A FEYNMAN-KAC APPROACH FOR THE SPATIAL DERIVATIVE OF THE SOLUTION TO THE WICK STOCHASTIC HEAT EQUATION DRIVEN BY TIME HOMOGENEOUS WHITE NOISE

HYUN-JUNG KIM AND RAMIRO SCOROLLI

Abstract. We consider the (unique) mild solution \(u(t, x) \) of a 1-dimensional stochastic heat equation on \([0, T] \times \mathbb{R}\) driven by time-homogeneous white noise in the Wick-Skorokhod sense. The main result of this paper is the computation of the spatial derivative of \(u(t, x) \), denoted by \(\partial_x u(t, x) \), and its representation as a Feynman-Kac type closed form. The chaos expansion of \(\partial_x u(t, x) \) makes it possible to find its (optimal) Hölder regularity especially in space.

1. Introduction

As an extension of the paper [26], we will further investigate the (unique) mild solution of the 1-dimensional stochastic heat equation (SHE):

\[
\begin{aligned}
\partial_t u(t, x) &= \frac{1}{2} \partial_{xx}^2 u(t, x) + u(t, x) \diamond \dot{W}(x), \quad t \in (0, T], \ x \in \mathbb{R}, \\
u(0, x) &= u_0(x), \ x \in \mathbb{R},
\end{aligned}
\]

where \(T > 0 \), \(u_0 \) is a function satisfying certain conditions, \(\dot{W}(x) \) is a space-only Gaussian white noise on a complete probability space \((\Omega, \mathcal{F}, \mathbb{P}^W)\), and \(\diamond \) stands for the Wick product. In other words, the corresponding stochastic integration in (1) is interpreted in the Wick-Skorokhod sense.

We postpone all technical definitions to the following section.

Definition 1. We say \(u : [0, T] \times \mathbb{R} \times \Omega \to \mathbb{R} \) is said to be a mild solution of (1) if for any fixed \((t, x) \in [0, T] \times \mathbb{R} \), \(u(t, x) \in L^2(\mathbb{P}^W) \) and it satisfies

\[
u(t, x) = \int_\mathbb{R} p(t, x - y)u_0(y)dy + \int_0^t \int_\mathbb{R} p(t - s, x - y)u(s, y) \diamond \dot{W}(y)dyds, \ \mathbb{P}^W\text{-almost surely},
\]

where \(p(t, x) := \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} \) is the Gaussian heat kernel.

Let \(\{u(t, x)\}_{(t, x) \in [0, T] \times \mathbb{R}} \) be a mild solution of (1). Then for any fixed \((t, x) \), the random variable \(u(t, x) \) admits the following multiple Wiener chaos expansion (e.g. [9], [11] or [28]):

\[
u(t, x) = \sum_{n=0}^{\infty} I_n(F_n^W(t, x)),
\]

Date: December 22, 2021.

2010 Mathematics Subject Classification. Primary 60H10; Secondary 60H30; 60H40; 60H05.

Key words and phrases. Wick product, Stochastic heat equation, Space-only white noise, Wiener chaos, Feynman-Kac formula, Multiple Wiener integral, Hölder regularity, White noise analysis, Malliavin calculus.
where I_n is the n-th multiple Wiener integral with respect to W,
\[F_{0}^{MW}(t, x) = \int_{\mathbb{R}} p(t, x - y)u_0(y) \, dy; \]
\[F_{n}^{MW}(t, x; y_1, \ldots, y_n) = \frac{1}{n!} \int_{[0, t]^n} p(t - r_{\rho(n)}, x - y_{\rho(n)}) \times \cdots \times p(r_{\rho(2)} - r_{\rho(1)}, y_{\rho(2)} - y_{\rho(1)}) F_{0}^{MW}(r_{\rho(1)}, x_{\rho(1)}) \, dr, \quad n \geq 1, \]
and ρ denotes the permutation of $\{1, \ldots, n\}$ such that $0 < r_{\rho(1)} < \cdots < r_{\rho(n)} < t$. For simplicity, we have denoted $dr := dr_1 dr_2 \cdots dr_n$.

To distinguish among different representations of the mild solution, let us call (3) the **multiple Wiener solution** $u^{MW}(t, x)$ of (1). There are a few papers considering this representation:

(i) The paper [28, Theorem 3.1] shows that u^{MW} is the unique mild solution in $C([0, T]; L^2(\mathbb{R}; L^2(\Omega)))$ if $u_0 \in L^2(\mathbb{R})$ by showing,
\[\sup_{t \in [0, T]} \sum_{n=0}^{\infty} n! \int_{\mathbb{R}} \| F_{n}^{MW}(t, x; \bullet) \|_{L^2(\mathbb{R}^n)}^2 \, dx \leq C \| u_0 \|_{L^2(\mathbb{R})}^2 < \infty. \]

Note that $u_0 \not\in L^2(\mathbb{R})$ does not cover $u_0 \equiv 1$.

(ii) When $u_0 \in L^\infty(\mathbb{R})$, [9, Section 4] shows that
\[\sup_{(t, x) \in [0, T] \times \mathbb{R}} \sum_{n=0}^{\infty} n! \| F_{n}^{MW}(t, x; \bullet) \|_{L^2(\mathbb{R}^n)}^2 \leq C \| u_0 \|_{L^\infty(\mathbb{R})} < \infty. \]

Hence, we can say that u^{MW} is the unique mild solution in $C([0, T] \times \mathbb{R}; L^2(\Omega))$ if $u_0 \in L^\infty(\mathbb{R})$.

There is an alternative chaos expansion of the mild solution u (e.g. [17, Theorem 3.11]):
\[u(t, x) = \sum_{\alpha \in \mathcal{J}} u^{CS}_{\alpha}(t, x) \xi_{\alpha}, \quad (4) \]
where ξ_α and \mathcal{J} are defined in Section 2.1.2. Letting $T^{n}_{[0, t]} := \{0 \leq s_1 \leq \cdots \leq s_n \leq t\}$, we can write
\[u^{CS}_{(0)}(t, x) = \int_{\mathbb{R}} p(t, x - y)u_0(y) \, dy, \]
and for $|\alpha| = n \geq 1$,
\[u^{CS}_{\alpha}(t, x) = \sqrt{n!} \int_{T^{n}_{[0, t]}} \int_{\mathbb{R}^n} p(t - s_n, x - y_n) \cdots p(s_2 - s_1, y_2 - y_1) u^{CS}_{(0)}(s_1, y_1) \, \varepsilon_{\alpha}(y_1, \ldots, y_n) \, ds \, dy, \]
for $\alpha \in \mathcal{J}_{n} := \{ \alpha \in \mathcal{J} : |\alpha| = n \}$, and $\{\varepsilon_{\alpha, \alpha \in \mathcal{J}_{n}\}$ forms an orthonormal basis of the symmetric part of $L^2(\mathbb{R}^n)$. We will call (4) the **chaos solution** $u^{CS}(t, x)$ of (1). The existence and uniqueness of this representation can be proved by showing the following:

(i) We can prove that u^{CS} is the unique mild solution in $C([0, T]; L^2(\mathbb{R}; L^2(\Omega)))$ when $u_0 \in L^2(\mathbb{R})$ by showing (c.f. [14, Theorem 4.1])
\[\sup_{t \in [0, T]} \sum_{n=0}^{\infty} \sum_{\alpha \in \mathcal{J}_{n}} \| u^{CS}_{\alpha}(t, \bullet) \|_{L^2(\mathbb{R})}^2 \leq C \| u_0 \|_{L^2(\mathbb{R})}^2 < \infty. \]

(ii) We can also show that u^{CS} is the unique mild solution in $C([0, T] \times \mathbb{R}; L^2(\Omega))$ if $u_0 \in L^\infty(\mathbb{R})$ (c.f. [14, Theorem 4.3]) by achieving
\[\sup_{(t, x) \in [0, T] \times \mathbb{R}} \sum_{n=0}^{\infty} \sum_{\alpha \in \mathcal{J}_{n}} | u^{CS}_{\alpha}(t, x) |^2 \leq C \| u_0 \|_{L^\infty(\mathbb{R})}^2 < \infty. \]
Indeed, (5) and (6) can be easily obtained as follows:

(5) To use the same argument as [14, Theorem 4.1], it is enough to show

\[U_0 := \int_{\mathbb{R}} \left(\int_{\mathbb{R}} p(s, y - z_1) u_0(z_1) dz_1 \right) \cdot \left(\int_{\mathbb{R}} p(s, y - z_2) u_0(z_2) dz_2 \right) dy \leq \|u_0\|^2_{L^2(\mathbb{R})}, \]

and it is clear by semigroup property and Hölder inequality,

\[U_0 = \int_{\mathbb{R}} \int_{\mathbb{R}} p(s + r, z_1 - z_2) u_0(z_1) u_0(z_2) dz_1 dz_2 \]

\[= \int_{\mathbb{R}} p(s + r, z_1) \int_{\mathbb{R}} u_0(z_1 + z_2) u_0(z_2) dz_2 dz_1 \leq \|u_0\|^2_{L^2(\mathbb{R})}. \]

(6) To use the same argument as [14, Theorem 4.3], it is enough to show \(|\int_{\mathbb{R}} p(t, x - y) u_0(y) dy| \leq \|u_0\|_{L^\infty(\mathbb{R})}\), and it automatically follows from the fact \(\int_{\mathbb{R}} p(t, x) dx = 1\).

Then, it is not surprising that \(u^{\text{MW}} = u^{\text{CS}}\) if \(u_0 \in L^\infty(\mathbb{R})\) since the mild solution is unique in \(C([0, T] \times \mathbb{R}; L^2(\Omega))\).

We now discuss one more possible representation of the mild solution. In fact, the condition (2) is equivalent to the following because (7) is equivalent to the following because

\[\mathbb{E}[F \cdot u(t, x)] = \mathbb{E}[F] \cdot \int_{\mathbb{R}} p(t, x - y) u_0(y) dy + \mathbb{E} \left[F \cdot \int_0^t \int_{\mathbb{R}} p(t - s, x - y) u(s, y) \diamond \dot{W}(y) dy ds \right]. \]

(7)

Here, Malliavin derivative \(D\) and the Sobolev-Malliavin space \(\mathbb{D}^{1,2}\) are defined in Section 2.2.

Moreover, it is known that (7) is equivalent to

\[\mathbb{E}[F \cdot u(t, x)] = \mathbb{E}[F] \cdot \int_{\mathbb{R}} p(t, x - y) u_0(y) dy + \mathbb{E} \left[\left\langle \int_0^t p(t - s, x - \bullet) u(s, \bullet) ds, D(\bullet)F \right\rangle_{L^2(\mathbb{R})} \right], \]

(8)

if \(\mathbb{E} \left[F \cdot \left(\int_{\mathbb{R}} h(y) \diamond \dot{W}(y) dy \right) \right] = \mathbb{E} \left[\left\langle DF, h \right\rangle_{L^2(\mathbb{R})} \right] \) for \(h \in L^2(\mathbb{P}^W; L^2(\mathbb{R}))\) and \(\int_{\mathbb{R}} h(y) \diamond \dot{W}(y) dy \in L^2(\mathbb{P}^W)\) (e.g. [20, Section 2.5]).

Using (8) and a Wong-Zakai-type approximation, the paper [26] gives a Feynman-Kac representation of the unique mild solution of (1) when \(u_0 \in L^\infty(\mathbb{R})\). This is given by

\[u(t, x) = \mathbb{E}^{\mathbb{R}} [u_0(B^x_t) \exp\{\Psi_{t,x}\}], \]

where \(\{B^x_t\}_{t \geq 0}\) is a one-dimensional Brownian motion starting at \(x\), and for fixed \((t, x) \in [0, T] \times \mathbb{R}\), the random variable \(\Psi_{t,x}\) is given by

\[\Psi_{t,x} := \int_{\mathbb{R}} L^x_y(t) dW(y) - \frac{1}{2} \int_{\mathbb{R}} |L^x_y(t)|^2 dy. \]

Here \(L^x_a(t)\) denotes the local time of \(\{B^x_s\}_{s \geq 0}\) at level \(a\) and time \(t\). Let us call the Feynman-Kac representation the \textit{Feynman-Kac solution} \(u^{\text{FK}}(t, x)\) of (1).

Combining all, as long as \(u_0 \in L^\infty(\mathbb{R})\), we can say

\[u := u^{\text{FK}} = u^{\text{MW}} = u^{\text{CS}} \in C \left([0, T] \times \mathbb{R}; L^2(\Omega) \right). \]

(9)

In this paper, we will provide an alternative proof for the equivalence (9) using a more direct approach.
The main motivation for the current article is as follows: As we stated above, the equation (1) may have three possible representations for the unique mild solution \(u \), namely (I) Feynman-Kac solution \(u^{FK} \), (II) multiple Wiener-Itô integral solution \(u^{MW} \), and (III) chaos solution \(u^{CS} \). Unfortunately, there is no enough discussion on Hölder regularity of the mild solution. In particular,

(I) There is no Hölder regularity result for \(u^{FK} \) in the existing literature.

(II) For \(u^{MW} \), [28, Theorem 4.1] proves that \(u^{MW} \in C^{1/2-\varepsilon,1/2-\varepsilon}([0,T],\mathbb{R}) \) for any small \(\varepsilon > 0 \) if \(u_0 \in C^1_b(\mathbb{R}) \cap L^2(\mathbb{R}) \). Here, \(C^1_b(\mathbb{R}) \) denotes the space of all bounded differentiable functions on \(\mathbb{R} \) with bounded continuous derivatives.

(III) On the one hand, no one discusses the regularity of \(u^{CS} \) on the whole line. On the other hand, the paper [14] discuss the same equation as (1), but on a bounded domain, say \([0,\pi]\); the authors show that there exists a unique mild solution (using chaos expansion) \(u^{CS}_b \in C([0,T];L^2([0,\pi]);L^2(\Omega)) \) if \(u_0 \in L^2([0,\pi]) \), and moreover \(u^{CS}_b \in C^{3/4-\varepsilon,3/2-\varepsilon}([0,T] \times [0,\pi]) \) for any small \(\varepsilon > 0 \) if \(u_0 \in C^{3/2}([0,\pi]) \).

Since Hölder continuity is a local property, it is natural to expect that \(u^{CS} \in C^{3/4-\varepsilon,3/2-\varepsilon}([0,T] \times \mathbb{R}) \) for any small \(\varepsilon > 0 \) (under a suitable initial condition on \(u_0 \)) like the bounded case \(u^{CS}_b \). Furthermore, it is impossible that the other representations \(u^{FK} \) and \(u^{MW} \) have a different regularity from the one of \(u^{CS} \) (by uniqueness). In this sense, we would say that the existing Hölder regularity results of the mild solution on \(\mathbb{R} \) should be improved, and in this paper, we will suggest an idea of how to get the desired result. We emphasize that the regularity almost \(3/4 \) in time and almost \(3/2 \) in space is optimal in the classical PDE sense, since \(W \) is understood to have regularity \(-1/2-\varepsilon\) for any small \(\varepsilon > 0 \) (c.f. [6, Lemma 1.1]).

The main feature of this paper is to find the optimal spatial regularity of the unique mild solution \(u \). The first task is to find \(\partial_x u \) and check if it is well-defined. One can compute \(\partial_x u \) from \(u^{CS} \) using the same argument as [14], but we will focus on the Feynman-Kac representation and compute the spatial derivative of \(u \) using \(u^{FK} \) as a main part of this paper. This approach allows us to obtain a Feynman-Kac-type closed formula for \(\partial_x u \). We remark that we can also derive the chaos decomposition of \(\partial_x u \) using \(u^{FK} \), and it is exactly the same as the one after differentiating \(u^{CS} \) with respect to \(x \) directly. With this in hand, we can achieve the optimal Hölder regularity of \(\partial_x u \) that is almost \(1/4 \) in time and almost \(1/2 \) in space.

2. Preliminaries

2.1. Elements of white noise analysis

In this section, we will give a brief outline of the white noise tools which will be used in this article. The interested reader for more details is referred to [7] and [15].

For \(n \in \mathbb{N} \), let \(\mathcal{S}(\mathbb{R}^n) \) be the Schwartz space of rapidly decreasing functions on \(\mathbb{R}^n \), and \(\mathcal{S}'(\mathbb{R}^n) \) the dual of \(\mathcal{S}(\mathbb{R}^n) \), which is called the space of tempered distributions. We further define the white noise probability space by \((\mathcal{S}'(\mathbb{R}), \mathcal{B}, \mu)\), where \(\mathcal{B} \) is the Borel \(\sigma \)-algebra on \(\mathcal{S}'(\mathbb{R}) \), i.e. the \(\sigma \)-algebra generated by the cylindrical sets, and \(\mu \) is the standard Gaussian measure in \(\mathcal{S}'(\mathbb{R}) \) (see [15, Section 3.1] for more details). Specifically, the measure \(\mu \) satisfies

\[
\int_{\mathcal{S}'(\mathbb{R})} e^{i\langle \omega, \varphi \rangle} d\mu(\omega) = e^{-\frac{1}{2}||\varphi||_0^2}, \quad \varphi \in \mathcal{S}(\mathbb{R}),
\]

where \(||\cdot||_0 \) denotes the norm in \(L^2(\mathbb{R}) \).

Let \(W \) denote the canonical coordinate process (or Wiener integral) on \(\mathcal{S}'(\mathbb{R}) \) given by

\[
W_\phi = \langle \omega, \phi \rangle, \quad \phi \in \mathcal{S}(\mathbb{R}), \quad \omega \in \mathcal{S}'(\mathbb{R}).
\]
Here, \((\cdot, \cdot)\) denotes the dual pairing between \(\mathcal{S}(\mathbb{R})\) and \(\mathcal{S}'(\mathbb{R})\).

Note that we can extend \(W\) continuously in \(L^2(\mu)\) to \(L^2(\mathbb{R})\) as
\[
\langle \omega, \phi \rangle := L^2(\mu) - \lim_{k \to \infty} \langle \omega, \phi_k \rangle, \quad \phi \in L^2(\mathbb{R}),
\]
where \(\{\phi_k\}_{k \in \mathbb{N}}\) is any sequence in \(\mathcal{S}(\mathbb{R})\) such that \(\phi_k \to \phi\) in \(L^2(\mathbb{R})\). In particular, if we define
\[
W(x)(\omega) := \begin{cases}
\langle \omega, \chi_{[0,x]} \rangle, & \text{if } x \geq 0, \; \omega \in \mathcal{S}'(\mathbb{R}); \\
-\langle \omega, \chi_{[x,0]} \rangle, & \text{if } x < 0, \; \omega \in \mathcal{S}'(\mathbb{R}),
\end{cases}
\]
(10)
it is easy to check that \(\{W(x)\}_{x \in \mathbb{R}}\) is a Brownian motion.

2.1.1. Chaos expansion in terms of multiple Wiener integrals

It is well-known that any random variable \(F \in L^2(\mu)\) can be written as
\[
F = \sum_{n=0}^{\infty} I_n(f_n),
\]
where \(I_n\) is the multiple Wiener integral of order \(n\) with respect to the Brownian motion in (10), and \(f_n\) is a symmetric element of \(L^2(\mathbb{R}^n)\). This is the Wiener-Itô-Segal isomorphism between square integrable Brownian functionals and the symmetric Fock space \([13]\), i.e.
\[
L^2(\mu) \cong \bigoplus_{n=0}^{\infty} \text{Sym} L^2(\mathbb{R})^\otimes n.
\]

It turns out that the following isometry property holds
\[
\|F\|_2^2 = \sum_{n=0}^{\infty} n!|f_n|_{0,n}^2,
\]
where \(\| \cdot \|_2\) denotes the norm in \(L^2(\mu)\) and \(| \cdot |_{0,n}\) denotes the norm in \(L^2(\mathbb{R}^n)\), \(n \in \mathbb{N}\), whenever \(n = 1\) we shall omit the second sub-index.

2.1.2. Chaos expansion in terms of Hermite polynomials

Let \(\{e_j\}_{j \in \mathbb{N}} \subset \mathcal{S}(\mathbb{R})\) be the family of Hermite functions defined by
\[
e_j(x) := (-1)^{j-1} \left(\sqrt{\pi}2^{j-1}(j-1)!\right)^{-1/2} e^{x^2/2} \frac{d^{(j-1)}}{dx^{(j-1)}} e^{-x^2}, \; j \in \mathbb{N},
\]
where \(\frac{d^0}{dx^0}\) is the identity operator. It is known that \(\{e_j\}_{j \in \mathbb{N}}\) forms a complete orthonormal basis (CONB) of \(L^2(\mathbb{R})\). We next let \(\mathcal{J} := (\mathbb{N}_0^\mathbb{N})_c\) be the collection of multi-indices \(\alpha = (\alpha_1, \alpha_2, \ldots)\) such that every \(\alpha_j\) is a non-negative integer and there are only finitely many non-zero components. In this case, we define a few notations:

- \((0)\) is the multi-index with all zeroes;
- \(\alpha_{(j)} := (\alpha_1, \alpha_2, \ldots, \max(\alpha_j - 1, 0), \alpha_{j+1}, \ldots) \in \mathcal{J};\)
- \(\alpha^+_j := (\alpha_1, \alpha_2, \ldots, \alpha_j + 1, \alpha_{j+1}, \ldots) \in \mathcal{J};\)
- \(|\alpha| := \sum_{j=1}^{\infty} \alpha_j;\)
- \(\alpha! := \prod_{j=1}^{\infty} \alpha_j!;\)
We also define the collection of random variables $\Xi := \{ \xi_\alpha, \alpha \in J \}$ by

$$\xi_\alpha := \prod_{j=1}^{\infty} \left(\frac{H_{\alpha_j}(W_j)}{\sqrt{\alpha_j!}} \right),$$

where

$$H_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}$$

is the Hermite polynomial of order n.

One of the famous Cameron and Martin’s theorems [1] states that the family Ξ forms an orthonormal basis in $L^2(\mu)$, and thus for $F \in L^2(\mu)$, we have the following chaos expansion

$$F = \sum_{\alpha \in J} F_\alpha \xi_\alpha$$

and

$$\|F\|_2^2 = \sum_{\alpha \in J} F_\alpha^2,$$

where $F_\alpha := \mathbb{E}[F \xi_\alpha]$.

In fact, both approaches to the chaos expansion for $F \in L^2(\mu)$ in Sections 2.1.1 and 2.1.2 are equivalent, and we can go from one to the other without particular difficulties. For example, see Section 3.2 below.

2.1.3. S-transform, Wick product, and generalized random variables

Now we introduce one of the main tools we will employ in our proofs, namely the S-transform. Let $F \in L^2(\mu)$ and $\phi \in L^2(\mathbb{R})$. Then the S-transform of F is given by

$$S(F)(\phi) := \mathbb{E} \left[F \times \mathcal{E}(\phi) \right], \quad \text{where} \quad \mathcal{E}(\phi) := \exp \left\{ W_\phi - \frac{1}{2} |\phi|^2_0 \right\}.$$

Note that $\mathcal{E}(\phi)$ is called stochastic exponential or Wick exponential (e.g. [8]).

In certain applications, one may be interested in spaces that are larger than $L^2(\mu)$, and one is naturally led to consider spaces of generalized random variables (see for instance [7], [10], [15]). In this article, we will solely consider the space of Hida distributions, and will briefly introduce them in the following.

Let A be the operator given by $A = -\frac{d^2}{dx^2} + x^2 + 1$, and for $F \in L^2(\mu)$ with $F = \sum_{n=0}^{\infty} I_n(f_n)$ satisfying

$$\sum_{n=0}^{\infty} n! |A^{\otimes n} f_n|_{0,n}^2 < \infty,$$

we define $\Gamma(A)F \in L^2(\mu)$ by

$$\Gamma(A)F := \sum_{n=0}^{\infty} I_n(A^{\otimes n} f_n).$$

Sometimes $\Gamma(A)$ is referred to as the second quantization of the operator A.

Remark 2. It is known (e.g. [25, Theorem 2]) that if we define $\| \cdot \|_p := |A^p \cdot |_0$, the family of p-seminorms $\{ | \cdot |_p, \ p \geq 0 \}$ are equivalent to the usual seminorms in the Schwartz space $\mathcal{S}(\mathbb{R})$, i.e. they generate the same topology.

Definition 3. Let $(S_p)^*$ be the completion of $L^2(\mu)$ with respect to the norm

$$\| \cdot \|_{-p} := \| \Gamma(A^{-p}) \cdot \|_2, \ p > 0.$$
Then the space of Hida distributions is given by
\[(S)^* := \bigcup_{p \geq 0} (S_p)^* .\]

Any element \(\Phi \in (S)^* \) can be represented as the formal series:
\[
\Phi = \sum_{n=0}^{\infty} I_n(F_n), \quad F_n \in \mathcal{S}'_{\text{sym}}(\mathbb{R}^n) := \text{Sym}\mathcal{S}'(\mathbb{R})^\otimes n
\]
such that
\[
\sum_{n=0}^{\infty} n! |(A^{-p})^\otimes n F_n|_0^2 < \infty .
\]

In this setting, we can give a proper meaning to the white noise \(\partial_x W(x) \) or \(\dot{W}(x) \) as a Hida distribution and in a slight abuse of notation, we will denote
\[
\dot{W}(x; \omega) := \langle \omega, \delta_x \rangle
\]
Here, \(\delta_x \) stands for the Dirac-delta function. We note that [15, Section 3.4] that \(\dot{W} \in (S_p)^* \) for any \(p > 5/12 \).

Remark 4. The S-transform can be extended naturally to the space of Hida distributions by a duality argument, i.e. for \(\Phi \in (S)^* \), we define the S-transform of \(\Phi \) as
\[
S(\Phi)(\phi) := \langle \Phi, \mathcal{E}(\phi) \rangle, \quad \phi \in \mathcal{S}(\mathbb{R}),
\]
where \(\langle \bullet, \bullet \rangle \) stands for the bilinear dual paring between the space of Hida distributions \((S)^* \) and its dual space, denoted by \((S) \). Note that \((S) \) is called the space of Hida test functions (see [15] for further details).

Definition 5. A function \(F : \mathcal{S}(\mathbb{R}) \to \mathbb{C} \) is called a U-functional if

1. For every \(\phi, \varphi \in \mathcal{S}(\mathbb{R}) \) the mapping \(\mathbb{R} \ni \lambda \mapsto F(\lambda \phi + \varphi) \in \mathbb{C} \) has an entire extension to \(z \in \mathbb{C} \).

2. There are constants \(0 < K_1, K_2, p < \infty \) such that
\[
|F(\varphi)| \leq K_1 \exp(K_2|\varphi|^p), \quad \varphi \in \mathcal{S}(\mathbb{R}).
\]

We are now ready to introduce a characterization result for the space \((S)^* \).

Theorem 6. [22, theorem 1.2] The S-transform defines a bijection between the space \((S)^* \) and the space of U-functionals.

It is well-known that we cannot in general define the product between generalized functions, and this impossibility obviously extends also to generalized random variables. However, we are still able to define a particular type of renormalized product called Wick product and denoted by \(\diamond \) in the following way.

Definition 7. [15, Definition 8.11] Let \(\Phi, \Psi \in (S)^* \) be two Hida distributions. We define the Wick product between the two elements, denoted by \(\Phi \diamond \Psi \), to be the unique Hida distribution satisfying
\[
S(\Phi \diamond \Psi)(\phi) = S(\Phi)(\phi) \cdot S(\Psi)(\phi)
\]
for every \(\phi \in \mathcal{S}(\mathbb{R}) \).
Remark 8. The Hida space $(S)^*$ is an algebra with respect to the Wick product.

Remark 9. We can also give an alternative characterization of the Wick product between generalized random variables in terms of chaos decompositions (e.g. [7, Corollary 4.22]), namely if $\Phi, \Psi \in (S)^*$ are given by the formal series

$$
\Phi = \sum_{n=0}^{\infty} I_n(F_n), \quad \Psi = \sum_{n=0}^{\infty} I_n(G_n),
$$

then the Wick product between $\Phi, \Psi \in (S)^*$ is defined by the following chaos decomposition:

$$
\Phi \circ \Psi = \sum_{n=0}^{\infty} I_n(H_n),
$$

where $H_n = \sum_{j=0}^{n} F_{n-j} \hat{\otimes} G_j$, and $\hat{\otimes}$ denotes the symmetric tensor product.

One of the most striking properties of the Wick product is its relation with stochastic integration of Skorokhod-Itô type. In particular if $\{Y(x)\}_{x \in \mathbb{R}}$ is a Skorokhod integrable process, then we have that

$$
\int_{\mathbb{R}} Y(x) \delta W(x) = \int_{\mathbb{R}} Y(x) \circ \dot{W}(x) dx
$$

where the right hand side must be understood as a Pettis integral in $(S)^*$ (see for instance [8] or [15, Section 13.3]) and the left hand side is a Skorokhod integral (see [19]). This is the reason why in (1) we introduce the Wick product \circ and say that the corresponding stochastic integral should be interpreted in the Skorokhod-Itô sense.

2.2. Elements of Malliavin calculus
For the purpose of this article, we will need a few definitions regarding Malliavin calculus. The interested reader is referred to [19] and [24] for a compressive exposition of Malliavin calculus and to [3] for the particular case in which the underlying probability space is the white noise probability space.

Let S denote the class of smooth random variables F having the form

$$
F = f(W_{h_1}, \ldots, W_{h_n}),
$$

where $h_1, \ldots, h_n \in L^2(\mathbb{R})$, and f belong to $C^\infty_p(\mathbb{R}^n)$ which stands for the set of all infinitely continuously differentiable functions such that each function together with all its derivatives has a polynomial growth. We will refer to S as the family of smooth Brownian functionals.

Definition 10. The Malliavin derivative of a smooth Brownian functional F is the $L^2(\mathbb{R})$-valued random variable given by

$$
DF = \sum_{i=1}^{n} \partial_i f(W_{h_1}, \ldots, W_{h_n})h_i.
$$

In the same way, we can define the k-th derivative of F for any $k \in \mathbb{N}$, which will be a $L^2(\mathbb{R})^{\otimes k}$-valued random variable.
Definition 11. Let S be the space of smooth Brownian functionals, and define the following seminorm on S for $k \geq 1$ and $p \geq 1$,

$$|F|_{k,p} := \left[\mathbb{E}(|F|^p) + \sum_{j=1}^{k} \mathbb{E}\left(|D^j F|_{0,n}^p\right) \right]^{1/p}.$$

We will denote by $D^{k,p}$ the completion of the family S with respect to the seminorm $| \cdot |_{k,p}$ and for any $F \in D^{k,p}$, we will let

$$D^k F = \lim_{n \to \infty} D^k F_n\quad \text{in } L^p(\mu; L^2(\mathbb{R})^{\otimes k}),$$

where $(F_n)_{n \in \mathbb{N}} \subset S$ is any sequence converging to F in $L^p(\mu)$.

Remark 12. There exists an extension of the Malliavin derivative to an element of the Hida distribution space $(S)^*$ called the *Hida-Malliavin derivative* (see for instance [3]).

Furthermore, we will use the following notation

$$D^{\infty,2} := \bigcap_{k \geq 1} D^{k,2},$$

and the following lemma (e.g. [27]).

Lemma 13. Let $F \in D^{\infty,2}$ have the following chaos decomposition

$$F = \sum_{n=0}^{\infty} I_n(f_n).$$

Then it holds that $f_n(\bullet) = \frac{1}{n!} \mathbb{E}[D^n F]$.

Finally we introduce the following space of test functions that was introduced for the first time in [23].

Definition 14. For any $\lambda \in \mathbb{R}$, let G_λ be the closure of $L^2(\mu)$ with respect to the norm $\|\Gamma(e^\lambda I) \bullet\|_2$, where I stands for the identity operator. More explicitly,

$$G_\lambda := \left\{ F = \sum_{n=0}^{\infty} I_n(f_n) \in L^2(\mu) : \sum_{n=0}^{\infty} n! e^{2\lambda n} |f_n|_{0,n}^2 < \infty \right\},$$

and now we set

$$G := \bigcap_{\lambda \in \mathbb{R}} G_\lambda.$$

In particular, it is not hard to see the following inclusions:

$$(S) \subset G \subset L^2(\mu).$$

We note that if $F \in L^2(\mu)$ can be written as $\sum_{\alpha \in J} F_\alpha \xi_\alpha$ (the chaos expansion in terms of Hermite polynomials), then one can show that $F \in G_\lambda$ if

$$\sum_{n=0}^{\infty} e^{2\lambda n} \sum_{\alpha \in J_n} |F_\alpha|^2 < \infty.$$
2.3. Hölder spaces and classical Hölder regularity results

In this subsection, we first give a definition of Hölder spaces on $G \subseteq \mathbb{R}$. For $0 < \gamma < 1$, we let

$$[f]_{\gamma} := \sup_{z_1 \neq z_2 \in G} \frac{|f(z_1) - f(z_2)|}{|z_1 - z_2|^\gamma}.$$

We say that f is Hölder continuous with Hölder exponent γ (or Hölder γ continuous) on G if

$$\sup_{z \in G} |f(z)| + [f]_{\gamma} < \infty.$$

The collection of Hölder γ continuous functions on G is denoted by $C^\gamma(G)$ with the norm

$$[[f]]_{\gamma} := \sup_{z \in G} |f(z)| + [f]_{\gamma}.$$

For $k \in \mathbb{N}$, we say that f is a k times continuously differentiable function on G if the m-th derivative of f, denoted by $\partial^m f$, exists and is continuous for all $m \leq k$. The collection of k times continuously differentiable functions on G such that $\partial^k f \in C^\gamma(G)$ with $0 < \gamma < 1$, is denoted by $C^{k+\gamma}(G)$ with the norm

$$[[f]]_{k+\gamma} := \sum_{1 \leq m \leq k} \sup_{z \in G} |\partial^m f(z)| + [\partial^k f]_{\gamma} < \infty.$$

In a similar manner, we can define the Hölder spaces on $[0, T] \times \mathbb{R}$ for $T > 0$ as follows. For $0 < \gamma_1, \gamma_2 < 1$, we define

$$[f]_{\gamma_1, \gamma_2} := \sup_{(t, x) \neq (s, x) \in [0, T] \times \mathbb{R}} \frac{|f(t, x) - f(s, x)|}{|t - s|^{\gamma_1}} + \sup_{(t, x) \neq (t, y) \in [0, T] \times \mathbb{R}} \frac{|f(t, x) - f(t, y)|}{|x - y|^{\gamma_2}}.$$

Then, f is said to be Hölder (γ_1, γ_2) continuous on $[0, T] \times \mathbb{R}$ if $\sup_{(t, x) \in [0, T] \times \mathbb{R}} |f(t, x)| + [f]_{\gamma_1, \gamma_2} < \infty$, and the collection of Hölder (γ_1, γ_2) continuous functions on $[0, T] \times \mathbb{R}$ is denoted by $C^{\gamma_1, \gamma_2}([0, T] \times \mathbb{R})$ with the norm

$$[[f]]_{\gamma_1, \gamma_2} := \sup_{(t, x) \in [0, T] \times \mathbb{R}} |f(t, x)| + [f]_{\gamma_1, \gamma_2}.$$

Let $k_1, k_2 \in \mathbb{N}$ and $0 < \gamma_1, \gamma_2 < 1$. The Hölder space, denoted by $C^{k_1+\gamma_1, k_2+\gamma_2}([0, T] \times \mathbb{R})$, is defined by the collection of all functions on $([0, T] \times \mathbb{R})$ such that f is k_1 times continuously differentiable in t and k_2 times continuously differentiable in x and the norm

$$[[f]]_{k_1+\gamma_1, k_2+\gamma_2} := \sum_{0 \leq i \leq k_1, \ 0 \leq j \leq k_2} \sup_{(t, x) \in [0, T] \times \mathbb{R}} |\partial_t^i \partial_x^j f(t, x)| + [\partial_t^{k_1} \partial_x^{k_2} f]_{\gamma_1, \gamma_2} < \infty.$$

Here, $\partial_t := \frac{\partial}{\partial t}$, $\partial_x := \frac{\partial}{\partial x}$ represents the differentiation operator with respect to t (resp. x).

Next, we state useful regularity results for the classical solutions of standard homogeneous and inhomogeneous heat equations on $[0, T] \times \mathbb{R}$.

Recall the Gaussian heat kernel $p(t, x) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}$. Let us define

$$(P f)(t, x) := \int_{\mathbb{R}} p(t, x - y) f(y) dy, \quad (P * f)(t, x) := \int_0^t \int_{\mathbb{R}} p(t - s, x - y) f(s, y) dy ds.$$

Lemma 15. [16, Chapter IV, Section 2] Let $T > 0$, $0 < \gamma \notin \mathbb{N}$, and $n, m \in \mathbb{N}_0$. Then,
3. Direct comparisons among u^{FK}, u^{MW} and u^{CS}

Let $(\Omega, \mathcal{F}, \mathbb{P}^W) = (\mathcal{S}^\prime(\mathbb{R}), \mathcal{B}, \mu)$ be our main probability space and introduce an auxiliary one $(\tilde{\Omega}, \tilde{\mathcal{F}}, \mathbb{P}^B)$ carrying a one-dimensional Brownian motion $\{B_t\}_{t \geq 0}$. Furthermore, let $\mathbb{E}^W(\mathbb{E}^B)$ denote the expectation with respect to \mathbb{P}^W (resp. \mathbb{P}^B).

Moreover, we suppose that $u_0 \in L^\infty(\mathbb{R})$ so that we have by uniqueness

$$u^{FK} = u^{MW} = u^{CS} \in C([0, T] \times \mathbb{R}; L^2(\Omega)).$$

The aim of this section is to give an alternative and more direct proof to show $u^{FK} = u^{MW} = u^{CS}$. For the sake of simplicity and consistency, we will denote, for $(t, x) \in [0, T] \times \mathbb{R},$

$$u(0)(t, x) := \int_{\mathbb{R}} p(t, x - y)u_0(y) \, dy.$$

3.1. u^{FK} and u^{MW}

We recall the multiple Wiener solution of (1):

$$u^{MW}(t, x) = \sum_{n=0}^{\infty} I_n \left(F^{MW}_n(t, x)\right),$$

where

$$F^{MW}_0(t, x) = u(0)(t, x);$$

$$F^{MW}_n(t, x; y_1, \ldots, y_n) = \frac{1}{n!} \int_{[0, t]^n} \prod_{i=1}^{n} p(t - r_{\rho(i)}, x - y_{\rho(i)}) \, dr, \quad n \geq 1,$$

and ρ denotes the permutation of $\{1, \ldots, n\}$ such that $0 < r_{\rho(1)} < \cdots < r_{\rho(n)} < t.$

Moreover, the Feynman-Kac solution is given by

$$u^{FK}(t, x) = \mathbb{E}^B \left[u_0(B^x_t) \exp\{\Psi_{t, x}\}\right],$$

where $\{B^x_t\}_{t \geq 0} := \{B_t + x\}_{t \geq 0}$, for fixed $(t, x) \in [0, T] \times \mathbb{R}$, and

$$\Psi_{t, x}(\omega; \tilde{\omega}) = \int_{\mathbb{R}} L^x_y(t; \tilde{\omega})dW(y; \omega) - \frac{1}{2} \int_{\mathbb{R}} |L^x_y(t; \tilde{\omega})|^2dy, \quad \mathbb{P}^W \otimes \mathbb{P}^B\text{-almost surely}, \quad (11)$$

where $L^x_a(t)$ denotes the local time of $\{B^x_s\}_{s \geq 0}$ at level a and time t. Note that the stochastic integral in (11) is well-defined since the function $y \mapsto L^x_y(t; \tilde{\omega})$ is square integrable for each fixed $(t, x, \tilde{\omega})$.

From now on, we will omit the explicit dependence on $(\omega, \tilde{\omega})$ unless there is a risk of confusion. Furthermore, we notice that by definition $\exp\{\Psi_{t, x}\} = \mathcal{E}(L^x(t))$, i.e. the stochastic exponential (e.g. [8]) of the Brownian local time.
Using Lemma 13 and the fact that $D\mathcal{E}(L^x(t)) = \mathcal{E}(L^x(t))L^x(t)$ and $\mathbb{E}^W[\mathcal{E}(L^x(t))] = 1$, we can rewrite u^F_k as

$$u^F_k(t, x) = \sum_{n=0}^{\infty} I_n \left(F^F_n(t, x) \right),$$

where

$$F^F_0(t, x) = u(0)(t, x);$$

$$F^F_n(t, x; y_1, \ldots, y_n) = \frac{1}{n!} \mathbb{E}^B \left[(L^x(t))^{\otimes n}(y_1, \ldots, y_n)u_0(B^x_t) \right], \quad n \geq 1.$$

We will directly prove $u^F_k = u^M_k$ by showing $F^F_n = F^M_n$ for all $n \geq 0$.

For each $t \in [0, T]$ and $x \in \mathbb{R}$, it is clear that $F^F_0(t, x) = F^M_0(t, x)$. We now let $n \geq 1$. Then, by Fubini lemma,

$$F^F_n(t, x; y_1, \ldots, y_n) = \frac{1}{n!} \int_{[0, t]^n} \mathbb{E}^B \left[\delta_0(B^x_{s_1} - y_1) \cdots \delta_0(B^x_{s_n} - y_n)u_0(B^x_t) \right] \, ds,$$

where $\delta_\varepsilon(x, y) := \lim_{\varepsilon \to 0} (\pi e)^{-1/2} e^{-|x-y|^2/\varepsilon}$, $x, y \in \mathbb{R}$ as the Dirac-delta function in the sense of distribution. Let σ be the permutation of $\{1, \ldots, n\}$ such that $0 < s_{\sigma(1)} < \cdots < s_{\sigma(n)} < t$. Then, we have

$$F^F_n(t, x; y_1, \ldots, y_n) = \frac{1}{n!} \int_{[0,t]^n} \mathbb{E}^B \left[\delta_0(B^x_{s_{\sigma(1)}} - y_{\sigma(1)}) \cdots \delta_0(B^x_{s_{\sigma(n)}} - y_{\sigma(n)})u_0(B^x_t) \right] \, ds,$$

$$= \frac{1}{n!} \int_{[0,t]^n} \mathbb{E}^B \left[\delta_0(B^x_{s_{\sigma(1)}} - y_{\sigma(1)}) \cdots \delta_0(B^x_{s_{\sigma(n)}} - y_{\sigma(n)}) \mathbb{E}^B \left[u_0(B^x_t)|F_{s_{\sigma(n)}} \right] \right] \, ds,$$

$$= \frac{1}{n!} \int_{[0,t]^n} \mathbb{E}^B \left[\delta_0(B^x_{s_{\sigma(1)}} - y_{\sigma(1)}) \cdots \delta_0(B^x_{s_{\sigma(n)}} - y_{\sigma(n)})u_0(t - s_{\sigma(n)}, B^x_t) \right] \, ds.$$

We know that for any $t \geq s$ and $f \in L^\infty(\mathbb{R})$,

$$\mathbb{E}\left[\delta_0(B^x_t - y)f(B^x_t)|F_s \right] = \int_{\mathbb{R}} p(t - s, B^s_x - z)f(z)\delta_0(z - y)dz = p(t - s, B^s_x - y)f(y).$$

If we use the identity iteratively, we can obtain

$$F^F_n(t, x; y_1, \ldots, y_n) = \frac{1}{n!} \int_{[0,t]^n} p(s_{\sigma(1)}, y_{\sigma(1)} - x) \times \cdots$$

$$\times p(s_{\sigma(n)} - s_{\sigma(n-1)}, y_{\sigma(n)} - y_{\sigma(n-1)}) u_0(t - s_{\sigma(n)}, x_{\sigma(n)}) \, ds. \quad (12)$$

Let $r_i = t - s_i$ for $i = 1, \ldots, n$ and $\rho(1) = \sigma(n)$, $\rho(2) = \sigma(n-1)$, \ldots, $\rho(n) = \sigma(1)$. Then, it is clear that $0 < r_{\rho(1)} < \cdots < r_{\rho(n)} < t$, and we can rewrite (12) as

$$F^F_n(t, x; y_1, \ldots, y_n) = \frac{1}{n!} \int_{[0,t]^n} p(t - r_{\rho(n)}, x - y_{\rho(n)}) \times \cdots$$

$$\times p(r_{\rho(2)} - r_{\rho(1)}, y_{\rho(2)} - y_{\rho(1)}) u_0(r_{\rho(1)}, x_{\rho(1)}) \, dr = F^M_n(t, x; y_1, \ldots, y_n),$$

and thus $u^F_k(t, x) = u^M_k(t, x)$.

3.2. u^F_k and u^C_k

Let us now show $u^F_k = u^C_k$ directly. Recall

$$u^C_k(t, x) = \sum_{\alpha \in J} u^C_k(t, x) \xi_{\alpha},$$
where $u^\text{CS}_{(0)}(t, x) = u_{(0)}(t, x)$, and for $|\alpha| = n \geq 1$,

$$
 u^\text{CS}_{\alpha}(t, x) = \sqrt{n!} \int_{\mathbb{R}^n} F_n^\text{CS}(t, x; y_1, \ldots, y_n) \epsilon_\alpha(y_1, \ldots, y_n) \, dy, \quad \alpha \in \mathcal{J}_n = \{\alpha \in \mathcal{J} : |\alpha| = n\},
$$

$$
 F_n^\text{CS}(t, x; y_1, \ldots, y_n) = \int_{\mathbb{T}^n_{[0, t]}} p(t - s_n, x - y_n) \cdots p(s_2 - s_1, y_2 - y_1) u_{(0)}(s_1, y_1) \, ds,
$$

$\mathbb{T}^n_{[0, t]} = \{0 \leq s_1 \leq \cdots \leq s_n \leq t\}$, and $\{\epsilon_\alpha, \alpha \in \mathcal{J}_n\}$ is an orthonormal basis of $L^2_{\text{sym}}(\mathbb{R}^n) := \text{the symmetric part of } L^2(\mathbb{R}^n)$. Specifically,

$$
 \epsilon_\alpha = \frac{1}{\sqrt{n!}} \sum_{\sigma \in \mathcal{P}_n} e_{k_\sigma(1)}(y_1) \cdots e_{k_\sigma(n)}(y_n),
$$

(13)

where $k_\alpha = (k_1, \ldots, k_n)$ be its characteristic vector for any $\alpha \in \mathcal{J}_n$ (e.g. [14, Section 2]).

We have $u^\text{CS}_{(0)}(t, x) = u^\text{F}\text{K}_{(0)}(t, x)$ for $(t, x) \in [0, T] \times \mathbb{R}$. For $n \geq 1$, we have

$$
 \sum_{\alpha \in \mathcal{J}_n} u^\text{CS}_{\alpha}(t, x)\epsilon_\alpha = \sqrt{n!} \sum_{\alpha \in \mathcal{J}_n} \langle F_n^\text{CS}(t, x), \epsilon_\alpha \rangle_{L^2(\mathbb{R}^n)} \epsilon_\alpha.
$$

In fact, it is equal to the orthogonal projection of F_n^CS on $L^2_{\text{sym}}(\mathbb{R}^n)$, and thus

$$
 \sum_{\alpha \in \mathcal{J}_n} u^\text{CS}_{\alpha}(t, x)\frac{\epsilon_\alpha}{\sqrt{n!}} = \text{Sym} \left(F_n^\text{CS}(t, x) \right) =: F_n^\text{CS}(t, x).
$$

Note that

$$
 F_n^\text{CS}(t, x) = \frac{1}{n!} \sum_{\sigma \in \mathcal{P}_n} \int_{\mathbb{T}^n_{[0, t]}} p(t - s_n, x - y_\sigma(n)) \cdots p(s_2 - s_1, y_\sigma(2) - y_\sigma(1)) u_{(0)}(s_1, y_\sigma(1)) \, ds.
$$

Now we take the n-fold Wiener integral $I_n(\bullet)$ on both sides to get

$$
 \sum_{\alpha \in \mathcal{J}_n} u^\text{CS}_{\alpha}(t, x)I_n \left(\frac{\epsilon_\alpha}{\sqrt{n!}} \right) = I_n \left(F_n^\text{CS}(t, x) \right).
$$

(14)

There’s a result due to Itô (see for instance [8, equation 2.2.29]) stating that

$$
 I_n \left(\text{Sym} \bigotimes_{j=1}^\infty E_j^{\otimes \alpha_j} \right) = \prod_{j=1}^\infty H_{\alpha_j} \left(I_1(e_j) \right) \quad \text{and thus} \quad I_n \left(\frac{\epsilon_\alpha}{\sqrt{n!}} \right) = \xi_\alpha.
$$

(15)

Plugging this into (14), we obtain

$$
 \sum_{\alpha \in \mathcal{J}_n} u^\text{CS}_{\alpha}(t, x)\xi_\alpha = I_n \left(F_n^\text{CS}(t, x) \right),
$$

and thus

$$
 u^\text{CS}(t, x) = u^\text{CS}_{(0)}(t, x) + \sum_{n=1}^\infty \sum_{\alpha \in \mathcal{J}_n} u^\text{CS}_{\alpha}(t, x)\xi_\alpha = u^\text{CS}_{(0)}(t, x) + \sum_{n=1}^\infty I_n \left(F_n^\text{CS}(t, x) \right).
$$
To have that \(u^{CS} = u^{FK} \), it only remains to show that \(\widehat{F^CS}_n(t, x) = F^FK_n(t, x) \) for \(n \geq 1 \). Indeed,

\[
F^FK_n(t, x) = \frac{1}{n!} \int_{[0, t]^n} \mathbb{E}^B \left[\delta(B_{s_1}^x - y_1) \cdots \delta(B_{s_n}^x - y_n)u_0(B_1^x) \right] \, ds
\]

\[
= \frac{1}{n!} \sum_{\sigma \in \mathcal{P}_n} \int_{[0, t]^n} \mathbb{E}^B \left[\delta(B_{s_1}^x - y_{\sigma(1)}) \cdots \delta(B_{s_n}^x - y_{\sigma(n)})u_0(B_1^x) \right] \, ds
\]

\[
= \frac{1}{n!} \sum_{\sigma \in \mathcal{P}_n} \int_{[0, t] \times \mathbb{R}^n} \left[\delta(y_{\sigma(1)}) \otimes \cdots \otimes \delta(y_{\sigma(n)}) \right] (y_1, \ldots, y_n)p(s_n - s_{n-1}, y_n - y_{n-1}) \times \cdots
\]

\[
P(s_2 - s_1, y_2 - y_1)p(s_1, y_1 - x)u_0(t - s_n, y_n) \, dy \, ds
\]

\[
= \frac{1}{n!} \sum_{\sigma \in \mathcal{P}_n} \int_{[0, t]} p(s_n - s_{n-1}, y_{\sigma(n)} - y_{\sigma(n-1)}) \cdots p(s_1, y_{\sigma(1)} - x)u_0(t - s_n, y_{\sigma(n)}) \, ds
\]

\[
= F^CS_n(t, x) \quad \text{after rearranging the variables.}
\]

4. Basic regularity of \(u \)

We again assume that \(u_0 \in L^\infty(\mathbb{R}) \) so that \(u = u^{FK} = u^{MW} = u^{CS} \) and we will denote \(\| \cdot \|_\infty := \| \cdot \|_{L^\infty(\mathbb{R})} \). In this section, we will provide a few basic regularity of \(u \) using the Feynman-Kac representation.

Theorem 16. For every \((t, x) \in [0, T] \times \mathbb{R}\),

\[
u(t, x) \in \mathcal{G}.
\]

Proof. We have for \(\phi \in \mathcal{S}(\mathbb{R}) \),

\[
S(u(t, x))(\phi) = \mathbb{E}^W [u(t, x)\mathcal{E}(\phi)] = \mathbb{E}^W \mathbb{E}^B [u_0(B_t^x)\mathcal{E}(L^x(t))\mathcal{E}(\phi)]
\]

\[
= \mathbb{E}^B \left[u_0(B_t^x) \exp \left(\int_{\mathbb{R}} L_y^x(t) \phi(y) dy \right) \right],
\]

where the last equality comes from Fubini Lemma and [15, Theorem 5.13].

Let \(P_m : \mathcal{S}'(\mathbb{R}) \to \mathcal{S}'(\mathbb{R}) \) be the orthogonal projection of \(\mathcal{S}'(\mathbb{R}) \) on \(\text{span}\{e_1, \ldots, e_m\}, m \geq 1 \). Then for \(\eta \in \mathcal{S}'_c(\mathbb{R}) := \mathcal{S}'(\mathbb{R}) \oplus i\mathcal{S}'(\mathbb{R}) \) and \(\lambda \in \mathbb{R} \), we have

\[
S(u(t, x))(\lambda P_m \eta) = \mathbb{E}^B \left[u_0(B_t^x) \exp \left\{ \int_{\mathbb{R}} \lambda P_m \eta(y) L_y^x(t) dy \right\} \right].
\]

Using the fact that for \(\phi, \eta \in \mathcal{S}'_c(\mathbb{R}) \) it holds that \(\langle \eta, P_m \phi \rangle = \langle \phi, P_m \eta \rangle \), we can write

\[
S(u(t, x))(\lambda P_m \eta) = \mathbb{E}^B \left[u_0(B_t^x) \exp \left\{ \lambda \int_{\mathbb{R}} \eta(y)(P_m L^x(t))(y) dy \right\} \right]
\]

and

\[
|S(u(t, x))(\lambda P_m \eta)|^2 = \left| \mathbb{E}^B \left[u_0(B_t^x) \exp \left\{ \lambda \int_{\mathbb{R}} (\eta_1(y) + i\eta_2(y))(P_m L^x(t))(y) dy \right\} \right] \right|^2.
\]

By Jensen’s inequality, we have

\[
|S(u(t, x))(\lambda P_m \eta)|^2 \leq \| u_0 \|_{\infty}^2 \mathbb{E}^B \left[\exp \left\{ \lambda \int_{\mathbb{R}} (\eta_1(y) + i\eta_2(y))(P_m L^x(t))(y) dy \right\} \right]^2.
\]
Since $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$ for any $z_1, z_2 \in \mathbb{C}$,

$$|S(u(t, x))(\lambda P_m \eta)|^2 \leq \|u_0\|_\infty^2 \mathbb{E}^B \left[\left| \exp \left\{ \lambda \int_\mathbb{R} \eta_1(y)(P_m L^2(t))(y)dy \right\} \right|^2 \right]$$

$$= \|u_0\|_\infty^2 \mathbb{E}^B \left[\left| \exp \left\{ 2\lambda \eta_1, P_m L^2(t) \right\} \right| \right].$$

Thus,

$$\int_{\mathcal{G}_t(\mathbb{R})} |S(u(t, x))(\lambda P_m \eta)|^2 \nu(d\eta) \leq \|u_0\|_\infty^2 \mathbb{E}^B \left[\left| \exp \left\{ 2\lambda \eta_1, P_m L^2(t) \right\} \right| \nu(d\eta) \right],$$

where the measure ν is given by the product measure $\mu_2 \otimes \mu_2$, where μ_2 is the measure on (Ω, \mathcal{B}) with the characteristic function given by:

$$\int_{\mathcal{G}_t(\mathbb{R})} e^{i\langle \omega, \phi \rangle} d\mu(\omega) = e^{-\frac{1}{4}\|\phi\|_0^2}, \quad \varphi \in \mathcal{G}(\mathbb{R}).$$

It is clear that for any $\varphi \in \mathcal{G}(\mathbb{R})$, $\mu_2 \circ \langle \cdot, \varphi \rangle^{-1}$ is a centered Gaussian measure with variance 1/2 as in [8, Lemma 2.1.2]. Therefore,

$$\int_{\mathcal{G}_t(\mathbb{R})} |S(u(t, x))(\lambda P_m \eta)|^2 \nu(d\eta) \leq \|u_0\|_\infty^2 \mathbb{E}^B \left[\frac{1}{\sqrt{\pi}} \int_\mathbb{R} e^{2\lambda y}|P_m L^2(t)|_0 e^{-y^2} dy \right]$$

$$= \|u_0\|_\infty^2 \mathbb{E}^B \left[e^{\lambda^2 |P_m L^2(t)|_0^2} \right].$$

Finally, we obtain (by [4, page 178])

$$\lim_{m \to \infty} \int_{\mathcal{G}_t(\mathbb{R})} |S(u(t, x))(\lambda P_m \eta)|^2 \nu(d\eta) \leq \|u_0\|_\infty^2 \mathbb{E} \left[e^{\lambda^2 |L^2(t)|^2} \right] < \infty, \quad \forall \lambda \in \mathbb{R},$$

which implies by [5, Corollary 5.1], $u(t, x)$ belongs to \mathcal{G}. \hfill \Box

Next, we state the basic Hölder regularity of u both in time and space.

Theorem 17. Let $0 < \varepsilon < 1/2$ be arbitrary and C be a constant.

(i) Assume that $u_0 \equiv C$. Then,

$$u \in C^{3/4-\varepsilon, 1/2-\varepsilon}([0, T] \times \mathbb{R}).$$

(ii) Assume that $u_0 \not\equiv C$ and $u_0 \in L^\infty(\mathbb{R})$ is (globally) Lipschitz continuous on \mathbb{R}. Then,

$$u \in C^{1/2-\varepsilon, 1/2-\varepsilon}([0, T] \times \mathbb{R}).$$

Proof. Let $\| \cdot \|_p := (\mathbb{E}^W \mathbb{E}^B | \cdot |^p)^{1/p}$ be the norm on the Banach space $L^p(\mathbb{P}^W \otimes \mathbb{P}^B)$ for $p \geq 1$. From [26], we have

$$\sup_{(t, x) \in [0, T] \times \mathbb{R}} \| \exp \{ \Psi_{t,x} \} \|_p < \infty. \quad (17)$$

Also, (11) conditional on B, becomes

$$\Psi_{t,x} \sim N \left(-\frac{1}{2} \int_\mathbb{R} |L_a(t)|^2 da, \int_\mathbb{R} |L_a(t)|^2 da \right), \quad (18)$$

where $N(\mu, \sigma^2)$ denotes the Gaussian random variable with mean μ and variance σ^2.
(i) Let u_0 be a constant. Then, using the fact $|e^x - e^y| \leq (e^x + e^y)|x - y|$ for all $x, y \in \mathbb{R}$, Cauchy-Schwarz inequality, Minkowski inequality, (17), and (18), we can obtain for $p \geq 2$.

$$
\mathbb{E}^W [|u(t, x) - u(s, y)|^p] \leq c_p \left\{ \mathbb{E}^B \mathbb{E}^W [|\Psi_{t,x} - \Psi_{s,y}|^2]^{1/2} \right\}^p = c_p \| \Psi_{t,x} - \Psi_{s,y} \|^p_2,
$$

for some $c_p > 0$. Also, the triangular inequality implies

$$
\mathbb{E}^W [|u(t, x) - u(s, y)|^p] \leq c_p \left\{ \| \Psi_{t,x} - \Psi_{t,y} \|_2 + \| \Psi_{t,y} - \Psi_{s,y} \|_2 \right\}^p = c_p \left(A_1^{1/2} + A_2^{1/2} \right)^p.
$$

Let us now work with

$$
A_1 = \| \Psi_{t,x} - \Psi_{t,y} \|_2^2 = \mathbb{E}^B \mathbb{E}^W [\Psi_{t,x}^2 - 2\Psi_{t,x} \Psi_{t,y} + \Psi_{t,y}^2].
$$

By (18), we have

$$
A_1 = \mathbb{E}^B \left[2 \int_\mathbb{R} |La(t)|^2 da + \frac{1}{2} \left(\int_\mathbb{R} |La(t)|^2 da \right)^2 - 2\mathbb{E}^W [\Psi_{t,x} \Psi_{t,y}] \right].
$$

Recall the Dirac-delta function $\delta_{x,y}(y) = \lim_{\varepsilon \to 0} (\pi \varepsilon)^{-1/2} e^{-|x-y|^2/\varepsilon}$, $x, y \in \mathbb{R}$. Since

$$
\mathbb{E}^B \mathbb{E}^W [\Psi_{t,x} \Psi_{t,y}] = \mathbb{E}^B \left[\int_0^t \int_0^t \delta_0(Bu - Br - (x - y)) dudr + \frac{1}{4} \left(\int_\mathbb{R} |La(t)|^2 da \right)^2 \right],
$$

we get

$$
A_1 = \mathbb{E}^B \left[2 \int_\mathbb{R} |La(t)|^2 da - 2 \int_0^t \int_0^t \delta_0(Bu - Br - (x - y)) dudr \right].
$$

The next step is done rigorously (See [10] for instance) by the translation invariant property of the Lebesgue measure:

$$
A_1 = \mathbb{E}^B \left[\int_\mathbb{R} |La_{-x}(t)|^2 da - 2 \int_0^t \int_0^t \delta_0(Bu - Br - (x - y)) dudr + \int_\mathbb{R} |La_{-y}(t)|^2 da \right],
$$

and this yields, by [10, Proposition 9.2],

$$
A_1 = \mathbb{E}^B \left[\int_\mathbb{R} |La_{-x}(t) - La_{-y}(t)|^2 da \right] = 4t|x - y| + O(|x - y|^2),
$$

which implies $u(t, \bullet)$ is almost Hölder $1/2$ continuous uniformly for all $t \in [0, T]$.

On the other hand, let us compute, for $0 \leq s \leq t \leq T$,

$$
A_2 = \mathbb{E}^B \mathbb{E}^W [\Psi_{t,y}^2 - 2\Psi_{t,y} \Psi_{s,y} + \Psi_{s,y}^2]
$$

$$
= \mathbb{E}^B \left[\int_\mathbb{R} |La(t)|^2 da + \frac{1}{4} \left(\int_\mathbb{R} |La(t)|^2 da \right)^2 + \int_\mathbb{R} |La(s)|^2 da + \frac{1}{4} \left(\int_\mathbb{R} |La(s)|^2 da \right)^2 \right]
$$

$$
- 2\mathbb{E}^W [\Psi_{t,y} \Psi_{s,y}] .
$$

Since

$$
\mathbb{E}^B \mathbb{E}^W [\Psi_{t,y} \Psi_{s,y}] = \mathbb{E}^B \left[\int_0^t \int_0^s \delta_0(Bu - Br) dudr + \frac{1}{4} \left(\int_\mathbb{R} |La(t)|^2 da \right) \left(\int_\mathbb{R} |La(s)|^2 da \right) \right],
$$
we have

\[A_2 = \mathbb{E}^B \left[\int_{\mathbb{R}} |L_a(t)|^2 da - 2 \int_0^t \int_0^s \mathbb{E}^B \left(\int_{\mathbb{R}} |L_a(t)|^2 da \right) \mathbb{E}^B \left(\int_{\mathbb{R}} |L_a(s)|^2 da \right) + \int_0^t \int_0^s \delta_0(B_r - B_z) dr dz \right]
\]

\[= \mathbb{E}^B \left[\int_{\mathbb{R}} |L_a(t)|^2 da - 2 \int_0^t \int_0^s \delta_0(B_r - B_z) dr dz + \int_{\mathbb{R}} |L_a(s)|^2 da \right]
\]

\[+ \frac{1}{4} \mathbb{E}^B \left[\left(\int_{\mathbb{R}} |L_a(t)|^2 da \right)^2 - 2 \left(\int_{\mathbb{R}} |L_a(t)|^2 da \right) \left(\int_{\mathbb{R}} |L_a(s)|^2 da \right) + \left(\int_{\mathbb{R}} |L_a(s)|^2 da \right)^2 \right]
\]

We note that

\[\mathbb{E}^B \left[\int_{\mathbb{R}} |L_a(t)|^2 da \right] = \mathbb{E}^B \left[\int_0^t \int_0^t \delta_0(B_r - B_z) dr dz \right],
\]

which implies

\[A_2 = \mathbb{E}^B \left[\int_0^t \int_0^t \delta_0(B_r - B_z) dr dz - 2 \int_0^t \int_0^s \delta_0(B_r - B_z) dr dz + \int_0^s \int_0^s \delta_0(B_r - B_z) dr dz \right]
\]

\[+ \frac{1}{4} \mathbb{E}^B \left(\int_0^t \int_0^t \delta_0(B_r - B_z) dr dz - \int_0^s \int_0^s \delta_0(B_r - B_z) dr dz \right)^2
\]

\[= \mathbb{E}^B \left[\int_s^t \int_s^t \delta_0(B_r - B_z) dr dz \right] + \frac{1}{4} \mathbb{E}^B \left(\int_0^t \int_0^t \delta_0(B_r - B_z) dr dz - \int_0^s \int_0^s \delta_0(B_r - B_z) dr dz \right)^2
\]

\[=: A_3 + A_4.
\]

We can easily compute \(A_3:\)

\[A_3 = \int_s^t \int_s^t (2\pi |r - z|)^{-1/2} dr dz = C(t - s)^{3/2} \text{ for some } C > 0 \text{ independent of } x.
\]

For \(A_4\), we have

\[4A_4 = \int_s^t \int_s^t \int_s^t \int_s^t \mathbb{E}^B (\delta_0(B_z - B_r) \delta_0(B_q - B_p)) dpdqdrdz
\]

\[\text{symmetry} \quad = 4! \int_s^t \int_s^t \int_s^t \int_s^t \int_s^t \mathbb{E}^B [\delta_0(B_z - B_r)] \mathbb{E}^B [\delta_0(B_q - B_p)] dpdqdrdz
\]

\[= 4! \int_s^t \int_s^t \int_s^t \int_s^t \frac{1}{\sqrt{2\pi(z - r)}} \frac{1}{\sqrt{2\pi(q - p)}} dpdqdrdz
\]

\[\leq 4! \int_s^t \int_s^t \frac{1}{\sqrt{2\pi(z - r)}} \left(\int_s^t \int_s^t \frac{1}{\sqrt{2\pi(q - p)}} \right) dpdqdrdz
\]

\[= C(t - s)^{3} \text{ for some } C > 0 \text{ independent of } x.
\]

Combining all together, we obtain

\[A_2 \leq C(t - s)^{3/2},
\]

which implies \(u(\bullet, x)\) is almost Hölder 3/4 continuous uniformly for all \(x \in \mathbb{R}\).
(ii) If u_0 is not a constant function on \mathbb{R}, then we have
\[
\mathbb{E}^W[|u(t,x) - u(s,y)|^p] = \mathbb{E}^W \left| \mathbb{E}^B \left(u_0(x + B_t \exp (\Psi_{t,x})) - u_0(y + B_s \exp (\Psi_{s,y})) \right) \right|^p \\
= \mathbb{E}^W \left(\mathbb{E}^B \left((u_0(x + B_t) - u_0(y + B_s)) \exp (\Psi_{t,x}) \right) \right) \\
+ \mathbb{E}^B \left(u_0(y + B_s) (\exp (\Psi_{t,x}) - \exp (\Psi_{s,y})) \right) \right|^p.
\]
Since $|f + g|^p \leq 2^{p-1} (|f|^p + |g|^p)$ for $p \geq 1$,
\[
\mathbb{E}^W[|u(t,x) - u(s,y)|^p] \leq 2^{p-1} \left(\mathbb{E}^W \left| \mathbb{E}^B \left((u_0(x + B_t) - u_0(y + B_s)) \exp (\Psi_{t,x}) \right) \right|^p \\
+ \mathbb{E}^W \left| \mathbb{E}^B \left(u_0(y + B_s) (\exp (\Psi_{t,x}) - \exp (\Psi_{s,y})) \right) \right|^p \right) \\
=: 2^{p-1} \left(\bar{A}_1 + \bar{A}_2 \right).
\]
For \bar{A}_1, by Cauchy-Schwarz inequality,
\[
\bar{A}_1 \leq \left(\mathbb{E}^B (u_0(x + B_t) - u_0(y + B_s))^2 \right)^{p/2} \mathbb{E}^W \left(\mathbb{E}^B (\exp (2\Psi_{t,x})) \right)^{p/2}.
\]
Since u_0 is Lipschitz continuous on \mathbb{R}, we have
\[
\bar{A}_1 \leq (|t - s| + (x - y)^2)^{p/2} \mathbb{E}^W \left(\mathbb{E}^B (\exp (2\Psi_{t,x})) \right)^{p/2} \\
\leq \left(|t - s|^{1/2} + |x - y| \right)^p \mathbb{E}^W \left(\mathbb{E}^B (\exp (2\Psi_{t,x})) \right)^{p/2}.
\]
By Minkowski inequality, Hölder inequality for $p \geq 2$, and (17), we also have
\[
\bar{A}_1 \leq \left(|t - s|^{1/2} + |x - y| \right)^p \mathbb{E}^W \mathbb{E}^B (\exp (p\Psi_{t,x})) < \infty.
\]
For \bar{A}_2, since $u_0 \in L^\infty(\mathbb{R})$, we can apply the same argument in (i). As a result, we can say that u is Hölder continuous almost $1/2$ both in time and space. \hfill \Box

As we argued in the introduction, one expects that we can still improve the spatial regularity of u. We will derive our desired result in Section 5.

5. The spatial derivative of u

As we anticipated in the introduction, we expect that $u(t, \bullet) \in C^{3/2-\varepsilon}(\mathbb{R})$ for any small $\varepsilon > 0$. To verify this assertion, we first compute the spatial derivative of u using the Feynman-Kac representation and then find its chaos expansion to see if it is well-defined in \mathcal{G} and to get the optimal spatial regularity of u.

Let us start with a useful Lemma. The following result will serve as a key idea for finding $\partial_x u(t,x)$.

Lemma 18. For fixed (t,x) the map $\tilde{\omega} \supset \tilde{\Omega} \mapsto \tilde{\Phi}_{t,x}(\tilde{\omega}) \in (S)^*$ given by
\[
\tilde{\Phi}_{t,x}(\tilde{\omega}) = \mathcal{E}(L^x(t; \tilde{\omega})) \circ \left[u_0(B^x_t(\tilde{\omega})) + u_0(B^x_t) I_1 (\partial_x L^x(t; \tilde{\omega})) \right],
\]
is Bochner integrable in $(S)^*$. Here, $\partial_x L^x(t) \in \mathcal{S}'(\mathbb{R})$ denotes the pathwise distributional derivative of the local time of $\{B^x_t\}_{t \geq 0}$.

Proof. This immediately follows from [7, Theorem 4.51] and the facts
can conclude that Φ

We also need to show ∂x convergence theorem (DCT), we obtain is entire for any φ, φ

In order to prove that u(t, x), we start by computing the S-transform of u. From (16), for φ ∈ 𝔖(R), we have

\[S(u(t,x))(φ) = \mathbb{E}^B \left[u_0(B_t^x) \exp \left(\int_{\mathbb{R}} L_y^x(t)φ(y)dy \right) \right] = \mathbb{E}^B \left[u_0(B_t^x) \exp \left(\int_0^t φ(B_s^x)ds \right) \right], \tag{19} \]

where the last equality follows by the occupation time formula.

It is clear that x ∈ R → S(u(t,x))(φ) is continuous for all φ ∈ 𝔖(R), and |S(u(t,x))(φ)| ≤ K_1 e^{K_2|φ|_p^2} for some K_1, K_2, p > 0. Then, by [18, Lemma A.1.2], we can see that u(t, x) = S^{-1}(S(u(t,x))) is weakly continuously differentiable in (S)* (with respect to the x variable).

In order to prove that u(t, x) is weakly continuously differentiable in (S)* we must first take the spatial derivative on both sides of (19). Using the fact φ, φ’ ∈ 𝔖(R) ⊂ L^∞(R), by dominated convergence theorem (DCT), we obtain

\[\partial_x S(u(t,x))(φ) = \mathbb{E}^B \left[u_0'(B_t^x) \exp \left(\int_0^t φ(B_s^x)ds \right) + u_0(B_t^x) \exp \left(\int_0^t φ(B_s^x)ds \right) \times \int_0^t φ'(B_s^x)ds \right], \]

and it is clear that the map x → ∂x S(u(t,x))(φ) is continuous for all φ ∈ 𝔖(R).

We also need to show ∂x S(u(t,x)) is a U-functional (see Definition 5). By direct computation, we can verify that, as in the proof of Lemma 18,

\[|∂x S(u(t,x))(φ)| \leq K_1 e^{K_2|φ|_p^2}, \]

where K_1, K_2, p are positive real constants. Also, it is clear that the map z → ∂x S(u)(zφ + η) is entire for any φ, η ∈ 𝔖(R) and z ∈ C. Hence, ∂x S(u(t,x)) is indeed a U-functional, and thus there exists a unique Φ ∈ (S)* such that ∂x S(u(t,x)) = S(Φ); then from [18, Lemma A.3], we can conclude that u(t, x) is weakly continuously differentiable in the Hida distribution space (S)*.
Following the aforementioned reference, the weak spatial derivative \(\partial_x u\) of \(u\) is defined as the unique element in \((S)^*\) such that

\[
S(\partial_x u(t, x))(\phi) = \partial_x S(u(t, x))(\phi).
\]

Using Lemma 18, we can see that \(\partial_x S(u(t, x)) = \mathbb{E}^B \left(S(\tilde{\Phi}_{t,x}) \right)\), and furthermore we have that \(\mathbb{E}^B \left(S(\tilde{\Phi}_{t,x}) \right) = S(\mathbb{E}^B (\tilde{\Phi}_{t,x}))\) since the Bochner integral \(\mathbb{E}^B\) and the S-transform can be interchanged (e.g. [7, Theorem 4.51]). Finally, by Theorem 6, we can conclude

\[
\partial_x u(t, x) = \mathbb{E}^B \left[\mathcal{E}(L^x(t)) \circ \left\{ I_0(u_0'(B^x_t)) + u_0(B^x_t)I_1(\partial_x L^x(t)) \right\} \right],
\]

where \(\mathbb{E}^B\) must be understood as a Bochner integral in \((S)^*\). \(\Box\)

From this result, we can only say that \(\partial_x u(t, x) \in (S)^*\) for each \((t, x) \in [0, T] \times \mathbb{R}\). But, in the following subsection, we will show that \(\partial_x u(t, x) \in \mathcal{G}\) using its chaos decomposition, and furthermore, we will investigate its Hölder regularity.

5.1. Chaos decomposition for \(\partial_x u\)

Let us find the chaos expansion of

\[
\partial_x u(t, x) = \mathbb{E}^B \left[\mathcal{E}(L^x(t)) \circ \left\{ I_0(u_0'(B^x_t)) + u_0(B^x_t)I_1(\partial_x L^x(t)) \right\} \right],
\]

and notice that in this context, the Wiener integral of order 0 equals the identity operator, but nonetheless we explicitly write \(I_0\) for notational convenience.

By Lemma 13, we have

\[
\mathcal{E}(L^x(t)) = \sum_{n=0}^{\infty} \frac{1}{n!} I_n \left(L^x(t)^{\otimes n} \right), \quad \text{convergent in } L^2(\mathbb{P}^W),
\]

and by the definition of Wick product, we see that

\[
\mathcal{E}(L^x(t)) \circ \left\{ I_0(u_0'(B^x_t)) + u_0(B^x_t)I_1(\partial_x L^x(t)) \right\} = \sum_{n=0}^{\infty} I_n(h_n(t, x)), \quad \text{convergent in } (S)^*,
\]

where \(h_0(t, x) = u_0'(B^x_t)\), and

\[
\mathcal{S}'(\mathbb{R}^n) \ni h_n(t, x; \bullet) = u_0'(B^x_t) \Sym \left[\left(\frac{L^x(t)^{\otimes(n-1)}}{(n-1)!} \right) \otimes \partial_x L^x(t) \right] (\bullet) + u_0'(B^x_t) \left(\frac{L^x(t)^{\otimes n}}{n!} \right) (\bullet), \quad n \geq 1.
\]

It is known that (e.g. [15, Chapter 13.3]) if \(\Psi(u) = \sum_{n=0}^{\infty} I_n(F_n(u))\) is Bochner integrable on \((M, \sigma(M), m)\), then \(F_n\) is Bochner integrable on \((M, \sigma(M), m)\), and it holds that

\[
\int_M \Psi(u)m(du) = \sum_{n=0}^{\infty} I_n \left(\int_M F_n(u)m(du) \right).
\]

In our case, letting \((M, \sigma(M), m) = (\tilde{\Omega}, \tilde{\mathcal{F}}, \mathbb{P}^B)\), this would imply that

\[
\partial_x u(t, x) = \sum_{n=0}^{\infty} I_n \left(\mathbb{E}^B [h_n(t, x)] \right),
\]

where \(\mathbb{E}^B\) should be understood as a Bochner integral in \(\mathcal{S}'(\mathbb{R}^n)\).
We can easily check that the first term of $\partial_x u(t, x)$ is $\mathbb{E}^B [u_0(B^x_t)] = \partial_x u(0)(t, x)$. Let’s check the general n-th term of $\partial_x u(t, x)$ for $n \geq 1$. Since $h_n(t, x; \bullet)$ is a symmetric element of $\mathcal{S}'(\mathbb{R}^n)$, we can expand it with respect to $\{\epsilon_\alpha : \alpha \in J_n\}$ as

$$h_n(t, x; \bullet) = \sum_{\alpha \in J_n} \langle h_n(t, x), \epsilon_\alpha \rangle_n \epsilon_\alpha(\bullet), \quad \text{convergence in } \mathcal{S}'(\mathbb{R}^n),$$

where $\langle \bullet, \bullet \rangle_n$ is the bilinear product between $\mathcal{S}'(\mathbb{R}^n)$ and $\mathcal{S}(\mathbb{R}^n)$, and

$$\epsilon_\alpha = \frac{1}{\sqrt{n!\alpha!}} \sum_{\sigma \in P_n} e_{k_0(1)}(y_1) \cdots e_{k_\alpha(n)}(y_n)$$

as defined in (13).

It is clear by direct calculations that $\langle \text{Sym} f, \text{Sym} g \rangle_n = \langle f, \text{Sym}^2 g \rangle_n = \langle f, \text{Sym} g \rangle_n$. Then, we have

$$\langle h_n(t, x), \epsilon_\alpha \rangle_n = \frac{u_0(B^x_t)}{\sqrt{n!\alpha!}(n-1)!} \left(\left[L^x(t) \otimes (n-1) \otimes \partial_x L^x(t) \right] \sum_{\sigma \in P_n} \left[e_{k_0(1)} \otimes \cdots \otimes e_{k_\alpha(n)} \right] \right)_n$$

$$+ \frac{u'_0(B^x_t)}{\sqrt{n!\alpha!} n!} \int_{\mathbb{R}_n} L^x(t) \otimes (y_1, \ldots, y_n) \times \sum_{\sigma \in P_n} \left[e_{k_0(1)} \otimes \cdots \otimes e_{k_\alpha(n)} \right] (y_1, \ldots, y_n) dy$$

$$= \frac{u_0(B^x_t)}{\sqrt{n!\alpha!}(n-1)!} \sum_{\sigma \in P_n} \int_{[0,t]_n} e_{k_0(1)} \otimes \cdots \otimes e_{k_\alpha(n)}(B^x_{s_1}, \ldots, B^x_{s_n}) ds$$

$$+ \frac{u'_0(B^x_t)}{\sqrt{n!\alpha!} n!} \sum_{\sigma \in P_n} \int_{[0,t]_n} e_{k_0(1)} \otimes \cdots \otimes e_{k_\alpha(n)}(B^x_{s_1}, \ldots, B^x_{s_n}) ds, \quad \text{(21)}$$

where in the last expression we used the occupation time formula and the fact that $-\partial_x L^x$ equals distributional derivative of the Brownian local time.

Also, taking \mathbb{E}^B on both sides of (20), we have

$$\mathbb{E}^B [h_n(t, x; \bullet)] = \mathbb{E}^B \left[\sum_{\alpha \in J_n} \langle h_n(t, x), \epsilon_\alpha \rangle_n \epsilon_\alpha(\bullet) \right]. \quad \text{(22)}$$

At this point, we need the following Lemma to compute (22).

Lemma 20. [2, Lemma 11.45] Let $f : M \to X$ be Bochner integrable on $(M, \sigma(M), m)$ in X and let Y be a Banach space. If $T : X \to Y$ is a bounded operator, then $Tf : M \to Y$ is Bochner integrable on $(M, \sigma(M), m)$ in Y and it holds that

$$\int_M Tf dm = T \left(\int_M f dm \right).$$

In our case, we set $\mathcal{S}'_{\text{SYM}}(\mathbb{R}^n) :=$ the symmetric part of $\mathcal{S}'(\mathbb{R}^n)$ and $T : \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'_{\text{SYM}}(\mathbb{R}^n)$ equals the orthogonal projection on $\mathcal{S}'_{\text{SYM}}(\mathbb{R}^n)$, which is clearly a bounded linear operator. Even though if it is well-known that the space of tempered distributions is not a Banach space, we can think of $\mathcal{S}'(\mathbb{R})$ as the inductive limit of a family of Hilbert spaces (e.g [15, Section 3.2] or [21]), and an analogous reasoning extends to the multi-dimensional case; thus the lemma above holds true by letting Y be some of those Hilbert spaces.
Then, (22) becomes
\[
\mathbb{E}^B[h_n(t, x; \bullet)] = \mathbb{E}^B \left[\sum_{\alpha \in \mathcal{J}_n} \langle h_n(t, x), \epsilon_\alpha \rangle_n \epsilon_\alpha(\bullet) \right] = \sum_{\alpha \in \mathcal{J}_n} \langle \mathbb{E}^B[h_n(t, x)], \epsilon_\alpha \rangle_n \epsilon_\alpha(\bullet).
\]

It is known that if a function is Bochner integrable, then its Pettis and Bochner integrals coincide (see for instance the discussion on page 80 of [12]). Therefore, by definition of the Pettis integral, we have
\[
\langle \mathbb{E}^B[h_n(t, x)], \epsilon_\alpha \rangle_n = \mathbb{E}^B[\langle h_n(t, x), \epsilon_\alpha \rangle_n].
\]

Hence, we have
\[
\mathbb{E}^B[h_n(t, x; \bullet)] = \sum_{\alpha \in \mathcal{J}_n} \mathbb{E}^B[\langle h_n(t, x), \epsilon_\alpha \rangle_n \epsilon_\alpha(\bullet)].
\]

Next we compute \(\mathbb{E}^B[\langle h_n(t, x), \epsilon_\alpha \rangle_n] \), and so far from (21), we have
\[
\mathbb{E}^B[\langle h_n(t, x), \epsilon_\alpha \rangle_n] = \mathbb{E}^B \left[\frac{u_0(B^x_t)}{\sqrt{n! \alpha!(n - 1)!}} \int_{[0, t]^n} e_{k_{\alpha}(1)} \otimes \cdots \otimes e'_{k_{\alpha}(n)}(B^x_{s_1}, \ldots, B^x_{s_n}) \right. \]
\[
\cdot \left. + \frac{u'_0(B^x_t)}{\sqrt{n! \alpha!}} \int_{[0, t]^n} e_{k_{\alpha}(1)} \otimes \cdots \otimes e_{k_{\alpha}(n)}(B^x_{s_1}, \ldots, B^x_{s_n}) \right] \cdot \] \quad (23)

To simplify the expression in (23), we first observe
\[
\partial_x [e_{k_1}(B^x_{s_1}) \cdots e_{k_n}(B^x_{s_n})] = \left[e'_{k_1}(B^x_{s_1}) \cdots e_{k_n}(B^x_{s_n}) \right] + \cdots + \left[e_{k_1}(B^x_{s_1}) \cdots e'_{k_n}(B^x_{s_n}) \right].
\]

Since the Lebesgue measure is invariant under rotations, we see that for any \(f : [0, t]^n \rightarrow \mathbb{R} \), it holds that
\[
\int_{[0, t]^n} f(s_1, \ldots, s_n) \, ds = \int_{[0, t]^n} \text{Sym} f(s_1, \ldots, s_n) \, ds.
\]

Thus, for any permutation \(\sigma \) of \(\{1, \ldots, n\} \), we have
\[
\int_{[0, t]^n} \frac{u_0(B^x_t)}{(n - 1)!} \sum_{\sigma \in \mathcal{P}_n} e_{k_{\sigma}(1)} \otimes \cdots \otimes e'_{k_{\sigma}(n)}(B^x_{s_1}, \ldots, B^x_{s_n}) \, ds = \int_{[0, t]^n} u_0(B^x_t) \partial_x [e_{k_1}(B^x_{s_1}) \cdots e_{k_n}(B^x_{s_n})] \, ds,
\]

and
\[
\int_{[0, t]^n} \frac{u'_0(B^x_t)}{n!} \sum_{\sigma \in \mathcal{P}_n} e_{k_{\sigma}(1)} \otimes \cdots \otimes e_{k_{\sigma}(n)}(B^x_{s_1}, \ldots, B^x_{s_n}) \, ds = \int_{[0, t]^n} u'_0(B^x_t) e_{k_1}(B^x_{s_1}) \cdots e_{k_n}(B^x_{s_n}) \, ds,
\]

which implies
\[
\mathbb{E}^B[\langle h_n(t, x), \epsilon_\alpha \rangle_n] = \frac{1}{\sqrt{n! \alpha!}} \mathbb{E}^B \left[\int_{[0, t]^n} \partial_x [u_0(B^x_t) e_{k_1}(B^x_{s_1}) \cdots e_{k_n}(B^x_{s_n})] \, ds \right],
\]

where again \(\mathbb{T}^n_{[0, t]} = \{0 \leq s_1 \leq \cdots \leq s_n \leq t\} \).
Furthermore, we notice that

$$\int_{[0,t]^{n}} \left[e_{k_1}(B_{s_1}^x) \cdots e_{k_n}(B_{s_n}^x) \right] \, ds = \int_{[0,t]^{n}} \text{Sym} \left[e_{k_1}(B_{s_1}^x) \cdots e_{k_n}(B_{s_n}^x) \right] \, ds$$

$$= \int_{[0,t]^{n}} \frac{1}{n!} \sum_{\sigma \in \mathcal{P}_n} \left[e_{k_1}(B_{s_{\sigma(1)}}^x) \cdots e_{k_n}(B_{s_{\sigma(n)}}^x) \right] \, ds = \sqrt{\alpha!} \int_{[0,t]^{n}} \partial_x e_{\alpha}(B_{s_1}^x, \ldots, B_{s_n}^x) \, ds$$

and similarly,

$$\int_{[0,t]^{n}} \partial_x \left[e_{k_1}(B_{s_1}^x) \cdots e_{k_n}(B_{s_n}^x) \right] \, ds = \sqrt{\alpha!} \int_{[0,t]^{n}} \partial_x e_{\alpha}(B_{s_1}^x, \ldots, B_{s_n}^x) \, ds.$$

Therefore, (24) becomes

$$\mathbb{E}^B \left[\langle h_n(t,x), e_{\alpha} \rangle_n \right] = \mathbb{E}^B \left[\int_{[0,t]^{n}} \partial_x e_{\alpha}(B_{s_1}^x, \ldots, B_{s_n}^x) \, ds \right]$$

$$= \int_{[0,t]^{n}} \mathbb{E}^B \left[\partial_x \left[u_0(B_t^x) e_{\alpha}(B_{s_1}^x, \ldots, B_{s_n}^x) \right] \right] \, ds,$$

where the second equality holds true by Fubini lemma.

By conditioning iteratively on the filtration of B at the sites $s_n, s_{n-1}, \ldots, s_1$, we can rewrite (25) as

$$\mathbb{E}^B \left[\langle h_n(t,x), e_{\alpha} \rangle_n \right] = \int_{[0,t]^{n}} \int_{\mathbb{R}^n} \partial_x e_{\alpha}(y_1 + x, y_2, \ldots, y_n) p(s_n - s_{n-1}, y_n - y_{n-1}) \times$$

$$\cdots \times p(s_1, y_1) u_0(t - s_n, y_n) dy \, ds$$

$$= \int_{[0,t]^{n}} \int_{\mathbb{R}^n} \partial_y e_{\alpha}(y_1 + x, y_2, \ldots, y_n) p(s_n - s_{n-1}, y_n - y_{n-1}) \times$$

$$\cdots \times p(s_1, y_1) u_0(t - s_n, y_n) dy \, ds$$

$$= - \int_{[0,t]^{n}} \int_{\mathbb{R}^n} e_{\alpha}(y_1, y_2, \ldots, y_n) p(s_n - s_{n-1}, y_n - y_{n-1}) \times$$

$$\cdots \times \partial_y p(s_1, y_1 - x) u_0(t - s_n, y_n) dy \, ds.$$

Noticing that $-\partial_y p(s, y - x) = \partial_x p(s, x - y)$ and letting $r_i = t - s_{n+1-i}$ for $i \in \{1, \ldots, n\}$, the equation (26) becomes

$$\int_{[0,t]^{n}} \int_{\mathbb{R}^n} e_{\alpha}(y_1, y_2, \ldots, y_n) p(r_2 - r_1, y_n - y_{n-1}) \times \cdots \times \partial_x p(t - r_n, x - y_1) u_0(r_1, y_n) dy \, dr,$$

which yields, after relabeling the y's,

$$\mathbb{E}^B \left[\langle h_n(t,x), e_{\alpha} \rangle_n \right] = \int_{[0,t]^{n}} \int_{\mathbb{R}^n} \partial_x p(t - r_n, x - y_n) p(r_n - r_{n-1}, y_n - y_{n-1}) \times \cdots \times p(r_2 - r_1, y_2 - y_1)$$

$$\cdots \times e_{\alpha}(y_1, y_2, \ldots, y_n) u_0(r_1, y_1) dy \, dr.$$
Using the definition of ε_α, it equals
\[
\frac{1}{\sqrt{\alpha!}} \frac{1}{\sqrt{n!}} \sum_{\sigma \in \mathcal{P}_n} \int_{T^p_n} \int_{\mathbb{R}^n} \partial_x p(t-r_n, x-y_n)p(r_n-r_{n-1}, y_n-y_{n-1}) \times \cdots \times p(r_2-r_1, y_2-y_1) \\
\cdots \times e_{k_{\sigma}(1)}(y_1) \times \cdots \times e_{k_{\sigma(n)}}(y_n) u(0)(r_1, y_1) dy \, dr =: \frac{1}{\sqrt{n!}} R_\alpha(t, x), \quad |\alpha| = n \geq 1.
\]

Putting all together, we obtain
\[
\mathbb{E}^B [h_n(t, x; \bullet)] = \sum_{\alpha \in \mathcal{J}_n} \frac{1}{\sqrt{n!}} R_\alpha(t, x) \varepsilon_\alpha(\bullet)
\]
and
\[
I_n (\mathbb{E}^B [h_n(t, x)]) = \sum_{\alpha \in \mathcal{J}_n} R_\alpha(t, x) I_n \left(\frac{\varepsilon_\alpha}{\sqrt{n!}} \right) = \sum_{\alpha \in \mathcal{J}_n} R_\alpha(t, x) \xi_\alpha \quad \text{by (15)}.
\]

Finally, we have the chaos expansion of $\partial_x u(t, x)$ as follows:
\[
\partial_x u(t, x) = \sum_{n=0}^{\infty} I_n (\mathbb{E}^B [h_n(t, x)]) = \sum_{n=0}^{\infty} \sum_{\alpha \in \mathcal{J}_n} R_\alpha(t, x) \xi_\alpha = \sum_{\alpha \in \mathcal{J}} R_\alpha(t, x) \xi_\alpha,
\]
where $R_{\{0\}}(t, x) = \partial_x u(0)(t, x)$, and for $|\alpha| = n \geq 1$,
\[
R_\alpha(t, x) = \frac{1}{\sqrt{\alpha!}} \sum_{\sigma \in \mathcal{P}_n} \int_{T^p_n} \int_{\mathbb{R}^n} \partial_x p(t-r_n, x-y_n)p(r_n-r_{n-1}, y_n-y_{n-1}) \times \cdots \times p(r_2-r_1, y_2-y_1) \\
\cdots \times e_{k_{\sigma(1)}}(y_1) \times \cdots \times e_{k_{\sigma(n)}}(y_n) u(0)(r_1, y_1) dy \, dr.
\]

Remark 21. Using the Feynman-Kac representation of $u(t, x)$, it was possible to compute the weak derivative of $u(t, x)$ with respect to x in $(S)^c$ as follows:
\[
\partial_x u(t, x) = \sum_{\alpha \in \mathcal{J}} R_\alpha(t, x) \xi_\alpha,
\]
where $R_{\{0\}}(t, x) = \partial_x u(0)(t, x)$, and for $|\alpha| = n \geq 1$,
\[
R_\alpha(t, x) = \frac{1}{\sqrt{\alpha!}} \sum_{\sigma \in \mathcal{P}_n} \int_{T^p_n} \int_{\mathbb{R}^n} \partial_x p(t-r_n, x-y_n)p(r_n-r_{n-1}, y_n-y_{n-1}) \times \cdots \times p(r_2-r_1, y_2-y_1) \\
\cdots \times e_{k_{\sigma(1)}}(y_1) \times \cdots \times e_{k_{\sigma(n)}}(y_n) u(0)(r_1, y_1) dy \, dr.
\]

In fact, the weak spatial derivative is the usual spatial derivative in $L^2(\mathbb{P}^W)$ sense (and hence \mathbb{P}^W almost sure sense). One can verify this assertion by computing $\partial_x u(t, x)$ using the chaos expansion of $u(t, x)$ directly and by the uniqueness of mild solution.

Before we show $\partial_x u(t, x) \in \mathcal{G}$ for each $t > 0$ and $x \in \mathbb{R}$, we first need the following lemma:

Lemma 22. Assume that $u_0 \in C^1_c(\mathbb{R})$. Then, for each $\alpha \in \mathcal{J}$, $t > 0$ and $x \in \mathbb{R}$, $R_\alpha(t, x)$ is well-defined, and moreover, for $|\alpha| \geq 1$,
\[
\lim_{\varepsilon \to 0^+} R^\varepsilon_\alpha(t, x) = R_\alpha(t, x),
\]
where
\[
R^\varepsilon_\alpha(t, x) := \frac{1}{\sqrt{\alpha!}} \sum_{\sigma \in \mathcal{P}_n} \int_{T^p_n} \int_{\mathbb{R}^n} \partial_x p(t-r_n, x-y_n)p(r_n-r_{n-1}, y_n-y_{n-1}) \times \cdots \times p(r_2-r_1, y_2-y_1) \\
\cdots \times e_{k_{\sigma(1)}}(y_1) \times \cdots \times e_{k_{\sigma(n)}}(y_n) u(0)(r_1, y_1) dy \, dr \quad \text{for } \epsilon > 0,
\]

and
\[
R_\alpha(t, x) := \frac{1}{\sqrt{\alpha!}} \sum_{\sigma \in \mathcal{P}_n} \int_{T^p_n} \int_{\mathbb{R}^n} \partial_x p(t-r_n, x-y_n)p(r_n-r_{n-1}, y_n-y_{n-1}) \times \cdots \times p(r_2-r_1, y_2-y_1) \\
\cdots \times e_{k_{\sigma(1)}}(y_1) \times \cdots \times e_{k_{\sigma(n)}}(y_n) u(0)(r_1, y_1) dy \, dr \quad \text{for } \epsilon = 0.
\]
with $T_{[0,t-\epsilon]}^n := \{0 \leq s_1 \leq \cdots \leq s_n \leq t - \epsilon\}$.

Proof. We will decompose $\mathfrak{R}_\alpha(t, x)$ as a finite sum of well-defined terms. Without loss of generality, we let $|\alpha| = n \geq 1$. Notice that

\[
\mathfrak{R}_\alpha(t, x) = \frac{1}{\sqrt{\alpha!}} \sum_{\sigma \in \mathcal{P}_n} \int_{T_{[0,t]}^n} \int_{\mathbb{R}^n} \frac{\partial x}{\partial \mathcal{P}_n} \frac{\partial}{\partial \mathcal{P}_n} \frac{\partial}{\partial \mathcal{P}_n} \cdots \frac{\partial}{\partial \mathcal{P}_n} \left(t - r_n, x - y_n \right) \left(r_n - r_{n-1}, y_n - y_{n-1} \right) \cdots \left(r_2 - r_1, y_2 - y_1 \right) \times e_{\mathcal{P}_n(1)}(y_1) \cdots e_{\mathcal{P}_n(n)}(y_n) u_0(r_1, y_1) dy dr
\]

\[
= \frac{1}{\sqrt{\alpha!}} \sum_{\sigma \in \mathcal{P}_n} \int_{T_{[0,t]}^n} \int_{\mathbb{R}^n} p(t - r_n, x - y_n) \partial_{y_n} \left(p(r_n - r_{n-1}, y_n - y_{n-1}) e_{\mathcal{P}_n(n)}(y_n) \right) \times \cdots \times e_{\mathcal{P}_n(1)}(y_1) \times e_{\mathcal{P}_n(n)}(y_n) u_0(r_1, y_1) dy dr
\]

\[
= \frac{1}{\sqrt{\alpha!}} \sum_{\sigma \in \mathcal{P}_n} \int_{T_{[0,t]}^n} \int_{\mathbb{R}^n} p(t - r_n, x - y_n) \partial_{y_n} p(r_n - r_{n-1}, y_n - y_{n-1}) e_{\mathcal{P}_n(n)}(y_n) \times \cdots \times e_{\mathcal{P}_n(1)}(y_1) \times e_{\mathcal{P}_n(n)}(y_n) u_0(r_1, y_1) dy dr
\]

\[
+ \frac{1}{\sqrt{\alpha!}} \sum_{\sigma \in \mathcal{P}_n} \int_{T_{[0,t]}^n} \int_{\mathbb{R}^n} p(t - r_n, x - y_n) p(r_n - r_{n-1}, y_n - y_{n-1}) e_{\mathcal{P}_n(n)}(y_n) \times \cdots \times e_{\mathcal{P}_n(1)}(y_1) \times e_{\mathcal{P}_n(n)}(y_n) u_0(r_1, y_1) dy dr
\]

\[
=: a_1 + b_1.
\]

We note that b_1 is well-defined since $u_0 \in L^\infty(\mathbb{R})$, and for a_1, we do a similar step as above:

\[
a_1 = -\frac{1}{\sqrt{\alpha!}} \sum_{\sigma \in \mathcal{P}_n} \int_{T_{[0,t]}^n} \int_{\mathbb{R}^n} p(t - r_n, x - y_n) \partial_{y_n} \left(p(r_n - r_{n-1}, y_n - y_{n-1}) e_{\mathcal{P}_n(n)}(y_n) \right) \times \cdots \times e_{\mathcal{P}_n(1)}(y_1) \times e_{\mathcal{P}_n(n)}(y_n) u_0(r_1, y_1) dy dr
\]

\[
= \frac{1}{\sqrt{\alpha!}} \sum_{\sigma \in \mathcal{P}_n} \int_{T_{[0,t]}^n} \int_{\mathbb{R}^n} p(t - r_n, x - y_n) p(r_n - r_{n-1}, y_n - y_{n-1}) e_{\mathcal{P}_n(n)}(y_n) \times \cdots \times e_{\mathcal{P}_n(1)}(y_1) \times e_{\mathcal{P}_n(n)}(y_n) u_0(r_1, y_1) dy dr
\]

\[
+ \frac{1}{\sqrt{\alpha!}} \sum_{\sigma \in \mathcal{P}_n} \int_{T_{[0,t]}^n} \int_{\mathbb{R}^n} p(t - r_n, x - y_n) p(r_n - r_{n-1}, y_n - y_{n-1}) e_{\mathcal{P}_n(n)}(y_n) \times \cdots \times e_{\mathcal{P}_n(1)}(y_1) \times e_{\mathcal{P}_n(n)}(y_n) u_0(r_1, y_1) dy dr
\]

\[
=: a_2 + b_2.
\]
Again, b_2 is well-defined. By iterating this process, we can get

$$
\mathfrak{R}_\alpha(t, x) = a_{n-1} + \sum_{i=1}^{n-1} b_i,
$$

where $\sum_{i=1}^{n-1} b_i$ is well-defined and

$$
a_{n-1} = \frac{1}{\sqrt{\alpha!}} \sum_{\sigma \in \mathcal{P}_n} \int_{\mathbb{T}_{[0, t]}^n} \int_{\mathbb{R}^n} p(t - r_n, x - y_n)p(r_n - r_{n-1}, y_n - y_{n-1}) \times \cdots \times p(r_2 - r_1, y_2 - y_1)
\times e_{k^{(1)}_\sigma}(y_1) \times \cdots \times e_{k^{(n)}_\sigma}(y_n) \partial y_1 u_0(r_1, y_1) dy \ dr.
$$

Since $u_0(r_1, y_1) dy = \int_{\mathbb{R}} p(r_1, y_1 - y_0) u_0(y_0) dy_0$, a_{n-1} becomes

$$
a_{n-1} = \frac{1}{\sqrt{\alpha!}} \sum_{\sigma \in \mathcal{P}_n} \int_{\mathbb{T}_{[0, t]}^n} \int_{\mathbb{R}^{n+1}} p(t - r_n, x - y_n)p(r_n - r_{n-1}, y_n - y_{n-1}) \times \cdots \times p(r_2 - r_1, y_2 - y_1)
\times e_{k^{(1)}_\sigma}(y_1) \times \cdots \times e_{k^{(n)}_\sigma}(y_n) p(r_1, y_1 - y_0) u_0'(y_0) dy_0 dy \ dr,
$$

which is clearly well-defined since $u'_0 \in L^\infty(\mathbb{R})$.

Moreover, one can show that $\lim_{\epsilon \to 0^+} \mathfrak{R}_\alpha^\epsilon(t, x) = \mathfrak{R}_\alpha(t, x)$ easily by considering the same argument as $\mathfrak{R}_\alpha(t, x)$ for $\mathfrak{R}_\alpha^\epsilon(t, x)$.

Theorem 23. If $u_0 \in C^1_b(\mathbb{R})$, for each $t > 0$ and $x \in \mathbb{R}$,

$$
\partial_x u(t, x) \in \mathcal{G}.
$$

Proof. From (27), we have

$$
\mathbb{E} |\partial_x u(t, x)|^2 = |\mathfrak{R}_0(t, x)|^2 + \sum_{n=1}^{\infty} \sum_{\alpha \in \mathcal{J}_n} |\mathfrak{R}_\alpha(t, x)|^2.
$$

We note that $\mathfrak{R}_0(t, x) = \partial_x u_0(t, x) < \infty$ for each $(t, x) \in [0, T] \times \mathbb{R}$. For $|\alpha| = n \geq 1$, we use $\mathfrak{R}_\alpha^\epsilon$:

For $\epsilon > 0$, we notice that (by Fubini lemma)

$$
\mathfrak{R}_\alpha^\epsilon(t, x) = \sqrt{n!} \int_{\mathbb{T}_{[0, t]}^n} \int_{\mathbb{R}^n} \partial_x p(t - r_n, x - y_n)p(r_n - r_{n-1}, y_n - y_{n-1}) \times \cdots \times p(r_2 - r_1, y_2 - y_1)
\times e_\alpha(y_1, \ldots, y_n) u_0(r_1, y_1) dy \ dr dy.
$$

Using Bessel’s inequality, we have that

$$
\sum_{\alpha \in \mathcal{J}_n} |\mathfrak{R}_\alpha^\epsilon(t, x)|^2 \leq n! \int_{\mathbb{T}_{[0, t]}^n} \int_{\mathbb{R}^n} |\partial_x p(t - r_n, x - y_n)p(r_n - r_{n-1}, y_n - y_{n-1}) \times \cdots \times p(r_2 - r_1, y_2 - y_1) u_0(r_1, y_1) dy|^2 dy
\leq n! \int_{\mathbb{T}_{[0, t]}^n} \int_{\mathbb{R}^n} |\partial_x p(t - r_n, x - y_n)p(r_n - r_{n-1}, y_n - y_{n-1}) \times \cdots \times p(r_2 - r_1, y_2 - y_1) u_0(r_1, y_1) dy| dy
\times \int_{\mathbb{T}_{[0, t]}^n} |\partial_x p(t - r_n, x - y_n)p(r_n - r_{n-1}, y_n - y_{n-1}) \times \cdots \times p(r_2 - r_1, y_2 - y_1) u_0(r_1, y_1) dy| dy.
$$
Again using Fubini lemma and the semigroup property of \(p \), we can write the last expression as

\[n!\|u_0\|^2_\infty (2\pi)^{-(n-1)/2} \int_{[0,t]} \prod_{k=1}^{n-1} (s_{k+1} + r_{k+1} - s_k - r_k)^{-1/2} \]

\[\cdots \int_\mathbb{R} \partial_x p(t - r_n, x - y_n) \partial_x p(t - s_n, x - y_n) dy_n dr_s. \]

Since

\[\int_\mathbb{R} \partial_x p(t - r_n, x - y_n) \partial_x p(t - s_n, x - y_n) dy_n = (2\pi)^{-1/2} (2t - s_n - r_n)^{-3/2}, \]

and \((a + b)^{-1/2} \leq 2^{-1/2} a^{-1/4} b^{-1/4}\) for \(a, b > 0 \), we can finally see that

\[\sum_{\alpha \in \mathcal{J}_n} |\mathfrak{R}_\alpha(t, x)|^2 \leq n!\|u_0\|^2_\infty (2\pi)^{-n/2} \left(\int_{[0,t]} (t - s_n)^{-3/4} \prod_{k=1}^{n-1} (s_{k+1} - s_k)^{-1/4} ds \right)^2 \]

\[\leq n!\|u_0\|^2_\infty (2\pi)^{-n/2} \left(\int_{[0,t]} (t - s_n)^{-3/4} \prod_{k=1}^{n-1} (s_{k+1} - s_k)^{-1/4} ds \right)^2 \]

\[\leq \|u_0\|^2_\infty C^n t^{3n-4} n^{-n/2} \text{ for some } C > 0, \]

where the last inequality follows from [14, equation (4.10)].

For each \(t > 0 \) and \(x \in \mathbb{R} \), the convergence is uniform in \(\epsilon \) and \(\mathfrak{R}_\alpha^\epsilon(t, x) \rightarrow \mathfrak{R}_\alpha(t, x) \) as \(\epsilon \rightarrow 0 \) by Lemma 22,

\[\sum_{\alpha \in \mathcal{J}_n} |\mathfrak{R}_\alpha(t, x)|^2 \leq \|u_0\|^2_\infty C^n t^{3n-4} n^{-n/2} \text{ for some constant } C > 0. \]

Since \(C^n t^{3n-4} n^{-n/2} e^{2\lambda n} \) is summable in \(n \) for any \(\lambda \in \mathbb{R} \), the conclusion follows from Definition 14. \(\square \)

Remark 24. We have the following Feynman-Kac type formula for the spatial derivative of \(u \):

\[\partial_x u(t, x) = \mathbb{E}^B \left[L^x(t) \circ \left\{ u_0(B^x_\cdot) + u_0(B^x_{\cdot 1}) (\partial_x L^x(t)) \right\} \right], \]

where \(\mathbb{E}^B \) must be understood as a Bochner integral in \((S)^*\). Notice that the integrand of \(\mathbb{E}^B \) on the right-hand side is in fact a Hida distribution. However, after taking the expectation \(\mathbb{E}^B \), which is interpreted as a Bochner integral in \((S)^*\), we end up with a regular random variable in \(\mathcal{G} \). This means that the white noise integral (or the Bochner integral in \((S)^*\)) has a regularizing effect.

Theorem 25. Let \(0 < \epsilon < 1/2 \) be arbitrary and assume that \(u_0 \in C^{3/2}(\mathbb{R}) \). Then, for each \(t > 0 \),

\[\partial_x u(t, \bullet) \in C^{1/2-\epsilon}(\mathbb{R}). \]

Proof. Let \(p > 1 \), \(t > 0 \) and \(x \in \mathbb{R} \). By [14, Proposition 2.1], we have

\[(\mathbb{E} |\partial_x u(t, x + h) - \partial_x u(t, x)|^p)^{1/p} = \sum_{n=0}^\infty (p - 1)^{n/2} \left(\sum_{\alpha \in \mathcal{J}_n} |\mathfrak{R}_\alpha(t, x + h) - \mathfrak{R}_\alpha(t, x)|^2 \right)^{1/2}. \]

For \(|\alpha| = 0 \), by Lemma 15, we have

\[\mathfrak{R}_{\{0\}}(t, \bullet) = \partial_x u_{\{0\}}(t, \bullet) \in C^{1/2}(\mathbb{R}). \]
For $|\alpha| = n \geq 1$, similarly to the proof of Theorem 23, we can get

$$\sum_{\alpha \in J_n} |R^e_\alpha (t, x + h) - R^e_\alpha (t, x)|^2$$

$$\leq n! \int_\mathbb{R}^n \left(\int_{\mathbb{T}^n_{[0, t-\epsilon]}} (\partial_x p(t - r_n, x + h - y_n) - \partial_x p(t - r_n, x - y_n)) p(r_n - r_{n-1}, y_n - y_{n-1}) \times \right.$$

$$\left. \cdots \times p(r_2 - r_1, y_2 - y_1) u(0)(r_1, y_1) dr \right)^2 dy$$

$$\leq n! \|u_0\|_\infty^2 (2\pi)^{-(n-1)/2} \int_{\mathbb{T}^n_{[0, t-\epsilon]}} \prod_{k=1}^{n-1} (s_{k+1} + r_{k+1} - s_k - r_k)^{-1/2}$$

$$\times \int_{\mathbb{R}} (\partial_x p(t - r_n, x + h - y_n) - \partial_x p(t - r_n, x - y_n))$$

$$\cdots \times (\partial_x p(t - s_n, x + h - y_n) - \partial_x p(t - s_n, x - y_n)) dy_n dr ds.$$

We next compute

$$\int_{\mathbb{R}} \partial_x p(t_1, x_1 - z) \partial_x p(t_2, x_1 - z) dz = \frac{1}{2\pi t_1^{3/2} t_2^{3/2}} \int_{\mathbb{R}} (x_1 - z)(x_2 - z)e^{-\frac{(x_1-z)^2}{2t_1} - \frac{(x_2-z)^2}{2t_2}} dz$$

$$= \frac{1}{2\pi t_1^{3/2} t_2^{3/2}} \int_{\mathbb{R}} z(z - (x_1 - x_2)) e^{-\frac{z^2}{2t_1} - \frac{(x_1-x_2)^2}{2t_2}} dz$$

$$= \frac{1}{2\pi t_1^{3/2} t_2^{3/2}} \int_{\mathbb{R}} (z^2 - (x_1 - x_2)z) e^{-\frac{z^2}{2t_1} - \frac{(x_1-x_2)^2}{2t_2}} dz$$

$$= \frac{1}{2\pi t_1^{3/2} t_2^{3/2}} \left(1 - \frac{(x_1-x_2)^2}{(t_1 + t_2)^2} \right).$$

The last equality can be verified using the mean and variance of a normal distribution $N \left(\frac{t_1}{t_1 + t_2}, \frac{t_1 t_2}{t_1 + t_2} \right)$. Then, we can easily check, using the fact $1 - e^{-z^2} \leq z^2$ for any $z \geq 0$ and $0 < \gamma \leq 1$,

$$\int_{\mathbb{R}} (\partial_x p(t - r_n, x + h - y_n) - \partial_x p(t - r_n, x - y_n))$$

$$\times (\partial_x p(t - s_n, x + h - y_n) - \partial_x p(t - s_n, x - y_n)) dy_n$$

$$= \sqrt{\frac{2}{\pi}} (2t - s - r)^{-3/2} \left(1 - e^{-\frac{r^2}{2(t_1 + t_2)}} + \frac{h^2 e^{-\frac{r^2}{2(t_1 + t_2)}}}{2t - s - r} \right) \leq C \hbar^{2\gamma} (2t - s - r)^{-3/2 - \gamma}. \quad (29)$$

At this point, we restrict $0 < \gamma < 1/2$ so that (29) is integrable both in s and r variables near t. This leads to

$$\sum_{\alpha \in J_n} |R^e_\alpha (t, x + h) - R^e_\alpha (t, x)|^2 \leq h^{2\gamma} \|u_0\|_\infty^2 C^n(\gamma)t^{3n/4 - 1 - \frac{3}{2}n - n/2},$$

with $0 < \gamma < 1/2$ for some constant $C(\gamma) > 0$ depending only on γ.

After taking $\epsilon \to 0$, the desired result follows from (28) and the Kolmogorov continuity theorem. □

Remark 26. Under the same initial condition in Theorem 25, we can achieve the optimal temporal regularity of $\partial_x u$ in a similar manner, i.e., $\partial_x u(\cdot, x) \in C^{1/4 - \epsilon} ([\epsilon_0, T])$ for every $x \in \mathbb{R}$, $0 < \epsilon_0 < T$, and $0 < \epsilon < 1/4$.
References

[1] R. H. Cameron and W. T. Martin, The orthogonal development of nonlinear functionals in a series of Fourier-Hermite functions, Ann. Math., 48(2) (1947): 385-392.
[2] D. Charalambos and A. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer-Verlag Berlin and Heidelberg GmbH & Company KG (2013).
[3] G. D. Nunno, B. Øksendal, and F. Proske, Malliavin calculus for Lévy processes with applications to finance, Berlin Springer, 2 (2009).
[4] L. Gall and Jean-François, Exponential moments for the renormalized self-intersection local time of planar Brownian motion, Séminaire de probabilités de Strasbourg, 28 (1994): 172-180.
[5] M. Grothaus, J. Müller, and A. Nonnenmacher, An improved characterisation of regular generalised functions of white noise and an application to singular SPDEs, Stochastics and Partial Differential Equations: Analysis and Computations (2021): 1-33.
[6] M. Hairer and C. Labbé, A simple construction of the continuum parabolic Anderson model on \mathbb{R}^2, Electron. Commun. Probab. 20(43) (2015): 1–11.
[7] T. Hida, H. H. Kuo, L. Streit, and J. Potthoff, White Noise Analysis: Mathematics and Applications. World Scientific (1990).
[8] H. Holden, B. Øksendal, J. Ubøe, T. Zhang, Stochastic Partial Differential Equations, 2nd edn. Springer, Berlin (2010)
[9] Y. Hu, Chaos expansion of heat equations with white noise potentials. Potential Analysis, 16(1) (2002): 45-66.
[10] Y. Hu, Analysis on Gaussian spaces. World Scientific (2016).
[11] Y. Hu, J. Huang, D. Nualart, and S. Tindel, Stochastic heat equations with general multiplicative Guassian noises: Hölder continuity and intermittency, Electronic Journal of Probability, 20 (2015): 1–50.
[12] E. Hille and R. S. Phillips, Functional analysis and semi-groups, American Mathematical Soc., Providence, R.I., 23 (1968).
[13] S. Janson, Gaussian hilbert spaces, Cambridge university press, 129 (1997).
[14] H.-J. Kim and S. V. Lototsky, Time-homogeneous parabolic Wick-Anderson model in one space dimension: regularity of solution, Stoch. Partial Differ. Equ. Anal. Comput., 5(4) (2017): 559–591.
[15] H. H. Kuo, White noise distribution theory. CRC press (2018).
[16] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, American Mathematical Society, Providence, R.I., 23 (1968).
[17] S. V. Lototsky and B. L. Rozovskii, Stochastic partial differential equations driven by purely spatial noise, SIAM journal on mathematical analysis 41(4) (2009): 1295-1322.
[18] J. Potthoff, White noise approach to parabolic stochastic partial differential equations, Stochastic Analysis and Applications in Physics. Springer, Dordrecht (1994): 307-327.
[19] D. Nualart, The Malliavin calculus and related topics, Berlin: Springer, 1995 (2006).
[20] I. Nourdin and G. Peccati, Normal approximations with Malliavin calculus, from Stein’s method to universality, Cambridge Tracts in Mathematics, Cambridge University Press, 192 (2012).
[21] R. H. Picard, Hilbert spaces of tempered distributions, Hermite expansions and sequence spaces, Proceedings of the Edinburgh Mathematical Society 34(2) (1991): 271-293.
[22] J. Potthoff and L. Streit, A characterization of Hida distributions, Journal of Functional Analysis 101(1) (1991): 212-229.
[23] J. Potthoff and T. Matthias, On a dual pair of spaces of smooth and generalized random variables, Potential Analysis, 4(6) (1995): 637-654.
[24] M. Sanz-Solé, Malliavin calculus with applications to stochastic partial differential equations. EPFL press (2005).
[25] B. Simon, Distributions and their Hermite expansions. Journal of Mathematical Physics, 12(1) (1971): 140-148.
[26] R. Scolarli, Feynman-Kac formula for the heat equation driven by time-homogeneous white noise potential, arXiv:2108.12406 (2021).
[27] D. W. Stroock, Homogeneous chaos revisited, Séminaire de Probabilités XXI, Springer, Berlin, Heidelberg, (1987): 1-7.
[28] H. Uemura, Construction of the solution of 1-dimensional heat equation with white noise potential and its asymptotic behaviour. Stoch. Anal. Appl., 14(4) (1996): 487–506.
Current address, H.-J. Kim: Department of Mathematics, UCSB, Santa Barbara, CA 93106, USA

Email address, H.-J. Kim: hjkim@ucsb.edu

URL: https://sites.google.com/view/hyun-jungkim

Current address, R. Scorolli: Dipartimento di Scienze Statistiche Paolo Fortunati, Università di Bologna, Bologna, Italy.

Email address, R. Scorolli: ramiro.scorolli2@unibo.it