Vibrio cholerae amino acids go on the defense

Bengoechea, J. (2017). Vibrio cholerae amino acids go on the defense. The Journal of Biological Chemistry, 292(51), 21216-21217. https://doi.org/10.1074/jbc.H117.000868

Published in:
The Journal of Biological Chemistry

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:01. Feb. 2024
Gram-negative bacteria remodel their surfaces to interact with the environment, particularly to protect pathogens from immune surveillance and host defenses. The enzyme AlmG is known to be involved in remodeling the *Vibrio cholerae* surface, but its specific role was not clear. A new study characterizes AlmG at the molecular level, showing it defies phylogenetic expectations to add amino acids to lipopolysaccharide (LPS). This LPS modification plays a pivotal role in *V. cholerae* resistance to antimicrobial peptides, weapons of the innate immune system against infections.

A defining feature of Gram-negative bacteria is the presence of an outer membrane, which is an asymmetrical bilayer with glycerophospholipids on the cytoplasmic face and LPS anchored to the outer face. The LPS is composed of three regions: the lipid A domain, the core oligosaccharide, and the O-antigen polysaccharide. The lipid A domain is recognized by the innate immune system, leading to the activation of signaling pathways governing host-defense responses, and is the target of antimicrobial peptides such as defensins and polymyxin B, which kill bacteria by affecting membrane integrity. Recognition and exploitation of the lipid A structure therefore relies on the inability of bacteria to alter this component dramatically. However, a wealth of evidence demonstrates that bacteria do modify their lipid A as a virulence strategy to survive the onslaught of host defenses. The canonical lipid A structure, lipid IV_α, is found in *Escherichia coli* K-12 and consists of a glucosamine disaccharide modified with two phosphate groups and four R-3-hydroxymyristoyl acyl chains. Two of the hydroxymyristoyl chains are further acylated with laurate (containing a C₁₂ backbone) and myristate (C₁₄) through the action of the late acyltransferases LpxL and LpxM, respectively (1).

Pioneering studies demonstrated that *Salmonella typhimurium* remodels its lipid A by adding 4-amino-4-deoxy-1-arabinose and phosphoethanolamine to mask lipid A’s negative charges, limiting its interaction with positively charged antimicrobial peptides (2, 3), whereas *Klebsiella pneumoniae* produces a distinct lipid A in *vivo* to limit inflammation and to resist antimicrobial peptides and polymyxins (4). Although these remodeling events are therefore critical to understanding a variety of bacterial infections, most of the studies on lipid A remodeling have focused primarily on just a few bacterial species.

V. cholerae is the causative agent responsible for the severe diarrheal disease cholera. The global disease burden of cholera is estimated to be between 1.3 and 4 million cases per year with 21,000 to 143,000 deaths. For decades, this pathogen has been used as a model to study the regulation of host–pathogen interactions and, more recently, has enabled investigations of the type VI secretion system that facilitates direct killing of competitors. However, until recently, there was a major gap in our understanding of *V. cholerae* LPS and its contribution to virulence, even though resistance to polymyxin B has been used as diagnostic test to differentiate the two *V. cholerae* O1 biotypes, El Tor and Classic. In a landmark work, Stephen Trent’s team uncovered that *V. cholerae* O1 El Tor pandemic strains synthesize novel mono- or diglycine-modified lipid A species (Fig. 1) that confer resistance to polymyxin B and identified the proteins AlmE, AlmF, and AlmG as required for this modification (5). Moreover, they later showed that Classical *V. cholerae* strains lack a functional AlmEGF due to a mutation in AlmF, providing further evidence for this mechanism and explaining the mystery of why pandemic Classical strains are polymyxin B–susceptible (6). However, further insights are still needed, as the polymyxin B–resistant O1 El Tor strains are currently causing the seventh *V. cholerae* pandemic.

Previous studies revealed that AlmF is an aminocarrier protein and AlmE is the enzyme required to activate AlmF as a functional carrier protein (6). AlmG was suspected to be a glycoltransferase to complete the functional pathway, but its evolutionary context—it is only distantly related to enzymes of the lysophospholipid acyltransferase (LPLAT) superfamily, including LpxL, LpxM, and LpxN—provided no clear indication as to how catalysis might occur. Moreover, deciphering the function of an enzyme involved in lipid A modifications is technically challenging. In this issue of JBC, Jeremy Henderson and coworkers (7) present compelling biochemical evidence demonstrating that AlmG is the glycoltransferase in the AlmEFG pathway. To characterize the enzymatic activity of AlmG, the authors followed an elegant synthetic biology approach combining the power of bacterial engineering and biochemistry methods and exploiting *E. coli* as a workhorse. To define the minimal structural requirements required for the Kdo-lipid A glycine modification, the authors constructed an *E. coli* strain that produced a simplified Kdo-lipid A domain resembling *V. cholerae* lipid A. To do this, they generated an *E. coli* strain lacking lpxM to allow expression of *Vibrio* LpxN that transfers 3-hydroxylaurate to the Kdo-lipid A (8) (Fig. 1), lpxT, to facilitate the analysis of 32P-radiolabeled LPS by thin-layer chromatography, and the rfaDFC (also known as waaDFC) operon, to prevent addition of the inner core section of LPS and simplify the isolation of Kdo-lipid A material. Expression

The author declares that he has no conflicts of interests with the contents of this article.

1To whom correspondence should be addressed. Tel.: 44-0-2890976357; E-mail: j.bengoechea@qub.ac.uk.

2The abbreviations used are: LPS, lipopolysaccharide(s); LPLAT, lysophospholipid acyltransferase.
that AlmG might be acting on the acyl precursor used as a substrate by LpxN rather than the intact lipid A domain (Fig. 1).

The work of Henderson et al. (7) makes a strong argument for exploiting synthetic biology approaches using E. coli to elucidate the activity of enzymes responsible for Kdo-lipid A biosynthesis and decoration from different bacteria. This strategy may also prove useful for purifying LPS of defined chemical structures to assess their potential as vaccine adjuvants and/or immunomodulators; Stephen Trent’s group has published a proof-of-principle study showing the outstanding opportunities that await (9). In this context, the enzymes encoded by the alm operon represent a singular addition to the repertoire of proteins employed by Gram-negative bacteria to remodel their LPS. In a broader context, many questions remain to be investigated. Does the lipid A modification with glycine play any role in V. cholerae survival in the environment? Is there any connection between lipid A modifications and the expression/function of the Vibrio type VI secretion system? How does Vibrio coordinate the spatial–temporal expression of lipid A modifications with that of other virulence factors? How widespread is the modification of lipid A with amino acids? Answering these questions will not only advance our understanding of V. cholerae infection biology but also will provide further insights into the role of LPS in Gram-negative bacteria biology.

Acknowledgments—Research in my laboratory is supported by the Biotechnology and Biomedical Sciences Research Council (BBSRC, Grants BB/P006078/1, BB/P020194/1, and BB/N00700X/1) and the Medical Research Council (MRC, Grant MR/R005893/1).

References
1. Raetz, C. R., and Whitfield, C. (2002) Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700
2. Lee, H., Hsu, F. E., Turk, J., and Groisman, E. A. (2004) The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J. Bacteriol. 186, 4124–4133
3. Guo, L., Lim, K. B., Gunn, J. S., Bainbridge, B., Darveau, R. P., Hackett, M., and Miller, S. I. (1997) Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 276, 250–253
4. Llobet, E., Martínez-Moliner, V., Moranta, D., Dahlström, K. M., Reguero, V., Tomás, A., Cano, V., Pérez-Gutiérrez, C., Frank, C. G., Fernández-Carrasco, H., Insua, J. L., Salminen, T. A., Garmendia, J., and Bengoechea, J. A. (2015) Deciphering tissue-induced Klebsiella pneumoniae lipid A structure. Proc. Natl. Acad. Sci. U.S.A. 112, E6369–E6378
5. Hankins, J. V., Madsen, J. A., Giles, D. K., Brodbelt, J. S., and Trent, M. S. (2012) Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in Gram-positive and Gram-negative bacteria. Proc. Natl. Acad. Sci. U.S.A. 109, 8722–8727
6. Henderson, J. C., Fage, C. D., Cannon, J. R., Brodbelt, J. S., Keatinge-Clay, A. T., and Trent, M. S. (2014) Antimicrobial peptide resistance of Vibrio cholerae results from an LPS modification pathway related to nonribosomal peptide synthetases. ACS Chem. Biol. 9, 2382–2392
7. Henderson, J. C., Herrera, C. M., and Trent, M. S. (2017) AlmG, responsible for polymyxin resistance in pandemic V. cholerae, is a glycosyltransferase distantly related to lipid A late acyltransferases. J. Biol. Chem. 292, 21205–21215
8. Hankins, J. V., Madsen, J. A., Giles, D. K., Childers, B. M., Klose, K. E., Brodbelt, J. S., and Trent, M. S. (2011) Elucidation of a novel Vibrio cholerae lipid A secondary hydroxyacyltransferase and its role in innate immune recognition. Mol. Microbiol. 81, 1313–1329
9. Needham, B. D., Carroll, S. M., Giles, D. K., Georgiou, G., Whiteley, M., and Trent, M. S. (2013) Modulating the innate immune response by combinatorial engineering of endotoxin. Proc. Natl. Acad. Sci. U.S.A. 110, 1464–1469
Vibrio cholerae amino acids go on the defense
Jose A. Bengoechea

J. Biol. Chem. 2017, 292:21216-21217.
doi: 10.1074/jbc.H117.000868

Access the most updated version of this article at http://www.jbc.org/content/292/51/21216

Alerts:
• When this article is cited
 • When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 9 references, 6 of which can be accessed free at
http://www.jbc.org/content/292/51/21216.full.html#ref-list-1