Commentary: Complete Genome Sequence of 3-Chlorobenzoate-Degrading Bacterium Cupriavidus necator NH9 and Reclassification of the Strains of the Genera Cupriavidus and Ralstonia Based on Phylogenetic and Whole-Genome Sequence Analyses

Han Ming Gan

Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia,

Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia,

School of Science, Monash University Malaysia, Petaling Jaya, Malaysia

Keywords: Ralstonia, Burkholderiaceae, Cupriavidus, phylogenomics, taxonomy

A Commentary on

Complete Genome Sequence of 3-Chlorobenzoate-Degrading Bacterium Cupriavidus necator NH9 and Reclassification of the Strains of the Genera Cupriavidus and Ralstonia Based on Phylogenetic and Whole-Genome Sequence Analyses

by Moriuchi, R., Dohra, H., Kanesaki, Y., and Ogawa, N. (2019). Front. Microbiol. 10:133. doi: 10.3389/fmicb.2019.00133

Moriuchi et al. reported a comprehensive reclassification of bacterial strains from the genera Cupriavidus and Ralstonia based on percentage of conserved proteins (POCP), average nucleotide identity (ANI), multilocus sequence analysis and 16S rRNA gene sequence. In the study, conflicting results were repeatedly observed for the taxonomic classification of strain PBA that was initially identified as Ralstonia sp. PBA based on 16S rRNA gene sequence (Gan et al., 2011b; Moriuchi et al., 2019). Strain PBA was isolated as a co-culture with Hydrogenophaga intermedia PBC from textile wastewater a decade ago. The co-culture could grow on 4-aminobenzenesulfonate (4-ABS), a recalcitrant dye intermediate (Wagner and Reid, 1931), as the sole nitrogen, carbon, and sulfur source to a relatively high cell density (Gan et al., 2011a). In this syntrophic relationship, strain PBA is the sole provider of p-aminobenzoate, an essential vitamin required for the growth of H. intermedia PBC, the main 4-ABS degrader (Gan et al., 2011a, 2017). In light of new genomic resources, the initial taxonomic assignment of strain PBA has also been previously questioned by Kim and Gan (2017) given its closer phylogenetic affiliation to the genus Cupriavidus than to the genus Ralstonia. Unfortunately, both recent genome-based taxonomic classifications of strain PBA (Kim and Gan, 2017; Moriuchi et al., 2019) suffered from incomplete and biased taxon sampling (restricted mostly to members from the genus Ralstonia and Cupriavidus) that can result in the
misinterpretation of evolutionary relationships (Heath et al., 2008). The taxonomic affiliation of strain PBA should be inferred from a comprehensive phylogenomic analysis that includes all genera with genome availability from the family Burkholderiaceae.

A total of 428 Burkholderiaceae (including strain PBA) and 15 non-Burkholderiaceae genome assemblies were obtained from the NCBI RefSeq database (accessed on 30th May 2019). The genomes were processed using two microbial phylogenomic analysis pipelines e.g., GToTree v1.2.1 (Lee, 2019) and PhyloPhlAN v0.99 (Segata et al., 2013) that identify single copy bacterial genes (GToTree: \(n = 203 \), Betaproteobacteria HMM set; PhyloPhlAN: \(n = 400 \)) and produce concatenated protein alignment. Maximum likelihood tree construction from the protein alignments used IQTree v.1.6.8 with 1,000 ultrafast bootstrap replicates (Nguyen et al., 2014). In both phylogenomic trees, the *Ralstonia* and *Cupriavidus* clusters received maximal support and are sister taxa to the exclusion of strain PBA (Figures 1A,B). The updated phylogenomic placement of strain PBA in light of extensive taxon sampling precludes its genus assignment to the genus *Ralstonia* or *Cupriavidus* and suggests that it is a member of a hitherto undescribed genus within the family *Burkholderiaceae*. Within the Genome Taxonomy Database (Parks et al., 2018) that inferred standardized bacteria taxonomy from conserved proteins present in 143,512 bacterial genomes (GTDB release R04-RS89), strain PBA was still assigned to its own genus (g__AKCV01) despite an even more extensive taxon sampling of 4,378 genomes from the family *Burkholderiaceae* (https://gtdb.ecogenomic.org/tree?r=g__AKCV01 accessed on 1st August 2019).

![Figure 1](https://doi.org/10.5281/zenodo.3258920)
Given the concordance observed from these independent analyses, the taxonomic assignment of strain PBA has been updated from *Ralstonia* sp. PBA to *Burkholderiaceae* sp. PBA in the NCBI database (Bioproject: PRJNA78957; BioSample: SAMN02471424) (Gan et al., 2012) pending future genus description. To facilitate future strain description and comparison, strain PBA has been deposited in the German Collection of Microorganisms and Cell Cultures GmbH (DSMZ) under the accession number DSM 106616. Furthermore, the concatenated alignments, uncollapsed phylogenomic trees and genome information are also made available in the Zenodo database (http://doi.org/10.5281/zenodo.3258920).

REFERENCES

Gan, H. M., Chew, T. H., Tay, Y.-L., Lye, S. F., and Yahya, A. (2012). Genome sequence of *Ralstonia* sp. strain PBA, a bacterium involved in the biodegradation of 4-aminobenzenesulfonate. *Am. Soc. Microbiol.* 194, 5139–5140. doi: 10.1128/BI.01165-12

Gan, H. M., Ibrahim, Z., Shahir, S., and Yahya, A. (2011a). Identification of genes involved in the 4-aminobenzenesulfonate degradation pathway of *Hydrogenophaga* sp. PBC via transposon mutagenesis. *FEBS Microbiol. Lett.* 318, 108–114. doi: 10.1111/j.1574-6968.2011.02245.x

Gan, H. M., Lee, Y. P., and Austin, C. M. (2017). Nanopore long-read guided complete genome assembly of *Hydrogenophaga intermedia*, and genomic insights into 4-aminobenzenesulfonate, p-aminobenzoic acid and hydrogen metabolism in the genus Hydrogenophaga. *Front. Microbiol.* 8:1880. doi: 10.3389/fmicb.2017.01880

Gan, H. M., Shahir, S., Ibrahim, Z., and Yahya, A. (2011b). Biodegradation of 4-aminobenzenesulfonate by *Ralstonia* sp. PBA and *Hydrogenophaga* sp. PBC isolated from textile wastewater treatment plant. *Chemosphere* 82, 507–513. doi: 10.1016/j.chemosphere.2010.10.094

Heath, T. A., Zwickl, D. J., Kim, J., and Hillis, D. M. (2008). Taxon sampling affects inferences of macroevolutionary processes from phylogenetic trees. *Syst. Biol.* 57, 160–166. doi: 10.1080/10635150701884640

Kim, K., and Gan, H. M. (2017). A glimpse into the genetic basis of symbiosis between Hydrogenophaga and their helper strains in the biodegradation of 4-aminobenzenesulfonate. *J. Genomics* 5, 77–82. doi: 10.7150/jgen.20216

Lee, M. D. (2019). GToTree: a user-friendly workflow for phylogenomics. *Bioinformatics* btz188. doi: 10.1093/bioinformatics/btz188

Moriiuchi, R., Dohra, H., Kanesaki, Y., and Ogawa, N. (2019). Complete genome sequence of 3-chlorobenzoate-degrading bacterium *Cupriavidus necator* NH9 and reclassification of the strains of the genera *Cupriavidus* and *Ralstonia* based on phylogenetic and whole-genome sequence analyses. *Front. Microbiol.* 10:133. doi: 10.3389/fmicb.2019.00133

Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A., and Minh, B. Q. (2014). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evolu.* 32, 268–274. doi: 10.1093/molbev/msu300

Parks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarshewski, A., Chaumeil, P.-A., et al. (2018). A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. *Nat. Biotechnol.* 36, 996–1004. doi: 10.1038/nbt.4229

Segata, N., Börnigen, D., Morgan, X. C., and Huttenhower, C. (2013). PhyloPhAn is a new method for improved phylogenetic and taxonomic placement of microbes. *Nat. Commun.* 4:2304. doi: 10.1038/ncomms3304

Wagner, F. C., and Reid, E. E. (1931). The stability of the carbon–sulfur bond in some aliphatic sulfonic acids. *J. Am. Chem. Soc.* 53, 3407–3413. doi: 10.1021/ja01360a026

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

FUNDING

This research was supported by the Deakin Centre of Integrative Ecology.

ACKNOWLEDGMENTS

The author is grateful to the Deakin Centre of Integrative Ecology for financial support.