Characterization of the complete mitochondrial genome of *Cottiusculus nihonkaiensis* (Scorpaeniformes, Cottidae) and phylogenetic studies of Scorpaeniformes

Lele Yang\(^{a,b}\), Kehua Zhu\(^{a,b}\), Jiaqi Fang\(^{a,b}\), Liqin Liu\(^{a,b}\) and Zhenming Lü\(^{a,b}\)

\(^{a}\)National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China; \(^{b}\)National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China

ABSTRACT

In this study, the complete mitochondrial genome of *Cottiusculus nihonkaiensis* was presented, and we also discussed its mitochondrial characteristics. The full length of the mitochondrial genome was 16,612 bp, containing 13 protein-coding genes (PCGs), two ribosomal RNAs (12S and 16S), 22 transfer RNA genes (tRNA), one non-coding control region (CR) and one origin of replication on the light-strand. Overall base composition of the complete mitochondrial DNA was 26.4% A, 17.4% G, 31.5% C, 24.7% T. The phylogenetic tree suggested that *C. nihonkaiensis* shared the most recent common ancestor with *Gymnocanthus herzensteini*, *Gymnocanthus intermedius* and *Gymnocanthus tricuspid*. Overall base composition of the complete mitochondrial DNA was 26.4% A, 17.4% G, 31.5% C, 24.7% T, respectively, with a slight AT bias (51.1%). *C. nihonkaiensis* mitochondrial genes were mostly encoded on the heavy strand, and only ND6 and eight tRNA (Gln, Ala, Asn, Cys, Tyr, Ser, Glu and Pro) genes on the light strand coding. The start codons of the 13 PCGs encoding genes were ATG except for COI which was GTG, which is quite common in vertebrate mtDNA (He et al. 2015). Most of the stop codons were TAA or TĂ˘–, the stop codon of ND2 was CTA and the gene with TTA as the stop codon was COII. Most of the tRNAs could form a common cloverleaf secondary structure, except tRNA\(^{\text{Ser}}\) (GCT) gene without DHU stem (Han et al. 2016). The lengths of the two rRNA genes were 947 bp (12S rRNA) and 1,692 bp (16S rRNA), respectively, which located between the tRNAPhe and tRNALeu (TAA) and separated by the tRNA\(^{\text{Val}}\) gene. The length of the control region was 858 bp, located between tRNA\(^{\text{Pro}}\) and tRNA\(^{\text{Leu}}\).
In order to obtain the position and kinship of the *C. nihonkaiensis* within Scorpaeniformes, we constructed phylogenetic trees of Scorpaeniformes based on maximum likelihood (ML) method (Figure 1). According to the Akaike Information Criteria (AIC), the most suitable nucleotide sequence model was selected through MrModeltest 2.3 (Bozdogan 1987), and finally the most suitable model was GTR + I + G. The ML phylogenetic tree based on 13 PCGs of 36 species using the software RAxML 8.0 (Alexandros 2014). The results showed that *C. nihonkaiensis* shared the most recent common ancestor with *Gymnocanthus herzensteini*, *Gymnocanthus intermedius* and *Gymnocanthus tricuspid*.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Introduction of Talent of Zhejiang Ocean University and Open Fund of the State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences [GREKF1704 and GREKF16-03].

Data availability statement

The data that support the findings of this study are openly available in "NCBI" at https://www.ncbi.nlm.nih.gov/nuccore/MK224511. GenBank accession number: MK224511.1.

References

Alexandros S. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. (9):1312–1313.
Bozdogan H. 1987. Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika. 52 (3):345–370.

Dierckxsens N, Patrick M, Guillaume S. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45 (4):e18.

Han H, Wang N, Xu L, Gao S, Liu A. 2016. The complete mitochondrial genome of Calliptamus abbreviatus Ikovnnikov (Orthoptera: acridoidea). Mitochondrial DNA Part B. 1 (1):770–771.

He SL, Zou Y, Zhang LF, Ma WQ, Zhang XY, Yue BS. 2015. The complete mitochondrial genome of the beetle webworm, Spoladea recurvalis (Lepidoptera: Cramidae) and its phylogenetic implications. PLOS One. 10(6):e0129355.

Kai Y, Nakabo T. 2009. Taxonomic review of the genus Cottiulus (Cottoidei: Cottidae) with description of a new species from the Sea of Japan. Ichthyol Res. 56 (3):213–226.

Kai Y, Yamanaka T. 2019. Tsugaru Strait hybrid zone between two Japanese marine sculpins (genus Cottiulus). Mar Biodiv. 49(1):501–504.

Kchl S, Niederstätter H, Parson W. 2005. DNA extraction and quantitation of forensic samples using the phenol-chloroform method and real-time PCR. Methods Mol Biol. 297(13).

Li X, Yang J, Wang JH, Ren QL, Xia LJ, Huang Y. 2013. Methods and software tools for mitochondrial genome assembly and annotation. Chin J Appl Entomol.

Miya M, Kawaguchi A, Nishida M. 2001. Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol Biol Evol. 18 (11):1993–2009.

Zhu K, Gong L, Jiang L, Liu L, Liu B, Liu B-]. 2018a. Phylogenetic analysis of the complete mitochondrial genome of Anguilla japonica (Anguilliformes, Anguillidae). Mitochondrial DNA Part B. 3 (2): 536–537.

Zhu K, Gong L, Lü Z, Liu L, Jiang L, Liu B. 2018b. The complete mitochondrial genome of Chaetodon octofasciatus (Perciformes: Chaetodontidae) and phylogenetic studies of Percoidea. Mitochondrial DNA Part B. 3(2):531–532.