Research article

Hydrogen peroxide scavenging is not a virulence determinant in the pathogenesis of *Haemophilus influenzae* type b strain Eagan

Bjorn Vergauwen¹, Mark Herbert² and Jozef J Van Beeumen*¹

Address: ¹Laboratory of Protein Biochemistry and Protein Engineering, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium and ²Department of Paediatrics, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK

Email: Bjorn Vergauwen - Bjorn.Vergauwen@Ugent.be; Mark Herbert - mark.herbert@paediatrics.ox.ac.uk; Jozef J Van Beeumen* - Jozef.Vanbeeumen@Ugent.be

* Corresponding author

Abstract

Background: A potentially lethal flux of hydrogen peroxide (H₂O₂) is continuously generated during aerobic metabolism. It follows that aerobic organisms have equipped themselves with specific H₂O₂ dismutases and H₂O₂ reductases, of which catalase and the alkyl hydroperoxide reductase (AhpR) are the best-studied prokaryotic members. The sequenced *Haemophilus influenzae* Rd genome reveals one catalase, designated HktE, and no AhpR. However, *Haemophilus influenzae* type b strain Eagan (Hib), a causative agent of bacterial sepsis and meningitis in young children, disrupted in its hktE gene is not attenuated in virulence, and retains the ability to rapidly scavenge H₂O₂. This redundancy in H₂O₂-scavenging is accounted for by peroxidatic activity which specifically uses glutathione as the reducing substrate.

Results: We show here that inside acatalasaemic *H. influenzae* all of the residual peroxidatic activity is catalyzed by PGdx, a hybrid peroxiredoxin-glutaredoxin glutathione-dependent peroxidase. *In vitro* kinetic assays on crude hktE:pgdx *H. influenzae* Rd extracts revealed the presence of NAD(P)H:peroxide oxidoreductase activity, which, however, appears to be physiologically insignificant because of its low affinity for H₂O₂ (Kₘ = 1.1 mM). Hydroperoxidase-deficient hktE: pgdx *H. influenzae* Rd showed a slightly affected aerobic growth phenotype in rich broth, while, in chemically defined medium, growth was completely inhibited by aerobic conditions, unless the medium contained an amino acid/vitamin supplement. To study the role of PGdx in virulence and to assess the requirement of H₂O₂-scavenging during the course of infection, both a pgdx single mutant and a pgdx/hktE double mutant of Hib were assayed for virulence in an infant rat model. The ability of both mutant strains to cause bacteremia was unaffected.

Conclusion: Catalase (HktE) and a sole peroxidase (PGdx) account for the majority of scavenging of metabolically generated H₂O₂ in the *H. influenzae* cytoplasm. Growth experiments with hydroperoxidase-deficient hktE pgdx *H. influenzae* Rd suggest that the cytotoxicity inflicted by the continuous accumulation of H₂O₂ during aerobic growth brings about bacteriostasis rather than bacterial killing. Finally, H₂O₂-scavenging is not a determinant of Hib virulence in the infant rat model of infection.
Background

Haemophilus influenzae is a common pathogen among children and immuno-compromised adults with clinical manifestations that are largely type specific. The encapsulated *H. influenzae* serotype b (Hib) usually causes invasive infections, such as meningitis and septicaemia [1], whereas the much more common nonencapsulated, or nontypeable, *H. influenzae* is a major cause of otitis media, sinusitis, and pneumonia [2]. *H. influenzae* colonizes the nasopharynx of up to 75% of the population, from where the Hib strains in particular can invade the bloodstream and subsequently pass to the central nervous system. In the course of this pathogenic sequence, the organism moves from sites with high partial oxygen pressure (the nasopharyngeal mucosa; pO2 = 100 to 160 mm Hg [3]) to lower oxygenated body compartments (arterial and venous blood and cerebrospinal fluid; pO2 = 3 to 100 mm Hg [3]). These latter levels of oxygen, however, are generally sufficient to inflict injury on colonizing bacteria that are strictly anaerobic in nature or that have been deprived of defences against oxygen toxicity [4-7].

Molecular oxygen chemically oxidizes redox centers in all aerobic organisms, generating a flux of hydrogen peroxide (H2O2) and superoxide radicals (O2•-) that can potentially damage the cell through chemical modification of cellular building blocks, in the case of DNA leading to an increased and lethal mutation rate [8]. The array of protective measures oxygen-respiring aerobes developed to deal with H2O2/O2•- emphasises the burden that oxidative stress clearly puts on aerobic life. Aerobic organisms generate – or garner from their surroundings – a variety of water- and lipid soluble anti-oxidant compounds. Additionally, virtually all oxygen-respiring organisms contain enzymes that convert O2•- and H2O2 to innocuous products. Moreover, several damage removal/repair enzymes are constitutively synthesized to deal with chemically modified proteins, lipids and DNA. Finally, since O2•-/H2O2-levels may vary from time to time – because these levels are the result of a first order chemical reaction with respect to oxygen tension [8], and because such stress can also result from an exogenous source (e.g. bacterial competitors [9] or host inflammatory cells) – organisms are able to adapt to such fluctuating oxidative stresses by inducing the synthesis of antioxidant and damage/repair enzymes. Because of the ubiquity of O2•-/H2O2-scavenging enzymes among oxygen-respiring organisms, it follows that scavenging should hold a prominent place among the protective measures against oxygen toxicity.

This prediction was affirmed by studies of superoxide dismutase (SOD)-deficient and hydroperoxidase-deficient mutants of *Escherichia coli* sodA sodB [10] and *katG katE ahpR* [11]. *E. coli* both suffer elevated rates of oxygen-mediated DNA damage when grown aerobically in rich broth.

By characterizing and comparing the H2O2-sensitivities of acatalasaemic (katG katE) *E. coli* and *E. coli* defective in alkyl hydroperoxide reductase (AhpR), Seaver and Imlay [11] found that the H2O2 dismutase activity of catalase and the H2O2 peroxidatic activity of AhpR serve redundant, but distinct roles inside the *E. coli* cell. The bipartite alkyl hydroperoxidase system AhpR, composed of a typical 2-cys peroxiredoxin AhpC (the actual peroxidase) and the flavoprotein reductant AhpF [12], are the primary scavengers of endogenous low level H2O2, while catalase is the more effective scavenger when H2O2-levels are high and, presumably, when the absence of a carbon source depletes the cell of NAD(P)H necessary for AhpR activity.

Compared to competing bacteria in the upper respiratory tract of humans, *H. influenzae* is generally more sensitive to either oxygen- and H2O2-mediated cytotoxicity [4,9], which may corroborate with the predicted absence of an AhpR homologue in the sequenced *H. influenzae* Rd genome [13]. Nonetheless, mutating the sole structural gene for catalase, designated hktE, does not cause *H. influenzae* type b strain Eagan to grow poorly under aerobic conditions, nor to be reduced in virulence [14]. In fact, acatalasaemic *H. influenzae* Rd compared to its parental strain is not significantly more sensitive to the antimicrobial H2O2-production of *Streptococcus pneumoniae* [9], implying that catalase does little to protect *H. influenzae* under these conditions.

Additional and efficient hydroperoxidase activity was thus envisioned to be expressed by *H. influenzae*, and recently a candidate structural gene, termed pgdx, was cloned and characterized [15]. *pgdx* encodes for the atypical 2-cys peroxiredoxin PGdx, which catalyzes the reduction of both H2O2 and organic hydroperoxides, specifically by using glutathione – which *H. influenzae* has to garner from its surroundings [16] – as the reducing substrate. Besides its probable role as central H2O2-scavenger, Murphy et al. [17] proposed a function for PGdx in the process of biofilm formation of non-typeable *H. influenzae* during respiratory tract infections, and showed that chronic obstructive pulmonary disease patients persistently colonized with *H. influenzae* can develop antibodies against PGdx.

In this study, a hktE/pgdx *H. influenzae* Rd mutant unable to produce either catalase or PGdx was constructed and evaluated with respect to its sensitivity towards endogenously generated and exogenously supplied H2O2. These mutations were moved to Hib strain Eagan, the prototypic virulent strain used to assess virulence utilizing the infant rat model, to explore the impact of increased H2O2-stress on the ability of *H. influenzae* to cause invasive disease. Virulence of the hktE/pgdx double mutant was compared with that of the isogenic pgdx single mutant strain, and
Western blotting and PCR analysis are consistent with the integration of an ampicillin resistance cassette into the chromosomal pgdx gene of the acatalasaemic H. influenzae strain AB2593 and the virulent hktE H. influenzae type b strain Eagan mutant. (A) Western blot autoradiogram of PGdx; the preliminary SDS-PAGE experiment was conducted on samples of crude extracts derived from the following cultures; lane 1, E. coli, overexpressing PGdx (0.1 µg of total protein); lane 2, hktE pgdx H. influenzae Rd (1 µg of total protein); lane 3; hktE pgdx H. influenzae Rd (50 µg of total protein); lane 4, hktE pgdx H. influenzae type b strain Eagan (1 µg of total protein); lane 5, hktE pgdx H. influenzae type b strain Eagan (50 µg of total protein); lane 6, wild-type H. influenzae Rd (1 µg of total protein). Monomeric PGdx has a polypeptide mass of 26.6 kDa. Note that the recombinant PGdx protein oxidizes under aerobic conditions to form a disulfide bonded dimer of about 53 kDa. (B) PCR analysis of the pgdx gene applied on chromosomal DNA from the following strains; lane 1, wild-type H. influenzae Rd; lane 2, hktE pgdx H. influenzae Rd; lane 3, hktE pgdx H. influenzae type b strain Eagan. The pgdx amplicon of 1,071 bp is enlarged by 1,021 bp due to the insertion of the ampicillin resistance cassette.

Results

Construction of a hydroperoxidase-deficient H. influenzae Rd mutant

On the basis of earlier reports [15,18,19], we suspected that the remainder of hydroperoxidase activity in the acatalasaemic H. influenzae Rd mutant AB2593 (Rd hktE::mini-Tn10Cm) could be attributed to the atypical 2-Cys peroxiredoxin PGdx. To explore this hypothesis further, we constructed a derivative of AB2593 in which the pgdx gene is insertionally inactivated by an ampicillin resistance cassette (see Methods). One chloramphenicol/ampicillin resistant colony was isolated and termed hktE pgdx H. influenzae Rd from here on. Allelic exchange analysis of the pgdx gene applied on chromosomal DNA from the following strains; lane 1, E. coli, overexpressing PGdx (0.1 µg of total protein); lane 2, hktE pgdx H. influenzae Rd (1 µg of total protein); lane 3; hktE pgdx H. influenzae Rd (50 µg of total protein); lane 4, hktE pgdx H. influenzae type b strain Eagan (1 µg of total protein); lane 5, hktE pgdx H. influenzae type b strain Eagan (50 µg of total protein); lane 6, wild-type H. influenzae Rd (1 µg of total protein). Monomeric PGdx has a polypeptide mass of 26.6 kDa. Note that the recombinant PGdx protein oxidizes under aerobic conditions to form a disulfide bonded dimer of about 53 kDa. (B) PCR analysis of the pgdx gene applied on chromosomal DNA from the following strains; lane 1, wild-type H. influenzae Rd; lane 2, hktE pgdx H. influenzae Rd; lane 3, hktE pgdx H. influenzae type b strain Eagan. The pgdx amplicon of 1,071 bp is enlarged by 1,021 bp due to the insertion of the ampicillin resistance cassette.

Because of the probable H2O2-stress provoked by the disruption of both the hktE and pgdx genes, pgdx disruptants of AB2593 were selected under anaerobic conditions. Unexpectedly, however, hktE pgdx H. influenzae Rd colonies were indistinguishable from wild-type colonies when grown aerobically on sBHI plates. On Mcf plates, aerobically grown hktE pgdx H. influenzae Rd colonies were on the contrary roughly edged and much smaller than their wild-type counterparts (data not shown).

In order to assess residual hydroperoxidase activity inside hktE pgdx H. influenzae Rd cells, the rate of H2O2-dissipation was measured in a reaction mixture containing 1.5 µM of H2O2 and 3 × 10⁸ whole cells of either the wild-type Rd or the hktE pgdx H. influenzae Rd strain (Fig. 2). While wild-type cells removed H2O2 to levels beneath the limit of detection within twenty minutes, no H2O2-turnover was noticeable in the reaction mixture containing hktE pgdx H. influenzae Rd cells, indicating that the double mutant is unable to remove low micromolar concentrations of H2O2 from solution.

Low micromolar H2O2-toxicity is bacteriostatic rather than bactericidal to hktE pgdx H. influenzae Rd

Aerobically grown hydroperoxidase-deficient katG katE:aphR E. coli does not survive repeated subculturing in rich Luria-Bertani broth [11]. More precisely, growth rates and final densities are reduced after each dilution, which indicates H2O2-stress mediated DNA damage [11]. Because of our observation that the hktE pgdx H. influenzae Rd double mutant is indistinguishable from its isogenic parent when cultured aerobically on sBHI solid media, we won-
Both H. influenzae Rd and Hib Eagan deficient in both catalase (HktE) and PGdx can be regarded as totally hydroperoxidase-deficient since these double mutants lack the capability to remove low micromolar concentrations of H$_2$O$_2$ from solution. To a phosphate-buffered solution of 1.5 µM of H$_2$O$_2$, 3 × 108 whole cells of exponentially growing wild-type H. influenzae Rd (solid diamonds), hktE pgdx H. influenzae Rd (open diamonds), wild-type Hib Eagan (solid triangles), or hktE pgdx Hib Eagan (open triangles) were added, after which the turnover of H$_2$O$_2$ was followed in function of time (see Methods). Mean values of triplicate experiments (± SEM) are shown.

In a previous report, we showed that, because catalase is less efficient in scavenging metabolically-generated H$_2$O$_2$ than is PGdx, catalase of H. influenzae Rd cells that lack functional PGdx (because of the absence of its reductant, i.e. glutathione) is induced about two-fold during routine aerobic growth compared to catalase activity of totally hydroperoxidase-proficient cells [18], while a transient induction of about seven-fold is noticeable after an anaerobic culture was shifted to air [19]. This observation favours the general view that the oxidative stress encountered by microorganisms during an aerobic shift is substantially higher than during routine aerobic growth. So, wild-type and hktE pgdx H. influenzae Rd cells were grown anaerobically in sBHI broth to early exponential phase, after which the cultures were shifted to air (Fig. 3B). Hydroperoxidase-deficiency once more did not bring about a fundamental reduction in growth rate in response to the applied oxidative stress, while again lowered the final culture density compared to the isogenic parent. From these anaerobic-to-aerobic shifted cultures, dilutions were prepared at the early stationary phase, and aerobically growth was monitored (Fig. 3B). The resulting growth curves are similar to those obtained from anaerobically pregrown cultures, indicating that the higher level of oxidative stress encountered during the shift to aerobicosis does not cause significant DNA damage to hydroperoxidase-deficient H. influenzae Rd grown in rich medium.

On the other hand, growth experiments in chemically defined Mlc medium show that under these conditions strain hktE pgdx H. influenzae Rd is highly vulnerable to oxidative stress. No growth was observed in fully aerated cultures after dilution (Fig. 4A) or after shifting an anaerobic early exponential phase culture to air (Fig. 4B). Moreover, severe growth retardation was noticeable under the microaerophilic conditions present in a non-shaking candle extinction jar (data not shown). The underlying cause of the encountered oxidative stress is likely to be the accumulation of H$_2$O$_2$, since the addition of purvate (a non-enzyme scavenger of H$_2$O$_2$ [20]) or catalase to aerobically growing hktE pgdx H. influenzae Rd cultures resulted in wild-type growth (Fig. 4B).

In 1976, Boehme and coworkers [21] reported that certain amino acid biosynthesis pathways of E. coli are extremely vulnerable to oxidative inactivation. To test the hypothesis that aerobically grown hktE pgdx H. influenzae Rd cells in Mlc medium are not viable because of the inability to synthesize certain amino acids or vitamins, the growth experiments were repeated in Mlc medium that was supplemented with all 20 essential amino acids (final concentration of 40 µg/ml), together with the vitamins riboflavin, niacinamide, pyridoxine and thiamine (final concentration of 1 µg/ml) (Fig. 4A). The aerobic growth defect of the hktE pgdx H. influenzae Rd strain was largely alleviated by the amino acid/vitamin enrichment of the minimal medium, as inferred from the slightly lower doubling time compared to growth in rich sBHI broth.

The growth experiments described above are based on the cytotoxicity of low micromolar concentrations of H$_2$O$_2$, which are inevitably generated during oxygen-respiration 8. The effect of higher levels of H$_2$O$_2$ – which e.g. could be the result of the antimicrobial repertoire of bacterial competitors [9] or host phagocytes – on the fitness of the hydroperoxidase-deficient hktE pgdx double mutant, was assessed via disk diffusion testing (Fig. 5). Based on inhib-
In summary, respiratory-generated H2O2 seems to affect growth of hydroperoxidase-deficient H. influenzae Rd by blocking the supply of cellular building blocks, resulting in bacteriostasis. It thus appears that hktE pgdx Rd prevents the continuously generated stream of H2O2 being bacteriocidal, either by limiting the ferrous iron-mediated chemical reduction to the extremely harmful hydroxyl radicals (Fenton chemistry [22,23]) or perhaps by having particularly efficient DNA damage repair mechanisms.

Crude hktE pgdx H. influenzae Rd cell extracts contain low-specific NAD(P)H peroxidase activity

Because PGdx reduces peroxides, while concomitantly oxidizing glutathione, direct spectrophotometric monitoring of in vitro PGdx activity is feasible by following the NADPH-dependent reduction of glutathione disulfide catalyzed by the flavoprotein glutathione reductase. By using t-butyl hydroperoxide (t-BOOH) as the peroxide substrate, the usefulness of this assay to enzymatically confirm the hktE pgdx double mutation was limited because of severe background activity, i.e. oxidation of the nicotinamide nucleotide reductant was already apparent in reaction mixtures solely containing NADPH, t-BOOH and crude extract. Similar NADPH-dependent peroxidase activity was observed for mixtures containing NADPH, H2O2 and crude extract. Because this in vitro peroxidatic activity conflicts with the previous conclusion that hktE pgdx H. influenzae Rd cells are totally devoid of H2O2-scavenging activity, we determined the kinetic parameters of the NADPH peroxidatic activity using crude extracts (Fig. 6). The saturation curves for the reducing substrates NADPH and NADH (Fig. 6A) yielded comparable specificities, with Km values resembling their in vivo concentrations (Km-NADPH = 37.4 µM; Km-NADH = 55.0 µM). On the other hand, the Km values for the oxidizing substrates t-BOOH (Km-t-BOOH = 5.6 mM) and H2O2 (Km-H2O2 = 1.1 mM) are far above physiologically relevant in vivo concentrations (Fig. 6B). In fact, the affinity constant for H2O2 is 3 orders of magnitude higher compared to the Km value of −2 µM for PGdx catalyzed H2O2-reduction [15], likely explaining that this novel NAD(P)H-peroxide oxidoreductase activity is of minor importance when assaying the turnover of low micromolar concentration of H2O2 by whole hktE pgdx H. influenzae Rd cells.

For the NADPH-peroxide oxidoreductase activity to be a determinant factor for the hktE pgdx H. influenzae Rd cells remaining as fit under aerobic conditions in rich medium as their isogenic parent, one would expect this peroxidatic activity to be regulated in response to oxidative stress. So,
NADPH peroxidatic activity was measured in crude extracts derived from wild-type and hktE pgdx H. influenzae Rd cultures using t-BOOH as the oxidizing substrate. For the purpose of the present study, monitoring the NADPH-dependent turnover of H₂O₂ would be more appropriate, however, the endogenous catalase activity of wild-type cells conflicts with this approach. No induction of NADPH-dependent t-BOOH peroxidase activity was apparent. In fact, from the recorded specific activities of 11.8 ± 1.3 nmol/min mg protein and 8.2 ± 2.1 nmol/min mg protein for wild-type and hktE pgdx H. influenzae Rd cell extracts respectively, it seems that NADPH-t-BOOH oxireductase activity is slightly repressed as the result of H₂O₂-stress.

Hydroperoxidase-deficient H. influenzae strain Eagan is not attenuated in virulence

To determine the involvement of PGdx in the pathogenic sequence leading to bacteremia and to assess the influence of increased H₂O₂-stress on Hib virulence, both a single Hib Eagan mutant disrupted in its pgdx gene, and a Hib Eagan hktE pgdx double mutant were created by moving these mutations from the genetically modified Rd strains to competence-induced Hib Eagan cells (Fig. 1). Growth of wild-type and hktE pgdx Hib Eagan strains in rich sBHI and chemically defined Mlc liquid medium showed similar trends as described for their Rd counterparts (data not shown). Moreover, Fig. 2 shows that the hktE pgdx Hib Eagan double mutant is completely unable to metabolise low µM concentrations of H₂O₂, while Fig. 5 shows that the double mutant cells are sensitised to H₂O₂-stress due to low-complex nutrient availability. These two phenotypes match those observed for the Rd counterparts and conclusions are to be drawn accordingly. To assess virulence, wild-type Hib Eagan and mutant strains were cultured anaerobically to mid-exponential phase, diluted to ~200 CFU/100 µl, and intraperitoneally inoculated into 5-day-old infant rats. Bacteremia was assessed at 48 hours by culturing a tail vein blood sample anaerobically on sBHI plates containing the appropriate antibiotics. Compared to wild-type Hib Eagan (814 ± 380 CFU/5 µl blood; n = 6), both pgdx (899 ± 248 CFU/5 µl blood; n = 5) and hktE pgdx Hib Eagan (782 ± 433 CFU/5 µl blood; n = 4) were not attenuated in virulence.

Discussion

A Hib mutant defective in lipoamide dehydrogenase is indistinguishable under anaerobic conditions from its isogenic parent, while showing no growth at all in the presence of air [24]. Because this strain is severely reduced in virulence, it was concluded that Hib requires the ability for aerobic respiration in order to complete its pathogenic sequence leading to invasive disease. It thus follows that Hib strains are subjected to O₂*/H₂O₂-toxicity in the course of bacteremia. Nonetheless, the fitness of our hydroperoxidase-deficient H. influenzae Rd mutant is only marginally affected by aerobic conditions in rich sBHI broth, and hktE pgdx Hib Eagan displays a normal ability to produce persistent bacteremia in infant rats. Similar observations are reported for SOD-deficient Hib [4], suggesting that in the infant rat model of infection, neither phagocytic cells and their respiratory bursts, nor the potentially toxic O₂*-levels in the blood, play a major role in limiting Hib virulence. The pathogenic sequence of *Sal-
monella typhimurium – another causative agent of bacte-
ria in humans – to cause infection when injected into
mice by the intraperitoneal route, is also indifferent to the
presence of either catalase [25], AhpC or OxyR [26]
(which regulates transcription of about 30 proteins in
response to fluctuating H2O2-levels [27]), while a severe
attenuation in virulence is noticeable for a Salmonella typh-
imurium recA mutant defective in DNA repair [25]. Thus,
the ability to repair damaged DNA appears to be more
important than the ability to directly inactivate the medi-
ators of oxygen toxicity, O2·− and H2O2, during the course
of invasive infection of pathogenic agents that are able to
deceive the host inflammatory system.

A catalasaemic H. influenzae Rd does not grow in chemi-
cally defined Mlc medium, because of an abrogated ability
to remove H2O2 [19]. Because wild-type growth as well as
wild-type H2O2-scavenging activity (of low micromolar
levels of H2O2) is regained simply by adding glutathione
to the minimal medium, we envisioned that the remain-
der of hydroperoxidase activity inside catalasaemic H.
influenzae Rd is catalyzed in a glutathione-dependent
manner [19]. We hypothesized PGdx to be the most likely
candidate to catalyze this activity because of its high
specificity for H2O2-reduction (kcat/Km = 5.01 × 106 s−1 M−1)
and because completion of its peroxidatic cycle exclu-
sively depends on the presence of glutathione (e.g. thio-
redoxin can not act as a PGdx reductant) [15]. This
hypothesis is confirmed here given that either a H. influ-
enzae Rd or a Hib Eagan double mutant that lacks both
catalase and PGdx can not catalyze turnover of micromo-
lar amounts of H2O2 (Fig. 2). Thus, catalase (HktE) and a
sole peroxidase (PGdx) account for the majority of H2O2-
scavenging in the H. influenzae cytoplasm. The H2O2-
scavenging machinery of E. coli also is embodied by catalase
(KatG) and a sole peroxidase, in this case AhpC instead of
PGdx [11]. Although being clearly dissimilar with regard
to the reductive branch of their peroxidatic cycles, the
peroxiredoxins AhpC and PGdx can be regarded as being
functionally analogous, since i) their kinetic parameters
for either the reduction of H2O2 or t-BOOH are very simil-
lar [15,28]; ii) they both appear to be of most importance
during routine exponential growth (when the H2O2-con-
centrations are low and the supply of reductant is high)
[11,19]; iii) they both are among the most abundantly
expressed proteins [29]; iv) neither PGdx, in case of Hib as
reported here, nor AhpC, in case of S. typhimurium [26] as
well as in case of the catalasaemic anaerobe Porphyro-
monas gingivalis W83 [30], are required for virulence; and v)
they both elicit an immunogenic response when injected
into infected models [17,26,31]. The latter observation
also shows that virulence and immunity are not necessar-
ily connected, as has also been reported e.g. for the major
secretory protein of Legionella pneumophila, which results
in strong protective immunity, but is apparently nones-
sential for virulence [32].

On the basis of the established physiologically relevant
affinities for its reducing substrates, NADPH (Km = 37.4
µM) and NADH (Km = 55.0 µM), the NAD(P)H:peroxide
oxidoreductase activity, detected here in crude extracts of
both hktE/pgdx H. influenzae Rd and its wild-type parent,
could be of some relevance for the parasite to control its
peroxide levels. The affinities, however, for either the sim-
plest peroxide H2O2 (Km = 1.1 mM) or the organic peroxy-
de t-BOOH (Km = 5.6 mM) are so low as to question
whether these peroxides are the real in vivo substrates for
the NAD(P)H:peroxide oxidoreductase activity. Moreo-
ver, we have shown here in Fig. 2 that hktE/pgdx H. influ-
enzae Rd as well as hktE/pgdx Hib Eagan are totally
deprived of H2O2-scavenging activity, meaning that, not
only the so-called NAD(P)H peroxidase, but also other
hydroperoxidases potentially expressed by H. influenzae,
such as the thiol peroxidases Bcp and Tpx [33], are not
involved in scavenging endogenously-generated H2O2. In
this respect, the determination of the kinetic parameters
for Bcp and Tpx would be of great value to clarify this
issue.

A decade ago, Coves et al. [34] reported the NAD(P)H:
H2O2 oxidoreductase activity in cell-free E. coli extracts;
The NAD(P)H:peroxide oxidoreductase activity found in crude extracts of hktE pgdx H. influenzae Rd cultures has physiologically relevant binding affinities for its reducing substrates NADPH and NADH, while being very low specific with regard to the oxidizing peroxide substrates H₂O₂ and t-BOOH. Michaelis-Menten representations of NAD(P)H:peroxide oxidoreductase activity with respect to varying concentrations of (A) reductants and (B) oxidants. Kinetic constants were calculated by fitting the data to the Michaelis-Menten equation using a non-linear curve fit. The amount of total protein used for each kinetic assay was 2.5 mg.

Hydroperoxidase-deficient (katG katE ahpR) E. coli progressively grows slower in rich Luria-Bertani broth and can only grow for two generations in M9 minimal medium supplemented with all 20 amino acids [11]. On the contrary, hydroperoxidase-deficiency (hktE pgdx) inflicted in either an Rd or an Eagan background resulted in wild-type growth, generation after generation, in rich sBHI broth, while in chemically defined Mc medium supplemented with all 20 amino acids, a slight aerobic growth defect is manifested as the postponement of nearly wild-type exponential growth to lower-than-wild-type stationary phase cell densities. These results thus imply that endogenously-generated H₂O₂ is bacteriocidal (mutagenic) to E. coli, while being rather bacteriostatic to H. influenzae. This difference in cytotoxic behaviour of H₂O₂ cannot be attributed to quantitative differences, since we have previously reported that aerobically grown H. influenzae Rd cells produce H₂O₂ at a similar rate (~12.4 μM/s) as has been established for E. coli [11,19]. Two plausible explanations, however, can be put forth to address this issue. First, since H₂O₂ by itself is not mutagenic, the rate of formation of mutagenic hydroxyl radicals derived from H₂O₂ adjacent to the genomic DNA molecule of E. coli may be higher compared to that nearby the H. influenzae genome. Secondly, the H. influenzae DNA mismatch repair system may be more efficient in repairing its oxidatively damaged DNA than is the E. coli counterpart, either on the basis of pure kinetics or because of a difference in sensitivity towards H₂O₂-mediated inactivation. In this regard, it is interesting to note that the human DNA mismatch repair system for example is highly sensitive to H₂O₂-mediated inactivation, even at noncytotoxic levels of H₂O₂ [35]. The present characterization of hydroperoxidase-deficient H. influenzae Rd and Hib Eagan suggests that the wild-type strains should be highly robust against H₂O₂-stress. How, then, can it be explained that H. influenzae is more vulnerable to oxygen toxicity compared to other inhabitants of the human nasopharynx [4,9]? First of all, since we have assessed here cytotoxicity of only one product (H₂O₂) of the reaction of oxygen with the cell’s redox centers, the possibility remains that growth of H. influenzae is highly affected by O₂- stress, as has been evidenced by the absence of growth of a SOD-deficient Hib strain under fully aerated conditions. Secondly, taken into account the highly fastidious nature and the highly condensed genome of H. influenzae, O₂- mediated protein inactivation could result in a number of auxotrophies, which cannot be relieved under certain culture conditions. In this respect, we consider the basis and diversity of auxotrophies imposed upon H. influenzae by either O₂- stress or H₂O₂-stress to be important topics for further research.
Conclusion

By generating mutants of H. influenzae Rd and the virulent strain Hib Eagan defective in both HktE and Pgdx, we were able to show that these two hydroperoxidasases, a catalase and a peroxiredoxin, account for the majority of scavenging of metabolically-generated H$_2$O$_2$. No other H$_2$O$_2$-removal activities appear to be of physiological significance. Yet, in vitro kinetic assays revealed that hktE::pgdx H. influenzae Rd still produce NAD(P)H:peroxide oxidoreductase activity. Although this may represent a detoxifying activity, the NAD(P)H:peroxide oxidoreductase appears to be irrelevant for in vivo H$_2$O$_2$-scavenging because of its high K_m-value (1.1 mM) when considering physiological steady-state H$_2$O$_2$-concentrations (20–150 nM, as estimated for E. coli [36,37]). In the absence of hydroperoxidase activity, aerobic growth is fundamentally affected only in case of limiting amino acid/vitamin availability, implying that the continuous stream of H$_2$O$_2$ generated during H. influenzae's aerobic metabolism affects biosynthetic functions, while, apparently, causing DNA damage which not overkills the cells' DNA repair machinery. In agreement with these ex vivo growth studies, in the infant rat model of bacteremia, the double hktE::pgdx mutation in the H. influenzae background did not result in attenuated virulence indicating that HktE and Pgdx, and more in general H$_2$O$_2$-scavenging, are not important for virulence in this model of infection.

Methods

Materials

Restriction endonucleases were obtained from New England Biolabs (Beverly, MA). DNA purification from gel or solution was carried out using either the Qiaquick DNA Extraction or PCR Purification Kit (Qiagen, Crawley, UK). Ligations were performed using T$_4$ DNA ligase (Promega, Madison, WI). Plasmid DNA was prepared by the alkaline lysis method on either a small scale [38] or a 30-ml scale using the Qiagen Plasmid Purification Kit.

Media

Brain heart infusion broth (BHI) was prepared from a dehydrate (Difco, Becton Dickinson and Company, Franklin Lakes, NJ) and autoclaved. To this medium, a Haemophilus test medium supplement (Oxoid, Hampshire, UK), containing V-factor (NAD) and X-factor (hemin), was added according to the manufacturers' instructions to prepare sBHI broth. H. influenzae specific minimal medium (Mlc medium) was prepared essentially as described by Herriott et al. [39]. The Mlc medium used in this study contained 50 µM of oxidized glutathione, unless indicated otherwise, and was supplemented with a Haemophilus test medium supplement according to the manufacturers' instructions. The amino acid/vitamin supplement used in this study was purchased from Athena Environmental Sciences (Baltimore, MD) and is composed of 19 amino acids (40 µg/ml; no methionine (note that Mlc medium already contains methionine)), the vitamins riboflavin, niacinamide, pyridoxine-HCl and thiamine (10 µg/ml each), magnesium sulfate (240 µg/ml), ferrous sulfate heptahydrate (25 µg/ml) and glucose (4 mg/ml). Oxygen-free media were generated using a Coy chamber (Coy Laboratory products, Inc.). To prepare agar plates, 1.8% agar was added to the sBHI or Mlc liquid growth media before autoclaving.

Bacterial strains and growth conditions

E. coli TOP10 (Invitrogen, Paisley, UK) was used as host for cloning. E. coli strains and clones were cultured at 37°C in Luria-Bertani medium on an orbital shaker rotating at 200 rpm. When appropriate, 100 µg of ampicillin and/or 25 µg of chloramphenicol were added per ml of either solid or liquid E. coli culture media.

Wild-type strain H. influenzae Rd was purchased from the American Type Culture Collection (Manassas, VA). Strain AB2593 (Rd hktE::mini-Tn10Cm) was kindly provided by William R. Bishai (Department of Medicine, Devison of Infectious Diseases, Johns Hopkins University School of Medicine). H. influenzae type b strain Eagan was kindly provided by A. Wright (Tufts University, Boston).

Cultures were routinely grown at 37°C in a candle extinction jar without shaking. When appropriate, 2 µg of chloramphenicol and/or 6 µg of ampicillin were added per ml of either liquid or solid H. influenzae culture media. Growth curves were monitored in the absence of antibiotics and starter cultures were always derived from overnight precultures which were diluted 1:50 to 1:100 to an optical density at 600 nm (OD$_{600}$) of <0.005. Aerobic growth was monitored under aerobic conditions as described previously [19]. For each growth experiment, three independent experiments were performed with duplicates and the mean of a single representative set of duplicates (± the standard error of the mean (SEM)) is plotted in the figures.

For anaerobic-to-aerobic shift experiments, overnight precultures were diluted 1:50 to 1:100 in oxygen-free growth medium to an OD$_{600}$ of ~0.005 and these subcultures were then grown anaerobically to an OD of ~0.15. Anaerobic cultures were prepared in a Coy chamber under an atmosphere of 85% N$_2$-10% H$_2$-5% CO$_2$. The cultures were subsequently shaken (200 rpm) in atmospheric conditions and OD$_{600}$ readings were recorded at one hour intervals as described previously [19]. In the case of aerobic-shift growth experiments in the presence of non-enzyme or catalase based H$_2$O$_2$ scavenging, pyruvate (added from a buffered sterile stock solution to a final concentration of 0.75%; Sigma-Aldrich, St. Louis, MO) or
bovine catalase (1,000 Units/ml; Sigma-Aldrich) were added to the culture media.

Construction of bacterial mutants

A hktE::pgdx H. influenzae Rd mutant was constructed by the integrative disruption method using the acetalasemic strain AB2593 as a recipient. Briefly, plasmid pSG4.0, a TOPO-XL derivative containing 4.0-kb of H. influenzae Rd subgenomic DNA encompassing the 726-bp pgdx gene (plus 1.4-kb upstream and 2.0-kb downstream) [18], was linearized with AccI, which cuts the plasmid once at base pair 206 of the pgdx gene. The PCR amplified and AccI-digested ampicillin resistance cassette of plasmid pACYC177 (forward primer: 5'-CGTCGACGG-3'; reverse primer: 5'-CGCGGATCCTGTTTGATTTGGCG-3'; reverse primer: CGTCGACCTCTGGTTTTATAGTAATACCAATGCTTCGAA-3'; AccI sites are underlined) was ligated into the AccI linearized pSG4.0 plasmid. The resulting pgdx::AmpR knockout out plasmid was used as a template for PCR to amplify the entire mutated pgdx locus (forward primer: 5'-CGCGGATCCTGTTTGATTTGGCG-3'; reverse primer: CGCGGATCCTCTGGTTTTATAGTAATACCAATGCTTCGAA-3'). This DNA was then used to transform the competent AB2593 recipient strain using the MIV method [40]. Integration of the linear pgdx::AmpR knockout-out fragment by homologous recombination was selected for on the basis of ampicillin and chloramphenicol resistance, under anaerobic conditions. The disruption was confirmed by PCR and Western analysis (Fig. 1).

An analogous methodology was used in order to construct strain pgdx H. influenzae type b Eagan by using the wild-type Hb strain as the recipient. In order to construct strain hktE::pgdx H. influenzae type b Eagan, chromosomal DNA prepared from AB2593 was used to transform strain pgdx::H. influenzae type b Eagan by the MIV method [40], and ampicillin/chloramphenicol resistant transformants were selected under anaerobic conditions. Integrative disruption of the hktE gene was analyzed by PCR and confirmed by assaying catalase activity in whole cells as described in ref. [41]. The disruption of the pgdx gene was once more confirmed by PCR and Western analysis (Fig. 1).

Both adjacent genes of pgdx are transcribed in opposite directions [18]. Therefore, we believe that pgdx is not part of an operon, and, consequently, insertional inactivation of pgdx is expected to cause no polar effects. Moreover, other illegitimate events due to the insertional inactivation process are unlikely because the pgdx locus, contained in the interrupted PCR-amplicon used for the integrative disruption strategy, of wild-type and hktE::pgdx::double mutant strains was entirely PCR amplified and sequenced (data not shown). No substitutions or deletions/insertions apart from the integrated ampicillin resistance cassette have become apparent.

Disk diffusion

Overnight anaerobically grown precultures were diluted 1:50 to 1:100 in either sBHI or Mlc medium to an OD_{600} of ~0.005 and then grown microaerobically (non-shaking candle extinction jar) to an OD_{600} of 0.75 (late exponential phase). The following manipulations were then performed inside the Coy chamber. Using a sterile cotton swab, cells were inoculated onto the entire surface of either sBHI or Mlc plates. Round sterile filters (5-mm diameter) were placed in the center of the plates and spotted with 5 µl of 3% H_{2}O_{2}. The plates were placed in an anaerobic jar and incubated for two days at 37°C. The diameter of the zone of complete inhibition was recorded in millimeters. The experiments were performed in triplicate; mean values are plotted with error bars representing the SEM.

H_{2}O_{2} scavenging by whole cells

Overnight anaerobically grown precultures were diluted 1:50 to 1:100 in either sBHI medium to an OD_{600} of ~0.005 and then grown microaerobically (non-shaking candle extinction jar) to an OD_{600} of 0.15. Cells were pelleted in a microcentrifuge, washed twice, and resuspended in 0.5 ml room temperature phosphate-buffered saline to an OD_{600} of 0.15. An equal volume of a 3 µM H_{2}O_{2} solution was selected for then added to the cells to initiate the H_{2}O_{2} scavenging reaction. At intervals, 200-µl samples were removed, and the reactions were terminated (i.e. the cells were removed) by filtering the reaction mixtures with sterile Millex-GV13 0.22-µm-pore-size filter units (Millipore Products Division, Bedford, Mass.). Residual H_{2}O_{2} was then assayed by using the Amplex red hydrogen peroxide/peroxidase assay kit (Molecular Probes, Eugene, Oreg.) as described before [19].

NAD(P)H:peroxide oxidoreductase activity measurements

The standard assay for NAD(P)H:peroxide oxidoreductase activity is based on the t-BOOH-dependent oxidation of NADPH, measured at room temperature by the decrease in absorbance at 340 nm (ε_{340}(NADPH) = 6220 cm^{-1} M^{-1}). A Uvikon 943 double beam UV-visible spectrophotometer (Kontron Instruments, Watford, UK) was used for the spectrophotometric measurements. Each assay mixture contained in a final volume of 0.5 ml, 150 µM NADPH, 20 mM t-BOOH, 2.5 mg of crude extract (which was cleared of small metabolites by a HiPrep™ 26/10 desalting column (Amersham Biosciences, Freiburg, Germany)), and 50 mM Tris-HCl, pH 7.0. In case of affinity measurements of the reducing substrates NADPH and NADH, the fixed concentration of t-BOOH used was 20 mM. In case of affinity measurements of the oxidizing substrates t-BOOH and H_{2}O_{2}, the fixed concentration of NADPH used was 400 µM. Protein concentration was determined by the Bradford method [42] with bovine serum albumin as a standard.
Attenuation studies
Wild-type Hib and mutants were cultured anaerobically (GasPak150 TM in a BBL GasPakPlus generator with a catalyst (Baxter Diagnostics Inc., Medford, MA)) in BHI broth to an OD$_{490}$ of 0.2 to 0.4. The strains were diluted in phosphate-buffered saline (Gibco, Paisley) with 0.1% gelatin (PBSG) to give ~200 colony-forming units (CFU)/100 µl. Counts were confirmed by plating onto BHI agar without antibiotics (data not shown). Approximately 200 CFU of each strain were intraperitoneally inoculated into 5-day-old Sprague-Dawley infant rats. At 48 hours, the rats were bled, and a 5-µl tail vein blood sample was diluted 1:200 in PBSG and cultured anaerobically on BHI agar. Colony counts of recovered Eagan and mutants were compared. Values are means ± standard error of at least four experiments.

Authors’ contributions
BV carried out the molecular genetic work, the enzymological and the physiological studies, and drafted the manuscript. MH carried out the virulence studies and logical and the physiological studies, and drafted the manuscript. JJVB conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (research grant 434534). We want to thank Tine Blomme and Wendy Rottweier for excellent technical assistance.

References
1. Aubrey R, Tang C: The pathogenesis of disease due to type b Haemophilus influenzae. Methods Mol Med 2003, 71:29-50.
2. Foxwell AR, Kyd JM, Cripps AW: Nontypeable Haemophilus influenzae: pathogenesis and prevention. Microbiol Mol Biol Rev 1998, 62:294-308.
3. Martin-Du Pan RC, Benoit R, Girardier L: The role of body position and gravity in the symptoms and treatment of various medical diseases. Swiss Med Wkly 2004, 134:543-551.
4. D’Mello RA, Langford PR, Kroll JS: Role of bacterial Mn-cofactored superoxide dismutase in oxidative stress responses, nasopharyngeal colonization, and sustained bacteremia caused by Haemophilus influenzae type b. Infect Immun 1997, 65:2700-2706.
5. Wang G, Maier RJ: An NADPH quinone reductase of Helicobacter pylori plays an important role in oxidative stress resistance and host colonization. Infect Immun 2004, 72:1391-1396.
6. Buchmeier N, Bossie S, Chen CY, Fang FC, Guiney DG, Libby SJ: SlyA, a transcriptional regulator of Salmonella typhimurium, is required for resistance to oxidative stress and is expressed in the intracellular environment of macrophages. Infect Immun 1997, 65:3725-3730.
7. Buchmeier NA, Lips C, So MY, Heffron F: Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol Microbiol 1993, 7:923-936.
8. Seaver LC, Imlay JA: Are respiratory enzymes the primary sources of intracellular hydrogen peroxide? J Biol Chem 2004, 279:48742-48750.
9. Pericone CD, Overweg K, Hermans PW, Weiser JN: Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect Immun 2000, 68:3990-3997.
10. Carlioz A, Touati D: Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? Embry J 1985, 5:623-630.
11. Seaver LC, Imlay JA: Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 2001, 183:7173-7181.
12. Storz G, Jacobson FS, Tartaglia L, Morgan RW, Silveira LA, Ames BN: An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: genetic characterization and cloning of ahp. J Bacteriol 1989, 171:2049-2055.
13. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, McKenny K, Sutton G, FitzHugh W, Fields C, Gocayne JD, Scott J, Shirley R, Liu LI, Gledoe A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL, Fuhrmann JL, Geoghegan NS, Giebink GL, McDonald LA, Small KV, Fraser CM, Smith HO, Venter JC: Whole-Genome Random Sequencing and Assembly of Haemophilus-Influenzae Rd. Science 1995, 269:496-512.
14. Bishai WR, Howard NS, Winkelstein JA, Smith HO: Characterization and virulence analysis of catalase mutants of Haemophilus influenzae. Infect Immun 1992, 60:2784-2789.
15. Pauwels F, Vergauwen B, Vanrobaey S, Devreeze B, Van Beeumen JJ: Purification and characterization of a chimeric enzyme from Haemophilus influenzae Rd that exhibits glutathione-dependent peroxidase activity. J Biol Chem 2003, 278:18658-18666.
16. Vergauwen B, Pauwels F, Vaneechoute M, Van Beeumen JJ: Exogenous glutathione completes the defense against oxidative stress in Haemophilus influenzae. J Bacteriol 2003, 185:1572-1581.
17. Murphy TF, Kirkham C, Sethi S, Lesse AJ: Expression of a peroxiredoxin-glutaredoxin by Haemophilus influenzae in biofilms and during human respiratory tract infection. FEMS Immuno Med Microbiol 2005, 44:81-89.
18. Pauwels F, Vergauwen B, Van Beeumen JJ: Physiological characterization of Haemophilus influenzae Rd deficient in its glutathione-dependent peroxidase PGdx. J Biol Chem 2004, 279:12163-12170.
19. Vergauwen B, Pauwels F, Van Beeumen JJ: Glutathione and catalase: two different strategies to defeat oxidative defenses for protection against respiratory-generated hydrogen peroxide in Haemophilus influenzae. J Bacteriol 2003, 185:5555-5562.
20. Varma SD, Morris SM: Peroxide damage to the eye lens in vitro prevention by pyruvate. Free Radic Res Commun 1988, 4:283-290.
21. Bowers DE, Vincent K, Brown OR: Oxygen and toxicity inhibition of amino acid biosynthesis. Nature 1976, 262:418-420.
22. Repine JE, Fox RB, Berger ET: Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical. J Biol Chem 1981, 256:7094-7096.
23. McCord JM, Fridovich I: The biology and pathology of oxygen radicals. Ann Intern Med 1978, 89:122-127.
24. Herbert M, Kraiss A, Hilpert AK, Schlor S, Reidl J: Aerobic growth deficiency Haemophilus influenzae mutants are non-virulent: implications on metabolism. Int J Med Microbiol 2003, 289:143-152.
25. Buchmeier NA, Libby SJ, Xu Y, Loewen PC, Switalsa J, Guiney DG, Fang FC: DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Invest 1995, 95:1047-1053.
26. Taylor PD, Inclay CJ, Gallagher MP: The Salmonella typhimurium AhpC polypeptide is not essential for oxidative and toxicity inhibition in BALB/c mice but is recognized as an antigen during infection. Infect Immun 1998, 66:3208-3217.
27. Christman MF, Morgan RW, Jacobson FS, Ames BN: Positive control of a regulator for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 1985, 41:753-762.
28. Niimura Y, Poole LB, Massey V: Amphibacillus xylanus NADH oxidase and Salmonella typhimurium alkyl-hydroperoxide reductase flavoprotein components show extremely high scavenging activity for both alkyl hydroperoxide and hydrogen peroxide in the presence of S. typhimurium alkyl-hydroperoxide reductase 22-kDa protein component. J Biol Chem 1995, 270:25645-25650.
29. Yoon SH, Han MJ, Lee SY, Jeong KJ, Yoo JS: Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng 2003, 81:753-767.

30. Johnson NA, Liu Y, Fletcher HM: Alkyl hydroperoxide peroxidase subunit C (ahpC) protects against organic peroxides but does not affect the virulence of Porphyromonas gingivalis W83. Oral Microbiol Immunol 2004, 19:233-239.

31. O'Toole PW, Logan SM, Kostrzynska M, Wadstrom T, Trust TJ: Isolation and biochemical and molecular analyses of a species-specific protein antigen from the gastric pathogen Helicobacter pylori. J Bacteriol 1991, 173:505-513.

32. Blander SJ, Szeitz L, Shuman HA, Horwitz MA: An immunoprotective molecule, the major secretory protein of Legionella pneumophila, is not a virulence factor in a guinea pig model of Legionnaires' disease. J Clin Invest 1990, 86:817-824.

33. Hwang YS, Chae HZ, Kim K: Characterization of Haemophilus influenzae Peroxiredoxins. J Biochem Mol Biol 2000, 33:514-518.

34. Coves J, Eschenbrenner M, Frenette M: NAD(P)H oxidation by hydrogen peroxide in Escherichia coli. Biochem Biophys Res Commun 1991, 178:54-59.

35. Chang CL, Marra G, Chauhan DP, Ha HT, Chang DK, Ricciardiello L, Randolph A, Carethers JM, Boland CR: Oxidative stress inactivates the human DNA mismatch repair system. Am J Physiol Cell Physiol 2002, 283:C148-54.

36. Gonzalez-Flecha B, Demple B: Homeostatic regulation of intracellular hydrogen peroxide concentration in aerobically growing Escherichia coli. J Bacteriol 1997, 179:382-388.

37. Liang LC, Imlay JA: Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol 2001, 183:7182-7189.

38. Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 1979, 7:1513-1523.

39. Herriott RM, Meyer EY, Vogt M, Modan M: Defined medium for growth of Haemophilus influenzae. J Bacteriol 1970, 101:513-516.

40. Herriott RM, Meyer EM, Vogt M: Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J Bacteriol 1970, 101:517-524.

41. Greenwald RA: Therapeutic benefits of oxygen radical scavenger treatments remain unproven. J Free Radic Biol Med 1985, 1:173-177.

42. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.