Trichoderma spp. Genes Involved in the Biocontrol Activity Against Rhizoctonia solani

Aqleem Abbas1,2, Mustansar Mubeen3, Hongxia Zheng1, Muhammad Aamir Sohail2, Qaiser Shakeel4, Manoj Kumar Solanki5, Yasir Iftikhar3*, Sagar Sharma6, Brijendra Kumar Kashyap5, Sarfaraz Hussain2, Maria del Carmen Zuñiga Romano8, Ernesto A. Moya-Elizondo9 and Lei Zhou1*

1State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China, 2College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China, 3Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan, 4Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan, 5Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland, 6Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, India, 7Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China, 8Fitosanidad-Fitopatología, Colegio de Postgraduados, Montecillo, Mexico, 9Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillán, Chile

Rhizoctonia solani is a pathogen that causes considerable harm to plants worldwide. In the absence of hosts, *R. solani* survives in the soil by forming sclerotia, and management methods, such as cultivar breeding, crop rotations, and fungicide sprays, are insufficient and/or inefficient in controlling *R. solani*. One of the most challenging problems facing agriculture in the twenty-first century besides with the impact of global warming. Environmentally friendly techniques of crop production and improved agricultural practices are essential for long-term food security. *Trichoderma* spp. could serve as an excellent example of a model fungus to enhance crop productivity in a sustainable way. Among biocontrol mechanisms, mycoparasitism, competition, and antibiosis are the fundamental mechanisms by which *Trichoderma* spp. defend against *R. solani*, thereby preventing or obstructing its proliferation. Additionally, *Trichoderma* spp. induce a mixed induced systemic resistance (ISR) or systemic acquired resistance (SAR) in plants against *R. solani*, known as *Trichoderma*-ISR. Stimulation of every biocontrol mechanism involves *Trichoderma* spp. genes responsible for encoding secondary metabolites, siderophores, signaling molecules, enzymes for cell wall degradation, and plant growth regulators. *Rhizoctonia solani* biological control through genes of *Trichoderma* spp. is summarized in this paper. It also gives information on the *Trichoderma*-ISR in plants against *R. solani*. Nonetheless, fast-paced current research on *Trichoderma* spp. is required to properly utilize their true potential against diseases caused by *R. solani*.

Keywords: *Trichoderma* spp., genes, *R. solani*, antibiosis, competition, mycoparasitism, induced systemic resistance
INTRODUCTION

Trichoderma spp. (teleomorph: *Hypocrea*) is a saprotrophic fungus. They may survive in a variety of settings, including soil, wood, bark, other fungus, and many more, demonstrating their adaptability and opportunistic potential (Jaklitsch, 2009; Brotman et al., 2010; Druzhinina et al., 2011; Oszust et al., 2020; Vinale and Sivasithamparam, 2020; Yu et al., 2022). *Rhizoctonia solani* J.G. Kühn [teleomorph: *Thanatephorus cucumeris* (A.B. Frank) Donk], is a soil-borne pathogen with a necrotrophic lifestyle that lives in soil by developing a resistant survival structure known as *sclerotia* (Mayo et al., 2015). This fungus is a species complex that causes significant harm to numerous economically important agricultural, horticultural, pasture crops, turf grasses, and forest and fruit trees worldwide (Ajayi-Oyetunde and Bradley, 2018). It caused sheath blight in corn (Li et al., 1998) and rice (Abbas et al., 2021), seed, stem, collar, root, and hypocotyl rot and damping off in soybean, tomatoes, eggplant, pepper, lettuce, and zinnia (Das et al., 2011). In addition, the fungus caused root, stem, root, crown, and hypocotyl rot and blights of legumes and cotton (Nerey et al., 2010), grey leaf spot, and brown patch of turf grasses (Dong et al., 2008). Geographical distribution of *R. solani* has been shown in Figure 1. Chemical fungicides are widely used to control this disease, as no resistance resources have yet been discovered in available rice germplasm. Moreover, the species complex of *R. solani* is composed of various 14 anastomosis groups (AGs; AG1-13 and AG-B1), having wide genetic diversity, broad host compatibility, and ability to survive from one crop season to the next by forming dormant sclerotia (Patil and Solanki, 2016; Abbas et al., 2021). Furthermore, agriculture confronts enormous challenges in providing enough food in a sustainable manner for an ever-increasing worldwide population while simultaneously dealing with unpredictable global environmental changes. As a result, there is an increased demand for ecologically friendly solutions that may assist plants in performing well in a range of conditions. In this regard, *Trichoderma* spp. might serve as a model fungus for sustaining agricultural output (Abdel-lateif, 2017; Singh et al., 2021). Many studies have indicated that biological management with the genus *Trichoderma* effectively controls *R. solani* (Solanki et al., 2011; Kashyap et al., 2020). For instance, in several countries, *T. harzianum* and *T. asperellum* were employed to prevent damping off, root, and crown rots (Herrera et al., 2020; Khadka and Miller, 2021). Similarly, there is a widespread use of *T. harzianum* to suppress black scurf, sheath blight, and stem canker in potatoes throughout the world (Wilson et al., 2008; de França et al., 2015; Naeimi et al., 2020). *Trichoderma* spp. can parasitize and compete with *R. solani* for nutrients, rhizosphere, and root colonization (Guzmán-Guzmán et al., 2017; Vinale and Sivasithamparam, 2020; Segreto et al., 2021; Yu et al., 2022). They can also compete for seed exudates, which stimulate the development of *R. solani* propagules in the soil (Nawrocka et al., 2018). Furthermore, *Trichoderma* spp. are prolific makers of secondary metabolites, such as peptaibols, pyrones, non-ribosomal peptides (NRPs), polyketides and terpenoids, and siderophores, when grown with *R. solani* (Manganiello et al., 2018; Halifu et al., 2020). Furthermore, they block or degrade pectinases and other enzymes required for *R. solani* development (Kullnig et al., 2000; Halifu et al., 2020). Furthermore, by colonizing the rhizospheres of plants, they drive plant development and defense responses against *R. solani* (Nawrocka et al., 2018; Zhang and Zhuang, 2020). Furthermore, *Trichoderma* spp. can activate plant se mechanisms, resulting in ISR, SAR, and, according to a new research, *Trichoderma*-induced systemic resistance (TISR; Leonetti et al., 2017). Application of *Trichoderma* spp.

![Figure 1](image_url)
led to activation of defense signaling involving SA and/or JA/ET pathways against \textit{R. solani}, hence increasing plant resistance. Recent research has produced a wealth of knowledge on the discovery and cloning of several genes involved in mycoparasitism, resistance, antibiosis, and competition induction in plants against \textit{R. solani} (Druzhinina et al., 2011; Rahimi Tamanjegani et al., 2020; Zhang and Zhuang, 2020). Numerous reviews explain the role of \textit{Trichoderma} spp. genes against many plant pathogens (Harman et al., 2004; Zeilinger and Omann, 2007; Druzhinina et al., 2011; Nawrocka and Malolepsza, 2013; Daguerre et al., 2014; Sarma et al., 2014; Contreras-Cornejo et al., 2016; Guzmán-Guzmán et al., 2019). This article examines \textit{Trichoderma} spp. genes that encode proteins linked with antibacterial action against \textit{R. solani} and resistance induction in plants. The function of \textit{Trichoderma} spp. genes in competition for root colonization, mycoparasitism, antibiosis, rhizosphere and nutrients, and stimulation of plant defensive mechanisms against \textit{R. solani} is depicted in Figure 2. The following parts have been included in the review: (1) \textit{Trichoderma} spp. biology, (2) genes involved in mycoparasitism, (3) genes involved in competition, (4) induced resistance in various plants against \textit{R. solani}, and (5) resistance to \textit{R. solani} in plants is mediated by biochemical changes associated to \textit{Trichoderma}-induced defensive responses.

BIOLOGY OF \textit{Trichoderma} spp.

\textit{Trichoderma} spp. exist in two separate morphological and physiological stages. \textit{Hypocrea} is the sexual (teleomorphic)
stage, while *Trichoderma* is the asexual (anamorphic or mitosporic) stage (Rahimi Tamanegani et al., 2020; Zhang and Zhuang, 2020). *Trichoderma* spp. that can no longer reproduce sexually are known as “agamospic,” but sexual forms make up the majority of the genus’ genetic diversity. There is an average of 10³–10⁶ culturable *Trichoderma* spp. per gram of temperate and tropical soils (Harman et al., 2004; Zeilinger and Omann, 2007; Druzhinina et al., 2011; Nawrocka and Malelepsza, 2013; Daguerre et al., 2014; Sarma et al., 2014; Morán-Diez et al., 2021). These fungi also colonize plant materials, such as wood and herbaceous plants, where the sexual genus *Hypocrea* is most commonly seen. The majority of biocontrol strains lack a documented sexual stage (Druzhinina et al., 2011; Daguerre et al., 2014). Asexual fungi are clonal, frequently heterokaryotic individuals and communities that most likely evolved separately during the asexual stage (Contreras-Cornejo et al., 2016). They have a lot of genetic diversity and can make various commercial and ecologically valuable goods. They are prolific extracellular protein makers, well known for producing enzymes that digest cellulose and chitin (Harman et al., 2004; Druzhinina et al., 2011; Daguerre et al., 2014). Distinct strains, for example, produce over 100 different compounds with recognized antibiotic properties. *Trichoderma* spp. has long been known for suppressing plant disease and promoting plant growth and development. In horticulture, they are getting increasingly popular because of their “rhizosphere competence” and can colonize and develop near plant roots. Much of the known biology of these fungi and many of their uses have only lately been documented. These fungi’s biology is being considerably revised because many new species are being recognized. Most of the distinctive species in the genus *Trichoderma* were difficult to distinguish morphologically. As a result, a polyphasic approach is utilized to discover the characteristics of a novel species by combining the results of numerous techniques, such as molecular, morphological, genomic, and physiological study (Badaluddin et al., 2018). For example, one of the most common genetic methods for identifying *Trichoderma* spp. is multi-gene phylogeny. Currently, the combination of multi-gene phylogeny and morphological features is employed to identify the species level description of *Trichoderma*. Both morphological and molecular analysis employing genes including *rpib2*, *cal*, *act*, *tefl*, and ITS were used to identify *Trichoderma* spp. strains. The many functional groups within *Trichoderma* spp. that are important for secondary metabolite production were also identified utilizing a combination of novel genomic approaches and physiological activities (Zeilinger et al., 2016; Ali et al., 2021). These integrated methodologies contributed to the need to identify *Trichoderma* strains as biological control agents (Mahr, 2021). Furthermore, genomic investigations of *Trichoderma* spp. have highlighted the fungal kingdom’s genetic variety as well as distinctions in shape, physiology, and ecology (Inglis et al., 2018). Because of advancements in high-throughput sequencing technology, the number of available fungal genome data is quickly increasing. Recently, the genomes of the most common *Trichoderma* spp. were compared in an attempt to better understand *Trichoderma* biology (Chung et al., 2021).

Role of *Trichoderma* spp. Genes in the Biocontrol of *R. solani*

The combination of *Trichoderma* spp. with other fungi is referred to as necrotrophic hyperparasitism or mycoparasitism. Many studies showed that *Trichoderma* spp. exhibited mycoparasitic capacity against *R. solani* (Geremia et al., 1993; De La Cruz et al., 1995; Lorito et al., 1998; Kubicek et al., 2011; Dubey et al., 2021). *Trichoderma* spp. on the other hand, feeds on fungal biomass; hence, classified as mycotoxic to encompass both saprotrophic and biotrophic feeding methods. Antibiosis, mycoparasitism, nutrient competition, rhizosphere and root colonization, and activation of plant defense mechanisms are all used by *Trichoderma* spp. to battle pathogenic fungus (Rai et al., 2019; Morán-Diez et al., 2021; Sánchez-Cruz et al., 2021; Segreto et al., 2021; Yu et al., 2022). *Trichoderma* spp. specifically detect and establish an antagonistic relationship with *R. solani*. Finally, they kill or control *R. solani* by genetic reprogramming of their gene expression. These two processes are crucial because they impact the type and degree of the *Trichoderma* spp. hostile behavior against *R. solani* (Yu et al., 2022).

Chemotropism and Recognition of Prey

The initial phase in mycoparasitism is *Trichoderma* spp. detecting or identifying *R. solani* as prey. *Trichoderma* spp. recognize the oligopeptide and oligosaccharide compounds produced by *R. solani* in reaction to hydrolytic enzymes, such as proteases and chitinases (Druzhinina et al., 2011; Sood et al., 2020). A signaling cascade is activated when these molecules attach to receptors on *Trichoderma* spp. hyphae. This causes transcription factors to be activated, which govern production of secondary metabolite (SM) production and lysis of cell wall (Harman et al., 2004; Druzhinina et al., 2011; Table 1). Many *Trichoderma* spp. express genes encoding proteases and oligopeptide transporters before and during interaction with *R. solani*, according to a recent study. The bulk of proteases are subtilisin-like serine proteases, and genes for these enzymes may be found in abundance in expressed sequence tags (ESTs). For example, a review of the ESTs collected at the start of the *T. atroviride-R. solani* interaction revealed many genes that produce subtilisin-like serine proteases. The *prb1* gene encodes these proteases, and overexpression of these proteases boosted mycoparasitic activity. The action of these proteases on *R. solani* may result in the release of oligopeptide molecules that bind to receptors on *Trichoderma* spp. Using *T. atroviride* EST libraries, a preliminary transcriptome research revealed considerable alterations in *T. atroviride* gene expression, including changes that resembled a response to nitrogen restriction, lipid metabolism adjustments, and signaling changes (Seidl et al., 2009; Kaur et al., 2021).

G Protein-Coupled Receptors

G protein-coupled receptors (GPCRs) of biocontrol agents act as a sensor for the oligopeptides secreted by plant pathogens (Daguerre et al., 2014). They are the most frequent cell surface receptors for detecting environmental signals at the plasma membrane. These receptors sense ligands, such as nutrients,
oligopeptides, sex pheromones, oxylipins. They frequently use heterotrimeric G proteins to connect with downstream signaling pathways including the G-protein-activated protein kinase (MAPK) and cAMP-protein kinase A (PKA) cascades (Table 1; Figure 3). In response to *R. solani*, several GPCR-encoding genes were expressed in *Trichoderma* spp. showing that GPCRs play a role in detecting and triggering the mycoparasitic response. The three primary components of heterotrimeric G protein signaling are a GPCR, a heterotrimeric G protein (made up of G and G subunits), and an effector. G protein activation (exchange of GDP for GTP on the G subunit) and dissociation of the GTP-bound subunit from the associated dimer occur as a result of the ligand contact, allowing both units to govern downstream effectors. In fungus, the cAMP-PKA pathway and MAPK cascades are typical effectors of heterotrimeric G protein. Both routes are substantially conserved and linked. Transmembrane G protein-coupled receptor signals are channeled by heterotrimeric G proteins to various intracellular destinations via activating effectors, such as adenylate cyclase or the MAPK cascades (Kaziro et al., 1991; Daguerrre et al., 2014; Segreto et al., 2021). *Trichoderma* spp. require G proteins, GPCRs, and adenylate cyclase receptors to synthesize external cell wall lytic enzymes, release antifungal chemicals, and produce infection structures (Figure 3). *Trichoderma* hyphae were prevented from connecting to *R. solani* cell surfaces by inhibiting the gene encoding the *T. atroviride* seven-transmembrane receptor *Gpr1*, as well as upregulation of two chitinase genes (*nag1* and *ech42*) and the protease gene *prb1*. Due to the importance of these genes in mycoparasitism, their downregulation in *T. atroviride* results in pathogen survival (Omann et al., 2012). Two G protein subunits identified in *T. atroviride* are *Tga1* and *Tga3*. During direct fight with *R. solani*, the *tga1* mutant completely lost its mycoparasitic activity (Reithner et al., 2011). Infection structure development remained steady, while production of 6-pentyl-pyrene and sesquiterpene-derived antifungal metabolites reduced (Rocha-Ramirez et al., 2002; Reithner et al., 2011). Similarly, when addressed directly, the *tga3* mutant was unable to build infection structures or mycoparasitize *R. solani* (Zeilinger et al., 1999). In fungus, the MAPK pathways are well-known signal transduction systems (Schmoll et al., 2016). *Trichoderma* genome contains genes for three pathogenicity MAPKs: (1) *TmkA* (also known as *Tvk1* and *Tmk1*), (2) cell integrity kinase (*TmkB*), and (3) osmoregulatory MAPK (*Hog1*; Schmoll et al., 2016). *TmkA* gene mutation in *T. virens* strain "P" had no effect on biocontrol efficacy against *R. solani* (Zeilinger et al., 1999; Viterbo et al., 2004; Mukherjee et al., 2011, 2012). However, deletion of the same gene *TmkA* in the *T. virens* strain "Q" drastically lowered the *Trichoderma* biocontrol efficacy against *R. solani* (Mendoza-Mendoza et al., 2003). *Trichoderma virens* *tvk1* mutants secreted more lytic enzymes and were far more efficient in disease control than the wild-type strain (Mukherjee et al., 2003). *Trichoderma atroviride* *tmk1* mutants displayed decreased mycoparasitism activity against *R. solani* in direct mycoparasit–host interactions, as well as against *R. solani* specific control of *ech42* gene transcription (Reithner et al., 2011). Furthermore, deletion of a *Tmk1* homologue in *T. atroviridis* resulted in decreased mycoparasitic activity against *R. solani*, as well as increased synthesis of chitinase and other antifungal chemicals (Reithner et al., 2011).

Table 1 | Role of *Trichoderma* spp. genes involved in recognition of *R. solani* and signal transduction.

Protein/molecule	Receptors	Gene	Trichoderma spp.	References
Receptor proteins	Seven-transmembrane receptor *Gpr1*	*gpr1*	*T. atroviride*	Atanasova et al., 2018
G Proteins				
	Seven-transmembrane receptor *Gpr1*	*gpr1*	*T. atroviride*	Omann et al., 2012
	G Protein one	N.A.	*T. asperellum*	Liu et al., 2010
	G Protein ypt3	N.A.	*T. asperellum*	Liu et al., 2010
	G Protein rnb2	N.A.	*T. asperellum*	Liu et al., 2010
	α-Subunit of G protein 1	*tga1*	*T. atroviride*	Rocha-Ramirez et al., 2002; Reithner et al., 2005
	α-Subunit of G protein 3	*tga3*	*T. atroviride*	Zeilinger et al., 2006
Mitogen-activated protein kinases	MAPK A	*tmk1*	*T. virens*	Mukherjee et al., 2003
	MAPK 1	*tvk1*	*T. virens*	Reithner et al., 2007
Others proteins	Adenylate cyclase *Tac1*	*tac1*	*T. virens*	Mukherjee et al., 2007
	pH Regulator *PacC*	*pacC*	*T. virens*	Trushina et al., 2013
	pH Regulator *Pac1*	*pac1*	*T. harzianum*	Moreno-Mateos et al., 2007
	Transcription factor *ChC1f*	*chf1*	*T. harzianum*	Rubio et al., 2009
	Velvet protein *Ve1*	*vel1*	*T. virens*	Mukherjee and Kenerley, 2010
	Xylanase transcriptional regulator *Xyr1*	*xyr1*	*T. atroviride*	Reithner et al., 2014
	Sur7 family protein	*Sp2*	*T. atroviride*	Atanasova et al., 2018
Target of rapamycin	TOR kinase	*tsc1*	*Trichoderma atroviride*	Segreto et al., 2021

N.A., not available.
receptors. They are involved in the growth, condition, development, and biocontrol efficiency in *Trichoderma* spp. (Brunner et al., 2008; Table 1; Figure 3). Adenylate cyclase converts ATP to cAMP and is present on the inner side of the plasma membrane and at several sites throughout the fungal cell. Adenylate cyclase is triggered by a multitude of signaling molecules that activate G (Gs) protein-coupled receptors that stimulate adenylate cyclase. cAMP activates a cAMP-dependent protein kinase (PKA) that phosphorylates proteins like transcription factors to regulate gene expression (Dickman and Yarden, 1999). Tac1, an adenylate cyclase gene in *T. virens*, was deleted, which not only removed biocontrol efficacy against *R. solani* but also lowered secondary metabolite synthesis (Mukherjee et al., 2007).

Target of Rapamycin Proteins

In addition to cAMP and MAPK, the target of rapamycin (TOR) pathway is a critical regulator of *Trichoderma* spp. cell proliferation in response to nutrient availability (Table 1; Figure 3). In response to a lack of carbon and nitrogen, this...
pathway is triggered, resulting in anabolic activities and development (Schmoll et al., 2016). The TOR kinase is inhibited by rapamycin, and nutritional deficiency enhances the expression of genes involved in alternate nitrogen absorption. A growing body of evidence suggests that TOR has a role in nitrogen signaling and pathogenicity-related activities in fungal plant diseases. The Trichoderma genomes also encode single TOR kinase-like the fungal plant pathogens. In a recent study, the activity of TOR1, that is, T. atroviride’s solitary and crucial TOR kinase, was suppressed by chemical TOR inhibitors or genetic alteration. TSC2 and TSC1, which are negative regulators of TOR complex 1 (TORC1) in human cells, resulting in altered nitrogen source-dependent growth of T. atroviride, decreased generation of numerous secondary metabolites, and decreased mycoparasitic overgrowth on R. solani (Segreto et al., 2021). Transcription factors (TFs), which regulate gene transcription at the cellular level during antagonism, are currently understudied (Table 1). Specific motifs in the promoters of Trichoderma spp. biocontrol genes may bind transcription factors involved in nitrogen repression, stress responses, and the regulation of plant cell wall-degrading enzymes. There is no indication, however, that they have a role in antifungal activity. For example, T. atroviride’s xylanase transcriptional regular Xyr1 has a role in mycoparasitism and is essential to trigger the plant defense response (Reithner et al., 2014). When xyr1 was eliminated, R. solani competed more effectively. Plant defense responses were similarly delayed during the T. atroviride/Arabidopsis thaliana interaction.

Attachment and Coiling
Trichoderma spp. coil and generate helix-shaped hyphae around R. solani shortly after recognition, and this phenomenon is dependent on lectin recognition from R. solani’s cell wall. Conversely, plant lectins also cause coiling, demonstrating that lectins do not determine specificity in Trichoderma spp. Additionally, coiling is not always associated with mycoparasitism, as some Trichoderma spp. do exhibit this characteristic. Besides, hyphae of Trichoderma spp. become spiral or helical in shape and are considered diagnostic features in some Trichoderma spp. Trichoderma spp. often precede mycoparasitic attack by growing alongside the host hyphae and forming papilla-like structures. At the places where papilla-like structures form, the cell wall is degraded, and the lumen is penetrated. These papilla-like structures are identical to the appressorium of plant pathogenic fungi and those generated. Recent study suggests the presence of essential components of the cAMP and MAP kinase signaling pathways, such as G protein subunits (G), which govern extracellular enzyme synthesis, antibiotic production, and coil formation surrounding R. solani and T. atroviride expressed the G-gene (tga1) under the control of its promoter or the promoter of the proteinase gene (prb1; Reithner et al., 2005). All mutants showed an increase in coiling. Furthermore, T. viride overexpressing tga1 exhibited a greater capacity to outgrow R. solani. Induction of genes encoding ABC efflux transporters, pleiotropic and multidrug resistance transporters, and detoxification mechanisms (such as those encoding ABC efflux transporters and pleiotropic and multidrug resistance transporters) and detoxification mechanisms (such as those encoding ABC efflux transporters and pleiotropic and multidrug resistance transporters) in the presence of R. solani is a distinctive feature of Trichoderma spp. When R. solani develops sclerotia, it signals with radical oxygen species and excretes antifungal chemicals into the environment. Both radical oxygen species and antifungal drugs have been demonstrated to promote Trichoderma spp. stress’s response. The deletion of one of the genes in T. atroviride that produces an ABC transporter (Abc2) resulted in poor biocontrol of R. solani, demonstrating that detoxification plays a role in mycoparasitism.

Death of the Fungus
Secondary antifungal metabolites, such as NRP(s) (peptaibols, gliotoxin, gliovirin, etc.), polyketides, isopenoids-derived metabolites, pyrones, and cell wall-hydrolytic enzymes or degrading enzymes (CWDEs) eventually kill the prey (Table 2; Figure 3). Trichoderma spp. genomes contain many genes for the synthesis of antifungal metabolites and CWDEs. Trichoderma virens, for example, possess the most non-ribosomal peptide synthesis of any plant pathogenic fungus. The cell wall of any fungus is composed of 30% dry weight chitin, -1,3-glucans, -1,3-glucans, and -1,4-glucans. Cellulases, polygalacturonases (PG), chitinases, glucanases, and proteinase are only a few of the CWDEs found in Trichoderma spp.

Chitinases
Several chitinases enzymes are found in Trichoderma spp., and the list of these enzymes is updated continuously as new enzymes and their associated genes are discovered. Trichoderma spp. produce both endo and exochitinases that belong to the glycosyl hydrodase (GH) family. GH is divided into three groups based on amino acid sequence similarity: GH 18, GH 19, and GH 20 (Kim et al., 2002). Endochitinases break chitin into chitotetraose, chitotriose, and diacetylchitobiose at internal locations. Chitobiosidases and N-acetyl-glucosaminidases were classified further into exochitinases. Chitobiosidases are enzymes that catalyze the stepwise release of diacyctylichitobiose. Diacyctylichitobiose is broken into N-acetylglucosamine monomers by N-acetylglucosaminidases (Baek et al., 1999). These chitinases degrade chitin polymers by breaking β-1,4 glycosidic linkages in the hyphae of R. solani. Many chitinase-encoding genes have recently been found and reported, and their antagonistic action against R. solani has been tested (Table 2). Trichoderma harzianum and T. atroviride have the most widely explored chitinolytic system among the Trichoderma spp. The biocontrol activity of T. virens transformants overexpressing Cht42 against R. solani in cotton seedling tests was greatly increased as compared to the wild type, as demonstrated by the results of previous investigations (Baek et al., 1999). When the same gene was expressed in other Trichoderma spp. it resulted in higher biocontrol activity against R. solani than when the wild type was used (Howell, 2003). However, in greenhouse biocontrol testing, the activity of chit42 mutants was identical to that of the wild type (Harman et al., 2004). Limón et al. (2004) identified and reported
transformants of the biocontrol agent *T. harzianum* strain CECT 2413 that overexpressed a 33 kDa chitinase (chit33). Under the guidance of the *T. reesei pki* constitutive promoter, strain CECT 2413 was co-transformed with the amdS gene and its chit33 gene. The transformants were more effective in inhibiting *R. solani* growth than the wild type (Limón et al., 2004).

Glucanases
In synergistic cooperation with chitinases and secondary metabolites, glucanases have been demonstrated to reduce spore germination or pathogen growth. Glucans are glucose polysaccharides that act as crosslinks between chitin or chitosan polymers. There are two types of glucans, which are distinguished by the chemical link that exists between the glucose subunits. The stiffness of the cell wall is provided by β-glucans, which are made up of -(1,3)- or -(1,6)-linkages. In contrast, α-glucans are made up of -(1,3)- and/or -(1,4)-linkages and serve as a matrix component. Many glucanases with antagonistic activity against *R. solani* have been isolated from *Trichoderma* spp. as shown in Table 2. These enzymes degrade glucan polymers in *R. solani* hyphae by cleaving β-1,3 glycosidic linkage. When the gene bgn13.1 was overexpressed in *T. harzianum*, it resulted in the greatest suppression of *R. solani* infection. A higher level of antagonistic activity was seen in the case of the oomycete, *P. citrophthora*, which has cellulose and glucans as its primary cell wall components, compared to the *R. solani*, which has

Protein/molecule	MW kDa	Gene	Trichoderma spp.	References
Endochitinases (GH 18)				
Chitinase 1	N.A.	T. asperellum	Liu et al., 2010	
33-KDa Endochitinases	chit33	T. harzianum	De las Mercedes Dana et al., 2001	
ech33	T. virins	Kim et al., 2002		
Tv-cht1	T. virins	Kim et al., 2002		
Tv-cht2	T. virins	Kim et al., 2002		
36-KDa Endochitinases	chit36,	T. asperellum	Viterbo et al., 2001	
ech36	T. atroviride	Kuling et al., 2000		
42-KDa Endochitinases	chit42	T. asperellum	Carsolio et al., 1999	
ech42	T. harzianum	Kuling et al., 2000		
ech42	T. harzianum	Liu et al., 2010		
chit42	T. harzianum	Zellinger et al., 1999		
Tv-ech1	T. virins	Baek et al., 1999		
Tv-ech2	T. virins	Kim et al., 2002		
46-KDa Endochitinase	chit46	T. asperellum	Lima et al., 1997	
Endochitinases (GH 18)	crchi1	T. harzianum	Limón et al., 1995	
Glucosaminidases (GH 20)				
N-Acetyl-β-glucosaminidases	exc1Y	T. asperellum	Viterbo et al., 2002	
nag1	T. atroviride	Brunner et al., 2003		
eng18B	T. atroviride	Dubey et al., 2012		
Tvnag1	T. virins	Kim et al., 2002		
Tvnag2	T. virins	Kim et al., 2002		
Glucanases				
β-1,3-Glucanases	tap83	T. asperellum	Marcello et al., 2010	
lam1.3	T. harzianum	Marcello et al., 2010		
gluc31		Suriani Ribeiro et al., 2019		
29-KDa β-1,3-Glucanase	N.A.	T. harzianum	Noronha et al., 2000	
36-KDa β-1,3-Glucanase	N.A.	T. harzianum	Noronha et al., 2000	
78-KDa β-1,3-Glucanase	bgn13.1	T. harzianum	De La Cruz et al., 1995	
β-1,6-Glucanase	bgn16.2	T. harzianum	De La Cruz et al., 1995	
Tvbgn3	T. virins	Djonović et al., 2007		
β-1,3-Glucanase	N.A.	T. koningi	Kim et al., 2002	
Tvbgn1	T. virins	Kim et al., 2002		
Tvbgn2	T. virins	Kim et al., 2002		
Endo-1,3(4)β-glucanase	N.A.	T. asperellum	Liu et al., 2010	
Proteases				
Aspartic proteases	TaAsp	T. asperellum	Yang et al., 2013	
TaPAPA	T. asperellum	Viterbo et al., 2004		
Sla76	T. harzianum	Liu and Yang, 2007		
P8281	T. harzianum	Suárez et al., 2005		
PAPA	T. harzianum	Delgadito-Jarana et al., 2002		
Serine proteases	Spr1	T. asperellum	Liu et al., 2010	
tvap1	T. virins	Pozo et al., 2004		
pib1	T. harzianum	Geremia et al., 1993		
pra1	T. harzianum	Reithner et al., 2011		
papA	T. atroviride	Reithner et al., 2011		
papB	T. asperellum	Viterbo et al., 2004		
Miscellaneous				
CoA reductase	hmgR	Trichoderma spp.	Gajera et al., 2016	
Mitogen-activated protein kinase	task1	T. asperellum	Yang, 2017	
Pore-forming proteins	agl1	T. atroviride	Dubey et al., 2021	

N.A., not available.
chitin and glucan as its primary cell wall components. Many 1,6-glucanases have also been isolated from *Trichoderma* spp. and have demonstrated antagonistic activity, either alone or in conjunction with chitinases (da Silva Aires et al., 2012). It has recently been shown that *T. harzianum* strain ALL42 contains a gene that encodes an endo-1,3-glucanase that is related to the GH16 family, and that this gene is involved in the metabolism of glucans. The lack of the gluc31 gene had no effect on the in vivo mycoparasitism capacity of mutant *T. harzianum* ALL42 against *R. solani*; however, the removal of the gluc31 gene appeared to have an impact on the structure of the cell wall of *T. harzianum* ALL42 (Suriani Ribeiro et al., 2019).

Proteases

There are several varieties of fungal proteases (also known as fungal peptidases or proteolytic enzymes) that help in the lysis of cell walls (Mata-Essayag et al., 2001; Haggag et al., 2006). They accelerate the peptide bond breakage in other proteins. Fungal proteases are peptide hydrolases or peptidases that belong to a large number of enzymes that may be divided into endopeptidases and exopeptidases. Several investigations have shown that *Trichoderma* spp. exopeptidases contribute in the biocontrol of *R. solani* (Table 2). In addition to breaking down the host cell wall, fungal proteases may function as proteolytic inactivators of pathogen enzymes involved in plant infection (Suárez et al., 2005). Table 2 shows the mycoparasitic protease genes of *Trichoderma* that have been cloned so far. They also encode aspartic and serine proteases that function in the same way as subtilisin, chymotrypsin/elastase, and trypsin (Pozo et al., 2004; Yang, 2017). Prb1 from *T. harzianum* IMI 206040 has been shown to play an essential role in biological control, and prb1 transformants increased the biocontrol effectiveness of *Trichoderma* strains against *R. solani* by up to fivefold (Flores et al., 1997; Herrera-Estrella, 1997; Cortes et al., 1998; Goldman and Goldman, 1998). *Trichoderma harzianum’s* protease pr1 has a preference for fungal cell walls. *T. virens* extracellular serine protease gene (tvsp1) was cloned, and its overexpression dramatically enhanced cotton seedling protection against *R. solani* (Pozo et al., 2004). Another study found that cold-tolerant *T. harzianum* strains produced chitinases, glucosidases, trypsin-like, and chymotrypsin-like proteases that were active at low temperatures (Antal et al., 2000; Szekeres et al., 2004). Furthermore, it was shown that mutants obtained by UV irradiation produced substantially more proteases. Some of these mutants have been found to be effective *R. solani* antagonists. According to a recent RNA sequencing study, 20 genes associated with mycoparasitism, including extracellular proteases, oligopeptide transporters, GPCRs, chitinases, glucanases, and proteases, were found to be upregulated during the antagonistic process between *T. virens* ZT05 and *R. solani* (Halifu et al., 2020).

Trichoderma spp. GENES INVOLVED IN THE ANTIBIOSIS

Antibiosis is the antagonism of *R. solani* caused by the toxicity of secondary metabolites generated by *Trichoderma* spp. In *Trichoderma* spp. several genes involved in secondary metabolite synthesis have been discovered (Cardoza et al., 2007; Ruocco et al., 2009; Vinale and Sivasithamparam, 2020). As indicated in Table 3, these genes encode secondary metabolites, such as pyrones, polyketides, peptaibols, gliotoxin, gliovirin, terpenoids, and other chemicals. Depending on the chemical and the target location, varying amounts of these compounds are poisonous to *R. solani* (Malmiera et al., 2013; Rahimi Tamanegani et al., 2020).

Pyrones

Pyrones are a good example of secondary metabolites produced by *Trichoderma* spp. that have strong biocontrol activity against *R. solani*. They have numerous antagonistic activities against *R. solani* were isolated from several *Trichoderma* spp. For example, a characteristic aromatic odor resembling coconut was observed in a *T. harzianum* and *T. viride* due to 6-pentyl-α-pyrone (6-PP). Pyrones with significant antifungal action against *R. solani* were observed as one of the paramount secondary metabolites produced by *Trichoderma* spp. (Kotashane et al., 2015).

Polyketides and Non-ribosomal Peptides

Polyketides

Polyketides (PKs) are a large collection of carbon-skeletoned compounds that include polyphenols, macrolides, polyenes, enediyynes, and polyethers. Their synthesis is based on the regulated assembly of acetate and propionate, notwithstanding their structural and functional diversity. *T. reesei, T. atroviride*, and *T. virens* have all been shown to have PKs genes with antimicrobial action against *R. solani*. Two *T. atroviride* PKs genes were expressed during the encounter with *R. solani*, indicating a possible role in mycoparasitism (Mukherjee et al., 2012). Furthermore, deletion of the PKs4 gene in *T. reesei* altered the regulation of other PKs-encoding genes and lowered antagonistic activity against *R. solani* (Atanasova et al., 2013a). According to recent comparative genomics research, *T. virens* and *T. atroviride* have a considerable number of non-ribosomal peptide (NRP) and polyketides synthases genes, with *T. virens* having more NRPs than any other filamentous fungus investigated thus far (Niu et al., 2020).

Non-ribosomal Peptides

Non-ribosomal peptides are produced by *Trichoderma* spp. without the involvement of ribosomes or messenger RNAs by multidomain mega-enzymes called non-ribosomal peptide synthetases (NRPSs). NRPSs perform a variety of biological functions, including iron uptake, antibacterial, and antifungal activity. Peptaibols synthesis against *R. solani* is attributed to NRPSs, which construct a variety of compounds from a variety of precursors, including non-proteinogenic amino acids and hydroxy or carboxyl acids (Mukherjee et al., 2011, 2012). However, NRPSs genes from additional biological control agents have yet to be characterized.

Peptaibols

Peptaibols are antibacterial, antifungal, and antiviral short-chain linear polypeptides (Mukherjee et al., 2011). *Trichoderma*
TABLE 3 | Role of Trichoderma spp. genes involved in the antagonism and synthesis of secondary metabolites deleterious to R. solani.

Pathways	Protein/molecule	Gene	Trichoderma spp.	References
Pyrone biosynthesis pathway	Lipoygenase	lox1	T. atroviride	Kubicek et al., 2011; Speckbacher et al., 2020
6-Pentyl-α-pyrone (6-PP)	N.A.	Trichoderma spp.	Kotasthane et al., 2015	
Polyketide biosynthesis pathway	Polyketide synthases (PKS)	pks4	T. reesei	Atanasova et al., 2013b
		pks4	T. viridians	Atanasova et al., 2013b
Peptidol biosynthesis pathway	Non-ribosomal peptide synthetases (NRPS)	ter1	T. asperellum	Rahimi Tamandegani et al., 2020
Gliotoxin and gliovirin biosynthesis pathway	Aminotransferase	gln	T. viridians	Atanasova et al., 2013a
GluCytochrome P450	gIC	T. viridians	Atanasova et al., 2013a	
GluCytochrome P450	gIF	T. viridians	Atanasova et al., 2013a	
γ-Glutamyl cyclotransferase-like protein	gIK	T. viridians	Atanasova et al., 2013a	
Glutathione S-transferase	gliG	T. viridians	Atanasova et al., 2013a	
Methyltransferase	gliN	T. viridians	Atanasova et al., 2013a	
NRPS modules	gliP	T. viridians	Atanasova et al., 2013a	
O-Methyltransferase	gIM	T. viridians	Atanasova et al., 2013a	
Terpenoid/steroid synthesis pathway	Dyhydroxy-methylglyutaryl-CoA reductase	hmgR	T. harzianum	Cardoza et al., 2007
Major facilitator superfamily transporter	Thmf1	T. harzianum	Liu et al., 2012	
Trichodiene synthase	tri5	T. arundinaceum	Malmierca et al., 2012	
Oxidases	L-Amino acid oxidase	Th-LAAO	T. harzianum	Yang et al., 2011
Other’s proteins	4-Phosphopantetheinyl transferase	ppt1	T. viridians	Cheng et al., 2011
Transportsers	ABC transporters	Taabc2	T. atroviride	Ruocco et al., 2009
Miscellaneous	CoA reductase	hmgR	T. koningii	Gajera et al., 2016
	Mitogen-activated protein kinase	task1	T. asperellum	Yang, 2017
	Harzianic acid (HA)		T. harzianum	Manganelli et al., 2018
	Helicase-related proteins	ipa-1	Trichoderma viride	Estrada-Rueta et al., 2020
	p450 Monoxygenases	TvCyt2	Trichoderma viride	Ramirez-Valdespino et al., 2018

spp. secrete peptaibols in a combination of isoforms with over 300 sequences discovered so far (Szekeres et al., 2004). Peptaibols biological activity stems from their membrane-modifying abilities, ability to make holes in lipid membranes, and proclivity to establish systemic resistance in plants against plant diseases, such as R. solani (Vey et al., 2001). So far, one NRPS generated by the tex1 gene has been identified as playing a role in peptaibols synthesis in Trichoderma spp. in response to R. solani (Table 3; Rahimi Tamandegani et al., 2020).

Gliotoxins

Gliotoxins are mycotoxins that contain sulfur have antimicrobial, antiviral, and immunomodulatory activities (Vey et al., 2001). The cell wall-degrading enzymes of Trichoderma spp. augment their antifungal activity synergistically (Lorito et al., 1998). Several genes of T. viridians that encode gliotoxins, such as gliI, gliC, gliF, and gliG, appear to be important in antifungal action against R. solani (Atanasova et al., 2013a,b). However, these genes transcription is regulated by a number of factors, including pH, temperature, culture medium composition, and aeration (McDonagh et al., 2008; Table 3).

Terpenes

Terpenes are natural compounds having the formula (C₅H₈). There are various classes of terpenes and classification is based on the number of carbon (C) atoms as; C15; sesquiterpenes, C15; hemiterpenes, C20; diterpenes, C10; monoterpenes, C30; triterpenes, C40; tetramerpenes, C25; sesquiterpenes, or polyterpenes (Daguerre et al., 2014). In Trichoderma spp., a gene hmgR that codes for hydroxy-methylglutaryl-coenzyme has been identified. An enzyme reductase (HMGHR) converts hydroxy-methylglutaryl-coenzyme into mevalonate. Mevalonate is then required for the formation of terpene compounds, such as terpene cyclases, trichodermin, triterpene viridin, and trichotheccenes (Figures 2, 3). Some of these compounds, such as trichotheccenes and trichodermin produced by Trichoderma spp., have antifungal activity against R. solani. Other terpenes compounds, such as triterpene ergosterol, are required for cell membrane fluidity. Trichoderma harzianum antifungal activity was diminished when hmgR was largely silenced, demonstrating that terpenoid chemicals are important in antagonism (Cardoza et al., 2007; Table 3). Harzianum A is an example of trichotheccene, which inhibits fungal plant infections, such as R. solani, and induces genes involved in plant defense. Harzianum A synthesis is regulated by the tri gene cluster, which was recently identified in T. arundinaceum (Cardoza et al., 2007; Malmierca et al., 2013). When the genes tri5 and tri4 were disrupted, the generation of Harzianum A ceased, and the biocontrol activity of the transformants against R. solani was diminished.

Oxidases

Oxidases are crucial to Trichoderma spp. antagonistic activities against R. solani. During oxidation of glucose by oxidases, hydrogen peroxide (H₂O₂) is produced. Hydrogen peroxide inhibits sclerotia and subsequent hyphal growth of fungi when glucose is present. T. harzianum ETS 323 extracellular proteins recently yielded a new L-amino oxidase (Th-LAAO; Yang et al.,
In the presence of Th-LAAO, hyphal lysis of *R. solani* was seen *in vitro*. The efficiency of fungal antagonism against soil-borne pathogens is based not only on the production and release of antimicrobial components but also on antagonistic fungi’s capacity to protect themselves against toxins. To defend themselves from toxins generated by infections or themselves, biocontrol agents have many genes that encode ABC transporters and detoxifying enzymes. *T. atroviride* Taabc2 deletion mutants, for example, were less resistant to fungal inhibitory compounds, including their own, and performed less well in defending tomato plants against *R. solani* assaults (Ruocco et al., 2009).

Trichoderma *spp*. GENES INVOLVED IN COMPETITION

Competition for Nutrients

Microorganisms require nutrients to survive, so competition for nutrient constraints and the colonization of plant tissues results in pathogens control (Sarma et al., 2014). When resources are few, microorganisms with the same ecological niche and physiological requirements struggle for nourishment (de Boer et al., 2003). *Trichoderma* *spp.*, compete with *R. solani* for nutrients, mainly carbon (Sivan and Harman, 1991; Sarrocco et al., 2009). Comparatively to other fungi, they are better at mobilizing and absorbing soil nutrients (Sood et al., 2020). Moreover, in comparison to other fungi, they have a remarkable ability for ATP through the sugars metabolism including cellulose, hemicelluloses, glucans, and chitin (Oszust et al., 2020). Biomass components, mainly cellulose and hemicelluloses, are thought to be significant determinants of biocontrol fungi’s antagonistic activity. They are intended to be part of the saprophytic lifestyle and plant pathogen competition. *Trichoderma* *spp.*, undoubtedly the most investigated fungal biocontrol agent, contain bulk of the genes encoding biomass-degrading hydrolytic enzymes found so far. Proteases, cellulases, hemicellulases and amylases, are biological substrates degrading hydrolytic enzymes. As a result, *Trichoderma* *spp.* aid in carbon recycling. *Trichoderma* *spp.* and *R. solani*’s competitive capacity for cellulose utilization on wheat straw was assessed in a prior research (Sarrocco et al., 2009). Because wheat straw is the primarily source of cellulose and hemicelluloses, cellulolytic activity levels measured as mechanism in the straw possession competition. Fungi competition may also be influenced by the prompt uptake of nitrogen and carbon molecules that are either naturally present or released in the soil. Overexpression has been linked to the absorption of nutrients produced through the destruction of pathogenic fungi’s fungal cell walls, as well as direct nutrients competition in the soil, according to many transcriptome investigations. So far, only Gtt1, a high-affinity glucose transporter discovered in *T. harzianum*, has been examined, and its mRNA level rose in response to *R. solani* (Delgado-Jarana et al., 2003; **Table 4**). Competition for micronutrients can also arise in the soil. The most well-known example is competition for iron, which is essential for fungal pathogen development and pathogenicity. *Trichoderma* *spp.* secrete a number of siderophores that chelate iron and alter its availability to other bacteria. *T. harzianum* produced the most siderophores and had potent antifungal properties. A paucity of iron in the environment causes siderophore development and iron competition. *Trichoderma* *spp.* biocontrol ability against *R. solani* is influenced by iron competition (**Table 4**). As compared to *R. solani* and *Trichoderma* *spp.* can more effectively access the limited amounts of iron available. A peptide synthetase gene, *Psy1*, has been discovered. *Psy1* disruptants generated normal levels of gliotoxin but struggled to grow in low-iron environments, indicating that *Psy1* is involved in siderophore synthesis (Willhite et al., 2001). Harzianic acid is a siderophore released by *T. harzianum* that promotes plant development while also acting as an antifungal against *R. solani* (Vinale et al., 2013).

Competition for Rhizosphere

Ahmad and Baker (1987) coined the term rhizosphere competence for *Trichoderma* *spp.* which they described as the capacity of these fungi to grow and operate in the growing rhizosphere. The rhizosphere is a common ecological habitat for *Trichoderma* *spp.* and it provides saprotrophy and biotrophy possibilities on plant root exudates. Mucigel is a slimy gel-like capsule that covers plant root terminals (Oszust et al., 2020; Vinale and Sivasithamparam, 2020; Yu et al., 2022). The outermost cells of the root cap expel highly hydrated polysaccharides, such as pectins and hemicelluloses (arabinoxylans and rhamnogalacturonans). *Trichoderma* *spp.* produce hemicellulases (hemicellulolytic) and cellulases (cellulolytic) to utilize polysaccharides more effectively than *R. solani* secreted by plant root tips (Guzmán-Guzmán et al., 2017). For example, an endopolygalacturonase expressing gene, is required for the effective establishment of *T. harzianum* in the tomato rhizosphere, and this gene is also useful in root colonization and the induction of plant defenses. Plants also excrete saccharides, such as

TABLE 4 | Role of *Trichoderma* *spp.* genes involved in competition for nutrients and root colonization against *R. solani*

Competition	Protein/molecule	Gene	*Trichoderma* *spp.*	References
Root colonization	Class II hydrophobin family members,	*twydI*	T. *virens*	Guzmán-Guzmán et al., 2017
	Endopolypegalacturonase Thpg1	*Thpg1*	T. *harzianum*	Morán-Diez et al., 2009
Nutrients	High-affinity glucose transporter Gtt1	*Gtt1*	T. *harzianum*	Delgado-Jarana et al., 2003
Siderophores	Harzianic acid	N.A.	T. *harzianum*	Vinale et al., 2013
	Peptide synthetase	N.A.	*Trichoderma* *spp.*	Wilhite et al., 2001

N.A., not available.
monosaccharides, disaccharides, and sucrose, which offer essential carbon substrate for *Trichoderma* spp. rhizosphere establishment (Oszust et al., 2020). *Trichoderma* spp. have also genes that encode intracellular invertases; for example, sucrose permease takes up sucrose before being hydrolyzed. *Trichoderma* spp. also have particular sucrose transporter and have biochemical properties similar to plant sucrose transporters (Sood et al., 2020). Sucrose is actively transmitted from plant to fungus, according to these shards of evidence. Furthermore, several *Trichoderma* spp. express a large number of important soluble transporters, the functions of which to acquire additional root exudates are unclear (Zhang and Zhuang, 2020). In conclusion, the presence of pathogens and root-derived exudates may have been significant attractants for *Trichoderma* spp. to establish themselves in the rhizosphere and create relationships with plant roots.

Competition for Colonization of Intercellular Root Spaces

The ability to recognize and cling to roots, penetrate the plant, and endure toxic compounds released by the plant in reaction to invasion is necessary for root colonization. *Trichoderma* spp. colonize the intercellular spaces of the first or second layer of root cells (Brotman et al., 2008). The hyphal and conidial cell walls contain several proteins that aid *Trichoderma* spp. in attaching to the roots via appressorium-like structures (Steindorff et al., 2012; Table 4). Enzymes, such as cellulase, hemicellulase, and protease, are subsequently secreted and employed to enter the roots (Viterbo et al., 2004). *Trichoderma* spp. proliferation is further aided by the highly hydrated polysaccharides of the root-secreted mucigel layer, as well as the mono- and disaccharides discharged into the rhizosphere by plant roots. According to research, root colonization, defense mechanism coordination, and leaf photosynthetic rate enhancement are all facilitated by plant-derived sucrose. To obtain root exudates, *Trichoderma* spp. have a variety of transporters/carriers, such as permease/intracellular invertase system and a di/tripeptide transporter. Hydrophobins are tiny proteins secreted by *Trichoderma* spp. that have recently been discovered. These proteins aid *Trichoderma* spp. in the attachment of fungal roots. These proteins feature a unique domain with eight cysteine residues in conserved positions. Based on their hydropathy patterns and solubility, hydrophobins were initially classified as class I and II. Furthermore, phytopathogenic fungi also rely on them to attach to the surface of the host plant (Talbot et al., 1996). Recently, a gene *tvhydi1* that belong to class II hydrophobin, was isolated and characterized from *T. virens* (Guzmán-Guzmán et al., 2017). Overexpression of the gene *tvhydi1* increases *T. virens* antagonistic activity against *R. solani* as well as the colonization of plant roots. Furthermore, deletion of *tvhydi1* reduces antagonistic activity against *R. solani* and plant root colonization. *Trichoderma* spp. also encode expansin-like proteins, such as Swollenin TaS3wo, which loosen, expand, or disrupt plant cell wall elements including cellulose and hemicellulose. Although their exact mechanism of action is unclear, it is thought that expansin-like proteins break into the crevices generated by interlacing microfibers in the cell wall, causing a conformational shift that causes the cell wall to expand, assisting root colonization. Plant CWDEs are also engaged in active root colonization, in addition to expansin and hydrophobin proteins. Many plants showed the strengthening of epidermal and cortical cell walls, as well as the deposition of considerable quantities of callose and cellulose, 72 h following root colonization. Callose-enriched cell walls limit *Trichoderma* spp. to the epidermis and cortical intercellular gaps, preventing *Trichoderma* spp. from entering the vascular stele. Antimicrobial chemicals are also synthesized and accumulated by plants in response to *Trichoderma* spp. invasion. To a large extent, the ability to colonize plant roots is determined by the strain's ability to withstand environmental stresses. Several ATP-binding cassette (ABC) transporter genes have been discovered and described in *Trichoderma* spp., and they have been linked to the transfer of a variety of substrates, including phytotoxins, mating factors, antibiotics, pesticides, and heavy metals. The rapid degradation of phenolic compounds exuded by plants and the suppression of phytoalexin production, as detected in *Trichoderma* spp. is due to ABC transport systems (Cheng et al., 2011). ABC transport systems are key factors in the multiple interactions established by *Trichoderma* spp. with other microbes in a potentially toxic or antagonistic environment. *Trichoderma* spp. has been shown to contribute to biocontrol through small cysteine-rich proteins. These small proteins bind to chitin of plants and fungi and prevent *Trichoderma* spp. from chitinases (Stergiopoulos and de Wit, 2009).

Trichoderma spp. INDUCED RESISTANCE IN DIFFERENT PLANTS AGAINST Rhizoctonia solani

Trichoderma-Induced Systemic Resistance

Depending on the pathosystem, plant defense responses are usually triggered by activation of a complex signal transduction network that includes salicylic acid (SA), jasmonic acid (JA), either with or without ethylene (ET), and abscisic acid (ABA) as important plant immunity regulators. Checker et al. (2018), SA-mediated signaling pathways in plants result in systemic acquired resistance (SAR) against biotrophic and hemibiotrophic diseases. JA/ET-mediated signaling pathways, on the other hand, result in induced systemic resistance (ISR) in plants against necrotrophic diseases (Pieterse et al., 2014). According to a recent research, *Trichoderma* spp. induce a hybrid ISR/SAR type of resistance in plants against fungal pathogens including *R. solani* known as *Trichoderma*-induced systemic resistance (TISR; Leonetti et al., 2017; Figure 4). Hence, resistance in plants is increased by *Trichoderma* spp. against *R. solani*, which can be activated through signaling pathways that involve both SA and JA/ET-mediated signal transduction. Even still, scientists disagree on the method by which *Trichoderma* spp. activate defensive responses and the sort of resistance they induce in plants. Furthermore, there are significant gaps and differences when it comes to explaining the crosstalk of signaling molecules involved in *Trichoderma*-induced defense responses in plants.
Other chemicals that may reduce or increase the synthesis and activity of signaling molecules must also be considered in order to better comprehend the crucial interactions between JA, SA, ET, and their derivatives in the intricate signaling network (Figure 4).

Microorganism-Associated Molecular Patterns

Like fungi and mammals, plants activate possible defense systems in response to the presence of other species. This is best appreciated in the context of pathogens that induce a two-branched inborn immune response. PAMP-triggered immunity (PTI) is the first stage in which plants use pattern recognition receptors to recognize and respond to pathogen-associated molecular patterns (PAMPs) or microorganism-associated molecular patterns (MAMPs). Plants respond to pathogen virulence factors in the second step known as effector-triggered immunity (ETI). MAMPs are molecular signatures that are extremely conserved, such as fungi’s chitin and xylanase and oomycetes’ heptaglucan. After PRR activation, changes in ion fluxes across the plasma membrane, the oxidative burst...
(production of nitric oxide and reactive oxygen species), activation of MAPK cascades, and callose deposition are all downstream defensive activation events. Many breakthroughs have been made in identifying the pathways involved in this resistance; in many cases, SA or JA, when combined with ET, ROS, or NO, causes a cascade of processes that culminate in the synthesis of a range of metabolites and proteins with varied roles (Bellin et al., 2013). ABA, auxins, gibberellins, cytokinins, and brassinosteroids have also been demonstrated to play essential roles in recent studies (Pieterse et al., 2009). Although there appears to be crosstalk or competition between the pathways, different stresses stimulate distinct routes (Durrant and Dong, 2004). SAR confines long-term disease resistance by accumulating genes that produce pathogenesis-related (PR) proteins against pathogens that are either biotrophic or hemibiotrophic (Pieterse et al., 2009). However, rather than directly initiating PR gene transcription, ISR enhances plants’ defenses against a future onslaught by necrotrophic pathogen like R. solani. Overall, the JA/ET and SA pathways are thought to be mutually special. However, other investigations have found a synergistic effect between these routes. According to recent advances, Trichoderma spp. simultaneously induces plant SAR-related genes as well as ISR-related genes during plant root colonization, providing protection against R. solani with various lifestyles (Salas-Marina et al., 2011). Recent research has shown that Trichoderma spp. may cause biochemical and molecular alterations in SAR, which are mostly linked to the production of PR proteins, such as PR1, PR5, and PR2 (Zhang and Zhuang, 2020). The activation of the mutually antagonistic SA and JA pathways by Trichoderma spp. results in a loss of plant ecological fitness, a process known as crosstalk (Van Oosten et al., 2008). Trichoderma–plant interactions take place predominantly in the rhizosphere, where resistance development is driven by the interchange of microbial and plant elicitors required for organism-to-organism interactions. Depending on the involved elicitors created by Trichoderma hyphae, the interaction of these molecules with plant receptors may influence Trichoderma adhesion and identification, and hence the induction of resistance in plants. Secondary metabolites produced by Trichoderma spp., such as proteins with enzymatic activity, as well as Trichoderma spp. and plant cell wall components, are all implicated in the development of plant resistance. Pathogen defenses have been activated by plant components, such as pectins, phospholipids, and saccharides. Some Trichoderma elicitors, include proteins produced by avirulence genes and MAMPs, which are slow-evolving molecules. Trichoderma spp. secrete low molecular weights (6–42 kDa) enzymes or peptides which act as elicitors, such as serine xylanases, proteases, chitinases, cellulases, or glucanases. Other Trichoderma spp. compounds which act as elicitors are indole compounds, fatty acids, lipids and their derivatives (glycosphingolipids etc.), saccharides (polysaccharides or oligosaccharides) and chitin or chitin-like compounds (Djonović et al., 2007; da Silva Aires et al., 2012; Tables 4 and 5).

TABLE 5 | Role of Trichoderma spp. genes which act as elicitors in resistance induction in different plants against R. solani.

Protein/molecule	Enzyme	Gene	Plant	Trichoderma spp.	References
Proteins	Endochitinase	chit42	Tobacco	T. harzianum	Lorito et al., 1998
	Endochitinase	ThEn-42	Tobacco	T. harzianum	Lorito et al., 1998
	Expressed sequence tags	Ep1	Rice, soybean	T. asperellum	Liu et al., 2010
	Endopolygalacturonase	Thpg1	Arabidopsis	T. harzianum	Morán-Diez et al., 2009
	Expressed sequence tags	Epi1	N.A.	T. atroviride	Seidl et al., 2006
	Mitogen-activated protein kinase	tmkA	Cucumber	T. viride	Viterbo et al., 2005
	Xylanase	TxrXyn29.4	Popular	T. asperellum	Guo et al., 2021
	Xylanase	TxrXyn24.2	Popular	T. asperellum	Guo et al., 2021
	Chromatin remodeler	lpi-1	Arabidopsis	T. virids	Estrada-Rivera et al., 2020
Cerato-platanins	Transferase	Small extracellular cysteine-rich proteins 4-Phosphopantetheinyl transferase	Sm1 and Ep11	T. virids, T. atroviride	Djonović et al., 2006
	Cellulase	Endoglucanases, exoglucanases, and β-glucosidases	N.A.	T. virids	Velázquez-Robledo et al., 2011
	Protease	Aspartyl protease	N.A.	T. virids	Aidenmark et al., 2010
	Protease	Serine protease	tvsp1	T. virids	Viterbo et al., 2004
	Chitinase	Endochitinase	N.A.	T. virids	Pozo et al., 2004
	Trichotheceine	Trichodermin and harzianum A	N.A.	T. virides	Kumar et al., 2009; Shah et al., 2009
	Class II hydrophobin family	Hydrophobin	tvhycl1	T. arundinaceum	Malmierca et al., 2012
				T. virides, T. atroviride and T. Reesei	Guzmán-Guzmán et al., 2017

N.A., not available.
root surface. Local defense in plants is stimulated by Swollenin, expansin-like proteins with a cellulose-binding domain (Guzmán-Guzmán et al., 2017; Table 5). Swollenin disrupt plant cell walls’ crystalline cellulose structure and aid in *Trichoderma* spp. colonization of plants roots (Salohimeo et al., 2002). Root colonization by *T. asperellum* stimulates the production of swollenin to induce local defense in plant (Brotman et al., 2008). In the rhizosphere, *Trichoderma* spp. use swollenin to establish themselves by increase root surface area. Plant protein for expansion of root and root hair cell wall is expansins which has sequence similarity to Swollenin (Guo et al., 2011).

Xylanases

Glycosyl Hydrodrolase Family 11 bacteria secrete xylanases, which are essential CWDEs (GH11). These CWDEs have the ability to degrade xylan, a key component of plant cell walls. Plants can detect the loss of cell wall integrity when xylanases begin to breakdown the plant cell wall and trigger the defensive signaling system. Recently, xylanases (TasXyn29.4 and TasXyn24.2) were discovered as *Trichoderma* spp. MAMPs that induce plant defensive responses in Popular. The production of these *T. asperellum* xylanases in plants induced plant defense responses against *R. solani* attacks mediated by ethylene and H$_2$O$_2$ (Guo et al., 2021).

Chitinases

Chit42, a *T. harzianum* chitinase improved resistance of tobacco to *R. solani*. This show the importance of chitinases in the activation of resistance in plants (Lorito et al., 1998).

Proteases

Trichoderma spp. produce considerable amounts of proteases. *T. harzianum*, *T. asperellum*, and *T. virens* have aspartyl and serine proteases that are involved in both mycoparasitism and symbiotic relationship between *Trichoderma* spp. and plants, besides, enhancing defensive capability against *R. solani* (Viterbo et al., 2005). Additionally, these enzymes assist *Trichoderma* spp. in colonization of plants roots as well as the production of secondary metabolites such PR proteins and phytoalexins against *R. solani* (Viterbo et al., 2005).

Peptaibols and Trichothecenes

Another notable group of *Trichoderma* spp. secondary metabolites are peptaibols (peptaiotic). The name peptaibols comes from a combination of the terms PEPTide, AIB, and alcohOLs, which are the distinguishing characteristics of peptaibols. Peptaibols are characterized by large quantities of non-standard amino acids (especially a-aminoisobutyric acid), 2-amino alcohol and a C-terminal 1. Peptaibols are not produced by ribosomes. Instead, multidomain enzymes on huge non-ribosomal peptide synthetase (NRPS) complexes produce them (Mukherjee et al., 2012). These peptaibols are also important elicitors produced mainly by *T. atroviride* and *T. virens* and are implicated in the development of pathogen resistance in plants (Mukherjee et al., 2012). Trichothecenes are also produced by *Trichoderma* spp., that is, *Harzianum A* and trichodermin which act as elicitors for plant resistance to *R. solani*. A tri4 gene mutation, for example, reduced antifungal action against *R. solani* as well as the ability to regulate the production of tomato plant defense-related genes from the SA and JA pathways (Malmierca et al., 2012). Furthermore, plant development and plant defense mechanisms are also induced by oxygen heterocyclic compounds (OHC), such as polyketides, harzianolides, harzianopyridone, and pyrones (esters), peptides (gliovirin and gliotoxin), non-polar chemicals (terpenoids and steroids), and anthraquinone pigments. However, plant resistance through *Trichoderma* spp. by reduction of VOCs, that is, ketones and aldehydes remain questionable.

ROLE OF MAMPS, REACTIVE OXYGEN AND NITROGEN SPECIES, TRANSCRIPTION FACTORS, DEFENSE-RELATED GENES AND ENZYMES

Trichoderma spp. Release MAMPs for Molecular Recognition by Receptors of Plants

PRRs recognize MAMPs released by *Trichoderma* spp. By signaling molecules within the plants, these MAMPs contribute to the signal cascade. *Trichoderma* MAMPs transiently promote Ca$^{2+}$ and H$^+$ influx and K$^+$ and Cl$^-$ ejection in response to suitable plant receptors. Variations in the plasma membrane potential (Vm) occur often because of ion imbalances and changes in the channel activity (Liu et al., 2010). Plant cells undergo fast ROS, RNS and pH changes during depolarization. In addition to changes in ion absorption, *Trichoderma* spp. releases organic acids (gluconic or citric acid) into the soil, which lowers the soil pH. ROS and RNS are released during cell wall expansion and lignification. Furthermore, cell wall peroxidases and calcium channels become active. Many secondary metabolites and signaling molecules, including as H$_2$O$_2$, NO, as well as SA and its derivatives, and JA/ET are generated and accumulated in response to *Trichoderma* spp. (Harman et al., 2004). *Trichoderma* spp. MAMPS and other effector molecules bind to PRRs and intracellular receptors in plants, triggering MTI (MAMPs-triggered) and ETI (effector-triggered) immunity. This interaction between *Trichoderma* spp. and plants produces ROS and RNS, which act as signaling molecules and initiate a defensive response in plants by synthesizing antifungal molecules, such as phytoalexins, VOCs (volatile organic compounds), PR proteins, such as CWDEs, and so on. *Trichoderma* spp. has a local and systemic action that involves a signaling cascade and activation, as well as the accumulation of antimicrobial compounds and enzymes, such as polyphenol oxidase, peroxidase, lipoxygenase and PAL. PR proteins, terpenoids, phytoalexins (rhisitin, phytosterol, lubimin, coumarin, resveratrol, solavetivone, and others), and antioxidants (glutathione, ascorbic acid, and others) are produced. Plants respond to fungal invasion by producing and concentrating defensive molecules, such as phytoalexins, aglycones, flavonoids, phenolic byproducts, terpenoids, and other antimicrobial
substances. *Trichoderma* spp. on the other hand, are typically resistant to plant defense compounds and colonize plant root due to presence of ABC transport systems. Recent studies show that plants employ ROS and RNS as messengers to control the interplay between secondary messengers, MAPKs, and hormones, which are crucial in the induction of plant resistance SAR (Sami et al., 2018). An enzyme system known as the MAPKs kinase pathway may be activated by extracellular *Trichoderma* MAMPs, when they connect with plant receptors. The first step in triggering MPKKK kinase activity is a ligand–receptor contact. In the next step, MPK kinase is phosphorylated by MPKKKs, which in turn activates MPKK kinases, which phosphorylate MPKs (Sami et al., 2018).

Reactive Oxygen and Nitrogen Species

In oxidative signaling, reactive oxygen (RO) and reactive nitrogen (RN) species interact with multiple hormonal signaling pathways. When plants were challenged with necrotrophic fungi, such as *R. solani*, among all RO and RN species, H$_2$O$_2$ and nitric oxide (NO) were shown to be quickly produced and were considered primary defensive activators. The processes by which NO may influence defensive signaling cascades were well investigated. S-nitrosylation and tyrosine-rich group nitration have emerged as significant NO-dependent protein regulatory mechanisms. Protein cysteine-rich thiol groups react with NO to create S-nitrosothiols so-called “reversible S-nitrosylation of proteins.” S-nitrosylation plays an important role in defensive responses, as shown by its effects on the SA signaling protein NPR1 and the ROS-generating NADPH oxidase complex AtRBOHD. NO has been shown to work with ROS and SA to establish SAR in plants (Sami et al., 2018). NO is also linked to other resistance-inducing signaling pathways, such as JA and ET. NO via S-nitrosylation has been shown in recent research to be one of the key regulators of SA-dependent systemic defensive responses in *T. atroviride*-treated plants. SA play an important part in the systemic defense responses elicited by *T. atroviride* in cucumber plants, protecting them from *R. solani*. SA or increasing the quantity of H$_2$O$_2$ or NO could promote the synthesis of active NPR1 proteins, which regulate the expression of genes that code for plant defense proteins. NPR1, which resides as an oligomer in the cytoplasm and is held together by intermolecular disulfide bonds, is susceptible to changes in redox status. By modifying the state of cell reduction, accumulated SA, H$_2$O$_2$ and NO might diminish disulfide bonds, leading NPR1 to degrade into monomers, which, when transferred into a nucleus to induce TISR by activating pathogenesis-related (PR) genes (Nawrocka et al., 2019). The mitogenic kinase pathways are also activated, resulting in the activation of transcription factors against *R. solani* (Nawrocka et al., 2019).

Transcription Factors, Defense-Related Genes, and Enzymes

Transcription Factors and Pathogenesis-Related Genes

Transcription factors modulate the expression of certain genes required for many key physiological activities and stress responses, acting as regulators of gene transcription. The WRKY transcription factor family has been connected to abiotic stress, growth, and development in addition to plant–microbe interactions. As discussed before, SAR often results in increased levels of SA and coordinated activation of PR genes, such as *PR5*, *PR2*, and *PR1* involving one or more signaling molecules, that transmit an elevated immune response against *R. solani*. For example, when bean plants were exposed to *T. velutinum* in the absence of *R. solani*, WRKY33 gene expression increased considerably whereas *PR1* expression decreased. However, when beans plants were just exposed to *R. solani*, WRKY33 gene expression was reduced whereas *PR1* gene expression remained unaffected. Furthermore, when bean plants were exposed to *T. velutinum and R. solani*, the genes WRKY33 and *PR1* were both downregulated (Mayo et al., 2016). Furthermore, *T. asperelloides* colonization of *A. thaliana* roots triggered a rapid increase in expression of WRKY transcription factors, which suppressed SA signaling and triggered JA pathway responses against *R. solani*. These findings imply that WRKY proteins, which are well-known PR gene activators, play a key role in chromatin modifications that enhance gene expression (Mayo et al., 2016). PR gene expression, including enzymes, such as cellulases, glucanases, and chitinases, is engaged in direct control of *R. solani* and plant biochemical barrier reinforcement (Heflish et al., 2021). In another study, the interaction of bean plants with *R. solani* resulted in the downregulation of seven defense-related genes, including chitinases (*CH5b, CH1*), *PR1, PR2, PR3, PR4*, and *PAL*, as a mechanism to overcome the plant defense response, allowing the infection process to progress within the plant. Ergosterol is a sterol present in the fungal membrane that, although being classified as a MAMP by the plant, causes a sequence of events that result in the activation of defense-related genes. Squalene (polysaturated terpene) is a precursor in the biosynthesis of ergosterol. In one study, higher ergosterol and squalene synthesis by *Trichoderma* spp. resulted in the activation of defense-related genes in bean plants against *R. solani* (Mayo et al., 2015).

Defense-Related Genes and Enzymes

Many studies have shown that plants treated with *Trichoderma* spp. boosted the activity of defense-related enzymes, such as peroxidase, chitinase, peroxidase, -1, 3-glucanase, phenylpropanoids, polyphenol oxidase, superoxide dismutase, chitinase, and phenylalanine ammonia-lyase (PAL). When cotton seeds were treated with *T. virens*, for example, peroxidase activity was increased in the roots of treated cotton plants (Howell, 2003). Furthermore, by boosting ROS scavenging enzymes, *Trichoderma* spp. contribute to plant resistance to *R. solani*. *Trichoderma harzianum*, for example, increases the activities of ascorbate peroxidase (APX), guaiacol peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) in tomato plants against *R. solani* (Youssef et al., 2016). *Trichoderma* spp. also produce lytic enzymes, such as chitinase and β-1,3-glucanase, which break down *R. solani* chitin and β-1,3-glucan components. During an *R. solani* attack, for example, a bean chitinase promoter is substantially activated in transgenic tobacco plants (Roby et al.,
The protection against *R. solani* given by the expression of certain chitinase genes from *Trichoderma* spp. or other plants is remarkable. Defense-related gene expression and chitinase enzyme activity, for example, confer high resistance to *R. solani* infection in transgenic cotton plants expressing an endochitinase gene from *T. virens* (Kumar et al., 2009). Cellulases from *Trichoderma* spp. have also been shown to produce ISR in plants via the ET or JA pathways. Furthermore, *T. viride* and *T. harzianum* with biocontrol capacity to protect rice plants against *R. solani* exhibited negative morphological and physiological changes in the pathogen hyphae, such as swelling, knotting, crumpling, flattening, shriveling, bursting, and cytoplasm leakage. Furthermore, the increase of defense-related enzymes has been noted (Singh et al., 2016). *Trichoderma virens* promoted ISR in tomato plants by activating defense enzymes, such as GPX, syringaldazine peroxidase (SPX), and PAL against *R. solani* in another study. As a result, the buildup of secondary metabolites, such as phenols and H$_2$O$_2$, was increased, but lipid peroxidation was reduced in the leaves (Malolepsza et al., 2017). As a result, *Trichoderma* spp. treatment of plants produced disease resistance against *R. solani* by reprogramming the pathways and cascades involved in several defense-related activities (Zeilingier and Atanasova, 2020). The conclusion is that TISR is a complex occurrence, and the current findings do not reflect a thorough grasp of the processes and reactions to *R. solani*.

CONCLUSION AND FUTURE PERSPECTIVES

To date, the best biocontrol agents described against *R. solani* are *Trichoderma* spp. Antagonism of *R. solani* is linked to a variety of *Trichoderma* spp. genes. As previously mentioned, antagonism is dependent on a number of genes for sensing, signaling, antibiotic, and mycoparasitism. In addition, many *Trichoderma* spp. genes are involved in competition and systemic resistance induction in plants for *R. solani*. In Figures 2–4, we described the *Trichoderma* spp. genes involved in antagonism of *R. solani*, what happens to *R. solani* when it is parasitized by *Trichoderma* spp. and how *Trichoderma* spp. induce resistance against *R. solani*. As many *Trichoderma* spp. genes are involved in the antagonism of *R. solani*, making the molecular mechanisms underlying the antagonistic effects more complicated. Hence, to completely comprehend the effect of *Trichoderma* spp. genes against *R. solani*, additional studies are required. In conclusion, *Trichoderma* spp. possess a diverse set of genes that produce secondary compounds which can parasitize and antagonize *R. solani*. Systemic resistance against *R. solani* by *Trichoderma* spp. largely because of variety of metabolites produced against it. *Trichoderma* spp. also have a diverse set of effectors and elicitors recognized by plant receptors to activate signaling and gene regulation, which serves as the foundation for *Trichoderma* spp. to develop *R. solani* defense responses, as shown in Table 5. More research into the molecular, physiological, and biochemical underpinnings of *Trichoderma* spp. activity as multifunctional biocontrol agents is required to fully comprehend the impact of *Trichoderma* spp. on plants and their practical utility in plant protection against *R. solani*. The chemical nature of a number of secondary metabolites generated by *Trichoderma* spp. against *R. solani* is still unknown. Furthermore, there is a need to understand the molecular communication between *Trichoderma* spp. and plants in the presence of *R. solani*. Due to their precision, sensitivity, and specificity, efficient and sophisticated Next-generation sequencing technologies are currently used in studies involving *Trichoderma* spp. and *R. solani*. They will hopefully fill a gap in *Trichoderma* spp. biocontrol studies against *R. solani* when combined with other methods, such as metabolomics, metagenomics, proteomics, and bioinformatics.

AUTHOR CONTRIBUTIONS

AA and MM: writing-original draft and figure preparations. MAS, QS, MKS, SS, BKK, MCZR, SH, and EAM-E: collecting literatures, software, tables preparations, and editing. HZ, YI, and LZ: supervision, project administration, resources, and funding acquisition. All authors have read and agreed to the published version of the manuscript. All authors listed have made a substantial, direct and intellectual contribution to the work and approved it for publication.

FUNDING

This work was supported by the China Postdoctoral Science Foundation (no: 2014M561669) and the Zhejiang Academy of Agricultural Sciences “high-talent introduction and ongoing training fund” (grant no: 10300000021LL05).

REFERENCES

Abbas, A., Fu, Y., Qu, Z., Zhao, H., Sun, Y., Lin, Y., et al. (2021). Isolation and evaluation of the biocontrol potential of *Talaromyces* spp. against rice sheath blight guided by soil microbiome. *Environ. Microbiol.*, 23, 5946–5961. doi: 10.1111/1462-2920.15596

Abdel-lateif, K. S. (2017). *Trichoderma* as a biological control weapon against soil borne plant pathogens. * Afr. J. Biotechnol.*, 16, 2299–2306. doi: 10.5897/ ajb2017.16270

Ahmad, I. S., and Baker, R. (1987). Rhizosphere competence of *Trichoderma harzianum*. *Phytopathology*, 77, 182–189. doi: 10.1094/phyto-77-182

Aidemark, M., Tjellström, H., Sandelius, A. S., Stålbrand, H., Andreasson, E., Rasmusson, A. G., et al. (2010). *Trichoderma virens* cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells. *BMC Plant Biol.*, 10, 1–13. doi: 10.1186/1471-2229-10-274

Ajayi-Oyetunde, O. O., and Bradley, C. A. (2018). *Rhizoctonia solani* taxonomy, population biology and management of *Rhizoctonia* seedling disease of soybean. *Plant Pathol.*, 67, 3–17. doi: 10.1111/ppa.12733

Ali, A., Zeshan, M. A., Mehtab, M., Khursheed, S., Mudasir, M., Abid, M., et al. (2021). A comprehensive note on *Trichoderma* as a potential biocontrol agent against soil borne fungal pathogens: a review. *Plant Prot. J.*, 5, 171–196. doi: 10.33804/pp.005.03.3934

Antal, Z., Manczinger, L., Szakacs, G., Tengerdy, R. P., and Ferenczy, L. (2000). *Rhizoctonia solani* isolated from *Trichoderma* spp. and *Talaromyces* spp. against rice sheath blight guided by soil microbiome. *Environ. Microbiol.*, 5, 171–196. doi: 10.1111/1462-2920.001653

Abbas et al. Role of *Trichoderma* spp. Genes in the Biocontrol of *R. solani*

Abbas et al. Role of *Trichoderma* spp. Genes in the Biocontrol of *R. solani*
Atanasova, L., Knox, B. P., Kubicek, C. P., Druzhinina, I. S., and Baker, S. E. (2013b). The polyketide synthase gene pks4 of *Trichoderma asperellum* provides a lower level of resistance to lovastatin and lower antifungal activity. *Appl. Environ. Microbiol.* 79, 749–759. doi: 10.1128/AEM.2012.01629

Badaluddin, N. A., Jamaluddin, S. N. T., Ihsam, N. S., Sajili, M. H., Khalit, S. I., and Mohamed, N. A. (2018). Molecular identification of isolated fungi from Kelantan and Terengganu using internal transcriber spacer (ITS) region. *J. Agric. Biotechnol.* 9, 222–231.

Baker, S. E., Kubicek, C. P., Druzhinina, I. S., and Atanasova, L. (2013a). Comparative transcriptomics reveals different strategies of *Trichoderma* mycoparasitism. *BMIC Genomics* 14, 1–15. doi: 10.1186/1471-2164-14-1

Bellin, D., Asai, S., Delledonne, M., and Yoshioka, H. (2013). Nitric oxide as a mediator for defense responses. *Mol. Plant-Microbe Interact.* 26, 271–277. doi: 10.1094/MPMI-09-12-0214-CR

Brotman, Y., Briff, E., Viterbo, A., and Chet, I. (2008). Role of swollenin, an *G protein-coupled receptors: functional characterization of a cAMP receptor-like protein from Trichoderma atroviride*. *Curr. Genet.* 54, 301–303. doi: 10.1007/s00294-007-0066-9

Chen, C.-H., Yang, C.-A., Liu, S.-Y., Lo, C.-T., Huang, H.-C., Liao, F.-C., Checker, V. G., Kushwaha, H. R., Kumari, P., and Yadav, S. (2018). “Role of Trichoderma spp. Genes in the Biocontrol of *Rhizoctonia solani* associated with scurf of potato in New Zealand.” *Plant Pathol.* 63, 651–666. doi: 10.1111/ppa.12139

De Boer, W., Verheggen, P., Klein Gunnewiek, P. J. A., Kowalchuk, G. A., and van Veen, J. A. (2003). Microbial community composition affects soil fungistasis. *Appl. Environ. Microbiol.* 69, 835–844. doi: 10.1128/AEM.69.2.835-844.2003

De Franza, S. K. S., Cardoso, A. F., Lustris, D. C., Ramos, E. M. L. S., de Filippi, M. C. C., and da Silva, G. B. (2015). Biocontrol of sheath blight by *Trichoderma asperellum* in tropical lowland rice. *Agron. Sustain. Dev.* 35, 317–324. doi: 10.1007/s11293-014-0244-3

De La Cruz, J., Pintor-Toro, J. A., Benitez, T., Llobell, A., and Romero, L. C. (1999). A novel endo-beta-1, 3-glucanase, BGN13. 1, involved in the mycoparasitism of *Rhizoctonia solani*. *J. Bacteriol.* 177, 6937–6945. doi: 10.1128/jb.177.23.6937-6945.1995

De las Mercedes Dana, M., Limón, M. C., Mejías, R., Mach, R. L., Benitez, T., Pintor-Toro, J. A., et al. (2001). Regulation of chitinase 33 (chi33) gene expression in *Trichoderma harzianum*. *Curr. Genet.* 38, 335–342. doi: 10.1007/s002940001169

Delgado-Jarana, J., Moreno-Mateos, M. A., and Benitez, T. (2003). Glucose uptake in *Trichoderma harzianum*: role of gtl1. *Eukaryot. Cell* 2, 708–717. doi: 10.1128/EC.2.4.708-717.2003

Delgado-Jarana, J., Rincón, A. M., and Beni Tez, T. A. (2002). Aspartyl protease influence on the mycoparasitism of *Trichoderma harzianum* CECT 2413: cloning and biocharacterization. *Microbiology* 148, 1305–1315. doi: 10.1099/1364-3703-2007.00407.x

Dickman, M. B., and Yarden, O. (1999). Serine/threonine protein kinases and phosphatases in filamentous fungi. *Fungal Genet. Biol.* 26, 99–117. doi: 10.1006/fgbi.1999.1118

Djonović, S., Pozo, M. J., Dangott, L. J., Howell, C. R., and Kenerley, C. M. (2006). Sm1, a proteinaceous elicitor secreted by the biocontrol fungus *Trichoderma virens* induces plant defense responses and systemic resistance. *Mol. Plant-Microbe Interact.* 19, 838–853. doi: 10.1094/MPMI-19-0838

Djonović, S., Vittone, G., Mendoza-Herrera, A., and Kenerley, C. M. (2007). Enhanced biocontrol activity of *Trichoderma virens* transformants constitutively coexpressing β-1, 3- and β-1, 6-glucanase genes. *Mol. Plant Pathol.* 8, 469–480. doi: 10.1111/j.1364-3730.2007.00407.x

Dong, S., Shew, H. D., Tredway, L. P., Lu, J., Sivamani, E., Miller, E. S., et al. (2008). Expression of the bacteriophage T4 lysozyme gene in tall fescue confers resistance to gray leaf spot and brown patch diseases. *Transgenic Res.* 17, 47–57. doi: 10.1007/s11248-007-9073-3

Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., et al. (2011). *Trichoderma*: the genomics of opportunistic success. *Nat. Rev. Microbiol.* 9, 749–759. doi: 10.1038/nrmicro2637

Dubey, M. D., and Karlsson, M. (2012). Disruption of the Eng188 ENGenase gene in the fungal biocontrol agent *Trichoderma atroviride* affects growth, conidiation and antagonistic ability. *PLoS One* 7:e36152. doi: 10.1371/journal.pone.0036152

Durrant, W. E., and Dong, X. (2004). Systemic acquired resistance. *Annu. Rev. Phytopathol.* 42, 185–209. doi: 10.1146/annurev.phyto.42.040803.140421

Estrada-Rivera, M., Hernández-Olarte, M. A., Daitt-Castro, M., Gallardo-Negrete, J. D. J., Rebollo-Prudencio, O. G., Uresti-Rivera, E. E., et al. (2020). IPA-1 a putative chromatin remodeler/helicase-related protein of *Trichoderma virens* plays important roles in antibiotic resistance and induction of Arabidopsis systemic disease resistance. *Mol. Plant-Microbe Interact.* 33, 808–824. doi: 10.1094/MPMI-04-19-0092-R

Flores, A., Chet, I., and Herrera-Estrella, A. (1997). Improved biocontrol activity of *Trichoderma harzianum* by over-expression of the proteinase-encoding gene prb1. *Curr. Genet.* 31, 30–37. doi: 10.1007/s002940050173

Gajera, H. P., Hirpara, D. G., Katkalpura, Z. A., Patel, S. V., and Golakia, B. A. (2016). Molecular evolution and phylogenetic analysis of biocontrol genes acquired from SCOT polymorphism of mycoparasitic *Trichoderma koningii* inhibiting phytopathogen *Rhizoctonia solani* Kuhn. *Infect. Genet. Evol.* 45, 383–392. doi: 10.1016/j.meegid.2016.09.026
Marcello, C. M., Steindorff, A. S., da Silva, S. P., do Nascimento Silva, R., Bataus, L. A. M., and Ulhoa, C. J. (2010). Expression analysis of the exo-β-1,3-glucanase from the mycoparasitic fungus *Trichoderma asperellum*. *Microbiol. Res.* 165, 75–85. doi: 10.1016/j.micres.2009.10.002

Mata-Essayag, S., Magaldi, S., Hartung, de Capriles, C., Deibis, L., Verde, G., and Perez, C. (2001). “In vitro” antifungal activity of protease inhibitors. *MycoPatholog*ia 152, 135–142. doi: 10.1013/s013175706355

Mayo, S., Cominelli, E., Sparvoli, F., González-López, O., Rodríguez-González, A., Gutiérrez, S., et al. (2016). Development of a qPCR strategy to select bean genes involved in plant defense response and regulated by the *Trichoderma velutinum–Rhizoctonia solani* interaction. *Front. Plant Sci.* 7:1109. doi: 10.3389/fpls.2016.01109

Mayo, S., Gutiérrez, S., Malmsierca, M., Lorenzana, A., Campelo, M., Hermosa, R., et al. (2013). Influence of *Rhizoctonia solani* and *Trichoderma spp.* in growth of bean (*Phaseolus vulgaris*) and in the induction of plant defense-related genes. *Front. Plant Sci.* 6:685. doi: 10.3389/fpls.2015.00685

McDonagh, A., Fedorova, N. D., Crabtree, J., Yu, Y., Kim, S., Chen, D., et al. (2003). Enhanced biocontrol activity of *Trichoderma* through inactivation of a mitogen-activated protein kinase. *Proc. Natl. Acad. Sci. USA* 100, 15965–15970. doi: 10.1073/pnas.2136716100

Morán-Diez, E., Hermosa, R., Ambrosino, P., Cardoza, R. E., Gutiérrez, S., Lórent, M., et al. (2009). The ThGPr1 endopolygalacturonase is required for the *Trichoderma harzianum–plant* beneficial interaction. *Mol. Plant-Microbe Interact.* 22, 1021–1031. doi: 10.1094/MPMI-22-8-1021

Morán-Diez, M. E., Martínez de Alba, Á. E., Rubio, M. B., Hermosa, R., and Monte, E. (2021). *Trichoderma* and the plant heritable priming responses. *J. Fungi* 7:318. doi: 10.3390/jof7040318

Moreno-Mateos, M. A., Delgado-Jara, J., Codon, A. C., and Benítez, T. (2007). pH and PaCt control development and antifungal activity in *Trichoderma harzianum*. *Fungal Genet. Biol.* 44, 1355–1367. doi: 10.1016/j.fgb.2007.07.012

Mukherjee, P. K., Buensante, N., Morán-Diez, M. E., Druzhina, I. S., and Kenerley, C. M. (2012). Functional analysis of non-ribosomal peptide synthetases (NRPSs) in *Trichoderma virens* reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. *Microbiology* 158, 155–160. doi: 10.1099/mic.0.052159-0

Mukherjee, P. K., and Kenerley, C. M. (2010). Regulation of morphogenesis and biocontrol properties in *Trichoderma virens* by a VELPET protein. *Veil. Appl. Environ. Microbiol.* 76, 2345–2352. doi: 10.1128/AEM.02919-09

Nawrocka, J., Gromek, A., and Małolepsza, U. (2019). Nitric oxide as a beneficial signaling molecule in *Trichoderma harzianum* and the plant heritable priming responses. *Appl. Environ. Microbiol.* 86, 347–354. doi: 10.1128/AEM.00520-19

Nawrocka, J., Gromek, A., and Małolepsza, U. (2013). Diversity in plant systemic resistance induced by *Trichoderma*. *Biol. Control* 67, 149–156. doi: 10.1016/j.biocontrol.2013.07.005

Nawrocka, J., Małolepsza, U., Szymczak, K., and Szczec, M. (2018). Involvement of metabolic compounds, volatile compounds, PR proteins, and mechanical strengthening in multilayer protection of cucumber plants against *Rhizoctonia solani* activated by *Trichoderma harzianum* TRS25. *Protoplasma* 255, 359–373. doi: 10.1007/s00709-017-1157-1
in mycoparasitic coiling and colonization. *Eukaryot. Cell* 1, 594–605. doi: 10.1128/EC.1.4.594-605.2002

Rubio, M. B., Hermosa, R., Reino, J. L., Collado, I. G., and Monte, E. (2009). Thf1 transcription factor of *Trichoderma harzianum* is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. *Fungal Genet. Biol.* 46, 17–27. doi: 10.1016/j.fgb.2008.10.008

Ruocco, M., Lanzuise, S., Vinale, F., Marra, R., Turrà, D., Woo, S. L., et al. (2009). Identification of a new biocontrol gene in *Trichoderma atroviride*: the role of an ARC transporter membrane pump in the interaction with different plant-pathogenic fungi. *Mol. Plant-Microbe Interact.* 22, 291–301. doi: 10.1094/MPMI-22-3-0291

Salas-Marina, M. A., Silva-Flores, M. A., Uresti-Rivera, E. E., Castro-Longoria, E., Herrera-Estrella, A., and Casas-Flores, S. (2011). Colonization of Arabidopsis roots by *Trichoderma atroviride* promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. *Eur. J. Plant Pathol.* 131, 15–26. doi: 10.1007/s10658-011-9782-6

Salomeho, M., Palomeho, M., Hakola, S., Pere, J., Swanson, B., Nyyssonen, E., et al. (2002). Swollenin, a *Trichoderma reesei* protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulose materials. *Eur. J. Biochem.* 269, 4202–4211. doi: 10.1046/j.1432-1033.2002.03095.x

Samí, F., Faiq, M., Faraz, A., Siddiqui, H., Yusuf, M., and Hayat, S. (2018). Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. *Nitr. Oxid.* 73, 22–38. doi: 10.1016/j.snon.2017.12.005

Sánchez-Cruz, R., Mehta, R., Atriztán-Hernández, K., Martínez-Villamil, O., del Rayo Sánchez-Carbente, M., Sánchez-Reyes, A., et al. (2021). Effects on *Capsicum annuum* plants colonized with *Trichoderma atroviride* P. karst strains genetically modified to Tasw1o, a gene coding for a protein with Expansin-like activity. *Plant Theory* 10:1919.

Sarma, B. K., Yadav, S. K., Patel, J. S., and Singh, H. B. (2014). Molecular mechanisms of interactions of *Trichoderma* with other fungal species. *Open Mycol.* J. 8, 140–147. doi: 10.2174/187453701108010140

Sarrocco, S., Guidi, L., Fambrini, S., Degl’Innocenti, E., and Vannacci, G. (2009). Competition for cellulose exploitation between *Rhizoctonia solani* and two *Trichoderma* species in the decomposer communities of wheat straw. *J. Plant Pathol.* 91, 331–338. doi: 10.4454/5pv912.962

Schmoll, M., Dattenböck, C., Carreras-Villaseñor, N., Mendoza-Mendoza, A., Schreiner, U., et al. (2020). The Lipoxygenase Lox1 is involved in light- and injury-response, Conidiation, and volatile organic compound biosynthesis in the mycoparasitic fungus *Trichoderma atroviride*. *Front. Microbiol.* 11:2004. doi: 10.3389/fmicb.2020.02004

Steindorff, A. S., do Nascimento Silva, R., Coelho, A. S. G., Noronha, E. E., and Ulhoa, C. J. (2012). *Trichoderma harzianum* expressed sequence tags for identification of genes with putative roles in mycoparasitism against *Fusarium solani*. *Biocontrol* 61, 134–140. doi: 10.1016/j.biocontrol.2012.01.014

Stergiopoulou, I., and de Wit, P. J. G. M. (2009). Fungal effector proteins. *Annu. Rev. Phytopathol.* 47, 233–263. doi: 10.1146/annurev.phyto.112008.132637

Suárez, M. B., Sanz, L., Chamorro, M. I., Rey, M., González, F. J., Llobell, A., et al. (2005). Proteomic analysis of secreted proteins from *Trichoderma harzianum*: identification of a fungal cell wall-induced aspartic protease. *Fungal Genet. Biol.* 42, 924–934. doi: 10.1016/j.fgb.2005.08.002

Suvarnareiki, R., Graciano de Paiva, R., Raquel Votan, A., de Castro, R. G., Carraro, C. B., José de Assis, L., et al. (2019). *Endo-1,3-glucanase* (GH16 family) from *Trichoderma harzianum* participates in Cell Wall biogenesis but is not essential for antagonism Against plant pathogens. *Biomol. Ther.* 9:781. doi: 10.3938/biom1920781

Szekeres, A., Kredics, L., Antal, Z., Kevei, F., and Manczinger, L. (2004). Isolation and characterization of protease overproducing mutants of *Trichoderma harzianum*. *FEMS Microbiol. Lett.* 233, 215–222. doi: 10.1111/j.1574-6968.2004.tb09485.x

Telbot, N. J., Kershaw, M. J., Wakley, G. E., De Vries, O. M. H., Wassels, J. G. H., and Hamer, J. E. (1996). MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of *Magnaporthe grisea*. *Plant Cell* 8, 985–999. doi: 10.2307/3870210

Trushina, N., Levin, M., Mukherjee, P. K., and Horwitz, B. A. (2013). *PacC* and pH-dependent transcripomte of the mycotoxicus fungus *Trichoderma reesei*. *MBMC Genomics* 14, 1–21. doi: 10.1186/1471-2164-14-138

Van Ooosten, V. R., Bodenhausen, N., Reymond, P., Van Pelt, J. A., Van Loo, L. C., Dicke, M., et al. (2008). Differential effectiveness of microbiologically induced resistance against herbivorous insects in Arabidopsis. *Mol. Plant-Microbe Interact.* 21, 919–930. doi: 10.1097/MPM.2011.07.0919

Velázquez-Robledo, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., Hernández-Morales, A., Aguirre, I., Casas-Flores, S., et al. (2011). Role of the 4-phosphopantetheinyl transferase of *Trichoderma reesei* in secondary metabolism and induction of plant defense responses. *Mol. Plant-Microbe Interact.* 24, 1459–1471. doi: 10.1094/MPMI-02-11-0045

Vey, A., Hoaegland, R. E., and Butt, T. M. (2001). “Chapter 12: Toxic metabolites of fungal biocontrol agents,” in *Fungi as Biocontrol Agents: Progress, Problems and Potential*. eds. T. M. Butt, C. Jackson and N. Magan 311.

Vinale, F., Nirgo, M., Sivasithamparam, K., Flettam, G., Ghisalberti, E. L., Ruocco, M., et al. (2013). Harzianic acid: a novel siderophore from *Trichoderma harzianum*. *FEMS Microbiol. Lett.* 347, 123–129. doi: 10.1111/1574-6968.12231

Vinale, F., and Sivasithamparam, K. (2020). Beneficial Effects of *Trichoderma* secondary metabolites on crops. *Phytother. Res.* 34, 2833–2842. doi: 10.1002/ptr.6728

Viterbo, A., Haran, S., Friesem, D., Ramot, O., and Chet, I. (2001). Antifungal activity of a novel endochitinase gene (chit36) from *Trichoderma harzianum* Rifai TM. *FEMS Microbiol. Lett.* 200, 169–174. doi: 10.1111/1574-6968.2001.tb10710.x

Viterbo, A., Harel, M., and Chet, I. (2004). Isolation of two aspartyl proteases from *Trichoderma asperellum* expressed during colonization of cucumber roots. *FEMS Microbiol. Lett.* 238, 151–158. doi: 10.1016/j.femsle.2004.07.028

Viterbo, A., Harel, M., Horwitz, B. A., Chet, I., and Mukherjee, P. K. (2005). *Trichoderma* mitogen-activated protein kinase signaling is involved in induction
of plant systemic resistance. *Appl. Environ. Microbiol.* 71, 6241–6246. doi: 10.1128/AEM.71.10.6241-6246.2005

Viterbo, A., Ramot, O., Chernin, L., and Chet, I. (2002). Significance of lytic enzymes from *Trichoderma* spp. in the biocontrol of fungal plant pathogens. *Antonie Van Leeuwenhoek* 81, 549–556. doi: 10.1023/A:1020553421740

Wilhite, S. E., Lumsden, R. D., and Stukenberg, D. C. (2001). Peptide synthetase gene in *Trichoderma viride*. *Appl. Environ. Microbiol.* 67, 5055–5062. doi: 10.1128/AEM.67.11.5055-5062.2001

Wilson, P. S., Ketola, E. O., Ahvenniemi, P. M., Lehtonen, M. J., and Valkonen, J. P. T. (2008). Dynamics of soilborne *Rhizoctonia solani* in the presence of *Trichoderma harzianum*: effects on stem canker, black scurf and progeny tubers of potato. *Plant Pathol.* 57, 152–161. doi: 10.1111/j.1365-3059.2007.01706.x

Yang, P. (2017). The gene task1 is involved in morphological development, mycoparasitism and antibiosis of *Trichoderma asperellum*. *Biocontrol Sci. Tech.* 27, 620–635. doi: 10.1080/09583157.2017.1318824

Yang, C.-A., Cheng, C.-H., Lo, C.-T., Liu, S.-Y., Lee, J.-W., and Peng, K.-C. (2011). A novel L-amino acid oxidase from *Trichoderma harzianum* ETS 323 associated with antagonism of *Rhizoctonia solani*. *J. Agric. Food Chem.* 59, 4519–4526. doi: 10.1021/jf104603w

Yang, X., Cong, H., Song, J., and Zhang, J. (2013). Heterologous expression of an aspartic protease gene from biocontrol fungus *Trichoderma asperellum* in *Pichia pastoris*. *World J. Microbiol. Biotechnol.* 29, 2087–2094. doi: 10.1007/s11274-013-1373-6

Youssef, S. A., Tartoura, K. A., and Abdelraouf, G. A. (2016). Evaluation of *Trichoderma harzianum* and *Serratia proteamaculans* effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by *Rhizoctonia solani*. *Biol. Control* 100, 79–86. doi: 10.1016/j.biocontrol.2016.06.001

Yu, Y., Gui, Y., Li, Z., Jiang, C., Guo, J., and Niu, D. (2022). Induced systemic resistance for improving plant immunity by beneficial microbes. *Annu. Rev. Phytopathol.* 11, 1–19. doi: 10.3390/plants11030386

Zeilinger, S., and Atanasova, L. (2020). “Sensing and regulation of mycoparasitism-relevant processes in *Trichoderma*,” in *New and Future Developments in Microbial Biotechnology and Bioengineering Recent Developments in Trichoderma Research*. ed. V. K. Gupta (Elsevier), 39–55.

Zeilinger, S., Galhaup, C., Payer, K., Woo, S. L., Mach, R. L., Fekete, C., et al. (1999). Chitinase gene expression during Mycoparasitic interaction of *Trichoderma harzianum* with its host. *Fungal Genet. Biol.* 26, 131–140.

Zeilinger, S., Gruber, S., Bansal, R., and Mukherjee, P. K. (2016). Secondary metabolism in *Trichoderma*—chemistry meets genomics. *Fungal Biol. Rev.* 30, 74–90. doi: 10.1016/j.fbr.2016.05.001

Zeilinger, S., and Omann, M. (2007). *Trichoderma* biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. *Gene Regul. Syst. Biol.* 1, 227–234. doi: 10.4137/grsb.s397

Zeilinger, S., Reithner, B., Scala, V., Peissl, I., Lorito, M., and Mach, R. L. (2005). Signal transduction by Tga3, a novel G protein α subunit in *Trichoderma atroviride*. *Appl. Environ. Microbiol.* 71, 1591–1597. doi: 10.1128/AEM.71.3.1591-1597.2005

Zhang, Y., and Zhuang, W.-Y. (2020). *Trichoderma brevicrassum* strain TC967 with capacities of diminishing cucumber disease caused by *Rhizoctonia solani* and promoting plant growth. *Biol. Control* 142:104151. doi: 10.1016/j.biocontrol.2019.104151

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Abbas, Mubeen, Zheng, Sohail, Shakeel, Solanki, Ifikhar, Sharma, Kashyap, Hussain, del Carmen Zúñiga Romano, Moya-Elizondo and Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.