A Study of Function Spaces through a Functor

Dr. Pravanjan Kumar Rana

Assistant Professor of Department of Mathematics, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kol.118, India

Abstract: Let X be a locally compact Hausdorff space and let $F_{n}(X)$ = limit of the function spaces of maps of X into certain spaces of type $K(\pi,n)$ implies each of the spaces of sequences SP_{n}^{∞}, $\sum SP_{n}^{\infty}$, $\sum SP_{n}^{\infty}$,..., $\sum SP_{n}^{\infty}$,... is a space of type $K(\pi,n)$.

For any space X, we define the space $F_{n,m}(X) = (\sum SP_{n}^{\infty})^{m}$ topologized by the compact-open topology. The aim of this paper is i) to investigate the properties of $F_{n,m}(X)$; ii) to study the object $F_{n,m}$.

Keywords: Eilenberg-MacLane space, function spaces, Σ-homotopy classes, contravariant functor, compact open topology

1. Introduction
Throughout this paper we assume that all spaces are locally compact Hausdorff space, also all spaces are of type $K(\pi,n)$.

Now we recall the following definitions and statements:

Definition 1.1: Let π be a discrete group. A based topological space X is called an Eilenberg-MacLane space of type $K(\pi,n)$, where $n \geq 1$; if all the homotopy groups $\pi_{n}(X)$ are trivial except for $\pi_{n}(X)$, which is isomorphic to π.

A pointed CW complex X is a $K(\pi,n)$ (Eilenberg-MacLane space) if $\pi_{n}(X) = \{n, k = n \}$ and $\pi_{n}(X) \neq \emptyset$.

Definition 1.2: Let $f: X \to Y$ be a continuous map, define $\Sigma f: \Sigma X \to \Sigma Y$ by $\Sigma f(x,t) = (f(x),t)$, then Σ is a covariant functor. This implies that Σ induces homotopic maps into homotopic maps i.e. Σ induces a map $\Sigma : [X,Y] \to [\Sigma X, \Sigma Y]$.

Define $\Sigma^{n+1}(X) = \Sigma^{n}(\Sigma^{n}X)$ and $\Sigma^{n}(X) \to \Sigma^{n+1}(X)$ is an isomorphism.

In [5] we define S-category same as Σ-category is the category whose objects are topological spaces with base points and whose maps are from X to Y are the elements of $\{X, Y\}$.

For any space X we define the space $F_{n,m}(X) = (\sum SP_{n}^{\infty})^{m}$ topologized by the compact-open topology, then we have the following:

Lemma 1.3: Let X be a polyhedron, the map $F_{n,m}(X) \to F_{n,m+1}(X)$ is a weak homotopy equivalence for each $m \geq 0$.

Proof: Since $\pi_{n}(F_{n,m}(X)) = \pi_{n}(F_{n,m+1}(X))$ and $\pi_{n}(F_{n,m+1}(X)) \cong \pi_{n}(F_{n,m}(X))$. It follows that for each $m \geq 0$, $\pi_{n}(F_{n,m}(X)) \cong \pi_{n}(F_{n,m+1}(X))$.

Lemma 1.4: Each inclusion map $F_{n,m}(X) \subseteq F_{n,m+1}(X)$ is a weak homotopy equivalence.

Proof: Since $F_{n,m}(X)$ has the weak topology relative to the subsets $F_{n,m+1}(X)$, it follows that every subset of $F_{n,m}(X)$ is contained in $F_{n,m+1}(X)$ for some $m \geq 0$ (all the function spaces are easily seen to be Hausdorff). Therefore the inclusion maps $F_{n,m}(X) \subseteq F_{n,m+1}(X)$ induce the isomorphism $\pi_{n}(F_{n,m}(X)) \cong \pi_{n}(F_{n,m+1}(X))$, it follows from Lemma 1.3 that for any $m \geq 0$, $\pi_{n}(F_{n,m}(X)) \cong \pi_{n}(F_{n,m+1}(X))$.

Lemma 1.5: Let $\lambda: F_{n+1}(\Sigma X) \to F_{n}(X)$ be defined by $\lambda(\alpha)(x) = (\alpha(x),\alpha(t))$, then λ is an isomorphism and if $f: X \to X$, commutativity holds in the diagram

\[
\begin{array}{c}
\frac{F_{n+1}(\Sigma X)}{F_{n}} \to F_{n+1}(X) \\
\downarrow \quad \downarrow \quad \downarrow \\
F_{n}(X)
\end{array}
\]

Proof: Since $\lambda : F_{n+1}(\Sigma X) \to F_{n}(X)$ is induced by the natural isomorphism $\lambda' : F_{n+1,m}(\Sigma X) \to F_{n,m}(X)$, for every $m \geq 1$ and so λ is an isomorphism. Again since the diagram

\[
\begin{array}{c}
\frac{F_{n+1,m-1}(\Sigma X)}{F_{n,m-1}} \to F_{n+1,m-1}(X) \\
\downarrow \quad \downarrow \quad \downarrow \\
F_{n,m}(X)
\end{array}
\]

is commutative and so λ is commutativity.

Let $\lambda: [F_{n+1}(\Sigma X), F_{n}(X)] \to [F_{n}(X), F_{n}(X)]$ be the isomorphism defined by $\lambda[h] = [\lambda D^{-1}h]$. Using the above Lemma 1.3, it follows that $\lambda: [F_{n+1}(\Sigma X), F_{n}(X)]$ is a homomorphism.

Volume 5 Issue 6, June 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

http://dx.doi.org/10.21275/v5i6.NOV164078

Paper ID: NOV164078

http://dx.doi.org/10.21275/v5i6.NOV164078

574
Therefore we can extend the functor F_n to a functor $F_n^f : [X,X'] \rightarrow [F_n(X)']$ such that the following diagram holds:

\[
\begin{array}{ccc}
[S^m X, S^m X'] & \to & [X,X'] \\
\lambda^m & \Rightarrow & \lambda^0 \\
[F_n(X), F_n(X)'] & \Rightarrow & \Delta_n
\end{array}
\]

Lemma 1.6: F_n^f is a homomorphism.

Proof: We prove that $F_{n,m} : [S^m X, S^m X'] \rightarrow [F_n+m(X), F_n+m(X)]$ is a homomorphism for $m \geq 2$. Let $f, g : S^m X \rightarrow S^m X'$ such that $x_0 \in A \cap B$, $S^m X = A \cup B$, $f[B] = g[A] = x_0$ and $f \sim f'$, $g \sim g'$. Then $f' + g' : S^m X \rightarrow S^m X'$ is defined by $f' + g'[A]$. $\lambda \in F_{n,m}(X)$ be a constant map at $x \in X$. Then $F_n+m(\lambda)[A] = \lambda[A] = f(A)$ and $F_n+m(\lambda)[B] = \lambda[B] = f'[B]$. If $\lambda' \in F_{n,m}(X)$, then $F_n+m(\lambda')[A] = \lambda'[A] = f(A)$ and $F_n+m(\lambda')[B] = \lambda'[B] = f'[B]$. Since $(F_n+m(\lambda') + \lambda'[B]) = F_n+m(\lambda'[A])$, $\lambda'[A] = f(A)$ and $\lambda'[B] = f'[B]$. Then we have:

\[\begin{align*}
\lambda'[A] & = f(A) \\
\lambda'[B] & = f'[B]
\end{align*}\]

Therefore we can extend the functor F_n to a functor $F_n^f : [X,X'] \rightarrow [F_n(X)']$ such that the following diagram holds:

\[
\begin{array}{ccc}
[S^m X, S^m X'] & \to & [X,X'] \\
\lambda^m & \Rightarrow & \lambda^0 \\
[F_n(X), F_n(X)'] & \Rightarrow & \Delta_n
\end{array}
\]

Lemma 1.8:

Let $f : X \to X'$, then the diagram holds:

\[
\begin{array}{ccc}
H^n(X) & \to & H^n(X') \\
\Delta_n & \Rightarrow & \Delta_n \\
\pi_n[F_n(X)] & \Rightarrow & \pi_n[F_n(X')]
\end{array}
\]

Lemma 1.9:

Let $f : X \to Y$ and $g_i : Y \to Z$, then $f \circ g_i = g_j$ for $i, j \in \{1, 2\}$ continuous. If $f_1 \sim f_2$ and $g_1 \sim g_2$, then $g_1 \circ f_1 \sim g_2 \circ f_2$. The following diagram is commutative:

\[
\begin{array}{ccc}
\pi_n[F_n(X)] & \Rightarrow & \pi_n[F_n(X')]
\end{array}
\]

In section 2 we construct and investigate functor $F_{n,m}$.

Theorem 2.1

Let $f : X \to X'$, then $F_{n,m}(f) : F_{n,m}(X) \to F_{n,m}(X')$ is a continuous homomorphism. Proof: We define $F_{n,m}(f) = F_{n,m}(f)$ by $F_{n,m}(f)(x) = f(X)$, for $x \in F_{n,m}(X)$. Since for every m, $F_{n,m}(f) = F_{n,m}(f)$ is a continuous homomorphism and $F_{n,m}(f) = F_{n,m}(f)$. Therefore we can extend the functor F_n to a functor $F_n^f : [X,X'] \to [F_n(X)']$ such that the following diagram holds:

\[
\begin{array}{ccc}
[S^m X, S^m X'] & \to & [X,X'] \\
\lambda^m & \Rightarrow & \lambda^0 \\
[F_n(X), F_n(X)'] & \Rightarrow & \Delta_n
\end{array}
\]

Lemma 1.8:

Let $f : X \to X'$, then the diagram holds:

\[
\begin{array}{ccc}
H^n(X) & \to & H^n(X') \\
\Delta_n & \Rightarrow & \Delta_n \\
\pi_n[F_n(X)] & \Rightarrow & \pi_n[F_n(X')]
\end{array}
\]

Lemma 1.9:

Let $f : X \to Y$ and $g_i : Y \to Z$, then $f \circ g_i = g_j$ for $i, j \in \{1, 2\}$ continuous. If $f_1 \sim f_2$ and $g_1 \sim g_2$, then $g_1 \circ f_1 \sim g_2 \circ f_2$. That is $\{g_1, f_1\} = \{g_2, f_2\}$.

In section 2, we construct and investigate functor $F_{n,m}$.

Theorem 2.1

If $f : X \to X'$, then $F_{n,m}(f) : F_{n,m}(X) \to F_{n,m}(X')$ is a continuous homomorphism. Proof: We define $F_{n,m}(f) : F_{n,m}(X') \to F_{n,m}(X)$ by $F_{n,m}(f)(x) = f'(x)$, for $x \in F_{n,m}(X')$, $m \geq 0$. Since for every m, $F_{n,m}(f)$ is a continuous homomorphism and $F_{n,m}(f) = F_{n,m}(f)$ is continuous.

Theorem 2.2

Let $[X,X']$ be the set of homotopy classes from X to X' and $[F_n(X), F_n(X)]_H$ denote the monoid of homotopy classes of homomorphisms, homotopic through homomorphisms, of one abelian monoid $F_n(X)$ into another $F_n(X)$, then we have a homomorphism $F_n : [X,X'] \to [F_n(X), F_n(X)]_H$ such that $F_n(f) = [F_n(f)]_H$.

Proof: Let $h : X \times I \to X'$ be a homotopy from f_0 to f_1. Then for each m we have a continuous homomorphism $F_{n,m}(h) : (\Omega^m SP^{n+m}X') \to (\Omega^m SP^{n+m}X')$ which corresponds to a continuous map $h_m : (\Omega^m SP^{n+m}X') \times I \to (\Omega^m SP^{n+m}X')$ which is a continuous homomorphism for every $t \in I$.
Since commutativity holds in the diagram
\[
\begin{align*}
(G \circ \sum_{m+n=m} \prod_{i=1}^m X_i) 	imes 1 & \rightarrow \sum_{m+n=m} \prod_{i=1}^m X_i \\
(G \circ \sum_{m+n=m} \prod_{i=1}^m X_i) & \rightarrow \sum_{m+n=m} \prod_{i=1}^m X_i \\
(\sum_{m+n=m} \prod_{i=1}^m X_i) & \rightarrow \sum_{m+n=m} \prod_{i=1}^m X_i \\
\Rightarrow & \text{ the maps } h_n \text{ define a continuous map } h^*_n \text{.}
\end{align*}
\]

Therefore, the set of all monoid of homotopy classes of continuous homomorphisms, homotopic through continuous homomorphisms forms a category, then there exists a contravariant \(n \)-homotopy functor \(F_n : \mathcal{HC} \rightarrow \mathcal{FNHC} \).

Theorem 2.6 Let \(\mathcal{HC} \) be the category of homotopy classes of homomorphisms and \(\mathcal{FNHC} \) be the category of homotopy classes of continuous homomorphisms, then there exists a contravariant \((n,m) \) functor \(F_{n,m} : \mathcal{HC} \rightarrow \mathcal{FNHC} \).

Proof: Using the Theorem 2.1, Theorem 2.2 and Theorem 2.5, it follows

2. Acknowledgement

This paper was written while the author was got a grant under Minor Research Project of University Grant Commission, reference No. F. PSW-092/13-14 (ERO) dt 18.3.2014.

References

[1] S. Eilenberg and J.A. Zilber, Semi-simplicial complexes and singular homology, Ann. of Math., 51(1950), 499-513.

[2] R.H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc., 51(1945), 429-432

[3] N. Steenrod, Homology groups of symmetric groups and reduced power operations, Proc. Nat. Acad. Sci. U.S.A., 39(1953), 213-217.

[4] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, 1952.

[5] E. Spanier and J.H. Whitehead, Carriers and S-theory, in Algebraic Geometry and Topology.

[6] Spanier H. Algebraic topology, Tata Mc-Graw-Hill Pub. Co. Ltd, 1966.

[7] Adhikary M.R. Groups, Rings and Modules with Applications Universities Press, India, 1999.

[8] Avishek Adhikari and P.K. Rana, A Study of Functors Associated with Topological Groups, Studia Univ., Babes-Balayai, Mathematica, Vol.XIV, Number 4, December 2001.

[9] P.K. Rana, A study of functors associated with rings on continuous functions, JIAM, 2011, Vol.33(1), 73-78.

[10] P.K. Rana, A study of some functors and their Relations”, The Journal of Indian Academy of Mathematics (JIAM) Vol.34, no-1, 2012,73-81.

[11] P.K. Rana, A Space Having the Homotopy Type with Fuzzy Modules, IJSR, Volume 3 Issue 10, October 2014
Author Profile

Prof. Pravanjan Kumar Rana obtained his MSc in Pure Mathematics and his PhD in Algebraic Topology. He has published, since 2005, more than 23 papers in peer reviewed journals. Formerly, he was the first HOD of Mathematics Department in Berhampore Girls’ College, Berhampore, Murshidabad and latterly he is HOD of Mathematics Department in Ramakrishna Mission Vivekananda Centenary College, Rahara, Kol. 700118, and performs his research at Algebraic Topology and Category Theory.