ON THE CENTER OF THE GROUP OF QUASI-ISOMETRIES OF THE REAL LINE

Prateep Chakraborty

Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
e-mails: chakraborty.prateep@gmail.com; prateep@maths.iitkgp.ac.in

(Received 26 July 2018; accepted 28 August 2018)

Let $QI(\mathbb{R})$ denote the group of all quasi-isometries $f : \mathbb{R} \to \mathbb{R}$. Let $Q_+(\text{and } Q_-)$ denote the subgroup of $QI(\mathbb{R})$ consisting of elements which are identity near $-\infty$ (resp. $+\infty$). We denote by $QI_+^+(\mathbb{R})$ the index 2 subgroup of $QI(\mathbb{R})$ that fixes the ends $+\infty, -\infty$. We show that $QI_+^+(\mathbb{R}) \cong Q_+ \times Q_-$. Using this we show that the center of the group $QI(\mathbb{R})$ is trivial.

Key words: PL-homeomorphisms; quasi-isometry; center of group.

1. INTRODUCTION

We begin by recalling the notion of quasi-isometry.

Let $f : (X, d_X) \to (Y, d_Y)$ be a map between two metric spaces. We say that f is a K-quasi-isometric embedding if there exists a $K > 1$ such that

$$\frac{1}{K} d_X(x_1, x_2) - K \leq d_Y(f(x_1), f(x_2)) \leq K d_X(x_1, x_2) + K \forall x_1, x_2 \in X.$$

Again, if for any given point $y \in Y$, there is a point $x \in X$ such that $d_Y(f(x), y) < K$, then f is said to be a K-quasi-isometry. If f is a quasi-isometry (for some $K > 1$), then there exists a K'-quasi-isometry $f' : Y \to X$ such that $f' \circ f$ (resp. $f \circ f'$) is quasi-isometry, equivalent to the identity map of X (resp. Y) (two maps $f, g : X \to Y$ are said to be quasi-isometrically equivalent if there exists a constant $M > 0$ such that $d_Y(f(x), g(x)) < M \forall x \in X$.) Let $[f]$ denote the equivalence class of a quasi-isometry $f : X \to X$. We denote the set of all equivalence classes of self-quasi-isometries of X by $QI(X)$.

The author was supported by an N.B.H.M. postdoctoral fellowship while preparing this article.
It turns out that one has a well-defined notion of composition of isometry classes, where \([f] \cdot [g] := [f \circ g]\) for \([f], [g] \in QI(X)\). This makes \(QI(X)\) a group, referred to as the group of quasi-isometries of \((X, d_X)\). If \(\phi : X' \to X\), \(\phi' : X \to X'\) are a pair of inverse quasi-isometries, then \([f] \mapsto [\phi \circ f \circ \phi']\) defines an isomorphism of groups \(QI(X') \to QI(X)\). For example, \(t \to [t]\) is a quasi-isometry \(\mathbb{R} \to \mathbb{Z}\), which induces an isomorphism \(QI(\mathbb{R}) \cong QI(\mathbb{Z})\). We refer the reader to [1, Chapter I.8] for basic facts concerning quasi-isometry.

It is known that \(QI(\mathbb{R})\) is a rather large group; see [5, 3.3.B]. Several well-known groups can be embedded in \(QI(\mathbb{R})\). We first need to describe the following groups: (i) Let \(Diff(S^1)\) and \(PL(S^1)\) be the groups of all diffeomorphisms and piecewise linear homeomorphisms of \(S^1\) respectively. Note that any homeomorphism \(f\) of \(S^1\) can be lifted to obtain a homeomorphism \(\tilde{f}\) of \(\mathbb{R}\) such that the following diagram commutes:

\[
\begin{array}{ccc}
\mathbb{R} & \xrightarrow{\tilde{f}} & \mathbb{R} \\
\downarrow{p} & & \downarrow{p} \\
S^1 & \xrightarrow{f} & S^1
\end{array}
\]

where \(p : \mathbb{R} \to S^1\) is defined as \(t \to e^{2\pi it}\). We denote the groups of all lifts of elements of \(Diff(S^1)\) and \(PL(S^1)\) by \(\widetilde{Diff}(S^1)\) and \(\widetilde{PL}(S^1)\) respectively. (ii) We denote the group of all piecewise linear homeomorphisms of \(\mathbb{R}\) with compact support by \(PL_\kappa(\mathbb{R})\).

It is known that the following groups can be embedded in \(QI(\mathbb{R})\): (i) \(\widetilde{Diff}(S^1)\) and \(\widetilde{PL}(S^1)\), (ii) \(PL_\kappa(\mathbb{R})\), (iii) the Thompson’s group \(F\), (iv) the free group of rank \(c\), the continuum. The group \(PL_\kappa(\mathbb{R})\) is simple (see [2] and Theorem 3.1 of [4]). The group \(\widetilde{Diff}(S^1)\) contains a free group of rank the continuum (see [6]). The Thompson’s group \(F\) has many remarkable properties and arises in many different contexts in several branches of mathematics. We list below some properties of \(F\): (i) the commutator subgroup \([F, F]\) is a simple group, (ii) every proper quotient group of \(F\) is abelian, (iii) \(F\) does not contain a non-abelian free subgroup (see [3]). Thus we see that the group \(QI(\mathbb{R})\) has a rich collection of subgroups having remarkable properties.

However, the lattice of normal subgroups of \(QI(\mathbb{R})\) does not seem to have been studied. As a first step in that direction we prove the following, which is the main result of this note.

Theorem 1.1 — The center of the group \(QI(\mathbb{R})\) is trivial.

Our proof uses the description of \(QI(\mathbb{R})\) as a quotient of a certain subgroup of the group of all PL-homoemorphisms of \(\mathbb{R}\) due to Sankaran [7].
2. PL-homeomorphisms with Bounded Slopes

Let \(f : \mathbb{R} \to \mathbb{R} \) be any homeomorphism of \(\mathbb{R} \). We denote by \(B(f) \) the set of break points of \(f \), i.e. points where \(f \) fails to have derivatives, and, by \(\Lambda(f) \) the set of slopes of \(f \), i.e.

\[
\Lambda(f) = \{ f'(t) : t \in \mathbb{R} - B(f) \}.
\]

Note that \(B(f) \subset \mathbb{R} \) is discrete if \(f \) is piecewise differentiable.

Definition 2.1 — We say that a subset \(\Lambda \) of \(\mathbb{R}^n \) (the set of non-zero real numbers) is bounded if there exists a \(M > 1 \) such that \(M^{-1} < |\lambda| < M \) for all \(\lambda \in \Lambda \).

We denote the set of all piecewise linear homeomorphisms \(f \) of \(\mathbb{R} \) such that \(\Lambda(f) \) is bounded, by \(PL_{\delta}(\mathbb{R}) \). This forms a subgroup of the group \(PL(\mathbb{R}) \) of all piecewise linear homeomorphisms of \(\mathbb{R} \).

The subgroup of \(PL_{\delta}(\mathbb{R}) \) consisting of orientation preserving PL-homeomorphisms will be denoted by \(PL_{\delta}^+(\mathbb{R}) \). We have \(PL_{\delta}(\mathbb{R}) = PL_{\delta}^+(\mathbb{R}) \ltimes \langle \rho \rangle \) where \(\rho \) is the reflection of \(\mathbb{R} \) about the origin. The following theorem is due to Sankaran [7].

Theorem 2.2 — *The natural homomorphism \(\phi : PL_{\delta}(\mathbb{R}) \to QI(\mathbb{R}) \), defined as \(f \to [f] \) is surjective.*

The kernel of \(\phi \) in the above theorem equals the subgroup of all \(f \in PL_{\delta}(\mathbb{R}) \) such that \(||f - id|| < \infty \). In particular \(\ker(\phi) \) contains all translations. It follows that the restriction of \(\phi \) to the subgroup \(PL_{\delta,0} := \{ f \in PL_{\delta}(\mathbb{R}) \mid f(0) = 0 \} \) is surjective.

Notations : We shall denote \(PL_{\delta,0}(\mathbb{R}) \) by \(P \) and \(QI(\mathbb{R}) \) by \(Q \). We denote by \(P_+ \) (resp. \(P_- \)) the subgroup of \(P \) consisting of homeomorphisms which are identity near \(-\infty \) (resp. \(+\infty \)). Note that \(P_{\delta} := P_+ \cap P_- \) is the group of compactly supported homeomorphisms in \(P \). Similarly, \(Q_+ \) (resp. \(Q_- \)) denote the subgroups of \(QI(\mathbb{R}) \) consisting of elements which are identity near \(-\infty \) and \(+\infty \) respectively. The subgroup of \(P \) consisting of orientation preserving homeomorphisms will be denoted by \(P^+ \). Similarly, \(Q^+ \) denotes the subgroup of \(Q \) whose elements can be represented by orientation preserving homeomorphisms and we have \(\phi(P^+) = Q^+ \), \(\phi(P_{\pm}) = Q_{\pm} \).

We shall denote by the same symbol \(\phi \) the restriction of \(\phi : PL_{\delta}(\mathbb{R}) \to QI(\mathbb{R}) \) to \(P \). The group \(P = PL_{\delta,0} \) contains no non-trivial translations and, as already noted, we have \(P = P^+ \ltimes \langle \rho \rangle \). Similarly the group \(Q = QI(\mathbb{R}) \) is a semi-direct product \(Q = Q^+ \ltimes \langle [\rho] \rangle \). Then \(Q_+ \cap Q_- = \phi(P_+ \cap P_-) = \phi(P_{\delta}) \) is trivial and so we have \(Q^+ = Q_+ \times Q_- \). Conjugation by \([\rho] \) interchanges \(Q_+ \) and \(Q_- \). It follows that \(N \subset Q^+ \) is normal if and only if its projections \(N_+, N_- \) to the factors \(Q_+, Q_- \) are normal. Also \(N \) is a normal subgroup of \(Q \) if and only if \(N \) is normalized by \(Q^+ \) and \([\rho]N[\rho]^{-1} = N \).
Remark 2.3: It may be an interesting problem to decide whether the groups Q_+ or Q_- are simple.

3. CENTER OF THE GROUP $QI(\mathbb{R})$

We begin by making a few preliminary observations concerning central elements in $Q = QI(\mathbb{R})$. We first observe that any element $[f] \in Q$ in the center must fix the ends $+\infty, -\infty$. Indeed we may assume that $f(0) = 0$; that $f(t) > 0$ if and only if $t > 0$. Suppose that f is orientation reversing. Let $h \in P = PL_{\delta,0}(\mathbb{R})$ be the orientation preserving PL-homeomorphism of \mathbb{R} defined as

$$h(t) = \begin{cases} t, & t \leq 0 \\ 2t, & t \geq 0 \end{cases}$$

By a straightforward computation $h(f(t)) - f(h(t)) = 2f(t) - f(t) = f(t)$ for $t < 0$. So $||h \circ f - f \circ h||$ is unbounded and we conclude that f is not in the center.

Any element $f \in P^+ = PL^+_{\delta,0}(\mathbb{R})$ may be decomposed as a composition $f = f_+ \circ f_-$ with $f_+ \in P_+, f_- \in P_-$, where $f_+(t) = t, f_-(s) = s$ for $s \leq 0 \leq t$. It follows that $[f] = ([f_+], [f_-]) \in Q_+ \times Q_- = Q^+$ is in the center if and only if f_\pm is in the center of Q_\pm and $[\rho \circ f_+ \circ \rho] = [f_-]$. We will show that the center of Q_+ is trivial. We need the following lemma.

Lemma 3.1 — Let $f \in P_+$ and $[f] \neq [id]$. Then there exists a strictly monotone divergent sequence $\{b_n\}$ of real numbers such that at least one of the following holds:

1. $b_n \to +\infty, b_{n+1} > 3f(b_n) \forall n$ and $f(b_n) - b_n \to +\infty$,

2. $b_n \to +\infty, b_{n+1} > 3f^{-1}(b_n) \forall n$ and $f^{-1}(b_n) - b_n \to +\infty$,

Proof: Since $f(t) = t$ for $t \leq n_1$ (for some $n_1 < 0$) and since $||f - id||$ is unbounded, we can find a strictly monotone divergent sequence $\{a_n\}$ of positive real numbers such that $|f(a_{n+1}) - a_{n+1}| > |f(a_n) - a_n| \forall n, |f(a_n) - a_n| \to \infty$. We obtain a subsequence of $\{a_n\}$ as follows: Set $a_{n_1} = a_1$. Choose $n_2 \geq 2$ such that $f(a_{n_2}) > \max\{a_1, 3f(a_1)\}$. Having chosen $a_{n_j}, 1 \leq j \leq k$, we choose $n_{k+1} > n_k$ such that $f(a_{n_{k+1}}) > \max\{a_{n_k}, 3f(a_{n_k})\}$. We set $c_k := a_{n_k}$. Since $|f(c_k) - c_k| \to \infty$ as $k \to \infty$, there has to be infinitely many values of k for which $f(c_k) - c_k$ has the same sign. If this sign is positive, we have a subsequence $\{b_k\}$ of $\{c_k\}$ which satisfies (1). If this sign is negative, then we apply the above consideration to $f^{-1} \in P_+$ which yields a sequence $\{b_k\}$ satisfying (2).

The previous lemma will be the main tool to study the center of the group $QI(\mathbb{R})$.

Proof of Theorem 1.1: As observed already, it suffices to show that the center of Q_+ is trivial. If possible, suppose that $[f] \neq 1$ is in the center of Q_+ with $f \in P_+$. Then $[f^{-1}]$ is also in the center.
and so, without loss of generality we may assume the existence of a sequence \(\{b_n\} \) satisfying (1) of the above lemma. One has a PL-homeomorphism \(g \) such that

(i) \(g(t) = t, \ t \leq b_1 \),

(ii) \(g(J_k) = J_k \) where \(J_k := [b_k, b_{k+1}] \), and,

(iii) \(g \) has exactly one break point at \(f(b_k) \in J_k \) and \(g(f(b_k)) = (b_k + f(b_k))/2 \).

We claim that \(g \in P_+ \) and that \([g] \) and \([f] \) do not commute.

First, we compute the slopes of \(g \). Since \(g(J_k) = J_k \) and since \(g \) has exactly one break point in \(J_k \) at \(f(b_k) \), straightforward computation shows that \(g'(t) = 1/2 \) if \(b_k < t < f(b_k) \), and, when \(f(b_k) < t < b_{k+1} \), we have \(g'(t) = (b_{k+1} - f(b_k)) / 2(b_k - f(b_k)) + (f(b_k) - b_k) / 2(f(b_k) - f(b_k)) \) < 1 + \((f(b_k) - b_k) / 2(f(b_k)) < 1 + 1/4 \). Since \(f(b_k) > b_k \) we also see that \(g'(t) > 1 \). So we conclude that for any \(t \) at which \(g \) is differentiable, we have \(g'(t) \in [1/2, 5/4] \), showing that \(g \in P_+ \).

Finally, \(f(g(b_k)) = f(b_k) \) whereas \(g(f(b_k)) = (f(b_k) + b_k)/2 \). So \(f(g(b_k)) - g(f(b_k)) = (f(b_k) - b_k)/2 \to \infty \) as \(k \to \infty \) and so \([f][g] \neq [g][f] \). This completes the proof.

\[\square \]

ACKNOWLEDGEMENT

The author thanks Aniruddha C. Naolekar, Parameswaran Sankaran, Ajay Singh Thakur and the anonymous referee for their valuable suggestions and comments.

REFERENCES

1. M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, *Grund. Math. Wiss.*, 319 (1999), Springer-Verlag, Berlin.
2. M. Brin and C. C. Squier, Groups of piecewise linear homeomorphisms of the real line, *Invent. Math.*, 79 (1985), 485-498.
3. J. W. Cannon, W. J. Floyd, and W. R. Parry, Introductory notes on Richard Thompson’s groups, *Enseign. Math.*, 42 (1996), 215-256.
4. D. B. A. Epstein, The simplicity of certain groups of homeomorphisms, *Compositio Math.*, 22 (1970), 165-173.
5. M. Gromov and P. Pansu, Rigidity of lattices: An introduction, In: *Geometry and Topology: Recent Developments*, Eds. P. de Bartolomeis and F. TricerriLect, *Notes Math.*, 1504, Springer-Verlag, Berlin, 1991.
6. J. Grabowski, Free subgroups of diffeomorphism groups, *Fund. Math.*, 131 (1988), 103-121.
7. P. Sankaran, On homeomorphisms and quasi-isometries of the real line, *Proc. of the Amer. Math. Soc.*, 134 (2005), 1875-1880.