Data on biodistribution and dose calculation of $^{99m}$Tc-Dimercaptosuccinic acid in pediatric patients using a hybrid planar/single emission computed tomography method

Mahmoud Bagheri$^{a,b,*}$, Masoumeh DorriGiv$^c$, Marjaneh Hejazi$^{a,b}$, Mohammad Reza Fouladi$^{a,b}$, Ali Asghar Parach$^d,^{* *}$

$^a$ Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
$^b$ Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Sina Campus, Tehran, Iran
$^c$ Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
$^d$ Department of Medical Physics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

**ABSTRACT**

The biodistribution and absorbed dose data from the administration of radiopharmaceuticals are necessary to analyze the risk-benefit of the procedure. It has particular significance in children, as their metabolism is very different from adults. $^{99m}$Tc-DMSA scintigraphy is the golden standard imaging technique for the assessment of renal involvement in febrile urinary tract infection and renal sequel. However, $^{99m}$Tc-DMSA biodistribution data for children are scarce and usually outdated which have been obtained by older methods. In this data article, we analysed the biodistribution of $^{99m}$Tc-DMSA in 12 pediatric patients using planar/SPECT method. In addition, the radiation absorbed doses were calculated by MIRDOS software.

---

* First corresponding author at: Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.
** Corresponding author.
E-mail addresses: Mahmoudbagheri68@gmail.com (M. Bagheri), aliparach@ssu.ac.ir (A.A. Parach).
Specifications Table

| Subject | Nuclear medicine, clinical research |
|---------|-------------------------------------|
| Specific subject area | Biodistribution analysis and absorbed dose calculation of $^{99m}$Tc-DMSA (Technetium-99m-dimercaptosuccinic acid) in pediatric patients. |
| Type of data | Tables, Figures |
| How data were acquired | Direct collection of tissues from pediatric patients at different time-points using planar, SPECT (single emission computed tomography), and MRI (magnetic resonance imaging). |
| Data format | Raw, Analyzed. |
| Parameters for data collection | Each patient underwent 3 to 5 planar scans, and also single SPECT scan after $^{99m}$Tc-DMSA injection with a dual-head gamma camera system (a parallel hole and LEHR [low energy high resolution] collimator). In addition, each patient imaged by MRI before injection. |
| Description of data collection | All acquisition data were stored on the computer, including count-rates and measurement times. For all images, the count-rates were determined using suitable ROIs (region of interests), as well as a region surrounding each ROI was used for background correction. The cumulative activity and residence times for each source organ were calculated from count-rates with planar/SPECT method. |
| Data source location | Shahid Sadoughi Hospital of Yazd, Iran |
| Data accessibility | Raw and processed data are available with the article. |

Value of the Data

- These data present the biodistribution and absorbed dose of $^{99m}$Tc-DMSA for children as sensitive to ionizing radiation.
- Our data provide important information on the value of hybrid planar/SPECT and MRI techniques for biodistribution measurement and will be useful to calculate in absorbed dose more accurately.
- The data can be used for children patients in renal scintigraphy with $^{99m}$Tc-DMSA for the best/optimize time during the imaging process especially in busy nuclear medicine departments.
- These data will be of interest to all those scientists who have access the biodistribution and absorbed dose data from the administration of radiopharmaceuticals which are necessary to analyze the risk-benefit of the procedure.
- The data can be used to further improve the standardization of children's dosimetric assessments and recommendations for activity administration for future studies on risk prognostication in clinical practice.

1. Data Description

In previous data, for calculating the absorbed dose of $^{99m}$Tc-DMSA in pediatric, a planar method was used [1] at a short time period acquisition after injection [2]. Furthermore, in the past researches, the lateral planar images have used to obtain the organ and patient body thicknesses for self-attenuation and background corrections, and also transmission factor [2]. However, we used MRI method to calculate these corrections which is more accurate than the pla-
In comparison, bladder, naro (30 min) with injecting, 2.2.1. Participants' standard ± genitourinary data participated 2.1. Demographic data of the patients are shown in Table 1. The patients' sex, age, height, weight, and administered activity are also included in the table.

| Patient number | Age (yr) | Sex | Weight (kg) | Height (cm) | Administered activity (MBq) |
|----------------|----------|-----|-------------|-------------|----------------------------|
| 1              | 7        | F   | 23          | 112         | 98                         |
| 2              | 5        | M   | 19          | 119         | 115                        |
| 3              | 8        | M   | 25          | 130         | 107                        |
| 4              | 5        | F   | 20          | 110         | 106                        |
| 5              | 7        | F   | 20          | 114         | 170                        |
| 6              | 4        | F   | 18          | 105         | 102                        |
| 7              | 12       | F   | 43          | 145         | 169                        |
| 8              | 3        | F   | 15          | 98          | 115                        |
| 9              | 7        | F   | 21          | 108         | 86                         |
| 10             | 4        | F   | 13          | 100         | 127                        |
| 11             | 4        | M   | 15          | 100         | 107                        |
| 12             | 4        | M   | 14          | 106         | 98                         |

The nar method as well as without unnecessarily patient's absorbed dose compared to computed tomography (CT) images [3].

In this data article, the aim was to obtain biodistribution data with planar/SPECT method [3] from children at various ages and degrees of renal dysfunction after the administration of $^{99m}$Tc-DMSA in order to look for evidence of age-dependency. Herein we have provided the biodistribution in different time periods ranging from 30 min to 19 h. In addition, the percentage of $^{99m}$Tc-DMSA uptake in source organs and reminders are separately calculated for each patient.

2. Experimental design, materials and methods

2.1. Patient studies

Twelve pediatric patients including 4 males and 8 females, aged from 3 to 12 years old have participated in this data article. Informed consent was obtained from all participants after the procedures were fully explained and the study was approved by Shahid Sadoughi University of Medical Sciences (Yazd, Iran) with the registration number of “4137”. The patients had the genitourinary abnormalities problem. They were injected with 86–170 MBq with the mean value ± standard deviation of 116.7 ± 26.7, $^{99m}$Tc-DMSA for acquisition Nuclear Medicine imaging. The patients' demography, including height, weights, and ages has been shown in Table 1.

2.2. Imaging procedures

2.2.1. Planar and SPECT images

The injection activity measurements were obtained using a calibrated 'dose calibrator' (Capintec, Inc., Ramsey, New Jersey, USA). A dual–head gamma camera system (Philips ADAC, forte) with a parallel hole, LEHR (low energy high resolution) collimator, was used for recording the patients' imaging. After the injection of $^{99m}$Tc-DMSA, each patient underwent 3–5 planar scans (30 min–19 h), and also a single SPECT scan (2 h after injection). The time duration for each planar scan was approximately 300 s. The views of abdominal and pelvic regions including kidneys, bladder, liver, and spleen were acquisitioned so that the organs have the predominant uptake compared to the rest organs.

A triple energy window scatter correction method was used for both planar and SPECT scans. In this method, a 15% main energy window centered on the $^{99m}$Tc photo-peak and two 7%
windows positioned on each side of the emission photo-peak. In the planar method a matrix size of $256 \times 256$ (pixel size $= 1.75 \text{mm}$) was used. For the SPECT scans, the step-and-shoot mode was utilized to acquire 40 projections over $360^\circ$ with a circular orbit. The time per SPECT projection was 30 s. The SPECT images were reconstructed to a $128 \times 128$ matrix (resolution $= 4.75 \times 4.75 \text{mm}^2$ and slice thickness $= 4.75 \text{mm}$).

2.2.2. MRI parameters

A Siemens Avanto MRI machine (Siemens Healthineers, Germany) with the magnetic field power of 1.5-T, was used for measuring the diameter of the patient's body and organ thicknesses for each patient (Fig. 1). The parameters of the MRI were set as repetition time (TR) $= 3.48 \text{ ms}$, echo time (TE) $= 1.39 \text{ ms}$, slice thickness $= 1.7 \text{ mm}$, and flip angle $= 10^\circ$. The patient’s body and organs thicknesses were measured by ITK-SNAP (version 3.6.0-RC1; http://www.itksnap.org), a free open-source segmentation software.
Table 2
Self-attenuation correction factor and thickness values for source organs and whole body (in pelvic and abdomen), also transmission factor for whole body measured for all patients.

| Transmission | Patient factor | Self-attenuation correction factor | Thickness (cm) |
|--------------|---------------|-----------------------------------|----------------|
|              | Whole body    | Whole body                         | Whole body     | Whole body |
|              | (in pelvic    | (in abdomen region)               | (in abdomen    | (in abdomen |
|              | region)       |                                   | region)        | region)    |
|              | Kidney        | Liver                             | Spleen         | Bladder    |
| 1            | 0.192         | 0.153                             | 0.986          | 0.972      |
| 2            | 0.165         | 0.142                             | 0.986          | 0.968      |
| 3            | 0.192         | 0.138                             | 0.984          | 0.972      |
| 4            | 0.237         | 0.149                             | 0.988          | 0.975      |
| 5            | 0.165         | 0.156                             | 0.990          | 0.977      |
| 6            | 0.237         | 0.195                             | 0.990          | 0.977      |
| 7            | 0.091         | 0.067                             | 0.982          | 0.942      |
| 8            | 0.223         | 0.149                             | 0.985          | 0.977      |
| 9            | 0.173         | 0.160                             | 0.989          | 0.976      |
| 10           | 0.237         | 0.173                             | 0.989          | 0.967      |
| 11           | 0.259         | 0.201                             | 0.984          | 0.977      |
| 12           | 0.237         | 0.186                             | 0.990          | 0.981      |

2.2.3. Calibration factor

The calibration experiment was performed to convert the measured SPECT and planar image count rates to absolute values. To evaluate the SPECT calibration factor, a point of $^{99mTc}$ source (a small insulin syringe), 37 MBq, prepared and placed in air [2]. Then, the SPECT image acquired using the same parameters of the patients for the point source.

2.3. Activity quantification

The following equation was used to quantify the activity in each source organ $A(j)$, MBq:

$$A(j) = \frac{R(j)}{K.T} \times f$$

(1)

Where $R(j)$ is the count rate in the drawn volume of interest, $T$ represents the transmission factor across patient thickness and linear attenuation coefficient (0.15 cm$^{-1}$) based on the MIRD (Medical Internal Radiation Dose) pamphlet No. 16 [4]. $f$ is the source organ self-absorption coefficient ($f = (\mu_j d_j / 2 \sinh(\mu_j d_j / 2))$) ($\mu_j$ and $d_j$ are source organ attenuation coefficient and thickness, respectively) and $K$ is gamma camera calibration factor (cps/MBq). The differences in tissue composition and density were not included in calculations and the mean effective attenuation coefficient was used for all body organs and tissues. These values are illustrated in Table 2. In this table, the raw data of self-attenuation correction factor and thickness values for source organs and whole body (in pelvic and abdomen), also the transmission factor for whole body measured for all patients.

2.4. Calculation of cumulative activity

2.4.1. Time activity curves

To calculate the cumulative activity for each source organ, the hybrid planar/SPECT approach was employed. For each planar image series of patients, the ROIs were drawn around the border of the organs in the first image. Then, these ROIs were registered in the rest of image series. It is notable that the spatial distribution of activity changes during the time has decreased with this method [5,6].
A series of planar images, count rates in each ROI, were plotted against time. Then, an appropriate exponential function fit for each time-count rate curve was obtained [1–3, 6].

Background correction was used for estimating the count rates following the equation below [3]:

\[ I = I' - \left(1 - \left(\frac{d_j}{D}\right)\right) I_{BG} \] (2)

In this formula, the I and I’ are the background-corrected and uncorrected counts of each ROI, in that order. The \(d_j\) and D are the diameter of organ and patient body thickness by MR image in the axial view, and \(I_{BG}\) is the background counts. To obtain the \(I_{BG}\) value, the mean count of pixels in the background region multiplied by the number of pixels in the source organs [3]. The geometric mean of counts, \((I_A I_P)^{1/2}\), was used to obtain the time-count rates curve (\(I_A=\) anterior counts, \(I_P=\) posterior counts).

A sample of picture shown the biodistribution of \(^{99m}\)Tc-DMSA based on time (after injection) in Fig. 1. Also, the biodistribution in different time periods ranging from 30 min to 19 h has shown in Table 3. According to this table, the pharmacokinetic behavior of \(^{99m}\)Tc-DMSA uptake in whole-body, liver, bladder, and spleen was decreased immediately followed by a clearance phase, while, the kidneys had an opposed behavior compared to the above-mentioned organs with initial uptake phase to a maximum value. The curves were fitted with two-exponential and mono-exponential functions following their correlation coefficient values [3].

2.4.2. Estimation of effective half lives

The effective half-lives (\(\lambda_{eff}\)) was obtained by the planar image acquisitions. In this method [6], \(\lambda_{eff}\) used estimates the cumulated activity (\(\bar{A}\)) for each organ of interest:

\[ \sim \bar{A} = A_{SPECT} \times \frac{e^{\lambda_{eff} t_{SPECT}}}{\lambda_{eff}} \] (3)

In this formula, \(A_{SPECT}\) and \(t_{SPECT}\) are the activity in each source region acquired from the SPECT image and the time of the acquisition, respectively. Actually each count rate in the planar image acquisitions rescaling by each SPECT image which provides an estimate of the time-cumulated (integrated) activities [6]. The cumulated activity was calculated for the kidneys, liver, spleen, and bladder, and for the remainder of the body it was obtained by subtracting the above-mentioned organs from the whole body activity. The percentage of \(^{99m}\)Tc-DMSA uptake in source organs and the remiders are separately shown for each patient in Table 4. For obtained the percentage, the cumulative activity has calculated for source organs and whole body for each patient and then the cumulated activity of each source organ and remainder of the body divided in whole body cumulated activity.

The time integrated activities were normalized to the administered activity for calculating the residence time (Table 5). Post-processing of reconstructed planar and SPECT data was performed by ITK-SNAP software.

2.5. Dosimetry

The organ absorbed dose and effective dose (equivalents) were estimated for various organs of the patients (mGy/MBq) using MIRDOS 3.1 software (Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831) shown in Table 6. The input of MIRDOS software was residence times in source organs including kidneys, liver, spleen, and remaining body calculated in 2.4.2 section.

The biodistribution variation at 3 patients’ accrued different functions which introduce uncertainty in absorbed dose has been shown in Fig. 3.
Table 3
Count rates (count/second) of source organs at various time after $^{99m}$Tc-DMSA.

| Patient | Time (h) | Kidneys | liver | Spleen | bladder | Whole body |
|---------|----------|---------|-------|--------|---------|------------|
| 1       | 1.9      | 1104    | 99    | 13.5   | 153     | 2303       |
|         | 2.5      | 1206    | 48    | 7.1    | 159     | 2197       |
|         | 15       | 249     | 13    | 3      | 47      | 289        |
| 2       | 1.2      | 1123.6  | 205   | 94     | 45.3    | 2989       |
|         | 2.7      | 1356    | 167   | 92     | 56      | 2446       |
|         | 4.5      | 980     | 145   | 55.8   | 47      | 2100       |
|         | 16.5     | 229     | 43    | 10     | 4       | 450        |
| 3       | 2.71     | 712.4   | 50.2  | 40.3   | 15.7    | 1316       |
|         | 3.65     | 697.6   | 42.8  | 31.2   | 12.2    | 1249       |
|         | 4.15     | 677.9   | 25.5  | 15     | 13      | 1173       |
| 4       | 0.5      | 315.8   | 59.3  | 49.9   | 14.3    | 1517       |
|         | 2.53     | 709.4   | 51.2  | 42.3   | 15.7    | 1316       |
|         | 3.9      | 655.6   | 44.8  | 29.2   | 14.2    | 1249       |
|         | 7.15     | 355.9   | 15.5  | 10     | 9       | 1173       |
| 5       | 1.28     | 909     | 72    | 11.2   | 21      | 2300.5     |
|         | 2.10     | 936.5   | 73.8  | 8.8    | 16.3    | 2127.1     |
|         | 2.50     | 948.8   | 65    | 7.7    | 74.9    | 2138.1     |
|         | 3.16     | 966.1   | 59.1  | 8.1    | 26.9    | 1954.5     |
|         | 3.5      | 935.7   | 63.7  | 7.2    | 56      | 1992.6     |
| 6       | 1.13     | 572     | 126.6 | 18.3   | 134     | 1743       |
|         | 1.63     | 629     | 111.6 | 12     | 146     | 1683       |
|         | 2.71     | 633     | 65.7  | 9.8    | 51.1    | 1359       |
|         | 3.33     | 639     | 42    | 8.1    | 17.5    | 1238       |
|         | 3.7      | 619.6   | 50.3  | 7.3    | 21.4    | 1255       |
| 7       | 1.9      | 595.8   | 117   | 16.1   | 347.8   | 2015       |
|         | 2.50     | 600.7   | 69    | 13.9   | 380     | 1944       |
|         | 3.83     | 581     | 54.7  | 9.5    | 6.9     | 1254       |
|         | 4.9      | 518     | 53.8  | 8.8    | 5.3     | 1113       |
| 8       | 2.2      | 1263.7  | 195   | 95     | 14.3    | 2819       |
|         | 2.8      | 1312    | 160   | 88     | 35      | 2452       |
|         | 4.2      | 987     | 151   | 59.1   | 8.3     | 2051       |
|         | 17.3     | 219     | 33    | 9      | 3       | 436        |
| 9       | 1.3      | 435     | 59.9  | 12.8   | 68.9    | 1533       |
|         | 2.4      | 596.5   | 43.2  | 8.6    | 98.6    | 1254       |
|         | 16       | 153     | 9     | 3      | 19      | 168        |
| 10      | 1.88     | 1687    | 186.9 | 12.9   | 131.9   | 3306       |
|         | 2.43     | 2105.2  | 106.8 | 15.7   | 138.8   | 3424.2     |
|         | 3.00     | 1656.3  | 115.2 | 13.1   | 182.1   | 2927       |
|         | 7.08     | 1183.7  | 87.9  | 7.2    | 22.2    | 1892       |
| 11      | 1.33     | 1400    | 124   | 13.3   | 128     | 2989       |
|         | 2.50     | 1456    | 113   | 13     | 25      | 2278       |
|         | 5.30     | 1101    | 65    | 7.6    | 55      | 2010       |
| 12      | 2.1      | 1209    | 95    | 11.8   | 123     | 2203       |
|         | 2.86     | 1162    | 51    | 9.1    | 144     | 2152       |
|         | 19       | 244     | 12    | 1      | 8       | 295        |

Table 4
The relative percentage of $^{99m}$Tc-DMSA uptake calculated for each patient's organ. Also, the mean and standard deviation (SD) in source organs and the remainders are described.

| Organs        | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | mean | SD  |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-----|
| Kidneys       | 22.6  | 23.7  | 21.2  | 21.9  | 39.9  | 13.4  | 8.0   | 23.9  | 11.5  | 34.2  | 22.9  | 22.4  | 22.1 | 8.8 |
| Liver         | 3.6   | 1.8   | 3.7   | 0.9   | 6.7   | 2.7   | 3.9   | 1.8   | 5.2   | 2.6   | 2.9   | 4.4   | 3.3  | 1.6 |
| Spleen        | 0.7   | 0.9   | 3.1   | 0.7   | 1.0   | 0.6   | 0.8   | 0.9   | 1.0   | 0.2   | 0.5   | 0.6   | 0.9  | 0.7 |
| UB contents   | 2.8   | 1.2   | 0.7   | 0.7   | 4.1   | 6.5   | 20.3  | 1.2   | 3.6   | 5.5   | 2.8   | 2.9   | 4.4  | 5.3 |
| Remainder     | 70.3  | 72.4  | 71.3  | 75.8  | 48.3  | 76.8  | 67.0  | 72.2  | 78.7  | 57.5  | 70.9  | 69.7  | 69.3 | 8.5 |
Table 5
The residence time along with average (±SD) number of source organs and the remainder of the body (MBq × h/MBq).

| Patient number | Organ Residence Time (MBq.h/MBq) | Urinary Bladder contents | Remainder of the body |
|----------------|-----------------------------------|--------------------------|-----------------------|
|                | Kidney | Liver | Spleen |                      |                        |                       |
| 1              | 0.69   | 0.05  | 0.04   | 0.05                 | 1.01                   |
| 2              | 2.68   | 0.21  | 0.16   | 0.08                 | 3.98                   |
| 3              | 1.90   | 0.17  | 0.16   | 0.03                 | 3.03                   |
| 4              | 2.32   | 0.04  | 0.15   | 0.04                 | 3.88                   |
| 5              | 1.93   | 0.16  | 0.01   | 0.10                 | 1.15                   |
| 6              | 0.97   | 0.09  | 0.05   | 0.23                 | 2.73                   |
| 7              | 0.39   | 0.09  | 0.04   | 0.49                 | 1.58                   |
| 8              | 2.97   | 0.27  | 0.17   | 0.07                 | 4.02                   |
| 9              | 0.31   | 0.07  | 0.03   | 0.05                 | 1.06                   |
| 10             | 3.13   | 0.22  | 0.09   | 0.25                 | 2.23                   |
| 11             | 2.06   | 0.14  | 0.07   | 0.13                 | 3.17                   |
| 12             | 0.62   | 0.04  | 0.06   | 0.04                 | 0.97                   |
| Mean ± SD     | 1.66 ± 1.02 | 0.13 ± 0.08 | 0.08 ± 0.06 | 0.13 ± 0.13 | 2.40 ± 1.22 |

Table 6
The organ absorbed dose, effective dose (ED), and effective dose equivalents (EDE) per administered activity (mGy/MBq) for each patient using phantom based on the patient demography.

| Organ dose   | Patient (phantom used) | 1 (5) | 2 (5) | 3 (10) | 4 (5) | 5 (5) | 6 (5) | 7 (15) | 8 (5) | 9 (5) | 10 (5) | 11 (5) | 12 (5) |
|--------------|------------------------|-------|-------|--------|-------|-------|-------|--------|-------|-------|--------|--------|--------|
| Adrenals     | 7.37E-02               | 2.28E-02 | 1.43E-02 | 2.52E-02 | 1.75E-02 | 1.25E-02 | 2.75E-02 | 3.13E-02 | 4.51E-02 | 2.92E-02 | 2.20E-02 | 6.82E-03 |
| Gallbladder  | 4.91E-02               | 1.92E-02 | 9.32E-03 | 1.64E-02 | 1.04E-02 | 9.56E-03 | 2.36E-02 | 2.08E-02 | 3.74E-02 | 1.75E-02 | 1.47E-02 | 4.56E-03 |
| Kidneys      | 8.15E-02               | 3.18E-02 | 1.58E-01 | 2.76E-02 | 2.27E-01 | 1.16E-02 | 2.39E-02 | 3.52E-02 | 3.76E-02 | 3.69E-02 | 2.44E-02 | 7.38E-02 |
| Liver        | 4.14E-02               | 1.66E-02 | 9.00E-03 | 1.03E-02 | 1.08E-02 | 7.44E-03 | 2.43E-02 | 1.92E-02 | 3.78E-03 | 1.68E-02 | 1.21E02 | 3.64E-03 |
| Pancreas     | 5.44E-02               | 2.13E-02 | 1.12E-02 | 1.87E-02 | 1.13E-02 | 1.00E-03 | 2.48E-02 | 2.30E-02 | 3.84E-03 | 1.96E-02 | 1.59E-02 | 5.24E-03 |
| Spleen       | 1.63E-02               | 6.46E-02 | 3.91E-02 | 5.93E-02 | 1.60E-02 | 2.25E-03 | 6.66E-02 | 6.93E-02 | 1.12E-03 | 4.66E-02 | 4.32E-02 | 2.13E-03 |
| Urinary      | 7.29E-02               | 1.56E-02 | 5.62E-02 | 1.07E-02 | 1.36E-02 | 2.99E-03 | 2.65E-02 | 1.47E-02 | 7.22E-03 | 3.24E-02 | 1.98E-02 | 6.09E-03 |
| bladder      |                      |       |       |       |       |       |       |       |       |       |       |       |
| wall         |                      |       |       |       |       |       |       |       |       |       |       |       |
| Gonads       | 2.99E-03               | 6.29E-03 | 2.88E-03 | 1.02E-03 | 4.95E-03 | 7.47E-03 | 2.69E-03 | 1.15E-03 | 2.66E-03 | 9.19E-03 | 5.35E-03 | 1.64E-03 |
| ED           | 5.17E-03               | 1.93E-03 | 9.56E-03 | 1.68E-03 | 1.13E-02 | 1.06E-03 | 3.42E-02 | 2.07E-03 | 3.65E-03 | 1.97E-03 | 1.54E-03 | 4.75E-03 |
| EDE          | 8.79E-03               | 3.36E-02 | 1.71E-02 | 2.97E-02 | 1.99E-02 | 1.55E-03 | 5.07E-03 | 3.65E-03 | 5.37E-03 | 3.48E-02 | 2.54E-02 | 8.39E-03 |

Declaration of Competing Interest
The Authors declare that there is not any competing of interest regarding this article.
Fig. 3. Anterior images for (a) patient 5, (b) patient 7, and (c) patient 11 at 2.50 h after injection illustrating differences in relative uptake of $^{99m}$Tc DMSA in the kidneys, urinary bladder contents, and liver.

Acknowledgments

This study was approved by Shahid Sadoughi University of Medical Sciences (Yazd, Iran) with the registration number of "4137". The authors would like to thank the Nuclear Medicine Department at the Shahid Sadoughi Hospital for their sincere cooperation.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.106232.

Reference

[1] T. Smith, K. Evans, M.F. Lythgoe, P.J. Anderson, I. Gordon, Radiation dosimetry of technetium-99m-DMSA in children, J. Nucl. Med. 37 (1996) 1336–1342.
[2] P. Teles, J. Costa, D. Costa, N. Matela, P. Vaz, Activity estimation and biokinetic analysis of 99mTc-DMSA in renal infant patients using a gamma camera, Phys. Med. 52 (2018) 9–17.
[3] M. Bagheri, A.A. Parach, S.K. Razavi-Ratki, R. Naftsi-Moghadam, M.A. Jelodari, Patient-specific dosimetry for pediatric imaging of 99mTc-dimercaptosuccinic acid with gate Monte Carlo code, Radiat. Prot. Dosim. 178 (2018) 213–222.
[4] J.A. Siegel, S.R. Thomas, J.B. Stubbs, M.G. Stabin, M.T. Hays, K.F. Koral, J.S. Robertson, R.W. Howell, B.W. Wessels, D.R. Fisher, MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates, J. Nucl. Med. 40 (1999) 37S–61S.
[5] K. Ebrahimnejad Gorji, R. Abedi Firouzjah, F. Khanzadeh, N. Abdi-Goushbolagh, A. Banaei, Estimating the absorbed dose of organs in pediatric imaging of 99mTc-DTPA–DTPA radiopharmaceutical using MIRDOSO software, J. Biomed. Phys. Eng. 9 (2019) 285.
[6] J. Grimes, A. Celler, B. Birkenfeld, S. Shcherbinin, M.H. Listewnik, H. Piwowarska-Bilska, R. Mikołajczak, P. Zorga, Patient-specific radiation dosimetry of 99mTc-HYNIC-Tyr3-octreotide in neuroendocrine tumors, J. Nucl. Med. 52 (2011) 1474–1481.