarrowAr	Cl\rightarrowPr	Cl\rightarrowRw	Pr\rightarrowAr	Pr\rightarrowCl	Pr\rightarrowRw	Rw\rightarrowAr	Rw\rightarrowCl	Rw\rightarrowPr	Avg
ResNet	46.33	67.51	75.87	59.14	59.94	62.73	58.22	41.79	74.88	67.40	48.18	74.17	61.35
DANN	43.76	67.90	77.47	63.73	58.99	67.59	56.84	37.07	76.37	69.15	44.30	77.48	61.72
ADDA	45.23	68.79	79.21	64.56	60.01	68.29	57.56	38.89	77.45	70.28	45.23	78.32	62.82
RTN	49.31	57.70	80.07	63.54	63.47	73.38	65.11	41.73	75.32	63.18	43.57	80.50	63.07
IWAN	53.94	54.45	78.12	61.31	47.95	63.32	54.17	52.02	81.28	76.46	56.75	82.90	63.56
SAN	44.42	68.68	74.60	67.49	64.99	77.80	59.78	44.72	80.07	72.18	50.21	78.66	65.30
PADA	51.95	67.00	78.74	52.16	53.78	59.03	52.61	43.22	78.79	73.73	56.60	77.09	62.06
ETN	59.24	77.03	79.54	62.92	65.73	75.01	68.29	55.37	84.37	75.72	57.66	84.54	70.45

TABLE III: Classification accuracy of partial domain adaptation tasks on Caltech-Office.

Method	C\rightarrow W	C\rightarrow A	C\rightarrow D	Avg
ResGrad	54.57	72.86	57.96	61.80
ADDA	73.66	78.35	74.80	75.60
RTN	71.02	81.32	62.35	71.56
SAN	88.33	83.82	85.35	85.83
CCPDA	95.23	88.05	100.0	94.42

PDA model, we conduct an ablation study by evaluating three variants of CCPDA: CCPDA$_c$ is a variant of CCPDA without incorporating the selection regularization term L_c. CCPDA$_c$ denotes a variant without considering L_c, and CCPDA$_d,c$ is a variant with a binary discriminator and without considering the weighted centroids alignment term L_c.

Parameter: We use PyTorch to implement CCPDA and adopt ResNet-50 [46] model pre-trained on ImageNet [47], as the backbone for the network G_f. We fine-tune the entire feature layers and apply back-propagation to train the domain discriminator G_d and the classifier G_y. Since parameters θ_y and θ_d are trained from scratch, their learning rates are set to be 10 times greater than that of θ_f. To solve the minimax problem [3], we use mini-batch stochastic gradient descent (SGD) with a momentum of 0.95 and the learning rate is adjusted during SGD by: $\eta = \eta_\alpha (1 + \frac{\mu}{\theta_f})^\alpha$, where $\eta_\alpha = 10^{-2}$, $\alpha = 10$, $\beta = 0.75$, and ρ, denoting the training progress, linearly changes from 0 to 1 [22], [25]. We use a batch size $b = 72$ with 36 samples for each domain. Parameter μ is set to 0.1 for Office-31, Office-Home, and Caltech-Office datasets. Notice that since the classifier is not appropriately trained in the first few epochs, the value of μ can be gradually increased from 0 to 0.1. Other hyper-parameters are tuned by importance weighted cross validation [48] on labeled source samples and unlabeled target samples.

As we use mini-batch SGD for optimizing our model, categorical information in each batch is usually inadequate for obtaining an accurate estimation of the source and target centroids. This in turn may adversely affect the alignment performance. To mitigate this issue, we align the moving average centroids of the source and target classes in the feature space (with coefficient 0.7) rather than aligning the inaccurate centroids obtained in each iteration.

B. Results

The target domain classification accuracy for various methods on six PDA tasks of Office-31 dataset, twelve PDA tasks of Office-Home dataset, and three PDA tasks of Caltech-Office dataset are reported in Tables I, II, and III. The entire results are reported based on the ResNet-50 and the scores of the competitor methods are directly collected from [27] and [38].

Observe that unsupervised domain adaptation methods such as ADDA, DANN, and MADA have exhibited worse performance than the standard ResNet-50 on some PDA tasks in both datasets Office-31 and Office-Home. This can be attributed to the fact that these methods aim to align the marginal distributions across the domains and hence are prone to the negative transfer introduced by the outlier classes. On the other hand, the partial domain adaptation methods, such as PADA, SAN, IWAN, ETN, and CCPDA, achieve promising results on most of the PDA tasks since they leverage different
mechanisms to highlight a subset of samples that are more transferable across both domains.

Among the competing partial domain adaptation approaches in Tables I, II and III, SAN is the only approach that seeks to directly align the conditional distributions of the source and target domains. However, unlike CCPDA, SAN uses a different architecture with \(|C_s|\) class-wise domain discriminators to identify the domain-class label of each sample. As reported in Tables I, II and III, CCPDA outperforms SAN with a large margin in all PDA tasks on both Office-31 and Office-Home datasets. Moreover, CCPDA requires fewer parameters compared to SAN. This in turn demonstrates the efficiency and efficacy of the proposed class-conditional model.

The results in Table I indicate that CCPDA outperforms the competing methods on most of the PDA tasks from Office-31 dataset. In particular, CCPDA achieves considerable improvement on \(A \rightarrow W\) and \(A \rightarrow D\) tasks. It also increases the average accuracy of all tasks by almost 1.36%.

Moreover, Table II shows that CCPDA outperforms other PDA approaches with a large margin on five pairs of source-target adaptation tasks: \(A_r \rightarrow Pr\), \(A_r \rightarrow Rw\), \(Cl \rightarrow Ar\), \(Cl \rightarrow Pr\), and \(Rw \rightarrow Ar\). The results reported in Table III indicate that CCPDA outperforms all comparison methods on all the tasks even though the number of the outlier classes \(|C_o|\) is much larger than that of the shared classes \(|C_s|\).

The numerical results provided in Tables I, II and III corroborate CCPDA can effectively align the class-conditional distribution, mitigate transferring knowledge from the outlier source classes, and promote positive transfer between the domains in the shared label space.

Furthermore, we perform an ablation study to evaluate the efficacy brought by different components of the proposed PDA model. We consider PADA as a baseline variant of CCPDA with binary domain discriminator \(G_d\) and without regularization terms \(G_{\infty}\), \(L_{\infty}\), and \(L_c\). The results are reported in Table IV and they reveal interesting observations. CCPDA, \(\bar{c}\), outperforms PADA in most of the tasks, which highlights the importance of the incorporated regularization terms \(G_{\infty}\) and \(L_c\) in rejecting the outlier source samples. Moreover, we can see that both variants CCPDA, \(\bar{c}\), and CCPDA, \(\bar{c}\), improved the accuracy of the original baseline, which corroborate the efficacy of our class-conditional domain discriminator \(G_{\bar{c}}\).

Overall, observe that different components of the proposed method bring complimentary information into the model and they have contribution in achieving the state-of-the-art classification results.

Visualization: To better demonstrate the ability of the proposed method in aligning the feature distributions in the shared label space, we visualize the bottleneck representations learned by SAN, PADA, ETN, and CCPDA on task \(A\) (31 classes) \(\rightarrow W\) (10 classes) using t-SNE embedding [49] (Shown in Figure 4). It is desired to embed the source and target sample points of the same class close together while keeping embeddings from different classes far apart. Observe that CCPDA is able to effectively discriminate the classes shared between the domains, while minimizing the distance between the same classes in both domains.

Convergence Performance: To highlight other advantages of our approach, we compare the test error rate obtained by CCPDA against various methods SAN, PADA, and ETN on partial domain adaptation task \(A\) (31 classes) \(\rightarrow W\)
(10 classes). from Office dataset. Figure [5] illustrates the convergence behavior of the test errors in 15,000 iterations. Each curve is obtained by averaging over 5 independent runs for the entire test samples. Observe that comparing to the competitor methods, CCPDA not only converges very quickly but also achieves lower error rate.

VI. CONCLUSION

This work presented a novel adversarial architecture for the task of partial domain adaptation. The proposed model adopts a multi-class adversarial loss function to jointly align the marginal and class-conditional distributions across the shared classes between the source and target domains. Furthermore, it leverages two regularization functions to reduce the adverse effects of the outlier classes and the irrelevant samples in transferring information. Several experiments performed on the standard benchmark datasets for partial domain adaptation have demonstrated that our method can outperform the state-of-the-art methods on multiple adaptation tasks in terms of the classification performance.

REFERENCES

[1] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection,” in NeurIPS, 2013.
[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” in NeurIPS, 2015.
[3] R. Girshick, “Fast r-cnn,” in ICCV, 2015.
[4] I. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in CVPR, 2016.
[5] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via transfer component analysis,” IEEE Trans. Neural Netw., vol. 22, pp. 199–210, 2011.
[6] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for unsupervised domain adaptation,” in CVPR, 2012.
[7] M. Baktashmotlagh, M. T. Harandi, B. C. Lovell, and M. Salzmann, “Unsupervised domain adaptation by domain invariant projection,” in ICCV, 2013.
[8] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural networks?” in NeurIPS, 2014.
[9] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “Decaf: A deep convolutional activation feature for generic visual recognition,” in ICML, 2014.
[10] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable features with deep adaptation networks,” in ICLR, 2015.
[11] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep transfer across domains and tasks,” in ICCV, 2015.
[12] W. Deng, L. Zheng, Q. Ye, G. Kang, Y. Yang, and J. Jiao, “Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification,” in CVPR, 2018.
[13] H. Kazemi, S. Soleymani, F. Taherkhani, S. Irannianesh, and N. Nasrabadi, “Unsupervised image-to-image translation using domain-specific variational information bound,” in NeurIPS, 2018.
[14] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,” Neurocomputing, vol. 312, pp. 135–153, 2018.
[15] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep domain confusion: Maximizing for domain invariance,” arXiv preprint arXiv:1412.1474., 2014.
[16] W. Zellinger, T. Grubinger, E. Lughhofer, T. Natschlager, and S. Saminger-Platz, “Central moment discrepancy (cmd) for domain-invariant representation learning,” in ICLR, 2017.
[17] B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain adaptation,” in AAAI, 2016.
[18] B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep domain adaptation,” in ECCV, 2016.
[19] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, “Revisiting batch normalization for practical domain adaptation,” arXiv preprint arXiv:1603.04779, 2016.
[20] F. M. Carucci, L. Porzi, B. Caputo, E. Ricci, and S. R. Bulo, “Autodial: Automatic domain alignment layers,” in ICCV, 2017.
[21] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in NeurIPS, 2014.
[22] M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Conditional adversarial domain adaptation,” in NeurIPS, 2018.
[23] Z. Pei, Z. Cao, M. Long, and J. Wang, “Multi-adversarial domain adaptation,” in AAAI, 2018.
[24] X. Wang, L. Li, W. Ye, M. Long, and J. Wang, “Transferable attention for domain adaptation,” in AAAI, 2019.
[25] Z. Cao, L. Ma, M. Long, and J. Wang, “Partial adversarial domain adaptation,” in ECCV, 2018.
[26] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE T KNOWL DATA EN, vol. 22, no. 10, pp. 1969–1985, 2010.
[27] Z. Cao, M. Long, J. Wang, and M. I. Jordan, “Partial transfer learning with selective adversarial networks,” in CVPR, 2018.
[28] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Unsupervised domain adaptation with residual transfer networks,” in NeurIPS, 2016.
[29] Y. Han, Y. Ding, P. Li, Q. Wang, Y. Xu, and W. Zuo, “Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation,” in CVPR, 2017.
[30] M. Ghifary, W. B. Kleijn, and M. Zhang, “Domain adaptive neural networks for object recognition,” in PRICAI, 2014.
[31] B. Sun, J. Feng, and K. Saenko, “Correlation alignment for unsupervised domain adaptation,” in Domain Adaptation in Computer Vision Applications. Springer, 2017, pp. 153–171.
[32] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, M. Laviollette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural networks,” J MACH LEARN RES, vol. 17, no. 1, pp. 2096–2030, 2016.
[33] M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li, “Deep reconstruction-classification networks for unsupervised domain adaptation,” in CVPR, 2017.
[34] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative domain adaptation,” in CVPR, 2018.
[35] W. Zhang, W. Ouyang, W. Li, and D. Xu, “Collaborative and adversarial network for unsupervised domain adaptation,” in CVPR, 2018.
[36] J. Zhang, Z. Ding, W. Li, and P. Ogumbana, “Importance weighted adversarial nets for partial domain adaptation,” in CVPR, 2018.
[37] Z. Cao, K. You, M. Long, J. Wang, and Q. Yang, “Learning to transfer examples for partial domain adaptation,” in CVPR, 2019.
[38] S. Xie, Z. Zheng, L. Chen, and C. Chen, “Learning semantic representations for unsupervised domain adaptation,” in IJCAI, 2018.
[39] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, “Analysis of representations for domain adaptation,” in NeurIPS, 2007.
[40] K. Saito, Y. Ushiku, and T. Harada, “Asymmetric tri-training for unsupervised domain adaptation,” in Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp. 2988–2997.
[41] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new domains,” in ECCV, 2010.
[42] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan, “Deep hashing network for unsupervised domain adaptation,” in CVPR, 2017.
[43] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,” 2007.
[44] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” in ICML, 2015.
[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR, 2016.
[46] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,” IJCV, vol. 115, pp. 211–252, 2015.
[47] M. Sugiyama, M. Krauledat, and K.-R. M˚Aˇzller, “Covariate shift adaptation by importance weighted cross validation,” JMLR, vol. 8, pp. 995–1005, 2007.
[48] L. Van Der Maaten, “Barnes-hut-sne,” in ICLR, 2013.