Determination of Terpenoid Profile in Dry Cannabis Flowers and Extracts Obtained from Different Cannabis Varieties

Tijana Serafimovska a*, Marija Darkovska Serafimovska b, Marija Mitevska c, Sasho Stefanovski c, Zlatko Keskovski c, Gjoshe Stefkov a, Trajan Balkanov d and Jasmina Tonic Ribarska a

a Faculty of Pharmacy, University Ss. Cyril and Methodius, Skopje, Republic of North Macedonia.
b Faculty of Medical Sciences, University Goce Delcev, Shtip, Republic of North Macedonia.
c NYSK Holdings, Company for Growing, Extraction and Producing of Pharmaceutical Dosage Forms of Medical Cannabis, Skopje, Republic of North Macedonia.
d Department of Pharmacology and Toxicology, Faculty of Medicine, University Ss. Cyril and Methodius, Skopje, Republic of North Macedonia.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

Aim: The aim of this study was to determine the terpenoid profile in dried cannabis flowers obtained from different varieties of cannabis plant and in cannabis extracts in order to investigate quantity of terpenes lost during extraction and purification process.

Methods: GC/MS method for determination of terpenes was verified. The concentration of terpenes was determined in dry flowers as raw material and in decarboxylated and distillated cannabis extracts, using the same GC/MS analytical method. The extraction was performed using 96% ethanol as a solvent.
Results: The obtained results indicate that dry cannabis flowers from different cannabis plant can be distinguished only by their terpenoid profile. The use of standardized cannabis-based extracts can be confirmed by determination of terpenoid profile. The purification process of the cannabis extracts removes terpenes. The percentage of major terpene beta-Mycene decreased from 68% in dry flower to 15% in decarboxylated and, 1.9% in distillated cannabis oil after purification. The percentage of second major terpene alpha-Pinene decreased from 15% in dry flower to 5% in decarboxylated and, 0.7% in distillated cannabis oil after purification.

Conclusion: Terpenes act synergistically with cannabinoids. Following the monograph for quality testing of cannabis extracts in the German Pharmacopoeia, the purification process is necessary to achieve a final concentration of cannabinoids (Tetrahydrocannabinol) of more than 95% in the final active pharmaceutical ingredient. The purification process removes terpenes that have proven synergistically pharmacological effects with cannabinoids.

Keywords: Terpenes; terpenoid profile; cannabis extracts; GC/MS determination; fingerprint.

1. **INTRODUCTION**

Cannabis sativa L. (Cannabaceae) is the frequently used plant, yet notorious and controversial, but considered to have therapeutic potential [1]. Several cannabis-based medicines are now available for the treatment of various pathological conditions such as treatment of pain in cancer patients, treatment of nausea and vomiting induced by chemotherapy, loss of appetite and treatment of cachexia in patients with cancer and acquired immunodeficiency syndrome (AIDS), treatment of neuropathic and chronic pain and spasticity in multiple sclerosis [2-6].

Cannabis is a plant that contains more than 1,000 different chemical ingredients, which vary depends on the chemotype (chemical phenotype) of the strain. Chemotypes denote plants of the same genus that are practically identical in appearance but produce essential oil containing different major ingredients that vary within one botanical strain [7].

1.1 **Importance of Terpenes / Terpenoids**

An essential oil (extract) derived from cannabis plats primarily contains cannabinoids which are the main carriers of pharmacological effects and terpenes / terpenoids, which act synergistically with cannabinoids in exhibiting a pharmacological effect. Terpenes / terpenoids are responsible for the characteristic aroma of cannabis extracts.

Terpenes / terpenoids itself have a wide range of pharmacological actions, such as antifungal, antiviral, anticancer, anti-inflammatory, anti hyperglycemic, antiparasitic, antioxidant and antimicrobial. For example, monoterpane myrcene which is the smallest terpene, has antipsychotic, antioxidant, analgesic, anti-inflammatory, sedative, muscle relaxant and anticancer effects [8-10]. Caryophyllene has gastroprotective, analgesic, anticancer, antifungal, antibacterial, antidepressant, anti-inflammatory, antiproliferative, antioxidant, and neuroprotective effects [11]. α-pinene has antibacterial, anti-inflammatory, broncho dilatory, antiseptic and gastroprotective pharmacological effects, while β-pinene has only an antiseptic effect [12]. Linalol is a terpene that acts as a sedative, antipsychotic, anconvulsant, anxiolytic, anesthetic, antidepressant, analgesic, antiepileptic and antineoplastic [8]. Terpineol has an antioxidant, antimicrobic, and relaxing effect, while carophyllene has analgesic, anticancer and antifungal effects [13]. Other terpenes like phellandrene and ocimene, has on only an antifungal effect and they are used to treat different digestive disorders [14-15]. Camphene helps in treatment of cardiovascular diseases, while guaioil has an antitumor effect [16]. α-humulene has antibacterial, anti-inflammatory, and antitumor effects [17], nerolidol antiparasitic [18, 19], and citral has an antifungal, antimicrobial, antiproliferative, cytotoxic, anticancer, and antitumor effect [20–25].

Due to their synergistic effect, several therapeutic approaches based on the combined use of cannabinoids and terpenes have recently been developed [26-29]. Considering that different terpenes have different pharmacological effects, standardization of these products, which can be very heterogeneous [30] depending on the variety of plants from which they are obtained, is an important prerequisite for confirming the quality and expected pharmacological effect [31]. This is especially important if we consider that the terpenoid profile
is a fingerprint or a specificity that is characteristic of each variety.

Therefore, our goal was to develop or verify the GC/MS method for determination of 35 terpenes and to monitor their content in a cannabis dry flower from different varieties as well as in cannabis extracts obtained after extraction process of the same flowers in order to investigate quantity of terpenes lost during extraction and purification process.

2. MATERIALS AND METHODS

2.1 Chemicals and Reagents

Standards for cannabis terpenes as a Reference material were supplied by Restek and Sigma Aldrich (Table 1). Helium gas was supplied by Messer.

2.2 Apparatus

Terpene analysis were performed on a GCMS-QP2010SE single quadrupole mass spectrometer with static headspace (HS-20) with loop and autosampler for sample introduction.

2.3 Instrument Operating Conditions and Method Parameters

Instrument operating conditions and method parameters [32] are shown in Table 2. Verification of the method was fully implemented.

2.4 Standard Solutions and Calibration Curves

Three sets of standards were used to obtain a more complete terpene profile. Standard one, purchased from Restek in a 2500 μg/mL stock solution, and Standard two and three, purchased from Sigma Aldrich (SPEX mix A and SPEX mix B) in a 100 μg/mL stock solution. 35 different terpenes were identified and quantified in total.

Full evaporation headspace technique (FET) was used for quantification. A five-point calibration curves were created from the Restek terpene standard with concentration ranging from 78-2500 μg/mL and Sigma Aldrich terpene standards (mix A and mix B) with concentrations ranging from 12.5-100 μg/mL. An aliquot of 10μL of the standard was placed in a 10mL headspace vial and capped. All points on the calibration curve were run in replicates of six.

2.5 Verification of the Method

The proposed method was verified according to the guidelines set by the International Conference of Harmonization for validation of analytical procedures [33, 34]. The precision and reproducibility of the proposed method were evaluated by performing six replicate analyses of the standard solutions for five different concentrations. Relative standard deviations were calculated to obtain the precision of the method. The full mass scan was done for all standard mix solutions to confirm the specificity / selectivity of the method. To confirm the linearity of the method standard solutions in at least five different concentrations was prepared for all analytes. The limit of detection and limit of quantification for each analyte were calculated from standard error, slope, and analyte response.

2.6 Extraction Process

The extraction process was performed using 96% ethanol as a solvent. Maceration was performed in a cold chamber (refrigerator at -20°C). The duration of the maceration was 30 minutes in total. Stirring was done on every 10 minutes. After maceration was completed, the macerated material (cannabis flowers) was manually squeezed with a stainless-steel strainer. The resulting macerate was filtered. After that the ethanol was evaporated. After evaporation of the ethanol, the obtained crude oil was decarboxylated by heating until the temperature of the crude extract reached 125-130°C. After decarboxylation, additional purification was performed to obtain an extract (distillated cannabis oil) having more than 95% THC according to the monograph in the German Pharmacopoeia.

2.7 Sample Preparation (dry flower or cannabis extract)

FET was used for quantitation. 30mg of the dry cannabis flower or cannabis extract (decarboxylated or distillated oil) were weighed into a headspace vial and capped. Calculations of the quantity of different terpenes were done using calibration curve for each terpene separately. Analyze was done on nine different
strains of cannabis plant and two decarboxylated and two distilled cannabis extracts obtained from two different strains of cannabis plant. The extraction was performed using 96% ethanol as a solvent through maceration.

3. RESULTS AND DISCUSSION

3.1 Verification of the Method

The precision and reproducibility of the proposed method were evaluated by performing six replicate analyses of the standard solutions for five different concentrations used for creation of calibration curves. Relative standard deviations (RSD) were calculated for each terpene. RSD for each terpene in each concentration after 6 replicate determinations was lower than 7% [35].

The typical chromatograms and calibration curves of the standard solutions of each terpene are shown in Figure 1-1, Figure 1-2 and Figure 1-3. Coefficient of correlation was greater than 0.99.

The full mass scan was done for all standard mix solutions to confirm the specificity / selectivity of the method. At least 2 qualifier ions were used for identification and one quantifier ion for quantification. The results are shown in Table 3.

Limit of detection / Limit of quantification were calculated from standard error, slope, and analyte response. The results calculated as numerical (absolute) value from the calibration curve are shown in Table 4.
Fig. 1-a. Typical chromatograms (GS/MS) and calibration curves of the standard solutions for terpene testing
Fig. 1-b. Typical chromatograms (GS/MS) and calibration curves of the standard solutions for terpene testing
Geranyl acetate alpha-Cedrene

beta-Caryophyllene alpha-Humulene

cis-Nerolidol trans-Nerolidol

Guaiol Cedrol

alpha-Bisabolol beta-Eudesmol

Phytol

Fig. 1-c. Typical chromatograms (GS/MS) and calibration curves of the standard solutions for terpene testing
Table 3. Retention time and analyte transition for different terpenes

Terpene	Retention time (min)	Precursor Ion	Product Ion (Quantifier)	Product Ion (Qualifier)
alpha-Pinene	5.93	93	92	91
Camphene	6.24	93	121	79
beta-Myrcene	6.61	93	41	69
beta-Pinene	6.65	93	69	41
3-Carene	7.015	93	91	79
Alpha terpinene	7.16	121	93	136
trans-beta-Ocimene	7.245	93	92	91
Limonene	7.325	68	93	67
Cymene	7.38	119	134	91
beta-Ocimene	7.485	93	91	80
gamma-Terpinene	7.76	93	91	80
Terpinolene	8.275	93	121	136
Linalol	8.88	71	93	55
L-Fenchone	9.055	81	69	41
Fenchol, exo-	9.59	81	80	43
Isopulegol	9.97	67	81	69
Camphor	10.265	95	81	108
Isoborneol	10.4	95	110	93
Menthol	10.47	81	71	95
Borneol	10.59	95	110	41
alpha-Terpineol	10.76	59	93	121
Citronellol	11.165	96	41	55
Geraniol	11.6	69	41	68
Pulegone	11.685	81	152	67
Geranyl acetate	13.31	69	41	43
Alpha-Cedrene	14.145	119	93	105
beta-Caryophyllene	14.255	93	133	69
alpha-Humulene	14.805	93	80	121
cis-Nerolidol	15.79	69	93	41
trans-Nerolidol	16.22	69	93	41
Guaiol	17.09	161	59	105
Cedrol	17.505	95	150	151
alpha-Bisabolol	18.075	109	119	69
beta-Eudesmol	18.095	59	149	108
Phytol	19.325	95	68	82

Table 4. Limit of detection / Limit of quantification of different terpenes, calculated as numerical (absolute) value from the calibration curve

Terpene	Limit of Detection (μg/mL)	Limit of Quantification (μg/mL)
alpha-Pinene	0.544	1.649
Camphene	0.445	1.349
beta-Myrcene	0.547	1.658
beta-Pinene	0.508	1.539
3-Carene	0.478	1.449
Alpha terpinene	0.387	1.174
trans-beta-Ocimene	0.573	1.738
Limonene	0.483	1.464
Cymene	0.327	0.993
beta-Ocimene	0.521	1.580
gamma-Terpinene	0.454	1.376
Terpinolene	0.446	1.35
Linalol	0.661	2.003
Table 5. Terpenoid profile of different cannabis strains, calculated as percentage of total terpenes

Cannabis strain	BB*	AK*	WW*	HE*	SG*	LS*	GE*	FC*	AFG*
Terpene									
alpha-Pinene	10.997	16.314	15.287	11.487	1.453	2.682	4.917	2.869	5.611
Camphene	0.396	0.360	0.303	0.508	0.426	0.455	0.653	0.995	0.802
beta-Mycene	62.998	55.347	68.887	48.943	38.367	11.562	10.048	11.540	17.471
beta-Pinene	3.678	7.414	0.396	0.360	0.303	0.508	4.917	2.869	5.611
3-Carene	0.274	ND	ND	ND	0.094	0.038	0.611	0.022	0.151
Alpha-terpinene	0.268	0.157	0.161	0.085	0.062	0.711	0.047	0.020	0.078
trans-beta-Ocimene	ND	ND	ND	ND	0.209	0.162	0.257	0.168	0.264
Limonene	4.804	4.460	2.339	12.970	15.036	14.493	17.182	22.887	23.841
Cymene	ND								
beta-Ocimene	ND	ND	ND	ND	6.266	2.588	9.511	2.484	0.672
gamma-Terpinene	0.536	0.320	0.335	0.149	0.075	0.526	0.066	0.152	0.078
Terpinolene	0.587	0.349	0.357	0.245	0.194	15.210	0.214	0.474	0.970
Linalol	5.853	6.842	2.405	2.437	6.197	3.291	8.303	8.158	3.471
L-Fenchone	ND	ND	ND	0.188	0.292	0.181	0.451	0.574	0.382
Fenchol, exo-	ND	ND	ND	1.083	3.634	2.914	4.273	6.154	5.447
Isopulegol	ND								
Camphor	ND	ND	ND	0.007	0.006	0.006	0.009	0.015	0.010
Isoborneol	ND								
Menthol	ND								
Borneol	0.247	ND	ND	0.359	0.627	0.556	0.569	1.119	0.863
alpha-Terpineol	1.604	1.176	0.347	1.147	2.359	2.150	2.640	4.115	2.957
Cannabis strain	BB*	AK*	WW*	HE*	SG*	LS*	GE*	FC*	AFG*
-----------------	-----	-----	-----	-----	-----	-----	-----	-----	------
Citronellol	ND	ND	ND	0.001	0.002	ND	ND	0.030	ND
Geraniol	ND								
Pulegone	ND								
Geranyl acetate	ND	ND	ND	0.014	ND	ND	ND	ND	ND
Alpha-Cedrene	ND								
beta-Caryophyllene	ND	ND	ND	4.542	18.268	23.480	33.033	25.800	19.883
alpha-Humulene	7.759	7.260	3.141	2.932	4.962	5.844	7.798	6.783	5.440
cis-Nerolidol	ND								
trans-Nerolidol	ND	ND	ND	0.169	1.114	1.181	2.272	1.322	1.120
Guaiol	ND	ND	ND	1.154	1.303	ND	ND	0.181	ND
Cedrol	ND								
alpha-Bisabolol	ND	ND	ND	0.571	1.019	0.183	0.243	0.604	0.680
beta-Eudesmol	ND	ND	ND	1.371	1.620	0.099	0.105	0.146	0.315
Phytol	ND	ND	ND	0.014	ND	ND	ND	ND	ND

*Cannabis species: BB (Big Bud), AK (AK-47), WW (White Widow), HE (Herijuana), SG (Strawberry Glue), LS (La S.A.G.E), GE (Gelato), FC (French Cookies), AFG (Afghan Berry), ND – Not Detected

Table 6. Determination of major terpenoids in cannabis extracts obtained from different varieties of cannabis flower

Cannabis strain	Terpene	WW*	Terpenes (%) in dry cannabis flowers	Terpenes (%) in Decarboxylated oil	Terpenes (%) in Distillated oil
	alpha-Pinene	15.287	4.089	0.69	
	beta-Mycene	68.887	15.225	1.90	
	beta-Pinene	6.438	2.860	0.11	

Cannabis strain	Terpene	Terpenes (%) in dry cannabis flowers	Terpenes (%) in Decarboxylated oil	Terpenes (%) in Distillated oil	
	alpha-Pinene	10.997	1.27	0.73	
	beta-Mycene	62.998	42.91	3.76	
	Limonene	4.804	3.70	1.07	

*Decarboxylated and Distillated oil obtained from cannabis strain WW (White Widow) and BB (Big Bud)

Fig. 2. Typical chromatogram for chromatographic separation of terpenes in standard solution
Fig. 3. Typical chromatogram for chromatographic separation of terpenes in cannabis flower

Fig. 4. Typical chromatogram for chromatographic separation of terpenes in cannabis extract

3.2 Determination of Terpenoid Profile in Cannabis Dry Flowers and Cannabis Extracts

Results from determination of terpenoid profile on nine different varieties of cannabis plant are shown in Table 5.

Results from determination of three major terpenoids in cannabis extracts (two decarboxylated and two distillated oils) obtained from two different varieties of cannabis dry flowers compared with quantity (in %) of terpenes in the cannabis dry flowers used for process of extraction are shown in Table 6.

Typical chromatogram for chromatographic separation of all terpenes in standard solution is shown in Fig. 2.

Typical chromatogram for chromatographic separation of all terpenes in cannabis flower is shown in Fig. 3.

Typical chromatogram for chromatographic separation of all terpenes in cannabis extract is shown in Fig. 4.

4. DISCUSSION

Terpenes, which are the basic ingredients of essential oils in many plants have been used for thousands of years for different therapeutic purposes. Studies in animal models and humans have identified analgesics, antimicrobials, anti-inflammatory and similar therapeutic properties. The main focus of researchers for the therapeutic purposes of cannabis-based medicines have been cannabinoids primarily Δ9-tetrahydrocannabinol (THC), while terpenes and potential interactions between terpenes and cannabinoids has barely been studied at all when the cannabis-based medicines are consumed for medical purposes [36].

The hypothesized synergistic interactions between different cannabinoids and terpenes to obtain unique pharmacological effects have been investigated in several preclinical and some clinical studies. There is skepticism in the literature and remains unclear with insufficient evidence from preclinical studies whether terpenes can act synergistic with cannabinoids [37-39]. If terpenes can be shown to modulate cannabinoid activity, it could provide a powerful tool to improve cannabinoid therapy.

Recently studies have been conducted to evaluate the functional and modulatory actions of various terpenes in vivo and in vitro, both alone and in combination with an established cannabinoid agonist. The results of this studies establish direct interaction between cannabinoids.
and terpenes demonstrating that terpenes can selectively modulate pharmacological agonist activity of cannabinoids. This study is the first that shows that terpenes and cannabinoids can produce an additive effect when combined [36]. The mechanisms of synergistic action between terpenes and cannabinoids at the molecular level is still unknown. Two alternatives are (1) direct modulation of membrane shifting CB1 receptors activation and (2) terpene modulation of endocannabinoid synthesis or degradation, which results in CB1 receptors activation. But the notable aspect of this study was the generally high concentrations of terpenes needed to see activation [36].

In our case, we conducted tests for determination of terpenes in cannabis dry flowers and extracts. Since there is no monograph in the European Pharmacopeia (Ph.Eur.) for quality testing of cannabis flower and extracts, currently a revised monograph for cannabis flower (cannabis floss) and cannabis extracts, published in the German Pharmacopoeia in 2018 (3) and 2020, by the Federal Institute for Drugs and Medical Devices (BfArM) has instructed the obligatory procedure for quality testing of cannabis flowers in the European Union [40]. Following these monographs, the purification process of the cannabis crude extract is necessary to achieve a final concentration of THC of more than 95% in the final active pharmaceutical ingredient. With the analysis performed we have shown that the purification process removes terpenes from the final extracts. The percentage of major terpene beta-Myrcene which has proven antipsychotic, antioxidant, analgesic, anti-inflammatory, sedative, muscle relaxant and anticancer effects decreased from 68% in dry flower to 15% in decarboxylated and, 1.9% in distillated cannabis oil after purification. The percentage of second major terpene alpha-Pinene which has proven antibacterial, anti-inflammatory, broncho dilatory, antiseptic and gastroprotective pharmacological effects decreased from 15% in dry flower to 5% in decarboxylated and, 0.7% in distillated cannabis oil after purification. The question that arises is connected to the pharmacological effect on cannabis-based medicines obtained from cannabis active pharmaceutical ingredients in which terpenes have been removed.

5. CONCLUSION

The main carriers of pharmacological effects in cannabis flowers or extracts are cannabinoids. Terpenes itself have a wide range of pharmacological actions and act synergistically with cannabinoids in exhibiting a pharmacological effect. At the same time terpenes are fingerprint or a specificity that is characteristic of each variety, which is very important for standardization of the cannabis-based extracts. Following the German monograph for cannabis extracts the purification process is necessary to achieve a final concentration of THC of more than 95% in the final active pharmaceutical ingredient. With the analysis performed we have shown that the purification process removes terpenes from the final extracts. The percentage of major terpene beta-Myrcene which has proven antipsychotic, antioxidant, analgesic, anti-inflammatory, sedative, muscle relaxant and anticancer effects decreased from 68% in dry flower to 15% in decarboxylated and, 1.9% in distillated cannabis oil after purification. The percentage of second major terpene alpha-Pinene which has proven antibacterial, anti-inflammatory, broncho dilatory, antiseptic and gastroprotective pharmacological effects decreased from 15% in dry flower to 5% in decarboxylated and, 0.7% in distillated cannabis oil after purification. The question that arises is connected to the pharmacological effect on cannabis-based medicines obtained from cannabis active pharmaceutical ingredients in which terpenes have been removed.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

CONSENT

It is not applicable.
ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENTS

The authors are grateful to the management of NYSK Holdings (part of Pharmacann International Group, Poland) for enabling this research to be done in their laboratory for quality control of cannabis flowers and cannabis extracts.

Dry flowers were produced by NYSK Holdings (Company for growing, extraction and producing of pharmaceutical dosage forms of medical cannabis in Republic of North Macedonia). Producer NYSK Holdings has licence for indoor cultivation of cannabis plant.

Authors want to thank to all the employers in NYSK Holdings that have contributed to this research.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Whiting PF, Wolff RF, Deshpande S, Di Nisio M, Duffy S, Hernandez AV, Keurentjes JC, Lang S, Misso K, Ryder S. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA. 2015;313:2456–2473
2. Tijana Serafimovska, Jasmina Tonic Ribarska, Dejan Trajkov, Marija Darkovska Serafimovska, Gjoshe Stefkov. Approved indications for cannabis-based preparations. IOSR Journal of Pharmacy. 2021;11(9):36-40
3. Tijana Serafimovska, Marija Darkovska-Serafimovska, Gjoshe Stefkov, Zorica Arsova-Sarafinovska, Trajan Balkanov. Pharmacotherapeutic Considerations for Use of Cannabinoids to Relieve Symptoms of Nausea and Vomiting Induced by Chemotherapy. Folia Medica. 2020; 62(4):668-78
4. Amato L, Minozzi S, Mitrova Z, Parmelli E, Saulle R, Cruciani F, Vecchi S, Davoli M. Systematic review of safety and therapeutic efficacy of cannabis in patients with multiple sclerosis, neuropathic pain, and in oncological patients treated with chemotherapy. Epidemiol Prev. 2017; 41:279–293
5. Rudroff T, Honce JM. Cannabis and multiple sclerosis – The way forward. Front Neurol. 2017;8:299
6. Lee G, Grovey B, Furnish T, Wallace M. Medical cannabis for neuropathic pain. Curr Pain Headache Rep. 2018;22:8
7. Lumir Ondfej, Hanus Yotam Hod. Terpenes/Terpenoids in Cannabis: Are They Important? Med Cannabis Cannabinoids. 2020;3:25–60
8. Zaklin R. Terpene therapy. Abstracts of Papers, 256th ACS National Meeting & Exposition, Boston, MA, 2018;19–23:CHAS-50
9. Gulluni N, Re T, Loiacono I, Lanzo G, Gori L, Macchi C, et al. Cannabis essential oil: a preliminary study for the evaluation of the brain effects. Evid Based Complement Alternat. Med. 2018;1709182
10. Jansen C, Shimoda LMN, Kawakami JK, Ang L, Bacani AJ, Baker JD, et al. Myrcene and terpene regulation of TRPV1. Channels. 2019;13(1):344–66
11. Francomano F, Caruso A, Barbarossa A, Fazio A, La Torre C, Ceramella J, et al. β-Caryophyllene: a sesquiterpene with countless biological properties. Appl Sci. 2019;9(24):5420.
12. Salehi B, Upadhyay S, Orhan IE, Jugran AK, Jayaweera SLD, Dias DA, et al. Therapeutic potential of α- and β-pinene: a miracle gift of nature. Biomolecules. 2019;9:738.
13. Khaleel C, Tabanca N, Buchbauer G. α-Terpineol, a natural monoterpene: a review of its biological properties. Open Chem. 2018;16(1):349–61.
14. Zhang JH, Sun HL, Chen SY, Zeng L, Wang TT. Anti-fungal activity, mechanism studies on α-phellandrene and nonanal against Penicillium cyclopium. Bot Stud. 2017;58(1):13.
15. Thakre AD, Mulange SV, Kogdire SS, Zore GB, Karuppayil SM. Effects of cinnamaldehyde, ocimene, camphene, curcumin and farnesene on Candida albicans. AIM. 2016;6(9):627–43.
16. Yang X, Zhu J, Wu J, Huang N, Cui Z, Luo Y, et al. (–)-Guaiol regulates autophagic cell death depending on mTOR signaling in NSCLC Cancer Biol Ther. 2018;19(8):706–14.
17. Jang H-I, Ki-Jong R, Eom Y-B. Antibacterial and antibiofilm effects of α-
humulene against Bacteroides fragilis. Can J Microbiol. 2020;66:389–399.

18. Silva MP, de Oliveira RN, Mengarda AC, Roquini DB, Allegretti SM, Salvadori MC, et al. Anti-parasitic activity of nerolidol in a mouse model of schistosomiasis. Int J Antimicrob Agents. 2017;50(3):467–72

19. Alonso L, Fernandes KS, Mendanha SA, Goncalves PJ, Gomes RS, Dorta ML, et al. In vitro antileishmanial and cytotoxic activities of nerolidol are associated with changes in plasma membrane dynamics. Biochim Biophys Acta Biomembr. 2019;1861(6):1049–56

20. Thomas ML, de Antueno R, Coyle KM, Sultan M, Cruickshank BM, Giacomantonio MA, et al. Citral reduces breast tumor growth by inhibiting the cancer stem cell marker ALDH1A3. Mol Oncol. 2016;10(9):1485–96

21. Sheik BY, Sarker MMR, Kamarudin MNA, Mohan G. Antiproliferative and apoptosis inducing effects of citral via p53 and ROS-induced mitochondrial-mediated apoptosis in human colorectal HCT116 and HT29 cell lines. Biomed Pharmacother. 2017;96:834–46

22. Sanches LJ, Marinello PC, Panis C, Fagundes TR, Morgado-Diaz JA, de-Freitas-Junior JC, et al. Cytotoxicity of citral against melanoma cells: the involvement of oxidative stress generation and cell growth protein reduction. Tumour Biol. 2017;39(3):1010428317695914

23. Zieleńska A, Martins-Gomes C, Ferreira NR, Silva AM, Nowak I, Souto EB. Anti-inflammatory and anti-cancer activity of citral: optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMISizerR. Int J Pharm. 2018;553(1–2):428–40

24. Kremer JL, Melo GP, Marinello PC, Bordini HP, Rossaneis AC, Sabio LR, et al. Citral prevents UVB-induced skin carcinogenesis in hairless mice. J Photochem Photobiol B Biol. 2019;198:111565

25. Nigjeh SE, Yeap SK, Nordin N, Rahman H, Rosli R. In vivo anti-tumor effects of citral on 4T1 breast cancer cells via induction of apoptosis and downregulation of aldehyde dehydrogenase activity. Molecules. 2019;24(18):3241

26. Tarmo Nuutinen. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. European Journal of Medicinal Chemistry. 2018;157:198-228

27. Marco Ternelli, Virginia Brighenti, Lisa Anceschi, Massimiliano Poto, Davide Bertelli, Manuela Licata, Federica Pellati. Innovative methods for the preparation of medical Cannabis oils with a high content of both cannabinoids and terpenes. Journal of Pharmaceutical and Biomedical Analysis. 2020;186:113296

28. Tomko AM, Whynot EG, Ellis LD, Dupré DJ. Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers. 2020;12(7):1985.

29. Eric J. Downer Anti-inflammatory Potential of Terpenes Present in Cannabis sativa L. Neurosci. 2020;11(5):659–662

30. Potter DJ, Hammond K, Tuffnell S, Walker C, Di Forti M. Potency of Δ9-tetrahydrocannabinol and other cannabinoids in cannabis in England in 2016: Implications for public health and pharmacology. Drug Test Anal. 2018;10(4):628–35.

31. Vujanovic V, Korbek DR, Vujanovic S, Vujanovic J, Jabaji S. Scientific Prospects for Cannabis-Microbiome Research to Ensure Quality and Safety of Products. Microorganisms 2020;8:290

32. Shimadzu. Simplified Cannabis Terpene Profiling by GCMS. Application news No. SSI-GCMS-1604

33. ICH Q2R1: Validation of Analytical Procedures: Text and Methodology. Proceeding of the International Conference on Harmonization of Technical Requirements for the Registration of Drugs for Human Use, Geneva, Switzerland; 1996.

34. ICH, Guideline on Analytical Method Validation, Proceeding of International Convention on Quality for the Pharmaceutical Industry, Toronto, Canada; 2002.

35. EU, Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (12 August 2002), notified under document number C. 2002/3044.(2002/657/EC)

36. Justin E. LaVigne, Ryan Hecksel, Attila Keresztes & John M. Streicher. Cannabis sativa terpenes are cannabimimetic and selectively enhance cannabinoid activity. Scientific Reports. 2021;11:8232. Available:https://doi.org/10.1038/s41598-021-87740-8

37. Harris HM, et al. Role of cannabinoids and terpenes in cannabis-mediated
analgesia in rats. Cannabis Cannabinoid Res. 2019;4(3):177–182.

38. Cogan PS. The ‘entourage effect’ or ‘hodge-podge hashish’: The questionable rebranding, marketing, and expectations of cannabis polypharmacy. Expert Rev. Clin. Pharmacol. 2020;1–11

39. Santiago M, Sachdev S, Arnold JC, McGregor IS, Connor M. Absence of entourage: Terpenoids commonly found in cannabis sativa do not modulate the functional activity of Δ(9)-THC at human CB(1) and CB(2) receptors. Cannabis Cannabinoid Res. 2019;4(3):165–176

40. German Pharmacopoeia (DAB 2020), Monograph Cannabisblüten and Monograph Eingestellter Cannabisextrakt; 2020.

© 2021 Serafimovska et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/77822