Phosphonium acidic ionic liquid: an efficient and recyclable homogeneous catalyst for the synthesis of 2-arylbenzoxazoles, 2-arylbenzimidazoles, and 2-arylbenzothiazoles†

Quang The Nguyen,a Anh-Hung Thi Hang,a Thuy-Linh Ho Nguyen,ab Duy-Khiem Nguyen Chaua and Phuong Hoang Tran*ab

A highly efficient and green strategy for the synthesis of 2-arylbenzoxazoles, 2-arylbenzimidazoles, and 2-arylbenzothiazoles catalyzed by phosphonium acidic ionic liquid has been developed via the condensation of o-aminophenol, o-phenylenediamines, and o-aminothiophenol, respectively, with aldehydes. The reaction has a good yield, the broad substrate scope, and mild condition. Triphenyl(butyl-3-sulphonyl) phosphonium toluenesulfonate catalyst was easily obtained from cheap and available starting materials through a one-pot synthesis. Its structure was identified by 1H NMR, 13C NMR, 31P NMR, and FT-IR techniques. Other properties including thermal stability and acidity were determined by TGA and Hammett acidity function method. Interestingly, the catalyst can maintain its constantly outstanding performance till the fourth recovery.

Introduction

Benzoxazole, benzimidazole, and benzothiazole are well-known heterocyclic scaffolds commonly found in various anticancer, antimicrobial, antidiabetic, anti-inflammatory, antioxidant, anticonvulsant, and analgesic agents due to their wide-spectrum biological and pharmaceutical properties.1–12 To date, there have been two pathways for the preparation of these compounds.13 The first one relying on the metal-catalyzed cross-coupling is more competent.14 However, it has several drawbacks such as expensive catalysts,15 addition of auxiliary reagents,16 harsh reaction condition,17 prolonged reaction time,18 low yields,19 volatile organic solvents,19 which cause a greatly negative impact on the environment as well as an impediment in the scaling up for industrial production. The second synthetic pathway involves the condensation of 2-aminophenol with aldehydes or carboxylic acids under acidic condition.20–24 Similarly to metal-catalyzed cross-couplings, major defects including the use of expensive chemicals and volatile organic solvents, long reaction times, and tedious work-up procedures have been still unsolvable. Therefore, the development of an efficient, reusable, and green catalyst is eventually favorable to facilitate the large-scale production of these important heterocyclic compounds.

In recent years, ionic liquids (ILs) have received increasing interest as environmentally benign media owing to their special properties such as thermal stability, biodegradability, and non-volatility.25–29 They have been widely used as catalysts for a large number of organic transformations.28–30 However, their application as catalysts for the synthesis of 2-arylbenzoxazole, 2-arylbenzimidazoles, and 2-arylbenzothiazoles via the condensation of aldehydes with o-aminophenols, o-phenylenediamine, and o-aminothiophenols, respectively, has not been known in the literature. In the continuation of our study in ionic liquids application, we reported herein the use of phosphonium acidic ionic liquid as a green and efficient catalyst for the synthesis of the above mentioned arylated heterocycles. The merits of this method are short reaction time, high yield, wide substrate scope, and recyclability of the catalyst.

Results and discussion

Initially, the condensation of o-aminophenol and benzaldehyde is chosen as the model reaction for optimization study. The results were shown in Table 1.

The effect of temperature, reaction time, and phosphonium ionic liquid loading was investigated by conducting the reaction at various values of each parameter (r.t. ~120 °C, 20–360 min, and 0–10 mol%). It was indicated that best condition at 100 °C, 20 min, and 7 mol% of catalyst could afford the desired 2-phenylbenzoxazole in an excellent yield of 91%. In the absence
of the catalyst, the failure in the formation of this product was observed as a result.

Next, different catalysts were tested for their performance in the synthesis of 2-phenylbenzoxazole (see detailed experiments in the ESI†). The desired product was achieved in the best yield using phosphonium acidic ionic liquid while much lower yields were observed in the same reaction mediated by other catalysts.

With the optimal condition in hand, we explored the reaction scope over a large number of aldehydes in the formation of 2-arylbenzoxazoles and other analogues (Table 2). In general, the reactions proceeded smoothly to give the corresponding products in good to excellent yields. Intuitively, the electronic properties of substituents of benzaldehydes exhibited a little effect on the reaction. As a common trend, electron-rich aldehydes gave the expected products in slightly better yields than electron-poor analogues. Only substrates bearing a powerful electron-withdrawing group such as \(p \)-nitro or \(o \)-fluoro can give rise to a dramatic yield decrease as low as 68–78% (entry 7, 10, 41, 45). Similarly, the substituents on 2-aminophenol have certain effect on the yields of the desired products. For 2-aminophenol bearing an electron-donating or a weak electron-withdrawing group such as methyl or chloro, respectively, their condensation with a variety of aldehydes could easily approach the completion with the yields of arylated products above 80%. However, a sharply adverse impact was seen for 2-amino-4-nitrobenzaldehyde whose starting material only afforded the desired product in 68% yield even as a small amount of water was added to the reaction mixture to maintain the homogeneity.

Phosphonium acidic ionic liquid was readily prepared via one-pot two-step procedure in high yield and used as the catalyst for esterification.\(^{44}\) However, to the best of our knowledge, no application of this ionic liquid as the catalyst for the condensation between 2-aminophenol, \(o \)-phenylenediamines or 2-aminothiophenol with aldehydes has been reported in the literature so far. Fig. 1 shows the thermal gravimetric analysis (TGA) of triphenyl(butyl-3-sulphonyl)phosphonium toluenesulfonate. The first weight loss of 11.64% below 200 °C merely corresponds to the loss of residual water in the sample. The

Table 1 Optimization data for the synthesis of 2-phenylbenzoxazole

Entry\(^{a}\)	Catalyst, (mol%)	Time, (min)	Temperature, (°C)	Yield\(^{b}\) (%)
1	10	360	r.t.	Trace
2	10	360	60	47
3	10	90	80	85
4	10	20	100	75
5	10	30	100	92
6	10	40	100	94
7	10	20	120	89
8	7	30	100	91
9	6	30	100	82
10	5	30	100	75
11	0	360	100	—

\(^{a}\) Reaction conditions: 2-aminophenol (1 mmol), benzaldehyde (1 mmol), solvent-free. \(^{b}\) Isolated yields by column chromatography (acetone/petroleum ether = 1/19).
Table 2 Synthesis of 2-arylbenzoxazoles, 2-arylbenzimidazoles, and 2-arylbenzothiazoles catalyzed by \([\text{C}_{6}\text{H}_{5}]_{3}\text{P} - \text{CH}_{2} = \text{SO}_{3}\text{H}]\text{[OTs]}^{\text{a}}\)

Entry	\(R, X, \text{ and } Ar\)	Product	Temperature (°C)	Time (min)	Yield (%)
1	1a: \(R = H, X = \text{OH}\), 2a: \(Ar = \text{Ph}\)	![Product 1a](image1)	100	30	91
2	2b: \(Ar = 4\text{-MeC}_{6}\text{H}_{4}\)	![Product 2b](image2)	100	45	90
3	2c: \(Ar = 4\text{-t-BuC}_{6}\text{H}_{4}\)	![Product 2c](image3)	100	45	92
4	2d: \(Ar = 4\text{-MeOC}_{6}\text{H}_{4}\)	![Product 2d](image4)	100	50	93
5	2e: \(Ar = 4\text{-FC}_{6}\text{H}_{4}\)	![Product 2e](image5)	100	45	81
6	2f: \(Ar = 4\text{-ClC}_{6}\text{H}_{4}\)	![Product 2f](image6)	100	45	91
7	2g: \(Ar = 4\text{-O}_{2}\text{NC}_{6}\text{H}_{4}\)	![Product 2g](image7)	120	50	75
8	2h: \(Ar = 3\text{-FC}_{6}\text{H}_{4}\)	![Product 2h](image8)	100	40	80
9	2i: \(Ar = 3\text{-BrC}_{6}\text{H}_{4}\)	![Product 2i](image9)	100	45	89
10	2j: \(Ar = 2\text{-FC}_{6}\text{H}_{4}\)	![Product 2j](image10)	100	45	78
11	2k: \(Ar = 2\text{-ClC}_{6}\text{H}_{4}\)	![Product 2k](image11)	100	45	90
12	2l: \(Ar = 2\text{-HOC}_{6}\text{H}_{4}\)	![Product 2l](image12)	120	50	90
13	2m: \(Ar = 4\text{-pyridinyl}\)	![Product 2m](image13)	100	50	82
14	1b: \(R = \text{Me}, X = \text{OH}\), 2a: \(Ar = \text{Ph}\)	![Product 1b](image14)	100	35	90
Entry	μR, X, and Ar	Product	Temperature (°C)	Time; (min)	Yield (%)
-------	---------------	---------	----------------	-------------	-----------
15	2b: Ar = 4-MeC₆H₄	![Product](120)	120	40	90
16	2c: Ar = 4-t-BuC₆H₄	![Product](120)	120	45	90
17	2d: Ar = 4-MeOC₆H₄	![Product](120)	120	50	92
18	2e: Ar = 4-FC₆H₄	![Product](120)	120	45	87
19	2f: Ar = 4-ClC₆H₄	![Product](120)	120	45	88
20	2m: Ar = 4-pyridinyl	![Product](120)	120	50	85
21	2n: Ar = 4-HOC₆H₄	![Product](120)	120	60	81
22	1c: R = Cl, X = OH, 2a: Ar = Ph	![Product](100)	100	25	95
23	2b: Ar = 4-MeC₆H₄	![Product](100)	100	45	94
24	2c: Ar = 4-t-BuC₆H₄	![Product](100)	100	50	95
25	2d: Ar = 4-MeOC₆H₄	![Product](100)	100	50	96
26	2e: Ar = 4-FC₆H₄	![Product](100)	100	45	92
27	2f: Ar = 4-ClC₆H₄	![Product](100)	100	45	95
28	2m: Ar = 4-pyridinyl	![Product](120)	120	45	86
29	2n: Ar = 4-HOC₆H₄	![Product](120)	120	50	80
Entry	R, X, and Ar	Product	Temperature (°C)	Time; (min)	Yield (%)
-------	-------------	---------	-----------------	-------------	-----------
30	1d: R = NO₂, X = OH, 2a: Ar = Ph	![Product Image]	100, 120	75, 50	65, 79c
31	2b: Ar = 4-MeC₆H₄	![Product Image]	120	50	75
32	2c: Ar = 4-t-BuC₆H₄	![Product Image]	120	55	81
33	2d: Ar = 4-MeOC₆H₄	![Product Image]	120	50	81
34	2e: Ar = 4-FC₆H₄	![Product Image]	120	60	74
35	2f: Ar = 4-ClC₆H₄	![Product Image]	120	60	80
36	1e: R = H, X = SH, 2a: Ar = Ph	![Product Image]	120	50	92
37	2b: Ar = 4-MeC₆H₄	![Product Image]	120	60	88
38	2d: Ar = 4-MeOC₆H₄	![Product Image]	120	60	90
39	2e: Ar = 4-FC₆H₄	![Product Image]	120	60	85
40	2f: Ar = 4-ClC₆H₄	![Product Image]	120	60	91
41	2g: Ar = 4-O₂NC₆H₄	![Product Image]	120	70	75c
42	1f: R = H, X = NH\textsubscript{2}, 2a: Ar = Ph	![Product Image]	120	90	89
43	2d: Ar = 4-MeOC₆H₄	![Product Image]	120	90	85
44	2e: Ar = 4-FC₆H₄	![Product Image]	120	90	90
phosphonium acidic ionic liquid then maintains its stability up to 220–225 °C before undergoing two consecutive thermal decomposition steps at 225–400 °C and 400–600 °C corresponding to the weight loss of 76.75 and 8.81%, respectively. From the data of TGA as well as latter FT-IR analysis (Fig. 2), it could be firmly assured that there is no structural deformation of the ionic liquid at the temperature range of the investigated arylation of benzoxazole and other analogues (100–120 °C).

The FT-IR spectra of primitively prepared triphenyl(butyl-3-sulphonyl)phosphonium toluenesulfonate and its recovered sample are presented in Fig. 2. The broad peak at approximately 3450 cm⁻¹ indicates the presence of hydroxyl group while overlapped shoulder peaks scattered from 2950 to 3100 cm⁻¹ are assigned to alkyl and aromatic C–H stretching vibrations. The absorption band at about 1600–1486 cm⁻¹ is paired with a number of C=C stretching vibrations in aromatic rings. The signals at 1200 cm⁻¹ and 1034 cm⁻¹ are asymmetric and symmetric stretching vibrations of S=O bond, respectively.

![Fig. 1 TGA curve of triphenyl(butyl-3-sulphonyl)phosphonium toluenesulfonate.](image1)

![Fig. 2 FT-IR spectra of triphenyl(butyl-3-sulphonyl)phosphonium toluenesulfonate (a) and its recycled sample after the fourth run (b).](image2)

![Table 2 (Contd.)](table1)

Entry	μR, X, and Ar	Product	Temperature (°C)	Time; (min)	Yield%
45	2g: Ar = 4-O₂NC₆H₄	![image3]	120	90	68

*Reaction conditions: 2-aminophenol (1 mmol), or 2-aminothiophenol (1 mmol), or o-phenylenediamine (1 mmol); aldehyde (1 mmol); solvent-free. Isolated yields by column chromatography (acetone/petroleum ether = 1/19 or ethyl acetate/hexanes = 1/19). Water (0.2 mL) was added to the reaction mixture.

![Table 3](table2)

Entry	IL (mol%)	Aₘₐₓ	[In] (%)	[InH⁺] (%)	H₀
1	0	0.361	100	0	−1.40
2	5	0.347	96.20	3.80	−1.46
3	6	0.345	95.59	4.41	−1.78
4	7	0.329	91.22	8.78	−1.96
5	10	0.315	87.28	12.72	−1.96
Finally, the presence of phosphonium functional group is confirmed by two concomitant absorption bands at 1121 and 1410 cm\(^{-1}\) corresponding with P–Ar and P–CH\(_2\) bond deformation, respectively. A close similarity in pattern between two FT-IR spectra reinforced the above statement on the thermal stability of phosphonium acidic ionic liquid within the temperature range of arylation.

The acidity of triphenyl(butyl-3-sulphonyl)phosphonium toluenesulfonate was examined by means of Hammet acidity function method using 4-nitrodiphenylamine as an indicator. \(H_0\) values of ionic liquid solutions with a concentration range of 5–10 mol% were calculated from the \([\text{In}] / [\text{InH}^+]\) ratio which was determined by UV-Vis spectroscopy. Technically, this ratio is directly proportional to the absorbance difference of the indicator in its monocomponent solution and its cosolution with a given quantity of ionic liquid. As can be seen from the Table 3 and Fig. 3, the 7 mol% solution of triphenyl(butyl-3-sulphonyl)phosphonium toluenesulfonate has \(H_0\) value of \(-1.78\) claiming that this ionic liquid is about 50 times more acidic than [1,2-DiMIMPs][OTs] analogue with an \(H_0\) value of \(-0.11\) as reported by Yang et al.\(^{41}\) It could be noted that two analogues almost resemble each other except their cation centers. For the imidazolium-based sulfonic acid ionic liquid, the delocalization of positive charge over imidazole ring gives rise to a lesser acidity of the sulfonic acid moiety. Meanwhile, the sulfonic acid functional group tethered to a localized positive-charged center as triphenylphosphonium can behave with more acidic property owing to a better inductive electron-withdrawing effect of positive charge onto Brønsted sulfonic acid group.

The recyclability of triphenyl(butyl-3-sulphonyl) phosphonium toluenesulfonate was surveyed on the optimized arylation of 2-aminophenol by benzaldehyde. Upon completion of the reaction, the recovered ionic liquid was easily separated from other organic matters by washing many times with diethyl ether. It was subsequently dried \(\text{in vacuo}\) at 80 °C for 30 min before the reuse for consecutive cycles. It can be seen from Fig. 4 that only a very minor loss of catalytic performance was observed over four times of its reuse in the same condensation of benzaldehyde with 2-aminophenol.

A comparative study of the present method with previous literatures was reported in Table 4. The phosphonium acidic ionic liquid-catalyzed condensation between 2-aminophenol and benzaldehyde afforded the 2-phenylbenzoxazole product in excellent yield under a mild condition without the demand for any additives as in previous reports (Table 4). Furthermore, no loss of catalytic activity in the recycling test of this catalyst is the most prominence of the present method.

Entry	Catalyst	Condition	Yield (%)
1	TiO\(_2\)–ZrO\(_2\) (10 mol%), acetonitrile	60 °C, 15 min	91 (ref. 42)
2	Hf-MOF (1 mol%), solvent-free	140 °C, 6 h	95 (ref. 43)
3	NaCN (10 mol%), DMF, air	80 °C, 24 h	74 (ref. 44)
4	Sm[OTf]\(_3\) (10 mol%), ethanol–water	50–60 °C, 2 h	92 (ref. 21)
5	Poly(melamine-formaldehyde) (10 mg), oxygen, toluene	110 °C, 24 h	91 (ref. 45)
6	Present work: triphenyl(butyl-3-sulphonyl)phosphonium toluenesulfonate (7 mol%), solvent-free	100 °C, 30 min	91

Fig. 3 The UV/Vis spectra of 4-nitrodiphenylamine indicator measured in its cosolutions with IL at different concentrations.

Fig. 4 Recycling test of the catalyst.

Table 4 The comparison of the present method with previous literatures in the synthesis of 2-phenylbenzoxazole
Experimental

Chemicals, supplies, and instruments
All starting materials were purchased from Sigma-Aldrich and employed without further purification. Silica gel (230–400 mesh) for flash chromatography was obtained from HiMedia Laboratories Pvt. Ltd. (India). TLC (silica gel 60 F254) was purchased from Merck. Ethyl acetate (purity $\geq 99.5\%$) and hexanes ($\geq 95\%$) were obtained from Xilong Chemical Co., Ltd (China). Chloroform-d (99.8 atom% D, stab. with Ag) was obtained from Armar (Switzerland). GC-MS spectra were taken on an Agilent GC System 7890 equipped with a mass selective detector Agilent 5973N and a capillary DB-5MS column (30 m × 250 μm × 0.25 μm). FT-IR spectra were recorded in the form of KBr pellets by a Bruker Vertex 70. 1H and 13C NMR spectra were recorded on a Bruker Advance II 500 MHz.

Preparation of triphenyl(butyl-3-sulphonyl)phosphonium tolenesulfonate
Triphenyl(butyl-3-sulphonyl)phosphonium tolenesulfonate catalyst was obtained by the one-pot method as depicted in Scheme 1 (97%).$^{11-14}$ Its structure was then authenticated by 1H-NMR, 13C-NMR, FT-IR and TGA. An equimolar mixture of triphenylphosphine and 1,4-butane sultone in toluene solvent (10 mL) was stirred and heated at reflux for 12 h to obtain the zwitterion as a white solid. Then p-toluenesulfonic acid was added dropwise to the resulting zwitterion until a separated clear and colorless liquid layer was formed at the bottom of the round bottom flask after approximately 6 h. After completion of the reaction, the crude product was washed with diethyl ether (5 × 20 mL) to remove non-ionic residues. Finally, the ionic liquid was obtained in 97% yield after the removal of solvent in vacuo.

General procedure for the synthesis of 2-arylbenzoxazole derivatives
2-Aminophenol (109 mg, 1.0 mmol) was treated with benzaldehyde (106 mg, 1.0 mmol) in the presence of triphenyl(butyl-3-sulphonyl)phosphonium tolenesulfonate (20.5 mg, 7 mol%) in a 10 mL glass tube at 100 °C under solvent-free magnetic stirring. Upon completion of the reaction as indicated by TLC after 30 min, the mixture was diluted and extracted with diethyl ether (10 × 5 mL). Then the ethereal solution was washed with water (2 × 20 mL) and dried over Na$_2$SO$_4$. The final product was obtained after solvent removal by a rotary evaporator followed by the purification on a silica gel column chromatography using acetone/petroleum ether (1/19) as an eluent solvent. The structural characterization was performed using 1H, 13C-NMR, and GC-MS. The recovered catalyst was reactivated by heating under reduced vacuum at 80 °C for 30 min and reused for next cycles.

Conclusions
In summary, a green and efficient pathway to access to 2-arylbenzoxazoles, 2-arylbenzimidazoles, and 2-arylbenzothiazoles from o-aminophenol, o-phenylenediamines, and o-aminothiophenol, respectively, via the condensation with aldehydes has been successfully developed by outstanding catalytic performance of triphenyl(butyl-3-sulphonyl)phosphonium tolenesulfonate. Not only did this ionic liquid work out on a wide range of substrates and reagents, but it also expressed excellent sustainability of remaining reactivity after four times of recycling. A simple work-up step allowing to isolate the desired products as well as simultaneously recover the ionic liquid catalyst is also an apparent advantage of this process.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
This research is funded by Viet Nam National University, Ho Chi Minh City (VNU-HCM) under grant number 562-2018-18-03. We thank Hoang-Tan Le Doan and Ngoc-Mai Hoang Do for their valuable discussions.
