ANALYTICAL STAR FORMATION RATE FROM GRAVOTURBULENT FRAGMENTATION

PATRICK HENNEBELLE and GILLES CHABRIER

1 Laboratoire de Radioastronomie, UMR CNRS 8112, Ecole Normale Supérieure et Observatoire de Paris, 75231 Paris Cedex 05, France
2 Ecole Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, 69364 Lyon Cedex 07, France
3 School of Physics, University of Exeter, Exeter, EX4 4QL, UK

Received 2011 July 28; accepted 2011 September 30; published 2011 November 28

ABSTRACT

We present an analytical determination of the star formation rate (SFR) in molecular clouds, based on a time-dependent extension of our analytical theory of the stellar initial mass function. The theory yields SFRs in good agreement with observations, suggesting that turbulence is the dominant, initial process responsible for star formation. In contrast to previous SFR theories, the present one does not invoke an ad hoc density threshold for star formation; instead, the SFR continuously increases with gas density, naturally yielding two different characteristic regimes, thus two different slopes in the SFR versus gas density relationship, in agreement with observational determinations. Besides the complete SFR derivation, we also provide a simplified expression, which reproduces the complete calculations reasonably well and can easily be used for quick determinations of SFRs in cloud environments. A key property at the heart of both our complete and simplified theory is that the SFR involves a density-dependent dynamical time, characteristic of each collapsing (prestellar) overdense region in the cloud, instead of one single mean or critical freefall timescale. Unfortunately, the SFR also depends on some ill-determined parameters, such as the core-to-star mass conversion efficiency and the crossing timescale. Although we provide estimates for these parameters, their uncertainty hampers a precise quantitative determination of the SFR, within less than a factor of a few.

Key words: ISM: clouds – turbulence – stars: formation

1. INTRODUCTION

The determination of the star formation rate (SFR) in molecular clouds and in galaxies is one of the main challenges of star formation. In the modern paradigm of star formation, stars form out of prestellar cores which result from the gravoturbulent fragmentation of molecular clouds (e.g., MacLow & Klessen 2004). Within the past few years, two analytical approaches have emerged, aiming at characterizing the SFR issued from the probability density function (PDF) of density fluctuations induced by turbulence in the cloud (Krumholz & McKee 2005, hereafter KM; Padoan & Nordlund 2011, hereafter PN). Both theories rely on (1) a density threshold, whose nature differs in each case, for star formation, and (2) one characteristic dynamical timescale, defined either at the cloud’s mean density or at the threshold density. In this Letter, we derive an SFR, based on our initial mass function (IMF) analytical theory (Hennebelle & Chabrier 2008, 2009, hereafter HC08 and HC09, respectively; Chabrier & Hennebelle 2011) and show that (1) this theory yields SFR values in good agreement with observations, and (2) there is no a priori density threshold for star formation; instead, the SFR continuously increases with gas density, with indeed two different regimes. We also show that the exact value of the SFR depends on the combination of some ill-determined parameters, notably the core-to-star efficiency and the crossing timescale, whose uncertainties, and dependence upon cloud conditions, hamper an exact determination of the SFR.

2. STAR FORMATION RATE: THEORIES

We first summarize the previous SFR theories by KM and PN. We then briefly present the SFR derived from a time-dependent extension of our theory of star formation, which will be presented in details in a forthcoming paper. Finally, we present a simplified version of this theory which, alternatively, can be seen as an improved KM or PN theory.

Following Krumholz & McKee (2005), we define the dimensionless star formation rate per freefall time, SFRff, as the fraction of cloud mass converted into stars per cloud mean freefall time, \(\tau_{ff}^{0} \), i.e., \(\text{SFR}_{ff} = \left(M_{\text{s}} / M_{c} \right) \tau_{ff}^{0} \), where \(M_{s} \) denotes the SFR arising from a cloud of mass \(M_{c} \), size \(L_{c} \), and mean density \(\rho_{0} \).

2.1. The Krumholz and McKee Theory

According to various simulations of hydrodynamic or MHD supersonic turbulence, the density PDF is well represented in both cases by a lognormal form

\[
\mathcal{P}(\delta) = \frac{1}{\sqrt{2\pi \sigma_{0}^{2}}} \exp \left(-\frac{\left(\delta - \bar{\delta} \right)^{2}}{2\sigma_{0}^{2}} \right), \quad \delta = \ln(\rho / \rho_{0})
\]

\[
\bar{\delta} = -\frac{\sigma_{0}^{2}}{2}, \quad \sigma_{0}^{2} = \ln(1 + b^{2}M^{2}),
\]

where \(M \) is the Mach number and \(b \approx 0.5 \) (Federrath et al. 2010).

The essence of the KM analysis is to assume that there is a critical density, \(\rho_{cr} \), above which star formation is occurring. Then, the SFR (Equation (20) of KM) is simply obtained by estimating the fraction of gas with density larger than \(\rho_{cr} \),

\[
\text{SFR}_{ff} = \epsilon \frac{\tau_{ff}^{0}}{\tau_{ff,cr}} \sqrt{\rho_{0}} \Phi_{i} \int_{\ln \rho_{0}}^{\infty} \tilde{\rho} \mathcal{P}(\delta) d\tilde{\delta},
\]

with \(\tilde{\rho} = \rho / \rho_{0} \). KM further assume that \(\tau_{ff,cr} \approx \tau_{ff}^{0} \).

In this expression, \(\epsilon \) is the (supposedly mass-independent) efficiency with which the mass within the collapsing prestellar cores is converted into stars. Calculations (e.g., Matzner & McKee 2000; Ciardi & Hennebelle 2010) as well as observations (e.g., Andrés et al. 2010) suggest that \(\epsilon \approx 0.3-0.5 \). The parameter \(\Phi_{i} \) corresponds to the time needed for a self-gravitating fluctuation to be replenished. KM estimate it to be of the order of a few, in agreement with the analysis we propose in the Appendix.
In KM, ρ_{crit} is determined from the condition that the corresponding Jeans length must be equal to the sonic length. Their underlying assumption is that turbulent support will be too efficient to enable star formation at scales larger than the sonic length. This yields $\rho_{\text{crit,KM}} = (\phi_t, \lambda_0/\lambda_s)^2$, where ϕ_t is a coefficient of order unity, λ_0 is the Jeans length at the mean cloud density, and λ_s is the sonic length.

2.2. The Padoan and Nordlund Theory

The expression obtained by PN is similar to the KM one, stated by Equation (2), except that they do not assume $t_{\text{ff}}^0 = t_{\text{crit}}^0$, but instead $t_{\text{ff,cr}}^0/t_{\text{ff}}^0 = \sqrt{\rho_{\text{crit}}}$, as indeed comes out from the integral in Equation (2). They consider that both ϵ and ϕ_t are equal to 1, except in the magnetized case where they argue that $\epsilon \approx 0.5$ (which appears to be the main reason for the reduced SFR in the magnetized case). With Equations (1) and (2), this yields (Equation (30) of PN)

$$\text{SFR}_\| = \frac{\epsilon}{2\phi_t} \tilde{\rho}_{\text{crit}}^{1/2} \left[1 + \text{erf} \left(\frac{\sigma_0^2 - 2 \ln(\rho_{\text{crit}})}{2^{3/2} \sigma_0} \right) \right].$$ (3)

The main difference with the KM model, however, resides in the choice of ρ_{crit}. In PN, this latter is obtained by requiring that the corresponding Jeans length be equal to the typical thickness of the shocked layer, inferred by combining isothermal shock jump conditions and a turbulent velocity scaling $v \propto R^{0.5}$. This yields $\rho_{\text{crit,PN}} \approx 0.067 \theta^2 \alpha_{\text{vir}} M^2$, where $\theta \approx 0.35$ is the ratio of the cloud size over the turbulent integral scale and α_{vir} is the virial parameter, $\alpha_{\text{vir}} = 2E_{\text{kin}}/E_{\text{grav}} = 5V_{\text{rms}}^2/(\pi G \rho_0 L_c^2)$, where V_{rms} is the rms velocity within the cloud, representative of the level of turbulent versus gravitational energy in the cloud (Equations (8) and (9) of PN).

2.3. The Hennebelle and Chabrier Theory

In the HC theory of star formation (see HC08, HC09) prestellar cores are the outcome of initial density fluctuations that isolate themselves from the surrounding medium under the action of gravity. These fluctuations are determined by identifying in the cloud’s random field of density fluctuations the structures of mass M which at scale R are gravitationally unstable, according to the virial theorem. This condition defines a scale-dependent (log)-density threshold, $\delta_c = \ln(\rho_c(R)/\rho_0)$, or equivalently a scale-dependent Jeans mass, M'_R

$$M'_R = \sigma^2 G \frac{(C_s)^2}{R} + \frac{V_0^2}{3G} \frac{R}{1pc} \frac{2^\eta}{R},$$ (4)

where C_s is the sound speed, G is the gravitational constant, σ is a constant of order unity, while V_0 and $\eta \approx 0.4$ determine the rms velocity:

$$\left\langle V_{\text{rms}}^2 \right\rangle = V_0^2 \left(\frac{R}{1pc} \right)^{2\eta}.$$ (5)

A fluctuation of scale R will be replenished within a typical crossing time τ_R, and will thus be replenished a number of time equal to $t_{\text{ff}}^0/(\phi_t \tau_{R,\|})$, where $t_{\text{ff,ff}} = \tau_{R,\|}/\phi_t$ is the freefall time at scale R (see the Appendix), i.e., at density $\rho_R \sim M'_R/R^3$. Including this condition into the HC formalism yields, after some algebra, for the number-density mass spectrum of gravitationally bound structures, $\mathcal{N}(M) = d(N/V)/dM$:

$$\mathcal{N}(M) \simeq \frac{\rho_0}{M_R} \frac{dR}{dM_R} \times \left(- \frac{d\delta_R}{dR} e^\delta_R \right) \mathcal{P}(\delta_R).$$ (6)

Apart for the time ratio t_{ff}^0/τ_R, this equation is similar to Equation (33) of HC08 and Equation (27) of HC09. According to this definition, SFR$_\|$ is thus given by the integral of the mass spectrum specified by Equation (6):

$$\text{SFR}_\| = - \frac{\epsilon}{\phi_t} \int_{M_{\text{cut}}}^{M_{\text{max}}} dM \frac{dR}{dM} \frac{d\delta_R}{dR} t_{\text{ff}}^0 e^\delta_R \mathcal{P}(\delta_R).$$ (7)

According to Equation (4), M_{cut} corresponds to the mass associated with the largest size fluctuations that can turn unstable in the cloud, $y_{\text{cut}} = 2R/L_c$. We verified that, as long as y_{cut} is not too small, the results depend only weakly on its value (P. Hennebelle & G. Chabrier 2012, in preparation). In the following, we will pick $y_{\text{cut}} \approx 0.1$ as our fiducial value.

A few remarks are worth discussing at this stage. First, in the present theory there is no explicitly introduced critical scale or density for star formation, as we sum up over all gravitationally unstable cores, irrespective of their scale or density. This is achieved through the multi-scale analysis expressed by Equations (6) and (7). Indeed, turbulence is by essence a multi-scale phenomenon and introducing a critical scale does not appear clearly justified. Indeed, a piece of fluid, even if dominated by turbulence, can still collapse if it is self-gravitating.

Another essential difference with the KM and PN theories is that they rely on a unique characteristic collapsing time (the mean cloud freefall time in KM and the critical density freefall time in PN). This can be seen from Equations (2) and (3), where the term t_{ff}^0/τ_R, taken at ρ_{crit}, lies outside the integral. In contrast, in our theory (see Equation (7)), the freefall density-dependence of each collapsing structure is properly accounted for, as the freefall time consistently varies with mass M and scale R, $\tau_{R,\|} \propto \rho_R^{-1/2}$.

2.4. A Simplified Multi-freefall Theory

Even though we stress that the SFR cannot be properly determined by a simple integral of the density PDF, because such an integral, unlike Equation (7), does not take into account the spatial distribution of the gas, we suggest the following simplified but more consistent expression, which retains the collapsing time density-dependence, instead of Equations (2) and (3):

$$\text{SFR}_\| = \int_{y_{\text{cut}}}^{\infty} \frac{t_{\text{ff}}^0}{\tau_{R,\|} \phi_t} \rho \mathcal{P}(\delta) d\delta = \frac{\epsilon}{\phi_t} \int_{y_{\text{cut}}}^{\infty} \rho^{3/2} \mathcal{P}(\delta) d\delta$$

$$= \frac{\epsilon}{2\phi_t} \exp \left(3\sigma_0^2/8 \right) \left[1 + \text{erf} \left(\frac{\sigma_0^2 - 2 \ln(\rho_{\text{crit}})}{2^{1/2} \sigma_0} \right) \right].$$ (8)

This SFR is larger than the ones given by Equations (2) and (3), as shown in the next section.

We consider different choices for ρ_{crit}. When using $\rho_{\text{crit,KM}}$ or $\rho_{\text{crit,PN}}$, we refer to the corresponding SFR as "multi-freefall KM or PN," respectively. We also consider another value for ρ_{crit}, obtained by simply requiring that the Jeans length at this density is equal to $y_{\text{cut}}L_c$. This corresponds to the assumption that only fluctuations smaller than a given cloud size fraction
can collapse. We simply refer to this model as “multi-freefall.” It is easy to check that Equation (8) depends only weakly on y_{cut}, except when $y_{\text{cut}} \to 0$.

3. RESULTS

We now compare the SFR$_f$ predicted by the various theories and confront the results to recent observations.

3.1. Comparison between the Various Theories

As in KM and PN, we define the cloud properties by α_{vir} and M. Figure 1 displays SFR$_f^{0}$, which corresponds to SFR$_f$ for $\epsilon = 1$ and $\phi_s = 1$, obtained with different formalisms, for various values of the virial parameter, and for three typical Mach numbers, namely, $M = 16$, 9, and 4.

Both the HC and the multi-freefall models are larger by a factor of ~ 2–3 than PN and by at least an order of magnitude than KM. This stems from the fact that, when taking into account the density-dependence of the structure collapsing times, (1) dense regions collapse fast and (2) fluctuations denser than ρ_{crit} have a smaller freefall time than the ones at ρ_{crit}, globally increasing the value of SFR$_f^{0}$. When such a density-dependence is properly accounted for, all SFR determinations are in better agreement. Nevertheless, some differences persist between the various multi-freefall models. This stems from the choice of ρ_{crit}. Indeed, the choice of ρ_{crit} in the KM and PN theories (see Sections 2.1 and 2.2) yields $y_{\text{cut}} \approx M^{-2}$ and thus corresponds to very small values of y_{cut}, implying that only small Jeans masses (or conversely only very dense structures) are taken into account in these models.

Two interesting trends can be inferred from Figure 1. First, increasing the virial parameter leads to a decrease of the SFR, with a severe reduction above some typical value of α_{vir}, which decreases with decreasing Mach number. This naturally arises from the fact that, as α_{vir} increases, the increasing contribution of kinetic energy over potential energy prevents gravitational collapse and thus inhibits star formation, a point already noticed by KM and PN. Second, the SFR increases, although modestly, with the Mach number. This is because increasing the Mach number extends the core mass function into the low-mass domain (see PN and HC08) and, as small-scale structures have shorter freefall times, this increases the number of collapsing small cores, thus the SFR. This positive dependence of the SFR upon M is in agreement with the results of PN but contrasts with the ones of KM (see their Equation (30)), as seen in the figure. Such a decreasing dependence of the SFR with increasing Mach in the KM theory clearly stems from the fact that the ρ_{crit} term (see Equation (3)) is lacking in their Equation (20).
3.2. Comparison with Observations

Star-forming giant molecular clouds in the Milky Way have masses of $10^3 \lesssim M_c/M_\odot \lesssim 3 \times 10^6$, with $\mathcal{M} \approx 4$–30 and $\alpha_{\text{vir}} \approx 0.3$–3. The observed SFR per cloud freefall time lies in the range $0.03 \lesssim \text{SFR}_f \lesssim 0.3$, with a mean value $(\text{SFR}_f) \approx 0.16$ (Murray 2011; although see Feldmann & Gnedin 2011 for caution). Evans et al. (2009) and Heiderman et al. (2010) find SFRs in the range of ≈ 0.02–0.12 for nearby molecular clouds and of ≈ 0.03–0.5 for massive star-forming dense clumps, yielding a mean value of ≈ 0.1, about an order of magnitude larger than the values predicted by KM. Krumholz & Tan (2007, Figure 5) report lower values at low density. At high density ($\gtrsim 10^4$ cm$^{-3}$), however, two of their three data (ONC and CS(5–4)) are compatible with the aforementioned mean values.\footnote{It must be kept in mind that all these SFR values apply to giant molecular clouds. Values inferred for entire galaxies, including the Milky Way, are substantially lower, as they include diffuse atomic or molecular gas, overestimating the amount of gas counted as star-forming gas (e.g., Heiderman et al. 2010).}

According to our calculations (see Figure 1), for such cloud/clump characteristics, SFR_0 is predicted to lie within the range of ≈ 0.3–3. As discussed in Section 2.1 and in the Appendix, the effective SFR is $\text{SFR}_f = (\epsilon/\phi_t) \times \text{SFR}_f^0$, where $\epsilon/\phi_t \approx 0.1$–0.2. Therefore, according to the present calculations, theories based on a multi-freefall formalism yield SFRs per freefall time in typical molecular clumps in the range $\text{SFR}_f \approx 0.03$–0.6, going from low-dense clouds to the densest clumps, consistent with the observed values.

Figure 2 displays the SFR per unit area, $\Sigma_\ast = \text{SFR}_f \times \Sigma_g/\tau$, with $\Sigma_g = L_c \rho_0 = M_c/\pi L_c^2$, as a function of cloud surface densities, Σ_g, for four typical cloud sizes, $L_c = 1, 4, 10, \text{and } 40$ pc. The clouds are assumed to follow Larson’s (1981) relations and thus have velocities given by Equation (5) and densities $n_0 \times (L_c/1\text{pc})^{-0.7}$, where $n_0 = 10^2$ to 10^4 cm$^{-3}$, yielding cloud masses $M_c = 200$–$10^6 M_\odot$. From these values, \mathcal{M} and α_{vir} can be consistently determined. In Figure 2, we have taken $\epsilon/\phi_t = 1.5$.\footnote{This applies to Equation (3) as well, whereas the true PN relation corresponds to $\epsilon/\phi = 1.0$ and 0.5 in the hydro and MHD case, respectively, and should be moved upward accordingly on the figure.}

Lada et al. (2010) and Heiderman et al. (2010) data for clouds and massive clumps are shown for comparison. Clearly, almost
all theories exhibit a direct correlation between the density of star formation and the gas density and, when including the ϵ/ϕ_t factor, reproduce well the observational results, except possibly for the densest clumps, where the SFRs are about a factor of ~ 5 larger. The large spread of the data precludes a clear distinction between the theories at this stage, apart from the KM one which clearly lies well below most of the data points.

Interestingly, both the exact HC and “multi-freefall” calculations predict a drastic drop in the SFR below $\Sigma_5 \sim 110-120 \ M_\odot \ pc^{-2}$ and a change of slope in the $\Sigma_5 - \Sigma$ relation, with $N \sim 4.8$ and $N \sim 1.6$, similar to the Kennicutt–Schmidt relation ($N_{KS} \sim 1.4$), respectively, below and above Σ_5, in very good agreement with the observations (Heiderman et al. 2010). This density corresponds to a visual extinction $A_V \sim 6$ ($A_K \approx 1$). A similar density threshold for significant dense core population has been identified in several surveys (Onishi et al. 1998; Johnstone et al. 2000; Kirk et al. 2006; Enoch et al. 2007; Lada et al. 2010; André et al. 2010).

Various authors (e.g., Johnstone et al. 2000; Kirk et al. 2006; Heiderman et al. 2010) have suggested that the origin of such a density threshold is related to magnetic fields, which cannot support the gas against gravitational collapse above some density. The present calculations, however, show that there is no need to invoke magnetic field support or MHD shock conditions to get such a threshold although, as mentioned in the Appendix, magnetic fields may contribute dynamically by reducing the value of ϕ_t. The threshold simply stems from the fact that at the corresponding density, the size of the clumps becomes comparable to the Jeans length and thus the amount of gas appropriate to form stars drops drastically (see HC09, Figure 8). The relative similarity between the various “multi-freefall” predictions clearly indicates that, besides the ϵ/ϕ_t factor, the key physical quantity which determines the SFR is the density-dependence of the freefall time of the collapsing overdense regions induced by turbulence. An alternative possibility as recently suggested by Krumholz et al. (2011) is to assume that the SFR is simply a constant factor times the cloud’s or galaxy’s volume density over mean freefall time, although a clear physical explanation is lacking at this stage.

4. CONCLUSION

We have included the time dependence in our analytical theory of the IMF to determine the SFR. The theory, based on a gravoturbulent picture of star formation, yields SFR values in good agreement with various observational determinations in Galactic molecular clouds. Moreover, it naturally predicts a density threshold to get significant star formation and yields a dependence of the SFR upon gas surface density in very good agreement with the observationally inferred values, with an abrupt change of slope around the threshold. Such a threshold naturally emerges from our theory, without arbitrarily introducing a critical density.

A crucial point at the heart of the present (both complete and simplified (Equation (8))) approach is that, in contrast to previous theories, the SFR is not characterized by a single, characteristic dynamical time in the cloud, but instead involves a density-dependent collapsing time for each turbulence-induced gravity-dominated overdense region in the cloud. Therefore, in contrast to conclusions based on previous SFR theories, the present results show that an SFR determined by turbulence-induced density fluctuations at the early stages of star formation provides quite a consistent picture of star formation in Milky Way molecular clouds.

G.C. acknowledges the warm hospitality of the Department of Astronomy at the University of Texas, where part of this work was conducted, and A. Heiderman and N. Evans for sending their data. This research has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 247060).

APPENDIX

THE CROSSING TIME

Our estimate for the crossing time is similar to the estimate of Krumholz & McKee (2005). The crossing time of a structure of scale R is $\tau_C(R) = 2R/V_{ct}$. At large scales, $V_{ct} \simeq V_{rms}$, while at small scales, below the sonic length, $V_{ct} \simeq C_s$. The typical time τ_R within which the density field is significantly modified at scale R, implying that a new set of fluctuations, statistically independent of the former one, has set up is $\tau_R = \tau_C \tau_{ct}$, with α_G a dimensionless coefficient of the order of a few. In the Hennebelle–Chabrier theory, we select the pieces of gas which are self-gravitating. At large scales, this implies that $\alpha_G G M/R > V_{rms}$, where α_G is a dimensionless coefficient ($\alpha_G = 3/5$ for a uniform density cloud), while a similar expression holds below the sonic length. This yields

$$\tau_R = 2 \alpha_G R / V_{rms} = 2 \alpha_G \sqrt{\frac{24}{\pi^2 \alpha_g}} \tau_{ff} = \phi \tau_{ff} = \phi R_0 \sqrt{\rho_0 / \rho},$$

where $\tau_{ff} = \sqrt{3 \pi / 32 G \rho_0}$ is the freefall time of a bound region of density ρ, and $\phi_t \approx 3$, yielding $\epsilon/\phi_t \approx 0.1-0.2$.

Note that this estimate assumes that it takes about one crossing time to rejuvenate a self-gravitating structure. However, it may happen, in particular in magnetized flows, that all perturbations do not collapse eventually (e.g., Hennebelle & Pérault 2000), further increasing ϕ_t by a factor of a few.

REFERENCES

André, P., Men’shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102
Chabrier, G., & Hennebelle, P. 2011, A&A in press (arXiv:1109.2780)
Ciardi, A., & Hennebelle, P. 2010, MNRAS, 409, L39
Enoch, L., Glenn, J., Evans, N., et al. 2007, ApJ, 666, 982
Evans, N., Dunham, M. M., Jørgensen, J. K., et al. 2009, ApJS, 181, 321
Federrath, C., Roman-Duval, J., Klessen, R., Schmidt, W., & MacLow, M-M. 2010, A&A, 512, 81
Feldmann, R., & Gnedin, N. 2011, ApJ, 732, 115
Heiderman, A., Evans, N., Allen, L., Huard, T., & Heyer, M. 2010, ApJ, 723, 1019
Hennebelle, P., & Chabrier, G. 2008, ApJ, 684, 395 (HC08)
Hennebelle, P., & Chabrier, G. 2009, ApJ, 702, 1428 (HC09)
Hennebelle, P., & Pérault, M. 2000, A&A, 359, 1124
Johnstone, D., Wilson, C., Moriarty-Schieven, G., et al. 2000, ApJ, 545, 327
Kirk, H., Johnstone, D., & Di Francesco, J. 2006, ApJ, 646, 1009
Krumholz, M., Dekel, A., & McKee, C. 2011, arXiv:1109.4150
Krumholz, M., & McKee, C. 2005, ApJ, 630, 250 (KM)
Krumholz, M., & Tan, J. 2007, ApJ, 654, 304
Lada, C., Lombardi, M., & Alves, J. 2010, ApJ, 724, 687
Larson, R. 1981, MNRAS, 194, 809
MacLow, M-M., & Klessen, R. 2004, Rev. Mod. Phys., 76, 125
Matzner, C. D., & McKee, C. 2000, ApJ, 545, 364
Murray, N. 2011, ApJ, 729, 133
Onishi, T., Mizuno, A., Kawamura, A., Ogawa, H., & Fukui, Y. 1998, A&A, 302, 296
Padoan, P., & Nordlund, A. 2011, ApJ, 730, 40 (PN)