Implementing Bundle Care in Major Abdominal Emergency Surgery: Long-Term Mortality and Comprehensive Complication Index

Rune Munch Trangbæk1 · Jakob Burcharth2 · Ismail Gögenur2

Accepted: 10 September 2022 / Published online: 28 September 2022 © The Author(s) 2022

Abstract

Background Major abdominal emergency surgery (MAES) has a high risk of postoperative mortality and a high complication rate. The aim of this study was to evaluate whether the implementation of a perioperative care bundle reduced long-term mortality and the Comprehensive Complication Index (CCI) after MAES.

Methods This study was a single-centre retrospective cohort study. Data in the intervention group were collected prospectively and compared with a historical cohort from the same centre. It includes adult patients undergoing MAES. We implemented a care bundle under the name Abdominal Surgery Acute Protocol (ASAP). We initiated fast-track initiatives and standardised optimised care in before, during and after surgery. Data were analysed using survival analysis and multiple regression.

Results We included 120 patients in the intervention cohort and 258 in the historical cohort. The one-year mortality rate was 21.7% in the intervention cohort compared to 28.3% in the standard care cohort. Adjusted odds ratio of one-year mortality 0.81 (CI95% 0.41–1.56). The 30-day mortality was lowered from 19.0 to 6.7% (p = 0.003). The CCI in the intervention cohort was 8.7 (IQR 0–34) compared to 21 (IQR 0–36) in the control cohort (p = 0.932) The length of stay increased by two days (p = 0.021). Most cases had 71–80% protocol compliance.

Conclusion Implementing bundle care in major abdominal emergency surgery lowered the 30-day postoperative mortality. The difference in mortality was preserved over time although not significant after one year. The changes in the Comprehensive Complication Index were not statistically significant.

Background

Depending on the population, mortality rates range from 3.6 to 48% after major emergency abdominal surgery (MAES) [1–7]. Conditions requiring MAES such as bowel obstruction, perforation or ischaemia are associated with inflammation, sepsis and pain [8–10]. The systemic inflammation or haemodynamic instability in combination with surgical stress results in a risk of organ failure and postoperative complications [11, 12]. Optimising the care of patients undergoing MAES has received increased attention [13–18]. Previous attempts at optimising perioperative initiatives for patients undergoing MAES have shown a decrease in mortality after implementing quality improvement programmes by reducing mortality from 21.8% to 15.5% and from 14% to 10.5%, respectively [13, 14]. However, the most extensive study in this area found no effect of implementing a large-scale multicentre optimising protocol [17].

Complications influence the postoperative recovery [19]. The Clavien–Dindo score only accounts for
individual complications, but the more recent comprehen-
sive complication index (CCI) includes all complications
over a course of time to form a single score. None of the
prior studies investigated the influence of a quality
improvement programme on one-year mortality or the CCI
[20–22]. This study aimed to evaluate the effect of a
multidisciplinary perioperative bundle on 30-day mortality,
one-year mortality and the postoperative CCI.

Methods

Study design

This study was a retrospective cohort study on a process
improvement project. Data were prospectively collected in
the intervention group. The intervention was a multidisci-
plinary perioperative bundle. A historical consecutive
control cohort from before the bundle was used for com-
parison. No approval was needed from the ethical board for
this type of study.

Setting

A multidisciplinary bundle named Abdominal Surgery
Acute Protocol (ASAP) was implemented and covered the
entire perioperative course from admission to discharge.
Data for the control cohort were collected over a two-year
period from January 2015. For the intervention cohort, data
were consecutively collected from June 2018 until June
2019. Data were gathered from a single hospital with a
patient base of 350,000 people. Patients were initially
admitted to an emergency department with abdominal
surgeons present. Postoperative complications were regis-
tered up to 30 days after surgery. Mortality was registered
up to one year after surgery.

Participants

Patients were included if they had MAES. Patients who had
surgery for a complication through elective surgery were
excluded. Patients transferred from other wards or hospitals
were also excluded. MAES was defined as either laparo-
tomy or laparoscopy due to emergency abdominal patho-
physiology that did not meet the exclusion criteria. The
exclusion criteria included surgery due to trauma, appen-
dicitis or cholecystitis. The following conditions were
included in the intervention cohort: surgery due to a bowel
obstruction, intestinal ischaemia, intestinal perforation,
intraabdominal abscess and intraabdominal bleeding
requiring surgical management.

Implementation

Before implementation, the ASAP was presented to the
entire staff of in-house doctors. Doctors and nurses in the
emergency department were informed about the ASAP
contents and directed to inform surgeons immediately if
they suspected a MAES patient. Surgeons and nurses had
multiple teaching sessions in both the emergency and the
surgical departments. Anaesthetists, nurse anaesthetists,
surgical nurses and emergency nurses received a verbal
presentation before the implementation started. All doctors
were given a pocket card describing the content of the
ASAP, which was specific for their area of speciality.
During the study period, surgeons received teaching ses-
sions every other month. All other departments had two or
more lectures to ensure compliance and information for
new staff. As data were monitored during the study, staff
were presented with an audit after three months. To mon-
itor implementation, 12 key elements were tracked.

Interventions

The ASAP consisted of both clinical and administrative
actions. The elements in the ASAP were selected from
prior research and expert opinions. The elements were
finally chosen for implementation if implementation was
feasible. The contents of the ASAP are summarised in
Fig. 1.

Preoperative initiatives

Broad-spectrum intravenous antibiotics were started before
diagnosis and work-up to ensure that treatment for possible
septic or preseptic conditions was not delayed [23].
Antibiotics were preceded by blood culture. A nasogastric
decompression tube was administered to avoid further
intestinal loading and vomiting. A urinary catheter was
administered to monitor urinary output and kidney func-
tion. A fast-track abdominal CT scan with IV contrast was
prioritised by the radiology department and was performed
within one hour to enable fast and correct diagnosis before
possible surgery [24, 25]. Specially designed templates
were used in patient health records as an entry note for the
ASAP and as a referral for CT and surgery. Templates were
utilised to ensure uniformity and correct documentation.
Patient’s information was added to a project folder con-
taining checklists and timestamps. If the wait from a CT
scan would be a deteriorating factor, this step was bypassed
and the patient was scheduled for immediate surgery. The
maximum waiting time from deciding to operate until
starting the surgery was set as six hours to avoid deterio-
rating of the patients [26–28]. All decisions following
initialisation were made by specialist registrars, senior
registrars or consultants. Before surgery all patients were evaluated by a consultant anaesthesiologist and prioritised for a dedicated operating room.

Intraoperative initiatives

If there were no contraindications, patients were administered a thoracic epidural to ensure sufficient analgesia in the postoperative period while lowering the use of opioids [29]. At the end of the surgery, risk scoring was performed using the surgical APGAR score [30]. Lower surgical APGAR score is associated with increased postoperative mortality and admission to intensive care [30, 31]. If the surgical APGAR was ≤4 or the ASA score [22], the patient was categorised as a major risk patient, otherwise as minor risk patient. Major risk patients were transferred to either the intensive care unit or the intermediate care unit immediately after surgery and remained there for at least 24 h. Minor risk patients were transferred to the ward after at least eight hours of observation in the recovery unit. The triage of patients to intensive care was selected to ensure intensified care only to patients who were at greater risk of postoperative mortality, while not flooding the intensive care unit with patients who were not. The postoperative plan was documented in a specially designed template within the patient’s health records.

Postoperative initiatives

In case of confirmed intraabdominal sepsis, we continued intravenously administered antibiotics. Antibiotics were given for at least three days and then evaluated daily. Rounds were documented using a template covering pulmonary status, mobility, bowel function, fluids, nutrition, infections and overall clinical assessment. To avoid pulmonary complications and delayed wound healing, physiotherapy took place as soon as possible following surgery [32, 33]. The patient’s nutrition state was evaluated daily from the first postoperative day, and patients unable to sustain nutritional need orally were supplemented with nutrition by feeding tube or parenteral nutrition. We used an opioid sparing regime where patients with epidural analgesia were only given morphine if needed. In cases without epidural analgesia, patients were given prolonged release tramadol twice daily.

Variables

The primary outcome was one-year mortality. The secondary outcomes were the CCI and 30-day mortality. Exposure was inclusion in the ASAP protocol. The CCI summarises all postoperative complications, creating one score for each patient based on the Clavien–Dindo scores. Once calculated, the index went from zero to 100, with zero being no postoperative complications and a score of 100 being death from a complication [22]. Follow-up was carried out by investigating mortality up to a year after surgery.

Data sources

Data in both the intervention cohort and the control cohort were gathered from the electronic patient files.

Bias

Complications were noted in the electronic health records by abdominal surgeons and medical doctors during rounds. The investigators were limited to reading journal entries, CT descriptions, surgery notes, etc. This meant that if a
complication was not in the patient file, it was not included in the study.

Study size

All patients undergoing MAES were included in the ASAP. For this study, patients who were transported from other hospitals or wards were excluded. Patients were also excluded if they had MAES due to a complication from elective surgical procedures.

Quantitative variables

BMI was grouped as either underweight (<18.5), normal weight (≥18.5) or overweight (≥ 25) [34]. The Charlson Comorbidity Index was grouped as mild (0–2), moderate (3–5) and severe (>5) [35]. The degree of intraabdominal contamination was registered as either none/localised or diffuse. We monitored 12 protocol elements to evaluate implementation of the ASAP. The monitored elements were: The ASAP folder, initial assessment template, pre-operative antibiotics, preoperative decompression tube, CT scan within one hour, surgery booking template, surgery within 6 h from decision to operate, epidural analgesia when eligible, postoperative plan template, arrival note, postoperative physiotherapy and rounds template.

Statistical methods

For comparing continuous variables, we used the Kruskal–Wallis test since age and duration of surgery were not normally distributed. For the categorical variables we used the χ^2 test to compare the ASAP group with the standard care group. Continuous variables were reported as median + interquartile range. Categorical variables were reported as number and per cent. Multivariate logistic regression was used to investigate the reduction in the mortality risk. The regression analyses were adjusted for baseline demographics (age, sex, the Charlson Comorbidity Index group and BMI group). Furthermore, we adjusted for surgical diagnosis and degree of intraabdominal contamination as some diagnoses have higher mortality rates [36], and intraabdominal contamination increases the risk of postoperative sepsis [37]. Overall survival analysis was estimated by the Kaplan–Meier method and compared using the log-rank test. Patients with missing data were firstly noted and secondly omitted from the regression analysis. There was no loss when it came to follow-up in terms of mortality. Statistical significance was set to $p <0.05$ or confidence interval not containing 1.0.

Results

During the study period, 618 cases were classified as MAES, including both the historical and prospective cohorts. After excluding re-operations and transferred patients, 120 patients remained in the ASAP cohort and 258 patients in the control cohort (Fig. 2). The two groups were comparable in all demographic variables except for tobacco use and diagnosis of ischaemia/necrosis (Table 1).

Mortality

Crude one-year mortality was 28.3% in the standard care cohort and 21.7% in the intervention cohort ($p = 0.215$). The 30-day mortality was lowered from 19.0 to 6.7% ($p = 0.003$), which equals a relative risk reduction of 64.7%. The unadjusted survival analysis found an overall p-value of 0.1 for one-year mortality follow-ups. For 30 days, the p-value was 0.002 (Fig. 3). Adjusted logistic regression found that the ASAP did not reduce the risk of mortality at one year (OR 0.81; CI 0.41–1.56). However, the adjusted regression found a reduced risk of 30-day mortality (OR 0.31; CI 0.1–0.84) (Table 2).
Table 1 Characteristics of both ASAP and control cohort

Variable	ASAP	Control	p-value
Age	71 (58–78)	69 (61–78)	0.703
Male	51 (42.5)	124 (48.1)	0.369
Smoker	22 (19.6)	85 (35.0)	0.005
Diabetes	17 (14.3)	36 (14.6)	1.000
ASA > 2	48 (26.5)	63 (34.8)	0.111
Surgery duration	113 (68–171)	102 (67–149)	0.304
Open surgery	90 (75.0)	177 (68.6)	0.250
BMI			
Underweight (< 18.5)	7 (6.0)	20 (9.9)	0.453
Normal weight (18.5–25)	56 (47.9)	89 (44.1)	
Overweight (> 25)	54 (46.2)	93 (46.0)	
Medication			
Steroid use	7 (6.0)	19 (7.7)	0.701
Blood thinner	34 (29.1)	76 (30.9)	0.816
Statins	21 (17.9)	53 (21.6)	0.501
Charlson Comorbidity Index			
Mild (0–2)	32 (26.7)	81 (31.4)	0.349
Moderate (3–5)	60 (50.0)	132 (51.2)	
Severe (> 5)	28 (23.3)	45 (17.4)	
Surgical diagnosis			
Mechanical obstruction	79 (65.8)	146 (56.6)	0.111
Intestinal perforation	27 (22.5)	49 (19.0)	0.513
Perforated ulcer	9 (7.5)	33 (12.8)	0.178
Ischaemia/necrosis	3 (2.5)	24 (9.3)	0.030
Intraabdominal bleeding	1 (0.8)	2 (0.8)	1.000
Intraabdominal abscess	1 (0.8)	4 (1.6)	0.938

n(%). Age and duration of surgery stated as median and IQR. Missing values: Smoker (ASAP: 8, control: 15)—Diabetes (ASAP: 1, control: 12)—BMI (ASAP: 3, control: 56)—Surgery duration (ASAP: 0, control: 84)—Steroid use, anticoagulants and statins (Intervention: 3, control: 12)

Complications

For all complications (Clavien–Dindo 1–5) the rate was similar for the two groups (56.7% for the optimised patients and 56.2% for the control group). The rate of complications with a Clavien–Dindo score >2 was 25.8 vs 30.6% for the control group (p = 0.405). The total CCI was 8.7 (IQR 0–34) for the ASAP group vs 21 (IQR 0–36) for the control group, p = 0.331. The CCI for 30-day survivors was 8.7 (IQR 0–30) in the ASAP group vs 0 (IQR 0–23) in the control group (p = 0.032). The distribution of CCI is displayed in Fig. 4. There were 4 (4.2%) unplanned admissions to the intensive care unit in the ASAP group compared with 22 (8.5%) in the control group (p = 0.188).

In the ASAP group, one patient was admitted to ICU due to sepsis compared with nine patients in the ASAP group. The length of stay was increased in the ASAP group compared to the control group (5 vs 7 days (p = 0.021)).

Implementation

Most of the patients in the ASAP group had 71–80% compliance of protocol elements, and one patient had <40% compliance. The distribution on protocol compliance is shown in Fig. 5. Protocol compliance at patient level is included in “Appendix 1”.

Discussion

Implementing a multidisciplinary perioperative bundle in major abdominal emergency surgery decreased the postoperative mortality. We were not able to detect statistically significant changes in the CCI.

This is the first study investigating one-year mortality and using the CCI after the implementation of an optimising bundle in MAES. Throughout the observation period, the ASAP bundle patients had lower mortality. However, the difference was most noticeable in the short-term postoperative period, and we did not find significant improvement in mortality after one year. An earlier study showed a significant decrease in 180-day mortality from 29.5 to 22.2 [13], which is in line with our findings. At 30 days, we found a crude mortality of 6.7 vs 19%. This risk reduction was more pronounced than reported earlier in both the AHA study and the ELPQuiC study [13, 14]. In the AHA study, 30-day mortality was lowered from 21.8 to 15.5% and in the ELPQuiC study, from 14.0 to 10.5%. When comparing our results with these studies, we found both similarities and differences. The ELPQuiC study included patients undergoing laparotomy, whereas our bundle and the AHA study also included laparoscopies. The AHA study had more cases with a perforated viscus compared to our study and as this is a severe condition, it could explain why the AHA did not achieve a lower postoperative mortality rate. The patients’ age in our study was slightly higher than in the AHA study and higher than in the ELPQuiC study. However, the number of patients with an ASA score > 2 was lower in our study. The lower ASA score in our patients could potentially have an impact on mortality. The AHA study was similar to the ASAP in implementing elements in both the pre-, intra- and postoperative course, whereas the ELPQuiC did not implement beyond the initial postoperative destination.

Major risk patients were transferred to either intermediate care unit or intensive care unit after surgery. The
Fig. 3 Survival analysis, including confidence intervals, up to 365 days after surgery. Red line = ASAP group, Black line = Control group. Dotted lines at 30, 90, 180 and 365 days. Log-rank p-values: 30 days ($p = 0.002$), 90 days ($p = 0.01$), 180 days ($p = 0.03$), 365 days ($p = 0.1$).

Table 2 Adjusted logistic regression on both 30- and 365-day mortality

	30-day mortality	One-year mortality				
	OR	95 CI	p value	OR	95 CI	p-value
ASAP	0.31	0.10–0.84	0.027	0.81	0.41–1.56	0.526
age	1.00	0.96–1.05	0.867	1.04	1.00–1.07	0.042
Female	1.84	0.71–5.06	0.219	0.82	0.42–1.58	0.552
Smoker	0.27	0.07–0.87	0.038	1.10	0.50–2.38	0.805
Charlson Moderate (3–5)	4.82	0.62–105.61	0.193	2.78	0.82–11.5	0.123
Charlson Severe (> 5)	60.6	7.35–1417.9	0.001	10.02	2.74–44.5	0.001
Localised contamination	1.94	0.29–10.84	0.467	1.17	0.30–4.23	0.811
Diffuse contamination	4.07	0.94–19.13	0.065	3.39	1.07–11.4	0.042
Mechanical obstruction	1.41	0.10–41.29	0.810	2.37	0.26–54.5	0.492
Intestinal perforation	0.66	0.05–18.00	0.767	1.11	0.12–24.5	0.935
Perforated ulcer	3.05	0.23–88.02	0.434	1.44	0.14–33.8	0.777
Ischaemia/necrosis	13.19	0.78–455.35	0.096	3.74	0.32–97.5	0.334
Alcohol overuse	5.09	1.04–23.48	0.037	1.00	0.28–3.22	0.999
Underweight	2.38	0.58–9.17	0.213	3.72	1.37–10.4	0.011
Overweight	0.38	0.13–1.02	0.063	0.43	0.21–0.85	0.018

The top row shows the adjusted OR of mortality when affected by the protocol.
AHA study utilised the recovery unit for 24 h and the ELPQuiC study transferred all patients to the intensive care unit for postoperative care. The initial postoperative period can be critical, and our bundle allowed us to differentiate between cases.

Our study utilised entry-note templates for all patients, making sure that care was both optimised and uniform. Neither the AHA nor the ELPQuiC study used this approach, and we believe that this was an important step to increase the attention given to the patients.

The ASAP did not improve complication rates, and the differences in CCI between groups were not statistically significant. However, the CCI might be lower in the ASAP group. This was most likely due to a decreased failure to rescue, meaning that the ASAP might have allowed patients to survive worse complications [38]. This would have led to a higher CCI without subsequent mortality. The AHA study reported fewer patients with major complications (Clavien-Dino score \(\geq 2 \)). We saw the same tendency concerning major complications. However, this was not significant. The length of stay increased by two days after implementing the ASAP and we attribute this to a decrease in failure to rescue. When patients survive worse complications, it might cause longer stays. The AHA study also found an increased length of stay. The EPOCH trial was a large-scale stepped-wedge cluster-randomised trial, including 93 hospitals [17]. Each hospital had a
A taskforce that selected points of care to use from the EPOCH bundle. This makes it difficult to draw a comparison with our study. Nonetheless, the EPOCH trial was not successful in lowering mortality.

We did not demonstrate a statistically significant reduction in one-year mortality. The mortality analysis was adjusted for age, sex and Charlson Comorbidity Index which diminish the influence these factors have on the results. It could be that MAES does not impact the mortality further after a certain amount of time or that the effect of the ASAP diminishes over time. When performing multivariate regression, a similar pattern concerning significance was found where the risk reduction was significant at 30 days. The difference in CCI was not significant and this was possibly due to the distribution of the index. This was a quality improvement project and numbers were limited by availability. A post hoc analysis based on the differences seen in this study suggests that over 1,000 patients would be needed in each arm to achieve statistical significance.

There was a risk of a detection bias, given that potentially missed cases could have influenced the differences between our cohorts. However, the inclusion period for the historical cohort is twice of the prospective cohort, which corresponds with the number of patients. As this was a non-blinded study, there was also a risk of observer bias.

The degree of protocol compliance could also have affected the results. As shown in Fig. 5, most cases had more than 60% compliance to the protocol. However, a study performed to analyse the impact of protocol compliance in the ASAP revealed no benefit from high compliance vs low compliance [39]. Furthermore, the study found that more than half of the elements were successfully implemented with the element being used in more than 70% of the cases.

After implementation of this bundle, it remains the standard in our surgical emergency service. The continued efforts in major abdominal emergency surgery are important. Additional studies regarding protocol compliance could be beneficial to evaluate whether some elements are more important than others in patients who are already optimised.

Conclusions

Using bundle care in major abdominal emergency surgery lowered the 30-day postoperative mortality. The difference in mortality was preserved over time although not significant after one year. The changes in the Comprehensive Complication Index were not statistically significant.

Appendix
Id	Folder	Start note template	Antibiotics	Decompression tube	CT within one hour	Booking note template	Epidural	Surgery within six hours	Surgery note template	Ward arrival note	Physiotherapy	Rounds note template	
439	Yes	No	No	Yes	Yes	No	Yes	No	Yes	No	Yes	Yes	
441	Yes	No	Yes	Yes	Yes	No	No	No	No	No	Yes	Yes	
442	Yes	No	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	
444	Yes	No	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes	
445	Yes	No	Yes	Yes	Yes	No	Yes	No	Yes	No	Yes	Yes	
446	Yes	No	No	Yes	No	Yes	No	Yes	Yes	No	Yes	No	
449	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes	
450	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	No	Yes	
451	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	
452	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	
453	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	
454	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	
455	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	
456	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	
457	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No	No	Yes	Yes	
458	Yes	No	Yes	Yes	No	Yes	Yes	Yes	No	No	Yes	Yes	
459	Yes	No	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	
460	Yes	Yes	Yes	Yes	No	Yes	No	Yes	No	No	Yes	Yes	
461	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	
462	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	
463	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	Yes	
464	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	Yes	
465	Yes	No	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes	
466	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	No	Yes	Yes	
467	Yes	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes	Yes	Yes	
468	Yes	Yes	Yes	Yes	No	Yes	No	No	No	No	Yes	Yes	
469	Yes	No	Yes	Yes	Yes	No	Yes	No	Yes	No	Yes	Yes	
470	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	
471	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	
472	Yes	No	Yes	No	Yes	No	Yes	Yes	Yes	No	Yes	Yes	
473	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	No	Yes	Yes	
474	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	No	Yes	Yes	
475	Yes	No	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes	
476	Yes	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes	Yes	Yes	
477	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	No	Yes	Yes	
478	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Yes	No	Yes	Yes	
479	Yes	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes	Yes	
480	Yes	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes	Yes	
481	Yes	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes	Yes	
482	Yes	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes	Yes	
483	Yes	No	Yes	No	No	No	Yes	No	Yes	No	Yes	Yes	
484	Yes	Yes	Yes	Yes	No	Yes	Yes	No	No	No	Yes	Yes	
485	Yes	Yes	Yes	Yes	No	Yes	Yes	No	No	No	Yes	Yes	
486	Yes	No	Yes	Yes	No	Yes	Yes	No	Yes	No	Yes	Yes	
487	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Yes	No	Yes	Yes	
488	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Yes	No	Yes	Yes	
489	Yes	Yes	Yes	No	Yes	Yes	Yes	No	Yes	No	Yes	Yes	
490	Yes	No	Yes	Yes	No	Yes	Yes	No	Yes	No	Yes	Yes	
---	---	---	---	---	---	---	---	---	---	---	---	---	---
491	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	No	Yes	Yes	
492	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	
493	Yes	No	Yes	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes	
495	Yes	No	Yes	Yes	No	No	No	NA	Yes	No	Yes	No	
497	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	
498	Yes	No	Yes	No									
500	Yes	No	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes	
501	Yes	No	Yes	Yes	Yes	No	Yes	Yes	No	Yes	No	Yes	
503	Yes	No	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes	
504	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	No	Yes	
505	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	Yes	Yes	
506	Yes	No	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes	
507	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	Yes	Yes	
508	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
509	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
510	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
511	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
512	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
513	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
514	Yes	No	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes	
515	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
516	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
517	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
518	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
519	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
520	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
521	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
522	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
523	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
524	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
525	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
526	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
527	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
528	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
529	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
530	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
531	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
532	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
533	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
534	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
535	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
536	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
537	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
538	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
539	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
540	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
541	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
542	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
543	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
544	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
545	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
546	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
547	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
548	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
549	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
550	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
551	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
Acknowledgements The authors thank physicians and nurses at Slagelse Hospital, Denmark.

Author’s contribution All authors took part in developing the intervention and in editing the manuscript. R.T. performed statistics, figures and tables.

Funding There was no funding of this study.
Availability of data and materials Anonymous data will be made available upon request.

 Declarations

 Conflicts of interest The authors declare that they have no conflict of interest.

 Ethical approval This was a quality improvement study and as per danish law such studies require no approval from the ethics board.

 Consent for publication The authors consent for publication. There was no need to obtain consent from patients in this kind of study.

 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

 References

 1. Huddart S, Peden C, Quiney N (2013) Emergency major abdominal surgery—‘the times they are a-changing’. Colorectal Dis 15:645–649
 2. Barrow E, Anderson ID, Varley S et al (2013) Current UK practice in emergency laparotomy. Ann R Coll Surg Engl 95:599–603
 3. Green G, Shaikh I, Fernandes R, Wegstapel H (2013) Emergency laparotomy in octogenarians: a 5-year study of morbidity and mortality. World J Gastrointest Surg 5:216–221
 4. Svenningsen P, Manoharan T, Foss NB et al (2014) Increased mortality in the elderly after emergency abdominal surgery. Dan Med J 61:A4876
 5. Tengberg LT, Cihoric M, Foss NB et al (2017) Complications after emergency laparotomy beyond the immediate postoperative period—a retrospective, observational cohort study of 1139 patients. Anaesthesia 72:309–316
 6. NELA Project Team (2021) Seventh patient report of the national emergency laparotomy, RCoA, London
 7. Ng ZQ, Weber D (2021) One-year outcomes following emergency laparotomy: a systematic review. World J Surg. https://doi.org/10.1007/s00268-021-06385-w
 8. Mastoraki A, Sotiria M, Evgenia T et al (2016) Mesenteric ischemia: Pathogenesis and challenging diagnostic and therapeutic modalities. World J Gastrointest Pathophysiol 7:125
 9. Markogiannakis H, Messaris E, Dardanantis D et al (2007) Acute mechanical bowel obstruction: Clinical presentation, etiology, management and outcome. World J Gastroenterol 13:432–437
 10. Pouli S, Kozana A, Papakitsou I, et al (2020) Gastrointestinal perforation: clinical and MDCT clues for identification of aetiology. Insights Imaging 11
 11. Fagard K, Casaer J, Wolthuis A et al (2017) Postoperative complications in individuals aged 70 and over undergoing elective surgery for colorectal cancer. Colorectal Dis 19:O329–O338
 12. McCoy CC, Englund BR, Keenan JE et al (2015) Impact of specific postoperative complications on the outcomes of emergency general surgery patients. J Trauma Acute Care Surg 78:912–918
 13. Tengberg LT, Bay-Nielsen M, Bisgaard T et al (2017) Multidisciplinary perioperative protocol in patients undergoing acute high-risk abdominal surgery. Br J Surg 104:463–471
 14. Huddart S, Peden CJ, Swart M et al (2015) Use of a pathway quality improvement care bundle to reduce mortality after emergency laparotomy. Br J Surg 102:57–66
 15. Vester-Andersen M, Waldau T, Wetterslev J et al (2015) Randomized multicentre feasibility trial of intermediate care versus standard ward care after emergency abdominal surgery (InCare trial). Br J Surg 102:619–629
 16. Shakerian R, Thomson BN, Gorelik A et al (2015) Outcomes in emergency general surgery following the introduction of a consultant-led unit. Br J Surg 102:1726–1732
 17. Peden CJ, Stephens T, Martin G, et al (2019) Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial. The Lancet 6736:1–10
 18. Mc Geehan G, Edelduok IM, Bucholcz M et al (2021) Systematic review and meta-analysis of wound bundles in emergency midline laparotomy identifies that it is time for improvement. Life 11:1–14
 19. Spence J, LeManach Y, Chan MTV et al (2019) Association between complications and death within 30 days after noncardiac surgery. CMAJ 191:E830–E837
 20. Clavien PA, Vetter D, Staiger RD et al (2017) The comprehensive complication index (CCI®): added value and clinical perspectives 3 years “down the line.” Ann Surg 265:1045–1050
 21. Dindo D, Demartines N, Clavien P-A (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213
 22. Slankamenac K, Graf R, Barkun J et al (2013) The comprehensive complication index: a novel continuous scale to measure surgical morbidity. Ann Surg 258:1–7
 23. Levy MM, Evans LE, Rhodes A (2018) The surviving sepsis campaign bundle: 2018 update. Crit Care Med 46:997–1000
 24. Schreirey CD, Fowler KJ, Therrien JA et al (2018) ACR appropriateness criteria® acute nonlocalized abdominal pain. J Am Coll Radiol 15:S217–S231
 25. Katz DS, Baker ME, Rosen MP, et al (2013) American College of Radiology ACR Appropriateness Criteria® Clinical Condition: Suspected Small-Bowel Obstruction Variant 1: Suspected high-grade small-bowel obstruction (SBO), based on clinical evaluation or initial radiography (if performed). Radiologi. J Am Coll Radiol 1–10
 26. Vester-Andersen M, Landstrøm LH, Buck DL, Møller MH (2016) Association between surgical delay and survival in high-risk emergency abdominal surgery. A population-based Danish cohort study. Scand J Gastroenterol 78:912–918
 27. McIsaac DI, Abdulla K, Yang H et al (2017) Association of delay after emergency laparotomy beyond the immediate postoperative period identifies that it is time for improvement. Ann Surg 265:1045–1050
 28. Loftus TJ, Rosenthal MD, Croft CA et al (2018) Effect of time to operation on value of care in acute care surgery. World J Surg 42:2356–2363. https://doi.org/10.1007/s00268-018-4476-2
 29. Block BM, Liu SS, Rowlingson AJ et al (2003) Efficacy of postoperative epidural analgesia. JAMA 290:2455–2463
30. Sobol JB, Gershengorn HB, Wunsch H, Li G (2013) The Surgical Apgar Score is strongly associated with intensive care unit admission after high-risk intraabdominal surgery. Anesth Analg 117:438–446
31. Masi A, Amodeo S, Hatzaras I et al (2017) Use of the surgical Apgar Score to enhance Veterans Affairs Surgical Quality Improvement Program surgical risk assessment in veterans undergoing major intra-abdominal surgery. Am J Surg 213:696–705
32. Haines KJ, Skinner EH, Berney S (2013) Association of post-operative pulmonary complications with delayed mobilisation following major abdominal surgery: An observational cohort study. Physiotherapy 99:119–125
33. Vollman KM (2010) Introduction to progressive mobility. Crit Care Nurse 30:S3–S5
34. Weir CB, Jan A (2019) BMI classification percentile and cut off points. StatPearls Publishing
35. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383
36. Jansson Timan T, Hagberg G, Sernert N et al (2021) Mortality following emergency laparotomy: a Swedish cohort study. BMC Surg 21:322
37. Pieracci FM, Barie PS, Barie PS (2007) Management of severe sepsis of abdominal origin. Review Scand J Surg 96:184–196
38. Ghaferi AA, Dimick JB (2015) Understanding failure to rescue and improving safety culture. Ann Surg 261:839–840
39. Trangbaek RM, Burcharth J, Gögenur I (2022) Adherence to and outcomes of bundle care in major abdominal emergency surgery. Dan Med J 69:11210876

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.