Genetic polymorphisms of PGF and $TNFAIP2$ genes related to cervical cancer risk among Uygur females from China

CURRENT STATUS: POSTED

Lili Han
People's Hospital of Xinjiang Uygur Autonomous Regions

Sulaiya Husaiyin
People's Hospital of Xinjiang Uygur Autonomous Region

Chunhua Ma
People's Hospital of Xinjiang Uygur Autonomous Region

Lin Wang
People's Hospital of Xinjiang Uygur Autonomous Region

Mayinuer Niyazi
People's Hospital of Xinjiang Uygur Autonomous Region

niyazi_06@163.com Corresponding Author

DOI:
10.21203/rs.2.23354/v1

SUBJECT AREAS
Epigenetics & Genomics

KEYWORDS
PGF, $TNFAIP2$, Polymorphism, Cervical cancer
Abstract

Background

PGF and TNFAIP2 are important angiogenic factors, which were abnormal expression in cervical cancer (CC). However, there is no report on investigating associations between the polymorphisms in the PGF and TNFAIP2 genes and CC risk.

Methods

We conducted a case-control study of 342 CC patients and 498 cancer-free controls matched by age and ethnicity in Chinese Uygur female population. Three selected SNPs (PGF rs8019391, PGF rs2268615, and TNFAIP2 rs710100) were genotyped to investigate the possible association of the polymorphisms in PGF and TNFAIP2 with the risk of CC. The logistic regression analysis adjusted by age was used to assess associations of these SNPs with CC risk.

Results

GF rs2268615 (OR = 1.39, 95% CI = 1.04-1.86, p = 0.024) and TNFAIP2 rs710100 (OR = 1.44, 95% CI = 1.07-1.95, p = 0.018) polymorphisms were significantly associated with the increased risk of CC. Moreover, PGF rs8019391 T allele was highly represented in patients with III–IV tumor stage (OR = 2.17, p = 4.58×10^{-4}). MDR analysis revealed a positive interaction between the SNPs.

Conclusions

Our data suggested that PGF rs2268615, and TNFAIP2 rs710100 polymorphisms may be risk factors for susceptibility to CC, which contributed to the increased risk of CC, and this finding requires further validation by larger studies.

Introduction

Worldwide, cervical cancer (CC) ranks as the fourth most frequently diagnosed cancer and the fourth leading cause of cancer death in women, with an estimated 570,000 cases and 311,000 deaths in 2018 (1). CC is the most common cancer of female genital system in China and the incidents of CC tend to be younger (2). A wide range of inter-individual genetic variability in CC susceptibility and other pathogeneses might contribute to cervical carcinogenesis, such as the genetic factor. Accumulating evidence suggests that single nucleotide polymorphisms (SNPs) in tumor-associated
genes play an important role in the genetic susceptibility to CC (3-5).

PGF (placental growth factor) gene, also named PLGF, which encodes a homologous of vascular endothelial growth factor, has been reported as a potent stimulator in cancer invasion through activating angiogenesis (6). In addition to its angiogenic effects, the overexpression of PGF is correlated with tumor stage, cancer progression and metastasis (7). TNFAIP2 (TNF alpha induced protein 2) is a primary response gene of TNFα, and the expression of TNFAIP2 is regulated by multiple transcription factors and signaling pathways, including NF-κB, KLF5 and retinoic acid (8). TNFAIP2 is an important angiogenic factor, which was significantly associated with intratumoral microvessel density (9). In addition, previous studies have shown that the abnormal expression of PGF and TNFAIP2 in human cancer, including CC (6, 10). However, there is no report on investigating associations between the polymorphisms in PGF and TNFAIP2 and CC risk. We hypothesized that genetic variants in PGF and TNFAIP2 could modulate CC susceptibility.

The aim of our study was to investigate the possible association between the polymorphisms of three SNPs (PGF rs8019391, PGF rs2268615, and TNFAIP2 rs710100) and the risk of CC in Chinese Uygur female population. This may reveal a new aspect of CC etiology in the future.

Subjects And Methods

Study Participants

This study involving 342 cervical cancer patients (cases, 43.27 ± 11.78) and 498 age-matched cancer-free individuals (controls, 43.46 ± 13.03) were enrolled from the People’s Hospital of Xinjiang Uygur Autonomous Region, as shown in Table 1. All the patients were women newly diagnosed and histopathologically confirmed primary cervical cancer according to the clinical staging standards of the International Federation of Gynecology and Obstetrics (FIGO). 132 cases were stage I–II, 80 cases were stage III–IV and 130 cases were missing. Patients with any history of other cancers, having undergone radiotherapy, chemotherapy, or surgery and inflammatory diseases were excluded. Controls were health women without any history of cancers and diseases of the liver, kidneys, heart, brain, and vascular system, as well as gynecological inflammatory diseases from the health checkup in the same hospital during the same period. All recruited subjects were unrelated ethnic Han
Chinese. Demographic characteristics and clinical information were collected from the standardized questionnaires. This study protocol was approved by the Ethics Committee of the People’s Hospital of Xinjiang Uygur Autonomous Region and under the guidelines of the Declaration of Helsinki. Written informed consent was obtained from all participants.

Table 1
Characteristics of patients with cervical cancer and controls

Characteristics	Cases (n = 342)	Controls (n = 498)	p	
Age	Mean ± SD (years)	43.27 ± 11.78	43.46 ± 13.03	0.832
	> 43	176 (51.5%)	263 (52.8%)	
	≤ 43	166 (48.5%)	235 (47.2%)	
HPV status	Negative	51 (14.9%)		
	Positive	195 (57.0%)		
	Missing	96 (28.1%)		
Stage	I-II	132 (38.6%)		
	III-IV	80 (23.4%)		
	Missing	130 (38.0%)		

SNP Selection And Genotyping
Peripheral venous blood samples (5 mL) were obtained from patients and healthy subjects and were stored in EDTA-coated tubes. Genomic DNA extraction was carried out using the GoldMag DNA Purification Kit (GoldMag Co. Ltd, Xi’an City, China) according to the manufacturer’s protocol, then quantified by NanoDrop 2000 (Thermo Scientific, Waltham, MA, USA), and stored at -20 °C for further experiments. The SNPs were selected from the NCBI dbSNP database (http://www.ncbi.nlm.nih.gov/projects/SNP) and the 1000 Genomes Project data (http://www.internationalgenome.org/), based on minor allele frequency (MAF) of at least 5% in Chinese populations and with a pairwise $r^2 > 0.80$. PGF rs8019391 and rs2268615, and TNFAIP2 rs710100 were selected as candidate SNPs. miRNASNP_v2 database (http://bioinfo.life.hust.edu.cn/miRNASNP2/index.php) and HaploReg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) were used to predict the potential function of these polymorphisms (Supplementary Table 1 and Table 2). These candidate SNPs were genotyped with Agena MassARRAY system (Agena, San Diego, CA, U.S.A.) as described previously(11, 12), and conducted by two laboratory technicians double-blinded. The primers for PCR amplification and single base extension were designed using the Assay Design 3.0 software (Supplementary Table 2). For quality control, approximately 10% of the samples were randomly chosen and repeated genotyping, and a 100% concordance rate was
observed.

Table 2
The information and HWE about the candidate SNPs

Gene	SNP ID	Chr:Position	Alleles (A/B)	MAF	p-value for HWE	OR (95%CI)	p	Haploreg			
			Cases	Controls							
			PGF rs8019391	14:7942979	T/C	0.22	0.20	0.067	1.13 (0.89–1.44)	0.318	Promoter histone marks, Enhancer histone marks, DNase, Motifs changed, Selected eQTL hits
			PGF rs2268615	14:74951714	A/C	0.30	0.26	0.814	1.27 (1.03–1.58)	0.029	Promoter histone marks, Enhancer histone marks, DNase, Motifs changed, Selected eQTL hits
			TNFAIP2 rs710100	14:103135941	A/G	0.40	0.36	0.200	1.23 (1.01–1.50)	0.043	Enhancer histone marks, DNase, Motifs changed, Selected eQTL hits

HWE, Hardy-Weinberg equilibrium; SNP, single nucleotide polymorphism; MAF, minor allele frequency; eQTL, expression quantitative trait loci.

Data analysis
SPSS version 18.0 (SPSS Inc., Chicago, IL, USA) and PLINK software were used for all statistical analyses. Student's t-test was performed to analyze the differences in the age distribution between the cervical cancer patients and the healthy controls. Hardy-Weinberg equilibrium (HWE) was tested by a goodness-of-fit χ² test for each SNP among the control subjects. The genotype and allele frequencies between cases and controls were compared using the χ² test or Fisher’s exact test. The association of candidate SNPs with cervical cancer risk was assessed by odds ratios (ORs) and 95% confidence intervals (CIs) using logistic regression analysis, for both combined and respective genotype(13). The association was also evaluated in subgroup analyses stratified by demographic and clinic variables. Multifactor dimensionality reduction (MDR) (version 3.0.2) was performed to evaluate the SNP–SNP interactions in the risk of cervical cancer(14). A two-tailed p-value < 0.05 was
considered to be statistically significant for all the analyses.

Results
In Table 2, the minor allele frequency (MAF) of the PGF rs8019391 and rs2268615, and TNFAIP2 rs710100 polymorphisms among the case and control groups were listed. The genotype distribution of these SNPs in controls were in accordance with the Hardy-Weinberg equilibrium (p > 0.05). The MAF distribution of PGF rs2268615-A allele and TNFAIP2 rs710100-A allele, were found to be higher in the case group, which have increased risk of cervical cancer (rs2268615, A vs C, OR = 1.27, 95% CI = 1.03-1.58, p = 0.029; and rs710100, A vs G, OR = 1.23, 95% CI = 1.01-1.50, p = 0.043).

Multiple genetic model results adjusted by age were also revealed PGF rs2268615 and TNFAIP2 rs710100 polymorphisms conferred to the increased risk of cervical cancer (Table 3). PGF rs2268615 polymorphism was associated with a significantly increased risk of cervical cancer under heterozygote (OR = 1.39, 95% CI = 1.04-1.86, p = 0.024), dominant (OR = 1.40, 95% CI = 1.06-1.84, p = 0.018) and log-additive (OR = 1.29, 95% CI = 1.03-1.61, p = 0.027) models. For rs710100 in TNFAIP2, GA genotype (OR = 1.44, 95% CI = 1.07-1.95, p = 0.018) and GA + AA genotype (OR = 1.42, 95% CI = 1.07-1.89, p = 0.016) compared with GG genotype increased 1.44-fold and 1.42-fold the susceptibility of cervical cancer, respectively. Moreover, the result of additive model also showed an increased risk of cervical cancer (rs710100, OR = 1.23, 95% CI = 1.00-1.50, p = 0.046). However, there were no significant association of cervical cancer susceptibility with PGF rs8019391 variants.
Table 3

Relationships between the candidate SNPs and cervical cancer risk

Gene SNP ID	Model	Genotype	Case	Control	Adjusted by age and gender	OR (95% CI)	p
PGF rs8019391	Genotype	CC	208	327	1.00		
		CT	119	145	1.29 (0.96–1.74)	0.093	
		TT	15	26	0.91 (0.47–1.76)	0.777	
	Dominant	CC	208	327	1.00		
		CT-TT	134	171	1.23 (0.93–1.64)	0.150	
	Recessive	CC-CT	327	472	1.00		
		TT	15	26	0.83 (0.43–1.6)		
	Log-additive	---	---	---	1.13 (0.89–1.42)	0.324	
PGF rs2268615	Genotype	CC	160	273	1.00		
		CA	156	191	1.39 (1.04–1.86)	0.024	
		AA	26	31	1.43 (0.82–2.49)	0.209	
	Dominant	CC	160	273	1.00		
		CA-AA	182	222	1.40 (1.06–1.84)	0.018	
	Recessive	CC-CA	316	464	1.00		
		AA	26	31	1.23 (0.72–2.11)	0.453	
	Log-additive	---	---	---	1.29 (1.03–1.61)	0.027	
TNFAIP2 rs710100	Genotype	GG	118	210	1.00		
		GA	171	211	1.44 (1.07–1.95)	0.018	
		AA	53	69	1.37 (0.89–2.08)	0.150	
	Dominant	GG	118	210	1.00		
		GA-AA	224	280	1.42 (1.07–1.89)	0.016	
	Recessive	GG-GA	289	421	1.00		
		AA	53	69	1.12 (0.76–1.65)	0.576	
	Log-additive	---	---	---	1.23 (1.00–1.50)	0.046	

SNP, single nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidence interval.
p values were calculated by logistic regression analysis with adjustments for age and gender.
p < 0.05 means the data is statistically significant.

Age stratification displayed PGF rs2268615 and TNFAIP2 rs710100 polymorphisms increased the risk of cervical cancer among women at age ≤ 43 years (Table 4). After calculating the ORs for the allele (OR = 1.38, p = 0.041 and OR = 1.42, p = 0.018, respectively), the genotype (CA vs CC, OR = 1.55, p = 0.039; and AA vs GG, OR = 1.97, p = 0.031, respectively), the dominant (OR = 1.56, p = 0.030; and OR = 1.57, 95%, p = 0.034, respectively), and the log-additive (OR = 1.40, p = 0.042; and OR = 1.42, p = 0.020) genetic models, they all concluded that there were significant association of PGF rs2268615 and TNFAIP2 rs710100 polymorphisms with susceptibility to cervical cancer.
Table 4

Relationships between the candidate SNPs and cervical cancer risk according to the stratification by age

SNP ID	Model	Genotype	> 43	Control	OR (95%CI)	p	≤ 43	Control	OR (95%CI)	p
PGF	Allele	C	253	393	1.00		223	344	1.00	
		A	99	131	1.17 (0.87-1.59)	0.303	109	122	1.38 (1.01-1.88)	0.041
	Genotype	CC	89	147	1.00		71	126	1.00	
		CA	75	99	1.25 (0.84-1.86)	0.282	81	92	1.55 (1.02-2.36)	0.039
		AA	12	16	1.22 (0.55-2.70)	0.626	14	15	1.62 (0.74-3.56)	0.228
	Dominant	CC	89	147	1.00		71	126	1.00	
		CA-AA	87	115	1.24 (0.85-1.82)	0.269	95	107	1.56 (1.05-2.33)	0.030
	Recessive	CC-CA	164	246	1.00		152	218	1.00	
		AA	12	16	1.11 (0.51-2.41)	0.795	14	15	1.31 (0.61-2.81)	0.481
	Log-additive	---	---	---	1.17 (0.86-1.60)	0.317	---	---	1.40 (1.01-1.92)	0.042
TNFAIP2	Allele	G	217	331	1.00		190	300	1.00	
		A	135	191	1.08 (0.82-1.43)	0.597	142	158	1.42 (1.06-1.90)	0.018
	Genotype	GG	64	111	1.00		54	99	1.00	
		GA	89	109	1.41 (0.93-2.14)	0.105	82	102	1.46 (0.94-2.27)	0.092
		AA	23	41	0.96 (0.53-1.74)	0.890	30	28	1.97 (1.07-3.63)	0.031
	Dominant	GG	64	111	1.00		54	99	1.00	
		GA-AA	112	150	1.29 (0.87-1.91)	0.208	112	130	1.57 (1.03-2.38)	0.034
	Recessive	GG-GA	153	220	1.00		136	201	1.00	
		AA	23	41	0.80 (0.46-1.38)	0.418	30	28	1.59 (0.91-2.79)	0.103
	Log-additive	---	---	---	1.07 (0.81-1.41)	0.635	---	---	1.42 (1.06-1.90)	0.020

SNP, single nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidence interval.
p values were calculated by logistic regression analysis with adjustments for age.
p < 0.05 indicates statistical significance.

Subsequently, stratified analyses by tumor stage showed that the risk effect for PGF rs8019391 polymorphism appeared to be more prominent in the subset of patients with stage III + IV (Table 5). Compared with the C allele, rs8019391 T allele was highly represented in patients with III–IV tumor stage as compared to patients with I–II tumor stage under the allele (OR = 2.17, p = 4.58⋅10⁻⁴), heterozygote (OR = 2.34, p = 0.005), homozygote (OR = 5.76, p = 0.015), dominant (OR = 2.59, p = 0.001), recessive (OR = 4.13, p = 0.045), and log-additive models (OR = 2.36, p < 0.001).
Table 5
Relationship of clinical stage with PGF rs8019391 polymorphism in cervical cancer patients adjusted by age

SNP ID	Model	Genotype	I-II	III-IV	OR (95%CI)	p
rs8019391	Allele	C	110	220	1.00	
		T	50	44	2.27 (1.43–3.62)	4.58⋅10⁻⁴
	Codominant	CC	37	91	1.00	
		CT	36	38	2.34 (1.29–4.25)	0.005
		TT	7	3	5.76 (1.41–23.52)	0.015
	Dominant	CC	37	91	1.00	
		CT-TT	43	41	2.59 (1.46–4.60)	0.001
	Recessive	CC-CT	73	129	1.00	0.045
		TT	7	3	4.13 (1.04–16.45)	
	Log-additive	---	---		2.36 (1.45–3.86)	< 0.001

SNP, single nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidence interval.
p values were calculated by logistic regression analysis with adjustments for age.
p < 0.05 indicates statistical significance.

Subsequently, MDR analysis was implemented to assess the impact of the SNP-SNP interactions.

Association of higher order interactions with cervical cancer risk was analyzed by MDR analysis as summarized in Fig. 1. The interaction information analysis revealed additive effect between TNFAIP2 rs710100-GA, PGF rs2268615-CA, and PGF rs8019391-CT on conferring risk towards the progression of the cervical cancer. The dendrogram and the Fruchterman-Reingold interaction analysis of our data showed that PGF rs2268615, TNFAIP2 rs710100, PGF rs8019391 exhibited a strong synergy effect on the risk of cervical cancer development as shown in Fig. 2. Table 6 showed that TNFAIP2 rs710100 was the best single-locus model to predict the risk of cervical cancer (testing accuracy = 0.508, CVC = 6/10, p = 0.014). The best two-locus model was the combination of PGF rs2268615 and TNFAIP2 rs710100 (testing accuracy = 0.536, CVC = 9/10, p < 0.0001. The three-locus model included TNFAIP2 rs710100, PGF rs2268615, and PGF rs8019391 (testing accuracy = 0.550, CVC = 10/10, p < 0.0001).
SNP–SNP interaction models of the PGF and TNFAIP2 genes analyzed by the MDR method

Model	Training Bal. Acc.	Testing Bal. Acc.	CVC	OR (95% CI)	p
TNFAIP2 rs710100	0.544	0.508	6/10	1.46 (1.08–1.97)	0.014
PGF rs2268615, TNFAIP2 rs710100	0.564	0.536	9/10	1.91 (1.41–2.59)	< 0.0001
PGF rs2268615, TNFAIP2 rs710100, PGF rs8019391	0.587	0.550	10/10	2.11 (1.56–2.84)	< 0.0001

MDR, multifactor dimensionality reduction; Bal. Acc., balanced accuracy; CVC, cross-validation consistency; OR, odds ratio; CI, confidence interval.

p values were calculated using χ² tests.

Discussion

In this case–control study, we assessed the association between three SNPs (PGF rs8019391, PGF rs2268615, and TNFAIP2 rs710100) and the susceptibility to CC in Chinese Uygur female population.

We found that PGF rs2268615, and TNFAIP2 rs710100 polymorphisms were significantly associated with the increased risk of CC. Our findings also suggest some possible interactions between PGF rs2268615, and TNFAIP2 rs710100 genetic variations and age. Moreover, the risk effect for PGF rs8019391 polymorphism appeared to be more prominent in the subset of patients with stage III + IV.

To the best of our knowledge, this is the first report to describe the possible role of PGF and TNFAIP2 polymorphisms as a risk factor for CC.

PGF, located in 14q24.3, belongs to the vascular endothelial growth factor family, present on various cell types. The expression of PLGF in tumors or plasma of cancer patients was upregulated in most human tumor types, including gallbladder, gastric and prostate cancers, which regulates some cell processes such as survival, growth of vascular endothelial cells, invasiveness, and also involves in pathological angiogenesis and metastasis (15–17). Previous researches indicated that PLGF is overexpressed in CC tissues compared to adjacent normal tissues and in serum and vaginal lavage compared with normal women group(6, 18). PGF promotes migration through regulating epithelial-mesenchymal transition-related protein expression in cervical cancer(6). These lines of evidence have led us to formulate the hypothesis that PGF could be of pathogenic importance in CC. In our study, we
firstly examined the role of PGF genetic polymorphisms (rs8019391 and rs2268615) and the susceptibility to CC, and found that PGF SNP rs2268615 conferred increased risks to CC, and PGF rs8019391 polymorphism was a significant risk factor for patients with III-IV stage. A retrospective population-based study showed that 5-year relative survival rates of CC were 90.9%, 71.0%, 41.7%, and 7.8% for the stage I, II, III, and IV, respectively(19). Therefore, it is highly speculated that PGF rs8019391 polymorphism may affect the progression of cervical cancer. Further large-scale studies are needed to verify the results of our findings.

The TNFAIP2 gene, also named B94, which is located on chromosome 14q32, and encodes TNFα-inducible protein 2. TNFAIP2 were involved in the NF-κB and KLF5 signaling pathway to regulate the cell inflammatory, angiogenesis, cell proliferation, migration and invasion(20, 21). Expression of TNFAIP2 was found to be abnormal in various cancers, including breast cancer, esophageal squamous cell carcinoma, and glioma (20, 22, 23). In cervical cancer, the expression of TNFAIP2 was significantly increased in CC tissues compared with normal tissues based on the analysis of the TCGA (The Cancer Genome Atlas) database(8). In addition, the disruption of the TNFAIP2 gene through viral integration contributed to the rapid progression of cervical cancer(10). These lines of evidence suggested that TNFAIP2 might play an important role in the progression of CC. In this study, we found that TNFAIP2 rs710100 variant was significantly associated with an increased risk of CC. Rs710100 polymorphism in 3’UTR of TNFAIP2, located in the predicted miRNAs-binding sites was associated with a significantly increased risk of CC. Specifically, rs1064607 putatively affects the binding sites of miR-155(24), whose abnormal expression in CC was correlated with FIGO stage, lymph nodes metastasis, and vascular invasion(25). Therefore, we propose that rs710100 in 3’UTR of TNFAIP2 might affect TNFAIP2 expression in CC by disturbing mRNA stability and miRNA binding activity, thus inducing the higher risk of CC. However, it should be confirmed in further functional studies.

In spite of interesting findings on the association of PGF and TNFAIP2 polymorphisms with cervical cancer risk, several limitations need to be addressed. Firstly, there may be selection and information bias since the retrospective study was designed as a hospital-based case-control study. Secondly, due to insufficient data of HPV screening results and lifestyle data, e.g., smoking, for all cases and
controls, we could not evaluate HPV infection and lifestyle as the potential confounder in the risk estimates of CC.

Conclusion
In conclusion, our findings showed a relationship between PGF rs2268615, and TNFAIP2 rs710100 polymorphisms and the increased susceptibility to CC in Chinese Uygur females. Considering this is the first report that PGF and TNFAIP2 polymorphisms contribute to CC risk, well-designed large and prospective studies are required to validate our findings.

Declarations

Ethics approval and consent to participate
This study protocol was approved by the Ethics Committee of the People’s Hospital of Xinjiang Uygur Autonomous Region and under the guidelines of the Declaration of Helsinki. Written informed consent was obtained from all participants.

Consent for publication

Availability of data and material
The datasets during and/or analysed during the current study available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests

Funding
Xinjiang Tianshan Youth Program (No. 2017Q008).

Author’s contributions
LLH designed this study protocol and drafted the manuscript; SH performed the DNA extraction and genotyping; CHM performed the data analysis; LLH and SH performed the sample collection and information recording MN and LW conceived and supervised the study. All authors read and approved the final manuscript.

Acknowledgements
This study was funded by Xinjiang Tianshan Youth Program (2017Q008). The authors thank all the
participants in this study.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424.

2. Jiang X, Tang H. Epidemiology of gynecologic cancers in China. 2018;29(1):e7.

3. Tan SC, Ismail MP, Duski DR, Othman NH, Ankathil R. FAS c.-671A>G polymorphism and cervical cancer risk: a case-control study and meta-analysis. Cancer genetics. 2017;211:18-25.

4. Lv Q, Zhu D, Zhang J, Yi Y, Yang S, Zhang W. Association between six genetic variants of IL-17A and IL-17F and cervical cancer risk: a case-control study. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36(5):3979-84.

5. Guo L, Lu X, Zheng L, Liu X, Hu M. Association of Long Non-Coding RNA HOTAIR Polymorphisms with Cervical Cancer Risk in a Chinese Population. PloS one. 2016;11(7):e0160039.

6. Huang W, Zhu S, Liu Q, Li C, Li L. Placenta growth factor promotes migration through regulating epithelial-mesenchymal transition-related protein expression in cervical cancer. International journal of clinical and experimental pathology. 2014;7(12):8506-19.

7. Dewerchin M, Carmeliet P. Placental growth factor in cancer. Expert opinion on therapeutic targets. 2014;18(11):1339-54.

8. Jia L, Shi Y, Wen Y, Li W, Feng J, Chen C. The roles of TNFAIP2 in cancers and infectious diseases. 2018;22(11):5188-95.

9. Chen LC, Chen CC, Liang Y, Tsang NM, Chang YS, Hsueh C. A novel role for TNFAIP2:
its correlation with invasion and metastasis in nasopharyngeal carcinoma. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2011;24(2):175-84.

10. Einstein MH, Cruz Y, El-Awady MK, Popescu NC, DiPaolo JA, van Ranst M, et al. Utilization of the human genome sequence localizes human papillomavirus type 16 DNA integrated into the TNFAIP2 gene in a fatal cervical cancer from a 39-year-old woman. Clinical cancer research : an official journal of the American Association for Cancer Research. 2002;8(2):549-54.

11. Xia P, Li B, Geng T, Deng Z, Dang C, Chang D, et al. FGFR2 gene polymorphisms are associated with breast cancer risk in the Han Chinese population. American journal of cancer research. 2015;5(5):1854-61.

12. Liang J, Kang X, Halifu Y, Zeng X, Jin T, Zhang M, et al. Secreted frizzled-related protein promoters are hypermethylated in cutaneous squamous carcinoma compared with normal epidermis. BMC cancer. 2015;15:641.

13. Li S, Jin T, Zhang J, Lou H, Yang B, Li Y, et al. Polymorphisms of TREH, IL4R and CCDC26 genes associated with risk of glioma. Cancer epidemiology. 2012;36(3):283-7.

14. Leem S, Park T. An empirical fuzzy multifactor dimensionality reduction method for detecting gene-gene interactions. BMC Genomics. 2017;18(Suppl 2):115.

15. Li H, Jin Y, Hu Y, Jiang L, Liu F, Zhang Y, et al. The PLGF/c-MYC/miR-19a axis promotes metastasis and stemness in gallbladder cancer. 2018;109(5):1532-44.

16. Mahmoodi F, Akrami H. PlGF Knockdown Decreases Tumorigenicity and Stemness Properties of Spheroid Body Cells Derived from Gastric Cancer Cells. Journal of cellular biochemistry. 2017;118(4):851-9.

17. Zins K, Thomas A, Lucas T, Sioud M, Aharinejad S, Abraham D. Inhibition of stromal
PIGF suppresses the growth of prostate cancer xenografts. International journal of molecular sciences. 2013;14(9):17958-71.

18. Yang S, Cheng H, Cai J, Cai L, Zhang J, Wang Z. PIGF expression in pre-invasive and invasive lesions of uterine cervix is associated with angiogenesis and lymphangiogenesis. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2009;117(11):831-8.

19. Cheung FY, Mang OW, Law SC. A population-based analysis of incidence, mortality, and stage-specific survival of cervical cancer patients in Hong Kong: 1997-2006. Hong Kong medical journal = Xianggang yi xue za zhi. 2011;17(2):89-95.

20. Jia L, Zhou Z, Liang H, Wu J, Shi P, Li F, et al. KLF5 promotes breast cancer proliferation, migration and invasion in part by upregulating the transcription of TNFAIP2. Oncogene. 2016;35(16):2040-51.

21. Thair SA, Topchiy E, Boyd JH, Cirstea M, Wang C, Nakada TA, et al. TNFAIP2 Inhibits Early TNFalpha-Induced NF-x03BA;B Signaling and Decreases Survival in Septic Shock Patients. Journal of innate immunity. 2016;8(1):57-66.

22. Xie Y, Wang B. Downregulation of TNFAIP2 suppresses proliferation and metastasis in esophageal squamous cell carcinoma through activation of the Wnt/beta-catenin signaling pathway. Oncology reports. 2017;37(5):2920-8.

23. Cheng Z, Wang HZ, Li X, Wu Z, Han Y, Li Y, et al. MicroRNA-184 inhibits cell proliferation and invasion, and specifically targets TNFAIP2 in Glioma. Journal of experimental & clinical cancer research : CR. 2015;34:27.

24. Liu Z, Wei S, Ma H, Zhao M, Myers JN, Weber RS, et al. A functional variant at the miR-184 binding site in TNFAIP2 and risk of squamous cell carcinoma of the head and neck. Carcinogenesis. 2011;32(11):1668-74.

25. Fang H, Shuang D, Yi Z, Sheng H, Liu Y. Up-regulated microRNA-155 expression is
associated with poor prognosis in cervical cancer patients. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2016;83:64-9.

Figures

Figure 1
Summary of MDR gene-gene interaction. Each cell shows counts of “case” on left and “control” on right.

Figure 2
SNP-SNP interaction dendrogram and Fruchterman-Reingold.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Supplementary Table.docx