Rosai-Dorfman disease in the spleen of a pediatric patient: A case report

Hwaseong Ryu, Jae-Yeon Hwang, Yong-Woo Kim, Tae-Un Kim, Joo-Yeon Jang, Su-Eun Park, Eu-Jeen Yang, Dong-Hoon Shin

ORCID number: Hwaseong Ryu 0000-0003-3143-3733; Jae-Yeon Hwang 0000-0003-2777-3444; Yong-Woo Kim 0000-0002-1703-7753; Tae-Un Kim 0000-0003-1017-6926; Joo-Yeon Jang 0000-0001-7936-9924; Su-Eun Park 0000-0001-5860-821X; Eu-Jeen Yang 0000-0002-3796-6242; Dong-Hoon Shin 0000-0002-4980-9295.

Author contributions: Ryu H and Hwang JY reviewed the literature and contributed to manuscript drafting; Kim YW, Kim TU, and Jang JY reviewed the images and contributed to manuscript drafting; Park SE made the diagnosis; Yang EJ, the patient’s doctor, performed the treatment; Shin DH performed the pathological examination; Hwang JY was responsible for revising the manuscript for important intellectual content; all authors issued the final approval for the version to be submitted.

Informed consent statement: Written informed consent was obtained from the patient’s parents for the publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflicts of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist

Abstract

BACKGROUND
Rosai-Dorfman disease (RDD) is a rare histiocytic proliferation of unknown etiology commonly found in children and adolescents. The common manifestation of RDD is massive and painless bilateral cervical lymphadenopathy with extranodal disease. While extranodal involvement in RDD is common, the spleen is an infrequent site of disease.

CASE SUMMARY
We report a 10-mo-old female infant with RDD presenting multiple splenic masses without cervical lymphadenopathy. She had fever, and blood tests showed leukocytosis, anemia, and elevated erythrocyte sedimentation rate and C-reactive protein. Ultrasound, computed tomography, and magnetic resonance images demonstrated multiple splenic masses. Despite antibiotic therapy, her symptoms were not relieved. She underwent diagnostic splenectomy and was discharged with recovery.

CONCLUSION
In pediatric patients with refractory infectious symptoms or hematological abnormalities, clinicians should suspect RDD, even in patients without significant lymphadenopathy.

Key Words: Rosai-Dorfman disease; Sinus histiocytosis with massive lymphadenopathy; Ultraslonography; Computed tomography; Magnetic resonance imaging; Case report
Rosai–Dorfman disease (RDD), also called sinus histiocytosis with massive lymphadenopathy, is a rare histiocytic proliferation of unknown etiology, usually occurring in children and adolescents. It is characterized by massive and painless bilateral cervical lymphadenopathy accompanied by fever, leukocytosis, elevated erythrocyte sedimentation rate, and polyclonal hypergammaglobulinemia[1]. More than 40% of patients have an extranodal involvement, and commonly affected sites are the upper respiratory system, skin, eyes, bones, genitourinary system, oral cavity, central nervous system, and soft tissue[2,3]. The spleen is an infrequent site of disease, and if involved, combined nodal and extranodal disease is more frequent. Here we report a case of a 10-mo-old female infant with RDD with extranodal involvement of the spleen and provide a review of the available literature on extranodal RDD involvement in pediatric patients.

CASE PRESENTATION

Chief complaints

A 10-mo-old female infant visited our hospital due to fever.

History of present illness

The patient had persistent fever during the previous 10 d. Her body temperature was elevated to 39 °C. The patient did not have any respiratory or gastrointestinal symptoms, except for mild rhinorrhea.

History of past illness

The patient had a free previous medical history.

Personal and family history

No notable family history was found.

Physical examination

Physical examination showed no abnormal findings.

Laboratory examinations

At presentation, blood tests showed leukocytosis (leukocyte count, $25.29 \times 10^6 /L$), anemia (hemoglobin, $9.3 \ g /dL$), a high erythrocyte sedimentation rate (ESR) (72 mm/h), and an elevated C-reactive protein level (CRP) (11.04 mg/dL). Peripheral blood smear showed normocytic normochromic anemia with spherocytes and tear drop cells and leukocytosis with monocytosis, basophilia, and neutrophilia.
Imaging examinations

On plain radiography, an approximately 4-cm mass was observed in the left upper quadrant of the abdomen with displacement of the bowel loops. Ultrasonography showed two hypoechoic solid masses in the spleen with diameters between 1 cm and 1.5 cm. The lower pole of the spleen was enlarged, forming a 4.5-cm solid lump, which contained irregular and well-defined hypoechoic areas with intervening normal spleen tissue. The lesions did not show cystic portions or necrotic changes, but showed similar vascularity to the spleen on both color Doppler study and superb microvascular imaging and showed comparable shear wave velocity to a normal area of the spleen with a median value of 21.5 kPa on elastography, which was repeatedly measured 10 times (21.5 kPa for the lesion vs. 24.7 kPa for the normal spleen) (Figure 1).

Contrast-enhanced computed tomography (CT) of the abdomen obtained in the portal venous phase showed hypo-enhanced splenic masses. The exophytic lesion at the inferior pole of the spleen showed heterogeneous enhancement with low attenuation and isoattenuation to the spleen. No significant lymphadenopathy was observed in the abdominal and pelvic cavities (Figure 2). Magnetic resonance imaging (MRI) was performed for further characterization of the masses. On T2-weighted images, the lesions showed low signal intensity to the spleen. However, on T1-weighted images, the lesions showed variable signal intensities: three lesions showed low signal intensity, one lesion showed iso signal intensity, and two lesions showed high signal intensity. After gadolinium administration, the lesions showed low signal intensity with peripheral enhancement in both the arterial and portal venous phases. The lesions showed persistent low signal intensity until 5 min after gadolinium administration (Figure 3).

Pathological findings

Histopathology showed histiocytic proliferation with emperipolesis in an ill-defined
Figure 2 Computed tomography images of two solid splenic masses. A: Axial image showed smaller hypodense mass; B: Axial image demonstrated larger exophytic hypodense mass; C: Coronal image revealed larger exophytic hypodense mass.

ovoid splenic mass and splenic hilar lymph nodes. Immunohistochemistry revealed that the proliferating histiocytes were positive for CD68 antigen and S-100 protein, but negative for CD1a (Figure 4). These findings were consistent with RDD. Epstein–Barr virus (EBV) was not detected in the specimen using EBV in situ hybridization for EBV-encoded RNA.

FINAL DIAGNOSIS

The patient was diagnosed with extranodal involvement of RDD in the spleen.

TREATMENT

Although 1 mg of piperacillin-tazobactam were administered three times daily for five days, the patient had persistent fever and anemia. Considering laboratory and radiological findings, diagnostic splenectomy was performed. Following a laparotomy, a slightly hard and round-shaped exophytic mass approximately 6 cm in size was found at the inferior pole of the spleen, and a few enlarged lymph nodes around the splenic hilum and pancreas tail and along the gastroepiploic vessels were found. After splenectomy, one accessory spleen and a few enlarged lymph nodes along the gastroepiploic vessels were found and retrieved.

OUTCOME AND FOLLOW-UP

The patient’s symptoms, including fever, anemia, and leukocytosis, improved after splenectomy. The patient was discharged 14 d after the operation. At one month
Figure 3 Magnetic resonance images of splenic masses. A-E: Magnetic resonance imaging (MRI) images demonstrated mass in upper level of spleen; F-J: MRI images showed mass in middle level of spleen; K-O: MRI images illustrated mass in lower level of spleen. A, F and K: Splenic masses showed low signal intensity on T2-weighted images; B, G and L: Splenic masses demonstrated various signal intensities on T1-weighted images; C, H and M: Splenic masses showed low signal intensity in the late arterial phase; D, I and N: Splenic masses showed persistent low signal intensity in the portal venous phase; E, J and O: Splenic masses showed still low signal intensity in the 5-min delayed phase.

Follow-up, the patient had no fever or other discomfort. The lab findings including leukocyte count, hemoglobin, ESR and CRP were within normal limit. The patient underwent contrast-enhanced CT exams one month, six months, and two years surgery. Those examinations demonstrated no abnormal finding except splenectomy state.

DISCUSSION

Histiocytoses are a group of hematological disorders characterized by pathological mononuclear phagocytic cell infiltration of normal tissues. Mononuclear phagocytes can be classified into two major classes: macrophages and dendritic cells. The World Health Organization has classified histiocytic disorders into three classes based on pathological cells: dendritic cell histiocytoses, non-dendritic cell histiocytoses, and malignant histiocytoses[4]. RDD, originally named sinus histiocytosis with massive lymphadenopathy, is a rare histiocytic disorder, but is the most common non-dendritic cell histiocytosis[5]. RDD was initially described by Rosai and Dorfman in 1969; however, its exact etiology and pathogenesis remained unknown. Some studies have proposed that RDD is a type of chronic inflammatory lymphoid hyperplasia due to antigenic stimuli, such as malignant tumors and acute lymphadenitis disorder[6,7]. Lu et al[8] have reported four cases in which RDD and malignant lymphoma were confirmed in the same lymph node. di Dio et al[9] have reported one case in which RDD and EBV infection were diagnosed in the same biopsied cervical lymph node specimen. In addition, Arakaki et al[5] have reported human herpesvirus 6 detection in a biopsied RDD renal sample. However, here, the patient had no simultaneous hematological disorder or definite infection.

RDD affects males more frequently than females[10] and commonly occurs in the first two decades of life[11]. The most commonly affected site is the lymph nodes, and the most common clinical symptom is painless and isolated lymphadenopathy[12]. Over 90% of patients with RDD present with cervical lymphadenopathy, but any group of lymph nodes can be invaded. Axillary, inguinal, mediastinal, hilar, and
Figure 4 Pathologic images of splenic masses. A: Resected specimen showed contour bulging splenic mass; B: Cut surface of the resected specimen; C: Hematoxylin and eosin-stained section (200 ×) showed histiocytic proliferation with emperipolesis (arrows); D: Proliferating histiocytes were positive for S-100 protein stained section (400 ×); E: Proliferating histiocytes were positive for CD68 antigen stained section (400 ×); F: proliferating histiocytes were negative for CD1a stained section (400 ×).

Few cases of splenic involvement of RDD have been reported to date. In the English literature, all patients were middle-aged women and presented with hematological symptoms, such as anemia and thrombocytopenia that improved after splenectomy[19,20]. To the best of our knowledge, splenic involvement of RDD in pediatric patients is extremely rare.

Imaging examinations are not pathognomonic in the diagnosis of RDD because of their nonspecific findings. Furthermore, the appearance of extranodal RDD on imaging studies often mimics malignancy[12]. Therefore, biopsy is necessary to establish diagnosis[12,18]. In our case, CT images showed multiple hypodense masses in the spleen in accordance with other studies[19,20].

The definitive diagnosis of RDD can only be made by histological analysis. One of the pathognomonic findings is emperipolesis defined as the presence of phagocytized cells in a histiocyte. In immunohistochemical analysis, positivity for CD68 antigen and S-100 protein, but negativity for CD1a antigen is diagnostic for RDD. Emperipolesis can also be found in Langerhans cell histiocytosis (LCH), but the absence of Birbeck granules and negativity for CD1a antigen help differentiate RDD from LCH[9,12].
Ref.	Age	Gender	Symptoms	Underlying disease	Nodal disease	Extranodal disease	Radiologic findings	Location	US	X-ray/CT	MRI
di Dioet al[9], 2016	14M	(-)	Swelling of the right parotid gland	Recent EBV infection	Bilateral	Bilateral parotid gland	Multiple intraparotid LNs; Cystic and solid; Enhancement: Irregular				
Rasool et al[4], 2015	15M	F	Pain and swelling of distal forearm	Not described	No	Physis of distal radius	Well-defined intramedullary lesion; Radiolucent lesion with scalloping and thin rim		(-)	(-)	
Mantilla et al[12], 2016	2	F	Proptosis, headache	H syndrome (SLC29A3 mutation)	No	Bilateral orbit	Numerous well-circumscribed intraorbital masses; T2WI: Moderately hyperintense; enhancement: Mild			(-)	
Nandi et al[7], 2008	5	M	Painless huge neck swelling, fever	HHV-6 infection	Bilateral	No	Ill-defined irregular masses involving mainly intraconal parts; Enhancement: heterogeneous		(-)	(-)	
Nandi et al[7], 2008	5	M	Bilateral proptosis, swelling over the mandibular area	No	Preauricular, mandibular	Bilateral orbit	Ill-defined irregular masses involving mainly intraconal parts; Enhancement: heterogeneous		(-)	(-)	
Rodriguez-Galindo et al[14], 2004	6	F	Orbital swelling, proptosis, and blindness	No	Ipsilateral cervical	Orbit	Retroconal and preseptal mass extended to cavernous sinus; Enhancement: Mild		(-)	(-)	
Arakaki et al[5], 2012	7	M	Abdominal pain and diarrhea	HHV-6 infection	No	Kidney	Mass at anterior portion of kidney; Soft tissue density; enhancement: Homogeneous			(-)	
Sridhara et al[15], 2012	11	M	Painless bilateral neck swelling	Recent EBV infection	No	Bilateral submandibular gland	Enlarged submandibular glands; Enhancement: Homogeneous		(-)	(-)	
Tubbs et al[16], 2005	13	M	Neck pain, headache, blurred vision	No	No	Right parietal bone	Intraosseous lesion; Enhancement: Mild		(-)	(-)	
Rittner et al[18], 2012	15	M	Fever, back and left hip pain	No	No	Multiple bone lesions (craniol bone, spine, pelvis, upper/lower extremities)	Lytic lesions; T1WI: Hypointense; T2WI: Hyperintense; enhancement: Strong		(-)	(-)	
Rodriguez-Galindo et al[14], 2004	15	F	Headache, proptosis	Recent EBV infection	Mediastinal	Brain	Anterior and posterior falx		(-)	(-)	

T1WI: T1-weighted image; T2WI: T2-weighted image; US: Ultrasound; CT: Computed tomography; MRI: Magnetic resonance imaging; EBV: Epstein–Barr virus; HHV: Human herpesvirus.
The clinical course of RDD is benign and may regress spontaneously. Given that fact, observation may be a good treatment option. However, treatment is required in cases of significant extranodal disease because locoregional recurrence or even dissemination can be possible. Compression of vital organs or severe constitutional symptoms, such as fever, is also indications for therapy[7,9]. Although there is no consensus for the optimum treatment option, surgery is probably the best curative treatment if complete resection is possible. In addition, medical therapy, including corticosteroids, antibiotics, antiviral agents, chemotherapy, and radiotherapy, is available[9].

CONCLUSION

In conclusion, although splenic involvement is rare, especially in pediatric patients with RDD, RDD should be considered a differential diagnosis, even in patients without significant lymphadenopathy, especially in the setting of hematological abnormality or infectious symptoms.

REFERENCES

1. Gupta P, Babyn P. Sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease): a clinicoradiological profile of three cases including two with skeletal disease. *Pediatr Radiol* 2008; 38: 721-8; quiz 821 [PMID: 18246347 DOI: 10.1007/s00247-007-0701-0]
2. Zhu F, Zhang JT, Xing XW, Wang DJ, Zhu FY, Zhang Q, Wang HT, Lang SY. Rosai-Dorfman disease: a retrospective analysis of 13 cases. *Am J Med Sci* 2013; 345: 200-210 [PMID: 22652821 DOI: 10.1097/MAJ.0b013e3182553e2d]
3. Adeleye AO, Amir G, Fraifeld S, Shoshyan Y, Umanovsky F, Spektor S. Diagnosis and management of Rosai-Dorfman disease involving the central nervous system. *Neurol Res* 2010; 32: 572-578 [PMID: 20350368 DOI: 10.1179/016164109X126087338386]
4. Rasool MN, Genzengane V. Rosai-Dorfman disease of the distal radius in a child: A case report and review of the literature. *SA Orthopaedic Journal* 2015; 14: 67-70 [DOI: 10.17159/2309-8309/2015/14n410]
5. Arakaki N, Gallo G, Majluf R, Diez B, Arias E, Riuadavets MA, Sevlever G. Extranodal rosai-dorfman disease presenting as a solitary mass with human herpesvirus 6 detection in a pediatric patient. *Pediatr Dev Pathol* 2012; 15: 324-328 [PMID: 22400904 DOI: 10.2350/11-11110-CR.1]
6. Ambati S, Chamyan G, Restrepo R, Escalon E, Fort J, Pefkarou A, Khatib ZA, Dehner LP. Rosai-Dorfman disease following bone marrow transplantation for pre-B cell acute lymphoblastic leukemia. *Pediatr Blood Cancer* 2016; 62: 594-598 [PMID: 27142277 DOI: 10.1002/pbc.25606]
7. Nandl M, Mondal RK, Dutta S, Karmakar BC, Mukherjee K, Dhibar TK. Rosai-Dorfman disease. *Indian J Pediatr* 2008; 75: 290-294 [PMID: 18376102 DOI: 10.1007/s12098-008-0063-0]
8. Lu D, Estalilla OC, Manning JT Jr, Medeiros LJ. Sinus histiocytosis with massive lymphadenopathy and malignant lymphoma involving the same lymph node: a report of four cases and review of the literature. *Mod Pathol* 2000; 13: 414-419 [PMID: 10786808 DOI: 10.1038/modpathol.3880071]
9. di Dio F, Mariotti I, Coccolini E, Bruzzi P, Predieri B, Iughetti L. Unusual presentation of Rosai-Dorfman disease in children: review of the literature. *Br J Radiol* 2015; 88: 1238-1244 [DOI: 10.1259/bjr/23127241]
10. Focac E, Rosaio J, Dorfman R. Sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease): review of the entity. *Semin Diagn Pathol* 1990; 7: 19-73 [PMID: 2180012]
11. Mantilla JG, Goldberg-Stein S, Wang Y. Extranodal Rosai-Dorfman Disease: Clinicopathologic Series of 10 Patients with Radiologic Correlation and Review of the Literature. *Am J Clin Pathol* 2016; 145: 211-221 [PMID: 26803323 DOI: 10.1093/ajcp/aqv029]
12. Brennan T, Calonje E, Granter SR, Leonard N, Grayson W, Fletcher CD, McKee PH. Cutaneous rosai-dorfman disease: a distinct clinical entity. *Am J Dermatopathol* 2002; 24: 385-391 [PMID: 12257197 DOI: 10.1097/00000372-200201000-00001]
13. Rodriguez-Galindo C, Helton KJ, Sánchez ND, Riemann M, Jiang M, Wang W. Extranodal Rosai-Dorfman disease in children. *J Pediatr Hematol Oncol* 2004; 26: 19-24 [PMID: 14707706 DOI: 10.1097/00043432-200401000-00007]
14. Sridhara SK, Shah RK. Rosai-Dorfman disease in the submandibular salivary glands of a pediatric patient. *Laryngoscope* 2010; 120 Suppl 4: S228 [PMID: 21225826 DOI: 10.1002/lary.21695]
15. Tubbs RS, Kelly DR, Mrozcek-Musulman EC, Hammers YA, Berkow RL, Oakes WJ, Grabb PA. Spinal cord compression as a result of Rosai-Dorfman disease of the upper cervical spine in a child. *Childs Nerv Syst* 2005; 21: 951-954 [PMID: 15650889 DOI: 10.1007/s00381-004-1121-1]
17 **Warrier R**, Chauhan A, Jewan Y, Bansal S, Craver R. Rosai-Dorfman disease with central nervous system involvement. *Clin Adv Hematol Oncol* 2012; 10: 196-198 [PMID: 22402429]

18 **Rittner RE**, Baumann U, Laenger F, Hartung D, Rosenthal H, Hueper K. Whole-body diffusion-weighted MRI in a case of Rosai-Dorfman disease with exclusive multifocal skeletal involvement. *Skeletal Radiol* 2012; 41: 709-713 [PMID: 22139086 DOI: 10.1007/s00256-011-1328-7]

19 **Ha H**, Kim KH, Ahn YJ, Kim JH, Kim JE, Yoon SS. A rare case of Rosai-Dorfman disease without lymphadenopathy. *Korean J Intern Med* 2016; 31: 802-804 [PMID: 26837011 DOI: 10.3904/kjim.2015.026]

20 **Knox SK**, Kurtin PJ, Steensma DP. Isolated splenic sinus histiocytosis (Rosai-Dorfman disease) in association with myelodysplastic syndrome. *J Clin Oncol* 2006; 24: 4027-4028 [PMID: 16921057 DOI: 10.1200/JCO.2005.05.3967]
