Application of three-dimensional ultrasonography (3D ultrasound) to pretreatment evaluation of plastic induration of the penis (Peyronie’s disease)

Janusz Tyloch*, Dominik Tyloch*, Jan Adamowicz, Patryk Warsiński, Adam Ostrowski, Magdalena Nowikiewicz, Tomasz Drewa

* the authors shared the first authorship

Chair of Urology, Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland

Abstract

Aim: Peyronie’s disease (PD) or plastic induration of the penis, require complete evaluation of plaques in order to decide the best therapeutic option for patient. The purpose of this study is to compare the findings of three-dimensional ultrasound (3D US) and two-dimensional ultrasound (2D US) in patients with PD. Materials and methods: Twenty patients with PD aged 30 to 72 years were included in study. The examination was performed with a 12 MHz linear probe, using 2D US and 3D US. Localization and size of plaques were determined and time needed for imagine acquisition was determined in every case. Results: 3D ultrasound permits the visualization of the entire plaque in the coronal plane of plaque with its precise measurements. No statistical difference in plaque dimensions and its surface area assessment using 3D US and 2D US was found (127.72 mm² vs. 128.74 mm², p>0.05). The possibility to perform detailed analysis of the acquired images using generated digital cube reduced the average duration of the acquisition to 69.8 seconds (median 64 seconds) for 3D US vs. 151.25 seconds (median 145.5 seconds) for 2D US (p<0.05). A supplementary plaque was detected using 3D US. Conclusions: 3D US seems to be a valuable complement of 2D US for patients with PD. The acquisition time is significantly reduced using 3D US comparing to 2D US and thus it is more comfortable for the patient.

Keywords: Peyronie’s disease; two-dimensional ultrasound; three-dimensional ultrasound

Introduction

Plastic induration of the penis (induratio penis plastica) was described for the first time by de La Peyronie in 1743. This condition is characterized by the occurrence of cicatrical and fibrous sclerotic areas within the tunica albuginea, septum or tissues of the cavernous body resulting in a painful bend during erection, which impedes sexual intercourse [1-3]. The induration develops slowly into the form of plaque or hard “string” palpable in the dorsal part of the penis and near the urethra. The epidemiological data on Peyronie’s disease (PD) are inconsistent. PD affects males of all ages, from teenagers to elders. It was established that tunical mechanical stress and microvascular trauma were major contributory factors to the pathophysiology of PD. The role of genetics as a causative factor for PD is still unknown [4].

Evaluation of the plaque localization and size determines the therapeutic strategy and provides a basis for determining progress in the course of medical treatment. Imaging techniques used to evaluate the size of the plaque were X-ray examinations, ultrasound (US) and magnetic
resonance imaging (MRI) [5-7]. The US examination is most cost-effective and most accessible of the mentioned methods and thus seems to be an excellent diagnostic modality [8]. It provides the opportunity to assess disease progress and response to treatment during follow up in an outpatient clinic [9]. In addition, current US devices permitted three-dimensional ultrasound (3D US) images.

According to our knowledge, no data regarding 3D US in PD have been published. For this reason, the purpose of the study was to compare 3D US and 2D US findings in PD.

**Materials and method**

**Patients**

Twenty patients with PD were included in this prospective study. The study was conducted between 2007-2018 in the Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń. The average patient age was 55.4 years (30-72, mediana 56.5 years). The diagnosis criteria for inclusion was a palpable plaque in the tunica albuginea and acute symptoms of active disease, e.g. pain. The angle of curvature in patients ranged from 15° to 35°. The exclusion criteria was prior treatment for PD. The study was approved by the local Ethics Committee. All patients gave their signature on the written informed consent before joining the study.

**Ultrasound examination**

All US examinations were performed by one experienced urologist using B&K Medical Pro Focus 2202 device with 12 MHz linear probe. The first step of evaluation included a regular grey-scale US scan of the penis in order to visualize PD plaque. Both axial and sagittal scans were obtained with dimension assessment. In the second step the 3D ultrasound images were obtained. The probe was set transversely to the longer axis of the penis and it was moved once at the dorsal surface from the root of the penis toward the glans with the 3D option on (fig 1). During the probe movement, the device acquires single ultrasound images and converts them into a three-dimensional shape (cube)

![3D ultrasound acquisition process. (A, B) The probe was set transversely to the longer axis of the penis and it was moved once at the dorsal surface from the root of the penis toward the glans with the 3D option on. (C) During the probe movement the device acquires single ultrasound images and converts them into a three-dimensional shape (cube)](image)

![2D ultrasound a) axial (transverse) cross-section of the penis. Visualization of cavernous bodies (A, B) and hyperechogenic plaque (arrow) above the right cavernous body; b) sagittal (longitudinal) cross-section of the penis with hyperechogenic plaque (arrow).](image)

![3D ultrasound: visualization of the cube consisting of voxels acquired after 2D image processing. This cube may be rotated in any direction, the walls may be relocated and 3D images may be generated. It depicts transverse cross-section of the penis with hyperechogenic plaque within the tunica albuginea (front wall of the cube). Cavernous bodies (A,B) and hyperechogenic plaque (arrow)](image)
Statistical analysis

Nonparametric data are presented by mean or median and range. The Mann–Whitney U test was used to compare 2D US and 3D US examinations. A p value <0.05 was chosen for statistical significance.

Results

No statistical difference in plaque dimensions and its surface area assessment using 3D US and 2D US was found (127.72 mm² vs. 128.74 mm², p>0.05) (fig 5). The possibility to perform detailed analysis of the acquired images using generated digital cube reduced the average duration of the acquisition to 69.8 seconds (median 64 seconds) for 3D US vs. 151.25 seconds (median 145.5 seconds) for 2D US (p<0.05). One new plaque was identified during 3D image processing which was not recognized earlier using 2D US (fig 6). Seventeen patients had a single plaque and three patients had two plaques. Eighteen plaques were located in the dorsal part of the cavernous body, three in the lateral part of the cavernous body and two in the ventral part of the penis, near the spongy body of the urethra. Two examinations had to be repeated due to an error during the acquisition (the first...
examination was repeated due to the patient’s sneezing and the second due to the inappropriate movement of the probe by the physician). Both errors were noted directly on acquisition; therefore, the procedure was repeated immediately, without the need to recall the patient.

**Discussion**

Visualization of the plaques permits the estimate of the extent of the lesion, and the measurement of its size and impact on penis behavior during erection. This information is crucial for interventional treatment modalities and planning the procedure itself.

The first imaging method of PD was an X-ray examination. For the penis examination a mammography-like technique is used [10]. The effect depends on the amount of calcification in the lesion, only the calcified lesions being visible. Moreover, lesions located proximally to the root of the penis in some cases may be not visualized due to impaired imaging by overlapping surrounding tissues. The disadvantage of this method is the need to expose the body to radiation in the vicinity of the testicles.

MRI, a non-radiant imaging technique, is an accurate method for PD lesions assessment, especially for planning the surgery procedure, but is expensive and devices are still not widely available [11,12]. MRI should be considered especially in cases with suspicion of malignant disease and prior penile surgery [13,14]. Calcified plaques are better visualized with the use of US. Moreover, color Doppler US was proved to be superior to MRI in evaluating vascular causes of erectile dysfunction [15].

US examination is a largely available and repeatable imaging technique, reasonably cost and without radiation exposure, being the method of choice in the initial urological evaluation. Pioneering reports describing the application of US in PD assessment were published in 1980 [16-18]. The major advantages as painless, free of risk, easy to perform examination, yielding precise morphologic images ideal for documentation and assessment of the anatomic alterations, as well as the follow up, were underlined [19]. Kumar et al showed that US was more accurate than the clinical examination in the assessment of the extent lesions. In 30% of patients included in his study, US demonstrated that fibrotic plaques were in fact more extensive than primarily described after palpation [20].

In the last 40 years, the image quality was improved due to development of higher frequency probes and US devices equipped with additional properties as color Doppler, power Doppler and elastography [21-24]. The most commonly used method was 2D examination visualizing the axial and sagittal view of the plaque. US provides identification of small and non-palpable lesions and enables to assess the extent of fibrosis. All patients with erectile dysfunction and penile rigidity, length loss, chronic pain with erection should be suspected of PD manifested with nonpalpable isolated septal scars [25]. Chung et al showed, with 1120 patients, a strong correlation between the plaque size and the development of erectile dysfunction. Moreover, authors concluded that large plaque size is a strong predictor of surgical intervention [26]. The association of vascular abnormalities with PD has been proven. Kadioğlu et al indicated that penile vascular abnormalities could be observed in 76.5% of PD cases with a tendency to increase to 87.5% among patients with erectile dysfunction [27].

Devices with 3D software option allowed to visualize the coronal view of the penis. This was a breakthrough, which facilitated visualization of the whole plaque in its actual size, shape and location. To our knowledge, it is the first study that has used 3D US in the assessment of plaques in PD. In addition, the US examination of penis is quite an intimate procedure, so it is crucial to limit the examination time to minimum. Our study showed that 3D US examination lasts for the patient only as long as the data acquisition requires. All measurements, evaluation of the quantity and size of plaques may be performed after the image acquisition, similarly to computed tomography and MRI, without the patient’s participation. Furthermore, 3D US seems to be a great tool for the evaluation of treatment outcomes. It allows to assess the effect of treatment on the plaque size, echogenicity and plaque shape. Imaging of the entire plaque gives a unique opportunity to compare images during treatment. 3D ultrasound examination in those cases ceases to be a subjective assessment, but becomes an objective examination that can be fully appraised in the future by another physician during follow up, which is difficult in 2D ultrasound.

The limitations of the US technique are related to the individual skills of the examiner, which affect the length and quality of the 2D US and 3D US examinations. Each case can vary in severity and may require a different examination time. Assessing the quality of examinations, the attention should be paid to the appropriate speed for the movement of the ultrasound probe along the examined tissue maintaining a constant direction and angle of displacement. Even slight irregularities during the acquisition process disturb the final image (cube) and make impossible to assess the correct dimensions of plaque in the coronal view. In our study, all examinations were performed by one experienced 3D ultrasound urologist.

The limitations of the study are the lack of inter- and intraobserver comparisons. Also, US results were not
compared with other imaging technique, e.g. MRI. The lack of follow-up makes it impossible to assess the value of 3D US in treatment results assessment.

In our opinion a prospective study comparing the histological, MRI and US with elastography and Doppler findings should be performed to improve the knowledge regarding the pathology of PD.

Conclusions

3D US seems to be a valuable complement of 2D US for patients suffering from PD. The final evaluation of disease using 3D US is performed after the acquisition of images and does not require patient participation. It reduces significantly the acquisition time and thus it is more comfortable for the patient.

Conflict of interest: none

References

1. de la Peyronie FG. Sur quelques obstacles, qui s’opposent à l’ejaculation naturelle de la semence. Memoires de l’Academie Royale de Medecine (Paris) 1743;1:425-434.
2. Androutos G, François Gigot de La Peyronie (1678-1747), benefactor of surgery and supporter of the fusion of medicine and surgery, and the disease that bears his name. Prog Urol 2002;12:527-533.
3. Sommer F, Schwarzer U, Wassmer G, et al. Epidemiology of Peyronie’s disease. Int J Impot Res 2002;14:379-383.
4. Al-Thakafi S, Al-Hathal N. Peyronie’s disease: a literature review on epidemiology, genetics, pathophysiology, diagnosis and work-up. Transl Androlog Urol 2016;5:280-289.
5. Pretorius ES, Siegelman ES, Ramchandani P, Banner MP. MR imaging of the penis. Radiographics 2001;21 Spec No:S283-S298.
6. Veleck D, Evans JA. Cavernoscopy. Radiology 1982;144:781-785.
7. Miller HC, Ardizzone J. Peyronie disease treated with ultrasound and hydrocortisone. Urology 1983;21:584-585.
8. Formara P, Gerbershagen HP. Ultrasound in patients affected with Peyronie’s disease. World J Urol 2004;22:365-367.
9. Hamm B, Friedrich M, Kelami A. Ultrasound Imaging in Peyronie disease. Urology 1986;28:540-545.
10. Andresen R, Wegner HE, Miller K, Banzer D. Imaging modalities in Peyronie’s disease. An intrapersonal comparison of ultrasound sonography, X-ray in mammography technique, computerized tomography, and nuclear magnetic resonance in 20 patients. Eur Urol 1998;34:128-134.
11. Kirkham AP, Illing RO, Minhas S, Minhas S, Allen C. MR imaging of nonmalignant penile lesions. Radiographics 2008;28:837-853.
12. Wang HJ, Guan J, Lin JH, Pan BT, Deng CH, Guo Y. Diagnostic value of high-field MRI for Peyronie’s disease. Zhonghua Nan Ke Xue 2016;22:787-791.
13. Nicolai M, Carriero A, De Thomasis R, et al. Dynamic magnetic resonance imaging versus dynamic echochography in the staging of Peyronie’s disease. Arch Ital Urol Androl 1996;68(5 Suppl):97-100.
14. Pawlowska E, Bianek-Bodziak A. Imaging modalities and clinical assessment in men affected with Peyronie’s disease. Pol J Radiol 2011;76:33-37.
15. Shenoy-Bhangle A, Perez-Johnston R, Singh A. Penile imaging. Radiol Clin North Am 2012;50:1167-1181.
16. Altaffer LF 3rd, Jordan GH. Sonographic demonstration of Peyronie plaques. Urology 1981;17:292-295.
17. Trombetta C, Pirozzi-Farina F, Siracusano S, et al. Role of penile ultrasonography in erection deficit. Arch Ital Urol Nefrol Androl 1992;64 Suppl 2:93-96.
18. Bock E, Solivetti FM, Calugi V, Rossi P. Peyronie’s disease. Ultrasonic evaluation. Radiol Med 1988;76:601-603.
19. Smith JF, Brant WO, Fradet V, et al. Penile sonographic and clinical characteristics in men with Peyronie’s disease. J Sex Med 2009;6:2858-2867.
20. Kumar B, Narang T, Gupta S, Gulati M. A clinico-aetiologic and ultrasonographic study of Peyronie’s disease. Sex Health 2006;3:113-118.
21. Fleischer AC, Rhamy RK. Sonographic evaluation of Peyronie disease. Urology 1981;17:290-291.
22. Kisselgoff D, Lebensart PD, Shenfeld OZ. Penile compartment syndrome: a possible explanation for penile pain in peyronie disease shown by penile sonography. J Ultrasound Med 2007;26:657-660.
23. Prado D. New sonographic aspects of peyronie disease. J Ultrasound Med 2009;28:217-232.
24. Bertolotto M, Pavlica P, Serafini G, Quaia E, Zappetti R. Painful penile induration: imaging findings and management. Radiographics 2009;29:477-493.
25. Bella AJ, Sener A, Foell K, Brock GB. Nonpalpable scarring of the penile septum as a cause of erectile dysfunction: an atypical form of Peyronie’s disease. J Sex Med 2007;4:226-230.
26. Chung E, De Young L, Brock GB. Penile duplex ultrasonography in men with Peyronie’s disease: is it veno-occlusive dysfunction or poor cavernosal arterial inflow that contributes to erectile dysfunction? J Sex Med 2011;8:3446-3451.
27. Kadioğlu A, Tefekli A, Erol H, Cayan S, Kandirali E. Color Doppler ultrasound assessment of penile vascular system in men with Peyronie’s disease. IntJImpotRes2000;12:263-267.