Macular sub-layer thinning and association with pulmonary function tests in Amyotrophic Lateral Sclerosis

Joseph M. Simonett, Russell Huang, Nailah Siddique, Sina Farsiu, Teepu Siddique, Nicholas J. Volpe & Amani A. Fawzi

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder that may have anterior visual pathway involvement. In this study, we compare the macular structure of patients with ALS to healthy controls, and examine correlations between macular sub-layer thickness measurements and pulmonary function tests and disease duration. ALS patients underwent optical coherence tomography (OCT) imaging to obtain macular cube scans of the right eye. Macular cube OCT data from age-matched healthy subjects were provided by the OCT reading center. Semi-automated retinal segmentation software was used to quantify macular sub-layers. Pulmonary function tests and time since symptom onset were collected retrospectively from the electronic medical records of ALS patients. Macular retinal nerve fiber layer was significantly thinner in ALS patients compared to healthy controls (P < 0.05). Total macular and other sub-layer thicknesses were not reduced in the ALS cohort. Macular retinal nerve fiber layer thickness positively correlated with forced vital capacity % predicted and forced expiratory volume in 1 second % predicted (P < 0.05). In conclusion, analysis of OCT measurements supports the involvement of the anterior visual pathway in ALS. Subtle structural thinning in the macular retinal nerve fiber layer correlates with pulmonary function tests.
was found in a cohort of 71 ALS patients compared to 20 controls\(^{32}\). Interestingly, these authors also demonstrated a significant correlation between whole retinal thickness and fractional anisotropy, a measure of axonal density, in the corticospinal tract. Correlations between OCT and pulmonary function testing, quantitative measures that are routinely used to follow the severity and progression of neuromuscular involvement and correlate with survival time, have not been investigated\(^{33,34}\).

Recently, our group reported the first clinico-pathologic evidence of retinal involvement in a patient with familial ALS due to a C9orf72 mutation\(^{35}\). Peri-nuclear inclusions immunoreactive to anti-p62 antibody were found in the INL, reminiscent of those found in the hippocampus and cerebellum in this form of ALS, and were associated with decreased contrast sensitivity in this patient\(^{36}\).

This pathologic finding and the lack of consensus in OCT literature were the main stimulus for the current study. We hypothesized that a clinically similar ALS cohort will have macular changes detectable on OCT compared to age-matched controls and that retinal sub-layer thinning will correlate with measures of disease severity.

Methods

Ethics. This study was approved by the Northwestern University Institutional Review Board and all patients gave informed written consent. The study adhered to the tenets of the Declaration of Helsinki and all work was HIPAA-compliant.

Subjects. Twenty-one patients who met the El Escorial criteria for definite ALS were recruited at Northwestern University\(^{37}\). Exclusion criteria included a diagnosis of a neurological disease other than ALS and ophthalmologic disease other than corrected refractive error, including glaucoma, confirmed by history and chart review. Patients were considered to have familial ALS if one or more of their first-degree relatives had a diagnosis of ALS. Imaging and clinical data from age-matched healthy subjects were provided by the Kellogg Eye Institute, University of Michigan.

Clinical data was collected retrospectively from the electronic medical record. Date of initial ALS symptom onset and anatomical site of disease onset were obtained from the first neurology clinic visit note. The forced vital capacity % predicted (FVC%), defined as FVC divided by the average FVC in a population of individuals with similar age, sex and body composition, upright forced expiratory volume in 1 second % predicted (FEV\(_1\)%), defined as FEV\(_1\) divided by the average FEV\(_1\) in a population of individuals with similar age, sex and body composition, and ALS Functional Rating Scale (ALS-FRS-R) were obtained from the neurology clinic visit note with date closest to that of OCT acquisition. Eleven patients had OCT and clinical data collected in the same week. Mean and standard deviation of time between OCT and clinical data collection was 0.33 ± 0.32 days (positive value represents OCT occurring after clinical data collection; range = 77 days before to 53 days after neurology clinical data collection).

Imaging and sub-layer segmentation. Macular scans of the right eye of each subject were obtained using the Spectralis spectral-domain OCT imaging platform (Heidelberg Engineering, Heidelberg, Germany). Macular scans were completed with horizontal scan lines covering a 6 × 6 mm area centered on the fovea. Eye tracking software was used to minimize motion artifact. Macular scans of age-matched control subjects performed on an identical OCT platform were provided by the Kellogg Eye Institute, University of Michigan.

Average macular sub-layer thickness within the entire 6 mm diameter Early Treatment Diabetic Retinopathy Study grid was measured semiautomatically, in two steps. First, an automatic layer segmentation software, Duke Optical Coherence Tomography Retinal Analysis Program (DOCTRAP), which accounts for various potential imaging artifacts and has been validated in multiple clinical trials, was used to delineate seven retinal layer boundaries on each horizontal B-scan\(^{38–41}\). These retinal layer boundaries defined 6 retinal sub-layers; macular RNFL, ganglion cell layer/inner plexiform layer (GCL/IPL), INL, outer plexiform layer/outer nuclear layer (OPL/ONL), inner segment/outer segment (IS/OS), and retinal pigment epithelium (RPE). This automated grading was followed by a quality control procedure to further validate these boundaries in the second step. All segmented layer boundaries were reviewed by a masked expert manual grader who, if needed, adjusted the boundary lines utilizing DOCTRAP's graphical user interface. Finally, in order to correct any residual errors in segmentation, a second expert reviewed all the adjustments made by the first grader. Sub-layer thicknesses were automatically measured in each scan and average macular sub-layer thicknesses were calculated.

To assess the repeatability of sub-layer segmentation and thickness measurements, macular OCT scans from 4 ALS and 4 healthy control subjects were selected at random and underwent repeat measurement of the macular RNFL and GCL/IPL layers by the same reader. Initial and repeat measurements were compared and a concordance correlation coefficient was calculated.

Statistical analysis. Statistical analyses were performed using the Statistical Package for the Social Sciences version 22 (SPSS Inc, Chicago, IL). Demographic data and OCT measurements were analyzed using chi-squared calculations or independent t-tests. Partial correlation coefficients controlling for age, gender, and when appropriate, days between OCT imaging and clinical data collection, were calculated to assess the correlations between FVC%, FEV\(_1\)%, months since symptom onset, and the OCT measurements. A P value less than 0.05 was considered to be statistically significant.

Results

Patient Demographics. We enrolled 21 patients who had a diagnosis of ALS made by a neurologist with expertise in neuromuscular medicine. Four subjects had familial ALS while 17 had sporadic ALS. Of the 4 subjects with familial ALS, 2 carried mutations in the C9orf72 gene and 2 carried mutation in the CHCHD10 gene. Demographics and clinical factors of the ALS patients and healthy controls are displayed in Table 1.
Optical Coherence Tomography Measurements. Macular OCT measurements of ALS and control cohorts are reported in Table 2. Shapiro-Wilk test demonstrated normal distribution (P > 0.05) of macular thickness (both ALS and control cohorts), FVC%, FEV1%, ALS disease duration, and ALS-FRS-R data. Total macular thickness was not significantly reduced in the ALS cohort compared to age-matched controls (302.2 ± 9.0 μm vs. 308.0 ± 14.1 μm P = 0.118). Sub-layer segmentation revealed significant thinning in the macular RNFL of the ALS cohort compared to controls (36.1 ± 3.5 μm vs 38.6 ± 3.7 μm, P = 0.029). No significant differences in GCL/IPL, INL, OPL/ONL, IS/OS or RPE layer thicknesses were found.

Table 1. Demographics and clinical factors for adult-onset ALS patients and healthy controls. FVC%, forced vital capacity percent predicted; FEV1%, forced expiratory volume in 1 second percent predicted. ALS-FRS-R, ALS Functional Rating Scale.

Characteristics	ALS (n = 21)	Healthy Controls (n = 21)	P
Age	55.2 ± 10.5	56.5 ± 12.0	0.716
Male sex	15 (71.4%)	9 (42.9%)	0.061
Months since symptom onset	43.2 ± 43.4	(range = 10–197)	NA
Predicted upright FVC%	58.6 ± 25.7	NA	NA
Predicted upright FEV1%	57.5 ± 23.6	NA	NA
ALS-FRS-R	28.1 ± 12.5	NA	NA
Disease onset location			
Bulbar	3 (14.3%)	NA	
Spinal–right sided	11 (52.4%)	NA	
Spinal–left sided	5 (23.8%)	NA	
Spinal–bilateral	2 (9.5%)	NA	

Characteristics	ALS patients (21)	Healthy Controls (21)	P
RNFL	36.1 ± 3.5	38.6 ± 3.7	0.029
GCL/IPL	70.0 ± 4.9	71.2 ± 5.6	0.467
INL	31.9 ± 1.9	31.7 ± 2.7	0.783
OPL/ONL	103.0 ± 5.9	104.6 ± 7.5	0.447
IS/OS	33.8 ± 1.6	32.7 ± 2.4	0.090
RPE	27.3 ± 3.0	29.1 ± 3.6	0.085
Total	302.2 ± 9.0	308.0 ± 14.1	0.118

Table 2. Total macular and sub-layer thicknesses of adult-onset ALS patients and Healthy controls. All measurements reported in microns. RNFL, macular retinal nerve fiber layer; GCL/IPL ganglion cell layer/inner plexiform layer; INL, inner nuclear layer; OPL/ONL, outer plexiform layer/outer nuclear layer; IS/OS, inner segment/outer segment; RPE, retinal pigment epithelium. Bolded P values are statistically significant (P < 0.05).

Total macula	RNFL
FVC%	r = 0.204, P = 0.428
FEV1%	r = 0.231, P = 0.357

Table 3. Partial correlation between OCT measurements and adult-onset ALS disease duration while controlling for age, gender, and time interval between OCT and clinical data collection. RNFL, macular retinal nerve fiber layer; FVC%, forced vital capacity percent predicted; FEV1%, forced expiratory volume in 1 second percent predicted; r, partial correlation coefficient. Bolded P values are statistically significant (P < 0.05).

Optical Coherence Tomography Measurements. Macular OCT measurements of ALS and control cohorts are reported in Table 2. Shapiro-Wilk test demonstrated normal distribution (P > 0.05) of macular thickness (both ALS and control cohorts), FVC%, FEV1%, ALS disease duration, and ALS-FRS-R data. Total macular thickness was not significantly reduced in the ALS cohort compared to age-matched controls (302.2 ± 9.0 μm vs. 308.0 ± 14.1 μm P = 0.118). Sub-layer segmentation revealed significant thinning in the macular RNFL of the ALS cohort compared to controls (36.1 ± 3.5 μm vs 38.6 ± 3.7 μm, P = 0.029). No significant differences in GCL/IPL, INL, OPL/ONL, IS/OS or RPE layer thicknesses were found.

The concordance correlation coefficient comparing initial and repeat OCT sub-layer measurements in 4 ALS and 4 healthy control subjects was 0.9998.

Correlation with Clinical Metrics. Macular RNFL thickness in ALS patients correlated with FVC% and FEV1% while controlling for age and gender (r = 0.478, P = 0.045; r = 0.506, P = 0.032, respectively) (Table 3, Fig. 1). Total macular thickness did not correlate with FEV1% or FVC%. ALS-FRS-R correlated strongly with FVC% and FEV1% (r = 0.864, P = 0.001; r = 0.814, P = 0.001, respectively). Neither macular RNFL nor total macular thickness significantly correlated with disease duration or ALS-FRS-R.

Discussion
The number of neuronal subtypes and neurological functions recognized as affected by ALS pathology is growing. Here we present structural OCT data that is supportive of subtle anterior visual pathway involvement in ALS.
in autophagy regulation, have been linked to both primary open-angle glaucoma and ALS48–50. Further investiga-

tion of the relationship between these 2 data points.

The RNFL sub-layer thinning we observed is similar to that recently reported in the studies by Ringelstein et al. and Hubers et al., however we did not find significant changes in total macular or INL thicknesses30,32. Furthermore, we examined macular RNFL while Ringelstein et al. measured peripapillary RNFL. Important dif-

ferences exist between the respective cohorts, including percent of patients with El Escorial definite ALS (100% current study vs 83% [Ringelstein et al.] vs unreported [Hubers et al.]). Additionally, our ALS cohort included familial ALS patients and had a longer average disease duration (44.4 ± 42.7 vs 22.3 ± 13.0 [Ringelstein et al.] vs 12 [Hubers et al.] months). Finally, other complex factors including genetic and environmental disease triggers make comparing heterogeneous ALS cohorts difficult. These cohort differences may partially explain the alterna-
tive conclusions regarding total macular and INL thinning between studies; RNFL involvement appears to be the most consistent finding. Given the small scale of the thickness changes seen here and in the other OCT studies in ALS, studies with larger cohort sizes or meta-analyses including studies with robust segmentation error correc-
tion methods will be necessary to further confirm the OCT sub-layer thinning patterns.

One of the current challenges of studying ALS patients is the lack of quantitative tools to measure disease severity and progression. Multiple methods have been investigated including metabolic, growth factor and inflammatory biomarker in plasma and CSF, as well as diffusion MR imaging of the CNS44–46. OCT offers the advantage of directly imaging CNS neurons in a relatively cost-effective and non-invasive way. Correlation of RNFL thickness with pulmonary measures of ALS disease severity suggests OCT may be useful in following ALS progression. We have recently shown pathologic peri-nuclear inclusions in the INL of a patient with FALS and C9ORF72 mutation35. Our current study further supports ALS retinal involvement and suggests that RNFL thinning may provide a quantitative biomarker of ALS-related neurodegeneration. Following further confirmatory studies, a multi-pronged approach including clinical functional scales, plasma and CSF biomarkers, and direct imaging with OCT may serve as a more robust method of grading ALS severity.

Our findings of specific sub-layer thinning may represent a unique susceptibility of the RNFL to ALS pathol-

ogy. Interestingly, recent findings have demonstrated that long axons have a higher susceptibility to ALS related neurodegeneration, which offers one hypothesis for why ganglion cell axons may be disproportionally affected in the retina47. A second potential link between ALS and the RNFL exists as mutations in optineurin, a gene involved in autophagy regulation, have been linked to both primary open-angle glaucoma and ALS48–50. Further investiga-
tion of genetic and mechanistic similarities, specifically in autophagy disruption, may identify further overlap between the two neurodegenerative disorders.

Limitations of this study include the small sample size and cross sectional nature. An additional limitation is that OCT images and neurologic clinical data were not always obtained on the same day, however over half of the cohort had OCT imaging and neurology clinic visits within a span of 3 days and the entire cohort had a median of 0 days interval between these 2 data points.
Future longitudinal studies are needed to more completely evaluate the relationship between structural changes on OCT and ALS severity, patient function and disease progression. Analysis of regional thickness results, including ETDRS sectors, may also be pursued to identify any localized thickness changes likely not detected in the averaged approach used in this study. Additionally, ALS subgroup comparisons, including bulbar vs spinal onset, familial vs sporadic inheritance, and juvenile vs adult onset, with an appropriately powered cohort study or meta-analysis may help determine if sub-layer thinning is limited to certain ALS disease subtypes. Visual function tests such as contrast sensitivity, which has been shown to correlate with RNFL thinning in MS, may prove capable of detecting retinal dysfunction that precedes structural changes and should be considered in future studies. Such tests may also be useful, along side OCT imaging and standard neurologic examination, for disease screening and severity stratification.

References

1. Giordana, M. T. et al. Dementia and cognitive impairment in amyotrophic lateral sclerosis: a review. *Neurol Sci.* **32**, 9–16 (2011).
2. Phukan, J., Pender, N. P. & Hardiman, O. Cognitive impairment in amyotrophic lateral sclerosis. *Lancet Neurol.* **6**, 994–1003 (2007).
3. Mezzapesa, D. M. et al. Whole-brain and regional brain atrophy in amyotrophic lateral sclerosis. *AJNR Am J Neuroradiol.* **28**, 255–259 (2007).
4. Kassubek, J. et al. Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI. *Amyotrophic Lateral Scler Other Motor Neuron Disord.* **6**, 213–220 (2005).
5. Ellis, C. M. et al. Volumetric analysis reveals corticospinal tract degeneration and extramotor involvement in ALS. *Neurology.* **57**, 1571–1578 (2001).
6. Meoded, A. et al. Imaging findings associated with cognitive performance in primary lateral sclerosis and amyotrophic lateral sclerosis. *Dement Geriatr Cogn Dis Extra.* **3**, 233–250 (2013).
7. Shaunik, S. et al. Oculomotor function in amyotrophic lateral sclerosis: evidence for frontal impairment. *Ann Neurol.* **38**, 38–44 (1995).
8. Ohki, M. et al. Ocular abnormalities in amyotrophic lateral sclerosis. *Acta Otolaryngol Suppl.* **511**, 138–142 (1994).
9. Jacobs, L., Bozian, D., Heffner, R. R. Jr. & Burron, S. A. An eye movement disorder in amyotrophic lateral sclerosis. *Neurology.* **31**, 1282–1287 (1981).
10. Leveille, A., Kiernan, J., Goodwin, J. A. & Antel, J. Eye movements in amyotrophic lateral sclerosis. *Arch Neurol.* **39**, 684–686 (1982).
11. Marti-Fabregas, J. & Roig, C. Oculomotor abnormalities in motor neuron disease. *J Neurol.* **240**, 475–478 (1993).
12. Abel, L. A., Williams, I. M., Gibson, K. L. & Levi, L. Effects of stimulus velocity and acceleration on smooth pursuit in motor neuron disease. *J Neurol.* **242**, 419–424 (1995).
13. Esteban, A., De Andres, C. & Gimenez-Roldan, S. Abnormalities of Bell’s phenomenon in amyotrophic lateral sclerosis: a clinical and electrophysiological evaluation. *J Neurol Neurosurg Psychiatry.* **41**, 690–698 (1978).
14. Moss, H. E. et al. Cross-sectional evaluation of clinical neuro-ophthalmic abnormalities in an amyotrophic lateral sclerosis population. *J Neurol Sci.* **314**, 97–101 (2012).
15. Averbeck, T., Heller, L., Helmsen, C., Horn, A. K., Leigh, R. J. & Buttner-Ennever, J. A. Slow vertical saccades in motor neuron disease: correlation of structure and function. *Ann Neurol.* **44**, 641–648 (1998).
16. Proudfoot, M. et al. Eye-tracking in amyotrophic lateral sclerosis: A longitudinal study of saccadic and cognitive tasks. *Amyotrophic Lateral Scler Frontotemporal Degener.* **17**, 101–111 (2015).
17. Burrell, J. R., Carpenter, R. H., Hodges, J. R. & Kiernan, M. C. Early saccades in amyotrophic lateral sclerosis. *Amyotrophic Lateral Scler Frontotemporal Degener.* **14**, 294–301 (2013).
18. Munte, T. F. et al. Alteration of early components of the visual evoked potential in amyotrophic lateral sclerosis. *J Neurol.* **245**, 206–210 (1998).
19. Matheson, J. K., Harrington, H. J. & Hallett, M. Abnormalities of multimodality evoked potentials in amyotrophic lateral sclerosis. *Arch Neurol.* **43**, 338–340 (1986).
20. Palma, V., Guadagnino, M., Brescia Morra, V. & Nolfe, G. Multimodality evoked potentials in sporadic amyotrophic lateral sclerosis: a statistical approach. *Electromyogr Clin Neurophysiol.* **33**, 167–171 (1993).
21. Abalo-Lojo, J. M. et al. Retinal nerve fiber layer thickness, brain atrophy, and disability in multiple sclerosis patients. *J Neuroophthalmol.* **34**, 23–28 (2014).
22. Yu, J. G. et al. Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. *PLoS One.* **9**, e85718 (2014).
23. Marzani, E. et al. Evaluation of retinal nerve fiber layer and ganglion cell layer thickness in Alzheimer’s disease using spectral-domain optical coherence tomography. *Invest Ophthalmol Vis Sci.* **54**, 5953–5958 (2013).
24. Kirkus, S., Turkylismaz, K., Anlar, O., Tufekci, A. & Durmus, M. Retinal nerve fiber layer thickness in patients with Alzheimer disease. *Neuroophthalmol.* **33**, 58–61 (2013).
25. Sature, M. et al. Retinal thinning and correlation with functional disability in patients with Parkinson’s disease. *Br J Ophthalmol.* **98**, 350–353 (2014).
26. de Seze, J. et al. Optical coherence tomography in neuroumyelitis optica. *Arch Neurol.* **65**, 920–923 (2008).
27. Ratchford, J. N. et al. Optical coherence tomography helps differentiate neuroumyelitis optica and MS optic neuropathies. *Neurology.* **73**, 302–308 (2009).
28. Rohani, M. et al. Retinal nerve changes in patients with tremor dominant and akinetic rigid Parkinson’s disease. *Neurol Sci.* **34**, 689–693 (2013).
29. Schneider, M. et al. Retinal single-layer analysis in Parkinsonian syndromes: an optical coherence tomography study. *J Neural Transm.* **121**, 41–47 (2014).
30. Marius Ringelstein, P. A., Martin Sudmeyer, Jens Harmel, Ann-Kristin Muller, Nazmiye Keser, David Finis, Stefano Ferrea, Rainer Guthoff, Alfon Schnitzler, Hans-Peter Hartung, Axel Methner & Orhan Aktas. Subtle retinal pathology in amyotrophic lateral sclerosis. *Annals of Clinical and Translational Neurology.* **1**, 290–297 (2014).
31. Roth, N. M. et al. Optical coherence tomography does not support optic nerve involvement in amyotrophic lateral sclerosis. *Eur J Neurol.* **20**, 1170–1176 (2013).
32. Hubers, A. et al. Retinal involvement in amyotrophic lateral sclerosis: a study with optical coherence tomography and diffusion tensor imaging. *J Neural Transm (Vienna).* **123**, 281–287 (2016).
33. Stambler, N., Charatan, M. & Cedarbaum, J. M. Prognostic indicators of survival in ALS. ALS CNTF Treatment Study Group. *Neurology.* **50**, 66–72 (1998).
34. Javad Mousavi, S. A. et al. Pulmonary function tests in patients with amyotrophic lateral sclerosis and the association between these tests and survival. *Iran J Neurol.* **13**, 131–137 (2014).
35. Faizai, A. A. et al. Clinicopathologic report of ocular involvement in ALS patients with C9orf72 mutation. *Amyotrophic Lateral Scler Frontotemporal Degener.* **15**, 569–580 (2014).
36. Al-Sarraj, S. et al. p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. *Acta Neuropathol.* **122**, 691–702 (2011).
37. Brooks, B. R., Miller, R. G., Swash, M. & Munsat, T. L. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. *Amyotroph Lateral Scler Other Motor Neuron Disord.* **1**, 293–299 (2000).

38. Chiu, S. J. et al. Automatic segmentation of seven retinal layers in SD-OCT images congruent with expert manual segmentation. *Opt Express.* **18**, 19413–19428 (2010).

39. Lee, J. Y. et al. Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems. *Invest Ophthalmol Vis Sci.* **54**, 7595–7602 (2013).

40. Goldhagen, B. E. et al. Retinal atrophy in eyes with resolved papilledema detected by optical coherence tomography. *J Neuroophthalmol.* **35**, 122–126 (2015).

41. Chiu, S. J. et al. Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. *Invest Ophthalmol Vis Sci.* **53**, 53–61 (2012).

42. Sohn, E. H. et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. *Proc Natl Acad Sci USA.* **113**, E2655–E2664 (2016).

43. Abramoff, M. D. et al. Human photoreceptor outer segments shorten during light adaptation. *Invest Ophthalmol Vis Sci.* **54**, 3721–3728 (2013).

44. El Mendili, M. M. et al. Multi-parametric spinal cord MRI as potential progression marker in amyotrophic lateral sclerosis. *PLoS One.* **9**, e95516 (2014).

45. Abhinav, K. et al. Use of diffusion spectrum imaging in preliminary longitudinal evaluation of amyotrophic lateral sclerosis: development of an imaging biomarker. *Front Hum Neurosci.* **8**, 270 (2014).

46. Su, X. W. et al. Biomarker-based predictive models for prognosis in amyotrophic lateral sclerosis. *JAMA Neurol.* **70**, 1505–1511 (2013).

47. Tallon, C., Russell, K. A., Sakhalkar, S., Andrapallayal, N. & Farah, M. H. Length-dependent axo-terminal degeneration at the neuromuscular synapses of type II muscle in SOD1 mice. *Neuroscience.* **312**, 179–189 (2016).

48. Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. *Nature.* **465**, 223–226 (2010).

49. Sirohi, K. et al. M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells. *Autophagy.* **9**, 510–527 (2013).

50. Ying, H. et al. Induction of autophagy in rats upon overexpression of wild-type and mutant optineurin gene. *BMC Cell Biol.* **16**, 14 (2015).

51. Bock, M. et al. Impairment of contrast visual acuity as a functional correlate of retinal nerve fibre layer thinning and total macular volume reduction in multiple sclerosis. *Br J Ophthalmol.* **96**, 62–67 (2012).

Acknowledgements

We would like to thank Dr. Thomas Gardner and Grace Boynton (Kellogg Eye Institute, University of Michigan) for their gracious collaboration and help with control data collection. This research was supported in part by Women’s Board of Northwestern Memorial Hospital (AAF), Illinois Society for the Prevention of Blindness (JMS), Duke Institute for Brain Sciences—Research Incubator Award (SF), and unrestricted funds to the Northwestern University Department of Ophthalmology from Research to Prevent Blindness. The funding organizations had no role in the design or conduct of this research.

Author Contributions

J.S., T.S., N.V. and A.F. contributed to the study design, data analysis, and writing of the primary manuscript. R.H., N.S. and S.F. contributed to the data collection, analysis, and reviewing of the final manuscript.

Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Simonett, J. M. et al. Macular sub-layer thinning and association with pulmonary function tests in Amyotrophic Lateral Sclerosis. *Sci. Rep.* **6**, 29187; doi: 10.1038/srep29187 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/