Observation of $B^+ \rightarrow \psi(3770)K^+$

R. Chistov, K. Abe, K. Abe, T. Abe, H. Aihara, M. Akatsu, Y. Asano, T. Aushev, A. M. Bakich, Y. Ban, S. Banerjee, A. Bay, I. Bedny, I. Bizjak, A. Bondar, A. Bozek, M. Bračko, J. Brodzicka, T. E. Browder, Y. Chao, K.-F. Chen, B. G. Cheon, Y. Choi, Y. K. Choi, M. Danilov, M. Dash, L. Y. Dong, A. Drutskoy, S. Eidelman, V. Eiges, D. Epifanov, N. Gabyshev, A. Garmash, T. Gershon, B. Golob, R. Guo, J. Haba, T. Hara, H. Hayashii, M. Hazumi, L. Hinz, T. Hokume, Y. Hoshi, W.-S. Hou, H.-C. Huang, T. Iijima, K. Inami, A. Ishikawa, H. Iwasaki, M. Iwasaki, R. Kagan, J. H. Kang, J. S. Kang, P. Kapusta, N. Katayama, H. Kawai, T. Kawasaki, H. Kichimi, S. K. Kim, K. Kinoshita, P. Koppenburg, S. Korpar, P. Křížan, S. Kumar, A. Kuzmin, Y.-J. Kwon, J. S. Lange, T. Lesiak, J. Li, A. Limosani, S.-W. Lin, D. Liventsev, J. MacNaughton, G. Majumder, F. Mandl, D. Marlow, H. Matsumoto, T. Matsumoto, A. Matyja, W. Mitarian, K. Miyabayashi, H. Miyake, H. Miyata, D. Mohapatra, G. R. Moloney, T. Nagamine, Y. Nagasaka, T. Nakadaira, E. Nakano, M. Nakao, S. Nishida, O. Nitoh, S. Noguchi, S. Ogawa, T. Ohshima, S. Okuno, S. L. Olsen, H. Ozaki, P. Pakhlov, H. Palka, H. Park, N. Parslow, L. E. Piilonen, H. Sagawa, Y. Sakai, T. R. Sarangi, O. Schneider, A. J. Schwartz, S. Semenov, M. E. Sevior, B. Shwartz, V. Sidorov, R. Stamen, S. Stanič, M. Staric, A. Sugiyama, K. Sumisawa, T. Sumiyoshi, S. Suzuki, O. Tajima, F. Takasaki, K. Tanai, N. Tamura, M. Tanaka, Y. Teramoto, T. Tomura, K. Trabelsi, T. Tsunoyama, T. Tsukamoto, S. Uehara, T. Uglov, K. Ueno, S. Uno, G. Varner, C. C. Wang, C. H. Wang, M.-Z. Wang, B. D. Yabsley, Y. Yamada, A. Yamaguchi, Y. Yamashita, M. Yamauchi, J. Ying, C. C. Zhang, Z. P. Zhang, V. Zhihle, D. Žontar, and D. Zürcher

(The Belle Collaboration)

1Budker Institute of Nuclear Physics, Novosibirsk
2Chiba University, Chiba
3University of Cincinnati, Cincinnati, Ohio 45221
4University of Frankfurt, Frankfurt
5University of Hawaii, Honolulu, Hawaii 96822
6High Energy Accelerator Research Organization (KEK), Tsukuba
7Hiroshima Institute of Technology, Hiroshima
8Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
9Institute of High Energy Physics, Vienna
10Institute for Theoretical and Experimental Physics, Moscow
11J. Stefan Institute, Ljubljana
12Kanagawa University, Yokohama
13Korea University, Seoul
14Kyungpook National University, Taegu
15Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne
16University of Ljubljana, Ljubljana
17University of Maribor, Maribor
18University of Melbourne, Victoria
19Nagoya University, Nagoya
20Nara Women’s University, Nara
21National Kaohsiung Normal University, Kaohsiung
22National United University, Miaoli
23Department of Physics, National Taiwan University, Taipei
24H. Niewodniczanski Institute of Nuclear Physics, Krakow
25Niho Dental College, Niigata
26Niigata University, Niigata
27Osaka City University, Osaka
28Osaka University, Osaka
29Panjab University, Chandigarh
30Peking University, Beijing
31Princeton University, Princeton, New Jersey 08545
32RIKEN BNL Research Center, Upton, New York 11973
33Saga University, Saga
34University of Science and Technology of China, Hefei

arXiv:hep-ex/0307061v2 22 Jan 2004

22 Jan 2004
$B$ decay modes with charmonium in the final state are extensively used by the Belle and BaBar Collaborations for measurements of the CP violation parameter $\sin2\phi_1 \[1,2\]. Belle has recently reported the first observations of the decays $B^+ \to \chi_{c0}K^+ \[3\] and $B \to \chi_{c2}X \[4\]. The decay rates for these modes were measured to be comparable to those for $J/\psi$ and $\psi(2S)$.

In contrast to the charmonia seen so far in $B$ decays, the $\psi(3770)$ state is just above open charm threshold and decays dominantly to pairs of $D$ mesons \[5\]. The $\psi(3770)$ is generally considered to be predominantly the $1^3D_1$ charmonium state. However, it has a non-zero leptonic width, which indicates that there is some mixing with the nearby $\psi(2S)$ S-wave state \[6\]. A large S-D-wave mixing angle could result in comparable decay rates for $B$ decays to the $\psi(3770)$ and the $\psi(2S)$. For a pure D-wave state, an estimate of $B(B \to \psi(3770)X)$ based on the color-octet model gives a value of 0.28\%, which is as large as the measured values for $J/\psi$ and $\psi(2S)$. Experimental studies of $\psi(3770)$ production in $B$ decays test theoretical models and provide additional information on the structure of the $\psi(3770)$ wave-function.

In this paper, we report the first observation of the decay $B^+ \to \psi(3770)K^+$ where $\psi(3770)$ is reconstructed in the $D^0\bar{D}^0$ and $D^+D^-$ decay channels. The obtained branching fraction is $\mathcal{B}(B^+ \to \psi(3770)K^+) = (0.48\pm0.11\pm0.07) \times 10^{-3}$. We have measured the branching fraction for the decay $B^+ \to D^0\bar{D}^0K^+$ to be $(1.17\pm0.21\pm0.15) \times 10^{-3}$. We have set a 90\% confidence level upper limit of $0.90 \times 10^{-3}$ for the decay $B^+ \to D^+D^-K^+$. We also present the results of a search for possible decays to $DD$ and $D^0\bar{D}^0\pi^0$ of the recently observed $X(3872)$ particle. The analysis is based on 88 fb$^{-1}$ of data collected at the $\Upsilon(4S)$ resonance by the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider.

PACS numbers: 13.25.Hw, 13.20.Gd

$B$ decay modes with charmonium in the final state are extensively used by the Belle and BaBar Collaborations for measurements of the CP violation parameter $\sin2\phi_1 \[1,2\]. Belle has recently reported the first observations of the decays $B^+ \to \chi_{c0}K^+ \[3\] and $B \to \chi_{c2}X \[4\]. The decay rates for these modes were measured to be comparable to those for $J/\psi$ and $\psi(2S)$.

In contrast to the charmonia seen so far in $B$ decays, the $\psi(3770)$ state is just above open charm threshold and decays dominantly to pairs of $D$ mesons \[5\]. The $\psi(3770)$ is generally considered to be predominantly the $1^3D_1$ charmonium state. However, it has a non-zero leptonic width, which indicates that there is some mixing with the nearby $\psi(2S)$ S-wave state \[6\]. A large S-D-wave mixing angle could result in comparable decay rates for $B$ decays to the $\psi(3770)$ and the $\psi(2S)$. For a pure D-wave state, an estimate of $B(B \to \psi(3770)X)$ based on the color-octet model gives a value of 0.28\%, which is as large as the measured values for $J/\psi$ and $\psi(2S)$. Experimental studies of $\psi(3770)$ production in $B$ decays test theoretical models and provide additional information on the structure of the $\psi(3770)$ wave-function.

In this paper, we report the first observation of the decay $B^+ \to \psi(3770)K^+$ \[7\]. We also report measurements of the $B^+ \to D^0\bar{D}^0K^+$ and $B^+ \to D^+D^-K^+$ decay modes \[8\] and searches for the decays $B^+ \to X(3872)K^+$, $X(3872) \to D\bar{D}$ ($D^0\bar{D}^0\pi^0$). The analysis is performed using data collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider \[9\]. The data sample consists of 88 fb$^{-1}$ taken at the $\Upsilon(4S)$ resonance, which corresponds to $96 \times 10^6 B\bar{B}$ pairs.

The Belle detector is a general-purpose spectrometer with a 1.5-T superconducting solenoid. Charged particle tracking is performed by a silicon vertex detector (SVD) composed of three concentric layers of double sided silicon strip detectors, and a 50-layer drift chamber (CDC). Particle identification for charged hadrons is based on the combination of energy-loss measurements ($dE/dx$) in the CDC, time-of-flight measurements (TOF) and aerogel Cherenkov counter (ACC) information. A CsI(Tl) electromagnetic calorimeter (ECL) located inside the solenoid coil is used for the detection and identification of photons and electrons. The detection system for $K^0_L$ mesons and muons consists of alternating layers of resistive plate counters and 4.7-cm-thick steel plates. The Belle detector is described in detail elsewhere \[10\].

We select charged pions and kaons that originate from the region $dr < 1 \text{ cm}$, $|dz| < 3 \text{ cm}$, where $dr$ and $dz$ are the distances of closest approach to the interaction point in the plane perpendicular to the beam axis and along the beam direction, respectively. Charged kaons are required to satisfy $\mathcal{L}(K)/\mathcal{L}(K+\mathcal{L}(\pi)) > 0.6$, where $\mathcal{L}(K/\pi)$ is the particle identification likelihood for the $K/\pi$ hypotheses calculated by combining information from the TOF, ACC and $dE/dx$ measurements in the CDC. Candidate $\pi^0$ mesons are identified as pairs of non-charged-track-associated ECL clusters that have an invariant mass within $\pm15 \text{ MeV}/c^2$ of the $\pi^0$ mass. To reduce combinatorial background, the energy of each photon is required to be greater than 50 MeV and the momentum of the $\pi^0$ in the center of mass system (cms) is required to be greater than 0.15 GeV/c.

The $D^0$ meson is reconstructed in the $K^-\pi^+$, $K^-\pi^+\pi^+\pi^-$ and $K^-\pi^+\pi^0$ modes, and the $D^+$ in the the
TABLE I: Summary of the fit results, efficiencies, statistical significance and branching fractions for $B^+ \to D^0 \bar{D}^0 K^+$ and $B^+ \to D^+ D^- K^+$ decays.

| Mode | $\Delta E$ yield | Efficiency($10^{-4}$) | $B(10^{-3})$ | Significance |
|------|------------------|------------------------|--------------|--------------|
| $B^+ \to D^0 \bar{D}^0 K^+$ | 97.5 ± 17.6 | 8.7 | 1.17 ± 0.21 ± 0.15 | 5.5 σ |
| $B^+ \to D^+ D^- K^+$ | 20.7 ± 9.9 | 5.0 | < 0.90 (90% CL)(0.43 ± 0.21 ± 0.06) | 2.7 σ |

$K^+\pi^+\pi^+$ and $K^+K^-\pi^+$ modes. We use a $\pm 10$ MeV/c$^2$ $D$ signal window for the charged modes ($\sim 2.5\sigma$) and $\pm 15$ MeV/c$^2$ for $K^-\pi^+\pi^0$ mode ($\sim 2\sigma$). Mass- and vertex-constrained fits are applied to all $D$ candidates to improve their momentum resolution. The $B^+$ candidates (i.e. $\bar{D}D$ pairs combined with the positive kaons in the event) are identified by their cms energy difference, $\Delta E = \Sigma_i E_i - E_{\text{beam}}$, and their beam-energy constrained mass, $M_{bc} = \sqrt{E_{\text{beam}}^2 - \Sigma_i p_i^2}$, where $E_{\text{beam}} = \sqrt{s}/2$ is the beam energy in the cms and $p_i$ and $E_i$ are the three-momenta and energies of the $B^+$ candidate’s decay products. For the $B^+ \to D^0 \bar{D}^0 K^+$ final state, we require that one $D^0$ is reconstructed in the $D^0 \to K^-\pi^+$ mode, which has the smallest background. We accept $B$ candidates with $5.272$ GeV/c$^2 < M_{bc} < 5.288$ GeV/c$^2$ and $|\Delta E| < 0.2$ GeV. To suppress the continuum background we require the ratio of the second to the zeroth Fox-Wolfram moments $R_2 < 0.5$ and $|\cos\theta_{\text{thr}}| < 0.8$, where $\theta_{\text{thr}}$ is the angle between the thrust axis of the $B$ candidate and the thrust axis of the rest of the event. The last cut is not applied for the cleanest subset of $B$ candidates where both $D^0$s are reconstructed in the $K\pi$ mode. In the case of multiple $B$ candidates, we choose the candidate with the smallest value of $\chi^2 = (M_{bc} - M_{B^+})/\sigma_{M_{bc}})^2$.

The $\Delta E$ distributions for the $B^+ \to D^0 \bar{D}^0 K^+$ and $B^+ \to D^+ D^- K^+$ candidates are shown in Fig. 1, where the superimposed curves are the results of the fits. The fit to the $\Delta E$ distribution is a sum of a Gaussian with a fixed width taken from Monte Carlo (MC) to describe the signal and a first order polynomial to parameterize the background. In the fit to the $\Delta E$ distribution, the region $\Delta E < -0.08$ GeV is excluded to avoid contributions from other $B \to D^{(*)}\bar{D}^{(*)} K$ decays. Table II summarizes the results of the fits, the reconstruction efficiencies, statistical significance of the signals and the calculated branching fractions. For the latter, we assume $N(B^0 B^0) = N(B^+ B^-)$. For the $D^+ D^- K^+$ final state, a substantial signal is not seen and we set a 90% confidence upper limit. The systematic error in the branching fraction measurement is dominated by the uncertainty in the tracking efficiency (1% per track), kaon identification efficiency (2% for each kaon), $\pi^0$ reconstruction efficiency (6%), $D^0$ branching fraction uncertainty (in total 8%), MC statistics (3%), the signal and background parameterization (5%).

We plot the $D^0\bar{D}^0$ and $D^+D^-$ invariant mass distributions for events in the $B$ signal region defined as $5.272$ GeV/c$^2 < M_{bc} < 5.288$ GeV/c$^2$ and $|\Delta E| < 0.02$ GeV in Fig. 2(a) and Fig. 2(b), respectively. Here, for $B^+ \to D^0 \bar{D}^0 K^+$ candidates, when one of the $D^0$s is reconstructed in the $K^-\pi^+\pi^0$ mode, we use a looser $\Delta E$ cut ($|\Delta E| < 0.025$ GeV) to take into account the poorer energy resolution due to shower leakage in the ECL. In the case of multiple $B$ candidates, we choose the candidate with the smallest value of $\chi^2 = (M_{bc} - M_{B^+})/\sigma_{M_{bc}})^2$. The $M(D^0\bar{D}^0)$ distribution has a peak at low masses, which we attribute to the $\psi(3770)$ signal.

The superimposed hatched histogram in Fig. 2(a)
shows the $M(D^0 \bar{D}^0)$ mass distribution for events in the $\Delta E$ sidebands \cite{14}. The curve (shown as solid line) is the result of a fit where the low-mass peak is described by a relativistic p-wave Breit-Wigner function \cite{17} with a floating mass and its natural width fixed to its nominal value of $\Gamma(\psi(3770)) = 23.6$ MeV/$c^2$. The combinatorial background along with the contribution from non-resonant $B^+ \to D^0 \bar{D}^0 K^+$ decays is described by the product of left and right two-body threshold functions and is represented as a dashed line in Fig. 2 a).

The fit yields a $\psi(3770)$ signal of $N = 33.6 \pm 8.3$ events with a statistical significance of $5.9\sigma$. The mass of the $\psi(3770)$ is found to be $M(\psi(3770)) = 3778.4 \pm 3.0 \pm 1.3$ MeV/$c^2$, which corresponds to a mass difference $\Delta m = M(\psi(3770)) - M(\psi(2S)) = 92.4 \pm 3.0 \pm 1.3$ MeV/$c^2$, where we used $M(\psi(2S)) = 3685.96 \pm 0.09$ MeV/$c^2$. Table I compares our measurement of $\Delta m$ with the available results from the MARK I, DELCO and MARK II Collaborations \cite{18}; our measurements agree with the MARK I and DELCO results and are $\sim 3\sigma$ above the MARK II result. The systematic error on the mass measurement is evaluated by varying the background function, the width of the $\psi(3770)$ within its errors \cite{19}, changing the fit range and changing the bin width. It also includes the uncertainty in the $D^0$ mass.

A fit to the $M(D^+ D^-)$ distribution of Fig. 2 b) yields $7.7 \pm 4.2$ events. Here the $\psi(3770)$ mass was fixed at 3778.4 MeV/$c^2$, the value found from the $M(D^0 \bar{D}^0)$ fit.

We studied a MC sample of generic $BB$ events that has the same size as the data sample. We find that the $D D$ invariant mass exhibits a smooth behavior without peaks. We also analyzed off-resonance data taken 60 MeV below the $\Upsilon(4S)$ with a 10 fb$^{-1}$ data sample. The same selection applied to $D^0 \bar{D}^0 K^+$ combinations results in one event over the whole $M(D^0 \bar{D}^0)$ region, which corresponds to a negligible contribution from the continuum.

The $\psi(3770) \to D^0 \bar{D}^0$ helicity distribution, determined by fitting the $M(D^0 \bar{D}^0)$ distribution for the $\psi(3770)$ yield in each of eight $\cos \theta_{\psi(3770)}$ bins \cite{18}, is shown in Fig. 3. The points are data and the histogram gives the result of a fit using MC-based expectations for a $J^{PC} = 1^{--}$ $\psi(3770)$ with floated normalization. The confidence level of the fit is 10.5%.

The MC-determined efficiencies for $B^+ \to \psi(3770) K^+$ followed by $\psi(3770) \to D^0 \bar{D}^0$ and $\psi(3770) \to D^+ D^-$ are $10.3 \times 10^{-4}$ and $5.7 \times 10^{-4}$, respectively. This gives $\mathcal{B}(B^+ \to \psi(3770) K^+) \times \mathcal{B}(\psi(3770) \to D^0 \bar{D}^0) = (0.34 \pm 0.08 \pm 0.05) \times 10^{-3}$ and $\mathcal{B}(B^+ \to \psi(3770) K^+) \times \mathcal{B}(\psi(3770) \to D^+ D^-) = (0.14 \pm 0.08 \pm 0.02) \times 10^{-3}$, where the first error is statistical and the second is systematic. In addition to the sources already mentioned, the systematic error comes from varying the signal and background shapes in $M(D\bar{D})$ fitting (5%) and from varying the $\pi^0$ reconstruction efficiency (6%). From these two measurements we obtain the ratio $\mathcal{B}(\psi(3770) \to D^0 \bar{D}^0)/\mathcal{B}(\psi(3770) \to D^+ D^-) = 2.43 \pm 1.50 \pm 0.43$. Given the large errors, our measurement is consistent with the previous measurement of this ratio by the MARK III Collaboration of $1.36 \pm 0.23 \pm 0.14$ \cite{20}.

To extract $\mathcal{B}(B^+ \to \psi(3770) K^+)$ from the measurements of $\mathcal{B}(B^+ \to \psi(3770) K^+) \times \mathcal{B}(\psi(3770) \to D^0 \bar{D}^0)$
and \( B(B^+ \to \psi(3770)K^+) \times B(\psi(3770) \to D^+D^-) \), we assume that the \( D^0\bar{D}^0 \) and \( D^+D^- \) modes totally saturate the \( \psi(3770) \) decay width. Summing both measurements gives \( B(B^+ \to \psi(3770)K^+) = (0.48 \pm 0.11 \pm 0.07) \times 10^{-3} \).

Belle recently reported the observation of a narrow charmonium-like state \( X(3872) \) that decays to \( \pi^+\pi^-J/\psi \). This state, which is seen in the exclusive decay \( B \to KX(3872) \), is above \( DD \) threshold. Information about the \( X(3872) \to DD \) decay rate would be useful for determining its quantum numbers. We refitted the \( D^0\bar{D}^0 \) and \( D^+D^- \) invariant mass distributions including possible contributions from \( B^+ \to X(3872)K^+ \), \( X(3872) \to DD \) decays. The fits yield 2.1 \pm 1.8 and 0.4 \pm 0.8 events for the \( D^0\bar{D}^0 \) and \( D^+D^- \) channels, respectively. From this we determine 90\% CL upper limits \( B(B^+ \to X(3872)K^+) \times B(X(3872) \to D^0\bar{D}^0) < 6 \times 10^{-5} \) and \( B(B^+ \to X(3872)K^+) \times B(X(3872) \to D^+D^-) < 4 \times 10^{-5} \). We have also searched for a possible reflection from \( B^+ \to X(3872)K^+ \), \( X(3872) \to D^0\bar{D}^0\pi^0 \) decays. This decay mode of the \( X(3872) \) is interesting because it is predicted to be large if the \( X(3872) \) is a \( DD^* \) multiquark “molecular state” 22. A MC study shows that these decays produce a narrow, nearly gaussian reflection peak (\( \sigma = 9 \) MeV) centered at \( \Delta E = -145 \) MeV. Using the \( D^0\bar{D}^0K^+ \) signal described above, we require \( M(D^0\bar{D}^0) \) to be less than \( M(X(3872)) - M(\pi^0) = 3737 \) MeV/c\(^2 \) and fit the resulting \( \Delta E \) distribution to a gaussian with mean and width fixed at the values expected for the reflection peak and a linear background contribution. The fit yields 2.2 \pm 1.7 events. From this we determine a 90\% CL upper limit \( B(B^+ \to X(3872)K^+) \times B(X(3872) \to D^0\bar{D}^0\pi^0) < 6 \times 10^{-5} \).

In summary, we have measured the branching fraction for \( B^+ \to D^0\bar{D}^0K^+ \) decay to be \( B(B^+ \to D^0\bar{D}^0K^+) = (1.17 \pm 0.21 \pm 0.15) \times 10^{-3} \). A search for \( B^+ \to D^+D^-K^+ \) decay results in an upper limit of \( B(B^+ \to D^+D^-K^+) < 0.90 \times 10^{-3} \) (90\% CL). We observe a peak in the \( D^0\bar{D}^0 \) invariant mass spectrum from \( B^+ \to D^0\bar{D}^0K^+ \) decays with a mass near 3770 MeV/c\(^2 \) that we attribute to exclusive \( B^+ \to \psi(3770)K^+ \) decay. This signal, which has a statistical significance of 5.9 \( \sigma \), is the first observation of this decay mode. The mass of the \( \psi(3770) \) is measured to be 3778.4 \pm 3.0 \pm 0.8 \) MeV/c\(^2 \). The value of \( B(B^+ \to \psi(3770)K^+) \times B(\psi(3770) \to D^0\bar{D}^0) \) is measured to be (0.34 \pm 0.08 \pm 0.05) \times 10^{-3} \). For \( B^+ \to \psi(3770)K^+ \) followed by \( \psi(3770) \to D^+D^- \) we extract \( B(B^+ \to \psi(3770)K^+) \times B(\psi(3770) \to D^+D^-) = (0.14 \pm 0.08 \pm 0.02) \times 10^{-3} \). The ratio \( \frac{B(B^+ \to \psi(3770) \to D^+D^-)}{B(B^+ \to D^0\bar{D}^0)\pi^0} \) is 2.43 \pm 1.50 \pm 0.43. By assuming that the \( D^0\bar{D}^0 \) and \( D^+D^- \) modes totally saturate the \( \psi(3770) \) decay width we obtain \( B(B^+ \to \psi(3770)K^+) = (0.48 \pm 0.11 \pm 0.07) \times 10^{-3} \) which is comparable to \( B(B^+ \to \psi(2S)K^+) \) 3. This result suggests a large amount of S-D mixing in the \( \psi(3770) \).

For the decays \( B^+ \to X(3872)K^+ \) followed by \( X(3872) \to D^0\bar{D}^0 \) and \( D^+D^- \) we have set 90\% CL upper limits on \( B(B^+ \to X(3872)K^+) \times B(X(3872) \to DD) \) of \( 6 \times 10^{-5} \) and \( 4 \times 10^{-5} \) respectively. For the decay \( B^+ \to X(3872)K^+ \) followed by \( X(3872) \to D^0\bar{D}^0\pi^0 \) we have set a 90\% CL upper limit of \( 6 \times 10^{-5} \).

We wish to thank the KEKB accelerator group for the excellent operation of the KEKB accelerator. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Education, Science and Training; the National Science Foundation of China under contract No. 10175071; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea and the CHEP SRC program of the Korea Science and Engineering Foundation; the Polish State Committee for Scientific Research under contract No. 2P03B 01324; the Polish State Committee for Scientific Research under contract No. 2P03B 01324; the Ministry of Science and Technology of the Russian Federation; the Ministry of Education, Science and Sport of the Republic of Slovenia; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.
on leave from Nova Gorica Polytechnic, Nova Gorica

[1] Belle Collaboration, K.Abe et al., Phys. Rev. Lett. 87, 091802 (2001); Belle Collaboration, K.Abe et al., Phys. Rev. D 66, 032007 (2002); Belle Collaboration, K.Abe et al., Phys. Rev. D 66, 071102(R) (2002).

[2] BaBar Collaboration, B.Aubert et al., Phys. Rev. Lett. 87, 091801 (2001); BaBar Collaboration, B.Aubert et al., Phys. Rev. D 66, 032003 (2002); BaBar Collaboration, B.Aubert et al., Phys. Rev. Lett. 89, 201802 (2002).

[3] Belle Collaboration, K.Abe et al., Phys. Rev. Lett. 88, 031802 (2002).

[4] Belle Collaboration, K.Abe et al., Phys. Rev. Lett. 89, 011803 (2002).

[5] K.Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002).

[6] J.L. Rosner, Phys. Rev. D64, 094002 (2001).

[7] F. Yuan, C.-F. Qiao, K.-T. Chao, Phys. Rev. D56, 329 (1997);

[8] References in this paper to a specific charged state are to be interpreted as implying the charge-conjugate state also.

[9] BaBar Collaboration, B.Aubert et al., hep-ex/0305003

[10] S.Kurokawa and E.Kikutani, Nucl. Instr. and Meth. A499, 1 (2003).

[11] Belle Collaboration, A. Abashian et al., Nucl. Instr. and Meth. A479, 117 (2002).

[12] G.Fox and S.Wolfram, Phys. Rev. Lett. 41, 278 (1990).

[13] MC studies give $\sigma_{\Delta E} = 7.5$ MeV for $B^+ \rightarrow D^0 \bar{D}^0 K^+$ and $\sigma_{\Delta E} = 7.0$ MeV for $B^+ \rightarrow D^+ D^- K^+$.

[14] Throughout this paper the reconstruction efficiencies include intermediate branching fractions.

[15] The statistical significance is defined as $\sqrt{-2 \ln (L_0/L_{max})}$, where $L_0$ and $L_{max}$ are the likelihood with signal fixed at zero and at the fitted value, respectively.

[16] The definition of the $\Delta E$ sidebands is $-0.080$ GeV $< \Delta E < -0.040$ GeV or $0.040$ GeV $< \Delta E < 0.200$ GeV. If there is more than one $B$ candidate, we choose the one with the smallest value of $(|M_{bc} - M_{B^+}|/\sigma_{M_{bc}})^2$.

[17] The mass resolution in the $\psi(3770)$ region was determined from MC to be 1 MeV/c$^2$.

[18] MARK I Collaboration, P.Rapidis et al., Phys. Rev. Lett. 39, 526 (1977); DELCO Collaboration, W.Bacino et al., Phys. Rev. Lett. 40, 671 (1978); MARK II Collaboration, Schindler et al., Phys. Rev. D21, 2716 (1980).

[19] The helicity angle $\theta_{\psi(3770)}$ is defined as the angle between the $D^0$ and $B^+$ momenta both calculated in the $\psi(3770)$ rest frame.

[20] MARK III Collaboration, J.Adler et al., Phys. Rev. Lett. 60, 89 (1988).

[21] Belle Collaboration, S.-K. Choi, S.L. Olsen et al., Belle preprint 2003-22, hep-ex/0309032, to appear in Phys. Rev. Lett.

[22] M.B. Voloshin and L.B. Okun, JETP Lett. 23, 333 (1976).