The Genetic Architecture of Arsenic Metabolism Efficiency: A SNP-Based Heritability Study of Bangladeshi Adults

Jianjun Gao,1,2 Lin Tong,1 Maria Argos,1 Molly Scannell Bryan,1 Alauddin Ahmed,3 Muhammad Rakibuz-Zaman,3 Muhammad G. Kibriya,1 Farzana Jasmine,1 Vesna Slavkovich,4 Joseph H. Graziano,4 Habibul Ahsan,1,2,5,6 and Brandon L. Pierce1,2,3

1Department of Public Health Sciences, and 2Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA; 3UChicago Research Bangladesh (URB), Dhaka, Bangladesh; 4Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA; 5Comprehensive Cancer Center, and 6Department of Medicine, The University of Chicago, Chicago, Illinois, USA

BACKGROUND: Consumption of arsenic-contaminated drinking water adversely affects health. There is interindividual variation in arsenic metabolism efficiency, partially due to genetic variation in the arsenic methyltransferase (AS3MT) gene region.

OBJECTIVES: The goal of this study was to assess the overall contribution of genetic factors to variation in arsenic metabolism efficiency, as measured by the relative concentration of dimethylarsonic acid (DMA%) in urine.

METHODS: Using data on genome-wide single nucleotide polymorphisms (SNPs) and urinary DMA% for 2,053 arsenic-exposed Bangladeshi individuals, we employed various SNP-based approaches for heritability estimation and polygenic modeling.

RESULTS: Using data on all participants, the percent variance explained (PVE) for DMA% by all measured and imputed SNPs was 16% (p = 0.08), which was reduced to 5% (p = 0.34) after adjusting for AS3MT SNPs. Using information on close relatives only, the PVE was 63% (p = 0.0002), but decreased to 41% (p = 0.01) after adjusting for AS3MT SNPs. Regional heritability analysis confirmed 10q24.32 (AS3MT) as a major arsenic metabolism locus (PVE = 7%, p = 4.4 × 10⁻¹⁰), but revealed no additional regions. We observed a moderate association between a polygenic score reflecting elevated DMA% (composed of thousands of non-AS3MT SNPs) and reduced skin lesion risk in an independent sample (p < 0.05). We observed no associations for SNPs reported in prior candidate gene studies of arsenic metabolism.

CONCLUSIONS: Our results suggest that there are common variants outside of the AS3MT region that influence arsenic metabolism in Bangladeshis, but the effects of these variants are very weak compared with variants near AS3MT. The high heritability estimates observed using family-based heritability approaches suggest substantial effects for rare variants and/or unmeasured environmental factors.

CITATION: Gao J, Tong L, Argos M, Scannell Bryan M, Ahmed A, Rakibuz-Zaman M, Kibriya MG, Jasmine F, Slavkovich V, Graziano JH, Ahsan H, Pierce BL. 2015. The genetic architecture of arsenic metabolism efficiency: a SNP-based heritability study of Bangladeshi adults. Environ Health Perspect 123:985–992; http://dx.doi.org/10.1289/ehp.1408909

Introduction

Arsenic contamination of drinking water is a major public health problem in many countries, with > 137 million people in > 70 countries estimated to be exposed (International Agency for Research on Cancer 2004). Chronic exposure to arsenic has been linked to a wide array of health conditions (Rahman et al. 2009), including cancers of the lung, bladder, liver, kidney, and skin (Celik et al. 2008; Liu and Wäldtes 2008; Mink et al. 2008; Yu et al. 2002; Yuan et al. 2003). Arsenic has also been associated with diabetes and cardiovascular disease, as well as neurological, reproductive, and respiratory conditions (Abhyankar et al. 2012; Golub et al. 1998; Huang et al. 2011; National Research Council 1999; Parvez et al. 2010; Vahidnia et al. 2007). Skin lesions are one of the earliest and most prevalent clinical manifestations of arsenic exposure and are considered the classical sign of arsenic toxicity (Yoshida et al. 2004).

Arsenic consumed in drinking water enters the blood stream as inorganic arsenic (iAs) [i.e., arsenite (AsIII) and arsenate (AsV)] and is metabolized primarily in the liver. According to the classical Challenger model of arsenic metabolism (Reham and Naranmandura 2012), AsIII, the predominant form of iAs in Bangladesh, is methylated using arsenic (+3 oxidation state) methyltransferase (AS3MT) as the key enzyme and S-adenosylmethionine (SAM) as the methyl donor (Thomas et al. 2007) to produce monomethylarsonic acid (MMAV). After the reduction of MMAV to monomethylarsonous acid (MMAIII), a second methylation step produces dimethylarsinic acid (DMAV). Some DMAV can then be reduced to DMAIII (Thomas et al. 2004, 2007). The sum of urinary arsenic species (iAs, MMA, and DMA, including AsIII and AsV, MMAIII, and MMAV as well as DMAIII and DMAV) is regarded as a biomarker of recent inorganic arsenic exposure (Biggs et al. 1997), and the composition of urinary arsenic metabolites relative to total arsenic is believed to reflect arsenic methylation capacity. Higher arsenic methylation capacity is associated with lower risk for arsenical skin lesions, the classical sign of arsenic toxicity (Ahsan et al. 2007; Gao et al. 2011; Kile et al. 2011; Lindberg et al. 2007; Pierce et al. 2013; Valenzuela et al. 2005).

Familial aggregation and heritability analyses of arsenic metabolic profiles suggest that genetic factors influence interindividual variation in arsenic methylation capacity (Chung et al. 2002; Tellez-Plaza et al. 2013). Candidate gene association studies have implicated single nucleotide polymorphisms (SNPs) in the AS3MT gene region in arsenic methylation capacity (Agusa et al. 2011; Rodrigues et al. 2012; Schläwicke Engström et al. 2009), and a recent genome-wide association study (GWAS) confirmed this finding, showing two clear association signals in the AS3MT region (Pierce et al. 2012, 2013). In the GWAS, AS3MT was the only region in the genome that harbored variants showing associations of genome-wide significance. It remains unclear whether other SNPs that did not surpass the genome-wide significance threshold have weaker associations with arsenic methylation capacity.

In this study, we searched for evidence that additional genetic variants (other than...
the known ASMT variants) influence arsenic methylation capacity, measured as the relative concentration of DMA in urine, using various approaches to evaluate polygenic susceptibility. We used SNP-based heritability methods to estimate the heritability in arsenic metabolism efficiency that is attributable to measured and imputed genome-wide SNPs, which we also refer to as the percent variance explained (PVE) by measured SNPs. We also used a “family-based” version of this method to estimate the full narrow-sense heritability, which reflects the additive contributions of all variants, including unmeasured rare variants (Yang et al. 2010; Zhou et al. 2013). We also conducted regional heritability analyses to estimate the heritability due to common SNPs in each segment of the genome (Nagamine et al. 2012). We used polygenic scoring (Purcell et al. 2007) to assess the polygenic contribution of arsenic metabolism variants that passed a significance threshold to skin lesion risk. In addition, we evaluated associations of 20 SNPs reported to be associated with arsenic methylation capacity in prior candidate gene studies.

Materials and Methods

Study population. The Health Effects of Arsenic Longitudinal Study (HEALS) is a large prospective cohort study of the health consequences of arsenic exposure. Details of the study design have been published previously (Ahsan et al. 2006a). A total of 11,746 healthy married adults (18–75 years of age) were enrolled in 2000–2002. At baseline, study interviewers collected information on demographic and lifestyle characteristics, conducted clinical examinations, and obtained biospecimens (blood and urine). Water samples from all 5,966 wells serving the 25-km² study area were collected. Follow-up surveys and comprehensive physical examinations are conducted every 2 years. Approximately 1,000 of the HEALS subjects in this analysis were randomly selected from HEALS participants who passed QC, 2,053 HEALS participants with data on genome-wide SNPs and arsenic metabolites. Because HEALS participants are selected from a relatively small geographic region, a subset of our participants are genetically related to another participant, as described previously (Pierce et al. 2012). We used the DMA% variable to represent arsenic metabolism efficiency because it is strongly and inversely correlated with both iAs% and MMA% and because DMA% showed the strongest association with 10q24.32 variants reported to be associated with arsenic methylation capacity in prior candidate gene studies.

Estimation of variance in arsenic metabolism efficiency explained by SNPs (i.e., heritability). Our analysis sample was composed of 2,053 HEALS participants with data on genome-wide SNPs and arsenic metabolites. Because HEALS participants are selected from a relatively small geographic region, a subset of our participants are genetically related to another participant, as described previously (Pierce et al. 2012). We used a linear mixed model (LMM) approach originally proposed by Yang et al. (2010). This method is often referred to as genomic restricted maximum likelihood estimation (GREML). The general purpose of the GREML method is to estimate the proportion of variation in a phenotype that is due to all measured SNPs. This is fundamentally different from the

| number | 986 | VOLUME 123 | NUMBER 10 | October 2015 | Environmental Health Perspectives | Gao et al. | the known ASMT variants) influence arsenic methylation capacity, measured as the relative concentration of DMA in urine, using various approaches to evaluate polygenic susceptibility. We used SNP-based heritability methods to estimate the heritability in arsenic metabolism efficiency that is attributable to measured and imputed genome-wide SNPs, which we also refer to as the percent variance explained (PVE) by measured SNPs. We also used a “family-based” version of this method to estimate the full narrow-sense heritability, which reflects the additive contributions of all variants, including unmeasured rare variants (Yang et al. 2010; Zhou et al. 2013). We also conducted regional heritability analyses to estimate the heritability due to common SNPs in each segment of the genome (Nagamine et al. 2012). We used polygenic scoring (Purcell et al. 2007) to assess the polygenic contribution of arsenic metabolism variants that passed a significance threshold to skin lesion risk. In addition, we evaluated associations of 20 SNPs reported to be associated with arsenic methylation capacity in prior candidate gene studies.

Materials and Methods

Study population. The Health Effects of Arsenic Longitudinal Study (HEALS) is a large prospective cohort study of the health consequences of arsenic exposure. Details of the study design have been published previously (Ahsan et al. 2006a). A total of 11,746 healthy married adults (18–75 years of age) were enrolled in 2000–2002. At baseline, study interviewers collected information on demographic and lifestyle characteristics, conducted clinical examinations, and obtained biospecimens (blood and urine). Water samples from all 5,966 wells serving the 25-km² study area were collected. Follow-up surveys and comprehensive physical examinations are conducted every 2 years. Approximately 1,000 of the HEALS subjects in this analysis were randomly selected from HEALS participants who passed QC, 2,053 HEALS participants with data on genome-wide SNPs and arsenic metabolites. Because HEALS participants are selected from a relatively small geographic region, a subset of our participants are genetically related to another participant, as described previously (Pierce et al. 2012). We used the DMA% variable to represent arsenic metabolism efficiency because it is strongly and inversely correlated with both iAs% and MMA% and because DMA% showed the strongest association with 10q24.32 variants in our prior GWAS (Pierce et al. 2012).

To estimate the PVE in DMA% by genetic factors (i.e., the “heritability”), we used a linear mixed model (LMM) approach originally proposed by Yang et al. (2010). This method is often referred to as genomic restricted maximum likelihood estimation (GREML). The general purpose of the GREML method is to estimate the proportion of variation in a phenotype that is due to all measured SNPs. This is fundamentally different from the
Genetics of arsenic metabolism

traditional GWAS approach because our goal is to estimate variance explained by all SNPs, as opposed to testing individual SNPs for association with a phenotype. The GREML method is well established, has been described in detail, and exploits the fact that genotypic similarity (i.e., “relatedness,” measured using SNPs) will be correlated with phenotypic similarity for phenotypes that are influenced by genetic variation. The GREML method can utilize data on very distantly related individuals, individuals that are typically considered “unrelated” in traditional GWAS. A LMM is used to estimate the PVE by measured SNPs for a phenotype, as implemented in the Genome‑wide Complex Trait Analysis (GCTA) software package (Yang et al. 2011). For a detailed description of the analytic method, see Supplemental Material, “LMM Analysis.”

To quantify genetic similarity between individuals, we constructed an n-by-n genetic relationship matrix (GRM), where n is the sample size (n = 2,053) and each element represents the degree to which a pair of individuals are related. Each element of the GRM is the genome-wide proportion of alleles shared IBS (identical by state) between two participants, as described by Yang et al. (2011), referred to here as “KIBS.” Under circumstances where the individuals are closely related, KIBS is a good estimate of allele sharing IBD. KIBS (identical by descent, where the shared alleles are inherited from the same ancestor), because KIBS will capture information on all variants in the genome. However, KIBS is not an ideal estimate of KIBS for distantly related individuals because it will primarily capture only information on measured SNPs (Zaitlen et al. 2013). Thus, SNP-based heritability estimates obtained from very distantly related individuals will tend to be lower than the true narrow-sense heritability.

Using the GREML method, we obtained three different types of PVE/heritability estimates. First we estimated PVE using all participants (using the full IBS-based GRM). Next, we estimated PVE using a modified GRM in which distant relatives were assumed to be unrelated (i.e., KIBS values < 0.05 were set to zero), producing an estimate of the IBD-based GRM (Zaitlen et al. 2013). This provides an estimate of the full narrow-sense heritability (h^2), which includes the additive effects of all genetic variation, including nongenotyped variants, but it is prone to bias due to shared environment. This h^2 estimate is comparable to those generated in family-based heritability studies. We also estimated the PVE after excluding individuals from close-relative pairs to produce a data set of only distantly related individuals (all KIBS < 0.05). This method provides an estimate of the heritability due to measured SNPs (h^2). The PVE estimate based on the full GRM (the first one described above) is essentially a mix of h^2 and h^g2. Covariates included in the LMM were age (continuous), sex (men vs. women), batch (batch 1 vs. 2, binary), water arsenic quartiles (categorical), smoking status (nonsmoker, former smoker, and current smoker, categorical), and body mass index (BMI; ≥ 10.2, 18.5–25.0, and ≥ 25.0 kg/m^2, categorical). Twenty principal components (PCs; continuous) were included to minimize potential biases caused by population structure; PCs were generated using EIGENSTRAT (Patterson et al. 2006). PVE analyses were first run using only genotyped SNPs to construct the GRM, and then run again using both genotyped and imputed SNPs to construct the GRM.

Regional heritability analysis. We also conducted genome-wide regional heritability analysis using Regional Genomic Relationship Mapping (REACTA) software (Nagamine et al. 2012). This method quantifies the contribution of a specific genomic region to the heritability of a phenotype using a mixed model that includes random effects for a specific region and a residual whole-genome effect. The whole-genome additive effect was estimated by using all SNPs to construct the GRM, whereas the regional effect was estimated using only SNPs from a specific region to estimate a local GRM. We estimated the regional heritability across all 22 autosomes among all the non-close relatives (KIBS < 0.05, n = 1,338). We analyzed 4,924 100-SNP windows for the genotyped SNPs (with an overlap of 50 SNPs between neighboring windows) and 4,787 300-SNP windows for the imputed SNPs (with an overlap of 50 SNPs between neighboring windows). p-Values for the heritability estimates were assessed using a Bonferroni-corrected p threshold (0.05/4,924 or 4,787 = 1.0 × 10^{-5}).

Polygenic scoring. Because AS3MT variants that influence arsenic metabolism also influence arsenical skin lesion risk (Ahsan et al. 2006b; Pierce et al. 2013), we assessed the potential polygenic contribution of arsenic metabolism–related SNPs to skin lesion risk. We generated a polygenic model for DMA% using data from all 2,053 HEALS participants with arsenic metabolite data. Using this model, we generated SNP-based polygenic scores in an independent data set of 2,014 skin lesion cases (1,990 BEST samples and 24 HEALS samples) and 1,285 controls from HEALS, and we tested the score for association with case–control status. To ensure that our polygenic scoring analysis was not influenced by the contributions of highly correlated SNPs, we pruned out 170,512 SNPs to produce a data set of genotyped SNPs with no pairwise \(r^2 > 0.8 \) that were genotyped in our study. We then included only 36 SNPs within ± 1 Mb of the AS3MT transcribed region. We also removed 9,852 SNPs with low minor allele frequencies (MAF < 0.05), resulting in 77,347 SNPs that were included in the polygenic score analysis.

The polygenic analysis was conducted as follows. Among the 2,053 participants with DMA% data (the “training set”), we estimated a beta coefficient for the association between the minor allele of each SNP and DMA%, adjusting for age (continuous), sex, concentration of water arsenic (continuous), and genotyping batch (binary). For each individual in the case–control sample (the “testing set”), a polygenic score was calculated as follows: Using the results from the analysis of the training set, we first set a \(p \)-value threshold to select SNPs for inclusion in the polygenic model. Several \(p \)-value thresholds were used: 10^{-3}, 10^{-5}, 0.01, 0.5, and 0.3. For each SNP with a \(p \)-value below the threshold, the number of minor alleles carried by each individual in the testing set (0, 1, or 2) was multiplied by the SNP’s beta coefficient derived from the training set. For each individual, these weighted allele counts were then summed over all SNPs passing the threshold and divided by the total number of summed SNPs to produce the polygenic score (as implemented in the PLINK “score” command) (Purcell et al. 2007). These scores were then tested for association with skin lesion status using mixed linear regression models adjusting for sex, age, and genotyping batch implemented in genome-wide efficient mixed model association (GEMMA) (Zhou and Stephens 2012). To approximate the corresponding odds ratio (OR), the beta coefficient was first divided by \(x(1 – x) \), where \(x \) is the proportion of cases in our sample, in order to estimate the beta from a logistic model. This quantity was exponentiated to obtain an OR.

Analysis of candidate variants identified in prior studies. We identified 20 variants in 15 genes with previously reported associations with arsenic metabolism phenotypes (Agusa et al. 2012; Breton et al. 2007; Chen et al. 2012; Chiu et al. 1997; Engström et al. 2010, 2011; Paiva et al. 2010; Porter et al. 2010; Rodrigues et al. 2012; Schläwicke et al. 2010, 2011; Paiva et al. 2010; Schläwicke et al. 2010, 2011; Paiva et al. 2010; Schläwicke et al. 2010, 2011). We examined their associations with arsenic metabolism phenotypes (Agusa et al. 2012; Breton et al. 2007; Chen et al. 2012; Chiu et al. 1997; Engström et al. 2010, 2011; Paiva et al. 2010; Porter et al. 2010; Rodrigues et al. 2012; Schläwicke et al. 2009; Steinmaus et al. 2007). We examined their associations with arsenic metabolism phenotypes in our GWAS data using mixed linear regression models adjusted by sex, age, and genotyping batch. For those candidate SNPs that were not genotyped in our study, we identified proxy SNPs with \(r^2 > 0.8 \) that were genotyped in our study based on HapMap2 CHB (Han Chinese in Beijing, China) and JPT (Japanese in Tokyo, Japan) data.

Standard protocol approvals, registrations, and patient consent. The study protocol was approved by the institutional review boards.
of The University of Chicago, Columbia University, and the Bangladesh Medical Research Council, and all study participants provided informed consent.

Results
Characteristics of HEALS participants and their associations with DMA% are shown in Table 1. In a multivariate model, older age (>50), female sex, and lower arsenic in either water or urine were associated with higher arsenic metabolism efficiency (higher DMA%). Compared with participants with BMI between 18.5 and 25.0, people of both higher and lower BMI had elevated DMA%. No association was observed for smoking status. BEST participants do not have DMA% data and were only involved in the polygenic scoring analyses; thus, these participants are not included in Table 1.

Two types of PVE estimates for DMA% are presented in Table 2, those based on genotyped SNPs only, and those based on genotyped and imputed SNPs. The PVE estimate for DMA% was 16% (p = 0.08) when using a GRM calculated from all 2,053 participants. After adjusting for sex, age, concentration of water arsenic (quartiles), genotyping batch, BMI, and smoking status, the estimate decreased to 12% (p = 0.16). After adjustment for the top 20 principal components, the estimate changed to 15% (p = 0.10). The PVE estimate decreased to 9% after adjusting for two SNPs in the AS3MT region identified in our prior GWAS (n=9527 and n=1119327) (Pierce et al. 2012, 2013).

The PVE estimates for DMA% based on the modified GRM in which KIBS < 0.05 were set to zero (i.e., based on all participants and defining distant relationships as unrelated) was 63% (p = 0.0002). After adjusting for covariates, the estimate decreased to 54% (p = 0.001). This estimate decreased to 41% (p = 0.01) after adjusting for the two SNPs in the AS3MT region. After eliminating close relative pairs from the data set (no KIBS > 0.05), our sample size was too small (n = 1,338) to generate a non-zero heritability estimate using GCTA (data not shown).

However, we were able to use the data set of distant relatives (no KIBS > 0.05) to conduct regional heritability analysis. The most significant regional PVE estimates were obtained for two adjacent windows in the 10q24.32 region harboring AS3MT, and these accounted for approximately 7% of the variation in DMA% (p = 4.4 × 10^{-10} and 8.2 × 10^{-8}) (Figure 1, w1 and w2). The regional heritability results based on genotyped data are the same as those based on imputed data (data not shown). After Bonferroni correction, no region showed a significant PVE estimate other than 10q24.32. Regional heritability analyses using the full data set (i.e., both close and distant relatives) produced very similar results (see Supplemental Material, Figure S1).

Polygenic scores for DMA% were not significantly associated with skin lesion status when using p-value thresholds of p < 10^{-4}, p < 10^{-3}, and p < 0.01 (unless including AS3MT SNPs when using a threshold of < 10^{-4}); however, polygenic scores for DMA% were associated with skin lesion status when p-value thresholds of < 0.1, < 0.3, and < 0.5 were used to construct the score (Table 3). For example, when a threshold of p < 0.5 was applied, the beta coefficient for the

Table 1. Characteristics of HEALS participants and their associations with arsenic metabolism efficiency, that is, DMA% (n = 2,053).a

Characteristic	No. (%)	DMA%	β	SE	p-Value
Sex					
Women	1,015 (49.4)	Referent	-2.98	0.41	< 0.0001
Men	1,038 (50.6)				
Age					
17–29	438 (21.3)	Referent	-0.06	0.44	0.90
30–39	589 (28.7)				
40–49	557 (27.1)		0.16	0.46	0.74
50–70	469 (22.8)		1.20	0.51	0.02
Water arsenic (μg/L)					
Quartile 1 (0–8)	514 (25.3)	Referent	-0.14	0.43	0.02
Quartile 2 (9–49)	507 (25.0)		-1.68	0.43	< 0.0001
Quartile 3 (50–127)	507 (25.0)		-2.57	0.43	< 0.0001
Smoking status					
Never	1,161 (56.6)	Referent	-0.15	0.44	0.73
Ever	892 (43.5)				
BMI (kg/m²)					
10.2–18.4	864 (42.1)	Referent	0.89	0.32	0.005
18.5–24.9	1,059 (51.6)		2.22	0.65	0.0006
Urinary arsenic adjusted for creatinine (μg/g)					
Quartile 1 (11–89)	426 (20.9)	Referent	-0.19	0.44	0.66
Quartile 2 (90–176)	556 (27.2)		-1.25	0.43	0.004
Quartile 3 (177–343)	595 (29.2)		-2.74	0.46	< 0.0001
Prevented skin lesion					
No	1,974 (96.7)	Referent	-0.59	0.97	0.49
Yes	67 (3.3)				

a SE, and p-values were obtained from mixed linear regression models, adjusting for age, sex, genotyping batch, smoking, BMI, and arsenic concentrations in drinking water. Categorical variables are presented as counts and percentages.

Table 2. Estimates of the percent variance explained (PVE) by genetic factors for DMA% obtained from linear mixed regression models.

HEALS participants	Covariate adjustment	All genotyped SNPs (n = 257,747)	All genotyped and imputed SNPs (n = 1,211,988)				
	PVE (%)	SE	p-Value	PVE (%)	SE	p-Value	
All participants	No adjustment	13	10	0.09	16	12	0.08
	Adjusted for covariates	10	10	0.15	12	12	0.16
	Further adjusted for PCs	11	11	0.16	15	12	0.10
	Adjusting for two 10q24.32 SNPs	3	10	0.36	5	12	0.34
All participants, defining distant relationships as "unrelated"	No adjustment	49	13	0.0004	63	16	0.0002
	Adjusted for covariates	42	14	0.002	54	17	0.001
	Adjusting for two 10q24.32 SNPs	35	14	0.007	41	17	0.01

PCs, principal components.

*Using the full GRM, KIBS on all individuals. The PVE is in between the full narrow-sense heritability and the heritability due to measured SNPs. Covariates including sex, age (continuous), concentration of water arsenic (quartiles), genotyping batch, BMI, and smoking status. **Twenty principal components as additional covariates to minimize inflation in significance testing caused by population stratification. Using a modified GRM, with KIBS set as 0 if KIBS < 0.05 (i.e., ignoring distant relationships); this approximates the KIBS for all individuals. The PVE corresponds to the full narrow-sense heritability. After eliminating close relative pairs from the data set (KIBS > 0.05), our sample size was too small (n = 1,338) to generate a non-zero heritability estimate using GCTA.
The authors observed lower correlations for father–mother pairs (r = 0.18), suggesting that genetic factors influence arsenic metabolic profiles. A population-based study in Taiwan found that patients with Blackfoot disease, an arsenic-induced peripheral vascular disease, were three times more likely to have a family history of Blackfoot disease than community controls (Chen et al. 1988), also suggesting that genetic factors influence arsenic metabolism and/or toxicity. Our heritability estimate for DMA% based on close relatives (48% or 63%) is similar to the heritability estimated in a recent study of Native American families (59%) (Tellez-Plaza et al. 2013).

The association between variants in the 10q24.32/AS3MT region with arsenic methylation capacity is consistent across many candidate gene studies (Agusa et al. 2011; Rodrigues et al. 2012; Schlàwicke Enström et al. 2009) and has recently been confirmed in a GWAS (Pierce et al. 2012, 2013). In addition to AS3MT, dozens of candidate genes have been examined for association with arsenic methylation capacity in prior studies, based on various hypotheses related to methyltransferases, one-carbon metabolism, and reduction reactions (Schläwicke Enström et al. 2009). SNPs in GSTO1, GSTO2 (De Chaudhuri et al. 2008), GSTM1 (Breton et al. 2007; Chiu et al. 1997; Steinmaus et al. 2007), and several other genes have even been reported to be associated with arsenic methylation capacity (Agusa et al. 2012; Enström et al. 2010, 2011; Ghosh et al. 2008; Hernández and Marcos 2008; Porter et al. 2010; Schlàwicke Enström et al. 2009). However, many of these studies were limited by small sample sizes, and the genetic variants under investigation have not shown a great deal of consistency across studies (e.g., Ahsan et al. 2007; Hernández and Marcos 2008; Xu et al. 2009). In this study, we observed evidence of replication for only one SNP with a previously reported association (MTHFR rs1801133), and this association is very weak compared with SNPs in the 10q24.32 region. However, lack of replication could potentially be due to the small sample size and the polygenic nature of the trait.

Discussion

In this study, we have assessed, for the first time, the overall contribution of genetic variation to arsenic methylation capacity, as measured by DMA%, using SNP-based heritability methods. The PVE estimates obtained using only information on close relatives were 63%, consistent with estimates obtained from a recent family-based study (59%) (Tellez-Plaza et al. 2013). When distantly related individuals were included in the analysis, PVE estimates were much lower (16%). Overall, these results suggest that the excess heritability observed in studies of close relatives is due to variants not represented on the genotyping/imputing array (e.g., rare variants) or bias due to shared environmental factors. In regional heritability analyses, the AS3MT region produced the only significant PVE estimate. These results suggest that among common variants captured on our genotyping platform, AS3MT SNPs are the major genetic determinants of arsenic methylation capacity in this population and that contributions of other common variants to methylation capacity are substantially weaker than the effects of AS3MT variants.

Prior studies have examined familial aggregation patterns for arsenic methylation phenotypes. A study of Chileans with long-term exposure to high levels of arsenic in drinking water demonstrated that urinary concentrations of iAs, MMA, and DMA, as well as their ratios, were strongly correlated among siblings (r = –80), after adjustment for total urinary arsenic (Chung et al. 2002). The association polygenic scores for DMA% was −0.05 (p = 0.02), suggesting that many alleles that cause very small increases in DMA% are also inversely associated with skin lesions. The beta coefficients (and ORs) in Table 3 correspond to a one standard deviation change in the polygenic score.

Table 4 shows associations between arsenic metabolite percentages and variants that have shown suggestive evidence of association with arsenic metabolites in prior candidate gene studies. No SNP showed significant evidence of association (p < 0.05) except for MTHFR rs1801133 (p = 0.03 for MMA%) and DNMT1 rs2228612 (p = 0.04 for DMA% and p = 0.03 for iAs%). The directionality of association was consistent with the prior publications for MTHFR rs1801133, but DNMT1 rs2228612 showed an association in the opposite direction to the association previously reported.

Table 3. Associations between polygenic scores for DMA% and skin lesion status.*

p-Value threshold	No. of SNPs	Beta	SE	p-Value	OR (95% CI)*	No. of SNPs	Beta	SE	p-Value	OR (95% CI)*
p < 10⁻⁴	11	−0.007	0.007	0.97	(0.91, 1.03)	13	−0.02	0.007	0.01	0.93 (0.87, 0.98)
p < 10⁻³	67	0.001	0.008	0.09	1.00 (0.94, 1.07)	99	0.01	0.009	0.03	0.99 (0.92, 1.05)
p < 0.01	801	0.01	0.01	0.22	1.06 (0.97, 1.15)	803	0.01	0.01	0.03	1.04 (0.96, 1.14)
p < 0.1	7,810	−0.03	0.02	0.04	0.87 (0.76, 0.99)	7,812	0.04	0.02	0.03	0.86 (0.75, 0.99)
p < 0.3	23,281	−0.04	0.02	0.04	0.85 (0.73, 0.99)	23,283	−0.04	0.02	0.03	0.85 (0.73, 0.98)
p < 0.5	38,644	−0.05	0.02	0.02	0.82 (0.70, 0.96)	38,646	−0.05	0.02	0.01	0.82 (0.70, 0.96)

CI, confidence interval.

*The polygenic model was developed using all 2,053 participants with DMA% data and SNP data; the testing set was an independent set of 2,014 cases and 1,285 controls. The polygenic scores have been standardized, so the β coefficients from the mixed linear regression model correspond to a 1-SD change in the polygenic score, adjusted for sex, age, and genotyping batch. Odds ratios (ORs) were calculated by dividing the beta coefficient by (x^2 – x), where x is the proportion of cases in our sample, in order to estimate the beta from a logistic model; this quantity was exponentiated to obtain an OR.
to the fact that genetic variants can have different patterns of association in different populations because of population differences in linkage disequilibrium (LD) with causal variants, differences in allele frequency, and/or differences in the prevalence of environmental exposures that interact with the variant to influence the phenotype of interest.

In the present study, we used four different modeling approaches to estimate heritability (i.e., PVE). First, we estimated overall heritability using the full IBS-based covariance matrix for all study participants, including closely related individuals. This estimate should fall between the full narrow-sense heritability and the heritability due to measured SNPs (h^2_I). Second, we estimated heritability by focusing on close relatives, using only an IBD-based kinship matrix assuming zero relatedness between pairs of individuals whose estimated relatedness was < 0.05. This is an estimate of the full narrow-sense heritability (h^2_I), capturing contributions of rare variants, but this estimate is prone to bias due to shared environmental factors. Third, we estimated heritability due to genotyped SNPs (h^2_2) using the IBS-based matrix constructed after removing close relatives from the data set. This is a more conservative approach to estimating heritability, as the presence of close relatives may cause bias due to shared environmental exposures. Fourth, we conducted regional heritability analyses, obtaining many heritability estimates corresponding to many small regions of the genome. Although the low heritability observed may reflect a limited contribution of common variants to arsenic methylation capacity, we do not have ideal power to accurately estimate modest heritability values. Excluding close relatives is an important consideration when conducting SNP-based heritability estimation because relatives may be more likely to share similar (unmeasured) environmental exposures that influence the phenotype, potentially inflating heritability estimates (Yang et al. 2010). We have a substantial number of related individuals in our analysis, with only 1,338 samples remaining after removing related pairs with a relationship coefficient > 0.05.

The polygenic scoring analyses suggest that there may be common SNPs with weak effects on arsenic metabolism outside of the AS3MT region. For these analyses, we assumed that SNPs influencing arsenic metabolism will also influence skin lesion risk. This assumption holds for DMA%–associated variants in the AS3MT region and is supported by multiple studies reporting an inverse association between DMA% and skin lesion risk (Ahlan et al. 2007; Gao et al. 2011; Kile et al. 2011; Lindberg et al. 2007; Pierce et al. 2013; Valenzuela et al. 2005). The observation that associations are present only when less stringent p-value thresholds are used implies that there are many variants with very weak effects on arsenic metabolism that also influence skin lesion risk. In order to identify such variants with very weak effects, association studies with larger sample sizes would be needed.

Arsenic-induced skin lesions are also influenced by many nongenetic factors, and we have assessed associations for several such factors in prior studies of this population. For example, we have reported that skin lesion risk is associated with arsenic, BMI (Argos et al. 2011), dietary patterns (Pierce et al. 2011), smoking, and occupational risk factors (Melkonian et al. 2011). Although these associations are clearly important as potential determinants of arsenic toxicity, we do not consider them in our polygenic scoring analysis because they are not potential confounders of the association between a SNP (or a SNP score) and skin lesion status.

In this SNP-based heritability study of arsenic methylation capacity, it has several limitations. First, our total sample size for metabolism study was only 2,053, which is relatively small for SNP-based heritability estimation. This hindered our ability to estimate heritability with high precision and to estimate heritability using a smaller, "unrelated" subset of study participants. Larger sample size, as well as denser SNP measurements (such as genome-wide sequencing), would enhance our ability to estimate heritability and conduct polygenic scoring analysis. We were able to measure arsenic metabolites only in urine and not in other relevant specimens such as blood, although this is a limitation of most studies of arsenic metabolism.

Conclusions

In this SNP-based heritability study of arsenic metabolism efficiency, we estimated total narrow-sense heritability for DMA% to be 48–63% (using data on close relatives only), but the heritability due to measured SNPs was substantially lower (13–16%). Because the larger narrow-sense ("family-based") estimate captures the effects of measured common variants and unmeasured rare variants (as

Table 4. Association between arsenic metabolism phenotypes and candidate SNPs with associations reported in prior studies.

Gene	Reported SNP	Function	Population	Sample size	References	p for association*
GST111-1	rs4925	Ala140Asp	Bangladesh	1,800	Rodriguez et al. 2012	0.46 (0.60)
GST112-2	rs2297235	UTR-5	Taiwan	247	Chen et al. 2012	0.26 (0.21)
CHDH	rs9001	Glu40Ala	Argentina	1,800	Paiva et al. 2010	0.96 (0.54)
MTRR	rs1801394	Ile49Met	Argentina	1,11	Schlüwiwe Engström et al. 2009	0.51 (0.56)
PRDX2	rs3822751	Intron	Bangladesh	1,11	Engström et al. 2010	0.26 (0.22)
DNMT	rs1699969	His97Arg	Argentina	1,11	Engström et al. 2010	0.26 (0.22)
TNX022	rs5746867	Intron	Argentina	1,11	Engström et al. 2010	0.26 (0.22)
Apex1	rs1130409	Asp146Gl	Argentina	1,11	Engström et al. 2010	0.26 (0.22)
GSTM1	Gene deletion		Bangladesh	1,11	Breton et al. 2007	0.51 (0.56)
GST111-1	rs1801133	C677T	Taiwan	1,11	Steinmaus et al. 2007	0.26 (0.22)
MTHFR	rs1801131	A1298C	Argentina	1,11	Steinmaus et al. 2007	0.26 (0.22)
GSTP1	rs1695	ile105Val	Argentina	1,11	Agusa et al. 2012	0.26 (0.22)
CBS	rs234709	Intron	Argentina	1,11	Porter et al. 2010	0.26 (0.22)
DNMT1	rs2228612	Intergenic	Bangladesh	361	Engström et al. 2011	0.46 (0.50)
DNMT3b	rs6087990	Intergenic	Bangladesh	361	Engström et al. 2011	0.46 (0.50)

*a-Values are based on a linear mixed regression model (GEMMA) to account for relatedness; adjustments include sex, age, and genotyping batch. Using rs2241807 data as a proxy of rs9001 ($r^2 = 0.81$); rs10427027, rs5746865, and rs16972909 are proxies for rs12151144, rs5746864, and rs2228612 ($r^2 = 1.0$). r^2 values are based on HapMap GIH data. No data on tag SNPs was available for rs1801394, rs3822751, rs130409, and rs234709.

990

VOLUME 123 | NUMBER 10 | October 2015 · Environmental Health Perspectives
well as shared environmental influences), and the smaller “unrelated” estimate captures the effects of measured common variants only; our results suggest that rare variants (e.g., AS3MT coding variants) and/or unknown or poorly measured environmental/lifestyle factors that cluster in families (e.g., dietary factors) make a substantial contribution of interindividual variation in arsenic methylation capacity. Moderate associations between a polygenic score for DNA% (composed of non-AS3MT SNPs) and skin lesion status were detected, suggesting the existence of additional common variants that have very weak effects on arsenic metabolism efficiency. Our regional heritability analyses did not detect additional susceptibility regions, consistent with the hypothesis that the effects of common variants outside of the 10q24.32/AS3MT region are likely to be very weak. Although these findings may not apply to other populations, our results suggest that future studies of Bangladeshi individuals with comparable exposure levels will have to have large sample sizes in order to detect associations between DNA% and common SNPs outside of the AS3MT region. Studies of rare variants may reveal genetic effects that contribute to the high heritability estimates observed in our family-based heritability analyses.

This work enhances our knowledge regarding the genetic architecture of arsenic methylation capacity in a population where the public health impact of arsenic exposure is substantial. Understanding the determinants of arsenic metabolism is critical because metabolism efficiency will likely affect the internal (or biological effective) dose, which will in turn impact risk for all arsenic-related health conditions. Understanding these determinants will improve our ability to identify high-risk subgroups and develop interventions to enhance metabolism efficiency or reduce exposure.

References

Abhyankar LN, Jones MR, Gualler E, Navas-Acien A. 2012. Arsenic exposure and hypertension: a systematic review. Environ Health Perspect 120:494–500; doi:10.1289/ehp.1103988.

Agusa T, Kunito T, Tue NM, Lan VT, Fujihara J, et al. 2011. Arsenic exposure from drinking water and risk of premalignant skin lesions in Bangladesh: baseline results from the Health Effects of Arsenic Longitudinal Study. Am J Epidemiol 174:185–194.

Argos M, Karaa T, Pierce BL, Chen Y, Parvez F; Islam T, et al. 2011. A prospective study of arsenic exposure from drinking water and incidence of skin lesions in Bangladesh. Am J Epidemiol 174:185–194.

Basu A, Som A, Ghoshal S, Mondal L, Chaubey RC, Bhiwale HD, et al. 2005. Assessment of DNA damage in peripheral blood lymphocytes of individuals susceptible to arsenic induced toxicity in West Bengal, India. Toxicol Lett 159:100–112.

Breton CV, Kile ML, Catalanij PJO, Hoffman E, Qureshi A, Rahman M, et al. 2007. GSTM1 and APE1 genotypes affect arsenic-induced oxidative stress: a repeated measures study. Environ Health 6:39; doi:10.1186/1476-069X-6-39.

Celik I, Gallicchio L, Boyd K, Lam TK, Matanoski G, Tao X, et al. 2008. Arsenic in drinking water and lung cancer: a systematic review. Environ Res 108:389–404.

Chen CJ, Wu MM, Lee SS, Wang JD, Cheng SH, Wu HY. 1988. Atherogenicity and carcinogenicity of high-arsenic artesian well water. Multiple risk factors and related malignant neoplasms of black-foot disease. Anticancer Res 8:452–460.

Chen JW, Wang SL, Wang YH, Sun CW, Huang YL, Chen CJ, et al. 2012. Arsenic methylation, GSTO1 polymorphisms, and metabolic syndrome in an arseniasis endemic area of southwestern Taiwan. Chemosphere 88:432–438.

Cheng Z, Zheng Y, Mortlock R, van Geen A. 2004. Rapid multi-element analysis of groundwater by instrumental neutron activation analysis. Anal Chim Acta 527:259–264.

Concha G, et al. 2010. Low 8-oxo-7,8-dihydro-2'-deoxyguanosine levels and influence of genetic polymorphisms and metabolic syndrome in an arseniasis endemic area of southwestern Taiwan. Genet Epidemiol 34:186–194.

De Chaudhuri S, Ghosh P, Sarma N, Majumdar P, Sau TJ, Basu S, et al. 2008. Genetic variants associated with arsenic susceptibility: study of purine nucleoside phosphorylase, arsenic (+3) methyltransferase, and glutathione S-transferase omega polymorphisms in parents of subjects exposed to high arsenic levels in Bangladesh. Toxicol Environ Health 159:100–112.

Engström KS, Vahter M, Lindh C, Teichert C, Singh R, Concha G, et al. 2010. Low 8-oxo-7,8-dihydro-2'-deoxyguanosine levels and influence of genetic background in an Andean population exposed to high levels of arsenic. Mutat Res 658:98–105.

Engström K, Vahter M, Miakar SJ, Concha G, Nermell B, Raquib R, et al. 2011. Polymorphisms in a multidisciplinary integrative epigenetic investigation. J Expo Sci Environ Epidemiol 18:191–205.

Hussain I, et al. 2006b. Arsenic exposure from drinking water and incidence of skin lesions in Bangladesh. Am J Epidemiol 174:185–194.

Kilic ML, Hoffman E, Rodrigues EG, Breton CV, Ozeskan B, et al. 2011. A pathway-based analysis of urinary arsenic metabolites and skin lesions. Am J Epidemiol 173:778–786.

Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. 2010. MaCH: using sequence and genotype data to estimate haplotype and unphased genotypes. Genet Epidemiol 34:816–834.

Lindberg AL, Kumar R, Goessler W, Thirumaran R, Guroz H, Koppova K, et al. 2007. Metabolism of low-dose inorganic arsenic in a central European population: influence of sex and genetic polymorphisms. Environ Health Perspect 115:1081–1086; doi:10.1289/ehp.10026.

Liu J, Waalkes MP. 2008. Liver is a target of arsenic carcinogenesis. Toxicol Sci 105:24–32.

Melkonian S, Argos M, Pierce BL, Chen Y, Islam T, Ahmed A, et al. 2011. A prospective study of the synergistic effects of arsenic exposure and smoking, sun exposure, fertilizer use, and pesticide use on risk of premalignant skin lesions in Bangladeshi men. Am J Epidemiol 173:183–191.

Mink PJ, Alexander DD, Barr RJ, Kelsh MA, Tsuji JS, et al. 2008. Low-level arsenic exposure in drinking water and bladder cancer: a review and meta-analysis. Regul Toxicol Pharmacol 52:289–310.

Nagamine Y, Pong-Wong R, Navarro P, Vitart V, Hayward C, Rudan I, et al. 2012. Localising loci underlying complex trait variation using Regional Genomic Relationship Mapping. PloS One 7:e46501; doi:10.1371/journal.pone.0046501.

National Research Council. 1999. Arsenic in Drinking Water. Washington, DC:National Academies Press. Available: http://books.nap.edu/openbook.php?isbn=0309063337 (accessed 19 February 2015).

Paiva L, Hernández A, Martínez V, Cresu A, Gunter D, Marcos R. 2010. Association between GSTO2 polymorphism and the urinary arsenic profile in copper industry workers. Environ Res 110:463–468.

Parvez F, Chen Y, Brandt-Rauf PW, Slavkovich V, Islam T, Ahmed A, et al. 2010. A prospective study of the synergistic effects of arsenic exposure and smoking, sun exposure, fertilizer use, and pesticide use on risk of premalignant skin lesions in Bangladeshi men. Am J Epidemiol 173:183–191.

Patterson N, Price AL, Reich D. 2006. Population structure and eigenanalysis. PLoS Genet 2:e190; doi:10.1371/journal.pgen.0020190.
Gao et al.

Pierce BL, Argos M, Chen Y, Melkonian S, Parvez F, Islam T, et al. 2011. Arsenic exposure, dietary patterns, and skin lesion risk in Bangladesh: a prospective study. Am J Epidemiol 173:345–354.

Pierce BL, Rodrigues EG, Tong L, Jasmine F, Argos M, Roy S, et al. 2012. Genome-wide association study identifies chromosome 10q24.32 variants associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet 8:e1002522; doi:10.1371/journal.pgen.1002522.

Pierce BL, Tong L, Argos M, Gao J, Farzana J, Roy S, et al. 2013. Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction. Int J Epidemiol 42:1862–1871.

Porter KE, Basu A, Hubbard AE, Bates MN, Kalman D, Rey D, et al. 2010. Association of genetic variation in cystathionine-β-synthase and arsenic metabolism. Environ Res 107:580–587.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575.

Ramah MN, Ng JC, Naidu R. 2009. Chronic exposure to inorganic arsenic. Environ Health 31(suppl 1):189–200.

Rahman MM, Mahiuddin G, et al. 2012. Speciation of Five Arsenic Compounds in Urine by HPLC/ICP-MS. Available: http://www.perkinelmer.com/PDFs/Downloads/app_speciationfivearseniccompounds.pdf [accessed 20 August 2015].

Rodriguez EG, Kile M, Hoffman E, Quamruzzaman Q, Rahman M, Mahiuddin G, et al. 2012. GSTO and AS3MT genetic polymorphisms and differences in urinary arsenic concentrations among residents in Bangladesh. Biomarkers 17:240–247.

Schräflavicke Enström K, Nermell B, Conchua G, Strömberg U, Vahter M, Broberg K. 2009. Arsenic metabolism is influenced by polymorphisms in genes involved in one-carbon metabolism and reduction reactions. Mutat Res 687:4–14.

Steinmaus C, Moore LE, Shipp M, Kalman D, Rey DA, Biggs ML, et al. 2007. Genetic polymorphisms in MTHFR 677 and 1298, GSTM1 and T1, and metabolism of arsenic. J Toxicol Environ Health A 70:159–170.

Tellez-Plaza M, Gribble MO, Voruganti VS, Francesconi KA, Goessler W, Umans JG, et al. 2013. Heritability and preliminary genome-wide linkage analysis of arsenic metabolites in urine. Environ Health Perspect 121:345–351; doi:10.1289/ehp.1205305.

Thomas DJ, Li J, Waters SB, Xing W, Adair BM, Drobna Z, et al. 2007. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Exp Biol Med (Maywood) 232:3–13.

Thomas DJ, Waters SB, Styblo M. 2004. Elucidating the pathway for arsenic methylation. Toxicol Appl Pharmacol 198:319–326.

Vahidnia A, van der Voet GB, de Wolff FA. 2007. Arsenic neurotoxicity—a review. Hum Exp Toxicol 26:823–832.

Valenzuela DL, Borja-Aburto VH, Garcia-Vargas GG, Cruz-Gonzalez MB, Garcia-Montalvo EA, Calderon-Aranda ES, et al. 2005. Urinary trivalent methylated arsenic species in a population chronically exposed to inorganic arsenic. Environ Health Perspect 113:250–254; doi:10.1289/ehp.7519.

van Geen A, Zheng Y, Versteeg R, Stute M, Horneman A, Dhar R, et al. 2003. Spatial variability of arsenic in 6000 tube wells in a 25 km² area of Bangladesh. Water Resour Res 39; doi:10.1029/2002WR001617.

Xu Y, Li X, Zheng Q, Wang H, Wang Y, Sun G. 2009. Lack of association of glutathione-S-transferase omega 1 (A140D) and omega 2 (N142D) gene polymorphisms with urinary arsenic profile and oxidative stress status in arsenic-exposed population. Mutat Res 679:44–49.

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. 2010. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569.

Yang J, Lee SH, Goddard ME, Visscher PM. 2011. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82.

Yoshida T, Yamauchi H, Fan Sun G. 2004. Chronic health effects in people exposed to arsenic via the drinking water: dose–response relationships in review. Toxicol Appl Pharmacol 198:243–252.

Yu HS, Liao WT, Chai CY. 2006. Arsenic carcinogenesis in the skin. J Biomed Sci 13:657–666.

Yuan Y, Marshall G, Ferreccio C, Steinmaus C, Liew J, Bates M, et al. 2010. Kidney cancer mortality: fifty-year latency patterns related to arsenic exposure. Epidemiology 21:103–108.

Zaitlen N, Kraft P, Patterson N, Pasaniuc B, Bhatia G, Pollack S, et al. 2013. Using extended genealogy to estimate components of heritability for 23 quantitative and dichotomous traits. PLoS Genet 9:e1003520; doi:10.1371/journal.pgen.1003520.

Zhou X, Carbonetto P, Stephens M. 2013. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet 9:e1003264; doi:10.1371/journal.pgen.1003264.

Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44:821–824.