WEIGHTED BERGMAN SPACES AND THE $\bar{\partial}$–EQUATION

BO-YONG CHEN

Dedicated to Professor Jinhao Zhang on the occasion of his seventieth birthday

Abstract. We give a Hörmander type L^2–estimate for the $\bar{\partial}$–equation with respect to the measure $\delta_{\Omega}^{-\alpha}dV$, $\alpha < 1$, on any bounded pseudoconvex domain with C^2–boundary. Several applications to the function theory of weighed Bergman spaces $A^2_{\alpha}(\Omega)$ are given, including a corona type theorem, a Gleason type theorem, together with a density theorem. We investigate in particular the boundary behavior of functions in $A^2_{\alpha}(\Omega)$ by proving an analogue of the Levi problem for $A^2_{\alpha}(\Omega)$ and giving an optimal Gehring type estimate for functions in $A^2_{\alpha}(\Omega)$. A vanishing theorem for $A^2_{1}(\Omega)$ is established for arbitrary bounded domains. Relations between the weighted Bergman kernel and the Szegö kernel are also discussed.

Mathematics Subject Classification (2000): 32A25; 32A36; 32A40; 32W05.

Keywords: $\bar{\partial}$–equation; L^2–estimate; Bergman space; Weighted Bergman kernel; Szegö kernel.

1. Introduction

Let $\Omega \subset \mathbb{C}^n$ be a pseudoconvex domain and let φ be a C^2 plurisubharmonic (psh) function on Ω. A fundamental theorem of Hörmander (cf. [23, 26], see also [1, 13]) states that for any $\bar{\partial}$–closed $(0,1)$–form v, there exists a solution u to the equation $\bar{\partial}u = v$ such that

$$
\int_{\Omega} |u|^2 e^{-\varphi} dV \leq \int_{\Omega} |v|^2 i\partial \bar{\partial} \varphi e^{-\varphi} dV
$$

(1.1)

provided the right-hand side is finite.

In 1983, Donnelly-Fefferman [14] made a striking discovery that under certain condition, the $\bar{\partial}$–equation may have solutions of finite L^2–norm with some non-psh weight. Such a discovery was extended and simplified substantially by a number of mathematicians (see e.g. [17, 14, 6, 33, 9]), now may be formulated as follows: if ψ is another C^2 psh function on Ω satisfying $i\alpha \partial \bar{\partial} \psi \geq i \partial \psi \wedge \bar{\partial} \psi$ for some $0 < \alpha < 1$, then the $L^2(\Omega, \varphi)$–minimal solution of the $\bar{\partial}$–equation enjoys the estimate

$$
\int_{\Omega} |u|^2 e^{-\varphi} dV \leq \text{const}_\alpha \int_{\Omega} |v|^2 i\partial \bar{\partial} (\varphi + \psi) e^{-\varphi} dV
$$

(1.2)

provided the right-hand side is finite. In particular, if we take $\psi = -\frac{\alpha}{\alpha_0} \log(-\rho)$, where ρ is a negative C^2 psh function verifying $-\rho \asymp \delta_{\Omega}^{\alpha_0}$, $\alpha_0 > \alpha > 0$ and δ_{Ω} is the boundary distance function, then (1.2) implies

$$
\int_{\Omega} |u|^2 e^{-\varphi} \delta_{\Omega}^{-\alpha} dV \leq \text{const}_{\alpha, \Omega} \int_{\Omega} |v|^2 i\partial \bar{\partial} \varphi e^{-\varphi} \delta_{\Omega}^{-\alpha} dV,
$$

(1.3)

Research supported by the Key Program of NSFC No. 11031008.
Theorem 1.1. Let $\Omega \subset \subset \mathbb{C}^n$ be a pseudoconvex domain with C^2-boundary and φ a C^2 psh function on Ω. Then for each $\alpha < 1$ and each ∂-closed $(0,1)$-form v with $\int_{\Omega} |v|_0^2 e^{-\varphi} \delta^{-\alpha} dV < \infty$, there is a solution u to the equation $\partial u = v$ such that (1.3) holds.

We shall give various applications of this result to the function theory of the weighted Bergman space $A^2_\alpha(\Omega)$, that is, the Hilbert space of holomorphic functions f on Ω with

$$||f||^2_\alpha := \int_{\Omega} |f|^2 \delta^{-\alpha} dV < \infty.$$

The spaces $A^2_\alpha(\Omega)$ coincide with the usual Sobolev spaces of holomorphic functions for $\alpha < 1$, i.e.,

$$A^2_\alpha(\Omega) = \mathcal{O}(\Omega) \cap W^\alpha(\Omega)$$

(see Ligocka [32]). Despite of deep results achieved for strongly pseudoconvex domains (see e.g., [2, 18]), few progress has been made in the case of weakly pseudoconvex domains.

Theorem 1.2. Let $\Omega \subset \subset \mathbb{C}^n$ be a pseudoconvex domain with C^2-boundary. Let $f_1, f_2 \in \mathcal{O}(\Omega)$ and $\delta > 0$ be such that

$$\delta^2 \leq |f_1|^2 + |f_2|^2 \leq 1.$$

Then for each $h \in A^2_\alpha(\Omega)$, $\alpha < 1$, there are functions $g_1, g_2 \in A^2_\alpha(\Omega)$ satisfying

$$f_1 g_1 + f_2 g_2 = h.$$

Theorem 1.3. Let $\Omega \subset \subset \mathbb{C}^2$ be a pseudoconvex domain with C^2-boundary. If $w \in \Omega$ and $h \in A^2_\alpha(\Omega)$, $\alpha < 1$, then there are functions $g_1, g_2 \in A^2_\alpha(\Omega)$ satisfying

$$h(z) - h(w) = (z_1 - w_1) g_1(z) + (z_2 - w_2) g_2(z), \quad \forall z \in \Omega.$$

Theorem 1.4. Let $\Omega \subset \subset \mathbb{C}^n$ be a pseudoconvex domain with C^2-boundary.

1. For each $\alpha < 1$, $A^2_\alpha(\Omega)$ is dense in the space $\mathcal{O}(\Omega)$, equipped with the topology of uniform convergence on compact subsets.
2. For any $\alpha_1 < \alpha_2 < 1$, $A^2_{\alpha_1}(\Omega)$ is dense in $A^2_{\alpha_2}(\Omega)$.

The following result is an analogue of the Levi problem for $A^2_\alpha(\Omega)$, which also generalizes an old result of Pfug (cf. [38]):

Theorem 1.5. Let $\Omega \subset \subset \mathbb{C}^n$ be a pseudoconvex domain with C^2-boundary. Then for each $\alpha < 1$, there are $\beta > 0$ and $f \in A^2_\alpha(\Omega)$ such that for all $\zeta \in \partial \Omega$,

$$\limsup_{z \to \zeta} |f(z)| \delta(\zeta)^{1 - \frac{\alpha}{2}} |\log \delta(\zeta)|^\beta = \infty.$$

It should be pointed out that each bounded pseudoconvex domain with C^∞-boundary is the domain of existence of a function in $A^\infty(\Omega) := \mathcal{O}(\Omega) \cap C^\infty(\Omega)$ (cf. [10], see also [22]).

On the other side, we have the following Gehring type estimate:
Theorem 1.6. Let $\Omega \subset \mathbb{C}^n$ be a bounded domain with C^2-boundary and let $f \in A^2_\alpha(\Omega)$, $\alpha < 1$. Then for almost all $\zeta \in \partial \Omega$

$$|f(z)| = o(\delta_\zeta(z)^{\frac{1-\alpha}{2}})$$

uniformly, as z approaches ζ admissibly. Here $\delta_\zeta(z) =$ minimum of $\delta_\Omega(z)$ and the distance from z to the tangent space at ζ, and $A = o(B)$ means $\lim A/B = 0$.

The concept of admissible approach was introduced by Stein [11] in his far-reaching generalization of Fatou’s theorem for holomorphic functions in a bounded domain with C^2-boundary.

It turns out that the above bound is optimal for the case of the unit ball:

Theorem 1.7. Let B^n be the unit ball in \mathbb{C}^n and S^n the unit sphere. For each $\alpha < 1$, there is a number $t_\alpha > 1$ such that for each $\epsilon > 0$, there exists a function $f \in A^2_\alpha(B^n)$ so that for each $\zeta \in S^n$,

$$\limsup |f(z)|(1-|z|)^{\frac{1-\alpha}{2}} \log(1-|z|)^{\frac{1+\epsilon}{2}} > 0$$

as $z \to \zeta$ from the inside of the Koranyi region $\mathcal{A}_{t_\alpha}(\zeta)$ defined by

$$\mathcal{A}_{t_\alpha}(\zeta) = \{ z \in B^n : |1 - z \cdot \overline{\zeta}| < t_\alpha(1-|z|) \}.$$

Stein [11] suggested to study the relation between the Bergman and Szegö kernels. In [12], Chen-Fu obtained a comparison of the Szegö and Bergman kernels for so-called δ-regular domains including domains of finite type and domains with psh defining functions. Here we shall prove the following natural connection between the weighted Bergman kernels K_α and the Szegö kernel S,

which seems not to have been noticed in the literature:

Theorem 1.8. Let $\Omega \subset \mathbb{C}^n$ be a bounded domain with C^2-boundary. Then

$$(1 - \alpha)^{-1} K_\alpha(z,w) \to S(z,w)$$

locally uniformly in z,w as $\alpha \to 1^-$. In particular,

$$\frac{\partial K_\alpha(z,w)}{\partial \alpha} \bigg|_{\alpha = 1^-} := \lim_{\alpha \to 1^-} \frac{K_\alpha(z,w) - K_1(z,w)}{\alpha - 1} = -S(z,w).$$

For general bounded domains, a fundamental question immediately arises:

When is $A^2_\alpha(\Omega)$ trivial or nontrivial?

Clearly, $A^2_\alpha(\Omega)$ is always nontrivial for $\alpha \leq 0$. On the other side, we have the following vanishing theorem:

Theorem 1.9. Let Ω be a bounded domain in \mathbb{C}^n.

(1) For each $f \in \mathcal{O}(\Omega)$ with $\int_{\Omega} |f|^2 \delta_\Omega^{-1} (1 + |\log \delta_\Omega|)^{-1} \, dV < \infty$, we have $f = 0$. In particular, $A^2_\alpha(\Omega) = \{0\}$ for each $\alpha \geq 1$.

(2) Let $\Omega_\epsilon = \{ z \in \Omega : \delta_\Omega(z) > \epsilon \}$ and let $c(\epsilon) := \text{cap}(\overline{\Omega_\epsilon}, \Omega)$ denote the capacity of $\overline{\Omega_\epsilon}$ in Ω. Suppose there is a sequence $\epsilon_j \to 0^+$, so that $c(\epsilon_j) = O(\epsilon_j^{-\alpha})$, then $A^2_\alpha(\Omega) = \{0\}$.

As a consequence Theorem 1.9 we have

Theorem 1.10. Let $\Omega \subset \mathbb{C}^n$ be a bounded domain. For each $\epsilon > 0$, there does not exist a continuous psh function $\rho < 0$ on Ω such that

$$-\rho \leq \text{const} \delta_\Omega (1 + |\log \delta_\Omega|)^{-\epsilon}.$$

In particular, the order of hyperconvexity of Ω is no larger than 1. In case $\partial \Omega$ is of class C^2, this result is a direct consequence of the Hopf lemma.
2. Proof of Theorem 2.1

Let $\Omega \subset \subset \mathbb{C}^n$ be a pseudoconvex domain with C^2-boundary. Let φ be a real-valued C^2-smooth function on Ω. Let $L^p_{(2)}(\Omega, \varphi)$ denote the space of (p, q)-forms u on Ω satisfying

$$||u||^2_{\varphi} := \int_{\Omega} |u|^2 e^{-\varphi} dV < \infty.$$

Let $\bar{\partial}^{\ast}_\varphi$ denote the adjoint of the operator $\bar{\partial}$ with respect to the corresponding inner product $(\cdot, \cdot)_\varphi$. We recall the following twisted Morrey-Kohn-Hörmander formula, which goes back to Ohsawa-Takegoshi (cf. [36, 4, 40, 33, 37, 9]):

Proposition 2.1. Let ρ be a C^2-defining function of Ω. Let u be a $(0, 1)$-form that is continuously differentiable on $\overline{\Omega}$ and satisfies the $\bar{\partial}$--Neumann boundary conditions on $\partial\Omega$, $\partial\rho \cdot u = 0$, and let η and φ be real-valued functions that are twice continuously differentiable on $\overline{\Omega}$ with $\eta \geq 0$. Then

$$||\sqrt{\eta} \bar{\partial} u||^2_\varphi + ||\sqrt{\eta} \bar{\partial}^{\ast}_\varphi u||^2_\varphi = \sum_{j,k=1}^n \int_{\Omega} \eta \frac{\partial^2 \rho}{\partial z_j \partial \bar{z}_k} u_{j|k} e^{-\varphi} \frac{d\sigma}{|\nabla \rho|} + \sum_{j=1}^{n} \int_{\Omega} |\eta \frac{\partial u_j}{\partial \bar{z}_j}|^2 e^{-\varphi} dV$$

$$+ \sum_{j,k=1}^n \int_{\Omega} \left(\eta \frac{\partial^2 \varphi}{\partial z_j \partial \bar{z}_k} - \frac{\partial^2 \eta}{\partial z_j \partial \bar{z}_k} \right) u_{j|k} e^{-\varphi} dV$$

$$+ 2\text{Re} \int_{\Omega} (\partial \eta \cdot u) \bar{\partial}^{\ast}_\varphi u e^{-\varphi} dV.$$

Now we prove Theorem 2.1. It is well-known that locally the Diederich-Fornæss exponents can be arbitrarily close to 1 (cf. [15], Remark b), p. 133). Thus for any given $\alpha < 1$, there exists a cover $\{U_j\}_{1 \leq j \leq m_\alpha}$ of $\partial\Omega$ and C^2 psh functions $\rho_j < 0$ on $\Omega \cap U_j$ such that

$$C^{-1} \delta_\Omega(z)^{\frac{\alpha+1}{2}} \leq -\rho_j(z) \leq C \delta_\Omega(z)^{\frac{\alpha+1}{2}}, \quad z \in \Omega \cap U_j, \ 1 \leq j \leq m_\alpha$$

(Throughout this section, C denotes a generic positive constant depending only on α and Ω). Take an open subset $U_0 \subset \subset \Omega$ such that $\{U_j\}_{0 \leq j \leq m_\alpha}$ forms a cover of $\overline{\Omega}$. Clearly, we can take a negative C^2 psh function ρ_0 on U_0 such that

$$C^{-1} \delta_\Omega(z)^{\frac{\alpha+1}{2}} \leq -\rho_0(z) \leq C \delta_\Omega(z)^{\frac{\alpha+1}{2}}, \quad z \in U_0$$

(for example, $\rho_0(z) = |z|^2 - \sup_{\Omega} |z|^2 - 1$).

Put $\varphi_\tau(z) = \varphi(z) + \tau |z|^2$, $\tau > 0$, and $\Omega_\varepsilon := \{z \in \Omega : \delta_\Omega(z) > \varepsilon\}$, $\varepsilon \ll 1$. By Proposition 2.1, we have

$$\int_{\Omega_\varepsilon} (\eta + c(\eta)^{-1})|\bar{\partial}^{\ast}_\varphi w|^2 e^{-\varphi_\tau} dV + \int_{\Omega_\varepsilon} \eta |\bar{\partial} w|^2 e^{-\varphi_\tau} dV$$

$$(2.1) \geq \sum_{k,l} \int_{\Omega_\varepsilon} \left(\eta \frac{\partial^2 \varphi_\tau}{\partial z_k \partial \bar{z}_l} - \frac{\partial^2 \eta}{\partial z_k \partial \bar{z}_l} \right) w_k w_l e^{-\varphi_\tau} dV - \int_{\Omega_\varepsilon} c(\eta) \left| \sum_k \frac{\partial \eta}{\partial z_k} w_k e^{-\varphi_\tau} dV$$

where $w = \sum_k w_k dz_k$ lies in $\text{Dom} \bar{\partial}^{\ast}_\varphi$ and is continuously differentiable on $\overline{\Omega}_\varepsilon$ (i.e., it satisfies the $\bar{\partial}$--Neumann boundary condition on $\partial\Omega_\varepsilon$), $\eta \geq 0$, $\eta \in C^2(\Omega)$ and c is a positive continuous function on \mathbb{R}^+.

Let $\{\chi_j\}_{0 \leq j \leq m_\alpha}$ be a partition of unity subordinate to the cover $\{U_j\}_{0 \leq j \leq m_\alpha}$ of $\overline{\Omega}$. The point is that $w^j = \chi_j w$ still lies in $\text{Dom} \bar{\partial}^{\ast}_\varphi$. Now we choose a real-valued function $\tilde{\chi}_j \in$
\(C_0^\infty(U_j)\) so that \(\tilde{\chi}_j = 1\) on \(\text{supp}\, \chi_j\). Put \(\psi_j = -\frac{2\alpha}{\alpha+1} \log(-\rho_j)\). Applying (2.1) to each \(w^j\) with \(\eta = e^{-\tilde{\chi}_j\psi_j}\) and \(c(\eta) = \frac{1-\alpha}{2\alpha} e^{-\tilde{\chi}_j\psi_j}\), we get
\[
\sum_{k,l} \int_{\Omega_{\epsilon} \cap U_j} \frac{\partial^2 \varphi_\tau}{\partial z_k \partial \bar{z}_l} |\chi_j|^2 w_k \bar{w}_l \ e^{-\varphi_\tau - \psi_j} dV
\leq \int_{\Omega_{\epsilon} \cap U_j} |\bar{\partial}(\chi_j w)|^2 e^{-\varphi_\tau - \psi_j} dV + \frac{1 + \alpha}{1 - \alpha} \int_{\Omega_{\epsilon} \cap U_j} |\bar{\partial}_{\varphi_\tau} (\chi_j w)|^2 e^{-\varphi_\tau - \psi_j} dV
\]
because
\[-i(\bar{\partial} \eta + c(\eta) \partial \eta \wedge \bar{\partial} \eta) = i e^{-\psi_j} \left(\bar{\partial} \bar{\partial} \psi_j - \frac{\alpha + 1}{2\alpha} \bar{\partial} \psi_j \wedge \bar{\partial} \psi_j \right) \geq 0\]
holds on \(\Omega \cap \text{supp}\, \chi_j\). Since \(e^{-\psi_j} \asymp \delta_\Omega^\alpha\) on \(\Omega \cap U_j\), we get
\[(2.2) \sum_{k,l} \int_{\Omega_{\epsilon} \cap U_j} \frac{\partial^2 \varphi_\tau}{\partial z_k \partial \bar{z}_l} |\chi_j|^2 w_k \bar{w}_l \ e^{-\varphi_\tau} \delta_\Omega^\alpha dV \leq C \int_{\Omega_{\epsilon} \cap U_j} (|\bar{\partial}(\chi_j w)|^2 + |\bar{\partial}_{\varphi_\tau} (\chi_j w)|^2) e^{-\varphi_\tau} \delta_\Omega^\alpha dV.\]
Thus
\[
\sum_{k,l} \int_{\Omega_{\epsilon}} \frac{\partial^2 \varphi_\tau}{\partial z_k \partial \bar{z}_l} w_k \bar{w}_l \ e^{-\varphi_\tau} \delta_\Omega^\alpha dV
\]
\[
= \sum_{k,l} \int_{\Omega_{\epsilon}} \frac{\partial^2 \varphi_\tau}{\partial z_k \partial \bar{z}_l} \left(\sum_{j=0}^{m_\alpha} \chi_j \right)^2 w_k \bar{w}_l \ e^{-\varphi_\tau} \delta_\Omega^\alpha dV
\]
\[
\leq (m_\alpha + 1) \sum_{j=0}^{m_\alpha} \sum_{k,l} \int_{\Omega_{\epsilon} \cap U_j} \frac{\partial^2 \varphi_\tau}{\partial z_k \partial \bar{z}_l} |\chi_j|^2 w_k \bar{w}_l \ e^{-\varphi_\tau} \delta_\Omega^\alpha dV
\]
\[
\leq (m_\alpha + 1) \sum_{j=0}^{m_\alpha} \int_{\Omega_{\epsilon} \cap U_j} (|\bar{\partial}(\chi_j w)|^2 + |\bar{\partial}_{\varphi_\tau} (\chi_j w)|^2) e^{-\varphi_\tau} \delta_\Omega^\alpha dV
\]
by (2.2). Since
\[
\bar{\partial}(\chi_j w) = \chi_j \bar{\partial} w + \bar{\partial} \chi_j \wedge w, \quad \bar{\partial}_{\varphi_\tau} (\chi_j w) = \chi_j \bar{\partial}_{\varphi_\tau} w - \bar{\partial} \chi_j w,
\]
thus by Schwarz’s inequality,
\[
\sum_{k,l} \int_{\Omega_{\epsilon}} \frac{\partial^2 \varphi_\tau}{\partial z_k \partial \bar{z}_l} w_k \bar{w}_l \ e^{-\varphi_\tau} \delta_\Omega^\alpha dV
\]
\[
\leq 2(m_\alpha + 1) \sum_{j=0}^{m_\alpha} \int_{\Omega_{\epsilon} \cap U_j} (|\bar{\partial} w|^2 + |\bar{\partial}_{\varphi_\tau} w|^2 + 2|w|^2 |\bar{\partial} \chi_j|^2) e^{-\varphi_\tau} \delta_\Omega^\alpha dV
\]
\[
\leq 2(m_\alpha + 1)^2 C \int_{\Omega_{\epsilon}} (|\bar{\partial} w|^2 + |\bar{\partial}_{\varphi_\tau} w|^2) e^{-\varphi_\tau} \delta_\Omega^\alpha dV
\]
\[
(2.3) + 4(m_\alpha + 1) C \int_{\Omega_{\epsilon}} |w|^2 \sum_j |\bar{\partial} \chi_j|^2 e^{-\varphi_\tau} \delta_\Omega^\alpha dV.
\]
Since $\bar{\partial}\bar{\partial} \varphi_r = \partial \bar{\partial} \varphi + \tau \partial \bar{\partial}|z|^2$, thus when $\tau = \tau(\alpha, \Omega)$ is sufficiently large, the term in (2.3) may be absorbed by the left-hand side and we get the following basic inequality

\[
\sum_{k,l} \int_{\Omega_\varepsilon} \frac{\partial^2 \varphi}{\partial z_k \partial \bar{z}_l} w_k \bar{w}_l e^{-\varphi_r} \delta^\varepsilon_\Omega dV \leq C \int_{\Omega_\varepsilon} (|\bar{\partial}w|^2 + |\bar{\partial}^* w|^2) e^{-\varphi_r} \delta^\varepsilon_\Omega dV.
\]

(2.4)

The remaining argument is standard. By Hörmander [23, Proposition 2.1.1], the same inequality holds for any $w \in L^0_{(2)}(\Omega_\varepsilon, \varphi_r) \cap \text{Dom } \bar{\partial} \cap \text{Dom } \bar{\partial}^*$, (Note that $C^{-1}_\varepsilon \leq \delta^\varepsilon_\Omega \leq C_\varepsilon$ on Ω_ε). In particular, if $\bar{\partial}w = 0$, then

\[
\sum_{k,l} \int_{\Omega_\varepsilon} \frac{\partial^2 \varphi}{\partial z_k \partial \bar{z}_l} w_k \bar{w}_l e^{-\varphi_r} \delta^\varepsilon_\Omega dV \leq C \int_{\Omega_\varepsilon} |\bar{\partial}^* w|^2 e^{-\varphi_r} \delta^\varepsilon_\Omega dV.
\]

By Schwarz’s inequality,

\[
\left| \int_{\Omega_\varepsilon} \langle v, w \rangle e^{-\varphi_r} dV \right|^2 \leq \int_{\Omega_\varepsilon} |v|^2_{i \partial \bar{\partial} \varphi} e^{-\varphi_r} \delta^\varepsilon_\Omega dV \sum_{k,l} \int_{\Omega_\varepsilon} \frac{\partial^2 \varphi}{\partial z_k \partial \bar{z}_l} w_k \bar{w}_l e^{-\varphi_r} \delta^\varepsilon_\Omega dV \leq C \int_{\Omega_\varepsilon} |v|^2_{i \partial \bar{\partial} \varphi} e^{-\varphi_r} \delta^\varepsilon_\Omega dV \int_{\Omega_\varepsilon} |\bar{\partial}^* w|^2 e^{-\varphi_r} \delta^\varepsilon_\Omega dV.
\]

For general $w \in \text{Dom } \bar{\partial}^*$, one has the orthogonal decomposition $w = w_1 + w_2$ where $w_1 \in \text{Ker } \bar{\partial}$ and $w_2 \in (\text{Ker } \bar{\partial})^\perp \subset \text{Ker } \bar{\partial}^*$. Thus

\[
\left| \int_{\Omega_\varepsilon} \langle v, w \rangle e^{-\varphi_r} dV \right|^2 = \left| \int_{\Omega_\varepsilon} \langle v, w_1 \rangle e^{-\varphi_r} dV \right|^2 \leq C \int_{\Omega_\varepsilon} |v|^2_{i \partial \bar{\partial} \varphi} e^{-\varphi_r} \delta^\varepsilon_\Omega dV \int_{\Omega_\varepsilon} |\bar{\partial}^* w_1|^2 e^{-\varphi_r} \delta^\varepsilon_\Omega dV = C \int_{\Omega_\varepsilon} |v|^2_{i \partial \bar{\partial} \varphi} e^{-\varphi_r} \delta^\varepsilon_\Omega dV \int_{\Omega_\varepsilon} |\bar{\partial}^* w|^2 e^{-\varphi_r} \delta^\varepsilon_\Omega dV.
\]

Applying the Hahn-Banach theorem to the anti-linear map

\[
\delta^\varepsilon_\Omega \bar{\partial}^* w \mapsto \int_{\Omega_\varepsilon} \langle v, w \rangle e^{-\varphi_r} dV
\]

together with the Riesz representation theorem, we get a solution u_ε of the equation $\bar{\partial}(\delta^\varepsilon_\Omega u_\varepsilon) = v$ on Ω_ε with the estimate

\[
\int_{\Omega_\varepsilon} |u_\varepsilon|^2 e^{-\varphi_r} dV \leq C \int_{\Omega_\varepsilon} |v|^2_{i \partial \bar{\partial} \varphi} e^{-\varphi_r} \delta^\varepsilon_\Omega dV.
\]

Taking a weak limit of $\delta^\varepsilon_\Omega u_\varepsilon$ as $\varepsilon \to 0+$, we immediately obtain the desired solution. Q.E.D.

Remark. (1) The additional weight $t|z|^2$ is somewhat inspired by Kohn [30].

(2) The following variation of Theorem 1.1 is more convenient for applications, which may be proved similarly, together with an additional approximation argument.

Theorem 2.2. Let $\Omega \subset\subset \mathbb{C}^n$ be a pseudoconvex domain with C^2 boundary and let $\tilde{\Omega} \subset \Omega$ be a pseudoconvex domain. Let φ be a psh function on Ω such that $i \partial \bar{\partial} \varphi \geq i \partial \bar{\partial} \psi$ in the sense of distribution, where ψ is a C^2 psh function on Ω. Then for each $\alpha < 1$ and each
form v with $\int_{\tilde{\Omega}} |v|^2 e^{-\varphi} \delta_{\Omega}^{-\alpha} dV < \infty$, there is a solution u to the equation $\overline{\partial} u = v$ on $\tilde{\Omega}$ such that $\int_{\Omega} |u|^2 e^{-\varphi} \delta_{\Omega}^{-\alpha} dV \leq \text{const}_{\alpha, \Omega} \int_{\tilde{\Omega}} |v|^2 e^{-\varphi} \delta_{\Omega}^{-\alpha} dV$.

3. Some Consequences of Theorem 1.1

3.1. We first prove Theorem 1.2. Following Wolff’s approach to Carleson’s theorem (cf. [19], p. 315), we put

$$g_1 = h \frac{f_1}{|f|^2} - u f_2, \quad g_2 = h \frac{f_2}{|f|^2} + u f_1$$

where $|f|^2 = |f_1|^2 + |f_2|^2$. Clearly, $f_1 g_1 + f_2 g_2 = h$, so the problem is reduced to choose $u \in L^2_{\alpha}(\Omega)$, i.e., $\int_{\Omega} |u|^2 \delta^{-\alpha} dV < \infty$, so that g_1, g_2 are holomorphic. Thus it suffices to solve

$$\overline{\partial} u = h \frac{f_2 \partial f_1 - f_1 \partial f_2}{|f|^4} =: v$$

such that $u \in L^2_{\alpha}(\Omega)$. Applying Theorem 1.1 with $\varphi = \log |f|^2$, we get a solution u satisfying

$$\int_{\Omega} |u|^2 |f|^{-2} \delta_{\Omega}^{-\alpha} dV \leq \text{const}_{\alpha, \Omega} \int_{\Omega} |v|^2 \delta_{\Omega}^{-\alpha} dV.$$

A straightforward calculation shows

$$\partial \overline{\partial} \varphi = \frac{(f_1 \partial f_2 - f_2 \partial f_1) \wedge (f_1 \partial f_2 - f_2 \partial f_1)}{|f|^4}$$

so that $|v|^2_{\overline{\partial} \varphi} \leq |h|^2/|f|^4 \leq |h|^2/\delta^4$. Thus

$$\int_{\Omega} |u|^2 \delta_{\Omega}^{-\alpha} dV \leq \text{const}_{\alpha, \Omega} \delta^{-6} \int_{\Omega} |h|^2 \delta_{\Omega}^{-\alpha} dV.$$

Q.E.D.

3.2. Next we prove Theorem 1.3. The argument is a slightly modification of 3.1. Without loss of generality, we assume $w = 0$, $h(0) = 0$, $|z|^2 < e^{-1}$ on Ω. Put $f_k = z_k$, $k = 1, 2$ and $\varphi = -\log(-\log |f|^2)$. Then we have

$$\partial \overline{\partial} \varphi \geq \frac{(f_1 \partial f_2 - f_2 \partial f_1) \wedge (f_1 \partial f_2 - f_2 \partial f_1)}{|f|^4 (-\log |f|^2)}.$$

Let g_k, v be defined as above and put $\hat{\Omega} = \Omega \setminus \{f_1 = 0\}$. By Theorem 2.2 we may solve the equation $\overline{\partial} u = v$ on $\hat{\Omega}$ such that

$$\int_{\hat{\Omega}} |u|^2 \delta_{\hat{\Omega}}^{-\alpha} dV \leq \int_{\hat{\Omega}} |u|^2 e^{-\varphi} \delta_{\hat{\Omega}}^{-\alpha} dV \leq \text{const}_{\alpha, \Omega} \int_{\hat{\Omega}} |v|^2 e^{-\varphi} \delta_{\hat{\Omega}}^{-\alpha} dV$$

since the last term is bounded by

$$\text{const}_{\alpha, \Omega} \int_{\hat{\Omega}} |h|^2 |f|^{-4} (\log |f|^2)^2 \delta_{\hat{\Omega}}^{-\alpha} dV$$

$$= \text{const}_{\alpha, \Omega} \int_{\Omega \cap \{|z| < \epsilon\}} |h|^2 |f|^{-4} (\log |f|^2)^2 \delta_{\hat{\Omega}}^{-\alpha} dV + \text{const}_{\alpha, \Omega} \int_{\Omega \setminus \{|z| < \epsilon\}} |h|^2 |f|^{-4} (\log |f|^2)^2 \delta_{\hat{\Omega}}^{-\alpha} dV$$

$$\leq \text{const}_{\alpha, \Omega} \int_{\{|z| < \epsilon\}} |z|^{-2} (\log |z|)^2 dV + \text{const}_{\alpha, \Omega} \int_{\Omega} |h|^2 \delta_{\hat{\Omega}}^{-\alpha} dV < \infty$$
where \(\varepsilon > 0 \) is so small that \(\{ |z| \leq \varepsilon \} \subset \Omega \). Thus \(g_1, g_2 \) are holomorphic on \(\hat{\Omega} \) such that

\[
\int_{\Omega} |g_k|^2 \delta_{\Omega}^{-\alpha} dV < \infty, \quad k = 1, 2.
\]

The assertion follows immediately from Riemann’s removable singularities theorem. Q.E.D.

Remark. It is possible to extend both the Corona and Gleason type theorems to general cases by using the Koszul complex technique introduced by Hörmander [24]. But the argument will be substantially longer and not very enlightening, so that we shall not treat here.

3.3. Finally, we prove Theorem 1.4. (a) Let \(K \) be a compact subset of \(\Omega \) and \(f \in \mathcal{O}(\Omega) \). We take a strictly psh exhaustion function \(\psi \in C^\infty(\Omega) \) such that \(K \subset \{ \psi < 0 \} \). Let \(\kappa \) be a \(C^\infty \) convex increasing function such that \(\kappa = 0 \) on \((-\infty, 0] \) and \(\kappa' > 0, \kappa'' > 0 \) on \((0, +\infty) \). Let \(\rho < 0 \) be a bounded strictly psh exhaustion function on \(\Omega \). Choose \(\varepsilon > 0 \) so small that \(\{ \psi \leq 0 \} \subset \{ \rho < -\varepsilon \} \). Let \(\chi \in C^\infty_0(\Omega) \) be a real-valued function satisfying \(\chi = 1 \) in a neighborhood of \(\{ \rho \leq -\varepsilon \} \). We construct a \(2- \) parameter family of weight functions as follows

\[
\varphi_{t,s}(z) = |z|^2 + t\chi(z)\kappa(\psi(z)) + s\kappa(\rho(z) + \varepsilon), \quad t, s > 0.
\]

It is easy to see that for any \(t > 0 \) there is a sufficiently large number \(s = s(t) > 0 \) such that \(\partial \overline{\partial} \varphi_{t,s} \geq \partial \overline{\partial} |z|^2 \). Let \(\hat{\chi} \in C^\infty_0(\Omega) \) such that \(\hat{\chi} = 1 \) in a neighborhood of \(\{ \psi \leq 0 \} \) and \(\hat{\chi}(z) = 0 \) if \(\rho(z) \geq -\varepsilon \). By Theorem 1.1, we may solve the equation

\[
\partial u_t = f \partial \hat{\chi}
\]

such that

\[
\int_{\Omega} |u_t|^2 e^{-\varphi_{t,s}} \delta_{\Omega}^{-\alpha} dV \leq \text{const}_{a,\Omega} \int_{\Omega} |f|^2 |\partial \hat{\chi}|^2 e^{-\varphi_{t,s}} \delta_{\Omega}^{-\alpha} dV \leq \text{const}_{a,\Omega} \int_{\text{supp} \partial \hat{\chi}} |f|^2 e^{-t\kappa_0 \psi} \delta_{\Omega}^{-\alpha} dV \to 0
\]

as \(t \to +\infty \). Since \(\varphi_{t,s}(z) = |z|^2 \) whenever \(\psi(z) \leq 0 \), we conclude that

\[
\int_{\{\psi \leq 0\}} |u_t|^2 dV \to 0
\]

as \(t \to +\infty \), so is the function \(f_t - f \) where \(f_t := \hat{\chi} f - u_t \). On the other hand, \(f_t \in A^2_\alpha(\Omega) \) because \(\varphi_{t,s} \) is a bounded function. Since \(f_t - f \) is holomorphic on \(\{ \psi < 0 \} \), a standard compactness argument yields

\[
\sup_K |f_t - f| \to 0
\]

as \(t \to +\infty \).

(b) We take a \(C^2 \) psh function \(\rho < 0 \) on \(\Omega \) such that \(-\rho \times \delta_{\Omega}^a \) for some \(a > 0 \). Let \(0 \leq \hat{\chi} \leq 1 \) be a cut-off function on \(\mathbb{R} \) such that \(\hat{\chi}|_{(-\infty, -\log 2)} = 1 \) and \(\hat{\chi}|_{(0, \infty)} = 0 \). Let \(f \in A^2_{\alpha_1}(\Omega) \) be given. For each \(\varepsilon > 0 \), we define

\[
v_\varepsilon = f \partial \hat{\chi}(- \log(-\rho + \varepsilon) + \log 2\varepsilon), \quad \varphi_\varepsilon = -\frac{\alpha_2 - \alpha_1}{a} \log(-\rho + \varepsilon).
\]
By Theorem 1.1, we have a solution of \(\bar{\partial}u_\varepsilon = v_\varepsilon \) so that
\[
\int_\Omega |u_\varepsilon|^2 e^{-\varphi_\varepsilon} \delta_\Omega^{-\alpha_2} dV \leq \text{const.} \int_\Omega |v_\varepsilon|^2 e^{-\varphi_\varepsilon} \delta_\Omega^{-\alpha_2} dV \\
\leq \text{const.} \int_{\varepsilon \leq \rho \leq 3\varepsilon} |f|^2 \delta_\Omega^{-\alpha_1} dV
\]
for \(i\bar{\partial}\varphi_\varepsilon \geq \frac{\alpha_2 - \alpha_1}{\alpha} i\partial \log(-\rho + \varepsilon) \wedge \bar{\partial} \log(-\rho + \varepsilon) \). Put
\[
f_\varepsilon = f(\log(-\rho + \varepsilon) + \log 2\varepsilon) - u_\varepsilon.
\]
Since \(\varphi_\varepsilon \) is bounded and
\[
e^{-\varphi_\varepsilon} \geq e^{\frac{\alpha_2 - \alpha_1}{\alpha} \log(-\rho)} \delta_\Omega^{\alpha_2 - \alpha_1},
\]
we conclude that \(f_\varepsilon \in A^2_{\alpha_2}(\Omega) \) and
\[
\int_\Omega |f_\varepsilon - f|^2 \delta_\Omega^{-\alpha_1} dV \leq 2 \int_{\rho \leq 3\varepsilon} |f|^2 \delta_\Omega^{-\alpha_1} dV + 2 \int_\Omega |u_\varepsilon|^2 \delta_\Omega^{-\alpha_1} dV \\
\leq 2 \int_{\rho \leq 3\varepsilon} |f|^2 \delta_\Omega^{-\alpha_1} dV + \text{const.} \int_\Omega |u_\varepsilon|^2 e^{-\varphi_\varepsilon} \delta_\Omega^{-\alpha_2} dV \\
\leq 2 \int_{\rho \leq 3\varepsilon} |f|^2 \delta_\Omega^{-\alpha_1} dV + \text{const.} \int_{\varepsilon \leq \rho \leq 3\varepsilon} |f|^2 \delta_\Omega^{-\alpha_1} dV \\
\to 0
\]
as \(\varepsilon \to 0^+ \). Q.E.D.

Problem 1. Is the Hardy space \(H^2(\Omega) \) dense in \(A^2_{\alpha}(\Omega) \) for each \(\alpha < 1 \)?

Remark. The referee of this paper pointed out the following

(1) Bell and Boas have proved a theorem related to Theorem 1.4 (cf. [3], Theorem 1).
(2) There is a standard argument as follows, which is perhaps more straightforward than the author’s proof. Choose a cover \(\{U_j\}_{j=1}^m \) of the boundary and vectors \(n_j \) such that \(z - \varepsilon n_j \in \Omega \) for \(1 \leq j \leq m \), \(z \in U_j \), \(\varepsilon \leq \varepsilon_0 \). Choose \(\phi_0 \in C_\infty(\Omega) \) and \(\phi_j \in C_\infty^0(U_j) \), \(1 \leq j \leq m \), with \(\sum \phi_j = 1 \) in a neighborhood of \(\Omega \). Set
\[
f_\varepsilon(z) = \phi_0(z) f(z) + \sum_{j=1}^m \phi_j(z) f(z - \varepsilon n_j).
\]

Then \(f_\varepsilon \to f \) in the norm with weight \(\delta_\Omega^{\alpha} \). The theorem now follows by correcting \(f_\varepsilon \) via
\[
\bar{\partial}f_\varepsilon = f \bar{\partial}\phi_0 + \sum_{j=1}^m f(z - \varepsilon n_j) \bar{\partial}\phi_j = \sum_{j=1}^m [f(z - \varepsilon n_j) - f(z)] \bar{\partial}\phi_j
\]
(because \(\sum_{j=0}^m \bar{\partial}\phi_j = 0 \) on \(\Omega \)). The norm of the right hand side tends to zero; so if we solve the \(\bar{\partial} \)–equation with the estimate that was shown, the corrections we make to the \(f_\varepsilon \) tend to zero as well in norm, and we are done.
4. Proof of Theorem 1.5

4.1. Let \(\Omega \subset \mathbb{C}^n \) be a bounded domain. We define the pluricomplex Green function \(g_\Omega(\cdot, w) \) with pole at \(w \in \Omega \) as

\[
g_\Omega(z, w) = \sup \left\{ u(z) : u \in PSH(\Omega), u < 0, \limsup_{z \to w} (u(z) - \log |z - w|) < \infty \right\}.
\]

It is well-known that \(g_\Omega(\cdot, w) \in PSH(\Omega) \) for each fixed \(w \) and \(g_\Omega \in C(\overline{\Omega} \times \Omega \setminus \{z = w\}) \) when \(\Omega \) is hyperconvex (cf. [29]). We need the following estimate of \(g_\Omega \) due to Blocki [7]:

Theorem 4.1. Let \(\Omega \subset \subset \mathbb{C}^n \) be a pseudoconvex domain. Suppose there is a negative psh function \(\rho \) on \(\Omega \) satisfying

\[
C_1 \delta^\alpha_0(z) \leq -\rho(z) \leq C_2 \delta^b_\Omega(z), \quad z \in \Omega
\]

where \(C_1, C_2 > 0 \) and \(a \geq b \geq 0 \) are constants. Then there are positive numbers \(\delta_0, C \) such that

\[
\{ g_\Omega(\cdot, w) \leq -1 \} \subset \{ C^{-1} \delta_\Omega(w)^{\frac{1}{2}} \log \delta_\Omega(w)^{-\frac{1}{2}} \leq \delta_\Omega \leq C \delta_\Omega(w)^{\frac{1}{2}} \log \delta_\Omega(w)^{\frac{1}{2}} \}
\]

holds for any \(w \in \Omega \) with \(\delta_\Omega(w) \leq \delta_0 \).

4.2. Let \(K_\alpha \) be the Bergman kernel of \(A^2_\alpha(\Omega) \).

Proposition 4.2. Suppose \(\lim_{z \to \partial \Omega} K_\alpha(z, \eta(z)) = \infty \) where \(\eta \) is a positive continuous function on \(\Omega \). Then there exists a function \(f \in A^2_\alpha(\Omega) \) such that

\[
\limsup_{z \to \zeta} |f(z)|/\sqrt{\eta(z)} = \infty, \quad \forall \zeta \in \partial \Omega.
\]

Proof. The argument is standard (see e.g. [27], p. 416–417). We claim that the following assertion holds:

For each \(\zeta \in \partial \Omega \) and each sequence of points in \(\Omega \) with \(z_j \to \zeta \), there exists a function \(f \in A^2_\alpha(\Omega) \) such that \(\sup_j |f(z_j)|/\sqrt{\eta(z_j)} = \infty \).

Suppose there is a point \(\zeta \in \partial \Omega \) and a sequence of points in \(\Omega \) such that \(z_j \to \zeta \) such that \(\sup_j |f(z_j)|/\sqrt{\eta(z_j)} < \infty \), \(\forall f \in A^2_\alpha(\Omega) \). Applying the Banach-Steinhaus theorem to the linear functional \(f \to f(z_j)/\sqrt{\eta(z_j)} \), we get

\[
\sup_j |f(z_j)|/\sqrt{\eta(z_j)} \leq \text{const.} \|f\|
\]

for all \(f \in A^2_\alpha(\Omega) \). Thus \(K_\alpha(z_j, \sqrt{\eta(z_j)}) \leq \text{const.} \), contradictory.

Now we construct the desired function \(f \). Pick a non-decreasing sequence of compact subsets \(\{K_j\} \) of \(\Omega \) such that \(D = \bigcup K_j \). Fix a dense sequence \(\{z_j\} \subset \Omega \). We reorder the points of the sequence as follows

\[
z_1, z_2, z_1, z_3, z_2, z_1, \ldots
\]

and denote the new sequence by \(\{w_j\} \). Let \(B_j = B(w_j, \delta_\Omega(w_j)) \) where \(B(z, r) \) is the euclidean ball with center \(z \) and radius \(r \). By the above claim, we may construct inductively sequences

\[
\{j_\nu\} \subset \mathbb{Z}^+, \quad \{\zeta_\nu\} \subset \Omega, \quad \{\theta_\nu\} \subset \mathbb{R}, \quad \{f_\nu\} \subset A^2_\alpha(\Omega)
\]

such that

\[
\zeta_\nu \in (B_{j_\nu} \setminus K_{j_\nu}) \cap K_{j_{\nu+1}}, \quad \|f_\nu\| = 1, \quad \left| \sum_{\mu=1}^{\nu} \frac{f_\mu(\zeta_\nu) e^{i\theta_\nu}}{\mu^2 (1 + \|f_\mu\| K_{j_\nu})} \right| \geq \frac{\nu}{\sqrt{\eta(\zeta_\nu)}}
\]
where \(\|f_\mu\|_{K_j} = \sup_{K_j} |f_\mu| \). It suffices to take \(f(z) = \sum_{\nu=1}^{\infty} \frac{f_\nu(z)e^{\theta_\nu}}{\nu!(1+\|f_\nu\|_{K_j})} \), Q.E.D.

Now we prove Theorem 1.5. The argument is essentially same as [12]. Fix first an arbitrary point \(w \) sufficiently close to \(\partial \Omega \). Put \(g_j = \max\{g_\Omega, \cdot, w, \cdot, -j\}, j = 1, 2, \ldots \). Since \(\Omega \) is hyperconvex, \(g_j \) is continuous on \(\Omega \) and \(g_j \downarrow g_\Omega, \cdot, w, \cdot, \) as \(j \to \infty \). By Richberg’s theorem (cf. [39]), there is a \(C^\infty \) strictly psh function \(\psi_j < 0 \) on \(\Omega \) such that \(|\psi_j(z) - g_j(z)| < 1/j \), \(z \in \Omega \). Put

\[
\varphi = 2n g_\Omega, \cdot, w, \cdot - \log(-g_\Omega, \cdot, w, \cdot + 1), \quad \varphi_j = 2n \psi_j - \log(-\psi_j + 1).
\]

Let \(\chi : \mathbb{R} \to [0, 1] \) be a \(C^\infty \) cut-off function satisfying \(\chi((-\infty, -1]) = 1 \) and \(\chi([-\log 2, \infty)) = 0 \). Put

\[
v_j = \bar{\partial} \chi(-\log(-\psi_j)) \frac{K_\Omega(s, w)}{\sqrt{K_\Omega(w)}}
\]

where \(K_\Omega \) denotes the unweighted Bergman kernel of \(\Omega \). By Theorem 1.1, there is a solution of the equation \(\bar{\partial} u_j = v_j \) such that

\[
\int_{\Omega} |u_j|^2 e^{-\varphi} \delta_\Omega^\alpha dV \leq \text{const}_{\alpha, \Omega} \int_{\Omega} |v_j|^2 \bar{i} \partial \bar{\partial} \varphi_j e^{-\varphi} \delta_\Omega^\alpha dV \\
\leq \text{const}_{\alpha, \Omega} \int_{\sup \bar{\partial} \chi(s)} \frac{|K_\Omega(s, w)|^2}{K_\Omega(w)} \delta_\Omega^{-\alpha} dV
\]

where the second inequality follows from

\[
i \bar{\partial} \varphi_j \geq \frac{i \partial \psi_j \wedge \bar{\partial} \psi_j}{(-\psi_j + 1)^2}.
\]

By Blocki’s theorem, we have

\[
\sup \bar{\partial} \chi(s) \subset \{ \psi_j \leq -2 \} \subset \{ g_\Omega, \cdot, w, \cdot \leq -1 \} \subset \{ C^{-1} \delta_\Omega(w) | \log \delta_\Omega(w) |^{-\frac{\alpha}{\alpha}} \leq \delta_\Omega \}, \quad j \gg 1,
\]

where \(a \) is a Diederich-Fornaess exponent for \(\Omega \). Thus

\[
\int_{\Omega} |u_j|^2 e^{-\varphi} \delta_\Omega^{-\alpha} dV \leq \text{const}_{\alpha, \Omega} \frac{|\log \delta_\Omega(w)|^{\alpha}}{\delta_\Omega(w)^{\alpha}}.
\]

Let \(u \) be a weak limit of a subsequence of \(\{u_j\} \). Thus

\[
f := \chi(-\log(-g_\Omega, \cdot, w, \cdot)) K_\Omega(s, w) / \sqrt{K_\Omega(w)} - u
\]

is holomorphic on \(\Omega \). Since \(u \) is holomorphic in a neighborhood of \(w \) and

\[
\int_{\Omega} |u|^2 e^{-\varphi} \delta_\Omega^{-\alpha} dV \leq \text{const}_{\alpha, \Omega} \frac{|\log \delta_\Omega(w)|^{\alpha}}{\delta_\Omega(w)^{\alpha}},
\]

we conclude that \(u(w) = 0 \). Thus \(f(w) = \sqrt{K_\Omega(w)} \) and

\[
\int_{\Omega} |f|^2 \delta_\Omega^{-\alpha} dV \leq \text{const}_{\alpha, \Omega} \frac{|\log \delta_\Omega(w)|^{\alpha}}{\delta_\Omega(w)^{\alpha}}.
\]

Thus

\[
K_\alpha(w) \geq \frac{|f(w)|^2}{\int_{\Omega} |f|^2 \delta_\Omega^{-\alpha} dV} \geq \text{const}_{\alpha, \Omega} K_\Omega(w) \frac{\delta_\Omega(w)^{\alpha}}{|\log \delta_\Omega(w)|^{\alpha}} \geq \frac{\text{const}_{\alpha, \Omega}}{\delta_\Omega(w)^{2-\alpha} |\log \delta_\Omega(w)|^{\frac{\alpha}{2}}}
\]

as \(w \to \partial \Omega \) where the last inequality follows from the Ohsawa-Takegoshi extension theorem (cf. [36]). Applying Proposition 4.2 with \(\eta(z) = \delta_\Omega(z)^{2-\alpha} |\log \delta_\Omega(z)|^{\frac{\alpha}{2}} \), we conclude the proof. Q.E.D.
5. Proof of Theorem 1.6

We follows closely along Stein’s book [41]. For each \(\zeta \in \partial \Omega \), let \(\nu_\zeta \) denote the unit outward normal at \(\zeta \) and \(T_\zeta \) the tangent plane at \(\zeta \). For each \(t > 0 \), we define an approach region \(\mathcal{A}_t(\zeta) \) with vertex \(\zeta \) by

\[
\mathcal{A}_t(\zeta) = \{ z \in \Omega : |(z - \zeta) \cdot \nu_\zeta| < (1 + t)\delta_\zeta(z), |z - \zeta|^2 < t\delta_\zeta(z) \}
\]

where \(\delta_\zeta(z) = \min\{\delta_\Omega(z), d(z, T_\zeta)\} \). We shall say that \(|f(z)| = o(\delta_\Omega(z)^{-\beta}) \) uniformly as \(z \to \zeta \) admissibly for some \(\beta \geq 0 \) if for each \(t > 0 \)

\[
\limsup \delta_\Omega(z)^\beta |f(z)| = 0
\]
as \(z \to \zeta \) from the inside of \(\mathcal{A}_t(\zeta) \). For each \(\zeta_0 \in \partial \Omega \) and \(r > 0 \), we put

\[
B_1(\zeta_0, r) = \{ \zeta \in \partial \Omega : |\zeta - \zeta_0| < r \}
\]

\[
B_2(\zeta_0, r) = \{ \zeta \in \partial \Omega : |(\zeta - \zeta_0) \cdot \nu_{\zeta_0}| < r, |\zeta - \zeta_0|^2 < r \}
\]

and

\[
f_j^*(\zeta_0) = \sup_{r > 0} \frac{1}{\sigma(B_j(\zeta_0, r))} \int_{B_j(\zeta_0, r)} |f(\zeta)| d\sigma(\zeta), \ j = 1, 2
\]

where \(f \in L^p(\partial \Omega) \) and \(d\sigma \) is the surface measure for \(\partial \Omega \). The maximal function is defined by

\[
(Mf)(\zeta) = (f_j^*)^*_{\gamma}(\zeta).
\]

Theorem 5.1. (cf. [41], see also [25]).

1. \(\|Mf\|_p \leq \text{const}_p \|f\|_p \), \(\forall f \in L^p(\partial \Omega) \), \(1 < p < \infty \).

2. Let \(u \) be a psh function on \(\Omega \) which is continuous on \(\Omega \) and let \(f = u|_{\partial \Omega} \). Then

\[
\sup_{z \in \mathcal{A}_t(\zeta)} |u(z)| \leq \text{const}_p (Mf)(\zeta).
\]

Now choose a cover of \(\Omega \) by finitely many subdomains \(\Omega_0, \Omega_1, \ldots, \Omega_m \subset \Omega \) with the following properties:

(a) \(\partial \Omega_j \) is \(C^2 \).

(b) \(\partial \Omega_j \cap \partial \Omega \subset \Omega \).

(c) There exists a domain \(W_j \subset \partial \Omega_j \cap \partial \Omega \) such that \(\{W_j\}_{j=0}^m \) forms a cover of \(\partial \Omega \).

(d) There exists an outward unit normal \(\nu_j \) at a point in \(\partial \Omega_j \cap \partial \Omega \) such that

\[
\overline{\Omega}_j - \varepsilon \nu_j \subset \Omega, \quad \forall 0 < \varepsilon < 1.
\]

It suffices to work on a single subdomain, say \(\Omega_0 \). Let \(\varepsilon_0 \) be a sufficiently small number. In order to apply Gehring’s method (cf. [20]), we define for each \(t > 0 \), \(0 < \varepsilon < \varepsilon_0/2 \), \(\zeta \in W_0 \),

\[
U_\varepsilon^{(t)}(\zeta) = \{ z \in \mathcal{A}_t(\zeta) : 2\varepsilon < \delta_\zeta(z) < \varepsilon_0 \}
\]

\[
V_\varepsilon^{(t)}(\zeta) = \left\{ z \in \mathcal{A}_t(\zeta) - \varepsilon \nu_0 : \delta_\zeta(z) < \frac{3}{2} \varepsilon_0 \right\}.
\]

Lemma 5.2. For each \(t > 0 \), we may choose \(\varepsilon_0 > 0 \) so that

\[
U_\varepsilon^{(t)}(\zeta) \subset V_\varepsilon^{(s)}(\zeta) \subset \Omega_0, \quad s := 2 + 4t,
\]

for all \(\varepsilon < \varepsilon_0/2 \) and \(\zeta \in W_0 \).
Proof. For each $z \in U_{t}^{(t)}(\zeta)$, we have $\delta_{\zeta}(z) > 2\varepsilon$. Thus
\[
\begin{align*}
\delta_{\zeta}(z + \varepsilon \nu_{0}) & \geq \delta_{\zeta}(z) - \varepsilon > \varepsilon \\
\delta_{\zeta}(z + \varepsilon \nu_{0}) & \leq \delta_{\zeta}(z) + \varepsilon < \frac{3}{2} \varepsilon_{0}
\end{align*}
\]
for all $\varepsilon < \varepsilon_{0}/2$. Since
\[
|(z - \zeta) \cdot \nu_{\zeta}| < (1 + t)\delta_{\zeta}(z), \quad |z - \zeta| < (t\delta_{\zeta}(z))^{1/2},
\]
we get
\[
\begin{align*}
|(z + \varepsilon \nu_{0} - \zeta) \cdot \nu_{\zeta}| & \leq |(z - \zeta) \cdot \nu_{\zeta}| + \varepsilon < (1 + t)\delta_{\zeta}(z) + \varepsilon \leq (3 + 2t)\delta_{\zeta}(z + \varepsilon \nu_{0}) \\
|z + \varepsilon \nu_{0} - \zeta|^{2} & \leq 2|z - \zeta|^{2} + 2\varepsilon^{2} < 2t\delta_{\zeta}(z) + 2\varepsilon \leq (2 + 4t)\delta_{\zeta}(z + \varepsilon \nu_{0}).
\end{align*}
\]
Thus $z + \varepsilon \nu_{0} \in V_{t}^{(s)}(\zeta)$ where $s = 2 + 4t$ and we get the first inclusion in the lemma.

On the other hand, for each $z \in V_{t}^{(s)}(\zeta)$, we have $|z - \zeta|^{2} < s\delta_{\zeta}(z) \leq \frac{3}{2} s \varepsilon_{0}$, hence $V_{t}^{(s)}(\zeta) \subset \Omega_{0}$ for all $\varepsilon < \varepsilon_{0}/2$, provided ε_{0} small enough. Q.E.D.

For each $f \in A_{t}^{2}(\Omega)$, we define
\[
\begin{align*}
u_{t}^{(s)}(\zeta) = \sup_{z \in U_{t}^{(t)}(\zeta)} |f(z)| & \quad \text{and} \quad v_{t}^{(s)}(\zeta) = \sup_{z \in V_{t}^{(s)}(\zeta)} |f(z)|.
\end{align*}
\]
Put $f_{\varepsilon}(z) = f(z - \varepsilon \nu_{0})$, $z \in \Omega_{0}$. Clearly, $|f_{\varepsilon}|$ is psh in Ω_{0} and continuous on $\overline{\Omega}_{0}$. Let $M_{0} f_{\varepsilon}$ be the corresponding maximal function on $\partial\Omega_{0}$. Take $0 < c < 1$ so that
\[
\Omega_{0} - \varepsilon \nu_{0} =: \Omega_{0}^{c} \subset \Omega_{ce} := \{ z \in \Omega : \delta_{\Omega}(z) > c \varepsilon \}.
\]
Let $d\sigma_{0}$ and $d\sigma_{ce}$ denote the surface measures on $\partial\Omega_{0}$ and $\partial\Omega_{ce}$ respectively and let C denote a generic constant which is independent of ε but probably depends on α, t, s. By Theorem 5.1 and Lemma 5.2, we have
\[
u_{t}^{(s)}(\zeta) \leq C(M_{0} f_{\varepsilon})(\zeta), \quad \forall \zeta \in W_{0},
\]
so that
\[
\begin{align*}
\int_{W_{0}} |u_{t}^{(t)}(\zeta)|^{2} d\sigma_{0}(\zeta) & \leq C \int_{\partial\Omega_{0}} |M_{0} f_{\varepsilon}|^{2} d\sigma_{0} \leq C \int_{\partial\Omega_{0}} |f_{\varepsilon}|^{2} d\sigma_{0} \\
& = C \int_{\partial\Omega_{0}} |f|^{2} d\sigma_{0} \leq C \int_{\partial\Omega_{ce}} |f|^{2} d\sigma_{ce}
\end{align*}
\]
because of the following

Lemma 5.3. There is a constant $C > 0$ independent of ε and f such that
\[
\int_{\partial\Omega_{0}} |f|^{2} d\sigma_{0} \leq C \int_{\partial\Omega_{ce}} |f|^{2} d\sigma_{ce}
\]
for all sufficiently small $\varepsilon > 0$.

Thus for suitable small number $c_{0} > 0$ we have
\[
\int_{0}^{c_{0}} \varepsilon^{-a} \int_{W_{0}} |u_{t}^{(t)}(\zeta)|^{2} d\sigma_{0}(\zeta) d\varepsilon \leq C \int_{0}^{c_{0}} \int_{\partial\Omega_{ce}} |f|^{2} \varepsilon^{-a} d\sigma_{ce} d\varepsilon \leq C \int_{\Omega} |f|^{2} \delta^{a \varepsilon} dV < \infty,
\]
so that for σ_{0}–almost every $\zeta \in W_{0}$,
\[
\int_{0}^{c_{0}} \varepsilon^{-a} |u_{t}^{(t)}(\zeta)|^{2} d\varepsilon < \infty.
\]
Hence
\[\int_0^{\varepsilon'} \varepsilon^{-\alpha}|u_\varepsilon(t)(\zeta)|^2 d\varepsilon = o(1) \]
as \(\varepsilon' \to 0 \). Given \(z \in A_{\varepsilon}(\zeta) \), we let \(\varepsilon' = \delta_\varepsilon(z)/2 \). Since \(z \in U_\varepsilon^{(t)}(\zeta) \) for each \(\varepsilon < \varepsilon' \), we have \(u_\varepsilon^{(t)}(\zeta) \geq |f(z)| \), thus
\[|f(z)| = o(\delta_\varepsilon(z)^{-\frac{1}{1+\alpha}}) \quad \text{uniformly} \]
as \(z \to \zeta \) from the inside of \(A_{\varepsilon}(\zeta) \). Q.E.D. □

Finally we prove Lemma 5.3. The argument is essentially implicit in [12]. Let \(P(z, w), P_\varepsilon(z, w), P_0(z, w) \) and \(P_{0,\varepsilon}(z, w) \) denote the Poisson kernels of \(\Omega, \Omega_{\varepsilon}, \Omega_0 \) and \(\Omega_{\varepsilon,0} \) respectively. Put
\[g(z) = \int_{\partial \Omega_{\varepsilon}} P_\varepsilon(z, w)|f(w)|^2 d\sigma_\varepsilon(w). \]
Then \(g \) is a harmonic majorant of \(|f|^2 \) on \(\Omega_{\varepsilon,0} \). Fix a point \(z_0 \) in \(\Omega_0 \). Since \(P_\varepsilon(z_0, \pi_\varepsilon^{-1}(\zeta)) \) converges uniformly on \(\partial \Omega \) to \(P(z_0, \zeta) \) where \(\pi_\varepsilon \) is the normal projection from \(\partial \Omega_{\varepsilon,0} \) to \(\partial \Omega \),
\[g(z_0) \leq 2C_1 \int_{\partial \Omega_{\varepsilon,0}} |f(w)|^2 d\sigma_\varepsilon(w) \]
for all sufficiently small \(\varepsilon > 0 \) where \(C_1 = \sup_{\zeta \in \partial \Omega} P(z_0, \zeta) \). On the other hand,
\[g(z_0) = \int_{\partial \Omega_{\varepsilon,0}} P_{0,\varepsilon}(z_0, w)g(w)d\sigma_0 \]
\[\geq \frac{C_2}{2} \int_{\partial \Omega_{\varepsilon,0}} g(w)d\sigma_0 \geq \frac{C_2}{2} \int_{\partial \Omega_{\varepsilon,0}} |f(w)|^2 d\sigma_0 \]
for all sufficiently small \(\varepsilon > 0 \) where \(C_2 = \inf_{\zeta \in \partial \Omega_0} P_0(z_0, \zeta) \). The proof is complete. Q.E.D.

Remark. In various studies of boundary behavior of functions in Hardy spaces, the approach region defined as above is only best possible for strongly pseudoconvex domains (see e.g., [35, 31]). It is probably same in the case of weighted Bergman spaces.

6. Proof of Theorem 1.8

Let \(\| \cdot \|_\alpha \) and \(\| \cdot \|_{\partial \Omega} \) denote the corresponding norms of the weighted Bergman space \(A_\alpha^2(\Omega) \) and the Hardy space \(H^2(\Omega) \) respectively. Note first that for each \(f \in H^2(\Omega) \), and any sufficiently small \(\varepsilon_0 > 0 \),
\[(1 - \alpha) \int_\Omega |f|^2 \delta_\alpha dV = (1 - \alpha) \int_{\Omega_{\varepsilon_0}} |f|^2 \delta_\alpha^\alpha dV + (1 - \alpha) \int_{\Omega \setminus \Omega_{\varepsilon_0}} |f|^2 \delta_\alpha^\alpha dV \]
\[\leq (1 - \alpha) \int_{\Omega_{\varepsilon_0}} |f|^2 \delta_\alpha^\alpha dV + \varepsilon_0^{1 - \alpha} \sup_{0 < \varepsilon < \varepsilon_0} \| f \|_{\partial \Omega_\varepsilon}^{2}. \]
Applying this inequality with \(f(z) = S(z, w) \) for fixed \(w \in \Omega \), we get
\[\lim_{\alpha \to 1^-} \inf_{\alpha}(1 - \alpha)^{-1} K_\alpha(w) \geq \lim_{\alpha \to 1^-} \inf_{\alpha}(1 - \alpha)^{-1} \frac{|f(w)|^2}{\| f \|_\alpha^2} \leq \frac{S(w)^2}{\sup_{0 < \varepsilon < \varepsilon_0} \| S(\cdot, w) \|_{\partial \Omega_\varepsilon}^{2}} \]
locally uniformly in \(w \) and uniformly in \(\varepsilon_0 \). Let \(S_\varepsilon \) denote the Szegö kernel of \(\Omega_\varepsilon \). It was proved by Boas [8] that \(S_\varepsilon(z, w) \to S(z, w) \) locally uniformly in \(z, w \) and
\[\| S_\varepsilon(\cdot, w) - S(\cdot, w) \|_{\partial \Omega_\varepsilon} \to 0 \]
locally uniformly in w as $\varepsilon \to 0^+$. Thus
\[
\liminf_{\alpha \to 1^-} (1 - \alpha)^{-1} K_\alpha(w) \geq \lim_{\varepsilon_0 \to 0^+} \frac{S(w)^2}{\sup_{0 < \varepsilon < \varepsilon_0} |S_\varepsilon(\cdot, w)|^2_{\partial \Omega_\varepsilon}} = \lim_{\varepsilon_0 \to 0^+} \frac{S(w)^2}{\sup_{0 < \varepsilon < \varepsilon_0} S_\varepsilon(w)} = S(w)
\]locally uniformly in w. On the other side, for any sufficiently small $\varepsilon > 0$
\[
\int_{\partial \Omega_\varepsilon} |(1 - \alpha)^{-1} K_\alpha(z, w) - S_\varepsilon(z, w)|^2 d\sigma_\varepsilon(z) = (1 - \alpha)^{-2} \|K_\alpha(\cdot, w)\|_{\partial \Omega_\varepsilon}^2 + (S_\varepsilon(\cdot, w))^2_{\partial \Omega_\varepsilon} - 2(1 - \alpha)^{-1} \text{Re} \int_{\partial \Omega_\varepsilon} K_\alpha(z, w) S_\varepsilon(z, w) d\sigma_\varepsilon(z).
\]Put $f_\alpha(z) := (1 - \alpha)^{-1/2} K_\alpha(z, w)/\sqrt{K_\alpha(w)}$. Following [12], we introduce
\[
\lambda_\alpha(\varepsilon) := \|f_\alpha\|_{\partial \Omega_\varepsilon} = \int_{\partial \Omega_\varepsilon} |f_\alpha|^2 d\sigma_\varepsilon.
\]Clearly, λ_α is continuous on $(0, a]$ for some sufficiently small $a > 0$ (independent of α). For any sufficiently small $0 < \varepsilon_1 < \varepsilon_2 < a$, λ_α assumes the minimum at some point $\varepsilon^* = \varepsilon^*(\varepsilon_1, \varepsilon_2, \alpha)$ in $[\varepsilon_1, \varepsilon_2]$. Thus
\[
1 = (1 - \alpha) \|f_\alpha\|_\alpha^2 \geq (1 - \alpha) \int_{\varepsilon_1 \leq \varepsilon_0 \leq \varepsilon_2} |f_\alpha|^2_{\partial \Omega_\varepsilon} dV \geq (\varepsilon_2^{1 - \alpha} - \varepsilon_1^{1 - \alpha}) \lambda_\alpha(\varepsilon^*),
\]so that
\[
\|K_\alpha(\cdot, w)\|_{\partial \Omega_{\varepsilon^*}}^2 \leq (1 - \alpha) (\varepsilon_2^{1 - \alpha} - \varepsilon_1^{1 - \alpha})^{-1} K_\alpha(w).
\]Thus
\[
\int_{\partial \Omega_{\varepsilon^*}} |(1 - \alpha)^{-1} K_\alpha(z, w) - S_{\varepsilon^*}(z, w)|^2 d\sigma_{\varepsilon^*}(z) \leq S_{\varepsilon^*}(w) - (1 - \alpha)^{-1} \left(2 - (\varepsilon_2^{1 - \alpha} - \varepsilon_1^{1 - \alpha})^{-1} \right) K_\alpha(w) = \left(2 - (\varepsilon_2^{1 - \alpha} - \varepsilon_1^{1 - \alpha})^{-1} \right) (S(w) - (1 - \alpha)^{-1} K_\alpha(w)) + \left((\varepsilon_2^{1 - \alpha} - \varepsilon_1^{1 - \alpha})^{-1} - 1 \right) S(w) + S_{\varepsilon^*}(w) - S(w).
\]It follow that
\[
\limsup_{\varepsilon_2 \to 0^+} \limsup_{\alpha \to 1^-} \limsup_{\varepsilon_1 \to 0^+} \int_{\partial \Omega_{\varepsilon^*}} |(1 - \alpha)^{-1} K_\alpha(z, w) - S_{\varepsilon^*}(z, w)|^2 d\sigma_{\varepsilon^*}(z) = 0
\]locally uniformly in w. Let $P_\varepsilon(z, \zeta)$ denote the Poisson kernel of Ω_ε. For each compact set M in Ω and $z, w \in M$, we have
\[
|(1 - \alpha)^{-1} K_\alpha(z, w) - S_{\varepsilon^*}(z, w)|^2 \leq \int_{\partial \Omega_{\varepsilon^*}} P_{\varepsilon^*}(z, \zeta) \left| (1 - \alpha)^{-1} K_\alpha(\zeta, w) - S_{\varepsilon^*}(\zeta, w) \right|^2 d\sigma_{\varepsilon^*}(\zeta) \leq \text{const}_M \int_{\partial \Omega_{\varepsilon^*}} \left| (1 - \alpha)^{-1} K_\alpha(\zeta, w) - S_{\varepsilon^*}(\zeta, w) \right|^2 d\sigma_{\varepsilon^*}(\zeta)
\]provided ε^* sufficiently small. Thus $(1 - \alpha)^{-1} K_\alpha(z, w) \to S(z, w)$ uniformly in $z, w \in M$ as $\alpha \to 1^-$. The second assertion follows immediately from this fact and Theorem 1.9 Q.E.D.
Problem 2. Does \((1 - \alpha)^{-1} K_\alpha(z, w)\) admit an asymptotic expansion in powers of \(1 - \alpha\) as \(\alpha \to 1\)?

7. Proof of Theorem 1.7

Let \(ds^2 = \partial \bar{\partial}(- \log(1 - |z|^2))\) be the Bergman metric of \(\mathbb{B}^n\) and \(d(z, w)\) the Bergman distance between two points \(z, w\). Here we omit the factor \(n + 1\) in the classical definition of the Bergman metric for the sake of convenience. For each \(w \in \mathbb{B}^n, \tau > 0\) and \(0 < r < 1\), we put

\[B_\tau(w) = \{z \in \mathbb{B}^n : d(z, w) < \tau\}, \quad \mathcal{B}_r(w) = \{z \in \mathbb{B}^n : |z - w| < r\}. \]

Note that \(B_\tau(0) = \mathcal{B}_r(0) \iff \tau = \frac{1}{2} \log \frac{1 + r}{1 - r}\).

Let \(\text{vol}_B\) and \(\text{vol}_E\) denote the Bergman and Euclidean volumes respectively.

Proposition 7.1. The following conclusions hold:

1. For each \(\tau > 0\), there is a constant \(C_\tau > 1\) such that for each \(w \in \mathbb{B}^n\),
 \[B_\tau(w) \subset \{z \in \mathbb{B}^n : C_\tau^{-1}(1 - |w|) < 1 - |z| < C_\tau(1 - |w|)\} . \]
 \[C_\tau^{-1}(1 - |w|)^{n+1} \leq \text{vol}_E(B_\tau(w)) \leq C_\tau(1 - |w|)^{n+1}. \]

2. For each \(r < 1\),
 \[\text{vol}_B(B_r(0)) \leq \text{const}_n (1 - r)^{-n}. \]

3. For each \(\tau > 0\), there is a constant \(t > 1\) such that for each \(\zeta \in \mathbb{S}^n\) and each \(w \in L_\zeta\), where \(L_\zeta\) is the segment determined by \(0, \zeta\), we have
 \[B_\tau(w) \subset \mathcal{A}_t(\zeta). \]

Proof. (1) See [43], Lemma 2.20, Lemma 1.23.
 (2) The Bergman volume form is
 \[\text{const}_n (1 - |z|^2)^{-n-1} dV. \]
 Thus
 \[\text{vol}_B(B_r(0)) = \text{const}_n \int_0^r (1 - s^2)^{-n-1} s^{2n-1} ds, \]
 from which the assertion immediately follows.
 (3) By [43], Lemma 2.20, there is a constant \(C_\tau > 0\) such that
 \[|1 - z \cdot \bar{w}| < C_\tau(1 - |w|), \quad \forall z \in B_\tau(w). \]
 Thus
 \[|1 - z \cdot \bar{\zeta}| \leq |1 - z \cdot \bar{w}| + \left| z \cdot \overline{(w - \zeta)} \right| \leq (C_\tau + 1)(1 - |w|) \leq t(1 - |z|) \]
 for suitable \(t \gg 1\) by (i). Q.E.D.

Definition 7.1. (see e.g., [28]). A subset \(\Gamma = \{w_j\}_{j=1}^\infty\) of \(\mathbb{B}^n\) is said to be \(\tau\)-separated for \(\tau > 0\), if \(d(w_j, w_k) \geq \tau\) for all \(j \neq k\), and \(\tau\)-separated subset is called maximal if no more points can be added to \(\Gamma\) without breaking the condition.
Lemma 7.2. Let \(\Gamma = \{w_j\}_{j=1}^{\infty} \) be a \(\tau \)-separated sequence such that \(0 \notin \Gamma \). For any \(\varepsilon > 0 \),
\[
\sum_{j=1}^{\infty} \frac{(1 - |w_j|)^n}{\left(\log \frac{1}{1 - |w_j|} \right)^{1+\varepsilon}} < \infty.
\]

Proof. The argument is standard (compare [22], Theorem XI.7 and Theorem XI.8). For each 0 < \(r < 1 \), let \(n_r \) denote the number of points \(w_j \) which are contained in the ball \(B_r(0) = B_{\frac{1}{2} \log \frac{1}{1 - r}}(0) \). Since \(\{B_{r/2}(w_j)\}_{j=1}^{\infty} \) do not overlap, we have
\[
n_r \text{vol}_B(B_{r}(0)) \leq \text{vol}_B(B_{\frac{1}{2} \log \frac{1}{1 - r}}(0)) = \text{vol}_B \left(\mathbb{B}_{e^{\frac{1}{2} \log \frac{1}{1 - r}} - \frac{1}{2}}(0) \right) \leq \text{const}_{n,\tau} (1 - r)^{-n}
\]
by Proposition 7.1/(2). Take \(r_0 > 0 \) such that \(|w_j| \geq r_0 \) for each \(j \). Thus
\[
\sum_{|w_j| < r < 1} \frac{(1 - |w_j|)^n}{\left(\log \frac{1}{1 - |w_j|} \right)^{1+\varepsilon}} = \int_{r_0}^{r} \frac{(1 - s)^n}{\left(\log \frac{1}{1 - s} \right)^{1+\varepsilon}} ds
\]
\[
\leq \frac{(1 - r)^n}{\left(\log \frac{1}{1 - r} \right)^{1+\varepsilon}} n_r + \int_{r_0}^{r} \frac{(1 - s)^n}{\left(\log \frac{1}{1 - s} \right)^{1+\varepsilon}} n_s ds
\]
\[
\leq \text{const}_{n,\tau} + \text{const}_{n,\tau,\varepsilon} \int_{r_0}^{r} \frac{1}{(1 - s)^{1+\varepsilon}} ds = O(1)
\]
as \(r \to 1^- \). Q.E.D.

Lemma 7.3. There is a constant \(C_n > 0 \) such that for each \(\alpha < 1 \), \(\varepsilon > 0 \) and each 2\(\tau \)-separated sequence \(\Gamma = \{w_j\}_{j=1}^{\infty} \) with \(0 \notin \Gamma \) and \(\tau \geq \frac{C_n}{\sqrt{1 - \alpha}} \), there exists a function \(f \in A^2(\mathbb{B}^n) \) such that
\[
f(w_j) = (1 - |w_j|)^{-\frac{1}{2} - \varepsilon} \left(\log \frac{1}{1 - |w_j|} \right)^{-\frac{1 + \varepsilon}{2}}, \quad \forall j.
\]

Proof. Take a \(C^\infty \) cut-off function \(\chi : \mathbb{R} \to [0, 1] \) such that \(\chi|_{(-\infty, 1/4]} = 1 \), \(\chi|_{(1/2, \infty)} = 0 \) and \(\chi' \leq 0 \). Put \(d_j(z) = d(z, w_j) \) and
\[
\psi(z) = \sum_j \chi(d_j(z)/\tau) \log d_j(z)/\tau
\]
\[
\varphi(z) = -\frac{1 - \alpha}{2} \log(1 - |z|^2) + 2n\psi(z).
\]
A straightforward calculation shows
\[
\partial \bar{\partial} \psi = \sum_j \chi''(\cdot) \frac{\partial d_j \wedge \bar{\partial} d_j}{\tau^2} \log d_j/\tau + 2\chi'(\cdot) \frac{\partial d_j \wedge \bar{\partial} d_j}{\tau d_j}
\]
\[
+ \chi'(\cdot) \frac{\partial \bar{\partial} d_j}{\tau} \log d_j/\tau + \chi(\cdot) \partial \bar{\partial} \log d_j.
\]
\[
(7.1)
\]
Since \(ds^2_{\mathbb{B}^n} \) has negative Riemannian sectional curvature, it follows from [21] that \(\log d_j \) is psh (so is \(d_j \)) on \(\mathbb{B}^n \). Neglecting the last two semipositive terms in (8), we get
\[
\partial \bar{\partial} \psi \geq -\frac{C_n^2}{8n\tau^2} ds^2_{\mathbb{B}^n}
\]
for suitable constant $C_n > 0$. If $\tau \geq C_n/\sqrt{1 - \alpha}$, then

$$\partial \bar{\partial} \varphi \geq \frac{1 - \alpha}{4} ds_{\mathbb{B}^n}^2.$$

By Theorem 1.1, we may solve the equation

$$\bar{\partial}u = \sum_j (1 - |w_j|)^{-\frac{1 + \alpha}{2}} \left(\log \frac{1}{1 - |w_j|} \right)^{-\frac{1 + \alpha}{2}} \bar{\partial} \chi(d_j/\tau) =: v$$

such that

$$\int_{\mathbb{B}^n} |u|^2 e^{-\varphi}(1 - |z|)^{-1 - \alpha} dV \leq \text{const}_{n,\alpha} \int_{\mathbb{B}^n} |v|_{\bar{\partial} \varphi}^2 e^{-\varphi}(1 - |z|)^{-1 - \alpha} dV$$

$$\leq \text{const}_{n,\alpha,\tau} \sum_j (1 - |w_j|)^{-1 + \alpha} \left(\log \frac{1}{1 - |w_j|} \right)^{-1 + \varepsilon} \int_{B_{\tau}(w_j)} (1 - |z|)^{-\alpha} dV$$

$$\leq \text{const}_{n,\alpha,\tau} \sum_{j=1}^{\infty} \frac{(1 - |w_j|)^n}{(\log \frac{1}{1 - |w_j|})^{1 + \varepsilon}} < \infty$$

where the last inequality follows from Proposition 7.1/(1). To get the desired function, we only need to take

$$f := \sum_j \chi(d_j/\tau)(1 - |w_j|)^{-\frac{1 + \alpha}{2}} \left(\log \frac{1}{1 - |w_j|} \right)^{-\frac{1 + \alpha}{2}} - u.$$

Q.E.D. \hfill \Box

Now we prove Theorem 1.9, 1.10. Take $\tau = C_n/\sqrt{1 - \alpha}$ as in Lemma 7.3. Pick a maximal 2τ–separated sequence $\Gamma = \{w_j\}_{j=1}^{\infty}$ with $0 \notin \Gamma$. It is easy to see that the geodesic balls $B_\tau(w_j)$ are disjoint and $\{B_{3\tau}(w_j)\}_{j=1}^{\infty}$ forms a cover of \mathbb{B}^n. In particular,

$$B_{4\tau}(w) \cap \Gamma \neq \emptyset, \quad \forall w \in \mathbb{B}^n.$$

By Proposition 7.1/(3) and completeness of $ds_{\mathbb{B}^n}^2$, we conclude that there is a constant $t > 1$ such that for each $\zeta \in \mathbb{S}^n$, the set $A_t(\zeta)$ contains a sequence of disjoint geodesic balls of radius 4τ whose centers approach ζ. Consequently, this set contains a subsequence of Γ. On the other hand, there is a function $f \in A^2_t(\mathbb{B}^n)$ such that

$$f(w_j) = (1 - |w_j|)^{-\frac{1 + \alpha}{2}} \left(\log \frac{1}{1 - |w_j|} \right)^{-\frac{1 + \alpha}{2}}, \quad \forall j$$

by virtue of Lemma 7.3. Thus the proof is complete. Q.E.D.

8. PROOF OF THEOREM 1.9, 1.10

Let $dz = dz_1 \wedge \cdots \wedge dz_n$ and $\widehat{d\bar{z}}_j = d\bar{z}_1 \wedge \cdots \wedge d\bar{z}_{j-1} \wedge d\bar{z}_{j+1} \wedge \cdots \wedge d\bar{z}_n$. The Bochner-Martinelli kernel is defined to be

$$K_{BM}(\zeta - z) = \frac{(n - 1)!}{(2\pi i)^n} \sum_{j=1}^{n} \frac{(-1)^{j-1} (\bar{\zeta}_j - \bar{z}_j)}{|\zeta - z|^{2n}} d\bar{\zeta}_j \wedge d\zeta.$$
Bochner-Martinelli Formula. Let $D \subset \mathbb{C}^n$ be a bounded domain with C^1-boundary. Let $f \in C^1(\overline{D})$. Then for each $z \in D$,

$$f(z) = \int_{\partial D} f(\zeta) K_{BM}(\zeta - z) - \frac{(n-1)!}{(2\pi i)^n} \int_D \sum_{j=1}^n (\bar{\zeta}_j - \bar{z}_j) \frac{\partial f}{\partial \zeta_j} d\bar{\zeta} \wedge d\zeta.$$

First we prove Theorem 1.9. Without loss of generality, we assume that the diameter $d(\Omega)$ of Ω is less than $1/2$.

(a) Put $\delta(z) := d(z, \partial \Omega)$, $z \in \mathbb{C}^n$. Clearly, $|\delta(z) - \delta(w)| \leq |z - w|$ for all $z, w \in \mathbb{C}^n$.

To apply the B-M formula, we need to approximate $\delta(z)$ by C^1-smooth functions with uniformly bounded gradients by a standard argument as follows. Let $\kappa \geq 0$ be a C^∞ function in \mathbb{C}^n satisfying the following properties: κ depends only on $|z|$, supp $\kappa \subset \mathbb{B}^n$ and $\int_{\mathbb{C}^n} \kappa(z) dV = 1$. For each $\varepsilon > 0$, we put $\kappa_\varepsilon(z) = \varepsilon^{-2n} \kappa(z/\varepsilon)$ and $\delta_\varepsilon = \delta * \kappa_\varepsilon$. Clearly, δ_ε converges uniformly on $\overline{\Omega}$ to δ, and the gradient $\nabla \delta_\varepsilon$ of δ_ε verifies

$$\nabla \delta_\varepsilon(z) = \int_{\mathbb{C}^n} \delta_\varepsilon(r) \nabla \kappa_\varepsilon(z - r) dV_r = \int_{\mathbb{C}^n} \delta_\varepsilon(r) \nabla \kappa_\varepsilon(z - r) dV_r$$

because $\int_{\mathbb{C}^n} \kappa_\varepsilon(z - r) dV_r = 1$. Thus

$$|\nabla \delta_\varepsilon(z)| \leq \int_{\mathbb{C}^n} \left| \delta_\varepsilon(r) \right| \cdot \left| \nabla \kappa_\varepsilon(z - r) \right| dV_r \leq \text{const}_n.$$

Let $f \in \mathcal{O}(\Omega)$ and $z_0 \in \Omega$ arbitrarily fixed. For any sufficiently small $\varepsilon > 0$, there is a positive number ε_1 such that

$$\{ z \in \Omega : \varepsilon \leq \delta_{\varepsilon_1}(z) \leq \sqrt{\varepsilon} \} \subset \Omega_\varepsilon \setminus \Omega_{2 \sqrt{\varepsilon}}$$

and $\delta_{\varepsilon_1} \asymp \delta_\Omega$ holds on $\Omega_\varepsilon \setminus \Omega_{2 \sqrt{\varepsilon}}$ (with implicit constants independent of $\varepsilon, \varepsilon_1$). Now take a cut-off function χ on \mathbb{R} such that $\chi_{(-\infty, -\log 2)} = 1$ and $\chi_{(0, \infty)} = 0$. Applying the B-M formula to the function

$$\chi(\log \log 1/\delta_{\varepsilon_1} - \log \log 1/\varepsilon) f^2$$

with ε sufficiently small, we obtain

$$f^2(z_0) = -\frac{(n-1)!}{(2\pi i)^n} \int_{\Omega} f^2(\zeta) \chi'(\zeta) \delta_{\varepsilon_1}(\zeta) \int_{\mathbb{C}^n} \left(\sum_{j=1}^n (\bar{\zeta}_j - \bar{z}_{0,j}) \frac{\partial \delta_{\varepsilon_1}}{\partial \zeta_j}(\zeta) \right) d\bar{\zeta} \wedge d\zeta.$$

Thus

$$|f(z_0)|^2 \leq \text{const}_{n, \varepsilon_1} \int_{\Omega_\varepsilon \setminus \Omega_{2 \sqrt{\varepsilon}}} |f^2 \delta_{\varepsilon_1}^2| \log \delta_\Omega |^{-1} dV \to 0 \quad (\varepsilon \to 0+)$$

provided

$$\int_{\Omega} |f^2 \delta_{\varepsilon_1}^2| \log \delta_\Omega |^{-1} dV < \infty.$$

(b) Recall first that for each compact set $M \subset \Omega$, the capacity of M in Ω is defined by

$$\text{cap}(M, \Omega) = \inf \int_{\Omega} |\nabla \phi|^2 dV$$

where the infimum is taken over all $\phi \in C_c^\infty(\Omega)$ such that $0 \leq \phi \leq 1$ and $\phi = 1$ in a neighborhood of M. For each j, we may choose a function $\phi_j \in C_c^\infty(\Omega)$ with $0 \leq \phi_j \leq 1$, $\phi_j = 1$ in a neighborhood of $\overline{\Omega}_{\varepsilon_1}$, so that

$$\int_{\Omega} |\nabla \phi_j|^2 dV \leq 2c(\varepsilon_1).$$
Let $f \in A_2^\alpha(\Omega)$ and $z_0 \in \Omega$ arbitrarily fixed. Applying the B-M formula to the function $\phi_j f$ with j sufficiently large, we get

$$f(z_0) = -\frac{(n-1)!}{(2\pi i)^n} \int_{\Omega} f(\zeta) \sum_{k=1}^{n} (\bar{\zeta}_k - \bar{z}_{0,k}) \frac{\partial \phi_j(\zeta)}{\partial \bar{\zeta}_k} \frac{d\zeta \wedge d\bar{\zeta}}{|\zeta - z_0|^{2n}}$$

so that

$$|f(z_0)| \leq \text{const}_{n,z_0} \int_{\Omega} |\nabla \phi_j||f| dV$$

$$\leq \text{const}_{n,z_0} \left(\int_{\Omega \setminus \Omega_{x_j}} |\nabla \phi_j|^2 \delta^{-\alpha}_{\Omega} dV \right)^{1/2} \left(\int_{\Omega \setminus \Omega_{x_j}} |f|^2 \delta^{-\alpha}_{\Omega} dV \right)^{1/2}$$

$$\leq \text{const}_{n,z_0} c(\varepsilon_j)^{1/2} \varepsilon_j^{-\alpha/2} \left(\int_{\Omega \setminus \Omega_{x_j}} |f|^2 \delta^{-\alpha}_{\Omega} dV \right)^{1/2} \rightarrow 0$$

as $j \to \infty$. Q.E.D.

On the other side, we have

Proposition 8.1. Let $\Omega \subset \mathbb{C}^n$ be a bounded domain and put $V(\varepsilon) = \text{vol}_E(\Omega \setminus \Omega_\varepsilon)$. If

$$\alpha < \liminf_{\varepsilon \to 0^+} \frac{\log V(\varepsilon)}{\log \varepsilon},$$

then $H^\infty(\Omega) \subset A_2^\alpha(\Omega)$.

Proof. It suffices to show that $1 \in A_2^\alpha(\Omega)$. Fix β such that $\alpha < \beta < \liminf_{\varepsilon \to 0^+} \frac{\log V(\varepsilon)}{\log \varepsilon}$. Note that

$$\text{vol}_E(\Omega \setminus \Omega_\varepsilon) < \text{const}_{\beta} \varepsilon^\beta$$

for all $\varepsilon > 0$. Without loss of generality, we assume $\delta_{\Omega} < 1$ on Ω and $\alpha \geq 0$. Then we have

$$\int_{\Omega} \delta^{-\alpha}_{\Omega} dV \leq \sum_{j=0}^{\infty} \int_{\Omega_{2^{-j-1}} \setminus \Omega_{2^{-j}}} 2^{\alpha(j+1)} dV \leq \sum_{j=0}^{\infty} 2^{\alpha(j+1)} \text{vol}_E(\Omega \setminus \Omega_{2^{-j}})$$

$$\leq \text{const}_{\alpha,\beta} \sum_{j=0}^{\infty} 2^{-(\beta-\alpha)j} < \infty.$$

Q.E.D.

It is reasonable to introduce the following

Definition 8.1. Let Ω be a bounded domain in \mathbb{C}^n. The critical exponent $\alpha(\Omega)$ of Ω for weighted Bergman spaces $A_2^\alpha(\Omega)$ is defined to be

$$\alpha(\Omega) := \sup \{ \alpha : A_2^\alpha(\Omega) \neq \{0\} \} = \inf \{ \alpha : A_2^\alpha(\Omega) = \{0\} \} .$$

From Proposition 8.1 and Theorem 1.9, we know that

$$\beta(\Omega) := \liminf_{\varepsilon \to 0^+} \frac{\log V(\varepsilon)}{\log \varepsilon} \leq \alpha(\Omega) \leq \min \left\{ 1, \liminf_{\varepsilon \to 0^+} \frac{\log c(\varepsilon)}{\log 1/\varepsilon} \right\} =: \gamma(\Omega).$$

Note that $2n - \beta(\Omega)$ is nothing but the classical Minkowski dimension of $\partial \Omega$. Thus $\alpha(\Omega) = 1$ in case $\partial \Omega$ is non-fractal, i.e., $\beta(\Omega) = 1$. This is the case for instance, when Ω is a bounded domain in \mathbb{C}^n with Lipschitz boundary or a domain in \mathbb{C} whose boundary is a rectifiable Jordan curve. Unfortunately, the author is unable to find an example with $\alpha(\Omega) < 1$.

Finally we prove Theorem 1.10. Without loss of generality, we may assume that \(\rho > -e^{-1} \) and \(d(\Omega) \leq 1/2 \). Suppose on the contrary there is a continuous psh function \(\rho < 0 \) on \(\Omega \) such that

\[
-\rho \leq \text{const}_\varepsilon \delta_\Omega |\log \delta_\Omega|^{-\varepsilon}.
\]

Then we have

\[
(8.1) \quad (-\rho)(- \log(-\rho))^{1+\varepsilon/2} \leq \text{const}_\varepsilon \delta_\Omega |\log \delta_\Omega|.
\]

By Richberg’s theorem, we may also assume that \(\rho \) is \(C^\infty \) and strictly psh on \(\Omega \). Fix \(z_0 \in \Omega \). Put \(\phi = -\log(-\rho) \) and

\[
\varphi(z) = 2n \log |z - z_0|, \quad \psi = \phi - \frac{\varepsilon}{2} \log \phi.
\]

Note that \(\bar{\partial} \varphi = \bar{\partial} \phi - \frac{\varepsilon}{2} \bar{\partial} \phi \) and

\[
i\bar{\partial} \bar{\partial} \psi = \left(1 - \frac{\varepsilon}{2\phi}\right)i\bar{\partial} \bar{\partial} \phi + \frac{\varepsilon}{2} i\bar{\partial} \bar{\partial} \phi \wedge \bar{\partial} \phi \geq \left(1 - \frac{\varepsilon}{2\phi} + \frac{\varepsilon}{2\phi^2}\right)i\bar{\partial} \phi \wedge \bar{\partial} \phi,
\]

so that

\[
(8.2) \quad |\bar{\partial} \psi|^2_{i\bar{\partial} \bar{\partial} \psi} \leq \frac{1 - \frac{\varepsilon}{\phi} + \frac{\varepsilon^2}{4\phi^2}}{1 - \frac{\varepsilon}{2\phi} + \frac{\varepsilon^2}{4\phi^2}}.
\]

Let \(\chi \) be as in the proof of Theorem 1.9 and put \(v = \bar{\partial} \chi(2|z - z_0|/\delta_\Omega(z_0) - 1) \). We need to solve the equation \(\bar{\partial} u = v \) on \(\Omega \) together with a Donnelly-Fefferman type estimate by using a trick from Berndtsson-Charpentier [6] essentially as [11]. Let \(m > 0 \) be sufficiently large and \(u_m \) the minimal solution of \(\bar{\partial} u = v \) in \(L^2(\Omega_{1/m}, \varphi + \psi) \). Then we have \(u_m e^\psi \perp \text{Ker} \bar{\partial} \) in \(L^2(\Omega_{1/m}, \varphi + \psi) \). Thus by Hörmander’s estimate (1.1),

\[
\int_{\Omega_{1/m}} |u_m|^2 e^{-\varphi + \psi} dV \leq \int_{\Omega_{1/m}} |\bar{\partial}(u_m e^\psi)|^2_{i\bar{\partial} \bar{\partial}(\varphi + \psi)} e^{-\varphi - \psi} dV
\]

\[
\leq \int_{\Omega_{1/m}} |v + \bar{\partial} \psi \wedge u_m|^2_{i\bar{\partial} \bar{\partial} \psi} e^{-\varphi + \psi} dV
\]

\[
\leq \int_{\Omega_{1/m}} \left(1 + \frac{4\phi}{\varepsilon}\right) |v|^2_{i\bar{\partial} \bar{\partial} \psi} e^{-\varphi + \psi} dV + \int_{\Omega_{1/m}} \left(1 + \frac{4\phi}{\varepsilon}\right) |\bar{\partial} \psi|^2_{i\bar{\partial} \bar{\partial} \psi} |u_m|^2 e^{-\varphi + \psi} dV.
\]

Together with (8.2), we get

\[
(8.3) \quad \int_{\Omega_{1/m}} |u_m|^2 \phi^{-1} e^{-\varphi + \psi} dV \leq \text{const}_\varepsilon \int_{\Omega} \left(1 + \frac{4\phi}{\varepsilon}\right) |v|^2_{i\bar{\partial} \bar{\partial} \psi} e^{-\varphi + \psi} dV < \infty,
\]

for we can make \(\phi \) sufficiently large if \(\rho \) is replaced by \(\rho/C \) with \(C \gg 1 \).

Now put \(f_m(z) := \chi(2|z - z_0|/\delta_\Omega(z_0) - 1) - u_m(z) \). Let \(f \) be a weak limit of \(\{f_m\}_{m=1}^\infty \). Clearly, \(f \in \mathcal{O}(\Omega) \), \(f(z_0) = 1 \) and by (8.1), (8.3),

\[
\int_{\Omega} |f|^2 \phi^{-1} |\log \delta_\Omega|^{-1} dV \leq \text{const}_\varepsilon \int_{\Omega} |f|^2 \phi^{-1} e^\psi dV < \infty.
\]

This contradicts with Theorem 1.9. Q.E.D.

Acknowledgement. The author thanks Dr. Xu Wang for pointing out several inaccuracies in a draft of this paper. He also thanks the referee and Professor Peter Pflug for valuable comments.
REFERENCES

[1] A. Andreotti and E. Vesentini, *Carleman estimates for the Laplace-Beltrami equation in complex manifolds*, Publ. Math. I.H.E.S. 25 (1965), 81–130.

[2] F. Beatrous, *L^p estimates for extensions of holomorphic functions*, Mich. J. Math. 32 (1985), 361–380.

[3] S. R. Bell and H. P. Boas, *Regularity of the Bergman projection and duality of holomorphic function spaces*, Math. Ann. 267 (1984), 473–478.

[4] B. Berndtsson, *The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman*, Ann. Inst. Fourier (Grenoble) 46 (1996), 1083–1094.

[5] ———, *Weighted estimates for the $\bar{\partial}$-equation*, Complex Analysis and Complex Geometry (J. D. McNeal eds.), de Gruyter, pp. 43–57, 2001.

[6] B. Berndtsson and Ph. Charpentier, *A Sobolev mapping property of the Bergman kernel*, Math. Z. 235 (2000), 1–10.

[7] Z. Blocki, *The Bergman metric and the pluricomplex Green function*, Trans. Amer. Math. Soc. 357 (2004), 2613–2625.

[8] H. P. Boas, *The Szegö projection: Sobolev estimates in regular domains*, Trans. Amer. Math. Soc. 300 (1987), 109–132.

[9] H. P. Boas and E. J. Straube, *Global regularity of the $\bar{\partial}^{-}$-Neumann problem: a survey of the L^2–Sobolev theory*, In: Several Complex Variables (MSRI 1995–96), Cambridge University Press, Cambridge 1999, 79–111.

[10] D. Catlin, *Boundary behavior of holomorphic functions on pseudoconvex domains*, J. Diff. Geom. 15 (1980), 605–625.

[11] B.-Y. Chen, *A simple proof of the Ohsawa-Takegoshi extension theorem*, arXiv:1105.2430v1.

[12] B.-Y. Chen and S. Fu, *Comparison of the Bergman and Szegö kernels*, Adv. Math. 228 (2011), 2366–2384.

[13] J.-P. Demailly, *Estimations L^2 pour l’opérateur $\bar{\partial}$ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète*, Ann. Sci. École Norm. Sup. 15 (1982), 457–511.

[14] H. Donnelly and C. Fefferman, *L^2-cohomology and index theorem for the Bergman metric*, Ann. of Math. (2) 118(1983), 593–618.

[15] K. Diederich and J. E. Fornæss, *Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions*, Invent. Math. 39 (1977), 129–141.

[16] ———, *Pseudoconvex domains: an example with nontrivial Nebenhülle*, Math. Ann. 225 (1977), 275–292.

[17] K. Diederich and T. Ohsawa, *An estimate for the Bergman distance on pseudoconvex domains*, Ann. of Math. 141 (1995), 181–190.

[18] M. Englis, *Toeplitz operator and weighted Bergman kernels*, J. Funct. Anal. 255 (2008), 1419–1457.

[19] J. B. Garnett, *Bounded Analytic Functions* (2nd ed.), GTM 236, Academic Press, San Diego, 2007.

[20] F. W. Gehring, *On the radial order of subharmonic functions*, J. Math. Soc. Japan 9 (1957), 77–79.

[21] R. E. Greene and H. Wu, *Function Theory on Manifolds Which Possess a Pole*, Lect. Notes in Math. 699, 1979.

[22] M. Hakim and N. Sibony, *Spetre de $A(\Omega)$ pour des domaines bornés faiblement pseudoconvexes réguliers*, J. Funct. Anal. 37 (1980), 127–135.

[23] L. Hörmander, *L^2–estimates and existence theorems for the $\bar{\partial}$–equation*, Acta Math. 113 (1965), 89–152.

[24] ———, *Generators for some rings of analytic functions*, Bull. Amer. Math. Soc. 73 (1967), 943–949.

[25] ———, *L^p estimates for (pluri-)subharmonic functions*, Math. Scand. 20 (1967), 65–78.

[26] ———, *An Introduction to Complex Analysis in Several Variables*, Third Edition, Elsevier, 1990.

[27] M. Jarnicki and P. Pflug, *Extension of Holomorphic Functions*, Walter de Gruyter, 2000.

[28] M. Kanai, *Rough isometries, and combinatorial approximations of geometries of non-compact riemannian manifolds*, J. Math. Soc. Japan 37 (1985), 391–413.

[29] M. Klimek, *Pluripotential Theory*, Oxford University Press, 1990.

[30] J. J. Kohn, *Global regularity for $\bar{\partial}$ on weakly pseudoconvex manifolds*, Trans. Amer. Math. Soc. 181 (1973), 273–292.

[31] S. G. Krantz, *Function Theory of Several Complex Variables*, 2nd ed., American Mathematical Society, Providence, Rhode Island, 2001.

[32] E. Ligocka, *The Sobolev spaces of harmonic functions*, Studia Math. 84 (1986), no. 1, 79–87.

[33] J. D. McNeal, *On large values of L^2 holomorphic functions*, Math. Res. Lett. 3 (1996), 247–259.
[34] J. Michel and M.-C. Shaw, The \(\partial - \bar{\partial} \)-Neumann operator on Lipschitz pseudoconvex domains with plurisubharmonic defining functions, Duke Math. J. 108 (2001), 421–447.

[35] A. Nagel, E. M. Stein and S. Wainger, Boundary behavior of functions holomorphic in domains of finite type, Proc. Nat. Acad. Sci. USA 78 (1981), 6596–6599.

[36] T. Ohsawa and K. Takegoshi, On the extension of \(L^2 \) holomorphic functions, Math. Z. 195 (1987), 197–204.

[37] T. Ohsawa, On the extension of \(L^2 \) holomorphic functions V–effects of generalization, Nagoya Math. J. 161 (2001), 1–21.

[38] P. Pflug, Quadratintegrale holomorphe Funktionen und die Serre Vermutung, Math. Ann. 216 (1975), 285–288.

[39] R. Richberg, Stetige streng pseudokonvexe funktionen, Math. Ann. 175 (1968), 257–286.

[40] Y.-T. Siu, The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, In: Geometric Complex Analysis (Hayama 1995), World Sci. Publ. 1996, 577–592.

[41] E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, Princeton, New Jersey, 1972.

[42] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen Co., LTD. Tokyo, 1959.

[43] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, GTM 226, Springer, 2005.

Department of Applied Mathematics, Tongji University, Shanghai, 200092, China

E-mail address: boychen@tongji.edu.cn