Cumulative-Separable Codes

Sergey Bezzateev and Natalia Shekhunova

Abstract—q-ary cumulative-separable $\Gamma(L, G^{(j)})$-codes $L = \{\alpha \in GF(q^m) : G(\alpha) \neq 0\}$ and $G^{(j)}(x) = G(x)^j$, $1 \leq i \leq q$ are considered. The relation between different codes from this class is demonstrated. Improved boundaries of the minimum distance and dimension are obtained.

Index Terms—Goppa codes, cumulative codes, separable codes.

I. INTRODUCTION

At first $\Gamma(L, G)$-codes were introduced by V.D.Goppa [1] in 1970. These codes are a large and powerful class of error correcting codes. F.J. McWilliams and N.J. Sloane [2] defined these codes as the most important class of alternating codes. It is known that there are $\Gamma(L, G)$-codes that reach the Gilbert-Varshamov bound and that many $\Gamma(L, G)$-codes are placed in the Table of the best known codes [3]. It is noted also that Goppa codes are interesting for postquantum cryptography. There are four basic types of $\Gamma(L, G)$-codes: cyclic, separable, cumulative, and irreducible Goppa codes. In this paper we describe new types of these subclasses that have improved estimations on minimum distance and dimension and that there exist codes of these subclasses that have parameters better than those for codes from the Table of the best known codes [3].

This paper is organized as follows. In Section II we review briefly the definitions that we will use in the paper. In Section III we describe subclasses of cumulative-separable $\Gamma(L, G)$-codes with improved estimations on the dimension and minimum distance. In Section IV the relations between codes from different subclasses of cumulative-separable codes are presented. In Sections V and VI theorems on estimations of the dimension and minimum distance of considered subclasses are presented.

II. CLASS OF CUMULATIVE-SEPARABLE $\Gamma(L, G)$-CODES

A. Cumulative Goppa codes

Definition 1: [1] A Goppa code with $G(x) = (x - \alpha)^j$, where $\alpha \in GF(q^m)$ is called a cumulative code.

It is well known [1], [2] that the cumulative code $\Gamma\{GF(q^m) \setminus \{\alpha\}\}, (x - \alpha)^j$ is equivalent to a cumulative $\Gamma\{GF(q^m) \setminus \{0\}\}, x^j$, that, in turn, is equivalent to a primitive BCH-code of length $n = q^m - 1$ with a parity check matrix

$$H = \begin{bmatrix} 1 & \alpha^{-t} & \alpha^{-2t} & \cdots & \alpha^{-(n-1)t} \\ 1 & \alpha^{-(t-1)} & \alpha^{-2(t-1)} & \cdots & \alpha^{-(n-1)(t-1)} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \alpha^{-1} & \alpha^{-2} & \cdots & \cdots & \alpha^{-(n-1)} \end{bmatrix}.$$

Lemma 1: A cumulative q-ary Goppa $\Gamma(L, G)$-code with $L \subset GF(q^m)$ and $G(x) = x^q$ is equivalent to the $\Gamma(L, G^*)$-code with $G^*(x) = x^{q-1}$.

Proof: Let us consider a parity check matrix H^* of the $\Gamma(L, G^*)$-code:

$$H^* = \begin{bmatrix} 1 & \frac{1}{\alpha_1} & \frac{1}{\alpha_2} & \cdots & \frac{1}{\alpha_n} \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \alpha^{n-2} & \alpha^{n-3} & \cdots & \cdots & \alpha^{n-1} \end{bmatrix}.$$

It is clear that the row

$$h_0 = \left[\frac{1}{\alpha_1} \frac{1}{\alpha_2} \cdots \frac{1}{\alpha_n}\right] = \left[\frac{1}{\alpha_1} \frac{1}{\alpha_2} \cdots \frac{1}{\alpha_n}\right]^q$$

was obtained by raising to the q-th power of each component in the last row of the parity check matrix H^* is also a parity check row for the $\Gamma(L, G^*)$-code. Thus, the matrix H^* can be rewritten as follows:

$$H^* = \begin{bmatrix} 1 & \frac{1}{\alpha_1} & \frac{1}{\alpha_2} & \cdots & \frac{1}{\alpha_n} \\ \frac{1}{\alpha_1} & \frac{1}{\alpha_2} & \cdots & \frac{1}{\alpha_n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \frac{1}{\alpha_1} & \frac{1}{\alpha_2} & \cdots & \cdots & \frac{1}{\alpha_n} \end{bmatrix}.$$

It is easy to see that the matrix H^* is also a parity check matrix H for the $\Gamma(L, G^*)$-code.

Corollary 1: The cumulative q-ary $\Gamma(L, G)$-code with $L \subset GF(q^m)$ and $G(x) = (x - \alpha)^j, \alpha \in GF(q^m)$ is equivalent to the $\Gamma(L, G^*)$-code with $G^*(x) = (x - \alpha)^{q-1}$.

B. Cumulative-separable Goppa codes

Definition 2: Goppa code with $G^{(j)}(x) = G(x)^j$ and $L \subseteq \{GF(q^m) \setminus \{\alpha : G(\alpha) = 0\}\}$, where $G(x)$ is a separable polynomial over $GF(q^m)$ will be called a cumulative-separable Goppa code. Parameter j is called a cumulativity order of a cumulative-separable code.

Corollary 2: The cumulative-separable $\Gamma(L, G^{(j)}(x))$-code can be represented as a common subcode of the cumulative $\Gamma(L, G^{(j)})$-codes, where

$$G^{(j)}_i(x) = (x - \beta_i)^j$$

and $G(x) = \prod_{i=1}^\tau (x - \beta_i)$,

$$\tau = \deg G(x), \beta_i \in GF(q^{mf}).$$

Lemma 2: The dimension of the cumulative-separable $\Gamma(L, G^{(j)})$-code with $L \subseteq GF(q^m)$ and $G^{(j)}(x) =
\(\prod_{i=1}^{1} G_{i}^{(j)}(x) \) is determined by the dimension of the codes \(\Gamma_1(L, G^{(j)}_1, G^{(j)}_2) \) as follows:

\[
k \geq n - \sum_{i=1}^{l} r_i,
\]
where \(r_i \) is the redundancy of the \(\Gamma_i(L, G^{(j)}_i) \)-code.

Proof:

It is clear that the parity check matrix of \(\Gamma(L, G^{(j)}) \)-code can be defined as:

\[
H = \begin{bmatrix}
H_1 \\
H_2 \\
\vdots \\
H_l
\end{bmatrix},
\]

where \(H_i, i = 1, \ldots, l \) are parity check matrices of \(\Gamma_i(L, G^{(j)}_i) \) codes.

Lemma 3: The dimension of \(q \)-ary \(\Gamma(L, G^{(q)}) \)-code of length \(n \leq q^n \) with \(L \subseteq GF(q^n) \) and \(G^{(q)}(x) = (G(x))^q \), where \(\deg G(x) = r \) and \(G(x) \) is a separable polynomial, is determined by the inequality:

\[
k \geq n - m(q - 1)r.
\]

Proof:

It follows from Lemma 1 that the \(\Gamma(L, G^{(q)}) \)-code is equivalent to the \(\Gamma(L, G^{(q-1)}) \)-code with \(G^{(q-1)}(x) = (G(x))^{q-1} \) whose dimension is determined by the following inequality according to Lemma 2:

\[
k \geq n - m(q - 1)r.
\]

III. Subclasses of Cumulative-separable Codes with Improved Estimations on the Minimum Distance and Dimension

Let us consider a family of embedded cumulative-separable \(\Gamma(L, G^{(j)}) \) codes with \(L \subseteq GF(q^n) \) and \(G^{(j)}(x) = (G(x))^j \), where \(j = 2, \ldots, q - 1 \) and the degree of the polynomial \(G(x) \) is equal to \(\tau \). The parity check matrix \(H_j \) for \(\Gamma(L, G^{(j)}) \)-code is written as:

\[
H_j = \begin{bmatrix}
\frac{1}{G^{(j)}(1)} & \frac{1}{G^{(j)}(2)} & \cdots & \frac{1}{G^{(j)}(n)} \\
\frac{\alpha_G^{1}}{G^{(j)}(1)} & \frac{\alpha_G^{1}}{G^{(j)}(2)} & \cdots & \frac{\alpha_G^{1}}{G^{(j)}(n)} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\alpha_G^{j-1}}{G^{(j)}(1)} & \frac{\alpha_G^{j-1}}{G^{(j)}(2)} & \cdots & \frac{\alpha_G^{j-1}}{G^{(j)}(n)} \\
\frac{1}{G^{(j+1)}(1)} & \frac{1}{G^{(j+1)}(2)} & \cdots & \frac{1}{G^{(j+1)}(n)}
\end{bmatrix}.
\]

Using the linear combination of corresponding rows of the matrix \(H_j \) we can present it in the following form:

\[
H_j = \begin{bmatrix}
\frac{1}{G^{(j)}(1)} & \frac{1}{G^{(j)}(2)} & \cdots & \frac{1}{G^{(j)}(n)} \\
\frac{\alpha_G^{1}}{G^{(j)}(1)} & \frac{\alpha_G^{1}}{G^{(j)}(2)} & \cdots & \frac{\alpha_G^{1}}{G^{(j)}(n)} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\alpha_G^{j-1}}{G^{(j)}(1)} & \frac{\alpha_G^{j-1}}{G^{(j)}(2)} & \cdots & \frac{\alpha_G^{j-1}}{G^{(j)}(n)} \\
\frac{1}{G^{(j+1)}(1)} & \frac{1}{G^{(j+1)}(2)} & \cdots & \frac{1}{G^{(j+1)}(n)}
\end{bmatrix}.
\]

Thus, the parity check matrix of the \(\Gamma(L, G^{(j+1)}) \)-code is obtained from that of the preceding \(\Gamma(L, G^{(j)}) \)-code by writing up a submatrix \(h_{j+1} \):

\[
h_{j+1} = \begin{bmatrix}
\frac{1}{G^{(j)}(1)} & \frac{1}{G^{(j)}(2)} & \cdots & \frac{1}{G^{(j)}(n)} \\
\frac{\alpha_G^{1}}{G^{(j)}(1)} & \frac{\alpha_G^{1}}{G^{(j)}(2)} & \cdots & \frac{\alpha_G^{1}}{G^{(j)}(n)} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\alpha_G^{j-1}}{G^{(j)}(1)} & \frac{\alpha_G^{j-1}}{G^{(j)}(2)} & \cdots & \frac{\alpha_G^{j-1}}{G^{(j)}(n)} \\
\frac{1}{G^{(j+1)}(1)} & \frac{1}{G^{(j+1)}(2)} & \cdots & \frac{1}{G^{(j+1)}(n)}
\end{bmatrix}.
\]

Respectively, the parity check matrix \(H_j \) can be rewritten as follows:

\[
H_j = \begin{bmatrix}
h_1 \\
h_2 \\
\vdots \\
h_j
\end{bmatrix}.
\]

We can obtain the following corollary from the above relations.

Corollary 3: The cumulative-separable \(\Gamma(L, G^{(j)}) \)-code is a subcode of the cumulative-separable \(\Gamma(L, G^{(j-1)}) \)-code.

Consider now cumulative-separable codes with the improved estimation on dimension that are obtained from the following separable Goppa codes \[4, 5\]:

\[
\Gamma_1 = \Gamma(L_1, G_1), \quad L_1 = \{GF(t^2) \setminus \{\alpha : G_1(\alpha) = 0\}\}
\]
and \(G_1(x) = x^{t-1} + 1 \);

\[
\Gamma_2 = \Gamma(L_2, G_2), \quad L_2 = L_1^*
\]
and \(G_2(x) = x^t + x^2 + 1 \);

\[
\Gamma_3 = \Gamma(L_3, G_3), \quad L_3 = \{GF(t^2) \setminus \{\alpha : G_2(\alpha) = 0\}\}
\]
and \(G_3(x) = x^{t-1} + x^{t-2} + 1 \);

\[
\Gamma_4 = \Gamma(L_4, G_4), \quad L_4 = \{GF(t^2) \setminus \{\alpha : G_3(\alpha) = 0\}\}
\]
and \(G_4(x) = x^{t-1} + x^{t-2} + 1 \);

\[
\Gamma_5 = \Gamma(L_5, G_5), \quad L_5 = L_4^*
\]
and \(G_5(x) = x^{t-1} + x^t + x^2 \);

\[
\Gamma_6 = \Gamma(L_6, G_6), \quad L_6 = \{GF(t^2) \setminus \{\alpha : G_5(\alpha) = 0\}\}
\]
and \(G_6(x) = x^{t-1} + x^2 + 1 \).

As it has been shown earlier in \[4, 5\], these codes are related by following relations that allow us to speak about a chain of equivalent and embedded codes.

- The \(\Gamma_1^* \)-code is obtained from the \(\Gamma_1 \)-code by shortening in information symbol corresponding to the numerator.
\{0\} from the set \(L_1\). The parameters of these codes are related by following relations: \(n_1^* = n_1 - 1 = (t^2 - t + 1) - 1, r_1^* = r_1, k_1^* = k_1 - 1, d_1^* \geq d_1 = t\).

- The code \(\Gamma_2\) is a subcode of \(\Gamma_1^*\), \(L_2 = L_1^* \setminus \{0\}\), i.e., \(n_2 = n_1^* = n_1 - 1\) and \(G_2(x) = xG_1(x)\). The parity check matrices of these codes are related by the following relation:
\[
H_2 = \begin{bmatrix}
\frac{1}{\alpha_2(\alpha_{n_2})} \cdots \frac{1}{\alpha_2(\alpha_{n_1})} \\
\frac{1}{\alpha_2(\alpha_{n_1})} \cdots \frac{1}{\alpha_2(\alpha_{n_2})}
\end{bmatrix}
\]

where \(H_1^*\) is the parity check matrix of the code \(\Gamma_1^*\), with the redundancy \(r_1^* = r_1\). Hence, the redundancy of the code \(\Gamma_2\) is determined by the inequality \(r_2 \leq r_1 + l\). The minimum distance is \(d_2 \geq degG_2(x) + 1 = t + 1\).

- The code \(\Gamma_3\) is equivalent to code \(\Gamma_2\) up to the permutation \(\gamma \to \gamma + \beta\), where the element \(\beta \in GF(t^2)\) is such that \(\beta^t + \beta = 1\) and \(\gamma \in L_2\).

It follows that \(n_3 = n_2, k_3 = k_2, d_3 = d_2\).

- An auxiliary code \(C_3^*\) is obtained by shortening of the code \(\Gamma_3\) in a redundancy submatrix corresponding to the numerator \(\{0\} \in L_3\). Thus, the parity check matrix \(H_3^*\) of the code \(C_3^*\) results from deleting the first unit row and the last column of the parity check matrix \(H_3\) of the code \(\Gamma_3\):
\[
H_3 = \begin{bmatrix}
1 & \cdots & 1 & 1 \\
H_3^* & 0
\end{bmatrix}
\]

Therefore, \(L_3^* = L_3 \setminus \{0\}, n_3^* = n_3 - 1, k_3^* = k_3, d_3^* \leq d_3\).

- The auxiliary code \(C_3^*\) is equivalent to the code \(\Gamma_3^*\) up to permutation \(\beta \to \frac{1}{\beta}\), where element \(\beta \in L_3^*\) and, hence, \(n_3^* = n_3, k_3^* = k_3, d_3^* = d_3\

- The code \(\Gamma_5\) is a subcode of the code \(\Gamma_4^*\) and their parity check matrices are related as follows:
\[
H_5 = \begin{bmatrix}
\frac{1}{\alpha_2(\alpha_{n_2})} \cdots \frac{1}{\alpha_2(\alpha_{n_1})} \\
H_3^* \frac{1}{\alpha_2(\alpha_{n_2})} \cdots \frac{1}{\alpha_2(\alpha_{n_1})}
\end{bmatrix}
\]

The code \(\Gamma_5\) has the following parameters: \(n_5 = n_3^*\), \(k_5 = k_3^*\) and \(d_5 \geq d_5^*\).

- The codes \(\Gamma_5, \Gamma_6\) are equivalent up to the permutation \(\beta \to \gamma \beta - 1\), where \(\gamma \in GF(t^2)\) and \(\gamma^t + 1 = 0\), \(\beta \in L_5\). Thus, \(n_6 = n_5\), \(k_6 = k_5\) and \(d_6 = d_6 = t + 2\).

Let us transfer now the relations between the above subclasses of separable codes to the case of cumulative-separable codes obtained from these codes.

IV. RELATIONS BETWEEN CUMULATIVE-SEPARABLE CODES FROM DIFFERENT SUBCLASSES

A. Relation between the cumulative-separable codes \(\Gamma_{1}^{+}(i)\) and \(\Gamma_{1}^{-}(i)\)

- \(\Gamma_{1}^{+}(i) = \Gamma(L_1, G_{1}^{+}(i))\) with \(L_1 = \{GF(t^2) \setminus \{\alpha : G_1(\alpha) = 0\}\}, n_{1}^{+}(i) = n_1\) and \(G_1^{+}(x) = (x^{t-1} + 1)^i\);
- \(\Gamma_{1}^{-}(i) = \Gamma(L_1, G_{1}^{-}(i))\) with \(L_1 = \{L_1 \setminus \{0\}\}, n_{1}^{-}(i) = n_1^*\) and \(G_{1}^{-}(x) = (x^{t-1} + 1)^i\).

It follows from the above considered definition of these codes that the \(\Gamma_{1}^{+}(i)\)-code is obtained from the \(\Gamma_{1}^{-}(i)\)-code by shortening in an information symbol corresponding to the numerator \(\{0\}\).

Parameters of these codes are related as: \(n_1^* = n_1 - 1 = t^2 - t, r_1^{+}(i) = r_1^{+}(i), k_1^{+}(i) = k_1^{+}(i) - 1, d_1^{+}(i) \geq d_1^{+}(i)\).

B. Relation between the cumulative-separable codes \(\Gamma_{2}^{(i)}\) and \(\Gamma_{1}^{(i)}\)

\[
\Gamma_{2}^{(i)} = \Gamma(L_2, G_{2}^{(i)}(x)) \quad \text{with} \quad L_2 = L_1^*, \quad n_2^{(i)} = n_2, \quad \text{and} \quad G_{2}^{(i)}(x) = (x^t + x)^i.
\]

Two cases should be considered here. They are determined by the cumulativity order \(i\):

\(i < q - 1\) : In this case the \(\Gamma_{2}^{(i)}\)-code is a subcode of the \(\Gamma_{1}^{(i)}\)-code. \(L_2 = L_1^* = L_1 \setminus \{0\}, \text{i.e., } n_2 = n_1^* = n_1 - 1\) and \(G_{2}^{(i)}(x) = x^iG_1(x)\).

Lemma 4: The parity check matrices of the codes \(\Gamma_{2}^{(i)}\) and \(\Gamma_{1}^{(i)}\) are related as follows:
\[
H_{2}^{(i)} = \begin{bmatrix}
\frac{1}{\alpha_2(\alpha_{n_2})} & \cdots & \frac{1}{\alpha_2(\alpha_{n_1})} \\
\frac{1}{\alpha_2(\alpha_{n_1})} & \cdots & \frac{1}{\alpha_2(\alpha_{n_2})}
\end{bmatrix}
\]

where \(H_1^{(i)}\) is the parity check matrix of the \(\Gamma_{1}^{(i)}\)-code.

Proof:

We use representation (1) of the parity check matrix of the cumulative-separable code \(\Gamma_{2}^{(i)}\):
\[
H_{2}^{(i)} = \begin{bmatrix}
\frac{1}{\alpha_1(\alpha_{n_2}^{-1} + 1)^i} & \cdots & \frac{1}{\alpha_2(\alpha_{n_2}^{-1} + 1)^i} \\
\frac{1}{\alpha_1(\alpha_{n_2}^{-1} + 1)^i} & \cdots & \frac{1}{\alpha_2(\alpha_{n_2}^{-1} + 1)^i}
\end{bmatrix}
\]

It is easy to see that for component-wise raising to a power \(t\) of any row of the matrix \(H_{2}^{(i)}\) the corresponding row of the submatrix \(H_{1}^{(i)}\) is obtained:
\[
\begin{bmatrix}
\frac{1}{\alpha_1(\alpha_{n_2}^{-1} + 1)^i} & \cdots & \frac{1}{\alpha_2(\alpha_{n_2}^{-1} + 1)^i} \\
\frac{1}{\alpha_1(\alpha_{n_2}^{-1} + 1)^i} & \cdots & \frac{1}{\alpha_2(\alpha_{n_2}^{-1} + 1)^i}
\end{bmatrix}
\]
Thus, the parity check matrix of the $\Gamma_2^{(i)}$-code can be written as

$$H_2^{(i)} = \begin{bmatrix} \frac{1}{\alpha_1} & \cdots & \frac{1}{\alpha_{n_2}} \\ \alpha_1^{-1}(\alpha_1^{-1}+1)^{q-1} & \cdots & \alpha_{n_2}^{-1}(\alpha_{n_2}^{-1}+1)^{q-1} \end{bmatrix},$$

(4)

where the first row consists of the elements from $GF(t)$ only:

$$= \begin{bmatrix} \frac{1}{\alpha_1} & \cdots & \frac{1}{\alpha_{n_2}} \\ \alpha_1^{-1}(\alpha_1^{-1}+1)^{q-1} & \cdots & \alpha_{n_2}^{-1}(\alpha_{n_2}^{-1}+1)^{q-1} \end{bmatrix} = \begin{bmatrix} \frac{1}{G_2(\alpha_1)} & \cdots & \frac{1}{G_2(\alpha_{n_2})} \end{bmatrix}^i.$$

Hence, the redundancy of the $\Gamma_2^{(i)}$-code is determined by the inequality $r_2^{(i)} \leq r_1^{(i)} + l$.

Let $i = q - 1$, $i = q$: By using Corollary 1 and Corollary 2 we obtain that the $\Gamma_2^{(q-1)}$-code is equivalent to the $\Gamma_1^{(q)}$-code and the $\Gamma_1^{(q-1)}$-code is equivalent to the $\Gamma_1^{(q)}$-code. Let us prove now the equivalency of the codes $\Gamma_2^{(q-1)}$ and $\Gamma_1^{(q-1)}$.

Lemma 5: Parity check matrices of the codes $\Gamma_2^{(q-1)}$ and $\Gamma_1^{(q-1)}$ are equal:

$$H_2^{(q-1)} = H_1^{(q-1)}.$$

Proof:

Using Lemma 4 the relation between the parity check matrices of the codes $\Gamma_2^{(q-1)}$ and $\Gamma_1^{(q-1)}$ can be written as:

$$H_2^{(q-1)} = \begin{bmatrix} \frac{1}{\alpha_1} & \cdots & \frac{1}{\alpha_{n_2}} \\ \alpha_1^{-1}(\alpha_1^{-1}+1)^{q-1} & \cdots & \alpha_{n_2}^{-1}(\alpha_{n_2}^{-1}+1)^{q-1} \end{bmatrix}.$$

As the codes $\Gamma_1^{(q-1)}$ and $\Gamma_1^{(q)}$ are equivalent, then their parity check matrices are equal: $H_1^{(q-1)} = H_1^{(q)}$. We show that the row

$$\begin{bmatrix} \frac{1}{\alpha_1} & \cdots & \frac{1}{\alpha_{n_2}} \\ \alpha_1^{-1}(\alpha_1^{-1}+1)^{q-1} & \cdots & \alpha_{n_2}^{-1}(\alpha_{n_2}^{-1}+1)^{q-1} \end{bmatrix}$$

of the matrix $H_2^{(q-1)}$ can be obtained as the linear combination of the row of the matrix $H_1^{(q)}$:

$$= \begin{bmatrix} \frac{1}{\alpha_1} & \cdots & \frac{1}{\alpha_{n_2}} \\ \alpha_1^{-1}(\alpha_1^{-1}+1)^{q-1} & \cdots & \alpha_{n_2}^{-1}(\alpha_{n_2}^{-1}+1)^{q-1} \end{bmatrix}.$$

and its t-th power:

$$= \begin{bmatrix} \frac{1}{\alpha_1} & \cdots & \frac{1}{\alpha_{n_2}} \\ \alpha_1^{-1}(\alpha_1^{-1}+1)^{q-1} & \cdots & \alpha_{n_2}^{-1}(\alpha_{n_2}^{-1}+1)^{q-1} \end{bmatrix}.$$

Indeed,

$$= \begin{bmatrix} \frac{1}{\alpha_1} & \cdots & \frac{1}{\alpha_{n_2}} \\ \alpha_1^{-1}(\alpha_1^{-1}+1)^{q-1} & \cdots & \alpha_{n_2}^{-1}(\alpha_{n_2}^{-1}+1)^{q-1} \end{bmatrix}.$$

Hence, the redundancy of the $\Gamma_2^{(q-1)}$-code coincides with that of the $\Gamma_1^{(q-1)}$-code:

$$r_2^{(q-1)} = r_1^{(q-1)}.$$

1) Relation between the cumulative-separable codes $\Gamma_2^{(i)}$ and $\Gamma_3^{(i)}$: Let us define:

$$\Gamma_3^{(i)} = \Gamma(L_3, G_3^{(i)}) \text{ with } L_3 = \{GF(t^3) \mid \{\alpha : G_3(\alpha) = 0\}\},$$

$$n_3^{(i)} = n_2 \text{ and } G_3^{(i)}(x) = (x^i + x + 1)^i.$$

It follows that the codes $\Gamma_3^{(i)}$ and $\Gamma_2^{(i)}$ are equivalent for all $i \geq 1$ with up to permutation

$$\gamma \rightarrow \gamma + \beta, \text{ where element } \beta \in GF(t^2)$$

is such that $\beta^t = 1$ and $\gamma \in L_2$.

Hence, $n_3 = n_2$, $k_3^{(i)} = k_2^{(i)}$, $\delta_3^{(i)} = \delta_2^{(i)}$.

C. Relation between the cumulative-separable $\Gamma_3^{(i)}$-code and auxiliary $C_3^{(i)}$-code

Let us use representation (1) of the parity check matrix of the $\Gamma_3^{(i)}$-code:

$$H_3^{(i)} = \begin{bmatrix} \frac{1}{\alpha_1+\alpha+1} & \cdots & \frac{1}{\alpha_1+\alpha+1} \\ \frac{1}{\alpha_1+\alpha+1} & \cdots & \frac{1}{\alpha_1+\alpha+1} \\ \cdots & \cdots & \cdots \\ \frac{1}{\alpha_1+\alpha+1} & \cdots & \frac{1}{\alpha_1+\alpha+1} \end{bmatrix}.$$

(5)

where $\alpha_{n_3} = 0$. Therefore,

$$= 1.$$

It is clear that component-wise raising to the power t of the $(i+1)$-th row of the parity check matrix gives us the next, i.e., the $(ti+1)$-th check row:

$$= \begin{bmatrix} \frac{1}{\alpha_1+\alpha+1} & \cdots & \frac{1}{\alpha_1+\alpha+1} \\ \frac{1}{\alpha_1+\alpha+1} & \cdots & \frac{1}{\alpha_1+\alpha+1} \\ \cdots & \cdots & \cdots \\ \frac{1}{\alpha_1+\alpha+1} & \cdots & \frac{1}{\alpha_1+\alpha+1} \end{bmatrix}.$$
The parity check matrix with the new added row can be rewritten as follows:

$$H_3^{(i)} = \begin{bmatrix}
\alpha_1 & \ldots & \alpha_{n_3-1} & 1 & 0 \\
\alpha_1 & \ldots & \alpha_{n_3-1} & 0 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\alpha_1 & \ldots & \alpha_{n_3-1} & 0 & 0 \\
\alpha_1 & \ldots & \alpha_{n_3-1} & 0 & 0 \\
\end{bmatrix}$$

Now we can obtain the following relation between the $H_3^{(i)}$ and $H_3^{(i')}$ matrices:

$$H_3^{(i')} = \begin{bmatrix} 1 & \ldots & 1 \\ H_3^{(i)} & 0 \end{bmatrix}$$

The auxiliary $C_3^{(i)}$-code is obtained by shortening of the $\Gamma_3^{(i)}$-code in a redundancy symbol corresponding to the numerator $\{0\} \in L_3$. Thus, the parity check matrix $H_3^{(i)}$ of the $C_3^{(i)}$-code results from deleting the first unit row and the last column of the parity check matrix $H_3^{(i)}$ of the $\Gamma_3^{(i)}$-code. It follows that $n_3^{(i)} = n_3 - 1$, $k_3^{(i)} = k_3$, $d_3^{(i)} = d_3$.

D. Relation between the auxiliary $C_3^{(i)}$-code and cumulative-separable $\Gamma_4^{(i)}$-code

We define that

$$\Gamma_4^{(i)} = \Gamma(L_4, G_4^{(i)})$$

with $L_4 = \{GF(p)^2 \setminus \{\alpha : G_4(\alpha) = 0\} \cup \{0\}\}$, $n_4^{(i)} = n_4^*$ and $G_4^{(i)}(x) = (x^t + x^{t-1} + 1)^t$.

The $C_3^{(i)}$-code is equivalent to the $\Gamma_4^{(i)}$-code with up to the permutation $\alpha_i \rightarrow \frac{1}{\alpha_i}$, $i = 1, \ldots, n_3 - 1$. Indeed, let us write the $H_3^{(i)}$ and perform the following permutation:

$$H_3^{(i)} = \begin{bmatrix}
\alpha_1 & \ldots & \alpha_{n_3-1} \\
\alpha_1 & \ldots & \alpha_{n_3-1} \\
\vdots & \vdots & \vdots \\
\alpha_1 & \ldots & \alpha_{n_3-1} \\
\alpha_1 & \ldots & \alpha_{n_3-1} \\
\end{bmatrix}$$

It is clear that the first row of this matrix is the t-th power of its last row:

$$\left(\begin{bmatrix} 1 \\ \alpha_1 \end{bmatrix} \right)^t = \begin{bmatrix} 1 \\ \alpha_1 \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_1 \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_1 \\ \vdots \\ \alpha_1 \\ \alpha_1 \\ \end{bmatrix}$$

Thus, $n_4^{(i)} = n_4^*$, $k_4^{(i)} = k_4$, $d_4^{(i)} = d_4^*$.

E. Relation between the cumulative-separable codes $\Gamma_4^{(i)}$ and $\Gamma_5^{(i)}$

We define

$$\Gamma_5^{(i)} = \Gamma(L_5, G_5^{(i)}) \text{ with } L_5 = L_4^*$$

$n_5^{(i)} = n_5 = n_4^*$ and $G_5^{(i)}(x) = (x^t + x^{t-1} + 1)$.

Similarly to the case with the $\Gamma_2^{(i)}$-code and $\Gamma_1^{(i)}$-code, two cases characterized by the cumulativity order i should be considered:

- $i < q - 1$: In this case the $\Gamma_5^{(i)}$-code is a subcode of the $\Gamma_4^{(i)}$-code.

Lemma 6: The parity check matrices of the codes $\Gamma_5^{(i)}$ and $\Gamma_4^{(i)}$ are related as:

$$H_5^{(i)} = \begin{bmatrix}
1 & \ldots & 1 \\ H_4^{(i)} & \ldots & \ldots & \ldots & \ldots & \ldots \\
\end{bmatrix}$$

where $H_4^{(i)}$ is the parity check matrix of the $\Gamma_4^{(i)}$-code.

Proof:
Let us use representation (1) of the parity check matrix of the \(\Gamma_5^{(i)} \)-code:

\[
H_5^{(i)} = \begin{bmatrix}
\frac{1}{\alpha_1(\alpha_1 + \alpha_1^{i-1} + 1)} & \cdots & \frac{1}{\alpha_n(\alpha_n + \alpha_n^{i-1} + 1)} \\
\alpha_1(\alpha_1 + \alpha_1^{i-1} + 1) & \cdots & \alpha_n(\alpha_n + \alpha_n^{i-1} + 1) \\
\vdots & \ddots & \vdots \\
\alpha_1(\alpha_1 + \alpha_1^{(i-1)-1}) & \cdots & \alpha_n(\alpha_n + \alpha_n^{(i-1)-1}) \\
\end{bmatrix}
\]

\(H_4^{(i)} = \begin{bmatrix}
\frac{1}{\alpha_1(\alpha_1 + \alpha_1^{i-1} + 1)} & \cdots & \frac{1}{\alpha_n(\alpha_n + \alpha_n^{i-1} + 1)} \\
\alpha_1(\alpha_1 + \alpha_1^{i-1} + 1) & \cdots & \alpha_n(\alpha_n + \alpha_n^{i-1} + 1) \\
\vdots & \ddots & \vdots \\
\alpha_1(\alpha_1 + \alpha_1^{(i-1)-1}) & \cdots & \alpha_n(\alpha_n + \alpha_n^{(i-1)-1}) \\
\end{bmatrix}
\] \((6) \)

It is easy to see that in case of component-wise raising of any row

\[
\begin{bmatrix}
\frac{1}{\alpha_j(\alpha_j + \alpha_j^{i-1} + 1)} \\
0 < j < i < q - 1 \\
\end{bmatrix}
\]

of the matrix \(H_5^{(i)} \) to the power \(t \) we obtain the corresponding row of the submatrix \(H_4^{(i)} \).

Thus, the parity check matrix of the \(\Gamma_5^{(i)} \)-code can be rewritten as

\[
H_5^{(i)} = \begin{bmatrix}
\frac{1}{\alpha_1(\alpha_1 + \alpha_1^{i-1} + 1)} & \cdots & \frac{1}{\alpha_n(\alpha_n + \alpha_n^{i-1} + 1)} \\
\end{bmatrix}
\]

where the first row consists of elements of the \(GF(t) \) only:

\[
\begin{bmatrix}
\frac{1}{\alpha_1(\alpha_1 + \alpha_1^{i-1} + 1)} & \cdots & \frac{1}{\alpha_n(\alpha_n + \alpha_n^{i-1} + 1)} \\
\end{bmatrix} = \begin{bmatrix}
\frac{1}{G_5^{(i)}(\alpha_1)} & \cdots & \frac{1}{G_5^{(i)}(\alpha_n)} \\
\end{bmatrix}
\]

Hence, the redundancy of the \(\Gamma_5^{(i)} \)-code is determined by the inequality \(r_5^{(i)} \leq r_4^{(i)} + 1 \).

\(i = q - 1 \), \(i = q : \) In accordance with the previously obtained Corollary [1] and Corollary [2] we have that the \(\Gamma_5^{(q-1)} \)-code is equivalent to the \(\Gamma_5^{(q)} \)-code and the \(\Gamma_4^{(q-1)} \)-code is equivalent to the \(\Gamma_4^{(q)} \)-code. Let us prove now the equivalence of the codes \(\Gamma_5^{(q-1)} \) and \(\Gamma_4^{(q-1)} \).

Lemma 7: The parity check matrices of the \(\Gamma_5^{(q-1)} \)-code and \(\Gamma_4^{(q-1)} \)-code are equal:

\[H_5^{(q-1)} = H_4^{(q-1)} \]

Proof:

Using Lemma [6] we write a relation between parity check matrices of the codes \(\Gamma_5^{(q-1)} \) and \(\Gamma_4^{(q-1)} \):

\[
H_5^{(q-1)} = \begin{bmatrix}
\frac{1}{\alpha_1^{q-1}(\alpha_1 + \alpha_1^{i-1} + 1)^{q-1}} & \cdots & \frac{1}{\alpha_n^{q-1}(\alpha_n + \alpha_n^{i-1} + 1)^{q-1}} \\
\end{bmatrix}
\]

As the codes \(\Gamma_5^{(q-1)} \) and \(\Gamma_4^{(q-1)} \) are equivalent then their parity check matrices are equal: \(H_5^{(q-1)} = H_4^{(q-1)} \). We show that the row

\[
\begin{bmatrix}
\frac{1}{\alpha_1^{q-1}(\alpha_1 + \alpha_1^{i-1} + 1)^{q-1}} & \cdots & \frac{1}{\alpha_n^{q-1}(\alpha_n + \alpha_n^{i-1} + 1)^{q-1}} \\
\end{bmatrix}
\]

of the matrix \(H_5^{(q-1)} \) can be obtained as a linear combination of the matrix \(H_4^{(q)} \) row:

\[
\begin{bmatrix}
\frac{1}{\alpha_1^{q-1}(\alpha_1 + \alpha_1^{i-1} + 1)^{q-1}} & \cdots & \frac{1}{\alpha_n^{q-1}(\alpha_n + \alpha_n^{i-1} + 1)^{q-1}} \\
\end{bmatrix}
\]

its \(t \)-th power:

\[
\begin{bmatrix}
\frac{1}{\alpha_1^{q-1}(\alpha_1 + \alpha_1^{i-1} + 1)^{q-1}} & \cdots & \frac{1}{\alpha_n^{q-1}(\alpha_n + \alpha_n^{i-1} + 1)^{q-1}} \\
\end{bmatrix}
\]

and the matrix \(H_4^{(q)} \) row:

\[
\begin{bmatrix}
\frac{1}{\alpha_1^{q-1}(\alpha_1 + \alpha_1^{i-1} + 1)^{q-1}} & \cdots & \frac{1}{\alpha_n^{q-1}(\alpha_n + \alpha_n^{i-1} + 1)^{q-1}} \\
\end{bmatrix}
\]

Indeed,

\[
\begin{bmatrix}
\frac{1}{\alpha_1^{q-1}(\alpha_1 + \alpha_1^{i-1} + 1)^{q-1}} & \cdots & \frac{1}{\alpha_n^{q-1}(\alpha_n + \alpha_n^{i-1} + 1)^{q-1}} \\
\end{bmatrix}
\]

Hence, the redundancy of the \(\Gamma_5^{(q-1)} \)-code is equal to that of the \(\Gamma_4^{(q-1)} \)-code:

\[r_5^{(q-1)} = r_4^{(q-1)} \]

F. Relation between the cumulative-separable codes \(\Gamma_5^{(i)} \) and \(\Gamma_6^{(i)} \)

We define the \(\Gamma_6^{(i)} \)-code as:

\[
\Gamma_6^{(i)} = \Gamma(L_6, G_6^{(i)}) \text{ with } L_6 = \{GF(t^2) \setminus \{ \alpha : G_6(\alpha) = 0 \} \}, \quad n_6^{(i)} = n_6 \text{ and } G_6^{(i)}(x) = (x^{i+1} + 1)^i
\]

It is clear that the codes \(\Gamma_6^{(i)} \) and \(\Gamma_6^{(i)} \) are equivalent for all \(i \geq 1 \) up to the permutation \(\beta \to \gamma \beta - 1 \), where \(\gamma \in GF(t^2) \) and \(\gamma^{t+1} + 1 = 0. \beta \in L_6 \).

Therefore, \(n_6 = n_5 \), \(L_6^{(i)} = k_5^{(i)} \) and \(d_6^{(i)} = d_5^{(i)} \).

Thus, all the relations considered above and together with Corollary [3] allow us to present the following Table [1] and pattern in Fig. [1]
V. Minimum Distance of Cumulative-Separable Codes

The minimum distances of primary separable codes Γ_1 - Γ_6 have been determined in [4], [5]. Now let us take the Γ_6-code as an example to determine the minimum distances of the corresponding separable-cumulative codes $\Gamma_6^{(i)}$ in case of the cumulativity order $i > 1$.

Let us consider $q - 1$ groups of elements that form a set L_6:
\begin{enumerate}
 \item $L_6^{(j)} = \left\{ \alpha^{(t-1)j+\frac{q-1}{t}} \right\}_{j=0,\ldots,t}$, $j = 0,\ldots,q - 2$ with the exception of $j = j^*$, such that
 \[G_6(\alpha^{(t-1)j+\frac{q-1}{t}}) = \alpha^{(t-1)j+\frac{q-1}{t}} + 1 = 0. \]
 \end{enumerate}
In other words, we exclude $j = j^*$ such that
\[\alpha^{(t-1)j+\frac{q-1}{t}} = q - 1, \alpha \text{ is a primitive element of } GF(t^2). \]

It is easy to show that
\[L_6^{(i)} \cap L_6^{(j)} = \emptyset \text{ for any } i \neq j; i, j = 0,\ldots,q - 2. \]

Therefore the number of different groups $L_6^{(j)}$ in L_6 is $q - 2$. Further, we shall denote vector a values in the set $L_6^{(j)}$ positions by
\[a_{j,t,1}, \quad j = 0,1,\ldots,j^*-1,j^*+1,\ldots,q - 2; \]
\[l = 0,\ldots,t. \]

2. $L_6(0) = \{0\}$. The vector a value in this position is denoted by a_0.

It should be noted that the value of the polynomial $G_6(x)$ for all elements from one numerator group is the same and it is equal to:
\begin{enumerate}
 \item For elements from the numerator group $L_6^{(j)}$
 \[G_6^{(i)}(\alpha^{(t-1)j+\frac{q-1}{t}}) = \left((\alpha^{(t-1)j+\frac{q-1}{t}})^{t+1} + 1 \right)^i = \left(\alpha^{(t-1)j+\frac{q-1}{t}+1} + 1 \right)^i. \]
\end{enumerate}

Obviously, all values
\[G_6^{(i)}(\alpha^{(t-1)j+\frac{q-1}{t}}) \in GF(q), \]
\[j = 0,1,\ldots,j^*-1,j^*+1,\ldots,q - 2. \]

2. For elements from the numerator group $L_6^{(0)}$: $G_6^{(i)}(0) = 1$.

Let us consider now the submatrix $H_6^{(i)}$ of the parity check matrix $H_6^{(i)}$. It corresponds to the numerator group $L_6^{(j)}$ that we determined above. Here we use representation (2):

\[
H_6^{(i)} = \begin{bmatrix}
1 & \cdots & 1 \\
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1 \\
\end{bmatrix}
\]

Now we calculate the result of multiplication of the vector a

\[
H_6^{(i)} = \begin{bmatrix}
H_6^{(i,0)} & H_6^{(i,1)} & \cdots & H_6^{(i,q-2)} & H_6^{(i,0)}
\end{bmatrix}
\]

Let us choose the vector a of the following form:
\[
a = \begin{bmatrix}
a_{0,0,1}a_{0,1,1}\ldots a_{0,t,1} & a_{1,0,1}a_{1,1,1}\ldots a_{1,t,1} & \cdots & a_{q-2,0,1}a_{q-2,1,1}\ldots a_{q-2,t,1} & a_0
\end{bmatrix}.
\]

Assume that
\[
a_{0,0,1} = a_{0,1,1} = \ldots = a_{0,t,1} = a_{0,1} \in GF(q); \]
\[a_{1,0,1} = a_{1,1,1} = \ldots = a_{1,t,1} = a_{1,1} \in GF(q); \]
\[a_{q-2,0,1} = a_{q-2,1,1} = \ldots = a_{q-2,t,1} = a_{q-2,1} \in GF(q).\]

Now we calculate the result of multiplication of the vector a
by the parity check matrix of the code:

\[
\mathbf{a} \cdot H_{6}^{(i)T} = [a_0, \ldots, a_0,1, \ldots, a_{q-2},1, a_{q-2},1, a_0] \cdot \\
[H_{6(1,0)}^{(i)}, \ldots, H_{6(1,q-2)}^{(i)}, H_{6(0)}^{(i)}]^{T} = \\
[a_0,1, \ldots, a_0,1] \cdot [H_{6(1,0)}^{(i)}]^{T} + \ldots \\
+ [a_{q-2},1, \ldots, a_{q-2},1] \cdot [H_{6(1,q-2)}^{(i)}]^{T} + \\
a_0 \cdot [H_{6(0)}^{(i)}]^{T} = a_0,1, \ldots, a_0,1, \cdot [H_{6(1,0)}^{(i)}]^{T} + \ldots + \\
a_{q-2},1, \ldots, a_{q-2},1, \cdot [H_{6(1,q-2)}^{(i)}]^{T} + a_0 \cdot [H_{6(0)}^{(i)}]^{T}.
\]

(10)

Let us calculate the value of the row vector that is obtained from multiplying the identity vector by the submatrix \(H_{6}^{(i)}(1,j)\) for all \(j\) from 0 to \(q - 2\) with an exception \(j = j^{*} : \alpha_{\frac{q-1}{q-1}j^{*}} = q - 1:\)

\[
\begin{bmatrix}
\alpha_{\frac{t-1}{q-1}+1}^{t} \\
\alpha_{\frac{t-1}{q-1}+1}^{t} \\
\vdots \\
\alpha_{\frac{t-1}{q-1}+1}^{t} \\
\alpha_{\frac{t-1}{q-1}+1}^{t} \\
\alpha_{\frac{t-1}{q-1}+1}^{t} \\
\vdots \\
\alpha_{\frac{t-1}{q-1}+1}^{t} \\
\end{bmatrix}^{T} = \\
\begin{bmatrix}
\alpha_{\frac{t-1}{q-1}+1}^{t} \\
\alpha_{\frac{t-1}{q-1}+1}^{t} \\
\vdots \\
\alpha_{\frac{t-1}{q-1}+1}^{t} \\
\alpha_{\frac{t-1}{q-1}+1}^{t} \\
\alpha_{\frac{t-1}{q-1}+1}^{t} \\
\vdots \\
\alpha_{\frac{t-1}{q-1}+1}^{t} \\
\end{bmatrix}^{T}
\]

Since \(1, \alpha^{t-1}, \ldots, \alpha^{(t-1)t}\) are all the roots of the polynomial \(x^{t+1} - 1\), then the sum of any nonzero powers of these elements is always equal to zero:

\[
\sum_{i=0}^{t} \alpha^{(t-1)i} = 0.
\]
Besides \(t + 1 = 1 \mod q \), we obtain:

\[
\begin{bmatrix}
\frac{1}{a_0} \\
\alpha \\
\vdots \\
\alpha
\end{bmatrix}
= \begin{bmatrix}
1 \\
\alpha \\
\vdots \\
\alpha
\end{bmatrix}
\]

\[
[1 \ldots 11] \cdot H_6^{(i)T} = \begin{bmatrix}
1 \\
\alpha \\
\vdots \\
\alpha
\end{bmatrix}
\]

Therefore expression (10) can be rewritten as:

\[
\alpha^* \cdot H_6^{(i)T} = \begin{bmatrix}
a_{0,1} & \cdots & a_{q-2,1} & a_{0,1} \\
\frac{1}{2} & \cdots & \left(\frac{1}{a_{0}}\right)^{i(t+1)+1} & 1 \\
\frac{1}{2^{t-i}} & \cdots & \left(\frac{1}{a_{0}^{(i+1)}}\right)^{i(t+1)+1} & 1 \\
\frac{1}{2} & \cdots & \left(\frac{1}{a_{0}^{(i+1)}}\right)^{i(t+1)+1} & 1
\end{bmatrix}
\]

where the length of vector \(\alpha^* \) is equal to \(q - 1 \).

It is easy to note that all \(q - 1 \) different nonzero elements of the field \(GF(q) \) are in the last row of the matrix. The matrix in (11) itself is the Vandermonde matrix. These remarks permit us to formulate the following theorem on the minimum distance of cumulative-separable codes from the \(\Gamma_6^{(i)} \) subclass of codes.

Theorem 1: The minimum distance of the codes from the subclass \(\Gamma_6^{(i)} \) is equal to \(i(t+1)+1 \) for \(1 < i < q - 1 \).

Proof:

First of all, it should be noted that the matrix \(H_6^{(i)} \) in (11) is the parity check matrix of RS-code. It means that for \(i < q - 1 \) there always exists a codeword of RS-code with nonzero symbol on the position \(\{0\} \) and with other \(i \) nonzero symbols in positions that correspond to the other columns of the parity check matrix \(H_6^{(i)} \) in (11). Using expression (10) the following value of the minimum distance of the \(\Gamma_6^{(i)} \)-code can be obtained for \(1 < i < q - 1 \):

\[
d_6^{(i)} = i(t+1) + 1 = \deg G_6^{(i)}(x) + 1.
\]

VI. DIMENSION OF THE CUMULATIVE-SEPARABLE CODES THAT ARE OBTAINED FROM THE \(\Gamma_6 \)-CODE

According to the definition of the \(\Gamma_6 \)-code the cumulative-separable \(\Gamma(L_6, G_6^{(q)}) \)-code corresponding to it is given by the polynomial \(G_6^{(q)}(x) = (x^{q+1} + 1)^9 \) and set \(L_6 = \{GF(t^2) \setminus \{\alpha : G_6(\alpha) = 0\}\} \), where \(t = q^t \). The parity check matrix \(H_6 \) of the \(\Gamma(L_6, G_6^{(q)}) \)-code can be presented as set of submatrices \(h_1, h_2, \ldots, h_{q-1} \) by using expression (2). Here for simplicity we denote the length of the \(\Gamma_6 \)-code by \(n \).

1. Consider subsets of submatrix \(h_1 \) rows that can be obtained by transformations of other rows of this submatrix:

\[
h_1 = \begin{bmatrix}
1 \\
\alpha \\
\vdots \\
\alpha
\end{bmatrix}
\]

where \(\alpha_i \in L_6 \) and \(\alpha_n = 0 \).

1.1. All elements of the first row in the submatrix \(h_1 \) are elements of the field \(GF(t) \). Indeed,

\[
\left(\frac{1}{a_{0}^{(i+1)}}\right)^t = \frac{1}{a_{0}^{(i+1)}}
\]

for any \(i = 1, \ldots, n - 1 \).

1.2. The row

\[
\begin{bmatrix}
\frac{1}{(\alpha_1^{(i+1)}+1)^2} \\
\frac{1}{(\alpha_2^{(i+1)}+1)^2} \\
\vdots \\
\frac{1}{(\alpha_{n-1}^{(i+1)}+1)^2}
\end{bmatrix}
\]

is obtained by element-wise raising to the power \(t \) of the row of the submatrix.

Therefore, the number of \(q \)-ary rows equal to \(\delta_1 = l + 2l \) can be deleted from the submatrix \(h_1 \) as they are linearly dependent on the other rows of this submatrix.

2. Consider now a submatrix \(h_2 \):

\[
h_2 = \begin{bmatrix}
1 \\
\frac{1}{(\alpha_1^{(i+1)}+1)^2} \\
\frac{1}{(\alpha_2^{(i+1)}+1)^2} \\
\vdots \\
\frac{1}{(\alpha_{n-1}^{(i+1)}+1)^2}
\end{bmatrix}
\]

where \(\alpha_i \in L_6 \) and \(\alpha_n = 0 \).

Let us determine a set of linearly dependent \(q \)-ary rows in this submatrix.

2.1. All elements of the first row of the submatrix \(h_2 \) are elements of the field \(GF(t) \). Indeed,

\[
\left(\frac{1}{a_{0}^{(i+1)}}\right)^t = \frac{1}{(a_{0}^{(i+1)}+1)^2}
\]

for any \(i = 1, \ldots, n - 1 \).

2.2. The row

\[
\begin{bmatrix}
\frac{1}{(\alpha_1^{(i+1)}+1)^2} \\
\frac{1}{(\alpha_2^{(i+1)}+1)^2} \\
\vdots \\
\frac{1}{(\alpha_{n-1}^{(i+1)}+1)^2}
\end{bmatrix}
\]

is obtained by the element-by-element raising of the row of the submatrix

\[
\begin{bmatrix}
\frac{1}{(\alpha_1^{(i+1)}+1)^2} \\
\frac{1}{(\alpha_2^{(i+1)}+1)^2} \\
\vdots \\
\frac{1}{(\alpha_{n-1}^{(i+1)}+1)^2}
\end{bmatrix}
\]

to the power \(t \).

2.3. The row

\[
\begin{bmatrix}
\frac{1}{\alpha_1^{(i+1)}+1} \\
\frac{1}{\alpha_2^{(i+1)}+1} \\
\vdots \\
\frac{1}{\alpha_{n-1}^{(i+1)}+1}
\end{bmatrix}
\]

is obtained as a linear combination of the corresponding row of the submatrix \(h_1 \).
and the t-th power of the corresponding row of submatrix h_2
\[
\begin{bmatrix}
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^2} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^2} & \cdots & \frac{\alpha_2}{(\alpha_n^{t+1}+1)^2} & 0
\end{bmatrix}
\]
It means that we can write the following relation for any element of these rows:
\[
\frac{\alpha_i}{(\alpha_i^{t+1}+1)^2} = \frac{\alpha_i}{(\alpha_i^{t+1})^2} - \left(\frac{\alpha_i}{(\alpha_i^{t+1}+1)^2}\right)^t
\]
for all $i = 1, \ldots, n - 1$.

Thus, the number of q-ary rows equal to $\delta_3 = l + 2l + 2l$ can be deleted from h_2 as they are linearly dependent on the other rows of this and preceding submatrix.

3. Consider the submatrix h_3:
\[
h_3 = \begin{bmatrix}
\frac{1}{(\alpha_1^{t+1}+1)^2} & \frac{1}{(\alpha_2^{t+1}+1)^2} & \cdots & \frac{1}{(\alpha_n^{t+1}+1)^2} & 0 \\
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^3} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^3} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^3} & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^3} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^3} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^3} & 0
\end{bmatrix}
\]
where $\alpha_i \in L_0$ and $\alpha_n = 0$.

Let us determine a set of linearly dependent q-ary rows in this submatrix.

3.1. All elements of the first row of the submatrix h_3 are elements of the field $GF(t)$. Indeed,
\[
\left(\frac{1}{(\alpha_i^{t+1}+1)^2}\right)^t = \frac{1}{(\alpha_i^{t+1}+1)^2} \quad \text{for any } i = 1, \ldots, n - 1.
\]

3.2. The row
\[
\begin{bmatrix}
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^2} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^2} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^2} & 0
\end{bmatrix}
\]
is obtained by element-by-element raising of the row of the submatrix
\[
\begin{bmatrix}
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^3} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^3} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^3} & 0
\end{bmatrix}
\]
to the t-th power.

3.3. The row
\[
\begin{bmatrix}
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^2} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^2} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^2} & 0
\end{bmatrix}
\]
is obtained as a linear combination of the corresponding submatrix:
\[
\begin{bmatrix}
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^2} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^2} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^2} & 0
\end{bmatrix}
\]
and the t-th power of the corresponding row of the submatrix
\[
\begin{bmatrix}
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^2} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^2} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^2} & 0
\end{bmatrix}
\]
It means that the following relation:
\[
\frac{\alpha_i}{(\alpha_i^{t+1}+1)^2} = \frac{\alpha_i^{t-1}}{(\alpha_i^{t+1}+1)^2} - \left(\frac{\alpha_i}{(\alpha_i^{t+1}+1)^2}\right)^t
\]
can be written for any element of these rows for all $i = 1, \ldots, n - 1$.

3.4. The row
\[
\begin{bmatrix}
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^3} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^3} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^3} & 0
\end{bmatrix}
\]
is obtained as a linear combination of the corresponding row of the submatrix h_1
\[
\begin{bmatrix}
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^2} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^2} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^2} & 0
\end{bmatrix}
\]
the row of the submatrix h_2
\[
\begin{bmatrix}
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^2} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^2} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^2} & 0
\end{bmatrix}
\]
and the t-th power of the row
\[
\begin{bmatrix}
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^2} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^2} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^2} & 0
\end{bmatrix}
\]
of the submatrix h_3. It means that we can write the following relations:
\[
\begin{aligned}
\frac{\alpha_i}{(\alpha_i^{t+1}+1)^2} &= \frac{\alpha_i^{t-2}}{(\alpha_i^{t+1}+1)^2} - \left(\frac{\alpha_i}{(\alpha_i^{t+1}+1)^2}\right)^t, \\
\frac{\alpha_i}{(\alpha_i^{t+1}+1)^2} &= \frac{\alpha_i^{t-1}}{(\alpha_i^{t+1}+1)^2} - \left(\frac{\alpha_i}{(\alpha_i^{t+1}+1)^2}\right)^t,
\end{aligned}
\]
for any element of this row for all $i = 1, \ldots, n - 1$.

Thus, the number of the q-ary row equal to $\delta_3 = l + 2l + 2l + 2l$ can be deleted from the matrix h_3 as they are linearly dependent on the other rows of this and preceding submatrices.

Remark 2: Note that the row of the submatrix h_1
\[
\begin{bmatrix}
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^2} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^2} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^2} & 0
\end{bmatrix}
\]
was used for representing the row of the submatrix h_3.

It is clear that the similar situation takes place for any submatrix.

j. ($j \leq q - 1$) Consider a submatrix h_j:
\[
h_j = \begin{bmatrix}
\frac{1}{(\alpha_1^{t+1}+1)^2} & \frac{1}{(\alpha_2^{t+1}+1)^2} & \cdots & \frac{1}{(\alpha_n^{t+1}+1)^2} & 0 \\
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^3} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^3} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^3} & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^3} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^3} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^3} & 0
\end{bmatrix}
\]
where $\alpha_i \in L_0$ and $\alpha_n = 0$.

Let us determine a set of linearly dependent q-ary rows of this submatrix.

j.1. All elements of the first row of the submatrix h_j are elements of the field $GF(t)$. Indeed,
\[
\left(\frac{1}{(\alpha_i^{t+1}+1)^2}\right)^t = \frac{1}{(\alpha_i^{t+1}+1)^2} \quad \text{for any } i = 1, \ldots, n - 1.
\]

j.2. The row
\[
\begin{bmatrix}
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^2} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^2} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^2} & 0
\end{bmatrix}
\]
is obtained by element-by-element raising of the row
\[
\begin{bmatrix}
\frac{\alpha_1}{(\alpha_1^{t+1}+1)^2} & \frac{\alpha_2}{(\alpha_2^{t+1}+1)^2} & \cdots & \frac{\alpha_n}{(\alpha_n^{t+1}+1)^2} & 0
\end{bmatrix}
\]
of the submatrix to the t-th power.

j.3. The row

$$
\begin{bmatrix}
\frac{a_{t-1}}{(q^t + 1)} & \frac{a_{t-2}}{(q^t + 1)} & \cdots & \frac{a_{n-1}}{(q^t + 1)} & 0 \\
\end{bmatrix}
$$

is obtained as a linear combination of corresponding row of the submatrix h_{j-1} and the t-th power of the corresponding row of the submatrix h_j. Thus, the relation

$$
\frac{a_{t-1}}{(q^t + 1)} = \frac{a_{t-1}}{(q^t + 1)} - \left(\frac{a_2}{(q^t + 1)}\right)^t
$$
can be written for any element of these rows for all $i = 1, \ldots, n-1$.

And so on.

Finally, at the last step we have the following relations for rows of the j-th submatrix:

j.$j+1$. The row

$$
\begin{bmatrix}
\frac{a_{t-1}^{(j-1)}}{(q^t + 1)} & \frac{a_{t-2}^{(j-1)}}{(q^t + 1)} & \cdots & \frac{a_{n-1}^{(j-1)}}{(q^t + 1)} & 0 \\
\end{bmatrix}
$$
is obtained as linear combination of preceding rows of the submatrices h_j and $h_{j-1}, \ldots, h_2, h_1$. In other words, we can write following relations for any elements of this row:

$$
\frac{a_{t-1}^{(j-1)}}{(q^t + 1)} = \frac{a_{t-1}^{(j-1)}}{(q^t + 1)} - \frac{a_{t-2}^{(j-2)}}{(q^t + 1)} + \frac{a_{t-3}^{(j-3)}}{(q^t + 1)} - \frac{a_{t-4}^{(j-4)}}{(q^t + 1)} + \cdots + \frac{a_{n-2}^{(n-2)}}{(q^t + 1)} - \frac{a_{n-1}^{(n-1)}}{(q^t + 1)},
$$

for all $i = 1, \ldots, n-1$.

Here, the row

$$
\begin{bmatrix}
\frac{a_{t-1}^{(j-1)}}{(q^t + 1)} & \frac{a_{t-2}^{(j-1)}}{(q^t + 1)} & \cdots & \frac{a_{n-1}^{(j-1)}}{(q^t + 1)} & 0 \\
\end{bmatrix}
$$

belong to the submatrix h_{j-1}, whereas the row

$$
\begin{bmatrix}
\frac{a_1^j}{(q^t + 1)} & \frac{a_2^j}{(q^t + 1)} & \cdots & \frac{a_{n-1}^j}{(q^t + 1)} & 0 \\
\end{bmatrix}
$$
is a previous one in the submatrix h_j because $t - (j - 1) > j$.

Let us consider now $j - 2$ rows with elements

$$
\begin{bmatrix}
\frac{a_1^{2j-2}}{(q^t + 1)} & \frac{a_2^{2j-3}}{(q^t + 1)} & \cdots & \frac{a_{n-1}^{2j-2}}{(q^t + 1)} \\
\end{bmatrix},
\begin{bmatrix}
\frac{a_1^{3j-3}}{(q^t + 1)} & \frac{a_2^{3j-3}}{(q^t + 1)} & \cdots & \frac{a_{n-1}^{3j-3}}{(q^t + 1)} \\
\end{bmatrix},
\begin{bmatrix}
\frac{a_1^{(j-1)+1}}{(q^t + 1)} & \frac{a_2^{(j-1)+1}}{(q^t + 1)} & \cdots & \frac{a_{n-1}^{(j-1)+1}}{(q^t + 1)} \\
\end{bmatrix},
$$

for $i = 1, \ldots, n$.

The following relations can be written for the components of these rows:

$$
\frac{a_{t-1}^{(j-1)}}{(q^t + 1)} = \frac{a_{t-1}^{(j-1)}}{(q^t + 1)} - \frac{a_{t-2}^{(j-2)}}{(q^t + 1)} + \frac{a_{t-3}^{(j-3)}}{(q^t + 1)} - \frac{a_{t-4}^{(j-4)}}{(q^t + 1)} + \cdots + \frac{a_{n-2}^{(n-2)}}{(q^t + 1)} - \frac{a_{n-1}^{(n-1)}}{(q^t + 1)},
$$

for all $i = 1, \ldots, n$, $\alpha_n = 0$.

Here the rows

$$
\begin{bmatrix}
\frac{a_{t-1}^{(j-1)}}{(q^t + 1)} & \frac{a_{t-2}^{(j-1)}}{(q^t + 1)} & \cdots & \frac{a_{n-1}^{(j-1)}}{(q^t + 1)} & 0 \\
\end{bmatrix}
$$

and

$$
\begin{bmatrix}
\frac{a_{t-1}^{(j-1)} - 1}{(q^t + 1)} & \frac{a_{t-2}^{(j-1)}}{(q^t + 1)} & \cdots & \frac{a_{n-1}^{(j-1)} - 1}{(q^t + 1)} & 0 \\
\end{bmatrix}
$$

belong to submatrices h_{j-1} and h_{j-2}, respectively. Similar relations can be written for auxiliary $j - 3$ rows with elements

$$
\begin{bmatrix}
\frac{a_{t-1}^{2j-2}}{(q^t + 1)} & \frac{a_{t-2}^{3j-3}}{(q^t + 1)} & \cdots & \frac{a_{n-1}^{(j-3)+1}}{(q^t + 1)} \\
\end{bmatrix},
\begin{bmatrix}
\frac{a_{t-1}^{3j-3}}{(q^t + 1)} & \frac{a_{t-2}^{4j-3}}{(q^t + 1)} & \cdots & \frac{a_{n-1}^{(j-4)+1}}{(q^t + 1)} \\
\end{bmatrix},
\begin{bmatrix}
\frac{a_{t-1}^{(j-2)+1}}{(q^t + 1)} & \frac{a_{t-2}^{(j-3)+1}}{(q^t + 1)} & \cdots & \frac{a_{n-1}^{(j-5)+1}}{(q^t + 1)} \\
\end{bmatrix}
$$

for $i = 1, \ldots, n$.

Thus, the number of relations decreases by one with every step, so that we obtain for the last step:

$$
\begin{bmatrix}
\frac{a_{t-1}^{2j-2}}{(q^t + 1)} & \frac{a_{t-2}^{3j-3}}{(q^t + 1)} & \cdots & \frac{a_{n-1}^{(j-3)+1}}{(q^t + 1)} \\
\end{bmatrix}
$$

and

$$
\begin{bmatrix}
\frac{a_{t-1}^{3j-3}}{(q^t + 1)} & \frac{a_{t-2}^{4j-3}}{(q^t + 1)} & \cdots & \frac{a_{n-1}^{(j-4)+1}}{(q^t + 1)} \\
\end{bmatrix}
$$

belong to the submatrices h_1 and h_2, respectively.

Hence, the number of q-ary rows equal to $\delta_j = l + 2lj$ can be deleted from the submatrix h_j because they are linearly dependent on other rows of this and previous submatrices.

Remark 3: Note that we used the row

$$
\begin{bmatrix}
\frac{a_{t-1}^{(j-1)} - 1}{(q^t + 1)} & \frac{a_{t-2}^{(j-1)}}{(q^t + 1)} & \cdots & \frac{a_{n-1}^{(j-1)} - 1}{(q^t + 1)} & 0 \\
\end{bmatrix}
$$
of the submatrix h_1 when representing the row of the submatrix h_j, $j < q$.

The total number of q-ary rows in submatrices $h_1, h_2, \ldots, h_j, j < q$ that are linearly dependent and satisfy the above presented relations is equal to Δ_j:

$$
\Delta_j = \delta_1 + \delta_2 + \cdots + \delta_j = lj + 2l(1 + 2 + \cdots + j) = lj + 2lj(j+1)/2,
$$

$$
\Delta_j = 2lj(j+3)/2.
$$

(16)

So, the estimation for the redundancy of the cumulative-separable (L, G)-code with $G(x) = G_6^j(x) = (x^{l+1} + 1)^j, 1 < j \leq q - 2$ and the set $L_6 = \{GF(l^2) \setminus \alpha : G_6(\alpha) = 0\}$ is given by $r_6^{(j)}$:

$$
r_6^{(j)} \leq 2l \left(j(t + 1) - j(j + 3)/2 \right).
$$

(17)

Consequently, the estimation on the dimension of this code is

$$
h_6^{(j)} \geq t^2 - t - 1 - 2lj \left(t + 1 - j + 3/2 \right).
$$

(18)

Of special interest is the case $j = q - 1, q$, i.e., the case when the submatrix h_{q-1} is presented in the parity check matrix H_6 of the code.

Any row
for h_1 can be obtained as a linear combination of the rows of submatrices $h_{q-1}, h_{q-2}, \ldots, h_1$.

In other words, the estimation of the redundancy of this code can be improved by the value $\theta_{q-1} = (q - 1)/2l$ in case there is h_{q-1} in the cumulative-separable parity check matrix.

Remark 4: According to Remarks 123, we did not use the above considered rows of the submatrix h_1 for the analysis of the linear dependence of rows in the parity check matrix H_6 of the cumulative-separable $(L_{G_6}, G_{q(6)})$-code.

First of all, let us prove the following statement.

Lemma 8: All rows of the submatrix h_1

$$\begin{bmatrix}
\frac{f_1^{j+1}}{a_1j+1} & \frac{f_2^{j+1}}{a_2j+1} & \cdots & \frac{f_{n-1}^{j+1}}{a_{n-1}j+1} & 0
\end{bmatrix}, \ j = 1, \ldots, q - 1
$$

for $f = 1, \ldots, q - 1$ can be obtained as an linear combination of the rows of the submatrix h_1

$$\begin{bmatrix}
t^{j+1} & t^{j+1} & \cdots & t^{j+1} \\
\frac{t_1^{j+1}}{a_1j+1} & \frac{t_2^{j+1}}{a_2j+1} & \cdots & \frac{t_{n-1}^{j+1}}{a_{n-1}j+1} & 0
\end{bmatrix},$$

and auxiliary rows

$$\begin{bmatrix}
\frac{\alpha^{(j)}_{f+q-j}}{a_1f+1+1} & \frac{\alpha^{(j)}_{f+q-j}}{a_2f+1} & \cdots & \frac{\alpha^{(j)}_{f+q-j}}{a_{n-1}f+1+1} & 0
\end{bmatrix}, \ j = 1, \ldots, f.
$$

Proof:

It is easy to observe that the row

$$\begin{bmatrix}
\frac{\alpha^{(j)}_{f+q}}{a_1f+1+1} & \frac{\alpha^{(j)}_{f+q}}{a_2f+1} & \cdots & \frac{\alpha^{(j)}_{f+q}}{a_{n-1}f+1+1} & 0
\end{bmatrix}
$$

results from the row

$$\begin{bmatrix}
\frac{f_1^{j+1}}{a_1j+1} & \frac{f_2^{j+1}}{a_2j+1} & \cdots & \frac{f_{n-1}^{j+1}}{a_{n-1}j+1} & 0
\end{bmatrix},
$$

by raising of all its elements to the power q.

Now let us use a system of recurrent equations:

$$\begin{align*}
\frac{\alpha^{(j+1)}_{f+q}}{a_1(j+1)+f+1+1} &= \frac{\alpha^{(j)}_{f+q-1}}{a_1(j+2)+f+2} - \frac{\alpha^{(j)}_{f+q-1}}{a_1(j+1)+f+1}, \\
\frac{\alpha^{(j+1)}_{f+q}}{a_2(j+1)+f+1} &= \frac{\alpha^{(j)}_{f+q-1}}{a_2(j+2)+f+2} - \frac{\alpha^{(j)}_{f+q-1}}{a_2(j+1)+f+1}, \\
\frac{\alpha^{(j+1)}_{f+q}}{a_3(j+1)+f+1} &= \frac{\alpha^{(j)}_{f+q-1}}{a_3(j+2)+f+2} - \frac{\alpha^{(j)}_{f+q-1}}{a_3(j+1)+f+1}, \\
\vdots & \quad \vdots \\
\frac{\alpha^{(j+1)}_{f+q}}{a_{n-1}(j+1)+f+1} &= \frac{\alpha^{(j)}_{f+q-1}}{a_{n-1}(j+2)+f+2} - \frac{\alpha^{(j)}_{f+q-1}}{a_{n-1}(j+1)+f+1}.
\end{align*}
$$

Obviously, the second term in the right part of the last equation can be obtained as the qt-th power of the element

$$\frac{t^{j+1}}{a_1(j+1)+1}.$$
tions of the following rows of submatrices $h_1, h_2, \ldots, h_{q-1}$:
\[
\begin{bmatrix}
\alpha_i^{-j} & \alpha_i^{-j} & \cdots & \alpha_i^{-j} \\
\alpha_i^{-j+1} & \alpha_i^{-j+1} & \cdots & \alpha_i^{-j+1} \\
\alpha_i^{-j+2} & \alpha_i^{-j+2} & \cdots & \alpha_i^{-j+2} \\
\alpha_i^{-n-1} & \alpha_i^{-n-1} & \cdots & \alpha_i^{-n-1} \\
\end{bmatrix}
\]

It means that the number of q-ary rows equal to $\theta_{q-1} = (q - 1)2l$ can be additionally deleted from the submatrix h_1. Thus, we get the following estimation for the dimension of the cumulative-separable (L, G)-code with $G^{(q)}_6(x) = (x^{d+1} + 1)^q$:
\[
k_6^{(q)} \geq n - 2l \left((q - 1)(t + 1) - \frac{(q-1)(q^3)}{2} \right)
\]
or
\[
k_6^{(q)} \geq t^2 - t - 1 - 2l(q - 1) \left(t - \frac{3}{2} - \frac{q - 2}{2} \right).
\]

It should be noted that the previously constructed boundaries for the dimensions of binary and q-ary separable codes of this subclass are obtained from the above boundary as a special case. By using the technique of embedded code constructing described in [6] for the ternary cumulative-separable $\Gamma_0(L_6, G^{(3)}_6)$-code with $L = \{GF(3^4) \mid \alpha : G_6(\alpha) = 0\}$ and the Goppa polynomial $G^{(3)}_6(x) = (x^{10} - 1)^3$ we can obtain the following collection of codes(From Table III).

Moreover, the best codes from the known ternary block linear ones [3] are present in this collection.

REFERENCES

[1] V. D. Goppa, "A new class of linear error correcting codes", *Probl. Inform. Transm.*, vol. 6, no. 3, pp. 24-30, 1970.

[2] F.J. MacWilliams and N. J.A. Sloane, *The Theory of Error-Correcting Codes*, Amsterdam, Netherlands, North-Holland, 1977.

[3] A.Brouwer, Bounds on the minimal distance of linear code, http://www.codetables.de/

[4] S. Bezzateev and N. Shekhunova, "Chain of separable binary Goppa codes and their minimal distance", *IEEE Trans. on Inf. Theory*, vol 54, no. 12, pp.5773-5778, 2008.

[5] S.V. Bezzateev and N.A.Shekhunova, "Special classes of Goppa codes with improved estimations for parameters", *Probl. Inform. Transm.*, (to appear 2010).

[6] S.V. Bezzateev and N.A.Shekhunova, "On the subcodes of one class Goppa codes", in *Proc. Intern. Workshop Algebraic and Combinatorial Coding Theory ACCT-1*, Sept.1988, pp.143-146.
TABLE I
CUMULATIVE-SEPARABLE CODES

\(i \)	\(\Gamma_n^{(1)} \)	\(\Gamma_n^{(2)} \)	\(\Gamma_n^{(3)} \)	\(\Gamma_n^{(4)} \)	\(\Gamma_n^{(5)} \)	\(\Gamma_n^{(6)} \)
\(\leq q - 2 \)	\(n_1 = n_1^* + 1 \)	\(n_2 = n_3 = n_3^* + 1 \)	\(n_4 = n_4^* = n_5 \)	\(n_5 = n_6 = t - 1 - \)	\(k_1^{(i)} = k_1^{*(i)} + 1 \), \(d_1^{(i)} = i(t - 1) + 1 \)	\(k_2^{(i)} = k_2^{*(i)} + 1 \), \(d_2^{(i)} = i(t - 1) + 1 \)
\(q - q - 1 \)	\(n_1^* = n_2 \)	\(n_2 = n_3^* = n_3 \)	\(n_4 = n_4^* = n_4 \)	\(n_5 = n_6 = t - 1 - \)	\(k_2^{(i)} = k_3^{*(i)} = k_3^{(q)} \), \(d_2^{(i)} = d_3^{(q)} = d_3^{(i)} \)	\(k_3^{(i)} = k_4^{(i)} \), \(d_3^{(i)} = d_4^{(i)} \)

Fig. 1. Embedded and equivalent cumulative-separable codes

TABLE III
SEQUENCE OF EMBEDDED TERNARY CODES DERIVED FROM THE CODE \(\Gamma_6(L_6, G_6^{(3)}) \), \(G_6^{(3)} = (x^{10} - 1)^3 \)

\(i \)	\(G_6^{(3)} \)	\(n \)	\(k \)	\(d \)
0	\((x^{10} - 1)^3 \)	71	16	31
1	\((x^{10} - 1)^3(x - 1) \)	71	15	33
4	\((x^{10} - 1)^3(x - 1)^4 \)	71	11	35
10	\((x^{10} - 1)^3(x - 1)^{10} \)	71	7	42
13	\((x^{10} - 1)^3(x - 1)^{13} \)	71	5	44