Telocytes accompanying cardiomyocyte in primary culture: two- and three-dimensional culture environment

Jin Zhou #, Ye Zhang #, Xinyu Wen #, Junkai Cao #, Dexue Li, Qiuxia Lin, Haibin Wang, Zhiqiang Liu, Cuimi Duan, Kuikuwu Wu, Changyong Wang *

Department of Tissue Engineering, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People’s Republic of China

Received: September 4, 2010; Accepted: September 23, 2010

Abstract

Recently, the presence of telocytes was demonstrated in human and mammalian tissues and organs (digestive and extra-digestive organs, genitourinary organs, heart, placenta, lungs, pleura, striated muscle). Noteworthy, telocytes seem to play a significant role in the normal function and regeneration of myocardium. By cultures of telocytes in two-and three-dimensional environment we aimed to study the typical morphological features as well as functionality of telocytes, which will provide important support to understand their in vivo roles. Neonatal rat cardiomyocytes were isolated and cultured as seeding cells in vitro in two-dimensional environment. Furthermore, engineered myocardium tissue was constructed from isolated cells in three-dimensional collagen/Matrigel scaffolds. The identification of telocytes was performed by using histological and immunohistochemical methods. The results showed that typical telocytes are distributed among cardiomyocytes, connecting them by long telopodes. Telocytes have a typical fusiform cell body with two or three long moniliform telopodes, as main characteristics. The vital methylene blue staining showed the existence of telocytes in primary culture. Immunohistochemistry demonstrated that some c-kit or CD34 immuno-positive cells in engineered heart tissue had the morphology of telocytes, with a typical fusiform cell body and long moniliform telopodes. Also, a significant number of vimentin telocytes were present within engineered heart tissue. We suggest that the model of three-dimensional engineered heart tissue could be useful for the ongoing research on the functional relationships of telocytes with cardiomyocytes. Because the heart has the necessary potential of changing the muscle and non-muscle cells during the lifetime, telocytes might play an active role in the heart regeneration process. Moreover, telocytes might be a useful tool for cardiac tissue engineering.

Keywords: telocytes • telopodes • cardiomyocytes • three-dimensional culture • neonatal heart • engineered myocardium • CD34 • c-kit • vimentin

Introduction

Non-muscle cells of heart can produce marked effects on the cardiac structure and function. Among the non-muscle cell types, there is a special type of interstitial cells, called telocytes [1–5]. The morphology of these cells is outstanding: small oval cell body with extremely thin and long moniliform prolongations [1], appearing as an alternation of podomeres and podoms [2]. Such cells, previously called interstitial Cajal-like cells (ICLC), were found in many tissues and organs [6–21]. They seem similar, but are different from archetypal Cajal cells found in the gastrointestinal tract [1]. In view of their special morphology and difference from Cajal cells, they were named telocytes in 2010 by Popescu [1].

The current study confirmed that telocytes exist in the heart, including myocard, endocardium and epicardium [1, 4, 5, 22–25]. Located between cardiomyocytes, blood capillaries and nerve endings, they appear to create a network with roles for the function and regeneration of heart [1, 4, 23, 25]. Nevertheless, the mechanism has not yet been entirely understood due to very few reports on telocytes in vitro. Our study attempts to isolate and culture telocytes from neonatal rat cardiac tissues in vitro to study the appearance and characteristics of telocytes and to get more biological insights of the roles of telocytes in heart.

#These authors contributed equally to this work.
*Correspondence to: Changyong WANG, M.D., Ph.D., Department of Tissue Engineering, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, People’s Republic of China.
Tel.: +8610-66931592
Fax: +8610-68166874
E-mail: wcy2000@yahoo.com

doi:10.1111/j.1582-4934.2010.01186.x
At the same time, we have successfully constructed engineered heart tissues by using collagen/Matrigel scaffolds. The engineered heart tissues have rhythmic contractions. Their organizational structure is similar to normal myocardial tissue in vivo [26]. Considering the positive reports of telocytes on the normal heart structure, function and regeneration in vivo, we assumed that telocytes may have important effects to improve the quality of engineered heart tissue and to ensure the normal function of cardiomyocytes. However, there are no reports on telocytes in engineered heart tissue so far.

The purpose of this study was: (1) to culture telocytes in vitro in two-dimensional environment and identify their morphology and characteristics; (2) to investigate them in three-dimensional environment combined with the construction of engineered cardiac tissues and (3) to provide an in vitro model to investigate the roles of telocytes in heart.

Materials and methods

Newborn rat cardiac myocytes

We used the method as previously described in our lab [26]. In brief, cardiac myocytes were isolated from 1-day-old Wistar rats. The ventricles were minced and digested with 0.1% trypsin (Sigma, St. Louis, MO, USA) solution to release cells. The isolated cells were pre-plated on the tissue culture dishes for 1 hour to purify the cell suspension with cardiac myocytes by allowing fibroblasts attachment. The unattached cells were collected and cultured in medium.

Engineered cardiac tissue construction

In order to investigate telocytes in a three-dimensional environment, we constructed engineered cardiac tissue in collagen/Matrigel scaffolds using a refined method previously described [27]. In brief, 0.5 ml concentrated 2 × H-DMEM (Invitrogen, Carlsbad, CA, USA) culture medium containing 20% FBS (Invitrogen) was mixed with 0.5 ml of liquid collagen type I and a basement membrane protein mixture (Matrigel; Becton Dickinson Biosciences, San Jose, CA, USA) in 4:1 (v/v). The pH of the mixture was neutralized immediately by titration with 0.1 mol/l NaOH. A total of 1.0 × 10^7 freshly isolated cardiomyocytes were mixed with the mixture and pipetted into casting moulds for incubation. After 60 min., 1.0 ml serum-containing culture medium (DMEM, 10% FBS) was added to the dish. The culture medium was changed daily.

Supravital methylene blue staining

We applied the supravital methylene staining method [6]. Cells were washed in pre-warmed phenol red-free DMEM (Sigma Chemical, St. Louis, MO, USA), and incubated in a 0.02% methylene blue solution for 20 min., 37°C (Merck KGaA, Darmstadt, Germany). Quickly washed with phenol red-free DMEM medium for 30 min., pictures were taken within 10 min. to prevent the colour loss immediately.

Histology and immunohistochemistry

Haematoxylin and eosin staining was performed to observe telocytes in engineered cardiac tissue. For haematoxylin and eosin staining, the engineered cardiac tissue was fixed in 4% formaldehyde and embedded with paraffin. Sections of 4 μm thickness were cut. The regular procedure was performed for haematoxylin and eosin staining. For immunohistochemical staining, the primary antibodies used were: c-kit (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA, diluted 1:100), CD34 (Santa Cruz, diluted 1:100), vimentin (Sigma, diluted 1:1000). The sections were incubated with the primary antibodies overnight at 4°C, then biotin-labelled secondary antibodies, and finally detected with Diaminobenzidine (Sigma). Primary antibodies were omitted through negative controls.

Results

Telocytes in two-dimensional cultures

Phase contrast microscopy

In primary culture of cardiomyocytes isolated from myocardial tissues, the typical telocytes were detected. They have a fusiform cell body and two long prolongations (Fig. 1A). The morphology of telocytes in vitro is different from cardiac cells. After 7 days of culture, typical morphological features of telocytes appeared under light microscope: a small oval-shaped cell body with extremely long and thin moniliform prolongations (telopodes) extended from the cell body (Figs. 1 and 2). Telocytes often accompanied the cardiomyocytes and their telopodes ended up on cardiomyocytes. However, telocytes with their long prolongations interconnected cardiomyocytes and accelerated their synchronously beating (Figs. 3 and 4 and Movie S1).

Methylene blue staining

Methylene blue staining further confirmed the existence of telocytes in primary culture. We used supravital methylene blue staining to identify telocytes in vitro, as recommended in [12–14]. Methylene blue staining showed that telocytes cultured in vitro had long and extremely thin prolongations – telopodes (Fig. 5A).
They connected neighbouring cardiac cells making a consistent beating ‘syncytium’ (Fig. 5B).

**Telocytes in three-dimensional engineered heart tissues**

**Histology**

Conventional histological procedures revealed two type of cells in engineered heart tissue: (i) cardiac myocytes (with rod-shaped body) and nuclei (centrally located and elongated) oriented longitudinally (Fig. 6A); (ii) telocytes, as a distinct cell type with two or three long telopodes. These cells appeared with spindle or triangle shape, depending on the number of the telopodes. There were dense nodular or vacuolar structures along the prolongation (Fig. 6B–C) – podoms [2].

**Immunohistochemistry**

We used immunohistochemical staining for antigens expressed in telocytes: c-kit, CD34 and vimentin. c-kit or CD34+ telocytes existed in engineered heart tissue with long cell processes (Figs 7 and 8). In addition, a number of vimentin− cells were observed in engineered heart tissues (Fig. 9A). Among these cells, telocytes appeared with long and extremely thin telopodes. Vimentin is discontinuously expressed along these telopodes (Fig. 9B), presumably due to the tortuous telopodes’ three-dimensional path.

**Discussion**

We isolated and cultured cardiomyocytes in primary culture in vitro and observed typical telocytes among the cardiomyocytes.
The typical morphological characteristics of telocytes include a fusiform or a triangular cell body and two or three long moniliform prolongations (telopodes). The telocytes distributed among cardiomyocytes seem to connect them to beat synchronously. Furthermore, we have detected telocytes in three-dimensional engineered heart tissues. Histological staining showed that telocytes with long and extremely thin prolongations (telopodes) and vimentin, discontinuously expressed along the prolongation (arrow).

Bar = 20 μm (A), 20 μm (B).

We used immunohistochemical identification c-kit, CD34 and vimentin antibodies to identify telocytes in engineered heart tissues. However, telocytes shared some markers with other types of cells [1], e.g. cardiac stem cells, which express c-kit [26–30], endothelial cells known for CD34 positivity [1, 31] and fibroblasts, which may express vimentin [16]. In addition, although we used pre-plating for 1 hr to remove fibroblasts from primary culture, we failed to completely clear the fibroblasts. Therefore, as a component of seeding cells, fibroblast existed in engineered heart tissues with strong vimentin expression. As an identifying method for telocytes, it will also depend on different markers in bi-labelling or tri-labelling immunohistochemistry to this end. A certainty in identification of telocytes is based upon the results of transmission electron microscopy examination.

Acknowledgements

This work was supported by National High Technology Research and Development Program of China (No. 2006AA02A105), National Natural Science Foundation of China (No. 31030032), National Key Basic Research and Development Program of China (No. 2011CB606206).

Conflict of interest

The authors confirm that there are no conflicts of interest.

Supporting Information

The following supporting information is available online:

Movie S1 Telocytes interconnecting cardiomyocytes with their long prolongations. They seem to accelerate the synchronously beating of cardiomyocytes.

Detailed information regarding telocytes may be found at www.telocytes.com.
Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

References

1. Popescu LM, Faussone-Pellegrini MS. Telocytes – a case of serendipity: the winding way from interstitial cells of Cajal (ICC), via interstitial Cajal-like cells (ICLC) to Telocytes. J Cell Mol Med. 2010; 14: 729–40.
2. Suciu L, Nicolescu MI, Popescu LM. Cardiac telocytes: serial dynamic images in cell culture. J Cell Mol Med. 2010; doi: 10.1111/j.1520-6370.2009.00784.x.
3. Popescu LM, Gherghiceanu M, Kostin S, et al. Telocytes and heart renewing. In: Wang P, Kuo C-H, Takeda N, Singal PK, editors. Adaptation biology and medicine. New Delhi, India: Narosa Publishing House Pvt. Ltd., 2010; 729–2951.
4. Faussone-Pellegrini MS, Bani D. Relationships between telocytes and cardiomyocytes during pre- and post-natal life. J Cell Mol Med. 2010; 14: 1061–3.
5. Kostin S. Myocardial telocytes: a specific new cellular entity. J Cell Mol Med. 2010; 14: 1917–21.
6. Popescu LM, Ciontea SM, Cretoiu D, et al. Novel type of interstitial cell (Cajal-like) in human fallopian tube. J Cell Mol Med. 2005; 9: 479–523.
7. Shafik A, Shafik I, el-Sibai O. Identification of c-kit-positive cells in the human prostate: the interstitial cells of Cajal. Arch Androl. 2005; 51: 345–51.
8. Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells (ICLC) in human resting mammary gland stroma. Transmission electron microscope (TEM) identification. J Cell Mol Med. 2005; 9: 893–910.
9. Hinescu ME, Ardeleanu C, Gherghiceanu M, et al. Interstitial Cajal-like cells in human gallbladder. J Mol Histol. 2007; 38: 275–84.
10. Lavoie B, Balemba OB, Nelson MT, et al. Morphological and physiological evidence for interstitial cell of Cajal-like cells in the guinea pig gallbladder. J Physiol. 2007; 579: 487–501.
11. Cretoiu SM, Cretoiu D,Suciu L, et al. Intestinal Cajal-like cells of human Fallopian tube express estrogen and progesterone receptors. J Mol Histol. 2009; 40: 387–94.
12. Hinescu ME, Popescu LM, Intestinal Cajal-like cells (ICLC) in human atrial myocardium. J Cell Mol Med. 2005; 9: 972–5.
13. Popescu LM, Gherghiceanu M, Hinescu ME, et al. Insights into the interstitium of ventricular myocardium: interstitial Cajal-like cells (ICLC). J Cell Mol Med. 2006; 10: 429–58.
14. Kostin S, Popescu LM. A distinct type of cell in myocardium: interstitial Cajal-like cells (ICLCs). J Cell Mol Med. 2009; 13: 295–308.
15. Popescu LM, Ciontea SM, Cretoiu D. Intestinal Cajal-like cells in human uterus and fallopian tube. Ann N Y Acad Sci. 2007; 1101: 139–65.
16. Suciu L, Popescu LM, Gherghiceanu M, et al. Telocytes in human term placenta: morphology and phenotype. Cells Tissues Organs. 2010; 192: 325–39.
17. Gherghiceanu M, Hinescu ME, Andrei F, et al. Intestinal Cajal-like cells (ICLC) in myocardial sleeves of human pulmonary veins. J Cell Mol Med. 2008; 12: 1777–81.
18. Morel E, Meyronet D, Thivolet-Bejuy F, et al. Identification and distribution of interstitial Cajal cells in human pulmonary veins. Heart Rhythm. 2008; 5: 1063–7.
19. Nguyen BL, Fishbein MC, Chen LS, et al. Histopathological substrate for chronic atrial fibrillation in humans. Heart Rhythm. 2009; 6: 454–60.
20. Hutchings G, Williams O, Cretoiu D, et al. Myometrial interstitial cells and the coordination of myometrial contractility. J Cell Mol Med. 2009; 13: 4268–82.
21. Hashitani H, Lang RJ. Functions of ICC-like cells in the urinary tract and male genital organs. J Cell Mol Med. 2010; 14: 1199–211.
22. Gherghiceanu M, Manole CG, Popescu LM. Telocytes in endocardium: electron microscope evidence. J Cell Mol Med. 2010; 14: 2330–4.
23. Popescu LM, Manole CG, Gherghiceanu M, et al. Telocytes in human epicardium. J Cell Mol Med. 2010; 14: 2085–93.
24. Gherghiceanu M, Popescu LM. Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images. J Cell Mol Med. 2010; 14: 871–7.
25. Popescu LM, Gherghiceanu M, Manole CG, et al. Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med. 2009; 13: 866–86.
26. Zhao YS, Wang CY, Li DX, et al. Construction of a unidirectionally beating 3-dimensional cardiac muscle construct. J Heart Lung Transplant. 2005; 24: 1091–7.
27. Zhou J, Zhang Y, Lin Q, et al. Embryoid bodies formation and differentiation from mouse embryonic stem cells in collagen/ Matrigel scaffolds. J Genet Genomics. 2010; 37: 451–60.
28. Zaruba MM, Soopna M, Reuter S, et al. Cardiomyogenic potential of C-kit(+) expressing cells derived from neonatal and adult mouse hearts. Circulation. 2010; 121: 1992–2000.
29. Zhou Y, Pan P, Yao L, et al. CD117-positive cells of the heart: progenitor cells or mast cells? J Histochem Cytochem. 2010; 58: 309–16.
30. Kajstura J, Urbanek K, Perl S, et al. Cardiomyogenesis in the adult human heart. Circ Res. 2010; 107: 305–15.
31. Bani D, Formigili L, Gherghiceanu M, et al. Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med. 2010; 14: 2531–8.