A Review on Electrical Discharge Coating (EDC) and its Multi-Optimization Techniques

Jagadeeswara Rao Maddu¹, Buschaiah K¹, Riyaaz Uddien Shaik²
¹Department of Mechanical Engineering, University College of Engineering, Osmania University, Hyderabad, India
²Department of Astronautical, Energy and Environment, University of Rome “La Sapienza”, Rome, Italy.
E-mail: jagamuddu@osmania.ac.in

Abstract. This paper, primarily, enlightens the properties of the Electrical Discharge Coatings in the view of hardness. Coatings that withstand extremely high temperature, chemical corrosion, stress and other hostile environments are required in industries as functional surfaces. This type of coatings has already applied for purposes such as biomedical, aerospace, automobile etc. Then, secondarily, brings out the different types of optimization techniques and machine learning models used in the field of electrical discharge machining/coating.

Keywords: Coatings; CVD; EDC; Electro-Plating, Optimization Techniques; PVD.

1. Introduction
Improvisation and modification of material surface or workpieces with respect to mechanical, physical and biochemical properties could be carried out by hard coatings [1]–[4]. Surface modification with hard coatings have enhanced the resistance to corrosion, erosion and abrasive wear. In the field of biomedical, enhancement of biomechanical and morphological compatibilities between the already available and new receiving body tissues for promoting osteointegration, surface modification plays a vital role [2], [5]. Hard coatings have strong applications in dental and orthopaedics and previously, this was carried by carburising, electroplating and plasma spraying. Figure 1 explains the different types of coating procedure viz., PVD, CVD, electroplating, thermal spraying and EDC.

Recently, Electro-Discharge Coatings (EDC) have led to renewed interest which modifies the surfaces by electrical discharge energy. In EDC, an extremely high temperature of around 10000 degrees is used to melt the electrode material and deposit it on the surface of workpiece. This process will also be carried out on the Electrical Discharge Machine (EDM) as shown in Figure 2. In the Figure 2, three types of EDM’s, normal EDM, powder mixed in dielectric medium EDM and powder metallurgy electrode EDM are shown.

Like EDM, is used for brittle conductive and hard materials since it can melt any conductive materials regardless of its hardness without being in contact, EDC can also coat on the workpiece. Within a constant spark in minute gap between tool electrode and workpiece material, in a short span of time, a series of electrical sparks or discharges occur [27]. In this paper, EDM to EDC, Types of Electrical Discharge Machines used for EDC and techniques involved in achieving the higher thickness and list of optimization techniques are covered.
2. Review of EDC

Figure 3 shows the processes involved in ED Machining and ED Coating. In the same, material removal and material deposition can be carried out by fixing the suitable parameters. For EDC, Reverse polarity (electrode positive terminal) is more suitable than straight polarity (electrode negative terminal). Surface roughness, layer thickness and Material Deposition Rate can be controlled by peak current and pulse-on time [28], [29].

Different Types of Electrical discharge machine (EDM) for Electrical discharge coating (EDC). Figure 4 shows the different types of EDM machines, necessary process parameters and performance parameters.

But very few are only used for coating which are explained in Figure 5.

3. Case Studies

In the first case, Titanium alloy (Ti6Al4V) is being used a workpiece and brass as electrode. In the dielectric medium of de-ionised water, molybdenum disulphide (MoS2) powder of micron level is mixed and coated with micro-EDC[30], [31]. SEM and EDS image are shown in Figure 6. Dielectric fluid mixed powder can enhance the coating quality and reduce defect such as micro-holes. Significant effect can be observed by increase in concentration and particle size of the powder used and it can reduce environmental pollution problems by reducing dielectric fluid.

In the second case, Ti6Al4V workpiece is being used to test the micro-electro discharge coating using WS2 and Brass PM electrode. Figure 7 shows the SEM and EDS of the coating obtained. Layer thickness of the coating and tool wear rate depends upon the compact load applied while manufacturing PM electrode.
Figure 2. Different Types of EDM, (i) EDM, (ii) powder mixed EDC and, (iii) powder metallurgy electrode EDC [10, 11, 19, 20, 21, 22, 23, 24, 26].

Figure 3. EDM process Vs EDC process.
Figure 4. Procedure and process parameters involved in EDMs.

Figure 5. Types of EDC being in use.
Figure 6. SEM and EDX of Ti6Al4V workpiece in powder mixed dielectric medium [30].

Figure 7. SEM and XRD of Ti6Al4V with PM electrode [32].

4. Optimization Techniques

Techniques used by the researchers in this field for optimizing the parameters of Electrical Discharge Machines is been explained below. Techniques summarized could be useful for the researchers working in this field of EDC.

T1. Taguchi Experimental Optimization [33,34,35,36]
T2. Response Surface Methodology [30,37,38]
T3. Grey Relational Analysis [38,39]
T4. TOPSIS [38,40]
T5. Neural Network [38,41]
T6. Genetic Algorithm [42,43]
T7. Artificial Bee Colony Optimization [44]
T8. Finite Element Method [47,48]
T9. Simulated Annealing [45,46]
T10. Ant Colony Optimization Algorithm [49,50]
T11. Particle Swarm Optimization [50,51]
T12. Fuzzy-Optimization [51,52]
T13. Sheep Flock Heridity Algorithm [42,45,53]

Former 1 to 4 technics are most often used by the researchers because of its simplicity so are
they not considered here for explanation. Among the remaining techniques, procedures of few are explained in the figure as flowcharts. For in-depth knowledge about the above-mentioned techniques, refer to the citations.

4.1. Neural Network (NN)
NN works by learning the relation between input and output parameters. It has two types of propagations: feed forward and backward propagation methods in artificial neural networks. But only disadvantage of using neural network is it completely depends upon the amount of data. In order to have better accuracy, large amount of data is required. In the field of EDM, around 100 experiments were performed to apply neural networks.

4.2. Genetic Algorithm (GA)
GA developed on the foundation of probability that searches in a parallel and random way via operations of crossover, mutation and reproduction. ‘Survival of the fittest’ method is being used to preserve and control a population of solutions and implement them later for answers. It has the ability to solve both linear and non-linear problems and basically it was inspired by the Darwin’s concept of evolution.

4.3. ABC Optimization
ABC optimization is encouraged by the forage behaviour of honey bees. It works by two groups: un-looker bees and employed bees. In which, skilled bees will have an idea about the food source (nectar position) and food standards (nectar quantity). When unemployed bees receive information about food source, they turn into employed by luring the food from employed. So, always, unemployed bees are proportional to the employed bees. This concept is being used to solve continuous optimization problems.

4.4. Finite Element Method (FEM)
FEM is one of the most used techniques in the field of mechanical design to solve engineering problems. In this area of EDM/C, it could be used to solve structural issues occurring the process of material removal or deposition. ANSYS is the most used software for FEM and the accuracy of the solution depends upon the mesh shape and size. Meshing tactics are important to obtain high accuracy.

4.5. Simulated Annealing (SA)
As the name suggests, it works based on the cooling phenomenon of molten metal and it has evolutionary algorithms for searching the global optimum.

4.6. Fuzzy Logic (FL)
Any reasoning method of human within the linguistic terms helps to enable any user to model any reasoning method. Within the fuzzy set, the fuzzy values are set by the elementary functions that outline the degrees of elements of a selected object. Collection of the semantic statements characterizes the fuzzy model made with fuzzy rules to build up the link between inputs and outputs. Specific fuzzy system contains different number of fuzzy standards and fuzzy rules involved with every input variable. IF-THEN rules are accustomed for making the fuzzy logic. Single scalar terms, de-fuzzification method converts scalar quantity from the fuzzy quantity for output process [24].
4.7. *Sheep Flock Heridity Algorithm (SFHA)*

As the name suggests, sheep live within their own flock under the manage of shepherds. Hence, the inheritance of genetics develops within the flock only. Certain characteristics will grow only within the flock by heredity and the sheep with large fitness characteristics to their surroundings will breed in the flock. Sheep in neighbouring flock can be inherited to the sheep in additional flock by mixing of flocks. After the mixing of flocks, the one with superior characteristics to the field surroundings, breeds most. In contrast with this process is natural evolution which correspondence to genetic operations. This again has two types: (i) sub-chromosome level genetic operation and (ii) chromosome (global) level genetic operation.

5. **Conclusions**

Electrical Discharge Coating (EDC) is the recent development on the Electric Discharge machine for surface modification. In this paper, evolution of EDC from the EDM is explained along with the different types of ED machines available. Methodologies, parameters and characteristics of various EDC processes were discussed. Explanation of EDC in comparison with other available hard coating procedures is given. Various types of optimization techniques used in the field of EDM for optimizing input parameters w.r.t to required output performance parameters are listed and discussed.

References

[1] P. J. Liew, C. Y. Yap, J. Wang, T. Zhou, and J. Yan, *Surface modification and functionalization by electrical discharge coating: a comprehensive review*, Int. J. Extrem. Manuf., vol. 2, no. 1, p. 012004, Feb. 2020, doi: 10.1088/2631-7990/ab7332.

[2] Ching Yee Yap Pay Jun Liew Jiawang Yan *Surface modification of tungsten carbide cobalt by electrical discharge coating with quarry dust suspension*. Int J Adv Manuf Technol 111, 2105–2116 (2020). https://doi.org/10.1007/s00170-020-06268-9

[3] N. Ahmed et al., *Formation of thick electrical discharge coatings*, J. Mater. Process. Technol., vol. 285, Nov. 2020, doi: 10.1016/j.jmatprotec.2020.116801.

[4] A. F. Mansor, A. I. Azmi, M. Z. M. Zain, and R. Jamaluddin, *Parametric evaluation of electrical discharge coatings on nickel-titanium shape memory alloy in deionized water*, Heliyon, vol. 6, no. 8, Aug. 2020, doi: 10.1016/j.heliyon.2020.e04812.

[5] B. E. J. Lee, S. Ho, G. Mestres, M. Karlsson, P. Koshy, and K. Grand, *Dual-topography electrical discharge machining of titanium to improve biocompatibility*, Surface & Coatings Technology, 2016, doi: 10.1016/j.surfcoat.2016.04.024.

[6] S. J. Algodi, J. W. Murray, M. W. Fay, A. T. Clare, and P. D. Brown, *Electrical discharge coating of nanostructured TiC-Fe cermets on 304 stainless steel*, Surf. Coatings Technol., vol. 307, pp. 639–649, Dec. 2016, doi: 10.1016/j.surfcoat.2016.09.062.

[7] R. Tyagi, K. Darmaimgam, V. S. Patel, A. K. Das, and A. Mandal, *Deposition of WS 2 and Cu nanopowder coating using EDC process and its analysis*, materialstoday proceedings., Volume 18, Part 7, Pages 2201-5564 (2019)

[8] V. D. Bui, J. W. Mwangi, A. K. Meinshausen, A. J. Mueller, J. Bertrand, and A. Schubert, *Antibacterial coating of Ti-6Al-4V surfaces using silver nano-powder mixed electrical discharge machining*, Surf. Coatings Technol., vol. 383, Feb. 2020, doi: 10.1016/j.surfcoat.2019.125254.

[9] P. Jammenee and A. Muttamara, *Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension*, Appl. Surf. Sci., vol. 258, no. 19, pp. 7255–7265, Jul. 2012, doi: 10.1016/j.apsusc.2012.03.054.

[10] A. A. Bruzzone, of EDM, vol. 48, pp. 123–126, 1999.

[11] E. Ulmann and D. Carlos, *Dressing of graphite electrodes for EDM of seal slots in nickel-base alloy*, Procedia CIRP, vol. 42, no. Isem Xviii, pp. 328–333, 2016, doi: 10.1016/j.procir.2016.02.176.

[12] X. Yue and X. Yang, Molecular dynamics simulation of material removal process and mechanism of EDM using a two-temperature model, Appl. Surf. Sci., p. 147009, 2020, doi: 10.1016/j.apsusc.2020.147009.

[13] Rahul, Mishra, D.K., Datta, S. et al.Effects of Tool Electrode on EDM Performance of Ti-6Al-4V. Silicon 10, 2263–2277 (2018). https://doi.org/10.1007/s12633-018-9760-0

[14] H. K. Dave, S. Kumar, V. J. Mathai, K. P. Desai, and H. K. Raval, *Application of Artificial Neural Network for predicting multiple responses during EDM process 3 rd International Conference on Production
and Industrial Engineering\textit{CPIE-2013} Application of Artificial Neural Network for predicting multiple responses during, no. March, 2013.

[15] U. Maradia, M. Boccadoro, J. Stimimann, I. Beltrami, F. Kuster, and K. Wegener, \textit{Die-sink EDM in meso-micro machining}, vol. 1, pp. 166–171, 2012, doi: 10.1016/j.procir.2012.04.029.

[16] M Jagadeeswara Rao, Ryaaz Uddien Shaik, K Buschaiah \textit{Electrical Discharge Machining: A Comparative Surface Integrity Study for Incoloy-800 Materials Today: Proceedings Volume 22} Pages 3286–3296

[17] A. A. A. Alduroobi, A. M. Ubaid, M. A. Tawfiq, and R. R. Elias, \textit{Wire EDM process optimization for machining AISI 1045 steel by use of Taguchi method, artificial neural network and analysis of variances, Int. J. Syst. Assur. Eng. Manag.}, 2020, doi: 10.1007/s13198-020-00990-z.

[18] R. Nadda, C. K. Nirala, and P. Saha, \textit{Tool Wear Compensation in Micro-EDM}. Springer Singapore, 2019.

[19] S. Narayan, S. Kumar, and N. Chandra, \textit{ScienceDirect Multi-objective Optimization of EDM Process with Performance Appraisal of GA based Algorithms in Neural Network Environment, Mater. Today Proc.}, vol. 18, pp. 3982–3997, 2019, doi: 10.1016/j.matpr.2019.07.340.

[20] M. Bhaumik and K. Maity, \textit{Effect of Electrode Materials on Different EDM Aspects of Titanium Alloy, Silicon https://doi.org/10.1007/s12633-018-9844-x pp. 187–196, 2019.}

[21] A. Kumar, S. Siba, and S. Mahapatra, \textit{Surface Characteristics of EDMed Titanium Alloy and AISI 1040 Steel Workpieces Using Rapid Tool Electrode, Arab. J. Sci. Eng.}, vol. 45, no. 2, pp. 699–718, 2020, doi: 10.1007/s13369-019-04144-7.

[22] N. A. Mufti, M. Rafaqat, M. Q. Saleem, A. Hussain, and A. M. Al-Ahamri, \textit{Improving the performance of EDM through relief-angled tool designs, Appl. Sci.}, vol. 10, no. 7, 2020, doi: 10.3390/app10072432.

[23] J. E. A. Qudeiri, A. Zaiout, A. H. I. Mourad, M. H. Abidi, and A. Elkaseer, \textit{Electrical Discharge Machining: A Comparative}

[24] M. Al-Amin, A. M. Abdul Rani, A. A. Abdu Aliyu, M. A. Abdul Razak, S. Hastuty, and M. G. Bryant, \textit{Improving}

[25] P. D. Machkale and B. M. Dabade, \textit{Experimental investigation of tungsten and copper carbide coating on AISI 1020 steel using electro discharge coating process, in Materials Today: Proceedings, 2019, vol. 26, pp. 2915–2920, doi: 10.1016/j.matpr.2020.02.601.}

[26] N. Beri, S. Maheshwari, C. Sharma, and A. Kumar, \textit{Technological advancement in electrical discharge machining with powder metallurgy processed electrodes: A review, Mater. Manuf. Process., vol. 25, no. 10, pp. 1186–1197, 2010, doi: 10.1080/10426914.2010.512647.}

[27] A. Descouedres, \textit{Characterization of Electrical Discharge Machining Plasmas, vol. 3542, p. 137, 2006, doi: 10.5075/epfl-thesis-3542.}

[28] A. Banu and M. Y. Ali, \textit{Electrical Discharge Machining (EDM): A Review Electrical Discharge Machining (EDM): A Review, no. November, pp. 2–10, 2016, doi: 10.26776/jemmn.01.01.2016.02.}

[29] S. K. Choudhary and R. S. Jadoun, \textit{Latest Research Trend of optimization Techniques in Electric Discharge Machining (EDM): Review Article, no. March 2014, 2016.}

[30] A. Kumar, V. Kumar, and J. Kumar, \textit{Microstructure analysis and material transformation of pure titanium and tool wear surface after wire electric discharge machining process, Mach. Sci. Technol., vol. 18, no. 1, 2015, doi: 10.1051/mfreview/2015023.}
[38] S. M. Towhidul Islam Nayim, Muhammed Zahid Hasan, Anbesh Janwal, Sunil Thakur, and Sumit Gupta, Recent trends & developments in optimization and modeling of electro-discharge machining using modern techniques: A review, AIP Conference Proceedings 2148, 030051 (2019); https://doi.org/10.1063/1.5123973

[39] L. Raju and S. S. Hiremath, A State-of-the-art Review on Micro Electro-Discharge Machining, Procedia Technol., vol. 25, no. Raerest, pp. 1281–1288, 2016, doi: 10.1016/j.protcy.2016.08.222.

[40] A. Y. Joshi and A. Y. Joshi, A systematic review on powder mixed electrical discharge machining, Heliyon, vol.5, no. 12, p. e02963, 2019, doi: 10.1016/j.heliyon.2019.e02963.

[41] S. Velpula, K. Eswaraiah, and S. Chandramouli, ScienceDirect Prediction Of Electric Discharge Machining Process Parameters Using Artificial Neural Network, Mater. Today Proc., vol. 18, pp. 2909–2916, 2019, doi: 10.1016/j.matpr.2019.07.160.

[42] P. Dharmin, M. R. Mihir, S. P. B. C. Khatri, and P. Janak, Optimization Techniques used in Electric Discharge Machining – A Technical Review, no. November, 2015, doi: 10.13140/RG.2.1.2245.0644.

[43] Zubair Butt1, Riffat Asim Pasha, Faisal Qayyum, Zeeshan Anjum, Nasir Ahmad, Hassan Elahi, Generation of electrical energy using lead zirconate titanate (PZT-5A) piezoelectric material: Analytical, numerical and experimental verifications Journal of Mechanical Science and Technology vol. 30(8):3553-3558 DOI: 10.1007s12206-016-0715-3

[44] N. Kumar, N. Mandal, and A. K. Das, Micro-machining through electrochemical discharge processes: a review, Materials and Manufacturing Processes, vol.35, no. 4. Taylor and Francis Inc., pp. 363–404, Mar. 11, 2020, doi: 10.1080/10426914.2020.1711922.

[45] G. Ugrasen, H. V Ravindra, G. V. N. Prakash, and R. Keshavamurthy, Process optimization and estimation of machining performances using artificial neural network in wire EDM, MSPRO, vol.6, no. Icmpc, pp. 1752–1760, 2014, doi: 10.1016/j.mspro.2014.07.205.

[46] Ali Safarani, Masoud Azadi Moghaddam, Farhad Kolahan Optimization of backpropagation neural network-based models in EDM process using particle swarm optimization and simulatedannealing algorithms, Journal of the Brazilian Society of Mechanical Sciences and Engineering (2020) 42:73 https://doi.org/10.1007/s40430-019-2149-1

[47] A. Gholipoor, M. R. Shabgard, and M. Mohammadpourfard, A novel approach to plasma channel radius determination and numerical modeling of electrical discharge machining process, J. Brazilian Soc. Mech. Sci. Eng., vol.42, no. 4, pp. 1–10, 2020, doi: 10.1007/s40430-020-2244-3.

[48] H. Wu, J. Ma, Q. Meng, M. P. Jahan, and F. Alavi, Numerical modeling of electrical discharge machining of Ti-6Al-4V, Procedia Manuf., vol. 26, pp. 359–371, 2018, doi: 10.1016/j.promfg.2018.07.044.

[49] R. Musa, J. Arnaout, and H. Jung, Computers & Industrial Engineering Ant colony optimization algorithm to solve for the transportation problem of cross-docking network, Comput. Ind. Eng., vol. 59, no. 1, pp. 85–92, 2010, doi: 10.1016/j.cie.2010.03.002.

[50] R. V. Rao and V. D. Kalyankar, Optimization of modern machining processes using advanced optimization techniques: A review, Int. J. Adv. Manuf. Technol., vol. 73, no. 5–8, pp. 1159–1188, 2014, doi: 10.1007/s00170-014-5894-4.

[51] Fan Liu and Meng Joo Er (2010). Development of Fuzzy Neural Networks: Current Framework and Trends, New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems, Meng Joo Er (Ed.), ISBN: 978-953-307-213-5, InTech,

[52] H. Fazlollahtabar and H. Gholiadeh, Fuzzy possibility regression integrated with fuzzy adaptive neural network for predicting and optimizing electrical discharge machining parameters, Comput. Ind. Eng., vol. 140, Feb. 2020, doi: 10.1016/j.cie.2019.106225.

[53] P. Dharmin, M. R. Mihir, S. P. B. C. Khatri, and P. Janak, Optimization Techniques used in Electric Discharge Machining – A Technical Review,” vol. 3, no. 02, pp. 424–428, 2015