Physiological responses of clove seedlings applied with different microbial consortium in the rhizosphere and phyllosphere

N Rezkiana¹, Y Musa², Nasaruddin², I Ridwan² and Kurniawan¹
¹Magister Study Program of Agrotechnology, Faculty of Agriculture, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10 Makassar 90245, Indonesia.
²Department of Agronomy, Faculty of Agriculture, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10 Makassar 90245, Indonesia.

E-mail: rezkiananana89@yahoo.com

Abstract. Rhizosphere and phyllosphere serve as habitat for many kinds of plant-associated microbial. This study aims to determine the effect of application of microbial consortium in the rhizosphere and phyllosphere of clove seedlings on the plant physiological parameters. The study was conducted as a factorial experiment with two factors based on the randomized blocked design. Application of microbial consortium of Azotobacter sp., Lactobacillus sp., Bacillus subtilis, and Trichoderma sp. in the rhizosphere was set as the first factor, consisted of four levels, namely control (0 mL), 4, 6, and 8 mL. The second factor was the application of the microbial consortium of Gliocladium sp. and Beauveria bassiana in the phyllosphere consisted of four levels, namely control (0 mL), 2, 4, and 6 mL. The physiological parameters observed included observations on the components of leaf stomata, light intensity, and leaf chlorophyll. The results show that the best microbial consortium treatment that gave better physiological response of the clove seedlings was 8mL/plant in the plant rhizosphere, and 6mL/plant in the plant phyllosphere. However, there were no significant difference on the effect of the application of these microbial consortiums in the rhizosphere and the phyllosphere applied simultaneously compared to controls, meaning that the treatment application was 8mL / plant or 6mL / plants. Some influence directly and indirectly from the microbial consortium both in the rhizosphere and the phyllosphere was on the physiological parameters of the light and leaf chlorophyll components, but not significant for the stomata component.

1. Introduction
To restore the glory of clove farmers, the Directorate General of Plantation is developing clove cultivation in 2019 with an area of 18,800 ha. In fact, in 2020-2024 the development is targeted to increase by an area of 4,200 ha / year. Meanwhile, the need for clove seedlings in 2020-2024 is estimated to reach 1,994,000 seedlings / year [1].

The problem in providing clove seedlings, namely death due to stress of transplanting from seeding to polybags. According to Arif et al. [2], transplanting causes a risk of damage due to stress of adaptation process to the environment and physiological stress due to damage to vegetative organs, especially roots, which can cause slow growth and many deaths.

Another cause of death of clove plants is sunburn where the light intensity is too high. Sunburn cause an increase in leaf temperature so that the transpiration rate increases, this results in reduced leaf area or...
fallen leaves followed by death and 3.5% of plants die due to drought in July, inhibition of nutrient absorption and further pest attacks namely aphids which suck food from young leaf buds[3]. Efforts to obtain good quality of clove seeds require appropriate environmental engineering for growth. Environmental engineering in increasing the ability of plants to adapt to the environment can be done by utilizing microbes [4]. Microbial applications in the form of a consortium can reduce the risk of failure of microbial utilization in the field [5]. Several microbial consortia such as Azotobacter sp., Lactobacillus sp. can be used in decomposition of organic compounds to fertilize the soil [6]. Bacillus subtilis can form biofilms and siderophores that can overcome metal boundaries in environmental conditions [7], Trichoderma sp. is known to be found as the dominant soil micro flora in a wide variety of habitats. The mechanism of Trichoderma as a soil-borne pathogen control agent can be through mechanisms of parasitism, competition for space and nutrition, forming a suitable environment for plants, forming growth-promoting substances, as well as antibiosis and induction of plant resistance [8].

In the phyllosphere, the response to the application of Gliocladium sp. can increase the content of chlorophyll a and b [9], and Beauveria bassiana increase the fertility of soybean plants in field conditions through spraying on the leaves (Phyllosphere) of plants [11]. Studies on the effect of the microbial consortium in the rhizosphere and phyllosphere on the plant physiological response of clove seedlings have not been widely carried out. As cloves have a fairly high economic value, it is necessary to study the ability of the microbial consortium applied in the rhizosphere and phyllosphere to prevent plant death due to physiological stress during planting in the field.

2. Methodology

2.1. Study site.
This research was carried out from March to June 2020 in Tanete Village, Tompobulu Sub-District, Gowa Regency, South Sulawesi Province, which located at an average altitude of 1000 m above sea level, air temperature ranges from 22-30°C with an average humidity of 60-80%, wind speed 19 km/hour and is at the coordinate point position of 05 ° 20 ′ 36 ″ SL and 119 ° 40 ′ 05 ″ EL.

2.2. Experimental design.
This research was conducted in the form of a factorial experiment, 2 factors arranged based on the randomized block design pattern. The first factor was the application of the microbial consortium in the rhizosphere (G) using Azotobacter sp., Lactobacillus sp., Bacillus subtilis, and Trichoderma sp. microbes, which consisted of 4 test levels, namely G0 = 0 mL/plant, G1 = 4 mL/plant, G2 = 6 mL/plant, G3 = 8 mL/plant. The second factor was the application of the microbial consortium in the phyllosphere (P) using Gliocladium sp. and Beauveria bassiana microbes, which consisted of 4 test levels, namely P0 = 0 ml/plant, P1 = 2 ml/plant, P2 = 4 ml/plant, P3 = 6 ml/plant. From these two factors, 16 treatment combinations were obtained. Each treatment combination consisted of 2 plants which were repeated 3 times resulted in 96 plants used.

2.3. Plant materials and growth media preparation.
Plant materials used in the study was 18 months old Zanzibar cultivar cloves and then transplanted into polybags with a size of 15 cm x 20 cm. Soil used for growing media was cleaned from particles that can disturb plants such as stones and other plant root remains. Subsequently, the soil were mixed with compost with a ratio of 1: 2. Compost application as a basic fertilizer was carried out to provide stimulation to the nutrient requirements of the plants.

2.4. Microbial consortium application to clove plants.
The application of the microbes to the clove plant rhizosphere was carried out by spraying a 10 ml of microbial solution onto soil surface from a distance of 5 cm. Microbial application to the clove phyllosphere was carried out by spraying the leaves and stems of plants with a sprayer. Applications were carried out once a month for three months.
2.5. Plant physiology observation.

2.5.1 Leaf stomata components. Observation of stomata was carried out using an electron microscope, by taking preparations sample using nail polish, garnish and clear tape, the selected clove leaves, namely the third leaf from the shoot was then applied with nail polish evenly in the lower surface of the leaves, after 15 minutes, clear tape was attached to the nail polish and left for 15 minutes. Afterwards, the tape was then placed onto deg glass and given a label. Observation of leaf stomata components consisted of stomata density and stomata opening area. Stomata density was calculated using equation 1:

\[
\text{Density area} = \frac{\text{Number of stomata}}{\text{Field of view}}
\]

(1)

Where field of view is calculated using equation 2:

\[
\text{Field of view} = \frac{\pi r^2}{\text{mm}^2} \text{ or } \frac{\pi r^2}{100 \text{cm}^2}
\]

(2)

The density of stomata was observed under a microscope using 40 times magnification with a field of view diameter of 0.52 mm², while for non-stomata area was observed using a magnification of 100 times with a field of view diameter of 0.52 mm².

The area of the stomata opening was then calculated using the equation 3:

\[
\text{Stomata opening area} = \pi r_1 r_2
\]

(3)

Where:
\[
\pi = 3.14;
\]
\[
r_1= \text{the length of the stomata opening};
\]
\[
r_2= \text{the width of the stomata opening}.
\]

2.5.2 Light energy component. Observation of the components of sunlight energy, namely the amount of radiation scope, the amount of transmitted radiation, the amount of reflected radiation, and the amount of absorbed radiation were measured using the Miniature Leaf Spectrometer C1-710 / 720 (figure 1A). Observation was carried out at the end of experiment after three times treatment application by selecting the third leaf from the shoot (figure1B).

2.5.3 Chlorophyll components observation. Observation of leaf chlorophyll components was observed using a Content Chlorophyll Meter (CCM 200+) (Figure 2A) on the 3rd leaf from the shoot, at four months after three times treatment applications. Observations were made (Figure 2B) on the chlorophyll a, chlorophyll b, and total leaf chlorophyll content, using the equation 4 as follows:
Leaf chlorophyll content = $a + b(CCI)^c$ \hspace{1cm} (4)

Where: \(a, b, c = \) constant (table 1);
CCI = Leaf chlorophyll index.

Table 1. Constant values a, b and c.

Parameter	y = a + b (CCI)c		
	A	B	C
Chl a	-421.35	375.02	0.1863
Chl b	38.23	4.03	0.88
Chl$_{tot}$	-283.20	269.96	0.277
α	-3.50	3.96	0.027

Source: Gonçalves 2008-[12].

![Figure 2](image1.png)

(A) Content Chlorofil Meter (CCM 200+) tool, B. Usage of tools in the field.

2.6. Data analysis

The data from the observations were analysed using the F test at the 5% level, if there was a significant effect between treatments, a further test was carried out using the LSD (Least Significant Difference) at the 5% level.

3. Results and discussion

3.1. Effect of microbial consortium application on density and area of stomata.

There was no significant difference between the treatment of the microbial consortium in the rhizosphere and in the phyllosphere nor the interaction between the two treatments on the leaves stomatal parameters. This shows that the simultaneous application in the rhizosphere and phyllosphere of the clove plants does not have an effect on the density and area of stomata openings. However, the results of the observation that shows the best average stomatal opening area was the application of microbes at 8 mL per plant in the rhizosphere or 6 mL in the phyllosphere (table 2). The overly large opening of the stomata can cause excess transpiration, forcing roots to absorb more water from the ground and when the groundwater concentration is low it can cause drought stress therefore the best stomata opening area is chosen.

Table 2. Average of stomata opening area and stomata density of clove leaves with the treatment of microbial consortium in the rhizosphere and phyllosphere.

Parameter	Microbial Consortium in the Phyllosphere (P)

Microbial Consortium in the Rhizosphere

(G)	0 mL (p0)	2 mL (p1)	4 mL (p2)	6 mL (p3)	
Stomata Opening Area	0 mL (g0)	0.0037	0.006	0.0046	0.0051
	4 mL (g1)	0.0038	0.006	0.0045	0.006
	6 mL (g2)	0.0045	0.0044	0.0075	0.0061
	8 mL (g3)	0.0056	0.0051	0.0063	0.0057
Stomata density	0 mL (g0)	231.9	243.9	268	284.2
	4 mL (g1)	248.1	303.1	279.5	264.3
	6 mL (g2)	255.4	271.7	285.8	286.3
	8 mL (g3)	253.4	276.4	291	281.1

Stomatal opening area is influenced by the potassium (K) element where K plays an important role in regulating osmotic and turgor pressure, which in turn will affect cell growth and development and also opening and closing of the stomata [13]. There is a significant relation between K concentration and Nitrogen availability in plant [14]. In fertile soils the K content in the tissue is almost the same as N [15]. Plants that are supplied with nitrogen (N) have a higher K concentration and plant water content [16] thus directly or indirectly the stomatal opening area is influenced by microbial activity because microbes have the potential to act as nitrogen fixers and biofertilizers. Azotobacter sp. as non-symbiotic nitrogen fixing microorganisms, nitrogen fixation occurs because of the nitrogenase enzyme [17], and Bacillus subtilis is categorized as a Plant Growth Promoting Rhizobacter (PGPR) bacterium, affecting plants directly or indirectly by fixing nitrogen [18]. An increase in P and K uptake can occur with the activity of P-solvent bacteria and K mobilizers such as in Bacillus [19, 20]. Lactobacillus sp. also have a role in dissolving soil phosphate and potassium [21] as well as Trichoderma sp., a fungi generally used for decomposing soil organic matter, which contains several nutrients such as N, P, S and Mg in addition to other nutrients needed by plants for their growth [22].

In the phyllosphere, microbes can protect plants such as Gliocladium sp. that is able to adhere firmly along the leaf bones, epidermal cells and into the stomata [23]. Similarly, Beauveria bassiana where its conidia have germinated and hyphae elongated on the leaves, stalks, stems, and adhere to the cuticle of the plant epidermis but do not enter the stomata [24], hence able to minimize the level of nutrient loss and minerals in the leaves through washing due to prolonged and repeated rainfall. Minerals that are easily washable in young leaves are Na and Mn with a loss of more than 25% over 24 hours while the slightly leached minerals with a loss of between 1-10% are Ca, Mg, K, and Sr [25, 26]. K transport occurs in the xylem and phloem vessels. The direction of transport of xylem sap goes in sync with the flow of transpiration from roots to leaves. While the direction of transport of phloem sap to actively growing tissues such as young leaves (flush) [16].

The next parameter, the observation of the best average stomatal density (table 2) is shown in the application of the microbial consortium of 8mL treatment in the rhizosphere and 6 mL in the phyllosphere. The higher the stomata density, the higher the number of stomata [27]. The stomata density determines the conductance of the stomata in regulating the gas diffusion process [28]. Increasing stomatal density indicates higher number of stomata, thereby resulted in increased rate of translocation of water and mineral salts, regulating leaf temperature by releasing heat and water from leaves and regulating optimum turgor pressure in cells, and increasing the transpiration and CO₂ absorption for photosynthesis. In this condition, the risk of sunburn due to high level of radiation intensity on the clove seedlings might be overcome [29].

3.2. Effect of microbial consortium application on light and chlorophyll parameters.
The results of microbial consortium application in the rhizosphere and in the phyllosphere treatment on the parameters of the amount of light received and reflected were significantly different from the control
at the 0.05% Turkey’s, but there was no interaction. The best treatment based on the 0.05% Turkey’s test for parameters of the amount of light received (Scope), light reflection, and light absorption (table 3) is the treatment of 8mL/plant of microbial consortium in the rhizosphere or 6mL/plant in the phyllosphere. For light transmission, there was no significantly difference in the Turkey’s 0.05%, but gave the best average results for treatment of 8mL/plant in the rhizosphere or 6mL/plant in the phyllosphere.

Table 3. Average amount of light received by leaves (watts / cm² / second), amount of light reflected (%), amount of light transmitted (%), amount of light absorbed (%) by treatment of the microbial consortium in the rhizosphere and phyllosphere.

Parameter	Microbial consortium in the Rhizosphere (G)	Microbial Consortium in the Phyllosphere (P)	Average	Turkey’s [G] 0.05
Total Scope	0 mL (g0)	9148.9	9725.6	10591.6
	4 mL (g1)	9895.6	11429.7	11058.2
	6 mL (G2)	9948.7	11299.5	11521.3
	8 mL (g3)	10259.8	10366.6	11987.4
Average	9813.2 y	10705.4 xy	11505.5 x	11289.6 x

Reflected Light (%)	0 mL (g0)	14.10	14.60	15.0 b
	4 mL (g1)	15.00	15.50	16.4 ab
	6 mL (g2)	14.70	16.20	18.50
	8 mL (g3)	17.60	17.10	18.2 a
Average	15.3 y	15.8 xy	17.9 x	17.0 xy

Light Transmitted (%)	0 mL (g0)	14.55	15.15	15.09
	4 mL (g1)	14.93	15.82	16.60
	6 mL (g2)	16.55	15.66	16.88
	8 mL (G3)	16.28	17.02	17.41
Average	15.35	15.15 xy	16.66	17.05

Light Absorbed (%)	0 mL (g0)	6.16 c	6.42 c	7.09 c
	4 mL (g1)	6.66 c	7.01 c	7.62 c
	6 mL (g2)	7.48 bc	6.99 c	6.92 c
	8 mL (g3)	7.08 c	7.25 bc	9.16 a
Average	6.52			

The results of leaf chlorophyll index, chlorophyll a, chlorophyll b, total chlorophyll shown in table 4. There is no significant interaction between the treatment of the microbial consortium in the rhizosphere and the phyllosphere on the parameters. This result indicates that the application of the microbial consortium in the rhizosphere and the phyllosphere simultaneously does not provide significant values compared to control on the chlorophyll components. So that if it is given separately, it gives significantly different results at the Turkey’s 0.05%, this can be seen in all parameters of the chlorophyll index, chlorophyll a, b and total chlorophyll (table 4). The treatment that was significantly
different to control, namely 8 mL/plant of the microbial consortium in the rhizosphere or 6 mL/plant in the phyllosphere.

Table 4. Average chlorophyll index, chlorophyll a, chlorophyll b, and total chlorophyll of cloves seedling leaves on microbial consortium in the rhizosphere and phyllosphere treatment

Parameter	Microbial consortium in the Rhizosphere (G)	Microbial Consortium in the Phyllosphere (P)	Average	Tukey’s \[G\] 0.05 %		
Index of Chlorophyll						
	0 mL (g0)	116.3	119	120.4	121.9	119.5 b
	4 mL (g1)	119	121.3	121	123.4	121.2 ab
	6 mL (g2)	118.8	124.1	121.8	122.4	121.8 ab
	8 mL (g3)	119.2	122.5	122.3	128.1	123.0 a
	Average	118.3 y	121.7 x	121.4 x	123.9 x	
Tukey’s \[P\] 0.05%					2.8	
Chlorophyll a						
	0 mL (g0)	488.3	492.4	494.2	496.2	492.8 b
	4 mL (g1)	492.2	495.4	495	498.3	495.2 ab
	6 mL (g2)	491.9	499.2	496.2	496.9	496.1 ab
	8 mL (g3)	492.4	497.1	496.8	504.8	497.8 a
	Average	491.2 y	496.0 x	495.5 x	499.0 x	
Tukey’s \[P\] 0.05%					3.8	
Chlorophyll b						
	0 mL (g0)	303.2	308.7	311.3	314.3	309.4 b
	4 mL (g1)	308.5	313	312.5	317.2	312.8 ab
	6 mL (g2)	308.2	318.7	314.1	315.2	314.0 ab
	8 mL (g3)	308.8	315.4	315	326.6	316.5 a
	Average	307.2 y	314.0 x	313.2 x	318.3 x	
Tukey’s \[P\] 0.05%					5.5	
Total Chlorophyll						
	0 mL (g0)	725.1	731.7	734.7	738.1	732.4 b
	4 mL (g1)	731.4	736.7	736.1	741.5	736.4 ab
	6 mL (g2)	731	743.1	738	739.2	737.8 ab
	8 mL (g3)	731.8	739.5	739.1	752.3	740.7 a
	Average	730.2 y	314.0 x	313.2 x	318.3 x	
Tukey’s \[P\] 0.05%					6.3	

Numbers followed by the same letter in columns (a, b) and rows (x, y) are significantly different based on Tukey’s test with a confidence level of 0.05.

Light energy is one of the determining factors in the photosynthesis process, plants receive high enough light energy (scope) but not all of the total light energy can be absorbed in the photosynthesis process, the amount of light energy in the scope is reflected, transmitted, and released in the form of heat energy only about 0.5-3.5% of the light energy is used by plants for the photosynthesis process. This is consistent with the statement of Nasaruddin and Yunus [16] that the amount of solar radiation reaching the earth’s surface is only about 20% of the total radiation emitted, and 98% of the total light received is returned to the atmosphere in the form of energy. Only about 2% of solar energy is used by plants in the process of photosynthesis. The photosynthetic process takes place in the plastids of cell organisms called chloroplasts. Inside the chloroplast contains chlorophyll pigment which is green as the
main light-absorbing pigment and carotenoid as a complementary pigment. High-level plants contain two kinds of chlorophyll, namely chlorophyll a and chlorophyll b, while the most carotenoids found in plants are b carotene and lutein. Chlorophyll is not effective in absorbing green light so that more is reflected and transmitted.

The protein-chlorophyll complex is an important component of photosynthesis. Light radiation received by plants in photosynthesis is absorbed by chlorophyll and additional pigments, which are protein-chlorophyll complexes [30]. The factors that influence the formation of chlorophyll include light, genes, elements of N, Mg, Fe as catalysts in the synthesis of chlorophyll [31,32]. Microbes help plants in providing nitrogen. It is known that Azotobacter sp., Bacillus subtilis, Lactobacillus sp. and Trichoderma sp help in the provision of nitrogen nutrients for plants [33, 34, 35, 36, 37].

The phyllosphere microbes, Gliocladium sp. not only able to adapt to life in plants but also succeeded in mimicking its chemical profile by producing the same few metabolites. Extraction results of Gliocladium sp. in liquid culture showed the presence of fatty acids and other lipids [38]. Lipids play a role in cytokine hormone signalling [39]. One of the functions of cytokines, which is to stimulate chloroplast development and chlorophyll synthesis [40].

While Beauveria bassiana is a cosmopolitan anamorphic fungus that infects hundreds of insect species that immigrate to the plant surface via wind-borne, B. bassiana conidia attached to the plant phyllosphere without any interaction but interact with immigrating insects [41] so that B. bassiana acts as a entomopathogens of shell lice and aphids that interfere with light absorption are ultimately disturb photosynthesis, this is consistent with the results of research by [42]. B. bassiana protects and reduces the attack rate of shell lice (Coccus viridis) and aphids (Aphis gossypii) in young seedlings, because the stems are still soft, making it easier to absorb fluids and obtain plant nutrients as food, therefore the plant becomes stunted and new leaves are slow to grow thus in the end the plants dry up and wither. Also, shell lice (C. viridis), aphids (A. gossypii) excrete honey dew. The presence of honey dew that is released can be seen by the presence of ants or black sooty dew. The appearance of this sooty moisture causes the leaf surface to be covered so that it will hinder the photosynthesis process.

4. Conclusion

Many microbes can manipulate the level of plant hormones and synthesize their chemical profiles, which contribute to plant growth, increased immunity and pathogenesis. From the recent study it can be concluded that the best microbial consortium treatment that gave better physiological response of the clove seedlings was 8mL/plant of Azotobacter sp., Lactobacillus sp., Bacillus subtilis, and Trichoderma sp in the plant rhizosphere, and 6mL/plant of Gliocladium sp. and Beauveria bassiana in the plant phyllosphere. However, there were no significant difference on the effect of the application of these microbial consortiums in the rhizosphere and the phyllosphere simultaneously compared to controls, meaning that the treatment application was 8mL / plant or 6mL / plants. Thus the differences in the application of the microbial consortium in the rhizosphere and the phyllosphere affect the physiology of clove seedlings directly or indirectly thus economically, giving one consortium microbes treatment is more effective.

Reference

[1] Gesha 2019 Dorong Ekspor, Produksi Cengkeh Digenjot Tabloid Sinar Tani tabloidsinartani.com [18 September 2019].

[2] A Arif, A N Sugiharto, E Widaryanto 2014 Pengaruh umur transplanting benih dan pemberian berbagai macam pupuk Nitrogen terhadap pertumbuhan dan hasil tanaman jagung manis (Zea mays L. Saccharata Sturt) J. Produksi Tanaman 2 (1) 1-9.

[3] Sulistianingrum R 2014 Pertumbuhan Tanaman Cengkeh (Syzygium aromaticum (L.) Merr Perr) Belum Menghasilkan pada Berbagai Dosis Pupuk Organik dan Intensitas Naungan (Bogor (ID): Institut Pertanian Bogor).
[4] Suherman C 2010 Pertumbuhan Bibit Cengkeh (Eugenia aromatica O.K) Kultivar Zanzibar yang diberi Fungi Mikoriza Arbuskula dan Pupuk Majemuk NPK (Bandung: Unpad) http://pustaka.unpad.ac.id

[5] Pas A A, D Sopandie, Trikoeseoaneningtyas, D A Santosa 2015 Aplikasi konsorsium mikroba filosfer dan rizosfer untuk meningkatkan pertumbuhan dan hasil tanaman padi J. Pangan 24 (1) 15-24.

[6] Kurniawan A 2018 Produksi MOL (Mikroorganisme Lokal) dengan pemanfaatan bahan-bahan organic yang ada di sekitar J. Hexagro 2 (2) ISSN 2459-2691.

[7] Rizzi A, S Roy, J P Bellenger & P B Beauregard 2019 Iron homeostasis in Bacillus subtilis requires siderophore production and biofilm formation Applied and Environment. microbial. 85 (3).

[8] Rezki D, R Mayerni, S Efendi, A Noventa, Edwin, Yulistriani, W Kumala 2018 Pemberdayaan petani dalam penangkaran bibit karet berTrichoderma sp. sebagai upaya pengendalian penyakit jamur akar putih Jurnal Pengabdan kepada Masyarakat MADANI 4 (2).

[9] Herlina L 2013 Uji potensi Gliocladium sp terhadap pertumbuhan dan produksi tanaman tomat Journal of Biology & Biology Education. Biosaintifika 5(2).

[10] Stinson M, D Ezra, W M Hess, J Sears, G Strobel 2003 An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds Plant Science 165 913-922.

[11] Russo ML, SA Pelizza, MF Vianna, N Allegrucci, MN Cabello, AV Toledo, C Mourellos, AC Scorrsetti 2019 Effect of endophytic entomopathogenic fungi on soybean (Glycine max (L.) Merr. growth and yield J. King Saud University - Science 31 728-736.

[12] Gonçalves JFDC, UMD Santos Junior, & EAD Silva 2008 Evaluation of a portable chlorophyll meter to estimate chlorophyll concentrations in leaves of tropical wood species from Amazonian forest Hoehnea 35(2) 185-188.

[13] Subandi 2013 Peran dan pengelolaan hara kalium untuk produksi pangan di Indonesia. Pengembangan Inovasi Pertanian 6 1-10.

[14] Nasaruddin and Y Musa 2012 Nutrisi Tanaman (Makassar: Masagena Press).

[15] Jasmi 2016 Pengaruh pemupukan kalium terhadap kelakuan stomata dan ketahanan kekerengan Jurnal Agrotek Lestari 2.

[16] Musa Y and Nasaruddin 2012 Fisiologi Tanaman (Makassar: Masagena Press).

[17] Pranoto E and M R Setiawati 2014 Pengujian kapasitas penambatan nitrogen Azotobacter sp indigen dan eksogen secara in-vitro pada tanah Andisol areal pertanaman teh Jurnal Penelitian Teh dan Kina 17 31-38.

[18] Suriani and A Muis 2016 Prospek Bacillus subtilis sebagai agen pengendali hayati patogen tular tanah pada tanaman jagung J. Litbang Pert. 35 37-45.

[19] Mukamto M, S Ulfa, W Mahalina, A Syauqi, L Istiqfaroh, & G Trimulyono 2016 Isolasi dan karakterisasi Bacillus sp. pelarut fosfat dari rhizosfer tanaman Leguminosae Sains & Matematika 3(2).

[20] Wibowo S T, Hamim, AT Wahyudi 2009 Kandungan IAA, serapan hara, pertumbuhan dan produksi jagung dan kacang tanah sebagai respon terhadap aplikasi pupuk hayati Jurnal Ilmu Pertanian Indonesia 14 177-183.

[21] Sofatini S, BN Fitria, & Y Machfud 2016 Pengaruh kombinasi pupuk npk dan pupuk hayati terhadap populasi total mikrob tanah dan hasil jagung manis (Zea mays L. saccharata) pada inceptisols jatinangor Jurnal Soilrenes 14(2) 33- 37.

[22] Marahanah L 2013 Analisa Pemberian Trichoderma spp. Terhadap Pertumbuhan Kedelai. (Jambi: Balai Pemeliharaan Pertanian Jambi).

[23] Stinson M, D Ezra, W M Hess, J Sears, G Strobel 2003 An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds Plant Science 165 913-922.
[24] Nishi O, H Sushida, Y Higashi, Y Iida 2020 Epiphytic and endophytic colonisation of tomato plants by the entomopathogenic fungus *Beauveria bassiana* strain GHA *Mycologia* 12 39-47.

[25] Loekas S 2008 *Pengantar Pengendalian Hayati Penyakit Tanaman* (Jakarta: PT Raja Grafindo Persada).

[26] Stone BWG, E A Weingarten, & C R Jackson 2018 The Role of the phyllosphere microbiome in plant health and function *Annual Plant Reviews* 1 1–24.

[27] Lakitan B 1996 *Fisiotologi Pertumbuhan dan Perkembangan Tanaman* (Jakarta: PT Raja Grafindo Persada).

[28] Kumekawa Y, H Miyata, K Ohga, H Hayakawa, J Yokoyama, K Ito, S Tebayashi, R Arakawa, & T Fukuda 2013 Comparative analyses of stomatal size and density among ecotypes of Aster hispidus (*Asteraceae*) *American Journal of Plant Sciences* 4 524-527.

[29] Arista Y, K A Wijaya, & Slameto 2015 Morfologi dan fisiologi dua varietas tebu (*Saccharum officinarum L.*) sebagai respon pemupukan silica *Berkala Ilmiah Pertanian* 1(1) 1-5 https://repository.unej.ac.id/bitstream/handle/123456789/70223/YULI%20ARISTA.pdf?sequence=1 [18 September 2019].

[30] Ai NS 2012 Evolusi fotosintesis pada tumbuhan *J Ilmiah Sains* 12.

[31] Marsono PS 2002 *Pupuk Akar Jenis dan Aplikasinya* (Jakarta: Penebar Swadaya) 55-70.

[32] Pratama A J, & A N Laily 2015 Analisis Kandungan Klorofil Gandasu *Berkala Ilmiah Pertanian* 7(4) 219.

[33] Sumbul A, R A Ansari, R Rizvi, & I Mahmood 2020 *Azobacter*: A potential bio-fertilizer for soil and plant health management *Saudi journal of biological sciences* 27(12) 3634–3640. https://doi.org/10.1016/j.sjbs.2020.08.004

[34] Pandove G, A Singh, & M Gangwar 2016 Plant growth promotional effect of *Azotobacter sp.* and *Sphingobacterium sp.* on morphological and quality parameters of *Melia azedarach* *Journal of Food, Agriculture & Environment* 14 (2) 95 - 98.

[35] Sharma S B, R Z Sayyed, M H Trivedi, & T A Gobi 2013 Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils *SpringerPlus* 2 1-14.

[36] Sepwanti C, M Rahmawati, E Kesumawati 2016 Pengaruh varietas dan dosis kompos yang diperkaya *Trichoderma harzianum* terhadap pertumbuhan dan hasil cabai merah (*Capsicum annuum L.*) *Jurnal Kawista* 1(1) 68-74.

[37] Somnath De, Atanu Pramanik, Adity Kr. Das, Suchismita Paul, Mohit Kumar Bera.2018. Study the effects of seed germination and plant growth promoting activity of *Lactobacillus sp.* *Int. J. Res. in Pharmacy and Pharmaceutical Sci.* 3 1-3.

[38] Castillo H, R Rojas, M Villalta 2015 *Gliocladium sp.*., agente biocontrolador con aplicaciones prometedoras *Tecnología en Marcha*. Edición Especial Biocontrol. 65-73.

[39] Wang X 2004 Lipid signaling *Current Opinion in Plant Biology* 7 329–336.

[40] Asra R, R A Samarlima, M Silalahi 2020 *Hormon Tumbuhan*. (Jakarta: UKI Press).

[41] Meyling N V and J Eilenberg 2005 Isolation and characterisation of *Beauveria bassiana* isolates from phylloplanes of hedgerow vegetation *Myological research* 110 188 – 195.

[42] Rismayani, Rubiyo, M S D Ibrahim 2013 Dinamika populasi kutu tempurung (*Coccus viridis*) dan kutu daun (*Aphis gossypii*) pada tiga varietas kopi Arabika *Jurnal Littri* 19(4) 159 – 166