An updated systematic review on the association between Cd exposure, blood pressure and hypertension

Airton C. Martinsa, Ana Carolina B. Almeida Lopesb, Mariana R. Urbanoc, Maria de Fatima H. Carvalhod, Ana Maria R. Silvab, Alexey A. Tinkove,f, Michael Aschnera,e, Arthur E. Mesasg, Ellen K. Silbergeldh, Monica M.B. Paolielloa,b,*

aDepartment of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA

bGraduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, 86038-350 Londrina, PR, Brazil

cDepartment of Statistics, State University of Londrina, Rodovia Celso Garcia Cid, Km 380, s/no, Campus Universitário, 86057-970 Londrina, PR, Brazil

dInorganic Contaminants Department, Adolfo Lutz Institute, Sao Paulo, Avenida Doutor Arnaldo, 355, 01246-000 São Paulo, SP, Brazil

eI. M. Sechenov First Moscow Medical University (Sechenov University), Bolshaya Pirogovskaya St., 19-1, 119146 Moscow, Russia

fYaroslavl State University, Yaroslavl 150000, Russia

gUniversidad de Castilla-La Mancha, Facultad de Enfermería, Edificio Melchor Cano, Campus Universitario de Cuenca, Camino de Pozuelo, s/n 16071 Cuenca, Spain

hEmerita Professor, Johns Hopkins University, Bloomberg School of Public Health, 615N Wolfe St, 21205 Baltimore, MD, USA

Abstract

\textbf{Background:} Since the first report by Perry et al. (1955), most studies affirmed the hypertensive effects of cadmium (Cd) in humans. Nonetheless, conclusions between studies remain inconsistent.

\textbf{Objective:} The aim of this study was to reevaluate the evidence for a potential relationship between Cd exposure and altered blood pressure and/or hypertension, focusing on studies published between January 2010 and March 2020.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

*Corresponding author at: Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA. monica.paoliello@einsteinmed.org (M.M.B. Paoliello).

Declarations of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.ecoenv.2020.111636.
Methods: We reviewed all observational studies from database searches (PubMed and SCOPUS) on Cd exposure and blood pressure or hypertension. We extracted information from studies that provided sufficient data on population characteristics, smoking status, exposure, outcomes, and design.

Results: Thirty-eight studies met our inclusion criteria; of those, twenty-nine were cross sectional, three case control, five cohort and one interventional study. Blood or urinary Cd levels were the most commonly used biomarkers.

Conclusions: A positive association between blood Cd levels and blood pressure and/or hypertension was identified in numerous studies at different settings. Limited number of representative population-based studies of never-smokers was observed, which may have confounded our conclusions. The association between urinary Cd and blood pressure and/or hypertension remains uncertain due to conflicting results, including inverse relationships with lack of strong mechanistic support. We point to the urgent need for additional longitudinal studies to confirm our findings.

Keywords
Blood; Blood pressure; Cadmium; Hypertension; Smoking; Systematic review; Urine

1. Introduction
Cadmium (Cd) exposure has been associated with hypertension in humans and several animal models. However, the mechanisms by which Cd induces hypertension have yet to be completely elucidated. Several potential mechanisms include increased oxidative stress, disruption of calcium signaling, kidney damage, interference with the renin–angiotensin system, and dysfunction and impairment of the vascular endothelium (Biagioli et al., 2008; Choudhary and Bodakhe, 2016; Donpunha et al., 2011; Lemaire et al., 2020; Yoopan et al., 2008). However, taking into account that Cd exposures in experimental models are commonly higher than those encountered in real-life-scenarios, it remains unclear, if, and how these mechanisms might be translated to Cd-induced hypertension in humans.

Since 1955, when Perry et al. (1955) first reported on a plausible relationship between Cd exposure and hypertension in humans, numerous studies have addressed this possible association. However, notably in the early 1970s, analyses methods for Cd differed in various reports, and were largely semi-quantitative, constituting an additional factor in the observed differences in the Cd levels in hypertensive patients in that earlier studies (Nakagawa and Nishijo, 1996). The blood pressure response upon Cd exposure may also reflect other causative factors, such as Cd dose, biomarkers (urinary vs. blood Cd), and confounding effects of several factors on this association, including smoking habits, age, and renal tubular function, among others. All these factors might account for the inconsistent results obtained in the most recent studies, which have shown positive, null, or even inverse associations between urinary Cd exposure and blood pressure and/or hypertension (Franceschini et al., 2017; Noor et al., 2018; Park et al., 2017; Roels et al., 1990; Staessen et al., 2000).
Current smoking is the strongest contributor to elevated blood Cd levels (McKelvey et al., 2007), considering that Cd in cigarettes can be volatilized by high temperatures during the burning process, generating particulate matter that is readily inhaled and absorbed (Cuello-Nunez et al., 2018; Piade et al., 2015). Significant associations were noted between the daily number of smoked cigarettes and blood Cd levels (Martins et al., 2020). Furthermore, in cross-sectional data from NHANES (National Health and Nutrition Examination Survey), both mean blood and urine Cd levels were significantly higher in individuals who currently or previously smoked cigarettes as compared to never-smokers (Hecht et al., 2013).

In epidemiologic studies, blood and/or urinary Cd concentrations have served as the most common biomarkers of exposure and internal dose. However, Cd’s half-life differs between blood and urine (Jarup et al., 1998; Roels et al., 1999). Both biomarkers reflect cumulative Cd exposure, since urinary and blood Cd increase relative to the amount of Cd stored in the body, while blood Cd with a half-life of 3–4 months also reflects recent exposure (ATSDR, 2008; Jarup et al., 1998). Cd’s absorption route should also be considered, as inhaled, compared to ingested Cd, is absorbed at a greater proportion by the bloodstream (Jarup et al., 1998). Thus, urinary and blood Cd levels may provide discrete information regarding the timing and the source of Cd exposure among smokers and nonsmokers (Gallagher and Meliker, 2010). In addition, blood Cd concentrations showed a good correlation with urine Cd levels (Gil et al., 2011; Hecht et al., 2016; Sun et al., 2016).

The objective of this study was to reevaluate the evidence for potential relationship between Cd exposure and blood pressure and/or hypertension, and to identify persistent gaps in the literature germane to these associations, focusing on studies published between January 2010 and March 2020. Several reviews were published in this time period addressing the relationship between environmental Cd pollution and adverse health effect, including hypertension (Burroughs Pena and Rollins, 2017; Cosselman et al., 2015; da Cunha Martins et al., 2018; Ghio et al., 2018; Laranjeira et al., 2010; Shakir et al., 2017). In 2010, a systematic review and meta-analysis with a focus analogous to the present review was published (Gallagher and Meliker, 2010). Unlike the former, in our search, we included occupationally Cd-exposed populations as well additional biomarkers. Taken together, our study provides the latest and most comprehensive analysis on the associations between Cd and blood pressure status, and identifies research gaps that have yet to be addressed.

2. Methods

2.1. Search strategy and data abstraction

We aimed to identify observational studies assessing the association between Cd exposure and blood pressure or hypertension end points. Using free text and key words, we searched PubMed (https://www.ncbi.nlm.nih.gov/pubmed/advanced) and SCOPUS (https://www.scopus.com/search/form.uri?display=basic) databases (Appendix). Studies were limited to those published from January 2010 to March 2020 with no language restrictions.

For Cd exposure, we included studies that used blood Cd, urine Cd or other specimens as biomarkers, such as toe nail clippings and hair clippings. As measured endpoints, we
included blood systolic and/or diastolic blood pressure, and/or hypertension. The analyzed studies included primary data on Cd exposure and blood pressure and/or hypertension.

Exclusion criteria were publications containing no original research, studies carried out in species other than humans (experimental animal literature), case reports, case series, studies lacking blood pressure or hypertension outcomes, and studies lacking data on Cd exposure. For studies with multiple publications in the same population, the article with the largest number of cases or the most recent publication were selected. For studies with multiple levels of adjustment, we extracted the measure of association obtained from the model adjusted for the most covariates.

2.2. Statistical methods

Measures of association like odds ratios, hazard ratio, comparisons of means, among others, and their standard errors were abstracted from published data.

3. Results

3.1. Selected studies – general characteristics

This systematic review covers more than 160,000 participants from 12 countries, the majority of which were non-occupational populations, with only one study located where the subjects were occupationally exposed to Cd. For this reason, we have focused and discussed only on studies performed in the general population, that is, in subjects not exposed occupationally to Cd.

Fig. 1 shows a schematic depicting the study selection process. Electronic search results yielded a total of 348 studies. Of these, 38 met our inclusion criteria. Twenty-nine studies were cross sectional, three case control, five cohort and one interventional study. One of the studies could not be located online. Requests for a reprint were continuously made in the course of the last several months, but they were met with no response. Another study was excluded as it reported exceedingly high blood Cd values, compared to those reported in all other studies; after several attempts to contact the authors in the course of one month, we failed to get a response.

Of the selected studies, 17 analyzed blood Cd levels and 26 analyzed urinary Cd levels. Seven of the articles reported both blood and urine Cd levels. In two references, Cd levels were measured in scalp hair, and in one study in toenails clippings. In different matrices and populations, thirty studies showed some association between Cd exposure and blood pressure and/or hypertensive end-points (Table 1). However, this number included references that also reported on inverse associations, as well as inconsistent results within the same study, dependent upon the biomarker at hand (e.g. positive and inverse associations with blood and urinary Cd, respectively).

3.2. Blood Cd levels

Blood Cd levels were associated with higher blood pressure in the adult general population in four studies (Chen et al., 2015; Gao et al., 2018; Garner and Levallois, 2017; Lee and Kim, 2012) and with hypertension in five studies (Chen et al., 2013; Lee et al., 2011;
Madrigal et al., 2019; Moon, 2014; Myong et al., 2014). Associations between blood Cd levels and both blood pressure and hypertension in the general population were found in two studies (Lee et al., 2016; Wang and Wei, 2018). In contrast, no association between blood Cd levels and blood pressure and hypertension were found in three studies (Ahn et al., 2018a, 2018b; Boonprasert et al., 2011; Park et al., 2017).

3.3. Urine Cd levels

Eight studies reported an association between urine Cd levels and hypertension (Ikeda et al., 2013; Oliver-Williams et al., 2018; Swaddiwudhipong et al., 2012, 2010b, 2015b; Tangvarasittichai et al., 2015; Van Larebeke et al., 2015; Wu et al., 2019). Two other studies reported an association between urinary Cd levels and an increase in both systolic and diastolic blood pressure (Boonprasert et al., 2018; Franceschini et al., 2017). Urine Cd levels were associated with increase in both blood pressure and hypertension in one study (Wang and Wei, 2018). Associations were found between urine Cd levels and increased diastolic blood pressure (Gao et al., 2018; Huang et al., 2019), and with pregnancy-induced hypertension (Liu et al., 2018). In an adolescent sample, no significant association was found between urine Cd levels and systolic blood pressure (Castiello et al., 2020).

No association was found between urinary Cd and blood pressure in three of the selected articles (Boonprasert et al., 2011; Garner and Levallois, 2017; Shiue and Hristova, 2014), and no association with hypertension was reported in three studies (Boonprasert et al., 2011; Garner and Levallois, 2017; Swaddiwudhipong et al., 2010a). Two studies in children (Skroder et al., 2015; Swaddiwudhipong et al., 2015a) and two studies in adolescents (Ahn et al., 2018a, 2018b; Castiello et al., 2020) also failed to report on an association between urinary Cd and blood pressure.

Inverse associations were found between urine Cd levels and hypertension in four studies (Garner and Levallois, 2017; Noor et al., 2018; Vallee et al., 2020; Wu et al., 2018); the first of these studies found this inverse association in smokers only; and two articles (Gao et al., 2018; Osorio-Yanez et al., 2016) found an inverse relationship between urinary Cd and blood pressure.

3.4. Cd in scalp hair and nails

Afridi et al. (2010a, 2010b, 2011a, 2011b) reported that Cd levels in scalp hair were associated with hypertension. No association was found with blood pressure, where Cd concentration in toenail clippings was used as a biomarker (Mordukhovich et al., 2012).

4. Discussion

This timely review showed mixed results; several studies have found evidence for raised systolic blood pressure and/or diastolic blood pressure and/or hypertension, whereas other studies have found inverse, or no association. The associations varied by the marker of Cd levels (mainly blood vs. urine) and differed by subpopulations, considering sex, age and smoking status. Our findings highlight the urgent need for future studies to address the relationship between Cd exposure and blood pressure.
4.1. Strength of association, consistency, and temporality

In a large and cross-sectional study, positive associations were found between blood Cd levels with elevated blood pressure among never smoker women (Garner and Levallois, 2017). In another set of large and cross-sectional studies with smoking-adjustments, blood Cd was strongly associated with elevated blood pressure and/or risk of hypertension (Gao et al., 2018; Lee et al., 2011, 2016; Lee and Kim, 2012; Madrigal et al., 2019; Moon, 2014). Other large studies have found these associations with blood Cd only in women (Wang and Wei, 2018) or men (Myong et al., 2014). No such associations were found in two other large studies (Ahn et al., 2018a, 2018b; Park et al., 2017).

It follows, that a relationship between blood Cd levels and blood pressure and/or hypertension exists, irrespective of smoking adjustment or stratification methods. Our findings also showed that an association between blood Cd levels and blood pressure was observed in populations with different geographic, ethnic, and socioeconomic background. From a toxicokinetic point of view, both erythrocytes and metallothioneins in human blood accumulate circulatory Cd (Gibson et al., 2017; Rahman et al., 2017; Zalups and Ahmad, 2003), suggesting the suitability of whole blood as a biomarker to assess exposure. However, temporal interpretations were limited in scope, given that all the large studies performed with blood as a potential biomarker of Cd exposure, were of cross-sectional design. Furthermore, in several of these studies, the definition of hypertension was inconsistent. As noted in Table 1, most of the studies in the present review classified the participants as hypertensive, if they used antihypertensive medications and had elevated systolic and/or diastolic blood pressure. However, the use of antihypertensive medications as one of the criteria was not observed in six of these studies. In addition, only “history of hypertension” was considered in the classification of hypertension in four of these studies, and two of them failed to inform on which criteria were used.

While blood Cd is influenced to a greater extent by recent exposures, and systolic and diastolic blood pressure are concurrent measures, previous evidence suggests a relationship between blood Cd levels and short-term effects (Gallagher and Meliker, 2010). In the study by Gao et al. (2018), urinary Cd excretion decreased with declining renal function, however blood Cd levels did not change.

The value of urine as a Cd biomarker for the assessment of associations with blood pressure and hypertension was addressed in a comprehensive and cross-sectional study in never-smoker females, and in non-smokers in the population-at-large. Both studies reported increased prevalence of hypertension as urinary Cd levels increased (Swaddiwudhipong et al., 2010b; Wu et al., 2019). Analogous findings were reported among light- and never-smokers and blood pressure (Franceschini et al., 2017). In a case control study, this association was found in non-smokers, but not in smokers (Wu et al., 2019). In a large cohort of smoking-adjusted study, a positive relationship was found between urinary Cd levels and SBP and DBP (Oliver-Williams et al., 2018). The same relationship between urinary Cd levels and hypertension (Van Larebeke et al., 2015) and with pregnancy-induced hypertension (Liu et al., 2018), was found in both cross-sectional studies. A longitudinal decrease in urine Cd was documented upon decreased exposure to environmental sources with a significant decrease in DBP (Huang et al., 2019). No association between urinary Cd
levels and high blood pressure was found in one large and cross-sectional study (Shiue and Hristova, 2014).

However, the relationship between urinary Cd and blood pressure and hypertension remains uncertain. Several studies showed an inverse association between urinary Cd, a biomarker of long-term exposure, and hypertension (Gao et al., 2018; Garner and Levallois, 2017; Noor et al., 2018; Vallee et al., 2020; Wu et al., 2018). Inverse associations were found in a review performed with studies published through 2010, where an inverse association between urinary Cd and hypertension was also evident in both high- and low- Cd exposure populations (Gallagher and Meliker, 2010). A plausible hypothesis for the inverse associations noted in these studies may be the lack of consideration of renal function as an effect modifier on these associations, where urinary Cd excretion might be affected secondary to altered renal function (Gao et al., 2018). In agreement, a recent publication described a decline in glomerular filtration rate (GFR) upon low-level environmental exposure to Cd (Satarug et al., 2020), showing that the renal excretory capacity is impaired (Weaver et al., 2016). While kidney damage per se affects blood pressure (Roels et al., 1991), it may also be a consequence of hypertension, among many other factors (George et al., 2019).

Two of the studies used in the present review have adjusted the data for estimated glomerular filtration rate (eGFR) and found a positive relationship between urinary Cd and blood pressure (Franceschini et al., 2017; Oliver-Williams et al., 2018), the last one to report findings in light (mean 10.8 pack-years)- and never-smokers. However, inverse associations between urinary Cd and blood pressure were found in never-smokers in the studies by Noor et al. (2018) and Gao et al. (2018); in the latter study, this inverse association was modified in the stratified analysis by renal function. Other studies noted an inverse association between urinary Cd levels and blood pressure only among smokers (Garner and Levallois, 2017; Vallee et al., 2020). The latter study over-adjusted this relationship, including an indicator of chronic kidney disease in regression models, but this inclusion did not appear to significantly alter this relationship.

Still, another hypothesis for the inverse association with urine Cd levels advances the argument that urinary Cd levels reflect Cd concentrations that accumulate in the kidney with increased age, whereas blood Cd levels reflect recent, rather than chronic exposure (Jarup and Akesson, 2009; Nordberg et al., 2007). Accordingly, the positive association found with blood, but not urinary Cd levels, may be attributable to a short-term effect of Cd on blood pressure (Gallagher and Meliker, 2010). Again, this may indicate that blood pressure is affected by recent, rather than long-term Cd exposure; alternatively, it is possible that blood Cd reflects biologically active Cd to a greater extent than urinary Cd (Tellez-Plaza et al., 2008). Indeed, a positive association between blood pressure with blood Cd was found, but systolic blood pressure was inversely associated with urinary Cd levels (Gao et al., 2018). In another study, an association was found between blood Cd levels, but not urine Cd levels, and blood pressure (Tellez-Plaza et al., 2008). However, Akerstrom et al. (2013a, 2013b) noted that urine Cd concentrations reflect normal renal physiology, establishing an additional concern regarding urinary Cd as an appropriate biomarker.
The inconsistencies observed in the hypertension classification criteria discussed previously, are also inherent to the studies where urinary Cd levels were used as a biomarker of exposure.

The associations between Cd exposure and blood pressure and hypertension described in this review in non-smokers provide stronger evidence than the associations reported in smoking-adjusted studies, because instead of adjusting statistically, the effects of current and ever-smoking are absent in the former (Gallagher and Meliker, 2010). The influence of smoking on Cd levels both in blood and urine is well established (Eum et al., 2008; Hecht et al., 2013; Kim et al., 2019; Mansouri et al., 2020; Martins et al., 2020). Urinary Cd levels may be influenced to a greater extent by smoking duration, while in current smokers, blood Cd levels may be influenced to a greater extent by the smoking dose (Hecht et al., 2016). Despite the inverse association between urinary Cd and hypertension found in the total population, when the sample was stratified, smokers showed a positive association between urinary Cd levels and hypertension (Noor et al., 2018). In contrast, Tellez-Plaza et al. (2008) did not observe an association between urinary Cd levels and blood pressure, and when stratified by smoking status, blood Cd and blood pressure levels were stronger among never smokers, intermediate among former smokers, and small or null among current smokers. Explanations advanced by the same authors for these differences include markedly different sources, routes, and patterns of Cd exposure for smokers vs. nonsmokers, and co-exposures by smoking status, among others.

On the other hand, Hecht et al. (2013) advanced the hypothesis that Cd exposure may explain, at least in part, why smokers have increased risks of cardiovascular diseases. Being a component of cigarettes, and considering the propensity of Cd to persist in the vessel wall for decades, this metal may initiate endothelial damage, and perpetuate the proinflammatory and prothrombotic events necessary to accelerate the atherosclerotic process. In summary, smoking status is a strong confounding variable in the assessment of the relationship between exposure to Cd and blood pressure, and studies in non-smokers should be considered as more appropriate for deciphering this relationship.

In the present review, Cd levels in scalp hair were associated with hypertension (Afridi et al., 2011a, 2011b, 2010a, 2010b) same results were obtained when comparing normo- and hypertensive postmenopausal women (Gonzalez-Munoz et al., 2010). However, no correlations have been reported between hair Cd levels and blood pressure in non-smoking men (Hermann et al., 1989), neither in women with pre-eclampsia, compared to the normotensive women (Maduray et al., 2017). Collection of hair is noninvasive and allows for easy long-term storage; however, due to highly variable intra-hair growth rates and potential for external contamination (Slotnick and Nriagu, 2006), this matrix should be viewed with caution as predictive of Cd exposure. In addition, reference values for Cd in hair have shown a significant variation in a systematic review (Mikulewicz et al., 2013).

Toenail samples are also convenient for collection and storage, grow more slowly than hair, and are generally more protected from external contaminants (Mordukhovich et al., 2012). In the present review, no association was found between toenail clippings and blood pressure (Mordukhovich et al., 2012). Accordingly, no difference was obtained between Cd levels in
nails and blood pressure in the preeclampsia group compared to normotensive group (Soobramoney et al., 2019). Although toenails are validated biomarkers for arsenic, and are thought to reflect exposures that have occurred over the past 6–12 months (Slotnick and Nriagu, 2006), the validity of this biomarker for Cd exposure has been questioned, since Cd levels in toenails did not vary by smoking status (Mordukhovich et al., 2012), which is a major Cd source. Besides, no correlation with urinary Cd was found (White et al., 2018).

It is also important to consider that the study populations inherent to the various reports markedly differed with respect to age, ranging from children to elderly, in addition to Cd exposure levels, ranging from low to high, both in studies that used blood or urine as a biomarker. It is known that age is an important determinant in the prevalence of high blood pressure and hypertension; the increase in blood pressure with aging has been extensively documented in adults (Barba et al., 2008). However, this is not the case for children for whom the increase in blood pressure is predominantly related to excess body weight (Theodore et al., 2015). In our review, studies that were carried out in children (Skroder et al., 2015; Swaddiwudhipong et al., 2015a) and in adolescents (Ahn et al., 2018a, 2018b; Castiello et al., 2020), showed no association between Cd exposure and blood pressure. Cd exposure levels in the reviewed articles ranged from low (Ahn et al., 2018a, 2018b; Noor et al., 2018; Park et al., 2017; Shiuie and Hristova, 2014; Skroder et al., 2015) to high (Afridi et al., 2010a, 2010b; Chen et al., 2013; Swaddiwudhipong et al., 2010b), which may also affect the findings. These differences in Cd levels obtained in the different studies discussed in this review, may also be attributed to study location, as this would reflect differential diet, an important source of Cd in various populations (Martins et al., 2020). Cd has a high soil-to-root translocation and may be readily taken up by several cultivars (Wiseman et al., 2014).

It is also important to assess Cd exposure in light of exposure to other metals and/or metalloids, which may impact the results. Studies suggest that cumulative exposures to heavy metals as mixtures, including Cd, are associated with chronic conditions such as hypertension (Moon, 2014; Park et al., 2017; Wang et al., 2018). Considering the causal relationship between lead exposure with hypertension (Navas-Acien et al., 2007), adjustments for other covariates such as lead in blood or urine have been made in some studies in this review (Liu et al., 2018; Swaddiwudhipong et al., 2015a; Wang and Wei, 2018). Thus, the inconsistencies noted in the studies analyzed herein may, in part, also be attributed to exposures to mixtures containing other metals (or other xenobiotics), which might concomitantly affect the blood pressure.

A limited number of studies evaluated the role of genetic polymorphisms and susceptibility to Cd health effects. Findings from gene-Cd interaction analyses indicated that polymorphisms in metalloproteinase-2 (MMP-2) have modifying effects on the hypertensive effect of Cd, likely secondary to the former’s role in mediating biological processes such as inflammation and oxidative stress (Jacob-Ferreira et al., 2009; Wu et al., 2019). An additional study provided a potential mechanistic explanation for the association between polymorphisms in the SLC39A8 gene (encodes a transmembrane protein that acts as a transporter of several divalent cations) and Cd-induced increased blood pressure, which is likely mediated by increased intracellular Cd accumulation (Zhang et al., 2016a, 2016b). Polymorphisms in glutathione S-transferases, involved in biotransformation and
detoxification, were also associated with blood Cd levels, influencing individual susceptibility to Cd toxicity (Khansakorn et al., 2012). Therefore, the possible modifying effects of gene polymorphisms should also be considered in the context of exposure and Cd-induced alterations in blood pressure.

4.2. Dose-response, biologic plausibility and experimental data

Dose–response analyses of Cd levels in quartiles, or other comparisons, were not restricted to never-smokers, and therefore interpretations regarding Cd’s exposure–response effects independent of smoking are limited in scope.

Despite the inconsistencies in the reported findings, there are a number of mechanisms that may explain the relationship between Cd exposure and increased blood pressure. Both in vivo and in vitro studies provided evidence for Cd’s propensity to (1) adversely affect endothelial function, causing impaired nitric oxide bioavailability and increased vasoconstriction (Gokalp et al., 2009; Yoopan et al., 2008), (2) promote plaque inflammation and atherosclerosis, characterized by a dysfunctional interplay between the immune apparatus and lipids (Choi et al., 2020; Fagerberg et al., 2016; Lin et al., 2020; Stoll and Bendszus, 2006), (3) increase oxidative stress (Almenara et al., 2013; Donpunha et al., 2011; Ferramola et al., 2011) and inflammation (Angeli et al., 2013; Chen et al., 2016), (4) modify vascular responses to neurotransmitters (Angeli et al., 2013; Washington et al., 2006) and changes in calcium signaling (Biagioli et al., 2008), (5) interfere with the renin-angiotensin system (Choudhary and Bodakhe, 2016), and (6) alter renal function (Lemaire et al., 2020).

For the general population, the most frequently reported effect of Cd exposure is injury to tubular epithelial cells that actively reabsorb Cd from the glomerular filtrate (Satarug et al., 2017). Boonprasert et al. (2018) showed that exposure to Cd is a predictor of urinary 20-hydroxyeicosatetraenoic acid (20-HETE) levels; 20-HETE levels, in turn, are associated with increased odds of hypertension and tubular dysfunction. As noted above, renal function may modify the association between urinary Cd levels with blood pressure (Gao et al., 2018). Indeed, the effect of Cd on blood pressure has been reported to be markedly stronger with decreased kidney function (Eum et al., 2008). Again, being a component of cigarettes, smoking may initiate endothelial dysfunction (Hecht et al., 2013).

4.3. Limitations and strengths

Limitations inherent to this systematic review include the inconsistency in the definition of hypertension in the studies, and the cross-sectional design of most of the selected studies. Hence, we cannot rule out the possibility that the positive association observed between Cd exposure and hypertension reflects dietary or behavioral attitudes (e.g. exercise) due to the diagnosis of hypertension (i.e. reverse causation). In addition, as already discussed, substantial heterogeneity between studies might reflect outcome misclassification and measurement discrepancies. Furthermore, inadequate adjustment for confounders or sample size, may have resulted in over or under estimation of the true association between Cd exposure and hypertension. However, most of the studies included in this review have made adjustments for relevant confounding factors in addition to age and sex, such as smoking habits, body weight, and kidney function, among others, and they were performed with
diverse statistical methodologies. Finally, the included studies have been carried out in North American, European and Asian populations; the lack of studies from other regions, especially developing countries, represents a major gap in the literature. Relevant studies in these regions are timely and of research priority.

5. Conclusions and future needs

This timely review of the latest literature supports a positive relationship between blood Cd levels and blood pressure and/or hypertension, irrespective of smoking adjustment or stratification methods. However, considering the limited number of representative population-based studies of never-smokers and prospective cohorts, additional studies are needed to confirm these findings. Further research is also needed to establish dose–response gradients in never-smokers.

The association between urinary Cd and blood pressure and/or hypertension remains uncertain due to conflicting results. The inverse relationships between urine Cd and blood pressure reported in the present review lack strong mechanistic support, and should be further investigated as to establish the biological significance of urinary Cd levels as a biomarker of long-term Cd exposure in populations exposed to low-moderate Cd levels. These concerns are reinforced by the fact that urinary Cd concentrations may not take into account changes in renal physiology that are unaccounted for by Cd exposure, thus, overestimating the adverse effects of Cd on kidney function especially at low-level Cd exposures (Akerstrom et al., 2013a, 2013b). In summary, findings from the present review provide evidence that Cd exposure remains a risk factor for high blood pressure even at low exposure levels, having important implications for public health, and mandating further reduction in Cd exposure in the general population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

MA was supported in part by grants from the National Institute of Environmental Health Sciences (NIEHS) R01ES07331 and R01ES10563.

References

Afridi HI, Brabazon D, Kazi TG, Naher S, 2011a Evaluation of essential trace and toxic elements in scalp hair samples of smokers and alcohol user hypertensive patients. Biol. Trace Elem. Res 143, 1349–1366. [PubMed: 21286845]
Afridi HI, Brabazon D, Kazi TG, Naher S, 2011b Evaluation of essential trace and toxic elements in scalp hair samples of smokers and alcohol user hypertensive patients. Biol. Trace Elem. Res 143, 1349–1366. [PubMed: 21286845]
Afridi HI, Kazi TG, Kazi NG, Jamali MK, Arain MB, Sirajuddin, Baig JA, Kandhro GA, Wadhwa SK, Shah AQ, 2010a Evaluation of cadmium, lead, nickel and zinc status in biological samples of smokers and nonsmokers hypertensive patients. J. Hum. Hypertens 24, 34–43. [PubMed: 20010608]
Afridi HI, Kazi TG, Kazi NG, Jamali MK, Arain MB, Sirajuddin, Baig JA, Kandhro GA, Wadhwa SK, Shah AQ, 2010b Evaluation of cadmium, lead, nickel and zinc status in biological samples of smokers and nonsmokers hypertensive patients. J. Hum. Hypertens 24, 34–43. [PubMed: 20010608]
Ahn J, Kim NS, Lee BK, Park J, Kim Y, 2018a Association of blood pressure with blood lead and cadmium levels in Korean adolescents: analysis of data from the 2010–2016 Korean National Health and Nutrition Examination Survey. J. Korean Med. Sci 33, e278. [PubMed: 30369859]

Ahn J, Kim NS, Lee BK, Park J, Kim Y, 2018b Association of blood pressure with blood lead and cadmium levels in Korean adolescents: analysis of data from the 2010–2016 Korean National Health and Nutrition Examination Survey. J. Korean Med. Sci 33, e278. [PubMed: 30369859]

Akerstrom M, Sallsten G, Lundh T, Barregard L, 2013a Associations between urinary excretion of cadmium and proteins in a nonsmoking population: renal toxicity or normal physiology? Environ. Health Perspect 121, 187–191. [PubMed: 23128055]

Akerstrom M, Sallsten G, Lundh T, Barregard L, 2013b Associations between urinary excretion of cadmium and proteins in a nonsmoking population: renal toxicity or normal physiology? Environ. Health Perspect 121, 187–191. [PubMed: 23128055]

Almenara CC, Broseghini-Filho GB, Vescovi MV, Angeli JK, Faria Tde O, Stefanon I, Vassallo DV, Padilha AS, 2013 Chronic cadmium treatment promotes oxidative stress and endothelial damage in isolated rat aorta. PLoS One 8, e68418. [PubMed: 23874620]

Angeli JK, Cruz Pereira CA, de Oliveira Faria T, Stefanon I, Padilha AS, Vassallo DV, 2013 Cadmium exposure induces vascular injury due to endothelial oxidative stress: the role of local angiotensin II and COX-2. Free Radic. Biol. Med, 65, 838–848. [PubMed: 23973752]

ATSDR, Public Health Statement for Cadmium. Agency for Toxic Substances and Disease Registry, 2008.

Barba G, Casullo C, Dello Russo M, Russo P, Nappo A, Lauria F, Siani A, 2008 Gender-related differences in the relationships between blood pressure, age, and body size in prepubertal children. Am. J. Hypertens 21, 1007–1010. [PubMed: 18617882]

Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P, 2008 Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 43, 184–195. [PubMed: 17588656]

Boonprasert K, Rungveerayut R, Satarug S, Na-Bangchang K, 2011 Study on the association between environmental cadmium exposure, cytochrome P450-mediated 20-HETE, heme-oxygenase-1 polymorphism and hypertension in Thai population residing in a malaria endemic areas with cadmium pollution. Environ. Toxicol. Pharmacol 31, 416–426. [PubMed: 21787712]

Boonprasert K, Vesey DA, Gobe GC, Ruenveerayut R, Johnson DW, Na-Bangchang K, Satarug S, 2018 Is renal tubular cadmium toxicity clinically relevant? Clin. Kidney J 11, 681–687. [PubMed: 30288264]

Burroughs Pena MS, Rollins A, 2017 Environmental exposures and cardiovascular disease: a challenge for health and development in low- and middle-income countries. Cardiol. Clin 35, 71–86. [PubMed: 27886791]

Castiello F, Olmedo P, Gil F, Molina M, M undo A, Romero RR, Ruiz C, Gomez-Vida J, Vela-Soria F, Freire C, 2020 Association of urinary metal concentrations with blood pressure and serum hormones in Spanish male adolescents. Environ. Res 182, 108958. [PubMed: 31835118]

Chen H, Lu Y, Cao Z, Ma Q, Pi H, Fang Y, Yu Z, Hu H, Zhou Z, 2016 Cadmium induces NLRP3 inflammasome-dependent pyroptosis in vascular endothelial cells. Toxicol. Lett 246, 7–16. [PubMed: 26809137]

Chen X, Wang Z, Zhu G, Liang Y, Jin T, 2015 Benchmark dose estimation of cadmium reference level for hypertension in a Chinese population. Environ. Toxicol. Pharmacol 39, 208–212. [PubMed: 25528411]

Chen X, Zhu G, Lei L, Jin T, 2013 The association between blood pressure and blood cadmium in a Chinese population living in cadmium polluted area. Environ. Toxicol. Pharmacol 36, 595–599. [PubMed: 23834962]

Choi S, Kwon J, Kwon P, Lee C, Jang SI, 2020 Association between blood heavy metal levels and predicted 10-year risk for a first atherosclerosis cardiovascular disease in the general Korean population. Int. J. Environ. Res. Public Health 17, 2134.

Choudhary R, Bodakhe SH, 2016 Olmesartan, an angiotensin II receptor blocker inhibits the progression of cataract formation in cadmium chloride induced hypertensive albino rats. Life Sci. 167, 105–112. [PubMed: 27744053]
Cosselman KE, Navas-Acien A, Kaufman JD, 2015 Environmental factors in cardiovascular disease. Nat. Rev. Cardiol 12, 627–642. [PubMed: 26461967]

Cuello-Nunez S, Benning J, Liu C, Branton P, Hu J, McAdam KG, Coburn S, Braybrook J, Gonenaga-Infante H, 2018 Fractionation of cadmium in tobacco and cigarette smoke condensate using XANES and sequential leaching with ICP-MS/MS. Anal. Bioanal. Chem 410, 6795–6806. [PubMed: 30094791]

da Cunha Martins A Jr., Carneiro MFH, Grotto D, Adeyemi JA, Barbosa F Jr., 2018 Arsenic, cadmium, and mercury-induced hypertension: mechanisms and epidemiological findings. J. Toxicol. Environ. Health B Crit. Rev 21, 61–82. [PubMed: 29446707]

Donpunha W, Kukongviriyapan U, Sompamit K, Pakdeechote P, Kukongviriyapan V, Pananggetch P, 2011 Protective effect of ascorbic acid on cadmium-induced hypertension and vascular dysfunction in mice. Biometals 24, 105–115. [PubMed: 20872046]

Eum KD, Lee MS, Paek D, 2008 Cadmium in blood and hypertension. Sci. Total Environ 407, 147–153. [PubMed: 18845316]

Fagerberg B, Kjelldahl J, Sallsten G, Barregard L, Forsgard N, Osterberg K, Hulten LM, Bergstrom G, 2016 Cadmium exposure as measured in blood in relation to macrophage density in symptomatic atherosclerotic plaques from human carotid artery. Atherosclerosis 249, 209–214. [PubMed: 27156912]

Ferramola ML, Anton RI, Anzulovich AC, Gimenez MS, 2011 Myocardial oxidative stress following sub-chronic and chronic oral cadmium exposure in rats. Environ. Toxicol. Pharmacol 32, 17–26. [PubMed: 21787725]

Franceschini N, Fry RC, Balakrishnan P, Navas-Acien A, Oliver-Williams C, Howard AG, Cole SA, Haack K, Lange EM, Howard BV, Best LG, Francesconi KA, Goessler W, Umans JG, Tellez-Plaza M, 2017 Cadmium body burden and increased blood pressure in middle-aged American Indians: the Strong Heart Study. J. Hum. Hypertens 31, 225–230. [PubMed: 27629244]

Gallagher CM, Meliker JR, 2010 Blood and urine cadmium, blood pressure, and hypertension: a systematic review and meta-analysis. Environ. Health Perspect 118, 1676–1684. [PubMed: 20716508]

Gao Y, Zhu X, Shrubssole MJ, Fan L, Xia Z, Harris RC, Hou L, Dai Q, 2018 The modifying effect of kidney function on the association of cadmium exposure with blood pressure and cardiovascular mortality: NHANES 1999–2010. Toxicol. Appl. Pharmacol 353, 15–22. [PubMed: 29842852]

Garner RE, Levallois P, 2017 Associations between cadmium levels in blood and urine, blood pressure and hypertension among Canadian adults. Environ. Res 155, 64–72. [PubMed: 28189876]

George JA, Brandenburg JT, Fabian J, Crowther NJ, Agongo G, Alberts M, Ali S, Asiki G, Boua PR, Gomez-Olive FX, Mashinya F, Micklefield L, Mohamed SF, Mukomana F, Norris SA, Oduro AR, Soo C, Sorgho H, Wake A, Naicker S, Ramsay M, Gen AWI, the HAC, 2019 Kidney damage and associated risk factors in rural and urban sub-Saharan Africa (AWI-Gen): a cross-sectional population study. Lancet Glob. Health 7, e1632–e1643.

Ghio AJ, Soukup JM, Madden MC, 2018 The toxicology of air pollution predicts its epidemiology. Inhal. Toxicol 30, 327–334. [PubMed: 30516398]

Gibson MA, Sarpong-Kumankomah S, Nehzati S, George GN, Gailer J, 2017 Remarkable differences in the biochemical fate of Cd(2+), Hg(2+), CH3Hg(+), and thimerosal in red blood cell lysate. Metallomics 9, 1060–1072. [PubMed: 28702563]

Gil F, Hernandez AF, Marquez C, Femia P, Olmedo P, Lopez-Guarnido O, Pla A, 2011 Biomonitorization of cadmium, chromium, manganese, nickel and lead in whole blood, urine, axillary hair and saliva in an occupationally exposed population. Sci. Total Environ 409, 1172–1180. [PubMed: 21211822]

Gokcal O, Ozdem S, Donmez S, Dogan M, Demirin H, Kara HY, Sutcu R, Cicek E, Ozer MK, Delibas N, 2009 Impairment of endothelium-dependent vasorelaxation in cadmium-hypertensive rats. Toxicol. Ind. Health. 25, 447–453. [PubMed: 19648216]

Gonzalez-Munoz MJ, Sanchez-Muniz FJ, Rodenas S, Sevillano MI, Larrea Marin MT, Bastida S, 2010 Differences in metal and metalloid content in the hair of normo- and hypertensive postmenopausal women. Hypertens. Res 33, 219–224. [PubMed: 20057484]
Hecht EM, Arheart K, Lee DJ, Hennekens CH, Hlaing WM, 2016 A cross-sectional survey of cadmium biomarkers and cigarette smoking. Biomarkers 21, 429–435. [PubMed: 26983064]
Hecht EM, Landy DC, Ahn S, Hlaing WM, Hennekens CH, 2013 Hypothesis: cadmium explains, in part, why smoking increases the risk of cardiovascular disease. J. Cardiovasc. Pharmacol. Ther 18, 550–554. [PubMed: 24038014]
Hermann U, Kaulich TW, Schweinsberg F, 1989 Correlation of blood pressure and cadmium and lead content of the hair in nonsmoking males. Zentralbl. Hyg. Umwelmed 188, 240–253. [PubMed: 2757743]
Huang L, Liu L, Zhang T, Zhao D, Li H, Sun H, Kinney PL, Pitiranggon M, Chillrud S, Ma LQ, Navas-Acien A, Bi J, Yan B, 2019 An interventional study of rice for reducing cadmium exposure in a Chinese industrial town. Environ. Int 122, 301–309. [PubMed: 30477816]
Ikeda M, Moriguchi J, Sakuragi S, Ohashi F, 2013 Association of past diseases with levels of cadmium and tubular dysfunction markers in urine of adult women in non-polluted areas in Japan. Int. Arch. Occup. Environ. Health 86, 343–355. [PubMed: 22526085]
Jacob-Ferreira AL, Passos CJ, Jordao AA, Fillion M, Mergler D, Lemire M, Gerlach RF, Barbosa F Jr., Tanus-Santos JE, 2009 Mercury exposure increases circulating net matrix metalloproteinase (MMP)-2 and MMP-9 activities. Basic Clin. Pharmacol. Toxicol 105, 281–288. [PubMed: 19594729]
Jarup L, Akesson A, 2009 Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol 238, 201–208. [PubMed: 19404045]
Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M, 1998 Health effects of cadmium exposure—a review of the literature and a risk estimate. Scand. J. Work Environ. Health 24 (Suppl 1), 1–51.
Khansakorn N, Wongwit W, Thampoophasiam P, Hengprasith B, Suwannathon L, Chanprasertyothin S, Sura T, Kajojarern S, Sirivarasai J, 2012 Genetic variations of glutathione s-transferase influence on blood cadmium concentration. J. Toxicol 2012, 356126, 1–6.
Kim K, Melough MM, Vance TM, Kim D, Noh H, Koo SI, Chun OK, 2019 The relationship between zinc intake and cadmium burden is influenced by smoking status. Food Chem. Toxicol 125, 210–216. [PubMed: 30615956]
Laranjeira R, Pinsky I, Sanches M, Zaleski M, Caetano R, 2010 Alcohol use patterns among Brazilian adults. Braz. J. Psychiatry 32, 231–241. [PubMed: 19918673]
Van Larebeke N, Sioen I, Hond ED, Nelen V, Van de Mieroop E, Nawrot T, Bruckers L, Schoeters G, Baeyens W, 2015 Internal exposure to organochlorine pollutants and cadmium and self-reported health status: a prospective study. Int. J. Hyg. Environ. Health 218, 232–245. [PubMed: 25547368]
Lee BK, Ahn J, Kim NS, Lee CB, Park J, Kim Y, 2016 Association of blood pressure with exposure to lead and cadmium: analysis of data from the 2008–2013 Korean National Health and Nutrition Examination Survey. Biol. Trace. Elem. Res 174, 40–51. [PubMed: 27087554]
Lee BK, Kim Y, 2012 Association of blood cadmium with hypertension in the Korean general population: analysis of the 2008–2010 Korean National Health and Nutrition Examination Survey data. Am. J. Ind. Med 55, 1060–1067. [PubMed: 22692952]
Lee MS, Park SK, Hu H, Lee S, 2011 Cadmium exposure and cardiovascular disease in the 2005 Korea National Health and Nutrition Examination Survey. Environ. Res. Ill, 171–176.
Lemaire J, Van der Hauwaert C, Savary G, Dewaeles E, Perrais M, Lo Guìdic JM, Pottier N, Glowacki F, Cauffiez C, 2020 Cadmium-induced renal cell toxicity is associated with microRNA deregulation. Int. J. Toxicol 39, 103–114. [PubMed: 31934807]
Lin CY, Lee HL, Huang YT, Huang PC, Wang C, Sung FC, Wu C, Su TC, 2020 Urinary heavy metals, DNA methylation, and subclinical atherosclerosis. Ecotoxicol. Environ. Saf 204, 111039. [PubMed: 32738627]
Liu H, Xia W, Xu S, Zhang B, Lu B, Huang Z, Zhang H, Jiang Y, Liu W, Peng Y, Sun X, Li Y, 2018 Cadmium body burden and pregnancy-induced hypertension. Int. J. Hyg. Environ. Health 221, 246–251. [PubMed: 29162486]
Madrigal JM, Ricardo AC, Persky V, Turyk M, 2019 Associations between blood cadmium concentration and kidney function in the U.S. population: impact of sex, diabetes and hypertension. Environ. Res 169, 180–188. [PubMed: 30466011]
Madurai K, Moodley J, Soobramoney C, Moodley R, Naicker T, 2017 Elemental analysis of serum and hair from pre-eclamptic South African women. J. Trace Elem. Med. Biol 43, 180–186. [PubMed: 28325649]

Mansouri B, Błaszczyk M, Binkowski LJ, Sayadi MH, Azadi NA, Amirabadizadeh AR, Mehrpour O, 2020 Urinary metal levels with relation to age, occupation, and smoking habits of male inhabitants of Eastern Iran. Biol. Trace Elem. Res. 195, 63–70. [PubMed: 31388878]

Martins AC, Urbano MR, Almeida Lopes ACB, Carvalho MFH, Buzzo ML, Doceia AO, Mesas AE, Aschner M, Silva AMR, Silbergeld EK, Paoliello MMB, 2020 Blood cadmium levels and sources of exposure in an adult urban population in southern Brazil. Environ. Res 187, 109618. [PubMed: 32447086]

McKelvey W, Gwynn RC, Jeffery N, Kass D, Thorpe LE, Garg RK, Palmer CD, Parsons PJ, 2007 A biomonitoring study of lead, cadmium, and mercury in the blood of New York city adults. Environ. Health Perspect 115, 1435–1441. [PubMed: 17938732]

Mikulewicz M, Chojnacka K, Gedrange T, Gorecki H, 2013 Reference values of elements in human hair: a systematic review. Environ. Toxicol. Pharmacol 36, 1077–1086. [PubMed: 24141206]

Moon SS, 2014 Additive effect of heavy metals on metabolic syndrome in the Korean population: the Korea National Health and Nutrition Examination Survey (KNHANCES) 2009–2010. Endocrine 46, 263–271. [PubMed: 24065312]

Mordukhovich I, Wright RO, Hu H, Amarasingriwardena C, Baccarelli A, Litonjua A, Sparrow D, Vokonas P, Schwartz J, 2012 Associations of toenail arsenic, cadmium, mercury, manganese, and lead with blood pressure in the normative aging study. Environ. Health Perspect 120, 98–104. [PubMed: 21878420]

Myong JP, Kim HR, Jung TW, Lee HE, Koo JW, 2014 Association between blood cadmium levels and 10-year coronary heart disease risk in the general Korean population: the Korean National Health and Nutrition Examination Survey 2008-2010. PLoS One 9, e11909.

Nakagawa H, Nishijo M, 1996 Environmental cadmium exposure, hypertension and cardiovascular risk. J. Cardiovasc. Risk 3, 11–17. [PubMed: 8783026]

Navas-Acien A, Guallar E, Silbergeld EK, Rothenberg SJ, 2007 Lead exposure and cardiovascular disease—a systematic review. Environ. Health Perspect 115, 472–482. [PubMed: 17431501]

Noor N, Zong G, Seeley EW, Weissskopf M, James-Todd T, 2018 Urinary cadmium concentrations and metabolic syndrome in U.S. adults: The National Health and Nutrition Examination Survey 2001–2014. Environ. Int 121, 349–356. [PubMed: 30243183]

Nordberg G, Nogawa K, Nordberg M, Friberg L, 2007 Cadmium. Elsevier, Amsterdam.

Oliver-Williams C, Howard AG, Navas-Acien A, Howard BV, Tellez-Plaza M, Franceschini N, 2018 Cadmium body burden, hypertension, and changes in blood pressure over time: results from a prospective cohort study in American Indians. J. Am. Soc. Hypertens 12, 426–437 e9. [PubMed: 29605538]

Osorio-Yanez C, Gelaye B, Miller RS, Enquobahrie DA, Baccarelli AA, Qiu C, Williams MA, 2016 Associations of maternal urinary cadmium with trimester-specific blood pressure in pregnancy: role of dietary intake of micro nutrients. Biol. Trace. Elem. Res 174, 71–81. [PubMed: 27129315]

Park SK, Zhao Z, Mukherjee B, 2017 Construction of environmental risk score beyond standard linear models using machine learning methods: application to metal mixtures, oxidative stress and cardiovascular disease in NHANES. Environ. Health 16, 102. [PubMed: 28950902]

Perry HM, Schroeder HA, Louis S, 1955 Concentration of trace metals in urine of treated and untreated hypertensive patients compared with normal subjects. J. Lab. Clin. Med 46, 936.

Piade JJ, Jaccard G, Dolka C, Belushkin M, Wajrock S, 2015 Differences in cadmium transfer from tobacco to cigarette smoke, compared to arsenic or lead. Toxicol. Rep 2, 12–26. [PubMed: 28962333]

Rahman MT, Haque N, Abu Kasim NH, De Ley M, 2017 Origin, function, and fate of metallothionein in human blood. Rev. Physiol. Biochem. Pharmacol 173, 41–62. [PubMed: 28417197]

Roels HA, Hoet P, Lison D, 1999 Usefulness of biomarkers of exposure to inorganic mercury, lead, or cadmium in controlling occupational and environmental risks of nephrotoxicity. Ren. Fail 21, 251–262. [PubMed: 10416202]
Roels HA, Lauwerys RR, Bernard AM, Buchet JP, Vos A, Oversteyns M, 1991 Assessment of the filtration reserve capacity of the kidney in workers exposed to cadmium. Br. J. Ind. Med 48, 365–374. [PubMed: 2064974]

Roels HA, Lauwerys RR, Buchet JP, Bernard AM, Lijnen P, Van Houte G, 1990 Urinary kallikrein activity in workers exposed to cadmium, lead, or mercury vapour. Br. J. Ind. Med 47, 331–337. [PubMed: 2357454]

Satarug S, Gobe GC, Ujjin P, Vesey DA, 2020 A comparison of the nephrotoxicity of low doses of cadmium and lead. Toxics 8, 18.

Satarug S, Vesey DA, Gobe GC, 2017 Kidney cadmium toxicity, diabetes and high blood pressure: the perfect storm. Tohoku J. Exp. Med 241, 65–87. [PubMed: 28132967]

Shakir SK, Azizullah A, Murad W, Daud MK, Nabeza F, Rahman H, Ur Rehman S, Hader DP, 2017 Toxic metal pollution in Pakistan and its possible risks to public health. Rev. Environ. Contam. Toxicol 242, 1–60. [PubMed: 27464847]

Shiu I, Hristova K, 2014 Higher urinary heavy metal, phthalate and arsenic concentrations accounted for 3-19% of the population attributable risk for high blood pressure: US NHANES, 2009-2012. Hypertens. Res 37, 1075–1081. [PubMed: 25077919]

Skroder H, Hawkesworth S, Kipperler M, El Arifeen S, Wagatsuma Y, Moore SE, Vaher M, 2015 Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic–potential alleviation by selenium. Environ. Res 140, 205–213. [PubMed: 25863594]

Slotnick MJ, Nriagu JO, 2006 Validity of human nails as a biomarker of arsenic and selenium exposure: a review. Environ. Res 102, 125–139. [PubMed: 16442520]

Soobramoney C, Madurar K, Moodley J, Moodley R, Naicker T, 2019 The screening of nails for selected essential and toxic elements in normotensive and pre-eclamptic women. Biol. Trace Elem. Res 189, 28–33. [PubMed: 30073457]

Staessen JA, Kuznetsova T, Roels HA, Emelianov D, Fagard R, 2000 Exposure to cadmium and conventional and ambulatory blood pressures in a prospective population study. Public Health and Environmental Exposure to Cadmium Study Group. Am. J. Hypertens 13, 146–156. [PubMed: 10701814]

Stoll G, Bendszus M, 2006 Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 37, 1923–1932. [PubMed: 16741184]

Sun H, Wang D, Zhou Z, Ding Z, Chen X, Xu Y, Huang L, Tang D, 2016 Association of cadmium in urine and blood with age in a general population with low environmental exposure. Chemosphere 156, 392–397. [PubMed: 27186688]

Swaddiwudhipong W, Limpatanachote P, Mahasakpan P, Krinratun S, Punta B, Funkhiew T, 2012 Progress in cadmium-related health effects in persons with high environmental exposure in northwestern Thailand: a five-year follow-up. Environ. Res 112, 194–198. [PubMed: 22033168]

Swaddiwudhipong W, Limpatanachote P, Nishijo M, Honda R, Mahasakpan P, Krinratun S, 2010a Cadmium-exposed population in Mae Sot district, Tak province: 3. Associations between urinary cadmium and renal dysfunction, hypertension, diabetes, and urinary stones. J. Med. Assoc. Thail 93, 231–238.

Swaddiwudhipong W, Mahasakpan P, Limpatanachote P, Krinratun S, 2010b Correlations of urinary cadmium with hypertension and diabetes in persons living in cadmium-contaminated villages in northwestern Thailand: a population study. Environ. Res 110, 612–616. [PubMed: 20561611]

Swaddiwudhipong W, Mahasakpan P, Jeekeeree W, Funkhiew T, Sanjum R, Apiwatpaiboon T, Phopueng I, 2015a Renal and blood pressure effects from environmental cadmium exposure in Thai children. Environ. Res 136, 82–87. [PubMed: 25460624]

Swaddiwudhipong W, Nguntra P, Kaewnate Y, Mahasakpan P, Limpatanachote P, Aunjai T, Jeekeeree W, Punta B, Funkhiew T, Phopueng I, 2015b Human health effects from cadmium exposure: comparison between persons living in cadmium-contaminated and non-contaminated areas in Northwestern Thailand. Southeast Asian J. Trop. Med. Public Health 46, 133–142. [PubMed: 26513915]

Tangvrasititchai S, Niyomtam S, Meemark S, Pingmuangkaew P, Nanthawarasilp W, 2015 Elevated cadmium exposure associated with hypertension, diabetes and chronic kidney disease, in the population of cadmium-contaminated area. Int. J. Toxicol. Pharmacol. Res 7, 50–56.
Tellez-Plaza M, Navas-Acien A, Crainiceanu CM, Guallar E, 2008 Cadmium exposure and hypertension in the 1999-2004 National Health and Nutrition Examination Survey (NHANES). Environ. Health Perspect 116, 51–56. [PubMed: 18197299]

Theodore RF, Broadbent J, Nagin D, Ambler A, Hogan S, Ramrakha S, Cutfield W, Williams MJ, Harrington H, Moffitt TE, Caspi A, Milne B, Poulton R, 2015 Childhood to early-midlife systolic blood pressure trajectories: early-life predictors, effect modifiers, and adult cardiovascular outcomes. Hypertension 66, 1108–1115. [PubMed: 26558818]

Vallee A, Gabet A, Grave C, Blacher J, Olie V, 2020 Associations between urinary cadmium levels, blood pressure, and hypertension: the ESTEBAN survey. Environ. Sci. Pollut. Res 27, 10748–10756.

Wang X, Mukherjee B, Park SK, 2018 Associations of cumulative exposure to heavy metal mixtures with obesity and its comorbidities among U.S. adults in NHANES 2003-2014. Environ. Int 121, 683–694. [PubMed: 30316184]

Wang Q, Wei S, 2018 Cadmium affects blood pressure and negatively interacts with obesity: findings from NHANES 1999-2014. Sci. Total Environ 643, 270–276. [PubMed: 29936168]

Washington B, Williams S, Armstrong P, Mtshali C, Robinson JT, Myles EL, 2006 Cadmium toxicity on arterioles vascular smooth muscle cells of spontaneously hypertensive rats. Int. J. Environ. Res. Public Health 3, 323–328. [PubMed: 17159273]

Weaver VM, Kotchmar DJ, Fadrowski JJ, Silberfeld EK, 2016 Challenges for environmental epidemiology research: are biomarker concentrations altered by kidney function or urine concentration adjustment? J. Expo. Sci. Environ. Epidemiol 26, 1–8. [PubMed: 25736163]

White AJ, O’Brien KM, Jackson BP, Karagas MR, 2018 Urine and toenail cadmium levels in pregnant women: a reliability study. Environ. Int 118, 86–91. [PubMed: 29857281]

Wiseman CL, Zereini F, Puttmann W, 2014 Metal translocation patterns in Solanum melongena grown in close proximity to traffic. Environ. Sci. Pollut. Res. Int 21, 1572–1581. [PubMed: 23943080]

Wu W, Jiang S, Zhao Q, Zhang K, Wei X, Zhou T, Liu D, Zhou H, Zhong R, Zeng Q, Cheng L, Miao X, Lu Q, 2018 Associations of environmental exposure to metals with the risk of hypertension in China. Sci. Total Environ 622–623, 184–191.

Wu W, Liu D, Jiang S, Zhang K, Zhou H, Lu Q, 2019 Polymorphisms in gene MMP-2 modify the association of cadmium exposure with hypertension risk. Environ. Int 124, 441–447. [PubMed: 30684802]

Yoopan N, Watcharasit P, Wongsawatkul O, Piyachaturawat P, Satayavivad J, 2008 Attenuation of eNOS expression in cadmium-induced hypertensive rats. Toxicol. Lett 176, 157–161. [PubMed: 18155860]

Zalups RK, Ahmad S, 2003 Molecular handling of cadmium in transporting epithelia. Toxicol. Appl. Pharmacol 186, 163–188. [PubMed: 12620369]

Zhang R, Witkowska K, Afonso Guerra-Assuncao J, Ren M, Ng FL, Mauro C, Tucker AT, Caulfield MJ, Ye S, 2016a A blood pressure-associated variant of the SLC39A8 gene influences cellular cadmium accumulation and toxicity. Hum. Mol. Genet 25, 4117–4126. [PubMed: 27466201]

Zhang R, Witkowska K, Afonso Guerra-Assuncao J, Ren M, Ng FL, Mauro C, Tucker AT, Caulfield MJ, Ye S, 2016b A blood pressure-associated variant of the SLC39A8 gene influences cellular cadmium accumulation and toxicity. Hum. Mol. Genet 25, 4117–4126. [PubMed: 27466201]
Fig. 1.
Flow diagram of study selection process.
Table 1

Characteristics of epidemiological studies of cadmium (Cd) exposure included in the systematic review.

Authors, date and country	Study design	Study population	Setting	Sample size or n° cases/noncases	Mean age/age range (years)	Male sex, n (%)	Hypertension definition	Outcome(s)	Adjustment variables	Cd exposure/Matrix	Cd concentration/matrix of association	Conclusions
Vallee et al., 2020	Cross-sectional	General adult population	Cases: 659 Noncases: 1446	47.2 ± 14.6	44.9	SBP/DBP ≥ 140/90 mmHg or use of antihypertension medication	Blood pressure, hypertension	Age, gender, smoking, antihypertensive drugs, BMI, alcohol consumption, Fruits and vegetables consumption, diabetes mellitus, hypercholesterolemia, CKD	Urine (μg/g creatinine)	Mean (SE): Cases: 0.42 (0.01) Noncases: 0.40 (0.01) OR 95% CI*: HPT: 0.91 (0.78–1.04) HPT among smokers: 0.78, (0.64–0.92) HPT among chronic kidney function: 0.68 (0.75–0.97) Comparison: Quartiles	No correlation between Cd, BP and hypertension was observed in overall population. In smokers, inverse association was found with hypertension	
Castillejo et al., 2020	Cohort	Adolescents	133	15–17	100	SBP/DBP ≥ 2080 mmHg	Blood pressure and serum hormone levels	Urinary creatinine, age, serum triglycerides, HDL and LDL, BMI, and metals simultaneously	Urine (mg/g creatinine)	GM (range): 0.04 (0.01–0.55) OR 95% CI: SBP = 1.10 (0.74–1.55) DBP = 1.07 (0.82–1.07) Comparison: per each 5% increase in Cd concentrations	Urinary Cd was associated with slight elevations in SBP	
Wu et al., 2019	Case-control	Chinese population	Cases: 497 Controls: 497	Cases: 57.06 Controls = 56.33	56.2	SBP/DBP ≥ 140/90 mmHg, or a diagnosis by a physician, or the current use of antihypertensive medication	Hypertension	Urinary creatinine, age, sex, BMI, smoking and drinking status, smoking pack-years, income and education	Urine (μg/L)	Median (25%-75%): Cases = 0.93 (0.51–1.64) Controls = 0.80 (0.44–1.35) OR (95% CI): Non-smokers 1.25 (1.09–1.43) Overall: 1.19 (1.06–1.33) Comparison: < 0.54 vs. > 1.07	Urinary Cd were positively associated with hypertension risk	
Authors, date and country	Study design	Study population	Hypertension definition	Outcome(s)	Adjustment variables	Cd exposure/measure of association	Conclusions					
--------------------------	-------------	-----------------	------------------------	------------	---------------------	----------------------------------	-------------					
Madrigal et al., 2019 United States	Cross-sectional	NHANES (2007–2012)	Cases: 5651 Noncases: 6926	SBP/DBP ≥ 140/90 mmHg, or self-reported diagnosis by a physician, or antihypertensive medication use	Kidney function	Blood (μg/L)	GM (95% CI): Cases = 0.38 (0.37–0.39) Noncases = 0.34 (0.32–0.35)	Significant association between blood Cd levels and hypertension was found				
Huang et al., 2019 China	Interventional	General population	Intervention group (a): consume of rice from non-polluted soil Non-intervention group (b): continue to consume rice from polluted soil control group (c): continued eating low-Cd rice they have been eating for years	SBP/DBP ≥ 140/90 mmHg, self-reported physician diagnosis or use of antihypertensive medication	Blood pressure, β2-microglobulin, N-acetyl-β-D-glucosaminidase	Urine (μg/g creatinine)	GM (SD): Intervention group = 1.46 (0.36) Non-intervention group = 1.76 (0.87) Control group = 1.42 (0.87)	Short-term changes in Cd exposure can positively impact blood pressure levels, especially DBP				
Oliver-Williams et al., 2018 United States	Cohort	Strong Heart Study, American Indians communities	2853: BP analyses 2865: hypertension (HPT) analyses	SBP/DBP ≥ 140/90 mmHg or antihypertension medication	Blood pressure, hypertension	Urine (μg/g creatinine)	Median (IQR) = 1.1 (0.7–1.6) BP: HR = 1.10 (1.01–1.20) HPT: HR = 1.17 (0.97–1.40) Comparison: One-unit increase in log-transformed urinary Cd was associated with 10% hypertension risk	Positive relationship was found between urinary Cd level and SBP and DBP, but not statistically significant with hypertension.				
Noor et al., 2018 United States	Cross-sectional	General population NHANES (2001–2014). With and without metabolic Syndrome (MS)	Male: 1996 Female: 1985	SBP/DBP ≥ 130/85 mmHg, or treatment for hypertension	Metabolic syndrome, hypertension	Urine (μg/L)	GM ±GSD: Men case (with MS): 0.29 (0.26–0.31) noncase (without MS): 0.22 (0.20–0.23) Women: case (with MS): 0.33 (0.30–0.32)	Among never smokers, an inverse association was observed between urinary Cd levels and hypertension.				
Study design	Study population	Hypertension definition	Outcome(s)	Adjustment variables	Cd exposure/measure of association	Conclusions						
--------------	------------------	-------------------------	------------	---------------------	----------------------------------	-------------						
Cross-sectional	Residents in contaminated areas	Cases: 110 Noncases: 115	33–55	SBP/DBP ≥ 140/90 mmHg, physician diagnosis or prescription of antihypertensive medications	20-HETE levels, blood pressure	Age, BMI, blood pressure, biomarkers of kidney effects	AM±SD: Blood Case= 3.16 ± 2.6 Control= 4.06 ± 3.9 Urine: Case= 0.52 ± 0.39 Control= 0.64 ± 0.54	Among current smokers, higher urinary Cd levels were associated with increased odds of hypertension				
Cross-sectional	General population KNHANES 2010-2016	1776	10–18	SBP/DBP ≥ 140/90 mmHg Prehypertension: DBP of at least 80 mmHg (but below 90 mmHg), or a SBP of at least 120 mmHg (but below 140 mmHg)	Hypertension, Prehypertension	Sex, age, residence area, smoking status, drinking status, BMI, year of measurement, physical activities, hemoglobin, and serum creatinine	GM (95% CI) = 0.317 (0.306–0.328) OR (95% CI): Female 0.223 vs. 0.471 Male 0.225 vs. 0.441	In non-smokers, no association between urinary Cd and blood pressure was found. In smokers, moderate association was found				
Cross-sectional	General population NHANES (1999–2010).	9258	≥20	SBP/DBP ≥ 140/90 mmHg Participants that intake antihypertensive medications were excluded.	Blood pressure, renal function	Sex, race, age, educational attainment, household income, alcohol drinking, BMI, total energy intake, or Smoking status. For urine was added: ever told had CVD	Blood (μg/L) Urine (μg/g creatinine)	Blood < 0.20, 0.20–0.38, 0.38–0.60, ≥0.60 (quartiles) Urine < 0.16, 0.16–0.29, 0.29–0.52, ≥0.52 (quartiles)	Both SBP and DBP were positively associated with blood Cd. DBP was positively associated to urinary Cd whereas SBP was inversely associated with urinary Cd among never smokers.			
Authors, date and country	Study design	Study population	Hypertension definition	Outcome(s)	Adjustment variables	Cd exposure/measure of association	Conclusions					
---------------------------	--------------	------------------	-------------------------	------------	---------------------	----------------------------------	-------------					
Wang and Wei, 2018 United States	Cross-sectional	General population NHANES (1999–2014)	SBP/DBP ≥ 140/90 mmHg	Blood pressure, hypertension	Age, BMI category, educational, marital status, poverty index, alcohol consumption, smoking status and serum contents of sodium, potassium, calcium, creatinine, phosphorus, total protein, total cholesterol, glucose, and iron and blood concentration	Blood (μg/L) Urine (μg/L)	Cd exposure was associated with elevated blood pressure and hypertension in women					
Wu et al., 2018 China	Case-control	Chinese population with and without hypertension	SBP/DBP ≥ 140/90 mmHg, use of antihypertensive medication	Hypertension	Gender, BMI, status of smoking and drinking, and levels of education and income	Urine (μg/g creatinine)	Urinary Cd levels were inversely associated with hypertension risk					
Liu et al., 2018 China	Cross-sectional	Pregnant women with and without pregnancy-induced hypertension	28.5 ± 3.7	0	medical records	Urinary creatinine, age, pregnancy BMI, parity, annual household income, gestational weight gain, iron and	Urine (μg/g creatinine)	Urinary Cd levels were positively associated with PIH.				
Authors, date and country	Study design	Study population	Hypertension definition	Outcome(s)	Adjustment variables	Cd exposure/measure of association	Conclusions					
---------------------------	--------------	------------------	-------------------------	------------	---------------------	----------------------------------	-------------					
An et al., 2017 South Korea	Cross-sectional	Workers in a copper smelter	Cases: 33 Noncases: 277	SBP/DBP ≥ 140/90 mmHg or self-reported current use of antihypertensive medication	Blood pressure, age, body mass index, diabetes, alcohol drinking Habit, smoking status, exercise habit, and family history of hypertension	Blood (μg/L)	Associations were found between blood Cd levels and elevations in SBP and DBP.					
Garner and Levallois, 2017 Canada	Cross-sectional	Canadian Health Measures Survey (CHMS), General population	Cases: 2898 Noncases: 7201	SBP/DBP ≥ 140/90 mmHg, self-reported doctor-diagnosed high blood pressure or use of antihypertensive medications	Blood pressure, hypertension, age, sex, smoking status, antihypertensive medications, BMI, alcohol consumption status, diabetes, chronic kidney Disease, exposure to second hand smoke, Indicator(s) for CHMS cycle.	Blood (μg/L) Urine (μg/g creatinine)	Adjusted GM (SE) SBP/DBP Cases: 0.43 (0.02)/0.46 (0.03) Noncases: 0.41 (0.01)/0.40 (0.01) Hypertension Cases: 0.40 (0.01) Noncases: 0.40 (0.01) OR (95% CI) (smokers): 0.61 (0.44–0.85) Comparison: unit change in natural logarithm transformed blood/urine Cd	Associations between blood Cd levels and blood pressure were found. Negative associations were noted in smokers between urinary Cd and hypertension. Associations between blood Cd levels and hypertension were found among women, particularly among never smokers.				
Park et al., 2017 United States	Cross-sectional	General population NHANES (2003–2004)	Cases: 3385 Noncases: 5790	SBP/DBP ≥ 140/90 mmHg, physician diagnosis of hypertension, use of blood pressure, hypertension, gender, race/ethnicity, smoking status and education	Age, BMI, creatinine, smoking status and education	Blood (μg/L) Urine (μg/L)	GM (SD): blood = 0.37 (2.22) urine = 0.24 (2.77) OR (95% CI) (blood): 1.17 (0.79–1.74)	No association between blood Cd levels and blood pressure and hypertension was found.				
Authors, date and country	Study design	Study population	Hypertension definition	Outcome(s)	Adjustment variables	Cd exposure/measure of association	Conclusions					
--------------------------	--------------	------------------	-------------------------	------------	---------------------	-----------------------------------	-------------					
Franceschini et al., 2017 United States DBP: light- and never-smokers (SBP = 0.94, p = 0.004)	Cross-sectional	Strong Heart Study, American Indians communities	Cases: 1429 Noncases: 2285	SBP/DBP ≥ 140/90 mmHg or use of antihypertensive medication	Blood pressure, Age, sex, geographic area, body mass index, smoking and kidney function	Urine (μg/g creatinine)	Associations between urinary Cd and higher SBP and DBP among light- and never-smokers were found. No association with DBP among only never-smokers.					
Osorio-Yañez et al., 2016 United States	Cohort	Pregnant women in prenatal care clinics	653 33.0 ± 4.4 0	SBP/DBP ≥ 140/90 mmHg	Preeclampsia, hypertension	Maternal age, ethnicity, parity, smoking, prenatal vitamin use, family history of hypertension, GDM status, and physical activity	Urine (μg/g creatinine)	Inverse association between urinary Cd and mean blood pressure was found in preeclampsia				
Lee et al., 2016 South Korea	Cross-sectional	General population KHNANES 2008-2013	(a) control: 5772 (b) pre-hypertensive: 3051 (c) hypertensive: 3156	SBP/DBP ≥ 140/90 mmHg or self-reported current use of an antihypertensive medication	Blood pressure and hypertension	Sex, age group, residence area, smoking status, drinking status, education level, hypertensive status	Blood (μg/L)	Blood Cd was strongly associated with elevated blood pressure and risk of hypertension				
Tangvarasittichai et al., 2015 Thailand	Cross-sectional	Residents in Cd polluted villages and unexposed noncases	Cases: 258 Noncases: 277	BP ≥ 140/90 mmHg or taking antihypertensive medications or diagnosed with hypertension	Hypertension, diabetes	CKD, U-Protein/g creatinine, U-Cal/g creatinine, BMI, drinking, smoking, age and gender	Urine (μg/g creatinine)	Elevation of Cd exposure is associated with increased risk for hypertension and diabetes				
Chen et al., 2015 China	Cross-sectional	Residents living in a cadmiunum-	441 Women= 58.4 Men= 60.9	SBP/DBP ≥ 140/90 mmHg or current	Hypertension	Hypertension, sex	Blood (μg/L)	Association between blood Cd levels and				
Authors, date and country	Study design	Study population	Hypertension definition	Outcome(s)	Adjustment variables	Cd exposure/ measure of association	Conclusions					
---------------------------	-------------	------------------	-------------------------	------------	---------------------	-------------------------------------	-------------					
Skroder et al., 2015 Bangladesh	Cross-sectional	Preschool-aged children (1356)	antihypertensive treatment	Blood pressure, renal function	Sex, birth weight, season of birth, age at outcome measurement, weight for age z-score, maternal BMI	Urine (μg/L)	Blood pressure and hypertension was found					
Swaddiwudhipong et al., 2015a Thailand	Cross-sectional	Children living in contaminated areas (cases) and non-contaminated areas (noncases) (Cases: 301, Noncases: 293)	β2-microglobulin, blood pressure	Age, sex, and blood lead levels	Blood (μg/L) Urine (μg/g creatinine) GM (GSD): Blood cases: 2.42 (1.80) noncases: 1.54 (2.12) Urine cases: 0.70 (1.98) noncases: 0.41 (2.44)	GM±SD: cases: 2.96 ± 2.46 noncases: 0.60 ± 2.19	No significant associations between Cd exposure and blood pressure					
Swaddiwudhipong et al., 2015b Thailand	Cross-sectional	Residents in Cd-contaminated (cases) and non-contaminated rural areas (noncases) (Cases: 751, Noncases: 682)	BP/DDBP ≥ 140/90 mmHg, or current use of antihypertensive medication	Hypertension, Renal dysfunction, Metabolic disorders, Bone density	Not informed	Urine (μg/g creatinine)	Higher prevalence of hypertension was associated with higher urinary Cd.					
Van Larebeke et al., 2015 Belgium	Cross-sectional	FLEHS General population: (a) follow up study (2011) (b) previous study (2004-2005). (a): 973 (b): 608	History of hypertension	Blood pressure, diabetes	BMI, exercise in minutes per week, level of education, glasses alcoholic beverages per week, and others	Urine (μg/g creatinine)	Positive association between urinary Cd and hypertension was found					
Myong et al., 2014 South Korea	Cross-sectional	General population KNHANES (2008-2010)	SBP ≥ 120 mmHg and antihypertensive treatment	Hypertension	Survey year, age, and urinary cotinine concentration	Blood (μg/L)	Blood Cd levels among men were significantly associated with SBP					
Shike and Hristova, 2014 United States	Cross-sectional	General population	SBP/DBP ≥ 140/90 mmHg	Blood pressure	Urine creatinine, age, sex, body mass index	Urine (μg/L)	No association was found between					
Authors, date and country	Study design	Study population	Hypertension definition	Outcome(s)	Adjustment variables	Cd exposure/matrix	Cd concentration/measure of association	Conclusions				
---------------------------	-------------	------------------	--------------------------	------------	---------------------	------------------	--	-------------				
Ikeda et al., 2013 Japan	Cross-sectional	Women from non-polluted areas	Cases: 289 Noncases: 867	20–89	0	Hypertension history	Tubular dysfunction markers, urinary Cd	None	GM: Cases= 2.0 Noncases= 1.8	history of hypertension may be associated with elevation in urinary Cd levels and high BP		
Chen et al., 2013 China	Cross-sectional	Population living in Cd contaminated area	Cases: 115 Noncases: 66	58.2 ± 10.8	39	SBP/DBP > 160/95 mmHg or antihypertensive treatment	Blood pressure	Age and BMI	Blood (μg/L)	GM: Men/women SBP< 140 2.95, 3.77 SBP > 160 3.77, 4.84	blood Cd level was associated with BP, especially for women. Higher prevalence of hypertension was observed with the increasing blood Cd levels both in men and women	
Lee and Kim, 2012 South Korea	Cross-sectional	General population KNHANES 2008–2010	5919 ≥20	49.96	SBP/DBP ≥ 140/90 mmHg or self-reported use of antihypertensive medication	Hypertension	Sex, age, residence area, education level, smoking and drinking status, serum creatinine, hemoglobin, BMI, and diabetic status	Blood (μg/L)	GM (IQR)	Women: normal pressure: 1.023 (0.632–1.407) hypertensive: 1.106 (1.009–1.812) Men: normal: 0.841 (0.547–1.223) hypertensive: 0.945 (0.721–1.487) OR (95% CI)/comparison: SBP: women: 3.201 (1.284–5.117) 0.734 vs. >1.571 men: 3.872 (1.843–5.902) 0.621 vs. >1.331 hypertensive men: 1.826 (1.325–	Significant association between blood Cd levels and elevated blood pressure were found. For hypertension, the association was significative for men	
Authors, date and country	Study design	Study population	Hypertension definition	Outcome(s)	Adjustment variables	Cd exposure/Matrix	Cd concentration/ measure of association	Conclusions				
--------------------------------	---------------	------------------	--	---	--	-------------------	--	--				
Mordukhovich et al., 2012	Cohort	Veterans Administration Normative Aging Study (NAS)	SBP ≥ 140 mmHg or DBP ≥ 90 mmHg or antihypertensive medication use	Blood pressure	Age, cigarette smoking, pack-years, BMI, alcohol intake, race/ethnicity, education, and season and year of clinical visit	Toenail clippings (µg/g)	Median (IQR): 0.02 (0.02) OR (95% CI): 1.01 (0.95, 1.06)	Comparison: IQR increase in Cd levels were not found. Blood Cd levels and blood pressure were not significantly associated.				
Swaddiwudhipong et al., 2012	Cohort	Residents in Cd contaminated rural areas: reducing exposure group (a) and continuing exposure group (b)	SBP/DBP ≥ 140/90 mmHg, or current antihypertensive medication	Hypertension, diabetes and urinary stone disease	Not informed	Urine (µg/g creatinine)	GM±SD: (a): year 2005 (baseline)=9.6±1.7 year 2010=8.8±1.6 (b): year 2005 (baseline)=9.3±1.6 year 2005=8.90±1.7	No association between urinary Cd and hypertension. Significant increases in the prevalence of hypertension, even after Cd exposure reduction, were found.				
Afridi et al., 2011a, 20011b	Cross-sectional	Pakistan: 1.6 ± 0.25 Irish: 0.62 ± 0.13	Cases: 128 Hypertensive and non-hypertensive groups	Blood pressure	Age, education level, household income, smoking status, alcohol, BMI, waist circumference, family history of hypertension, and blood lead	Blood (µg/L)	GM (SE): Cases: 1.67 (0.03) Noncases: 1.49 (0.02) OR (95% CI): 1.29 (1.09–1.52)	Comparison: IQR increase in blood Cd was associated with an elevated risk of hypertension.				
Lee et al., 2011 South Korea	Cross-sectional	KHANES (2005)	Cases: 481 Noncases: 1427	SBP/DBP ≥ 140/90 mmHg, self-reported physician diagnosis, or use antihypertensive medication	Ischemic heart disease, stroke, and hypertension	Blood (µg/L)	GM (SE): Cases: 1.67 (0.03) Noncases: 1.49 (0.02) OR (95% CI): 1.29 (1.09–1.52)	Comparison: IQR increase in blood Cd was associated with an elevated risk of hypertension.				
Authors, date and country	Study design	Study population	Hypertension definition	Outcome(s)	Adjustment variables	Cd exposure/measure of association	Conclusions					
---------------------------	--------------	------------------	-------------------------	------------	---------------------	-----------------------------------	-------------					
Boonprasert et al., 2011 Thailand	Case control	Residents in Cd-contaminated rural areas	Cases: 154	Control: 154	SBP/DBP ≥ 140/90 mmHg, clinical diagnosis of hypertension	Hypertension, Renal dysfunction biomarkers and genetic polymorphism	Blood (μg/L) Urine (μg/g creatinine)	No evidence was found between Cd exposure and high blood pressure				
Swaddiwudhipong et al., 2010a Thailand	Cross-sectional	Residents in Cd-contaminated rural areas with urinary Cd < or ≥ 5 (cases and noncases, respectively)	Cases: 484	Noncases: 311	SBP/DBP ≥ 140/90 mmHg, or current antihypertensive medication	Hypertension, diabetes and urinary stone disease	Urine (μg/g creatinine) OR (95%CI): 1.00 (0.97–1.02) Comparison < 5 vs. ≥5	No significant association between urinary Cd and hypertension was found				
Swaddiwudhipong et al., 2010b Thailand	Cross-sectional	Subjects living in Cd-contaminated villages	cases: 1571	noncases: 3702	SBP/DBP ≥ 140/90 mmHg or receipt of current antihypertensive medication	Hypertension, diabetes	Adjusted for age, alcohol consumption, BMI, diabetes	GM (±SD) Males: 2.0 (2.2) Females: 2.4 (2.3) OR (95% CI) Never smokers: Males = 1.043 (0.953–1.140) Females = 1.055 (1.020–1.091) Smokers: Male:1.052 (1.012–1.094) Female: 1.704 (1.019–1.133) Comparison (male): < 1.36 vs. ≥ 2.89 (female): < 1.72 vs. > 3.65	The prevalence of hypertension significantly increased as urinary Cd levels increased			
Afridi et al., 2010a, 2010b Pakistan	Cross-sectional	Patients from basic health	Cases: 457	Noncases: 369	SBP/DBP ≥ 160/90 mmHg or use of hypertension medication	Hypertension	Smoking, weight, BMI, LDL, cholesterol, blood pressure, Cd, Pb, Ni, Zn	Mean Cases (hair, blood, urine): Non-smokers 2.86 ± 0.43, 5.97 ± 1.3, 4.69 ± 0.46 Smokers 7.3 ± 0.69, 8.9 ± 0.46	Cd levels were significantly higher of both smoker and nonsmoker patients with hypertension			
Authors, date and country	Study design	Study population	Hypertension definition	Outcome(s)	Adjustment variables	Cd exposure/Matrix	Cd concentration/measure of association	Conclusions				
--------------------------	-------------	------------------	------------------------	------------	---------------------	-------------------	--	-------------				
							1.3, 5.86 ± 2.12	than in referents				
							Noncases (hair, blood, urine):					
							Non-smokers: 1.24 ± 0.3, 4.24 ±					
							1.27, 3.2 ± 0.9 Smokers: 1.99 ± 0.54, 5.36 ±					
							1.4, 3.98 ± 1.22					

Abbreviations: AM, arithmetic mean; BP, blood pressure; BMDL; benchmark dose lower (response of 10%); BMI, body mass index; CI, confidence interval; CKD, chronic kidney disease; CVD, cardiovascular disease; DBP, diastolic blood pressure; EGFR, estimated glomerular filtration rate; FLEHS, Flemish Environment and Health Survey; GM, geometric mean; GSE, geometric standard error; 20-HETE, 20-hydroxyeicosatetraenoic acid; HPT, hypertension; HR, hazard ratio; IQR, interquartile range; KHANES, Korea National Health and Nutrition Examination Survey; NHANES, National Health and Nutrition Survey; OR, odds ratio; SBP, systolic blood pressure; SD, standard deviation; SE, standard error.

For studies that categorized Cd exposure, we report the HR or OR (with 95% CI) comparing the highest with the lowest Cd category.