Role of H$_2$O$_2$ in the oxidative effects of zinc exposure in human airway epithelial cells

Phillip A. Wages, Robert Silbajoris, Adam Speen, Luisa Brighton, Haiyan Tong, Philip A. Bromberg, Steven O. Simmons, James M. Samet

Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
EPHD, NHEERL, US Environmental Protection Agency, Chapel Hill, NC, USA
CENALB, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
ISTD, NHEERL, US Environmental Protection Agency, RTP, NC, USA

Abstract

Human exposure to particulate matter (PM) is a global environmental health concern. Zinc (Zn$^{2+}$) is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn$^{2+}$ toxicity is not fully understood. H$_2$O$_2$ and Zn$^{2+}$ have been shown to mediate signaling leading to adverse cellular responses in the lung and we have previously demonstrated Zn$^{2+}$ to cause cellular H$_2$O$_2$ production. To determine the role of Zn$^{2+}$-induced H$_2$O$_2$ production in the human airway epithelial cell response to Zn$^{2+}$ exposure. BEAS-2B cells expressing the redox-sensitive fluorescent sensors HyPer (H$_2$O$_2$) or roGFP2 (GSH) in the cytosol or mitochondria were exposed to 50 μM Zn$^{2+}$ for 5 min in the presence of 1 μM of the zinc ionophore pyrithione. Intracellular H$_2$O$_2$ levels were modulated using catalase expression either targeted to the cytosol or ectopically to the mitochondria. HO-1 mRNA expression was measured as a downstream marker of response to oxidative stress induced by Zn$^{2+}$ exposure. Both cytosolic catalase overexpression and ectopic catalase expression in mitochondria were effective in ablating Zn$^{2+}$-induced elevations in H$_2$O$_2$. Compartment-directed catalase expression bluntet Zn$^{2+}$-induced elevations in cytosolic GSH and the increased expression of HO-1 mRNA levels. Zn$^{2+}$ leads to multiple oxidative effects that are exerted through H$_2$O$_2$-dependent and independent mechanisms.

Introduction

Human exposure to ambient particulate matter (PM) is a public health concern of global proportions. Observational studies demonstrate an association between exposure to PM and elevated rates of cardiovascular morbidity and mortality [1–5]. Despite the association between these adverse health effects and ambient PM levels, the constituents in PM responsible for its toxicity and the underlying mechanisms remain largely unknown. Epidemiological [6] and toxicological [7,8] studies have specifically implicated the particle-associated transition metal zinc (Zn$^{2+}$) as a contributor to PM health effects. Although zinc is an essential nutrient and vital to many physiological processes, inhalational exposure to zinc is associated with a number of adverse health outcomes [9].

The health effects of zinc inhalation are modeled by metal fume fever, an occupational disease characterized by a self-limited febrile flu-like condition with airflow inflammation resulting from inhalation of ZnO particles generated during welding [10]. The mechanisms responsible for the pathophysiological effects of Zn$^{2+}$ inhalation have been investigated in cultured human airway epithelial cells (HAECs) by our laboratory [11–13] and by other groups utilizing diverse in vitro models [14–17]. Observations from these studies show that Zn$^{2+}$ induces inflammatory and adaptive gene expression through processes that involve the deregulation of signaling cascades. Specifically, Zn$^{2+}$ is thought to perturb multiple signaling pathways by direct interaction with thiol groups on key regulatory proteins, including protein tyrosine...
phosphatases (PTP) [18–20]. Zn$^{2+}$ is a known mediator in signaling pathways, including the Keap1/Nrf2/ARE pathway [21,22]. Unlike other transition metals associated with PM (e.g., Fe, Ni, Cu, V), Zn$^{2+}$ lacks two adjacent valence states and, therefore, does not support single electron transfers to produce reactive oxygen species (ROS), meaning that ROS generated during Zn$^{2+}$ exposure are derived from cellular metabolism. Zn$^{2+}$ interferes with mitochondrial respiration at multiple points [9] and consistent with this, we recently reported that exposure of HAEC to Zn$^{2+}$ results in increased intracellular generation of H$_2$O$_2$ of mitochondrial origin [23]. Physiologically, H$_2$O$_2$ serves as a second messenger that plays pivotal roles in the reversible inactivation of regulatory proteins, most notably PTP [24–27]. Thus, there is evidence that toxicological Zn$^{2+}$ exposure can induce gene expression through signaling mechanisms by direct interaction as well as through the generation of H$_2$O$_2$.

In order to determine the dependence of Zn$^{2+}$-induced responses on H$_2$O$_2$, the present study expanded our previous live-cell imaging approach to monitor oxidative changes in the cytosol and mitochondria of HAEC exposed to Zn$^{2+}$ [28,29]. We utilized cytosolic overexpression or ectopic mitochondrial expression of the H$_2$O$_2$ scavenging enzyme catalase in BEAS-2B cells bearing the genetically-encoded fluorogenic ratiometric sensors HyPer or roGFP2, which report on H$_2$O$_2$ and the glutathione redox potential (E_{GSH}), respectively [30–32]. In this study we examined the link between oxidative events associated with Zn$^{2+}$ exposure and signaling events, using the level of HO-1 gene expression as a downstream readout of the adaptive response to oxidant xenobiotic exposure [33–35]. This study reveals that exposure of HAEC to Zn$^{2+}$ leads to multiple oxidative effects that are exerted through H$_2$O$_2$-dependent and independent mechanisms.

Materials and methods

Reagents

Tissue culture media and supplements were purchased from Lonza (Walkersville, MD, USA). Phenol red-free keratinocyte basal media (KBM) with or without glucose was acquired from Cell Applications, Inc. (San Diego, CA, USA). X-tremeGENE 9 DNA Transfection Reagent was obtained from Roche Applied Science (Indianapolis, IN, USA). Adenoviral vectors were obtained from the Gene Therapy Center Virus Vector Core Facility (University of North Carolina at Chapel Hill, USA). The following chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA): hydrogen peroxide (H$_2$O$_2$), aldrithiol-2 (A-2), dithiothreitol (DTT), 2-mercapto-pyridine N-oxide sodium salt (Pyrithione, PYRI), zinc sulfate (Zn$^{2+}$), 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanyl-carbonylamo)phenylthiocarbamoyl]propionic acid (2-AAPA), and buthionine sulfoximine (BSO). Basic laboratory supplies were obtained from Fisher Scientific (Raleigh, NC, USA).

Cell culture

SV40 large T antigen-transformed HAEC (BEAS-2B, subclone S6 [36]) were cultured as previously described [29,37].

Viral transduction

Plasmids for the genetically encoded redox sensors roGFP2 and HyPer were the generous gift of S.J. Remington (University of Oregon, Eugene, OR, USA) and purchased from Evrogen (Axxora, Farmingdale, NY, USA), respectively. Cytosolic (Cyto) and mitochondrial (Mito) targeted versions of both plasmids were introduced into lentiviral vectors as described previously [28]. Human catalase targeted to the mitochondrial inter-membrane space was introduced into a lentiviral vector. Stable expression of Mito-catalase, Cyto-roGFP2, Mito-roGFP2, Cyto-HyPer, and Mito-HyPer was achieved using lentiviral transduction as previously described [29]. Mitochondrial localization of Mito-HyPer was verified by co-localizing its fluorescence with that of MitoTracker Red CMXRos (Invitrogen, Grand Island, NY, USA) (Supplemental Fig. S1). The subcellular localization of Mito-roGFP2 has been validated previously [23]. Lentiviral mitochondrial fluorogenic sensor transduction efficiency was approximately 70%, while that of the cytosolic forms of the sensors was approximately 40% efficient, requiring enrichment by cell sorting, conducted by the UNC Flow Cytometry Core Facility utilizing an iCyt Reflection maintained under sterile conditions. Mitochondrial localization of catalase was confirmed immunocytochemically using an anti-catalase antibody (Santa Cruz Biotechnology, Dallas, TX, USA) and by immunoblot analysis with anti-GAPDH (Santa Cruz Biotechnology) and anti-Cytochrome C (Cell Signaling, Beverly, MA) antibodies as cytosolic- and mitochondrial-specific controls. Briefly, for immunoblot analysis mitochondria were isolated in a sucrose solution (250 mM sucrose, 15 mM NaCl) followed by centrifugations at 500g for 5 min and 20,000g for 10 min; the pellet containing the mitochondrial fraction was resuspended in RIPA (1% NP-40, 0.5% sodium deoxycholate, 150 mM NaCl, 150 mM Tris–HCl, pH 8.0) for immunoblotting. For cytosolic catalase overexpression, cells were transduced with an adenoviral vector encoding human catalase driven by a CMV promoter at a MOI of 500 for 4 h, followed by a 2-day incubation in KGM [38]. An empty vector driven by CMV was used as an experimental control. The pH-specific fluorogenic sensor pHred, created by the laboratory of Yellen [39], was obtained as a construct through Addgene (Cambridge, MA, USA) for expression into BEAS-2B cells via transient transfection of 1–2 μg plasmid DNA using the suggested X-tremeGENE 9 protocol.

Live cell imaging

Immediately before exposure, roGFP2 or HyPer expressing cells, were placed in KBM without phenol red and analyzed using a Nikon Eclipse C1si spectral confocal imaging system and 404, 488, and 561 nm primary laser lines (Nikon Instruments Corporation, Melville, NY, USA [29]). Sequential scans of each laser line were performed at a frequency of 60 s with at least 10 cells expressing the biosensor in the field of view, with results calculated as a ratio of the respective 525/30 nm emission for the 404 and 488 nm excitation of each sensor. Baseline data points were collected 10 min prior to the addition of 50 μM Zn$^{2+}$ and 1 μM PYRI. To normalize for variability in the dynamic range of the sensors expressed in individual cells, HyPer expressing cells were treated with 50 μM H$_2$O$_2$ for 5 min followed by treatment with 1 mM H$_2$O$_2$ for 3 min and finally with DTT for 3 min, while roGFP2 expressing cells were treated with 1 mM H$_2$O$_2$ for 5 min followed by addition of 100 μM A-2 for 3 min and finally with DTT for 3 min to quantify the span of sensor responsiveness. Data were expressed normalized to the maximum sensor response (i.e., the maximum response elicited by H$_2$O$_2$) recorded during the experiment set as 100%, with the average starting baseline response set as 0%. Cell viability was determined using retention of intracellular Calcein-AM (Molecular Probes, Eugene, OR, USA).

Gene expression analysis

BEAS-2B cells with or without cytosolic catalase overexpression or ectopic expression of mitochondrial catalase were exposed to 0–50 μM Zn$^{2+}$/1 μM PYRI for 5 min in KBM, washed and incubated at 37 °C, 5% CO$_2$, 100% humidity for 2 h in KBM. Relative gene expression was quantified using the real-time PCR, ABI Prism 7500
sequence detection system (applied biosystems, foster city, ca, usa) as previously described [28]. gapdh mRNA was used for normalization. Oligonucleotide primer pairs and fluorescent probes for HO-1 were as follows: (5’CACCAAAAAAGTGCAGATTTCG3’; 3’ACTGTAAGGACCCATGGAGAG3’); and for GAPDH: (5’GAAGGTGTCGGAGGTCTC3’; 3’GAAGATGGTGATGGGATTTC3’). Oligonucleotides were designed using a primer design program (primer express, applied biosystems) and obtained from integrated DNA Technologies (Coralville, IA). the catalase primer/probe set was a TaqMan Gene Expression Assay (Hs00156308_m1) obtained from applied biosystems.

Statistical analysis

all imaging data were quantified using NIS-Elements AR software (Nikon). data are expressed as the mean ± SEM of at least three separate experiments. Determination of statistical significance (p < 0.05) of all imaging data were made using linear regression, comparing the slopes of linear portion of the time-course plots. Comparison of gene expression were conducted using student’s t-test with Bonferroni correction for multiple group comparisons. ANCOVA analysis was utilized when appropriate to test for multiple interactions, with group comparisons. ANCOVA analysis was utilized when appropriate to test for multiple interactions, with group comparisons. PRISM (GraphPad Software, La Jolla, CA, USA) and R (R Core Team, Vienna, Austria) software packages were used for statistical tests.

Results

catalase expression ablates Zn2+ induced H2O2 generation

The Zn2+ specific ionophore PYRI used at 1 μM, was found to reduce intercellular variability in the response of BEAS-2B cells to Zn2+ exposure [23] and was, therefore, included in all zinc exposure experiments in this study. Exposure to 1–100 μM Zn2+, 1 μM PYRI (ZnP) did not result in overt cytotoxicity in BEAS-2B cells over the time periods used in this study, as assessed by the cellular release of calcein-AM (data not shown). Exposure to 50 μM ZnP rapidly increased intracellular H2O2 levels in both the cytosol and the mitochondria, as reported by HyPer fluorescence in each of these cellular compartments (Figs. 1 and S1). In contrast PYRI alone did not induce a change in H2O2 (Fig. S2). The fluorescence emission intensity of the HyPer fluorophore is known to be affected by pH of its surroundings. Therefore, we monitored pH changes induced in cells exposed to ZnP using pHred [39]. As shown in Fig. 2, pH remained unchanged over the 10 min post ZnP exposure period during which the HyPer signals were monitored.

We next tested the effectiveness of catalase expression as an interventional approach to suppress Zn2+ induced increases in H2O2 in a cell compartment-specific manner. Expression of adenoviral mediated expression of Cyto-catalase and lentiviral encoded expression of Mito-catalase resulted in similar increase levels of catalase mRNA compared to controls (Fig. 3A and B). Interestingly, expression of Mito-catalase was potentiated by

![Fig. 1](image-url)
exposure to 10–50 μM ZnP (Fig. 3B), possibly reflecting Zn²⁺-induced activation of the Sp1 transcription factor as reported previously in retinal pigment epithelial cells [40]. CMV-driven overexpression of catalase in the cytosol effectively prevented the elevation in cytosolic H₂O₂ concentrations induced by exposure to ZnP (Fig. 1A). Immunocytochemical analyses showed that the expression of catalase targeted to the mitochondria intermembrane space successfully delivered immunoreactive catalase to the mitochondria (Fig. 3D–K). Immunoblotting of cytosolic and mitochondrial fractions confirmed the presence of catalase in the mitochondria of Mito-catalase expressing BEAS cells but not in the mitochondria of control cells (Fig. 3C). The slight elevation in catalase found in the cytosol of cells transduced with Mito-catalase lentivirus presumably represents nascent catalase that has yet to reach the mitochondrial intermembrane space. Similar to the effect of overexpressing cytosolic catalase, cells bearing ectopic mitochondrial expression of catalase showed a marked reduction in Zn²⁺-induced increases in cytosolic H₂O₂ (Fig. 1A).

Experiments in which the concentration of H₂O₂ in the mitochondria was monitored using HyPer targeted to the intermembrane space demonstrated that the presence of mitochondrial catalase also blunted Zn²⁺-induced increases in mitochondrial H₂O₂. In contrast, an excess of cytosolic catalase had only a minimal effect on Zn²⁺-induced elevations in mitochondrial H₂O₂ (Fig. 1H). Taken together, these findings confirm mitochondrial catalase as the principal source of Zn²⁺-induced increases in H₂O₂ and validated the use of targeted catalase expression as an efficient experimental intervention to suppress compartment-specific concentrations of H₂O₂ in cellular responses to Zn²⁺ exposure.

H₂O₂ contributes to Zn²⁺-induced oxidative stress

Next, we examined changes in E_GSH as an objective measure of the oxidant stress presented to the cell by exposure to ZnP. Following the same approach used to monitor H₂O₂ with HyPer, cytosolic- and mitochondria-targeted versions of the E_GSH-sensing fluorophore roGFP2 were stably expressed in BEAS-2B cells. Exposure to 50 μM ZnP induced a rapid rise in the cytosolic E_GSH, which could be reduced substantially through overexpression of catalase in either the cytosol or the mitochondria (Fig. 4A). However, neither cytosolic nor mitochondrial catalase intervention affected the Zn²⁺-induced E_GSH increase in the mitochondria (Fig. 4H). We also examined the possibility that roGFP2 fluorescence changes might arise from a direct interaction of Zn²⁺ with the sensor itself by using 2-AAPA to inhibit glutaredoxin, the enzyme through which roGFP2 senses E_GSH changes [29]. Pre-treatment of roGFP2-expressing BEAS-2B with 2-AAPA ablated Zn²⁺-induced increases in E_GSH (Fig. 5) establishing that Zn²⁺-induced changes are not the result of a direct interaction of Zn²⁺ with roGFP2, since any Zn²⁺-direct effect on roGFP2 would not require glutaredoxin.

E_GSH changes do not mediate HO-1 gene expression

In order to link the Zn²⁺-induced oxidative stress observed in the live cell imaging experiments to a downstream cellular response, we measured the level of expression of the HO-1 gene in BEAS-2B cells exposed to ZnP. In order to avoid potential cytotoxicity associated with exposure to Zn²⁺ for the prolonged periods required to observe changes in mRNA levels, BEAS-2B cells were exposed to ZnP for 5 min, a time point that coincides with the plateau of the observed Zn²⁺-induced H₂O₂ and E_GSH increases (Figs. 1 and 4). This short exposure to ZnP was followed by washing and a 2 h incubation in culture medium without added Zn²⁺ or PYRI. As seen in Fig. 6 (black bars), this “pulse” exposure to 0–10 μM ZnP resulted in concentration-dependent increases in HO-1 gene expression that were up to 45-fold over control levels exposed to 1 μM PYRI alone.

To examine the role of E_GSH in mediating Zn²⁺-induced HO-1 expression, we next sought to sensitize the HAEC to ZnP exposure by decreasing the total glutathione content in the cells with the gamma-glutamyl synthetase inhibitor BSO. Treatment of BEAS-2B cells with 500 μM BSO alone for a 24-h period reduced the total glutathione pool by 80% and concomitantly increased GSSG by 40% (data not shown). Treatment of BEAS-2B cells with BSO alone produced only a small 1.61 ± 0.06-fold increase in baseline HO-1 gene expression (Fig. S3), and had no effect on the subsequent HO-1 response to ZnP exposure (p = 0.07, F = 3.6, Fig. 6A).

Since impairing glutathione synthesis was relatively ineffective at inducing HO-1, we next determined the effect of decreasing intracellular stores of NADPH through glucose deprivation alone and followed by ZnP -exposure on HO-1 expression. A 2 h incubation in glucose-free media did not alter the total glutathione pool or change the GSH to GSSG ratio (data not shown) and induced a modest 3.08 ± 1.29 fold increase in HO-1 expression (Fig. S3), but failed to alter HO-1 expression induced by Zn²⁺ (p = 0.24, F = 1.5, Fig. 6B).

H₂O₂ mediates Zn²⁺-induced adaptive gene expression

The role of H₂O₂ in Zn²⁺-induced HO-1 response was examined by utilizing the compartment-specific catalase expression strategy employed in the imaging studies. Catalase overexpression in the cytosol blunted Zn²⁺-induced HO-1 gene expression across the range of ZnP exposures tested (10–50 μM) by approximately 50% (p = 0.04, F = 4.5, Fig. 7A). Similarly, ectopic catalase expression in the mitochondria halved the HO-1 expression induced by the higher (30 and 50 μM) ZnP exposures (p = 0.002, F = 10.5, Fig. 7B).

Discussion

The findings of this study add to previous work demonstrating the pathophysiological effects of Zn²⁺ exposure on HAEC [14,16,17,41,42]. Zn²⁺ can activate signaling through direct interaction with critical cysteine residues in regulatory proteins such as Keap1 [22] or PTP [18]. However, as described in our previous
study [23] Zn$^{2+}$ also acts as an oxidant stressor by inducing mitochondrial production of H$_2$O$_2$, a ROS implicated in multiple physiological signaling processes, including the induction of Keap1 and the redox regulation of PTP [43–45]. The present study investigated the role of H$_2$O$_2$ as a mediator of Zn$^{2+}$-induced oxidant responses. We show that a brief “pulse” exposure to Zn$^{2+}$ is sufficient to commit cells to activate signaling mechanisms which lead to the induction of adaptive gene expression. Using compartment-specific expression of catalase as an interventional approach we show that Zn$^{2+}$ acts through both H$_2$O$_2$-dependent and -independent mechanisms to induce HO-1 expression and increases in cytosolic E$_{GS}$H.

As recently reviewed [9], a number of studies demonstrate that Zn$^{2+}$ exposure induces mitochondrial dysfunction through multiple mechanisms, including impairment of mitochondrial respiration through inhibition of the α-ketoglutarate dehydrogenase complex [46] and loss of mitochondrial membrane potential [47]. Of specific interest is the inhibition of cytochrome c oxidase activity, which can result in blocked electron transport and production of superoxide from complexes I and III [48]. In the present study, imaging-based experiments to monitor H$_2$O$_2$ levels and E$_{GS}$H in real time, combined with a validated strategy in the form of catalase overexpression, provide a compartment-specific perspective on the oxidative effects of Zn$^{2+}$ exposure. These data add
to the weight of evidence supporting the notion that Zn\(^{2+}\) exposure impairs mitochondrial metabolic processes leading to increased production of H\(_2\)O\(_2\) and changes in EGSH in HAEC.

Our observation that H\(_2\)O\(_2\) scavenging with either cytosolic or mitochondrial catalase blunted Zn\(^{2+}\)-induced cytosolic EGSH changes shows a H\(_2\)O\(_2\)-dependent effect of Zn\(^{2+}\) on the cytosolic glutathione pool. It is also noteworthy that Zn\(^{2+}\) is a known inhibitor of glutathione reductase\(^{[49]}\), an effect that could potentially contribute to an accumulation of oxidized glutathione and increase EGSH. The fact that increasing EGSH with the gammaglutamyl synthetase inhibitor BSO does not result in significant elevations in HO-1 mRNA levels argues that the peroxide-dependent effect of Zn\(^{2+}\) on EGSH does not carry through to the activation of signaling pathways that regulate HO-1 expression. This interpretation is consistent with the fact that manipulation of EGSH with BSO failed to induce significant HO-1 expression. In this regard, it is interesting that a 2 h glucose deprivation, which was previously demonstrated to potentiate EGSH increases induced by ozone exposure in BEAS-2B cells\(^{[29]}\), was ineffective in promoting HO-1 expression by itself. Thus, neither BSO pretreatment nor glucose deprivation potentiated Zn\(^{2+}\)-induced HO-1 expression. Taken together, these findings argue that Zn\(^{2+}\)-induced increase in EGSH is not sufficient to activate signaling leading to HO-1 expression (Fig. 8). This agrees with the previous proposed view that a change in EGSH should not be considered as an effector but rather

Fig. 4. H\(_2\)O\(_2\) mediates Zn\(^{2+}\)-induced elevation in cytosolic but not mitochondrial glutathione redox potential. BEAS-2B cells expressing roGFP2 in the cytosol (A–G) or mitochondria (H–N), and either over expressing catalase (Cyto-catalase) or targeted-ectopic catalase expression in the mitochondria (Mito-catalase) were exposed to 50 \(\mu\)M Zn\(^{2+}\)/1 \(\mu\)M PYRI at the indicated time (arrow). Ratiometric fluorescence values normalized as for sensor response utilizing the baseline and stimulus to 1 mM H\(_2\)O\(_2\) as the minimum and maximum responses, respectively, in either the cytosol (A) or mitochondria (H) are shown. Values are presented as mean \pm SE (\(n \geq 3\), where \(n\) consists of an average of 10 distinct cells' responses), * indicates statistical significant change compared to control by linear regression. Representative cells expressing basal catalase levels (B, E, I, L), Cyto-catalase (C, F, J, M), or Mito-catalase (D, G, K, N) shown at baseline (min 4; B–D, I–K) and following Zn\(^{2+}\) stimulation (min 14; E–G, L–N). Fluorescence intensity color is shown as a function of increasing EGSH, also interpreted as an increase in GSSG to GSH: low EGSH → high EGSH.

Fig. 5. Zn\(^{2+}\)-induced changes in glutathione redox potential are properly reported by roGFP2. BEAS-2B cells stably expressing Cyto-roGFP2 were incubated with either 100 \(\mu\)M 2-AAPA, a glutaredoxin inhibitor, or DMSO as a vehicle control (CONTROL) for 2 h. Cells were exposed to 50 \(\mu\)M Zn\(^{2+}\)/1 \(\mu\)M PYRI after 5 min of baseline measurements. Shown are ratiometric values (404/488) calculated from the fluorescent 525/30 emission of the 404 and 488 nm laser excitation normalized to baseline. To validate sensor response, cells were exposed to 1 mM H\(_2\)O\(_2\) (min 20). Values are presented as mean \pm SE (\(n = 4\), where \(n\) consists of an average of 10 distinct cells' responses), * indicates statistical significant change compared to control by linear regression.
as an indicator of intracellular redox metabolism [50]. On the other hand, the inability of catalase expression to ablate Zn\(^{2+}\)-induced changes in \(E_{\text{GSH}}\) completely, suggests the presence of a H\(_2\)O\(_2\)-independent mechanism that may involve direct Zn\(^{2+}\) reactivity with unknown protein thiol targets. The observation that HO-1 expression was only partially ablated by increased catalase expression in either the cytosol or mitochondria implies the presence of additional signaling mechanisms leading to Zn\(^{2+}\)-induced adaptive responses. It is well established that the Keap1/Nrf2/ARE signaling pathway regulates HO-1 expression and, therefore, it is plausible that signaling intermediates along this pathway are involved in the response to Zn\(^{2+}\) [51–53]. One possibility is an effect on the nuclear transcription factor repressor Bach1, which is targeted for degradation in response to treatment with Zn-mesoporphyrin [54]. In this regard, the notion that the combination of Zn\(^{2+}\) and PYRI used in this study might be a structural mimic of Zn-mesoporphyrin is intriguing. However, utilizing the exposure conditions of the present study, experiments in our laboratory show ZnP does not affect Bach1 protein levels in HAEC (Speen, unpublished observations). Another possibility is presented by the presence of an active Zn\(^{2+}\)-binding or broadly “metal(loid)”-specific sensor in Keap1 [22]. Preliminary studies in our laboratory using a version of Keap1 in which the amino acids that constitute the Zn\(^{2+}\) sensor have been substituted, suggest that direct Zn\(^{2+}\) binding of Keap1 is in fact a contributing mechanism leading to HO-1 expression in Zn\(^{2+}\)-exposed BEAS-2B cells (Silbajoris, unpublished). Additional studies will be needed in order to further characterize H\(_2\)O\(_2\)-independent pathways leading to adaptive gene expression in HAEC exposed to Zn\(^{2+}\).

The data presented in this study demonstrate that H\(_2\)O\(_2\) is a critical mediator of the oxidative effects induced by exposure to Zn\(^{2+}\) as schematized in Fig. 8, while also revealing the presence of multiple contributing pathways leading to adaptive responses by

Fig. 6. Depletion of glutathione levels does not alter Zn\(^{2+}\)-induced HO-1 mRNA levels. BEAS-2B cells were incubated with 500 μM BSO for 24 h (A) or glucose deprived for 2 h (B) before exposure to the indicated Zn\(^{2+}\) concentrations and 1 μM PYRI for 5 min followed by 2 h in media alone. HO-1 mRNA levels were normalized to levels of GAPDH mRNA and expressed as fold increases over basal mRNA expression in control cells. Values are presented as mean ± SE (n = 3), * indicates p < 0.05 as determined by ANCOVA compared to 0 μM Zn\(^{2+}\) exposure.

Fig. 7. Targeted catalase expression blunts Zn\(^{2+}\)-induced HO-1 mRNA levels in BEAS cells. BEAS-2B cells overexpressing catalase (A) or expressing ectopic mitochondrial catalase (B) were exposed to the indicated Zn\(^{2+}\) concentrations and 1 μM PYRI for 5 min followed by 2 h in media alone. HO-1 mRNA levels were normalized to levels of GAPDH mRNA and expressed as fold increases over basal mRNA expression in control cells. Values are presented as mean ± SE (n = 3), * indicates p < 0.05 as determined by ANCOVA compared to control.

Fig. 8. H\(_2\)O\(_2\) mediates Zn\(^{2+}\)-induced increases in cytosolic E\(_{\text{GSH}}\) and HO-1 mRNA expression. Zn\(^{2+}\) exposure induces mitochondrial H\(_2\)O\(_2\) production and elevates E\(_{\text{GSH}}\) in both the cytosol and mitochondria. Cytosolic catalase overexpression (Cyto-catalase) ablates H\(_2\)O\(_2\) levels in the cytosol, and reduces cytosolic E\(_{\text{GSH}}\) and HO-1 mRNA expression. Ectopic catalase expression in mitochondria (Mito-catalase) ablates H\(_2\)O\(_2\) levels in the mitochondria and cytosol as well as reduces cytosolic E\(_{\text{GSH}}\) and HO-1 mRNA expression. Increased E\(_{\text{GSH}}\) does not induce HO-1 mRNA expression as determined through BSO and glucose deprivation ([Glucose]) treatments. Dashed line indicates hypothesized mechanism accounting for H\(_2\)O\(_2\)-independent Zn\(^{2+}\)-induced HO-1 mRNA expression.
HAEC. These findings are relevant to understanding the mechanistic basis and potential mitigation of the adverse health effects of Zn\(^{2+}\) inhalation.

Acknowledgments

PAW was supported as a predoctoral candidate in part by NIEHS Toxicology Training Grant, T32 ES007126 and UNC-EPA Training Agreement, CR-83515201-0. The authors are grateful to Dr. A. Rappold for statistical consultation.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.redox.2014.10.005.

References

[1] T. Chahine, et al., Particulate air pollution, oxidative stress genes, and heart rate variability in an elderly cohort, Environmental Health Perspectives 115 (11) (2007) 1617–1622. http://dx.doi.org/10.1289/ehp.10087994.
[2] D.W. Dockery, et al., Effect of air pollution control on mortality and hospital admissions in Ireland, Research Report (Health Effects Institute) 176 (176) (2013) 3–109. 24024358.
[3] J. Feng, W. Yang, Effects of particulate air pollution on cardiovascular health: a population health risk assessment, PLoS One 7 (3) (2012) e33385. http://dx.doi.org/10.1371/journal.pone.0033385.
[4] M.S. Link, et al., Acute exposure to air pollution triggers atrial fibrillation, Journal of the American College of Cardiology 62 (9) (2013) 816–825. http://dx.doi.org/10.1016/j.jacc.2013.04.041. 23747928.
[5] C.A. Pope3rd, et al., Ischemic heart disease events triggered by short-term fine particulate air pollution, Circulation 114 (23) (2006) 2448–2452. http://dx.doi.org/10.1161/CIRCULATIONAHA.106.636977. 1701831.
[6] R.R. Reddel, et al., Transformation of human bronchial epithelial cells by inactivation of p53, Toxicology and Applied Pharmacology 166 (2) (2001) 209–215. http://dx.doi.org/10.1016/S0041-008X(01)00155-6.
[7] T.L. Tal, et al., Inhibition of protein tyrosine phosphatase activity mediates epidermal growth factor receptor signaling in human airway epithelial cells exposed to Zn\(^{2+}\), Toxicology and Applied Pharmacology 214 (1) (2006) 102–105. http://dx.doi.org/10.1016/j.taap.2006.01.015.
[8] E. Rudolf, K. Rudolf, M. Cervinka, Zinc induced apoptosis in HEP-2 cancer cells: The role of oxidative stress and mitochondria, BioFactors (Oxford, England) 23 (2) (2005) 107–120. http://dx.doi.org/10.1002/biof.5520203206. 16179752.
[9] Y. Xie, et al., Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air–liquid interface, Toxicological Sciences: an Official Journal of the Society of Toxicology 125 (2) (2012) 450–461. http://dx.doi.org/10.1038/toxsci.kfs.251.21964423.
[10] I.G. Gazaryan, et al., Zinc ions modulate protein tyrosine phosphatase 1B activity, Metalloinsights 6 (7) (2014) 1229–1239. http://dx.doi.org/10.1093/toxsci/kfu.008b. 24769716.
[11] M.J. Samet, et al., Tyrosine phosphatases as targets in metal-induced signaling in human airway epithelial cells, American Journal of Respiratory Cell and Molecular Biology 21 (3) (1999) 357–364. http://dx.doi.org/10.1165/ajrcmb.21.3.964276.
[12] W.Y. Cheng, et al., Linking oxidative events to inflammatory and adaptive gene expression induced by exposure to an organic particulate matter component, Environmental Health Perspectives 120 (2) (2012) 267–274. http://dx.doi.org/10.1289/ehp.1004055. 21997348.
[13] T.L. Tal, et al., Zinc ions modulate protein tyrosine phosphatase activity, Toxicology and Applied Pharmacology 214 (1) (2006) 102–105. http://dx.doi.org/10.1016/j.taap.2006.01.015.
[14] J.R. Burgoyne, et al., Hydrogen peroxide sensing and signaling by protein kinases in the cardiovascular system, Antioxidants and Redox Signaling 18 (9) (2013) 1042–1052. http://dx.doi.org/10.1089/ars.2013.55483.
[15] E. Bellomo, et al., Zinc ions modulate protein tyrosine phosphatase activity, Toxicology and Applied Pharmacology 214 (1) (2006) 102–105. http://dx.doi.org/10.1016/j.taap.2006.01.015.
[16] J. Xue, et al., Zinc at sub-cytotoxic concentrations induces heme oxygenase-1 expression induced by exposure to an organic particulate matter component, Antioxidants and Redox Signaling 13 (5) (2010) 621–630. http://dx.doi.org/10.1089/ars.2009.2948. 20088706.
[17] T. Xia, et al., Differential transcriptional regulation of IL-8 expression by zinc ions and cerium oxide nanoparticles based on dissolution and oxidative stress properties, ACS Nano 2 (10) (2008) 2021–2034. http://dx.doi.org/10.1021/nn800511k. 19206495.
[18] E. Bellomo, et al., Zinc ions modulate protein tyrosine phosphatase activity, Toxicology and Applied Pharmacology 214 (1) (2006) 102–105. http://dx.doi.org/10.1016/j.taap.2006.01.015.
[19] A. El Safy, et al., Zinc toxicity among galvanization workers in the iron and steel industry, Annals of the New York Academy of Sciences 1140 (2008) 256–262. http://dx.doi.org/10.1196/annals.1454.007. 1899193.
[20] V.Y. Cheng, et al., Linking oxidative events to inflammatory and adaptive gene expression induced by exposure to an organic particulate matter component, Environmental Health Perspectives 120 (2) (2012) 267–274. http://dx.doi.org/10.1289/ehp.1004055. 21997348.
[21] M. McMahon, et al., Keap1 perceives stress via three sensors for the electrophiles and oxidants that regulates the phase 2 response, is a zinc metalloprotein, Biochemistry 44 (18) (2005) 6889–6895. http://dx.doi.org/10.1021/bi047414h. 15856434.
[22] M. Tantama, Y.P. Hung, G. Yellen, Imaging intracellular pH in live cells with a pH-sensitive particulate sample, Toxicology and Applied Pharmacology 166 (2) (2001) 209–215. http://dx.doi.org/10.1016/S0041-008X(01)00155-6.
[23] E. Bellomo, et al., Zinc ions modulate protein tyrosine phosphatase activity, Toxicology and Applied Pharmacology 214 (1) (2006) 102–105. http://dx.doi.org/10.1016/j.taap.2006.01.015.
[24] W.Y. Cheng, et al., Linking oxidative events to inflammatory and adaptive gene expression induced by exposure to an organic particulate matter component, Environmental Health Perspectives 120 (2) (2012) 267–274. http://dx.doi.org/10.1289/ehp.1004055. 21997348.
[25] G.A. Wages, et al., Zinc induced apoptosis in HEP-2 cancer cells: The role of oxidative stress and mitochondria, BioFactors (Oxford, England) 23 (2) (2005) 107–120. http://dx.doi.org/10.1002/biof.5520203206. 16179752.
[26] W.Y. Cheng, et al., Linking oxidative events to inflammatory and adaptive gene expression induced by exposure to an organic particulate matter component, Environmental Health Perspectives 120 (2) (2012) 267–274. http://dx.doi.org/10.1289/ehp.1004055. 21997348.
[27] T. Xia, et al., Zinc toxicity among galvanization workers in the iron and steel industry, Annals of the New York Academy of Sciences 1140 (2008) 256–262. http://dx.doi.org/10.1196/annals.1454.007. 1899193.
[28] V.Y. Cheng, et al., Linking oxidative events to inflammatory and adaptive gene expression induced by exposure to an organic particulate matter component, Environmental Health Perspectives 120 (2) (2012) 267–274. http://dx.doi.org/10.1289/ehp.1004055. 21997348.
[29] J.R. Burgoyne, et al., Hydrogen peroxide sensing and signaling by protein kinases in the cardiovascular system, Antioxidants and Redox Signaling 18 (9) (2013) 1042–1052. http://dx.doi.org/10.1089/ars.2013.55483.
[42] M. Wilson, C. Hogstrand, W. Maret, Picomolar concentrations of free zinc(II) ions regulate receptor protein-tyrosine phosphatase beta activity, Journal of Biological Chemistry 287 (12) (2012) 9322–9326. http://dx.doi.org/10.1074/jbc.C111.230796 22275360.

[43] S. Fourquet, et al., Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation, Journal of Biological Chemistry 285 (11) (2010) 8463–8471. http://dx.doi.org/10.1074/jbc.M109.051714 20061377.

[44] S.R. Lee, et al., Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor, Journal of Biological Chemistry 273 (25) (1998) 15366–15372. http://dx.doi.org/10.1074/jbc.273.25.15366 9624118.

[45] K. Mahadev, et al., Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade, Journal of Biological Chemistry 276 (24) (2001) 21938–21942. http://dx.doi.org/10.1074/jbc.276.24.21938 10744061.

[46] A.M. Brown, et al., Zn2+ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex, Journal of Biological Chemistry 275 (18) (2000) 13441–13447. http://dx.doi.org/10.1074/jbc.275.18.13441 10788456.

[47] K.E. Dineley, et al., Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria, Mitochondrion 5 (1) (2005) 55–65. http://dx.doi.org/10.1016/j.mito.2004.11.001 16060292.

[48] D.E. Handy, J. Local, Redox regulation of mitochondrial function, Antioxidants and Redox Signaling 16 (11) (2012) 1323–1367. http://dx.doi.org/10.1089/ars.2011.4123 22146081.

[49] G.M. Bishop, R. Dringen, S.R. Robinson, Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes, Free Radical Biology and Medicine 42 (8) (2007) 1222–1230. http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.022 17382203.

[50] L. Fohle, The fairytale of the GSSG/GSH redox potential, Biochimica et Biophysica Acta 1830 (5) (2013) 3139–3142. http://dx.doi.org/10.1016/j.bba-redox.2012.10.020 23127894.

[51] J. Alam, et al., Nrf2, a cap’n’collar transcription factor, regulates induction of the heme oxygenase-1 gene, Journal of Biological Chemistry 274 (37) (1999) 26071–26078. http://dx.doi.org/10.1074/jbc.274.37.26071 10745555.

[52] W.O. Osburn, T.W. Kensler, Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults, Mutation Research 659 (1–2) (2008) 31–39. http://dx.doi.org/10.1016/j.mrrev.2007.11.006 18164222.

[53] V.O. Tkachev, E.B. Menshchikova, N.K. Zenkov, Mechanism of the Nrf2/Keap1/ARE signaling system, Biochemistry: Biokhimiiya 76 (4) (2011) 407–422. http://dx.doi.org/10.1134/S0006297911040031 21585316.

[54] W. Hou, et al., Zinc mesoporphyrin induces rapid and marked degradation of the transcription factor Bach1 and up-regulates HO-1, Biochimica et Biophysica Acta 1779 (3) (2008) 195–203. http://dx.doi.org/10.1016/j.bbagen.2008.01.006 18325350.