Heart failure in the last year: progress and perspective

Daniela Tomasoni1,2, Marianna Adamo1,2, Markus S. Anker3,4,5,6, Stephan von Haehling7,8, Andrew J. S. Coats9 and Marco Metra1,2*

1Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy; 2Cardiology and Cardiac Catheterization Laboratory, Cardio-thoracic Department, Civil Hospitals, Brescia, Italy; 3Division of Cardiology and Metabolism, Department of Cardiology (IVK), Charité—University Medicine Berlin, Berlin, Germany; 4Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany; 5German Centre for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany; 6Department of Cardiology (CBF), Charité–University Medicine Berlin, Berlin, Germany; 7Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany; 8German Centre for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany; 9Centre for Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy

Abstract

Research about heart failure (HF) has made major progress in the last years. We give here an update on the most recent findings. Landmark trials have established new treatments for HF with reduced ejection fraction. Sacubitril/valsartan was superior to enalapril in PARADIGM-HF trial, and its initiation during hospitalization for acute HF or early after discharge can now be considered. More recently, new therapeutic pathways have been developed. In the DAPA-HF and EMPEROR-Reduced trials, dapagliflozin and empagliflozin reduced the risk of the primary composite endpoint, compared with placebo [hazard ratio (HR) 0.74; 95% confidence interval (CI) 0.65–0.85; P < 0.001 and HR 0.75; 95% CI 0.65–0.86; P < 0.001, respectively]. Second, vericiguat, an oral soluble guanylate cyclase stimulator, reduced the composite endpoint of cardiovascular death or HF hospitalization vs. placebo (HR 0.90; 95% CI 0.82–0.98; P = 0.02). On the other hand, both the diagnosis and treatment of HF with preserved ejection fraction, as well as management of advanced HF and acute HF, remain challenging. A better phenotyping of patients with HF would be helpful for prognostic stratification and treatment selection. Further aspects, such as the use of devices, treatment of arrhythmias, and percutaneous treatment of valvular heart disease in patients with HF, are also discussed and reviewed in this article.

Keywords Heart failure; Acute heart failure; HfpEF; HFrEF; Diagnosis; Treatment

Received: 6 November 2020; Accepted: 11 November 2020
*Correspondence to: Marco Metra, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Piazzale Spedali Civili 1, Brescia 25123, Italy. Tel: 030 307221; Fax: 030 3700359. Email: metramarco@libero.it

Introduction

Heart failure (HF) is a major health and economic burden worldwide.1–5 Because mortality remains high and the quality of life is poor, it is an area of active research.6–10 In this article, we update recent published data and findings.

Epidemiology: geographic and temporal trends

Data concerning the epidemiology of HF remain insufficient.11–13 The Heart Failure Association (HFA) Atlas is a novel European HF data set with a major aim to provide information about HF epidemiology, resource, and reimbursement policies for HF management.14

In a recent meta-analysis, Jones et al. presented long-term outcomes in 1.5 million ambulatory patients with chronic HF, including 60 non-interventional studies. Despite an improvement in 5 year survival rates between 1970–1979 and 2000–2009 from 29.1% to 59.7%, mortality rates remain unacceptably high and larger than for most types of cancer (Figure 1).11,15 Trends in HF hospitalizations from 2000 to 2014 were examined in Norway. Age-standardized rates of incident HF hospitalization declined on average 1.9% and 1.8% per year for men and women, respectively. Although mortality was reduced, HF rehospitalizations increased.16

Several studies have highlighted the regional heterogeneity of HF populations, patients’ characteristics, and outcomes.
with important implications for global trial design. Dewan et al. compared heart failure with reduced ejection fraction (HFrEF) patients enrolled in different continents in two large trials: Prospective comparison of angiotensin receptor neprilysin inhibitors (ARNI) with angiotensin-converting enzyme inhibitors to Determine Impact on Global Mortality and morbidity in HF (PARADIGM-HF) and Aliskiren Trial to Minimize OutcomeS in Patients with HEart failuRE (ATMOSPHERE). They found that Asian patients were younger (55.0–63.9 years) than those in Western Europe (67.9 years) and North America (66.6 years). The adjusted risk of cardiovascular (CV) death was higher in many Asian countries, except Japan. Using Western Europe as the reference group, the adjusted hazard ratio (HR) for China, India, Thailand, and Japan was 1.89 (1.58–2.27), 1.76 (1.49–2.09), 1.87 (1.18–2.96), and 0.77 (0.53–1.12), respectively.

Prospective multinational data from Asia showed that heart failure with preserved ejection fraction (HFP EF) affects relatively young patients with high prevalence of co-morbidities, most commonly hypertension, anaemia, chronic kidney disease, diabetes, coronary heart disease, and atrial fibrillation (AF). Gender may also impact these international differences in HFrEF. Similar risk factors for incident HF were reported in the UK population. Novel risk factors for worse status continue to be discovered, including nutritional deficiencies even in the developed world.

Because outcomes are different worldwide, designing a risk prediction model remains challenging and might underestimate or overestimate mortality in some countries.

Specific phenotypes

Among the specific causes of HF, cardiomyopathies are a heterogeneous group of heart muscle diseases. Current knowledge regarding the incidence and prevalence of cardiomyopathies and HF has been summarized in a recent position paper by the HFA of the European Society of Cardiology (ESC). Genetic phenotyping of cardiomyopathies is helpful to understand the clinical course of the disease and to address aetiology-based therapy. Desmoglein-2 mutation carriers were found to be at high risk of end-stage HF compared with plakophilin-2 mutation carriers in arrhythmogenic right ventricular (RV) cardiomyopathy.

A specific phenotype of HF is that caused by amyloidosis. Cardiac amyloidosis is a peculiar cardiomyopathy, characterized by extracellular deposition of misfolded proteins that leads to increased biventricular wall thickness and increased myocardial stiffness. Different types of protein deposition cause different types of amyloidosis: light-chain amyloidosis and transthyretin amyloidosis are the most frequent, and the transthyretin stabilizer tafamidis has recently been introduced to improve the prognosis of affected patients. Amyloidosis may be a major cause of severe symptoms and poor outcomes. Transthyretin amyloidosis is an underdiagnosed cause of HF, especially in HFP EF, hypertrophic or restrictive cardiomyopathy, and aortic stenosis. Compared with wild-type transthyretin amyloidosis, transthyretin-related hereditary amyloidosis more often affects men and is characterized by an early onset with...
concomitant neurological involvement. Such patients need to be screened, and specific treatments can be considered.

Much recent interest has also focused on other cardiomyopathies including peripartum cardiomyopathy.

Co-morbidities

Co-morbidities play a major role in the clinical presentation and outcomes of HF. More than 70% of patients with HF are burdened by co-morbidities, and they have an independent effect on mortality.

Type 2 diabetes mellitus confers a greater risk of new onset HF, HF rehospitalization, and CV and all-cause mortality, particularly when patients require insulin treatment and/or have concomitant conditions.

Further common co-morbidities associated with HF are chronic kidney disease, chronic obstructive pulmonary disease, central nervous system abnormalities, sleep disordered breathing, iron deficiency, cancer, cachexia, muscle wasting (sarcopenia), and frailty. The prevalence of frailty is increased in HF and is associated with worse outcome. Its relation with outcome is independent from other variables in most of the studies. Frailty seems to be more common in HFpEF patients than in HFrEF due to the greater burden in cardiac and non-cardiac co-morbidities in the second condition. Recently, a new Frailty Score was developed by the HFA. It considers four main domains: clinical, physical–functional, cognitive–psychological, and social. Each domain covers different variables, including co-morbidities (clinical domain); cognitive impairment and mood disturbances, such as depression (cognitive–psychological); physical impairment, sarcopenia, or cachexia (functional); and isolation or the absence of a caregiver (social). This score should identify high-risk patients (Figure 2). The prognostic role of social and economic factors has been shown in recent studies, and also, sex differences are important to consider in the treatment of patients.

Heart failure and cancer

There is a complex and intriguing relationship between HF and cancer. On one hand, patients with HF have a higher occurrence of malignancy due to a combination of underlying shared mechanisms and risk factors. On the other hand, cancer patients frequently develop HF, due to cardiotoxicity. In breast cancer patients, increased levels of N-terminal pro B-type natriuretic peptide (NT-proBNP) and impaired global longitudinal strain (GLS) were found in 34% and 23% of the patients, respectively.

Figure 2 The four main domains—clinical, physical–functional, cognitive–psychological, and social—defining Heart Failure Association Frailty Score. Reversible and/or treatable variables are identified by asterisks. ADL, activities of daily living; HF, heart failure; IADL, instrumental activities of daily living. From Vitale et al.

ESC Heart Failure 2020; 7: 3505–3530
DOI: 10.1002/ehf2.13124
GLS and left ventricular ejection fraction (LVEF) declined with increasing cumulative anthracycline dose.94 Both left ventricular (LV) and RV GLS impairment predicted cardiotoxicity also in patients receiving trastuzumab.95 Also, plasma troponin levels may identify patients at higher risk of CV complications.96 In a recent experimental model, the protective effect of phenylalanine-butyramide against doxorubicin-induced cardiotoxicity has been shown.97

Diagnosis and prognosis

New scores and risk prediction models are continuously developed to stratify risk in HF patients.98–101

Clinical signs

Clinical signs have important prognostic value. Low systolic blood pressure and elevated heart rate are associated with poorer outcomes.102,103 The role of heart rate is controversial in patients with concomitant AF. No relation with outcomes was shown in one meta-analysis.104 A study by Sartipy et al., including HFrEF patients from the Swedish Heart Failure Registry, showed that in those with concomitant AF, higher heart rates were associated with poorer outcomes at short term (1 year) but had no prognostic value in the long term.105

Biomarkers

Plasma levels of natriuretic peptides (NPs) are related with LV wall stress and are surrogates for intracardiac filling pressures. They are useful to discriminate HF from non-cardiac breathlessness in patients presenting to the emergency department. Lower levels of NPs have a very high negative predictive value for the diagnosis of HF. In patients with chronic HF, NPs may be persistently elevated, and an increase of 100% or more may suggest an acute decompensation.106,107 Moreover, sex and several co-morbidities may influence NP levels, requiring adjusted cut-off: for instance, obese patients have lower values of NT-proBNP.108 NPs, along with troponin, are the most useful biomarkers to predict outcomes in both chronic and acute HF to date.109–112 NT-proBNP is also predictive for non-CV death.113 The role of mid-regional proatrial natriuretic peptide has been recently investigated not only in the acute setting but also in chronic HF, and it has a diagnostic value similar to NT-proBNP.114

An analysis of the Aliskiren Trial on Acute Heart Failure Outcome (ASTRONAUT) failed to show a role of plasma renin activity for the selection of patients with the highest likelihood to respond to aliskiren, even if it has a negative prognostic value.115,116 In PARADIGM-HF, elevated levels of growth factor 15 were associated with mortality and CV outcomes, though they were not changed by assigned treatment.117

Given the central role of inflammation in the pathophysiology of HF, pro-inflammatory cytokines, including interleukin 6 (IL-6), raised interest in the scientific community.118–121 Over 50% of the patients with HFrEF in A systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure (BIOSTAT-CHF) had elevated IL-6 levels, associated with iron deficiency, AF, and poorer clinical outcome. IL-6 could become a potential therapeutic target, despite trials targeting another marker of inflammation, tumour necrosis factor alpha, were largely unsuccessful.122

Circulating microRNAs continue to be of major interest. Different levels of plasma microRNAs could help in discriminating the aetiology behind HF (ischaemic vs. non-ischaemic).123 Such levels might change after treatment and could represent a tool to monitor patients’ clinical status, although evidence is lacking and further research is needed.124–126

There is also increasing interest in biomarkers that may simultaneously be markers, disease process mediators, and therapeutic targets.127–129

The role of imaging, exercise testing, and invasive haemodynamic measurement

Echocardiography allows the assessment of LV volumes and LVEF as well as an estimate of LV filling pressure, RV size and function, valvular disease, and pulmonary artery pressure.130,131 LV systolic ejection time (SET) is shorter in HF and is an independent predictor of incident HF (HR 1.07; 95% CI 1.02–1.14, per 10 ms decrease).132 Interestingly, a longer SET was associated with improved outcomes among HFrEF but not HFrEF patients. Hence, an increase in SET seems a promising pathway to improve systolic function in these patients.133

Another major area of research regards the left atrium. Left atrial structure and function has been shown to predict outcomes in patients with HF and AF.134 Left atrial strain provided better diagnostic accuracy than conventional echocardiographic measures to discriminate HFrEF from non-cardiac causes of dyspnoea135 and was associated with impaired haemodynamics both at rest and during exercise.136,137

Cardiac magnetic resonance (CMR) may be helpful in tissue characterization, detection, and quantification of myocardial fibrosis and adipose tissue, which are associated with HF development and progression.138,139 Myocardial adipose deposition and epicardial fat, both of which can be carefully measured by CMR, may play a major role in the development of HFrEF.138,140
The 6 min walk test is a valid tool to assess exercise capacity. In BIOSTAT-CHF, both a reduced walked distance at baseline and a decline at 9 month follow-up were associated with a worse prognosis and were not modified by the up-titration of drugs. In the more recent PARADIGM-HF trial, sacubitril/valsartan was superior to enalapril in reducing the risks of death and of hospitalization for HF. A similar efficacy was shown in the reduction of recurrent events (Wei, Lin, and Weissfeld HR in the sacubitril/valsartan group 0.79; 95% CI 0.71–0.89). Moreover, treatment with sacubitril/valsartan allows a greater reduction in loop diuretic doses compared with enalapril. Results from the Comparison of Pre- and Post-discharge Initiation of LCZ696 Therapy in HFrEF Patients After an Acute Decompensation Event (TRANSITION) study suggest that initiation of ARNI in HFrEF patients stabilized after an acute HF event, either in hospital or shortly after discharge, is feasible. De novo HFrEF patients had also major benefits compared with those with prior diagnosis, showing faster and greater decreases in NT-proBNP and high-sensitivity troponin T and lower rates of HF and all-cause rehospitalization.

In the ESC-EORP-HFA Heart Failure Long-Term Registry, 84% of outpatients were eligible for sacubitril/valsartan based on European Medicines Agency/Food and Drug Administration label, but only 12–28% met the criteria used in guidelines. Data from Germany showed a still insufficient rate of initiation and dose up-titration of this agent. Reasons behind this under-prescription must be explored to ensure guideline-directed medical therapy (GDMT). Indeed, physicians and patients’ adherence to GDMT is associated with improved outcomes over both the short term and longer term. Many factors, including older age, hypotension, and impaired renal function, may contribute to underuse of GDMT. A slow titration of ARNI is associated with better treatment success also in patients with slow systolic blood pressure. In EMPHASIS-HF (Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure), renal function did not influence beneficial effects of eplerenone, even if patients with impaired renal function were more susceptible to adverse events (hyperkalaemia and renal failure events) and drug discontinuation. Hyperkalaemia represents another limiting factor in the prescription of renin-angiotensin–aldosterone system inhibitors. Novel potassium-lowering agents, such as patiromer and sodium zirconium cyclosilicate, may be helpful in achieving optimization of therapy, but further studies are needed.

Medical treatment of heart failure with reduced ejection fraction

Neurohormonal antagonists

Neurohormonal antagonists, including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, and mineralocorticoid receptor antagonists, play a pivotal role in the treatment of HFrEF, improving the clinical course of the disease. In the more recent PARADIGM-HF trial, sacubitril/valsartan was superior to enalapril in reducing the risks of death and of hospitalization for HF. A similar efficacy was shown in the reduction of recurrent events (Wei, Lin, and Weissfeld HR in the sacubitril/valsartan group 0.79; 95% CI 0.71–0.89). Moreover, treatment with sacubitril/valsartan allows a greater reduction in loop diuretic doses compared with enalapril. Results from the Comparison of Pre- and Post-discharge Initiation of LCZ696 Therapy in HFrEF Patients After an Acute Decompensation Event (TRANSITION) study suggest that initiation of ARNI in HFrEF patients stabilized after an acute HF event, either in hospital or shortly after discharge, is feasible. De novo HFrEF patients had also major benefits compared with those with prior diagnosis, showing faster and greater decreases in NT-proBNP and high-sensitivity troponin T and lower rates of HF and all-cause rehospitalization.

Sodium–glucose co-transporter 2 inhibitors

In the last years, major advances occurred concerning antidiabetic drugs and CV risk, and a new pathway of HF treatment—different from the neurohormonal one—has been opened (Figure 3). Sodium–glucose co-transporter 2 (SGLT-2) inhibitors—empagliflozin, canagliflozin, and dapagliflozin—have consistently shown a reduced risk of HF hospitalization or CV death in diabetic patients regardless of baseline CV disease and previous history of HF. Dalogliflozin And Prevention of Adverse outcome in Heart Failure (DAPA-HF) is the first trial proving a significant benefit of an SGLT-2 inhibitor—dapagliflozin—with a reduction in the risk of the composite endpoint of CV death or worsening HF (hospitalization or an urgent visit requiring intravenous therapy for HF) in HFrEF patients with or without diabetes (HR 0.74; 95% CI 0.65–0.85). Each of the three components of the composite outcome was less frequent in the dapagliflozin group. The baseline characteristics of DAPA-HF patients were similar to those
in contemporary HFrEF registries and trials.174 The Empagliflozin Outcome Trial in Patients with Chronic Heart Failure and a Reduced Ejection Fraction (EMPEROR-Reduced) included patients with a more severe LV systolic dysfunction, higher levels of NPs, and lower estimated glomerular filtration rate, as compared with the patients in the DAPA-HF trial. Empagliflozin reduced the combined risk for CV death or hospitalization for HF compared with placebo (HR 0.75; 95\% CI 0.66–0.86; \(P < 0.001\)), a difference that was primarily related to a reduction in hospitalization for HF. Indeed, CV death was not significantly reduced probably because EMPEROR-Reduced trial had less statistical power than DAPA-HF (less number of events in a smaller size of the trial and shorter follow-up). The beneficial effects of empagliflozin were consistent in subgroup analyses (diabetes vs. non-diabetes; ARNI treatment vs. no ARNI treatment). Furthermore, empagliflozin was associated with a slower rate of decline in the estimated glomerular filtration rate and with a lower risk of serious renal outcomes. Thus, the EMPEROR-Reduced trial extends the benefits of SGLT-2 inhibitors in stable, more advanced HF population.175,176 In the Effect of Sotagliflozin on Cardiovascular Events in Patients with Type 2 Diabetes Post Worsening Heart Failure (SOLOIST-WHF) trial, sotagliflozin showed beneficial effects in patients with diabetes and recent worsening HF.177 Further studies will assess the efficacy of SGLT-2 inhibitors in other settings (i.e. HFpEF or acute HF).178,179

The mechanisms behind the beneficial effects of SGLT-2 inhibitors are largely unknown. Besides glycosuric and natriuretic effects, empagliflozin seems to have a direct pleiotropic effect on cardiomyocytes. It improves adenosine triphosphate production and myocardium metabolism, diastolic function, and cardiac remodelling and has favourable effects.180–183

Treatment of iron deficiency

Iron deficiency is common in HF patients and is associated with poor exercise capacity, directly affecting mitochondrial respiration and the function of skeletal muscle and cardiomyocytes.184–188 Indeed, cellular oxidative metabolism relies largely on iron availability in skeletal muscle.189–192 Iron depletion is also associated with reduced quality of life and survival. Treatment with intravenous ferric carboxymaltose (FCM) has been shown to lead to improvements of functional capacity, symptoms, and quality of life in chronic HF patients.193 A recent meta-analysis including four major randomized trials showed a reduction of HF hospitalizations and CV mortality in iron deficiency patients treated with FCM.194 AFFIRM-AHF (Study to Compare Ferric Carboxymaltose with Placebo in Patients with Acute Heart Failure and Iron Deficiency) evaluated the effects of intravenous FCM in patients hospitalized for acute heart failure.195 It showed that treatment with FCM was safe and reduced the risk of HF hospitalisations.196

Other options

Vericiguat Global Study in Subjects with Heart Failure with Reduced Ejection Fraction (VICTORIA) was a randomized, placebo-controlled trial evaluating safety and efficacy of vericiguat in HFrEF patients with recent worsening HF.
Vericiguat was superior to placebo in the reduction of composite endpoint of CV death or HF hospitalization (HR 0.90; 95% CI 0.82–0.98; P = 0.02). Baseline characteristics of VICTORIA-enrolled subjects showed a high-risk population when compared with PARADIGM-HF. The median MAGGIC (Meta-Analysis Global Group in Chronic Heart Failure) risk score was 23 (interquartile range 18–27) in VICTORIA vs. 20 (interquartile range 16–24) in PARADIGM-HF trial. In the GALACTIC-HF (Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure) trial, the selective cardiac myosin activator omecamtiv mecarbil showed a reduction in the primary composite endpoint of a first HF event or death from CV causes.

Neladenoson bialanate, a partial adenosine A1 receptor agonist, failed to demonstrate favourable changes in NT-proBNP, LVEF, high-sensitivity troponin T, or CV mortality and HF hospitalization in PANTHEON trial. On the other hand, a decrease in renal function was observed. Standard treatment of advanced HF remains unsatisfactory. Positive inotropes may be used as bridge strategy and palliative care, while no positive inotrope is currently approved for long-term treatment in chronic HF. However, intermittent administration of levosimendan in ambulatory patients has been associated with reduction in NT-proBNP levels and HF hospitalization. The DIGIT-HF (DIGitoxin to Improve outcomes in patients with advanced chronic Heart Failure) trial has been designed to demonstrate a role of digitoxin on the top of standard care in improving mortality and morbidity in advanced HFrEF.

Devices

Cardiac resynchronization therapy

Cardiac resynchronization therapy (CRT) is less frequently used than expected, even when indicated by guidelines.

In an individual patient data meta-analysis of five randomized controlled trials, QRS duration was the only independent predictor of CRT benefit on mortality. Along with QRS duration, lower height but not sex played a role in the composite endpoint of all-cause mortality or first hospitalization for HF. In another study, body mass index was associated with outcome: overweight or obese patients receiving CRT with defibrillator were at a lower risk of death compared with underweight subjects.

According to an analysis from the ESC CRT Survey II, the benefit and complication rates from CRT upgrading, in implantable cardioverter defibrillator (ICD) or pacemaker carriers, are the same as for de novo CRT patients. Therefore, patients with a pacing-induced cardiomyopathy must be closely monitored, and an upgrade to CRT or His bundle pacing device might be considered.

Cardiac resynchronization therapy may be less effective in patients with AF because both atrioventricular (AV) and biventricular resynchronization are required. However, AV junction ablation might represent a safe option: in a small trial, CRT with defibrillator patients with permanent AF, who underwent AV junction ablation, experienced less ICD shocks and a lower incidence of HF hospitalization, compared with patients with AF medical therapy alone.

A study on neonatal rat ventricular cardiomyocytes showed that irregular pacing induces pro-fibrotic signalling with paracrine effects and oxidative stress, eventually leading to a remodelling process. A similar mechanism might be involved in AF-related HF with arrhythmic ventricular contractions and increased morbidity and mortality.

Implantable cardioverter defibrillator

The selection of patients who might benefit from ICD implantation is often challenging. Myocardial infarction survivors with LVEF > 35% burdened by diabetes and/or kidney dysfunction have a high risk of sudden cardiac death (SCD), but the risk of a non-SCD event is even higher, suggesting that the extension of ICD implantation in such patients might not be worthwhile. A combined analysis of four major primary prevention trials in HFrEF patients assessed the effects of ICD implantation in diabetic vs. non-diabetic patients. The use of ICD was associated with a reduced risk of mortality in non-diabetic patients (HR 0.56; 95% CI 0.46–0.67) but not among those with diabetes.

Percutaneous treatment of mitral and tricuspid regurgitation

Transcatheter mitral valve interventions are spreading as treatment options in patients with HF and severe secondary mitral regurgitation. Two randomized controlled trials investigated the prognostic impact of percutaneous edge-to-edge mitral valve repair by MitraClip in HF patients. Percutaneous Repair with the MitraClip Device for Severe Functional/Secondary Mitral Regurgitation (MitraFR) showed no reduction in HF hospitalizations or mortality in patients undergoing MitraClip compared with those receiving conservative management up to 2 year follow-up. On the other hand, Cardiovascular Outcomes Assessment of the MitraClip Percutaneous Therapy for Heart Failure Patients with Functional Mitral Regurgitation (COAPT) demonstrated an impressive reduction in both 2 year HF hospitalizations, which was the primary endpoint, and 2 year all-cause death. Such a discrepancy might be due to the different characteristics of the patients included, suggesting that only carefully selected patients may derive a prognostic benefit from secondary mitral regurgitation.
Further data, coming from observational studies, showed safety and efficacy of MitraClip in improving symptoms and clinical status also in patients with advanced HF, such as those with low ejection fraction (EF) and pulmonary hypertension. Orban et al. showed a significant improvement in New York Heart Association class 6, min walk test distance, and quality of life in 50 patients undergoing percutaneous edge-to-edge repair on the tricuspid valve. Schlotter et al. reported outcomes of 159 patients with severe functional tricuspid regurgitation, who underwent transcatheter tricuspid valve repair. Patients were stratified into four aetiology-based clinical scenarios: patients receiving chronic haemodialysis, patients with significant mitral regurgitation, patients with severe pulmonary hypertension, and patients with a history of AF/flutter. Patients with pulmonary hypertension had the highest rates of the primary composite endpoint (death, HF hospitalization, or reintervention), while the highest mortality rate was observed in haemodialysis patients (33.3%).

Mechanical circulatory support

Left ventricular assist device is a promising option for patients with advanced HF, either as a bridge to transplant or as a lifelong treatment. In a Spanish retrospective study, 291 patients waiting for cardiac transplant received LVAD. They had a better outcome, compared with those undergoing temporary biventricular assist devices or extracorporeal membrane oxygenation as bridge to heart transplantation. LVAD implantation may also favour a recovery of LV function especially when associated with administration of neurohormonal antagonists. Data from the Postgraduate Course in Heart Failure (PCHF)-VAD registry showed a better survival in LVAD patients who also received a cardiac implantable electronic device with a defibrillator component (HR 0.64; 95% CI 0.46–0.91; \(P = 0.012 \)) compared with those who only had LVAD support. Also, exercise training may provide incremental benefits in LVAD carriers. The rationale behind the Exercise training in patients with a LVAD (Ex-VAD) trial is to assess if a 12 week supervised exercise training could improve the quality of life and the functional capacity in LVAD patients. However, among patients with a reduced EF and New York Heart Association Classes III–IV eligible for heart transplantation or LVAD, more than half declines the indication. Infections, as well as bleeding and thrombo-embolic events, are the most common and severe complications of LVAD. The platelet activity state may predict the risk of thrombo-embolic complications after LVAD. LVAD design continues to improve and will be subject to ongoing evaluation.

Telemedicine and disease management

Home telemonitoring is a useful tool for the management of HF patients. TIM-HF2 (Telemedical Interventional Management in Heart Failure II study) trial showed a positive impact of telemedicine on unplanned CV hospitalization and mortality. The HOME-HF study was designed to assess the feasibility and efficacy of BNP home measurement in reduction of HF-related events. It was early interrupted because of slow enrolment, low event rate, and the need of standardize BNP spontaneous fluctuation. The HFA has developed a well-visited tool to assist in patient communication and education, a crucial part of ongoing disease management, which the development of e-health strategies will likely accelerate, as will better mechanisms to enhance dosing choices in guideline-directed HF medication.

Novel perspectives

New therapeutic strategies are emerging for patients with HF of ischaemic aetiology.

BioVentrix Revivent TC System is a transcatheter technique that aims at limiting myocardial scar on the beating heart of HF patients. At 12 month follow-up, symptomatic patients with previous anterior myocardial infarction who received this treatment had an improvement of LV function, symptoms, and quality of life.

The Autologous Mesenchymal Stromal Cell Therapy in Heart Failure (MSC-HF) trial randomized patients with ischaemic HF to receive either intramyocardial injections of bone marrow-derived mesenchymal stromal cells or placebo. At 4 year follow-up, patients experienced improved myocardial function and myocardial mass. The Stem Cell therapy in Ischaemic Non-treatable Cardiac disease (SCIENCE) trial will assess the efficacy and safety of intramyocardial cell therapy of adipose-derived stromal cells from healthy donors (allogeneic donation) in patients with ischaemic HF. Contrast contractility modulation has been shown to have the potential to improve functional capacity, especially in those with HF and mildly reduced LVEF (25–45%).

Central sleep apnoea (CSA) is a predictor of CV morbidity and mortality in HF patients. The Treatment of Predominant Central Sleep Apnoea by Adaptive Servo Ventilation in Patients with Heart Failure (SERVE-HF) trial compared adaptive servo-ventilation and medical therapy in patients with HF and CSA. The primary endpoint, changes in LVEF at 1 year, was similar between the two groups. However, CV mortality was higher in the adaptive servo-ventilation vs. control arm. Furthermore, other endpoints, such as changes in LV dimensions and cardiac biomarkers, were not affected by the adaptive servo-ventilation.
Heart failure with preserved ejection fraction

Clinical phenotypes and pathophysiology

Heart failure with preserved ejection fraction is a heterogeneous syndrome with several clinical manifestations.\(^{251-253}\)

Using a machine learning-based cluster analysis, Segar et al. identified three phenogroups of patients with HFrEF enrolled in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist Trial (TOPCAT) trial. Patients in the first phenogroup had a higher burden of co-morbidities, increased levels of NPs, and LV impairment; the second phenogroup had less co-morbidities but a worst diastolic dysfunction; the third phenogroup had lower levels of NPs, intermediate co-morbidities, and the most favourable diastolic profile. Phenogroup 1 had higher rates of HF rehospitalizations and mortality, when compared with Phenogroup 3. Phenogroups 2 and 3 shared the same risk of mortality. A greater risk of rehospitalization was observed in Phenogroup 2 vs. 3,\(^{254}\) a feature also seen with the increased risk associated with co-morbid pulmonary disease in this syndrome.\(^{255}\)

The pathophysiology of HFrEF remains largely unknown. Coronary microvascular dysfunction might play a central role in the development of HFrEF. It can be equally caused by both endothelium-based and endothelium-independent mechanisms. When the microvascular dysfunction is not endothelium related, patients show a worse diastolic function and prognosis.\(^{256}\)

Another possible mechanism is the systemic and intramyocardial inflammation.\(^{119}\) Obesity and type 2 diabetes mellitus are common in HFrEF patients and often coexist. They both cause inflammation and expansion of epicardial adipose tissue, leading to atrial damage and LV fibrosis/stiffness.\(^{257,258}\) AF often represents the first manifestation of HFrEF and can be a consequence of atrial myopathy.\(^{258}\)

A study by Wu et al. investigated the role of myocardial steatosis in diastolic dysfunction. Intramyocardial fat deposition was measured using CMR in 305 subjects (34 patients with HFrEF, 163 with HFrEF, and 108 non-HF controls). HFrEF patients display a more pronounced intramyocardial fat deposition, when compared with HFrEF patients or controls, leading to diastolic impairment.\(^{119}\) Such phenomenon is—once again—more clear in patients burdened by obesity and metabolic syndrome, in whom adiposity is greater and is associated with myocardial injury and AF.\(^{240}\) Differences between Asia and western countries are also seen in the presentation of HFrEF.\(^{259}\)

Diagnosis and prognosis: a challenge for the medical community

The diagnosis of HFrEF remains challenging. Recently, two independently derived algorithms for the HFrEF diagnosis have been published: the H\(_2\)FPEF score from the Mayo Clinic (Rochester, MN, USA) and the European HFA-PPEF 4-step algorithm.\(^{260,261}\) The American H\(_2\)FPEF score was based on clinical and echocardiographic characteristics and validated with invasive haemodynamic testing as gold standard. It identified six variables as HFrEF predictors: obesity (body mass index > 30 kg/m\(^2\)), AF, age > 60 years, treatment with two or more antihypertensive drugs, E/e' > 9, and pulmonary artery systolic pressure > 35 mmHg. The resultant total H\(_2\)FPEF score ranged from 0 to 9, with the scores ≥2 suggesting a low likelihood and scores ≥6 reflecting a high likelihood of HFrEF. The European HFA-PPEF 4-step algorithm is a new stepwise diagnostic tool. It starts from pretest assessment (based on signs, symptoms, electrocardiographic alterations, and laboratory tests), going through risk stratification with rest imaging, analysing specific functional and morphological echocardiographic parameters. The HFA-PPEF score is the sum of points from functional, morphological, and biomarker domains (2 points for each major criteria and 1 for each minor criteria). A total score ≥5 is considered diagnostic for HFrEF, while a total score <1 determines a very low probability of HFrEF. The intermediate values will need further investigation, with stress echocardiography and invasive haemodynamics. The diagnostic pathway could be finally completed with aetiological workup. Baranadiarán Aizpurua et al. tried to validate the second step of the HFA-PPEF algorithm, based on echocardiographic findings and NPs.\(^{262}\) However, these results might be overestimated due to the high HFrEF case-control ratio and to the low diagnostic support with invasive measurements.
Diagnostic tools aiming to assess tolerance to exercise are mandatory in HFrEF patients. However, co-morbidities could limit exercise capacity. Elderly patients with elevated left atrial pressure and impaired reservoir present an abnormal exercise haemodynamics. The evaluation of left atrial reservoir strain could be helpful to discriminate HFrEF from non-cardiac dyspnoea. In patients who are capable of performing exercise, oxygen consumption trajectory has been suggested as a predictor of disease severity. Estimated plasma volume status has been also proposed as a tool for the prediction of long-term outcome in HFrEF patients.

Treatment: lack of favourable results

Despite the growing impact of HFrEF, there is still no established pharmacological therapy. In the Prospective comparison of ARNI with angiotensin receptor blockers Global Outcomes in HFrEF (PARAGON-HF) trial, sacubitril/valsartan did not reduce the incidence of HF hospitalizations or CV death. However, the subgroup analysis showed that women and patients with lower EF should have a benefit from the treatment.

In obesity-related HFrEF, underlying pathophysiological abnormalities may be related to derangements in beta-adrenergic drive and to increased aldosterone and nephrilin activity. Thus, drugs acting against these pathways could be beneficial.

In patients with HFrEF and diabetes, insulin treatment is associated with poor outcome. Moreover, neither furosemide nor torasemide was associated with effect on myocardial fibrosis in these patients. Given their anti-inflammatory and anti-fibrotic actions, SGLT-2 inhibitors might ameliorate cardiac remodelling also in HFrEF patients. Ongoing trials will assess whether such drugs will be extended to HFrEF.

Novel specific Na+/Ca2+ exchange inhibitor ORM-11035 is able to reduce cardiac remodelling and diastolic dysfunction with no effects on systemic blood pressure in rats. Considering the promising results, future trials are needed to evaluate the feasibility of such treatment also in humans.

Acute heart failure

Epidemiology

Several precipitating factors may lead to acute HF, namely, arrhythmia, respiratory infections, and other non-CV factors. Worsening HF may develop in an outpatient or an inpatient setting, with a similar drastic increase in event rates. The Heart Failure Registry of Patient Outcomes (HERO) study is a prospective, longitudinal multicentre registry including patients hospitalized with acute HF in China. In hospital or 3 day post-discharge mortality was 3.2%. Death or readmission rate from the 4th day post-discharge to first follow-up was 22.4%. In the first 30 days after admission for acute HF, 2% of patients experience SCD or resuscitated SCD or ventricular tachycardia/fibrillation. In an Italian series, the 1 year mortality rate was 20%, with the highest risk of death during the index hospitalization. The admission department seems to play a role in the natural history of HF, with the general medicine department associated with a poor prognosis, probably due to different characteristics of patients (older age and several co-morbidities).

Management

Clinical signs, biomarkers, and imaging are essential in the diagnostic process, in-hospital monitoring, and pre-discharge evaluation of acute HF. The clinical classification of acute HF into four different profiles, defined by the presence of congestion and/or peripheral hypoperfusion, provides information on both early and long-term outcomes. Signs and symptoms of congestion represent the major cause of HF hospitalization both in HFrEF and in HFrEF patients. Clinical residual congestion at discharge was detected in 30.9% of patients in the ESC-EORP-HFA Heart Failure Long-Term Registry, and it was associated with increased 1 year mortality. The Reprieve System, a device that continuously measures urine output and supplies intravenous fluid to maintain fluid balance, may represent a useful tool to control decongestion.

The serial assessment of spot urine sodium predicts effectiveness of decongestion and outcome, as well as decrease in NT-proBNP levels. Higher levels of mid-regional pro-adrenomedullin and its active form, bio-adrenomedullin, were observed in the presence of volume overload and have been proposed as markers of congestion. Mid-regional pro-adrenomedullin and bio-adrenomedullin provide a great accuracy in diagnosis of acute HF and detection of residual congestion. Elevated levels of blood lactate, associated with hypoperfusion, and markers of multi-organ injury/dysfunction are predictors of poorer outcomes. Worsening renal function is only associated with adverse events in patients without decreased BNP. We are seeing the importance of assessing adequacy of the decongestive therapies in acute HF.

Echocardiography estimates LV and RV filling pressure. Higher inferior vena cava diameter and lower jugular venous ratio are independently associated with poorer outcome also in outpatients. Lung ultrasound, through the assessment of B-lines, ensures an accurate tool for differential diagnosis of acute dyspnoea, has a prognostic value, and has been proposed to guide diuretic treatment in outpatients with benefits. A recent expert consensus aims at...
standardizing approach in image acquisition methods and B-line quantification.

Medical therapy

Treatment of acute HF may be divided into three phases—initial stabilization, after initial stabilization, and pre-discharge and post-discharge period. Decongestion is the main goal of acute HF therapy. Loop diuretics are the first choice in order to achieve euvoelma, and diuretic resistance is associated with poorer outcomes. In patients at high risk for diuretic resistance, addition of acetazolamide may be useful.

Treatment of the acute phase failed to improve outcomes so far. Vasodilators seem to be neutral, although an excessive pressure drop is associated with kidney impairment and worse outcome. Inotropes and/or vasopressors are associated with an increased risk of all-cause death. Despite the neutral results of the second RELAX in Acute Heart Failure (RELAX-AHF-2) trial, a recent meta-analysis including serelaxin trials has shown that serelaxin reduces the risk of 5 day worsening HF and has beneficial effects on markers of renal function and cardiac damage. Furthermore, in the RELAX-AHF-EU study, serelaxin showed a reduction of worsening HF and all-cause death through Day 5 when added to standard of care therapy. Ongoing studies will assess tolerability and efficacy of BMS-986231, a novel nitroxyl donor with potential benefits on haemodynamics.
Meanwhile, the optimization of oral treatment in the pre-discharge and post-discharge period plays a pivotal role in improving survival. Early initiation of sacubitril/valsartan before or shortly after discharge is safe and beneficial. The STRONG-HF (Safety, Tolerability and efficacy of Rapid Optimization, helped by NT-proBNP and GDF-15, of Heart Failure therapies) trial will assess whether fast up-titration of GDMT can be a safe and feasible option in patients discharged after acute HF.

Conclusions

We have summarized the most recent findings in HF discussing many aspects such as epidemiology, diagnosis, co-morbidities, and treatment. Despite improvements in treatment of HFrEF, HF is still a major cause of poor quality of life, morbidity, and mortality worldwide. However, major advances have been achieved recently in the management of HFrEF with the discovery of new therapeutic pathways, namely, SGLT-2 inhibitors, and with better treatment of co-morbidities. New devices are emerging for specific conditions such as sleep apnoea, and percutaneous treatment of mitral and tricuspid regurgitation may have a major impact on symptoms and clinical outcomes. HFrEF remains an unsolved issue, particularly in terms of diagnosis and treatment. Better patient phenotyping seems the next promising step. However, this hypothesis needs testing in properly designed clinical studies.

Conflict of interest

D.T. and M.A. declare that they have no conflict of interest. M.S.A. has received personal fees from Servier, outside the submitted work. SvH has been a paid consultant for and/or received honoraria payments from Bayer, Boehringer Ingelheim, BRAHMS, Chugai, Grünenthal, Helsinn, Hexal, Novartis, Pharmacosmos, Respicardia, Roche, Sorin, and Vifor. SvH owns shares in Actimed. SvH reports research support from IMI and the German Center for Cardiovascular Research (DZHK). M.M. has received in the last 3 years personal honoraria from Abbott Vascular, Actelion, Amgen, AstraZeneca, Bayer, LivaNova, Servier, Vifor Pharma, and Windtree Therapeutics for participation to trials’ committees or advisory boards and speaker honoraria from Abbott Vascular, Edwards Therapeutics, and Servier.

References

1. Bundgaard JS, Mogensen UM, Christensen S, Ploug U, Raarth R, Ibsen R, Kjellberg J, Kober L. The economic burden of heart failure in Denmark from 1998 to 2016. Eur J Heart Fail 2019; 21: 1526–1531.
2. Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev 2017; 3: 7–11.
3. Cook C, Cole G, Asaria P, Jabbour R, Francis DP. The annual global economic burden of heart failure. Int J Cardiol 2014; 171: 368–376.
4. Lesyk W, Kriza C, Kolominsky-Rabas P. Cost-of-illness studies in heart failure: a systematic review 2004–2016. BMC Cardiovasc Disord 2016; 18: 74.
5. Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, Nodari S, Lam CSP, Sato N, Shah AN, Gheorghiade M. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 2014; 63: 1123–1133.
6. Gallagher AM, Lucas R, Cowie MR. Assessing health-related quality of life in heart failure patients attending an outpatient clinic: a pragmatic approach. ESC Heart Fail 2019; 6: 3–9.
7. Ketelsdottir A, Ingadottir B, Jaarsma T. Self-reported health and quality of life outcomes of heart failure patients in the aftermath of a national economic crisis: a cross-sectional study. ESC Heart Fail 2019; 6: 111–121.
8. de Leon CF, Grady KL, Eaton C, Rucker Whitaker C, Janssen I, Calvin J, Powell LH. Quality of life in a diverse population of patients with heart failure: BASELINE FINDINGS FROM THE HEART FAILURE ADHERENCE AND RETENTION TRIAL (HART). J Cardiopulm Rehabil Prev 2009; 29: 171–178.
9. Dokainish H, Teo K, Zhu J, Ray A, AlHabib KF, ELSayed A, Palles-Villaneuva L, Lopez-Jaramillo P, Karaye K, Yusoff K, Orlandini A, Sliva K, Mondo C, Lanas F, Prabhakaran D, Badr A, Elmaghawry M, Damasceno A, Tibazarwa K, Kelley-Cote E, Balasubramanian K, Islam S, Yacoub MH, Huffman MD, Harkness K, Grinvalds A, McKelvie R, Bangdiwala SI, Yusuf S, INTER-CHF Investigators. Global mortality variations in patients with heart failure: results from the International Congestive Heart Failure (INTER-CHF) prospective cohort study. Lancet Glob Health 2017; 5: e665–e672.
10. Nieminen MS, Dickstein K, Fonseca C, Serrano JM, Parissis J, Fedele F, Wikström G, Agostoni P, Atar S, Baholi L, Brito D, Colet JC, Edes I, Gómez Mesa JE, Gorjup V, Garza EH, González Juanatey JR, Karanovic N, Karavidas A, Katsytadze I, Kivikko M, Makshepilshvili S, Merkely B, Morandi F, Novoa A, Oliva F, Ostadal P, Pereira-Barretto A, Pollesello P, Rudiger A, Schwinger RH, Wieser M, Yavelov I, Zymilińska R. The patient perspective: quality of life in advanced heart failure with frequent hospitalisations. Int J Cardiol 2015; 191: 256–264.
11. Jones NR, Roalf IE, Adoki I, Hobbs FDR, Taylor CJ. Survival of patients with chronic heart failure in the community: a systematic review and meta-analysis. Eur J Heart Fail 2019; 21: 1306–1325.
12. Tromp J, Teng TH, Tay WT, Hung CL, Narasimhan C, Shimizu W, Park SW, Liew HB, Ngarumulos T, Reyes EB, Siwanto BB, Yu CM, Zhang S, Yap J, MacDonald M, Ling LH, Leineweber K, Richards AM, Zile MR, Anand IS, Lam CSP, Investigators ASIAN-HF. Heart failure with preserved ejection fraction in Asia. Eur J Heart Fail 2019; 21: 23–36.

ESC Heart Failure 2020; 7: 3505–3530
DOI: 10.1002/ehf2.13124
Heart failure in the last year: progress and perspective

13. Hao G, Wang X, Chen Z, Zhang L, Zhang Y, Wei B, Zheng C, Kang Y, Jiang L, Zhu Z, Zhang J, Wang Z, Gao R, China Hypertension Survey Investigators. Prevalence of heart failure and left ventricular dysfunction in China: the China Hypertension Survey. 2012-2015. *Eur J Heart Fail* 2019; 21: 1329–1337.

14. Seferović PM, Jankovska E, Coats AJS, Maggioni AP, Lopatin Y, Milinković I, Polovina M, Lainščak M, Timmis A, Huculeci R, Vardas P, Task Force of Cardiology leadership, developed in collaboration with the National Heart Failure Societies of the ESC member ESC affiliated member countries. The Heart Failure Association Atlas: rationale, objectives, and methods. *Eur J Heart Fail* 2020; 22: 638–645.

15. Mamas MA, Sperrin M, Watson MC, Coutts A, Wilde K, Burton C, Kadam UT, Kwok CS, Clark AB, Murchie P, Buchan I, Hannafor FR, Myint PK. Do patients have worse outcomes in heart failure than in cancer? A primary care-based cohort study with 10-year follow-up in Scotland. *Eur J Heart Fail* 2017; 19: 1095–1104.

16. Sulo G, Iglund J, Överland S, Egeland GM, Roth GA, Vollset SE, Tell GS. Heart failure in Norway, 2000–2014: analysis of incidental, total and readmis- sion rates using data from the Cardiovascular Disease in Norway (CVDNOR) Project. *Eur J Heart Fail* 2020; 22: 241–248.

17. Tromp J, Ferreira JP, Janwanishstaporn S, Shah M, Greenberg B, Zannad F, Lam CSP. Heart failure around the world. *CSP. Heart failure around the world. 2019; 21: 1104–1105.

18. Uijl A, Koudstaal S, Dijkstra B, Denaxas S, Groenwold RHH, Banerjee A, Hoes AW, Hemingway H, Asselbergs FW. Risk factors for incident heart failure in age- and sex-specific strata: a population-based cohort using linked electronic health records. *Eur J Heart Fail* 2019; 21: 1197–1206.

19. Bomer N, Grote Beverborg N, Hoes MF, Streng KW, Vermeer M, Dokter MM, Uijl DM, Janker SD, Cleland JGF, Hillege HL, Lang CC, Ng LL, Samani NJ, Tromp J, van Veldhuisen DJ, Touw DJ, Voors AA, van der Meer P. Selenium and outcome in heart failure. *Eur J Heart Fail* 2019; 22: 1415–1423.

20. Nagai T, Sundaram V, Shoaib A, Shiraiya Y, Kohsaka S, Rothkie NJ, Piper S, McDonagh TA, Hardman SMC, Goda A, Mizuno A, Sawano M, Rigby AS, Quint JK, Yoshikawa T, Clark AL, Anzai T, Cleland JGF. Validation of U.S. mortality prediction models for hospitalized heart failure in the United Kingdom and Japan. *Eur J Heart Fail* 2019; 21: 1179–1190.

21. Doleeb S, Kratz A, Salter M, Thohan V. Strong muscles, weak heart: testosteron-induced cardiomyopathy. *ESC Heart Fail* 2019; 6: 1000–1004.

22. Nagao K, Inada T, Yamada A, Kajitani K, Shimamura K, Yukawa H, Aida K, Sowa N, Nishiga M, Horie T, Makita T, Oso K, Tanaka M, Circumferential wall thickening of colla- gen types I, III, and IV in patients with dilated cardiomyopathy: relationships with myocardial collagen expression. *ESC Heart Fail* 2018; 5: 1044–1051.

23. Jääskeläinen V, Pappagopu J, Raivo J, Kuuласмас T, Heliö T, Asial-Setälä K, Kaartinen M, Ilveskoskii E, Vanninen S, Hämäläinen I, Melin J, Kokkonen J, Nieminen MS, FiHCM Study Group, Laasko M, Kuusisto J. Genetic basis and outcome in a nationwide study of Finnish patients with hypertrophic cardiomypathy. *ESC Heart Fail* 2019; 6: 436–445.

24. Bocchi EA, Rassi S, Guimarães GV, Argentina, Chile, and Brazil SHIFT In- vestigators. Safety profile and efficacy of ivabradine in heart failure due to Chagas heart disease: a post hoc analy- sis of the SHIFT-Trial. *ESC Heart Fail* 2018; 5: 249–256.

25. Seferović PM, Polovina M, Bauersachs J, Arad M, Gal TB, Lund LH, Felix SB, Arbustini E, Cafforio ALP, Farmakis D, Filipatos GS, Glaftos E, Kanjui V, Klijnjan G, Limongelli G, Linhart A, Lyon AR, Maksimović R, Milečić D, Milinkovic I, Noutsias M, Oto A, Oto Ő, Pavlovic SU, Piepoli MF, Ristić AD, Rosano GMC, Seggewiss H, Stramotto S, Thiene G, Tsatsopoulou A, Safi F, Sheldon A, Sifrim D, Audefroy Y, Bodmer L, Bopp S, Stančík P, Tantchev S, Tandri H, te Riele A, Thiene G, Tsatsopoulou A, van Tintelen JP. Definition and treatment of arrhythmogenic cardiomyopathy: an updated expert panel report. *Eur J Heart Fail* 2019; 21: 955–964.

26. Czepłuch FS, Wollnik B, Hasenfuß G. Genetic determinants of heart failure: facts and numbers. *ESC Heart Fail* 2018; 5: 211–217.

27. Hermida A, Fressart V, Hiddens-Lucerf F, Donal E, Probst V, Deharo J, Chevalier P, Klug D, Mansencal N, Delacretaz E, Connay P, Scarni P, Extramiana F, Keller D, Rouanet S, Charron P, Gandjbakhch E. High risk of heart failure among patients with dysmyoglobin-2 mutations compared to plakophilin-2 mutations in ar- rhythmogenic right ventricular cardiomyopathy/dysplasia. *Eur J Heart Fail* 2019; 21: 792–800.

28. Pićlichou K, Basso C. Heart failure in ar- rhythmogenic cardiomyopathy: is phe- notypic variability just a matter of genetics? *Eur J Heart Fail* 2019; 21: 801–802.

29. Yamamoto H, Yokochi T. Transthyretin cardiac amyloidosis: an update on di- agnosis and treatment. *ESC Heart Fail* 2019; 6: 1128–1139.

30. Mints YY, Doros G, Berk JL, Connors LH, Ruberg FL. Features of atrial fibril- lation in wild-type transthyretin cardia- diac amyloidosis: a systematic review and clinical experience. *ESC Heart Fail* 2018; 5: 772–779.

31. Shinjoh Y, Okada A, Morita Y, Hamatani Y, Amano M, Takahama H, Amaki M, Hasegawa T, Ohto-Oko K, Kanzaki H, Ishibashi-Ueda H, Yasuda S, Shimazaki C, Yoshinaga T, Yazaki M, Sekijima Y, Izumi C. Monitoring treatment response to tafamidis by se- native T1 and extracellular volume in transthyretin amyloid cardiomyopa- thy. *ESC Heart Fail* 2019; 6: 232–236.

32. Quarta CC, Kruger JL, Falk RH. Cardiac amyloidosis. *Circulation* 2012; 126: e178–e182.

33. Clemmensen TS, Molgaard H, Sörensen J, Eiskjaerer H, Andersen NF, Møllerkmjer S, Andersen MJ, Tolbod LP, Harms HJ, Poulsen SH. Inotropic myocardial reserve capacity deficiency is the predominant feature of exercise haemodynamics in cardiac amyloidosis. *Eur J Heart Fail* 2017; 19: 1457–1465.

34. Gagliardi C, Perfetto F, Lorenzini M, Ferlini A, Salvi F, Milandri A, Quarta CC, Taborchi G, Bartolini S, Frusconi S, Martone R, Cinelli MM, Foffi S, Hey TM, Eiskjaerer H, Bross P, Mogens J. The clinical outcome of LMNA miss- sense mutations can be associated with the amount of mutated protein in the nuclear envelope. *Eur J Heart Fail* 2018; 20: 1404–1412.

35. Elliott PM, Anastasakis A, Asimaki A, Basso C, Bause B, Brooke MA, Calkins H, Corrado D, Duru F, Green KJ, Judge DP, Kelloi D, Lambiase PD, McKenna WJ, Pilichou K, Protonotarios A, Saffitz JE, Syrris P, Tandri H, et al. Thiene G, Tsatsopoulou A, van Tintelen JP. Definition and treatment of arrhythmogenic cardiomyopathy: an updated expert panel report. *Eur J Heart Fail* 2019; 21: 955–964.
and benefit from surgical revascularization in patients with ischemic cardiomyopathy. *Eur J Heart Fail* 2019; 21: 373–381.

45. Chamberlain AM, St Sauver JL, Gerber Y, Manemann SM, Boyd CM, Dunlay SM, Roxca WA, Finney Rutten LJ, Jung R, Weston SA, Roger VL. Multimorbidity in heart failure: a community perspective. *Am J Med* 2015; 128: 38–45.

46. Cooper LB, Yap J, Tay WT, Teng TK, MacDonald M, Anand IS, Sharma A, O’Connor CM, Kraus WE, Mentz RJ, Lam CS. HF-ACTION and ASIAN-HF Investigators. Multi-ethnic comparisons of diabetes in heart failure with reduced ejection fraction: insights from the HF-ACTION trial and the ASIAN-HF registry. *Eur J Heart Fail* 2018; 20: 1281–1289.

47. Polovina M, Lund LH, Bikik D, Petrovic-Dordevic I, Krjanjac G, Milinkovic I, Veljic I, Piepoli MF, Rosano G, McMillan D, Aslanin M, Seferovic PM. Type 2 diabetes increases the long-term risk of heart failure death: insights from patients with atrial fibrillation. *Eur J Heart Fail* 2020; 22: 113–125.

48. Cosmi F, Shen L, Magnoli M, Abraham WT, Anand IS, Cledan JG, Cohn JN, Cosmi D, de Berardis D, Dickstein K, Franzoni MG, Gullestad L, Jhund PS, Kjekshus J, Kober L, Lepper V, Lucianetti G, Maggioni AP, Masson S, McMurray JJV, Nicolucci A, Petrarolo V, Robusto F, Staszewsky L, Tavazzi L, Teli R, Tognoni G, Wikstrand J, Latini R. Treatment with insulin is associated with worse outcome in patients with chronic heart failure and diabetes. *Eur J Heart Fail* 2018; 20: 888–895.

49. Kristensen SL, Rerth R, Jhund PS, Shen L, Lee MMY, Petrie MC, Kober L, McMurray JJV, BEST Investigators. Microvascular complications in diabetes patients with heart failure and reduced ejection fraction: insights from the Beta-blocker Evaluation of Survival Trial. *Eur J Heart Fail* 2018; 20: 1549–1556.

50. Garnham JO, Roberts LD, Espino-Gonzalez E, Whitehead A, Swoboda PP, Koshy A, Gierula J, Paton MF, Cubbon RM, Kearney MT, Eggington S, Bowen TS, Witte KK. Chronic heart failure with diabetes mellitus is characterized by a severe skeletal muscle pathology. *J Cachexia Sarcopenia Muscle* 2020; 11: 394–404.

51. Niedziela JT, Hrudzik B, Strojek K, Poloslík I, Gasior M, Rozentryt P. Weight loss in heart failure is associated with increased mortality only in non-obese patients without diabetes. *J Cachexia Sarcopenia Muscle* 2019; 10: 207–213.

52. Coiro S, Girend N, Sharma A, Rossignol P, Tratto I, Pitt B, Pfeffer MA, McMurray JJV, Ambrosio G, Dickstein K, Moss A, Zannad F. Association of diabetes and kidney function according to age and systolic function with the incidence of sudden cardiac death and non-sudden cardiac death in myocardial infarction survivors with heart failure. *Eur J Heart Fail* 2019; 21: 1248–1258.

53. Koppe L, Fouque D, Kalantar-Zadeh K. Kidney cachexia or protein-energy wasting in chronic kidney disease: facts and numbers. *J Cachexia Sarcopenia Muscle* 2019; 10: 479–484.

54. Canepa M, Straburzynska-Migaj E, Drozdz J, Fernandez-Vivancos C, Pinilla JMG, Nylczas N, Temporelli PL, Mebazaa A, Lainscak M, Laroche C, Maggioni AP, Piepoli MF, Coats AJS, Ferrari R, Tavazzi L, ESC-HFA Heart Failure Long-Term Registry Investigators. Characteristics, treatments and 1-year prognosis of hospitalized and ambulatory heart failure patients with chronic obstructive pulmonary disease in the European Society of Cardiology Heart Failure Long-Term Registry. *Eur J Heart Fail* 2018; 20: 100–110.

55. Doehner W, Ural D, Haeusler KG, Celutkiené J, Bestetti R, Cavusoglu Y, Pein-Dupuis MA, Clavo-Gonzalez M, Laufs U, Alver MR, Mbakwen A, Piepoli MF, Rosen SD, Tsivgoulis G, Vitale C, Yilmaz MB, Anker SD, Filippatos G, Seferovic P, Coats AJ, Ruschitzka F. Heart and brain interaction in patients with heart failure: overview and proposal for a taxonomy. A position paper from the Study Group on Heart and Brain Interaction of the Heart Failure Association. *Eur J Heart Fail* 2018; 20: 199–215.

56. Parati G, Ochoa JE. Prognostic value of baroreflex sensitivity in heart failure. A 2018 reappraisal. *Eur J Heart Fail* 2019; 21: 59–62.

57. Kokkinos P, Faselis C, Franklin B, Lavié CJ, Sidossis L, Moore H, Karasik P, Myers J. Cardiorespiratory fitness, body mass index and heart failure incidence. *Eur J Heart Fail* 2019; 21: 436–444.

58. Moliner P, Lupón J, de Antonio M, Domingo M, Santiago-Vacas E, Zamora E, Cediél G, Santesmases J, Diez-Quevedo C, Troya MI,Boldó M, Altmir S, Alonso N, González B, Núñez J, Bayes-Genis A. Trends in modes of death in heart failure over the last two decades: less sudden death but cancer deaths on the rise. *Eur J Heart Fail* 2019; 21: 1259–1266.

59. de Boer RA, Meijers WC, van der Meer P, van Veldhuisen DJ. Cancer and heart failure: associations and relations. *Eur J Heart Fail* 2019; 21: 1515–1525.

60. Banke A, Fosbol EL, Møller JE, Gislason GH, Andersen M, Bernsod M, Jensen MB, Schou M, Ejertsen B. Long-term effect of epirubicin on incidence of heart failure in women with breast cancer: insight from a randomized clinical trial. *Eur J Heart Fail* 2018; 20: 1447–1453.

61. Mansouri I, Alldro JS, Hill C, El-Fayech C, Pein F, Díaz S, Schwartz B,
Cardiology. Cancer diagnosis in patients with heart failure: epidemiology, clinical implications and gaps in knowledge. Eur J Heart Fail 2018; 20: 879–887.

90. Pareek N, Cevallos J, Moliner P, Shah M, Tan LL, Chambers V, Baksi AJ, Khattar RS, Sharma R, Rosen SD, Lyon AR. Activity and outcomes of a cardio-oncology service in the United Kingdom—a five-year experience. Eur J Heart Fail 2018; 20: 1721–1731.

91.Totzeck M, Mincu RI, Heusch G, Rassaf T. Heart failure from cancer therapy: can we prevent it? ESC Heart Fail 2019; 6: 856–862.

92. Muehllberg F, Funk S, Zange L, von Knobelsdorff-Brenkenhoff F, Blaszyk E, Schulz A, Ghanı S, Reichard T, Reichardt A, Reichardt A, Schulz-Menger J. Native myocardial TI time can predict development of subsequent anthracycline-induced cardiomyopathy. ESC Heart Fail 2018; 5: 620–629.

93. Zamorano JL, Lanciloti P, Rodrigues Muñoz D, Aboyans V, Asteggiarno R, Galdersi M, Habib G, Lenihan DJ, Lip GYH, Lyon AR, Lopez Fernandez T, Mhoity D, Piepoli M, Tamargo J, Torbicki A, Suter TM, ESC Scientific Document Group. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 2016; 37: 2760–2801.

94. Jacobse JN, Steggink LC, Sonke GS, Schaapheld M, Hummel YM, Steenbruggen TG, Lefrandt J, Nuwer J, Crijns AGC, Aalmen BMP, van der Meer P, Gietema JA, van Leeuwen FE. Myocardial dysfunction in long-term breast cancer survivors treated at ages 40–50 years. Eur J Heart Fail 2020; 22: 338–346.

95. Kamada K, Farmakis D, Bingcang J, Sulemane S, Sutherland S, Bingcang RA, Ramachandran K, Tzavara C, Charalamopoulos G, Filippadis D, Kouris N, Nihoyannopoulos P. Longitudinal changes of right ventricular deformation mechanics during trastuzumab therapy in breast cancer patients. Eur J Heart Fail 2019; 21: 520–525.

96. Michel L, Mincu RI, Mahabadi AA, Settelmeier S, Al-Rashid F, Rassaf T, Totzeck M. Tropinons and brain natriuretic peptides for the prediction of cardio toxicity in cancer patients: a meta-analysis. Eur J Heart Fail 2020; 22: 350–361.

97. Rusto M, Guida F, Paparo L, Trinchese G, Aitoor R, Avagliano C, Fiordelisi A, Napolitano F, Mercurio V, Sala V, Li M, Sorrentino D, Ciccarelli M, Ghigo A, Hirsch E, Bianco R, Iaccarino G, Abete M, Bonaduce D, Calignano A, Berni Canani R, Tocchetti CG. The novel bu- tyrate derivative phenylalanine-butyramide protects from doxorubicin-induced cardiotoxicity. Eur J Heart Fail 2019; 21: 519–528.

98. Sawano M, Shiraishi Y, Kohsaka S, Nagai T, Goda A, Mizuno A, Sujino Y, Nagatomo Y, Kohno T, Anzai T, Fukuda K, Yoshikawa T. Performance of the MAGGIC heart failure risk score and its modification with the addition of discharge natriuretic peptides. ESC Heart Fail 2018; 5: 610–619.

99. Agostoni P, Paolillo S, Mapelli M, Gentile P, Salvioni E, Veglia F, Bonomi A, Corrà U, Lagioia R, Limongelli G, Sinagra C, Cattadori G, Scardovi AB, Metra M, Crucianelli D, Raimondo R, Emdin M, Piepoli M, Magri D, Parati G, Caravita S, Re F, Ciccoira M, Minà C, Correale M, Frigerio M, Bussotti M, Olivotto I, Rigacci L, Napolitano F, Mercurio V, Ghigo A, Hirsch E, Bianco R, Iaccarino G, Abete M, Bonaduce D, Calignano A, Berni Canani R, Tocchetti CG. The novel bu- tyrate derivative phenylalanine-butyramide protects from doxorubicin-induced cardiotoxicity. Eur J Heart Fail 2019; 22: 350–361.

100. O’Connor C, Fizuat M, Mulder H, Coles A, Ahmad T, Ezekovitz JA, Adams KF, Piña IL, Anstrom KJ, Cooper LS, Mark DB, Whellan DJ, Januzzi JI, Jr, Leifer ES, Felker GM. Clinical factors related to morbidity and mortality in high-risk heart failure patients: the GUIDER predictive model and risk score. Eur J Heart Fail 2019; 21: 770–778.

101. Adler ED, Voors AA, Klein L, Macheret F, Braun OO, Urey MA, Zhu W, Sama I, Tadel M, Campagnari C, Greenberg B, Yagal A. Improving risk prediction in heart failure using machine learning. Eur J Heart Fail 2020; 22: 139–147.

102. Ferreire JP, Duarte K, Pfeffer MA, McMurray J, Pitt B, Dickstein K, Zannad F, Rossignol P, High Risk Myocardial Infarction Database Initiative. Association between mean systolic blood pressure and resting heart rate with clinical outcomes in takotsubo syndrome: insights from the International Takotsubo Registry. Eur J Heart Fail 2018; 20: 1021–1030.

103. Cleland JGF, Bunting KV, Flather MD, Altman DG, Holmes J, Coats AJS, Manzino L, McMurray J, Rutschka F, van Veldhuisen DJ, van Luerde TG, Böhm M, Andersson B, Kjekshus J, Packer M, Rigby AS, Rosano G, Wedel H, Hjalmarson A, Wikstrand J, Kotecha D, Block-allers in Heart Failure Collaborative Group. Beta-blockers for heart failure with reduced, mid-range, and preserved ejection fraction: an individual patient-level analysis of double-blind randomized trials. Eur J Heart J 2018; 39: 26–35.

104. Sartipy U, Savarese G, Dahlström U, Fu M, Lund LH. Association of heart rate with mortality in sinus rhythm and atrial fibrillation in chronic heart failure with preserved ejection fraction. Eur J Heart Fail 2019; 21: 471–479.

105. Mueller C, McDonald K, de Boer RA, Maisel A, Cleland JGF, Kozhuharov N, Coats AJS, Metra M, Mebazaa A, Rutschka F, Lainscak M, Filippatos G, Severovic PM, Meijers WC, Bayes-Genis A, Mueller T, Richards M, Januzzi JI, Jr, Heart Failure Association of the European Society of Cardiology. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide levels in the general population. Eur J Heart Fail 2019; 21: 715–731.

106. Anker MS, von Haeling S, Anker SD. Novel biomarkers in heart failure and cardio-oncology. Kardiol Pol 2019; 77: 329–330.

107. Sathahar N, Meijers WC, Ho JE, Ganesanoot RT, Voors AA, van der Meer P, Bakker SJL, Heymans S, van Empel V, Schreobn B, van der Harst P, van Veldhuisen DJ, de Boer RA. Sex-specific associations of obesity and N-terminal pro-B-type natriuretic peptide levels in the general population. Eur J Heart Fail 2018; 20: 1205–1214.

108. Welsh P, Kou LI, Yu C, Anand I, van Veldhuisen DJ, Maggioni AP, Desai AS, Solomon SD, Pfeffer MA, Cheng S, Gullestad L, Aukrust P, Hjalmarson A, Wikstrand J, Heymans S, van der Meer P, Bakker SJL, Heymans S, van Empel V, Schreobn B, van der Harst P, van Veldhuisen DJ, de Boer RA. Sex-specific associations of obesity and N-terminal pro-B-type natriuretic peptide levels in the general population. Eur J Heart Fail 2018; 20: 1205–1214.

109. Campbell DJ, Gong FF, Jelinek MV, Castro JM, Collier JM, McGrady M, Boffa U, Shiel L, Wang BH, Liew D, Wolfe R, Stewart S, Owen AJ, Krum H, Reid CM, Prior DL. Prediction of...
incident heart failure by serum amino-terminal pro-B-type natriuretic peptide level in a community-based cohort. *Eur J Heart Fail* 2019; 21: 449–459.

111. Greene SJ, Butler J, Fonerow GC, Subacius HP, Ambrosy AP, Vadugananathan M, Triggiani M, Solomon SD, Lew DS, Maggioni AP, Böhm M, Chioncel O, Nodari S, Senni M, Zannad F, Gheorghiade M, ASTRONAU Investigators and Coordinators. Pre-discharge and early post-discharge troponin elevation among patients hospitalized for heart failure with reduced ejection fraction: findings from the ASTRONAU trial. *Eur J Heart Fail* 2018; 20: 281–291.

112. Rørth R, Jhund PS, Kristensen SL, DeSaie AS, Kaber I, Rouleau JL, Solomon SD, Swedberg K, Zile MR, Packer M, McMurray JJV. The prognostic value of troponin T and N-terminal pro-B-type natriuretic peptide, alone and in combination, in heart failure patients with and without diabetes. *Eur J Heart Fail* 2019; 21: 40–49.

113. Ferreira JP, Ouwerkerk W, Tromp J, Ng L, Dickstein K, Anker S, Filippatos G, Cleland JG, Metra M, van Veldhuisen DJ, Voors AA, Zannad F. Cardiovascular and non-cardiovascular death distinction: the utility of troponin beyond N-terminal pro-B-type natriuretic peptide. Findings from the BIOSIGHT-CHF study. *Eur J Heart Fail* 2020; 22: 81–89.

114. Gohar A, Rutten FH, den Ruiter H, Kelder JC, van Haepling S, Anker SD, Möckel M, Hoes AW. Mid-regional pro-atrial natriuretic peptide for the early detection of non-acute heart failure. *Eur J Heart Fail* 2019; 21: 1219–1227.

115. Vadugananathan M, Cheema B, Cleveland E, Sankar K, Subacius H, Faronow GC, Solomon SD, Lew DS, Greene SJ, Maggioni AP, Böhm M, Zannad F, Butler J. Glimpse: plasma remodelling, response to aliskiren, and clinical outcomes in patients hospitalized for heart failure: the ASTRONAU trial. *Eur J Heart Fail* 2018; 20: 677–686.

116. Rachwan RJ, Butler J, Collins SP, Coter G, Davison BA, Senger S, Ezekowitz JA, Filippatos G, Levy PD, Metra M, Ponikowski P, Peerlink J, Roos J, Voors AA, de Boer RA, Soergel DG, Felker GM, Pang PS. Is plasma renin activity associated with worse outcomes in acute heart failure? A secondary analysis from the BLAST-AHF trial. *Eur J Heart Fail* 2019; 21: 1561–1570.

117. Bouabdallahu N, Claggett B, Zile MR, McMurray J, O’Meara E, Packer M, Prescott MS, Swedberg K, Solomon SD, Rouleau JL, PARADIGM-HF Investigators and Committees. Growth differentiation factor-15 is not modified by sacubitril/valsartan and is an independent marker of risk in patients with heart failure and reduced ejection fraction: the PARADIGM-HF trial. *Eur J Heart Fail* 2018; 20: 1701–1709.

118. Hanbarg JS, Rao VS, Ahmad T, Chunara Z, Mahoney D, Jackson K, Jacoby D, Chen M, Wilson FP, Tang WHW, Kakkar R, Testani JM. Inflammation and cardio-renal interactions in heart failure: a potential role for interleukin-6. *Eur J Heart Fail* 2018; 20: 933–943.

119. Siegsmund CS, Escher F, Lassner D, Kühl U, Gross U, Fruhwald W, Fenzel P, Münzel T, Frey N, Linke RP, Schultheiss HP. Intramyocardial inflammation predicts adverse outcome in patients with cardiac amyloidosis. *Eur J Heart Fail* 2018; 20: 751–757.

120. Packer M. Derangements in adrenergic-adipokine signalling establish a neurohormonal basis for obesity-related heart failure with a preserved ejection fraction. *Eur J Heart Fail* 2018; 20: 873–878.

121. van der Pol A, van Gilst WH, Voors AA, van der Meer P. Treating oxidative stress in heart failure: past, present and future. *Eur J Heart Fail* 2019; 21: 425–435.

122. Markoussis-Mavrogenis G, Tromp J, Ouwerkerk W, Devalaraja M, Anker SD, Cleland JG, Dickstein K, Filippatos GS, van der Harst P, Lang CC, Metra M, Ng L, Ponikowski P, Samani NJ, Zannad F, Zwingerter AH, Hillege HL, van Veldhuisen DJ, Kakkar R, Voors AA, van der Meer P. The clinical significance of interleukin-6 in heart failure: results from the BIOSIGHT-CHF study. *Eur J Heart Fail* 2019; 21: 965–973.

123. De Rosa S, Eposito F, Carella C, Strangio A, Ammirati G, Sabatino J, Abbate FG, Iaconetti C, Liguori V, Vergala V, Polimeni A, Coletta S, Gareri C, Trimarco B, Stabile G, Curcio A, Indolli C, Rapacciuolo A. Transcoronary conduction gradients of circulating microRNAs and adipokines predict heart failure from the BLAST-AHF trial. *Eur J Heart Fail* 2019; 21: 1561–1570.

124. Bayés-Genís A, Lanear DE, de Ronde MWJ, Lupón J, Leenders JLI, Liu Z, Zuitoof NPA, Eijkemans MJ, Zamora E, de Antonio M, Zwinderher AH, Pinto-Sietsma SJ, Pinto YM. Prognostic value of circulating microRNAs in heart failure-related morbidity and mortality: two large diverse cohorts of general heart failure patients. *Eur J Heart Fail* 2018; 20: 67–75.

125. Masson S, Batakai S, Beermann J, Bär C, Pfanne A, Thum S, Magnoli M, Balconi G, Nicoliosi GL, Tavazzi L, Latini R, Thum T. Circulating microRNA-132 and microRNA-199a levels improve risk prediction for heart failure hospitalization in patients with chronic heart failure. *Eur J Heart Fail* 2018; 20: 78–85.

126. Reddy NV, Obokata M, Egbe A, Yang JH, Pislaru S, Lin G, Carter R, Borlaug BA. Left atrial strain and compliance in the diagnostic evaluation of heart failure with preserved ejection fraction: the PARADIGM-HF trial. *Eur J Heart Fail* 2019; 21: 1571–1579.
fraction. *Eur J Heart Fail* 2019; 21: 891–900.

136. Telles F, Nanayakkara S, Evans S, Patel HC, Mariani JA, Vizi D, William J, Marwick TH, Kaye DM. Impaired left atrial strain predicts abnormal exercise haemodynamics in heart failure with preserved ejection fraction. *Eur J Heart Fail* 2019; 21: 495–505.

137. Inciardi RM, Rossi A, Bergamini C, Benfari G, Maffeis C, Greco C, Drago A, Guazzi M, Ribichini FL, Cicoira M. Mitral regurgitation, left atrial structural and functional remodelling and the effect on pulmonary haemodynamics. *Eur J Heart Fail* 2020; 22: 499–506.

138. de Boer RA, de Keulenaer G, Bauersachs J, Brutsaert D, Cleland JG, Diez J, Du XJ, Ford P, Heinzl FR, Lipson KE, McDonagh T, Lopez-Andres N, Lunde IG, Lyon AR, Pollesello P, Prasad SK, Toth-Csogki G, Mayr M, Sluijter JP, Thom T, Tschöpe C, Zannad F, Zimmermann WH, Rutschitzka F, Filippatos G, Lindsey ML, Maack C, Heymans S. Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. *Eur J Heart Fail* 2021; 23: 272–285.

139. Wu CK, Lee JK, Hsu JC, Su MM, Wu YF, Wu CK, Lee JK, Hs
156. Kapelios CJ, Lainscak M, Savarese G, Laroche C, Seferovic P, Rutschkiza F, Coats A, Anker SD, Crespo-Leiro MG, Filippatos G, Piepoli MF, Rosano G, Zanolla L, Aguilar C, Murin J, Leszek P, McDonagh T, Maggioni AP, Lund LH, Heart Failure Long-Term Registry Investigators. Sacubitril/valsartan eligibility and outcomes in the ESC-EORP-HFA Heart Failure Long-Term Registry: bridging between European Medicines Agency/Food and Drug Administration label, the PARADIGM-HF trial, ESC guidelines, and real world. *Eur J Heart Fail* 2019; 21: 1383–1397.

157. Wachter R, Fonseca AF, Balas B, Kap E, Engelhard J, Schlenker B, Klebs S, Wirta SB, Kostev K. Real-world treatment patterns of sacubitril/valsartan: a longitudinal cohort study in Germany. *Eur J Heart Fail* 2019; 21: 588–597.

158. Komajda M, Schöpe J, Wagenpfeil S, Tavazzi L, Böhm M, Ponikowski P, Anker SD, Filippatos GS, Cowie MR, Investigators QUALIFY. Physicians’ guideline adherence is associated with long-term heart failure mortality in patients with heart failure with reduced ejection fraction: the QUALIFY international registry. *Eur J Heart Fail* 2019; 21: 921–929.

159. Komajda M, Cowie MR, Tavazzi L, Ponikowski P, Anker SD, Filippatos GS, Investigators QUALIFY. Physicians’ guideline adherence is associated with better prognosis in outpatients with heart failure with reduced ejection fraction: the QUALIFY international registry. *Eur J Heart Fail* 2017; 19: 1414–1423.

160. Martens P, Belien H, Dupont M, Mullens W. Insights into implementation of sacubitril/valsartan into clinical practice. *ESC Heart Fail* 2018; 5: 275–283.

161. Lainsčak M, Milinković I, Polovina M, Crespo-Leiro MG, Lund LH, Anker SD, Laroche C, Ferrari R, Coats AJS, McDonagh T, Filippatos G, Maggioni AP, Piepoli MF, Rosano GMC, Rutschkiza F, Simić D, Ažman A, Eicher JC, Yilmaz MB, Seferović P, European Society of Cardiology Heart Failure Long-Term Registry Investigators Group. Sex- and age-related differences in the management and outcomes of chronic heart failure: an analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry. *Eur J Heart Fail* 2020; 22: 92–102.

162. Savarese G, Carrero JJ, Pitt B, Anker SD, Rosano GMC, Dahlström U, Lund LH. Factors associated with underuse of mineralocorticoid receptor antagonists in heart failure with reduced ejection fraction: an analysis of 11 215 patients from the Swedish Heart Failure Registry. *Eur J Heart Fail* 2018; 20: 1326–1334.

163. Senni M, McMurray J, Wachter R, McIntyre H, Anand IS, D’Agostino R, Sapienza P, Pitt B, Castrillo MM, Seferovic P, Kamov S, Rosano G, European Society of Cardiology/Heart Failure Association position paper on the role and safety of new glucose-lowering drugs in patients with heart failure. *Eur J Heart Fail* 2020; 22: 196–213.

164. Böhm M, Slawik J, Bruckmann M, Mattheus M, George JT, Ostad AP, Inzucchi SE, Fitchett D, Anker SD, Marzi N, Wanner C, Zinnman B, Verma S. Efficacy of empagliflozin on heart failure and renal outcomes in patients with atrial fibrillation: data from the EMPA-REG OUTCOME trial. *Eur J Heart Fail* 2020; 22: 126–135.

165. McMurray J, Solomon SD, Inzucchi SE, Kober L, Rosano GCM, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bélohlávek J, Böm H, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukat A, Ge J, Howlett JK, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Toshchepenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde AM, DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. *N Engl J Med* 2019; 381: 1995–2008.

166. McMurray J, DeMets DL, Inzucchi SE, Kober L, Kosiborod MN, Langkilde AM, Martinez FA, Bengtsson O, Ponikowski P, Sabatine MS, Sjöstrand M, Solomon SD, DAPA-HF Committees and Investigators. A trial to evaluate the effect of the sodium–glucose co-transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA-HF). *Eur J Heart Fail* 2019; 21: 665–675.

167. McMurray J, DeMets DL, Inzucchi SE, Kober L, Kosiborod MN, Langkilde AM, Martinez FA, Bengtsson O, Ponikowski P, Sabatine MS, Sjöstrand M, Solomon SD, DAPA-HF Committees and Investigators. The DAPA-HF trial: a randomized, double-blind, placebo-controlled trial of dapagliflozin in patients with heart failure and reduced ejection fraction. *Eur J Heart Fail* 2018; 20: 853–872.

168. Seferović PM, Coats AJS, Ponikowski P, Filippatos G, Huelsmann M, Jhund PS, Polovina MM, Komajda M, Seferović J, Sari I, Cosentino F, Ambrosio G, Metra M, Piepoli M, Chincel O, Lund LH, Thum T, de Boer RA, Mullens W, Lopatin Y, Volterrani M, Hill L, Bauersachs J, Lyon A, Petrie MC, Anker S, Rosano GMC. European Society of Cardiology/Heart Failure Association position paper on the role and safety of new glucose-lowering drugs in patients with heart failure. *Eur J Heart Fail* 2020; 22: 92–102.
Heart failure in the last year: progress and perspective

6736(20)32339-4. https://doi.org/10.1016/S0140-6736(20)32339-4.
Epub ahead of print. PMID: 33197395.

197. Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J, Lam CSP, Ponikowski P, Voors AA, Jia G, McNulty SE, Patel MJ, Roessig L, Koglin J, O’Connor CM, VICTORIA Study Group. Vericiguat in patients with heart failure and reduced ejection fraction. *N Engl J Med* 2020; 382: 1883–1893.

198. Pieske B, Patel MJ, Westerhout CM, Anstrom KJ, Butler J, Ezekowitz J, Hernandez AF, Koglin J, Lam CSP, Ponikowski P, Roessig L, Voors AA, O’Connor CM, Armstrong PW, VICTORIA Study Group. Baseline features of the VICTORIA (Vericiguat Global Study in Subjects with Heart Failure with Reduced Ejection Fraction) trial. *Eur J Heart Fail* 2019; 21: 1596–1604.

199. Teerlink JR, Diaz R, Felker GM, McMurray Jv, Metra M, Solomon SD, Adams KF, Anand I, Arias-Mendoza A, Biering-Sorensen F, Böhm M, Bondamoulin E, Cleland JGF, Corton R, Crespo-Leiro MG, Dahlström U, Echeverria LE, Fang JC, Filippatos G, Fonseca C, Gonçalvesova E, Goudev A, Howlett J, Janse DE, Kojima Y, Koch A, Bauersachs J, DIGIT Investigators. Safety and efficacy of intermittent intravenous omecamtiv mecarbil in subjects with heart failure with reduced ejection fraction: a randomized, double-blind, placebo-controlled study. *Eur J Heart Fail* 2019; 21: 676–684.

200. Voors AA, Bax JJ, Hernandez AF, Wirtz AB, Pap AF, Ferreira AC, Zannad F, van den Berg WA, Butler J, PANigone INvestigators. Safety and efficacy of the partial adenosine A1 receptor agonist neladenoson bialanate in patients with chronic heart failure with reduced ejection fraction: a phase IIb, randomized, double-blind, placebo-controlled trial. *Eur J Heart Fail* 2019; 21: 1426–1433.

201. Ahmad T, Miller PE, McCullough M, Desai NR, Rielo R, Psopta M, Böhm M, Allen LA, Teerlink JR, Rosano GMC, Lindenfeld J. Why has positive inotropy failed in chronic heart failure? Lessons from prior inotrope trials. *Eur J Heart Fail* 2019; 21: 1064–1078.

202. Comín-Colet J, Manito N, Segovia-Cubero J, Delgado J, García Pinilla JM, Almenar Ł, Crespo-Leiro MG, Sions L, Blasco T, Pracual Figal D, Gonzalez-Vileche F, Lambert-Rodríguez JL, Grau M, Bruguera J, LION-HEART Study Investigators. Efficacy and safety of intermittent intravenous levosimendan in patients with advanced heart failure: the LION-HEART multicentre randomised trial. *Eur J Heart Fail* 2018; 20: 1128–1136.

203. Vanveldijk U, Berliner D, Dávala LA, Schwab J, Maier L, Philipp SA, Rietveld A, Westenfeld R, Piorockowski C, Weber K, Häsnelmann A, Oldhafer M, Schallhorn S, von der Leyen H, Schröder C, Veltmann C, Stöck S, Böhm M, Koch A, Bauersachs J, DIGIT-HF Investigators and Committees (see Appendix). Rationale and design of the DIGIT-HF trial (DIGItoxin to Improve outcomes in patients with advanced chronic Heart Failure): a randomized, double-blind, placebo-controlled trial. *Eur J Heart Fail* 2019; 21: 1039–1051.

204. Durán LH, Svennblad B, Dahlström U, Stähler M. Effect of expanding evidence and evolving clinical guidelines on the prevalence of indication for cardiac resynchronization therapy in patients with heart failure. *Eur J Heart Fail* 2018; 20: 769–777.

205. Dickstein K, Normand C, Auricchio A, Bogale N, Cleland JG, Gitt AK, Stellbrink C, Anker SD, Filippatos G, Gasparini M, Hindricks G, Blomström-Lundqvist C, Ponikowski P, Gharavi A, Hindricks G, Blomström-Lundqvist C, Ponikowski P, Cardinali D, Gasparini M, Kloppe A, Lunati M, Ståhlberg M. Effect of expanding evidence and evolving clinical guidelines on the prevalence of indication for cardiac resynchronization therapy in patients with heart failure. *Eur J Heart Fail* 2018; 20: 769–777.

206. Boriani G, Dieminger E. Cardiac resynchronization therapy in the real world: need to focus on implant rates, patient selection, co-morbidities, type of devices, and complications. *Eur Heart J* 2017; 38: 2129–2131.

207. Linde C, Blieroren K, McAlister FA. Cardiac resynchronization therapy (CRT): clinical trials, guidelines, and target populations. *Heart Rhythm* 2012; 9: S3–S13.

208. Linde C, Cleland JGF, Gold MR, Claude J, Auricchio A, Sterlinski M, Marinskis G, Filippatos GS, von der Leyen H, Schröder C, Veltmann C, Stöck SK, Böhm M, Steiner SD, Vittinghoff E, Robichaud D, Boriani G, Dieminger E. Cardiac resynchronization therapy in the real world: need to focus on implant rates, patient selection, co-morbidities, type of devices, and complications. *Eur Heart J* 2017; 38: 2129–2131.

209. Echouffo-Tcheugui JB, Masoudi FA, Bao H, Curtis JP, Heidenreich PA, Fonarow GC, Body mass index and outcomes of cardiac resynchronization therapy. *Circulation* 2018; 138: 1918–1926.

210. Linde C, Cleland JGF, Gold MR, Claude J, Auricchio A, Sterlinski M, Marinskis G, Starling J, Böhm M, Steiner SD, Vittinghoff E, Robichaud D, Boriani G, Dieminger E. Cardiac resynchronization therapy in the real world: need to focus on implant rates, patient selection, co-morbidities, type of devices, and complications. *Eur Heart J* 2017; 38: 2129–2131.

211. Lee TC, Qian M, Mu L, di Tullio MR, Graham S, Mann DL, Nakashiki K, Teerlink JR, Lip GYH, Freudenberg RS, Sacco RL, Mohr JP, Labovitz AJ, Ponikowski P, Lok DJ, Estol C, Anker SD, Balascio F, Boriani G, Dieminger E. Cardiac resynchronization therapy: positive impact on ventricular arrhythmias, implantable cardioverter-defibrillator therapies and hospitalizations. *Eur J Heart Fail* 2018; 20: 1472–1481.

212. Slomka J, Adiyaman L, Hoh M, Lothschmidt S, Laufs U, Böhm M. Irregular pacing of ventricular cardiomyocytes induces pro-fibrotic signalling involving paracrine effects of transforming growth factor beta and connective tissue growth factor. *Eur J Heart Fail* 2019; 21: 482–491.

213. Lee TC, Qian M, Mu L, di Tullio MR, Graham S, Mann DL, Nakashiki K, Teerlink JR, Lip GYH, Freudenberg RS, Sacco RL, Mohr JP, Labovitz AJ, Ponikowski P, Lok DJ, Estol C, Anker SD, Balascio F, Boriani G, Dieminger E. Cardiac resynchronization therapy: positive impact on ventricular arrhythmias, implantable cardioverter-defibrillator therapies and hospitalizations. *Eur J Heart Fail* 2018; 20: 1472–1481.

214. Lee TC, Qian M, Mu L, di Tullio MR, Graham S, Mann DL, Nakashiki K, Teerlink JR, Lip GYH, Freudenberg RS, Sacco RL, Mohr JP, Labovitz AJ, Ponikowski P, Lok DJ, Estol C, Anker SD, Balascio F, Boriani G, Dieminger E. Cardiac resynchronization therapy: positive impact on ventricular arrhythmias, implantable cardioverter-defibrillator therapies and hospitalizations. *Eur J Heart Fail* 2018; 20: 1472–1481.
218. Donato A, Elgin E. In HF with second-
dary mitral regurgitation, transcatheter mitral valve repair reduced HF hospi-
talizations at 2 years. *Ann Intern Med* 2019; 170: J37.

219. Iung B, Armoiry X, Vahanian A, Boultie F, Meuwton N, Trochu JN, Lefèvre T, Messika-Zeitoun D, Guerin P, Cormier B, Brochet E, Thibault H, Himbert D, Thivolet S, Leurent G, Bonnet G, Donal E, Piriou N, Piot C, Habib G, Rouleau F, Carrié D, Nejari M, Ohlmann P, Saint Etienne C, Leroux L, Gilard M, Samson G, Rioufol G, Maucort-Boulch D, Obadia JF, MITRA-
FR Investigators. Percutaneous repair or medical treatment for secondary mi-
tral regurgitation: outcomes at 2 years. *Eur J Heart Fail* 2019; 21: 1619–1627.

220. Senni M, Adami M, Metra M, Alfei O, Vahanian A. Treatment of functional mitral regurgitation in chronic heart failure: can we get a ‘proof of concept’ from the MITRA-FR and COAPT trials? *Eur J Heart Fail* 2019; 21: 852–861.

221. Geis NA, Puls M, Lubos E, Zuern CS, Frankle J, Söder R, von Bardeleben RS, Boeketgers P, Oumrak T, Zahn R, Ince H, Senges J, Katus HA, Bekeredian R. Safety and efficacy of MiraClip therapy in patients with se-
verely impaired left ventricular ejection fraction: results from the German transcatheter mitral valve interventions (TRAMII) registry. *Eur J Heart Fail* 2018; 20: 598–608.

222. Orban M, Besler C, Braun D, Nabauer M, Zimmer M, Orban M, Noack T, Mehlili J, Hagl C, Seeburger J, Borger M, Linke A, Thiele H, Massberg S, Ender J, Lurz P, Hauserle JA. Six-
month outcome after transcatheter edge-to-edge repair of severe tricuspid regurgitation in patients with heart failure. *Eur J Heart Fail* 2018; 20: 1055–1062.

223. Schlosser F, Orban M, Rommel KP, Besler C, von Roeder M, Braun D, Unterhuber M, Borger M, Hagl C, Orban M, Nabauer M, Massberg S, Thiele H, Hauserle J, Lurz P. Aetiologic-based clinical scenarios predict outcomes of transcatheter edge-to-edge tricuspid valve repair of functional tricuspid regurgitation. *Eur J Heart Fail* 2019; 21: 1117–1125.

224. Gustafsson F, Rogers JG. Left ventricu-
lar assist device therapy in advanced heart failure: patient selection and out-
comes. *Eur J Heart Fail* 2017; 19: 595–602.

225. Rogers JG, Pagani FD, Tatooles AJ, Bhat G, Slaughter MS, Birks EJ, Boyle SW, Najjar SS, Jeevanandam V, Anderson AS, Gregoric ID, Mallidi H, Leadley K, Aaronsen KD, Frazier OH, Milano CA. Interventricular left ven-
tricular assist device for advanced heart failure. *N Engl J Med* 2017; 376: 451–460.

226. Jakovljevic DG, Yacoub MH, Schueler S, MacGowan GA, Velicki L, Seferovic PM, Hothi S, Tzeng BH, Brodie DA, Birks E, Tan LB. Left ventricular assist device as a bridge to recovery for pa-
tients with advanced heart failure. *J Am Coll Cardiol* 2017; 69: 1924–1933.

227. Barge-Caballero E, Almenar-Bonet L, Gonzalez-Vileche F, Lambert-Rodríguez JL, Gonzalez-Costello J, Se-
govia-Cubero J, Castel-Lavilla MA, Delgado-Jiménez J, Garrido-Braavo IP, Rangel-Sousa D, Martínez-Sellés M, de la Fuente-Galan L, Riba-Garcia, Sans-Julve M, Hervás- Somotomayor D, Mirabet-Pérez S, Muñiz J, Crespo-Leiro MG. Clinical outcomes of temporary mechanical circulatory support as a direct bridge to heart transplantation: a nationwide Spanish registry. *Eur J Heart Fail* 2018; 20: 178–186.

228. Catino AB, Ferrin P, Weyer-Pinzon J, Horne BD, Weyer-Pinzon O, Kfouri AM, Mahadik D, Li, Diakos NA, McKellar S, Koliopoulou A, Bonios MJ, Al-Sarie M, Taleb I, Dranow E, Fang JC, Drakos SG. Clinical and histopathological ef-
effects of heart failure drug therapy in advanced heart failure: outcomes of the patients of chronic mechanical circulatory sup-
port. *Eur J Heart Fail* 2018; 20: 164–174.

229. Cikos M, Jakus N, Caggett B, Brugs JJ, Timmermans P, Poueur AC, Rupis P, van Craenenbroeck EM, GiauzkasAS, Grundmann S, Paolillo S, Barge-Cabal-
lero E, D’Amario D, Glouciouita A, Planicz I, Veeneis JF, Jacquet LM, Houard L, Holcman K, Gigase A, Rea F, Rucinskas K, Adamopoulos S, Agostoni P, Biocina B, Gasparski J, Lund LH, Flammer AJ, Metra M, Miščić D, Rutschitska F, PCHF-VAD registry. Cardiac implantable electronic devices with a defibrillator component and all-cause mortality in left ventricular assist device carriers: results from the PCHF-VAD registry. *Eur J Heart Fail* 2019; 21: 1123–1131.

230. Bobenko A, Schoenrath F, Knierr JH, Friede T, Verheyen N, Mehra MR, Haykowsky M, Hermann-Lingen C, Duvangue A, Pieske-Kraiger E, Halle M, Falk V, Pieske B, Edelmann F. Exer-
cise training in patients with a left vent-
ricular assist device (Ex-VAD): rationale and design of a multicentre, prospective, assessor-blinded, random-
ized, controlled trial. *Eur J Heart Fail* 2019; 21: 1152–1159.

231. Lund LH, Trochu JN, Meysn B, Calisak K, Shaw S, Schmitto JD, Schibilsky D, Damme L, Healey J, Gustafsson F. Screening for heart transplantation and left ventricular assist system: re-
sults from the ScreeNing for advanced Heart Failure treatment (SEE-HF) study. *Eur J Heart Fail* 2018; 20: 152–160.

232. Consolo F, Sferrazza G, Motolone G, Conti R, Valerio L, Lembo R, Pozzi L, Della Valle P, de Bonis M, Zangrillo A, Fiore GB, Redaelli A, Sleijn PM, Pappalardo F. Platelet activation is a preoperative risk factor for the devel-
opment of thromboembolic complica-
tions in patients with continuous-flow left ventricular assist device. *Eur J Heart Fail* 2018; 20: 792–800.

233. Schmitto JD, Pya Y, Zimpfer D, Krabatsch T, Garbe JD, Rau V, Morsmuis H, Beyersdorf F, Marasco S, Sood P, Damme L, Netuka I. Long-term evaluation of a fully magnetically levi-
tated circulatory support device for ad-
vanced heart failure–two-year results from the HeartMate 3 CE Mark Study. *Eur J Heart Fail* 2019; 21: 90–97.

234. Koehler F, Koehler K, Deckwalt O, Prescher S, Wegscheider K, Winkler S, Vettorazzi E, Polze A, Stangl K, Hartmann O, Marx A, Neuhaus P, Scherf M, Kirwath BA, Anker SD. Telemedial Interventional Manage-
ment in Heart Failure II (TIM-HF2), a randomised, controlled trial investigat-
ing the impact of telemedicine on un-
planned cardiovascular hospitalisations and mortality in heart failure patients: study design and de-
scription of the patients. *Eur J Heart Fail* 2018; 20: 1485–1493.

235. Koehler J, Stengel A, Hofmann T, Wegscheider K, Koehler K, Sehner S, Rose M, Deckwalt O, Anker SD, Koehler F, Laufs U. Telemonitoring in patients with chronic heart failure and moderate depressed symptoms–re-
sults of the Telemedzial Interventional Monitoring in Heart Failure (TIM-HF) study. *Eur J Heart Fail* Epub ahead of print.

236. Eurlings CGMJ, Boyne JJ, de Boer RA, Brunner-La Rocca HP. Telemedicine in heart failure–more than nice to have? *Neth Heart J* 2019; 27: 5–15.

237. McDonald K, Troughton R, Dahlström U, Dargie H, Krum H, van der Meer P, McDonald T, Atherton JJ, Kupfer K, San George RC, Richards M, Doughtery R. Daily home BNP monitoring in heart failure for prediction of impending clinical deterioration: results from the HOME HF study. *Eur J Heart Fail* 2018; 20: 474–480.

238. Wagenas KP, Broekhuizen BDL, Jaarsma T, Kok I, Mosterd A, Willems FF, Linsen GC, Aegman WR, Anneveldt S, Lucas CMBH, Mannerts HEU, Wajon EMJC, Dickstein K, Cramer MJ, Landman MAJ, Hoes AW, Rutten FH. Effectiveness of the European Soci-
ety of Cardiology/Heart Failure Associa-
tion website ‘heartfailurematters.org’ and an e-health adjusted care pathway in patients with stable heart failure: re-
sults of the ‘e-Vita HF’ randomized con-
trolled trial. *Eur J Heart Fail* 2019; 21: 238–246.

239. Pippiti MF. E-health in self-care of heart failure patients: promises be-
come reality. *Eur J Heart Fail* 2019; 21: 247–248.

240. Marti CN, Fonarow GC, Anker SD, Yancy C, Vaduganathan M, Greene SJ,
Ahmed A, Januzzi JL, Gheorghiade M, Filippatos G, Butler J. Medication dosing for heart failure with reduced ejection fraction—opportunities and challenges. *Eur J Heart Fail* 2019; 21: 286–296.

Schulz M, Greise-Mamen N, Anker SD, Koehler F, Ihle P, Ruckes C, Schumacher PM, Trenk D, Bölhm M, Laufs U. PHARM-CHF Investigators. Pharmacy-based interdisciplinary intervention for patients with chronic heart failure: results of the PHARM-CHF randomized controlled trial. *Eur J Heart Fail* 2019; 21: 1012–1021.

Klein P, Anker SD, Wechsler A, Skalsky I, Neuzil P, Annest LS, Bifi M, McDonagh T, Frecker C, Schmidt T, Sievert H, Demaria AN, Kelle S. Less invasive ventricular reconstruction for ischaemic heart failure. *Eur J Heart Fail* 2019; 21: 1638–1650.

Mathiasen AB, Qayyum AA, Jørgensen H, Ahmed A, Oberdorf HEaas SU, Samani NJ, Ng LL, Lang CC, van der Harst P, Hillege H, Anker SD, Metra M, van Veldhuisen DJ, Zanni F, Lang CC. Plasma proteomic approach in patients with heart failure: insights into pathogenesis of disease progression and potential novel treatment targets. *Eur J Heart Fail* 2020; 22: 70–80.

Hoes MF, Tromp J, Ouwerkerk W, Bommer N, Oberdorf HEaas SU, Samani NJ, Ng LL, Lang CC, van der Harst P, Hillege H, Anker SD, Metra M, van Veldhuisen DJ, Voors AA, van der Meer P. The role of cathepsin D in the pathophysiology of heart failure and its potentially beneficial properties: a translational approach. *Eur J Heart Fail* 2019.

Shiga T, Suzuki A, Haruta S, Mori F, Ota Y, Yagi M, Oka T, Tanaka H, Murasaki S, Yamauchi T, Takahashi J, Hattori H, Haruki S, Kogure T, Suzuki T, Uetsuka Y, Haginoya N, HI-LHF II Investigators. Clinical characteristics of hospitalized heart failure patients with preserved mid-range, and reduced ejection fraction in Japan. *ESC Heart Fail* 2019; 6: 475–486.

Beldhuis IE, Myhr PL, Claggett B, Damman K, Fang JC, Lewis EF, O’Meara E, Pitt B, Shah SJ, Voors AA, Pfeffer MA, Solomon SD, Desai AS. Efficacy and safety of spironolactone in patients with HFpEF and chronic kidney disease. *JACC Heart Fail* 2019; 7: 25–32.

Savji N, Meijers WC, Bartz TM, Cohen MM, Heymans S, Beussink Wijk S, Brunner LA. Validation of the PEFF score for the diagnosis of heart failure. *Eur J Heart Fail* 2020; 22: 148–158.

Ramalho SHR, Claggett BL, Sweitzer NK, Fang JC, Shah SJ, Anand IS, Pitt B, Lewis EF, Pfeffer MA, Solomon SD, Shah AM. Impact of pulmonary disease on the prognosis in heart failure with preserved ejection fraction: the TOPCAT trial. *Eur J Heart Fail* 2020; 22: 557–559.

Yang JH, Obokata M, Reddy YNV, Redfield MM, Lerman A, Borlaug BA. Endothelium-dependent and independent coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. *Eur J Heart Fail* 2020; 22: 432–441.

Fernandez-Silva MM, Shah AM, Claggett B, Cheng S, Tanaka H, Silvestre OM, Nadruz W, Borlaug BA, Solomon SD. Adiposity, body composition and ventricular-arterial stiffness in the elderly: the Atherosclerosis Risk in Communities Study. *Eur J Heart Fail* 2018; 20: 1191–1201.

Packer M. Do most patients with obesity or type 2 diabetes, and atrial fibrillation, also have undiagnosed heart failure? A critical conceptual framework for understanding mechanisms and improving diagnosis and treatment. *Eur J Heart Fail* 2020; 22: 214–227.

Semi M, Iorio A, Seferović P. Heart failure with preserved ejection fraction in Asia: the far side of the moon? *Eur J Heart Fail* 2019; 21: 37–39.

Reddy YNV, Carter RE, Obokata M, Redfield MM, Borlaug BA. A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. *Circulation* 2018; 138: 861–870.

Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Fu M, Guazzi M, Lam CSP, Lancellotti P, Melenovsky V, Morris DA, Nagel E, Pieske-Kraigher E, Ponikowski P, Solomon SD, Vasan RS, Rutter FH, Voors AA, Ruschitzka F, Paulus WJ, Seferovic P, Filippatos G. How to diagnose heart failure with preserved ejection fraction: the HFA-Peef diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). *Eur J Heart Fail* 2019; 21: 3297–3317.

Barandiarán Aizpurua A, Sanders-van Wijk S, Brunner-La Rocca HP, Henkens M, Heymans S, Beussink-Nelson L, Shah SJ, van Emmel VPM. Validation of the HFA-Peef score for the diagnosis of heart failure with preserved ejection fraction. *Eur J Heart Fail* 2020; 22: 413–421.

Wolsk E, Kaye D, Borlaug BA, Burkhof D, Kitzmiller DW, Komtebedde J, Lam CSP, Ponikowski P, Shah SJ, Gustafsson F. Resting and exercise haemodynamics in relation to six-minute walk test in patients with heart failure and preserved ejection fraction. *Eur J Heart Fail* 2018; 20: 715–722.

Corrá U, Agostoni PG, Anker SD, Coats AJS, Crespo-Leiro MG, de Boer RA, Harjola VP, Hill L, Lainscak M,
Lund LH, Metra M, Ponikowski P, Riley J, Seferović PM, Piepoli MF. Role of cardiopulmonary exercise testing in clinical stratification in heart failure. A position paper from the Committee on Exercise Physiology and Training of the Heart Failure Association of the European Society of Cardiology. *Eur J Heart Fail* 2018; 20: 3–15.

265. Van Iterson EH, Johnson BD, Borlaug BA, Olson TP. Physiological dead space and arterial carbon dioxide contributions to exercise ventilatory inefficiency in patients with reduced or preserved ejection fraction heart failure. *Eur J Heart Fail* 2017; 19: 1675–1685.

266. Popovic D, Arena R, Guazzi M. A flattening oxygen consumption trajectory phenotypes disease severity and poor prognosis in patients with heart failure with reduced, mid-range, and preserved ejection fraction. *Eur J Heart Fail* 2018; 20: 1115–1124.

267. Grodin JL, Philips S, Mullens W, Nijs P, Martens P, Fang JC, Drazner MH, Tang WHW, Pandey A. Prognostic implications of plasma volume status estimates in heart failure with preserved ejection fraction: insights from TOPCAT. *Eur J Heart Fail* 2019; 21: 634–642.

268. Solomon SD, McMurray JJV, Anand IS, McAlister FA, Pieske B, Díez J, Edelmann F. Biomarker-based phenotyping of myocardial fibrosis identifies patients with heart failure with preserved ejection fraction resistant to the beneficial effects of spironolactone: results from the Aldo-DHF trial. *Eur J Heart Fail* 2018; 20: 1290–1299.

269. Shen L, Ratcliff R, Cosmi D, Kristensen SL, Petrie MC, Cosmi F, Latini R, Kober L, Anand IS, Carson PE, Granger CB, Komajda M, McKelvie RS, Solomon SD, Staszewski L, Swedberg K, Huyyn T, Zile MR, Jhund PS, McMurray JJV. Insulin treatment and clinical outcomes in patients with diabetes and heart failure with preserved ejection fraction. *Eur J Heart Fail* 2019; 21: 974–984.

270. Trippel TD, Van Linthout S, Westermann D, Lindhorst R, Sandek A, Ernst S, Bohenko A, Kasner M, Spillmann F, González A, López B, Ravassa S, Pieske B, Paulus WJ, Diez J, Edelmann F, Tschöpe C. Investigating a biomarker-driven approach to target collagen turnover in diabetic heart failure with preserved ejection fraction patients. Effect of torasemide versus furosemide on serum C-terminal propeptide of procollagen type I (DROP-PIP trial). *Eur J Heart Fail* 2018; 20: 460–470.

271. Pronkman U, Bracie T, Levijoki J, Otsomaa L, Pollesello P, Falcke M, Pieske B, Heijnek FR. Long-term effects of Na+/Ca2+ exchanger inhibition with ORM-11035 improves cardiac function and remodelling without lowering blood pressure in a model of heart failure with preserved ejection fraction. *Eur J Heart Fail* 2019; 21: 1543–1552.

272. Plaza E, Jhund PS, Claggett BL, Pfeffer MA, Swedberg K, Granger CB, Yusuf S, Solomon SD, McMurray JJ. Prognosis and prognostic importance of precipitating factors leading to heart failure hospitalization in recurrent hospitalizations and mortality. *Eur J Heart Fail* 2018; 20: 295–303.

273. Ferreira JP, Metra M, Mordi I, Gregson P, Mosterd A, Bolli R, De Caterina R. Impact of diabetes on heart failure: applications for clinical practice and future directions for research. A statement from the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology. *ESC Heart Fail* 2018; 21: 1081–1099.

274. Chioncel O, Mebazaa A, Maggioni AP, Harjola VP, Rosano G, Laroche C, Piepoli MF, Crespo-Leiro MG, Lainscak M, Ponikowski P, Filipatos G, Ruschitzka F, Seferovic PM, Sionis A, Vieillard-Baron A, Weinstein JM, de Boer RA, Crespo-Leiro MG, Piepoli M, Riley J. Comprehensive in-hospital monitoring in acute heart failure: applications for clinical practice and future directions for research. A statement from the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology. *ESC Heart Fail* 2018; 21: 13124.

275. Javaloyes P, Miró Ò, Gil V, Martín-Sánchez FJ, Jacob J, Aguirre A, Wu C, Calderón S, Jacob J, Wu C, Martín-Sánchez FJ, Rodríguez-Adrada E, Sánchez C, Rossello X, Parissis J, Mebazaa A, Chioncel O, Llorens P, ICA-SEMES Research Group. Acute heart failure congestion and perfusion status–impact of the clinical classification on in-hospital and long-term outcomes; insights from the ESC-EORP-HF Heart Failure Long-Term Registry Investigators. *Eur J Heart Fail* 2019; 21: 1338–1352.

276. Javaloyes P, Miró Ò, Gil V, Martín-Sánchez FJ, Jacob J, Herrero P, Takagi K, Alquézar-Arbé A, López Diez MP, Martin E, Bibiano C, Escoda R, Gil C, Fuentes M, Llopis García G, Álvarez Pérez JM, Jerez A. Hospital and long-term outcomes in patients with heart failure with reduced ejection fraction: insights from the ESC-EORP-HF registry. *Eur J Heart Fail* 2019; 21: 1353–1356.

277. van Aelst I, van der Sluijs PJ, Plaiside R, Akiyama E, Girerd N, Zannad F, Manivet P, Rossignol P, Badoz M, Sadounie M, Lanuy JM, Gayet E, Lam CSP, Cohen-Solal A, Mebazaa A, Seronde MF. Acutely decompenated heart failure with preserved and reduced ejection fraction: present with comparable haemodynamic congestion. *Eur J Heart Fail* 2018; 20: 738–747.

278. Biegus J, Zymlinski R, Siwolowski P, Testani J, Szachniewicz J, Tycińska A.
Heart failure in the last year: progress and perspective

Banasiak W, Halpert A, Levin H, Ponikowski P. Controlled decongestion by Reprieve therapy in acute heart failure: results of the TARGET-1 and TARGET-2 studies. *Eur J Heart Fail* 2019; 21: 1079–1087.

Biegus J, Zmiliński R, Sokolski M, Todd J, Cotter G, Metra M, Jankowska EA, Banasiak W, Ponikowski P. Serial assessment of spot urine sodium predicts effectiveness of decongestion and outcome in patients with acute heart failure. *Eur J Heart Fail* 2019; 21: 624–633.

Wettersten N, Horiuuchi Y, van Veldhuisen DJ, Mueller C, Filipatos G, Nowak R, Hogan C, Kontos MC, Cannon CM, Mueller GA, Birkhahn R, Taub P, Vilke GM, Barnett O, McDonald K, Mahon N, Nuñez J, Brigui C, Passino C, Murray PT, Maisel A. Type B natriuretic peptide trend predicts clinical significance of worsening renal function in acute heart failure. *Eur J Heart Fail* 2019; 21: 1553–1560.

Pellicori P, Bennett A, Dorsch S, Cuthbert J, Urbinati A, Zhang J, Kalvikakbacka-Bennett A, Clark AL, Cleland JGF. Prevalence, pattern and clinical relevance of ultrasound indices of congestion in outpatients with heart failure. *Eur J Heart Fail* 2019; 21: 904–916.

Zymiliński R, Sokolski M, Biegus J, Siwowolski P, Nawrocka-Millward S, Sokolska JM, Dokukowiak M, Marciniak D, Todd J, Jankowska EA, Banasiak W, Ponikowski P. Multi-organ dysfunction/injury on admission identifies acute heart failure patients at high risk of poor outcome. *Eur J Heart Fail* 2019; 21: 744–750.

Wettersten N, Horiuuchi Y, van Veldhuisen DJ, Mueller C, Filipatos G, Nowak R, Hogan C, Kontos MC, Cannon CM, Mueller GA, Birkhahn R, Taub P, Vilke GM, Barnett O, McDonald K, Mahon N, Nuñez J, Brigui C, Passino C, Maisel A, Murray PT. Short-term prognostic implications of serum and urine neutrophil gelatinase-associated lipocalin in acute heart failure: findings from the AKINESIS study. *Eur J Heart Fail* 2020; 22: 251–263.

Blumer V, Greene SJ, Sun JL, Bart BA, Ambrosy AP, Butler J, DeVore AD, Fudim M, Hernandez AF, McNulty SE, Felker GM, Mentz RJ. Haemorrhagic shock during treatment of acute heart failure with cardioenal syndrome: from the CARRESS-HF trial. *Eur J Heart Fail* 2019; 21: 1472–1476.

Pivetta E, Carenini G, Zymiliński R, Lajoie C, Pizzi A, Tzitzios J, Puca M, Caletti A, Paglieri C, Masoero M, Cassine E, Porrino G, Ferreri E, Busso V, Morelle F, Paglieri C, Masero M, Cassine E, Bovo F, Grifoni S, Maule MM, Lupia E, Study Group on Lung Ultrasound from the Molinette and Careggi Hospitals. Lung ultrasound integrated with clinical assessment for the diagnosis of acute decompensated heart failure in the emergency department: a randomised controlled trial. *Eur J Heart Fail* 2019; 21: 754–766.

Čeluktiene J, Lainscak M, Anderson L, Gayat E, Grappa J, Harjola VP, Manka R, Nihoyannopoulos P, Filardi PP, Eric Van den Berghe J, Llorente L, Lopez L, Lassaletta E, Perez A, Jankowska EA, Banasiak W, Metra M, Piepoli M, Ruschitzka F, Zamorano JL, Rosano G, Ambrosy AP, Butler J, DeVore AD, Ambrosy AP, Butler J, DeVore AD.

ESC Heart Failure 2020; 7: 3505–3530
DOI: 10.1002/ehf2.13124
307. Teerlink JR, Davison BA, Cotter G, Maggioni AP, Sato N, Chioncel O, Ertl G, Felker GM, Filippatos G, Greenberg BH, Pang PS, Ponikowski P, Edwards C, Senger S, Teichman SL, Nielsen OW, Voors AA, Metra M. Effects of serelaxin in patients admitted for acute heart failure: a meta-analysis. Eur J Heart Fail 2020; 22: 315–329.

308. Maggioni AP, López-Sendón J, Nielsen OW, Hallén J, Aalamian-Mattheis M, Wang Y, Ertl G. Efficacy and safety of serelaxin when added to standard of care in patients with acute heart failure: results from a PROBE study. RELAX-AHF-EU. Eur J Heart Fail 2019; 21: 322–333.

309. Felker GM, Borentain M, Cleland JG, DeSouza MM, Kessler PD, O’Connor CM, Seiffert D, Teerlink JR, Voors AA, McMurray J. Rationale and design for the development of a novel nitroxyl donor in patients with acute heart failure. Eur J Heart Fail 2019; 21: 1022–1031.

310. Gayat E, Arrigo M, Littnerova S, Sato N, Parentica J, Ishihara S, Spinat J, Müller C, Harjola VP, Lassus J, Miró O, Maggioni AP, AlHabib KF, Choi DJ, Park JJ, Zhang Y, Zhang J, Januzzi JL Jr, Kajimoto K, Cohen-Solal A, Mebazaa A, GREAT Network. Heart failure oral therapies at discharge are associated with better outcome in acute heart failure: a propensity-score matched study. Eur J Heart Fail 2018; 20: 345–354.

311. Kimmoun A, Cotter G, Davison B, Takagi K, Addad F, Celutkiene J, Chioncel O, Solal AC, Diaz R, Damasceno A, Duengen HD, Filippatos G, Goncalvesova E, Merali I, Metra M, Ponikowski P, Privalov D, Sliwa K, Sani MU, Voors AA, Shogenov Z, Mebazaa A. Safety, tolerability and efficacy of Rapid Optimization, helped by NT-proBNP and GDF-15, of Heart Failure therapies (STRONG-HF): rationale and design for a multicentre, randomized, parallel-group study. Eur J Heart Fail 2019; 21: 1459–1467.