Heavy metal pollution removal from water using a cost-effective bio-adsorbent

Shaymaa I. Saeed¹, Rasha Z. T. Ahmed², Ruqayah Ali Grmasha³, Soltan M. Alenezi⁴*, Jasim M. Salman⁵, Osamah J. Al-Sareji⁶, Hayfaa A. Mubarak⁷, Ahmed AlKhayyat⁷

¹Chemistry Department, College of Science, University of Kerbala, Iraq.
²Second Al-Karkh Education Directorate, Ministry of Education, Baghdad, Iraq.
³Environmental Research and Studies Center, University of Babylon, Al-Hilla, Iraq.
⁴B.Sc. Student, Civil Engineering Department, Liverpool John Moores University, UK.
⁵Department of Biology, College of Science, University of Babylon, Al-Hilla, Iraq.
⁶Chemistry Department, College of Science, University of Kerbala, Iraq.
⁷Department of Building and Construction Technical Engineering, College of Technical Engineering, the Islamic University, 54001 Najaf, Iraq

Email: S.M.Alenezi@2017.ljmu.ac.uk

Abstract. One of the worldwide environmental issues is water contamination by toxic heavy metals. Copper is considered one of the most common heavy metals found in industrial wastes, and it has potential impacts on the ecosystem and human health. In order to remove copper from synthetic water, an economically effective adsorbent is required. Thus, this work evaluated the adsorption of copper by utilizing Westland Irish peat moss. The adsorbent was prepared by washing the Westland Irish peat moss using an acidic bath for half an hour with a continuous shaken process, then the mixture was centrifuged to separate the peat moss particles, which was washed using deionized water and dried using an oven. The dried sample was ground and sieved at 80 mesh screen before it was used as an adsorbent. The experiments were accomplished in a batch system as a function of initial solution pH, contact time as well as peat moss dosage. The maximum copper removal, 94.8%, was obtained at a pH of 6, optimum adsorption-equilibrium time of 80 minutes, and peat moss dosage of 7.5 g/L. Irish peat moss as an economically effective adsorbent was satisfactorily employed to remove copper from synthetic water.

1. Introduction

Copper (Cu) can be found in high concentrations in the different industrial waste streams, such as etching, plastics, electroplating, and metal finishing [1, 2]. Furthermore, its compounds are widely used in the agricultural sector in order to treat plant diseases [3-5]. When the copper is released to the environment, particularly water, it can be either bounded to particles suspended in the water, free form, or carried in the surface in copper compounds form. Because of copper toxic properties even with low concentration, the effluent should be properly treated before discharging to any water body. Individuals could be exposed to a considerable amount of copper in drinking water above the USEPA limit of 1.3 ppm when there is corroding copper pipe with low pH [6, 7]. Copper concentration between 0.001 and 0.01 ppm can have lethal impacts on a wide range of marine organisms such as scallops, clams, and isopods [8, 9]. Regarding human impact, the ingestion of copper results in stomach cramps as well as...
nausea vomiting. Moreover, other effects have been reported such as respiratory tract irritation, diarrhea as well as a type of contact dermatitis [1, 8]. Thus, copper concentration in the waste stream should be alleviated to meet the standard limits. The severe water crises in different countries due to the increasing pollution loads [10, 11], climate changes [12-15], increasing population [16-18], and also the uneven distribution of rain [19-21], and cities contributed to the water pollution [22-26].

Hence, different methods have been used to remove metals from water, such as industrial coagulants [27-29], natural coagulants [30, 31], microorganisms [32, 33], adsorption [34-36], electrochemical units [37-39], and hybrid methods [40, 41]. However, these removal techniques have some drawbacks such as expensive, incomplete removal, the possibility of secondary contaminations, or the production of large volumes of sludge [42-47]. The latter drawback was the focus of many studies, where the sludge was used in the production of construction blocks [48, 49], mortars [50, 51], or modified concretes [52-54]. There has been considerable attention among researchers worldwide toward adsorption techniques to remove heavy metals as it has benefits outweigh its drawbacks such as cost, more flexibility, better efficiency, easy to operate, and insensitivity to toxic pollutants. An economically effective adsorbent with low-cost is material that can be founded in nature abundantly or waste/by-products from the waste industry such as biomass (as activated carbon) and bioabsorbents [30, 35].

Sphagnum peat mosses are commonly utilized in Agriculture. They consist of 120 species with the ability of soil conditioning or potting medium to planting. The peat moss functional groups in lignin ease to trap the metals on its surface. Several studies have been shown that the success of peat mosses application in removing pollutants from aqueous solution with no-treatment and no-activation required. On the other hand, others were reported different cleanup solvent when employing peat mosses. Therefore, the treatment of peat moss was recommended to lessen any interferences resulted from the dissolution of matrix components. The treatment increases the sorbent surface adsorption via mitigating the preadsorbed components [30].

The aim of this study is to determine the copper removal from synthetic water by utilizing Westland Irish peat moss as an economically effective adsorbent under different experimental conditions. Furthermore, it explores the effect of different pH values, contact times, and various adsorbent dosage effects. Copper has been selected as it exists in natural water via different industrial waste.

2. Method
Peat moss preparation was carried out according to the stated methods in the literature. The experiments were performed in a batch system. The Westland Irish peat moss sample, 250 g, was initially washed using 400 mL 0.01 M HCl solution for 30 minutes; shaken continuously using an orbital shaker (model: SLA-OS-200). Then, the peat moss was centrifuged at 3000 rpm for 5 minutes, the separated particles were washed again using deionized water several times until the pH increased to 7. The washed sample was dried at a temperature of 60 °C for 24 hours using an electric oven (Lichen, model: 202-00T). The dried sample was ground using a laboratory grinder (Model: HS-400Y) and about 100 g of Irish peat moss was sieved via 80 mesh screen. The average surface area of the produced peat moss was 204 m²/g that was measured using Macsorb surface area analyzers (model: HM-1210). Analytical grade CuSO₄ (supplied by Sigma-Aldrich) was dissolved in deionized water to have the desired concentration of Cu. Copper concentration was determined using a Thermo atomic absorption spectrophotometer (model: ICE-3300).

3. Results and discussion
3.1. Effect of pH
The pH value of the metal aqueous solution highly affects the adsorption mechanism [31]. It evaluates the surface charge of peat moss and the speciation of metal. The impact of the pH value on the copper adoption was investigated by adding 5 g/L of peat moss dose in 20 mg/L Cu with a temperature of 20 °C. The agitation speed was 150 rpm and the contact time was 60 minutes. The pH values were adjusted between 2 and 6 using 0.1 M HCl or 0.1 M NaOH. This range of pH was selected to prove that the
adsorption process is responsible to remove the copper since the copper ions could be withdrawn by precipitation as copper hydroxides for pH more than 6. Figure 1 is presented the removal efficiency of copper versus the pH values. Overall, the removal efficiency tends to increase with rising pH value. The copper removal was quite low (16.3%) at a pH value of 2. The low removal percentage of copper at this pH value could be explained by the peat moss surface was positively charged, which leads to electrostatic repulsion between both the surface and the copper charge. Another reason for low removal efficiency could be explained by the competition, in terms of adsorption sites, between hydrogen ions and copper ions. The copper removal was noticed to increase by rising pH values. This is because the negative charge of peat moss gradually increased, allowing the metal adsorption. The pH values from 3 to 5 showed the removal percentage of copper was maximized until it was stabilized at a pH of 6.

![Figure 1](image1.png)

Figure 1. Copper removal percentages (%) versus pH values.

3.2. Effect of contact time

The impact of the contact time between the Irish peat moss and a copper aqueous solution with a concentration of 20 mg/L and a pH of 6 is demonstrated in Figure 2. The peat moss dosage was 5 g/L at a temperature of 20 °C and the agitation speed was 150 rpm. As it can be observed that the removal efficiencies of copper increased rapidly with the contact time up to 80 minutes, after that, the removal efficiencies become slower, and maximum removal efficiency was obtained. At the end of the experiment, it was noticed that there was a slow adsorption rate. This could be explained by the saturation of the available adsorbing sites that have been reached which leads to a decrease in the number of vacant sites in the peat moss.

![Figure 2](image2.png)

Figure 2. Copper removal efficiency versus contact time.
3.3. **Effect of dose**

To investigate the impact of peat moss concentrations on copper adsorption, a solution of 20 mg/L of copper was placed into contact with various peat dosages (2.5, 5, 7.5, 10, and 20 g/L) at a pH of 6 with a temperature of 20 °C. Moreover, the contact time was 80 minutes and the agitation speed was 150 rpm. The copper removal efficiencies were plotted versus the dosage of peat moss as shown in Figure 3. The copper removal percentages were 38.9%, 78.6%, and 94.8% for 2.5, 5, and 7.5 g/L of peat, respectively, and particularly 100% for 10 and 20 g/L of peat. Therefore, the copper amount adsorbed onto peat moss increased with the rising of adsorbent dosage and Cu adsorption was essential total when the peat dosages were 10 and 20 g/L. The increase in copper removal efficiency could be explained by increasing the surface area of the peat moss and volume binding sites. According to findings, an optimum adsorption concentration of 7.5 g/L of the peat moss was chosen in the experiments.

![Graph showing copper removal percentage versus peat moss dosages.](image)

Figure 3. Copper removal percentage versus peat moss dosages.

The results obtained showed that the removal of heavy metals is influenced by the treatment time and other parameters, therefore it is necessary to monitor these parameters to optimize the removal of copper. Accordingly, the use of smart units could help to achieve this goal; smart units are usually provided with sensing systems [55, 56], therefore a suitable type of sensors could be used in this study, such as electromagnetic sensors [57, 58].

4. **Conclusions**

Copper removal from synthetic water via Irish peat moss as an economically effective adsorbent was evaluated. The experiments were implemented in a batch system as a function of initial solution pH, contact time, and peat moss dosage. The maximum copper adsorption capacity was optimum at a pH value of 6 with 80 minutes as the best contact time. Peat concentration of 7.5 g/L showed the highest copper removal efficiency of 94.8%. The findings of this work demonstrated that the Irish peat moss can be utilized for copper removal as a low-cost abundantly and locally available adsorbent. The results obtained showed that the removal of heavy metals is influenced by the treatment time and other parameters, therefore for future studies, it is necessary to monitor these parameters to optimize the removal of copper. Accordingly, the use of smart units could help to achieve this goal; smart units are usually provided with sensing systems, therefore a suitable type of sensors could be used in this study, such as electromagnetic sensors.
References

[1] Barakat M 2011 New trends in removing heavy metals from industrial wastewater *Arabian journal of chemistry* 4 361-77.

[2] Hashim K S, Al-Khaddar R, Shaw A, Kot P, Al-Jumeily D, Alwash R and Aljeferi M H 2020 Electrocoagulation as an eco-friendly River water treatment method. *In Advances in Water Resources Engineering and Management* (Berline: Springer).

[3] Hashim K S, Al-Saati N H, Alquzweeni S S, Zubaidi S L, Kot P, Kraidi L, Hussein A H, Alkhaddar R, Shaw A and Alwash R 2019 Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)* 584.

[4] Alyafei A, Al-Kizwini R S, Hashim K S, Yeooh D, Gkontou M, Al Khaddar R, Al-Faluji D and Zubaidi S L 2020 Treatment of effluents of construction industry using a combined filtration-electrocoagulation method *IOP Conference Series: Materials Science and Engineering* 888.

[5] Hashim K S, Shaw A, AlKhaddar R, Kot P and Al-Shamma’a A 2021 Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment *Journal of Cleaner Production* 280

[6] Abdulla G, Kareem M M, Hashim K S, Muradov M, Kot P, Mubarak H A, Abdellatif M and Abdulhadi B 2020 Removal of iron from wastewater using a hybrid filter *IOP Conference Series: Materials Science and Engineering* 888.

[7] Hashim K S, Hussein A H, Zubaidi S L, Kot P, Kraidi L, Alkhaddar R, Shaw A and Alwash R 2019 Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method *2nd International Scientific Conference* 8.

[8] Jumbe A S and Nandini N 2009 Heavy metals analysis and sediment quality values in urban lakes *American Journal of Environmental Sciences* 5 678.

[9] Aqeel K, Mubarak H A, Amoako-Atta J, Abdul-Rahaim L A, Al Khaddar R, Abdellatif M, Al-Janabi A and Hashim K S 2020 Electrochemical removal of brilliant green dye from wastewater *IOP Conference Series: Materials Science and Engineering* 888.

[10] Hashim K S, Al-Saati N H, Hussein A H and Al-Saati Z N 2018 An investigation into the level of heavy metals leaching from canal-dreged sediment: a case study metals leaching from dreged sediment *First International Conference on Materials Engineering & Science* 8.

[11] Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M and Al-Khaddar R 2021 Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study *Science of The Total Environment* 756 1-16.

[12] Zubaidi S L, Al-Bugharbee H, Muhsen Y R, Hashim K, Alkhaddar R M, Al-Jumeily D and Aljaaf A J 2019 The Prediction of Municipal Water Demand in Iraq: A Case Study of Baghdad Governorate 12th *International Conference on Developments in eSystems Engineering (DeSE)* 3.

[13] Zubaidi S L, Kot P, Hashim K, Alkhaddar R, Abdellatif M and Muhsin Y R 2019 Using LARS–WG model for prediction of temperature in Columbia City, USA *IOP Conference Series: Materials Science and Engineering* 584.

[14] Zanki A K, Mohammad F H, Hashim K S, Muradov M, Kot P, Kareem M M and Abdulhadi B 2020 Removal of organic matter from water using ultrasonic-assisted electrocoagulation method *IOP Conference Series: Materials Science and Engineering* 888.

[15] Grmasha R A, Al-sareji O J, Salman J M, Hashim K S and Jasim I A 2020 Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Street Dust with Three Land-Uses of Babylon Governorate, Iraq: Distribution, Sources, and Health Risk Assessment *Journal of King Saud University - Engineering Sciences* 33 1-18.

[16] Zubaidi S, Al-Bugharbee H, Ortega Martorell S, Gharghan S, Olier I, Hashim K, Al-Bdairi N and Kot P 2020 A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach *Water* 12 1-17.

[17] Zubaidi S L, Abdulkareem I H, Hashim K S, Al-Bugharbee H, Ridha H M, Gharghan S K, Al-Qaim F F, Muradov M, Kot P and Alkhaddar R 2020 Hybridised Artificial Neural Network model
with Slime Mould Algorithm: A novel methodology for prediction urban stochastic water demand. *Water* 12: 1-18.

[18] Zubaidi S L, Al-Bugharbee H, Muhsin Y R, Hashim K and Alkhaddar R 2020 Forecasting of monthly stochastic signal of urban water demand: Baghdad as a case study *IOP Conference Series: Materials Science and Engineering* 888.

[19] Zubaidi S L, Hashim K, Ethaib S, Al-Bdairi N S S, Al-Bugharbee H and Gharghan S K 2020 A novel methodology to predict monthly municipal water demand based on weather variables scenario *Journal of King Saud University-Engineering Sciences* 32: 1-18.

[20] Zubaidi S L, Ortega-Martorell S, Al-Bugharbee H, Olier I, Hashim K S, Gharghan S K, Kot P and Al-Khaddar R 2020 Urban Water Demand Prediction for a City that Suffers from Climate Change and Population Growth: Gauteng Province case study *Water* 12: 1-18.

[21] Zubaidi S L, Ortega-Martorell S, Kot P, Alkhaddar R M, Abdellatif M, Gharghan S K, Ahmed M S and Hashim K 2020 A Method for Predicting Long-Term Municipal Water Demands Under Climate Change *Water Resources Management* 34: 1265-79.

[22] Farhan S L, Jasim I A and Al-Mamoori S K 2019 The transformation of the city of Najaf, Iraq: Analysis, reality and future prospects *Journal of Urban Regeneration & Renewal* 13: 160-71.

[23] Farhan S, Akef V and Nasar Z 2020 The transformation of the inherited historical urban and architectural characteristics of Al-Najaf's Old City and possible preservation insights *Frontiers of Architectural Research*.

[24] Farhan S L and Nasar A Z 2021 Urban Identity in the Pilgrimage Cities of Iraq: Analysis Trends of Architectural Designers in the City of Karbala *J. Urban Regen. Renew* 14: 2-14.

[25] Abdulredha M, Rafid A, Jordan D and Alattabi A 2017 Facing up to waste: how can hotel managers in Kerbala, Iraq, help the city deal with its waste problem? *Procedia engineering* 196: 771-8.

[26] Alattabi A W, Harris C, Alkhaddar R, Alzeyadi A and Abdulredha M 2017 Online Monitoring of a sequencing batch reactor treating domestic wastewater *Procedia engineering* 196: 800-7.

[27] Al-Saati N H, Hussein T K, Abbas M H, Hashim K, Al-Saati Z N, Kot P, Sadique M, Aljefery M H and Carnacina I 2019 Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study *Desalination and Water Treatment* 150: 406-12.

[28] Omran I I, Al-Saati N H, Hashim K S, Al-Saati Z N, Patryk K, Khaddar R A, Al-Jumeily D, Shaw A, Ruddock F and Aljefery M 2019 Assessment of heavy metal pollution in the Great Al-Mussaib irrigation channel *Desalination and Water Treatment* 168: 165-74.

[29] Al-Jumeily D, Hashim K, Alkaddar R, Al-Tufaily M and Lunn J 2019 Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future) *11th International Conference on Developments in eSystems Engineering (DeSE)*.

[30] Abdulraheem F S, Al-Khafaji Z S, Hashim K S, Muradov M, Kot P and Shubbar A A 2020 Natural filtration unit for removal of heavy metals from water *IOP Conference Series: Materials Science and Engineering* 888.

[31] Alenezi A K, Hassan H A, Hashim K S, Amoako-Attah J, Gkantou M, Muradov M, Kot P and Abdulhadi B 2020 Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach *IOP Conference Series: Materials Science and Engineering* 888.

[32] Alattabi A W, Harris C, Alkhaddar R, Alzeyadi A and Hashim K 2017 Treatment of Residential Complexes’ Wastewater using Environmentally Friendly Technology *Procedia Engineering* 196: 792-9.

[33] Alenezi A K, Hasan H A, Hashim K S, Ortoneda-Pedrola M and Phipps D 2017 Improving sludge settleability by introducing an innovative, two-stage settling sequencing batch reactor *Journal of Water Process Engineering* 20: 207-16.

[34] Alenezi A K, Hasan H A, Hashim K S, Amoako-Attah J, Gkantou M, Muradov M, Kot P and Abdulhadi B 2020 Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution *IOP Conference Series: Materials Science and Engineering* 888.
[35] Alhendal M, Nasir M J, Hashim K S, Amoako-Attah J, Al-Faluji D, Muradov M, Kot P and Abdulhadi B 2020 Cost-effective hybrid filter for remediation of water from fluoride IOP Conference Series: Materials Science and Engineering 888.

[36] Hashim K S, Ewadh H M, Muhsin A A, Zubaidi S L, Kot P, Muradov M, AlJefery M and Al-Khaddar R 2020 Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies Water Science and Technology 83 1-17.

[37] Emamjomeh M M, Moussazadeh M, Mokhtari N, Jamali H A, Makkabadi M, Naghdali Z, Hashim K S and Ghanbari R 2020 Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes Separation Science and Technology 55 3184-94.

[38] Mohammed A-H, Hussein A H, Yeboah D, Al Khaddar R, Abdulhadi B, Shubbar A A and Hashim K S 2020 Electrochemical removal of nitrate from wastewater IOP Conference Series: Materials Science and Engineering 888.

[39] Hashim K, Kot P, Zubaid S, Alwash R, Al Khaddar R, Shaw A, Al-Jumely D and AlJefery M 2020 Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater Journal of Water Process Engineering 33 101079-86.

[40] Al-Marri S, AlQuzweeni S S, Hashim K S, AlKhaddar R, Kot P, AlKizwini R S, Zubaidi S L and Al-Khafaji Z S 2020 Ultrasonic-Electrocoagulation method for nitrate removal from water IOP Conference Series: Materials Science and Engineering 888.

[41] Hassan Alnaimi I J I, Abuduljaleel Al-Janabi, Khalid Hashim, Michaela Gkantou, Salah L. Zubaidi, Patryk Kot, Magomed Muradov 2020 Ultrasonic-electrochemical treatment for effluents of concrete plants Ultrasonic-electrochemical treatment for effluents of concrete plants IOP Conference Series Materials Science and Engineering 888.

[42] Abdulhadi B A, Kot P, Hashim K S, Shaw A and Khaddar R A 2019 Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process First International Conference on Civil and Environmental Engineering Technologies (ICCEET) 584.

[43] Hashim K S, Khaddar R A, Jasim N, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W, Abdulredha M and Alawsh R 2019 Electrocoagulation as a green technology for phosphate removal from River water Separation and Purification Technology 210 135-44.

[44] Hashim K S, Ali S S M, AlKifaija J K, Kot P, Shaw A, Al Khaddar R, Idowu I and Gkantou M 2020 Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor Chemosphere 247 125868-75.

[45] Idowu I A, Atherton W, Hashim K, Kot P, Alkhaddar R, Alo B I and Shaw A 2019 An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences Waste Management 87 761-71.

[46] Abdulredha M, Rafid A, Jordan D and Hashim K 2017 The development of a waste management system in Kerbala during major pilgrimage events: determination of solid waste composition Procedia Engineering 196 779-84.

[47] Abdulredha M, Al Khaddar R, Jordan D, Kot P, Abdulridha A and Hashim K 2018 Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression Waste Management 77 388-400.

[48] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust Journal of Building Engineering 32 1-17.

[49] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Developing One-Part Alkali-Activated metakaolin/natural pozzolan Binders using Lime Waste as activation Agent Advances in Cement Research 32 1-38.

[50] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredha M, Masoodi Z A, Sadique M and Hashim K 2020 Experimental data on compressive strength and ultrasonic pulse velocity
properties of sustainable mortar made with high content of GGBFS and CKD combinations Data in Brief 31 105961-72.

[51] Shubbar A A, Sadique M, Nasr M S, Al-Khafaji Z S and Hashim K S 2020 The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash Karbala International Journal of Modern Science 6 1-23.

[52] Shubbar A A, Jafer H, Dulaimi A, Hashim K, Atherton W and Sadique M 2018 The development of a low carbon binder produced from the ternary blending of cement, ground granulated blast furnace slag and high calcium fly ash: An experimental and statistical approach Construction and Building Materials 187 1051-60.

[53] Shubbar A A, Al-Shaer A, AlKizwini R S, Hashim K, Hawesah H A and Sadique M 2019 Investigating the influence of cement replacement by high volume of GGBS and PFA on the mechanical performance of cement mortar First International Conference on Civil and Environmental Engineering Technologies (ICCEET) 584.

[54] Shubbar A A, Sadique M, Shanbara H K and Hashim K 2020 The Development of a New Low Carbon Binder for Construction as an Alternative to Cement. In Advances in Sustainable Construction Materials and Geotechnical Engineering (Berlin: Springer).

[55] Ryecroft S, Shaw A, Fergus P, Kot P, Hashim K, Moody A and Conway L 2019 A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna Sensors 19 1813-23.

[56] Ryecroft S P, shaw A, Fergus P, Kot P, Hashim K and Conway L 2019 A Novel Gesomin Detection Method Based on Microwave Spectroscopy 12th International Conference on Developments in eSystems Engineering (DeSE)

[57] Gkantou M, Muradov M, Kamaris G S, Hashim K, Atherton W and Kot P 2019 Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection Sensors 19 5175-89.

[58] Teng K H, Kot P, Muradov M, Shaw A, Hashim K, Gkantou M and Al-Shamma’a A 2019 Embedded Smart Antenna for Non-Destructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete Sensors 19 547-59.