Technology and equipment of food production

3/11 (81) 2016
Content

TECHNOLOGY AND EQUIPMENT OF FOOD PRODUCTION

4 Research of sedimentation stability of lipid-magnetite suspensions by the method of spectrophotometry
 A. Alexandrov, I. Tsykhanovska, T. Gontar, N. Kokody

11 Developing a model of the foam emulsion system and confirming the role of the yield stress shear of interfacial adsorption layers to provide its formation and stability
 A. Gorachuk, S. Omečchenko, O. Kotlyar, O. Grinchenko, V. Mikhaylov

20 Optimization of formulation composition of the low-calorie emulsion fat systems
 N. Tkachenko, P. Nekrasov, T. Makovska, L. Lanzhenko

27 Technology of specialty fats based on palm stearin
 E. Kunitsa, O. Udovenko, E. Litvinenko, F. Gladkiy, I. Levchuk

33 The influence of mechanolysis on the activaton of nanocomplexes of heteropolysaccharides and proteins of plant biosystems in developing of nanotechnologies
 R. Pavlyuk, V. Pogarska, T. Kotuyk, A. Pogarskiy, S. Loseva

40 Studying the accumulation of nitrogenous substances in biofortified pumpkin vegetables
 G. Deinychenko, O. Yudicheva

46 Research into the impact of enzyme preparations on the processes of grain dough fermentation and bread quality
 S. Oliinyk, O. Samokhvalova, A. Zaparenko, E. Shidakova-Kamenyuka, M. Chekanov

54 Consumer properties improvement of sugar cookies with fillings with non-traditional raw materials with high biological value
 A. Tkachenko, I. Pakhomova

61 The effect of grape seed powder on the quality of butter biscuits
 O. Samohvalova, N. Grevtseva, T. Brykova, A. Grigorenko

67 Abstract&References
EDITOR IN CHIEF
Boyuk Anatoly
PhD, Professor of Ukrainian State University of Railway Transport (Ukraine)
Terziyan Vagan
PhD, Professor of Kharkov National University of Radioelectronics (Ukraine)
Professor of the University of Jyväskylä (Finland)

EDITORIAL BOARD

COMPUTER SCIENCE

Boyuk Anatoly, Professor of Ukrainian State University of Railway Transport, Department of Automation and Computer telecontrol traffic, Kharkov (Ukraine);
Butko Tatiana, Professor of Ukrainian State University of Railway Transport, Department of operational work and international transportation, Kharkov (Ukraine);
Cardoso Jorge, Professor of University of Coimbra, Faculty of Science and Technology, Coimbra (Portugal); Farman Ilya, Professor of Petro Vasylchenko National Technical University of Agriculture, Department of Agricultural Mechanization, Kharkov (Ukraine); Hodiievsky Mykhailo, Professor of National Technical University «Kharkiv Polytechnic Institute», Department of Automated Control Systems, Kharkov (Ukraine); Jakab Frantisek, Assoc. professor of Technical University of Košice, Department of Computers and Informatics, Košice (Slovak Republic); Omelianenko Boris, PhD, Senior Software Engineer at Elsevier Amsterdam Areal, Amsterdam (Netherlands); Permiakov Alexander, Professor of National Technical University «Kharkiv Polytechnic Institute», Department of Mechanical Engineering, Kharkov (Ukraine); Podrigalo Mykhailo, Professor of Kharkiv National Automobile and Highway University, Department of Mechanical Engineering Technologies and Repairs, Kharkov (Ukraine); Samorodov Vadim, Professor of National Technical University «Kharkiv Polytechnic Institute», Department of Cars and Tractors, Kharkov (Ukraine);

MATHMATICS

Ahmad Izhar, Associate Professor of King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics, Dhahran (Saudi Arabia);
Demin Dmitry, Professor of National Technical University «Kharkiv Polytechnic Institute», director of the private Company «Technology Center», Kharkov (Ukraine);
Teviashv Andrew, Professor of Kharkov National University of Radioelectronics, Department of Applied Mathematics, Kharkov (Ukraine);
Trujillo Juan J., Professor of Universidad de la Laguna, Faculty of Mathematics, San Cristobal de La Laguna (Spain);

ENGINEERING

Andrianov Igor, Professor of RWTH Aachen University, Department of General Mechanics, Aachen, (Germany);
Dudnikov Anatoly, Professor of Poltava State Agrarian Academy, Department of the Repair machines and technology of constructional materials, Poltava (Ukraine);
Lzov Hennadyl, Professor of National Technical University «Kharkiv Polytechnic Institute», Department of Dynamics and Strength of Machines, Kharkov (Ukraine);
Machado Jose Antonio Terreiro, Professor of Polytechnic of Porto, Institute of Engineering, Department of Electrical Engineering, (Portugal);
Permiakov Alexander, Professor of National Technical University «Kharkiv Polytechnic Institute», Department of Mechanical Engineering, Kharkov (Ukraine);
Podrigalo Mykhailo, Professor of Kharkiv National Automobile and Highway University, Department of Mechanical Engineering Technologies and Repairs, Kharkov (Ukraine);

APPLIED PHYSICS

Glamazdin Alexander, PhD, National Science Center «Kharkiv Institute of Physics and Technology», Kharkov (Ukraine);
Sobol Oleg, Professor of National Technical University «Kharkiv Polytechnic Institute», Department of Materials Science, Kharkov (Ukraine);
Starikov Vadim, Senior Researcher of National Technical University «Kharkiv Polytechnic Institute», Department of Physics of metals and semiconductors, Kharkov (Ukraine);

MATERIALS SCIENCE, CHEMISTRY AND CHEMICAL ENGINEERING

Carda Juan B., Professor of Universidad Jaume I, Department of Inorganic Chemistry, Castellon de la Plana (Spain);
Cherevko Alexander, Professor of Kharkiv State University of Food Technology and Trade, Kharkov (Ukraine);
Chumak Vitaliy, Professor of National Aviation University, Department of Chemistry and Chemical Engineering, Kyiv (Ukraine);
Goldikas Abrisadis, Professor of Kaunas University of Technology, Department of Physics, Kaunas (Lithuania);

ENERGY

Danko Vladimir, Professor of National Technical University «Kharkiv Polytechnic Institute», Department of Electrical Engineering, Kharkov (Ukraine);
Klimenko Boris, Professor of National Technical University «Kharkiv Polytechnic Institute», Department of Electrical Apparatus, Kharkov (Ukraine);
Sobolev Yuriy, Professor, Advisor to the Rectory of Ukrainian State University of Railway Transport, Kharkov (Ukraine);
Terziyan Vagan, Professor of University of Jyväskylä, Department of Mathematical Information Technology, Jyväskylä (Finland)

Honorary editor
I. G. Filipenko
Doctor of Technical Sciences, Professor Ukrainian State University of Railway Transport (Ukraine)

Establishers
PC «TECHNOLOGY CENTER» Ukrainian State University of Railway Transport

Publisher
PC «TECHNOLOGY CENTER»

Editorial office’s and publisher’s address:
Shatsilova dacha str. 4, Kharkiv, Ukraine, 61145

Contact information
Tel.: +38 (057) 750-89-90
E-mail: ejeet.kh@gmail.com
Website: http://www.ejeet.kh.ua

Scopus
CrossRef
American Chemical Society
EBSCO
Index Copernicus
Rossiiskiy index научного цитирования (РИНЦ)
Ulrich’s Periodicals Directory
DRIVER
Bielefeld Academic Search Engine (BASE)
WorldCat
Electronic Journals Library
DOAJ
ResearchBib
Polish Bibliography Naukowa
Directory of Research Journals Indexing
Directory Indexing of International Research Journals
Open Academic Journals Index
Sherpa/Romeo

Journal Indexing

Swiadczenie o prawie do rejestrowania artykułów

Register № 21546-11446 ПР від 08.09.2015

Atestatano

Випуск № 12 постанови Президії ВАК № 1-05.36 від 11.06.03

Postanowego Präsidium ВАК Ukraine № 1-05/2 від 27.03.2009, № 1-05/3 від 08.07.2009

Buletine ВАК Ukraine №793 від 04.07.2014

Rekomendovan

Випуск Радіо протокол № 5 від 31.05.16 р.

Pідписано до друку
02.06.2016 р.

Формат 60 80 x 114 84/8
Ум.друку: 984 экз.
Тираж 1000 экз.
1. Introduction

The pastry products, especially sugar cookies, are in steady demand in the adult and child population according to the marketing research [1]. But the traditional raw materials for preparation of sugar cookies are not full in the biological aspect because of high calorie, high content of saturated fat acids and low nutrition value. The improvement of consumer properties of sugar cookies with fillings is, therefore, acute. The usage of local resources of non-traditional raw materials is most promising and effective in the technological and economical aspects. The unconventional raw materials are a valuable source of healthy nutrients [2]. Therefore, an important task is the rational combination of different sorts of natural raw materials for optimization of the composition and improvement of consumer properties of sugar cookies with fillings [3].

The relevance of researches in this area is that by improving the nutritional value of sugar cookies it is possible to influence on the overall diet of the population because sugar cookies are in high demand according to the researches [1]. The population’s modern nutrition imbalance encourages the creation of new food products with improved consumer properties. The considerable problem which needs to be solved is the improvement of amino acid, fatty acid, vitamin and mineral composition in the pastry products.
bean sprouts, pea grits [11], chickpeas flour and lentil flour in the recipes [12]. The replacement of 30% wheat flour with the okara (mass produced by pressing bean milk on the filter-press) allows to enrich the product with amino acids [13]. As protein preparations for enriching the pastry products, egg whites enriched with proteins can be used. As a result, not only the amino acid composition is improved, the product acquires dietary properties [14].

The issue of the day in the food production is also the balancing of fatty acid composition of products. It is found that the fraction of unsaturated fatty acids increases and the fraction of saturated fatty acids decreases owing to the addition of non-traditional oils to recipes [15]. It is proved that non-traditional oils surpass the margarine in the content of polyunsaturated fatty acids [5]. The linseed oil has a balanced chemical composition and a high amount of polyunsaturated fatty acids. The amount of polyunsaturated fatty acids in the linseed oil is 5.38 times higher than in the margarine. The amount of polyunsaturated fatty acids in the soybean, pumpkin, sea buckthorn oils is 4.69; 4.61; 4 times higher than in the margarine [16]. The search for vegetable oils with high content α-linolenic acid which is useful for the organism is being conducted. These include Sacha Inchi oil, peony oil, sea buckthorn oil, cypress oil, cress salad oil. The content of α-linolenic acid is 50; 45; 35; 30% in these oils [17]. The sea buckthorn oil effect on the fatty acid content of lipids is little known. However, it has been scientifically proven that sea buckthorn oil has a balanced ratio of omega-3 and omega-6 fatty acids. The sea buckthorn oil is the next after linseed oil by the content of α-linolenic acid. It allows considering oil as a valuable enricher for fat-containing products [18].

The considerable direction is enriching of confectionery with a limited content of macro- and micro elements and vitamins [19]. This need is dictated by objective environmental factors, which are associated with the change of the composition and nutritional value of products which are used. The next reason is the transformation of the lifestyle related to decreased physical energy expenditure [20].

A special attention from the scientific point of view must be paid to the enriching of fillings of pastry products because some vitamins are thermolabile. It is offered to include processed products of sugar beet [21], sea buckthorn concentrate [22], fruits chokeberry [23], etc. in the composition of fillings. The promising direction in the pastry production is the usage of medical and industrial raw materials and its processed products such as viburnum, hawthorn, buckthorn [24], goji berries [25]. The usage of these ingredients allows to enrich products with vitamins P, P, B2, mineral elements and cellulose.

Alternative kinds of flour, especially soybean and other legume crops have a positive impact on the improvement of nutritional value, particularly vitamin and mineral composition [26]. The soybean protein isolate and the meal of milk thistle in the recipes of custard cakes and cookies improve considerably the protein and mineral composition [27].

The developments using artichoke’s powders [28], moringa and yam powders are proposed for the improvement of consumer properties of pastry products [29].

The scientific developments concerning the improvement of consumer properties of pastry products are varied, but the multifactorial impact of non-traditional oils and fruit and vegetable raw materials on the formation of nutritional and biological value of food products is little studied [2]. Therefore, search for new recipes with non-traditional raw materials for the improvement of protein, fatty acid, vitamin and mineral composition of sugar cookies is relevant. The research presented in the paper aimed at the improvement of consumer properties and nutritional value of products for making better the diet of the population.

3. The purpose and objectives of the study

The purpose of the research is scientific and practical reasoning and developing the recipes of sugar cookies with fillings with the usage of the unconventional supplements to improve its consumer properties.

The purpose can be achieved by solving the following objectives:

– developing of the new recipes of sugar cookies;
– determination of the quality according to the standard;
– study of the amino acid, fatty acid, mineral and vitamin composition of sugar cookies;
– the comprehensive quality assessment.

4. Materials and Methods

The object of the study are the samples of the cookies “Dachne” and “Yasne sonechko” with the usage of the non-traditional raw materials.

The cookies “Dachne” has been produced with the usage of non-traditional raw materials: dried apples powders, dried raspberry leaf powders, dried calendula officinalis powders, pumpkin oil. The cherry plum and zucchini jam enriched with the preparation of the eggshell with lemon juice had been used for the production of fillings.

The cookies “Yasne sonechko” contains lungwort officinalis powders, dried apricot powders, sea buckthorn oil. The sea buckthorn jam with calendula syrup had been used for the production of fillings.

As a check sample, the cookies “Litne” have been used. It is the classic example of sugar cookies according to its recipe. For developing the recipes of sugar cookies, the mathematical modeling of prescription formulations has been used. Restrictions on the total content of ingredients in the recipe are determined by the formula:

\[
\sum_{i=1}^{10} x_i = 1000 ,
\]

where \(x_i, i=1, 2, ..., j\) is the unknown amount of raw materials of the \(i\) type (grams).

Process conditions of the required moisture content of the products are as follows:

\[
0.05 \sum_{i=1}^{10} x_i \leq \sum_{i=1}^{10} \lambda_i x_i \leq 0.1 \sum_{i=1}^{10} x_i ,
\]

where \(x_i, i=1, 2, ..., j\) is the unknown amount of raw materials of the \(i\) type (grams); \(\lambda_i\) is the water content in 1 gram of the \(i\) ingredient.

Additional conditions of the projected product enrichment with nutrients were determined as a percentage relative to the daily needs.

The following objective function is advisable
where \(x_i \), \(i=1, 2, \ldots, j \) is the unknown amount of raw materials of the \(i \) type (grams); \(a_n \) is the content of the nutrient of the \(n \) type in the \(1 \) gram of the \(i \) ingredient (grams).

The task of optimizing the content of the ingredients in the new sugar cookies is the determination of the vector \(X=(x_1, x_2, \ldots, x_j) \), maximizing the objective function provided that the coordinates of the vector satisfy the system of inequalities and equations. The solution of the problem is obtained by the simplex method in the MathCAD (Prime 3.0) [31]. The amino acid composition of sugar cookies was determined by ion exchange liquid-column chromatography on the amino acids automatic analyzer T 339 (Microtechnic, Czech Republic) [33].

The amino acid score was determined by the ratio of the relevant essential amino acid in the 1 gram of protein of the cookies to the required content in the "ideal protein" according to the FAO/WHO scale [34].

The fatty acid composition of sugar cookies was determined by gas chromatography method on the gas chromatograph HP 6890 (Agilent, USA) [35].

The mineral composition of sugar cookies was determined by atomic absorption spectrophotometry method on the atomic absorption spectrophotometer C-115 PK (Spectral, Czech Republic) [33].

Retinol (vitamin A) was determined by the colorimetric method, which is based on the reaction retinol with antimony trichloride in chloroform with the formation of blue color. The intensity of the color is directly proportional to the content of vitamin A. Ascorbic acid (vitamin C) has been determined by the Tillmans method. Tocopherol (vitamin E) has been determined by liquid chromatography with high isolation capacity [35].

The conventional methods have been used for the study of the toxic elements content in the new cookies. Copper, zinc, lead and cadmium have been determined by the atomic absorption method; arsenic was determined by the colorimetric method, mercury was determined by the flameless atomic absorption method [35].

5. The results of the study of consumer properties of new sugar cookies with fillings

The selection of the formulation was carried out by mathematical modeling method and on the base of product’s organoleptic properties. New ingredients have been selected according to their rational relation. Adjustment of the formulations has reduced the content of wheat flour and sugar in the cookies. The content of traditional and non-traditional raw materials is presented in Table 1. It should be noted that the raw materials which have been used for the production of the new cookies are produced in Ukraine and certified in accordance with current legislation.

According to the results of the tasting assessment of sugar cookies, which was held by the tasting commission consisting of 10 people at the Poltava University of Economics and Trade (Ukraine), it has been found that the developed samples of sugar cookies with fillings are characterized by better organoleptic properties than the check sample. The organoleptic assessment was held using the 50-point scale, developed by the authors.

Table 1: The content of components in the new samples of cookies, kg/t

Ingredient	«Dachne»	«Yasne sonechko»
Wheat flour	526.03	608.07
Sugar powder	185.05	179.98
Invert syrup	28.02	29.71
Vegetable-cream mixture	102.10	106.67
Skim milk powder	–	36.05
Whey protein concentrate	52.20	63.16
Fat-free whey powder	21.36	–
Melange	25.69	23.93
Vanilla essence	3.15	2.00
Baking soda	4.14	4.80
Ammonium carbon salt	0.63	0.80
Salt	4.14	4.18
Dried raspberry leaf powder	11.72	–
Langwort officinalis powder	–	2.60
Dried apple powder	63.31	–
Dried apricot powder	–	49.52
Dried calendula officinalis powder	2.86	–
Pumpkin oil	15.14	–
Sea buckthorn oil	–	22.40
Cherry plum and zucchini jam	124.45	–
Preparation of eggshell with lemon juice	9.43	–
Sea buckthorn jam	–	114.45
Calendula syrup	–	13.08

The taste and smell are the most important parameters for consumers [36]. According to these parameters, sugar cookies “Yasne sonechko” have got the most points (4.89 points). Sugar cookies “Dachne” have received the most points according to the parameter of “severity of additives”. Sugar cookies “Yasne sonechko” have had an attractive color. They have received by this parameter maximal 5 points. They have received by the appearance maximal 4.89 points.

![Fig.1. Profilogramm of organoleptic properties of sugar cookies](image-url)

The results of the study of physical and chemical indicators of the samples of sugar cookies (Table 2) show
that they comply with European regulations, especially Regulation of the European Parliament and of the Council «Laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption».

Table 2

Indicator	Norm	Research samples of cookies		
	Check sample	«Dachne»	«Yasne sonechko»	
Humidity, %	10±2	9,00±0,29	9,50±0,27	6,10±0,29
Mass fraction of total sugars in terms of dry matter (by sucrose), %	not>27,0	25,16±0,05	21,55±0,05	22,23±0,05
Fat content in terms of dry matter, %	10±2	10,84±0,05	10,19±0,05	10,54±0,05
Alkalinity, degree.	not>2,0	1,6±0,05	1,4±0,05	1,2±0,04
Mass fraction of insoluble ash in solution with mass fraction of 10 % hydrochloric acid, %	not>0,1	0,06±0,01	0,02±0,01	0,02±0,01
Water absorption, %	not<150	165±7,90	177±9,90	177±9,90

According to the study, the bacteria Escherichia coli, pathogens, molds and yeasts have not been found in the fresh samples. The amount of mesophilic aerobic and facultative anaerobic microorganisms has not exceeded the norm. The amount of toxical elements has been in full record with the norm.

The nutritional and energy value has improved owing to adjustment of the recipes (Table 3).

Table 3

Samples of cookies	Content, g/100 g	Energy value, kcal/100 g			
	Fats	Proteins	Carbohydrates	Humidity	
Check sample	10,84	9,39	74,95	5,00	434,92
«Dachne»	10,19	9,41	70,00	9,50	409,35
«Yasne sonechko»	10,54	10,50	71,48	6,10	422,78

Table 3 shows significant increase of the protein content in the cookies “Yasne sonechko” (by 1,11 g/100 g) as compared with the check sample. The decrease of the carbohydrates content in all samples owing to the replacement of the main ingredients (wheat flour, sugar powder, invert syrup) with the other components is achieved. Especially it is shown in the cookies “Dachne” (by 4,95 g/100 g) as compared with the check sample. The cookies “Dachne” are characterized by a high amount of amino acids. It contains the whey protein concentrate. The total amount of amino acids is increased by 19,76 % compared to the check sample. The total amount of essential amino acids in the cookies “Yasne sonechko” is increased by 34,83 % as compared with the check sample. The total amount of essential amino acids in the cookies “Yasne sonechko” is increased by 32,54 % as compared with the check sample.

One of the most valuable amino acids is lysine. Lysine deficiency in the diet leads to hemodyscrasia, reducing the number of red blood cells and reduction of hemoglobin in blood, abuse calcification of bones and muscle degeneration. The amount of lysine has increased in the cookies “Dachne” by 67 %, in the cookies “Yasne sonechko” by 68 % as compared with the check sample. The content of valine has increased in the cookies “Dachne” and “Yasne sonechko” by 2 %. The content of isoleucine has increased in the cookies “Dachne” by 21 % and “Yasne sonechko” by 15 %.

The biological value of food protein is characterized by the amino acid score; it is calculated as the ratio of the content of amino acids in the studied protein to their content in the conditionally ideal protein that meets the needs of the body. The amino acid score of new products is presented in Table 4. The increase of the lysine score in the new samples, especially in the “Yasne sonechko” is essential. The significant increase of the limited threonine score in the samples is a positive factor. The values of the score in both samples have exceeded 100 %.

Table 4

Amino acid	FAO/WHO scale, g/100 g of protein	Sample		
Check sample	«Dachne»	«Yasne sonechko»		
Isoleucine	4	65	66	67
Leucine	7	104	125	122
Lysine	5,5	47	66	68
Methionine + + cystine	3,5	71	77	78
Phenylalanine + + tyrosine	6	102	113	111
Threonine	4	85	100	102
Valine	5	67	57	59

The fraction of saturated fatty acids in all samples has been decreased as compared with the check sample and the fatty acid composition has been approached to “perfect lipid” owing to the usage of alternative oils in the production of new sugar cookies. As seen from Fig. 2, the check sample is rich in saturated fatty acids (46, 95 %) and low in polyunsaturated fatty acids (13, 23 %). The fraction of fatty acids of cookies lipid base is lower (in the cookies “Dachne” by 14,65 %, in the cookies “Yasne sonechko” by 24,77 %) than it is in the check sample. Along with that, the fraction of polyunsaturated fatty acids is higher significantly.

For the normal functioning, the body needs biometals, currently divided into macro- and micronutrients. Due to the change of prescription, the mineral of sugar cookies has been improved (Table 5).
Table 5
The mineral composition of the new sugar cookies

№	Mineral elements	Check sample	"Dachne"	"Yasne sonechko"
1	Potassium (K)	163,02	247,03	308,97
2	Calcium (Ca)	90,00	278,00	206,00
3	Silicon (Si)	1,95	1,58	1,82
4	Magnesium (Mg)	14,75	22,56	26,80
5	Sodium (Na)	560,02	326,46	406,34
6	Sulphur (S)	45,42	38,86	42,61
7	Phosphorus (P)	260,00	406,00	380,00
8	Iron (Fe)	900,00	2500,00	1200,00
9	Iodine (I)	0,00	8,40	0,70
10	Manganese (Mn)	370,00	330,00	380,00
11	Selenium (Se)	5,92	3,69	4,71

The determination of the complex quality indicator has been carried out by organoleptic, physical and chemical, microbiological characteristics and the content of toxic elements, nutritional value, energetically value. The values of the complex quality indicator have been significantly increased in the new cookie samples (Fig. 3).

Table 6
Vitamin composition of the new cookies, mg %

Vitamin	Check sample	"Dachne"	"Yasne sonechko"
Ascorbic acid	0,00	3,52±0,04	4,40±0,05
Thiamin	0,08±0,004	–	–
Tocopherol	0,26±0,002	–	9,73±0,60
Retinol	0,005±0,01	0,08±0,03	0,14±0,03

Note: «−» – not determined

Thus, the study of consumer properties of new types of cookies suggests that by organoleptic characteristics and nutritional value they exceed the check sample, it influenced the increase of the complex quality indicator. The physicochemical, toxicological and microbiological parameters meet the standard.

6. Discussing the research findings of consumer properties of the new sugar cookies

The results of the study, which are analyzed in the paper are characterized by combining the sea buckthorn jam with the calendula syrup in the fillings (“Yasne sonechko”) and the usage of cherry plum and zucchini jam with the preparation of eggshell with lemon juice for the first time. The unconventional oils usage in the recipes has been also proposed. Due to adjusting the recipes of sugar cookies, the consumer properties of the product have been improved. It is caused by the improvement of organoleptic parameters and increase of the beneficial nutritional compounds in the cookies composition. Satisfaction of the retinol daily needs by the intake of 100 grams of cookies “Dachne” has increased by 16 times compared to the check sample, through the usage of calendula powder and pumpkin oil. Satisfaction of the daily needs of calcium has increased (3 times higher than the check sample) and of the daily needs of iron has increased (2.7 times higher than check sample). The signifi-
The recipes of new sugar cookies, which are characterized by the reduced content of wheat flour, sugar and fat have been developed. These components are replaced partly by the unconventional raw materials. They contain a high amount of beneficial micronutrients. Thus, cookies “Dachne” also contain a vegetable and butter mixture, fat-free whey powder, whey protein concentrate, dried apple powder, dried raspberry leaf powder, calendula powder, pumpkin oil, cherry plum and zucchini jam enriched with the preparation of eggshell with lemon juice has been used for the preparation of the filling. The cookies “Yasne sonechko” along with traditional raw materials contain whey protein concentrate, lungwort officinal powder, dried apricot powder, sea buckthorn oil. Sea buckthorn jam and calendula syrup have been used for the preparation of filling.

2. The new cookies samples have been evaluated by the parameters of taste and smell higher than the check sample especially according to the organoleptic evaluation. The cookies “Yasne sonechko” gained the most points. The developed samples meet the standard by the physical-chemical parameters and safety parameters. The energy value of the cookies “Dachne” and “Yasne sonechko” has reduced by 6 % and 3 % as compared with the check sample owing to partial replacement of high-calorie ingredients with unconventional raw materials. This factor has influenced the improvement of the nutritional value. Studies have shown that the reduction of fats and carbohydrates in all samples is achieved.

3. The determination of the fatty acid composition of sugar cookies allows to assert that the amount of saturated fatty acids decreased in all samples (in the cookies “Dachne” by 4,65 %, in the cookies “Yasne sonechko” by 24,77 %) compared to the check sample. Also, the amount of unsaturated fatty acids has increased in both samples by 20,03 and 29,67 times. These positive changes in the fatty acid composition of the products are due to the inclusion of vegetable pumpkin and sea buckthorn oils in the formulation. Adding of milk-containing products (whey protein concentrate, fat-free whey powder) and preparation of shell eggs has an impact on the increase in the amount of amino acids and improvement of the biological value of proteins. In particular, the amount of essential amino acids in the cookies “Dachne” has increased by 34,83 %. It also managed to improve the essential amino acid composition and to increase their content in the cookies “Yasne sonechko” by 32,54 % compared to the control sample. The content of calcium in new products increased by 2,28–3,0 times, which is also associated with the use of milk-containing products. The chemical composition of the filling has influenced the increase of iron, ascorbic acid, tocopherol and vitamin A in the samples.

4. The cookies “Dachne” and “Yasne sonechko” have higher complex quality indicators (0,83 and 0,84 units) due to significant improvement of the nutritional value and organoleptic characteristic of the developed products as compared with the check sample. The check sample according to the results of the qualitative assessment has had 0,77 units only.

7. Conclusions

1. The recipes of new sugar cookies, which are characterized by the reduced content of wheat flour, sugar and fat have been developed. These components are replaced partly by the unconventional raw materials. They contain a high amount of beneficial micronutrients. Thus, cookies “Dachne” also contain a vegetable and butter mixture, fat-free whey powder, whey protein concentrate, dried apple powder, dried raspberry leaf powder, calendula powder, pumpkin oil. Cherry plum and zucchini jam enriched with the preparation of eggshell with lemon juice has been used for the preparation of the filling. The cookies “Yasne sonechko” along with traditional raw materials contain whey protein concentrate, lungwort officinal powder, dried apricot powder, sea buckthorn oil. Sea buckthorn jam and calendula syrup have been used for the preparation of filling.

2. The new cookies samples have been evaluated by the parameters of taste and smell higher than the check sample especially according to the organoleptic evaluation. The cookies “Yasne sonechko” gained the most points. The developed samples meet the standard by the physical-chemical parameters and safety parameters. The energy value of the cookies “Dachne” and “Yasne sonechko” has reduced by 6 % and 3 % as compared with the check sample owing to partial replacement of high-calorie ingredients with unconventional raw materials. This factor has influenced the improvement of the nutritional value. Studies have shown that the reduction of fats and carbohydrates in all samples is achieved.

3. The determination of the fatty acid composition of sugar cookies allows to assert that the amount of saturated fatty acids decreased in all samples (in the cookies “Dachne” by 4,65 %, in the cookies “Yasne sonechko” by 24,77 %) compared to the check sample. Also, the amount of unsaturated fatty acids has increased in both samples by 20,03 and 29,67 times. These positive changes in the fatty acid composition of the products are due to the inclusion of vegetable pumpkin and sea buckthorn oils in the formulation. Adding of milk-containing products (whey protein concentrate, fat-free whey powder) and preparation of shell eggs has an impact on the increase in the amount of amino acids and improvement of the biological value of proteins. In particular, the amount of essential amino acids in the cookies “Dachne” has increased by 34,83 %. It also managed to improve the essential amino acid composition and to increase their content in the cookies “Yasne sonechko” by 32,54 % compared to the control sample. The content of calcium in new products increased by 2,28–3,0 times, which is also associated with the use of milk-containing products. The chemical composition of the filling has influenced the increase of iron, ascorbic acid, tocopherol and vitamin A in the samples.

4. The cookies “Dachne” and “Yasne sonechko” have higher complex quality indicators (0,83 and 0,84 units) due to significant improvement of the nutritional value and organoleptic characteristic of the developed products as compared with the check sample. The check sample according to the results of the qualitative assessment has had 0,77 units only.

References

1. Galushko, O. S. The trends of development market of confectionery and features of transformation in the system of values it’s participants [Text] / O. S. Galushko // Actualni problemi economici. – 2009. – Vol. 8. – P. 17–25.
2. Tkachenko, A. S. The improvement of consumer properties of sugar cookies [Text] / A. S. Tkachenko, I. V. Syrokhman // Kharchova nauka i tehnologiya. – 2015. – Vol. 3. – P. 82–87.
3. Bodak, M. P. The usage of non-traditional raw-materials for bakery [Text] / M. P. Bodak // Visnik Lvivskoi komerciynoi academii. – 2014. – Vol. 14. – P. 113–116.
4. Hadeeva, S. O. The determination potential risks of technology of baked biscuit semi with dietary supplements [Text] / S. O. Hadeeva, K. V. Svidlo // Zbirnik naukovih prats’ NTU ‘KhPI’. – 2010. – Vol. 46. – P. 276–283.
5. Tkachenko, A. S. The improvement of fat-acid contents of sugar cookies [Text] / A. S. Tkachenko // Visnik Lvivskoi commerciyoi akademii. – 2015. – Vol. 15. – P. 114–119.
6. Tkachenko, A. S. The sugar cookies with enriched protein contents [Text] / A. S. Tkachenko // Torgivlia, comerciya, marketing. – 2015. – Vol. 18. – P. 118–122.
7. Shemanskaia, E. I. The phospholipid fat-containing products of functional appointment [Text] / E. I. Shemanskaia, N. I. Oseiko // The food science. – 2012. – Vol. 1. – P. 28–30.
8. Sink, M. Investigation of Correlation between Traits and Path Analysis of Confectionary Sunflower Genotypes [Text] / M. Sink, A. Goksoy // Notulae Botanicae Horti Agrobotanici Cluj-Napoca. – 2014. – Vol. 42, Issue 1. – P. 227–231. doi: 10.1585/nbh4219429
9. Aji, B. C. Improving Genetic Attributes of Confectionary Traits in Peanut (Arachis hypogaea L.) Using Multivariate Analytical Tools [Text] / B. C. Ajiay, M. V. C. Goveda, A. L. Rathnakumar, V. P. Kusuma, R. A. Fiyaz, P. Holajer et. al. // Journal of Agricultural Science. – 2011. – Vol. 4, Issue 3. – P. 247–258. doi: 10.5539/jas.v4n3p247.
10. Kulichenko, A. I. The usage of products with a milk raw material for confectionery products [Text] / A. I. Kulichenko // Molody uchenyi. – 2013. – Vol. 4. – P. 675–577.
11. Nikiforova, T. A. The prospects of usage secondary raw-materials of cereals productions [Text] / T. A. Nikiforova, S. M. Sevirenko, D. A. Kulikov et. al. // Khleboprodovtsi. – 2009. – Vol. 7. – P. 50–51.
12. Izenabayaeva Assel, K. Non–Traditional Raw Materials in Production of Sugar Cookies [Text] / Assel K. Izenabayevo, Muerpt P. Bayisbayev, Bayan Z. M. Mulubekov et. al. // American–Eurasian J. Agric. & Environ. Sci. – 2014. – Vol. 3. – P. 338–362.
13. Maximova, A. A. Innovation technology of production of the oat cookies [Text] / A. A. Maximova // Khleboprodovtsi. – 2010. – Vol. 7. – P. 38–39.
14. Eckerson, J. M. The Effect of a Protein–Rich Egg White Breakfast and an Isocaloric Toaster Pastry Breakfast on Satiety and Dietary Intake in Normal–Weight College–Age Women [Text] / J. M. Eckerson, A. E. Lieb, K. A. Mullen, N. O. Allen // Journal of the Academy of Nutrition and Dietetics. – 2015. – Vol. 115, Issue 9 – P. A17. doi: 10.1016/j.jand.2015.06.048
15. Roshikav, I. F. The usage of the Siberian pine nut kernel (pinus sibirica) in the production of pastry for functional appointment [Text] / I. F. Roshikav, V. G. Gonchar, I. V. Shalvinskiaia // Fundamental research. – 2007. – Vol. 7. – P. 89–90.
16. Rubiral, M. Flaxseed as a source of functional ingredients [Text] / M. Rubiral, C. Guti reiz, M. Verdugo, C. Shene, J. Sineiro // Journal of soil science and plant nutrition. – 2010. – Vol. 10. – P. 377–373. doi: 10.4067/s0718-95162010000100105
17. Li, S.-S. Fatty acid composition of developing tree peony (Paonia section Moutan DC.) seeds and transcriptome analysis during seed development [Text] / S.-S. Li, L.-S. Wang, Q.-Y. Shu, J. Wu, L.-G. Chen, S. Shao, D.-D. Yin // BMC Genomics. – 2015. – Vol. 16, Issue 1. doi: 10.1186/s12864-015-1429-0
18. Fatima, T. Fatty Acid Composition of Developing Sea Buckthorn (Hippophae rhamnoides) Berry and the Transcriptome of the Mature Seed [Text] / T. Fatima, C. L. Snyder, W. R. Schroeder, D. Crom, R. Datla, D. Wishart et. al. // PLoS One. – 2012. – Vol. 7, Issue 4. – P.e34099. doi: 10.1371/journal.pone.0034099
19. Dorokhovich, A. M. Fortification of the confectionery [Text] / A. M. Dorokhovich, O. L. Soloviova, V. V. Dorokhovich // Produkty & ingrediyenty. – 2011. – Vol. 3. – P. 26–28.
20. Bogatirov, A. Scientific principles of fortification nutrition products [Text] / A. Bogatirov // Khlibopekarska i kondyterska promyshlovenstvo. – 2011. – Vol. 5. – P. 44–47.
21. Maximova, G. O. Beet feelings for bakery [Text] / G. O. Magomedov, I. V. Plotnikova, N. G. Magomedov // Khleboprodovtsi. – 2012. – Vol. 8. – P. 44–47.
22. Alekseenko, E. V. The usage of see button concentrate in the cakes products [Text] / E. V. Alekseenko, I. M. Dikareva // Konditer. – 2014. – Vol. 5. – P. 6–8.
23. Ivanova, V. D. The researching of the cake functional properties [Text] / V. D. Ivanova, M. S. Khlebutina, N. P. Ivchuk // Naukovi pratsi ONAKHT. – 2011. – Vol. 40, Issue 1. – P. 82–86.
24. Pakoliakova, A. V. Technology of the puff pastry with berries dry-powders supplements for puff pastry [Text] / A. V. Pakoliakova // Visnyk Donetskoho natsionalnoho universytetu ekonomiky i torhivli imeni Mykhayla Tuhan–Baranovskoho. Ser.: Tehnichni nauky. – 2011. – Vol. 1. – P. 55–60.
25. Pop, A. Study of Valorification of Lycium barbarum (Goji) in Pastry Products [Text] / A. Pop, S. Muste, S. Man et. al. // Bulletin UASVM Food Science and Technology. – 2013. – Vol. 70, Issue 2. – P. 93–98.
26. Zuoco, F. Physical and nutritional evaluation of wheat cookies supplemented with pulse flours of different particle sizes [Text] / F Zuoco, Y. Borsuk, S. Arnfield // LWT – Food Science and Technology. – 2012. – Vol. 44, Issue 10. – P. 2067–2076. doi: 10.1016/j.lwt.2011.06.007
27. Perez, S. Effect of soy flour and whey prtein concentrate on cookie color [Text] / S. Perez, E. Mattea, C. Otella, M. de la Torre, H. D. Sanchez // LWT – Food Sci. and Technol. – 2013. – Vol. 50, Issue 1. – P. 120–125. doi: 10.1016/j.lwt.2012.06.015
28. Gedrovica, P. Influence of Jerusalem Artichoke Powder on the Nutritional Value of Pastry Products [Text] / P. Gedrovica, D. Karklina // International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering. – 2013. – Vol. 6. – P. 7–9.
29. Margie, M. C. Product Development of Malunggay (Moringga Oleifera) and Sweet Potato (Ipomea Batatas) for Pastry and Fillings [Text] / M. C. Margie, M. D. Manolito, P. R. L. Roey // Tropical Technology Journal. – 2012. – Vol. 19, Issue 1. – P. 5. doi: 10.7603/s40934-015-0005-1
30. Recipes of the cookie [Text]. – Moscow: Vsesoyuznyi nauchno-issledovatelskiy institut konditerskoy promyshlenosti, 1987. – 248 p.
1. Introduction

Governments of many countries are developing and implementing national programmes aimed at improving the nutritional status of population. These programmes include production of everyday food enriched with physiologically functional ingredients. In terms of environmental degradation and economic crisis, such products are essential for the health and working abilities of citizens and for providing a decent future via improved nutrition of children and youth. All population groups are fond of pastries, in particular butter biscuits that are traditionally made of high-quality wheat flour, margarine or other fats, sugar, and egg products. Although such biscuits contain much fat and a lot of carbohydrates and are devoid of biologically active substances. In this regard, introduction of useful ingredients – dietary fibre, polyphenolic compounds, minerals and vitamins – to the composition of biscuits has a beneficial effect on human health. Such components are abundant in raw plant materials, among which especially interesting is grape pomace (wine production waste). Ukraine is a wine-producing state due to favourable for growing grapes climatic conditions of southern regions and Transcarpathia. Annually, wineries of Ukraine accumulate large amounts of grape pomace after

UDC 634.8: 664.682/.684

DOI: 10.15587/1729-4061.2016.69838

THE EFFECT OF GRAPE SEED POWDER ON THE QUALITY OF BUTTER BISCUITS

O. Samohvalova
PhD, Professor*
E-mail: sam-ov@mail.ru

N. Grevtseva
PhD, Associate Professor*
E-mail: nataver@yandex.ua

T. Brykova
Postgraduate Student*
E-mail: arizona19@mail.ru

A. Grigorenko
PhD, Chief technologist
Ltd “Charivna mozaika”
Avtosstradna str., 21-A, Kharkiv, Ukraine, 61038
E-mail: anzhegrig@yandex.ru

*Department of Bakery, Confectionary, Pasta and Food Concentrates Technology
Kharkiv State University of Food Technology and Trade
Klochkivska str., 333, Kharkiv, Ukraine, 61051
RESEARCH OF SEDIMENTATION STABILITY OF LIPID-MAGNETITE SUSPENSIONS BY THE METHOD OF SPECTROPHOTOMETRY (p. 4-11)

Alexander Alexandrov, Iryna Tsykhanovska, Tatyana Gontar, Nicholas Kokody

A spectrophotometric method of the assessment of stability and determining of the morphological characteristics of lipid-magnetite suspensions (LMS) was studied. The sizes of the particles of magnetite with a surface-active substance (SAS) were defined. The diameter of the particles is 78 nm. The concentration of the particles of magnetite stabilized by a surface–active substance was determined – the concentration (in 1 cm³) equals N=1.33·10¹⁷ cm⁻³ when obtaining a suspension. A slight decrease in the number of particles of magnetite with SAS in 1 cm³ of suspension was observed over time: during 48 hours, the concentration in 1 cm³ decreased from 1.33·10¹⁷ down to 1.13·10¹⁷ cm⁻³. The concentration decreases by approximately 2.25 % per 1 hour. Different LMS were obtained. The optimum ratios of the components were selected in the suspensions: magnetite, stabilizer and dispersion medium.

It was established that LMS can be used as biological–active additives, which possess comprehensive action: lipid-magnetite suspensions (LMS) on the basis of magnetite during oral introduction into human organism render beneficial biological effect with the period of action within the range of 3–4 hours: when entering LMS into human organism, the iron concentration in blood rises, which brings about:

– a short-term decrease in intracranial CSF pressure;
– activation of gastric and duodenum performance;
– increase in urination.

Due to bivalent iron and its ability to form transition complexes with oxygen and peroxide radicals (and hydro peroxides), magnetite also manifests antioxidant activity, which makes it possible to recommend it as an antioxidant, which facilitates improvement of the quality and prolongation of the period of storage of fat–containing products. Furthermore, LMS contain magnetite (which means digestible Fe²⁺); therefore they can be recommended as anti-anemic agent due to easily digestible bivalent iron. Thus, introduction of LMS into food products increases their quality, nutritional and biological value.

Therefore the studies of LMS are actual and they represent significant theoretical and practical interest.

Keywords: magnetite, suspension, method, SAS, sedimentation, stability, spectrophotometry, particle size, stabilization.

References

1. Chapa Gonzalez, C., Martinez Perez, C. A., Martinez Martinez, A., Olivas Armendáriz, I., Zavala Tapia, O., Martel-Estrada, A., García-Casillas, P. E. (2014). Development of Antibody-Coated Magnetic Nanoparticles for Biomarker Immobilization. Journal of Nanomaterials, 2014, 1–7. doi: 10.1155/2014/978284
2. Unterweger, H., Tietze, R., Janko, C., Zaloga, I., Lysy, S., Taccardi, N. et al. (2014). Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery. International Journal of Nanomedicine, 1, 3659–3676. doi: 10.2147/ijn.s63433
3. Cárdenas, W. H. Z., Mamani, J. B., Sibov, T., Caous, C. A., Amaro Jr., E., & Gamarra, L. F. (2012). Particokinetics: computational analysis of the superparamagnetic iron oxide nanoparticles deposition process. International Journal of Nanomedicine, 2099–2712. doi: 10.2147/ijn.s30074
4. Cihanovskaja, I. V., Onoprienko, T. A., Kovalenko, V. A., Onoprienko, V. I. (2009). On perspektivah ispol’zovaniya magnetita v kachestve biologicheskih aktivnyh dobavok. Himija i tehnologiya zhyrov. Perspektivy razvitija maslo-zhivrovoj otrasi. Kharkiv, NIH masel i zhyrov, 33–34.
5. Iljuha, N. G., Barsova, Z. V., Kovalenko, V. A., Cihanovskaja, I. V. (2010). Tekhnologija priravodstva i pokazatele kachestva pishevoj dobavki na osnove magnetita. Eastern-European Journal of Enterprise Technologies, 6 (10 (48)), 32–35. Available at: http://journals.uran.ua/eejet/article/view/5847/5271
6. Denysyova, A. Ju., Cyhanovska, Y. V., Skorodunova, O. B., Gongzhenko, Ja. M., Priyman, G. O., Shevechenko, I. V. (2013). Doslidzhennya vplyvu zhyro-magentytovoi’ suspenzii’ na termyn zberihannya tvarynykh zhyriv. Part I. Progresyvna tehnika ta tehnologii’ harchovyh vyrobnyctva, restauratuvnoho ta gostinnoho gospodarstva. Ekonomichna strategija i perspektivyy rozvytku sfery torgivli ta poslug. Kharkiv, 71–72.
7. Cho, J., Koo, S. (2015). Characterization of particle aggregation in a colloidal suspension of magnetite particles. Journal of Industrial and Engineering Chemistry, 27, 218–222. doi: 10.1016/j.jiec.2014.12.038
8. Lou, W., Charalalampopoulos, T. T. (1994). On the Electromagnetic Scattering and Ab-sorption of Agglomerated Small Spherical Particles. Journal of Physics D: Applied Physics, 27 (11), 2238–2270. doi: 10.1088/0022-3774/27/11/004
9. Xu, R. (2001). Particle Characterization: Light Scattering Methods. N.Y.: Kluwer Academic Publishers, 410.
10. Di Stasio, S. (2000). Feasibility of an optical experimental method for the sizing of primary spheres in sub-micron agglomerates by polarized light scattering. Applied Physics B: Lasers and Optics, 70 (4), 635–643. doi: 10.1007/s0034000508572
11. Mulholland, G. W., Donnelly, M. K., Hagwood, C. R., Kukuck, S. R., Hackley, V. A., Pui, D. Y. H. (2006). Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis. Journal of Research of the National Institute of Standards and Technology, 111 (4), 257–312. doi: 10.6028/jres.111.022
12. Ivanov, L. A., Kizevetter, D. V., Kiselev, N. N. et al. (2006). Issledovanie svoeto-vozrascheniya ot steklyannykh mikroskarov i progon kachestva sveto-vozvrahshajushchih pokrytij. Opt. zhurn., 73 (1), 35–40.
13. Kizevetter, D. V., Maljugin, V. I. (2009). Odnovremennoe izmerenie razmerov i skorosti dvizhenija chastic. Zhurn. tehn. fiziki, 79(2), 90–95.
14. Ershov, A. E., Isayev, I. L., Semina, P. N., Markel, V. A., Karpov, S. V. (2012). Effects of size polydispersity on the extinction spectra of colloidal nanoparticle aggregates. Physical Review B, 85 (4). doi: 10.1103/physrevb.85.043421
15. Karpov, S. V., Isayev, I. L., Gavriljuk, A. P. (2009). Opticheskije spektry kolloidov serebra s posobii fiziki fraktalov. Kolloid. zhurn., 71 (5), 314.
16. Van de Hulst, G. (1961). Rassejanie sveta malymi chasticami. Moscow, IL, 536.
17. Kerker, M. (1969). The scattering of light and other electromagnetic radiation. N.Y., London, Academic Press, 666.
18. Xu, R. (2001). Particle Characterization: Light Scattering Methods. N.Y.: Kluwer Academic Publishers, 410.
19. Di Stasio, S. (2000). Feasibility of an optical experimental method for the sizing of primary spheres in sub-micron agglomerates by polarized light scattering. Applied Physics B: Lasers and Optics, 70 (4), 635–643. doi: 10.1007/s0034000508572
20. Kizevetter, D. V., Maljugin, V. I. (2009). Odnovremennoe izmernenie razmerov i skorosti dvizhenija chastic. Zhurn. tehn. fiziki, 79(2), 90–95.
The model of the formation of the foam emulsion by the emulsion whipping was developed. It was experimentally proved that the yield stress shear of interfacial adsorption layers can be used as a criterion for evaluating the stability of foams, emulsions and foam-emulsion systems. It was found that the introduction of DATEM to the reconstituted skimmed milk increases the yield stress shear of interfacial adsorption layers and stability of foams and emulsions. The introduction of lecithin’s or DATEM reduces the yield stress shear of interfacial adsorption layers and stability of emulsions and emulsions accordingly. Simultaneous use of milk proteins, LACTEM, lecithin’s and DATEM provides 1.3 times higher yield stress shear of interfacial adsorption layers at the water–air interface than at the water-oil interface, which is a thermodynamic condition for the formation of the foam emulsion by the emulsion whipping. It was proved that homogenization of the emulsion based on cocoa butter, milk proteins and surfactants provides destabilization of the emulsion and creates conditions for the flotation of destabilized fat particles.

The results allow justifying the parameters of the technology of the whipped semi-finished product based on cocoa butter, which is the emulsion whipping of which provides the foaming capacity of 450±22 %, the mechanical strength of the foam emulsion of 3200±160 Pa. It was confirmed that the whipping process can be divided into three stages: foaming, emulsion destabilization and adhesion of fat particles to air bubbles, providing high mechanical strength of the foam emulsion.

Keywords: interfacial adsorption layer, yield stress shear, whipped emulsion, foaming capacity.

References

1. Carr, N. O., Hogg, W. F. (2005). A manufacturer’s perspective on selected palm-based products. Asia Pac J Clin Nutr. 14 (4), 381–386.
2. Allen, K. E., Murray, B. S., Dickinson, E. (2008). Development of a model whipped cream: Effects of emulsion droplet liquid/solid character and added hydrocolloid. Food Hydrocolloids, 22 (4), 690–699. doi: 10.1016/j.foodhyd.2007.01.017
3. Hotrum, N. E., Cohen Stuart, M. A., van Vliet, T., van Aken, G. A. (2004). Spreading of partially crystallized oil droplets on an air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 240 (1-3), 83–92. doi: 10.1016/S0927-7757(04)00172-4
4. Brun, M., Delampe, M., Harte, E., Lecomte, S., Leal-Calderon, F. (2015). Stabilization of air bubbles in oil by surfactant crystals: A route to produce air-in-oil foams and air-in-oil-in-water emulsions. Food Research International, 67, 366–375. doi: 10.1016/j.foodres.2014.11.044
5. Fainerman, V. B., Aksenenko, E. V., Lylyk, S. V., Lotfi, M., Miller, R. (2015). Adsorption of Proteins at the Solution/Air Interface Influenced by Added Nonionic Surfactants at Very Low Concentrations for Both Components. 3. Dilatational Surface Rheology. J. Phys. Chem. B, 119 (9), 3768–3775. doi: 10.1021/acs.jpcb.5b00136
6. Burke, J., Cox, A., Petkov, J., Murray, B. S. (2014). Interfacial rheology and stability of air bubbles stabilized by mixtures of hydrophobin and β-casein. Food Hydrocolloids, 34, 119–127. doi: 10.1016/j.foodhyd.2012.11.026
7. López-Castejón, M. L., de la Fuente, J., Ruiz, M., Guerrero, A. (2012). Influence of the presence of monoglyceride on the interfacial properties of soy protein isolate. Journal of the Science of Food and Agriculture, 92 (13), 2618–2623. doi: 10.1002/jsfa.5674
8. Fredrick, E., Heyman, B., Moens, K., Fischer, S., Verwijlen, T., Moldenaers, P. et al. (2013). Monoacylglycerols in dairy recombined cream: II. The effect on partial coalescence and whipping properties. Food Research International, 51 (2), 936–945. doi: 10.1016/j.foodres.2013.02.006
9. Phan, T. T. Q., Asaduzzaman, M., Le, T. T., Fredrick, E., Van der Meeren, P., Dewettinck, K. (2013). Composition and emulsifying properties of a milk fat globule membrane enriched material. International Dairy Journal, 29 (2), 99–106. doi: 10.1016/j.idairyj.2012.10.014
10. Kotlyar, O., Goralchuk, A., Grinenchenko, O. (2014). The Study of Surface-Active Agents’ Impact on the Strength of Interfacial Adsorption Layers: The Advanced Science Journal, 2014 (10), 37–42. doi: 10.15550/asj.2014.10.037
11. Eisner, M. D., Jeelani, S. A. K., Bernhard, L., Windhab, E. J. (2007). Stability of foams containing proteins, fat particles and nonionic surfactants. Chemical Engineering Science, 62 (7), 1974–1987. doi: 10.1016/j.ces.2006.12.036
12. Petkov, J. T., Gurko, T. D., Campbell, B. E. (2001). Measurement of the Yield Stress of Gellike Protein Layers on Liquid Surfaces by Means of an Attached Particle. Langmuir, 17 (15), 4556–4563. doi: 10.1021/la001347i
13. Karbaschi, M., Lotfi, M., Kr gel, J., Javadi, A., Bastani, D., Miller, R. (2014). Rheology of interfacial layers. Current Opinion in Colloid & Interface Science, 19 (6), 514–519. doi: 10.1016/j.cocis.2014.08.003
14. Langevin, D. (2000). Influence of interfacial rheology on foam and emulsion properties. Advances in Colloid and Interface Science, 88 (1-2), 299–222. doi: 10.1016/S0001-8686(00)00045-2
15. Langevin, D., Marquez-Beltran, C., Delacoste, J. (2011). Surface force measurements on freely suspended liquid films. Advances in Colloid and Interface Science, 168 (1-2), 124–134. doi: 10.1016/j.cis.2011.03.007
16. Santini, E., Ravera, F., Ferrari, M., Stubenrauch, C., Makievski, A., Kringle, J. (2007). A surface rheological study of non-ionic surfactants at the water–air interface and the stability of the corresponding thin foam films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298 (1-2), 12–21. doi: 10.1016/j.colsurfa.2006.12.004
17. Lexis, M., Willenbacher, N. (2014). Yield stress and elasticity of aqueous foams from protein and surfactant solutions – The role of continuous phase viscosity and interfacial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 459, 177–185. doi: 10.1016/j.colsurfa.2014.06.030
18. Maldonado-Vallkerrera, J., Martin-Rodriguez, A., Galvez-Ruiz, M. J., Miller, R., Langevin, D., Cabrero-Vilchez, M. A. (2008). Foams and emulsions of β-casein examined by interfacial rheology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323 (1-3), 116–122. doi: 10.1016/j.colsurfa.2007.11.003
19. Aksenenko, E. V., Kovalchuk, V. I., Fainerman, V. B., Miller, R. (2006). Surface dilatational rheology of mixed adsorption layers at liq-
uid interfaces. Advances in Colloid and Interface Science, 122 (1-3), 57–66. doi: 10.1016/j.cis.2006.06.012

20. Derkach, S. R., Krágel, J., Miller, R. (2009). Methods of measuring rheological properties of interfacial layers (Experimental methods of 2D rheology). Colloid Journal, 71 (1), 1–17. doi: 10.1134/s1061933009010013

21. Pelipenko, J., Kristl, J., Rošič, R., Baumgartner, S., Kocbek, P. (2012). Interfacial rheology: An overview of measuring techniques and its role in dispersions and electrospinning. Acta Pharmaceutica, 62 (2), 123-140. doi: 10.2478/v10072-012-0018-x

22. Danov, K. D., Kalchevsky, P. A., Radulova, G. M., Basheva, E. S., Stoyanov, S. D., Pelan, E. G. (2015). Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements. Advances in Colloid and Interface Science, 222, 148–161. doi: 10.1016/j.cis.2014.04.009

23. Martin, A., Bos, M., Cohen Stuart, M., van Vliet, T. (2002). Stress-Strain Curves of Adsorbed Protein Layers at the Air/Water Interface Measured with Surface Shear Rheology. Langmuir, 18 (4), 1238–1243. doi: 10.1021/la011176x

24. Izmajlova, V. N., Jampol'skaja, G. P., Summ, B. D. (1988). Poverhnostnye javlenija v belkovyh sistemah. Moscow: Hi-mija, 240. Available at: https://books.google.com.ua/books?id=rpOWtwAACAAJ

25. Denkov, N. D., Marinova, K. G., Tcholakova, S. S. (2014). Mechanistic understanding of the modes of action of foam control agents. Advances in Colloid and Interface Science, 206, 57–67. doi: 10.1016/j.cis.2013.08.004

26. Omelchenko, S., Horalchuk, A., Hrynczenko, O. (2014). Argumentation of Emulsifier Part in the Recipe of Foam and Emulsion Dairy Products Containing Vegetable Fats. The Advanced Science Journal, 2014 (7), 28–32. doi: 10.15530/asj.2014.07.028

OPTIMIZATION OF FORMULATION OF THE LOW–CALORIE EMULSION FAT SYSTEMS (p. 20–27)

Nataliia Tkachenko, Pavlo Nekrasov, Tetiana Makovska, Lubov Lanzhenko

Among the promising food products of oil-and-fat industry, special place is held by emulsion fat products, in which vegetable oil is in the dispersed state that increases its assimilation. High taste and nutritional properties, due to the specific character of their structure, are inherent in emulsion fat systems. Therefore, water-fat emulsions are the promising systems, on the basis of which it is possible to create mayonnaises, sauces, dressings, oil pastes, spreads and other food products, including low fat ones, with the balanced composition and health-improving properties.

The work substantiated the optimum content of the concentrate of Jerusalem artichoke “Notos” and the stabilizing system “Hamul-sion QNA” in the emulsification “Jerusalem QNA→10.06 and 0.42 % respectively, as the components of low calorie emulsion fat basis for the production of low fat oil-and-fat products. It is shown that a low calorie emulsion fat system, produced with the use of raw components in the optimal ratio, possesses standardized physical-chemical and microbiological indicators, high organoleptic characteristics and can be used as the raw material for the production of low calorie mayonnaises, sauces and dressings for healthy nutrition.

The recommendations are provided regarding the design of the technologies of the two groups of low calorie mayonnaises, sauces, dressings, enriched with food fibers and prebiotics (or the complexes of synbiotics), on the basis of the developed emulsion fat systems.

Keywords: low calorie emulsion system, Jerusalem artichoke, viscosity, organoleptic indicators, optimization, the response surface.

References

1. Smoljar, V. I. (2012). Stan faktychnogho kharchuvannja naselennja nezaležnoji Ukrajini. Problemy kharchuvannya, 1-2, 5–9.

2. Betoret, E., Betoret, N., Vidal, D., Fito, P. (2011). Functional foods development: Trends and technologies. Trends in Food Science & Technology, 22 (9), 498–508. doi: 10.1016/j.tifs.2011.05.004

3. Fahimdaniesh, M., Mohammadi, N., Ahari, H., Khosravi, M. A., Zanjani, F. Zh. et al. (2012). Effect of microencapsulation plus resistant starch on survival of Lactobacillus casei and Bifidobacterium bifidum in mayonnaise sauce. African Journal of Microbiology Research. 6 (40), 6853–6858. doi: 10.5897/ajmr12.1240

4. Mantar, M. R., Tkachenko, N. A., Luzovska, Gh. M., Makovsjka, T. V. (2016) Marketyngovyi doslidzhennja pry posyvovanuvannia ta vyvedenni na rynek nyizkokalorijnogo majonessu, zhabhache-hogho kompleksom synbiotikiv. Kharchuvaka nauka i tehnologhija, 1 (26), 3–10.

5. Ghazaei, S., Mizani, M., Piravi-Vanak, Z., Alimi, M. (2015). Particle size and cholesterol content of a mayonnaise formulated by OSA-modified potato starch. Food Science and Technology (Campinas), 35 (1), 150–156. doi: 10.1590/1678-457x.6555

6. Kuo, S.-M., Merhige, P. M., Hagey, L. R. (2013). The Effect of Dietary Prebiotics and Probiotics on Body Weight, Large Intestine Indices, and Fecal Bile Acid Profile in Wild Type and IL10−/− Mice. PLoS ONE, 8 (3), e60270. doi: 10.1371/journal.pone.0060270

7. Harris, W. S., Miller, M., Tighe, A. P., Davidson, M. H., Schaefer, E. J. (2008). Omega-3 fatty acids and coronary heart disease risk: Clinical and mechanistic perspectives. Atherosclerosis, 197 (1), 12–24. doi: 10.1016/j.atherosclerosis.2007.11.008

8. Tkachenko, N. A., Sevastjannoa, O. A., Makovska, T. V. (2016) Zhyrozaminnyky vughlevodnoji ta bilkovoji pryrody v nyzjkokalori- myh majonessah. Prodvyrpochivaja industrija APK, 1-2, 18–22.

9. Mitchell, C. M., Davy, B. M., Halliday, T. M., Hulse, M. W., Neulson, A. P., Pondor, M. A., Davy, K. P. (2015). The effect of prebiotic supplementation with inulin on cardiometabolic health: Rationale, design, and methods of a controlled feeding efficacy trial in adults at risk of type 2 diabetes. Contemporary Clinical Trials, 45, 328–337. doi: 10.1016/j.cct.2015.10.012

10. Azizi, A., Homayouni, A., Payahoo, L. (2012). Effects of Prebiotics on Lipid Profile: A Review. American Journal of Food Technology, 7 (5), 251 –265. doi: 10.3923/ajft.2012.251.265

11. Mogilvii, M. P., Shaltumaev, T. Sh., Galukova, M. K. (2013). Sovremennoe razvitiye ispolzovaniya psichochev velokon v kachestve funkcionalnih ingredii. Novie tekhnologii, 1, 27–31.

12. Han, G. K. & Ko. (2006) Istoria uspeha. Stabilizacionniie sistemi dlia idealnogo produkta. Psichochevaya promishlennost, 8, 34.

13. Chatsissivili, N. T., Amvrosiadis, I., Kiosseoglou, V. (2012). Physico-chemical properties of a dressing-type o/w emulsion as influenced by orange pulp fiber incorporation. LWT – Food Science and Technology, 46 (1), 335–340. doi: 10.1016/j.lwt.2011.08.019

14. Myers, R., Montgomery, D., Anderson-Cook, C. (2016). Respon- se surface methodology: process and product optimization us- ing designed experiments. Hoboken, New Jersey: John Wiley & Sons, 825.

15. Tkachenko, N. A., Makovska, T. V. (2015) Low-calorie mayonnaise production technology enriched with synbiotic complex by using batch method. Journal of Food Science and Technology, 4 (33), 74–81. doi: 10.15673/2073-8684.4.2015.55876

16. Rahbiri, M., Aalami, M., Kashaninejad, M., Maghsoudlou, Y., Agh-daei, S. S. A. (2014). A mixture design approach to optimizing low cholesterol mayonnaise formulation prepared with wheat germ protein isolate. Journal of Food Science and Technology, 52 (6), 3383–3393. doi: 10.1007/s13197-014-1389-4

17. Kishk, Y. F. M., Elsheshetawy, H. E. (2013). Effect of ginger powder on the mayonnaise oxidative stability, rheological measurements,
and sensory characteristics. Annals of Agricultural Sciences, 58 (2), 213–220. doi: 10.1016/j.aoas.2013.07.016

18. Mardar, M. R., Valevskaja, L. O. (2010). Kompleksna tovaroznavna ocinka jakosti novych vydiv ekstrudovaných zernovych produk-

tiv pidvyshhenoi kharchovoii cinnosti. Zernovi produkty i kom-

bikormy, 1 (37), 19–22.

19. Makoveska, T. V., Tkachenko, N. A. (2015). Bifidobacterium activa-

tion in technologies of health-improving mayonnaise. Technology

audit and production reserves, 6 (4(26)), 40–44. doi: 10.15587/2312-

8372.2015.56209

TECHNOLOGY OF SPECIALTY FATS BASED ON

PALM STEARIN (p. 27-33)

Ekaterina Kunitsa, Alexis Udovenko,

Elena Litvinenko, Fedor Gladkiy, Irina Levehuk

New technology of modification of fats was developed, which

allows, by fermentative ethanolysis, obtaining a new type of spe-

cialty fats for use in the food industry (culinary, bakery and dairy

products). We proposed, for the modification of fatty raw materials,

restructuring of the fats, namely, their active parts (acyl groups)

with obtaining of derivatives of fatty acids that have functional

properties. Obtained fats meet the requirements of normative docu-

mentation by the indicators of quality, and are additionally enriched

with physiologically–active ingredients – ethyl esters of fatty acids,

which are better digested and reduce the resynthesis of fat in a hu-

man body. The influence of conditions of fermentative alcoholysis of

palm stearin by ethyl alcohol on the degree of its conversion to ethyl

esters of fatty acids was defined.

It was established that when using ethyl alcohol as a reagent in

the presence of lipolytic enzyme, ethyl esters and incomplete acyl-

glycerols accumulate that causes the change of physical and chemi-

cal indicators (including the melting temperature decrease), the

composition of the reaction mixture, and allows obtaining fats with
given composition and properties. Thus, using this method, selecting

necessary raw materials and varying the conditions of the reaction,

one can obtain a whole range of specialty fats.

Keywords: alcoholysis, palm stearin, ethyl alcohol, enzyme,

ethyl esters, specialty fat.

References

1. Sultanovych, Yu. A., Duxu, T. A. (2015). Problemy pry prymenenyu

bestransovych zhyrov v kondylytskom prozvyzvitse. Masla y zhyr-
y, 3–4, 23–25.

2. Zajecka, L. V. (2015). Trans–yzymer zhyrnykh kyslot – vred y opas-

nost. Masla y zhyr, 3–4, 25–27.

3. Timms, R. E. (2005). Fractional crystallisation – the fat modification

process for the 21st century: European Journal of Lipid Science

and Technology, 107 (1), 48–57. doi: 10.1002/ejlt.200401075

4. Nöpin, K., Kumar, S. (2014). Optimization of ethyl ester production

from palm oil. Petroleum & Coal, 56 (3), 249–258.

5. Korus, R. A., Hoffinan, D. S., Bam, N., Peterson, C. L., Drown, D. C.

(1995). Transesterification process to manufacture ethyl ester of rape

oil. First Biomass Conference of the Americas: Energy, Environment,

Agriculture, and Industry, 2, 815–826.

6. Latip, R. A., Lee, Y.-Y., Tang, T.-K., Phuah, E., Tan, C., Lai, O.-M.

(2013). Physicochemical properties and crystallisation behaviour of

bakery shortening produced from stearin fraction of palm–based

diacetylglycerol blended with various vegetable oils. Food Chemistry,

141 (4), 3938–3946.

7. Abd. Rashid, N., Chiew Let, C., Chong Seng, C., Omar, Z. (2012).

Crystallisation kinetics of palm stearin, palm kernel olein and their

blends. LWTT - Food Science and Technology, 46 (2), 571–573. doi:

10.1016/j.lwt.2011.11.001

8. Barison, Dr. Y., Sundram, Dr. K. (Eds.) (2014). Palmovoe maslo

Malajziiy Obogashhaya zhyryn. Dnepropetrovsk, Ekspert Agro, 44.

9. Nekrasov, P. A., Podlyssna, O. V., Gopkalov, V. G. (2014). Ysslelo-

vanye pyshevho cenmosty dyaciglycerevynovogo masla. Masla y

zhyr, 3–4, 7–9.

10. Xarkevych, D. A. (2006). Farmokologiya. Moscow: GEOTOR-

Mediya, 560.

11. Korenskaya, Y. M., Yvanovskaya, N. P., Kolosovska, O. A. (2008).

Lekarstvennye rastenyiya y lekarstvennoe rastitelnoe syre, soder-

zhashhye vytamyny, polysaxarydy, zhyrnye masla. Voronezh, Yza-

teiska–polygraficheskij centr Voronezhskogo gosudarstvennogo

universyteta, 320.

12. Kapryanych, L. V., Iorgachova, K. G. (2003). Funkcionalni produkty.

Olesa: Druk, 312.

13. Laposata, M. (1999). Fatty acid ethyl esters: Nonoxidative ethanol

metabolites with emerging biological and clinical significance. Lip-

ids, 34 (S1), 281–285. doi: 10.1007/bf02562318

14. Tereshhuk, L. V., Mamontov, A. S., Starovojtova, K. V. (2014).

Produkty frakcyonyrovannyh palmovogo masla v proyzvodstve spre-

dev. Teknyx ya teznyoygaya pyshevexy prozvydostv, 3, 79–83.

15. Tytjunnyk, B. N., Bulshtsb, Z. I., Gladkij F F et al. (1992). Hi-

miya zhiro. Moscow: Kolos, 448.

16. Garabadzhyy, A. V., Galyynkyn, V. A., Karasev, M. M., Kozlov, G. V.

Lyssyczkaya, T. V. (2010). Osnovnye aspekty yspolzovannyh lypaz

dlya polucheniya byodyzelya. Yzvestyya Sankt-Peterburskogo

gosudarstvennogo teznykoygyskoy uny-ta (teznycheskogo un-ta),

7, 63–67.

THE INFLUENCE OF MECHANOLYSIS ON

THE ACTIVATION OF NANOCOMPLEXES OF

HETEROPOLYSACCHARIDES AND PROTEINS

OF PLANT BIOSYSTEMS IN DEVELOPING

OF NANOTECHNOLOGIES (p. 33-40)

Raisa Pavlyuk, Viktoriya Pogarska,

Tatyana Kotuyk, Aleksey Pogarskiy, Svitlana Loseva

A nanotechnology of protein plant supplements in the form of

puree of peas was developed that is based on the processes of deep

processing of raw materials. Finely dispersed grinding and steam and

thermal processing were used in this work as the innovation. When

using traditional methods of raw materials processing, biological

potential is not used in full.

It was found that during deep processing of plant raw materials

(dried peas), which is based on comprehensive effect of steam and

thermal processing and finely dispersed grinding on the raw mate-

rial in obtaining nanostructured puree, the processes of mechanical

destruction and mechanical chemistry occur. These processes are

accompanied by non–enzymatic biocatalysis – mechanolysis (destruc-

tion) of hard soluble biopolymers and nanocomplexes of biopolymers

(proteins, heteropolysaccharides, namely, pectins, cellulose, starch)

with their transformation to monomers (35...55 %) into soluble eas-

ily absorbed form (almost 2 times higher compared to the original

raw material in a hidden form). The mechanism of protein mechan-

ical destruction and its nanocomplexes, which is associated with

the mechanical cracking, was discovered. It was found that the steam

and thermal processing and finely dispersed grinding of peas, while

obtaining finely dispersed puree, leads to the destruction of polysac-

charides by the non–enzymatic catalysis, namely cellulose and starch

(30...35 %), proteopcin (50 %), to separate monomers. It is shown

that in parallel there is an increase of glucose in nanopuree of peas

and thermal processing and finely dispersed grinding of peas, while

obtaining finely dispersed puree, leads to the destruction of polysac-

charides by the non–enzymatic catalysis, namely cellulose and starch

(30...35 %), proteopcin (50 %), to separate monomers. It is shown

that in parallel there is an increase of glucose in nanopuree of peas

(1.0 g ...10.0 g/100 g, i. e. by 10 times).

Integrated application of these processes is accompanied by

mechanical destruction, mechanical activation and mechanolysis of
biopolymers of nanocomplexes (protein, heteropolysaccharides, etc.) to ε-αmino acids, glucose, etc. (48–55 %).

Keywords: nanotechnologies, finely dispersed grinding, mechanoysis, nanocomplexes, biopolymers, heteropolysaccharides.

References

1. FAO/WHO/UNU. Dietary protein quality evaluation in human nutrition (2015). Report of an FAO Expert Consultation. Food and agriculture organization of the united nations Rome, 92, 57.

2. Kapref, L. V. (2015). Prebioti: himija, tehnologija, primenenie. Kyiv: ExportPrint, 252.

3. Gibson, G., Roberfroid, M. (2008). Handbook of Prebiotics. Vol. 4. CRS Press, London, 22–42.

4. Sousa, V. M. C. de, Santos, E. F. dos, Sgarbieri, V. C. (2011). The Importance of Prebiotics in Functional Foods and Clinical Practice. Food and Nutrition Sciences, 02 (02), 133–144. doi: 10.4236/fns.2011.22019

5. Roberfroid, M. B. (2000). Fructo-oligosaccharide malabsorption: benefit for gastrointestinal functions. Current Opinion in Gastroenterology, 16 (2), 173–177. doi: 10.1097/00001574-200003000-00013

6. Pavljuk, R. Ju., Pogarskaja, V. V., Pavljuk, V. A., Radchenko, I. A., Jur’eva, O. A., Maksimova, N. F. (2015). Krio- i mehanohimiya v pishhevih tehnologijah. Har’kovskij gosudarstvennyj universitet pitanija i torgovli; Har’kovskij gortso-ekonomicheskij institut; Kievskij nacional’nyj gortso-ekonomicheskij universitet, 253.

7. Galland, L. (2014). Functional Foods: Health Effects and Clinical Applications. 3rd edition. Reference Module in Biomedical Sciences, from Encyclopedia of Human Nutrition, 366–371.

8. Tur, J. A., Bibiloni, M. M. (2015). Functional Foods. Reference Module in Food Science: Encyclopedia of Food and Health, 157–161.

9. Tu, J., Zhang, M., Xu, B., Liu, H. (2015). Effects of different freezing methods on the quality and microstructure of lotus (Nelumbo nucifera) root. International Journal of Refrigeration, 52, 59–65. doi: 10.1016/j.ijrefrig.2014.12.015

10. Goñi, I., Serrano, J., Saura-Calixto, F. (2005). Bioaccessibility of β-Carotene, Lutein, and Lycocepin from Fruits and Vegetables. Journal of Agricultural and Food Chemistry, 54 (15), 5382–5387. doi: 10.1021/jf0509835

11. Bernstein, P. S., Khachik, F., Carvalho, L. S., Muir, G. J., Zhao, D.-Y., Katz, N. B. (2001). Identification and Quantitation of Carotenoids and their Metabolites in the Tissues of the Human Eye. Experimental Eye Research, 72 (3), 215–223. doi: 10.1006/exer.2000.0954

12. Dherani, M., Murthy, G. V. S., Gupta, S. K., Youn, I. S., Maraini, G., Balaz, P. (2010). Bioaccessibility of proteins and their Metabolites in the Tissues of the Human Eye. Experimental Eye Research, 72 (3), 215–223. doi: 10.1006/exer.2000.0954

13. Bernstein, P. S., Khachik, F., Carvalho, L. S., Muir, G. J., Zhao, D.-Y., Katz, N. B. (2001). Identification and Quantitation of Carotenoids and their Metabolites in the Tissues of the Human Eye. Experimental Eye Research, 72 (3), 215–223. doi: 10.1006/exer.2000.0954

14. Gerasimenko, S. S., Gerasimenko, V. S. (2013). Statystychna harakterystyka spodvyzhanja produktiv harchuvannja naselennja Ukrain’yi. Statystyka Ukrain’yi, 2, 28–33.

15. Dejneko, L. V., Shul’do, E. I. (2013). Harchova promyslovist’ Ukrain’yi: efektivnist’ vykorystannya vyrobnych resursiv ta kadrovogo potencialu. NAN Ukrain’yi, DU “In-t ekon. ta prognoz. NAN Ukrain’yi”, 120.

16. James, S. J., James, C. (2014). Chilling and Freezing. Food Safety Management, 481–510. doi: 10.1016/b978-0-12-381504-0.00020-2

17. Shi, L., Li, W., Sun, J., Qiu, Y., Wei, X., Luan, G. et. al. (2016). Grinding of maize: The effects of fine grinding on compositional, functional and physicochemical properties of maize flour. Journal of Cereal Science, 68, 25–30. doi: 10.1016/j.cscie.2015.11.004

18. Balaz, P. (2010). Mechenohimija in Nanoscience and Minerals Engineering. Woodhead Publishing Limited, 400.

19. Baláž, P., Baláž, M., Buňákovič Z. (2014). Mechenohimija in Technology: From Minerals to Nanomaterials and Drugs. Chemical Engineering & Technology, 37 (5), 747–756. doi: 10.1002/ceat.201300669

20. Boldyrev, V. V. (2004). Mechenohimija and synthesis of drugs. Journal of Materials Science, 39 (16/17), 5117–5120. doi: 10.1023/b:jmsc.0000039193.69784.1d

STUDYING THE ACCUMULATION OF NITROGENOUS SUBSTANCES IN BIOFORTIFIED PUMPKIN VEGETABLES (p. 40-46)

Gregory Deinychenko, Olha Yudicheva

The main purpose of biofortification is obtaining plant products with improved nutritional properties. Plant products are biofortified by means of the classic selection, genetic modification, or with the use of special fertilizers. Food plants have traditionally been enriched with vital minerals and vitamins; lately, they have also been bioenriched with amino acids and proteins. Vegetable protein consumed with the animal one enhances the value of protein nutrition due to the formed biologically active amino acid complexes. The value of vegetable protein increases in vegetarian nutrition, especially hard food, and nutrition of people suffering from celiac disease. We have studied the peculiarities of nitrogenous substances’ accumulation in biofortified pumpkin vegetables grown with the use of the liquid, organic, environment-friendly Riverm fertilizer. The objects of study are biofortified pumpkin vegetables: pumpkins of Oleshkovskijy and Svitven varieties, melons of Olivia and Fortuna varieties, and watermelons of Orphei and Atlant varieties. The reference samples are vegetables grown by the standard technology, without the above mentioned fertilizer. The research findings show that biofortified pumpkin vegetables are characterized by higher contents of total nitrogen and protein nitrogen, as well as contain more protein in comparison with the reference samples: pumpkins – by 15.0–17.6 %, melons – by 6.5–16.4 %, and watermelons – by 8.9–10.1 %. The highest amount of essential amino acids is contained in the protein of biofortified pumpkins, a bit lower – in biofortified melons and watermelons. The protein of biofortified pumpkins is characterized by the content of leucine, valine, and lysine. Biofortified melons and watermelons are dominated by lysine and phenylalanine. The largest shares of replaceable amino acids in all the samples are those of aspartic acid and glutamic acid. Bioenriched with nitrogenous substances (in particular, protein and amino acids) pumpkin vegetables cannot fully satisfy human needs of proteins and essential amino acids, although they can perfectly supplement nutrition with the latter. Such vegetables can be recommended to be used in balanced diets of animal and vegetable proteins, glutenless diets, and vegetarian diets.

Keywords: biofortification, fertilizers, Riverm, protein, nitrogenous substances, amino acids, pumpkin vegetables, micronutrients.

References

1. Dusenksym, G. A., Popik, S. Y. (1990). Ovoschki i fructy v pitanii zdorovogo i bolnogo chelevoj. Kyiv: Zdorove, 160.

2. Hirschi, K. D. (2009). Nutrient Biofortification of Food Crops. Annual Review of Nutrition, 29 (1), 401–421. doi: 10.1146/annurev-nutr-080508-141143

3. Burlaka, O. M., Sorochynsky B. V. (2010) Rodlenni biotekhnolohii: biofortyfikatsiia kharchovykh roslin. Kyiv: DIA, 88.
4. Welch, R. M. (2005). Biotechnology, Biofortification, and Global Health. Food and Nutrition Bulletin, 26 (4), 304–306. doi: 10.1177/156482650590264s309

5. Fageria, N. K., Moraes, M. F., Ferreira, E. P. B., Knupp, A. M. (2012). Biofortification of Trace Elements in Food Crops for Human Health. Communications in Soil Science and Plant Analysis, 43 (3), 556–570. doi: 10.1080/00103624.2012.639831

6. Murcia, I., De Gara, L., Grussk, M. A. (2013). Biofortification: how can we exploit plant science and biotechnology to reduce micronutrient deficiencies? Frontiers in Plant Science, 4, 429. doi: 10.3389/fpls.2013.00429

7. Chojnacka, K., Mikulewicz, M., Cieplik, J. (2011). Biofortification of Food with Microelements. American Journal of Agricultural and Biological Sciences, 6 (4), 544–548. doi: 10.3844/ajabsp.2011.544.548

8. Mayer, J. E., Pfeffer, W. H., Beyer, P. (2008). Biofortified crops to alleviate micronutrient malnutrition. Current Opinion in Plant Biology, 11 (2), 166–170. doi: 10.1016/j.plbi.2008.01.007

9. Gilligian, D. O. (2012). Biofortification, Agricultural Technology Adoption, and Nutrition Policy: Some Lessons and Emerging Challenges*. CESifo Economic Studies, 58 (2), 405–421. doi: 10.1093/cesifo/ifs020

10. Leyva-Guerrero, E., Narayanan, N. N., Illmer, U., Sayre, R. T. (2012). Iron and protein biofortification of cassava: lessons learned. Current Opinion in Biotechnology, 23 (2), 257–264. doi: 10.1016/j.copbio.2011.12.009

11. DellaValle, D. M., Thavarajah, D., Thavarajah, P., Vandenbem, A., Glahn, R. P. (2013). Lentil (Lens culinaris L.) as a candidate crop for iron biofortification: Is there genetic potential for iron bioavailability? Field Crops Research, 144, 119–125. doi: 10.1016/j.fcr.2013.01.002

12. Nair, R. M., Yang, R.-Y., Easdown, W. J., Thavarajah, D., Thavarajah, P., Hughes, J. d’A, Keatinge, J. D. (2013). Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. Journal of the Science of Food and Agriculture, 93 (8), 1805–1813. doi: 10.1002/jsfa.6110

13. McGrath, S. P., Chambers, B. J., Taylor, M. J., Carlton-Smith, C. H. (2012). Biofortification of zinc in wheat grain by the application of sewage sludge. Plant and Soil, 361 (1-2), 97–108. doi: 10.1007/s11104-012-1381-6

14. Aciksoz, S. B., Yazici, A., Ozurtuk, L., Calmak, I. (2011). Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant and Soil, 349 (1-2), 215–225. doi: 10.1007/s11104-011-0863-2

15. Hussain, S., Masood, M. A., Rengel, Z., Aziz, T. (2012). Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant and Soil, 361 (1-2), 279–290. doi: 10.1007/s11104-012-1238-z

16. Zhang, Y.-Q., Deng, Y., Chen, Y.-R., Cui, Z.-L., Chen, X.-P., Yost, R. et. al. (2012). The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc application. Plant and Soil, 361 (1-2), 143–152. doi: 10.1007/s11104-012-1238-z

17. Ajiboye, B., Calmak, I., Paterson, D. de Jonge, M. D., Howard, D. L., Stacey, S. P. et al. (2015). X-ray fluorescence microscopy of zinc localization in wheat grains biofortified through foliar zinc applications at different growth stages under field conditions. Plant and Soil, 392 (1-2), 357–370. doi: 10.1007/s11104-015-2467-8

18. Zou, C. Q., Zhang, Y. Q., Rashid, A., Ram, H., Savasli, E., Ari-soy, R. Z. et. al. (2012). Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant and Soil, 361 (1-2), 119–130. doi: 10.1007/s11104-012-1369-2

19. Poblaciones, M. J., Rodrigo, S. M., Santamaría, O. (2012). Evaluation of the Potential of Peas (Pisum sativum L.) to Be Used in Selenium Biofortification Programs Under Mediterranean Conditions. Biological Trace Element Research, 151 (1), 132–137. doi: 10.1007/s12011-012-9539-x

20. Rahmana, M. M., Erskine, W., Zaman, M. S., Thavarajah, P., Thavara- rah, D., Siddique, K. H. M. (2013). Selenium biofortification in lentil (Lens culinaris Medikus subsp. culinaris): farmers’ field survey and genotype × environment effect. Food Research International, 54 (2), 1596–1604. doi: 10.1016/j.fredint.2013.09.008

21. Seppänen, M. M., Kontturi, J., Heras, I. L., Madrid, Y., Câmara, C., Hartikainen, H. (2010). Agronomic biofortification of Brassica with selenium – enrichment of SeMet and its identification in Brassica seeds and meal. Plant and Soil, 337 (1-2), 273–283. doi: 10.1007/s11104-010-0523-y

22. Landini, M., Gonnali, S., Perata, P. (2011). Iodine biofortification in tomato. Journal of Plant Nutrition and Soil Science, 174 (3), 480–486. doi: 10.1002/jpln.201000395

23. Blasco, B., Rios, J. J., Leyva, R., Cervilla, L. M., Sánchez-Rodríguez, E., Rubio-Willelm, M. M. et. al. (2010). Does Iodine Biofortification Affect Oxidative Metabolism in Lettuce Plants? Biological Trace Element Research, 142 (3), 831–842. doi: 10.1007/s12011-010-8816-9

24. Voogt, W., Holwerda, H. T., Khodabaks, R. (2010). Biofortification of lettuce (Lactuca sativa L.) with iodine: the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture. Journal of the Science of Food and Agriculture, 90 (5), 906–913. doi: 10.1002/jsfa.3902

25. Jin, Z., Minyan, W., Lianghuan, W., Jiangguo, W., Chunhai, W. (2008). Impacts of Combination of Foliar Iron and Boron Application on Iron Biofortification and Nutritional Quality of Rice Grain. Journal of Plant Nutrition, 31 (9), 1599–1611. doi: 10.1080/01904160802244883

26. Jekot, P. et al. (2011). Effect of foliar application of selenium on the content of s-lected amino acids in potato tubers (Solanium tu- berosum L.). Plant soil environ, 57 (7), 315–320.

27. Kozak, V. V. (2009). Printsypl oekoglichskebi bezopasnoz zemle- delia. Kyiv: MEF «AQUA-VITA».

28. Yudicheva, O. (2014). Study of Zinc Content in Biofortified Tomato. The Advanced Science Journal, 2014 (7), 15–18. doi: 10.15550/asj.2014.07.015

29. Dejnychenko, G. V., Judicheva, O. P. (2015). Study of possibilities to grow biofortified vegetables as a source of carotenoids. Eastern-European Journal of Enterprise Technologies, 2/10 (74), 36–40. doi: 10.15587/1729-4061.2015.39763

30. Yudicheva, O. P. (2015). Zavisimost khimicheskogo sostava ot sorta biofortifikatsiisrovnanykh tykvennykh ovosheey. Vestnik Sibsirskogo universiteta potrebiteleskoy kooperatsii, 4 (11), 68–72.

RESEARCH INTO THE IMPACT OF ENZYME PREPARATIONS ON THE PROCESSES OF GRAIN DOUGH FERMENTATION AND BREAD QUALITY (p. 46-53)

Svitlana Olinsky, Olga Samokhvalova, Anna Zaparekno, Elena Shidakova-Kamenyuka, Micol stained text. The important issue of improvement in the technology of grain bread is the development of measures to improve the rheological properties of dough and bread. With this aim we proposed the use of cellulyases, hemicyclases ans oxidoreductases at the stage of dough mixing. It is shown that the application of the studied enzymes for grain emmer and wheat dough contributes to the intensification of non-starch polysaccharides hydrolysis, namely reduction of the content of cellulose by 11 %, hemicyclases – by 14.3 and 13.0 %, and increase in the content of water-soluble fraction of hemicyclases.
Additionally, the presence of enzyme preparations in the grain dough promotes slowing down of the processes of gluten proteolysis and improvement of its rheological properties that predetermines increase of gas-retaining capacity of the studied system. It was discovered that adding the studied enzyme preparations to grain dough contributes to the intensification of acid and gas generation in it. The resulting effect of biochemical and microbiological changes in grain dough under the influence of enzyme preparations of cellulase, xylanase and glucose oxidase is the improvement in the quality of grain bread compared to the samples without their addition.

Keywords: enzymes, grain bread, dough preparation, cellulase, xylanase, glucose oxidase.

References

1. Mosuli, A., Ferraro, Z. M., Stewart, K. A., Tulk, H. M. F., Robinson, L. E., Duncan, A. M., Graham, T. E. (2012). The Acute Impact of Ingestion of Sourdough and Whole-Grain Breads on Blood Glucose, Insulin, and Incretins in Overweight and Obese Men. *Journal of Nutrition and Metabolism*, 2012, 1–9. doi: 10.1155/2012/184710

2. Shkapov, E. I. (2002). Sovershenstvovaniye technologii dispergirovaniya zerna dlia proizvodstva khlебobuлоchnьх изделий. Moskovskij gosudarstvennyj universitet pishchevых proizvodstv, 18.

3. Koriachkina, S. Yа., Kuznetsova, E. A., Cherempina, L. V. (2012). Technologiya khlебa iz tselogo zerna triticale. Orel: FGBOU VPO «Gosuniversitet – UNPK», 177.

4. Balanov, P. E., Smotracheva, I. V. (2014). Technologiya soloda. SPb.: NIU ITMO, 95.

5. Pshenyshnikin, G. F., Makarova, O. V., Ivanova, G. S. (2010). Innovatsyini zahody pidvyshhchenня yakosti zernovogo khliba. Kharkhova nauka i technologii, 1, 73–77.

6. Koriachkina, S. Yа., Kuznetsova, E. A., Prigarina, O. M. (2006). Povyshennye mikrobiologicheskie chistosti ryzy i pshenitcy na stadii zamachivaniya v rastorchnych chimicheskikh sredstv predetermines increase of gas-retaining capacity of the studied system. It was discovered that adding the studied enzyme preparations to grain dough contributes to the intensification of acid and gas generation in it. The resulting effect of biochemical and microbiological changes in grain dough under the influence of enzyme preparations of cellulase, xylanase and glucose oxidase is the improvement in the quality of grain bread compared to the samples without their addition.

Keywords: enzymes, grain bread, dough preparation, cellulase, xylanase, glucose oxidase.
in the sugar cookies production has been proved. The study indicates the increased content of essential amino acids by 34.83 % in the cookies “Dachne” and in the cookies “Yase neonechko” by 32.54 % as compared with the check sample. The content of polysaturated fatty acids and minerals has increased. Especially, the content of calcium has increased by 2.8–3 times. The total fraction of carbohydrates and fats has decreased; the fraction of proteins has increased. The new cookies samples have been evaluated by the parameters of taste and smell higher than the check sample especially according to the organoleptic evaluation. The developed samples meet the standard by the physical-chemical parameters and safety parameters. The results can be used for implementation in the confectionery companies for the diversification of products with high nutritional value.

Keywords: pastry products, unconventional raw material, consumer properties, nutrition value, sugar cookies with fillings.

References

1. Galushko, O. S. (2009). The trends of development market of confectionery and features of transformation in the system of values it’s participants. Actualni problemy economici, 8, 17–25.

2. Tkachenko, A. S., Syrokham, I. V. (2015). The improvement of consumer properties of sugar cookies. Kharchovu nauka i tekhnoloziya, 3, 82–87.

3. Bodak, M. P. (2014). The usage of non-traditional raw-materials for bakery. Visnik Lvivskoi komercyynoi academy, 14, 113–116.

4. Hadeeva, S. O., Svidlo, K. V. (2010). The determination potential of risks of technology of baked biscuit semi with dietary supplements. Zbirnik naukovih prats’ NTU “KhPI”, 46, 276–283.

5. Tkachenko, A. S. (2015). The improvement of fat-acid contents of sugar cookies. Visnik Lvivskoi komercyynoi academy, 15, 114–119.

6. Tkachenko, A. S. (2015). The sugar cookies with enriched protein contents. Torgivlia, commercia, marketing, 18, 118–122.

7. Shenamskaia, E. I., Oseiko, N. I. (2012). The phospholipid fat-containing products of functional appointment. The food science, 1, 28–30.

8. Sinicik, M., Goksoy, A. T. (2014). Investigation of Correlation between Traits and Path Analysis of Confectionary Sunflower Genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42 (1), 227–231. doi: 10.15835/nbha4219429

9. Ajay, B. C., Gowda, M. V. C., Rathnakumar, A. L., Kusuma, V. P., Fiyaz, R. A., Holajjer, P. et. al. (2011). Improving Genetic Attributes of Confectionary Traits in Peanut (Arachis hypogaea L.) Using Multivariate Analytical Tools. Journal of Agricultural Science, 4 (3), 247–258. doi: 10.5539/jas.v4n3p247

10. Kulichenko, A. I. (2013). The usage of products with a milk raw material for confectionery products. Molodoy uchenyy, 4, 675–677.

11. Nikitoriova, T. A., Sevirekon, S. M., Kulikov, D. A. et. al. (2009). The prospects of usage secondary raw-materials of cereals productions. Khlebopoducti, 7, 50–51.

12. Assel, K., Izbamayeva, Mernurt P. Bayishayeva, Bayan Z., Muldabekova H. (2014). Non-Traditional Raw Materials in Production of Sugar Cookies, American–Eurasian J. Agric. & Environ. Sci., 3, 358–362.

13. Maximova, A. A. (2010). Innovation technology of production of the oat cookies. Khlebopoducti, 7, 38–39.

14. Eckerson, J. M., Lieb, A. E., Mullen, K. A., Allen, N. O. (2015). The Effect of a Protein-Rich Egg White Breakfast and an Isocaloric Toaster Pastry Breakfast on Satiety and Dietary Intake in Normal-Weight College-Age Women. Journal of the Academy of Nutrition and Dietetics, 115 (9), A17. doi: 10.1016/j.jand.2015.06.048

15. Rosliakov, I. F., Gonchar, V. V., Shuvinskaja, I. V. (2007). The usage of the Siberian pine nut kernel (pinus sibirica) in the production of pastry for functional appointment. Fundamental research, 7, 89–90.

16. Ruhilar, M., Gutiérrez, C., Verdugo, M., Shene, C., Smeiro, J. (2010). Flaxseed as a source of functional ingredients. Journal of soil science and plant nutrition, 10 (3), 373–377. doi: 10.4067/s0718-951620100010010

17. Li, S.-S., Wang, L.-S., Shu, Q.-Y., Wu, J., Chen, L.-G., Shao, S., Yin, D.-D. (2015). Fatty acid composition of developing tree peony (Paeonia sectio Moutan DC.) seeds and transcriptome analysis during seed development. BMC Genomics, 16 (1). doi: 10.1186/s12864-015-1429-0

18. Fatima, T., Snyder, C. L., Schroeder, W. R., Cram, D., Datla, R., Wishart, D. et. al. (2012). Fatty Acid Composition of Developing Sea Buckthorn (Hippophora rhamnoides L.) Berry and the Transcriptome of the Mature Seed. PLoS ONE, 7 (4), e34099. doi: 10.1371/journal. pone.0034099

19. Dorokhovich, A. M., Soloviova, O. L., Dorokhovich, V. V. (2011). Fortification of the confectionery Producty & ingredyiency, 3, 26–28.

20. Bogatirov, A. (2011). Scientific principles of fortification nutrition products. Khlibopekarska i kondyterska promyslovist Ukrajiny, 5, 44–47.

21. Magomedov, O. G., Plotnikova, I. V., Magomedov, N. G. (2014). Beet feelings for bakery. Khlieboprodukti, 8, 44–47.

22. Aleksenko, E. V., Dikareva, I. M. (2014). The usage of see button concentrate in the cakes products. Konditerskoie i khliebopекарское производство, 5-6, 6–8.

23. Ivanova, V. D., Khliebutina, M. S., Ivchuk, N. P. (2011). The researching of the cake functional properties. Naukovi pratsi ONAKHT, 40 (1), 82–86.

24. Poliakova, A. V. (2011). Technology of the puff pastry with berries dry-powders supplements for puff pastry. Visnyk Donetskoho nacionalnoho universytetu ekonomiky i torhivli imeni Mykhayla Tihui–Baranovskoho. Ser. Tekhnichni nauky, 1, 55–60.

25. Pop, A., Muste S., Man, S. (2013). Study of Valorification of Lycium barbarum (Goji) in Pastry Products / Anamaria Pop, Sevastita Muste, Simona Man. Bulletin UASVM Food Science and Technology, 70 (2), 93–98.

26. Zucco, F., Borsak, Y., Arnfield, S. D. (2011). Physical and nutritional evaluation of wheat cookies supplemented with pulse flours of different particle sizes. LWT – Food Science and Technology, 44 (10), 2070–2076. doi: 10.1016/j.lwt.2011.06.007

27. Pérez, S., Matta, E., Osella, C., de la Torre, M., Sánchez, H. D. (2013). Effect of soy flour and whey protein concentrate on cookie color. LWT – Food Science and Technology, 50 (1), 120–125. doi: 10.1016/j.lwt.2012.06.015

28. Gedrovia, P., Karklina D. (2013). Influence of Jerusalem Artichoke Powder on the Nutritional Value of Pastry Products. Biomolecular, Agricultural, Food and Biotechnological Engineering, 6, 7

29. Aller, M. C., Villarin, M. D., Pascual, P. R. L. (2013). Product Development of Malunggay (Moringa Oleifera) and Sweet Potato (Ipomea Batatas) for Pastry and Fillings. Tropical Technology Journal, 19 (1), 5. doi: 10.7605/s40934-015-0005-1

30. Recipes of the cookie (1987). Moscow: Vsesoyuznyi nauchno-islovlaktinski institut konditerskoy promyshlennosti, 248.

31. Knutoviy, Z. A., Zakharenko, G. V., Kazulova, L. O. et. al. (2013). Matematyche modelyvannya retepeturnyo kompozytziy kex-ku pidvyshchenyi kharchovoyi tsinnosti. Nauka ta innovatsiyi, 5 (9), 5–9.

32. Regulation (EU) No 854 of the European Parliament and of the Council. Laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption (2004). Official Journal of the European Union, 45.

33. Ovchinnikova, I. A. (1974). New methods of analysis of amino acids, proteins and peptidov. Moscow: Myr, 120.
THE EFFECT OF GRAPE SEED POWDER ON THE QUALITY OF BUTTER BISCUITS (p. 61-66)

Olga Samohvalova, Nataliya Grevtseva, Tatiana Brykova, Anjelika Grigorenko

Biscuits that enjoy stable great demand in all segments of population traditionally contain a lot of fats and carbohydrates versus small amounts of biologically active substances. Enriching butter biscuits with dietary fibre, polyphenolic compounds, minerals and vitamins has a beneficial effect on the human body. These components are abundant in raw plant materials, primarily in powdered grape pomace. Grape pomace is a secondary product of wine manufacturing that is output in large quantities at wineries in Ukraine; it is an available and inexpensive raw stuff with a rich chemical composition.

We have studied the possibility of using grape seed powder in the technology of butter biscuits, in order to increase their biological value. We have found that in comparison with wheat flour, the powder is characterized by a higher water absorption capacity, and adding grape seed powder makes gluten less tensile and more elastic. The study has proved a positive effect of grape seed powder on physicochemical and organoleptic parameters of the quality of butter biscuits that become biologically more valuable.

Keywords: grape pomace, grape seed, powder, gluten, water absorption ability, butter biscuits.

References

1. Lisjuk, G. M., Vereshko, N. V., Chujko, A. M. (2011). Novi napravni viktorinannya produktiv pererobki vinogrado virobnictvi boroshnianyj vibo. Kharkiv: DDUHT, 175.
2. Bareeva, N. N., Donchenko, L. V. Vinogradnye vyjimki – perspektivnyj promyshlennyj istochnik pektinovyh veshhestv. Available at: http://ej.kubagro.ru/2006/04/30/.
3. Bač’kova, I. A., Jashina, I. A., Makarova, N. V., Novikova, M. N., Smirnova, N. V. (2014). Vlijanie temperatury suschki na himicheskij sostav i antiodsidantnyje svojstva vinogradnyh vyjimok. Hranenie i pererabotka sel’hosyryja, 2, 36–38.
4. Holcombe, R. F., Nguyen, A. V., Martinez, M., Stamos, M. J., Moyer, M. P., Plenutis, K. et al. (2009). Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wot pathway target gene expression in colonic mucosa and colon cancer. Cancer Management and Research, 25–37. doi: 10.2147/cmr.s4544
5. Swannaphet, W., Meeprom, A., Yibchok-Anun, S., Adisakwattana, S. (2010). Preventive effect of grape seed extract against high-fructose diet-induced insulin resistance and oxidative stress in rats. Food and Chemical Toxicology, 48 (7), 1853–1857. doi: 10.1016/j.fct.2010.04.021
6. Salim, S., Patki, G., Jannise, B. (2015). The Role of Grape Powder in Emotional Well-Being and Memory Improvement. Diet and Nutrition in Dementia and Cognitive Decline, 925–934. doi: 10.1016/b978-0-12-407824-6-00085-9
7. Tkachenko, A. I. (2009). Vinograd – venec tvorenija prirody. Nauchno-metodicheskoe posobie dlja vrachej i shirokogo kruga chitatelей. Kharkiv: Nauchno-lechebnij fitocentur «Avicenna», 28.
8. Sagindykova, B. A., Tihonov, A. I., Isakova, D. S. (2011). Razrabotka tabletok s suhim jekstrakтом semjan vinograda s modifirovanym vysvosboshdeniem. Vsnik farmacii, 1 (65), 16–19.
9. Voronina, L. M., Zagajko, A. L., Samohin, A. S., Alekseejeva, L. M. (2004). Polifenol'ni ekstrakty vynogrado kul’turnogo na zahysty pechenkiv z umov oksydatyvnogo stresu. Klinichna farmacija, 8 (2), 36–37.
10. Grape Extracts May Be Effective Against Harmful Gut Bacteria. Available at: https://www.sciencedaily.com/releases/2009/03/090304132621.htm
11. Pitsyn, A. R. (2007). Tehnologija vydeljenija flavonoidov vynograda Vitis vinifera sorta “Izabella” dlja kosmetiki i izuchenie ih svojstv. Moscov, 26.
12. Bondakova, M. V. (2014). Razrabotka receptury i tehnologii priznovo vynogradnyh bytov. Available at: http://ej.kubagro.ru/2006/04/30/.
13. Sant’Anna, V., Christiano, F. D. P., Marcacak, L. D. F., Tessaro, I. C., Thyss, R. C. S. (2014). The effect of the incorporation of grape marc powder in fettuccini pasta properties. LWT – Food Science and Technology, 58 (2), 497–501. doi: 10.1016/j.lwt.2014.04.008
14. Caglas, E., Kulcunoğlu, S. (2014). Effect of grape seed powder on oxidative stability of precooked chicken nuggets during frozen storage. Journal of Food Science and Technology, 52 (5), 2918–2925. doi: 10.1007/s13197-014-1333-7
15. Aksouly, Z., Çağmide, O., Kiese, E. (2015). Effects of Blueberry, Grape Seed Powder and Poppy Seed Incorporation on Physicochemical and Sensory Properties of Biscuit. Journal of Food Quality, 38 (3), 164–174. doi: 10.1111/jfqq.12133
16. Kalinovska, T. V., Kravyna, I. O., Obolkina, V. L., Kyianytsya, S. G. (2013). Vykorystannya vtorinnьh produktiv pereboryk vynogradu pid chas rozrobu innovatsiyh tehnologij kondyters’kykh vyrobiv. Obladnannya ta tehnologii’ harchovyh vyrobnyctv. Doneckiy nacional’nyi universytet ekonomiky i torgivli im. M. Tugan-Baranovskogo, 30, 75–80.
17. Obolkina, V. I., Kyrichenkova, O. M., Bukhshyna, L. S., Kravyna, I. O. (2012). Pat. 72163 Ukrai’na, MPK (2012.01) A 23 G 3/00. Sposib vyrobnyctva «Shantane». Zajavnyk ta patentovlasnyk Nacional’nyj universytet harchovyh harchovих. № u201200701; zajav. 23.01.2012; opubl. 10.08.2012, Bull. № 15, 3.
18. Zadorozhnja, O. S., Gavrysh, A. V., Docenko, V. F. (2014). Pat. 89005 Ukrai’na, MPK (2014.01) A 21 D 2/00. Pisochne pechyvo. «Shantane». Zajavnyk ta patentovlasnyk Nacional’nyj universytet harchovyh harchovих. № u201312347; zajav. 21.10.2013; opubl. 10.04.2014, Bull. № 7, 2.
19. Korzec’ka, I. L., Lytvyn, G. V., Bandurenko, G. M., Levkivska, T. M., Zinchenko, T. V. (2014). Pat. 57628 Ukrai’na, MPK (2011.01) A 23 G 3/00. Sposib vyrobnyctva «Sonechko». Zajavnyk ta patentovlasnyk Nacional’nyj universytet harchovyh harchovих. № u201312347; zajav. 21.10.2013; opubl. 10.04.2014, Bull. № 7, 2.
20. Jablonsk’a, I. O., Myroshnyck’a, Ju. A., Gavrysh, A. V., Docenko, V. F. (2014). Pat. 94940 Ukrai’na, MPK (2006.01) A 21 D 13/08. Sklad pisochnoho pechyvo «Aronia». Zajavnyk ta patentovlasnyk Nacional’nyj universytet harchovyh harchovих. № u201405677; zajav. 26.05.2014; opubl. 10.12.2014, Bull. № 23, 2.
21. Syrohom, I. V., Turchynjak, M. K. (2008). Pat. 32821 Ukrai’na, MPK (2006.01) A 21 D 13/00. Zdobne pechyvo. «Spokusa». Zajavnyk ta patentovlasnyk Syrohom I. V., Turchynjak M. K. № u200804704; zajav. 11.08.2008; opubl. 10.09.2008, Bull. № 17, 3.
22. Syrohom, I. V., Lebedynets’ V. V. (2009). Asortiment i jakist’ kondyters’kykh vyrobiv. Kyiv: Centr uchbovoi literatury, 636.
23. Kalinovskaya, T. V., Obolkina, V. I. (2014). Substantiation of using wine-making secondary products as alternative raw material for confectionery industry. Nauka i Studia, 14 (124), 59–62.

24. Sidorenko, A. V., Vershinina, O. L., Derevenko, V. V., Shapovalova, D. V. (2011). Tehnologicheskie osobennosti prigotovlenija hlebobulochnyh izdelij obogashhennych poroshkom iz kozhicy vynogradnyh vyzhimok. Izvestija vuzov. Pishhevaja tehnologija, 4, 26–28.

25. Drobot, V. I., Docenko, V. F., Arsen’eva, L. Ju., Ustinov, Ju. V., Peregrada, N. A. (1987). Issledovanie vozmozhnosti primenenija produktov iz vinograda v hlebopechenii. Kyiv, 10.

26. Davidov-Pardo, G., Moreno, M., Arozarena, I., Marin-Arroyo, M. R., Bleibaum, R. N., Bruhn, C. M. (2012). Sensory and Consumer Perception of the Addition of Grape Seed Extracts in Cookies. Journal of Food Science, 77 (12), 430–438. doi: 10.1111/j.1750-3841.2012.02991.x

27. Chujko, A. M., Chujko, M. M., Orlova, O. S., Jer’omenko, S. O. (2014). Research of quality of yeast-leavened dough products and shortbread using cryopowders made of herbal raw materials. Eastern-European Journal of Enterprise Technologies, 2 (12 (68)), 133–137. doi: 10.15587/1729-4061.2014.22416

28. Maner, S., Sharma, A. K., Banerjee, K. (2015). Wheat Flour Replacement by Wine Grape Pomace Powder Positively Affects Physical, Functional and Sensory Properties of Cookies. Proceedings of the National Academy of Sciences, India – Section B: Biological Sciences. doi: 10.1007/s40011-015-0571-0

29. Drobot, V. I. (2006). Laboratornyj praktykum z tehnologii’ hlibopekaars’kogo ta makaronnogo vyrobnyctv. Kyiv: Centr navchal’noi’ literatury, 341.

30. Lur’e, I. S. (1981). Tekhnologija i tehnohimicheskij kontrol’ konditers’kogo proizvodstva. Moscow: Ljogkaja i pishhevaja promyshlennost’, 328.