INVESTIGATING THE RELATION OF GDP PER CAPITA AND CORRUPTION INDEX

Nikita Moiseev 1, Alexey Mikhaylov 2, Igor Varyash 3, Abdul Saqib 4

1Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997, Moscow, Russian Federation
2Financial University under the Government of the Russian Federation, Leningradsky Ave, 49, 125167, Moscow, Russian Federation
3Financial Research Institute of Ministry of Finance of the Russian Federation, Nastasyinsky Lane, 3, 2, 127006, Moscow, Russian Federation
4Graduate School of Business, University Sains Malaysia, Gelugor, 11700, Penang, Malaysia

E-mail: namoiseev@fa.ru, ayumihajlov@fa.ru (corresponding author)

Received 10 March 2020; accepted 30 June 2020; published 30 September 2020

Abstract. The paper is devoted to modelling the corruption perception index in panel data framework. As corruption index is bounded from below and above, traditional econometric multiple regression will produce a bad quality model. In order to correct that, we propose a mathematical framework for modelling bounded variables implementing a logistic function. It is shown that corruption is best explained by GDP per capita and all other major macroeconomic indicators cannot add any statistically significant improvement to the models’ accuracy. Thus, we assume, that society wealthiness facilitates the reduction of corruption acts. Indeed, if some individual lives in a society that does not experiences almost any shortage of resources of whatever kind, the less interested this person is in getting wealthier by applying some corruption schemes. These methods are rather popular in less wealthy countries, where temptation to engage into corruption is higher, since it can drastically increase individual’s utility function. Therefore, in this research we assert, that the growth of wealth in a society makes corruption recede and not the other way around (reducing corruption helps increase GDP per capita). However, the most counterintuitive finding of this research is the fact, that GDP per capita, adjusted by purchasing power parity, produces the model of a worse quality then just using plain GDP per capita. This fact can be tentatively explained by the flaws in the methodology of calculating these adjustments, since the basket of goods varies drastically across the countries.

Keywords: corruption; GDP per capita; purchasing power parity; macroeconomic indicators; modelling bounded variables; logistic curve; probability distribution

Reference to this paper should be made as follows: Moiseev, N., Mikhaylov, A., Varyash, I., Saqib, A. 2020. Investigating the relation of gdp per capita and corruption index. Entrepreneurship and Sustainability Issues, 8(1), 780-794. http://doi.org/10.9770/jesi.2020.8.1(52)

JEL Classifications: D73, N10, C10

1. Introduction

Corruption is a broadly discussed and studied concept in economic and sociological scientific literature. Nevertheless, so far researchers didn’t come to a unified opinion neither concerning its origin, nor about its effect on sustainable economic development, nor about how to combat this phenomenon in case its effect is rather
negative. Early papers on corruption issue date back to Leff (1964) and Huntington (1968) and declare, that corruption positively affects the functioning of economic system since it reduces some bureaucratic delays and transaction costs. On the other hand, such authors as Kaufman and Wei (1999), Aidt (2009), Mauro (1995, 1997), Shleifer and Vishny (1993), Blackburn et al (2009), Barreto (1996), Tanzi and Davoodi (1997), etc. state, that corruption imposes a negative effect on economy.

In this paper we investigate in a panel data framework the relation between GDP per capita and corruption perception index, issued by Transparency International e.V., which defines corruption as "the misuse of public power for private benefit". Higher values of corruption index correspond to less corrupted countries, whereas lower values denote more corrupted ones. The central hypothesis that we utter is that corruption index variation is best explained by GDP per capita and inclusion of other most common macroeconomic indicators does not help increase the quality of the model.

In order to explain this statistically strong link, we assume, that the wealthier some society is, the easier it becomes for bureaucrats not to use their public power to obtain private benefits. Indeed, if one lives in a society that does not experiences almost any shortage of resources of whatever kind, the less interested this person is in getting wealthier by applying some corruption schemes. These methods are rather popular in less wealthy countries, where temptation to engage into corruption is higher, since it can drastically increase individual’s utility function. In this paper we refer to utility as to a basic microeconomic concept of utility theory. If we consider a bureaucrat, deciding whether to engage into a corruption act, he or she would almost certainly consider a potential gain from this act and a potential punishment, which will occur with some probability. Thus, the bureaucrat will assess his or her utility of some corruption act given certain values of gain, punishment and its probability of occurrence. If this utility appears to be high enough, then, obviously, the decision is in favor of engaging into corruption. That is why in order to fight corruption one should consider either toughening the punishment, or decreasing the utility from financial gain, what can be only achieved by increasing the overall wealth of the society.

Therefore, in this research we assert, that the growth of wealth in a society makes corruption recede and not the other way around (reducing corruption helps increase GDP per capita), as stated in Mustapha (2014).

The paper has the following structure. Section 2 presents a quick literature review on the topic of corruption and its impact on economy. Section 3 presents a mathematical approach, that is proposed by the authors for modelling bounded indicators. In section 4 we present the results of our statistical modelling of corruption perception index in panel data framework. Section 5 is devoted to discussing the paper findings and pointing the directions for future research. Section 6 sums up the key points of the paper. Section 7 emphasizes scientific contribution of this paper.

2. Literature review

In the paper by Leff (1964) it is stated that corruption helps spur up economic growth, as corrupt bureaucrats can make the government promote economic activities, what facilitates investments growth. Kaufman and Wei (1999) investigate the relation between bribe payment, management time wasted on bureaucrats and cost of capital. The main finding of that paper is that companies that pay more bribes are also likely to spend more (not less) time on negotiating with bureaucrats what leads to higher (not lower) cost of capital. Mauro (1995, 1997) states that high level of corruption causes a decrease in economic growth by decreasing investment attractiveness. Rahman et al. (2000) capitalize on the previous research and, using Bangladesh data set, study the impact of corruption on economic growth and investment flows. Their findings propose that in order to combat corruption, governments
should drastically alter the incentives system and strengthen domestic institutions (Lopatin, 2019b; Meynkhard, 2019a; Meynkhard, 2019b; Meynkhard, 2020).

Aidt (2009) wrote that while corruption in a very narrow sense can be seen as a lubricator that may speed things up and help entrepreneurs getting on with wealth creation in specific instances, in a broader sense, corruption must be considered as an obstacle to development”, as the author finds a strong negative correlation between corruption and economic development.

Mauro (2004) tries to understand the reason of why corruption persists in spite of its negative impact on the economic growth. The author’s models are based upon multiple equilibria. In the final analysis the paper outlines, that when corruption is widely spread individuals have little stimuli to combat this phenomenon even though everybody would be better of without it. The paper by Blackburn et al. (2009) investigates the fact that in some countries corruption imposes stronger negative effect than in the others. Authors use general dynamic equilibrium framework to show that countries with organized corruption networks have higher chances for lower bribes level and faster economic growth.

The paper by Rock and Bonnett (2004) analyze four different data sets in order to prove the connection between corruption and economic growth. Authors conclude that the corruption effect on economic growth depends on the level of current economic state: corruption tends to slow down economic growth for developing countries of smaller size, whereas it spurs up economic growth for East Asian newly industrialized economies.

Li and Wu (2010) studied statistical data of 65 countries and say that trust in a corruption network facilitates economic growth and mitigates its negative effect on the economy. Finally, Mustapha (2014) runs several statistical tests in a panel data framework to display, that GDP per capita is negatively affected by corruption index.

The link between GDP per capita and corruption revolves around the need for a fair distribution of GDP between present and future generations through sustainable use of resources (Lisin, 2020c; Denisova et al, 2019). Each generation should take care of the following: as share of GDP from the previous generation arrive, it should retain a fair amount of capital for generations, while financing its own activities to an appropriate extent (Lopatin, 2019a; Lopatin, 2020; Lisin, 2020a; Lisin, 2020b).

### 3. Materials and methods

Let \( \{y_t, X_t; t = 1, \ldots, n\} \) be a set of considered variables, where \( y_t \) – corruption perception index, \( X_t = (x_{0t}, x_{1t}, x_{2t}, \ldots, x_{kt}) \) – a set of explanatory variables. Since we consider a case, where tolerance range of a target variable is bounded from above and below, we propose to use a multivariate logistic regression to obtain a point forecast of considered indicator. The formula of the logistic curve is given below:

\[
y_t = \frac{1}{1 + e^{-z(t)}} \tag{1}
\]

where \( y_t \in [0,1] \) represents a scaled corruption perception index, \( z(t) \in (-\infty;+\infty) \).
It is worth noticing that $z(t)$ can be either linear or non-linear function of explanatory variables $X_t$. Parameters of such model are estimated by using OLS for which we previously conduct an inverse logarithmic transformation of the target variable, as shown below:

$$z(t) = -\ln \left( \frac{1}{y_t} - 1 \right). \quad (2)$$

Thus, linear model can be presented as follows:

$$z(t) = X_t \beta + e_t, \quad (3)$$

where $\beta = (b_0, b_1, ..., b_k)'$ is a column-vector of estimators for true model’s parameters $\beta$, which is independent of any realization of vector $X_t$. $e_t$ – “white” noise, which is assumed to be subject to normal distribution.

Parameters vector for such class of models is then estimated as below:

$$B = (X^T X)^{-1} X^T Z, \quad (4)$$

where $X = \begin{pmatrix} X_n \\ X_{(n-1)} \\ \vdots \\ X_1 \end{pmatrix}$, $Z = \begin{pmatrix} z_n \\ z_{n-1} \\ \vdots \\ z_1 \end{pmatrix}.$

We also suppose that all OLS prerequisites hold, i.e.

$$E(e_t | X_t) = 0, \quad (5)$$

$$E(e_t^2 | X_t) = \sigma^2, \quad (6)$$
\( \text{cov}(e_i, e_j) = 0, \forall i \neq j. \) \hspace{1cm} (7)

In case \( z(t) \) is a non-linear function of \( X_t \), the model will look as follows:

\[ z(t) = h(X_t, B) + e_t, \] \hspace{1cm} (8)

where \( h \) is a continuously differentiable function.

If prerequisites (5-7) hold, then the vector of parameter estimators for (8-9) is computed by numerical minimization of the following target function:

\[ S(B) = \frac{1}{2} \sum_{t=1}^{n} (z(t) - h(X_t, B))^2 \rightarrow \min \] \hspace{1cm} (9)

To analyze the probability distribution of model’s errors we derive the probability density function for \( y_t \). For this we start with the following calculations:

\[ y_t = \frac{1}{1 + e^{-(\hat{z}(t)+\varepsilon)}} = \frac{1}{1 + e^{-\hat{z}(t)}} e^{-\varepsilon} = \frac{1}{1 + \alpha e^{-\varepsilon}} \] \hspace{1cm} (10)

where \( \hat{z}(t) = X_t B, \alpha = e^{\hat{z}(t)} \) and \( \alpha \in (0;+\infty) \).

Thus, the probability distribution of random variable \( y_t \) is a function of parameters \( \alpha \) and \( \sigma \). In the first step we derive the cumulative distribution function as shown below:

\[ cdf_y(y) = P(Y < y) = P\left( \frac{1}{1 + \alpha e^{-x}} < y \right) = P\left( x < -\ln\left( \frac{1 - y}{\alpha y} \right) \right) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{-\ln\left( \frac{1 - y}{\alpha y} \right)} e^{\frac{-x^2}{2\sigma^2}} dx. \] \hspace{1cm} (11)

Here \( \sigma \) denotes standard deviation of “white” noise \( \varepsilon \). In order to derive the probability density function, we differentiate the obtained function with respect to \( y_t \).

\[ pdf(y) = cdf_y(y) = \left( \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{-\ln\left( \frac{1 - y}{\alpha y} \right)} e^{\frac{-x^2}{2\sigma^2}} dx \right)' = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-\ln\left( \frac{1 - y}{\alpha y} \right)^2}{2\sigma^2}} \left( -\ln\left( \frac{1 - y}{\alpha y} \right) \right)' \] \hspace{1cm} (12)

From the previous equation it is easy to obtain the analytical form of the probability density function for \( y_t \), what is shown below:

\[ pdf(y) = \frac{1}{\sqrt{2\pi\sigma y(1 - y)}} e^{\frac{-\ln\left( \frac{1 - y}{\alpha y} \right)^2}{2\sigma^2}}. \] \hspace{1cm} (13)

Probability density function (10-13) can take up different shapes depending on parameters (see fig. 2). In case parameters \( \alpha = 1, \sigma = 0.5 \), then distribution is close to normal, in case when \( \alpha = 0.3, \sigma = 0.7 \) and
\( \alpha = 3, \sigma = 1.3 \) distribution is clearly skewed, and if \( \alpha = 1, \sigma = 3 \) it has a parabolic shape. It is worth noticing, that in the latter case, the model is uninformative because the confidence intervals will cover almost the entire tolerance range of the target variable. Therefore, while constructing the model, researchers should pay attention to the standard deviation of model’s residuals, since if its value is greater than 2, the model can be considered as uninformative.

![Graph showing probability density of y given different parameters’ values](image)

**Fig. 2.** Probability density of y given different parameters’ values  
*Source: author*

In order to compute the interval forecast, we calculate explicitly the expected mean square forecast error (MSFE). It is well-known, that MSFE consists of two components: the variance of "white" noise and the variance of the regression line. This can be presented as follows:

\[
MSFE_{t+1} = \text{Var}(\hat{z}_{t+1} - z_{t+1}) = \sigma^2 + \text{Var}(\hat{z}_{t+1} - E(\hat{z}_{t+1})).
\]  

(14)

Hence, we do a quick recap of the derivation for the regression line variance.

\[
\text{Var}(\hat{z}_{t+1} - E(\hat{z}_{t+1})) = E(\hat{z}_{t+1} - E(\hat{z}_{t+1}))^2
\]

\[
= E(X_{t+1}(B - \beta)(B - \beta)^\prime X_{t+1}^\prime)
\]

\[
= E(X_{t+1}(X^\prime X)^{-1} X^\prime \epsilon \epsilon^\prime X (X^\prime X)^{-1} X_{t+1}^\prime)
\]

\[
= X_{t+1}(X^\prime X)^{-1} X_{t+1}^\prime E(\epsilon \epsilon^\prime)X (X^\prime X)^{-1} X_{t+1}^\prime
\]

\[
= \sigma^2 X_{t+1}(X^\prime X)^{-1} X_{t+1}^\prime
\]

\[
= \sigma^2 X_{t+1}(X^\prime X)^{-1} X_{t+1}^\prime.
\]

4. Results

In this section we investigate the relation of corruption perception index and GDP per capita for 45 biggest economies. Considered data set covers a time frame from 2012 to 2018 and the following countries: Argentina, Australia, Austria, Bangladesh, Belgium, Brazil, Canada, Chile, China, Colombia, Denmark, Egypt, Finland, France, Germany, Hong Kong, India, Indonesia, Ireland, Israel, Italy, Japan, Malaysia, Mexico, Netherlands,
Since corruption perception index ranges from 0 to 100, in order to model it we resort to the method, described in the previous section. The final model in this case will look as follows:

$$corruption_t = \frac{100}{1 + e^{-(b_0 + b_1 GDP_t + b_2 GDP_t^2 + e_t)}}. \quad (15)$$

In order to apply OLS method, we apply the inverse logarithmic transformation on corruption index to get z-score, which can be modelled by traditional regression tools.

$$-\ln \left( \frac{100}{corruption_t} - 1 \right) = z\text{–score} = b_0 + b_1 GDP_t + b_2 GDP_t^2 + e_t. \quad (16)$$

Table 1 displays the summary of regression parameters estimation for model (16). As it can be clearly seen, considered z-score is very well modelled by constructed model. Durbin-Watson statistics is equal to 1.79, what testifies that selected analytical equation is rather correct. Intercept, first and second coefficients are highly significant as well as overall model’s quality, what can be seen by extremely high value of F-statistics. Coefficient of determination as well as adjusted R-squared display values close to 1, what is interpreted as a model of a very good fit.

**Table 1. Regression summary for corruption perception index and GDP per capita**

| Regression Statistics |   |   |   |   |   |
|-----------------------|---|---|---|---|---|
| Multiple R            | 0.923845 |   |   |   |   |
| R Square              | 0.85349 |   |   |   |   |
| Adjusted R Square     | 0.852551 |   |   |   |   |
| Standard Error        | 0.375962 |   |   |   |   |
| Observations          | 315 |   |   |   |   |

| ANOVA                  |   |   |   |   |   |
|------------------------|---|---|---|---|---|
| df                     | 2 | 256.9057 | 128.4529 | 908.7742 | 7.5E-131 |
| SS                     | 312 | 44.10038 | 0.141347 |   |   |
| MS                     | 314 | 301.0061 |   |   |   |

| Coefficients          | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% |
|-----------------------|----------------|--------|---------|-----------|-----------|-------------|-------------|
| Intercept             | 0.576067        | 0.029486 | 19.53704 | 4.45E-56  | 0.518051  | 0.634083    | 0.518051    | 0.634083    |
| GDP per capita        | 0.980353        | 0.023849 | 41.10676 | 5.7E-128  | 0.933428  | 1.027278    | 0.933428    | 1.027278    |
| GDP per capita squared| -0.18142        | 0.020511 | -8.84486 | 6.92E-17  | -0.22177  | -0.14106    | -0.22177    | -0.14106    |

*Source*: authors’ calculations
Thus, from table 1 we can conclude, that the variation of corruption perception index across analyzed countries at different time periods is well explained by the variation of GDP per capita. Table 2, on the other hand presents the regression summary for model (16), but instead of GDP per capita we used GDP per capita, adjusted by purchasing power parity. If we compare numbers form tables 1 and 2, we can conclude, that GDP per capita PPP, though producing a good quality model, still significantly underperforms in explaining the variation of corruption perception index. Standard error in the latter case is by almost 38% greater, than for model, based on plain GDP per capita.

Table 2. Regression summary for corruption perception index and GDP per capita PPP

| Regression Statistics |        |        |        |        |
|----------------------|--------|--------|--------|--------|
|                      | Multiple R | 0.854034 |        |        |
|                      | R Square | 0.729374 |        |        |
|                      | Adjusted R Square | 0.727639 |        |        |
|                      | Standard Error | 0.510969 |        |        |
|                      | Observations | 315 |        |        |

| ANOVA |        |        |        |        |
|-------|--------|--------|--------|--------|
|       | df | SS    | MS    | F     | Significance F |
|-------|----|-------|-------|-------|----------------|
| Regression | 2 | 219.5461 | 109.773 | 420.4417 | 2.82E-89 |
| Residual | 312 | 81.46002 | 0.26109 |        |                |
| Total | 314 | 301.0061 |        |        |                |

| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% |
|--------------|----------------|--------|---------|-----------|-----------|-------------|-------------|
| Intercept    | 0.562875       | 0.0377 | 14.93033 | 2.08E-38  | 0.488697  | 0.637054    | 0.488697    | 0.637054    |
| GDP per capita PPP | 0.875029 | 0.030253 | 28.92363 | 2.67E-90  | 0.815504  | 0.934555    | 0.815504    | 0.934555    |
| GDP per capita squared PPP | -0.16822 | 0.02434 | -6.91138 | 2.71E-11  | -0.21612  | -0.12033    | -0.21612    | -0.12033    |

*Source: authors’ calculations*

This finding is counterintuitive, as it would be more logical, to orient on GDP per capita PPP rather than on plain GDP per capita, since purchasing power parity adjustment is supposed to help better understand the true living standard in a country. Indeed, when making a decision whether to engage into some corruption act an individual should consider his current living standard and compare it with his living standard after accepting a bribe, of course, corrected by the probability of being exposed to justice and corresponding penalties. In this case GDP per capita PPP should more accurately define the average living standard of citizens, working as a reference point for bureaucrats. However, our statistical analysis shows, that probably there is a flaw in methodology of calculating purchasing power parity adjustments. This flaw, in our opinion, is based on the fact, that purchasing power parity adjustment is calculated on some unified basket of consumer goods, which may not adequately assess the average living standard, since the effective structure of this basket varies drastically across the countries due to their geographical, climatic, political, cultural, economic, historical, gastronomical and other differences. Thus, we conclude, that plain GDP per capita is a more adequate predictor for corruption perception index as it, apparently, is a better proxy of a living standard across different countries.
Moreover, we tried to include into model (15-16) different macroeconomic indicators, such as: consumer price index, current account, Gini income inequality index, government debt to GDP ratio, unemployment rate, GDP, population and government budget surplus. However, all these indicators failed to significantly improve the quality of the model, since all regression coefficients, associated with these factors happened to be statistically insignificant, compared to GDP per capita. This statement does not assert, that there are no other factors, determining the level of corruption other then GDP per capita or it is impossible to find a better fitted model, using already considered factors. Of course, since there is a high degree of multicollinearity among explanatory variables, it is probably possible to apply some sort of regularization in order to improve the quality of the model, but this procedure is beyond the scope of this paper.

Figure 3 presents the scatter plot of z-score for corruption index and standardized GDP per capita, computed as below:

\[
GDP_{z} = \frac{GDP_{i} - E(GDP_{i})}{SD(GDP_{i})}.
\]

Figure 4 displays the scatter plot for corruption perception index and standardized GDP per capita. Both figures also display regression lines and 95% confidence levels, computed by proposed in section 3 method of modelling bounded indicators.

---

**Fig. 3.** Scatter plot for z-score and GDP per capita

Source: authors’ calculations based on statistical data from Transparency International e.V. ([https://www.transparency.org/](https://www.transparency.org/)) and World Bank ([https://data.worldbank.org/indicator/](https://data.worldbank.org/indicator/))
From figure 4 we can see that the relation between corruption index and GDP per capita is clearly non-linear, what requires some changes in traditional linear approach. Proposed model approximates data quite well and around 95% of all data points are lying within the confidence band. Exactly the same conclusions can be made, when modelling corruption index for each particular time period. R-squared remains stably around 0.83-0.87 and all coefficients are significant. Therefore, we can state, that constructed model is adequate and can be used for drawing economic conclusions, based on its statistics and features.

5. Discussion

Corruption by most scientists is believed to have a negative impact on economic growth and sustainable society development. Indeed, it undermines concepts of justice and equality, since rich individuals can escape punishment for crimes they actually committed or get an advantage in business environment. Corruption facilitates an outgoing cash flow, as bureaucrats try to launder the illegal income through some offshore accounts. These facts obviously hinder country’s investment attractiveness, ease of doing business and free market concept. Lack of investments flow seriously damages growth potential compared to the level a country could reach, had there been a lower level of corruption (Chiabaut and Barcet, 2019; Nguyen et al., 2019; Bešinović and Goverde, 2019; Enayatollahli et al., 2019; Mohri and Akbarzadeh, 2019; Sun and Apland, 2019; Jevinger and Persson, 2019; Czioska et al., 2019).

However, combating corruption in order to spur up economic development can appear to be suboptimal, as it may require more resources, than a country will actually gain from a reduced corruption level. In this paper we show that corruption is in a very close relation with the average living standard in a country, which in our case is represented by GDP per capita. Indeed, for a bureaucrat it is much easier to resist the temptation to engage into some act of corruption if his utility from the bribe is not high, what can happen either if the punishment is severe enough, or bureaucrat’s value for money is not that high. The latter can only happen if bureaucrat’s living standard is pretty high, compared to the average in the world, what is supported by decreasing marginal utility.
theory. That explains, why poor countries tend to have higher level of corruption and rich ones, on contrary, low. (Heyken Soares et al., 2019; Habib and Hasnine, 2019; Malucelli and Tresoldi, 2019; Downward et al., 2019; Candelieri et al., 2019).

That means, that probably economic growth helps reduce corruption as well as low corruption level increases economic growth. We suppose that it is more important to concentrate on some economic reforms, that would facilitate economic growth, rather than combat corruption. First of all, these reforms are supposed to be made by bureaucrats, which are usually the most corrupted society group (Veynberg and Titov, 2017; Veynberg and Popov, 2016; Veynberg et al., 2015; Mikhailov, 2015).

Secondly, one of the social constructs in the new knowledge economy is the technology of leading indicators that is widely used today, which allows managers in corporations and public administration to anticipate economic events in planning before the appearance of relevant statistics and to set real tasks in resolving conflicts of interest in a working order.

That is why, reforms or laws, aimed at combating corruption will not meet a joyful approval from policymakers. But reforms, aimed at economic development will unlikely meet resistance in the government. On contrary, corrupted policymakers greet faster pace of economic growth as his or her “services” become more expensive. This, obviously, happens because if the corporate sector becomes richer it can afford to give more expensive bribes (Szlosarek et al., 2019; Covic and Voss, 2019; Dorantes-Argandar et al., 2019; Iliopoulou et al., 2019).

Thus, we emphasize the point that corruption is a social phenomenon, that is self-annihilating as economy develops at a higher pace, than the average growth rate across the world. That is why, it is important to try to focus on economic development, what will eventually reduce the corruption level in a country (Huang et al., 2019; Hadiuzzaman et al., 2019; Jasti et al., 2019).

6. Conclusion

In this research we propose a mathematical approach to modelling bounded economic indicators, that is based on logistic curve and ordinary least squares and developed within a parametric framework. With the help of this approach we investigate and model the relation between the corruption perception index and GDP per capita. It is shown that corruption perception level is best modelled by GDP per capita and not by GDP per capita, adjusted by purchasing power parity. This counterintuitive result we explain by the flaw in the methodology of computing these adjustments, since the basket of goods varies drastically across countries. Moreover, other major macroeconomic indicators, such as: consumer price index, current account, Gini income inequality index, government debt to GDP ratio, unemployment rate, GDP, population and government budget surplus could not significantly improve the quality of the model, based on GDP per capita.

We suppose that in order to reduce corruption, a government should focus more on ensuring a faster sustainable economic development, rather than on directly constraining corruption activities. Such an approach is believed to be more effective, since reforms and laws, which are aimed at economic development, will not meet such a resistance as, for instance, introducing flexible tax rate, or aggravate penalties for acts of corruption.

7. Contribution to the Body of knowledge

This paper is devoted to working out a mathematical approach to modelling bounded economic indicators and investigating the relation between corruption and GDP per capita. This research makes at least three important contributions to the body of knowledge. The first contribution is the method modelling bounded from below and above economic indicators. The second contribution is constructed econometric model for corruption perception
index depending on GDP per capita, which explains the variation of dependent variable better, than any other major macroeconomic indicator. The third one is the conclusion, that increasing overall wealth of the society helps combating corruption and not the other way around, as it was previously believed.

References:

Aidt, T.S. (2009). Corruption, institutions, and economic development. Oxford Review of Economic Policy, 25(2), 271–291. https://doi.org/10.1093/oxrep/grp012

Barreto, R.A. (1996). Endogenous Corruption, Inequality and Growth. European Economic Review, 44(1), 35-60.

Bešinović, N., Goverde, R.M.P. (2019). Stable and robust train routing in station areas with balanced infrastructure capacity occupation. Public Transport, 11(2), pp. 211-236. https://doi.org/10.1007/s12469-019-00202-3

Blackburn, K. and Forgues-Puccio, G.F. (2009). Why is Corruption Less Harmful in Some Countries Than in Others? Journal of Economic Behavior and Organization, 72, 797-810. https://doi.org/10.1016/j.jebo.2009.08.009

Candelieri, A., Galuzzi, B.G., Giordani, I., Archetti, F. (2019): Vulnerability of public transportation networks against directed attacks and cascading failures. Public Transport, 11(1), 27-49. https://doi.org/10.1007/s12469-018-00193-7

Cavusoglu, H., Mishra, B., Raghunathan, S. (2004). The effect of internet security breach announcements on market value: Capital market reactions for breached firms and internet security developers. International Journal of Electronic Commerce, 9(1), 70-104.

Chiabaut, N., Barcet, A. (2019). Demonstration and evaluation of an intermittent bus lane strategy. Public Transport, 11(3), 443-456. https://doi.org/10.1007/s12469-019-00210-3

Covic, F., Voß, S. (2019). Interoperable smart card data management in public mass transit. Public Transport, 11(3), 523-548. https://doi.org/10.1007/s12469-019-00216-x

Czioska, P., Kutadinata, R., Trifunović, A., Winter, S., Sester, M., Friedrich, B. (2019). Real-world meeting points for shared demand-responsive transportation systems. Public Transport, 11(2), 341-377. https://doi.org/10.1007/s12469-019-00207-y

Denisova, V., Mikhaylov, A., Lopatin, E. (2019). Blockchain Infrastructure and Growth of Global Power Consumption. International Journal of Energy Economics and Policy, 9(4), 22-29. https://doi.org/10.32479/ijeep.7685

Dorantes-Argandar, G., Rivera-Vázquez, E.Y., Cárdenas-Espinoza, K.M. (2019): Measuring situations that stress public bus users in Mexico: a case study of Cuernavaca, Morelos. Public Transport, 11(3), 577-587. https://doi.org/10.1007/s12469-019-00215-y

Downward, A., Chowdhury, S., Jayalath, C. (2019). An investigation of route-choice in integrated public transport networks by risk-averse users. Public Transport, 11(1), 89-110. https://doi.org/10.1007/s12469-019-00194-0

Enayatollahi, F., Idris, A.O., Atashgah, M.A.A. (2019). Modelling bus bunching under variable transit demand using cellular automata. Public Transport, 11(2), 269-298. https://doi.org/10.1007/s12469-019-00203-2

Habib, K.N., Hasnine, S. (2019). An econometric investigation of the influence of transit passes on transit users' behavior in Toronto. Public Transport, 11(1), 111-133. https://doi.org/10.1007/s12469-019-00195-z

Hadiuzzaman, M., Malik, D.M.G., Barua, S., Qiu, T.Z., Kim, A. (2019). Modeling passengers’ perceptions of intercity train service quality for regular and special days. Public Transport, 11(3), 549-576. https://doi.org/10.1007/s12469-019-00213-0

Heyken Soares, P., Mumford, C.L., Amponsah, K., Mao, Y. (2019). An adaptive scaled network for public transport route optimization. Public Transport, 11(2), 379-412. https://doi.org/10.1007/s12469-019-00208-x

Huang, W., Shuai, B., Antwi, E. (2019). A two-stage optimization approach for subscription bus services network design: the China case. Public Transport, 11(3), 589-616. https://doi.org/10.1007/s12469-018-0182-6
Huntington, S. P. (1968). Political Order in Changing societies, New Haven, Yale University press.

Iliopoulou, C., Kepaptsoglou, K., Vlahogianni, E. (2019). Metaheuristics for the transit route network design problem: a review and comparative analysis. Public Transport, 11(3), 487-521. https://doi.org/10.1007/s12469-019-00211-2

Jasti, P.C., Ram, V.V. (2019). Sustainable benchmarking of a public transport system using analytic hierarchy process and fuzzy logic: a case study of Hyderabad, India. Public Transport, 11(3), 457-485. https://doi.org/10.1007/s12469-019-00219-8

Jevinger, Å., Persson, J.A. (2019). Exploring the potential of using real-time traveler data in public transport disturbance management. Public Transport, 1 (2), 413-441. https://doi.org/10.1007/s12469-019-00209-w

Kaufmann, D., Wei, S-J. (1998). Does Grease Money Speed Up the Wheels of Commerce? NBER Working Paper No. 7093.

Leff, N. (1964). Economic Development through Bureaucratic Corruption. American Behavioral Scientist, 8(3), 8-14. https://doi.org/10.1177/000276426400800303

Li, Sh., Wu, J. (2010). Why Some Countries Thrive Despite Corruption: The Role of Trust in the Corruption-Efficiency Relationship. Review of International Political Economy, 17(1), 129-154. https://doi.org/10.1080/09692290802577446

Lisin, A. (2020a). Biofuel Energy in the Post-oil Era. International Journal of Energy Economics and Policy, 10(2), 194-199. https://doi.org/10.32479/ijeep.8769

Lisin, A. (2020b). Prospects and Challenges of Energy Cooperation between Russia and South Korea. International Journal of Energy Economics and Policy, 10(3). https://doi.org/10.32479/ijeep.9070

Lisin, A. (2020c). Valuation of the activities of foreign banks in the Russian banking sector. Orbis, 15(45), 53-63. http://www.revistaorbis.org.ve/pdf/45/art5.pdf

Lopatin, E. (2019a). Methodological Approaches to Research Resource Saving Industrial Enterprises. International Journal of Energy Economics and Policy, 9(4), 181-187. https://doi.org/10.32479/ijeep.7740

Lopatin, E. (2019b). Assessment of Russian banking system performance and sustainability. Banks and Bank Systems, 14(3), 202-211. https://doi.org/10.21511/bbs.14(3).2019.17

Lopatin, E. (2020). Cost of Heating Pump Systems in Russia. International Journal of Energy Economics and Policy, 10 (3). https://doi.org/10.32479/ijeep.9056

Malucelli, F., Tresoldi, E. (2019). Delay and disruption management in local public transportation via real-time vehicle and crew re-scheduling: a case study. Public Transport, 11(1) https://doi.org/10.1007/s12469-019-00196-y

Mauro, P. (1995). Corruption and Growth. Quarterly Journal of Economics, 110(3), 681-712. https://doi.org/10.2307/2946696

Mauro, P. (1997). The Effects of Corruption on Growth, Investment, and Government Expenditure, IMF Working Paper 96/98 (Washington: International Monetary Fund)

Mauro, P. (2004). The persistence of corruption and slow economic growth. IMF Staff Papers, 51(1), 1-1. https://www.imf.org/External/Pubs/FT/staffp/2004/01/mauro.htm

Meynkhard, A. (2020). Priorities of Russian Energy Policy in Russian-Chinese Relations. International Journal of Energy Economics and Policy, 10(1), 65-71. https://doi.org/10.32479/ijeep.8507

Meynkhard, A. (2019a). Energy Efficient Development Model for Regions of the Russian Federation: Evidence of Crypto Mining. International Journal of Energy Economics and Policy, 9(4), 16-21. https://doi.org/10.32479/ijeep.7759

Meynkhard, A. (2019b). Fair market value of bitcoin: halving effect. Investment Management and Financial Innovations, 16(4), 72-85. https://doi.org/10.21511/imfi.16(4).2019.07

Mikhaylov, A. (2015). Oil and gas budget revenues in 2015: forecast and risks. Financial journal, 2, 47-54. https://www.nifi.ru/images/FILES/Journal/Archive/2015/2/statyi_2015_2/06_mikhailov.pdf
Mohri, S.S., Akbarzadeh, M. (2019). Locating key stations of a metro network using bi-objective programming: discrete and continuous demand mode. Public Transport, 11(2), 321-340. 

Mustapha, N. (2014). The impact of corruption on GDP per capita. Journal of Eastern European and Central Asian research, 1(4), 1-5. 

Nguyen, P., Diab, E., Shalaby, A. (2019). Understanding the factors that influence the probability and time to streetcar bunching incidents. Public Transport, 11(2), 299-320. 

Rahman, A., Kisunko, G., Kapoor, K. (2000). Estimating the effects of corruption - implications for Bangladesh (English). Policy, Research working paper No. WPS 2479. Washington, DC: World Bank. 

Rock, M., Bonnett, H. (2004). The Comparative Politics of Corruption: Accounting for the East Asian Paradox in Empirical Studies of Corruption, Growth and Investment. World Development, 32(6). 

Sun, B., Apland, J.(2019):Operational planning of public transit with economic and environmental goals: application to the Minneapolis–St. Paul bus system. Public Transport, 11(2), 237-267. 

Veynberg, R.R., Popov, A. (2016). Engineering and development of business rules management systems as a part of intelligent DSS. International Journal of Applied Engineering Research, 11(3), 1797-1802, 2016. 

Veynberg, R.R., Varfolomeeva, A., Grigoryeva, K. (2015). Intelligent simulation models based on business rules approach in banking sector (WIP). Simulation Series 47(10), 397-402. 

Tanzi, V. and Davoodi, H. (1997). Corruption, Public Investment, and Growth. IMF Working Paper 97/139, Washington, D.C. 

Shleifer, A, Vishny, R. (1993). Corruption. Quarterly Journal of Economics, 108(3), 599–617. 

**Nikita MOISEEV** is Ph.D. in Economics and an associate professor at Plekhanov Russian University of Economics. Main scientific interests are forecasting time series of socio-economic processes; macro-level modeling; multi-factor regression analysis; Bayesian econometrics; econometric modeling; machine learning. He developed a system for numerical evaluation of economic projects based on cross-industry balance using combined methods of computer optimization. He was awarded the diploma of the European Scientific and Industrial Chamber "Di Merito" #000445 by the order of 01.11.2016. 

**ORCID ID:** https://orcid.org/0000-0002-5632-0404

**Alexey MIKHAYLOV** received a Ph.D. in Economics in the field of Finance from Institute of Economics, Russian Academy of Sciences, Russia (2013), and a Diploma in Economics from Financial University under the Government of the Russian Federation (2009). He holds a position of assistant professor of Financial Markets and Banks Department in Financial University under the Government of the Russian Federation, Russia. He is an author of 14 scientific publications and conference papers indexed in SCOPUS and Web of Science, author of more than 40 scientific publications indexed in relevant scientific databases and author of 8 scientific monographs. He also became Deputy Director of Monetary Relations Research Center (2019) and Head of laboratory of Financial markets department (2017) in Financial University under the Government of the Russian Federation. Membership: ACI Russia. 

**ORCID ID:** https://orcid.org/0000-0003-2478-0307
Igor VARYASH is Head of the Analytical Center of Financial Research in Financial Research Institute of Ministry of Finance of the Russian Federation. He defended Ph.D in 1980 at Moscow State University. In 2000, he defended his doctoral dissertation at the Institute of Social and Economic Population Problems of the Russian Academy of Sciences on designing a system of leading financial and economic indicators. Research interests: macroeconomics, sociology, forecasting, planned management. He is conducting fundamental, applied and socio-economic studies.

ORCID ID: https://orcid.org/0000-0002-4816-8086

Abdul SAQIB is graduated CUST, Islamabad, Pakistan. He is post-graduate student in Graduate School of Business, University Sains Malaysia, Gelugor. Main scientific interests are: the impact of financial literacy on short-term and long-term investment decisions; the mediating role of risk aversion; the impact of procedural justice and distributive justice on Non-work related presenteeism; the moderating role of equity sensitivity; the deviations from Rationality: Ambiguity and Status-quo biases; the organizational justice and job insecurity as mediators to the effect of emotional intelligence on job satisfaction; the perception and Adaption of Islamic insurance. He has secured Gold Medal in MS (Finance) from CUST Islamabad.

ORCID ID: https://orcid.org/0000-0002-4075-0100