Towards Reverse Vaccinology for Bovine TB: High Throughput Expression of Full Length Recombinant *Mycobacterium bovis* Proteins

Deepa Paliwal¹, Michelle Thom², Areej Hussein¹, Divyashree Ravishankar¹, Alex Wilkes¹, Bryan Charleston² and Ian M. Jones¹*

¹School of Biological Sciences, University of Reading, Reading, United Kingdom, ²The Pirbright Institute, Woking, United Kingdom

Bovine tuberculosis caused by *Mycobacterium bovis*, is a significant global pathogen causing economic loss in livestock and zoonotic TB in man. Several vaccine approaches are in development including reverse vaccinology which uses an unbiased approach to select open reading frames (ORF) of potential vaccine candidates, produce them as recombinant proteins and assesses their immunogenicity by direct immunization. To provide feasibility data for this approach we have cloned and expressed 123 ORFs from the *M. bovis* genome, using a mixture of *E. coli* and insect cell expression. We used a concatenated open reading frames design to reduce the number of clones required and single chain fusion proteins for protein pairs known to interact, such as the members of the PPE-PE family. Over 60% of clones showed soluble expression in one or the other host and most allowed rapid purification of the tagged bTB protein from the host cell background. The catalogue of recombinant proteins represents a resource that may be suitable for test immunisations in the development of an effective bTB vaccine.

Keywords: bovine tuberculosis, *Mycobacterium bovis*, genome, open reading frame, vaccine, expression, protein purification, PPE

INTRODUCTION

Bovine tuberculosis (bTB) is a major disease throughout the world and is particularly prominent in Africa and parts of Asia. While many developed countries have reduced or eliminated bTB from their cattle populations, major hotspots remain in Europe, America, Canada and New Zealand (Smith, 2012). Phylogenetic analysis of >1,000 non-redundant *M. bovis* genomes has suggested divergence from a last common ancestor with *M. caprae* ~ 3,500 years ago with spread since aided by animal trade (Zimpel et al., 2020). Control is effected by large scale cattle testing and animals scoring positive are subsequently culled, with an acknowledged impact on sustainability and an increased risk of human infection (Chambers et al., 2014). Various control strategies have been implemented, including those with limited public appeal (Bielby et al., 2014), but it is generally accepted that control in the longer term will require the development of an efficacious cattle vaccine. Multiple potential vaccines have been described (Vordermeier and Hewinson, 2006; Kaufmann et al., 2017; McShane, 2019) but the lead contender for early use remains *Bacillus* Calmette-Guerin (BCG), the
cornerstone of human vaccine programmes. However, many of the proteins present in the purified protein derivative (PPD) used in herd screening programs are also present in BCG leading to BCG immunised animals scoring positive, a complication if immunisation and screening occur concurrently. To overcome this, some protein markers, either missing or non-immunogenic in BCG, have been developed to differentiate between infected and vaccinated status (Whelan et al., 2010; Vordermeier et al., 2011; Srinivasan et al., 2019). An alternate approach, to develop a BCG based vaccine that does not lead to positivity in the screening test has also been investigated (Chandran et al., 2019). Although BCG derives from M. bovis, comparative genomics has revealed genomic losses in the variously passaged BCG stocks when compared to ancestral stocks (Zhang et al., 2013) suggesting that some BCG vaccine stocks may be incapable of providing suitable levels of protection unless supplemented with additional proteins representing the missing ORFs. A number of candidates have been investigated in this respect, including Ag85, ESAT-6, CFP-10 and members of the PPE family (Li et al., 2015; Dai et al., 2017; Tkachuk et al., 2017; Stylianou et al., 2018) although generally as single antigens rather than as a mixture of candidates. As a result, the case has also been made that current candidate vaccines lack diversity and that a broader range of proteins should be considered (Fletcher and Schrager, 2016).

Reverse vaccinology (Rappuoli, 2001; Serruto et al., 2012; Rappuoli et al., 2016) assumes that molecules on the cell surface of a target organism include those that may act as an effective vaccine even if they do not raise a significant serum response following natural infection. The availability of whole bacterial genomes, suitable bioinformatics and high throughput protein expression technologies allows this concept to be tested, with some notable successes (Muruato et al., 2017; Masignani et al., 2019). The feasibility of this approach is in part determined by how many and how easily bTB proteins can be expressed and purified. For Mycobacterium tuberculosis, progress in multiple protein expression has been made by the TB Structural Genomics Consortium, although the proteins selected were based primarily on their suitability as drug targets (Chim et al., 2011). To assess feasibility for proteins that might be targeted for vaccine use and to provide such proteins for testing we report a high throughput expression approach (Aricescu et al., 2006; Nettleship et al., 2010; Bird et al., 2014) to the expression of many full-length Mycobacterium bovis ORFs.

MATERIALS AND METHODS

Selection of Vaccine Candidates
Candidate bTB proteins were selected by reference to lists derived from published bioinformatics approaches (e.g. (He et al., 2010; Monterrubio-López et al., 2015)) as well as current web sources (Kapopoulou et al., 2011; Dhanda et al., 2016). Throughout the study the genome of Mycobacterium bovis strain AF2122/97 was used as the reference strain. Proteins with a range of putative functions related to vaccine use were included, for example roles in virulence, predicted surface expression, previous use as a candidate vaccine and roles in the immune response and immune evasion.

Molecular Cloning
Sequences representing the candidate ORFs were ordered as custom designed double stranded DNA fragments (Integrated DNA Technologies, Belgium). Sequence predicted to encode transmembrane domains was removed and synthetic genes were codon optimised for Spodoptera frugiperda (Sf9) or E. coli to maximise expression in the relevant host. All DNA fragments were flanked with 18 base pairs of sequence homologous to the vector pTriEx 1.1 (EMD Biosciences), suitable for expression in E. coli under control of the T7 promoter or insect cells under control of the baculovirus very late P10 promoter. All clones were generated by Gibson assembly (Gibson et al., 2009). The sequence designs were such that translation initiated at the bTB ORF initiation codon and fused the C-terminus with the histidine tag present in the vector, except when otherwise indicated. The pTriEx1.1 cloning vector was linearised by digestion with restriction enzymes XhoI and NcoI (Thermo Fisher Scientific, Paisley, United Kingdom) and 20 ng gene fragment was assembled into 50 ng linearized pTriEx-1.1 cloning vector using the NEBuilder HiFi DNA Assembly Protocol (NEB, United Kingdom). Clones were isolated following transformation of Stellar competent cells (Takara Bio, France) with confirmation by colony PCR followed by DNA sequencing.

E. Coli Expression
The default strain for protein expression in E. coli was SoluBL21 (Kim et al., 2015). Alternate hosts were E. coli T7 Express lysis (NEB) and LOBSTR (Andersen et al., 2013) which were used for low yielding constructs. Initial screening was achieved with cultures of ~20 ml and scaled according to the outcome. Cells were grown at 37°C to an OD600 = 0.6 and induced by the addition of IPTG to 0.1 mM. After induction, growth was continued for 4 h at 37°C. Cultures were harvested by centrifugation at 4,000×g for 15 min and disrupted for gel analysis or purification as required. Solubility was determined after lysis in 1% Triton-X detergent and gel analysis of the soluble and pellet fractions. Poor solubility was corrected, where possible, with low temperature induction (16°C) or by varying the IPTG concentration used for induction. Intractable expression was abandoned in favour of alternate constructs or the alternate host.

Recombinant Baculovirus Expression
Recombinant baculoviruses were produced by co-transfection of Sf9 cells with transfer vectors and linearised baculovirus DNA as described (Porta et al., 2013). Transfections were done in 6 well tissue culture plates at a monolayer confluency of 50%. Viruses were passaged when significant cytopathic effect was observed and viral stocks were amplified to high titre, typically 3 passages, prior to use for infection and protein detection. All viral stocks were produced in Sf9 cells. For protein expression, 100 ml suspension cultures of AoTri8 cells (Hashimoto et al., 2012) were infected at a density of 2 × 10⁶ per ml with 10 ml of high titre
(<10^7 pfu per ml) virus stock and the culture continued for 3 days. Cells were harvested by centrifugation and processed as described.

SDS PAGE

Protein samples were prepared using NuPAGE loading buffer (Fisher Scientific UK Ltd., United Kingdom) and heated to 98°C for 10 min before loading the gel. Proteins were separated by SDS-PAGE using 4–12% precast Tris-Glycine SDS polyacrylamide gels (Fisher Scientific UK Ltd., United Kingdom) for 30 min at 200 V. SDS-PAGE loading used the equivalent of 50 µL of bacterial culture or 5 × 10^4 insect cells per lane of a 10 lane, 10 cm gel. After electrophoresis, gels were subjected to either Coomassie Brilliant Blue R250 staining or transferred to a polyvinylidene difluoride (PVDF) membrane for western blot analysis.

Western Blot

Proteins were transferred electrophoretically to PVDF membranes (Immobilon *, Merck, Germany) by semi-dry transfer. Membranes were blocked with Protein-Free T20 (TBS) Blocking Buffer (Fisher Scientific UK Ltd., United Kingdom) for 1 h. All subsequent incubations and washes were done in Tris-buffer saline containing 0.1% Tween 80 (TBST). Membranes were incubated with monoclonal Anti-6X His tag® antibody conjugated to HRP (Abcam, United Kingdom) for 1 h. All subsequent incubations and washes were done in Tris-buffer saline containing 0.1% Tween 80. Membranes were incubated with Protein-Free T20 (TBS) Blocking Buffer (Fisher Scientific UK Ltd., United Kingdom) for 30 min at 200 V. SDS-PAGE loading used the equivalent of 50 µL of bacterial culture or 5 × 10^4 insect cells per lane of a 10 lane, 10 cm gel. After electrophoresis, gels were subjected to either Coomassie Brilliant Blue R250 staining or transferred to a polyvinylidene difluoride (PVDF) membrane for western blot analysis.

RESULTS

Identification and Generation of Sequences Encoding Putative Vaccine Candidates

The selection of candidates for this study was based on one or more vaccine related properties, viz. their predicted biological function (cell surface protein, virulence or adhesion), predicted immunogenicity, previous use as a candidate vaccine or sequence conservation in multiple mycobacterial genomes. From these considerations the final ORFs selected were grouped into seven loose descriptive categories (Table 1). For ORFs representing complete proteins with a predicted molecular mass of greater than ~15 kDa, synthetic DNA was produced to the entire coding region with flanking regions that ensured a unique initiator ATG downstream of the Shine-Dalgarno sequence and fusion with a sequence encoding polyhistidine at the carboxyl terminus of the expressed protein, both features of the vector used (Figure 1A). If a signal peptide was present in the original M. bovis ORF, assessed by routine submission to the SigP server (Nielsen et al., 2019), it was changed to that of honeybee melittin, known to be efficiently processed in insect cells (Tessier et al., 1991). Sequences predicted to encode transmembrane domains were deleted. In cases where expression of the recombinant protein was either poor or, more usually, insoluble, the design was changed to incorporate an N-terminal polyhistidine sequence after the initiator codon and a stop codon prior to the vector encoded polyhistidine sequence (Figure 1A).

More than half of the expressed proteins that were problematic in recombinant form with a C-terminal polyhistidine were improved by this strategy, as described below. For proteins that were <15 kDa, or for proteins whose database entry did not contain an initiator methionine, for example some members of the esx family, sequences were concatenated before synthesis so that several ORFs were expressed together, connected by a Gly-Ser linker of 7 residues (Figure 1A). Similarly, for protein pairs such as the proline-proline-glutamate (PPE) and proline-glutamate (PE) complexes, the matching pair was synthesised as a single chain also connected by a flexible linker. The available crystal structures of such complexes show the C-terminus of the PPE partner lying close to the N-terminus of the paired PE (Strong et al., 2006), a distance easily spanned by the added linker. Some M. bovis ORFs were persistently difficult to express in either E. coli or insect cells and in these cases workaround strategies involved fusion with solubility tags including GFP, SUMO or the B1 domain of streptococcal protein G (GB1) (Lindhout et al., 2003; Pengelley et al., 2006; Lee et al., 2008). Some of these strategies improved expression or purification for some of the ORFs but none provided a universal route to improvement.

Protein Expression and Purification

To maximise the possibility of efficient expression of a diverse range of selected M. bovis ORFs as soluble proteins, two different expression systems were used, E. coli and recombinant baculoviruses. Screening of the clones or recombinant viruses...
Cell wall and cell processes	Expression host	Soluble expression	Purification yield
Mb0923 Outer membrane protein Omp A	E. coli & Insect	+++ +++++	+++++
Mb0485 Iron-regulated heparin binding hemagglutinin hibA	E. coli & Insect	+++ +++++	+++++
Mb0419c Probable glutamine-binding lipoprotein glnh	E. coli	++ +++++	+++++
Mb3840 Exported repetitive protein precursor PrrG	E. coli & Insect	+++ +++++	+++++
Mb0348 Isoniazid inducible gene protein inB	E. coli & Insect	+++ +++++	+++++
Mb2293 Probable lipoprotein lipN	E. coli	+++ +++++	+++++
Mb2807c Probable lipoprotein lipU	Insect	+++ +++++	+++++
Mb0598c Probable lipoprotein lipN	E. coli & Insect	+++ +++++	+++++
Mb1260 Probable lipoprotein lipX	Insect	+++ +++++	+++++
Mb1568c Probable lipoprotein lip	E. coli & Insect	+++ +++++	+++++
Mb1891c Alanine and proline rich secreted protein APA	E. coli & Insect	+++ +++++	+++++
Mb3840 6 kda early secretory antigenic target esxa (Esat-6)	E. coli & Insect	+++ +++++	+++++
Mb3904 10 kda culture filtrate antigen esxb (cfp10)	E. coli & Insect	+++ +++++	+++++
Mb0348 Low molecular weight antigen 7 esx7 (10 kda antigen) (cfp-7)	Insect	+++ +++++	+++++
Mb2295 Esat-6 like protein esxg	E. coli & Insect	+++ +++++	+++++
Mb1229 Esat-6 like protein esxh (Esat-6 like protein 3)	E. coli & Insect	+++ +++++	+++++
Mb1230 Putative Esat-6 like protein esxI (Esat-6 like protein 4)	Insect	+++ +++++	+++++
Mb1821 Putative Esat-6 like protein esxo (Esat-6 like protein 5)	Insect	+++ +++++	+++++
Mb3475c Esat-6 like protein esxj	E. coli & Insect	+++ +++++	+++++
Mb3911c Proteolytic substrate protein espb	E. coli & Insect	++ +++++	+++++
Mb0674 Possible ribonucleotide-transport ATP-binding protein	E. coli & Insect	+++ +++++	+++++
Mb1036 Probable resuscitation-promoting factor rpfb	E. coli & Insect	++ +++++	+++++
Mb1445 Aminoglycosides/tetracycline-transport integral membrane protein	E. coli & Insect	++ +++++	+++++
Mb3070 Probable Fehll-dichotrye-binding periplasmic lipoprotein tecb	E. coli	++ +++++	+++++
Mb3338 Acid phosphatase sapm	E. coli & Insect	++ +++++	+++++
Mb2653c Probable conserved transmembrane protein	E. coli & Insect	++ +++++	+++++
Mb3646c Esx-1 secretion-associated protein, espA	E. coli & Insect	++ +++++	+++++
Mb3645c Esx-1 secretion-associated protein espc	E. coli & Insect	++ +++++	+++++
Mb3644c ESX-1 secretion-associated protein espd	E. coli & Insect	++ +++++	+++++
Mb2002c Immunogenic protein mpt64 (antigen mpt64/mpb64)	E. coli & Insect	+++ +++++	+++++
Mb1762 Probable conserved transmembrane protein	E. coli & Insect	0 +++++	+++++

Information pathway related proteins	Expression host	Soluble expression	Purification yield
Mb0055 Single-strand binding protein Ssb	E. coli & Insect	+ +++++	+++++
Mb0671 50s ribosomal protein 1/12 rpl (sa1)	E. coli & Insect	+++ +++++	+++++
Mb0704 Probable iron-regulated elongation factor tu tuf	E. coli & Insect	++ +++++	+++++
Mb0670 50s ribosomal protein r10 rplj	E. coli & Insect	+++ +++++	+++++
Mb1656 30s ribosomal protein s1 rpsA	E. coli & Insect	+++ +++++	+++++

Virulence related proteins	Expression host	Soluble expression	Purification yield
Mb3441 Possible antitoxin VapB47	Insect	+++ +++++	+++++
Mb2891 Toxin RelG	E. coli & Insect	+++ +++++	+++++

PE/PPE family proteins	Expression host	Soluble expression	Purification yield
Mb0248 PE family PE26	Insect	+++ +++++	+++++
Rv6622c PE family protein PE32	E. coli & Insect	+++ +++++	+++++
Mb0293 PE family protein PE5	E. coli & Insect	+++ +++++	+++++
Mb0294 PE family protein PE4	E. coli & Insect	+++ +++++	+++++
Mb3902 PE family-related protein PE35	E. coli & Insect	+++ +++++	+++++
Mb3922c PE family protein PE36	E. coli	+++ +++++	+++++
Mb3504 PE family protein PE31	Insect	+++ +++++	+++++
Mb0940c PE family protein PE7	Insect	+++ +++++	+++++
Mb1835 PE family protein PE20	Insect	+++ +++++	+++++
Mb1421 PE family protein PE15	E. coli & Insect	+++ +++++	+++++
Mb3056 PE family protein PE60	E. coli & Insect	+++ +++++	+++++
Mb1069c PE family protein PE 8	E. coli & Insect	+++ +++++	+++++
Mb2457c PE family protein PE 25	E. coli & Insect	+++ +++++	+++++
Mb1202c PE family protein	E. coli & Insect	+++ +++++	+++++
Mb3903 PPE family protein PPE88	E. coli & Insect	+++ +++++	+++++
Mb3921c PPE family-related protein PPE69	E. coli & Insect	+++ +++++	+++++
Mb0399c PPE family protein PPE 14	E. coli & Insect	+++ +++++	+++++
Mb1836 PPE family protein PPE 31	E. coli & Insect	+++ +++++	+++++
Mb1068c PPE family protein PPE 15	E. coli & Insect	+++ +++++	+++++
Mb1422 PPE family protein PPE 20	Insect	+++ +++++	+++++
Mb2456c PPE family protein PPE41	E. coli & Insect	+++ +++++	+++++
Mb1228 PPE family protein PPE 18	E. coli & Insect	+++ +++++	+++++

(Continued on following page)
Description	Expression host	Soluble expression	Purification yield
Mb1200c PPE17 (part)	E. coli & Insect	+++	+++
Mb1201c PPE 17 (part)	E. coli & Insect	+++	+++
Intermediate metabolism & respiration related proteins			
Mb2371 Bacterioferritin BfrB	E. coli	+++	+++
Mb2981 Possible glycerol transferase	E. coli & Insect	++	-
Mb0130 probable serine protease pepA	E. coli & Insect	++	+
Mb1272 Probable malate dehydrogenase mdh	E. coli & Insect	++	-
Mb0977 Probable succinyl-CoA synthetase (a chain) sucD	E. coli & Insect	++	+
Mb3652 Inorganic pyrophosphatase PPA	E. coli & Insect	++	-
Mb1129c Fructose 1,6-bisphosphatase gfpX	Insect	++	-
Mb3412 Diterpene synthase	E. coli & Insect	++	++
Conserved hypotheticals & unknown proteins			
Mb2315c Hypothetical protein	Insect	+	-
Mb3935c Putative Esat-6 like protein exs (Esat-6 like protein 13)	E. coli & Insect	+++	+++
Mb3920c Possible Esat-6 like protein exsd	E. coli & Insect	+++	+++
Mb3934c Putative Esat-6 like protein exse (Esat-6 like protein 12)	E. coli & Insect	+++	+++
Mb1066c Putative Esat-6 like protein exst (Esat-6 like protein 1)	Insect	+++	+++
Mb1067c Esat-6 like protein exy	E. coli & Insect	+++	+++
Mb2375c Putative Esat-6 like protein exs0 (Esat-6 like protein 6)	Insect	+	-
Mb3042c Esat-6 like protein exqs (Esat-6 like protein 8)	Insect	+	-
Mb3045c Secreted Esat-6 like protein exsr (Esat-6 like protein 9)	E. coli & Insect	+++	+++
Mb3046c Esat-6 like protein exes	E. coli & Insect	+++	+++
Mb3474c Putative Esat-6 like protein exst (Esat-6 like protein 11)	Insect	+	-
Mb3919c Esat-6 like protein exsc (Esat-6 like protein 1)	E. coli & Insect	+++	+++
Mb0959 Periplasmic phosphate-binding lipoprotein PstS1	E. coli & Insect	+++	+++
Mb1858 Conserved protein with the domain, gara	E. coli & Insect	++	+
Mb1868c Malate synthase G GcbB	E. coli & Insect	++	+
Mb1943c Catalase-peroxidase-peroxynitrite T KatG	E. coli & Insect	++	+
Mb2006c Probable cutinase precursor CPF21	E. coli & Insect	+++	+++
Mb2057c Stress protein induced by anoxia	E. coli & Insect	+	+
Mb2244 Glutamine synthetase GlnA	E. coli & Insect	+	+
Mb2898c Cell surface lipoprotein MptS3 (lipoprotein P23)	E. coli & Insect	+++	+++
Mb2900 Major secreted immunogenic protein Mpt70	E. coli & Insect	++	+
Mb0169 Conserved protein TB18.5	E. coli & Insect	+	-
Mb0418c Serine/threonine-protein kinase PknG	E. coli & Insect	++	+
Mb0477c Probable resuscitation-promoting factor RpfE	E. coli & Insect	++	-
Mb1319 Conserved protein	E. coli & Insect	++	+
Mb1596 Involved in toxin biosynthesis	E. coli & Insect	++	+
Mb2656 Universal stress protein family protein TB31.7	E. coli & Insect	++	+
Mb3046c Esat-6 like protein ExsS	E. coli & Insect	++	+
Mb2982c Possible glycerol transferase	E. coli & Insect	++	+
Mb0455c Cyclopropane fatty acid synthase	E. coli & Insect	+++	++
Mb2054c pfkb	E. coli & Insect	+++	+++
Mb3157c devR	E. coli & Insect	+++	+++
Mb2970c Probable conserved lipoprotein LppX	E. coli & Insect	++	++
Mb3891 Possible resuscitation-promoting factor rpfA	E. coli & Insect	+++	+++
Mb1916 Probable resuscitation-promoting factor rpfC	E. coli & Insect	++	++
Mb2410 Probable resuscitation-promoting factor rpfD	E. coli & Insect	++	++
Mb3274c Two component sensory transduction transcriptional regulatory protein mtrA	E. coli & Insect	+++	+++
Mb3463c Conserved protein	E. coli & Insect	+++	+++
Mb3641 Hypothetical arginine and proline rich protein	E. coli & Insect	++	-
Mb0062 Hypothetical protein	E. coli & Insect	++	+
Mb1843 Conserved protein	E. coli & Insect	++	+
Mb3743c Conserved protein	E. coli & Insect	+++	+++
Mb1833c Conserved protein	Insect	+++	+++
Mb0854c Conserved protein	E. coli & Insect	+++	+++
Mb2058 Conserved protein Acg	E. coli & Insect	++	-
Mb337c hypothetical protein	E. coli & Insect	++	++
Mb2660c Conserved protein	E. coli & Insect	++	+
Mb2859 Hypoxic response protein 1 hrp1	E. coli	+++	+++
Mb3707 Probable bifunctional membrane-associated penicillin-binding protein 1a/1b poma2	E. coli & Insect	++	+
Mb0014c Transmembrane Serine/threonine protein Kinase-B (pckb)	E. coli & Insect	+++	+++
Mb0979 Probable conserved Transmembrane protein	E. coli & Insect	++	+++
Mb0448 GROEL protein-2	E. coli & Insect	++	+++

Soluble expression levels: +++ - strongest band on SDS-PAGE; ++ - among the stronger bands, + - visible band, – no visible band. Purification yields: +++ -1 mg/L, ++ -0.1 mg/L, + -<0.1 mg/L, - not purified. Greyed boxes required wash and elution buffers with 0.1% sodium dodecyl.
was done in small scale cultures by Western blot with a directly conjugated antibody recognizing the polyhistidine tag (Figure 1B). The default result was a band of the molecular mass predicted for the translated protein but occasionally the band identified by the Western blot had bands additional to the predicted mass (marked in Figure 2A). We assumed smaller sizes were the result of protein degradation, with the residual C-terminal His tagged fragment being detected, whereas larger proteins were post-translationally modified or oligomeric. Notably, the concatenated PPE-PE complexes gave rise to stable products of the predicted molecular mass (marked in Figure 2B) as did the Esx concatenates (marked in Figure 2A), some of which have been reported elsewhere (e.g., (Li et al., 2016; Mearns et al., 2017)). Concatenated constructs Mb1036_Mb1129c, Mb1272_Mb2477c, Mb3070_Mb3641 and Mb3338_Mb3644c also showed predominantly single bands at the predicted molecular mass when probed with an anti-His antibody (marked in Figure 2B).

Clones positive for expression by western blot were assessed for purification by pull-down from detergent lysates using IMAC magnetic beads and the eluates assessed directly by SDS-PAGE and gel staining (Figure 3). The default outcome was a predominant band of the predicted molecular mass that also agreed with the mass identified by western blot with an anti-His antibody. The concatenated forms of the Esx proteins and many of the similarly linked PPE-PE fusions purified from the soluble fraction as single band products indicating little if any breakdown of the fusion protein at the linker junction (Figure 3B). For example, purified EsxRST and EsxU (Figure 3, panel B, lanes 7 and 8) match those blotted (Figure 2, panel A, lanes 6 and 8) and PPE-PE fusions PPE41_PE25, PPE14_PE7, PPE15_PE8 and PPE20_PE15 (Figure 3, panel B, lanes 10, 14, 16 and 17) matched the proteins identified by blot in crude lysates (Figure 2, panel B, lanes 4, 7, 1 and 2). Sequence concatenation as a viable strategy to reduce clone numbers and to produce single polypeptide versions of multimeric bTB protein complexes, therefore appears feasible, as has been shown for other proteins (reviewed in (Matsushima et al., 2008; van Rosmalen et al., 2017)). Overall, the number of recombinant proteins purified directly without any form of optimisation was ~50% of the number of clones tested (Table 1), low expression levels or insolubility accounting for the majority of the failures.

Problematic Clones

To improve the overall recombinant bTB protein recovery rate a limited number of ORF sequences were re-cloned as N-terminal His tagged variants and purification repeated. Cell wall proteins (Mb3338 and Mb3070), conserved hypothetical (Mb0854), ribosomal protein (Mb1656), three metabolic proteins (Mb0130, Mb3652 and Mb3871), and six proteins of unknown function (Mb2898, Mb2900, Mb2656, Mb1319, Mb1228 and Mb2244) were all rescued to purified soluble proteins by this approach (Figures 4A,B). Others, such as outer membrane proteins (Mb3644, Mb1445 and Mb2653) remained unworkable. These proteins may require folding partners to be co-expressed in order to be solubilised, as was the case for the
original expression trials of PPE-PE family members (Strong et al., 2006).

For some problematic proteins the case for their inclusion on grounds of likely candidacy as a vaccine component was such that several alternate forms of expression were assessed. EspA (Mb3646c) has been suggested to be part, with EspC, of the type VII secretion apparatus (discussed in (Ates and Brosch, 2017)) and an obvious candidate for inclusion (Chiliza et al., 2017). Recombinant EspC has been described (Lou et al., 2017; Salemi et al., 2020) and used diagnostically (Yan et al., 2018; Salemi et al., 2020; Villar-Hernández et al., 2020), but EspA has proven more difficult (Garces et al., 2010). EspA expression as either a C- or N-terminally His tagged protein was not successful and mutation of the single cysteine reported to drive dimer formation (Garces et al., 2010) had no effect. Fusion of EspA with EspC at either the N- or C-termini via a Gly-Ser linker did not improve expression but, of
a number of enhancement tags investigated (GFP, SUMO and GB1), fusion of GFP to the N-terminus rescued detectable expression at the predicted molecular mass in both E. coli and insect cells and enabled modest levels to be purified (Figure 5A). Similarly, adding GB1 as an N-terminal fusion tag rescued expression of outer membrane protein Mb1762 and two unknown proteins, Mb1916 and Mb2410, allowing purification to reasonable levels, albeit with contaminating host derived proteins (Figure 5B). To assess if problematic expression was the result of any common feature in the proteins concerned, we inspected the AlphaFold predicted structures (Jumper et al., 2021) of the full length problematic proteins (Jumper et al., 2021) (Table 2). Of the 20 candidates analysed, only 4, Mb2244, Mb2656, Mb3652 and Mb3871 had available full length structures but in each case the proteins concerned were multimeric, some to a very high degree (Mb3871 is a 24mer), which may have limited expression here. Five proteins, Mb1656, Mb1916c, Mb2410, Mb2898 and Mb2900 had partial structures obtained with protein fragments suggesting that full length protein expression was not possible, and a further 5, Mb0130, Mb1228, Mb1319, Mb3070 and Mb3338, had fragment structures predicted on the basis of homology with other proteins whose structures have been solved. Of these 10 proteins, AlphaFold predictions suggested unstructured termini, predominantly at the N-terminus, as a likely limitation to stable protein expression. Unstructured termini, also with a predominance of unstructured N-termini, were associated with the 6 proteins (Mb0854, Mb1445, Mb1762, Mb2653, Mb3644 and Mb3646c) with no available structure, only 3 of which were recoverable here. Submission of the 20 candidate to the FuzDrop server (Hatos et al., 2022) showed a high score for likely aggregation and liquid-liquid phase separation associated with about half of the proteins for which there was either no structure or only a partial structure available (Table 2, indicated). Extensive protein engineering to reduce these scores might be necessary if these proteins were to be produced at a scale and purity required for a vaccine candidate.

DISCUSSION

Bovine tuberculosis (bTB) is a significant risk to animal health and welfare with estimates of >50 million cattle infected...
candidates for (Masignani et al., 2019) and has been used to select vaccine investigated. The reverse vaccinology concept has provided (Vordermeier et al., 2009; Dean et al., 2014) have been Maue et al., 2007) and virus-vectored vaccines (Waters et al., 2007; Blanco et al., 2013), DNA vaccines which is safe and inexpensive, shows varying efficacies (Francis, 1948; Berggren, 1981; Rodrigues and Smith, 1990) but can reduce spread in cattle indicating that control via vaccination is feasible (Hope et al., 2005; Lopez-Valencia et al., 2010; Waters et al., 2012). However, as up to 80% of BCG-vaccinated cattle may react positively to the tuberculin skin test at 6 months post-vaccination (Hope et al., 2005; Lopez-Valencia et al., 2010; Waters et al., 2011). To test the feasibility for this approach we cloned a combination of prokaryotic and eukaryotic expression. The successful expression or purification of any expressed protein as some of these are considered to be potential vaccine candidates (Stylianou et al., 2018), may be suitable additions. Currently, those candidate TB vaccines that contain PPE sequences, M72 and ID93, encode only fragments (Brennan, 2017). We did not investigate post-translational modification of any expressed protein as some of these are reportedly Mycobacteria specific (van Els et al., 2014) and may not occur in either of the expression hosts used although we noted no particular association with expression outcome. For example the heparin binding hemagglutinin (HBHA), which is methylated and toxic at high levels in Mycobacteria (Delogu et al., 2004), was well expression and purified from both E. coli and insect cells. We noted some trends in the outcome of expression, e.g. recovery of soluble rpf-like proteins (Kana et al., 2008; Mukamolova et al., 2010) was successful from the baculovirus system but not from E. coli where they were insoluble, and the combination of these two systems was beneficial overall, providing a success rate for the recovery of purified soluble protein of 67%, slightly higher than the 61% success rate reported during the development of Bexsero (Serruto et al., 2012; Masignani et al., 2019) and considerably higher than the ~33% success rate previously reported for Mycobacterial protein expression using solely E. coli (Bashiri and Baker, 2015). An AlphaFold analysis of the proteins where re-cloning with N-terminal tags benefited expression or purification revealed that unstructured termini were a common feature. A tendency to aggregation was also noted by LLPS predication software (Hatos et al., 2022) with the regions identified located in the unstructured regions.

TABLE 2 | Known and predicted structural features of difficult to express proteins.

M.bovis	M.tuberculosis	Structure yes (Y), No (N), homology based (H)	Swiss-model	Alphafold Feature	LLPS Probability
Mb0130	Rv1003	H (2–230 of 285)	3Kwp.1.B	None	0.19
Mb0854	Rv0831c	N		Unstructured N-term	0.2
Mb1228	Rv1196	H (2–175 of 391)	5xs6.1.B	Unstructured C-term	0.944
Mb1319	Rv1288	H (164–447 of 456)	6sx4.1.A	Buried N-term	0.19
Mb1445	Rv1410c	N		Unstructured C-term	0.136
Mb1656	Rv1630	Y (283–438 of 481)	4NNI	Unstructured N-term; highly extended structure	0.225
Mb1762	Rv1733c	N		Unstructured N-term	0.5
Mb1916c	Rv1884c	Y (88–153 of 176)	4OW1	Unstructured N-term	0.31
Mb2244	Rv2220	Y	1HTQ	None	0.19
Mb2410	Rv2389c	Y (50–127 of 154)	4ow1.1.A	Unstructured N-term	0.54
Mb2653	Rv2620c	N		None	0.22
Mb2656	Rv2623	Y	3CIS	None	0.19
Mb2998	Rv2873	Y (58–219 of 220)	1ny1.1.A	Unstructured N-term	0.63
Mb2900	Rv2875	Y (31–193 of 193)	1NYD	Unstructured N-term	0.17
Mb3070	Rv3044	H (68–362 of 359)	3tny.1.A	Unstructured N-term	0.76
Mb3338	Rv3310	H (5–284 of 299)	1e3c.1.B	Unstructured N-term	0.2
Mb3644	Rv3614c	N		Unstructured N-term	0.46
Mb3648c	Rv3616c	N		Unstructured C-term	0.57
Mb3652	Rv3628	Y	1.WOF	None	0.18
Mb3871	Rv3841	Y	7O6E	None	0.13

The list includes Exs protein family members, the PE and PPE families, a number of lipoproteins and others suggested to be potential vaccine candidates, including all of the targets predicted by the Vaxijen package (Monterrubio-López et al., 2015). A useful approach to reduce the number of clones required was to concatenate shorter ORFs or family partners together via flexible linkers. The successful expression and purification of many PPE-PE complexes (PPE4-PE5, PPE68-PE35, PPE69-PE36, PPE65-PE32, PPE41-PE25, PPE17-PE11, PPE15-PE8, PPE14-PE7, PPE31-PE20, PPE20-PE15 and PPE60-PE31) linked in this way was notable and was consistent with the PPE and PE partners folding to form a stable heterodimer (Strong et al., 2006). Many current TB vaccine candidates are fusions of several preselected ORFs (reviewed in (Dockrell, 2016)) and our data suggest that PPE-PE complexes, which have been noted as potential vaccine candidates (Stylianou et al., 2018), may be suitable additions. Currently, those candidate TB vaccines that contain PPE sequences, M72 and ID93, encode only fragments (Brennan, 2017). We did not investigate post-translational modification of any expressed protein as some of these are reportedly Mycobacteria specific (van Els et al., 2014) and may not occur in either of the expression hosts used although we noted no particular association with expression outcome. For example the heparin binding hemagglutinin (HBHA), which is methylated and toxic at high levels in Mycobacteria (Delogu et al., 2004), was well expression and purified from both E. coli and insect cells. We noted some trends in the outcome of expression, e.g. recovery of soluble rpf-like proteins (Kana et al., 2008; Mukamolova et al., 2010) was successful from the baculovirus system but not from E. coli where they were insoluble, and the combination of these two systems was beneficial overall, providing a success rate for the recovery of purified soluble protein of 67%, slightly higher than the 61% success rate reported during the development of Bexsero (Serruto et al., 2012; Masignani et al., 2019) and considerably higher than the ~33% success rate previously reported for Mycobacterial protein expression using solely E. coli (Bashiri and Baker, 2015). An AlphaFold analysis of the proteins where re-cloning with N-terminal tags benefited expression or purification revealed that unstructured termini were a common feature. A tendency to aggregation was also noted by LLPS predication software (Hatros et al., 2022) with the regions identified located in the unstructured regions.
Plausibly, the improvements in expression and recoverability for some of the targets that were achieved by appending an N-terminal tag stabilised an otherwise disordered structure, reducing aggregation or degradation. A GFP fusion to the sequence encoding full length EspA, where the C-terminal 100 aa of the 319 aa EspA protein sequence has no predictable structure, uniquely allowed expression and purification of this vaccine candidate. A revised HTP scheme (Figure 1) might include an AlphaFold and FuzDrop screen for disorder prior to the selection of the endpoints for translation. That some proteins scored highly for LLPS is interesting given that such regions are associated with stress and lipid homeostasis (Vendruscolo, 2022), both of which are hallmarks of TB infection (Chow and Cox, 2011). Notwithstanding these considerations, our data suggest that the production of a large library of full length bTB proteins for candidate vaccine use is feasible. Recently the protection afforded by intravenous vaccination with BCG was shown to be correlate with the IgM component of the antibody response, although no antigen specificity was reported (Divangahi et al., 2021; Irvine et al., 2021). In addition, a monoclonal antibody to a single protein, PstS1 (Mb0959 in Table 1, purified in Figure 4B), was inhibitory in a whole blood Mtb growth inhibition assay (Watson et al., 2021). Antibodies from animals immunised with proteins from the range we describe here might be used to identify other targets relevant for vaccine development against Bovine TB or the related Mycobacterium tuberculosis and Mycobacterium leprae.

REFERENCES

Andersen, K. R., Leksa, N. C., and Schwartz, T. U. (2013). OptimizedE. Coliexpression Strain LOBSTR Eliminates Common Contaminants from His—tag Purification. Proteins 81, 1857–1861. doi:10.1002/pro.24364
Argondizzo, A. P. C., da Mota, F. F., Pestana, C. P., Reis, J. N., de Miranda, A. B., Galler, R., et al. (2015). Identification of Proteins in Streptococcus Pneumoniae by Reverse Vaccinology and Genetic Diversity of These Proteins in Clinical Isolates. Appl. Biochem. Biotechnol. 175, 2124–2165. doi:10.1007/s12010-014-1375-3
Aricescu, A. R., Assenberg, R., Bill, R. M., Busso, D., Chang, V. T., Davis, S. J., et al. (2006). Eukaryotic Expression: Developments for Structural Proteomics. Acta Crystallogr. D. Biol. Crystal. 62, 1114–1124. doi:10.1107/S0907444906029805
Ates, L., S., and Brosch, R. (2017). Discovery of the Type VII ESX-1 Secretion Needle? Mol. Microbiol. 103, 7–12. doi:10.1111/mmi.13579
Bashiri, G., and Baker, E. N. (2015). Production of Recombinant Proteins in Mycobacterium Smegmatisfor Structural and Functional Studies. Protein Sci. 24, 1–10. doi:10.1002/pro.2584
Berggren, S. A. (1981). Field Experiment with BCG Vaccine in Malawi. Br. Veterinary J. 137, 88–94. doi:10.1016/0007-1935(73)91792-x
Bielby, J., Donnelly, C. A., Pope, L. C., Burke, T., and Woodroffe, R. (2014). Badger Responses to Small-Scale Culling May Compromise Targeted Control of Bovine Tuberculosis. Proc. Natl. Acad. Sci. U.S.A. 111, 9193–9198. doi:10.1073/pnas.1401503111
Bird, L. E., Rada, H., Flanagan, J., Diprose, J., Gilbert, R. J. C., and Owens, R. J. (2014). Application of In-Fusion Cloning for the Parallel Construction of Expression Vectors. Methods Mol. Biol. 1116, 209–234. doi:10.1007/978-1-62703-764-8_15
Blanco, F. C., Bianco, M. V., Garbaccio, S., Meikle, V., Gravissaco, M. J., Montenegro, V., et al. (2013). Mycobacterium bovis Δmc2Δ Double Deletion Mutant Protects Cattle against Challenge with Virulent M. Bovis. Tuberculosis 93, 363–372. doi:10.1016/j.tube.2013.02.004
Brennan, M. J. (2017). The Enigmatic PE/PPE Multigene Family of Mycobacteria and Tuberculosis Vaccination. Infect. Immun. 85. doi:10.1128/IAI.00969-16

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

DP, MT, DR, AH, and AW did the experimental work. BC and IJ obtained the funding, supervised the work and wrote the first draft. All authors contributed to the final manuscript.

FUNDING

Funding for this research was from the BBSRC grant number BB/N004698/1.

ACKNOWLEDGMENTS

We thank Helen McShane, Elena Stylianou, Rachel Tanner, Martin Vordermeier and Bernardo Villarreal-Ramos for constructive comments. The work was funded by the Biotechnology and Biological Sciences Research Council.

Cai, H., Tian, X., Hu, X. D., Li, S. X., Yu, D. H., and Zhu, Y. X. (2005). Combined DNA Vaccines Formulated Either in DDA or in Saline Protect Cattle from Mycobacterium bovis Infection. Vaccine 23, 3887–3895.10.1016/vaccine.2005.03.025
Chambers, M. A., Carter, S. P., Wilson, G. J., Jones, G., Brown, E., Hewinson, R. G., et al. (2014). Vaccination against Tuberculosis in Badgers and Cattle: an Overview of the Challenges, Developments and Current Research Priorities in Great Britain. Veterinary Rec. 175, 90–96. doi:10.1136/vr.102581
Chandran, A., Williams, K., Mendum, T., Stewart, G., Clark, S., Zadi, S., et al. (2019). Development of a Diagnostic Compatible BCG Vaccine against Bovine Tuberculosis. Sci. Rep. 9, 17791. doi:10.1038/s41598-019-54108-y
Chiliza, T. E., Pillay, M., and Pillay, B. (2017). Identification of Unique Essential Proteins from a Mycobacterium tuberculosis F15/LAM4/KZN Phage Secretome Library. Pathog. Dis. 75. doi:10.1093/femsdp/fsx001
Chim, N., Habel, J. E., Johnston, J. M., Krieger, I., Miiallu, L., Sankaranarayanan, R., et al. (2011). The TB Structural Genomics Consortium: a Decade of Progress. Tuberculosis 91, 155–172. doi:10.1016/j.tube.2010.11.009
Chow, E. D., and Cox, J. S. (2011). TB Lipidomics-The Final Frontier. Chem. Biol. 18, 1517–1518. doi:10.1016/j.chembiol.2011.12.003
Dai, F. Y., Wang, J. F., Gong, X. L., and Bao, L. (2017). Immunogenicity and Protective Efficacy of Recombinant Bacille Calmette-Guerin Strains Expressing mycobacterium Antigens Ag85A, CFP10, ESAT-6, GM-CSF and IL-12p70. Hum. Vacinn Immunother. 13, 1–8. doi:10.1016/j.hvim.2017.1279771
Dean, G., Whelan, A., Clifford, D., Salguero, F. J., Xing, Z., Gilbert, S., et al. (2014). Comparison of the Immunogenicity and Protection against Bovine Tuberculosis Following Immunization by BCG-Priming and Boosting with Adenovirus or Protein Based Vaccines. Vaccine 32, 1304–1310. doi:10.1016/j.vaccine.2013.11.045
Delogu, G., Bua, A., Pusceddu, C., Parra, M., Fadda, G., Brennan, M. J., et al. (2004). Expression and Purification of Recombinant Methylated HBHA inMycobacterium Smegmatis. FEMS Microbiol. Lett. 239, 33–39. doi:10.1016/j.femsle.2004.08.015
Dhanda, S. K., Vir, P., Singla, D., Gupta, S., Kumar, S., and Raghava, G. P. S. (2016). A Web-Based Platform for Designing Vaccines against Existing and Emerging Strains of Mycobacterium tuberculosis. PloS one 11, e0153771. doi:10.1371/journal.pone.0153771
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al. (2018). Towards New TB Vaccines: What Are the Challenges? *Pathogens*. 7, 4. doi:10.3390/ijms19040816

Fletcher, H. A., and Schrager, L. (2016). TB Vaccine Development and the End TB Strategy: Importance and Current Status. *Trans. R. Soc. Trop. Med. Hyg.* 110, 212–218. doi:10.1093/trstmh/trw016

Francis, J. (1948). Bovine Tuberculosis Including a Contrast with Human Tuberculosis. *Indian Med. Gazette* 83, 250–251.

Garcés, A., Atmakuri, K., Chase, M. R., Woodworth, J. S., Krastins, B., Rothchild, A. C., et al. (2010). EspA Acts as a Critical Mediator of ESX1-dependent Virulence in *Mycobacterium tuberculosis* by Affecting Bacterial Cell Wall Integrity. *PLoS Pathog.* 6, e1000957. doi:10.1371/journal.ppat.1000957

Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., 3rd, and Francis, J. (1948). Bovine Tuberculosis Including a Contrast with Human Tuberculosis. *Indian Med. Gazette* 83, 250–251.

Kaufmann, S. H. E., Weiner, J., and von Reyn, C. F. (2017). Novel Approaches to Strategy: Importance and Current Status. *Front. Immunol.* 8, 1111. doi:10.3389/fimmu.2017.00172

Kapopoulou, A., Lew, J. M., and Cole, S. T. (2011). The MycoBrowser Portal: a Resource for Proteins in *Mycobacterium Tuberculosis*. *Nat. Methods* 8, 343–346. doi:10.1038/nmeth.1318

Kapopoulou, A., Lew, J. M., and Cole, S. T. (2011). The MycoBrowser Portal: a Resource for Proteins in *Mycobacterium Tuberculosis*. *Nat. Methods* 8, 343–346. doi:10.1038/nmeth.1318

Lee, C.-D., Sun, H.-C., Hu, S.-M., Chiu, C.-F., Homhuan, A., Liang, S.-M., et al. (2015). Prime-boost Vaccination with Bacillus Calmette Guérin and a Recombinant Adenovirus Co-expressing CFP10, ESA16, Ag85A and Ag85B of *Mycobacterium tuberculosis* Induces Robust Antigen-specific Immune Responses in Mice. *Med. Mol. Rep.* 12, 3073–3080. doi:10.3892/mmr.2015.3770

Lindhout, D. A., Thiessen, A., Schieve, D., and Sykes, B. D. (2003). High-yield Expression of Isotopically Labeled Peptides for Use in NMR Studies. *Protein Sci.* 12, 1786–1791. doi:10.1038/sj.jnms.1507603

Paliwal et al. HTP Expression of bTB Proteins

Francis, J. (1948). Bovine Tuberculosis Including a Contrast with Human Tuberculosis. *Indian Med. Gazette* 83, 250–251.

Garcés, A., Atmakuri, K., Chase, M. R., Woodworth, J. S., Krastins, B., Rothchild, A. C., et al. (2010). EspA Acts as a Critical Mediator of ESX1-dependent Virulence in *Mycobacterium tuberculosis* by Affecting Bacterial Cell Wall Integrity. *PLoS Pathog.* 6, e1000957. doi:10.1371/journal.ppat.1000957

Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., 3rd, and Smith, H. O. (2009). Enzymatic Assembly of DNA Molecules up to Several Hundred Kilobases. *Nat. Methods* 6, 343–345. doi:10.1038/nmeth.1318

Hashimoto, Y., Zhang, S., Zhang, S., Chen, Y.-R., and Blissard, G. W. (2012). Correction: BTI-TnaO38, a New Cell Line Derived from Trichoplusia Ni, Is Permissible for AcMNPV Infection and Produces High Levels of Recombinant Proteins. *BMC Biotechnol.* 12, 12. doi:10.1186/1472-6750-12-12

Hatos, A., Tosatto, S. C. E., Vendruscolo, M., and Fuxreiter, M. (2022). FuzzDrop on AlphaFold: Visualizing the Sequence-dependent Propensity of Liquid-Liquid Phase Separation and Aggregation of Proteins. *Nucleic acids Res.* 2022, gac2038. doi:10.1093/nar/gac2038

He, Y., Xiang, Z., and Mobley, H. L. (2010). Vaxigen: The First Web-Based Vaccine Design Program for Reverse Vaccinology and Applications for Vaccine Development. *J. Biomed. Biotechnol.* 2010, 297505. doi:10.1155/2010/297505

Hope, J. C., Thom, M. L., Villarreal-Ramos, B., Vordermeier, H. M., Hewison, R. G., and Howard, C. J. (2005). Exposure to *Mycobacterium avium* Induces Low-Level Protection from *Mycobacterium bovis* Infection But Compromises Diagnosis of Disease in Cattle. *Clin. Exp. Immunol.* 141, 432–439. doi:10.1111/j.1365-2457.2005.02882.x

Irving, E. B. O’Neill, A., Darah, P. A., Shin, S., Choudhary, A., Li, W., et al. (2021). Robust IgM Responses Following Intravenous Vaccination with Bacille Calmette-Guérin Associate with Prevention of *Mycobacterium tuberculosis* Infection in Macaques. *Nat. Med.* 22, 1515–1523. doi:10.1038/s41590-021-01066-1

Jumper, J., Evans, R., Pritzel, A., Green, T., Blattner, M. R., and Bae, M. J. (2011). Highly Accurate Protein Structure Prediction with AlphaFold. *Nature* 596, 583–589. doi:10.1038/nature12086-013819-2

Kana, B. D., Gordhan, B. G., Downing, K. J., Sun, N., Vostroknutova, G., Machowiak, E. W., et al. (2008). The Resuscitation-Promoting Factors of *Mycobacterium Tuberculosis* Required for Virulence and Resuscitation from Dormancy but Are Collectively dispensable for Growthin Vitro. *Mol. Microbiol.* 67, 672–684. doi:10.1111/j.1365-2958.2007.06078.x

Kapopoulou, A., Lew, J. M., and Cole, S. T. (2011). The MycoBrowser Portal: A Comprehensive and Manually Annotated Resource for Mycobacterial Genomes. *Tuberculosis* 91, 8–13. doi:10.1016/j.tube.2010.09.006

Kauffman, S. H. E., Weiner, J., and von Reyn, C. F. (2017). Novel Approaches to Tuberculosis Vaccine Development. *J. Infect. Dis.* 56, 263–267. doi:10.1016/j.jinf.2016.10.018

Khare, S., Hondalus, M. K., Nunes, J., Bloom, B. R., and Garry Adams, L. (2007). *Mycobacterium bovis* ΔEsx1 Auxotroph-Induced Protective Immunity against Tissue Colonization, Burden and Distribution in Cattle Intranasally Challenged with *Mycobacterium bovis* Ravenel S. *Vaccine* 25, 1743–1755. doi:10.1016/j.vaccine.2006.11.036

Kim, H.-W., Lee, S.-Y., Park, H., and Jeon, S.-J. (2015). Expression, Refolding, and Characterization of a Small Laccase from Thermus Thermophilus HJ6. *Protein Expr. Purif.* 114, 37–43. doi:10.1016/j.pep.2015.06.004

Lee, C.-D., Sun, H.-C., Hu, S.-M., Chiu, C.-F., Homhuan, A., Liang, S.-M., et al. (2008). An Improved SUMO Fusion Protein System for Effective Production of Native Proteins. *Protein Sci.* 17, 1241–1248. doi:10.1016/j.prosci.2008.05.028

Li, F., Xu, M., Qin, C., Xia, L., Xiong, Y., Xi, X., et al. (2016). Recombinant Fusion ESAT6-CEFP10 Immunogen as a Skin Test Reagent for Tuberculosis Diagnosis: an Open-Label, Randomized, Two-Phase Centre Phase 2a Clinical Trial. *Clin. Microbiol. Infect.* 22, 889–e16. doi:10.1016/j.cmi.2016.07.015

Li, W., Li, M., Deng, G., Zhao, L., Liu, X., and Wang, Y. (2015). Prime-boost Vaccination with Bacillus Calmette Guérin and a Recombinant Adenovirus Co-expressing CFP10, ESA16, Ag85A and Ag85B of *Mycobacterium tuberculosis*.
Salami, O., Noormohammadi, Z., Bahrami, F., Siadat, S. D., and Ajdary, S. (2020). Cloning, Expression and Purification of EspC, EspF and EspC/EspF Proteins of Mycobacterium tuberculosis 85Hv Secretion System. Biochem. Mol. Biol. 8, 465–472.

Schlager, B., Straessle, A., and Hafen, E. (2012). Use of Anionic Denaturing Detergents to Purify Insoluble Proteins after Overexpression. BMC Biotechnol. 12, 95. doi:10.1186/1472-6750-12-95

Serruto, D., Bottomley, M. J., Ram, S., Giuliani, M. M., and Rappuoli, R. (2012). The New Multicomponent Vaccine against Meningococcal Serogroup B, 4CMenB: Immunological, Functional and Structural Characterization of the Antigens. Vaccine 30 (2), B87–B97. doi:10.1016/j.vaccine.2011.02.033

Skinner, M. A., Wedlock, D. N., de Lisle, G. W., Cooke, M. M., Tascon, R. E., Ferraz, J. C., et al. (2005). The Order of Prime-Boost Vaccination of Neonatal Calves with Mycobacterium bovis BCG and a DNA Vaccine Encoding Mycobacterial Proteins Hsp65, Esp70, and Apa Is Not Critical for Enhancing Protection against Bovine Tuberculosis. Infect. Immun. 73, 4441–4444. doi:10.1128/ij.i.73.4441-4444.2005

Smith, N. H. (2012). The Global Distribution and Phylogeography of Mycobacterium bovis Clonal Complexes. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Infect. Genet. Dis. 12, 857–865. doi:10.1016/j.meegid.2011.09.007

Srinivasan, S., Jones, G., Veeramasri, M., Steinbach, S., Holder, T., Zeweude, A., et al. (2019). A Defined Antigen Skin Test for the Diagnosis of Bovine Tuberculosis. Sci. Adv. 5, eaax4899. doi:10.1126/sciadv.aax4899

Strong, M., Sawaya, M. R., Wang, S., Phillips, M., Cascio, D., and Eisenberg, D. (2006). Toward the Structural Genomics of Complexes: Crystal Structure of a PE/PPPE Protein Complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U.S.A. 103, 8060–8065. doi:10.1073/pnas.0602606103

Stylianou, E., Harrington-Kandt, R., Beglov, J., Bull, N., Pinpathomrat, N., Swarbrick, G. M., et al. (2018). Identification and Evaluation of Novel Protective Antigens for the Development of a Candidate Tuberculosis Subunit Vaccine. Infect. Immun. 86. doi:10.1128/IAI.00014-18

Tessier, D. C., Thomas, D. Y., Khouri, H. E., Laliberié, F., and Vernet, T. (1991). Enhanced Secretion from Insect Cells of a Foreign Protein Fused to the Honeybee Melittin Signal Peptide. Gene 98, 177–183. doi:10.1016/0378-1119(91)90171-7

Tkachuk, A. P., Gushchin, V. A., Potapov, V. D., Demidenko, A. V., Linan, V. G., and Gintsburg, A. L. (2017). Multi-subunit BCG Booster Vaccine GambTBvac: Assessment of Immunogenicity and Protective Efficacy in Murine and guinea Pig TB Models. PloS one 12, e0176784. doi:10.1371/journal.pone.0176784

van Els, C. c. A. C. M., Corbière, R. v. r., Smits, K., van Gaans-van den Brink, J. A. M., Poel, M. C. M., Mascart, F., et al. (2014). Toward Understanding the Essence of Post-Translational Modifications for the Mycobacterium tuberculosis Immunoproteome. Front. Immunol. 5, 361. doi:10.3389/fimmu.2014.00361

van Rosmalen, M., Krom, M., and Merkx, M. (2017). Tuning the Flexibility of Glycine-Serine Linkers to Allow Rational Design of Multidomain Proteins. Biochemistry 56, 6565–6574. doi:10.1021/acs.biochem.7b00902

Vendruscolo, M. (2022). Lipid Homeostasis and its Links with Protein Misfolding Diseases. Front. Mol. Neurosci. 15, 829291. doi:10.3389/fnn.2022.829291

Villar-Hernández, R., Blausfeldt, T., Garcia-Garcia, E., Muriel-Moreno, B., De Souza-Galvão, M. L., Millet, J. P., et al. (2020). Diagnostic Benefits of Adding EspC, EspF and Rv2348-B to the Quantiferon Gold In-Tube Antigen Combination. Sci. Rep. 10, 13234. doi:10.1038/s41598-020-70204-w

Vordermeier, M., Gordon, S. V., and Hewinson, A. R. G. (2009). Antigen Mining to Define Mycobacterium bovis Antigens for the Differential Diagnosis of Vaccinated and Infected Animals: A VLA Perspective. Transbound. Emerg. Dis. 56, 240–247. doi:10.1111/j.1865-1682.2009.01070.x

Vordermeier, M., Gordon, S. V., and Hewinson, R. G. (2011). Mycobacterium bovis Antigens for the Differential Diagnosis of Vaccinated and Infected Cattle. Veterinary Microbiol. 151, 8–13. doi:10.1016/j.vetmic.2011.02.020

Vordermeier, M., and Hewinson, R. G. (2006). Development of Cattle TB Vaccines in the UK. Veterinary Immunol. Immunopathol. 112, 38–48. doi:10.1016/j.vetimm.2006.03.010

Waters, W. R., Palmer, M. V., Buddle, B. M., and Vordermeier, H. M. (2012). Bovine Tuberculosis Vaccine Research: Historical Perspectives and Recent Advances. Vaccine 30, 2611–2622. doi:10.1016/j.vaccine.2012.02.018

Waters, W. R., Palmer, M. V., Nonnecke, B. J., Thacker, T. C., Scherer, C. F. C., Estes, D. M., et al. (2007). Failure of a Mycobacterium tuberculosis ΔRD1 ΔpanCD Double Deletion Mutant in a Neonatal Calf Aerosol M. Bovis Challenge Model: Comparisons to Responses Elicited by M. Bovis Bacille Calmette Guerin. Vaccine 25, 7832–7840. doi:10.1016/j.vaccine.2007.08.029

Watson, A., Li, H., Ma, B., Weiss, R., Bendayan, D.,Abramovitz, L., et al. (2021). Human Antibodies Targeting a Mycobacterium Transporter Protein Mediate Protection against Tuberculosis. Nat. Commun. 12, 602. doi:10.1038/s41467-021-20930-0

Whelan, A. O., Clifford, D., Upadhay, B., Breadon, E. L., McNair, J., Hewinson, G. R., et al. (2010). Development of a Skin Test for Bovine Tuberculosis for Differentiating Infected from Vaccinated Animals. J. Clin. Microbiol. 48, 3176–3181. doi:10.1128/cmic.00240-10

Whelan, A. O., Coad, M., Upadhay, B. L., Clifford, D. J., Hewinson, R. G., and Vordermeier, H. M. (2011). Lack of Correlation between BCG-Induced Tuberculin Skin Test Sensitisation and Protective Immunity in Cattle. Vaccine 29, 5453–5458. doi:10.1016/j.vaccine.2011.05.057

Yan, Z. H., Yi, L., Wei, P. J., Jia, H. Y., Wang, J., Wang, X. J., et al. (2018). Evaluation of Panels of Mycobacterium tuberculosis Antigens for Serodiagnosis of Tuberculosis. Int. J. Tuberc. Lung Dis. 22, 959–965. doi:10.5588/ijtld.18.0060

Zhang, W., Zhang, Y., Zheng, H., Pan, Y., Liu, H., Du, P., et al. (2013). Genome Sequencing and Analysis of BCG Vaccine Strains. PloS one 8, e71243. doi:10.1371/journal.pone.0071243

Zimpel, C. K., Patané, J. S. L., Guedes, A. C. P., de Souza, R. F., Silva-Pereira, T. T., Camargo, N. C. S., et al. (2020). Global Distribution and Evolution of Mycobacterium bovis Lineages. Front. Microbiol. 11, 843. doi:10.3389/fmicb.2020.00843

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Paliwal, Thom, Hussein, Ravishankar, Wilkes, Charleston and Jones. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.