Turán number for odd-ballooning of bipartite graphs

Yanni Zhai, Xiying Yuan

Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China

Abstract

Given a graph H and an odd integer t ($t \geq 3$), the odd-ballooning of H, denoted by $H(t)$, is the graph obtained from replacing each edge of H by an odd cycle of length at least t where the new vertices of the cycles are all distinct. In this paper, we determine the range of Turán numbers for odd-ballooning of bipartite graphs when $t \geq 5$. As applications, we may deduce the Turán numbers for odd-ballooning of stars, paths and even cycles.

Keywords: Extremal graphs, Turán number, Odd-ballooning, Bipartite graph

1. Introduction

In this paper, we consider simple graphs without loops and multiedges. The order of a graph $H = (V(H), E(H))$ is the number of its vertices denoted by $\nu(H)$, and the size of a graph H is the number of its edges denoted by $e(H)$. For a vertex $v \in V(H)$, the neighborhood of v in H is denoted by $N_H(v) = \{u \in V(H) : uv \in E(H)\}$. Let $N_H[v] = \{v\} \cup N_H(v)$. The degree of the vertex v is written as $d_H(v)$ or simply $d(v)$. $\Delta(H)$ is the maximum degree of H and $\delta(H)$ is the minimum degree of H. Usually, a path of order n is denoted by P_n, a cycle of order n is denoted by C_n. A star of order $n + 1$ is denoted by S_n ($n \geq 2$), and the vertex of degree larger than one is called the center vertex. The maximum number of edges in a matching of H is called the matching number of H and denoted by $\alpha'(H)$. For $U \subseteq V(H)$, let $H[U]$ be the subgraph of H induced by U, $H - U$ be the graph obtained by deleting all the vertices in U and their incident edges.

Given two graphs G and H, the union of graphs G and H is the graph $G \cup H$ with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. The union of k copies of P_2 is denoted by kP_2. The join of G and H, denoted by $G \vee H$, is the graph obtained from $G \cup H$ by adding all edges between $V(G)$ and $V(H)$. The graph $K_p(i_1, i_2, \ldots, i_p)$ denotes the complete p-partite graph with parts of order i_1, i_2, \ldots, i_p. Denoted by $T_p(n)$, the p-partite Turán graph is the complete p-partite graph on n vertices with the order of each partite set as equal as possible.

*This work was supported by the National Natural Science Foundation of China (Nos. 11871040, 12271337).

*Corresponding author.
Email address: yannizhai2022@163.com (Yanni Zhai), xiyingyuan@shu.edu.cn (Xiying Yuan).
Given a family of graphs \(\mathcal{L} \), a graph \(H \) is \(\mathcal{L} \)-free if it does not contain any graph \(L \in \mathcal{L} \) as a subgraph. The Turán number, denoted by \(\text{ex}(n, \mathcal{L}) \), is the maximum number of edges in a graph of order \(n \) that is \(\mathcal{L} \)-free. The set of \(\mathcal{L} \)-free graphs of order \(n \) with \(\text{ex}(n, \mathcal{L}) \) edges is denoted by \(\text{EX}(n, \mathcal{L}) \) and call a graph in \(\text{EX}(n, \mathcal{L}) \) an extremal graph for \(\mathcal{L} \). In 1966, Erdős and Simonovits [5] proved a classic theorem showing that the Turán number is closely related to the chromatic number. The chromatic number of \(H \) is denoted by \(\chi(H) \). For a family of graphs \(\mathcal{L} \), the subchromatic number of \(\mathcal{L} \) is defined by \(p(\mathcal{L}) = \min \{ \chi(L) : L \in \mathcal{L} \} - 1 \).

Theorem 1.1 (Erdős and Simonovits [5]). Given a family of graphs \(\mathcal{L} \), \(p = p(\mathcal{L}) \), if \(p > 0 \), then

\[
\text{ex}(n, \mathcal{L}) = \left(1 - \frac{1}{p} \right) \binom{n}{2} + o(n^2).
\]

Erdős and Stone [4] proved the following theorem, which shows that if the size of a graph satisfies some conditions, it contains a Turán graph as a subgraph.

Theorem 1.2 (Erdős and Stone [4]). For all integers \(p \geq 2 \) and \(N \geq 1 \), and every \(\epsilon > 0 \), there exists an integer \(n_1 \) such that every graph with \(n > n_1 \) vertices and at least \(e(T_{p-1}(n)) + \epsilon n^2 \) edges contains \(T_p(pN) \) as a subgraph.

In 2003, Chen, Gould and Pfender [2] determined the Turán numbers for \(F_{k,r} \), a graph consists of \(k \) complete graphs of order \(r \) which intersect in exactly one common vertex. In 2016, Hou, Qiu and Liu [7] determined the Turán numbers for intersecting odd cycles with the same length. Later, Hou, Qiu and Liu [8] considered the Turán numbers for \(H_{s,t} \), a graph consists of \(s \) triangles and \(t \) odd cycles with length at least 5 which intersect in exactly one common vertex. For an odd integer \(t \geq 3 \), the odd-ballooning of a graph \(H \), denoted by \(H(t) \), is the graph obtained from \(H \) by replacing each edge of \(H \) with an odd cycle of length at least \(t \) where the new vertices of the odd cycles are all different. It is easy to see that \(H_{s,t} \) can be seen as an odd-ballooning of a star \(S_{s+t} \). In 2020, Zhu, Kang and Shan [13] determined the Turán numbers for odd-ballooning of paths and cycles. Recently, Zhu and Chen determined the Turán numbers for odd-ballooning of general bipartite graphs when \(t \geq 5 \) by using progressive induction.

A covering of a graph \(H \) is a set of vertices which meets all edges of \(H \). The minimum number of vertices in a covering of \(H \) is denoted by \(\beta(H) \). An independent covering of a bipartite graph \(H \) is an independent set which meets all edges. The minimum number of vertices in an independent covering of a bipartite graph \(H \) is denoted by \(\gamma(H) \). For any connected bipartite graph \(H \), let \(A \) and \(B \) be its two color classes with \(|A| \leq |B| \). Moreover, if \(H \) is disconnected, we always partition \(H \) into \(A \cup B \) such that (1) \(|A| \) is as small as possible;
(2) \(\min\{d_H(x) : x \in A\}\) is as small as possible subject to (1). In this paper, we study the Turán numbers for odd-ballooning of bipartite graph \(H\).

Lemma 1.1 (Yuan [12]). Let \(H\) be a bipartite graph, \(V(H) = A \cup B\), then we have \(\gamma(H) = |A|\) and each independent covering of \(H\) contains either all the vertices of \(A\) or all the vertices of \(B\).

Given a family of graphs \(\mathcal{L}\), the following three parameters \(q(\mathcal{L})\), \(S(\mathcal{L})\) and \(B(\mathcal{L})\) are proposed in [12]. The independent covering number \(\gamma(\mathcal{L})\) of \(\mathcal{L}\) is defined as

\[q(\mathcal{L}) = \min\{\gamma(L) : L \in \mathcal{L} \text{ is bipartite}\}. \]

The independent covering family \(S(\mathcal{L})\) of \(\mathcal{L}\) is the family of independent coverings of bipartite graphs \(L \in \mathcal{L}\) of order \(q(\mathcal{L})\). The subgraph covering family \(B(\mathcal{L})\) of \(\mathcal{L}\) is the set of subgraphs induced by a covering of \(L \in \mathcal{L}\) with order less than \(q(\mathcal{L})\). If \(\beta(L) \geq q(\mathcal{L})\) for each \(L \in \mathcal{L}\), then we set \(B(\mathcal{L}) = \{K_{q(L)}\}\).

Definition 1.1 (Ni, Kang and Shan [10]). Given a family of graphs \(\mathcal{L}\), define \(p = p(\mathcal{L})\). For any integer \(p' : 2 \leq p' \leq p\), let \(\mathcal{M}_{p'}(\mathcal{L})\) be the family of minimal graphs \(M\) for which there exist an \(L \in \mathcal{L}\) and a \(t = t(L)\) such that there is a copy of \(L\) in \(M \setminus K_{p'-1}(t, t, \ldots, t)\) where \(M' = M \cup I_t\). We call this the \(p'\)-decomposition family of \(\mathcal{L}\).

For a bipartite graph \(H\), we have \(\chi(H(t)) = 3\). Therefore, in this paper, we mainly use 2-decomposition family of \(H(t)\).

Given a graph \(H\), by the definition of \(\mathcal{M}_2(H(t))\), for any \(M \in \mathcal{M}_2(H(t))\) there exist two independent sets \(Y_1, Y_2\) such that there is a copy of \(H(t)\) as a subgraph in \((M \cup Y_1) \setminus Y_2\). Let \(H_M\) be a copy of \(H\) and \(H_M\) satisfy that \(H_M(t) \subseteq (M \cup Y_1) \setminus Y_2\) is a copy of \(H(t)\). \(f\) is a bijection: \(V(H_M) \to V(H)\) such that \(uv \in E(H_M)\) if and only if \(f(u)f(v) \in E(H)\). We may directly obtain the following lemma.

Proposition 1.1. Suppose \(H\) is a graph and \(t \geq 3\) is an odd integer. For any \(M \in \mathcal{M}_2(H(t))\), \(M\) satisfies the following properties:

(i) \(e(M) = e(H_M) = e(H)\);
(ii) each odd cycle of \(H_M(t)\) expanded from an edge of \(H_M\) contains exactly one edge in \(M\);
(iii) \(V(M) \subseteq V(H_M(t))\);
(iv) the vertex of \(M\) which is in at least two odd cycles expanded from edges of \(H_M\) is the vertex of \(H_M\).

In the following part of this paper, we always write \(\bar{q}(H) = q(\mathcal{M}_2(H(t)))\), \(\bar{S}(H) = S(\mathcal{M}_2(H(t)))\), \(\bar{B}(H) = B(\mathcal{M}_2(H(t)))\), \(k(H) = \min\{d_M(x) : x \in S, S \in \bar{S}(H)\}\), where \(M \in \mathcal{M}_2(H(t))\) has the independent covering set \(S\).
Set $F(n, q) = I_{q-1} \vee T_2(n-q+1)$ and $f(n, q) = e(F(n, q))$. For a family of graphs \mathcal{L}, denote by $\mathcal{F}(n, q, k, \mathcal{L})$, the set of graphs which are obtained by taking an $F(n, q)$, putting a copy of K_k, k in one class of $T_2(n-q+1)$ and putting a copy of a member of $\text{EX}(q-1, \mathcal{L})$ in I_{q-1}. Our main results are as follows.

Theorem 1.3. Let H be a bipartite graph, $t \geq 5$ be an odd integer and n be a sufficiently large integer. Then

$$f(n, \tilde{q}(H)) + \text{ex}(\tilde{q}(H)-1, \tilde{B}(H)) \leq \text{ex}(n, H(t)) \leq f(n, \tilde{q}(H)) + \text{ex}(\tilde{q}(H)-1, \tilde{B}(H)) + (k(H)-1)^2.$$

Moreover, if $\text{ex}(n, H(t)) = f(n, \tilde{q}(H)) + \text{ex}(\tilde{q}(H)-1, \tilde{B}(H)) + (k(H)-1)^2$ holds, then the graphs in $\mathcal{F}(n, \tilde{q}(H), k(H)-1, \tilde{B}(H))$ are the only extremal graphs for $H(t)$.

2. Characterizations of $\mathcal{M}_2(H(t))$ and $\tilde{B}(H)$

Given a graph H, the **vertex division** on some non-pendent vertex v of H is defined as follows: v is replaced by an independent set $\{v', v_1, v_2, \ldots, v_m\}$ ($1 \leq m \leq d_H(v)-1$) in which v_i ($1 \leq i \leq m$) is adjacent to exactly one distinct vertex in $N_H(v)$ and v' is adjacent to the remaining neighbors of v in H. In particular, if $m = d_H(v) - 1$, it is called vertex split in [9, 10]. Denote by $\mathcal{D}(H)$, the family of graphs which can be obtained by applying vertex division on some vertex set $U \subseteq V(H)$. An isolated edge is an edge whose endpoints has degree 1. Lemma 2.1 shows that the 2-decomposition family of odd-ballooning for any graph H is actually the family of graphs obtained from dividing some vertices of H.

Lemma 2.1. Let H be any graph and $t \geq 5$ be an odd integer, then $\mathcal{M}_2(H(t)) \subseteq \mathcal{D}(H)$ holds.

Proof. To prove Lemma 2.1 we may show that any graph in $\mathcal{M}_2(H(t))$ can be obtained by using vertex division on some vertices of $V(H)$. For any graph $M \in \mathcal{M}_2(H(t))$, by Proposition 1.1(i), we have $e(M) = e(H)$. H_M is a copy of H and there exist two independent sets Y_1 and Y_2 such that $H_M(t) \subseteq (M \cup Y_1) \cup Y_2$ holds. Furthermore, $d_M(v) \geq 1$ holds for any vertex $v \in V(M)$. If there is an isolated vertex v in M, then we may add a vertex v' in Y_1 to replace v, and we have $H_M(t) \subseteq ((V(M) \backslash \{v\}) \cup (Y_1 \cup \{v'\})) \cup Y_2$ which contradicts the minimality of M.

For any vertex v of M, first, we suppose $v \in V(M) \cap V(H_M)$. If $d_M(v) > d_{H_M}(v)$, then $d_M(v) - d_{H_M}(v)$ edges are not in $H_M(t)$ and it contradicts the minimality of M. Hence we have $d_M(v) \leq d_{H_M}(v)$. When $d_M(v) < d_{H_M}(v)$, then Y_2 contains x neighbors $(d_{H_M}(v) - d_M(v) \leq x \leq d_{H_M}(v))$ of v in H_M. Each edge between Y_2 and v can be expanded into an odd cycle by using one edge in M. By the minimality of M, in M there is a star $S_{d_H(v)}$ and $d_{H_M}(v) - d_M(v)$ distinct edges can be used to obtain an $S_{d_{H_M}(v)}(t)$. Since the new vertices...
Therefore, $e_M(v) - V(S_{dH_M}(v))$ are all different, these $d_{H_M}(v) - d_M(v)$ edges are independent. Therefore, to obtain M, we may divide the vertex $f(v)$ of H into a vertex with degree $d_M(v)$ and an independent set of order $d_H(v) - d_M(v)$. When $d_M(v) = d_{H_M}(v)$, the adjacency relation of v in M is the same as $f(v)$ in H.

Now we suppose $v \in V(M) \cap (V(H_M(t)) \setminus V(H_M))$. The fact that the new vertices of odd cycles are all different implies the edges incident to v are in the same odd cycle. By Proposition [11] we have $d_M(v) = 1$. Suppose v is in an odd cycle expanded from the edge uw of H_M. Then the edge uw is not in M, otherwise this odd cycle has two edges in M, a contradiction. Suppose uw is between M and Y_2, $u \in V(M)$, $w \in Y_2$. Since $N_{H_M}(w) \subseteq V(M) \cup Y_1$, each odd cycle of $S_{d_H}(t)$ contains exactly one edge in M, there are $d_{H_M}(w)$ independent edges in M. Thus, to obtain M, we may use vertex split on $f(w)$ of H. If uw is between Y_1 and Y_2, $u \in Y_1$, $w \in Y_2$, then $N_{H_M}(u) \subseteq Y_2$. Noting that $S_{d_H}(t)$ spanned by $N_{H_M}[u]$ in $H_M(t)$ contains exactly $d_{H_M}(u)$ independent edges in M. We may deduce that the edge which contains vertex v is an isolated edge in M. Hence to obtain M we may use vertex split on both $f(u)$ and $f(w)$ of H.

Therefore, we have $M \in \mathcal{D}(H)$. As M is arbitrary, we have $\mathcal{M}_2(H(t)) \subseteq \mathcal{D}(H)$. \qed

Lemma 2.2. Let H be a bipartite graph, $t \geq 5$ be an odd integer. Then $e(H)P_2 \in \mathcal{M}_2(H(t))$ holds.

Proof. Suppose Y_1 and Y_2 are two independent sets and large enough. Let H' be a copy of H, $V(H') = A' \cup B'$. A' corresponds to A, B' corresponds to B. Let $A' \subseteq V(e(H)P_2)$ and they are independent in $e(H)P_2$, $B' \subseteq Y_2$, then we have $H' \subseteq e(H)P_2 \vee Y_2$. In the graph $(e(H)P_2 \cup Y_1) \vee Y_2$, the edge of H' can be expanded into an odd cycle by using an edge in $e(H)P_2$ and some vertices of Y_1 and Y_2, then we have $H'(t) \subseteq (e(H)P_2 \cup Y_1) \vee Y_2$. Therefore, $e(H)P_2$ contains a subgraph in $\mathcal{M}_2(H(t))$. Moreover, Proposition [11] (i) implies that $e(H)P_2 \in \mathcal{M}_2(H(t))$ holds. \qed

Let H be a bipartite graph, $t \geq 5$ be an odd integer. Denoted by $\mathcal{N}(H(t)) \subseteq \mathcal{M}_2(H(t))$ is the family of graphs M with $\gamma(M) = \bar{q}(H)$.

Lemma 2.3. Let H be a bipartite graph, $M \in \mathcal{M}_2(H(t))$ be a graph with an independent covering $S \in \bar{\mathcal{S}}(H)$. If S contains a vertex with degree one in M, then $\mathcal{N}(H(t))$ contains a graph with an isolated edge.

Proof. Let H_M be a copy of H and there exist two independent sets Y_1 and Y_2 such that $H_M(t) \subseteq (M \cup Y_1) \vee Y_2$ holds. If there is an isolated edge in M, the conclusion holds. Now suppose there is no isolated edge in M.

Let $v' \in S$ and $N_M(v') = \{u\}$ hold. If $d_M(u) = 1$, then the edge uv' is an isolated edge in M, a contradiction. Thus we have $d_M(u) \geq 2$, then by Proposition [11] (iv), u is a vertex
of H_M. Let M' be the graph obtained from dividing vertex u into \{u', u''\}, u' is adjacent to u' with degree one, u'' is adjacent to the remaining neighbors of the original vertex u in M. In the graph $(M' \cup Y_1) \cup Y_2$, there is a vertex $w \in Y_2$ adjacent to u'', the edge $u''w$ can be expanded into an odd cycle by using the edge $v'u'$ in M'. As there is an $H_M(t)$ in $(M \cup Y_1) \cup Y_2$, and the vertices in M' except v', u', u'' have the same neighbors of the vertices in M, $(M' \cup Y_1) \cup Y_2$ contains a copy of $H(t)$ as a subgraph. It is easy to see that $e(M) = e(M')$ and there is an isolated edge in M', thus we have $M' \in \mathcal{M}_2(H(t))$. As S is the independent covering of M, v' is a vertex in S, we have $u \notin S$. When we divide the vertex u of M, S is also an independent covering of M'. From the definition of $\tilde{S}(H)$, we have $|S| = \tilde{q}(H)$ and then $\gamma(M') \leq \tilde{q}(H)$. Because $\tilde{q}(H)$ is the minimum size of the independent covering of graphs in $\mathcal{M}_2(H(t))$ and $M' \in \mathcal{M}_2(H(t))$, we may deduce $\gamma(M') = \tilde{q}(H)$ and then $M' \in \mathcal{N}(H(t))$. \hfill \Box

Lemma 2.4. Let H be a bipartite graph with $V(H) = A \cup B$, $M \in \mathcal{M}_2(H(t))$ be a graph with an independent covering $S \in \tilde{\mathcal{S}}(H)$ and $\min \{d_M(x) : x \in S\} = k(H)$. If each vertex of S has degree at least 2 in M, then $|A| = \tilde{q}(H)$ and $\min \{d_H(x) : x \in A\} = k(H)$.

Proof. Let H_M be a copy of H and there exist two independent sets Y_1 and Y_2 such that $H_M(t) \subseteq (M \cup Y_1) \cup Y_2$ holds. By Proposition \[1.1] (iv), we have $S \subseteq V(H_M)$. Suppose e is an edge of H_M. If $e \in E(M)$, then e is covered by S. If e is between Y_1 and Y_2, there is an isolated edge in M, a contradiction. If e is between M and Y_2, then let $xy = e$, $x \in V(M)$, $y \in Y_2$. Since there is no isolated edge in M, there is an edge $xy'' \in E(M)$ to be used to expand e into an odd cycle, where $N_M(y'') = \{x\}$, then we have $x \in S$. Hence the edge e is covered by S. Therefore, S is an independent covering of H_M and then $|A| = \tilde{q}(H)$ holds.

Suppose w is a vertex in S. If $d_M(w) < d_{H_M}(w)$, $N_{H_M}(w)$ contains a vertex w' in Y_2. The edge $w'w$ can be expanded into an odd cycle by using an edge e in M and e is in $H_M(t) - V(H_M)$. The fact that the new vertices of the odd cycles are all distinct implies e is an isolated edge in M, a contradiction. If $d_M(w) > d_{H_M}(w)$, then M contains $d_M(w) - d_{H_M}(w)$ edges not in $H_M(t)$, a contradiction to the minimality of M. So $d_M(w) = d_{H_M}(w)$ holds. As w is arbitrary, we have $\min \{d_H(x) : x \in A\} = \min \{d_{H_M}(x) : x \in f^{-1}(A)\} = \min \{d_M(x) : x \in S\} = k(H)$. \hfill \Box

Example 1 For the star S_a, by Lemma \[2.1], we have $\mathcal{M}_2(S_a(t)) \subseteq \mathcal{D}(S_a)$. On the other hand, for any $M \in \mathcal{D}(S_a)$, we have $M = S_x \cup (a - x)P_2$ (1 \leq x \leq a). Y_1 and Y_2 are two independent sets and large enough. In the graph $(M \cup Y_1) \cup Y_2$, by using the vertices of Y_1 and Y_2, different edges of M can be used to expand different odd cycles of $S_a(t)$. Since $e(M) = e(S_a)$, we have $S_a(t) \subseteq (M \cup Y_1) \cup Y_2$ and $M \in \mathcal{M}_2(S_a(t))$. As M is arbitrary, we have $\mathcal{D}(S_a) \subseteq \mathcal{M}_2(S_a(t))$. Hence we have $\mathcal{M}_2(S_a(t)) = \mathcal{D}(S_a)$. Then we may imply $\tilde{q}(S_a) = 1$, $\tilde{S}(S_a)$ is the center vertex of the star and $k(S_a) = a$. For any graph $M \in \mathcal{M}_2(S_a(t))$, $\beta(M) \geq \tilde{q}(S_a)$, hence we have $\tilde{B}(S_a) = \{K_1\}$.

Example 2 For the path P_{m+1}, by Lemma 2.1, $\mathcal{M}_2(P_{m+1}(t)) \subseteq \mathcal{D}(P_{m+1})$. On the other hand, for any $M \in \mathcal{D}(P_{m+1})$, M is a union of some paths and $e(M) = m$. Set Y_1 and Y_2 be two independent sets and large enough. In the graph $(M \cup Y_1) \cup Y_2$, by using the vertices of Y_1 and Y_2, different edges of M can be used to expanded different odd cycles of $P_{m+1}(t)$. Since $e(M) = m$, we have $P_{m+1}(t) \subseteq (M \cup Y_1) \cup Y_2$ and $M \in \mathcal{M}_2(P_{m+1}(t))$. Hence we have $\mathcal{D}(P_{m+1}) \subseteq \mathcal{M}_2(P_{m+1}(t))$. Therefore $\mathcal{D}(P_{m+1}) = \mathcal{M}_2(P_{m+1}(t))$ holds. When m is even, $\tilde{q}(P_{m+1}) = \frac{m}{2}$, $\tilde{S}(P_{m+1})$ consists of the independent coverings of the graphs in $\mathcal{M}_2(P_{m+1}(t))$ such that each component of them is a path with even edges, and $k(P_{m+1}) = 2$. For any graph $M \in \mathcal{M}_2(P_{m+1}(t))$, $\beta(M) \geq \tilde{q}(P_{m+1})$, hence we have $\tilde{B}(P_{m+1}) = \{K_{\frac{m}{2}}\}$. When m is odd, we have $\tilde{q}(P_{m+1}) = \frac{m+1}{2}$. Then $\tilde{S}(P_{m+1})$ consists of the independent coverings of the graphs in $\mathcal{M}_2(P_{m+1}(t))$ such that each component of them is a path with even edges except one component is a path with odd edges and $k(P_{m+1}) = 1$. For any graph $M \in \mathcal{M}_2(P_{m+1}(t))$, $\beta(M) \geq \tilde{q}(P_{m+1})$, hence we have $\tilde{B}(P_{m+1}) = \{K_{\frac{m+1}{2}}\}$.

As stars, paths and even cycles satisfy the conditions of Theorem 1.3, Theorem 1.3 implies the Turán numbers for odd-ballooning of stars, paths and even cycles.

Corollary 2.1 (Hou, Qiu and Liu 8). If n is sufficiently large and $t \geq 5$ is an odd integer, then

$$\text{ex}(n, S_a(t)) = e(T_2(n)) + (a - 1)^2$$

holds and the only extremal graph for $S_a(t)$ is the graph obtained from $T_2(n)$ by putting a copy of $K_{a-1, a-1}$ in one class of $T_2(n)$.

Proof. Let F be the graph obtained by putting a copy of $K_{a-1, a-1}$ in one class of $T_2(n)$. From Example 1, we have $\mathcal{M}_2(S_a(t)) = \{S_x \cup (a - x)P_2 \mid 1 \leq x \leq a\}$. If $S_a(t) \subseteq F$, then we have $S_a(t) \subseteq (K_{a-1, a-1} \cup I_m) \cup I_m$ where $m = \lceil \frac{a}{2} \rceil - 2a$. So $K_{a-1, a-1}$ contains a subgraph as a copy of a member of $\mathcal{M}_2(S_a(t))$. For any graph $M \in \mathcal{M}_2(S_a(t))$, $M = S_x \cup (a - x)P_2$ ($1 \leq x \leq a$), we have $x + a'(M - V(S_x)) = a$. However, $x + a'(K_{a-1, a-1} - V(S_x)) = a - 1 < a$.

So F is $S_a(t)$-free and

$$\text{ex}(n, S_a(t)) \geq e(T_2(n)) + (a - 1)^2.$$

On the other hand, from Example 1, we have $\tilde{q}(S_a) = 1$, $k(S_a) = a$ and $\tilde{B}(S_a) = \{K_1\}$. By applying Theorem 1.3 we have

$$\text{ex}(n, S_a(t)) \leq f(n, 1) + (a - 1)^2 = e(T_2(n)) + (a - 1)^2.$$

Therefore, $\text{ex}(n, S_a(t)) = e(T_2(n)) + (a - 1)^2$ holds. Noting that $\mathcal{F}(n, 1, a - 1, K_1) = \{F\}$ holds, hence F is the only extremal graph for $S_a(t)$.

Corollary 2.2 (Zhu, Kang and Shan 13). Let n be a sufficiently large integer, t be an odd integer at least 5. We have the following:
(i) If m is even, let $d = \frac{m}{2}$, then
\[\text{ex}(n, P_{m+1}(t)) = e(T_2(n - d + 1) \lor K_{d-1}) + 1 \]
holds and the only extremal graph for $P_{m+1}(t)$ is the graph obtained from $T_2(n - d + 1) \lor K_{d-1}$ by putting an edge in one class of $T_2(n - d + 1)$.

(ii) If m is odd, let $d = \frac{m+1}{2}$, then
\[\text{ex}(n, P_{m+1}(t)) = e(T_2(n - d + 1) \lor K_{d-1}) \]
holds and $T_2(n - d + 1) \lor K_{d-1}$ is the unique extremal graph for $P_{m+1}(t)$.

Proof. (i) When m is even, let F be obtained from $T_2(n - d + 1) \lor K_{d-1}$ by putting an edge in one class of $T_2(n - d + 1)$. In F, each vertex of K_{d-1} is contained in at most two odd cycles of $P_{m+1}(t)$ and the edge in one class of $T_2(n - d + 1)$ can be contained in only one odd cycle of $P_{m+1}(t)$. Therefore, in F, the number of odd cycles in the odd-ballooning of P_{m+1} is at most $2(d - 1) + 1 = m - 1 < m$. So F is $P_{m+1}(t)$-free and
\[\text{ex}(n, P_{m+1}(t)) \geq e(T_2(n - d + 1) \lor K_{d-1}) + 1 = e(F). \]
On the other hand, from Example 2, we have $\tilde{q}(P_{m+1}) = \frac{m}{2}$, $k(P_{m+1}) = 2$, $\tilde{B}(P_{m+1}) = \{K_{\frac{m}{2}}\}$. By applying Theorem 1.3 we have
\[\text{ex}(n, P_{m+1}(t)) \leq f'(n, d) + \text{ex}(d - 1, K_d) + 1 = e(T_2(n - d + 1) \lor K_{d-1}) + 1. \]
Therefore $\text{ex}(n, P_{m+1}(t)) = e(T_2(n - d + 1) \lor K_{d-1}) + 1$ holds. Noting that $\mathcal{F}(n, d, 1, K_{d-1}) = \{F\}$, hence F is the only extremal graph for $P_{m+1}(t)$.

(ii) When m is odd, from Example 2, we have $\tilde{q}(P_{m+1}) = \frac{m+1}{2}$, $k(P_{m+1}) = 1$, $\tilde{B}(P_{m+1}) = \{K_{\frac{m+1}{2}}\}$. By applying Theorem 1.3 the lower bound and the upper bound of the inequality in Theorem 1.3 are the same, we have
\[\text{ex}(n, P_{m+1}(t)) = f(n, d) + \text{ex}(d - 1, K_d) = e(T_2(n - d + 1) \lor K_{d-1}) \]
and $T_2(n - d + 1) \lor K_{d-1}$ is the unique extremal graph for $P_{m+1}(t)$.

Using the similar arguments as the proof of Corollary 2.2 (i), we have the following corollary.

Corollary 2.3 (Zhu, Kang and Shan [13]). Given an even integer $m \geq 4$, an odd integer $t \geq 5$ and a sufficiently large integer n, we have $\text{ex}(n, C_m(t)) = e(T_2(n - d + 1) \lor K_{d-1}) + 1$ where $d = \frac{m}{2}$. The only extremal graph for $C_m(t)$ is the graph obtained from $T_2(n - d + 1) \lor K_{d-1}$ by putting an edge in one class of $T_2(n - d + 1)$.
Let T be a tree and $V(T) = A \cup B$. An odd-balooning $T(t)(t \geq 3)$ of T is good if all edges which are expanded into triangles are the edges who have one endpoint with degree one and the non-leaf vertices are in A. Recently, Zhu [14] gave the exact value of $ex(n, T(t))(t \geq 3)$ when $T(t)$ is a good odd-balooning of T. As $\mathcal{M}_2(T(t)) \subseteq \mathcal{D}(T)$, when $T(t)$ is a good odd-balooning, we have $\overline{q}(T) = |A|$. Hence if A has a vertex with degree one in T, we have the following corollary.

Corollary 2.4 (Zhu and Chen [14]). Let T be a tree with $V(T) = A \cup B$ and $a = |A|$. Suppose $T(t)$ is a good odd-balooning of T where $t \geq 5$ is an odd cycle. If A contains a vertex u with $d_T(u) = 1$, then

$$ex(n, T(t)) = f(n, a) + ex(a - 1, \overline{B}(T)).$$

Moreover the extremal graphs for $T(t)$ are in $\mathcal{F}(n, a, 0, \overline{B}(T))$.

3. Proof of Theorem [1.3]

This section is devoted to the proof of Theorem [1.3]. First, we prove the lower bound of Theorem [1.3].

Lemma 3.1. Let H be a bipartite graph, n be a sufficiently large integer, $t \geq 5$ be an odd integer, then we have

$$ex(n, H(t)) \geq f(n, \overline{q}(H)) + ex(\overline{q}(H) - 1, \overline{B}(H)).$$

Proof. If there is an $H(t) \subseteq F \in \mathcal{F}(n, \overline{q}(H), 0, \overline{B}(H))$ i.e.,

$$H(t) \subseteq (Q \lor I_m) \lor I_m \subseteq ((Q \lor I_m) \cup I_m) \lor I_m,$$

where $Q \in EX(\overline{q}(H) - 1, \overline{B}(H))$ and $m = \lceil \frac{n - \overline{q}(H) + 1}{2} \rceil$. By the definition of $\mathcal{M}_2(H(t))$, $(G \lor I_m) \lor I_m$ contains a copy of $H(t)$, then G contains a subgraph as a member of $\mathcal{M}_2(H(t))$. Thus $Q \lor I_m$ contains a subgraph as a member, say M of $\mathcal{M}_2(H(t))$. Since I_m is an independent set, Q contains a subgraph induced by a covering of M. However, when $\beta(M) < \overline{q}(H)$ holds, since the graphs in $EX(\overline{q}(H) - 1, \overline{B}(H))$ are $\overline{B}(H)$-free, Q contains no subgraph induced by a covering of M; when $\beta(M) \geq \overline{q}(H)$, since the order of $Q \in EX(\overline{q}(H) - 1, \overline{B}(H))$ is $\overline{q}(H) - 1$, Q contains no subgraph induced by a covering of M. This contradiction shows any graph in $\mathcal{F}(n, \overline{q}(H), 0, \overline{B}(H))$ is $H(t)$-free.

Note that for any F in $\mathcal{F}(n, \overline{q}(H), 0, \overline{B}(H))$, we have $e(F) = f(n, \overline{q}(H)) + ex(\overline{q}(H) - 1, \overline{B}(H))$. Therefore, $ex(n, H(t)) \geq f(n, \overline{q}(H)) + ex(\overline{q}(H) - 1, \overline{B}(H))$ holds. \qed

To prove Theorem 3.1 we need the following lemmas. $c(H)$ is the number of components of H. 9
Lemma 3.2 (Hou, Qiu and Liu [2]). Let H be a graph with no isolated vertex. If $\Delta(H) \leq 2$, then
\[\alpha'(H) \geq \frac{\nu(H) - e(H)}{2}. \]

Lemma 3.3 (Hou, Qiu and Liu [2]). Let H be a graph with no isolated vertex. If for all $x \in V(H)$, $d(x) + \alpha'(H - N[x]) \leq k$, then $e(H) \leq k^2$. Moreover, the equality holds if and only if $H = K_k, k$.

Define $\varphi(\alpha', \Delta)=\max\{e(H) : \alpha'(H) \leq \alpha', \Delta(H) \leq \Delta\}$. Chvátal and Hanson [3] proved the following theorem which is useful to estimate the number of edges of a graph with restricted degrees and matching number.

Lemma 3.4 (Chvátal and Hanson [3]). For any graph H with maximum degree $\Delta \geq 1$ and matching number $\alpha' \geq 1$, we have
\[e(H) \leq \varphi(\alpha', \Delta) = \alpha'\Delta + \left\lfloor \frac{\Delta}{2} \right\rfloor \left\lceil \frac{\alpha'}{\Delta/2} \right\rceil \leq \alpha'\Delta + \alpha'. \]

Theorem 3.1. Let n, b be sufficiently large positive integers, H be a bipartite graph. Let G be a graph of order n with a partition of vertices into three parts $V(G) = V_0 \cup V_1 \cup V_2$ satisfying the following conditions:

(i) there exist $V'_1 \subseteq V_1$, $V'_2 \subseteq V_2$ such that $G[V'_1 \cup V'_2] = T_2(2b)$;
(ii) $|V_0| = \tilde{q}(H) - 1$ and each vertex of V_0 is adjacent to each vertex of $T_2(2b)$;
(iii) each vertex of $V''_i = V_i \setminus V'_i$ is adjacent to at least $c_0|V'_{3-i}|$ ($\frac{1}{2} < c_0 \leq 1$) vertices of V'_{3-i}, and is not adjacent to any vertex of V'_i ($i = 1, 2$).

If G is $H(t)$-free, then
\[e(G) \leq f(n, \tilde{q}(H)) + \text{ex}(\tilde{q}(H) - 1, \overline{B}(H)) + (k(H) - 1)^2 \]
and the equality holds if and only if $G \in \mathcal{F}(n, \tilde{q}(H), k(H) - 1, \overline{B}(H))$.

Proof. Let M be a graph in $\mathcal{M}_2(H(t))$ with an independent set $S \subseteq \tilde{S}(H)$ and $\min\{d_M(x) : x \in S\} = k(H)$. $\overline{B}(H)$ is the subgraph covering family of $\mathcal{M}_2(H(t))$.

If $G[V_0]$ contains a graph in $\overline{B}(H)$, there exists an $M \subseteq G[V_0 \cup V'_1]$ such that $M \in \mathcal{M}_2(H(t))$ holds. Then we have $H(t) \subseteq G[V_0 \cup V'_1 \cup V'_2] \subseteq G$, which is a contradiction. Thus, $e(G[V_0]) \leq \text{ex}(\tilde{q}(H) - 1, \overline{B}(H))$.

If S contains a vertex with degree one in M, by Lemma 2.3, we know that $\mathcal{M}_2(H(t))$ contains a graph M' with an isolated edge, say uv, and $\gamma(M') = \tilde{q}(H) = \gamma(M' - uv) = \tilde{q}(H) - 1$. And in this case, we have $k(H) = 1$. If there is an edge in $G[V''_1]$, noting that $|V_0| = \tilde{q}(H) - 1$ and each vertex of V_0 is adjacent to each vertex of V'_1, then $G[V_0 \cup V_1]$ contains a copy of M'. The number of vertices in V'_2 adjacent to V''_1 is sufficiently large. Then we have a copy.
of $H(t) \subseteq G[V_0 \cup V_1 \cup V_2'] \subseteq G$ which is a contradiction. Therefore there is no edge in $G[V_1]$. Similarly, there is no edge in $G[V_2]$. Then \(e(G) \leq f(n, \tilde{q}(H)) + \text{ex}(\tilde{q}(H) - 1, \tilde{B}(H)) \) holds. Together with Lemma 3.1 \(e(G) = f(n, \tilde{q}(H)) + \text{ex}(\tilde{q}(H) - 1, \tilde{B}(H)) \) holds and G is in $\mathcal{F}(n, \tilde{q}(H), 0, \tilde{B}(H))$.

Now suppose that each vertex of S has degree at least 2 in M, then by Lemma 2.4, we have \(|A| = \gamma(H) = \tilde{q}(H) \) and there is a vertex in A with degree $k(H)$. Noting that \(|V_0| = \tilde{q}(H) - 1 \) holds and each edge between V_0 and V_1' or V_2' can be expanded into an odd cycle by using vertices of V_1' and V_2'. If there is a copy of $S_k(H)(t) \subseteq G[V_1 \cup V_2]$ and V_1', V_2' contain the neighbors of the center vertex of $S_k(H)$, there is a copy of $H(t)$ in G. Therefore, we may suppose $G[V_1 \cup V_2]$ contains no such $S_k(H)(t)$.

Let $V_1'' \subseteq V_1'$, $V_2'' \subseteq V_2'$ be the vertex sets, which are not isolated vertices in $G[V_1'']$ and $G[V_2'']$ respectively. In the following part of the proof, denote by $G_1 = G[V_1''], G_2 = G[V_2'']$, $G' = G_1 \cup G_2, m = e(G')$. For a vertex $x \in V(G_i)$, denote by $E_{3-i}(x) = \{e \in E(G_{3-i}) \mid V(e) \cap N_G(x) \neq \emptyset \}$.

If \(e(G) < f(n, \tilde{q}(H)) + \text{ex}(\tilde{q}(H) - 1, \tilde{B}(H)) + (k(H) - 1)^2 \) holds, the conclusion follows. Now suppose
\[
e(G) \geq f(n, \tilde{q}(H)) + \text{ex}(\tilde{q}(H) - 1, \tilde{B}(H)) + (k(H) - 1)^2
= e(T_2(n - \tilde{q}(H) + 1)) + (\tilde{q}(H) - 1)(n - \tilde{q}(H) + 1) + \text{ex}(\tilde{q}(H) - 1, \tilde{B}(H)) + (k(H) - 1)^2.\]

(3.1)

We have the following claims.

Claim 1. For every vertex $x \in V(G_i)$, we have $d_{G_i}(x) + \alpha'(G_i - N_G[x]) + \alpha'(G[E_{3-i}(x)]) \leq k(H) - 1$ (i = 1, 2).

Suppose to the contrary that there exists some $x \in V(G_i)$ such that $d_{G_i}(x) + \alpha'(G_i - N_G[x]) + \alpha'(G[E_{3-i}(x)]) \geq k(H)$ holds. Without loss of generality, we may suppose $x \in V(G_1)$. Let $x_1, x_2, \ldots, x_s \ (0 \leq s \leq k(H))$ be s neighbors of x in V_1''; $y_{s+1}, z_{s+1}, \ldots, y_u, z_u \ (s \leq u \leq k(H))$ be a matching in $G_1 - N_{G_1}[x]$; $y_{u+1}, z_{u+1}, \ldots, y_{k(H)}, z_{k(H)}$ be a matching in $G[E_2(x)]$ where x is adjacent to $y_{u+1}, \ldots, y_{k(H)}$. Since the number of vertices in $V_1' \cup V_2'$ is sufficiently large and each vertex of V_1'' is adjacent to at least $c_0 |V_{3-i}'|$ vertices of V_{3-i}' (i = 1, 2), we may find k odd cycles intersecting in vertex x. When $1 \leq j \leq s$, let $C_{t_j} = xP_{t_j-2}x_1x$. P_{t_j-2} is a path between V_1' and V_2' and the endpoints of the path are in V_2'. When $s + 1 \leq j \leq u$, let $C_{t_j} = xP_{t_j-4}z_jy_jw_jx$, P_{t_j-4} is a path between V_1' and V_2' and the endpoints of the path are in V_2'. When $u + 1 \leq j \leq k(H)$, let $C_{t_j} = xP_{t_j-3}z_jy_jx, P_{t_j-3}$ is a path between V_1' and V_2' and one of the endpoints of the path is in V_1', the other endpoint of the path is in V_2'. For any $j \in [1, k(H)], t_j \geq t$ is odd, the vertices of the paths in C_{t_j} are different, w_j is not in any paths in these cycles. Then there is a copy of $S_k(H)(t) \subseteq G[V_1 \cup V_2]$ and V_1' or V_2' contains the neighbors of the center vertex of $S_k(H)$. This implies that there is a copy of $H(t) \subseteq G$, a contradiction.
Claim 2. \(\alpha'(G_1) + \alpha'(G_2) \leq k(H) - 1. \)

Suppose to the contrary that \(\alpha'(G_1) + \alpha'(G_2) \geq k(H) \). Let \(\{x_1y_1, x_2y_2, \ldots, x_sy_s\} \) (0 \(\leq s \leq k(H) \)) be a matching in \(G_1 \) and \(\{x_{s+1}y_{s+1}, \ldots, x_{k(H)}y_{k(H)}\} \) be a matching in \(G_2 \). Since the number of vertices of \(V'_1 \cup V'_2 \) is sufficiently large and each vertex of \(V''_i \) (\(i = 1, 2 \)) is adjacent to at least \(c_0|V'_3-i| \) vertices of \(V'_3-i \), we may find a vertex \(v_0 \in V'_1 \) such that \(v_0 \in \cap_{i=s+1}^{k(H)} N_{V'_1}(x_i) \) holds and \(k(H) \) odd cycles intersect in exactly one vertex \(v_0 \). When \(1 \leq j \leq s \), let \(C_{t_j} = v_0P_{t_j-4}x_jy_jw_jv_0, P_{t_j-4} \) is a path between \(V'_1 \) and \(V'_2 \) and the endpoints of the path are in \(V'_2 \), \(w_j \) is the vertex in \(V'_2 \). When \(s+1 \leq j \leq k(H) \), let \(C_{t_j} = v_0x_jy_jP_{t_j-3}v_0, P_{t_j-3} \) is a path between \(V'_1 \) and \(V'_2 \) and one of the endpoints of the path is in \(V'_1 \), the other endpoint of the path is in \(V'_2 \). For any \(j \in [1, k(H)] \), \(t_j \geq t \) is odd, the vertices of the paths in \(C_{t_j} \) are different, \(w_j \) is not in any paths in these cycles. Then there is a copy of \(S_{k(H)}(t) \subseteq G[V'_1 \cup V'_2] \) and \(V'_1 \) or \(V'_2 \) contains the neighbors of the center vertex of \(S_{k(H)} \). This implies that there is a copy of \(H(t) \subseteq G \), which is a contradiction. The result follows.

Claim 3. \(\max \{\Delta(G_1), \Delta(G_2)\} = k(H) - 1. \)

By Claim 1 we have \(\Delta(G_i) \leq k(H) - 1 \) (\(i = 1, 2 \)). If \(\max \{\Delta(G_1), \Delta(G_2)\} \leq k(H) - 2 \), then
\[
m = e(G_1) + e(G_2) \\
\leq \varphi(\alpha'(G_1), k(H) - 2) + \varphi(\alpha'(G_2), k(H) - 2) \\
\leq \varphi(\alpha'(G_1) + \alpha'(G_2), k(H) - 2) \\
\leq \varphi(k(H) - 1, k(H) - 2).
\]

By the construction of \(G \), we deduce \(e(G) \leq f(n, \tilde{q}(H)) + ex(\tilde{q}(H)-1, \tilde{B}(H)) + m \). Combining with (3.1), we have \(m \geq (k(H) - 1)^2 \). If \(k(H) = 2 \), then we have \(m \leq \varphi(1, 0) = 0 \), a contradiction. If \(k(H) \) is odd, then we have \(m \leq \varphi(k(H) - 1, k(H) - 2) < (k - 1)^2 \), a contradiction. If \(k(H) \) is even and \(k(H) \neq 4 \), we have \(m \leq \varphi(k(H) - 1, k(H) - 2) < (k(H) - 1)^2 \), a contradiction.

If \(k(H) = 4 \) holds, then we have \(m \leq \varphi(3, 2) = (k(H) - 1)^2 = 9 \). By (3.1), we have \(m = (k(H) - 1)^2 = 9 \). Then \(G' \) is a graph with \(e(G') = 9, \Delta(G') = 2 \) and \(\alpha'(G') = 3 \). Since \(\Delta(G') = 2 \) and \(G' \) has no isolated vertex, \(\nu(G') \geq e(G') = 9 \), the equality holds if and only if \(G' \) is 2-regular, and \(c(G') \leq \alpha'(G') = 3 \). On the other hand by Lemma 3.2, we obtain
\[
3 = \alpha'(G') \geq \frac{\nu(G') - c(G')} {2} \geq \frac{\nu(G') - 3} {2}.
\]

Hence \(\nu(G') \leq 9 \) and then \(\nu(G') = 9 \) holds. Therefore \(G' \) consists of three vertex-disjoint triangles. As \(m = (k(H) - 1)^2 \), then we have \(e(G) = f(n, \tilde{q}(H)) + ex(\tilde{q}(H) - 1, \tilde{B}(H)) + (k(H) - 1)^2 \). Therefore, each vertex of \(V''_1 \) is adjacent to each vertex of \(V''_2 \). Then for any vertex \(x \in V(G') \), we have \(d_{C_i}(x) + \alpha'(G_i - N_{C_i}[x]) + \alpha'(G[E_3-i(x)]) = 4 = k(H) \) (\(i = 1, 2 \)), a contradiction to Claim 1. Therefore, we have \(\max \{\Delta(G_1), \Delta(G_2)\} = k(H) - 1. \)
Claim 4. $e(G_1) \cdot e(G_2) = 0$.

First we have

$$m = e(G_1) + e(G_2)$$

$$\leq \varphi(\alpha'(G_1), k(H) - 1) + \varphi(\alpha'(G_2), k(H) - 1)$$

$$\leq \varphi(\alpha'(G_1) + \alpha'(G_2), k(H) - 1)$$

$$\leq \varphi(k(H) - 1, k(H) - 1)$$

$$\leq k(H)(k(H) - 1).$$

From Claim 3 we may suppose $\Delta(G_1) = k(H) - 1$, and x is in V_1'' with $d_{G_1}(x) = k(H) - 1$. If $e(G_2) \geq 1$, then $\alpha'(G_2) \geq 1$. By Claim 2, $\alpha'(G_1) \leq k(H) - 1 - \alpha'(G_2) \leq k(H) - 2$. By Claim 1, we obtain $\alpha'(G[E_2(x)]) = 0$ which implies $V_2'' \cap N_G(x) = \emptyset$. Hence, for every $v \in V_2''$, v is not adjacent to x. Let $n' = n - \tilde{q}(H) + 1$. So

$$e(V_1, V_2) \leq |V_1||V_2| - |V_2''| \leq e(T_2(n')) - |V_2''|.$$

Thus we have

$$e(T_2(n')) + (k(H) - 1)^2 \leq e(G[V_1 \cup V_2]) \leq e(T_2(n')) - |V_2''| + m.$$

Therefore, $|V_2''| \leq m - (k(H) - 1)^2$, and

$$m \leq \varphi(\alpha'(G_1), \Delta(G_1)) + \varphi(\alpha'(G_2), \Delta(G_2))$$

$$\leq \alpha'(G_1)(\Delta(G_1) + 1) + \alpha'(G_2)(\Delta(G_2) + 1)$$

$$\leq k(H)\alpha'(G_1) + (k(H) - 1 - \alpha'(G_1))|V_2''|$$

$$= \alpha'(G_1)(k(H) - |V_2''|) + (k(H) - 1)|V_2''|$$

$$\leq (k(H) - 2)(k(H) - |V_2''|) + (k(H) - 1)|V_2''|$$

$$= (k(H) - 1)^2 + |V_2''| - 1$$

$$\leq (k(H) - 1)^2 + m - (k(H) - 1)^2 - 1$$

$$= m - 1.$$

This contradiction shows $e(G_2) = 0$. Therefore, we have proved $e(G_1) \cdot e(G_2) = 0$.

By Claim 1 and Claim 4, for any vertex $x \in V_i$ we know that $d_{G_i}(x) + \alpha'(G_i - N_{G_i}[x]) + \alpha'(G[E_{3-i}(x)]) \leq k(H) - 1$ and $e(G_1) \cdot e(G_2) = 0$ hold. Then we have $d_{G'}(x) + \alpha'(G' - N_{G'}[x]) \leq k(H) - 1$. Applying Lemma 3.3, we deduce $e(G') \leq (k(H) - 1)^2$. The equality holds if and only if $G' = K_{k(H)-1, k(H)-1}$. Therefore, we have $e(G) = f(n, \tilde{q}(H)) + \exp(\tilde{q}(H) - 1, B(H)) + (k(H) - 1)^2$ and $G \in F(n, \tilde{q}(H), k(H) - 1, B(H))$. The proof is complete.

We mainly use the so-called progressive induction to prove the upper bound of Theorem 1.3 and this technique is borrowed from [12].
Theorem 3.2 (Simonovites [11]). Let \(\mathcal{U} = \bigcup_{i=1}^{\infty} \mathcal{U}_i \) be a set of given elements, such that \(\mathcal{U}_i \) are disjoint finite subsets of \(\mathcal{U} \). Let \(P \) be a condition or property defined on \(\mathcal{U} \) which means the elements of \(\mathcal{U} \) may satisfy or not satisfy \(P \). Let \(\phi(x) \) be a function defined on \(\mathcal{U} \) such that \(\phi(x) \) is a non-negative integer and

(i) if \(x \) satisfies \(P \), then \(\phi(x) = 0 \);
(ii) there is an \(n_0 \) such that if \(n > n_0 \) and \(x \in \mathcal{U}_n \) then either \(x \) satisfies \(P \) or there exist an \(n' \) and an \(x' \) such that

\[
\frac{n}{2} < n' < n, \quad x' \in \mathcal{U}_{n'} \quad \text{and} \quad \phi(x) < \phi(x').
\]

Then there exists an \(n_0 \) such that if \(n > n_0 \), every \(x \in \mathcal{U}_n \) satisfies \(P \).

Proof of Theorem 1.3. Let \(G_n \) be an extremal graph for \(H(t) \) of order \(n \), \(F_n \in \mathcal{F}(n, \bar{q}(H), k(H) - 1, \bar{B}(H)) \), then \(e(F_n) = f(n, \bar{q}(H)) + \text{ex}(\bar{q}(H) - 1, \bar{B}(H)) + (k(H) - 1)^2 \). Let \(\mathcal{U}_n \) be the set of extremal graphs for \(H(t) \) of order \(n \), \(P \) be the property defined on \(\mathcal{U} \) satisfying that \(e(G_n) \leq e(F_n) \) and the equality holds if and only if \(G_n \in \mathcal{F}(n, \bar{q}(H), k(H) - 1, \bar{B}(H)) \). Define \(\phi(G_n) = \max\{e(G_n) - e(F_n), 0\} \). If \(G_n \) satisfies \(P \), then \(\phi(G_n) = 0 \), which implies the condition (i) in Theorem 3.2 is satisfied.

In the following part we may prove either \(G_n \) satisfies \(P \) or there exist an \(n' \) and a \(G_{n'} \) such that

\[
\frac{n}{2} < n' < n, \quad G_{n'} \in \mathcal{U}_{n'} \quad \text{and} \quad \phi(G_n) < \phi(G_{n'}).\]

By Theorem 1.2 and the fact \(e(G_n) \geq f(n, \bar{q}(H)) + \text{ex}(\bar{q}(H) - 1, \bar{B}(H)) \geq \frac{n^2}{4} \), there is an \(n_1 \) such that if \(n > n_1 \), \(G_n \) contains \(T_2(2n_2) \) (\(n_2 \) is sufficiently large) as a subgraph. By Lemma 2.2 we have \(e(H)P_2 \in \mathcal{M}_2(H(t)) \). In \(G_n \) each class of \(T_2(2n_2) \) contains no copy of \(e(H)P_2 \). Otherwise it follows from the definition of the 2-decomposition family that \(G_n \) contains a copy of \(H(t) \), a contradiction. Hence, there is an induced subgraph \(T_2(2n_3) \) (\(n_3 \) is also sufficiently large) of \(G_n \) by deleting \(2e(H) \) vertices of each class of \(T_2(2n_2) \).

Let \(c \) be a sufficiently small constant and \(T_0 = T_2(2n_3), X = V(G_n) \setminus V(T_0) \). We pick vertices \(x_t \in X \) and graphs \(T_t \) recursively: \(x_t \) is the vertex which has at least \(c'n_3 \) neighbors in each class of \(T_{t-1} \), and \(T_t = T_2(2c^n_3) \) is the subgraph of \(T_{t-1} \) induced by the neighbors of \(x_t \). \(B_1^t \) and \(B_2^t \) are the vertex sets of two classes of \(T_t \). The progress stops after at most \(\bar{q}(H) - 1 \) steps. If \(t \geq \bar{q}(H), G_n[\{x_1, x_2, \cdots, x_{\bar{q}(H)}\} \cup B_1^{\bar{q}(H)}] \) contains a copy of \(M \), then \(G_n \) contains a copy of \(H(t) \). Therefore, we may suppose the progress ends at \(x_s \) and \(T_s \) where \(s \leq \bar{q}(H) - 1 \). Denote by \(Y = \{x_1, \cdots, x_s\} \).

Next we divide \(V(G_n) \setminus (V(T_s) \cup Y) \). If \(x \in V(G_n) \setminus (V(T_s) \cup Y) \) is adjacent to less than \(c^{s+1}n_3 \) vertices of \(B_1^s \) and is adjacent to at least \((1 - \sqrt{c})c^n_3 \) vertices of \(B_2^{s-1} \), then we put \(x \) in \(C_i \) (\(i = 1, 2 \)). If \(x \in V(G_n) \setminus (V(T_s) \cup Y) \) is adjacent to less than \(c^{s+1}n_3 \) vertices
of \(B^*_i \) and is adjacent to less than \((1 - \sqrt{c})c^s n_3\) vertices of \(B^*_{3-i} \), for some \(i \in \{1, 2\} \), then we put \(x \) in \(D \). Then \(V(G) \setminus (V(T_s) \cup Y) = C_1 \cup C_2 \cup D \) holds.

The number of independent edges in \(G_n[\mathcal{B}^*_i \cup C_i] \) is less than \(e(H) \). Otherwise, if \(e(H)P_2 \subseteq G_n[\mathcal{B}^*_i \cup C_i] \), \(G_n \) contains a copy of \(H(t) \). Consider the edges joining \(\mathcal{B}^*_i \) and \(C_i \) and select a maximal set of independent edges, say \(y_1 z_1, \ldots, y_m z_m \) with \(y_j \in \mathcal{B}^*_i \), \(z_j \in C_i \) and \(1 \leq j \leq m \), \(1 \leq m < \ell \), where \(\ell = e(H) \). The number of vertices of \(\mathcal{B}^*_i \) joining to at least one of \(z_1, z_2, \ldots, z_m \) is less than \(c^s + 1 \ell n_3 \) and the remaining vertices of \(\mathcal{B}^*_i \) are not adjacent to any vertex of \(C_i \). Therefore there are at least \((1 - c\ell)c^s n_3\) vertices of \(\mathcal{B}^*_i \) which are not adjacent to any vertices of \(C_i \). We may move these \(c^s + 1 \ell n_3 \) vertices of \(\mathcal{B}^*_i \) to \(C_i \) to obtain \(\mathcal{B}^*_i \) and \(C_i' \) such that \(\mathcal{B}^*_i \subseteq \mathcal{B}^*_i \), \(C_i \subseteq C_i' \) and there are no edges between \(\mathcal{B}^*_i \) and \(C_i' \).

In conclusion, the vertices of \(G_n \) can be partitioned into \(V(T'_s), C'_1, C'_2, D \) and \(Y \), where \(T'_s = T_2(2n_4) \) with classes \(B'_i \) and \(B'_2 \), \(n_4 = c^s n_3 - c^s + 1 \ell n_3 \).

(i) \(|Y| = s \) and each \(v \in Y \) is adjacent to each vertex of \(T_2(2n_4) \).

(ii) Each vertex of \(C'_i \) is adjacent to at least \((1 - \sqrt{c} - c\ell)c^s n_3\) vertices of \(B^*_{2-i} \) and is not adjacent to any vertex of \(B'_i \) (\(i = 1, 2 \)).

(iii) Each vertex of \(D \) is adjacent to less than \(c^s + 1 \ell n_3 \) vertices of \(B'_i \) and is adjacent to less than \((1 - \sqrt{c})c^s n_3\) vertices of \(B^*_{3-i} \) for some \(i \in \{1, 2\} \).

Denote by \(\hat{G} = G_n - V(T'_s) \). Since \(\hat{G} \) does not contain a copy of \(H(t) \), we have \(e(\hat{G}) \leq e(G_n - 2n_4) \). There is a \(T'_s \) contained in \(F_n \). Denote by \(\hat{F} = F_n - V(T'_s) \). Then

\[
e(G) - e(F) = e(T'_s) + e \left(V(\hat{G}), V(T'_s) \right) + e(\hat{G}) - e(T'_s) + e \left(V(\hat{F}), V(T'_s) \right) + e(\hat{F})
\]

\[
\leq e(\hat{G}) - e(\hat{F}) + e \left(V(\hat{G}), V(T'_s) \right) - e \left(V(\hat{F}), V(T'_s) \right)
\]

Then we have \(\phi(G_n) \leq \phi(G_n - 2n_4) + e \left(V(\hat{G}), V(T'_s) \right) - e \left(V(\hat{F}), V(T'_s) \right) \).

On the other hand

\[
e \left(V(\hat{G}), V(T'_s) \right) - e \left(V(\hat{F}), V(T'_s) \right)
\]

\[
\leq 2sn_4 + (n - 2n_4 - |D|)n_4 + |D| [c^s + 1n_3 + (1 - \sqrt{c})c^s n_3] - [\ell q(H) - 1]2n_4 + n_4 (n - \ell q(H) + 1 - 2n_4)
\]

\[
= [2s + n - 2n_4 - |D| - 2(\ell q(H) - 1) - (n - \ell q(H) + 1)]n_4
\]

\[
+ |D| c^s + 1 + |D| (1 - \sqrt{c}) c^s n_3
\]

\[
= (s - \ell q(H) + 1)n_4 + (c(\ell + 1) - \sqrt{c}) c^s n_3 |D|
\]

\[
\leq 0.
\]

If \(e \left(V(\hat{G}), V(T'_s) \right) - e \left(V(\hat{F}), V(T'_s) \right) < 0 \), then \(\phi(G_n) < \phi(G_n - 2n_4) \) holds. Since \(n - 2n_4 > \frac{n}{2} \), the condition (ii) in Theorem 3.2 is satisfied.
If \(e\left(V(\tilde{G}), V(T'_3)\right) - e\left(V(\tilde{F}), V(T'_3)\right) = 0 \), then \(s = \tilde{q}(H)-1, |D| = 0 \), each vertex of \(C'_i \) is adjacent to at least \((1 - \sqrt{c - c_0 n_4})c s n_3 \) (not less than \(c_0 n_4, c_0 \in (\frac{1}{2}, 1] \) is a constant) vertices of \(B_{3-i}' \) (\(i = 1, 2 \)). By Theorem 3.1 we have \(e(G_n) \leq f(n, \tilde{q}(H)) + \mathrm{ex}(\tilde{q}(H) - 1, \tilde{B}(H)) + (k(H) - 1)^2 \), and the equality holds if and only if \(G_n \in F(n, \tilde{q}(H), k(H) - 1, \tilde{B}(H)) \).

Since \(n \) is sufficiently large, there exists an \(n_0 \) such that \(n > n_0 \). Hence \(\mathrm{ex}(n, H(t)) \leq f(n, \tilde{q}(H)) + \mathrm{ex}(\tilde{q}(H) - 1, \tilde{B}(H)) + (k(H) - 1)^2 \), and the equality holds if and only if the extremal graphs for \(H(t) \) of order \(n \) are in \(F(n, \tilde{q}(H), k(H) - 1, \tilde{B}(H)) \). The proof is complete.

Remark

This paper determines the range of Turán numbers for odd-ballooning of general bipartite graphs obtained from replacing each edge by an odd cycle of order \(t \) where \(t \geq 5 \) is an odd integer. Given an integer \(p \), the edge blow-up of a graph \(H \), denoted by \(H^{p+1} \), is the graph obtained from replacing each edge in \(H \) by a clique of order \(p+1 \), and the new vertices of the cliques are all distinct. Yuan in [12] determined the range of Turán numbers for edge blow-up of all bipartite graphs when \(p \geq 3 \). The Turán numbers for \(H(3) \) has been determined when \(H \) is a star, a path or an even cycle. While the Turán numbers for \(H(3) \) when \(H \) is a general bipartite graph are unclear.

Declaration

The authors have declared that no competing interest exists.

References

[1] N. Balachandean, N. Khare, Graphs with restricted valency and matching number, Discrete Math. 309 (2009) 4176-4180.

[2] G. Chen, R.J. Gould, F. Pfender, B. Wei, Extremal graphs for intersecting cliques, J. Combin. Theory Ser. B 89 (2003) 159-171.

[3] V. Chvátal, D. Hanson, Degrees and matchings, J. Combin. Theory Ser. B 20 (1976) 128-138.

[4] P. Erdős, A. H. Stone, On the structure of linear graphs, Bull. Am. Math. Soc. 52 (1946) 1089-1091.

[5] P. Erdős, M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hung. 1 (1966) 51-57.

[6] T. Gallai, Neuer Beweis eines Tutte’schen Satzes, Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 8 (1963) 135-139.
[7] X. Hou, Y. Qiu, B. Liu, Extremal graph for intersecting odd cycles, Electron. J. Combin. 23 (2016) 2. 29.

[8] X. Hou, Y. Qiu, B. Liu, Turán number and decomposition number of intersecting odd cycles, Discrete Math. 341 (2018) 126-137.

[9] H. Liu, Extremal graphs for blow-ups of cycles and trees, Electron. J. Combin. 20 (1) (2013) 65.

[10] Z. Ni, L. Kang, E. Shan, H. Zhu, Extremal graphs for blow-ups of keyrings, Graphs Combin. 36 (2020) 1827-1853.

[11] M. Simonovites, A method for solving extremal problems in graph theory, stability problems, in: Theory of Graphs, Proc. Colloq., Tihany, 1966, Academic Press, New York, 1968, pp. 279-319.

[12] L. Yuan, Extremal graphs for edge blow-up of graphs, J. Combin. Theory Ser. B 152 (2022) 397-398.

[13] H. Zhu, L. Kang, E. Shan, Extremal graphs for odd-ballooning of paths and cycles, Graphs Combin. 36 (2020) 755-756.

[14] X. Zhu, Y. Chen, Turán number for odd-ballooning of trees, J. Graph Theory, (2023). https://doi.org/10.1002/jgt.22959.