Measurement of the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ polarizations in pp collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

Abstract

The polarizations of the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ mesons are measured in proton-proton collisions at $\sqrt{s} = 7$ TeV, using a data sample of $\Upsilon(nS) \rightarrow \mu^+\mu^-$ decays collected by the CMS experiment, corresponding to an integrated luminosity of $4.9 \, \text{fb}^{-1}$. The dimuon decay angular distributions are analyzed in three different polarization frames. The polarization parameters λ_{φ}, $\lambda_{\varphi'}$, and $\lambda_{\varphi\varphi'}$, as well as the frame-invariant quantity $\tilde{\lambda}$, are presented as a function of the $\Upsilon(nS)$ transverse momentum between 10 and 50 GeV, in the rapidity ranges $|y| < 0.6$ and $0.6 < |y| < 1.2$. No evidence of large transverse or longitudinal polarizations is seen in the explored kinematic region.

Submitted to Physical Review Letters
Studies of heavy-quarkonium production play a crucial role in the detailed investigation of quantum chromodynamics (QCD), from the hard region, where an expansion in the coupling constant is possible, to the soft region, dominated by nonperturbative effects [1]. Given their high mass, heavy-quarkonium states are approximately nonrelativistic systems, allowing the application of theoretical tools that simplify and constrain the analyses of nonperturbative effects [2]. The differential cross sections of J/Ψ and Υ mesons produced at Tevatron [3–5] and LHC [6–8] energies can be reproduced by calculations based on nonrelativistic QCD (NRQCD) [9], dominated by “color octet” production. However, the corresponding predictions [10] of strong transverse polarizations (dominant angular momentum component J_z = ±1 with respect to the quarkonium momentum direction) are in stark disagreement with the negligible polarizations measured for the J/Ψ [11]. The Υ satisfies the nonrelativistic approximation much better than the J/Ψ, making the Υ polarization a more decisive test of NRQCD, especially at asymptotically large transverse momentum, p_T. The existing measurements, however, are inconclusive, with the CDF [12] and D0 [13] results in mutual contradiction.

This Letter presents the first measurement of the polarizations of the J/Ψ and Υ mesons produced at pp collisions at a center-of-mass energy of 7 TeV. The analysis is based on a dimuon sample collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.9 fb⁻¹ and containing 252 000 Υ(1S), 94 000 Υ(2S), and 58 000 Υ(3S) mesons (after all selection criteria).

The analysis uses an unbinned likelihood approach, independent of assumptions on the production kinematics. The results are obtained in three frames, with different directions of the quantization axis: the center-of-mass helicity (HX) frame, where the polar axis coincides with the direction of the Y momentum; the Collins–Soper (CS) frame [20], whose axis is the average of the two beam directions in the Y rest frame; and the perpendicular helicity (PX) frame [21], orthogonal to the CS frame. The y axis of the polarization frame is taken, in all cases, to be in the direction of the vector product of the two beam directions, \(\vec{P}_1 \times \vec{P}_2 \) and \(\vec{P}_2 \times \vec{P}_1 \) for positive and negative rapidity, respectively.

The central feature of the CMS apparatus [22] is a superconducting solenoid of 6 m internal diameter, providing a 3.8 T field. The main subdetectors used in this analysis are the silicon tracker and the muon system. The silicon tracker, composed of pixel and strip detector modules, is immersed in the magnetic field and enables the measurement of charged-particle momenta over the pseudorapidity range |η| < 2.5. Muons are measured in the range |η| < 2.4 using gas-ionization detectors embedded in the steel return yoke of the magnet and made using three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. The events were collected using a two-level trigger system. The first level consists of custom hardware processors and uses information from the muon system to select events with two
muons. The “high-level trigger” requires an opposite-sign muon pair with invariant mass $8.5 < M < 11.5\text{ GeV}$, $|y| < 1.25$, $p_T > 5$ or 7 GeV (depending on the instantaneous luminosity), and vertex fit χ^2 probability greater than 0.5%.

In the offline analysis, dimuons are formed by combining pairs of opposite-sign muons (tracks in the silicon tracker matched to tracks in the muon detectors) that satisfy several quality criteria, including the number of tracker hits, the muon-track fit quality, and the vicinity of the track to the closest primary vertex along the beam line. The selected muons are required to satisfy $|\eta| < 1.6$ and to have p_T above 4.5, 3.5, and 3.0 GeV for $|y| < 1.2$, $1.2 < |y| < 1.4$, and $1.4 < |y| < 1.6$, respectively, to ensure accurately measured muon detection efficiencies. Subsequent to the offline trigger confirmation, the combinatorial background from uncorrelated muons is reduced by requiring a dimuon vertex fit χ^2 probability larger than 1.0% and a distance between the dimuon vertex and the closest primary vertex less than twice its uncertainty. The analysis is performed in five dimuon p_T bins, of edges 10, 12, 16, 20, 30, and 50 GeV, and two $|y|$ ranges, 0.0–0.6 and 0.6–1.2.

![Figure 1: Dimuon mass distributions in the Y region for $|y| < 0.6$ (open squares) and 0.6 $< |y| < 1.2$ (closed circles).](image)

The dimuon mass distribution, shown in Fig. 1, is well described by three Crystal-Ball functions [23] representing the Y peaks, and by a second-degree polynomial function determined from the low- and high-mass sidebands, located below the Y(1S) and above the Y(3S), respectively. The dimuon mass resolution is better than 70 MeV for $|y| < 0.6$, increasing to 95 MeV in the 0.6 $< |y| < 1.2$ range, where the Y(2S) and Y(3S) peaks partially overlap. Within a ± 1 standard deviation (σ) window around the Y(nS) masses, the cross-feed between the Y(2S) and Y(3S) is below 4%, and the background fractions are 4–8%, 9–18%, and 12–28% (increasing with decreasing p_T), for the Y(1S), Y(2S), and Y(3S), respectively.

The single-muon detection efficiencies are measured with a “tag-and-probe” technique [24] using event samples collected with dedicated triggers enriched in dimuons from J/ψ decays. The trigger and reconstruction efficiencies must be accurately determined to avoid biases on the angular distributions, which could mimic polarization effects. The technique has been validated in the fiducial region of the analysis with detailed Monte Carlo (MC) simulation studies. The single-muon efficiencies are measured and parametrized as a function of p_T in eight η bins. Their uncertainties, reflecting the statistical precision of the calibration samples and possible imperfections of the parametrization, contribute to the systematic uncertainty on the final results. The dimuon trigger and the selection criteria applied at the dimuon level could potentially introduce muon-pair correlations, making the dimuon detection efficiencies different from the product of the efficiencies of the two single muons. Detailed MC simulations show that such correlations are essentially independent of $\cos \theta$ and φ, in the phase space.
selected for the measurement. Residual effects are incorporated into the systematic uncertainty.

A fit to the dimuon mass distribution provides the fraction of background events, \(f_B \), under each of the three \(\Upsilon \) mass peaks, for a given definition of the signal region. The angular distributions of these background events are modeled as weighted sums of the distributions measured in the mass sidebands (defined with negligible signal contamination), with weights derived under the assumption that they change monotonically with dimuon mass. The background dimuons are subtracted on an event-by-event basis using the likelihood ratio \(\frac{L_B}{L(S+B)} \), where both likelihoods are functions of the variables \(p_T, |y|, M, \cos \vartheta, \varphi \). \(L_B \) is the likelihood of an event to be background, reflecting the background model, and \(L(S+B) \) is its likelihood to be either signal or background, reflecting the distribution of the measured events. A fraction \(f_B \) of events distributed according to the \((p_T, |y|, M, \cos \vartheta, \varphi) \) distribution of the background model is removed from the data sample.

The posterior probability distribution (PPD) for the average values of the \(\Upsilon \) polarization parameters (⃗λ) inside a particular kinematic cell is then defined as a product over the remaining (“signal-like”) events (i),

\[
P(\vec{\lambda}) = \prod_i E(\vec{p}_{1i}, \vec{p}_{2i}) , \tag{2}
\]

where \(E \) represents the event probability distribution as a function of the muon momenta \(\vec{p}_{1,2} \) in event \(i \). The priors are assumed to be uniform in the full parameter space. Unlike most polarization analyses, we do not use simulated \((\cos \vartheta, \varphi) \) acceptance and efficiency maps, averaged over all events in the considered kinematic cell. Instead, the procedure exploits the efficiency measurement as a function of muon momenta, attributing to each event a probability dependent on the full event kinematics (not only \(\cos \vartheta \) and \(\varphi \)) and on the values of the polarization parameters. The event probability is defined as

\[
E(\vec{p}_1, \vec{p}_2) = \frac{1}{N(\vec{\lambda})} W(\cos \vartheta, \varphi|\vec{\lambda}) \epsilon(\vec{p}_1, \vec{p}_2) , \tag{3}
\]

where \(\epsilon(\vec{p}_1, \vec{p}_2) \) is the detection efficiency. The normalization factor \(N(\vec{\lambda}) \) is calculated by integrating \(W \cdot \epsilon \) over \(\cos \vartheta \) and \(\varphi \) uniformly, using \((p_T, |y|, M) \) distributions determined from the background-subtracted data.

The background subtraction procedure is repeated 50 times to evaluate the statistical fluctuations associated with its random nature and the final PPD is obtained as the average of the 50 individual PPDs.

The analysis framework, including the effects of the detection efficiencies, has been tested with pseudo-experiments based on simulated samples. Each test involves 50 pseudo-experiments and evaluates a specific systematic uncertainty. The pseudo-samples are individually generated and reconstructed, leading to statistically independent determinations of the polarization parameters. The difference between the median of the 50 results and the injected polarization parameters provides the systematic uncertainty corresponding to the effect under study. The reliability of the method to extract the signal polarization is evaluated for several signal and background polarization scenarios. The influence of a possible residual bias from muon or dimuon efficiencies, stemming from the tag-and-probe measurement precision or from the efficiency parametrization, is evaluated by applying uncertainty-based changes to the efficiencies used in the extraction of the polarization parameters. The monotonicity hypothesis in the data-driven modeling of the background angular distribution under the \(\Upsilon(nS) \) peaks has been tested by varying the signal region from ±3 \(\sigma \) to ±1 \(\sigma \) around the \(\Upsilon(nS) \) masses (with corresponding
corrections determined from a simple simulation of two-body decay kinematics). Despite significant changes in f_B (from 40% to 28% for the $Y(3S)$ at low p_T and $|y| < 0.6$, for instance), the results remain essentially identical for all three states. Larger variations are observed by modifying the relative weights of the low- and high-mass sidebands in the background model composition. A conservative range of hypotheses is considered, such as assuming that the background under the $Y(1S)$ ($Y(3S)$) peak resembles exclusively the low-mass (high-mass) sideband, or assuming that it is reproduced by an equal mixture of the two sideband distributions. While there is no dominant source of systematic uncertainty in the $Y(1S)$ case, the total systematic uncertainty of the $Y(2S)$ and $Y(3S)$ states is dominated by the background model uncertainty, especially at low p_T. At high p_T, the statistical uncertainties dominate. For example, the statistical uncertainties in $\lambda_{\Phi}(\mathrm{PX})$ at $|y| < 0.6$ for the $Y(1S)$ ($Y(3S)$) are of order 0.1 (0.2) at both low and high p_T; the corresponding systematic uncertainties have a similar magnitude at low p_T and are a factor of two (three) smaller at high p_T.

Each PPD is broadened by the effects of systematic uncertainties, which are included by convolution. One- and two-dimensional projections of each final PPD are calculated by numerical integration. The highest posterior probability in each one-dimensional projection is used to estimate the best value of the associated polarization parameter. Intervals $[\lambda_1, \lambda_2]$ corresponding to a given confidence level (CL), are calculated by identifying two regions of the parameter space, $[\lambda_1, 0]$ and $[0, \lambda_2]$, each containing $0.5 \cdot (1 - \text{CL})\%$ of the one-dimensional projection of the PPD. Figure 2 shows two projections of the final PPD for the $Y(1S)$ at $|y| < 0.6$ and $30 < p_T < 50\text{ GeV}$, displaying the 68.3% and 99.7% CL contours for the CS and HX frames.

Figure 3 shows, for the rapidity range 0.0–0.6, one-dimensional profiles (68.3%, 95.5%, and 99.7% CL intervals) of the PPDs of the parameters $\lambda_{\Phi}, \lambda_{\varphi},$ and $\lambda_{\varphi_{0}}$, for the $Y(1S), Y(2S),$ and $Y(3S)$ states, in the HX frame. Similar values are obtained in the 0.6–1.2 rapidity range. Figure 4 displays the corresponding results for the frame-invariant parameter λ, including also the CS and PX values. The results obtained in the three frames are in good agreement, as required in the absence of unaccounted for systematic effects. Complete tables of results for $\lambda_{\Phi}, \lambda_{\varphi},$ and λ, for the three Y states and in the three frames considered in this analysis, are available in Ref. [25].

All the polarization parameters are compatible with zero or small values in the three polarization frames, excluding that a significant polarization could remain undetected because of
In summary, the polarizations of the heavier (P-wave) bottomonium states do not distinguish directly produced Υ mesons from those produced in the decays of heavier (P-wave) bottomonium states. Smearing effects induced by unfortunate frame choices. The indication that the $\Upsilon(nS)$ resonances are produced as an unpolarized mixture might be related to the fact that the measurements do not distinguish directly produced Υ mesons from those produced in the decays of heavier (P-wave) bottomonium states.

In summary, the polarizations of the $\Upsilon(nS)$ mesons produced in pp collisions at $\sqrt{s} = 7$ TeV have been determined as a function of the $Y\ p_T$ in two rapidity ranges and in three different polarization frames, using both frame-dependent and frame-independent parameters. The results exclude large transverse or longitudinal $\Upsilon(nS)$ polarizations, beyond the p_T and y ranges probed by previous experiments, especially for the $\Upsilon(3S)$ state, less affected by feed-down decays, and are in disagreement with theoretical expectations for high-energy hadron colli-
We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

References

[1] Quarkonium Working Group Collaboration, “Heavy quarkonium physics”, cern report, (2004).

[2] N. Brambilla et al., “Heavy quarkonium: progress, puzzles, and opportunities”, Eur. Phys. J. C 71 (2011) 1534, doi:10.1140/epjc/s10052-010-1534-9

[3] CDF Collaboration, “Measurement of the \(J/\psi\) meson and \(b\)-hadron production cross sections in \(p\bar{p}\) collisions at \(\sqrt{s} = 1960\) GeV”, Phys. Rev. D 71 (2005) 032001, doi:10.1103/PhysRevD.71.032001

[4] CDF Collaboration, “\(Y\) production and polarization in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\)-TeV”, Phys. Rev. Lett. 88 (2002) 161802, doi:10.1103/PhysRevLett.88.161802

[5] D0 Collaboration, “Measurement of inclusive differential cross sections for \(\Upsilon(1S)\) production in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV”, Phys. Rev. Lett. 94 (2005) 232001, doi:10.1103/PhysRevLett.100.049902

[6] CMS Collaboration, “\(J/\psi\) and psi(2S) production in pp collisions at \(\text{sqrt}(s) = 7\) TeV”, JHEP 1202 (2012) 011, doi:10.1007/JHEP02(2012)011

[7] LHCb Collaboration, “Measurement of Upsilon production in pp collisions at \(\sqrt{s} = 7\) TeV”, Eur. Phys. J. C 72 (2012) 2025, doi:10.1140/epjc/s10052-012-2025-y

[8] CMS Collaboration, “Measurement of the Inclusive Upsilon production cross section in pp collisions at \(\text{sqrt}(s) = 7\) TeV”, Phys. Rev. D 83 (2011) 112004, doi:10.1103/PhysRevD.83.112004

[9] G. T. Bodwin, E. Braaten, and G. P. Lepage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium”, Phys. Rev. D 51 (1995) 1125, doi:10.1103/PhysRevD.51.1125

[10] B. Gong, J.-X. Wang, and H.-F. Zhang, “QCD corrections to \(\Upsilon\) production via color-octet states at the Tevatron and LHC”, Phys. Rev. D 83 (2011) 114021, doi:10.1103/PhysRevD.83.114021
[11] CDF Collaboration, “Polarizations of J/ψ and ψ(2S) Mesons Produced in pp Collisions at √s = 1.96 TeV”, *Phys. Rev. Lett.* **99** (2007) 132001, doi:10.1103/PhysRevLett.99.132001

[12] CDF Collaboration, “Measurements of the Angular Distributions of Muons from Υ Decays in pp Collisions at √s = 1.96 TeV”, *Phys. Rev. Lett.* **108** (2012) 151802, doi:10.1103/PhysRevLett.108.151802

[13] D0 Collaboration, “Measurement of the polarization of the ϒ(1S) and ϒ(2S) states in pp collisions at √s = 1.96 TeV”, *Phys. Rev. Lett.* **101** (2008) 182004, doi:10.1103/PhysRevLett.101.182004

[14] P. Faccioli et al., “Towards the experimental clarification of quarkonium polarization”, *Eur. Phys. J. C* **69** (2010) 657, doi:10.1140/epjc/s10052-010-1420-5

[15] P. Faccioli et al., “J/ψ Polarization from Fixed-Target to Collider Energies”, *Phys. Rev. Lett.* **102** (2009) 151802, doi:10.1103/PhysRevLett.102.151802

[16] P. Faccioli, C. Lourenço, and J. Seixas, “Rotation-Invariant Relations in Vector Meson Decays into Fermion Pairs”, *Phys. Rev. Lett.* **105** (2010) 061601, doi:10.1103/PhysRevLett.105.061601

[17] P. Faccioli, C. Lourenço, and J. Seixas, “New approach to quarkonium polarization studies”, *Phys. Rev. D* **81** (2010) 111502(R), doi:10.1103/PhysRevD.81.11502

[18] P. Faccioli et al., “Model-independent constraints on the shape parameters of dilepton angular distributions”, *Phys. Rev. D* **83** (2011) 056008, doi:10.1103/PhysRevD.83.056008

[19] S. P. Baranov, A. V. Lipatov, and N. P. Zotov, “Prompt J/Ψ production at LHC: new evidence for the k_t-factorization”, *Phys. Rev. D* **85** (2012) 014034, doi:10.1103/PhysRevD.85.014034

[20] J. C. Collins and D. E. Soper, “Angular Distribution of Dileptons in High-Energy Hadron Collisions”, *Phys. Rev. D* **16** (1977) 2219, doi:10.1103/PhysRevD.16.2219

[21] E. Braaten et al., “Optimal spin quantization axes for the polarization of dileptons with large transverse momentum”, *Phys. Rev. D* **79** (2009) 014025, doi:10.1103/PhysRevD.79.014025

[22] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **03** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004

[23] M. J. Oreglia, “A study of the reactions ψ′ → γγψ” PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236.

[24] CMS Collaboration, “Measurements of Inclusive W and Z Cross Sections in pp Collisions at sqrt(s)=7 TeV”, *JHEP* **01** (2011) 080, doi:10.1007/JHEP01(2011)080

[25] See Supplemental Material at [URL will be inserted by publisher; also available in: https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsBPH11023/SupplementalMaterial.txt].

[26] P. Artoisenet et al., “Υ Production at Fermilab Tevatron and LHC Energies”, *Phys. Rev. Lett.* **101** (2008) 152001, doi:10.1103/PhysRevLett.101.152001
A. The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, E. Aguilo, T. Bergauer, M. Dragicic, J. Erö, C. Fabjan1, M. Friedl, R. Frühwirth1, V.M. Ghete, J. Hammer, N. Hörmann, J. Hrubec, M. Jeitler1, W. Kiesenhofer, V. Knünz, M. Krammer1, I. Krätschmer, D. Liko, I. Mikulec, M. Pernicka1, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Waltenberger, C.-E. Wulz1

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, S. Luyckx, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, W. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, A. Obreht, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villette

Université Libre de Bruxelles, Bruxelles, Belgium
B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, A. Mohammadi, T. Reis, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Gent, Belgium
V. Adler, K. Beernaert, A. Cimmino, S. Costantini, G. Garcia, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, N. Strobbe, F. Thyssen, M. Tytgat, S. Walsh, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Bassegmez, G. Bruno, R. Castello, L. Ceard, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco2, J. Hollar, V. Lemaître, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Beli, T. Caebers, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, L. Soares Jorge, A. Szajder, A. Vilela Pereira

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
T.S. Anjos3, C.A. Bernarde3, F.A. Dias4, T.R. Fernandez Perez Tomei, E.M. Gregores3, C. Lagana, F. Marinho, P.G. Mercadante3, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev3, P. Iaydijiev3, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, J.P. Gomez, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plestina, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgammal, A. Ellithi Kamel, S. Khalil, M.A. Mahmoud, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Muntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Harkonen, A. Heikkinen, V. Karimaki, R. Kinnunen, M.J. Kortelainen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Giveraud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millischer, A. Nayak, J. Rander, A. Rosowsky, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj, P. Busson, C. Charlot, N. Daci, T. Dahms, M. Dalchenko, L. Dobrzynski, A. Florent, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Veelken, A. Zabi
Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte, F. Drouhin, J.-C. Fontaine, D. Gelé, U. Goerlach, P. Juillot, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France, Villeurbanne, France
F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaupere, O. Bondu, G. Boudoul, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, T. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, L. Sgandurra, V. Sordini, Y. Tschudi, P. Verdier, S. Viret

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, B. Calpas, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, K. Klein, J. Merz, A. Ostopchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, P. Kreuzer, M. Merschmeyer, A. Meyer, M. Olschewski, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teyssier, S. Thüer, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
M. Bontenackels, V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehe, B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann, A. Nowack, L. Perchalla, O. Pooth, P. Sauerland, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, J. Behr, W. Behrenhoff, U. Behrens, M. Bergholz, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, E. Castro, F. Costanza, D. Dammann, C. Diez Pardos, G. Eckerlin, D. Eckstein, G. Flucke, A. Geiser, I. Glushkov, P. Gunnellini, S. Habib, J. Hauk, G. Hellwig, H. Jung, M. Kastmier, P. Katsas, C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krückner, E. Kuznetsova, W. Lange, J. Leonard, W. Lohmann, B. Lutz, R. Mankel, I. Marfin, M. Mariefeld, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, O. Novgorodova, J. Olzem, H. Perrey, A. Petrükhin, D. Pitzl, A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, E. Ron, M. Rosin, J. Salfeld-Nebgen, R. Schmidt, T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
V. Blobel, H. Enderle, J. Erfle, U. Gebbert, M. Görner, M. Gosselin, J. Haller, T. Hermanns, R.S. Höing, K. Kaschube, G. Kaussen, H. Kirschenmann, R. Klappe, J. Lange, F. Nowak, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Schröder, T. Schum, M. Seidel, J. Sibille, V. Sola, H. Stadie, G. Steinbrück, J. Thomesen, L. Vanelderen
Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, J. Berger, C. Böser, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, M. Guthoff, C. Hackstein, F. Hartmann, T. Hauth, M. Heinrich, H. Held, K.H. Hoffmann, U. Husemann, I. Katkov, J.R. Komaragiri, P. Lobelle Pardo, D. Martschei, S. Mueller, Th. Müller, M. Nieg, A. Nürnberg, O. Oberst, A. Oehler, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, S. Röcker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, M. Zeise

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horváth, F. Sikler, V. Veszprémi, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, S. Ganguly, M. Guchait, A. Gurtu, M. Maity, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, S.M. Etessami, A. Fahim, M. Hashemi, H. Hesari, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali

INFN Sezione di Bari "a", Università di Bari "b", Politecnico di Bari "c", Bari, Italy
M. Abbrescia, L. Barbone, C. Calabria, S.S. Chhibra, A. Colaleo, D. Creanza, N. De Filippis, M. De Palma, L. Fiore, G. Iaselli, G. Maggi, M. Maggi, B. Marangelli
P. Meridiania,5, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, M. Sigamania, L. Soffia,b

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, N. Cartigliaa, S. Casassoa,b, M. Costaa,b, N. Demariaa, C. Mariottia,5, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Muscha,5, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,5, D. Montaninoa,b,5, A. Penzoa, A. Schizzia,b

Kangwon National University, Chunchon, Korea
T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea
S. Chang, D.H. Kim, G.N. Kim, D.J. Kong, H. Park, D.C. Son, T. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
M.J. Bilinskis, I. Grigelionis, M. Janulis, A. Juodagalvis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, J. Martínez-Ortega, A. Sánchez-Hernández, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, M.I. Asghar, J. Butt, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
I. Belotelov, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, A. Malakhov, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
S. Evtstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gnilenkov, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, D. Trilov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, I. Shreyber, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, A. Popov, L. Sarycheva, V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin, V. Kachanov, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, M. Ekmedzic, D. Krpic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez
Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. García-Abia, O. González López, S. Goy López, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Santalolalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini34, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, C. Jorda, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodriguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, J.F. Benitez, C. Bernet35, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, D. D’Enterria, A. Dabrowski, A. De Roeck, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Girone, M. Giunta, F. Glege, R. Gomez-Reino Garrido, P. Govoni, S. Gowdy, R. Guida, S. Gundacker, M. Hansen, P. Harris, C. Hartl, J. Harvey, B. Hegner, A. Hinzmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, K. Kousouris, P. Lecoq, Y.-J. Lee, P. Lenzi, C. Lourenço, N. Magini, T. Måki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Mejers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, P. Musella, E. Nesvold, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Rolandi36, C. Rovelli35, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Spichas37, D. Spiga, A. Tsirou, G.I. Veres20, J.R. Vlimant, H.K. Wöhri, S.D. Worm38, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

L. Bäni, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dürrer, J. Eugscher, K. Freudenreich, C. Grab, D. Hits, P. Lecomte, W. Lustermann, A.C. Marini, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nägeli39, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov40, B. Stieger, M. Takahashi, L. Tauscher†, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber, L. Wehrli

Universität Zürich, Zurich, Switzerland

C. Amsler41, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Kilminster, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti

National Central University, Chung-Li, Taiwan

Y.H. Chang, K.H. Chen, C. Ferro, C.M. Kuo, S.W. Li, W. Lin, Y.J. Lu, A.P. Singh, R. Volpe, S.S. Yu
National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, X. Wan, M. Wang

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci42, S. Cerci43, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, T. Karaman, G. Karapinar44, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk45, A. Polatoz, K. Sogut46, D. Sunar Cerci43, B. Tali43, H. Topakli42, L.N. Vergili, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak47, M. Kaya48, O. Kaya48, S. Ozkorucuklu49, N. Sonmez50

Istanbul Technical University, Istanbul, Turkey
K. Cankocak

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold38, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
L. Basso51, K.W. Bell, A. Belyaev51, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley

Imperial College, London, United Kingdom
R. Bainbridge, G. Ball, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko40, A. Papageorgiou, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi52, D.M. Raymond, S. Rogerson, A. Rose, M.J. Ryan, C. Seez, P. Sharp†, A. Sparrow, M. Stoye, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, T. Whyntie

Brunel University, Uxbridge, United Kingdom
M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
K. Hatakeyama, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, C. Henderson, P. Rumerio
Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, USA
J. Alimena, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, M. Gardner, R. Houtz, W. Ko, A. Kopecky, R. Lander, O. Mall, T. Miceli, D. Pellett, F. Ricci-tam, B. Rutherford, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra, R. Yohay

University of California, Los Angeles, Los Angeles, USA
V. Andreev, D. Cline, R. Cousins, J. Duris, S. Erhan, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, G. Rakness, P. Schlein, P. Traczyk, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
J. Babb, R. Clare, M.E. Dinardo, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, B. Mangano, S. Padhi, C. Palmer, G. Petruchiani, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, F. Golf, J. Incandela, C. Justus, P. Kalavase, D. Kovalskyi, V. Krutelyov, S. Lowette, R. Magaña Villalba, N. Mccoll, V. Pavlunin, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, Y. Chen, E. Di Marco, J. Duarte, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, M. Spiropulu, V. Timciuc, J. Veverka, R. Wilkinson, S. Xie, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn
Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, D. Green, O. Gutsche, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Klima, S. Kunori, S. Kwan, C. Leonidopoulos, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, T. Cheng, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic, G. Mitselmakher, L. Muniz, M. Park, R. Remington, A. Rinkevicius, P. Sellers, N. Shirkhodaei, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaultney, S. Hewamanage, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyano, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, F. Lacroix, C. O’Brien, C. Silkworth, D. Strom, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, F. Duru, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, Y. Onel, F. Ozok, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, R. Stringer, G. Tinti, J.S. Wood

Kansas State University, Manhattan, USA
A.F. Barfuss, T. Bolton, I. Chakabaria, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, B. Calvert, S.C. En, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kim, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Ska, J. Temple, M.B. Tonjes, S.C. Tonwar
Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov, Y. Kim, M. Klute, K. Krajczar, A. Levin, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephens, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, B. Wyslouch, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
S.I. Cooper, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, M. Eads, J. Keller, I. Kravchenko, J. Lazo-Flores, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA
G. Alvisser, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, D. Nash, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, K.A. Hahn, A. Kubik, L. Lusito, N. Mucia, N. Odell, R.A. Oierzyński, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
L. Antonelli, D. Berry, A. Brinkerhoff, K.M. Chan, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, M. Planer, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer

Princeton University, Princeton, USA
E. Berry, P. Elmer, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal, S.A. Koay, D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
E. Alagöz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, V. Marousov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar
Rice University, Houston, USA
A. Adair, B. Akgun, C. Boulahouache, K.M. Ecklund, F.J.M. Geurts, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas, M. Walker

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, C. Dragoiu, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, C. Florez, S. Greene, A. Gurrola, W. Johns, P. Kurt, C. Maguire, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA
M. Anderson, D. Belknap, L. Borrello, D. Carlsmit, M. Cepeda, S. Dasu, E. Friis, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, R. Loveless, A. Mohapatra, I. Ojalvo, F. Palmonari, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
3: Also at Universidade Federal do ABC, Santo Andre, Brazil
4: Also at California Institute of Technology, Pasadena, USA
5: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
6: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaisseau, France
7: Also at Suez Canal University, Suez, Egypt
8: Also at Zewail City of Science and Technology, Zewail, Egypt
9: Also at Cairo University, Cairo, Egypt
10: Also at Fayoum University, El-Fayoum, Egypt
11: Also at British University, Cairo, Egypt
12: Now at Ain Shams University, Cairo, Egypt
13: Also at National Centre for Nuclear Research, Swierk, Poland
14: Also at Université de Haute-Alsace, Mulhouse, France
15: Also at Joint Institute for Nuclear Research, Dubna, Russia
16: Also at Moscow State University, Moscow, Russia
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at The University of Kansas, Lawrence, USA
19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
20: Also at Eötvös Loránd University, Budapest, Hungary
21: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
22: Now at King Abdulaziz University, Jeddah, Saudi Arabia
23: Also at University of Visva-Bharati, Santiniketan, India
24: Also at Sharif University of Technology, Tehran, Iran
25: Also at Isfahan University of Technology, Isfahan, Iran
26: Also at Shiraz University, Shiraz, Iran
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
28: Also at Facoltà Ingegneria Università di Roma, Roma, Italy
29: Also at Università della Basilicata, Potenza, Italy
30: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
31: Also at Università degli Studi di Siena, Siena, Italy
32: Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania
33: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
34: Also at University of California, Los Angeles, Los Angeles, USA
35: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
36: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
37: Also at University of Athens, Athens, Greece
38: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
39: Also at Paul Scherrer Institute, Villigen, Switzerland
40: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
41: Also at Albert Einstein Center for Fundamental Physics, BERN, SWITZERLAND
42: Also at Gaziosmanpasa University, Tokat, Turkey
43: Also at Adiyaman University, Adiyaman, Turkey
44: Also at Izmir Institute of Technology, Izmir, Turkey
45: Also at The University of Iowa, Iowa City, USA
46: Also at Mersin University, Mersin, Turkey
47: Also at Ozyegin University, Istanbul, Turkey
48: Also at Kafkas University, Kars, Turkey
49: Also at Suleyman Demirel University, Isparta, Turkey
50: Also at Ege University, Izmir, Turkey
51: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
52: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
53: Also at Utah Valley University, Orem, USA
54: Now at University of Edinburgh, Scotland, Edinburgh, United Kingdom
55: Also at Institute for Nuclear Research, Moscow, Russia
56: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
57: Also at Argonne National Laboratory, Argonne, USA
58: Also at Erzincan University, Erzincan, Turkey
59: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
60: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
61: Also at Kyungpook National University, Daegu, Korea