Low prevalence of Epstein–Barr virus in incident gastric adenocarcinomas from the United Kingdom

An early report that the Epstein–Barr virus (EBV) was present in the majority of lymphoepithelial-like carcinomas (LELCs) of the stomach, a rare form of gastric neoplasia (Shibata et al, 1991), was followed by the detection of EBV in 16% of typical gastric adenocarcinomas (Shibata and Weiss, 1992). The subsequent finding of monoclonal EBV episomes (Imai et al, 1994; Ott et al, 1994) and transforming proteins (zur Hausen et al, 1994; Ott et al, 1994) not only suggested an aetiological role for this virus in these tumours, but also the possibility that immunotherapy, for example CTL-based anti-EBV therapies (Rooney et al, 1998) might prolong survival for patients with virus-positive tumours. Before investing in such a strategy it is necessary to determine the numbers of patients who are likely to benefit. Here we report the largest survey of the prevalence of EBV in gastric adenocarcinomas undertaken outside Asia.

MATERIALS AND METHODS

The base population comprised 497 consecutive patients who were first diagnosed with gastric adenocarcinoma between 1993–1999 and who had their tumours resected in one of three hospitals from the West Midlands, UK. This series was supplemented by an additional 69 patients with unresected disease in whom the diagnosis was made on gastric biopsy. Eight cases were excluded when histopathological review could not confirm the original diagnosis and 24 because there was insufficient material for the preparation of tissue arrays. EBV status was determined on the remaining 534 patients. All exclusions were from resected cases.

A 4 mm-diameter needle was used to sample representative tumour areas from paraffin blocks using a modification of the method described by Kononen et al (1998). Twenty cylindrical tumour cores were positioned in 5 mm holes cut from a 2.5 × 3 cm piece of paraffin-embedded liver tissue. Four micron thick sections cut from the array were adhered to Vectabond® coated slides and in situ hybridisation for the detection of the EBV-encoded RNAs (EBERs) performed according to standard methods (Wu et al, 1990). Positive controls which included cores from known EBV-positive gastric cancers were seeded into arrays. Seventy-five which tested negative for EBERs in tissue arrays, were re-evaluated by in situ hybridisation of the originating tissue blocks. U6 and sense control probes were included in all runs and assays were performed in duplicate.

RESULTS

The mean age of patients in this series was 65.4 years (range 34 – 87 years). The male to female ratio was 2.2:1. Among 465 patients with resected disease 214 (46%) were classified as intestinal type according to the criteria of Lauren (1965), 112 (24%) were diffuse, 108 (23%) mixed and 31 (7%) were unclassifiable. One hundred and sixty-two (35%) of resected tumours involved the cardia, 289 (62%) the corpus/antrum, two (0.4%) the gastric stump and in 12 (2.6%) subsite was unknown. EBERs were detected in 9 out of 534 (1.7%) tumours in eight patients with resected disease and in one of those diagnosed on gastric biopsy. Both gastric stump cancers were EBV-positive.

DISCUSSION

The prevalence of EBV-positive cancers in this series of gastric adenocarcinomas is substantially less than that reported elsewhere (Table 1). We believe this is not the result of sampling error in the preparation of the tissue arrays because re-evaluation of EBER-negative tumours using the originating tissue blocks revealed no false-negatives and our findings are similar to those reported in two smaller studies also undertaken in the UK which used tissue blocks when testing for the presence of EBERs (Rowlands et al, 1993; Shousha and Luqmani, 1994).

Keywords: Epstein – Barr virus; gastric adenocarcinoma; EBERs
and both gastric LELC and LELCs at other sites are more common to have a LELC. These tumours are strongly associated with EBV total testing positive for EBV. No patient in our series was found comparatively small numbers of cancers with only 10 tumours in been reported in other European series, estimates are based on

Although a higher detection rate of EBV-positive tumours has reported in other European series, estimates are based on comparatively small numbers of cancers with only 10 tumours in total testing positive for EBV. No patient in our series was found to have a LELC. These tumours are strongly associated with EBV and both gastric LELC and LELCs at other sites are more common in Asia (Gaffey and Weiss, 1990). The higher rate of detection of EBV in gastric adenocarcinomas observed in large Asiatic series suggests that gastric tumours are another site of cancer where the strength of the association with EBV varies with the population studied.

REFERENCES

Chang MS, Kim WH, Kim CW, Kim YI (2000) Epstein-Barr virus in gastric carcinomas with lymphoid stroma. Histopathology 37: 309 – 315

Chapel F, Fabiani B, Davi F, Raphael M, Tepper M, Champault G, Guettier C (2000) Epstein-Barr virus and gastric carcinoma in Western patients: comparison of pathological parameters and p53 expression in EBV-positive and negative tumours. Histopathology 36: 252 – 261

Gaffey MJ, Weiss LM (1990) Viral onogenesis: Epstein-Barr virus. Am J Otolaryngol 11: 375 – 381

Galetsky SA, Totvetov VV, Land CE, Afanasieva TA, Petrovichev NN, Gurtsevich VA, Chapel F, Fabiani B, Davi F, Raphael M, Tepper M, Champault G, Guettier C (2000) Epstein-Barr virus associated gastric adenocarcinomas: data and unanswered questions. Int J Cancer 83: 898 – 901

Moritani S, Kushima R, Sugihara H, Hattori T (1996) Phenotype characteristics of Epstein-Barr virus-associated gastric carcinomas. J Cancer Res Clin Oncol 122: 750 – 756

Nakamura S, Ueki T, Yao T, Ueyama T, Tsuneyoshi M (1994) Epstein-Barr virus in gastric carcinoma with lymphoid stroma. Special reference to its detection by the polymerase chain reaction and in situ hybridisation in 99 tumors, including a morphologic analysis. Cancer 73: 2239 – 2249

Ohfuji S, Osaki M, Tsujitani S, Ikeguchi M, Sairenji T, Ito H (1996) Low frequency of apoptosis in Epstein-Barr virus-associated gastric carcinoma with lymphoid stroma. Int J Cancer 68: 710 – 715

Ott G, Kirchner T, Muller-Hermelink HK (1994) Monoclonal Epstein-Barr virus genomes but lack of EBV related protein expression in different types of gastric carcinoma. Histopathology 25: 323 – 329

Qiu K, Tomita Y, Hashimoto M, Ohsawa M, Kawano K, Wu DM, Aozasa K (1997) Epstein-Barr virus in gastric carcinoma in Suzhou, China and Osaka, Japan: association with clinicopathological factors and HLA-subtype. Int J Cancer 71: 155 – 158

Rooney CM, Roskrow MA, Smith CA, Brenner MK, Heslop HE (1998) Immunotherapy for Epstein-Barr virus-associated cancers. J Natl Cancer Inst Monogr 23: 89 – 93

Rowlands DC, Ito M, Mangham DC, Reynolds G, Herbst H, Hallissey MT, Fielding JW, Newbold KM, Jones EL, Young LS, Neiedobitek G (1993) Epstein-Barr virus and carcinomas: rare association of the virus with gastric adenocarcinomas. Br J Cancer 68: 1014 – 1019

Table 1 Prevalence of EBV in gastric adenocarcinomas

Reference	Country	Number of gastric adenocarcinomas	Number of EBV+ gastric adenocarcinomas (%)
Tokunaga et al (1993b)	Japan	1175	102 (5.7)
Imai et al (1994)	Japan	991	62 (6.2)
Tokunaga et al (1993a)	Japan	990	59 (5.9)
Burgess et al (present study)	UK	534	9 (1.7)
Chang et al (2000)	Korea	292	10 (3.4)
Galetsky et al (1997)	Russia	206	18 (8.7)
Rowlands et al (1993)	UK	117 UK	2 (1.7)
Qiu et al (1997)	Japan	51 Japan	1 (2)
Shibata and Weiss (1992)	USA	138	22 (16)
Wu et al (2000)	Taiwan	139	19 (13.7)
Herrera-Goeppert et al (1999)	Mexico	130	6 (4.6)
Montani et al (1996)	Japan	120	5 (4.2)
Yanai et al (1997)	Japan	109	7 (6.4)
Yuen et al (1994)	Hong Kong	71	6 (8.4)
Leoncini et al (1993)	Italy	65	3 (4.6)
Ham et al (1995)	Taiwan	54	5 (9.3)
Chapel et al (2000)	France	52	4 (7.7)
Nakamura et al (1994)	Japan	42	4 (9.5)
Ott et al (1994)	Germany	35	3 (8.5)
Ohfuji et al (1996)	Japan	23	0
Shousha and Luqmani (1994)	UK	11	0

†LELC excluded, as were series in which LELC could not separately be distinguished from adenocarcinomas, includes only series with >10 cases.
Shibata D, Tokunaga M, Uemura Y, Sato E, Tanaka S, Weiss LM (1991) Association of Epstein-Barr virus with undifferentiated gastric carcinomas with intense lymphoid infiltration. Lymphoepithelial-like carcinoma. Am J Pathol 139: 469–474
Shibata D, Weiss LM (1992) Epstein-Barr virus-associated gastric adenocarcinoma. Am J Pathol 140: 769–774
Shousha S, Luqmani YA (1994) Epstein-Barr virus in gastric carcinoma and adjacent normal gastric and duodenal mucosa. J Clin Pathol 47: 695–698
Tokunaga M, Land CE, Uemura Y, Tokudome T, Tanaka S, Sato E (1993a) Epstein-Barr virus in gastric carcinoma. Am J Pathol 143: 1250–1254
Tokunaga M, Uemura Y, Tokudome T, Ishidate T, Masuda H, Okazaki E, Kaneko K, Naoe S, Ito M, Okamura A, Sato E, Land CE (1993b) Epstein-Barr related gastric cancer in Japan: a molecular patho-epidemiological study. Acta Pathol Jpn 43: 574–581
Yanai H, Nishikawa J, Mizugaki Y, Shimizu N, Takada K, Matsusaki K, Toda T, Matsumoto Y, Tada M, Okita K (1997) Endoscopic and pathologic features of Epstein-Barr virus-associated gastric carcinoma. Gastrointest Endosc 45: 236–242
Yuen ST, Chung LP, Leung SY, Luk IS, Chan SY, Ho J (1994) In situ detection of Epstein-Barr virus in gastric and colorectal adenocarcinomas. Am J Surg Pathol 18: 1158–1163
Wu MS, Shun CT, Wu CC, Hsu TY, Lin MT, Chang MC, Wang HP, Lin JT (2000) Epstein-Barr virus-associated gastric carcinomas: relation to H. pylori infection and genetic alterations. Gastroenterology 118: 1031–1038
Wu TC, Mann RB, Epstein JI, MacMahon E, Lee WA, Charache P, Hayward SD, Kurman RJ, Hayward GS, Ambinder RF (1990) Detection of EBV gene expression in Reed-Sternberg cells of Hodgkin’s disease. Int J Cancer 46: 801–804
zur Hausen A, Brink AATP, Craanen ME, Middeldorp JM, Meijer CJLM, van den Brule AJC (2000) Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res 60: 2745–2748