Normal Transport Surfaces in Euclidean 4-space \mathbb{E}^4

K. Arslan, B. Bulca, B. K. Bayram & G. Öztürk

December 2014

Abstract

In the present paper we study normal transport surfaces in four-dimensional Euclidean space \mathbb{E}^4 which are the generalization of surface offsets in \mathbb{E}^3. We find some results of normal transport surfaces in \mathbb{E}^4 of evolute and parallel type. Further, we give some examples of these type of surfaces.

1 Introduction

The geometric modelling of free-form curves and surfaces is of central importance for sophisticated CAD/CAM systems. Apart from the pure construction of these curves and surfaces, the analysis of their quality is equally important in the design and manufacturing process. It is for example very important to test the convexity of a surface, to pinpoint inflection points, to visualize flat points and to visualize technical smoothness of surface [9].

The 3D offsets or parallel surfaces are very widely used in many applications. these include tool path generation for 3N machining. However 3D offsets are particularly important and useful as pre-process modifications to CAD geometry. By defining an 3D offset means moving a surface of a 3D model by a constant "d" in a direction normal to the surface of the model. Offset techniques for surfaces has been extensively studied by Mechawa (E3)

12000 Mathematics Subject Classifications: 53A04, 53C42

Key words and phrases: Translation surface, parallel surface, evolute surface, focal surface
and Pham ([15]). Generally offsets of 3D models are achieved by first offsetting all surfaces of the model and then trimming and extending these offsets to reconstruct a closed 3D model ([5], [6]).

Further, focal surfaces are known in the field of line congruences. Line congruences have been introduced in the field of visualization by Hagen and Pottmann (see, [11]). Focal surfaces are also used as a surface interrogation tool to analyses the "quality" of the surface before further processing of the surface, for example in a NC-milling operation (see [9]).

The generalized focal surfaces are related to hedgehog diagrams. Instead of drawing surface normals proportional to a surface value, only the point on the surface normal proportional to the function is drawing. The loci of all these points is the generalized focal surface. This method was introduced by Hagen and Hahmann ([9], [10]) and is based on the concept of focal surface which are known from line geometry. The focal surfaces are the loci of all focal points of special congruence, the normal congruence. Recently the present authors considered parallel and focal surfaces and their curvature properties (see [14]).

The normal transport surface \(\tilde{M} \) of \(M \) are generalization of offset surfaces to 4-dimensional Euclidean space \(\mathbb{E}^4 \) [7]. Observe that, evolute surfaces and parallel type surfaces in \(\mathbb{E}^4 \) are the special type normal transport surfaces [12], [3], [7]. Parallel type surface are widely used in geometry and mathematical physics. We want to refer the reader to da Costa [4] for an application in quantum mechanics in curved spaces.

The paper organized as follows. In section 2, we briefly considered basic concepts of surfaces in Euclidean spaces. In section 3, we consider some known results about the surfaces with flat normal bundle. In the final section, we consider normal transport surfaces in \(\mathbb{E}^4 \). Further we give some examples of evolute and parallel type surfaces in \(\mathbb{E}^4 \).

2 Preliminaries

In the present section we recall definitions and results of [7]. Let \(M \) be a local surface in \(\mathbb{E}^{n+2} \) given with the regular patch \(x(u, v) : (u, v) \in D \subset \mathbb{E}^2 \). The tangent space \(T_p(M) \) to \(M \) at an arbitrary point \(p = x(u, v) \) of \(M \) is spanned by \(\{x_u, x_v\} \). Further, the coefficients of the first fundamental form of \(M \) are given by

\[
g_{11} = \langle x_u, x_u \rangle, \quad g_{12} = \langle x_u, x_v \rangle, \quad g_{22} = \langle x_v, x_v \rangle,
\]

where

\[
[1] = \langle x_u, x_u \rangle, \quad g_{12} = \langle x_u, x_v \rangle, \quad g_{22} = \langle x_v, x_v \rangle,
\]
where \(\langle \cdot, \cdot \rangle \) is the Euclidean inner product. Let us denote by

\[
 ds^2 = \sum_{i,j=1}^{2} g_{ij} du^i du^j. \tag{2}
\]

Let us choose \(n \) linearly independent, orthogonal unit normal vectors \(N_\alpha, \alpha = 1, 2, \ldots, n \) spanning the normal space \(T^\perp_p M \) at point \(p = x(u, v) \). For each \(p \in M \), consider the decomposition \(T_p \mathbb{E}^{n+2} = T_p M \oplus T^\perp_p M \), where \(T^\perp_p M \) is the orthogonal component of \(T_p M \) in \(\mathbb{E}^{n+2} \). Let \(\tilde{\nabla} \) be the Riemannian connection of \(\mathbb{E}^{n+2} \) then the Gauss equation of the surface \(M \) is given by

\[
x_u^i x_{u^i} = \tilde{\nabla}_{x_u^i} x_{u^i} = \sum_{k=1}^{2} \Gamma^{k}_{ij} x_{u^k} + \sum_{\alpha=1}^{n} c^{\alpha}_{ij} N_\alpha, \tag{3}
\]

where

\[
c^{\alpha}_{ij} = \langle x_u^i, N_\alpha \rangle; \quad c^{\alpha}_{ij} = c^{\alpha}_{ji}, \tag{4}
\]

are the coefficients of the second fundamental form and

\[
 \Gamma^{k}_{ij} = \sum_{l=1}^{2} g^{lk} \left(\frac{\partial g_{jl}}{\partial u^i} + \frac{\partial g_{li}}{\partial u^j} - \frac{\partial g_{ij}}{\partial u^l} \right), \tag{5}
\]

are the Christoffel symbols corresponding to \(x(u, v) \).

Further, the Weingarten equation of the surface \(M \) is given by

\[
 (N_\alpha)_{u^i} = \tilde{\nabla}_{x_u^i} N_\alpha = -\sum_{k=1}^{2} c^{\alpha}_{ik} x_{u^k} + \sum_{\beta=1}^{n} T^{\alpha\beta}_{i} N_\beta, \tag{6}
\]

where

\[
 c^{\alpha}_{ik} = \sum_{j=1}^{2} c^{\alpha}_{ij} g^{jk}; \quad c^{\alpha}_{ki} = c^{\alpha}_{ik}, \tag{7}
\]

are the Weingarten forms of \(M \) with respect to some unit normal vector \(N_\alpha \) and

\[
 T^{\alpha\beta}_{i} = \langle (N_\alpha)_{u^i}, N_\beta \rangle; \quad T^{\alpha\beta}_{i} = -T^{\beta\alpha}_{i}, \quad i = 1, 2, \tag{8}
\]

are the torsion coefficients with \(\alpha, \beta = 1, \ldots, n \) and

\[
 \left(g_{ij} \right)_{i,j=1,2} = \frac{1}{g} \left[\begin{array}{cc} g_{22} & -g_{12} \\ -g_{21} & g_{11} \end{array} \right], \quad g = g_{11} g_{22} - g_{12}^2. \tag{9}
\]
A simple calculation shows that

\[c_{ij}^\alpha = \langle x_{u^i}, u^j, N_\alpha \rangle = -\langle x_{u^i}, (N_\alpha)_{u^j} \rangle. \] \hfill (10)

The Gaussian curvature of the surface \(M \) is defined by

\[K = \sum_{\alpha=1}^{n} K_\alpha, \quad K_\alpha = \frac{c_{11}^{\alpha} c_{22}^{\alpha} - (c_{12}^{\alpha})^2}{g}. \] \hfill (11)

where \(K_\alpha \) is the \(\alpha^{th} \) Gaussian curvature of the surface \(M \). The Gaussian curvature vanishes identically for so-called flat surface. Observe that

\[K_\alpha = c_{11}^{\alpha} c_{22}^{\alpha} - (c_{12}^{\alpha})^2. \] \hfill (12)

The mean curvature vector field \(\vec{H} \) of the surface \(M \) is defined by

\[\vec{H} = \sum_{\alpha=1}^{n} H_\alpha N_\alpha, \] \hfill (13)

where

\[H_\alpha = \frac{1}{2} \sum_{i,j=1}^{2} g^{ij} c_{ij}^\alpha = \frac{g_{22} c_{11}^\alpha + g_{11} c_{22}^\alpha - 2 g_{12} c_{12}^\alpha}{2g}, \] \hfill (14)

is the \(\alpha^{th} \) mean curvature of the surface \(M \) with respect to the unit normal vector \(N_\alpha \). The mean curvature \(H \) of \(M \) is defined by \(H = \| \vec{H} \| \). The mean curvature (vector) vanishes identically for so-called minimal surface. Observe that

\[H_\alpha = \frac{c_{11}^{\alpha} + c_{22}^{\alpha}}{2}. \] \hfill (15)

The curvature tensor of the normal bundle \(NM \) of the surface \(M \) is defined by

\[S_{ij}^{\alpha\beta} = (T_i^{\alpha\beta})_{u^j} - (T_j^{\alpha\beta})_{u^i} + \sum_{\sigma=1}^{n} \left(T_i^{\alpha\sigma} T_j^{\sigma\beta} - T_j^{\alpha\sigma} T_i^{\sigma\beta} \right), \] \hfill (16)

\[= \sum_{m,n=1}^{2} \left(c_{1m}^{\alpha} c_{n2}^{\beta} - c_{2m}^{\alpha} c_{n1}^{\beta} \right) g^{mn}, 1 \leq \alpha, \beta \leq n. \]

The equality

\[S_{N}^{\alpha\beta} = \frac{1}{\sqrt{g}} S_{12}^{\alpha\beta}, \] \hfill (17)
is called the normal sectional curvature with respect to the plane $\Pi = \text{span}\{x_u, x_v\}$. For the case $n = 2$ the scalar curvature of its normal bundle is defined as

$$K_N = S_N^{12} = \frac{1}{\sqrt{g}} S_{12}^{12}. \quad (18)$$

which is also called normal curvature of the surface M in \mathbb{E}^4. Observe that

$$K_N = \frac{1}{\sqrt{g}} \left((T_2^{12})^u - (T_1^{12})^v \right). \quad (19)$$

3 Known Results

Let M be a local surface in \mathbb{E}^{n+2} given with the surface patch $x(u, v) : (u, v) \in D \subset \mathbb{E}^2$. The mean curvature vector \overrightarrow{H} is called parallel in the normal bundle if and only if

$$(H_\alpha)^u = 0, (H_\alpha)^v = 0,$$ \quad (20)

or equivalently

$$(H_\alpha)^u = \sum_{\beta=1}^{n} H_\beta T_i^{\alpha\beta}. \quad (21)$$

for all $i = 1, 2, \alpha = 1, ..., n$ with respect to an arbitrary orthonormal frame $N_1, ..., N_n$. \[7\]

Proposition 1 \[7\] The mean curvature vector \overrightarrow{H} is called parallel in the normal bundle if and only if the squared mean curvature $\|\overrightarrow{H}\|^2$ of M is a constant function.

Proof. Suppose $H_\alpha \neq 0$ and the mean curvature vector \overrightarrow{H} is parallel in the normal bundle. Multiplying the first order differential equation (21) by H_α gives

$$H_\alpha (H_\alpha)^u = \sum_{\beta=1}^{n} H_\alpha H_\beta T_i^{\alpha\beta} = 0,$$

for all $\alpha = 1, ..., n$. Summing over α shows

$$\frac{1}{2} \frac{\partial}{\partial u^i} \|\overrightarrow{H}\|^2 = \sum_{\alpha=1}^{n} H_\alpha (H_\alpha)^u_i = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} H_\alpha H_\beta T_i^{\alpha\beta} = 0,$$

for all $i = 1, 2$. Summing over i gives

$$\sum_{i=1}^{2} \frac{1}{2} \frac{\partial}{\partial u^i} \|\overrightarrow{H}\|^2 = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} H_\alpha H_\beta T_i^{\alpha\beta} = 0,$$

for all $\alpha = 1, ..., n$. Summing over α shows

$$\frac{1}{2} \frac{\partial}{\partial u^i} \|\overrightarrow{H}\|^2 = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} H_\alpha H_\beta T_i^{\alpha\beta} = 0,$$

for all $i = 1, 2$. Summing over i gives

$$\sum_{i=1}^{2} \frac{1}{2} \frac{\partial}{\partial u^i} \|\overrightarrow{H}\|^2 = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} H_\alpha H_\beta T_i^{\alpha\beta} = 0,$$

for all $\alpha = 1, ..., n$. Summing over α shows

$$\frac{1}{2} \frac{\partial}{\partial u^i} \|\overrightarrow{H}\|^2 = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} H_\alpha H_\beta T_i^{\alpha\beta} = 0,$$

for all $i = 1, 2$. Summing over i gives

$$\sum_{i=1}^{2} \frac{1}{2} \frac{\partial}{\partial u^i} \|\overrightarrow{H}\|^2 = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} H_\alpha H_\beta T_i^{\alpha\beta} = 0,$$
where the right hand side vanishes automatically due to the skew-symmetric of the torsion coefficients \[7\]. Thus, one get

\[
\left\| \overrightarrow{H} \right\|^2 = \sum_{\alpha=1}^{n} H_{\alpha}^2 = \text{const.}
\]

The converse statement of the theorem is trivial. ■

Definition 2 A local surface of \(\mathbb{E}^{n+2} \) is said to have flat normal bundle if and only if the orthonormal frame \(N_1, \ldots, N_n \) of \(M \) is of torsion free.

Remark 3 The existence of flat normal bundle of \(M \) is equivalent to say that normal curvature \(K_N \) of \(M \) vanishes identically.

The following classification result due to Chen from \[2\].

Theorem 4 Let \(M \) be an immersed surface in \(\mathbb{E}^{n+2} \). If \(\overrightarrow{H} \neq 0 \) is parallel in the normal bundle then either \(M \) is a minimal surface of a hypersphere of \(\mathbb{E}^{n+2} \), or it has flat normal bundle.

4 Normal Transport Surfaces in \(\mathbb{E}^4 \)

Let \(M \) and \(\tilde{M} \) be two smooth surfaces in Euclidean 4-space \(\mathbb{E}^4 \) and let \(\varphi : M \rightarrow \tilde{M} \) be a diffeomorphism. Then the surface \(\tilde{M} \) enveloping family of normal 2-planes to \(M \) is the normal transport of \(M \) in \(\mathbb{E}^4 \) \[7\]. Furthermore, let \(\overrightarrow{x} \) be a position (radius) vector of \(p \in M \), and \(\overrightarrow{\tilde{x}} \) be the position (radius) vector of the point \(\varphi(p) \in \tilde{M} \). Then the mapping \(\varphi : M \rightarrow \tilde{M} \) has the form

\[
\overrightarrow{\tilde{x}} = \overrightarrow{x} + \overrightarrow{\tilde{w}}, \quad \overrightarrow{\tilde{w}} \in T_p^\perp M.
\]

where, \(p\varphi(p) = \overrightarrow{\tilde{w}}(p) \), \(\overrightarrow{\tilde{w}}(p) \in T_p^\perp M \) is the normal vector to \(M \). For the case

\[
\overrightarrow{\tilde{w}}(p) = \sum_{i=1}^{2} f_i(u, v)N_i(u, v),
\]

the normal transport surface \(\tilde{M} \) of \(M \) given by

\[
\tilde{M} : \overrightarrow{\tilde{x}}(u, v) = x(u, v) + \sum_{i=1}^{2} f_i(u, v)N_i(u, v),
\] \hspace{1cm} (22)
where \(f_i \ (i = 1, 2) \) are offset functions and \(N_1, N_2 \in T^\perp_p M \).

The tangent space to \(\tilde{M} \) at an arbitrary point \(p = \tilde{x}(u, v) \) of \(\tilde{M} \) is spanned by

\[
\begin{align*}
\tilde{x}_u &= x_u + f_1 (N_1)_u + f_2 (N_2)_u + (f_1)_u N_1 + (f_2)_u N_2, \\
\tilde{x}_v &= x_v + f_1 (N_1)_v + f_2 (N_2)_v + (f_1)_v N_1 + (f_2)_v N_2.
\end{align*}
\]

Further, using the Weingarten equation (6) we get

\[
\begin{align*}
(N_1)_u &= - (c_1^{11} x_u + c_1^{12} x_v) + T_1^{12} N_2 \\
(N_2)_u &= - (c_2^{11} x_u + c_2^{12} x_v) - T_1^{12} N_1 \\
(N_1)_v &= - (c_1^{21} x_u + c_1^{22} x_v) + T_2^{12} N_2 \\
(N_2)_v &= - (c_2^{21} x_u + c_2^{22} x_v) - T_2^{12} N_1.
\end{align*}
\]

So, substituting (24) into (23) we get

\[
\begin{align*}
\tilde{x}_u &= (1 - f_1 c_1^{11} - f_2 c_1^{12}) x_u - (f_1 c_1^{12} + f_2 c_2^{12}) x_v \\
&\quad + ((f_1)_u - f_2 T_1^{12}) N_1 + ((f_2)_u + f_1 T_1^{12}) N_2, \\
\tilde{x}_v &= - (f_1 c_1^{21} + f_2 c_2^{21}) x_u + (1 - f_1 c_1^{22} - f_2 c_2^{22}) x_v \\
&\quad + ((f_1)_v - f_2 T_2^{12}) N_1 + ((f_2)_v + f_1 T_2^{12}) N_2.
\end{align*}
\]

The normal transport surfaces in 3-dimensional Euclidean space \(\mathbb{E}^3 \) have the parametrization

\[
\tilde{M} : \tilde{x}(u, v) = x(u, v) + F(u, v) N(u, v),
\]

where \(N(u, v) \in T_p^\perp M \) and \(F \) is a real valued function in the parameter \((u, v)\). In fact, these surfaces are known as surface offsets in \(\mathbb{E}^3 \) and \(F \) is its offset function [8].

If the offset function depends on the principal curvatures \(k_1 \) and \(k_2 \) of \(M \) then one can choose the variable offset function as;

1. \(F = k_1 k_2 \), Gaussian curvature,
2. \(F = \frac{1}{2}(k_1 + k_2) \), mean curvature,
3. \(F = k_1^2 + k_2^2 \), energy functional,
4. \(F = |k_1| + |k_2| \), absolute functional,
5. \(F = k_i, 1 \leq i \leq 2 \), principal curvature,
6. $F = \frac{1}{k_i}$, focal points,

7. $F = \text{const.}$, parallel surface.

The different offset functions listed above can now be used to investigate and visualize the surfaces (see [14]). Using different offset functions, one can construct a one-parameter family of various normal transport surfaces from a given surface of 4-dimensional Euclidean space \mathbb{E}^4.

In the following definition we construct some special normal transport surfaces in \mathbb{E}^4 which are the generalization of some generalized focal surfaces given before.

Definition 5
i) The normal transport surface \tilde{M}_H given with the parametrization

$$\tilde{M}_H : \tilde{x}(u,v) = x(u,v) + H_1(u,v) N_1(u,v) + H_2(u,v) N_2(u,v),$$

is called normal transport surface of H-type, where $f_\alpha(u,v) = H_\alpha$ ($\alpha = 1, 2$) are the offset functions.

ii) The normal transport surface \tilde{M}_K given with the parametrization

$$\tilde{M}_K : \tilde{x}(u,v) = x(u,v) + K_1(u,v) N_1(u,v) + K_2(u,v) N_2(u,v),$$

is called normal transport surface of K-type, where $f_\alpha(u,v) = K_\alpha$ ($\alpha = 1, 2$) are the offset functions.

4.1 Parallel Surfaces in \mathbb{E}^4

Definition 6 The normal transport surface \tilde{M} of M is called parallel surface of M in \mathbb{E}^4 if the equality

$$\langle \tilde{x}_{u_i}, N_\alpha \rangle = 0, \ 1 \leq i, \alpha \leq 2,$$

holds for all $N_\alpha \in T_p^\perp M$ [7].

If the functions f_1 and f_2 are constant then it is easy to see that \tilde{M} is a parallel surface of M and vice versa, at least if the surfaces are immersed in \mathbb{E}^3. The parallelity of \tilde{M} in \mathbb{E}^4 depends on the normal curvature K_N of M [7]. Parallel type surface are widely used in geometry and mathematical...
physics. We want to refer the reader to da Costa \[4\] for an application in quantum mechanics in curved spaces.

Let \tilde{M} be a parallel surface of M in \mathbb{E}^4. Then by use of (25) and (26) with (29) one can get

$$0 = \langle \tilde{x}_u, N_1 \rangle = (f_1)_u - f_2 T^{12}_1,$$
$$0 = \langle \tilde{x}_v, N_1 \rangle = (f_1)_v - f_2 T^{12}_2,$$
$$0 = \langle \tilde{x}_u, N_2 \rangle = (f_2)_u + f_1 T^{12}_1,$$
$$0 = \langle \tilde{x}_v, N_2 \rangle = (f_2)_v + f_1 T^{12}_2. \tag{30}$$

Differentiating the first two equations and making use of the other equations shows us

$$(f_1)_{uv} + f_1 T^{12}_2 T^{12}_1 - f_2 (T^{12}_1)_v = 0, \tag{31}$$
$$(f_1)_{vu} + f_1 T^{12}_1 T^{12}_2 - f_2 (T^{12}_2)_u = 0.$$

Thus a computation of the left hand sides of (31) brings

$$-f_2 \left\{ (T^{12}_1)_v - (T^{12}_2)_u \right\} = 0.$$

So, by the use of (19) we can conclude that the normal curvature K_N of M vanishes identically \[7\]. Consequently, we obtain the following result of S. Fröhlich.

Theorem 7 \[7\] The normal transport surface \tilde{M} of M is parallel if and only if M has flat normal bundle.

We obtain the following result.

Corollary 8 The normal transport surface \tilde{M} of M is parallel if and only if the squared sum of the offset functions is constant, i.e., $\sum_{i=1}^2 f^2_i(u, v) = \text{const.}$

Proof. From the expressions in (30) we get

$$(f_1)_u f_1 + (f_2)_u f_2 = 0,$$
$$(f_1)_v f_1 + (f_2)_v f_2 = 0. \tag{32}$$

which completes the proof. \blacksquare

We give the following example.
Example 9 The normal transport surface \(\tilde{M} \) of \(M \) is given with the patch
\[
\tilde{X}(u, v) = X(u, v) + r \cos u \ N_1(u, v) + r \sin u \ N_2(u, v),
\]
is a parallel surface of \(M \) in \(\mathbb{E}^4 \).

Let \(M \) be a non-minimal local surface in \(\mathbb{E}^4 \) and \(\tilde{M}_H \) its normal transport surface. If \(\tilde{M}_H \) is a parallel surface of \(M \) in \(\mathbb{E}^4 \) then by Theorem 3 \(M \) has vanishing normal curvature. Furthermore, by the use of (32) we get
\[
\begin{align*}
(H_1)_u \ H_1 + (H_2)_u \ H_2 &= 0, \\
(H_1)_v \ H_1 + (H_2)_v \ H_2 &= 0.
\end{align*}
\]
Thus, \(\|\vec{H}\|^2 = \sum_{\alpha=1}^{2} H_\alpha^2 \) is a constant function. So, we conclude that the mean curvature vector \(\vec{H} \) of \(M \) is parallel in the normal bundle. Thus, we have proved the following result.

Theorem 10 Let \(M \) be a non-minimal local surface in \(\mathbb{E}^4 \). Then the normal transport surface \(\tilde{M}_H \) of \(M \) in \(\mathbb{E}^4 \) is parallel if and only if the mean curvature vector \(\vec{H} \) of \(M \) is parallel in the normal bundle.

Let \(M \) be a non-flat local surface in \(\mathbb{E}^4 \) and \(\tilde{M}_K \) its normal transport surface. If \(\tilde{M}_K \) is a parallel surface of \(M \) in \(\mathbb{E}^4 \) then by Theorem 3 \(\tilde{M}_K \) has vanishing normal curvature. Furthermore, by the use of (32) we get
\[
\begin{align*}
(K_1)_u \ K_1 + (K_2)_u \ K_2 &= 0, \\
(K_1)_v \ K_1 + (K_2)_v \ K_2 &= 0.
\end{align*}
\]
Thus, we conclude that \(K = \sum_{\alpha=1}^{2} K_\alpha^2 \) is a constant function, i.e., \(M \) has constant Gauss curvature. Thus, we have proved the following result.

Theorem 11 Let \(M \) be a non-flat local surface in \(\mathbb{E}^4 \). Then the normal transport surface \(\tilde{M}_K \) of \(M \) in \(\mathbb{E}^4 \) is parallel if and only if the Gaussian curvature of \(M \) is a non-zero constant.
4.2 Evolute Surfaces in \mathbb{E}^4

Definition 12 The normal transport surface \tilde{M} of M is called evolute surface of M in \mathbb{E}^4 if the equality

$$\langle \tilde{x}_{u_i}, x_{u_j} \rangle = 0, \ 1 \leq i, j \leq 2,$$

(33)

holds for all $x_{u_j} \in T_p M$.

Observe that, The tangent 2-planes at a point $p \in M$ and at the corresponding point $\varphi(p) \in \tilde{M}$ are mutually orthogonal, and the vector $\overrightarrow{p \varphi(p)} = \overrightarrow{w(p)}$, $\overrightarrow{w(p)} \in T_p^+ M$ is the normal vector to M.

Let \tilde{M} be a evolute surface of M in \mathbb{E}^4. Then by use of (25) with (33) we can get

$$0 = \langle \tilde{x}_{u_i}, x_{u_j} \rangle = (1 - f_1 c_{11}^{11} - f_2 c_{22}^{11}) \ g_{11} - (f_1 c_{12}^{12} + f_2 c_{22}^{12}) \ g_{21},$$

$$0 = \langle \tilde{x}_{u_i}, x_{v_j} \rangle = (1 - f_1 c_{11}^{11} - f_2 c_{22}^{11}) \ g_{12} - (f_1 c_{22}^{12} + f_2 c_{22}^{22}) \ g_{22},$$

(34)

$$0 = \langle \tilde{x}_{v_i}, x_{u_j} \rangle = - (f_1 c_{12}^{12} + f_2 c_{22}^{12}) \ g_{11} + (1 - f_1 c_{22}^{22} - f_2 c_{22}^{22}) \ g_{21},$$

$$0 = \langle \tilde{x}_{v_i}, x_{v_j} \rangle = - (f_1 c_{12}^{12} + f_2 c_{22}^{12}) \ g_{12} + (1 - f_1 c_{22}^{22} - f_2 c_{22}^{22}) \ g_{22}.$$

From now on we assume that the surface patch $x(u,v)$ satisfies the metric condition $g_{12} = 0$. So the equations in (34) turn into

$$f_1 c_{11}^{11} + f_2 c_{22}^{11} = 1,$$

$$f_1 c_{12}^{22} + f_2 c_{22}^{22} = 1,$$

$$f_1 c_{12}^{12} + f_2 c_{22}^{12} = 0.$$

(35)

Consequently by the use of (35) with (15) we get

$$f_1 H_1 + f_2 H_2 = 1.$$

(36)

So, we obtain the following result.

Theorem 13 Let M be local surface in \mathbb{E}^4 with $g_{12} = 0$. Then the normal transport surface \tilde{M} in \mathbb{E}^4 is evolute surface of M if and only if the first and second mean curvatures H_1, H_2 satisfies the condition (36).

Corollary 14 Let M be local surface in \mathbb{E}^4 with $g_{12} = 0$. Then the normal transport surface \tilde{M}_H in \mathbb{E}^4 is evolute surface of M if and only if the mean curvature of M is equal to one.
In [3] M. A. Cheshkova gave the following results.

Theorem 15 [3] Let M be local surface in E^4. If the normal transport surface \tilde{M} in E^4 is evolute surface of M then M has flat normal bundle.

Theorem 16 [3] The minimal surfaces have no evolutes.

Example 17 Let M is a translation surface $x(u, v) = \alpha(u) + \beta(v)$ in E^4, then the translation curves $\alpha(u) = (\alpha_1(u), \alpha_2(u), 0, 0)$ and $\beta(v) = (0, 0, \beta_1(v), \beta_2(v))$ are plane curves of mutually orthogonal 2-planes. The surface \tilde{M} is a translation surface, and its translation curves $\tilde{\alpha}(u)$, $\tilde{\beta}(u)$ are the evolutes of the curves $\alpha(u)$, $\beta(u)$. If $u, v, \kappa_\alpha, \kappa_\beta$ and $\{t_\alpha, n_\alpha\}, \{t_\beta, n_\beta\}$ are the arc length, the curvature, and the Frenet frame of the curves $\alpha(u)$ and $\beta(v)$, correspondingly, then

$$\tilde{x}(u, v) = \alpha(u) + \frac{1}{\kappa_\alpha}n_\alpha(u) + \beta(v) + \frac{1}{\kappa_\beta}n_\beta(v)$$

$$= \alpha(u) + \beta(v) + \frac{1}{\kappa_\alpha}n_\alpha(u) + \frac{1}{\kappa_\beta}n_\beta(v)$$

$$= x(u, v) + \frac{1}{\kappa_\alpha}n_\alpha(u) + \frac{1}{\kappa_\beta}n_\beta(v).$$

The tangent space to \tilde{M} at an arbitrary point $p = \tilde{x}(u, v)$ of \tilde{M} is spanned by

$$\tilde{x}_u = \left(\frac{1}{\kappa_\alpha}\right)'n_\alpha(u),$$

$$\tilde{x}_v = \left(\frac{1}{\kappa_\beta}\right)'n_\beta(v).$$

Consequently, the normal transport surface \tilde{M} of M satisfies the equality

$$\langle \tilde{x}_{u_i}, x_{u_i} \rangle = 0.$$

Hence, \tilde{M} is the evolute of M [3].

5 An Application

Rotation surfaces were studied in [16] by Vranceanu as surfaces in E^4 which are defined by the following parametrization

$$M : x(u, v) = (r(v) \cos v \cos u, r(v) \cos v \sin u, r(v) \sin v \cos u, r(v) \sin v \sin u)$$

(37)
where \(r(v) \) is a real valued non-zero function.

We have the following result.

Theorem 18 Let \(\tilde{M} \) be a normal transport surface of the Vranceanu surface \(M \) given with the parametrization (22). If \(\tilde{M} \) is an evolute surface of \(M \) in \(\mathbb{E}^4 \) then

\[
\tilde{M} : \tilde{x}(u, v) = \lambda \mu e^{\mu u} (-\sin v \cos u, -\sin v \sin u, \cos v \cos u, \cos v \sin u), \quad (38)
\]

where \(\lambda \) and \(\mu \) are non zero constants.

Proof. Let \(M \) be a Vranceanu surfaces given with the parametrization (37). We choose a moving frame \(\{ X_u, X_v, N_1, N_2 \} \) such that \(X_u, X_v \) are tangent to \(M \) and \(N_1, N_2 \) normal to \(M \) as given the following (see, [17]):

\[
X_u = r(-\cos v \sin u, \cos v \cos u, -\sin v \sin u, \sin v \cos u), \quad (B(v) \cos u, B(v) \sin u, C(v) \cos u, C(v) \sin u), \quad N_1 = \frac{1}{\sqrt{A(v)}} (-C(v) \cos u, -C(v) \sin u, B(v) \cos u, B(v) \sin u),
\]

\[
N_2 = (-\sin v \sin u, \sin v \cos u, \cos v \sin u, -\cos v \cos u),
\]

where

\[
A(v) = \sqrt{r^2(v) + (r'(v))^2}, \quad B(v) = r'(v) \cos v - r(v) \sin v,
\]

\[
C(v) = r'(v) \sin v + r(v) \cos v.
\]

Suppose that \(\tilde{M} \) is the normal transport surface of the Vranceanu surface \(M \) in \(\mathbb{E}^4 \) then we have

\[
\langle \tilde{x}_u, x_u \rangle = r^2(v) - f_1 \left(\frac{r^2(v)}{\sqrt{r^2(v) + (r'(v))^2}} \right),
\]

\[
\langle \tilde{x}_u, x_v \rangle = f_2 r(v),
\]

\[
\langle \tilde{x}_v, x_u \rangle = f_2 r(v),
\]

\[
\langle \tilde{x}_v, x_v \rangle = r^2(v) + (r'(v))^2 + f_1 \left(\frac{r(v) r''(v) - 2 (r'(v))^2 - r^2(v)}{\sqrt{r^2(v) + (r'(v))^2}} \right).
\]

Furthermore, if \(\tilde{M} \) is an evolute surface of the Vranceanu surface \(M \) in \(\mathbb{E}^4 \) then using (33) with (39) we obtain

\[
f_2 = 0,
\]

\[
f_1 = \sqrt{r^2(v) + (r'(v))^2}. \quad (40)
\]

13
Moreover, from the first and fourth equations of (39) one can get
\[r(v)r''(v) - (r'(v))^2 = 0 \]
which has a non-trivial solution
\[r(v) = \lambda e^{\mu v} \] (41)

As a consequence of (40) with (41) we get the desired result.

Remark 19 The Vranceanu surface given with \(r(v) = \lambda e^{\mu v} \) is a flat surface with vanishing normal curvature \([1]\).

References

[1] K. Arslan, B.K. Bayram, B. Bulca, Y.H. Kim, C. Murathan and G. Öztürk, *Vranceanu surfaces with pointwise 1-type gauss map*, Indian J. Pura Appl. Math. 42(2011), 41-51.

[2] B.-Y. Chen, *Surfaces with parallel mean curvature vector*, Bull. Amer. Math. Soc. 78(1972), 709–710.

[3] M. A. Cheshkova, *Evolute surfaces in \(\mathbb{E}^4 \)*, Mathematical Notes, Vol. 70(2001), 870–872.

[4] R.C.T. da Costa, *Constraints in quantum mechanics*, Physical Review A, 25(1982), 2893–2900.

[5] R. T. Farouki, *Exact Offset Procedures for Simple Solids*, Computer Aided Geometric Design, 2(1985), 257-279.

[6] M. Forsyth. *Shelling and offsetting bodies*, Proceedings of the third ACM symposium on Solid modeling and applications, Salt Lake City, Utah, United States, 373-381, May 17-19, 1995.

[7] S. Fröhlich, *Surfaces-in-Euclidean-Space*, www.scribd.com/doc, 2013.

[8] S. Hahmann. *Visualization techniques for surface analysis*, in C. Bajaj (ed.): Advanced techniques, John Wiley, 1999.
[9] H. Hagen and S. Hahmann. *Generalized Focal Surfaces: A New Method for Surface Interrogation*, Proceeding, Visualization’92, Boston-1992, 70-16.

[10] H. Hagen and S. Hahmann. *Visualization of curvature behavior of free-form curves and surfaces*, CAD 27(1995), 545-552.

[11] H. Hagen, H. Pottmann. *A Divivier, Visualization Functions on Surface*, Journal of Visualization and Animation, 2(1991), 52-58.

[12] L.N. Krivonosov. *Parallel and Normal Correspondence of two-dimensional Surfaces in the four-dimensional Euclidean Space \mathbb{E}^4*, Amer. Math. Soc. Transl. 92(1970), 139-150.

[13] T. Maekawa. *An Overview of Offset Curves and Surfaces*, Computer Aided Design Vol. 31(1999), 165-173.

[14] B. Özdemir and K. Arslan. *On generalized focal surfaces in \mathbb{E}^3*, Rev. Bull. Calcutta Math. Soc. 16 (2008), 23–32.

[15] B. Pham. *Offset curves and surfaces: a brief survey*, Computer-Aided Design 24(1992), 223–229.

[16] G. Vranceanu, *Surfaces de Rotation Dans \mathbb{E}^4*. Rev. Roumaine Math. Pures Appl. 22(1977), 857-862.

[17] D.W. Yoon, *Rotation Surfaces with Finite Type Gauss Map in \mathbb{E}^4*. Indian J. pura appl.Math. 32(2001), no.12, 1803-1808.

Kadri Arslan & Betül Bulca
Department of Mathematics
Uludağ University
16059 Bursa, TURKEY
E-mails: arslan@uludag.edu.tr,
bbulca@uludag.edu.tr

Bengü Kılıç Bayram
Department of Mathematics
Balıkesir University
Balıkesir, TURKEY
E-mail: benguk@balikesir.edu.tr,
Güney Öztürk
Department of Mathematics
Kocaeli University
Kocaeli, TURKEY
E-mail: ogunay@kocaeli.edu.tr,