Force-dependent allostery of the \(\alpha \)-catenin actin-binding domain controls adherens junction dynamics and functions

Noboru Ishiyama\(^1\), Ritu Sarpal\(^2\), Megan N. Wood\(^3\), Samantha K. Barrick\(^4\), Tadateru Nishikawa\(^1\), Hanako Hayashi\(^5\), Anna B. Kobb\(^6\), Annette S. Flozak\(^3\), Alex Yemelyanov\(^3\), Rodrigo Fernandez-Gonzalez\(^2,6\), Shigenobu Yonemura\(^5,7\), Deborah E. Leckband\(^4,8\), Cara J. Gottardi\(^3,9\), Ulrich Tepass\(^2\) & Mitsuhiko Ikura\(^1,10\)

\(\alpha \)-catenin is a key mechanosensor that forms force-dependent interactions with F-actin, thereby coupling the cadherin-catenin complex to the actin cytoskeleton at adherens junctions (AJs). However, the molecular mechanisms by which \(\alpha \)-catenin engages F-actin under tension remained elusive. Here we show that the \(\alpha_1 \)-helix of the \(\alpha \)-catenin actin-binding domain (\(\alpha \)cat-ABD) is a mechanosensing motif that regulates tension-dependent F-actin binding and bundling. \(\alpha \)cat-ABD containing an \(\alpha_1 \)-helix-unfolding mutation (H1) shows enhanced binding to F-actin in vitro. Although full-length \(\alpha \)-catenin-H1 can generate epithelial monolayers that resist mechanical disruption, it fails to support normal AJ regulation in vivo. Structural and simulation analyses suggest that \(\alpha_1 \)-helix allosterically controls the actin-binding residue V796 dynamics. Crystal structures of \(\alpha \)cat-ABD-H1 homodimer suggest that \(\alpha \)-catenin can facilitate actin bundling while it remains bound to E-cadherin. We propose that force-dependent allosteric regulation of \(\alpha \)cat-ABD promotes dynamic interactions with F-actin involved in actin bundling, cadherin clustering, and AJ remodeling during tissue morphogenesis.

\(^1\)Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada. \(^2\)Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada. \(^3\)Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. \(^4\)Department of Chemistry, University of Illinois, Urbana, IL 61801, USA. \(^5\)RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan. \(^6\)Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada. \(^7\)Department of Cell Biology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan. \(^8\)Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA. \(^9\)Department of Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. \(^10\)Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada. Correspondence and requests for materials should be addressed to N.I. (email: noboru.ishiyama@uhnresearch.ca) or to M.I. (email: mitsu.ukura@uhnresearch.ca)
The mechanical coupling of intercellular adhesion proteins to the cytoskeleton plays a key role in balancing the integrity and plasticity of epithelial tissues. Mechanical tension generated by cortical actomyosin is transmitted through the epithelial sheet by adherens junctions (AJs), allowing contractile forces to change cell and tissue shape. The cadherin-catenin cell adhesion complex is the major building block of AJs, and has a crucial function in the dynamic behaviors of epithelial cells, such as cell polarization and cell rearrangements. The enormous versatility of cadherin-mediated cell adhesion in tissue morphogenesis and homeostasis requires catenin-dependent regulation of the dynamic cadherin-actin interface in response to variable tension.

α-catenin is an actin-binding and actin-bundling protein responsible for connecting the cadherin-catenin complex to filamentous actin (F-actin) at AJs. It plays critical roles in development and tissue homeostasis across the metazoans, including tumor metastasis. The α-catenin family includes three homologs expressed in amnions, E (epithelial), N (neuronal), and T (testis and heart), as well as a single homolog expressed in invertebrates, such as Drosophila. Monomeric α-catenin binds to cadherin-bound β-catenin and anchors the cell adhesion complex to the actin cytoskeleton. α-catenin dissociated from β-catenin can homodimerize to promote actin bundling, but the underlying mechanism and function of α-catenin dimers in cell adhesion have been controversial and remain to be clarified.

The structure of α-catenin (100 kDa) consists of three distinct domains. The N-terminal (N) domain (30 kDa) facilitates β-catenin binding and homodimerization in a mutually exclusive manner. The central mechanosensitive modulatory (M) domain (40 kDa) contains a cryptic binding site for another F-actin-binding protein vinculin. The C-terminal actin-binding domain (ABD) (28 kDa), which is connected to the rest by a flexible P-linker region, directly binds to F-actin, and closely resembles the vinculin ABD (vin-ABD). Unlike vinculin that forms an autoinhibitory head-to-tail interaction, the unhindered acto-ABD form a catch bond with F-actin that stabilizes the interaction under tension. However, the molecular basis of this catch bond is unknown, and the physiological significance of its distinctive mechanical properties has not yet been demonstrated.

Here we reveal that a force-dependent conformational change in the acto-ABD allosterically regulates direct F-actin binding. Several lines of evidence suggest that α1-helix unfolding changes the conformational dynamics of the actin-binding site. Furthermore, the acto-ABD in an activated state homodimerizes to facilitate actin bundling. Our data suggest that manipulation of the ABD-dependent mechanosensory function of α-catenin severely interferes with AJ remodeling in mammalian cells and Drosophila embryos. Surprisingly, not only loss but also gain of F-actin binding propensity dramatically compromises α-catenin function in morphogenesis. Based on these results, we propose a new mechanism of the force-dependent, dynamic cadherin-actin linkage regulated by the ABD of α-catenin.

Results

Force-dependent unfolding of acto-ABD enhances actin binding. The direct interaction between α-catenin and F-actin was demonstrated to be a catch bond, an interaction that is stabilized by increased force. Since the C-terminal tail (residues 865-906) of α-catenin is postulated to be part of the interface between the acto-ABD and F-actin, we hypothesized that a regulatory motif resides within or near the N terminus of ABD. We monitored the disassembly and reformation of AJs in α-catenin-deficient R2/7 epithelial cells expressing various αE-catenin deletion mutants (Supplementary Fig. 1a; Supplementary Table 1). We found that the deletion of residues 663-696 from the ABD was associated with an unusual accumulation of cadherin-catenin-F-actin complexes in the cytoplasm after trypsinization of cell monolayers (Supplementary Fig. 1b, c), and delayed reformation of AJs with a unique square wave-like arrangement (Supplementary Fig. 2a). Cells with these deformed junctions showed diminished tight junction barrier function compared to full-length αE-catenin (αCatFL)-expressing cells (Supplementary Fig. 2b). In addition, the αE-catenin residues 663-906 expressed in R2/7 cells colocalized with actin-rich regions at the cell periphery (Fig. 1a), whereas an N-terminally truncated form of ABD (ABD*; residues 697-906) prominently accumulated along stress fibers and actin rods (Fig. 1a), consisting of tightly packed actin bundles (Supplementary Fig. 2c). These results suggest the αE-catenin residues 663-906 regulate the association of acto-ABD with different actin assemblies (Fig. 1a), and are critical for the normal function of acto-ABD in forming AJs and, consequently, epithelial differentiation.

Comparison of crystal structures of acto-ABDs with the vin-ABD revealed several highly conserved motifs of α-catenin potentially involved in its unique actin-binding mechanism: an N-terminal α1-helix (αE-catenin residues 669-675), a b-hairpin (bH; residues 799-810), and a C-terminal tail (Fig. 1b, c and Supplementary Fig. 3). Considering that the α1-helix is part of the ABD truncation (residues 663-696) that resulted in abnormal F-actin association and a failure to form normal AJs in R2/7 cells (Fig. 1a and Supplementary Fig. 1b, 2a-c), we sought to explore the potential role of α1-helix in the regulation of force-dependent acto-ABD-F-actin interaction. We performed equilibrium and constant-force steered molecular dynamics (SMD) simulations of the αE-catenin ABD (αEcat-ABD) to gain insights into how α1-helix may respond to increasing mechanical tension at the cadherin-actin interface. To help discuss equivalent residues between αN-catenin and αE-catenin with different residue numbering (e.g., V795 of αN-catenin is equivalent to V796 of αE-catenin), henceforth the αN-catenin residues will be denoted by using the equivalent αE-catenin residue numbers accompanied by a subscripted ‘N’ (e.g., V795 as V796N) for clarity. The SMD simulations showed α1-helix unfolding after a constant pulling force was applied on αEcat-ABD for 60 ns (Fig. 1d, Supplementary Fig. 4a, b and Supplementary Movie 1). Interestingly, shortly before α1-helix unfolded (at ~45 ns), the side chain of V796N turned over from a cryptic position to an exposed position (Fig. 1e and Supplementary Movie 2). αN-catenin residues V796N and I792N are equivalent to the vinculin actin-binding site residues, V1001 and I997N (Fig. 1c). These results suggest that the conformational flexibility of α1-helix and the dynamics of V796N are mechanically coupled within the αEcat-ABD. This mechanism would be consistent with catch bond formation, if the conformation change of α1-helix exposes V796N and enhances the bond strength between acto-ABD and F-actin.

To assess whether the α1-helix affects the α-catenin-F-actin interaction, we performed in vitro actin cosedimentation assays with three ABD variants of αE- and αN-catenin (αE-catenin residue numbers are shown): a wild type form of ABD (ABD-WT; residues 652-906), an ABD with a structure-guided helix-I mutation (H1) designed to unfold α1-helix (ABD-H1; RAIM670-673GSGS) (Fig. 1c), and an ABD with a partially deleted α1-helix (ABD-Δα1; residues 671-906). The structural integrity of acto-ABD was not affected by these mutations (Supplementary Fig. 4c-e). We observed a nearly two-fold increase in the cosedimented amount of either ABD-H1 or ABD-Δα1 compared to ABD-WT (Fig. 1f). These results indicate that the α1-helix attenuates the
a) FLAG and F-actin

b) αN-catenin (4K10), αE-catenin (4IGG:B), Vinculin (1ST6)

c) mαE-catenin, RGSα, α2

mαE-catenin	RGSα	α2	
haE-catenin	663LIA	QSARAKADLPQEQRAK1	684
mαE-catenin	663LIA	QSARAKADLPQEQRAK1	684
mαN-catenin	662LIA	QSARAKADLPQEQRAK1	684
mαT-catenin	655....	QSARAKADLPQEQRAK1	684
dα-catenin	676LIA	QSARAKADLPQEQRAK1	684
vinculin	864PLF	GEETFEPPPERSREEEP	885

RGSα	α5	β1	β2	α6
785LYCHLNLICNKVAKYELQGEGLVSG	813			
785LYCHLNLICNKVAKYELQGEGLVSG	813			
784LYCHLNLICNKVAKYELQGEGLVSG	812			
774LYCHLNLICNKVAKYELQGEGLVSG	802			
798LYCHLNLICNKVAKYELQGEGLVSG	826			
990ITISQDSVKAAMLGSEKRTI	1015			

d) 0 ns, 60 ns, 120 ns

e) αEcat-ABD, αNcat-ABD-WT, αNcat-ABD-H1, αEcat-ABD-WT, αEcat-ABD-H1

f) Actin (42 kDa), mαcat-ABD (WT: 28 kDa)

Actin (42 kDa)	mαcat-ABD (WT: 28 kDa)						
S	P	S	P	S	P	S	P
WT (652–906)	αEcat-ABD	Δα1 (671–906)	WT (651–905)	αNcat-ABD	Δα1 (670–905)		

Bound / total
0.0

| ns | *** | *** | *** |

Note: The image contains various molecular structures and sequences, indicating a focus on protein interactions and binding affinity.
a-actin binding, we determined crystal structures of H1 (Fig. 2a, Supplementary Fig. 5, and Supplementary Table 2). These results further support that the unfolded a-1-helix enhances the F-actin-binding activity of both a-Ecat-ABD and a-Ncat-ABD.

a-1-helix unfolding induces weak a-actin homodimerization.

To examine the structural details of a-actin with enhanced F-actin binding, we determined crystal structures of a-actin-ABD-H1 (Fig. 2a, Supplementary Fig. 5, and Supplementary Table 2). The a-Ncat-ABD-H1 structure closely resembles the overall fold of a-Ncat-ABD-WT (Supplementary Fig. 6a), except for the a-1-helix residues. However, unlike the monomeric a-Ncat-ABD-WT structure, a-Ncat-ABD-H1 crystallized as a homodimer connected by two b-H motifs (Fig. 2a and Supplementary Fig. 6b). The dimer interface involves L807N of the b-H, which mimics M673N of a-1-helix interacting with the hydrophobic patch in the a-Ncat-ABD-WT structure (Fig. 2b and Supplementary Fig. 6c). Moreover, the observation of a-Ncat-ABD-H1 dimerization, which occludes 3100 Å² of solvent-accessible surface (Fig. 2a), in two distinct crystal forms (Supplementary Fig. 6b) provides a basis for further examining the physiological relevance of this ABD-dimer interface. Our NMR analysis of a-Ncat-ABD-H1 in solution showed that concentration-dependent chemical shift perturbations (CSPs) mostly occurred in the b-H motif (Fig. 2c and Supplementary Fig. 7a, b). In addition, we observed the increased propensity for a-Ecat-ABD-H1 to dimerize, albeit very weakly, in a concentration-dependent manner compared to a-Ecat-ABD-WT by size-exclusion chromatography-coupled multiangle light scattering (SEC-MALS) (Fig. 2d and Supplementary Fig. 7c). These results further support that the unfolded a-1-helix propagates the weak dimerization of cadherin through the b-H-dependent interface.

One functional implication for a-catenin dimerization is actin bundling, which has been presumed to occur through N-domain dimerization of a-EcatFL. However, the ability of a-catenin to homodimerize through the ABD suggests an actin bundling mechanism. Indeed, actin bundling assays showed that both isolated a-Ecat-ABD-WT and a-Ecat-ABD-H1 proteins are capable of actin bundling (Fig. 2e). Next we examined the involvement of a-1-helix and b-H motifs in ABD-dependent actin bundling. A b-H-deletion mutant (a-Ecat-ABD-ΔbH) and a construct carrying both the H1 and b-H-deletion mutations (a-Ecat-ABD-H1ΔbH) were well folded (Supplementary Fig. 4d, e), but cosedimented markedly less with F-actin at a high centrifugal force (100,000 × g), indicating that the b-H mutation inadvertently affected F-actin binding of a-Ecat-ABD (Fig. 2e). Nevertheless, a-Ecat-ABD-ΔbH displayed residual actin bundling, whereas a-Ecat-ABD-H1ΔbH was unable to bundle F-actin (Fig. 2e). These results suggest that actin bundling can be facilitated by ABD dimerization through the b-H-dependent interface, as well as through an unknown mechanism involving the a-1-helix in our assays. In addition, our NMR transferred cross saturation (TCS) experiments with 13N2H-labeled a-Ncat-ABD-WT and unlabeled b-H actin indicated that the b-H directly interacts with F-actin through a-S- and a-6-helices, likely involving I792N and V796N, and, unexpectedly, through a-3- and a-4-helices on the opposite side of ABD (Fig. 2f and Supplementary Fig. 7d). This finding may point to a secondary contact site involved in actin bundling (Fig. 2f). Collectively, these results support the view that a-catenin facilitates actin bundling through ABD homodimerization.

ABD mutations compromise AJ remodeling in cells and embryos. Our finding that a-catenin can dimerize and mediate actin bundling independent of the N domain implicates the AJ-associated pool of a-catenin in reorganization of the actin cytoskeleton. To determine how alterations of a-1-helix and b-H would affect cadherin-mediated cell-cell adhesion, we tested the function of a-catenin mutants in R2/7 cells and Drosophila embryos. First, we examined R2/7 cells stably expressing a-EcatFL fused with monomeric GFP (Supplementary Fig. 8a). Cells expressing a-EcatFL or a-Ecat-H1 showed the typical cobblestone appearance of well-adhered epithelial cells with consistent colocalization of a-catenin and actin at AJs (Supplementary Fig. 8b). In contrast, cells expressing a-Ecat-ΔbH, a-Ecat-H1ΔbH, or a construct that lacks ABD entirely (a-Ecat-ΔABD) did not form cohesive cell monolayers and showed increased presence of a-catenin in protrusions (Supplementary Fig. 8b). Similarly, both a-EcatFL or a-Ecat-H1 cells formed three-dimensional spheroids on ultra-low-attachment plates, whereas cells expressing other mutants remained in a semi-aggregated state (Supplementary Fig. 8c).

To find out how the H1 and b-H mutations affect the cell-cell adhesive strength, we performed an epithelial sheet disruption assay. a-EcatFL or a-Ecat-H1 cell monolayers lifted as a continuous sheet from the culture plate upon dispase treatment prior to mechanical disruption (Fig. 3a), but a-Ecat-ΔbH, a-Ecat-H1ΔbH, and a-Ecat-ΔABD cell sheets disintegrated into numerous pieces (Supplementary Fig. 8d). Subsequent mechanical disruption of cell monolayers caused a-EcatFL monolayers to fragment, whereas a-Ecat-H1 monolayers remained mostly intact (Fig. 3a, b). These observations indicate that monolayers formed by a-Ecat-H1 cells have increased resistance towards mechanical stress compared to a-EcatFL cells.

Next, we challenged R2/7 cells in scratch wound assays. In contrast to unchallenged cells, a-EcatFL cells at the wound front
displayed punctate AJs connected to actin cables aligned along the wound edge, whereas αEcat-H1 cells formed less organized punctate AJs and actin assemblies (Fig. 3c and Supplementary Fig. 9a). High-resolution live-imaging revealed that αEcat-H1 AJs were less organized towards the wound front, resulting in unproductive cell-cell tugging events that appeared to interfere with forward sheet migration (Supplementary Movie 3). In fact, αEcat-H1, αEcat-ΔβH, and αEcat-H1ΔβH cells were all inferior to αEcatFL cells in wound closure, and no better than αEcat-ΔABD cells (Fig. 3d, e and Supplementary Fig. 9b). By tracking cells individually, we found that αEcat mutant cells moved with similar speeds as αEcatFL cells, but less persistently, contributing to...
overall reduced epithelial sheet migration (Fig. 3f, Supplementary Fig. 9b and Supplementary Movie 4). In addition, differences between αEcatFL and αEcat-H1 cell trajectories were independently validated using a particle image velocimetry (PIV)-based tracking method (Supplementary 9c). These observations suggest that α-catenin with a defective α1-helix can support AJs in static epithelia but fails to support dynamic AJ rearrangements and cell movements.
To further assess α1-helix and βH functions in tissue organization we generated mutants in Drosophila α-Catenin (α-Cat) and tested their function in transgenic animals. Both α1-helix and βH regions are conserved in α-Cat (Fig. 1c), and previous work showed that the ABD of Drosophila α-Cat (αCat-ABD) is essential for cell adhesion⁷. Moreover, αCat-ABD-H1 showed enhanced actin binding and bundling activity compared to αCat-ABD (Supplementary Fig. 10a) similar as mammalian proteins (Fig. 2e). Zygotic null mutants for α-Cat (αCat−/−) show embryonic lethality and severe defects in head morphogenesis⁹ (Fig. 4a, b). Expression of full-length α-Cat (αCatFL) did rescue αcat−/− mutants to adulthood. In contrast, αCat-H1, αCat-Δα1, αCat-ΔβH, and αCat-H1ΔβH did not rescue the embryonic lethality of αcat−/− mutants similar to αCat-ΔABD (Fig. 4a). Expression of αCat-H1, αCat-Δα1, and αCat-H1ΔβH led to some improvements in head morphogenesis, and a small number of animals expressing αCat-H1 or αCat-H1ΔβH survived to larval stages (Fig. 4a). Immunoblot analysis (Supplementary Fig. 10b) and tissue staining in an αCat−/− mutant background (Fig. 4c) showed that our constructs are expressed at levels similar to endogenous α-Cat and are effectively recruited to AJ’s. Efficient recruitment of α-Cat proteins to AJ’s in a wildtype background indicated that mutant proteins are not outcompeted by endogenous α-Cat (Supplementary Fig. 10c). We noted that overexpression of αCat-H1 or αCat-Δα1 had a toxic effect on survival with most animals dying as larvae, whereas overexpression of other α-Cat constructs led to pupal lethality or adult survival (Fig. 4a). The failure of α-Cat proteins with a compromised α1-helix to substantively rescue αcat−/− mutants was surprising as those variants are likely capable of coupling cadherin to the actin cytoskeleton to promote intercellular adhesion. On the other hand, enhanced F-actin binding of αCat-ABD-H1 (Supplementary Fig. 10a) could explain the observed toxicity upon overexpression of these constructs. Our findings indicate that the function of the α1-helix in attenuating interactions between α-catenin and F-actin is instrumental for AJ function in developing epithelia.

We further examined the role of α1-helix in wound repair, which is driven by the polarized assembly of actin at the interface between wounded and adjacent cells in the Drosophila embryonic epidermis⁴⁲. Polarization of actin (and the non-muscle myosin II) in the cells adjacent to the wound results in the assembly of a supracellular contractile cable around the perimeter of the wound that drives tissue repair⁴². The quantified wound closure dynamics revealed that αCat−/− embryos expressing αCatFL repaired damage to their epidermises faster than αcat−/− embryos, whereas αCat-H1 expression did not significantly accelerate wound closure in an αcat−/− epidermis. (Fig. 4d, e). These results are consistent with our whole animal rescue experiments, as well as our scratch wound healing assays (Fig. 3d-f), and collectively suggest that a compromised α1-helix severely interferes with α-catenin function in tissue morphogenesis.

Actin-binding site residues are essential for α-catenin function. Considering in vitro evidence suggests that α-catenin can directly interact with F-actin⁵,⁷,⁸,¹⁰,¹⁷,²⁷,²⁹,³²,³³,³⁵,³⁷,³⁸,⁴⁴. A previously determined low resolution (18 Å) cryo-EM map of an αcat-ABD-F-actin complex precluded any detailed analysis of the complex interface²⁹. Nonetheless, it suggested that the αcat-ABD interacts with two actin monomers adjacent aligned on the long axis of F-actin. A similar arrangement was observed in a recently determined 8.5-Å cryo-EM structure of a vin-ABD-F-actin complex, which revealed that the last two α-helices of vin-ABD interact with F-actin³⁹. Considering the relatively high sequence identity shared between αcat- and vin-ABDs (~30%)²⁷, we generated an atomic model of the αcat-ABD-H1-F-actin complex based on the vin-ABD-F-actin structure. In this model, α5- and α6-helices of the αcat-ABD-H1 interact with two axially arranged actin monomers of F-actin (Fig. 5a). In particular, the α5-helix contains the highly conserved residues, I792N and V796N (Fig. 1c). I792N of αn-catenin assumes an exposed position closely resembling the vinculin actin-binding site residue I997⁴⁰. In contrast, the conformation of V796N in the αn-ABD structure (Supplementary Fig. 11a) compared to the fully exposed V1001 of vinculin⁴⁰.

To better characterize the α-catenin actin-binding site, we elucidated a crystal structure of αEcat-ABD-WT at 2.2-Å resolution (Fig. 5b, Supplementary Fig. 5, and Supplementary Table 2). The electron density map of α5-helix clearly shows that V796 adopts a conformation that exposes its side chain on the ABD surface, along with two additional hydrophobic residues L785 and I792 (Supplementary Fig. 5g and 11b). Our site-directed mutagenesis and actin cosedimentation assays with the αCat-ABD variants support critical roles of these hydrophobic residues in F-actin binding: Ala substitutions of L785, I792 and V796, individually or together as 3A, led to a range of reduction (75, 36, 47, and 78%, respectively) in the amount of ABD cosedimenting with F-actin compared to αEcat-ABD-WT (Fig. 5c). The effects of I792A and V796A were greater in the H1 background (reduction of 70% and 73%, respectively), confirming that alterations of these residues significantly reduce F-actin binding by αCat-ABD-H1 (Fig. 5c). In contrast, Ala substitution of V714, which is located on the α3-helix surface, resulted in no reduction (Fig. 5c). Also, none of the above mutations appear to interfere with the ability of αEcat-ABD to bind F-actin (Supplementary Fig. 12). The equally significant reduction observed with either the L785A mutation alone or 3A suggests that L785 plays a central role in establishing the critical hydrophobic interface between F-actin and αcat-ABD. The measurable reduction in F-actin binding with I792A or V796A suggests that I792 and V796 are likely involved in further stabilizing this interface, and any changes to these residues could modulate the F-actin-binding activity of αcat-ABD. These results confirm that the hydrophobic residues on the α5-helix surface constitute an important binding surface for F-actin interaction.

Next we tested the in vivo importance of this interaction by expressing an αcat-3A (L798A + I805A + V809A) mutant in Drosophila. All three key hydrophobic residues identified in mammalian αE-catenin or αn-catenin are conserved in Drosophila α-Cat (Fig. 1c). αcat-3A was recruited normally to the cadherin-catenin complex (Fig. 4c and Supplementary Fig. 10c) but failed to show a rescue of the αcat−/− mutant phenotype; a fraction of embryos showed more severe defects than αcat−/− mutants, consistent with a mild dominant-negative effect of αcat-3A expression (Fig. 4a, b). We conclude that direct interaction between α-catenin and F-actin is essential for AJ assembly and function during development.

Allosteric coupling between α1-helix and V796 dynamics. Our observations of the cryptic (attenuated) and exposed (activated) conformations of V796 (Supplementary Fig. 11a, b), despite the nearly identical primary sequences of αEcat- and αnCat-ABDs (87% identity; Supplementary Fig. 3), indicate that this residue resides within a conformationally dynamic region. Consistent with this idea, the αEcat-ABD-WT structure contains an internal cavity that could accommodate V796 in the cryptic state similar to V796N in the αn-ABD-WT structure (Fig. 5b, Supplementary Fig. 11c). This internal cavity is partly formed by the side
Fig. 4 αCat ABD mutants fail to rescue αCat function in Drosophila. a Phenotypic consequences of the overexpression of αCat ABD mutants and rescue activity of αCat ABD mutants expressed in αCat−/− zygotic null mutants. Overexpression: all mutant constructs showed significantly reduced survival (P < 0.0001) compared to αCatFL overexpression. Rescue experiments: Mutant constructs showed a significant rescue (αCatFL, αCat-H1, αCat-Δα, αCat-H1ΔβH (P < 0.0001)) or enhancement (αCat-3A (P < 0.0001), αCat-ΔABD (P = 0.0071)) of the αCat−/− zygotic mutant phenotype. Expression of αCat-H1ΔβH did not significantly modify the αCat−/− mutant phenotype. Data are presented as mean ± SD. b Cuticles of wild-type embryo, of αCat−/− mutants expressing αCatFL, and of αCat−/− mutants expressing αCat-H1 showing a defective head skeleton (‘abnormal head’; arrow), and of αCat−/− mutant expressing αCat-3A showing dorsal hole (arrow) in addition to an open head. c HA-tagged αCat variants were expressed with Act5c-Gal4 da-Gal4 in the epidermis of Drosophila embryos mutant for αCat (αCat−/−) at stage 15. AJs marked by β-catenin. d Epidermal wounds in αCat−/−, αCat−/− mutant expressing αCatFL, and αCat−/− mutant expressing αCat-H1. F-actin was labeled with GFP:UtopinABD. Top panels show time of maximum wound area (yellow lines outline the wounds) and bottom panels show epidermis 30 min after wounding. Anterior left, dorsal up. Scale bar, 10 μm. e Wound area over time (left) and wound closure rate (right) for αCat−/− (red, n = 12 wounds), αCat−/− mutants expressing αCatFL (cyan, n = 10 wounds), and αCat−/− mutants expressing αCat-H1 (green, n = 10 wounds). αCatFL, αCat−/− embryos repaired damage to their epidermis significantly faster than αCat−/− embryos (P = 0.027), whereas αCat-H1 αCat−/− embryos did not show a significant difference to αCat−/− embryos. The box plot shows the mean (gray line), SEM (box), and SD (black lines).
chain of M673 from α1-helix (Fig. 1e), hence raising the possibility that α1-helix unfolding allosterically affects the F-actin-binding site by changing the conformational dynamics of V796.

To determine the influence of α1-helix on the actin-binding site of α-catenin, we developed a new bio-layer interferometry (BLI) approach to measure the kinetics of the actin-ABD-F-actin interaction. We immobilized F-actin onto the streptavidin-coated optical sensor with biotinylated LifeAct actin-binding peptides (Labio)46 and measured subsequent association and dissociation of actin-ABD (Fig. 6a and Supplementary Fig. 13a). We determined that concentration-dependent F-actin binding curves of αEcat-ABD-WT fit well with a 2:1 hetero-ligand:receptor model with two \(K_D \) values, \(K_{D1} = 2.0 \) μM and \(K_{D2} = 0.3 \) μM (Fig. 6b, Table 1, and Supplementary Fig. 13b). This model supports αEcat-ABD-WT in an equilibrium between the attenuated and activated actin-binding states, respectively. The lower \(K_{D2} \) value is consistent with the positive cooperativity of F-actin binding by αEcat-ABD as previously reported48,49. In contrast, the BLI data of εEcat-ABD-H1 fit well with a 1:1 ligand:receptor model with the single \(K_D \) value of 0.58 μM (Fig. 6c, Table 1 and Supplementary Fig. 13b), indicating a predominantly activated state of αEcat-ABD-H1. The effects of mutations in the α-catenin actin-binding site, as well as \(\Delta \beta H \) mutation, resulted in decreased affinity (Table 1 and Supplementary Fig. 13a, b) that are consistent with our actin cosedimentation assay results (Figs. 2e and 5c). Our data support the conclusion that the unfolded α1-helix contributed to an apparent equilibrium shift towards an activated state of αcat-ABD.

Comparison of the \(^{15}N/\(^{1}H\) TROSY NMR spectra of αNcat-ABD-WT47 and αNcat-ABD-H1 showed that a region (αN-catenin residues 794–814) containing V796N and βH was one of three regions affected by the H1 mutation (Supplementary Fig. 15a, b), likely indicating an altered conformation in this region (Supplementary Fig. 15b). We further confirmed by NMR relaxation and MD simulations studies that the unfolded α1-helix increased molecular motions in the V796N/βH region (Supplementary Fig. 15c, d). In addition, we performed chemical shift (CS)-based Rosetta comparative modeling (CM)48 to show that V796N of αNcat-ABD-WT remained in the cryptic state, whereas αNcat-ABD-H1 displayed a large conformational change that exposed V796N on the surface (Fig. 6d), resembling V796 in the crystal structure of αEcat-ABD-WT (Fig. 5b). Our extended equilibrium MD calculations of αcat-ABDs support that the unfolded α1-helix accelerates the conformational change to favor the exposed state of V796 as the exposure of V796N precedes complete unwinding of α1-helix during the constant-force simulation (Supplementary Movie 2), we expect that α1-helix unfolding ‘locks’ V796N in the activated state. Taken together, our observations indicate that allosteric coupling between α1-helix and the actin-binding residue V796 is central to the force-induced association of α-catenin with F-actin.
Discussion

We show that the unique molecular features of aCat-ABD, α1-helix, V796, and βH, confer mechanosensitivity to α-catenin and its ability to dynamically regulate and reorganize actin filaments directly associated with cadherin-catenin complexes at intercellular junctions. The importance of α-catenin to directly associate with F-actin in a mechanosensitive manner is underscored by experiments showing that aCat-H1 with enhanced F-actin binding was equally inferior to α-scored by experiments showing that α-catenin molecules will bind to F-actin in a cooperative manner to promote the formation of cadherin-catenin complex clusters (Fig. 7). Although aCat-H1 or other constructs without the α1-helix can support AJ formation in R2/7 cells (Supplementary Fig. 1b and 6b), these do not restore normal α-catenin function (Supplementary Fig. 2a, b) and may reflect a lack of extensive junctional remodeling in these cells. A similar discrepancy between confluent R2/7 cells, wound-healing assays, and in vivo performance was noted for aCat-NM1 (resides 1-402); this ABD-deficient construct forms AJs in R2/7 cells through the recruitment of vinculin, but does not support normal α-catenin function during wound closure, and a corresponding Drosophila construct (aCat-NM1) showed no rescue of aCat–/– embryos (R.S. and U.T., unpublished).

Cadherin clustering and AJ maturation likely require trans-interactions and cis-interactions of cadherin ectodomains, as well as an active process involving intracellular coupling of the cadherin-catenin complex to actin networks. Our aCat-ABD-H1 crystal structures revealed an unexpected ABD homodimerization (Fig. 2a), which can facilitate F-actin bundling in vitro (Fig. 2c). It involves the βH motif forming an extensive dimer interface with the hydrophobic patch uncovered by α1-helix unfolding (Fig. 2b and Supplementary Fig. 6c). Considering the very weak aCat-ABD dimerization (Fig. 2c and Supplementary Fig. 7c), which is marginally increased by the H1 mutation in solution (Fig. 2d), it is possible that tension-induced unfolding of α1-helix allosterically changes the conformational dynamics of

Fig. 6 Unfolding of α1-helix affects the conformational dynamics of V796. a A scheme of BLI experiment for a kinetic analysis of direct interaction between aECat-ABD and F-actin. The streptavidin-coated optical sensor with LAbio peptides immobilizes F-actin through high avidity, thereby restricting the movement of attached F-actin to minimize the occurrence of aCat-ABD-induced actin bundling. b BLI responses curves of the aECat-ABD-WT. The KD values were obtained by fitting concentration-dependent F-actin binding curves (blue) to a 2:1 homogeneous binding model (red curves). c BLI response curves of the aECat-ABD-H1. The KD value was obtained by fitting concentration-dependent F-actin binding curves (blue) to a 1:1 binding model (red curves). d CS-Rosetta-CM models of aCat-ABD-WT and aCat-ABD-H1 based on NMR CS data and the aCat-ABD-WT crystal structure as the template. e Conformational states of V796 during the equilibrium MD simulations of aECat-ABD-WT (blue), aECat-ABD-WT (green) and aECat-ABD-H1 (magenta). Snapshots of the region of α1-helix containing V796 at specified time points are shown. f Evolution of distance between the β-carbon atoms of V796 and I792 during the equilibrium MD simulations. Dotted lines mark the approximate inter-residue distances when V796 is in the cryptic and exposed positions.
the actin-binding site without affecting dimerization. Nonetheless, Aβ1-localized α-catenin cooperatively binding to F-actin would likely increase the propensity of αcat-ABD to dimerize and promote F-actin bundling. Uncovering this ABD dimerization interface motivated us to propose a new monomer-dimer model for α-catenin at the cadherin-actin interface (Fig. 7). Although both in vitro and in vivo studies consistently concluded that monomeric α-catenin forms the essential link between the cadherin-β-catenin complex and F-actin, the current model fails to account for the capacity of α-catenin to bundle F-actin at AJs.

The ABD-dependent dimerization as demonstrated here allows actin filaments to be tightly bundled in an antiparallel fashion (Fig. 8) and places the α3-α4 surface of ABD in close proximity with F-actin, which is consistent with our NMR saturation transfer data (Fig. 2f). In addition, the ABD dimerization allows F-actin bundling to occur while the N domain of α-catenin remains associated with cadherin-bound β-catenin (Fig. 7). Hence, our proposed model differs from the previous monomer-dimer model of α-catenin by arguing that (i) the E-cadherin/β-catenin/α-catenin/F-actin complex regulates the cadherin-actin linkage without disrupting the β-catenin-α-catenin interaction; (ii) that α-catenin as a component of the complex can bundle F-actin; and (iii) that α-catenin controls actin binding through force-dependent allosteric regulation of the actin-binding site within the ABD. The versatility of α-catenin to modulate the attachment of the cadherin-catenin complex to F-actin from transient to stable actin binding, and to the dynamic cortical actin network will likely involve additional dynamic connections provided by the recruitment of other F-actin-binding proteins, such as vinculin, afadin, ZO-1 and EPLIN, to intercellular junctions.

We have employed an integrative structure/function approach to show that the structural motifs of αcat-ABD involved in the regulation of tension-sensitive actin binding are essential for normal tissue morphogenesis and wound healing. Although the occurrence of actin bundling involving ABD-linked α-catenin dimers at intercellular junctions remains to be tested, our model reconciles previous observations of α-catenin as a critical mechanosensor engaged in reorganization of AJs by facilitating dynamic F-actin association, and actin bundling through homodimerization. Moreover, the significance of this mechanism lies in the ability of α-catenin to modulate cadherin-mediated cell adhesion through force-dependent F-actin binding and actin remodeling without dissociation from the cadherin-β-catenin complex.

Methods

Protein expression and purification. The CDNA corresponding to the actin-binding domain (ABD) of mouse α-catenin (652-906), mouse α-catenin (651-905) and all related mutants (e.g., the α-catenin H1 mutation RAIM670-673GGS) were amplified by PCR and individually subcloned into the pGEX4T1 vector (GE Healthcare). The fly αcat-ABD (659-917) cDNA was amplified by PCR and subcloned into a modified PET-SUMO vector. Site-directed mutagenesis was performed using the Quikchange protocol (Stratagene) to produce all single-/multiple-residue and deletion mutants. Recombinant proteins were expressed as N-terminal glutathione S-transferase (GST) fusion proteins in Escherichia coli BL21-CodonPlus cells. Cells were grown to an O.D.600 of 0.8 at 37°C and the recombinant protein expression was induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside for 16 h at 16°C. Cells harvested by centrifugation were resuspended in the lysis buffer (50 mM Tris-HCl, pH 8.0, 300 mM NaCl, 10 mM β-mercaptoethanol, 1 mM Tris(2-carboxyethyl)phosphine (TCEP),) sonicated on ice, and subjected to centrifugation to isolate soluble proteins. GST-fusion proteins were isolated using the glutathione-sepharose resin (GE Healthcare). His-SUMO fusion proteins were isolated using the Ni2+–NTA resin (ThermoFisher Scientific). GST-fusion and His-SUMO proteins were cleaved by thrombin or SUMO protease (Ulp-1), respectively. The cleaved proteins were further purified by size-exclusion chromatography using Superdex 75 (GE Healthcare) in the running buffer (50 mM Tris-HCl, pH 8.0, 300 mM NaCl, 1 mM TCEP). The purified proteins were exchanged into protein storage buffer (50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM TCEP).

Actin cosedimentation assay. Monomeric rabbit skeletal muscle actin was purified from rabbit muscle actin powder (Pel-Freez Biologicals). Purified globular actin (G-actin) was diluted to 20 μM in a fresh buffer G (2 mM Tris-HCL, pH 8.0, 0.2 mM ATP, 0.5 mM DTT, 0.1 mM CaCl2), and subsequently polymerized in Buffer-F (5 mM Tris-HCL, pH 8.0, 50 mM KCl, 2 mM MgCl2, 1 mM ATP, 0.2 mM CaCl2, 0.5 mM DTT) for 1 h at RT. The actin-ABD samples were subjected to buffer exchange into Buffer-F. Samples of F-actin and ABD were mixed (the protein mixture contains 5 μM ABD and 5 μM actin in 50 μL in Ultra-Clear Centrifuge Tubes (Beckman Coulter) and incubated for 1 h at RT. F-actin with bound protein samples were cosedimented by centrifugation using a Beckman Coulter Airfuge with a chilled A-100/30 rotor at 28 psi (≥100,000 x g) for 20 min at RT. To assess actin bundling, F-actin with bound protein samples were cosedimented by centrifugation using a Beckman Coulter Airfuge with a chilled A-100/30 rotor at 28 psi (≥100,000 x g) for 20 min at RT. To assess actin bundling, F-actin with bound protein samples were cosedimented by centrifugation using a Beckman Coulter Airfuge with a chilled A-100/30 rotor at 28 psi (≥100,000 x g) for 20 min at RT. Actin bundling was assessed by SDS-PAGE with coomassie blue stain. Gel band intensity was measured using ImageJ. Statistical analysis of three or more groups was performed by One-way ANOVA followed by Tukey’s multiple comparison test. Statistical analysis of two groups was performed by Two-way ANOVA followed by Bonferroni’s comparison test.

Crytalization and data collection. Crystals of the αcat-ABD-H1 were grown at 277 K by vapor diffusion. For crystallization the αcat-ABD-H1 sample was exchanged into Buffer-P (20 mM K/Na phosphate, pH 6.0, 150 mM NaCl, 1 mM TCEP), and the protein solution (30 mg/mL) was mixed with an equal volume of the reservoir solution, which consists of either solution A (2.0 M (NH4)2SO4, 10 mM NaH2PO4, 1.2 M K2HPO4) for form A crystals, or solution B (100 mM Na acetate/acetic acid, pH 4.5, 0.8 M NaH2PO4, 1.2 M K2HPO4) for form B crystals. Similarly, crystals of the αcat-ABD-WT in Buffer-P (30 mg/mL) were grown at 277 K by vapor diffusion with the reservoir solution consisting of 0.2 M KBr, 2.2 M (NH4)2SO4 and 3% (v/v)}
NMR spectroscopy. The NMR experiments of 15N/13C labeled αNcat-ABD-WT and αNcat-ABD-H1 were performed on Bruker AVANCE II 800 MHz (Bruker Biospin) spectrometer equipped with a cryogenic triple-resonance 9-gradient probe. Labeled proteins were expressed in E. coli BL21-CodonPlus with M9 minimal media containing 15N-ammonium chloride and 13C-glucose for 15 h at 288 K. The purification of labeled ABD proteins was performed in a similar manner as described above. The backbone assignment of αNcat-ABD-H1 was processed using standard ^{1}H-15N experiments. 13N relaxation data were acquired at 288 K in the presence and absence of a 3 s ^{1}H saturation period prior to 13N excitation using the 13N-1H heteronuclear NOE pulse sequence. NMR spectra were processed using NMRPipe and resonance assignment was carried out using NMRView. Errors in peak intensity values were estimated from the signal-to-noise ratio of each spectrum.

CS-Rosetta-CM. NMR chemical shift (CS)-guided structure modeling of the αNcat-ABD-WT and αNcat-ABD-H1 (28 kDa) was performed by employing the CS-Rosetta-CM approach with NMR chemical shift data (αNcat-ABD-WT and αNcat-ABD-H1) and the αNcat-ABD-WT crystal structure (PDB ID: 4K1O) as the template. This approach enables CS-Rosetta modeling to be effective for proteins larger than 15 kDa. The POMONA server (https://spin.niddk.nih.gov/bax/nmrserver/pomona/) was used to prepare the Rosetta input files.

Biolayer interferometry. To determine a dissociation constant for the act-cat-ABD-F-actin interaction, we devised a biolayer interferometry approach which uses label/modification-free F-actin and minimizes any occurrence of actin bundling. All BLI experiments were performed at 26 °C using Octet384 (Fortebio). All proteins used in BLI experiments were buffer exchanged into the assay buffer (2 mM Tris-HCl, pH 8.0, 0.2 mM ATP, 0.5 mM DTT, 0.1 mM CaCl$_2$, 1 mM TCEP, 50 mM KCl, 2 mM MgCl$_2$) containing 1% H$_2$O to avoid the dipole coupling between the amides. Control TCS experiments were carried out without F-actin to assess the effects of the residual aliphatic protons in the ABD.

Fig. 7 Dynamic remodeling of the cadherin-catenin-actin complex. A model of α-catenin-dependent cadherin-actin linkage, cadherin clustering and F-actin bundling involved in the regulation of cadherin-mediated cell-cell adhesion facilitating nascent and stable junctions. The ABD of α-catenin bound to the cadherinβ-catenin complex is in an attenuated state with the folded α1-helix and cryptic V796 to form weak interactions with F-actin. I. α-catenin dissociated from β-catenin can exist as a monomer and an N-terminally linked homodimer (N-Dimer). When the cadherin-catenin complex encounters F-actin under force (Fact + F), αcat-ABD exposes V796 on the surface while the α1-helix unfolds to form a catch bond with F-actin. II. The force propagates through α-catenin to unfold the M$_I$ region, which facilitates the recruitment of vinculin (Vin) to AJs. Strong F-actin binding promotes cooperative binding of ABD. As α-catenin clusters together on F-actin, ABD dimerization between two ABD-coated actin filaments promotes actin bundling and lateral clustering of cadherin-catenin complexes at AJs.
using T-Coffee (http://tcoffee.crg.cat)64 and ESPript (http://espript.ibcp.fr)65. Catenin (P35220.2), and mouse vinculin (accession Q64727) was performed by expressing R2/7 monolayers post-scratch wounding, cells were also infected with a (accession NP_663785.2), mouse αμ antibiotic resistance (300 μg/mL hygromycin for pCAH vectors) and subsequently isolated by flow cytometry. For live imaging analysis of actin filaments (7-8 nm) in our atomic model is consistent with the inter-filament distances observed within the actin rods formed by ABD+expressing cells (Supplementary Fig. 2c). Circular dichroism. Circular dichroism spectroscopy data for 40 μM actin-ABD samples were collected on a Jasco J-815 CD spectrometer (Jasco, Tokyo, Japan) at 293 K using a 0.1 cm path length cuvette with a scanning speed of 20 nm/min (1 samples were collected on a Jasco J-815 CD spectrometer (Jasco, Tokyo, Japan) at 220 nm with a scan rate of 1 °C/min. Sequence alignment. Multiple sequence alignment of human αE-catenin (accession P35221), mouse αE-catenin (accession NP_033948.1), mouse αN-catenin (accession NP_663785.2), mouse αT-catenin (accession Q6531.2), Drosophila α-Catenin (P35220.2), and mouse vinculin (accession Q64727) was performed by using T-Coffee (http://tcoffee.org.cn)66 and ESPript (http://espript.ibcp.fr)65. Mammalian cell culture. The αE-catenin cDNA was amplified by PCR and subcloned into a modified pCAH vector66 to express αE-catenin-mGFP (monomeric EGFP with the dimerization-disrupting A206K mutation67). The full-length or deletion variant αE-catenin cDNA was subcloned into pCA vector to express αE-catenin-FLAG. Site-directed mutagenesis was performed using the Quikchange protocol (Strategene) to produce αE-catenin deletion mutants, NM3ABD, NM4ABD7 and NM5, with the constitutively active M5/vinulin-binding site (VBS; residues 305-352). R2/7 cells were cultured in Dulbecco’s modified Eagle’s medium (Thermo Fisher Scientific) supplemented with 10% v/v fetal bovine serum (Invitrogen), 100 U/ml penicillin, and 100 mg/ml streptomycin (Sigma-Aldrich). Cells were transfected with expression vectors by using Lipofectamine 3000 (ThermoFisher Scientific), and cells with stable protein expression was selected based on antibiotic resistance (300 μg/mL hygromycin for pCAH vectors) and subsequently isolated by flow cytometry. For live imaging analysis of αE-catenin-mGFP-expressing R2/7 monolayers post-scratch wounding, cells were also infected with a lentiviral LifeAct-Ruby purchased from Addgene (pLenti.PGK.LifeAct-Ruby, Addgene Plasmid #51009). Antibodies. The following primary antibodies were used: hybridoma mouse anti-α-cat-ABD (SB11; undiluted), polyclonal rabbit anti-phospho-serine 641 αCat (21330; 1:300, Signalway Antibody), monoclonal mouse anti-GAPDH (9484; 1:5000, Abcam). Secondary antibodies for Western blotting included fluorescently labeled donkey anti-mouse and anti-rabbit antibodies (680RD or 800RD; 1:5000, LiCor Biosciences). Secondary antibodies for immunofluorescence included IgG Alexa Fluor 488 or 568-conjugated goat anti-mouse or anti-rabbit antibodies (1:200, Invitrogen). For R2/7 cells expressing αE-catenin-FLAG, the following antibodies were used: anti-DDDDK tag rabbit polyclonal antibody, which recognizes the FLAG tag (1:200, MBL), anti-ZO-1 mouse monoclonal antibody (T8-754; undiluted, a gift from S. Tsukita, Osaka University, Japan), anti-E-cadherin mouse monoclonal antibody (clone36/E-cadherin; 1:100, BD) and anti-E-cadherin rabbit monoclonal antibody (ECCD2; 1:200, a gift from M. Takeichi, Riken, Japan). Alexa Fluor 488-conjugated or 555-conjugated secondary antibodies (1:200) were purchased from Invitrogen. Alexa Fluor 647-conjugated phalloidin (1:50, Invitrogen) was used for staining actin filaments. Fluorescence microscopy and confocal imaging. Cells were grown on coverslips, fixed in 2% paraformaldehyde (Electron Microscopy Services, Hatfield, PA) for 15 min, quenched with glycine, permeabilized with 0.3% Triton X-100 (Sigma), and blocked with normal goat serum (Sigma). Primary and secondary antibody incubations were performed at RT for 1 h, interspaced by multiple washes in PBS, and followed by mounting coverslips in ProLong Gold fixative (Life Technologies). Confocal images were acquired with an Olympus IX81 inverted confocal microscope (Olympus) through a Plan-Apochromat x60/1.42 NA oil-immersion objective lens (Olympus). Images were processed by Olympus FV10-ASW. For R2/7 cells expressing αE-catenin-FLAG, images were taken using Olympus BX51 microscope with a UPlanFLN 40 × /0.75 P2h lens or a PlanApo 60 × /1.40 Oil PH3 lens. The images of R2/7 cells expressing αE-catenin variants at the scratch wound fronts were collected on a Nikon Ti Eclipse inverted microscope equipped with a Yokogawa CSU-X1 spinning disk head, Perfect Focus system (Nikon), a 100 × 1.49 NA APO TIRF objective, and an Andor xiON EMCCD camera (Andor)
Technology), controlled by MetaMorph 7.7.7.7 software (Molecular Devices). Cells were maintained at 37 °C plus 5% CO2, during imaging using a Tokai Hit stage-top incubator (Tokai Hit) or an Okolab gas mixer (Okolab).

For imaging z-stacks of cell piling, slides were imaged at RT with 60× oil Apo TIRF NA 1.49 objective on the Nikon A1R laser scanning confocal inverted microscope equipped with two standard PMTs (408, and 640) and two high sensitivity GaAsP detectors (488, 561).

Scratch wound assay. 250,000 R2/7 cells were plated for 24 h on LabTek #1 4-well chamber slide (34300-776, Thermo Fisher Scientific), wounded with a 200 μm micropipette tip and cells were allowed to recover for 2 h. Prior to imaging, DEMEM media was replaced with FluoroBright DEMEM (Life Technologies) and 10 g/mL Mitomycin C (Sigma) to limit cell proliferation. Cells in Fig. 3d were imaged with the 20× objective every 10 min (both phase contrast and fluorescent channels) on the Nikon Bioskop IM-Q with the slide holder module (located in Northwestern University Nikon Imaging Facility) at 37 °C, 5% CO2, for 15 h. 10–12 fields of view (FOV) were captured along the wound edge. Instrument controlled by Bioskop IM software, version 2.21 build 144. To quantify change in wound area, the resulting .tif files were imported to ImageJ54 and the wound edge of the phase-contrast image was traced with the polygon tool at time = 0 and time = 15 h. The area of the resulting polygon was measured in pixels5 and the resulting data (35 FOV; SBR) were compared by performing One-way ANOVA statistical analysis followed by Tukey’s multiple comparison test. Images presented in the paper were adjusted for brightness/contrast but were otherwise unprocessed.

To determine the velocity (μm/sec) and persistence (total path length (μm)/net displacement (μm)) of cells at the wound front, tracked individual cells at each interval of the time lapse sequence using the MTrack plug-in (FIJI) (see colored tracks in Supplementary Fig. 9b). The center of the nucleus (centroid) was hand-marked at each interval. The data points for each of the 5 constructs were compiled from scratch wounds carried out on three different days to ensure biological reproducibility and significance by ANOVA.

To validate cell trajectories for the WT versus H1α-catenin mutant comparison using a fully unbiased method, a particle image velocimetry (PIV) analysis (i.e., feature matching by cross-correlation using the PIV_jar plug-in (FIJI)). Briefly, each acquired image frame was divided into an interrogation window size that approximated single cells or a small cell group depending on degree of cell packing (100 μm²). Vectors were averaged from all 91 frames/movie for 3 α-cat WT and 4 α-cat-H1 wounds (two biological replicates from separate days).

Epithelial sheet disruption assay. R2/7 cells expressing α-catenin variants were plated in a 12-well culture plates (Corning) and allowed to reach confluence. After 36 h, the monolayer was washed 2x in DPBS supplemented with 0.5 mM Mg2+ from separate days). R2/7 cell lines expressing various N-catenin ABD-H1. Measurement of transepithelial electric resistance

The structure of the α-cat-ABD-WT was obtained from the Protein Data Bank (PDB ID 4K1O)27. The structure of α-cat-ABD-H1 was determined from the crystal structure of α-catenin ABDD. H1. The structure of α-cat-ABD-WT was obtained from the crystal structure of α-catenin ABDD-WT. The structure of α-cat-ABD-WT was obtained from the crystal structure of α-catenin ABDD-WT chain A. All-atom MD simulations were performed using NAMD26, the CHARMm force field for proteins and lipids28, and the TIP3P model for explicit water29. The Solvate and Autoionize plugins of VMD were used to solvate the system in a water box with at least 15 Å between the protein and the boundary of the box, and to add 150 mM NaCl and neutralize the net charge of the system, respectively27. All simulations were performed using periodic boundary conditions and a constant temperature of 310 K was maintained using Langevin dynamics with a damping coefficient of 0.5 ps-1 (refs. 73,74). Short-range, non-bonded interactions were calculated using a cutoff distance of 12 Å, and long-range electrostatic forces were described with the Particle Mesh Ewald method75. Throughout the simulations, bond distances involving hydrogen atoms were fixed using SHAKE algorithm76. An initial 100 ns equilibration with all Ca atoms fixed, the system was equilibrated in an NVT (constant Number, Volume, and Temperature) ensemble for 500 ps, during which all protein Ca atoms were fixed to allow relaxation of the side chains and water. Subsequent equilibrium simulations were performed in an NVT ensemble. In constant-force SMD simulations, the trade-off between the improved accuracy and long time required to observe conformational changes under low force. Assuming the SMD simulation successfully captures the physiological unfolding pathway, we expect unfolding of α-helix to occur at lower force (<100 pN) over a longer timescale (>60 ns). The center of mass (the sulfur atom of MT2/272/273) was fixed to prevent the overall translation of the system in response to the applied external force. The force was directed along the x-axis between the two anchoring points, and the vector pointing from the center of mass to the N-terminal residue was defined as the positive direction. Simulation outputs were analyzed using VMD27 and plotted using the matplotlib plotting library77. The portion of each equilibrium simulation during which the RMSD monotonically increased (the first 7–13 ns) was excluded from analysis to avoid biasing the results toward the initial coordinates.

3D cell culture. We observed for the ability of R2/7 cells expressing α-catenin variants to form spheroid structures by using non-Adherent Corning 96-well round bottom ultra-low attachment microplate (Corning). In each well, 25–200 cells were suspended in 100–200 μL of DMEM containing 10% FBS. The microplate was placed in a CO2 incubator, and occasionally taken out of the incubator to acquire phase-contrast images with a stereomicroscope equipped with a digital camera at various time points.

Drosophila stocks, overexpression, and rescue experiments. Pair-GAL, Act5c-GAL, and da-GAL were obtained from the Bloomington Drosophila stock center (https://bdsc.indiana.edu). Transgenic constructs inserted at attP2 were recombined with α-Cat1 and balanced over TM3, Ser, twi-Gal4, UAS-GFP. These flies were crossed to act-Gal-Gal da-Gal α-Cat/TM3, Ser twi-Gal UAS-GFP, and eggs were collected on apple juice agar plates at 25 °C.

For quantification of whole-animal rescue experiments, a total of 100–300 fertilized non-GFP embryos were collected, allowed to develop at 25 °C, and monitored daily. Dead embryos were mounted in Hoyer’s medium and lactic acid (1:1 ratio) for examination of the embryonic cuticle. Lethality counts were performed on larvae that hatched, at each of the stages of Drosophila development indicated below. A specific score from –2 to 8 was given to each recorded and control animal with a score of 0 denoting the phenotype most frequently observed in α-Cat1 zygotic null mutant embryos. The following scoring criteria were applied to mutants to assess the extent of enhancement or rescue of the α-Cat1 mutant phenotype: (−2) embryonic lethal with both a severe head defect (‘head open’) and a dorsal open phenotype indicating a failure of dorsal closure; (−1) embryonic lethal with both the head open defect and a hole in the dorsal epidermis indicating incomplete closure; (0) embryonic lethal with a head open defect; (1) embryonic lethal with wild type phenotype; (2) (normal) embryonic lethal; (3) lethal at first larval instar; (4) lethal at second larval instar; (5) lethal at third larval instar; (6) early pupa lethal; (6) late pupa lethal; (6) adult. Statistical significance was assessed with a non-parametric Kolmogorov-Smirnov test. Data are presented as mean plus SD.

Immunohistochemistry and histology of Drosophila embryos. To prepare embryonic cuticle, embryos were de-chloronated in 50% bleach for 5 min, washed with 0.1% TritonX-100, mounted in 1:1 solution of Hoyer’s and lactic acid and incubated overnight at 60 °C. Embryos were examined under phase contrast using a Zeiss Axiohot microscope.

The heat fixation method36 was used for antibody staining of α-Cat1 expressing UAS-driven transgenes with da-Gal4. Embryos over-expressing transgenes using Pair-Gal4 were fixed in a 1:1 mixture of 5% formaldehyde in 1x PBS and Heptane for 20 min. In both cases, embryos were devitellinized using a 1:3 mixture of Heptane and Methanol. Primary antibodies used were: rat mAb anti-HA (3F10, 1:500, Sigma), guinea pig pAb anti-α-Catenin (p121; 1:1000, Sarpal et al. 2012), mouse mAb anti-Arm (N2-7A1, 1:50), Developmental Studies Hybridoma Bank (DHSB). Fluorescent secondary antibodies were used at a dilution of 1:400 (Jackson Immunoresearch Laboratories and Invitrogen). Samples were analyzed on a Leica SP8 scanning laser confocal microscope using a 40x oil immersion lens (NA 1.3). Images were prepared and assembled in ImageJ, Adobe Photoshop, and Adobe Illustrator.

Generation of Drosophila transgenes. To generate the Drosophila UAS-α-Cat constructs, full-length α-Cat (2751 nucleotides) was cloned into Gateway pENTR/D-TOPO entry vector (Invitrogen) digested with NotI and Asc1, using 3′-part Gibson assembly reaction (NEB). α-Cat cDNAs carrying various mutations
were cloned using 2-part or 3-part Gibson assembly reactions using UASp-catA in pENTR/M/D-TOPO as the backbone digested with following restriction enzymes: NotI and BspI to generate cat-H1 and cat-ΔAβH; BspI and AscI to generate cat-ΔAβH; NotI and AscI to generate cat-H1ΔβH; BspI and AscI to generate cat-Δ3A. The Gateway® LR® Clonase Enzyme mix was used to clone all entry vector constructs into the pPWH (pUASP-Gateway Cassette with C-terminal 3x HA) vector containing an attB recombination site that was added using the NS1 restriction site. Transgenic animals were produced by Best Gene Inc., by using flies carrying the attP2 recombination site on the left arm of the third chromosome. Amino acids of cat proteins are: catFL (1-917), cat-H1 (683REAM > 683SGS), cat-ΔAβ (1-658/691-917), cat-H1ΔβH (1-811/824-917 > 683REAM > 683SGS), cat-Δ3A (L798A + B805A + V809A), and cat-Δ2ΔB (1-708). Immuno blotting with fly samples. Transgenic flies were crossed to da-Gal4. An overnight collection of embryos was dechorionated and homogenized in cold lysis buffer (RIPA-25 mM Tris-HCL, pH 7.6, 150 mM NaCl, 1% TritonX-100, 1% sodium deoxycholate, 0.1% SDS) containing protease inhibitors (Roche). The protein concentrations were measured using the Bradford assay. 25 μg of total protein lysates were resolved by SDS-PAGE. Immunoblotting was performed with a 1:1 mix of halocarbon oil 27:700 (Sigma-Aldrich), and imaged using a Metamorph (Molecular Devices) as the image acquisition software. 16-bit images were digitized as a tension transducer that induces adherens junctions development. Nat. Cell Biol. 12, 533–542 (2010).

Desai, R. et al. Monomeric a-catenin links cadherin to the actin cytoskeleton. Nat. Cell Biol. 15, 261–273 (2013).

Buckley, C. D. et al. Cat-H1 binds to aminoterminal truncated catenins. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346, 1254211 (2014).

Sarpal, R. et al. Mutational analysis supports a core role for Drosophila a-catenin in adherens junction function. J. Cell Sci. 125, 233–245 (2012).

Kofron, M., Spagnuolo, A., Klymkowsky, M., Wylie, C. & Heasman, J. The roles of maternal a-catenin and plakoglobin in the early Xenopus embryo. Development 124, 1553–1560 (1997).

Torres, M. et al. An a-catenin gene trap mutation defines its function in preimplantation development. Proc. Natl Acad. Sci. USA 94, 901–906 (1997).

Costa, M. et al. A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J. Cell Biol. 111, 297–308 (1998).

Deletion in Catna2, encoding a-catenin, causes cerebellar and hippocampal lamination defects and impaired startle modulation. Nat. Genet. 31, 279–284 (2002).

Li, J. et al. Loss of α-catenin alters the hybrid adhering junctions in the heart and leads to dilated cardiomyopathy and ventricular arrhythmia following acute ischemia. J. Cell Sci. 125, 1058–1067 (2012).

Sakons, N. T. M. et al. Mutations in CTNNA1 cause buttery-shaped pigment dysstrophy and perturbed retinal pigment epithelium integrity. Nat. Genet. 48, 144–151 (2016).

Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

Zhao, Z.-M., Reynolds, A. B. & Gaucher, E. A. The evolutionary history of the catenin gene family during metazoan evolution. BMC Evol. Biol. 11, 198 (2011).

Aberle, H. et al. Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J. Cell Sci. 107, 3655–3663 (1994).

McCrea, P. D. & Gumbiner, B. M. Purification of a 92-kDa cytoplasmic protein tightly associated with the cell-cell adhesion molecule E-cadherin (uvomorulin). Characterization and extractability of the protein complex from the cell cytoskeleton. J. Biol. Chem. 266, 4514–20 (1991).

Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. & Wei, W. I. a-catenin is a molecular switch that binds to cadherin β-catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005).

Yamada, S., Pokutta, S., Drees, F., Wei, W. I. & Nelson, W. J. Deconstructing the cadherin-catenin-actin complex. Cell 123, 889–901 (2005).

Pokutta, S. & Wei, W. I. Structure of the dimerization and β-catenin-binding region of α-catenin. Mol. Cell 5, 533–543 (2000).

Pokutta, S., Choi, H.-J., Abelsen, L., Hansen, S. D. & Wei, W. I. Structural and thermodynamic characterization of cadherin-β-catenin-α-catenin complex formation. J. Biol. Chem. 289, 13589–13601 (2014).

Yoo, M. et al. Force-dependent conformational switch of α-catenin controls vinculin binding. Nat. Commun. 5, 4525 (2014).

Rangarajan, E. S. & Izzard, T. The cytoskeletal protein α-catenin unzips upon binding to vinculin. J. Biol. Chem. 287, 18492–18499 (2012).

Choi, H.-J. et al. α-catenin is an autoinhibited molecule that coactivates vinculin. Proc. Natl Acad. Sci. USA 109, 8576–8581 (2012).

Ishiyama, N. et al. An autoinhibited structure of α-catenin and its implications for vinculin recruitment to adherens junctions. J. Biol. Chem. 288, 15913–15925 (2013).

Escober, D. J. et al. α-Catenin phosphorylation promotes intercellular adhesion through a dual-kinase mechanism. J. Cell Sci. 128, 1150–1165 (2015).

Hansen, S. D. et al. α-catenin-actin-binding domain alters actin filament conformation and regulates binding of nucleation and disassembly factors. Mol. Biol. Cell 24, 3710–3720 (2013).

Bakolitsa, C. et al. Structural basis for vinculin activation at sites of cell adhesion. Nature 430, 583–586 (2004).

Dembo, M., Torney, D. C., Saxman, K. & Hamer, D. The reaction-limit kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B 267, 53–58 (1988).

Marshall, B. T. et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).
33. Pokutta, S., Dreese, F., Takai, Y., Nelson, W. J. & Weis, W. I. Biochemical and structural definition of the α-actinin- and actin-binding sites of α-catenin. J. Biol. Chem. 277, 18874–18879 (2002).
34. Pappas, D. J. & Rimm, D. L. Direct interaction of the C-terminal domain of α-catenin and F-actin is necessary for stabilized cell-cell adhesion. Cell Commun. Adhes. 13, 151–170 (2006).
35. Chen, C.-S. et al. α-Catenin-mediated cadherin clustering couples cadherin dynamism to actin dynamics. J. Cell Biol. 210, 657–674 (2015).
36. Watabe-Uchida, M. et al. α-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J. Cell Biol. 142, 847–857 (1998).
37. van Hengel, J. et al. Protein kinase C activation upregulates intercellular adhesion of α-catenin-negative human colon cancer cell variants via induction of desmosomes. J. Cell Biol. 137, 1103–1116 (1997).
38. Rangarajan, E. S. & Izard, T. Dimer asymmetry defines α-catenin interactions. Nat. Struct. Mol. Biol. 20, 188–193 (2013).
39. Thompson, P. M. et al. Identification of an actin binding surface on vinculin that mediates mechanical cell and focal adhesion properties. Structure 22, 572–584 (2014).
40. Wood, M. N. et al. α-Catenin homodimers are recruited to phosphoinositide-activated membranes to promote adhesion. J. Cell Biol. 216, 3767–3783 (2017).
41. Martin, P. & Lewis, J. Actin cables and epidermal movement in embryonic wound healing. Nature 360, 179–183 (1992).
42. Cepko, C. L., Gonzalez, R. R. & Zallen, J. A. Wounded cells drive rapid epidermal repair in the early Drosophila embryo. Mol. Biol. Cell 24, 3227–3237 (2013).
43. Kwiatkowski, A. V. et al. In vitro and in vivo reconstitution of the cadherin-catenin-actin complex from Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 107, 14591–14596 (2010).
44. Wickline, E. D. et al. α-2-Catenin is a constitutive actin-binding α-catenin that directly couples the cadherin-catenin complex to actin filaments. J. Biol. Chem. 291, 15687–15699 (2016).
45. Kim, L. Y. et al. The structural basis of actin organization by vinculin and metavinculin. J. Mol. Biol. 428, 10–25 (2016).
46. Reidl, J. et al. Lifecta: a versatile marker to visualize F-actin. Nat. Methods 5, 666–667 (2008).
47. Nishikawa, T., Ishiyama, N., Wang, F. & Ikura, M. Backbone resonance assignments of the F-actin binding domain of mouse α-catenin. Biol. Mol. NMR Assign. 11, 21–24 (2016).
48. Shen, Y. & Bax, A. Homology modeling of larger proteins guided by chemical shifts. Nat. Methods 12, 747–750 (2015).
49. Aebischer, R.-M. & Ishiyama, N. Integration of cadherin adhesion and cytoskeleton at adherens junctions. Cold Spring Harb. Perspect. Biol. 9, a028738 (2017).
50. Zhang, J. et al. Actin at cell-cell junctions is composed of two dynamic and functional populations. J. Cell Sci. 118, 5549–5562 (2005).
51. Abe, K. & Takeichi, M. EPLIN mediates linkage of the cadherin-catenin complex to F-actin and stabilizes the circumferential actin belt. Proc. Natl Acad. Sci. USA 105, 13–18 (2008).
52. Imamura, Y., Itoh, M., Maeno, Y., Tsukita, S. & Nagafuchi, A. Functional domains of α-catenin required for the strong state of cadherin-based cell adhesion. J. Cell Biol. 144, 1311–1322 (1999).
53. Tachibana, K. et al. Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. J. Cell Biol. 150, 1161–1176 (2000).
54. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
55. Pardee, J. D. & Spudich, J. A. Purification of muscle actin. Methods Cell Biol. 24, 271–289 (1982).
56. Ottowinski, Z. &Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307–326 (1997).
57. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).
58. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).
59. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr 66, (213–221) (2010).
60. Kay, L. E., Torchio, D. A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to phosphorylase b. Biochemistry 28, 8972–8979 (1989).
61. Delaglio, F. et al. NMRPipe: a multidimensional spectral preprocessing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).
62. Johnson, B. A. &Blevins, R. A. NMR View: A computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).
63. Botstein, D. et al. A NMR technique for identifying the interface of a larger protein-protein complex: cross-saturation and transferred cross-saturation experiments. Meth. Enzymol. 394, 483–506 (2005).

Acknowledgements

Mammalian expression vector pCA-aEcat-GFP was a gift from M. Takeichi. R227 cells were kindly provided by F. Van Roy. We thank the CMCF beamline at the Canadian Light Source for assisting data collection. We thank G. Seaforth for help with NMR. We are grateful to K. Kakiguchi and H. Endoh for their help with electron microscopy. We thank the CSB Imaging Facility (U. of Toronto) and the Center for Advanced Microscopy (Northwestern U.) for support. We thank D. Kirchenbuechler for help with PIV analysis. We thank T. Kayahashi and T.Q.P. Uyeda for technical advice. Funding: Foundation Theme grant from the Canadian Institutes for Health Research (CIHR) (to ML), the Princess Margaret Cancer Foundation (to ML), the Canadian Foundation for Innovation (to ML, U.T. and R.F.-G.), a project grant from the CIHR (to U.T.), a grant from the Canada First Research Excellence Fund (to U.T. and R.F.-G.), National Institutes of Health (NIH) grants GM07561 (to C.J.G.), PI01706143 (to C.J.G.), HL134800 (to C.J.G. and GM129312 (to C.J.G., N.I., M.I., U.T. and D.E.L.), National Science Foundation (NSF) grant CHE 12-3755 (to D.E.L.), a grant supported by CREST from JST, Japan (to S.Y.), and NSF Graduate Research Program DGE-1324858 (to M.N.W.). M.I. is the Canadian Research Chair (CRC) in Epithelial Polarization and Development, and R.F.-G. is the CRC in Quantitative Cell Biology and Morphogenesis.

Author contributions

N.I. and M.I. conceived the study. N.I. performed X-ray crystallography, actin cosedimentation, SEC-MALS, CD, confocal imaging, 3D cell culture, BLI and CS-Rosetta LM experiments. R.S. and U.T. performed Drosophila overexpression and rescue experiments. M.N.W., A.S.F., A.Y., and C.J.G. performed scratch wound assays and epithelial sheet disruption studies. S.K.B. and D.E.L. performed MD simulations. T.N., N.I., and M.I. performed NMR experiments. H.H. and S.Y. performed cell junction remodeling, electron microscopy and TER experiments. A.B.K. and R.F.-G. performed Drosophila wound healing assays. N.I., U.T. and M.I. wrote the paper with input from all authors.
Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-07481-7.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018