New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

Michael M. Silaev

Chemistry Faculty, Lomonosov Moscow State University, Vorobievy Gory, Moscow 119991, Russia

Abstract: The aim of this study was the conclusion of simple kinetic equations to describe ab initio initiated nonbranched-chain processes of the saturated free-radical addition to the double bonds of unsaturated molecules in the binary reaction systems of saturated and unsaturated components. In the processes of this kind the formation rate of the molecular addition products (1:1 adducts) as a function of concentration of the unsaturated component has a maximum. Five reaction schemes are suggested for this addition processes. The proposed schemes include the reaction competing with chain propagation reactions through a reactive free radical. The chain evolution stage in these schemes involves three or four types of free radicals. One of them is relatively low-reactive and inhibits the chain process by shortening of the kinetic chain length. Based on the suggested schemes, nine rate equations (containing one to three parameters to be determined directly) are deduced using quasi-steady-state treatment. These equations provide good fits for the nonmonotonic (peaking) dependences of the formation rates of the molecular products (1:1 adducts) on the concentration of the unsaturated component in binary systems consisting of a saturated component (hydrocarbon, alcohol, etc.) and an unsaturated component (alkene, allyl alcohol, formaldehyde, or dioxygen). The unsaturated compound in these systems is both a reactant and an autoinhibitor generating low-reactive free radicals. A similar kinetic description is applicable to the nonbranched-chain process of the free-radical hydrogen oxidation, in which the oxygen with the increase of its concentration begins to act as an oxidation auto inhibitor (or an antioxidant). The energetic of the key radical-molecule reactions is considered.

Keywords: Binary System, Unsaturated Compound, Low-Reactive Radical, Auto inhibitor, Competing Reaction, Nonbranched-Chain Addition, Kinetic Equation, Rate, Parameters, Thermochemical Data, Energy.

1. **INTRODUCTION**

A free radical may be low-reactive if its unpaired p-electron may be delocalized, e.g., over conjugated bonds as in the case of allyl radical CH$_2$=CHCH$_3$ or along a double bond from carbon to the more electron-affine oxygen as in the case of formyl radical HĈ=O. Note that the activity of a free radical is also connected to the reaction heat in which it participates. In nonbranched-chain processes of reactive free radical (addend) addition to double bonds of molecules, the formation of rather low-reactive free radicals in reactions, which are parallel to or competing with propagation via a reactive radicals, lead to chain termination, because these low-reactive radicals do not participate in further chain propagation and because they decay when colliding with each other or with chain-carrier reactive radicals thus resulting in inefficient expenditure of the latter and process inhibition.

In similar processes involving the addend and inhibitor radicals in diffusion controlled bimolecular chain-termination reactions of three types, the dependences of the rate of molecular 1:1 adduct formation on the concentration of the unsaturated component (which is the source of low-reactive free radicals in a binary system of saturated and unsaturated components) have a maximum, usually in the region of small (optimal) concentrations. The progressive inhibition of nonbranched chain processes upon exceeding this optimal concentration may be an element of self-regulation of the natural processes returning them to a steady state condition.

Here, reactions of addition of reactive free radicals to multiple bonds of alkenes, formaldehyde, and oxygen molecules to give 1:1 adduct radicals are taken as examples to consider the role of low-reactive free radicals as inhibitors of the nobranched chain processes at moderate temperatures. In the case of oxidation, there are tetraoxyl 1:2 adduct radical arising upon addition of a peroxy 1:1 adduct...
radical to molecular oxygen at high enough concentrations of the latter.

The 1:1 adduct radical (which is the heaviest and the largest among the free radicals that result from the addition of one addend radical to the double bond of the molecule) may have an increased energy owing to the energy liberated in the transformation of a double bond into an ordinary bond (30–130 kJ mol⁻¹ for the gas phase under standard conditions [1–4]). Therefore, it can decompose or react with one of the surrounding molecules in the place of its formation without diffusing in the solution and, hence, without participating in radical-radical chain termination reactions. Which of the two reactions of the adduct radical, the reaction with the saturated component or the reaction with the unsaturated component, dominates the kinetics of the process will depend on the reactivity and concentration ratios of the components in the binary system.

Earlier [5,6], there were attempts to describe such peaking dependences fragmentarily, assuming that the saturated or unsaturated component is in excess, in terms of the direct and inverse proportionalities, respectively, that result from the simplification of a particular case of the kinetic equation set up by the quasi-steady-state treatment of binary copolymerization involving fairly long chains [5]. This specific equation is based on an irrational function, whose plot is a monotonic curve representing the dependence of the product formation rate on the concentration of the unsaturated component. This curve comes out of the origin of coordinates, is convex upward, and has an asymptote parallel to the abscissa axis. Replacing the component concentrations with the component. This curve comes out of the origin of coordinates, is convex upward, and has an asymptote parallel to the abscissa axis. Replacing the component concentrations with the corresponding mole fractions generates a peak in this irrational function and thereby makes it suitable to describe the experimental data [7]. However, this circumstance cannot serve as a sufficient validation criterion for the mechanism examined, because the new property imparted to the function by the above artificial transformation does not follow from the solution of the set of algebraic equations that are set up for the reaction scheme accepted for the process in a closed system and express the equality of the steady-state formation and disappearance rates of the reactive intermediates.

This publication presents a comprehensive review of the nobranched-chain kinetic models developed for particular types of additions of saturated free radicals to multiple bonds [8–14]. It covers free radical additions to alkenes [10,11], their derivatives [8,9], formaldehyde (first compound in the aldehyde homological series) [8,9,12], and molecular oxygen [13,14] (which can add an unsaturated radical as well) yielding various 1:1 molecular adducts, whose formation rates as a function of the unsaturated compound concentration pass through a maximum (free radical chain additions to the C=N bond have not been studied adequately). In the kinetic description of these non-telomerization chain processes, the reaction between the 1:1 adduct radical and the unsaturated molecule, which is in competition with chain propagation through a reactive free radical (PCl₂, C₂H₅CHOH, etc.), is included for the first time in the chain propagation stage. This reaction yields a low-reactive radical (such as CH₂=C(CH₃)CH₂ or HĊ=O) and thus leads to chain termination because this radical does not continue the chain and thereby inhibits the chain process [8]. We will consider kinetic variants for the case of comparable component concentrations with an excess of the saturated component [10,11] and the case of an overwhelming excess of the saturated component over the unsaturated component [8,9,12]. Based on the reaction schemes suggested for the kinetic description of the addition process, we have derived kinetic equations with one to three parameters to be determined directly.

Reducing the number of unknown parameters in a kinetic equation will allow one to decrease the narrowness of the correlation of these parameters and to avoid a sharp build-up of the statistical error in the nonlinear estimation of these parameters in the case of a limited number of experimental data points [15]. The rate constant of the addition of a free radical to the double bond of the unsaturated molecule, estimated as a kinetic parameter, can be compared to its reference value if the latter is known. This provides a clear criterion to validate the mathematical description against experimental data.

The kinetic equations were set up using the quasi-steady-state treatment. This method is the most suitable for processes that include eight to ten or more reactions and four to six different free radicals and are described by curves based on no more than three to seven experimental points. In order to reduce the exponent of the $2k_6 \frac{d[R_1^+]}{dt}$ term in the $d[R_1^+]/dt = 0$ equation to unity[8], we used the following condition for the early stages of the process: $k_6 = \sqrt[6]{2k_5^2k_7^2}$ [16] and, hence, $V_1 = V_5 + 2V_6 + \ldots$
New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

\[V_7 = \left(\sqrt{2k_5} [R^*_1] + \sqrt{2k_7} [R^*_2] \right)^2 \]

Here, \([R^*_1]\) and \([R^*_2]\) are the concentrations of the addend radical and the low-reactive (inhibitor) radical, respectively; \(V_1\) is the initiation rate; \(V_5, 2V_6,\) and \(V_7\) are the rates of the three types of diffusion-controlled quadratic-law chain termination reactions; \(2k_5\) and \(2k_7\) are the rate constants of the loss of identical free radicals \(via\) the reactions \(R^*_1 + R^*_1\) and \(R^*_2 + R^*_2\), respectively; \(k_6\) is the rate constant of the loss of different free radicals \(via\) the \(R^*_1 + R^*_2\) reaction (see Schemes 1–5). The kinetic equations thus obtained fit the peaking rate curves well throughout the range of unsaturated component concentrations in the binary systems. Our mathematical simulation was based on experimental data obtained for \(\gamma\)-radiation-induced addition reactions for which the initiation rate \(V_1\) is known.

The analysis of stable liquid-phase products was carried out by the gas chromatographic method.

2. ADDITION TO THE C=C BOND OF ALKENES AND THEIR DERIVATIVES

When reacting with alkenes not inclined to free-radical polymerization, the free radicals originating from inefficient saturated telogens, such as alcohols [17] and amines [18], usually add to the least substituted carbon atom at the double bond, primarily yielding a free 1:1 adduct radical. This radical accumulates an energy of 90–130 kJ mol\(^{-1}\), which is released upon the transformation of the C=C bond to an ordinary bond (according to the data reported for the addition of nonbranched C\(_1\)–C\(_4\) alkyl radicals to propene and of similar C\(_1\) and C\(_2\) radicals to 1-butene in the gas phase under standard conditions [1–4]). Such adduct radicals, which do not decompose readily for structural reasons, can abstract the most labile atom from a neighbor molecule of the saturated or unsaturated component of the binary reaction system, thus turning into a 1:1 adduct molecule. The consecutive and parallel reactions involved in this free-radical nonbranched-chain addition process are presented below (Scheme 1). In the case of comparable component concentrations with a non-overwhelming excess of the saturated component, extra reaction (1b) \((k_{1b} \neq 0)\) is included in the initiation stage [10,11]. In the case of an overwhelming excess of the saturated component reaction (1b) is ignored \((k_{1b} = 0)\) [8,9,12].

2.1. Comparable Component Concentrations

Scheme 1

Chain initiation

1. \(I \xrightarrow{2k_i} 2R^*_0;\)
2. \(R^*_0 + R_A \xrightarrow{k_{1a}} R_0A + R^*_1;\)
3. \(R^*_0 + R_A \xrightarrow{k_{1b}} R_0A + R^*_2.\)

Chain propagation

4. \(R^*_1 + R_B \xrightarrow{k_i} R^*_3;\)
5. \(R^*_3 + R_A \xrightarrow{k_i} R_3A + R^*_1.\)

Inhibition

6. \(R^*_1 + R_2B \xrightarrow{k_i} R_3B + R^*_2.\)

Chain termination

7. \(2R^*_1 \xrightarrow{2k_i} \text{Prod};\)
8. \(R^*_1 + R^*_2 \xrightarrow{k_i} \text{Prod};\)
9. \(2R^*_2 \xrightarrow{2k_i} \text{Prod}.\)

In this scheme, I is an initiator (e.g., a peroxide [5,12,13]); \(R^*_0\) is a reactive (initiating) radical; A and B are hydrogen or halogen atoms [2,5,17–24]; \(R^*_1\) is \(\text{PCl}_2\) [19], \(\text{CCl}_3\) [20], alkyl [2,5], 1-hydroxyalkyl [5,6,17,22–24], or a similar functionalized reactive addend radical [5]; \(R^*_2\) is an alkenyl radical (allyl...
or higher) [2,5,17–22]. 1-hydroxyalkenyl [5,17,18,23,24], or a similar functionalized low-reactive radical (inhibitor) [5,18]; R* 1 is a saturated reactive 1:1 adduct radical; R2A, R2B, and R3A are saturated molecules; R2B is an unsaturated molecule (alkene or its derivative); R2A and R3B are 1:1 adduct molecules; Prod designates the molecular products resulting from the dimerization or disproportionation of free radicals. The chain evolution (propagation and inhibition) stage of Scheme 1 include consecutive reactions 2 and 3, parallel (competing) reaction pairs 3 and 4, and consecutive-parallel reaction pair 2–4.

The initiation reaction 1 is either the decomposition of a chemical initiator [5,17,18] or a reaction induced by light [5,17,18] or ionizing radiation [19–23]. The overall rate of chain initiation (reactions 1, 1a, and 1b) is determined by the rate of the rate-limiting step (k1b > k1a). The reaction between the free radical R* 1, which results from reactions 1b and 4, and the saturated molecule R2A is energetically unfavorable because it implies the formation of the free radical R* 2, which is less stable than the initial one. The addition reaction 2 may be accompanied by the abstraction reaction 2a. R* 1 + R2B \(\xrightarrow{k_{22}} \) R2B + R* 2, which yields the product R2B via a nonchain mechanism. Reaction 2a does not regenerate the addend radical R* 2 and is not necessary for a kinetic description of the process, because the rate ratio of reactions 2 and 2a, \(V2/V2a = k2/k2a \), is independent of the concentration of the unsaturated component R2B in the system. The inhibition of the nonbranched-chain addition process is due to reaction 4, in which the adduct radical R* 2 is spent in an inefficient way, since this reaction, unlike reaction 3, does not regenerate R* 1. The inhibiting effect is also due to the loss of chain carriers R* 1 through their collisions with low-reactive unsaturated radicals R* 2, but to a much lesser extent.

The rates of the formation (V, mol dm\(^{-3}\) s\(^{-1}\)) of the 1:1 adducts R2A (via a chain mechanism) and R2B (via a nonchain mechanism) in reactions 3 and 4 are given by the equations

\[
V3(R2A) = \frac{\gamma l / (\gamma l + x)}{k2x^2 + (\alpha l + x)^2}V4k2x, \tag{1}
\]

\[
V4(R2B) = \frac{\gamma l / (\gamma l + x)}{k2x^2 + (\alpha l + x)^2}V4k2x, \tag{2}
\]

where \(V1 \) is the rate of the initiation reaction 1; \(l = [R2A] \) and \(x = [R2B] \) are the molar concentrations of the initial components, with \(l > x \); \(k2 \) is the rate constant of the addition of the R* 1 radical from the saturated component R2A to the unsaturated molecule R2B (reaction 2); and \(\gamma = k1d/k1b \) and \(\alpha = k3/k4 \) are the rate constant ratios for competing (parallel) reactions (\(\alpha \) is the first chain-transfer constant for the free-radical telomerization process [5]). The rate ratio for the competing reactions is \(V2/V4 = \alpha dlx \), and the chain length is \(v = V2/V1 \).

Earlier mathematical simulation [8] demonstrated that replacing the adduct radical R3 with the radical R2 [5] in the reaction between identical radicals and in the reaction involving R1 gives rise to a peak in the curve of the 1:1 adduct formation rate as a function of the concentration of the unsaturated component. Reaction 1b, which is in competition with reaction 1a, is responsible for the maximum in the curve described by Eq. (2), and reaction 4, which is in competition with reaction (3), is responsible for the maximum in the curve defined by Eq. (1).

The number of unknown kinetic parameters to be determined directly (\(k2, \alpha, \) and \(\gamma \)) can be reduced by introducing the condition \(\gamma \equiv \alpha \), which is suggested by the chemical analogy between the competing reactions pairs 1a–1b and 3–4. For example, the ratios of the rate constants of the reactions of \(\text{OH}, \text{CH}_3\text{O}, \text{CH}_3\text{NO}_3, \) and \(\text{H}_2\text{PO}_4 \) with methanol to the rate constants of the reactions of the same radicals with ethanol in aqueous solution at room temperature are 0.4–0.5 [25,26]. For the same purpose, the rate constant of reaction 2 in the kinetic equation can be replaced with its analytical expression \(k2 = a\ell m 2k3V1 / \ell m \), which is obtained by solving the quadratic equation following from the reaction rate extremum condition \(\partial V3,4(1:1 \text{ Adduct}) / \partial x = 0 \), where \(\partial V3,4(1:1 \text{ Adduct}) = V1 + V4 \).

After these transformations, the overall formation rate equation for the 1:1 adducts R2A and R2B

International Journal of Advanced Research in Chemical Science (IJARCS) Page | 16
where 1 and R are provided that where

The overall formation rate of the 1:1 adducts R (0 < R < 1), respectively, and m is the moles fraction of the components R1A and R2B (0 < χ < 1), respectively, and χ is the χ value at the point of maximum.

The overall formation rate of the 1:1 adducts R1A and R2B is a sophisticated function of the formation and disappearance rates of the radicals R1* and R2*:

\[V(R1A, R2B) = (V1A + V3 - V5) - (V1b + V4 - V2) \]

The application of the above rate equations to particular single nonbranched-chain additions is illustrated in Fig. 1. Curve 1 represents the results of simulation in terms of Eq. (3b) for the observed 1:1 adduct formation rate as a function of the mole fraction of the unsaturated component in the phosphorus trichloride–methylpropene1 reaction system at 303 K [19]. In this simulation, the 60Co γ-radiation dose rate was set at \(P = 0.01 \) Gy s\(^{-1}\) and the initiation yield was taken to be \(G(\text{PCl}) = 2.8 \) particles per 100 eV \((1.60 \times 10^{17}) \) J of the energy absorbed by the solution [19]. The product of reaction 3 is Cl3PCH2C(C1,CH3)C1H3 (two isomers), \(V1 = 4.65 \times 10^{-9} \) mol dm\(^{-3}\) s\(^{-1}\) at \(χ = 0 \), and \(2k5 = 3.2 \times 10^{8} \) dm\(^{3}\) mol\(^{-1}\) s\(^{-1}\). This leads to \(α = (2.5 \pm 0.4) \times 10^{3} \), and the rate constant of reaction 2 derived from this α value is \(k2 = (1.1 \pm 0.2) \times 10^{4} \) dm\(^{3}\) mol\(^{-1}\) s\(^{-1}\).

In an earlier work [10], the methylpropene concentration in this system was overvalued by a factor of 1.7 when it was derived from the mole fractions given in [19].

![Figure1](image)

Figure1. Reconstruction of the functional dependences (curves) of the product formation rates \(V_{1,4} \) (1, □) on the mole fraction of the unsaturated component (χ) from empirical data (symbols) using Eq. (3b) (model optimization with respect to the parameter \(α \)) for the phosphorus trichloride–methylpropene reaction system at 303 K [19] (standard deviation of \(S_γ = 2.58 \times 10^{-6} \)) and (2, ○) on the concentration of the unsaturated component (χ) from empirical data (symbols) using Eq. (4a) (model optimization with respect to \(V_f \), \(x_m \) and \(α \)) for the 2-propanol–2-propan-1-ol system at 433 K [23] (\(S_γ = 5.91 \times 10^{-7} \)).

Note that, if the R2–B bond dissociation energy for the unsaturated component of the binary system is approximately equal to or above, not below, the R1–A bond dissociation energy for the saturated component, then the rate of reaction 4 relative to the rate of the parallel reaction 3 (chain propagation...
New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

through the reactive free radical R† will be sufficiently high for adequate description of R3A and R3B adduct formation in terms of Eqs. (1)–(3b) only at high temperatures [20]. In the phosphorus trichloride–propene system, the difference between the R2–B (B = H) and R1–A (A = Hal) bond dissociation energies in the gas phase under standard conditions [1] is as small as 5 kJ mol−1, while in the tetrachloromethane–methylpropene (or cyclohexene) and bromoethane–2-methyl-2-butene systems, this difference is 20.9 (37.7) and ~24 kJ mol−1, respectively.

2.2. Excess of the Saturated Component

If the concentration of the saturated component exceeds the concentration of the unsaturated component in the binary system, reaction 1b can be neglected. If this is the case (k1b = 0), then, in the numerators of the rate equations for reactions 3 and 4 (Eqs. (1) and (2)), ϱf/(ϱf + x) = 1 and the overall rate equation for the formation of the 1:1 adducts R3A and R3B will appear as

\[
V_3, s(1:1 \text{ Adduct}) = \frac{V_3, \alpha(\alpha l + x)k_2 lx}{k_2 x^2 + (\alpha l + x)\sqrt{2}\kappa V_1} = \frac{V_3, \alpha x^2}{\alpha l + x + \left(\sqrt{\alpha l / x} + \frac{1}{\sqrt{\alpha l / x}}\right)^2}, \tag{4a}
\]

where the parameters are designated in the same way as in Eqs. (1)–(3a), l >> x, and

\[
k_2 = \left[\left(\frac{\alpha l / x}{x}\right) + \left(\frac{1}{\sqrt{\alpha l / x}}\right)^2\right]2\kappa V_1 \text{ is determined from the condition } \frac{\partial V_3, s}{\partial x} = 0.
\]

The rate equations for the chain termination reactions 5–7 (Scheme 1, k1b = 0) are identical to Eqs. (12)–(14) (see below) with β = 0.

Note that, if it is necessary to supplement Scheme 1 for k1b = 0 with the formation of R1B via the possible nonchain reaction 2a (which is considered in the Section 2.1), the parameter k2a should be included in the denominator of Eq. (4) to obtain \(k_2 x^2 + (\alpha l + x)(k_{2a} x + \sqrt{2k_3 V_1}) \).

The analytical expression for k2 in the case of k2a ≠ 0 is identical to the expression for k2 for Eq. (4). The equation for the rate \(V_3, s(R_1 B) \) can be derived by replacing k2 with k2a in the numerator of Eq. (4) containing k2a in its denominator.

Curve 2 in Fig. 1 illustrates the good fit between Eq. (4a) and the observedId adduct formation rate as a function of the concentration of the unsaturated component in the reaction system 2-propanol–2-propen-1-ol at 433 K [8,9]. In this description, we used a 60Co γ-radiation dose rate of P = 4.47 Gy s−1 [23]. The product of reactions 3 and 4 is \(\text{CH}_3(\text{CH}_2)_2\text{C} (\text{OH})\text{CH}_2\text{CH}_2\text{CH}_2\text{OH} \), and \(k_3 = 1.0 \times 10^{10} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1} \). The following parameters were obtained: \(V_1 = (3.18 \pm 0.4) \times 10^6 \text{ mol dm}^{-3} \text{ s}^{-1} \), \(x_m = (3.9 \pm 0.5) \times 10^{-2} \text{ mol dm}^{-3} \), and \(\alpha = (6.8 \pm 0.8) \times 10^{-2} \). The rate constant of reaction 2 derived from this is \(k_2 = (1.0 \pm 0.14) \times 10^5 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1} \).

3. ADDITION TO THE C=O BOND OF FORMALDEHYDE

Free radicals add to the carbon atom at the double bond of the carbonyl group of dissolved free (unsolvated, monomer) formaldehyde. The concentration of free formaldehyde in the solution at room temperature is a fraction of a percent of the total formaldehyde concentration, which includes formaldehyde chemically bound to the solvent [27]. The concentration of free formaldehyde exponentially increases with increasing temperature [28]. The energy released as a result of this addition, when the C=O bond is converted into an ordinary bond, is 30 to 60 kJ mol−1 (according to the data on the addition of C−C alkyl radicals in the gas phase under standard conditions [1–4]). The resulting free 1:1 adduct radicals can both abstract hydrogen atoms from the nearest-neighbor molecules of the solvent or unsolvated formaldehyde and, due to its structure, decompose by a monomolecular mechanism including isomerization [9, 12].

3.1. Addition of Free 1-Hydroxyalkyl Radicals with Two or More Carbon Atoms

Free 1-hydroxyalkyl radicals (which result from the abstraction of a hydrogen atom from the carbon atom bonded to the hydroxyl group in molecules of saturated aliphatic alcohols but methanol under
New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

the action of chemical initiators [29,30], light [17,31], or ionizing radiation [32,33]) add at the double bond of free formaldehyde dissolved in the alcohol, forming 1,2-alkanediols [8,9,12,29–36], carbonyl compounds, and methanol [8,33] via the chaining mechanism. (The yields of the latter two products in the temperature range of 303 to 448 K are one order of magnitude lower.) In these processes, the determining role in the reactivity of the alcohols can be played by the desolvation of formaldehyde in alcohol–formaldehyde solutions, which depends both on the temperature and on the polarity of the solvent [28,33]. For the γ-radiolysis of 1(or 2)-propanol–formaldehyde system at a constant temperature, the dependences of the radiation-chemical yields of 1,2-alkanediols and carbonyl compounds as a function of the formaldehyde concentration show maxima and are symbatic [8,32]. For a constant total formaldehyde concentration of 1 mol dm$^{-3}$, the dependence of the 1,2-alkanediol yields as a function of temperature for 303–473 K shows a maximum, whereas the yields of carbonyl compounds and methanol increase monotonically [33] (along with the concentration of free formaldehyde [28]). In addition to the above products, the nonchain mechanism in the γ-radiolysis of the solutions of formaldehyde in ethanol and 1- and 2-propanol gives ethanediol, carbon monoxide, and hydrogen in low radiation-chemical yields (which, however, exceed the yields of the same products in the γ-radiolysis of individual alcohols) [8,9,33]. The available experimental data can be described in terms of the following scheme of reactions:

Scheme 2

Chain initiation
1. I $\xrightarrow{2k_1} 2R^*_0$;

1α. $R^*_0 + ROH \xrightarrow{k_{a1}} ROH + \cdotR(\cdot-H)OH$.

Chain propagation
2. $\cdotR(\cdot-H)OH + CH_2O \xrightarrow{k_1} R(\cdot-H)(OH)CH_2O$;

3. $R(\cdot-H)(OH)CH_2O' + ROH \xrightarrow{k_1} R(\cdot-H)(OH)CH_2OH + \cdotR(\cdot-H)OH$;

3a. $R(\cdot-H)(OH)CH_2O \xrightarrow{k_{a3}} R(\cdot-2H)HO + \cdotCH_2OH$

(or $R'R''CO + \cdotCH_2OH$);

3b. $\cdotCH_2OH + ROH \xrightarrow{k_{b3}} CH_2OH + \cdotR(\cdot-H)OH$.

Inhibition
4. $R(\cdot-H)(OH)CH_2O' + CH_2O \xrightarrow{k_1} R(\cdot-H)(OH)CH_2OH + \cdotCHO$.

Chain termination
5. $2\cdotCHO \xrightarrow{2k_2} HC(O)CHO$

(or: $H_2 + CO$)

6. $\cdotR(\cdot-H)OH + \cdotCHO \xrightarrow{k_6} R(\cdot-H)(OH)CHO$

(or: $R(\cdot-2H)HO + CH_2O$, $R'R''CO + CH_2O$, $ROH + CO$);

7. $\cdotCHO \xrightarrow{2k_2} HC(O)CHO$

(or: $CH_2O + CO$, $2CO + H_2$).

In these reactions, I is an initiator, e.g., a peroxide [29,30]; R^*_0, some reactive radical (initiator radical); R, an alkyl; ROH, a saturated aliphatic alcohol, either primary or secondary, beginning from ethanol; CH$_2$O, the unsaturated molecule – free formaldehyde; \cdotCH$_2$OH, the 1-hydroxymethyl fragment.
radical: \(\text{R}_1\text{HOOH} \), the reactive 1-hydroxyalkyl addend radical, beginning from 1-hydroxyethyl; \(\text{R}_1\text{HOOH} \), the reactive hydroxyalkyl 1:1 adduct radical; \(\text{CHO} \), the low-reactive formyl radical (inhibitor radical); \(\text{R}_1\text{H} \), the molecular product; \(\text{R}_1\text{HOOH} \), 1,2-alkanediol; \(\text{R}_2\text{HOOH} \), an aldehyde in the case of a primary alcohol and an \(\text{R}^*\text{CO} \) ketone in the case of a secondary alcohol; \(\text{R}_3\text{HOOH} \), a vicinal alkanediol; \(\text{R}_1\text{HOOH} \), a hydroxylaldehyde. The chain evolution stage of Scheme 2 includes consecutive reaction pairs 2–3, 2–3a, and 3a–3b; parallel (competing) reaction pairs 3–3a, 3–3b, 3–4, and 3a–4; and consecutive–parallel reactions 2 and 4.

Scheme 2 does not include the same types of radical-molecule reactions as were considered in Section 2.1 for Scheme 1. In addition, it seems unlikely that free adduct radicals will add to formaldehyde at higher temperatures the reaction of adding is unlikely because this would result in an ether bond. The addition of hydroxymethyl radicals to formaldehyde, which is in competition with reaction 3b, is not included as well, because there is no chain formation of ethanediol at 303–448 K [33]. At the same time, small amounts of ethanediol can form via the dimerization of a small fraction of hydroxymethyl radicals, but this cannot have any appreciable effect on the overall process kinetics. The addition of free formyl radicals to formaldehyde cannot proceed at a significant rate, as is indicated by the fact that there is no chain formation of glycol aldehyde in the systems examined [33].

The mechanism of the decomposition of the free adduct radical via reaction 3a, which includes the formation of an intramolecular \(\text{H} \cdots \text{O} \) bond and isomerization, can be represented as follows [8,9,12]:

\[
\text{R}_1\text{H} + \text{R}_2\text{H} \xrightarrow{k_{3b}} \text{R}_1\text{H} \text{H-O-H} \text{R}_2\text{H} + \text{H}_2\text{O}.
\]

The probability of the occurrence of reaction 3a should increase with increasing temperature. This is indicated by experimental data presented above [8,9,12]. The decomposition of the hydroxyalkyl radical \(\text{R}_1\text{HOOH} \) (reaction 3a) is likely endothermic. The endothermic nature of reaction 3a is indirectly indicated by the fact that the decomposition of simple \(\text{C}_2–\text{C}_4 \) alkoxyl radicals \(\text{RO} \) in the gas phase is accompanied by heat absorption: (\(\Delta H^\circ_{298} = 30–90 \) kJ mol\(^{-1}\) [2–4]). Reaction 3b, subsequent to reaction 3a, is exothermic, and its heat for \(\text{C}_2–\text{C}_3 \) alcohols in the gas phase is \(\Delta H^\circ_{298} = -40 \) to \(-60 \) kJ mol\(^{-1}\) [2–4]. As follows from the above scheme of the process, reactions 3a and 3b, in which the formation and consumption of the highly reactive free radical hydroxymethyl take place (at equal rates under steady-state conditions), can be represented as a single bimolecular reaction 3a,b occurring in a "cage" of solvent molecules.

The free formyl radical resulting from reaction 4, which is in competition with reactions 3 and 3a, is comparatively low-reactive because its spin density can be partially delocalized from the carbon atom via the double bond toward the oxygen atom, which possesses a higher electron affinity [1]. For example, in contrast to the methyl and alkoxyl \(\pi \)-radicals, the formyl \(\sigma \)-radical can be stabilized in glassy alcohols at 77 K [37]. In the gas phase, the dissociation energy of the C–H bond in formyl radicals is half that for acetyl radicals and is about 5 times lower than the dissociation energy of the \(\text{C}_n\text{H} \)-H bond in saturated \(\text{C}_n\text{C}_3 \) alcohols [1].

As distinct from reactions 3 and 3a,b, reaction 4 leads to an inefficient consumption of hydroxyalkyl adduct radicals, without regenerating the initial 1-hydroxyalkyl addend radicals. Reaction 4 together with reaction 6 (mutual annihilation of free formyl and chain-carrier 1-hydroxyalkyl radicals) causes the inhibition of the nonbranched-chain process. For the disproportionation of the free radicals, the heats of reactions 5–7 for \(\text{C}_1–\text{C}_3 \) alcohols in the gas phase vary in the range of \(\Delta H^\circ_{298} = -135 \) to \(-385 \) kJ mol\(^{-1}\) [1–4].

The rates of the chain formation of 1,2-alkanediols in reaction 3 (and their nonchain formation in reaction 4), carbonyl compounds in reaction 3a, and methanol in reaction 3b are given by the following equations:
where \(V_I \) is the initiation rate, \(l \) is the molar concentration of the saturated alcohol at a given total concentration of formaldehyde\(^2\) dissolved in it, \(x \) is the molar concentration of free formaldehyde (\(l > x \)), \(k_2 \) is the rate constant of reaction 2 (addition of 1-hydroxyalkyl free radical to free formaldehyde), and \(\alpha = k_3/k_4 \) and \(\beta = k_3/k_4 \) (mol dm\(^{-3}\)) are the ratios of the rate constants of the competing (parallel) reactions. Estimates of \(2k_5 \) were reported by Silaev et al. [39, 40]. From the extremum condition for the reaction 3a rate function, \(\partial V_{3a} / \partial x = 0 \), we derived the following analytical expression: \(k_2 = (\alpha l_m + \beta)\sqrt{2k_5V_I/x_m^2} \).

The overall process rate is a complicated function of the formation and disappearance rates of the \(^{\prime}\)CHO free radicals: \(V(R_{\prime}OH)\text{CH}_2\text{OH}, R_{\prime}OH, \text{CH}_2\text{OH}) = V_{3a} + V_{3b} = V_{4a} - V_{4b} - V_{4c} + V_{4d} \). The ratios of the rates of the competing reactions are \(V_4/V_4 = \alpha l/x \) and \(V_{4d}/V_{4d} = \beta l/x \), and the chain length is \(\nu = (V_{3a} + V_{3b})/V_I \). The ratio of the rates of formation of 1,2-alkanediol and the carbonyl compound is a simple linear function of \(x \): \(V_{3a}(R_{\prime}OH)\text{CH}_2\text{OH})/V_{3d}(R_{\prime}OH) = (k_3/k_{3a})x + (k_3/k_{3a})l \). The equations for the rates of chain-termination reactions 5–7 are identical to Eqs. (12)–(14) (see below, Section 4.1).

Neutral formaldehyde solutions in alcohols at room temperature primarily consist of a mixture of formaldehyde polymer solvates reversibly bound to alcohols; these polymer solvates differ in molecular mass and have the general formula RO(CH\(_2\text{O})_n\text{H}, \) where \(n = 1–4 \) [27]. The concentration of formaldehyde that occurs in solution as a free, unsolvated active species chemically unbound to the solvent (this species is capable of scavenging free radicals) at room temperature is lower than a percent of the total formaldehyde concentration [27]. The concentration \(x \) of the free formaldehyde species in solutions was determined by high-temperature UV spectrophotometry in the range 335–438 K at the total formaldehyde concentration \(c_0 \) (free and bound species including the concentration of polymer solvates) of 1.0–8.4 mol dm\(^{-3}\) in water, ethanediol, methanol, ethanol, 1-propanol, 2-propanol, and 2-methyl-2-propanol [28] (see Table of the Appendix). This concentration increases with temperature according to an exponential law, and it can be as high as a few percent of the total concentration in solution under the test conditions, up to 19.3% in the case of 2-methyl-2-propanol at a total concentration of 1.0 mol dm\(^{-3}\) and a temperature of 398 K. The following empirical equation relating the concentration \(x \) (mol dm\(^{-3}\)) of free formaldehyde to temperature \(T \) (K) and the total concentration \(c_0 \) in the solution (measured at room temperature), was developed by the treatment of 101 data points [28, 39]:

\[
\lg x = -a (10^3/T) + b + h \lg c_0, \tag{7}
\]

where the coefficients \(a \) and \(b \) were calculated as the parameters of a straight-line equation by the least-squares technique from the dependence of \(\lg x \) on \(1/T \) at \(c_0 = 1.0 \text{ mol dm}^{-3} \) for various solvents, and the coefficient \(h \) was obtained as the average value of the slopes of \(\lg x \) as linear functions of \(\lg c_0 \) at various series of fixed temperatures. The Table 1 summarizes these coefficients for each solvent. As regards the experimental data, the error in the calculations of the concentration \(x \) of free formaldehyde made by Eq. (7) in the specified temperature range was no higher than 25%.

Table 1. Coefficients of the empirical Eq. (7) for the estimation of the concentration \(x \) of free formaldehyde in polar solvent–formaldehyde systems

Solvent	Coefficient		
	\(a \)	\(b \)	\(h \)
Water	2.36	4.45	0.80

\(^2\)The alcohol concentration in alcohol–formaldehyde solutions at any temperature can be estimated by the method suggested in [38,39]. The data necessary for estimating the concentration of free formaldehyde using the total formaldehyde concentration in the solution are reported by Silaev et al. [28,39].
New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

Ethane diol	1.83	2.60	1.28
Methanol	3.11	5.58	0.22 c₀/ lg c₀
Ethanol	3.10	5.92	1.10 (10³/𝑇) – 1.44
1-Propanol	2.42	4.47	1.30
2-Propanol	2.42	4.64	1.05
2-Methyl-2-propanol	3.19	7.31	0.96

On the assumption that the dependence of the density of a given solution on the concentration of formaldehyde is similar to the analogous linear dependence found for aqueous formaldehyde solutions (0–14 mol dm⁻³; 291 K) [27], the concentrations 𝐢ₜ (mol dm⁻³) of alcohols in alcohol–formaldehyde solutions at a certain temperature can be estimated by the equation

\[𝐢ₜ = \frac{(10³d – 21.6c₀)dₜ}{(d + 8.4 \times 10⁻³ c₀)M} \]

where \(c₀ \) is the total formaldehyde concentration (mol dm⁻³); \(M \) is the molecular mass (g mol⁻¹) of the solvent; \(d \) and \(dₜ \) are the solvent densities (g cm⁻³) at room and given temperatures, respectively; the coefficients 8.4 × 10⁻³ and 21.6 have the units of 10³ g mol⁻¹ and g mol⁻¹, respectively [38].

Earlier [28], it was found that the concentration \(x \) of the free formaldehyde species decreased with the solvent permittivity \(D_{298} \) at a constant temperature. Water is an exception. Although water is more polar than alcohols, the concentration \(x \) of free formaldehyde in an aqueous solution is anomalously high and reaches the level of its concentration in 2-propanol, all other factors being the same (see Fig. 2) [28, 39]. This can be due to the specific instability of hydrated formaldehyde species and the ease of their conversion into free formaldehyde with increasing temperature. Consequently, it may be expected that the addition of a less polar solvent to an alcohol having a higher polarity (as well as the addition of water to methanol or ethanol) will be equivalent to an increase in temperature with respect to an increase in the concentration of the free form of dissolved formaldehyde.

![Figure 2](image-url)

Figure 2. Logarithmic plot of the experimental concentrations \(x \) (mol dm⁻³) of free formaldehyde at its total concentration \(c₀ = 1.0 \text{ mol dm}^{-3} \) and 395 ± 3 K in (△) water, (●) methanol, (○) ethanol, (◇) 1-propanol, (□) 2-propanol, and (◇) 2-methyl-2-propanol as functions of the permittivity \(D_{298} \) of these solvents (+ refers to the concentrations \(x \) in the above solvents calculated by empirical Eq. (8)).

Figure 3 illustrates the use of Eqs. (5) and (6) for describing the experimental dependences of the formation rates of 1,2-butenediol (curve 1) in reactions 3 and 4 and propanal (curve 2) in reaction 3a on the concentration of free formaldehyde in the 1-propanol–formaldehyde reacting system at a total formaldehyde concentration of 2.0 to 9.5 mol dm⁻³ and temperature of 413 K [8,9,41]. The concentration dependence of the propanal formation rate was described using the estimates of kinetic parameters obtained for the same dependence of the 1,2-butenediol formation rate. We considered these data more reliable for the reason that the carbonyl compounds forming in the alcohol–formaldehyde systems can react with the alcohol and this reaction depends considerably on the temperature and acidity of the medium [27]. The mathematical modeling of the process was carried out using a \(^{137}\text{Cs}\) γ-radiation dose rate of \(P = 0.8 \text{ Gy s}^{-1} \) [32,41], a total initiation yield of
New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

\[G(\text{CH}_3\text{CH}_2\text{CHOH}) = 9.0 \text{ particles per 100 eV} \] \[(V_1 = 4.07 \times 10^{-7} \text{ mol dm}^{-3} \text{ s}^{-1}), \text{ and } 2k_5 = 4.7 \times 10^9 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}. \] The following values of the parameters were obtained: \(\alpha = 0.36 \pm 0.07 \), \(\beta = 0.25 \pm 0.05 \text{ mol dm}^{-3} \), and \(k_2 = (6.0 \pm 1.4) \times 10^3 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}. \)

Figure 3. Reconstruction of the functional dependence (curves) of the product formation rates \(V_{3,4} \) and \(V_{3a} \) on the concentration \(x \) of free formaldehyde (model optimization with respect to the parameters \(\alpha \), \(\beta \) and \(k_2 \)) from empirical data (symbols) for the 1-propanol–formaldehyde system at 413 K \[8,9,41]\): (1, \(\triangle \)) calculation using Eq. (5), standard deviation of \(S_Y = 2.20 \times 10^{-7} \); (2, \(\square \)) calculation using Eq. (6), \(S_Y = 2.38 \times 10^{-8} \).

Note that, as compared to the yields of 1,2-propanediol in the \(\gamma \)-radiolysis of the ethanol–formaldehyde system, the yields of 2,3-butanediol in the \(\gamma \)-radiolysis of the ethanol–acetaldehyde system are one order of magnitude lower \[41\]. Using data from \[8,9\], it can be demonstrated that, at 433 K, the double bond of 2-propen-1-ol accepts the 1-hydroxyethyl radical 3.4 times more efficiently than the double bond of formaldehyde \[42\].

3.2. Addition of Hydroxymethyl Radicals

The addition of hydroxymethyl radicals to the carbon atom at the double bond of free formaldehyde molecules in methanol, initiated by the free-radical mechanism, results in the chain formation of ethanediol \[34\]. In this case, reaction 3a in Scheme 2 is the reverse of reaction 2, the 1-hydroxyalkyl radical \(\text{R}_1\text{H} \text{OH} \) is the hydroxymethyl radical \(\text{CH}_2\text{OH} \), so reaction 3b is eliminated \((k_{3b} = 0) \), and reaction 5 yields an additional amount of ethanediol via the dimerization of chain-carrier hydroxymethyl radicals (their disproportionation can practically be ignored \[43\]). The scheme of these reactions is presented in \[35\]. The experimental dependence of the ethanediol radiation-chemical yields on formaldehyde concentration in \(\gamma \)-radiolysis of methanol–formaldehyde system at 373–473 K is shown in Fig. 4. The maximum yield of the product reached 139 molecules per 100 eV (144 mol \(10^7 \text{ J} \)) at a formaldehyde concentration of 1.4 mol dm\(^3\) in methanol and a temperature of 473 K. The dependence of the yield on the concentration at 373 K does not have a maximum even at the highest (3.1 mol dm\(^{-3}\)) concentration of formaldehyde, whereas maxima appear on the curves in the formaldehyde concentration region about 1.4 mol dm\(^{-3}\) at higher temperatures. The maximum in these curves arises from the competition between methanol and free formaldehyde \((\text{H}_2\text{C}=\text{O}) \) for reacting with the adduct radical \(\text{HOCH}_2\text{CH}_2\text{O}^\cdot \).

Figure 4. Dependence of the ethanediol yield \(G \) on the total concentration \(c_0 \) of formaldehyde upon \(\gamma \)-radiolysis of the methanol–formaldehyde system at temperatures of (1) 373, (2) 423, (3) 448, and (4) 473 K \[34\].
The rate equation for ethanediol formation by the chain mechanism in reaction 3 and by the nonchain mechanism in reactions 4 and 5 in the methanol–formaldehyde system has a complicated form\(^3\) as compared to Eq. (1) for the formation rate of the other 1,2-alkanediols [34]:

\[
V_{3,4,5}(\text{CH}_2\text{OH})_2 = V[f(\alpha l + \beta x)k_2 x + V'_2(\alpha l + \beta + x)^2]f^2, \tag{9}
\]

where \(f = k_2 x^2 + (\alpha l + \beta + x)\sqrt{2k_1 V_i}\).

If the rate of ethanediol formation by the dimerization mechanism in reaction 5 is ignored for the reason that it is small as compared to the total rate of ethanediol formation in reactions 3 and 4, Eq. (9) will be identical to Eq. (5). After the numerator and denominator on the right-hand side of Eq. (5) are divided by \(k - 2 \equiv k_{3a}\), one can replace \(k_2\) in this equation with \(K_2 = k_2/k - 2\), which is the equilibrium constant for the reverse of reaction 2. Ignoring the reverse of reaction 2 \(k_{3a} = 0, \beta = 0\) makes Eq. (5) identical to Eq. (4) for Scheme 1 at \(k_{3b} = 0\) (see the Section 2.1). In this case, the rate constant \(k_2\) is effective.

4. ADDITION TO OXYGEN

The addition of a free radical or an atom to one of the two multiply bonded atoms of the oxygen molecule yields a peroxyl free radical and thus initiates oxidation, which is the basic process of chemical evolution. The peroxyl free radical then abstracts the most labile atom from a molecule of the compound being oxidized or decomposes to turn into a molecule of an oxidation product. The only reaction that can compete with these two reactions at the chain evolution stage is the addition of the peroxyl radical to the oxygen molecule (provided that the oxygen concentration is sufficiently high). This reaction yields a secondary, tetraoxyalkyl, 1:2 adduct radical, which is the heaviest and the largest among the reactants. It is less reactive than the primary, 1:1 peroxyl adduct radical and, as a consequence, does not participate in further chain propagation. At moderate temperatures, the reaction proceeds via a nonbranched-chain mechanism.

4.1. Addition of Hydrocarbon Free Radicals

Usually, the convex curve of the hydrocarbon (RH) autooxidation rate as a function of the partial pressure of oxygen ascends up to some limit and then flattens out [6]. When this is the case, the oxidation kinetics is satisfactorily describable in terms of the conventional reaction scheme [2,5,6,16,44,45], which involves two types of free radicals. These are the hydrocarbon radical \(R^*\) (addend radical) and the addition product \(\text{RO}^*\) (1:1 adduct radical). However, the existing mechanisms are inapplicable to the cases in which the rate of initiated oxidation as a function of the oxygen concentration has a maximum (Figs. 4, 5) [46,47]. Such dependences can be described in terms of the competition kinetics of free-radical chain addition, whose reaction scheme involves not only the above two types of free radicals, but also the \(\text{RO}^*_2\) radical (1:2 adduct) inhibiting the chain process [13,14].

\textit{Scheme 3}

\begin{align*}
\text{Chain initiation} \\
1. I & \xrightarrow{2k} 2R^*_0; \\
1a. R^*_0 + RH & \xrightarrow{k_{1a}} R^*_0 H + R^*.
\end{align*}

\text{Chain propagation}

\begin{align*}
2. R^* + O_2 & \xrightarrow{k_5} \text{RO}^*_2; \\
3. \text{RO}^*_2 + RH & \xrightarrow{k_1} \text{RO}^*_2 H + R^* \\
& \quad \text{(or ROH + RO)};
\end{align*}

\(^3\)In an earlier publication [8], this equation does not take into account reaction 3a.
New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

3a. \[\text{RO}_2^\cdot \xrightarrow{k_{3a}} \text{R'}-\text{OH} + \text{R''O}' \]
 (or \(\text{R}_2^\cdot \text{HO} + \text{OH} \));

3b. \[\text{R''O}'(\text{RO}') + \text{RH} \xrightarrow{k_{3b}} \text{R''OH} (\text{ROH}) + \text{R}' \]
 (or \(\text{OH} + \text{RH} \xrightarrow{k_{3b}} \text{H}_2\text{O} + \text{R}' \)).

Inhibition

4. \(\text{RO}_2^\cdot + \text{O}_2 \xrightarrow{k_4} \text{RO}_4^\cdot \).

Chain termination

5. \(2\text{R}' \xrightarrow{2k_5} \text{RR} \)
 (or \(\text{R}_2^\cdot \text{H} + \text{RH} \));

6. \(\text{R'} + \text{RO}_4^\cdot \xrightarrow{k_6} \text{RH} + \text{R}_2^\cdot \text{HO} + \text{O}_3 \)
 (or: \(\text{ROH} + \text{R}_2^\cdot \text{HO} + \text{O}_2, \text{ROR} + \text{O}_3, \text{RO}_2\text{R} + \text{O}_2 \));

7. \(2\text{RO}_4^\cdot \xrightarrow{2k_7} \text{RO}_3\text{R} + 2\text{O}_3 \).

The only difference between the kinetic model of oxidation represented by Scheme 3 and the kinetic model of the chain addition of 1-hydroxyalkyl radicals to the free (unsolvated) form of formaldehyde in nonmethanolic alcohol–formaldehyde systems [8,9] (Scheme 2, Section 3.1) is that in the former does not include the formation of the molecular 1:1 adduct via reaction 4.

The decomposition of the initiator I in reaction 1 yields a reactive \(\text{R}_0^\cdot \) radical, which turns into the ultimate product \(\text{R}_0^\cdot \text{H} \) via reaction 1a, generating an alkyl radical \(\text{R}' \), which participates in chain propagation. In reaction 2, the addition of the free radical \(\text{R}' \) to the oxygen molecule yields a reactive alkylperoxy 1:1 adduct radical \(\text{RO}_2^\cdot \) [45], which possesses increased energy owing to the energy released upon the conversion of the \(\text{O=O} \) bond into the ordinary bond \(\text{RO}–\text{O}' \) (for addition in the gas phase under standard conditions, this energy is 115–130 kJ mol\(^{-1}\) for \(\text{C}_1–\text{C}_4 \) alkyl radicals [1,2,4] and 73 kJ mol\(^{-1}\) for the allyl radical [4]). Because of this, the adduct radical can decompose (reaction 3a) or react with some neighbor molecule (reaction 3 or 4) on the spot, without diffusing in the solution and, accordingly, without entering into any chain termination reaction. In reaction 3, the interaction between the radical adduct \(\text{RO}_2^\cdot \) and the hydrocarbon molecule \(\text{RH} \) yields, via a chain mechanism, the alkyl hydroperoxide \(\text{RO}_3\text{H} \) (this reaction regenerates the chain carrier \(\text{R}' \) and, under certain conditions, can be viewed as being reversible [2]) or the alcohol \(\text{ROH} \) (this is followed by the regeneration of \(\text{R}' \) via reaction 3b). The latter (alternative) pathway of reaction 3 consists of four steps, namely, the breaking of old bonds and the formation of two new bonds in the reacting structures. In reaction 3a, the isomerization and decomposition of the alkylperoxy radical adduct \(\text{RO}_2^\cdot \) with \(\text{O=O} \) and \(\text{C}=\text{O} \) or \(\text{C}=\text{H} \) bond breaking take place [6,44], yielding the carbonyl compound \(\text{R}_2^\cdot \text{HO} \) or \(\text{R}_2^\cdot \text{HO} \). Reaction 3b produces the alcohol \(\text{R''OH} \) or water and regenerates the free radical \(\text{R}' \) (here, \(\text{R}' \) and \(\text{R''} \) are radicals having a smaller number of carbon atoms than \(\text{R} \)). As follows from the above scheme of the process, consecutive reactions 3a and 3b (whose rates are equal within the quasi-steady-state treatment), in which the highly reactive fragment, oxyl radical \(\text{R''O}' \) (or \(\text{OH} \)) forms and then disappears, respectively, can be represented as a single, combined bimolecular reaction 3a,b occurring in a "cage" of solvent molecules. Likewise, the alternative (parenthesized) pathways of reactions 3 and 3b, which involve the alkoxyl radical \(\text{RO}' \), can formally be treated as having equal rates. For simple alkyl \(\text{C}_1–\text{C}_4 \) radicals \(\text{R} \), the pathway of reaction 3 leading to the alkyl hydroperoxide \(\text{RO}_3\text{H} \) is endothermic (\(\Delta H_{298} = 30–80 \text{ kJ mol}^{-1} \)) and the alternative pathway yielding the alcohol \(\text{ROH} \) is exothermic (\(\Delta H_{298} = -120 \) to \(-190 \text{ kJ mol}^{-1} \)), while the parallel reaction 3a, which yields a carbonyl compound and the alkoxyl radical \(\text{R''O}' \) or the hydroxyl radical \(\text{OH} \), is exothermic.
in both cases ($\Delta H_{298}^{\circ} = -80$ to -130 kJ mol$^{-1}$), as also is reaction 3b ($\Delta H_{298}^{\circ} = -10$ to -120 kJ mol$^{-1}$), consecutive to reaction 3a, according to thermochemical data for the gas phase [2–4]. In reaction 4, which is competing with (parallel to) reactions 3 and 3a (chain propagation through the reactive radical R''), the resulting low-reactive radical that does not participate in further chain propagation and inhibits the chain process is supposed to be the alkyltetraoxyl 1:2 radical adduct 4,5 R''_4·, which has the largest weight and size. This radical is possibly stabilized by a weak intramolecular $H\cdots O$ hydrogen bond [54] shaping it into a six-membered cyclic structure6 (seven-membered cyclic structure in the case of aromatic and certain branched acyclic hydrocarbons) [56,57]:

$$4. \ \text{RO}_2 + \text{O}_2 \xrightarrow{T} [\text{R}_4 + \text{O}_2 \cdot \text{HO}] \equiv [\text{R}_{-4\text{H}} \cdot \text{H} \cdots \text{O}_4]^{-}. $$

Reaction 4 in the case of the methylperoxyl radical CH_3O_2^* adding to the oxygen molecule to yield the methyltetraoxyl radical CH_4O_4^* takes place in the gas phase, with heat absorption equal to 110.0 ± 18.6 kJ mol$^{-1}$ [49] (without the energy of the possible formation of a hydrogen bond taken into account). The exothermic reactions 6 and 7, in which the radical R' or RO^* undergoes disproportionation, include the isomerization and decomposition of the RO^* radical.7 The latter process is likely accompanied by chemiluminescence typical of hydrocarbon oxidation [52]. These reactions regenerate oxygen as O_2 molecules (including singlet oxygen8 [52,59]) and, partially, as O_3 molecules and yield the carbonyl compound R_4HO (possibly in the triplet excited state [52]). Depending on the decomposition pathway, the other possible products are the alcohol ROH, the ether ROR, and the alkyl peroxide RO\cdotR. It is likely that the isomerization and decomposition of the RO^* radical via reactions 6 and 7 can take place through the breaking of a $C\cdots C$ bond to yield carbonyl compounds, alcohols, ethers, and organic peroxides containing fewer carbon atoms than the initial hydrocarbon, as in the case of the alkylperoxyl radical RO^* in reaction 3a. At later stages of oxidation and at sufficiently high temperatures, the resulting aldehydes can be further oxidized into respective carboxylic acids. They can also react with molecular oxygen so that a $C\cdots H$ bond in the aldehyde molecule breaks to yield two free radicals (HO^* and $R'_{-4\text{H}}O$ or $R'_{-2\text{H}}O$). This process, like possible ozone decomposition yielding an ‘O’ atom or peroxide decomposition with O–O bond breaking, leads to degenerate chain branching [6].

The equations describing the formation rates of molecular products at the chain propagation and termination stages of the above reaction scheme, set up using the quasi-steady-state treatment, appear 4It is hypothesized that raising the oxygen concentration in the α-xylene–oxygen system can lead to the formation of the $[RO^*\cdots O_2]$ intermediate complex [46] similar to the $[\text{ROO}^*\cdots (\pi\text{-bond})RH]$ complex between the alkylperoxyl 1:1 adduct radical and an unsaturated hydrocarbon suggested in this work. The electronic structure of the π-complexes is considered elsewhere [48].

5Thermochemical data are available for some polyoxyl free radicals (the enthalpy of formation of the methyltetraoxyl radical without the energy of the possible intramolecular hydrogen bond $H\cdots O$ taken into account is $\Delta H_{298}^{\circ}(\text{CH}_4\text{O}_4^*) = 121.3 \pm 15.3$ kJ mol$^{-1}$) and polyoxides ($\Delta H_{298}^{\circ}(\text{CH}_3\text{O}_4^*) = -21.0 \pm 9$ kJ mol$^{-1}$) [49]. These data were obtained using the group contribution approach. Some physicochemical and geometric parameters were calculated for the methyl hydrotetraoxo molecule as a model compound [50–52]. The IR spectra of dimethyl tetraoxide with isotopically labeled groups in Ar–O$_2$ matrices were also reported [53]. For reliable determination of the number of oxygen atoms in an oxygen-containing species, it is necessary to use IR and EPR spectroscopy in combination with the isotope tracer method [53].

6The $\text{R}_4\text{H}^*\cdot\text{O}(\text{R}_4)$ ring consisting of the same six atoms (C, H, and 4O), presumably with a hydrogen bond [6], also forms in the transition state of the dimerization of primary and secondary alkylperoxyl radicals RO^* via the Russell mechanism [5,55].

7Taking into account the principle of detailed balance for the various pathways of formation of products, whose numbers in the elementary reaction should not exceed three for possible involvement in the triple collisions in the case of the reverse reaction, since the probability of simultaneous interaction of four particles is negligible.

8Note that the alkylperoxyl radicals RO^* are effective quenchers of singlet oxygen $O_2(a^1\Delta_g)$ [58].
as follows:

\[V_3(\text{RO}_2\text{H}; \text{ROH}) = V_\text{a}alx/f_m = \]

\[V_\text{a}alx/f_m, \quad (10) \]

\[V_3(\text{R}_1\text{-4H}; \text{R}_2\text{-2bHO}) = V_{3b}(\text{R}''\text{OH}; \text{H}_2\text{O}) = \]

\[V_\beta k_x/f_m, \quad (11) \]

\[V_3 = V_\beta^2 2k_3(\alpha l + \beta + x)^2/f_m, \quad (11a) \]

\[V_5 = 2V_\beta V_\gamma(\alpha l + \beta + x)k_2x^2/f_m, \quad (12) \]

\[2V_6 = 2V_\beta V_\gamma(\alpha l + \beta + x)k_2x^2/f_m, \quad (13) \]

\[V_7 = V_\gamma k_x^2/f_m, \quad (14) \]

where \(V_\gamma \) is the initiation rate, \(l = [\text{RH}] \) and \(x = [\text{O}_2] \) are the molar concentrations of the starting components \((l \gg x) \), \(\alpha = k_3/k_4 \) and \(\beta = k_5/k_4 \) \((\text{mol dm}^{-3})\) are the ratios of the rate constants of the competing (parallel) reactions, \(k_3 = (\alpha l + \beta)x/V _\gamma \) \((\text{mol dm}^{-3})\) is the rate constant of the addition of the alkyl radical \(R^* \) to the oxygen molecule (reaction 2) as determined by solving the quadratic equation following from the rate function extremum condition \(\partial V_{3a} / \partial x = 0 \), \(l_m \) and \(x_m \) are the values of \(l \) and \(x \) at the maximum point of the function, \(f = k_2x^2 + (\alpha l + \beta + x)\sqrt{k_2V_\gamma} \), and \(f_m = x^2 + (\alpha l + \beta + x)x_m^2/(\alpha l + \beta) \).

The ratios of the rates of the competing reactions are \(V_3/V_4 = \alpha/lx \) and \(V_3/V_4 = \beta/lx \), and the chain length is \(\nu = (V_3 + V_{3b})/V_1 \). Eq. (11) is identical to Eq. (6). Eqs (10a) and (10a) were obtained by replacing the rate constant \(k_3 \) in Eqs. (10) and (11) with its analytical expression (for reducing the number of unknown parameters to be determined directly).

For \(al \gg \beta (V_3 \gg V_{3a}) \), when the total yield of alkyl hydroperoxides and alcohols having the same number of carbon atoms as the initial compound far exceeds the yield of carbonyl compounds, as in the case of the oxidation of some hydrocarbons, the parameter \(\beta \) in Eqs. (10) and (10a) can be neglected (\(\beta = 0 \)) and these equations become identical to Eqs. (3) and (3a) with the corresponding analytical expression for \(k_2 \).

In the alternative kinetic model of oxidation, whose chain termination stage involves, in place of \(R^* \) (Scheme 3), \(\text{RO}_2^* \) radicals reacting with one another and with \(\text{RO}_4^* \) radicals, the dependences of the chain formation rates of the products on the oxygen concentration \(x \) derived by the same method have no maximum: \(V_3 = V_\gamma k_3l/(k_4x + \sqrt{2k_2V_\gamma}) \) and \(V_{3a} = V_\gamma k_3a/(k_4x + \sqrt{2k_2V_\gamma}) \). In the kinetic model of oxidation that does not include the competing reaction 4 \((k_4 = 0) \) and involves the radicals \(R^* \) and \(\text{RO}_2^* \) (the latter instead of \(\text{RO}_4^* \) in Scheme 3) in reactions 5–7, the reaction rate functions \(V_3 \) and \(V_{3a} \) obtained in the same way are fractional rational functions in the form of \(a_0x(b_0x + c_0) \), where \(a_0, b_0, \) and \(c_0 \) are coefficients having no extremum. For a similar kinetic model in which reactions 3a,b and 4 appearing in the above scheme are missing \((k_{3a} = k_4 = 0) \), Walling [5], using the quasi-steady-state treatment in the long kinetic chain approximation, when it can be assumed that \(V_2 = V_3 \), without using the substitution \(k_0 = \sqrt{2k_5k_2k_7} \) \([5,6,16]\) (as distinct from this work), found that \(V_2 = V_3 \) is an irrational function of \(x: ax/(b_0x^2 + c_0x + d_0 \) where \(a_1, b_1, c_1, \) and \(d_1 \) are coefficients. Again, this function has no maximum with respect to the concentration of any of the two components.

Thus, of the three kinetic models of oxidation mathematically analyzed above, which involve the radicals \(R^* \) and \(\text{RO}_2^* \) in three types of quadratic-law chain termination reactions (reactions 5–7) and are variants of the conventional model \([2,5,6,16,44,45]\), the last two lead to an oxidation rate versus oxygen concentration curve that emanates from the origin of coordinates, is convex upward, and has an asymptote parallel to the abscissa axis. Such monotonic dependences are observed when the oxygen solubility in the liquid is limited under given experimental conditions and the oxygen
optimum oxygen concentration for kinetic equations (10a) and (11a) and Eq. (3a) with adduct radical because the Henry law is violated for the given gas equilibrium under given experimental conditions (for example, when the gas is bubbled through the liquid) or act as an oxidation autoinhibitor or an antioxidant via the further oxidation of the alkylderoxyl 1:1 adduct radical \(\text{RO}_2 \) into the low-reactive 1:2 adduct radical \(\text{RO}_2^* \) (reactions 4 and 6 lead to inefficient consumption of the free radicals \(\text{RO}_2^* \) and \(\text{R}^* \) and cause shortening of the kinetic chains). The optimum oxygen concentration \(x_m \), at which the oxidation rate is the highest, can be calculated using kinetic equations (10a) and (11a) and Eq. (3a) with \(\beta = 0 \) or the corresponding analytical expression for \(k_2 \). In the familiar monograph “Chain Reactions” by Semenov [60], it is noted that raising the oxygen concentration when it is already sufficient usually slows down the oxidation process by shortening the chains. The existence of the upper (second) ignition limit in oxidation is due to chain termination in the bulk through triple collisions between an active species of the chain reaction and two oxygen molecules (at sufficiently high oxygen partial pressures). In the gas phase at atmospheric pressure, the number of triple collisions is roughly estimated to be \(10^3 \) times smaller than the number of binary collisions (and the probability of a reaction taking place depends on the specificity of the action of the third particle) [60]. Note that in the case of a gas-phase oxidation of hydrogen at low pressures of 25-77 Pa and a temperature of 77 K [47] when triple collisions are unlikely, the dependence of the rate of hydrogen peroxide formation on oxygen concentration (the rate of passing of molecular oxygen via the reaction tube) also has a pronounced maximum (see curves 3 and 4 in Fig. 6) that indicates a chemical mechanism providing the appearance of a maximum (see reaction 4 of Scheme 4).

Curve 1 in Fig. 5 illustrates the fit between Eq. (3a) at \(al \gg \beta \) and experimental data for the radiation-induced oxidation of \(o \)-xylene in the liquid phase at 373 K in the case of 2-methylbenzyl hydroperoxide forming much more rapidly than \(o \)-tolualdehyde (\(V_t \gg V_{3a} \) and \(al \gg \beta \)) [46]. The oxygen concentration limit in \(o \)-xylene is reached at an oxygen concentration of \([\text{O}_2]_{top} > x_m \), which corresponds to the third experimental point [46]. The oxygen concentration was calculated from the oxygen solubility in liquid xylene at 373 K [61]. The following quantities were used in this mathematical description: \(^{60}\text{Co} \gamma\)-radiation dose rate of \(P = 2.18 \text{ Gy s}^{-1} \) and total initiation yield of \(G(\text{o-CH}_3\text{C}_6\text{H}_4\text{CH}_2) = 2.6 \text{ particles per 100 eV of the energy absorbed by the solution} [46]; \(V_t = 4.73 \times 10^{-7} \text{ mol dm}^{-3} \text{ s}^{-1} \), and \(2k_5 = 1.15 \times 10^{10} \text{ dm}^{-3} \text{ mol}^{-1} \text{ s}^{-1} \). The resulting value of the parameter \(\alpha \) is \((9.0 \pm 1.8) \times 10^{-3} \); hence, \(k_3 = (3.2 \pm 0.8) \times 10^5 \text{ dm}^{-3} \text{ mol}^{-1} \text{ s}^{-1} \). From the data presented in [62], it was estimated that \(k_d = k_3/\alpha = (5.2 \pm 1.2) \times 10^2 \text{ dm}^{-3} \text{ mol}^{-1} \text{ s}^{-1} \).

The oxygen concentration attained in the liquid may be below the thermodynamically equilibrium oxygen concentration because of diffusion limitations hampering the establishment of the gas–liquid saturated solution equilibrium under given experimental conditions (for example, when the gas is bubbled through the liquid) or because the Henry law is violated for the given gas–liquid system under real conditions.
New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

rate \(V_3, \gamma (H_2O_2) \) on the dissolved oxygen concentration \(x \) from empirical data (symbols) using Eqs. (3a) and (14a) with \(\beta = 0 \) (model optimization with respect to the parameter \(\alpha \)) for the \(\gamma \)-radiolysis of water saturated with hydrogen and containing different amounts of oxygen at 296 K [63] (\(\gamma = 1.13 \times 10^8 \)). The dashed curve described \(V_3(H_2O_2) \) as a function of the oxygen concentration \(x \) based on Eq. (3a) (model optimization with respect to \(\alpha \)) and the experimental data of curve 2 (\(\gamma = 1.73 \times 10^8 \)).

4.2. Addition of the Hydrogen Atom

A number of experimental findings concerning the auto inhibiting effect of an increasing oxygen concentration at modest temperatures on hydrogen oxidation both in the liquid phase [63] (Fig. 5, curve 2) and in the gas phase [47,64,65] (Fig. 6), considered in our earlier work [13, 56, 57, 66], can also be explained in terms of the competition kinetics of free radical addition [14,67]. From Fig. 6 shows that the quantum yields of hydrogen peroxide and water (of products of photochemical oxidation of hydrogen at atmospheric pressure and room temperature) are maximum in the region of small concentrations of oxygen in the hydrogen–oxygen system (curves 1 and 2, respectively) [64].

Figure 6. (1, 2) Quantum yields of (1, ●) hydrogen peroxide and (2, ○) water resulting from the photochemical oxidation of hydrogen in the hydrogen–oxygen system as a function of the oxygen concentration \(x \) (light wavelength of 171.9–172.5 nm, total pressure of 10^5 Pa, room temperature [64]). (3, 4) Hydrogen peroxide formation rate \(V(H_2O_2) \) (dashed curves) as a function of the rate \(V(O_2) \) at which molecular oxygen is passed through a gas-discharge tube filled with (3, △) atomic and (4, □) molecular hydrogen. Atomic hydrogen was obtained from molecular hydrogen in the gas-discharge tube before the measurements (total pressure of 25–77 Pa, temperature of 77 K [47]). The symbols represent experimental data.

Scheme 4

Nonbranched-chain oxidation of hydrogen and changes in enthalpy (\(\Delta H^\circ_{298} \), kJ mol\(^{-1} \)) for elementary reactions\(^{10} \)

Chain initiation

1. \(H_2 \xrightarrow{h\nu, \gamma} 2H^\cdot \), \(\Delta H^\circ_{298} = 436.0 \pm 0.0 \).

\(^{10}\)According to Francisco and Williams [49], the enthalpy of formation (\(\Delta H^\circ_{298} \)) in the gas phase of \(\cdot H, \cdot HO, \cdot HO^\cdot, \cdot HO_2^\cdot, \cdot HO_3^\cdot \) (the latter without the possible intramolecular hydrogen bond taken into account), \(O_3, H_2O \) [2], \(H_2O_2 \), and \(H_2O_4 \) is 218.0 ± 0.0, 39.0 ± 1.2, 12.6 ± 1.7, 122.6 ± 13.7, 143.1 ± 1.7, −241.8 ± 0.0, −136.0 ± 0.0, and −26.0 ± 9 kJ mol\(^{-1} \), respectively. Calculations for the \(\cdot HO_4^\cdot \) radical with a helical structure were carried out using the G2(MP2) method [68]. The stabilization energies of \(\cdot HO_2^\cdot, \cdot HO_4^\cdot, \) and \(\cdot HO_3^\cdot \) were calculated in the same work to be 64.5 ± 0.1, 69.5 ± 0.8, and 88.5 ± 0.8 kJ mol\(^{-1} \), respectively. The types of the \(O_3 \) molecular dimers, their IR spectra, and higher oxygen oligomers were reported [69,70]. The structure and IR spectrum of the hypothetical cyclotetraoxygen molecule \(O_4 \), a species with a high- energy density, were calculated by the CCSD method, and its enthalpy of formation was estimated [71]. The photochemical properties of \(O_3 \) and the van der Waals nature of the \(O_2–O_2 \) bond were investigated [72,73]. The most stable geometry of the dimer is two \(O_2 \) molecules parallel to one another. The \(O_3 \) molecule was identified by NR mass spectrometry [74].
New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

Chain propagation	
2. \(\text{H}^+ + \text{O}_2 \xrightarrow{k_1} \text{HO}_2^* \), \(\Delta H_{298}^\circ = -205.4 \pm 1.7 \)	
3. \(\text{HO}_2^* + \text{H}_2 \xrightarrow{k_2} \text{H}_2\text{O} + \text{HO}^* \), \(\Delta H_{298}^\circ = -215.4 \pm 2.9 \)	\(\text{or } \text{H}_2\text{O}_2 + \text{H}^* \), \(\Delta H_{298}^\circ = 69.4 \pm 1.7 \)
3'. \(\text{HO}^* + \text{H}_2 \xrightarrow{k_3} \text{H}_2\text{O} + \text{H}^* \), \(\Delta H_{298}^\circ = -62.8 \pm 1.2 \)	Inhibition
4. \(\text{HO}_2^* + \text{O}_2 \xrightarrow{k_4} \text{HO}_4^* \), \(\Delta H_{298}^\circ = 110.0 \pm 15.4 \)	

Chain termination	
5. \(2\text{H}^* (\pm \text{M}) \xrightarrow{2k_5} \text{H}_2 (\pm \text{M}) \), \(\Delta H_{298}^\circ = -436.0 \pm 0.0 \)	
6. \(\text{H}^* + \text{HO}_4^* \xrightarrow{k_6} \text{H}_2\text{O}_2 + \text{O}_2 \), \(\Delta H_{298}^\circ = -476.6 \pm 13.7 \)	\(\text{or } \text{H}_2\text{O} + \text{O}_2 \), \(\Delta H_{298}^\circ = -439.3 \pm 15.4 \)
7. \(2\text{HO}_4^* \xrightarrow{2k_7} \text{H}_2\text{O}_2 + 2\text{O}_2 \), \(\Delta H_{298}^\circ = -95.0 \pm 30.8 \)	

The hydroperoxyl free radical \(\text{HO}_2^* \) [75–78] resulting from reaction 2 possesses an increased energy due to the energy released the conversion of the O=O multiple bond into the HO–O’ ordinary bond. Therefore, before its possible decomposition, it can interact with a hydrogen or oxygen molecule as the third body via parallel (competing) reactions 3 and 4, respectively. The hydroxyl radical \(\text{HO}^* \) that appears and disappears in consecutive parallel reactions 3 (first variant) and 3’ possesses additional energy owing to the exothermicity of the first variant of reaction 3, whose heat is distributed between the two products. As a consequence, this radical has a sufficiently high reactivity not to accumulate in the system during these reactions, whose rates are equal \(V_3 = V_3' \) under quasi-steady-state conditions, according to the above scheme. Parallel reactions 3 (second, parenthesized variant) and 3’ regenerate hydrogen atoms. It is assumed [56,57] that the hydrotetroxyl radical \(\text{HO}_4^* \) (first reported in [79,80]) resulting from endothermic reaction 4, which is responsible for the peak in the experimental rate curve (Fig. 5, curve 2), is closed into a five-membered \([\text{OO}…\text{HO}_2^*\text{OO}]\) cycle due to weak intramolecular hydrogen bonding [54,81]. This structure imparts additional stability to this radical and makes it least reactive.

The \(\text{HO}_4^* \) radical was discovered by Staehelin et al. [82] in a pulsed radiolysis study of ozone degradation in water; its UV spectrum with an absorption maximum at 260 nm \((\varepsilon(\text{HO}_4^*)_{260 \text{nm}} = 320 \pm 15 \text{ m}^2\text{ mol}^{-1}) \) was reported. The spectrum of the \(\text{HO}_4^* \) radical is similar to that of ozone, but the molar absorption coefficient \(\varepsilon(\text{HO}_4^*),_{\text{max}} \) of the former is almost two times larger [82]. The assumption about the cyclic structure of the \(\text{HO}_4^* \) radical can stem from the fact that its mean lifetime in water at 294 K, which is \((3.6 \pm 0.4) \times 10^{-5} \text{ s} \) (as estimated [66] from the value of 1/\(k \) for the reaction \(\text{HO}_4^* \xrightarrow{k} \text{HO}_2^* + \text{O}_2 \) [82]), is 3.9 times longer than that of the linear \(\text{HO}_4^* \) radical [68, 83] estimated in the same way [66] for the same conditions [84], \((9.1 \pm 0.9) \times 10^{-6} \text{ s} \). MP2/6-311++G** calculations using the Gaussian-98 program confirmed that the cyclic structure of \(\text{HO}_4^* \) [85] is energetically more favorable than the helical structure [68] (the difference in energy is 4.8–7.3 kJ mol\(^{-1}\), depending on the computational method and the basis set).\(^{11}\) For example, with the MP2(full)/6-31G(d) method, the

\(^{11}\)There were calculations for the two conformers \((\text{cis} \text{ and } \text{trans})\) of the \(\text{HO}_4^* \) radical [86] using large scale \(\text{ab initio} \) methods and density functional techniques with extended basis sets. Both conformers have a nearly planar geometry with respect to the four oxygen atoms and present an unusually long central O–O bond. The
difference between the full energies of the cyclic and acyclic HO₄⁺ conformers with their zero-point energies (ZPE) values taken into account (which reduces the energy difference by 1.1 kJ mol⁻¹) is −5.1 kJ mol⁻¹ and the entropy of the acyclic-to-cyclic HO₄⁺ transition is ΔS₂₀⁸ = −1.6 kJ mol⁻¹ K⁻¹.

Therefore, under standard conditions, HO₄⁺ can exist in both forms, but the cyclic structure is obviously dominant (87%, Keq = 6.5) [85].

Reaction 4 and, to a much lesser degree, reaction 6 inhibit the chain process, because they lead to inefficient consumption of its main participants – HO₄⁺ and H⁺.

The hydrogen molecule that results from reaction 5 in the gas bulk possesses an excess energy, and, to acquire stability within the approximation used in this work, it should have time for deactivation via collision with a particle M capable of accepting the excess energy [87]. To simplify the form of the kinetic equations, it was assumed that the rate of the bimolecular deactivation of the molecule substantially exceeds the rate of its monomolecular decomposition, which is the reverse of reaction [2].

Reactions 6 and 7 (taking into account the principle of detailed balance for the various pathways) regenerate hydrogen and oxygen (in the form of O₂(X³Σ⁻) molecules, including the singlet states with ΔH₂⁰⁸(O₂, aΔₐ) = 94.3 kJ mol⁻¹ [49, 70] and ΔH₂⁰⁸(O₂, b¹Σ⁺) = 161.4 kJ mol⁻¹ [70], which are deactivated by collisions, and in the form of O₃) and yield hydrogen peroxide or water via a nonchain mechanism, presumably through the intermediate formation of the unstable hydrogen tetraoxide molecule H₅O₄ [88]. Ozone does not interact with molecular hydrogen. At moderate temperatures, it decomposes fairly slowly, particularly in the presence of O₂(X³Σ⁻) [70]. The reaction of ozone with H⁺ atoms, which is not impossible, results in their replacement with HO⁻ radicals. The relative contributions from reactions 6 and 7 to the process kinetics can be roughly estimated from the corresponding enthalpy increments (Scheme 4).

When there is no excess hydrogen in the hydrogen–oxygen system and the homomolecular dimer O₂ [71–74, 89, 90], which exists at low concentrations (depending on the pressure and temperature) in equilibrium with O₂ [70], can directly capture the H⁺ atom to yield the heteronuclear cluster HO₄⁺ [13], which is more stable than O₄ [70] and cannot abstract a hydrogen atom from the hydrogen molecule, nonchain hydrogen oxidation will occur to give molecular oxidation products via the disproportionation of free radicals.

The low-reactive hydrotetraoxyl radical HO₄⁺ [82], which presumably has a high-energy density [71], may be an intermediate in the efficient absorption and conversion of biologically hazardous UV radiation energy the Earth upper atmosphere. The potential energy surface for the atmospheric reaction HO⁻ + O₃, in which the adduct HO₄⁺(2A) was considered as an intermediate, was calculated by the DMBE method [91]. From this standpoint, the following reactions are possible in the upper troposphere, as well as in the lower and middle stratosphere, where most of the ozone layer is situated (altitude of 16–30 km, temperature of 217–227 K, pressure of 1.0 × 10⁵–1.2 × 10⁵ Pa [92]; the corresponding ΔH₂⁰⁸ reaction values are given in kJ mol⁻¹ [49]):

most stable conformer of HO₄⁺ radical is the cis one, which is computed to be endothermic with respect to HO₄⁺(X³Σ⁺) + O₂(X³Σ⁻) at 0 K.

12The planar, six-atom, cyclic, hydrogen-bonded dimer (HO₄⁺)₂ was calculated using quantum chemical methods (B3LYP density functional theory) [88]. The hydrogen bond energy is 47.7 and 49.4 kJ mol⁻¹ at 298 K for the triplet and singlet states of the dimer, respectively.

13It is impossible to make a sharp distinction between the two-step bimolecular interaction of three species via the equilibrium formation of the labile intermediate O₄ and the elementary trimolecular reaction O₂ + O₂ + H⁺ → HO₄⁺.
New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

8. $\text{H}_2\text{O(vapor)} + h\nu \rightarrow \text{H}^+ + \text{HO}^-$ [92];

9. $\text{HO}^+ + \text{O}_2 \rightarrow \text{HO}_4^*$ [80, 82, 91],

\[\Delta H_{298}^o = -59.5; \]

10. $\text{HO}_4^* \rightarrow \text{HO}_2^* + \text{O}_2(\chi^3\Sigma_g^+) [82, 91],$

\[\Delta H_{298}^o = -110.0 \]

\[\Delta H_{298}^o = -15.7. \]

The HO_4^* radical can disappear via disproportionation with a molecule, free radical, or atom in addition to dissociation. Note that emission from $\text{O}_2(a^3\Sigma_g^+)$ and $\text{O}_2(b^1\Sigma_g^+)$ is observed at altitudes of 30–80 and 40–130 km, respectively [93].

Staehelin et al. [82] pointed out that, in natural systems in which the concentrations of intermediates are often very low, kinetic chains in chain reactions can be very long in the absence of scavengers since the rates of the chain termination reactions decrease with decreasing concentrations of the intermediates according to a quadratic law, whereas the rates of the chain propagation reactions decrease according to a linear law.

The kinetic description of the noncatalytic oxidation of hydrogen, including in an inert medium [87], in terms of the simplified scheme of free-radical nonbranched-chain reactions (Scheme 4), which considers only quadratic-law chain termination and ignores the surface effects [47], at moderate temperatures and pressures, in the absence of transitions to unsteady-state critical regimes, and at a substantial excess of the hydrogen concentration over the oxygen concentration was obtained by means of quasi-steady-state treatment, as in the previous studies on the kinetics of the branched-chain free-radical oxidation of hydrogen [76], even though the applicability of this method in the latter case under unsteady states conditions was insufficently substantiated. The method was used with the following condition: $k_b = \sqrt{2k_3k_7}$ (see Introduction). The equation for the rate of the chain formation of hydrogen peroxide and water, $V_j(\text{H}_2\text{O}_2; \text{H}_2\text{O}) = V_j(\text{H}_2\text{O}),$ via reactions 3 and 3′ is identical to Eq. (3, 3a) with the corresponding analytical expression for k_2. The ratio of the rates of the competing reactions is $V_j/V_3 = a l/x$, and the chain length is $v = V_j/V_3$. The rates of nonchain formation of hydrogen peroxide and water via reactions (6) and (7) – quadratic-law chain termination – are identical to Eqs. (13) and (14) provided that $\beta = 0$. In these equations, l and x are the molar concentrations of hydrogen and oxygen ($l \gg x$), l_m and x_m are the respective concentrations at the maximum point of the function, V_j is the rate of initiation (reaction 1), $a = k_b k_3$, the rate constant $k_2 = a l m / x_m^2$ is derived from the condition $\partial V_j / \partial x = 0$, and $2k_3$ is the rate constant of reaction 5 (hydrogen atom recombination), which is considered as bimolecular within the given approximation.

In the case of nonchain hydrogen oxidation via the above addition reaction ($\text{H}^+ + \text{O}_2 \rightarrow \text{HO}_4^*$), the formation rates of the molecular oxidation products in reactions 6 and 7 (Scheme 4, $k_3 = k_3 = k_3 = 0$) are defined by modified Eqs. (13) and (14) in which $\beta = 0$, ($a l + x$) is replaced with 1, and k_2 is replaced with $k_{add} K_{eq} / k_{add} K_{eq}$ is the effective rate constant of H^+ addition to the O_3 dimer, $K_{eq} = k/k'$ is the equilibrium constant of the reversible reaction $2\text{O}_2 \leftrightarrow \text{O}_4$ with $k' > k_{add}[\text{H}^+]$. The formation rates of the stable products of nonchain oxidation ($k_3 = 0$), provided that either reactions (2) and (4) or

14For example, the ratio of the rate constants of the bimolecular disproportionation and dimerization of free radicals at room temperature is $k(\text{HO}^+ + \text{HO}^+_2)/(2k(2\text{HO}^+)) = 2.8$ in the atmosphere [92] and $k(\text{H}^+ + \text{HO}^+)/[2k(2\text{H}^+)/2k(2\text{HO}^+)] = 1.5$ in water [94]. These values that are fairly close to unity.

15This rate constant in the case of the pulsed radiolysis of ammonia–oxygen (+ argon) gaseous mixtures at a total pressure of 10^5 Pa and a temperature of 349 K was calculated to be 1.6×10^8 dm$^{-3}$ mol$^{-1}$ s$^{-1}$ [65] (a similar value of this constant for the gas phase was reported in an earlier publication [95]). Fagsberg et al. [65] found that the dependence of the yield of the intermediate HO^+ on the oxygen concentration has a maximum close to 5×10^4 mol dm$^{-3}$. In the computer simulation of the process, they considered the strongly exothermic reaction $\text{HO}_2^* + \text{NH}_3 \rightarrow \text{H}_2\text{O} + \text{NH}^* + \text{HO}^*$, which is similar to reaction 3 in Scheme 4, whereas the competing reaction 4 was not taken into account.
reaction (2) alone \((k_4 = 0)\) occurs (Scheme 4; in the latter case, reactions 6 and 7 involve the \(\text{HO}_2^-\) radical rather than \(\text{HO}^+_2\)), are given by modified Eqs. (13) and (14) with \(\beta = 0\), \((al + x)\) replaced with 1, and \(x^2\) replaced with 1.

Note that, if in Scheme 4 chain initiation via reaction 1 is due to the interaction between molecular hydrogen and molecular oxygen yielding the hydroxyl radical \(\text{HO}^-\) instead of \(\text{H}^-\) atoms and if this radical reacts with an oxygen molecule (reaction 4) to form the hydrotrioxyl radical \(\text{HO}^+\) (which was obtained in the gas phase by neutralization reionization (NR) mass spectrometry [83] and has a lifetime of \(>10^{-6}\) s at 298 K) and chain termination takes place via reactions 5–7 involving the \(\text{HO}^-\) and \(\text{HO}^+\) radicals instead of \(\text{H}^-\) and \(\text{HO}^+_2\), respectively, the expressions for the water chain formation rates derived in the same way will appear as a rational function of the oxygen concentration \(x\) without a maximum: \(V_3(\text{H}_2\text{O}) = \frac{V_k 1.34}{x + \sqrt{2k_4 V_1}}\).

Curve 2 in Fig. 5 describes, in terms of the overall equation \(V_{3,7} = \frac{V_1 (a/\alpha_x + x^2)}{f_{\alpha_x}^2}\) for the rates of reactions 3 and 7 (which was derived from Eqs. 3a and 14, respectively, the latter in the form of Eq. (10) with \(\beta = 0\) everywhere), the dependence of the hydrogen peroxide formation rate (minus the rate \(V_{3}^{\text{primary}}\) of the formation of hydrogen peroxide after completion of the reactions in spurs) on the concentration of dissolved oxygen during the \(\gamma\)-radiolysis of water saturated with hydrogen (at the initial concentration \(7 \times 10^{-4}\) mol dm\(^{-3}\)) at 296 K [63]. These data were calculated in the present work from the initial slopes of hydrogen peroxide buildup versus dose curves for a \(^{60}\text{Co}\) \(\gamma\)-radiation dose rate of \(P = 0.67\) Gy s\(^{-1}\) and absorbed doses of \(D = 22.5–304.0\) Gy. The following values of the primary radiation-chemical yield \(G\) (species per 100 eV of energy absorbed) for water \(\gamma\)-radiolysis products in the bulk of solution at pH 4–9 and room temperature were used (taking into account that \(V = GP\) and \(V_i = G_i P\)): \(G_{\text{H}_2\text{O}} = 0.75\) and \(G_{\text{i}} = 0.6\) (initiation yield; see below) [94]; \(V_3 = 4.15 \times 10^{-8}\) mol dm\(^{-3}\) s\(^{-1}\); \(2k_2 = 2.0 \times 10^{10}\) mol\(^{-1}\) s\(^{-1}\). As can be seen from Fig. 5, the best description of the data with an increase in the oxygen concentration in water is attained when the rate \(V_3\) of the formation of hydrogen peroxide via the nonchain mechanism in the chain termination reaction 7 (curve 1, \(a = (8.5 \pm 2) \times 10^{-5}\)) is taken into account in addition to the rate \(V_{3,7}\) of the chain formation of this product via the propagation reaction 3 (dashed curve 2, \(a = 0.11 \pm 0.026\)). The rate constant of addition reaction 2 determined from \(\alpha\) is substantially underestimated: \(k_2 = 1.34 \times 10^7\) (vs. \(2.0 \times 10^{10}\) [94]) dm\(^3\) mol\(^{-1}\) s\(^{-1}\). The difference can be due to the fact that the radiation-chemical specifics of the process were not considered in the kinetic description of the experimental data. These include oxygen consumption via reactions that are not involved in the hydrogen oxidation scheme [66,97,98] and reverse reactions resulting in the decomposition of hydrogen peroxide by intermediate products of water radiolysis (\(\epsilon_{\text{m}}, H^-, \text{HO}^-\)), with the major role played by the hydrated electron [94].

5. General scheme of the addition of free radicals to molecules of alkenes, formaldehyde, and oxygen

The general scheme of the nonbranched-chain addition of a free radical from a saturated compound to an alkene (and its functionalized derivative), formaldehyde, or dioxygen (which can add an unsaturated radical as well) in liquid homogeneous binary systems of these components includes the following reactions [57, 97, 98].

Scheme 5

Initiation

\[
1.1 \rightarrow 2k_1 \rightarrow 2R_o^+;
\]

1a. \(R_o^+ + R_A \rightarrow k_{1a} \rightarrow R_o A + R^+_o;\)

For addition to an alkene at comparable component concentrations,
New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

1. Chain termination

5. \(2R_0^* \xrightarrow{2k_5} \text{Prod;} \)

6. \(R_4^* + R_{3(2a)} \xrightarrow{k_{5a}} \text{Prod}; \)

7. \(2R_{3(2a)} \xrightarrow{2k_5} \text{Prod}. \)

In this scheme, I is the initiator, for example, a peroxide [5,17,18,29,30]; \(R_0^* \) is any reactive radical (initiator); A is an atom of hydrogen [2,5,6,17,18,22–24,29–32] or halogen [2,5,19–21]; B is an atom of hydrogen [5,17–21,23,24,29–32], halogen [22], or oxygen (in oxidation) [2,5,6,16,44–46]; \(R_1^* \) is a radical such as \(\text{PCl}_2 [19], \text{CCl}_3 [20], \) an alkyl [2,5,6,21], a 1-hydroxyalkyl [5,6,17,22–24,29,32], or a similar functionalized radical [5,18] (addend); \(R_2^* \) is the formyl [8,9,29], an alkenyl (propenyl or higher) [2,5,17–22], a 1-hydroxyalkenyl [5,17,18,23,24], or a similar functionalized low-reactive radical [5,18] (inhibitor) or the oxygen atom (in oxidation) [2,5,6,13,14,16,44–46,56,57,96–98]; \(R_{2(2a)}^* \) is the low-reactive alkyltetraoxyl 1:2 adduct radical \(\text{RO}_{2}^* [13,14,56,57,96–98] \) (inhibitor); \(R_3^* \) is the active 1:1 adduct radical; \(R_4^* \) is an active fragment radical, such as hydroxymethyl [8,9,12,29,32], an alkoxyl radical, or hydroxyl (in oxidation) [2,5,6,13,14,16,44,46,56,57,96–98]; \(R_0A, R_0B, R_1A, \) and \(R_4A \) are saturated molecules; \(R_2B \) is an unsaturated molecule, \(\text{vi} \text{z}., \) an alkene [2,5,11,17–22], formaldehyde [8,9,12,29–32], or dioxygen (in oxidation) [2,5,6,13,14,16,44–46,56,57,96–98]; \(R_3^* \) is the carbonyl compound, \(\text{vi} \text{z}., \) aldehyde [2,6,8,9,12,14,29–32,44] or ketone [2,6,14,29,32,44]; \(R_3A \) and \(R_3B \) are molecular products (1:1 adducts); and Prod stands for molecular products of the dimerization and disproportionation of free radicals.

The chain evolution stage of Scheme 5 includes consecutive reactions 2, 3; 2, 3a; and 3a, 3b; parallel (competitive) reactions 3, 3a; 3, 3b; 3, 4 (or 4a); and 3a, 4 (or 4a); and consecutive-parallel reactions 2 and 4 (or 4a). Addition to alkynes is described by reactions 1–3, 4, and 5–7 and the corresponding rate equations (1)–(4a). Addition to the carbonyl carbon atom of the free (unsolvated) form of formaldehyde is represented by reactions 1, 1a, 2–4 (the main products are a 1,2-alkanediol, a carbonyl compound, and methanol), and 5–7 and is described by Eqs. (5) and (6). In the case of hydroxymethyl addition, the process includes reactions 1, 1a, 2, 3, 4a, 4 (the main product is ethanediol), and 5–7 and is described by Eq. (9). If the nonchain formation of ethanediol in reaction 5 is ignored, the process is described by Eq. (5). Addition to the oxygen molecule is described by
Eqs. (12) and (14)), the dependences of the rates \(V_1\) and \(V_3\) (3) are simple, inversely proportional dependences of reaction rates on bonds with reactions 3 and 3a,b, is responsible for the maxima in the dependences defined by Eqs. (1), (3) – 7 and Eqs. (10) and (11).

The main molecular products of the chain process – \(R_3A\), \(R'R''CO\), and \(R_4A\) – result from reactions 3, 3a, and 3b – chain propagation through the reactive free radical \(R'_1\) or \(R'_2\), \(R'R''CO\). The competing reaction 4, which opposes this chain propagation, yields the by-product \(R_1B\) a nonchain mechanism. The rate of formation of the products is a complicated function of the formation rates \((V_{3a} = V_{3b})\) and disappearance rates of the free radicals \(R'_1\) and \(R'_{2(a,b)}\): \(V(R_3A, R'R''CO, R_4A, R_1B) = V_2 = V_3 + V_{3a} + V_{4(4a)} = (V_{1a} + V_3 + V_{3b} - V_3) = (V_{1b} + V_{4(4a)} - V_2)\). The rates of reactions 5–7 at \(k_{1b} = 0\) ((\([R_1A] >> [R_2B]\) are given by Eqs. (12)–(14). The rate ratios of the competing reactions are \(V_2/V_{4(4a)} = allx\) and \(V_{3a}/V_{4(4a)} = \beta/lx\) (where \(\alpha = k_3k_{4(a)}, \beta = k_3/k_{4(a)}\) mol dm\(^{-3}\), and \(l\) and \(x\) are the molar concentrations of the reactants \(R_4A\) and \(R_1B\), respectively), and the chain length is \(\nu = (V_3 + V_{3b})/V_1\). Unlike the dependences of the rates of reactions 4a (or 4 at \(k_{1b} = 0\), with \(V_{4(4a)}\) \(\leq V_1\)), 5, and 7 (for the last two – Eqs. (12) and (14)), the dependences of the rates \(V\) of reactions 3, 3a,b, 4 (at \(k_{1b} \neq 0\)), and 6 (Eqs. (1), (3)–(6), (10), (11), and (13)) on \(x\) have a maximum. Reaction 1b, which competes with reaction 1a, gives rise to a maximum in the dependence described by Eq. (2), whereas reaction 4 or 4a, competing with reactions 3 and 3a,b, is responsible for the maxima in the dependences defined by Eqs. (1), (3)–(6) or (10) and (11). The low-reactive radicals \(R'_2\)\(^{16}\) and \(R'_{2a}\), resulting from reactions 4 and 4a, inhibit the nonbranched-chain addition of \(R'_1\) to alkenes (or formaldehyde) and dioxide, respectively.

Reaction 4a leads to non-productive loss of \(R'_1\) adduct radicals.

For approximate estimation of the parameters of the kinetic equations (3), (4), (10), and (11), Eq. (4) under the conditions (a) \(k_2x^2 < (al + x)\sqrt{2k_1V_1}\) (ascending branch of a peaked curve) and (b) \(k_2x^2 >> (al + x)\sqrt{2k_1V_1}\) (descending branch) is transformed into simple functions (direct and inverse proportionality, respectively) of the concentration \(x\) of the unsaturated compound. These functions allow tentative estimates of the parameters \(k_2\) and \(\alpha\) to be derived from the experimental product formation rate \(V\) provided that \(V_1\) and \(2k_2\) are known:

\[
V_{3,4} = \sqrt{V_1k_2x/\phi\sqrt{2k_2}}, \tag{15}
\]
\[
V_{3,4} = (V_1/\phi)((alx) + 1), \tag{16}
\]
where \(\phi = 1\) under conditions (a) and (b) and \(\phi = 2\) at the point of maximum (where \(k_2x^2 \approx (al + x)\sqrt{2k_1V_1}\)). Equations (10) and (11) under the condition \(k_2x^2 >> (al + \beta + x)\sqrt{2k_1V_1}\) (descending branch of a peaked curve) can be transformed into Eqs. (17) and (18), respectively, which express the simple, inversely proportional dependences of reaction rates on \(x\) and provide tentative estimates of \(\alpha\) and \(\beta\):

\[
V_1 = V_1al/\phi x, \tag{17}
\]
\[
V_{3a} = V_1/\beta \phi x, \tag{18}
\]
where \(\phi = 2\) at the point of maximum (where \(k_2x^2 \approx (al + \beta + x)\sqrt{2k_1V_1}\)) and \(\phi = 1\) for the descending branch of the curve. Equation (3) for \(V_{3,4}\) under condition (b) transforms into Eq. (17).

For radiation-chemical processes, the rates \(V\) in the kinetic equations should be replaced with radiation-chemical yields \(G\) using the necessary unit conversion factors and the relationships \(V = GP\) and \(V_1 = \epsilon_G(R'_1)^P\), where \(P\) is the dose rate, \(\epsilon_G\) is the electron fraction of the saturated component \(R_1A\) in the reaction system [100], and \(G(R'_1)\) is the initial yield of the chain-carrier free radicals (addends) – initiation yield [39,94].

\(^{16}\)The stabilization energy of the low-reactive free radicals \(\text{CH}_2=\text{C(\text{CH}_3)}\text{CH}_2, \text{CH}_2=\text{CHCHOH, and HC}=\text{O}\) in the standard state in the gas phase is \(-52.0, -42.1, \text{and} -24.3\) kJ mol\(^{-1}\), respectively [4,99].
6. CONCLUSION

In summary, the material on the kinetics of nonbranched-chain addition of free saturated radicals to multiple bonds of alkene (and its derivative), formaldehyde, or oxygen molecules makes it possible to describe, using rate equations (1)–(6), (9)–(11) obtained by quasi-steady-state treatment, experimental dependences with a maximum of the formation rates of molecular 1:1 adducts on the concentration of an unsaturated compound over the entire region of its change in binary reaction systems consisting of saturated and unsaturated components (Figs. 1, 3, 5).

The proposed addition mechanism involves the reaction of a free 1:1 adduct radical with an unsaturated molecule yielding a low-reactive free radical (the reaction 4 competing with the chain propagation reactions in Schemes 1–5). In such reaction systems, the unsaturated compound is both a reactant and an autoinhibitor, specifically, a source of low-reactive free radicals shortening kinetic chains. The progressive inhibition of the nonbranched-chain processes, which takes place as the concentration of the unsaturated compound is raised (after the maximum process rate is reached), can be an element of the self-regulation of the natural processes that returns them to the stable steady state.

A similar description is applicable to the nonbranched-chain free-radical hydrogen oxidation in water at 296 K [63] (Fig. 5, curve 2). Using the hydrogen oxidation mechanism considered here, it has been demonstrated that, in the Earth’s upper atmosphere, the decomposition of O₃ in its reaction with the HO' radical can occur via the addition of the latter to the ozone molecule, yielding the HO'_3 radical, which is capable of efficiently absorbing UV radiation [82].

The optimum concentration xₘ of unsaturated component in the binary system at which the process rate is maximal can be derived with the help of obtained kinetic equations (3a), (4a), (10a), and (11a) or from the corresponding analytical expressions for kₐ if other parameters are known. This opens a way to intensification of some technological processes that are based on the addition of free radicals to the double bonds of unsaturated molecules and occur via a nonbranched-chain mechanism through the formation of 1:1 adducts.

REFERENCES

[1] L. V. Gurvich, G. V. Karachevtsev, V. N. Kondrat'ev, Yu. A. Lebedev, V. A. Medvedev, V. K. Potapov, and Yu. S. Khodeev, “Energi razryva khimicheskikh svyazei. Potentsial'nyi iznizatsii i srodstvo k elektronu” (“Bond Dissociation Energies, Ionization Potentials, and Electron Affinity”), V. N. Kondrat'ev, Editor, Nauka, Moscow, 1974.

[2] S. W. Benson, “Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters”, 2nd Edition, Wiley, New York, 1976.

[3] J. B. Pedley, R. D. Naylor, and S. P. Kirby, “Thermochemical Data of Organic Compounds”, 2nd Edition, Chapman & Hall, London, 1986.

[4] Yu. D. Orlov, Yu. A. Lebedev, and I. Sh. Saifullin, “Termokhimicheskaia organicheskikh svobodnykh radikalov” (“Thermochemistry of Organic Free Radicals”), A. M. Kutepov, Editor., Nauka, Moscow, 2001.

[5] Ch. Walling, “Free Radicals in Solution”, Wiley, New York, 1956.

[6] N. M. Emanuel, E. T. Denisov, and Z. K. Maizus, “Tsepnye reaktsii okisleniya uglevodorodov v zhidkoi faze” (“Chain Oxidation Reactions of Hydrocarbons in the Liquid Phase”), Nauka, Moscow, 1965.

[7] V. A. Poluektov, E. I. Babkina, and I. R. Begishev, “On the Dependence of the Rate of a Chain Reaction on the Reactant Ratio”, Dokady Akademii Nauk SSSR, 1974, vol. 215, no. 3, pp. 649–652.

[8] M. M. Silaev and L. T. Bugaenko, “Mathematical Simulation of the Kinetics of Radiation Induced Hydroxyalkylation of Aliphatic Saturated Alcohols”, Radiation Physics and Chemistry, 1992, vol. 40, no. 1, pp. 1–10.

[9] M. M. Silaev and L. T. Bugaenko, “Kinetics of the Addition of α-Hydroxyalkyl Radicals to 2-Propan-1-ol and Formaldehyde”, Kinetics and Catalysis, 1994, vol. 35, no. 4, pp. 509–513.

[10] M. M. Silaev, “Competition Kinetics of Nonbranched Chain Processes of Free-Radical Addition to Double Bonds of Molecules with the Formation of 1:1 Adducts”, Kinetika i Kataliz., 1999, vol. 40, no. 2, pp. 281–284, English Translation in: Kinetics and Catalysis, 1999, vol. 40, no. 2, pp. 256–259.

[11] M. M. Silaev, “Simulation of the Nonbranched-Chain Addition of Saturated Free Radicals to Alkenes and Their Derivatives Yielding 1:1 Adducts”, Teoreticheskie Osnovy Khimicheskoi Tekhnologii, Vol. 41, No. 3, 2007, pp. 280–295, English Translation in: Theoretical Foundations of Chemical Engineering, 2007, vol. 41, no. 3, pp. 273–278.
New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

[12] M. M. Silaev, “Simulation of Nonbranched Chain Processes for Producing 1,2-Alkanediols in Alcohol–Formaldehyde Systems”, Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2007, vol. 41, no. 4, pp. 379–384, English translation in: Theoretical Foundations Chemical Engineering, 2007, vol. 41, no. 4, pp. 357–361.

[13] M. M. Silaev, “A New Competitive Kinetic Model of Radical Chain Oxidation: Oxygen as an Autoinhibitor”, Biofizika, Vol. 46, No. 2, 2001, pp. 203–209, English translation in: Biophysics, Vol. 46, No. 2, 2001, pp. 202–207.

[14] M. M. Silaev, “Simulation of the Initiated Addition of Hydrocarbon Free Radicals and Hydrogen Atoms to Oxygen via a Nonbranched Chain Mechanism”, Teoreticheskie Osnovy Khimicheskoi Tekhnologii, Vol. 41, No. 6, 2007, pp. 634–642, English translation in: Theoretical Foundation of Chemical Engineering, Vol. 41, No. 6, 2007, pp. 831–838.

[15] Y. Bard, “Nonlinear Parameter Estimation”, Academic, New York, 1974.

[16] L. Bateman, “Alkene Oxidation”, Quarterly Reviews, Vol. 8, No. 2, 1954, pp. 147–167.

[17] W. H. Urry, F. W. Stacey, E. S. Huysen, and O. O. Juveland, “The Peroxide- and Light-Induced Additions of Alcohols to Alkenes”, Journal of the American Chemical Society, Vol. 76, No. 2, 1954, pp. 450–455.

[18] Urry, W.H. and Juveland, O.O., “Free Radical Additions of Amines to Alkenes”, Journal of the American Chemical Society, Vol. 80, No. 13, 1958, pp. 3322–3328.

[19] A. G. Shostenko, P. A. Zagorets, A. M. Dodonov, and A. A. Greish, “γ-Radiation-Induced Addition of Phosphorus Trichloride to Isobutylene”, Khimiya Vysokikh Energii, Vol. 4, No. 4, 1970, p. 357.

[20] V. Kim, A. G. Shostenko, and M. D. Gasparyan, “Reactivity of Polychloroalkyl Radicals in the Telomerization of CCl4 with 1-Propene and 2-Methyl-1-Propene” (in Russian), Reaction Kinetics and Catalysis Letters, Vol. 12, No. 4, 1979, pp. 479–484.

[21] Y. Bard, “Nonlinear Parameter Estimation”, Academic, New York, 1974.

[22] L. Bateman, “Alkene Oxidation”, Quarterly Reviews, Vol. 8, No. 2, 1954, pp. 147–167.

[23] W. H. Urry, F. W. Stacey, E. S. Huysen, and O. O. Juveland, “The Peroxide- and Light-Induced Additions of Alcohols to Alkenes”, Journal of the American Chemical Society, Vol. 76, No. 2, 1954, pp. 450–455.
New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

[34] A. I. Novoselov, M. M. Silaev, and L. T. Bugaenko, “Dependence of Ethanediol Yield on Formaldehyde Concentration in γ-Radiolysis of Methanol–Formaldehyde System at 373–473 K”, Khimiya Vysokikh Energii, Vol. 42, No. 1, 2008, pp. 74–75, English Translation in: High Energy Chemistry, vol. 42, no. 1, 2008, pp. 69–70.

[35] A. I. Novoselov, M. M. Silaev, and L. T. Bugaenko, “γ-Induced Single-Step Synthesis of Ethylene Glycol from Methanol–Formaldehyde Solution”, Theoreticheskie Osnovy Khimicheskoy Tekhnologii, Vol. 44, No. 4, 2010, pp. 450–453, English Translation in: Theoretical Foundation of Chemical Engineering, Vol. 44, No. 4, 2010, pp. 432–435.

[36] A. I. Novoselov, M. M. Silaev, and L. T. Bugaenko, “Dependence of Ethanediol Yield on Formaldehyde Concentration in γ-Radiolysis of Ethanol–Formaldehyde System at 373473 K”, Khimiya Vysokikh Energii, Vol. 41, No. 1, 2007, p. 58, English Translation in: High Energy Chemistry, Vol. 41, No. 1, 2007, p. 53.

[37] S. Ya. Pshezhetskii, A. G. Kotov, V. K. Milinchuk, V. A. Roginski, and V. I. Tupikov, “ESR svobodnykh radikalov v radiatsionnoi khimii” (“ESR of Free Radicals in Radiation Chemistry”), Khimiya, Moscow, 1972.

[38] M. M. Silaev, “Estimating the Solvent Concentration in Formaldehyde Solutions at Various Temperatures”, Zhurnal Fizicheskoy Khimii, Vol. 67, No. 9, 1993, p. 1944.

[39] M. M. Silaev, “Applied Aspects of the γ-Radiolysis of C1-C4 Alcohols and Binary Mixtures on Their Basis”, Khimiya Vysokikh Energii, Vol. 36, No. 2, 2002, pp. 97–101, English Translation in: High Energy Chemistry, Vol. 36, No. 2, 2002, pp. 70–74.

[40] M. M. Silaev, L. T. Bugaenko, and E. P. Kalyazin, “On the Possibility of Adequately Estimating the Rate Constants for the Reaction of Hydroxyalkyl Radicals with Each Other Using the Self-Diffusion Coefficients or Viscosities of the Corresponding Alcohols”, Vestnik Moskovskogo. Universiteta, Ser. 2: Khimiya, Vol. 27, No. 4, 1986, pp. 386–389.

[41] O. I. Shadyro, “Radiation-chemical Conversions of Aldehydes in Various Systems”, Ph.D. Thesis (Chemistry), Belarusian State University, Minsk, 1975.

[42] M. M. Silaev, “Relative Reactivity of α-Hydroxyethyl Radicals for 2-Propanediol and Formaldehyde Double-Bond Addition”, Vestnik Moskovskogo Universiteta, Ser. 2: Khimiya, Vol. 34, No. 3, 1993, p. 311.

[43] H. Seki, R. Nagai, and M. Imamura, “γ-Radiolysis of a Binary Mixture of Methanol and Water. The Formation of Formaldehyde in the Radiolysis of Liquid Methanol”, Bulletin of the Chemical Society of Japan., Vol. 41, No. 12, 1968, pp. 2877–2881.

[44] V. Ya. Shtern, “Mekhanizm okisleniya uglevodorodov v gazovoi faze (Mechanism of the Gas-Phase Oxidation of Hydrocarbons)”, Akademiya Nauk SSSR, Moscow, 1960.

[45] H. L. J. Bäckström, “Der Kettenmechanismus bei der Autoxydation von Aldehyden”, Zeitschrift für physikalische Chemie (B)”, Bd. 25, № 1–2, 1934, Sn. 99–121.

[46] A. A. Aliev, and V. V. Saraeva, “Isomerization of Peroxy Radicals Resulting from the Radiation-Induced Oxidation of o-Xylene”, Vestnik Moskovskogo Universiteta, Ser. 2: Khimiya, Vol. 34, No. 4, 1983, pp. 371–374.

[47] E. J. Badin, “The Reaction between Atomic Hydrogen and Molecular Oxygen at Low Pressures. Surface Effects”, Journal of the American Chemistry Society, Vol. 70, No. 11, 1948, pp. 3651–3655.

[48] A. L. Buchachenko, “Kompleksy radikalov i molekulyarnogo kisloroda s organicheskimi molekulami” (“Complexes of Radicals and Dioxogen with Organic Molecules”), I. P. Beletskaya, Editor, Nauka, Moscow, 1984.

[49] J. S. Francisco and I. H. Williams, “The Thermochemistry of Polyoxides and Polyoxy Radicals”, International Journal of Chemical Kinetics, Vol. 20, No. 6, 1988, pp. 455–466.

[50] V. N. Kokorev, N. N. Vyshininskii, V. P. Maslennikov, I. A. Abronin, G. M. Zhidomirov, and Yu. A. Aleksandrov, “Electronic Structure and Chemical Reactions of Peroxides: I. MINDO/3 Calculation of the Geometry and Enthalpy of Formation of the Ground States of Organic and Organoelement Peroxides”, Zhurnal Struktural'noi Khimii, Vol. 22, No. 4, 1981, pp. 9–15.

[51] A. F. Dmitruk, V. V. Lobanov, and L. I. Kholoimova, “Role of Tetroxide Conformation in the Mechanism of Peroxy Radical Recombination”, Teoreticheskaia i Eksperimental'naia Khimiya, Vol. 22, No. 3, 1986, pp. 363–366.

[52] V. A. Belyakov, R. F. Vasil'ev, N. M. Ivanova, B. F. Minaev, O. V. Osyaeva, and G. F. Fedorova, “Electronic Model of the Excitation of Chemiluminescence in the Oxidation of Organic Compounds”, Izvestiya Akademii Nauk SSSR, Ser.: Fizika, Vol. 51, No. 3, 1987, pp. 540–547.

[53] P. Ase, W. Bock, and A. Snelson, “Alkylperoxy and Alkyl Radicals. 1. Infrared Spectra of CH2O2 and CH2O2CH2, and the Ultraviolet Photolysis of CH2O2 in Argon + Oxygen Matrices”, The Journal of Physical Chemistry, Vol. 90, No. 10, 1986, pp. 2099–2109.
New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

[54] G. C. Pimentel and A. L. McClellan, “The Hydrogen Bond”, L. Pauling, Editor, Freeman, San Francisco, 1960, p. 200.

[55] G. A. Russell, “Deuterium-Isotope Effects in the Autooxidation of Aralkyl Hydrocarbons: Mechanism of the Interaction of Peroxy Radicals”, Journal of the American Chemical Society, Vol. 79, No. 14, 1957, pp. 3871–3877.

[56] M. M. Silaev, “The Competition Kinetics of Nonbranched Chain Processes of Free-Radical Addition to Double Bonds of Molecules with the Formation of 1:1 Adducts and the Inhibition by the Substrate”, Oxidation Communication, Vol. 22, No. 2, 1999, pp. 159–170.

[57] M. M. Silaev, “The Competition Kinetics of Radical-Chain Addition”, Zhurnal Fizicheskoi Khimii, Vol. 73, No. 7, 1999, pp. 1180–1184, English Translation in: Russian Journal of Physical Chemistry, Vol. 73, No. 7, 1999, pp. 1050–1054.

[58] A. P. Darmanyan, D. D. Gregory, Y. Guo, W. S. Jenks, L. Burel, D. Eloy, and P. Jardon, “Quenching of Singlet Oxygen by Oxygen- and Sulfur-Centered Radicals: Evidence for Energy Transfer to Peroxy Radicals in Solution”, Journal of the American Chemistry Society, Vol. 120, No. 2, 1998, pp. 396–403.

[59] J. R. Kanofsky, “Singlet Oxygen Production from the Reactions of Alkylperoxy Radicals. Evidence from 1268-nm Chemiluminescence”, The Journal of Organic Chemistry, Vol. 51, No. 17, 1986, pp. 3386–3388.

[60] N. N. Semenov, “Tsennyye reaktsii” (“Chain Reactions”), Goskhimtekhizdat, Leningrad, 1934, pp. 241, 203.

[61] M. Reznikovskii, Z. Tarasova, and B. Dogadkin, “Oxygen Solubility in Some Organic Liquids”, Zhurnal Obshchei Khimii, Vol. 20, No. 1, 1950, pp. 63–67.

[62] J. A. Howard and K. U. Ingold, “Absolute Rate Constants for Hydrocarbon Autooxidation. VI. Allyl Aromatic and Alkeneic Hydrocarbons”, Canadian Journal of Chemistry, Vol. 45, No. 8, 1967, pp. 793–802.

[63] N. F. Barr and A. O. Allen, “Hydrogen Atoms in the Radiolysis of Water”, The Journal of Physical Chemistry, Vol. 63, No. 6, 1959, pp. 928–931.

[64] H. A. Smith and A. Napravnik, “Photochemical Oxidation of Hydrogen”, Journal of the American Chemistry Society, Vol. 62, No. 1, 1940, pp. 385–393.

[65] P. B. Pagsberg, J. Eriksen, and H. C. Christensen, “Pulse Radiolysis of Gaseous Ammonia–Oxygen Mixtures”, The Journal of Physical Chemistry, Vol. 83, No. 5, 1979, pp. 582–590.

[66] M. M. Silaev, “Competitive Mechanism of the Non-branched Radical Chain Oxidation of Hydrogen Involving the Free Cyclohydrotetroxyl Radical [O–O···H···O–O], Which Inhibits the Chain Process", “Khimiya Vysokikh Energii, Vol. 37, No. 1, 2003, pp. 27–32, English Translation in: High Energy Chemistry, Vol. 37, No. 1, 2003, pp. 24–28.

[67] M. M. Silaev, “Simulation of Initiated Chain Oxidation of Hydrogen: Oxygen as an Autoinhibitor”, Khimiya Vysokich Energii, Vol. 42, No. 2, 2008, pp. 124–129, English Translation in: High Energy Chemistry, Vol. 42, No. 1, 2008, pp. 95–100.

[68] D. J. McKay and J. S. Wright, “How Long Can You Make an Oxygen Chain?”, Journal of the American Chemistry Society, Vol. 120, No. 5, 1998, pp. 1003–1013.

[69] N. P. Lipikhin, “Dimers, Clusters, and Cluster Ions of Oxygen in the Gas Phase”, Uspekhi Khimii, Vol. 44, No. 8, 1975, pp. 366–376.

[70] S. D. Razumovskii, “Kislorod – elementarnye formy i svoistva” (“Oxygen: Elementary Forms and Properties”), Khimiya, Moscow, 1979.

[71] K. M. Dunn, G. E. Scucria, and H. F. Schaefer III, “The infrared spectrum of cyclotetraoxygen, O₄: a theoretical investigation employing the single and double excitation coupled cluster method”, The Journal of Chemical Physics, Vol. 92, No. 10, 1990, pp. 6077–6080.

[72] L. Brown and V. Vaida, “Photoreactivity of Oxygen Dimers in the Ultraviolet”, The Journal of Physical Chemistry, Vol. 100, No. 19, 1996, pp. 7849–7853.

[73] V. Aquilanti, D. Ascenzi, M. Bartolomei, D. Cappelletti, S. Cavalli, M. de Castro-Vitore, and F. Pirani, “Molecular Beam Scattering of Aligned Oxygen Molecules. The Nature of the Bond in the O₂–O₂ Dimer”, Journal of the American Chemistry Society, Vol. 121, No. 46, 1999, pp. 10794–1080.

[74] F. Cacace, G. de Petris, and A. Troiani, “Experimental Detection of Tetraoxygen”, Angewandte Chemie, Internation Edition (in English), Vol. 40, No. 21, 2001, pp. 4062–4065.

[75] H. S. Taylor, “Photosensitisation and the Mechanism of Chemical Reactions”, Transactions of the Faraday Society, Vol. 21, No. 63 (3), 1926, pp. 560–568.

[76] A. B. Nalbandyan and V. V. Voevodskii, “Mekhanizm okisleniya i goreniya vodoroda” (“Mechanism of Hydrogen Oxidation and Combustion”), V. N. Kondrat'ev, Editor, Akad. Nauk SSSR, Moscow, 1949.

[77] S. N. Foner and R. L. Hudson, “Mass spectrometry of the HO₂ free radical”, The Journal of Chemical Physics, Vol. 36, No. 10, 1962, p. 2681.
New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds

[78] C. J. Hochanadel, J. A. Ghormley, and P. J. Ogren, “Absorption Spectrum and Reaction Kinetics of the HO₂ Radical in the Gas Phase”, The Journal of Chemical Physics, Vol. 56, No. 9, 1972, pp. 4426–4432.

[79] J. B. Robertson, “A Mass Spectral Search for H₂O₂ and HO₂ in a Gaseous Mixture Containing HO₂ and O₂”, Chemistry and Industry, 1954, no. 48, p. 1485.

[80] D. Bahnemann and E. J. Hart, “Rate Constants of the Reaction of the Hydrated Electron and Hydroxyl Radical with Ozone in Aqueous Solution”, The Journal of Physical Chemistry, Vol. 86, No. 2, 1982, pp. 252–255.

[81] “Vodorodnaya svyaz’: Shornik statei” (“The Hydrogen Bonding: Collection of Articles”) N. D. Sokolov, Editor, Nauka, Moscow, 1981.

[82] J. Staehelin, R. E. Bühler, and J. Hoigné, “Ozone Decomposition in Water Studied by Pulse Radiolysis. 2. OH and HO₂ as Chain Intermediates”, The Journal of Physical Chemistry, Vol. 88, no. 24, 1984, pp. 5999–6004.

[83] F. Cacace, G. de Petris, F. Pepi, and A. Troiani, “Experimental Detection of Hydrogen Trioxide”, Science, Vol. 285, No. 5424, 1999, pp. 81–82.

[84] R. F. Bühler, J. Staehelin, and J. Hoigné, “Ozone Decomposition in Water Studied by Pulse Radiolysis. 1. HO₂/O₂₂ and HO₂/O₃ as Intermediates”, The Journal of Physical Chemistry, Vol. 88, No. 12, 1984, pp. 2560–2564.

[85] I. V. Trushkov, M. M. Silaev, and N. D. Chuvylkin, “Acyclic and Cyclic Forms of the Radicals HO₂⁻, CH₃O⁻, and C₆H₅O⁻: Ab Initio Quantum Chemical Calculations”, Izvestiya Akademii Nauk, Ser.: Khimiya, No. 3, 2009, pp. 479–482, English Translation in: Russian Chemical Bulletin, International Edition, Vol. 58, No. 3, 2009, pp. 489–492.

[86] A. Mansergas, J. M. Anglada, S. Olivella, M. F. Ruiz-López, “On the Nature of the Unusually Long OO Bond in HO₂ and HO₂ Radicals”, Phys. Chem. Chem. Phys., Vol. 9, No. 44, 2007, pp. 5865–5873.

[87] W. Wong and D. D. Davis, “A Flash Photolysis Resonance Fluorescence Study of the Reactions of Atomic Hydrogen and Molecular Oxygen: H + O₂ + M → HO₂ + M”, International Journal of Chemical Kinetics, Vol. 6, No. 3, 1974, pp. 401–416.

[88] X. Xu, R. P. Muller, and W. A. Goddard III, “The Gas Phase Reaction of Singlet Dioxygen with Water: a Water-Catalyzed Mechanism”, Proceedings of the National Academy Sciences of the United States of America, Vol. 99, No. 6, 2002, pp. 3376–3381.

[89] E. T. Seidl and H. F. Schaefer III, “Is There a Transition State for the Unimolecular Dissociation of Cyclotetraoxygen (O₄²⁻)?”, The Journal of Chemical Physics, Vol. 96, No. 2, 1992, pp. 1176–1182.

[90] R. Hernández-Lamoneda and A. Ramírez-Solís, “Reactivity and Electronic States of O₄ along Minimum Energy Paths”, The Journal of Chemical Physics, Vol. 113, No. 10, 2000, pp. 4139–4145.

[91] A. J. C. Varandas and L. Zhang, “Test Studies on the Potential Energy Surface and Rate Constant for the OH + O₂ Atmospheric Reaction”, Chemical Physics Letters, Vol. 331, Nos. 5–6, 2000, pp. 474–482.

[92] “Atmosfera. Spravochnik” (“Atmosphere: A Handbook”), Gidrometeoizdat, Leningrad, 1991.

[93] H. Okabe, “Photochemistry of Small Molecules”, Wiley, New York, 1978.

[94] A. K. Pikaev, “Sovremennaya radiatsionnaya khimiya. Radioliz gazov i zhidkostei” (“Modern Radiation Chemistry: Radiolysis of Gases and Liquids”), Nauka, Moscow, 1986.

[95] A. W. Boyd, C. Willis, and O. A. Miller, “A Re-examination of the Yields in the High Dose Rate Radiolysis of Gaseous Ammonia”, Canadian Journal of Chemistry, Vol. 49, No. 13, 1971, pp. 2283–2289.

[96] M. M. Silaev, “Competition Mechanism of Substrate-Inhibited Radical Chain Addition to Double Bond”, Neftekhimiya, Vol. 40, No. 1, 2000, pp. 33–40, English Translation in: Petroleum Chemistry, Vol. 40, No. 1, 2000, pp. 29–35.

[97] M. M. Silaev, “Competition Kinetics of Nonbranched Chain Processes of Free Radical Addition to the C≡C, C=O and O=O Double Bonds of Molecules”, Neftekhimiya, Vol. 43, No. 4, 2003, pp. 302–307, English Translation in: Petroleum Chemistry, vol. 43, no. 4, 2003, pp. 258–273.

[98] M. M. Silaev, “Low-reactive Free Radicals Inhibiting Nonbranched Chain Processes of Addition”, Biofizika, Vol. 50, No. 4, 2005, pp. 585–600, English Translation in: Biophysics, Vol. 50, No. 4, 2005, pp. 511–524.

[99] R. T. Sanderson, “Radical Reorganization and Bond Energies in Organic Molecules”, The Journal of Organic Chemistry, Vol. 47, No. 20, 1982, pp. 3835–3839.

[100] I. V. Vereshchinskii and A. K. Pikaev, “Vvedenie v radiatsionnuyu khimiyu” (“Introduction to Radiation Chemistry”), Spitsyn, V.I., Editor, Akademiya Nauk SSSR, Moscow, 1963, pp. 190.
APPENDIX

Table. The experimental concentrations c (mol dm$^{-3}$) of free formaldehyde at different temperatures T (K) and total formaldehyde concentrations c_0 (mol dm$^{-3}$) in various solvents

c_0	T	10^3c_0	T	10^3c_0	T	10^3c_0	T	10^3c_0			
Water											
1.0	358	0.78	4.44	389	5.20	4.0	381	5.00	1.8	371	2.08
1.0	387	2.22	4.44	405	7.50	4.0	397	8.80	1.8	393	6.00
1.0	393	3.23	4.48	418	10.0	4.0	409	12.00	1.8	418	12.20
1.0	407	4.55	1.0	375	0.33	6.2	376	7.80	3.0	343	1.25
2.0	353	1.44	1.0	395	1.00	6.2	393	12.50	3.0	375	5.40
2.0	387	4.70	1.0	423	2.90	1-Propanol	3.0	403	15.80		
2.0	397	6.60	2.5	373	0.60	1.0	371	0.83	3.0	413	19.40
2.0	407	8.55	2.5	385	1.15	1.0	393	2.10	5.6	343	2.80
4.0	343	0.78	2.5	398	1.80	1.0	413	4.30	5.6	358	3.35
4.0	363	2.33	5.4	351	0.78	1.0	435	7.65	5.6	363	5.80
4.0	385	6.45	5.4	383	3.70	1.9	353	0.70	5.6	371	6.50
4.0	403	8.90	5.4	398	6.80	1.9	383	3.06	5.6	383	12.10
Methanol											
4.0	413	11.10	7.0	365	4.70	1.9	405	7.65	2-Methyl-2-propanol	3.0	403
6.0	351	2.22	7.0	383	12.50	1.9	417	11.70	1.0	347	1.20
6.0	375	6.70	7.0	391	16.00	4.0	349	1.67	1.0	367	4.50
6.0	389	10.70									
Ethanol											
6.0	398	14.10	1.0	367	0.33	4.0	393	13.30	1.0	398	19.30
8.4	364	5.50	1.0	387	0.67	6.0	338	1.39	2.0	335	1.10
8.4	376	8.32	1.0	397	1.45	6.0	357	5.00	2.0	357	4.30
8.4	388	10.97	1.0	413	2.70	6.0	377	11.70	2.0	375	13.00
Ethanol											
1.0	409	1.30	2.0	373	1.10	7.8	343	3.06	3.0	338	1.70
1.0	418	1.80	2.0	394	2.90	7.8	358	6.25	3.0	353	4.70
1.0	435	2.45	2.0	409	5.80	7.8	377	16.90	3.0	365	9.60
3.33	358	1.20	2.0	419	8.20	2-Propanol	3.0	373	15.50		
3.33	387	3.30	3.0	361	1.20	1.0	365	0.98	6.0	345	6.90
3.33	401	5.10	3.0	387	3.70	1.0	393	3.05	6.0	351	9.00
3.33	415	7.20	3.0	409	7.80	1.0	411	6.00	6.0	361	13.40
4.44	338	1.00	4.0	355	2.30	1.0	433	10.40	6.0	365	18.30

Citation: Michael M. Silaev, (2019). New Kinetic Models of Free-Radical Nonbranched-Chain Addition to C=C, C=O, and O=O Molecular Bonds. International Journal of Advanced Research in Chemical Science (IJARCS), 6(4), pp.13-41. DOI:http://dx.doi.org/10.20431/2349-0403.0604002.

Copyright: © 2019 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.