Resumo

Fundamento: Tendo em vista o aumento da prevalência global de doenças cardiovasculares e hepáticas, o conteúdo lipídico da dieta e sua relação com o acúmulo de gordura nos hepatócitos têm sido investigados como fatores-chave na prevenção dessas doenças.

Objetivo: Avaliar os efeitos metabólicos de uma dieta rica em banha suplementada com colesterol ou não, em um modelo modificado de dislipidemia.

Métodos: Foram divididos 24 ratos Wistar machos adultos em três grupos: dieta padrão (DP - 4% de lipídios), dieta rica em banha (DRB - 21% de banha) e dieta rica em banha e colesterol (DRB/RC - 20% de banha, 1% de colesterol e 0,1% de ácido cólico). Após seis semanas de tratamento, o sangue e o fígado foram coletados para análises bioquímicas (perfil lipídico sérico e enzimas hepáticas) e morfológicas. A análise estatística incluiu análise de variância unidirecional (ANOVA), seguida do teste de Tukey para comparações de médias. Uma probabilidade de 5% foi considerada estatisticamente significativa.

Resultados: Animais alimentados com DRB/RC apresentaram um aumento nos níveis séricos de colesterol total, triacilglicerol, LDL-c, não-HDL-c, alanina aminotransferase (ALT) e aspartato aminotransferase (AST) em comparação com aqueles alimentados com DP. Além disso, os animais tratados com DRB/RC apresentaram um peso relativo do fígado maior, com estesate hepática macróvesicular moderada e infiltrado inflamatório.

Conclusão: Uma dieta rica em gordura com banha (20%) e colesterol (1%) desencadeou dislipidemia com danos graves ao fígado em ratos em um tempo experimental menor do que os modelos previamente relatados. A dieta rica em banha sem suplementação de colesterol levou ao ganho de peso corporal, mas não à dislipidemia. (Arq Bras Cardiol. 2019; 113(5):896-902)

Palavras-chave: Gorduras da dieta; Colesterol; Metabolismo lipídico; Fígado Gorduroso; Inflamação; Ratos.

Arquivo:

Artigo Original

Dieta Rica em Banha e Colesterol, mas não Dieta Rica em Banha, Leva a Distúrbios Metabólicos em um Modelo Modificado de Dislipidemia

High-Lard and High-Cholesterol Diet, but not High-Lard Diet, Leads to Metabolic Disorders in a Modified Dyslipidemia Model

Lidiane B. Muniz, Aline M. Alves-Santos, Fabrício Camargo, Danieli Brolo Martins, Mara Rubia N. Celes, Maria Margareth V. Naves

Universidade Federal de Goiás, Goiania, GO – Brasil

Correspondência: Maria Margareth V. Naves

Universidade Federal de Goiás - Faculdade de Nutrição - Laboratório de Nutrição Experimental – Rua 227, quadra 68, Setor Leste Universitário, CEP 74605-080, Goiânia, GO – Brasil

E-mail: mmmnaves@gmail.com

Artigo recebido em 27/08/2018, revisado em 03/12/2018, aceito em 23/01/2019

DOI: 10.5935/abc.20190149

Full texts in English - http://www.arquivosonline.com.br
Introdução

A prevalência mundial de doenças metabólicas e complicações de saúde associadas aumentou nas últimas décadas. Excesso de gordura corporal, resistência à insulina, doença hepática gordurosa não alcoólica (DHGNA) e dislipidemia levam a distúrbios metabólicos relacionados ao maior risco de desenvolver doenças cardiovasculares.1 A DHGNA varia desde um pequeno acúmulo de gordura no hipocóto até estágios mais graves de necrose inflamatória, com ou sem fibrose. Estudos indicam uma associação entre DHGNA e resistência à insulina, inflamação de hepatócitos e comprometimento do metabolismo lipídico,2,3 já que a maioria dos pacientes com DHGNA apresenta dislipidemia.4

A dislipidemia é caracterizada por níveis aumentados de triacilglicerol (TG) e colesterol de lipoproteína de baixa densidade (LDL-c), e diminuição do colesterol de lipoproteína de alta densidade (HDL-c).5 Hipercolesterolemia (aumento isolado do LDL-c) e hipertrigliceridemia (aumento isolado do TG) são as formas mais comuns de dislipidemia.6 Em geral, o desequilíbrio do metabolismo lipídico resulta da interação entre fatores genéticos e ambientais, como hábitos alimentares, especialmente o consumo de lipídios. Portanto, o conteúdo lipídico da dieta tem sido investigado como um fator chave na prevenção de doenças cardiovasculares e hepáticas.7

Estudos experimentais com dietas hiperlipídicas usaram teores muito altos de gordura dietética (cerca de 50% da composição da dieta), em protocolos de curto período (quatro semanas), sem constatar um comprometimento lipídico sérico.8 Por outro lado, estudos testando concentrações lipídicas mais próximas do consumo humano têm sido realizados durante um período experimental relativamente longo, como em relatos anteriores com ratos (21% de gordura por 9 semanas)9 e com camundongos (15% a 20% de gordura durante 12 a 16 semanas).10,11

Nesse contexto, este estudo teve por objetivo avaliar os efeitos metabólicos de uma dieta rica em banha suplementada com colesterol ou não, num modelo modificado de dislipidemia, com tempo de experimentação e concentração lipídica da dieta menores em relação aos relatos anteriores.

Métodos

Animais, dietas e desenho experimental

O experimento foi conduzido com ratos Wistar machos adultos fornecidos pela Universidade de São Paulo (Ribeirão Preto, Brasil). Os ratos foram mantidos em gaiolas plásticas (2 animais/gaiola) por sete semanas (uma semana de aclimatação e seis semanas de ensaio), sob condições ambientais controladas (ciclo claro-escuro de 12 h e temperatura de 22 ± 2°C). No experimento, dividimos aleatoriamente 24 ratos em 3 grupos de 8 animais, de acordo com um delineamento de blocos casualizados, com base no peso corporal. O tamanho da amostra foi definido com base em estudos prévios sobre dislipidemia experimental. Cada grupo recebeu uma das seguintes dietas: dieta padrão (DP; RH19521, Rhoster, Brasil) preparada de acordo com AIN-93M,12,13 uma dieta rica em banha (DRB; RH195143, Rhoster, Brasil), e dieta rica em banha e colesterol (DRB/RC; RH195142, Rhoster, Brasil). Óleo de soja e banha foram utilizados como fontes lipídicas; colesterol, para induzir hipercolesterolemia; e ácido cólico, para aumentar o efeito hipercolesterolêmico do colesterol suplementado14 (Tabela 1). As dietas e água filtrada foram fornecidas ad libitum. A ingestão dietética e o peso corporal dos animais foram monitorados três vezes por semana.

Após seis semanas de experimentação, os animais foram eutanasiados (xilazina + cetamina /10 mg/kg + 100 mg/kg). Em seguida, coletamos amostras de sangue por punção abdominal (cerca de 5 mL) para análises bioquímicas (perfil lipídico sérico e enzimas hepáticas). Após a eutanásia por exsanguinização da aorta abdominal, extraíamos, pesámos e preparamos o fígado dos animais para avaliação morfológica. Todos os procedimentos estavam de acordo com o Guia para o Cuidado e Uso de Animais de Laboratório15 e foram aprovados pela Comissão de Ética no Uso de Animais da Universidade Federal de Goiás (protocolo número 039/15).

Análises bioquímicas

Amostras de sangue foram coletadas em tubos de heparina e centrifugadas a 4.000 rpm por 10 min para separar o soro, que foi imediatamente armazenado a -80°C para as análises de perfil lipídico e enzimas hepáticas. Os níveis de colesterol total (CT), TG, LDL-c, HDL-c, alanina aminotransferase (ALT) e aspartato aminotransferase (AST) foram determinados por kits comercialmente disponíveis (Labtest Diagnóstica SA, Lagoa Santa, Brasil). O colesterol da lipoproteína de muito baixa densidade (VLDL-c) foi estimado pela equação de Friedewald. A fração não-HDL-c foi obtida pela diferença entre os níveis de CT e HDL-c. A importância da fração não-HDL-c tem sido destacada na predição do risco de doença cardiovascular. Boekholdt et al.16 revelaram que as concentrações de não-HDL-c tiveram uma associação direta mais forte com o risco de DCV que o LDL-c e a apolipoproteína B (Apo B).

Avaliação morfológica do fígado

Os lóculos do fígado foram lavados em solução fisiológica gelada a 0,9% e fixados por imersão em formalina a 10% tamponada com fosfato por 24 h. Posteriormente, os lobos foram cortados em fragmentos de 4 a 5 mm de espessura, desidratados em concentrações crescentes de álcool (80%, 95% e 100%), clarificados em xilol (3 banhos de 30 min cada) e embebidos em parafina. Secções seriadas de 5 µm de espessura foram obtidas e coradas com hematoxilina e eosina (HE). Usamos as secções coradas com HE para analisar as alterações no arranjo do parênquima hepático e a presença de infiltrados inflamatórios com um Leica Las V4 (Leica Imaging Systems Ltd., Cambridge, Reino Unido), um microscópio Leica DM2000 (Leica Microsystems Wetzlar GmbH, Wetzlar, Suíça), uma câmera de vídeo Leica DC230 (Leica Microsystems AG, Heerbrugg, Suíça) e um computador com internet. Vinte campos de parênquima hepático de cada animal foram selecionados aleatoriamente e analisados, com aumentos de 100x e 400x.
Análise estatística

Dados foram expressos em média ± desvio padrão. A literatura considera o peso corporal parâmetros bioquímicos obtidos em modelos animais como dados paramétricos. Assim, determinamos a significância estatística usando a análise de variância unidirecional (ANOVA), seguida pelo teste de Tukey para comparações de médias (p < 0,05). O software STATISTICA, versão 7.0 (StatSoft, Inc., Tulsa, OK, USA) foi utilizado para análises estatísticas.

Resultados

A banha utilizada na formulação das dietas continha 39 g/100 g de gordura saturada e 72 mg/100 g de colesterol. Nas dietas ricas em gordura (DRB e DRB/RC), a banha contribuiu com aproximadamente 15 mg de colesterol/100 g de dieta, além do colesterol adicionado à DRB/RC. Quarenta e quatro por cento (44%) da energia da DRB e DRB/RC derivaram de lipídios, um valor quatro vezes maior que o da DP (11%).

O peso corporal inicial dos animais não diferiu entre os grupos, o que garantiu a homogeneidade das repetições do grupo. Os animais alimentados com DRB apresentaram maior ganho de peso corporal do que os do grupo DP. O peso do fígado e o peso relativo do fígado dos animais alimentados com DRB/RC foram maiores (p < 0,05) que os dos demais grupos (Tabela 2).

Animais alimentados com DRB/RC apresentaram maiores níveis séricos de CT, TG, LDL-c, VLDL-c, não-HDL-c, ALT e AST do que aqueles tratados com DP e com DRB. O perfil lipídico sérico e as enzimas hepáticas de animais alimentados com a DRB não foram diferentes daqueles do grupo DP (Tabela 2).

Alterações microscópicas foram encontradas no fígado dos animais alimentados com DRB/RC (Figura 1), pois a arquitetura do tecido hepático não estava preservada, com balonamento dos hepatócitos (caracterizado por inchaço e/ou vacuolização), alterações nos capilares sanguíneos sinusoidais e hiperemia passiva (capilares e veias ingurgitadas com sangue). Além disso, ratos alimentados com DRB/RC apresentaram esteatose hepática macrovesicular moderada, associada a uma infiltração acentuada por células linfomononucleares. Por outro lado, animais alimentados com DRB tiveram sua arquitetura de tecido hepático preservada, com hepatócitos de aspecto morfológico normal, e distribuição vascular, veia centrobiliar e tríade portal preservadas. A arquitetura do tecido hepático do grupo tratado com DP foi mantida com hepatócitos típicos, sinusóides hepáticos preservados e cadeias capilares; distribuição vascular conservada, tríades portais intactas, com ramos da veia porta, artéria hepática e ducto biliar.

Discussão

A dislipidemia foi desencadeada em ratos alimentados com uma dieta com 20% de banha e 1% de colesterol, em seis semanas, com aumento do peso do fígado, lesão hepática e infiltrado inflamatório.

Tabela 1 – Composição das dietas experimentais

Componente (g/100g de dieta)	Dieta¹		
	DP	DRB	DRB/RC
Caseína (82,93 g de proteína)	16,47	16,47	16,47
L-cistina	0,18	0,18	0,18
Óleo de soja	0,00	0,00	0,00
Banha²	0,00	21,00	20,00
Colesterol²	0,00	0,00	1,00
Ácido cílico²	0,00	0,00	0,10
Sacarose	10,00	10,00	10,00
Celulose	5,00	5,00	5,00
Mistura de minerais	3,50	3,50	3,50
Bitartrato de colina	0,25	0,25	0,25
Mistura de vitaminas	1,00	1,00	1,00
tert-Butilhidroquinona (TBHQ)	0,008	0,008	0,008
Amido de milho desintoxicado	15,50	15,50	15,50
Amido de milho	14,09	27,00	26,99
Lipídios (g/100g)³	4,1 ± 0,1	19,7 ± 1,4	20,8 ± 1,6
Energia dos lipídios⁴	36	189	189
Energia da dieta (kcal/g)⁴	3,41	4,26	4,26

¹Reeves et al.; DP: dieta padrão; DRB: dieta rica em banha; DRB/RC: dieta rica em banha e colesterol; ²Fernandes et al.; ³Resultado da análise química da dieta; ⁴Valor energético da dieta: 4, 4 e 9 kcal/g para proteína, carboidrato e lipídio, respectivamente.
Tabela 2 – Peso corporal e do fígado e parâmetros bioquímicos de ratos Wistar após seis semanas de tratamento com dietas padrão e hiperlipídicas

Parâmetro	Dieta		
	DP	DRB	DRB/RC
Peso corporal (g)			
Inicial	249,05 ± 21,44a	243,85 ± 15,09a	242,35 ± 16,78a
Final	409,58 ± 65,32a	564,08 ± 39,73a	508,58 ± 47,68a
Ganhos	250,53 ± 48,40b	320,23 ± 44,50a	266,23 ± 38,21a,b
Fígado			
Peso (g)	14,90 ± 2,33b	15,92 ± 1,65b	27,10 ± 5,04a
Peso relativo (g/100g de peso corporal)	2,98 ± 0,24a	2,82 ± 0,14a	5,28 ± 0,80a
Perfil lipídico sérico (mg/dL)			
CT	59,83 ± 15,99b	64,58 ± 14,13b	87,75 ± 8,54a
LDL-c	4,23 ± 0,71b	6,98 ± 2,09b	23,63 ± 4,55a
HDL-c	30,74 ± 4,11b	34,42 ± 7,77b	26,74 ± 4,23b
não-HDL-c	29,09 ± 12,13b	30,17 ± 10,84b	61,01 ± 6,95b
VLDL-c	10,68 ± 1,58b	16,77 ± 4,58a,b	18,52 ± 7,51a
TG	53,42 ± 7,91b	63,83 ± 22,90a,b	92,58 ± 37,55b
Enzimas hepáticas (U/L)			
ALT	48,72 ± 15,91b	28,16 ± 6,00b	210,30 ± 137,78b
AST	154,67 ± 22,42b	117,00 ± 29,84b	300,63 ± 60,26b

Os dados são expressos como média ± desvio padrão. a, b: Valores na mesma linha com letras sobrescritas diferentes são significativamente diferentes (teste de Tukey, p < 0,05). DP: dieta padrão; DRB: dieta rica em banha; DRB/RC: dieta rica em banha e colesterol; Peso relativo do fígado = (peso do fígado / peso corporal) x 100; CT: colesterol total; LDL-c: colesterol de lipoproteína de baixa densidade; HDL-c: colesterol de lipoproteína de alta densidade; VLDL-c: colesterol de lipoproteína de densidade muito baixa; TG: triacilglicerol; não-HDL-c: colesterol da lipoproteína de alta densidade; ALT: alanina aminotransferase; AST: aspartato aminotransferase.

No presente estudo, os lipídios contribuíram com 44% da energia da dieta rica em gordura, um percentual próximo ao relatado para dieta hiperlipídica consumida por indivíduos com sobrepeso ou obesos (43% a 55%).17-19 Em estudos prévios com animais, a contribuição lipídica variou de 67% a 75% da energia da dieta rica em gordura.8,9 Portanto, estas dietas com alto teor de lipídios não reproduzem, realista, as dietas ricas em gordura consumidas pelos seres humanos. A recomendação diária para adultos humanos é de 20% a 35% de energia a partir de lipídeos, de acordo com o AMDR (Acceptable Macronutrient Distribution Ranges), considerando que a alta ingestão lipídica indica um maior risco de obesidade e distúrbios associados.20

O maior ganho de peso corporal no grupo DRB pode ser explicado pelo maior consumo de dieta (17,6 g/dia/rato) em relação ao grupo DRB/RC (13,8 g/dia/rato), pois a densidade energética das dietas foi semelhante (4,27 kcal/g). Um maior ganho de peso foi relatado em estudo anterior com ratos alimentados com uma dieta rica em gordura e colesterol (densidade energética = 4,27 kcal/g) por 12 semanas, em comparação ao grupo controle.12

Aparas o maior ganho de peso corporal, o grupo DRB não diferiu do grupo DP em relação ao peso do fígado (Tabela 2). O peso relativo do fígado no grupo DRB/RC foi muito elevado, representando mais de 5% do peso corporal destes animais. O aumento do peso do fígado no grupo DRB/RC está relacionado à forte presença de vesículas de gordura nos hepatócitos, como observado na avaliação morfológica do fígado (Figura 1). Um estudo anterior com ratos em uma dieta rica em gordura e colesterol, sem ácido cínico, por 16 semanas apresentou resultados semelhantes em relação ao peso do fígado e acúmulo de lipídios no tecido hepático.11 Em nosso estudo, o acúcido cínico provavelmente acelerou os efeitos dislipidêmicos do colesterol no grupo DRB/RC, uma vez que identificamos distúrbios metabólicos em apenas 6 semanas, enquanto o estudo de Jung et al.11 alcançou os mesmos efeitos em 16 semanas. O comprometimento lipídico sérico observado em animais alimentados com DRB/RC é característico de dislipidemia, e o aumento acentuado do LDL-c pode estar relacionado à redução na atividade do receptor de LDL-c nos hepatócitos. Estudos prévios revelaram mudanças nos níveis séricos de CT e TG de ratos e camundongos alimentados com dieta em gordura e rica em colesterol.10,12 No entanto, os períodos de experimentação dos estudos relatados (9 e 12 semanas, respectivamente) foram maiores do que o usado no presente estudo.

O perfil lipídico sérico dos animais alimentados com DRB não diferiu daqueles alimentados com DP. Estudos com ratos Wistar tratados com dietas contendo 50% a 55% de banha (67% a 75% da energia da dieta) por quatro semanas mostraram resultados semelhantes.8,9 O efeito deletério do consumo muito alto de ácidos graxos saturados e sua relação com a dislipidemia têm sido questionados.1 Siri et al.21 destacaram que os efeitos da gordura saturada no perfil lipídico sérico poderiam ser modulados pelo conteúdo e/ou disponibilidade de ácidos graxos comuns.
A avaliação morfológica mostrou alterações marcantes no tecido hepático de animais alimentados com DRB/RC, como macrovesículas gordurosas e infiltrados inflamatórios, caracterizando uma esteatose hepática moderada, que foi confirmada pelos resultados das enzimas hepáticas (ALT e AST). O acúmulo de gordura no fígado desses animais está relacionado ao alto consumo de colesterol, pois essa sobrecarga nas células altera a homeostase do colesterol. Além disso, o acúmulo de metabólitos lipídicos intermediários, como diacilglicerol e acilcarnitinas, está associado à inflamação e resistência à insulina. Um estudo anterior sugeriu que o colesterol elevado na dieta é um fator crítico para a progressão da esteatose hepática e da inflamação em modelos animais. No entanto, características da DHGNA são mais evidentes quando o colesterol suplementado é associado ao ácido cólico em uma dieta rica em gordura, como observado em nosso estudo.
A presença de infiltrado inflamatório no tecido hepático promove a secreção de citocinas e quimiocinas, como o fator de necrose tumoral α (TNF-α) e a interleucina 6 (IL-6), que induzem a resistência à insulina. Neste distúrbio metabólico, a lipólise aumentada de TG armazenada no tecido adiposo eleva a produção de ácidos graxos. Os ácidos graxos liberados na circulação, por sua vez, inibem a ação anti-lipotrófica da insulina e promovem maior absorção lipídica pelo fígado, levando à dislipidemia e à estatose hepática.\(^{3,32,33}\) Hamsters alimentados com dieta hiperlipidêmica contendo colesterol (0,2%), por 10 semanas, desenvolveram dislipidemia e estatose hepática, com concentrações séricas aumentadas de CT, TG, LDL-c, ALT e AST.\(^{34}\) Análise histopatológica do fígado de ratos, em um tempo experimental menor do que os modelos previamente relatados. A dieta rica em banha sem suplementação de colesterol levou ao ganho de peso corporal, mas não à dislipidemia. Além disso, recomendamos estudos adicionais, incluindo um tratamento com banha e ácido cônico, para investigar se o ácido cônico pode aumentar os efeitos metabólicos do colesterol presente na banha.

Conclusão

Uma dieta rica em gordura com banha (20%) e colesterol (1%) desencadeou dislipidemia com danos graves ao fígado de ratos, em um tempo experimental menor do que os modelos previamente relatados. A dieta rica em banha sem suplementação de colesterol levou ao ganho de peso corporal, mas não à dislipidemia. Este modelo pode ser útil para investigar distúrbios metabólicos em diferentes delineamentos experimentais relacionados à dislipidemia e suas comorbidades.

Referências

1. Ruiz-Núñez B, Dijck-Brouwer DA, Muskiet FA. The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J Nutr Biochem. 2016 Oct;36:1-20.
2. Green CJ, Hodson L. The influence of dietary fat on liver fat accumulation. Nutrients. 2014;6(11):5018-33.
3. Yu J, Marsh S, Hu J, Feng W, Wu C. The pathogenesis of nonalcoholic fatty liver disease: interplay between diet, gut microbiota, and genetic background. Gastroenterol Res Pract. 2016 May;2016:1-13.
4. Zhang QQ, Lu LG. Nonalcoholic fatty liver disease: dyslipidemia, risk for cardiovascular complications, and treatment strategy. J Clin Transl Hepatol. 2015;3(3):78-84.
5. Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: risk for cardiovascular complications, and treatment strategy. J Clin Transl Hepatol. 2015;3(3):78-84.
6. Gaggiini M, Morelli M, Buzzigoli E, Defronzo RA, Bugianesi E, Gastaldelli A. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients. 2013;5(5):1544-60.
7. Marais AD. Dietary lipid modification for mild and severe dyslipidemia. Proc Nutr Soc. 2013;72(3):317-41.
8. Leonardi-Carvalho DS, Zaculoto S, Ovidio PJ, Heider R, Ong TP, Moreno FS, et al. Metabolic differences in the steatosis induced by a high-fat diet and high-protein-fat diet in rats. Advances in Biochemistry. 2015;3(6):86-95.
9. Picchi MG, Mattos AM, Barbosa MR, Duarte CP, Gandini MA, Portari GV, et al. A high-fat diet as a model of fatty liver disease in rats. Acta Cir Bras. 2011;26(Suppl 2):25-30.
10. Fernandes DC, Alves AM, Castro GSF, Jordão Júnior AA, Naves MMV. Effects of baru almond and Brazil nut against hyperlipidemia and oxidative stress in vivo. J Food Res. 2015;4(4):38-46.
11. Jung UJ, Cho YY, Choi MS. Apigenin ameliorates dyslipidemia, hepatic steatosis and insulin resistance by modulating metabolic and transcriptional profiles in the liver of high-fat diet-induced obese mice. Nutrients. 2016;8(5):305.
12. Zidani S, Benakmooun A, Ammouche A, Benali Y, Bouhadel A, Abbdeou S. Effect of dry tomato peel supplementation on glucose tolerance, insulin resistance, and hepatic markers in mice fed high-saturated-fat/high-cholesterol diets. J Nutr Biochem. 2017 Feb;40:164-71.
Este é um artigo de acesso aberto distribuído sob os termos da licença de atribuição pelo Creative Commons