On a generalization of the global attractivity for a periodically
forced Pielou’s equation

Keigo Ishiharaa and Yukihiko Nakatab*

aDepartment of Pure and Applied Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku,
Tokyo 169-8555, Japan; bBasque Center for Applied Mathematics, Bizkaia Technology Park,
Building 500 E-48160 Derio, Spain

(Received 25 February 2010; final version received 7 June 2010)

In this paper, we study the global attractivity for a class of periodic difference equation with
delay which has a generalized form of Pielou’s difference equation. The global dynamics
of the equation is characterized by using a relation between the upper limit and lower
limit of the solution. There are two possible global dynamics: zero solution is globally
attractive or there exists a periodic solution which is globally attractive. Recent results by
Camouzis and Ladas [Periodically forced Pielou’s equation, J. Math. Anal. Appl. 333 (1)
(2007) 117–127] are generalized. Two examples are given to illustrate our results.

Keywords: periodically forced difference equation; global attractivity; Pielou’s equation

1. Introduction

Several authors have studied difference equations for mathematical models in population
biology (see [1–11] and the references therein). Pielou’s equation was proposed by Pielou
in [11] as a discrete analogue of the logistic equation with delay.

Camouzis and Ladas [3] studied the following Pielou’s equation with a periodic
coefficient,

\[x_{n+1} = \frac{\beta_n x_n}{1 + x_{n-1}}, \quad n = 0, 1, 2, \ldots, \quad (1.1) \]

where \(\beta_n, n = 0, 1, 2, \ldots \) is a positive periodic sequence with an arbitrary positive integer
\(k \). Initial conditions are given by \(x_0 > 0, x_{-1} \geq 0 \). They proved that every solution
converges to 0, if \(\prod_{n=1}^{k} \beta_n \leq 1 \), while there exists a \(k \)-periodic solution which is globally
attractive, if \(\prod_{n=1}^{k} \beta_n > 1 \) by using an interesting relation between the upper limit and
lower limit of the solution. Recently, Nyerges [10] has studied the global dynamics of a
general autonomous difference equation by extending their idea. Let us introduce the main
result in Camouzis and Ladas [3].

\textbf{Theorem A. (see Camouzis and Ladas [3], Theorems 3.2, 3.3 and 3.4) If}

\[\prod_{n=1}^{k} \beta_n > 1, \]

*Corresponding author. Email: nataka@bcamath.org

ISSN 1023-6198 print/ISSN 1563-5120 online
© 2012 Taylor & Francis
http://dx.doi.org/10.1080/10236198.2010.503239
http://www.tandfonline.com
then there exists a k-periodic solution x^*_n such that $x^*_n = x^*_{n+k}$ which is globally attractive, that is, for any solution of (1.1), it holds that

$$\lim_{n \to +\infty} (x_n - x^*_n) = 0.$$

In this paper, we further generalize Theorem A. The present paper is focused on non-autonomous difference equations, different from that of Nyerges [10]. We shall study the following difference equation

$$x_{n+1} = x_n f_n(x_{n-1}), \quad n = 0, 1, 2, \ldots,$$

where $f_n(x), n = 0, 1, 2, \ldots,$ is continuous, bounded and positive function on $x \in [0, +\infty)$ and k-periodic on n, that is

$$f_n(x) = f_{n+k}(x), \quad \text{where } k \text{ is an arbitrary positive integer}.$$

It is assumed that the initial conditions are given by $x_0 = x^0 > 0$, $x_{-1} = x^{-1} \geq 0$. For the function $f_n(x), n = 1, 2, \ldots, k$, we impose the following monotonicity property

$$f_n(x) \text{ is strictly decreasing on } x \in [0, +\infty) \text{ for } n = 1, 2, \ldots, k, \quad (1.3)$$

and

$$x f_n(x) \text{ is strictly increasing on } x \in [0, +\infty) \text{ for } n = 1, 2, \ldots, k. \quad (1.4)$$

Under the assumption (1.3), $\prod_{n=1}^{k} f_n(x)$ is also strictly decreasing on $x \in [0, +\infty)$ and hence, there exists some constant $c \geq 0$ such that

$$c = \lim_{x \to +\infty} \prod_{n=1}^{k} f_n(x).$$

The following theorem is a generalized version of Theorem A.

Theorem 1.1. Assume (1.3) and (1.4). If

$$\prod_{n=1}^{k} f_n(0) > 1 \quad \text{and} \quad \lim_{x \to +\infty} \prod_{n=1}^{k} f_n(x) < 1, \quad (1.5)$$

then there exists a k-periodic solution x^*_n such that $x^*_n = x^*_{n+k}$ which is globally attractive, that is, for any solution of (1.2), it holds that

$$\lim_{n \to +\infty} (x_n - x^*_n) = 0.$$

One can see that assumptions (1.3) and (1.4) are nice properties to obtain the global character of the periodic difference equation which has a form (1.2). Motivated by Camouzis and Ladas [3], we also find a useful relation between the upper limit and lower limit of the solution. Then, we can obtain the existence of k-periodic solution which is globally attractive if (1.5) holds.

This paper is organized as follows. At first, we consider the case where every solution approaches to zero solution in Section 2. In Section 3, we show that every solution is bounded above and below by a positive constant, respectively. This makes possible to consider a set of
the upper limit and lower limit of the solutions which are positive constants (see (3.5)). In
Sections 4 and 5, we consider the existence of a k-periodic solution which is globally
attractive. We divide the discussion into two cases, k is an even integer in Section 4 and k is an
odd integer in Section 5. It is important to establish the relation (see Lemmas 4.5 and 5.3)
between the upper limit and lower limit of the solution in these sections. In Section 6, we
apply Theorem 1.1 to two non-autonomous difference equations. The global attractivity for a
delayed Beverton–Holt equation with a periodic coefficient is established.

2. Global attractivity of zero solution
First of all, we consider the case where every solution approaches to zero. Let us introduce
the following result which generalizes Theorem 3.1 in Camouzis and Ladas [3].

Theorem 2.1. Assume (1.3). If
\[
\prod_{n=1}^{k} f_n(0) \leq 1,
\]
then, for any solution of (1.2), it holds that
\[
\lim_{n \to +\infty} x_n = 0.
\]

Proof. We have
\[
\prod_{n=1}^{k} f_n(x_n) = \begin{cases}
< \prod_{n=1}^{k} f_n(0) & \text{if there exists } n \in \{1, 2, \ldots, k\} \text{ such that } x_n > 0, \\
= \prod_{n=1}^{k} f_n(0) & \text{for } x_n = 0, \ n = 1, 2, \ldots, k,
\end{cases}
\]
from (1.3). Since $x_n > 0$ for $n = 1, 2, \ldots$, for the given initial conditions $x_0 = x^0 > 0,
x_{-1} = x^{-1} \geq 0$, it holds
\[
x_n = x_{n-k} \prod_{j=1}^{k} f_{n-j}(x_{n-j-1}) < x_{n-k}, \quad \text{for } n = k + 1, \ k + 2, \ldots.
\]
Thus, we obtain the conclusion and the proof is complete. \qed

3. Permanence
In this section, we show that every solution is bounded above and below by a positive
constant, respectively, if (1.5) holds. Based on the following result, we investigate the
existence of the periodic solution which is globally attractive for any solution in Sections 4
and 5.

Theorem 3.1. Assume (1.3). If (1.5), then, for any solution of (1.2), it holds that
\[
0 < \bar{x} \left(\min_{1 \leq n \leq k} f_n(x) \right)^k \leq \liminf_{n \to +\infty} x_n \leq \limsup_{n \to +\infty} x_n \leq \bar{x} \prod_{n=1}^{k} f_n(0) < +\infty,
\]
where $\bar{x} = \bar{x} \prod_{n=1}^{k} f_n(0)$ and \bar{x} is a unique positive solution of $\prod_{n=1}^{k} f_n(x) = 1$.
Proof. We see that there exists \(\bar{x} < +\infty \) such that \(\prod_{n=1}^{k} f_n(\bar{x}) = 1 \) by (1.5). Suppose that \(\limsup_{n \to +\infty} x_n = +\infty \). Then, there exists a subsequence \(\{n_m\}_{m=1}^{+\infty} \) such that

\[
\hat{x}_{n_m} = \max_{0 \leq n \leq n_m} x_n \quad \text{and} \quad \lim_{m \to +\infty} \hat{x}_{n_m} = \limsup_{n \to +\infty} x_n = +\infty. \tag{3.1}
\]

From (1.2), it holds that

\[
x_{\hat{n}_m} = x_{\hat{n}_m-1} f_{\hat{n}_m-1}(x_{\hat{n}_m-2}) \\
= x_{\hat{n}_m-2} f_{\hat{n}_m-2}(x_{\hat{n}_m-3}) f_{\hat{n}_m-1}(x_{\hat{n}_m-2})
= \ldots \\
= x_{\hat{n}_m-k} \prod_{j=1}^{k} f_{\hat{n}_m-j}(x_{\hat{n}_m-j-1}). \tag{3.2}
\]

From (3.1) and (3.2), we see

\[
\prod_{j=1}^{k} f_{\hat{n}_m-j}(x_{\hat{n}_m-j-1}) \geq 1,
\]

and, by (1.3), it follows

\[
\prod_{j=1}^{k} f_{\hat{n}_m-j}(x_{\hat{n}_m-j-1}) \geq \prod_{j=1}^{k} f_{\hat{n}_m-j}(x_{\hat{n}_m-j-1}) \geq 1,
\]

where

\[
x_{\hat{n}_m-j-1} = \min_{1 \leq j \leq k} x_{n_m-j-1}.
\]

Then, we see \(x_{\hat{n}_m-j-1} \leq \bar{x} \) and hence, from (3.2), we obtain

\[
x_{\hat{n}_m} = x_{\hat{n}_m-j-1} \prod_{j=1}^{j+1} f_{\hat{n}_m-j}(x_{\hat{n}_m-j-1}) \leq \bar{x} \prod_{n=1}^{k} f_n(0) < +\infty,
\]

which leads a contradiction to our assumption. Thus,

\[
\limsup_{n \to +\infty} x_n < +\infty.
\]

Moreover, similar to the above discussion, we obtain that

\[
\limsup_{n \to +\infty} x_n \leq \bar{x} \prod_{n=1}^{k} f_n(0) < +\infty.
\]

Next, suppose that \(\liminf_{n \to +\infty} x_n = 0 \). Then, there exists a subsequence \(\{n_m\}_{m=1}^{+\infty} \) such that

\[
x_{n_m} = \min_{0 \leq n \leq n_m} x_n \quad \text{and} \quad \lim_{m \to +\infty} x_{n_m} = \liminf_{n \to +\infty} x_n = 0. \tag{3.3}
\]
From (1.2), it holds that
\[x_{n+1} = x_{n-1} f_{n+1}^{-1}(x_{n-2}) = x_{n-2} f_{n+1}^{-2}(x_{n-3}) f_{n+1}^{-1}(x_{n-2}) = \ldots = x_{n-k} \prod_{j=1}^{k} f_{n+j}^{-j}(x_{n+j-1}). \] (3.4)

From (3.3) and (3.4), we see
\[\prod_{j=1}^{k} f_{n+j}^{-j}(x_{n+j-1}) \leq 1, \]
and, by (1.3), it follows
\[\prod_{j=1}^{k} f_{n+j}^{-j}(x_{n+j-1}) \leq \prod_{j=1}^{k} f_{n+j}^{-j}(x_{n+j-1}) \leq 1, \]
where
\[x_{n+j-1} = \max_{1 \leq j \leq k} x_{n+j-1}. \]
Then, we see \(x_{n+j-1} \geq \bar{x} \). Hence, from (3.4), we obtain
\[x_n \geq \bar{x} \left(\min_{1 \leq n \leq k} f_n(\bar{x}) \right)^k > 0, \]
where \(\bar{x} = \bar{x} \prod_{n=1}^{k} f_n(0) \). This leads a contradiction to our assumption. Thus, we obtain
\[\liminf_{n \to +\infty} x_n > 0. \]
Moreover, similar to the above discussion, we obtain
\[\liminf_{n \to +\infty} x_n \geq \bar{x} \left(\min_{1 \leq n \leq k} f_n(\bar{x}) \right)^k > 0. \]
Hence, the proof is complete. \(\Box \)

Remark 3.2. The assumption (1.4) is not needed for the permanence of the solution.

Hereafter, we assume that (1.3) and (1.4) hold. We are interested in the existence of \(k \)-periodic solution which is globally attractive. Let us introduce some notations which are
used throughout the paper. At first, we set

$$
\begin{align*}
S_h &= \limsup_{n \to \infty} x_{kn+h}, \\
I_h &= \liminf_{n \to \infty} x_{kn+h},
\end{align*}
$$

and will show

$$Sh = Ih, \quad \text{for } h = 1, 2, \ldots, k,$$

holds in order to establish the existence of the periodic solution which is globally attractive. Obviously, by Theorem 3.1, we see $(Sh, Ih) \in (0, \infty) \times (0, \infty)$ if (1.5) holds. Further, from (3.5), it follows

$$
\begin{align*}
S_h &= \limsup_{n \to +\infty} x_{kn+h} = \limsup_{n \to +\infty} x_{k(n+j)+h} = S_{kj+h}, \\
I_h &= \liminf_{n \to +\infty} x_{kn+h} = \liminf_{n \to +\infty} x_{k(n+j)+h} = I_{kj+h},
\end{align*}
$$

where j is some integer and relation (3.6) will be used if necessary. We, further, introduce two sets of subsequences $\{n^h_m\}_{m=0}^{+\infty}$ and $\{n^{h+}_{m}\}_{m=0}^{+\infty}$ for $h = 1, 2, \ldots, k$ such that

$$
\begin{align*}
\lim_{m \to +\infty} x_{k(n^h_m)+h} &= \limsup_{n \to +\infty} x_{kn+h} = S_h, \\
\lim_{m \to +\infty} x_{k(n^{h+}_m)+h} &= \liminf_{n \to +\infty} x_{kn+h} = I_h.
\end{align*}
$$

Finally, for simplicity of the proof, we also define $f_h(x)$ as

$$f_h(x) = f_{k+h}(x) \quad \text{for } h = -1, -2, \ldots, -k.$$

4. **Global attractivity for the case where k is an even integer**

In this section, we show that Theorem 1.1 holds when k is an even integer. For the reader, we first consider the case $k = 2$ in Section 4.1. (4.1) in Lemma 4.1 has an important role in this subsection. Then, we give Theorem 4.2 which shows that there exists a 2-periodic solution which is globally attractive. In Section 4.2, we generalize these results to the case where k is an arbitrary even integer.

4.1 **Case: $k = 2$**

We introduce the following lemma which plays a crucial role in the proof of Theorem 4.2.

Lemma 4.1. Let $k = 2$. Assume (1.3) and (1.4). If (1.5), then it holds that

$$f_h(I_{h-1})f_{h-1}(S_h) = 1,$$

for $h = 1, 2$.
Proof. At first, we see that

\[x_{k+h} = x_{k+h-1}(x_{k+h-2} + h) \]

for \(h = 1, 2 \), from (1.2) and by considering the limiting equation of (4.2) (letting \(m \to +\infty \)) and using (1.3) and (1.4), it follows

\[S_h = S_{h-2} f_{h-2}(S_{h-3} f_{h-1}(S_{h-2})) = S_{h} f_{h-1}(S_{h}). \]

Similarly, (by considering the limiting equation of (4.2) for the subsequences \(\{I_m^h\}_{m=0}^{+\infty} \); \(h = 1, 2 \) and using (1.3) and (1.4)), we can obtain

\[I_h = I_{h-2} f_{h-2}(S_{h-3} f_{h-1}(I_{h-2})) = I_{h} f_{h}(S_{h-1}(I_{h})). \]

Consequently, by (4.3) and (4.4), the following holds

\[
\begin{cases}
1 \leq f_{h}(I_{h-1}) f_{h-1}(S_{h}), \\
1 \geq f_{h}(S_{h-1}) f_{h-1}(I_{h}),
\end{cases}
\]

for \(h = 1, 2 \), from which, we obtain (4.1) and the proof is complete.

Then, we obtain the following result.

Theorem 4.2. Let \(k = 2 \). Assume (1.3) and (1.4). If (1.5), then there exists a 2-periodic solution \(x^*_n \) such that \(x^*_n = x^*_{n+2} \) which is globally attractive, that is, for any solution of (1.2), it holds that

\[\lim_{n \to \infty} (x_n - x^*_n) = 0. \]

Proof. In order to obtain the conclusion, we will show

\[S_h = I_h, \quad h = 1, 2. \]

Let

\[U_{h,j} = \lim_{m \to +\infty} x_{k+h+j} \quad \text{for} \quad j = 1, 2, \ldots, 5, \]

and we claim

\[U_{h,j} = \begin{cases} S_{h-j} & \text{for} \quad j = 2, 4, \\
I_{h-j} & \text{for} \quad j = 1, 3, 5, \end{cases} \]

for \(h = 1, 2 \).
At first, we see that it holds

\[x_{k\bar{h}^m_{n}+h-j} = x_{k\bar{h}^m_{n}+h-j-2} f_{k\bar{h}^m_{n}+h-j-2}(x_{k\bar{h}^m_{n}+h-j-3}) f_{k\bar{h}^m_{n}+h-j-1}(x_{k\bar{h}^m_{n}+h-j-2}) \]

\[= x_{k\bar{h}^m_{n}+h-j-2} f_{h-j-2}(x_{k\bar{h}^m_{n}+h-j-3}) f_{h-j-1}(x_{k\bar{h}^m_{n}+h-j-2}), \]

\[(4.7) \]

for \(h = 1, 2 \) and \(j = 0, 1, 2, \ldots \) from (1.2).

Firstly, we show

\[U_{h,h-j} = \begin{cases} S_{h-j} = S_h & \text{for } j = 2, \\ I_{h-j} = I_{h-1} & \text{for } j = 3, \end{cases} \]

\[(4.8) \]

for \(h = 1, 2 \). Suppose that there exists some \(\bar{h} \in \{1, 2\} \) such that \(U_{h,\bar{h}-2} < S_h \) or \(U_{h,\bar{h}-3} > I_{h-1} \). By considering the limiting equation of (4.7) with \(j = 0 \), it follows

\[S_h = U_{h,\bar{h}-2} f_{\bar{h}}(U_{h,\bar{h}-3}) f_{h-1}(U_{h,\bar{h}-2}). \]

Then, by (1.3) and (1.4), it follows \(S_h < S_h f_{\bar{h}}(I_{h-1}) f_{h-1}(S_h) \), which implies

\[1 < f_{\bar{h}}(I_{h-1}) f_{h-1}(S_h), \quad \text{for } h = \bar{h}. \]

This leads a contradiction to (4.1) in Lemma 4.1. Thus, (4.8) holds.

Next, we show

\[U_{h,h-j} = \begin{cases} S_{h-j} = S_h & \text{for } j = 4, \\ I_{h-j} = I_{h-1} & \text{for } j = 5, \end{cases} \]

\[(4.9) \]

for \(h = 1, 2 \). Suppose that there exists some \(\bar{h} \in \{1, 2\} \) such that \(U_{h,\bar{h}-4} < S_h \) or \(U_{h,\bar{h}-5} > I_{h-1} \). By considering the limiting equation of (4.7) with \(j = 2 \) and substituting (4.8), it follows

\[U_{h,h-2} = S_h = U_{h,\bar{h}-4} f_{\bar{h}}(U_{h,\bar{h}-5}) f_{h-1}(U_{h,\bar{h}-4}), \]

for \(h = 1, 2 \). Then, by (1.3) and (1.4), it follows \(S_{\bar{h}} < S_h f_{\bar{h}}(I_{h-1}) f_{h-1}(S_{\bar{h}}) \) which implies

\[1 < f_{\bar{h}}(I_{h-1}) f_{h-1}(S_{\bar{h}}), \quad \text{for } h = \bar{h}. \]

This gives a contradiction to (4.1) in Lemma 4.1. Thus, (4.9) holds.

By considering the limiting equation of (4.7) with \(j = 1 \) and using (4.8) and (4.9), we see

\[U_{h,h-1} = U_{h,h-3} f_{h-1}(U_{h,h-4}) f_{h}(U_{h,h-3}) = I_{h-1} f_{h-1}(S_h) f_{h}(I_{h-1}). \]

Hence, it follows

\[U_{h,h-1} = I_{h-1}, \]

\[(4.10) \]

for \(h = 1, 2 \), by (4.1) in Lemma 4.1. Consequently, (4.6) holds from (4.8), (4.9) and (4.10). From (1.2), it holds

\[x_{k\bar{h}^m_{n}+h} = x_{k\bar{h}^m_{n}+h-1} f_{k\bar{h}^m_{n}+h-1}(x_{k\bar{h}^m_{n}+h-2}) = x_{k\bar{h}^m_{n}+h-1} f_{h-1}(x_{k\bar{h}^m_{n}+h-2}), \]
and by considering the limiting equation and using (4.6), we obtain
\[S_h = U_{h,h-1} f_{h-1}(U_{h,h-2}) = I_{h-1} f_{h-1}(S_h). \]

By (4.1) in Lemma 4.1, it holds
\[S_h f_h(I_{h-1}) = I_{h-1} f_{h-1}(S_h) f_h(I_{h-1}) = I_{h-1}, \tag{4.11} \]
for \(h = 1, 2 \). On the other hand, similar to the above discussion, it also holds
\[I_h f_h(S_{h-1}) = S_{h-1} f_{h-1}(I_h) f_h(S_{h-1}) = S_{h-1}, \tag{4.12} \]
for \(h = 1, 2 \). Consequently, it holds
\[I_{h-1} = S_h f_h(I_{h-1}) \leq I_h f_h(S_{h-1}) = S_{h-1} \]
by (4.11) and (4.12), and hence, (4.5) holds. Then, from (3.5), we see
\[\lim_{n \to +\infty} x_{kn+h} = \lim_{n \to +\infty} x_{kn+h} = \lim_{n \to +\infty} x_{kn+h}, \]
for \(h = 1, 2 \) and there exist two positive constants \(x_1^* = S_1 = I_1 \) and \(x_2^* = S_2 = I_2 \) such that
\[x_2^* = \lim_{n \to +\infty} x_{2n}, \]
and
\[x_1^* = \lim_{n \to +\infty} x_{2n+1}. \]
The proof is complete. \(\square \)

4.2 Case: \(k \) is an even integer

In this subsection, we generalize results in Section 4.1 to the case where \(k \) is an arbitrary even integer.

Lemma 4.3. Let \(k \) be an even integer. Assume (1.3) and (1.4). If (1.5), then it holds that
\[(f_{h-k}(I_{h-k-1}) f_{h+1-k}(S_{h-k})) \cdots (f_{h-4}(I_{h-5}) f_{h-3}(S_{h-4})) (f_{h-2}(I_{h-3}) f_{h-1}(S_{h-2})) = 1, \tag{4.13} \]
for \(h = 1, 2, \ldots, k \).

Proof. At first, from (1.2), we see that it holds
\[x_{kh_n+h} = x_{kh_n+h-2} f_{kh_n+h-2}(x_{kh_n+h-3} f_{kh_n+h-1}(x_{kh_n+h-2}) \]
\[= x_{kh_n+h-2} f_{h-2}(x_{kh_n+h-3}) f_{h-1}(x_{kh_n+h-2}), \tag{4.14} \]
for \(h = 1, 2, \ldots, k \), and by considering the limiting equation of (4.14) and using (1.3) and (1.4), it follows
\[S_h \leq S_{h-2} f_{h-2}(I_{h-3}) f_{h-1}(S_{h-2}), \tag{4.15} \]
for $h = 1, 2, \ldots, k$. From (4.15), we obtain

$$S_h \leq S_{h-2}(f_{h-2}(I_{h-3})f_{h-1}(S_{h-2}))$$
$$\leq S_{h-4}(f_{h-4}(I_{h-5})f_{h-3}(S_{h-4}))(f_{h-2}(I_{h-3})f_{h-1}(S_{h-2}))$$
$$\leq \ldots$$
$$\leq S_{h-k}G_h,$$

where

$$\hat{G}_h = (f_{h-k}(I_{h-k-1})f_{h+1-k}(S_{h-k})) \ldots (f_{h-4}(I_{h-5})f_{h-3}(S_{h-4}))$$
$$\times (f_{h-2}(I_{h-3})f_{h-1}(S_{h-2})).$$ \hfill (4.16)

Then

$$1 \leq \hat{G}_h$$

holds for $h = 1, 2, \ldots, k$, because we have $S_h = S_{h-k}$ from (3.6).

Similarly (by considering the limiting equation of (4.14) for the subsequences $\{h_h\}_{m=0}^{+\infty}, h = 1, 2, \ldots, k$ and using (1.3) and (1.4)), it follows

$$I_h \geq I_{h-2}(f_{h-2}(S_{h-3})f_{h-1}(I_{h-2}))$$ \hfill (4.17)

for $h = 1, 2, \ldots, k$. From (4.17), we obtain

$$I_h \geq I_{h-2}(f_{h-2}(S_{h-3})f_{h-1}(I_{h-2}))$$
$$\geq I_{h-4}(f_{h-4}(S_{h-5})f_{h-3}(I_{h-4}))(f_{h-2}(S_{h-3})f_{h-1}(I_{h-2}))$$
$$\geq \ldots$$
$$\geq I_{h-k}G_h,$$

where

$$G_h = (f_{h-k}(S_{h-k-1})f_{h+1-k}(I_{h-k})) \ldots (f_{h-4}(S_{h-5})f_{h-3}(I_{h-4}))$$
$$\times (f_{h-2}(S_{h-3})f_{h-1}(I_{h-2})).$$ \hfill (4.18)

Then

$$1 \geq G_h$$

holds for $h = 1, 2, \ldots, k$, because we have $I_h = I_{h-k}$ from (3.6). Consequently, it holds that

$$G_h \leq 1 \leq \hat{G}_h, \quad \text{for } h = 1, 2, \ldots, k.$$ \hfill (4.19)
By (4.16) and (4.18), we see
\[
\tilde{G}_1 = G_k \quad \text{and} \quad \tilde{G}_h = G_{h-1} \quad \text{for} \ h \in \{2, 3, \ldots, k\}.
\] (4.20)

Therefore, we obtain (4.13) from (4.19) and (4.20). The proof is complete.

We show that there exists a \(k\)-periodic solution which is globally attractive for any solution for the case where \(k\) is an even integer.

THEOREM 4.4. Let \(k\) be an even integer. Assume (1.3) and (1.4). If (1.5), then there exists a \(k\)-periodic solution \(x^*_n\) such that \(x^*_n = x^*_{n+k}\) which is globally attractive, that is, for any solution of (1.2), it holds that
\[
\lim_{n \to +\infty} (x_n - x^*_n) = 0.
\]

Proof. To obtain the conclusion, we will show
\[
S_h = I_h \quad \text{for} \ h = 1, 2, \ldots, k.
\] (4.21)

Let
\[
U_{h,j} = \lim_{m \to +\infty} x_{kn_j + h - j} \quad \text{for} \ j = 2, 3, \ldots, k + 1,
\]
and we claim that it holds
\[
U_{h,j} = \begin{cases}
S_{h-j} & \text{for} \ j = 2, 4, \ldots, k, \\
I_{h-j} & \text{for} \ j = 3, 5, \ldots, k + 1,
\end{cases}
\] (4.22)

for \(h = 1, 2, \ldots, k\).

From (1.2), it holds
\[
x_{kn_j + h - j} = x_{kn_j + h - j - 2} f_{kn_j + h - j - 2}(x_{kn_j + h - j - 3} f_{kn_j + h - j - 1}(x_{kn_j + h - j - 2}))
\]
\[
= x_{kn_j + h - j - 2} f_{h-j-2}(x_{kn_j + h - j - 3} f_{h-j-1}(x_{kn_j + h - j - 2})).
\] (4.23)

Firstly, we show
\[
U_{h,j} = \begin{cases}
S_{h-j} & \text{for} \ j = 2, \\
I_{h-j} & \text{for} \ j = 3,
\end{cases}
\] (4.24)

for \(h = 1, 2, \ldots, k\). Suppose that there exists \(\tilde{h}\) such that \(U_{\tilde{h}, \tilde{h}-2} < S_{\tilde{h}-2}\) or \(U_{\tilde{h}, \tilde{h}-3} > I_{\tilde{h}-3}\). By letting \(m \to +\infty\) and considering the limiting equation of (4.23) with \(j = 0\), we obtain
\[
S_h = U_{h,h-2} f_{h-2}(U_{h,h-3}) f_{h-1}(U_{h,h-2}),
\] (4.25)
for \(h = 1, 2, \ldots, k \). Then, we see that one of the following holds

\[
\prod_{i=1}^{p} S_{2i} < \prod_{i=1}^{p} [S_{2i-2} f_{2i-2}(I_{2i-3}) f_{2i-1}(S_{2i-2})],
\]

or

\[
\prod_{i=0}^{p-1} S_{2i+1} < \prod_{i=0}^{p-1} [S_{2i-1} f_{2i-1}(I_{2i-2}) f_{2i}(S_{2i-1})],
\]

where \(p = (k/2) \), since

\[
\begin{align*}
\prod_{i=1}^{p} S_{2i} &= \prod_{i=1}^{p} [U_{2i,2i-2} f_{2i-2}(U_{2i,2i-3}) f_{2i-1}(U_{2i,2i-2})], \\
\prod_{i=0}^{p-1} S_{2i+1} &= \prod_{i=0}^{p-1} [U_{2i+1,2i-1} f_{2i-1}(U_{2i+1,2i-2}) f_{2i}(U_{2i+1,2i-1})],
\end{align*}
\]

follows from (4.25). Then, we obtain

\[
1 < \prod_{i=1}^{p} [f_{2i-2}(I_{2i-3}) f_{2i-1}(S_{2i-2})],
\]

or

\[
1 < \prod_{i=0}^{p-1} [f_{2i-1}(I_{2i-2}) f_{2i}(S_{2i-1})],
\]

and this gives a contradiction to (4.13) with \(h = k \) and \(h = k - 1 \), respectively, in Lemma 4.3. Thus (4.24) holds.

Next, we assume that

\[
U_{h,h-j} = \begin{cases}
S_{h-j} & \text{for } j = j_1, \\
I_{h-j} & \text{for } j = j_1 + 1,
\end{cases}
\]

(4.26)

for \(h = 1, 2, \ldots, k \), where \(j_1 \) is a positive even number. Under assumption (4.26), we show

\[
U_{h,h-j} = \begin{cases}
S_{h-j} & \text{for } j = j_1 + 2, \\
I_{h-j} & \text{for } j = j_1 + 3,
\end{cases}
\]

(4.27)

for \(h = 1, 2, \ldots, k \). Suppose that there exists \(\bar{h} \) such that \(U_{\bar{h},h-j_1-2} < S_{h-j_1-2} \), or \(U_{\bar{h},h-j_1-3} > I_{h-j_1-3} \). By considering the limiting equation of (4.23) with \(j = j_1 \) and substituting (4.26),

\[
U_{h,h-j_1} = S_{h-j_1} = U_{h,h-j_1-2} f_{h-j_1-2}(U_{h,h-j_1-3}) f_{h-j_1-1}(U_{h,h-j_1-2}),
\]

for \(h = 1, 2, \ldots, k \). Then, similar to the above discussion, we can show that (4.27) holds. Thus, (4.22) holds by mathematical induction.
From (1.2), it holds

\[x_{kn+h} = x_{kn+h-(k-1)}f_{kn+h-(k-1)}(x_{kn+h-(k-2)}f_{kn+h-(k-2)}(x_{kn+h-(k-3)}f_{kn+h-(k-3)}(x_{kn+h-(k-2)}f_{kn+h-(k-2)}(x_{kn+h-(k-1)}f_{kn+h-(k-1)}(x_{kn+h+(k-2)}f_{kn+h+(k-2)}(x_{kn+h+(k-1)}f_{kn+h+(k-1)}(x_{kn+h+1})), \]

and by considering the limiting equation and using (4.22), we obtain

\[S_h = U_{h-h-(k-1)}f_{h-(k-1)}(U_{h-h-k})\cdots f_{h-2}(U_{h-h-2})f_{h-1}(U_{h-h-1}) \]

By (4.13) in Lemma 4.3, we see

\[f_{h-(k-1)}(S_{h-k})\cdots f_{h-2}(I_{h-3})f_{h-1}(S_{h-2}) = \frac{1}{f_{h-k}(I_{h-k-1})}, \]

hence, it holds that

\[S_h f_{h-k}(I_{h-k-1}) = I_{h+1}, \]

(4.28)

for \(h = 1, 2, \ldots, k \). Similar to the above discussion, it also holds

\[I_h f_{h-k}(S_{h-k-1}) = S_{h+1}, \]

(4.29)

for \(h = 1, 2, \ldots, k \). Consequently, it holds

\[I_{h+1} = S_h f_{h-k}(I_{h-k-1}) \leq I_h f_{h-k}(S_{h-k-1}) = S_{h+1}, \]

by (4.28) and (4.29), and hence (4.21) holds. Then, from (3.5), we see

\[\liminf_{n \to +\infty} x_{kn+h} = \limsup_{n \to +\infty} x_{kn+h} = \lim_{n \to +\infty} x_{kn+h}, \]

for \(h = 1, 2, \ldots, k \), and there exist \(k \) positive constants \(x^*_h = S_h = I_h, h = 1, 2, \ldots, k \) such that

\[x^*_h = \lim_{n \to +\infty} x_{kn+h}. \]

The proof is complete. \(\square \)

5. **Global attractivity for the case where \(k \) is an arbitrary odd integer**

In this section, we show that Theorem 1.1 holds when \(k \) is an odd integer. For the reader, we first consider the case \(k = 3 \) in Section 5.1. In Section 5.1, Lemma 5.1 has an important role in this subsection. Then, we give Theorem 5.2 which states that there exists a 3-periodic solution which is globally attractive. In Section 5.2, we generalize these results to the case where \(k \) is an arbitrary odd integer.

5.1 **Case: \(k = 3 \)**

First, we introduce the following lemma which plays a crucial role in the proof of Theorem 5.2.
Lemma 5.1. Let \(k = 3 \). Assume (1.3) and (1.4). If (1.5), then it holds that

\[
\begin{align*}
S_h &= S_{h-2}f_{h-2}(I_{h-3})f_{h-1}(S_{h-2}), \\
I_h &= I_{h-2}f_{h-2}(S_{h-3})f_{h-1}(I_{h-2}),
\end{align*}
\]

for \(h = 1, 2, 3 \).

Proof. From (1.2), it holds

\[
x_{kn+h} = x_{kn+h-2}f_{kn+h-2}(x_{kn+h-3})f_{kn+h-1}(x_{kn+h-2}) = x_{kn+h-2}f_{h-2}(x_{kn+h-3})f_{h-1}(x_{kn+h-2}),
\]

for \(h = 1, 2, 3 \). Then, it follows that

\[
\begin{align*}
x_{k\theta_m+h}^h &= x_{k\theta_m+h-2}f_{h-2}(x_{k\theta_m+h-3})f_{h-1}(x_{k\theta_m+h-2}), \\
x_{k\theta_m+h}^h &= x_{k\theta_m+h-2}f_{h-2}(x_{k\theta_m+h-3})f_{h-1}(x_{k\theta_m+h-2}),
\end{align*}
\]

for \(h = 1, 2, 3 \). By considering the limiting equation and using (1.3) and (1.4), we get

\[
\begin{align*}
S_h &\leq S_{h-2}f_{h-2}(I_{h-3})f_{h-1}(S_{h-2}), \\
I_h &\leq I_{h-2}f_{h-2}(S_{h-3})f_{h-1}(I_{h-2}),
\end{align*}
\]

for \(h = 1, 2, 3 \). In order to obtain the conclusion, we show that (5.2) holds with equality. From (5.2), we see that

\[
\begin{align*}
S_h f_{h-1}(I_{h-2}) &\leq S_{h-2}f_{h-2}(I_{h-3})f_{h-1}(I_{h-2}), \\
I_{h-2}f_{h-2}(S_{h-3}) &\geq S_{h-2}f_{h-2}(I_{h-3})f_{h-1}(I_{h-2}),
\end{align*}
\]

for \(h = 1, 2, 3 \). It then follows

\[
\frac{S_h f_{h-1}(I_{h-2})}{I_{h-2}f_{h-2}(S_{h-3})} \leq \frac{S_{h-2}f_{h-2}(I_{h-3})}{I_{h-2}f_{h-2}(S_{h-3})},
\]

for \(h = 1, 2, 3 \). By multiplying (5.4), we obtain

\[
\left(\frac{S_h f_{h-1}(I_{h-2})}{I_{h-2}f_{h-2}(S_{h-3})}\right) \left(\frac{S_{h+1} f_{h-1}(I_{h-1})}{I_{h-2}f_{h-2}(S_{h-3})}\right) \leq \left(\frac{S_{h-2} f_{h-2}(I_{h-3})}{I_{h-2}f_{h-2}(S_{h-3})}\right) \left(\frac{S_{h-1} f_{h-1}(I_{h-2})}{I_{h-2}f_{h-1}(S_{h-2})}\right),
\]

and hence, it holds that

\[
\frac{S_h S_{h+1} f_{h}(I_{h-1})}{I_h I_{h+1} f_{h}(S_{h-1})} \leq \frac{S_{h-2} S_{h-1} f_{h-2}(I_{h-3})}{I_{h-2} I_{h-1} f_{h-2}(S_{h-3})},
\]
for \(h = 1, 2, 3 \). Therefore, the following inequalities hold

\[
\begin{align*}
\frac{S_1 S_2 f_1(I_3)}{I_1 I_2 f_1(S_3)} &\leq \frac{S_2 S_3 f_2(I_1)}{I_2 I_3 f_2(S_1)} \leq \frac{S_3 S_1 f_3(I_2)}{I_3 I_1 f_3(S_2)} \leq \frac{S_1 S_2 f_1(I_3)}{I_1 I_2 f_1(S_3)}, \\
\frac{S_2 S_3 f_2(I_1)}{I_2 I_3 f_2(S_1)} &\leq \frac{S_1 S_2 f_1(I_3)}{I_1 I_2 f_1(S_3)} \leq \frac{S_3 S_1 f_3(I_2)}{I_3 I_1 f_3(S_2)} \leq \frac{S_2 S_3 f_2(I_1)}{I_2 I_3 f_2(S_1)}, \\
\frac{S_1 S_2 f_1(I_3)}{I_1 I_2 f_1(S_3)} &\leq \frac{S_3 S_1 f_3(I_2)}{I_3 I_1 f_3(S_2)} \leq \frac{S_2 S_3 f_2(I_1)}{I_2 I_3 f_2(S_1)} \leq \frac{S_1 S_2 f_1(I_3)}{I_1 I_2 f_1(S_3)}, \\
\frac{S_3 S_1 f_3(I_2)}{I_3 I_1 f_3(S_2)} &\leq \frac{S_2 S_3 f_2(I_1)}{I_2 I_3 f_2(S_1)} \leq \frac{S_1 S_2 f_1(I_3)}{I_1 I_2 f_1(S_3)} \leq \frac{S_3 S_1 f_3(I_2)}{I_3 I_1 f_3(S_2)},
\end{align*}
\]

and it follows

\[
\frac{S_1 S_2 f_1(I_3)}{I_1 I_2 f_1(S_3)} \leq \frac{S_2 S_3 f_2(I_1)}{I_2 I_3 f_2(S_1)} \leq \frac{S_3 S_1 f_3(I_2)}{I_3 I_1 f_3(S_2)} \leq \frac{S_1 S_2 f_1(I_3)}{I_1 I_2 f_1(S_3)}.
\]

Hence, we see that

\[
\frac{S_1 S_2 f_1(I_3)}{I_1 I_2 f_1(S_3)} = \frac{S_2 S_3 f_2(I_1)}{I_2 I_3 f_2(S_1)} = \frac{S_3 S_1 f_3(I_2)}{I_3 I_1 f_3(S_2)} = \frac{S_1 S_2 f_1(I_3)}{I_1 I_2 f_1(S_3)}.
\] \((5.5) \)

(5.5) implies that (5.3) holds with equality and thus, (5.2) also holds with equality for \(h = 1, 2, 3 \). Therefore, we obtain the conclusion. The proof is complete. \(\square \)

Then, we obtain the following result.

Theorem 5.2. Let \(k = 3 \). Assume (1.3) and (1.4). If (1.5), then there exists a 3-periodic solution \(x^*_n \) such that \(x^*_n = x^*_{n+3} \) which is globally attractive, that is, for any solution of (1.2), it holds that

\[
\lim_{n \to +\infty} (x_n - x^*_n) = 0.
\]

Proof. In order to obtain the conclusion, we will show

\[
S_h = I_h, \quad h = 1, 2, 3. \tag{5.6}
\]

Let

\[
U_{k, k-j} = \lim_{m \to +\infty} x_{k \theta^r_n + k-j} \quad \text{for} \quad j = 1, 2, \ldots, 5,
\]

and we claim

\[
U_{k, k-j} = \begin{cases}
S_{k-j} & \text{for} \quad j = 2, 4, \\
I_{k-j} & \text{for} \quad j = 1, 3, 5.
\end{cases} \tag{5.7}
\]

At first, we see that it holds

\[
x_{k \theta^r_n + k-j} = x_{k \theta^r_n + k-j-2} f_{k \theta^r_n + k-j-2} x_{k \theta^r_n + k-j-3} f_{k \theta^r_n + k-j-3} x_{k \theta^r_n + k-j-2} \\
= x_{k \theta^r_n + k-j-2} f_{k-j-2} x_{k \theta^r_n + k-j-3} f_{k-j-3} x_{k \theta^r_n + k-j-2}, \tag{5.8}
\]

for \(j = 0, 1, 2, \ldots, \) from (1.2).
Firstly, we show
\[U_{k,k-j} = \begin{cases}
S_{k-j} & \text{for } j = 2, \\
I_{k-j} & \text{for } j = 3.
\end{cases} \tag{5.9} \]

Suppose that \(U_{k,k-2} < S_{k-2} \) or \(U_{k,k-3} > I_{k-3} \). By considering the limiting equation of (5.8) with \(j = 0 \), it follows
\[S_k = U_{k,k-2} f_{k-2}(U_{k,k-3}) f_{k-1}(U_{k,k-2}). \]

Then, by (1.3) and (1.4), it follows
\[S_k < S_{k-2} f_{k-2}(I_{k-3}) f_{k-1}(S_{k-2}). \]

This gives a contradiction to (5.1) with \(h = k \) in Lemma 5.1. Thus, (5.9) holds.

Next, we show
\[U_{k,k-j} = \begin{cases}
S_{k-j} & \text{for } j = 4, \\
I_{k-j} & \text{for } j = 5.
\end{cases} \tag{5.10} \]

Suppose that \(U_{k,k-4} < S_{k-4} \) or \(U_{k,k-5} > I_{k-5} \). By considering the limiting equation of (5.9) with \(j = 2 \) and substituting (5.9), it follows
\[U_{k,k-2} = S_{k-2} = U_{k,k-4} f_{k-4}(U_{k,k-5}) f_{k-3}(U_{k,k-4}). \]

Then, by (1.3) and (1.4), it follows
\[S_{k-2} < S_{k-4} f_{k-4}(I_{k-5}) f_{k-3}(S_{k-4}). \]

This gives a contradiction to (5.1) with \(h = k - 2 \) in Lemma 5.1. Thus, (5.10) holds.

By considering the limiting equation of (5.8) with \(j = 1 \) and using (5.9) and (5.10), it follows
\[U_{k,k-1} = U_{k,k-3} f_{k-3}(U_{k,k-4}) f_{k-2}(U_{k,k-3}) \]
\[= I_{k-3} f_{k-3}(S_{k-4}) f_{k-2}(I_{k-3}). \]

Hence, it holds
\[U_{k,k-1} = I_{k-1}, \tag{5.11} \]

by (5.1) in Lemma 5.1. Consequently, (5.7) holds from (5.9), (5.10) and (5.11).

From (1.2), it holds
\[x_{k\rho_{n+1}^{k} + k} = x_{k\rho_{n+1}^{k} + k-1} f_{k\rho_{n+1}^{k} + k-1}(x_{k\rho_{n+1}^{k}}) = x_{k\rho_{n+1}^{k} + k-1} f_{k-1}(x_{k\rho_{n+1}^{k} + k-2}), \]

and by considering the limiting equation and using (5.7), we obtain
\[S_k = I_{k-1} f_{k-1}(S_{k-2}). \tag{5.12} \]
Similar to the above discussion, it also holds
\[
I_k = S_{k-1} f_{k-1}(I_{k-2}).
\] (5.13)

Consequently, it holds
\[
I_k = S_{k-1} f_{k-1}(I_{k-2}) \leq I_{k-1} f_{k-1}(S_{k-2}) = S_h,
\]
by (5.12) and (5.13), and hence (5.6) holds. Then,
\[
\liminf_{n \to +\infty} x_{kn+h} = \limsup_{n \to +\infty} x_{kn+h} = \lim_{n \to +\infty} x_{kn+h},
\]
for \(h = 1, 2, 3 \) and there exist 3-positive constants \(x^*_h = S_h = I_h, h = 1, 2, 3 \) such that
\[
x^*_h = \lim_{n \to +\infty} x_{kn+h}.
\]
The proof is complete.

5.2 Case: \(k \) is an odd integer

Lemma 5.3. Let \(k \) be an odd integer. Assume (1.3) and (1.4). If (1.5), then it holds that
\[
\begin{cases}
S_h = S_{h-2} f_{h-2}(I_{h-3}) f_{h-1}(S_{h-2}), \\
I_h = I_{h-2} f_{h-2}(S_{h-3}) f_{h-1}(I_{h-2}),
\end{cases}
\]
(5.14)
for \(h = 1, 2, \ldots, k \).

Proof. From (1.2), it holds
\[
x_{kn+h} = x_{kn+h-2} f_{kn+h-2}(x_{kn+h-3}) f_{kn+h-1}(x_{kn+h-2})
\]
\[
= x_{kn+h-2} f_{h-2}(x_{kn+h-3}) f_{h-1}(x_{kn+h-2}),
\]
for \(h = 1, 2, \ldots, k \). Then, it follows that
\[
\begin{cases}
x_{kn+h} = x_{kn+h-2} f_{kn+h-2}(x_{kn+h-3}) f_{kn+h-1}(x_{kn+h-2}), \\
x_{kn+h} = x_{kn+h-2} f_{h-2}(x_{kn+h-3}) f_{h-1}(x_{kn+h-2}),
\end{cases}
\]
for \(h = 1, 2, \ldots, k \). By considering the limiting equation and using (1.3) and (1.4), we get
\[
\begin{cases}
S_h \leq S_{h-2} f_{h-2}(I_{h-3}) f_{h-1}(S_{h-2}), \\
I_h \leq I_{h-2} f_{h-2}(S_{h-3}) f_{h-1}(I_{h-2}),
\end{cases}
\]
(5.15)
for \(h = 1, 2, \ldots, k \). In order to obtain the conclusion, we show that (5.15) holds with equality.
From (5.15), we see that
\[
\begin{align*}
\frac{S_h f_{h+1}(I_{k-2})}{I_h f_{h+1}(S_{k-2})} & \leq \frac{S_h f_{h-2}(I_{h-3}) f_{h-1}(I_{h-2})}{I_h f_{h-2}(S_{h-3})}, \\
\frac{S_{h-2} f_{h-2}(I_{h-3})}{I_{h-2} f_{h-2}(S_{h-3})} & \geq \frac{S_{h-2} f_{h-3}(I_{h-4}) f_{h-4}(I_{h-3})}{I_{h-2} f_{h-3}(S_{h-4})}.
\end{align*}
\]
(5.16)
for \(h = 1, 2, \ldots, k \). Thus, it follows that
\[
\frac{S_h f_{h-1}(I_{h-2})}{I_h f_{h-1}(S_{h-2})} \leq \frac{S_{h-2} f_{h-2}(I_{h-3})}{I_{h-2} f_{h-2}(S_{h-3})},
\]
(5.17)
for \(h = 1, 2, \ldots, k \). By multiplying (5.17), we obtain
\[
\left(\frac{S_h f_{h-1}(I_{h-2})}{I_h f_{h-1}(S_{h-2})}\right) \left(\frac{S_{h+1} f_{h}(I_{h-1})}{I_{h+1} f_{h}(S_{h-1})}\right) \leq \left(\frac{S_{h-2} f_{h-2}(I_{h-3})}{I_{h-2} f_{h-2}(S_{h-3})}\right) \left(\frac{S_{h-1} f_{h-1}(I_{h-2})}{I_{h-1} f_{h-1}(S_{h-2})}\right),
\]
and hence, it holds that
\[
\frac{S_h S_{h+1} f_{h}(I_{h-1})}{I_h I_{h+1} f_{h}(S_{h-1})} \leq \frac{S_{h-2} S_{h-1} f_{h-2}(I_{h-3})}{I_{h-2} I_{h-1} f_{h-2}(S_{h-3})},
\]
for \(h = 1, 2, \ldots, k \). Therefore, the following inequalities hold
\[
\begin{align*}
\frac{S_h f_{h+1}(I_k)}{I_h f_{h+1}(S_k)} & \leq \frac{S_{h-1} S_{h-2} f_{h-1}(I_{h-2})}{I_{h-1} I_{h-2} f_{h-1}(S_{h-2})}, \\
\frac{S_{h-1} S_{h-2} f_{h-1}(I_{h-2})}{I_{h-1} I_{h-2} f_{h-1}(S_{h-2})} & \leq \frac{S_{h-2} S_{h-3} f_{h-2}(I_{h-3})}{I_{h-2} I_{h-3} f_{h-2}(S_{h-3})}, \\
\ldots
\end{align*}
\]
Thus, we obtain
\[
\frac{S_1 S_2 f_1(I_k)}{I_1 I_2 f_1(S_k)} = \ldots = \frac{S_{k-1} S_k f_{k-1}(I_{k-2})}{I_{k-1} I_k f_{k-1}(S_{k-2})} = \frac{S_k S_{k+1} f_{k}(I_{k-1})}{I_k I_{k+1} f_{k}(S_{k-1})}.
\]
(5.18)
(5.18) implies that (5.16) holds with equality and thus, (5.15) also holds with equality for \(h = 1, 2, \ldots, k \). Then, we obtain the conclusion. Hence, the proof is complete. \(\square \)

Theorem 5.4. Let \(k \) be an odd integer. Assume (1.3) and (1.4). If (1.5), then there exists a \(k \)-periodic solution \(x_n^* \) such that \(x_n^* = x_{n+k}^* \) which is globally attractive, that is, for any solution of (1.2), it holds that
\[
\lim_{n \to +\infty} (x_n - x_n^*) = 0.
\]
Proof. In order to obtain the conclusion, we will show

\[S_h = I_h, \quad h = 1, 2, \ldots, k. \] (5.19)

Let

\[U_{k,k-j} = \lim_{m \to +\infty} x_{k\hat{h}_m}^{j} + k-j \quad \text{for} \quad j = 1, 2, \ldots, k, \]

and we claim

\[U_{k,k-j} = \begin{cases} S_{k-j}, & \text{for} \quad j = 2, 4, \ldots, k-1, \\ I_{k-j}, & \text{for} \quad j = 1, 3, 5, \ldots, k. \end{cases} \] (5.20)

At first, we see that it holds

\[x_{k\hat{h}_m}^{j}+k-j = x_{k\hat{h}_m}^{j}+k-j-2f_{k\hat{h}_m}^{j}+k-j-2(x_{k\hat{h}_m}^{j}+k-j-3)f_{k\hat{h}_m}^{j}+k-j-1(x_{k\hat{h}_m}^{j}+k-j-2) \]

\[= x_{k\hat{h}_m}^{j}+k-j-2f_{k\hat{h}_m}^{j}+k-j-2(x_{k\hat{h}_m}^{j}+k-j-3)f_{k\hat{h}_m}^{j}+k-j-1(x_{k\hat{h}_m}^{j}+k-j-2), \] (5.21)

for \(j = 0, 1, 2, \ldots \).

Firstly, we show

\[U_{k,k-j} = \begin{cases} S_{k-j} & \text{for} \quad j = 2, \\ I_{k-j} & \text{for} \quad j = 3. \end{cases} \] (5.22)

Suppose that \(U_{k,k-2} < S_{k-2} \) or \(U_{k,k-3} > I_{k-3} \). By considering the limiting equation of (5.21) with \(j = 0 \), it follows

\[S_k = U_{k,k-2}f_{k-2}(U_{k,k-3})f_{k-1}(U_{k,k-2}). \]

Then, by (1.3) and (1.4), it follows

\[S_k < S_{k-2}f_{k-2}(I_{k-3})f_{k-1}(S_{k-2}). \]

This gives a contradiction to (5.14) with \(h = k \) in Lemma 5.3. Thus, (5.22) holds.

Next we assume that

\[U_{k,k-j} = \begin{cases} S_{k-j} & \text{for} \quad j = j_1, \\ I_{k-j} & \text{for} \quad j = j_1 + 1, \end{cases} \] (5.23)

where \(j_1 \) is a positive even integer. Under the assumption (5.23), we show

\[U_{k,k-j} = \begin{cases} S_{k-j} & \text{for} \quad j = j_1 + 2, \\ I_{k-j} & \text{for} \quad j = j_1 + 3. \end{cases} \] (5.24)
Suppose that $U_{k,k-j_2} < S_{k-j_2}$ or $U_{k,k-j_1-3} > I_{k-j_1-3}$. By considering the limiting equation of (5.21) with $j = j_1$, it follows

$$U_{k,k-j_1} = S_{k-j_1} = U_{k,k-j_1-2}f_{k-j_1-2}(U_{k,k-j_1-3}f_{k-j_1-1}(U_{k,k-j_1-2})).$$

Then, by (1.3) and (1.4), it follows

$$S_{k-j_1} < S_{k-j_1-2}f_{k-j_1-2}(I_{k-j_1-3}f_{k-1}(S_{k-j_1-2}).$$

This gives a contradiction to (5.14) with $h = k - j_1$ in Lemma 5.3. Thus, (5.24) holds.

By considering the limiting equation of (5.21) with $j = 1$ and substituting (5.22) and (5.24) with $j_1 = 2$, it follows

$$U_{k,k-1} = U_{k,k-3}f_{k-3}(U_{k,k-4})f_{k-2}(U_{k,k-3})$$

$$= I_{k-3}f_{k-3}(S_{k-4})f_{k-2}(I_{k-3}).$$

Hence,

$$U_{k,k-1} = I_{k-1}\text{,}$$

(5.25)

by (5.14) with $h = k - 1$ in Lemma 5.3. Hence, (5.20) holds by (5.25) and mathematical induction.

From (1.2), it holds

$$x_{k,n}^{j_1} + k = x_{k,n}^{j_1} + k - 1f_{k,n}^{j_1} + k - 1(x_{k,n}^{j_1} + k - 1) = x_{k,n}^{j_1} + k - 1f_{k,n}^{j_1} + k - 1(x_{k,n}^{j_1} + k - 1),$$

for $j = 0, 1, 2, \ldots, k - 1$, and by considering the limiting equation and using (5.20), we obtain

$$\begin{align*}
I_{k-j} &= S_{k-j-1}f_{k-j-1}(I_{k-j-2}), \quad j = 1, 3, \ldots, k, \\
S_{k-j} &= I_{k-j-1}f_{k-j-1}(S_{k-j-2}), \quad j = 2, 4, \ldots, k - 1.
\end{align*}$$

(5.26)

Similar to the above discussion, it also holds

$$\begin{align*}
S_{k-j} &= I_{k-j-1}f_{k-j-1}(S_{k-j-2}), \quad j = 1, 3, \ldots, k, \\
I_{k-j} &= S_{k-j-1}f_{k-j-1}(I_{k-j-2}), \quad j = 2, 4, \ldots, k - 1.
\end{align*}$$

(5.27)

Consequently, it holds

$$I_{k-j} = S_{k-j-1}f_{k-j-1}(I_{k-j-2}) \leq I_{k-j-1}f_{k-j-1}(S_{k-j-2}) = S_{k-j},$$

for $j = 1, 2, \ldots, k$, by (5.26) and (5.27), and hence (5.19) holds. Then,

$$\liminf_{n \to +\infty} x_{kn+h} = \limsup_{n \to +\infty} x_{kn+h} = \lim_{n \to +\infty} x_{kn+h},$$

for $h = 1, 2, \ldots, k$ and there exist k positive constants $x_{kn+h}^* = S_h = I_h$, $h = 1, 2, \ldots, k$ such that

$$x_{kn+h}^* = \lim_{n \to +\infty} x_{kn+h}.$$

The proof is complete. \qed
Finally, we establish Theorem 1.1 from Theorems 4.2, 4.4, 5.2 and 5.4.

6. Applications
In this section, we give two examples to demonstrate our result. At first, we introduce the following example
\[f_n(x) = \frac{\lambda}{1 + (\lambda - 1)K_n x}, \quad n = 0, 1, 2 \ldots, x \in [0, +\infty), \] (6.1)
where \(\lambda > 1 \) and \(K_n = K_{n+k} > 0 \) for \(n = 0, 1, 2, \ldots \) (\(k \) is an arbitrary positive integer). (1.2) with (6.1) is called a delayed Beverton–Holt Equation (see also [1,4]). Since \(f_n(x) \) is periodic on \(n \) and satisfies (1.3) and (1.4), the following result is derived from Theorem 1.1.

Corollary 6.1. There exists a \(k \)-periodic solution \(x^*_n \) such that \(x^*_n = x^*_{n+k} \) which is globally attractive, that is, for any solution of (1.2) with (6.1), it holds that
\[\lim_{n \to +\infty} (x_n - x^*_n) = 0. \]

One can see that (1.2) with (6.1) is equivalent to Pielou’s equation by a simple transformation. Therefore, Corollary 6.1 is also derived from Theorem A.

Secondly, we introduce the following example
\[f_n(x) = \frac{\beta_n}{1 + \alpha_1^n x + \alpha_2^n x}, \quad n = 0, 1, 2 \ldots, x \in [0, +\infty), \] (6.2)
where \(\beta_n, \alpha_1^n \) and \(\alpha_2^n \) are the positive periodic sequences with a period \(k \). It is not necessary that \(\beta_n, \alpha_1^n \) and \(\alpha_2^n \) share the same period and, in this case, we can also easily find such a \(k \). We obtain the following results by applying Theorems 2.1 and 1.1, respectively.

Corollary 6.2. If \(\prod_{n=1}^{k} \beta_n \leq 1 \), then, for any solution of (1.2) with (6.2), it holds that
\[\lim_{n \to +\infty} x_n = 0. \]

On the other hand, for the case \(\prod_{n=1}^{k} \beta_n > 1 \), we establish the following result.

Corollary 6.3. If
\[\prod_{n=1}^{k} \beta_n > 1, \quad \text{and} \quad \prod_{n=1}^{k} \frac{\beta_n}{1 + \alpha_2^n} < 1, \]
then, there exists a \(k \)-periodic solution \(x^*_n \) such that \(x^*_n = x^*_{n+k} \) which is globally attractive, that is, for any solution of (1.2) with (6.2), it holds that
\[\lim_{n \to +\infty} (x_n - x^*_n) = 0. \]
Acknowledgements
The authors are very grateful to the anonymous referee for carefully reading and valuable comments which led to a significant improvement of the original manuscript. This work was partially done during the second author’s stay as a member of International Research Training Group (IGK 1529) at the Technical University Darmstadt. The authors would like to express their gratitude to Prof. Yoshiaki Muroya for his valuable comments on this paper.

Note
1. Email: keigo.i.123@gmail.com

References
[1] E. Braverman and S.H. Saker, On the Cushing-Henson conjecture, delay difference equations and attenuant cycles, J. Difference Equ. Appl. 14(3) (2008), pp. 275–286.
[2] E. Camouzis, Global convergence in periodically forced rational equations, J. Difference Equ. Appl. 14(10–11) (2008), pp. 1011–1033.
[3] E. Camouzis and G. Ladas, Periodically forced Pielou’s equation, J. Math. Anal. Appl. 333(1) (2007), pp. 117–127.
[4] V.L. Kocic, A note on the nonautonomous Beverton-Holt model, J. Difference Equ. Appl. 11(4–5) (2005), pp. 415–422.
[5] V.L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Vol. 256 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993.
[6] V.L. Kocic, D. Stutson, and G. Arora, Global behavior of solutions of a nonautonomous delay logistic difference equation, J. Difference Equ. Appl. 10(13–15) (2004), pp. 1267–1279.
[7] M.R.S. Kulenović and O. Merino, Stability analysis of Pielou’s equation with period-two coefficient, J. Difference Equ. Appl. 13(5) (2007), pp. 383–406.
[8] S.A. Kuruklis and G. Ladas, Oscillations and global attractivity in a discrete delay logistic model, Quart. Appl. Math. 50(2) (1992), pp. 227–233.
[9] E. Liz, V. Tkachenko, and S. TrofImchuk, Global stability in discrete population models with delayed-density dependence, Math. Biosci. 199(1) (2006), pp. 26–37.
[10] G. Nyerges, A note on a generalization of Pielou’s equation, J. Difference Equ. Appl. 14(5) (2008), pp. 563–565.
[11] E.C. Pielou, An Introduction to Mathematical Ecology, Wiley-Interscience, New York, 1969.