Perfect storm
Jutzeler, Catherine Ruth; Nightingale, Tom E.; Krassioukov, Andrei; Walter, Matthias

DOI: 10.1089/neur.2020.0002
License: Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Jutzeler, CR, Nightingale, TE, Krassioukov, A & Walter, M 2020, 'Perfect storm: COVID-19 associated cardiac injury and implications for neurological disorders', Neurotrauma Reports, vol. 1, no. 1, pp. 2-4. https://doi.org/10.1089/neur.2020.0002

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Perfect Storm: COVID-19 Associated Cardiac Injury and Implications for Neurological Disorders
Catherine Ruth Jutzeler,1,2,*** Thomas Edward Nightingale,3,4,** Andrei Vasilievich Krassioukov,4 and Matthias Walter4,5

Abstract
Coronavirus disease 2019 (COVID-19) can lead to considerable lung damage and even death. Less is known about the effects of COVID-19 on the cardiovascular system. In their recent JAMA Cardiology article, Shi and colleagues reported an association between cardiac injury and higher risk of in-hospital mortality in patients with COVID-19. Approximately 20% (82 patients) of the study cohort presented with a cardiac injury. The investigators identified cardiac injury as an independent risk factor of mortality during hospitalization (52% with cardiac injury vs. 5% without cardiac injury, \(p < 0.001 \)). Consequently, their findings are highly relevant for patients with pre-existing cardiovascular and cerebrovascular diseases. Among those are patients with neurological disorders. There is a considerable prevalence of myocardial injury in patients with acute neurological illness, which appears to adversely affect prognosis. Individuals with an underlying neurological disorder are particularly vulnerable to increased cardio-cerebrovascular disease risk due to physical limitations and the pathophysiology of their condition. Thus, we would like to specifically highlight the attention of health care professionals treating patients with pervasive neurological disorders to their potentially elevated risk of poorer COVID-19 related outcomes.

Keywords: cardiac injury; COVID-19; injury-associated comorbidities; neurological disorders; risk factors; SARS-CoV-2

Introduction
Viral infections, such as coronavirus disease 2019 (COVID-19), can trigger respiratory infections that may lead to considerable lung damage and even death. Less is known about the effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, on the cardiovascular system. In their recent JAMA Cardiology article, Shi and colleagues shed light on the association between cardiac injury and a higher risk of in-hospital mortality in patients with laboratory-confirmed COVID-19.1 The investigators defined cardiac injury as high-sensitivity troponin I (hs-TNI) above the 99th-percentile upper reference limit. For patients to be included in the analysis, laboratory confirmation, medical information, and core examination results were required.

Of 1004 hospitalized patients, only 416 (median age, 64 years; 51% women) were included in the analysis. Overall, fever was the most common symptom (334 patients [80%]) followed by cough (144 patients [35%]) and shortness of breath (117 patients [28%]). Approximately 20% (82 patients) of the study cohort presented with a cardiac injury. The investigators identified cardiac injury as an independent risk factor of mortality during hospitalization (52% with cardiac injury vs. 5% without cardiac injury, \(p < 0.001 \)). Consequently, their findings are highly relevant for patients with pre-existing cardiovascular and cerebrovascular diseases. Among those are patients with neurological disorders. There is a considerable prevalence of myocardial injury in patients with acute neurological illness, which appears to adversely affect prognosis. Individuals with an underlying neurological disorder are particularly vulnerable to increased cardio-cerebrovascular disease risk due to physical limitations and the pathophysiology of their condition. Thus, we would like to specifically highlight the attention of health care professionals treating patients with pervasive neurological disorders to their potentially elevated risk of poorer COVID-19 related outcomes.

Keywords: cardiac injury; COVID-19; injury-associated comorbidities; neurological disorders; risk factors; SARS-CoV-2

1Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
2SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
3School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.
4International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
5Department of Neuro-Urology, Swiss Paraplegic Center, Nottwil, Switzerland.

*Address correspondence to: Catherine Ruth Jutzeler, PhD, Department of Biosystems, Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland, Email: Catherine.Jutzeler@bsse.ethz.ch
**The first two authors contributed equally.

© Catherine Ruth Jutzeler et al., 2020; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
hospitalization (52% with cardiac injury vs. 5% without cardiac injury, \(p < 0.001 \)). Additionally, a greater proportion of patients with cardiac injury required mechanical ventilation (i.e., non-invasive \([46 \text{ vs. } 4\% , \ p < 0.001]\) and invasive \([22 \text{ vs. } 4\% , \ p < 0.001]\)) and in-hospital complications (e.g., acute respiratory distress syndrome \([59 \text{ vs. } 15\% , \ p < 0.001]\), acute kidney injury (9 vs. \(<1\% , \ p < 0.001\)) were more common. Lastly, histories of hypertension (60 vs. 23%, \(p < 0.001 \)), coronary heart disease (29 vs. 6%, \(p < 0.001 \)), chronic heart failure (15 vs. 2%, \(p < 0.001 \)), and cerebrovascular disease (16 vs. 3%, \(p < 0.001 \)) were more common among patients with cardiac injury.

Although the study conveys important information regarding the association between cardiac injury and disease outcome in patients with COVID-19, it comes with major limitations that need to be considered when interpreting the results. First, the authors excluded over 588 patients of the initial cohort, of whom 39% were excluded because of missing cardiac biomarkers, including values of hs-TNI and creatine kinase myocardial band. This is problematic as patients with pre-existing cardiovascular conditions are more likely to get tested for cardiac biomarkers, which can lead to a selection bias. Second, patients with cardiac injury were older (median age, 74 vs. 60 years, \(p < 0.001 \)); had higher levels of leukocytes, procalcitonin, C-reactive protein, and creatinine; and had lower levels of lymphocytes and platelets compared with patients without cardiac injury.

Despite these limitations, the study provides important evidence that COVID-19 can have detrimental effects on the heart, even in patients without pre-existing heart conditions. Importantly, these findings are not unique to COVID-19. Other viral infections, such as influenza A (H1N1)\(^2\) and SARS-CoV-1,\(^3\) have also been reported to worsen pre-existing cardiovascular diseases and cause new ones in otherwise healthy individuals.

Conversely, it remains to be seen what impact COVID-19 has on the progression of existing cardiovascular disease in at-risk individuals with neurological disorders, particularly as other viral infections have been shown to worsen pre-existing cardiovascular diseases and cause new ones in otherwise healthy individuals. Therefore, future research is necessary to investigate to what extent testing positive for COVID-19 exacerbates pre-existing conditions or predisposes individuals with neurological disorders to developing new ones.

Acknowledgments

All authors contributed to the preparation and editing of this article.

Funding Information

CRJ reports funding from the Swiss National Science Foundation (Ambizione Grant PZ00P3_186101) and the Wings for Life Foundation (ID 2017_044).

Author Disclosure Statement

No competing financial interests exist.

References

1. Shi, S., Qin, M., Shen, B., Cai, Y., Liu, T., Yang, F., Gong, W., Liu, X., Liang, J., Zhao, Q., Huang, H., Yang, B., and Huang, C. (2020). Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. e200950.
2. Nguyen, J.L., Yang, W., Ito, K., Matte, T.D., Shaman, J., and Kinney, P.L. (2016). Seasonal influenza infections and cardiovascular disease mortality. JAMA Cardiol. 1, 274–281.
3. Yu, C.M., Wong, R.S., Wu, E.B., Kong, S.L., Wong, J., Yip, G.W., Soo, Y.O., Chiu, M.L., Chan, Y.S., Hui, D., Lee, N., Wu, A., Leung, C.B., and Sung, J.J. (2006).
Cardiovascular complications of severe acute respiratory syndrome. Postgrad. Med. J. 82, 140–144.
4. Cragg, J.J., Noonan, V.K., Krassioukov, A., and Borisoff, J. (2013). Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology 81, 723–728.
5. Eric Nyam, T.T., Ho, C.H., Chio, C.C., Lim, S.W., Wang, J.J., Chang, C.H., Kuo, J.R., and Wang, C.C. (2019). Traumatic brain injury increases the risk of major adverse cardiovascular and cerebrovascular events: a 13-year, population-based study. World Neurosurg. 122, e740–e753.
6. Persson, R., Lee, S., Yood, M.U., Wagner, M., Minton, N., Niemcryk, S., Lindholm, A., Evans, A., and Jick, S. (2020). Incident cardiovascular disease in patients diagnosed with multiple sclerosis: a multi-database study. Mult. Scler. Relat. Disord. 37, 101423.
7. Tublin, J.M., Adelstein, J.M., Del Monte, F., Combs, C.K., and Wold, L.E. (2019). Getting to the heart of alzheimer disease. Circ. Res. 124, 142–149.
8. Potashkin, J., Huang, X., Becker, C., Chen, H., Foltynie, T., and Marras, C. (2020). Understanding the links between cardiovascular disease and Parkinson’s disease. Mov. Disord. 35, 55–74.
9. Dixit, S., Castle, M., Velu, R.P., Swisher, L., Hodge, C., and Jaffe, A.S. (2000). Cardiac involvement in patients with acute neurologic disease: confirmation with cardiac troponin I. Arch. Intern. Med. 160, 3153–3158.
10. Allison, D.J., and Ditor, D.S. (2015). Immune dysfunction and chronic inflammation following spinal cord injury. Spinal Cord 53, 14–18.

Cite this article as: Jutzeler, CR, Nightingale, TE, Krassioukov, AV, and Walter, M (2020) Perfect storm: COVID-19 associated cardiac injury and implications for neurological disorders, Neurotrauma Reports 1:1, 2–4, DOI:10.1089/neur.2020.0002.

Abbreviations Used
COVID-19 = coronavirus disease 2019
hs-TNI = high-sensitivity troponin I
SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2

Publish in Neurotrauma Reports
- Immediate, unrestricted online access
- Rigorous peer review
- Compliance with open access mandates
- Authors retain copyright
- Highly indexed
- Targeted email marketing

liebertpub.com/neur