CLTune: A Generic Auto-Tuner for OpenCL Kernels

IEEE MCSoC
September 24, 2015

Cedric Nugteren (presenter), Valeriu Codreanu
Example: convolution

Example: blur filter

Targets:
• GPUs
• Multi-core CPUs
• Other OpenCL-capable devices

\[B_{x,y} = w \cdot \sum_{i=-1}^{1} \sum_{j=-1}^{1} F_{i,j} A_{x+i,y+j} \]

example: 3 by 3 filter
OpenCL 2D Convolution

Each thread: one output pixel

Thread coarsening (2D)?

Double for-loop

Unroll loops?

Caching in local memory?

OpenCL work-group size?

Vector data-types?

$$B_{x,y} = w \cdot \sum_{i=-1}^{1} \sum_{j=-1}^{1} F_{i,j} A_{x+i,y+j}$$

```c
#define HFS (3)       // Half filter size
#define FS (HFS+HFS+1) // Filter size

__kernel void conv_reference(const int size_x, const int size_y,
                            const __global float* src,
                            __constant float* coeff,
                            __global float* dest) {

    const int tid_x = get_global_id(0);
    const int tid_y = get_global_id(1);

    float acc = 0.0f;

    // Loops over the neighbourhood
    for (int fx=-HFS; fx<=HFS; ++fx) {
        for (int fy=-HFS; fy<=HFS; ++fy) {
            const int index_x = tid_x + HFS + fx;
            const int index_y = tid_y + HFS + fy;

            // Performs the accumulation
            float coefficient = coeff[fy+HFS]*FS + (fx+HFS)];
            acc += coefficient * src[index_y*size_x + index_x];
        }
    }

    // Stores the result
    dest[tid_y*size_x + tid_x] = acc;
}
```
Large search-space:
- Not feasible to explore manually
- Perhaps not even feasible automatically?

Search-space explosion

16 \times 2 \times 16 \times 4 \times 5 = 10240

3424 configurations

filter illegal configurations
Why do we need an auto-tuner?

Large search-space:
- Not feasible to explore manually
- Perhaps not even feasible automatically?

Wide variety of devices:
- Different optimal kernels
- Even from the same vendor

User-parameter dependent:
- Examples: matrix sizes, image size, filter sizes, etc.

Vendor and Device Performance Table

Vendor and Device Name	Architecture	Compiler and SDK	Peak GFLOPS	Peak GB/s	GFLOPS per GB/s
NVIDIA Tesla K40m	Kepler	CUDA 7.0	4291	288	14.9
NVIDIA GeForce GTX480	Fermi	CUDA 5.5	1345	177	7.6
AMD Radeon HD7970	Tahiti	APP 2.9	4368	288	15.1
Intel Iris 5100	Iris	Apple 2.4.2	832	26	32.5

Example Diagram

- Caching in local memory?
- OpenCL group size?
- Thread coarsening (2D)?
- Unroll loops?
- Vector data-types?
Option 0: Full search

😊 Finds optimal solution
😊 Explores all options

3424 configurations on Tesla K40m GPU

rotated histogram

mean

performance [% of best-known]

search space
Search strategies

Option 0: Full search
- ☺ Explores arbitrary fraction
- ☹ Performance varies

Option 1: Random search

Example: 107 out of 3424 configurations (1/32th)

Colours: 3 example runs
Search strategies

Option 0: Full search
- ☺ Explores arbitrary fraction
- ☹ Performance varies
- ☹ Meta-parameter
- ☹ Local optima

Option 1: Random search

Option 2: Simulated annealing
- ☺ Explores arbitrary fraction
- ☹ Performance varies
- ☹ Meta-parameter
- ☹ Local optima

Example: 107 out of 3424 configurations (1/32th)

Colours: 3 example runs
Search strategies

Option 0: Full search
Option 1: Random search
Option 2: Simulated annealing
Option 3: Particle swarm optimisation

- Explores arbitrary fraction
- Performance varies
- Meta-parameter
- Local optima

Example: 107 out of 3424 configurations (1/32th)

Colours: 3 example runs
Line-types: 3 swarms
Search strategies evaluation

- **Average best result** of 128 searches
- **Meta-parameters** for SA and PSO

Each search: 107 out of 3424 configurations (1/32th)
Conclusions:
• Different per device
• PSO performs poorly
• Random search and SA perform well
Convolution case-study

parameter(s)	allowed values	GeForce GTX480
X_{wg}, Y_{wg}	\{8,16,32,64\}	64,8 32,8 32,8
X_{wpt}, Y_{wpt}	\{1,2,4,8\}	1,4 2,8 2,4
L	\{0,1,2\}	0 2 1
V	\{1,2,4,8\}	1 2 2
W	\{0,1\}	0 0 0
P	\{yes,no\}	yes yes yes

Conclusions:

- Different best parameters for different:
 - devices (see paper)
 - filter-sizes
- Performance equal or better than the state-of-the-art [1]

[1]: B. Van Werkhoven, J. Maassen, H.E. Bal, and F.J. Seinstra. Optimizing Convolution Operations on GPUs Using Adaptive Tiling.
GEMM case-study

Conclusions:

- Different best parameters for different devices
- Performance better than clBLAS, but not as good as assembly-tuned cuBLAS
CLTune: A Generic Auto-Tuner for OpenCL Kernels

Auto-tuning OpenCL kernels:
• Large search-space
• Wide variety of devices
• User-parameter dependent

Advanced search strategies:
• Simulated annealing
• Particle swarm optimisation

Case-studies:
• Fastest 2D convolution
• Fast matrix-multiplication

Future: machine-learning [2]
• Train a model on a small subset
• Use the model to predict the remainder

Source-code on GitHub: https://github.com/CNugteren/CLTune

[2]: T.L. Falch and A.C. Elster. Machine Learning Based Auto-tuning for Enhanced OpenCL Performance Portability.