Studies on phytochemical, antioxidant, anti-inflammatory, hypoglycaemic and antiproliferative activities of *Echinacea purpurea* and *Echinacea angustifolia* extracts

Rayn Clarenc Aarland, Angel Ernesto Bañuelos-Hernández, Mabel Fragoso-Serrano, Edgar del Carmen Sierra-Palacios, Fernando Díaz de León-Sánchez, Laura Josefina Pérez-Flores, Fernando Rivera-Cabrera and José Alberto Mendoza-Espinoza

Abstract

Context: *Echinacea* (Asteraceae) is used because of its pharmacological properties. However, there are few studies that integrate phytochemical analyses with pharmacological effects.

Objective: Evaluate the chemical profile and biological activity of hydroalcoholic *Echinacea* extracts.

Materials and methods: Density, dry matter, phenols (Folin–Ciocalteu method), flavonoids (AlCl₃ method), alkylamides (GC-MS analysis), antioxidant capacity (DPPH and ABTS methods), antiproliferative effect (SRB assay), anti-inflammatory effect (paw oedema assay, 11 days/Wistar rats; 0.4 mL/kg) and hypoglycaemic effect (33 days/Wistar rats; 0.4 mL/kg) were determined in three *Echinacea* extracts which were labelled as A, B and C (A, roots of *Echinacea purpurea* L. Moench; B, roots, leaves, flowers and seeds of *Echinacea purpurea*; C, aerial parts and roots of *Echinacea purpurea* and roots of *Echinacea angustifolia* DC).

Results: Extract C showed higher density (0.97 g/mL), dry matter (0.23 g/mL), phenols (137.5 ± 2.3 mEAG/mL), flavonoids (0.62 ± 0.02 mEQ/mL), and caffeic acid (0.048 mg/L) compared to A and B. A, B presented 11 alkylamides, whereas C presented those 11 and three more. B decreased the oedema (40%) on day 2 similar to indomethacin. A and C showed hypoglycaemic activity similar to glibenclamide. Antiproliferative effect was only detected for C (IC₅₀, 270 µg/mL; 8171 µg/mL; 9338 µg/mL in HeLa, MCF-7, HCT-15, respectively).

Discussion and conclusion: The difference in the chemical and pharmacological properties among extracts highlights the need to consider strategies and policies for standardization of commercial herbal extracts in order to guarantee the safety and identity of this type of products.

Introduction

In order to meet their basic needs, man has always maintained a close relationship with plants. This relationship resulted in the emergence of indigenous and traditional medicine (Koenn & Carter 2005; Jones et al. 2006). Traditional medicine continues to play an important role in continents such as Africa, Asia and America. The World Health Organization (WHO) has paid attention to the success achieved by Eastern countries such as China, where medicinal plants were incorporated into the official medicine, resulting in their clinical evaluation (Aarland et al. 2014). In this regard, in recent years the Food and Drug Administration (FDA) has approved three treatments based on herbal mixtures that includes antiallergenic, anticancer and antipsoriatic drugs (Newman & Cragg 2012, 2016).

However, even with this background, one of the main problems that hinder the inclusion of medicinal plants in the National and International Pharmacopoiesias, is the lack of studies that validate their use through the chemical and pharmacological description of the mixtures used in the final extracts (Pokorny & Schmidt 2001; Nindo et al. 2003; Hossain et al. 2010; Gupta et al. 2011). Our research group proposes that an important step in order to develop phytopharmaceutical products from medicinal plants is the standardization of the extracts. This standardization process is important since it allows having a product with the same physical and chemical characteristics, assuring the same pharmacological effect. Table 1 shows the proposed method, the same that was taken as the basis for the development of this study (Aarland et al. 2014).

The first reports of the use of the plants belonging to the genus *Echinacea* (Asteraceae) date to the beginning of the twentieth century, currently the sales associated with the hydroalcoholic extracts of *Echinacea purpurea* (L.) Moench, *Echinacea pallida* (Nutt.) Nutt. and *Echinacea angustifolia* DC. reach 21 million dollars in the USA (Blumenthal et al. 2005). Sales data in combination with its pharmacological properties make *Echinacea* an...
Materials and methods

Biological material and experimental set up

Three commercial hydroalcoholic Echinacea extracts were evaluated; these extracts were obtained from certified trading houses which are subjected to trademarks. These Echinacea hydroalcoholic extracts will be denoted as A, B and C extracts. According to the product label summary, A was prepared with roots of Echinacea purpurea; B with roots, leaves, flowers and seeds of Echinacea purpurea and C with aerial parts and roots of Echinacea purpurea and roots of Echinacea angustifolia.

This study included physical, chemical and biological analyses. The amount of dry matter and the density of the extracts were determined for physical analysis. Qualitative and quantitative determinations were carried out in the chemical analysis. The presence of saponins, anthraquinones, alkaloids, coumarins, and tannins were determined qualitatively. The compounds determined quantitatively were: total phenolics, total flavonoids, caffeic and chlorogenic acids, sugars and alkylamides as described below. Finally, for the analysis of the biological activity the antioxidant capacity was determined by DPPH and ABTS\(^+\) methods, and the anti-inflammatory effect, the hypoglycaemic potential, and the antiproliferative effect were evaluated.

Physical analysis of the extracts

Density

The density of the extracts was determined using a pycnometer equipped with a thermometer. First, the empty pycnometer was weighed, then filled with distilled water and weighed again. Finally, the pycnometer was filled with each Echinacea extract and weighed. Density was calculated using the following formula:

\[
\rho_{\text{extract}} = \frac{W_{\text{pycnometer + extract}} - W_{\text{pycnometer}}}{W_{\text{pycnometer + water}} - W_{\text{pycnometer}} - W_{\text{water}}}
\]

Dry matter

To determine the amount of dry matter in the extracts, 10 mL of the studied extract were dried by evaporation to constant weight in sterile conditions using a fume hood at room temperature (25 ± 2°C). Then, the dry matter was weighed and expressed as grams of dry matter per mL of extract.

Identification and quantification of alcohol present in the extracts

For the determination of the type of alcohol used in the formulation of the commercial extracts, each extract was analyzed with \(^1\)H-NMR, obtaining the spectrum from each of the samples. The proportion of alcohol in the sample was determined by the same protocol used for the determination of sugars described below.

UV/Vis spectrum

A Jenway UV/Vis spectrophotometer was used to obtain the absorption spectra of the extracts. The spectrum of each extract in the wavelength range from 190 to 1100 nm was evaluated.

Chemical analysis of the extracts

Qualitative analysis

Determination of saponins

To determine the presence of saponins in the extracts of Echinacea, the technique described by Coolborn and Bolatito (2010) was followed. Dried extract (0.02 g) was placed in a tube containing 10 mL of distilled water, then incubated in a water bath at 80°C during 30 min. Afterwards, the tube was allowed to cool at room temperature, stirred vigorously and left to stand for 15 to 20 min. The presence and level of saponins were assessed by measuring the height of the foam formed.

Determination of anthraquinones

Determination of anthraquinones was carried out using the method of thin layer
chromatography. Silica gel plates 60F254 of 3 × 5 cm were cut and an aliquot (0.1 mL) of each Echinacea extract was applied. The eluent mixture consisted of dichloromethane and methanol 95:5 (v/v). Yellow or red fluorescent spots under UV-light indicated the presence of anthraquinones (Coolborn & Bolatito 2010).

Determination of alkaloids An aliquot of 0.1 mL of each Echinacea extract was applied on silica gel 60F254 plates (3 × 5 cm). Plates were eluted with the same mixture used for anthraquinones and revealed with the Dragendorff reagent. Formation of red-brown spots indicated the presence of alkaloids (Coolborn & Bolatito 2010).

Determination of tannins Each extract (0.02 g) was dissolved in 10 mL of distilled water. The solution was divided into three test tubes and treated with: a gelatin solution 1% (w/v) in test tube number 1; a gelatin-salt reagent (1 g of gelatin and 10 g of NaCl dissolved in 100 mL of distilled water) in test tube number 2; saline solution [NaCl 10% (w/v)] in test tube number 3. The appearance of a white precipitate in test tubes number 1 & 2 and the absence of such precipitate in test tube number 3 indicated the presence of tannins (Coolborn & Bolatito 2010).

Determination of coumarins Each extract (0.02 g) was added to 10 mL of distilled water in test tubes. These test tubes were covered with filter paper moistened in a caustic soda solution (1 g in 15 mL) and heated until boiling point. After 5 min, the filter paper was removed from the tube, dried and exposed to UV-light. Blue fluorescence indicated the presence of volatile coumarins (Coolborn & Bolatito 2010).

Quantitative chemical analysis

Total phenols by spectroscopic analysis The content of total phenolic compounds was determined using the Folin–Ciocalteu reagent as described by Singleton and Rossi (1965). An aliquot of 200 μL of the hydroalcoholic extracts of Echinacea was diluted with methanol 80% (v/v). This dilution was mixed with 1 mL of Folin–Ciocalteu reagent (previously diluted with water 1:10 (v/v)) and incubated for 1 min at room temperature, added 0.8 mL of sodium carbonate 7.5% (w/v) were added. The reaction mixture was incubated for 1 h at room temperature and subsequently the absorbance was determined at 765 nm. The standard curve was prepared with gallic acid, concentrations ranging from 0 to 200 μM. The results were expressed as mg gallic acid equivalent per mL of each extract.

Total flavonoids by spectroscopic analysis Total flavonoids were determined using the colorimetric method of aluminum chloride described by Chang et al. (2002). Each hydroalcoholic Echinacea extract (0.5 mL) was mixed with 1.5 mL of 95% ethanol (v/v), 0.1 mL of 10% aluminum chloride (w/v), 0.1 mL of 1 M potassium acetate and 2.8 mL of distilled water. The mixture was incubated at room temperature for 30 min and the absorbance was determined at 415 nm. The standard curve was prepared with quercetin, concentrations ranging from 10 to 100 μg/mL. The results were expressed as mg quercetin equivalent per mL of each extract.

Determination of chlorogenic acid and caffeic acid by HPLC analysis The determination of these two polyphenols was carried out by high performance liquid chromatography (HPLC), using the technique described by Pellati et al. (2011). The extracts were filtered through 0.45 μm nylon filters. Afterwards, these filters were analyzed microscopically. The filtrate (20 μL) was injected into an HPLC system (Agilent Technology 1260) consisting of a vacuum degasser, quaternary pump, autosampler, thermostatted column compartment and a Multiple Wavelength Detector (MWD). The chromatograms were recorded using Agilent OpenLab EZChrom 2014 Chemstation software. The analyses were carried out on waters µBondapak C18 column (10 μm, 3.9 × 300 mm) using water and acetonitrile mixture as the mobile phase in gradient elution mode. The mobile phase was composed of 0.1% (v/v) acetic acid in MilliQ water (A) and acetonitrile HPLC grade (B). The elution gradient was modified as follows: initial 15% B; from 15 to 30% B for 10 min; from 30 to 65% B for 8 min; from 65 to 80% B for 7 min; from 80 to 90% B for 5 min and 90% B isocratically for 5 min. The postrunning time was 3 min. The flow rate was 1 mL min⁻¹ and the column temperature was set at 30°C. The results were recorded at 320 nm, and they were interpolated in a standard curve of caffeic or chlorogenic acid (0.05–100 ppm). Results were expressed as ppm g⁻¹ dry weight.

Determination of sugars by HPLC Each extract was filtered through 0.45 μm nylon filters (Millex, Millipore, Bedford, VA). The filtrate (20 μL) was injected into the HPLC system mentioned above. The analyses were carried out on an Agilent Hi-Plex Ca column (8% crosslinked, 7.7 × 300 mm, 8 μm) using MilliQ water as the mobile phase in an isocratic mode. The flow rate was 0.6 mL min⁻¹ and the column temperature was set at 85°C. Results were expressed as ppm sugar determined g⁻¹ of dry weight.

Determination of the alkylamides by GC-MS analysis Lipophilic fraction of the hydroalcoholic Echinacea extracts was obtained to analyze its constituents, mainly alkylamides. Liquid–liquid extraction was carried out; 10 mL of each one of the hydroalcoholic extracts was subjected to threefold extraction with 20 mL n-hexane-ethyl acetate (1:1 v/v) in a separation funnel. The organic phases of each extraction were collected and concentrated in a rotary evaporator and filtered previously to the GC analysis. GC-MS spectra were recorded on an Agilent Technologies 6890N instrument (Santa Clara, CA) consisting of an Agilent Technologies 5975B mass-selective detector using a HP5MS column (30 m × 0.25 mm ×0.25 μm) and He as carrier gas (5 μL/min). The conditions for recording spectra and identifying constituents were similar to those published by Hudaib et al. (2002). Compounds identification was performed with NIST MS Search software v 2.2, and with the EI mass spectra as reported by Bauer et al. (1988).

Pharmacological assays

Determination of antioxidant capacity by the DPPH method The method used to test the antioxidant capacity in three replicates of each hydroalcoholic Echinacea extract was based on the evaluation of the free radical scavenging capacity of the extracts according to the method described by Brand-Williams et al. (1995). DDPH is a stable free radical and the assay can accommodate a large number of samples in a short period of time and it is sensitive enough to detect active principles at low concentrations. A solution of 0.1 mM DPPH (2,2-diphenyl-1-picrylhydrazyl) in methanol was prepared. An aliquot of 50 μL of trolox or hydroalcoholic extract was added to 950 μL of this solution.
Diluted samples of the hydroalcoholic extract in 80% aqueous methanol (v/v) were used. The antioxidant activity was measured by decreasing the absorbance at 515 nm (Beckman DU-650, UV-Vis spectrophotometer, Brea, CA). The standard curve was prepared with trolox, concentrations ranging from 0 to 30 μM. The results were expressed as trolox equivalent antioxidant capacity (TEAC).

Determination of antioxidant capacity by the ABTS⁺ method

This method is based on the evaluation of the free radical scavenging capacity of each hydroalcoholic *Echinacea* extracts, to reduce the radical cation ABTS⁺ to ABTS according to the method described by Rivero-Pérez et al. (2007). The radical was generated by the reaction of 7 mM solution of ABTS in deionized water with 2.45 mM K₂S₂O₈ (1:1 v/v). The solution was held in darkness at room temperature for at least 16 h to obtain stable absorbance values at 734 nm. Subsequently, PBS buffer 1 X, pH 7.4 was used to set the absorbance of this solution at 0.7 (water as blank). An aliquot of 100 μL of trolox or each hydroalcoholic extract was added to 1000 μL of this solution. Diluted samples of each hydroalcoholic extract in PBS buffer 1 X, pH 7.4 were used. The antioxidant activity was measured by the decrease in the absorbance at 734 nm (Beckman DU-650, UV-Vis spectrophotometer, USA). The standard curve was prepared with trolox, concentrations ranging from 0 to 20 μM. The results were expressed as trolox equivalent antioxidant capacity (TEAC).

Determination of the carrageenan-induced paw edema anti-inflammatory in vivo model

Inflammation was induced in 40 male Wistar rats of 84 days of age with weights between 300 and 320 g, the treatment was administered *ad libitum* during 11 days, divided into the following groups (n = 8): negative control group (500 mL water per group), positive control group (indomethacin 10 mg/kg in 500 mL water per group), three *Echinacea* extract groups, one for each *Echinacea* extract was analyzed (1.66 mL of the hydroalcoholic extracts in 500 mL water, this corresponds to a daily dose of 0.4 mL of extract per kilogram of each group). Inflammation was induced in the right paw by a sub-plantar injection of 0.1 mL of carrageenan 1% (w/v) in saline solution 0.9% (w/v) (Cai et al. 2014). The change in the oedema was calculated by the difference of the measured diameter between the non-swollen left paw and right paw treated with carrageenan. This study was carried out every 24 h during 11 days. The animals were provided by the animal centre at Universidad Autónoma Metropolitana Unidad-Iztapalapa. The handling of the laboratory animals was performed in agreement with the statutes of the CICUAL (Institutional Committee for the Care and Use of the Animals) based in the international and national rules established in the ‘Official Mexican Rule’ for the care and use of the laboratory animals [NOM-062-ZOO-1999] (NOM 1999).

Antiproliferative effect in tumor cell lines

MCF-7, HeLa and HCT-15 cells were maintained in RPMI 1640 medium with 10% (w/v) fetal bovine serum and cultured at 37 °C in an atmosphere of 5% CO₂ in air (100% humidity). Cells at log phase of growth cycle were treated in triplicate with five different concentrations of the biological dry material adjusted in DMSO (dry material was obtained by evaporating 1 mL of each *Echinacea* extract using a nitrogen flow), and incubated for 72 h at 37 °C in a 100% humidified atmosphere and 5% CO₂. Cell growth was determined by the sulforhodamine B assay (SRB) in 96-well plates. Sulforhodamine B absorbance was measured at 564 nm. This colorimetric method expresses the percentage of proliferation in cells treated with the *Echinacea* extracts compared with a DMSO blank, using the following formula, % cell growth = (A₁₀₀ - A₀)/(A₁₀₀ - A₀) × 100, where A₀ = absorbance value of treatment or positive control (colchicine) well, A₁₀₀ = absorbance value of DMSO blank well, A₁₀₀ = absorbance value of growth control well (Skehan et al. 1990; Mendoza-Espinoza et al. 2009; Campos-Lara & Mendoza-Espinoza 2011).

Statistical analysis

Statistical analysis was carried out using NCSS software (2007, update 2009, v07.1.18). Data were compared applying one-way ANOVA followed by Tukey’s multiple comparison tests. Values were considered as statistically significant at p < 0.05.

Results and discussion

Given that this study was performed with commercial *Echinacea* hydroalcoholic extracts, the presence of ethyl alcohol was determined by ¹H-NMR and the proportion of this alcohol in the preparation was determined by HPLC. 0.45 μm nylon filters were analyzed microscopically and no abnormal particles were found. Table 2 shows the percentage of ethyl alcohol detected in each extract. Qualitative and quantitative chemical analysis indicated that extract C prepared with *E. purpurea* and *E. angustifolia* is richer in phenols and total flavonoids (Table 2), this result correlates with the higher antioxidant activity found in the in vitro analyses of this extract (Table 2). The correlation between the content of phenols and total flavonoids with the antioxidant activity of each hydroalcoholic extract was determined.
capacity has also been proposed by Kumar et al. (2008) and Farasat et al. (2014) in ten Indian medicinal plants and edible green seaweeds, respectively.

Gas chromatography analysis coupled to mass spectrometry (GC-MS) revealed the presence of at least 11 alkylamides in extracts A and B and 14 alkylamides in extract C (Figure 1). The concentration and type of alkylamides depends on the species, as well as the plant tissue. A previous study performed by Pellati et al. (2011) using a similar extraction method in whole E. purpurea plants, reported 22 alkylamides in E. angustifolia and 17 in E. purpurea. Mudge et al. (2011) have reported that roots of E. angustifolia have a broader variety of alkylamides compared to the roots of E. purpurea which coincides with our results showing the detection of 11 alkylamides in extract A which is only constituted by E. purpurea roots, while in extract C (constituted of a mixture of roots of E. purpurea and E. angustifolia) 14 alkylamides were detected from which three are exclusive of E. purpurea (Figure 1 and Table 3).

In the model of paw edema in male Wistar rats, extract B (elaborated from roots, leaves, flowers and seeds of Echinacea purpurea) showed a robust anti-inflammatory effect compared to the negative control on day 2 and 3; however, it was less powerful than the positive control (indomethacin) (see support material). It is important to note that the effect of this extract was observed until day 2 and 3 of the treatment, which may indicate that Echinacea extracts have an anti-inflammatory effect but slower than the indomethacin positive control. The other two extracts A and C, showed no significant differences compared to the negative control, which could indicate that the active metabolite for this activity is possibly located in the leaves of Echinacea purpurea and not in the root as it has been reported in some ethnobotanical studies of Echinacea (World Health Organization 1999). These results agree and support the study of the protective effect of Echinacea against hepatotoxicity caused by diethylnitrosamine, reported by Rezaie et al. (2013) and the protective effect on induced colitis reported by Dogan et al. (2014). The effect observed by these research groups can be attributed to the anti-inflammatory effect found on the present work; however, it has not been specifically determined in an in vivo anti-inflammatory study. The role of the alkylamides on this effect is not clear, since the anti-inflammatory effect found on the present work; however, it has not been specifically determined in an in vivo anti-inflammatory study. The role of the alkylamides on this effect is not clear, since the anti-inflammatory effect found on the present work; however, it has not been specifically determined in an in vivo anti-inflammatory study. The role of the alkylamides on this effect is not clear, since the anti-inflammatory effect found on the present work; however, it has not been specifically determined in an in vivo anti-inflammatory study.

A hypoglycaemic effect was observed for the three hydroalcoholic extracts, being extract A the most promising. The average

Table 2. Evaluation of physical and chemical parameters and biological activity of Echinacea extracts.

Biological material	A	B	C	
Physical				
Dry matter (g/mL)	0.024	0.027	0.239	
Density (g/mL)	0.933	0.930	0.978	
Ethyl alcoholb	40%	40%	30%	
Chemical				
Qualitativec				
Saponins	+	++	+	
Coumarins	+	-	+	
Anthraquinones	-	+	+	
Tannins	+	-	+	
Quantitative				
Total phenolsd	23.3 ± 0.1	17.7 ± 0.1	137.5 ± 2.3	
Total flavonoidsd	0.16 ± 0.01	0.16 ± 0.003	0.62 ± 0.02	
Caffeic acidd	-	-	-	
Chlorogenic acidd	-	<1.0	<1.0	
Alkylamidesd	11	11	14	
Sugars	Sucrose	267	77.95	68061.22
Glucose	1660	2475.07	2521.65	
Fructose	6788.36	3554.74	29958.56	
Biological				
Antioxidant capacityh				
DPPHh	0.24 ± 0.01	0.45 ± 0.02	4.8 ± 0.4	
ABTHs	1.66 ± 0.06	1.26 ± 0.04	10.5 ± 0.2	
Cytotoxicityi	Hela	>30,000	>30,000	270.8
	MCF-7	>30,000	>30,000	8,171
	HCT-15	>30,000	>30,000	9,338

Extract produced in a certified ranch using: A, roots of Echinacea purpurea; B, roots, leaves, flowers and seeds of Echinacea purpurea; C, aerial part and roots of Echinacea purpurea and roots of Echinacea angustifolia. The alcohol type was determined by 1H-RMN and the percentage was determined by HPLC. Qualitative analysis: + + + very abundant; ++ abundant; + scarce; - not observed. Quantitative analysis: mEq/mL, equivalent mg of gallic acid per milliliter of extract. Number of alkylamides found by GC-MS. Trolox Equivalent Antioxidant Capacity, equivalent millimolar per milliliter of extract. Half inhibitory concentration (IC50) in μg/mL.
Glycemia of male Wistar rats treated with extract A was lower than the positive control (glibenclamide), while rats treated with extracts B and C showed similar average values between them and a similar tendency as the positive control along the experimental period (Table 4).

In relation to the antiproliferative effect, dry material was obtained by evaporating 1 mL of each extract using a nitrogen flow. IC\(_{50}\) (half inhibitory concentration) of A and B were above 30,000 \(\mu\)g/mL, while C showed values in the range from 500 to 10,000 \(\mu\)g/mL, being much more toxic for HeLa cell line and moderately toxic for HCT15 and MCF-7 cell lines. Antiproliferative effect of C may be attributable to the higher number of alkylamides detected by GC-MS analysis (Table 3). It is important to mention that these results correlate with the ability to inhibit the growth of human pancreatic cancer cell lines reported by Chicca et al. (2007). The different antiproliferative effect observed in the extracts could be explained by the difference in the type and concentration of alkylamides. Usually, this kind of compounds is related with this biological effect.

UV spectra of the extracts were obtained (Figure 2) in order to have their chemical fingerprints. There is a high similarity among the spectral lines of the three analyzed extracts; therefore, the composition of the biological material present in the extracts could not be determined by this method.

Conclusion

There are differences in the physical, phytochemical and biological properties of the three evaluated commercial *Echinacea* extracts. In this study, 11 alkylamides were identified in extracts A and B and 14 alkylamides in extract C (Table 3 and Figure 1).

Only extract B showed an anti-inflammatory effect, which suggest that the active compound for this effect is probably...
present in the aerial part of E. purpurea. Even though extract C was also prepared with aerial parts of E. purpurea, no anti-inflammatory effect was observed. Probably, this is an effect of dilution of extract C which was prepared with two species of Echinacea (aerial parts and roots of E. purpurea and roots of E. angustifolia) and possibly masks the anti-inflammatory effect observed in extract B.

The hypoglycaemic effect found in the extracts A and C could be attributed to the roots of E. purpurea. The present work represents the first report where Echinacea is associated with this pharmacological effect. It would be interesting to perform specific studies to determine the bioactive compounds and to elucidate the mechanism of action of this effect.

A moderate antiproliferative effect was only observed in extract C; the effect correlates with the highest content of alkylamides found in the non-polar fraction of this hydroalcoholic extracts. The results presented here evidence the need to consider strategies and policies of standardization, not only aimed to guarantee the safety and identity of the botanical products, but also their pharmacological effect. It is important to note that the three evaluated extracts of Echinacea are recommended in a similar way; however, its chemical content and biological effects are very different as shown in the present work.

Acknowledgements
This work is part of Rayn Clarenc Aarland PhD. dissertation. We thank CONACYT (No. 248821) for financial support to Rayn C. Aarland during his PhD. studies (PNPC Experimental Biology Program). This work was partially financed by the Universidad Autónoma de la Ciudad de México and by the Universidad Autónoma Metropolitana-Iztapalapa with the projects (UAM-PTC-510) and PRODEP UAM-I-CA-26 (No. 14612582) and financial support of postdoctoral fellowship of Angel E. Bañuelos-Hernández.

Disclosure statement
The authors report no declarations of conflict of interest.

Funding
This work was supported by CONACyT; under Grant 248821 and UAM-PTC; under Grant 510.
References

Aarland RC, Rivera-Cabrera F, Pérez-Flores LJ, Díaz de León Sánchez F, Mendoza-Espinoza JA. 2014. Relevance of chemical standardization and innocuousness in the process of development of herbal medicines: a review. Asian J Plant Sci. 13:1–7.

Balciunaite G, Juodsnukyte J, Savickas A, Ragazinskiene O, Siatkute L, Zvirblyte G, et al. 2015. Fractionation and evaluation of proteins of Echinacea purpurea (L.) Moench. Acta Pharm. 65:473–479.

Bauer R, Remiger P, Wagner H. 1988. Alkaloids from the roots of Echinacea purpurea (L.). Phytother. Res. 2:72–78.

Blummenthal M, Cavaliere C, Ferrier G. 2005. Total sales of herbal supplements in the United States show steady growth. HerbalGram. 71:64–66.

Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 28:25–30.

Cai C, Chen Y, Zhong S, Ji B, Wang J, Bai X, Shi G. 2014. Anti-inflammatory activity of n-butanol extract from Ipomoea stolonifera in vivo and in vitro. PloS One. 9:e95931

Campos-Lara M, Mendoza-Espinoza JA. 2011. Cytotoxic evaluation of flusvatatin and rosuvastatin, and effect of flusvatatin in the Hela cell cycle. Afr J Pharm Pharmacol. 5:189–193.

Chang CC, Yang MH, Wen HM, Chen JC. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 10:178–182.

Chicca A, Adinolfi B, Martinotti E, Fogli S, Breschi MC, Pellati F, et al. 2007. Chromatographic methods for metabolite profiling of virus- and phytoplasma-infected plants of Echinacea purpurea. J Agric Food Chem. 59:10425–10434.

Dogan Z, Ergul B, Sarikaya M, Filik L, Gonultas MA, Hucumenoglu S, Can M. 2014. The protective effect of Echinacea spp. (Echinacea angustifolia and Echinacea purpurea) in a rat colitis model induced by acetic acid. Pak J Pharm Sci. 27:189–196.

Dong L, Wang H, Niu J, Zou M, Wu N, Yu D, et al. 2015. Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1. Onco Targets Ther. 8:3649–3664.

Farasat M, Khavari-Nejad RA, Nabavi SM, Namjooyan F. 2014. Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iran J Pharm Res. 13:163–170.

Gupta S, Cox S, Abu-Ghanann N. 2011. Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed. LWT Food Sci Technol. 44:1266–1272.

Hassan H, Sule M, Musa A, Musa KY, Abubakar MS, Hassan AS. 2012. Anti-inflammatory activity of crude saponin extracts from five Nigerian medicinal plants. Afr J Tradit Complement Altern Med. 9:250–255.

Heitmann K, Havren GC, Holst L, Nordeng H. 2016. Pregnancy outcomes after prenatal exposure to Echinacea: The Norwegian Mother and Child Cohort Study. Eur J Clin Pharmacol. 72:623–630.

Hossain MB, Barry-Ryan C, Martin-Diana AB, Brunton NP. 2010. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 118:15–91.

Hudaib M, Fiori J, Bellardi MG, Rubies-Autonell C, Cavrini V. 2002. GC-MS analysis of the lipophilic principles of Echinacea purpurea and evaluation of cucumber mosaic cucumovirus infection. J Pharm Biomed Anal. 29:1053–1060.

Jones WP, Chin YW, Kinghorn AD. 2006. The role of pharmacognosy in modern medicine and pharmacy. CurrDrug Targets. 7:247–264.

Kim HR, Oh SK, Lim W, Lee HK, Moon BI, Seoh JY. 2014. Immune enhancing effects of Echinacea purpurea root extract by reducing regulatory T cell number and function. Nat Prod Commun. 9:511–514.

Koehn FE, Carter GT. 2005. The evolving role of natural products in drug discovery. Nat Rev Drug Discov. 4:206–220.

Kumar AS, Mazumder A, Vanitha J, Sivakumar T. 2008. Evaluation of antioxidant activity, phenol and flavonoid contents of some selected Indian medicinal plants. Pharmacobind. 4:143–147.

Kumar KM, Ramaiah S. 2011. Pharmacological importance of Echinacea purpurea. Int J Pharm Biol Sci. 2:305–314.

Lee Y, Jung J, Ali Z, Khan IA, Oh S. 2012. Anti-inflammatory effect of triterpene saponins isolated from blue Cohosh (Caulophyllum thalictroides). Evid Based Complement Alternat Med. 2012:1–8.

Mendoza-Espinoza JA, López-Vallejo F, Fagoso-Serrano M, Pereda-Miranda R, Cerda-Garcia-Rojas CM. 2009. Structural reassignment, absolute configuration, and conformation of hypurticin, a highly flexible polyacloyxy-6-heptenyl-5,6-dihydro-2H-pyran-2-one. J Nat Prod. 72:700–708.

Mudge E, Lopes-Lutz D, Brown P, Schieber A. 2011. Analysis of alkalylamides in Echinacea plant materials and dietary supplements by ultrafast liquid chromatography with diode array and mass spectrometric detection. J Agric Food Chem. 59:8086–8094.

Newman DJ, Cragg GM. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 75:311–335.

Newman DJ, Cragg GM. 2016. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 79:629–661.

Nindo CI, Sun T, Wang SW, Tang J, Powers JR. 2003. Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus. LWT Food Sci Technol. 36:507–516.

NORMA Oficial Mexicana NOM-062-ZOO-1999, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio [online]. Available at: http://www.fmvz.unam.mx/fmvz/principal/archivos/062ZOO.PDF. Accessed on 20 July 2014.

Pellati F, Epifano F, Contaldo N, Orlandini G, Cavicchi L, Genovese S, et al. 2011. Chromatographic methods for metabolite profiling of virus- and phytoplasma-infected plants of Echinacea purpurea. J Agric Food Chem. 59:10425–10434.

Pokorny J, Schmidt S. 2001. Natural antioxidant functionality during food processing. In: Pokorny J, Yanishlieva N, Gordon M, editor. Antioxidants in food: practical applications. Boca Raton FL: CRC Press LLC; p. 331–54.

Rezaie A, Fazlara A, Karamolah MH, Shahriari A, Hossein HN, Pashmforosh M. 2013. Effects of Echinacea purpurea on hepatic and renal toxicity Induced by diethylmrtosamine in rats. Jundishapur J Nat Pharm Prod. 8:60–64.

Rivero-Pérez MD, Muniz P, González-Sanjosé ML. 2007. Antioxidant profile of red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of oxidative stress methodologies. J Agric Food Chem. 55:5476–5483.

Shah NA, Khan MR. 2014. Antidiabetic effect of Sida cordata in alloxan induced diabetic rats. Biomed Res Int. 2014:1–15.

Sharma M, Vohra S, Arnason JT, Hudson JB. 2008. Echinacea extracts contain significant and selective activities against human pathogenic bacteria. Pharm Biol. 46:111–116.

Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phoshololytic-phosphotungstic acid reagents. Amer J Enol Viticult. 16:144–158.

Skehan P, Storen DR, Scudiero D, Monks A, McMahon J, Vistica D, et al. 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 82:1107–1112.

World Health Organization. 1999. WHO monographs on selected medicinal plants, vol. 1. Malta: WHO.