Killer-cell immunoglobulin-like receptors and malaria caused by *Plasmodium falciparum* in The Gambia

L.-M. Yindom*, R. Forbes, P. Aka, O. Janha, D. Jeffries, M. Jallow, D. J. Conway & M. Walther

Medical Research Council Laboratories, Fajara, Banjul, The Gambia

Abstract

The relevance of innate immune responses to *Plasmodium falciparum* infection, in particular the central role of natural killer (NK) cell-derived interferon gamma (IFN-γ), is becoming increasingly recognised. Recently, it has been shown that IFN-γ production in response to *P. falciparum* antigens is in part regulated by killer-cell immunoglobulin-like receptor (KIR) genes, and a study from malaria-exposed Melanesians suggested an association between KIR genotypes and susceptibility to infection. This prompted us to determine and compare the frequencies of 15 KIR genes in Gambian children presenting with either severe malaria (n=133) or uncomplicated malaria (n=188) and in cord-blood population control samples (n=314) collected from the same area. While no significant differences were observed between severe and uncomplicated cases, proportions of individuals with KIR2DS2+C1 and KIR2DL2+C1 were significantly higher among malaria cases overall than in population control samples. In an exploratory analysis, activating KIR genes KIR2DS2, KIR3DS1 and KIR2DS5 were slightly higher in children in disease subgroups associated with the highest mortality. In addition, our data suggest that homozygosity for KIR genotype A might be associated with different malaria outcomes including protection from infection and higher blood parasitaemia levels in those that do get infected. These findings are consistent with a probable role of KIR genes in determining susceptibility to malaria, and further studies are warranted in different populations.

Introduction

Infection with the malaria parasite *Plasmodium falciparum* can result in asymptomatic parasite carriage, an uncomplicated febrile disease or a potentially life-threatening illness. Apart from clinical immunity that gradually develops with repeated exposure (1), human genetic variation influences clinical outcome in response to parasite encounter (2). Epidemiological data from Kenya have indicated that about 25% of the risk of being infected with malaria parasites can be attributed to human genetic variation (3).

Natural killer (NK) cells are a key component of innate immunity. They kill their targets (diseased cells) by means of cytotoxic activity (4) and production of inflammatory cytokines (5). Traditionally, activation of NK cells is explained by the “missing self” hypothesis (6), where the lack of major histocompatibility complex (MHC) class I molecules on infected or malignant cells is sensed by NK cell surface receptors, or activating NK cell receptors interact with stress-induced molecules on the surface of altered cells (4). While most pathogens can activate NK cells, down-regulation of MHC class I molecules is not a common feature of many infectious diseases, and it is now increasingly recognised that most pathogens predominantly activate NK cells via an indirect pathway, with activating signals (both soluble and contact-dependent) being provided by accessory cells, such as dendritic cells, macrophages and/or monocytes (7).

In protozoan infections, rapid production of interferon gamma (IFN-γ) rather than cytotoxicity is the major contribution of NK cells to host defence (8). For malaria, in particular, there is clear evidence that NK-cell-derived IFN-γ, and not cytotoxicity, contributes to protection (9).
NK cells in peripheral blood mononuclear cell (PBMC) cultures produce IFN-γ within 6 h of parasite encounter (10), which is dependent on the presence of accessory cells. Within an individual the magnitude of the NK cell IFN-γ response is associated with the strength of the signal provided by the accessory cells (11). However, when compared between different individuals, the degree and magnitude of NK-cell-specific IFN-γ production in response to *P. falciparum* displays considerable heterogeneity (10, 12) and was shown to be significantly associated with killer-cell immunoglobulin-like receptor (KIR) genotypes in two studies (13, 14). Thus, in addition to the strength of the signal received from accessory cells, KIR genotypes seem to regulate the degree of IFN-γ produced by KIR-positive NK cell populations.

NK cells can be subdivided further into two subsets, CD56bright and CD56dim expressing cells (15). While CD56bright cells produce more IFN-γ than CD56dim cells, CD56dim cells represent about 80% of the NK cell population (16), thus the vast majority of IFN-γ producing NK cells are the CD56dim population (14). Interestingly, CD56bright cells are KIR negative, whereas the majority of CD56dim cells express KIRs that are highly polymorphic (16, 17). This makes it plausible that KIR–MHC class I interactions might regulate the magnitude of IFN-γ produced by KIR+CD56dim cells.

KIR molecules are glycoproteins encoded by a diverse and compact set of genes on chromosome 19. They are expressed on specialised lymphoid cells mainly NK cells and a subpopulation of γδ T cells and some memory αβ T cells (18). The family comprises 15 functional genes (KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL4, KIR2DL5A, KIR2DL5B, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DL1, KIR3DL2, KIR3DL3 and KIR3DS1) and 2 pseudogenes (KIR2DP1 and KIR3DP1). The expression and function of each of these genes influence the expression and function of other members of the gene family (19). KIR molecules are structurally similar with two or three extracellular domains, a transmembrane region and a cytoplasmic tail but can be divided on functional grounds into activating and inhibitory receptors based on the length and composition of their cytoplasmic tails (20). NK cell-mediated activity is dependent on a fine balance between the strengths of the inhibitory and activating signals induced by KIR molecules on the NK cell surface.

Although located on different chromosomes and therefore segregating separately, the coevolving human leukocyte antigen (HLA) and KIR systems (21, 22) encode for molecules with crucial roles in immune modulation of infectious diseases including malaria (23–25). Certain HLA class I molecules are ligands for KIRs and their interactions regulate NK cell activity in modulating disease outcomes (23, 26–33). However, the interaction between HLA and KIR genes in malaria has not been fully established even though certain HLA class I and II alleles (34, 35), and KIR genotypes have independently been associated with malaria clinical outcomes (36).

Whilst there is accumulating evidence favouring an important role of NK cells in *P. falciparum* infection, only a few studies have investigated the role of KIRs in malaria. A study that compared KIR genotypes in Melanesians with and without malaria parasitaemia found evidence for an increased number of activating KIR genes in parasitaemic individuals (36). This suggests that KIR diversity may shape the innate response to malaria parasites and probably influences disease outcome. In this study, we compared the proportion of individuals positive for different combinations of activating and inhibitory KIR genes among Gambian children with severe or uncomplicated forms of malaria, and cord-blood population control samples to assess whether individual KIR genes or genotypes are associated with the occurrence of disease or parasitaemia levels. Given that epidemiological findings have in the past implicated individual HLA class I alleles (e.g. HLA-B*53) (37) with differential susceptibility to malaria infection, we also investigated whether certain KIR–HLA compound genotypes are associated with malaria outcomes.

Materials and methods

Study populations

DNA samples were obtained from buccal swabs collected from Gambian children with uncomplicated malaria (>5000 parasites/μl, a temperature of >37.5 °C; UM) and severe malaria [using modified World Health Organization (WHO) criteria (38); SM], who were enrolled between 2006 and 2009 into a study of the pathogenesis of severe malaria described in more detail elsewhere (39, 40). For each patient, a thin and a thick smear were prepared and Giemsa stained. The diagnosis was made by slide microscopy of the thick film at the health centre. The thin smears were subsequently read in the research laboratory, and parasitaemia counts per microlitre were adjusted for the actual number of red blood cells (RBCs) obtained from the full blood count, collected at the same time. Severe disease was further subdivided into severe anaemia (SA), defined as Hb < 6 g/dl; severe respiratory distress (SRD) defined as serum lactate >7 mmol/l; cerebral malaria (CM) defined as a Blantyre coma score ≤2 in the absence of hypoglycaemia or hypovolaemia, with the coma lasting for at least 2 h; and severe prostration (SP) defined as inability to sit unsupported (children > 6 months) or inability to suck (children ≤6 month). For some analyses, different entities of severe diseases were stratified according to increasing disease severity, ranging from UM < SP < SA < CM < SRD < CM+SRD, consistent with a large study from Kenya showing that mortality increases in this order (41). DNA extracted from cord-blood samples of Gambian neonates collected from health-care facilities of the same area for a different study (42) served as population control samples. Both studies were approved by the Joint Gambian
Table 1 Characteristics of the study participants

Mortality	Age (GM, years)	Female
Severe	133 6.0 4.4	4.01–4.72 42.5
CM+SRD	14 28.6 4.3	3.42–5.38 50.0
SRD	16 18.8 4.7	3.66–5.99 33.3
CM	23 0.0 4.3	3.59–5.06 38.9
SA	11 0.0 2.8	2.02–3.95 45.5
SP	69 1.5 4.6	4.11–5.22 43.8
Uncomplicated	188 0.0 6.3	5.80–6.90 43.1
Cord blood (population control)	314 — —	50.2

CI, confidence interval; CM, cerebral malaria; GM, geometric mean; n, number of individuals; SA, severe anaemia; SP, severe prostration; SRD, severe respiratory distress.

Government/MRC Ethics Committee (GGMEC), and written informed consent was obtained from a parent or legal guardian prior to sample collection. For the work described herein, a separate approval was obtained from the GGMEC.

In total, DNA samples from 635 individuals were analysed in this study (314 cord-blood samples, 188 uncomplicated and 133 severe malaria cases). Further demographic details on study participants are given in Table 1.

KIR typing

Genomic DNA samples were typed by the polymerase chain reaction-sequence-specific-priming (PCR-SSP) technique as described elsewhere (43) to detect the presence of 14 KIR genes: 2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3, 3DS1, and 1 pseudogene KIR2DP1. Briefly, this technique entailed the use of specific primers to amplify two segments of different sizes from the same KIR gene if present. The fragments were then stained with ethidium bromide during electrophoresis in 2% agarose gel. Specific bands were visualised on a UV light box, an electronic picture of the gel was taken and scored for the presence or absence of specific bands. Discrepant results (i.e. one primer pair positive while the other is negative) were repeated and the gene considered present if one of the reaction pairs was consistently positive. The use of two pairs of primers to detect the same gene was to limit false negative results as much as we can in this population that has not been typed for KIR genes before. The absence of specific bands on both reactions was confirmed by repeating the typing to make sure that the gene was actually absent. Each reaction also contained a pair of internal control primers amplifying a 796-bp fragment from the third intron of HLA-DRB1 gene to check for PCR efficiency.

HLA class I typing

Genotyping for HLA class I (HLA-B and -C) alleles was performed using sequence-based techniques on 148 and 382 samples, respectively as described elsewhere (33). Briefly, a pair of locus-specific primers was used to amplify each locus and two other pairs of internal primers were used to sequence exons 2 and 3 in both directions using the BigDye Terminator version 3.1 technologies (Applied Biosystems, Foster City, CA). The software ‘ASSIGN’ (Conexio Genomics, Australia) was used to analyse all sequence traces.

Statistical analysis

The observed frequency for each KIR gene was determined by direct counting and verified using STATA version 9.2 (Stata Corporation, TX) and PASW Statistics 18 (SPSS, Inc., Chicago, IL). This corresponded to the proportion of individuals that carried the gene of interest in the group under investigation. HLA class I allele and genotype frequencies were computed with the same statistical packages. The centromeric (cen) and telomeric (tel) motifs of each KIR genotype were assigned using a modified technique derived from Cooley et al. (44) and Pyo et al. (45). Their frequencies and those of HLA and KIR genes, as well as KIR–HLA compound genotypes were determined and compared across groups (population control, uncomplicated and severe malaria) using chi-squared or Fisher’s exact tests as appropriate. P-values of <0.05 were considered significant. Correction for multiple comparisons was performed using the Bonferroni method. In addition, adjustment for ethnicity was performed for comparisons between the cases and controls. Differences in parasitaemia levels for groups of individuals with varying ratios of inhibitory over activating KIR genes were examined using one-way analysis of variance (ANOVA) on log transformed parasitaemia data, with a post-test for linear trend.

The statistical packages STATA version 9.2 (Stata Corporation, TX), PASW Statistics 18 (SPSS, Inc., Chicago, IL) and PRISM version 5.04 (GraphPad Software Inc., CA) were used to perform all statistical analyses.

Results

The frequency of individual KIR genes does not differ between ethnicities

All 15 KIR genes investigated were present in the study population. Recognising the ethnic diversity of this population, we stratified the observed frequency of each KIR gene according to the major ethnic groups. Data for self-reported ethnicity were available for 94% of all samples tested. Table 2 shows that the proportions of individuals carrying any of the KIR genes were similar across all ethnic groups. Homogeneity of frequencies among different ethnic groups was formally assessed using the chi-squared distribution or Fisher’s exact test and no significant differences were observed. This indicates that ethnic differences are not major determinants of the frequencies here.
Table 2

KIR gene	Mandingo (199 (%))	Wolof (88 (%))	Fula (137 (%))	Jola (89) (%))	Serere (29 (%))	Others (57 (%))	P value
2DL1	100.0	100.0	100.0	100.0	100.0	100.0	n.a.
2DL2	76.9	69.3	73.7	78.7	58.6	84.2	0.090
2DL3	90.0	90.9	88.3	83.2	89.7	77.2	0.097
2DL4	100.0	100.0	100.0	100.0	100.0	100.0	n.a.
2DL5	60.3	53.4	59.1	56.2	55.2	64.9	0.773
2DS1	21.1	23.9	21.2	24.7	24.1	26.3	0.944
2DS2	59.8	56.8	58.4	64.0	51.7	70.2	0.492
2DS3	43.2	42.1	44.5	49.4	31.0	56.1	0.266
2DS4	100.0	100.0	100.0	100.0	100.0	100.0	n.a.
2DS5	28.1	25.0	32.8	25.8	34.5	42.1	0.229
3DL1	100.0	100.0	100.0	100.0	100.0	100.0	n.a.
3DL2	100.0	100.0	100.0	100.0	100.0	100.0	n.a.
3DL3	100.0	100.0	100.0	100.0	100.0	100.0	n.a.
3DS1	11.1	5.7	7.3	7.9	13.8	10.5	0.578
2DP1	99.5	98.9	100.0	98.9	96.6	96.5	0.194

n.a., not applicable.

*Information on ethnicity was available for 94% of all samples. Numbers in parenthesis represent the number of individuals per ethnic group. Homogeneity of the frequencies of KIR genes among different ethnic groups was assessed using the chi-squared test or Fisher’s exact test (F) in the case of 2DP1.

Effect of KIR gene in severe and uncomplicated malaria

We next investigated whether proportions of individuals with each of these KIR genes differed between severe and uncomplicated malaria cases or between malaria cases and population controls. Figure 1 shows the carrier frequency for each KIR gene in the two disease groups and population control samples, and Table S1 (Supporting Information) shows the proportion of carriers by disease entities. In addition to the framework genes KIR2DL4, 3DL2 and 3DL3, three other genes KIR2DL1, 2DS4 and 3DL1 were present in all individuals. Overall, proportions of individuals with each of the inhibitory KIR genes exceeded 75% with the exception of KIR2DL5 (58.9%) while those carrying any of the activating KIR genes (except KIR2DS2) ranged from 9.5% to 45.4%.

Assessment of the homogeneity of proportions positive for each of the KIR genes across groups identified significant differences for KIR2DL2, KIR2DS2, KIR3DS1 and the pseudogene KIR2DP1, with their respective P-values being 2 × 10⁻⁷, 2.7 × 10⁻⁵, 2.7 × 10⁻² (chi-squared test), and 8 × 10⁻³ (Fisher’s exact test), of which only KIR2DL2 and KIR2DS2 remained significant after Bonferroni correction for multiple comparison (corrected P-values 3 × 10⁻⁶ and 4.05 × 10⁻⁴, respectively). Further analysis showed that none of the frequencies differed between uncomplicated and severe malaria cases. However, when all cases (severe and uncomplicated malaria combined) were compared with cord-blood population samples, KIR2DL2, KIR2DS2 and KIR3DS1 were significantly more common in cases than in cord-blood samples (chi-squared test, P = 1 × 10⁻⁶, 1.2 × 10⁻⁵, 8.6 × 10⁻³, respectively), while the pseudogene KIR2DP1 was slightly less common in cases (Fisher’s exact test, P = 0.03). After correction for multiple comparisons using the Bonferroni method only KIR2DL2 and KIR2DS2 genes remained significantly more frequent in malaria cases than in population controls (corrected P < 0.0001 for both comparisons), while the result for KIR3DS1 and the pseudogene KIR2DP1 became non-significant (corrected P = 0.129 and P = 0.45, respectively).

Relationship between centromeric and telomeric KIR motifs and genotypes with malaria

The typing technique used in this study (PCR-SSP) allowed us to detect the presence of inhibitory and activating KIR...
genes but not their different alleles. On the basis of SSP typing, two KIR genotypes (A and B) have been defined depending on the number and type of haplotypes making the genotype (46). Each KIR genotype is made up of two parts (one centromeric and one telomeric motif) separated by a recombination hot spot area upstream of KIR2DL4 gene. KIR genotype A has a uniform gene content with its centromeric part containing specific genes such as KIR2DL3, 2DL1 and 2DP1, in addition to the framework genes 3DL3 and 3DP1. The telomeric part of KIR genotype A is marked by the presence of KIR3DL1 and 2DS4 and the ubiquitous KIR2DL4 and KIR3DL2 (frame work genes). Individuals homozygous for KIR genotype A have two copies of A haplotypes [i.e. two copies of centromeric A motifs (c-A/A) and two telomeric A motifs (t-A/A)].

In contrast to the conserved nature of genotype A in terms of gene content, KIR genotype B is highly polymorphic in gene content. Genotype B is a combination of activating and inhibitory KIR genes including those found in genotype A. The number of specific genes found at the centromeric end of B genotypes is variable including KIR2DL3, 2DS3 and 2DS4 and KIR3DL2 (frame work genes). Individuals homozygous for KIR genotype A have two copies of A haplotypes [i.e. two copies of centromeric A motifs (c-A/A) and two telomeric A motifs (t-A/A)].

| Table 3 Effect of centromeric and telomeric motifs and KIR genotypes on malaria |
|------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
Genotype	Uncomplicated malaria n (%)	Severe malaria n (%)	Combined cases n (%)	Pop control n (%)	PA	PB	PC	OR (95% CI)
Centromeric								
c-A/A	20 (10.6)	20 (15.0)	40 (12.46)	69 (22.0)	0.004	0.001	0.007	0.5 (0.32–0.79)
c-B/B	31 (16.5)	19 (14.3)	50 (15.58)	56 (17.8)	0.652	0.446	ns	0.92 (0.59–1.44)
c-A/B	137 (72.9)	94 (70.7)	231 (71.96)	189 (60.2)	0.007	0.002	0.021	1.61 (1.14–2.29)
Telomeric								
t-A/A	135 (71.8)	90 (67.7)	225 (70.09)	231 (73.6)	0.448	0.331	ns	1.01 (0.7–1.45)
t-A/B	53 (28.2)	43 (32.3)	96 (29.91)	83 (26.4)	0.448	0.331	ns	0.99 (0.69–1.43)
KIR								
A/A	20 (10.6)	20 (15.0)	40 (12.46)	66 (21.0)	0.009	0.004	0.012	0.53 (0.34–0.84)
B/x	168 (89.4)	113 (85.0)	281 (87.54)	248 (79.0)	0.009	0.004	0.012	1.87 (1.19–2.96)

Bx, non-A centromeric or telomeric part that is different from known B motifs; CI, 95% confidence intervals; n, number of individuals positive for the genotype of interest; P, chi-squared P-values comparing (A) all groups, (B) combined cases (uncomplicated and severe malaria) vs population controls, and (C) as for B above but corrected for multiple comparisons by the Bonferroni approach after adjustment for ethnicity; ns, non-significant; OR, odds ratios for cases vs controls of having a particular genotype; Pop control, cord blood population control samples.
KIR and HLA-C alleles show significant association with malaria infection and severity

We sequenced HLA-C and -B alleles from 382 and 148 samples, respectively, and compared their frequencies across groups as shown in Table 4. We found HLA-Cw*16:01 frequency (a C group 1 allele) to be lowest amongst children with severe malaria (P = 0.007, for comparison across three groups, P = 0.077 after adjustment for multiple comparisons). This observation, however, should be taken with caution given the small number of individuals used in this comparison. None of the HLA-B alleles was found to have any impact on malaria in this population. The frequencies of HLA-B or -C dimorphic groups and subgroups (Bw4, Bw6, Bw4-80I, Bw4-80T, C1, C2, C1/C2) were similar between groups (Table 4).

It has been shown that KIR and HLA interact in an epistatic manner to modulate human immunodeficiency virus (HIV) disease outcome (29). In this study, we grouped individuals based on whether they have corresponding putative ligand(s) for their KIR genes. Analysis of KIR–HLA compound genotypes as given in Table 4 showed significant differences in the proportion of individuals carrying either KIR2DL2 and/or KIR2DS2 together with their corresponding ligands [HLA-C group 1 (C1)]. The frequencies of these two compound genotypes were significantly higher in cases compared with population control (P ≤ 2 × 10−4; adjusted for ethnicity and multiple testing P = 0.0008 for both comparisons), suggesting that carriers of KIR2DL2+C1 and/or KIR2DS2+C1 were more at risk of being infected with malaria parasites than those without any of these genotypes. However, these two genes are in strong linkage disequilibrium (LD) even in African populations (47, 48) making it difficult to know which of them is actually mediating the effect. As earlier mentioned, future studies are needed to confirm this preliminary observation.

The ratio of inhibitory to activating KIR genes and the number of B motifs per KIR (B content) are associated with level of parasitaemia

NK cell–derived IFN-γ has been proposed as an important player of the innate immune response to malaria (10), contributing to initial parasite control (49). Considering that expression of KIR receptors on NK cells has been associated with the magnitude of IFN-γ responses to malaria parasites (14), we explored whether the ratio of inhibitory over activating KIR genes (I/A ratio) or the carriage of a particular KIR genotype is associated with parasite load measured on admission. When the ratios were grouped into four bins containing similar numbers of individuals, the level of parasitaemia was significantly different (PANOVA = 0.03) showing a significant increase with increasing I/A ratio (P test for linear trend = 0.009, Figure S2a). Further, individuals homozygous for KIR genotype A (A/A) had a 1.6-fold higher geometric mean parasitaemia (Figure S2b) than those with one or more B motif content (B/x) (P = 0.04), and

Table 4 HLA alleles and KIR–HLA compound genotypes on malaria

Allele*	Uncomplicated (%)	Severe (%)	Pop controls (%)	P
HLA-C				
Cw*02	16 (16.3)	13 (22.4)	52 (23.0)	0.389
Cw*03	22 (22.5)	22 (37.9)	56 (24.8)	0.079
Cw*04	35 (35.7)	14 (24.1)	68 (30.1)	0.305
Cw*05:01	8 (8.2)	3 (6.2)	8 (13.5)	0.205F
Cw*06:02	11 (11.2)	7 (12.1)	25 (11.1)	0.977
Cw*07	21 (21.4)	16 (27.6)	60 (26.6)	0.571
Cw*08	4 (4.1)	5 (8.6)	12 (5.3)	0.486F
Cw*15	7 (7.1)	3 (6.2)	7 (3.1)	0.224F
Cw*16:01	30 (30.6)	8 (5.6)	55 (24.3)	0.007
Cw*17	7 (7.1)	8 (13.8)	26 (11.5)	0.363
Cw*18	6 (6.1)	2 (3.5)	7 (3.1)	0.422F
Group				
HLA-B				
B*07	6 (14.0)	3 (11.5)	4 (5.1)	0.217F
B*08:01	3 (7.0)	2 (7.7)	7 (8.9)	1.000F
B*15	10 (23.3)	6 (23.1)	25 (31.7)	0.518
B*18:01	1 (3.2)	1 (3.9)	3 (3.8)	1.000F
B*35:01	12 (27.9)	5 (19.2)	16 (20.3)	0.583
B*52:01	3 (7.0)	2 (7.7)	7 (7.6)	1.000F
B*53	12 (27.9)	7 (26.9)	30 (38.0)	0.403
B*58	7 (16.3)	5 (19.2)	13 (16.5)	0.940
B*78	4 (9.3)	3 (11.5)	9 (11.4)	1.000F
Group				
Bw4	28 (65.1)	16 (61.5)	56 (70.9)	0.623
Bw4-80I	27 (62.8)	16 (61.5)	43 (54.4)	0.621
Bw6	32 (74.4)	18 (69.2)	58 (73.4)	0.888
C1	76 (77.6)	42 (72.4)	173 (76.6)	0.751
C2	70 (71.4)	36 (62.1)	144 (63.7)	0.343
C1C2	48 (49.0)	20 (34.5)	91 (40.3)	0.417
KIR–HLA				
3DS1+Bw4	5 (11.6)	3 (11.5)	3 (3.8)	0.148F
3DL1+Bw4	28 (65.1)	16 (61.5)	56 (70.9)	0.623
3DL1+Bw4-80I	27 (62.8)	16 (61.5)	43 (54.4)	0.621
2DL2+C1	66 (67.4)	38 (65.5)	101 (44.7)	<0.001
2DL3+C1	63 (64.3)	38 (65.5)	154 (68.1)	0.777
2DS2+C1	54 (55.1)	33 (56.9)	77 (34.1)	<0.001
2DL1+C2	70 (71.4)	36 (62.1)	144 (63.7)	0.343
2DS1+C2	17 (17.4)	11 (19.0)	31 (13.7)	0.512

P, chi-squared or, where indicated, Fisher exact P-values comparing the three groups, P-values that remained significant after adjustment for ethnicity and correction for multiple comparisons (Bonferroni) are printed in bold; *, two-digits results represent alleles with more than one subtype; Pop controls, population-based control samples.

Numbers before the parenthesis indicate the number of individuals positive for the genotype of interest. Rare alleles (present in less than one percent of the studied population) are not included. HLA-C analysis was based on data from 382 samples and HLA-B data was available for 148 individuals.

© 2012 John Wiley & Sons A/S · Tissue Antigens 79, 104–113
parasitaemia levels declined significantly with increasing B content of the KIR genotype ($P = 0.018$, Figure 2).

Discussion

In this study, we determined the presence or absence of 15 KIR genes in two groups of children infected with the malaria parasite *P. falciparum* with distinct disease outcomes (severe malaria vs uncomplicated malaria) and in a population control group. HLA class I (B and C) genotyping was performed on a proportion of samples with enough genomic DNA left after KIR typing. Possible KIR–HLA interactions were explored as compound genotypes in individuals expressing KIR molecules together with their putative ligand(s). Consistent with previous studies in other West African populations (33, 48), we found that the frequencies of inhibitory KIRs were significantly higher overall compared with those of activating KIR genes across disease entities and major ethnic groups represented in the studied population. While the frequency of individual KIR genes did not differ between severe and uncomplicated cases, carriers of KIR2DL2, KIR2DS2 genes were more frequent amongst cases (SM and UM combined) compared with the population control group. Amongst the participants with available HLA type individuals carrying either 2DL2 or 2DS2 together with their corresponding ligand (HLA-C group 1) were significantly more frequent in the infected group. Taken together, these observations suggest that these genes could be involved in increased susceptibility to malaria infection caused by *P. falciparum*. Although a few of our study participants have one without the other, KIR2DL2 and 2DS2 genes are in strong LD in most populations worldwide including those of African origin (33, 48, 50). Because of the strong LD between the two loci, it is difficult to separate the effect of one locus from the other. The inhibitory KIR gene (2DL2) and its corresponding activating counterpart (KIR2DS2) have been associated with other diseases. Absence of these genes has been associated with resistance to infection with herpes simplex virus type-1 (HSV-1) (51). The presence of KIR2DS2 in the absence of its specific ligands has been associated with increased susceptibility to psoriatic arthritis (30). On the other hand, when both genes are present together with their appropriate HLA-C ligands, they were associated with reduced risk of chronic myeloid leukaemia (31).

Although the proportion of subjects with individual KIR genes did not differ significantly between disease subgroups, it is worth noting that prevalence of three activating KIR genes, KIR2DS2, KIR2DS5 and KIR3DS1 were highest in the most critically ill children presenting with CM+SRD (Table S1). While the relatively low number of children in each group precludes firm conclusions, this observation is in line with the finding that the predominantly inhibitory KIR genotype A is virtually absent in the two groups of severe cases (SRD and CM+SRD) that bear the highest mortality. Our data also suggest that homozygosity for KIR genotype A (A/A) might be protective against malaria infection, and that this effect could mainly be associated with A/A homozygosity at the centromeric segment of the KIR locus. Clearly, larger studies are required to establish whether susceptibility to malaria infection and/or mortality from severe disease is associated with a higher frequency of a particular combination of activating KIR genes or a relative absence of inactivating KIR genes. If confirmed, this observation might be explained by the concept of NK cell licensing (52), arming (53) or education (54), whereby both tolerance to healthy cells as well as the strength of the response of a mature NK cell towards an infected cell are determined by the interactions between MHC class I molecules and at least one expressed inhibitory KIR. Accordingly, NK cells that show the strongest inhibition from attacking healthy cells will most probably mount the strongest responses towards infected cells (55). However, considering that individuals homozygous for haplotype A (thus carrying the ‘inhibitory’ KIR genotype A/A) produced significantly less IFN-γ in response to stimulation with *P. falciparum* antigens (14) it is plausible too that the predominance of activating KIRs (or the relative absence of inhibitory KIRs) contributes to exacerbated inflammatory responses that have been implicated repeatedly in the pathogenesis of severe malaria (13, 56). But, as our data suggest, the protective effect of a predominantly inhibitory KIR (A/A genotype) may come at the price of impaired NK-cell-mediated parasite clearance during the early phase of infection.

Present in 6.4% and 12.5% of our population control samples and malaria cases respectively, KIR3DS1 was the least frequent KIR gene in the Gambian population, in line with previous data from other African populations (48, 50, 55). Comparison of KIR gene evolution amongst different populations worldwide has suggested that KIR3DS1/L1 has been under positive selection in modern Sub-Saharan African populations, with KIR3DS1 being rare and KIR3DL1 allotypes predominating (55). This would imply a biological benefit derived from a low frequency of KIR3DS1, such as reduced susceptibility to malaria or protection from severe forms...
of malaria, for which our data provide some support. In a study that compared KIR genotypes in Melanesian individuals with and without malaria parasitaemia living in a malaria hyper-endemic area KIR3DS1 positivity was equally distributed in both groups, but KIR3DS1/L1 heterozygosity was significantly associated with being parasite positive.

Taken together, our data provide some support for the hypothesis that KIR genes influence susceptibility to malaria. The involvement of genes located at the centromeric part of the KIR locus in modulating the outcome of malaria and in particular the role of KIR2DL2 and KIR2DS2 in the susceptibility to P. falciparum malaria warrant further investigations, and we recommend that larger studies should be performed across different populations to test this hypothesis with additional power. Such studies are needed to complement genome-wide approaches (42) that use single nucleotide polymorphism analysis which is not designed to capture the extensive KIR haplotypic diversity.

Acknowledgments

This work was funded by the Medical Research Council of the United Kingdom. We are very grateful to all study participants, and to all field and clinical staff at the government health facilities, MRC Fajara and field stations who contributed to this work. We appreciate the technical advice of Dr Mary Carrington at the National Cancer Institute, Frederick, MD, USA. LMY, RF, PA, OJ, DJ, MJ, DJC and MW made substantial contributions to the conception and design of the study, or acquisition, analysis and interpretation of data; LMY, PA, DJC and MW were involved in drafting the manuscript or critically revising its content.

Conflict of interest

The authors have declared no conflicting interests.

References

1. Langhorne J, Ndungu FM, Sponaas AM, Marsh K. Immunity to malaria: more questions than answers. Nat Immunol 2008: 9: 725–32.
2. Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 2005: 77: 171–92.
3. Mackinnon MJ, Mwangi TW, Snow RW, Marsh K, Williams TN. Heritability of malaria in Africa. PLoS Med 2005: 2: e340.
4. Smyth MJ, Cretney E, Kelly JM et al. Activation of NK cell cytotoxicity. Mol Immunol 2005: 42: 501–10.
5. Lodoen MB, Lanier LL. Natural killer cells as an initial defense against pathogens. Curr Opin Immunol 2006: 18: 391–8.
6. Ljunggren HG, Karre K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 1990: 11: 237–44.
7. Newman KC, Riley EM. Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens. Nat Rev Immunol 2007: 7: 279–91.
8. Korbel DS, Finney OC, Riley EM. Natural killer cells and innate immunity to protozoan pathogens. Int J Parasitol 2004: 34: 1517–28.
9. Mohan K, Moulin P, Stevenson MM. Natural killer cell cytokine production, not cytotoxicity, contributes to resistance against blood-stage Plasmodium chabaudi AS infection. J Immunol 1997: 159: 4990–8.
10. Artavanis-Tsakonas K, Riley EM. Innate immune response to malaria: rapid induction of IFN-gamma from human NK cells by live Plasmodium falciparum-infected erythrocytes. J Immunol 2002: 169: 2956–63.
11. Newman KC, Korbel DS, Hafalla JC, Riley EM. Cross-talk with myeloid accessory cells regulates human natural killer cell interferon-gamma responses to malaria. PLoS Pathog 2006: 2: e118.
12. Korbel DS, Newman KC, Almeida CR, Davis DM, Riley EM. Heterogeneous human NK cell responses to Plasmodium falciparum-infected erythrocytes. J Immunol 2005: 175: 7466–73.
13. Artavanis-Tsakonas K, Eleme K, McQueen KL et al. Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes. J Immunol 2003: 171: 5396–405.
14. Korbel DS, Norman PJ, Newman KC et al. Killer Ig-like receptor (KIR) genotype predicts the capacity of human KIR-positive CD56dim NK cells to respond to pathogen-associated signals. J Immunol 2009: 182: 6426–34.
15. Cooper MA, Fehninger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol 2001: 22: 633–40.
16. Cooley S, Xiao F, Pitt M et al. A subpopulation of human peripheral blood NK cells that lacks inhibitory receptors for self-MHC is developmentally immature. Blood 2007: 110: 578–86.
17. Jacobs R, Hintzen G, Kemper A et al. CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol 2001: 31: 3121–7.
18. Mingari MC, Schiavetti F, Ponte M et al. Human CD8+ T lymphocyte subsets that express HLA class I-specific inhibitory receptors represent oligoclonally or monoclonally expanded cell populations. Proc Natl Acad Sci U S A 1996: 93: 12433–8.
19. Parham P. The genetic and evolutionary balances in human NK cell receptor diversity. Semin Immunol 2008: 20: 311–6.
20. Long EO. Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 1999: 17: 875–904.
21. Older Aguilar AM, Guethlein LA, Adams EJ, Abi-Rached L, Moesta AK, Parham P. Coevolution of killer cell Ig-like receptors with HLA-C to become the major variable regulators of human NK cells. J Immunol 2010: 185: 4238–51.
22. Guinan KJ, Cunningham RT, Meenagh A et al. Signatures of natural selection and coevolution between killer cell immunoglobulin-like receptors (KIR) and HLA class I genes. Genes Immun 2010: 11: 467–78.
23. Rauch A, Laird R, McKinnon E et al. Influence of inhibitory killer immunoglobulin-like receptors and their HLA-C ligands
KIR genes and malaria

L.-M Yindom et al.

on resolving hepatitis C virus infection. Tissue Antigens 2007: 69 (Suppl 1): 237–40.

24. Rajagopalan S, Long EO. Understanding how combinations of HLA and KIR genes influence disease. J Exp Med 2005: 201: 1025–9.

25. Yamazaki A, Yasunami M, Ofori M et al. Human leukocyte antigen class I polymorphisms influence the mild clinical manifestation of Plasmodium falciparum infection in Ghanaian children. Hum Immunol 2011.

26. Carrington M, Wang S, Martin MP et al. Hierarchy of resistance to cervical neoplasia mediated by combinations of killer immunoglobulin-like receptor and human leukocyte antigen loci. J Exp Med 2005: 201: 1069–75.

27. Gaudieri S, DeSantis D, McKinnon E et al. Killer immunoglobulin-like receptors and HLA act both independently and synergistically to modify HIV disease progression. Genes Immun 2005: 6: 683–90.

28. Hisy SE, Walker JJ, O’Shaughnessy KM et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 2004: 200: 957–65.

29. Martin MP, Gao X, Lee JH et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 2002: 31: 429–34.

30. Martin MP, Nelson G, Lee JH et al. Cutting edge: susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol 2002: 169: 2818–22.

31. Middleton D, Diler AS, Meenagh A, Sleator C, Gourraud PA. Killer immunoglobulin-like receptors (KIR2DL2 and/or KIR2DS2) in presence of their ligand (HLA-C1 group) protect against chronic myeloid leukaemia. Tissue Antigens 2009: 73: 553–60.

32. van der Slik AR, Koeleman BP, Verduijn W, Bruining GJ, Roep BO, Giphart MJ. KIR in type 1 diabetes: disparate distribution of activating and inhibitory natural killer cell receptors in patients versus HLA-matched control subjects. Diabetes 2003: 52: 2639–42.

33. Yindom LM, Leigidzowicz A, Martin MP et al. Influence of HLA class I and HLA-KIR compound genotypes on HIV-2 infection and markers of disease progression in a Manjako community in West Africa. J Virol 2010: 84: 8202–8.

34. Hill AV, Allsopp CE, Kwiatkowski D et al. Common west African HLA antigens are associated with protection from severe malaria. Nature 1991: 352: 595–600.

35. Lyke KE, Fernandez-Vina MA, Cao K et al. Association of HLA alleles with Plasmodium falciparum severity in Malian children. Tissue Antigens 2011: 77: 562–71.

36. Taniguchi M, Kawabata M. KIR3DL1/S1 genotypes and KIR2DS4 allelic variants in the AB KIR genotypes are associated with Plasmodium-positive individuals in malaria infection. Immunogenetics 2009: 61: 717–30.

37. Hill AV, Elvin J, Willis AC et al. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 1992: 360: 434–9.

38. World Health Organization CDC. Severe falciparum malaria. World Health Organization, Communicable Diseases Cluster. Trans R Soc Trop Med Hyg 2000: 94 (Suppl 1): S1–90.

39. Walther M, Jeffries D, Finney OC et al. Distinct roles for FOXP3 and FOXP3 CD4 T cells in regulating cellular immunity to uncomplicated and severe Plasmodium falciparum malaria. PLoS Pathog 2009: 5: e1000364.

40. Gomez-Escobar N, Ambambu-Ngwa A, Walther M, Okebe J, Ebonyi A, Conway DJ. Erythrocyte invasion and merozoite ligand gene expression in severe and mild Plasmodium falciparum malaria. J Infect Dis 2010: 201: 444–52.

41. Marsh K, Forster D, Waruiru C et al. Indicators of life-threatening malaria in African children. N Engl J Med 1995: 332: 1399–404.

42. Jallow M, Teo YY, Small KS et al. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat Genet 2009: 41: 657–65.

43. Martin MP, Carrington M. KIR locus polymorphisms: genotyping and disease association analysis. Methods Mol Biol 2008: 415: 49–64.

44. Cooley S, Weisdorf DJ, Guethlein LA et al. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood 2010: 116: 2411–9.

45. Pyo CW, Guethlein LA, Vu Q et al. Different patterns of evolution in the centromeric and telomeric regions of group A and B haplotypes of the human killer cell Ig-like receptor locus. PLoS ONE 2010: 5: e15115.

46. Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR. Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Res 2011: 39: D913–9.

47. Single RM, Martin MP, Meyer D, Gao X, Carrington M. Methods for assessing gene content diversity of KIR with examples from a global set of populations. Immunogenetics 2008: 60: 711–25.

48. Single RM, Martin MP, Gao X et al. Global diversity and evidence for coevolution of KIR and HLA. Nat Genet 2007: 39: 1114–9.

49. Walther M, Woodruff J, Edele F et al. Innate immune responses to human malaria: heterogeneous cytokine responses to blood-stage Plasmodium falciparum correlate with parasitological and clinical outcomes. J Immunol 2006: 177: 5736–45.

50. Denis L, Sivula J, Gourraud PA et al. Genetic diversity of KIR natural killer cell markers in populations from France, Guadeloupe, Finland, Senegal and Reunion. Tissue Antigens 2005: 66: 267–76.

51. Estefania E, Gomez-Lozano N, Portofo F et al. Influence of KIR gene diversity on the course of HSV-1 infection: resistance to the disease is associated with the absence of KIR2DL2 and KIR2DS2. Tissue Antigens 2007: 70: 34–41.

52. Kim S, Poursine-Laurent J, Truscott SM et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 2005: 436: 709–13.

53. Raulet DH, Vance RE. Self-tolerance of natural killer cells. Nat Rev Immunol 2006: 6: 520–31.

54. Anfossi N, Andre P, Guia S et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 2006: 25: 331–42.

55. Norman PJ, Abi-Rached L, Gendzekhadze K et al. Unusual selection on the KIR3DL1/S1 natural killer cell receptor in Africans. Nat Genet 2007: 39: 1092–9.
56. Artavanis-Tsakonas K, Tongren JE, Riley EM. The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clin Exp Immunol 2003: 133: 145–52.

Supporting Information

The following supporting information is available for this article:

Figure S1. The KIR centromeric (A) and telomeric (B) genotypes and their motif content. Filled box indicates that gene is present and open box indicates that the gene is absent. c-A: centromeric A motif, c-B: one of the known centromeric B motifs, c-Bx: one of the new B motifs. UM: uncomplicated malaria, n, number of individuals carrying the genotype of interest; SM, severe malaria. Rare genotypes present in less than 1% of the studied population are not included.

Figure S2. (a) Ratio of inhibitory/activating KIR genes and (b) KIR genotypes associate with level of parasitaemia in the blood. Bars represent the geometric mean with 95% CI, n, number of individuals with blood parasitaemia data, P-value in (a) refers to the test for linear trend and P-value in (b) refers to t-test, both performed on log transformed data.

Table S1. KIR distribution in the malaria infected group by disease entities.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.