Cryptic diversity within three South American whip spider species (Arachnida, Amblypygi)

DEAR EDITOR,

Cryptic diversity (CD), the presence of highly divergent phylogenetic lineages within closed morphological species, has been documented for many taxa. Great arachnid orders such as Araneae or Scorpiones are well studied and many cases of CD have been described therein; to date, however, related research on smaller arachnid orders, such as whip spiders (Amblypygi), remains lacking. In the current study, we investigated CD based on cytochrome oxidase 1 (COI) in three nominal species of the genus Heterophrynus (H. alces, H. batesii, and H. longicornis), represented by 65 specimens. The sequences were compared using three different methods. All three species showed geographically structured CD. Thus, given its existence in this genus, it is important that CD and its spatial distribution be considered in future studies and possible conservation projects.

Cryptic diversity (i.e., a nominal species that includes two or more highly divergent lineages at the DNA level) has been detected in many biomes and taxa (Pfenninger & Schwenk, 2007), and is now a key element in conservation biology (Bickford et al., 2007). Indeed, CD and its geographical patterns are seminal for identifying the true extent of biodiversity, including biodiversity hotspots and taxa that warrant special conservation status (Funk et al., 2011). This is particularly true for invertebrates in tropical regions, which exhibit low mobility and are often used as predictors of conservation priorities (Moritz et al., 2001).

Whip spiders are a small arachnid order (Weygoldt, 2000) characterized by spectacular appendages such as raptorial pedipalps and extremely elongated antenniform first legs. Currently, over 200 species are described within Amblypygi (Miranda et al., 2016), most of which are found in tropical regions of the world. Although studies targeting the phylogeography of Amblypygi are scarce, Prendini et al. (2005) on Damon variegatus (Amblypygi: Phrynichidae) and Esposito et al. (2015) on Phrynus longipes, P. alejandroi, P. eucharis (Amblypygi: Phrynidae) reported at least two highly molecularly divergent lineages within each nominal species, thus suggesting CD. The above studies also showed that such lineages were geographically structured, which has implications for conservation strategies.

The Heterophrynus (Amblypygi: Phrynidae) genus of whip spiders includes 16 nominal species endemic to South America (Weygoldt, 2000). The distribution and ecology of each species remain poorly documented except for H. longicornis (see Carvalho et al., 2011, 2012; Dias & Machado, 2006) and H. batesii (see Chapin, 2014). Like most whip spiders, Heterophrynus species are nocturnal and can be found in diverse microhabitats including rocks, caves, large trees with buttresses, burrows, and termite nests (Carvalho et al., 2012; Dias & Machado, 2006). Recently, Lehmann & Friedrich (2018) showed the absence of CD to be associated with very low (average 0.2%) genetic divergence for the COI DNA barcode sequence (i.e., 5’ part of the mtDNA COI gene) among six sympatric specimens of H. elaphus from Peru. However, our knowledge of CD in other Heterophrynus species remains lacking.

Here, we explored the level of CD in three nominal species of the genus Heterophrynus (i.e., H. alces, H. batesii, and H. longicornis) from five populations collected from five geographical areas in South America. Material originated from eight sites in French Guiana and Brazil (Table 1, Figure 1), totaling 65 individuals ascribed to H. alces (6), H. batesii (4), and H. longicornis (55). Specimens were identified by F. Réveillon or L. Sousa Carvalho. All identifications were done using the morphological diagnostic characters proposed by Quintero (1981) and Weygoldt (2000), including pedipalp spination and shape of genitalia. The COI DNA barcode sequence (i.e., 5’ part of the mtDNA COI gene) was used to assess the extent of CD as this marker has been successfully used in insects (Low et al., 2016). Following Kekkonen & Hebert (2014), COI was used as a quantifier of diversity and an “efficient start for taxonomic workflow”, targeting the delineation of molecular operational taxonomic units (MOTUs) as a way to propose a testable “species hypotheses” (e.g., Flièr et al., 2018). Detailed methods are available in the

Open Access

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ©2020 Editorial Office of Zoological Research, Kunming Institute of Zoology, Chinese Academy of Sciences

Received: 03 April 2020; Accepted: 21 July 2020; Online: 30 July 2020 DOI: 10.24272/j.issn.2095-8137.2020.068
Supplementary Materials and Methods.

The COI barcodes of the 65 individuals of H. alces (six sequences), H. batesii (four), and H. longicornis (55) were associated with two, three, and nine haplotypes, respectively (Figure 1). The maximum-likelihood (ML) phylogenetic tree (Figure 1) showed that the haplotypes associated with each
nominal species represented monophyletic groups. However, all three MOTU delimitation methods (i.e., Barcode Index Number (BIN), Bayesian implementation of Poisson Tree Processes (bPTP), and Automatic Barcode Gap Discovery (ABGD)) depicted CD in each nominal species.

For *H. alces*, all three methods were congruent at identifying two MOTUs, each being geographically restricted to northern and southern French Guiana, respectively (Figure 1). The two identified BINs (ADC2276 and ACH7023) presented 4.91% of genetic divergence (P-distance, i.e., distance to nearest neighbor, Table 1).

For *H. batesii* and *H. longicornis*, the methods were only partially congruent. Both the BIN and bPTP methods identified three and four MOTUs, respectively, but ABGD identified one MOTU less that the two other methods for each nominal species (Figure 1). It should be noted that each MOTU defined by bPTP and recognized as only one MOTU by ABGD had the lowest Bayesian support (BS) values in bPTP analyses (Table 1). Even based on the most conservative method in the present study (ABGD), CD was still present in both *H. batesii* and *H. longicornis*.

For *H. batesii* and *H. longicornis* nominal species, the two BINs (ADC0812 and ADC0814 and ADC2132 and ADC2133, respectively) shared a similar pattern: (i) P-distance divergence of 3.5% (Table 1) and (ii) association to a single known and very close (=100 km apart) locality in the same state in Brazil (Amazonas and Piauí, respectively) (Figure 1).

In addition, BINs ADC0813 and ACH7022 shared a similar pattern relative to other BINs within their respective nominal species: (i) more distantly related in ML analysis (Figure 1) and (ii) more geographically distant (i.e., ADC0813 is 900 km southward in the same Brazilian state (Amazonas) and ACH7022 is 1 500 km north-eastward in French Guiana) (Figure 1). These two BINs (ADC0813 and ACH7022) shared a third surprising feature. Although one would expect to find the closest BIN to be a BIN of the same nominal species, this was not the case here, as the closest BIN was associated with a fourth *Heterophrynus* nominal species, *Heterophrynus vesanicus* Mello Leitão, 1931 from Brazil (BINs ACA0762 and ADF0920, respectively) (Table 1). Unfortunately, the sequences associated with these BINs are not publicly available in the barcode of life data (BOLD) nor have the associated sequences been deposited in GenBank. While BOLD analysis results of private data are available, the raw data are not, which prevented the inclusion of *H. vesanicus* in the ML tree in Figure 1B.

In addition, for *H. longicornis*, a third Brazilian BIN (ADC2134; from Ubajara, state of Ceará) showed 8.77% genetic divergence from ADC2132 from Castelo do Piauí, state of Piauí (Table 1). Although located in different states in Brazil, both localities are only ~170 km apart. This pattern illustrates that CD can increase even at a moderate geographic scale.

Our analysis of 65 individuals ascribed to three nominal species of *Heterophrynus* showed CD even with the most conservative method of MOTU delimitation (ABGD). It should be noted that even in close localities, moderate genetic divergence was observed, unravelling unexpected CD in both *H. batesii* and *H. longicornis*. Providing a time frame or a full biogeographical scenario explaining the observed pattern are not within the scope of the present paper and are unachievable given current sampling. However, our study identified high intramorphospecific genetic divergence (ca >10%) in the examined *Heterophrynus* specimens. All three nominal species have large geographical distribution areas, spanning many thousands of kilometers (Carvalho et al., 2011), but low dispersal capabilities. Many DNA barcoding analyses have revealed that such nominal species initially considered as widespread should instead be considered as an assemblage of short-range endemics (Magalhães et al., 2014), and should be re-evaluated taxonomically and formally described (e.g., Magalhães et al., 2017). At present, only two Amblypygi species are classified as vulnerable on the red list of endangered species of the IUCN (International Union for the Conservation of Nature), i.e., Seychelles small whip spider, *Charinus seychellium* (Gerlach, 2014a) and Indian Ocean whip spider, *Phrynichus scaber* (Gerlach, 2014b). Their vulnerable status is partly due to their restricted geographic distribution and habitat degradation.

Our study highlights new elements of an understudied group and shows that the taxonomy of the genus *Heterophrynus* is complex. The fact that the closest BIN for those of *H. batesii* and *H. longicornis* was from *H. vesanicus* and not, as one would expect, one of the BINs already identified in their respective nominal species, is puzzling. Although only based on phenetic distance and not on refined phylogenetic analyses, our results thus challenge the monophyly of both taxa. Alternatively, one could consider *H. vesanicas* sequences as based on a misidentified specimen, possibly the most parsimonious hypothesis. The MOTUs identified in the present study can be considered as a way in which to propose a testable “species hypothesis” (e.g., Fiser et al., 2018). The observed MOTUs still require further evaluation by integrating morphological and molecular data of specimens from other localities throughout their wide geographic distribution. In addition, *Heterophrynus* species are known to use many habitats, and present highly complex microhabitat selection and interaction among individuals (Carvalho et al., 2012; Dias & Machado, 2006). Thus, with the confirmation of the existence of cryptic species, their taxonomy, ecology, and behavior should be re-assessed. Further studies on genetic and morphological discrepancies with integration of geometric morphometry, as exemplified for whip spiders (*Phrynus barbadensis*) by Torres et al. (2018), could provide valuable information for species delimitation and description of new species.

More broadly, the existence of CD in this genus highlights the importance of considering MOTUs and geographical distribution and not species based on morphology in future studies and conservation projects, especially for invertebrates with limited dispersal capacity.
The Heterophrynus longicornis Dias SC, Machado G. 2006. Microhabitat use by the whip spider Tropical Ecology (2): 173−177, in Amazonian Ecuador. Chapin KJ. 2014. Microhabitat and spatial complexity predict group size of 46 Journal of Natural History formed by the Tucuruí Dam lake, Pará, Brazil. Heterophrynus longicornis (Arachnida: Amblypygi) in forest fragments Carvalho LS, Gomes JO, Neckel-Oliveira S, Lo-Man-Hung NF. 2012. for the state of Piauí northeastern Brazil. Check List (3): 267−269. (Butler, 1873): Distribution extension Heterophrynus longicornis Amblypygi, Carvalho LS, Oliveira-Marques FN, Silva PRR. 2011. Arachnida, Ecology & Evolution Cryptic species as a window on diversity and conservation. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, et al. 2007. REFERENCES Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, et al. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22(3): 148−155. Carvalho LS, Oliveira-Maquenes FN, Silva PRR. 2011. Arachnida, Amblypygi. Heterophrynus longicomis (Butler, 1873): Distribution extension for the state of Piauí northeastern Brazil. Check List, 7(3): 267−269. Carvalho LS, Gomes JO, Neckel-Oliveira S, Lo-Man-Hung NF. 2012. Microhabitat use and intraspecific associations in the whip spider Heterophrynus longicomis (Arachnida: Amblypygi) in forest fragments formed by the Tucurui Dam lake, Pará, Brazil. Journal of Natural History, 46(19−20): 1263−1272. Chapin KJ. 2014. Microhabitat and spatial complexity predict group size of the whip spider Heterophrynus batesii in Amazonian Ecuador. Journal of Tropical Ecology, 30(2): 173−177. Dias SC, Machado G. 2006. Microhabitat use by the whip spider Heterophrynus longicomis (Amblypygi, Phrynidae) in central amazon. The Journal of Arachnology, 34(3): 540−544. Esposito LA, Bloom T, Caicedo-Quiroga L, Alicea-Serrano AM, Sánchez-Ruiz JA, May-Collado LJ, et al. 2015. Islands within islands: diversification of tailless whip spiders (Amblypygi, Phrynus) in Caribbean caves. Molecular Phylogenetics and Evolution, 93: 107−117. Fišer C, Robinson CT, Malard F. 2018. Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology, 27(3): 613−635. Funk WC, Caminer M, Ron SR. 2011. High levels of cryptic species diversity uncovered in Amazonian frogs. Proceedings of the Royal Society B, 279(1734): 1806−1814. Gerlach J. 2014a. Charinus seychellarum. The IUCN Red List of Threatened Species 2014. Gerlach J. 2014b. Phrynichus scaber. The IUCN Red List of Threatened Species 2014. Kekkonen M, Hebert PDN. 2014. DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources, 14(4): 706−715. Lehmann T, Friedrich S. 2018. DNA barcoding the smaller arachnid orders from ACP Panguana, Amazonian Peru (Amblypygi, Phrynidae and Schizomida, Hubbardiidae). Spixiana, 41(2): 169−172. Low VL, Sofian-Azirun M, Norma-Rashid Y. 2016. Playing hide-and-seek with the tiny dragonfly: DNA barcoding discriminates multiple lineages of Nannophya pygmaea in Asia. Journal of Insect Conservation, 20(2): 339−343. Magalhães ILF, Oliveira U, Santos FR, Vidigal THDA, Brescovit AD, Santos AJ. 2014. Strong spatial structure, Pliocene diversification and cryptic diversity in the Neotropical dry forest spider Sicarius cariri. Molecular Ecology, 23(21): 5323−5336. Magalhães ILF, Brescovit AD, Santos AJ. 2017. Phylogeny of sicariidae spiders (araneae: haplogynae), with a monograph on neotropical sicarius. Zoological Journal of the Linnean Society, 179(4): 767−846. Miranda G, Milleri-Pinto M, Gonçalves-Souza T, de Leão Giupponi AP, Scharff N. 2016. A new species of Charinus Simon 1892 from Brazil, with notes on behavior (Amblypygi, Charinidae). ZooKeys, 621: 15−36. Moritz C, Richardson KS, Ferrier S, Monteith GB, Stanisic J, Williams SE, et al. 2001. Biogeographical concordance and efficiency of taxon indicators for establishing conservation priority in a tropical rainforest biota. Proceedings of the Royal Society B: Biological Sciences, 268(1479): 1875−1881. Pfenniger M, Schwank K. 2007. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology, 7: 121. Prendini L, Weygoldt P, Wheeler WC. 2005. Systematics of the Damon variegatus group of African whip spiders (Chelicerata: Amblypygi): evidence from behaviour, morphology and DNA. Organisms Diversity & Evolution, 5(3): 203−236. Torres R, Atencia PL, Liria J. 2018. Morphogeometric variation in Phrynus barbadensis (Pocock, 1893) (Amblypygii: Phrynidae) from Colombia. Revista de la Sociedad Entomológica Argentina, 77(1): 18−23. Weygoldt P. 2000. Whip Spiders (Chelicerata: Amblypygi): Their Biology, Morphology and Systematics. Stenstrup: Apollo Books, 163.