Investigation of *Chlamydiaceae* in semen and cauda epididymidis and seroprevalence of *Chlamydophila abortus* in breeding bulls

Ann-Charlotte Karlsson1,2*, Stefan Alenius1, Camilla Björkman1, Ylva Persson3, Stina Englund4

Abstract

Background: Reproductive disorders associated with chlamydial infection have been reported worldwide in cattle and there are indications of potential venereal transmission.

Methods: Semen samples from 21 dairy bulls and cauda epididymidis tissue samples from 43 beef bulls were analysed for chlamydial agent by real-time polymerase chain reaction (PCR) including an internal amplification control (mimic). Additionally, presence of antibodies against *Chlamydophila (Cp.) abortus* among the bulls was investigated with the commercial Pourquier® ELISA *Cp. abortus* serum verification kit.

Results: No chlamydial agent was detected by PCR in either the semen samples or in the tissue samples. Additionally, no antibodies against *Cp. abortus* were detected.

Conclusions: The results suggest that *Cp. abortus* is very rare, or absent in Swedish bulls and thus the risk for venereal transmission of chlamydial infection through their semen is low. However, because *Chlamydophila* spp. infection rates seem to differ throughout the world, it is essential to clarify the relative importance of transmission of the infection through semen on cattle fertility.

Background

Bovine chlamydiosis has been associated with several disease manifestations [1]. Reproductive disorders such as sporadic abortions and reduced fertility, linked with chlamydial infection have been reported from Germany [2,3], Great Britain [4], Italy [5], Japan [6], Switzerland [7], Taiwan [8] and the USA [9]. In Sweden, the incidence of abortion in cows is low. However, reproductive disorders and infertility are major causes of culling but are often difficult to be diagnosed. Chlamydial infection in bulls may be the cause to some of these problems [10]. Experimental studies have shown that the bacteria can be excreted in semen of inoculated bulls and rams [11] and isolation of the agent from semen of naturally infected bulls and rams has been reported [12-14]. The vaginal mucosa in sheep and uterine mucosa in cattle are susceptible to infection [15,16] and transmission of chlamydial agent by experimentally infected semen to heifers and sheep has been demonstrated [17,18].

The two species *Chlamydophila (Cp.) abortus* and *Cp. pecorum* are known to infect cattle and are suggested to be ubiquitous [9,19]. Moreover, *Cp. psittaci* infections in cattle have been reported [20,21]. All three species have been identified in bull semen [22,23]. *Cp. abortus* is the cause of Ovine Enzootic Abortion (OEA), the major infectious cause of abortion and lamb loss with great economic losses in many sheep-producing countries [24]. *Cp. pecorum* has foremost been associated with polyarthritis, encephalitis and inapparent intestinal infection, and the impact by *Cp. psittaci* in ruminants is yet to be investigated.

Each year about 80 top-ranked performance-tested yearling beef bulls are sold all over Sweden, mainly to pedigree breeders, after six months of testing at the only performance testing station in the country. These performance-tested bulls represent the best-documented beef bulls with the highest impact on the breeding programme in Sweden and are therefore important potential transmitters of *Chlamydophila* spp. by venereal
route. Additionally, artificial insemination (AI) is performed yearly on more than 95% of the approximately 400,000 Swedish dairy cows [25]. As there is a possibility of transmission of Chlamydiophila spp. via this route, it is important to determine whether breeding bulls are infected through screening of semen before AI in order to minimize this risk. The aim of this study was to investigate the presence of chlamydial agent in semen and in tissue of cauda epididymides and to estimate the seroprevalence of Cp. abortus in Swedish bulls.

Methods

Animals and samples

Beef bulls

This study comprises samples from a subset of 166 beef bulls from 124 herds from different parts of Sweden that were taken to the only performance testing station in Sweden in September 2002. On arrival the bulls were approximately six months old. They were divided into groups, based on breed and body weight and placed in ten adjacent semi-outdoor pens under the same roof. The bulls were weighed every second week throughout the testing period (September-March) and at the end of the period, an individual growth index was calculated. Bulls with fast growth rates were sold at livestock auctions, but were still not mate the semen sample. Bulls with growth indexes below the threshold, stated by the breeders' organisations, were either slaughtered or returned to their owners. In total, 43 of the beef bulls that were sent to slaughter were included in this study (23 Charolaise, 7 Hereford, 6 Simmental, 3 Aberdeen Angus, 3 Limousine and 1 Blonde d'Aquitaine). The daily growth rates of these bulls were somewhat lower than the bulls sold at auction, but were still higher than the growth rates of non-tested beef sires in Sweden [26]. Because of co-operation with other study and their definitive criteria [27], only bulls with seropositivity for analysis by real-time polymerase chain reaction (PCR) sera for serology were stored at -20°C until analysed.

Detection of Chlamydiaceae by real-time polymerase chain reaction

DNA was extracted from semen and cauda epididymidis samples for PCR analysis using a High Pure Template Preparation kit, following manufacturer's instructions (Roche Diagnostics, Basel, Switzerland) and stored at -20°C. Analyses were performed using a Chlamydiaceae-specific real-time PCR protocol developed by Everett and others [29], targeting the 23S ribosomal DNA. Briefly, the primers used were TQF (5'-GAA AAC CCT TGT TAA GGG AG-3') and TQR (5'-CTT AAC TCC CTG GCT CAT CAT G-3'). The sequence of the fluorescent FAM-labelled probe was 5'-CAA AAG GCA CGC CTG GAA C-3'.

An internal amplification control (mimic) was constructed and used to detect false negative PCR results, as previously described [30]. The primers used in the mimic producing PCR were TQFActin (5'-GAA AAC CCT TGT TAA GGG AGC CAT GTA CCC TGG CAT TG-3') and TQRActin (5'-CTT AAC TCC CTG GCT CAT GGA GCA CCG AGT ACT TGC-3'). The sequence of the ROX-labelled mimic probe used in real-time PCR was 5'-CGC ACA AGA TGC AGA AGA TCA-3'.

The 25 µl PCR mixture comprised 2.5 µl of 10× PCR-buffer II (Applied Biosystems, Foster City, CA, USA), 2.5 mM MgCl₂, 0.2 mM of each of the four dNTP, 0.15 µM of each of the primer TQF and TQR (0.125 U) of AmpliTaq Gold DNA polymerase (Applied Biosystems), and 0.1 µM of each probe. Reaction mixtures were placed in a Rotor-Gene 3000 (Corbett Research, Cambridge, UK) and amplification was performed according to the protocol of Everett and others [29]. The results were analysed with the Rotor-Gene software version 5.0.

The sensitivity of the PCR was estimated to one inclusion forming unit (IFU) per PCR by spiking semen and tissue samples prior to DNA extraction with ten-fold dilutions of Cp. abortus (inactivated strain S26/3 in original concentration of 3 × 10⁷ IFU/ml, kindly provided by D. Longbottom, Moredun Research Institute, UK).

Detection of antibodies to Cp. abortus

For detection of antibodies the Pourquier* ELISA Chlamydiophila abortus serum verification kit (MONTPELLIER, France) was applied. The ELISA uses a recombinant fragment of an 80-90 kDa polymorphic outer membrane protein and detects antibodies against Cp. abortus. The assay was used according to the manufacturer's instructions with S/P% values ≥ 100 as positive for cattle.
Results
All 21 semen and 43 cauda epididymidis samples were negative in the PCR. The internal amplification control (mimic) worked well for all samples analysed.

None of the 21 and 43 paired-sera from dairy and beef bulls, respectively, were positive in the antibody detection assay. Most samples were clustered well below the cut-off value 100. Only six samples had S/P% above 20, where 42 was the highest value.

Discussion
In this study we found no presence of chlamydial agent in any semen or cauda epididymidis tissue samples, i.e. all samples were negative by real-time PCR. This is in concordance with an Austrian study [31] where neither Cp. abortus nor Cp. pecorum was detected in 273 semen samples from bulls at five AI centres. On the other hand, the results contrast those reported from other investigations performed in apparently healthy bulls. In Lithuania as much as 29.8% of 47 tested bulls had chlamydial agent in their semen, as judged by PCR [13], and chlamydiae were detected by immunofluorescence in 14.3% of 42 bovine ejaculates from the Czech republic [32]. In German and Swiss investigations of semen samples, 9.2% and 6.6%, respectively, were found positive by PCR [22,23].

The sensitivity of the PCR assay was estimated to 1 IFU per PCR with no indication of potential inhibitory factors. In a previous investigation of cows from dairy herds with reproductive disorders we identified positive specimens, including vaginal swabs, placenta and milk when using the same PCR assay [33]. Moreover, several positive specimens from different organs in pigs and placenta in sheep (unpublished data) as well as conjunctival and nasal swabs from cats [34] have been demonstrated by the same PCR at our laboratory. Those samples were handled and stored in a similar way as in the present study. Therefore, the test is considered robust and to have a high sensitivity and specificity.

All sera were negative in the Cp. abortus ELISA assay with values far below the cut-off value. The specificity of the test has been reported to be 100% when used to analyse Scottish sheep documented free of Cp. abortus [35] and 90% when sera from New Zealand, a country free from Cp. abortus, were analysed [36]. The sensitivity were estimated to 91% and 80%, respectively, when analysing sera from experimentally Cp. abortus infected sheep [35,36], and it can, hence, not be excluded that some of our sera were positives but not detected by the test. However, the fact that all the beef bulls, which came from as many as 124 different herds from all over Sweden, were still seronegative after they had been housed together for six months, in adjacent pens under the same roof, indicates that Cp. abortus is not present in Swedish beef cattle herds. Moreover, the absence of seropositives among the analysed dairy bulls indicates that Cp. abortus is very rare, or absent, in Swedish bulls. These results are in agreement with a previous study in Swedish dairy cows where only 2 out of 525 sera were positive in the same ELISA and only Cp. pecorum were confirmed in vaginal swabs [33].

Conclusions
This study suggest the risk for venereal transmission of chlamydial infection through Swedish bull semen is low. However, because Chlamydia spp. infection rates seem to differ throughout the world, it is essential to clarify the relative importance of transmission of the infection through semen on cattle fertility.

Acknowledgements
The authors wish to thank Maj Hjort at the National Veterinary Institute (SVA), for performing the serological analyses and for assistance with the DNA preparations. This study was supported by the Swedish Farmer’s Foundation for Agricultural Research and the Programme for Infection Biology at the Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences. It was part of the EU research collaboration COST 855.

Author details
1Division of Ruminant Medicine and Veterinary Epidemiology, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences (SLU), Box 7054, SE-750 07, Uppsala, Sweden. 2Department of Animal Health, Section for Farm Animal Health and Welfare, National Veterinary Institute, PB 750, 751 07, Uppsala, Sweden. 3Department of Animal Health and Antimicrobial Strategies, Section of Farm animals, National Veterinary Institute (SVA), SE-751 89, Uppsala, Sweden. 4Department of Animal Health and Antimicrobial Strategies, Section of Antibiotics, National Veterinary Institute (SVA), SE-751 89, Uppsala, Sweden.

Authors’ contributions
ACK participated in the design and coordination of the study, drafted and rewrote the manuscript, carried out the PCR and interpreted the results. SE implemented the PCR systems, constructed the mimic and interpreted the results. CB and SA participated in the design and coordination of the study. YP sampled and wrote about the beef bulls. All authors have been involved in revising the manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 14 December 2009
Accepted: 13 January 2010
Published: 13 January 2010

References
1. Storz J: Overview of animal diseases induced by chlamydial infections. Microbiolology of Chlamydia Barron, AL: Florida CRC Press, Inc 1988, 167-192.
2. Wehrend A, Failing K, Hauser B, Jager C, Rostedt H: Production, reproductive, and metabolic factors associated with chlamydial seropositivity and reproductive tract antigens in dairy herds with fertility disorders. Theriogenology 2005, 63:923-930.
3. Wittenbrink MM, Schoon HA, Bisping W, Binder A: Infection of the bovine female genital tract with Chlamydia psittaci as a possible cause of infertility. Reprod Dom Anim 1993, 28:129-136.
4. Hoffmann A, Daniel RG, Parr JG, Griffiths PC, Bevan BJ, Martin TC, Hewinson RG, Dawson M, Munro IF: Chlamydioidis and abortion in a dairy herd. Vet Rec 1994, 134:500-502.
5. Cavirani S, Cabassi CS, Donofrio G, De Iaco B, Taddei S, Flammini CF: Association between Chlamydia psittaci seropositivity and abortion in Italian dairy cows. Prev Vet Med 2001, 50:145-151.

6. Nabeya M, Kaneko K, Ogin H, Nakabayashi D, Watanabe T, Murayama J, Hajashi K, Fukushima H, Yamaguchi T, Hirai K, Inaba Y, Matsumoto M: Abortion in Japanese cows caused by Chlamydia psittaci. Vet Microbiol 1991, 29:261-265.

7. Pospisil A, Thoma R, von Bombard W, Reit K, Cantieni J, Zimmermann DR, Polkinghorne A: Abortion in cattle caused by Chlamydia psittaci. Schweiz Arch Tiermed 2002, 144:467-472.

8. Wang F, Sheh H, Liao YK: Prevalence of Chlamydophila abortus infection in domesticated ruminants in Taiwan. J Vet Med Sci 2001, 63:1215-1220.

9. Kaltenboeck B, Hehnen H-R, Vlaginon A: Bovine Chlamydiophila spp. infection: do we underestimate the impact on fertility?. Vet Res Comm 2005, 29:11-15.

10. Storz J, Carroll DJ, Ball L, Faulkner LC: Isolation of a psittacosis agent (Chlamydia) from semen and epididymis of bulls with seminal vesiculitis syndrome, Am J Vet Res 1968, 29:549-555.

11. Storz J, Carroll DJ, Stephenson BH, Ball L, Eustier AK: Urogenital infection and seminal excretion after inoculation of bulls and rams with chlamydiae. Am J Vet Res 1976, 37:517-520.

12. Amir AS: Comparison of polymerase chain reaction and cell culture for the detection of Chlamydiophila species in the semen of bulls, buffalos, and rams. Vet J 2003, 166:86-92.

13. Dornekea M, Guaranauskaus A, Bassirri M, Froman G, Mårdh P-A: Comparison of polymerase chain reaction, direct immunofluorescence, cell culture and enzyme immunoassay for the detection of Chlamydia psittaci in bull semen. Vet Microbiol 1994, 42:273-280.

14. Geurtam R, Furosh JD: Isolation of Chlamydia psittaci from genitalia of healthy exotic and crossbred service rams. Indian Journal of Animal Sciences 2001, 31:731-734.

15. Papp JR, Shewen PE: Pregnancy failure following vaginal infection of sheep with Chlamydia psittaci prior to breeding. International J Infect 1996, 64:1116-1125.

16. Wittenbrink MM, Schoon HA, Schoon D, Mansfield R, Bispig W: Endometritis in cattle experimentally induced by Chlamydia psittaci. Zentralbl Veterinarmed B 1993, 40:437-450.

17. Appleyard WT, Artenk ID, Anderson IE: Attempted venereal transmission of Chlamydia psittaci in sheep. Vet Rec 1985, 116:535-538.

18. Bowen RA, Spears P, Storz J, Dield GE Jr: Mechanisms of infertility in genital tract infections due to Chlamydia psittaci transmitted through contaminated semen. J Infect Dis 1978, 138:95-98.

19. DeGraves FJ, Gao D, Hehnen HR, Schlapp T, Kaltenboeck B: Comparison of polymerase chain reaction and cell culture for the detection of Chlamydia psittaci in semen and epididymis of bulls with seminal vesiculitis syndrome. Vet Microbiol 1991, 29:261-265.

20. Bentz J, Kaltenboeck P, Hehnen H-R, Vlaginon A: Bovine Chlamydiophila spp. infection: do we underestimate the impact on fertility?. Vet Res Comm 2005, 29:11-15.

21. Storz J, Carroll DJ, Stephenson BH, Ball L, Eustier AK: Urogenital infection and seminal excretion after inoculation of bulls and rams with chlamydiae. Am J Vet Res 1976, 37:517-520.

22. Amir AS: Comparison of polymerase chain reaction and cell culture for the detection of Chlamydiophila species in the semen of bulls, buffalos, and rams. Vet J 2003, 166:86-92.

23. Dornekea M, Guaranauskaus A, Bassirri M, Froman G, Mårdh P-A: Comparison of polymerase chain reaction, direct immunofluorescence, cell culture and enzyme immunoassay for the detection of Chlamydia psittaci in bull semen. Vet Microbiol 1994, 42:273-280.

24. Geurtam R, Furosh JD: Isolation of Chlamydia psittaci from genitalia of healthy exotic and crossbred service rams. Indian Journal of Animal Sciences 2001, 31:731-734.

25. Papp JR, Shewen PE: Pregnancy failure following vaginal infection of sheep with Chlamydia psittaci prior to breeding. International J Infect 1996, 64:1116-1125.

26. Wittenbrink MM, Schoon HA, Schoon D, Mansfield R, Bispig W: Endometritis in cattle experimentally induced by Chlamydia psittaci. Zentralbl Veterinarmed B 1993, 40:437-450.

27. Appleyard WT, Artenk ID, Anderson IE: Attempted venereal transmission of Chlamydia psittaci in sheep. Vet Rec 1985, 116:535-538.

28. Bowen RA, Spears P, Storz J, Dield GE Jr: Mechanisms of infertility in genital tract infections due to Chlamydia psittaci transmitted through contaminated semen. J Infect Dis 1978, 138:95-98.

29. DeGraves FJ, Gao D, Hehnen HR, Schlapp T, Kaltenboeck B: Quantitative Detection of Chlamydia psittaci and C. pecorum by High-Sensitivity Real-Time PCR Reveals High Prevalence of Vaginal Infection in Cattle. J Clin Microbiol 2003, 41:1726-1729.

30. Borel N, Thoma R, Spaeni P, Weilennmann R, Teankum K, Brugnera E, Zimmermann DR, Vaughan L, Pospisil A: Chlamydia-related abortions in cattle from Graubunden, Switzerland. Vet Pathol 2006, 43:702-708.

31. Cox HU, Hoyt PG, Poston RP, Snider TG, Lemarchand TX, O'Reilly KL: Isolation of an avian serovar of Chlamydia psittaci from a case of bovine abortion. J Vet Diagn Invest 1998, 10:280-282.

32. Kauflfeld J, Henning K, Bachmann R, Hotzel H, Melzer F: The prevalence of chlamydial infections of bulls from six bull studs in Germany. Anim Reprod Sci 2007, 102:111-121.

33. Teankum K, Pospisil A, Janett F, Brugnera E, Hoebl LE, Hoebl K, Weilennmann R, Zimmermann DR, Gerber A, Polkinghorne A, Borel N: Prevalence of chlamydial and enzootic pathogens of bulls, rams and bucks. Theriogenology 2007, 67:303-310.

34. Artenk ID, Chlamydial abortion. Diseases of Sheep Edinburgh: BlackwellMartin WB, Artenk ID, 3, 2001, 86-81.

35. SJV: Number of cattle in December 2004. Swedish official statistics 2004, JO 23 SM 0501.

36. Eriksson S: Genetic aspects of calving, growth, and carcass traits in beef cattle. PhD thesis Swedish University of Agricultural Sciences, Department of Animal Breeding and Genetics 2003.

37. Persson Y: Breeding Soundness Evaluation of Young Beef Bulls. PhD thesis Swedish University of Agricultural Sciences, Department of Clinical Sciences 2007.

Cite this article as: Karlsson et al.: Investigation of Chlamydophila in semen and cauda epididymis and seroprevalence of Chlamydophila abortus in breeding bulls. Acta Veterinaria Scandinavica 2010 52:2

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK

Your research papers will be:
- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp