ON THE CONSTELLATIONS OF WEIERSTRASS POINTS

FERNANDO TORRES

Abstract. We prove that the constellation of Weierstrass points characterizes the isomorphism-class of double coverings of curves of genus large enough.

1. Let X be a projective, irreducible, non-singular algebraic curve defined over an algebraically closed field k of characteristic p. Let $n \geq 1$ be an integer and C_X a canonical divisor of X. The pluricanonical linear system $|nC_X|$ defines a nondegenerate morphism

$$
\pi_n : X \to \mathbb{P}^{N(n)},
$$

where $N(1) = g - 1$, and $N(n) = (2n - 1)(g - 1) - 1$ for $n \geq 2$. To any $P \in X$ we then associate the sequence of multiplicities

$$
\{v_P(\pi_n^*(H)) : H \text{ hyperplane } \subseteq \mathbb{P}^{N(n)}\} = \{\epsilon_0(P) < \epsilon_1(P) < \ldots < \epsilon_{N(n)}(P)\}.
$$

Such a sequence is the same for all but finitely many points (cf. [F-K, III.5], [Lak, Prop.3], [S-V, §1]). These finitely many points are the so called n-Weierstrass points of X. There exists a divisor W_n on X whose support is the set of n-Weierstrass points and satisfies the property below. Let denote by $v_P(W_n)$ the coefficient of W_n in P (called the n-Weierstrass weight at P). Then

$$
\omega_n := \deg(W_n) = \sum_P v_P(W_n) = \sum_{i=0}^{N(n)} \epsilon_i(2g - 2) + n(2g - 2)(N(n) + 1),
$$

where $\epsilon_0 < \epsilon_1 < \ldots < \epsilon_{N(n)}$ denotes the sequence at a generic point ([F-K, III.5], [Lak, Thm.6], [S-V, p.6]). One has $\epsilon_i(P) \geq \epsilon_i$ for each i and for each P ([F-K, III.5], [Lak, Prop.3], [S-V, p.5]).

Let $P_1, \ldots, P_{\omega_n}$ be the n-Weierstrass points (counted with multiplicity according to their n-Weierstrass weights).

Definition. The orbit $\mathcal{O}_n(X)$ of $(\pi_n(P_1), \ldots, \pi_n(P_{\omega_n})) \in (\mathbb{P}^{N(n)})^{\omega_n}$ under the action of the product of the symmetric group S_{ω_n} and the projective linear group $PGL(N(n) + 1)$ is called the constellation of n-Weierstrass points of X. $\mathcal{O}_1(X)$ is called the constellation of Weierstrass points of X.

Let X, X_1 be curves as above of genus g. Then clearly $\mathcal{O}_n(X) = \mathcal{O}_n(X_1)$ if X is isomorphic to X_1. In this note we are interested in the converse:

$$(P) \quad \mathcal{O}_n(X) = \mathcal{O}_n(X_1) \quad \text{for some } n \geq 1 \Rightarrow X \text{ is isomorphic to } X_1?$$

This problem was studied by Pflaum [Pf] for $p = 0$. He showed that (P) is true in the following cases:

(i) If $n \geq 2$;
(ii) If $n = 1$, and $2 \leq g \leq 15$;

The author is supported by a grant from the International Atomic Energy Agency and UNESCO.
(iii) If \(n = 1 \), and \(X \) and \(X_1 \) are \(\gamma \)-hyperelliptic curves (that is double coverings of curves of genus \(\gamma \)) with \(g \geq 2 \) and \(\gamma \in \{0, 1, 2\} \).

For the cases \(n = 2, g = 2; n = 1, g = 3, 4; \) and \(n = 1, X, X_1 \) hyperelliptic curves the proof is given by a direct application of the definition above. For the remaining cases Pflaum used the following argument. By means of a lower bound on the number \(W_n \) of \(n \)-Weierstrass points, he stated (Corollary 2.6, loc. cit.) a sufficient condition to have an affirmative answer to the problem (this condition holds regardless the characteristic of the field). Define the number \(N(g, n) \) by \(N(6, 1) = 25, N(g, 1) = \operatorname{max}\{3g + 6, 4g - 4\} \) for \(g \neq 6 \), and \(N(g, n) = 4n(g - 1) \) for \(n \geq 2 \). Pflaum then showed that \((P) \) is true provided

\[
W_n > N(g, n).
\]

A way of getting a lower bound on \(W_n \) is by bounding from above \(v_p(W_n) \), and then by using \((\mathbf{I}) \). One has

\[
v_p(W_n) \geq \sum_{i=1}^{N(n)} (\epsilon_i(P) - \epsilon_i)
\]

for each \(P \), and equality holds if

\[
\det \left(\begin{pmatrix} \epsilon_i(P) \\ \epsilon_j \end{pmatrix} \right) \equiv 0 \pmod{p}
\]

([Lak, p.239], [S-V, Thm.1.5]). A curve \(X \) is called classical (with respect to the pluri-canonical linear system \(|nC_X| \) if \(\epsilon_i = i \) for each \(i \). This is the case if \(p = 0 \) or \(p > n(2g - 2) \), and here one also has the equality in \((3) \) for each \(P \) ([F-K, III.5], [S-V, Corollary 1.8], [Lak, Thm.11]).

Let \(X \) and \(X_1 \) be classical curves of genus \(g \), and suppose that we have equality in \((3) \) for each point of \(X \) and \(X_1 \). If \(n = 1 \) and \(5 \leq g \leq 15 \), Pflaum showed \((2) \) by direct computations. If \(n \geq 2 \), then Homma and Ommori ([H-O]) noticed that \(v_p(W_n) \leq g(g + 1)/2 \). Hence by means of \((\mathbf{I}) \) Pflaum obtained \((2) \). Now if \(X \) and \(X_1 \) are \(\gamma \)-hyperelliptic curves of genus large enough with \(\gamma \in \{1, 2\} \) and if \(p = 0 \) or \(p > 2g - 2 \), by using results due to Garcia ([3]) and Kato ([K]) Pflaum can bound from above \(v_p(W_1(P)) \) and obtain \((2) \).

The aim of this note is to extend Pflaum’s result (iii) above to \(\gamma \)-hyperelliptic curves of genus large enough \((\gamma \geq 3) \) and whenever \(p = 0 \) or \(p > 2g - 2 \). We will show that such curves satisfy \((2) \) and to do that we use some results concerning Weierstrass weights in [101] and [102]. We show

Theorem. Let \(X \) and \(X_1 \) be \(\gamma \)-hyperelliptic curves of genus \(g \geq 9\gamma - 17 + \frac{43\gamma - 20}{2\gamma + \gamma - 1} \) with \(\gamma \geq 3 \). Assume that \(p = 0 \) or \(p > 2g - 2 \). Then \(X \) and \(X_1 \) are isomorphic provided \(\mathcal{O}_1(X) = \mathcal{O}_1(X_1) \).

In general one cannot expect to fulfil condition \((2) \) for \(0 < p \leq 2g - 2 \), because in this case there exist curves with small number of Weierstrass points. For instance there exist curves with just one Weierstrass point (see [Lak, §6]).

2. Let

\[
\pi : X \to \tilde{X}
\]

be a double covering of curves of genus \(g \) and \(\gamma \geq 3 \) respectively. Let \(P \in X \), and set \(w(P) := v_p(W_1) \). The key point of the proof is the fact that we can bound from above \(w(P) \) by considering the following three cases:
(I) \(P\) is a ramified point of \(\pi\) such that \(\pi(P)\) is a Weierstrass point of \(\tilde{X}\).

(II) \(P\) is a ramified point of \(\pi\) such that \(\pi(P)\) is not a Weierstrass point of \(\tilde{X}\).

(III) \(P\) is not a ramified point of \(\pi\).

Lemma. Let \(X\) be a \(\gamma\)-hyperelliptic curve of genus \(g\) \((\gamma \geq 3)\). Let assume that \(p = 0\) or \(p > 2g - 2\), and let \(P \in X\).

(i) If \(P\) is as in (I), then
\[
w(P) \leq c_1 := \frac{(g - 2\gamma)}{2} + 2\gamma^2.
\]

(ii) If \(P\) is as in (II), then
\[
w(P) \leq c_2 := \frac{(g - 2\gamma)}{2} + 4\gamma - 4.
\]

(iii) If \(P\) is as in (III) and \(g \geq 2\gamma\), then
\[
w(P) \leq c_3 := \max\{2(\gamma - 1)g - (\gamma - 1)(2\gamma + 1), 2\gamma g - 2\gamma(4\gamma - 1)\}.
\]

3. **Proof of the Theorem.** Since \(g \geq 2\gamma + 2\), every ramified point of \(\pi\) is a Weierstrass point (see §4). Let \(t\) denote the number of points of type (I). Then by the lemma we have:
\[
deg(W_1) = g^3 - g \leq tc_1 + (2g - 4\gamma + 2 - t)c_2 + (W_1 - 2g + 4\gamma - 2)c_3
\]
\[
= (c_1 - c_2)t + (2g - 4\gamma + 2)c_2 + (W_1 - 2g + 4\gamma - 2)c_3.
\]

Then by noticing that \(t \leq \min\{\gamma^3 - \gamma, 2g - 4\gamma + 2\}\), we find
\[
(W_1 - 2g + 4\gamma - 2)c_3 \geq 6\gamma g^2 - 16\gamma^2 g + 16\gamma^3 - 4\gamma^2 - 2\gamma.
\]

If \(g \geq 6\gamma^2 - \gamma + 1\), then \(c_3 = 2\gamma(g - 4\gamma + 1)\) and from (I) we get
\[
W_1 \geq 5g - 1 + \frac{24\gamma^2 - 10\gamma - 4}{g - 4\gamma + 1} > N(g, 1).
\]

Now suppose that \(c_3 = (2\gamma - 1)g - (2\gamma^2 - \gamma - 1)\). From (I) we find that \(W_1 > N(g, 1)\) if
\[
(2\gamma - 1)(2\gamma + 2)g - (36\gamma^3 - 50\gamma^2 + 34\gamma - 6) + \frac{24\gamma^5 - 40\gamma^4 + 22\gamma^3 + 4\gamma}{(2\gamma - 1)g - (2\gamma^2 - \gamma - 1)} > 0.
\]

This is satisfied provided \(g \geq 9\gamma - 17 + \frac{43\gamma - 20}{2\gamma^2 + \gamma - 1}\).

4. **Proof of the Lemma.** First we recall some properties of Weierstrass semigroups.

Let \(P \in X\). In the case of 1-Weierstrass points, the set
\[
G(P) := \{\epsilon_i(P) + 1 : 0 \leq i \leq g - 1\}
\]
is the complement (or the gaps) of a semigroup \(H(P)\), the so called Weierstrass semigroup at \(P\). \(H(P)\) looks like
\[
H(P) = \{0 < m_1(P) < \ldots < m_g(P) = 2g < 2g + 1 < \ldots\},
\]
and it is satisfied the following property (\cite{E}, \cite{Oliv}, Thm. 1.1(ii)). Let \(\ell_i(P) := \epsilon_i(P) + 1\).

Then
\[
\ell_i(P) \leq 2i - 2, \quad \text{for} \quad i = 2, \ldots, g - 1, \quad \ell_g(P) \leq 2g - 1,
\]
provided \(m_1(P) \geq 3 \). Then if \(X \) is classical and if we have equality in (3), \(w(P) \) can be computed by the formula

\[
w(P) = \frac{3g^2 + g}{2} - \sum_{m \in H(P), m \leq 2g} m.
\]

Now in case of \(\gamma \)-hyperelliptic curves, \(P \) a ramified point of \(\pi \) and \(p > 2 \), \(H(P) \) fulfil the following properties ([To1, Lemma 3.4]):

(A) \(\gamma = \#\{\ell \in G(P) : \ell \text{ even}\} \).

(B) \(H(\pi(P)) = \{\frac{h}{2} : h \in H(P), h \text{ even}\} \).

(Note that property (B) implies \(h \leq 2\gamma + 2 \) for \(h \in H(P), h \text{ even} \). In particular if \(X \) is classical and \(g \geq 2\gamma + 2 \), then each ramified point of \(\pi \) is a Weierstrass point of \(X \).)

Proof of (i). Follows from property (A) above and [To2, Lemma 3.1.2(ii)].

Proof of (ii). Let \(P \in X \) be as in (II). Since \(p = 0 \) or \(p > 2g - 2 > 2\gamma - 2 \), then \(\tilde{X} \) is also a classical curve. Thus from properties (A) and (B) we have that all the even positive non-gaps of \(H \) belong to the following set:

\[
\{2\gamma + 2i : i \in \{1, \ldots, g - \gamma\}\}.
\]

Hence

\[
(*) \quad \sum_{h \in H(P), h \text{ even}, h \leq 2g} h = g^2 + g - \gamma^2 - \gamma.
\]

Let denote by \(u_\gamma < \ldots < u_1 \) the \(\gamma \) odd non-gaps at \(P \) in \([1, 2g - 1]\). According to (3) and (\(\ast \)), an upper bound for \(w(P) \) corresponds to a lower bound for \(\sum_{i=1}^{\gamma} u_i \). By [To1, Lemma 2.1], \(u_\gamma \geq 2g - 4\gamma + 1 \). If \(u_\gamma \geq 2g - 2\gamma - 1 \), any odd number in \([2g - 2\gamma + 1, 2g - 1]\) could be an odd non-gap at \(P \). Hence in this case we have

\[
\sum_{i=1}^{\gamma} u_i \geq 2\gamma g - \gamma^2 - 2\gamma.
\]

If \(u_\gamma \leq 2g - 2\gamma - 3 \) (then \(\gamma \geq 2 \)), it is easy to see that the minimum for \(\sum_{i=1}^{\gamma} u_i \) is reached for the sequence \(2g - (2i + 5), 2g - 1, i = 1, \ldots, \gamma - 1 \). Hence in this case we have

\[
\sum_{i=1}^{\gamma} u_\gamma \geq 2\gamma g - \gamma^2 - 4\gamma + 4.
\]

Then since \(\gamma > 1 \) from (\(\ast \)), the last inequality and (3) we obtain (ii).

Proof of (iii). Let \(P \in X \) and suppose that \(P \) is not a ramified point of \(\pi \).

Claim. Let \(h \) be a non-gap at \(P \). Then \(h \geq g - 2\gamma + 1 \).

Remark. Let \(f \in k(X) \) and denote by \(O(f) \) the degree of \(f \). Then \(O(f) \) is even provided \(O(f) < g + 1 - 2\gamma \) and \(g \geq 4\gamma + 2 \). For \(p = 0 \) this is a result due to Farkas ([4, Thm.2(iii)]) (see also [F-K, Thm.V.1.9], Accola [A, Lemma 4]) and in general is due to Stichtenoth [St, Satz 2]. The claim follows from this result but with an extra hypothesis on \(g \). We will see that in the case that \(f \) has just one pole one can avoid such a hypothesis. The claim is a particular case of [To1, Corollary 3.3(ii)], and for the sake of completeness we state a proof of it.
Proof. (Claim.) Suppose that \(h < g - 2\gamma + 1 \). Consider \(K' := k(\tilde{X}).k(f) \), with \(\text{div}_\infty(f) = hP \). Then by Castelnuovo’s inequality concerning subfields of \(k(\tilde{X}) \) (see [C], [Sti1]) we must have \(K' = k(\tilde{X}) \). Thus there exists \(\tilde{f} \in K(\tilde{X}) \) such that \(f = \tilde{f} \circ \pi \) and we would have that \(P \) is a totally ramified point of \(\pi \), a contradiction.

Let \(g \geq 2\gamma \). We have

\[
(7) \quad w(P) = \sum_{i=0}^{g-2\gamma+1} (\ell - i),
\]

and then we consider two cases:

(a) There exists \(\ell \in G(P) \cap [g-2\gamma+1, g] \).

(b) \([g-2\gamma+1, g] \cap \mathbb{N} \subseteq H(P)\).

In the first case we have \(\ell_{g-2\gamma+1} = g - 2\gamma + j \) with \(j \in \{1, \ldots, \gamma\} \). Then from (7) we get

\[
w(P) \leq (2\gamma - 1) + \sum_{i=g-2\gamma+2}^{g-1} (i - 2) + (g - 1) = (2\gamma - 1)g - (\gamma - 1)(2\gamma + 1).
\]

In the second case, due to the semigroup property of \(H(P) \), \(w(P) \) reaches its maximum whenever \(G(P) = \{1, \ldots, g-2\gamma, 2g-6\gamma+2, \ldots, 2g-4\gamma+1\} \). Then from (7) we find

\[
w(P) \leq 2\gamma g - 2\gamma(4\gamma - 1).
\]

This finish the proof of the lemma.

References

[A] Accola, R.D.M.: *Strongly branched coverings of closed Riemann surfaces*, Proc. Amer. Math. Soc. 26 (1970), 315–322.

[B] Buchweitz, R.O.: “Über deformationen monomialer kurvensingularitäten und Weierstrasspunkte auf Riemannschen flächen”, Thesis, Hannover 1976.

[C] Castelnuovo, G.: *Sulle serie algebriche di gruppi di punti appartenenti ad una curva algebrica*, Rendiconti della Reale Accademia dei Lincei (5) 15 (1906), 337–344. Reprinted in Memoria scelta, Zanichelli, Bologna, 509–517, 1937.

[F] Farkas, H.M.: *Remarks on automorphisms of compact Riemann surfaces*, Ann. of Math. Stud. 78 (1974), 121–144.

[F-K] Farkas, H.M.; Kra, I.: “Riemann surfaces”, Grad. Texts in Math. 71 (second edition) Springer-Verlag 1992.

[G] Garcia, A.: *Weights of Weierstrass points in double covering of curves of genus one or two*, Manuscripta Math. 55 (1986), 419–432.

[H-O] Homma, M.; Ommori, S.: *On the weight of higher order Weierstrass points*, Tsukuba J. Math. 8 (1984), 189–198.

[K] Kato, T.: *Non-hyperelliptic Weierstrass points of maximal weight*, Math. Ann. 239, (1979), 141–147.

[Lak] Laksov, D.: *Weierstrass points on curves*, Astérisque 87-88. (Société Mathématique de France, Paris, 1981), 221–247.

[Oliv] Oliveira, G.: *Weierstrass semigroups and the canonical ideal of non–trigonal curves*, Manuscripta Math. 71 (1991), 431–450.

[Pf] Pfalz, U.: *The canonical constellations of k-Weierstrass points*, Manuscripta Math. 59 (1987), 21–34.

[St] Stichtenoth, H.: *s-Erweiterungen algebraischer Funktionenkörper*, Arch. Math. 43 (1984), 27–31.

[St1] Stichtenoth, H.: *Die Ungleichung von Castelnuovo*, J. Reine Angew. Math. 348 (1984), 197–202.
[S-V] Stöhr, K.O.; Voloch, J.F.: *Weierstrass points and curves over finite fields*, Proc. London Math. Soc. (3), **52** (1986), 1–19.

[To1] Torres, F.: *On certain N-sheeted coverings of curves and numerical semigroups which cannot be realized as Weierstrass semigroups*, Comm. Algebra **23** (11) (1995), 4211–4228.

[To2] Torres, F.: *Remarks on numerical semigroups*, alg-geo e-print 9512012.

ICTP, Mathematics Section, P.O. Box 586, 34100, Trieste - Italy

E-mail address: feto@ictp.trieste.it