Role of molecular analysis in the adjuvant treatment of gastrointestinal stromal tumours: It is time to define it

Margherita Nannini, Maria A Pantaleo, Guido Biasco

Abstract

Sendur et al pointed out the attention on the importance of mutational analysis for adjuvant treatment of gastrointestinal stromal tumor (GIST) in an article published in World Journal of Gastroenterology. In particular, they suggested that the optimal dose and duration of adjuvant therapy could be defined by the mutational status of the primary disease. This comment would underline the importance of centralised laboratories, given the increasingly important role of molecular analysis in the work-flow of all GIST, and the need of retrospective analyses for subgroups population stratified for the mutational status from the available studies in the adjuvant setting, in order to define the role of mutational analysis in choosing the optimal dose and duration of adjuvant therapy.

Nannini M, Pantaleo MA, Biasco G. Role of molecular analysis in the adjuvant treatment of gastrointestinal stromal tumours: It is time to define it. World J Gastroenterol 2013; 19(16): 2583-2586
Available from: URL: http://www.wjgnet.com/1007-9327/full/v19/i16/2583.htm DOI: http://dx.doi.org/10.3748/wjg.v19.i16.2583

TO THE EDITOR

We read with great interest the article by Sendur et al [1] entitled “Is exon mutation analysis needed for adjuvant treatment of gastrointestinal stromal tumor?”, that has been recently published in the January issue (2013) of World Journal of Gastroenterology. The authors pointed out the likely importance of mutational analysis for guiding...
It has been recently identified a subgroup of PDGFRA WT GIST, characterized by germline and somatic mutations in succinate dehydrogenase (SDH) subunits B, C and A and defined in different ways as SDH-deficient GIST, or type-2 or pediatric-type GIST$^{[24-27]}$. These patients have in common several pathological and clinical features, such as the epithelioid pattern, the multifocal presentation, the female prevalence, the gastric primary tumor localization, and the indolent course of disease despite the presence of lymph nodes and liver metastases up-front and independently to standard prognostic parameters. Moreover it seems that they have also a questionable sensitivity to imatinib. Given their indolent behaviour when metastatic, $KIT/PDGFRA$ WT GIST SDH-deficient may not benefit from adjuvant treatment irrespective to the standard risk stratification, whereas more aggressive $KIT/PDGFRA$ WT GIST without SDH-impairment, may be probably considered as all mutated GIST.

Therefore also the effect of adjuvant imatinib on $KIT/PDGFRA$ WT GIST may be variable and clinical decision-making should be individualised case by case taking into account various molecular data and shared with the patient$^{[17]}$.

In conclusion, given the increasingly important role of molecular analysis in the work-flow of all GIST, centralised laboratories should be widely warranted. Furthermore, the special attention pointed up by the authors on the “optimal dose” and the “duration” of adjuvant treatment defined by the mutational status of the primary disease should be used at first for the decision to suggest or not the imatinib treatment in this setting. Finally, since prospective clinical trials with large series for definitely defining the role of mutational analysis for patients stratification, dose selection and treatment duration in the adjuvant setting, are difficult because the rarity of disease, retrospective analyses for subgroups population stratified for the mutational status from the available studies in the adjuvant setting are necessary.

ACKNOWLEDGMENTS

Members of GIST Study Group, University of Bologna, Bologna, Italy; Annalisa Altimari, Annalisa Astolfi, Paolo Castellucci, Rita Casadio, Fausto Catena, Claudio Ceccarelli, Valerio Di Scioscio, Giorgio Ercolani, Stefano Fanti, Michelangelo Fiorentino, Serena Formica, Pietro Fusaroli, Valentina Indio, Lidia Gatto, Walter Franco Grigioni, Elisabetta Gruppioni, Cristian Lolli, Alessandra Maleda, Anna Mandrioli, Pier-Luigi Martelli, Maria Caterina Pallotti, Paola Paterini, Maria Giulia Pirini, Antonio Daniele Pinnau, Donatella Santini, Mariastella Saponara, Milena Urbini, Maurizio Zompatori.

REFERENCES

1 Sendur MA, Ozdemir NY, Akinci MB, Uncu D, Zengin N, Aksoy S. Is exon mutation analysis needed for adjuvant treatment of gastrointestinal stromal tumor? World J Gastroenterol 2013; 19: 144-146 [PMID: 2326179 DOI: 10.3748/wjg.
2 Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M, Joensuu H, McGreevey LS, Chen CJ, Van den Abbeele AD, Drucker BJ, Kiese B, Eisenberg B, Roberts PJ, Singer SA, Fletcher CD, Silberman S, Dimitrijevic S, Dummer R, Fletcher JA. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003; 21: 4342-4349 [PMID: 14645423]

3 Debiec-Rychter M, Dumez H, Judson I, Wasag B, Verweij J, Brown M, Dimitrijevic S, Siciot R, Stul M, Vranck S, Curr M, Hagemeier A, van Glabbeke M, van Oosterom AT. Use of c-KIT/ PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 2004; 40: 689-695 [PMID: 15010069]

4 Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, Singer S, Griffin DJ, Haley A, Town A, Demetri GD, Fletcher CD, Fletcher JA. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003; 299: 708-710 [PMID: 12522257]

5 Corless CL, Schroeder A, Griffin D, Town A, McGreevey L, Harrell P, Shiraga S, Bainbridge T, Morich J, Heinrich MC. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol 2005; 23: 5357-5364 [PMID: 15928355]

6 Debiec-Rychter M, Siciot R, Le Cesne A, Schlemmer M, HoHENbergen P, van Oosterom AT, Blay JY, Levyvraz S, Stul M, Casali PG, Zalcberg J, Verweij J, Van Glabbeke M, Hagemeier A, Judson I. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer 2006; 42: 1093-1103 [PMID: 16624552]

7 Maleda A, Pantaleo MA, Nannini M, Bischo G. The role of mutational analysis of KIT and PDGFRA in gastrointestinal stromal tumors in a clinical setting. J Transl Med 2011; 9: 75 [PMID: 21605429 DOI: 10.1186/1479-5876-9-75]

8 Heinrich MC, Ovarz K, Corless CL, Hollis D, Borden EC, Fletcher CD, Ryan CW, von Mehren M, Blanke CD, Rankin C, Benjamin RS, Bramwell VH, Demetri GD, Bertagnolli MM, Fletcher JA. Correlation of kinase genotype and clinical outcome in the North American Intergroup Phase III Trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumors in a clinical setting. Invest J Oncol 2008; 26: 5360-5367 [PMID: 18955451 DOI: 10.1200/JCO.2008.17.4284]

9 Andersson J, Bümming P, Meis-Kindblom JM, Sihto H, Nupponen N, Joensuu H, Öden A, Gustavsson B, Kindblom LG, Nilsson B. Gastrointestinal stromal tumors with KIT exon 11 deletions are associated with poor prognosis. Gastroenterology 2006; 130: 1573-1581 [PMID: 16697720]

10 Cho S, Kitada Y, Yoshida S, Tanaka S, Yoshihara M, Yoshida K, Chayama K. Deletion of the KIT gene is associated with liver metastasis and poor prognosis in patients with gastrointestinal stromal tumor in the stomach. Int J Oncol 2006; 28: 1361-1367 [PMID: 16685437]

11 Liu XH, Bai CG, Xie Q, Feng F, Xu ZY, Ma DL. Prognostic value of KIT mutation in gastrointestinal stromal tumors. World J Gastroenterol 2005; 11: 3948-3952 [PMID: 15991300]

12 Martin J, Poveda A, Llobemb-Bosch A, Ramos R, López-Guerrero JA, García del Muro J, Maurel J, Calabuig S, Gutierrez A, González de Sanle J, Martínez J, De Juan A, Lainez N, Lusa F, Alija V, Escudero P, Casado A, García P, Blanco R, Buesa JM. Deletions affecting codons 557-558 of the c-KIT gene indicate a poor prognosis in patients with completely resected gastrointestinal stromal tumors: a study by the Spanish Group for Sarcoma Research (GESIR). J Clin Oncol 2005; 23: 6190-6198 [PMID: 16135486]

13 Wardemann E, Losen I, Hans V, Neidt I, Speidel N, Bierhoff E, Heinicke T, Pitsch T, Büttner R, Merkelbach-Bruse S. Deletion of Trp557 and Lys558 in the juxtaplasmin domain of the c-kit protooncogene is associated with metastatic behavior of gastrointestinal stromal tumors. Int J Cancer 2007; 120: 689-696 [PMID: 17298066]

14 Lasota J, Dansonka-Mieszkowska A, Sobin LH, Miettinnen M. A great majority of GISTs with PDGFRA mutations represent gastric tumors of low or no malignant potential. Lab Invest 2004; 84: 874-883 [PMID: 15146165]

15 Lasota J, Stachura J, Miettinnen M. GISTs with PDGFRA exon 14 mutations represent subset of clinically favorable gastric tumors with epithelioid morphology. Lab Invest 2006; 86: 94-100 [PMID: 16258821]

16 Joensuu H, Eriksson M, Sundby Hall K, Hartmann JT, Pink D, Schütte J, Ramadori G, Hohenberger P, Duyster J, Al-Batran SE, Schlemmer M, Bauer S, Wardemann E, Sarlomo-Rikala M, Nilsson B, Sihto H, Monge OR, Bono P, Kallio R, Vehtari A, Leinonen M, Alvegärd T, Reichardt P. One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor; a randomized trial. JAMA 2012; 307: 1265-1272 [PMID: 22435568 DOI: 10.1001/jama.2012.347]

17 Reichardt P, Blay JY, Boukovinas I, Brodowicz T, Broto JM, Casali PG, Decartis M, Eriksson M, Gelderblom H, Kosmidis P, Le Cesne A, Poussal AL, Schlemmer M, Verweij J, Joensuu H. Adjuvant therapy in primary GIST: state-of-the-art. Ann Oncol 2012; 23: 2776-2781 [PMID: 22831984 DOI: 10.1093/annonc/mds198]

18 ESMO/European Sarcoma Network Working Group. Gastrointestinal stromal tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012; 23 Suppl 7: vii49-vii55 [PMID: 22997454]

19 Gronchi A. Risk stratification models and mutational analysis: keys to optimising adjuvant therapy in patients with gastrointestinal stromal tumour. Eur J Cancer 2013; 49: 884-892 [PMID: 23206668]

20 Astolfi A, Nannini M, Pantaleo MA, Di Battista M, Heinrich MC, Santini D, Catena F, Corless CL, Maleddu A, Saponara M, Lolli C, Di Scioscio V, Formica S, Bischo G. A molecular portrait of gastrointestinal stromal tumors: an integrative analysis of gene expression profiling and high-resolution genomics copy number. Lab Invest 2010; 90: 1285-1294 [PMID: 20548289 DOI: 10.1038/labinvest.2010.110]

21 Pantaleo MA, Astolfi A, Nannini M, Cecarelli C, Formica S, Santini D, Heinrich MC, Corless C, Dei Tos AP, Paterini P, Catena F, Maleddu A, Saponara M, Di Battista M, Bischo G. Differential expression of neural markers in KIT and PDGFRA wild-type gastrointestinal stromal tumors. Histopathology 2011; 59: 1071-1080 [PMID: 22175887 DOI: 10.1111/j.1365-2559.2011.04071.x]

22 Pantaleo MA, Astolfi A, Di Battista M, Heinrich MC, Paterini P, Scottlandi K, Santini D, Catena F, Manara MC, Nannini M, Maleddu A, Saponara M, Lolli C, Formica S, Bischo G. Insulin-like growth factor 1 receptor expression in wild-type GISTs: a potential novel therapeutic target. Int J Cancer 2009; 125: 2991-2994 [PMID: 19672856 DOI: 10.1002/ijc.24595]

23 Pantaleo MA, Astolfi A, Indio V, Moore R, Thiessen N, Heinrich MC, Nannini M, Cecarelli C, Formica S, Santini D, Heinrich MC, Corless C, Dei Tos AP, Paterini P, Catena F, Maleddu A, Saponara M, Di Battista M, Bischo G. Prognostic value of KIT mutation in gastrointestinal stromal tumors. World J Gastroenterol 2005; 11: 3948-3952 [PMID: 15991300]

24 Lasota J, Dansonka-Mieszkowska A, Sobin LH, Miettinnen M. A great majority of GISTs with PDGFRA mutations represent gastric tumors of low or no malignant potential. Lab Invest 2004; 84: 874-883 [PMID: 15146165]

25 Miettinnen M, Wang ZF, Sarlomo-Rikala M, Osuch C, Rutkowski P, Lasota J. Succinate dehydrogenase-deficient GISTs:
a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am J Surg Pathol 2011; 35: 1712-1721 [PMID: 21997692 DOI: 10.1097/PAS.0b013e3182260752]

26 Gill AJ, Chou A, Vilain R, Clarkson A, Lui M, Jin R, Tobias V, Samra J, Goldstein D, Smith C, Sioson L, Parker N, Smith RC, Sywak M, Sidhu SB, Wyatt JM, Robinson BG, Eckstein RP, Benn DE, Clifton-Bligh RJ. Immunohistochemistry for SDHB divides gastrointestinal stromal tumors (GISTs) into 2 distinct types. Am J Surg Pathol 2010; 34: 636-644 [PMID: 20305538 DOI: 10.1097/PAS.0b013e3181d6150d27]

27 Rege TA, Wagner AJ, Corless CL, Heinrich MC, Hornick JL. "Pediatric-type" gastrointestinal stromal tumors in adults: distinctive histology predicts genotype and clinical behavior. Am J Surg Pathol 2011; 35: 495-504 [PMID: 21358303 DOI: 10.1097/PAS.0b013e31820e5f7d]

P- Reviewer Hu AR S- Editor Wang JL
L- Editor A E- Editor Xiong L