Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis

Guanqun Han¹, Guodong Li¹, Jie Huang², Chuang Han¹, Claudia Turro²✉ & Yujie Sun¹✉

One-photon-absorbing photosensitizers are commonly used in homogeneous photocatalysis which require the absorption of ultraviolet (UV) /visible light to populate the desired excited states with adequate energy and lifetime. Nevertheless, the limited penetration depth and competing absorption by organic substrates of UV/visible light calls upon exploring the utilization of longer-wavelength irradiation, such as near-infrared light (λ_{irr} > 700 nm). Despite being found applications in photodynamic therapy and bioimaging, two-photon absorption (TPA), the simultaneous absorption of two photons by one molecule, has been rarely explored in homogeneous photocatalysis. Herein, we report a group of ruthenium polypyridyl complexes possessing TPA capability that can drive a variety of organic transformations upon irradiation with 740 nm light. We demonstrate that these TPA ruthenium complexes can operate in an analogous manner as one-photon-absorbing photosensitizers for both energy-transfer and photoredox reactions, as well as function in concert with a transition metal co-catalyst for metallaphotoredox C–C coupling reactions.
The rapid advancement in homogeneous photocatalysis has primarily relied on the employment of one-photon-absorbing photosensitizers, such as ruthenium polypyridyl complexes1,2, cyclometalated iridium complexes3, and organic dyes4-6. In all of these examples, the photosensitizers are excited by either ultraviolet (UV) or visible light (in most cases blue light) to their excited states with competent energy and lifetime to drive organic transformations7. It is very rare to employ near-infrared (NIR) light in conventional one-photon-absorbing photocatalysis, because of the low energy and short lifetime of the excited states that are obtained under NIR light excitation. However, the utilization of UV/visible photons presents several intrinsic limitations such as poor penetration through reaction media8,9, competing absorption by species involved in reaction10-12, and incompatibility against substrates bearing light-sensitive functionalities13, as well as limited coverage of the solar spectrum. Therefore, the exploration of NIR light-driven photocatalysis is critical to avoid most of the aforementioned drawbacks of UV/visible light irradiation.

Because of the lower energy of NIR photons relative to UV/visible photons, energy must be harvested from two (or more) NIR photons to produce the desired excited state. One strategy to achieve this scenario is triplet-triplet annihilation upconversion. Indeed, it was recently demonstrated that NIR light-absorbing sensitizers can be used to activate suitable annihilators for homogeneous photocatalysis14-16. Nevertheless, the success of triplet-triplet annihilation upconversion relies on the fine state energy matching and spatial interaction of sensitizers and annihilators, potentially limiting its use due to its complex nature and the availability of suitable sensitizer/annihilator pairs. An alternative and more straightforward strategy for NIR photocatalysis is through direct two-photon absorption (TPA), wherein a chromophore is capable of simultaneously absorbing two photons in a single step to populate the desired excited state. Even though the TPA phenomenon was predicted by Göppert-Mayer in 1931,17 and utilized in fields like bioimaging18,19 and photodynamic therapy (PDT)20,21, its application in homogeneous photocatalysis remains very much underexplored, likely due to the small TPA cross sections (σ) of most photosensitizers suitable for photocatalysis22. For instance, the widely used photosensitizer [Ru(bpy)$_3$]$^{2+}$ (bpy = 2,2'-bipyridyl) was reported to possess a TPA cross section of only 4.3 GM at 880 nm (1 GM = 10^{-50} cm4 s photon$^{-1}$), rendering its potential to function as a TPA photosensitizer in the NIR region negligible. Only a handful of TPA systems have been investigated for catalysis, however visible light and/or intense lasers are required as the light source24-28. It should be noted that several multi-photon-absorbing catalytic systems have also been reported, however they either require consecutive absorption of photons by two different species or follow the triplet-triplet annihilation upconversion mechanism29-38. To the best of our knowledge, there has been no reports on simultaneous two-photon absorption by one molecule for organic reactions using inexpensive NIR LEDs ($\lambda_{\text{irr}} > 700$ nm).

Along the continuous efforts in designing novel chromophores with enhanced two-photon absorption, it was found that strong intramolecular charge transfer and superpolarizability may yield high TPA cross section39. For instance, stilbene was measured with $\sigma_2 = 12$ GM at 514 nm and electron-donating substituents substantially increased the σ_2 value40. These early findings raised the interest in developing organic TPA compounds with symmetrical donor-π-acceptor structures. In the meantime, transition metal complexes coordinated with elongated π-conjugation ligands have also been explored for TPA41. For instance, Ru-based TPA complexes have been gradually developed as PDT agents42 and photo-activable compounds43. Unfortunately, the TPA cross sections of most Ru complexes are extremely small (<10 GM)44-46, making their utilization in NIR photocatalysis impractical.

We were inspired by a few studies showing that octupolar bipyridyl metal complexes coordinated with bisstyryl-substituted bpy ligands exhibit superpolarizability and TPA cross sections two orders of magnitude higher than that of [Ru(bpy)$_3$]$^{2+}$ in the NIR region47-49, some of which were also demonstrated as competent PDT agents upon excitation at 700–800 nm50. Hence, we became interested in exploring the possibility of utilizing Ru complexes coordinated with extended π-conjugation ligands for NIR photocatalysis with TPA excitation. Herein, we report a group of Ru complexes ligated by 4,4'-bisstyryl-2,2'-bipyridine (bppyvp) and its close analogues, that are able to drive various organic reactions in a manner akin to conventional one-photon-absorbing photosensitizers, but absorbing two photons per step in the NIR region (Fig. 1a). Both energy-transfer reactions (e.g., 1O$_2$ reactions) and photoredox reactions (e.g., hydrodehalogenation, C–H cyanation, Ni-catalyzed allylation of aldehydes) can be accomplished by these Ru complexes with excellent yields upon irradiation at 740 nm under ambient conditions. By tuning the ligand ratio between bpy and bppyvp-type ligands, as well as installing electronic-donating (e.g., -OMe) or -withdrawing (e.g., -F) substituents at the para positions of the terminal phenyl groups in bppyvp (Fig. 1b), together with theoretical computation,
we are able to rationalize the relationship between the electronic structures of these photosensitizers and their TPA photocatalytic performance, providing guidance for the development of improved TPA photosensitizers for NIR photocatalysis.

Results and discussion

Synthesis, physical characterization, and theoretical calculations. Following the reported procedure, the parent ligand 4,4'-bis(bipyridine) (bpyvp-H) was successfully synthesized with an overall yield of 80%. By controlling the ratio between bpyvp-H and the corresponding Ru precursor, we were able to obtain heteroleptic [Ru(bpy)2(bpyvp-H)]2+ (1), [Ru(bpy)(bpyvp-H)2]2+ (2), and homoleptic [Ru(bpyvp-H)3]2+ (3) in decent yields. The fluorenone- and methoxyl-substituted ligands, bpyvp-F and bpyvp-OMe, were synthesized in a similar fashion as bpyvp-H. Hence, two additional homoleptic Ru complexes, [Ru(bpyvp-F)3]2+ (4) and [Ru(bpyvp-OMe)3]2+ (5), were also synthesized (Supplementary Figs. 1–9).

The photophysical and electrochemical properties of 1–5 are summarized in Table 1 and [Ru(bpy)3]2+ is included for comparison. It is apparent that as the number of bpyvp-H ligands is increased in these Ru complexes, the metal-to-ligand charge transfer (MLCT) band red shifts from 465 nm in 1 (Supplementary Fig. 10), 477 nm in 2 (Supplementary Fig. 11), to 488 nm in 3 (Supplementary Fig. 12), together with a two-fold increase in the extinction coefficient (ε). The presence of the fluorenone substituents in 4 does not substantially alter its absorption (Supplementary Fig. 13), together with a two-fold increase in the emission (Supplementary Fig. 14) relative to that of 3, while a further red shift in the MLCT band and increased ε are observed for 5 with methoxyl substituents (Fig. 2b and Supplementary Fig. 14). In addition to the bpy-centered ππ* transition located around 290 nm, 1–5 present an additional absorption feature in 300–400 nm, whose ε values increase approximately linearly with the number of bpyvp-type ligands (52–143 × 10^4 M^−1 cm^−1). Therefore, these absorption bands are tentatively assigned to bpyvp-based ππ* and/or intraligand charge transfer transitions. Supplementary Figs. 10–14 also present the emission of 1–5 with maxima at 660–670 nm, along with the corresponding excitation spectra. The good overlap between the excitation and absorption spectra of each complex confirms that the each emission arises from the target Ru complexes.

Cyclic and linear sweep voltammograms of 1–5 (Supplementary Figs. 15–19) reveal four reversible redox couples, one anodic feature within the +0.62 to +0.77 V vs Fc+/0 (Fc: ferrocene) range and three reduction couples between −1.62 and −2.12 V vs Fc+/0. A linear relationship between the peak current and the square root of the scan rate was obtained for each complex, confirming the molecular nature free diffusion of the redox-active species in solution (Supplementary Figs. 15c–19c). A similar analysis and two-photon absorption (TPA) spectra as shown in Fig. 2c, upon excitation at 480 nm, the transient absorption spectra of 5 show the characteristic MLCT bleach at ~500 nm and excited state absorption in the 400–450 nm range and beyond 550 nm. Importantly, when exciting with 800 nm, a wavelength that complex 5 does not absorb (Fig. 2b), a nearly identical transient absorption spectrum was obtained (Fig. 2d). Furthermore, a linear relationship is observed when the transient absorption signal at 500 nm is plotted versus the square of the excitation power (λex = 800 nm), shown in the inset of Fig. 2d. Similar results were obtained for the other complexes (Supplementary Figs. 20–22). The fact that analogous transient absorption spectra were collected by excitation at both 480 and 800 nm, together with a linear relationship between the optical density in the transient absorption and the square of excitation power at 800 nm, unambiguously confirm that these Ru complexes indeed possess TPA capability and identical excited states are populated when excited at either 480 or 800 nm.
Photocatalytic $^{1}\text{O}_2$-driven energy transfer reactions under NIR light irradiation. The excited state lifetimes of the homoleptic complexes 3, 4, and 5 in deaerated CH$_3$CN were measured at 431, 628, and 877 ns, respectively (Table 1 and Supplementary Figs. 23–25), which all decreased to ~130 ns in air, consistent with the excited state energy transfer to O$_2$ to generate reactive singlet oxygen $^{1}\text{O}_2$. Given this reactivity, we sought to utilize photocatalytic C–N coupling of benzyl amine as a model reaction to evaluate the photocatalytic performance of these complexes under NIR irradiation. Commercially inexpensive LEDs ($\lambda_{\text{irr}} = 740$ nm, 8.18 W) were employed as the light source in all the following photocatalysis experiments. It is known that benzyl amine can be oxidized by $^{1}\text{O}_2$ to produce N-benzylidenebenzylamine.52,53 As shown in Fig. 3a and Supplementary Figs. 26–30, a dramatic difference in reaction rate was detected for 1–5. It is apparent that the increasing number of bpyvp is beneficial for the overall photocatalysis, in that the reaction rate follows the order 1 $<$ 2 $<$ 3. Only a 16% yield of N-benzylidenebenzylamine after 2 h irradiation was realized for 1, while benzyl amine was nearly fully converted to N-benzylidenebenzylamine within 100 and 50 min using 2 and 3 as the photosensitizer, respectively. Using 3 as the standard photocatalyst, a series of control experiments (Supplementary Fig. S31) prove that light irradiation, O$_2$, and photosensitizer are all crucial for the success of this reaction (entries 2, 3, and 4 in Fig. 3b). When the reaction is conducted in air, a moderate yield of 43% was obtained within 30 min (entry 5 in Fig. 3b), lower than that measured under O$_2$ (89%). It is interesting to find that 5 is more effective in initiating the benzyl amine C-N coupling than 3, with a yield of 96% for 5 within 30 min upon 740 nm irradiation as compared to 3, which achieved an 89% yield. This difference can be attributed to the longer excited state lifetime of 5, expected to generate a greater amount of $^{1}\text{O}_2$, as well as its higher TPA cross section. In contrast, complex 4, possessing fluorine substituents, only reached a yield of 42% under the same conditions. These results imply that better electron donation from the terminal phenyl group to the metal center, and hence greater intra-molecular charge transfer, can be beneficial for NIR TPA photocatalytic performance. Given
the better performance observed for 5, this complex was used as the photosensitizer in all the subsequent photocatalytic experiments unless noted otherwise. A non-linear relationship between the yield of benzyl amine C–N coupling product and the LED power was observed, in agreement with the TPA nature of 5 as the photosensitizer (Supplementary Fig. 32)\(^23,54\). The reaction performance upon one-photon (456 nm) versus two-photon (740 nm) irradiation was also compared in Supplementary Figs. 36, 37)\(^55\), anthracene-1\(\text{O}_2\) \(^4\) Diels–Alder reaction, and cyclooctene oxidation using 5 as the photocatalyst. Photocatalytic HMF oxidation by \(\text{O}_2\) to yield maleic acid anhydride (MA) and 5-hydroxy-4-keto-pentenoic acid (HKPA) using 5 as the photocatalyst. Condition: 50 mM HMF, 1 mol% \(\text{O}_2\), 10 min of irradiation at 740 nm. Therefore, these results support the conclusion that 1\(\text{O}_2\) is the primary oxidant for the homocoupling of benzyl amine, formed from the energy transfer process from the excited photosensitizer (e.g., 5) to 3\(\text{O}_2\).

Such an extraordinarily high photocatalytic activity of 5 in \(\text{O}_2\)-involved benzyl amine coupling prompted us to explore other \(\text{O}_2\) light-driven \(\text{O}_2\) reactions, especially because \(\text{O}_2\) is not suppress the formation of \(\text{N}\)-benzyldienobenzylamine appreciably. However, upon the addition of sodium azide, a \(\text{O}_2\) scavenger, the reaction yield decreased from 65% to 5% after 10 min of irradiation at 740 nm. Therefore, these results support the conclusion that 3\(\text{O}_2\) is the primary oxidant for the homocoupling of benzyl amine, formed from the energy transfer process from the excited photosensitizer (e.g., 5) to 3\(\text{O}_2\).
Herein, the hydrodehalogenation of phenacyl bromide was achieved through electron-transfer photoredox reactions upon 740 nm irradiation. The energy transfer process, complex 5, is equally effective in driving the transformation of HMF to MA (55% yield) and HKPA (37% yield) in the presence of O₂ with an overall HMF conversion of 92% within 5 h (Fig. 3e and Supplementary Fig. 43). It has been suggested that an ozonide intermediate is formed during the transformation, analogous to the above 1O₂-involved reactions resulting from an Alder mechanism of anthracene oxidation by 1O₂.

Photocatalytic redox reactions under NIR light irradiation. In addition to the above 1O₂-involved reactions resulting from an energy transfer process, complex 5 is equally effective in driving electron-transfer photoredox reactions upon 740 nm irradiation. Herein, the hydrodehalogenation of phenacyl bromide was selected as a representative reaction for reductive photocatalysis. [Ru(bpy)₃]²⁺ has been reported as a competent photocatalyst for this reaction under visible light irradiation⁶⁵, however no product was formed upon irradiation at 740 nm. In striking contrast, phenacyl bromide underwent hydrodehalogenation smoothly in the presence of 0.2 mol% of 5 and 10 equivalents of triethanolamine (TEOA) under 740 nm irradiation in deaerated acetonitrile, in which TEOA was employed as the sacrificial electron/proton donor (Fig. 4a). An 86% yield of acetoephone was obtained after 8 h photocatalysis at room temperature (Supplementary Fig. 43).

In the absence of sacrificial reagents, 5 is also able to drive redox neutral reactions, which utilizes both the reduction and oxidation power of a photocatalyst and thus maximizes the energy efficiency and atom economy. In this case, C-H cyanation of tetrahydroisoquinoline was selected as a representative reaction, wherein p-toluenesulfonyl cyanide (TsCN) was employed as the cyanide source (Fig. 4b). Upon irradiation at 740 nm, the excited state of 5, 5*, was oxidatively quenched by TsCN to produce [Ru]³⁺ (one-electron oxidized 5), CN⁻, and a sulfonyl radical. The resulting [Ru]³⁺ complex was able to oxidize tetrahydroisoquinoline to yield an aziridinyl radical cation, resulting in the generation of a neutral carbon radical after α-H deprotonation. Subsequent oxidation of the carbon radical by the sulfonyl radical forms an iminium cation and the final nucleophilic attack of CN⁻ to the iminium cation furnished the formation of the cyanation product. Overall, two single-electron transfer processes are required in this photocatalytic cycle and a 96% yield is obtained after 24 h irradiation at 740 nm (Supplementary Figs. 44, 45).

In addition to acting as a sole photocatalyst, 5 can also cooperate with transition metal cocatalysts for metallaphotoredox catalysis under NIR light irradiation. As shown in Fig. 4c, in the presence of Ni²⁺, o-phenanthroline, and a sacrificial electron donor DIPA (diisopropylethylamine), 5 was able to initiate the allylation of aromatic aldehydes with allyl acetate under 740 nm excitation. Good to excellent yields (57–87%) were achieved (Supplementary Figs. 46–48), in which the relatively lower yield of 1-(4-methoxyphenyl)but-3-en-1-ol (57%) was likely due to the lower electrophilicity of the aldehyde group in 4-methoxybenzaldehyde because of the electron donating capability of its methoxy substituent at the para position. Recently, Ru- and Ir-based one-photon-absorbing
photosensitizers have been reported to integrate with Ni66 and Co67 cocatalysts for similar reactions, hence it is anticipated that the current NIR light-driven allylation of aldehydes follows an analogous catalytic cycle (Supplementary Fig. 49). Two single-electron-transfer processes between the reduced Ru photocatalyst and Ni species are leading to better two-photon absorption. It is worth noting that Ru also has longer excited lifetime than Co13.14 (yield: 83%).1H NMR (400 MHz, CD3CN): 2.76 (dd, 1H, J = 8.6, 6.90 (m, 3H), 2.76 (dd, 1H, J = 8.6, 6.90 (m, 3H), 3.85 (s, 1H), 8.49 (d, J = 1.7 Hz, 1H), 7.51 (d, J = 7.2 Hz, 2H), 7.45–7.72 (m, 5H), 7.08 (d, J = 16.3 Hz, 1H), 13C{1H} NMR (101 MHz, CDCl3): 156.7, 149.8, 149.8, 128.4, 128.9, 127.6, 126.4, 121.3, 118.5.

Spectral measurements were collected using an iCCD camera (iStar, Andor Technology). All the air-tight solutions were pured with N2 for 15 min before experiments. The absorption spectra were measured with a 200-nm excitation wavelength. The absorption spectra were taken before and after the experiments to confirm no degradation over the measurements.

Synthesis

(E,E)-4,4′-Bis(biphenyl)-2,2′-bipyrindine (bpyvp-H). bpyvp-H was prepared according to the reported literature with slight modification13. A solution of 4,4′-dimethyl-2,2′-bipyrindine (0.92 g, 5 mmol) and K2CO3 (2.3 g, 20 mmol) in dry DMF (50 mL) was stirred for 1 h under Ar. Benzaldehyde (1524.7 µL, 15 mmol) was then added to the reaction mixture. After stirring at room temperature for 24 h, the solution was treated with 400 mL water and the suspension was stored at 5 °C for several hours. The precipitated solid was filtered and washed with methanol via Soxhlet extraction for 24 h and dried in vacuum at 60 °C to afford 1.49 g yellow light yellow solid product (yield: 83%).1H NMR (400 MHz, CDCl3): 6.61 (d, J = 5.1 Hz, 1H), 8.49 (d, J = 1.7 Hz, 1H), 7.51 (d, J = 7.2 Hz, 2H), 7.45–7.72 (m, 5H), 7.08 (d, J = 16.3 Hz, 1H), 13C{1H} NMR (101 MHz, CDCl3): 156.7, 149.8, 146.0, 136.5, 133.6, 129.1, 128.9, 127.3, 126.4, 121.3, 118.5.

Methods

Computational methods. All calculations were performed with the Gaussian 168 package employing the DFT method with Becke's three-parameter hybrid functional and Lee-Yang-Parr’s gradient corrected correlation functional (B3LYP)69–71. The Stuttgart/Dresden (SDD) basis set and effective core potential were used for the Ru atom1,25, and 6–31G* basis set was applied for H, C, O, N and F. The geometries of the singlet ground states of compounds were optimized in CH2Cl2 using the conductive polarizable continuum model (CPCM). The local minimum on each potential energy surface was confirmed by frequency analysis. Time-dependent DFT calculations produced the singlet excited states of each compound starting from the optimized geometry of the corresponding singlet ground state. The calculated absorption spectra, electronic transition contributions, and electron density difference maps (EDDMs) were generated by GaussSum 3.075. The electronic orbitals were visualized using VMD 1.9.4a575.

Materials and instrumentation. All starting materials were commercially available and used without further purification unless otherwise noted. H and 13C{1H} (H) and 19F NMR spectra were recorded in the designated solvents on a Bruker AV 400 MHz spectrometer. Absorption spectra were measured using a Cary 8454 UV–vis spectrophotometer (Agilent Technologies). Emission spectra were recorded using a Varian Cary Eclipse fluorescence spectrophotometer. Electrochemical measurements were performed on a VMP-3 potentiostat (Biologic Science Instruments) with a three-electrode configuration. Pt wire, Standard Calomel Electrode (SCE) and Ag/AgCl as the counter, reference and counter electrode, respectively. All the potentials were calibrated by the redox potential of Fe3+/Fe2+ (Fc: ferrocene). Cyclic voltammetry and square wave voltammetry experiments were conducted for each complex (1–5) in 0.1 M LiClO4 of DMF. Femtosecond transient absorption spectra were recorded in a home-built system equipped with a 800 nm (8 ml, 1 kHz repetition rate, ≈35 μJ pulse width) laser, generated from an Astrella laser system then split by the Ti:sapphire crystal to form the pump beam (3 ml) and probe beam. The pump beam goes through an optical parametric amplifier (Coherent Opera Solo) to generate the desire wavelengths (3–4μ). Samples are loaded into a flow cell opened to air. All samples were at a concentration that afforded an absorption of 0.6–0.8 at the sample excitation wavelength. Fluorescence emission decay was measured on a LP980 spectrometer system (Edinburgh Instruments). The 355 nm laser beam is generated by a frequency-tupled Quanta Ray Nd:YAG laser (Spectra-Physics, 6–ns pulses at 10 Hz) then goes through a tunable optical parametric oscillator (Spectra-Physics) to output the desired wavelengths, and the white light probe beam is generated from a 150 W Xe arc lamp. Single wavelength emission decay traces were collected using a PMT and digital oscilloscope (Tektronix MDOS3202, 200 MHz, 2.5 GS/s).

(Ru[2,2′-bipyridine]5[(E,E)-4,4′-Bis(bipyridine)]3)PF6 (1). 1 was prepared according to the reported procedure with slight modification13. A mixture of Ru(bpy)Cl3 (0.2 mmol, 0.097 g) and bpyvp-H (0.3 mmol, 0.108 g) was suspended in DMF/H2O (v/v, 30:30 mL). The mixture was then refluxed at 100 °C for 8 h under argon atmosphere. After cooling to room temperature, the solution was re-precipitated under reduced pressure in methanol and added with a saturated aqueous solution of NH4PF6. The red precipitated solid product (1) was filtered and washed with water and diethyl ether with a yield of 46% (98 mg).1H NMR (400 MHz, CD2CN): 8.78 (s, 1H), 8.51 (d, J = 8.2 Hz, 4H), 7.97–8.79 (m, 60H), 7.50–7.73 (m, 12H), 7.32 (d, J = 16.3 Hz, 2H), 13C{1H} NMR (101 MHz, CD2CN): 158.1, 157.9, 152.6, 152.4, 128.8, 124.1, 118.3, 114.5, 55.6.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29981-3 | www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29981-3 | www.nature.com/naturecommunications
Phenylacryl bromide dehalogenation. In a typical procedure, a solution of 50 mM phenacyl bromide, 10 equiv. triethylamine (TEA), and 0.2 mol% Ni in 5 mL CDCl₃ was added in a sealed 20 mL vial. After bubbling with Ar for 10 min, the solution was irradiated under near-IR LED (PR160L-740-C, 8.18 W) for 8 h. The product was purified by silica gel column chromatography with V_{suction}/V_{eluent} acetate = 100/3 to afford acetonaphene as the product (yield: 86%). ¹H NMR (400 MHz, CDCl₃): δ 8.04 – 7.88 (m, 2H), 7.62 – 7.52 (m, 1H), 7.46 (dd, J = 8.3, 7.0 Hz, 2H), 2.60 (s, 3H).

Cyanation of tetrahydrosoquinoline. The starting substrate 2-(4-methoxyphenyl)-1,2,3,4-tetrahydrosoquinoline was synthesized based on a published procedure. A mixture of 1,2,3,4-tetrahydrosoquinoline (0.65 mM, 5 mmol) and 4-iodoanisole (1.2 g, 5 mol%), copper(II) iodide (95.3 mg, 0.55 mmol), and potassium phosphate (2.1 g, 10 mmol) in 2-propanol/ethylene glycol (20/2, v/v) was refluxed at 80 °C for 24 h under argon atmosphere. After cooling down to room temperature, the mixture was quenched by water (50 mL) and extracted with ethyl acetate (30 mL x 3). The organic layer was concentrated under reduced pressure via rotary evaporation. The obtained residue was purified by silica gel column chromatography to afford the white solid product (860 mg, 72%). ¹H NMR (400 MHz, CDCl₃): δ 7.19 – 7.25 (m, 1H), 7.05 (t, J = 8.3 Hz, 2H), 3.04 (t, J = 7.5 Hz, 2H).

The following photocatalytic cyanation process was conducted in a sealed 20 mL vial containing a solution of 50 mM 2-(4-methoxyphenyl)-1,2,3,4-tetrahydrosoquinoline, 50 mM p-toluene-sulfonyl cyanide, and 1 mol% Ni in 5 mL CH₂CN. After bubbling with Ar for 10 min, the solution was irradiated under near-IR LED (PR160L-740-C, 8.18 W) for 24 h. The product was purified by silica gel column chromatography with V_{suction}/V_{eluent} acetate = 100/3 and 1/(2-(4-methoxyphenyl)-1,2,3,4-tetrahydrosoquinoline) 1/10 as the product (yield: 96%). ¹H NMR (400 MHz, CDCl₃): δ 7.14 – 7.20 (m, 4H), 7.13 – 7.05 (m, 2H), 6.98 – 6.88 (m, 2H), 5.37 (s, 1H), 3.81 (s, 1H), 3.64 – 3.45 (m, 1H), 3.44 (m, 1H), 3.17 (m, 1H), 2.94 (m, 1H).

Ni-assisted C_{2}–C_{2} coupling. In a typical procedure, a solution of 50 mM para-substituted benzaldehyde (–H, –OCH₃, or –CF₃), 10 equiv. allyl acetate, 10 equiv. Ni-diisopropylamidine (DIEPMA), 5 mol% 5, 15 mol% Ni(O₂)₂, and 20 mol% o-phenylendiamine in 2 mL CH₂CN was added in a sealed 5 mL vial. After bubbling with Ar for 3 min, the solution was irradiated under near-IR LED (PR160L-740-C, 8.18 W) for 72 h. The product was purified by silica gel column chromatography with V_{suction}/V_{eluent} acetate = 10/1 to afford para-substituted 1-phenyl-3-buten-1-ol as the product (yield: 57 – 88%), 1-phenyl-3-buten-1-ol: ¹H NMR (400 MHz, CDCl₃): δ 7.41 – 7.22 (m, 5H), 5.81 (m, 1H), 5.22 – 5.09 (m, 2H), 4.73 (m, 1H), 2.60 – 2.43 (m, 2H), 2.22 – 1.17 (brs, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 164.1, 134.7, 128.6, 127.7, 126.0, 118.6, 73.5, 44.0. 1-(4-methoxyphenyl)-3-buten-1-ol: ¹H NMR (400 MHz, CDCl₃): δ 7.31 – 7.24 (m, 2H), 6.92 – 6.84 (m, 2H), 5.80 (m, 1H), 5.17 (m, 1H), 5.15 – 5.08 (m, 1H), 4.69 (t, J = 6.5 Hz, 1H), 3.80 (s, 3H), 2.54 – 2.46 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.2, 136.3, 134.8, 127.3, 118.3, 114.0, 73.2, 55.5, 43.9. 1-(4-trifluoromethyl)phenyl)-3-buten-1-ol: ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 8.1 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.37 – 7.23 (m, 2H), 6.36 – 6.50 (m, 1H). 13C{¹H} NMR (100 MHz, CDCl₃): δ 140.0, 140.4, 134.2, 133.9, 128.8, 127.4, 126.3, 119.4, 119.1, 72.7, 44.1.

Data availability

Characterization and calculation of compounds can be found in the Supplementary Information.

Received: 18 September 2021; Accepted: 5 April 2022;
Published online: 28 April 2022

References

1. Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77 (2008).
2. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).
3. Nguyen, J. D., D’Amato, E. M., Narayanan, J. M. R. & Stephenson, C. R. J. Engaging unactivated alkyl, alkene and alkyne in visible-light-mediated free radical reactions. Nat. Chem. 4, 854–859 (2012).
4. Ghosh, L., Ghosh, T., Bardagi, J. I. & König, B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 346, 725 (2014).
5. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).
6. MacKenzie, I. A. et al. Discovery and characterization of an acridine radical photoredoxact. Nature 580, 76–80 (2020).

7. Arazis-Rotondo, D. M. & McCusker, J. K. The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45, 5803–5820 (2016).

8. Ravetz, B. D. et al. Development of a platform for near-infrared photoredox catalysis. ACS Cent. Sci. 6, 2053–2059 (2020).

9. Gonzalez-Eguiluz, M. & et al. Rapid optimization of photoredox reactions for continuous-flow systems using microscale batch technology. ACS Cent. Sci. 7, 1126–1134 (2021).

10. Gisbertz, S., Reischauer, S. & Pieber, B. Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation. Nat. Catal. 3, 611–620 (2020).

11. McNamara, W. R. et al. Cobalt-dithiolene complexes for the photocatalytic and electrocatalytic reduction of protons in aqueous solutions. Proc. Natl Acad. Sci. U. S. A. 109, 15594–15599 (2012).

12. McNamara, W. R. et al. A cobalt–dithiolene complex for the photocatalytic and electrocatalytic reduction of protons. J. Am. Chem. Soc. 133, 15368–15371 (2011).

13. Ahmad, L., Ahmed, S., Anwar, Z., Sheraz, M. A. & Sikorsk, M. Photostability and photostabilization of drugs and drug products. Int. J. Photoenergy 2016, 8135608 (2016).

14. Ravetz, B. D. et al. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565, 343–346 (2019).

15. Huang, L. et al. Highly effective near-infrared activating triplet-triplet annihilation upconversion for photoredox catalysis. J. Am. Chem. Soc. 142, 18460–18470 (2020).

16. Huang, L. et al. Long wavelength single photon like driven photolysis via triplet triplet annihilation. Nat. Commun. 12, 122 (2021).

17. Göppert-Mayer, M. Über elementarakte mit zwei quantensprüngen. Z. Phys. 43, 611–620 (1927).

18. Kim, H. M. & Cho, B. R. Small-molecule two-photon probes for bioimaging. J. Am. Chem. Soc. 130, 6487–6491 (2018).

19. Bocca, S. C. et al. An ethylene-glycol decorated ruthenium(II) complex for two-photon photodynamic therapy. Chem. Sci. 30, 4590–4592 (2019).

20. Huang, L. et al. Evaluation of the medicinal potential of two-ruthenium(II) polypropylene complexes as one- and two-photon photodynamic therapy photostabilizers. Chem. Eur. J. 23, 9888–9896 (2017).

21. Huang, B. et al. Highly charged ruthenium(II) polypropyld complexes as lysosome-localized photostabilizers for two-photon photodynamic therapy. Angew. Chem. Int. Ed. 54, 14049–14052 (2015).

22. Vance, F. W. & Hupp, J. T. Probing the symmetry of the nonlinear optic chromophore Ruthtrans-4,4′-diethylaminostyryl-2,2′-bipiridine),2⁻: insight from polarization hyper-rayleigh scattering and electroabsorption (Stark) spectroscopy. J. Am. Chem. Soc. 121, 4047–4053 (1999).

23. Maury, O. et al. Synthesis, linear, and quadratic-nonlinear optical properties of octopolar D₃ and D₃ bè biplyridyl metal complexes. J. Chem. Eur. J. 10, 4454–4466 (2004).

24. Feuvrie, C. et al. Nonlinear optical and two-photon absorption properties of octopolar tris(bipyridyl)metal complexes. J. Phys. Chem. A 111, 8980–8985 (2007).

25. Karges, J. et al. Rationally designed ruthenium complexes for 1- and 2-photon photodynamic therapy. Nat. Commun. 11, 3262 (2020).

26. Zeng, Z. et al. Infrared near-aggregation-induced emission luminogens with strong two-photon absorption, excellent organelle specificity, and efficient photodynamic therapy potential. ACS Nano 12, 8145–8159 (2018).

27. Holder, A. A., Lüge, L., Browne, W. R., Lawrence, M. A. W. & Jr., J. L. B. (eds.) Ruthenium complexes: photochemical and biological applications (Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany, 2018).

28. Castellano, F. N., Malak, H., Gryczynski, I. & Lakowicz, J. R. Creation of multi-light-charge transfer excited states with two-photon excitation. Inorg. Chem. 36, 5548–5551 (1997).

29. Zhang, W. et al. Combining ruthenium(II) complexes with metal–organic frameworks to realize effective two-photon absorption for singlet oxygen generation. ACS Appl. Mater. Interfaces 8, 21465–21471 (2016).

30. Li, H., Yang, Y., He, C., Zeng, L. & Duan, C. Mixed-ligand metal–organic framework for two-photon responsive photocatalytic C–N and C–C coupling reactions. ACS Catal. 9, 422–430 (2019).

31. Lu, Y., Li, Y., Wang, Y. & Zhang, J. Two-photon induced NIR active core-shell structured WO₃/Cds for enhanced solar light photocatalytic performance. Appl. Catal. B: Environ. 272, 118979 (2020).

32. Wang, P., Tian, L., Gao, X., Xu, Y. & Yang, P. Two-photon absorption in a defect-engineered carbon nitride polymer drives red-light photocatalysis. ChemCatChem 12, 4185–4197 (2020).

33. Fajardo, J. Jr et al. Photoredox catalysis mediated by tungsten(0) arylisocyanides. J. Am. Chem. Soc. 143, 13938–13939 (2021).

34. Giedryk, M. et al. Photocatalytic activation of alkyl chlorides by assembly-promoted single electron transfer in microheterogeneous solutions. Nat. Catal. 3, 40–47 (2020).

35. Kerzg, C. & Goez, M. Combining energy and electron transfer in a supramolecular environment for the “green” generation and utilization of hydrated electrons through photoredox catalysis. Chem. Sci. 7, 3862–3868 (2016).

36. Naumann, R. & Goez, M. First micelle-free photoredox catalytic access to hydrated electrons for syntheses and remediations with a visible LED or even sunlight. Chem. Eur. J. 24, 17557–17567 (2018).

37. Kerzg, C. & Goez, M. Highly efficient green-light ionization of an aryl radical anion: key step in a catalytic cycle of electron formation. Phys. Chem. Chem. Phys. 16, 25342–25349 (2014).
60. You, B., Liu, X., Jiang, N. & Sun, Y. A General strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138, 13639–13646 (2016).

61. Han, G. et al. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CoS nanosheets. J. Am. Chem. Soc. 139, 15584–15587 (2017).

62. Kisszekelyi, P. et al. Selective electrocatalytic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran: from mechanistic investigations to catalyst recovery. ChemSusChem 13, 3127–3136 (2020).

63. Heugebaert, T. S. A., Stevens, C. V. & Kappe, C. O. Singlet-oxygen oxidation of 5-hydroxymethylfurfural in continuous flow. ChemSusChem 8, 1648–1651 (2015).

64. Martínez, J. J. et al. Obtaining protoanemonin through selective oxidation of D-fructose and 5-(hydroxymethyl)furfural in a self-catalysed reaction. Asian J. Org. Chem. 9, 2184–2190 (2020).

65. Fukuzumi, S., Mochizuki, S. & Tanaka, T. Photocatalytic reduction of phenacyl halides by 9,10-dihydro-10-methylacridine: control between the reductive and oxidative quenching pathways of tris(bipyridine)ruthenium complex utilizing an acid catalysis. J. Phys. Chem. 94, 722–726 (1990).

66. Gualandi, A. et al. Allylation of aldehydes by dual photoredox and nickel complex utilizing an acid catalysis. Chem. Commun. 55, 6838–6841 (2019).

67. Shi, C. et al. Photocatalytic umpolung synthesis of nucleophilic π-allylcobalt complexes for allylation of aldehydes. ACS Catal. 11, 2992–2998 (2021).

68. Frisch, M. J. et al. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, (2019).

69. Becke, A. D. Density-functional exchange–energy approximation with correct asymptotic behavior. Phys. Rev. A: Gen. Phys. 38, 3098–3100 (1988).

70. Becke, A. D. Density-functional thermochemistry. III. role exact. Exch. J. Chem. Phys. 98, 5648–5652 (1993).

71. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter Phys. 37, 785–789 (1988).

72. Dolg, M., Stoll, H. & Preuss, H. A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor. Chim. Acta 85, 441–450 (1993).

73. Wedig, U., Dolg, M. & Stoll, H. Quantum chemistry: the challenge of transition metals and coordination chemistry; Kluwer Academic Publishers: Dordrecht, The Netherlands, (1986).

74. Hehre, W. J., Radom, L., Schleyer, P. V. R. & Pople, J. A. Ab initio molecular Hartree-Fock theory. John Wiley & Sons: New York, (1980).

75. Hehre, W. J., Radom, L., Schleyer, P. V. R. & Pople, J. A. Ab initio molecular Hartree-Fock theory. John Wiley & Sons: New York, (1980).

76. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Molec. Graph. 14.1, 33–38 (1996).

77. Li, Z. & Li, C. J. CuBr-catalyzed direct indolation of tetrahydroisoquinolines via cross-dehydrogenative coupling between sp2 C-H and sp3 C-H bonds. J. Am. Chem. Soc. 127, 6968–6969 (2005).