DIVISIBILITY OF SOME BINOMIAL SUMS

HE-XIA NI AND HAO PAN

Abstract. With help of \(q \)-congruence, we prove the divisibility of some binomial sums. For example, for any integers \(\rho, n \geq 2 \),

\[
\sum_{k=0}^{n-1} (4k + 1) \binom{2k}{k}^\rho \cdot (-4)^{\rho(n-1-k)} \equiv 0 \pmod{2^{\rho-2}n\binom{2n}{n}}.
\]

1. Introduction

In [5], Ramanujan listed 17 curious convergent series concerning \(1/\pi \). For example, Ramanujan found that

\[
\sum_{k=0}^{\infty} \frac{6k + 1}{256^k} \cdot \binom{2k}{k}^3 = \frac{4}{\pi}.
\]

(1.1)

Nowadays, the theory of Ramanujan-type series has been greatly developed. In [1], Guillera gave a summary for the methods to deal with Ramanujan-type series.

In the recent years, the arithmetic properties of truncated Ramanujan-type series also be investigated. In [3], van Hamme proposed 13 conjectured congruences concerning truncated Ramanujan-type series. For example,

\[
\sum_{k=0}^{n-1} \frac{6k + 1}{256^k} \cdot \binom{2k}{k}^3 \equiv (-1)^{n-2}p \pmod{p^4},
\]

(1.2)

where \(p > 3 \) is a prime. Now all conjectures of van Hamme have been confirmed. The reader may refer to [7, 4] for the history of the proofs of van Hamme’s conjectures.

On the other hand, Sun [6] discovered that the convergent series concerning \(\pi \) often corresponds to the divisibility of some binomial sums. For example, Sun conjectured that for each integer \(n \geq 2 \)

\[
\sum_{k=0}^{n-1} (5k + 1) \binom{2k}{k}^2 \binom{3k}{k} \cdot (-192)^{n-1-k} \equiv 0 \pmod{n\binom{2n}{n}},
\]

(1.3)

2010 Mathematics Subject Classification. Primary 11B65; Secondary 05A10, 05A30, 11A07.

Key words and phrases. congruence; \(q \)-binomial coefficient.
which corresponds to the identity of Ramanujan

\[
\sum_{k=0}^{\infty} \frac{5k + 1}{(-192)^k} \cdot \binom{2k}{k}^2 \binom{3k}{k} = \frac{4\sqrt{3}}{\pi}.
\] \hfill (1.4)

In this paper, we shall consider the divisibility of some binomial sums similar as (1.3). For \(\alpha \in \mathbb{Q} \setminus \mathbb{Z} \) and \(n \in \mathbb{Z}^+ \), define

\[N_{\alpha,n} := \text{the numerator of } n \cdot \left| \binom{-\alpha}{n} \right| . \]

It is easy to see that \(N_{1/2,n} \) coincides with the odd part of \(n\binom{2n}{n} \).

Theorem 1.1. Suppose that \(\rho \) is a positive integer and \(\alpha \) is a non-integral rational number. Then for each integer \(n \geq 1 \),

\[
\sum_{k=0}^{n-1} (2k + \alpha) \binom{-\alpha}{k}^\rho \equiv 0 \pmod{N_{\alpha,n}}. \hfill (1.5)
\]

In particular, substituting \(\alpha = 1/2 \) in (1.5), we may obtain that

Corollary 1.1. Suppose that \(\rho \geq 2 \) is an integer. Then for each integer \(n \geq 2 \),

\[
\sum_{k=0}^{n-1} (4k + 1) \binom{2k}{k}^\rho \cdot (-4)^{\rho(n-1-k)} \equiv 0 \pmod{2^{\rho-2}n \binom{2n}{n}}. \hfill (1.6)
\]

2. \(q \)-CONGRUENCE

First, let us introduce the notion of \(q \)-congruence. For any \(x \in \mathbb{Q} \), define

\[[x]_q := \frac{1 - q^x}{1 - q}. \]

Clearly if \(n \in \mathbb{N} = \{0, 1, 2, \ldots\} \), then \([n]_q = 1 + q + \cdots + q^{n-1}\) is a polynomial in \(q \).

For \(a, b \in \mathbb{N} \) and \(n \in \mathbb{Z}^+ \), if \(a \equiv b \pmod{n} \), then letting \(m = (a - b)/n \),

\[[a]_q - [b]_q = \frac{q^b - q^a}{1 - q} = q^b \cdot \frac{1 - q^{nm}}{1 - q} = q^b \cdot \frac{[m]_q}{[n]_q} \equiv 0 \pmod{[n]_q}, \]

where the above congruence is considered over the polynomial ring \(\mathbb{Z}[q] \). Furthermore, we also have

\[
\frac{[nm]_q}{[n]_q} = \frac{1 - q^{nm}}{1 - q^n} = 1 + q^n + q^{2n} + \cdots + q^{(m-1)n} \equiv 1 + 1 + \cdots + 1 = m \pmod{[n]_q}. \hfill (2.1)
\]

Note that (2.1) is still valid when \(m \) is a negative integer, since \([nm]_q = -q^{nm}[-nm]_q\).

For \(d \geq 2 \), let \(\Phi_d(q) \) denote the \(d \)-th cyclotomic polynomial, i.e.,

\[
\Phi_d(q) = \prod_{1 \leq k \leq d \atop (d,k) = 1} (q - e^{2\pi \sqrt{-1} \frac{k}{d}}).
\]
It is well-known that $\Phi_d(q)$ is an irreducible polynomial with integral coefficients. Also, we have

$$[n]_q = \prod_{d \geq 2, d \mid n} \Phi_d(q).$$

So $\Phi_d(q)$ divides $[n]_q$ if and only if d divides n. Furthermore,

$$\Phi_d(1) = \begin{cases} p, & \text{if } d = p^k \text{ for some prime } p, \\ 1, & \text{otherwise}. \end{cases} \quad (2.2)$$

For $n \in \mathbb{N}$, define

$$(x; q)_n := \begin{cases} (1 - x)(1 - xq) \cdots (1 - xq^{n-1}), & \text{if } n \geq 1, \\ 1, & \text{if } n = 0. \end{cases}$$

Also, define the q-binomial coefficient

$$\begin{bmatrix} x \\ n \end{bmatrix}_q := \frac{(q^{x-n+1}; q)_n}{(q; q)_n}.$$

Clearly

$$\lim_{q \to 1} \begin{bmatrix} x \\ n \end{bmatrix}_q = \binom{x}{n}.$$

Furthermore, it is easy to see that

$$\begin{bmatrix} -\frac{r}{m} \\ n \end{bmatrix}_{q^m} = (-1)^n q^{-nr - m(n-1)} \cdot \frac{(q^r; q^m)_n}{(q^m; q^m)_n}.$$

Suppose that $r \in \mathbb{Z}$, $m \in \mathbb{Z}^+$ and $(r, m) = 1$. For each positive integer d with $(d, m) = 1$, let $\lambda_{r,m}(d)$ be the integer lying in $\{0, 1, \ldots, d-1\}$ such that

$$r + \lambda_{r,m}(d)m \equiv 0 \pmod{d}. \quad (2.3)$$

Let

$$S_{r,m}(n) = \left\{ d \geq 2 : \left\lfloor \frac{n - 1 - \lambda_{r,m}(d)}{d} \right\rfloor = \left\lfloor \frac{n}{d} \right\rfloor \right\}.$$

Evidently for each $d > \max_{0 \leq j \leq n-1} |r + jm|$, we must have $\lambda_{r,m}(d) > n - 1$, whence $d \not\in S_{r,m}(n)$. So $S_{r,m}(n)$ is always a finite set. Let

$$A_{r,m,n}(q) = \prod_{d \in S_{r,m}(n)} \Phi_d(q) \quad (2.4)$$

and

$$C_{m,n}(q) = \prod_{d \mid n, (d,m)=1} \Phi_d(q). \quad (2.5)$$
Clearly, if \(d \mid n \), then we can’t have \(d \in \mathcal{S}_{r,m}(n) \). So \(A_{r,m,n}(q) \) and \(C_{m,n}(q) \) are co-prime. Furthermore, as we shall see in the next section,

\[
A_{r,m,n}(1)C_{m,n}(1) = N_{\frac{r}{m},n}.
\]

(2.6)

The following theorem is the key ingredient of this paper.

Theorem 2.1. Suppose that \(r \in \mathbb{Z} \) and \(m \in \mathbb{Z}^+ \). Assume that \(\mu_0(q), \mu_1(q), \ldots \) is a sequence of rational functions in \(q \) such that for any \(d \in \mathbb{Z}^+ \) with \((m,d) = 1 \),

(i) \(\nu_k(q) \) is \(\Phi_d(q) \)-integral for each \(k \geq 0 \), i.e., the denominator of \(\nu_k(q) \) is not divisible by \(\Phi(q) \);

(ii) for any \(s, t \in \mathbb{N} \) with \(0 \leq t \leq d - 1 \),

\[
\nu_{sd+t}(q) \equiv \mu_s(q)\nu_t(q) \pmod{\Phi_d(q)},
\]

where \(\mu_s(q) \) is a \(\Phi_d(q) \)-integral rational function only depending on \(s \);

(iii) \[
\sum_{k=0}^{d-1} \frac{(q^r; q^m)_k}{(q^m; q^m)_k} \cdot \nu_k(q) \equiv 0 \pmod{\Phi_d(q)}.
\]

Then

\[
\sum_{k=0}^{n-1} \frac{(q^r; q^m)_k}{(q^m; q^m)_k} \cdot \nu_k(q) \equiv 0 \pmod{A_{r,m,n}(q)C_{m,n}(q)}.
\]

(2.7)

Before we give the proof of Theorem 2.1, which will occupy the subsequence section, let us see an immediate consequence of Theorem 2.1.

Corollary 2.1. Under the Proposition, additionally assume that for each positive integer \(n \), there exists a polynomial \(B_n(q) \) with integral coefficients such that

(i)

\[
B_n(q) \sum_{k=0}^{n-1} \frac{(q^r; q^d)_k}{(q^d; q^d)_k} \cdot \nu_k(q)
\]

is a polynomial with integral coefficients.

(ii) \(B_n(1) \) is not divisible by any prime \(p \) with \(p \nmid m \);

Then for any \(n \geq 1 \), we have

\[
\sum_{k=0}^{n-1} (-1)^k \left(\frac{r}{k} \right) \cdot \nu_k(1) \equiv 0 \pmod{N_{\frac{r}{m},n}}.
\]

(2.8)
Proof. By Theorem 2.1, we have

\[B_n(q) \sum_{k=0}^{n-1} (q^r; q^m)_k \cdot \nu_k(q) = A_{r,m,n}(q) C_{m,n}(q) \cdot H(q), \]

where \(H(q) \) is a polynomial in \(q \). Notice that the greatest common divisor of all coefficients of \(A_{r,m,n}(q) C_{m,n}(q) \) is just 1. According to a well-known result of Gauss, we know that the coefficients of \(H(q) \) must be all integers. Hence substituting \(q = 1 \) in (2.7), we get

\[B_n(1) \sum_{k=0}^{n-1} (-1)^k \left(\frac{r}{m} \right)_k \cdot \nu_k(1) = N_{r,m,n} \cdot H(1) \equiv 0 \pmod{N_{r,m,n}}. \]

Since \(N_{r,m,n} \) is prime to \(B_n(1) \), (2.8) is concluded. \(\square \)

3. Proof of Theorem 2.1

In this section, we shall complete the proof of Theorem 2.1. First, we need several auxiliary lemmas.

Lemma 3.1. Let \(r \in \mathbb{Z} \) and \(m, d \in \mathbb{Z}^+ \) with \((m, d) = 1 \). Then

\[\frac{(q^r; q^m)_d}{1 - q^d} \equiv r + \lambda_{r,m}(d)m \pmod{\Phi_d(q)}, \] (3.1)

where \(\lambda_{r,m} \) is the one defined by (2.3).

Proof. Clearly

\[\frac{(q^r; q^m)_d}{1 - q^d} = \frac{1 - q^{r+\lambda_{r,m}(d)m}}{1 - q^d} \prod_{0 \leq j \leq d-1 \atop r+jm \neq 0 \pmod{d}} (1 - q^{r+jm}) \]
\[\equiv \frac{1 - q^{d \lambda_{r,m}(d)m}}{1 - q^d} \prod_{j=1}^{d-1} (1 - q^j) \equiv \frac{r + \lambda_{r,m}(d)m}{d} \cdot (q; q)_{d-1} \pmod{\Phi_d(q)}. \]

Now for every primitive \(d \)-th root of unity \(\xi \), we have

\[(q; q)_{d-1} \big|_{q=\xi} = \prod_{j=1}^{d-1} (1 - \xi^j) = \lim_{x \to 1} \prod_{j=1}^{d-1} (x - \xi^j) = \lim_{x \to 1} \frac{x^d - 1}{x - 1} = d. \]

So

\[(q; q)_{d-1} \equiv d \pmod{\Phi_d(q)}. \] \(\square \)
Lemma 3.2. Under the assumptions of Lemma 3.1 for any $s, t \in \mathbb{N}$ with $0 \leq t \leq d - 1,$

\[
\frac{(q^r; q^m)_{sd+t}}{(q^m; q^m)_{sd+t}} = \frac{(r+\lambda_{r,m}(d)m)}{md} \frac{(q^r; q^m)_t}{(q^m; q^m)_t} \pmod{\Phi_d(q)}. \tag{3.2}
\]

Proof. By Lemma 3.1, we have

\[
\frac{(q^r; q^m)_{sd+t}}{(1 - q^d)^s} = (q^{r+smd}; q^m) \prod_{j=0}^{s-1} (q^{r+jmd}; q^m) \equiv (q^r; q^m) \prod_{j=0}^{s-1} (r + \lambda_{r,m}(d)m + jmd) \pmod{\Phi_d(q)}.
\]

Similarly,

\[
\frac{(q^m; q^m)_{sd+t}}{(1 - q^d)^s} \equiv (q^m; q^m) \prod_{j=0}^{s-1} (m + (d-1)m + jmd) \pmod{\Phi_d(q)}.
\]

Clearly

\[
\prod_{j=0}^{s-1} \frac{r + \lambda_{r,m}(d)m + jmd}{md + jmd} = \frac{(r+\lambda_{r,m}(d)m)}{md} (1)^s.
\]

Thus we get (3.2), since $(q^m; q^m)_t$ is prime to $\Phi_d(q)$ for each $0 \leq t \leq d - 1.$ \hfill \qed

Let $\lfloor \cdot \rfloor$ denote the floor function, i.e., $\lfloor x \rfloor = \max \{ k \in \mathbb{N} : k \leq x \}$ for every $x \in \mathbb{R}.$

Lemma 3.3. Suppose that $r \in \mathbb{Z}, m \in \mathbb{N}$ and $(r, m) = 1.$ Then

\[
\frac{(q^r; q^m)_n}{(q^m; q^m)_n} \prod_{(d, m) > 1} \Phi_d(q)^{\lfloor \frac{n-md}{d} \rfloor} = (-1)^\delta q^\Delta \prod_{d \in S_{r,m}(n)} \Phi_d(q), \tag{3.3}
\]

where $\delta = |\{0 \leq j \leq n-1 : r + jm < 0\}|$ and

\[
\Delta = \sum_{0 \leq j \leq n-1 \atop r+jm < 0} (r+jm).
\]

Proof. Note that for any $h \in \mathbb{N}$

\[
1 - q^h = \prod_{d \nmid h} \Phi_d(q).
\]

So

\[
(q^r; q^m)_n = (-1)^\delta q^\Delta \prod_{(d, m) = 1} \Phi_d(q)^{|\{0 \leq j \leq n-1 : r+jm \equiv 0 \pmod{d}\}|}.
\]
It is easy to check that
\[|\{0 \leq j \leq n-1 : r + jm \equiv 0 \pmod{d}\}| = 1 + \left\lfloor \frac{n-1 - \lambda_{r,m}(d)}{d} \right\rfloor. \]

Similarly,
\[(q^m; q^m)_n = \prod_{d \geq 1} \Phi_d(q)^{|\{1 \leq j \leq n : jm \equiv 0 \pmod{d}\}|}, \]
and
\[|\{1 \leq j \leq n : jm \equiv 0 \pmod{d}\}| = \left\lfloor \frac{n(m,d)}{d} \right\rfloor. \]

Hence \(d \in S_{r,m}(n) \) if and only if \((d, m) = 1 \) and
\[|\{0 \leq j \leq n-1 : r + jm \equiv 0 \pmod{d}\}| = |\{1 \leq j \leq n : jm \equiv 0 \pmod{d}\}| + 1. \]

We immediately get (3.3). \[\square\]

Let
\[B_{r,m,n}(q) = \prod_{\substack{|l_n|_{l \geq 2} \\ (d,m)=l}} \Phi_d(q)^{\frac{\alpha m}{\pi l}}, \tag{3.4} \]

Then (3.3) is equivalent to
\[\frac{(q^r; q^m)_n}{(q^m; q^m)_n} = (-1)^{\delta q} \cdot \frac{A_{r,m,n}(q)}{B_{r,m,n}(q)}. \]

According to the definitions, clearly \(B_{r,m,n}(q) \) is prime to \(A_{r,m,n}(q)C_{m,n}(q) \). Also, \(A_{r,m,n}(1)C_{m,n}(1) \) and \(B_{r,m,n}(1) \) are co-prime integers. Moreover, \(B_{r,m,n}(q) \) is divisible by
\[\frac{[n]_q}{C_{m,n}(q)} = \prod_{\substack{d|n \\ (d,m)>1}} \Phi_d(q). \]

So we must have \(A_{r,m,n}(1)C_{m,n}(1) \) coincides with the numerator of \(n \cdot \left\lfloor \left(-\frac{r}{m} \right) \right\rfloor \), i.e., (2.6) is valid.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. It suffices to show that the left side of (2.7) is divisible by \(\Phi_d(q) \) for those \(d \in S_{r,m}(n) \) and \(d \mid n \) with \((m,d) = 1.\)

Suppose that \(d \in S_{r,m}(n) \). Write \(n = ud + v \) where \(0 \leq v \leq d-1 \). Let
\[h = \lambda_{r,m}(d), \quad w = \frac{r + \lambda_{r,m}(d)m}{d}. \]

Note that \(d \in S_{r,m}(n) \) implies that \(v \geq 1 + h. \) Hence for any \(v \leq t \leq d-1 \), we have
\[(q^r; q^m)_t = \prod_{0 \leq j \leq t-1 \atop j \neq h} (1 - q^{r+jm}) \equiv 0 \pmod{\Phi_d(q)}. \]
Thus the requirement (iii) of Theorem 2.1 is satisfied.

Note that applying Lemma 3.2, we get

\[\frac{(q^r; q^m)_{ud+t}}{(q^m; q^m)_{ud+t}} \equiv 0 \pmod{\Phi_d(q)}. \]

Thus applying Lemma 3.2, we get

\[\sum_{k=0}^{n-1} \frac{(q^r; q^m)_k}{(q^m; q^m)_k} \cdot \nu_k(q) = \sum_{k=0}^{ud-d-1} \frac{(q^r; q^m)_k}{(q^m; q^m)_k} \cdot \nu_k(q) = \sum_{s=0}^{u} \sum_{t=0}^{d-1} \frac{(q^r; q^m)_t}{(q^m; q^m)_t} \cdot \nu_t(q) \equiv 0 \pmod{\Phi_d(q)}. \]

Furthermore, assume that \(d \mid n \) and \((m, d) = 1 \). Let \(u = n/d \). Then in view of (3.2), we also have

\[\sum_{k=0}^{n-1} \frac{(q^r; q^m)_k}{(q^m; q^m)_k} \cdot \nu_k(q) = \sum_{s=0}^{u-1} \frac{(w)_s}{(1)_s} \cdot \mu_s(q) \sum_{t=0}^{d-1} \frac{(q^r; q^m)_t}{(q^m; q^m)_t} \cdot \nu_t(q) \equiv 0 \pmod{\Phi_d(q)}. \]

(3.5)

4. Proofs of Theorem 1.1 and Corollary 1.1

Proof Theorem 1.1 Write \(\alpha = r/m \), where \(r \in \mathbb{Z}, m \in \mathbb{Z}^+ \) and \((r, m) = 1 \). Assume that \(d \geq 1 \) and \((m, d) = 1 \). Let \(h = \lambda_{r,m}(d) \). Clearly \(r \equiv -hm \pmod{d} \). Then

\[\frac{(q^r; q^m)_k}{(q^m; q^m)_k} = \frac{(q^{-hm}; q^m)_k}{(q^m; q^m)_k} = (-1)^k q^{m(k^2 - mhk)} [h]_q \left(\frac{h}{k} \right)_q \pmod{\Phi_d(q)}. \]

Note that

\[\sum_{k=0}^{d-1} q^{mk}[2mk - hm]_q \cdot \left[\frac{h}{k} \right]_q^\rho = \sum_{k=0}^{h} q^{m(h-k)}[2m(h-k) - hm]_q \cdot \left[\frac{h}{k} \right]_q^\rho = - \sum_{k=0}^{h} q^{mk}[2mk - hm]_q \cdot \left[\frac{h}{k} \right]_q^\rho. \]

We must have

\[\sum_{k=0}^{d-1} q^{mk}[2mk + r]_q \cdot (-1)^k q^{\rho(mh(k^2 - mhk))} \cdot \frac{(q^r; q^m)_k}{(q^m; q^m)_k} \]

\[\equiv \sum_{k=0}^{d-1} q^{mk}[2mk - hm]_q \cdot \left[\frac{h}{k} \right]_q^\rho \equiv 0 \pmod{\Phi_d(q)}. \]

(4.1)

Thus the requirement (iii) of Theorem 2.1 is satisfied.
We still need to verify the requirement (ii) of Theorem 2.1. By Lemma 3.2, for each \(s, t \in \mathbb{N} \) with \(0 \leq t \leq d - 1 \),

\[
q^{m(s^d+t)}[2m(sd + t) + r]q \cdot \frac{(q^r; q^m)^{\rho - 1}_t}{(q^m; q^m)^{\rho - 1}_t} = \frac{N}{(1)^{\rho - 1}_s} \cdot q^{mt}[2mt + r]q \cdot \frac{(q^r; q^m)^{\rho - 1}_t}{(q^m; q^m)^{\rho - 1}_t} \pmod{\Phi_d(q)}.
\]

And

\[
(-1)^{sd+t}q^{mh(sd+t)-m(s^d+1)} = (-1)^{sd+t}q^{mh(sd+t)-msdt- m(s^d+1)} \equiv (-1)^{sd}q^{-m(s^d+1)} \equiv (-1)^s \pmod{\Phi_d(q)}.
\]

If \(d \) is odd, then clearly

\[
(-1)^{sd}q^{-m(s^d+1)} \equiv (-1)^s \pmod{\Phi_d(q)}.
\]

If \(d \) is even, then

\[
1 + q^{d/2} = \frac{1 - q^d}{1 - q^{d/2}} \equiv 0 \pmod{\Phi_d(q)},
\]

i.e., \(q^{d/2} \equiv -1 \pmod{\Phi_d(q)} \). So

\[
(-1)^{sd}q^{-m(s^d+1)} = (q^{d/2})^{-ms(dt)} \equiv (-1)^s \pmod{\Phi_d(q)},
\]

by noting that \(m \) is odd since \((m,d) = 1\). That is, we always have

\[
(-1)^{sd+t}q^{mh(sd+t)-msdt- m(s^d+1)} \equiv (-1)^s \cdot (-1)^tq^{-m(s^d+1)} \pmod{\Phi_d(q)}.
\]

Thus applying Theorem 2.1, we obtain that

\[
\sum_{k=0}^{n-1} q^{mk}[2mk + r]q \cdot (-1)^{ok}q^{\rho(mkh-m(s^d+1))} \cdot \frac{(q^r; q^m)^{\rho}_k}{(q^m; q^m)^{\rho}_k} \equiv 0 \pmod{\Phi_d(q)} \pmod{A_{r,m,n}(q)C_{m,n}(q)}.
\]

(4.2)

On the other hand, clearly \(B_{r,m,n}(q) \) is divisible by \(B_{r,m,k}(q) \) provided \(0 \leq k \leq n - 1 \). It follows from Lemma 3.3 that

\[
B_{r,m,n}(q)^\rho \sum_{k=0}^{n-1} q^{mk}[2mk + r]q \cdot \frac{(q^r; q^m)^{\rho}_k}{(q^m; q^m)^{\rho}_k} \equiv 0 \pmod{N_{r,m,n}(q)}.
\]

is a polynomial with integral coefficients. And by (2.2), each prime factor of \(B_{r,m,n}(1) \) must divide \(m \). In view of Corollary 2.1, we have

\[
\sum_{k=0}^{n-1} (2mk + r) \cdot \left(\frac{-r}{m} \right)^\rho \equiv 0 \pmod{N_{r,m,n}(q)}.
\]

So (1.5) is valid since \(N_{r,m,n} \) and \(m \) are co-prime. \(\square \)
Proof of Corollary 1.1. As we have mentioned, N_{2n} coincides with the odd part of $n \binom{2n}{n}$. So by substituting $\alpha = 1/2$ in Theorem 1.1, we only need to compute the 2-adic of the left side of (1.6). For a positive integer a, let $\text{ord}_2(a)$ denote the 2-adic order of a, i.e., $2^{\text{ord}_2(a)} | a$ but $2^{\text{ord}_2(a)+1} \nmid a$. For each $0 \leq k \leq n - 1$, since

$$n \binom{2n}{n} = \binom{2k}{k} \cdot \frac{2^{n-k} \cdot (2n-1)(2n-3) \cdots (2k+1)}{(n-1)(n-2) \cdots (k+1)},$$

we have

$$\text{ord}_2 \left(n \binom{2n}{n} \right) \leq n - k + \text{ord}_2 \left(\binom{2k}{k} \right).$$

Also, $\binom{2k}{k}$ is even for each $k \geq 1$, since

$$\binom{2k}{k} + 2 \sum_{j=0}^{k-1} \binom{2k}{j} = 2^{2k}.$$

Hence for each $0 \leq k \leq n - 1$,

$$\text{ord}_2 \left(\binom{2k}{k}^\rho \cdot 4^{\rho(n-1-k)} \right) \geq (\rho - 1) + 2(n - 1 - k) + \text{ord}_2 \left(\binom{2k}{k} \right)$$

$$\geq (\rho - 2) + \text{ord}_2 \left(n \binom{2n}{n} \right).$$

□

References

[1] J. Guillera, Kind of proofs of ramanujan-like series, preprint, [arXiv:1203.1255](https://arxiv.org/abs/1203.1255).
[2] Victor J. W. Guo and J.-C. Liu, q-Analogues of two Ramanujan-type formulas for $1/\pi$, preprint, [arXiv:1802.01944](https://arxiv.org/abs/1802.01944).
[3] L. van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic Functional Analysis, Nijmegen, 1996, in: Lecture Notes in Pure and Appl. Math., vol. 192, Dekker, New York, 1997, pp. 223-236.
[4] R. Osburn and W. Zudilin, On the (K.2) supercongruence of Van Hamme, J. Math. Anal. Appl., 433(2016), 706-711.
[5] S. Ramanujan, Modular equations and approximations to π, Quart. J. Math., 45(1914), 350-372.
[6] Z.-W. Sun, Open conjectures on congruences, preprint, [arXiv:0911.5665](https://arxiv.org/abs/0911.5665).
[7] H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci., 2(2015), Art. 18, 21 pp.

Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

E-mail address: nihexia@yeah.net

Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

E-mail address: haopan79@zoho.com