Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture

Timothy A. Johnson,a,b,1 Robert D. Stedtfeld,a,c Qiong Wang,a James R. Cole,a Syed A. Hashsham,a,c Torey Looft,b Yong-Guan Zhu,d,e James M. Tiedjea,b

Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USAa; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USAa; Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USAa; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Chinaab; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, Chinaa; Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USAe

ABSTRACT Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk.

IMPORTANCE Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if they are genetically linked. No links to bacterial membership were observed for these clusters of resistance genes. These findings urge deeper understanding of colocalization of resistance genes and mobile genetic elements in resistance islands and their distribution throughout antibiotic-exposed microbiomes. As governments seek to combat the rise in antibiotic resistance, a balance is sought between ensuring proper animal health and welfare and preserving medically important antibiotics for therapeutic use. Metagenomic and genomic monitoring will be critical to determine if resistance genes can be reduced in animal microbiomes, or if these gene clusters will continue to be coselected by antibiotics not deemed medically important for human health but used for growth promotion or by medically important antibiotics used therapeutically.

Received 21 December 2015 Accepted 8 March 2016 Published 12 April 2016

Citation Johnson TA, Stedtfeld RD, Wang Q, Cole JR, Hashsham SA, Looft T, Zhu Y-G, Tiedje JM. 2016. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture. mBio 7(2):e02214-15. doi:10.1128/mBio.02214-15.

Invited Editor Michael Gillings, Macquarie University Editor Julian E. Davies, University of British Columbia

Copyright © 2016 Johnson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

Address correspondence to James M. Tiedje, tiedje@msu.edu.

A ntimicrobial resistance is recognized as a worldwide health threat (1–5), especially from Gram-negative pathogens (6). Antibiotic resistance is an ancient trait (7) that has coevolved with natural antibiotic production (8) to result in widespread resistance in nature (9, 10). Humanity’s use of thousands of tons of antibiotics annually (11) has provided a selective advantage for resistant bacteria to flourish in the clinic (2, 12) and the environment (13). Subinhibitory antibiotic concentrations are sufficient to enrich for resistant bacteria (14), and mixtures of subinhibitory doses of antibiotics, such as are common in agriculture, select for the highest level of resistance (15). The fight against infectious disease is approaching a crisis situation (16), especially considering that while antibiotic use (12) and resistance increase, the process of antibiotic discovery has nearly halted (6).

Governments are increasingly regulating the use of antibiotics in agriculture. The European Union (17), led by Denmark, has banned the use of antibiotics as growth promoters (18). In the United States, the use of antibiotics important for human medicine will cease for animal growth promotion after 2016, and veterinary oversight will be required for therapeutic uses (5). Observations that agricultural antibiotics increase the abundance of resistance genes in manure (19, 20) and manure-amended soil
(21, 22) and potentially in the general public (23) provide a clear scientific basis for the regulation of agricultural uses of antibiotics. Compliance with new regulations will likely require alternative management practices (24) to overcome the losses of antibiotic growth-promoting and disease-controlling benefits (25, 26) and to maintain agricultural productivity (18).

Horizontal gene transfer (HGT) can uncouple gene content and phylogeny (27) and allows for rapid (28) acquisition of resistance or multidrug resistance (29), in some cases from environmental to pathogenic bacteria (30, 31). Genetic elements mobilizing genes within a cell (integrons and transposons) and between cells (plasmids and phage) are known to be enriched in agriculture due to the use of antibiotics (19, 32-35). We will refer to both types of elements as mobile genetic elements (MGEs). Insertion sequences confer a DNA cut-and-paste functionality at inverted repeat sequences (36). Integrons allow for the recruitment, genetic integration, and promotion of exogenous genes as integron cassettes (34). Class 1 integrons in clinical strains are thought to have all arisen from a single source due to widespread occurrence of identical intI1 sequences (34, 37). Both of these within-cell mobile genetic elements can lead to the evolution of multidrug resistance plasmids (28, 38), which can be transferred horizontally by conjugation (27).

In this study, we identify high correlations in the cooccurrence of clusters of identical antibiotic resistance genes (ARGs) and mobile genetic element sequences in Chinese swine farms and farm-impacted soils as well as U.S. laboratory swine. Despite consistency of detection and abundance of ARGs across sample types, the phylogenetic membership of these communities is distinct between farms and sample types. These results provide a strong impetus to further study the effects that swine agriculture has in possibly developing multidrug resistance islands and plasmids and their dispersal throughout these communities. This is the first study to perform high-throughput quantitative PCR (qPCR) followed by sequencing of all amplicon products to describe the effects of antibiotic use in animal agriculture.

RESULTS

Samples and DNA extraction. We continued the investigation of two classes of swine manure samples that were collected and have been described and studied previously by our laboratories (19, 20). Briefly, we sampled individual swine feces from the USDA National Animal Disease Center (NADC), Ames, IA, from swine living in highly controlled environments, sampled immediately preceding (0 days) and 14 days following continued antibiotic-free feeding (not medicated [NM], n = 3) or introduction to feed antibiotics (medicated [M], n = 3), which contained a mixture of chlortetracycline, sulfamethazine, and penicillin (ASP250). These sample names were abbreviated with the treatment group (NM or M) and the day sampled (0D or 14D). The other class of samples comes from industrial-size swine farms in north (Beijing [B]), central (Jiaxing [J]), and southern (Putian [P]) China as well as a pristine Chinese soil (CS). At each of these farms, the manure piles (M), composted manure (C), and soil amended with composted manure (S) were each sampled in triplicate. Samples were given a two-letter abbreviation: the first is the city (B, J, or P) and the second is the sample type (M, C, or S). In addition, we obtained feral pig feces (n = 4) as a reference sample (39) for antibiotic-free swine without contact with modern agricultural systems. These were abbreviated F (feral) with a pig identification (ID) number.

Cooccurrence of ARG and MGE sequences. Among the Chinese farm sites, despite their distant geographic locations or sample types, the abundance and occurrence of the most abundant allele of multiple genes were significantly correlated. For example, the abundance of the most prevalent allele of intI1 compared with that of qacEΔ1 and IS6100 resulted in r^2 values of 0.92 and 0.87, respectively. When we perform Spearman correlations with all the complete pairs of genes from the Chinese farms, we observe extensive clusters of statistically significant abundance-correlated alleles (Fig. 1A). In general, there are two major clusters of genes that cooccur in the Chinese farms, with little cross-correlation between the two clusters. The first cluster is composed of intI1, qacEΔ1, IS6100, aminoglycoside phosphotransferases and nucleotidyldetransferases, tetracycline efflux, sul2, dfrA1, cmlA1, and incompatibility group IncW plasmids. We designate this group of genes the intI1-IS6100 cluster (Fig. 1A, left cluster). The average correlation coefficient (p) within the cluster of significant cooccurrences is 0.86, showing very high between-gene correlations.

Tetracycline ribosomal protection protein resistance genes and two transposon alleles (IS614 and IS1216) dominate a second abundance-correlation cluster. We designate this group of genes the IS1216-tet cluster (Fig. 1A, right cluster). Also included in this cluster is mefA (macrolide efflux pump) and aphA3, an aminoglycoside phosphotransferase gene. Throughout the manure management process, i.e., from fresh manure to composted manure to soils receiving composted manure, the IS1216-tet cluster steadily declines, while the abundance of the intI1-IS6100 cluster is much more dynamic between sample types (Fig. 1C and D; see also Fig. S1 in the supplemental material). The sequences from the IS1216-tet cluster are most commonly associated with Gram-positive bacteria, while the intI1-IS6100 alleles are associated with Gram-negative bacteria as determined using the Basic Local Alignment Search Tool (BLASTn) with the nr database from the National Center for Biotechnology Information (NCBI).

The NADC research animals exhibited a different set of cooccurring ARGs and MGEs than the Chinese pigs: the blatem-sul2 cluster (Fig. 1B). The gene cooccurring with the greatest number of other genes within the cluster was blatem and it was shown to cooccur with nearly every other gene of the cluster, including aminoglycoside phosphorylases (strA and strB), nucleotidyldetransferases (aadA), sulfonamide resistance (sul2), and multiple mobile genetic elements (intI2, IS6100, IS54, and IncN plasmids). The average p within the blatem cluster was 0.79. Tetracycline resistance (tetO and tetW) clustered separately. Figure 1A and B show only the most abundant allele of each gene. We also observed high intragenic cooccurrence (cooccurrence between alleles of the same gene), especially within the Chinese samples (see Fig. 4A and B), when more alleles were included in the analysis.

Enrichment of ARG and MGE allele sequences. Individual resistance gene alleles (sequences) were enriched with a relative change in the adjusted cycle threshold (ΔΔAC_T) up to 15, which is equivalent to about 32,000-fold enrichment compared to the pristine soil. The level of enrichment of the resistance cluster gene alleles is unified across sample types and farms (see Fig. S1 in the supplemental material). Interestingly, in the Beijing farm, enrichment in manure is highest, followed by compost and soil, while in the Putian farm, some gene alleles follow this same trend (blue background in the figure), while for others (green background)
enrichment in the manure is lowest and compost is the highest (see Fig. S1). These genes make up a large portion of the community; for example, the most abundant \textit{intI1} allele was 5.7% as abundant as 16S rRNA in the BM, PC, and JC samples and 0.16% as abundant in the soil across all the farms but 0.93% as abundant in the PS sample. The \textit{aphA3} allele was the most abundant gene, up to 34% as abundant as 16S rRNA. This allele-specific analysis aided in the detection of enrichment of the most abundant \textit{bla}_{TEM} allele. When only the results of qPCR are used, it appears that the abundance of \textit{bla}_{TEM} is decreased (see Fig. S2). However, this is due to the presence of a different \textit{bla}_{TEM} allele in the control soil, and a different allele was enriched in both the NADC animals and the Chinese farms.

ARG-MGE clusters in sequenced genomes. We searched known sequenced genomes to ascertain if there was a precedent for resistance cluster alleles that we observed (Fig. 1) to cooccur in individual microbial genomes, and if the genes colocalize into resistance islands. We found supporting evidence for both cases. Genes from the \textit{intI1-IS6100} gene cluster were found to colocalize most often in plasmids or resistance islands from Gram-negative organisms at 100% identity to the most abundant alleles that we obtained (Table 1). \textit{Acinetobacter baumannii} strain AYE contains an extensive 86-kb resistance island, likely obtained through horizontal gene transfer (40). Amplicons from our study map with 100% identity along the entire amplicon length for 18 of the genes in this resistance island. \textit{Acinetobacter} was found to correlate with

FIG 1 Cooccurrence network with primer names as node labels of the ΔAC$_T$ values of the most abundant allele of each antibiotic resistance gene and mobile genetic element together with genus-level classification of 16S rRNA sequences within all Chinese farm samples ($n = 25$; JS1 and JS2 were excluded) (A) and all NADC pigs ($n = 12$) (B). Nodes connected by a line have a statistically significant Spearman correlation and are cooccurring. Various requirements were required to call two alleles cooccurring: codetection in at least half the samples (for cooccurrence to a genus, this requirement was relaxed to $n > 4$), false-discovery correction q value of < 0.05, and p of > 0.75. Node size is dependent on the number of connections to other nodes (degree). Shaded circles were added post hoc to clusters of alleles that have high degrees of abundance among all members of that cluster and limited abundance outside the cluster. (C to E) Representative corrrospondences from the \textit{intI1-IS6100}, IS1216-\textit{tet}, and \textit{bla}_{TEM}-\textit{sul2} resistance clusters, respectively. The \textit{intI1-IS6100} cluster is enriched and diluted differently in all farms, while the IS1216-\textit{tet} cluster steadily declines from manure to soil in all farms. Note that the ΔAC$_T$ detection limit for ARGs was -15. Axis labels are followed by _1 to indicate that they are the most abundant allele of the amplicons obtained.
TABLE 1 Obtained amplicons\(^a\) align with 100% identity in colocalized groups within known sequences\(^c\)

Example no.	Species and strain (accession no.)	Island or plasmid	Amplicon Location (kb)
1	*Acinetobacter baumannii* strain AYE (CU459141.1)	Resistance island	qucE\(\Delta\)1 3621.2 aadA 3622.0 intI1 3624.9 IS26 3626.6 aphA1 3627.6 IS26 3628.9 IS26 3633.2 tetR 3643.7 IS6100 3649.0 qacE\(\Delta\)1 3651.7 qacE\(\Delta\)1 3655.8 \textit{aadA} 3656.5 strA 3658.1 \textit{tetG} 3672.3 qacE\(\Delta\)1 3676.1 dfbA1 3677.3 intI1 3677.9 strB 3679.4
2	*Proteus mirabilis* strain PmGUE (JX121641.1)	Genomic island	intI1 26.3 qacE\(\Delta\)1 28.4 IS6100 30.4 tetR 35.9 strB 42.1 IS26 45.3 bla\(_{TEM}\) 46.7 IS26 48.4 aphA1 49.4 IS26 50.3 intI1 51.7 qacE\(\Delta\)1 53.0 tetG 56.9 qacE\(\Delta\)1 62.5 IS6100 65.2
3	*Salmonella enterica* strain ST06-53 (KT334335.1)	Plasmid pHK0653	IS26 72.1 IS26 78.2 IS26 80.6 IS26 84.3 \textit{aadA2} 85.0 IS26 87.0 aphA1 87.9 IS26 88.8 \textit{aadA} 94.1 cmlA1 94.6 \textit{aadA2} 96.4 intI1 98.9 \textit{Tn21} 102.8 sul2 106.9 IS4 110.6 IS26 114.5 qacE\(\Delta\)1 118.2 IS26 120.1
4	*Klebsiella pneumoniae* strain JM45 (CP006657.1)	Plasmid p1	\textit{Tn21} 41.9 \textit{incN} 51.0\(^b\) IS26 63.9\(^b\) IS6100 67.9 intI1 69.8 dfbA2 70.3 \textit{aadA2} 71.6 qacE\(\Delta\)1 72.3

\(^a\) The most abundant of each allele of each primer was included in the query.
\(^b\) Indicates a single mismatch between the most abundant amplicon and its local alignment with the NCBI sequence.
\(^c\) Six examples from the NCBI database of the obtained amplicons aligning in clusters within genomes. Examples 1 to 5 include genes from the \textit{intI1}-\textit{island} resistance cluster in manure samples. Co-localization of genes within 10 kb from another alignment position is common as indicated by the differences in genomic locations. Sequences from the NCBI database with the highest numbers of total alignments are shown. Examples from the \textit{IS1216}-\textit{tet} cluster are discussed in the text.

(Continued)
Gram-negative organism, but these genes all came from a region of the transposon which was horizontally transferred, likely from Gram-positive organisms (41).

Community analysis using V4 16S rRNA gene amplicons. Bacterial communities from all the samples clustered by sample type but with a moderate level of heterogeneity between replicates (Fig. 3A). The NM (a composite of NM0D, M0D, and NM14D), manure, compost, and soil sample cluster centers were statistically distinct based on an analysis of molecular variance (AMOVA) Bonferroni-corrected P value of <0.01 for all comparisons between these samples. The stress calculated in this ordination was 0.24, which indicates only a fair representation of the data based on the two axes. The feral samples did not cluster distinctly from any of the other sample types.

All manure samples, independent of their treatment, were dominated by the *Firmicutes* and *Proteobacteria* phyla, and soil samples were dominated by *Proteobacteria* and *Acidobacteria* (Fig. 3B). The Access Array platform required primer annealing at 60°C for all reactions. This annealing temperature limited amplification of members of the *Bacteroidetes* phylum (see Text S1 in the supplemental material). For many of the genes, the ARG-ARG correlation coefficient cluster average (\(P = 0.90\)) was significantly higher than that for *Lactobacillus* (\(P = 1.0 \times 10^{-8}\)). There are only three cooccurrence relationships between genera and the intI1-16S6100 cluster (average \(p = 0.76\)) (Fig. 1A). A housekeeping gene (*gapA*) allele was identified as *E. coli*, which cooccurs with three genes of the IS1216-tem cluster, but this allele is fully integrated with the *blaTEM-sul2* cluster. Another housekeeping gene, *mdh*, also cooccurs with the *blaTEM-sul2* cluster, but this allele does not have 100% identity or match well with any distinct taxonomic group.

We explored possible relationships by considering only a single farm or a single sample type at a time. When considered alone, the Beijing farm *intI1-16S6100* and IS1216-tem Beijing clusters are co-correlated. Further, *Clostridium sensu stricto* and *unclassified Clostridiales* are well correlated with this Beijing cluster. Within manure, *Acinetobacter* and *unclassified Clostridiales* are associated with the intI1-16S6100 cluster (Fig. 2C). Within Jiaxing, Putian, compost, or soil samples, each considered individually, there were only a combined eight cooccurrence relationships (edges) between any genera and the most abundant ARG or MGE alleles, indicating nearly no ARG-taxonomic cooccurrence.

ARG diversity. On average, the top 40 functional gene alleles account for 91% of all sequences of each sample of the genes (see Fig. S4 in the supplemental material). For many of the genes, especially within the intI1-16S6100 cluster, a single sequence represented more than 90% of all the sequences obtained (Fig. 4). In silico PCR of the reference sequences also commonly showed dominance of a single sequence, which indicated a conserved amplicon region. The Shannon diversity of all alleles of functional genes was low, often \(1\) (Fig. 4C). However, the diversity of some genes (e.g., *tetG*, *intI2*, and *mefA*) was much higher. Despite the

FIG 2 Correlations between the \(\Delta \Delta A C_T\) values of the most abundant ARG alleles and representative cooccurring phylogenetic groups. (A) *Lactobacillus* cooccurs with six of the eight genes in the *IS1216-tem* cluster (Fig. 1); however, *Lactobacillus* was present in all nine manure samples but was detected in only one of the 16 soil and compost samples. (B) Unclassified *Xanthomonadaceae* sequences cooccurred with two genes (Fig. 1) within the *intI1-16S6100* cluster and were detected in 10 of 25 samples. (C) *Acinetobacter* was detected in 5 manure samples and showed high cooccurrence with the intI1-16S6100 cluster but only within manure samples. Note that the \(\Delta \Delta A C_T\) detection limit for taxa was 7.8 and that the one for ARGs was \(15\). Gene names in the axis label are followed by \(_1\) to indicate that they are the most abundant allele.
dominance of the sequences by a single allele, the less abundant alleles were maintained across samples. When cooccurrence analysis was performed with the top five alleles of every gene, if all five alleles cooccur with every other allele, there would be 20 lines between these intergene alleles. Often, the top five alleles of a gene were cooccurring with each other across the Chinese samples (noted on the bars in Fig. 4A and B).

DISCUSSION

Clusters of highly abundant cooccurring resistance genes and mobile genetic elements of identical sequence were found in swine farms across China and another resistance cluster in laboratory swine at the U.S. National Animal Disease Center. Cooccurrence resistance clusters could be the result of a number of actual scenarios, including simultaneous enrichment of numerous strains with single or few resistance genes from the clusters, and/or enrichment of strains with multiple resistance genes scattered or clustered within their genome. While our results are congruent with the selection for multidrug-resistant bacteria in animal agriculture, our experimental design did not test this hypothesis directly. Several lines of evidence from this study highlight a need to understand the phylogenetic and genomic context of resistance genes and mobile genetic elements in animal agriculture environments. (i) The abundance of resistance genes and mobile genetic elements with no sequence divergence are tightly correlated across many sample types in and between swine farms. (ii) The resistance genes cooccur with integrases and insertion sequences which are known for the assembly of resistance islands (28, 38). (iii) Identical sequences in our resistance clusters are found in known resistance islands (40) and multidrug-resistant plasmids (42), and most of the intI1-IS6100 cluster genes (including adaA, adaA2, cmlA1, qacEA1, adaA5, dfrA1, adaA9, sul2, and dfrA2) have been observed previously as integron cassettes (43, 44). The cooccurrence of intI1, qacEA1, and adaA is not unexpected, as these are the canonical integron cassettes (37), together with sul1 (which was not included in our set of primers). Colocalization of intI1 with IS6100 has been previously identified in multidrug-resistant plasmids in the soil bacterium Corynebacterium (42), enterobacterial plasmids (45), Aeromonas from a Spanish river (46), Acinetobacter baumannii (40), and Pseudomonas aeruginosa clinical isolates (47). The combination of intI1 and IS6100 allows for the recruitment of resistance genes by the integrase and the duplication and transfer of large chromosomal inversions by IS6100 (47). Consequently, resistance genes tend to colocalize, and the development of complex resistance gene loci has been shown in single strains (reviewed in reference 48) and recently to a small degree in metagenomic sequences (49). Less abundant resistance alleles cooccur with these clusters as well (numbers in Fig. 4A and B), indicating rare instances of different allelic composition of resistance clus-
(iv) The resistance genes confer resistance to antibiotics both fed and not fed to the animals. With certainty, the NADC swine were never fed aminoglycosides; however, the aminoglycoside phosphotransferase \(\text{strA}[\text{synonymous with } \text{aph}(3''/\text{H}11033)-\text{Ib}]\) was found to be statistically enriched with ASP250 feed (20). The \(\text{aph}(3''/\text{H}11033)-\text{Ib}\) sequences obtained in this study were amplified with the same primer as in reference 20 and are shown to cooccur with \(\text{bla}\) TEM and in the same cluster as \(\text{sul2}\), genes that were enriched presumably because of the use of penicillin and sulfamethazine (20). This potentially indicates their coselection by colocalization of \(\text{bla}_{\text{TEM}}\) and \(\text{aph}(3'')-\text{Ib}\) in single genomes, as has been observed in \(E.\ coli\) strain 2009C-3133 (Table 1). Interestingly, \(E.\ coli\) gapA alleles cooccur with the \(\text{bla}_{\text{TEM}}\)-\(\text{sul2}\) cluster, and \(E.\ coli\) was shown previously to be enriched with ASP250 feed (20). Now, we show the cooccurrence of \(E.\ coli\), \(\text{bla}_{\text{TEM}}\)-\(\text{sul2}\), and \(\text{aph}(3'')-\text{Ib}\), implicating \(E.\ coli\), as the carrier of all the resistance genes, as the possible mechanism of the coenrichment. In a similar manner, coselection of resistance genes likely occurred with the \(\text{intI1-}\text{IS6100}\) resistance cluster. While each Chinese farm used different antibiotic cocktails for therapy and growth promotion (antibiotic usage reported in reference 19), no farm reported the use of all the antibiotics for which this cluster confers resistance (e.g., no farm used chloramphenicol or trimethoprim, Jiaxing did not use sulfonamides, and Putian did not use aminoglycosides, while resistance to these antibiotics is found across all farms). Thus, independent of antibiotics used, the same genes, which may be ubiquitously distributed in China, are maintained by selection and coselection of genetically linked resistance genes.

Persistence of resistance genes despite their discontinued use will be an obstacle in reversing the prevalence of antibiotic resistance genes now present in the environment, on animal farms, and in clinical settings, as has been observed in human populations (50). Coselection for resistance genes can occur when an antibiotic (49, 51, 52), heavy metal (19, 53, 54), or disinfectant (53) is introduced for which resistance to that agent and other resistance genes are genetically clustered. The \(\text{abaR1}\) resistance island in \(\text{Acinetobacter baumannii}\) strain AYE is a case in point: it has 45 antibiotic resistance genes, operons encoding arsenic and mercury resistance, and the disinfectant efflux pump \(\text{qacE}A1\) (40). Our data highlight two important different cases of resistance
clusters. First, the IS1216-tet cluster, while very abundant in the manure (the most abundant of all resistance alleles), is well eliminated by composting and land application. This may be due to the degradation of tetracycline in these sites (55) and other IS1216-tet cluster–related selective agents. However, the intI1-IS6100 cluster remained abundant in all farms, and composting sometimes significantly increased its enrichment, potentially due to chemical persistence of sulfonamide molecules that were enriched by composting (19) or by some other nondegraded coselective agent, such as copper. As the use of many antibiotics will be phased out as growth promoters in agriculture, monitoring of all antibiotic resistance genes should continue in order to estimate the new practice’s impact on the total resistome.

Perhaps the most significant question in the field of antibiotic resistance gene ecology is the frequency of horizontal resistance gene transfer in the real world. Swine manure has been shown to contain individual strains with transferable resistance plasmids (21). Several studies have shown specific instances of horizontal gene transfer of resistance genes in the human gut (56), swine (57), and soil (30). Smillie et al. showed that the horizontal gene transfer of resistance genes is more common than that of all other genes and 25 times more likely in the gut than in other environments (58). Agricultural antibiotics have been shown to induce resistance gene transfer by prophages (35). Metagenomic sequencing projects have shown that phylogeny is a strong predictor of the antibiotic resistance profile in soil (59). In this study, Lactobacillus was an indicator organism of the IS1216-tet resistance cluster; however, there was no phylogenetic predictor of intI1-IS6100. It is possible that our 16S rRNA primers did not amplify or that the amplicon libraries were not sequenced sufficiently deeply to identify the strains that cooccur with (and, by inference, carry) these resistance genes. Another possible explanation is that a decoupling of resistance genes and phylogeny occurred in these farms via horizontal gene transfer. Resistance clusters persisted and were even enriched in multiple environments (especially in the Putian soil) with different oxygen, nutrient, and water contents where the original bacterial communities were vastly different (Fig. 3). Taken together, these results provide a strong impetus to more fully understand the genetic context of antibiotic resistance genes in high-selection-pressure environments and the distribution of resistance elements throughout the associated bacterial community.

In human-impacted environments, integrons have been shown repeatedly to be important elements in assembling arrays of antibiotic resistance cassettes, often on plasmids (37, 60, 61). Clinical class 1 integrase (intI1) sequences showed very high enrichment in the Chinese farms while the gene is hardly detected (3) in the pristine soil, NADC, and feral fecal samples (see Fig. S1 in the supplemental material). The obtained intI1 amplicon sequences were dominated (89.4% of 125,847 total intI1 sequences) by a single sequence which is 100% identical to “clonal” (34) type 1 integron integrase and is the allele that overwhelmingly cooccurs with antibiotic resistance genes. When including all other operational taxonomic units (OTUs) within a single nucleotide polymorphism of the dominant sequence, these sequences account for 98.2% of the obtained sequences. These findings reinforce the potential to use intI1 as a marker for anthropogenic antibiotic use (34) and support the theory of broad dissemination of a single genotype of class 1 integrons associated with antibiotic resistance genes (37).

Antibiotic resistance genes are becoming recognized as contaminants independent of their bacterial host (28, 62). To pose a human health risk, an agricultural ARG must be in or transferred to a human pathogen, and the ARG must be transported to a location with which humans have direct physical contact (63). The probability of a resistance cluster from these farms contaminating surrounding heavily populated eastern China (~1 billion people), through routes previously observed (aerial [64], water [65], or farmer transport [66]), seems to be elevated by both the thousands-fold enrichment resulting in up to 0.1 to 5% of the bacterial community having resistance genes and the proximity to high-population centers. Furthermore, the probability for these resistance clusters to cross the commensal-pathogen barrier (due to coenrichment with MGEs) also seems to be elevated (63). Horizontal gene transfer elements like the intI1-IS6100 combination allow not only resistance gene recruitment by the integrase but genetic relocation, potentially to plasmids, by the transposases. Transposons with both intI1 and IS6100 have been identified in plasmids or chromosomes in multiple phyla (40, 42, 45–47), demonstrating their potential for future horizontal gene transfer. On the Chinese farms, one mobile genetic element, IS4, cooccurs with many genes both within and outside the intI1-IS6100 cluster. This gene might allow a future colocalization of its cooccurring genes (IS26, aphA1, dfrA2, tetM, and IS613) together with the intI1-IS6100 cluster. This genetic platform could allow for future integration and subsequent horizontal gene transfer of troublesome resistance genes, should these strains be introduced to the human microbiome or a hospital environment. This highlights the risk and importance of these microbial communities and manure disposal management.

Future sequencing projects should use advanced technologies to sequence longer DNA amplicons to increase resolution of the gene identity. Shotgun metagenomics cannot yet rival the cost, depth, specificity, and quantitative value of this highly parallel targeted-metagenomics approach. The future direction for antibiotic resistance ecology research is clear: to directly establish the genetic context surrounding resistance genes in microbial communities. This will allow us to understand the mobility of individual genes and groups of resistance genes, the assemblage of resistance islands and plasmids, and their distribution across the microbial community. This should be central to more informed stewardship programs and contribute to the U.S. National Action Plan (5) and international plans to combat antimicrobial resistance.

MATERIALS AND METHODS

Amplicon library preparation and sequencing. All purified DNAs (46 samples in total) were stored at −20°C until use in this study. The 46 samples (50 ng/µl) and 47 primer sets were input into a 48.48 Access Array integrated fluidic circuit (Fluidigm Corporation, CA, USA) according to the manufacturer’s instructions for 4-primer amplicon tagging in 2,209 individual 30-nl qPCR mixtures. EvaGreen dye was added to the reaction mixture to allow for real-time quantification of amplification products during cycling. Threshold cycle values were obtained following cycling, and the barcoded amplification products were pooled into one mixture. The amplicon pool was prepared using Fluidigm FL1 and FL2 workflow and sequencing primers according to the manufacturer’s protocol. Sequencing was performed using 150-bp paired-end reads plus the barcode indexing read on an Illumina MiSeq sequencer, and 6.7 million raw reads
were obtained, of which 6.0 million passed the MiSeq quality filter and had a barcode detected. Each sample had an average of 128,679 sequences matched to it by the barcode.

Genes targeted. We used a novel highly parallel qPCR and amplicon library-generating platform (Fluidigm Access Array). Using this system, we obtained quantitative information on the abundance of the genes in the original sample and harvested sequencing-ready barcoded amplicons. We selected primer sets that target antibiotic resistance genes, transposases, integrases, plasmid mobility genes, and housekeeping genes (see Table S1 in the supplemental material). We used two universal 16S rDNA gene primers: one amplifies a 60-bp region, ideal for qPCR, while the other amplifies the 16S rRNA gene V4 region to determine bacterial community membership. We selected for this study the genes that were found to be enriched in the NADC or China samples from our previous studies (19, 20), as well as primer sets to target additional mobile genetic elements (32, 54, 67) and housekeeping genes (68, 69). Among the primer sets are some that target the same genes. Amplicons of the same gene obtained with different primers are differentiated with a gene suffix (for example, aadA and aadA1).

Resistance gene quantification and analysis. Threshold cycle values obtained during library generation were quality checked by the Fluidigm software and compared to values obtained previously with other high-throughput qPCR platforms (19) to access the reliability of the gene quantification. Following these quality checks, the data were processed as described previously (19) to calculate the average $\Delta\Delta C_{T}$ for each sample type, using the Chinese pristinase soil as the reference sample. Heat maps were generated for the $\Delta\Delta C_{T}$ using RStudio (R version 3.1.2) using the heat map.2() function.

Sequence processing and analysis. In total, 5,490,078 forward and reverse sequences (90.8%) were assembled with the RDP paired-end read assembler (70) using default parameters and with the minimum overlap set to 10 bp and a minimum read quality score of 25. Amplicons less than 195 bp from each primer had similar assembly rates ranging from 83% to 97% of raw reads. Longer amplicons were assembled at a lower rate (see Fig. S5 in the supplemental material). Assembled sequences were analyzed to detect and remove chimeras using the Ucheime software (71). RDP FrameBot was used to correct frameshifts caused by indels. Sequences were quality filtered with primers removed by RDP’s Initial Process tool (70), allowing a minimum length of 20 bp, 0 N base calls, and 1 mismatch to the forward or reverse primers. The resulting 5,289,504 quality-filtered sequences in all samples and primer sets were clustered at 100% nucleotide similarity using the RDP tool McClust. Project-wide single and double sequences were removed, and the 16S rRNA gene sequences were processed using mothur according to the Schloss standard analysis protocol (72). OTUs were binned by their taxonomic classification within mothur v.1.36.0 by comparison to the RDP database using the phylo-type() and classify.otu() commands. Metastats implemented within mothur v.1.34.4 was used to find statistical differences (false discovery rate q value, <0.05) in phylogenetic groups between samples.

Sequences were compared to the NCBI database both for primer specificity (see the supplemental material) and for multiple amplicon colocalization in known genomes. Amplicon colocalization analysis was accomplished by submitting a concatenated sequence of all the most abundant amplicons obtained from each primer set.

Cooccurrence analysis and network generation. In order to compare the abundances of individual functional gene alleles to each other, we adjusted the C_{T} value of each functional gene to calculate an allele-specific adjusted C_{T} (AC_{T}): $AC_{T} = C_{T} - \log(\text{allele \% abundance})$, where C_{T} is the C_{T} value of the primer set (the abundance of all alleles) specific to the allele in question and the difference with $\log(\text{allele \% abundance})$ adjusts that C_{T} value to estimate the contribution of each allele individually. This calculation assumes 100% PCR efficiency and assumes that an allele with a percent abundance of 0.5 will increase the C_{T} by 1. For genes that were not detected by qPCR or sequencing, the limit of detection was used to calculate the AC_{T}, and the percent abundance was set to 1/2,500, mimicking the library sizes that were typically obtained. After generating the AC_{T}, the traditional $\Delta\Delta C_{T}$ approach was used, using the AC_{T} only in place of the C_{T} to calculate a $\Delta\Delta C_{T}$ rather than a ΔC_{T}. One deviation from this protocol was $\Delta\Delta C_{T} = AC_{T(\text{control sample})} - AC_{T(\text{experimental sample})}$ where the AC_{T} used was that of the detection limit ΔC_{T} of the pristine Chinese soil. This use of a single value for $AC_{T(\text{control sample})}$ was used to avoid correlation artifacts between gene data sets. This resulted in a non-detection $\Delta\Delta C_{T}$ value of 7.8 for 16S OTUs and -15 for non-16S rRNA genes. Abundance relative to 16S rRNA was calculated using $\log_{10}(-1/\Delta C_{T})$. The $\Delta\Delta C_{T}$ for all 16S rRNA gene OTUs and the top 5 alleles for all other genes were concatenated into a single file and used as input for cooccurrence analysis as described previously (73). Networks were additionally rendered using Cytoscape v. 3.0.2. Networks were organized by the software’s “preferred layout” option, with node size dependent on number of cooccurring genes (edges).

Sequence accession numbers. Assembled sequences separated by sample and gene have been deposited in the NCBI Sequence Read Archive (SRA) under accession numbers SAMN04523341 to SAMN04523367 in association with BioProject PRJNA313201.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.02214-15/-/DCSupplemental.

Figure S1, PDF file, 0.2 MB.

Figure S2, PDF file, 0.03 MB.

Figure S3, PDF file, 0.1 MB.

Figure S4, PDF file, 0.7 MB.

Figure S5, PDF file, 0.03 MB.

Figure S6, PDF file, 0.03 MB.

Table S1, PDF file, 0.1 MB.

Table S2, XLSX file, 0.05 MB.

Text S1, PDF file, 0.1 MB.

ACKNOWLEDGMENTS

We are grateful to Thad Stanton for providing the feral swine DNA samples. We thank Fluidigm for performing the work generating the amplicon pools and providing the real-time amplification data as an Access Array Demonstration Project.

FUNDING INFORMATION

Funding was provided by the Pharmaceuticals in the Environment Initiative, the Center for Health Impacts of Agriculture and the Center for Microbial Ecology, all at Michigan State University. QW and JRC were supported by the Office of Science (Biological and Environmental Research), U.S. Department of Energy [DE-FG02-99ER62848]. YGZ was supported by the Natural Science Foundation of China (No. 21210008).

REFERENCES

1. World Health Organization. 2014. Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva, Switzerland.

2. Centers for Disease Control and Prevention. 2013. Antibiotic resistance threats in the United States 2013. Centers for Disease Control and Prevention, Atlanta, GA.

3. O’Neill J. 2014. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. HM Government, London, United Kingdom.

4. Government of Canada. 2014. Antimicrobial resistance and use in Canada. A framework for action. Government of Canada, Ottawa, Canada.

5. White House. 2015. National action plan for combating antibiotic-resistant bacteria. The White House, Washington, DC.

6. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J. 2009. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12. http://dx.doi.org/10.1086/595011.

7. D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD. 2011. Antibiotic resistance is ancient. Nature 477:457–461. http://dx.doi.org/10.1038/nature10388.
Andersson DI, Hughes D

Allen HK, Levine UY, Looft T, Bandrick M, Casey TA

Aarestrup FM, Jensen VF, Emborg H-D, Jacobsen E, Wegener HC

Zhu Y-G, Johnson TA, Su JQ, Qiao M, Guo G-X, Stedtfeld RD, Pena-Miller R, Laehnemann D, Jansen G, Fuentes-Hernandez A, D’Costa VM, McGrann KM, Hughes DW, Wright GD

Bearson BL, Allen HK, Brunelle BW, Lee IS, Casjens SR, Stanton TB

Rosenstiel P, Schulenburg H, Beardmore R

Moura A, Soares M, Pereira C, Leitão N, Henriques I, Correia A

Coyne S, Courvalin P, Galimand M

Maddox JA.

http://dx.doi.org/10.1111/j.1574-6916.2008.00526.x

Perry JA, Wright GD. 2013. The antibiotic resistance “mobilemenu”: searching for the link between environment and clinic. Front Microbiol 4:138. http://dx.doi.org/10.3389/fmicb.2013.00138

Götz A, Pukall R, Smit E, Tietze E, Prager R, Tschäpe H, van Elsas JD, Smalla K. 1996. Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl Environ Microbiol 62: 2621–2628.

Heuer H, Binh CT, Jechalke S, Kopmann C, Zimmerling U, Kröger-reckendorf E, Ledger T, Gonzalez B, Top E, Smalla K 2012. IncP-1 plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes. Front Microbiol 3. http://dx.doi.org/10.3389/fmicb.2012.00002

Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu Y-G. 2015. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 9:1269 –1279. http://dx.doi.org/10.1038/ismej.2014.226

Barnson BL, Allen HK, Brunelle BW, Lee IS, Casjens SR, Stanton TB 2014. The agricultural antibiotic carbadox induces phage-mediated gene transfer in salmonella. Front Microbiol 5:52. http://dx.doi.org/10.3389/fmicb.2014.00052

Mahillon J, Chandler M. 1998. Insertion sequences. Microbiol Mol Biol Rev 62:725–774.

Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M, Stokes HW. 2008. The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol 190:5095–5100. http://dx.doi.org/10.1128/JB.01525-08

Siiguer P, Gourbeyre E, Chandler M. 2014. Bacterial insertion elements: their genomic impact and diversity. FEMS Microbiol Rev 38:865–891. http://dx.doi.org/10.1111/1574-6976.12067

Stanton TB, Humphrey SB, Stoffregen WC. 2011. Chlorotetracycline-resistant intestinal bacteria in organically raised and feral swine. Appl Environ Microbiol 77:7167–7170. http://dx.doi.org/10.1128/AEM.00688-11

Husain F, Veeranagouda Y, Boente R, Tang K, Mulato G, Wexler HM 2014. The Ellis Island effect: a novel mobile element in a multi-drug resistant Acinetobacter baumannii clinical isolate includes a mosaic of resistance genes from Gram-positive bacteria. Mob Genet Elements 4:e29801. http://dx.doi.org/10.1186/1471-2180-4-29801

Tauch A, Göttker S, Pühler A, Kalinowski J, Thierbach G. 2002. The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette ada/A9 and the regulated tetracycline efflux system tet33 flanked by active copies of the widespread insertion sequence IS6100. Plasmid 48:117–129. http://dx.doi.org/10.1016/S0147-619X(02)00120-8

Partridge SR, Tsafnat G, Coiera E, Iredell JR. 2009. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 33:757–784. http://dx.doi.org/10.1111/j.1577-680X.2009.00175.x

Moura A, Soares M, Pereira C, Leitão N, Henriques I, Correia A. 2009. Integral: a database and search engine for integrons, integrase and gene cassettes. Bioinformatics 25:1096–1098. http://dx.doi.org/10.1093/bioinformatics/btp105

Miriagou V, Carattoli A, Tzleipi E, Villa L, Tzouvelekis IS. 2005. IS26-associated Inv4-type integrons forming multiresistance loci in enterococcal plasmids. Antimicrob Agents Chemother 49:3541–3543. http://dx.doi.org/10.1128/AAC.49.3541-3543.2005

Marti E, Balcazar JL. 2012. Multidrug resistance-encoding plasmid from Aeromonas sp. strain P2Gl. Clin Microbiol Infect 18:E366–E368. http://dx.doi.org/10.1111/j.1469-0691.2012.03935.x

Coyne S, Courvalin P, Galimand M. 2010. Acquisition of multidrug resistance transposon Tn6061 and Tn6100-mediated large chromosomal
inversions in *Pseudomonas aeruginosa* clinical isolates. Microbiology 156: 1448–1458. http://dx.doi.org/10.1099/mic.0.033639-0.

48. Roy Chowdhury P, McKinnon J, Wyrsch E, Hammond JM, Charles IG. 2014. Genomic interplay in bacterial communities: implications for growth promoting practices in animal husbandry. Front Microbiol 5:394. http://dx.doi.org/10.3389/fmicb.2014.00394.

49. Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje JM, Zhang T. 2015. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J 9:2490–2502. http://dx.doi.org/10.1038/ismej.2015.59.

50. Sundqvist M, Gelli P, Andersson DI, Sjölund-Karlsson M, Runehagen A, Cars H, Abelson-Storby K, Cars O, Kallmelter G. 2010. Little evidence for reversibility of trimethoprim resistance after a drastic reduction in trimethoprim use. J Antimicrob Chemother 65:350–360. http://dx.doi.org/10.1093/jac/dkp387.

51. Nielsen HU, Hammerum AM, Ekeland K, Bang D, Pallesen LV, Frimodt-Møller N. 2004. Tetracycline and macrolide co-resistance in *Streptococcus pyogenes*: co-selection as a reason for increase in macrolide-resistant *S. pyogenes*. Microb Drug Resist 10:231–238. http://dx.doi.org/10.1089/mdr.2004.10.231.

52. Bager F, Aarestrup FM, Madsen M, Wegener HC. 1999. Glycopeptide resistance in *Enterococcus faecium* from broilers and pigs following discontinued use of avoparcin. Microb Drug Resist 5:53–56. http://dx.doi.org/10.1089/mdr.1999.5.53.

53. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DG. 2015. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 16:964. http://dx.doi.org/10.1186/s12864-015-2153-5.

54. Rosewarne CP, Pettigrove V, Stokes HW, Parsons YM. 2010. Class 1 integrons in benthic bacterial communities: abundance, association with *Tn402* like transposition modules and evidence for coselection with heavy-metal resistance. FEMS Microbiol Ecol 72:35–46. http://dx.doi.org/10.1111/j.1574-6941.2009.00823.x.

55. Qiao M, Chen W, Su J, Zhang B, Zhang C. 2012. Fate of tetracyclines in swine manure of three selected swine farms in China. J Environ Sci China 24:1047–1052. http://dx.doi.org/10.1016/S1001-0742(11)60890-5.

56. Salyers AA, Gupta A, Wang Y. 2004. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416. http://dx.doi.org/10.1016/j.tim.2004.07.004.

57. Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersson PS, Pearson T, Waters AE, Foster JT, Schupp J, Gilleece J, Driebe E, Liu CM, Springer B, Zdovc I, Battisti A, Franco A, Zmudzki J, Schwarz S, Butaye P, Jouy E, Pomba C, Porrero MC, Ruimy R, Smith TC, Robinson DA, Rosewarne CP, Pettigrove V, Stokes HW, Parsons YM. 2012. *Staphylococcus aureus* CC398: host adaptation and emergence of novel insights into their co-selection potential. BMC Genomics 13:116–123. http://dx.doi.org/10.1186/1471-2164-13-156.

58. Smithie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. 2011. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–244. http://dx.doi.org/10.1038/nature10571.

59. Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G. 2014. Bacterial phylogeny structures soil resistomes across habitats. Nature 509:612–616. http://dx.doi.org/10.1038/nature13377.

60. Binh CT, Heuer H, Kaupenjohann M, Smaila K. 2009. Gene cassettes on class 1 integrons introduced into soil via spread manure. Res Microbiol 160:427–433. http://dx.doi.org/10.1016/j.resmic.2009.06.005.

61. Burch TR, Sadowsky MJ, LaPara TM. 2014. Fate of antibiotic resistance genes and class 1 integrons in soil following the application of treated residual municipal wastewater solids. Environ Sci Technol 48:5620–5627. http://dx.doi.org/10.1021/es501098g.

62. Pruden A, Pei R, Storebroom H, Carlson KH. 2006. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 40:7445–7450. http://dx.doi.org/10.1021/es060413l.

63. Martinez JL, Coque TM, Baquero F. 2015. What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 13:116–123. http://dx.doi.org/10.1038/nrmicro3399.

64. McEchron AD, Blackwell BR, Hanson JD, Wooten KJ, Mayer GD, Cox SB, Smith PN. 2015. Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. Environ Health Perspect 123:337–343. http://dx.doi.org/10.1289/ehp.1408555.

65. Pruden A, Arabi M, Storebroom HN. 2012. Correlation between upstream human activities and riverine antibiotic resistance genes. Environ Sci Technol 46:11541–11549. http://dx.doi.org/10.1021/es302657r.

66. Levy SB, FitzGerald GB, Macone AB. 1976. Changes in intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm. N Engl J Med 295:583–588. http://dx.doi.org/10.1056/NEJM197609092951103.

67. Barraud O, Baclet MC, Denis F, Ploy MC. 2010. Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons. J Antimicrob Chemother 65:1642–1645. http://dx.doi.org/10.1093/jac/dq1467.

68. Yin X, Zhu J, Feng Y, Chambers JR, Glyn J, Gyles CL. 2011. Differential gene expression and adhesion of *Escherichia coli* O157:H7 in vitro and in ligated pig intestines. PLoS One 6:e17424. http://dx.doi.org/10.1371/journal.pone.0017424.

69. Takahashi H, Konuma H, Hara-Kudo Y. 2006. Development of a quantitative real-time PCR method to enumerate total bacterial counts in ready-to-eat fruits and vegetables. J Food Prot 69:2504–2508.

70. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM. 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. http://dx.doi.org/10.1093/nar/gkt1244.

71. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. http://dx.doi.org/10.1093/bioinformatics/btr381.

72. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. http://dx.doi.org/10.1128/AEM.01043-13.

73. Williams RJ, Howe A, Hofmoeller KS. 2014. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front Microbiol 5:358. http://dx.doi.org/10.3389/fmicb.2014.00358.