Cleavage of the ADAMTS13 Propeptide Is Not Required for Protease Activity*

Elaine M. Majerus†, Xinglong Zheng‡, Elodee A. Tuley*, and J. Evan Sadler**

From the †Department of Medicine, ‡Department of Pathology and Immunology, and **Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110

ADAMTS13 belongs to the “a disintegrin and metalloprotease with thrombospondin repeats” family, and cleaves von Willebrand factor multimers into smaller forms. For several related proteases, normal folding and enzymatic latency depend on an NH2-terminal propeptide that is removed by proteolytic processing during biosynthesis. However, the ADAMTS13 propeptide is unusually short and poorly conserved, suggesting it may not perform these functions. ADAMTS13 was secreted from transfected HeLa cells with a half-time of 7 h and the rate-limiting step was exported from the endoplasmic reticulum. Deletion of the propeptide did not impair the secretion of active ADAMTS13, indicating that the propeptide is dispensable for folding. Furin was shown to be sufficient for ADAMTS10 propeptide processing in two ways. First, mutation of the furin consensus recognition site prevented propeptide cleavage in HeLa cells and resulted in secretion of pro-ADAMTS13. Second, furin-deficient LoVo cells secreted ADAMTS13 with the propeptide intact, and cotransfection with furin restored propeptide cleavage. In both cell lines, secreted pro-ADAMTS13 had normal proteolytic activity toward von Willebrand factor. In cells coexpressing both ADAMTS13 and von Willebrand factor, pro-ADAMTS13 cleaved pro-von Willebrand factor intracellularly. Therefore, the ADAMTS13 propeptide is not required for folding or secretion, and does not perform the common function of maintaining enzyme latency.

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

** The on-line version of this article (available at http://www.jbc.org) contains sequences.

† Current address: Dept. of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, 34th St. and Civic Center Blvd., Philadelphia, PA 19104.

© The American Society for Biochemistry and Molecular Biology, Inc.

Printed in U.S.A.
ADAMTS13 Propeptide Is Dispensable

Gel (Pierce). LoVo and HeLa cells were from the American Type Culture Collection (Manassas, VA).

Plasmid Constructs—A full-length cDNA encoding ADAMTS13 was cloned into pcDNA3.1/V5-His-TOPO (Invitrogen) to generate plasmid pADAMTS13 as previously described (11, 25). Mutations were introduced using a QuikChange XL site-directed mutagenesis kit (Stratagene) according to the manufacturer’s directions. The predicted proproteinase cleavage site RQR74 was changed to RRKR74 with primer 5’-CAGAGGCCAGGGCAACAGCAGGGGCTGCGAGGCGGCACTC-3’ and its complement, generating plasmid pADAMTS13-R71KR73D. The propeptide (amino acid residues Gln14–Arg15) was deleted with primer 5’TGCCTGGGACCTCCATTTGCTGGGAGGCAGGCGGATCTC-3’ and its complement, generating plasmid pADAMTS13-ΔPro. Sequences were verified using dideoxy sequencing (Big Dye V3.0, U. S. Biochemical Corp., Cleveland, OH). Plasmids encoding COOH-terminal truncations of ADAMTS13 were prepared as described previously (25). These included constructs in which the V5 epitope and polyHis tags were inserted after ADAMTS13 amino acid residues Gln19, Gly363, Gly208, Cys370, or Ala395 were cloned in pcDNA3.1/V5-His-TOPO (Invitrogen); or after Tyr495, Arg567, Ala568, Pro626, Arg705, Arg7075, and Ala1391 were cloned in pcDNA3.1/V5-His-TOPO (Invitrogen). Full-length furin cDNA was cloned from a human umbilical vein endothelial cell agt11 DNA library (28). Oligonucleotide primers based on the furin cDNA sequence (27) were used to amplify a 3’ 1.4-kb fragment by PCR, and this product was used to screen the lambda DNA hybridization library. A full-length DNA insert was identified and cloned into plasmid pCMV, yielding plasmid pFurin. Plasmid pSVHVWF1 (11) encodes full-length human VWF (28).

Transient Transfection of HeLa and LoVo Cells—Cells were split into T25 flasks the day before transfection and replated at ~50% confluence. They were transfected using 8 μl of LipofectAMINE and 12 μl of Plus reagent (Invitrogen) and 5 μg of DNA in 500 μl of Opti-MEM (Invitrogen) according to the manufacturer's directions. Media and cell lysates were collected at 48 h post-transfection. To prepare lysates, cells were washed and scraped in phosphate-buffered saline and lysed on ice in RIPA buffer (10 mM Tris, pH 7.5, 150 mM NaCl, 0.1% SDS, 1% Nonidet P-40, and 0.5% sodium deoxycholate), and insoluble material was removed by centrifugation at 14,000 × g for 10 min. Recombinant samples were concentrated by methanol-chloroform precipitation (29) and then dialyzed into buffer such that the final concentration was 1 M urea, 5 mM β-mercaptoethanol, and 0.25% bromphenol blue. The eluate was diluted into buffer such that the final concentration was 1× urea, 5 mM

![Fig. 1. Time course of ADAMTS13 secretion and oligosaccharide processing.](http://www.jbc.org/content/273/26/17867/F1.expansion.html)

FIG. 1. Time course of ADAMTS13 secretion and oligosaccharide processing—ADAMTS13 biosynthesis was examined to provide a framework for understanding the effects of propeptide mutations.

RESULTS

Time Course of ADAMTS13 Glycosylation and Secretion—ADAMTS13 biosynthesis was examined to provide a framework for understanding the effects of propeptide mutations. In previous studies, the stable expression of ADAMTS13 in several mammalian cell lines was associated with low levels of protease secretion compared with transiently transfected COS-7 or COS-1 cells (25). Therefore, transient transfections were performed with several cell lines including HeLa, RFL6, COS-1, and HeLa. The highest expression levels were obtained with HeLa cells (data not shown), which then were used to assess the time course of ADAMTS13 glycosylation and secretion (Fig. 1). Pulse-labeled ADAMTS13 appeared in the medium within 3 h of chase with a half-time of secretion of ~7 h. No radiolabeled ADAMTS13 could be detected within the cell after 35 h (data not shown), and secreted ADAMTS13 appeared to be stable in the culture medium.

ADAMTS13 purified from plasma is a glycoprotein (23) and recombinant ADAMTS13 contains peptide: N-glycosidase F (PNGase F)-sensitive N-linked oligosaccharides (30). The protein has 10 potential N-glycosylation sites, and to evaluate their status lysates from HeLa cells expressing full-length ADAMTS13 and COOH-terminal truncated variants were digested with endo H. The results indicate that the following sites are utilized: 2 in the metalloprotease domain, 1 in the Cys-rich domain, 2 or 3 in the spacer domain, and 1 in the second thrombospondin-1 repeat. A potential site in the fourth thrombospondin-1 repeat and one in each of the two CUB domains could not be assessed by this approach (data not shown). In addition, sialidase treatment increased the electrophoretic mobility of secreted ADAMTS13 (Fig. 2), but not if digested with PNGase F (data not shown), suggesting that sialic acid is attached mainly to N-linked oligosaccharides. The N-linked oligosaccharides on secreted ADAMTS13 were resistant to endo H (Fig. 1, lanes 8, 12, and 17) suggesting that all or nearly all have a complex-type structure. In contrast, ADAMTS13 in cell lysates was sensitive to endo H digestion.
Molecular mass standards in kilodaltons are indicated at the left and faster migrating bands are thought to result from proteolysis. The upper band (lanes 2, 6, 10, and 14), indicating that intracellular ADAMTS13 is predominately located in compartments of the secretory pathway prior to the cis-Golgi (31). These results suggest that the rate-limiting step for ADAMTS13 secretion is protein folding within the endoplasmic reticulum.

Furin Consensus Site Is Required for ADAMTS13 Propeptide Cleavage—Many metalloproteases are synthesized with a propeptide that may assist in protein folding (18–20) or that may be cleaved to activate thezymogen form of the protease (18, 21, 22). The NH{2}-terminal residue of ADAMTS13 purified from plasma is Ala{75} (12, 23, 24), suggesting that the potential proprotein convertase site after RQRR{74} is cleaved during biosynthesis, but the propeptide of ADAMTS13 is remarkably short and lacks an apparent cysteine-switch motif that might confer latency on pro-ADAMTS13.

To determine whether propeptide cleavage is required for ADAMTS13 proteolytic activity, the potential cleavage site was mutated. Based on previous studies of furin specificity (32), the sequence RQRR{74} was changed to KQDR{74}. Upon expression in HeLa cells intracellular wild-type ADAMTS13 retained the propeptide, whereas secreted ADAMTS13 did not (Fig. 3, lanes 5 and 6), which is consistent with cleavage of the propeptide by furin. In contrast, secreted pro-ADAMTS13-R71K/R73D was detected in the media (Fig. 3, lane 4), demonstrating that the proprotein convertase consensus site is needed for propeptide cleavage and that removal of the propeptide is not necessary for secretion. As shown by reactivity with the anti-V5 antibody, ADAMTS13-R71K/R73D appeared to be secreted less efficiently than wild-type ADAMTS13 (Fig. 3, lanes 8 and 9), suggesting that the R71K/R73D mutations may delay exit from the endoplasmic reticulum in addition to preventing propeptide cleavage.

Furin Cleaves the ADAMTS13 Propeptide—To obtain additional evidence that furin could be the responsible proprotein convertase, ADAMTS13 was expressed in the LoVo human colon adenocarcinoma cell line, which lacks furin activity (33). ADAMTS13 was secreted with its propeptide intact, confirming that propeptide cleavage is not required for secretion (Fig. 4). When ADAMTS13 and furin were co-expressed the propeptide was no longer detected in secreted ADAMTS13, indicating that propeptide cleavage was restored. As observed for ADAMTS13-R71K/R73D in HeLa cells (Fig. 3), pro-ADAMTS13 appeared to be secreted slightly less efficiently than mature ADAMTS13 made in LoVo cells cotransfected with furin (Fig. 4, lanes 10 and 11). Intracellular pro-ADAMTS13 in LoVo cells remained sensitive to endoglycosidase H (data not shown), indicating that decreased secretion is not caused by retention in the trans-Golgi network.

Secreted Pro-ADAMTS13 Is Proteolytically Active—The unusual structural features of the ADAMTS13 propeptide suggest it may not maintain enzyme latency. Therefore, pro-ADAMTS13 variants made in HeLa or LoVo cells were assayed for the ability to cleave VWF (Fig. 5). The VWF substrate consists of multimers that may exceed 20,000 kDa, which do not consistently enter polyacrylamide gels or transfer to membranes, but cleavage by ADAMTS13 results in the appearance of an easily monitored 350-kDa homodimeric fragment. LoVo cells transfected with ADAMTS13 secrete pro-ADAMTS13, and LoVo cells transfected with both ADAMTS13 and furin secrete mature ADAMTS13 lacking the propeptide (Fig. 4). In either case, the secreted pro-ADAMTS13 and ADAMTS13 cleaved VWF with equal efficiency and, as expected, activity was abolished by chelation of divalent metal ions with EDTA. No activity was detected in the medium of cells transfected with vector alone. To exclude the possibility that pro-ADAMTS13 was cleaved and activated during the assay, a sample was analyzed by SDS-PAGE and immunoblotting with anti-V5 antibody and shown to remain intact after incubation (data not shown). Similar results were obtained for wild-type ADAMTS13 lacking propeptide and ADAMTS13-R71K/R73D (with propeptide) expressed in HeLa cells; both proteins cleaved VWF (Fig. 5).

Therefore, propeptide cleavage is not necessary for ADAMTS13 activity against VWF under these assay conditions.

Fig. 2. Sialidase and PNGase F treatment of secreted ADAMTS13. HeLa cells were transfected with pADAMTS13, pulse-labeled with [35S]methionine and [35S]cysteine for 1 h, and medium was collected after 6 h of chase. ADAMTS13 was immunoprecipitated with anti-V5 and then treated without (−) or with sialidase A (Sia) or PNGase F (F). Products were analyzed by SDS-PAGE and autoradiography. The upper band in each lane represents full-length ADAMTS13, and faster migrating bands are thought to result from proteolysis. Molecular mass standards in kilodaltons are indicated at the left.

Fig. 3. Expression of ADAMTS13 with a mutant proprotein convertase cleavage site. HeLa cells were transfected with vector (Vec), pADAMTS13 (WT), or pADAMTS13-R71K/R73D with a mutated propeptide cleavage site (R71K/R73D). Equivalent fractions of media (M) and cell lysates (C) were analyzed by SDS-PAGE and Western blotting with anti-propeptide antibody or with anti-V5 antibody. An intense nonspecific band marked with an asterisk (*) was detected with the anti-propeptide antibody in cell lysates. Molecular mass standards are indicated at the left.

Fig. 4. Expression of ADAMTS13 in LoVo cells. LoVo cells were transfected with vector (Vec), pADAMTS13 alone (WT), or both pADAMTS13 and pFurin (Furin). Media (M) and cell lysates (C) were analyzed by SDS-PAGE and Western blotting with anti-propeptide antibody (left), then stripped and reprobed with anti-V5 antibody (right). Molecular mass standards in kilodaltons are indicated at the left.
Proteolytic activity of pro-ADAMTS13. LoVo cells were transfected with vector (Vec), pADAMTS13 alone (WT), or both pADAMTS13 and pFurin (Furin) as in the legend to Fig. 4. HeLa cells were transfected with vector, pADAMTS13, or pADAMTS13-R71K/R73D with a mutated propeptide cleavage site (R71K/R73D) as described in the legend to Fig. 3. Samples of media were incubated with VWF for 2 h as described under “Experimental Procedures” in the absence (−) or presence (+) of EDTA. Products were analyzed by SDS-PAGE under nonreducing conditions and Western blotting with anti-human VWF antibody. The position of a molecular mass standard in kilodaltons and the homodimeric 550-kDa cleavage product of VWF (arrow) are indicated at the left.

Protease Is Not Required for ADAMTS13 Intracellular Folding—The ADAMTS13 propeptide does not maintain enzyme latency, but might promote folding in the endoplasmic reticulum and enable secretion. To test this hypothesis, the nucleotides that encode the propeptide, amino acids 34–74, were deleted from the ADAMTS13 cDNA. In the expressed mutant protein, amino acid residues Met1-Phe56 comprising the signal peptide were juxtaposed to amino acid residue Ala170, which is the NH2 terminus of purified plasma ADAMTS13 (23, 24). Both wild-type ADAMTS13 and ADAMTS13-delPro were secreted efficiently by HeLa cells (Fig. 6A) and were equally active in cleaving VWF (Fig. 6B); therefore, the propeptide is not necessary for folding and secretion of active ADAMTS13.

Intracellular Pro-ADAMTS13 and ADAMTS13 Are Proteolytically Active—Proteases that require cleavage by furin for activation would become proteolytically competent only upon encountering furin in the trans-Golgi, whereas ADAMTS13 might be active from the time folding was completed in the endoplasmic reticulum. If so, then coexpression with ADAMTS13 could result in the intracellular proteolysis of a substrate protein such as VWF. This prediction was confirmed by transfection of HeLa cells (Fig. 7). Intracellular pro-VWF was cleaved to yield the expected 176-kDa COOH-terminal fragment by wild-type ADAMTS13, by ADAMTS13-R71K/R73D with a mutated furin cleavage site, and by ADAMTS13-delPro lacking the propeptide. The oligosaccharides of intracellular pro-VWF are endo H-sensitive, indicating that it is located within the endoplasmic reticulum (34). In previous studies, secreted ADAMTS13-del6 truncated after the metalloprotease domain was inactive and ADAMTS13-del2 truncated after the spacer domain was active toward plasma VWF multimers. The intracellular forms of these ADAMTS13 mutant proteins had similar properties in HeLa cells: ADAMTS13-del6 was inactive and ADAMTS13-del2 was active toward pro-VWF (Fig. 7). Cells that expressed active ADAMTS13 and VWF also secreted reduced amounts of VWF that consisted only of small multimers (data not shown).

DISCUSSION

As is the case for many other proteins, intracellular ADAMTS13 contains predominantly endo H-sensitive N-linked oligosaccharides (Fig. 1), suggesting that exit from the endoplasmic reticulum is relatively slow compared with transport through the Golgi and secretion. During biosynthesis, at least 6 of 10 potential N-glycosylation sites are modified with complex-type oligosaccharides, which are likely to be sialylated (Fig. 2). Consensus sequences also are present in several thrombospondin-1 repeats for C-mannosylation of Trp and O-fucosylation of certain Ser/Thr residues (11), but their modification status has not yet been determined. Such extensive glycosylation might contribute to the relatively long 2–3-day half-life of ADAMTS13 in plasma (35) or to substrate recognition. For example, glycosylation of VWF, the ADAMTS13 substrate, was shown previously to determine the plasma half-life of VWF by preventing clearance by the hepatic asialoglycoprotein receptor (36).

Proteases of the metzincin superfamily often have NH2-terminal propeptides (9) that may be removed by proteolysis in the course of enzyme activation. For example, the propeptides of all ADAMTs1s (1, 37), most ADAMs (15, 16), and many MMPs (17) have potential proprotein convertase sites. Cleavage at these sites has been demonstrated for ADAMTS1, -2, -4, -5, -9, and -12 (10, 22, 38–42), for ADAM9, -10, -12, -15, -17, and -19 (18, 43–47), and for MMP11, -14, -16, and -23 (48–51). The human ADAMTS13 propeptide also has a typical proprotein processing site, RQRR74, and propeptide cleavage was prevented either by mutations that are known to impair recognition by furin (Fig. 3) or by expression in furin-deficient LoVo cells (Fig. 4). Cotransfection with furin restored normal processing in LoVo cells, proving that furin can cleave the ADAMTS13 propeptide. LoVo cells contain mRNA for several other proprotein convertases including PACE4, PC6, and PC7 (52–54). Provided the enzymes are functional, inability to proc-
cess ADAMTS13 suggests that these alternative proteases in LoVo cells cannot substitute for furin. Furin is ubiquitously expressed and seems likely to process the ADAMTS13 propeptide in vivo, but this conclusion is provisional because data are not available on the proprotein convertase repertoire of hepatic perisinusoidal cells, where ADAMTS13 reportedly is made (55).

The propeptides of metalloproteases usually maintain the enzymes in an inactive or latent state, and enzyme activation may be linked to proteolytic cleavage of the propeptide. The functional importance of propeptide removal has been shown directly for ADAMTS1 (22), for ADAM12, -17 and -19 (18, 46, 47), and for MMP11, -14, and -16 (48, 49, 51); in each case, blocking propeptide cleavage causes the secretion of a persistently inactivezymogen. In addition, an intramolecular chaperone function has been demonstrated for the propeptides of ADAM12 (18), ADAM17 (19), and MMP14 (20).

The presence of a functional furin cleavage site between the propeptide and metalloprotease domain suggested that ADAMTS13 might also require proteolytic activation. However, pro-ADAMTS13 proved to be active whether obtained by mutation of the furin cleavage site or by expression in furin-deficient cells (Fig. 5). Although unusual, the result is consistent with the lack of a cysteine-switch motif in the propeptide that might inhibit the metalloprotease domain. The human ADAMTS13 propeptide does contain a Cys residue that is not in a cysteine-switch sequence context, and this cysteine is not conserved in ADAMTS13 of other animal species (Fig. 8). In addition, deletion of the propeptide was compatible with the secretion of active ADAMTS13 (Fig. 6), indicating that the propeptide is not required for folding. In contrast to many related proteases that are activated by proprotein convertase cleavage in late Golgi compartments, ADAMTS13 appears to be active from the time folding is completed in the endoplasmic reticulum (Fig. 7).

The unexpected finding that pro-ADAMTS13 has proteolytic activity is consistent with several observations relating to its expression in cultured cells and in vivo. Recombinant ADAMTS13 usually is expressed at a relatively modest level in a variety of cell lines. Typical concentrations in conditioned medium have been <0.2 μg/ml when expressed in stably transfected baby hamster kidney, COS-7, or Chinese hamster ovary cells. Levels of only 1–2 μg/ml were achieved in transiently transfected COS-7 cells and in baculovirus-infected Sf9 cells (25). It is possible that the expression of ADAMTS13 in these cells is limited by toxic effects of active intracellular pro-ADAMTS13, which may have some activity toward proteins other than its favored substrate, VWF. Also, because ADAMTS13 can degrade VWF intracellularly (Fig. 7), the assembly of functional VWF in vivo would require the two proteins to be expressed in different cells. As expected, ADAMTS13 is expressed by hepatic stellate cells (55), whereas VWF is expressed by endothelial cells (56) and megakaryocytes (57).

ADAMTS13 appears to be an unusual example, perhaps the first, of a metzincin metalloprotease that has no mechanism to enforce latency, so that once folded it is constitutively active. However, this conclusion does not exclude an important biological function for the ADAMTS13 propeptide, whose distinctive structural features are shared among ADAMTS13 from fish (Fugu rubripes) and mammals (Homo sapiens, Mus musculus, and Rattus norvegicus) (Fig. 8). These features include the lack of a cysteine-switch motif, remarkably short length, and the persistence of a proprotein convertase cleavage site. Such conservation indicates that the current structure and properties of ADAMTS13 developed before the divergence of fish and tetrapod lineages at least 360 million years ago (58) and have been preserved largely intact since then. The selectable functions of the propeptide remain unknown, but may reflect interactions of ADAMTS13 that are visible to natural selection in vivo but not detected readily in cultured cell systems. For example, the propeptide may influence the efficiency of synthesis, regulate the activity or toxicity of ADAMTS13, or enable it to bind other macromolecules.

Fig. 7. Pro-ADAMTS13 cleaves pro-VWF intracellularly in HeLa cells.
HeLa cells were cotransfected to express human VWF and a vector control (Vec), wild-type pADAMTS13 (WT), pADAMTS13-R71K/R73D with a mutated propeptide cleavage site (R71K/R73D), pADAMTS13-delPro encoding ADAMTS13 lacking its propeptide (del-Pro), pdel6 encoding ADAMTS13 truncated after the metalloprotease domain (del6), or pdel2 encoding ADAMTS13 truncated after the spacer domain (del2). VWF was immunoprecipitated from cell lysates and analyzed by SDS-PAGE under reducing conditions and Western blotting with anti-VWF antibody. The positions of molecular mass standards in kilodaltons, ~360-kDa pro-VWF and the 176-kDa COOH-terminal fragment of VWF, are indicated at the left.

Fig. 8. Amino acid sequences of ADAMTS13 propeptides.
The sequences shown include the first residue after the predicted signal peptide cleavage site (59) through the first residue after the known (human) (23, 24) or predicted (others) proprotein convertase cleavage sites, which are shown in boldface. Amino acid sequences were aligned with the program MEGALIGN (DNASTAR) using the ClustalW algorithm and Gonnet weight matrix. Residues identical in at least two sequences are boxed. The human sequence is from GenBankTMAY055376 (11). The mouse sequence is from NCB1 Entrez GenomeScan (60) model Mn2.39245.50_123.3, which overlaps with LocusLink LOC270928 and GenBankTM XP 205503. The rat sequence is from NCB1 Entrez GenomeScan model Rn3_990_1_5.5. The fugu sequence is from gene model FRUP00000165554 (61) extended with additional 5′ sites based on alignments of fugu genomic sequence with orthologous Tetraodon nigroviridis and mammalian ADAMTS13 sequences. The mouse, rat, and fugu ADAMTS13 sequences employed are available online as Supplemental Materials.
Acknowledgments—We thank Claude Maurier (CRTS, Lille, France) for providing purified human plasma VWF, and Stuart Kornfeld (Washington University) for providing LoVo cells.

REFERENCES

1. Hurskainen, T. L., Hirohata, S., Seldin, M. F., and Apte, S. S. (1999) J. Biol. Chem. 274, 25555–25561
2. Furlan, M., Robles, R., and Lami, B. (1996) Blood 87, 4223–4234
3. Tsai, H. M. (1990) Blood 87, 4235–4244
4. Moake, J. L., Rudy, C. K., Trell, J. H., Weinstein, M. J., Colanino, N. M., Azcar, J., Seder, R. H., Hong, S. L., and Deykin, D. (1982) N. Engl. J. Med. 307, 1432–1435
5. Asada, Y., Sumiyoshi, A., Hayashi, T., Suzuki, Y., and Kajikawa, K. (1985) Thromb. Res. 30, 469–479
6. Rock, G. A., Shumak, K. H., Buskard, N. A., Blanchette, V. S., Kelton, J. G., Nair, R. C., and Spaffo, R. A. (1991) N. Engl. J. Med. 325, 383–397
7. Furlan, M., Lammle, B. (1998) Ballieres Clin. Haematol. 11, 509–514
8. Tsai, H. M., and Lian, E. C. (1998) N. Engl. J. Med. 339, 1585–1594
9. Stöcker, W., Grams, F., Baumann, U., Reinemer, P., Comis-Ruth, F.-X., Drake, D. H., and Rode, W. (1995) Protein Sci. 4, 823–840
10. Somerville, R. P., Longpre, J. M., Jungers, K. A., Engle, J. M., Ross, M., Evans, S., Wight, T. N., Leduc, R., and Apte, S. S. (2003) J. Biol. Chem. 278, 9503–9513
11. Zheng, X., Chung, D., Takayama, T. K., Majerus, E. M., Sadler, J. E., and Juhan-Vague, I., and Nalbone, G. (2003) J. Biol. Chem. 278, 1662–1666
12. Abbaszade, I., Liu, R. Q., Yang, F., Rosenfeld, S. A., Ross, O. H., Link, J. R., Ellis, D. M., Tortorella, M. D., Pratta, M. A., Hollis, J. M., Wynn, R., Duke, J. L., George, H. J., Hillman, M. C., Jr., Murphy, K., Wiswall, B. H., Copeland, R. A., Decize, C. P., Bruckner, R., Nages, H., Itoh, Y., Newton, R. C., Magolda, R. L., Trzaskos, J. M., Hollis, G. F., Arner, E. C., and Burn, T. C. (1999) J. Biol. Chem. 274, 23443–23450
13. Levy, G. G., Nichols, W. C., Lian, E. C., Foroud, T., McGee, J. N., and McClintick, J. N. (1999) J. Biol. Chem. 274, 1654–1661
14. Kornfeld, R., and Kornfeld, S. (1985) J. Biol. Chem. 260, 6643–6651
15. Cal, S., Obaya, A. J., Lamazares, M., Garabaya, C., Quesada, V., López-Otín, C., and Arner, E. C. (2001) Gene (Amst.) 253, 49–62
16. Soejima, K., Mimura, N., Hirashima, M., Maeda, H., Hamamoto, T., Nakagaki, Y., (2002) J. Clin. Invest. 110, 13427–13435
17. Visse, R., and Nagase, H. (2003) J. Biol. Chem. 278, 1662–1666
18. Milla, M. E., Leesnitzer, M. A., Moss, M. L., Clay, W. C., Carter, H. L., Miller, R. C., Magolda, R. L., Trzaskos, J. M., Hollis, G. F., Arner, E. C., and Burn, T. C. (1999) J. Biol. Chem. 274, 23443–23450
19. Szalay, J. T., and Levene, J. (1999) J. Biol. Chem. 274, 13427–13433
20. Fujikawa, K., McMullen, B., Sadler, J. E., and Fuchs, S. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 3578–3582
21. Leesnitzer, M. A., Moss, M. L., Clay, W. C., Carter, H. L., Miller, R. C., Magolda, R. L., Trzaskos, J. M., Hollis, G. F., Arner, E. C., and Burn, T. C. (1999) J. Biol. Chem. 274, 30563–30570
22. Lai, J., Furlan, M., and Lami, B. (2001) J. Biol. Chem. 276, 29648–29653
23. Van Wart, H. E., and Bibudel-Hansen, H. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 3578–3582
24. Rodriguez-Manzanque, J. C., Westling, T., Siah, N. Luque, A., Knauper, V., Murphy, G., Sandy, J. D., and Iruela-Arispe, M. L. (2002) Blood 99, 501–508
25. Fujikawa, K., Suzuki, H., McMullen, B., and Chung, D. (2001) Blood 98, 1662–1666
26. Gerritsen, H. E., Robles, R., Lammle, B., and Furlan, M. (2001) Blood 98, 1654–1661
27. Zheng, X., Nishio, K., Majerus, E. M., and Sadler, J. E. (2003) J. Biol. Chem. 278, 30136–30141
28. Sadler, J. E., Shulman-Bloch, I. K., Sorece, J. M., Harlan, J. M., Titani, K., and Davie, E. W. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 6394–6398
29. Ruesbroek, A. J., Schalken, J. A., Leunissen, J. A., Onnekinck, C., Bloemers, H. P., and Van de Ven, W. J. (1986) EMBO J. 5, 2197–2202
30. Matsushita, T., and Sadler, J. E. (1995) J. Biol. Chem. 270, 13406–13414
31. Wessler, S. E., and Flugge, U. I. (1984) Anal. Biochem. 138, 141–143
32. Kokame, K., Matsuura, M., Sogi, K., Kato, Y., Harada, H., Furutani, M., Tani, H., Kono, M., Kamiya, K., Kawanaka, Y., Miyata, T., and Fujimura, Y. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 11902–11907
33. Kornfeld, R., and Kornfeld, S. (1985) Annu. Rev. Biochem. 54, 631–664
34. Dellaire, F., Savard, J., Bartels, L., Royer, M., and Leclerc, G. (1999) Biochemistry 38, 6653–6658
