Postpartum xanthogranulomatous pyelonephritis: A case report

Jose M. El-Asmar a, Rayan Ghanem b, Rashed Ghandour a, Eliane Al-Halabi c, Jad A. Degheili a,*

a Division of Urology, Department of Surgery, American University of Beirut – Medical Center, Riad El-Solh, 1107 2020 Beirut, Lebanon
b Department of Obstetrics and Gynecology, American University of Beirut Medical Center, Riad El-Solh, 1107 2020 Beirut, Lebanon
c Department of Anesthesiology, American University of Beirut – Medical Center, Riad El-Solh, 1107 2020, Beirut, Lebanon

ABSTRACT

Xanthogranulomatous pyelonephritis (XGP) is seldom seen nowadays due to the aggressive treatment of upper urinary tract infections as well as recent advances in the management of urolithiasis. It has been rarely reported in the peri-partum period. We present a case of XGP without any evidence of renal calculi, manifesting in a 26-year-old previously healthy woman immediately post-partum.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Kidney
Mass
Renal cell carcinoma
Pyelonephritis
Xanthogranulomatous pyelonephritis

1. Introduction

Xanthogranulomatous pyelonephritis (XGP), a term coined by Schlagenhauffer in the early 1900s, is a rare but serious chronic inflammation of the kidney parenchyma. It often develops secondary to a chronic infection, from a long-lasting obstruction, resulting in an unusual supplicative and granulomatous reaction which can lead to parenchymal obliteration and thus a non-functioning kidney [1]. Calculi, stricture, and tumor all represent a nidus for obstruction. It accounts for less than 1% of all related inflammatory and infectious kidney processes [1]. This process is more likely to occur in females, during the 5th to 7th decade of life [2]. We herein present a case of XGP without any evidence of renal calculi, manifesting in a 26-year-old previously healthy woman immediately post-partum.

2. Case Report

A 26-year-old pregnant G1P1 woman, with no known prior history of febrile urinary tract infection, flank pain, or urolithiasis, presented at 39 weeks of gestation and underwent a normal vaginal delivery without any complications. Her prenatal care was uneventful and two screening urine analyses and cultures done at 10 and 29 weeks of gestation showed no evidence of infection. Throughout all of her prenatal appointments the patient denied any signs of fever or lower urinary tract symptoms. Nevertheless, on the same night of delivery, she developed sinus tachycardia with a maximal heart rate of 142 beats per minute as well as tachypnea associated with dyspnea with a respiratory rate ranging between 20 and 24 breaths per minute. Following that, she developed hypotension with a maximal drop in systolic blood pressure by 30 mmHg that was refractory to fluid boluses, but no fever. Apart from a normally contracted uterus, there were no abnormalities noted in her physical exam.

Laboratory values were all within normal range except for an elevated white count of 32,500/ml. Computed Tomography (CT) angiography of the chest was performed because of suspected pulmonary embolism. The lower cuts of the chest CT showed a huge lesion occupying the right kidney topography (Fig. 1); so a dedicated abdominal and pelvic MRI with Gadolinium was performed revealing a large multiloculated multi-septated cystic mass arising from the upper pole of the right kidney, measuring 19.0 × 15.5 × 16.5 cm. The mass was abutting the right hepatic lobe with no definite infiltration. Mass effect was caused on the aorta, celiac axis, portal confluence, gallbladder and pancreas which were all deviated to the left side (Fig. 2). There was no evidence of any filling defect or obstructing stone within the renal pelvis or right ureter. The differential diagnosis at the time included multilocular cystic nephroma, cystic renal carcinoma or hydatid disease.

She was initially transferred to the Intensive Care Unit for stabilization, where broad-spectrum antibiotic coverage with meropenem and vancomycin was initiated. A few hours later, fever subsequently developed reaching a Tmax of 39.1 °C with slight worsening of her...
hemodynamics where her lowest mean arterial pressure reached 59 mmHg. It was then that the decision was made to proceed with surgical exploration.

Extended Chevron incision was performed. A huge right kidney was identified, with the ascending colon and duodenum medially retracted. The perinephric tissue was easily dissected anteriorly and caudally; however, it was extremely adherent posteriorly and superomedially. Attempts to elevate the kidney from the psoas fascia resulted in eruption of a large posterior cyst, and a massive amount of purulent foul-smelling grey-brown fluid spilled over the field. After thorough irrigation of the surgical field, nephrectomy was completed, and further cleaning of surrounding suspicious-looking fat tissues was performed. The postoperative period was uneventful. Her hemodynamics improved significantly after resection, and she was discharged 4 days postoperatively with heart rate and blood pressure completely normalized; she was afebrile at the time of discharge. Urine and pus culture, from ruptured intraoperative cysts, grew multi-sensitive Escherichia coli.

Grossly, the specimen weighted 1.26 kg consisting of a 17 × 16 × 10 cm kidney. The mass, arising from the upper pole, was tan yellow and soft with cystic areas and areas of necrosis. Histopathological examination of the specimen revealed sheets of lipid-laden macrophages, histiocytes, and multinucleated giant cells associated with acute and chronic inflammation (Fig. 3), involving the renal parenchyma and extending into the perinephric fat and adrenal gland. There was no evidence of hydatid cyst disease. GMS, PAS, and AFB stains were all negative for microorganisms. Such constellations of pathological findings were in accordance with xanthogranulomatous pyelonephritis (XGP). She was then seen 2 weeks after discharge; her vital signs were within normal range and her wound was clean with no evidence of infection.

3. Discussion

Xanthogranulomatous pyelonephritis is a rare inflammatory disease of the kidneys. It is generally associated with an obstructing calculus that leads to urinary stasis followed by a chronic infectious process in the form of a subacute inflammatory reaction. This drives the transformation of parenchymal cells into lipid-laden macrophages known as foamy cells [3]. The most commonly cultured organisms are Proteus mirabilis and Escherichia coli [4]. In many instances, XGP is closely associated with hepatic lesions. In more than 50% of cases, XGP presents with a marked elevation of liver enzymes [5].

Radiological findings on CT scan illustrate an enlarged kidney with several hypodense egg-shaped areas of fluid collection usually associated with renal calculi [6]. Radiological grading is dependent on the extent of inflammatory changes depicted on imaging [7]. Stage 1 is when inflammatory changes are confined to the renal parenchyma. Stage 2 is when those changes extend into the perinephric fat; while stage 3 is when the inflammation extends through the retroperitoneum surpassing Gerota’s fascia [7]. Although radiological findings can be suggestive of XGP, the diagnosis is in essence a pathological diagnosis that comprises of an enlarged kidney size with several scarred areas and an
adherent renal capsule. Histological findings reveal the presence of lipid-laden macrophages diffusely scattered within the renal parenchyma [3].

Pregnancy by itself is known to have an immunomodulatory effect on the normal physiological functioning of the body which has been proven across different disciplines. One of the immunomodulations that occur during pregnancy is the response to bacterial infections [8]. As such, this may have resulted in the abnormal and amplified immunological response to the urinary pathogen, leading to this rapid septic deterioration. The association of XGP with pregnancy is a very rare yet logical response to the urinary pathogen, leading to this rapid septic deterioration. As such, this may have resulted in the abnormal and amplified immunological response to the urinary pathogen, leading to this rapid septic deterioration. The authors recommend consideration of XGP as a differential diagnosis of a renal mass, especially in the presence of sepsis.

Contributors
Jose M. El-Asmar contributed to the literature review, and edited the final version of the manuscript.
Raysen Ghanem contributed to the literature review.
Eliane Al-Halabi contributed to the literature review and writing of the initial manuscript.
Jad A. Degheili edited the final version of the manuscript.
All five authors contributed to the writing of the manuscript, and approved the final version prior to submission.

Conflict of Interest
The authors declare that they have no conflict of interest regarding the publication of this case report.

Funding
No funding was sought or secured in relation to this case report.

Patient Consent
Written informed consent was obtained from the patient for publication of this case report and the accompanying images.

Provenance and Peer Review
This case report was peer reviewed.

References
[1] F. Afgan, S. Muntaz, M.H. Ather, Preoperative diagnosis of xanthogranulomatous pyelonephritis, Urol. J. 4 (3) (2007) 169–173 (PMID: 17987581).
[2] H. Ichaoui, A. Saadi, M. Chakroun, H. Ayed, A. Bouzouita, M. Cherif, et al., Xanthogranulomatous pyelonephritis in adults: clinical, biological, radiological and therapeutic main findings in diffuse and focal forms. About 42 cases, Tunis. Med. 96 (8–9) (Aug–Sep, 2018) 495–500 (PMID: 30430527).
[3] K.S. Bourm, C.O. Menias, K. Ali, K. Alhalabi, K.M. Elsayes, Spectrum of Xanthogranulomatous processes in the abdomen and pelvis: a pictorial review of infectious, inflammatory, and proliferative responses, AJR Am. J. Roentgenol. 208 (3) (Mar, 2017) 475–484 (PMID: 28095017).
[4] L Li, A.V. Parwani, Xanthogranulomatous pyelonephritis, Arch. Pathol. Lab. Med. 135 (5) (May, 2011) 671–674 (PMID: 21526966).
[5] C.C. Kim, C.F. Wu, C.C. Huang, Y.J. Lee, W.C. Lin, C.W. Tsai, et al., Xanthogranulomatous pyelonephritis: critical analysis of 30 patients, Int. Urol. Nephrol. 43 (1) (Mar, 2011) 15–22 (PMID: 20544282).
[6] C.J. Das, Z. Ahmad, S. Sharma, A.K. Gupta, Multimodality imaging of renal inflammatory lesions, World J. Radiol. 6 (11) (Nov 28, 2014) 865–873 (PMID: 25431641).
[7] J.C. Kim, US and CT findings of xanthogranulomatous pyelonephritis, Clin. Imaging 25 (2) (Mar-Apr, 2001) 118–121 (PMID: 11483422).
[8] K Racicot, J.Y. Kwon, P. Aldo, M. Silasi, G. Mor, Understanding the complexity of the immune system during pregnancy, Am. J. Reprod. Immunol. 72 (2) (Aug, 2014) 107–116 (PMID: 24995526).
[9] L Ferreira, C. Oliveira, C. Cruz, A. Pacheco, Xanthogranulomatous pyelonephritis associated with hepatic dysfunction in pregnancy, Case Rep. Obstet. Gynecol. 2015 (2015), 936262 (PMID: 26078894).
[10] J.P. Gaut, Nephrectomy for non-neoplastic kidney diseases, Surg. Pathol. Clin. 7 (3) (Sep, 2014) 307–319 (PMID: 26837442).
[11] A.J. Figueroa, J.P. Stein, J.A. Cunningham, D.A. Ginsberg, D.G. Skinner, Xanthogranulomatous pyelonephritis in a pregnant woman: a case report and review of the literature, Urology 48 (2) (Aug, 1996) 294–297 (PMID: 8753745).

Fig. 3. Histological cross-section (×100) of the renal mass with hematoxylin and eosin staining. The lesion is composed of sheets of predominante histiocytes of abundant pale cytoplasm and larger euchromatic nuclei without prominent nucleoli (arrows), multinucleated giant cells (arrowheads), in a background of acute and chronic inflammation involving the renal parenchyma and extending into the perinephric fat. CD68 and Cytokeratin AE1/3 immunohistochemistry staining is respectively positive and negative; hence, the absence of malignant cells.