Very Well-Covered Graphs of Girth at least Four and Local Maximum Stable Set Greedoids*

Vadim E. Levit
Ariel University Center of Samaria, ISRAEL
E-mail: levitv@ariel.ac.il

Eugen Mandrescu
Holon Institute of Technology, ISRAEL
E-mail: eugen_m@hit.ac.il

Abstract

A maximum stable set in a graph G is a stable set of maximum cardinality. S is a local maximum stable set of G, and we write $S \in \Psi(G)$, if S is a maximum stable set of the subgraph induced by $S \cup N(S)$, where $N(S)$ is the neighborhood of S.

Nemhauser and Trotter Jr. [20], proved that any $S \in \Psi(G)$ is a subset of a maximum stable set of G. In [12] we have shown that the family $\Psi(T)$ of a forest T forms a greedoid on its vertex set. The cases where G is bipartite, triangle-free, well-covered, while $\Psi(G)$ is a greedoid, were analyzed in [14], [15], [17], respectively.

In this paper we demonstrate that if G is a very well-covered graph of girth ≥ 4, then the family $\Psi(G)$ is a greedoid if and only if G has a unique perfect matching.

Keywords: very well-covered graph, local maximum stable set, greedoid, triangle-free graph, König-Egerváry graph.

1 Introduction

Throughout this paper $G = (V, E)$ is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set $V = V(G)$ and edge set $E = E(G)$. If $X \subset V$, then $G[X]$ is the subgraph of G spanned by X. K_n, C_n denote respectively, the complete graph on $n \geq 1$ vertices and the chordless cycle on $n \geq 3$ vertices. If $A, B \subset V$ and $A \cap B = \emptyset$, then (A, B) stands for the set \{e = ab : a \in A, b \in B, e \in E\}.

The neighborhood of a vertex $v \in V$ is the set $N(v) = \{u : u \in V \text{ and } vu \in E\}$. For $A \subset V$, we denote $N(A) = \{v \in V - A : N(v) \cap A \neq \emptyset\}$ and $N[A] = A \cup N(A)$.

A stable set in G is a set of pairwise non-adjacent vertices. A stable set of maximum size will be referred to as a maximum stable set of G, and the stability number of G, denoted by $\alpha(G)$, is the cardinality of a maximum stable set in G. Let $\Omega(G)$ stand for the set of all maximum stable sets of G.

*A preliminary version of this paper has been presented at the 38th Southeastern International Conference on Combinatorics, Graph Theory, and Computing, March 5-9, 2007, Boca-Raton, Florida, USA.
A matching in a graph $G = (V, E)$ is a set of edges $M \subseteq E$ such that no two edges of M share a common vertex. A maximum matching is a matching of maximum cardinality. By $\mu(G)$ is denoted the cardinality of a maximum matching. A matching is perfect if it saturates all the vertices of the graph.

Let us recall that G is a König-Egerváry graph provided $\alpha(G) + \mu(G) = |V(G)|$ [4], [23]. As a well-known example, any bipartite graph is a König-Egerváry graph [5], [10].

Theorem 1.1 [13] If G is a König-Egerváry graph, then every maximum matching is contained in $(S, V(G) - S)$, for each $S \in \Omega(G)$.

A matching $M = \{a_i b_i : a_i, b_i \in V(G), 1 \leq i \leq k\}$ of graph G is called a uniquely restricted matching if M is the unique perfect matching of $G[\{a_i, b_i : 1 \leq i \leq k\}]$ [8]. For instance, all the maximum matchings of the graph G in Figure 1 are uniquely restricted, while the graph H from the same figure has both uniquely restricted maximum matchings (e.g., $\{uv, xw\}$) and non-uniquely restricted maximum matchings (e.g., $\{xy, tv\}$).

![Figure 1: The unique cycle of H is alternating with respect to the matching $\{yv, tx\}$](image)

Recall that G is well-covered if all its maximal stable sets have the same cardinality [21], and G is very well-covered if, in addition, it has no isolated vertices and $|V(G)| = 2\alpha(G)$ [6].

![Figure 2: Only C_4 and G_1 are very well-covered graphs.](image)

It is easy to prove that every graph having a perfect matching consisting of pendant edges is very well-covered. The converse is not generally true; e.g., the graphs C_4 and G_1 depicted in Figure 2. Moreover, there are well-covered graphs without perfect matchings; e.g., K_3. Nevertheless, having a perfect matching is a necessary condition for very well-coveredness.

Theorem 1.2 [6] For a graph G without isolated vertices the following are equivalent:

(i) G is very well-covered;
(ii) there exists a perfect matching in G that satisfies property P;
(iii) there exists at least one perfect matching in G and every perfect matching in G satisfies property P.

A matching M in a graph G satisfies Property P if

"$N(x) \cap N(y) = \emptyset$, and each $v \in N(x) - \{y\}$ is adjacent to all vertices of $N(y) - \{x\}$" hold for every edge $xy \in M$.

2
For example, the perfect matching \(M = \{ab, xy, uv\} \) of the graph \(G_2 \) from Figure 2 does not satisfy Property \(P \), since \(uv \in M, b \in N(u), y \in N(v) \), but \(b \notin E(G_2) \). Hence, \(G_2 \) is not a very well-covered graph. Moreover, \(G_2 \) is not well-covered, because no maximum stable set of \(G_2 \) includes the stable set \(\{b, v\} \). However, \(G_2 \) is a König-Egerváry graph. Notice that \(K_4 \) is well-covered, has perfect matchings, but is neither a König-Egerváry graph, nor a very well-covered graph.

Theorem 1.3 [11] A graph is very well-covered if and only if it is a well-covered König-Egerváry graph.

A set \(A \subseteq V(G) \) is a local maximum stable set of \(G \) if \(A \in \Omega(G[N[A]]) \) [12]; by \(\Psi(G) \) we denote the family of all local maximum stable sets of the graph \(G \). For instance, \(\{a\}, \{a, e\} \in \Psi(G) \), while \(\{c\}, \{b, f\} \notin \Psi(G) \), where \(G \) is from Figure 1. Notice also that in the same graph, the stable sets \(\{a, e\}, \{b, f\} \) are contained in some maximum stable sets of \(G \), while for \(\{a, c\}, \{c, e\} \) this is not true.

Theorem 1.4 [20] Every local maximum stable set of a graph is a subset of a maximum stable set.

Definition 1.5 [1], [9] A greedoid is a pair \((V, F)\), where \(F \subseteq 2^V \) is a non-empty set system satisfying the following conditions:

- **Accessibility:** for every non-empty \(X \in F \) there is an \(x \in X \) such that \(X - \{x\} \in F \);
- **Exchange:** for \(X, Y \in F \), \(|X| = |Y| + 1 \), there is an \(x \in X - Y \) such that \(Y \cup \{x\} \in F \).

In the sequel we use \(F \) instead of \((V, F)\), as the ground set \(V \) will be, usually, the vertex set of some graph.

![Figure 3: Ψ(G) is not a greedoid, Ψ(H) is a greedoid.](image)

The graphs from Figure 3 are non-bipartite König-Egerváry graphs, and all their maximum matchings are uniquely restricted. Let us remark that both graphs are also triangle-free, but only \(\Psi(H) \) is a greedoid. It is clear that \(\{b, c\} \in \Psi(G) \), while \(\{b\}, \{c\} \notin \Psi(G) \). Notice also that \(G[N[\{b, c\}]] \) is not a König-Egerváry graph, and, as one can see from the following theorem, this is a good reason for \(\Psi(G) \) not to be a greedoid.

Theorem 1.6 [15] If \(G \) is a triangle-free graph, then the following assertions are equivalent:

(i) \(\Psi(G) \) is a greedoid;

(ii) all maximum matchings of \(G \) are uniquely restricted and the closed neighborhood of every local maximum stable set of \(G \) induces a König-Egerváry graph.

The cases of trees, bipartite graphs, unicycle graphs, whose family of local maximum stable sets forms a greedoid, were analyzed in [12], [14], [18], respectively.

In this paper we characterize very well-covered graphs of girth at least four, whose families of local maximum stable sets are greedoids.
2 Results

Let us remark that the very well-covered graph G_1 in Figure 2 has a C_4 and one of the edges of this C_4 belongs to the unique perfect matching of G_1.

Lemma 2.1 No edge of some C_q, for $q = 3$ or $q \geq 5$, belongs to a perfect matching in a very well-covered graph.

Proof. If the graph G is very well-covered, then by Theorem 1.2, G has a perfect matching, say M, and each perfect matching satisfies Property P.

Let $xy \in M$. Then, Property P implies that $N(x) \cap N(y) = \emptyset$, i.e., xy belongs to no C_3 in G. Further, if $v \in N(x) - \{y\}$ and $u \in N(y) - \{x\}$, Property P assures that $vu \in E(G)$, i.e., xy belongs to no C_q, for $q \geq 5$.

![Figure 4: Both $H_1 = G[N[\{x,y\}]]$ and $H_2 = G[N[\{y,z\}]]$ are König-Egerváry graphs.](image)

Let us mention that if G is very well-covered, S is a stable set such that $G[N[S]]$ is a König-Egerváry graph, then S does not necessarily belong to $\Psi(G)$; e.g., the set $S_1 = \{x,y\}$ is stable in the graph G depicted in Figure 4, and $S_1 \notin \Psi(G)$, while $H_1 = G[N[S_1]]$ is a König-Egerváry graph. Notice that $S_2 = \{y,z\} \in \Psi(G)$ and $H_2 = G[N[S_2]]$ is a König-Egerváry graph. The following finding, firstly presented in [15], shows that this phenomenon is true for very well-covered graphs in general. We repeat the proof for the sake of self-containment.

Theorem 2.2 If G is a very well-covered graph, then $G[N[S]]$ is a König-Egerváry graph, for every $S \in \Psi(G)$.

Proof. By Theorem 1.3, G is a König-Egerváry graph. According to Theorem 1.2, G has a perfect matching, say M, and each perfect matching satisfies Property P.

Suppose by way of contradiction that there is $S = \{v_i : 1 \leq i \leq k\} \in \Psi(G)$, such that $G[N[S]]$ is not a König-Egerváry graph.

Since G is well-covered, there exists some $W \in \Omega(G)$, with $S \subseteq W$. By Theorem 1.1, $M \subseteq (W, V(G) - W)$, and because M is a perfect matching and $S \subseteq W$, we infer that S is matched by M into $N(S)$, and this implies $|S| \leq |N(S)|$. The assumption that $G[N[S]]$ is not a König-Egerváry graph leads to $|N(S)| > |S|$. It means that there exists a vertex $x \in N(S) - M(S)$, where $M(S) = \{w_i : v_i w_i \in M, 1 \leq i \leq k\}$.

In the following, we will prove that the set $\{x\} \cup M(S)$ is stable.

Firstly, x must be adjacent to some vertex, say v_1, from S, otherwise $S \cup \{x\}$ is a stable set larger than S in $G[N[S]]$, in contradiction with $S \in \Psi(G)$. By Lemma 2.1, x is not adjacent to w_1, since $v_1 w_1 \in M$. Thus, $\{x, w_1\}$ is a stable set.

One of x, w_1 must be adjacent to one vertex, say v_2, from S, because, otherwise, the set $\{x, w_1\} \cup \{v_i : 2 \leq i \leq k\}$ would be stable in $G[N[S]]$, larger than S. If $w_1 v_2 \in E(G)$, then Property P, applied to the edge $v_1 w_1 \in M$, ensures that $xw_2 \in E(G)$.

In other words, x must be adjacent to v_1. Moreover, the set $\{x, w_1, w_2\}$ is stable, because $xw_2 \notin E(G)$ according to Lemma 2.1 while for $w_1 w_2 \in E(G)$ we get, by Property P, that $xw_1 \in E(G)$, in contradiction with the fact that $\{x, w_1\}$ is a stable set.
Assume that for some \(j < k \), the set

\[
A_j = \{x\} \cup \{w_i : 1 \leq i \leq j\}
\]

is stable, and \(x \) is adjacent to each \(v_i, 1 \leq i \leq j \). Then, there is an edge joining a vertex, say \(a \), belonging to \(A \), and a vertex, say \(v_{j+1} \), from the set \(\{v_i : j+1 \leq i \leq k\} \). Otherwise,

\[
A_j \cup \{v_i : j+1 \leq i \leq k\}
\]

is a stable set in \(G[N[S]] \), larger than \(S \). If \(a = w_t \), then by Property \(P \), when the edge \(v_tw_t \) is concerned, the vertex \(x \) must be adjacent to \(v_{j+1} \). Thus, no matter where \(a \) is located, the vertex \(x \) is adjacent to the vertex \(v_{j+1} \) (see Figure 5(a)).

Figure 5: (a) The vertex \(x \) is adjacent to all vertices from \(\{v_i : 1 \leq i \leq j\} \). (b) The vertices \(x, v_{j+1}, w_{j+1}, w_t, v_t \) span a five vertex cycle.

Since \(xv_{j+1} \in E(G) \) and \(v_{j+1}w_{j+1} \in M \), Lemma 2.1 implies that the vertices \(x \) and \(w_{j+1} \) are not adjacent. Moreover, no vertex from the set \(\{w_i : 1 \leq i \leq j\} \) is adjacent to \(w_{j+1} \). Otherwise, if some \(w_t \) is adjacent to \(w_{j+1} \), then \(\{x, v_{j+1}, w_{j+1}, w_t, v_t\} \) spans a five vertex cycle in \(G[N[S]] \) (see Figure 5(b)). In accordance with Property \(P \), when the edge \(v_tw_t \) is concerned, the vertex \(x \) must be adjacent to \(w_{j+1} \). Hence, \(\{x, v_{j+1}, w_{j+1}\} \) spans a triangle, which is impossible, by Lemma 2.1.

Therefore, the set \(A_{j+1} \) is stable. In this way one can eventually reach the set \(\{x\} \cup M(S) \), which must be stable in \(G[N[S]] \) like all its predecessors. Now the inequality

\[
|\{x\} \cup M(S)| > |S|
\]

stays in contradiction with the following facts:

\[
\{x\} \cup M(S) \subseteq N[S] \quad \text{and} \quad S \in \Psi(G).
\]

Consequently, \(G[N[S]] \) is a König-Egerváry graph.

Theorem 2.3 Let \(G \) be a very well-covered graph of girth at least 4. Then the following assertions are equivalent:

(i) \(\Psi(G) \) is a greedoid;
(ii) \(G \) has a unique maximum matching.

Proof. Firstly, Theorem 1.2 implies that each maximum matching of \(G \) is perfect.

(i) \(\Rightarrow (ii) \) Since the girth of \(G \) is greater or equal to 4, the graph \(G \) is triangle-free. Hence, according to Theorem 1.6, a perfect matching of \(G \) is unique.

(ii) \(\Rightarrow (i) \) In fact, \(G \) has a unique perfect matching. Consequently, every maximum matching of \(G \) is uniquely restricted. Combining the fact that \(G \) is triangle-free with Theorems 2.2 and 1.0, we conclude that \(\Psi(G) \) is a greedoid.

The structure of very well-covered graphs of girth at least 5 is more specific.
Theorem 2.4 [3, 16] Let G be a graph of girth at least 5. Then G is very well-covered if and only if $G = H \circ K_1$, for some graph H of girth ≥ 5.

Consequently, a very well-covered graph of girth ≥ 5 has a unique perfect matching. Therefore, by Theorem 2.3 we get the following.

Corollary 2.5 [17] Each very well-covered graph of girth at least 5 generates a local maximum stable set greedoid.

It is known that the recognition of well-covered graphs is a co-NP-complete problem [2, 22]. Nevertheless, very well-covered graphs can be recognized in polynomial time. Actually, it goes directly from Favaron’s characterization. Namely, to recognize a graph as being very well-covered, we just need to show that it has a perfect matching which satisfies property P. To find a maximum matching one needs $O(|V|^2 \cdot |E|)$ time [19]. To check property P one has to handle $O\left(|V|^3\right)$ pairs of vertices in the worst case. All in all, it gives us an $O\left(|V|^3\right)$ algorithm.

If our goal is to recognize very well-covered graphs with unique perfect matchings, then we may do better. The reason for this is that one can test whether the graph has a unique perfect matching, and find it if it exists, in $O\left(|E| \cdot \log^4 |V|\right)$ time [7]. Finally, Theorem 2.3 and Corollary 2.5 justify that one can decide in $O\left(|E| \cdot \log^4 |V|\right)$ time whether $\Psi(G)$ is a greedoid, for a given very well-covered graph G of girth ≥ 4.

3 Conclusions

In this paper we have proved that $\Psi(G)$ is a greedoid for those very well-covered graphs G of girth ≥ 4 that have a unique perfect matching.

Problem 3.1 Characterize very well-covered graphs of girth three producing local maximum stable set greedoids.

References

[1] A. Björner, G. M. Ziegler, Introduction to greedoids, in N. White (ed.), Matroid Applications, 284-357, Cambridge University Press, 1992.
[2] V. Chvátal, P. J. Slater, A note on well-covered graphs in Quo vadis, graph theory?, 179-181, Annals of Discrete Mathematics 55, North-Holland, Amsterdam, 1993.
[3] N. Dean, J. Zito, Well-covered graphs and extendability, Discrete Mathematics 126 (1994) 67-80.
[4] R. W. Deming, Independence numbers of graphs - an extension of the Kö nig–Egerváry theorem, Discrete Mathematics 27 (1979) 23–33.
[5] E. Egerváry, On combinatorial properties of matrices, Mat. Lapok 38 (1931) 16-28.
[6] O. Favaron, Very well-covered graphs, Discrete Mathematics 42 (1982) 177-187.
[7] H. N. Gabow, H. Kaplan, R. E. Tarjan, *Unique maximum matching algorithms*, Journal of Algorithms 40 (2001) 159-183.

[8] M. C. Golumbic, T. Hirst, M. Lewenstein, *Uniquely restricted matchings*, Algorithmica 31 (2001) 139-154.

[9] B. Korte, L. Lovász, R. Schrader, *Greedoids*, Springer-Verlag, Berlin, 1991.

[10] D. König, *Graphen und Matrizen*, Mat. Lapok 38 (1931) 116-119.

[11] V. E. Levit, E. Mandrescu, *Well-covered and König-Egerváry graphs*, Congressus Numerantium 130 (1998) 209-218.

[12] V. E. Levit, E. Mandrescu, *A new greedoid: the family of local maximum stable sets of a forest*, Discrete Applied Mathematics 124 (2002) 91-101.

[13] V. E. Levit, E. Mandrescu, *On α+-stable König–Egerváry graphs*, Discrete Mathematics 263 (2003) 179–190.

[14] V. E. Levit, E. Mandrescu, *Local maximum stable sets in bipartite graphs with uniquely restricted maximum matchings*, Discrete Applied Mathematics 132 (2004) 163-174.

[15] V. E. Levit, E. Mandrescu, *Triangle-free graphs with uniquely restricted maximum matchings and their corresponding greedoids*, Discrete Applied Mathematics 155 (2007) 2414–2425.

[16] V. E. Levit, E. Mandrescu, *Some structural properties of very well-covered graphs*, Congressus Numerantium 186 (2007) 97–106.

[17] V. E. Levit, E. Mandrescu, *Well-covered graphs and greedoids*, Proceedings of the 14th Computing: The Australasian Theory Symposium (CATS2008), Wollongong, NSW, Conferences in Research and Practice in Information Technology Volume 77 (2008) 89-94.

[18] V. E. Levit, E. Mandrescu, *Greedoids on the vertex sets of unicycle graphs*, Congressus Numerantium 197 (2009) 183–191.

[19] S. Micali, V. V. Vazirani, *An O(|V|^2+|E|) algorithm for finding maximum matching in general graphs*, Proceedings of the 21st IEEE Symposium on Foundations of Computer Science (1980) 17-27.

[20] G. L. Nemhauser, L. E. Trotter, Jr., *Vertex packings: structural properties and algorithms*, Mathematical Programming 8 (1975) 232-248.

[21] M. D. Plummer, *Some covering concepts in graphs*, Journal of Combinatorial Theory 8 (1970) 91-98.

[22] R.S. Sankaranarayana, L.K. Stewart, *Complexity results for well-covered graphs*, Networks 22 (1992) 247-262.

[23] F. Sterboul, *A characterization of the graphs in which the transversal number equals the matching number*, Journal of Combinatorial Theory Series B 27 (1979) 228–229.