Introducing a new international standard ISO/TS 20660: Specification of characteristics and measurement methods for antibacterial silver nanoparticles

Kyung Seuk Song1; Somin Lee1; Ali Beitollahi2; Jeong Seok Choi3; Il Je Yu3*
1Korea Conformity Laboratories, Incheon, Korea
2School of Metallurgy and Materials Engineering, Iran University of Science & Technology, Teheran, Iran
3HCTm, Icheon, Korea

*Corresponding Author(s): Il Je Yu
HCTm, 74, Seoicheon-ro 578 beon-gil Majang-myeon, Icheon, Gyeonggi-do Republic of Korea 17383
Email: u1670916@chollian.net

Introduction
Silver nanoparticles (AgNPs) are receiving growing attention due to their antibacterial, chemical, electrical and catalytic properties that have important industrial applications. In particular, AgNPs are increasingly used in consumer products to control the growth of microorganisms on external and internal surfaces. Several consumer product databases now list products containing nanosilver or AgNPs. For example, Nano-data shows 68 AgNP products among 3060 nanoproducts [1] while the Woodrow Wilson consumer product inventory shows 443 AgNP products (highest subgroup) among 1833 nanoproducts [2]. Although antibacterial nanoproducts containing AgNPs are now widely commercially available, most AgNP-containing products are sold without providing any information on their physicochemical properties and health & safety data. In most countries, consumer products are not covered by current SDS (Safety Data Sheet) regulations that require disclosure of physicochemical properties and health & safety data. Most AgNP manufacturers only provide product specifications based on

Cite this article: Song KS, Lee S, Beitollahi A, Choi JS, Yu U. Introducing a new international standard ISO/TS 20660: Specification of characteristics and measurement methods for antibacterial silver nanoparticles. J Nanomed. 2020; 3(1): 1019.
their own practices. Therefore, the new TS attempts to provide standard guidelines for the characterization and measurement of AgNPs in powder or colloidal form that are used as antibacterial agents in consumer products. The new working item proposal for antibacterial AgNPs was already accepted by the ISO Technical Committee (TC) 229 (Nanotechnologies) and technical specification (TS) 20660 was developed by working group 4 (Material specifications) [3]. The new technical specification is intended to help manufacturers provide the appropriate physicochemical characteristics of AgNPs used as antibacterial agents in consumer products, while also ultimately boosting consumer confidence.

Initial market survey of antibacterial AgNP products

Since this survey is for market survey, we did not use existing organizations created databases such as Woodrow Wilson New nanotechnology consumer products inventory [2], Danish Nanoproduct Inventory [4], or Korean nanofusion product database NanoIn [5]. Additionally, we searched published papers that used silver nanoparticles [6]. Based on internet search using keywords such as antibacterial silver, nanosilver silver nanoparticles, silver nanomaterials, etc., among 834 products, 394 antibacterial products that contained AgNPs smaller than 100 nm were analyzed as regards the provided specifications. The results are summarized in Table 1. Among the 394 antibacterial AgNP products, 165 included primary particle size information with an average size of 39.8 nm. The average particle size for the 394 AgNP products was 60 nm. 305 AgNP products included surface charge information, where the average was -38.8 mV, and 66 products included surface area information, where the average was 14.2 m²/g. 76 products included particle aggregation information, where 67 products claimed no aggregation and 9 products reported aggregation. Consequently, based on this information, the working group formulated essential and additional specification requirements for antibacterial AgNP products.

Scope of technical specification

The new TS provides guidance for specifying the characteristics and relevant measurement methods for silver nanoparticles in powder or colloidal form that are intended for antibacterial application in consumer products. Particularly, the new TS is intended to help the manufacturer provide the physicochemical characteristics of silver nanoparticles used as antibacterial agents, and does not cover considerations specific to health and safety issues either during manufacturing or use.

Characterization and measurement methods required and recommended in TS

The new characteristic specification for antibacterial silver nanoparticles consists of two categories: essential and additional characteristics, as described in Tables 2 and 3, respectively. As such, to comply with TS 20660, manufacturers of antibacterial AgNPs will need to provide all the essential characteristics listed in Table 2, and will have the option to provide the additional characteristics listed in Table 3. The essential characteristics are all intrinsic to the material, including the average size and distribution of primary particles, zeta potential, surface area, and total silver content. The TS for AgNPs is applicable to both powder and colloidal forms of AgNPs, yet not aerosol forms. All the characteristics need to be measured using the methods and units prescribed in the TS to allow direct comparison among AgNP products. The additional characteristics cover the hydrodynamic size and silver nanoparticle number concentration.

Table 1: Market survey of antibacterial AgNP products

Characteristics	No. of Samples	Primary particle size (nm)	Particle size (nm)	Surface charge (mV)	Surface area (m²/g)	Aggregation
Average	165	39.8	60.0	-35.8	14.3	Not Aggregated 67; Aggregated 9
S.D.		23.6	22.3	13.7	11.6	
Max.		93.5	99.9	5.0	90.0	
Min.		1.0	9.0	-57.7	6.4	
Median		36.0	59.2	-38.8	11.5	

Table 2: Essential characteristics (Adapted from ISO 20660 Table 1 and Annex Table A.1)

Characteristics	Units	Reason	Measurement method	Application form	Guidance	Reference
1) Average size & distribution of primary particles	M	Critical parameter in assessment of EHS aspects of nano-objects AgNP size is closely related with antimicrobial activity [7]	SEM	Powder or colloidal	TEM is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, layer of photographic film, or sensor such as a charge-coupled device. Coupling with EDS is then widely used for elemental and chemical analyses.	ISO 16700 [8]
SEM is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that contain information about the sample's surface topography and composition. The electron beam is scanned in a raster scan pattern, and the beam's position is combined with the detected signal to produce an image. SEM can achieve a resolution better than 1 nanometre. For conventional SEM, the specimens are observed in a high vacuum, while for environmental SEM, the specimens can be observed in a low vacuum or under wet conditions with variable pressure and at a wide range of cryogenic or elevated temperatures. Guidelines on the application of this method and the sample preparation process can be found in ISO 16700 and 10798.

Zeta potential: the electrostatic potential at the slipping plane (which marks the region where the liquid molecules surrounding the particles first begin to move with respect to the surface) relative to the potential in the bulk solution. ISO 13099-2 provides methods for measuring the electrophoretic mobility using optical means and for calculating the zeta potential.

ICP-MS uses an inductively coupled plasma source to ionize sample materials for analysis by a mass spectrometer. ICP-MS provides accurate and quantitative determinations of elemental impurities using ICP-MS.

ICP-OES is an analytical technique used for the detection of trace metals. It is a type of emission spectroscopy that uses inductively coupled plasma to produce excited atoms and ions that emit electromagnetic radiation at wave lengths characteristic of a particular element. It is a flame technique with a flame temperature in a range from 6 000 to 10 000 K. The intensity of this emission is indicative of the concentration of the element within the sample.

AAS: atomic absorption spectrometry. Any metals in a solution can be readily determined by flame (direct aspiration) atomic absorption spectrophotometry.

ISO 22412 [21]
ISO 13099-2 [11]
ISO 17294-1 [17], ISO 17294-2 [18]
ISO 11885 [19]
ISO 26845 [20]

SEM: scanning electron microscopy; TEM: transmission electron microscopy; DLS: dynamic light scattering; ICP-MS: inductive coupled plasma-mass spectrometry; ICP-OES: inductive coupled plasma-optical emission spectrometry; AAS: atomic absorption spectrometry.

Characteristics	Units	Reason	Measurement method	Application form	Guidance	Reference
1) Hydrodynamic size	M	Determines particle size for NPs in aqueous solution	DLS	Colloidal	This method measures the hydrodynamic diameter from Brownian motion. It is applicable to the measurement of particle diameters greater than 3 nm, depending on the test material.	ISO 22412 [21]
2) Zeta potential	V	Key factor determining stability in suspension with capping agents [10]	DLS	Colloidal	Zeta potential is the electrostatic potential at the slipping plane (which marks the region where the liquid molecules surrounding the particles first begin to move with respect to the surface) relative to the potential in the bulk solution. ISO 13099-2 provides methods for measuring the electrophoretic mobility using optical means and for calculating the zeta potential.	ISO 13099-2 [11]
3) Specific surface area	m²/kg	Critical parameter in chemical and antibacterial reaction [12-13]	Powder	ICP-MS	ICP-MS uses an inductively coupled plasma source to ionize sample materials for analysis by a mass spectrometer. ICP-MS provides accurate and quantitative determinations of elemental impurities using ICP-MS.	ISO 17294-1 [17], ISO 17294-2 [18]
4) Total silver content	kg/kg or mol/mol	Critical determinant in assessment of antibacterial activity and purity [16]	ICP-OES	Powder or colloidal	ICP-OES is an analytical technique used for the detection of trace metals. It is a type of emission spectroscopy that uses inductively coupled plasma to produce excited atoms and ions that emit electromagnetic radiation at wave lengths characteristic of a particular element. It is a flame technique with a flame temperature in a range from 6 000 to 10 000 K. The intensity of this emission is indicative of the concentration of the element within the sample.	ISO 11885 [19]
			AAS	Powder or colloidal	Any metals in a solution can be readily determined by flame (direct aspiration) atomic absorption spectrophotometry.	ISO 26845 [20]
Sampling and test report

The new TS requires representative sampling of the parent population of nanoparticles in a suspended powder form in accordance with ISO 14488 [25] and ISO 14887 [26]. Since many nano-objects are reactive and their physicochemical properties can be affected by the sampling point and storage, the manufacturer and end-producer need to agree on the sampling point and sample storage for result comparability. The test report should contain 1) all details generally necessary to identify the test product (product name, chemical name); 2) reference to the new TS; 3) a sample description; 4) the relationship between the sample used for the measurements and the test product to which the characteristics are assigned; 5) the test date, name of the testing laboratory, and a statement on the quality system of the testing laboratory; 6) measurement results for the characteristics, including the measurement methods, as in Table 2 and if applicable Table 3; 7) any special information supporting the reliability of the measurement results. If available, the results of any antibacterial performance testing should be provided, along with the documented test procedures.

Antibacterial performance test

After a great deal of discussion on whether to include antibacterial performance tests in the new TS, the technical committee decided against this antibacterial performance test due to the lack of any current standardization of the antibacterial performance of silver nanoparticles and because antibacterial performance tests are beyond the scope of the new TS. Relevant antibacterial performance tests include ISO/TS 16550 [27] and the performance standards for the antimicrobial disk & dilution susceptibility test: M2-A9 from the Clinical and Laboratory Standards Institute [28]. The requirements outlined by national pharmacopoeia or regulatory bodies can also be consulted and followed if appropriate. Plus, the jurisdictions where the material may ultimately be sold should be considered.

Discussion

ISO TC 229 (Nanotechnologies) aims to support the sustainable and responsible development and global dissemination of emerging nanotechnologies; to facilitate global trade in nanotechnologies, nanotechnology products, and nanotechnology-enabled systems and products; to support improvement in quality, safety, security, consumer and environmental protection, together with the rational use of natural resources in the context of nanotechnologies; to promote good practice in the production, use, and disposal of nanomaterials, nanotechnology products, and nanotechnology-enabled systems and products. Initially, the TC focused on the terminology and nomenclature, metrology and test methods, and health, safety, and the environment. The working group for material specification (WG 4) was created in 2008 and published several standards, including Materials specifications - Guidance on specifying nano-objects (ISO 12805) [26], Clay nanomaterials - Part 1: Specification of characteristics and measurement methods for layered clay nanomaterials (ISO/TS 21236-1) [27], and Magnetic nanomaterials - Part 1: Specification of characteristics and measurements for magnetic nanosuspensions (ISO/TS 19807-1) [28]. Although antibacterial AgNP products are already produced and used worldwide, a standardized product specification is not yet available. This lack of consensus on how manufacturers of antibacterial products prepare product specifications for the market also affects consumer confidence in antibacterial AgNP products. Therefore, the new TS for antibacterial AgNP products guides manufacturers on which essential and additional characteristics to include in their product specifications. Furthermore, the new TS prescribes particular measurement methods to provide comparable specification data among products, thereby ultimately helping to boost consumer confidence in AgNP-applied nanoproducts. In addition to providing essential and additional specification requirements for antibacterial AgNP, this TS also provide characterization methods for the specification requirements to have consistency on specification data among the...
products. The published standard will influence on the future market for AgNP applied nanoproducts and will build consumer trust as well as the facilitation of communication between seller and buyer in more details by utilizing this standard to fill the gap of reliable measurement protocol or methods.

Although the working group initially considered the inclusion of antibacterial performance tests in the new TS, this was dropped due to the current lack of any standardization of antibacterial AgNP performance and because this issue was determined beyond the scope of the working group. Finally, it is hoped that the new technical specification will encourage the commercialization of nanotechnologies by promoting good practice in production and building consumer confidence.

Acknowledgements

This study was supported by the Global Top Environment-Technology Development project (No. 2018001860004) funded by the Ministry of Environment.

References

1. Nanodata. Nanotechnology Knowledge Base. https://nanodata.echa.europa.eu/ accessed at 5/20/2019.
2. Woodrow Wilson International Center for Scholars, New nano-technology consumer products inventory. https://www.wilsoncenter.org/article/new-nanotechnology-consumer-products-inventory, accessed at 11/11/2019.
3. ISO/TS 20660. Specification of characteristics and measurement methods for Antibacterial silver nanoparticles, ISO, Geneva. 2019.
4. Danish Nanoproduct Registry. https://indberet.virk.dk/ accessed at 6/25/2018.
5. Nanoin. www.nanoin.org, accessed at 4/30/2018
6. S2 Nano. http://portal.s2nano.org/, accessed at 5/5/2018
7. Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F. Synthesis and antibacterial activity of silver nanoparticles with different sizes, Journal of Nanoparticle Research. 2008; 10: 1343-1348.
8. ISO 16700, Microbeam analysis - Scanning electron microscopy - Guidelines for calibrating image magnification, ISO, Geneva. 2016.
9. ISO/TS 10797, Nanotechnologies - Characterization of single-wall carbon nanotubes using transmission electron microscopy, ISO, Geneva. 2012.
10. Gholami A, Ghoshoon MB, Ghafari P. The effect of different positively charged silver nanoparticles against bacteria, fungi and mammalian cell line. Trends in pharmaceutical science.2017; 3: 135-142.
11. ISO 13099-2, Colloidal systems - Methods for zeta-potential determination - Part 2: Optical methods. ISO, Geneva. 2012.
12. Khaydarov RR, Khaydarov RA, Estrin Y. Nanomaterials: Risk and Benefits, Springer, Netherlands. 2009; 287-299.
13. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology.2007; 73: 1712-1720.
14. ISO 9277, Determination of the specific surface area of solids by gas adsorption - BET method. ISO, Geneva. 2010. 2003.
15. ISO 18757, Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of specific surface area of ceramic powders by gas adsorption using the BET method. ISO, Geneva. 2003.
16. Sotiriou GA, Pratsinis SE. Engineering nanosilver as an antibacterial, biosensor and bioimaging material, Current Opinion in Chemical Engineering. 2011; 1: 3-10.
17. ISO 17294-1, Water quality — Application of inductively coupled plasma mass spectrometry (ICP-MS) - Part 1: General guidelines. ISO, Geneva, 2004.
18. ISO 17294-2, Water quality — Application of inductively coupled plasma mass spectrometry (ICP-MS) - Part 2: Determination of selected elements including uranium isotopes. ISO, Geneva. 2016.
19. ISO 11885, Water quality - Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). ISO. Geneva. 2007.
20. ISO 26845, Chemical analysis of refractories - General requirements for wet chemical analysis, atomic absorption spectrometry (AAS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) methods. ISO Geneva. 2008.
21. ISO 22412, Particle size analysis - Dynamic light scattering (DLS). ISO, Geneva, 2016.
22. ISO 19430, Particle size analysis - Particle tracking analysis (PTA) method. ISO, Geneva. 2016.
23. ISO/TS 19590, Nanotechnologies - Size distribution and concentration of inorganic nanoparticles in aqueous media via single particle inductively coupled plasma mass spectrometry. ISO, Geneva. 2017.
24. Pauw R, Kästner C, Thünemann A. Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison. Journal of applied crystallography. 2017; 50: 1280-1288.
25. ISO 14488, Particulate materials - Sampling and sample splitting for the determination of particulate properties. ISO, Geneva. 2007.
26. ISO 14887, Sample preparation - Dispersing procedures for powders in liquids. ISO, Geneva. 2000.
27. ISO/TS 16550, Nanotechnologies - Determination of silver nanoparticles potency by release of muramic acid from Staphylococcus aureus. ISO, Geneva. 2014.
28. Performance standards for antimicrobial disk and dilution susceptibility test: M2-A9 Vol.26 No.1, Clinical and laboratory standards institute.
29. ISO/TS 12805, Nanotechnologies - Materials specifications - Guidance on specifying nano-objects. ISO, Geneva. 2011.
30. ISO/TS 21236-1, Nanotechnologies-Clay nanomaterials-Part 1: Specification of characteristics and measurement methods for layered clay nanomaterials. ISO, Geneva. 2019
31. ISO/TS 19807-1 Part 1: Specification of characteristics and measurements for magnetic nanosuspensions. ISO, Geneva. 2019.