Urban warming and future air-conditioning use in an Asian megacity: importance of positive feedback

Takane, Yuya, Kikegawa, Yukihiro, Hara, Masayuki and Grimmond, C. Sue B. (2019) Urban warming and future air-conditioning use in an Asian megacity: importance of positive feedback. npj Climate and Atmospheric Science, 2 (1). 39. ISSN 2397-3722 doi: https://doi.org/10.1038/s41612-019-0096-2 Available at https://centaur.reading.ac.uk/87076/

It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing.

Published version at: http://dx.doi.org/10.1038/s41612-019-0096-2
To link to this article DOI: http://dx.doi.org/10.1038/s41612-019-0096-2

Publisher: Nature Publishing Group
Urban warming and future air-conditioning use in an Asian megacity: importance of positive feedback

Yuya Takane (✉), Yukihiro Kikegawa, Masayuki Hara and C. Sue B. Grimmond

The impact of feedback between urban warming and air-conditioning (AC) use on temperatures in future urban climates is explored in this study. Pseudo-global warming projections are dynamically downscaled to 1 km using a regional climate model (RCM) coupled to urban canopy and building energy models for current and six future global warming (ΔGW) climates based on IPCC RCP8.5. Anthropogenic heat emissions from AC use is projected to increase almost linearly with ΔGW causing additional urban warming. This feedback on urban warming reaches 20% of ΔGW in residential areas. This further uncertainty in future projections is comparable in size to that associated with: a selection of emission scenarios, RCMs, and urban planning scenarios. Thus this feedback should not be neglected in future urban climate projections, especially in hot cities with large AC use. The impact of the feedback during the July 2018 Japanese heat waves is calculated to be 0.11 °C.

npj Climate and Atmospheric Science (2019) 2:39 ; https://doi.org/10.1038/s41612-019-0096-2

INTRODUCTION

With the global proportion of people living in cities expected to exceed two-thirds by 2050, the urban climate affects many aspects of human life, including energy demand, health and the economy. Therefore, urban climate projections that include extreme weather events, such as heat waves from climate change, are of interest, given the potentially wide range of social and scientific impacts on human activities. These projections are also important when producing strategies to mitigate urban heat and for adapting to urban climate change. For example, given that US urban temperatures are predicted to increase by 1–2 °C due to climate change, energy demand is predicted to increase by 5–25%. Therefore, effective adaptation strategies that include measures to cool the urban climate and built environment that do not result in further emissions of heat or greenhouse gases (GHGs) will need to be produced and assessed.

Of the two main methods to obtain fine horizontal resolution projections of climate, the dynamical (rather than statistical) downscaling is used here. Several previous dynamical downscaling studies of future urban climate have used regional climate models (RCM) with a coupled urban canopy model (UCM) (hereafter RCM/UCM). For example, Kusaka et al. predicted the 2070s summertime climate for three Japanese megacities using the Weather Research and Forecasting (WRF) model with the single-layer UCM, assuming pseudo-global warming (PGW) at a 3-km resolution. This future climate projection (dynamical downscaling) method uses reanalysis data with the climatic change component from global climate models (GCMs; see ‘Methods’ section). Similar methods have been used for cities in Asia, Europe, North America and Oceania. In these RCM/UCM studies, anthropogenic heat (Qₐ) is an important term in the urban surface heat balance but is assumed to have a constant diurnal pattern (e.g. Fig. 3 of Kusaka et al.). Thus Qₑ impact on future urban temperatures is kept the same as current climate if all other factors (e.g. urban structure and human activities) do not change. This assumption may be reasonable in cities with little air-conditioning (AC) use (e.g. northern European cities); however, where AC use is already common (e.g. Asian cities), it may not.

If cities experience positive feedback from interactions between urban warming and AC use, this assumption would not hold. When air temperatures increase, energy consumption associated with AC use surges (Fig. 1a, Path 1) (i.e. increase in Qₑ from AC use (Qₑ,ₐc)). In turn, the energy released outdoors will enhance urban warming (Fig. 1a, Path 2). Using a simple one-dimensional mixing-layer model, Ohashi et al. estimated the increase in summertime air temperature from AC waste heat in Osaka City to be +0.36 to +0.72 °C. Previous studies focus on only one side of this process. Most consider impacts of urban warming on energy consumption (Fig. 1a, Path 1). Effects of Qₑ on urban temperature (Fig. 1a, Path 2) have been studied with limited-area models. However, the amount of ‘additional warming’ from urban warming–AC feedback has yet to be assessed. Hence, the impact of this feedback process on future urban climate remains unknown.

In this study, we define the temperature difference caused by AC use as δTₐc (Fig. 1b, orange):

$$\delta T_{\text{AC}} = \delta T_{\text{AC,FB}} + \delta T_{\text{AC,FB}}$$

where δTₐc is the temperature difference caused by AC use but without AC feedback (Fig. 1b purple, without Path 2 Fig. 1a [no-Qₑ,ₐc simulation], see ‘Methods’ [Model settings]). The ‘additional temperature difference’ caused by the feedback process is δTₐc → FB (Fig. 1b, green, with Path 2 Fig. 1a). In this study, we use model simulations to determine the different components (Fig. 1b and ‘Methods’ provide more details).

The Salamanca et al. study WRF/BEPS/UCM (building effect parameterisation and building energy model) simulations, with and without Qₑ,ₐc release, allows δTₐc to be estimated (Fig. 1b, reference (R) Salamanca et al., Rₐc). The 10-day Phoenix heat wave study obtained an extreme δTₐc of 1.0 °C at night. However, as they did not separate δTₐc, δTₐc → FB remains unknown. Given that δTₐc → FB may enhance electricity consumption (hereafter...
Fig. 1 Processes simulated through numerical experiments. a The interaction between the indoor energy use by air-conditioning (AC) can feedback (FB) on the outdoor environment (e.g. enhancing the temperature T, Path 2), which in turn enhances AC energy use (Path 1). b To evaluate these impacts, a series of simulations are undertaken: (i) control case (AC \rightarrow FB) on the outdoor environment (e.g. enhancing the temperature T); (ii) no-Q$_{AC}$ case (AC \neq FB), for current and future climates. From analysing the simulations, the trends (arrows) caused by global warming (ΔT_{GW}) (grey), urban warming calculated by AC \rightarrow FB ($\Delta T_{AC FB}$) (red) and AC \neq FB ($\Delta T_{AC FB}$) (blue) and urban warming if Q$_{AC}$ or Q$_{F}$, in the future are the same as in the current climate ($\Delta T_{Current}$) (black) are shown. Temperature differences are caused by AC use (orange), anthropogenic heat emitted by AC use without feedback (purple) and 'additional' impact of Q$_{AC}$ on temperature ($\delta T_{AC FB}$), which are impacted by the 'additional' urban warming difference between the AC \rightarrow FB and AC \neq FB ($\Delta T_{AC FB}$) (green). Climate simulations were undertaken for eleven August periods for current and future climates by AC \rightarrow FB (red circles) and AC \neq FB (blue circles). Approaches adopted by RS14,22 RT15,40 RT17 (asterisks) are indicated. Inset shows feedback process caused by the interaction between outdoor weather change (urban warming due to climate change) and air-conditioning (AC) use. Here, Δ (e.g. ΔT) is used to distinguish the difference between current and future climate and between cases with the same ΔT_{GW}, δ is used (e.g. δT is temperature difference between AC \rightarrow FB and AC \neq FB at current climate or a future climate).

$\delta E_{AC FB}$, we do not have a basis for understanding these changes with climate change (Fig. 1b, red).

With increases in both global temperatures37 and AC demand, it is important to explore this positive feedback phenomenon and evaluate its impact on the urban climate. Projected increases in AC demand and urban expansion may increase the feedback effect enhancing future projections uncertainties, whereas improved AC performance may offset demand from a warmer ambient environment. These could be as important as other uncertainties, such as the selection of emission scenarios, RCMs, urban planning scenarios and so on. Thus the feedback process consequently affects the impact assessment results and policy decisions associated with the Paris Agreement39.

Direct feedbacks can be calculated from climate projections for cities with AC usage when the RCM/UCM is coupled to a BEM. Electricity demand and summer thermal comfort projections for Nagoya in the 2070s40 used WRF with coupled multi-layer UCM (CM)41 and BEM19 (WRF/CM+BEM12) (Fig. 1b, R$_{11}$). Impacts of urban expansion and global warming on future urban temperatures and cooling demand for the Phoenix and Tucson metropolitan areas43 explored with WRF/BEP$^{1}-$BEM (Fig. 1b, R$_{11}$) did not assess the ‘additional warming’ from positive feedbacks ($\delta T_{AC FB}$) (Fig. 1b, green) but did determine the amount of urban warming from current and future climate (ΔT) and the future electricity demand. This study addresses:

1. What is the magnitude of the impact (and associated uncertainty) associated with such a feedback ($\delta T_{AC FB}$ and $\delta E_{AC FB}$) on future urban climate (Fig. 1b, green)?
2. How is $\Delta T_{AC FB}$ and $\delta E_{AC FB}$ changed by climate change (i.e. increase/decrease, linear/nonlinear) (Fig. 1b, red)?

To address these, objectives WRF/BEP$^{1}-$BEM is used (‘Methods’). From the results, we propose a simple parameterisation to account for $\delta T_{AC FB}$ and $\delta E_{AC FB}$ in urban climate studies. We focus on Japan’s second-largest megacity, Osaka (Fig. 2, Supplementary Fig. 2), as it experiences the warmest summertime mean temperatures in Japan44. Osaka’s humid climate (normal annual precipitation (1981–2010) is 1279 mm) results in a more significant daytime urban heat island intensity than other dry climate cities45.

RESULTS
Changes in $Q_{F,AC}$ and urban air temperature (ΔT)

The numerical model (see ‘Methods’) is verified (see Supplementary Note) for wooden detached dwellings, fireproof apartments and commercial and office buildings (hereafter simply office). Given the similarity of the results between the two dwelling types, only the fireproof apartments (hereafter simply residential) results are presented.
Fig. 2 Horizontal variation of August monthly mean (11 years) (a–g) anthropogenic heat flux (Q_{FC}, AC), (h–n) 2 m air temperature and (o–t) $\delta T_{\text{AC} \rightarrow \text{FB}}$: a–g at 14:00 local time with city administrative boundaries (lines) of Osaka City (grey square in h) for a current climate and ΔT_{GW}. b +0.5 °C, c +1.0 °C, d +1.5 °C, e +2.0 °C, f +2.5 °C and g +3.0 °C. h–n As a–g, daily mean with contour intervals of 2 °C (white lines). o–t At 05:00 local time with contour interval 0.2 °C (white lines) for o +0.5 °C, p +1.0 °C, q +1.5 °C, r +2.0 °C, s +2.5 °C and t +3.0 °C.
The mean Q_{AC} at 14:00 local time (LT) (i.e. close to a daily maximum of air temperature) in August is larger for office than residential areas for all seven control simulations (hereafter AC → FB) (Fig. 2a–g and ‘Methods’). Q_{AC} increases from current to future climates (ΔQ_{AC}) as ΔT_{GW} increases, which is associated with additional AC use (Fig. 2a–g) causing a close to linear increase in both the office ($\Delta Q_{\text{AC}} / \Delta T_{\text{GW}} = 1.76 \text{ W m}^{-2} \text{ °C}^{-1}$) and residential areas ($3.22 \text{ W m}^{-2} \text{ °C}^{-1}$). When ΔT_{GW} is $+3.0 \text{ °C}$, Q_{AC} is 1.37 (office) to 1.81 (residential) times larger than for current climate conditions (Supplementary Table 1).

The mean August 2 m air temperature (24 h, 11 years) in Osaka is warmer than the surrounding areas in both current and future climates (Fig. 2h–n). The temperature difference between the AC → FB and the no-Q_{AC} case (AC ≠ FB) simulations increases along with ΔT_{GW} (Fig. 3), indicating that urban heat will increase over time. This is caused by ΔQ_{AC} with larger differences in the residential than in the office areas.

The differences between simulations with ($\Delta T_{\text{AC} \rightarrow \text{FB}}$) and without ($\Delta T_{\text{AC} \rightarrow \text{FB}}$) anthropogenic heat fluxes allows the $\Delta T_{\text{AC} \rightarrow \text{FB}}$ to be determined (Figs. 1a 2a–t and 3). The $\Delta T_{\text{AC} \rightarrow \text{FB}}$ (05:00, 11 August months) and ΔT_{GW} increase and the $\Delta T_{\text{AC} \rightarrow \text{FB}}$ in Osaka’s surrounding areas are higher than those of the centre of Osaka in both current and future climates (Fig. 2a–t). The diurnal variation of the $\Delta T_{\text{AC} \rightarrow \text{FB}}$ in residential areas (Fig. 3b) has two main features:

1. $\Delta T_{\text{AC} \rightarrow \text{FB}}$ for current and future climates are relatively small during daytime (notably 09:00–18:00) but larger at night (notably 18:00–06:00), with a peak around 05:00; and
2. $\Delta T_{\text{AC} \rightarrow \text{FB}}$ increases gradually as ΔT_{GW} increases (+0.5 °C to +3.0 °C) during the night, indicating that urban warmth will increase overnight.

The relatively small daytime $\Delta T_{\text{AC} \rightarrow \text{FB}}$, despite the relatively large daytime Q_{AC}, is because of the relatively high daytime mixed layer. As Q_{AC} is mixed in a large volume, the impact of Q_{AC} on surface air temperature is reduced. At night, Q_{AC} is smaller, but the mixed layer height is lower. Similar results in previous work support this proposed mechanism.

The relation between ΔT_{GW} and downscaled urban warming ($\Delta T_{\text{AC} \rightarrow \text{FB}}$) has two main features for office areas (Fig. 3d):

1. $\Delta T_{\text{AC} \rightarrow \text{FB}}$ tends to increase linearly with ΔT_{GW}. This increase is from a feedback: ΔT_{GW} modifies ΔQ_{AC} contributing to additional urban warming (Fig. 1a, Path 1 → Path 2)

\[\Delta T_{\text{GW}} \rightarrow \Delta Q_{\text{AC}} \rightarrow \Delta T_{\text{AC} \rightarrow \text{FB}} \]

2. $\Delta T_{\text{AC} \rightarrow \text{FB}}$ has a linear trend, as does $\Delta T_{\text{AC} \rightarrow \text{FB}}$.

This is the first study to estimate the ‘additional’ positive feedback impact on future climate associated with AC. We conclude that $\Delta T_{\text{AC} \rightarrow \text{FB}}$ has an approximately linear trend (Fig. 3c–f, red). The resulting AC → FB case slope ($\Delta T_{\text{AC} \rightarrow \text{FB}} / \Delta T_{\text{GW}}$) is $1.63 \text{ °C} \text{ °C}^{-1}$ for the office areas. This is larger than for the AC ≠ FB case (1.13 °C °C$^{-1}$). These results suggest that it is relatively easy to estimate (parameterise) the impact of the feedback.

The two features in the monthly mean (Fig. 3d) are more evident at 05:00 (Fig. 3c) with $\Delta T_{\text{AC} \rightarrow \text{FB}} / \Delta T_{\text{GW}} = 1.29 \text{ °C} \text{ °C}^{-1}$, which is larger than for case AC ≠ FB (1.17 °C °C$^{-1}$). At 14:00 feature (1), $\Delta T_{\text{AC} \rightarrow \text{FB}}$ and $\Delta T_{\text{AC} \rightarrow \text{FB}}$ are essentially the same, and $\Delta T_{\text{AC} \rightarrow \text{FB}}$ does not increase with ΔT_{GW}.

The daily average of normalised $\delta T_{\text{AC} \rightarrow \text{FB}}$ (see ‘Methods’) is roughly constant (3–5%) and not dependent on ΔT_{GW} for the office area (Supplementary Fig. 1a). The average of normalised $\delta T_{\text{AC} \rightarrow \text{FB}}$ at 05:00 increases from 3% (+0.5 °C) to 10% (+3.0 °C) as ΔT_{GW} increases (Supplementary Fig. 1a, Supplementary Table 1).
Results for the residential area are similar to the office area, but feature (1) is more evident, especially at 05:00 (Fig. 3e, f). The $\Delta T_{AC FB}/\Delta T_{GW}$ (1.38 °C−1) is larger than the AC ≠ FB case (1.16 °C−1). As AC is used 24 h per day in residential areas, this cumulatively contributes more to warming than in office areas. The daily average of normalised $\Delta T_{AC FB}$ increases slightly from +0.5 to +3.0 °C, reaching 8% (at +3.0 °C). Thus about 0.25 °C additional urban warming is caused by the feedback when ΔT_{GW} is +3.0 °C in the residential area. The normalised $\Delta T_{AC FB}$ at 05:00 increases from 8% (at +0.5 °C) to 20% (at +3.0 °C). This means that about 0.6 °C additional urban warming is caused by the feedback when ΔT_{GW} is +3.0 °C (Fig. 3e).

DISCUSSION

Importance of the feedback in adapting to future urban climate change

The choice of emission scenario causes uncertainty in projections. For example, the 2070s August mean urban temperatures in Osaka in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios with the A2 scenario projected a 0.3 °C higher than A1b. Doan and Kusaka's urban warming projections (current to 2050s) for greater Ho Chi Minh City based on IPCC representative concentration pathway 4.5 (RCP4.5) and RCP8.5 scenarios found different scenarios to cause urban warming differences of 0.5 °C. The feedback uncertainty (−0.25 °C for residential areas when $\Delta T_{GW} = +3.0 °C$) is comparable to these emission scenario differences of 0.3 and 0.5 °C, respectively (Table 1a). Further uncertainty arises from the RCM choice. Kusaka et al.'s August 2050s urban temperature projections in central Tokyo, using WRF and NHRCM (non-hydrostatic model of the Japan Meteorological Agency), had a 10-year mean temperature increase uncertainty between RCMs of −0.2 °C (i.e. like the feedback reported here, see Table 1a).

Our work shows $\Delta T_{AC FB}$ could reach 0.25 °C in residential areas. This is comparable to the 0.3–0.5 °C century−1 estimated global warming in Japan. This feedback impact of 0.25 °C in residential areas is comparable to urban planning scenarios (Adachi et al., Kusaka et al.) for ‘dispersed’ (−0.34 and 0.1 °C, respectively) and ‘compact’ (−0.1 and 0.4 °C, respectively) cities and future urbanisation on temperature of 0.5 °C−1 (Table 1a).

The feedback impact is small in the daytime but large nocturnally, increasing with ΔT_{GW} (Fig. 3). The normalised $\Delta T_{AC FB}$ at 05:00 increases with ΔT_{GW}: 10% in the office areas and 20% in the residential areas, when ΔT_{GW} is +3.0 °C (Supplementary Fig. 1). These results suggest that mitigating the feedback process before the impact becomes large may be an effective strategy to adapt to climate change in cities as the feedback effect could be comparable to those of past global warming, affecting urban planning scenarios. For example (Supplementary Discussion), the feedback uncertainty for a ΔT_{GW} of +2.0 °C is ~10 years (Fig. 4b, Table 1b), if we can stop the feedback technologically (e.g. improved coefficient of performance (COP), geothermal energy use) we could postpone a +2.0 °C world by about 10 years.

Application: $\Delta T_{AC FB}$ and $\delta T_{AC FB}$ estimates for the recent heat waves in Japan

As shown (‘Results’), $\Delta T_{AC FB}$ and $\delta T_{AC FB}$ have near linear trends with ΔT_{GW}. Also $\Delta T_{AC FB}$ and $\delta T_{AC FB}$ are close to linear with $\Delta T_{AC FB}$. This suggests that to estimate (parameterise) $\delta T_{AC FB}$ and $\delta T_{AC FB}$ for other future urban climates or for specific events (e.g. heat waves) is straightforward. Table 2 shows gradients (a) of linear regression (y = ax) between $\Delta T_{AC FB}$ (x) and $\Delta T_{AC FB}$ (y). Here we estimate the $\Delta T_{AC FB}$ and $\delta T_{AC FB}$ for the recent heat waves of July 2018 and August 2013 in Japan using our proposed linear relations to illustrate an application.

The 2013 summer was the warmest on record for Japan (statistics since 1946), with 41.0 °C recorded in western Japan (Shimanto City). In Osaka City, the August monthly mean (30.0 °C) was 0.99 °C higher than the 11-year mean (2000–2010). July 2018 was one of the hottest Julys in Japan since 1946, with Osaka’s monthly mean temperature (29.5 °C) 1.63 °C higher than the 11-year mean (2000–2010). Therefore, August 2013 and July 2018 roughly correspond to situations when $\Delta T_{AC FB} = +1.0 °C$ and +1.5 °C, respectively. Figure 3a, b shows a diurnal variation of the $\delta T_{AC FB}$ for the two heat waves estimated by linear relations (Table 2a). The $\delta T_{AC FB}$ for the two heat waves during the night to morning are higher than that for the daytime, especially in the residential areas. The 24-h mean $\delta T_{AC FB}$ for July 2018 is 0.11 °C in the residential areas, which is higher than the 0.07 °C of August 2013. Similarly, the 24-h mean $\delta EC_{AC FB}$ for July 2018 is 0.05 W floor−m−2, which is higher than 0.03 W floor−m−2 of August 2013. Estimates of $\delta T_{AC FB}$ and $\delta EC_{AC FB}$ could be easily assessed for other heat waves and/or future urban climates in hot cities where significant AC use is common.

Summary

Here a positive feedback from the interaction between urban warming and AC use is identified and quantified. Analysis of simulations for current and six future climate scenarios (global warming: ΔT_{GW}) is undertaken. For the latter, CMIP5 GCMs simulations with the highest IPCC GHG emissions scenario (RCP8.5) were used. The megacity of Osaka is analysed for August when AC use is at its greatest. From this, it is concluded that:

(i) Anthropogenic heat emissions from AC use (Q_{AC}) are predicted to increase linearly with ΔT_{GW} from current to future climates. Monthly total Q_{AC} in commercial & office and residential areas are projected to be 1.37 and 1.81 times larger than current climate conditions when ΔT_{GW} is +3.0 °C, respectively;

(ii) This represents a feedback process from current to future climate:

$$\Delta T_{GW} \rightarrow \Delta Q_{AC} (Q_{AC} increase) \rightarrow \delta T_{AC FB} \rightarrow \delta EC_{AC FB} \rightarrow \delta EC_{AC FB} \rightarrow EC \text{ increase from the feedback}$$

Urban warming calculated when anthropogenic heat fluxes are permitted [case AC → FB ($\Delta T_{AC FB}$)] is greater than when they are not included [case AC ≠ FB ($\Delta T_{AC FB}$)]. The difference between these two [$\Delta T_{AC FB}$] provides $\delta T_{AC FB}$. This increases almost linearly with ΔT_{GW} suggesting urban temperatures will increase faster than global warming due to the increase of the anthropogenic heating (assuming all other characteristics of the city remain constant) in future climates. The normalised $\delta T_{AC FB}$ at 05:00 (LT) has the larger increase with ΔT_{GW}. This reaches 10% of ΔT_{GW} in office areas and 20% in residential area. Thus about 0.3 °C (office) and 0.6 °C (residential) additional urban warming is caused by the feedback when ΔT_{GW} is +3.0 °C. The $\delta T_{AC FB}$ is expected to increase EC through a feedback process:

$$\Delta T_{GW} \rightarrow \Delta Q_{EC} (Q_{EC} increase) \rightarrow \delta T_{AC FB} \rightarrow \delta EC_{AC FB} \rightarrow \delta EC_{AC FB} \rightarrow EC \text{ increase from the feedback}$$

The EC increase calculated by case AC → FB ($\delta EC_{AC FB}$) is greater than that calculated by case AC ≠ FB ($\delta EC_{AC FB}$). The difference between these ($\delta EC_{AC FB} - \delta EC_{AC FB}$): $\delta EC_{AC FB} \rightarrow EC \text{ increased linearly with } \Delta T_{GW}$.

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2019) 39
Table 1. Uncertainties in summer urban climate simulation projections: a Temperatures and b time (years) for the indicated warming to occur with the GCMs and the feedback

Uncertainty	Feedback \((\delta T_{AC\rightarrow FB}) \) when \(\Delta T_{GW} = +3.0^\circ C \)	IPCC GHG emission scenarios	RCMs (WRF and NHRCM)	
Temperature (°C)	0.25	0.3	0.5	0.2
Reference	This study	Takane et al.\(^{46}\)	Doan and Kusaka\(^{11}\)	Kusaka et al.\(^{10}\)

Urban planning scenarios	Dispersed	Compact	Dispersed	Compact	Expand
Temperature (°C)	~0.34	~0.1	0.1	0.4	0.5
Reference	Adachi et al.\(^{49}\)	Kusaka et al.\(^{10}\)	Doan and Kusaka\(^{11}\)		

| GCMs (years) | 17 | 20 | 36 | 50 | 50 | >44* |
| Feedback (years) | 0 | 0 | 4 | 10 | 9 | 8 |

*Calculated from three GCMs (see Supplementary Discussion)

Fig. 4 Changes in August mean surface air temperature for Japan. a Projected increase compared to 2000s (decadal running averages) for four global climate models (CCSM4, CESM1 (CAM5), GFDL-CM3 and INM-CM4; for references, see ‘Methods’) and the average \(\Delta T_{GW} \) (black line) for four GCMs assuming the RCP8.5 scenario (see text for more details). b Time series of \(\Delta T_{GW} \) (thick black line) and \(\Delta T_{AC\rightarrow FB} \) (circles) with maximum uncertainties (colour lines) of four GCMs and linear approximation of \(\Delta T_{AC\rightarrow FB} \) (dashed black line). Values are averaged for three urban categories: commercial and office buildings, fireproof apartments, and wooden detached dwellings.
(iii) Uncertainty introduced by the feedback ($\delta T_{AC \rightarrow FB}$) is comparable to that introduced from selection of emission scenario, RCM and/or urban planning scenario. Thus this feedback should not be neglected in future urban climate projection, especially in hot cities where significant AC use is common; and

(iv) Using linear relations proposed in this study (between $\Delta T_{AC \rightarrow FB}$ and $\delta T_{AC \rightarrow FB}$ during recent Japanese heat waves (July 2018 and August 2013) are estimated to be 0.11 and 0.07 °C, respectively. Such an approach can be used to estimate $\delta T_{AC \rightarrow FB}$ for other heat waves and/or future urban climates in hot cities where significant AC use is common.

METHODS

To distinguish the difference between current and future climate Δ (e.g. ΔT) is used, and between cases with the same ΔT_{GW} δ is used (e.g. δT is a temperature difference between AC \rightarrow FB and AC \neq FB (explained later) at current climate or a future climate).

First, the impacts of the feedback ($\delta T_{AC \rightarrow FB}$) on future urban climate from global temperature scenarios (hereafter ΔT_{GW}) are evaluated. Second, we explore how $\delta T_{AC \rightarrow FB}$ changes in relation to ΔT_{GW}. The urban air temperature and EC calculated by WRF/BEP+BEM were verified using detailed observational data for a year.\(^{51}\)

Description of the numerical model

Previously, WRF/BEP+BEM simulated urban air temperature and EC for April 2013 to March 2014 in Osaka were verified.\(^{51}\) The modified model reproduced current diurnal and horizontal variations of 2 m urban air temperature and EC at a 1-h temporal resolution for 12 electric power substations within Osaka City (about 1 km² area).

At each time step, $Q_{F,AC}$ is calculated for each grid as:\(^{19,51}\)

$$Q_{F,AC} = (H_{out} + E_{out}) + \frac{1}{\text{COP}} (H_{out} + E_{out})$$

where H_{out} and E_{out} are the sensible and latent heat supplied from the AC system for cooling (see section 2.5 of Salamanca et al.\(^{35}\)), respectively, and COP is the coefficient of performance. The H_{out} and E_{out} are calculated from the total sensible, H_{in} and latent, E_{in} heat loads per floor.\(^{35}\) The H_{in} considers four physical processes: (1) solar radiation through the window and the heat exchange between the windows and the indoor air, (2) heat conduction through the walls and heat exchange between the wall, ceiling and pavement and the indoor air, (3) sensible heat exchange through ventilation, and (4) the internal sensible heat generation from equipment and occupants (Fig. 1a). Outdoor weather directly affects the H_{in} through processes (1–3), and the affected H_{in} contributes to an increase in $Q_{F,AC}$ and EC through the H_{out} (Fig. 1a Path 1). Here $Q_{F,AC}$ is split into sensible heat $Q_{F,AC,S}$ and latent heat, $Q_{F,AC,L}$, as commercial and office building areas are considered.\(^{52}\)

$$Q_{F,AC,S} = 0.722Q_{F,AC}$$ \hspace{1cm} (3)

$$Q_{F,AC,L} = 0.278Q_{F,AC}$$ \hspace{1cm} (4)

Table 2.

Gradients of linear regression (sensitivities) between $\Delta T_{AC \rightarrow FB}$ and $\delta T_{AC \rightarrow FB}$ (°C °C⁻¹) by time of day and location and between $\Delta T_{AC \rightarrow FB}$ and $\delta E_{AC \rightarrow FB}$ (W floor⁻¹ m⁻² °C⁻¹)

a	Time (h)	0	1	2	3	4	5	6	7
Office	0.0496	0.0352	0.0575	0.0633	0.0714	0.0796	0.0808	0.0681	
Residential	0.1168	0.1302	0.1391	0.1455	0.1458	0.1434	0.1436	0.1027	

b	Time (h)	0	1	2	3	4	5	6	7
Office	0	0	0	0	0	0	0	0	
Residential	0.0364	0.0834	0.1010	0.1160	0.1193	0.1223	0.1137	0.1003	

*Mean when AC in use
The WRF/BEP+BEM model system assumptions include (1) individual AC units exist (using a simple parameterisation); (2) a constant COP (implications discussed in Supplemental information) occurs; (3) no Qf from traffic occurs; and (4) only typical weekdays occur. Therefore, the results of this study are for these conditions (i.e. weekdays).

Although Qf from traffic (Qf_traffic) is important in some cities, in Osaka, Qf_traffic is likely to be less than the urban warming by AC and motorbikes. For two time-slices, we have tested two different settings for AC and motorbikes emissions. Asian megacities, while AC demand is dramatically increasing (e.g. in Vietnam penetration rates of AC, motorcar and motorbike are 10.8%, 77.4%, and 81.8%, respectively), Qf_AC has the potential to be a big problem in the future (cf. Qf_traffic) but will benefit from COP increases. Future studies will consider Qf_AC and Qf_traffic using models as WRF/CFM+BEM. However, the conclusions of this report are not impacted by Qf_traffic as it is assumed to be constant and uses the single-layer UCM (SLUCM) with a static Qf. Profile (traffic and AC) giving parallel results to urban warming without Qf emissions (see next section 'Model settings').

Model settings

Here the Advanced Research WRF model (ver. 3.5.1)41 was used with the same model parameters (Supplementary Table 3) and physics as previously described.33 The specific schemes used are: updated Rapid Radiation Transfer Model (RRTMG) short- and long-wave radiation schemes,26 WRF single-moment three-class (WSM3) cloud microphysics scheme,35 Mellor–Yamada level-2.5 atmospheric–boundary-layer scheme,50–52 Noah land surface model52 and BEP+BEM model.14–36 As previously indicated, these models can accurately reproduce the diurnal variation and horizontal distribution of summertime surface air temperature and EC due to AC use.33

The model domain (Supplementary Fig. 2a) covers western Japan with 126 x and y grids in both d01 and d02 domains (horizontal resolution 5 and 1 km, respectively, and two-way nesting). As the reanalysis captures the summer synoptic-scale features (high-pressure system) around Japan,63 a larger coarse grid is not needed. The model top is 50 hPa, with 35 vertical sigma levels. The vertical resolution close to the ground (WRF atmospheric first layer height) is nearly 50 m. Therefore, 10 building layers below 50 m (5 m resolution) in BEP/BEM is used, as in previous studies,83,84 due to high model reproducibility for 2 m air temperature and EC in Osaka with the first layer at 50 m. With a mean building height of about 25 m in the office area, 50 m corresponds to the constant flux layer. The innermost domain urban grid classifications are based on the dominant building type, using land use and land cover and topographic data sets from the Geospatial Information Authority of Japan data and Osaka City GIS polygon (building footprint) data, with building use (type), building height and total floor area.33

As the reanalysis captures the summer synoptic-scale features (high-pressure system) around Japan,63 a larger coarse grid is not needed. The model top is 50 hPa, with 35 vertical sigma levels. The vertical resolution close to the ground (WRF atmospheric first layer height) is nearly 50 m. Therefore, 10 building layers below 50 m (5 m resolution) in BEP/BEM is used, as in previous studies,83,84 due to high model reproducibility for 2 m air temperature and EC in Osaka with the first layer at 50 m. With a mean building height of about 25 m in the office area, 50 m corresponds to the constant flux layer. The innermost domain urban grid classifications are based on the dominant building type, using land use and land cover and topographic data sets from the Geospatial Information Authority of Japan data and Osaka City GIS polygon (building footprint) data, with building use (type), building height and total floor area.33

Climate projections

Six future climates, with background temperature increases (global warming: ΔT_GGW +0.5, +1.0, +1.5, +2.0, +2.5, and +3.0 °C) relative to the current climate, are simulated. These are based on the ensemble mean results from four GCMs used in the Climate Model Intercomparison Project (CMIP5),91 CCSM4,90 CESM1 (CAM5),92,93 GFDL-CM3,94 and INM-CM4. However, the ensemble mean of only three GCMs (CCSM4, CESM1 and GFDL-CM3) is used when ΔT_GGW +3.0 °C as INM-CM4 does not reach +3.0 °C at 2100. The simulations considered the highest IPCC GHG emissions scenario (RCP8.5B) (Fig. 4). CESM1 (CAMS) and CCSM4 have good model climate performance index scores33 and summertime synoptic pressure patterns around Japan perform better than other GCMs. GFDL-CMS and INM-CM4 are selected to cover minimum to maximum uncertainties in GCM projections. By using several GCMs, the uncertainties in the GCM projections (horizontal colour bars, Fig. 4) are incorporated in the RCM. A similar GCMs selection method for future urban climate projection was used by Adachi et al.95 For future projection experiments, climate difference components between current and future are estimated by the four individual GCMs. For example, for ΔT_GGW +0.5 °C, it was identified that the August mean surface air temperature difference, averaged spatially around Japan, became nearly +0.5°C for each GCM. The other climate variables (e.g. geopotential height, horizontal wind and sea surface temperature) are extracted for each GCM for the identified years, and an ensemble mean is calculated for all variables. For ΔT_GGW +0.5 °C, the ensemble mean surface air temperature difference component is +0.4725 °C (Supplementary Fig. 3) (i.e. nearly +0.5 °C). The actual ensemble mean surface air temperature differences for ΔT_GGW +0.5, +1.0, +1.5, +2.0, +2.5 and +3.0 °C are +0.4725, +0.9550, +1.4750, +1.9650, +2.4450 and +2.8825 °C, respectively (Supplementary Fig. 3). For the six ΔT_GGW cases, the climate difference for each variable (i.e. wind components, geopotential height and temperature) are added to the NCEP–NCAR and MGDSSST data (Supplementary Fig. 3), therefore changing the atmospheric variables such as long-wave radiation. Note, future climate relative humidity is assumed to be the same as the current climate.74–78

The PGW method78 was used to create regional climate projections10,11,12,13,17,19–41 and has been previously verified80,82,83. For example, Kawase et al.83 projected East Asia’s 1960s climate by the PGW method using 1990s reanalysis data and PGW increment, calculated by the climate difference between the 1990s and 1960s. They compared the 1960s projection results with a hindcast simulation for the same period using reanalysis data. They showed that the 1960s projection could reproduce some decadal changes in the rainfall shown within the hindcast simulation, thus indicating that the PGW method could reproduce actual energy
balance change using reanalysis, as precipitation is calculated in response to the atmospheric energy balance. Yoshikane et al. compared PGW and direct downsampling from GCM for East Asian future climate projections and found no significant differences in temperature and precipitation (i.e. atmospheric energy balances were similar). Snowfall research, a process strongly influenced by atmospheric buoyancy near the surface, have also successfully used PGW methods. Therefore, the PGW method is reasonable for use in future projection research. An advantage of using the PGW method is a reduction in GCM climate bias as the method uses modified objective analysis/re-analysis data rather than GCM output. A disadvantage is that perturbations in meteorological variables are not considered. As Adachi et al. show, the perturbation component is equally important as the climate model component for summer precipitation, hence the PGW method is inappropriate for this. However, the perturbations do not affect near-surface air temperatures change (current to future climates) in western Japan, including Osaka during summer. Thus the difference in climate projected by a GCM has a larger influence than the difference in perturbation on the downscaled temperature change and its variability in the climate projections. Hence, as the main contributor to the temperatures change was climate change (PGW component, their results indicate that PGW method is appropriate for our purpose. As we focus on August, a dry period in Japan, surface air temperature is little impacted by precipitation. The PGW method is used as it enabled the study to focus on internal physical (feedback) processes in the RCM and to remove bias from individual GCMs. It also allows for direct comparison with previous PGW studies that report projected urban temperature uncertainties with selections of RCM, GHG emission scenarios and urban planning scenarios (see Table 1 and main text).

Normalised feedback impact

Three urban land uses are selected for analysis (Supplementary Fig. 2d): commercial and office buildings, fireproof apartments, and wooden detached dwellings. These types of areas were evaluated for surface air temperature and EC model performance.66 To address the question (1), a normalised $\Delta T_{AC\rightarrow FB}$ (feedback impact) per future climate is determined:

$$\text{Normalised} \Delta T_{AC\rightarrow FB} = \frac{(\Delta T_{AC\rightarrow FB} - \Delta T_{AC\rightarrow FB})}{\Delta T_{AC}}$$

where $\Delta T_{AC\rightarrow FB}$ and $\Delta T_{AC\rightarrow FB}$ are urban warming calculated by the AC \rightarrow FB and AC \rightarrow FB, respectively, as explained in Fig. 1. All times referred to are LT. Japan does not use summertime.

DATA AVAILABILITY

The downsampling data by the WRF are deposited in local storage at AIST. This is available from the corresponding author upon reasonable request. The source code of the WRF and future projection results by four global climate models (CCSM4, CESM1 (CAM5), GFDL-CM3 and INM-CM4) that support findings of this study are available from websites: http://www2.mmm.ucar.edu/wrf/users/ and https://esgf-node.llnl.gov/projects/esgf-llnl/, respectively. The observational data used in this study are available from the website of the Japan Meteorological Agency: https://www.jma.go.jp/jma/index.html.

Received: 16 April 2019; Accepted: 3 October 2019; Online: 25 October 2019

REFERENCES

1. Population Division, Department of Economic and Social Affairs, United Nations. World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/332) (United Nations, 2014).
2. Georgescu, M, Morefield, P. E., Bierwagen, B. G. & Weaver, C. P. Urban adaptation can roll back warming of emerging megopolitan regions. Proc. Natl. Acad. Sci. 111, 2909–2914 (2014).
3. Kusaka, H, Haraguchi, M & Takane, Y. Urban climate projection by the WRF model at 3-km grid increment: dynamical downsampling and predicting heat stress in the 2070's for Tokyo, Osaka, and Nagoya. J. Meteorol. Soc. Jpn. 90B, 47–64 (2012).

Y. Takeke et al.

4. Skamarock, W. C. et al. A description of the Advanced Research WRF version 3. NCAR Technical Note NCAR/TN–4715STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf] (NCAR, 2008).
5. Kusaka, H, Kondo, H, Kikegawa, Y. K & Kimura, F. A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound. Layer. Meteorol. 101, 329–358 (2001).
6. Kusaka, H, Kikegawa, Y & Kimura, F. Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteorol. Soc. Jpn. 82, 67–80 (2004).
7. Kimura, F & Kitoh, A. Downsampling by pseudo global warming method. The Final Report of the ICCAP, Research Institute for Humanity and Nature, Kyoto, Japan (ICCAP, 2007).
8. Sato, T, Kimura, F & Kitoh, A. Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydro. 333, 144–154 (2007).
9. Adachi, S. A., Kimura, F., Kusaka, H., Inoue, T. & Ueda, H. Comparison of the impact of global climate changes and urbanization on summertime future climate in the Tokyo metropolitan area. J. Appl. Meteorol. Climatol. 51, 1441–1454 (2012).
10. Kusaka, H, Suzuki-Parker, A., Aoyagi, T., Adachi, S. A. & Yamagata, Y. Assessment of RCM and urban scenarios uncertainties in the climate projections for August in the 2050s in Tokyo. Clim. Change 137, 427–438 (2016).
11. Doan, Q. V. & Kusaka, H. Projections of urban climate in the 2050s in a fast growing city in Southeast Asia: the greater Ho Chi Minh City metropolitan area, Vietnam. Int. J. Climatol. 38, 4155–4171 (2018).
12. Hamdi, R., Van de Vyver, H., De Troch, R & Temorina, P. Assessment of three dynamical urban climate downsampling methods: Brussels’ future urban heat island under an A1B emission scenario. Int. J. Climatol. 34, 978–999 (2014).
13. Grossman-Clarke, S., Schubert, S. & Fenner, D. Urban effects on summertime air temperature in Germany under climate change. Int. J. Climatol. 37, 905–917 (2016).
14. Conlon, K., Monaghan, A., Hayden, M. & Wilhelmi, O. Potential impacts of future climate and land use changes on intra-urban heat exposure in Houston, Texas. PLoS ONE 11, e0148890 (2016).
15. Krayenhoff, E. S., Moustaouii, M., Broadbent, A. M., Gupta, V. & Georgescu, M. Diurnal interaction between urban expansion, climate change and adaptation in US cities. Nat. Clim. Change 8, 1097–1103 (2018).
16. Argueso, D., Evans, J. P., Fris, L & Bornmann, K. J. Temperature response to future urbanization and climate change. Clim. Dyn. 42, 2183–2199 (2013).
17. Kusaka, H. & al. Numerical simulation of urban heat island effect by the WRF model with 4-km grid increment: An inter-comparison study between the urban canopy model and slab model. J. Meteorol. Soc. Jpn. 90B, 33–45 (2012).
18. Ashie, Y., Yu Thanh, C. & Asaeda, T. Building canopy model for the analysis of urban climate. J. Wind Eng. Ind. Aerodyn. 81, 237–248 (1999).
19. Kikegawa, Y., Genceshi, Y., Yoshikado, Y. & Kondo, H. Development of a numerical simulation system for comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings’ energy-demands. Appl. Energy 76, 449–466 (2003).
20. Sailor, D. J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol. 31, 189–199 (2011).
21. Li, C. et al. Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season. Appl. Energy 117, 149–156 (2014).
22. Salamanca, F., Georgescu, M., Mahalov, A., Moustaouii, M. & Wang, M. Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos. 119, 5949–5965 (2014).
23. Ohashi, Y. et al. Impact of seasonal variations in weekday electricity use on air temperature observed in Osaka, Japan. Q. J. R. Meteorol. Soc. 142, 971–982 (2016).
24. Hadiid, S. et al. The effect of the Athens heat island on air conditioning load. Energy Build. 32, 131–400 (2011).
25. Kolokotroni, M., Giannitsaris, I. & Watkins, R. The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Sol. Energy 80, 383–392 (2006).
26. Ihara, T., Genceshi, Y., Sato, T., Yamaguchi, K. & Endo, Y. City–block–scale sensitivity of electricity consumption to air temperature and air humidity in business districts of Tokyo, Japan. Appl. Energy 33, 1634–1645 (2008).
27. Lindberg, F., Grimmond, C. S. B., Yosogawaran, N., Koththaus, S. & Allen, L. Impact of cities and weather on anthropogenic heat flux in Europe 1995–2015. Urban Clim. 4, 1–15 (2013).
28. Kimura, F. & Takahashi, S. The effects of land–use and anthropogenic heating on the surface temperature in the Tokyo metropolitan area: a numerical experiment. Atmos. Environ. 25B, 155–164 (1991).
29. Ichinose, T., Shimodozono, K. & Hanaki, K. Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ. 33, 3897–3909 (1999).
10

30. Ohashi, Y. et al. Influence of air-conditioning waste heat on air temperature in Tokyo office areas during summer: numerical experiments using an urban canopy model coupled with a building energy model. J. Appl. Meteorol. Climatol. 46, 66–81 (2007).

31. de Munck, C. et al. How much can air conditioning increase air temperatures for a city like Paris, France? Int. J. Climatol. 33, 210–227 (2013).

32. Wang, Y. et al. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong. Environ. Res. Lett. 13, 034015 (2018).

33. Xu, X. et al. Using WRF-urban to assess summertime air conditioning electric loads and their impacts on urban weather in Beijing. J. Geophys. Res. Atmos. 123, 2475–2490 (2018).

34. Martilli, A., Clappier, A. & Rotach, M. W. An urban surface exchange parameterization for mesoscale models. Bound. Layer. Meteorol. 104, 261–304 (2002).

35. Salamanca, F., Kropu, A., Martilli, A. & Clappier, A. A new building energy model coupled with an urban canopy parameterization for urban climate simulations – part I. formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol. 99, 331–344 (2010).

36. Salamanca, F. & Martilli, A. A new building energy model coupled with an urban canopy parameterization for urban climate simulations – part II. Validation with one dimension off–line simulations. Theor. Appl. Climatol. 99, 345–356 (2010).

37. IPCC. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 1–132 (Cambridge University Press, Cambridge, 2014).

38. Japan Refrigeration and Air Conditioning Industry Association. World air conditioning energy load database with an extrapolation for international cities. J. Appl. Meteorol. Climatol. 118, 927–945 (1996).

39. Janic, Z. The Step – Mountain Eta Coordinate Model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 122, 493–493 (2004).

40. Kondo, H. et al. Development of a multi-layer urban canopy model for urban climate simulations – part I. formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol. 99, 331–344 (2010).

41. Donner, L. J. et al. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component of the GFDD global coupled model CM3. J. Clim. 24, 3484–3518 (2011).

42. Yokokawa, S. M., Diansky, N. A. & Gusev, A. V. Simulating present-day climate with anthropogenic heating database with an extrapolation for international cities. SOLA 7, 92–96 (2011).

43. Fujibe, F. Urban warming in Japanese cities and its relation to climate change. Atmos. Environ. 67, 527–533 (2013).

44. Takane, Y., Ohashi, Y., Kusaka, H., Shigeta, Y. & Kikegawa, Y. Effects of anthropogenic heating due to air-conditioning systems on an extreme high temperature event in Hong Kong. Environ. Res. Lett. 13, 034015 (2018).

45. Fujibe, F. Urban warming in Japanese cities and its relation to climate change. Atmos. Environ. 67, 527–533 (2013).

46. Takane, Y. et al. Radiative forcing by long – lived greenhouse gases: calculations with the AER radiative transfer model. J. Geophys. Res. 113, D13103 (2008).

47. Takane, Y. et al. A climatological validation of urban air temperature and energy flows in urban area. Proc. 5th Int. Conf. EcoBalance 55–58, 727–730 (2002).

48. Chow, W. T. L. et al. A multi-method and multi-scale approach for estimation city-wide anthropogenic heat fluxes. Atmos. Environ. 99, 64–76 (2014).
ACKNOWLEDGEMENTS
This study is supported by JSPS Overseas Research Fellowships and JSPS KAKENHI Grant-in-Aid for Scientific Research (B) Number 16H04441. We also thank EPSRC LoHCool (EP/N009797/1). We also thank Dr. Sachio A. Adachi of RIKEN Advanced Institute for Computational Sciences for helpful advice associated with the selection of GCMs, and Mr. Toshiharu Nagatomo of National Institute of Advanced Industrial Science and Technology (AIST) who helped with some data analyses. The numerical simulations are performed under the ‘Interdisciplinary Computational Science Program’ in the Center for Computational Sciences, University of Tsukuba. The free software package Generic Mapping Tools (GMT) is used to draw the figures.

AUTHOR CONTRIBUTIONS
Y.T., Y.K. and M.H. conceived the study and designed the analyses. S.G. provided an important idea. M.H. prepared the forcing data for regional climate simulations, and Y.T. conducted the simulations and analysis using this forcing data. Y.T. wrote the original manuscript and S.G., Y.K. and M.H. provided comments, feedback and revisions to the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/s41612-019-0096-2.

Correspondence and requests for materials should be addressed to Y.T.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019