On the capitulation problem of some pure metacyclic fields
of degree 20 II

Fouad El Mouhib (The Corresponding Author)
Department of Mathematics and Computer Sciences,
Mohammed First University, Oujda, Morocco,
Correspondence: fouad.cd@gmail.com

Mohamed Talbi
Regional Center of Professions of Education and Training,
ksirat1971@gmail.com

Abdelmalek Azizi
Department of Mathematics and Computer Sciences,
Mohammed First University, Oujda, Morocco,
abdelmalekazizi@yahoo.fr

Abstract

Let \(n \) be a 5\(^{th} \) power-free natural number and \(k_0 = \mathbb{Q}(\zeta_5) \) be the cyclotomic field generated by a primitive 5\(^{th} \) root of unity \(\zeta_5 \). Then \(k = \mathbb{Q}(\sqrt[5]{n}, \zeta_5) \) is a pure metacyclic field of absolute degree 20. In the case that \(k \) possesses a 5-class group \(C_{k,5} \) of type \((5,5)\) and all the classes are ambiguous under the action of \(\text{Gal}(k/k_0) \), the capitulation of 5-ideal classes of \(k \) in its unramified cyclic quintic extensions is determined.

Key words: pure metacyclic fields, 5-class groups, Hilbert 5-class field, Capitulation.

AMS Mathematics Subject Classification: 11R04, 11R18, 11R29, 11R37

1 Introduction

Let \(k \) be a number field, and \(L \) be an unramified abelian extension of \(k \). We say that an ideal \(I \) of \(k \) or its class capitulates in \(L \) if \(I \) or its prime factors capitate in \(L \).

Let \(\Gamma = \mathbb{Q}(\sqrt[5]{n}) \) be a pure quintic field, where \(n \) is a 5\(^{th} \) power free natural number and \(k_0 = \mathbb{Q}(\zeta_5) \) be the cyclotomic field generated by a primitive 5\(^{th} \) root of unity \(\zeta_5 \). Then \(k = \Gamma(\zeta_5) \) is the normal closure of \(\Gamma \). Let \(k_5^{(1)} \) be the Hilbert 5-class field of \(k \), \(C_{k,5} \) be the 5-ideal classes group of \(k \), and \(C_{k,5}^{(\sigma)} \)
be the group of ambiguous ideal classes under the action of $Gal(k/k_0) = \langle \sigma \rangle$. In the case that $C_{k,5}$ is of type $(5,5)$ and rank $C_{k,5}^{(\sigma)} = 1$, the capitulation of the 5-ideal classes of k in the six intermediate extensions of $k_5^{(1)}/k$ is determined in [2].

In this paper, we investigate the capitulation of 5-ideal classes of k in the unramified cyclic quintic extensions of $k_5^{(1)}/k$, whenever $C_{k,5}$ is of type $(5,5)$ and rank $C_{k,5}^{(\sigma)} = 2$, which mean that all classes are ambiguous. Let p and q primes such that $p \equiv 1 \pmod{5}$, $q \equiv \pm 2 \pmod{5}$. According to [1, theorem 1.1], if $C_{k,5}$ is of type $(5,5)$ and rank $C_{k,5}^{(\sigma)} = 2$, we have three forms of the radicand n as follows:

- $n = 5^ep \not\equiv \pm 1 \pm 7 \pmod{25}$ with $e \in \{1, 2, 3, 4\}$ and $p \not\equiv 1 \pmod{25}$.

- $n = p^e q \equiv \pm 1 \pm 7 \pmod{25}$ with $e \in \{1, 2, 3, 4\}$, $p \not\equiv 1 \pmod{25}$ and $q \not\equiv \pm 7 \pmod{25}$.

- $n = p^e \equiv \pm 1 \pm 7 \pmod{25}$ with $e \in \{1, 2, 3, 4\}$ and $p \equiv 1 \pmod{25}$.

We will study the capitulation of $C_{k,5}$ in the six intermediate extensions of $k_5^{(1)}/k$ in these cases. The theoretical results are underpinned by numerical examples obtained with the computational number theory system PARI/GP [16].

Notations.

Throughout this paper, we use the following notations:

- The lower case letter p and q denote a prime numbers such that, $p \equiv 1 \pmod{5}$ and $q \equiv \pm 2 \pmod{5}$.

- $\Gamma = \mathbb{Q}(\sqrt[5]{n})$: a pure quintic field, where $n \not\equiv 1$ is a 5th power-free natural number.

- $k_0 = \mathbb{Q}(\zeta_5)$: the cyclotomic field, where $\zeta_5 = e^{2\pi i/5}$ is a primitive 5th root of unity.

- $k = \mathbb{Q}(\sqrt[5]{n}, \zeta_5)$: the normal closure of Γ, a quintic Kummer extension of k_0.

- $\langle \tau \rangle = Gal(k/\Gamma)$ such that τ is identity on Γ, and sends ζ_5 to its square. Hence τ has order 4.

- $\langle \sigma \rangle = Gal(k/k_0)$ such that σ is identity on k_0, and sends $\sqrt[5]{n}$ to $\zeta_5\sqrt[5]{n}$. Hence σ has order 5.

- For a number field L, denote by:
 - \mathcal{O}_L: the ring of integers of L;
 - $C_L, h_L, C_{L,5}$: the class group, class number, and 5-class group of L.
 - $L_5^{(1)}, L^*$: the Hilbert 5-class field of L, and the absolute genus field of L.
 - $[\mathcal{I}]$: the class of a fractional ideal \mathcal{I} in the class group of L.

- $(\frac{a}{b})_5 = 1 \iff X^5 \equiv a \pmod{b}$ resolved on \mathcal{O}_{k_0}, where a, b are primes in \mathcal{O}_{k_0}.
2 Preliminaries

2.1 Decomposition laws in Kummer extension

Since the extensions of k and k_0 are all Kummer’s extensions, we recall the decomposition laws of ideals in these extensions.

Proposition 2.1. Let L a number field contains the l^{th} root of unity, where l is prime, and θ element of L, such that $\theta \neq \mu^l$, for all $\mu \in L$, therefore $L(\sqrt[l]{\theta})$ is cyclic extension of degree l over L. We note by ζ a l^{th} primitive root of unity.

1. We assume that a prime P of L, divides exactly θ to the power P^a.
 - If $a = 0$ and P don’t divides l, then P split completely in $L(\sqrt[l]{\theta})$ when the congruence $\theta \equiv X^l \pmod{P}$ has solution in L.
 - If $a = 0$ and P don’t divides l, then P is inert in $L(\sqrt[l]{\theta})$ when the congruence $\theta \equiv X^l \pmod{P}$ has no solution in L.
 - If $l \nmid a$, then P is totally ramified in $L(\sqrt[l]{\theta})$.

2. Let B a prime factor of $1 - \zeta$ that divides $1 - \zeta$ exactly to the a^{th} power. Suppose that $B \nmid \theta$, then B split completely in $L(\sqrt[l]{\theta})$ if the congruence

$$\theta \equiv X^l \pmod{B^{a+1}} \quad (*)$$

has solution in L. the ideal B is inert in $L(\sqrt[l]{\theta})$ if the congruence

$$\theta \equiv X^l \pmod{B^{a}} \quad (**)$$

Figure 1: The unramified quintic sub-extensions of $k^{(1)}_5/k$
has solution in L, without (*) has. The ideal \mathcal{B} is totaly ramified in L if the congruence (**) has no solution.

Proof. see [3].

2.2 Relative genus field $(k/k_0)^*$ of k over k_0

Let $\Gamma = \mathbb{Q}(\sqrt[5]{n})$ be a pure quintic field, $k_0 = \mathbb{Q}(\zeta_5)$ the 5^{th}-cyclotomic field and $k = \Gamma(\zeta_5)$ be the normal closure of Γ. The relative genus field $(k/k_0)^*$ of k over k_0 is the maximal abelian extension of k_0 which is contained in the Hilbert 5-class field $k_5^{(1)}$ of k. Let $q^* \in \{0, 1, 2\}$ such that

$$q^* = \begin{cases}
2 & \text{if } \zeta_5, \zeta_5 + 1 \text{ are norm of element in } k - \{0\}, \\
1 & \text{if } \zeta_5^i(\zeta_5 + 1)^j \text{ is the norm of an element in } k - \{0\} \text{ for some exponents i and j.} \\
0 & \text{if for no exponents } i, j \text{ the element } \zeta_5^i(\zeta_5 + 1)^j \text{ is a norm from } k - \{0\}.
\end{cases}$$

Proposition 2.2. Let $k = k_0(\sqrt[5]{n})$ such that $n = \mu \lambda^{e_1} \pi_1^{e_1} \ldots \pi_f^{e_f} \pi_{f+1}^{e_{f+1}} \ldots \pi_g^{e_g}$ in k_0, where μ is unity of O_{k_0}, $\lambda = 1 - \zeta_5$ the unique prime above 5 in k_0 and each prime $\pi_i \equiv \pm 1, \pm 7 \pmod{\lambda^5}$ for $1 \leq i \leq f$ and $\pi_j \not\equiv \pm 1, \pm 7 \pmod{\lambda^5}$ for $f + 1 \leq j \leq g$. Then we have:

(i) there exists $h_i \in \{1, \ldots, 4\}$ such that $\pi_{f+1} \pi_i^{h_i} \equiv \pm 1, \pm 7 \pmod{\lambda^5}$, for $f + 2 \leq i \leq g$.

(ii) if $n \not\equiv \pm 1 \pm 7 \pmod{\lambda^5}$ and $q^* = 1$, then the genus field $(k/k_0)^*$ is given as:

$$(k/k_0)^* = k(\sqrt[5]{\pi_1}, \ldots, \sqrt[5]{\pi_f}, \sqrt[5]{\pi_{f+1} \pi_{f+2}^{h_{f+2}}}, \ldots, \sqrt[5]{\pi_{f+1} \pi_g^{h_g}})$$

where h_i is chosen as in (i).

(iii) in the other cases of q^* and the congruence of n, the genus field $(k/k_0)^*$ is given by deleting an appropriate number of 5^{th} root from the right side of (ii).

Proof. see [3] proposition 5.8.

3 Study of capitulation

This being the case, let Γ, k_0 and k as above. If $C_{k,5}$ is of type $(5, 5)$ and the group of ambiguous classes $C_{k,5}^{(s)}$ under the action of $\text{Gal}(k/k_0) = \langle \sigma \rangle$ has rank 2, we have $C_{k,5} = C_{k,5}^{(s)}$. By class field theory $C_{k,5}^{-1-\sigma}$ correspond to $(k/k_0)^*$, and since $C_{k,5} = C_{k,5}^{(s)}$ we get that $C_{k,5}^{-1-\sigma} = \{1\}$, hence $(k/k_0)^* = k_5^{(1)}$ is the Hilbert 5-class field of k.

When $C_{k,5}$ is of type $(5, 5)$, it has 6 subgroups of order 5, denoted H_i, $1 \leq i \leq 6$. Let K_i be the intermediate extension of $k_5^{(1)}/k$, corresponding by class field theory to H_i. Its easy to see that $C_{k,5} \cong C_{k,5}^+ \times C_{k,5}^-$ such that $C_{k,5}^+ = \{A \in C_{k,5} \mid A^2 = A\}$ and $C_{k,5}^- = \{X \in C_{k,5} \mid X^{2} = X^{-1}\}$ with $\text{Gal}(k/\Gamma) = \langle \tau \rangle$. As each K_i is cyclic of order 5 over k, there is at least one subgroup of order 5 of
When we have corresponding relations for the subgroups τ - Since K and since
Throught the paper we order the subgroups H_i of $C_{k,5}$ as follows:

$H_1 = C_{k,5}^+ = \langle A \rangle$, $H_6 = C_{k,5}^- = \langle \chi \rangle$, $H_2 = \langle AX \rangle$, $H_3 = \langle AX^2 \rangle$, $H_4 = \langle AX^3 \rangle$ and $H_5 = \langle AX^4 \rangle$.

By class field theory we have H_6 correspond to $K_6 = k\Gamma_5^{(1)}$, with $\Gamma_5^{(1)}$ is the Hilbert 5-class field of Γ.

By the action of $Gal(k/Q)$ on $C_{k,5}$, we can give the following:

Proposition 3.1. For all continuations of the automorphisms σ and τ we have:

1. $K_i^\sigma = K_i$ ($i = 1, 2, 3, 4, 5, 6$) i.e σ sets all K_i
2. $K_i^{\tau^2} = K_1$, $K_6^{\tau^2} = K_6$, $K_2^{\tau^2} = K_5$ and $K_3^{\tau^2} = K_4$. i.e τ^2 sets K_1, K_6 and permutes K_2 with K_5 and K_3 with K_4.

Proof. We will agree that for all $1 \leq i \leq 6$, and for all $w \in Gal(k/Q)$ we have $H_i^w = \{C^w | C \in H_i\}$.

1. Since all classes are ambiguous because $C_{k,5} = C_{k,5}^{(\sigma)}$, then σ sets all H_i.
2. We have $H_1 = C_{k,5}^+ = \langle A \rangle$ and $H_6 = C_{k,5}^- = \langle \chi \rangle$, then $H_1^{\tau^2} = H_1$ and $H_6^{\tau^2} = H_6$.
 - Since $(AX)^{\tau^2} = AX^{\tau^2} = AX^{-1} = AX^3 \in H_5$ then $H_2^{\tau^2} = H_5$.
 - Since $(AX^2)^{\tau^2} = AX^{\tau^2}(X^2)^{\tau^2} = AX^{\tau^2} = AX^3 \in H_4$ then $H_3^{\tau^2} = H_4$.
 - Since $\tau^4 = 1$ we get that $H_5^{\tau^2} = H_2$ and $H_4^{\tau^2} = H_3$.

The relations between the fields K_i in (1) and (2) are nothing else than the translations of the corresponding relations for the subgroups H_i via class field theory. \(\square \)

To study the capitulation problem of k whenever $C_{k,5}$ is of type $(5,5)$ and $C_{k,5} = C_{k,5}^{(\sigma)}$, we will investigate the three forms of the radicand n proved in [1] theorem 1.1] and mentioned above.

3.1 The case $n = p^e \equiv \pm1 \pm 7 \pmod{25}$, where $p \equiv 1 \pmod{25}$

Let $k = \Gamma(\zeta_5)$ be the normal closure of $\Gamma = \mathbb{Q}(\sqrt[5]{n})$, where $n = p^e$ such that $p \equiv 1 \pmod{25}$ and $e \in \{1, 2, 3, 4\}$. Since $p \equiv 1 \pmod{5}$ we have that p splits completely in $k_0 = \mathbb{Q}(\zeta_5)$ as $p = \pi_1\pi_2\pi_3\pi_4$, with π_i are primes in k_0 such that $\pi_i \equiv 1 \pmod{5\mathcal{O}_{k_0}}$, then the primes of k_0 ramified in k are π_i.

If $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$ and \mathcal{P}_4 are respectively the prime ideals of k above π_1, π_2, π_3 and π_4, then $\mathcal{P}_5 = \pi_i\mathcal{O}_{k}(i = 1, 2, 3, 4)$ and since τ acte transitively on π_i, we have that τ^2 permutes π_1 with π_3, hence τ^2 permutes \mathcal{P}_1 with \mathcal{P}_3. Since $\pi_i^\tau = \pi_i$, we have $\mathcal{P}_i^\tau = \mathcal{P}_i$. In fact $[\mathcal{P}_i](i = 1, 2, 3, 4)$ generate the group of strong ambiguous ideal classes denoted $C_{k,s}^{(\sigma)}$. The next theorem allow us to determine explicitly the intermediate extensions of $k_5^{(1)}/k$.
Theorem 3.1. Let k and n as above. Let π_1, π_2, π_3 and π_4 a primes of k_0 congrus to 1 modulo λ^5 such that $p = \pi_1\pi_2\pi_3\pi_4$, then:

1. $k_5^{(1)} = k(\sqrt[5]{\pi_1}, \sqrt[5]{\pi_3})$.

2. The six intermediate extensions of $k_5^{(1)}/k$ are: $k(\sqrt[5]{\pi_1}, k(\sqrt[5]{\pi_3}), k(\sqrt[5]{\pi_1\pi_3}), k(\sqrt[5]{\pi_1\pi_3^2})$, and $k(\sqrt[5]{\pi_1\pi_3^3})$. Furthermore τ^2 permutes $k(\sqrt[5]{\pi_1})$ with $k(\sqrt[5]{\pi_3})$, and $k(\sqrt[5]{\pi_1\pi_3})$ with $k(\sqrt[5]{\pi_1\pi_3^2})$, and sets $k(\sqrt[5]{\pi_1\pi_3^3})$, $k(\sqrt[5]{\pi_1\pi_3^4})$.

Proof.

(1) We have that $k_5^{(1)} = (k/k_0)^*$. Since $k = k_0(\sqrt[5]{n})$ with $n = p = \pi_1\pi_2\pi_3\pi_4$ in k_0 and $\pi_i \equiv 1 \pmod{\lambda^5}$ $(i = 1, 2, 3, 4)$, then by proposition 2.2 we have $(k/k_0)^* = k(\sqrt[5]{\pi_1}, \sqrt[5]{\pi_3})$.

(2) If $k_5^{(1)} = k(\sqrt[5]{\pi_1}, \sqrt[5]{\pi_3})$, then the six intermediate extensions are: $k(\sqrt[5]{\pi_1}), k(\sqrt[5]{\pi_3}), k(\sqrt[5]{\pi_1\pi_3})$, $k(\sqrt[5]{\pi_1\pi_3^2})$, $k(\sqrt[5]{\pi_1\pi_3^3})$, and $k(\sqrt[5]{\pi_1\pi_3^4})$. We have $\tau^2(\pi_1) = \pi_3$ then its easy to see that τ^2 sets the fields $k(\sqrt[5]{\pi_1\pi_3}), k(\sqrt[5]{\pi_1\pi_3^2}), k(\sqrt[5]{\pi_1\pi_3^3})$. Since $\tau^2(\pi_1) = \tau^2(\sqrt[5]{\pi_1}) = (\tau^2(\sqrt[5]{\pi_1}))^5 = \pi_3$, then $\tau^2(\sqrt[5]{\pi_1})$ is 5th root of π_3. Hence $k(\sqrt[5]{\pi_3}) = k(\tau^2(\sqrt[5]{\pi_1}))$ i.e $k(\sqrt[5]{\pi_3}) = k(\sqrt[5]{\pi_1})^{\tau^2}$. By the same reasoning we prove that $k(\sqrt[5]{\pi_1}) = k(\sqrt[5]{\pi_1})^{\tau^2}$, Hence τ^2 permutes $k(\sqrt[5]{\pi_1})$ with $k(\sqrt[5]{\pi_1})$.

We have $\tau^2(\pi_1\pi_3^3) = \pi_1^2\pi_3$, then $\tau^2(\pi_1\pi_3^3) = \tau^2(\sqrt[5]{\pi_1\pi_3^3}) = \tau^2(\sqrt[5]{\pi_1\pi_3^3})^5 = \pi_3^2$, hence $\tau^2(\sqrt[5]{\pi_1\pi_3^3})$ is 5th root of π_3. Then $k(\sqrt[5]{\pi_1\pi_3}) = k(\tau^2(\sqrt[5]{\pi_1\pi_3}))$ i.e $k(\sqrt[5]{\pi_1\pi_3}) = k(\sqrt[5]{\pi_1\pi_3^3}) = k(\sqrt[5]{\pi_1\pi_3^4})$. By the same reasoning we prove that $k(\sqrt[5]{\pi_1\pi_3^3}) = k(\sqrt[5]{\pi_1\pi_3^4})^{\tau^2}$. Hence τ^2 permutes $k(\sqrt[5]{\pi_1\pi_3^3})$ with $k(\sqrt[5]{\pi_1\pi_3^4})$.

The generators of $C_{k,5}$ when its of type $(5,5)$ and the radicand n is as above are determined as follows:

Theorem 3.2. Let k and n as above. Let π_1, π_2, π_3 and π_4 a primes of k_0 congrus to 1 (mod λ^5) such that $n = p = \pi_1\pi_2\pi_3\pi_4$. Let $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$ and \mathcal{P}_4 prime ideals of k such that $\mathcal{P}_1^5 = \pi_i\mathcal{O}_{k_0}$ $(i = 1, 2, 3, 4)$.

Then:

$$C_{k,5} = \langle [\mathcal{P}_1\mathcal{P}_3], [\mathcal{P}_1\mathcal{P}_4^4] \rangle$$

Proof. According to [1] theorem 1.1, for that case of the radicand n, we have that $\zeta_5^{(1)} = \sqrt[5]{\zeta_5}$ is norm of element in $k - \{0\}$. By [2] section 5.3, if ζ_5 is not norm of unit of k we have $C_{k,5} = C_{k,5}^{(1)} \neq C_{k,5}^{(s)}$, so $C_{k,5}$ contained in $C_{k,5}^{(s)}$. Hence we discuss two cases:

- 1st case: $C_{k,5} = C_{k,5}^{(s)} \neq C_{k,5}^{(1)}$: In this case, $C_{k,5}^{(s)}$ is contained in $C_{k,5} = C_{k,5}^{(1)}$, and by [2] section 5.3 we have $C_{k,5}^{(1)}/C_{k,5}^{(s)} = C_{k,5}/C_{k,5}^{(s)}$ is cyclic group of order 5. Since $C_{k,5}$ has order 25 then $C_{k,5}^{(s)}$ is cyclic of order 5. We have that $C_{k,5}^{(s)} = \langle [\mathcal{P}_1], [\mathcal{P}_2], [\mathcal{P}_3], [\mathcal{P}_4] \rangle$, $\mathcal{P}_1^5 = \mathcal{P}_3^5 = \mathcal{P}_4^5 = \mathcal{P}_3^5$, and $\mathcal{P}_2^5 = \mathcal{P}_4^5$, so \mathcal{P}_1 and \mathcal{P}_2 can not be both principals in k, otherwise $\mathcal{P}_3 = \mathcal{P}_1^5$ and $\mathcal{P}_4 = \mathcal{P}_2^5$ will be principals too, hence $C_{k,5}^{(s)} = \{1\}$, which is impossible. by the same reasoning we have that \mathcal{P}_3 and \mathcal{P}_4 can not be both principals in k. Since $C_{k,5}^{(s)}$ is cyclic of order 5 and without loosing generality we get that $C_{k,5}^{(s)} = \langle [\mathcal{P}_1] \rangle$, so \mathcal{P}_1 and $\mathcal{P}_3 = \mathcal{P}_1^5$ are not principals. Since $C_{k,5} \cong C_{k,5}^+ \times C_{k,5}^-$ its sufficient to
find generators of $C_{k,5}^+$ and $C_{k,5}^-$. As $[P_1P_3]^r = [(P_1P_3)^r] = [P_1P_3] \text{ then } C_{k,5}^+ = \langle [P_1P_3] \rangle$, and $[P_1P_3]^r = [(P_1P_3)^r] = [P_1P_3] = [P_1P_3]^{−1}$ then $C_{k,5}^- = \langle [P_1P_3] \rangle$. Hence $C_{k,5} = \langle [P_1P_3], [P_1P_3]^r \rangle$.

- 2nd case: $C_{k,5} = C_{k,5}^{(\sigma)} = C_{k,\pi}^{(\sigma)}$: We admit the same reasoning of 1st case because none of P_i ($i = 1, 2, 3, 4$) is principal, otherwise $C_{k,5} = C_{k,\pi}^{(\sigma)} = \{1\}$, which is impossible. Hence $C_{k,5} = \langle [P_1P_3], [P_1P_3]^r \rangle$.

Now we are able to state the main theorem of capitulation in this case.

Theorem 3.3. We keep the same assumptions as theorem 3.2 Then:

1. If $(\frac{K}{\pi})_5 = 1$ then $K_1 = k(\sqrt[5]{\pi_1\pi_3})$ and $K_2 = k(\sqrt[5]{\pi_1\pi_3})$, $K_3 = k(\sqrt[5]{\pi_1\pi_3})$ and $K_4 = k(\sqrt[5]{\pi_1\pi_3})$. $K_5 = k(\sqrt{\pi_1\pi_3})$ and $K_6 = k(\sqrt[5]{\pi_1\pi_3})$ or $k(\sqrt[5]{\pi_1\pi_3})$. Otherwise we just permute K_2 and K_5.

2. $[P_1P_3]$ capitulates in $k(\sqrt[5]{\pi_1\pi_3})$, $[P_1P_3]$ capitulates in $k(\sqrt[5]{\pi_1\pi_3})$ $(i = 1, 3)$, $[P_1P_3]^r$ capitulates in $k(\sqrt[5]{\pi_1\pi_3})$, $[P_1P_3]^r$ capitulates in $k(\sqrt[5]{\pi_1\pi_3})$.

3. (i) If $(\frac{K}{\pi})_5 = 1$ and $K_6 = k(\sqrt[5]{\pi_1\pi_3})$ then the possible types of capitulation are: $(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 2, 0, 5, 0), (1, 2, 0, 5, 0), ((0, 0, 3, 4, 0, 0) or (0, 0, 3, 0, 0)), ((0, 1, 0, 4, 0, 0) or (1, 0, 4, 3, 0, 0)), ((0, 0, 2, 4, 5, 0) or (0, 2, 4, 3, 5, 0)), ((1, 2, 4, 5, 0) or (1, 2, 3, 5, 0))$.

(ii) If $(\frac{K}{\pi})_5 = 1$ and $K_6 = k(\sqrt[5]{\pi_1\pi_3})$ then the same possible types of capitulation occur as in (i) with $i_6 = 0$ or 1 and $i_1 = 0$ or 6.

(iii) If $(\frac{K}{\pi})_5 \neq 1$ then the same possible types of capitulation occur as (i) and (ii) by permuting 2 and 5.

Proof.

1. According to theorem 3.1 we have that τ^2 permutes $k(\sqrt{\pi_1\pi_3})$ with $k(\sqrt[5]{\pi_1\pi_3})$ and $k(\sqrt[5]{\pi_1\pi_3})$ with $k(\sqrt[5]{\pi_1\pi_3})$, and sets $k(\sqrt[5]{\pi_1\pi_3})$, $k(\sqrt[5]{\pi_1\pi_3})$. By class field theory K_1 correspond to H_1 ($i = 1, 2, 3, 4, 5, 6$), for that we determine explicitly the six subgroups H_i of $C_{k,5}$ as follows.

We have that $C_{k,5} = \langle A, X \rangle$, where $H_1 = C_{k,5}^+ = \langle A \rangle$ and $H_6 = C_{k,5}^- = \langle X \rangle$. By theorem 3.2 we have $A = [P_1P_3]$ and $X = [P_1P_3]^r$, then $AX = [P_1P_3]^2$, $AX^2 = [P_1P_3]^3$, $AX^3 = [P_1P_3]^4$ and $AX^4 = [P_3]^4$. Hence $H_2 = \langle [P_1P_3] \rangle$, $H_3 = \langle [P_1P_3]^2 \rangle$, $H_4 = \langle [P_1P_3]^3 \rangle$, $H_5 = \langle [P_1P_3]^4 \rangle$. Since τ^2 sets $k(\sqrt[5]{\pi_1\pi_3})$ and $k(\sqrt[5]{\pi_1\pi_3})$, if $K_1 = k(\sqrt[5]{\pi_1\pi_3})$ then $K_6 = k(\sqrt[5]{\pi_1\pi_3})$ and vise versa. If $(\frac{K}{\pi})_5 = 1$ then $X^5 \equiv \pi_1 \pmod{\pi_3}$ resolved on \mathcal{O}_{k_0} and by proposition 2.1 we have that π_1 splits completely in $k_0(\sqrt{\pi_3})$, which equivalent to say that P_1 splits completely in $k(\sqrt{\pi_3})$, hence $K_2 = k(\sqrt{\pi_3})$ and we get that $K_5 = k(\sqrt{\pi_1\pi_3})$ and if $K_3 = k(\sqrt[5]{\pi_1\pi_3})$ then $K_4 = k(\sqrt[5]{\pi_1\pi_3})$ and vise versa. Since π_1 and π_3 divide $\pi_1\pi_3, \pi_1\pi_3^2, \pi_1\pi_3^3$ and $\pi_1\pi_3^4$, if $(\frac{\pi_1}{\pi_3})_5 \neq 1$ then $K_2 = k(\sqrt{\pi_1\pi_3})$ and $K_5 = k(\sqrt{\pi_3})$.

2. Since $P_i^5 = \pi_1\pi_3^{(i)}O_k \ i = 1, 3$ we have $(P_1P_3)^5 = \pi_1\pi_3O_k$, then $(P_1P_3)^5$ $= \pi_1\pi_3O_k(\sqrt{\pi_1\pi_3})$ in $k(\sqrt{\pi_1\pi_3})$ and $\pi_1\pi_3O_k(\sqrt{\pi_1\pi_3}) = (\sqrt{\pi_1\pi_3}O_k(\sqrt{\pi_1\pi_3}))^5$, hence $P_1P_3O_k(\sqrt{\pi_1\pi_3}) = \sqrt{\pi_1\pi_3}O_k(\sqrt{\pi_1\pi_3})$.

7
Thus P_1P_3 seen in $O_{k(\sqrt[5]{\pi_1\pi_3})}$ becomes principal, i.e. $[P_1P_3]$ capitulates in $k(\sqrt[5]{\pi_1\pi_3})$.

- Since $(P_1P_3)^5 = \pi_1\pi_3^2O_k$, we have $(P_1P_3)^5 = \pi_1\pi_3^2O_{k(\sqrt[5]{\pi_1\pi_3})}$ in $k(\sqrt[5]{\pi_1\pi_3})$ and $\pi_1\pi_3^2O_{k(\sqrt[5]{\pi_1\pi_3})} = (\sqrt[5]{\pi_1\pi_3})^5$, hence $P_1P_3^2O_{k(\sqrt[5]{\pi_1\pi_3})} = \sqrt[5]{\pi_1\pi_3}O_{k(\sqrt[5]{\pi_1\pi_3})}$. Thus P_1P_3 seen in $O_{k(\sqrt[5]{\pi_1\pi_3})}$ becomes principal, i.e. $[P_1P_3]$ capitulates in $k(\sqrt[5]{\pi_1\pi_3})$. By the same reasoning we have $[P_1P_3]$ capitulates in $k(\sqrt[5]{\pi_1\pi_3})$ and $[P_1P_3]$ capitulates in $k(\sqrt[5]{\pi_1\pi_3})$.

- We have $P_1 = \pi_1O_k$, then $P_1O_{k(\sqrt[5]{\pi_1\pi_3})} = \sqrt[5]{\pi_1}O_{k(\sqrt[5]{\pi_1\pi_3})}$. Hence $[P_1]$ capitulates in $k(\sqrt[5]{\pi_1})$. By the same reasoning we have $[P_3]$ capitulates in $k(\sqrt[5]{\pi_3})$.

(iii) If $(\frac{4}{3})_5 = 1$ and $K_6 = k(\sqrt[5]{\pi_1\pi_3})$ we have $[P_1P_3]$ capitulates in K_6 then if $i_6 \neq 0$ we have $i_6 = 1$. $[P_1P_3]$ capitulates in K_1 then if $i_1 \neq 0$ we have $i_1 = 6$, so the same possible types of capitulation occur as in (i) with $i_6 = 0$ or 1 and $i_1 = 0$ or 6.

(iii) If $(\frac{4}{3})_5 \neq 1$, by (1) we have $K_2 = k(\sqrt[5]{\pi_3})$ and $K_5 = k(\sqrt[5]{\pi_1})$ then the same possible types of capitulation occur as (i) and (ii) by permuting 2 and 5.

3.2 The case $n = p^e q \equiv \pm 1 \pm 7 \pmod{25}$, where $p \neq 1 \pmod{25}$, $q \neq \pm 7 \pmod{25}$

Let $k = \Gamma(\zeta_5)$ be the normal closure of $\Gamma = Q(\sqrt[5]{\pi})$, where $n = p^e q \equiv \pm 1 \pm 7 \pmod{25}$ such that $p \neq 1 \pmod{25}, q \neq \pm 7 \pmod{25}$ and $e \in \{1, 2, 3, 4\}$.

Since $q \equiv \pm 2 \pmod{25}$ we have that q is inert in $k_0 = Q(\zeta_5)$, so we can take in the following $q = \pi_5$ a prime in k_0. As before, by P_1, P_2, P_3, P_4 and P_5 we denote respectively the prime ideals of k above $\pi_1, \pi_2, \pi_3, \pi_4$ and π_5 in k_0, such that $P_i^5 = \pi_iO_k$ $(i = 1, 2, 3, 4, 5)$. We have that τ^2 permutes π_1 with π_3, then τ^2 permutes P_1 with P_3, but τ^2 sets $q = \pi_5$ and also P_5.

The six intermediate extensions of $k_5^{(1)}/k$ are determined as follows:

Theorem 3.4. Let $k, n, \pi_1, \pi_2, \pi_3, \pi_4$ and π_5 as above. Put $x_1 = \pi_1\pi_5^{h_1}$ and $x_2 = \pi_1\pi_3^{h_2}$ are chosen such that $x_1 \equiv x_2 \equiv 1 \pmod{\lambda^5}$, where $h_1 \in \{1, 2, 3, 4\}$. Then:
(1) \(k_5^{(1)} = k(√x_1, √x_2) \).

(2) The six intermediate extensions of \(k_5^{(1)}/k \) are: \(k(√x_1), k(√x_2), k(√\pi_1\pi_3\pi_5^{2h_1}), k(√\pi_1^2\pi_3\pi_5^{h_1}), k(√\pi_1^4\pi_3^{2h_1}) \) and \(k(√\pi_3\pi_5^{h_1}) \). Furthermore \(τ^2 \) permutes \(k(√\pi_1\pi_3\pi_5^{2h_1}) \) with \(k(√\pi_1^4\pi_3^{2h_1}) \) and \(k(√x_1) \) with \(k(√\pi_3\pi_5^{h_1}) \), and sets \(k(√x_2), k(√\pi_1\pi_3\pi_5^{2h_1}) \).

Proof. Since \(k = k_0(√n) \) we can write \(n \) in \(k_0 \) as \(n = \pi_1^ep_2^e\pi_3^e\pi_4^e\pi_5 \) with \(\pi_i \not\equiv 1 (mod \lambda^5) \) because \(p \not\equiv 1 (mod 25) \) and \(q \not\equiv 1 (mod 25) \). By proposition 2.2 there exists \(h_1, h_2 \in \{1, 2, 3, 4\} \) such that \(\pi_1\pi_5^{h_1} \equiv ±1, ±7 (mod \lambda^5) \) and \(\pi_1\pi_3^{h_2} \equiv ±1, ±7 (mod \lambda^5) \). To investigate the correspondence between the six intermediate extension of \(k_5^{(1)}/k \) and the six subgroups of \(C_{k,5} \), we assume that \(h_2 = 4 \). Put \(x_1 = \pi_1\pi_5^{h_1} \) and \(x_2 = \pi_1\pi_3 \).

(1) The fact that \(k_5^{(1)} = k(√x_1, √x_2) \) follows from proposition 2.2.

(2) The six intermediate extensions are: \(k(√x_1), k(√x_2), k(√x_1x_2), k(√x_1^2x_2) \) and \(k(√x_2x_2) \).

Since \(x_1 = \pi_1\pi_5^{h_1} \) and \(x_2 = \pi_1\pi_3 \), we have \(k(√x_1x_2) = k(√\pi_1^2\pi_3\pi_5^{h_1}), k(√x_1^2x_2) = k(√\pi_1\pi_3\pi_5^{2h_1}), k(√x_2^2) = k(√\pi_1^4\pi_3^{2h_1}) \) and \(k(√x_1^2) = k(√\pi_3\pi_5^{h_1}) \). Since \(\pi_1^2 = \pi_3, \pi_3^2 = \pi_1 \) and \(\pi_3^2 = \pi_5 \), and by the same reasoning as theorem 3.1 we prove that \(τ^2 \) permutes \(k(√\pi_1\pi_3\pi_5^{2h_1}) \) with \(k(√\pi_1^4\pi_3^{2h_1}) \) and \(k(√x_1) \) with \(k(√\pi_3\pi_5^{h_1}) \), and sets \(k(√x_2), k(√\pi_1\pi_3\pi_5^{2h_1}) \).

The generators of \(C_{k,5} \) in this case are determined as follows:

Theorem 3.5. Let \(k, n, \pi_1, \pi_2, \pi_3, \pi_4, \pi_5 \) and \(h_1 \) as above. Let \(\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3, \mathcal{P}_4 \) and \(\mathcal{P}_5 \) prime ideals of \(k \) such that \(\mathcal{P}_i^5 = \pi_iO_{k_0} (i = 1, 2, 3, 4, 5) \). Then:

\[
C_{k,5} = \langle [\mathcal{P}_1\mathcal{P}_3\mathcal{P}_5^{2h_1}], [\mathcal{P}_1\mathcal{P}_3^4] \rangle
\]

Proof. According to 11 theorem 1.1, for this case of the radicand \(n \), we have that \(ζ_5^i(1 + ζ_5)^j \) is not norm of element in \(k - \{0\} \) for any exponents \(i \) and \(j \), then by 9 section 5.3, we have \(C_{k,5} = C_{k,s}^{'(s)} = C_{k,s}^{'(s)} = \langle [\mathcal{P}_1], [\mathcal{P}_2], [\mathcal{P}_3], [\mathcal{P}_4], [\mathcal{P}_5] \rangle \). Since \(\mathcal{P}_1^2 = \mathcal{P}_3, \mathcal{P}_2^2 = \mathcal{P}_4 \) and \(\mathcal{P}_5^2 = \mathcal{P}_5 \), as the proof of theorem 3.2 we have that \(\mathcal{P}_1, \mathcal{P}_3 \) and \(\mathcal{P}_5 \) are non principals. As \([\mathcal{P}_1\mathcal{P}_3\mathcal{P}_5^{2h_1}]^2 = [(\mathcal{P}_1\mathcal{P}_3\mathcal{P}_5^{2h_1})^2] = [\mathcal{P}_3\mathcal{P}_1\mathcal{P}_5^{2h_1}] = [\mathcal{P}_1\mathcal{P}_3\mathcal{P}_5^{2h_1}] > \mathcal{P}_1^2 \mathcal{P}_3 \mathcal{P}_5^{2h_1} \) then \(C_{k,5}^+ = \langle [\mathcal{P}_1\mathcal{P}_3\mathcal{P}_5^{2h_1}] \rangle \), and we have that \(C_{k,5}^- = \langle [\mathcal{P}_1\mathcal{P}_3^4] \rangle \). Hence \(C_{k,5} = \langle [\mathcal{P}_1\mathcal{P}_3\mathcal{P}_5^{2h_1}], [\mathcal{P}_1\mathcal{P}_3^4] \rangle \).

The main theorem of capitulation in this case is as follows:

Theorem 3.6. We keep the same assumptions as theorem 3.5 Then:

(1) \(K_1 = k(√\pi_1^3\pi_3^3) \) or \(k(√\pi_1\pi_3\pi_5^{2h_1}) \), \(K_2 = k(√\pi_1\pi_5^{h_1}) \) or \(k(√\pi_3\pi_5^{h_1}) \), \(K_3 = k(√\pi_1\pi_3^2\pi_5^{h_1}) \) or \(k(√\pi_1^2\pi_3\pi_5^{2h_1}) \), \(K_4 = k(√\pi_1^4\pi_3^2\pi_5^{h_1}) \) or \(k(√\pi_1^2\pi_3\pi_5^{4h_1}) \), \(K_5 = k(√\pi_3\pi_5^{h_1}) \) or \(k(√\pi_1\pi_5^{h_1}) \) and \(K_6 = k(√\pi_1\pi_3\pi_5^{2h_1}) \) or \(k(√\pi_1\pi_3^2) \).
(2) $[P_1 P_3 P_5^{2h_1}]$ capitulates in $k(\sqrt[3]{\pi_1 \pi_3 \pi_5^{2h_1}})$, $[P_1 P_5^{h_1}]$ capitulates in $k(\sqrt[3]{\pi_1 \pi_5^{h_1}})$, $[P_1^2 P_3^2 P_5^{h_1}]$ capitulates in $k(\sqrt[3]{\pi_2 \pi_4 \pi_5^{h_1}})$, $[P_1 P_3 P_5^{h_1}]$ capitulates in $k(\sqrt[3]{\pi_1 \pi_3 \pi_5^{2h_1}})$, $[P_1^4 P_2^3 P_5^{h_1}]$ capitulates in $k(\sqrt[3]{\pi_4^2 \pi_3 \pi_5^{h_1}})$, $[P_3 P_5^{h_1}]$ capitulates in $k(\sqrt[3]{\pi_3 \pi_5^{h_1}})$ and $[P_1 P_3^4]$ capitulates in $k(\sqrt[3]{\pi_1 \pi_3})$.

(3) - If $K_1 = k(\sqrt[3]{\pi_1 \pi_3 \pi_5^{2h_1}})$, then the possible types of capitulation are: $(0,0,0,0,0,0,0)$, $(1,0,0,0,0,0,0)$, $(0,5,0,0,2,0)$ or $(0,2,0,5,0)$, $(1,5,0,0,2,0)$ or $(1,2,0,5,0)$, $(0,5,4,3,2,0)$ or $(0,2,4,3,5,0)$, $(1,5,4,3,2,0)$ or $(1,2,4,3,5,0)$, $(0,5,3,4,2,0)$ or $(0,2,3,4,5,0)$, $(1,5,3,4,2,0)$ or $(1,2,3,4,5,0)$, $(0,0,3,4,0,0)$ or $(0,0,4,3,0,0)$, $(1,0,3,4,0,0)$ or $(1,0,4,3,0,0)$.

- If $K_1 = k(\sqrt[3]{\pi_1 \pi_3})$, then the same possible types occur, with i_6 takes value 0 or 1.

Proof.

(1) According to theorem [3.4], we have that τ^2 permutes $k(\sqrt[3]{\pi_2 \pi_3 \pi_5^{h_1}})$ with $k(\sqrt[3]{\pi_1 \pi_3 \pi_5^{2h_1}})$ and $k(\sqrt[3]{\pi_1 \pi_5^{h_1}})$ with $k(\sqrt[3]{\pi_3 \pi_5^{2h_1}})$, and sets $k(\sqrt[3]{\pi_2 \pi_3 \pi_5})$. We determine first the six subgroups H_i of $C_{k,5}$.

We have that $C_{k,5} = \langle A, X \rangle$, where $H_1 = C_{k,5} = \langle A \rangle$ and $H_6 = C_{k,5} = \langle X \rangle$. By theorem [3.5] we have $A = [P_1 P_3 P_5^{2h_1}]$ and $X = [P_1 P_3]$, then $AX = [P_1 P_5^{h_1}]$, $AX^2 = [P_2^2 P_3^4 P_5^{h_1}]$, $AX^3 = [P_1 P_3^4 P_5^{h_1}]$ and $AX^4 = [P_3 P_5^{h_1}]$. Hence $H_2 = \langle [P_1 P_5^{h_1}] \rangle$, $H_3 = \langle [P_2^2 P_3^4 P_5^{h_1}] \rangle$, $H_4 = \langle [P_1 P_3^4 P_6^{h_1}] \rangle$ and $H_5 = \langle [P_3 P_5^{h_1}] \rangle$. Since τ^2 sets $k(\sqrt[3]{\pi_1 \pi_3 \pi_5^{2h_1}})$ and $k(\sqrt[3]{\pi_1 \pi_3})$, so if $K_1 = k(\sqrt[3]{\pi_1 \pi_3 \pi_5^{2h_1}})$ then $K_6 = k(\sqrt[3]{\pi_1 \pi_3})$ and inversely. By class field theory, the fact that $H_i (i = 2, 5)$ correspond to $K_i (i = 2, 5)$ mean that $P_1 P_5^{h_1}$ splits completely in K_2 and $P_3 P_5^{h_1}$ splits completely in K_5. As $\pi_1 \pi_5^{h_1}$ divides $\pi_2 \pi_3 \pi_5^{h_1}$ and $\pi_4 \pi_3 \pi_5^{h_1}$, by proposition [2.3] $\pi_1 \pi_5^{h_1}$ can not split in $k_0 \sqrt[3]{\pi_2 \pi_3 \pi_5^{h_1}}$ and $k_0 \sqrt[3]{\pi_4 \pi_3 \pi_5^{h_1}}$, this equivalent to say that $P_1 P_3^{h_1}$ can not split completely in $k_0 \sqrt[3]{\pi_2 \pi_3 \pi_5^{h_1}}$ and $k_0 \sqrt[3]{\pi_4 \pi_3 \pi_5^{h_1}}$. By the same reasoning we have that $P_3 P_5^{h_1}$ can not split completely in $k_0 \sqrt[3]{\pi_2 \pi_3 \pi_5^{h_1}}$ and $k_0 \sqrt[3]{\pi_4 \pi_3 \pi_5^{h_1}}$. Hence if $K_2 = k(\sqrt[3]{\pi_2 \pi_3 \pi_5^{h_1}})$ then $K_5 = k(\sqrt[3]{\pi_4 \pi_3 \pi_5^{h_1}})$ and inversely, which allow us to deduce that if $K_3 = k(\sqrt[3]{\pi_1 \pi_3 \pi_5^{2h_1}})$ then $K_5 = k(\sqrt[3]{\pi_2 \pi_3 \pi_5^{h_1}})$ and inversely.

(2) We keep the same proof as (2) theorem [3.3].

(3) -If $K_1 = k(\sqrt[3]{\pi_1 \pi_3 \pi_5^{2h_1}})$, then $K_6 = k[\Gamma_5^{(1)}] = k(\sqrt[3]{\pi_1 \pi_3})$ and we have that $[P_1 P_3]$ capitulates in K_6, moreover since $C_{k,5} = \langle [P_1 P_3 P_5^{2h_1}] \rangle \cong C_{\Gamma,5}$ then $P_1 P_3 P_5^{2h_1} = j_k/\tau(J)$ such that $C_{\Gamma,5} = \langle J \rangle$, then $[P_1 P_3 P_5^{2h_1}]$ capitulates in K_6. As $C_{k,5} = \langle [P_1 P_3 P_5^{2h_1}], [P_3 P_5] \rangle$, then all classes capitulate in $K_6 = k(\sqrt[3]{\pi_1 \pi_3 \pi_5^{2h_1}})$. We determine the possible types of capitulation $(i_1, i_2, i_3, i_4, i_5, i_6)$. We have that $i_6 = 0$, $K_2 = K_5^{x_2}$, $K_3 = K_4^{x_2}$ and $C_{k,5} = C_{k,5}^{x_2}$. If $i_1 \neq 0$ we have $i_1 = 1$. i_2 and i_5 are both nulls or non nulls, so if i_2 and $i_5 \neq 0$, then $(i_2, i_5) = (2,5)$ or $(5,2)$ depending on $P_1 P_5^{h_1}$ splits completely in $k(\sqrt[3]{\pi_1 \pi_5^{h_1}})$ or in $k(\sqrt[3]{\pi_3 \pi_5^{h_1}})$. Similarly if i_3 and $i_4 \neq 0$, then $(i_3, i_4) = (3,4)$ or $(4,3)$. Hence the possible types given are proved.

-If $K_1 = k(\sqrt[3]{\pi_1 \pi_3})$ then $K_6 = k[\Gamma_5^{(1)}] = k(\sqrt[3]{\pi_1 \pi_3 \pi_5^{2h_1}})$ and we have $C_{k,5} = \langle [P_1 P_3 P_5^{2h_1}] \rangle$ capitulates in K_6, the possible values of i_2, i_3, i_4, i_5 are as above, $(i_2, i_5) = (2,5)$ or $(5,2)$ if they are non nulls, $(i_3, i_4) = (3,4)$ or $(4,3)$ if they are non nulls. If $i_1 \neq 0$ then $i_1 = 6$ because $H_6 = \langle [P_3 P_5] \rangle$, and if
$i_6 \neq 0$ then $i_1 = 1$ because $H_1 = \langle [P_1 P_3 P_5^{2h1}] \rangle$. Hence the possible types given are proved.

3.3 The case $n = 5^ep \not\equiv \pm 1 \pm 7 \pmod{25}$, where $p \not\equiv 1 \pmod{25}$

Let $k = \mathbb{Q}(\zeta_5)$ be the normal closure of $\Gamma = \mathbb{Q}(\sqrt{\frac{n}{e}})$, where $n = 5^ep$ such that $p \not\equiv 1 \pmod{25}$ and $e \in \{1, 2, 3, 4\}$. Since $n = 5^ep \not\equiv \pm 1 \pm 7 \pmod{25}$ then $\lambda = 1 - \zeta_5$ is ramified in k/k_0. Let π_1, π_2, π_3 and π_4 primes of k_0 such that $p = \pi_1 \pi_2 \pi_3 \pi_4$. Let $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3, \mathcal{P}_4$ and \mathcal{I} prime ideals of k above $\pi_1, \pi_2, \pi_3, \pi_4$ and λ, we have $\mathcal{P}_5^\lambda = \mathcal{P}_1 \mathcal{P}_2 \mathcal{P}_3 \mathcal{P}_4$ and $\mathcal{I}^\lambda = \lambda \mathcal{O}_k$. According to [1, theorem 1.1], for this case of the radicand n, we have that $\zeta_5^i(1 + \zeta_5^j)$ is not norm of element in $k - \{0\}$ for any exponents i and j, then we have $C_{k,5} = C_{k,5}^{(\sigma)} = C_{k,5}^{(\sigma)}$. Hence the results about the six intermediate extensions of $k_5^{(1)}/k$, the generators of $C_{k,5}$ and the capitulation problem in this case are the same as case 2 by substituting q by 5, π_5 by $\lambda = 1 - \zeta_5$ and \mathcal{P}_5 by \mathcal{I}.

4 Numerical examples

The task to determine the capitulation in a cyclic quintic extension of a base field of degree 20, that is, in a field of absolute degree 100, is definitely far beyond the reach of computational algebra systems like MAGMA and Pari/GP. For this reason we give exemples of a pure metacyclic fields $k = \mathbb{Q}(\sqrt[n]{n}, \zeta_5)$ such that $C_{k,5}$ is of type (5, 5) and $C_{k,5} = C_{k,5}^{(\sigma)}$.

n	$h_{k,5}$	$C_{k,5}$	Rank ($C_{k,5}^{(\sigma)}$)	n	$h_{k,5}$	$C_{k,5}$	Rank ($C_{k,5}^{(\sigma)}$)
55	25	(5, 5)	2	1457	25	(5, 5)	2
655	25	(5, 5)	2	6943	25	(5, 5)	2
1775	25	(5, 5)	2	8507	25	(5, 5)	2
1555	25	(5, 5)	2	12707	25	(5, 5)	2
2155	25	(5, 5)	2	151	25	(5, 5)	2
5125	25	(5, 5)	2	1301	25	(5, 5)	2
8275	25	(5, 5)	2	2111	25	(5, 5)	2
30125	25	(5, 5)	2	2512	25	(5, 5)	2
38125	25	(5, 5)	2	6013	25	(5, 5)	2
113125	25	(5, 5)	2	21312	25	(5, 5)	2
93	25	(5, 5)	2	19014	25	(5, 5)	2
382	25	(5, 5)	2	10514	25	(5, 5)	2
943	25	(5, 5)	2	18013	25	(5, 5)	2
References

[1] F. Elmouhib, M. Talbi, and A. Azizi, 5-rank of ambiguous class groups of quintic Kummer extensions, Accepted for publication in Proceedings-Mathematical Sciences.

[2] F. Elmouhib, M. Talbi, and A. Azizi, On the capitulation problem of some pure metacyclic fields of degree 20, https://arxiv.org/abs/2010.15935 V2.

[3] Ph. Furtwängler, Beweis des Hauptidealsatzes für Klassenkörper algebraischer Zahlkörper., Abh Math. Sem. Univ. Hamburg 7 (1930), 14-36.

[4] G. Gras, Sur les l-classes d’idéaux dans les extensions cycliques relatives de degré premier impair l. Annales de l’institut Fourier, (1973).

[5] E. Hecke, Algebraic Number Theory, GTM 77, Springer-Verlag 1981.

[6] E. Hecke, Lectures on the Theory of Algebraic Numbers, GTM , Vol. 77, Springer-Verlag 1981.

[7] D. Hilbert, Über die Theorie der relativ-Abelschen Zahlkörper, Acta Math. 26 (1902), 99-132.

[8] M. Ishida, The genus Fields of Algebraic Number Fields. Lecture notes in Mathematics Vol 555, Springer-Verlag (1976).

[9] M. Kulkarni, D. Majumdar, B. Sury, l-class groups of cyclic extension of prime degree l, J. Ramanujan Math. Soc. 30, No.4 (2015), 413-454.

[10] K. Iimura, A criterion for the class number of a pure quintic field to be divisible by 5, J. Reine Angew. Math. 292 (1977) 201-210,

[11] D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math. 166 (2012), no. 3-4, 467-495, DOI 10.1007/s00605-010-0277-x.

[12] K. Miyake, Algebraic Investigations of Hilbert’s Theorem 94, the Principal Ideal Theorem and Capitulation Problem, Expos. Math. 7 (1989), 289-346.

[13] H. Suzuki, A Generalisation of Hilbert’s Theorem 94, Nagoya Math. J., vol 121 (1991).

[14] T. Tannaka, A generalized principal ideal theorem and a proof of a conjecture of Deuring, Ann. Math. 67 (1958).

[15] O. Taussky, A remark concerning Hilbert’s theorem 94, J. reine angew. Math. 239/240 (1970), 435-438.

[16] The PARI Group, PARI/GP, Version 2.4.9, Bordeaux, 2017, http://pari.math.u-bordeaux.fr