RESEARCH PAPER

The Arabidopsis tonoplast is almost devoid of glycoproteins with complex N-glycans, unlike the rat lysosomal membrane

Emanuela Pedrazzini1,*, Andrea Caprera2, Ilaria Fojadelli2, Alessandra Stella1, Alessandra Rocchetti1, Barbara Bassin3, Enrico Martinoia3 and Alessandro Vitale1

1 Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy
2 Parco Tecnologico Padano, Lodi, Italy
3 Institute of Plant Biology, University of Zurich, Zurich, Switzerland

* Correspondence: pedrazzini@ibba.cnr.it

Received 6 November 2015; Accepted 17 December 2015

Editor: Chris Hawes, Oxford Brookes University

Abstract

The distribution of the N-glycoproteome in integral membrane proteins of the vacuolar membrane (tonoplast) or the plasma membrane of Arabidopsis thaliana and, for further comparison, of the Rattus norvegicus lysosomal and plasma membranes, was analyzed. In silico analysis showed that potential N-glycosylation sites are much less frequent in tonoplast proteins. Biochemical analysis of Arabidopsis subcellular fractions with the lectin concanavalin A, which recognizes mainly unmodified N-glycans, or with antiserum against Golgi-modified N-glycans confirmed the in silico results and showed that, unlike the plant plasma membrane, the tonoplast is almost or totally devoid of N-glycoproteins with Golgi-modified glycans. Lysosomes share with vacuoles the hydrolytic functions and the position along the secretory pathway; however, our results indicate that their membranes had a divergent evolution. We propose that protection against the luminal hydrolases that are abundant in inner hydrolytic compartments, which seems to have been achieved in many lysosomal membrane proteins by extensive N-glycosylation of the luminal domains, has instead been obtained in the vast majority of tonoplast proteins by limiting the length of such domains.

Key words: Asparagine-linked oligosaccharides, cell evolution, glycoproteins, integral membrane proteins, lysosome, plant vacuole, tonoplast.

Introduction

N-Glycosylation is a very common modification of proteins synthesized by the secretory pathway. The process is in most cases co-translational and consists of the attachment of the pre-formed oligosaccharide GlcNAc2Man9Glc3 to asparagine residues present in the sequence N-X-S/T (termed sequon), where X cannot be a proline residue. The sequon can be glycosylated only if exposed in the lumen of the endoplasmic reticulum (ER), because the oligosaccharyltransferase is active on the luminal side of the ER translocation channel. Co-translational protein folding can inhibit access of the transferase, further reducing the number of sequons that are actually glycosylated. Data on the presence of oligosaccharide chains in sequons indicate that in mice at least 10% of the total cell proteome is N-glycosylated (Zielinska et al., 2010).

Soon after transfer of the oligosaccharide to the polypeptide, the three Glc residues are removed, as part of a cycle...
of reactions that allow binding and release from ER-located lectins (Helenius and Aebi, 2004). This cycle is involved in the ER-quality control (ERQC) system that promotes productive folding and assembly of secretory proteins and targets structurally defective polypeptides for degradation. Both for this reason and because they directly mask hydrophobic regions of the polypeptide, asparagine-linked oligosaccharides play an important role in allowing correct folding, protection from hydrolytic enzymes, and enhancing the solubility of many proteins (Helenius and Aebi, 2004). It is thus not surprising that N-glycosylation is essential for viability in eukaryotes (Ioffe and Stanely, 1994; Yoshida et al., 1995; Koiwa et al., 2003).

When newly synthesized secretory proteins traffic from the ER along the secretory pathway to reach their destination, the N-linked glycans can be extensively modified by glycosidases and glycosyltransferases of the Golgi complex (Kornfeld and Kornfeld, 1985; Wilson, 2002; Gomord et al., 2010). The initial modifications are common to all eukaryotes and are necessary for the subsequent, less conserved, steps that give rise to very variable structures collectively termed complex glycans. The attachment of β1,2-linked xylose and α1,3-linked fucose, respectively, to the β-linked mannose residue and the proximal GlcNAc is typical of seed plants, but is present also in a number of lower plant species and has not been found in fungi or vertebrate animals (Gomord et al., 2010). Golgi GlcNAc-transferase I catalyzes one of the initial committed steps of all Golgi modifications and is necessary for embryo development in mice (Ioffe and Stanley, 1994) but not for Arabidopsis development and reproduction (von Schaewen et al., 1993), indicating that the formation of complex glycans has a fundamental role in a model mammal species but not in a higher plant. Consistently, Arabidopsis mutants lacking the Golgi xylosyltransferase and fucosyltransferase activities do not show any defect under normal growth conditions (Strasser et al., 2004). However, upon salt stress, the lack of GlcNAc-transferase I causes a marked decrease in root growth and defects in the biosynthesis of cell wall polysaccharides (Kang et al., 2008).

Genetic analysis indicates that the activity of at least one plasma membrane glycoprotein (KOR1/RSW2, which is implicated in cellulose biosynthesis) is negatively affected by the lack of glycan modifications (Kang et al., 2008).

Plant vacuoles are for some important aspects the analogs of animal lysosomes: they share the same position along the secretory pathway and the same role in the degradation of extracellular material as well as intracellular components that are routed to these hydrolytic compartments via endocytic or autophagic events. Other important functions, such as the storage of proteins and secondary metabolites and the role in maintaining the osmotic pressure, are instead specific to plant vacuoles (Marty, 1999).

The tonoplast provides the vacuole with a barrier that separates the vacuolar lumen from the surrounding cytosol and at the same time maintains cytosolic homeostasis through the activities of many integral membrane proteins (Martinoia et al., 2007). However, tonoplast membrane proteins (TMPs), as well as lysosomal membrane proteins (LMPs), are in direct contact with hydrolytic enzymes on the luminal face of the membrane, giving rise to the question of how they are protected from degradation. Many LMPs are highly glycosylated, and most glycans are located in extended loops or terminal domains, probably forming an oligosaccharide coat on the luminal side of the membrane. (Schiweck et al., 2009; Gao et al., 2010). The vacuole as a whole (tonoplast plus soluble content) contains several N-glycosylated proteins with a high percentage of complex glycans with β1,2-linked xylose and α1,3-linked fucose, but is devoid of N-glycosylated proteins containing the Lewis a epitope (Fitchette et al., 1999). This epitope, also present in mammals, is found in plant plasma membrane and secreted glycoproteins, and is constituted by the terminal structure Galβ1−3[Fuc(1−4)GlcNAc], formed by the action of Golgi glycosyltransferases.

Here we have analyzed the N-glycosylation status of Arabidopsis tonoplast proteins, using a combination of biochemical and bioinformatics approaches. Our data show that only few TMPs may contain N-linked glycans and even less, or none of these, are of the complex type. Comparison with the Arabidopsis plasma membrane and the rat lysosomal and plasma membranes indicates that this feature is specific for the plant tonoplast. Our observations cast new light on the possible evolution of different strategies to protect membrane proteins of the inner hydrolytic compartments from unwanted proteolysis.

Materials and methods

Antibodies

The following antisera and dilutions were used in protein blots: 1:2000 rabbit polyclonal anti-complex ganl (cgly) antiserum (Laurièrere et al., 1989), 1:1000 chicken polyclonal anti-γTIP antiserum against a synthetic peptide corresponding to the C-terminal nine amino acids of Arabidopsis γ-tonoplast intrinsic protein (TIP) (Rojo et al., 2003), 1:1000 rabbit polyclonal anti-plasma membrane intrinsic protein 2 (P1P2) antiserum (Santoni et al., 2003), 1:1000 rabbit polyclonal anti-BiP antiserum raised against a recombinant fusion between maltose-binding protein and amino acids 551–667 of tobacco binding protein (BiP) (Pedrazzini et al., 1997), 1:1000 rabbit polyclonal anti-endoplasmic reticulum antiserum (Klein et al., 2006), and 1:20000 peroxidase-conjugated goat anti-rabbit or anti-chicken IgG (Invitrogen). For immunofluorescence microscopy, 1:100 AlexaFluor 488 goat anti-rabbit (Invitrogen) was used as secondary antibody.

Plant material

Wild-type or XylT/FucT knockout (Strasser et al., 2004) Arabidopsis thaliana plants, ecotype Columbia, were grown in sterile conditions on half-strength Murashige and Skoog (MS) medium (Duchefa Biochemie) supplemented with 10 g l−1 sucrose and 0.8% (w/v) phyto agar (Duchefa Biochemie) at 23 °C under a 16/8h light/dark cycle. Arabidopsis thaliana ecotype Columbia suspension-cultured T87 cells were grown as described (Maîtrejean et al., 2011).

Isolation of vacuoles from Arabidopsis leaves

Leaves from 4- to 5-week-old plants were scratched on the underside with glass paper (P500) and digested for 90–120 min in MCP (0.5 M sorbitol, 1 mM CaCl2, 10 mM MES, brought to pH 5.6 using KOH)
containing 1% Cellulase R10, 0.5% Macerozyme R10, and 0.04% BSA. The digestion mixtures were collected on a 2 ml 100% Percoll pH 6 cushion (0.5 M sorbitol, 1 mM CaCl₂, 20 mM MES, pH 6.0, dissolved in 100% Percoll; GE Healthcare) in a 50 ml Falcon tube and centrifuged for 8 min, 470 g, 20 °C. The supernatant was discarded and a step gradient was then set up as follows (from bottom to top—equal volumes of each step): (i) protoplasts in 40% Percoll pH 6; (ii) 30% Percoll pH 7.2 (0.5 M sorbitol, 20 mM HEPES dissolved in 30% Percoll, pH 7.2); and (iii) sortibil buffer (0.4 M sorbitol, 30 mM K-gluconate, 20 mM HEPES, pH 7.2 with imidazole). After centrifugation at 300 g, 8 min, 20 °C, protoplasts were recovered at the 30% Percoll/sorbitol buffer interface and transferred into a 50 ml Falcon tube. Lysis was performed by mixing with an equal volume of lysis buffer (0.2 M sorbitol, 20 mM EDTA, 10 mM HEPES, 10% Ficoll, pH 8.0, 1 mM DTT, 0.016% BSA, pre-warmed to 42 °C). Lysis was stopped after 10 min by placing the tube on ice. The released vacuoles were purified using a second step gradient set up as follows (from bottom to top): (i) 5 ml of lysate; (ii) 5 ml of 1:1 lysis buffer:betaine buffer (0.4 M betaine, 30 mM K-gluconate, 1 mM DTT, 0.1% BSA, 20 mM HEPES, brought to pH 7.2 using 1 M imidazole) supplemented with 10% BSA, 1 mM DTT; and (iii) betaine buffer. After centrifugation at 1500 g, 8 min, 20 °C, vacuoles were recovered at the interface between the (ii) and (iii) cushions. Vacuoles were frozen in liquid N₂ and stored at –70 °C.

Tonoplast and total microsome purification

Purified vacuoles or intact protoplasts, containing the same amount of α-mannosidase activity, measured as described (Maîtrejean et al., 2011), were freeze-thawed three times, vigorously mixed by pipetting, and centrifuged at 2500 g for 10 min at 4 °C. Recovered supernatants were placed in 0.5 M sorbitol, 20 mM HEPES pH 7.2, Complete protease inhibitor cocktail (Roche), and incubated for 20 min in ice. To strip peripheral membrane proteins, supernatants were further treated with 0.1 M Na₂CO₃. To enrich tonoplas or total microsomes, the samples were centrifuged for 1 h, 100 000 g, 4 °C. Supernatants, containing vacuole or protoplast soluble fractions were recovered. Membrane pellets, containing tonoplas or total microsomes, were resuspended in 0.5 M sorbitol, 20 mM HEPES pH 7.2, using 1:10 volume with respect to the soluble fractions. An equal volume, or equal amount of proteins, of soluble or membrane fractions was analyzed by SDS–PAGE and protein blot on a nitrocellulose membrane (Perkin-Elmer), and proteins, of soluble or membrane fractions was analyzed by SDS–PAGE. An equal volume, or equal amount of proteins, of tonoplast or total microsomes, were resuspended in 0.2% Triton X-100, 2% 2-mercaptoethanol, 100 mM TRIS-Cl pH 7.8) supplemented with Complete protease inhibitor cocktail. After centrifugation at 5000 g, 10 min, 4 °C, the resulting supernatant was considered as the total protein extract. Proteins were analyzed by SDS–PAGE and protein blot.

Analysis of total leaf proteins

For total protein extraction from wild-type or XylT/FucT knockout plants, Arabidopsis leaves (3–6 weeks old) were homogenized in ice-cold homogenization buffer (200 mM NaCl, 1 mM EDTA, 0.2% Triton X-100, 2% 2-mercaptoethanol, 100 mM TRIS-Cl pH 7.8) supplemented with Complete protease inhibitor cocktail. After centrifugation at 5000 g, 10 min, 4 °C, the resulting supernatant was considered as the total protein extract. Proteins were analyzed by SDS–PAGE and protein blot.

Microsome subfractionation

Microsome subfractionation was performed according to Ishikawa et al. (2005). Total microsomes were prepared as follows: A. thalina leaf tissue was homogenized in a buffer containing 50 mM TRIS-acetate (pH 7.5), 250 mM sorbitol, 2 mM EGTA, 2 mM MgCl₂, 2 mM DTT supplemented with Complete protease inhibitor cocktail. The homogenate was filtered and centrifuged at 10 000 g for 10 min at 4 °C. The supernatant (S10) was further centrifuged at 100 000 g (rav) in a Beckman SW55Ti rotor (Beckman Instruments) for 2 h at 4 °C. The resulting pellet (P100) containing total membrane proteins, was resuspended in 10 mM Tricine-KOH (pH 7.5), 1 mM EGTA, 2 mM MgCl₂, 5% (w/v) sucrose, and was loaded on a sucrose density gradient (10-40% sucrose) in 10 mM Tricine-KOH (pH 7.5), 1 mM EGTA, and 2 mM MgCl₂ and centrifuged at 77 000 g (rav) for 19 h in a Beckman SW40 rotor. Twenty fractions of 0.55 ml were collected. The precipitate at the bottom of the tube was solubilized with 550 μl of SDS-PAGE loading buffer. Equal volumes of each fraction and of the solubilized precipitate were analyzed by SDS–PAGE and protein blot.

Immunofluorescence of protoplasts from Arabidopsis cell culture

Protoplasts were prepared from 7-day-old cell culture as described (Maîtrejean et al., 2011). After the last wash in W5 buffer, protoplasts were fixed by resuspension in MaCa buffer [0.5 M mannitol, 20 mM CaCl₂, and 0.1% (v/v) MES, pH 5.7] containing 4% (w/v) paraformaldehyde, for 2 h at 20 °C. Immunofluorescence was performed as described (Maggio et al., 2007). After immunolabeling, protoplasts were resuspended in ProLong Gold antifade reagent (Invitrogen-Molecular Probes, Eugene, OR, USA) and visualized by epifluorescence microscopy using a Zeiss Axiosvert 200 microscope (Carl-Zeiss, Oberkochen, Germany), followed by the collection of optical sections using the Zeiss Apotome system and Axiovision 4.1 software. Figures were assembled using Adobe Photoshop software (Adobe Systems Incorporated, CA, USA).

In silico analysis

The goal of the entire procedure (pipeline) is the in silico identification of putative N-glycosylation signals in proteins already known to be localized on lysosomal, vacuolar, or plasma membranes. The procedure starts with the analysis of proteins identified by their TAIR or IPI IDs. Uniprot identifiers are also used to obtain information from external databases (e.g. Fasta formatted sequences or protein annotations). Conversions among identifiers are made through ‘programmatic’ access to the Uniprot database (http://www.uniprot.org/faq/28) using Ruby programming language scripts (https://www.ruby-lang.org/en/) or, as an alternative, using the Uniprot Mapping facility (http://www.uniprot.org/mapping/). The analysis procedure includes searching for N-glycosylation signals and the investigation of putative transmembrane regions and related sequence topology. Home-made scripts, in the Ruby programming language, have been written in order to automate the entire procedure. These scripts are used to link together successive steps of the bioinformatics analysis (pipeline) and guarantee compatibility of data formats between different steps. Protein annotations and data obtained during the analysis are progressively stored in a local database. An internal SQLite database (http://www.sqlite.org/) has been created. The Database Management System is used for data access and querying by means of the SQL language (http://en.wikipedia.org/wiki/SQL). Putative transmembrane regions and sequence membrane topology are investigated using local installations of two alternative tools, for cross-validation: TMHMM (http://www.cbs.dtu.dk/services/TMHMM/) and Phobius (http://phobius.sbc.us.es/). Sequons are searched by means of a local installation of the NetGlyhc software (http://www.cbs.dtu.dk/services/NetNGlyc/). The algorithm indicates as putative N-glycosylation sites only signals localized in the extracytoplasmic side(s) of the transmembrane proteins, and positioned at minimal distances of 12 and 14 residues, after the end and before the beginning of a transmembrane segment, respectively.
Results

In silico analysis suggests that N-glycosylated proteins are under-represented in the Arabidopsis tonoplast proteome

To obtain an overview on the putative N-glycosylation status of Arabidopsis membrane proteins, in silico analysis was performed, searching for N-glycosylated membrane proteins and their subcellular distribution. Published proteomics data on the Arabidopsis vacuole (tonoplast plus soluble proteins) or tonoplast (Carter et al., 2004; Sazuka et al., 2004; Shimaoka et al., 2004; Szponarski et al., 2004; Jaquinod et al., 2007) were first compared. Ninety-five sequences that had been assigned to the tonoplast in all these studies were selected. To enrich our TMP database, a search for proteins annotated as ‘tonoplast’ was performed in the TAIR database; integral membrane proteins were extracted from the resulting list using the ‘bulk protein search’ tool and, if not already present, they were added to our database (Supplementary Table S1 at JXB online, A.th.TMPs, highlighted in blue). Finally, proteins for which there is published experimental evidence for a localization other than the tonoplast were discarded. In total, we thus identified 109 integral tonoplast proteins (Supplementary Table S1, A.th.TMPs).

A search and selection using the same criteria was performed on Arabidopsis plasma membrane proteins (PMPs). Proteomic analysis by Alexandersson et al. (2004) reported 238 putative PMPs. This study was chosen because it contains the highest number of identified polypeptides. Integral membrane proteins annotated as ‘Plasma membrane’ were also extracted from the TAIR protein database. When the two lists were combined, proteins that were experimentally verified to be not at the plasma membrane were discarded and only integral membrane proteins were considered; 183 proteins were thus selected (Supplementary Table S2, A.th.PMPs).

Putative sequon positions in the selected proteins were predicted by a bioinformatics procedure (pipeline) that combined the analysis of transmembrane protein topology by the TMHMM or Phobius software and the search for putative N-glycosylation sites by the NetNGlyc software (tripeptides with proline in the X position were excluded). The following further limitations were considered. Amino acids located in cytosolic or transmembrane regions cannot come into contact with the oligosaccharyltransferase and therefore cannot be glycosylated. Moreover, close proximity to transmembrane domains or the N-terminal signal peptide inhibits glycosylation, because of steric effects (Nilsson and von Heijne, 1993; Chen et al., 2001); mutagenesis indicated that, to be glycosylated, the luminal sequon must be at minimal distances of 12 and 14 residues after the end and before the beginning of a transmembrane segment, respectively (Nilsson and von Heijne, 1993; Cheung and Reithmeier, 2007). Consistently, the single luminal sequon of the tonoplast tandem-pore potassium channel 1 (TPK1, At5g55630) that immediately precedes the second transmembrane helix is not glycosylated in vivo (Maîtrejean et al., 2011). N-Glycosylation sites that did not meet these requirements were excluded.

Analysis using the TMHMM algorithm indicated that only 17 out of the 109 TMPs can be glycosylated, representing 15.6% of the tonoplast proteome and having in total 41 sequons (Table 1; for details see Supplementary Table S1, TMHMM_A.th.TMPs N-glyc sites and TMHMM_N-glyc A.th.TMPs). The Phobius algorithm was more selective; 12 sequences were validated, with 28 sequons (Supplementary Table S1, Phobius_A.th.TMPs N-glyc sites and Phobius_N-glyc A.th.TMPs; note that 11 sequences were shared by both algorithms).

Among the 183 integral proteins of the plasma membrane, 82 polypeptides, representing 45% of the total, contain 370 sequons that satisfy the criteria described above for N-glycosylation when analyzed by the TMHMM algorithm (Table 2; for details see Supplementary Table S2, TMHMM_A.th. PMPs N-glyc sites and TMHMM_N-glyc A.th.PMPs). Also in this case the Phobius algorithm is more stringent, identifying 71 putative N-glycosylated PMPs in Arabidopsis for a total of 319 sequons (Supplementary Table S2, Phobius_A.th.PMPs N-glyc sites and Phobius_N-glyc A.th.PMPs, for more details).

These data indicate that a much lower fraction of the tonoplast than the plasma membrane proteome may be N-glycosylated (Fig. 1A) and that glycoproteins with more than two sequons are rare in the tonoplast but very frequent in plasma membrane proteins.

Table 1. Putative N-glycosylated integral tonoplast proteins (N-glyc TMPs) of Arabidopsis thaliana, identified using NetGlyc and TMHMM algorithms

TAIR ID	No. of sequons	Description
AT1G75630.2	1	V-type proton ATPase 16 kDa proteolipid subunit c4
AT3G51490.1	1	Monosaccharide-sensing protein 3 (Sugar transporter MSSP3)
AT5G14120.1	1	Major facilitator protein (Nodulin-like protein)
AT5G62890.1	1	Nucleobase-ascorbate transporter 6 (A/NAT6)
AT2G28520.1	2	Vacuolar proton ATPase a1 (95 kDa subunit a isoform 1)
AT2G34660.1	2	ABC transporter C family member 2 (ABC transporter AtABCC2)
AT2G38170.1	2	Vacuolar cation/proton exchanger 1 (Ca(2+)+/H(+) antiporter CAX1)
AT2G47600.1	2	Magnesium/proton exchanger (Mg(2+)+/H(+) exchanger) (AtM/H)
AT3G03720.1	2	Cationic amino acid transporter 4 (ABC transporter C family member 14)
AT3G62700.2	2	ABC transporter C family member 14 (ABC transporter AtABCC14)
AT4G01840.1	2	Two-pore potassium channel 5 (AtTPK5)
AT5G40890.1	2	Chloride channel protein CLC-a (AtCLC-a)
AT5G46700.1	2	Two-pore potassium channel 2 (AtTPK2)
AT5G61350.1	2	Protein kinase superfamily protein
AT5G99040.1	3	ABC transporter B family member 27 (ABC transporter AtABCB27) (Aluminum tolerance-related ATP-binding cassette transporter AtAP2)
AT5G45890.1	6	Senescence-associated gene 12
AT5G48410.1	8	Glutamate receptor 1.3
Table 2. Putative N-glycosylated integral plasma membrane proteins (N-glyc PMPs) of Arabidopsis thaliana, identified using NetGlyc and TMHMM algorithms

TAIR_ID	No. of sequons	Description
AT1G08700.1	1	PS1, Presenilin-1
AT1G15080.1	1	ATPAP2, lipid phosphate phosphatase 2
AT1G17620.1	1	Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family
AT1G52200.1	1	Protein PLANT CADMIUM RESISTANCE 8 (AtPCR8)
AT2G03620.1	1	Magnesium transporter MRS2-5 (Magnesium Transporter 3, AtMGT3)
AT3G28007.1	1	SWEET4, Nodulin MtN3 family protein
AT3G28450.1	1	Leucine-rich repeat protein kinase-like protein
AT3G45600.1	1	Tetraspanin-3
AT3G46900.1	1	COPT2, copper transporter 2
AT3G62360.1	1	Carbohydrate-binding-like fold-containing protein
AT4G29870.1	1	Oligosaccharyltransferase complex/magnesium transporter family protein
AT5G07390.1	1	ATRBOHA, respiratory burst oxidase homolog A
AT5G35390.1	1	Leucine-rich repeat protein kinase family protein
AT5G50300.1	1	Copper transporter 1 (AtCOPT1)
AT5G64080.1	1	Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein
AT1G59870.1	2	ABC transporter G family member 36 (ABC transporter AtABCG36)
AT2G27500.1	2	Glycosyl hydrolase superfamily protein
AT3G09740.1	2	Syntaxin-71 (AtSYP71)
AT3G28860.1	2	ABC transporter B family member 19 (ABC transporter AtABCB19)
AT3G45600.1	2	Late embryogenesis abundant hydroxyproline-rich glycoprotein
AT4G04970.1	2	ATGSL1, glucan synthase-like 1
AT4G13510.1	2	Ammonium transporter 1 member 1 (AtAMT1)
AT4G30190.2	2	ATPase 2
AT5G14870.1	2	CNGC18, cyclic nucleotide-gated channel 18
AT5G25090.1	2	ENCDL13, early nodulin-like protein 13
AT1G06570.1	3	CALS1, callose synthase 1
AT1G3110.1	3	Cytochrome P450 71B7
AT1G7840.1	3	WBC11, white-brown complex homolog protein 11
AT1G32860.1	3	Glycosyl hydrolase superfamily protein
AT1G75680.1	3	Endoglucanase 10
AT3G26700.1	3	Putative uncharacterized protein
AT3G1050.1	3	FG-GAP repeat-containing protein
AT3G59100.1	3	ATGSL11, glucan synthase-like 11
AT4G03550.1	3	Callose synthase 12
AT4G28100.1	3	Unknown protein
AT5G11420.1	3	Putative uncharacterized protein
AT5G11560.1	3	Putative uncharacterized protein
AT5G19230.1	3	Glycoprotein membrane precursor GPI-anchored
AT1G21880.2	4	LYM1, lym domain GPI-anchored protein 1 precursor
AT1G65240.1	4	Eukaryotic aspartyl protease family protein
AT3G02880.1	4	Probable inactive receptor kinase
AT3G07160.1	4	Callose synthase 9
AT3G23750.1	4	BAK1-ASSOCIATING RECEPTOR-LIKE KINASE 1
AT4G18760.1	4	Putative uncharacterized protein
AT4G31140.1	4	O-Glycosyl hydrolases family 17 protein
AT5G06320.1	4	Harpin-induced protein-like (NDR1/HIN1-Like Protein 3)
AT5G13000.1	4	ATGSL12, glucan synthase-like 12
AT5G28680.1	4	ANX2, Malectin/receptor-like protein kinase family protein
AT5G51060.1	4	Eukaryotic aspartyl protease family protein
AT5G57130.1	4	PLC-like phosphodiesterases superfamily protein
AT1G0640.1	5	GSL7, glucan synthase-like 7
AT3G04690.1	5	ANX1, Malectin/receptor-like protein kinase family protein
AT4G29360.1	5	O-Glycosyl hydrolases family 17 protein
AT5G19250.1	5	Glycoprotein membrane precursor GPI-anchored
AT3G13560.1	6	O-Glycosyl hydrolases family 17 protein
the plasma membrane (Fig. 1B). This suggests an enrichment of N-glycans on the cell surface and a selective depletion on the tonoplast.

The Arabidopsis tonoplast has a much smaller proportion of putative N-glycosylated proteins than the rat lysosomal membrane

As mentioned in the Introduction, vacuoles and lysosomes share a number of features and functions. We thus wondered whether the observations we made regarding Arabidopsis can be extended to a model animal. The recently described rat (*Rattus norvegicus*) liver lysosomal proteome (Chapel et al., 2013) was first analyzed, searching for putative LMPs. We thus excluded the proteins with ‘detailed localization’ C, cytoplasm; CS, cytoskeleton; ER, endoplasmic reticulum; G, Golgi; EG: endoplasmic reticulum, Golgi; M, mitochondria; P, peroxisomes; N, nucleus; MPN: mitochondria, peroxisomes, nucleus; PM, plasma membrane (see table S4b in Chapel et al., 2013). The remaining 151 sequences (Supplementary Table S3, ratLMPs) were then scanned through our pipeline in order to identify N-glycosylated LMPs.

Seventy-three putative LMPs that can be N-glycosylated were identified for a total of 291 sequons (Supplementary Table S3, TMHMM_ratLMPs N-gly sites and TMHMM_N-glyc ratLMPs); these represent 48% of the entire lysosomal membrane proteome.

TAIR_ID	No. of sequons	Description
AT3G14570.1	6	ATGSL04, glucan synthase-like 4
AT3G20600.1	6	NDR1, Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family
AT3G45650.1	6	SOS5, Fasciclin-like arabinogalactan family protein
AT4G23950.2	6	Galactose-binding protein
AT5G38670.1	6	ATGSL09, glucan synthase-like 9
AT5G43720.1	6	LYSM2, lysm domain GPI-anchored protein 2 precursor
AT5G58480.1	6	L-type lectin-domain containing receptor kinase IV.1
AT1G66970.2	7	CALS5, callose synthase 5
AT2G13680.1	7	LMP2, late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family
AT2G37710.1	7	ATGSL03, glucan synthase-like 3
AT2G26730.1	8	Receptor-like protein kinase FERONIA
AT5G39150.1	8	Probable leucine-rich repeat protein kinase-kine-like protein
AT5G51450.1	8	Probable liver lysosomal proteome (Supplemental table 1A ‘Proteins identified from plasma membrane’ in Zhou et al., 2011), among which 465 have at least one putative transmembrane domain. We have further refined the list of putative integral PMPs using the PANTHER gene ontology classification system; we have selected genes that are classified as ‘plasma membrane’ and excluded those classified as ‘ER’, ‘mitochondria’, or ‘lysosome’. This analysis restricted the number of rat PMPs to 137, here reported in Supplementary Table S4 (ratPMPs). Among this group of proteins, 87 can be N-glycosylated for a total of 296 sequons, identified using the TMHMM algorithm (Supplementary Table S4, TMHMM_ratPMPs N-gly sites and TMHMM_N-glyc ratPMPs), thus representing 63% of the total. When the Phobius algorithm was used, 81 putative N-glycosylated proteins with 277 sequons were identified (Supplementary Table S4, Phobius_ratPMPs N-glyc sites and Phobius_N-glyc ratPMPs).
The ratio between the percentages of putative N-glycosylated proteins in the rat plasma membrane and the lysosomal membrane is therefore 1.31 (63%/48%, Fig. 1A) compared with the 2.88 ratio (45%/15.6%) between the Arabidopsis plasma membrane and tonoplast. The distribution of the number of sequons per polypeptide confirms that there is not a marked difference in N-glycosylation patterns between the two rat membranes, unlike what we observed in Arabidopsis (Fig. 1B). Therefore, the low presence of N-glycosylation sites in the membrane proteins of the hydrolytic subcellular compartment relative to those of the plasma membrane is a feature of the model plant, not reflected in the model animal.
Biochemical characterization of the N-glycoproteome distribution in Arabidopsis

To obtain further experimental support for the bioinformatics results, biochemical analysis of the N-glycosylation status of proteins in the different Arabidopsis membranes was performed.

Vacuoles were isolated from protoplasts released by digestion of Arabidopsis rosette leaves. Microsomes were then prepared either from the purified vacuolar fraction or from whole protoplasts and were treated with Na$_2$CO$_3$ to release peripheral membrane proteins. Microsomes from the vacuolar fraction should thus be constituted by the tonoplast, whereas those from whole protoplasts should contain all membranes of the cell. Protein blots using antibodies against the tonoplast marker γ-TIP (Rojo et al., 2003) or the ER markers BiP (Pedrazzini et al., 1997) and endoplasmic/grp94 (Klein et al., 2006) showed that in the Na$_2$CO$_3$-stripped vacuolar microsomes γ-TIP was highly enriched, whereas the ER markers were below our limit of detection (Fig. 2). Conversely, the two ER residents were clearly detected in the protoplast microsomal preparation. The tonoplast fraction was therefore only negligibly contaminated by membranes originating from the major compartment of the endomembrane system. To detect the occurrence of N-glycans on TMPs, protein blot was performed by incubation with ConA conjugated to peroxidase. ConA binds terminal α-d-mannosyl and α-d-glucosyl residues, mainly occurring in high-mannose, unmodified N-glycans (Goldstein and Poretz, 1986). Very few polypeptides were recognized by ConA in the tonoplast compared with those recognized in total microsomes (Fig. 3). This may indicate that very few TMPs are N-glycosylated or that the vast majority of TMP N-glycans are modified during traffic through the Golgi apparatus. To investigate these two possibilities, tonoplast microsomes were tested for the presence of modified N-glycans (complex glycans, cgly), using an anti-cgly antiserum specific for β1,2-linked xylose, a residue present in all cgly detectable in the Arabidopsis proteome (Faye and Chrispeels, 1988; Laurière et al., 1989; Strasser et al., 2004). Consistently, protein blot of Arabidopsis total leaf homogenates showed that no polypeptide was recognized by anti-cgly in knockout plants totally deficient in Golgi xylosyl- and fucosyltransferase activities (xylT–/fucT–) (Strasser et al., 2004), but many polypeptides were detected in wild-type plant extracts (Fig. 4A). The antiserum was therefore used to challenge subcellular fractions of wild-type protoplasts and vacuoles (Fig. 4B; note that soluble and microsomal fractions derived from the same number of cells were analyzed). In both protoplasts and vacuoles, the vast majority of polypeptides recognized by the anti-cgly antiserum were in the soluble fraction, strongly suggesting that most intracellular glycoproteins with cgly are soluble proteins of the vacuolar lumen. A small number of microsomal proteins from protoplasts also reacted with the antiserum. Some of these were possibly minor contaminations from abundant soluble proteins, but others were relatively enriched in the Na$_2$CO$_3$-stripped microsomes. The patterns were very similar when microsomes were not stripped. Microsomes isolated from vacuoles did not give any signal, indicating that cgly are either absent or present in a very minor proportion in the tonoplast proteome. Even when an equal amount of protein was analyzed for each subcellular fraction and membranes were not stripped, the signal given by the tonoplast preparation was very low compared with that of protoplast microsomes (Fig. 4C; the residual bands very probably reflect contaminations from soluble proteins, since no enrichment of a specific band was detectable).

Taken together, the ConA-binding and anti-cgly assays confirm our in silico results, indicating a low frequency of N-glycosylated proteins in the tonoplast proteome.
Most Arabidopsis membrane proteins with complex glycans are at the plasma membrane

To obtain more detailed information on the subcellular localization of the microsomal proteins with cgly, microsomes prepared from Arabidopsis leaf protoplasts were fractionated on isopycnic sucrose gradients (Fig. 5A). An intense peak of anti-cgly reactivity was coincident with the migration of the plasma membrane marker PIP2 (Fig. 5; compare A and C) and a minor peak in very light membrane fractions. In agreement with the results shown in Fig. 4, no peak was detected in the fractions containing the tonoplast marker γ-TIP (Fig. 5; compare A and D). When membranes were treated with Na₂CO₃, the general distribution of polypeptides recognized by anti-cgly along the gradient did not change markedly (Fig. 5B). Analysis was also performed by microscopy. The tonoplast can be visualized by immunofluorescence microscopy on fixed and permeabilized plant cells using antisera against specific resident membrane proteins (see, for example, Vera-Estrella et al., 2004; Jia et al., 2013). However, anti-cgly mainly decorated the plasma membrane and in part small circular subcellular structures, but almost no signal was present at the tonoplast (Fig. 6; the red arrows indicate the tonoplast). Subcellular fractionation and microscopy therefore confirmed that the tonoplast is specifically depleted of cgly and indicated that most cgly are at the plasma membrane.

Discussion

The Arabidopsis N-glycoproteome includes only very few integral membrane proteins of the tonoplast

We have shown here that Arabidopsis N-glycosylated membrane proteins with Golgi-modified, complex glycans are almost or totally absent from the tonoplast and are mainly present in the plasma membrane. The tonoplast also has very few glycoproteins with Golgi-unmodified N-glycans recognized by ConA. Consistent with this, our in silico analysis of tonoplast and plasma membrane proteomes revealed a much lower abundance of potentially N-glycosylated polypeptides in the former.

Our biochemistry and bioinformatics results extend, and provide a general explanation for, previous results regarding Arabidopsis N-glycosylated proteins. Using ConA affinity chromatography, Minic et al. (2007) have identified 102 proteins extracted from Arabidopsis stem. Since they used a protocol mainly suited for the solubilization of hydrolytic enzymes, they detected very few integral membrane proteins, but none of them was assigned to the tonoplast. Arabidopsis N-glycopeptides obtained from total protein extracts have also been isolated and analyzed by Zielinska et al. (2012) and Song et al. (2013), allowing the identification of 1240 and 173 N-glycoproteins, respectively. Comparison with our in silico data indicate that 23 (TMHMM list) or 24 (Phobius list) PMPs, but no TMPs, are among those identified by Zielinska et al. (2012), and six
six PMPs, but again no TMPs, are among those identified by Song et al. (2013).

Our results also extend the previous observation that N-glycans with the Lewis a epitope are present at the plasma membrane but not at the tonoplast (Fitchette et al., 1999). The Lewis a epitope occurs in a subset of complex glycans: in plants it further elongates the structures that are modified by the addition of β1,2-linked xylose and α1,3-linked fucose, and is also absent from soluble vacuolar proteins. It has been suggested that this may be due to removal by vacuolar hydro- lases (Fitchette et al., 1999), in a process similar to the one that removes terminal GlcNAc residues from vacuolar glycoproteins (Vitale and Chrispeels, 1984). Given the fact that, as also shown here, many soluble vacuolar glycoproteins instead contain complex glycans with xylose and fucose, it seems very unlikely that the absence of these residues from tonoplast proteins could be due to their removal by vacuolar hydr- lases. It can therefore be concluded that, whereas the absence of glycans with the Lewis a epitope is a common feature of all

Fig. 5. Most membrane proteins with complex glycans are in a microsomal fraction with higher density than the tonoplast. Microsomes were prepared from Arabidopsis leaves in the absence (A, C, D) or presence (B) of Na2CO3 and subjected to isopycnic sucrose gradient centrifugation. Analysis of each gradient fraction was by SDS–PAGE and protein blot using anti-cgly (A, B), anti-PIP (C), or anti-γTIP (D) sera. Numbers at the top indicate the fraction density. In each panel, numbers on the left indicate the positions of molecular mass markers, in kDa.

Fig. 6. The majority of membrane proteins with complex glycans are in the plasma membrane. (A) Protoplasts isolated from Arabidopsis cultured cells were fixed, permeabilized, and analyzed by immunofluorescence microscopy using anti-cgly antibody and AlexaFluor 488 goat anti-rabbit secondary antibody. As control, the anti-cgly antibody was omitted and incubation was only performed with AlexaFluor 488 goat anti-rabbit secondary antibody (u, z). Six Z-stacks (thickness: 2 µm) were collected using the Apotome system. a, d, g, l, o, r, anti-cgly/AlexaFluor 488 anti-rabbit IgG; u, AlexaFluor 488 goat anti-rabbit IgG; b, e, h, m, p, s, v, brightfield; c, f, i, n, q, t, z, merge. Red arrows point to the tonoplast. Scale bars=5 µm.
vacuolar proteins, the scarcity (or total absence) of the entire spectrum of complex glycans is a specific feature of the tonoplast. Plant PMPs traffic through the Golgi complex, and no alternative routes have been identified to date, but both Golgi-dependent and -independent routes to the tonoplast have been identified (Pedrazzini et al., 2013). Furthermore, in meristematic cells, the tonoplast of newly formed vacuoles seems to originate directly from the ER membrane (Marty, 1978; Viotti et al., 2013). Obviously, the glycans of proteins that are transported from the ER to the tonoplast without encountering Golgi enzymes cannot become complex. If a relevant proportion of tonoplast N-glycoproteins will be found to follow the Golgi-independent route, this would contribute to explain the scarcity of complex glycans at this membrane, but not the general scarcity of glycans.

The membrane of inner hydrolytic compartments had divergent evolution

Biochemical analysis was previously performed on N-glycosylation in mice (Zielinska et al., 2010). Out of the 7846, 574, and 57 mouse proteins classified, respectively, as ‘intrinsic to membrane’, ‘plasma membrane’, and located at the ‘lysosomal membrane’, 1037 intrinsic to membrane, 123 plasma membrane, and 12 lysosomal membrane proteins were found to be N-glycosylated in vivo. These data indicate that the lysosomal membrane is not under-represented within the total mouse membrane N-glycoproteome and with respect to the plasma membrane. Although the in silico analysis of sequons does not demonstrate actual glycosylation, those numbers are consistent with our analysis showing that there is only a minor difference in the relative proportions of putative N-glycosylated proteins between the rat plasma and lysosomal membranes. Therefore, the scarcity of N-glycoproteins in the tonoplast has no correspondence in the homologous animal membrane, indicating divergent evolution. When glycopeptides isolated from seven organisms representing the different eukaryotic phyla were compared, most of the divergence was observed in extracellular proteins and PMPs, leading to the conclusion that within the secretory system common cellular functions take place intracellularly whereas specific functions occur in contact with the extracellular environment (Zielinska et al., 2012). Although this may be true as a general observation, our data indicate that the picture can be quite different when more detailed analysis of subcompartments is performed.

Four integral membrane proteins of the LAMP and LIMP families constitute ~50% of the total protein content of the lysosomal membrane and are highly glycosylated with complex glycans (Winchester, 2001). The glycans protect LAMP proteins from in vivo proteolysis but are not necessary for LIMP-2 stability (Kundra and Kornfeld, 1999). In LAMP and LIMP proteins, as well as in other LMPs (Schieweck et al., 2009; Gao et al., 2010), most glycans are located in extended luminal terminal domains. Consistently, the only two putative N-glycoproteins with more than three sequons that we have assigned to the tonoplast have all six (NAT6), or five out of eight (GLR16), sequons in terminal domains. GLR16 has 87% identity with the glutamate receptor-like channel GLR1.2, which controls calcium fluxes across the plasma membrane in pollen tubes (Michard et al., 2011). Extended glycosylation of the N-terminal domain is common in glutamate receptor-like channels and is involved in receptor function (Dingledine et al., 1999). Many plant integral PMPs have extended domains that are exposed outside the cell and are therefore luminal during synthesis and intracellular trafficking. These domains may have enzymatic properties or recognition functions in signal transduction and are often heavily N-glycosylated (Nicol et al., 1998; Jin et al., 2007; Nekrasov et al., 2009), as also indicated by our in silico analysis (Supplementary Table S2).

![Fig. 7. Long luminal domains and multiple sequons are rare in the tonoplast N-glycoproteome. The length of luminal domains (x-axis) was plotted versus the frequency of sequons (y-axis) in the N-glycoproteomes of the Arabidopsis tonoplast (red) and plasma membrane (green), and the rat liver lysosomal (blue) and plasma (light blue) membranes.](image-url)
Glycans may interact with the quality control machinery, favoring correct folding of the long luminal segments, may protect the exposed domains from proteolysis at the cell surface, or may contribute to recognition properties. Glycans that protect from proteolysis or are involved in recognition events are probably exposed on the folded protein surface and therefore have a high probability to be accessible to the action of Golgi enzymes and to become complex. Among the very few putative N-glycosylated tonoplast proteins that we have identified, four (cationic amino acid transporter 4, At3g03720.1; ABC transporter B family member 27, At5g39040.1; chloride channel protein CLC-a, At5g40890.1; and vacuolar proton pump subunit a1, At2g28520.1) are functionally related to N-glycosylated LMPs. Animal ABCB transporters contain several sequons, hence their original name 'Permeability-glycoproteins (P-gp)' (Nielsen et al., 1992). Moreover, all mammalian chloride channels are N-glycosylated, with the exception of the CIC-7 isoform; this, however, assembles with the highly glycosylated Ostm1 β-subunit (osteopetrosis-associated transmembrane protein 1), proposed to shield CIC-7 from lysosomal degradation (Jentsch, 2008). Our results thus suggest that, at least in ABCB and CIC proteins, N-glycosylation could play an important role and has therefore been preserved during evolution.

Finally, it should be underlined that although the four tonoplast polypeptides functionally related to LMPs have potentially glycosylated luminal domains longer than 200 amino acids, extended luminal domains are very infrequent in tonoplast proteins (Fig. 7: Supplementary Table S5), possibly because the main function of the tonoplast is not related to direct interactions with the extracellular environment. Consistently, these four tonoplast proteins and their lysosomal counterparts have at the most three sequons, indicating that in lysosomes these are not among the many membrane proteins with very long, hyperglycosylated luminal domains that characterize the lysosome with respect to the vacuole. This raises the possibility that during evolution protection from unregulated degradation by hydrolytic enzymes could have been achieved in plant cells mainly by limiting the length of luminal domains. A similarly protective function has instead been hypothesized as the major evolutionary pressure for the extensive glycosylation of luminal domains of lysosomal membrane proteins (Schieweck et al., 2009; Gao et al., 2010). This would imply that different evolutionary paths were followed to achieve the same advantage in related subcellular compartments of two different kingdoms.

Supplementary data

Supplementary data are available at JXB online.

Table S1. A.th.TMPs and analysis of their putative N-glycosylation sites.

Table S2. A.th.PMPs and analysis of their putative N-glycosylation sites.

Table S3. Rat LMPs and analysis of their putative N-glycosylation sites.

Table S4. Rat PMPs and analysis of their putative N-glycosylation sites.

Table S5. Lists of the lengths of luminal domains and number of identified sequons per domain based on the TMHMM or Phobius software, in A. thaliana tonoplas, A. thaliana plasma membrane, R. norvegicus lysosomal membrane, and R. norvegicus plasma membrane proteins.

Acknowledgements

We thank Maarten Chrispeels, Christophe Maurel, and Natasha Raikhel for the generous gift of anti-complex glycan (anti-cgly), anti-PIP2, and anti-γTIP antisera, respectively. We also thank Natasha Raikhel for helpful discussions and advice, supported by the CNR Short Term Mobility Program 2013. We thank Samuel Arvidsson for help in selecting tonoplast proteins from published studies, and Marie Maitrejean for testing the anti-cgly serum. This work was supported by the EU Marie Curie Research Training Network ‘Vacuolar Transport Equipment for Growth Regulation in Plants’ (VaTEP (MRTN-CT-2006-035833) and by the Italian Ministry of Education, Universities and Research (PRIN2010CSJX4F).

References

Alexandersson E, Saalbach G, Larsson C, Kjellbom P. 2004. Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking. Plant and Cell Physiology 45, 1543–1556.

Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV. 2004. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. The Plant Cell 16, 3285–3303.

Chapel A, Kieffer-Jaquinod S, Sagne C, et al. 2013. An extended proteome map of the lysosomal membrane reveals novel potential transporters. Molecular and Cellular Proteomics 12, 1572–1588.

Chen X, Van Valkenburgh C, Liang H, Fang H, Green N. 2001. Signal peptidase and oligosaccharyltransferase interact in a sequential and dependent manner within the endoplasmic reticulum. Journal of Biological Chemistry 276, 2411–2416.

Cheung JC, Reithmeier R. 2007. Scanning N-glycosylation mutagenesis of membrane proteins. Methods 41, 451–459.

Dingledine R, Borges K, Bowie D, Traynelis SF. 1999. The glutamate receptor ion channels. Pharmacological Reviews 51, 7–62.

Faye L, Chrispeels MJ. 1988. Common antigenic determinants in the glycoproteins of plants, molluscs and insects. Glycoconjugate Journal 5, 245–256.

Fitchette AC, Cabanes-Macheteau M, Marvin L, Martin B, Satiat-Jeunemaitre B, Gomord V, Crooks K, Lerouge P, Faye L, Hawes C. 1999. Biosynthesis and immunolocalization of Lewis a-containing N-glycans in the plant cell. Plant Physiology 121, 333–343.

Gao JL, Gu XF, Zhang HW. 2010. SID1 transmembrane family, member 2 (Sip2); a novel lysosomal membrane protein. Biochemical and Biophysical Research Communications 402, 588–589.

Goldstein IJ, Poretz RD. 1986. Isolation, physicochemical characterization, and carbohydrate-binding specificity of lectins. In: Goldstein IJ, Liener IE, Sharon N, eds. The lectins. Properties, functions and applications in biology and medicine. Orlando: Academic Press Inc., 233–247.

Gomord V, Fitchette A-C, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plascon C, Michaud D, Faye L. 2004. Roles of N-linked glycans in the endoplasmic reticulum. Proceedings of the National Academy of Sciences, USA 101, 728–732.

Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M. 2005. Novel type aquaporin SiPs are mainly localized to the ER membrane and show cell specific expression in Arabidopsis thaliana. FEBS Letters 579, 5814–5820.
Jaquinod M, Villiers F, Kliefer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J. 2007. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Molecular and Cellular Proteomics 6, 394–412.

Jentsch TJ. 2008. CLC chloride channels and transporters: from genes to protein structure, pathophysiology and physiology. Critical Reviews in Biochemistry and Molecular Biology 43, 3–36.

Jia T, Gao C, Cui Y, Wang J, Ding Y, Cai Y, Ueda T, Nakano A, Jiang L. 2013. ARA7(Q69L) expression in transgenic Arabidopsis cells induces the formation of enlarged multivesicular bodies. Journal of Experimental Botany 2013 64, 2817–2829.

Jin H, Yan Z, Nam K, Li J. 2007. Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of USG11 in ER quality control. Molecular Cellular Cell 26, 821–830.

Kang JS, Frank J, Kang CH, et al. 2008. Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proceedings of the National Academy of Sciences, USA 105, 5933–5938.

Klein EM, Mascheroni L, Pompa A, Ragni L, Weimar T, Lilley KS, Dupree P, Vitale A. 2006. Plant endoplasmic stress supports the protein secretory process and has a role in proliferating tissues. The Plant Journal 48, 657–673.

Koiva H, Li F, McCully MG, et al. 2003. The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. The Plant Cell 15, 2273–2284.

Kornfeld R, Kornfeld S. 1985. Assembly of asparagine-linked oligosaccharides. Annual Review of Biochemistry 54, 631–664.

Kundra R, Kornfeld S. 1993. Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. Journal of Biological Chemistry 268, 1192–1193.

Martinoia E, Maeshima M, Ekkehard NH. 2006. Plant endoplasmin supports the protein secretory process and has a role in proliferating tissues. The Plant Journal 48, 657–673.

Martinoia E, Maeshima M, Prinsi B, Mueller-Roeber B, Maggio C, Barbante A, Ferro F, Frigerio L, Pedrazzini E. 2007. Intracellular sorting of the tail-anchored protein cytochrome b5 in plants: a comparative study using different isoforms from rabbit and Arabidopsis. Plant Physiology 143, 905–915.

Marty F. 1997. Protein. Transient N-acetylglucosamine in the vacuoles in root meristematic cells of Euphorbia. Proceedings of the 66th Annual Meeting of the American Society of Plant Physiologists, San Antonio, Texas, USA 1997, 394–412.

Marty F. 1999. Plant vacuoles. The Plant Cell 11, 587–99.

Michaud E, Lima PT, Bories F, Silva AC, Portes MT, Carvalho JE, Gillilham M, Liu L-H, Obermeyer G, Feijó JA. 2011. Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil α-serine. Science 332, 434–437.

Minic Z, Jamet E, Négroni L, de Garabedian PA, Zivy M, Jouanin L. 2007. A sub-proteome of Arabidopsis thaliana mature stems trapped on Concanavalin A is enriched in cell wall glycoside hydrolases. Journal of Experimental Botany 58, 2503–2512.

Nekrasov V, Li J, Batoux M, et al. 2009. Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO Journal 28, 3428–3438.

Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Hofte H. 1998. A plasma membrane-bound putative endo-1,4-beta-g-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO Journal 17, 5563–5576.

Nielson D, Skovsgaard T. 1992. P-glycoprotein as multidrug transporter: a critical review of current multidrug resistant cell lines. Biochimica et Biophysica Acta 1138, 169–183.

Nilsson I, von Heijne G. 1993. Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. Journal of Biological Chemistry 268, 5798–5801.

Pedrazzini E, Giovinazzo G, Bielli A, de Virgilio M, Frigerio L, Pesca M, Faoro F, Bolliini R, Cieriotti A, Vitale A. 1897. Protein quality control along the route to the plant vacuole. The Plant Cell 9, 1869–1880.

Pedrazzini E, Komarova NY, Rentsch D, Vitale A. 2013. Traffic routes and signals for the tonoplast. Traffic 14, 622–628.

Rojo E, Zouhar J, Kovaleva V, Hong S, Raikhel NV. 2003. The AtC–VPS protein complex is localized to the tonoplast and the prevacuolar compartment in Arabidopsis. Molecular Biology of the Cell 14, 361–369.

Santoni V, Vinj H, Pfieger D, Sommerer N, Maurel C. 2003. A proteomic study reveals novel insights into the diversity of aquaporin forms expressed in the plasma membrane of plant roots. Biochemical Journal 373, 289–296.

Sazuka T, Keta S, Shiratake A, Yamaki S, Shibata D. 2004. A proteomic approach to identification of transmembrane proteins and membrane-anchored proteins of Arabidopsis thaliana by peptide sequencing. DNA Research 11, 101–113.

Schieweck O, Damme M, Schröder B, Haslik A, Schmid B, Lübke T. 2009. NCU-G1 is a highly glycosylated integral membrane protein of the lysosome. Biochemical Journal 422, 83–90.

Shimaoka T, Ohnishi M, Sazuka T, Mitsuhashi N, Hara-Nishihara I, Shimazaki K-I, Maeshima M, Yokota A, Tomizawa K-I, Mimura T. 2004. Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant and Cell Physiology 45, 672–683.

Song W, Mentink RA, Henquet MG, Cordewener JH, van Dijk AD, Bosch D, America AH, van der Krol AR. 2013. N-glycan occupancy of Arabidopsis N-glycoproteins. Journal of Proteomics 93, 64–73.

Strasser R, Altmann F, Mach L, Gößi L, Steinellner H. 2004. Generation of Arabidopsis thaliana plants with complex N-glycans lacking [α,1-2-linked xylose and core α,1-3-linked fucose. FEBS Letters 561, 132–136.

Szponarski W, Sommerer N, Boyer JC, Rossignol M, Gibrat R. 2004. Large-scale characterization of integral proteins from Arabidopsis vacuolar membrane by two-dimensional liquid chromatography. Proteomics 4, 397–406.

Vera-Estrella R, Barkia BJ, Bohnert HJ, Pantoja O. 2004. Novel regulation of aquaporins during osmotic stress. Plant Physiology 135, 2318–2329.

Viotti, C, Krüger F, Krebs M, et al. 2013. The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis. The Plant Cell 25, 3434–3449.

Vitale A, Chrispeels MJ. 1984. Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies. Journal of Cell Biology 99, 133–140.

von Schaewen A, Sturm A, O’Neill J, Chrispeels MJ. 1993. Isolation of a mutant Arabidopsis plant that lacks N-acetyl glucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans. Plant Physiology 102, 1109–1118.

Wilson BH. 2002. Glycosylation of proteins in plants and invertebrates. Current Opinion in Structural Biology 12, 569–577.

Winchester BG. 2001. Lysosomal membrane proteins. European Journal of Paediatric Neurology 5, 11–19.

Yoshida S, Ohy A, Nakano A, Anraku Y. 1995. STT3, a novel essential gene related to the PKC1/STT1 protein kinase pathway, is involved in protein glycosylation in yeast. Gene 164, 167–172.

Zhou H, Wang F, Wang Y, Ning Z, Hou W, Wright TG, Sundaram M, Zhong S, Yao Z, Figyes D. 2011. Improved recovery and identification of membrane proteins from rat hepatic cells using a centrifugal proteomic reactor. Molecular and Cellular Proteomics 10, O111.008425.

Zielinska DF, Gnad F, Schropp K, Wisniewski JR, Mann M. 2012. Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Molecular Cell 46, 542–548.

Zielinska DF, Gnad F, Wisniewski JR, Mann M. 2010. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141, 897–907.