GENERIC CONTINUITY OF METRIC ENTROPY FOR VOLUME-PRESERVING DIFFEOMORPHISMS

JIAGANG YANG AND YUNHUA ZHOU

ABSTRACT. Let M be a compact manifold and $\text{Diff}^1_m(M)$ be the set of C^1 volume-preserving diffeomorphisms of M. We prove that there is a residual subset $\mathcal{R} \subset \text{Diff}^1_m(M)$ such that each $f \in \mathcal{R}$ is a continuity point of the map $g \mapsto h_m(g)$ from $\text{Diff}^1_m(M)$ to \mathbb{R}, where $h_m(g)$ is the metric entropy of g with respect to volume measure m.

1. INTRODUCTION

Let M be a smooth compact Riemannian manifold with dimension d, and m be a smooth volume measure on M. Without loss of generality, we always assume that $m(M) = 1$ in this paper. Denote by $\text{Diff}^r_m(M)$ the set of C^r volume-preserving diffeomorphisms of M endowed with C^r topology for $r \geq 1$.

Our main result is

Theorem 1.1. There is a residual subset $\mathcal{R} \subset \text{Diff}^1_m(M)$ such that each $f \in \mathcal{R}$ is a continuity point of the metric entropy map

$$
\mathcal{E} : \text{Diff}^1_m(M) \to \mathbb{R},
$$

$$
g \mapsto h_m(g),
$$

where $h_m(g)$ is the metric entropy of g with respect to volume measure m.

The study of variation of entropy mainly focuses on two issues: the continuity of topological entropies and of metric entropies. In generally, the variation of entropies is not even semicontinuous (e.g., see [7]). S. Newhouse([9]) proved that the metric entropy function

$$
\mu \mapsto h_\mu(f)
$$

Date: November 25, 2013.

2010 Mathematics Subject Classification. Primary 37A35; Secondary 37C20.

Key words and phrases. continuity, metric entropy, Volume-preserving.

J.Y. is partially supported by CNPq, FAPERJ, and PRONEX. Y.Z. is the corresponding author and is partially supported by Fundamental Research for Central Universities (CQDXWL2012008).
is upper semicontinuous for all \(f \in \text{Diff}^\infty(M) \). In \([8]\) (see also \([4]\)), Y. Yomdin proved that the topological entropy function
\[
f \mapsto h(f)
\]
is upper semicontinuous on \(\text{Diff}^\infty(M) \). Together with the result of A. Katok (\([5]\)), topological entropy is continuous for \(C^\infty \) systems on surface. Recently, G. Liao etc. (\([6]\)) extend the semicontinuity results of Newhouse and Yomdin to \(C^1 \) diffeomorphisms away from tangencies.

2. Preliminaries

2.1. Lyapunov exponents and dominated splitting. Given \(f \in \text{Diff}^1_m(M) \), by Oseledec Theory, there is a \(m \)-full invariant set \(O \subset M \) such that for every \(x \in O \) there exist a splitting (which is called Oseledec splitting)
\[
T_xM = E_1(x) \oplus \cdots \oplus E_k(x)
\]
and real numbers (the Lyapunov exponents at \(x \)) \(\chi_1(x,f) > \chi_2(x,f) > \cdots > \chi_k(x,f) \) satisfying \(Df(E_j(x)) = E_j(fx) \) and
\[
\lim_{n \to \pm \infty} \frac{1}{n} \ln \|Df^nv\| = \chi_j(x,f)
\]
for every \(v \in E_j(x) \setminus \{0\} \) and \(j = 1, 2, \cdots, k(x) \). In the following, by counting multiplicity, we also rewrite the Lyapunov exponents of \(m \) as
\[
\lambda_1(x,f) \geq \lambda_2(x,f) \geq \cdots \geq \lambda_d(x,f).
\]
For \(x \in O \), we denote by
\[
\xi_i(x,f) = \begin{cases}
\lambda_i(x,f), & \text{if } \lambda_i(x,f) \geq 0; \\
0, & \text{if } \lambda_i(x,f) < 0
\end{cases}
\]
and
\[
\chi^+(x,f) = \sum \xi_i(x,f).
\]
By the definitions, it is obviously that for \(f, g \in \text{Diff}^1_m(M) \), one has
\[
(2.1) \quad \int |\chi^+(x,f) - \chi^+(x,g)|dm(x) \leq \sum \int |\lambda_i(x,f) - \lambda_i(x,g)|dm(x)
\]
For \(f \in \text{Diff}^1_m(M) \) and \(\delta > 0 \), denote by \(\mathcal{U}(f,\delta) \) the set of diffeomorphisms \(g \in \text{Diff}^1_m(M) \) such that the \(C^1 \) distance between \(g \) and \(f \) is less than \(\delta \).

Given a diffeomorphism \(f \), we say \(Df \) has a dominated splitting of index \(i \) at a point \(x \in M \) if there are a \(Df \)-invariant splitting \(T_{\text{orb}(x)}M = E \oplus F \) and a constant \(N(x) \in \mathbb{N} \) such that \(\dim(F) = i \) and
\[
\frac{\|Df^{N(x)}E(f^j(x))\|}{m(Df^{N(x)}E(f^j(x)))} < \frac{1}{2}, \quad \forall j \in \mathbb{Z}.
\]
We also denote the dominated splitting by $E \prec F$.

Let Λ be an f-invariant set and $T_\Lambda M = E \oplus F$ be a Df-invariant splitting on Λ. We call $T_\Lambda M = E \oplus F$ be a N-dominated splitting, if there exists $N \in \mathbb{N}$ such that
\[
\frac{\|Df^N|_{E(y)}\|}{m(Df^N|_{E(y)})} < \frac{1}{2}, \quad \forall y \in \Lambda.
\]

Let us note that the dominated splitting has persistence property (3). That is, if Λ is an f-invariant set with an N-dominated splitting, then there is a neighborhood U of Λ and a C^1-neighborhood U of f such that for every $g \in U$, the maximal g-invariant set in the closure of U admits an N-dominated splitting, having the same dimensions of the initial dominated splitting over K.

2.2. C^1 generic properties. We recall three C^1 generic properties which will be used in the proof of Theorem 1.1.

The first is about the relation of Oseledec splitting and dominated splitting.

Lemma 2.1. (Theorem 1 of [2]) There exists a residual set $R \subset \text{Diff}_m^1(M)$ such that, for each $f \in R$ and a measurable function $N : M \to \mathbb{N}$ such that for m-almost every $x \in M$, the Oseledec splitting of f is either trivial or is $N(x)$ dominated at x.

The second one is the generic continuity of the Lyapunov spectrum.

Lemma 2.2. (Theorem D of [1]) Fix an integer $r \geq 1$. For each i, the continuous points of the map
\[
\lambda_i : \text{Diff}_m^r(M) \to L^1(M) \quad f \mapsto \lambda_i(\cdot, f)
\]
form a residual subset.

The third property is the generic persistence of invariant sets. It says that if f is a generic volume-preserving diffeomorphism, then its measurable invariant sets persist in a certain (measure-theoretic and topological) sense under perturbations of f.

Lemma 2.3. (Theorem C of [1]) Fix an integer $r \geq 0$. There is a residual set $R \subset \text{Diff}_m^r(M)$ such that for every $f \in R$, every f-invariant Borel set $\Lambda \subset M$ with positive volume, and every $\eta > 0$, if $g \in \text{Diff}_m^r(M)$ is sufficiently close to f then there exists a g-invariant Borel set $\tilde{\Lambda}$ such that
\[
\tilde{\Lambda} \subset B_\eta(\Lambda) \text{ and } m(\tilde{\Lambda} \Delta \Lambda) < \eta,
\]
here $B_\eta(\Lambda) = \{y \in M : d(x,y) < \eta \text{ for some } x \in \Lambda\}$.
2.3. C^1 Pesin entropy formula. In [10], W. Sun and X. Tian proved that the Pesin entropy formula holds for a generic $f \in \text{Diff}^1_m(M)$.

Lemma 2.4. (Theorem 2.5 of [10]) There exists a residual subset $\mathcal{R} \subset \text{Diff}^1_m(M)$ such that for every $f \in \mathcal{R}$, the metric entropy $h_m(f)$ satisfies Pesin’s entropy formula, i.e.,

$$h_m(f) = \int_M \chi^+(x,f) dm.$$

In fact, Lemma 2.4 is a corollary of Ruelle’s inequality and the following result.

Lemma 2.5. (Theorem 2.2 of [10]) Let $f : M \to M$ be a C^1 diffeomorphism on a compact Riemannian manifold with dimension d. Let f preserve an invariant probability μ which is absolutely continuous relative to Lebesgue measure. For μ-a.e. $x \in M$, denote by

$$\lambda_1(x) \geq \lambda_2(x) \geq \cdots \geq \lambda_d(x)$$

the Lyapunov exponents at x. Let $N(\cdot) : M \to \mathbb{N}$ be an f-invariant measurable function. If for μ-a.e. $x \in M$, there is a $N(x)$-dominated splitting: $T_{\text{orb}(x)}M = E \prec F$, then

$$h_\mu(f) \geq \int_M \chi_F(x) dm$$

here $\chi_F(x) = \sum_{i=1}^{\dim F(x)} \lambda_i(x)$.

3. **Proof of Theorem 1.1**

Proof of Theorem 1.1. We will prove the Theorem by two steps. In step 1, we first prove that there is a residual subset $\mathcal{R}_1 \subset \text{Diff}^1_m(M)$ such that the entropy map E is upper-semicontinuous at each $f \in \mathcal{R}_1$. In step 2, it will be proved that the set of lower-semicontinuous points of E contains a residual set $\mathcal{R}_2 \subset \text{Diff}^1_m(M)$. Setting $\mathcal{R} = \mathcal{R}_1 \cap \mathcal{R}_2$, we complete the proof of Theorem 1.1.

Step 1. Let $\mathcal{R}_1 \subset \text{Diff}^1_m(M)$ satisfying Lemma 2.2 and Lemma 2.4. In this step, we will prove that, for any $f \in \mathcal{R}_1$,

$$\limsup_{g \to f} h_m(g) \leq h_m(f).$$

In fact, by Lemma 2.4

$$h_m(f) = \int_M \chi^+(x,f) dm, \ \forall f \in \mathcal{R}_1.$$

So, by the well known Ruelle’s inequality

$$h_m(g) \leq \int_M \chi^+(x,g) dm, \ \forall g \in \text{Diff}^1_m(M)$$
and (2.1), we have that for \(\forall g \in \mathcal{U}(f, \delta) \),
\[
(3.1) \quad h_m(g) - h_m(f) \leq \int_M |\chi^+(x, g) - \chi^+(x, f)| \, dm \leq \sum \int_M |\lambda_i(x, f) - \lambda_i(x, g)| \, dm.
\]

Combining with Lemma 2.2, we proved the upper-semicontinuity.

Step 2. Let \(\mathcal{R}_2 \subset \mathcal{R}_1 \) which satisfies Lemma 2.1 and Lemma 2.3. We will prove that the entropy map \(E \) is lower-semicontinuous at each \(f \in \mathcal{R}_2 \). That is, for any \(f \in \mathcal{R}_2 \) and \(\varepsilon > 0 \), there are positive numbers \(\delta \) and \(D \) such that
\[
(3.2) \quad h_m(g) \geq h_m(f) - D\varepsilon, \quad \forall g \in \mathcal{U}(f, \delta),
\]
here \(D \) is only dependent on \(d \) and \(D_f \).

If the Oseledec splitting of \(f \) is trivial on Lebesgue almost every point, then \(h_m(f) = 0 \) and \(h_m(g) \geq h_m(f) \) for all \(g \in \text{Diff}^1_m(M) \). This means that the metric entropy map is lower semicontinuous at \(f \). So, in the following, we always assume that the Oseledec splitting of \(f \) is not trivial.

Let
\[
M_i(f) = \{ x : \lambda_i(x, f) > 0, \lambda_{i+1}(x, f) \leq 0 \}.
\]
Then
\[
(3.3) \quad M_i(f) \cap M_j(f) = \emptyset, \quad \forall i \neq j
\]
and
\[
(3.4) \quad h_m(f) = \sum_{i=1}^{d} \int_{M_i(f)} \sum_{j=1}^{i} \lambda_j(x, f) \, dm.
\]

Claim 1. For any \(\varepsilon > 0 \), there is \(\delta_1 > 0 \) such that for any \(g \in \mathcal{U}(f, \delta_1) \) and \(i = 1, 2, \ldots, d \), there exists \(M'_i(f) \subset M_i(f) \) such that \(m(M_i(f) \setminus M'_i(f)) < \varepsilon \) and \(\lambda_i(x, g) > 0, \text{ m-a.e. } x \in M'_i(f) \).

Proof of Claim 1. For any \(\varepsilon > 0 \) and \(i = 1, 2, \ldots, n \), there is \(k(i) > 0 \) such that
\[
(3.5) \quad m(M_i(f) \setminus M_{ik(i)}(f)) < \frac{\varepsilon}{2}
\]
here
\[
M_{ik(i)}(f) = \{ x \in M_i(f) : \lambda_i(x, f) \geq \frac{1}{k(i)} \}.
\]

Let \(\varepsilon' = \min\{\varepsilon, \frac{\varepsilon}{2k(1)}, \ldots, \frac{\varepsilon}{2k(n)}\} \). By Lemma 2.2, there is \(\delta_1 > 0 \) such that for any \(g \in \mathcal{U}(f, \delta_1) \) and any \(i \),
\[
\int_M |\lambda_i(x, g) - \lambda_i(x, f)| \, dm < \varepsilon'
\]
Set
\[
M'_i(f) = \{ x \in M_{ik(i)}(f) : \lambda_i(x, g) > 0 \} \quad \text{and} \quad M''_i(f) = M_{ik(i)}(f) \setminus M'_i(f).
\]
Then we have
\[(3.6) \quad m(M''_i(f)) \leq \frac{\varepsilon}{2}.\]
In fact, if \(m(M''_i(f)) > \frac{\varepsilon}{2}\), we have
\[
\int_M |\lambda_i(x, f) - \lambda_i(x, g)| dm \geq \int_{M''_i(f)} |\lambda_i(x, f) - \lambda_i(x, g)| dm \geq \frac{1}{k(i)} m(M''_i(f)) > \varepsilon'.
\]
This is a contradiction. \(\Box\)

Claim 2. For any \(\varepsilon > 0\), there is \(\delta_2 > 0\) such that for any \(g \in U(f, \delta_2)\) and any \(i = 1, 2, \ldots, d\), there exist \(N \in \mathbb{N}\) and a \(g\)-invariant set \(\tilde{M}_i(g) \subset M\) such that
1. there is a \(N\)-dominated splitting of index \(i\);
2. \(m(\tilde{M}_i(g) \setminus \tilde{M}_i(f)) < \frac{\varepsilon}{4}\).

Proof of Claim 2. By Lemma 2.1, there is a \(N(x)\)-dominated splitting of index \(i\) at each \(x \in \tilde{M}_i(f)\), for any \(\varepsilon > 0\), there are \(N \in \mathbb{N}\) and an \(f\)-invariant subset \(\tilde{M}_i(f) \subset M_i(f)\) such that \(m(M_i(f) \setminus \tilde{M}_i(f)) < \frac{\varepsilon}{4}\) and there is a \(N\)-dominated splitting of index \(i\) at each \(x \in \tilde{M}_i(f)\).

By the persistence property of dominated splitting and Lemma 2.3, for any \(\varepsilon > 0\), there is \(\delta_2 > 0\) such that for any \(g \in U(f, \delta_2)\) there is \(g\)-invariant set \(\tilde{M}_i(g)\) closing to \(\tilde{M}_i(f)\) such that there is a \(N\)-dominated splitting of index \(i\) at each \(x \in \tilde{M}_i(g)\) for \(Dg\) and \(m(\tilde{M}_i(g) \setminus \tilde{M}_i(f)) < \frac{\varepsilon}{4}\). \(\Box\)

Set
\[
M_i^+(g) = \{x \in \tilde{M}_i(g) : \lambda_i(x, g) > 0\} \quad \text{and} \quad M^+(g) = \bigcup_{i=1}^n M_i^+(g).
\]
Then \(M_i^+(g)\) and \(M^+(g)\) are \(g\)-invariant. By (2) of Claim 2 and (3.3), for any \(g \in U(f, \delta_2)\) and any \(i \neq j\), we have
\[
m(M_i^+(g) \cap M_j^+(g)) < \varepsilon
\]
and so
\[
(3.7) \quad m(M_i^+(g) \setminus \bigcup_{j=1}^{i-1} M_j^+(g)) \geq m(M_i^+(g)) - (i - 1)\varepsilon.
\]
Furthermore, noting
\[
\tilde{M}_i(g) \cap M_i^+(g) \subset M_i^+(g) \subset \tilde{M}_i(g),
\]
by Claim 1 and Claim 2, we have
\[
m(M_i^+(g) \setminus \tilde{M}_i(f)) < 3\varepsilon, \quad \forall g \in U(f, \delta),
\]
here $\delta = \min\{\delta_1, \delta_2\}$. Since $m(\cup_{i=1}^{d} M_i(f)) = 1$, it holds that
\[
m(M^+(g)) \geq 1 - 3\varepsilon.
\]

Now, we turn to estimate $h_m(g)$ for $g \in C^1$-close to f.

For $g \in \mathcal{U}(f, \delta)$, we have
\[
\int_{M_i^+(g)} |\lambda_j(x, g) - \lambda_j(x, f)| dm \leq \int_M |\lambda_j(x, g) - \lambda_j(x, f)| dm < \varepsilon, \forall j = 1, 2, \ldots, n.
\]
So,
\[
(3.8) \quad \int_{M_i^+(g)} \sum_{j=1}^{i} \lambda_j(x, g) dm > \int_{M_i^+(g)} \sum_{j=1}^{i} \lambda_j(x, f) dm - i\varepsilon = \left(\int_{M_i^+(g)} \setminus M_i(f) \right) \sum_{j=1}^{i} \lambda_j(x, f) dm - i\varepsilon
\]
\[
\geq \left(\int_{M_i(f)} \setminus M_i^+(g) \right) \sum_{j=1}^{i} \lambda_j(x, f) dm - iD_f m(M_i^+(g) \setminus M_i(f)) - i\varepsilon
\]
\[
\geq \int_{M_i(f)} \sum_{j=1}^{i} \lambda_j(x, f) dm - iD_f (m(M_i^+(g) \setminus M_i(f)) + m(M_i(g) \setminus M_i^+(g))) - i\varepsilon
\]
\[
\geq \int_{M_i(f)} \sum_{j=1}^{i} \lambda_j(x, f) dm - (3iD_f + i)\varepsilon
\]
Then by (3.7), (3.8) and Lemma 2.5,
\[
h_m(g) \geq \sum_{i=1}^{d} \int_{M_i^+(g) \setminus \cup_{j=1}^{i-1} M_i^+(g)} \sum_{j=1}^{i} \lambda_j(x, g) dm
\]
\[
\geq \sum_{i=1}^{d} \left(\int_{M_i^+(g)} \sum_{j=1}^{i} \lambda_j(x, g) dm - (i - 1)iD_f \right)
\]
\[
\geq \sum_{i=1}^{d} \left(\int_{M_i(f)} \sum_{j=1}^{i} \lambda_j(x, f) dm - (4D_f + 1)i\varepsilon \right)
\]
\[
= h_m(f) - \frac{d(1+d)(4D_f+1)}{2}\varepsilon.
\]
Setting $D = 3d^2D_f + \frac{d(1+d)(4D_f+1)}{2}$, we completes the proof of (3.2).

\[\square\]

REFERENCES

1. A. Ávila, J. Bochi, Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms, Trans. Amer. Math. Soc., 364(2012), no. 6, 2883-2907.

2. J. Bochi, M. Viana, The Lyapunov exponents of generic volume preserving and symplectic systems, Annals of Math. 161(2005), 1423-1485.

3. C. Bonatti, L. Díaz, M. Viana: Dynamics beyond uniform hyperbolicity. Springer, (2005)
4. J. Buzzi, Intrinsic ergodicity for smooth interval maps, *Israel J. Math.*, **100**, (1997), 125-161.
5. A. Katok, Lyapounov exponents, entropy and periodic points of diffeomorphisms, *Publ. Math. IHES*, **51**(1980), 137-173.
6. L. Gang, M. Viana, J. Yang, The entropy conjecture for diffeomorphisms away from tangencies, *Journal of the European Mathematical Society*, v. **15**, (2013) p. 2043-2060.
7. M. Misiurewicz, Diffeomorphism without any measure of maximal entropy, *Bull. Acad. Pol. Sci.*, **21**(1973), 903-910.
8. Y. Yomdin, Volume growth and entropy, *Israel J. of Math.*, **57**(1987), 285-301.
9. S. Newhouse, Continuity properties of entropy, *Ann. of Math.* (1), **129**(1989), 215-235
10. W. Sun, X. Tian, Dominated splitting and Pesin’s entropy formula, *Discrete Contin. Dyn. Syst.*, **32**(2012), no. 4, 1421-1434.

Departamento de Geometria, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 24020-140, Brazil

E-mail address: yangjg@impa.br

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, P. R. China

E-mail address: zhouyh@cqu.edu.cn