Localized B_0 shimming based on 23Na MRI at 7 T

Lena V. Gast1 | Anke Henning2,3 | Bernhard Hensel4 | Michael Uder1 | Armin M. Nagel1,5,6

1Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
2Max Planck Institute for Biological Cybernetics, Tübingen, Germany
3Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas
4Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
5Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
6Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

Correspondence
Lena V. Gast, Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany.
Email: lena.gast@uk-erlangen.de

Purpose: To validate the feasibility of localized B_0 shimming based on B_0 maps acquired with sodium (23Na) MRI.

Methods: A localized B_0 shimming routine based on a constrained regularized algorithm in combination with 23Na MRI data acquired with a 3D density-adapted radial readout scheme was implemented on a 7T MR system. Measurements were performed using a dual-tuned 23Na/1H head coil. The quality of B_0 maps reconstructed from 23Na images and the resulting shim values was examined depending on the acquisition duration between 10 minutes and 15 seconds to examine clinical applicability. The B_0 shimming based on 23Na B_0 maps was performed both for phantom and human head of 6 healthy volunteers, and the resulting B_0 homogeneity was compared with the vendor-provided 1H MRI–based gradient-echo brain shimming routine.

Results: The proposed 23Na MRI–based shimming routine showed a reduction in B_0 variation comparable to the vendor-provided shim both in phantom and in vivo measurements. Within the examined multicompartment phantom, the B_0 variations could be reduced by up to 77% using the 23Na MRI–based shimming. In human head, B_0 variations were reduced by approximately 50% using an acquisition time of 15 seconds for the 23Na B_0 maps and only 1 iteration of B_0 shimming.

Conclusion: The 23Na MRI–based localized B_0 shimming is possible at 7 T within clinically acceptable acquisition durations (<1 minute). It was shown that using the proposed 23Na MRI–based shimming approach, the 23Na image quality at ultrahigh field strength can be strongly improved.

Keywords
7 Tesla, B_0 shimming, sodium MRI, ultrahigh field strengths
INTRODUCTION

Ions such as sodium (Na⁺), potassium (K⁺), and chlorine (Cl⁻) play a vital role in many cellular processes, such as the excitability of neurons and muscle cells. Magnetic resonance imaging of these nuclei—often denoted as X-nuclei MRI—is a promising approach to examine cell viability noninvasively. Especially ²³Na MRI has evolved into a valuable tool in biomedical research during the past 2 decades.⁰⁻³ Due to low in vivo concentrations as well as low gyromagnetic ratios, the use of ultrahigh magnetic field strengths (B₀ ≥ 7 T) is desirable for X-nuclei imaging to achieve a sufficient SNR.⁴ As B₀ inhomogeneities increase with increasing field strength, they are a major challenge in ultrahigh field applications. Especially for quantitative measurements⁵ as well as for advanced acquisition techniques such as multiple quantum filtration,⁶⁻⁸ a homogeneous B₀ field is indispensable. In X-nuclei imaging, localized B₀ shimming is usually performed using ¹H MRI–based shimming routines provided by the manufacturers of the MRI system. However, in various applications, X-nuclei RF coils without ¹H channel are used. Both single-tuned X-nuclei coils (e.g., ²³Na head or body coils)⁹ and dual-tuned X-nuclei-only coils (e.g., ²³Na/²⁵Cl¹⁰ or ²³Na/³⁹K¹¹) are available.¹² If the MR system is not equipped with a ¹H body coil, which is usually the case for ultrahigh-field MRI systems, B₀ shimming cannot be performed using vendor-provided localized B₀ shimming routines.

In general, localized B₀ shimming techniques can be divided into projection mapping techniques such as FASTMAP, FASTERMAP, and FASTESTMAP,¹³⁻ⁱ⁵ which acquire only a few linear projections, and volumetric mapping techniques. The latter measure a full 3D data set and are therefore more time-consuming; however, they can better account for local B₀ variations. Volumetric mapping techniques can be further differentiated by the algorithm used for the solution of the shim value optimization. A detailed description of the most commonly used algorithms and a comparison of their performance at 7 T and 9.4 T can be found in Nassirpour et al.¹⁶

The aim of this work was to implement a B₀ shimming routine that is based on ²³Na MRI data acquired in clinically acceptable acquisition times (< 1 minute), and to evaluate its performance by comparing it with the vendor-provided ¹H MRI–based gradient-echo (GRE) brain-shimming routine both in phantom and in vivo measurements.

METHODS

Measurements were performed at a 7T whole-body MR system (Magnetom Terra; Siemens Healthcare, Erlangen, Germany) using a double-resonant ²³Na/¹H head coil (Rapid Biomedical, Rimpar, Germany). The ²³Na data sets for shim-value calculation were acquired using a double-echo 3D density-adapted radial readout scheme¹⁷ (parameters: TR = 50 ms, TE₁/₂ = 0.3/5.8 ms, flip angle [FA] = 50°, and nominal spatial resolution Δx = 5 mm³). Reconstruction and postprocessing of the radial data sets were performed offline using MATLAB (The MathWorks, Natick, MA). To account for the reduced SNR of radially undersampled data sets, ²³Na images were reconstructed using a Gaussian filter with increasing SD (5 mm to 9.3 mm) for decreasing number of radial projections.

First, the 2 echoes of the ²³Na acquisitions were reconstructed as complex images and phase-unwrapped,¹⁸ resulting in phase images Φ₁,unwrapped and Φ₂,unwrapped. Next, the ΔB₀ map, which describes the local deviations of the effective B₀ field from the nominal B₀ field, was calculated according to

\[
\Delta B_0 = \frac{\Phi_{2,\text{unwrapped}} - \Phi_{1,\text{unwrapped}}}{\gamma (TE_2 - TE_1)},
\]

with the TEs of the double-echo acquisition (TE₁ and TE₂) and the gyromagnetic ratio of ²³Na (γ₂³Na = 11.269 MHz/T).

In the following, these maps will be denoted as B₀ maps. The volume of interest to be shimmed was determined by calculating a 3D mask based on the magnitude image reconstructed from the first echo using a thresholding approach. The corresponding threshold was chosen subject-specific to include the whole head.

In general, localized B₀ shimming requires the solution of the optimization problem

\[
\min_x \left\| (A \cdot x - \Delta B_0) \right\|^2,
\]

where A is the matrix of the shim fields produced by the shim coils, ΔB₀ denotes the B₀ map calculated as described previously (Equation 1), and x is the vector of the shim currents to be determined. In general, the shim fields are described by spherical harmonics. However, the real shim fields often deviate from the theoretical description, so it is advisable to include a decomposition coefficient matrix C modeling the real shim fields¹⁹ as follows:

\[
\min_x \left\| ((A \cdot C) \cdot x - \Delta B_0) \right\|^2 = \min_x \left\| (A' \cdot x - \Delta B_0) \right\|^2.
\]

The decomposition matrix for the third-order shim coils of the MR system was determined using a 32-channel ¹H head coil (Nova Medical, Wilmington, MA) and a spherical oil phantom (diameter = 17 cm). Field maps of the 12 different shim coils were acquired using a 2D-GRE B₀ mapping sequence (TR = 304 ms, TE₁/₂ = 2.99/4.60 ms, FA = 17°, Δx = 4 mm³, 50 slices, FOV = 240 × 240 × 200 mm³, acquisition time [TA] = 38 seconds) at 5 different input current...
amplitudes (+100 mA, 200 mA, 500 mA, and 1000 mA) and fitted by a linear model using a fifth-order spherical harmonic approximation as described by Chang et al. This resulting coefficient matrix can be found in Supporting Information Table S1.

The 23Na B_0 maps were acquired using the default shim currents of the system (denoted as “Tune Up” shim settings). Shim values were then calculated based on these B_0 maps using the constrained regularized pseudo-inversion approach (ConsTru) proposed by Nassirpour et al. This algorithm using the constrained regularized pseudo-inversion approach solves Equation 3 by directly pseudo-inverting the matrix A'. If this violates hardware restrictions, the smallest singular value of the matrix A' is truncated and the resulting new matrix is re-inverted. This step is repeated until no hardware restrictions are violated. Due to the truncation of the smallest singular values of the A' matrix, the ConsTru algorithm was shown to be robust against noisy input data. All shim value calculations based on 23Na B_0 maps were performed directly on the host computer of the scanner using a MATLAB script, and the resulting shim values were automatically transferred to the shim settings.

As a reference, shim values were calculated using the vendor-provided 1H MRI–based GRE brain shimming routine (parameters: $TR = 4.3$ ms, $TE_{1/2} = 1.02/3.06$ ms, $FA = 3°$, $Δx = 4.4$ mm3, 52 slices, FOV = $282 × 282 × 274$ mm3, $TA = 14$ seconds). For better comparability, only 1 iteration of shimming was performed each for the ConsTru and the GRE brain-shimming routine in all measurements. Additionally, the acquisition duration of the 23Na images used for the shim-value calculation was chosen to match the acquisition duration of the GRE brain shimming B_0 map acquisition ($N_{proj} = 300$).

The B_0 shimming performance of the different shimming routines was evaluated by calculating the B_0 variation represented by the SD $σ$ of $ΔB_0$ over the entire volume of interest. In addition, the range of $ΔB_0$ values in which 95% of the voxels within the volume of interest can be found (95th percentile P) was calculated.

2.1 Phantom measurements

In a first step, measurements of a 5-compartment phantom were performed to evaluate the performance of the implemented 23Na MRI–based B_0 shimming routine. The 4 cylindrical compartments (diameter 6 cm, height 13 cm) were filled with 2% and 3% xanthan gel as well as 4% and 8% agarose gel (Carl Roth, Karlsruhe, Germany). All gels were produced using a solution containing 50 mM NaCl. The space between the cylindrical compartments was filled with the same solution (compare with Gast et al).

The 23Na B_0 maps were acquired with a varying number of radial projections (12 000, 6000, 1200, 300) to examine the effect of the acquisition duration on the B_0 map. Shim values were calculated using the ConsTru algorithm for all 23Na acquisitions. Moreover, shimming was performed using the GRE brain shim. To compare the B_0 homogeneity before and after shimming, 23Na B_0 maps were acquired for each set of calculated shim values (1200 radial projections/TA = 1 minute).

To examine the effect of an unshimmed and shimmed B_0 field on the 23Na image quality, spin-density weighted (SDW), triple-quantum filtered (TQF), and double-quantum filtered with magic angle excitation (DQF-MA) 23Na data sets of the phantom were acquired before and after shimming using the 23Na-based ConsTru shim (300 projections, TA = 15 seconds). Multiple quantum-filtered acquisition techniques without 180°-refocusing pulse are highly prone to B_0 inhomogeneities and can therefore serve as an indicator of the shim quality. In TQF acquisitions, signal loss due to B_0 inhomogeneities can be expected. In contrast, B_0 deviations result in signal breakthrough of compartments that are supposed to be suppressed in DQF-MA measurements (parameters: $TR = 86$ ms, $TE = 0.3$ ms, $FA = 90°$, $Δx = 3 × 3 × 6$ mm3, and TA = 10:23 minutes for SDW; $TR = 258$ ms, $TE = τ = 5$ ms, $Δx = 8 × 8 × 16$ mm3, and TA = 18:10 minutes for TQF; and TR = 150 ms, $TE = τ = 4$ ms, $Δx = 8 × 8 × 16$ mm3, and TA = 10:34 minutes for DQF-MA).

2.2 In vivo measurements

The B_0 shimming was performed in vivo on the heads of 6 healthy volunteers (3 males, 3 females, 26.2 ± 1.6 years old). The study was approved by the local ethical review board and all volunteers provided informed consent before the scan. Again, the B_0 map quality depending on the acquisition duration of the underlying 23Na images was examined by varying the number of radial projections between 12 000 and 300. Shim values were calculated using the ConsTru algorithm from B_0 maps acquired with the 23Na 3D density-adapted radial readout sequences ($N_{proj} = 300$) and were compared with the vendor-provided GRE brain shim as described for the spherical phantom. For all calculated shim values, a 23Na B_0 map was acquired (1200 radial projections/TA = 1 minute). Moreover, SDW and TQF-23Na images were acquired for 1 volunteer (male, 27 years old) using Tune Up shim currents as well as shim values calculated using the 23Na-based ConsTru shim (300 projections, TA = 15 seconds) (parameters: $TR = 86$ ms, $TE = 0.3$ ms, $FA = 90°$, $Δx = 3$ mm3, and TA = 10:02 minutes for SDW; $TR = 200$ ms, $TE = τ = 5$ ms, $Δx = 8$ mm3, and TA = 14:34 minutes for TQF).

3 Results

3.1 Phantom measurements

The B_0 maps of the multicompartment phantom reconstructed from fully sampled and undersampled 23Na data sets,
as well as corresponding histograms of the ΔB_0 distribution within the phantom, are in good accordance for all acquisition durations (Figure 1A). The corresponding magnitude images depending on the acquisition duration can be found in Supporting Information Figure S1. A slight decrease in the strength of the measured B_0 variation σ with decreasing acquisition duration can be observed. The ConsTru shimming algorithm markedly improved the B_0 homogeneity (Figure 1B). Similar results were achieved for the different acquisition durations of the 23Na B_0 maps.

A comparison of the B_0 homogeneity within the phantom before and after shimming using the 23Na-based...
ConsTru and the 1H-based GRE brain shim is shown in Figure 2. Both approaches result in a clear reduction of the B_0 inhomogeneities within the phantom. Using the same acquisition duration of 15 seconds for the acquisition of the underlying data sets, the 23Na MRI-based ConsTru shimming routine leads to a similar reduction of the B_0 variation σ (reduction by 77%) as the GRE brain shim (reduction by 79%).

In addition, the SDW, TQF, and DQF-MA 23Na images of the multicompartment phantom were acquired before and after shimming with the 23Na ConsTru shimming routine (Figure 3). In the SDW 23Na image (Figure 3A) acquired with Tune Up shim currents (upper row), slight artifacts due to the B_0 inhomogeneities can be observed in the center of the phantom that are eliminated after shimming with the 23Na ConsTru shim (lower row). In the 23Na TQF image (Figure 3B), strong signal loss can be observed in the unshimmed measurement compared with the acquisition after shimming. The 23Na DQF-MA image (Figure 3C) shows unwanted signal of the agarose compartments when using the Tune Up shim currents that is suppressed in the acquisition performed after shimming.

3.2 In vivo measurements

As for the phantom, 23Na data sets of the human head acquired in less than 1 minute yield B_0 maps comparable to the fully sampled 23Na data set (see Supporting Information Figure S1 for 23Na images depending on the acquisition duration) and can therefore be used for shim value calculation. The B_0 homogeneity after 23Na-based ConsTru shimming compared with the vendor-implemented GRE brain shimming routine of the same volunteer can be found in Figure 4. Again, both shimming routines significantly reduced the B_0 deviations compared with the Tune Up shim currents. Over the 6 examined volunteers, a very similar performance of both shimming routines with a mean reduction of the B_0 variations σ by 53% ± 7% (1H GRE brain) and 52% ± 7% (23Na ConsTru) over the entire head volume was observed. Moreover, the mean 95th percentiles P were reduced by 43% ± 10% (1H GRE brain) and 44% ± 12% (23Na ConsTru). The results for all volunteer measurements can be found in Supporting Information Table S2.

The impact of B_0 inhomogeneities on in vivo 23Na acquisitions of the human head was examined by acquiring SDW and
Figure 3 Spin-density weighted (SDW) (A), triple-quantum filtered (TQF) (B), and double-quantum filtered with magic angle excitation (DQF-MA) (C) 23Na images of a multicompartment phantom containing compartments of agarose gel (1 and 3), xanthan gel (2 and 4) and NaCl solution (5). Images were acquired before (upper row) and after shimming with the 23Na image-based ConsTru shimming routine (lower row). D. Corresponding B_0 maps. Using Tune Up shim currents, the SDW image depicts artifacts in the center of the phantom due to B_0 inhomogeneities that are eliminated after shimming (see red arrow). Stronger effects can be observed in the multiple quantum-filtered acquisitions: B_0 inhomogeneities lead to strong signal reduction in the TQF acquisition, which is intended to show only signal of motionally restricted areas (agarose/xanthan gel), whereas they lead to the breakthrough of unwanted signal in the DQF-MA acquisition, which is intended to show only signal of regions exhibiting anisotropic orientation (xanthan gel).

Figure 4 In vivo B_0 maps of a healthy subject acquired using Tune Up shim currents (A) compared with B_0 maps using shim values calculated with the vendor-provided 1H GRE brain shimming routine (B), as well as the ConsTru shimming routine based on 23Na image data (C), together with corresponding ΔB_0 distributions (lower row). To ensure comparability, all shown B_0 maps were acquired using the same 23Na MRI protocol (isotropic nominal resolution = 5 mm, TA = 1 minute). In this example, the B_0 variations were reduced by about 49% by applying shim values calculated using the GRE brain shim and by about 46% using shim values calculated by the 23Na image-based ConsTru shim, each using 1 iteration of B_0 shimming.
TQF 23Na images before and after shimming (Figure 5A,B, respectively). The corresponding 23Na B_0 maps can be found in Figure 5C. In the SDW image acquired with Tune Up shim currents (Figure 5A, left column), B_0 inhomogeneities lead to a blurring that is especially noticeable in small structures (compare red arrows). These artifacts can be clearly reduced using shim values calculated by the 23Na image–based ConsTru algorithm (Figure 5A, right column). An even stronger effect can be observed in the TQF acquisition, as the images provide different information in the case of an unshimmed and shimmed B_0 field (Figure 5B). Although the TQF signal intensity can be observed primarily in the frontal lobe using Tune Up shim currents, a more homogeneous signal distribution over the entire brain is found using ConsTru shim values.

FIGURE 5 The SDW (A) and TQF (B) 23Na images of human head before (left column) and after shimming with the ConsTru shimming routine based on a 23Na B_0 map acquired in 15 seconds (right column). C, Corresponding B_0 maps. Using Tune Up shim currents, small structures are blurred in the SDW image due to B_0 inhomogeneities (red arrows). In the TQF image, B_0 inhomogeneities lead to strong signal reduction and therefore significant loss of information.

4 | DISCUSSION

In this work, a localized B_0 shimming routine based on 3D 23Na B_0 maps was implemented on a 7T MR system equipped with a third-order shim system. The B_0 maps reconstructed from 23Na data sets acquired with the 3D density-adapted radial readout scheme were found to provide sufficient SNR for shim value calculation using the ConsTru algorithm, even when using strong radial undersampling. Shim values calculated from 23Na B_0 maps acquired in 15 seconds resulted in a reduction in B_0 variation comparable to the vendor-provided 1H MRI–based GRE brain shimming routine both for phantom and in vivo measurements.

As shown in both phantom and in vivo measurements of the human brain, the B_0 homogeneity has a strong impact on the 23Na image quality. This is in agreement with previous work that examined the effect of B_0 correction on quantitative 23Na MRI measurements. Moreover, it was shown that a homogeneous B_0 field is of special importance when performing advanced imaging techniques as multiple quantum filtration. In contrast to quantitative measurements, for these techniques no B_0 correction can be performed, and deviations from the nominal B_0 field result in strong image artifacts.

In a clinical context, the acquisition duration of 10 minutes for a fully sampled 23Na image is not applicable. Therefore, a certain degree of radial undersampling and consequent loss of information has to be accepted. Due to the increasing filter strength used for the image reconstruction to maintain the SNR of the fully sampled data set, B_0 maps calculated from 23Na images with shorter acquisition durations are smoothed and the variation of ΔB_0 is slightly underestimated compared with the fully sampled 23Na acquisitions. However, the resulting shim values lead to a comparable B_0 homogeneity as the fully sampled data set. Moreover, in the measurements performed in this work, similar B_0 variation was found using shim values calculated by the 23Na MRI–based ConsTru as using the vendor-provided 1H MRI–based GRE brain shim, despite the significantly lower SNR and slightly lower resolution of the 23Na B_0 maps. One possible reason might be
that 23Na acquisitions are influenced less by B_1 inhomogeneities than 1H acquisitions at 7 T, leading to fewer areas with very low signal intensity and therefore a better overall B_0 map quality. Acquiring 23Na B_0 maps with higher resolution than the chosen value of 5 mm would again lead to longer measurement times and was not found to provide better shimming results. In addition, in the presented B_0 shimming approach, the ConsTru algorithm is used in combination with the modeled shim fields, while the vendor-provided shim routine is based on the assumption of ideal shim fields described by spherical harmonics. Therefore, the ConsTru algorithm can provide better B_0 homogeneity when using only 1 iteration of B_0 shimming. 10

In general, B_0 shimming in X-nuclei imaging is performed by using the 1H channel of a dual-tuned coil. 12 However, for some applications, the use of an X-nuclei coil without 1H channel is desirable, such as to facilitate coil design or in exchange for a second X-nuclei channel. In this case, usually no B_0 shimming is performed. 11 Another approach is exchanging the X-nuclei RF coil by an 1H RF coil without moving the head to perform shimming on the 1H frequency. 5

The presented 23Na MRI-based approach allows localized B_0 shimming even when no 1H channel is available. Therefore, the B_0 homogeneity and the resulting image quality of X-nuclei acquisitions can be improved significantly.

So far, the calibration of the shim system used in this work was performed only for the FOV of a head coil, and the workflow was optimized for 23Na measurements of the human head. Therefore, the applicability of the presented shimming routine to other parts of the body, such as in measurements of skeletal muscle, and using other nuclei than 23Na for B_0 shimming still has to be evaluated.

5 | CONCLUSIONS

In this work, the feasibility of localized B_0 shimming based on 3D 23Na B_0 maps acquired in clinically acceptable acquisition times (< 1 minute) at 7 T was demonstrated. These results are promising for future ultrahigh-field X-nuclei MRI applications, in which no 1H MRI data can be acquired, such as when using single-tuned 23Na RF coils.

ORCID

Lena V. Gast http://orcid.org/0000-0002-4599-1122

REFERENCES

1. Ouwerkerk R. Sodium MRI. Magnetic Resonance Neuroimaging. Springer; 2011:175–201.
2. Madelin G, Regatte RR. Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging. 2013;38:511–529.
3. Thulborn KR. Quantitative sodium MR imaging: a review of its evolving role in medicine. Neuroradiology. 2018;168:250–268.
4. Ladd ME, Bachert P, Meyerspeer M, et al. Pros and cons of ultrahigh-field MRI/MRS for human application. Prog Nucl Magn Reson Spectrosc. 2018;109:1–50.
5. Lu A, Atkinson IC, Claiborne TC, Damen FC, Thulborn KR. Quantitative sodium imaging with a flexible twisted projection pulse sequence. Magn Reson Med. 2010;63:1583–1593.
6. Matthies C, Nagel AM, Schad LR, Bachert P. Reduction of B(0) inhomogeneity effects in triple-quantum-filtered sodium imaging. J Magn Reson. 2010;202:239–244.
7. Tanase C, Boada FE. Triple-quantum-filtered imaging of sodium in presence of B(0) inhomogeneities. J Magn Reson. 2005;174:270–278.
8. Gast LV, Gerhalter T, Hensel B, Uder M, Nagel AM. Double quantum filtered (23) Na MRI with magic angle excitation of human skeletal muscle in the presence of B0 and B1 inhomogeneities. NMR Biomed. 2018;31:e4010.
9. Platt T, Umatham R, Fiedler TM, et al. In vivo self-gated (23) Na MRI at 7 T using an oval-shaped body resonator. Magn Reson Med. 2018;80:1005–1019.
10. Weber MA, Nagel AM, Marschar AM, et al. 7-T 35 Cl and 23 Na MR imaging for detection of mutation-dependent alterations in muscular edema and fat fraction with sodium and chloride concentrations in muscular periodic paralyses. Radiology. 2016;280:848–859.
11. Gast LV, Mueller M, Hensel B, Uder M, Nagel AM. Combined 23Na/39K MRI for the quantification of Na+ and K+ concentrations in human skeletal muscle at 7 T. In: Proceedings of the 27th Annual Meeting of ISMRM, Montreal, Canada, 2019. Abstract 2512.
12. Wiggins GC, Brown R, Lakhmanan K. High-performance radiofrequency coils for (23)Na MRI: brain and musculoskeletal applications. NMR Biomed. 2016;29:96–106.
13. Gruetter R. Automatic, Localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med. 1993;29:804–881.
14. Gruetter R, Boesch C. Fast, Noniterative shimming of spatially localized signals. In vivo analysis of the magnetic field along axes. J Magn Reson. 1992;96:323–334.
15. Shen J, Rycyna RE, Rothman DL. Improvements on an in vivo automatic shimming method [FASTERMAP]. Magn Reson Med. 1997;38:834–839.
16. Nassirpour S, Chang P, Fillmer A, Henning A. A comparison of optimization algorithms for localized in vivo B0 shimming. Magn Reson Med. 2018;79:1145–1156.
17. Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR. Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med. 2009;62:1565–1573.
18. Maier F, Fuentes D, Weinberg JS, Hazle JD, Stafford RJ. Robust phase unwrapping for MR temperature imaging using a magnitude-sorted list, multi-clustering algorithm. Magn Reson Med. 2015;73:1662–1668.
19. Chang P, Nassirpour S, Henning A. Modeling real shim fields for very high degree (and order) B0 shimming of the human brain at 9.4 T. Magn Reson Med. 2010;63:1583–1593.
20. Fiege DP, Romanazzi S, Tse DH, et al. B0 insensitive multiple-quantum resolved sodium imaging using a phase-rotation scheme. J Magn Reson. 2013;228:32–36.
21. Madelin G, Lee JS, Inati S, Jerschow A, Regatte RR. Sodium inversion recovery MRI of the knee joint in vivo at 7T. J Magn Reson. 2010;207:42–52.
SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

FIGURE S1 Magnitude 23Na images of the multicompart-ment phantom (A) and a healthy subject (B) depending on the acquisition duration. Images were reconstructed using a Gaussian filter with increasing filter strength to maintain the SNR of the fully sampled data set (TA = 10 minutes)

TABLE S1 Decomposition coefficient matrix for the shim system. Note: The columns represent the 9 nonlinear shim coils of the shim system as denoted by the manufacturer. The corresponding theoretical shim fields are described by second-order (A20-B22) and third-order (A30-A32) spherical harmonics. The decomposition coefficients describing the contribution of spherical harmonics of zeroth to fifth order to the real shim fields can be found in the lines

TABLE S2 B_0 variations σ and 95th percentiles P describing the range in which 95% of the ΔB_0 values within the volume of interest can be found. Note: Values for σ and P are shown for all individual volunteers. Tune Up shim currents, as well as shim values calculated by the vendor-provided 1H GRE brain shim and the 23Na ConsTru, were used. No significant differences for σ and P were observed between the 1H GRE brain and 23Na ConsTru shim

How to cite this article: Gast LV, Henning A, Hensel B, Uder M, Nagel AM. Localized B_0 shimming based on 23Na MRI at 7 T. Magn Reson Med. 2020;83:1339–1347. https://doi.org/10.1002/mrm.28011