Esophagogastroduodenoscopy with conscious sedation does not interfere with catheter-based 24-h pH monitoring

Yung-Kuan Tsou, Jau-Min Lien, Chin-Kuo Chen, Cheng-Hui Lin, Hsing-Yu Chen, Mu-Shien Lee

Yung-Kuan Tsou, Jau-Min Lien, Cheng-Hui Lin, Mu-Shien Lee, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
Chin-Kuo Chen, Department of Otolaryngology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
Hsing-Yu Chen, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan

Author contributions: Tsou YK conceptualized and designed the study, performed 24-h pH monitoring, analyzed and interpreted the data, and wrote the manuscript; Lien JM revised the manuscript and gave final approval of the version to be published; Chen CK, Lin CH, and Lee MS collected data; Chen HY performed the statistical analyses.

Supported by A Grant from Chang Gung Memorial Hospital, CMRPG300011
Correspondence to: Yung-Kuan Tsou, MD, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5, Fu-Shin Street, Kweishan, Taoyuan 333, Taiwan. Flying3454@xuite.net
Telephone: +886-3-3281200 Fax: +886-3-3272236
Received: October 25, 2012 Revised: December 17, 2012 Accepted: December 25, 2012
Published online: March 21, 2013

Abstract

AIM: To investigate the impact of esophagogastroduodenoscopy with conscious sedation on the subsequent 24-h catheter-based pH monitoring.

METHODS: Fifty patients with extra-esophageal symptoms of gastroesophageal reflux disease undergoing ambulatory dual-probe 24-h pH monitoring were enrolled from March 2010 to August 2011. All of the data were collected prospectively and analyzed retrospectively. Thirty-six patients (72%, group A) underwent pH monitoring shortly after esophagogastroduodenoscopy (EGD) with conscious sedation, and 14 patients (28%, group B) underwent pH monitoring without conscious sedation. The 24-h pH data from two time periods were analyzed: the first 4 h (Period I) and the remaining time of the study (Period II).

RESULTS: The mean age of the patients was 49.6 ± 12.5 years; 20 patients (40%) were men. The baseline data, including age, sex, body mass index, reflux esophagitis, the Reflux Symptom Index, and the Reflux Findings Score, were comparable between the two groups. The percentage of total time with a pH < 4 and the frequency of acid reflux during Period I were not significantly different between the two groups, as measured using both pharyngeal (0.03% ± 0.10% vs 0.07% ± 0.16%, P = 0.32; and 0.07 ± 0.23 episodes/h vs 0.18 ± 0.47 episodes/h, P = 0.33, respectively) and esophageal probes (0.96% ± 1.89% vs 0.42% ± 0.81%, P = 0.59; and 0.74 ± 1.51 episodes/h vs 0.63 ± 0.97 episodes/h, P = 0.49, respectively). The percentage of total time with a pH < 4 and the frequency of acid reflux were also not significantly different between Periods I and II in group A patients, as measured using both pharyngeal (0.03% ± 0.10% vs 0.23% ± 0.85%, P = 0.21; and 0.07 ± 0.23 episodes/h vs 0.29 ± 0.98 episodes/h, P = 0.22, respectively) and esophageal probes (0.96% ± 1.89% vs 1.11% ± 2.57%, P = 0.55; and 0.74 ± 1.51 episodes/h vs 0.81 ± 1.76 episodes/h, P = 0.55, respectively).

CONCLUSION: EGD with conscious sedation does not interfere with the results of subsequent 24-h pH monitoring in patients with extra-esophageal symptoms of gastroesophageal reflux disease.

© 2013 Baishideng. All rights reserved.

Key words: Esophagogastroduodenoscopy; Conscious sedation; pH monitoring; Gastroesophageal reflux disease; Extraesophageal symptoms

Tsou YK, Lien JM, Chen CK, Lin CH, Chen HY, Lee MS. Esophagogastroduodenoscopy with conscious sedation does not...
interfere with catheter-based 24-h pH monitoring. Esophago-
gastroduodenoscopy with conscious sedation does not interfere with
catheter-based 24-h pH monitoring. World J Gastroenterol 2013; 19(11): 1805-1810 Available from: URL: http://www.
wjgnet.com/1007-9327/full/v19/i11/1805.htm DOI: http://dx.doi.
.org/10.3748/wjg.v19.i11.1805

INTRODUCTION

The manifestation of gastroesophageal reflux disease (GERD) can be either esophageal or extra-esophageal[9]. Extra-esophageal reflux, or laryngopharyngeal reflux (LPR), refers to the backflow of gastric contents into the larynx and pharynx[9-10]. Ambulatory dual-probe 24-h pH monitoring is currently considered the gold-standard diagnostic modality for the evaluation of patients with LPR[3-4]. This catheter-based pH measurement is performed with a pH sensor located within 2 cm above the proximal border of the upper esophageal sphincter (UES)[9]. Prior manometry-guided localization is required to determine UES positioning relative to the nostril. The two trans-nasal procedures are usually performed without intravenous sedation. Therefore, they are unpleasant and uncomfortable tests for patients[6,7].

Conscious sedation improves the quality of the test and increases the patient’s willingness to undergo a gastrointestinal examination[9]. Benzodiazepine administration and opiate-based sedation are the most common practices for conscious sedation[6]. Meperidine causes a reduction in the LES pressure in animal and human studies[9,10]. It may induce or exacerbate gastroesophageal reflux (GER), causing interference with pH studies[10]. However, capsule-based (Bravo) wireless pH measuring was performed using antimony electrodes and fitting recorders (Orion II, Medical Measurement Systems, The Netherlands). The pH catheter had two or four sensors that were 15 cm or 5 cm apart. The pH electrodes were calibrated before and after the test using reference buffer solutions with a pH of 4 or 7. The most proximal electrode (pharyngeal probe) was placed in the hypopharynx 2 cm above the manometry-defined proximal border of the UES. Each patient wore a data-logger with a sampling frequency of 1 Hz during the test period. Symptom occurrence, meal times and body positions (supine or up-right) were written down in a diary and recorded in a data log. The patients were advised to eat their usual meals and engage in their usual activities on the day of the test. After a period of 24 h, they returned the data log, and the data were downloaded onto a computer using software provided by the manufacturer. The data from the diaries were extracted for interpretation.

A single pharyngeal event (pH < 4) preceded by a precipitous pH drop of the same magnitude in the esophageal probe was defined as a positive result for LPR. The most distal pH sensor in the esophagus (esophageal probe) was 15 cm away from the pharyngeal probe. Pathologic GER was defined as a percentage of total time with a pH < 4 greater than 4.2% as measured...
by the esophageal probe[13].

Analysis of the pH data

The elimination half-life of meperidine is 3.2-3.7 h, and the half-life of midazolam is approximately 3 h[14,15][14]. To analyze the effect of conscious sedation on 24-h pH monitoring, computer software provided by MMS was used to analyze the 24-h pH data of each patient during two periods: the first 4 h (Period I) and the remaining time of the study (Period II). Meal times and sleep hours were excluded from the analysis. Thus, only data recorded when the patients assumed an upright position were used for the comparisons. The mean duration of each period was 3.5 ± 0.5 h for Period I and 10.1 ± 2.1 h for Period II.

An acid reflux event was defined as an episode of pH < 4 detected on the pharyngeal or esophageal probe. Long reflux was defined as a reflux event lasting more than 5 min. The variables used for the comparisons were percentage of total time with a pH < 4, frequency of acid reflux events (episodes/h), and presence of long reflux.

Statistical analysis

Continuous variables are expressed as the mean ± SD in the text and tables. The differences in the variables between patients in group A and B were compared using a \textit{t} test for age and a Mann-Whitney \textit{U} test for BMI, Reflux Symptom Index (RSI), Reflux Finding Score (RFS), percentage of total time with a pH < 4, and frequency of acid reflux. Either a \textit{χ}2 or Fisher’s exact test (when \textit{χ}2 test was inappropriate) was used to analyze differences in sex, presence of heartburn and regurgitation, erosive esophagitis, LPR, pathologic GER, and long reflux. The differences in the variables between Period I and Period II in group A patients were compared using a Wilcoxon Signed Rank test for the percentage of total time with a pH < 4, frequency of symptoms, and the presence of acid reflux. A McNemar’s test was used to analyze differences in the presence of long reflux. Statistical significance was defined as \textit{P} < 0.05. The statistical analyses were performed using the SPSS version 17.0 for Windows.

RESULTS

Comparisons between patients with and without sedated EGD

The demographic, clinical, and endoscopic data from the patients in groups A and B were compared (Table 1). There were no significant differences between the two groups. Characteristic symptoms of GERD, heartburn, and acid regurgitation were present in both groups (13/36 vs 7/14, \textit{P} = 0.37). Six patients (16.7%) in group A and 2 (14.3%) in group B had erosive esophagitis (all were grade A, except one patient in group A who was grade B based on the Los Angeles classification) on the EGD (\textit{P} = 1). The RSI is a validated patient-administered questionnaire for the diagnosis of LPR[16]. A total score greater than 13 is regarded as a positive result. The patients in group A scored 15.9 ± 7.5, and the patients in group B score 16.8 ± 9.2 (\textit{P} = 0.62). The RFS is an 8-item scale listing common physical findings in LPR patients[17]. A total score of greater than 7 is regarded as a positive result. The RFS was 8.1 ± 3.7 in group A and 6.4 ± 2.4 in group B (\textit{P} = 0.19). Twelve patients (33.3%) in group A and 5 (35.7%) in group B met the pH criteria for LPR (\textit{P} = 0.87). There were three (8.3%) patients in group A and one (7.1%) in group B who had pathologic GER (\textit{P} = 1.00).

The pH data obtained from Period I were compared between the two groups (Table 1). Using the pharyngeal probe, the percentage of total time with a pH < 4 was 0.03% ± 0.10% (range, 0%-0.4%) in group A and 0.07% ± 0.16% (range, 0%-0.5%) in group B (\textit{P} = 0.32). The frequency of acid reflux events was 0.07 ± 0.23 episodes/h (range, 0-1.1 episodes/h) in group A and 0.18 ± 0.47 episodes/h (range, 0-1.7 episodes/h) in group B (\textit{P} = 0.33). None of the patients in either group had long reflux events. Using the esophageal probe, the mean percentage of total time with a pH < 4 was 0.96% ± 1.89% (range, 0%-7%) in group A and 0.42% ± 0.81% (range, 0%-2.9%) in group B (\textit{P} = 0.59). The frequency of acid reflux events was 0.74 ± 1.51 episodes/h (range, 0-6.3 episodes/h) in group A and 0.63 ± 0.97 episodes/h (range, 0-3.1 episodes/h) in group B (\textit{P} = 0.49). One patient in group A and no patients in group B had long reflux (\textit{P} = 1).

Table 1 Comparisons of baseline data and data obtained during the first 4 h between patients in group A and group B

Variables	Group A (\textit{n} = 36)	Group B (\textit{n} = 14)	\textit{P} value1
Baseline data			
Age (yr)	49.5 ± 13.2	49.9 ± 11.0	0.91
Sex (F)	15 (41.7)	5 (35.7)	0.70
Body mass index	22.8 ± 3.2	23.3 ± 3.4	0.75
Presence of heartburn or regurgitation	13 (36.1)	7 (50)	0.37
Erosive esophagitis on EGD	6 (16.7)	2 (14.3)	1
Reflux symptom index	15.9 ± 7.5	16.8 ± 9.2	0.62
Reflux findings score	8.1 ± 3.7	6.4 ± 2.4	0.19
Positive for LPR	12 (33.3)	5 (35.7)	0.87
Positive for pathologic GER	3 (8.3)	1 (7.1)	1
Data obtained during the first 4 h			
Frequency of symptoms onset (episodes/h)	0.04 ± 0.1	0.14 ± 0.22	0.08
Pharyngeal probe			
Total time of pH < 4 (%)	0.03 ± 0.10	0.07 ± 0.16	0.32
Mean frequency of reflux (episodes/h)	0.07 ± 0.23	0.18 ± 0.47	0.33
Patients with long reflux	0	0	1
Esophageal probe			
Total time of pH < 4 (%)	0.96 ± 1.89	0.42 ± 0.81	0.59
Mean frequency of reflux (episodes/h)	0.74 ± 1.51	0.63 ± 0.97	0.49
Patients with long reflux	1 (2.8)	0	1

Data are expressed as absolute numbers (percentage) or mean ± SD. 1Statistical significance was defined as \textit{P} < 0.05. EGD: Esophagogastroduodenoscopy; LPR: Laryngopharyngeal reflux; GER: Gastroesophageal reflux.
Comparisons between different periods in patients who underwent EGD with conscious sedation

The pH data for Period I and Period II from the group A patients are shown in Table 2. The frequency of symptom occurrence was 0.04 ± 0.10 episodes/h (range, 0.3 episodes/h) during Period I and 0.05 ± 0.06 episodes/h (range, 0.3 episodes/h) during Period II (P = 0.29). Based on the pharyngeal probe measurements, the percentage of total time with a pH < 4 was 0.03% ± 0.06% (range, 0%-0.4%) in Period I and 0.21% ± 0.08% (range, 0%-5%) in Period II (P = 0.21, Figure 1A). The frequency of acid reflux was 0.07 ± 0.23 episodes/h (range, 0.1-1.1 episodes/h) in Period I and 0.29 ± 0.98 episodes/h (range, 0.5-7 episodes/h) in Period II (P = 0.22). None of the patients had a long reflux event. Based on the esophageal probe measurements, the percentage of total time with a pH < 4 was 0.96% ± 1.89% (range, 0%-7%) in Period I and 1.11% ± 2.57% (range, 0%-13.6%) in Period II (P = 0.55, Figure 1B). The frequency of acid reflux was 0.74 ± 1.51 episodes/h (range, 0.6-2.9 episodes/h) in Period I and 0.81 ± 1.76 episodes/h (range, 0.9-7.8 episodes/h) in Period II (P = 0.55). One patient had a long reflux event during Period I and five had a long reflux event during Period II (P = 0.22).

DISCUSSION

EGD is usually performed without conscious sedation in Taiwan. Some of our patients reported that nasally passed procedures for esophageal manometry and 24-h pH monitoring were less tolerable than EGD without conscious sedation. Because moderate conscious sedation may be helpful to facilitate gastrointestinal procedures, we performed a catheter-based pH study in a manner similar to the Bravo system in our patients. Our study results showed that EGD with conscious sedation does not have an immediate effect on subsequent catheter-based pH monitoring with regard to the relevant parameters assessed with pH monitoring techniques.

The Bravo capsule is usually placed during an EGD with conscious sedation. The Bravo pH system allows for the measurement of esophageal acid exposure over a 48-h period. Therefore, many studies have investigated whether there is day-to-day discrepancy during Bravo pH monitoring. The results are conflicting. Bechtold et al. and Bhat et al. reported more acid reflux events on day 1 than on day 2 using the Bravo system, suggesting that endoscopy and the associated sedatives may be responsible for the day-to-day discrepancy. Other studies showed that patients who underwent same-day EGD with intravenous sedation did not demonstrate any significant differences in reflux variables between day 1 and day 2 using Bravo pH monitoring.

Bhat et al. further analyzed their pH data by dividing the study period into the first 6 h and the remaining 18 h on both day 1 and day 2. They found an increase in esophageal acid exposure during the first 6 h after capsule insertion on day 1 compared to the corresponding period on day 2. There was no such difference during the remaining 18 h on day 1 and day 2. They concluded that EGD with conscious sedation interferes with subsequent capsule-based Bravo pH measurements. In this study, we divided the study period into the first 4 h and the remaining 20 h because the elimination half-life is nearly 4 h for meperidine and approximately 3 h for midazolam. Our results showed no interference in patients who underwent EGD with sedation. Our data further revealed that three pH variables were not significantly different between the patients with and without prior sedation.

Table 2: Comparisons between Period I and Period II in group A patients (mean ± SD)

Variables	Period I	Period II	P value
Frequency of symptom (episodes/h)	0.04 ± 0.10	0.03 ± 0.06	0.29
Pharyngeal probe			
Total time of pH < 4 (%)	0.03 ± 0.10	0.23 ± 0.85	0.21
Mean frequency of reflux	0.07 ± 0.23	0.29 ± 0.98	0.22
Patients with long reflux			
Esophageal probe			
Total time of pH < 4 (%)	0.96 ± 1.89	1.11 ± 2.57	0.55
Mean frequency of reflux	0.74 ± 1.51	0.81 ± 1.76	0.55
Patients with long reflux	1 (2.8%)	5 (13.9%)	0.22

*Statistical significance was defined as a P < 0.05.
ing both the pharyngeal and laryngeal probes). Ayazi et al. observed a similar day-to-day discrepancy in patients receiving capsule-based Bravo pH monitoring without prior EGD and conscious sedation\(^{24}\). Their results argue for an iatrogenic effect of sedated EGD on the pH monitoring.

There are some limitations in the present study. First, the study cohort had extra-esophageal symptoms (LPR) but not esophageal symptoms (classical GERD). The mechanism of LPR may be different from that of classical GERD\(^{2,23}\). Therefore, whether the study results can be applied to pH monitoring in patients with characteristic symptoms of GERD needs further investigation. Second, the esophageal probe was placed at a variable distance above the proximal border of the LES of participants. The results of the pH parameters obtained from the esophageal probe may be suboptimal.

In conclusion, our results suggest that EGD with conscious sedation does not interfere with the results of subsequent catheter-based pH monitoring in patients with extra-esophageal manifestations of GERD. Catheter-based 24-h pH monitoring can be performed shortly after EGD with conscious sedation, especially for those patients who are intolerable to the procedures.

COMMENTS

Background

One of the limitations of catheter-based pH monitoring is discomfort. Whether it can be performed shortly after esophagogastroduodenoscopy (EGD) with conscious sedation like the performance of Bravo pH system is unknown. Authors aimed to investigate the impact of sedated EGD on the subsequent 24-h pH monitoring in patients with conscious sedation.

Research frontiers

In order to increase patients’ willingness to receive 24-h pH monitoring, authors have attempted to perform the catheter-based pH study in a similar way to Bravo system in our patients.

Innovations and breakthroughs

EGD with conscious sedation does not interfere with the results of the subsequent 24-h pH monitoring in patients with extra-esophageal symptoms of gastroesophageal reflux disease.

Applications

Catheter-based 24-h pH monitoring can be performed shortly after sedated EGD especially for those patients who are intolerable to the procedures.

Terminology

Laryngopharyngeal reflux is backflow of gastric content into larynx and pharynx which has been widely used by otolaryngologists, while extraesophageal reflux is commonly used by gastroenterologist.

Peer review

The paper is well composed, documented. The results are interesting and suggest that EGD with conscious sedation does not interfere with the results of subsequent 24-h pH monitoring in patients with extra-esophageal symptoms of gastroesophageal reflux disease.

REFERENCES

1. Vakil N, van Zanten SV, Kahrilas P, Dent J, Jones R. The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am J Gastroenterol 2006; 101: 1900-120; quiz 1943 [PMID: 16928254 DOI: 10.1111/j.1572-0241.2006.00630.x]
2. Rees CJ, Belfasyc P. Laryngopharyngeal reflux: Current concepts in pathophysiology, diagnosis, and treatment. Int J Surg 2010; 8: 102-107 [PMID: 20840400 DOI: 10.1016/j.ijsu.2010.06.004]
3. Koufman JA, Aviv JE, Casiano RR, Shaw GY. Laryngopharyngeal reflux: position statement of the committee on speech, voice, and swallowing disorders of the American Academy of Otolaryngology-Head and Neck Surgery. Otolaryngol Head Neck Surg 2002; 127: 32-35 [PMID: 12161727 DOI: 10.1067/mhn.2002.125760]
4. Gupta R, Sataloff RT. Laryngopharyngeal reflux: current concepts and questions. Curr Opin Otolaryngol Head Neck Surg 2009; 17: 143-148 [PMID: 19395970 DOI: 10.1097/MOO.0b013e2828228181]
5. Merati AL, Lim HJ, Ulusho SP, Toohill RJ. Meta-analysis of upper probe measurements in normal subjects and patients with laryngopharyngeal reflux. Ann Otol Rhino Laryngol 2005; 114: 177-182 [PMID: 15825565]
6. Hirano I, Richter JE. ACG practice guidelines: esophageal pH monitoring test. Gastroenterology 2002; 123: 2095-2110 [PMID: 12161727 DOI: 10.1067/mhn.2002.125760]
7. Ward EM, Devault KR, Bouras EP, Stark ME, Wolfsten HC, Davis DM, Nedrow SI, Acher SR. Successful esophageal pH monitoring with a catheter-free system. Aliment Pharmacol Ther 2004; 19: 449-454 [PMID: 14871285 DOI: 10.1111/j.1365-2036.2004.01868.x]
8. Cohen LB, Ladas SD, Vargo JJ, Paspatis GA, Bjorkman DJ, Van der Linden P, Axon AT, Axon AE, Bavias G, Despott E, Dinis-Ribeiro M, Fassoulaki A, Hofmann N, Karagiannis JA, Karamanolis D, Maurer W, O’Connor A, Paraskeva K, Schreiber F, Triantafyllou K, Viazis N, Vlahogiannakos J. Sedation in digestive endoscopy: the Athens international position statements. Aliment Pharmacol Ther 2010; 32: 425-442 [PMID: 20456310 DOI: 10.1111/j.1365-2036.2010.04352.x]
9. Hazeldine S, Fritsch L, Forbes G. Predicting patient tolerance of endoscopy with conscious sedation. Scand J Gastroenterol 2010; 45: 1248-1254 [PMID: 20560818 DOI: 10.3109/00355552.2010.497939]
10. Rattan S, Goyal RK. Identification and localization of opioid receptors in the opossum lower esophageal sphincter. J Pharmacol Exp Ther 1983; 224: 391-397 [PMID: 6296399]
11. Hall AW, Moossa AR, Clark J, Cooley GR, Skinner DB. The effects of premedication drugs on the lower esophageal high pressure zone and reflux status of rhesus monkeys and man. Gut 1975; 16: 347-352 [PMID: 237903 DOI: 10.1136/gut.16.5.347]
12. Pandolfini JE. Bravo capsule pH monitoring. Am J Gastroenterol 2005; 100: 8-10 [PMID: 15654773 DOI: 10.1111/j.1365-2036.2005.14185.x]
13. Xiao YL, Lin JK, Cheung TK, Wong NY, Hung IF, Wong BC, Peng S, Wang AJ, Chen MH. Reflux profile of Chinese gastroesophageal reflux disease patients with combined multichannel intraluminal impedance-pH monitoring. J Gastroenterol Hepatol 2009; 24: 1113-1118 [PMID: 19638089 DOI: 10.1111/j.1440-1746.2009.05861.x]
14. MIROMEDEXOR2.0. Available from: URL: http://www.thomsonhc.com/micromedex2/librarian/ND_T/evendonp/ND_PR/evendonp/CS/98802A/ND_AppProduct/evendonp/DELPHICHIOLYSEDYNC08073B/ND_PG/evendonp/ND_B/evendonp/ND_P/evendonp/PACTION1d/evendonp/DispDrugHgDocument/docId=0512&contentSetId=31&type=Meperidine_Hydrochloride&serviceTitle=Meperidine_Hydrochloride&tid=pharmacokineticsSection
15. MIROMEDEXOR2.0. Available from: URL: http://www.thomsonhc.com/micromedex2/librarian/ND_T/evendonp/ND_PR/evendonp/CS/22EIDA/ND_AppProduct/evendonp/DELPHICHIOLYSEDYNC08073B/ND_PG/evendonp/ND_B/evendonp/ND_P/evendonp/PACTION1d/evendonp/DispDrugHgDocument/docId=375025&contentSetId=100&type=Midazolam_Hydrochloride&serviceTitle=Midazolam_Hydrochloride&tid=mechanismOfActionPharmacokineti
Belafsky PC, Postma GN, Koufman JA. Validity and reliability of the reflux symptom index (RSI). J Voice 2002; 16: 274-277 [PMID: 12150380 DOI: 10.1016/S0892-1997(02)00097-8]

Belafsky PC, Postma GN, Koufman JA. The validity and reliability of the reflux finding score (RFS). Laryngoscope 2001; 111: 1313-1317 [PMID: 11568561 DOI: 10.1097/00005537-200108000-00001]

Belafsky PC, Postma GN, Koufman JA. The validity and reliability of the reflux finding score (RFS). Laryngoscope 2001; 111: 1313-1317 [PMID: 11568561 DOI: 10.1097/00005537-200108000-00001]

Belafsky PC, Postma GN, Koufman JA. The validity and reliability of the reflux finding score (RFS). Laryngoscope 2001; 111: 1313-1317 [PMID: 11568561 DOI: 10.1097/00005537-200108000-00001]

Lazarescu A, Sifrim D. Ambulatory monitoring of GERD: current technology. Gastroenterol Clin North Am 2008; 37: 793-805, viii [PMID: 19028318 DOI: 10.1016/j.gtc.2008.09.006]

Bechtold ML, Holly JS, Thaler K, Marshall JB. Bravo (wireless) ambulatory esophageal pH monitoring: how do day 1 and day 2 results compare? World J Gastroenterol 2007; 13: 4091-4095 [PMID: 17696227]

Bhat YM, McGrath KM, Bielefeldt K. Wireless esophageal pH monitoring: new technique means new questions. J Clin Gastroenterol 2006; 40: 116-121 [PMID: 16394871 DOI: 10.1097/01.cmg.0000196188.57543.75]

Korrapati V, Babich JP, Balani A, Grendell JH, Kongara KR. Does deep sedation impact the results of 48 hours catheterless pH testing? World J Gastroenterol 2011; 17: 1304-1307 [PMID: 21455329 DOI: 10.3748/wjg.v17.i10.1304]

Pandolfino JE, Richter JE, Ours T, Guardino JM, Chapman J, Kahrilas PJ. Ambulatory esophageal pH monitoring using a wireless system. Am J Gastroenterol 2003; 98: 740-749 [PMID: 12738450 DOI: 10.1111/j.1572-0241.2003.07398.x]

Prakash C, Clouse RE. Value of extended recording time with wireless pH monitoring in evaluating gastroesophageal reflux disease. Clin Gastroenterol Hepatol 2005; 3: 329-334 [PMID: 15822037 DOI: 10.1016/S1542-3565(05)00021-2]

Ayazi S, Hagen JA, Zehetner J, Banki F, Augustin F, Ayazi A, DeMeester SR, Oh DS, Sohn HJ, Lipham JC, DeMeester TR. Day-to-day discrepancy in Bravo pH monitoring is related to the degree of deterioration of the lower esophageal sphincter and severity of reflux disease. Surg Endosc 2011; 25: 2219-2223 [PMID: 21359906 DOI: 10.1007/s00464-010-1529-5]

Koufman JA. Laryngopharyngeal reflux is different from classic gastroesophageal reflux disease. Ear Nose Throat J 2002; 81: 7-9 [PMID: 12353431]

P- Reviewer Sivandzadeh GR S- Editor Gou SX L- Editor A E- Editor Zhang DN