Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature

Karthik Narsimhan, Kenta Iyoki, Kimberly Dinh, and Yuriy Román-Leshkov*

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States

Supporting Information

ABSTRACT: The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C−H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483−498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions.

To date, no man-made catalyst can convert methane (CH₄) and oxygen (O₂) directly into methanol (CH₃OH) at low temperature. For more than 100 years, the selective oxidation of this simple alkane has remained unsolved. This transformation, however, is essential to exploit our highly abundant natural gas reserves, particularly those located in distributed fields or stranded wells that cannot be accessed with large, capital-intensive reforming facilities. Although oxidative C−H bond activation of CH₄ is thermodynamically and kinetically accessible at low temperatures, the large bond dissociation energy (435 kJ mol⁻¹) of this molecule hinders C−H cleavage reactions via homolytic or heterolytic pathways. Consequently, few catalysts are capable of preventing overoxidation to carbon dioxide (CO₂). Several alternative strategies for activating methane have been reported, including multistep oxyfunctionalization with Periana catalysts,¹,² borylation,³ and electrophilic carbene insertion,⁴ but all have fallen short of producing methanol directly and do not use oxygen as the oxidizing agent. In contrast, methane monoxygenase enzymes are capable of oxidizing CH₄ selectively into CH₃OH using O₂ at room temperature.⁶⁻⁸ While such biocatalysts are difficult to scale-up, the nature of their active sites provides inspiration for the development of synthetic oxidation catalysts. In this respect, iron⁹,¹⁰ and copper¹¹⁻¹³ exchanged zeolites have emerged as a promising class of materials capable of selectively oxidizing CH₄ into surface-bound methoxy species by hosting active sites akin to those found in CH₄ monoxygenases. Despite their potential, these materials have only been shown to oxidize CH₄ to CH₃OH stepwise and stoichiometrically with molecular oxygen (O₂)¹¹,¹⁴,¹⁵ or catalytically with hydrogen peroxide,¹⁶ making the process prohibitively expensive. Here, we report the first instance of catalytic gas phase oxidation of CH₄ into CH₃OH with O₂ under mild conditions. Copper-exchanged zeolite catalysts of various topologies maintain sustained activity and high CH₃OH selectivity at 483 K, while transient kinetic experiments with isotopically labeled molecules confirm catalytic turnover. The discovery of catalytically active sites for CH₃OH production in zeolites will be the foundation to develop new strategies for low temperature catalytic methane oxidation.

Received: May 9, 2016
Published: June 13, 2016
previous studies, the catalysts were activated under flowing O\(_2\) at 823 K, cooled to reaction temperature, purged with helium (He) for 1 h, and contacted with a pure CH\(_4\) stream for 0.5 h. However, unlike previous studies using only H\(_2\)O for extraction, we hydrolyzed surface-bound methoxy species by flowing a gas mixture comprised of 3.2 kPa of H\(_2\)O, 0.0025 kPa of O\(_2\) and balance CH\(_4\). Under these conditions, Cu-Na-ZSM-5 (Cu/Al = 0.37, Na/Al = 0.26) and Cu-H-ZSM-5 (Cu/Al = 0.31) evolved 37 \(\mu\)mol g\(_{\text{cat}}^{-1}\) and 82 \(\mu\)mol g\(_{\text{cat}}^{-1}\) of stoichiometric CH\(_3\)OH, respectively. These values are more than two times higher than those obtained with Cu-Na-ZSM-5 using only He, O\(_2\), and H\(_2\)O as the extracting gas (9.6 \(\mu\)mol g\(_{\text{cat}}^{-1}\)) or those reported by Lobo et al. (16 \(\mu\)mol g\(_{\text{cat}}^{-1}\))

Figure 1. CH\(_4\) oxidation over Cu-ZSM-5. Catalyst pretreatment: 5 h at 823 K under flowing O\(_2\), cooled to 483 K under O\(_2\) flow and then purged under He for 0.5 h. Initial dry CH\(_4\) oxidation: 0.5 h under 2400 mL h\(^{-1}\) g\(_{\text{cat}}^{-1}\) of CH\(_4\) at 483 K. CH\(_3\)OH partial pressure (kPa) with He/H\(_2\)O/O\(_2\) over (blue open squares) Cu-Na-ZSM-5 (Cu/Al = 0.37, Na/Al = 0.26): T = 483 K, WHSV = 2400 mL h\(^{-1}\) g\(_{\text{cat}}^{-1}\), \(P_{\text{He}}\) = 98.1 kPa, \(P_{\text{H}_2\text{O}}\) = 3.2 kPa, \(P_{\text{O}_2}\) = 0.0025 kPa (25 ppm). CH\(_3\)OH partial pressure (kPa) with CH\(_4\), H\(_2\)O, and O\(_2\) over (■) Cu-Na-ZSM-5 and (red solid triangles) Cu-H-ZSM-5 (Cu/Al = 0.31): T = 483 K, WHSV = 2400 mL h\(^{-1}\) g\(_{\text{cat}}^{-1}\), \(P_{\text{CH}_4}\) = 98.1 kPa, \(P_{\text{H}_2\text{O}}\) = 3.2 kPa, \(P_{\text{O}_2}\) = 0.0025 kPa (25 ppm).

Remarkably, sustained CH\(_4\) oxidation activity was observed when continuing to feed the CH\(_2\), H\(_2\)O, and O\(_2\) gas mixture after all stoichiometric CH\(_3\)OH was extracted (Figure 1). Steady state CH\(_3\)OH production rates of 0.88 \(\pm\) 0.02 \(\mu\)mol h\(^{-1}\) g\(_{\text{cat}}^{-1}\) and 1.81 \(\pm\) 0.01 \(\mu\)mol h\(^{-1}\) g\(_{\text{cat}}^{-1}\) were measured for Cu-Na-ZSM-5 and Cu-H-ZSM-5, respectively. Over Cu-Na-ZSM-5, CH\(_3\)OH was the main product generated (as determined by \(^1\)H nuclear magnetic resonance, Figure S1) with a selectivity of 70.6 \(\pm\) 0.4%, while CO\(_2\) was the only byproduct generated at a rate of 0.38 \(\pm\) 0.02 \(\mu\)mol h\(^{-1}\) g\(_{\text{cat}}^{-1}\) (Figure S2). CO\(_2\) selectivity did not increase when higher conversions were simulated by introducing CH\(_3\)OH as a reagent at identical conditions (Supporting Information, Section S2, Figures S3–S4), although most of CH\(_3\)OH was dehydrated into dimethyl ether in the presence of acid sites at these conditions (>60% yield).

Notably, the steady state CH\(_3\)OH production rates persisted without apparent deactivation, generating a total of 88 \(\mu\)mol g\(_{\text{cat}}^{-1}\) over 108 h with Cu-Na-ZSM-5—a value roughly five times higher than that reported for the stoichiometric oxidation over Cu-Na-ZSM-5.\(^{20}\) Similarly, Cu-H-ZSM-5 generated a total of 491 \(\mu\)mol g\(_{\text{cat}}^{-1}\) over 288 h—a value ca. 1.4 times larger than the total copper content of the zeolite (Figure S5). The excess CH\(_3\)OH produced per copper atom in Cu-H-ZSM-5 coupled with the lack of sustained CH\(_3\)OH production in the absence of CH\(_4\) in the extracting gas mixture over Cu-Na-ZSM-5 (Figure 1, open symbols) are strong evidence that CH\(_4\) is oxidized catalytically over H\(_2\)O-tolerant copper sites. Catalytic turnover was verified with transient experiments using isotopically labeled molecules coupled with online mass spectrometry (MS). \(^{13}\)C methoxy species were deposited on the zeolite by flowing \(^{13}\)CH\(_4\) (16.8 kPa \(^{13}\)CH\(_4\) [99 atom % \(^{13}\)C, Sigma-Aldrich]) with balance He over an activated Cu-Na-ZSM-5 sample for 0.5 h at 483 K and then flowing a regular \(^{12}\)CH\(_4\)/H\(_2\)O/O\(_2\) gas mixture to extract the methoxy species (detailed procedure found in Figure S6A). As shown in Figure 2, enriched \(^{13}\)CH\(_3\)OH (m/z = 33) was detected in the stoichiometric regime, but unlabeled \(^{13}\)CH\(_3\)OH was observed in the steady state regime, thus suggesting that new, unlabeled \(^{12}\)C methoxy species are formed after the initial \(^{13}\)C methoxy species are hydrolyzed. Next, the reaction was allowed to proceed at steady state at a measured rate of 0.88 \(\mu\)mol h\(^{-1}\) g\(_{\text{cat}}^{-1}\).
CH$_3$OH h$^{-1}$ g$^{-1}$cat for 21 h (equivalent to the production of 18.5 μmol g$^{-1}$cat of 12CH$_3$OH). At this point, the weight hourly space velocity (WHSV) was reduced from 2400 mL h$^{-1}$ g$^{-1}$cat to 300 mL h$^{-1}$ g$^{-1}$cat, and the gas mixture was switched to 13CH$_4$/H$_2$O/O$_2$ for 0.5 h before resuming the flow of the regular, unlabeled gas mixture. This effective pulse of labeled 13CH$_4$ resulted in the production of labeled 13CH$_3$OH as evidenced by a detectable pulse of the $m/z = 33$ signal without significantly altering steady state production of CH$_3$OH (Figure 2). Similar 13C enrichment profiles were observed for CO$_2$ during both isotope switching experiments (Figure S7). Analogous behavior was observed for similar experiments carried out over Cu-H-ZSM-5 (Figure S8). Control experiments using 12CH$_4$ to populate the activated catalyst with unlabeled 12C methoxy species did not generate a significant amount of 13CH$_3$OH in the stoichiometric or steady state regimes (Figures S6B, S8B), thereby ruling out artifacts or potential effects arising from natural abundance 13CH$_4$ in the unlabeled gas stream. Kinetic measurements on Cu-Na-ZSM-5 at 483 K show first, half, and zero order dependencies with respect to CH$_4$, H$_2$O, and O$_2$, respectively (Supporting Information Section S7, Figure S9). Importantly, replacing CH$_4$ with CD$_4$ in the extracting gas during steady state operation at a WHSV of 240 mL h$^{-1}$ g$^{-1}$cat decreased the CH$_3$OH production rate from 0.90 to 0.055 μmol h$^{-1}$ g$^{-1}$cat (Figure S10). This change corresponds to a kinetic isotope effect (KIE) of 1.6 ± 0.1, thus indicating that C–H abstraction is a kinetically relevant step in the catalytic cycle. Taken together, the data from the transient 13CH$_4$ pulse experiments, the reaction rate order dependencies, and the kinetic isotope effect confirm catalytic turnover.

Gas pretreatments were varied to gain insight into the origin of catalytic and stoichiometric sites in Cu-Na-ZSM-5 (see Figures 3, S11–12). Specifically, Cu-Na-ZSM-5 samples were subjected to three pretreatments at 873 K prior to regular CH$_4$ oxidation and extraction at 483 K: (i) calcination under He; (ii) calcination under He; (iii) calcination under He without O$_2$ (<0.1 ppm, Figure S11). In all cases, stoichiometric CH$_3$OH production drastically diminished (98–100%), but catalytic CH$_3$OH production was only moderately affected (0–60%) (Figure 3). Treating activated Cu-Na-ZSM-5 with He above 723 K has been shown to eliminate the mono-(μ-oxo) dicupric cores for stoichiometric CH$_4$ oxidation.14 The absence of the mono-(μ-oxo) dicupric sites during steady state methane oxidation was confirmed with UV–visible spectroscopic and online gas chromatographic measurements over Cu-Na-ZSM-5 (Cu/Al = 0.37) (Supporting Information Section S9, Figures S13–S15). Interestingly, van Bokhoven et al. observed a small fraction of H$_2$O-tolerant sites in copper-exchanged mordenite (Cu-MOR) that did not require high temperature reactivation for stoichiometric CH$_4$ oxide experiments after exposure to H$_2$O.21,22 However, in the present study, exposing Cu-Na-ZSM-5 to H$_2$O/O$_2$/He at 483 K prior to contacting it with CH$_4$ completely eliminated stoichiometric CH$_3$OH production but did not affect catalytic CH$_3$OH production. Note the onset of the catalytic regime was nearly identical for all samples (240 min on-stream) after exposure to CH$_4$/H$_2$O/O$_2$ irrespective of the pretreatment used. The similarity of catalytic rates and onset of CH$_3$OH production for all pretreated Cu-Na-ZSM-5 samples implies the catalytic sites are different from those responsible for stoichiometric CH$_3$OH oxidation, and the catalytic sites are either generated or activated when copper species are exposed to CH$_4$, H$_2$O, and O$_2$ at reaction conditions rather than during the high temperature pretreatment.

An induction period preceding the onset of catalytic CH$_4$ oxidation suggests that copper speciation changes under reaction conditions. The CH$_3$OH production profile for a regular CH$_4$ oxidation and extraction experiment using Cu-Na-ZSM-5 pretreated at 823 K first with O$_2$ and then with He (20 ppm of O$_2$) shows that catalytic production began after 240 min on-stream despite H$_2$O breaking through the catalyst bed after 25 min (Figure S12). A comparable induction process was observed when Cu-Na-ZSM-5 was pretreated without O$_2$ and exposed to a CH$_4$/H$_2$O gas mixture at 483 K (Figure S11). In this case CH$_3$OH was detected only ca. 300 min after O$_2$ was introduced into the system. Hydrated copper species are known to weakly associate with the zeolite framework, becoming mobile and easily oxidized.23 In copper-exchanged zeolites with the chabazite topology (Cu-SZS-13), hydrated Cu$^{2+}$ ions have been shown to migrate under flowing wet O$_2$/N$_2$ (and trace NO and NH$_3$) gas mixtures between 403–523 K during the...
selective catalytic reduction (SCR) of NO\(_x\) to form transient dimeric active sites.\(^{25}\) The strong similarities between the reaction temperature and the gaseous atmosphere (H\(_2\)O/O\(_2\)) used during both the SCR of NO\(_x\) and the oxidation of CH\(_4\) could imply that mobile, hydrated copper species also reappear into active sites for catalytic CH\(_4\) oxidation as they do for the SCR of NO\(_x\).

Catalytic CH\(_4\) oxidation was investigated as a function of the copper content and Bronsted acidity of the zeolite (see Table S1). A control experiment with H-ZSM-5 (Si/Al = 11.5) not subjected to copper exchange did not generate CH\(_2\)OH (Table 1), thereby confirming that trace transition metal impurities in the zeolite are not responsible for catalytic behavior. Higher Cu/Al ratios in Cu-Na-ZSM-5 and Cu-H-ZSM-5 increased the steady state specific activity (defined as \(\mu\)molCH\(_2\)OH h\(^{-1}\) mol\(^{-1}\) cat\(^{-1}\)), but decreased the site-time yield (STY, defined as mol CH\(_3\)OH (mol Cu) h\(^{-1}\)). Site time yield (STY) defined as mol CH\(_3\)OH (mol Cu) h\(^{-1}\).

The catalytic rates and \(E^{app}\) values of CH\(_4\) oxidation are heavily influenced by zeolite topology (see Table 1, Table S1). Cu-MOR, featuring 12-membered ring (MR) pores intersected by sinusoidal 8-MR pores, exhibited either comparable or lower activity at 483 K than that of Cu-H-ZSM-5 (Table S1). However, a significantly higher \(E^{app}\) of 149 kJ/mol resulted in higher CH\(_2\)OH rates at temperatures above 483 K when compared to those of Cu-H-ZSM-5 (Figure S1). These results suggest the site speciation and reaction environment within MOR may play a role in stabilizing kinetically relevant transition states. Other topologies, including ferrierite (FER), beta (BEA), Y (FAU), and caged-based SSZ-13 and SAPO-34 (CHA) also oxidize CH\(_4\) into CH\(_3\)OH but with different rates than those of ZSM-5. Zeolites with large pores at high Cu/Al (0.12–0.14) including BEA (12-MR, 6.6 \(\times\) 6.7 Å and 5.6 \(\times\) 5.6 Å) and FAU (7.4 \(\times\) 7.4 Å windows) showed 50% and 70% lower overall activity when compared to MFI. MCM-41, an amorphous aluminosilicate with large pores of 30 Å, had nearly an order of magnitude lower STY than ZSM-5, indicating that a crystalline, microporous structure with small pores is preferable for catalytic CH\(_4\) oxidation. At low Cu/Al (0.12–0.14), Cu-H-ZSM-5 has the highest specific activity and STY (Table 1), while FER (intersecting 10-MR [4.2 \(\times\) 5.4 Å] and 8-MR [3.5 \(\times\) 4.8 Å]) was half as active as ZSM-5. While Cu-ZSM-5 had the highest specific activity and STY compared to the small-pore zeolites tested, the cage-based aluminosilicate SSZ-13 and the silicoaluminophosphate SAPO-34 with the CHA topology (8-MR windows of 3.8 \(\times\) 3.8 Å, ellipsoidal cages of 9.4 \(\times\) 9.4 \(\times\) 12.7 Å) featured higher STY of 6.1 \(\times\) 10\(^{-3}\) h\(^{-1}\) and 7.9 \(\times\) 10\(^{-3}\) h\(^{-1}\), respectively, than those in Cu-Na-ZSM-5 or Cu-H-ZSM-5.

Table 1. Catalytic CH\(_4\) Oxidation Rates for Various Zeolite Topologies

Material	Framework	Cage shape	Cage size (Å)	Channel size (Å)	Si/Al\(_{\text{tot}}\)	Si/Al\(_{\text{cat}}\)	Cu/Al\(_{\text{tot}}\)	Specific activity (μmol CH\(_2\)OH h\(^{-1}\) mol\(^{-1}\) cat\(^{-1}\))	STY (mol CH\(_3\)OH mol Cu h\(^{-1}\))
H-ZSM-5	MFI		5.3 \(\times\) 5.6	11.5	13.2	0.31	1.79 ± 0.02	5.2 ± 0.05	
H-Beta	BEA		6.6 \(\times\) 6.7	12.5	13.3	0.30	0.80 ± 0.01	2.4 ± 0.04	
MCM-41	MCM-41		30	12	16.1	0.74	0.36 ± 0.02	0.6 ± 0.03	
H-ZSM-5	MFI		5.3 \(\times\) 5.6	11.5	13.9	0.13	0.84 ± 0.02	6.9 ± 0.17	
H-mordenite	MOR		6.5 \(\times\) 7	10	11.1	0.14	0.84 ± 0.01	4.6 ± 0.08	
H-ferrierite	FER		4.2 \(\times\) 5.4	10.6	10.6	0.12	0.44 ± 0.01	2.7 ± 0.04	
Na-ZSM-5	MFI		5.3 \(\times\) 5.6	11.5	13.6	0.37	0.88 ± 0.02	2.2 ± 0.04	
Na-Y	FAU	spherical	9.6 \(\times\) 9.6	7.4	7.4	5.1	4.6	0.45 ± 0.01	
Na-SAPO-34	CHA	ellipsoidal	9.4 \(\times\) 12.7	3.8	3.8	0.3	0.6	0.06 ± 0.03	
Na(SSZ-13	CHA	ellipsoidal	9.4 \(\times\) 12.7	3.8	3.8	15	13.8	0.50 ± 0.03	
Cu\(_2\)O-MFI	MFI		5.3 \(\times\) 5.6						
Cu\(_2\)O, BEA	BEA		6.6 \(\times\) 6.7						
H-ZSM-5\(^{6}\)	MFI		5.3 \(\times\) 5.6						

\(^{a}\)Catalyst pretreatment: 5 h at 823 K under flowing O\(_2\), cooled to 483 K under O\(_2\) flow and then purged under He for 0.5 h. Initial CH\(_4\) oxidation: 0.5 h under 2400 mL h\(^{-1}\) CH\(_4\) at 483 K. Reaction conditions: \(T = 483\) K, WHSV = 2400 mL h\(^{-1}\) P\(_{\text{CH}}\) = 98.1 kPa, P\(_{\text{H}_2}\) = 3.2 kPa, P\(_{\text{O}_2}\) = 0.0025 kPa (25 ppm). \(^{b}\)Si/Al\(_{\text{tot}}\) denotes the nominal silicon to aluminum ratio in the zeolite. \(^{b}\)Si/Al\(_{\text{tot}}\) denotes the ratio of silicon to aluminum atoms ratio within the zeolite calculated using data from inductively coupled plasma mass spectrometry (ICP-MS) measurements. \(^{c}\)Cu/Al\(_{\text{tot}}\) denotes the ratio of copper to aluminum atoms within the zeolite calculated using ICP-MS. \(^{d}\)Specific activity = \(\mu\)molCH\(_2\)OH h\(^{-1}\) mol\(^{-1}\) cat\(^{-1}\). \(^{e}\)Site time yield (STY) defined as mol CH\(_3\)OH (mol Cu) h\(^{-1}\). \(^{f}\)\(T = 483\) K, WHSV = 2400 mL h\(^{-1}\) g\(_{\text{cat}}\)\(^{-1}\). \(^{g}\)P\(_{\text{CH}}\) = 93.1 kPa, P\(_{\text{H}_2}\) = 3.2 kPa, P\(_{\text{O}_2}\) = 0.051 kPa. The ± symbol denotes 95% confidence intervals.
at similar Cu/Al ratios (Table 1). These studies indicate the catalytic sites or the kinetically relevant transition states are sensitive to the zeolite topology, with materials featuring small pores or cage-based structures showing enhanced performance when compared to those with large pores.

Taking advantage of the large E_{app}^pp for Cu-Na-SSZ-13 (Cu/Al = 0.50, 100 ± 2.1 kJ mol$^{-1}$), the reaction temperature was systematically increased to achieve higher catalytic rates. The site-time yield increased from 2.2 × 10$^{-3}$ to 31.6 × 10$^{-3}$ mol CH$_3$OH (mol Cu)$^{-1}$ h$^{-1}$ when increasing the temperature from 463 to 533 K before a decrease in rates was observed (Figure S17). The large E_{app}^pp coupled with the stable CH$_3$OH production over a wide range of temperature suggest that Cu-SSZ-13 zeolites could be further engineered to enhance further catalytic rates. In summary, copper-exchanged zeolites offer a broad and robust platform for the low temperature, catalytic production over a wide range of temperature suggest that Cu-SSZ-13 zeolites is currently unknown. The site-time yield increased from 2.2

The nature of the catalytic active sites for CH$_4$ oxidation into CH$_3$OH over copper-exchanged zeolites is currently unknown. A recent report by von Bokhoven et al. observed the formation of copper oxide clusters in Cu-MOR after the cyclic, isothermal, and stoichiometric oxidation of CH$_4$ into CH$_3$OH.22 It was hypothesized that these oxide clusters were active for isothermal cyclic CH$_4$ oxidation. We did not observe steady state activity for large copper oxide nanoparticles supported on pure silica MFI between 483 and 543 K (average size 30 nm for CuO, Table 1, Figures S18–20) or on pure silica BEA (average size 60 nm for CuO, 41 nm for CuO, Table 1, Figures S21–22). However, we cannot rule out that ultrasmall copper oxide clusters, or copper species stabilized by aluminum in the zeolite framework or in defect sites are responsible for catalytic activity.

Diffuse reflectance UV-visible spectroscopic measurements show peaks forming at 26 800, 29 800, and 30 000 cm$^{-1}$ during steady state CH$_3$OH production (Figure S15C, 1–2, D.1–2), possibly corresponding to copper oxide species29 generated during reaction. Future work will focus on identifying and characterizing the catalytic site(s) as well as devising strategies to maximize catalytic activity.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscentsci.6b00139.

Experimental details, product identification for catalytic CH$_4$ oxidation over Cu-Na-ZSM-5, simulation of high conversion CH$_4$ oxidation over Cu-Na-ZSM-5, control experiments for isotopically labeled kinetic experiments, kinetic order of reactants over Cu-Na-ZSM-5, thermal and gas pretreatments on Cu-Na-ZSM-5, in-situ UV-visible spectra of Cu-Na-ZSM-5, kinetic data of CH$_4$ oxidation over Cu-ZSM-5 and Cu-MOR, CH$_4$ oxidation vs temperature over Cu-Na-SSZ-13, powder X-ray diffraction patterns and CH$_4$ oxidation vs temperature over CuO on silica MFI and BEA, powder X-ray diffraction patterns of ZSM-5 and MOR, elemental composition, pore volume, and surface area of ZSM-5, MOR, and SSZ-13 (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: yroman@mit.edu.

Notes

The authors declare the following competing financial interest(s): The authors and MIT have filed a patent on the results presented herein.

ACKNOWLEDGMENTS

This work was supported by the Massachusetts Institute of Technology Energy Initiative’s Seed Fund (K.N. and Y.R.L.) and the Japanese Government via Postdoctoral Fellowships for Research Abroad from the Japan Society for the Promotion of Science (K.I.). 1H NMR spectra were collected at the Massachusetts Institute of Technology Department of Chemistry Instrumentation Facility (DCIF) supported by the National Science Foundation (Award Nos. CHE-9808061 and DBI-9729592).

REFERENCES

(1) Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 1998, 280, 560–564.
(2) Palkovits, R.; Antonietti, M.; Kuhn, P.; Thomas, A.; Schütz, F. Solid Catalysts for the Selective Low-Temperature Oxidation of Methane to Methanol. Angew. Chem., Int. Ed. 2009, 48, 6909–6912.
(3) Smith, K. T.; Berritt, S.; González-Moreiras, M.; Ahn, S.; Smith, M. R.; Baik, M.-H.; Mindiola, D. J. Catalytic borylation of methane. Science 2016, 351, 1424–1427.
(4) Caballero, A.; Despagnet-Ayoub, E.; Mar Díaz-Requejo, M. M.; Díaz-Rodríguez, A.; González-Nuñez, M. E.; Mello, R.; Muñoz, B. C.; Ojo, W.-S.; Assensio, G.; Etienne, M.; Perez, P. J. Silver-Catalyzed CC Bond Formation Between Methane and Ethyl Diazocaceteate in Supercritical CO$_2$. Science 2011, 332, 835–838.
(5) Cavaliere, V. N.; Mindiola, D. J. Methane: a new frontier in organometallic chemistry. Chem. Sci. 2012, 3, 3536–3565.
(6) Lieberman, R. L.; Rosenzweig, A. C. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 2005, 434, 177–182.
(7) Balasubramanian, R.; Smith, S. M.; Rawat, S.; Yatsunyk, L. A.; Stemmler, T. L.; Rosenzweig, A. C. Oxidation of methane by a biological dicopper centre. Nature 2010, 465, 111–115.
(8) Shu, L.; Neshim, J. C.; Kauffman, K.; Münck, E.; Lipscomb, J. D.; Que, L. An Fe2IVO2 diamond core structure for the key intermediate Q of methane monoxygenase. Science 1997, 275, 515–518.
(9) Panov, G.; Sobolev, V.; Dubkov, K.; Parmon, V.; Orvanesyan, N.; Shilov, A.; Shieinman, A. Iron complexes in zeolites as a new model of methane monoxygenase. React. Kinet. Catal. Lett. 1997, 61, 251–258.
(10) Orvanesyan, N.; Shieinman, A.; Dubkov, K.; Sobolev, V.; Panov, G. The state of iron in the Fe-ZSM-5-N2O system for selective oxidation of methane from data of Mössbauer spectroscopy. Kinet. Catal. 1998, 39, 792–797.
(11) Groothaert, M. H.; Smeets, P. J.; Sels, B. F.; Jacobs, P. A.; Schoonheydt, R. A. Selective oxidation of methane by the bis-μ-oxo dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 2005, 127, 1394–1395.
(12) Narsimhan, K.; Michaelis, V. K.; Mathies, G.; Gunther, W. R.; Griffin, R. G.; Román-Leshkov, Y. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonation reaction. J. Am. Chem. Soc. 2015, 137, 1825–1832.
(13) Woertink, J. S.; Smeets, P. J.; Groothaert, M. H.; Vance, M. A.; Sels, B. F.; Schoonheydt, R. A.; Solomon, E. L. A [Cu2O] 2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18908–18913.
(14) Smeets, P. J.; Groothaert, M. H.; Schoonheydt, R. A. Cu based zeolites: A UV–vis study of the active site in the selective methane oxidation at low temperatures. Catal. Today 2005, 110, 303–309.
(15) Alayon, E. M.; Nachtegaal, M.; Ranocchiari, M.; van Bokhoven, J. A. Catalytic conversion of methane to methanol over Cu−mordenite. Chem. Commun. 2012, 48, 404−406.

(16) Hammond, C.; Forde, M. M.; Ab Rahim, M. H.; Thetford, A.; He, Q.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Dummer, N. F.; Murphy, D. M.; Carley, A. F.; Taylor, S. H.; Willock, D. J.; Stanglmeier, E. E.; Kang, J.; Hagen, H.; Kiepy, C. J.; Hutchings, G. J. Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copper-Promoted Fe-ZSM-5. Angew. Chem., Int. Ed. 2012, 51, 5129−5133.

(17) Vanelderen, P.; Snyder, B. E.; Tsai, M.-L.; Hadt, R. G.; Vancuvavenbergh, J.; Coussens, O.; Schoonheydt, R. A.; Sels, B. F.; Solomon, E. I. Spectroscopic definition of the copper active sites in Mordenite: selective methane oxidation. J. Am. Chem. Soc. 2015, 137, 6383−6392.

(18) Grundner, S.; Markovits, M. A.; Li, G.; Tromp, M.; Pidko, E. A.; Hensen, E. J.; Jentys, A.; Sanchez-Sanchez, M.; Lercher, J. A. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 2015, 6, 7546.

(19) Grundner, S.; Luo, W.; Sanchez-Sanchez, M.; Lercher, J. A. Synthesis of single-site copper catalysts for methane partial oxidation. Chem. Commun. 2016, 52, 2553−2556.

(20) Wulfers, M. J.; Teketel, S.; Ipek, B.; Lobo, R. Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes. Chem. Commun. 2015, 51, 4447−4450.

(21) Alayon, E. M. C.; Nachtegaal, M.; Bodh, A.; van Bokhoven, J. A. Reaction Conditions of Methane-to-Methanol Conversion Affect the Stability of Active Copper Sites. ACS Catal. 2014, 4, 16−22.

(22) Tomkins, P.; Mansouri, A.; Bozbag, S. E.; Krumheich, F.; Park, M. B.; Alayon, E. M. C.; Ranocchiari, M.; van Bokhoven, J. A. Isothermal Cyclic Conversion of Methane into Methanol over Copper-Exchanged Zeolite at Low Temperature. Angew. Chem. 2016, 128, 5557−5561.

(23) Palomino, G. T.; Fisicaro, P.; Bordiga, S.; Zecchina, A.; Giamello, E.; Lambert, C. Oxidation states of copper ions in ZSM-5 zeolites. A multitechnique investigation. J. Phys. Chem. B 2000, 104, 4064−4073.

(24) Gao, F.; Kwak, J. H.; Szanyi, J.; Peden, C. H. Current understanding of cu-exchanged Chabazite molecular sieves for use as commercial diesel engine DeNOx catalysts. Top. Catal. 2013, 56, 1441−1459.

(25) Gao, F.; Walter, E. D.; Kollar, M.; Wang, Y.; Szanyi, J.; Peden, C. H. F. Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions. J. Catal. 2014, 319, 1−14.

(26) Chen, J.; Li, J.; Wei, Y.; Yuan, C.; Li, B.; Xu, S.; Zhou, Y.; Wang, J.; Zhang, M.; Liu, Z. Spatial confinement effects of cage-type SAPO molecular sieves on product distribution and coke formation in methanol-to-olefin reaction. Catal. Commun. 2014, 46, 36−40.

(27) Baerlocher, C.; McCusker, L. B. Database of Zeolite Structures, http://www.iza-structure.org/databases/.

(28) Sajith, P. K.; Shiota, Y.; Yoshizawa, K. Role of Acidic Proton in the Decomposition of NO over Dimeric Cu(I) Active Sites in Cu-ZSM-5 Catalyst: A QM/MM Study. ACS Catal. 2014, 4, 2075−2085.

(29) Vanelderen, P.; Hadt, R. G.; Smeets, P. J.; Solomon, E. I.; Schoonheydt, R. A.; Sels, B. F. Cu-ZSM-5: A biomimetic inorganic model for methane oxidation. J. Catal. 2011, 284, 157−164.