Design, Synthesis and Biological Evaluation of Pyrimidine Analogues as SecA Inhibitors

FANTE BAMBA
Universite Felix Houphouet-Boigny
https://orcid.org/0000-0001-5552-6892

Jinshan Jin
US Food and Drug Administration

Arpana S. Chaudhary
Bayer Corp

Phang C. Tai
biopct@gsu.edu
United States University

Binghe Wang
Georgia State University

Research Article

Keywords: SecA inhibitor, small molecule, antimicrobial, target, drug-resistant

DOI: https://doi.org/10.21203/rs.3.rs-188471/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

SecA, a key component of the bacterial Sec-dependent secretion pathway, is an attractive target for the development of new antimicrobial agents. We have previously reported pyrimidine analogs as SecA inhibitors. Herein, we report an extension of the earlier work in the synthesis and evaluation of a series of 15 5-cyanothiouracil derivatives as SecA inhibitors. All the compounds have been evaluated for their inhibition of SecA ATPase (EcSecAN68) and for their antimicrobial activity against *Escherichia coli* NR698 (a leaky mutant) and *Bacillus anthracis* Sterne. Twelve compounds showed IC$_{50}$ of less than 6.3 µM when tested against EcSecAN68. In antimicrobial studies against *E. coli* NR698, six compounds showed MIC of less than 12.5 µM with three being less than 6.3 µM. Against *B. anthracis* Sterne, three compounds showed MIC of less than 6.3 µM.

Introduction

Infectious diseases caused by bacterial pathogens have become a major public health problem in recent years due to the widespread occurrence of drug resistance. Therefore, there is an urgent need to develop new antimicrobial agents, especially those with a new drug target and/or with the ability to overcome drug resistance.[1] Along this line, we are interested in targeting SecA, which is a critical protein secretion machinery essential for bacterial survival.[2–4] SecA is a key component of the bacterial protein secretion (Sec) pathways. SecA ATPase is one of the essential components in the Sec machinery, which provides a major pathway to help protein translocation from the cytosol across or into the cytoplasmic membrane.[5–11] Because SecA is a conserved and essential protein in all bacteria and is absent in humans, it is considered as a promising antibacterial drug target. At present, small organic molecules that can inhibit SecA mainly include Rose Bengal,[12] bisthiouracil,[13] bistriazole[14] and their derivatives,[15] thiazolo[4,5-d]pyrimidine derivatives[16] and others.[17, 18]

As an extension of our earlier work,[15, 19] we are working on optimizing existing SecA inhibitors of the substituted pyrimidine scaffold by exploring the chemistry space at the 2 and 4 positions of the pyrimidine core. [13] Below, we describe the results and implications in guiding future work in this area.

Results And Discussion

Chemistry

Earlier work has identified the compound in Fig. 1 as a lead for further optimization.[19, 15]

To improve the potency, we focused our attention at the linker between the biphenyl rings and the *para* position of the benzylthio group. Specifically, the designed compounds were synthesized by introducing (a) linkers such as thioethers (–S-, -CH$_2$-S-), an inverted alkoxy (-O-CH$_2$-), an alkenyl group (-CH=CH-), an alkynyl (-C≡C-) group, and an amido group (-CH$_2$-NH-CO-) between the two phenyl rings and (b) substituents such as -N$_3$, -COOMe, -CF$_3$ at the *para* position of the benzylthioether moiety. Thus, a series of pyrimidine derivatives 3a-o were synthesized. The synthetic route is shown in Scheme 1. Compounds 1a, b were prepared by nucleophilic aromatic substitution reaction of 4-nitrobenzaldehyde[20] or 4-fluorobenzaldehyde[21] using the appropriate aryl thiols under basic conditions. Compound 1c was obtained by following a published procedure20 in Scheme 2.
Palladium catalyzed Mizoroki-Heck reaction of 4-bromobenzaldehyde with styrene yielded 1d.[22] Compound 1e was prepared by palladium catalyzed Sonogoshira cross coupling of 4-bromobenzaldehyde with phenylacetylene.[23] Then 4-formylbenzoic acid was coupled with benzylamine using isobutyl chloroformate in the presence of triethylamine to provide amide 1f by following a published procedure.[24] The reaction of the appropriate aromatic aldehydes, cyano ethyl acetate and thiourea with piperidine as catalyst in absolute ethanol at reflux temperature overnight afforded thiouracil 2a-f. The target compounds 3a-o were obtained by the S-benzylation in the presence of potassium carbonate in acetonitrile. Overall, 15 compounds have been prepared in overall yields ranging from 47–98 using readily available starting materials.

Biological evaluation

The activities of all newly synthesized compounds 3a-o were first screened using a truncated version of *E. coli* SecA, EcSecAN68, at 6.25 µM.[15] As it can be seen in Fig. 2, most of these 15 new compounds showed more than 50% inhibition of the SecA ATPase activity at this concentration, suggesting potent inhibitory activity. Some of the compounds seemed to be more potent than the lead compound, SCA168, and showed more than 90% inhibition at 6.25 µM such as SCA225, 227, 230, 232, 233, 239, 245, 260, and 262. The overall results from the SecA inhibition studies seem to suggest that the “linker” part can accommodate thioethers (SCA225, 230, 239 and SCA260-262), an inverted oxo ether (SCA232, 238, 240), an alkenyl linker (SCA227, 233), and alkynyl linker (SCA245) as well as variations in the length by one methylene group (1 to 2 atoms) among those with a thioether linker. Among all these variations, it is especially interesting to see the accommodation of the linearization of the linker with an alkynyl group (SCA245). It also seems that the para-position of the thiobenzyl group of the 4-position of the pyrimidine ring can tolerated various groups. From this limited set of compounds, it is also clear that a three-atom linker in the form of an amido group is not well-tolerated.

All compounds were also evaluated for their antimicrobial activity against a “leaky” outer membrane mutant of Gram-negative *E. coli* NR698.[25] Among them, four compounds showed MIC at about 12.5 µM (SCA225, 232, 240, 261) and two compounds showed MIC at about 6.3 µM (SCA260, 262) against *E. coli* NR698 (Table 1). Compounds were also evaluated for their antimicrobial activity against Gram positive *B. anthracis* Sterne. Three of them showed MIC at about 6.3 µM (SCA225, 227, 232) against *B. anthracis* Sterne, which are comparable to some of our best compounds in this class.[15] With the limited data set, it seems that the potency against *B. anthracis* is higher than that of *E. coli*. Such results are understandable because *E. coli* is Gram-negative strain. Even with a compromised outer membrane, it still has an outer membrane, which presents a permeability barrier.

SCA225	SCA232	SCA238	SCA239	SCA240	SCA260	SCA261	SCA262	SCA168	
MIC (µM)	12.5	12.5	50	50	12.5	6.25	12.5	6.25	12.5
Table 2
SecA inhibitors with MIC of less than 50 µM against *B. anthracis* Sterne

	SCA225	SCA227	SCA230	SCA232	SCA168
MIC (µM)	6.25	6.25	25	6.25	6.25

Overall, the results provide very useful information for those who might be interested in SecA inhibitor design for both improved potency and for avoiding the chemical space that would not be productive.

Conclusion

We have described the design, syntheses and biological evaluation of a series of 15 small-molecule SecA inhibitors with µM inhibition. The results provide information on tolerable structural features of the linker part between the two phenyl ring at the 2-position and the para-substitution of the benzyl group at the 4-position of the pyrimidine ring.

Experimental

All chemical reagents and solvents used were of reagent grade or purified using standard methods. TLC analyses were conducted on silica gel plates (Sorbent Silica G UV254). Column chromatography was carried out on flash silica gel (Sorbent 230–400 mesh). NMR spectra were recorded at \(^1\)H (400 MHz) and \(^{13}\)C (100 MHz) on a Bruker instrument. Coupling constants (\(J\)) and chemical shifts (\(\delta\)) are given in hertz and ppm respectively, using TMS (\(^1\)H NMR) and solvents (\(^{13}\)C NMR) as internal standards.

General procedure for the synthesis of (2a-f)

Our previously published[15] procedure was followed. Briefly, to a solution of ethanol (25 mL) and appropriate aldehyde (RCHO, 5 mmol) was added ethyl cyanoacetate (0.5 mL, 5 mmol), thiourea (0.38 g, 5 mmol) and piperidine (1.0 mL, 10 mmol). The mixture was heated at reflux overnight and then cooled to room temperature. The precipitate was dissolved in 0.5 M NaOH (20 mL) and washed with ethyl acetate (15 ml ⋅ 3). Then the aqueous solution was acidified to pH ~ 2 by slow addition of 1 M HCl. This caused the product to precipitate, which was then filtered using vacuum filtration.

General procedure for the synthesis of (3a-o)

To a solution of 2-mercapto-6-oxo-4-(4-(phenylthio)phenyl)-1,6-dihydropyrimidine-5-carbonitrile derivatives (1.36 mmol) in CH\(_3\)CN (10 ml), K\(_2\)CO\(_3\) (6.79 mmol) was added and the resulting mixture was stirred for 10–15 min. To this was added the appropriate (bromomethyl)phenyl derivatives (1.22 mmol) and the reaction was stirred at room temperature for 16-18h. Upon completion, the reaction mixture was cooled to ambient temperature and the solvent removed *in vacuo*. The dried residue was washed by H\(_2\)O (pH = 9–10, 20 mL ⋅ 2) and brine (15 ml ⋅ 2) followed by product extraction in ethyl acetate (20 ml). The solvent was evaporated *in vacuo* to obtain crude product, which was then purified using silica gel column chromatography.

2-Mercapto-6-oxo-4-(4-(phenylthio)phenyl)-1,6-dihydropyrimidine-5-carbonitrile (2a). Yield: 58%.
1H NMR (DMSO-d_6): δ 13.26 (bs, 1H), 12.91 (s, 1H), 7.63 (d, J = 8.4 Hz, 2H), 7.50 (m, 5H), 7.31 (d, J = 8.4 Hz, 2H); 13C NMR (DMSO-d_6): δ 177.6, 161.5, 159.5, 142.3, 133.8, 132.0, 131.9, 131.2, 130.8, 130.5, 130.1, 130.1, 129.5, 128.5, 127.9, 115.8, 90.1 ppm. HRMS (ESI-TOF) (m/z): Calcd. for C$_{17}$H$_{10}$N$_3$O$_2$, [M-H]$^+$: 336.0260; found: 336.0263.

4-(4-(Benzylthio)phenyl)-2-mercapto-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (2b). Yield: 45%.

1H NMR (DMSO-d_6): δ 13.81 (s, 1H), 13.17 (bs, 1H), 7.61 (d, J = 8.8 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 7.2 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.25 (m, 1H), 4.37 (s, 2H); 13C NMR (DMSO-d_6): δ 178.1, 162.1, 159.9, 142.4, 137.3, 129.7, 129.3, 129.0, 128.1, 127.7, 126.6, 116.2, 89.5, 35.8. HRMS (ESI-TOF) (m/z): Calcd. for C$_{18}$H$_{12}$N$_3$O$_2$, [M-H]$^+$: 350.0416; found: 350.0420.

2-Mercapto-6-oxo-4-(4-(phenoxymethyl)phenyl)-1,6-dihydropyrimidine-5-carbonitrile (2c). Yield: 36%.

1H NMR (DMSO-d_6): δ 13.31 (bs, 1H), 13.14 (s, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 6.96 (t, J = 7.2 Hz, 1H), 4.37 (s, 2H); 13C NMR (DMSO-d_6): δ 176.8, 161.3, 159.2, 158.6, 142.1, 130.0, 129.5, 127.8, 121.5, 115.4, 91.1, 68.9. HRMS (ESI-TOF) (m/z): Calcd. for C$_{18}$H$_{12}$N$_3$O$_2$, [M-H]$^+$: 334.0645; found: 334.0645.

(E)-2-Mercapto-6-oxo-4-(4-styrylphenyl)-1,6-dihydropyrimidine-5-carbonitrile (2d). Yield: 56%.

1H NMR (DMSO-d_6): δ 13.32 (bs, 1H), 12.93 (s, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 7.2 Hz, 2H), 7.37–7.48 (m, 4H), 7.33 (d, J = 6.0 Hz, 1H); 13C NMR (DMSO-d_6): δ 177.5, 161.7, 159.5, 141.1, 137.0, 131.5, 129.7, 129.4, 129.2, 128.9, 128.7, 127.7, 127.3, 126.6, 115.8, 90.0. HRMS (ESI-TOF) (m/z): Calcd. for C$_{19}$H$_{12}$N$_3$O$_2$, [M-H]$^+$: 330.0696; found: 330.0698.

2-Mercapto-6-oxo-4-(4-(phenylethynyl)phenyl)-1,6-dihydropyrimidine-5-carbonitrile (2e). Yield: 58%.

1H NMR (DMSO-d_6): δ 10.03 (s, 1H), 7.87 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.57 (t, J = 8.0 Hz, 2H), 7.39 (t, J = 8.0 Hz, 2H); 13C NMR (DMSO-d_6): δ 171.4, 135.4, 132.1, 131.8, 129.6, 129.0, 128.5, 93.4, 88.5. HRMS (ESI-TOF) (m/z): Calcd. for C$_{19}$H$_{10}$N$_3$O$_2$, [M-H]$^+$: 328.0545; found: 328.0541.

N-Benzyl-4-(5-cyano-2-mercapto-6-oxo-1,6-dihydropyrimidin-4-yl)benzamide (2f). Yield: 58%.

1H NMR (DMSO-d_6): δ 13.41 (s, 1H), 13.20 (s, 1H), 9.26 (t, J = 6.0 Hz, 1H), 8.04 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 7.2 Hz, 2H), 7.37–7.48 (m, 4H), 7.33 (d, J = 6.0 Hz, 1H); 13C NMR (DMSO-d_6): δ 176.6, 165.8, 160.7, 158.8, 139.8, 137.8, 132.1, 129.5, 129.4, 128.7, 127.8, 127.6, 127.2, 115.0, 91.6, 43.2. HRMS (ESI-TOF) (m/z): Calcd. for C$_{19}$H$_{13}$N$_4$O$_2$S, [M-H]$^+$: 361.0754; found: 361.0756.

2-((4-Azidobenzyl)thio)-6-oxo-4-(4-(phenylthio)phenyl)-1,6-dihydropyrimidine-5-carbonitrile (3a). Yield: 90%.

1H NMR (DMSO-d_6): δ 7.83 (d, J = 8.0 Hz, 2H), 7.49 (m, 3H), 7.43 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 4.51 (s, 2H); 13C NMR (DMSO-d_6): δ 169.2, 166.3, 166.6, 166.4, 140.4, 138.6, 135.2, 134.8,
133.2, 132.8, 131.0, 130.3, 129.8, 129.0, 128.6, 119.5, 118.4, 91.1, 33.9. HRMS (ESI-TOF) (m/z): Calcd. for C_{24}H_{15}N_{6}O_{2}, [M-H]^+; 467.0749; found: 467.0751.

Methyl4-(((5-cyano-6-oxo-4-(phenylthio)phenyl)-1,6-dihydropyrimidin-2-yl)thio)methyl)benzoate (3b). Yield: 97%.

^1^H NMR (DMSO-^d_6): δ 7.87 (d, J = 8.4 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.41−7.49 (m, 5H), 7.31 (d, J = 8.4 Hz, 2H), 4.42 (s, 2H), 3.83 (s, 3H); ^1^C NMR (DMSO-^d_6): δ 170.0, 166.6, 166.4, 144.6, 139.7, 135.2, 133.0, 130.3, 129.7, 129.6, 128.9, 128.8, 128.6, 119.0, 90.5, 52.5, 34.0. HRMS (ESI-TOF) (m/z): Calcd. for C_{26}H_{18}N_{3}O_{3}S_{2}, [M-H]^+: 484.0795; found: 484.0774.

6-Oxo-4-(4-(phenylthio)phenyl)-2-((4-(triuoromethyl)benzyl)thio)-1,6-dihydropyrimidine-5-carbonitrile (3c). Yield: 90%.

^1^H NMR (DMSO-^d_6): δ 7.87 (d, J = 8.4 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.41−7.49 (m, 5H), 7.31 (d, J = 8.4 Hz, 2H), 4.42 (s, 2H), 3.83 (s, 3H); ^1^C NMR (DMSO-^d_6): δ 170.0, 166.6, 166.4, 144.6, 139.7, 135.2, 133.0, 130.3, 129.7, 129.6, 128.9, 128.8, 128.6, 119.0, 90.5, 52.5, 34.0. HRMS (ESI-TOF) (m/z): Calcd. for C_{26}H_{18}N_{3}O_{3}S_{2}, [M-H]^+: 484.0795; found: 484.0774.

2-((4-Azidobenzyl)thio)-4-(4-(phenylthio)phenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (3d). Yield: 40%.

^1^H NMR (DMSO-^d_6): δ 7.90 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 7.6 Hz, 4H), 7.33 (t, J = 8.0 Hz, 2H), 7.26 (m, 1H), 7.06 (d, J = 8.4 Hz, 2H), 4.52 (s, 2H), 4.39 (s, 2H); ^1^C NMR (DMSO-^d_6): δ 166.6, 165.7, 161.5, 144.8, 142.8, 139.0, 137.2, 133.9, 132.1, 131.1, 129.3, 128.9, 127.7, 126.8, 119.6, 116.4, 92.8, 35.7, 34.1. HRMS (ESI-TOF) (m/z): Calcd. for C_{25}H_{17}N_{6}O_{3}S_{2}, [M-H]^+: 481.0905; found: 481.0911.

Methyl 4-(((4-(4-(benzylthio)phenyl)-5-cyano-6-oxo-1,6-dihydropyrimidin-2-yl)thio)methyl)benzoate (3e). Yield: 68%.

^1^H NMR (DMSO-^d_6): δ 7.88 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.42 (t, J = 8.0 Hz, 2H), 7.26 (m, 1H), 7.06 (d, J = 8.4 Hz, 2H), 4.52 (s, 2H), 4.39 (s, 2H); ^1^C NMR (DMSO-^d_6): δ 171.6, 170.8, 166.6, 166.5, 145.6, 139.3, 137.6, 135.0, 129.6, 129.3, 129.2, 129.0, 128.9, 128.4, 127.6, 127.2, 127.0, 120.5, 89.1, 52.5, 36.3, 33.8. HRMS (ESI-TOF) (m/z): Calcd. for C_{27}H_{20}N_{3}O_{3}S_{2}, [M-H]^+: 498.0946; found: 498.0953.

4-(4-(Benzylthio)phenyl)-6-oxo-2-((4-(triuoromethyl)benzyl)thio)-1,6-dihydropyrimidine-5-carbonitrile (3f). Yield: 59%.

^1^H NMR (DMSO-^d_6): δ 7.83 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 4H), 7.44 (d, J = 7.2 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.25 (m, 1H), 4.59 (s, 2H), 4.38 (s, 2H); ^1^C NMR (DMSO-^d_6): δ 166.7, 165.8, 142.5, 137.2, 132.2, 130.1, 129.6, 129.3, 128.9, 127.7, 126.8, 125.8, 125.7, 117.02, 92.9, 35.8, 33.9. HRMS (ESI-TOF) (m/z): Calcd. for C_{26}H_{17}F_{3}N_{3}O_{3}S_{2}, [M-H]^+: 508.076; found: 508.0773.

2-((4-Azidobenzyl)thio)-6-oxo-4-(4-(phenoxymethyl)phenyl)-1,6-dihydropyrimidine-5-carbonitrile (3g). Yield: 66%.
H NMR (DMSO-d_6): δ 7.96 (d, $J = 8.0$ Hz, 2H), 7.65 (d, $J = 7.6$ Hz, 2H), 7.45 (d, $J = 8.0$ Hz, 4H), 7.31 (t, $J = 7.6$ Hz, 2H), 7.05 (t, $J = 8.8$ Hz, 4H), 6.96 (t, $J = 6.8$ Hz, 1H), 5.22 (s, 2H), 4.53 (s, 2H); **13C NMR (DMSO-d_6):** δ 167.4, 166.01, 161.6, 158.5, 139.1, 135.0, 133.8, 131.1, 130.0, 129.4, 127.9, 127.8, 121.3, 119.6, 116.3, 115.2, 93.6, 68.8, 34.1. HRMS (ESI-TOF) (m/z): Calcd. for C$_{25}$H$_{17}$N$_6$O$_2$S, [M-H$^+$]: 465.1134; found: 465.1149.

Methyl-4-(((5-cyano-6-oxo-4-(4-(phenoxymethyl)phenyl)-1,6-dihydropyrimidin-2-yl)thio)methyl)benzoate (3h). Yield: 68%.

H NMR (DMSO-d_6): δ 7.90 (d, $J = 8.0$ Hz, 4H), 7.62 (d, $J = 8.0$ Hz, 2H), 7.57 (d, $J = 8.0$ Hz, 2H), 7.31 (t, $J = 7.6$ Hz, 2H), 7.04 (d, $J = 7.6$ Hz, 2H), 6.96 (t, $J = 7.2$ Hz, 1H), 5.02 (s, 2H), 4.57 (s, 2H), 3.84 (s, 3H); **13C NMR (DMSO-d_6):** δ 171.4, 167.5, 166.4, 158.6, 143.1, 141.5, 135.2, 130.0, 129.7, 129.3, 127.9, 121.3, 115.2, 108.6, 93.4, 68.9, 34.2. HRMS (ESI-TOF) (m/z): Calcd. for C$_{27}$H$_{20}$N$_3$O$_4$S, [M-H$^+$]: 482.1175; found: 482.1175.

6-Oxo-4-(4-(phenoxymethyl)phenyl)-2-((4-(triuoromethyl)benzyl)thio)-1,6-dihydropyrimidine-5-carbonitrile (3i). Yield: 65%.

H NMR (DMSO-d_6): δ 7.90 (d, $J = 8.0$ Hz, 2H), 7.62–7.69 (m, 6H), 7.31 (t, $J = 7.6$ Hz, 2H), 6.95 (t, $J = 7.2$ Hz, 1H), 5.22 (s, 2H), 4.61 (s, 2H); **13C NMR (DMSO-d_6):** δ 168.6, 167.4, 165.9, 158.5, 142.4, 141.6, 135.0, 130.2, 130.0, 129.3, 127.9, 125.7, 125.8, 121.3, 116.4, 115.2, 93.7, 68.8, 33.9. HRMS (ESI-TOF) (m/z): Calcd. for C$_{26}$H$_{17}$F$_3$N$_3$O$_2$S, [M-H$^+$]: 492.0994; found: 492.0989.

6-Oxo-4-(4-(azidobenzyl)thio)-4-(4-styrylphenyl)-1,6-dihydropyrimidine-5-carbonitrile (3j). Yield: 18%.

H NMR (DMSO-d_6): δ 8.00 (d, $J = 8.0$ Hz, 2H), 7.81 (d, $J = 8.4$ Hz, 2H), 7.66 (d, $J = 7.6$ Hz, 2H), 7.48 (d, $J = 8.0$ Hz, 2H), 7.40 (d, $J = 7.6$ Hz, 2H), 7.33 (d, $J = 6.4$ Hz, 2H), 7.08 (d, $J = 5.2$ Hz, 2H), 7.32 (d, $J = 8.4$ Hz, 2H), 5.55 (s, 2H); **13C NMR (DMSO-d_6):** δ 167.6, 166.9, 165.9, 141.1, 139.1, 137.1, 134.0, 131.5, 131.1, 129.7, 129.2, 128.9, 128.6, 128.3, 127.8, 127.3, 126.9, 119.7, 93.0, 34.1. HRMS (ESI-TOF) (m/z): Calcd. for C$_{26}$H$_{17}$N$_6$O$_2$S, [M-H$^+$]: 461.1185; found: 461.1179.

6-Oxo-4-(4-(phenylethynyl)phenyl)-2-((4-(triuoromethyl)benzyl)thio)-1,6-dihydropyrimidine-5-carbonitrile (3l). Yield: 51%.
116.5, 93.7, 92.3, 89.1, 33.9. HRMS (ESI-TOF) (m/z): Calcd. for C_{27}H_{16}F_{3}N_{3}OS, [M-H]^{-}: 486.0888; found: 486.0884.

4-(2-((4-Azidobenzyl)thio)-5-cyano-6-oxo-1,6-dihydropyrimidin-4-yl)-N-benzylbenzamide (3m). Yield: 55%.

{^1}H NMR (DMSO-\(d_6\)): 8.92 (t, \(J = 6.0\) Hz 1H), 8.04 (d, \(J = 8.4\) Hz, 2H), 7.98 (d, \(J = 8.4\) Hz, 2H), 7.45 (d, \(J = 8.4\) Hz, 2H), 7.34 (d, \(J = 4.0\) Hz, 4H), 7.26 (m, 1H), 7.12 (t, \(J = 7.6\) Hz, 1H), 7.07 (d, \(J = 8.4\) Hz, 2H), 4.51 (m, 4H); {^{13}}C NMR (DMSO-\(d_6\)): 8.167.1, 166.7, 166.0, 162.0, 139.9, 139.0, 138.2, 137.3, 134.1, 131.1, 129.2, 128.7, 127.9, 127.2, 119.6, 116.3, 93.9, 43.2, 34.1. HRMS (ESI-TOF) (m/z): Calcd. for C_{26}H_{18}N_{7}O_{2}S, [M-H]^{-}: 492.1248; found: 492.1232.

Methyl 4-(((4-(benzylcarbamoyl)phenyl)-5-cyano-6-oxo-1,6-dihydropyrimidin-2-yl)thio) methyl)benzoate (3n). Yield: 63%.

{^1}H NMR (DMSO-\(d_6\)): 8.92 (t, \(J = 6.0\) Hz 1H), 7.98 (d, \(J = 8.0\) Hz, 2H), 7.88 (dd, \(J = 8.0\) Hz, 2H), 7.55 (d, \(J = 8.0\) Hz, 2H), 7.34 (d, \(J = 4.4\) Hz, 4H), 7.25 (m, 1H), 4.51 (d, \(J = 6.0\) Hz, 2H), 4.44 (s, 2H); {^{13}}C NMR (DMSO-\(d_6\)): 8.167.1, 166.9, 166.5, 144.7, 139.9, 139.7, 136.2, 129.6, 128.7, 128.6, 127.6, 127.2, 118.9, 91.0, 52.5, 43.1, 34.0. HRMS (ESI-TOF) (m/z): Calcd. for C_{28}H_{21}N_{4}O_{4}S, [M-H]^{-}: 509.1289; found: 509.1271.

N-Benzyl-4-(5-cyano-6-oxo-2-((4-(triuoromethyl)benzyl)thio)-1,6-dihydropyrimidin-4-yl)benzamide (3o). Yield: 68%.

{^1}H NMR (DMSO-\(d_6\)): 8.92 (t, \(J = 6.0\) Hz 1H), 8.02 (d, \(J = 8.0\) Hz, 2H), 7.92 (d, \(J = 8.4\) Hz, 2H), 7.66 (qd, \(J = 8.0\) Hz, 4H), 7.34 (d, \(J = 4.4\) Hz, 4H), 7.26 (m, 1H), 4.58 (s, 2H), 4.52 (d, \(J = 6.0\) Hz, 2H); {^{13}}C NMR (DMSO-\(d_6\)): 8.167.1, 166.1, 142.8, 139.9, 138.5, 137.1, 130.2, 129.1, 128.7, 128.4, 128.1, 127.8, 127.2, 126.0, 125.7, 123.3, 116.8, 93.5, 43.2, 33.9. HRMS (ESI-TOF) (m/z): Calcd. for C_{27}H_{18}F_{3}N_{3}O_{2}S, [M-H]^{-}: 519.1097; found: 519.1091.

ATPase assays

Inhibition on ATPase activity of EcSecAN68 was determined by malachite green colorimetric assay as previously described.[15] IC_{50} is defined as the concentration of the compound that inhibits 50% of ATPase activity.

Bacteriostatic effects

Bacteriostatic effects were evaluated at 37°C in 96-well microtitier plates as previously described.[15] Minimum inhibitory concentration (MIC) is the lowest concentration of compounds at which bacterial cells were not able to grow at tested condition.

Declarations

Acknowledgments
FB was a visiting scholar at GSU when conducting the lab research with the partial financial support from the Islamic Development Bank (IDB) under a merit scholarship programme. We also acknowledge the partial financial support to PCT and BW (AI104168) by the National Institutes of Health. JJ and ASC were supported by the Molecular Basis of Diseases Fellowship of Georgia State University.

References

1. Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10(12 Suppl):S122-9. doi:10.1038/nm1145.

2. Smets D, Loos MS, Karamanou S, Economou A. Protein Transport Across the Bacterial Plasma Membrane by the Sec Pathway. Protein J. 2019;38(3):262-73. doi:10.1007/s10930-019-09841-8.

3. Catipovic MA, Bauer BW, Loparo JJ, Rapoport TA. Protein translocation by the SecA ATPase occurs by a power-stroke mechanism. Embo J. 2019;38(9). doi:10.15252/embj.2018101140.

4. Chaudhary AS, Chen W, Jin J, Tai PC, Wang B. SecA: a potential antimicrobial target. Future Med Chem. 2015;7(8):989-1007. doi:10.4155/fmc.15.42.

5. Kusters I, Driessen AJ. SecA, a remarkable nanomachine. Cell Mol Life Sci. 2011;68:2053-66. doi:10.1007/s00018-011-0681-y.

6. Hsieh YH, Zhang H, Lin BR, Cui N, Na B, Yang H et al. SecA alone can promote protein translocation and ion channel activity: SecYEG increases efficiency and signal peptide specificity. J Biol Chem. 2011;286:44702-9. doi:10.1074/jbc.M111.300111.

7. Banerjee T, Zheng Z, Abolafia J, Harper S, Oliver D. The SecA protein deeply penetrates into the SecYEG channel during insertion, contacting most channel transmembrane helices and periplasmic regions. J Biol Chem. 2017;292:19693-707. doi:10.1074/jbc.RA117.000130.

8. Findik BT, Smith VF, Randall LL. Penetration into membrane of amino-terminal region of SecA when associated with SecYEG in active complexes. Protein Sci. 2018;27:681-91. doi:10.1002/pro.3362.

9. Cranford-Smith T, Huber D. The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria. FEMS Microbiol Lett. 2018;365. doi:10.1093/femsle/fny093.

10. Ma C, Wu X, Sun D, Park E, Catipovic MA, Rapoport TA et al. Structure of the substrate-engaged SecA-SecY protein translocation machine. Nat Commun. 2019;10:2872. doi:10.1038/s41467-019-10918-2.

11. Gupta R, Toptygin D, Kaiser CM. The SecA motor generates mechanical force during protein translocation. Nat Commun. 2020;11:3802. doi:10.1038/s41467-020-17561-2.

12. Cui J, Jin J, Hsieh YH, Yang H, Ke B, Damera K et al. Design, synthesis and biological evaluation of rose bengal analogues as SecA inhibitors. ChemMedChem. 2013;8(8):1384-93. doi:10.1002/cmdc.201300216.

13. Chen W, Huang YJ, Gundala SR, Yang H, Li M, Tai PC et al. The first low microM SecA inhibitors. Bioorg Med Chem. 2010;18(4):1617-25.

14. Li M, Huang YJ, Tai PC, Wang B. Discovery of the first SecA inhibitors using structure-based virtual screening. Biochem Biophys Res Commun. 2008;368(4):839-45. doi:10.1016/j.bbrc.2008.01.135.

15. Chaudhary AS, Jin J, Chen W, Tai PC, Wang B. Design, syntheses and evaluation of 4-oxo-5-cyano thiouracils as SecA inhibitors. Bioorg Med Chem. 2015;23:105-17. doi:10.1016/j.bmc.2014.11.017.
16. Jang MY, De Jonghe S, Segers K, Anné J, Herdewijn P. Synthesis of novel 5-amino-thiazolo[4,5-d]pyrimidines as E. coli and S. aureus SecA inhibitors. Bioorg Med Chem. 2011;19(1):702-14. doi:10.1016/j.bmc.2010.10.027.

17. Akula N, Trivedi P, Han FQ, Wang N. Identification of small molecule inhibitors against SecA of Candidatus Liberibacter asiaticus by structure based design. Eur J Med Chem. 2012;54:919-24. doi:10.1016/j.ejmech.2012.05.035.

18. Akula N, Zheng H, Han FQ, Wang N. Discovery of novel SecA inhibitors of Candidatus Liberibacter asiaticus by structure based design. Bioorg Med Chem Lett. 2011;21(14):4183-8. doi:10.1016/j.bmcl.2011.05.086.

19. Bamba F, Jinn J, Tai PC, Wang B. Synthesis and biological evaluation of novel 4-oxo-5-cyano thiouracil derivatives as SecA inhibitors. Heterocyc Commun. 2020;26: https://doi.org/10.1515/hc-2020-0100.

20. Kondoh A, Yorimitsu H, Oshima K. Nucleophilic aromatic substitution reaction of nitroarenes with alkyl- or arylthio groups in dimethyl sulfoxide by means of cesium carbonate. Tetrahedron. 2006;62(10):2357-60. doi:https://doi.org/10.1016/j.tet.2005.11.073.

21. Rao PJ, Gopal MV, Shaheen SM, Chakrathi B. Synthesis characterization and biological activity of some pyrimidine derivatives. World J Pham Pharmaceut Sci. 2015;4:896.

22. Wang W, Yang Q, Zhou R, Fu H-Y, Li R-X, Chen H et al. Palladium nanoparticles generated from allylpalladium chloride in situ: A simple and highly efficient catalytic system for Mizoroki–Heck reactions. Journal of Organometallic Chemistry. 2012;697(1):1-5. doi:https://doi.org/10.1016/j.jorganchem.2011.10.002.

23. Yi T, Mo M, Fu H-Y, Li R-X, Chen H, Li X-J. Highly Efficient Pd/Tetraphosphine Catalytic System for Copper-Free Sonogashira Reactions of Aryl Bromides with Terminal Alkynes. Catalysis Letters. 2012;142(5):594-600. doi:10.1007/s10562-012-0796-2.

24. Arienti KL, Brunmark A, Axe FU, McClure K, Lee A, Blevitt J et al. Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles. J Med Chem. 2005;48:1873-85. doi:10.1021/jm0495935.

25. Ruiz N, Falcone B, Kahne D, Silhavy TJ. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell. 2005;121:307-17. doi:10.1016/j.cell.2005.02.014.

26. Hanaki H, Labischinski H, Sasaki K, Kuwahara-Arai K, Inaba Y, Hiramatsu K. [Mechanism of vancomycin resistance in MRSA strain Mu50]. Jpn J Antibiot. 1998;51:237-47.