Forcing Total Outer Independent Edge Geodetic Number of a Graph

P. Arul Paul Sudhahar, A. AjinDeepa
Assistant Professor, Research Scholar (Register No. 2011172092012)
Department of Mathematics, Rani Anna Government College for Women, Tirunelveli – 627 008, Tamilnadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekpati, Tirunelveli 627 012, Tamilnadu, India.

Email: arulpaulsudhar@gmail.com, ajinwiselin6183@gmail.com

Abstract: In this paper we learn the new idea of forcing total outer independent edge geodetic number of a graph. Let G be a connected graph and R be a minimum total outer independent edge geodetic set of G. A subset L ⊆ R is known as a forcing subset for R if R is the unique minimum total outer independent edge geodetic set containing L. A forcing subset for R of minimum cardinality is a minimum forcing subset of R. The forcing total outer independent edge geodetic number of G denoted by \(f_{tot}^G (R) \) is \(f_{tot}^G (R) = \min \{ f_{tot}^G (L) \} \), where the minimum is taken over all minimum total outer independent edge geodetic set R in G. Some general properties satisfied by this concept are studied. It is shown that for any couple of integers \(l, m \) with \(0 < l \leq m - 4 \), there exists a connected graph G such that \(f_{tot}^G (G) = l \) and \(g_{tot}^G (G) = m \).

AMS subject classification: 05C12.

Keywords: edge geodetic number, total edge geodetic number, total outer independent edge geodetic number, forcing total outer independent edge geodetic number.

1 Introduction

By a graph \(G = (V, E) \), we denote a finite undirected graph in the absence of loops or multiple lines. The order and size of G are denoted by p and q consecutively. For primary graph theoretic expressions we allude to Harary [2, 3]. The distance \(d(a, b) \) between two points \(a \) and \(b \) in a connected graph G is the length of a shortest \(a - b \) path in G. An \(a - b \) path of length \(d(a, b) \) is known as \(a - b \) geodesic. A point \(c \) is said to lie on a \(a - b \) geodesic \(Q \) if \(c \) is a point of \(Q \) as well as the points \(a \) and \(b \). A geodesic set of G is a set \(R \subseteq V (G) \) such that every point of G is accommodate in a geodesic connecting some couple of points in R. The geodetic number \(g(G) \) of G is the least order of its geodetic sets and any geodetic set of order \(g(G) \) is a geodetic basis. The geodetic number of a graph was established in [4]. An edge geodetic set of G is a set \(R \subseteq V (G) \) such that every line of G is accommodate in a geodesic connecting some couple of points in R. The edge geodetic number \(g_1(G) \) of G is the least order of its edge geodetic sets and any edge geodetic set of order \(g_1(G) \) is an edge geodesic basis of G or a set of \(g_1(G) \) is known as the neighborhood of the point \(c \) in G. For any set \(N \) of points of G, the induced subgraph \(< N > \) is the maximal subgraph of G with point set \(N \). A point is an extreme point of a graph G if \(< N > \) is complete. A set \(R \) of points of G is an independent geodetic set if \(R \) is an independent set and \(|R| = V \). The least cardinality of an independent geodetic set is the independent geodetic number \(g_1(G) \), it was established by P. Kazemi and doost Ali mojde [5]. An edge geodetic set \(R \subseteq V \) is known as total edge geodetic set if the subgraph induced by R has no isolated points. The least cardinality of a total edge geodetic set of G is the total edge geodetic number and is indicated by \(g_1(G) \) [6]. An edge geodetic set \(R \subseteq V \) is said to be total outer independent edge geodetic set if \(< R > \) has no isolated points.
and $\langle V - R \rangle$ is an independent set. The least cardinality of a total outer independent edge geodetic set and it is indicated by $g_{tt}^{oi}(G)$ is known as total outer independent edge geodetic number of G [7]. In this paper we define forcing total outer independent edge geodetic set.

The following theorem is utilize in the consequences.

Theorem 1.1. [7] Each extreme vertex of a graph G is in every total outer independent edge geodetic set of G.

2 Forcing Total Outer Independent Edge Geodetic Number of a Graph

Definition 2.1 Let G be a connected graph and R be a minimum total outer independent edge geodetic set of G. A subset $L \subseteq R$ is known as a forcing subset for R if R is the unique minimum total outer independent edge geodetic set containing L. A forcing subset for R of minimum cardinality is a minimum forcing subset of R. The forcing total outer independent edge geodetic number of G, denoted by $f_{tt}^{oi}(G)$ is $f_{tt}^{oi}(G) = \min \{f_{ii}^{oi}(R)\}$, where the minimum is taken over all minimum total outer independent edge geodetic set R in G.

Example 2.2 For the graph G given in Figure 2.1 there are nine minimum total outer independent edge geodetic sets, they are $R_1 = \{a_1, a_3, a_4, a_5, a_6\}$, $R_2 = \{a_1, a_2, a_3, a_4, a_6\}$, $R_3 = \{a_2, a_3, a_5, a_6, a_7\}$, $R_4 = \{a_2, a_3, a_4, a_5, a_6, a_7\}$, $R_5 = \{a_2, a_3, a_4, a_5, a_6\}$, $R_6 = \{a_1, a_4, a_6, a_7\}$, $R_7 = \{a_1, a_2, a_4, a_5, a_7\}$, $R_8 = \{a_1, a_2, a_4, a_5, a_6, a_7\}$, $R_9 = \{a_2, a_4, a_5, a_6, a_7\}$ so that $f_{tt}^{oi}(R_1) = 4, f_{tt}^{oi}(R_2) = 3, f_{tt}^{oi}(R_3) = 4, f_{tt}^{oi}(R_4) = 4, f_{tt}^{oi}(R_5) = 4, f_{tt}^{oi}(R_6) = 3, f_{tt}^{oi}(R_7) = 3, f_{tt}^{oi}(R_8) = 5, f_{tt}^{oi}(R_9) = 4$. Hence $f_{tt}^{oi}(G) = \min \{3, 4, 5\} = 3$.

![Figure 2.1 Graph G](image)

Theorem 2.3 For the connected graph G

(i) $f_{tt}^{oi}(G) = 0$ if and only if G has a unique total outer independent edge geodetic set.

(ii) $f_{tt}^{oi}(G) = 1$ if and only if G has atleast two total outer independent edge geodetic set, one of which is a unique total outer independent edge geodetic set containing one of its elements, and

(iii) $f_{tt}^{oi}(G) = g_{tt}^{oi}(G)$ if and only if no total outer independent edge geodetic set of G is the unique total outer independent edge geodetic set containing any of its proper subsets.

Proof.
(i). We assume that $f_{1t}^{oi}(G) = 0$. Therefore by definition of forcing $f_{1t}^{oi}(R) = 0$, for some total outer independent edge geodetic set R of G. Clearly the empty set ϕ is the minimum forcing subset for R. Note that the empty set ϕ is a subset of every set. Therefore, R is the unique total outer independent edge geodetic set of G. Conversely we assume that R is the unique total outer independent edge geodetic set of G. Clearly ϕ is the only forcing subset for R. Therefore, $f_{1t}^{oi}(R) = 0$. Hence $f_{1t}^{oi}(G) = 0$.

(ii). We assume that $f_{1t}^{oi}(G) = 1$. Then by definition of forcing $f_{1t}^{oi}(R) = 1$, for some total outer independent edge geodetic set R of G. That is there is a singleton subset L of a total outer independent edge geodetic set R of G such that L is not a subset of any other total outer independent edge geodetic set of G. Hence R is the unique total outer independent edge geodetic set of G containing one of its element. Conversely to prove $f_{1t}^{oi}(G) = 1$. It is clear from the definition of forcing subset.

(iii). Assume that $f_{1t}^{oi}(G) = g_{1t}^{oi}(G)$. To prove that no total outer independent edge geodetic set of G is the unique total outer independent edge geodetic set containing any of its proper subsets. By theorem 1.2 we know that $g_{1t}^{oi}(G) \geq 2$, for any total outer independent edge geodetic set of G. Also by our assumption no proper subset of R is a forcing subset of R. Hence any total outer independent edge geodetic set of G is the unique total outer independent edge geodetic set containing any of its proper subsets. Conversely, G contains more than one total outer independent edge geodetic set R other than R is a forcing subset for R.

Therefore, $f_{1t}^{oi}(G) = g_{1t}^{oi}(G)$.

Observation 2.4 If $G = K_{m,n}$ ($m, n \geq 2$) is a complete bipartite graph then $f_{1t}^{oi}(G) = 1$.

Definition 2.5 In a connected graph G, a point w is called a total outer independent edge geodetic point of G if w belongs to every minimum total outer independent edge geodetic sets of G.

Example 2.6 For the graph G given in Figure 2.2. there are four minimum total outer independent edge geodetic sets namely $R_1 = \{a_1, a_2, a_3, a_5, a_6\}$, $R_2 = \{a_1, a_2, a_3, a_4, a_5\}$, $R_3 = \{a_1, a_3, a_4, a_5, a_7\}$, $R_4 = \{a_1, a_3, a_5, a_6, a_7\}$. Here the points a_1, a_2 and a_5 are total outer independent edge geodetic points of G.

\[\text{Figure 2.2. Graph } G\]

Theorem 2.7 Let G be a connected graph and Z be the set of all total outer independent edge geodetic points of G. Then $f_{1t}^{oi}(G) \leq g_{1t}^{oi}(G) - |Z|$.

Proof Let R be any minimum total outer independent edge geodetic set of G. Therefore, $g_{1t}^{oi}(G) = |R|$, also Z be the set of all total outer independent edge geodetic points of G, so that $Z \subseteq R$ and R is the unique
minimum total outer independent edge geodetic set containing $R-Z$. Hence, $f^{ol}_{1l}(G) \leq |R-Z| = |R| - |Z| = g^{ol}_{1l}(G) - |Z|$.

Remark 2.8 The relation in theorem 2.7 is sharp. For the graph G given in Figure 2.2 $f^{ol}_{1l}(G) = 2$, $g^{ol}_{1l}(G) = 5$ and $|Z| = 3$. For the graph G given in Figure 2.1 $f^{ol}_{1l}(G) = 3$, $g^{ol}_{1l}(G) = 5$, and $|Z| = 0$.

3. Realisation Result

Theorem 3.1 For any couple of integers l, m with $0 < l \leq m - 4$, there exist a connected graph G such that $f^{ol}_{1l}(G) = l$ and $g^{ol}_{1l}(G) = m$.

Proof: There are two cases.

Case 1 Suppose $l = 1$ and $m \geq 5$. Consider the cycle $C_4 : a_1, a_2, a_3, a_4, a_1$ of order 4. Construct a graph G by adding $m - 3$ new points $b_1, b_2, \ldots, b_{m-3}$ to C_4 and join each b_k ($1 \leq k \leq m - 3$) to the point a_1 in C_4. The resulting graph G is given in figure 3.1. Let $X = \{b_1, b_2, \ldots, b_{m-3}\}$ be the set of all extreme points of G. Then G contains exactly two $g^{ol}_{1l}(G)$ sets they are $R_1 = X \cup \{a_1, a_2, a_3\}$ and $R_2 = X \cup \{a_1, a_3, a_4\}$. Hence $g^{ol}_{1l}(G) = |X| + 3 = m$. Since R_1 is the unique g^{ol}_{1l} set containing a_2, so by theorem 2.3 (ii), $f^{ol}_{1l}(G) = 1$.

![Figure 3.1 Graph G](image)

Case 2 Suppose $l \geq 2$. Take the path $P_4 : a_1, a_2, a_3, a_4$ of length 4. For each integer $k (1 \leq k \leq l)$, let $E_k : b_k, c_k$ be a path. Construct a graph G by join the path P_4 and a path $E_k (1 \leq k \leq l)$ and adding $2l$ lines a_2b_k and a_3c_k for $(1 \leq k \leq l)$ and also add $m - l - 4$ pendant lines a_2e_n for $1 \leq n \leq m - l - 4$. The resulting graph G is given in Figure 3.2.

First we prove that $g^{ol}_{1l}(G) = m$. Here $Y = \{a_1, a_4, e_1, e_2, \ldots, e_{m-l-4}\}$ are the set of all extreme points of G. By theorem 1.1, Y is contained in every total outer independent edge geodetic set of G. It is clear that a_2 and a_3 also belong to every total outer independent edge geodetic set of G. Also we observed that $Y \cup \{a_2, a_3\}$ is not a total outer independent edge geodetic set of G. Now we claim that every total outer independent edge geodetic set contains at least one element from each $E_k (1 \leq k \leq l)$. Suppose we assume that there is a total outer independent edge geodetic set, say R_1 such that no edge of E_k belong to R_1 for some k. Then we observed that the edge $b_kc_k (1 \leq k \leq l)$ do not lie on any geodesic joining a couple of points of R_1 so that R_1 is not an edge geodetic set of G. So R_1 is not a total outer independent edge geodetic
set of G, which is a contradiction to our assumption. Thus every total outer independent edge geodetic set of G contains $Y \cup \{a_2, a_3\}$ and at least one element from each $E_k (1 \leq k \leq l)$. Consider $R_2 = Y \cup \{a_2, a_3, c_1, c_2, ... , c_l\}$. It is clear that R_2 is a minimum total outer independent edge geodetic set of G and so $g^{\text{ol}}_I(G) = |R_2| = m$. Hence it follows that every minimum total outer independent edge geodetic set of G contains $Y \cup \{a_2, a_3\}$ and at least one element from each $E_k (1 \leq k \leq l)$. Next we show that $f^{\text{ol}}(G) = l$. Since every minimum total outer independent edge geodetic set contains $Y \cup \{a_2, a_3\}$. Hence by theorem 2.7, $f^{\text{ol}}(G) \leq g^{\text{ol}}_I(G) - |Y \cup \{a_2, a_3\}| = l$. Moreover, a set R_2 is a minimum total outer independent edge geodetic set of G iff R_2 is of the form $Y \cup \{a_2, a_3, c_1, c_2, ... , c_l\}$ where c_k is any point in E_k for $(1 \leq k \leq l)$. If $f^{\text{ol}}(G) < l$, then L_1 is a subset of R_2 with $|L_1| < l$ such that there is a point $y_k (1 \leq k \leq l)$ and $y_k \notin L_1$. Let f_k be a point of E_k different from y_k. Then $L' = (R_2 - \{y_k\}) \cup \{f_k\}$ is a minimum total outer independent edge geodetic set of G different from R_2 such that L' contains L_1. It is true for all minimum total outer independent edge geodetic set of G. Hence $f^{\text{ol}}(G) = l$.

![Figure 3.2 Graph G](image)

Figure 3.2 Graph G

4 Conclusion

In this paper we define and learn the idea forcing total outer independent edge geodetic number of a graph. This work can be extended to find forcing upper total outer independent edge geodetic number of a graph, forcing connected total outer independent edge geodetic number of a graph. The findings united in this paper would support the readers to develop various useful applications to the world of science and technology.
References

[1] Atici, M. (2003). On the edge geodetic number of a graph. *International journal of computer mathematics* 80(7), 853-861.

[2] Buckley, F., & Harary, F. (n.d.). Distance in graphs. *Addison-Wesley*.

[3] Harary, F. (1995). *Narosa publishing house. New Delhi*.

[4] Hernando, C., Jiang, T., Mora, M., Pelayo, I., & Sera, C. (2005). On the steiner, geodetic and hull numbers of graphs. *Discrete Mathematics* 293(1-3), 139-154.

[5] Kazemi, A., & Mojdeh, D. (2007). Geodomination in graphs. *International Mathematical Forum, volume 2*, 1729-1736.

[6] Shree, S., & Goudar, V. (2018). Total edge geodetic number of a graph. *Nonlinear studies, 25(4)*, 781-793.

[7] Sudhahar, P., & Deepa, A. (2020). *Total Outer Independent Edge Geodetic Number of a Graph*. VIT Chennai: Proceedings of International Conference on Research Trends in Mathematics(ICRTM - 2020) accepted.