General fractional financial models of awareness with Caputo–Fabrizio derivative

Amr MS Mahdy1,2, Yasser Abd Elaziz Amer2, Mohamed S Mohamed1,3 and Eslam Sobhy2

Abstract
A Caputo–Fabrizio (CF) form a fractional-system mathematical model for the fractional financial models of awareness is suggested. The fundamental attributes of the model are explored. The existence and uniqueness of the suggest fractional financial models of awareness solutions are given through the fixed point hypothesis. The non-number request subordinate gives progressively adaptable and more profound data about the multifaceted nature of the elements of the proposed partial budgetary models of mindfulness model than the whole number request models set up previously. In order to confirm the theoretical results and numerical simulations studies with Caputo derivative are offered.

Keywords
Fractional financial models of awareness, Caputo–Fabrizio, fixed point theorem, Lipschitz condition, numerical simulation

Date received: 23 May 2020; accepted: 15 October 2020

Handling Editor: James Baldwin

Introduction
Numerical models in the study of disease transmission are utilized generally so as to see major the elements of an irresistible illness.1,2 The utilization of the scientific models isn’t constrained to just human maladies, however, they are likewise generally applied in other wonders of organic sciences, for example, nature, timberland, and so on. In human life, timberland has a significant job, accordingly, it is important to guarantee the security methodologies to shield it from being tainted with ailments. The woods give greenery to the earth and a wonderful climate for people.

It is notable that the point of the publicizing is to persuade the shoppers to buy the items, that relying upon the featuring the poverty of the items all in all and by showing the separation of a particular brand over different items to en-boldness buyers to get it. There are a few strategies to change crowd sentiment on items or administrations. One of these strategies is publicizing missions. These missions can be by means of body media like TV, radio, papers, and magazines, additionally, these missions can be through delicate media, for example, instant missions, sites, and so on.3 Concentrating of the commercial techniques is significant so as to expand the deals and to show signs of improvement in the organization’s acquiring. In this way, it is extremely helpful to build and study a legitimate powerful notice model to depict the deals that rely upon the time and on the crowd populace.4 There are a ton of proposed models to depict the promotions undertaking that set these issues from the

1College of Science, Department of Mathematics, Taif University, Taif, Saudi Arabia
2Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
3Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypt

Corresponding author:
Amr MS Mahdy, Department of Mathematics, College of Science, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia.
Email: amattaya@tu.edu.sa

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
perspective of showcasing, financial, and activities the board,3,5 where dissecting the publicizing approaches is completed over time utilizing dynamical models.6,7 Dynamical models have portrayed by differential conditions, where the piece of the pie, deals, subpopulations, and all the basic state factors are thought to be changed inconsistent structure as for the time. The reasons for each publicizing are very surprising. For example, some of them are intended to analyze between two, or among at least three trademarks. Another is to acquaint another item with the market. Contingent upon these reasons the promoting models will be developed.

Fractional order models8–43 are progressively solid and supportive in the genuine wonders than the old-style models because of innate properties and the portrayal of memory.44,45 Additionally, in reality, clarification, the whole number request subordinate doesn’t investigate the elements between two unique focuses. To manage such disappointments of traditional neighborhood separation, various ideas on separation with non-nearby or partial requests have been created in the current writing. For example, Riemann and Liouville presented the idea of fragmentary requests separation in Samko et al.45 Recently, CF46 presented another subsidiary with partial request dependent on the exponential portion. The novel CF has been utilized effectively in the demonstrating of different genuine wonders. A fractional Adams–Bashforth technique via the CF derivative has given in Owolabi et al.47 An investigation of the magneto hydrodynamic electro osmotic stream of Maxwell liquids with CF subordinates was completed by Abdullah et al.48 In Firoozjaee et al.,49 the CF fragmentary subordinate was utilized for the numerical methodology of the Fokker–Planck condition utilizing Ritz guess. A scientific relative examination of RL and RC electrical circuits utilizing AB and CF fragmentary subordinates was as of late done in Abro et al.50 Mustafa et al.51 investigated the elements of the malignant growth treatment model with the CF fragmentary subordinate. As of late, another partial model of hepatitis B infection in the CF subordinate sense has introduced in Ullah et al.52 Hence, roused by the above work, in this paper, we plan to broaden the as of late distributed partial monetary models of mindfulness53 to a fragmentary case by utilizing the recently settled subordinate known as CF subsidiary of request \(\alpha \in (0,1]\).

The subtleties of the rest of the departments of this paper have as following: the essential definition and consequences of partial request subordinate are expressed in department 2. In department 3, we investigate the model definition, balance, and the essential generation number. Department 4, arrangements with the presence of fragmentary monetary models of mindfulness. Likewise, the uniqueness of a model arrangement has acquired. Numerical reenactments are introduced in department 5. At long last, the closing comments are given in department 6.

Preludes

Here, we allow a few essential meanings of partial analytics which can be utilized in the forward investigation of the system.

Definition 1. Put \(f \in H^1(a,b) \), with \(b \) major than \(a, \alpha \in [0,1] \), then the Caputo–Fabrizio46,54 is given as:

\[
\mathcal{D}^\alpha_a \{ f(t) \} = \frac{M(\alpha)}{1-\alpha} \frac{t}{\sigma} \int_0^t \frac{f(t) - f(\theta)}{(t-\theta)^\alpha} d\theta, \quad \theta \leq t.
\]

Remark 1. If \(\sigma = \frac{1-\alpha}{\alpha} \in [0,\infty), \alpha = \frac{1}{1-\sigma} \in [0,1] \), then equation (2) allows as follows style:

\[
\mathcal{D}^\alpha_a \{ f(t) \} = \frac{N(\sigma)}{\alpha} \int_0^t f(\theta) d\theta, \quad \theta \leq t.
\]

Definition 2. The order fractional integral \(\alpha, (0<\alpha \leq 1) \) of \(f(t) \) is defined as:

\[
\mathcal{I}^\alpha_a \{ f(t) \} = \frac{2(1-\alpha)}{(2-\alpha)M(\alpha)} f(t)
+ \frac{2\alpha}{(2-\alpha)M(\alpha)} \int_0^t f(x) dx, \quad t \geq 0.
\]

Remark 2. From Definition 2, we have:

\[
\frac{2(1-\alpha)}{(2-\alpha)M(\alpha)} + \frac{2\alpha}{(2-\alpha)M(\alpha)} = 1,
\]

which implies \(M(\alpha) = \frac{2}{\alpha}, 0 < \alpha < 1 \). In Losada and Nieto,55 the equation (5), novel CF as follows:

\[
\mathcal{D}^\alpha_a \{ f(t) \} = \frac{1}{1-\alpha} \int_0^t f'(\theta) exp\left[\frac{\alpha}{1-\alpha} (t-\theta)\right] d\theta,
\]
the CF subsidiary, given in the above definitions, has been as of late utilized in the numerical demonstrating of HBV, Maxwell liquid with slip impacts, and diabetes model. For more details for CF (see literatures).

Formulation of the model

Here, we expand the financial models of awareness employ a CF derivative of order \(\alpha \in [0, 1] \). The integer order financial models of awareness is planned by the accompanying nonlinear arrangement of differential conditions:

\[
\begin{align*}
\frac{dx}{dt} &= -ux(t) - \frac{k}{N(t)} x(t)[N(t) - x(t)] + \mu_y N(t) - \mu_x x(t), \\
\frac{dy}{dt} &= wx(t) - \frac{k}{N(t)} y(t)[N(t) - y(t)] -(a + \nu)y(t) + \delta z(t) - \mu_y y(t), \\
\frac{dz}{dt} &= (a + \nu)y(t) + \delta z(t) - \mu_d z(t),
\end{align*}
\]

where \(x(t) \) is the number of gathering of people who don’t think about the presence of the item, \(y(t) \) is the quantity of gathering of people who think about the item however have not yet bought it, \(z(t) \) Number of the gathering of individuals who have bought the item, \(N(t) \) Size populace, \(N(t) = x(t) + y(t) + z(t) \). We employ a CF derivative of order \(\alpha \) to reformulate the old-style money-related models of mindfulness with initial conditions:

\[
x(0) = x_0, y(0) = y_0, z(0) = z_0.
\]

Existence and uniqueness of fractional financial models of awareness

Here portrays the presence of model arrangements by utilizing a fixed point hypothesis. We utilize the fundamental administrator in Losada and Nieto on (7) to acquire:

\[
x(t) - x(0) = \frac{CF}{t^\alpha} \left\{ -u x \frac{k}{N} x[N - x] + \mu_y N - \mu_x x \right\}, \\
y(t) - y(0) = \frac{CF}{t^\alpha} \left\{ u x + \frac{k}{N} x[N - x] - (a + \nu)y + \delta z - \mu_y y \right\}, \\
z(t) - z(0) = \frac{CF}{t^\alpha} \left\{ (a + \nu)y - \delta z - \mu_d z \right\}.
\]

Applying the thought utilized in Losada and Nieto, we get:

\[
\begin{align*}
x(t) - x(0) &= \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \left\{ -u x - \frac{k}{N} x[N - x] + \mu_y N - \mu_x x \right\} \\
y(t) - y(0) &= \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \left\{ u x + \frac{k}{N} x[N - x] - (a + \nu)y + \delta z - \mu_y y \right\} \\
z(t) - z(0) &= \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \left\{ (a + \nu)y - \delta z - \mu_d z \right\} + \frac{2\alpha}{(2 - \alpha)M(\alpha)} \left\{ (a + \nu)y - \delta z - \mu_d z \right\} ds,
\end{align*}
\]

for effortlessness, we supplant as follows:

\[
\begin{align*}
s_0 &= \left\{ -u x - \frac{k}{N} x[N - x] + \mu_y N - \mu_x x \right\} \\
s_0 &= \left\{ u x + \frac{k}{N} x[N - x] - (a + \nu)y + \delta z - \mu_y y \right\}, \\
s_0 &= \left\{ (a + \nu)y - \delta z - \mu_d z \right\}.
\end{align*}
\]
Theorem 1. The kernels F_1, F_2 and F_3 fulfill the Lipschitz condition and withdrawal if the accompanying imbalance holds:

$$0 \leq (a^2 + v^2) + \mu_2^2 < 1.$$

Proof. Here, we start from F_2. Let y and y_1 are two functions, then we locate the following:

$$\|F_2(t,y) - F_2(t,y_1)\|$$

$$= \left\| u^x x - u^x x + k^x x[N-x] - k^x x[N-x] - (a^2 + v^2)\right\|$$

$$\|a''(a'' + v'')y_1 + \delta^z z - \mu_2^2 y + \mu_2^2 y_1\|.$$

(12)

Employing the triangular inequality about equation (13), we fulfill:

$$\|F_2(t,y) - F_2(t,y_1)\| \leq \| (a^2 + v^2)(y - y_1)\|$$

$$+ \| -\mu_2^2(y - y_1)\|,$$

$$\|F_2(t,y) - F_2(t,y_1)\| \leq \left[(a^2 + v^2) + \mu_2^2 \right]\|y - y_1\|,$$

by taking that $(a^2 + v^2) + \mu_2^2 = \mu_1$, we get:

$$\|F_2(t,y) - F_2(t,y_1)\| \leq \mu_1 \|y - y_1\|.$$

(14)

The Lipschitz hypothesis is utilized for F_2 and if add $0 \leq (a^2 + v^2) + \mu_2^2 < 1$ then it is also a contraction. For the rest of the cases, likewise, the Lipschitz conditions are given as follows:

$$\|F_1(t,x) - F_1(t,x_1)\| \leq \mu_2 \|(x - x_1)\|,$$

$$\|F_3(t,z) - F_3(t,z_1)\| \leq \mu_3 \|(z - z_1)\|.$$

(15)

utilizing documentation for parts, equation (10) becomes:

$$x(t) = x(0) + \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)}F_1(t,x) + \frac{2\alpha}{(2 - \alpha)M(\alpha)} \int_0^t F_1(s,x)ds,$$

$$y(t) = y(0) + \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)}F_2(t,y) + \frac{2\alpha}{(2 - \alpha)M(\alpha)} \int_0^t F_2(s,y)ds,$$

$$z(t) = z(0) + \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)}F_3(t,z) + \frac{2\alpha}{(2 - \alpha)M(\alpha)} \int_0^t F_3(s,z)ds,$$

(16)

the accompanying recursive recipe is introduced:

$$x_n(t) = \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)}F_1(t,x_{n-1}) + \frac{2\alpha}{(2 - \alpha)M(\alpha)} \int_0^t F_1(s,x_{n-1})ds,$$

$$y_n(t) = \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)}F_2(t,y_{n-1}) + \frac{2\alpha}{(2 - \alpha)M(\alpha)} \int_0^t F_2(s,y_{n-1})ds,$$

$$z_n(t) = \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)}F_3(t,z_{n-1}) + \frac{2\alpha}{(2 - \alpha)M(\alpha)} \int_0^t F_3(s,z_{n-1})ds,$$

(17)

with the initial conditions:

$$x^0(t) = x(0),$$

$$y^0(t) = y(0),$$

$$z^0(t) = z(0),$$

the contrast between the progressive terms is determined as follows:

$$\omega_{1n}(t) = x_n(t) - x_{n-1}(t) = \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \int_0^t [F_1(s,x_{n-1}) - F_1(s,x_{n-2})]ds,$$

$$\omega_{2n}(t) = y_n(t) - y_{n-1}(t) = \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \int_0^t [F_2(s,y_{n-1}) - F_2(s,y_{n-2})]ds,$$

$$\omega_{3n}(t) = z_n(t) - z_{n-1}(t) = \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \int_0^t [F_3(s,z_{n-1}) - F_3(s,z_{n-2})]ds,$$

notice that

$$x_n(t) = \sum_{i=1}^n \omega_{1i}(t),$$

$$y_n(t) = \sum_{i=1}^n \omega_{2i}(t),$$

$$z_n(t) = \sum_{i=1}^n \omega_{3i}(t),$$

(20)

on proceeding with a similar procedure, we survey

$$\|\omega_{1n}(t)\| = \|x_n(t) - x_{n-1}(t)\|$$

$$= \left\| \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \int_0^t [F_1(s,x_{n-1}) - F_1(s,x_{n-2})]ds \right\|,$$

(21)

using the triangular inequality, equation (21) is simplified to

$$\|x_n(t) - x_{n-1}(t)\|$$

$$\leq \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \left\| \int_0^t [F_1(s,x_{n-1}) - F_1(s,x_{n-2})]ds \right\|,$$

(22)

as the kernel realizes the Lipschitz hypothesis, then we give
Now we state the theorem below.

Theorem 2. The fractional financial models of awareness (7) has precise coupled arrangements if the conditions underneath hold. That is, we can discover t_0 with the end goal that

\[
\frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \mu_2 + \frac{2\alpha}{(2 - \alpha)M(\alpha)} \mu_2 t_0 < 1.
\]

Proof. Since all the capacities $x(t)$, $y(t)$, and $z(t)$ is limited, we are demonstrated which pieces satisfy the Lipschitz hypothesis, hence on utilizing equations (24) and (25) and by utilizing the recursive technique, we get the achieving connection as follows:

\[
\|x_n(t) - x_{n-1}(t)\| \leq \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \mu_2 \|x_{n-1} - x_{n-2}\| + \frac{2\alpha}{(2 - \alpha)M(\alpha)} \int_0^t [F_1(s, x_{n-1}) - F_1(s, x_{n-2})] ds,
\]

then we have

\[
\|\omega_{1n}(t)\| \leq \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \mu_2 \|\omega_{1(n-1)}(t)\| \quad \text{and (25)}
\]

\[
\|\omega_{2n}(t)\| \leq \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \mu_1 \|\omega_{2(n-1)}(t)\| + \frac{2\alpha}{(2 - \alpha)M(\alpha)} \int_0^t [F_1(s, x_n) - F_1(s, x_{n-1})] ds,
\]

then, the existence and continuity of the tell solutions is assured. Also, to include that the above function is a solution of equation (9), we advanced:

\[
x(t) - x(0) = x_n(t) - B_n(t),
\]

\[
y(t) - y(0) = y_n(t) - C_n(t),
\]

\[
z(t) - z(0) = z_n(t) - D_n(t),
\]

therefore, we have:

\[
\|B_n(t)\| = \left\| \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} [F_1(t, x_n) - F_1(t, x_{n-1})] + \frac{2\alpha}{(2 - \alpha)M(\alpha)} \int_0^t [F_1(s, x_n) - F_1(s, x_{n-1})] ds \right\|
\]

Using the process in a recursive manner gives:

\[
\|B_n(t)\| \leq \left(\frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} + \frac{2\alpha}{(2 - \alpha)M(\alpha)} t \right)^n \mu_2^{n+1} a.
\]

Then at t_0 we have:

\[
\|B_n(t)\| \leq \left(\frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} + \frac{2\alpha}{(2 - \alpha)M(\alpha)} t_0 \right)^n \mu_2^{n+1} a.
\]

by putting the limit on equation (30) as n tends to infi-

\[
\|C_n(t)\| \rightarrow 0, \|D_n(t)\| \rightarrow 0,
\]

similarly, we obtain

\[
\|C_n(t)\| \rightarrow 0, \|D_n(t)\| \rightarrow 0,
\]

to prove the uniqueness system (7), we select on the reverse that there work out the second solution of (7) given by $x_1(t), y_1(t)$ and $z_1(t)$. Then

\[
x(t) - x_1(t) = \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} [F_1(t, x) - F_1(t, x_1)]
\]

\[
+ \frac{2\alpha}{(2 - \alpha)M(\alpha)} \int_0^t [F_1(s, x) - F_1(s, x_1)] ds.
\]
Taking norm on equation (31), we get

\[\|x(t) - x_1(t)\| \leq \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \left\| F_1(t, x) - F_1(t, x_1) \right\|
+ \frac{2\alpha}{(2 - \alpha)M(\alpha)} \int_0^t \left\| F_1(s, x) - F_1(s, x_1) \right\| ds. \]

(32)

By putting the Lipschitz condition of kernel, we have:

\[\|x(t) - x_1(t)\| \leq \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \mu_2 \left\| F_1(t, x) - F_1(t, x_1) \right\|
+ \frac{2\alpha}{(2 - \alpha)M(\alpha)} \int_0^t \mu_2 \left\| F_1(s, x) - F_1(s, x_1) \right\| ds. \]

(33)

It gives that:

\[\|x(t) - x_1(t)\| \left(1 - \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \mu_2 - \frac{2\alpha}{(2 - \alpha)M(\alpha)} \mu_2 t \right) \leq 0. \]

(34)

Theorem 3. The model (7) solution will be unique if

\[\left(1 - \frac{2(1 - \alpha)}{(2 - \alpha)M(\alpha)} \mu_2 - \frac{2\alpha}{(2 - \alpha)M(\alpha)} \mu_2 t \right) > 0. \]

(35)

Proof. If condition (35) holds, then (34) implies that

\[\|x(t) - x_1(t)\| = 0, \]

hence, we get

\[x(t) = x_1(t), \]

(36)

on employing the same procedure, we get:

\[y(t) = y_1(t), z(t) = z_1(t). \]

(37)

\[y(t) = y_1(t), z(t) = z_1(t). \]

\[y(t) = y_1(t), z(t) = z_1(t). \]

(38)

Numerical experiments

In the following, numerical simulations for the model (8) and (9) are presented. Two schemes (27), (31) are presented to solve the proposed model by the improved Adams-Bashforth-Moulton predictor-corrector numerical integration methods.

Simulation results

In this segment, we give mathematical outcomes that demonstrate the presence of the proposed plot. We have actualized the improved Adams-Bashforth-Moulton calculation for mathematical simulation (see literature36).

![Figure 1](image1.png) The numerical simulations of the model at alpha = 0.95, a = 0.02, N = 1000, delta = 0.2, v = 0.05, k = 0.01, x(0) = 30, and y(0) = 60.

![Figure 2](image2.png) The numerical simulations of the model at alpha = 0.95, a = 0.02, N = 1000, delta = 0.2, v = 0.05, k = 0.01, x(0) = 30, and z(0) = 10.

![Figure 3](image3.png) The numerical simulations of the model at alpha = 0.95, a = 0.02, N = 1000, delta = 0.2, v = 0.05, k = 0.01, y(0) = 60, and z(0) = 10.
From Figures 1 to 3, show the approximate solutions of NFFMA by using numerically at $\alpha = 0.95$, and from Figures 4 to 6, show the illustrates the phase spaces and the behavior of parameters.

Conclusion

In the present work, we extended the financial models of awareness model to fractional order using the Caputo–Fabrizio. The presence and uniqueness of the answer for the fragmentary budgetary models of the mindfulness model with CF subordinate are demonstrated in detail. From numerical recreations, one can see that when the fragmentary request of subordinate $a_{15,18}$ diminishes, the CF subsidiary gives all the more organically doable conduct about the dynamic of pine shrivel infection. Along these lines, we reasoned that the recently partial subsidiary is valuable for demonstrating such marvels. Additionally, from the graphical social we infer that the proposed partial request model gives more extravagant and increasingly adaptable outcomes when contrasted and the comparing whole number request monetary models of mindfulness model. Moreover, numerical simulations are shown to verify the effectiveness of the proposed scheme.

Acknowledgement

Authors would like to acknowledge financial support from Taif University researchers, Taif University, Taif, Saudi Arabia.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Taif University researchers supporting project number (TURSP-2020/160), Taif University, Taif, Saudi Arabia.

ORCID iD

Amr MS Mahdy https://orcid.org/0000-0003-2218-5408

References

1. Wang Y, Cao J, Li X, et al. Edge-based epidemic dynamics with multiple routes of transmission on random networks. *Nonlinear Dyn* 2018; 91: 403–420.
2. Wang Y, Jin Z, Yang Z, et al. Global analysis of an SIS model with an infective vector on complex networks. *Nonlinear Anal: Real World Appl* 2012; 13: 543–557.
3. Huang J, Leng M and Liang L. Recent developments in dynamic advertising research. *Eur J Oper Res* 2012; 220: 591–609.
4. Chen-Charpentier B, González-Parra G and Arenas AJ. Fractional order financial models for awareness and trial advertising decisions. Comput Econ 2016; 48: 555–568.
5. Wang M, Gou Q, Wu C, et al. An aggregate advertising response model based on consumer population dynamics. Int J Appl Manage Sci 2013; 5: 22–38.
6. Muller E. Trial/awareness advertising decisions: a control problem with phase diagrams with non-stationary boundaries. J Econ Dyn Control 1983; 6: 333–350.
7. Dodson JA Jr and Muller E. Models of new product diffusion through advertising and word-of-mouth. Manage Sci 1978; 24: 1568–1578.
8. Mahdy AMS, Sweilam NH and Higazy M. Approximate solution for solving nonlinear fractional order smoking model. Alexandria Eng J 2020; 59: 739–752.
9. Mahdy AMS and Higazy M. Numerical different methods for solving the nonlinear biochemical reaction model. Int J Appl Comput Math 2019; 5: 1–17.
10. Gepreel KA, Mahdy AMS, Mohamed MS, et al. Reduced differential transform method for solving nonlinear biomathematics models. Comput Mater Continua 2019; 61: 979–994.
11. Mahdy AMS. Numerical solutions for solving fractional integro-differential equations. J Ocean Eng Sci 2018; 3: 127–132.
12. Amer YA, Mahdy AMS and Youssef ESM. Solving fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method. Comput Mater Continua 2018; 54: 161–180.
13. Amer YA, Mahdy AMS and Youssef ESM. Solving systems of fractional differential equations using Sumudu transform method. Asian Res J Math 2017; 7: 1–15.
14. Khader MM, Sweilam NH and Mahdy AMS. Two computational algorithms for the numerical solution for system of fractional. Arab J Math Sci 2015; 21: 39–52.
15. Khader MM, Sweilam NH, Mahdy AMS, et al. Numerical simulation for the fractional SIRC model and influenza A. Appl Math Inf Sci 2014; 3: 1–8.
16. Othman MI, Mahdy AMS and Farouk RM. Numerical solution of 12th order boundary value problem by using homotopy perturbation method. J Math Comput Sci 2010; 1: 14–27.
17. Amer YA, Mahdy AMS, Shwayaa RT, et al. Solving systems of fractional nonlinear equations of Emden Fowler type by using Sumudu transform method. Glob J Pure Appl Math 2018; 14: 91–113.
18. Amer YA, Mahdy AMS and Youssef E. Laplace transform method for solving nonlinear biochemical reaction model and nonlinear Emden-Fowler System. J Eng Appl Sci 2018; 13: 7388–7394.
19. Mahdy AMS, Higazy M, Gepreel KA, et al. Optimal control and bifurcation diagram for a model nonlinear fractional SIRC. Alexandria Eng J 2020; 59: 3481–3501.
20. Gepreel KA, Higazy M and Mahdy AMS. Optimal control, signal flow graph, and system electronic circuit realization for nonlinear Anopheles Mosquito model. Int J Mod Phys C 2020; 31: 1–18.
21. Kumar S, Ghosh S, Lotayif MSM, et al. A model for describing the velocity of a particle in Brownian motion by Robotnov function based fractional operator. Alexandria Eng J 2020; 59: 1435–1449.
22. Hashemi MS, Ineb M and Yusufc A. On three-dimensional variable order time fractional chaotic system with nonsingular kernel. Chaos Solitons Fractals 2020; 133: 109628.
23. Kumar S, Kumar R, Cattani C, et al. Chaotic behaviour of fractional predator-prey dynamical system. Chaos Solitons Fractals 2020; 135: 109811.
24. Baba IA, Olamilekan LI, Yusuf A, et al. Analysis of meningitis model: a case study of northern Nigeria. AIMS Bioeng 2020; 7: 179–193.
25. Alshabanat A, Jelil M, Kumar S, et al. Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits. Front. Phys. 2020; 8: 1–10.
26. Jajarmi A, Yusuf A, Baleanu D, et al. A new fractional HRSV model and its optimal control: a non-singular operator approach. Physica A 2020; 547: 123860.
27. Kumar S, Kumar A, Odbat Z, et al. A comparison study of two modified analytical approach for the solution of nonlinear fractional shallow water equations in fluid flow. AIMS Math 2020; 5: 3035–3055.
28. Kumar R, Kumar S, Singh J, et al. A comparative study for fractional chemical kinetics and carbon dioxide CO2 absorbed into phenyl glycidyl ether polymers. AIMS Math 2020; 5: 3201–3222.
29. Kumar S, Ahmadian A, Kumar R, et al. An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets. Mathematics 2020; 8: 558.
30. Kumar S, Ghosh S, Samet B, et al. An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator. Math Meth Appl Sci 2020; 43: 6062–6080.
31. Bansal MK, Lal S, Kumar D, et al. Fractional differential equation pertaining to an integral operator involving incomplete H-function in the kernel. Math Meth Appl Sci 2020; 1–12.
32. Mustapha UT, Qureshi S, Yusuf A, et al. Fractional modeling for the spread of Hookworm infection under Caputo operator. Chaos Solitons Fractals 2020; 137: 109878.
33. Qureshi S, Yusuf A, Shaikh AA, et al. Mathematical modeling for adsorption process of dye removal nonlinear equation using power law and exponentially decaying kernels. Chaos 2020; 30: 043106.
34. Baleanu D, Jelil M, Kumar S, et al. A fractional derivative with two singular kernels and application to a heat conduction problem. Adv Differ Equations 2020; 2020: 252.
35. Singh J, Kumar D and Kumar S. An efficient computational method for local fractional transport equation occurring in fractal porous media. Comput Appl Math 2020; 39: 137.
36. Chiou SDJC and Lin YC. Modified Adams-Moulton predictor-corrector method in solving multibody dynamical systems. Mech Struct Mach 2000; 28: 201–208.
37. Mahdy AMS, Lotfy Kh, Ahmed MH, et al. Electromagnetic Hall current effect and fractional heat order for...
38. Khamis AK, Lotfy Kh, El-Bary AA, et al. Thermal-piezoelectric problem of a semiconductor medium during photo-thermal excitation. *Waves Random Complex Media* 2020; 1: 1–9.

39. Mahdy AMS, Lotfy Kh, Ismail EA, et al. Analytical solutions of time-fractional heat order for a magneto-photothermal semiconductor medium with Thomson effects and initial stress. *Results Phys* 2020; 18: 1–11.

40. Mahdy AMS, Lotfy Kh, Hassan W, et al. Analytical solution of magneto-photothermal theory during variable thermal conductivity of a semiconductor material due to pulse heat flux and volumetric heat source. *Waves Random Complex Media* 2020; 1–19.

41. Mahdy AMS and Youssef ESM. Numerical solution technique for solving isoperimetric variational problems. *Int J Mod Phys C* 2021; 2150002 (14 pp.).

42. Mahdy AMS, Mohamed MS, Gepreel KA, et al. Dynamical characteristics and signal flow graph of nonlinear fractional smoking mathematical model. *Chaos Solitons Fractals* 2020; 141: 110308.

43. Mahdy AMS. Numerical solutions for solving model time-fractional Fokker–Planck equation. *Numer Methods Partial Differ Equations* 2020; 1–16.

44. Podlubny I. *Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications*. Amsterdam: Elsevier, 1998.

45. Samko SG, Kilbas AA and Marichev OI. *Fractional integrals and derivatives*. Vol. 1. Yverdon-les-Bains: Gordon and Breach Science Publishers, 1993.

46. Caputo M and Fabrizio M. A new definition of fractional derivative without singular kernel. *Progr Fract Differ Appl* 2015; 1: 1–13.

47. Owolabi KM and Atangana A. Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative. *Chaos Solitons Fractals* 2017; 105: 111–119.

48. Abdulhameed M, Vieru D and Roslan R. Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo–Fabrizio derivatives through circular tubes. *Comput Math Appl* 2017; 74: 2503–2519.

49. Firoozjaee MA, Jafari H, Lia A, et al. Numerical approach of Fokker–Planck equation with Caputo-Fabrizio fractional derivative using Ritz approximation. *J Comput Appl Math* 2018; 339: 367–373.

50. Abro KA, Memon AA and Uqaili MA. A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. *Eur Phys J Plus* 2018; 133: 113.

51. Dokuyucu MA, Celik E, Bulut H, et al. Cancer treatment model with the Caputo-Fabrizio fractional derivative. *Eur Phys J Plus* 2018; 133: 92.

52. Ullah S, Khan MA and Farooq M. A new fractional model for the dynamics of the hepatitis B virus using the Caputo-Fabrizio derivative. *Eur Phys J Plus* 2018; 133: 237.

53. Sweilam NH, Hasan MMA and Baleanu D. New studies for general fractional financial models of awareness and trial advertising decisions. *Chaos Solitons Fractals* 2017; 104: 772–784.

54. Khan MA, Ullah S, Okosun KO, et al. A fractional order pine wilt disease model with Caputo–Fabrizio derivative. *Adv Differ Equations* 2018; 2018: 410.

55. Losada J and Nieto JJ. Properties of a new fractional derivative without singular kernel. *Progr Fract Differ Appl* 2015; 1: 87–92.

56. Asif NA, Hammouch Z, Riaz MB, et al. Analytical solution of a Maxwell fluid with slip effects in view of the Caputo–Fabrizio derivative. *Eur Phys J Plus* 2018; 133: 272.

57. Singh J, Kumar D and Baleanu D. On the analysis of fractional diabetes model with exponential law. *Adv Differ Equations* 2018; 2018: 1–15.