Coenzyme Q10 deficiency can be expected to compromise Sirt1 activity

James J DiNicolantonio 1, Mark F McCarty 2, James H O’Keefe 3

ABSTRACT

For reasons that remain unclear, endogenous synthesis and tissue levels of coenzyme Q10 (CoQ10) tend to decline with increasing age in at least some tissues. When CoQ10 levels are sufficiently low, this compromises the efficiency of the mitochondrial electron transport chain, such that production of superoxide by site 2 increases and the rate of adenosine triphosphate production declines. Moreover, CoQ10 deficiency can be expected to decrease activities of Sirt1 and Sirt3 deacetylases, believed to be key determinants of health span. Reduction of the cytoplasmic and mitochondrial NAD+/NADH ratio consequent to CoQ10 deficit can be expected to decrease the activity of these deacetylases by lessening availability of their obligate substrate NAD

Second, the elevation of ROS associated with such deficiency can be expected to decrease Sirt1 protein expression by increasing its proteasomal degradation. Oxidant stress, in part via activation of apoptosis signal-regulating kinase 1, tends to promote activation of the stress-activated mitogen activated protein (MAP) kinases: c-Jun N-terminal kinase (JNK) and p38. Hence, p38 activation decreases synthesis of Sirt3—a key factor in control of oxidative stress within the mitochondrial matrix, is promoted by Sirt1 and hence will be compromised by CoQ10 deficiency. Sirt3 synthesis is driven by a complex between PPARγ coactivator-1α (PGC-1α) and the transcription factor estrogen-related receptor-α; as is well known, Sirt1 activity plays a key role in both the activation and the expression of PGC-1α.
Finally, there is evidence that CoQ10 status can regulate SirT1 expression at the mRNA level, at least in the context of diabetes. In rats rendered diabetic by streptozotocin administration, hepatic SirT1 mRNA declines; this effect is reversed by CoQ10 administration.25 The mechanistic basis for this effect remains unclear. Certain microRNAs that downregulate SirT1 are reported to be upregulated in diabetic rodents and in cell lines exposed to hyperglycaemic.26–29

PHYSIOLOGICAL IMPLICATIONS OF DIMINISHED SIRT1/SIRT3 ACTIVITY

The consequences of decreased SirT1/SirT3 activity can include:

► Decreased mitophagy and mitochondrial biogenesis—effects which can evidently amplify the oxidant stress and diminished ATP production associated with CoQ10 deficiency.30–32 CoQ10 deficiency can however be associated with increased mitophagy, likely owing to oxidant-mediated damage to the mitochondrial inner membrane detected by the Pink/Parkin system.33 34 In other studies, added CoQ10 has enhanced mitophagy, possibly owing to enhanced SirT1/SirT3 activity.35 36

► Increased activity of the proinflammatory transcription factor nuclear factor kappa beta (NF-kappaB), the activity of which SirT1 represses via deacetylation.37 38

► Decreased activity of the Nrf2 transcription factor—activated by SirT1-mediated deacetylation37 38—which promotes expression of a range of antioxidant enzymes and also boosts synthesis of the key intracellular antioxidant glutathione.39

► Decreased activation of AMP-activated kinase (AMPK), reflecting the fact that Sirt1 activity stabilises and promotes appropriate intracellular localisation of its upstream activating kinase LKB1.40 AMPK promotes autophagy;41–45 it also enhances utilisation of free fatty acids as fuel, an effect which opposes development of obesity and lipotoxicity.44

► Decreased synthesis of the KLF2 transcription factor.45 46 Within endothelial cells, KLF2 exerts important anti-inflammatory and antithrombotic effects, and also promotes transcription of endothelial nitric oxide synthase (eNOS), of vital importance to healthful endothelial function.47 48

► Decreased activity of eNOS, as SirT1-mediated deacetylation of this enzyme boosts its activity.49

► Upregulation of apoptosis and senescence, owing to the fact that SirT1 promotes efficient DNA repair, while inhibiting the proapoptotic activity of p53 and FOXO factors by deacetylating them.50–54

► Increased hepatic de novo lipogenesis, owing to the fact that SirT1 activity, via deacetylation of the transcription factor sterol response element binding protein-1c (SREBP-1c), decreases the expression of enzymes catalysing lipogenesis.55

► Decreased adipocyte production of adiponectin. A complex of FOXO1 and C enhancer-binding protein a forms on the promoter of the adiponectin gene to drive its transcription; deacetylation of FOXO1 by SirT1 is required for formation of this nuclear complex.56–58

ENHANCED SIRT1 ACTIVITY MAY EXPLAIN SOME BENEFITS OF COQ10 SUPPLEMENTATION

The implications of cellular CoQ10 deficiency can thus extend far beyond ATP deficit and increased mitochondrial ROS generation. The clinical consequence will hinge on the specific types of cells in which CoQ10 is deficient.

If we consider clinical conditions in which supplemental CoQ10 has been most often employed with some worthwhile efficacy—congestive heart failure, hypertension, and periodontal disease—measures which positively modulate SirT1 activity have been shown to have a beneficial influence in rodent models of these syndromes, whereas the converse is also true.65–73

The ability of SirT1 to boost AMPK activity, while diminishing that of SREBP-1c and NF-kappaB, suggests that CoQ10 supplementation might sometimes be useful in management of non-alcoholic fatty liver disease—a prediction consistent with rodent studies and initial clinical studies evaluating CoQ10 in this disorder.74–77

A recent meta-analysis of CoQ10 supplementation in patients with metabolic syndrome reveals that CoQ10 enhances plasma adiponectin levels while decreasing C reactive protein (CRP), fasting glucose and glycated haemoglobin levels.78 A key mediator of this effect may be adipocytes, as mitochondrial levels of CoQ10 have been found to be lower in insulin-resistant mouse adipocytes and in adipose tissue from insulin-resistant humans.5 Also, SirT1 depletion of adipocytes has been shown to sensitise mice to diet-induced insulin resistance; this may reflect the fact that, via anti-inflammatory effects on adipocyte cytokine production, SirT1 activity lessens the recruitment and M1 polarisation of macrophages in adipose tissue.79 This effect might be expected to moderate CRP production while aiding maintenance of peripheral insulin sensitivity and glycaemic control. Mitochondrial oxidant production in CoQ10-deficient adipocytes can itself promote adipocyte insulin resistance, but lack of the antioxidant impact of SirT1 could be expected to potentiate this effect.5

REGULATION OF COQ10 LEVELS: MORE QUESTIONS THAN ANSWERS

Presumably, CoQ10 will be beneficial primarily in circumstances where mitochondrial levels of CoQ10 have declined to the point where they are rate limiting for ETC electron transport. Why does this happen in specific tissues in specific disorders? Although the multiple mitochondrial enzymes required for human CoQ10 synthesis are being characterised, the mechanisms regulating
CoQ10 synthesis are still poorly understood. In ageing rodents, age-related declines in CoQ10 have been observed in heart, kidney and skeletal muscle, whereas hepatic levels increase. In humans, heart levels of CoQ10 peak at about age 20 years and decline by about 50% at age 80 years. In heart failure patients, heart levels of CoQ10 decline as the stage of heart failure worsens—do the cellular perturbations associated with heart failure compromise CoQ10 synthesis? And do signals that promote mitochondrial biogenesis likewise promote CoQ10 synthesis?

One report is of particular interest: PPARα agonists were shown to boost CoQ10 levels in the liver, kidney and heart of mice via induction of a number of enzymes required for CoQ10 synthesis. Since the xanthophyll carotenoid astaxanthin has been found to function as a PPARα agonist, it is conceivable that astaxanthin supplementation—which could also be expected to protect the mitochondrial ETC from oxidative damage via its antioxidant scavenging activity—could be useful for maintaining healthful cellular levels of CoQ10.

Additional nutraceuticals with practical potential for boosting Sirt1 activity, as recently reviewed, include ferulic acid, melatonin, N1-methylnicotinamide, ursothiol A, berberine and nicotinamide riboside. Curiously, ferulic acid may mediate much of the health benefit associated with ingestion of unrefined whole grains and anthocyanin-rich fruits and vegetables, whereas ursothiol A may mediate the protection afforded by ellagitannins present in pomegranates and other foods.

Contributors All authors contributed to the final manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests JJD is director of Scientific Affairs at Advanced Ingredients for Dietary Products (AIID) and is affiliated with companies that sell CoQ10. MM and JO own supplement companies.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement No data are available.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs James J DiNicolantonio http://orcid.org/0000-0002-7888-1528

James H O’Keefe http://orcid.org/0000-0002-3376-5822

REFERENCES

1. Awd A, Bradley MC, Fernández-Del-Rio L, et al. Coenzyme Q10 deficiencies: pathways in yeast and humans. Essays Biochem 2018;62:361–76.

2. Alcázar-Fabra M, Trevisson E, Brea-Calvo G. Clinical syndromes associated with Coenzyme Q10 deficiency. Essays Biochem 2018;62:377–98.

3. Hargreaves I, Heaton RA, Mantle D. Disorders of human coenzyme Q10 metabolism: an overview. Int J Mol Sci 2020;21:6695.

4. Aaseth J, Alexander J, Alehagen U. Coenzyme Q10 supplementation — in ageing and disease. Mech Ageing Dev 2021;197:111521.

5. Fazakerley DJ, Chaudhuri R, Yang P, et al. Mitochondrial CoQ10 deficiency is a common driver of mitochondrial oxidants and insulin resistance. Elife 2018;7. doi:10.7554/elife.32111. [Epub ahead of print: 06.02.2018].

6. Braidy N, Guillemin GJ, Mansour H, et al. Age related changes in NAD+ metabolism oxidative stress and SIRT1 activity in Wistar rats. PLoS One 2011;6:e19194.

7. Shin SY, Kim TH, Wu H, et al. Sirt1 activation by methylene blue, a redox-responsive drug, mediates AMPK-mediated inhibition of steatosis and steatohepatitis. Eur J Pharmacol 2014;727:115–24.

8. Tobiume K, Matsuzawa A, Takahashi T, et al. USP13 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2001;2:222–6.

9. Matsuzawa A, Nishitoh H, Tobiume K, et al. Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice. Antioxid Redox Signal 2002;4:415–25.

10. Matsukawa J, Matsuzawa A, Takeda K, et al. The ASK1-MAP kinase cascades in mammalian stress response. J Biochem 2004;136:261–5.

11. Gao Z, Zhang J, Kheterpal I, et al. Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. J Biol Chem 2011;286:22227–34.

12. Lin Z, Yang H, Kong Q, et al. USP22 antagonizes p53 transcriptional activation by deubiquitinating SIRT1 to suppress cell apoptosis and is required for mouse embryonic development. Mol Cell 2012;46:484–94.

13. Ao N, Liu Y, Feng H, et al. Ubiquitin-specific peptidase USP22 negatively regulates the STAT signaling pathway by deubiquitinating SIRT1. Cell Physiol Biochem 2014;33:1863–75.

14. Kim TH, Yang YM, Hahn Y, et al. Ox12 ablation exacerbates liver steatosis and obesity by suppressing USP22/SIRT1-regulated mitochondrial respiration. J Clin Invest 2018;128:5587–602.

15. Xiong J, Che X, Li X, et al. Cloning and characterization of the human USP22 gene promoter. PLoS One 2012;7:e25216.

16. Xiong J, Gong Z, Zhou X, et al. p38 mitogen-activated protein kinase inhibits USP22 transcription in HeLa cells. Biomed Rep 2015;3:461–7.

17. D’Addario M, Arora PD, McCulloch GA. Role of p38 in stress activation of Sp1. Gene 2006;379:51–61.

18. Lombard DB, Zwaans BMM. Sirt3: as simple as it seems? Gerontology 2014;60:56–64.

19. Chen J-X, Yang L, Sun L, et al. Sirtuin 3 ameliorates lung sepsis and improves type II alveolar epithelial cell function by enhancing the FoxO3a-dependent antioxidant defense mechanism. Stem Cells Dev 2021;30:843–55.

20. Chen Y, Zhang J, Lin Y, et al. Turnover suppressor Sirt3 deacetylases and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 2011;12:5334–41.

21. Zhang X, Ren X, Zhang Q, et al. PGC-1α/ERα/Sirt3 pathway regulates D4ergic neuronal death by directly deacetylating SOD2 and ATP synthase [I]. Antioxid Redox Signal 2016;24:312–28.

22. Giralt A, Hondares E, Villena JA, et al. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. J Biol Chem 2011;286:16958–66.

23. Fernandez-Marcos PJ, Juwern X. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 2011;93:884S–90.

24. Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009;458:1056–60.

25. Samimi F, Baszam M, Eftekhari E, et al. Possible antioxidant mechanism of coenzyme Q10 in diabetes: impact on Sirt1/Nrf2 signaling pathways. Res Pharm Sci 2019;14:524–33.
26 Chen B, Wu L, Cao T, et al. MIR-221/SIRT1/Nrf2 signal axis regulates high glucose induced apoptosis in human retinal microvascular endothelial cells. *BMC Ophthalmol* 2020;20:300.

27 Yousefi Z, Nourbakhsh M, Abdolvahabi Z, et al. microRNA-141 is associated with hepatic steatosis by downregulating the sirtuin1/AMP-activated protein kinase pathway in hepatocytes. *J Cell Physiol* 2020;235:880–90.

28 Liu H-N, Cao N-J, Li X, et al. Serum microRNA-211 as a biomarker for diabetic retinopathy via modulating sirtuin 1. *Biochem Biophys Res Commun* 2018;505:1236–43.

29 Xu L, Mi Y, Hu F, et al. High glucose up-regulates microRNA-34a-5p to aggravate fibrosis by targeting SIRT1 in HK-2 cells. *Biochem Biophys Res Commun* 2018;498:38–44.

30 Yuan Y, Cruzat VF, Newsholme P, et al. Regulation of SIRT1 in aging: roles in mitochondrial function and biogenesis. *Mech Ageing Dev* 2017;211:1–13.

31 Das S, Mitrovsky G, Vasanthi HR, et al. Antilaging properties of a grape-derived antioxidant are regulated by mitochondrial balance of fusion and fission leading to mitophagy triggered by a signaling network of Sirt1-FOXO3α-PINK1-Parkin. *Oxid Med Cell Longev* 2014;2014:1–13.

32 Gupta P, Sharma G, Lahiri A, et al. FOXO3a acetylation regulates PINK1, mitochondry, inflammasome activation in murine palmate-conditioned and diabetic macrophages. *J Leukoc Biol* 2022;111:61–27; doi:10.1002/jlb.3A0620-348RF.

33 Cotán D, Cordero MD, Garrido-Maraver J, et al. Secondary coenzyme Q10 deficiency triggers mitochondria degradation by mitophagy in MELAS fibroblasts. *Faseb J* 2011;25:2669–87.

34 Rodríguez-Hernández A, Cordero MD, Salvati L, et al. Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. *Autophagy* 2009;5:19–32.

35 Zhang P, Chen S, Tang H, et al. CoQ10 protects against acetaminophen-induced liver injury by enhancing mitophagy. *Toxicol Appl Pharmacol* 2021;410:115355.

36 Sun J, Zhu W, Wang X, et al. CoQ10 ameliorates mitochondrial dysfunction in diabetic nephropathy through mitophagy. *J Endocrinol* 2019:10.1530/JOE-18-0578. [Epub ahead of print: 01 Jan 2019].

37 Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. *Embo J* 2004;23:2369–80.

38 Salminen A, Kauppinen A, Suuronen T, et al. SIRT1 longevity factor suppresses NF-kappaB-driven immune responses: regulation of aging via NF-kappaB acetylation? *Bioessays* 2008;30:939–42.

39 Sury Y-J, Kim J, Na H-K, et al. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. *Planta Med* 2008;74:1526–39.

40 Iseri L, Russell RC, Yee RM, et al. MicroRNA-493 promotes cell survival by activating the sirtuin1/nrf2 signaling pathway. *Craniofac Res* 2015;8:ZC26–30.

41 Russell RC, Yuan H-X, Guan K-L. Autophagy regulation by nutrient signaling. *Cell Res* 2014;24:42–57.

42 Zhao M, Klionsky DJ. AMPK-dependent transcription and cell survival by the SIRT1 deacetylase. *Circ Res* 2012;108:188–93.

43 Gracia-Granda A, Carabias P, et al. Exendin-4 upregulates adiponectin level and oxidative stress. *Eur J Pharmacol* 2011;667:258–64.

44 Cui X, Liu X, Feng H, et al. Grape seed proanthocyanidin extracts modulate the NF-κB pathway in hepatocytes. *Eur J Pharmacol* 2011;653:211 as a biomarker of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBOA: a randomized double-blind trial. *JACC Heart Fail* 2017;5:196–205.

45 Lin B, Zhao H, Li L, et al. SIRT1 improves heart failure through modulating the NF-κB p65/microRNA-155/BFNF signaling cascade. *Aging* 2020;13:14482–96.

46 Chen S, Wang Q, Tang X, et al. Secondary coenzyme Q10 supplementation on blood pressures among patients with metabolic diseases: a systematic review and meta-analysis of randomized controlled trials. *High Blood Press Cardiovasc Prev* 2018;25:41–50.

47 Raut CP, Sethi KS, Kohale B, et al. Subgingivally delivered coenzyme Q10 in the treatment of chronic periodontitis in smokers: a randomized, controlled clinical study. *J Oral Biol Craniofac Res* 2019;9:204–8.

48 Manthena S, Rao MVR, Penubolu LP, et al. Effectiveness of COQ10 oral supplements as an adjunct to scaling and root planing in improving periodontal health. *J Clin Diagn Res* 2015;9:ZC26–8.

49 Lin B, Zhao H, Li L, et al. SIRT1 improves heart failure through modulating the NF-κB p65/microRNA-155/BFNF signaling cascade. *Aging* 2020;13:14482–96.

50 Mu W, Zhang Q, Wang Z, et al. Overexpression of a dominant-negative mutant of SIRT1 in mouse heart causes cardiomyocyte apoptosis and early-onset heart failure. *Sci China Life Sci* 2014;57:915–24.

51 Xu XS, Wang ZB, Ye Z, et al. Resveratrol, an activator of SIRT1, upregulates AMPK and improves cardiac function in heart failure. *Genet Mol Res* 2014;13:323–35.

52 Tanno M, Kuno A, Hiroto Y, et al. Emerging beneficial roles of sirtuins in heart failure. *Basic Res Cardiol* 2012;107:237.

53 Bhatt SR, Lokhandwala MF, Banday AA. Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates development of hypertension in spontaneously hypertensive rats. *Eur J Pharmacol* 2011;676:258–64.

54 Dolinsky WV, Chakrabarti S, Pereira TJ, et al. Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. *Biochem Pharmacol* 2013;85:514–23.

55 Li X, Dai Y, Yan S, et al. Resveratrol lowers blood pressure in spontaneously hypertensive rats via calcium-dependent endothelial NO production. *Clin Exp Hypertens* 2016;38:287–93.

56 Kim Y-H, Hwang JH, Kim K-S, et al. NAD(+)H:quinone oxidoreductase 1 activation reduces blood pressure through regulation of endothelial nitric oxide synthase acetylation in spontaneously hypertensive rats. *Am J Hypertens* 2015;28:50–7.

57 Andrade EF, Orlando DR, Araujo Amanda Melo Sant’Anna, et al. Can resveratrol treatment control the progression of induced periodontal disease? A systematic review and meta-analysis of preclinical studies. *Nutrients* 2019;11. doi:10.3390/nut11050953. [Epub ahead of print: 26 Apr 2019].

58 Farhangi MA, Alipour B, Jafarvand E, et al. Oral coenzyme Q10 supplementation in patients with nonalcoholic fatty liver disease: effects on serum vasoressin, chemerin, pentraxin 3, insulin resistance and oxidative stress. *Arch Med Res* 2014;45:589–95.
systemic inflammation, and adipokines in patients affected by nonalcoholic fatty liver disease: a double-blind, placebo-controlled, randomized clinical trial. *J Am Coll Nutr* 2016;35:346–53.

76. Botham KM, Napolitano M, Bravo E. The emerging role of disturbed CoQ10 metabolism in nonalcoholic fatty liver disease development and progression. *Nutrients* 2015;7:9834–46.

77. Chen K, Chen X, Xue H, et al. Coenzyme Q10 attenuates high-fat diet-induced non-alcoholic fatty liver disease through activation of the AMPK pathway. *Food Funct* 2019;10:814–23.

78. Dludla PV. Age-related compositions of rat and human tissues. *Sci Aging Knowledge Environ* 2020;21:3247.

79. Hui X, Zhang M, Gu P, et al. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue. *EMBO Rep* 2017;18:645–57.

80. Oulies JL, Barriocanal-Casado E, The Paradox of Coenzyme Q(10) in Aging. *Nutrients* 2019;11:2221.

81. Beyer RE, Burnett BA, Cartwright KJ, et al. Tissue coenzyme Q (ubiquinone) and protein concentrations over the life span of the laboratory rat. *Mech Ageing Dev* 1985;32:267–81.

82. Kalén A, Appelkvist EL, Dallner G. Age-related changes in the lipid compositions of rat and human tissues. *Lipids* 1989;24:579–84.

83. Folkers K, Vadhanavikit S, Mortensen SA. Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. *Proc Natl Acad Sci U S A* 1989;86:9570–71.

84. Kennedy C, Köller Y, Surkova E. Effect of coenzyme Q10 on statin-associated myalgia and adherence to statin therapy: a systematic review and meta-analysis. *Atherosclerosis* 2020;299:1–8.

85. Sztrete M, Dienes B, Gönczi M, et al. Astaxanthin: a potential mitochondrial antioxidant. *Biofactors* 2012;38:103–14.

86. Jia Y, Kim J-Y, Jun H-J, et al. The natural carotenoid astaxanthin, a PPAR-α agonist and PPAR-γ antagonist, reduces hepatic lipid accumulation by rewiring the transcriptome in lipid-loaded hepatocytes. *Mol Nutr Food Res* 2012;56:878–88.

87. Jia Y, Wu C, Kim J, et al. Astaxanthin reduces hepatic lipid accumulations in high-fat-fed C57BL/6J mice via activation of peroxisome proliferator-activated receptor (PPAR) alpha and inhibition of PPAR gamma and Akt. *J Nutr Biochem* 2016;28:9–18.

88. Choi C-I, Astaxanthin as a peroxisome proliferator-activated receptor (PPAR) modulator: its therapeutic implications. *Mar Drugs* 2019;17. doi:10.3390/md17040242. [Epub ahead of print: 23 Apr 2019].

89. Duncan JG, Fong JL, Medeiros DM, et al. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. *Circulation* 2007;115:909–17.

90. Kersten S. Integrated physiology and systems biology of PPARs. *J Nutr Biochem* 2021;34:957–71.

91. Aaseth J, Alexander J, Alehagen U. Coenzyme Q10 supplementation - In ageing and disease. *Mech Ageing Dev* 2021;197:111521.

92. Qu H, Meng Y-Y, Chai H, et al. The effect of statin treatment on circulating coenzyme Q10 concentrations: an updated meta-analysis of randomized controlled trials. *Eur J Med Res* 2021;26:37.

93. McCarty MF, DiNicantonio JJ, Ilioki-Assanga S, et al. Ferulic acid and berberine, via SIRT1 and AMPK, may act as cell cleansing promoters of healthy longevity. *Open Heart*. In Press 2021.

94. Du K, Fang X, Li Z. Ferulic acid suppresses interleukin-1β-induced degeneration of chondrocytes isolated from patients with osteoarthritis through the SIRT1/AMPK/PGC-1α signaling pathway. *Immun Inflamm Dis* 2021:9:710–20.

95. Xu T, Song Q, Zhou L, et al. Ferulic acid alleviates lipotoxicity-induced hepatocellular death through the SIRT1-regulated autophagy pathway and independently of AMPK and Akt in AML-12 hepatocytes. *Nutr Metab* 2021:18:13.

96. Yang Y, Jiang S, Dong Y, et al. Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. *J Pineal Res* 2015;58:61–70.

97. Hong S, Moreno-Navarrete JM, Wei X, et al. Nicotinamide N-methyltransferase regulates hepatic nutrient metabolism through SIRT1 protein stabilization. *Nat Med* 2015;21:887–94.

98. Ghosh N, Das A, Biswas N, et al. Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD+ and SIRT1. *Sci Rep* 2020:10:20184.

99. Gomes AP, Duarte FV, Nunes P, et al. Berberine protects against high-fat diet-induced dysfunction in muscle mitochondria by inducing SIRT1-dependent mitochondrial biogenesis. *Biochim Biophys Acta* 2012;1822:185–96.

100. Canto C, Houtkooper RH, Pirinen E, et al. The NAD(+)-precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. *Cell Metab* 2012;15:838–47.

101. Lillioja S, Neal AL, Tapestad L, et al. Whole grains, type 2 diabetes, coronary heart disease, and hypertension: links to the aleurome preferred over indigestible fiber. *BioFactors* 2013;39:242–58.

102. McCarty MF, Assanga SBI. Ferulic acid may target MyD88-mediated pro-inflammatory signaling - Implications for the health protection afforded by whole grains, anthocyanins, and coffee. *Med Hypotheses* 2018;118:114–20.

103. Hasheminezhad SH, Booziari M, Iranshahi M, et al. A mechanistic insight into the biological activities of urolithins as gut microbial metabolites of ellagitannins. *Phytother Res* 2022;36:112–146.