TWO-BY-TWO UPPER TRIANGULAR MATRICES AND MORREY’S CONJECTURE

TERENCE L. J. HARRIS, BERND KIRCHHEIM, AND CHUN-CHI LIN

Abstract. It is shown that every homogeneous gradient Young measure supported on matrices of the form
\[
\begin{pmatrix}
a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\
0 & \cdots & 0 & a_{2,n}
\end{pmatrix}
\]
is a laminate. This is used to prove the same result on the 3-dimensional nonlinear submanifold of \(M^{2 \times 2}\) defined by \(\det X = 0\) and \(X_{12} > 0\).

1. Introduction and preliminaries

Let \(M^{m \times n}\) be the space of \(m \times n\) matrices with real entries. A function \(f : M^{m \times n} \to \mathbb{R}\) is rank-one convex if
\[
f(\lambda X + (1 - \lambda)Y) \leq \lambda f(X) + (1 - \lambda)f(Y)
\]
for all \(X, Y \in M^{m \times n}\) with \(\text{rank}(X - Y) \leq 1\). A locally bounded Borel measurable function \(f : M^{m \times n} \to \mathbb{R}\) is quasiconvex if for every bounded domain \(\Omega \subseteq \mathbb{R}^n\) and \(X_0 \in M^{m \times n}\),
\[
f(X_0)m(\Omega) \leq \int_{\Omega} f(\bar{X}_0 + \nabla \phi(x)) \, dx,
\]
for every \(\phi \in C_0^\infty(\Omega, \mathbb{R}^m)\), where \(\nabla \phi\) is the derivative of \(\phi\).

In 1952 Morrey conjectured that rank-one convexity does not imply quasiconvexity \(\[8\]\). A counterexample for \(m \geq 3\) and \(n \geq 2\) was given by Sverák in \(\[13\]\), but the question remains open for \(m = 2\) and \(n \geq 2\). Müller proved that rank-one convexity implies quasiconvexity on diagonal matrices (see \(\[9\]\)), but to reformulate the problem on a subspace requires the dual notions for measures.

Throughout, all probability measures are assumed to be Borel. A compactly supported probability measure \(\mu\) on \(M^{m \times n}\) is called a laminate if
\[
f(\mu) \leq \int f(\bar{X}) \, d\mu
\]
for all rank-one convex \(f : M^{m \times n} \to \mathbb{R}\), where \(\bar{X} = \int X \, d\mu(X)\) is the barycentre of \(\mu\). Similarly, \(\mu\) is a called a homogeneous gradient Young measure if the same inequality holds, but with rank-one convex replaced by quasiconvex. The question of whether rank-one convexity implies quasiconvexity is then equivalent to asking whether every homogeneous gradient Young measure is a laminate. In \(\[9\]\) Müller proved that every homogeneous gradient Young measure supported on the \(2 \times 2\) diagonal matrices is a laminate. In \(\[2\]\) and \(\[9\]\) this was extended to the \(n \times n\) diagonal matrices. The purpose of this work is to
generalise the result for \(2 \times 2\) diagonal matrices to the subspace
\[
\mathcal{M}_{2\times n}^{2\times 2} := \left\{ \begin{pmatrix} a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\ 0 & \cdots & 0 & a_{2,n} \end{pmatrix} \in \mathcal{M}_{2\times n} \right\}.
\]

When \(n = 2\), \(\mathcal{M}_{2\times 2}^{2\times 2}\) is the space of \(2 \times 2\) upper triangular matrices. Up to linear isomorphisms preserving rank-one directions, the only other 3-dimensional subspace of \(\mathcal{M}_{2\times 2}^{2\times 2}\) is the symmetric matrices (see [3, Corollary 6]).

In Section 3, the result on upper-triangular matrices will be used to prove that rank-one convexity implies quasiconvexity on
\[
\{ X \in \mathcal{M}_{2\times 2} : \det X = 0 \text{ and } X_{12} > 0 \}.
\]

2. Müller’s result

This section contains one particular generalisation of Müller’s result from the \(2 \times 2\) diagonal matrices \(\mathcal{M}_{2\times 2}^{2\times 2}\) to the subspace
\[
\mathcal{M}_{2\times n}^{2\times n} := \left\{ \begin{pmatrix} a_{1,1} & \cdots & a_{1,n-1} & 0 \\ 0 & \cdots & 0 & a_{2,n} \end{pmatrix} \in \mathcal{M}_{2\times n} \right\}, \quad n \geq 2.
\]

This will be used to prove the result for \(\mathcal{M}_{2\times n}^{2\times 2}\). The proof has only minor modifications from the one in [9], but is included for convenience. As in [6], define the elements in the Haar basis for \(L^2(\mathbb{R}^n)\) by

\[
h_{Q}^{(\epsilon)}(x) = \prod_{j=1}^{n} h_{j}^{(\epsilon)}(x_{j}), \quad \text{for } x \in \mathbb{R}^n,
\]

where \(\epsilon \in \{0, 1\}^n \setminus \{(0, \ldots, 0)\}\), \(Q = I_1 \times \cdots \times I_n\) is a dyadic cube in \(\mathbb{R}^n\), and the \(I_j\)'s are dyadic intervals of equal size. A dyadic interval is always of the form \([k \cdot 2^{-j}, (k+1) \cdot 2^{-j})\) with \(j, k \in \mathbb{Z}\). For a dyadic interval \(I = [a, b)\), \(h_I\) is defined by

\[
h_I(x) = h_{[0,1)} \left(\frac{x-a}{b-a} \right) \quad \text{for } x \in \mathbb{R},
\]

where

\[
h_{[0,1)} = \chi_{[0, \frac{1}{2})} - \chi_{[\frac{1}{2}, 1]}.
\]

For \(j \in \mathbb{Z}\) and \(k \in \mathbb{Z}^n\), the notation \(h_{j,k}^{(\epsilon)} = h_{Q}^{(\epsilon)}\) will be used, where

\[
Q = Q_{j,k} = \left[\frac{k_1}{2^j}, \frac{k_1 + 1}{2^j} \right) \times \cdots \times \left[\frac{k_n}{2^j}, \frac{k_n + 1}{2^j} \right).
\]

The standard basis vectors in \(\mathbb{R}^n\) or \(\{0, 1\}^n\) will be denoted by \(e_j\). The Riesz transform \(R_{j}\) on \(L^2(\mathbb{R}^n)\) is defined through multiplication on the Fourier side by \(-i\xi_j/|\xi|\). In [8, Theorem 2.1] and [9, Theorem 5] it was shown that if \(\epsilon \in \{0, 1\}^n\) satisfies \(\epsilon_j = 1\), then there is a constant \(C\) such that

\[
\|P^{(\epsilon)} u\|_2 \leq C \|u\|_2^{1/2} \|R_j u\|_2^{1/2} \quad \text{for all } u \in L^2(\mathbb{R}^n),
\]

where \(\epsilon\) is fixed and \(P^{(\epsilon)}\) is the projection onto the closed span of the set

\[
\left\{ h_{Q}^{(\epsilon)} : Q \subseteq \mathbb{R}^n \text{ is a dyadic cube} \right\}.
\]
Lemma 2.1. If $f: M^{2 \times n} \to \mathbb{R}$ is rank-one convex with $f(0) = 0$, and if $u_1, \ldots, u_{n-1}, v_n$ have finite expansions in the Haar basis

$$u_i = \sum_{\epsilon_n=0}^{K} \sum_{j,k \in \mathbb{Z}^n} a_{j,k,i}^{(\epsilon)} h_{j,k}^{(\epsilon)}$$

for $1 \leq i \leq n-1$, and

$$v_n = \sum_{j,k \in \mathbb{Z}^n} b_{j,k} h_{j,k}^{(\epsilon_n)}$$

so that $a_{j,k,i}^{(\epsilon)} = b_{j,k} = 0$ whenever $|k|$ is sufficiently large, then

$$\int_{\mathbb{R}^n} f \begin{pmatrix} u_1 & \cdots & u_{n-1} & 0 \\ 0 & \cdots & 0 & v_n \end{pmatrix} \, dx \geq 0.$$

Proof. The assumption that $a_{j,k,i}^{(\epsilon)} = b_{j,k} = 0$ for $|k|$ sufficiently large means the integral converges absolutely. Let

$$\tilde{u}_i = \sum_{\epsilon_n=0}^{K-1} \sum_{j,k \in \mathbb{Z}^n} a_{j,k,i}^{(\epsilon)} h_{j,k}^{(\epsilon)}$$

for $1 \leq i \leq n-1$, and let

$$\tilde{v}_n = \sum_{j,k \in \mathbb{Z}^n} b_{j,k} h_{j,k}^{(\epsilon_n)}.$$

Then on $Q_{K,k}$, for any $k \in \mathbb{Z}^n$,

$$u_i := u_i - \tilde{u}_i = \sum_{\epsilon_n=0}^{K} a_{K,k,i}^{(\epsilon)} h_{K,k}^{(\epsilon)}, \quad v_n - \tilde{v}_n = b_{K,k} h_{K,k}^{(\epsilon_n)}.$$

and

$$\int_{Q_{K,k}} f \begin{pmatrix} u_1 & \cdots & u_{n-1} & 0 \\ 0 & \cdots & 0 & v_n \end{pmatrix} \, dx = \int_{Q_{K,k}} f \begin{pmatrix} \tilde{u}_1 + u_1' & \cdots & \tilde{u}_{n-1} + u_{n-1}' & 0 \\ 0 & \cdots & 0 & \tilde{v}_n + v_n' \end{pmatrix} \, dx_1 \cdots dx_n.$$

The bottom row is constant in x_1, \ldots, x_{n-1} on $Q_{K,k}$, and so the function is convex for the integration with respect to x_1, \ldots, x_{n-1}. The terms \tilde{u}_i and \tilde{v}_n are constant on $Q_{K,k}$, and the x_1, \ldots, x_{n-1} integral of u_i' over the $(n-1)$-dimensional dyadic cube inside $Q_{K,k}$ is zero (for any x_n). Hence applying Jensen’s inequality for convex functions gives

$$\int_{Q_{K,k}} f \begin{pmatrix} u_1 & \cdots & u_{n-1} & 0 \\ 0 & \cdots & 0 & v_n \end{pmatrix} \, dx \geq \int_{Q_{K,k}} f \begin{pmatrix} \tilde{u}_1 & \cdots & \tilde{u}_{n-1} & 0 \\ 0 & \cdots & 0 & \tilde{v}_n + v_n' \end{pmatrix} \, dx_1 \cdots dx_n.$$

Applying Jensen’s inequality similarly to the integration in x_n, and summing over all $k \in \mathbb{Z}^n$ gives

$$\int_{\mathbb{R}^n} f \begin{pmatrix} u_1 & \cdots & u_{n-1} & 0 \\ 0 & \cdots & 0 & v_n \end{pmatrix} \, dx \geq \int_{\mathbb{R}^n} f \begin{pmatrix} \tilde{u}_1 & \cdots & \tilde{u}_{n-1} & 0 \\ 0 & \cdots & 0 & \tilde{v}_n \end{pmatrix} \, dx.$$

By induction this proves the lemma. □

Theorem 2.2. Let $n \geq 2$. Every homogeneous gradient Young measure supported in $M_{\text{diag}}^{2 \times n}$ is a laminate.

Proof. Let μ be a homogeneous gradient Young measure supported in $M_{\text{diag}}^{2 \times n}$, and let $f: M^{2 \times n} \to \mathbb{R}$ be a rank-one convex function. It is required to show that

$$\int f \, d\mu \geq f(\mathbb{P}).$$
Without loss of generality it may be assumed that $\overline{\mu} = 0$ and that $f(0) = 0$. After replacing f by an extension of f which is equal to f on $(\text{supp } \mu)^{\infty}$, it can also be assumed that there is a constant C with

$$|f(X)| \leq C(1 + |X|^2) \quad \text{for all } X \in M^{2 \times n}. \tag{2.2}$$

Let $\Omega \subset \mathbb{R}^n$ be the open unit cube, and using the Fundamental Theorem of Young Measures \cite[Theorem 8.16]{12} let $\phi^{(j)} = (\phi_1^{(j)}, \phi_2^{(j)})$ be a sequence in $W^{1, \infty}(\Omega, \mathbb{R}^2)$ whose gradients generate μ, which means that

$$\lim_{j \to \infty} \int_{\Omega} \eta(x) g \left(\nabla \phi^{(j)}(x) \right) \, dx = \int_{\Omega} g \, d\mu \cdot \int_{\Omega} \eta(x) \, dx,$$

for any continuous g and for all $\eta \in L^1(\Omega)$. In particular $\nabla \phi^{(j)} \to 0$ weakly in $L^2(\Omega, M^{2 \times n})$. By the sharp version of Zhang’s truncation theorem (see \cite{11}) it may be assumed that

$$\left\| \text{dist} \left(\nabla \phi^{(j)}, M^{2 \times n}_{\text{diag}} \right) \right\|_{\infty} \to 0. \tag{2.4}$$

As in Lemma 8.3 of \cite{12}, after multiplying the sequence by cutoff functions in such a way as to not affect \eqref{2.4}, it can additionally be assumed that $\phi^{(j)} \in W^{1, \infty}(\Omega, \mathbb{R}^2)$. Equation \eqref{2.4} gives

$$\left\| \partial_n \phi_1^{(j)} \right\|_{\infty} \to 0 \quad \text{and} \quad \left\| \partial_1 \phi_2^{(j)} \right\|_{\infty}, \ldots, \left\| \partial_{n-1} \phi_2^{(j)} \right\|_{\infty} \to 0. \tag{2.5}$$

Let $P_1 : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ be the projection onto the closed span of

$$\{h_Q^{(\epsilon)} : Q \subset \mathbb{R}^n \text{ is a dyadic cube and } \epsilon_n = 0\},$$

and let $P_2 : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ be the projection onto the closed span of

$$\{h_Q^{(\epsilon)} : Q \subset \mathbb{R}^n \text{ is a dyadic cube and } \epsilon = \epsilon_n\}. \tag{2.6}$$

Write $w^{(j)} = \nabla \phi^{(j)}$, so that by \eqref{2.5} and the fact that $R_{ij} \partial_i \phi = \partial_j \phi$,

$$\left\| R_n w^{(j)}_{1 \to 2}, \ldots, R_n w^{(j)}_{1 \to n} \right\|_2 \to 0, \quad \left\| R_1 w^{(j)}_{2 \to n}, \ldots, R_{n-1} w^{(j)}_{2 \to n} \right\|_2 \to 0. \tag{2.7}$$

Hence by \eqref{2.1} and Pythagoras’ Theorem

$$\left\| w^{(j)}_{1 \to 2}, \ldots, w^{(j)}_{1 \to n-1} - P_1 w^{(j)}_{1 \to n-1} \right\|_2 \to 0, \quad \left\| w^{(j)}_{2 \to n} - P_2 w^{(j)}_{2 \to n} \right\|_2 \to 0. \tag{2.8}$$

The function f is separately convex since it is rank-one convex. Hence by Observation 2.3 in \cite{1} and the quadratic growth of f in \eqref{2.2}, there exists a constant K such that

$$|f(X) - f(Y)| \leq K(1 + |X| + |Y|)|X - Y| \quad \text{for all } X, Y \in M^{2 \times n}. \tag{2.7}$$

Hence applying \eqref{2.3} with $\eta = \chi_{\Omega}$ gives

$$\int f \, d\mu = \lim_{j \to \infty} \int_{\Omega} f \left(w^{(j)} \right) \, dx \tag{2.8}$$

(by \eqref{2.5}, \eqref{2.6}, \eqref{2.7} and the Cauchy-Schwarz inequality. The functions $w^{(j)}$ are supported in Ω and satisfy $\int_{\Omega} w^{(j)} \, dx = 0$, by the definition of weak derivative. Hence the $L^2(\mathbb{R}^n)$ inner product satisfies $\left\langle w^{(j)}, h_Q^{(\epsilon)} \right\rangle = 0$ whenever Q is a dyadic.
cube not contained in $\overline{\Omega}$. This implies that $P_1 w^{(j)}$ and $P_2 w^{(j)}$ are supported in $\overline{\Omega}$. The integrand in (2.8) therefore vanishes outside $\overline{\Omega}$, and so

$$\int f \, d\mu = \lim_{j \to \infty} \int_{\mathbb{R}^n} f \begin{pmatrix} P_1 w^{(j)}_{11} & \cdots & P_1 w^{(j)}_{1,n-1} & 0 \\ 0 & \cdots & 0 & P_2 w^{(j)}_{2,n} \end{pmatrix} \, dx \geq 0$$

by (2.7) and Lemma 2.1. This finishes the proof. \qed

3. The Linear Space

To show a homogeneous gradient Young measure μ supported in $M_{2\times n}^\tri$ is a laminate, the argument consists of two steps. The projection $P_\# \mu$ onto $M_{2\times n}^\di$ is shown to be a gradient Young measure, and therefore a laminate by Theorem 2.2. It is then shown that since $P_\# \mu$ is a laminate, μ is also a laminate. Some of the arguments are similar to those in 2.

The proof requires a few extra definitions, which give a more constructive characterisation of laminates (see also 12).

Definition 3.1. A set $\{ (t_1, Y_1), \ldots, (t_l, Y_l) \} \subseteq (0, 1] \times M^{m \times n}$ with $\sum_{i=1}^l t_i = 1$ satisfies the H_l condition if:

- i) $l = 2$ and $\text{rank}(Y_1 - Y_2) \leq 1$, or;
- ii) $l > 2$ and after a permutation of the indices, $\text{rank}(Y_1 - Y_2) \leq 1$ and the set

$$\left\{ \left(t_1 + t_2, \frac{t_1 Y_1 + t_2 Y_2}{t_1 + t_2} \right), (t_3, Y_3), \ldots, (t_l, Y_l) \right\},$$

satisfies the H_{l-1} condition.

A convex combination of Dirac measures $\mu = \sum_{i=1}^N \lambda_i \delta_{X_i}$ is called a prelamine if the set $\{ (\lambda_1, X_1), \ldots, (\lambda_N, X_N) \}$ satisfies the H_N condition. This definition essentially says that the class of prelaminates is the smallest class of probability measures that contains the Dirac masses and is closed under rank-one splitting of its atoms.

The following theorem is a special case of Theorem 4.12 in 6, see also Theorem 3.1 in 11.

Theorem 3.2. Let μ be a laminate with support inside a compact set $K \subseteq M_{2\times n}^\di$, and let $U \subseteq M_{2\times n}^\di$ be any relatively open neighbourhood of K^{co}. There exists a sequence $\mu^{(n)}$ of prelaminates supported in U, with common barycentre, such that $\mu^{(n)} \rightharpoonup \mu$.

In what follows, $P : M_{2\times n}^\tri \to M_{2\times n}^\tri$ will be the projection onto $M_{2\times n}^\di$. Given a probability measure μ on $M_{2\times n}^\tri$, $P_\# \mu$ will denote the pushforward measure of μ by P, given by

$$(P_\# \mu)(E) = \mu(P^{-1}(E)),$$

for any Borel set E.

Lemma 3.3. If μ is a homogeneous gradient Young measure supported in $M_{2\times n}^\tri$, then $P_\# \mu$ is a homogeneous gradient Young measure.

Proof. It is first shown that if $T : M_{2\times n}^\tri \to M_{2\times n}^\tri$ is defined by $T(X) = AXB$ where $A \in M_{2\times 2}$ and $B \in M_{n\times n}$ is invertible, then $T_\# \nu$ is a homogeneous gradient Young measure whenever ν is a homogeneous gradient Young measure.
To show this, let $f : \mathbb{M}^{2 \times n} \to \mathbb{R}$ be a quasiconvex function and let $g = f \circ T$. Let $\Omega \subseteq \mathbb{R}^n$ be a nonempty bounded domain and let $\phi \in C_0^\infty(\Omega, \mathbb{R}^2)$. Define $\psi \in C_0^\infty(B^{-1}(\Omega), \mathbb{R}^2)$ by $\psi(x) = A\phi(Bx)$, and let $X_0 \in \mathbb{M}^{2 \times n}$. Then $\nabla \psi(x) = A\nabla \phi(Bx)B$, and hence

$$
\int_\Omega g(X_0 + \nabla \phi(x)) \, dx = \int_\Omega f(AX_0B + A\nabla \phi(x)B) \, dx
$$

$$
= |\det B| \int_{B^{-1}(\Omega)} f(AX_0B + \nabla \psi(y)) \, dy
$$

$$
\geq |\det B| m(B^{-1}(\Omega)) g(X_0) \quad \text{since } f \text{ is quasiconvex},
$$

$$
= m(\Omega) g(X_0).
$$

This shows that g is quasiconvex, which implies that

$$
\int g \, d(T\# \nu) = \int g \, d\nu \geq g(\overline{\nu}) = f(\overline{T\# \nu}),
$$

and therefore $T\# \nu$ is a homogeneous gradient Young measure.

Now let

$$
A_k = \begin{pmatrix}
1 & 0 \\
0 & k
\end{pmatrix}, \quad B_k = \begin{pmatrix}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1/k
\end{pmatrix},
$$

and define $P^{(k)} : \mathbb{M}^{2 \times n} \to \mathbb{M}^{2 \times n}$ by $X \mapsto A_k X B_k$, so that for $X \in \mathbb{M}^{2 \times 2}$,

$$
P^{(k)}(X) = P^k \begin{pmatrix}
x_{1,1} & \cdots & x_{1,n-1} & x_{1,n} \\
0 & \cdots & 0 & x_{2,n}
\end{pmatrix} = \begin{pmatrix}
x_{1,1} & \cdots & x_{1,n-1} & x_{1,n} \\
0 & \cdots & 0 & x_{2,n}
\end{pmatrix}.
$$

Let μ be a homogeneous gradient Young measure supported on $\mathbb{M}^{2 \times n}_{tril}$. Then $P^{(k)} \to P$ uniformly on compact subsets of $\mathbb{M}^{2 \times n}_{tril}$, and hence for any continuous function $f : \mathbb{M}^{2 \times n} \to \mathbb{R}$,

$$
\lim_{k \to \infty} \int f \, d(P^{(k)} \mu) = \int \lim_{k \to \infty} (f \circ P^{(k)}) \, d\mu = \int f \, d(P\# \mu).
$$

This shows that $P^{(k)} \mu \rightharpoonup P\# \mu$, and since the measures $P^{(k)} \mu$ have common compact support, $P\# \mu$ is a homogeneous gradient Young measure. \qed

Lemma 3.4. Let $\mu = \sum_{i=1}^N \lambda_i \delta_{X_i}$ be a convex combination of Dirac measures supported in $\mathbb{M}^{2 \times n}_{tril}$. If $P\# \mu$ is a prelaminate then μ is a prelaminate.

Proof. Given $\mu = \sum_{i=1}^N \lambda_i \delta_{X_i}$, it can be assumed that each $\lambda_i > 0$. By induction it may also be assumed that a set of $(N - 1)$ pairs $\{(t_i, Y_i) : 1 \leq i \leq N - 1\}$ satisfies the H_{N-1} condition whenever $\sum_{i=1}^{N-1} t_i \delta_{P(Y_i)}$ is a prelaminate.

By assumption the set of pairs $\{(\lambda_i, P(X_i)) : 1 \leq i \leq N\}$ satisfies the H_N condition. This means that after a permutation of indices, $\text{rank}(P(X_1) - P(X_2)) \leq 1$ and the set

$$
\left\{ \left(\lambda_1 + \lambda_2, P \left(\frac{\lambda_1 X_1 + \lambda_2 X_2}{\lambda_1 + \lambda_2} \right) \right), (\lambda_3, P(X_3)), \ldots, (\lambda_N, P(X_N)) \right\}
$$
satisfies the H_{N-1} condition. Hence rank$(X_1 - X_2) \leq 1$ and by the inductive assumption the set
\[
\left\{ \left(\frac{\lambda_1 + \lambda_2, \lambda_1 X_1 + \lambda_2 X_2}{\lambda_1 + \lambda_2}, (\lambda_3, X_3), (\lambda_N, X_N) \right) \right\}
\]
satisfies the H_{N-1} condition. By definition this shows that $\{(\lambda_i, X_i) : 1 \leq i \leq N\}$ satisfies the H_N condition, and therefore μ is a prelaminate. □

Lemma 3.5. Let μ be a probability measure with compact support in $\mathbb{M}^2_{\text{tri}}$. If $P#\mu$ is a laminate then μ is a laminate.

Proof. Suppose μ satisfies the assumptions of the lemma. Let N be such that $\text{supp} \mu \subseteq B(0,N)$, and identify $\mathbb{M}^2_{\text{tri}}$ with $\mathbb{M}^2_{\text{diag}} \times \mathbb{R}$. By Theorem 2.28 in \[1\] there exist probability measures λ_X on $[-N,N]$ such that
\[
\int f \, d\mu = \int \int f(X, t) \, d\lambda_X(t) \, d(P#\mu)(X),
\]
for all continuous $f : \mathbb{M}^2_{\text{tri}} \to \mathbb{R}$. In particular $X \mapsto \int f(X, t) \, d\lambda_X(t)$ is a Borel measurable function of $X \in \mathbb{M}^2_{\text{diag}}$ whenever f is continuous. Hence the function
\[
g(X) = (X, \overline{\lambda_X})
\]
is Borel measurable and bounded on $\mathbb{M}^2_{\text{tri}} \cap B(0,N)$. By Lusin’s Theorem (see [1, Theorem 1.45]) applied to $X \mapsto \overline{\lambda_X}$, there exists a uniformly bounded sequence of continuous functions $g^{(k)}(X) = (X, h^{(k)}(X))$ such that
\[
(P#\mu) \left\{ X \in B(0,N) \cap \mathbb{M}^2_{\text{diag}} : g^{(k)}(X) \neq g(X) \right\} < \frac{1}{k}.
\]
It follows that for any continuous function f,
\[
\lim_{k \to \infty} \int (f \circ g^{(k)}) \, d(P#\mu) = \int (f \circ g) \, d(P#\mu), \quad \text{and thus } \lim_{k \to \infty} g^{(k)}#P#\mu = g#P#\mu.
\]
Using Theorem 3.2 let $\nu^{(j)}$ be a sequence of prelaminates supported in a common compact subset of $\mathbb{M}^2_{\text{diag}}$ such that $\nu^{(j)} \rightharpoonup P#\mu$. If f is rank-one convex, then
\[
\int f \, d\mu = \int \int f(X, t) \, d\lambda_X(t) \, d(P#\mu)(X)
\]
\[
\geq \int (f \circ g) \, d(P#\mu)(X) \quad \text{by Jensen’s inequality},
\]
\[
= \lim_{k \to \infty} \int (f \circ g^{(k)}) \, d(P#\mu)
\]
\[
= \lim_{k \to \infty} \lim_{j \to \infty} \int f \, d\left(g^{(k)}#\nu^{(j)} \right)
\]
\[
\geq \lim_{k \to \infty} \lim_{j \to \infty} \int f \left(g^{(k)}#\nu^{(j)} \right) \quad \text{by Lemma 3.3}
\]
\[
= \lim_{k \to \infty} \int f \left(g^{(k)}#P#\mu \right) \quad \text{by continuity of } f \text{ and } g^{(k)},
\]
\[
= f \left(g#P#\mu \right) = f(\overline{\nu}).
\]
This shows that μ is a laminate. □
Theorem 3.6. Every homogeneous gradient Young measure supported in \(M_{2\times n}^{2\times n} \) is a laminate.

Proof. If \(\mu \) is a homogeneous gradient Young measure supported in \(M_{2\times 3}^{2\times n} \), then \(P_\# \mu \) is a homogeneous gradient Young measure by Lemma 3.3 and therefore a laminate by Theorem 2.2. The fact that \(P_\# \mu \) is a laminate then implies that \(\mu \) is a laminate by Lemma 3.5. \(\square \)

4. The 3-dimensional nonlinear space

Let

\[M_{2\times 2}^+ = \{ X \in M_{2\times 2} : \det X = 0 \}, \quad M_{2\times 2}^+ = \{ X \in M_{2\times 2} : X_{12} > 0 \}. \]

The previous result will be used to prove that every homogeneous gradient Young measure on \(M_{2\times 2}^+ \cap M_{2\times 2}^{2\times 2} \) is a laminate. This is done via a change of variables used in [2] and [4], which will now be described.

Given an open set \(\Omega \subseteq \mathbb{R}^2 \) and a smooth function \(u = (u_1, u_2) : \Omega \to \mathbb{R}^2 \), consider the functions

\[T_1(x) = (x_1, u_1(x)), \quad T_2(x) = (x_2, u_2(x)). \]

If \(T_1 \) is invertible with nonvanishing Jacobian, define the function \(v = (v_1, v_2) : T_1(\Omega) \to \mathbb{R}^2 \) by \(v \circ T_1 = T_2 \), that is

\[v(x_1, u_1(x)) = (x_2, u_2(x)) \quad \text{for all } x \in \Omega. \]

This implies that

\[u(x_1, v_1(x)) = (x_2, v_2(x)) \quad \text{for all } x \in T_1(\Omega). \]

which can be checked by substituting \(x = T_1(y) \). If \(u \) has gradient \(X \in M_{2\times 2} \) at some point \(x \in \Omega \), then by the chain rule \(v \) has gradient

\[\Psi(X) = \frac{1}{X_{12}} \begin{pmatrix} -X_{11} & -1 \\ X_{22} & \det X \end{pmatrix}, \]

at the point \(T_1(x) \), where \(\Psi \) is defined on \(M_{2\times 2}^+ \). If \(S_1(x) = (x_1, v_1(x)) \), then \(S_1(T_1(x)) = x \) by Lemma 4.1, and therefore \(\Psi \) is a self-inverse mapping of \(M_{2\times 2}^+ \) onto itself.

Given a function \(h : M_{2\times 2}^+ \to \mathbb{R} \), define the dual function \(\tilde{h} : M_{2\times 2}^+ \to \mathbb{R} \) by

\[\tilde{h}(X) = X_{12} h(\Psi(X)). \]

The term \(X_{12} \) corresponds to the determinant of \(T_1 \), which will later simplify the change of variables in integration.

Given a probability measure \(\mu \) on \(M_{2\times 2}^+ \), define the dual probability measure \(\tilde{\mu} \) on \(M_{2\times 2}^+ \) by

\[\int f \, d\tilde{\mu}(X) = \frac{1}{\mu_{12}} \int f \, d\mu. \]

for all Borel measurable \(f : M_{2\times 2}^+ \to [0, \infty] \). The basic properties are summarised in the following proposition.

Proposition 4.1. Let \(h : M_{2\times 2}^+ \to \mathbb{R} \) be a function, and let \(\mu \in \mathcal{M}(M_{2\times 2}^+) \). Then:

(i) \(\Psi^2 = \text{id}_{M_{2\times 2}^+} \);

(ii) \(\tilde{\tilde{h}} = h \);

(iii) \(\tilde{\mu} = \mu \) and \(\text{supp} \tilde{\mu} = \Psi(\text{supp} \mu) \);
Theorem 4.2. The function $\mu \mapsto \bar{\mu}$ if and only if μ is polyconvex.

Proof. Part (i) has been shown, and (ii) follows from (i). For (iii), the fact that supp $\bar{\mu} = \Psi(\mu)$ follows directly from the definition of $\bar{\mu}$ and the support. The barycentre of $\bar{\mu}$ is

\begin{equation}
\bar{\mu} = \int X \ d\bar{\mu} = \frac{1}{|T|_2^2} \int X_{12} \Psi(X) \ d\mu(X) = \frac{1}{|T|_2^2} \left(-\int \det(X) \ d\mu + \frac{1}{|T|_{22}}\right).
\end{equation}

This shows that $\bar{\mu} \in \frac{|\Omega|_2}{|T|_2}$, and thus

$$\int f \ d\bar{\mu} = \bar{\mu} \int f \ d\mu = \int f \ d\mu \quad \text{by (ii)}.$$

Hence $\bar{\mu} = \mu$, and therefore (iii) holds. For (iv), the measure μ is polyconvex if and only if $\int \det X \ d\mu = \det(\bar{\mu})$, and hence (4.2) gives (iv). \blacksquare

Let $\mathcal{M}_{pc}(\mathbb{M}^{2\times 2}_+)$ be the set of polyconvex measures with support in $\mathbb{M}^{2\times 2}_+$, and define $\mathcal{M}_{qc}(\mathbb{M}^{2\times 2}_+)$ and $\mathcal{M}_{rc}(\mathbb{M}^{2\times 2}_+)$ similarly.

Theorem 4.2. The function $\mu \mapsto \bar{\mu}$ maps

(i) $\mathcal{M}_{pc}(\mathbb{M}^{2\times 2}_+)$ bijectively onto $\mathcal{M}_{pc}(\mathbb{M}^{2\times 2}_+)$,

(ii) $\mathcal{M}_{qc}(\mathbb{M}^{2\times 2}_+)$ bijectively onto $\mathcal{M}_{qc}(\mathbb{M}^{2\times 2}_+)$, and

(iii) $\mathcal{M}_{rc}(\mathbb{M}^{2\times 2}_+)$ bijectively onto $\mathcal{M}_{rc}(\mathbb{M}^{2\times 2}_+)$.

Proof. If $\mu \in \mathcal{M}_{pc}(\mathbb{M}^{2\times 2}_+)$ then by Proposition 4.1

\[\hfill \]

and therefore $\bar{\mu} \in \mathcal{M}_{pc}(\mathbb{M}^{2\times 2}_+)$. This proves (i).

For (ii), the result will be proven for functions first, and then for measures. Let h be quasiconvex in $\mathbb{M}^{2\times 2}_+$, let $\Omega \subseteq \mathbb{R}^2$ be a nonempty bounded domain, let $A \in \mathbb{M}^{2\times 2}_+$ and $\phi \in C_0^\infty(\Omega, \mathbb{R}^2)$ be such that $\text{ran}(A+\nabla \phi) \subseteq \mathbb{M}^{2\times 2}_+$. Then $A \in \mathbb{M}^{2\times 2}_+$.

Let $\psi(x) = Ax + \phi(x)$, and write $\psi = (\psi_1, \psi_2)$. Then $\frac{\partial \psi}{\partial x_2}$ is bounded below by a positive constant. This implies that T_1 is injective on Ω, where

\[T_1(x) = (x_1, \psi_1(x)), \quad T_2(x) = (x_2, \psi_2(x)). \]

The set $T_1(\Omega)$ is bounded since ψ is Lipschitz, and T_1 is a diffeomorphism from Ω onto the bounded domain $T_1(\Omega)$ by the Inverse Function Theorem. Hence the Lipschitz map $g : T_1(\Omega) \to \mathbb{R}^2$ can be defined by $g \circ T_1 = T_2$. Let

\[g_0(x) = g(x) - \Psi(A)x, \]

so that $g_0 \in C_0^\infty(T_1(\Omega), \mathbb{R}^2)$, and

\[(\nabla g)(T_1(x)) = (\nabla \psi)(x), \]

by the definition of Ψ. The area of $T_1(\Omega)$ is

\[m(T_1(\Omega)) = \int_{\Omega} \det(T_1(x)) \ dx = \int_{\Omega} A_{12} + (\nabla \phi)_{12}(x) \ dx = m(\Omega)A_{12}. \]
Hence
\[
\int_{\Omega} \tilde{h}(A + \nabla \phi(x)) \, dx = \int_{\Omega} (\nabla \psi)_{12}(x) h(\Psi(\nabla \psi(x))) \, dx \\
= \int_{\Omega} \det T_1(x) h((\nabla g)(T_1(x))) \, dx \\
= \int_{T_1(\Omega)} h((\nabla g)(x)) \, dx \\
= \int_{T_1(\Omega)} h(\Psi(A) + \nabla g_0(x)) \, dx \\
\geq m(T_1(\Omega)) h(\Psi(A)) \\
= m(\Omega) \tilde{h}(A).
\]
This shows that \(\tilde{h} \) is quasiconvex on \(M_+^{2 \times 2} \).

By Theorem 1.6 in [5], a compactly supported probability measure \(\mu \) on \(M_+^{2 \times 2} \) is a homogeneous gradient Young measure if and only if it satisfies Jensen’s inequality for all quasiconvex \(f : U \to \mathbb{R} \), where \(U \) is any open neighbourhood of \((\text{supp} \mu)^{\mathcal{C}} \).

Hence if \(\mu \in \mathscr{M}_{qc}(M_+^{2 \times 2}) \) and \(f : M_+^{2 \times 2} \to \mathbb{R} \) is quasiconvex on \(M_+^{2 \times 2} \), then by Proposition 141,
\[
\int f \, d\tilde{\mu} = \frac{1}{\mu_{12}} \int \tilde{f} \, d\mu \geq \frac{1}{\mu_{12}} \tilde{f}(\tilde{\mu}) = f(\tilde{\mu}),
\]
and therefore \(\tilde{\mu} \in \mathscr{M}_{qc}(M_+^{2 \times 2}) \). This proves (ii). Part (iii) can also be done by duality; it suffices to show that \(\tilde{f} \) is rank-one convex whenever \(f \) is. This follows from part (ii) since a function is rank-one convex if and only if it satisfies Jensen’s inequality for all homogeneous gradient Young measures supported on two points. \(\square \)

Theorem 4.3. Every homogeneous gradient Young measure supported on \(M_+^{2 \times 2} \) is a laminate.

Proof. This follows from Theorem [3] and Theorem [4], since if \(\mu \) is a homogeneous gradient Young measure supported in \(M_+^{2 \times 2} \cap M_+^{2 \times 2} \), then \(\mu \) is a homogeneous gradient Young measure supported on \(M_+^{2 \times 2} \cap M_+^{2 \times 2} \), and therefore a laminate. This implies that \(\mu = \tilde{\mu} \) is a laminate. \(\square \)

References

[1] Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. The Clarendon Press, Oxford University Press, New York (2000)

[2] Chaudhuri, N., Müller, S.: Rank-one convexity implies quasi-convexity on certain hypersurfaces. Proc. Roy. Soc. Edinburgh Sect. A 133, 1263–1272 (2003)

[3] Conti, S., Faraco, D., Maggi, F., Müller, S.: Rank-one convex functions on \(2 \times 2 \) symmetric matrices and laminates on rank-three lines. Calc. Var. Partial Differential Equations 24, 479–493 (2005)

[4] Evans, L. C., Gariepy, R. F.: On the partial regularity of energy-minimizing, area-preserving maps. Calc. Var. Partial Differential Equations 9, 357–372 (1999)
Kirchheim, B.: Rigidity and geometry of microstructures. Habilitation thesis, University of Leipzig (2003)

Lee, J., Müller, P. F. X., Müller, S.: Compensated compactness, separately convex functions and interpolatory estimates between Riesz transforms and Haar projections. Comm. Partial Differential Equations 36, 547–601 (2011)

Matoušek, J., Plecháč, P.: On functional separately convex hulls. Discrete Comput. Geom. 19, 105–130 (1998)

Morrey Jr, C. B.: Quasi-convexity and the lower semicontinuity of variational integrals. Pacific J. Math. 2, 25–53 (1952)

Müller, S.: Rank-one convexity implies quasiconvexity on diagonal matrices. Int. Math. Res. Not. 20, 1087–1095 (1999)

Müller, S.: A sharp version of Zhang’s theorem on truncating sequences of gradients. Trans. Amer. Math. Soc. 351, 4585–4597 (1999)

Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transition and partial differential equations. J. Eur. Math. Soc. 1, 393–422 (1999)

Pedregal, P.: Parametrized measures and variational principles. Birkhäuser Verlag, Basel, (1997)

Šverák, V.: Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A 120, 185–189 (1992)

Department of Mathematics, University of Illinois, Urbana, IL 61801, U.S.A.
E-mail address: terence2@illinois.edu

Department of Mathematics, University of Leipzig
E-mail address: bernd.kirchheim@math.uni-leipzig.de

Department of Mathematics, National Taiwan Normal University, Taipei, 116 Taiwan
E-mail address: chunlin@math.ntnu.edu.tw