УПРАВЛЕНИЕ ОХЛАЖДЕНИЕМ СТАЛЬНОЙ ПОЛОСЫ
ПРИ ГИБКОМ ПРОИЗВОДСТВЕ ОЦИНКОВАННОГО ЛИСТОВОГО ПРОКАТА

М. Ю. Рябчиков, Е. С. Рябчикова, Д. Е. Шманев, И. Д. Кокорин

Магнитогорский государственный технический университет им. Г.И. Носова (Россия, 455000, Челябинская обл., Магнитогорск, пр. Ленина, 38)

Аннотация. Работа посвящена проблеме гибкого мелкосерийного производства оцинкованного проката различного сортамента на агрегате непрерывного горячего оцинкования при переменной производительности. Основное внимание уделено термической обработке стальной полосы, требования к которой ограничивают производительность. В условиях возмущений необходимо упраждение управления температурой полосы, применение моделей, либо снижение скорости движения полосы для гарантированного выполнения требований. В отличие от большинства работ, где сделан акцент на управлении нагревом и выдержкой, данная работа посвящена охлаждению полосы. На основе анализа проходных данных Магнитогорского металлургического комбината показано, что нарушение требований к охлаждению влечет появление дефектов цинкового покрытия. Приведена зависимость вероятности возникновения дефектов от температуры полосы. Сформулированы задачи управляемого охлаждения с применением моделей в условиях отсутствия контроля температуры рабочего пространства в отделении охлаждения. Для каждой из задач определены структуры модели и способ настройки по данным, накопленным за значительный период работы агрегата в условиях неконтролируемых систематических возмущений. Предложена структура системы управления охлаждением с применением в качестве регулируемой переменной оценки температуры рабочего пространства, определяемой по модели. Продемонстрировано, что отсутствие контроля температуры рабочего пространства в отделении охлаждения не является проблемой при управлении с варьированием производительности. Приведены результаты настройки моделей по данным агрегата непрерывного горячего оцинкования Магнитогорского металлургического комбината. Предложенные структуры модели, а также способы их настройки могут быть применены и при разработке моделей нагрева металла в печах.

Ключевые слова: охлаждение, стальная полоса, охлаждение, управление, модель, большие данные, дефекты покрытия, гибкое производство, производительность

Для цитирования: Рябчиков М.Ю., Рябчикова Е.С., Шманев Д.Е., Кокорин И.Д. Управление охлаждением стальной полосы при гибком производстве оцинкованного листового проката // Известия вузов. Чёрная металлургия. 2021. Т. 64. № 7. С. 519–529.

https://doi.org/10.17073/0368-0797-2021-7-519-529

Strip cooling control for flexible production of galvanized flat steel

M. Yu. Ryabchikov, E. S. Ryabchikova, D. E. Shmanev, I. D. Kokorin

Nosov Magnitogorsk State Technical University (38 Lenina Ave., Magnitogorsk, Chelyabinsk Region 455000, Russian Federation)

Abstract. The work is devoted to the problem of flexible small-scale production of galvanized steel of various sizes on a continuous hot-dip galvanizing unit with varying productivity. The main focus is on the heat treatment of steel strip, the requirements for which limit productivity. In conditions of disturbances, it is necessary to proactively control the heat treatment using models, or to reduce the speed of the strip to ensure that the requirements are met. Unlike most of the works that focus on heat control, this work focuses on strip cooling. Based on the analysis of production data of the Magnitogorsk Iron and Steel Works, it is shown that violation of the cooling requirements leads to the appearance of defects in the zinc coating. Dependence of the probability of defects occurrence on the strip temperature is given. Problems of cooling predictive control are formulated using models in the absence of temperature control of the cooling section cavity. For each of the tasks, the model structure and the method of its tuning are determined according to the data accumulated over a significant period of the unit operation under conditions of uncontrolled systematic disturbances. The structure of the cooling control system is proposed by estimation of the cooling section cavity temperature as a controlled variable. The temperature estimate is determined from the model. The lack of measurement of the cooling section cavity temperature is not a problem then varying productivity. The results of the models tuning are presented according to the data of the Magnitogorsk Iron and Steel Works continuous hot-dip galvanizing unit. The proposed structures of the models and methods for their adjustment can be applied in the development of models for metal heating in furnaces.

Keywords: galvanizing, steel strip, cooling, control, model, big data, coating defects, flexible production, productivity

For citation: Ryabchikov M.Yu., Ryabchikova E.S., Shmanev D.E., Kokorin I.D. Strip cooling control for flexible production of galvanized flat steel. Izvestiya. Ferrous Metallurgy. 2021, vol. 64, no. 7, pp. 519–529. (In Russ.). https://doi.org/10.17073/0368-0797-2021-7-519-529
Введение

Продукция агрегатов непрерывного горячего оцинкования (АНГЦ) пользуется в настоящее время высоким спросом [1]. В течение последних десятилетий спрос строительной и автомобильной промышленности на оцинкованную стальную полосу значительно вырос. Так, в 2018 г. Магнитогорский металлургический комбинат (ММК) реализовал рекордный объем оцинкованного проката — 1,269 млн т. Однако рост происходил в условиях неопределенности и высокой скорости изменений требований рынка [2].

Агрегаты непрерывного горячего оцинкования потребляют большое количество энергии, значительная часть которой уходит в виде тепловых потерь [3]. Оптимизация термообработки полосы позволяет снизить затраты энергии. Как правило, управление на различных стадиях технологического процесса на АНГЦ оптимизировано для обработки типового сортамента, который являлся наиболее востребованным на момент запуска агрегата в эксплуатацию. В то же время непостоянство спроса на металлургическую продукцию приводит к мелкосерийному производству полосы разного сортамента. Это может послужить причиной снижения производительности и роста тепловых потерь, и делает производство оцинкованного листового проката менее гибким, затрудняя его адаптацию под текущие требования рынка.

Проблеме гибкого производства оцинкованного проката уделяется внимание в работах [4–6], в которых сделан акцент на оптимизацию управления нагревом стальной полосы в многозонных нагревательных печах. Показано, что основой производственной гибкости может являться анализ накопленной технологической информации и создание комплекса моделей для управления отжигом. Продемонстрировано, что сложности привлечения накопленных данных к настройке моделей являются основной проблемой реализации управления при гибком производстве оцинкованного проката. Это препятствует практическому применению решений, подобных [7–9], где задачи оптимизации режимов термообработки стали рассматриваются изолированно от проблем настройки моделей. Кроме того, для получения качественной продукции необходимо выполнение требований не только по нагреву, но и охлаждению стальной полосы. Однако число литературных источников, где уделяется внимание этому вопросу, относительно невелико. Целью данной работы является изучение и решение проблем, связанных с синтезом моделей для управления охлаждением полосы при гибком производстве на АНГЦ. Основой являются технологические данные, накопленные в условиях ММК.

Структура технологической линии АНГЦ

Первый на Магнитогорском металлургическом комбинате АНГЦ, разработанный итальянской фирмой Danieli, был введен в строй в 2002 г. Агрегат рассчитан на производство 500 тыс. т в год оцинкованного листа толщиной от 0,4 до 2,0 мм и шириной 1000–1650 мм для автомобильной и строительной промышленности. Схема термообработки полосы представлена на рис. 1.

Процесс нагрева осуществляется в протяженной печи барабанного типа, имеющей участки радиационного нагрева и температурной выдержки. Далее полоса поступает в отделение замкнутого охлаждения, которое предст.

Рис. 1. Технологический процесс термообработки полосы

Fig. 1. Technological process of strip heat treatment
назначено для охлаждения полосы до температуры, при которой окисление поверхности стали не получит значительного развития после выхода полосы из отделения. Для контроля температурного состояния полосы используются четыре оптических пирометра на выходе участков нагрева, термовыдержки, замкнутого и глубокого охлаждения.

Отделение замкнутого охлаждения как объект управления

Для охлаждения полосы в отделении применяется защитный азотно-водородный газ, который охлаждается с применением холодильников. Для циркуляции газа используются вентиляторы, которые высасывают защитный газ из секции. Управление работой отделения предусматривает воздействия на мощности, развиваемые вентиляторами.

Особенностью управления является отсутствие контроля температуры рабочего пространства в отделении закрытого охлаждения. Таким образом эффект от коррекции мощности можно оценить только по перепаду температур полосы на входе и выходе отделения. Побочный подход к организации управления ориентирован на режимы гарантированного охлаждения полосы. При таких режимах технологические возмущения (по скорости движения полосы, сортаменту или температуре металла на входе в отделение) не должны приводить к превышению максимально допустимой температуры металла на выходе из отделения.

Проблемы управления охлаждением полосы

При обработке полосы температура металла на выходе из отделения нагрева в зависимости от группы стали изменяется от 720 до 840 °С, а после замкнутого охлаждения перед ванной оцинкования должна достигать 450 – 480 °С. Невыполнение требований ведет к дефектам полосы. Контроль качества продукции показал, что к наиболее частым типам дефектов относятся наплывы цинка, непроцинковка и отслоение цинкового покрытия. Доля продукции с такими типами дефектов составляет порядка 90 %.

Для оценки влияния температуры полосы на выходе отделения замкнутого охлаждения на вероятность возникновения дефектов цинкового покрытия были сопоставлены температуры полосы для множества рулонов с дефектами и без них. База рулонов включала информацию по динамике изменения температуры полосы для 679 рулонов с дефектами и 8595 рулонов без дефектов. Для каждого рулона была определена максимальная температура полосы на выходе отделения закрытого охлаждения за все время обработки рулона. Далее с применением способа, предложенного в работе [4], была найдена зависимость вероятности получения дефектной продукции от температуры полосы на выходе отделения (рис. 2), из которой следует нелинейное влияние температуры полосы на вероятность получения дефектной продукции. При этом видно, что даже минимальное превышение порога в 480 °С уже является нежелательным, так как влечет значимое увеличение вероятности последующего получения дефектов.

Изучение влияния снижения температуры полосы ниже уровня 450 °C на долю дефектной продукции показало отсутствие такой связи. Однако следует учитывать, что после замкнутого охлаждения полоса поступает в цинковую ванну, на поддержание температуры в которой также затрачивается энергия. Снижение температуры полосы ниже уровня 450 °С приводит к необоснованному росту затрат энергии на охлаждение и поддержание температуры в цинковой ванне в регламентированных пределах.

Для поддержания температуры полосы в заданных технологических пределах используется система регулирования по отклонению. Однако при изменении сортамента металла по секциям агрегата проходит сварной шов полосы разного сортамента. При этом возможно резкое скачкообразное изменение температуры металла на выходе секций нагрева, выдержки и охлаждения. Для того, чтобы с одной стороны избежать возникновения дефектов, а с другой не охлаждать чрезмерно полосу, так как это ведет к дополнительному расходу энергии, необходимо заблаговременно обеспечить режим охлаждения на основе априорных знаний. Можно указать два различных подхода к решению этой задачи.

Первый подход предполагает выбор индивидуальной для сортамента скорости движения полосы, при которой как в отделении нагрева, так и в отделении ох-
лаждения будет гарантированно обеспечена требуемая температура металла.

Температурные режимы, обеспечивающие гарантированный нагрев стальной полосы, обычно предполагают, что температура рабочего пространства в печах лишь незначительно (на 10 – 20 °С) превышает требуемую температуру металла на выходе из печи. С учетом этого выбирается скорость движения полосы. Подобный режим позволяет гарантировать, что металл достигает требуемой температуры существенно раньше момента своего выхода из печи для нагрева. В такой ситуации возмущения по температуре рабочего пространства в отдельных зонах печи или по свойствам стали не окажут существенного влияния на температуру металла на выходе из печи. Тем самым печь для нагрева выполняет не только функцию нагрева, но и частично функцию выдержки, хотя для этого предусмотрена отдельная секция. При реализации гарантированных режимов нагрева нет необходимости в применении сложных алгоритмов управления, основанных на моделях прогноза температуры полосы. Достаточно единожды подобрать индивидуально для сортамента температуру рабочего пространства в печи и соответствующую ей скорость движения полосы. Стабильность температуры металла на выходе из отделений нагрева и выдержки позволяет единожды определить мощность вентиляторов, обеспечивающую режим гарантированного охлаждения для сортамента. Подобный подход широко используется на практике, но обладает недостатками. Во-первых, гарантированный нагрев полосы с большой толщиной (более 0,001 м) требует существенного снижения скорости движения полосы, даже если мощность горелок допускает большую скорость, т. е. производительность агрегата для ряда сортаментов будет существенно снижена. Так, в условиях АНГЦ № 1 ММК скорость движения полосы варьируется в диапазоне от 20 до 180 м/мин. Во-вторых, загрязнение производительности, поскольку режимы гарантированного нагрева подобраны с расчетом на определенную скорость движения полосы.

Альтернативный набор подобранной заранее гарантированных режимов нагрева и охлаждения является второй задачей управления. Подход основывается на использовании моделей при управлении температурой рабочего пространства, что позволяет отказаться от применения гарантированных режимов.

ЗАДАЧИ ПРИ УПРАВЛЕНИИ ЗАМКНУТЫМ ОХЛАЖДЕНИЕМ С ПРИМЕНЕНИЕМ МОДЕЛЕЙ

Выделим ряд принципиально разных задач при управлении: замкнутым охлаждением, которые могут решаться с применением моделей.

К первой задаче отнесем стабилизацию температуры полосы на выходе отделения замкнутого охлаждения при неизменном сортаменте. Применение модели позволяет повысить эффективность регулирования по отклонению за счет упреждающей компенсации возмущений. Основным возмущением является температура полосы на входе в отделение. Учитывая, что при скорости 180 м/мин полоса находится в отделении охлаждения порядка 40 с, упреждающее управление позволит уменьшить колебания температуры, что даст возможность поддерживать температуру вблизи верхнего технологического предела 480 °С. Существующие работы по управлению температурой полосы по отклонению, как правило, ориентированы на управление нагревом. Так, в [10 – 12] для управления температурой полосы предлагается использование комплексной модели теплотехнического состояния печи и металла, дополненной наблюдателем степени черноты полосы на основе фильтра Калмана. Схожее решение предложено в [13]. Результаты указанных работ могут быть применены и к задаче управления охлаждением полосы.

Второй задачей, требующей применения моделей, является упреждающее управление охлаждением при изменении сортамента или скорости движения полосы при реализации режимов, отличных от гарантированного нагрева и охлаждения. Решения, предложенные в [11 – 13], основаны на гипотезе о медленном изменении степени черноты. Но при перемене сортамента происходит резкое скачкообразное изменение температуры стали при прохождении сварного шва через точки контроля. Причиной является одновременное изменение множества различных свойств полосы, таких как теплоемкость, загрязненность, затраты тепла на рекристаллизацию, толщина, ширина и др. Перемена скорости движения полосы также приводит к достаточно быстрому изменению температуры металла на выходе отделений, что может привести к дефектам покрытия. Система регулирования по отклонению в такие периоды оказывается неэффективна, что требует упреждающего управления при применении моделей. Несмотря на значительное число работ в сфере управления термическими процессами при оцинковке полосы, проблема синтеза подобных моделей с применением накопленной технологической информации в настоящее время остается нерешенной. Согласно [6], причиной являются затруднения при настройке моделей по накопленным данным о работе агрегатов в режимах гарантированного нагрева и охлаждения, что требует более глубокого изучения.

Третья задача следует из цели – возможность варьирования производительности с выбором более высокой скорости движения полосы по сравнению с режимами гарантированного нагрева и охлаждения. Увеличение скорости движения полосы при заданном сортаменте ограничено максимальной предельной мощностью средств нагрева и охлаждения полосы. В работе [4] решалась задача настройки теплотехнических моделей состояния печи и нагреваемого металла. Было проле-
монстрировано существенное непостоянство уровня тепловых потерь в различные периоды работы агрегата. В то же время многие существующие модели [14–19] не учитывают эти особенности и неясно, как их настроить в подобных условиях. Таким образом, третья задача предполагает использование моделей для определения максимально возможной на текущий момент производительности.

В работе [20] продемонстрировано влияние производительности на качество регулирования температуры рабочего пространства в печи, что может послужить причиной дополнительного ограничения предельной производительности. Это предполагает четвертую задачу – использование моделей для оценки работоспособности системы регулирования или при синтезе системы регулирования температуры рабочего пространства.

Из перечисленных задач наиболее важными для реализации гибкого управления производительностью являются вторая и третья задачи. Их решение позволяет выбирать более высокую скорость движения полосы по сравнению с режимами гарантированного нагрева и охлаждения.

Особенности настройки модели для упреждающего управления охлаждением

Назначение модели для упреждающего управления охлаждением заключается в выборе мощности вентиляторов для обеспечения требуемой температуры полосы на выходе отделения охлаждения при известных технологических параметрах сортамента (толщина, ширина, марка стали), скорости движения полосы, температуры полосы на входе в отделение.

В то же время изучение влияния перечисленных переменных на температуру полосы на выходе отделения охлаждения при известных технологических параметрах сортамента (толщина, ширина, марка стали), скорости движения полосы, температуры полосы на входе в отделение.

Особенности настройки модели

Для решения задачи синтеза модели введем неконтролируемую переменную \(T_{\text{п}}(\tau) \) являющуюся оценкой текущей температуры рабочего пространства отделения охлаждения. Для настройки модели в условиях неоднородности настроенной выборки определим связь между температурой полосы \(T_{\text{п}}(\tau) \) и температурой рабочего пространства \(T_{\text{м}}(\tau) \) на основе уравнения теплообмена в конвективной форме:

\[
\frac{dT_{\text{п}}(\tau)}{d\tau} = a(T_{\text{п}}(\tau) - T_{\text{м}}(\tau)), \quad a = \frac{\alpha}{h}, \tag{1}
\]

где \(T_{\text{п}} \) – температура стальной полосы; \(T_{\text{м}} \) – температура рабочего пространства; \(h \) – толщина полосы; \(\alpha \) – настраиваемый параметр.

Примем, что в течение времени прохождения полосы через отделение охлаждения температура рабочего пространства \(T_{\text{м}} \) постоянна. Тогда решение уравнения (1) относительно \(T_{\text{п}}(\tau) \) примет вид:

\[
T_{\text{п}}(\tau) = T_{\text{п}}(0) + a\tau \frac{L}{v_{1}}, \quad a = \frac{\alpha}{h}, \tag{2}
\]

где \(T_{\text{п}}(0), T_{\text{п}}(\tau) \) – температура полосы на входе и выходе отделения; \(L \) – длина полосы в отделении закрытого охлаждения; \(v_{1}, h \) – скорость движения и толщина полосы до технологического возмущения.

Выражение (2) может использоваться для оценки температуры рабочего пространства перед технологическим возмущением. Далее, полагая \(T_{\text{п}}(\tau) \) известной величиной, получим решение относительно температуры полосы на выходе отделения после возмущения:

\[
T_{\text{п}}(\tau) = T_{\text{п}}(0) + a\tau \frac{T_{\text{м}}}{a\tau + 1}, \quad \tau = \frac{L}{v_{2}}, \quad a = \frac{\alpha}{h}, \tag{3}
\]

где \(v_{1}, h \) – скорость движения и толщина полосы после технологического возмущения.

В процессе исследования выполнена настройка модели по данным о температуре полосы при изменении ее толщины \((\Delta h > 0,0002 \text{ м}, \text{где} \Delta h = |h_{2} - h_{1}|)\). В качестве критерия использована средняя абсолютная ошибка прогноза изменения температуры полосы на выходе отделения охлаждения при возмущении. При \(\alpha \) от 1,4 до 2,5 \((\times 10^{-4} \text{ м/с})\) получены схожие значения критерия (рис. 3).

Для решения проблемы были получены зависимости нормированной средней абсолютной ошибки прогноза изменения \(T_{\text{п}} \) от \(\alpha \) для различных подмножеств исходных данных, которые были разделены на группы по толщине и по скорости (см. таблицу). Границный уровень скорости определяли с учетом толщины полосы для группировки данных, исходя из гарантий нагрева (рис. 4, a).

Рациональное значение \(\alpha = 1,6\times10^{-4} \text{ м/с} \) было получено по критерию:
Настроенная модель может использоваться при управлении с целью реализации режимов, отличных от гарантированного нагрева и охлаждения.

Применение модели для упреждающего управления охлаждением

Структура системы управления температурой полосы представлена на рис. 6. Система включает в свой состав контроллер для стабилизации температуры полосы на заданном уровне, а также контроллер температуры рабочего пространства отделения замкнутого охлаждения.

Контроллер температуры рабочего пространства работает в двух режимах. В периоды при неизменном сортаменте и скорости движения полосы заданное значение температуры полосы принимается в соответствие с заданием для текущего сортамента (\(T_{sp} = T_{sp1}\)).

Перед изменением сортамента или скорости контроллер рассчитывает согласно (2) при \(T_{m}(0) = T_{mп} \) и \(T_{m}(t_{охл}) = T_{sp1}\) требуемое для нового режима значение температуры рабочего пространства \(T_{n,sp}\) в отделении замкнутого охлаждения. Текущее значение температуры рабочего пространства \(T_{n}\) определяется также согласно (2), но по данным об измеренной температуре полосы на входе и выходе отделения для текущего сор-
Сигнал рассогласования $\epsilon = T_{n,sp} - T_n$ используется для коррекции задания на температуру полосы для текущего сортамента. Таким образом, в отделении замкнутого охлаждения заблаговременно перед изменением сортамента или скорости обеспечивается требуемый режим охлаждения.

Особенности настройки модели для определения максимальной производительности и симуляции управления

Согласно структуре системы управления (см. рис. 6), новая скорость движения полосы v_2 является заданным параметром. Однако мощности системы охлаждения может оказаться недостаточно для поддержания температуры полосы толщиной h_2 на требуемом уровне при выбранной скорости v_2. Таким образом требуемое для нового режима значение температуры рабочего пространства $T_{n,sp}$ может оказаться недостижимым. Для оценки уровня мощности F для обеспечения $T_{n,sp}$ требуется дополнительная модель, которая может быть получена на основе теплового баланса отделения за период времени Δt:

$$
\Delta t \left(P_{x_1} + T_n x_3 \right) = z c_a \Delta t \left(T_n - T_{n,0} \right) + \Delta T_n x_3,
$$

(5)

где $z = h v b$; b — ширина полосы; c_a — удельная тепловая емкость стали; $T_{n,0}$, T_n — температура полосы соответственно на входе и выходе отделения; x_1, x_2, x_3 — параметры настройки.

Согласно (5), сумма тепла $\Delta t P_{x_1}$, отнятая системой охлаждения, и тепловых потерь $x_1 \Delta t T_n$ отделения (приняты пропорциональными температуре рабочего пространства) равна сумме тепла, отданного металлом при охлаждении, и тепла, связанного с изменением температурного состояния отделения $x_3 \Delta T_n$.

Используя настроенную модель охлаждения полосы, представленную в форме (3), запишем (5) в виде:

$$
\Delta t \left(P_{x_1} + T_n x_3 \right) = z c_a \Delta t \left(\frac{T_{n,0} + C \alpha x_2 - T_n}{\alpha x_2 + 1} - t_{n,0} \right) + \Delta T_n x_3,
$$

(6)

или

$$
\Delta t \left(P_{x_1}^* + T_n^* x_3^* \right) = C \Delta t \left(T_n - t_{n,0} \right) + \Delta T_n x_3^*,
$$

(7)

где $C = \frac{bLh}{\alpha L + hv}$, $x_1^* = \frac{x_1}{\alpha c_a}$, $x_2^* = \frac{x_2}{\alpha c_a}$, $x_3^* = \frac{x_3}{\alpha c_a}$.

Поделив обе части уравнения (7) на Δt и, переходя к пределу, запишем:

$$
P(t) x_1^* + T_n(t) x_2^* = C \left(T_n(t) - t_{n,0}(t) \right) + x_3^* \frac{dT_n(t)}{dt}.
$$

(8)

Равенство (8) может использоваться в качестве модели для определения максимальной производительности, а также симуляции управления. Однако подбор параметров настройки по накопленным технологическим данным затруднен вследствие фактической нелинейности и систематических смещений зависимостей тепловых потерь от температуры в отделении и отводимого тепла от мощности вентиляторов. Попытки подбора параметров настройки в (8) показали, что для каж-
дого отдельного периода работы агрегата оптимальные значения всех параметров настройки различны.

Рассмотрим особенности применения (8) к условиям отдельного периода работы агрегата. Примем, что в начальный момент периода температура рабочего пространства в отделении установилась. Тогда можем записать (8) для τ = 0:

\[P(0)x_1^* + T_n(0)x_2^* = C(T_n(0) - t_{m0}(0)). \]

(9)

Вычитая из (8) выражение (9), получим:

\[\Delta P(\tau)x_1^* + \Delta T_n(\tau)x_2^* = \]

= \[C(\Delta T_n(\tau) - \Delta t_{m0}(\tau)) + x_1^* \frac{dT_n(\tau)}{d\tau}, \]

(10)

где \(\Delta P(\tau) = P(\tau) - P(0); \Delta T_n(\tau) = T_n(\tau) - T_n(0); \Delta t_{m0}(\tau) = t_{m0}(\tau) - t_{m0}(0). \)

Исходя из (10), для скорости изменения температуры рабочего пространства запишем:

\[
\frac{dT_n(\tau)}{d\tau} = x_1^* - C \left(\frac{x_1^*}{x_2^* - C} \Delta P(\tau) - \Delta T_n(\tau) \right) + \frac{C}{x_2^*} \Delta t_{m0}(\tau) + x_4^*,
\]

(11)

где \(x_1^* \) настраивается для учета ошибочности допущения об установившейся температуре в отделении при \(\tau = 0 \).

Для настройки модели вида (11) из накопленных данных были отобраны периоды, в течение которых наблюдалась значимые изменения мощности \(P \) или температуры полосы на входе в отделение \(t_{m0} \). Модель (11) использовали для определения динамики изменения температуры рабочего пространства отде-

![Fig. 7. Simulation results for the first period (a – c) with \(x_1^* = -0.015 \) and for the second period (d – u) with \(x_1^* = -0.032 \): 1, 2 – models (2) and (11)](image_url)
ления T_p по данным о динамике изменения ΔP и $\Delta t_{об}$. Модель (11) не требует в качестве исходных данных информации о температуре полосы на выходе из отделения. Полученную по модели (11) динамику изменения T_p сравнивали с динамикой изменения T_p, определенной с помощью модели вида (2) по данным о температуре полосы на входе и выходе из отделения. Начальное значение T_p при расчете с использованием (11) принимали равным значению T_p по модели (2) при $\tau = 0$.

Настройку модели осуществляли полным перебором значений x_1^*, x_2^*, x_3^*, x_4^*. Найдено однозначное решение $x_1^* = -35,2$; $x_2^* = 40,45$; $x_3^* = 3988,1$, которое позволяет обеспечить наибольшую точность моделирования при выборе для каждого отобранного периода работы агрегата индивидуального значения x_1^*. При расчетах мощность задавали в процентах от максимума, а значения прочих переменных принимали в формате СИ.

Рис. 7 демонстрирует результаты моделирования для двух различных периодов. В течение первого периода (рис. 7, a – c) происходило постепенное снижение температуры полосы на входе отделения замкнутого охлаждения. Система регулирования корректировала мощность вентиляторов для стабилизации температуры полосы на выходе из отделения. В течение второго периода (рис. 7, d – u) была увеличена скорость движения полосы. Одновременно с этим в отделении нагрева были включены дополнительные группы горелок и увеличен расход топлива, что привело к росту температуры полосы на входе в отделение замкнутого охлаждения.

Из рис. 7 видно соответствие результатов моделирования температуры рабочего пространства в отделении замкнутого охлаждения с применением моделей (2) и (11). Модель (11), не требующая информации о температуре полосы на выходе отделения, может использоваться для оценки максимальной на текущий момент производительности, а также при имитационном моделировании управления и изучении динамических характеристик объекта управления.

ВARIАЦИЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ОБЪЕКТА УПРАВЛЕНИЯ

При стабильной температуре полосы на входе в отделение и установившейся температуре рабочего пространства в начальный момент времени периода можно записать:

$$\frac{dT_p}{d\tau} = \frac{x_1^* - C}{x_3^*} \left(\frac{x_1^*}{x_2^* - C} \Delta P(\tau) - \Delta T_p(\tau) \right).$$

(12)

Согласно (12) динамика объекта представлена инерционным звеном с постоянной времени $T_{об} = \frac{x_3^*}{x_2^* - C}$.

На рис. 8 показан пример динамики изменения температуры T_p в отделении для периода со ступенчатым изменением мощности при стабильной температуре полосы на входе. Вид переходной характеристики подтверждает допустимость представления динамики объекта инерционным звеном.

Модель позволяет оценить влияние производительности на коэффициент передачи объекта $k_{об} = \frac{x_1^*}{x_2^* - C}$ и на постоянную времени инерционного звена $T_{об}$. Исходя из ограничений на производительность [5], которые накладывает мощность горелок в отделении нагрева, постоянная времени $T_{об}$ и коэффициент передачи могут изменяться в 2 – 3 раза.
Выводы

Предложены модели теплообмена, допускающие настройку по данным, собранным в различные периоды работы в условиях систематических возмущений. Модели могут использоваться для выбора режимов охлаждения полосы при варьировании производительности в условиях отсутствия контроля температуры рабочего пространства. Полученные решения позволяют отойти от практики использования режимов гарантированной термической обработки стальной полосы, снижающих производительность, и также могут использоваться применительно к нагреву изделий в печах различной конструкции.

Список литературы

1. Никифоров Б.А., Салтанник В.М., Денисов С.В., Стеканов П.А. Освоение производства высокопроизводительного проката для автомобилестроения в ОАО «ММК» // Вестник Магнитогорского государственного технического университета им. Г.И. Носова. 2006. № 4. С. 41–45.
2. Марков Д.А., Маркова Н.А. Быстрореагирующее производство как концепция повышения конкурентоспособности предприятия // Вестник ПНИПУ. Социально-экономические науки. 2016. № 2. С. 182–192.
3. Sundaramoorthy S., Phuong Q., Gopalakrishnan B., Latif N.H. Heat balance analysis of annealing furnaces and zinc pot in continuous hot dip galvanizing lines // Energy Engineering. 2016. Vol. 113. No. 2. P. 12–47. https://doi.org/10.1080/19989595.2016.11668651
4. Ryabchikov M.Yu. Selection of steel strip annealing energy-saving conditions in view of the substandard products share // Journal of Chemical Technology and Metallurgy. 2020. Vol. 55. No. 1. P. 182–191.
5. Рябчиков М.Ю., Самарина И.Г. Изучение режимов нагрева стальной полосы в протяжной печи башенного типа для светло- го отжига // Металлообработка. 2013. № 1 (73). С. 43–49.
6. Рябчиков М.Ю., Кокорин И.Д. Настройка модели отжига полосы в протяжных печах по данным в форме приращений // Дина- мика сложных систем – XXI век. 2019. № 3. С. 46–56.
7. Guo Ch., Zhang Y., You X., Chen X., Zhang Y. Optimal control of process continuous annealing using PSO // Proceedings of the IEEE Int. Conf. on Automation and Logistics. 2009. P. 602–606. http://doi.org/10.1109/ICAL.2009.5262851
8. Wang Z., Wang X. Multiobjective multifactorial operation optimization for continuous annealing production process // Industrial & Engineering Chemistry Research. 2019. Vol. 58. No. 41. P. 19166–19178. http://doi.org/10.1021/acs.iecr.9b03399
9. Shi H., Guo L., Wang Y., Li F., Shi Q. Optimization of temperature setting in heating section by multi-objective particle swarm // Journal of Shenyang Jianzhu University (Natural Science). 2018. Vol. 34. No. 4. P. 733–740. https://doi.org/10.11717/jissn:2095-1922.2018.04.19
10. Strommer S., Niederer M., Steinboeck A., Kugi A. Hierarchical nonlinear optimization-based controller of a continuous strip annealing furnace // Control Engineering Practice. 2018. No. 73. P. 40–55. http://doi.org/10.1016/j.conengprac.2017.12.005
11. Niederer M., Strommer S., Steinboeck A., Kugi A. Nonlinear model predictive control of the strip temperature in an annealing furnace // Journal of Process Control. 2016. Vol. 48. P. 1–13. http://doi.org/10.1016/j.jprocont.2016.09.012
12. Strommer S., Niederer M., Steinboeck A., Jadachowski L., Kugi A. Nonlinear observer for temperatures and emissivities in a strip annealing furnace // IEEE Industry Applications Society Annual Meeting. 2016. http://doi.org/10.1109/IAS.2016.7371914
13. Wu H., Speets R., Oezan G., Ekhart R., Heijke R., Nederlof C., Boe- der C.J. Non-linear model predictive control to improve transient production of a hot dip galvanising line // Ironmaking & Steelmaking. 2016. Vol. 43. No. 7. P. 541–549. http://doi.org/10.1080/03019233.2015.1126687
14. Martinez-de-Pisón F.J., Celorio L., Pérez-de-la-Parte M., Caste- jón M. Optimising annealing process on hot dip galvanising line based on robust predictive models adjusted with genetic al-
Михаил Юрьевич Рябчиков, к.т.н., доцент кафедры автоматизированных систем управления, Магнитогорский государственный технический университет им. Г.И. Носова
ORCID: 0000-0001-5337-0951
E-mail: mika.elena@mail.ru

Елена Сергеевна Рябчикова, к.т.н., доцент кафедры автоматизированных систем управления, Магнитогорский государственный технический университет им. Г.И. Носова
ORCID: 0000-0001-6441-1157
E-mail: mika.elena@mail.ru

Данил Евгеньевич Шманев, магистр кафедры автоматизированных систем управления, Магнитогорский государственный технический университет им. Г.И. Носова
E-mail: shmanev98@mail.ru

Илья Дмитриевич Кокорин, магистр кафедры автоматизированных систем управления, Магнитогорский государственный технический университет им. Г.И. Носова
E-mail: kokorin97mgn@mail.ru

Поступила в редакцию 9.02.2021
После доработки 29.04.2021
Принята к публикации 28.06.2021

Информация о авторах

Mikhail Yu. Ryabchikov, Cand. Sci. (Eng.), Assist. Prof. of the Chair of Automated Control Systems, Nosov Magnitogorsk State Technical University
ORCID: 0000-0001-5337-0951
E-mail: mika.elena@mail.ru

Danil E. Shmanev, Master Student of the Chair of Automated Control Systems, Nosov Magnitogorsk State Technical University
E-mail: shmanev98@mail.ru

Ilya D. Kokorin, Master Student of the Chair of Automated Control Systems, Nosov Magnitogorsk State Technical University
E-mail: kokorin97mgn@mail.ru

Revised 29.04.2021
Accepted 28.06.2021