On dominator coloring of degree splitting graph of some graphs.

R Kalaivani and D Vijayalakshmi
Department of Mathematics, Kongunadu Arts and Science College, Coimbatore 641 031, Tamilnadu, India
E-mail: kalaivanirm@yahoo.com

Abstract. A dominator coloring (DC) is a coloring of the vertices of a graph such that every vertex is either alone in its color class or adjacent to all vertices of at least one other class. In this paper, we obtain some results on DC in the context of degree splitting graph of Middle graph of any graph G and Mycielskian graph of some graphs. Also we find DC of degree splitting graph (ds) of Star graph families such as $\chi_d(Ds(K_{1,n,n,n}))$, $\chi_d(Ds(K_{1,n,n}))$, $\chi_d(Ds(C(K_{1,n})))$ and $\chi_d(Ds(L(K_{1,n,n})))$ respectively.

Keywords: Dominator coloring, Degree splitting graph, Subdivision graph, Middle graph.

1. Introduction
All graphs considered here are finite, undirected, simple graphs. For graph theoretic terminology refer to D. B. West [11]. Let G be a graph, with vertex set $V(gc{G})$ and edge set $E(G)$.

A set $D \subseteq V(G)$ is a dominating set if every vertex of $V(G) \setminus D$ has a neighbor in D. An excellent details of domination is given in the book by Haynes et al., [3].

A DC a graph G is a proper coloring of graph such that every vertex of V dominates all vertices of at least one color class (possibly its own class). i.e., it is coloring of the vertices of a graph such that every vertex is either alone in its color class or adjacent to all vertices of at least one other class. DC, $\chi_d(G)$ is the minimum number of color classes in a DC of G, and this concept was introduced by Ralucca Michelle Gera in 2006 [1]. The DC was studied in [2]. The DC of Trees, Bipartite graph, Central, Middle graph of Path and Cycle graph were also studied in various papers [4, 5, 7, 8].

R. Ponaraj and S. Somasundaram have initiated a study of degree splitting graph $Ds(G)$ of a graph G which is stated as: Let $G = (V,E)$ be a graph with $V = H_1 \cup H_2 \cup \ldots \cup H_t \cup T$ where each H_k is a set of vertices having at least two vertices and having the same degree and $T = V - \cup H_k : 1 \leq k \leq t$. The degree splitting graph of G is denoted by $Ds(G)$ is obtained from G by adding vertices w_1, w_2,\ldots , w_t and joining $w_k : 1 \leq k \leq t$ to each vertex of $S_k : 1 \leq k \leq t$.

The DC for Ds graph of various graph families have been investigated by Vaidya and Shukla [9].
2. Results and discussion

Theorem 2.1 Let $n > 5$. For any graph G, $\chi_d(Ds(M(G)))$ is,

$$\chi_d(Ds(M(G))) \leq \begin{cases} |x_i| + \chi(Ds(M(G))), & \text{if } T = \emptyset \\ |x_i| + \chi(Ds(M(G))) - T, & \text{if } T \neq \emptyset. \end{cases}$$

Proof.

Let $M(G)$ be Middle graph of any graph G, $V(Ds(M(G))) = \{R_1, R_2, \ldots, R_t\} \cup T$ and $x_i : 1 \leq i \leq t$ be the set of vertices of all the corresponding sets of $R_i : 1 \leq i \leq t$ in $Ds(M(G))$. i.e.,

$$V(Ds(M(G))) = \{R_i : 1 \leq i \leq t\} \cup T \cup \{x_i : 1 \leq i \leq t\}.$$

Case 1. $T = \emptyset$.

If $T = \emptyset$ then the $\gamma(Ds(M(G)))$ is $|x_i|, 1 \leq i \leq t$, because each $x_i, 1 \leq i \leq t$ is an independent sets in $Ds(M(G))$ and also a maximal independent set of $Ds(M(G))$. We know that every maximal independent set is a minimal dominating set. Therefore $\gamma(Ds(M(G))) = |x_i|$.

A procedure to find $\chi_d(Ds(M(G)))$ as follows. Define a proper coloring C for the graph $Ds(M(G))$ by assigning unique colors $c_1, c_2, c_3, \ldots, c_t$ to each vertex in $x_i, 1 \leq i \leq t$ respectively, which is a dominating set of graph $Ds(M(G))$ and all the remaining vertices in $Ds(M(G))$ i.e., $V(Ds(M(G)) - \cup x_i)$ are colored by number of required colors for producing a proper coloring of $Ds(M(G))$. Here every vertex in $Ds(M(G))$ dominates all vertices of at least one color class. Therefore it is easy to see that above coloring is a proper coloring and also a dominator coloring of $Ds(M(G))$. Hence an easy check shows that $\chi_d(Ds(M(G))) \leq |x_i| + \chi[Ds(M(G))]$.

Case 2. $T \neq \emptyset$.

If $T \neq \emptyset$ then the $\gamma(Ds(M(G)))$ is $|x_i| + T$. In this case, at least any one of the vertex in $Ds[M(G)]$ is not existing in $R_i, 1 \leq i \leq t$, from this observation, $T \neq \emptyset$ and also $M(G)$ will be a subgraph of $Ds(M(G))$. Clearly an easy observation shows that T and $x_i : 1 \leq i \leq t$ will be the dominating set of the $Ds(M(G))$. Hence $\gamma(Ds(M(G))) = |x_i| + T$.

Assign a proper coloring c_t for $x_i, 1 \leq i \leq t$. Next $\chi[Ds(M(G))] - T$ number of colors will be assigned to the remaining vertices in $Ds(M(G))$. Since every vertex in $Ds(M(G))$ dominates all vertices of at least one color class. Hence it is easy to observe that this proper coloring pattern leads to be a dominator coloring of $Ds(M(G))$. Thus $\chi_d[Ds(M(G))] \leq |x_i| + \chi[Ds(M(G))] - T$.

Theorem 2.2 For any graph G, $\chi_d(Ds(S(G)))$ is,

$$\chi_d(Ds(S(G))) = |x_i| + 2.$$

Proof. Let $V(G) = \{z_1, z_2, z_3, \ldots, z_n\}$. By the construction of subdivision graph, $V(S(G)) = \{z_1, z_2, z_3, \ldots, z_n\} \cup \{y_1, y_2, y_3, \ldots, y_n\} = R_1 \cup R_2 \cup R_3 \cup \ldots, \cup R_t \cup T$. For obtaining $Ds(S(G))$ from $S(G)$ add the vertices $x_1, x_2, x_3, \ldots, x_t$ corresponding to $R_1, R_2, R_3, \ldots, R_t$ respectively.

$$V(Ds(S(G))) = V(S(G)) \cup \{x_i : 1 \leq i \leq t\}.$$

Define χ_d to the vertex set $Ds(S(G))$ as follows.

For $1 \leq i \leq t$ assign the color c_i to x_i. By the observation, the chromatic number of subdivision graph of any graph G is two, so only two colors are enough to color the remaining vertices of $V(Ds(S(G)))$. Thus the remaining vertices of $Ds(S(G))$ are colored by using c_{t+1} and c_{t+2} colors.

By the observation, each vertex of x_i, dominates their own color class and all the remaining vertices dominate at least any one color class of $x_i, 1 \leq i \leq t$. Therefore $\chi_d(Ds(S(G))) \leq |x_i| + 2.$
To prove $\chi_d(Ds(S(G))) \geq |x_i| + 2$. Let us assume that $\chi_d(Ds(S(G))) < |x_i| + 2$, i.e., $\chi_d(Ds(S(G))) = |x_i| + 1$.

Suppose, if $|x_i| + 1$ colors are assigned to $Ds(S(G))$ then at least any one of the vertex will not dominate any color class (or the induced subgraph of at least any two vertices receives the same color).

Hence this contradicts the definition of DC. Therefore the DC with $|x_i| + 1$ color is not possible. Hence $\chi_d(Ds(S(G))) = |x_i| + 2$.

Theorem 2.3 Let $n \geq 5$, the dominator chromatic number of degree splitting graph of $\mu(C_p)$, $\chi_d(Ds(\mu(C_p)))$ is defined as follows:

$$\chi_d(Ds(\mu(C_p))) = \begin{cases} 5, & \text{when } p \text{ is even} \\ 6, & \text{when } p \text{ is odd} \end{cases}$$

Proof. Let $V(C_p) = \{y_k, 1 \leq k \leq p\}$ be the set of vertices of C_p. By the construction of Mycielski’s graph, $V(\mu(C_p)) = \{y_k, 1 \leq k \leq p\} \cup \{x_k, 1 \leq k \leq p\} \cup \{z\} = R_1 \cup R_2 \cup T$ where $R_1 = \{y_k, 1 \leq k \leq p\}, R_2 = \{x_k, 1 \leq k \leq p\}$, and $T = z$.

For obtaining $Ds(\mu(C_p))$ from $\mu(C_p)$ add the vertices w_1, w_2 corresponding to R_1, R_2 respectively. The vertex set of $Ds(\mu(C_p))$ is defined by,

$$V(Ds(\mu(C_p))) = V(\mu(C_p)) \cup \{w_1, w_2\}.$$

The dominator coloring φ of $Ds(\mu(C_p))$ is defined as follows:

Case 1. p is even

$$\varphi(x_k, y_k) = \begin{cases} c_1 \text{ for } k = 1, 3, 5, \ldots, p - 1 \\ c_2 \text{ for } k = 2, 4, 6, \ldots, p \end{cases}$$

and $\varphi(x_k, y_k) = c_3, \varphi(w_1) = c_4, \varphi(w_2) = c_5$.

Case 2. p is odd

$$\varphi(x_k, y_k) = \begin{cases} c_1 \text{ for } k = 1, 3, 5, \ldots, p - 2 \\ c_2 \text{ for } k = 2, 4, 6, \ldots, p - 1 \end{cases}$$

and $\varphi(z) = c_4, \varphi(w_1) = c_5, \varphi(w_2) = c_6$ and $\varphi(y_n, x_n) = c_3$.

It is clear that the above assignment of colors will produce a dominator coloring of $Ds(\mu(C_p))$. The vertices w_1, w_2 and z dominate their own color class and for $1 \leq i \leq n$, the vertices x_i, y_i, dominate at least any one color class of w_1, w_2. Hence an easy check shows that

$$\chi_d(Ds(\mu(C_p))) = \begin{cases} 5, & \text{when } p \text{ is even} \\ 6, & \text{when } p \text{ is odd} \end{cases}$$

Theorem 2.4 Let $n \geq 5$, $\chi_d(Ds(\mu(P_n))) = 6$.

Proof. Let $V(P_n) = \{y_i, 1 \leq i \leq n\}$ be the set of vertices of P_n. By the construction of Mycielski’s graph, $V(\mu(P_n)) = \{x_i, 1 \leq i \leq n\} \cup \{y_i, 1 \leq i \leq n\} \cup \{z\} = R_1 \cup R_2 \cup R_3$ where $R_1 = \{x_i, y_i, x_n, y_n\}, R_2 = \{x_i, 2 \leq i \leq n\}, R_3 = \{y_i, 2 \leq i \leq n\}$ and $T = z$. For obtaining $Ds(\mu(P_n))$ from $\mu(P_n)$ add the vertex set R_1, R_2 and R_3 to corresponding vertices of w_1, w_2 and w_3 respectively. The vertex set of $Ds(\mu(P_n))$ is defined by,

$$V(Ds(\mu(P_n))) = V(\mu(P_n)) \cup \{w_1, w_2, w_3\}.$$
The dominator 6- coloring φ of $Ds(\mu(P_n))$ is defined as follows:
$\varphi(w_1) = c_3, \varphi(w_2) = c_4, \varphi(w_3) = c_5$ and $\varphi(z) = c_6$. The remaining vertices are colored in the following cases.

Case 1. n is odd
$$\varphi(x_i, y_i) = \begin{cases} c_1 & \text{for } i = 1, 3, 5, \ldots, n \\ c_2 & \text{for } i = 2, 4, 6, \ldots, n-1 \end{cases}$$

Case 2. n is even
$$\varphi(x_i, y_i) = \begin{cases} c_1 & \text{for } i = 1, 3, 5, \ldots, n-1 \\ c_2 & \text{for } i = 2, 4, 6, \ldots, n \end{cases}$$

The vertex set R_1 dominate the color class of w_1, and the vertex set R_2 dominates the color class of w_2 and R_3 dominates the color class of w_3. Also the vertices w_1, w_2, w_3 and z dominates their own color class. Hence $\chi_d(Ds(\mu(P_n))) \leq 6$.

On the other hand, if the vertex w_1 or w_2 is colored by c_5, then the vertices in R_1 or R_2 does not dominate any color class, which implies $\chi_d(Ds(\mu(P_n))) \neq 6$. Hence $\chi_d(Ds(\mu(P_n))) = 6$.

Theorem 2.5 Let $n \geq 2$, $\chi_d(Ds(K_{1,n,n}))$ is,
$$\chi_d(Ds(K_{1,n,n})) = 4.$$

Proof. Let $V(K_{1,n,n}) = R_1 \cup R_2 \cup T$ where $R_1 = \{v_i : 1 \leq i \leq n\}, R_2 = \{u_i : 1 \leq i \leq n\}$ and $T = \{v\}$. By the definition of degree splitting graph, $Ds(K_{1,n,n})$ is obtained by adding a vertex x_1 to R_1 and x_2 to R_2. The vertex set is defined by
$$V(Ds(K_{1,n,n})) = V(K_{1,n,n}) \cup \{x_1\} \cup \{x_2\}.$$

The dominator 4- coloring φ of $Ds(K_{1,n,n})$ is defined as follows:
$$\varphi(v, u_i) = c_1, \text{ if } i = 1, 2, 3, \ldots, n$$
$$\varphi(v_i) = c_2 \text{ for } 1 \leq i \leq n.$$
$$\varphi(x_1) = c_3$$
$$\varphi(x_2) = c_4.$$

Here the above coloring pattern satisfies the condition to be a DC of $Ds(K_{1,n,n})$ as the vertex $v, v_i, 1 \leq i \leq n$ dominate the color class c_3. Next the vertices $u_i : 1 \leq i \leq n$ dominate the color class of c_2 and the vertices x_1, x_2 dominates itself. Hence an easy check shows that $\chi_d(Ds(K_{1,n,n})) = 4$.

Theorem 2.6 Let $s \geq 2$, $\chi_d(Ds(K_{1,s,s,s}))$ is,
$$\chi_d(Ds(K_{1,s,s,s})) = 5.$$

Proof. Let $V(K_{1,s,s,s}) = R_1 \cup R_2 \cup T$ where $R_1 = \{v_k, u_k : 1 \leq k \leq s\}, R_2 = \{w_k : 1 \leq k \leq t\}$ and $T = \{v\}$. By the definition of degree splitting graph, $Ds(K_{1,s,s,s})$ is obtained by adding a vertex x_1 to R_1 and x_2 to R_2. The vertex set of $Ds(K_{1,s,s,s})$ is defined by
$$V(Ds(K_{1,s,s,s})) = V(K_{1,s,s,s}) \cup \{x_1\} \cup \{x_2\}.$$

The following procedure gives the dominator chromatic number of $Ds(K_{1,s,s,s})$. Consider the color class $C = \{c_1, c_2, c_3, c_4\}$.

- Assign the colors c_1, c_2, c_3 to the vertices in $\gamma(Ds(K_{1,s,s,s}))$.
- For $1 \leq k \leq s$, assign color c_4 to v_k and w_k.
- Assign color c_5 to $u_k : 1 \leq k \leq s$.

Clearly the above defined proper coloring pattern gives a DC for the respective graph. An easy observation shows that γ set in $Ds(K_{1,s,s})$ dominates itself. For $1 \leq k \leq s$, the vertex w_k dominate the color class x_2 and the vertices u_k, v_k dominate the color class of x_1. Hence $\chi_d(Ds(K_{1,s,s})) = 5$.

Theorem 2.7 If $n \geq 2$, then $\chi_d(Ds(C(K_{1,n}))) = n + 2$.

Proof. By the definition of central graph, subdividing each edge of $K_{1,n}$ exactly once and then joining each pair of vertices of $K_{1,n}$ which were non adjacent. Let $V(C(K_{1,n})) = R_1 \cup R_2 \cup T$, where $R_1 = v, v_i : 1 \leq i \leq n, R_2 = u_i : 1 \leq i \leq n$. By the definition of degree splitting graph, we have $V(Ds(C(K_{1,n}))) = R_1 \cup R_2 \cup T$ and x_1, x_2 be the vertices of all the corresponding sets of R_1, R_2 in $Ds(C(K_{1,n}))$.

$$V(Ds(C(K_{1,n}))) = V(C(K_{1,n})) \cup \{x_1\} \cup \{x_2\}.$$ Clearly, in $Ds(C(K_{1,n}))$ the vertices $x_1, v_i, 1 \leq i \leq n$ forms a clique of order $n + 1$.

Next a procedure to find $\chi_d(Ds(C(K_{1,n})))$ as follows.

In detail the dominator $n + 2$- coloring φ of $Ds(C(K_{1,n}))$ in the following way:

$$\varphi(v_i) = c_i, \text{ if } i = 1, 2, 3, \ldots, n.$$ $$\varphi(x_1) = c_{n+1}$$ $$\varphi(u_i) = c_{n+1}, 1 \leq i \leq n.$$ $$\varphi(v) = c_1$$ $$\varphi(x_2) = c_{n+2}.$$ Thus the above assignment of colors will produce a DC of $Ds(C(K_{1,n}))$. The vertex x_2 dominates itself, for $1 \leq i \leq n$, the vertex v_i dominate any one color class c_i and u_i dominate the color class c_{n+1}. Next the vertex v dominates the color class c_{n+2}.

On the other hand, if the color c_{n+1} is assigned to x_1 and x_2 then the vertex x_2 does not dominate any color class. Therefore assigning $n + 1$ colors to $Ds(C(K_{1,n}))$ is not possible. Hence an easy check shows that $\chi_d(Ds(C(K_{1,n}))) = n + 2$.

Theorem 2.8 If $s \geq 2$, then $\chi_d(Ds(L(K_{1,s,s}))) = s + 2$.

Proof.

Let $V(L(K_{1,s,s})) = R_1 \cup R_2$ where $R_1 = v_k : 1 \leq k \leq s, R_2 = u_k : 1 \leq k \leq s$. By the construction of Ds, let $V(Ds(L(K_{1,s,s})))$ is $R_1 \cup R_2$ and x_1, x_2 be the vertices of the corresponding sets of R_1, R_2 in $Ds(L(K_{1,s,s})))$. i.e.,

$$V(Ds(L(K_{1,s,s}))) = R_1 \cup R_2 \cup \{x_1, x_2\}.$$ Next a procedure to obtain $\chi_d(Ds(L(K_{1,s,s})))$ as follows.

Clearly, in $Ds(L(K_{1,s,s}))$ the vertices $x_1, v_k, 1 \leq k \leq n$ forms a clique of order $s + 1$.

Thus $\chi_d(Ds(L(K_{1,s,s}))) \geq s + 1$.

Consider the color class $C = \{c_1, c_2, c_3, \ldots, c_s, c_{s+1}, c_{s+2}\}$. Assign the color c_k for $v_k : 1 \leq k \leq s$. Next consign the color c_{s+1} to x_1 and $u_k : 1 \leq k \leq s$. At last assign the color c_{s+2} to x_2. For $1 \leq k \leq s$, the vertex v_k dominate any one color class c_k and u_k dominate the color class c_{s+2}. Also the vertex x_1 dominate the color class c_k and x_2 dominates itself. Hence an easy observation shows that $\chi_d(Ds(L(K_{1,s,s}))) \leq s + 2$.

To prove $\chi_d(Ds(L(K_{1,s,s}))) \geq s + 2$. Let $\chi_d(Ds(L(K_{1,s,s}))) < s + 2$. Suppose, if any preused colors c_k or c_{s+1} are assigned to the vertices $x_2, u_k, 1 \leq k \leq s$ then the vertices x_2, u_k does not dominate any color class. Therefore dominator coloring with less than $s + 2$ color is not possible. Hence $\chi_d(Ds(L(K_{1,s,s}))) = s + 2$.

5
3. Conclusion
In this paper, we obtained some results on DC in the context of DS of Middle graph of any graph \(G \) and Mycielskian graph of some graphs. Also we found \(\chi_d(D_s) \) of some star graph families. This paper can be further extended by identifying graph families of graphs for which these chromatic numbers are equal to other kinds of chromatic numbers.

References
[1] Gera R, Horton S and Rasmussen C 2006 Dominator colorings and safe clique partitions Congressus Numerantium pp 19-32
[2] Gera R M 2007 On dominator coloring in graphs Graph Theory Notes N.Y. LII, pp 947 - 952
[3] Haynes T W, Hedetniemi S T and Slater P J 1998 Fundamentals of Domination in Graphs, Marcel Dekker., New york.
[4] Kavitha K and David N G 2012 Dominator coloring of central graphs International Journal of Computer Applications 51(12) pp 11-14
[5] Kavitha K and David N G 2012 Dominator coloring on star and double star graph families International Journal of Computer Applications 48(3) pp 22-25
[6] Lin W, Wu J and Gu G 2006 Several parameters of generalized Mycielskians Discrete Appl. Math. 154(8) pp 1173 - 182
[7] Manjula T and Rajeswari 2015 Dominator coloring of prism graphs Applied Mathematical Sciences 9 pp1889-1894
[8] Mustapha and Chellali 2012 On the dominator coloring in trees Discussiones Mathematicae 32 pp 677-683
[9] Vaidya S K and Shukla M S 2016 Dominator coloring of some degree splitting graphs International Journal of Mathematics and Scientific Computing 5(2) pp 103-105
[10] Vernold Vivin J 2007 Harmonious coloring of total graphs, n- leaf, central graphs and circumdetic graphs Ph.D Dissertation, Bharathiar University, India.
[11] West D B 2001 Introduction to graph theory, 2nd ed., Prentice Hall, USA.