Research Paper
The Sensitivity and Specificity of American College Of Emergency Medicine Guideline in Predicting the Need for Computed Tomography Scan in Patients with Mild Head Trauma

Morteza Gharibi1, *Simin Najafgholian1, Fatemeh Rafiee1,2, Ali Nazemi1, Ali Mansourizadeh1

1. Department of Emergency Medicine, Arak University of Medical Sciences, Arak, Iran.
2. Department Biostatistics and Epidemiology, School of Health, Scientific Research Center, Tehran University of Medical Sciences, Iran.
3. Neurosurgery Specialist, Vali-e-Asr Hospital of Arak, Arak University of Medical Sciences, Iran.

ABSTRACT
Background and Aim: American College Of Emergency Medicine (ACEM) guideline has a recommendation for early diagnosis of head injuries following mild trauma. In this study we examined the prediction power, sensitivity, and specificity of this clinical guideline in the need for computed tomography (CT) scan for suspected mild trauma. This cross-sectional study was performed for 6 months on patients over 18 years old referred to the emergency department of Vali-e-Asr Hospital in Arak who met ACEM criteria for head CT scan. The study included 500 patients, 335 male (67%) and 165 females (33%) with the mean age of 46.39 ± 2.01 years. The level of consciousness (Glasgow Coma Scale) was checked every two hours. Patients underwent treatment if there was a pathology in CT images, and those with no clear pathology were discharged after 6 hours and followed up by phone for two weeks, and in case of any abnormality in the level of consciousness, they were re-examined by CT scanning.

Methods & Material: This cross-sectional study was performed for 6 months on patients over 18 years old referred to the emergency department of Vali-e-Asr Hospital in Arak who met ACEM criteria for head CT scan. The study included 500 patients, 335 male (67%) and 165 females (33%) with the mean age of 46.39 ± 2.01 years. The level of consciousness (Glasgow Coma Scale) was checked every two hours. Patients underwent treatment if there was a pathology in CT images, and those with no clear pathology were discharged after 6 hours and followed up by phone for two weeks, and in case of any abnormality in the level of consciousness, they were re-examined by CT scanning.

Ethical Considerations: This study has an ethical approval obtained from Arak University of Medical sciences (Code: IR.ARAKMU.REC.1396.227).

Results: The sensitivity of the ACEM guideline for predicting the need for CT scan in patients with mild head trauma were 100% with a specificity of 3.46% (for the second recommendation, the sensitivity was 100% with a specificity of 6.7%) which indicated that the test was highly sensitive to diagnosing the patients, but its specificity was low.

Conclusion: The ACEM guideline had high sensitivity to predicting the need for CT in patients with mild head trauma, but had very low specificity which makes it an unacceptable criterion for rejecting or performing CT scan in these patients.
Extended Abstract

Introduction

In mild head trauma, 6%-9% of brain lesions were seen, with 0.4%-1% requiring surgery (1 and 2). Computed Tomography (CT) increases the ability to detect, but causes unnecessary exposure to radiation [3-5]. For this reason, several rules such as Canadian CT Head Rule (CCHR), New Orleans Criteria (NOC) and National Emergency X-ray Utilization Study (NEXUS) have been developed. The American College Of Emergency Medicine (ACEM) has also provided a clinical guideline [6]. These criteria (a combination of criteria from several studies and the three mentioned rules) have been suggested, to examine the prediction power, sensitivity and specificity of determining the extent of brain injury in minor head trauma. This study examined the external validity, predictive value, sensitivity, and specificity of this clinical guideline for the need for CT in patients with mild head trauma.

Materials and Methods

This cross-sectional study was performed for 6 months on patients over 18 years old referred to the emergency department of Vali-e-Asr Hospital in Arak, Iran who met ACEM criteria for head CT scan for suspected mild head trauma. The inclusion criteria were: Having age 18 and above, head trauma in the past 6 hours, and meeting ACEM criteria. On the other hand, exclusion criteria were: Glasgow Coma Scale (GCS) score ≤13, age <18 years, unstable vital signs, pregnancy, clear skull fracture or depressed skull fracture.

Their demographic characteristics, clinical symptoms, trauma mechanism, physical injuries caused by head trauma, and history of drug abuse were recorded by a checklist. During hospitalization, their GCS was checked every two hours. Patients underwent treatment if there was a pathology in CT images, and those with no clear pathology were discharged after 6 hours and, followed up by phone for two weeks, and in case of any abnormality in the consciousness level, they were re-examined by CT scanning. Data analysis was conducted in SPSS v.18 and MEDCALC applications. Descriptive statistics as well as chi-squared test and t-test were used in analyzing data at 95% confidence interval.

First rule of ACEM criteria to determine whether the head CT is needed is for patients with decreased consciousness level or post-traumatic memory loss and having following symptoms: Headache, vomiting, age over 60 years, drug or alcohol intoxication, trauma above the clavicles, post-traumatic seizure, GCS <2, focal neurological deficit and coagulation disorders. The second rule of ACEM criteria for head CT is related to patients with head injury without loss of consciousness or memory after trauma having following symptoms: Focal neurologic deficit, vomiting, severe headache, age over 65 years, basal skull fracture, GCS <2, coagulation disorders. Based on the two rules of ACEM criteria for head CT, patients first underwent CT according to the first rule and then based on the second rule. Afterward, they were compared with each other.

Results

Of the 500 patients, 335 (67%) were male and 165 (33%) were female. Their mean age was 46.39±2.01 years (ranged from 13 to 95 years). Gender, type of accident, drug and alcohol abuse, coagulopathy, warfarin

| Table 5. Predictive value, sensitivity, and specificity of ACEM criteria for CT in patients with mild head trauma based on its first rule |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Sensitivity (%) | 95% confidence interval | Specificity (%) | 95% confidence interval | Positive predictive value | 95% confidence interval | Negative predictive value | 95% confidence interval |
| 100 | 92.62-100 | 3.46 | 2.03-5.48 | 1.66 | 0.7-3.13 | 100 | 80.3-100 |

| Table 6. Predictive value, sensitivity, and specificity of ACEM criteria for CT in patients with mild head trauma based on its second rule |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Sensitivity (%) | 95% Confidence Interval | Specificity (%) | 95% Confidence Interval | Positive Predictive Value | 95% Confidence Interval | Negative Predictive Value | 95% Confidence Interval |
| 100 | 62.9-100 | 6.7 | 4.66-9.3 | 1.71 | 0.74-3.35 | 100 | 98.32-100 |
or enoxaparin use, level of consciousness at the time of hospital admission, and pedestrian being thrown to the road 2-3 meter when hit by the motorcycle/car were not significantly different between study groups; they were different only in subdural hematoma.

Based on the first rule, the sensitivity of ACEM guideline for predicting the need for CT scan in patients with mild head trauma was 100% with a specificity of 3.46% indicating that the guideline was highly sensitive in diagnosis of mild head trauma, but its specificity was low.

Based on the second rule, the sensitivity of ACEM guideline was 100% with a specificity of 6.71%. Moreover, the positive and negative predictive value 1.71 and 100, respectively. This indicates that this guideline has no diagnostic value.

Discussion

The aim of this study was to evaluate the diagnostic method of ACEM clinical guideline for the need for CT in patients with mild head trauma having a GCS score of more than 13. The results showed that ACEM guideline in terms of predicting the need for CT in mild head trauma, had 100% sensitivity and specificity of 3.46 and 6.71% based on the first and seconds rules, respectively indicating its low specificity despite having high sensitivity.

Stiell et al. [10] examined CCHR and NOC in patients with minor head injury. They showed that both rules had equal sensitivity for predicting need for CT, but the specificity of CCHR was higher. In our study, the ACEM criterion was not able to predict the patients’ need for CT. Mata-Mbemba et al. [11] compared two rules of CCHR and NOC in patients with mild head trauma. They reported that Only the CCHR was significantly associated with important CT findings and had higher efficiency compared to NOC. In our study, despite the low specificity of the ACEM criterion, it did not reduce the need for CT in mild head trauma and was not consistent with the results of this study.

Many studies have been conducted and compared CCHR, NOC and Nexus criteria for CT in head trauma [12-15]. All have reported the high sensitivity of these criteria and their low specificity.

Conclusion

The ACEM guideline had high sensitivity to predicting the need for CT in patients with mild head trauma, but had very low specificity and positive/negative predictive value which makes it an unacceptable criterion for rejecting or performing head CT scan in these patients.

Ethical Considerations

Compliance with ethical guidelines

This study has an ethical approval obtained from Arak University of Medical sciences (Code: IR.ARAKMU. REC.1396.227).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors' contributions

The authors observed the standards of writing based on the recommendations of the International Committee of Medical Journal Publishers.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors would like to thank the patients and the Deputy for Research of Arak University of Medical sciences for their cooperation and support.
مقدمه
یکی از آسیب‌های مهم و بالقوه خطرناک در انسان‌های بزرگ، ترومای سر می‌باشد. این آسیب، به وسیله هوا، پاک، تراشه‌ها یا از تصادفات و حملات فراری در جامعه بروز می‌گردد. ترومای سر به عنوان یک آسیب قابل تحقیر و تدریجی در سطح هوشیاری و صحت بدنی بیماران باید به درستی تشخیص داده و در صورت نیاز به عملکرد نشان دهنده است. در خصوص تشخیص پیشگیری و حساسیت راهنمای بالینی، دانشکده آمریکایی طب اورژانس بررسی نیاز به انجام سی تی اسکن در ترومای خفیف سر را توصیه نموده است.

مطالعه توضیحات گروهی از تحقیقات مورد بررسی قرار گرفته و نشان می‌دهد که حساسیت و ویژگی راهنمای بالینی، لازم است بررسی شود. در این مطالعه، ارزش پیشگویی و حساسیت و اختصاصیت راهنمای بالینی دانشکده آمریکایی طب اورژانس بررسی شدند.

مطالعه این راهنمای بالینی در سال 1396 آذر و دی ارائه گردید، و نویسنده مسئول آن دکتر سیمین نجف قلیان بود.
مطالعه حساسیت و ویژگی راهنمای بالینی در کنار انجام حسین نسبی و کیفیت انجام سی تی اسکن در بیماران با ترومای خفیف سر بررسی و ارزیابی کیفیت است. این مطالعه به صورت مقطعی به مدت شش ماه پس از تصویب 7. American College Of Emergency Medicine

6. Glasgow Coma Scale (GCS)

7. American College of Emergency Medicine

اهداف آزمون، نکسوس و نیو اورلئان

1. NEXUS

2. نیو اورلئان

3. The Canadian Computed Tomography Head Rule (CCHR)

4. ACEP

5. External validity

6. NASPE

7. American College Of Emergency Medicine

بررسی سوال‌هایی در مورد کارایی و تحقیق و بررسی و تئوری نگارش‌های نمایشگری در ارائه راهنمای بالینی

1. The Canadian Computed Tomography Head Rule (CCHR)

2. New Orlean Criteria (NOC)

3. National emergency X-ray utilization study

4. ACEP

5. External validity
مبارزات که در جدول شماره ۱ نشان داده شده است، بیشترین شدت نورولوژیک فوکال، استفراغ، سردرد شدید، سن بالا، شاخص بیس اسکال، سطح هوشیاری زیر ۶۵ درصد، اختلالات انعقادی، سال به بالا، بیماران سن بالا، معیارهای ورود به مطالعه: مراجعه کننده با سابقه ترومای سر طی شش ساعت اخیر، داشتن علائم نورولوژیک فوکال، استفاده از عوارض مصرف اسکوترن (ارزانترین سکته مغزی)، سطح هوشیاری زیر ۶۵ درصد، شاخص بیس اسکال بالا، توزیع فراوانی علت ترومای سر بر حسب تعداد و درصد.

در آمارهای فوق، بیماران با سن بالا، شاخص بیس اسکال بالا، توزیع فراوانی علت ترومای سر بر حسب تعداد و درصد.

جدول شماره ۱: ساختار مصرف مواد و الکل، کوآگولوپاتی و فراوانی ریزش در سطح هوشیاری

علت‌ترومای‌سر	تعداد (درصد)
واژگونی خودرو	۱۶۹ (۳۳/۵ درصد)
استفراغ	۹۶ (۱۹/۵ درصد)
شاخص بیس اسکال بالا	۷۸ (۱۵/۶ درصد)
کوآگولوپاتی	۷۷ (۱۵/۳ درصد)
مصرف مواد	۱۳۲ (۲۵/۲ درصد)
مصرف اسکوترن	۱۵۰ (۲۹/۳ درصد)

پیشینه

در آمارهای فوق، بیماران با سن بالا، شاخص بیس اسکال بالا، توزیع فراوانی علت ترومای سر بر حسب تعداد و درصد.

جدول شماره ۲: ساختار مصرف مواد و الکل، کوآگولوپاتی و فراوانی ریزش در سطح هوشیاری

علت تصادف و سابقه مصرف مواد	تعداد (درصد)
واژگونی خودرو	۱۶۹ (۳۳/۵ درصد)
استفراغ	۹۶ (۱۹/۵ درصد)
شاخص بیس اسکال بالا	۷۸ (۱۵/۶ درصد)
کوآگولوپاتی	۷۷ (۱۵/۳ درصد)
مصرف مواد	۱۳۲ (۲۵/۲ درصد)
مصرف اسکوترن	۱۵۰ (۲۹/۳ درصد)

پیشینه
سی تی اسکن قرار گرفتند که سی تی اسکن مجدد طبیعی گزارش شد، نتایج نشان می‌دهد حساسیت 6/5، و جدول شماره 2 جدول شماره 3 با توجه به از نظر پیشگویی نیاز به انجام سی تی اسکن ACEM راهنمای بالینی درصد با 100/1 در بیماران ترومای خفیف سر بر اساس توصیه دوم، 100/1 درصد با ویژگی 3/46 ویژگی تست بسیار است، نتایج نشان دهنده این هستند که استفاده از این راهنما، ارزش تشخیصی قابل قبولی ندارد.

بحث

ACEP این مطالعه با هدف ارزیابی روش تشخیصی راهنمای بالینی، از نظر نیاز به انجام سی تی اسکن بر روی بیماران مراجعه‌کننده به اورژانس سوانح بیمارستان ولیعصر (عج) اراک که ترومای خفیف سر با سطح هوشیاری بالای از نظر پیشگویی ACEM نیاز به انجام سی تی اسکن بر اساس توصیه 100/1 درصد با ویژگی 7/59 است که نشان می‌دهد تست از حساسیت بالایی 3/46 ویژگی ویژگی تست بسیار است، نتایج نشان می‌دهد حساسیت راهنمای بالینی 7/59 جدول شماره 4 با توجه به ارزش تشخیصی که نیاز به انجام سی تی اسکن درصد با 100/1 بیماران ترومای خفیف سر بر اساس توصیه دوم، 100/1 درصد با ویژگی 3/46 ویژگی تست بسیار است، نتایج نشان می‌دهد استفاده از این راهنما، ارزش تشخیصی قابل قبولی ندارد.

جدول 1 توزیع فراوانی ترتیب سی تی اسکن در دو گروه (نرمال و غیرنرمال) بر حسب تعداد و درصد

علت تشخیص	فراوانی نتیجه در یک واریانس (درصد)
شکستگی‌استخوان‌جمجمه‌به‌صورت‌خطی	1/2
علت تشخیص	فراوانی نتیجه در یک واریانس (درصد)
شکستگی‌همراه‌با‌فرورفتگی‌استخوان‌جمجمه	2/8
شکستگی‌قاعده‌جمجمه	3/8
خونریزی‌ساب‌دورال	4/71
خونریزی‌اپیدورال	5/71
خونریزی‌ساب‌آراکنوئید	6/71
کانتوژن‌مغزی	7/71
شواهد‌پیدایش‌مغزی	8/71
کانتوژن‌مغزی	9/71
شواهد‌پیدایش‌مغزی	10/71

American College Of Emergency Medicine مرکز طب و همکاران پرورش حساسیت و ویژگی راهنمای بالینی
جدول ۱. توزیع علائم همراه در اورژانس در دو گروه (نرمال و غیرنرمال) بر حسب تعداد و درصد

علامات همراه در اورژانس	تعداد (درصد)
مجموع	۳۵۱ (۷۰٪)
اسراف	۲۳۸ (۴۷٪)
سردرد شدید	۱۹۲ (۳۹٪)
خستگی	۲۲۳ (۴۵٪)
تشنج بعد از تراuma	۱۶۹ (۳۳٪)
ریویوه	۱۴۶ (۳۰٪)
هماهنگ نبود	۱۳۷ (۲۷٪)
حساسیت واقع گوشی	۱۱۳ (۲۳٪)
عدم گویندگی در بدن پایداری	۷۹ (۱۶٪)
عدم کمال حرکت	۷۷ (۱۵٫۷٪)
حس علمایی در محدوده کوتاه‌مدت	۶۶ (۱۳٫۲٪)
وجود شاخص تراuma سر و گردن در سطح بالای کرینوکالک	۶۵ (۱۳٫۲٪)
درد	۵۳ (۱۰٫۶٪)
درد	۴۵ (۹٫۶٪)
درد	۱۴۳ (۲۸٪)
درد	۱۲۱ (۲۴٪)
درد	۱۰۹ (۲۱٪)
درد	۱۰۸ (۲۱٪)
درد	۱۰۶ (۲۱٪)
درد	۱۰۴ (۲۰٫۸٪)
درد	۱۰۳ (۲۰٫۸٪)
درد	۱۰۲ (۲۰٫۸٪)
درد	۹۹ (۲۰٪)
درد	۹۷ (۱۹٪)
درد	۹۶ (۱۹٪)
درد	۹۵ (۱۹٪)
درد	۹۴ (۱۹٪)
درد	۹۳ (۱۹٪)
درد	۹۲ (۱۹٪)
درد	۹۱ (۱۸٪)
درد	۹۰ (۱۸٪)
درد	۸۹ (۱۸٪)
درد	۸۸ (۱۸٪)
درد	۸۷ (۱۷٪)
درد	۸۶ (۱۷٪)
درد	۸۵ (۱۷٪)
درد	۸۴ (۱۷٪)
درد	۸۳ (۱۷٪)
درد	۸۲ (۱۷٪)
درد	۸۱ (۱۷٪)
درد	۸۰ (۱۷٪)
درد	۷۹ (۱۶٪)
درد	۷۸ (۱۶٪)
درد	۷۷ (۱۶٪)
درد	۷۶ (۱۶٪)
درد	۷۵ (۱۶٪)
درد	۷۴ (۱۶٪)
درد	۷۳ (۱۶٪)
درد	۷۲ (۱۶٪)
درد	۷۱ (۱۶٪)
درد	۷۰ (۱۶٪)
درد	۶۹ (۱۶٪)
درد	۶۸ (۱۶٪)
درد	۶۷ (۱۶٪)
درد	۶۶ (۱۶٪)
درد	۶۵ (۱۶٪)
درد	۶۴ (۱۶٪)
درد	۶۳ (۱۶٪)
درد	۶۲ (۱۶٪)
درد	۶۱ (۱۶٪)
درد	۶۰ (۱۶٪)
درد	۵۹ (۱۶٪)
درد	۵۸ (۱۶٪)
درد	۵۷ (۱۶٪)
درد	۵۶ (۱۶٪)
درد	۵۵ (۱۶٪)
درد	۵۴ (۱۶٪)
درد	۵۳ (۱۶٪)
درد	۵۲ (۱۶٪)
درد	۵۱ (۱۶٪)
درد	۵۰ (۱۶٪)
درد	۴۹ (۱۶٪)
درد	۴۸ (۱۶٪)
درد	۴۷ (۱۶٪)
درد	۴۶ (۱۶٪)
درد	۴۵ (۱۶٪)
درد	۴۴ (۱۶٪)
درد	۴۳ (۱۶٪)
درد	۴۲ (۱۶٪)
درد	۴۱ (۱۶٪)
درد	۴۰ (۱۶٪)
درد	۳۹ (۱۶٪)
درد	۳۸ (۱۶٪)
درد	۳۷ (۱۶٪)
درد	۳۶ (۱۶٪)
درد	۳۵ (۱۶٪)
درد	۳۴ (۱۶٪)
درد	۳۳ (۱۶٪)
درد	۳۲ (۱۶٪)
درد	۳۱ (۱۶٪)
درد	۳۰ (۱۶٪)
درد	۲۹ (۱۶٪)
درد	۲۸ (۱۶٪)
درد	۲۷ (۱۶٪)
درد	۲۶ (۱۶٪)
درد	۲۵ (۱۶٪)
درد	۲۴ (۱۶٪)
درد	۲۳ (۱۶٪)
درد	۲۲ (۱۶٪)
درد	۲۱ (۱۶٪)
درد	۲۰ (۱۶٪)
درد	۱۹ (۱۶٪)
درد	۱۸ (۱۶٪)
درد	۱۷ (۱۶٪)
درد	۱۶ (۱۶٪)
درد	۱۵ (۱۶٪)
درد	۱۴ (۱۶٪)
درد	۱۳ (۱۶٪)
درد	۱۲ (۱۶٪)
درد	۱۱ (۱۶٪)
درد	۱۰ (۱۶٪)
درد	۹ (۱۶٪)
درد	۸ (۱۶٪)
درد	۷ (۱۶٪)
درد	۶ (۱۶٪)
درد	۵ (۱۶٪)
درد	۴ (۱۶٪)
درد	۳ (۱۶٪)
درد	۲ (۱۶٪)
درد	۱ (۱۶٪)
جدول 5: توزیع ضرایب نتایج تست و سی تی اسکن بر اساس توصیه

کلاسیفیکی سی تی اسکن	تایید/نتایج بالاتر	غیرتایید/ناتایج بالاتر
جامعه محیطی	238/76	216/0
اثرهای انگیزه ای	236/78	218/0
اثرهای انگیزه منفی	234/80	216/0
اثرهای انگیزه غیرنرمال	232/82	208/0
اثرهای انگیزه غیرنرمال	230/84	206/0
اثرهای انگیزه منفی	228/86	204/0
اثرهای انگیزه غیرنرمال	226/88	202/0
اثرهای انگیزه غیرنرمال	224/90	200/0
اثرهای انگیزه منفی	222/92	198/0
اثرهای انگیزه غیرنرمال	220/94	196/0
اثرهای انگیزه غیرنرمال	218/96	194/0
اثرهای انگیزه منفی	216/98	192/0
اثرهای انگیزه غیرنرمال	214/100	190/0

جدول 6: حساسیت و ویژگی ارورز اخباری منفی و مثبت راهنمای بالاتر

کلاسیفیکی سی تی اسکن	تایید/نتایج بالاتر	غیرتایید/ناتایج بالاتر
جامعه محیطی	238/76	216/0
اثرهای انگیزه ای	236/78	218/0
اثرهای انگیزه منفی	234/80	216/0
اثرهای انگیزه غیرنرمال	232/82	208/0
اثرهای انگیزه غیرنرمال	230/84	206/0
اثرهای انگیزه منفی	228/86	204/0
اثرهای انگیزه غیرنرمال	226/88	202/0
اثرهای انگیزه منفی	224/90	200/0
اثرهای انگیزه غیرنرمال	222/92	198/0
اثرهای انگیزه منفی	220/94	196/0
اثرهای انگیزه غیرنرمال	218/96	194/0
اثرهای انگیزه منفی	216/98	192/0
اثرهای انگیزه غیرنرمال	214/100	190/0

جدول 7: نتایج تست و سی تی اسکن بر اساس توصیه

کلاسیفیکی سی تی اسکن	تایید/نتایج بالاتر	غیرتایید/ناتایج بالاتر
جامعه محیطی	238/76	216/0
اثرهای انگیزه ای	236/78	218/0
اثرهای انگیزه منفی	234/80	216/0
اثرهای انگیزه غیرنرمال	232/82	208/0
اثرهای انگیزه غیرنرمال	230/84	206/0
اثرهای انگیزه منفی	228/86	204/0
اثرهای انگیزه غیرنرمال	226/88	202/0
اثرهای انگیزه منفی	224/90	200/0
اثرهای انگیزه غیرنرمال	222/92	198/0
اثرهای انگیزه منفی	220/94	196/0
اثرهای انگیزه غیرنرمال	218/96	194/0
اثرهای انگیزه منفی	216/98	192/0
اثرهای انگیزه غیرنرمال	214/100	190/0

جدول 8: نتایج تست و سی تی اسکن بر اساس توصیه

کلاسیفیکی سی تی اسکن	تایید/نتایج بالاتر	غیرتایید/ناتایج بالاتر
جامعه محیطی	238/76	216/0
اثرهای انگیزه ای	236/78	218/0
اثرهای انگیزه منفی	234/80	216/0
اثرهای انگیزه غیرنرمال	232/82	208/0
اثرهای انگیزه غیرنرمال	230/84	206/0
اثرهای انگیزه منفی	228/86	204/0
اثرهای انگیزه غیرنرمال	226/88	202/0
اثرهای انگیزه منفی	224/90	200/0
اثرهای انگیزه غیرنرمال	222/92	198/0
اثرهای انگیزه منفی	220/94	196/0
اثرهای انگیزه غیرنرمال	218/96	194/0
اثرهای انگیزه منفی	216/98	192/0
اثرهای انگیزه غیرنرمال	214/100	190/0

جدول 9: نتایج تست و سی تی اسکن بر اساس توصیه

کلاسیفیکی سی تی اسکن	تایید/نتایج بالاتر	غیرتایید/ناتایج بالاتر
جامعه محیطی	238/76	216/0
اثرهای انگیزه ای	236/78	218/0
اثرهای انگیزه منفی	234/80	216/0
اثرهای انگیزه غیرنرمال	232/82	208/0
اثرهای انگیزه غیرنرمال	230/84	206/0
اثرهای انگیزه منفی	228/86	204/0
اثرهای انگیزه غیرنرمال	226/88	202/0
اثرهای انگیزه منفی	224/90	200/0
اثرهای انگیزه غیرنرمال	222/92	198/0
اثرهای انگیزه منفی	220/94	196/0
اثرهای انگیزه غیرنرمال	218/96	194/0
اثرهای انگیزه منفی	216/98	192/0
اثرهای انگیزه غیرنرمال	214/100	190/0

American College Of Emergency Medicine

مجله دانشگاه علوم پزشکی اراک
دوره 1398، شماره 22
108
پایلای L-1 و UCH-L1، GFAP و UCH-L1 از خون از بیماران دچار شاخص ترومای سایبانی و سایبانی شدند. استفاده از این متغیر ها در پیشگویی نیاز به انجام سی تی اسکن نوری در بیماران دارای ترومای سایبانی کمتری به طور مکیانی دقیق‌تر در مطالعه ما می‌باشد. میزان خطر برای انجام سی تی اسکن در بیماران به این امر تاکید کرده‌اند.

مطالعات بسیاری در مورد معیارهای نیواورلئان و معیارهای کانادایی و نیواورلئان در مراکز سطح سوم ترومای و در بعضی مطالعات معیارهای فوق با هم مقایسه شدند. آنچه در اکثریت قریب به اتفاق مطالعات دیده می‌شود، حساسیت بالای این معیارها و ویژگی پایین آن هاست.

نتایج حاصل از مطالعه ما نشان داد راهنمای بالینی از نظر پیشگویی، نیاز به انجام سی تی اسکن در بیماران ترومای خفیف با وجود حساسیت بالای سی تی اسکن از نظر ویژگی و ارزش اخبار مثبت و منفی بسیار پایین بود و سمای قابل قبولی برای ره یا انجام سی تی اسکن در بیماران ترومای خفیف سی تی اسکن نبود.

تجزیه‌گیری

نتیجه‌گیری

بهم برتری‌های دارای ترومای مغزی بیماری‌های فعلی، آزمایش تشخیصی برای ارزیابی شدت یک ضربه مغزی مناسب است. این آزمایش، به‌طور زیادی منجر به ارجاع بیشتری به اجرای سی تی اسکن در بیماران ترومای مغزی شد.

از آنجاست که در آزمایش تشخیصی برای ارجاع به اجرای سی تی اسکن، مطالعات بسیاری در مورد معیارهای نیواورلئان و معیارهای کانادایی و نبکش در مورد معیارهای فوق با هم مقایسه شدند. آنچه در اکثریت قریب به اتفاق مطالعات دیده می‌شود، حساسیت بالای این معیارها و ویژگی پایین آن هاست.
References

[1] Geijerstam JL, Britton M. Mild head injury-mortality and complication rate: Meta-analysis of findings in a systematic literature review. Acta Neurochir (Wien). 2003; 145(10):843-50. [DOI:10.1007/s00701-003-0115-1] [PMID]

[2] Jeret JS, Mandell M, Anziska B, Lipitz M, Vikeus AP, Ware JA, et al. Clinical predictors of abnormality disclosed by computed tomography after mild head trauma. Neurosurgery. 1993; 32(1):9-15;15-6. [DOI:10.1097/00006123-199301000-00002]

[3] Wardlaw JM, Keir SL, Seymour J, Lewis S, Sandercock PA, Dennis MS, et al. What is the best imaging strategy for acute stroke? Health Technol Assess. 2004; 8(1):ix,1-180. [DOI:10.3310/hta8010] [PMID]

[4] Brenner DJ, Hall EJ. Computed tomography-an increasing source of radiation exposure. N Engl J Med. 2007; 357(22):2277-84. [DOI:10.1056/NEJMr072149] [PMID]

[5] Fayngersh V, Passero M. Estimating radiation risk from computed tomography scanning. Lung. 2009; 187(3):143-8. [DOI:10.1007/s00408-009-9143-9] [PMID]

[6] Marx JA, Hockberger RS, Walls RM, Biros MH, Ling LJ, Danzl DF, et al. Rosen’s emergency medicine: Concepts and clinical practice. 8th ed. Philadelphia: Elsevier; 2014.

[7] Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT. Classification of traumatic brain injury for targeted therapies. J neurotrauma. 2008; 25(7):719-38. [DOI:10.1089/neu.2008.0586] [PMCID]

[8] Arab AF, Ahmed ME, Hussein MA, Khankan AA, Alokaili RN. Accuracy of Canadian CT head rule in predicting positive findings on CT of the head of patients after mild head injury in a large trauma centre in Saudi Arabia. Neuroradiology J. 2015; 28(6):591-7 [DOI:10.1177/1971400915610699] [PMID] [PMCID]

[9] Linda P, Ian GS, Catherine MC, Artur P, Andrew W, Sameer D, et al. Performance of the canadian ct head rule and the new orleans criteria for predicting any traumatic intracranial injury on computed tomography in a united states level t trauma center. Acad Emerg Med. 2012; 19(1):2-10. [DOI:10.1111/j.1553-2712.2011.01247.x] [PMID] [PMCID]

[10] Stiell IG, Wells GA, Vandemheen K, Catherine Clement RN, Lesiu H, Laupacis A, et al. The Canadian CT head rule for patients with minor head injury. Lancet. 2003; 357(9266):1391-6. [DOI:10.1016/S0140-6736(03)15630-6] [PMID] [PMCID]

[11] Mata-Mbemba D, Mugikura S, Nakagawa A, Murata T, Kato Y, Tatewaki Y, et al. Canadian CT head rule and New Orleans criteria in mild traumatic brain injury: Comparison at a tertiary referral hospital in Japan. Springerplus. 2016; 5:176. [DOI:10.1186/s40064-016-1781-9] [PMID] [PMCID]

[12] Teasdale G, Jennett B. Assessment of coma and impaired consciousness, A practical scale. Lancet. 1974; 2(7872):81-4. [DOI:10.1016/S0140-6736(74)91639-0]

[13] Teasdale G, Murray G, Parker L, Jennett B. Adding up the Glasgow coma score. Acta Neurochir Suppl (Wien). 1979; 28(1):13-6. [DOI:10.1007/978-3-7091-4088-8_2] [PMID]

[14] Jennett B, Teasdale G. Aspects of coma after severe head injury. Lancet. 1977; 1(8017):878-81. [DOI:10.1016/S0140-6736(77)91201-6]

[15] David JD. Deep venous thrombosis: Recent advances and optimal investigation with ultrasonography. Radiology. 1999; 211(1):9-24. [DOI:10.1148/radiology.211.1.r99ap459] [PMID]
