Research Article

Theoretical Calculation and Application Test of Lift Force for Ideal Electric Asymmetric Capacitor

Jian-Guo Huang and Xiang-Yu Cheng

1 Anhui Technical College of Water Resources and Hydroelectric Power, Hefei 231603, China
2 Hefei Institute of Physical Science, Chinese Academy of Science, Hefei 231603, China
3 No. 38 Research Institute of China Electronics Technology Group Corporation, Hefei 230088, China

Correspondence should be addressed to Xiang-Yu Cheng; chanceller@163.com

Received 9 June 2020; Accepted 3 July 2020; Published 5 August 2020

1. Introduction

How can we solve lift force produced by a lifter formed of an asymmetric capacitor? Based on some hypothetical conditions, a formula was obtained through three methods in an ideal scenario [1, 2]. But an unknown parameter q is still contained so that numerical calculations are difficult to carry out. This paper intends to solve this problem by eliminating the unknown factor in the hope that the formula can be effortlessly put into practical application and engineering. Following that, experimental tests and practical estimations are provided to verify its validity.

In former papers [1, 2], the same result is acquired through three ways using the following equation of electric lift force of asymmetric capacitor loaded by high voltage in ideal condition:

$$f = \frac{q^2}{\varepsilon} \left(\frac{1}{S_1} - \frac{1}{S_2} \right).$$ \hspace{1cm} (1)

An unknown variable q is still included in the above formula. In order to solve this problem thoroughly, the carried charge q should be figured out. Normally, carried charge q of capacitor is relevant to the voltage U and the capacitance C. The voltage U can be known. But the capacitance C is difficult to calculate when the capacitor is in irregular shape.

Nevertheless, the analysis of hypothetical predetermined conditions verifies that the capacitance C of the asymmetric capacity is calculable. When the small plate of asymmetric capacitor is in a slender cylinder form, its capacitance could be estimated at a cylindrical way. When the small plate of asymmetric capacitor [3–5] is in sphere form, its capacitance could be estimated at a spherical way. The result might not be ideal in the case of precision. It can still be applied to estimation in engineering assessment [6, 7]. Furthermore, the subsequent test data verified that the estimate result was fairly accurate unexpectedly.
2. Theoretical Derivation

Regarding the reason why the experimental result is more precise than expected, the analysis of the unique characteristics of the asymmetric capacitor has presented several objective reasons: (1) the distance d between two plates is more larger than the dimension of surface area S_1 of plate 1 (small plate), that is, $d \gg S_1/l$ or $d \gg \sqrt{S_1}$; (2) the area of plate 2 (large plate) is larger than that of plate 1, that is, $S_2 \gg S_1$; and (3) the voltage loaded between two plates is below the breakdown voltage that is relevant to the gap distance.

Under the initial condition, we begin to deduce capacitance of the asymmetric capacitor [8–10] and then to estimate its lift force [11, 12]. Deducing processes are as follows:

(1) For $S_2 \gg S_1$, when high voltage is loaded on two plates, the electric field intensity on plate 1, $E_1 = q/\epsilon S_1$, is larger than that on plate 2, $E_2 = q/\epsilon S_2$, i.e., $E_1 \gg E_2$. It leads to the voltage drop $\Delta U = \Delta d \cdot E$, which mainly centralizes around plate 1. So when calculating the capacitance $C = q/\Delta U = q/(\Delta U)\cdot d_1$, the field intensity near plate 1 should be taken into major consideration. '´_hat is to say, the capacitance calculation can be carried out by combining the following equations (2), (3), (4), (5), and (6):

$$E = \frac{q}{\epsilon S}$$

(2)

$$du = -E \cdot dr,$$

(3)

$$C = \frac{q}{\Delta U},$$

(4)

$r \propto \frac{S}{l}$ (for thin wire and board plates),

(5)

$r \propto \sqrt{S}$ (for sphere point and board plates).

(6)

Equations (5) or (6) can be also written as

$$r = k_{sh1} \cdot \frac{S}{l},$$

(7)

$$r = k_{sh2} \cdot \sqrt{S},$$

(8)

where r is the nominal dimensional size of plate 1, l is the length of plate 1, and k_{sh1} and k_{sh2} are the shape coefficient relevant to the plates’ structure size.

(2) Because the distance d between two plates is far larger than the nominal size of plate 1 r, to simplify the calculation, we assume that surface charge of plate 1 is uniformly distributed, and voltage drop of thin wire plate or spherical capacitor plate is integrated for estimating the capacitance in magnitudes. The details are shown as follows.

For a thin wire small plate capacitor, we can take

$$S_1 = 2\pi R_1 l,$$

$$S_2 = 2H_2 l,$$

(8)

where H_2 is the width of the board plate. Because

$$E = \frac{q}{\epsilon \cdot S},$$

(9)

referring to equation (3), we get

$$du = -\frac{q}{\epsilon \cdot S} \cdot dr.$$

(10)

Mainly considering the electric field variation beside the thin wire, we have

$$S_{\text{cir}} = 2\pi rl.$$

(11)

Considering the effective fan-shaped part, we have

$$S_{\text{fan}} = S_{\text{cir}} \cdot \int_{R_1 + d}^{R_1 + d + H_2} \frac{2dr}{2\pi r}$$

$$= S_{\text{cir}} \cdot \frac{1}{\pi} \ln \left(\frac{R_1 + d + H_2}{R_1 + d} \right)$$

$$= 2rl \cdot \ln \left(1 + \frac{H_2}{R_1 + d} \right),$$

(12)

$$\Rightarrow dS = dS_{\text{fan}}$$

$$\Rightarrow dr = \frac{1}{2rl(1 + (H_2/(R_1 + d)))} dS.$$

Integrating both sides of equation (10), we obtain
\[\Delta U = \int_{U_1}^{U_2} du = -\int_{r_1}^{r_2} \frac{q}{\varepsilon} dr \]
\[= -\frac{q}{\varepsilon} \int_{S_1}^{S_2} 2\pi \ln(1 + (H_2/(R_1 + d))) \, dS \]
\[= -2\pi \ln(1 + (H_2/(R_1 + d)))) \]
\[= (q \ln(2\pi H_2 l/2\pi R_1 l \cdot (1/\pi) \ln((R_1 + d + H_2)/(R_1 + d)))) \]
\[= -(q \ln(2\pi R_1 \ln(1 + (H_2/(R_1 + d)))))(2\pi \ln(1 + (H_2/(R_1 + d))))^{-1}. \]

So we get the capacitance
\[C = \frac{q}{-\Delta U} = \frac{2\pi \ln(1 + (H_2/(R_1 + d)))}{\ln[H_2/R_1 \ln(1 + (H_2/(R_1 + d)))]. \quad (14) \]

For a spherical small plate capacitor, we can take
\[S_1 = 4\pi r^2. \quad (15) \]

Combining equation (2), we get
\[E = \frac{q}{\varepsilon \cdot 4\pi r^2}. \quad (16) \]

Referring to equation (3), we get
\[du = -\frac{q}{\varepsilon \cdot 4\pi r^2} \cdot dr. \quad (17) \]

Integrating both sides, we obtain
\[\Delta U = \int_{U_1}^{U_2} du = -\int_{r_1}^{r_2} \frac{q}{\varepsilon \cdot 4\pi r^2} dr. \quad (18) \]

For the distance \(d \gg R_1 \), we have
\[\Delta U = U_2 - U_1 = -\int_{r_1}^{r_2} \frac{q}{4\pi \varepsilon r^2} dr \]
\[= -\frac{q}{4\pi \varepsilon} \left(\frac{1}{R_1} - \frac{1}{R_1 + d} \right) \approx -\frac{q}{4\pi \varepsilon R_1}. \quad (19) \]

So we get the capacitance
\[C = \frac{q}{-\Delta U} = 4\pi \varepsilon R_1. \quad (20) \]

(3) We can calculate the electric lift force of asymmetric capacitor loaded by high voltage with the capacitance \(C \).

For thin wire small plate capacitor, using equation (14), we have
\[f = \frac{q^2}{\varepsilon} \left(\frac{1}{S_1} - \frac{1}{S_2} \right) = \frac{(UC)^2}{\varepsilon} \left(\frac{1}{S_1} - \frac{1}{S_2} \right) \]
\[= \frac{1}{\varepsilon} \left[\frac{2\pi \ln(1 + (H_2/(R_1 + d)))}{\ln[H_2/R_1 \ln(1 + (H_2/(R_1 + d)))]} \right] \left(\frac{1}{2\pi R_1 l - 1/H_2 l} \right) \]
\[= \frac{2\pi U^2 \ln^2(1 + (H_2/(R_1 + d)))}{\ln[H_2/R_1 \ln(1 + (H_2/(R_1 + d)))]} \left(\frac{1}{\pi R_1} - \frac{1}{H_2} \right). \quad (21) \]

This is the lift force formula about a normal lifter in thin wire asymmetric capacitor form under high voltage loaded.

For spherical small plate capacitor, using equation (20), we have
\[f = \frac{q^2}{\varepsilon} \left(\frac{1}{S_1} - \frac{1}{S_2} \right) = \frac{(UC)^2}{\varepsilon} \left(\frac{1}{S_1} - \frac{1}{S_2} \right) \]
\[= \frac{1}{\varepsilon} \left[\frac{2\pi \ln(1 + (H_2/(R_1 + d)))}{\ln[H_2/R_1 \ln(1 + (H_2/(R_1 + d)))]} \right] \left(\frac{1}{2\pi R_1 l - 1/H_2 l} \right) \]
\[= \frac{2\pi U^2 \ln^2(1 + (H_2/(R_1 + d)))}{\ln[H_2/R_1 \ln(1 + (H_2/(R_1 + d)))]} \left(\frac{1}{\pi R_1} - \frac{1}{H_2} \right). \quad (21) \]
\[f = \frac{d^2}{\varepsilon} \left(\frac{1}{S_1} - \frac{1}{S_2} \right) \]

\[= \frac{(UC)^2}{\varepsilon} \left(\frac{1}{S_1} - \frac{1}{S_2} \right) \]

\[= \frac{(U \cdot 4\pi R^2)^2}{\varepsilon} \left(\frac{1}{S_1} - \frac{1}{S_2} \right). \tag{22} \]

Considering the condition \(S_2 \gg S_1 \), we have

\[f = \frac{(U \cdot 4\pi R^2)^2}{\varepsilon} \cdot \frac{1}{S_1} = U^2 \cdot 4\pi \cdot 4\pi R^2 \cdot \frac{1}{S_1}. \tag{23} \]

If simplifying calculation as a spherical plate, the surface area of plate \(S_1 = 4\pi R^2 \), we can get

\[f = 4\pi \varepsilon U^2. \tag{24} \]

This is the concised formula that finally turned out, from which we can tell the maximum lift force produced by spherical asymmetric capacitor under high voltage loaded.

\[f = \left(2\varepsilon U^2 \ln^2 \left(1 + \left(\frac{H_2}{(R_1 + d)}\right)\right) \ln^2 \left(\frac{H_2}{R_1} \ln \left(1 + \left(\frac{H_2}{(R_2 + d)}\right)\right)\right) \right) \cdot \left(\frac{1}{\pi R_1^2} - \frac{1}{H_2^2}\right) \]

\[= \left(2 \times 8.85 \times 10^{-12} \times 0.45 \times 30000^2 \times \ln^2 \left(1 + \left(0.3/(8 \times 10^{-5} + 0.4)\right)\right) \ln^2 \left(0.3/8 \times 10^{-5} \times \ln \left(1 + \left(0.3/(8 \times 10^{-5} + 0.4)\right)\right)\right) \right) \cdot \left(\frac{1}{\pi R_1^2} - \frac{1}{0.3}\right) \]

\[= 0.115 N \approx 11.7 \text{ gf}. \]

That is to say, a lifter loaded with 30 kV voltage can produce a largest lift force of 11.7 gf.

3.2. Lift Force Estimation of High-Voltage Charged Conducting Sphere. As we know, when a high voltage loads on human body, our hair may be lifted up by the static electricity [17]. But there is no precise data or concrete calculating method of the length of the lifted hair by the high voltage. By equation (24), the mentioned problem can be solved. We can use the formula to quantitatively calculate the hair length lifted by the static electric field. The details are shown as follows.

3.2.1. Initial Conditions. Voltage loaded on the head \(U = 100 \text{kV} \), diameter of the human head \(D = 10 \text{ cm} = 1 \times 10^{-2} \text{ m} \), average diameter of the hair \(D_h = 70 \mu \text{m} = 70 \times 10^{-8} \text{ m} \), density of the hair \(\rho = 1.25 \text{g/cm}^3 = 1.25 \times 10^3 \text{ kg/m}^3 \), and permittivity of atmosphere \(\varepsilon = 8.85 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2} \).

3.2.2. Target Problem. When the voltage is loaded on the hair under the above initial conditions, what is the maximum length of the hair \((I_h = ?)\) that can be lifted up?

3.2.3. Solving Process. In this case, the head and ground can be considered as the two plates of asymmetric, where the head may be regarded as a small plate and its area of sphere surface is \(S_1 \) and the distant ground as a large plate and its area of flat surface \(S_2 \). However, \(S_2 \gg S_1 \), and the distance between the two plates \(d \gg \sqrt{S_1} \). The voltage loaded between small plate (head) and large plate (ground) should not reach to breakdown threshold. Under this condition, we apply equation (24) to calculate the electrostatic lift force acted on hairs.

The sum of the electrostatic lift force acted on the hair is

\[f = 4\pi \varepsilon U^2 \]

\[= 4 \times 3.14 \times 8.85 \times 10^{-12} \times (100 \times 10^3)^2 \tag{26} \]

\[= 1.11 \text{ N}. \]
The surface area of the head is

\[S_1 = \pi D^2 \]

\[= 3.14 \times (10^{-2})^2 \]

\[= 3.14 \times 10^{-4} \text{ m}^2. \]

(27)

The intensity of pressure supported by electrostatic force is

\[p = \frac{f}{S_1} = \frac{1.11 \times 10^6}{3.14 \times 10^{-4}} = 3.54 \times 10^9 \text{ Pa}. \]

(28)

The average transverse area of a hair is

\[S_h = \frac{\pi D_h^2}{4} \]

\[= \frac{3.14 \times (70 \times 10^{-6})^2}{4} \]

\[= 3.8 \times 10^{-9} \text{ m}^2. \]

(29)

Head surface area occupied by a hair can support a mass by the electrostatic force:

\[m_h = \frac{G_h}{g} \]

\[= \frac{3.8 \times 10^{-9} \times 3.54 \times 10^3}{9.8} \]

\[= 1.4 \times 10^{-6} \text{ kg.} \]

(30)

The mass is converted into length of a hair:

\[l_h = \frac{V_h}{S_h} \]

\[= \frac{1.4 \times 10^{-6}}{1.25 \times 10^3 \times 3.8 \times 10^{-9}} \text{ m} \]

\[= 0.29 \text{ m.} \]

(31)

Therefore, the final result is obtained: when human being’s hair is loaded by high-voltage static electricity of DC 100 kV through a conducting metallic ball, approximately 29 cm length hair floats up into air.

4. Explanation and Conclusion

Based on some assumptions with simplified calculation, we derived lift force formula produced by an asymmetric capacitor in different conditions, with which the assess in certain survey and qualitative research can be undertaken in spite of unsatisfying precision. The method also provides a convenient way to calculate static electricity lift capacity produced by an asymmetric capacitor or lift force of lifters. It also contributes to the parameter optimization in designing [18] a larger load force of lifter formed by an asymmetric capacitor.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

The authors gratefully acknowledge the support of the Thirteenth Five-Year Plan of Hefei Institute of Physical Science of Chinese Academy of Science (Grant no. Y86CT21051, “Electric and Magnetic Propulsion System”), Research Activity Funding of Postdoctoral Fellow of Anhui Province (Grant no. 2018B250, “High-Energy Ions Accelerated Thruster”), and Natural Science Research Project of Anhui Education Department (Grant no. KJ2018A0725, “The Uniformity Optimization and Software Development for MRI Magnets”). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province.

References

[1] X. Cheng, G. Kuang, Y. Zhang et al., “Theoretical calculation of lift force for ideal electric asymmetric capacitor loaded by high voltage,” Engineering, vol. 12, no. 1, pp. 33–40, 2020.
[2] Y. Zhang, X. Cheng, P. Huang et al., “Theoretical calculation of lift force for general electric asymmetric capacitor loaded by high voltage,” *Engineering*, vol. 12, no. 1, pp. 41–46, 2020.

[3] W. G. Pell and B. E. Conway, “Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes,” *Journal of Power Sources*, vol. 136, no. 2, pp. 334–345, 2004.

[4] R. Ohyama, A. Watson, and J. S. Chang, “Electrical current conduction and electrohydrodynamically induced fluid flow in an AW type EHD pump,” *Journal of Electrostatics*, vol. 53, no. 2, pp. 147–158, 2001.

[5] A. M. Alexandre and M. J. Pinheiro, “Modeling of an EHD corona flow in nitrogen gas using an asymmetric capacitor for propulsion,” *Journal of Electrostatics*, vol. 69, no. 2, pp. 133–138, 2011.

[6] I. Celik, M. Klein, and J. Janicka, “Assessment measures for engineering LES applications,” *Journal of Fluids Engineering*, vol. 131, no. 3, Article ID 031102, 2009.

[7] K. F. Long, “The role of speculative science in driving technology,” in *Deep Space Propulsion*, Springer, New York, NY, USA, 2012.

[8] T. T. Brown, “A method of and an apparatus or machine for producing force or motion,” UK Patent No. 300311, 1928.

[9] J. Primas, M. Malić, D. Jašiková, and V. Kopecký, “Force on high voltage capacitor with asymmetrical electrodes,” in *Proceedings of the of the WASET 2010 Conference*, pp. 335–339, Amsterdam, Netherlands, June 2010.

[10] T. Bahder and Ch. Fazi, “Force on an asymmetrical capacitor,” Army Report ARL-TR-3005, Army Research Laboratory, Adelphi, MA, USA, 2003.

[11] M. Cattani, A. Vannucci, and V. G. Souza, “Lifter—high voltage plasma levitation device,” *Revista Brasileira de Ensino de Física*, vol. 37, no. 3, pp. 3307–3311, 2015.

[12] J. Rincón, L. Martínez, and R. Correa, “Experiments with an electrodynamic lifter prototype,” *Dyna*, vol. 77, no. 164, pp. 167–177, 2010.

[13] J.-B. Liu, J. Zhao, and Z.-Q. Cai, “On the generalized adjacency, Laplacian and signless Laplacian spectra of the weighted edge corona networks,” *Physica A: Statistical Mechanics and Its Applications*, vol. 540, Article ID 123073, 2020.

[14] J.-B. Liu, J. Zhao, H. He, and Z. Shao, “Valency-based topological descriptors and structural property of the generalized sierpiński networks,” *Journal of Statistical Physics*, vol. 177, no. 6, pp. 1131–1147, 2019.

[15] “What causes static hair?” https://www.reference.com/beauty-fashion/causes-static-hair-c9e490c1c0acfd4.

[16] K. Koike, O. Yoshida, A. Mamada et al., “Structural analysis of human hair fibers under the ultra-high voltage electron microscope,” *Journal of Cosmetic Science*, vol. 55, no. Suppl 2, pp. S25–S27, 2004.

[17] V. K. Otero, *The Process of Learning about Static Electricity and the Role of the Computer Simulator*, University of California and San Diego State University, San Diego, CA, USA, 2001.

[18] H. Eschenauer, J. Koski, and A. Osyczka, *Multicriteria Design Optimization*, Springer, Berlin, Germany, 1990.