Impact of the COVID-19 pandemic on timeliness and equity of measles, mumps and rubella vaccinations in North East London: a longitudinal study using electronic health records

Nicola Firman, Milena Marszalek, Ana Gutierrez, Kate Homer, Crystal Williams, Gill Harper, Isabel Dostal, Zaheer Ahmed, John Robson, Carol Dezateux

ABSTRACT

Objectives To quantify the effect of the COVID-19 pandemic on the timeliness of, and geographical and sociodemographic inequalities in, receipt of first measles, mumps and rubella (MMR) vaccination.

Design Longitudinal study using primary care electronic health records.

Setting 285 general practices in North East London.

Participants Children born between 23 August 2017 and 22 September 2018 (pre-pandemic cohort) or between 23 March 2019 and 1 May 2020 (pandemic cohort).

Main outcome measure Receipt of timely MMR vaccination between 12 and 18 months of age.

Methods We used logistic regression to estimate the ORs (95% CIs) of receipt of a timely vaccination adjusting for sex, deprivation, ethnic background and Clinical Commissioning Group. We plotted choropleth maps of the proportion receiving timely vaccinations.

Results Timely MMR receipt fell by 4.0% (95% CI: 3.4% to 4.6%) from 79.2% (78.8% to 79.6%) to 75.2% (74.7% to 75.7%) in the pre-pandemic (n=33 226; 51.3% boys) and pandemic (n=32 446; 51.4%) cohorts, respectively. After adjustment, timely vaccination was less likely in the pandemic cohort (0.79; 0.76 to 0.82), children from black (0.70; 0.65 to 0.76), mixed/other (0.77; 0.72 to 0.82) or with missing (0.77; 0.74 to 0.81) ethnic background, and more likely in girls (1.07; 1.03 to 1.11) and those from South Asian backgrounds (1.39; 1.30 to 1.48). Children living in the least deprived areas were more likely to receive a timely MMR (2.09; 1.78 to 2.46) but there was no interaction between cohorts and deprivation (Wald statistic: 3.44; p=0.49). The proportion of neighbourhoods where less than 60% of children received timely vaccination increased from 7.5% to 12.7% during the pandemic.

Conclusions The COVID-19 pandemic was associated with a significant fall in timely MMR receipt and increased geographical clustering of measles susceptibility in an area of historically low and inequitable MMR coverage. Immediate action is needed to avert measles outbreaks and support primary care to deliver timely and equitable vaccinations.

STRENGTHS AND LIMITATIONS OF THIS STUDY

⇒ We used routine primary care electronic health records available in near real time for an entire population of children registered with all National Health Service general practices in one region of London.

⇒ Coding of routine childhood vaccinations by primary care teams in North East London is enabled by data entry templates with standardised coding enabling high-quality recording of childhood vaccinations at the point of care.

⇒ We used robust statistical methods to investigate inequalities in measles, mumps and rubella timeliness and the impact of the COVID-19 pandemic.

⇒ Ethnic background was not recorded in the primary care electronic health records of more than one-third of children in our study sample.

INTRODUCTION

The COVID-19 pandemic disrupted routine healthcare and services across the UK, through rising COVID-19 infections as well as the introduction of social distancing measures and lockdowns. The UK Joint Committee on Vaccination and Immunisation emphasised the importance of continued receipt of routine vaccinations throughout periods of lockdown. In the 12 months to March 2021, an average of 90.3% of children scheduled to receive a first measles, mumps and rubella (MMR) vaccination had been vaccinated by 24 months of age in England. This was approximately 0.3% lower than for the same period to March 2020, with average levels in both years well below the WHO coverage target of 95%.

These national averages conceal significant geographical inequity. The most recent annual local authority coverage...
During pandemics, identifying four studies which the consequential impacts on vaccination inequalities in vaccination coverage during the pandemic by living in rural compared with urban areas. Studies found reduced vaccination coverage among children with higher educational levels, while a Colombian study reported that inequalities in routine vaccination coverage worsened during the pandemic compared with pre-pandemic months. A study in Pakistan identified greater reductions in routine vaccination coverage among children whose parents had lower education than children whose parents had received higher educational levels, while a Colombian study found reduced vaccination coverage among children living in rural compared with urban areas. Studies taking place in the USA identified widening inequalities in vaccination coverage during the pandemic by race and Medicaid enrolment.

The findings from this systematic review highlight the importance of understanding the impact of the COVID-19 pandemic on MMR in the UK. Further reductions in MMR uptake will increase the risk of future measles outbreaks, particularly in London where a significant proportion of children start school without the full protection offered by MMR vaccination.

Methods currently used to assess vaccine coverage lack information on timeliness, as well as social, ethnic and geographical inequalities. Because of their retrospective nature, these methods are not actionable. This is important as it has been acknowledged that regional averages conceal geographical clusters of susceptibility in smaller areas which fuel outbreaks. We examined the impact of the COVID-19 pandemic on timeliness of the first MMR vaccination in North East London (NEL). Specifically, we aimed to quantify the impact of COVID-19 on timeliness of the first MMR vaccination and investigate whether inequalities in receipt of timely MMR vaccination and its geographical clustering were amplified during the pandemic. We also aimed to report the number of measles and mumps cases recorded in primary care in NEL occurring during the pandemic period and equivalent pre-pandemic period.

METHODS
Study design and setting
We carried out a longitudinal study using primary care electronic health records (EHRs) from 285 general practices (GPs) in seven geographically contiguous NEL Clinical Commissioning Groups (CCGs): Barking & Dagenham, City & Hackney, Havering, Newham, Redbridge, Tower Hamlets and Waltham Forest. The study protocol can be found in online supplemental file 1 and STrengthening the Reporting of OBservational studies in Epidemiology checklist in online supplemental file 2.

Study population
We defined two cohorts of children eligible to receive their first MMR vaccination between 12 and 18 months of age in the 19 months before and after 23 March 2020—the date at which the first national lockdown commenced in the UK. The pre-pandemic cohort comprised those born between 23 August 2017 and 22 September 2018, and the pandemic cohort those born between 23 March 2019 and 1 May 2020.

Data sources
Pseudonymised data were provided from the NEL Discovery Data Service, which receives primary care EHR data on a daily basis from all GPs in NEL. Demographic and clinical data were extracted for 1192690 children born between September 2001 and October 2021, ever registered with a NEL GP and including children who may have died or left the area. Data were extracted on 23 November 2021 and included all clinical events up to 1 November 2021. All data were extracted and managed according to UK National Health Service (NHS) information governance requirements.

Data processing
We identified 519465 children with a NEL GP registration at the time of their first birthday (online supplemental figure S1) and retained only those eligible for the pandemic and pre-pandemic cohorts (figure 1).

We extracted sociodemographic and geographical data for each child, together with—for each child—all clinical events relating to MMR procedures. Documentation of the processing of MMR events can be found in online supplemental figure S2, tables S1 and S2. Using access to calendar week, month and year of birth we derived a proxy date of birth combining the date of the first day of the week of the calendar week of birth with month and year of birth.

Outcome of interest
We defined timely MMR vaccination as receipt of the first MMR vaccination between 12 and 18 months of age, which is consistent with NHS England’s definition of a timely MMR vaccination for the Quality and Outcomes Framework (QOF). A vaccination considered not timely may have been given too early (before 12 months of age), late (after 18 months of age) or not recorded (never or not yet received).

Cases of measles and mumps were identified in primary care EHRs as events with relevant Systematized
Nomenclature of Medicine (SNOMED) Clinical Terms (see online supplemental table S3). Only the first instance of each diagnosis code was retained.

Covariates of interest
We merged 2019 Index of Multiple Deprivation (IMD) rank\(^\text{17}\) into the datafile using the 2011 Lower Super Output Area (LSOA)—an area with an average population of 1500 people or 650 households—as the linkage field, and categorised IMD rank into the national quintiles from most to least deprived. Ethnic background was categorised using the NHS classification from information recorded in the primary care record. We grouped ethnic background into four mutually exclusive groups: white (‘white British’, ‘white Irish’ or ‘any other white background’); black (‘black African’, ‘black Caribbean’ or ‘any other black background’); South Asian (‘Indian’, ‘Pakistani’, ‘Bangladeshi’ or ‘Sri Lankan’); and mixed/other (‘any other ethnic background’, ‘mixed ethnicity’, ‘Chinese’ or ‘Asian other’). A missing category was created where ethnicity was not coded in the primary care record.

Statistical analyses
We explored variation in the proportion of children receiving a timely MMR vaccination by cohort, sex, CCG, ethnic background and IMD quintile, and described the differences in the proportion of children receiving timely MMR vaccination in each cohort by these covariates.

For children with a GP-recorded address with an associated LSOA in NEL, we plotted choropleth maps of the proportion of children receiving timely MMR vaccination in each cohort and the change in proportion between the two cohorts by LSOA, to visualise geographical clustering of MMR vaccination timeliness. LSOAs with fewer than 10 eligible children in either the pre-pandemic or pandemic cohorts were suppressed.

We conducted binary logistic regression to estimate the adjusted odds (OR and 95% CI) of timely MMR vaccination after adjustment for covariates. We tested an interaction between cohort and IMD quintile to assess whether COVID-19 had widened inequalities in timely vaccination. All analyses were conducted using Stata (V.15.0).

RESULTS
The pre-pandemic and pandemic cohorts comprised 33,226 (51.3% boys) and 32,446 (51.4% boys) children, respectively (figure 1). The cohorts were similar with respect to demographic characteristics: the majority lived in the most deprived areas and were from diverse ethnic backgrounds (table 1 and online supplemental table S4). Timely MMR receipt was 4.0% (95% CI: 3.4% to 4.6%) lower in the pandemic compared with the pre-pandemic cohort.

Children from white, mixed/other and black ethnic backgrounds had the lowest—and children from South Asian ethnic backgrounds the highest—percentage of timely MMR receipt (table 2). There was a strong positive gradient in vaccination timeliness by IMD quintile: relative to those living in the least deprived quintile, the proportion of children receiving a timely MMR vaccination was 10.8% (8.6% to 13.0%) and 14.3% lower (11.8% to 16.8%) in the pre-pandemic and pandemic cohorts, respectively.

The proportion of LSOAs where fewer than 60% of children received a timely MMR vaccination increased from 7.5% (90) to 12.7% (153) in the pandemic cohort (figure 2A, B). These were clustered in parts of City & Hackney, Newham, Redbridge, and Barking & Dagenham. Almost half of LSOAs where fewer than 60% of children received timely MMR vaccinations were assigned to the most deprived IMD quintile compared with one-third in the pre-pandemic cohort (online supplemental table S5). The proportion of children receiving a timely MMR vaccination fell during the pandemic period in 634 (52.7%) out of 1203 LSOAs (figure 3), and these were predominantly located in Tower Hamlets and City & Hackney. The proportion increased in 367 LSOAs (30.5%) and remained the same in 13 (1.1%).

Figure 1 Study sample. MMR, measles, mumps and rubella; NEL, North East London.
After adjustment, timely MMR receipt was less likely in the pandemic cohort (0.79; 0.76 to 0.82), children from black (0.70; 0.65 to 0.76), mixed/other (0.77; 0.72 to 0.82) or with missing (0.77; 0.74 to 0.81) ethnic backgrounds, and more likely in girls (1.07; 1.03 to 1.11) and those from South Asian backgrounds (1.39; 1.30 to 1.48). Children living in the least deprived areas were more likely to receive a timely MMR (2.09; 1.78 to 2.46; Wald test statistic: 201.66; p<0.0001; figure 4 and online supplemental table S6), but there was no interaction between cohorts and deprivation (Wald statistic: 3.44; p=0.49). Relative to children registered with a GP in Newham, timely MMR receipt was less likely among children in Barking & Dagenham (0.88; 0.82 to 0.94), City & Hackney (0.67; 0.63 to 0.71) or Redbridge (0.69; 0.64 to 0.73) and more likely among those registered to a GP in Havering (1.53; 1.40 to 1.66), Tower Hamlets (1.52; 1.42 to 1.64) and Waltham Forest (1.21; 1.14 to 1.30).

In NEL, there were 20 measles and 34 mumps cases recorded in primary care during the pandemic period.
compared with 325 and 140, respectively, in the equivalent pre-pandemic period (online supplemental table S7).

DISCUSSION

Summary of key findings

In the period preceding the COVID-19 pandemic in NEL, only 79% of children received their first MMR vaccination on time; this proportion fell by an average of 4% during the pandemic. The gap between the most and least deprived areas increased by 3.5% during the pandemic period. While this relative inequality did not appear to worsen during the pandemic, these average figures conceal marked inequity at a lower geographical level: the percentage of LSOAs, where fewer than 60% of children received their MMR on time increased from 7.5% to 12.7% in the pandemic, particularly in the most deprived LSOAs. Hence, delayed receipt of MMR is geographically clustered in more deprived neighbourhoods, and this has worsened during the pandemic. These findings are in an area of London where no CCG has met the WHO MMR target of 95% coverage.3 In the absence of national data, our analyses show for the first time how far this region of London is from achieving the new QOF target for MMR timeliness of 90%–95%.16

Strengths and limitations

We used routine primary care EHRs available in near real time for an entire population of children registered with all NHS GPs in one region of London. We have been able to demonstrate—in a geographically contiguous area—neighbourhoods with very high proportions of children who are not immunised promptly. These results further

Table 2	Proportion of children with timely MMR vaccination* in each cohort, and the percentage point difference between pre-pandemic and pandemic cohorts, by sociodemographic characteristics		
	Pre-pandemic cohort	Pandemic cohort	Percentage point difference†
	(n=26315)	(n=24402)	
Sex			
Male	13362 78.3 77.7 to 79.0	12480 74.9 74.2 to 75.5	−3.4 −4.3 to −2.5
Female	12953 80.1 79.5 to 80.7	11922 75.5 74.9 to 76.2	−4.6 −5.5 to −3.7
CCG			
Barking & Dagenham	2999 76.6 75.2 to 77.9	2725 71.3 69.9 to 72.8	−5.3 −7.3 to −3.3
City & Hackney	3403 71.3 70.0 to 72.6	2897 62.6 61.2 to 63.9	−8.7 −10.6 to −6.8
Havering	3205 87.0 85.9 to 88.0	3095 84.6 83.4 to 85.8	−2.4 −4.0 to −0.8
Newham	5077 78.6 77.6 to 79.6	4717 76.0 74.9 to 77.0	−2.6 −4.1 to −1.1
Redbridge	3713 74.7 73.5 to 75.9	3483 72.7 71.4 to 73.9	−2.0 −3.7 to −0.3
Tower Hamlets	3977 86.4 85.3 to 87.3	3737 81.3 80.1 to 82.4	−5.1 −6.6 to −3.6
Waltham Forest	3941 81.7 80.6 to 82.8	3748 79.1 77.9 to 80.2	−2.6 −4.2 to −1.0
Ethnic background			
White	7865 82.1 81.3 to 82.9	6874 76.9 76.0 to 77.8	−5.2 −6.4 to −4.0
Mixed and other	2872 75.3 73.9 to 76.7	2641 70.1 68.6 to 71.6	−5.2 −7.2 to −3.2
South Asian	4966 84.4 83.5 to 85.3	4824 83.1 82.2 to 84.1	−1.3 −2.6 to 0.0
Black	1517 73.9 71.9 to 75.7	1374 69.0 66.9 to 71.0	−4.9 −7.7 to −2.1
Missing	9095 76.4 75.7 to 77.2	8689 72.7 71.9 to 73.5	−3.7 −4.8 to −2.6
IMD quintile			
Most deprived	9710 78.1 77.3 to 78.8	8779 73.2 72.4 to 74.0	−4.9 −6.0 to −3.8
2	10523 78.2 77.5 to 78.8	9865 74.1 73.4 to 74.9	−4.1 −5.1 to −3.1
3	3675 81.1 79.9 to 82.2	3437 78.1 76.9 to 79.3	−3.0 −4.7 to −1.3
4	1628 86.5 84.8 to 87.9	1649 84.3 82.6 to 85.9	−2.2 −4.4 to 0.0
Least deprived	753 88.9 86.6 to 90.8	660 87.5 85.0 to 89.7	−1.4 −4.6 to 1.8
Missing	26 41.3 29.9 to 53.7	12 32.3 20.6 to 51.2	−9.0 −28.7 to 10.7

*Receipt of MMR vaccination between 12 and 18 months of age.
†Proportion receiving timely MMR vaccination in pandemic cohort minus the proportion receiving timely MMR vaccination in the pre-pandemic cohort.

CCG, Clinical Commissioning Group; IMD, Index of Multiple Deprivation; MMR, measles, mumps and rubella.
highlight the inequalities in vaccination timeliness and infection risks experienced by poorer children, their families and communities.

Coding of routine childhood vaccinations by primary care teams in NEL is enabled by data entry templates with standardised coding enabling high-quality recording of childhood vaccinations at the point of care. We used robust statistical methods to investigate inequalities in MMR timeliness and the impact of the COVID-19 pandemic.

Limitations include missing ethnic codes in 36% of the cohort. Our analyses suggest that those with missing ethnicity were less likely to receive a timely MMR vaccine during the pandemic and highlight the importance of improving routine recording of ethnicity in primary care. While our study has focused on timeliness of the first MMR vaccination, it is important to recognise that two doses of MMR are essential for full protection. Additional research investigating timeliness of the second MMR vaccination would further our understanding and improve identification of children with increased measles susceptibility.

Comparison with existing literature
Our findings align with trends indicating a global decrease in uptake of MMR vaccination, both in developing and developed countries. Some studies reported a decline in uptake of more than 50% during the height of the first wave of the pandemic. Globally, measles-containing vaccine coverage estimates were 7.9% lower than expected had there been no COVID-19 pandemic, affecting an estimated 8.9 million children. In England, initial reductions in the number of children receiving their first MMR were followed by a short period of recovery, compared with the same period in 2019, despite continued physical distancing measures remaining in place. However, this increase was short-lived, and the weekly count of children receiving their MMR vaccination in 2020 remained consistently lower or the same as in 2019 for the rest of 2020. Our findings may be explained in part by evidence from qualitative research studies demonstrating that a transition to remote consultations during the pandemic caused some confusion for parents around attending services for routine vaccination. Internationally, fear of COVID-19 exposure in healthcare settings was also found to play a large role in decreased vaccination uptake, despite evidence that the risk to benefit ratio was in favour of continuing vaccination delivery during the pandemic.

The link between childhood vaccination inequalities and ethnicity has been explored in other studies, demonstrating evidence of reduced timeliness in certain ethnic groups. However, there is heterogeneity within these results according to geographical area of interest.
found that children from black and mixed/other ethnic backgrounds were less likely to receive timely vaccination, broadly consistent with findings from studies of COVID-19 vaccination uptake which have shown lowest uptake among people from black ethnic backgrounds. Additional qualitative evidence suggests women from minority ethnic backgrounds were more likely to find it difficult to access and felt less safe accessing vaccinations for their babies during the COVID-19 pandemic.

Relationships between socioeconomic deprivation and vaccination timeliness appear to be more consistent. A study in Scotland examining vaccination inequity and timeliness demonstrates that the most deprived decile experienced a nearly 50% increased risk of delayed vaccination relative to the least deprived decile for both doses of MMR in the years leading up to the pandemic. Despite this, and in contrast to England, vaccination uptake rose significantly across the first lockdown period in Scotland, with 7000 more children receiving timely routine vaccinations compared with the previous year. The authors of this study speculate that greater flexibility in working patterns offered to many parents during the lockdown period may have increased the accessibility of vaccination appointments.

Our findings are consistent with existing evidence based on Cover of Vaccination Evaluated Rapidly Programme data which confirm that London has a longstanding and disproportionately lower MMR uptake relative to the rest of the UK. There is recognised variation between different CCGs in NEL, with lowest uptake in City & Hackney. While particular cultural beliefs held by the Charedi Jewish population in City & Hackney are known to influence uptake of the MMR vaccination, recent evidence suggests that difficulties in accessing vaccination services are also an important factor in this community. The factors responsible for differences between the other CCGs merit further investigation.

Mapping measles vaccinations and outbreaks geospatially enables more granular identification of neighbourhoods requiring focused interventions. Our choropleth maps demonstrate clustering of delayed MMR vaccination in more deprived neighbourhoods—these findings align with previous studies mapping measles outbreak susceptibility and underscore the importance of actionable interventions.

Figure 4 Adjusted log odds of timely MMR vaccination. Model mutually adjusting for cohort, sex, Clinical Commissioning Group, ethnic background and Index of Multiple Deprivation quintile. MMR, measles, mumps and rubella; OR, odds ratio; CI, confidence interval.
real-time information on vaccine timeliness to avert further outbreaks of measles. Our geographical analyses identified an increase in the proportion of children receiving a timely MMR vaccination during the pandemic period in almost one-third of NEL LSOAs. This finding may reflect the innovative measures implemented in some London GPs throughout the pandemic, including vaccinating outside of practice buildings and drive-through services, which may have made routine vaccination more accessible to families.41

Our study did not identify an increase in inequity during the pandemic by an area-level measure of deprivation. This is in contrast to findings from Michigan, USA, where the difference in proportion of Medicaid-enrolled children with up-to-date vaccination coverage compared with children not enrolled in Medicaid with up-to-date vaccination coverage increased during the pandemic.12 This difference is likely to reflect differences in UK and US healthcare systems, as well as the use of an area-level indicator of deprivation compared with an individual-level indicator in an area of London with high levels of area-level deprivation.

Implications for research, policy and practice

Gaps in MMR vaccination coverage increase measles susceptibility, and in 2019, there were 800,000 confirmed cases of measles globally.42 Measles outbreaks have occurred in 2021 in at least half of the 26 countries that suspended their measles vaccination programmes.29 42 43 There is evidence that the introduction of social distancing measures, school closures and travel restrictions reduced exposure to vaccine-preventable childhood infections.44 In an analysis of English hospital admissions, there was a 90% and a 53% reduction in hospital admissions for measles and mumps, respectively, among children aged 0–14 years in the pandemic period compared with the preceding 3-year average, although this study was unable to examine infections managed in primary care.44 In NEL, we identified 20 measles and 34 mumps cases in primary care during the pandemic period, compared with 325 and 140, respectively, in the equivalent pre-pandemic period.

With a reduction in infection and exposure to infection, measles vaccination may receive less priority in a healthcare system already facing multiple challenges.45 Awareness and retention of existing WHO targets are critical to prevent measles outbreaks, especially given that measles is the most infectious virus, with a reproduction number of 12–18.46 The need for targeted public health interventions around routine childhood vaccinations in the context of the pandemic has been recognised internationally,47 48 as well as in England where a recent campaign by NHS England is encouraging parents of 740,000 children who are not fully vaccinated against MMR to make appointments with their GP.49 There is strong evidence to support the effectiveness of primary care-led quality improvement programmes to improve vaccine uptake.50 National measures to tackle these inequalities include NHS England’s QOFs to incentivise timely routine childhood vaccinations in primary care.50 In London, a primary care-led quality improvement programme has been launched to tackle inequalities in timeliness of routine preschool childhood vaccinations.51

CONCLUSION

Routine vaccination schedules have been disrupted during the COVID-19 pandemic. Our study adds important new evidence of the impact on timeliness of MMR vaccinations, and demonstrates unwarranted variation by neighbourhood, ethnicity and deprivation. These data provide further evidence to prioritise quality improvement and catch-up campaigns to achieve herd immunity and prevent measles outbreaks. They provide actionable information in populations and geographies experiencing significant health inequalities.
Data availability statement Data may be obtained from a third party and are not publicly available. Access to general practice data is enabled by data sharing agreements between the Discovery Data Service and general practice data controllers. The Discovery Programme Board has approved data access by the REAL Child Health Programme team for research on the condition that it is not onwardly shared.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs Nicòla Firman http://orcid.org/0000-0001-5213-5044 Milena Marszalek http://orcid.org/0000-0001-5825-0609

REFERENCES 1 Saxena S, Skirrow H, Bedford H. Routine vaccination during covid-19 pandemic response. BMJ 2020;369:m2392.

2 Public Health England. Impact of physical distancing measures due to COVID-19 pandemic in England on childhood vaccination counts up to week 41, and vaccine coverage up to August 2020. contract No.: 20, 2020.

3 NHS Digital. Childhood Vaccination Coverage Statistics - 2020-21. Available: https://digital.nhs.uk/data-and-information/publications/statistical/nhs-immunisation-statistics-england/2020-21.

4 Bell S, Clarke R, Paterson P, et al. Parents' and guardians' views and experiences of accessing routine childhood vaccinations during the coronavirus (COVID-19) pandemic: A mixed methods study in England. PLoS One 2021;15:e0244049.

5 Keenan A, Ghebrehewet S, Vivanco RS, et al. Measles outbreaks in the UK, is it when and where, rather than if? A database cohort study of childhood population susceptibility in Liverpool, UK. BMJ Open 2017;7:e014106.

6 National Audit Office. Investigation into pre-school vaccinations, 2019. Available: https://www.nao.org.uk/report/investigation-into-pre-school-vaccinations/.

7 McDonald H, Tressis E, White JM, et al. Early impact of the coronavirus disease (COVID-19) pandemic and physical distancing measures on routine childhood vaccinations in England, January to April 2020. Euro Surveill 2020;25.

8 Spencer N, Markham WJ, Johnson S, et al. The impact of COVID-19 pandemic on inequity in routine childhood vaccination coverage: a systematic review. Vaccines 2020;10. doi:10.3390/vaccines10071013. [Epub ahead of print: 24 06 2022].

9 Chandi R, Siddiqui DA, Setayesh H, et al. Impact of COVID-19 lockdown on routine immunisation in Karachi, Pakistan. Lancet Glob Health 2020;8:e1118–20.

10 Moreno-Montoya J, Ballesteros SM, Rojas Sotelo JC, et al. Impact of the COVID-19 pandemic on routine childhood immunisation in Colombia. Arch Dis Child 2022;107:4.

11 Ackerson BK, Sy LS, Glenn SC, et al. Pediatric vaccination during the COVID-19 pandemic. Pediatrics 2021;148. doi:10.1542/peds.2020-047092. [Epub ahead of print: 15 04 2021].

12 Bramer CA, Kimmens LM, Swanson R, et al. Decline in child vaccination coverage during the COVID-19 pandemic - Michigan Care Improvement Registry, May 2016–May 2020. Am J Transplant 2020;20:1390–3.

13 Tiley KS, White JM, Andrews N, et al. Inequalities in childhood vaccination timing and completion in London. Vaccine 2018;36:6726–35.

14 O’Leary ST, Trefflich L, Roth H, et al. Number of childhood and adolescent vaccinations administered before and after the COVID-19 outbreak in Colorado. JAMA Pediatr 2021;175:305–7.

15 NHS England. About information governance, 2022. Available: https://www.england.nhs.uk/ig/about/.

16 British Medical Association,, National Health Service. Quality and outcomes framework guidance for 2021/22, 2021. Available: https://www.england.nhs.uk/wp-content/uploads/2021/03/80446-update-on-quality-outcomes-framework-changes-for-21-22-.pdf

17 Ministry of Housing Communities & Local Government. The English Indices of Deprivation 2019 - Frequently Asked Questions (FAQs), 2016. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/853811/loD2019_FAQ_v4.pdf

18 NIHR Centre for Engagement and Dissemination. Uk standards for public involvement, 2022. Available: https://sites.google.com/nhri.ac.uk/pi-standards/standards?authuser=0.

19 Public Health England. Measles: the green book, chapter 21, In: The green book, 2019.

20 Jain R, Chopra A, Kalkan C, et al. COVID-19 related immunization disruptions in Rajasthan, India: a retrospective observational study. Vaccine 2021;39:4343–40.

21 Azawa Y, Katsuta T, Sakijama H, et al. Changes in childhood vaccination during the coronavirus disease 2019 pandemic in Japan. Vaccine 2021;39:4006–12.

22 Silveira MF, Tonial CT, Garetti K Maranhão A, et al. Missed childhood immunizations during the COVID-19 pandemic in Brazil: analyses of routine statistics and of a national household survey. Vaccine 2021;39:3404–9.

23 Shen AK, Bramer CA, Kimmens LM, et al. Vaccine coverage across the life course in Michigan during the COVID-19 pandemic: January–September 2020. Am J Pub Health 2021;111:2027–35.

24 Bhadoria SS, Shukla D, Joshi A. COVID-19 pandemic: a speed breaker for routine immunization. J Clin Diagn Res 2021;15:LC32–5.

25 Causey K, Fullman N, Sorensen RJ, et al. Estimating global and regional disruptions to routine childhood vaccine coverage during the COVID-19 pandemic in 2020: a modelling study. Lancet 2021;398:522–34.

26 Public Health England. Impact of COVID-19 on childhood vaccination counts to week 4 in 2021, and vaccine coverage to December 2020 in England: interim analyses. contract No.: 3; 2021.

27 Piché-Renaud P-P, Ji C, Farrar DS, et al. Impact of the COVID-19 pandemic on the provision of routine childhood immunizations in Ontario, Canada. Vaccine 2021;39:4373–82.

28 Huss G, Magendie C, Pettioello-Mantovani M, et al. Implications of the COVID-19 pandemic for pediatric primary care practice in Europe. J Pediatr 2022;339:290–1.

29 Shet A, Dhaliwal B, Banerjee P, et al. Childhood immunisations in India during the COVID-19 pandemic. BMJ Paediatr Open 2021;5:e001061.

30 Bieleniuk K, Kirolos A, Willocks LJ, et al. Low uptake of nasal influenza vaccine in Polish and other ethnic minority children in Edinburgh, Scotland. Vaccine 2019;37:893–7.

31 Baker D, Garrow A, Shiels C. Inequalities in immunisation and breast feeding in an ethnically diverse urban area: cross-sectional study in Manchester, UK. J Epidemiol Community Health 2011;65:346–52.

32 Gaughan CH, Razieh C, Khunti K, et al. COVID-19 vaccination uptake amongst ethnic minority communities in England: a linked study exploring the drivers of differential vaccination rates. J Public Health 2022;tdab400.

33 Hoang U, de Luisignan S, Joy M, et al. National rates and disparities in childhood vaccination and vaccine-preventable disease during the COVID-19 pandemic: English sentinel network retrospective database study. Arch Dis Child 2022;107:733–9.

34 Skirrow H, Barnett S, Bell S, et al. Women’s views and experiences of accessing pertussis vaccination in pregnancy and infant vaccinations during the COVID-19 pandemic: a multi-methods study in the UK. Vaccine 2022;40:4942–54.

35 Haider EA, Willocks LJ, Anderson N. Identifying inequalities in childhood immunisation uptake and timeliness in Southeast Scotland, 2008-2018: a retrospective cohort study. Vaccine 2019;37:5614–24.

36 McQuaid F, Mulholland R, Sangpang Rai Y, et al. COVID-19 vaccination-related disruptions in India: an observational study of routinely collected data. PLoS Med 2022;19:e1003916.

37 Cockman P, Dawson L, Mathur R, et al. Improving MMR vaccination rates: herd immunity is a realistic goal. BMJ 2021;343:d5703.

38 Henderson L, Millet C, Thorogood N. Perceptions of childhood vaccination in a minority community: qualitative study. J R Soc Med 2008;101:244–51.

39 Letley L, Rew V, Ahmed R, et al. Tailoring immunisation programmes; using behavioural insights to identify barriers and enablers to improve uptake amongst ethnic minority communities in England: a linked study exploring the drivers of differential vaccination rates. J Public Health 2022;tdab400.
childhood immunisations in a Jewish community in London, UK. Vaccine 2018;36:4687–92.

40 Durrheim DN, Andrus JK, Tabassum S, et al. A dangerous measles future looms beyond the COVID-19 pandemic. Nat Med 2021;27:360–1.

41 Skirrow H, Flynn C, Heller A, et al. Delivering routine immunisations in London during the COVID-19 pandemic: lessons for future vaccine delivery. A mixed-methods study. BJGP Open 2021;5. doi:10.3399/BJGPO.2021.0021. [Epub ahead of print: 24 08 2021].

42 Feldman AG, O’Leary ST, Danziger-Isakov L. The risk of resurgence in vaccine-preventable infections due to coronavirus disease 2019—Related gaps in immunization. Clin Infect Dis 2021;73:1920–3.

43 Olusanya OA, Bednarczyk RA, Davis RL, et al. Addressing parental vaccine Hesitancy and other barriers to Childhood/Adolescent vaccination uptake during the coronavirus (COVID-19) pandemic. Front Immunol 2021;12:663074.

44 Kadambali S, Goldacre R, Morris E, et al. Indirect effects of the covid-19 pandemic on childhood infection in England: population based observational study. BMJ 2022;376:e067519.

45 Bedford H, Donovan H. We need to increase MMR vaccine uptake urgently. BMJ 2022;376:o818.

46 Guerra FM, Bolotin S, Lim G, et al. The basic reproduction number (R0) of measles: a systematic review. Lancet Infect Dis 2017;17:e420–8.

47 MacDonald NE, Comeau JL, Dubé Ève, et al. COVID-19 and missed routine immunizations: designing for effective catch-up in Canada. Can J Public Health 2020;111:469–72.

48 World Health Organization. Guiding principles for immunization activities during the COVID-19 pandemic: interim guidance, 26 March 2020, 2020. Available: https://apps.who.int/iris/handle/10665/331590

49 NHS England. News: NHS urges parents to book children in for essential MMR vaccination, 2022. Available: https://www.england.nhs.uk/2022/09/nhs-urges-parents-to-book-children-in-for-essential-mmr-vaccination/

50 British Medical Association, NHS England. Update to the GP contract agreement 2020/21 - 2023/24, 2020. Available: https://www.england.nhs.uk/wp-content/uploads/2020/03/update-to-the-gp-contract-agreement-v2-updated.pdf

51 Clinical Effectiveness Group Queen Mary University of London. Preventing future measles outbreaks, 2021. Available: https://www.qmul.ac.uk/blizard/ceg/about-us/case-studies/preventing-future-measles-outbreaks/