INTRODUCTION

On March 11, 2020, the World Health Organization declared the coronavirus disease 2019 (COVID-19) a pandemic.1 As of March 9, 2021, 117537679 cases of COVID-19 and 2609805 COVID-19-related deaths have been reported globally.2 Although vaccines are currently being administered worldwide,3,4 the volume and speed of the production of the vaccination may hinder achieving COVID-19 herd immunity quickly.5 Thus, COVID-19 remains a global and important health crisis.

A common comorbidity, hypertension is a known risk factor for worse outcomes among COVID-19 patients.6-8 However, the clinical usefulness of various cardiovascular drugs that are commonly used in hypertensive COVID-19 patients is debated.6,9-12 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, causes the downregulation of angiotensin-converting enzyme 2 (ACE2), thereby reducing its protective effects on various tissues. Therefore, there are concerns that angiotensin-converting enzyme inhibitors (ACEis) and angiotensin II receptor blockers (ARBs) might increase susceptibility to SARS-CoV-2 and worsen the progno-
sis of COVID-19. However, other reports suggest that ACEIs and ARBs may be used safely in COVID-19 patients and may even result in better outcomes, including lower all-cause mortality. One popular type of cardiovascular medication, namely calcium channel blockers (CCBs), has been reported to improve outcomes in COVID-19 patients by inhibiting the post-entry replication events of SARS-CoV-2. Beta-blockers have also been reported to decrease the severity of COVID-19 symptoms in patients because they may reduce the activity of the renin–angiotensin–aldosterone system and ACE2, which may decrease the rate of SARS-CoV-2 entry into host cells. Thus, the association of cardiovascular drugs with the risk of mortality among COVID-19 patients remains controversial.

Accordingly, we aimed to investigate whether the use of cardiovascular drugs among hypertensive patients is associated with the incidence of COVID-19 and its related mortality rate in South Korea.

MATERIALS AND METHODS

Study design and ethical statement
We conducted this population-level cohort study according to the Reporting of Observational Studies in Epidemiology guidelines. The need for approval of the study protocol was exempted upon deliberation by the Institutional Review Board of Seoul National University Bundang Hospital (X-2004-604-905) and the National Health Insurance Service (NHIS) (NHIS-2020-1-424). Also, the need for informed consent was waived because data analyses were performed retrospectively using anonymized data derived from the South Korean NHIS database.

Database and study population
In this study, we utilized data from the NHIS-COVID-19 cohort database, which was created for medical research in a collaborative effort between the Korea Centers for Disease Control and Prevention (KCDC) and the NHIS. The KCDC provided data on individuals who had tested positive for COVID-19 between the dates of January 1, 2020 and June 4, 2020. The data included the COVID-19 confirmation date, demographic information, and treatment results. In the NHIS-COVID-19 database, COVID-19 patients included all individuals who had tested positive for a COVID-19 polymerase chain reaction (PCR) test; therefore, the database included both COVID-19 patients with severe symptoms, such as pneumonia, who had been admitted to a hospital for treatment and COVID-19 patients with no or mild symptoms. COVID-19 patients who are currently undergoing in-hospital treatment have not been included in the database because the results of in-hospital treatment have not yet been determined.

Using stratification methods, the NHIS has also provided a control population with regard to age, sex, and place of residence as of February 2020 using the COVID-19 patients’ information from the KCDC. The database contains all disease diagnoses using International Classification of Diseases (ICD)-10 codes and prescription information concerning drugs and/or procedures from 2015 to 2020. It also contains data on individuals who had undergone a COVID-19 PCR test, but tested negative. Therefore, the NHIS-COVID-19 database comprises data for three groups: COVID-19 patients, a control population, and individuals who have tested negative. For the hypertensive cohort, we included adults (20 years or older) in the NHIS database who had been diagnosed with hypertension (110* according to ICD-10 codes) between 2015 and 2019.

Exposure variable: cardiovascular medication
The exposure variable in this cohort study was the prescription of cardiovascular drugs. To evaluate this, the prescription data from 2019 to 2020 were extracted from the NHIS database. Individuals were defined as cardiovascular drug users if they were prescribed regular cardiovascular drugs from 2019 for over 90 days until the date of diagnosis of COVID-19 in 2020 for COVID-19 patients or until June 4, 2020 for individuals who were not diagnosed with COVID-19. The cardiovascular drugs included ACEi, aspirin, ARB, beta-blocker, CCB, clopidogrel, and thiazide.

Endpoints of the study
The primary endpoint of our study was the development of COVID-19. COVID-19 positivity was evaluated by a COVID-19 PCR test during the period between January 1, 2020 and June 4, 2020. The secondary endpoint was hospital mortality among patients who were diagnosed with COVID-19. Hospital mortality was evaluated among COVID-19 patients until August 27, 2020.

Covariates
The following data were extracted and collected as confounders in this study: 1) demographic characteristics (age and sex), 2) annual income level in 2020, 3) place of residence (Seoul, Gyeonggi-do, Daegu, Gyeongsangbuk-do, and other areas), 4) underlying disabilities (mild degree and moderate-to-severe degree), and 5) comorbidity information using Charlson comorbidity index scores, which were calculated using the registered ICD-10 diagnostic codes (Supplementary Table 1, only online) from January 1, 2015 to December 31, 2019. Age in the NHIS-COVID-19 cohort was divided into seven categorical groups: 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, and ≥80 years old.

Statistical methodology
The baseline characteristics of the participants in this study are presented as numbers with percentages for categorical variables and mean values with their respective standard deviations for continuous variables. First, we fitted a multivariable logistic regression model for the diagnosis of COVID-19 among
hypertensive individuals in the NHIS-COVID-19 cohort to investigate whether cardiovascular drug use was associated with the incidence of COVID-19. All seven cardiovascular drugs (ACEi, aspirin, ARB, beta-blocker, CCB, clopidogrel, and thiazide) were included in the multivariable logistic regression model simultaneously. In the model, the reference value for each drug was obtained from non-users of that drug. In addition, a separate multivariable logistic regression model was fitted to investigate whether the use of any of the cardiovascular drugs was associated with the incidence of COVID-19, compared to non-use of the drug. All covariates were included for multivariable adjustment, although the Charlson comorbidity index was included in the other model to avoid multicollinearity with other underlying diseases that were used to calculate the Charlson comorbidity index. Next, we fitted a multivariable logistic regression model for hospital mortality among hypertensive COVID-19 patients to investigate whether cardiovascular drug use was associated with hospital mortality among COVID-19 patients.

For sensitivity analysis, we constructed two multivariable logistic regression models for 1) COVID-19 diagnosis and 2) hospital mortality among COVID-19 patients to identify whether the results obtained from hypertensive patients in the NHIS-COVID-19 cohort were generalizable to the entire NHIS-COVID-19 cohort, including individuals without hypertension. Hosmer–Lemeshow statistics were used to confirm the goodness of fit of the multivariable models at p>0.05, and it was confirmed that there was no multicollinearity in any of the multivariable models, with a variance inflation factor of <2.0. The results of the logistic regression models are presented as odds ratios (ORs) with 95% confidence intervals (CIs). R software (version 4.0.3; R Foundation for Statistical Computing, Vienna, Austria) was used for all analyses, and a p-value<0.05 was considered statistically significant.

RESULTS

Study population

A flowchart depicting participant selection in this study is presented in Fig. 1. The NHIS-COVID-19 cohort comprised 8070 COVID-19 patients, 121050 individuals in the control population, and 222257 negative-tested individuals. In total, 351377 individuals were initially reviewed. After excluding 23003 individuals aged <20 years, 328374 adults were further reviewed. Of these, 101657 adults were diagnosed with hypertension and included in the final analysis. The clinically relevant baseline characteristics of these individuals are presented in Table 1. 83215 individuals (81.9%) had been prescribed cardiovascular medication for treatment. In addition, 1889 (1.9%) were diagnosed with COVID-19 between January 1, 2020 and June 4, 2020. The incidence of hospital mortality among COVID-19 patients was 193 (10.2%).

Main analysis among hypertensive patients

Table 2 shows the results of the multivariable logistic regression model for the diagnosis of hypertensive COVID-19 patients. In multivariable model 1, the use of beta-blockers was associated with an 18% lower incidence of COVID-19 (OR: 0.82, 95% CI: 0.69–0.98; p=0.029), while other cardiovascular drugs, such as ACEI (p=0.269), aspirin (p=0.354), ARB (p=0.580), CCB (p=0.707), clopidogrel (p=0.229), and thiazide (p=0.249), were not associated with the incidence of COVID-19. In multivariable model 2, compared with non-users, the use of cardiovascular medication was not associated with the incidence of COVID-19 (p=0.215). The results of multivariable logistic regression analysis of hospital mortality among COVID-19 patients with hypertension are presented in Table 3. In multivariable model 1, among the 1889 hypertensive COVID-19 patients, CCB use was associated with a 42% lower hospital mortality (OR: 0.58, 95% CI: 0.38–0.89; p=0.012). However, other cardiovascular drugs, such as ACEI (p=0.728), aspirin (p=0.825), ARB (p=0.440), beta-blockers (p=0.793), clopidogrel (p=0.373), and thiazide (p=0.393), were not associated with hospital mortality among hypertensive COVID-19 patients. In multivariable model 2, compared to non-users, the use of cardiovascular medication was not associated with hospital mortality among hypertensive COVID-19 patients (p=0.352).

Sensitivity analysis in total NHIS-COVID-19 cohort

Table 4 shows the results of the multivariable logistic regression models for the diagnosis of COVID-19 and hospital mortality among COVID-19 patients in the entire NHIS-COVID-19 cohort. In the multivariable model, beta-blocker and aspirin use was associated with a 19% (OR: 0.81, 95% CI: 0.68–0.95; p=0.012) lower incidence of COVID-19 compared to non-users, the use of cardiovascular medication was not associated with the incidence of COVID-19 (p=0.352).
Table 1. Baseline Characteristics of Hypertensive Adult Patients in the NHIS-COVID-19 Cohort (n=101657)

Variable	N (%)	Mean (SD)
Sex, male	50495 (49.7)	
Age (yr)		
20–29	1909 (1.9)	
30–39	3754 (3.7)	
40–49	7706 (7.6)	
50–59	17223 (16.9)	
60–69	24014 (23.6)	
70–79	23900 (23.5)	
≥80	23151 (22.8)	
Income in quartile		
Q1 (lowest)	27366 (26.9)	
Q2	16133 (15.9)	
Q3	20710 (20.4)	
Q4 (highest)	35984 (35.4)	
Unknown	1464 (1.4)	
Underlying disability		
Mild degree	12083 (11.9)	
Moderate to severe degree	8648 (8.5)	
Residence		
Seoul	17160 (16.9)	
Gyeonggi-do	18608 (18.3)	
Daegu	26292 (25.9)	
Gyeongsangbuk-do	10260 (10.1)	
Other area	29337 (28.9)	
Charlson comorbidity index		6.2 (3.8)
Myocardial infarction	9815 (9.7)	
Congestive heart failure	30489 (30.0)	
Peripheral vascular disease	43159 (42.5)	
Cerebrovascular disease	36899 (36.3)	
Peptic ulcer disease	62044 (61.0)	
DM without chronic complication	62948 (61.9)	
DM with chronic complication	26162 (25.7)	
Renal disease	13890 (13.7)	
Dementia	22173 (21.8)	
Hemiplegia or paraplegia	5908 (5.8)	
Rheumatic disease	18274 (18.0)	
Mild liver disease	72379 (71.2)	
Moderate to severe liver disease	2164 (2.1)	
Chronic pulmonary disease	71724 (70.6)	
Any cancer	27963 (27.5)	
Metastatic solid tumor	5441 (5.4)	
HIV/AIDS	295 (0.3)	
Any cardiovascular medication user	83215 (81.9)	

Table 2. Multivariable Logistic Regression Analysis for Diagnosis of COVID-19 in South Korea

Variable	Multivariable model	OR (95% CI)	p value
Sex, male	0.94 (0.86–1.04)	0.227	
Age, 10 years increase	0.99 (0.95–1.03)	0.518	
Income in quartile			
Q1 (lowest)	1		
Q2	0.90 (0.78–1.04)	0.148	
Q3	0.84 (0.73–0.95)	0.008	
Q4 (highest)	0.72 (0.64–0.81)	<0.001	
Unknown	0.84 (0.57–1.22)	0.356	
Underlying disability			
Mild degree (vs. no disability)	0.98 (0.84–1.15)	0.835	
Moderate to severe degree (vs. no disability)	1.36 (1.13–1.64)	0.001	
Residence			
Seoul	1		
Gyeonggi-do	1.05 (0.77–1.43)	0.768	
Daegu	10.33 (8.15–13.08)	<0.001	
Gyeongsangbuk-do	6.97 (5.40–9.00)	<0.001	
Other area	1.24 (0.94–1.64)	0.128	
Charlson comorbidity index (in another model)	0.95 (0.93–0.98)	<0.001	
Myocardial infarction	0.89 (0.83–1.19)	0.956	
Congestive heart failure	0.94 (0.83–1.06)	0.297	
Peripheral vascular disease	0.96 (0.87–1.07)	0.475	
Cerebrovascular disease	0.96 (0.85–1.08)	0.460	
Peptic ulcer disease	0.67 (0.73–0.96)	0.005	
DM without chronic complication	1.03 (0.93–1.14)	0.595	
DM with chronic complication	1.02 (0.90–1.15)	0.787	
Renal disease	0.57 (0.47–0.69)	<0.001	
Dementia	1.31 (1.15–1.50)	<0.001	
Hemiplegia or paraplegia	1.08 (0.87–1.34)	0.482	
Rheumatic disease	0.99 (0.87–1.13)	0.938	
Mild liver disease	1.06 (0.95–1.18)	0.289	
Moderate to severe liver disease	0.61 (0.37–1.01)	0.055	
Chronic pulmonary disease	0.89 (0.80–0.98)	0.021	
Any cancer	0.65 (0.56–0.75)	<0.001	
Metastatic solid tumor	0.78 (0.55–1.12)	0.175	
HIV/AIDS	0.47 (0.12–1.90)	0.290	

COVID-19, coronavirus disease 2019; OR, odds ratio; CI, confidence interval; DM, diabetes mellitus; HIV, human immunodeficiency virus; AIDS, acquired immune deficiency syndrome; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blockers; CCB, calcium channel blocker.
Table 3. Multivariable Logistic Regression Analysis for Hospital Mortality among COVID-19 Patients with Hypertension (n=1889) [Mortality=193 (10.2%)]

Variable	Multivariable model	\(p \) value	OR (95% CI)
Sex, male	2.02 (1.41–2.89)	<0.001	
Age, 10 years increase	2.95 (2.37–3.67)	<0.001	
Income in quartile			
Q1 (lowest)	1		
Q2	1.16 (0.66–2.05)	0.605	
Q3	1.07 (0.65–1.76)	0.789	
Q4 (highest)	0.80 (0.52–1.24)	0.322	
Unknown	0.66 (0.13–3.37)	0.621	
Underlying disability			
Mild degree (vs. no disability)	0.97 (0.60–1.59)	0.915	
Moderate to severe degree (vs. no disability)	2.36 (1.32–4.22)	0.004	
Residence			
Seoul			
Gyeonggi-do	3.92 (0.73–21.15)	0.112	
Daegu	2.65 (0.56–12.54)	0.220	
Gyeongsangbuk-do	2.73 (0.56–13.38)	0.216	
Other area	3.20 (0.61–16.91)	0.170	
Charlson comorbidity index (in another model)			
Myocardial infarction	0.54 (0.29–0.99)	0.046	
Congestive heart failure	1.92 (1.31–2.81)	<0.001	
Peripheral vascular disease	1.12 (0.78–1.60)	0.551	
Cerebrovascular disease	0.90 (0.61–1.33)	0.604	
Peptic ulcer disease	0.86 (0.60–1.24)	0.420	
DM without chronic complication	1.08 (0.72–1.62)	0.716	
DM with chronic complication	1.90 (1.29–2.81)	0.001	
Renal disease	2.29 (1.34–3.90)	0.002	
Dementia	1.42 (0.95–2.14)	0.090	
Hemiplegia or paraplegia	1.28 (0.69–2.35)	0.432	
Rheumatic disease	1.00 (0.62–1.62)	0.985	
Mild liver disease	0.82 (0.54–1.22)	0.327	
Moderate to severe liver disease	0.96 (0.19–4.84)	0.964	
Chronic pulmonary disease	1.00 (0.68–1.49)	0.899	
Any cancer	1.38 (0.86–2.10)	0.181	
Metastatic solid tumor	1.76 (0.55–5.62)	0.339	
HIV/AIDS	61.92 (1.08–3548.61)	0.046	
Cardiovascular medication, model 1			
ACEI (vs. no ACEI use)	1.17 (0.49–2.79)	0.728	
Aspirin (vs. no aspirin use)	1.05 (0.68–1.61)	0.825	
ARB (vs. no ARB use)	0.87 (0.60–1.25)	0.440	
Beta-blocker (vs. no beta-blocker use)	0.92 (0.49–1.72)	0.793	
CCB (vs. no CCB use)	0.58 (0.38–0.89)	0.012	
Clopidogrel (vs. no clopidogrel use)	1.27 (0.75–2.13)	0.373	
Thiazide (vs. no thiazide use)	1.81 (0.46–7.08)	0.333	
Any cardiovascular medication use (vs. no use), model 2	1.45 (0.75–2.42)	0.352	

Table 4. Multivariable Logistic Regression Models for the Diagnosis of COVID-19 and Mortality among COVID-19 Patients in the Entire NHIS-COV19 Cohort

Variable	Multivariable model	\(p \) value	OR (95% CI)
Diagnosis of COVID-19 among 328374 individuals			
Cardiovascular medication, model 1			
ACEI (vs. no ACEI use)	1.24 (0.95–1.63)	0.117	
Aspirin (vs. no aspirin use)	0.88 (0.79–0.99)	0.041	
ARB (vs. no ARB use)	0.99 (0.92–1.07)	0.761	
Beta-blocker (vs. no beta-blocker use)	0.81 (0.68–0.95)	0.011	
CCB (vs. no CCB use)	1.00 (0.90–1.10)	0.960	
Clopidogrel (vs. no clopidogrel use)	0.88 (0.76–1.02)	0.093	
Thiazide (vs. no thiazide use)	0.85 (0.59–1.22)	0.375	
Any cardiovascular medication use (vs. no use), model 2	0.94 (0.68–1.04)	0.215	
Hospital mortality among COVID-19 patients (n=7713)			
Cardiovascular medication, model 1			
ACEI (vs. no ACEI use)	1.49 (0.64–3.45)	0.352	
Aspirin (vs. no aspirin use)	0.99 (0.65–1.50)	0.948	
ARB (vs. no ARB use)	1.03 (0.74–1.44)	0.865	
Beta-blocker (vs. no beta-blocker use)	1.02 (0.85–1.89)	0.851	
CCB (vs. no CCB use)	0.50 (0.39–0.92)	0.019	
Clopidogrel (vs. no clopidogrel use)	1.20 (0.73–1.97)	0.480	
Thiazide (vs. no thiazide use)	1.99 (0.50–7.95)	0.330	
Any cardiovascular medication use (vs. no use), model 2	0.94 (0.68–1.05)	0.425	

COVID-19, coronavirus disease 2019; OR, odds ratio; CI, confidence interval; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blockers; CCB, calcium channel blocker. 0.011), and 12% (OR: 0.88, 95% CI: 0.79–0.99; \(p=0.041 \)) lower incidence of COVID-19, respectively. Additionally, the use of CCB was associated with a 40% lower hospital mortality rate (OR: 0.60, 95% CI: 0.39–0.92; \(p=0.019 \)). Compared to non-users, the use of cardiovascular medication was not associated with the incidence of COVID-19 (\(p=0.215 \)) or hospital mortality (\(p=0.425 \)).

DISCUSSION

In this study, we found that beta-blocker use was associated with a lower incidence of COVID-19 among hypertensive patients, while CCB use was associated with a decreased hospital mortality rate among hypertensive COVID-19 patients. These findings were also applied to the general adult population, regardless of hypertension diagnosis, in the NHIS-COVID-19 database. Since the relationship between cardiovascular drugs and the risk of COVID-19 is currently undetermined, our findings have potential clinical benefits.

It was recently reported that beta-adrenergic receptors might
be involved in SARS-CoV-2 entry into the cell by acting as a co-receptor via its interaction through surface vimentin and ACE2 receptor. Thus, the potential role of beta-blockers in treatment for COVID-19 was suggested in September 2020. Furthermore, recent evidence has shown that treatment with beta-blockers reduces mortality in septic shock patients and has beneficial effects in individuals with acute respiratory distress syndrome or respiratory failure. However, at the time of writing this report, no study has described clinical effects for beta-blockers in COVID-19 patients. We report, for the first time, that prior beta-blocker therapy might be associated with a reduced risk of COVID-19 among both hypertensive patients and the general adult population in South Korea. However, the hospital mortality rate among COVID-19 patients was not associated with beta-blocker therapy, and more clinical research is needed in this regard.

We also found that CCB use was associated with decreased mortality among both hypertensive and non-hypertensive COVID-19 patients. A previous in vitro study reported that SARS-CoV-2 requires Ca2+ ions for host cell entry and that CCBs are efficacious in inhibiting the spread of SARS-CoV-2 in cell cultures. CCB (amlodipine besylate) administration has been found to be associated with better outcomes among COVID-19 patients. However, other studies, including a meta-analysis conducted among older COVID-19 patients and a prospective cohort study in Italy, did not demonstrate benefits for CCB use on the prognosis of COVID-19 patients. Notwithstanding, the sample size in the latter study was small (69), while we included 101657 hypertensive adults and 328374 adults from the general population. Considering the mixed results of previous studies regarding the effect of CCB on COVID-19 patients, our results might provide rationale and evidence on which to consider the administration of CCB among COVID-19 patients in the future.

Interestingly, in our sensitivity analysis, aspirin showed potential benefits in lowering COVID-19 incidence among adults in general, but not in the hypertensive population. As one of the most common and important cardiovascular drugs, aspirin has been prescribed for adults to reduce the risk of acute cardiovascular events, suggesting it has a broader indication than that of anti-hypertensive drugs. Currently, there is emerging evidence on the benefits of using aspirin to treat COVID-19 patients. SARS-CoV-2 is known to cause lung and systemic inflammation, which can cause severe respiratory failure, multi-organ dysfunction, and mortality. The main pathological features of COVID-19 are micro- and macrovascular thromboses due to the activation of the immune response with the release of pro-inflammatory cytokines and the overactivation of the coagulation cascade and platelet aggregation. Therefore, aspirin has been suggested as a new treatment option for COVID-19 patients as it has anti-inflammatory, antithrombotic, and antiviral effects. The potential benefits of aspirin in reducing COVID-19 incidence in our study need further research.

The current study has a few limitations. First, some clinically important variables, such as body mass index, were not included in the analysis because they were not available in the NHIS database. Second, multivariable adjustment is known to reduce known and measured confounders. Thus, there might be some residual confounders that affect the results of this study. Third, we defined comorbidities using ICD-10 codes to calculate the Charlson comorbidity index, but the diseases specified by the ICD-10 codes might not reflect actual comorbidities in our study population. Furthermore, our analysis was based on prescription data in the NHIS database; we did not assess compliance among those classified as cardiovascular drug users. Fourth, we did not consider the daily dosage of cardiovascular drugs because the NHIS database provides this prescription information with masking of type and dosage. Finally, we did not consider the possibility of combining any of the seven cardiovascular drugs in this study because there were too many possible combinations of cardiovascular drugs to reflect in the multivariable model. Therefore, combinations of cardiovascular drugs might affect the results in this study and should be interpreted carefully.

Using the NHIS-COVID-19 database cohort, we showed that beta-blockers may have potential benefits in lowering the incidence of COVID-19 in hypertensive patients in South Korea. Among these hypertensive COVID-19 patients, we also found that CCB may lower hospital mortality rates. These findings were also applied to the general adult population, regardless of the presence of hypertension as a variable, in the NHIS-COVID-19 database.

AUTHOR CONTRIBUTIONS

Conceptualization: Tak Kyu Oh and In-Ae Song. Data curation: Hyoung-Won Cho and Jung-Won Suh. Formal analysis: Tak Kyu Oh. Investigation: Hyoung-Won Cho and Tak Kyu Oh. Methodology: Tak Kyu Oh and In-Ae Song. Supervision: In-Ae Song. Validation: Tak Kyu Oh and In-Ae Song. Visualization: Hyoung-Won Cho and Jung-Won Suh. Writing—original draft: Tak Kyu Oh. Writing—review & editing: Jung-Won Suh and In-Ae Song. Approval of final manuscript: all authors.

ORCID iDs

Tak Kyu Oh https://orcid.org/0000-0002-4027-4423
Hyoung-Won Cho https://orcid.org/0000-0001-6095-8569
Jung-Won Suh https://orcid.org/0000-0002-6937-6071
In-Ae Song https://orcid.org/0000-0002-7814-4253

REFERENCES

1. Bedford J, Enria D, Giesecke J, Heymann DL, Ihekweazu C, Kobringer G, et al. COVID-19: towards controlling of a pandemic. Lancet 2020;395:1015-8.
2. Johns Hopkins University & Medicine, Coronavirus Resource Center. Global map of cases and deaths by country/region/sovereignty
Effects of angiotensin-converting enzyme (ACE) inhibitors on virus infection, inflammatory status, and clinical characteristics of 113 deceased patients with coronavirus disease 2019: meta-analysis of individual participant data from randomised trials. Lancet 2009;373:1849-60.

Anti-hypertensive drug therapy for COVID-19 infection taking ACEI/ARB. Curr Cardiol Rep 2020;22:31.

South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol 2020;318:H1084-90.

Kreutz R, Algharably EAE, Azimi M, Dobrowolski P, Gузik T, Januszewicz A, et al. Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc Res 2020;116:1688-99.

Liu Y, Huang F, Xu J, Yang P, Qin Y, Cao M, et al. Anti-hypertensive drug therapy for COVID-19 infection taking ACEI/ARB. Curr Cardiol Rep 2020;22:31.

South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol 2020;318:H1084-90.

Kreutz R, Algharably EAE, Azimi M, Dobrowolski P, Gузik T, Januszewicz A, et al. Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc Res 2020;116:1688-99.

Liu Y, Huang F, Xu J, Yang P, Qin Y, Cao M, et al. Anti-hypertensive drug therapy for COVID-19 infection taking ACEI/ARB. Curr Cardiol Rep 2020;22:31.