Molecular Characterization of Soybean Genotypes in Response to Charcoal Rot Disease by using SSR Markers

S. V. Chavan¹*, P. V. Jadhav², M. S. Madke², S. S. Mane³ and R. S. Nandanwar¹

¹Department of Agricultural Botany, ²Department of Agricultural Biotechnology, ³Department of Plant Pathology, Dr. PDKV, Akola, India

*Corresponding author

Abstract

Charcoal rot (CR) disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methods available for controlling this disease, breeding for resistance is the most promising. The present study helped to evaluate soybean genotypes for identifying promising genotypes which proved to be resistant to charcoal rot. The present study was carried out at Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola during the year 2018-19 to evaluate various genotypes of soybean for charcoal rot resistance. Charcoal rot disease caused by Macrophomina phaseolina is one of the most damaging diseases of soybean resulting to 70% losses and till date no immune genotype is known for the same. Molecular characterization of these genotypes was done by using SSR markers. Molecular profiles revealed remarkable polymorphism and observations showed that in total 143 amplicons were tested with an average of 6.22 alleles per locus. Out of the total screened alleles 49 were monomorphic alleles with an average of 2.13 and 94 were polymorphic alleles with an average of 4.09. Results showed an average of 65.97 polymorphism percent. The PIC (Polymorphic information content) value of 23 microsatellite loci ranged from 0.30 to 0.84 with an average value of 0.70, these studies will help in mapping studies and breeding program for development of charcoal rot resistance in soybean genotypes which will be of utmost importance.

Keywords

Soybean, Charcoal rot, Inheritance, SSR, Validation

Introduction

Soybean [Glycine max (L.) Merrill] designated as miracle bean established its potential as an industrially vital and viable oilseed crop in many areas of India. It is the cheapest source of vegetable oil and protein. It contains about 40 percent protein, well balanced in essential amino acids, 20 percent oil rich with poly unsaturated fatty acid specially omega 6 and Omega 3 fatty acids, 6-7 percent total mineral, 5-6 percent crude fiber and 17-19 percent carbohydrates (Chauhan and Opena, 1988). It is not only used for human consumption, but also used to produce lowcost, high protein feed ingredients. It also finds wider
application in industry to produce numbers of products and services for human uses.

Among the biotic challenges, charcoal rot disease is the most serious one. It is caused by fungus *Macrophomina phaseolina* (Tassi) Goid., a soil-borne pathogen distributed worldwide with a host range of more than 500 plant species of both monocots and dicots (Mihail and Taylor, 1995). The destructive attack of M. phaseolina has been more pronounced during the drought/drought-like situations that often prevail during crop growing periods due to early withdrawal of the monsoon. The disease can attack the soybean plants at any stage of development— from the seedling stage all the way through maturity. After attack, the plant loses its vigor; turn yellow, wilt and drop leaves early. It results in poor pod setting, improper seed filling and eventual loss of yield. It can create a yield loss of 10-50% in years with prime weather conditions. However, it may go up to 70% in severe cases (Almeida *et al.*, 2001; Yang and Navi, 2005).

Control of charcoal rot disease through cultural and chemical means was found neither effective nor economical. The genome of soybean has been fully sequenced and various classes of molecular markers are in abundance. The most abundant markers developed for soybean include RFLP markers (Apuya *et al.*, 1988; Keim *et al.*, 1989), simple sequence repeat (SSR) (Akkaya *et al.*, 1995), amplified fragment length polymorphism (AFLP) markers (Keim *et al.*, 1997) and single nucleotide polymorphism (SNP) markers (Choi *et al.*, 2007). However, the SSR markers have been widely used in gene and QTL mapping studies in soybean because of its higher level of polymorphism, user-friendly nature, multiple allele per locus and specificity (Netu *et al.*, 2007). Genetic resistance has therefore been promoted through deployment of resistant or tolerant genotypes. However, genotype with higher level of resistance is not available yet for commercial cultivation (Mengistu *et al.*, 2011). Breeding for charcoal rot resistance met with little success primarily due to absence of robust screening techniques and unclear inheritance patterns of the disease resistance in the host plants. It indicates the importance of finding linked molecular markers for effective and efficient screening. In this study, attempt was made to study the inheritance pattern and mapping of charcoal rot resistance in soybean.

Materials and Methods

Plant material

A set of 14 diverse soybean genotypes were used for screening. The collected genotypes included promising varieties, indigenous, mutants, few pre-released collections, advanced breeding lines as well as obsolete varieties. It varied in maturity, seed color, flower colour, seed size, and reaction to charcoal rot disease as well as other yield attributing traits. Specific features of the genotypes are presented in Table 1.

Selection of markers for polymorphism and genotyping

Simple sequence repeat markers are being extensively validated in scientific literature and extensively used in genome studies and marker-assisted selection and are well-known for their versatility in providing a quick assay and for their highly informative data. In the light of above facts and the hypothesis that molecular markers are more efficient than morphological markers for verification of soybean varieties, a set of total 23 SSR markers were used in this study. The markers were selected from across the soybean genome. The sequences of the markers were downloaded from soybase (www.soybase.org) and synthesized through local vendors.
The sequences and related information about the SSR primers have been given in Table 2.

DNA isolation and PCR reactions

Genomic DNA of the 14 genotypes was extracted from seed powder using the DellaPorta method described by Stephen L. DellaPorta 1983 with minor modifications. All PCR reactions were performed within a total volume of 20µl in 96-well plates using Eppendorf thermocycler. PCR reaction mixture containing 10X PCR buffer (Himedia), 10mM of each deoxyribonucleotide triphosphate (Himedia), 5U of Taq polymerase (Himedia), and 10 pcm of primer. The PCR amplifications of the genotypes were performed in a 20µl reaction volume. Each reaction contained template genomic DNA. A standard PCR cycle was used with an initial denaturation step at 94°C for 5 min followed by 35 cycles of 94°C for 1 min, 50°-60°C for 30 sec, and 72°C for 1 min; the final extension at 72°C was held for 5 min and hold at 4°C. The annealing temperatures, however, varied from primer to primer; hence optimization was done wherever required. Analysis of the amplified PCR products were further analyzed with the help of PAGE (Plate 1).

Results and Discussion

Molecular characterization was done by using SSR primers and amplicons were scored as present (1) and absent (0) or as a missing observation for each genotype. Genotypes were assigned a null allele for a microsatellite locus, whereas, an amplification product could not be decreased for a particular genotype.

The frequency of the null allele was not included in the calculation of PIC value and polymorphic percentage as given in Table 3.

Highest polymorphism was seen in primer Satt130 (88.89%) followed by Satt542 (85.71%). Lowest polymorphism was seen in primers Satt524 and Satt230 (42.86%). Observations showed that in total 143 amplicons were tested with an average of 6.22 alleles per locus. Out of the total screened alleles 49 were monomorphic alleles with an average of 2.13 and 94 were polymorphic alleles with an average of 4.09. Results showed an average of 65.97 polymorphism percent. The PIC (Polymorphic information content) value of 23 microsatellite loci ranged from 0.30 to 0.84 with an average value of 0.70, these studies will help in mapping studies and breeding program for development of charcoal rot resistance in soybean genotypes.

Selective genotyping may be useful to see the association between genetic diversity and phylogenetic data, otherwise segregating population will have to screen. However, point mutations cannot be/very rarely detected by the SSR marker, considering this different approaches like single stranded confirmation polymorphism (SSCP), Endonucleolytic Mutation Analysis by Internal Labelling (EMAIL), High resolution melting (HRM), Heteroduplex, should be used to investigate the important point mutation in functional gene.

The polymorphic marker identified in the present investigation for the characterization of promising genotypes can be further explored to see the association with any desired character. Soybean genetic diversity analysis showed greater degree of polymorphism and better discrimination between varieties for microsatellite markers.
Table 1: Soybean genotypes included in the study

S.N	Genotypes	Parents	Remarks
1	AMS MB 5-19	Mutant of Bragg	Developed by Mutation breeding and characteristically fixed at M8 generation.
2	AMS MB 5-18	Mutant of Bragg	Developed by Mutation breeding and characteristically fixed at M8 generation.
3	AMS – 1001	Mutants	Pre released variety
4	AMS – 77	Mutant of JS 93-05	Developed by Mutation breeding and characteristically fixed at M5 generation.
5	AMS – 353	Mutants	Pre released variety
6	AMS – 358	Mutant of JS 93-05	Developed by Mutation breeding and characteristically fixed at M5 generation.
7	BRAGG	Parental genotype	Parental genotypes
8	AMS – 243	Mutant of Bragg	Developed by Mutation breeding and characteristically fixed at M8 generation.
9	JS - 93-05	Parental genotype	Parental genotypes
10	AMS 99-33	Mutants	Pre released variety
11	AMS 38-24	TAMS 38 x RKS 24	Recombinant breeding, entry fixed at F2 generation.
12	AMS -475	Mutant of JS 93-05	Developed by Mutation breeding and characteristically fixed at M5 generation.
13	JS – 335 (R)	(Check-Resistant)	High yielding variety, most popular
14	TAMS -38 (S)	(Check-Susceptible)	Highly susceptible variety

R=Check Resistant; S=Check Susceptible
Table 2: List of SSR primers used in experiment

SN	Primers	Position	Nucleotide sequence	BP	CN
1	Satt542	Forward	CACCAGCACAGAACAATCATTT	22	2
		Reverse	CACGGTCTAACCTTCTTCTTA	22	
2	Satt189	Forward	CCATACGCAGCATTAGAG	18	2
		Reverse	GCTATTGCTATGTGAGAA	19	
3	Sat_289	Forward	GCGAATTCCAGTTTATCATTTTAGAC	29	2
		Reverse	GCGATTGGAAGTGCCCTTTATGTT	25	
4	Satt524	Forward	GCGAATTATCCAGTGATCTACTTAT	27	4
		Reverse	GCGGGCTCTACGAGTTTACTTAT	27	
5	Satt164	Forward	CACCAATGGCTAAAGGTACATAT	23	4
		Reverse	AGGAGAAGAAAAATCACAATAAATC	28	
6	Satt640	Forward	AGATACCTACGGAGTTTTTTTT	22	6
		Reverse	GGTCCCCGGTGCTACACAC	22	
7	Satt643	Forward	CGGGATAAAATAGAAGGTGAGCA	22	6
		Reverse	TTGGCAAATGTGAAATGTATA	21	
8	Satt202	Forward	GGAATGCTAGTGATTTTAACTTAT	26	6
		Reverse	GGGCTAACGAGCTACTTATATCAGAC	27	
9	Sat_087	Forward	AAGATATTTTTGTGAGTT	21	9
		Reverse	AAGCACTAGTTGTTAGAATG	22	
10	Satt242	Forward	GCGTTGATCGTTGTTTTTTATGTG	27	9
		Reverse	GCGAGTGCTATCAACTTATTTATG	27	
11	Satt070	Forward	TAAAATTTATAATCTAGAAGAC AC	26	14
		Reverse	TGGTACATGAAAAATGTATG	20	
12	Satt556	Forward	GCGATAAAACCGGATAAAAT	21	14
		Reverse	GGTTCGAGCCTTTGTGTTC	21	
13	Satt691	Forward	GCGAAAGATAAAAAGTATGTTGAAAA	25	15
		Reverse	GCGCTCCTAAATCCAAATGAAATC	23	
14	Satt483	Forward	GCGGACACGAAATTTTTAATTAT	23	15
		Reverse	GTCTCAACCTCCGACACCTCTT	24	
15	Satt230	Forward	CGGTACCCGTTAATAAATACGAT	24	15
		Reverse	CTCCCCCAAATTTTAACCTAAAAAGA	24	
16	Satt414	Forward	GCGTATTTCTAGTCATGCTATTTC	27	16
		Reverse	GCGTCATAATAATGCTAGAACAATA	27	
17	Satt183	Forward	TAGGTCCCCAGAATTCTAGTG	20	16
		Reverse	CACCAAACGACACAAAA	17	
18	Satt038	Forward	GGGAAATCTTTTTTTCTTCTAATTTA	28	18
		Reverse	GGGCTATGGAATGTGTATTGCA	23	
19	Satt130	Forward	TAAACGAAATTTAGTTAAGACT	24	18
		Reverse	TGAATGGCTAAAAACGTGATT	21	
20	Satt451	Forward	GCCGAATTTAAAAAGTATTATACTC	26	20
		Reverse	CCCCTCTTTGCGCCCTACACCTTTC	26	
21	Satt354	Forward	GCCAAAATGGACAACAAAGTTAGTTA	26	20
		Reverse	GCCATGACACATCAATAGAATATCAA	27	
22	Satt049	Forward	GCGTTATTTTACAGAACCACCTA	29	20
		Reverse	GCGTTATTTTACAGAACCACCTA	26	
23	Sat_104	Forward	CCGGTTGACACCTTTTATAC	19	20
		Reverse	ACGAGTTGCTACAATGAAAT	20	
Table 3: Molecular characterization of selected soybean genotypes using SSR primers

SN	Primer	No. of amplicon	Monomorphic alleles	Polymorphic alleles	Polymorphism (%)	PIC value
1	Satt189	7	3	4	57.14	0.8396
2	Satt542	7	1	6	85.71	0.8102
3	Sat_289	4	1	3	75.00	0.7031
4	Satt164	6	2	4	66.67	0.8102
5	Satt524	7	4	3	42.86	0.768
6	Satt643	5	1	4	80.00	0.4413
7	Satt202	6	3	3	50.00	0.7187
8	Sat_087	8	4	4	50.00	0.7201
9	Satt242	6	1	5	83.33	0.2955
10	Satt640	6	1	5	83.33	0.7031
11	Satt691	5	1	4	80.00	0.7033
12	Satt483	6	1	5	83.33	0.4939
13	Satt070	4	2	2	50.00	0.7031
14	Satt556	7	3	4	57.14	0.8102
15	Satt483	6	3	3	50.00	0.768
16	Satt414	7	3	4	57.14	0.7858
17	Satt230	7	4	3	42.86	0.8394
18	Satt183	7	3	4	57.14	0.8396
19	Satt038	6	1	5	83.33	0.7031
20	Satt130	9	1	8	88.89	0.7217
21	Satt451	6	2	4	66.67	0.7047
22	Satt354	6	2	4	66.67	0.5957
23	Satt049	5	2	3	60.00	0.7048
	Total	143	49	94	1517.22	16.8
	Average	6.22	2.13	4.09	65.97	0.70
SSR markers are effective and reliable tools for analysis of genetic relationship among cultivars and selection of better soybean lines for further research work.

References

Akkaya M.S., Shoemaker R.C., Specht J.E., Bhagwat A.A. and Cregan P.B. 1995. Integration of simple sequence DNA markers into a soybean linkage map. Crop Sci. 35: 1439-1445.

Almeida, A.M.R., Torres, E., Farias, J.R.B., Benato, L.C., Pinto, M.C. and Martin, S.R.R. 2001. Macrophomina phaseolina in soybean: effect of tillage system, survival on crop residues and genetic diversity. Londrina PR Embrapa Soja Circular Tecnica no, 34: 47.

Apuya, N.R., Frazier, B.L., Keim, P., Roth, E.J. and Lark, K.G. 1988. Restriction
fragment length polymorphisms as genetic markers in soybean *Glycine max* L. Merrill. Theor. Appl. Genet. 75: 889-901.

Chauhan, B.S. and Opena, J.L. 1988. Effect of plant spacing on growth and grain yield of soybean. American J. plant Sci., 4(10): 2011-2014.

Choi, I.Y., Hyten, D.L., Matukumalli, L.K., Song, Q.J. *et al.*, 2007. A soybean transcriptot map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176: 685-696.

Keim P., Schupp, J.M., Travis, S.E., Clayton, K., Zhu, T., Shi, L., Ferreira, A. and Webb, D.M. 1997. A high density soybean genetic map based on AFLP markers. Crop Sci. 37: 537-543.

Keim P., Shoemaker, R.C., Palmer, R.G. 1989. Restriction fragment length polymorphism diversity in soybean. Theor. Appl. Genet. 77: 786-792.

Mengistu, A., Arelli, P.A., Bond, J.P., Shannon, G.J., Wrather, A.J., Rupe, J.B., Chen, P., Little, C.R., Canaday, C.H., Newman, M.A., and Pantalone, V.R. 2011. Evaluation of soybean genotypes for resistance to charcoal rot. Online. Plant Health Progress. doi:10.1094/PHP-2010-0926-01-RS.

Mihail, J.D. and Taylor, S.J. 1995. Interpreting variability among isolates of *Macrophomina phaseolina* in pathogenicity, pycnidium production and chlorate utilization. Can. J. Bot., 73: 1596–1603.

Netu Ald-F., Hashmi, R., Schmidt, M., Carlson, S.R., Hartman, G.L. Li, S., Nelson, R.L. Diers, B.W. 2007. Mapping and confirmation of a new sudden death syndrome resistance QTL on linkage group D2 from the soybean genotypes PI567374 and ‘Ripley’. Mol. Breed. 20: 53-62.

Stephen L. Dellaporta, Jonathan Wood, James B. Hicks. A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1983, Volume 1, Issue 4, pp 19-21.

Yang, X.B and Navi, S.S. 2005. First report of charcoal rot epidemics caused by *Macrophomina phaseolina* in soybean in Iowa. Pl. Dis., 89(5): 526.

How to cite this article:

Chavan, S. V., P. V. Jadhav, M. S. Madke, S. S. Mane and Nandanwar, R. S. 2019. Molecular Characterization of Soybean Genotypes in Response to Charcoal Rot Disease by using SSR Markers. *Int.J.Curr.Microbiol.App.Sci.* 8(10): 393-400. doi: https://doi.org/10.20546/ijcmas.2019.810.041