Whole-Genome Sequencing Reveals the Contribution of Long-Term Carriers in *Staphylococcus aureus* Outbreak Investigation

N. C. Gordon, B. Pichon, T. Golubchik, D. J. Wilson, J. Paul, D. S. Blanc, K. Cole, J. Collins, N. Cortes, M. Cubbon, F. K. Gould, P. J. Jenks, M. Llewelyn, J. Q. Nash, J. M. Orendi, K. Paranthaman, J. R. Price, L. Senn, H. L. Thomas, S. Wyllie, D. W. Crook, T. E. A. Peto, A. S. Walker, A. M. Kearns

National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom; Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, Colindale, United Kingdom; Public Health England, Royal Sussex County Hospital, Brighton, United Kingdom; Lausanne University Hospital, Service of Preventive Medicine, Lausanne, Switzerland; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom; Portsmouth Hospitals NHS Trust, Portsmouth, United Kingdom; Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom; Plymouth Hospitals NHS Trust, Plymouth, United Kingdom; Brighton and Sussex Medical School, Falmer, United Kingdom; East Kent Hospitals NHS Foundation Trust, Canterbury, United Kingdom; Royal Stoke University Hospital, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom; Public Health England, London, United Kingdom; National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford, Oxford, United Kingdom

ABSTRACT Whole-genome sequencing (WGS) makes it possible to determine the relatedness of bacterial isolates at a high resolution, thereby helping to characterize outbreaks. However, for *Staphylococcus aureus*, the accumulation of within-host diversity during carriage might limit the interpretation of sequencing data. In this study, we hypothesized the converse, namely, that within-host diversity can in fact be exploited to reveal the involvement of long-term carriers (LTCs) in outbreaks. We analyzed WGS data from 20 historical outbreaks and applied phylogenetic methods to assess genetic relatedness and to estimate the time to most recent common ancestor (TMRCA). The findings were compared with the routine investigation results and epidemiological evidence. Outbreaks with epidemiological evidence for an LTC source had a mean estimated TMRCA (adjusted for outbreak duration) of 243 days (95% highest posterior density interval [HPD], 143 to 343 days) compared with 55 days (95% HPD, 28 to 81 days) for outbreaks lacking epidemiological evidence for an LTC (P = 0.004). A threshold of 156 days predicted LTC involvement with a sensitivity of 0.875 and a specificity of 1. We also found 6/20 outbreaks included isolates with differing antimicrobial susceptibility profiles; however, these had only modestly increased pairwise diversity (mean 17.5 single nucleotide variants [SNVs] [95% confidence interval (CI), 17.3 to 17.8]) compared with isolates with identical antibiograms (12.7 SNVs [95% CI, 12.5 to 12.8]) (P < 0.0001). Additionally, for 2 outbreaks, WGS identified 1 or more isolates that were genetically distinct despite having the outbreak pulsed-field gel electrophoresis (PFGE) pulsotype. The duration-adjusted TMRCA allowed the involvement of LTCs in outbreaks to be identified and could be used to decide whether screening for long-term carriage (e.g., in health care workers) is warranted. Requiring identical antibiograms to trigger investigation could miss important contributors to outbreaks.

KEYWORDS MRSA, *Staphylococcus aureus*, outbreaks, whole-genome sequencing
To manage *Staphylococcus aureus* outbreaks effectively, infection control practitioners need to determine the relatedness of isolates from suspected cases. Whole-genome sequencing (WGS) has shown superior resolution compared with standard typing techniques (*spa*, pulsed-field gel electrophoresis [PFGE]) when used for individual outbreaks (1–4) and can also provide additional information about resistance, pathogenicity, and population structure (5–8). However, it has been argued that the accumulation of within-host diversity during *S. aureus* carriage could result in erroneous inferences about transmission. This has been cited as a potential weakness in applying sequencing to *S. aureus* outbreaks and may lead to the misinterpretation of genuine transmission routes (1, 9, 10).

However, rather than within-host diversity being a limitation on sequencing-based outbreak investigation, it could in fact be exploited to determine whether a long-term carrier is implicated in maintaining an outbreak. This information could be used by infection control practitioners when considering whether or not to deploy extended screening (e.g., of health care workers).

In this study, we tested the hypothesis that WGS can be used to predict the presence of a long-term carrier as an outbreak source. First, we examined individuals with newly acquired *S. aureus* nasal carriage to ascertain whether diversity is present at acquisition or develops over time. Next, we analyzed 20 *S. aureus* outbreaks, which were previously investigated using standard typing techniques, to assess the added utility of WGS. Finally, we compared WGS with epidemiological data to determine whether the presence of a long-term carrier maintaining the outbreak could be inferred from the WGS data.

RESULTS

Comparison of within-host diversity in newly acquired and long-term carriage.

Eight subjects were identified with ≥3 consecutive bimonthly negative nasal swabs, followed by ≥1 year of swabs consistently positive for *S. aureus*. All isolates were methicillin-susceptible *S. aureus* (MSSA), representing 7 *spa* types, 5 sequence types, and 4 clonal complexes. The median time from the first to last positive sample was 490 days (range, 358 to 727 days). In total, 135 isolates were successfully sequenced from 16 samples. One isolate (case 1219, early sample) failed quality checks and was excluded.

In 6/8 subjects, there was a significant increase in mean pairwise diversity (MPWD) between the first and last samples (*P* < 0.05) (Fig. 1). In one participant (case 1236), the increase was not significant (*P* = 0.52), and for another (case 1375), there was a decrease which was marginally significant (*P* = 0.07). Overall, MPWD increased from 0.88 single nucleotide variants (SNVs) (95% confidence interval [CI], 0.65 to 1.11) to 3.30 (95% CI, 2.92 to 3.68) between the first and last samples (*P* < 0.001). An analysis of the phylogenetic trees (see supplemental material) showed highly clonal early populations, and in 2 participants, only a single strain was observed. One individual (case 1219) had a more diverse early sample (MPWD, 4.57; 95% CI, 3.10 to 6.04) compared with those of the other participants. This subject’s first positive swab was at month 12, and they had completed a course of amoxicillin-clavulanic acid 1 day before their final negative swab. Therefore, it is possible that this was a false negative due to antibiotic suppression, meaning that there may have been up to 4 months of carriage prior to the first positive swab, accounting for the increased diversity.

Two participants (cases 1218 and 1219) shared the same address and had isolates of the same *spa* type. Participant 1219 (donor) became positive 2 months before participant 1218 (recipient). On a direct comparison of both early populations, we found that the recipient had an entirely clonal initial population, identical to 4/8 of the donor’s strains (see supplemental material).

For an additional 13 participants positive at the study entry, within-host diversity as measured by MPWD ranged from 0 SNVs (3 individuals) to 26 SNVs. This may be due to differences in the acquisition time to the time of the first sample, which is unknown for these individuals.
Outbreak characteristics. Twenty outbreaks were included in the study (Table 1). Fourteen (70%) were hospital associated, including 5 in neonatal units, 4 in general wards, 1 from a surgical unit, 2 from maternity units, and 2 involved multiple wards or hospital sites. Six (30%) were community associated, including 4 households, 1 nursing home, and 1 school. The reasons for instigating an outbreak investigation were an increase in methicillin-resistant *S. aureus* (MRSA) carriage (8 outbreaks), Panton-Valentine leukocidin (PVL)-producing skin/soft tissue infection (7 outbreaks), surgical site infections (3 outbreaks), MRSA bacteremia (1 outbreak), and staphylococcal scalded skin syndrome (1 outbreak). Three (15%) were due to MSSA and 17 (85%) to MRSA. The median number of outbreak cases was 7 (interquartile range [IQR], 5 to 9). The median duration was 72 days (IQR, 44 to 188 days).

Overall, isolates from 391 cases were sequenced. Nine (2.3%) were from health care workers (HCWs), the remainder being from patients or household members. Outbreak samples represented 9 clonal complexes, 11 sequence types, and 12 spa types.

Phylogenetic analysis of outbreaks. Phylogenetic trees for each outbreak are provided in the supplemental material. Two outbreaks had isolates which were equally or more distant than comparator isolates despite having the outbreak pulsotype: outbreak D (one isolate, 53 SNVs from the index case compared with 21) and outbreak S (two isolates, 49 and 46 SNVs from the index case compared with 46). These were therefore considered to be sporadic nonoutbreak isolates and were excluded from further analysis.

The overall MPWD across all outbreak sample pairs for the remaining 388 isolates was 13.8 SNVs (95% CI, 13.6 to 13.9) compared with 4,444 SNVs for nonoutbreak spa-matched pairs (95% CI, 2,492 to 6,395) and 30,192 SNVs for nonoutbreak isolates from the same units (95% CI, 29,781 to 30,603). All outbreak isolates were ≤30 SNVs from the index case; 381/388 (98%) were ≤10 SNVs from their nearest neighbor. The 7 more distant isolates came from outbreaks lasting more than 6 months (B, G, and S). All isolates were mapped to a standard reference genome; mapping to an alternative reference strain (performed for 6 outbreaks) yielded only 2 additional SNVs overall (see supplemental material), with no effect on topology.

FIG 1 All pairwise differences between early (<2 months since acquisition) and late (>12 months since acquisition) nasal swab samples from 7 patients with previously negative nasal swabs. Included for comparison are samples from patients positive at entry to the study (time of acquisition unknown).
Outbreak Epidemiological category	No of cases	Reason for outbreak	WGS of M. aureus (complex)	WGS of M. aureus (pulsotypes)	Outbreak antibiograms
A Hospital, general ward	5	MRSA colonization	MRSA CC22 ST22 t032	367	All identical
B Hospital, general ward	6	S. aureus wound infections	MRSA CC8 ST2021 t008	412	All identical
C Hospital, general ward	7	S. aureus wound infections	MRSA CC8 ST239 t037	98	All identical
D Hospital, surgical unit	8	MRSA colonization	MRSA CC22 ST22 t022	18	All identical
E Hospital, multiple wards	50	MRSA colonization	MRSA CC5 ST228 t041	122	2 pulsotypes
F Hospital, multiple wards	187	MRSA colonization	MRSA CC8 ST8 t008	454	4 pulsotypes 3 antibiograms
G Hospital, maternity unit	6	MRSA colonization	MRSA CC5 ST722 t063	70	All identical
H Hospital, maternity unit	9	MRSA colonization	MRSA CC5 ST722 t063	70	All identical
I Hospital, maternity unit	9	Scalded skin syndrome	MSSA CC1 ST2434 t346	70	All identical 2 antibiograms
J Hospital, maternity unit	298	MRSA colonization	MRSA CC5 ST722 t063	70	All identical
K Hospital, surgical unit	8	MRSA colonization	MRSA CC5 ST722 t063	70	All identical
L Hospital, surgical unit	187	MRSA colonization	MRSA CC5 ST722 t063	70	All identical
M Hospital, surgical unit	50	MRSA colonization	MRSA CC5 ST722 t063	70	All identical
N Hospital, surgical unit	171	MRSA colonization	MRSA CC5 ST722 t063	70	All identical
O Hospital, surgical unit	8	MRSA colonization	MRSA CC5 ST722 t063	70	All identical
P Hospital, surgical unit	9	MRSA colonization	MRSA CC5 ST722 t063	70	All identical
Q Hospital, surgical unit	5	MRSA colonization	MRSA CC5 ST722 t063	70	All identical

TABLE 1 Description of 21 outbreaks analyzed by whole-genome sequencing

MLST: multi-locus sequence type.

PVL: Panton-Valentine leukocidin; SSTI, skin/soft tissue infection.
Time to most recent common ancestor and long-term carriers. Twelve outbreaks (60%) had epidemiological evidence of a long-term carrier (LTC). Three included cases with recurrent staphylococcal disease, in 5 an LTC was suspected due to nonoverlapping ward stays, and in 4, at least one case had postoutbreak long-term carriage (Fig. 2). The pairwise distances between isolates from outbreaks with evidence for an LTC ranged from 0 to 46 SNVs compared with 0 to 10 SNVs for outbreaks with no evidence for an LTC (Table 2). The mean duration-adjusted time to most recent common ancestor (TMRCA) for outbreaks with a suspected or proven LTC was 243 days (95% highest posterior density interval [HPD], 143 to 343 days) compared with 55 days (95% HPD, 28 to 81 days) for outbreaks with no evidence for an LTC ($P = 0.004$) (Fig. 2). Excluding postoutbreak carriage, an analysis of the receiver operating characteristic curve gave an area under the curve (AUC) of 0.953 (95% CI, 0.851 to 1). Using the Youden index to identify outbreaks for which TMRCA most accurately predicted LTC, the AUC was 0.914 (95% CI, 0.758 to 1). The TMRCA was calculated using the program BEAST with the following settings: Markov chain Monte Carlo (MCMC) chain length, 50,000,000; thinning interval, 100; burn-in, 10,000,000; and parallel runs, 4.

TABLE 2 Long-term carrier category, duration-adjusted TMRCA, and SNV range for outbreaks investigated using WGS

Outbreak	Long-term carrier category	Duration-adjusted TMRCA (days [95% highest posterior density interval])	Distance between all isolates in cluster (SNV range)
A	Indirect ward contact	285 (134–445)	0–19
B	Indirect ward contact	515 (394–646)	0–24
C	Direct ward contact	103 (61–228)	0–9
D	Direct ward contact	78 (21–153)	0–10
E	Postoutbreak LTC	96 (40–165)	0–6
F	Direct ward contact	86 (36–160)	0–5
G	Indirect ward contact	394 (259–539)	0–46
H	Direct ward contact	46 (5–95)	0–4
I	Postoutbreak LTC	30 (1–69)	0–5
J	Postoutbreak LTC	161 (61–271)	0–9
K	Direct ward contact	31 (0–82)	1–4
L	Postoutbreak LTC	216 (134–314)	0–8
M	Direct ward contact	54 (9–107)	0–4
N	Indirect ward contact	156 (50–275)	0–36
O	Preoutbreak LTC	378 (240–531)	9–25
P	Preoutbreak LTC	54 (12–124)	1–11
Q	Preoutbreak LTC	204 (108–306)	1–13
R	Household	29 (0–73)	1–2
S	Indirect ward contact	431 (269–599)	3–32
T	School	12 (0–40)	0–2
select the optimal threshold gave a cutoff value of 156 days, with a sensitivity of 0.875 and a specificity of 1.

Relationship between PFGE pulsotype/antibiogram and SNV distance. Five outbreaks contained isolates differing by ≥1 band from the index case on PFGE. MPWD between outbreak isolates with identical PFGE pulsotypes was 13.6 SNVs (95% CI, 13.4 to 13.7) compared with 17.3 (95% CI, 17.0 to 17.6) between isolates with differing pulsotypes ($P < 0.0001$).

In 6/20 outbreaks, antimicrobial susceptibility differed across isolates, confirmed by the presence/absence of mobile resistance determinants identified using BLAST (11); however, these clearly belonged to the outbreak on phylogenetic analysis. MPWD between isolates sharing an antibiogram was 12.7 SNVs (95% CI, 12.5 to 12.8) compared with 17.5 (95% CI, 17.3 to 17.8) for isolates with differing antibiograms ($P < 0.0001$), although a substantial number of isolate pairs with different antibiograms had 0 SNVs between their core genomes (Fig. 3).

For other factors potentially related to outbreak diversity, there was no evidence of an association between MPWD and outbreak duration, reason for investigation, epidemiological setting, or MRSA phenotype ($P > 0.05$).

DISCUSSION

We have tested the use of WGS for *S. aureus* outbreak investigation using 20 outbreaks. By comparing observed outbreak SNV distances with nonoutbreak and spa/multilocus sequence type (MLST)-specific diversities, we were able to distinguish outbreak from nonoutbreak strains.

Our observation of minimal diversity in recent acquisitions of nasal carriage is reassuring for the application of WGS data to outbreaks. For the donor-recipient pair, we observed a narrow transmission bottleneck, with a clonal founding population despite a diverse donor population. Although this is a single case, the findings are supported by the minimal diversity seen in the early samples for the majority of

![FIG 3 Pairwise SNV differences for all pairs within an outbreak, where isolates had differing antibiograms (a) or differing PFGE pulsotypes (b).](image-url)
The inclusion of resistance data for outbreak strains in the core genome dataset can help identify potential donors. This can be achieved through Bayesian models that infer ancestry and resistance profiles discriminately. The results of this study suggest that a combination of resistance analysis and core genome data can be used to identify potential donors in outbreak investigations.

In conclusion, this study provides evidence for the use of resistance data in phylogenetic analyses of S. aureus outbreaks. The combination of resistance analysis and core genome data allows for a more comprehensive understanding of outbreak transmission and potential donors. This approach can be useful in identifying potential donors and investigating the transmission dynamics of S. aureus outbreaks.

The findings of this study have implications for the implementation of resistance data in outbreak investigations. The inclusion of resistance data in phylogenetic analyses can help identify potential donors and provide insights into the transmission dynamics of S. aureus outbreaks. This approach can be useful in public health and infection control practices, particularly in the context of MDR isolates.
ing the infection control response. Combining this with directed multisampling of suspected LTCs (1) may be a cost-effective method of using WGS to ensure that, where HCWs are implicated, potentially career-altering decisions are made using the best possible evidence.

MATERIALS AND METHODS

Comparison of within-host diversity in newly acquired and long-term carriage. Eight participants were identified from a population study of S. aureus nasal carriage in adults attending general practices in Oxfordshire (15), in which participants had nasal swabs taken at two-month intervals, with positive samples stored as mixed glycerol stocks taken by sweeping across multiple colonies on the primary plates to preserve the diversity of carried strains (11). The eight participants were negative for nasal carriage at recruitment and subsequently had consistently negative swabs for ≥6 months before acquiring a strain which they carried for at least 1 year. The first and last positive samples for each individual were retrieved from the mixed glycerol stocks. Samples were plated on Columbia blood agar (CBA) and incubated overnight at 37°C. For each time point, 8 individual colonies (12 for case no. 1218) were selected and further subcultured on a CBA plate and again incubated overnight at 37°C.

We also retrieved sequencing data from 13 participants previously investigated, (9) for whom the approximate time of acquisition was unknown. Each of these had 8 to 12 individual colonies sequenced. Collection of outbreak isolates and epidemiological data. Nineteen outbreaks were purposively sampled in collaboration with the Public Health England (PHE) staphylococcal reference laboratory, representing a range of sequence types and epidemiological settings and including both MRSA and MSSA. One further outbreak was investigated in conjunction with Lausanne University Hospital, Switzerland (14, 16). Epidemiological information was obtained from each infection control team (specimen date, site, ward location, and where applicable, admission/discharge dates and previous screening results).

For each outbreak, additional background isolates were also included for comparison. We sequenced all isolates submitted to PHE as part of the outbreak investigation, including those identified as ‘nonoutbreak’ by routine typing, to estimate the expected genetic diversity of the outbreak strain and to ensure that the apparent outbreak strains were not part of an ongoing clonal expansion. We also included non-epidemiologically linked isolates matched for spa type and/or MLST to provide a comparison for expected within-spa distances and to provide an outgroup for phylogenetic analysis.

Isolates were retrieved from single-colony frozen stocks held at the PHE reference laboratory, Colindale, London, or at Lausanne University Hospital. We used only the first isolate from each case and included isolates both from clinical samples and screening swabs.

Extraction and sequencing. DNA was extracted and sequenced as previously described (6) from a single colony subcultured on CBA and incubated for 18 to 24 h. Sequencing was performed using the Illumina HiSeq or MiSeq platforms.

Genome assembly and construction of phylogenetic trees. For all outbreaks, reads were aligned using Stampy v1.0.17 to a standard reference genome (MRSA252; GenBank no. NC_002952) (17). Six outbreaks were also mapped to clonal complex-specific reference genomes obtained from in-house collections or GenBank. Single nucleotide variants were identified across all mapped nonrepetitive sites using SAMtools v 0.1.18 mpileup, with the extended base-alignment quality flag and masking of mobile genetic elements. A consensus of ≥75% and ≥5 reads, including one in each direction, were required to support a SNV, and calls were required to be homozygous under a diploid model. Maximum likelihood trees were estimated from the mapped whole genomes using PhyML (18).

Outbreak analysis and calculation of TMRCA. The index case was defined as the earliest microbiologically confirmed case in each cluster. Outbreak cases were defined as those sharing related PFGE pulsortypes (19) plus a definite epidemiological link to the index or secondary cases (>24-h stay in the same ward or household/classroom/similar community situation with prolonged contact, e.g., childcare). For each outbreak case, the genetic distance in SNVs was calculated from the index case and the nearest neighbor. If an isolate was more distant from the index case than the nearest spa/MLST-matched comparator, it was considered sporadic and excluded from further outbreak analysis.

We classified each outbreak according to the possibility of long-term carrier involvement (LTC) carrying for ≥6 weeks) as follows: (i) LTC not suspected, direct contact between cases, or no history of preexisting staphylococcal disease; (ii) evidence for a pre- or perioutbreak LTC, either ≥1 case with a history of recurrent staphylococcal disease or nonoverlapping hospital stays (ward case identified after a case-free interval, indicating a possible health care worker carrier); and (iii) evidence of a postoutbreak LTC, ≥1 case with positive nasal swab ≥6 weeks after initial swab (indicating a propensity for long-term carriage).

To evaluate the relationship between outbreak diversity and the likelihood of a long-term carrier, we estimated the time to most recent common ancestor (TMRCA) using BEAST v1.8.1 (20). We applied a simple HKY substitution model with constant population size and a standardized substitution rate of 3.3 × 10−6 substitutions per genome per year (7) (see supplemental material). To control for differences in outbreak duration, outbreaks were censored at 6 months, and the (censored) outbreak duration was subtracted from the calculated TMRCA to obtain a duration-adjusted TMRCA.

We compared SNV distances between isolates of identical pulsortypes and those differing by one or more band. To determine whether there was an increase in genetic diversity associated with the acquisition of antimicrobial resistance, we also interrogated the predicted antibiograms as previously described (21).
Statistical analyses were performed using Stata v13.1. Mean pairwise differences were modeled using normal linear regression using robust standard errors to account for dependence within person/outbreak. The ability of TMRCA to differentiate between outbreaks with evidence for an LTC compared with outbreaks with no evidence for an LTC was evaluated using a receiver operating characteristic curve analysis.

Accession number(s). The sequences reported in this paper have been deposited in the NCBI Sequence Read Archive under bioproject number PRJNA380544.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/JCM.00363-17.

SUPPLEMENTAL FILE 1, PDF file, 1.0 MB.

ACKNOWLEDGMENTS

We thank the staff of the PHE Staphylococcal reference service (especially Marjorie Ganner) for help in identifying and locating samples. We also thank the infection control teams at each site for permission to use isolates and epidemiological data, in particular, the team at East Kent Hospitals NHS Foundation Trust.

This study was supported by the Health Innovation Challenge Fund (a parallel funding partnership between the Wellcome Trust [WT098615/Z/12/Z] and the Department of Health [grant HICF-TS-358]) and by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England (PHE) (grant number HPRU-2012-10041). The investigation of the Swiss outbreak was supported by a grant from the Swiss Foundation for Research (no. 31003A_150029).

N.C.G. is an MRC doctoral research fellow. D.W.C. and T.E.A.P. are NIHR Senior Investigators. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, the Department of Health, Wellcome Trust, the Medical Research Council, or Public Health England.

REFERENCES

1. Harris SR, Cartwright EJ, Torok ME, Holden MT, Brown NM, Ogilvy-Stuart AL, Ellington MJ, Quail MA, Bentley SD, Parkhill J, Peacock SJ. 2013. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis 13:130–136. https://doi.org/10.1016/S1473-3099(12)70268-2.

2. Koser CU, Holden MT, Ellington MJ, Cartwright EJ, Brown NM, Ogilvy-Stuart AL, Hsu LY, Chewapreecha C, Croucher NJ, Harris SR, Sanders M, Enright MC, Dougan G, Bentley SD, Parkhill J, Fraser LJ, Betley JR, Schulz-Trieglaff OB, Smith GP, Peacock SJ. 2012. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 366:2267–2273. https://doi.org/10.1056/NEJMoa1109910.

3. Eyre DW, Golubchik T, Gordon NC, Bowden R, Piazza P, Batty EM, Ip CL, Wilson DJ, Didelot X, O’Connor L, Lay R, Buck D, Kearns AM, Shaw A, Paul J, Wilcox MH, Donnelly PJ, Petro TE, Walker AS, Crook DW. 2012. A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance. BMJ Open 2:e001124. https://doi.org/10.1136/bmjopen-2012-001124.

4. Tong SY, Holden MT, Nickerson EK, Cooper BS, Koser CU, Cori A, Jombart T, Cauchemez S, Fraser C, Wuthiekanun V, Hongsuwan M, Day NP, Limmathurotsakul D, Parkhill J, Peacock SJ. 2015. Genome sequencing defines phylogeny and spread of methicillin-resistant Staphylococcus aureus in a high transmission setting. Genome Res 25:111–118. https://doi.org/10.1101/gr.174730.114.

5. Alam MT, Petit RA, III, Crispell EK, Thornton TA, Conneely KN, Jiang Y, Satola SW, Read TD. 2014. Dissecting vancomycin-intermediate resistance in Staphylococcus aureus using genome-wide association. Genome Biol Evol 6:1174–1185. https://doi.org/10.1093/gbe/evu092.

6. Young BC, Golubchik T, Batty EM, Fung R, Lerner-Svensson H, Votintseva AA, Miller RR, Godwin H, Knox K, Everitt RG, Iqbal Z, Rimmer AJ, Cule M, Ip CL, Didelot X, Harding RM, Donnelly P, Petro TE, Crook DW, Bowden R, Wilson DJ. 2012. Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc Natl Acad Sci U S A 109:4550–4555. https://doi.org/10.1073/pnas.1113219109.

7. Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EC, Chantratita N, Gardete S, Tavares A, Day N, Lindsay JA, Edgeworth JD, de Lencastre H, Parkhill J, Peacock SJ, Bentley SD. 2010. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327:469–474. https://doi.org/10.1126/science.1182395.

8. Holden MT, Hsu LY, Kurt K, Weinert LA, Mather AE, Harris SR, Strommenger B, Layer F, Witte W, de Lencastre H, Skov R, Westh H, Zemlickova H, Coombs G, Kearns AM, Hill RL, Edgeworth J, Gould I, Gant V, Cooke J, Edwards GF, McAdam PR, Templeton KE, McCann A, Zhou Z, Castillo-Ramirez S, Feil EJ, Hudson LO, Enright MC, Balloux F, Aanensen DM, Spratt BG, Fitzgerald JR, Parkhill J, Achtman M, Bentley SD, Nubel U. 2013. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 23:653–664. https://doi.org/10.1101/gr.147710.112.

9. Golubchik T, Batty EM, Miller RR, Farr H, Young BC, Lerner-Svensson H, Fung R, Godwin H, Knox K, Votintseva A, Everitt RG, Street T, Cule M, Ip CL, Didelot X, Petro TE, Harding RM, Wilson DJ, Crook DW, Bowden R. 2013. Within-host evolution of Staphylococcus aureus during asymptomatic carriage. PLoS One 8:e61319. https://doi.org/10.1371/journal.pone.0061319.

10. Worby CJ, Lipsitch M, Hanage WP. 2014. Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data. PLoS Comput Biol 10:e1003549. https://doi.org/10.1371/journal.pcbi.1003549.

11. Votintseva AA, Miller RR, Fung R, Knox K, Godwin H, Petro TE, Crook DW, Bowden R, Walker AS. 2014. Multiple-strain colonization in nasal carriers of Staphylococcus aureus. J Clin Microbiol 52:1192–1200. https://doi.org/10.1128/JCM.03254-13.

12. Paterson GK, Harrison EM, Murray GG, Welch JJ, Warland JH, Holden MT, et al. 2014. The emergence, spread, and persistence of diverse clonal complexes of methicillin-resistant Staphylococcus aureus (MRSA) in the United Kingdom. PLoS Pathog 10:e1003840. https://doi.org/10.1371/journal.ppat.1003840.
