Abstract

We construct triangular hyperbolic polyhedra whose links are generalized 4-gons. The universal cover of such a polyhedron is a hyperbolic building, whose apartments are hyperbolic planes tessellated by regular triangles with angles $\pi/4$. The fundamental groups of the polyhedra are hyperbolic, torsion free, with property (T).

Résumé

Immeubles hyperboliques triangulaires. On construit des polyèdres hyperboliques dont les links en chaque sommet sont des 4-gones généralisées. Leurs revêtements universels sont des immeubles dont les appartements sont des plans hyperboliques pavés par des triangles réguliers d’angles $\pi/4$. Les groupes fondamentaux de nos polyèdres sont hyperboliques, sans torsion et ont la propriété (T).

1. Introduction

Hyperbolic torsion free groups with property (T) have uncountably many nonisomorphic quotient groups $(\Gamma_\alpha)_{\alpha \in I}$ which are simple and with infinitely many conjugacy classes (see [8,10,11]). Such groups exist: the random group of Gromov [9], cocompact lattices of $\text{Sp}(1,n)$ etc.

We give new examples of groups of this kind which are explicitly presented by generators and relations.

A polyhedron is a two-dimensional complex which is obtained from several oriented p-gons by identification of corresponding sides. Let us take a sphere of a small radius at a point of the polyhedron. The intersection of the sphere with the polyhedron is a graph, which is called the link at this point.

In this Note we construct polyhedra whose links at vertices are generalized 4-gons and whose faces are regular hyperbolic triangles with angles $\pi/4$. The universal covering of such a polyhedron is a hyperbolic building, see [6]. Moreover, with the metric introduced in [1, p. 165] it is a complete metric space of non-positive curvature in the sense of Alexandrov and Busemann [7]. It follows from [2] that the fundamental groups of our polyhedra satisfy the property...
(T) of Kazhdan. (Another relevant reference is [15].) So, our groups, which are explicitly presented by generators and relations, are hyperbolic, torsion free and they have property (T).

Definition 1.1. Let $\mathcal{P}(p, m)$ be a tessellation of the hyperbolic plane by regular polygons with p sides, with angles π/m at each vertex where m is an integer. A hyperbolic building is a polygonal complex X, which can be expressed as the union of subcomplexes called apartments such that:

1. Every apartment is isomorphic to $\mathcal{P}(p, m)$.
2. For any two polygons of X, there is an apartment containing both of them.
3. For any two apartments $A_1, A_2 \in X$ containing the same polygon, there exists an isomorphism $A_1 \rightarrow A_2$ fixing $A_1 \cap A_2$.

Our construction gives new examples of hyperbolic triangular buildings with regular triangles as chambers. Examples of hyperbolic buildings with right-angled triangles were constructed by Bourdon in [3]. His construction has been generalized by Świątkowski in [12].

2. **Polygonal presentation and construction of polyhedra**

Recall that a generalized m-gon is a connected, bipartite graph of diameter m and girth $2m$, in which each vertex lies on at least two edges. A graph is bipartite if its set of vertices can be partitioned into two disjoint subsets such that no two vertices in the same subset lie on a common edge. The vertices of one subset we will call black vertices, and the vertices of the other subset the white ones, denoted by y_i, $i \in \mathbb{Z}_+$. The diameter is the maximum distance between two vertices and the girth is the length of a shortest circuit.

We recall also the definition of a polygonal presentation introduced in [14]:

Definition 2.1. Suppose we have n disjoint connected bipartite graphs G_1, G_2, \ldots, G_n. Let P_i and Q_i be the sets of black and white vertices respectively in G_i, $i = 1, \ldots, n$; let $P = \bigcup P_i$, $Q = \bigcup Q_i$, $P_i \cap P_j = \emptyset$, $Q_i \cap Q_j = \emptyset$ for $i \neq j$ and let λ be a bijection $\lambda : P \rightarrow Q$.

A set K of k-tuples (x_1, x_2, \ldots, x_k), $x_i \in P$, will be called a polygonal presentation over P compatible with λ if

1. $(x_1, x_2, x_3, \ldots, x_k) \in K$ implies that $(x_2, x_3, \ldots, x_k, x_1) \in K$;
2. given $x_1, x_2 \in P$, then $(x_1, x_2, x_3, \ldots, x_k) \in K$ for some x_3, \ldots, x_k if and only if x_2 and $\lambda(x_1)$ are incident in some G_i;
3. given $x_1, x_2 \in P$, then $(x_1, x_2, x_3, \ldots, x_k) \in K$ for at most one $x_3 \in P$.

If there exists such K, we will call λ a basic bijection.

The polygonal presentations with $k = 3$, $n = 1$, and G_1 a generalized 3-gon have been listed in [4,5].

We can associate a polyhedron K on n vertices with each polygonal presentation K as follows: for every cyclic k-tuple $(x_1, x_2, x_3, \ldots, x_k)$ we take an oriented k-gon on the boundary of which the word $x_1 x_2 x_3 \cdots x_k$ is written. To obtain the polyhedron we identify the corresponding sides of our polygons, respecting orientation.

Lemma 2.2 [14]. A polyhedron K which corresponds to a polygonal presentation K has graphs G_1, G_2, \ldots, G_n as vertex-links.

Now we construct two polygonal presentations with $k = 3$ and $n = 1$, but for which the graph G_1 is a generalized 4-gon. We denote the elements of P by x_i and the elements of Q by y_i, $i = 1, 2, \ldots, 15$. Let T_1 and T_2 be the two following sets of triples, and in both cases define the basic bijection $\lambda : P \rightarrow Q$ by $\lambda(x_i) = y_i$ for all $i = 1, 2, \ldots, 15$.

$$T_1: \{ (x_1, x_2, x_7), (x_1, x_8, x_11), (x_1, x_{14}, x_5), (x_2, x_4, x_{13}), (x_{12}, x_4, x_2),$$

$$ (x_4, x_9, x_3), (x_6, x_3, x_1), (x_{14}, x_6, x_3), (x_{12}, x_{10}, x_5), (x_{13}, x_{15}, x_5),$$

$$ (x_{12}, x_9, x_6), (x_{11}, x_{10}, x_7), (x_{14}, x_{13}, x_7), (x_9, x_{15}, x_8), (x_{11}, x_{15}, x_{10}) \} ,$$

$$T_2: \{ (x_1, x_2, x_7), (x_1, x_8, x_11), (x_1, x_{14}, x_5), (x_2, x_4, x_{13}), (x_{12}, x_4, x_2),$$

$$ (x_4, x_9, x_3), (x_6, x_3, x_1), (x_{14}, x_6, x_3), (x_{12}, x_{10}, x_5), (x_{13}, x_{15}, x_5),$$

$$ (x_{12}, x_9, x_6), (x_{11}, x_{10}, x_7), (x_{14}, x_{13}, x_7), (x_9, x_{15}, x_8), (x_{11}, x_{15}, x_{10}) \} .$$
We can draw the bipartite graph G_1 for T_1 (Fig. 1). For every triple (x_i, x_j, x_k) in T_1 the points y_i and x_j as well as y_j and x_k and also y_k and x_i have to be incident in the graph. For T_2 we obtain a similar graph, only with a different labeling of the points.

Let us check that these sets are desired polygonal presentations. Remark, that the smallest thick generalized 4-gon can be presented in the following way: its 'points' are pairs (i, j), where $i, j = 1, \ldots, 6, i \neq j$ and 'lines' are triples $(i_1, j_1), (i_2, j_2), (i_3, j_3)$ of those pairs, where i_1, i_2, i_3, j_1, j_2 and j_3 are all different. We mark pairs (i, j), where $i, j = 1, \ldots, 6, i \neq j$ by x_1 to x_{15}. Now one can check by direct examination, that the graph G_1 is really the smallest thick generalized 4-gon. (See [13] for classification of generalized quadrangles.)

Definition 2.3. Let K_1 and K_2 be two polygonal presentations with $k = 3$, $n = 1$, and for which the graph G_1 is a generalized 4-gon. Then K_1 and K_2 are equivalent, if there exists an automorphism of the generalized 4-gon which transforms the 4-gon of K_1 to the 4-gon of K_2.

In our case there is no such automorphism transforming T_1 to T_2, since in T_1 no element appears twice in one triple, but in T_2 there are triples of the form (x_i, x_j, x_k). Thus the polygonal presentations T_1 and T_2 are not equivalent.

For polygonal presentation T_i, $i = 1, 2$, take 15 oriented regular hyperbolic triangles with angles $\pi/4$, write words from the presentation on their boundaries and glue together sides with the same letters, respecting orientation. The result is a hyperbolic polyhedron with one vertex and 15 faces and its universal covering is a triangular hyperbolic building. The fundamental group Γ_i, $i = 1, 2$, of the polyhedron acts simply transitively on vertices of the building. The group Γ_i, $i = 1, 2$, has 15 generators and 15 relations, which come naturally from the polygonal presentation T_i, $i = 1, 2$.

For the first homology groups we get $H_1(\Gamma_1) = \mathbb{Z}/162\mathbb{Z}$ and $H_1(\Gamma_2) = \mathbb{Z}/9\mathbb{Z}$.

References

[1] W. Ballmann, M. Brin, Polygonal complexes and combinatorial group theory, Geom. Dedicata 50 (1994) 165–191.
[2] W. Ballmann, J. Swiatkowski, On L^2-cohomology and property (T) for automorphism groups of polyhedral cell complexes, Geom. Funct. Anal. 7 (4) (1997) 615–645.
[3] M. Bourdon, Sur les immeubles fuchsiens et leur type de quasi-isométrie, Ergodic Theory Dynam. Systems 20 (2) (2000) 343–364.
[4] D. Cartwright, A. Mantero, T. Steger, A. Zappa, Groups acting simply transitively on vertices of a building of type A_2, Geom. Dedicata 47 (1995) 143–166.
[5] M. Edjvet, J. Howie, Star graphs, projective planes and free subgroups in small cancellation groups, Proc. London Math. Soc. (3) 57 (2) (1988) 301–328.
[6] D. Gaboriau, F. Paulin, Sur les immeubles hyperboliques, Geom. Dedicata 88 (1–3) (2001) 153–197.
[7] E. Ghys, P. de la Harpe (Eds.), Sur les groupes Hyperboliques d’après Mikhael Gromov, Birhäuser, Boston, Basel, Berlin, 1990.
[8] M. Gromov, Hyperbolic groups, in: M. Gersten (Ed.), Essays in Group Theory, in: MSRI Publ., vol. 8, Springer, 1987, pp. 75–263.
[9] M. Gromov, Random walk in random groups, Geom. Funct. Anal. 13 (1) (2003) 73–146.
[10] A.Yu. Olshanskii, On residualing homomorphisms and G-subgroups of hyperbolic groups, Int. J. Algebra Comput. 3 (4) (1993) 365–409.
[11] N. Ozawa, There is no separable universal II$_1$-factor, Proc. Amer. Math. Soc. 132 (2) (2004) 487–490 (electronic).
[12] J. Świątkowski, Some infinite groups generated by involutions have Kazhdan’s property (T), Forum Math. 13 (6) (2001) 741–755.
[13] J. Tits, R.M. Weiss, Moufang Polygons, Springer Monogr. Math., Springer-Verlag, Berlin, 2002.
[14] A. Vdovina, Combinatorial structure of some hyperbolic buildings, Math. Z. 241 (3) (2002) 471–478.
[15] A. Zuk, La propriété de Kazhdan pour les groupes agissant sur les polyèdres, C. R. Acad. Sci. Paris, Sér. I Math. 323 (5) (1996) 453–458.