LEFT APP-RINGS OF SKEW GENERALIZED POWER SERIES *

Renyu Zhao
College of Economics and Management,
Northwest Normal University, Lanzhou 730070, P.R. China
E-mail: renyuzhao026@gmail.com

Abstract
A ring R is called a left APP-ring if the left annihilator $l_R(Ra)$ is right s-unital as an ideal of R for any $a \in R$. Let R be a ring, (S, \leq) a strictly ordered monoid and $\omega : S \rightarrow \text{End}(R)$ a monoid homomorphism. The skew generalized power series ring $[[R^S, \leq, \omega]]$ is a common generalization of (skew) polynomial rings, (skew) power series rings, (skew) Laurent polynomial rings, (skew) group rings, and Malcev-Neumann Laurent series rings. We study the left APP-property of the skew generalized power series ring $[[R^S, \leq, \omega]]$. It is shown that if (S, \leq) is a strictly totally ordered monoid, $\omega : S \rightarrow \text{Aut}(R)$ a monoid homomorphism and R a ring satisfying descending chain condition on right annihilators, then $[[R^S, \leq, \omega]]$ is left APP if and only if for any S-indexed subset A of R, the ideal $l_R(\sum_{a \in A} \sum_{s \in S} R\omega_s(a))$ is right s-unital.

Key Words: left APP-ring, skew generalized power series ring.

Mathematics Subject Classification: 16W60

1. Introduction and preliminaries

Throughout this paper, R denotes a ring (not necessarily commutative) with unity. For a nonempty subset X of R, $l_R(X)$ and $r_R(X)$ denote the left and right annihilator of X in R, respectively. We will denote by $\text{End}(R)$ the monoid of ring endomorphisms of R, and by $\text{Aut}(R)$ the group of ring automorphisms of R.

Recall that a ring R is a right (resp. left) PP-ring if the right (resp. left) annihilator of an element of R is generated by an idempotent. The ring R is called a PP-ring if it is both right and left PP. A ring R is called (quasi-) Baer if the left annihilator of every nonempty subset (every left ideal) of R is generated by an idempotent of R. For more details and examples of PP-rings, Baer rings and

*Partially supported by National Natural Science Foundation of China(10961021).
quasi-Baer rings, see [2, 3, 5, 7, 8, 10]. As a generalization of quasi-Baer rings, G.F. Birkenmeier, J.Y. Kim and J.K. Park in [6] introduced the concept of left principally quasi-Baer rings. A ring \(R \) is called left principally quasi-Baer (or simply, left p.q.-Baer) if the left annihilator of a principal left ideal of \(R \) is generated by an idempotent. Similarly, right p.q.-Baer rings can be defined. A ring \(R \) is called p.q.-Baer if it is both right and left p.q.-Baer. Observe that biregular rings and quasi-Baer rings are left p.q.-Baer.

In recent years, many researches have carried out an extensive study of rings of (skew) generalized power series (for example, P. Ribenboim [26, 27, 28], Z.K. Liu [14, 16, 17, 19], H. Kim [11, 12], R. Mazurek and M. Ziembowski [22, 23, 24, 25], and the present author [31, 32], etc.). In particular, it was shown in [32, Corollary 3.8] that if \((S, \leq) \) is a strictly totally ordered monoid and \(R \) a ring satisfying the condition that \(ab = 0 \iff a \omega_s(b) = 0 \) for any \(a, b \in R \) and any \(s \in S \), then \([[R^{S, \leq}, \omega]] \) is a left p.q.-Baer ring if and only if for any \(S \)-indexed set \(A \) of \(R \), \(l_R(\sum_{a \in A} Ra) \) is generated by an idempotent of \(R \). In [31, Corollary 5.5], we proved that \([[R^{S, \leq}]] \) is a reduced PP-ring if and only if for any two countable subsets \(A \) and \(B \) of \(R \) with \(A \subseteq \text{ann}_R(B) \), there exists \(r \in \text{ann}_R(B) \) such that \(ar = a \) for all \(a \in A \).

In recent years, many researches have carried out an extensive study of rings of (skew) generalized power series (for example, P. Ribenboim [26, 27, 28], Z.K. Liu [14, 16, 17, 19], H. Kim [11, 12], R. Mazurek and M. Ziembowski [22, 23, 24, 25], and the present author [31, 32], etc.). In particular, it was shown in [32, Corollary 3.8] that if \((S, \leq) \) is a strictly totally ordered monoid and \(R \) a ring satisfying the condition that \(ab = 0 \iff a \omega_s(b) = 0 \) for any \(a, b \in R \) and any \(s \in S \), then \([[R^{S, \leq}, \omega]] \) is a left p.q.-Baer ring if and only if for any \(S \)-indexed set \(A \) of \(R \), \(l_R(\sum_{a \in A} Ra) \) is generated by an idempotent of \(R \). In [31, Corollary 5.5], we proved that \([[R^{S, \leq}]] \) is a reduced PP-ring if and only if for any two countable subsets \(A \) and \(B \) of \(R \) with \(A \subseteq \text{ann}_R(B) \), there exists \(r \in \text{ann}_R(B) \) such that \(ar = a \) for all \(a \in A \).
a least upper bound in the set of all idempotents of R. H. Kim and T.I. Kwon proved in [12, Theorem 2.4] that if (S, \leq) is a strictly totally ordered monoid, then $[[R^{S, \leq}]]$ is a PF-ring if and only if for any two S-indexed subsets A and B of R with $A \subseteq \text{ann}_R(B)$, there exists $r \in \text{ann}_R(B)$ such that $ar = a$ for all $a \in A$.

For left APP-rings, it was proved in [21, Theorem 2] that if M is an ordered monoid and $\phi : M \to \text{Aut}(R)$ is a monoid homomorphism, then the skew monoid ring $R \ast M$ is a left APP-ring if and only if for any $b \in R$, $l_R(\sum_{g \in M} R\phi(g)(b))$ is pure as a left ideal of R. It was noted in [18, Example 2.4] that there exists a commutative von Neumann regular ring R (hence left APP), but the ring $R[[x]]$ is not APP. In [20, Theorem 2], it was shown that if R is a ring satisfying descending chain condition on right annihilators then $R[[x, \alpha]]$ is a left APP-ring if and only if for any sequence (b_0, b_1, \ldots) of elements of R the ideal $l_R(\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} R\alpha^k(b_j))$ is pure as a left ideal of R, where $\alpha \in \text{Aut}(R)$.

In this note, we will consider left APP-property of skew generalized power series rings. We will show that if (S, \leq) is a strictly totally ordered monoid, $\omega : S \to \text{Aut}(R)$ a monoid homomorphism and R is a ring satisfying descending chain condition on right annihilators, then $[[R^{S, \leq}, \omega]]$ is left APP if and only for any S-indexed subset A of R, the ideal $l_R(\sum_{a \in A} \sum_{s \in S} R\omega_s(a))$ is pure as a left ideal of R.

In order to recall the skew generalized power series ring construction, we need some definitions. Let (S, \leq) be a partially ordered set. Recalled that (S, \leq) is artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated otherwise, the operation of S shall be denoted additively, and the neutral element by 0. The following definition is due to [28, 19] and [25].

Let R be a ring, (S, \leq) a strictly ordered monoid (that is, (S, \leq) is an ordered monoid such that if $s, s', t \in S$ and $s < s'$, then $s + t < s' + t$), and $\omega : S \to \text{End}(R)$ a monoid homomorphism. For any $s \in S$, let ω_s denote the image of s under ω, that is $\omega_s = \omega(s)$. Consider the set A of all maps $f : S \to R$ whose support $\text{supp}(f) = \{s \in S \mid f(s) \neq 0\}$ is artinian and narrow. Then for any $s \in S$ and $f, g \in A$ the set

$$X_s(f, g) = \{(u, v) \in S \times S \mid u + v = s, f(u) \neq 0, g(v) \neq 0\}$$

is finite. This fact allows to define the operation of convolution as follows:

$$(fg)(s) = \sum_{(u, v) \in X_s(f, g)} f(u)\omega_u(g(v)), \quad \text{if} \quad X_s(f, g) \neq \emptyset$$

and $(fg)(s) = 0$ if $X_s(f, g) = \emptyset$. With this operation and pointwise addition, A becomes a ring, which is called the ring of skew generalized power series with coefficients in R and exponents in S, and we denote by $[[R^{S, \leq}, \omega]]$.

The skew generalized power series construction embraces a wide range of classical ring-theoretic extensions, including skew polynomial rings, skew power series rings, skew Laurent polynomial rings, skew group rings, Malcev-Neumann Laurent series rings and of course the “untwisted” versions of all of these.
If \((S, \leq)\) is a strictly totally ordered monoid and \(0 \neq f \in [[R^{S}, \leq}, \omega]],\) then \(\text{supp}(f)\) is a nonempty well-ordered subset of \(S\). We denote \(\pi(f)\) the smallest element of \(\text{supp}(f)\). To any \(r \in R\) and any \(s \in S\) we associated the maps \(\lambda^s_r \in [[R^{S}, \leq}, \omega]]\) defined by
\[
\lambda^s_r(t) = \begin{cases}
 r, & t = s, \\
 0, & t \neq s,
\end{cases} \quad t \in S.
\]
In particular, denote \(c_r = \lambda^0_r, e_s = \lambda^s_s\). It is clear that \(r \mapsto c_r\) is a ring embedding of \(R\) into \([[R^{S}, \leq}, \omega]]\), \(s \mapsto e_s\) is a monoid embedding of \(S\) into the multiplicative monoid of ring \([[R^{S}, \leq}, \omega]]\), and \(\lambda^s_r e_s, e_r c_r = c_{\omega_s(r)} e_s\).

2. Main Results

An ideal \(I\) of \(R\) is said to be right \(s\)-unital if, for each \(a \in I\) there exists an element \(x \in I\) such that \(ax = a\). Note that if \(I\) and \(J\) are right \(s\)-unital ideals, then so is \(I \cap J\) (if \(a \in I \cap J\), then \(a \in aI \subseteq a(I \cap J)\)). It follows from [30, Theorem 1] that \(I\) is right \(s\)-unital if and only if for any finitely many elements \(a_1, a_2, \ldots, a_n \in I\) there exists an element \(x \in I\) such that \(a_i = ax, i = 1, 2, \ldots, n\). A submonoid \(N\) of a left \(R\)-module \(M\) is called a pure submodule if \(L \otimes_R N \rightarrow L \otimes_R M\) is a monomorphism for every right \(R\)-module \(L\). By [29, Proposition 11.3.13], an ideal \(I\) is right \(s\)-unital if and only if \(R/I\) is flat as a left \(R\)-module if and only if \(I\) is pure as a left ideal of \(R\).

By [18], a ring \(R\) is called a left APP-ring if the left annihilator \(l_R(Ra)\) is right \(s\)-unital as an ideal of \(R\) for any element \(a \in R\).

Right APP-rings may be defined analogously. Clearly every left p.q.-Baer ring is a left APP-ring (thus the class of left APP-rings includes all biregular rings and all quasi-Baer rings). If \(R\) is a commutative ring, then \(R\) is APP if and only \(R\) is FP. From [18, Proposition 2.3] it follows that right PP-rings are left APP and left APP-rings are quasi-Armendariz in the sense that whenever \(f(x) = a_0 + a_1 x + \cdots + a_m x^n, g(x) = b_0 + b_1 x + \cdots + b_n x^n \in R[x]\) satisfy \(f(x)R[x]g(x) = 0\), we have \(a_i Rb_j = 0\) for each \(i\) and \(j\) (see, for example [9]). For more details on left APP-rings, see [18, 9].

Lemma 1. Let \((S, \leq)\) be a strictly totally ordered monoid and \(\omega : S \rightarrow \text{Aut}(R)\) a monoid homomorphism. If \(l_R(\sum_{s \in S} R\omega_s(a))\) is right \(s\)-unital for any \(a \in R\), then for any \(f, g \in [[R^{S}, \leq}, \omega]]\) satisfy \(g([[R^{S}, \leq}, \omega]])f = 0, g(u)\omega_u(R\omega_s(f(v))) = 0\) for any \(u, v, s \in S\).

Proof. Let \(0 \neq f, g \in [[R^{S}, \leq}, \omega]]\) be such that \(g([[R^{S}, \leq}, \omega]])f = 0\). Assume that \(\pi(g) = u_0\) and \(\pi(f) = v_0\). Then for any \((u, v) \in X_{u_0 + v_0}\), \(u_0 \leq u, v_0 \leq v\). If \(u_0 < u\), since \(\leq\) is a strict order, \(u_0 + v_0 < u + v_0 \leq u + v = u_0 + v_0\), a contradiction. Thus \(u = u_0\). Similarly, \(v = v_0\). Hence, for any \(r \in R\) and any \(s \in S\),
\[
0 = (g\lambda^{s}_r f)(u_0 + s + v_0) = \sum_{(u, v) \in X_{u_0 + s + v_0}} g(u)\omega_u(r\omega_s(f(v)))
\]
\[
= g(u_0)\omega_{u_0}(r\omega_s(f(v_0))).
\]
Now let \(w \in S\) with \(u_0 + v_0 \leq w\). Assume that for any \(u \in \text{supp}(g)\) and any \(v \in \text{supp}(f)\), if \(u + v < w\), then \(g(u)\omega_u(R\omega_s(f(v))) = 0\) for any \(s \in S\). We will show
that \(g(u)\omega_u(R\omega_s(f(v))) = 0 \) for any \(s \in S \), any \(u \in \text{supp}(\phi) \) and any \(v \in \text{supp}(f) \) with \(u + v = w \). For convenience, we write

\[
X_u(g, f) = \{(u, v_i) \mid i = 1, 2, \ldots, n\}
\]

with \(v_1 < v_2 < \cdots < v_n \) (Note that if \(v_1 = v_2 \), then from \(u_1 + v_1 = u_2 + v_2 \) it follows that \(u_1 = u_2 \), and thus \((u_1, v_1) = (u_2, v_2) \)). Then for any \(r \in R \) and any \(s \in S \),

\[
0 = (g\lambda^r sf)(s + w) = \sum_{(u, v) \in X_u(g, \lambda^r sf)} g(u)\omega_u(r\omega_s(f(v))) = \sum_{i=1}^{n} g(u_i)\omega_{u_i}(r\omega_s(f(v_i))). \tag{1}
\]

Note that \(u_i + v_i < u_i + v_i = w \) for each \(i = 2, \ldots, n \). Then by induction hypothesis, \(g(u_i)\omega_{u_i}(R\omega_i(f(v_i))) = 0 \) for any \(t \in S \) and each \(i = 2, \ldots, n \). Thus \(\omega^{-1}_{u_i}(g(u_i)) \in l_R(\sum_{t \in S} R\omega(t(f(v_i)))) \) since \(\omega_{u_i} \in \text{Aut}(R) \) for any \(i = 2, \ldots, n \). Hence there exists \(e_1 \in l_R(\sum_{t \in S} R\omega(t(f(v_i)))) \) such that \(g(u_i) = g(u_i)\omega_{u_i}(e_1) \) for \(i = 2, \ldots, n \) by the hypothesis. Let \(r^t \in R \), take \(r = e_1 r^t \) in the equation (1), we have

\[
0 = \sum_{i=1}^{n} g(u_i)\omega_{u_i}(e_1 r^t \omega_s(f(v_i))) = \sum_{i=2}^{n} g(u_i)\omega_{u_i}(r^t \omega_s(f(v_i))). \tag{2}
\]

Since \(u_i + v_2 < u_i + v_i = w \) for any \(i = 3, \ldots, n \), by hypothesis, there exists \(e_2 \in l_R(\sum_{t \in S} R\omega(t(f(v_i)))) \) such that \(g(u_i) = g(u_i)\omega_{u_i}(e_2) \) for \(i = 2, \ldots, n \). Hence take \(r' = e_2 r'' \) in (2) where \(r'' \in R \), we deduced that

\[
\sum_{i=3}^{n} g(u_i)\omega_{u_i}(r'' \omega_s(f(v_i))) = 0.
\]

Continuing in this manner yields that \(g(u_n)\omega_{u_n}(R\omega_s(f(v_n))) = 0 \) for any \(s \in S \). Consequently, for any \(s \in S \),

\[
g(u_{n-1})\omega_{u_{n-1}}(R\omega_s(f(v_{n-1}))) = 0, \ldots, g(u_1)\omega_{u_1}(R\omega_s(f(v_1))) = 0.
\]

Therefore, by transfinite induction, we have shown that \(g(u)\omega_u(R\omega_s(f(v))) = 0 \) for any \(u, v, s \in S \). \(\square \)

Lemma 2. Let \((S, \leq) \) be a strictly ordered monoid and \(\omega : S \to \text{End}(R) \) a monoid homomorphism. If \([[R^{S, \leq}, \omega]] \) is a left APP-ring and \(S \) is cancellative, then \(l_R(\sum_{s \in S} R\omega_s(a)) \) is right \(s \)-unital for any \(a \in R \).

Proof. Let \(a \in R \) and \(b \in l_R(\sum_{s \in S} R\omega_s(a)) \). Then \(c_b[[R^{S, \leq}, \omega]]c_a = 0 \). Since \([[R^{S, \leq}, \omega]] \) is left APP, there exists an \(h \in l_{[[R^{S, \leq}, \omega]]}([[R^{S, \leq}, \omega]]c_a) \) such that \(cb = cbh \).

Then \(b = c_b(0) = (cbh)(0) = bh(0) \) and, for any \(r \in R \), any \(s \in S \),

\[
0 = (h\lambda^s c_a)(s) = h(0)r\omega_s(a),
\]

which imply that \(l_R(\sum_{s \in S} R\omega_s(a)) \) is right \(s \)-unital for any \(a \in R \). \(\square \)
Let \((S, \leq)\) be a strictly ordered monoid and \(A\) a nonempty subset of \(R\). We will say \(A\) is \(S\)-indexed, if there exists an artinian and narrow subset \(I\) of \(S\) such that \(A\) is indexed by \(I\).

Theorem 3. Let \((S, \leq)\) be a strictly totally ordered monoid and \(\omega : S \to \text{Aut}(R)\) a monoid homomorphism. If \(R\) satisfies descending chain condition on right annihilators, then the following conditions are equivalent:

1. \([R^{S, \leq}, \omega]\) is a left APP-ring.
2. For any \(S\)-indexed subset \(A\) of \(R\), \(l_R\left(\sum_{a \in A} \sum_{s \in S} R\omega_s(a)\right)\) is right \(s\)-unital.

Proof. (2) \(\implies\) (1). Assume that \(f, g \in [R^{S, \leq}, \omega]\) are such that \(g[[R^{S, \leq}, \omega]]f = 0\). Then, by the hypothesis and Lemma 1, \(g(u)\omega_u(R\omega_s(f(v))) = 0\) for any \(u, v, s \in S\). Since \(\omega_u \in \text{Aut}(R)\), \(\omega_u^{-1}(g(u))R\omega_s(f(v)) = 0\) for any \(u, v, s \in S\). Thus for any \(u \in \text{supp}(g)\),

\[\omega_u^{-1}(g(u)) \in l_R\left(\sum_{v \in \text{supp}(f)} \sum_{s \in S} R\omega_s(f(v))\right).\]

Let

\[\mathcal{D} = \{r_R(Y)|Y \subseteq \{\omega_u^{-1}(g(u))|u \in \text{supp}(g)\}, |Y| < \infty\}.\]

Then \(\mathcal{D}\) is a nonempty set of right annihilators. Since \(R\) satisfies descending chain condition on right annihilators, \(\mathcal{D}\) has a minimal element, say \(r_R(Y_0)\). Assume that \(Y_0 = \{\omega_{u_1}^{-1}(g(u_1)), \omega_{u_2}^{-1}(g(u_2)), \ldots, \omega_{u_n}^{-1}(g(u_n))\}\). Then

\[\omega_{u_i}^{-1}(g(u_i)) \in l_R\left(\sum_{v \in \text{supp}(f)} \sum_{s \in S} R\omega_s(f(v))\right), \quad i = 1, 2, \ldots, n.\]

Thus, by (2), there exists \(e \in l_R\left(\sum_{v \in \text{supp}(f)} \sum_{s \in S} R\omega_s(f(v))\right)\) such that

\[\omega_{u_i}^{-1}(g(u_i)) = \omega_{u_i}^{-1}(g(u_i))e, \quad i = 1, 2, \ldots, n.\]

If \(\text{supp}(g) = \{u_1, u_2, \ldots, u_n\}\), then for all \(u \in \text{supp}(g), \omega_u^{-1}(g(u)) = \omega_u^{-1}(g(u))e\). Now assume that \(u \in \text{supp}(g) \setminus \{u_1, u_2, \ldots, u_n\}\). Then, by the minimality of \(r_R(Y_0)\),

\[r_R(\omega_{u_1}^{-1}(g(u_1)), \ldots, \omega_{u_n}^{-1}(g(u_n)), \omega_u^{-1}(g(u))) = r_R(\omega_{u_1}^{-1}(g(u_1)), \ldots, \omega_{u_n}^{-1}(g(u_n))).\]

Thus \(\omega_u^{-1}(g(u)) = \omega_u^{-1}(g(u))e\). This implies that \(\omega_u^{-1}(g(u)) = \omega_u^{-1}(g(u))e\) for any \(u \in \text{supp}(g)\). Thus for any \(h \in [R^{S, \leq}, \omega]\) and any \(t \in S\),

\[(c_e hf)(t) = \sum_{(s, v) \in X_t(h, f)} eh(s)\omega_s(f(v)) = 0,\]

and

\[(gc_e)(t) = g(t)\omega_t(e) = \omega_t(\omega_t^{-1}(g(t)))e = \omega_t(\omega_t^{-1}(g(t))) = g(t),\]

which imply that \(c_e \in l_{[R^{S, \leq}, \omega]}([R^{S, \leq}, \omega]]f)\) and \(g = gc_e\). Hence \([R^{S, \leq}, \omega]\) is a left APP-ring.
(1) \implies (2). Let $A = \{a_t | t \in I\}$ be an S-indexed subset of R. Define $f \in [\mathbb{R}^{S \leq}, \omega]$ via

$$f(t) = \begin{cases} a_t, & t \in I, \\ 0, & t \notin I. \end{cases}$$

Let $b \in l_R \left(\sum_{t \in I} \sum_{s \in S} R \omega_s(a_t) \right)$. Then $c_b \left[[\mathbb{R}^{S \leq}, \omega] \right] f = 0$. Since $[\mathbb{R}^{S \leq}, \omega]$ is left APP, there exists an $h \in l_{[\mathbb{R}^{S \leq}, \omega]} \left(\left[[\mathbb{R}^{S \leq}, \omega] \right] f \right)$ such that $c_b = c_b h$. Thus $b = c_b(0) = (c_b h)(0) = bh(0)$. By (1), Lemma 2 and Lemma 1, $h(u) \omega_b \left(R \omega_b(f(t)) \right) = 0$ for any $u, s, t \in S$. In particular, $h(0) R \omega_b(f(t)) = 0$ for any $s, t \in S$. This implies that $h(0) \in l_R \left(\sum_{t \in I} \sum_{s \in S} R \omega_s(f(t)) \right)$. Thus (2) holds.

Corollary 4. (20, Theorem 2) Let R be a ring satisfying descending chain condition on right annihilators and $\alpha \in \text{Aut}(R)$. Then the following conditions are equivalent:

1. $R[[x; \alpha]]$ is a left APP-ring.
2. For any countable subset A of R, $l_R \left(\sum_{a \in A} \sum_{i=0}^{\infty} R \alpha^i(a) \right)$ is right s-unital.

Corollary 5. Let R be a ring satisfying descending chain condition on right annihilators and $\alpha \in \text{Aut}(R)$. Then the following conditions are equivalent:

1. $R[[x, x^{-1}; \alpha]]$ is a left APP-ring.
2. For any countable subset A of R, $l_R \left(\sum_{a \in A} \sum_{i=-\infty}^{\infty} R \alpha^i(a) \right)$ is right s-unital.

Let α and β be ring automorphisms of R such that $\alpha \beta = \beta \alpha$. Let $S = (\mathbb{N} \cup \{0\}) \times (\mathbb{N} \cup \{0\})$ (resp. $\mathbb{Z} \times \mathbb{Z}$) be endowed the lexicographic order, or the reverse lexicographic order, or the product order of the usual order of $\mathbb{N} \cup \{0\}$ (resp. \mathbb{Z}), and define $\omega : S \to \text{Aut}(R)$ via $\omega(m, n) = \alpha^m \beta^n$ for any $m, n \in \mathbb{N} \cup \{0\}$ (resp. $m, n \in \mathbb{Z}$). Then $[\mathbb{R}^{S \leq}, \omega] = R[[x, y; \alpha, \beta]]$ (resp. $[R[[x, x^{-1}, y^{-1}; \alpha, \beta]]] \omega$), in which

$\omega \alpha^m \beta^n(b) x^m y^n = \alpha^m \beta^n(b) x^{m+p} y^{n+q}$ for any $m, n, p, q \in \mathbb{N} \cup \{0\}$ (resp. $m, n, p, q \in \mathbb{Z}$).

Corollary 6. Let R be a ring satisfying descending chain condition on right annihilators, α and β be ring automorphisms of R such that $\alpha \beta = \beta \alpha$. Then the following conditions are equivalent:

1. $R[[x, y; \alpha, \beta]]$ (resp. $R[[x, y, x^{-1}, y^{-1}; \alpha, \beta]]$) is a left APP-ring.
2. For any countable subset A of R, $l_R \left(\sum_{a \in A} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} R \alpha^i \beta^j(a) \right)$ (resp. $l_R \left(\sum_{a \in A} \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} R \alpha^i \beta^j(a) \right)$) is right s-unital.

If S the multiplicative monoid (\mathbb{N}, \cdot), endowed with the usual order \leq, then $[\mathbb{R}^{(\mathbb{N}, \cdot), \leq}]$ is the ring of arithmetical functions with values in R, endowed with the Dirichlet convolution:

$$(fg)(n) = \sum_{d|n} f(d) g(n/d), \quad \text{for each } n \geq 1.$$

Corollary 7. Let R be a ring satisfying descending chain condition on right annihilators. Then the following conditions are equivalent:

1. $[\mathbb{R}^{(\mathbb{N}, \cdot), \leq}]$ is a left APP-ring.
2. For any countable subset A of R, $l_R \left(\sum_{a \in A} Ra \right)$ is right s-unital.
Let \((S, \leq)\) be a strictly totally ordered monoid which is also artinian. Then the set \(X_s = \{(u, v) | u + v = s, u, v \in S\}\) is finite for any \(s \in S\). Let \(V\) be a free Abelian additive group with the base consisting of elements of \(S\). It was noted in \([13]\) that \(V\) is a coalgebra over \(\mathbb{Z}\) with the comultiplication map and the counit map as follows:

\[
\Delta(s) = \sum_{(u, v) \in X_s} u \otimes v, \quad \epsilon(s) = \begin{cases}
1, & s = 0; \\
0, & s \neq 0,
\end{cases}
\]

and \([R^{S, \leq}] \cong \text{Hom}(V, R)\), the dual algebra with multiplication

\[
f \ast g = (f \otimes g) \Delta \quad \forall f, g \in \text{Hom}(V, R).
\]

Corollary 8. Let \((S, \leq)\) be a strictly totally ordered monoid which is also artinian, \(R\) a ring satisfying descending chain condition on right annihilators and \(\text{Hom}(V, R)\) defined as above. Then the following conditions are equivalent:

1. \(\text{Hom}(V, R)\) is a left APP-ring.
2. For any \(S\)-indexed subset \(A\) of \(R\), \(l_R(\sum_{a \in A} Ra)\) is right \(s\)-unital.

ACKNOWLEDGMENT

The author wishes to express his sincere thanks to the referee for his/her valuable suggestions.

References

[1] H. Al-Ezeh, Two properties of the power series ring, *Int. J. Math. Sci.* **11** (1988), 9-14.

[2] E.P. Armendariz, A note on extensions of Baer and p.p.-rings, *J. Austral. Math. Soc.* **18** (1974), 470-473.

[3] G.F. Birkenmeier, J.Y. Kim and J.K. Park, On quasi-Baer rings, *Contemp. Math.* **259** (2000), 67-92.

[4] G.F. Birkenmeier, J.Y. Kim and J.K. Park, On polynomial extensions of principally quasi-Baer rings, *Kyungpook Math. J.* **40** (2000), 247-254.

[5] G.F. Birkenmeier, J.Y. Kim and J.K. Park, Polynomial extensions of Baer and quasi-Baer rings, *J. Pure Appl. Algebra* **159** (2001), 25-42.

[6] G.F. Birkenmeier, J.Y. Kim and J.K. Park, Principally quasi-Baer rings, *Comm. Algebra* **29** (2001), 639-660.

[7] G.F. Birkenmeier and J.K. Park, Triangular matrix representations of ring extensions, *J. Algebra* **265** (2003), 457-477.

[8] J.A. Fraser and W.K. Nicholson, Reduced PP-rings, *Math. Japon.* **34** (1989), 715-725.
[9] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, *J. Pure Appl. Algebra* **168** (2002), 45-52.

[10] C.Y. Hong, N.K. Kim and T.K. Kwak, Ore extensions of Baer and P.P.-rings, *J. Pure Appl. Algebra* **151** (2000), 215-226.

[11] H. Kim, On t-closedness of generalized power series rings, *J. Pure Appl. Algebra* **166** (2002), 277-284.

[12] H. Kim and T. I. Kwon, PF-rings of generalized power series, *Kyungpook Math. J.* **47** (2007), 127-132.

[13] Z.K. Liu, Endomorphism rings of modules of generalized inverse polynomials, *Comm. Algebra* **28** (2000), 803-814.

[14] Z.K. Liu and J. Ahsan, PP-rings of generalized power series, *Acta Math. Sinica, English Series* **16** (2000), 573-578.

[15] Z.K. Liu, A note on principally quasi-Baer rings, *Comm. Algebra* **30** (2002), 3885-3890.

[16] Z.K. Liu, Baer rings of generalized power series, *Glasgow Math. J.* **44** (2002), 463-469.

[17] Z.K. Liu, Quasi-Baer rings of generalized power series, *Chinese Annals Math.* **23** (2002), 579-584.

[18] Z.K. Liu and R.Y. Zhao, A generalization of PP-rings and p.q.-Baer rings, *Glasgow Math. J.* **48**(2006), 217-229.

[19] Z.K. Liu, Triangular matrix representations of rings of generalized power series, *Acta. Math. Sinica, English Series* **22(4)** (2006) 989-998.

[20] Z.K. Liu and X.Y. Yang, Left APP-property of formal power seires, *Arch. Math. (Brno)* **44** (2008) 185-189.

[21] Z.K. Liu and X.Y. Yang, On annihilators ideals of skew monoid rings, *Glasgow Math. J.* **52** (2010), 161-168.

[22] G. Marks, R. Mazurk and M. Ziembowski, A unified approach to various generalizations of Amendariz rings, *Bull. Austral. Math. Soc.* **81** (2010), 361-397.

[23] R. Mazurk and M. Ziembowski, On Bezout and distributive generalized power series rings, *J. Algebra* **306(2)** (2006), 397-411.

[24] R. Mazurk and M. Ziembowski, Uniserial rings of skew generalized power series, *J. Algebra* **318** (2007), 737-764.

[25] R. Mazurk and M. Ziembowski, On von Neumann regular rings of skew generalized power series, *Comm. Algebra* **36(5)** (2008), 1855-1868.
[26] P. Ribenboim, Noetherian rings of generalized power series, *J. Pure Appl. Algebra* **79** (1992), 293-312.

[27] P. Ribenboim, Special properties of generalized power series, *J. Algebra* **173** (1995), 566-586.

[28] P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, *J. Algebra* **198** (1997), 327-338.

[29] B. Stenström, *Rings of Quotients*, (Springer-Verlag, New York, 1975).

[30] H. Tominaga, On s-unital rings, *Math. J. Okayama Univ.* **18** (1976), 117-134.

[31] R.Y. Zhao and Z.K. Liu, Special properties of modules of generalized power series, *Taiwanese J. Math.* **12** (2008) 447-461.

[32] R.Y. Zhao and Y.J. Jiao, Principal quasi-Baerness of modules of generalized power series, *Taiwanese J. Math.* accepted.