1,3,2,5-Diazadiborinine featuring nucleophilic and electrophilic boron centres

Di Wu, Lingbing Kong, Yongxin Li, Rakesh Ganguly & Rei Kinjo

The seminal discovery in 1865 by Kekulé that benzene nucleus exists with cyclic skeleton is considered to be the beginning of aromatic chemistry. Since then, a myriad of cyclic molecules displaying aromatic property have been synthesized. Meanwhile, borazine (B₃N₃H₆), despite the isostructural and isoelectronic relationships with benzene, exhibits little aromaticity. Herein, we report the synthesis of a 1,3,2,5-diazadiborinine (B₂C₂N₂R₆) derivative, a hybrid inorganic/organic benzene, and we present experimental and computational evidence for its aromaticity. In marked contrast to the reactivity of benzene, borazine, and even azaborinines previously reported, 1,3,2,5-diazadiborinine readily forms the adducts with methyl trifluoromethanesulfonate and phenylacetylene without any catalysts. Moreover, 1,3,2,5-diazadiborinine activates carbon dioxide giving rise to a bicyclic[2,2,2] product, and the binding process was found to be reversible. These results, thus, demonstrate that 1,3,2,5-diazadiborinine features both nucleophilic and electrophilic boron centres, with a formal B(⁺)/B(⁺⁺) mixed valence system, in the aromatic six-membered B₂C₂N₂ ring.
The concept of aromaticity has been of paramount importance in myriad fields of chemistry since the discovery in 1865 that benzene nucleus is cyclic. Almost a century after the first identification of benzene by Faraday, borazine ($B_3N_3H_6$), also referred as inorganic benzene, was prepared. Despite the isoelectronic and isosterism relationships between the $C=\sigma$ and $B-N$ units, however, $B_3N_3H_6$ displays a different electronic property from that of benzene, which is due to polarization of the $B-N$ units arising from the variation of electronegativity between boron and nitrogen atoms. Thus, the boron atom in these compounds is formally in the oxidation state. We were interested in incorporating a nucleophilic boron centre, which is formally in the sp3 hybridization, into diazadiborinine skeleton because we reasoned that inclusion of the mixed sp^2 hybridization into the diazadiborinine skeleton should result in high thermal stability as well as aromatic nature of both azaborinine and diazadiborinine more closely resembling those of benzene than $B_3N_3H_6$. Nevertheless, except for η^1-complexation with a chromium and ruthenium metals, the reactivities of the boron centre in these compounds are mainly associated with nucleophilic substitutions, which is in contrast to the reactivity of benzene where electrophilic substitution is archetypal. Thus, the boron centre in these compounds only acts as a classical electron pair acceptor. Recently, Bertrand and our groups independently developed neutral tricoordinate organoboron species possessing a nucleophilic boron centre, which is formally in the $+1$ oxidation state. We were interested in incorporating a nucleophilic boron centre into diazadiborinine skeleton because the resulting $B_3N_3C_2$ ring would involve both nucleophilic and electrophilic boron centres, which can be formally considered as a $B(+1)/B(III)$ mixed valence system. Among extant non-metal-based mixed valence compounds, it has been reported that charge-neutral mixed valence system especially with closed-shell form, namely donor-acceptor system, exhibit high stability. We reasoned that incorporation of the mixed valence system into aromatic ring would effectively lead to charge delocalization as found in mixed valence bimetallic compounds categorized into class II and III. Meanwhile, preparation of such molecules with p-block heteroatoms is highly challenging owing to the limitation of synthetic approach for their low oxidation state. Indeed, for heterobenzene featuring mixed valence systems of the p-block inorganic elements, only the valence isomers of hexasilabenzene and tetraphosphabenzene are known. No relevant species involving mixed valence system of boron atoms have been described thus far.

Herein, we report the synthesis, single-crystal X-ray diffraction analysis and computational studies of 1,3,2,5-diazadiborinine 4. We show that this compound possesses both nucleophilic and electrophilic boron centres with a formal $B(IV)/B(III)$ mixed valence system in the aromatic six-membered ring.

Results

Synthesis and characterization of 4. Oxazolinyl groups were introduced into a boron atom by treatment of two equivalents of 2-lithio-4,4’-dimethyl-2-oxazolide 1 with dichlorophenylborane (Fig. 1). Without further purification of the crude product, a subsequent reaction with one equivalent of dichlorophenylborane in toluene afforded a 2,5-dichloro-1,3,2,5-diazadiborinine derivative 3 (29% yield), which was fully characterized by standard spectroscopic methods, including a single-crystal X-ray diffraction study. Treatment of 3 with excess amounts of potassium graphite (KC_8) in toluene cleanly proceeded, and after workup 1,3,2,5-diazadiborinine derivative 4 was isolated as a white powder in 32% yield. In the ^{11}B nuclear magnetic resonance (NMR) spectrum of 4, a sharp signal for the boron atom between two nitrogen atoms was observed at $\delta = 24.9$ p.p.m. Both signals shifted downfield compared with those of the precursor 3 ($\delta = -11.4$ and 3.5 p.p.m.). Compound 4 is thermally stable both in the solid state and in solutions, and it melts at 133°C without decomposition.

Single crystals of 4 suitable for X-ray diffraction were obtained by recrystallization from a benzene solution at room temperature, and crystallographic analysis revealed that the six-membered $B_3C_2N_2$ ring of 4 is nearly planar (Fig. 2a). Two boron atoms display trigonal-planar geometry (the sum of bond angles: $B1 = 359.96^\circ$ and $B2 = 359.93^\circ$), which are characteristic for sp^2 hybridization. Phenyl ring at B2 and the $B_3C_2N_2$ six-membered ring are nearly perpendicular to each other with the twist angle of 89.1°, whereas phenyl group at B1 and the $B_3C_2N_2$ skeleton are slightly twisted by 11.9°. The B1–C5 (1.483(3) Å) and B2–N1 (1.443(3) Å) distances are significantly

Figure 1 | Preparation of 1,3,2,4-diazadiborinine 4. 4a-c present the resonance forms.
shorter than those (1.575(5)–1.589(5) Å and 1.573(4)–1.563(4) Å) in 3, and lie between typical single and double-bond distances of boron–carbon and boron–nitrogen bonds, respectively. In contrast, the N1–C5 distance of 1.374(3) Å is longer than that (1.287(4)–1.292(4) Å) in 3. These structural features suggest the delocalization of 6π-electrons over the six-membered \(\text{B}_2\text{C}_2\text{N}_2 \) ring in 4, which can be represented by the average of the several canonical forms including 4a–c.

Computational studies. To gain further insight into the electronic features of 4, quantum chemical density functional theory calculation involving geometry optimization, natural bond orbital analysis and natural population analysis were performed at the B3LYP/6-311G + (d,p) level of theory. The optimized geometry of 4 was in good agreement with the structural parameters determined experimentally. Natural bond orbital analysis gave Wiberg bond index value for the boron–nitrogen bonds (0.96 for B2–N1). Meanwhile, Wiberg bond index values larger than 1 for the B1–C5 bonds (1.21) and the C5–N1 bonds (1.14) were obtained, thus suggesting the partial double-bond character of these bonds. Indeed, the HOMO of 4 displays a π-system over the six-membered \(\text{B}_2\text{C}_2\text{N}_2 \) ring featuring a node between the NBN and CBC π-unites, which exhibits anti-bonding conjugation with the π-orbital in the phenyl ring bonded to the B1 atom (Fig. 2b). π-Bonding interactions between the C5 atom and the N1 atom were confirmed in HOMO-4 and HOMO-5 (Fig. 2c). In the ultraviolet–visible absorption spectrum of 4 in a tetrahydrofuran (THF) solution, an absorption band was observed at wavelength \((\lambda) \) of 275 nm, which is comparable to that \((\lambda = 277 \text{ nm}) \) of \(\text{BPH} \) (ref. 28). These structural features suggest the delocalization of 6π-electrons over the six-membered \(\text{B}_2\text{C}_2\text{N}_2 \) ring in 4, which can be represented by the average of the several canonical forms including 4a–c.

Reactivity. To investigate the reactivity of 4, we performed its reaction with methyl trifluoromethanesulfonate (MeOTf). A stoichiometric amount of MeOTf was added to an acetonitrile solution of 4 at ambient temperature. After removing the solvent under vacuum, 5 was obtained in 75% yield (Fig. 4a). An X-ray diffraction study confirmed that methyl group is attached to the boron atom between two carbons in the \(\text{B}_2\text{C}_2\text{N}_2 \) ring, whereas an oxygen atom of the triflate is bonded to the boron atom between two nitrogen atoms (Fig. 4b, left). This result, thus, demonstrates that 4 features both nucleophilic and electrophilic boron centres, thereby supporting the electronic property of the resonance structure 4a (Fig. 1). The formal oxidation states of the B1 and the B2 atoms in 4a are +I and +III, respectively. Thus, 4 presents a donor–acceptor mixed valence system.

Reactivity of neutral boron nucleophiles has seldom been explored thus far. Based on the behaviours of 4 with MeOTf, we postulated that 4 would act as a frustrated Lewis pair, since it possesses both Lewis basic and acidic boron centres. To bear out the hypothesis, we next investigated the reactivity of 4 towards non-activated alkynes. In a J-Young NMR tube, a stoichiometric amount of phenylacetylene was added to a \(\text{C}_6\text{D}_6 \) solution of 4, and reaction was monitored by NMR.

Table 1: NICS(0) and NICS(1) values for 4, benzene, 1,2-azaborine, 1,3-azaborine and \(\text{B}_2\text{N}_2\text{H}_6 \).

Compound	NICS(0)	NICS(1)
4	−4.3	−8.0
Benzene	−4.9	−6.2
1,2-azaborine	−4.9	−6.2
1,3-azaborine	−4.9	−6.2
\(\text{B}_2\text{N}_2\text{H}_6 \)	−7.1	−8.6

Figure 2: Structural characterization and fluorescence property. (a) Solid state structure of 4. Thermal ellipsoids are set at the 30% probability level. Hydrogen atoms are omitted for clarity. (b) Plot of the HOMO of 4. (c) Plots of the HOMO-4 (left) and HOMO-5 (right) of 4. Calculated at the B3LYP/6-311 + G(d,p) level of theory. Hydrogen atoms are omitted for clarity. (d) Photographic image of fluorescence emission in the solid state of 4 under irradiation of a ultraviolet lamp.
spectroscopy. After 2 h at 70 °C, two new signals were detected at −13.6 and 0.1 p.p.m. in the 11B NMR spectrum. After workup, compound 6 was isolated as a white powder in 91% yield. The crystallographic study revealed the diazadiborabicycle[2.2.2] structure involving the C=N double bonds (N1–C3: 1.299(4) Å and N2–C8: 1.299(3) Å) (Fig. 4b, middle). Thus, 6 is a formal Diels–Alder product via a [4+2] cyclo-addition between 4 and the carbon–carbon triple bond of phenylacetylene. It is noteworthy to mention that Diels–Alder addition of alkynes to aromatic hydrocarbons normally is restricted to highly reactive aromatic compounds under harsh conditions38,39. Moreover, 6 can be viewed as an analogue of bicycle[2.2.2]octatriene, also termed barrelenene, which is inferred to be one of the Möbius aromatic compounds39.

Next, we examined the carbon dioxide (CO$_2$) activation with 4 (ref. 40). CO$_2$ gas was introduced into a benzene solution of 4 at 1 bar, and the solution was heated at 70 °C. After 2 h, a white precipitate was filtered and dried under vacuum to afford compound 7 in 72% yield. We also carried out a 13C-labelling experiment using 13CO$_2$, which produced 7-13C (80% yield). The 13C NMR spectrum of 7-13C displayed a broad resonance at 191.1 p.p.m. In the 11B NMR spectrum, a set of new peaks was observed at 3.1 p.p.m. as a broad singlet and −16.7 p.p.m. as a broad doublet (11B$_{C} = 42.4$ Hz), which is owing to the coupling with a 13C carbon atom. These results indicate the presence of a bond between a boron and the carbon from CO$_2$ in 7, which was decisively confirmed by X-ray diffractionmetry (Fig. 4b, right). One of the C=O double bonds of CO$_2$ was cleaved and new B–C and B–O bonds are formed through 1,4 addition, which is contrast to the behaviour of benzene that reacts with CO$_2$ to form benzoic acid only in the presence of Lewis acid catalysts41. We also found that the CO$_2$ activation process by 4 was reversible. Thus, treatment of 7 at 90 °C for 50 min reproduced 4, quantitatively.

Discussion

One-hundred fifty years after the discovery of the cyclic structure of benzene, 1,3,2,5-diazadiborinine derivative 4 featuring a formal B(+I)/B(+III) mixed valence system has joined as a hetero-analogue into a class of 6π–Hückel aromatic molecules. In marked contrast to the chemical behaviour of benzene, B$_3$N$_3$H$_6$ or even other azaborinines, 4 exhibits unique optical property and reactivity like a boron–boron frustrated Lewis pair. Because the electronic property can be substantially modulated by varying the substituents on each boron atom, the isolation of this molecule paves the way for the discovery of new materials with useful photochemical properties. Moreover, the cooperative reactivity of the nucleophilic and electrophilic boron centres, and the reversible nature for activation of small molecules will be applicable to catalytic chemistry.

Methods

Materials

For details of spectroscopic analyses of compounds in this manuscript, see Supplementary Figs 1–25. For details of density functional theory calculations, see Supplementary Fig. 26, Supplementary Tables 3–5 and Supplementary Methods.

General synthetic procedures

All reactions were performed under an atmosphere of dry argon using standard Schlenk or dry box techniques; solvents were dried over Na metal, K metal or CaH$_2$, and were distilled under nitrogen. Reagents were of analytical grade, obtained from commercial suppliers and were used without further purification. 1H, 13C, 11B and 19F NMR spectra were recorded on a Bruker AVIII 400 MHz or Bruker Avance 500 MHz AV500 spectrometers at 298 K. Chemical shifts (δ) are given in p.p.m. Coupling constants (J) are given in Hz. In the 13C NMR spectra of compounds 3–7, presumable owing to the coupling with boron atoms, signals for the carbon atoms directly bonding to boron atoms could not be observed. Electrospray ionization (ESI) mass spectra were obtained at the Mass Spectrometry Laboratory at the Division of Chemistry and Biological Chemistry, Nanyang Technological University. Melting points were measured with OptiMelt (Stanford Research System). Fourier-transform infrared (FT-IR) spectra were obtained at the Analytical Research Laboratory of Nanyang Technological University.

![Figure 4](https://example.com/figure4.png)
were recorded on a SHIMADZU IR Prestige-21 spectrometer using solid compound. Ultraviolet and fluorescence spectra were recorded on Cary 100 UV-Vis and SHIMADZU RF-3501PC spectrophotometer, respectively.

Synthesis of 3. A hexane solution (0.16 M) of n-Buli (6.25 ml, 10.00 mmol) was added dropwise into a THF solution (50 ml) of 4,4-dimethyl-2-oxazoline (1.00 ml, 9.48 mmol) at -78 °C. After stirring for 1 h at -78 °C, dichlorophenylborane (0.62 ml, 4.72 mmol) was added into the solution. The reaction mixture was warmed to room temperature and stirred overnight. After the solvent was removed under vacuum, toluene (60 ml) was added and salts were filtered off, which was used directly for next step without further purification. Dichlorophenylborane (0.62 ml, 4.72 mmol) was added dropwise into the solution at -78 °C. The reaction mixture was left to stir for 1 h at -78 °C, and slowly warmed to room temperature and stirred overnight. The solvent was removed under vacuum, and the solid residue was recrystallized from benzene to afford colourless crystals of 3 (0.61 g, 29%). The residual solution of 1 was added into a C6D6 (0.5 ml) solution of 3 (0.62 ml, 4.72 mmol) was added dropwise into the solution at -78 °C. The mixture was stirred for 1 h at -78 °C. After the solvent was removed under vacuum, the solid residue was recrystallized from benzene to afford colourless crystals of 3 (0.61 g, 29%). Melting point (Mp): 207 °C. 1H NMR (400 MHz, C6D6): δ = 0.52 (s, 3 H), 0.87 (s, 6 H), 1.38 (s, 6 H), 4.14 (d, 2 H, J = 8.4 Hz), 4.26 (d, 2 H, J = 8.4 Hz), 2.97–7.95 (m, 10 H); 13C NMR (125 MHz, C6D6): δ = 25.7, 27.7, 66.5, 86.4, 126.9, 127.5, 134.9, 134.99, 135, 135.1; 11B NMR (76.8 MHz, C6D6): δ = -16.7 (s, 3.1) (HRMS (ESI): m/z calculated for C30H33B2N2O2: 475.2728; found: 475.2706).

Synthesis of 4. Potassium graphite (1.49 g, 11.04 mmol) was slowly added to a methanol solution (100 ml) of compound 3 (1.00 g, 2.01 mmol) at room temperature. The mixture was stirred for 24 h at 27 °C. The mixture was filtered through a short silica gel column. Phenylacetylene (9.2 g, 0.083 mmol) was added into an NMP solution (0.31 ml, 0.083 mmol) of 4 and stirred for 1 h at room temperature. After filtration, the solvent was concentrated to 5 ml under vacuum. The solid residue was filtered off and washed with hexane (15 ml), and then dried under vacuum to afford 4 as a white powder (0.021 g, 0.056 mmol). 1H NMR (400 MHz, C6D6): δ = 0.34 (s, 3 H), 0.87 (s, 6 H), 1.38 (s, 6 H), 2.97–7.95 (m, 10 H); 13C NMR (125 MHz, CDCl3): δ = 27.5, 27.5, 62.8, 80.9, 125.4, 127.7, 134.7, 134.7; DEPT—135.3, 125.6, 126.1, 127.6, 127.9, 128.1, 132.3, 135.1; 11B NMR (76.8 MHz, C6D6): δ = -19.7 (s, 4.2); Ultraviolet–visible (THF): λ = 275 nm (ε = 5.740); HRMS (ESI): m/z calculated for C24H30B2N2O5SF3: 537.2014 [M+H]⁺; found: 537.2006. 1H NMR (400 MHz, CD2Cl2): δ = 7.01–8.04 (m, 16 H); 13C NMR (125 MHz, CD2Cl2): δ = 25.2, 27.5, 65.9, 84.9, 124.7, 127.1, 127.7, 134.7, 135.1; 11B NMR (76.8 MHz, CD2Cl2): δ = -22.4, 29.0, 63.7, 83.2, 126.1, 127.1, 127.8, 130.8, 134.3, 134.8, 135.1; 11B NMR (76.8 MHz, CD2Cl2): δ = -19.7 (s, 4.2); 19F NMR (225.6 MHz, CD2Cl2): δ = -81.2; HRMS (ESI): m/z calculated for C6H23BN3O3S2F: 357.2014 [M + H]⁺; found: 357.2006. 1H NMR (400 MHz, CDCl3): δ = 2.25, 27.5, 62.8, 80.9, 125.4, 127.7, 134.7, 134.7; DEPT—135.3, 125.6, 126.1, 127.6, 127.9, 128.1, 132.3, 135.1; 11B NMR (76.8 MHz, CDCl3): δ = -19.7 (s, 4.2); 19F NMR (225.6 MHz, CDCl3): δ = -81.2; HRMS (ESI): m/z calculated for C6H23BN3O3S2F: 357.2014 [M + H]⁺; found: 357.2006.

Reaction of 4 with MeOTf. MeOTf (7.4 ml, 0.068 mmol) was added into an acetonitrile (6 ml) solution of 4 (0.021 g, 0.056 mmol) and stirred for 1 h at room temperature. After the solvent was removed under vacuum, the solid residue was recrystallized from a 2:1 mixture of fluorobenzene/hexane to afford colourless crystals of 4 (0.031 g, 0.083 mmol) and heated at 70 °C. The reaction mixture was monitored by NMR spectroscopy. After 2 h, the solution was removed under vacuum, and the solid residue was recrystallized from THF/hexane to afford colourless crystals of 6 (0.066 g, 91%). 1H NMR (400 MHz, CDCl3): δ = 0.52 (s, 6 H), 0.87 (s, 6 H), 3.44 (d, 2 H, J = 8.4 Hz), 3.51 (d, 2 H, J = 8.4 Hz), 7.01–8.04 (m, 16 H); 13C NMR (125 MHz, CDCl3): δ = 25.0, 27.4, 62.8, 80.9, 124.7, 127.1, 127.7, 134.7, 135.1; 11B NMR (76.8 MHz, CDCl3): δ = -19.7 (s, 4.2); 19F NMR (225.6 MHz, CDCl3): δ = -81.2; HRMS (ESI): m/z calculated for C176H176B2N2O2: 283.2015 [M + H]⁺; found: 283.2015.

Reaction of 4 with phenylacetylene. Phenylacetylene (9.2 ml, 0.087 mmol) was added into a C6D6 (0.5 ml) solution of 4 (0.031 g, 0.083 mmol) and heated at 70 °C. The reaction mixture was monitored by NMR spectroscopy. After 2 h, the solution was removed under vacuum, and the solid residue was recrystallized from THF/hexane to afford colourless crystals of 6 (0.066 g, 91%). 1H NMR (400 MHz, CDCl3): δ = 0.52 (s, 6 H), 0.87 (s, 6 H), 3.44 (d, 2 H, J = 8.4 Hz), 3.51 (d, 2 H, J = 8.4 Hz), 7.01–8.04 (m, 16 H); 13C NMR (125 MHz, CDCl3): δ = 25.0, 27.4, 62.8, 80.9, 124.7, 127.1, 127.7, 134.7, 135.1; 11B NMR (76.8 MHz, CDCl3): δ = -19.7 (s, 4.2); 19F NMR (225.6 MHz, CDCl3): δ = -81.2; HRMS (ESI): m/z calculated for C176H176B2N2O2: 283.2015 [M + H]⁺; found: 283.2015.
ARTICLE

32. Marwitz, A. J. V., Matsu, M. H., Zakharov, L. N., Dixon, D. A. & Liu, S.-Y. A hybrid organic/inorganic benzene. Angew. Chem. Int. Ed. 48, 973–977 (2009).
33. Stephan, D. W. & Erker, G. Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew. Chem. Int. Ed. 49, 46–76 (2010).
34. Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).
35. Yao, S., Xiong, Y. & Driess, M. Zwitterionic and donor-stabilized N-heterocyclic silylenes (NHSis) for metal-free activation of small molecules. Organometallics 30, 1748–1767 (2011).
36. Mandal, S. K. & Roersky, H. W. Group 14 hydrides with low valent elements for activation of small molecules. Acc. Chem. Res. 45, 298–307 (2012).
37. Stephan, D. W. Frustrated Lewis pairs: from concept to catalysis. Acc. Chem. Res. 48, 306–316 (2015).
38. Krespan, C. G., McKusick, R. C. & Cairns, T. L. Bis-(polyfluoroalkyl)-acetylenes. II. Bicyclooctatrienes through 1,4-addition of bis-(polyfluoroalkyl)-acetylenes to aromatic rings. J. Am. Chem. Soc. 83, 3428–3432 (1961).
39. Zimmerman, H. E., Grunewald, G. L., Paufler, R. M. & Sherwin, M. A. Synthesis and physical properties of barrelene, a unique Moebius-like molecule. J. Am. Chem. Soc. 91, 2330–2338 (1969).
40. Stephan, D. W. & Erker, G. Frustrated Lewis pair chemistry of carbon, nitrogen and sulfur oxides. Chem. Sci. 5, 2625–2641 (2014).
41. Olah, G. A. et al. Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide – AlCl3/Al System. J. Am. Chem. Soc. 124, 11379–11391 (2002).

Acknowledgements
We gratefully acknowledge financial support from Nanyang Technological University (NTU; Singapore) and A*STAR (Agency for Science, Technology and Research, PSF/SERC 1321202066) of Singapore. We also thank Yanli Zhao and Pengyao Xing (NTU) for their assistance in fluorescence spectra analysis.

Author contributions
D.W. performed most of the synthetic experiments. L.K. conducted part of the syntheses and spectroscopic characterizations. Y.L. and R.G. performed the X-ray crystallographic measurements. R.K. conceived and supervised the study, and drafted the manuscript with the assistance from L.K.. All authors contributed to discussions.

Additional information
Accession codes: The X-ray crystallographic coordinates for structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 1049275–1049279. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Wu, D. et al. 1,3,2,5-Diazadiborinine featuring nucleophilic and electrophilic boron centres. Nat. Commun. 6:7340 doi: 10.1038/ncomms8340 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/