Investigation of the Influence of Dynamic Parameters on the Formation, Structure and Properties of Bimetallic Compounds during Explosion Welding with Simultaneous Stamping

V I Kuz'min, V I Lysak and E V Kuz'min
Volgograd state technical university, 28, Lenin Avenue, Volgograd, 400005, Russia

E-mail: e.v.kuzmin@yandex.ru

Abstract. This article reports on the study of the influence of dynamic parameters on the formation, structure and properties of bimetallic compounds during explosion welding with simultaneous stamping. The results of the study of the impact of the collision speed and contact speed on the strength, wave parameters and the amount of molten metal obtained by the explosion of a bimetallic compound of the iron + steel 3 alloy are presented. It is shown that the formation of a bimetal during explosion welding is significantly influenced by impact velocity, with an increase in which there is an increase in the values of the maximum deflection and radial deformation.

1. Introduction
One of the ways to improve the efficiency of explosion welding is to develop new promising energy-saving technologies that allow not only to expand the range of manufacturing flat bimetallic blanks, but also to obtain finished bimetallic products of complex configuration, such as cylindrical or spherical shape [1-5]. In explosion welding as a result of a powerful charge, the negative energy of motion and deformation of the welded bimetal can be used rationally for the simultaneous stamping of a bimetallic billet. This will eliminate the use of expensive press equipment and increase the efficiency of explosion welding [6-10]. In the process of explosion welding, the main dynamic parameters responsible for the formation of a durable bimetallic welded joint are the velocity of the impact \(V_i \) and the velocity of the collision point \(V_c \) [11-16]. Therefore, to obtain high-quality bimetallic compounds with a given profile, it is important to study the combined effect of dynamic parameters on the quality of welding and the formation of bimetals.

The aim of this work was to study the effect of velocity of the impact and velocity of the collision point on the formation, structure and properties of the bimetallic compounds at explosion welding with simultaneous stamping.

2. Materials and methods
During the research, the main material used was a pair of armco-iron + St3 5 + 10 mm thick, which has good weldability and does not cause difficulties in the manufacture of samples for mechanical testing and metallography. Explosion welding with simultaneous stamping was carried out according to a scheme with a parallel arrangement of plates mounted on a metal matrix with a cylindrical profile (Figure 1).
The detonation rate of the explosive was controlled by an electrocontact method [17] with time recording using electronic counting frequency meters. After explosion welding with simultaneous stamping, measurements were made of the cylindrical profile of the resulting bimetallic billet to determine the radial deformation e_r and maximum deflection f_{max}. The radial deformation of the stamped bimetal was determined using the method of applying “coordinate grids” [18]. Metallographic studies and determination of the tensile strength of the layers σ_{pull} of welded joints were carried out according to standard test procedures for bimetallic and composite materials [19-22].

![Figure 1: Explosion welding pattern with simultaneous stamping](image)

3. Results and discussion

The obtained results of research of influence of dynamic parameters showed that with increasing velocity of the impact in the range $V_i = 290 \ldots 570$ m/s at constant velocity of the collision point $V_c = const$ the tensile strength of the connection layers σ_{pull} armco-iron + St3 first increases to strength balance and higher, and then remains constant at $V_i > 500$ m/s is reduced (Figure 2, a).

![Figure 2: Influence of the velocity of the impact V_i (a) and the velocity of the collision point V_c (b) on the strength σ_{pull} of the armco-iron+St3 compound](image)

Metallographic studies of the boundary of the armco-iron + St3 compound have shown that with an increase in velocity of the impact V_i, there is an increase in the amount of fused metal K_{fus} and wave parameters: height $2a$, length λ (Figure 3, 4). At the same time, the presence of low joint strength at low values of V_i is explained by a small amount of plastic deformation of the contact metal layers, which is not enough to form a strong welded joint (Figure 4, a). The decrease in joint strength at high impact velocities is associated with excessive plastic deformation of the metal in the heat-affected zone, which leads to the formation of microcracks and a large amount of fused metal K_{fus} (Figure 4, b).
A similar tendency in the separation strength of the layers σ_{pull} is also observed with an increase in velocity of the collision point in the range $V_c = 2240 \ldots 3750$ m/s with a constant value of velocity of the impact $V_i = \text{const}$ (Figure 2, b).

![Figure 3](image)

Figure 3. Effect of impact velocity V_i for changing of the height $2a$ (1), λ wavelength (2) and the amount of fused metal K_{fus} (3) a compound of armco-iron + St3.

![Figure 4](image)

Figure 4. Microstructure of a bond region armco iron + St3 for different values of velocity of the impact: a - $V_i = 290$ m/s; b - $V_i = 570$ m/s.

Metallographic studies have shown that a sharp decrease in the separation strength of the layers σ_{pull} of the armco-iron+St3 compound at high value of velocity of the collision point is due to a significant increase in the amount of brittle fused metal K_{fus} (Figure 5, 6).

At the same time, with increasing velocity of the collision point, the wave sizes $2a$, λ decrease and at $V_c > 3200$ m/s they are practically absent, and a continuous layer of brittle melts is observed (Figure 6, b).

The results of experiments to study the influence of dynamic parameters on the formation (stamping) of bimetallic compounds showed that an increase in the velocity of the impact V_i practically does not significantly affect the value of the maximum deflection f_{max} and radial deformation ε_r of the bimetal. With an increase in velocity of the collision point V_c, on the contrary, there is a significant increase in the maximum deflection f_{max} and the radial deformation ε_r of the bimetal (Figure 7).
Figure 5. Effect of velocity of the collision point V_c for changing of the height $2a$ (1), λ wavelength (2) and the amount of fused metal K_{rus} (3) a compound of armco-iron + St3.

Figure 6. Microstructure of a bond region armco iron + St3 for different values of velocity of the collision point: a - $V_c = 2520$ m/s; b - $V_c = 3750$ m/s.

Figure 7. Influence of velocity of the collision point V_c on the maximum deflection f_{max} and radial deformation ε_r of armco iron + St3 bimetal.
The different influence of dynamic parameters is probably due to the redistribution of part of the charge energy in the direction of increasing the energy of the package movement spent on stamping the bimetal, which should be clarified during further research.

The obtained results of the research served as the basis for the development of new manufacturing processes using combined explosion welding with simultaneous stamping of bimetallic bronze-steel inserts of sliding bearings and pump linings of drilling equipment.

4. Conclusions

1. It is experimentally established that with an increase in velocity of the impact \(V_i \) and the velocity of the collision point \(V_c \), there is an increase in the separation strength of the layers \(\sigma_{\text{sep}} \) of the armco-iron+St3 compound and an increase in the amount of molten metal, while the wave sizes \(2a, \lambda \) increase with an increase in \(V_i \), and with an increase in \(V_c \), on the contrary, decrease.

2. Research of influence of dynamic parameters on the formation showed that the change in velocity of the impact \(V_i \) also has a significant impact on the stamping, while increasing the velocity of the collision point \(V_c \) there is a significant increase of the maximum deflection \(f_{\text{max}} \) and the radial deformation \(\epsilon_r \) bimetal.

References

[1] Kuz’min V I, Lysak V I and Kuz’min E V 2020 Regularities in Bimetal Joint Formation at Explosion Welding with Simultaneous Stamping Materials Science Forum 989 733
[2] Findik F 2011 Recent developments in explosive welding Materials and Design 32(3) 1081
[3] Zorik V Y 2002 Theoretical grounds of designing technological system for manufacture of complex sheet parts by explosive stamping 11 29
[4] Lepikhin P P, Romashchenko V A, Babich Y N, Beiner O S and Demenko V F 2005 Evaluation of the dynamic strength of cylindrical and conic matrices of finite length for stamping by high explosives Strength of Materials 37 146
[5] Zlobin B S, Silvestrov V V, Shertser A A, Plastinin A V and Kiselev V V 2014 Enhancement of explosive welding possibilities by the use of emulsion explosive Archives of Metallurgy and Materials 59 1587
[6] Dibbo A 1997 Explosion bonding and forming provides solutions to increasingly severe material requirements Metallurgy 64 357
[7] Mynors D and Zhang B. 2002 Applications and capabilities of explosive forming Journal of Materials Processing Technology 125 1
[8] Fiedler T, Borovinšek M, Hokamoto K and Vesenjak M 2015 High-performance thermal capacitors made by explosion forming International Journal of Heat and Mass Transfer 83 366
[9] Lysak V I and Kuzmin S V 2015 Energy balance during explosive welding Journal of Materials Processing Technology 222 356
[10] Akbari Mousavi S A A, Riahi M and Hagh Parast A 2007 Experimental and numerical analyses of explosive free forming Journal of Materials Processing Technology 187-188
[11] Petushkov V G, Simonov V A, Sedykh V S and Fadeenko Yu I 1995 Explosion Welding Criteria (USA: Harwood Academic Publishers)
[12] Crossland B 1982 Explosive Welding of Metals and Its Application (Oxford: Clarendon press)
[13] Blazinski T Z 1983 Explosive welding, forming and compaction (New York: Appl. Sci.)
[14] Fedotova N L, Chudakov I B, Korms I A, Saikov I A and Arutyunyan N A 2017 Preparation of Bimetal with Good Damping Properties Metallurgist 61 63
[15] Kriventsov A N, Baluiev A V and Kuz’min V I 1999 A method of calculating explosion welding parameters Welding International 11 897
[16] Rybin V V, Greenberg B A, Antonova O V, Elkina O A and Ivanov M A 2009 Formation of Vortices during Explosion Welding Physics of Metals and Metallography 108 353
[17] Kuz’min V I, Kriventsov A N and Baluiev A V 2000 Kinetics of flight and determination of the velocity of movement and collision of a packet in explosion welding Welding International 14 661
[18] Lysak V I and Kuzmin S V 2003 *Explosive welding of metal layered composite materials* (Kiev: E.O. Paton Electric Welding Institute of the NASU)

[19] Trykov Y P, Trudov A F and Stepanishchev I B 2002 Structure and Properties of Explosion-Welded Joints of Carbon Steels *Metal Science and Heat Treatment* **44** 524

[20] Kuz’min V I, Lysak V I, Kriventsov A N and Iakovlev M A 2004 Critical conditions of the formation and failure of welded joints in explosive welding *Welding International* **18** 223

[21] Greenberg B A, Ivanov M A, Inozemtsev A V, Patselov A M and Pushkin M S 2015 Microheterogeneous Structure of Local Melted Zones in the Process of Explosive Welding, *Metallurgical and Materials Transactions* **46** 3569

[22] Bataev I A, Bataev A A, Mali V I, Bataev V A and Balaganskii I A 2014 Structural changes of surface layers of steel plates in the process of explosive welding *Metal Science and Heat Treatment* **55** 509