Three case reports on the cometary plasma tail in the historical documents

Hisashi Hayakawa1,2,3,4,*, Yuri I. Fujii2,5,14,*, Koji Murata2,6,15, Yasuyuki Mitsuma7, Yongchao Cheng2,6,16, Nagatoshi Nogami8, Kohei Ichikawa9,10, Hidetoshi Sano2,5,11, Kohji Tsumura12, Yukiko Kawamoto6, and Masaki N. Nishino13

1 Institute for Space-Earth Environmental Research, Nagoya University, Nagoya 464-8601, Japan
2 Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
3 UK Solar System Data Centre, Space Physics and Operations Division, RAL Space, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, UK
4 Nishina Centre, Riken, Wako 351-0198, Japan
5 Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan
6 Graduate School of Humanities, Nagoya University, Nagoya 464-8601, Japan
7 Faculty of Humanities and Social Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
8 Sumitomo Chemical, Niihama 792-8521, Japan
9 Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
10 Astronomical Institute, Tohoku University, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
11 National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
12 Department of Natural Science, Faculty of Science and Engineering, Tokyo City University 1-28-1, Tamazutsumi, Setagaya, Tokyo 158-8557, Japan
13 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
14 Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu, Sakyo, Kyoto 606-8501, Japan
15 Faculty of Library, Information and Media Science, University of Tsukuba, Tsukuba 305-8550, Japan
16 Center for Northeast Asian Studies, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai, Miyagi 980-8576, Japan

Received 17 May 2020 / Accepted 18 August 2020

Abstract—Cometary tails visually manifest the solar wind and became an initial hint for its discovery. While the solar wind is being directly monitored with satellites, its time series before the space age has been controversially reconstructed with multiple proxies. Recently, archival reports of cometary plasma tails have been subjected to consideration to indirectly measure the solar wind, but brought conclusion that no plasma tails had been reported prior to 1769 probably due to their brightness. However, historical records have occasionally reported comets with two tails even before 1769. These cases have been tentatively associated with visual reports of cometary plasma and dust tails. Therefore, we examined three such cases (C/1577 V1, 1P/837, and 1P/760), and compared the descriptions in historical records with calculated direction of their plasma tails. Our comparisons show that the records and calculations agree in these cases and plasma tails were visually recorded corresponding to these three great comets. These cases certify the capability of plasma tail observations with the unaided eye even before 1769, qualitatively imply their extreme brightness, proximities with the Sun and the Earth, relative enhancements of UV radiations, and interaction of cometary neutral atmosphere with solar wind plasma and magnetic field, while the lack of their detailed length or kink hinders us from their quantitative measuring. Further investigations will likely lead to the re-discovery of even more visual evidence of cometary plasma tails and, hence, improve our understanding on past space climate.

Keywords: space climate / cometary plasma tail: solar wind / UV radiation

*Corresponding authors: hisashi@nagoya-u.jp; hisashi.hayakawa@stfc.ac.uk; yuri.f@nagoya-u.jp

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1 Introduction

Pointing almost towards the antisolar direction (Fig. 1), the cometary tails have provided visual hints for the solar wind (Biermann, 1963; Abe et al., 1997; Mendis, 2007; Vaquero & Vázquez, 2009; Mendis and Horányi, 2013; Iju et al., 2015; Verscharen et al., 2019). This typical motion of the cometary tails allowed Ahnert (1943) and Biermann (1951) to formulate their hypotheses on solar radiation and outward gas streamers from the Sun, respectively (Schröder, 2008; Obridko & Vaisberg, 2017). Parker (1957, 1965) explained Biermann’s hypothesis on outward-streaming gas emanating from the Sun and later named this as “solar wind” (see also Kane, 2009). The solar wind has, since then, been directly confirmed with satellite observations (e.g. Gringauz et al., 1960; Neugebauer & Snyder, 1962) and subjected to regular monitoring afterwards (Verscharen et al., 2019).

Before the onset of such modern monitoring, the time series of the solar wind has been controversially reconstructed on the basis of multiple proxies such as the sunspot number, coronal structure, magnetic indices, and cosmogenic isotopes (Lockwood et al., 1999; Svalgaard & Cliver, 2005; Owens et al., 2017; Usoskin, 2017; Cliver & Herbst, 2018), including that of the Maunder Minimum (Cliver et al., 1998; Svalgaard & Cliver, 2007; McCracken & Beer, 2014; Riley et al., 2015; Usoskin et al., 2015; Owens et al., 2017). It is however challenging to extend its reconstructions before the onset of sunspot observations in 1610 due to the limit of direct scientific observations (Vaquero & Vázquez, 2009; Owens, 2013), while the cosmogenic isotopes in the natural archives show us its variability on the basis of the anti-correlation between the solar-wind magnetic field and the source galactic cosmic rays (e.g., Beer et al., 2012).

Even before being the earliest visual hint for the solar wind, comets have been frequently recorded in history over a few millennia (e.g., Yeomans & Kiang, 1981; Stephenson et al., 1985; Yeomans et al., 1986; Kronk, 1999; Murata et al., 2021). Therefore, cometary tails can also account for the reconstruction of the historical solar wind and space climate as a spot marker (e.g., Mendis, 2007; Mendis & Horányi, 2013). Since the plasma tail is blown with the solar wind almost towards the antisolar direction, records thereof have been investigated in historical documents to indirectly infer and measure the solar wind before the onset of instrumental observations (Gulyaev, 2015; Zolotova et al., 2018). Figure 1 of Zolotova et al. (2018) shows that the plasma tails are blown mostly towards the antisolar direction and that the dust tail curves according to its mass and physical property (see also Fig. 1). They examined the shape, orientation, and colouration of cometary tails in historical documents, pointed out the lack of mentions on the plasma tail in historical records before C/1769 P1 (Fig. 2), and explained their conclusion with poor visibility of plasma tails through unaided-eye observations or early telescopes.

However, historical records have occasionally reported comets with probable two tails even before 1769 (e.g., Kronk, 1999; Silverman, 2008; Nogami, 2012; Hayakawa et al., 2017; Isobe, 2017) and some of them may have recorded plasma tails. If this is truly the case, these records probably indicate extremely bright plasma tails beyond the detection threshold of unaided-eye observations and merit discussions on the historical space climate in the distant past. Therefore, in this article, we discuss three case reports of great comets (C/1577 V1, 1P/837, and 1P/760) with two tails and compare their descriptions with simulated orientations of the cometary tails, in order to determine whether plasma tails were visible before C/1769P1 (c.f., Zolotova et al., 2018) and whether cometary records can be used to progress in our understanding of the space climate in the past.

2 Method

Here, we first need to note that the unaided-eye visibility of plasma tail is attested with several modern observations such as C/1858 L1 (Donati) and C/1995 O1 (Hale–Bopp) (e.g., Seargent, 2009). We also need to be aware of difference of unaided-eye observations from instrumental observations. When the emissions are not bright enough, human eyes cannot detect their colouration and perceive them without colour (Minnnaert, 1993, pp. 193 – 209). As the brightness of plasma tails is much weaker, it is not guaranteed that the plasma tail always looks bluish to human unaided eye.

The key issue to identify the plasma tails is their quasi-antisolar direction, as they are ionised and blown with the solar wind. This can be computed when we known the relative positions of the Sun, the Earth, and the comet in question.

Therefore, in this study, we examined three cases of comets with reports of probable two tails: C/1577 V1 (Kronk, 1999; Silverman, 2008), 1P/837 (Kronk, 1999; Nogami, 2012), and 1P/760 (Hayakawa et al., 2017; Isobe, 2017). We analysed the original observational reports, identified the sites where they were seen, and clarified their tail directions. Furthermore, we compared the description in historical records and the expected direction of cometary tails corresponding to those days to check whether these three cases have indeed shown plasma tails before 1769.

We calculated the positions of these comets and the courses of their tail directions at each observational site with the Stella Navigator 11/AstroArts.1 Using this software, we have specified the time and site of these observations and displayed how the sky appeared at that time and location. Here, we applied the orbital elements of Marsden & Williams (2008) to C/1577V1, 1P/837, and 1P/760, and calculated their motion and tail directions. Table 1 summarizes the orbital elements used in this study.

3 Historical cases of unaided-eye plasma tails

3.1 Case 1: C/1577 V1

The first comet studied here is C/1577 V1 (see Kronk, 1999, pp. 317–320; Silverman, 2008). This comet was ≈ 0.63 AU away from the Earth at its perigee on 1577 November 10 and it reached a brightness of magnitude (m) ≈ −3 on 1577 November 8 (Seargent, 2009, p. 247). For this comet, at least three independent accounts indicated its separated cometary tails. Firstly, Chaim Vital’s account involved a Palestinian cometary observation at Safed (N32°58’, E35°30’) during the

1 https://www.astroarts.co.jp/products/stlnav11/index-j.shtml
Fig. 1. Directions of two tails (plasma and dust tails) of a comet in comparison with the Sun and its orbit, with courtesy of Stellar Navigator 11/AstroArts. These diagrams show that the plasma tail extends to the quasi-antisolar direction and that the dust tail curves according to the orbit of the associated comets. While comets have plasma and dust tails, up to the relative angle with the Earth, two tails are visible (a) or apparently overlap with each other and cannot be distinguished by the terrestrial observers (b).

Fig. 2. Cometary diagrams by Messier and Le Gouaz (1775) for C/1769 P1, with courtesy of Bibliothèque nationale de France. Its branched tail was interpreted as a plasma tail in Zolotova et al. (2018), using Messier’s different diagram.
the Sun. Although the upper curved tail in his sketch implies it as a dust tail, our calculation shows that the dust tail should be slightly cautious on the existing cometary orbit in the Earth. As such, it became significantly bright, reaching levels of up to $m \approx -4$ (Yeomans et al., 1986, p. 74; Kronk, 1999, pp. 125–127).

3.2 Case 2: Halley 1P/837

The second case involves Chinese records of Halley 1P/837 (see Xu et al., 2000; Nogami, 2012). At its perigee on 837 April 10–11, Halley 1P/837 was only ≈ 0.03 to 0.04 au away from the Earth. As such, it became significantly bright, reaching levels of up to $m \approx -4$ (Yeomans et al., 1986, p. 74; Kronk, 1999, pp. 125–127).

Table 1. Cometary orbital elements for the great comets examined in our article: C/1577 V1, 1P/837, and 1P/760.

Comet	Time of perihelion passage (T)	Argument of perihelion (ω)	Longitude of the ascending node (Ω)	Inclination (i)	Perihelion (q) au	Eccentricity (e)
C/1577 V1	1557 Oct. 27.448	255.673	31.237	104.883	0.1775	1.0
1P/837	837 Feb. 28.270	100.101	44.930	163.447	0.58232	0.96781
1P/760	760 May 20.671	99.997	44.687	163.443	0.58184	0.96785

Fig. 3. Gemma’s diagram of the comet C/1577 V1, captioned as “The shape of the entire body and refraction [of the comet] ca. in the end of November”, adapted from Gemma (1578, p. 26).
Around the perigee, official Chinese astronomers reported a peculiar tail branch of this comet. The original records (Jiùtángshù, v. 17, p. 568; v. 36, p. 1333) described the tail branch as: “[On the night of April 10], the bloom star was as long as 5 zhàng. It branched into two tails. One pointed Root (Dī, 梟) and one covered Room (Fáng, 房). [It situated 10 dù in Dipper (Dòu, 斗)]” and “on April 11 . . . at night, it was as long as 6 zhàng. Its tail was not branched. [It directed northward.] It situated 7 dù in Neck (Kàng, 亢).” Later on, this comet was also recorded in Xīntángshù as, “on April 10, it was as long as 6 zhàng. Its tail branched into two. One pointed Root (Dī) and one covered Room (Fáng). On April 11, it was as long as 6 zhàng. It was not branched. It pointed north and situated 7 dù in Neck (Kàng)” (Xīntángshù, v. 32, p. 839). These records explicitly indicated where these two tails were directed during the night of 837 April 10/11: one covering Fáng, i.e., α Lib, δ Lib, and β Lib; and the other pointing towards Dī, i.e., α Lib, δ Lib, γ Lib, and β Lib. It was further described that these tails converged by the night of 837 April 11/12.

Assuming the observational site as the court observatory at Cháng’ān (N34°14’, E108°56’) in the capital city of Táng Dynasty (see e.g., Stephenson et al., 2019), we have calculated

\[\omega = 255.673^\circ \] (Woldstedt 1844; Marsden and Williams, 2008); and \(\omega = 253.0^\circ \) using Stellar Navigator 11.

2 The passages enclosed with square bracket are found only in the astronomical treatise (v. 36).

3 See Pan Nai (1989) to know which stars were categorized in which Chinese constellations.
the tail directions of Halley 1P/837 with Stella Navigator 11. The selected settings are $L_d = 0.5$ au, $L_p = 0.5$ au, $D = 32$ days, $I = 1.5$ days, $\beta_{max} = 0.8$, and $\beta_{min} = 0.5$. Our calculation shows that one of cometary tails was pointed, being situated anti-solar direction from this comet at that time. As shown in Figure 6, our calculation shows that its tails certainly branched during the night of 837 April 10/11 (Fig. 6a), whereas the tails almost converged during the night of 837 April 11/12 (Fig. 6b). Interestingly, during the night of 837 April 10/11 at Chángān, its dust tail was exactly directed towards Fāng (π Sco, ρ Sco, δ Sco, and β Sco), whereas its plasma tail was directed towards α Lib, the western part of $Dī$. Therefore, the Chinese historical records and the reproduced cometary configuration consistently confirm that the “two tails” which branched into Fāng and $Dī$ were most probably the dust tail and the plasma tail of Halley 1P/837.

3.3 Case 3: Halley 1P/760

The third case regarding a possible two-tail comet is a Syriac record of 1P/760 at Amida (N 37°55’, E 40°14’) in the Zūqūnī Chronicle (Hayakawa et al., 2017; Isobe, 2017; Mitsuma & Hayakawa, 2017). At its closest approach on June 2, Halley 1P/760 was only ≈ 0.41 AU away from the Earth. Hence, it became significantly bright, with up to $m \approx 0$ (Yeomans et al., 1986, p. 73; Kronk, 1999, pp. 116–118). Note that the astronomical body will be brighter when the magnitude is smaller. For example, the brightness magnitude of the full Moon and the Sun are -12.7 and -26.7, respectively (see e.g., Krisciunas & Schaefer, 1991). As such, the Halley comet was closer to the Earth and hence apparently brighter in case 2 than in case 3. Because the information was not enough to reconstruct the appearance of the comet, we adopted the same parameters that we used for 1P/837.

According to the Zūqūnī Chronicle (MS Vat.Sir.162, f. 136v; Chabot II, p. 217; Harrak, 1999, p. 198; Hayakawa et al., 2017, p. 12), this comet appeared “before early-morning, in the north-eastern side”. This chronicle further stated that: the comet “was still in Aries (enrah), at its head (rēseh), in the first degree (of the sign), two (degrees) from those wandering stars, Kronos (qrāwnās) and Ares (arrēs), which are slightly to the south, on the 22nd of the month. And the sign remained for 15 nights, until the dawn of the Pentecost feast. And one end of it was narrow and duskier, one star was seen in its tip, and it was turning to the north. And the other one, being wide and darker, was turning toward the south. And it (the sign) was going bit by bit to the northeast. This is its shape: [drawing: Comet, Ram (= α Ari, β Ari, and γ Ari), Ares (= Mars), and Kronos (= Saturn)].

Fig. 5. Computed cometary tails at Safed on 1577 November 10, computed with the existing perihelion argument ($\omega = 255.673^\circ$) (Woldstedt, 1844; Marsden & Williams, 2008) using Stellar Navigator 11.
Fig. 6. Calculated cometary tails during nights of (a) 837 April 10/11 (April 11, 01:00 LMT) and (b) 837 April 11/12 (April 12, 0:00 LMT) with Stella Navigator 11 using orbit element in Marsden & Williams (2008) and Yeomans & Kiang (1981). During the night of April 10/11, 837, its dust tail (white) was shown directed towards Fáng (π Sco, ρ Sco, δ Sco, and β Sco) and its plasma tail (blue) directed towards α Lib in the western part of Dr.
The Pentecost in 760 was on May 25 (Grumel, 1958; Hayakawa et al., 2017). Its night corresponds to the night of 760 May 24/25 since a Syriac day starts from the sunset of the previous civil day, beginning at midnight, likely to a day in the Bible (e.g. Grumel, 1958). The descriptions of the two ends (rēšēh) are especially intriguing, although this is not clearly depicted in the drawing itself (Figure 4 of Hayakawa et al., 2017). This is because one was described as “narrow and duskier, one star was seen in its tip, and it was turning to the north”, whereas the other was described as “being wide and darker, was turning toward the south”. As shown in Figure 7, our calculation shows that the plasma tail was turned relatively zenith-ward to slightly northward, while the dust tail was directed relatively southward. As time goes by, this plasma tail deviated towards the north according to the calculation.

Neither of these two ends were likely the head of the comet, considering that the head of comet is described separately (Harrak, 1999, p. 198; Hayakawa et al., 2017) and no notable stars were located around the head of the comet. Contrary to the foregoing, “one star was seen in the tip” of the “narrow and duskier” end. As this comet “was going bit by bit to the northeast” (MS Vat.Sir.162, f. 136v; Hayakawa et al., 2017, pp. 8 and 12), a cometary head would have been described not as northward, but as eastward, on the basis of relative direction in relation to the cometary motion. Therefore, it is plausible that the “narrow and duskier” end was the plasma tail and the “wide and darker” end indicated the dust tail. In this case, the northern tail is identified with its plasma tail.

4 Summary and discussion

We have analysed the positions of comets and directions of their tails in historical records for C/1577 V1, Halley 1P/837, and Halley 1P/760 in relation to the mentioned constellations, stars and planets and compared these descriptions with the simulated appearance of the comets. These cases show plausible visibility of unaided-eye plasma tails and their brightness beyond the threshold of unaided-eye visibility in combination with several modern cases such as C/1858 L1 (Donati). For C/1577 V1, our comparison shows that the plasma tail on 1577 November 10 and 28, was separately visible from the dust tail at Safed and Leuven, respectively, as recorded by Vital and Gemma. This confirms that Vital and Gemma both were able to study and report the cometary plasma tail without telescopes. For Halley 1P/837, our comparisons show that the reported directions of its plasma tail and dust tail are rather consistent with the simulated appearance in the sky. Likewise, for Halley 1P/760, our comparison implies that the cometary tail was certainly deviated at that time, given that the descriptions of its two ends likely showing the two tails of the comet and the relative position with the mentioned stars (α Ari, β Ari, and γ Ari) and planets (Mars and Kronos) showing a significantly accurate description as shown in the Zaqūnī Chronicle.

These records date centuries back from the “earliest” description of the plasma tail of C/1769 P1 in 1769, identified in Zolotova et al. (2018). It is suggested that even unaided-eye observers prior to 1769 were able to observe the cometary plasma tail under suitable conditions, despite its relative faintness. These three cases analysed here are only a small fraction of existing cometary records in history. However, they imply that further examples of comets with a plasma tail can be re-discovered, especially in historical sources yet to be studied.

In order to see bright plasma tail without instruments, we need: (1) favourable short distance between the comet and the Earth; (2) favourable angle of the comet with the Earth and the Sun; and (3) enough brightness of the cometary tails.
In order to satisfy the condition (3) and make the cometary plasma tail itself bright enough, we need combination of relatively significant photoionisation and interaction of cometary neutral atmosphere with solar wind plasma and magnetic field, apart from larger mass of cometary nuclei to enable larger release amount of neutral gas. This is because the mass of cometary nuclei dominates an upper limit of gas release amount and we need UV radiation, solar wind flux, and charge exchange to ionise the cometary material (Wyckoff & Wehinger, 1976; Mendis & Horányi, 2013) and magnetic field of solar wind to blow the ionised materials along the magnetic field line (Mendis, 2007; Mendis & Horányi, 2013; Glassmeier, 2017). These components are enhanced when comets get closer to the Sun, whereas this is a trade off with their distance with the Earth, which enhances apparent brightness for the terrestrial observers.

Apart from the cometary distances with the Sun and the Earth, the solar parameters also vary with the solar activity. The UV radiation correlates well with the solar radio flux in the wavelength of 10.7 cm (Tapping, 2013; Tapping & Morgan, 2017), which has a fairly good correlation with the sunspot number (Clette et al., 2014; Svalgaard, 2016; Tapping & Morgan, 2017). The intensity of solar wind plasma and magnetic field, which interact with the cometary neutral atmosphere, also correlate with the sunspot number (e.g., Zerbo & Richardson, 2015; Samsonov et al., 2019). Therefore, it is assumed that the extremely bright cometary plasma tails are more frequently visible under enhanced space climate condition on the basis of its correlations with the UV radiations and the solar wind plasma and magnetic field.

A scenario with the foregoing conditions was, at least, the case with the great comet Messier C/1769 P1, associated with the “earliest” documented plasma tail (Zolotova et al., 2018). At its closest approach on 1769 September 10, Messier C/1769 P1 was only ≈ 0.32 AU away from the Earth and reached a brightness of $m \approx 0$ (Kronk, 1999, p. 442–451). Its approach coincided with the maximum of Solar Cycle 2 (Clette & Lefèvre, 2016) with several unaided-eye sunspot records (Hayakawa et al., 2019).

As discussed above, the three great comets in 1577, 837, and 760 have also probably satisfied at least the first two conditions. The comet C/1577 V1 was ≈ 0.63 AU away from the Earth at its perigee and reached a brightness of $m \approx -3$ (Seagernt, 2009, p. 247). The comet Halley 1P/837 was only ≈ 0.03–0.04 AU away from the Earth and reached a brightness of $m \approx -4$ (Yeomans et al., 1986, p. 74; Kronk, 1999, pp. 125–127). Halley 1P/760 was ≈ 0.41 AU away from the Earth and had a brightness of $m \approx 0$ (Yeomans et al., 1986, p. 73; Kronk, 1999, pp. 116–118).

Therefore, it is possible that these three comets indirectly indicated relatively enhanced UV radiation and interaction of cometary neutral atmosphere with solar wind plasma and magnetic field in 1577, 837, and 760. Our inference is, at least, partially supported from the unaided-eye sunspot recorded on 837 December 22, visible until December 24 (XTS: v. 32, p. 834; see also e.g., Yau & Stephenson, 1988; Xu et al., 2000). Additionally, this is also consistent with the relatively high solar-wind condition around 1577 inferred from auroral reports (Silverman, 1986). Indeed, at least, no visible plasma tails have been reported from the Maunder Minimum (Zolotova et al., 2018). None of these three cases occurred in any of existing grand minima either: the Maunder Minimum (1645–1715), the Spörer Minimum (1390–1550), the Wolf Minimum (1270–1340), the Oort Minimum (1010–1070), and another un-named grand minimum (650–730) (see Usoskin et al., 2007; Usoskin, 2017; Silverman and Hayakawa, 2021). However, the brightness of plasma tail is also highly influenced with composition of the nuclei and its activities and requires us to be cautious on the cometary nuclei. This is typically the case with C/1577 V1, where we need to reserve possibility for the nuclei of C/1577 V1 to have been particularly large and have released larger amount of neutral gas. As stated previously, the increases of UV radiation and apparent brightness from the Earth form trade-offs between the distances of given comets from the Sun and the Earth. These issues may have led visibility of plasma tails of some great comets near the solar cycle minima: e.g., 1P/1986 (Halley), and C/1995 O1 (Hale–Bopp).

Moreover, the lack of apparent length and inclination of these plasma tails hindered us from quantitatively evaluating the UV radiation and the solar-wind conditions. It is also extremely difficult to derive the kink of cometary plasma tail from the textual descriptions of historical documents, without precise graphical evidence. Records with drawings or specific descriptions are required for their further quantitative measurements. For now, these records allow us to qualitatively know that these comets were fairly close to the Earth and the Sun, significantly bright, and accompanied by relative enhancements of UV radiations and interaction of cometary neutral atmosphere with solar wind plasma and magnetic field, and hence that of space climate. Further analyses on the historical cometary records and evaluations of the cometary nuclei and cometary positions would be beneficial to develop discussions on the historical space climate.

Acknowledgements. We thank Young Leaders Cultivation (YLC) program of Nagoya University and Program for Establishing a Consortium for the Development of Human Resources in Science and Technology of Japan Science and Technology (JST). This work was financially supported by JSPS Grant-in-Aid 18H01254, the 2019 and 2020 Collaborative Research Grants for YLC at Nagoya University, Mission Research on Sustainable Humanosphere from Research Institute for Sustainable Humanosphere (RISH) of Kyoto University, and the FRIS Creative Interdisciplinary Collaboration Program at Tohoku University. We thank AstroArts for providing the software of Stellar Navigator 11. We thank Joten Okamoto for his help to access materials in the NAOJ and Arika Higuchi, Yasunori Fujiwara, and Atsushi Naruko for their useful discussions. We thank SILSO and NASA JPL for providing international sunspot number index and cometary orbit parameters. We thank Biblioteca Apostolica Vaticana for allowing us to consult MS Vat.Sir.162. HH thanks Shinsuke Imada, Atsuki Shinbori, Kazumasa Iwai, and Yoshizumi Miyoshi for their helpful comments and discussions.

Author contribution

HH and YIF designed this study. HH worked on historical aspect of this article. YIF simulated the appearance of the comets. KM, YM, YK, and YC contributed interpretations of the Latin, Syriac, and Chinese texts. NN contributed to interpretations of
descriptions and directions of comet orbits. MNN contributed to the discussions on the sun-comet interactions. KI, HS, and KT supervised the astronomical aspects of this article. All the authors read and discussed the contents of this article.

Bibliography of Historical Documents

JTS: Liú Xú (eds.) Jiǔtángshū, Zhōnghuá Shújú, 1975. [critical edition in Chinese].
XTS: Ōuyáng Xú, Sòng Qī (eds.) Xīntángshū, Zhōnghuá Shújú, 1975. [critical edition in Chinese].
ZC: Zúqūn Chronicle, MS Vat.Sir.162, Biblioteca Apostolica Vaticana. [manuscript in Syriac].

References

Abe S, Kojima M, Tokumaru M, Kozuka Y, Tarumura K, Sozono T. 1997. Radio and optical observations of plasma tail of comet Hale-Bopp (1995O1). in: Proc. 30th ISAS Lunar Planet. Symp., pp. 171–174.
Ahnert P. 1943. Der Komet 1942g (Whipple-Fedtke). Zeitschrift für Astrophysik 22: 286–309.
Beer J, McCracken K, von Steiger R. 2012. Cosmogenic Radionuclides. Springer, Berlin.
Biermann L. 1951. Kometenschweife und solare Korpuskularstrahlung. Z Astrophys 29: 274–286.
Biermann L. 1963. The plasma tails of comets and the interplanetary plasma. Space Sci Rev 1: 553. https://doi.org/10.1007/bf00225271.
Clette F, Lefèvre L. 2016. The new sunspot number: assembling all corrections. Sol Phys 291: 2629–2651. https://doi.org/10.1007/s11207-016-1014-y.
Clette F, Svalgaard L, Vaquerio JM, Cliver EW. 2014. Revisiting the Sunspot Number. A 400-Year Perspective on the Solar Cycle. Space Science Reviews 186: 35–103. https://doi.org/10.1007/s11214-014-0074-2.
Cliver EW, Boriakoff V, Bounar KH. 1998. Geomagnetic activity and the solar wind during the Maunder Minimum. Geophys Res Lett 25: 897–900. https://doi.org/10.1029/98GL00500.
Cliver EW, Herbst K. 2018. Evolution of the sunspot number and solar wind B time series. Space Sci Rev 214: 56. https://doi.org/10.1007/s11214-018-0487-4.
Faierstein MM. 1999. Jewish mystical autobiographies: Book of visions and books of secret, Paulist Press, New York.
Gemina C. 1578. De prodigiosa specie, naturaq. cometae, quinobis effulsit altior lunae sedibus, insolita prorsus figure, ac magnitudine, anno 1577. plus septimanis 10. Apodeixis tum physica tum mathematica, Antwerp, Christophor Plantin.
Glassmeier K-H. 2017. Interaction of the solar wind with comets: a Rosetta perspective. Phil. Trans. R. Soc. A 375: 20160256. https://doi.org/10.1098/rsta.2016.0256.
Gringauz KL, Bezrukich VV, Ozervod VD, Rybchinskii RE. 1960. A Study of the Interplanetary Ionized Gas High-energy electrons and corpuscular radiation from the Sun by means of the three-electrode trap for charged particles on the second Soviet Cosmic Rocket. Soviet Physics Doklady 5: 361–364.
Grumel V. 1958. La chronologie. Presses Universitaires de France, Paris.
Gulyaev RA. 2015. Type I cometary tails and the solar wind at the epoch of the Maunder minimum. Astron Rep 59: 791–794.
Harrak A. 1999. The Chronicle of Zuqūn, Part III and IV: A. D. 488 – 775. Pontifical Institutes of Medieval Studies, Toronto.
Owens MJ, Lockwood M, Riley P. 2017. Global solar wind variations over the last four centuries. Sci Rep 7: 41548. https://doi.org/10.1038/srep41548.

Owens B. 2013. Long-term research: slow science. Nature 495: 300–303. https://doi.org/10.1038/495300a.

Pan Nai. 1989. History of Chinese Star Observations. Xuelin, Shanghai.

Parker EN. 1958. Dynamics of the interplanetary gas and magnetic fields. Astrophys J 128: 664–676. https://doi.org/10.1086/146579.

Parker EN. 1965. The passage of energetic charged particles through interplanetary space. Planet Space Sci 13: 9–49. https://doi.org/10.1016/0032-0633(65)90131-5.

Riley P, Lionello R, Linker JA, Cliver E, Balogh A, et al. 2015. Inferring the structure of the solar corona and inner heliosphere during the mueller minimum using global thermodynamic magnetohydrodynamic simulations. Astrophys J 802: 105. https://doi.org/10.1088/0004-637X/802/2/105.

Schröder W. 2008. Who first discovered the solar wind? Acta Geod Geophys Hu 43: 471–472. https://doi.org/10.1556/ageod.43.2008.4.8.

Seargent DAJ. 2009. The Greatest Comets in History: Broom Stars and Celestial Scimitars. Springer, New York. https://doi.org/10.1007/978-0-387-09513-4.

Samsonov AA, Bogdanova YV, Branduardi-Raymont G, Safrankova J, Nemeczek Z, Park J-S. 2019. Long-Term Variations in Solar Wind Parameters, Magnetopause Location, and Geomagnetic Activity Over the Last Five Solar Cycles. J Geophys Res Space Phys 124: 4049–4063. https://doi.org/10.1029/2018JA026355.

Silverman SM. 1986. Magnetic activity and solar wind velocity at and preceding solar minimum for the past 500 years. J Geophys Res 91(A9): 10157–10162. https://doi.org/10.1029/JA091iA09p10157.

Svalgaard L, Cliver EW. 2005. The IDV index: Its derivation and use in inferring long-term variations of the interplanetary magnetic field. J Geophys Res: Space Phys 110(A12): A12103. https://doi.org/10.1029/2005JA011203.

Silverman SM. 2008. Palestinian observations of the Comet of 1577. International Comet Quarterly 30: 123–124.

Silverman SM, Hayakawa H. 2021. The Dalton Minimum and John Dalton’s Auroral Observations. Journal of Space Weather and Space Climate. https://doi.org/10.1051/swsc/2020082.

Stephenson FR, Yau KKC, Hunger H. 1985. Records of Halley’s comet on Babylonian tablets. Nature 314: 587–592. https://doi.org/10.1038/314587a0.

Stephenson FR, Willis DM, Hayakawa H, Ebihara Y, Scott CJ, Wilkinson J, Wild MN. 2019. Do the Chinese astronomical records dated AD 776 January 12/13 describe an auroral display or a lunar halo? A critical re-examination. Sol Phys 294: 36. https://doi.org/10.1007/s11207-019-1425-7.

Svalgaard L, Cliver EW. 2007. A floor in the solar wind magnetic field. Astrophys J 661: L203–L206. https://doi.org/10.1086/518786.

Svalgaard L. 2016. Reconstruction of solar extreme ultraviolet flux 1740–2015. Sol Phys 291: 2981–3010. https://doi.org/10.1007/s11207-016-0921-2.

Tapping KF. 2013. The 10.7 cm solar radio flux (F10,7). Space Weather 11: 394–406. https://doi.org/10.1002/swe.20064.

Tapping KF, Morgan C. 2017. Changing relationships between sunspot number, total sunspot area and F10.7 in cycles 23 and 24. Sol Phys 292: 73. https://doi.org/10.1007/s11207-017-1111-6.

Usoskin IG, Solanki SK, Kovaltsov GA. 2007. Grand minima and maxima of solar activity: new observational constraints. A&A 471: 301–309. https://doi.org/10.1051/0004-6361: 20077704.

Usoskin IG, Arlt R, Asvestari E, Hawkins E, Käpylä M, et al. 2015. The Maunder minimum (1645–1715) was indeed a grand minimum: A reassessment of multiple datasets. A&A 581: A95. https://doi.org/10.1051/0004-6361/201526652.

Usoskin IG. 2017. A history of solar activity over millennia. Living Rev Sol Phys 14: 3. https://doi.org/10.1007/s41116-017-0006-9.

Vaquerio JM, Vázquez M. 2009. The Sun recorded through history: Scientific data extracted from historical documents. Springer, Berlin.

Van Noordhuyts T. 1998. The ages of two-faced Janus: The Comets of 1577 and 1618 and the decline of the Aristotelian world view in the Netherlands, Leiden, Brill.

Verscharen D, Klein KG, Maruca BA. 2019. The multi-scale nature of the solar wind. Living Rev Sol Phys 16: 5. https://doi.org/10.1007/s41116-019-0021-0.

Woldstedt F. 1844. De gradua praecisionis positionum cometae 1577, Helsingforsiae, ex officina Frenchelliana.

Wyckoff S, Weininger PA. 1976. Molecular ions in comet tails. Astrophys J 204: 604.

Xu Z, Pankamer DW, Jiang Y. 2000. East Asian Archaeoastronomy: historical records of astronomical observations of China, Japan and Korea. Gordon & Breach, Amsterdam.

Yau KKC, Stephenson FR. 1988. A revised catalogue of Far Eastern observations of sunspots (165 BC to AD 1918). Quart J Roy Astron Soc 29: 175–197.

Yeomans DK, Kiang T. 1981. The long-term motion of comet Halley. Mon Notic Roy Astron Soc 197: 633–646.

Yeomans DK, Rahe J, Freitag RS. 1986. The history of Comet Halley. J Roy Astron Soc Can 80: 62–86.

Zerbo J-L, Richardson JD. 2015. The solar wind during current and past solar minima and maxima. J Geophys Res Space Phys 120: 10250–10256. https://doi.org/10.1002/2015JA021407.

Zolotova N, Sizonenko Y, Vokhmyanin M, Veselovsky I. 2018. Indirect Solar Wind Measurements Using Archival Cometary Tail Observations. Sol Phys 293: 85. https://doi.org/10.1007/s11207-018-1307-4.

Cite this article as: Hayakawa H, Fujiy YI, Murata K, Mitsuma Y, Cheng Y, et al. 2021. Three case reports on the cometary plasma tail in the historical documents. J. Space Weather Space Clim. 11, 21. https://doi.org/10.1051/swsc/2020045.