Sparse Group Restricted Boltzmann Machines

Heng Luo
Department of Computer Science
Shanghai Jiao Tong University
hengluo@sjtu.edu.cn

Ruimin Shen
Department of Computer Science
Shanghai Jiao Tong University
rmshen@sjtu.edu.cn

Changyong Niu
Department of Computer Science
Zhengzhou University
cyniu@sjtu.edu.cn

Abstract

Since learning is typically very slow in Boltzmann machines, there is a need to restrict connections within hidden layers. However, the resulting states of hidden units exhibit statistical dependencies. Based on this observation, we propose using l_1/l_2 regularization upon the activation possibilities of hidden units in restricted Boltzmann machines to capture the local dependencies among hidden units. This regularization not only encourages hidden units of many groups to be inactive given observed data but also makes hidden units within a group compete with each other for modeling observed data. Thus, the l_1/l_2 regularization on RBMs yields sparsity at both the group and the hidden unit levels. We call RBMs trained with the regularizer sparse group RBMs. The proposed sparse group RBMs are applied to three tasks: modeling patches of natural images, modeling handwritten digits and pretraining a deep network for a classification task. Furthermore, we illustrate the regularizer can also be applied to deep Boltzmann machines, which lead to sparse group deep Boltzmann machines. When adapted to the MNIST data set, a two-layer sparse group Boltzmann machine achieves an error rate of 0.84%, which is, to our knowledge, the best published result on the permutation-invariant version of the MNIST task.

1 Introduction

Restricted Boltzmann Machines (RBMs) [1,2] recently have become very popular because of their excellent ability in unsupervised learning, and have been successfully applied in various application domains, such as dimensionality reduction [3], Object Recognition [4] and others.

In order to obtain efficient and exact inference, there are no connections within the hidden layer in RBMs. But by considering statistical dependencies of states of hidden units we may learn a more powerful generative model [5] although directly learning horizontal connections in hidden layers leads to an inefficient inference. To consider, to some extent, statistical dependencies of states of hidden units and meanwhile keep the exact and efficient inference in RBMs, we introduce a l_1/l_2 regularizer on the activation possibilities of hidden units given training data.

l_1/l_2 regularizers have been intensively studied in both the statistics community [6] and machine learning community [7]. Usually the l_1/l_2 regularizer (or group lasso) only leads to sparsity at the group level but not within a group. Friedman et al [8] present a more general regularizer that blends l_1 and l_1/l_2 regularizer. Using this regularizer, the linear model can yield sparsity both at the group level and within the group.
In this paper, we show that introducing the l_1/l_2 regularizer on the activation possibilities can yield sparsity at not only the group level but also the hidden unit level because of the Logistic differential equation. In the experiment section, we show that the sparse group RBM can be a better and sparser generative model than RBMs. And using the sparse group RBM can also learn more discriminative features.

2 Restricted Boltzmann Machines and Contrastive Divergence

A Restricted Boltzmann Machine is a two layer neural network with one visible layer representing observed data and one hidden layer as feature detectors. Connections only exist between the visible layer and the hidden layer. Here we assume that both the visible and hidden units of the RBM are binary. The models below can be easily generalized to other types of units [9]. The energy function of a RBM is defined as

$$E(x, h) = - \sum_{i,j} x_i h_j w_{ij} - \sum_i x_i b_i - \sum_j h_j c_j$$ \hspace{1cm} (1)

where x_i and h_j denote the states of the ith visible unit and the jth hidden unit, while w_{ij} represents the strength of the connection between them. b_i and c_j are the biases of the visible and hidden units respectively.

Based on the energy function, we can define the joint distribution of (x, h)

$$P(x, h) = \frac{\exp(-E(x, h))}{Z}$$ \hspace{1cm} (2)

where z is the partition function $Z = \sum_x \sum_h \exp(-E(x, h))$.

The activation probabilities of the hidden units are

$$P(h_j | x) = \text{sigmoid}(x^T w_j) = \frac{1}{1 + \exp(-x^T w_j)}$$ \hspace{1cm} (3)

where w_j denotes the jth column of W, which is the connection weights between the jth hidden unit and all visible units. Because of $x^T w_j = \cos(\alpha) ||w_j||_2 ||x||_2$ (α is the angle of the vector w_j and x), the activation probability can be interpreted as the similarity between x and the feature w_j in data space.

The activation probabilities of the visible units are

$$P(x_i | h) = \text{sigmoid}(w_i h)$$ \hspace{1cm} (4)

The marginal distribution over the visible units actually is a model of products of experts [1,2]

$$P(x) = \frac{\prod_j (1 + \exp(x^T w_j))}{Z}$$ \hspace{1cm} (5)

From Equation 5 we can deduce that each expert (hidden unit) will contribute probabilities according to the similarity between its feature and the data vector x. The feature of the jth expert (the jth hidden unit), w_j can be seen as a prototype defined in data space [2].

The objective of generative training of a RBM is to model the marginal distribution of the visible units $P(x)$. To do this, we need to compute the gradient of the training data likelihood

$$\frac{\partial \log P(x^{(n)})}{\partial \theta} = -< \frac{\partial E(x^{(n)}, h)}{\partial \theta} >_{P(h|x^{(n)})} + < \frac{\partial E(x, h)}{\partial \theta} >_{P(x, h)}$$ \hspace{1cm} (6)

where $< . >_P$ is the expectation with respect to the distribution P. The second term of Equation 6 is intractable since sampling the distribution $P(x, h)$ requires prolonged Gibbs sampling. Hinton [1] shows that we can get very good approximations to the second term when running the Gibbs sampler only k steps (the most commonly chosen value of k is 1), initialized from the training data.
Named Contrastive Divergence (CD) [1], the algorithm updates the feature of the \(j \)th hidden unit seeing training data set \(\{x^{(1)}, x^{(2)}, ..., x^{(L)}\} \)
\[
\Delta w_j = \frac{1}{L} \sum_{l=1}^{L} P(h_j = 1|x^{(l)}) \cdot x^{(l)} - P(h_j = 1|x^{(l)}) \cdot x^{(l)}
\]
where \(x^{(l)} \) is sampled from \(P(x|h^{(l)}) \) \((h^{(l)} \) sampled from \(P(h|x^{(l)}) \)). The first term of Equation 7 will decrease energies of the RBM at \(\{x^{(1)}, x^{(2)}, ..., x^{(L)}\} \). The second term will increase energies at \(\{x^{(l)}-, x^{(2)}-, ..., x^{(L)}-\} \) which possible are near the training data set and have low energies in the RBM. Iteratively updating parameters ensures that the probability distribution defined by the energy function has the desired local structure. Furthermore from Equation 7 one specific hidden unit will be responsible for decreasing (or increasing) only a subset of training data (or negative sample), which is selected by the vector of activation probabilities, \((P(h_j = 1|x^{(1)}), ..., P(h_j = 1|x^{(L)}))^T \) (or \((P(h_j = 1|x^{(1)}), ..., P(h_j = 1|x^{(L)}))^T \)). Thus the learning algorithm ensures that different hidden units learn different features.

3 Sparse group RBMs

As discussed in Section 1, directly learning the statistical dependencies between hidden units is inefficient. To alleviate this problem, firstly we averagely divide hidden units into predefined non-overlapping groups to restrain the dependencies within these groups. Secondly, instead of directly learning the dependencies we penalize the overall activation level of a group to force hidden units in the group to compete with each other. To implement the two above intuitions we introduce a mixed-norm \((l_1/l_2)\) regularizer on the activation possibilities of hidden units given the training data.

Assuming a RBM has \(F \) hidden units, let \(H \) denote the set of all hidden units’ indices: \(H = \{1, 2, \ldots, F\} \). The \(k \)th group is denoted by \(G_k \) where \(G_k \subset H, k = 1, \ldots, K \). Given a grouping \(G \) and a data point \(x^{(n)} \), the \(k \)th group norm \(N_k \) is given by
\[
N_k = \sqrt{\sum_{m \in G_k} P(h_m = 1|x^{(n)})^2}
\]
which is the Euclidean \((l_2)\) norm of the vector composed of these activation possibilities and considered as the overall activation level of \(k \)th group. Given the group norms, the mixed-norm is
\[
\sum_{k=1}^{K} |N_k| = \sum_{k=1}^{K} \sqrt{\sum_{m \in G_k} P(h_m = 1|x^{(n)})^2}
\]
which is the \(l_1 \) norm of the vector composed of the group norms.

We add the \(l_1/l_2 \) regularizer to the log-likelihood of training data (see Equation 5). Thus, given training data \(\{x^{(1)}, x^{(2)}, ..., x^{(L)}\} \), we need to solve the following optimization problem
\[
\text{maximize}_{W,b,c} \sum_{l=1}^{L} \log P(x^{(l)}) - \lambda \sum_{k=1}^{K} \sqrt{\sum_{j \in G_k} P(h_j = 1|x^{(l)})^2}
\]
where \(G_k \) is the index set belonging to the \(k \)th group of hidden units and \(\lambda \) is a regularization constant.

The effects of a \(l_1/l_2 \) regularization can be interpreted on two levels: an across-group and a within-group level. On the across-group level, the group norms \(N_k \) behave as if they were penalized by a \(l_1 \) norm. In consequence, given observed data some group norms are zero, which means the activation possibilities of all hidden units in these groups are zero since the activation possibilities are non-negative. On the within-group level, the \(l_2 \) norm will equally penalize the activation possibilities of all hidden units in the same group. In other words, the \(l_2 \) norm does not yield sparsity within the group. However, when applied the \(l_1/l_2 \) on the activation possibilities it is an entirely different story because of the Logistic differential equation. Below we will discuss it in detail.
units in a group compete with each other for modeling data. The effects of the regularizer become smaller when the activation possibilities are close to 0 instead of them close to 1 because of the square of the RBM’s energies at data point.

Discussing the relationships between a third-RBM and sparse group RBMs will give us additional insights about the effects of

tain extent, a trained third-RBM defines a special group sparse representation for training data.

4 Relationship to third-order RBMs

A third-order RBM described in [10] is a mixture model whose components are RBMs. To a certain extent, a trained third-RBM defines a special group sparse representation for training data. Discussing the relationships between a third-RBM and sparse group RBMs will give us additional insights about the effects of l_1/l_2 regularizer for RBMs.

Figure 1: Assuming the jth hidden unit belongs to the kth group and $q = \sum_{m \in G_k, m \neq j} P(h_m = 1|x^{(l)})^2$. The regularization constant λ, is set to 1. In both of two figures the horizontal axis represents activations of jth hidden unit. (a) Vertical axis: the coefficients of data $x^{(n)}$; (b) Vertical axis: the values of the second term in the coefficients of data $x^{(n)}$.

By introducing this regularizer the Equation7 is changed to the following equation

$$
\frac{1}{L} \sum_{l=1}^{L} \left(P(h_j = 1|x^{(l)}) - \lambda \frac{P(h_j = 1|x^{(l)})^2 P(h_j = 0|x^{(l)})}{\sqrt{\sum_{m \in G_k} P(h_m = 1|x^{(l)})^2}} \right) \cdot x^{(l)} - P(h_j = 1|x^{(l)}) \cdot x^{(l)}
$$

(11)

where $j \in G_k$. As discussion in Section 2, the decrease of the RBM’s energies at the training data $x^{(l)}$ is determined by $P(h_j = 1|x^{(l)})$ in Equation7. With the l_1/l_2 regularization the decrease is determined by not only $P(h_j = 1|x^{(l)})$ but also other hidden units’ activation possibilities in the same group. To interpret properties of this regularizer, we visualize the coefficients of data point $x^{(l)}$ in Figure1(a) and the second term of the coefficients in Figure1(b).

$q = \sum_{m \in G_k, m \neq j} P(h_m = 1|x^{(l)})^2$ can be interpreted as a overall activation level of the hidden units in kth group except jth hidden unit. A small value of q indicates that most of hidden units in the group are inactive for the data $x^{(l)}$. In Figure1(a) a smaller q slow down the decrease of the RBM’s energies at data point $x^{(l)}$. In consequence a hidden unit is penalized strongly if the activation possibilities of the remaining hidden units in the corresponding group are very small. Thus, the first property of the l_1/l_2 regularizer is that it encourages few groups to be active given observed data. This property yield the sparsity at the group level.

In Figure1(b) the effect of the regularizer will vanish when $P(h_j = 1|x^{(l)})$ is close to 0 or 1 because of the factor $P(h_j = 1|x^{(l)})^2 P(h_j = 0|x^{(l)})$ in Equation11. A bigger q indicates that most of hidden units in the group are active for the data $x^{(l)}$. In the Figure1(b) it can also be seen that the effects of the regularizer become smaller when the activation possibilities are close to 0 instead of them close to 1 because of the square of $P(h_j = 1|x^{(l)})$. This can be interpreted as that hidden units in a group compete with each other for modeling data $x^{(l)}$. Only few of hidden units in a group will win this competition. Thus, the second property of the regularizer is that is results in only few hidden units to be active in a group. This property yields the sparsity within the group. Based on these two properties, we call RBMs trained by Equation10 sparse group RBMs.
The energy function of a third-order Boltzmann machine is

\[E(x, h, z) = - \sum_{i,j,k} x_i h_j^k w_{ij}^k z_k \]

(12)

where \(z \) is a \(K \)-dimensional binary vector with 1-of-\(K \) activation and represents the cluster label.

The responsibility of the \(k \)th component RBM is

\[P(z_k = 1|x) = \frac{\sum_h P(x, z_k = 1, h) \prod_j (1 + \exp(x^T w_j^k))}{\sum_h \prod_j (1 + \exp(x^T w_j^k))} \]

(13)

A 3-order RBM with \(K \) components can be seen as a regular RBM in which hidden units are divided into \(K \) non-overlapping groups. Given a data \(x \) the responsibility, \(P(z|x) \) is used to pick one group’s hidden units to respond to the data. In other words, data will be represented by only one group’ hidden units and the states of hidden units in other groups will be set to 0. From this perspective, a third-order RBM yields a special group sparsity given the training data.

The group (component) which has the bigger value of \(\prod_j (1/1 - P(h_j^k = 1|x)) \) will more likely be responsible for the data \(x \). Given the data \(x \) the product \(\prod_j (1/1 - P(h_j^k = 1|x)) \) can be interpreted as a measure of overall activation level of hidden units in the group. If more hidden units in the group are active, the overall activation level of the group is higher. However the products are unbounded and at very different numerical scales since any hidden unit’s activation possibility \(P(h_j^k = 1|x) \) in a group that is close to 1 will make the product extremely big. To alleviate this problem, Nair and Hinton [10] introduced a temperature parameter \(T \) to reduce scale differences in the products.

There are two major differences between 3-order RBMs and sparse group RBMs. Firstly, sparse group RBMs define a different overall activation level of a group’s hidden units, which is the euclidean norm of the vector, \((P(h_j = 1|x))_{j \in \mathcal{G}_k}\). Since this measure is bounded and in the interval \([0, |\mathcal{G}_k]|\), it can be avoided that one group with a too high overall activation level shields all of other groups. Secondly, as discussed in Section 3, sparse group RBMs yields sparsity at both the group level and the hidden unit level by regularization. It is a more flexible method than as done with third-order RBMs. Third-order RBMs directly divide training data into subsets by \(P(z|x) \), where each subsets is modeled by hidden units in one specific group.

5 Sparse group deep Bolzmann machines

Salakhutdinov and Hinton [11] presented a learning algorithms for tractable training a deep multi-layer Boltzmann machines, in which, unlike deep belief networks, hidden units will receive top-down feedback. Based on their learning algorithm, we illustrate that the regularizer can also be added to a deep Bolzmann machine. This leads to a sparse group deep Bolzmann machine. Taking a two-layer Boltzmann machine for example, the energy function is

\[E(x, h^1, h^2) = -x^T W^1 h^1 - x^T W^2 h^2 \]

(14)

For training a sparse group deep Bolzmann machine, we propose the following optimization problem

\[
\text{maximize}_{W_1, W_2} \sum_{l=1}^{L} \log P(x^{(l)}) - \lambda \sum_{k=1}^{K} \sqrt{\sum_{j \in \mathcal{G}_k} P(h_j^1 = 1|x^{(l)})^2 - \lambda' \sum_{k=1}^{K'} \sqrt{\sum_{j \in \mathcal{G}_k^2} P(h_j^2 = 1|x^{(l)})^2}}
\]

(15)

Given observed data the two activation probabilities can not be computed efficiently. Thus, following [11], we adopted the mean-field approximations for these two probabilities.
6 Experiments

We firstly applied sparse group RBMs to three tasks: modeling patches of natural images, modeling handwritten digits and pretraining a multilayer feedforward network for handwritten digits recognition. The first two tasks are adopted to evaluate the performances of sparse group RBMs (as a generative model) on modeling different types (real-valued and binary) of observed data. The third task partially accesses the performances of using features learned by sparse group RBMs on a discriminative task. We also trained a sparse group deep Boltzmann machine for handwritten digits recognition.

A bigger group easily leads to a bigger q (see Section 3), which make hidden units in this group receive weaker penalties and moderate the competitions among hidden units in this group. In the meanwhile using a bigger λ can keep the competitions intense though q is big. However, a big λ may lead to a negative coefficients of $x^{(l)}$ in Equation 11 and prevent hidden units from modeling $x^{(l)}$ when q is small. So the group size needs to be set small (empirically below 10). And in all experiments, the sparse group RBMs’ parameter λ, is empirically set to 0.1 which ensures the regularizer not to dominate the learning.

6.1 Modeling patches of natural images

Using regular RBMs trained on patches of natural images will learn relatively diffuse, unlocalized features. Lee et al. [12] proposed sparse RBMs to model natural images. Because sparse group RBMs yields sparsity at the hidden units level, we show sparse group RBMs can also be used for modeling patches of natural images.

The training data used consists of $100,000 \times 14 \times 14$ patches randomly extracted from a standard set of $10,512 \times 512$ whitened images as in [13]. We divided all patches into mini-batches, each of which contained 200 patches, and updated the weights after each mini-batch.

![Learned features with sparse group RBM trained on patches of natural images](image1)

Figure 2: Learned features with sparse group RBM trained on patches of natural images

![Learned features with sparse RBM trained on patches of natural images](image2)

Figure 3: Learned features with sparse RBM trained on patches of natural images

We trained a sparse group RBM with 196 real-valued visible units and 400 hidden units which are divided into 80 uniform non-overlapping groups. There are 5 hidden units in each group. The learned features are shown in Figure 2. The features are localized, oriented, gabor-like filters.

For comparison, we also trained a sparse RBM [12] with 400 hidden units. The learned features are shown in Figure 3. The sparse RBMs’ parameters, p and λ are set to 50 and 0.02 as suggested in [12]. As discussed in Section 3, hidden units in a group compete with each other to model pathes,
each hidden unit in the sparse group RBM is focused on modeling more subtle patterns contained in training data. As a result, the features learned with the sparse group RBM are much more localized than those learned with the sparse RBM.

6.2 Modeling handwritten digits

We also applied sparse group RBMs algorithm to the MNIST handwritten digit dataset\(^1\). The training data, 60,000 28 × 28 images were divided into mini-batches, each of which contained 100 images. We trained two sparse group RBMs with 600 hidden units and different group size (3 and 5). We compare these models to a regular RBM with 600 hidden units. The learned features are shown in Figure 4. All of three models are trained by CD-1 for 50 epochs with a same configuration of learning rate, weight decay and momentum.

Due to space reasons, we show only the features of the sparse group RBM with group size 3 in Figure 5. The results of the sparse group RBM with group size 5 are similar. Many features in Figure 5 look like different strokes of handwritten digits.

![Figure 4: Learned features with RBM trained on MNIST dataset](image)

![Figure 5: Learned features with sparse group RBM trained on MNIST dataset. 3 patches in one row of every column are visualizations of features of hidden units in one specific group.](image)

Although computing the exact partition function of a RBM is intractable, Salakhutdinov and Murray [14] proposed an Annealed Importance Sampling based algorithm to tractably approximate the partition function of an RBM. Using their method, the estimates of the lower bound on the average test log-probability are −123 for the regular RBM, −104 for the sparse group RBM with group size 3 and −111 for the sparse group RBM with group size 5. It can be seen that by adopting a proper regularization we can learn a better generative model on MNIST dataset than those without the regularization.

We use Hoyer’s sparseness measure [15] to figure out how sparse representations learned by RBMs and sparse group RBMs. This sparseness measure evaluate the sparseness of a \(D\) dimensional vector \(v\) in the following way

\[
\text{sparseness}(v) = \frac{\sqrt{D} - \sqrt{\sum_{i=1}^{D} |v_i|^2}}{\sqrt{D} - 1} \quad (16)
\]

This measure has good properties, which is in the interval \([0, 1]\) and on a normalized scale. Its value more close to 1 means that there are more zero components in the vector \(v\). With every trained models, we can compute activation possibilities of hidden units given 10,000 test images. Given any trained model this leads to new representations (10,000 600-dimensional vectors) of test data. The sparseness measures of the representations under the RBMs are in the interval \([0.36, 0.6]\), with an average of 0.5. The sparseness measures of the representations under the sparse group RBMs with group size 3 and 5 are in \([0.55, 0.75]\) and \([0.51, 0.72]\). The averages are 0.68 and 0.65, respectively.

\(^1\)http://yann.lecun.com/exdb/mnist/
It can be seen that the sparse group RBMs can learn much more sparser representations than regular RBMs on MNIST data set. Figure 6(a) visualizes the activation possibilities of hidden units, which are computed under the regular RBMs given an image from test set. Given the same image the activation possibilities computed under the sparse group RBMs are shown in Figure 6(b).

Figure 6: (a) Activation possibilities computed under the regular RBMs. The sparseness of the vector is 0.49; (b) Activation possibilities computed under the sparse group RBMs with group size 3. The sparseness is 0.68.

6.3 Using sparse group RBMs to pretrain deep networks

One of the most important applications of RBMs is to use RBMs as building blocks layer-by-layer to pretrains greedily deep supervised feedforward neural networks [3]. We show that sparse group RBMs can also be used to initialize deep networks and achieve better performances of classification on MNIST dataset.

We use sparse group RBMs with different group size (3, 5 and 10) on MNIST dataset to pretrain a 784-600-600-2100 networks. After pretraining, the multilayer networks are fine-tuned for 30 iterations using Conjugate Gradient. The networks initialized by the sparse group RBMs with group size, 3, 5 and 10 achieve the error rates of 0.89%, 0.91% and 0.99%, respectively. Using regular RBMs pretraining a 784-500-500-2000 network achieved the error rate of 1.14% [3]. A network with the same architecture initialized by sparse RBMs gave a much worse error rate of 1.81% [16].

6.4 Sparse group deep Boltzmann machines

We also trained a two layer (500 and 1000 hidden units) sparse group Boltzmann machine on MNIST dataset. The group size is set to 10 for both of two layers. Firstly, we use two sparse group RBMs (784-500 and 500-1000) to initialize the deep network. Then the learning algorithm described in Section 5 trains the sparse group deep Boltzmann machine. Finally we discriminative fine-tuned the network. The sparse group deep Boltzmann machine achieves the error rates of 0.84% on the test set, which is, to our knowledge, the best published result on the permutation-invariant version of the MNIST task. The deep Boltzmann machine with the same architecture without the sparse group regularization resulted in the error rate of 0.95% [11].

7 Conclusions

In this paper, we introduce l_1/l_2 regularization on the activation possibilities of hidden units in restricted Boltzmann machines. This leads to a better and sparser generative model, sparse group RBM.
Acknowledgments

References

[1] Hinton, G.E.: Training products of experts by minimizing contrastive divergence. *Neural Computation*, 14(8):1711-1800 (2002)

[2] Freund, Y., Haussler, D.: Unsupervised learning of distributions of binary vectors using 2-layer networks. In *Advances in Neural Information Processing Systems*, volume 4, pages 912-919 (1992)

[3] Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. *Science*, 313:504-507 (2006)

[4] Lee, H., Grosse, R., Ranganath, R., Ng, A.Y: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In *Proceedings of the Twenty-sixth International Conference on Machine Learning*. ACM, Montreal (Qc), Canada. (2009)

[5] Garrigues, P., Olshausen, B.: Learning horizontal connections in a sparse coding model of natural images. *Advances in Neural Information Processing Systems*, vol. 20, pp. 505-512, (2008).

[6] Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. *Journal of the Royal Statistical Society*, Series B 68(1), 49-67. (2007)

[7] Bach, F.: Consistency of the group Lasso and multiple kernel learning. *Journal of Machine Learning Research*, 9:1179-1225, (2008).

[8] Friedman, J., Hastie, T., Tibshirani, R: A note on the group lasso and the sparse group lasso, Technical report, Statistics Department, Stanford University. (2010).

[9] Welling, M., Rosen-Zvi, M., Hinton, G.E.: Exponential family harmoniums with an application to information retrieval. In *Advances in Neural Information Processing Systems 17*, MIT Press (2005)

[10] Nair, V., Hinton, G.E.: Implicit Mixtures of Restricted Boltzmann Machines. In *Advances in Neural Information Processing Systems 21*, MIT Press (2009)

[11] Salakhutdinov, R.R., Hinton, G.E.: Deep Boltzmann machines. In *Proceedings of The Twelfth International Conference on Artificial Intelligence and Statistics*, Vol. 5, pp. 448-455 (2009)

[12] Lee, H., Ekanadham, C., Ng, A.: Sparse deep belief net model for visual area V2. In *Advances in Neural Information Processing Systems 20* (NIPS07). MIT Press, Cambridge, MA. (2008)

[13] Olshausen, B.A., Field, D.J: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. *Nature*, 381:607-609. (1996)

[14] Salakhutdinov, R., Murray, I: On the quantitative analysis of deep belief networks. In *Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML08)*, Vol. 25, pp. 872-879. ACM. (2008)

[15] Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints, *Journal of Machine Learning Research*, 1457-1469. (2004)

[16] Swersky, K., Chen, B., Marlin, B., Freitas, N.: A Tutorial on Stochastic Approximation Algorithms for Training Restricted Boltzmann Machines and Deep Belief Nets. *Information Theory and Applications (ITA) Workshop*. (2010)