Diagnosis of Brugian Filariasis by Loop-Mediated Isothermal Amplification

Catherine B. Poole, Nathan A. Tanner, Yinhua Zhang, Thomas C. Evans Jr., Clotilde K. S. Carlow*
New England Biolabs, Ipswich, Massachusetts, United States of America

Abstract
In this study we developed and evaluated a *Brugia* Hha I repeat loop-mediated isothermal amplification (LAMP) assay for the rapid detection of *Brugia* genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing *B. malayi* microfilariae. Amplification was specific to *B. malayi* and *B. timori*, as no turbidity was observed using DNA from the related filarial parasites *Wuchereria bancrofti*, *Onchocerca volvulus* or *Dirofilaria immitis*, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed *Bst 2.0* compared to wild-type *Bst* DNA polymerase, large fragment. The results indicate that the *Brugia* Hha I repeat LAMP assay is rapid, sensitive and *Brugia*-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.

Introduction
Lymphatic filariasis is one of the world’s most debilitating infectious diseases. According to the World Health Organization (WHO) [http://www.who.int/mediacentre/factsheets/fs102/en/], over 120 million people are currently infected in more than 80 countries. Approximately 40 million individuals are disfigured and incapacitated by the disease, including 15 million who have lymphoedema (elephantiasis) and 25 million men who have urogenital swelling, principally scrotal hydrocele. WHO estimates the loss of 5.1 million disability-adjusted life years (DALYs) as a result of infection by one of three filarial species (*Bruga malayi*, *Bruga timori* and *Wuchereria bancrofti*) [1]. Male and female parasites form “nests” in the lymphatic system, and after mating females produce large numbers of microfilariae that predominantly circulate in the blood at night. Microfilariae are ingested by a mosquito during a blood meal and develop to infective stage larvae that are subsequently transmitted to a new host.

In recent years there has been significant progress in the control of these diseases by the Global Programme to Eliminate Lymphatic Filariasis (GPELF) in which whole populations are treated by repeated, yearly cycles of mass drug administration (MDA) with antifilarial drugs [2,3]. Over 2.6 billion treatments have been administered in 48 countries in the first 8 years [3], and this campaign continues to grow as new regions are included. Mapping of infected human and vector populations is required to identify areas in need of MDA. Following implementation, monitoring is necessary to determine the endpoint of treatment, with continued surveillance being required to identify areas of ongoing transmission or recrudescence. These activities and overall management of MDA programs are performed most efficiently with accurate diagnostic tools suitable for field use.

Point-of-care diagnosis of lymphatic filariasis is largely based on microscopic examination of night blood, and morphological assessment of stained microfilariae. A more accurate, rapid-format, immunochromatography card test (ICT) which detects circulating antigen is available for bancroftian filariasis [4,5] but not for other filarial infections. Detection of microfilariae in conjunction with antibody testing, mainly in clinical settings, is being used as an interim measure for brugian filariasis [5–7]. However, the antibody tests indicate exposure rather than active infection [8,9] and do not distinguish between bancroftian and brugian filariasis [10], thereby limiting their use for surveillance in areas where these infections are co-endemic.

Molecular-based diagnostic tools are considered more accurate since they detect active infection and have been used in laboratories for reliable differential identification of filarial parasites. Several polymerase chain reaction (PCR) based methods have been used to amplify DNA in blood from *B. malayi* and *B. timori* [11–16] and *W. bancrofti* [17–22]. Molecular monitoring of insect vectors by PCR is also the preferred method for xenodiagnosis and has been used extensively for *W. bancrofti* [20–29] and to a lesser extent for *B. malayi* [27,30–32]. PCR however, requires highly skilled personnel and expensive equipment.

An alternative to PCR, is a technique termed loop-mediated isothermal amplification (LAMP) which amplifies DNA with high specificity, sensitivity and rapidity under isothermal conditions using a polymerase with strand displacement activity. The enzyme generates a mixture of stem-loops containing alternately inverted repeats of the target sequence and cauliflower-like structures.

Citation: Poole CB, Tanner NA, Zhang Y, Evans TC Jr, Carlow CKS (2012) Diagnosis of Brugian Filariasis by Loop-Mediated Isothermal Amplification. PLoS Negl Trop Dis 6(12): e1948. doi:10.1371/journal.pntd.0001948
Published: December 13, 2012

Copyright: © 2012 Poole et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by New England Biolabs. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: CBP, NAT, YZ, TCE and CKSC have read the journal’s policy and have the following conflicts: CBP, NAT, YZ, TCE and CKSC are employees of New England Biolabs. The author’s affiliation with the funder does not alter adherence to all the PLOS Neglected Tropical Diseases policies on sharing data and materials.

* E-mail: carlow@neb.com
Author Summary

Brugian filariasis is a debilitating neglected tropical disease caused by infection with the filarial parasites *Brugia malayi* or *Brugia timori*. Adult worms live in the lymphatic system and produce large numbers of microfilariae that predominate circulate in the blood at night. Bloodsucking mosquitoes spread the disease by ingesting microfilariae that develop into infective stage larvae in the insect. In rural areas, diagnosis still relies largely on microscopic examination of night blood and morphological assessment of stained microfilariae. Loop-mediated isothermal amplification (LAMP) is a technique that can amplify DNA with high specificity, sensitivity and rapidity under isothermal conditions. The operational simplicity, versatility and low-cost of the technique make it particularly appealing for use in diagnosis and geographical mapping of neglected tropical diseases. In the present study, we have developed and evaluated a *Brugia Hha I* repeat LAMP assay for the rapid detection of *B. malayi* and *B. timori* genomic DNA. The results indicate that the *Brugia Hha I* repeat LAMP diagnostic assay is sensitive and rapid, detecting a single microfilariae in blood within 30 minutes, and *Brugia*-specific. The test has the potential to be developed further as a field tool for use in the implementation and management of mass drug administration programs for brugian filariasis.

resulting in exponential amplification of the target sequence (>10 μg, >50× PCR yield) [33–35]. The LAMP reaction uses two sets of primers, outer primers (F3 and B3) and inner primers (FIP and BIP) that hybridize to six sites on the target DNA. Specially designed FIP and BIP primers each consisting of two distinct sequences correspond to sense and antisense sites on the target DNA. The addition of a third set of primers, known as loop primers, has been shown to accelerate the reaction [34]. Using three primer sets recognizing eight sites in the target DNA lends LAMP the specificity to discriminate between genomic DNA at both genus- and species-specific levels [36,37]. In recent years this technology has been explored for the diagnosis of certain parasitic [38–45], bacterial [46], fungal [47] and viral [48,49] infections. Because of its simplicity, rapidity, and versatility in readout options, LAMP offers a distinct advantage over other molecular diagnostic methods for use in field. LAMP test kits are now commercially available or in development for the detection of *Mycobacterium tuberculosis* complex [50,51] and human African trypanosomiasis [52] for use in resource-limited settings.

In the present study we report on the development of a simple LAMP test that amplifies the *Brugia*-specific *Hha I* repeat for the rapid detection of *B. malayi* or *B. timori* DNA. We evaluated the efficacy of several thermophilic DNA polymerases using real-time LAMP, and also compared read-out options. Our results demonstrate that the *Hha I* LAMP test is sensitive and specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.

Materials and Methods

Reagents

DNA samples were generously donated by the following: *B. malayi* and *B. timori*, L.A. McReynolds (New England Biolabs); *Onchocerca volvulus* and *Homo sapiens*, F. Perler (New England Biolabs); *Dirofilaria immitis*, C. Maina (New England Biolabs); and *Aedes albopictus*, Z. Li (New England Biolabs). Whole genome amplified *Wuchereria bancrofti* DNA, heparinized *B. malayi* infected feline blood and uninfected dog blood were obtained from the NIH/NIAID Filariasis Research Reagent Resource Center (http://www.filariasiscenter.org). The purity and quantity of DNA in samples was determined using a Nano Drop Spectrophotometer, ND-1000 (Nano Drop Technologies).

Preparation and Processing of *B. malayi* Infected Blood Samples

A two-fold dilution series of *B. malayi* microfilaraemic feline blood was diluted using uninfected dog blood. Forty μl aliquots of each dilution were used for quantifying microfilarial titters and the same volume used for DNA extraction. Microfilarial counts were determined using a membrane concentration technique [53,54]. Briefly, 40 μl aliquots of each dilution were mixed with 160 μl PBS then filtered through a 5.0 μm pore polycarbonate membrane (Nuclepore, Whatman). Filters were placed, microfilariae side up, on a microscope slide and stained [55,56]. Parasites were counted using an Axio Scope A1 (Zeiss) at 40× magnification. DNA was extracted from 40 μl of each dilution using a QiAamp DNA Mini Kit (Qiagen) after digesting the samples with proteinase K in the supplied AL Buffer for 2 hrs at 56°C. Purified DNA was eluted in a 200 μl volume; one μl of which was used in LAMP assays.

Primer Design

To generate primers for LAMP, multiple *B. malayi* Hha I repeat sequences were aligned using ClustalW [57]. Accession number M12691 [58] was used to query the *B. malayi* whole-genome shotgun (WGS) database at GenBank using the blastn program (http://blast.ncbi.nlm.nih.gov). Full-length repeats were selected from accession numbers: M12691, AAQA01025633, AAQA01026145, AAQA01018878, AAQA01011954, AAQA01021048, AAQA01005386, AAQA01005790, AAQA01007277, AAQA0104714, AAQA01005124, and used to generate a consensus sequence (Figure 1A and Figure S1). LAMP primers (Figure 1B) were designed manually using “A guide to LAMP primer design” available from the Eiken Chemical Co. (http://primerexplorer.jp/e/).

To facilitate the design of PCR primers for amplification of actin, sequences from *B. malayi* (NW_00189317.1, region: 12826–14482, NW_001893014.1, region: complement 252310–256438), *O. volvulus* (M84915, M84916), *W. bancrofti* (AF184961), *Aedes aegypti* (NW_001801656, region: complement (1446599–1449390) and *Homo sapiens* (NC_000001, region: complement 229569843–229569692) were downloaded from GenBank and aligned using ClustalW [57]. The region corresponding to exon 2 in the H. bancrofti and *O. volvulus* actin genes [59,60], that also exhibited high identity among all members in the alignment, was used to design degenerate PCR primers. The forward and reverse primer sequences are (5′ GCTCAGTCTBAAGAGGTTAT 3′) and (5′ACAGCYYTGGATDGCAACGTACA 3′), respectively, where B = C, G or T; Y = C or T, and D = A, G or T. PCR and LAMP primers were synthesized by Integrated DNA Technologies (Coralville, Iowa).

LAMP Assays

LAMP reactions with Bst DNA polymerase, large fragment (LF, New England Biolabs) contained 1.6 μM each of FIP and BIP, 0.2 μM each of F3 and B3, 1.4 μM of each dNTP, 20 mM Tris-HCl (pH 8.8), 10 mM KCl, 10 μM (NH₄)₂SO₄, 8 mM MgSO₄, 0.1% Tween-20 and 3 U of enzyme mixed with 1 μl of various genomic DNAs in a total volume of 25 μl. For the evaluation of the *Hha I* LAMP primer set with either Bst 2.0 DNA polymerase or Bst 2.0 WarmStart DNA polymerase (New England Biolabs), reactions were set up and performed as described above, except
50 mM KCl was used. Loop Forward (LF) and Loop Back (LB) primers were added to some reactions (0.4 μM) to assess their ability to decrease the threshold time under various conditions. Reactions were incubated at 63°C for 60–90 minutes in a Loopamp Realtime Turbidimeter (LA-320c, Eiken Chemical Co.). The instrument measures the change in turbidity at 650 nm caused by the precipitation of magnesium pyrophosphate with time. Turbidity data were analyzed using the LA-320c software package that reports when the change in turbidity over time (dT/dt) reaches a value of 0.1, which we then assigned to be the threshold time (Tt). When amplification was evaluated using the calcein-based Fluorescent Detection Reagent ([61] and the Eiken chemical Co.) rather than turbidity, reactions were heat killed for 20 min at 80°C then visualized within 60 minutes with UV light at 365 nm as recommended by the manufacturer.

PCR Assay

As a positive control for the presence of intact DNA, a 244 bp actin fragment was PCR amplified from various genomic DNAs using 1.25 U of Taq DNA polymerase in 1 x standard buffer (New England Biolabs) containing 3.5 mM MgCl₂, 0.2 mM each dNTP, and 0.2 μM each of the forward and reverse actin primers in a 50 μl reaction. One ng of genomic DNA was used as template, except for B. timori (5 ng) and human (10 ng). Reactions containing human DNA, contained 4 mM MgCl₂. All reactions were denatured once at 95°C for 30 sec then cycled 30 times at 95°C for 30 sec, 55°C for 30 sec and 68°C for 30 sec, except 35 cycles were used for B. timori and non-template controls. After cycling, reactions were incubated for 5 min at 68°C then the reaction products were analyzed by electrophoresis using 1.2% agarose gels equilibrated with TBE buffer.

Results

The B. malayi Hha I LAMP Assay Is Sensitive

To maximize assay sensitivity, the B. malayi Hha I repeat was selected as a target for amplification because of its abundance in the genome [58]. A B. malayi Hha I consensus sequence derived by aligning 34 repeats was used to design a primer set for LAMP (Figure 1 and Figure S1). Primers were designed manually as the AT richness (79%) of the consensus sequence precluded use of the Primer Explorer software (http://primerexplorer.jp/e/) for LAMP primer design. The sensitivity of the Hha I primer set was evaluated by real time turbidity using three thermophilic DNA polymerases, Bst DNA polymerase, LF, Bst 2.0 DNA polymerase or Bst 2.0 WarmStart DNA polymerase. Ten-fold serial dilutions
Figure 2. Sensitivity of Hha I LAMP assay. Ten-fold serial dilutions of B. malayi genomic DNA amplified with the Hha I primer set alone (A) or in the presence of loop primers (B) with Bst DNA polymerase, large fragment (wt Bst LF), Bst 2.0 DNA polymerase (Bst 2.0) and Bst 2.0 WarmStart DNA polymerase (Bst 2.0 WS). Data points represent the average of three samples and the error bars represent the standard deviation at each point. For each enzyme, the average threshold time, defined as the time at which the change in turbidity over time (dT/dt) reaches a value of 0.1, is plotted against the amount of starting material. (C) UV detection (365 nm) of products generated within 60 minutes using Bst 2.0 in the presence of loop.
of genomic *B. malayi* DNA ranging from 0.1–0.001 ng were amplified using both the *Hha* I primer set alone (Figure 2A) and in the presence of loop primers (Figure 2B). At the highest concentration of template DNA (0.1 ng), reactions reached a turbidity threshold of 0.1 in approximately 30 minutes regardless of the polymerase employed (Figure 2A). As the concentration of template DNA decreased, there was a corresponding increase in the amount of time required to reach the threshold value of 0.1. Reactions using *Bst* 2.0 DNA polymerase improved the most with reliable detection of 0.001 ng parasite DNA, corresponding to 1/100th of a microfilariae, within 45 minutes compared to ~70 minutes without loop primers (Figure 2A and 2B). In the absence of template or primers, no turbidity was observed. Likewise at concentrations of template ≤0.0001 ng, only one or none of the triplicate samples amplified (data not shown). Reaction times were slightly slower using *Bst* 2.0 WarmStart DNA polymerase regardless of the presence of loop primers (Figure 2A and 2B). Similar sensitivity was obtained within the same time frame when the calcine-based Fluorescent Detection Reagent rather than turbidity was used as the output. Positive reactions turned green while no color change was apparent in the absence of amplification or when no target DNA (or ≤0.0001 ng) was present (Figure 2C).

To mimic a clinical situation, the assay was performed using *Bst* 2.0 DNA polymerase on DNA extracted from a two-fold dilution series equivalent to 25–9000 mf/ml blood. Three experiments were performed using a different but overlapping range of DNA dilutions equivalent to 1/200th-2 microfilariae per LAMP reaction. Good concordance was observed between samples containing equivalent amounts of template DNA. A turbidity threshold of 0.1 was reached in 25–30 minutes with slightly more time required (<5 minutes) as the concentration of template DNA decreased (Figure 3). No turbidity was detected when uninfected blood was processed in the same manner (data not shown).

Evaluation of Assay Specificity

We evaluated the performance of LAMP for the differential detection of the *Hha* I repeat in genomic DNA samples isolated from the closely related parasites *B. timori*, *W. bancrofti*, *D. immitis*, and *O. volvulus*. DNA from human and mosquito (*Aedes albopictus*) samples and a non-template control were also included for comparison. As observed in previous experiments, turbidity reached a threshold value of 0.1 in approximately 30 minutes when 0.1 ng of *B. malayi* or *B. timori* DNA was added to the reaction, whereas no turbidity was observed when DNA from the other filarial parasites, human or mosquito was used (Figure 4A). The integrity of these various DNAs was confirmed in PCR experiments using primers designed to amplify an actin gene. A single amplification product of 244 bp, the expected fragment size was obtained (Figure 4B).

Figure 3. *Hha* I LAMP assay for the detection of *B. malayi* infected blood samples. A set of serial dilutions (two-fold) of microfilariae in blood was prepared and DNA was isolated from each dilution. Three experiments were performed using a different but overlapping range of DNA dilutions. One µl of DNA from each dilution was used in LAMP reactions with *Bst* 2.0 DNA polymerase. Samples from each experimental set-up were performed in triplicate (experiments 1 and 2) or duplicate (experiment 3). Average threshold times and standard deviations were plotted against the approximate number of mf/µl DNA solution.

doi:10.1371/journal.pntd.0001948.g003
Figure 4. Species-specificity of *Hha*I LAMP assay. (A) Each curve represents the calculated average of triplicate turbidity curves generated with various genomic DNAs (0.1 ng) using Bst 2.0 DNA polymerase without loop primers. Turbidity was observed using *B. malayi* or *B. timori* DNA. (B) As a positive control, an actin gene fragment was PCR amplified from *B. malayi* (Bma), *D. immitis* (Dim), *O. volvulus* (Ovo), the mosquito *Aedes albopictus* (Aal), *W. bancrofti* (Wba), human (Hsa) and *B. timori* (Bti) DNAs using degenerate primers. Agarose gel showing amplification of a 244 bp fragment of
been shown to be extremely sensitive in detecting as 1 pg of total genomic DNA purified from Hha 1 pg of total genomic DNA purified from B. malayi genome [58,62] and are highly conserved, with the nucleotide identity of the repeats used in this study varying from 82–90%. In order to target the greatest number of repeats and maximize assay sensitivity, primers were designed based on the most highly conserved nucleotide blocks in a consensus sequence. The Hha I PCR amplification system has been shown to be extremely sensitive in detecting Brugia DNA [11,63], exceeding the theoretical limit of detection of one microfilaria per ml using conventional microscopy and concentration techniques [64].

There are several important advantages offered by LAMP over PCR. Its operational simplicity and isothermal nature make it ideally suited for use in the field. In PCR, thermal cycling is required to denature the template, anneal primers and extend the amplicon. LAMP employs Bst DNA polymerase, LF which provides both strand displacement and target amplification at a single temperature in a simple heat block or water bath at 60–65 °C [33]. High levels of sensitivity and specificity can be achieved in LAMP because the amplification reaction involves four specific oligonucleotide primers that anneal to six distinct regions within the target sequence [33]. Also, the addition of loop primers may further improve performance [34]. Levels of sensitivity comparable to the Hha I PCR amplification system were obtained in the Hha I LAMP test using either DNA isolated from worms or from blood containing microfilariae. It is estimated that a single microfilaria contains approximately 100 pg of DNA [11,14,21] and using the LAMP Hha I test it is possible to easily detect as little as 1 pg of total genomic DNA purified from B. malayi worms which is equivalent to 1/100th of a microfilaria. In mock experiments using DNA prepared from a dilution series of microfilaricidal blood, we detected the equivalent of 1/200th of a microfilaria in approximately 30 minutes. This was the most dilute DNA sample tested and is equivalent to one mf of 40 μl of whole blood. It is possible that free DNA contributed to the output signal when using blood since it has been suggested that 130 fg of repeat can be released by a single dead microfilaria [63]. In a Hha I based PCR-ELISA, free DNA of nocturnally periodic B. malayi was detected in 200 μl of day blood, achieving a sensitivity comparable with filtration of 1 ml of night blood [63].

In the present study, LAMP reaction times were fastest at lowest DNA concentrations of template using a new isothermal strand-displacing polymerase Bst 2.0 DNA polymerase in the presence of loop primers. Bst 2.0 DNA polymerase is an in silico designed homologue of Bst DNA polymerase, LF engineered for improved amplification speed, yield, salt tolerance and thermostability [65]. Its warmstart version (Bst 2.0 WarmStart DNA polymerase) possesses a reversibly-bound aptamer which inhibits polymerase activity at temperatures below 45°C. This circumvents a common problem that can occur in nucleic acid amplification namely the undesired activity from DNA polymerases during room temperature reaction set-up [65–67]. In our experiments, reaction times were slightly slower using Bst 2.0 WarmStart DNA polymerase due to the presence of the aptamer. In assays designed to mimic field conditions, Bst 2.0 WarmStart DNA polymerase enables amplification of the Hha I repeat without generating a signal in the non-template controls when incubated at 35 °C for intervals up to 2 hrs before initiating amplification, in contrast to Bst DNA polymerase, LF and Bst 2.0 DNA polymerase (data not shown). The ability to allow LAMP reactions to be assembled and stored at room temperature for hours with no change in the final readout can offer a distinct advantage in resource-limited settings.

In addition to sensitivity, the Hha I LAMP test offers the high level of specificity required for diagnosis and mapping. The Hha I LAMP primer amplified B. malayi and B. timori DNA but not DNA isolated from the closely related filarial parasites W. bancrofti, D. immitis, or O. volcana, or from human or mosquito. Previous studies have shown that the Hha I repeat family in B. timori is highly homologous to the B. malayi Hha I repeat family [15,68]. Therefore the test may be useful for diagnosing infection in patient samples and monitoring transmission of B. malayi or B. timori in mosquito vectors. Recently species-specific primers have also been used in LAMP to detect DNA from D. immitis [69,70] and W. bancrofti [43] in blood and mosquito samples.

Rapidity and versatility in readout options also make LAMP a particularly appealing technology. Positive results can be visualized by turbidity caused by precipitation of magnesium pyrophosphate, a by-product of the reaction that can be seen with the naked eye [71–73] within 15–60 minutes. The reaction product can also be detected under UV light with the addition of fluorescent dyes [72,74–79] or colorimetrically using hydroxy naphthol [80]. In the present study, real-time turbidity was used for assay design and optimization. The time at which the reaction reaches a threshold of 0.1 turbidity was used to precisely evaluate various parameters. Similar results were obtained when calcine [61] was added to reactions. In addition, recent estimates suggest that diagnostic LAMP tests are significantly cheaper than PCR. The estimated cost of a W. bancrofti LAMP test is $0.82 compared with more than $2.20 for PCR [45].

The operational simplicity of the LAMP technique makes it particularly appealing for neglected tropical diseases, as evidenced by the rate of adoption of this diagnostic DNA technology by laboratories in developing countries. Since many of these diseases are co-endemic, it is desirable to leverage resources and integrate diagnostic platforms wherever possible. Multiplexing of the LAMP reaction has been demonstrated for the detection of Babesia parasites in cattle [37] malaria and heartworm in mosquitoes [69] and human arboviruses [81]. More recently a real-time, multiplex LAMP technique was described that enables detection of up to 4 distinct LAMP targets in a single reaction [65].

In summary, we describe a promising Hha I-based LAMP diagnostic assay for Brugian filariasis using Bst 2.0 DNA polymerase and loop primers that generates a robust read-out within 60 minutes. The assay warrants further testing with endemic samples as the next stage in development towards its use as a field tool for implementation and management of MDA programs.

Supporting Information

Figure S1 Alignment of B. malayi Hha I repeat sequences. Full-length Hha I repeat DNA sequences were obtained from the following GenBank accession numbers: Hha I_1, M12691; Hha I_2a, AAQA01025653; Hha I_3a, AAQA01026145; Hha I_4a and 4b, AAQA01018878; Hha I_5a–3c, AAQA01011954; Hha I_6a and 6b, AAQA01021048; Hha I_7a–7c, AAQA01005386; Hha
Acknowledgments

We gratefully acknowledge encouragement from New England Biolabs and Dr. Donald Comb. We thank Dr. Larry McReynolds, Dr. Zhihui Li and Dr. William Jack for critical reading of this manuscript and helpful comments.

Author Contributions

Conceived and designed the experiments: CBP NAT YZ TCE CKSC. Performed the experiments: CBP. Analyzed the data: CBP NAT TCE CKSC. Contributed reagents/materials/analysis tools: CBP NAT YZ. Wrote the paper: CBP NAT YZ TCE CKSC.

References

1. WHO (2004) Regional Strategic Plan for Elimination of Lymphatic Filariasis (2004-2007). New Delhi: World Health Organization Regional Office for South-East Asia. SEA-HL-29 SEA-uhl-29.
2. Ottesen EA (2006) Lymphatic filariasis: Treatment, control and elimination. Adv Parasitol 61: 395–441.
3. WHO (2008) Global programme to eliminate lymphatic filariasis. Wkly Epidemiol Res 37: 233–341.
4. Wei GJ, Lamme PJ, Weiss N (1997) The ICT Filariasis Test: A rapid-format antigen test for diagnosis of bancroftian filariasis. Parasitol Today 13: 401–404.
5. McCarthy JS, Lustigman S, Yang GJ, Barakat RM, Garcia HH, et al. (2012) A research agenda for helminth diseases of humans: diagnostics for control and elimination programmes. PLoS Negl Trop Dis 6: e1601.
6. WHO (2005) Sixth meeting of the Technical Advisory Group on the Global Elimination of Lymphatic Filariasis, Geneva, Switzerland, 20-23 September 2003: Wildlife Epidemics Res 90: 401–408.
7. Wei GJ, Ramzy RM (2007) Diagnostic tools for filariasis elimination programmes. Trends Parasitol 23: 78–82.
8. Rao KV, Eswaran M, Ravi V, Gandasekhar B, Narayanam RB, et al. (2000) The Wuchereria bancrofti orthologue of Brugia malayi SXP1 and the diagnosis of bancroftian filariasis. Mol Biochem Parasitol 107: 71–80.
9. Vincent JA, Lustigman S, Zhang S, Weil GJ (2000) A comparison of newer tests for the diagnosis of Brugia malayi in blood. Am J Trop Med Hyg 61: 314–321.
10. Lammie PJ, Weil GJ, Noordin R, Kaliraj P, Steel C, et al. (2004) Recombinant antibody-based assays for the diagnosis and surveillance of lymphatic filariasis - a multicenter trial. Filaria J 9: 9.
11. Lizotte MR, Supali T, Partono F, Williams SA (1994) A polymerase chain reaction assay for the detection of Brugia malayi in blood. Ann Trop Med Parasitol 88: 357–363.
12. Rahmah N, Ashikin AN, Anuar AK, Ariff RH, Abdullah B, et al. (1998) PCR-ELISA for the detection of Brugia malayi infection using finger-prick blood. Trans R Soc Trop Med Hyg 92: 404–406.
13. Kluber S, Supali T, Williams SA, Liebau E, Fischer P (2003) Rapid PCR-based detection of Brugia malayi DNA from blood spots by DNA Detection Test Strips. Trans R Soc Trop Med Hyg 95: 169–170.
14. Rao R, Ho TJK, Fischer K, Supali T, Fischer P (2006) Detection of Brugia parasite DNA in human blood by real-time PCR. J Clin Microbiol 44: 3087–3091.
15. Fischer P, Wishow H, Pischke S, Ruckert P, Liebau E, et al. (2002) PCR-based detection and identification of the filarial parasite Brugia timori from Alor Island, Indonesia. Ann Trop Med Parasitol 96: 809–821.
16. Fischer P, Bonow I, Supali T, Ruckert P, Rahmah N (2005) Detection of filaria-specific IgG antibodies and filarial DNA, for the screening of blood spots for Brugia timori. Ann Trop Med Parasitol 99: 53–60.
17. Chansiri K, Phanthana S (2002) A polymerase chain reaction assay for the survey of bancroftian filariasis. Southeast Asian J Trop Med Public Health 33: 504–508.
18. Fink DL, Fehle GA, Fischer S, Ferdoski DF, Nutman TB (2011) Toward molecular parasitologic diagnostic: enhanced diagnostic sensitivity for filarial infections in mobile populations. J Clin Microbiol 49: 42–47.
19. Hassan M, Sanad MM, d-Karamany I, Abdel-Tawab M, Salaby M, et al. (2005) Detection of DNA of W. bancrofti in blood samples by QC-PCR-ELISA-based J Egypt Soc Parasitol 35: 963–970.
20. Ramzy RM, Farid HA, Kamal IH, Ibrahim GH, Morvy ZS, et al. (1997) A polymerase chain reaction-based assay for detection of Wuchereria bancrofti in human blood and Culex pipiens. Trans R Soc Trop Med Hyg 91: 156–160.
21. Rao R, Atkinson LJ, Ramzy RM, Helmy H, Al-Hamad SA, et al. (2004) Development and standardization of a rapid, PCR-based method for the detection of Wuchereria bancrofti in mosquitoes, for xenomonitoring the human prevalence of bancroftian filariasis. Ann Trop Med Parasitol 98 Suppl 2: S1–S6.
22. Laney SJ, Buttaro CJ, Visconti S, Ploton N, Ramzy RM, et al. (2006) A reverse transcriptase-PCR assay for detecting filarial infective larvae in mosquitoes. PLoS Negl Trop Dis 2: e251.
23. Chansiri K, Ramzy RM, Williams SA, Choochote W, Manjai A, et al. (2008) Rapid detection of Brugia malayi in mosquito vectors (Diptera: Culicidae) using a real-time fluorescence resonance energy transfer multiplex PCR and melting curve analysis. J Med Entomol 45: 156–164.
24. Ramzy RM, EI Setoouly M, Helmy H, Ahmed ES, Abul Elaziz KM, et al. (2006) Effect of yearly mass drug administration with diethylcarbamazine and albendazole on bancroftian filariasis in Egypt: a comparative assessment. Lancet 367: 999–999.
25. Williams SA, Laney SJ, Bierwert LA, Saunders LJ, Boakye DA, et al. (2002) Development and standardization of a rapid, PCR-based method for the detection of Wuchereria bancrofti in mosquitoes, for xenomonitoring the human prevalence of bancroftian filariasis. Ann Trop Med Parasitol 96 Suppl 2: S1–S6.
26. Loberto RJ, Orellana T, Thane P, McManus DP, et al. (1997) Molecular detection of Brugia malayi in mosquitoes. Am J Trop Med Hyg 57: 335–339.
Detection of Brugian Filariasis Using LAMP

43. Takagi H, Itoh M, Kasi S, Yahathugoda TC, Weerasingoory MV, et al. (2011) Development of loop-mediated isothermal amplification method for detecting Wuchereria bancrofti DNA in human blood and vector mosquitoes. Parasitol Int 60: 493–497.

44. Thekaekara OM, Rodriguez CV, Ricas F, Coronel-Servian AM, Fukamoto S, et al. (2010) Detection of Trypanosoma cruzi and T. rangeli infections from Rhodnius pallescens bugs by loop-mediated isothermal amplification (LAMP). Am J Trop Med Hyg 82: 855–860.

45. Abbas I, King CH, Muchiri EM, Hamburger J (2010) Detection of Schistosoma mansoni and Schistosoma haematobium DNA by loop-mediated isothermal amplification: identification of infected snails from early prepatency. Am J Trop Med Hyg 83: 427–432.

46. Geojith G, Bhamaeskaran S, Chandran SP, Kenneth J (2011) Efficacy of loop-mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting. J Microbiol Methods 84: 71–73.

47. Endo S, Komori T, Ricci G, Sano A, Yokokama K, et al. (2004) Detection of gp43 of Paracoccidioides brasiliensis by the loop-mediated isothermal amplification (LAMP) method. FEMS Microbiol Lett 234: 93–97.

48. Ibara M, Yoshikawa T, Enomoto Y, Akinoto S, Ohashi M, et al. (2004) Rapid diagnosis of human herpesvirus 6 infection by a novel DNA amplification method, loop-mediated isothermal amplification. J Clin Microbiol 42: 140–145.

49. Pham HM, Nakajima C, Ohashi K, Onuma M (2005) Loop-mediated isothermal amplification for rapid detection of Newcastle disease virus. J Clin Microbiol 43: 1646–1650.

50. Boehe CC, Naheba P, Henestroza G, Raqib R, Rahim Z, et al. (2007) Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J Clin Microbiol 45: 1936–1940.

51. Mitarai S, Okumura M, Toyota E, Yoshiyama T, Aono A, et al. (2011) Evaluation of a simple loop-mediated isothermal amplification test kit for the diagnosis of tuberculosis. Int J Tuberc Lung Dis 15: 1211–1217.

52. Matovu E, Kazibwe AJ, Mugasa CM, Ndungu JM, Njiru ZK (2012) Towards Point-of-Care Diagnostic and Staging Tools for Human African Trypanosoma. J Trop Med 2012: 340538.

53. Takagi H, Itoh M, Kasai S, Yahathugoda TC, Weerasooriya MV, et al. (2011) An improved qualitative loop-mediated isothermal amplification method, loop-mediated isothermal amplification applied to filarial parasites detection in the mosquito vectors; Dirofilaria inmitis as a study model. Parasitol Vectors 4: 17.

54. Savan R, Kono T, Itami T, Sakai M (2005) Loop-mediated isothermal amplification: an emerging technology for detection of fish and shellfish pathogens. J Fish Dis 28: 573–581.

55. Curtis KA, Rudolph DL, Owen SM (2008) Rapid detection of HIV-1 by reverse transcription, loop-mediated isothermal amplification (RT-LAMP). J Virol Methods 151: 264–270.

56. Saito Y, Hirano T, Notomi T (2006) Sequence specific visual detection of LAMP reactions by addition of cationic polymers. BMC Biotechnol 6: 3.

57. Iwamoto T, Sonobe T, Hayashi K (2003) Loop-mediated isothermal amplification for rapid detection of Newcastle disease virus. Arch Virol 151: 1093–1106.

58. Ishii K, Yamaguchi N, Tani K, Nasu M (2003) Detection of Onchocerca volvulus by the loop-mediated isothermal amplification (LAMP) method, loop-mediated isothermal amplification assay. Virol J 8: 360.