3-coloring triangle-free planar graphs with a precolored 9-cycle

ILKYOO CHOI1, Jan Ekstein2, Přemysl Holub2, Bernard Lidický1

University of Illinois at Urbana-Champaign, USA
University of West Bohemia, Czech Republic

December 21, 2013
A graph G is \textit{k-colorable} if there is a function f where
- for each vertex v: $f(v) \in [k]$
- for each edge xy: $f(x) \neq f(y)$

A graph G is \textit{k-critical} if
- G is not $(k - 1)$-colorable
- for each subgraph H: H is $(k - 1)$-colorable
A graph G is k-colorable if there is a function f where
- for each vertex v: $f(v) \in [k]$
- for each edge xy: $f(x) \neq f(y)$

A graph G is k-critical if
- G is not $(k - 1)$-colorable
- for each subgraph H: H is $(k - 1)$-colorable
A graph G is k-colorable if there is a function f where
- for each vertex v: $f(v) \in [k]$
- for each edge xy: $f(x) \neq f(y)$

A graph G is k-critical if
- G is not $(k-1)$-colorable
- for each subgraph H: H is $(k-1)$-colorable

A graph G is C-critical for k-coloring if
- for each edge e, there is a k-coloring f_e of $V(C)$ where
 - f_e extends to $G - e$
 - f_e does not extend to G
A graph G is k-colorable if there is a function f where
- for each vertex v: $f(v) \in [k]$
- for each edge xy: $f(x) \neq f(y)$

A graph G is k-critical if
- G is not $(k-1)$-colorable
- for each subgraph H: H is $(k-1)$-colorable

A graph G is C-critical for k-coloring if
- for each edge e, there is a k-coloring f_e of $V(C)$ where
 - f_e extends to $G - e$
 - f_e does not extend to G

Observation

If G is $(k + 1)$-critical, then G is \emptyset-critical for k-coloring.
Observation
There exists a 3-coloring of $V(C)$ that extends to $G_1 - e$ but does not extend to G_1.

Observation
For every cut C and every $e \in V(G_1)$ exists a 3-coloring of $V(C)$ that extends to $G_1 - e$ but does not extend to G_1.

4-critical
- not 3-colorable
- each subgraph is 3-colorable
Observation

There exists a 3-coloring of $V(C)$ that extends to $G_1 - e$ but does not extend to G_1.

Observation

For every cut C and every $e \in V(G_1)$ exists a 3-coloring of $V(C)$ that extends to $G_1 - e$ but does not extend to G_1.

4-critical

- not 3-colorable
- each subgraph is 3-colorable
Observation
There exists a 3-coloring of $V(C)$ that extends to $G_1 - e$ but does not extend to G_1.

Observation
For every cut C and every $e \in V(G_1)$ exists a 3-coloring of $V(C)$ that extends to $G_1 - e$ but does not extend to G_1.

4-critical
- not 3-colorable
- each subgraph is 3-colorable
Observation

There exists a 3-coloring of $V(C)$ that extends to $G_1 - e$ but does not extend to G_1.

Observation

For every cut C and every $e \in V(G_1)$, there exists a 3-coloring of $V(C)$ that extends to $G_1 - e$ but does not extend to G_1.

4-critical

- not 3-colorable
- each subgraph is 3-colorable
Observation

There exists a 3-coloring of $V(C)$ that extends to $G_1 - e$ but does not extend to G_1.

4-critical
- not 3-colorable
- each subgraph is 3-colorable
Observation

There exists a 3-coloring of $V(C)$ that extends to $G_1 - e$ but does not extend to G_1.

4-critical

- not 3-colorable
- each subgraph is 3-colorable
Observation

*There exists a 3-coloring of $V(C)$ that extends to $G_1 - e$ but does not extend to G_1.***

Observation

*For every cut C and every $e \in V(G_1)$ exists a 3-coloring of $V(C)$ that extends to $G_1 - e$ but does not extend to G_1.***

4-critical

- not 3-colorable
- each subgraph is 3-colorable
Definition

A graph G is C-critical for k-coloring if for each $e \in E(G)$, there exists a k-coloring f_e of $V(C)$ that extends to $G - e$ but does not extend to G.
Definition

A graph G is **C-critical** for k-coloring if for each $e \in E(G)$, there exists a k-coloring f_e of $V(C)$ that extends to $G - e$ but does not extend to G.

![Diagram of a graph with edges e_1 and e_2 and a cycle C.]
Definition

A graph G is **C-critical** for k-coloring if for each $e \in E(G)$, there exists a k-coloring f_e of $V(C)$ that extends to $G - e$ but does not extend to G.

\[C \]

\[e_1 \quad e_2 \]

\[\varphi_1 \]

\[\varphi_2 \]

\[1 \quad 2 \quad 3 \quad 1 \quad 3 \]

\[1 \quad 2 \quad 3 \quad 1 \quad 2 \]

\[1 \quad 2 \quad 3 \quad 1 \quad 2 \]
Definition

A graph G is **C-critical** for k-coloring if for each $e \in E(G)$, there exists a k-coloring f_e of $V(C)$ that extends to $G - e$ but does not extend to G.

Observation

If G is $(k + 1)$-critical, then G is \emptyset-critical for k-coloring.
- Why \textit{C-critical}? Which \textit{C} is a good choice?
– Why \textit{C-critical}? Which \textit{C} is a good choice?

\begin{itemize}
 \item simplifying graphs on surfaces
\end{itemize}
- Why \(C \)-critical? Which \(C \) is a good choice?
 - simplifying graphs on surfaces
– Why C-critical? Which C is a good choice?
- simplifying graphs on surfaces
- Why C-critical? Which C is a good choice?
 - simplifying graphs on surfaces
 - precolored tree
- Why \textit{C-critical}? Which \textit{C} is a good choice?
- simplifying graphs on surfaces
- precolored tree
- Why \textit{C-critical}? Which \textit{C} is a good choice?

- Simplifying graphs on surfaces

- Precolored tree

- Interior of a cycle
– Why C-critical? Which C is a good choice?

- simplifying graphs on surfaces

- precolored tree

- interior of a cycle
- Why C-critical? Which C is a good choice?
 - simplifying graphs on surfaces
 - precolored tree
 - interior of a cycle
Theorem (Grötzsch 1959, Aksenov 1974)

*If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.**
Theorem (Grötzsch 1959, Aksenov 1974)

If G *is a plane graph of girth* 4, *then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of* G.

Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.
Theorem (Grötzsch 1959, Aksenov 1974)

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.

Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.

Goal: Characterize all C-critical plane graphs of girth 4.
Theorem (Grötzsch 1959, Aksenov 1974)

If G *is a plane graph of girth* 4, *then a pre-coloring of either a* 4-cycle *or a* 5-cycle *extends to* 3-coloring *of* G.

Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.

Goal: Characterize all C-critical plane graphs of girth 4. *STILL OPEN!*
Theorem (Grötzsch 1959, Aksenov 1974)

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.

Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.

Goal: Characterize all C-critical plane graphs of girth 4. **STILL OPEN!**

Easier goal: Characterize all C-critical plane graphs of girth 5.
Theorem (Grötzsch 1959, Aksenov 1974)

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.

Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.

Goal: Characterize all C-critical plane graphs of girth 4. **STILL OPEN!**

Easier goal: Characterize all C-critical plane graphs of girth 5. **SOLVED!**
Theorem (Grötzsch 1959, Aksenov 1974)

If G *is a plane graph of girth* 4, *then a pre-coloring of either a* 4-cycle *or a* 5-cycle *extends to 3-coloring of* G.

Focus: *plane* graphs that are C-critical for 3-coloring where C is a cycle.

Goal: Characterize all C-critical plane graphs of girth 4. *STILL OPEN!*

Easier goal: Characterize all C-critical plane graphs of girth 5. *SOLVED!*

- $|C| \leq 11$ by Thomassen 2003 and Walls 1999
- $|C| = 12$ by Dvořák–Kawarabayashi 2011
Theorem (Grötzsch 1959, Aksenov 1974)

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.

Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.

Goal: Characterize all C-critical plane graphs of girth 4. STILL OPEN!

Easier goal: Characterize all C-critical plane graphs of girth 5. SOLVED!

- $|C| \leq 11$ by Thomassen 2003 and Walls 1999
- $|C| = 12$ by Dvořák–Kawarabayashi 2011

Recursive description for all $|C|$ by Dvořák–Kawarabayashi 2011
Theorem (Grötzsch 1959, Aksenov 1974)

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.

Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.

Goal: Characterize all C-critical plane graphs of girth 4. STILL OPEN!

Easier goal: Characterize all C-critical plane graphs of girth 5. SOLVED!

- $|C| \leq 11$ by Thomassen 2003 and Walls 1999
- $|C| = 12$ by Dvořák–Kawarabayashi 2011

Recursive description for all $|C|$ by Dvořák–Kawarabayashi 2011

- $|C| \leq 16$ by Dvořák–Lidický 2013+
$|C| \leq 10$
Goal: Characterize all C-critical plane graphs of girth 4. STILL OPEN!
Goal: Characterize all C-critical plane graphs of girth 4. *STILL OPEN!*

Known characterizations:

- $|C| \in \{4, 5\}$ by Aksenov 1974
- $|C| = 6$ by Gimbel–Thomassen 1997
- $|C| = 6$ by Aksenov–Borodin–Glebov 2003
- $|C| = 7$ by Aksenov–Borodin–Glebov 2004
- $|C| = 8$ by Dvořák–Lidický 2013+
- $|C| = 9$ by C.–Ekstein–Holub–Lidický 2014+
Theorem (Aksenov 1974)

*If G is a *plane* graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to a 3-coloring of G.*
Theorem (Aksenov 1974)

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to a 3-coloring of G.

For $|C| \in \{4, 5\}$, NO graphs are C-critical for 3-coloring!

“nice” plane graph: has no separating 4-cycles or 5-cycles.
Theorem (Aksenov 1974)

If G *is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to a 3-coloring of* G.

For $|C| \in \{4, 5\}$, *NO graphs are* C-*critical for 3-coloring!*

“nice” plane graph: has no separating 4-cycles or 5-cycles.

Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

If G *is a “nice” plane graph of girth 4 bounded by a cycle* C *of length 6, then* G *is* C-*critical if and only if* G *“looks like” below.*
Theorem (Aksenov–Borodin–Glebov 2004)

If G *is a “nice” plane graph of girth 4 bounded by a cycle* C *of length 7, then* G *is* C-*critical* if and only if G “looks like” a graph below.

![Diagram](image1)

Theorem (Dvořák–Lidický 2013+)

If G *is a “nice” plane graph of girth 4 bounded by a cycle* C *of length 8, then* G *is* C-*critical* if and only if G “looks like” a graph below.

![Diagram](image2)
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G *is a “nice” plane* graph *of girth 4 bounded by a cycle* C *of length 9, then* G *is* C-*critical* *if and only if* G *“looks like” a graph below (2 more).*
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If \(G \) is a “nice” plane graph of girth 4 bounded by a cycle \(C \) of length 9, then \(G \) is \(C \)-critical if and only if \(G \) “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9, then G is C-critical if and only if G “looks like” a graph below (2 more).
Proof idea:
Proof idea:

Theorem (Tutte 1954)

A plane graph G has a 3-coloring if and only if its dual G^* has a nowhere-zero \mathbb{Z}_3-flow.
Proof idea:

Theorem (Tutte 1954)

A plane graph G has a 3-coloring if and only if its dual G^* has a nowhere-zero \mathbb{Z}_3-flow.

![Diagram of 3-coloring triangle-free planar graphs with a precolored 9-cycle]
Proof idea:

Theorem (Tutte 1954)

A plane graph G has a 3-coloring if and only if its dual G^* has a nowhere-zero \mathbb{Z}_3-flow.

(In-edges - out-edges) of every face is a multiple of 3!
Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G “looks like” below.
Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G “looks like” below.

(\iff) Need to show:
- coloring does not extend to G
- coloring does extend to $G - e$
Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G “looks like” below.

(\Leftarrow) Need to show:
- coloring does not extend to G
- coloring does extend to $G - e$
Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G “looks like” below.

(\Leftarrow) Need to show:
- coloring does not extend to G
- coloring does extend to $G - e$
Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G “looks like” below.

(\Leftarrow) Need to show:
- coloring does not extend to G \textbf{done!}
- coloring does extend to $G - e$
Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G “looks like” below.

(\Leftarrow) Need to show:
- coloring does not extend to G
 done!
- coloring does extend to $G - e$
Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G “looks like” below.

(\Leftarrow) Need to show:
- coloring does not extend to G \textbf{done!}
- coloring does extend to $G - e$

(\Rightarrow)
Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G “looks like” below.

(\Leftarrow) Need to show:
- coloring does not extend to G done!
- coloring does extend to $G - e$

![Diagram of the graph and coloring](image-url)
Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G “looks like” below.

(\Leftarrow) Need to show: – coloring does not extend to G done!
– coloring does extend to $G - e$

(\Rightarrow)
Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G “looks like” below.

(\Leftarrow) Need to show:
- coloring does not extend to G \textbf{done!}
- coloring does extend to $G - e$

![Diagram of the graph](image-url)
Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G “looks like” below.

(\iff) Need to show:

- coloring does not extend to G done!
- coloring does extend to $G - e$ done!
Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G “looks like” below.

(\Leftarrow) Need to show:
- coloring does not extend to G \ done!
- coloring does extend to $G - e$ \ done!

(\Rightarrow) ?
Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G “looks like” below.

(\iff) Need to show:
- coloring does not extend to G done!
- coloring does extend to $G - e$ done!

(\implies) done!

Corollary (Dvořák–Král–Thomas 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length c and is C-critical, then

\[
\begin{align*}
c = 6 & : \emptyset \\
c = 7 & : \{5\} \\
c = 8 & : \emptyset, \{6\}, \{5, 5\} \\
c = 9 & : \{7\}, \{5, 6\}, \{5, 5, 5\}, \{5\}
\end{align*}
\]

are the only possible multisets of faces of length at least 5.
Corollary (Dvořák–Král’–Thomas 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 and is C-critical, then

$$\{7\}, \{5, 6\}, \{5, 5, 5\}, \{5\}$$

are the only possible multisets of faces of length at least 5.
Corollary (Dvořák–Král’–Thomas 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 and is C-critical, then

$$\{7\}, \{5, 6\}, \{5, 5, 5\}, \{5\}$$

are the only possible multisets of faces of length at least 5.

Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G “looks like” a graph below.
Corollary (Dvořák–Král’–Thomas 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 and is C-critical, then

$$\{7\}, \{5, 6\}, \{5, 5, 5\}, \{5\}$$

are the only possible multisets of faces of length at least 5.

Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G “looks like” a graph below.
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If \(G \) is a “nice” plane graph of girth 4 bounded by a cycle \(C \) of length 9 containing a 5-face and a 6-face, then \(G \) is \(C \)-critical if and only if \(G \) “looks like” a graph below.
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G “looks like” a graph below.

Proof: (\Rightarrow)
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.

Proof: (\Rightarrow) "Tutte's Flow Theorem!"
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G “looks like” a graph below.

Proof: (\Rightarrow) ”Tutte’s Flow Theorem!”
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G “looks like” a graph below.

Proof: (\Rightarrow) "Tutte’s Flow Theorem!"
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G “looks like” a graph below.

Proof: (\Rightarrow) "Tutte’s Flow Theorem!"
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G “looks like” a graph below.

Proof: (\Rightarrow) ”Tutte’s Flow Theorem!”
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G “looks like” a graph below.

Proof: (\Rightarrow) “Tutte’s Flow Theorem!”

\[\text{Tutte's Flow Theorem!} \]
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” planar graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G “looks like” a graph below.

Proof: (\Rightarrow) "Tutte’s Flow Theorem!"
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G “looks like” a graph below.

Proof: (\Rightarrow) "Tutte’s Flow Theorem!"
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G “looks like” a graph below.

Proof: (\Rightarrow) "Tutte’s Flow Theorem!"
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G “looks like” a graph below.

Proof: (\Leftarrow)
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G “looks like” a graph below.

Proof: (\Leftrightarrow) Check each one!
Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G “looks like” a graph below.

Proof: (\iff) Check each one!
3-coloring triangle-free planar graphs with a precolored 9-cycle

Thank you for your attention!
Thank you for your attention!