ON IWASE’S MANIFOLDS

ALEXANDER DRANISHNIKOV

Abstract. In [Iw2] Iwase has constructed two 16-dimensional manifolds M_2 and M_3 with LS-category 3 which are counter-examples to Ganea’s conjecture: $\text{cat}_{LS}(M \times S^n) = \text{cat}_{LS} M + 1$. We show that the manifold M_3 is a counter-example to the logarithmic law for the LS-category of the square of a manifold: $\text{cat}_{LS}(M \times M) = 2 \text{cat}_{LS} M$. Also we construct a map of degree one

$$f : 2(M_3 \times S^2 \times S^{14}) \# -(M_2 \times S^2 \times S^{14}) \rightarrow M_2 \times M_3$$

which reduces Rudyak’s conjecture to the question whether $\text{cat}_{LS}(M_2 \times M_3) \geq 5$ and show that $\text{cat}_{LS}(M_2 \times M_3) \geq 4$.

1. Introduction

The Lusternik-Schnirelmann category $\text{cat}_{LS} X$ is a celebrated numerical invariant of topological spaces X which was introduced in the late 30s of the last century. By definition $\text{cat}_{LS} X$ is the minimal number k such that X can be covered by $k+1$ open sets U_0, \ldots, U_k such that each U_i is contractible in X. This invariant is of special importance when X is a closed manifold, since it brings a lower bound on the number of critical points of smooth functions on X [CLOT] Section 1.3.

It turns out that cat_{LS} behaves differently with respect to two basic operations on manifolds, the connected sum and the cartesian product. In the case of connected sum there is a natural formula [DS1], [DS2]:

$$(*) \quad \text{cat}_{LS}(M \# N) = \max\{\text{cat}_{LS} M, \text{cat}_{LS} N\}.$$

In the case of the product the LS-category behavior is weird. There was the upper bound formula

$$\text{cat}_{LS}(X \times Y) \leq \text{cat}_{LS} X + \text{cat}_{LS} Y$$

since the late 30s [Ba], [F]. Since then there was a natural question for which spaces X and Y this upper bound is attained. In particular, there was a longstanding conjecture of Ganea that

$$\text{cat}_{LS}(X \times S^n) = \text{cat}_{LS} X + 1$$

Date: August 5, 2021.

2000 Mathematics Subject Classification. Primary 55M30; Secondary 53C23, 57N65.
A. DRANISHNIKOV

for all X. The Ganea Conjecture was verified for many classes of spaces X, yet it turned out to be false. At the end of the last century Noiro Iwase had constructed counterexamples to Ganea’s conjecture, first when X is a finite complex [Iw] and then when X is a closed manifold [Iw1], [Iw2]. He constructed two 16-dimensional manifolds denoted by M_2 and M_3 satisfying

$$\text{cat}_{LS}(M_i \times S^n) = \text{cat}_{LS} M_i = 3$$

for sufficiently large n, $i = 2, 3$. Also Iwase proved that

$$\text{cat}_{LS}(M \times S^n) = \text{cat}_{LS} M$$

for all n either with $M = M_3$ or with $M = M_3 \times S^1$. The reason that Iwase manifolds have indexes 2 and 3 is that their constructions are related to the 2-primary and the 3-primary components of the group $\pi_{13}(S^3) = \mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3$ respectively.

In this paper we exhibit a relation of Iwase’s examples to the following two intriguing problems in the LS-category. The first is a problem from [Ru1] which is also known as the Rudyak Conjecture:

For a degree one map $f : M \to N$ between closed manifolds, $\text{cat}_{LS} M \geq \text{cat}_{LS} N$.

The second is the question (which I also attribute to Yu. Rudyak):

Does the equality $\text{cat}_{LS}(M \times M) = 2 \text{cat}_{LS} M$ hold true for closed manifolds M?

There were partial results on both problems. Thus, the Rudyak conjecture was proven in some special cases [Ru1], [Ru2], [DSc]. A finite 2-dimensional complex that does not satisfy the equality $\text{cat}_{LS}(X \times X) = 2 \text{cat}_{LS} X$ were constructed in [H], [St2].

In this paper we connect both problems to Iwase’s examples. In particular, we prove the following

1.1. Theorem.

$$\text{cat}_{LS}(M_3 \times M_3) \leq 5 < 2 \text{cat}_{LS} M_3.$$

We connect the Rudyak Conjecture with computation of $\text{cat}_{LS}(M_2 \times M_3)$. Namely, we show that if $\text{cat}_{LS}(M_2 \times M_3) \geq 5$, then there is a counterexample to the Rudyak Conjecture. In this paper we managed to prove only the inequality $\text{cat}_{LS}(M_2 \times M_3) \geq 4$.

2. Preliminaries

2.1. Ganea-Schwarz approach to the LS-category. An element of an iterated join $X_0 \ast X_1 \ast \cdots \ast X_n$ of topological spaces is a formal linear combination $t_0 x_0 + \cdots + t_n x_n$ of points $x_i \in X_i$ with $\sum t_i = 1$, $t_i \geq 0$, in which all terms of the form $0 x_i$ are dropped. Given fibrations
The fiberwise join of fibrations f_0, \ldots, f_n is the fibration

$$f_0 * \cdots * f_n : X_0 * \cdots * X_n \to Y$$

defined by taking a point $t_0x_0 + \cdots + t_nx_n$ to $f_i(x_i)$ for any i. As the name ‘fiberwise join’ suggests, the fiber of the fiberwise join of fibrations is given by the join of fibers of fibrations.

When $X_i = X$ and $f_i = f : X \to Y$ for all i the fiberwise join of spaces is denoted by $s^{-1}_Y \cdot X$ and the fiberwise join of fibrations is denoted by $s^{-1}_Y \cdot f$. For a path connected topological space X, we turn an inclusion of a point $* \to X$ into a fibration $p_0^Y : G_0X \to X$. The n-th Ganea space of X is defined to be the space $G_nX = s^{-1}_X \cdot G_0X$, while the n-th Ganea fibration $p_n^X : G_nX \to X$ is the fiberwise join of fibrations $p_0^X : G_0X \to X$. Thus, the fiber F_0X of p_0^X is the iterated join product $F_nX = s^{-1}_X \cdot \Omega X$ of the loop space of X.

The following theorem was proven by D. Stanley [St] in greater generality.

2.1. Theorem. Let X be a connected CW-complex. Then $\text{cat}_{\text{LS}}(X) \leq n$ if and only if the fibration $p_n^X : G_nX \to X$ admits a section.

There is a chain of inclusions $G_0X \subset G_1X \subset G_2X \subset \ldots$ such that each p_n^X is a restriction of p_{n+1}^X to G_nX.

We recall that a map $f : X \to Y$ is called an n-equivalence if it induces isomorphisms of homotopy groups $f_* : \pi_i(X) \to \pi_i(Y)$ for $i < n$ and an epimorphism for $i = n$.

2.2. Proposition ([DS2]). Let $f : X \to Y$ be an s-equivalence of pointed r-connected CW-complexes with $r \geq 0$. Then the induced map $f_k : F_kX \to F_kY$ of the fibers of the k-th Ganea spaces is a $(k(r + 1) + s - 1)$-equivalence.

The following theorem was proven by D. Stanley [St] Theorem 3.5].

2.3. Theorem. Let X be a connected CW-complex with $\text{cat}_{\text{LS}} X = k > 0$. Then $\text{cat}_{\text{LS}} X^{(s)} \leq k$ for any s, where $X^{(s)}$ is the s-skeleton of X.

Proof. Since the inclusion $j : X^{(s)} \to X$ is an s-equivalence, by Proposition 2.2 the induced map $j_k : F_kX^{(s)} \to F_kX$ of the fibers of the k-th Ganea fibrations is a $(k + s - 1)$-equivalence. Since $s \leq k + s - 1$, this implies that a section of p_k^X defines a section of $p_k^{X^{(s)}}$. \hfill \square
2.2. **Berstein-Hilton invariant.** The Ganea spaces \(G_nX \) admit a reasonable homotopy theoretic description \([CLOT]\). We mention that \(G_1X \) is homotopy equivalent to \(\Sigma \Omega X \) where \(\Omega \) denote the loop space and \(\Sigma \) the reduced suspension. Moreover, \(p_1^X \) is homotopic to the composition \(e \circ h \) where \(h : G_1X \to \Sigma \Omega X \) is a homotopy equivalence and \(e : \Sigma \Omega X \to X \) is the evaluation map, \(e(\phi, t) = \phi(t) \).

There is a natural inclusion \(i_Y : Y \to \Omega \Sigma Y \) which takes \(y \in Y \) to the meridian loop \(\psi_y \) through \(y \). Note that \(i_\Omega X \) defines a section of the map \(\Omega(e) : \Omega \Sigma \Omega X \to \Omega X \). This proves the following

2.4. **Proposition.** The loop fibration \(\Omega p_n^X : \Omega G_nX \to \Omega X \) admits a canonical section \(s : \Omega p_n^X \to \Omega G_nX \).

2.5. **Corollary.** The induced map \((p_n^X)_* : \pi_k(G_nX) \to \pi_k(X) \) has a natural splitting for all \(n \geq 2 \).

We denote by \(r_* : \pi_k(G_nX) \to \pi_k(F_nX) \) the projection defined by the above splitting.

2.6. **Definition.** \([BH]\) Let \(\alpha \in \pi_k(X) \). We define the Berstein-Hilton invariant of \(\alpha \) as the family

\[
H_k(\alpha) = \{ r_* \sigma_*(\alpha) \in \pi_k(F_nX) \mid \sigma : X \to G_kX \text{ is a section}. \}
\]

We use notation \(H^p_k(\alpha) \in H_k(\alpha) \) for a representative of the homotopy class \([r_* \sigma_*(\alpha)] \in \pi_k(F_nX)\).

Since \(e : \Sigma \Omega S^n \to S^n \) has a unique homotopy section, \(H_1([f]) \) consists of one element for any \(f : S^k \to S^n \).

By the James decomposition formula \(\Sigma \Omega S^2 \) is homotopy equivalent to the wedge \(\bigvee_{i=1}^{\infty} S^{i+1} \) and for any \(\alpha \in \pi_k(S^2) \) the Berstein-Hilton invariant \(H_1(\alpha) \) is the collection of the \(j \)-th James-Hopf invariants (see \([CLOT]\), Section 6.2) \(h_j(\alpha) \in \pi_k(S^{j+1}) \), \(j \geq 2 \). Thus, \(H_1(\eta) = 1 \in \pi_3(S^3) = \mathbb{Z} \) for the Hopf bundle \(\eta : S^3 \to S^2 \).

The Berstein-Hilton invariant can be helpful in determining whether

\[
\text{cat}_{LS}(X \cup_{\alpha} D^{n+1}) \leq \text{cat}_{LS} X
\]

where \(\alpha : \partial D^{n+1} \to Y \) is the attaching map \([BH],[lw],[CLOT]\):

2.7. **Theorem.** Let \(\text{cat}_{LS} X = k \). If \(H_k(\alpha) \) contains 0, then

\[
\text{cat}_{LS}(X \cup_{\alpha} D^{n+1}) \leq k.
\]

The converse holds true whenever \(\dim X \leq k + n - 2 \).
2.3. **Fibration-Cofibration Lifting problem.** Let

\[
\begin{array}{ccc}
FY & \xrightarrow{i} & \bar{Y} \\
& s & \downarrow g \\
S^n & \xrightarrow{f} & X & \xrightarrow{j} & C(f)
\end{array}
\]

be a homotopy commutative diagram where the top row is a fibration \(p : \bar{Y} \to Y \) with the fiber \(FY \) and the bottom row is a cofibration sequence. The Fibration-Cofibration Lifting problem is to find a homotopy lift \(\bar{s} : C(f) \to \bar{Y} \) of \(g \) extending \(s \).

2.8. **Proposition.** Suppose that the inclusion homomorphism \(i_* : \pi_n(FY) \to \pi_n(\bar{Y}) \) is injective. Then there is unique up to homotopy map \(\phi : S^n \to FY \) that makes the diagram

\[
\begin{array}{ccc}
FY & \xrightarrow{i} & \bar{Y} \\
\phi & \downarrow s & \downarrow g \\
S^n & \xrightarrow{f} & X & \xrightarrow{j} & C(f)
\end{array}
\]

homotopy commutative.

The Fibration-Cofibration Lifting problem has a solution if and only if \(\phi \) is null-homotopic.

Proof. A canonical homotopy of \(jf \) to a constant map defines a homotopy \(H : S^n \times I \to Y \) of \(gjf \) to a constant map. There is a lift \(\bar{H} : S^n \times I \to \bar{Y} \) with \(\bar{H}|_{S^n \times 0} \) homotopic to \(sf \). Then \(\phi = \bar{H}|_{S^n \times 1} \). The injectivity condition implies the uniqueness of \(\phi \).

Clearly, a lift \(\bar{s} : C(f) \to \bar{Y} \) defines the lift \(\bar{H} \) such that \(\phi = \bar{H}|_{S^n \times 1} \) is a constant map to \(FY \).

Now assume that \(\phi = \bar{H}|_{S^n \times 1} \) is null-homotopic. Then the homotopy \(\bar{H} \), and a contraction of \(\bar{H}|_{S^n \times 1} \) to a point in \(FY \) define \(\bar{s} \). \(\square \)

2.9. **Remark.** When \(\text{cat}_{LS} X \leq k \) we fix a section \(\sigma : X \to G_kX \) of \(p_k^X \) and consider the following Fibration-Cofubration Lifting problem.

\[
\begin{array}{ccc}
F_kY & \xrightarrow{i} & G_kY \\
\phi & \downarrow s & \downarrow = \\
S^n & \xrightarrow{f} & X & \xrightarrow{j} & C(f)
\end{array}
\]

where \(s = G_k(j) \circ \sigma \) and \(j : X \to Y = X \cup_\alpha D^{n+1} \) is the inclusion. Since \(p_k \) is a split surjection for homotopy groups, the condition of
Proposition 2.8 is satisfied. Moreover, \(\phi \) is homotopic to \(F_k(j) \circ H_k(\alpha) \). This explains the first part of Theorem 2.7. By Proposition 2.2, \(F_\alpha \) is the attaching map. 2.10. Theorem category of the product \(B \) of a map \(f \) be the quotient map. Then \(M \) is the image under the pull-back map \(\bar{g} : D^{t+1} \times S^r \to M \). Let \(\Psi : S^t \times S^r \to S^t \) be the restriction of \(\bar{g} \) to \(\partial D^{t+1} \times S^r \). Then \(M = S^r \cup \Psi (D^{t+1} \times S^r) \). We consider the standard CW complex structures on \(D^{t+1} = S^t \cup e^{t+1} \) and \(S^r = \ast \cup e^r \). Then \(D^{t+1} \times \ast = (S^t \times S^r) \cup (e^{t+1} \times \ast) \cup (e^{t+1} \times e^r) \). Thus, we obtain

\[
M = S^r \cup \alpha e^{t+1} \cup \psi e^{r+t+1}
\]

with \(\alpha = \Psi |_{S^t \times \ast} \) where the sphere \(S^r \) is identified with \(q^{-1}(x_0) \).

If \(q' : M' \to S^{t+1} \) is the pull-back of \(q \) with respect to the suspension of a map \(f : S^r \to S^t \), then \(\Psi' \) factors through \(\Psi \) and \(\alpha' = \alpha \circ f \).

Clearly, \(\text{cat}_{LS} M \leq 3 \). The category of \(M \) and in some cases the category of the product \(M \times S^n \) can be computed in terms of the attaching map \(\alpha \) in view of the following.

2.10. Theorem (LW2). Let \(t > r > 1 \) and \(H_1(\alpha) \neq 0 \). Then

- \(\text{cat}_{LS} M = 3 \) if and only if \(\Sigma^r H_1(\alpha) \neq 0 \).
- \(\Sigma^{n+r} H_1(\alpha) = 0 \) implies \(\text{cat}_{LS} (M \times S^n) = 3 \).
- \(\Sigma^{n+r+1} H_2(\alpha) \neq 0 \) implies \(\text{cat}_{LS} (M \times S^n) = 4 \).

2.5. Homotopy groups of spheres. We follow the notations from Toda’s book [1]. The Hopf bundles \(\eta : S^3 \to S^2 \), \(\nu : S^7 \to S^4 \), and \(\sigma : S^{15} \to S^8 \) produce by suspensions the elements \(\eta_n \in \pi_{n+1}(S^n) \), \(\nu_n \in \pi_{n+3}(S^n) \), and \(\sigma_n \in \pi_{n+7}(S^n) \). We use the notation \(\eta^2_n \) for the composition \(\eta_n \circ \eta_{n+1} : S^{n+2} \to S^n \) as well as for the generator of \(\pi_{n+2}(S^n) = \mathbb{Z}_2 \). The generator \(\epsilon_3 \) of the \(\mathbb{Z}_2 \) summand of \(\pi_{11}(S^3) \) and its suspensions produce generators \(\epsilon_n \in \pi_{n+8}(S^n) \).

2.11. Proposition. Let \(\phi = \eta^2_3 \circ \epsilon_5 \in \pi_{13}(S^2) \). Then \(\Sigma^5 \phi \neq 0 \) and \(\Sigma^6 \phi = 0 \).

Proof. For \(n \geq 2 \), \(\Sigma^n \phi = \eta^2_{n+3} \circ \epsilon_{n+5} = 4(\nu_{n+3} \circ \sigma_{n+6}) \) by (7.10) of [1]. By Theorem 7.3 (2) [1], \(\nu_{n+3} \circ \sigma_{n+6} \) generates the subgroup \(\mathbb{Z}_8 \subset \pi_{n+13}(S^{n+3}) \) for \(n = 2, 3, 4, 5 \). Hence, \(\Sigma^5 \phi \neq 0 \). By (7.20) in [1] \(\Sigma^6 \phi = 4(\nu_9 \circ \sigma_{12}) = 0 \).

We recall some facts about primary \(p \)-components \(\pi_i(S^n; p) \) of homotopy groups \(\pi_i(S^n) \) for odd prime \(p \). Namely, for \(i \in \{1, 2, \ldots, p - 1\}, m \geq 1 \),

\[
\pi_{2m+1+2i(p-1)-1}(S^{2m+1}; p) = \mathbb{Z}_p
\]
with the generators $\alpha_i(2m + 1)$ satisfying the condition $\Sigma^2\alpha_i(2m - 1) = \alpha_i(2m + 1)$. Using suspension we define $\alpha_i(n)$ for even n as well. Then the group $\pi_{2(p-1)+1}(S^3; p) \cong \mathbb{Z}_p$ (see [T] Proposition 13.6.) for $2 \leq i \leq p$ is generated by $\alpha_1(p) \circ \alpha_{i-1}(2p)$. There is Serre isomorphism

$$\pi_i(S^{2m}; p) \cong \pi_{i-1}(S^{2m-1}; p) \oplus \pi_i(S^{4m-1}; p)$$

such that the suspension $\Sigma : \pi_{i-1}(S^{2m-1}; p) \to \pi_i(S^{2m}; p)$ defines the embedding of the first summand.

2.12. Proposition. Let $\psi = \alpha_1(3) \circ \alpha_2(6)$. Then $\Sigma^3\psi \neq 0$ and $\Sigma^4\psi = 0$.

Proof. By (13.6)' in [T] the group $\pi_{13}(S^3; 3) = \mathbb{Z}_3$ is generated by ψ. By Theorem 13.9 [T], $\pi_{14}(S^3; 3) = \mathbb{Z}_3$, $\pi_{16}(S^5; 3) = \mathbb{Z}_9$, and $\pi_{15}(S^5; 3) = \mathbb{Z}_9$. The exact sequence (13.2) from [T] in view of (13.6) produces the exact sequence

$$0 \to \pi_{14}(S^3; 3) \xrightarrow{\Sigma^2} \pi_{16}(S^5; 3) \to \mathbb{Z}_3 \to \pi_{13}(S^3; 3) \xrightarrow{\Sigma^2} \pi_{15}(S^5; 3) \to \mathbb{Z}_3$$

which implies that $\pi_{13}(S^3; 3) \xrightarrow{\Sigma^2} \pi_{15}(S^5; 3)$ is injective. Therefore, $\Sigma^2\psi$ generates a subgroup $\mathbb{Z}_3 \subset \mathbb{Z}_9 = \pi_{15}(S^5; 3)$. In particular, $\Sigma^2\psi \neq 0$.

By the Serre isomorphism, the suspension homomorphism $\pi_{15}(S^5; 3) \to \pi_{16}(S^6; 3)$ is a monomorphism. Hence, $\Sigma^3\psi \neq 0$.

The exact sequence (13.2) from [T] implies that the following sequence

$$\mathbb{Z}_3 \to \pi_{15}(S^5; 3) \xrightarrow{\Sigma^2} \pi_{17}(S^7; 3) \to 0$$

is exact. Since $\pi_{17}(S^7; 3) = \mathbb{Z}_3$ (Theorem 3.19 [T]), this implies that $\Sigma^4\psi = 0$. \qed

3. Iwase’s Examples

3.1. Manifold M_2. The S^1-action on S^7 defines a factorization of the Hopf bundle $\nu_4 : S^7 \to S^4$ through the S^2-bundle $h : \mathbb{C}P^3 \to S^4$. Iwase defined M_2 as the total space of the S^2-bundle $q_2 : M_2 \to S^{14}$ induced from h by means of the suspension map $f_2 = \Sigma f_2'$ where f_2' represents $\eta_3^2 \circ \epsilon_5 \in \pi_{13}(S^3)$. Then the gluing map $\Psi : S^{13} \times S^2 \to S^2$ for M_2 is the composition $\Psi_0 \circ f_2'$ where $\Psi_0 : S^3 \times S^2 \to S^2$ is the gluing map for h. Then the attaching map for the 14-cell in M_2 is the composition $\alpha = \alpha_0 \circ f_2'$ where α_0 is the attaching map of the 4-cell in $\mathbb{C}P^2$. Thus, α represents $\eta \circ \eta_3^2 \circ \epsilon_5$:

$$S^{13} \xrightarrow{\epsilon_5} S^5 \xrightarrow{\eta_3} S^4 \xrightarrow{\eta_3} S^3 \xrightarrow{\eta} S^2.$$

The following is a minor refinement of Iwase’s theorem [Iw2].
3.1. **Proposition.** The manifold M_2 has the following properties:

1. $\text{cat}_{LS}(M_2 \times S^n) = 3$ for $n \geq 4$;
2. $\text{cat}_{LS} M_2 = 3$;
3. $\text{cat}_{LS}(M_2 \times S^1) = \text{cat}_{LS}(M_2 \times S^2) = 4$;
4. There is a map $f : S^{14} \times S^2 \to M_2$ of degree 2.

Proof. To prove (1)-(3) we show that $H_1(\alpha) = h_2(\alpha) = \phi$. Then by Proposition 2.11, $\Sigma^2 H_1(\alpha) \neq 0$, $\Sigma^6 H_1(\alpha) = 0$, and $\Sigma^5 h_2(\alpha) \neq 0$. Theorem 2.10 implies that $\text{cat}_{LS} M_2 = 3$, $\text{cat}_{LS}(M_2 \times S^n) = 3$ for $n \geq 4$ and $\text{cat}_{LS}(M_2 \times S^1) = \text{cat}_{LS}(M \times S^2) = 4$.

Let $i_X \to \Omega \Sigma X$ denote the natural inclusion. If $\beta = \eta \circ \gamma$ were $\gamma = \Sigma \gamma'$ is a suspension, $\gamma' : S^k \to S^r$, then the commutativity of diagram

\[
\begin{array}{ccc}
\Sigma \Omega \Sigma S^k \ & \xrightarrow{\eta_1} \ & \Sigma \Omega \Sigma S^r \\
\Sigma i_{S^k} \uparrow & & \downarrow \Sigma i_{S^r}
\end{array}
\]

implies that $H_1(\beta) = H_1(\eta) \circ \gamma$ and $h_j(\beta) = h_j(\eta) \circ \gamma$. If $\eta : S^3 \to S^2$, then $h_j(\eta) = 0$ for $j \geq 3$, $h_2(\eta) = H_1(\eta)$, and $h_2(\beta) = H_1(\beta)$.

Note that $\eta^2_3 \circ \epsilon_5$ is a suspension since by definition η^2_3 and ϵ_m are suspensions for $n > 2$ and $m > 3$, and for the Hopf map, $H_1(\eta) = 1$. Then, $h_2(\alpha) = H_1(\alpha) = H_1(\eta) \circ (\eta^2_3 \circ \epsilon_5) = \eta^2_3 \circ \epsilon_5 = \phi \in \pi_{13}(S^3)$ for the map ϕ defined in Proposition 2.11.

Proof of (4). Let $2 : S^{14} \to S^{14}$ be a map of degree 2. It induces the map of the pull-back manifold $f : M' \to M_2$ of degree 2. Note that M' is the pull-back of $\mathbb{C}P^3$ with respect to the map $f_2 \circ q$ which defines zero element of $\pi_{14}(S^4)$, since $\Sigma(\eta^2_3 \circ \epsilon_5) \circ 2 = \eta^2_3 \circ \epsilon_6 \circ 2 = (2 \eta^2_3) \circ \epsilon_6 = 0$ in view of the equality $2 \eta_n = 0$ for $n > 2$. Therefore, M' is homeomorphic to $S^{14} \times S^2$. \hfill \square

3.2. **Manifold** M_3. The manifold M_3 is defined as the total space of the S^2-bundle $q_3 : M_3 \to S^{14}$ induced from $h : \mathbb{C}P^3 \to S^4$ by means of the suspension map $f_3 = \Sigma f_3^4$ where $f_3^4 : S^{13} \to S^3$ is a map representing $\alpha_1(3) \circ \alpha_2(6)$. Then in the construction of M_2 the attaching map $\alpha = \alpha_0 \circ f_3$ where α_0 is the attaching map of the 4-cell in $\mathbb{C}P^2$. Thus, α represents $\eta_2 \circ \alpha_1(3) \circ \alpha_2(6)$:

\[
\begin{array}{cccc}
S^{13} \xrightarrow{\Sigma \alpha_2(5)} S^6 & \xrightarrow{\alpha_1(3)} & S^3 & \xrightarrow{\eta_2} S^2.
\end{array}
\]

3.2. **Proposition.** The manifold M_3 has the following properties:

1. $\text{cat}_{LS}(M_3 \times S^n) = 3$ for $n \geq 2$;
(2) \(\text{cat}_{LS} M_3 = 3 \);
(3) There is a map \(f : S^{14} \times S^2 \to M_3 \) of degree 3.

Proof. Properties (1) and (2) were proven in [Iw1] by application of Theorem 2.10. Namely, it was shown that \(H_1(\alpha) = h_2(\alpha) = \psi \) and then Proposition 2.12 was applied.

The argument for this is similar to the argument in the proof of Proposition 3.1 with the difference is that \(\alpha_1 p_3 q : S^6 \to S^3 \) is a suspension. It turns out that \(\alpha_1 p_3 q \) is a co-H map and this is sufficient to get the equality \(H_1(\alpha) = H_1(\eta) \circ (\alpha_1(3) \circ \Sigma \alpha_2(5)) \).

Proof of (3) is similar to the proof of (4) in Proposition 3.1 and it is based on the fact that \(\alpha_1(3) \) has the order 3. \(\square \)

4. Category of the product

It is known [Iw],[SS] that in Ganea’s definition of the category of the product of two complexes \(X \times Y \) instead of the Ganea fibrations \(p_k : G_k(X \times Y) \to X \times Y \) one can take a map with the smaller domain

\[
\hat{G}_k(X \times Y) = \bigcup_{i+j=k} G_iX \times G_jY \subset G_kX \times G_kY.
\]

There is the natural projection \(\hat{p}_k : \hat{G}_k(X \times Y) \to X \times Y \) with fibers

\[
\hat{F}_k(X \times Y) = \bigcup_{i+j=k} F_iX \times F_jY \subset F_kX \times F_kY.
\]

It is known that \(\text{cat}_{LS}(X \times Y) \leq k \) if and only if \(\hat{p}_k \) admits a homotopy section [Iw]. Though it is not important for our main result, we give a sketch of proof that in the case of CW complexes \(X \) and \(Y \) a homotopy section of \(\hat{p}_k \) can be replaced by a section.

4.1. Proposition. For CW complexes \(X \) and \(Y \) the map

\[
\hat{p}_k : \hat{G}_k(X \times Y) \to X \times Y
\]

is a Serre fibration.

We recall that a map is called a Serre fibration if it satisfies the homotopy lifting property for CW complexes. This is equivalent to have the homotopy lifting property for \(n \)-cubes for all \(n \).

The proof of Proposition 4.1 is based on the following two facts.

We say that a map \(p : E \to B \) satisfies the Homotopy Lifting Property for a pair \((X, A) \) if for any homotopy \(H : X \times I \to B \) with a lift \(H' : A \times I \to E \) of the restriction \(H|_{A \times I} \) and a lift \(H_0 \) of \(H|_{X \times 0} \) which agrees with \(H' \), there is a lift \(\tilde{H} : X \times I \to E \) of \(H \) which agrees with \(H_0 \) and \(H' \). The following is well-known [Ha]:
4.2. Theorem. Any Serre fibration $p : E \to B$ satisfies the Homotopy Lifting Property for CW complex pairs (X, Λ).

We use the abbreviation ANE for absolute neighborhood extensors for the class of finite dimensional spaces. Such spaces can be characterized as those which are locally n-connected for all n.

4.3. Lemma (Pasting Lemma for Fibrations). Let $p : E \to B$ be a map between ANE spaces with closed subsets $E_1, E_2 \subset E$ such that all spaces $E_1, E_2, E_1 \cap E_2$ are ANE. Suppose that the restrictions $p_1 = p|_{E_1} : E_1 \to B$, $p_2 = p|_{E_2} : E_2 \to B$, and $p_0 = p|_{E_1 \cap E_2} : E_1 \cap E_2 \to B$, are Serre fibrations. Then the restriction $\hat{p} = p|_{E_1 \cup E_2} : E_1 \cup E_2 \to B$ is a Serre fibration.

Proof. Let $H : Z \times I \to B$ be a homotopy of a finite CW complex Z with a fixed lift $\tilde{h} : Z \to E_1 \cup E_2$ of $H|_{Z \times \{0\}}$. Let $Z_1 = \tilde{h}^{-1}(E_1)$, $Z_2 = \tilde{h}^{-1}(E_2)$, and $Z_0 = \tilde{h}^{-1}(E_1 \cap E_2)$. If it happens to be that Z_0 is a CW complex we apply homotopy lifting property of p_0 to $H|_{Z_0 \times I}$. Then we apply Theorem 4.2 twice, first for to p_1 and then for \hat{p} and we are done.

For general Z_0 we apply the standard trick sketched below. We use the ANE property to find a CW complex neighborhood A of Z_0 and a map $\hat{h} : Z \to E_1 \cup E_2$ with $\hat{h}(A) \subset E_1 \cap E_2$, and with a small homotopy $\hat{h}_t : Z \to E_1 \cup E_2$ joining \tilde{h} and \hat{h} and stationary on Z_0. Using local contractibility property of B we may achieve that the homotopy \hat{h}_t is fiberwise. Thus, we obtain a lift of H if our homotopy H is stationary on a small neighborhood of $Z \times \{0\}$. Generally, we change the fiberwise homotopy \hat{h}_t by pushing it along the paths of H with such control that $\hat{h}_1(A) \subset E_1 \cap E_2$. \hfill \Box

Now the proof of Proposition 4.1 can be given by induction using the Pasting Lemma and the fact that for a CW-complex X all the spaces $G_k X$ are ANE.

There are two important facts about \hat{p}_k [16]: There is a lift $\mu : G_k(X \times Y) \to \hat{G}_k(X \times Y)$ of p_k with respect to \hat{p}_k and there is the inequality $\text{cat}_{LS} \hat{G}_k(X \times Y) \leq k$. The latter can be proven by the cone length estimate (see [SS]). The inequality $\text{cat}_{LS} \hat{G}_k(X \times Y) \leq k$ implies that there is a lift

$$\lambda = \lambda_{k,X,Y} : \hat{G}_k(X \times Y) \to G_k(X \times Y)$$

of \hat{p}_k with respect to $p^{X \times Y}_k : G_k(X \times Y) \to X \times Y$.
Since p_k is a split surjection for homotopy groups, the lift μ ensures that \hat{p}_k is also a split surjection for homotopy groups. Hence the inclusion homomorphism $\pi_n(\hat{F}_k(X \times Y)) \to \pi_n(\hat{G}_k(X \times Y))$ is injective for all n.

Since the inclusions $F_r Z \to F_{r+1} Z$ are null-homotopic for all Z and k, there are natural maps
\[
\eta_{i,j} : F_i X \times F_j Y \to (F_{i+1} X \times F_j Y) \cup (F_i X \times F_{j+1} Y) \subset \hat{F}_{i+j+1}.
\]

Let $Q = S^2 \cup_{\alpha} D^{14}$ with $\alpha : S^{13} \to S^2$ from the construction of M_3.

4.4. **Theorem.** Iwase’s manifold M_3 satisfies the inequality
\[
\text{cat}_{LS}(M_3) \leq 5 < 2 \text{cat}_{LS} M_3.
\]

Proof. We recall that $M_3 = S^2 \cup_{\alpha} e^{14} \cup_{\psi} e^{16} = Q \cup e^{16}$. Consider the product CW-complex structure on $M_3 \times M_3$. Define a sequence of CW subspaces
\[
X_1 \subset X_2 \subset X_3 \subset X_4 = M_3 \times M_3
\]
as follows
\[
X_1 = (Q \times S^2) \cup (S^2 \times Q),
X_2 = X_1 \cup (M_3 \times *) \cup (*) \times M_3 = X_1 \cup (e^{16} \times *) \cup (\ast \times e^{16}),
X_3 = (M_3 \times S^2) \cup (S^2 \times M_3) \cup (Q \times Q) = X_2 \cup (e^{16} \times e^2) \cup (e^2 \times e^{16} \cup (e^{14} \times e^{14}),
X_4 = (M_3 \times Q) \cup (Q \times M_3) = X_2 \cup (e^{16} \times e^{14}) \cup (e^{14} \times e^{16}),
X_5 = M_3 \times M_3 = X_3 \cup (e^{16} \times e^{16}).
\]

It suffices to prove the inequality $\text{cat}_{LS} X_3 \leq 3$. Then since X_4 is obtained from X_3 by attaching cells to X_3, we get $\text{cat}_{LS} X_4 \leq 4$. Finally, $\text{cat}_{LS} X_4 \leq 5$. \Box

4.5. **Proposition.** $\text{cat}_{LS} X_3 \leq 3$.

Proof. Note that X_3 is obtained by attaching three cells to X_2, two cells of dimension 18 and one of dimension 28. The attaching map α defines the attaching map $\bar{\alpha}$ in
\[
Q \times Q = X_1 \cup_{\bar{\alpha}} e^{28}.
\]

We denote by $\bar{\alpha}$ the attaching map of the 28-cell to X_2. Thus $\bar{\alpha}$ is the composition $\bar{\alpha}$ and the inclusion $X_1 \subset X_2$. Let
\[
\bar{\psi} : S^{17} \to (M_3 \times *) \cup (Q \times S^2)
\]
denote the attaching map of the top cell in $M_3 \times S^2$. Note that
\[
X_2 = (((M_3 \times *) \cup (Q \times S^2)) \cup ((S^2 \times Q) \cup (* \times M_3))).
\]
Then the attaching maps of the 18-cells in X_3 can be presented as $ψ_− = i_− \circ ψ$ and $ψ_+ = i_+ \circ ψ$ where $i_±$ are two symmetric inclusions of $(M_3 \times *) \cup (Q \times S^2)$ into X_2.

We consider the embeddings $G_3M_3 \times * \to G_3M_3 \times G_0M_3$ and $G_2Q \times G_1S^2 \to G_2M_3 \times G_1M_3$ generated by the inclusions $*, S^2, Q \subset M_3$. Then

$\hat{X}_2 = (G_3M_3 \times *) \cup (G_2Q \times G_1S^2) \cup (G_1S^2 \times G_2Q) \cup (* \times M_3)$

is embedded in $\hat{G}_3(M_3 \times M_3)$. Let \bar{i} denotes the embedding. There is a natural projection p' of \hat{X}_2 onto $X_2 = (M_3 \times *) \cup (Q \times S^2) \cup (S^2 \times Q) \cup (* \times M_3)$ that makes a commutative diagram

\[
\begin{array}{ccc}
\hat{X}_2 & \xrightarrow{\bar{i}} & \hat{G}_3(M_3 \times M_3) \\
p' \downarrow & & \downarrow \bar{p}_3 \\
X_2 & \xrightarrow{\bar{e}} & M_3 \times M_3.
\end{array}
\]

We define a section $\hat{s} : X_2 \to \hat{X}$ of p' as follows.

Let $ψ : S^{15} \to Q$ be the attaching map in the construction of $M_3 = S^2 \cup_α e^{14} \cup_ψ e^{16}$. It was proven in [Iw1] and explicitly exhibited in [Iw2] that there is a section $σ : Q \to G_2Q$ such that $H^2_2(ψ)$ is homotopic to the composition $β \circ Σ^2H_1(α)$ for some $β$. The section $σ$ extends to a section $σ' : M_3 \to G_3M_3$ (called a standard section in [Iw1]). Then we define

$\hat{σ} : X_2 \to X_2' = (G_2Q \times S^2) \cup (S^2 \times G_2Q) \cup (G_3M_3 \times pt) \cup (pt \times G_3M_3)$

to be the restriction of $σ' \times 1_{S^2} \cup 1_{S^2} \times σ'$ to Y. The space X_2' has a natural inclusion $ξ : X_2' \to X_2$. We define

$s = \bar{i} \circ ξ \circ \hat{σ} : X_2 \to \hat{G}_3(M_3 \times M_3)$.

For each attaching map $f \in \{ψ_−, ψ_+, \bar{α}\}$ we consider the Fibration-\(\text{Cofibration Lifting problem}\)

\[
\begin{array}{ccc}
\hat{F}_3(M_3 \times M_3) & \xrightarrow{i} & \hat{G}_3(M_3 \times M_3) & \xrightarrow{\bar{p}_3} & M_3 \times M_3 \\
S^n & \xrightarrow{f} & X_2 & \xrightarrow{j} & C(f)
\end{array}
\]

In Lemma 4.6 and Lemma 4.7 we show that each of the three lifting problems has a solution. This defines a lift $\hat{s} : X_3 \to \hat{G}_3(M_3 \times M_3)$ of the inclusion $X_3 \subset M_3 \times M_3$ extending s.

Let $\hat{s} : X_3 \to \hat{G}_3(M_3 \times M_3)$ be such a lift. Then $λ \circ \hat{s} : X_3 \to G_3(M_3 \times M_3)$ is a lift of the inclusion $X_3 \subset M_3 \times M_3$ with respect to
$p_3 : G_3(M_3 \times M_3) \to M_3 \times M_3$ where $\lambda : \hat{G}_3(M_3 \times M_3) \to G_3(M_3 \times M_3)$ is a lift of \hat{p}_3 with respect to p_3. Since the inclusion $X_3 \to M_3 \times M_3$ is a 29-equivalence, by Proposition 2.2 the inclusion of fibers $F_3X_3 \to F_3(M_3 \times M_3)$ is a $(2 \times 3 + 29 - 1)$-equivalence. In the pull-back diagram

$\begin{array}{ccc}
G_3X_3 & \to^q & Z \\
p' \downarrow & & p_3 \downarrow \\
X_3 & \subseteq & M_3 \times M_3.
\end{array}$

the lift $\lambda \tilde{s}$ defines a section $\nu' : X_3 \to Z$. The map p^{X_3} factors as $p' \circ q$ where q is a 34-equivalence. Since $\dim X_3 = 28$, there is a lift of ν' to a section of G_3X_3. Therefore, $\text{cat}_{LS} X_3 \leq 3$.

4.6. Lemma. There are lifts $s_{1, 2} : C(\psi_{\pm}) \to \hat{G}_3(M_3 \times M_3)$ with respect to $\hat{p}_3 : \hat{G}_3(M_3 \times M_3) \to M_3 \times M_3$ of the inclusion $C(\psi_{\pm}) \subset M_3 \times M_3$ that extend s.

Proof. Since the inclusion $i : \hat{F}_3(M_3 \times M_3) \to \hat{G}_3(M_3 \times M_3)$ is injective on the homotopy groups, in view of Proposition 2.3 it suffices to define a null-homotopic map $\phi_{\pm} : S^{17} \to \hat{F}_3(M_3 \times M_3)$ such that $i \circ \phi_{\pm}$ is homotopic to $s \circ \psi_{\pm}$.

The construction of ϕ_{\pm} is based on Iwase’s proof of the inequality $\text{cat}_{LS}(M_3 \times S^2) \leq 3$ [Iw1]. We consider the homotopy commutative diagram from Proposition 3.7 in [Iw1] amended by the right column

$\begin{array}{ccc}
F_2M_3 \ast F_0S^2 & \longrightarrow & G_3M_3 \times pt \cup G_2M_3 \times G_1S^2 \\
\downarrow j & & \downarrow \xi \\
F_2Q \ast S^1 & \longrightarrow & G_3M_3 \times pt \cup G_2Q \times S^2 \\
\downarrow H_2^\sigma(\psi) \ast 1_{S^1} & & \downarrow \sigma_1 \\
S^{15} \ast S^1 & \longrightarrow & M_3 \times pt \cup Q \times S^2 \\
\bar{\psi} & & \bar{\sigma} \\
& & \bar{\sigma} \\
& & \bar{\sigma} \\
\end{array}$

where j is generated by the inclusions $Q \to M_3$ and $S^1 \to \Omega \Sigma S^1 = F_0S^2$, σ_1 is the restriction of $\bar{\sigma}$, and ψ is taken from Proposition 3.2.

By Proposition 2.12 $\Sigma^4 \psi = 0$. Therefore,

$H_2^\sigma(\psi) \ast 1_{S^1} = \Sigma^2H_2^\sigma(\psi) = \Sigma^2\beta \circ \Sigma^4H_1(\alpha) = 0$.

Therefore, $\theta = \tilde{j} \circ (H_\tau^s(\psi) \ast 1_{s_1})$ is null-homotopic. Thus, we have a homotopy commutative diagram

$$
\begin{array}{c}
\hat{F}_3(M_3 \times M_3) \\
\phi \downarrow \\
S^{17} \\
\psi \downarrow \\
X_2
\end{array} \xrightarrow{i} \begin{array}{c}
\hat{G}_3(M_3 \times M_3) \\
\phi \downarrow \\
S^{17} \\
\psi \downarrow \\
X_2
\end{array}
$$

with null-homotopic $\phi = j_\pm \circ \eta_{2,0} \circ \theta$. Here $\eta_{2,0} : F_2M_3 \ast F_0S^2 \rightarrow \hat{F}_3(M_3 \times S^2)$ and $j_\pm : \hat{F}_3(M_3 \times S^2) \rightarrow \hat{F}_3(M_3 \times M_3)$ are the inclusions induced by i_\pm. By Proposition 2.8 there are the required lifts s_1 and s_2. □

4.7. Lemma. There is lifts $s_3 : C(\hat{\alpha}) \rightarrow \hat{G}_3(M_3 \times M_3)$ with respect to $\hat{p}_3 : \hat{G}_3(M_3 \times M_3) \rightarrow M_3 \times M_3$ of the inclusion $C(\hat{\alpha}) \subset M_3 \times M_3$ that extends s.

Proof. The construction of s_3 is based on Harper’s proof \[H\] of the inequality $\text{cat}_{LS}(Q \times Q) \leq 3$. We consider the homotopy commutative diagram from \[H\] completed by the right commutative square

$$
\begin{array}{ccc}
F_1Q \ast F_1Q & \longrightarrow & G_2Q \times G_1Q \cup G_1Q \times G_2Q \\
\downarrow H^s_1(\alpha) \ast H^s_1(\alpha) & & \downarrow s' \\
S^{13} \ast S^{13} & \longrightarrow & Q \times S^2 \cup S^2 \times Q \\
\alpha \downarrow & & \downarrow s \\
& & X_2
\end{array}
$$

where s' is the restriction of s. By the Barratt-Hilton formula (\[T\], Proposition 3.1) we obtain

$$H^s_1(\alpha) \ast H^s_1(\alpha) = \Sigma(H_1(\alpha) \wedge H_1(\alpha)) = \Sigma(\Sigma^2H_1(\alpha) \circ \Sigma^3H_1(\alpha)).$$

Since $\Sigma^4H_1(\alpha) = 0$, we obtain that the map $\theta = H^s_1(\alpha) \ast H^s_1(\alpha)$ is null-homotopic.

Again, we apply Proposition 2.8 to the homotopy commutative diagram

$$
\begin{array}{c}
\hat{F}_3(M_3 \times M_3) \\
\phi \downarrow \\
S^{28} \\
\alpha \downarrow \\
X_2
\end{array} \xrightarrow{} \begin{array}{c}
\hat{G}_3(M_3 \times M_3) \\
\phi \downarrow \\
S^{28} \\
\alpha \downarrow \\
X_2
\end{array}
$$

with null-homotopic $\phi = \tilde{j} \circ \eta_{1,1} \circ \theta$ to obtain a lift s_3. Here $\eta_{1,1} : F_1Q \ast F_1Q \rightarrow \hat{F}_3(Q \times Q)$ and $\tilde{j} : \hat{F}_3(Q \times Q) \rightarrow \hat{F}_3(M \times M_3)$ is the inclusion induced by the inclusion $Q \times Q \subset M_3 \times M_3$. □

4.8. Proposition. cat$_{LS}(M_2 \times M_3) \geq 4$.
ON IWASE MANIFOLDS

Proof. We recall that both M_2 and M_3 have CW complex structures with one cell in each of the dimensions 0, 2, 14, and 16. Consider the product CW-complex structure on $X = M_2 \times M_3$. We show that $\text{cat}_{\text{LS}} X^{(18)} = 4$. Then by Theorem 2.3 $\text{cat}_{\text{LS}} X \geq 4$. Assume the contrary: $\text{cat}_{\text{LS}} X^{(18)} \leq 3$. Consider the pull-back diagram generated by the 3-rd Ganea fibrations and the inclusion $j : M_2 \times S^2 \to X^{(18)}$

$$
\begin{array}{cccc}
G_3(M_2 \times S^2) & \xrightarrow{\xi} & Z & \xrightarrow{p} \to G_3(X^{(18)}) \\
\downarrow & & \downarrow & \downarrow \text{p}_3 \\
M_2 \times S^2 & \xrightarrow{j} & X^{(18)} \\
\end{array}
$$

where $p' \circ \xi = p_3^{M_2 \times S^2}$. By the assumption there is a section of p_3 which induces a section of p'. Since the inclusion $j : M_2 \times S^2 \to X^{(18)}$ is a 13-equivalence and the spaces are 1-connected, by Proposition 2.2 the mapping between fibers of $F_3(M_2 \times S^2) \to F_3X^{(18)}$ is a $(2 \times 3 + 13 - 1)$-equivalence. Hence, the homotopy fiber of ξ is 18-connected. Since $\dim(M_2 \times S^2) = 18$, the section of p' can be lifted to a section of $p_3^{M_2 \times S^2}$. This implies a contradiction: $\text{cat}_{\text{LS}}(M_2 \times S^2) \leq 3$. □

4.9. Remark. By Theorem 2.3 the proper filtration $X^{(18)} \subset X^{(28)} \subset X^{(30)} \subset X$ defines a chain of inequalities $\text{cat}_{\text{LS}} X^{(18)} \leq \text{cat}_{\text{LS}} X^{(28)} \leq \text{cat}_{\text{LS}} X^{(30)} \leq \text{cat}_{\text{LS}} X$. In view of Theorem 2.7, whether any of the above inequalities is strict can be determined by Berstein-Hilton invariants. If one of this three opportunities for cat_{LS} to jump up is realized, then, as we show in the next section, there is a counter-example to the Rudyak conjecture.

5. Rudyak Conjecture

For a closed oriented manifold M and $k \in \mathbb{N}$ by kM we denote the connected sum of k copies off M and by $-kM$ we denote the connected sum $|k|M$ where \bar{M} is M taken with the opposite orientation. The following is obvious

5.1. Lemma. If M_1, \ldots, M_r are connected n-manifold, then there is a cofibration sequence

$$
\bigvee_{i=1}^{r-1} S^{n-1} \longrightarrow \#_{j=1}^{r} M_j \longrightarrow \bigvee_{j=1}^{r} M_j.
$$

A special case of the following proposition was proven in [Dr].

5.2. Proposition. Suppose that $g : N_1 \to M_1$ and $h : N_2 \to M_2$ are maps between closed manifolds of degree p and q for mutually prime p and q. Then there are $k, \ell \in \mathbb{Z}$ and a degree one map

$$
f : k(M_1 \times N_2) \# \ell(N_1 \times M_2) \to M_1 \times M_2.
$$
Proof. Let \(\dim N_1 = n_1 \) and \(\dim N_2 = n_2 \). Take \(k \) and \(\ell \) such that \(\ell p + k q = 1 \). We may assume that the above connected sum is obtained by taking the wedge of \((|k| + |\ell| - 1)\) copies of \((n_1 + n_2 - 1)\)-spheres embedded in one of the summands and gluing all other summands along those spheres. Consider the cofibration map from Lemma 5.1

\[
\psi : k(M_1 \times N_2) \# \ell(N_1 \times M_2) \to \bigvee_k (M_1 \times N_2) \vee \bigvee_\ell (N_1 \times M_2).
\]

Let the map

\[
\phi : \bigvee_k (M_1 \times N_2) \vee \bigvee_\ell (N_1 \times M_2) \to M_1 \times M_2
\]

be defined as the union

\[
\phi = \bigcup_k (1 \times g) \cup \bigcup_\ell (h \times 1).
\]

The degree of \(h \times 1 \) is \(p \) and the degree of \(1 \times g \) is \(q \). Hence the degree of \(f = \phi \circ \psi \) is \(\ell p + k q = 1 \). \(\square \)

5.3. Theorem. Suppose that \(g : N_1 \to M_2 \) and \(h : N_2 \to M_2 \) are maps between closed manifolds of degree \(p \) and \(q \) for mutually prime \(p \) and \(q \) and

\[
\max\{\text{cat}_{LS}(M_1 \times N_2), \text{cat}_{LS}(N_1 \times M_2)\} < \text{cat}_{LS}(M_1 \times M_2).
\]

Then there is a counter-example to Rudyak’s Conjecture.

Proof. By Proposition 5.2 there is a degree one map

\[
f : k(M_1 \times N_2) \# \ell(N_1 \times M_2) \to M_1 \times M_2.
\]

By the connected sum formula (\(*\)),

\[
\text{cat}_{LS}(k(M_1 \times N_2) \# \ell(N_1 \times M_2)) \leq \max\{\text{cat}_{LS}(M_1 \times N_2), \text{cat}_{LS}(N_1 \times M_2)\}.
\]

\(\square \)

5.4. Corollary. If \(\text{cat}_{LS}(M_2 \times M_3) \geq 5 \), then there is a counter-example to Rudyak’s conjecture.

Proof. By Proposition 3.1 and Proposition 3.2 there are maps of degree two, \(g : S^{14} \times S^2 \to M_2 \), and of degree three, \(h : S^{14} \times S^2 \to M_3 \). Then the map

\[
f : -(M_2 \times S^{14} \times S^2) \# 2(S^{14} \times S^2 \times M_3) \to M_2 \times M_3
\]

of Proposition 5.2 has degree one. We note that

\[
\text{cat}_{LS}(M_2 \times S^{14} \times S^2) \leq \text{cat}_{LS}(M_2 \times S^{14}) + \text{cat}_{LS} S^2 = 3 + 1 = 4
\]

and

\[
\text{cat}_{LS}(S^{14} \times S^2 \times M_3) \leq \text{cat}_{LS} S^2 + \text{cat}_{LS}(S^{14} \times M_3) = 4.
\]

\(\square \)
References

[Ba] A. Bassi, *Su alcuni nuovi invarianti delta varieta topologiche*, Ann. Mat. Pura Appl. IV-1 (1937), 275-297.

[BH] I. Berstein, P. J. Hilton, *Category and generalized Hopf invariant*, Illinois J. Math., 4 (1960), 437-451.

[CLOT] O. Cornea, G. Lupton, J. Oprea, D. Tanre, Lusternik-Schnirelmann Category, AMS, 2003.

[Dr] A. Dranishnikov, *The LS category of the product of lens spaces*, Algebr. Geom. Topol. 15 (2015) no 5, 2985-3010.

[DS1] A. Dranishnikov, R. Sadykov, *On the LS-category and topological complexity of a connected sum*. Proc. Amer. Math. Soc. 147 (2019), no. 5, 2235-2244.

[DS2] A. Dranishnikov, R. Sadykov, *The Lusternik-Schnirelmann category of connected sum*. Fund. Math, 251 (2020) no 3, 317-328.

[DSc] A. Dranishnikov, J. Scott, *Surgery Approach to Rudyak’s Conjecture*, Top. Appl. to appear

[F] R.H. Fox, *On the Lusternik-Schnirelmann category*, Ann. of Math. 42 (1941), 333-370.

[Ga] T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417-427.

[H] J. Harper, *Category and products*, Rend. Sem. Mat. Fis. Milano 68 (1998), 165-177.

[Ha] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.

[Iw] N. Iwase *Ganea’s Conjecture on Lusternik-Schnirelmann category*, Bull. Lond. Math. Soc. 30, (1998), 623-634.

[Iw1] N. Iwase, *A\alpha\beta\gamma-method in Lusternik-Schnirelmann category*, Topology 41 (2002), no. 4, 695-723.

[Iw2] N. Iwase, *Lusternik-Schnirelmann category of a sphere-bundle over a sphere*, Topology 42 (2003) 701-713.

[Ru1] Yu. Rudyak, *On category weight and its applications*. Topology 38 (1999) no. 1, 37–55.

[Ru2] Yu. Rudyak, *Maps of degree 1 and Lusternik-Schnirelmann category*, Topology Appl. 221 (2017), 225–230.

[Sch] A. Schwarz, The genus of a fibered space. Trudy Moscov. Mat. Obsc. 10, 11 (1961 and 1962), 217-272, 99-126.

[St1] D. Stanley, *Spaces with Lusternik-Schnirelmann category n and cone length n + 1*, Topology 39 (2000), 985-1019.

[St2] D. Stanley, *On the Lusternik-Schnirelman category of maps*, Canad. J. Math. Vol. 54 (3), (2002), 608-633.

[SS] D. Stanley and J. Strom, *Lusternik-Schnirelmann category of products with half-smashes*. ACT, 20 (2020), 439-450.

[T] H. Toda, Composition Methods in the Homotopy Groups of Spheres, Ann. math. Studies, Princeton, 1962.

Alexander N. Dranishnikov, Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL 32611-8105, USA

Email address: dranish@math.ufl.edu