Cancer-Associated Cachexia: A Systemic Consequence of Cancer Progression

Anup K. Biswas and Swarnali Acharyya

1 Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; email: sa3141@cums.columbia.edu
2 Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA

Abstract
Cancer is a life-threatening disease that has plagued humans for centuries. The vast majority of cancer-related mortality results from metastasis. Indeed, the invasive growth of metastatic cancer cells in vital organs causes fatal organ dysfunction, but metastasis-related deaths also result from cachexia, a debilitating wasting syndrome characterized by an involuntary loss of skeletal muscle mass and function. In fact, about 80% of metastatic cancer patients suffer from cachexia, which often renders them too weak to tolerate standard doses of anticancer therapies and makes them susceptible to death from cardiac and respiratory failure. The goals of this review are to highlight important findings that help explain how cancer-induced systemic changes drive the development of cachexia and to discuss unmet challenges and potential therapeutic strategies targeting cachexia to improve the quality of life and survival of cancer patients.

Keywords
cancer progression, systemic effects, cachexia, inflammation, muscle wasting, muscle atrophy
INTRODUCTION

With disease progression, cancers induce systemic changes in tissues such as the bone, liver, adipose tissue, and skeletal muscles (Argiles et al. 2018, Kaplan et al. 2006, McAllister & Weinberg 2010). These changes perturb tissue homeostasis and create a metabolic imbalance in the host. As such, patients with advanced cancer experience a metabolic wasting syndrome known as cachexia where muscle and often adipose tissues are lost (Baracos et al. 2018). Nutritional supplementation is unable to reverse this syndrome, and effective treatment for cachexia is still lacking. What is perplexing is that not all cancer patients with a similar tumor burden develop cachexia. The ones who do suffer from cachexia experience a lower tolerance to anticancer treatments, a drastic reduction in mobility and feeding ability, and a poor quality of life (Fearon et al. 2013). Patients with cachexia succumb to accelerated death resulting from respiratory and cardiac failure due to weakened diaphragm and cardiac muscles (Baracos et al. 2018). To date, there have been no satisfactory answers to the fundamental question of what initiates the cachexia cascade in cancer patients. Possibilities include tumor-derived factors, metabolites from a secondary organ that is indirectly impacted by the tumor, or perhaps circulating factors derived from the altered immune system (Fearon et al. 2012). It is also unclear whether there exists a master regulator of cachexia or whether unique combinations of already-identified mediators, which may differ depending on the type and stage of cancer, drive cachexia. Finally, it is unknown whether cachexia is in fact an unintended and futile consequence of cancer progression or if cancer cells somehow benefit from the breakdown of muscle and fat. We discuss advances in cancer-associated cachexia research in light of these questions and highlight the challenges and promising areas of research.

CANCER-ASSOCIATED CACHEXIA

Definition

Cachexia is a debilitating wasting syndrome associated with involuntary weight loss and is derived from the Greek words “kakos,” meaning bad, and “hexis,” meaning condition (Fearon et al. 2012). Cachexia occurs in multiple diseases such as chronic kidney, heart and obstructive pulmonary diseases, AIDS, and cancer (Fearon et al. 2013, von Haehling et al. 2016). In 1858, the English ophthalmologist John Zachariah first used the term “cancerous cachexia” to describe the wasting syndrome associated with malignancy (Bennani-Baiti & Walsh 2009, Laurence 1858). However, a formal definition for cancer-associated cachexia was only recently conceptualized (Fearon et al. 2011) as “a multifactorial syndrome characterized by ongoing loss of skeletal muscle (with or without loss of fat mass) that cannot be fully reversed by conventional nutritional support and leads to progressive functional impairment” (p. 490). The pathophysiology of cachexia is characterized by a negative protein and energy balance, which is driven by a variable combination of reduced food intake and metabolic abnormalities. The diagnostic criteria for cachexia in a cancer patient are unintended weight loss that is greater than 5%, unintended weight loss greater than 2% in individuals already showing depletion according to current body weight and height (a body mass index less than 20 kg/m²), or loss of skeletal muscle mass from sarcopenia (Fearon et al. 2011). Cachexia occurs in 80% of advanced cancer patients, with higher incidences in pancreatic, gastrointestinal, and lung cancers (Baracos et al. 2018, Fearon et al. 2012). A characteristic feature of cachexia is a reduction in muscle mass, also known as muscle atrophy, that results from the loss of proteins, organelles, and cytoplasm from muscle cells (Sandri 2016). Skeletal muscle breakdown in cachexia results from increased protein degradation by hyperactivation of the ubiquitin-proteasome system (UPS) and autophagy-lysosome system (Cohen et al. 2015, Mitch & Goldberg 1996, Sandri 2016). FOXO transcription factors activate both UPS and lysosomal pathways and contribute to muscle...
atrophy (Zhao et al. 2007). A set of E3 ligases (MuRF1, MAFbx/atrogen 1, MUSA1, TRAF6, and FBXO31) are transcriptionally activated during muscle atrophy in multiple catabolic states including cancer (Bodine et al. 2001a, Gomes et al. 2001, Milan et al. 2015, Paul et al. 2010, Sartori et al. 2013). MuRF1 ubiquitinates sarcomeric proteins, myosin heavy chain protein, and actin (Polge et al. 2011), while atrogin 1 degrades MyoD, a muscle differentiation transcription factor, and EIF3F, an activator of protein synthesis, in muscle cells (Tintignac et al. 2005), thus contributing to muscle atrophy. Autophagy, the process of degrading and recycling proteins, bulk cytoplasm, and organelles in cells using lysosomal machinery, contributes to muscle atrophy. However, the exact role of autophagy is still controversial. Muscle-specific inactivation of a crucial autophagy gene, ATG7, results in muscle atrophy and aging-related muscle dysfunction from an accumulation of abnormal mitochondria and disorganized sarcomeres (Masiero et al. 2009). In contrast, overexpression of a positive regulator of autophagy, TP53INP2/DOR in muscle, upregulates the E3 ligases MuRF1 and atrogin 1, represses mitochondrial function, and exacerbates cancer-induced muscle wasting (Penna et al. 2019). Therefore, these studies indicate that both excess and defective autophagy promote muscle atrophy.

Differences Between Starvation, Cachexia, and Sarcopenia

Weight loss and wasting states can result from starvation, cachexia, or sarcopenia. While these three conditions are sometimes indistinguishable by appearance, their etiology and biochemical features are different. Starvation-induced weight loss results from caloric deprivation and is often associated with loss of adipose tissue. It is characterized by unchanged resting energy expenditure, a lack of inflammation, and a reduction in protein catabolism in prolonged starvation (Morley et al. 2006). The key feature of starvation-mediated weight loss is that the wasting state is transient and can be reversed by nutritional support. By contrast, cachexia involves skeletal muscle loss with or without loss of adipose tissue and is often associated with a major increase in resting energy expenditure, the presence of inflammation, and increased protein catabolism. Muscle protein catabolism is primarily driven by the activation of the UPS and autophagy pathways (Acharyya & Guttridge 2007, Argiles et al. 2014, Cohen et al. 2015, Egerman & Glass 2014, Fearon et al. 2012, Sandri 2016). Importantly, wasting from cachexia cannot be completely reversed by nutritional supplementation. Sarcopenia is a geriatric syndrome characterized by the loss of muscle mass and function that occurs as part of the normal aging process in humans (Kalyani et al. 2014, Short et al. 2004). Features of sarcopenia include reduced resting energy expenditure, the absence of inflammation, and normal/reduced protein catabolism, but it is not associated with an underlying illness or disease pathology (Ali & Garcia 2014). Importantly, sarcopenia is preventable and, to a large extent, reversible (Evans 1996). It is often difficult to assess loss of muscle mass through body weight measurements when it is masked by adipose tissue in obese patients. However, new advances in imaging analysis now allow us to determine body composition changes in cancer patients from routine computerized tomography (CT) images (Prado et al. 2009). Below we discuss some of the key mediators, systemic interactions, and new directions in the field of cancer-associated cachexia.

HUMORAL FACTORS AS MEDIATORS OF CACHEXIA

It has long been speculated that humoral factors serve as mediators of cachexia. However, the first experimental evidence for the presence of humoral factors causing anorexia/cachexia came from a parabiotic transfer experiment where two rats were surgically joined by their skin to allow parabiotic partners to share circulation (Norton et al. 1985). The authors demonstrated that
unidentified humoral factors that induce anorexia/cachexia in the methylcholanthrene-induced sarcoma tumor–bearing (TB) rats could also induce anorexia/cachexia in their non-tumor-bearing (NTB) parabiotic partners. Moreover, each of the parabiotic partners between two NTB rats gained the same amount of weight, which was significantly higher than the weight gained by the NTB halves that were paired with TB rats. Importantly, the NTB rats that were joined parabiotically to the TB rats remained tumor-free during the experiment, which ruled out that metastatic infiltration caused the phenotype and demonstrated that circulating factors mediate cancer-associated anorexia/cachexia in this context.

Tumor-induced systemic factors (TISFs in this review) secreted directly by tumor cells, or by nontumor host cells, in response to tumor growth are potential cachexia mediators and can negatively impact host physiology (Fearon et al. 2012). TISFs can either signal directly to muscle or fat cells or induce metabolic reprogramming of the peripheral organs to create a chronic negative energy state (Figure 1). TISFs can simultaneously activate catabolic processes in muscle and inhibit muscle protein synthesis, resulting in a sustained loss of muscle mass (Egerman & Glass 2014, Fearon et al. 2012). TISFs such as TNF-α (tumor necrosis factor alpha), IL-1β (interleukin 1 beta), IFN-γ (interferon gamma), TGF-β (transforming growth factor beta), and IL-6 cytokines, which often increase in the serum of cachectic patients, serve as mediators of cachexia (Fearon et al. 2012). TISFs promote both skeletal and cardiac muscle atrophy (reviewed in Argiles et al. 2009, Cohen et al. 2015, Egerman & Glass 2014, Fearon et al. 2012, Murphy 2016, Zimmers et al. 2016). In this review, we discuss cachexia in the context of skeletal muscle wasting, highlight some of the challenges in targeting these mediators, and discuss new advances in the field.

Cachectin/TNF-α

TNF-α is a well-established prototypical ligand of the TNF superfamily implicated in inflammation, apoptosis, and immune regulation (Baud & Karin 2001). Its role in promoting cachexia was first revealed in the early 1980s (Beutler et al. 1985, Kawakami et al. 1982) and further supported when nude mice implanted with Chinese hamster ovary (CHO) cells expressing TNF-α exhibited body weight reduction and cachexia-like symptoms (Oliff et al. 1987). Impaired TNF-α signaling in mice with either transgenic overexpression of soluble TNF-R1 or deletion of endogenous TNF-R1 partially reduces tumor-induced muscle wasting (Llovera et al. 1998a,b). Mechanistically, TNF-α blocks adipocyte and muscle cell differentiation (Chen et al. 2007, Guttridge et al. 2000, Ruan et al. 2002) and promotes muscle protein degradation (Li et al. 1998, 2005). Nonetheless, TNF-α blockade has not been successful in treating patients with cancer cachexia in clinical trials conducted in multiple cancer types (Jatoi et al. 2010, Wiedenmann et al. 2008). The failure of TNF-α blockade to improve muscle wasting in these patients may be due to the presence of multiple cachexia mediators, redundancy of TNF-α effectors, or immune complications arising from sustained TNF-α inhibition. In addition, many of the trials for cachexia were conducted in advanced metastatic cancer patients, although the mediators of cachexia were identified in early-stage localized tumor models. Based on newly emerging evidence (Wang et al. 2018, Waning et al. 2015), it is possible that the mediators of cachexia in metastatic cancers might be different from those in early-stage cancers, which could also contribute to the failure of previous clinical trials for cachexia. Moreover, enhanced muscle wasting can also be driven independently by chemotherapy treatment, a phenomenon that is often overlooked when TNF-α-blocking antibodies are combined with chemotherapy drugs (Barreto et al. 2016, Damrauer et al. 2018, Gilliam & St. Clair 2011, Gilliam et al. 2011). Collectively, these studies suggest that TNF-α inhibition is not likely to represent an effective therapeutic strategy for reversing cachexia in advanced cancer.
A reduction in muscle size and function (muscle atrophy) results from the loss of proteins, organelles, and cytoplasm from muscle cells in cancer-associated cachexia. Tumor-induced systemic factors (TISFs), such as proinflammatory cytokines and exosomes, induce muscle catabolism through increased proteolysis from hyperactivation of the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system and are often coupled with reduced protein synthesis. TISFs can be secreted directly by tumor cells, by nontumor cells in the tumor microenvironment, or by host tissues in response to tumor growth. TISFs either directly interact with muscle cells to cause muscle atrophy or induce metabolic reprogramming of other peripheral organs, which indirectly leads to muscle atrophy. Some examples illustrated in the figure include: Metastatic cancers upregulate the zinc transporter ZIP14, which increases zinc influx into skeletal muscle cells, promotes myosin heavy chain protein loss, and induces muscle mass and function loss. Muscle weakness can occur independent of muscle mass loss in cancers with bone metastasis by TGF-β pathway activation and altered calcium influx in muscle cells. TISFs can also induce excessive fatty acid oxidation, oxidative stress, and p38 activation in muscle cells and thereby impair muscle growth. Insulin resistance can trigger muscle catabolism through reduced PI3K activity and reduced AKT phosphorylation. Additionally, systemic changes in the brain, liver, adipose tissue, and microbiota can indirectly promote cachexia through altered appetite regulation, metabolism, and energy balance, as well as inflammation.

The IL-6 Family of Cytokines
IL-6 is a pleiotropic cytokine implicated in acute phase response, tissue regeneration, lipid mobilization, and energy expenditure (Narsale & Carson 2014). IL-6 activates the JAK-STAT, ERK, and PI3K/AKT-mediated transcriptional pathways (Heinrich et al. 2003). Animal models...
have convincingly demonstrated a role for the IL-6 family of ligands in promoting cancer-associated cachexia. The Apc\(^{Min/+}\) mouse, a genetic model of intestinal tumorigenesis (McCart et al. 2008), and C-26.IVX, an allograft model of murine colon cancer derived from the C26 cell line (Strassmann et al. 1992), develop IL-6-dependent loss of skeletal muscle mass and adipose tissue (Baltgalvis et al. 2008, 2009; Zaki et al. 2004). Moreover, an IL-6R antibody was shown to rescue muscle atrophy and proteolysis in IL-6 transgenic mice (Tsujinaka et al. 1996) and to reduce the loss of muscle mass in both the C26 (Fujita et al. 1996) and Apc\(^{Min/+}\) cachexia models (White et al. 2011). CNTO328, a human-mouse chimeric IL-6 antibody, also reduced tumor-induced cachexia in a nude mouse model injected with human melanoma or prostate cancer cells (Zaki et al. 2004), and treatment with the anti-IL-6 receptor antibody tocilizumab reduced weight loss and increased the survival of mice transplanted with IL-6-expressing Lewis lung carcinoma cells (Ando et al. 2014, Ohe et al. 1993). In a case study of a patient with lung cancer and advanced cachexia (Ando et al. 2013), treatment with tocilizumab improved appetite and body weight with no discernible impact on tumor growth or progression. In addition, a small phase II clinical trial showed that the humanized monoclonal anti-IL-6 antibody clazakizumab reduced loss of lean muscle mass and improved lung symptoms and fatigue score in lung cancer patients with cachexia (Prado & Qian 2019). Still, it is important to consider that sustained blockade in IL-6 signaling can increase the risk of infection from neutropenia and result in compensatory increases in the activity of other proinflammatory cytokines (Kopf et al. 1994). Future clinical trials are therefore needed to determine whether IL-6 represents a useful target for reversing cachexia in advanced cancer patients.

Additional IL-6 family cytokines, such as ciliary neurotrophic factor and leukemia inhibitor factor, have also been shown to promote muscle atrophy at least in part through the activation of STAT3 (Bonetto et al. 2011, Espat et al. 1996, Henderson et al. 1994, Kandarian et al. 2018). Transcriptomic analysis of cachectic muscles has revealed a prominent STAT3 signature in the C26 cachexia model (Bonetto et al. 2011), and STAT3 activation in muscle is necessary and sufficient for muscle wasting (Bonetto et al. 2012). It is encouraging to note that blocking STAT3 with pharmacological inhibitors or through genetic manipulation of the JAK/STAT3 pathway showed significant improvement in cancer-induced muscle atrophy (Bonetto et al. 2012). Thus, rather than systematically neutralizing individual members of the IL-6 family of cytokines, targeting STAT3 may represent a more effective strategy to treat cancer-associated cachexia (Zimmers et al. 2016).

The TGF-β Family of Ligands

Several members of the TGF-β superfamily have been implicated as important therapeutic targets against cancer-induced muscle wasting in advanced cancer. The TGF-β family member GDF8 (growth and differentiation factor 8), also known as myostatin, binds to the activin type II serine/threonine kinase receptors ACVR2 and ACVR2B and causes the downstream activation of SMAD2/3. Myostatin was first recognized as a potent inhibitor of muscle growth and development when myostatin-null mice were shown to exhibit up to 200% larger muscles due to myofiber hyperplasia and hypertrophy (McPherron et al. 1997). Similar findings have been reported in a child with a myostatin gene mutation (Schuelke et al. 2004). Moreover, systemic overexpression of myostatin in mice caused profound fat and muscle mass loss, which could be reversed by the myostatin inhibitor follistatin (Zimmers et al. 2002). In primates, however, simultaneous inhibition of activin A and myostatin was required to induce robust hypertrophic effects with enhanced force production (Latre et al. 2017). These findings are important to consider when designing anti-TGF-β pathway strategies to overcome cachexia in the clinic. In the context of cancer, the function of myostatin in muscle growth and development is less clear. While some studies report
an improvement in muscle wasting when tumor cells are injected into myostatin-knockout mice (Gallot et al. 2014), others have observed the opposite (Benny Klimek et al. 2010), which could be attributed to compensatory shifts in muscle fiber type or metabolism from the developmental loss of myostatin (Amthor et al. 2007).

Targeting the myostatin receptors ACVR2 and ACVR2B, on the other hand, has consistently shown considerable promise for reversing muscle wasting in independent studies. Bimagrumab is a human anti-ACVR2 antibody that prevents the binding of the ACVR2 ligands to their receptors (Lach-Trifilieff et al. 2014). The mouse version of this antibody was found to enhance muscle hypertrophy in the myostatin-mutant mice and to protect wild-type mice from glucocorticoid-induced muscle atrophy and weakness. In a recent randomized clinical trial (https://www.clinicaltrials.gov/ identifier NCT01433263), pancreatic and lung cancer patients treated with bimagrumab showed favorable increases in lean body mass (Yakovenko et al. 2018). In two landmark studies using a myostatin ligand trap strategy, systemic administration of soluble forms of Acvr2b, either Acvr2b-Fc secreted from implanted CHO cells (Benny Klimek et al. 2010) or the decoy receptor sActRIIB (Zhou et al. 2010), caused a striking inhibition of tumor-induced cachexia and prolonged survival in mouse models of cachexia (Zhou et al. 2010). Of note, sActRIIB treatment reduced the hyperactivation of the UPS in muscle cells and muscle protein turnover (Zhou et al. 2010). Since ACVR2B binds to other TGF-β family ligands, such as GDF11 and activin other than myostatin (Lee et al. 2005), the protective effect of soluble ACVR2B in vivo could be mediated by one or more of these ligands. These and subsequent studies (Busquets et al. 2012, Nissinen et al. 2018) have provided compelling evidence that the soluble form of ACVR2B could serve as a potent therapeutic target in cancer-associated cachexia.

Other members of the TGF-β superfamily, such as GDF11 and GDF15, have been recently implicated as mediators of both anorexia and cachexia. The role of GDF11 in aging-related muscle regeneration has been controversial (Egerman et al. 2015, Loffredo et al. 2013, Sinha et al. 2014). With respect to cachexia, sustained GDF11 induced whole-body wasting and reduction in organ sizes with profound skeletal and cardiac muscle wasting (Zimmers et al. 2017). In addition, high levels of Gdf11 reduced food intake, body weight, and muscle mass in mice (Jones et al. 2018). Gdf11-induced muscle loss was driven by increased plasma activin A and reversed by blockade of Acvr2b signaling. Gdf11 also induced appetite loss through upregulation of Gdf15 (also known as macrophage-inhibitory cytokine 1), and this effect was reversed through treatment with a Gdf15-neutralizing antibody. GDF15 influences the appetite regulation centers in the brain (Tsai et al. 2013). It originally emerged as a potent regulator of appetite when elevated levels of Gdf15 were found to be associated with decreased food intake and loss of fat and lean tissue in mice (Johnen et al. 2007). It was later found that tumors with Gdf15-induced activation of mitogen-activated protein kinase Map3k11 led to cachexia in mice (Lerner et al. 2016). Three groups identified glial cell line–derived neurotrophic factor receptor alpha-like (Gfra1) as the receptor for Gdf15 (Emmerson et al. 2017, Hsu et al. 2017, Yang et al. 2017) and found that germline deletion of the Gfra1 gene blunted the anorectic response induced by recombinant Gdf15. These studies established GDF15 as an important regulator of appetite and feeding responses, which could be important for targeting cachexia.

SYSTEMIC REGULATION OF CANCER-ASSOCIATED CACHEXIA

A large body of literature suggests that multiple organs contribute to the wasting of skeletal muscle in advanced cancer patients (Baracos et al. 2018, Fearon et al. 2012). This section discusses how these various systemic changes act as signals that trigger muscle atrophy in cancer (Figure 1).
Central Nervous System Regulation of Cachexia

The central nervous system (CNS) has emerged as a sensor and amplifier of inflammation that regulates anorexia and muscle wasting (Burfeind et al. 2016). In this setting, peripheral inflammatory cues are amplified in the mediobasal hypothalamus in the brain, which regulates the neuronal populations that control feeding behavior and energy homeostasis. Direct administration of IL-1β in the CNS by intracerebroventricular injection induces muscle atrophy through a glucocorticoid-dependent transcriptional program (Braun et al. 2011), a phenotype that can be abrogated by adrenalectomy. Hypothalamic inflammation is then followed by a marked activation of the hypothalamic-pituitary-adrenal axis, and in response to a neuroendocrine signaling cascade, cytokines enter the CNS and promote the catabolism of carbohydrates, proteins, and lipids in peripheral tissues, such as skeletal muscle (Burfeind et al. 2016). These studies demonstrated a key role for hypothalamic inflammation in muscle homeostasis.

The hypothalamus regulates feeding behavior through specific centers in the brain. Understanding this process is important during cancer progression or in response to cancer treatments, when lack of appetite or anorexia often exacerbates cachexia. The ventromedial hypothalamus has an appetite-suppressing or anorexigenic function, while the lateral hypothalamus has an appetite-increasing or orexigenic function (Anand & Brobeck 1951). Two distinct neuronal populations drive these functional outputs, the anorexigenic proopiomelanocortin (POMC) neurons and the orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons (Sohn 2015). Both types of neurons integrate central and peripheral signals to mediate feeding responses. Of relevance, the adipocyte-secreted hormone leptin induces anorexigenic effects by exciting the POMC neurons and suppressing the NPY/AgRP neurons (Cowley et al. 2001), whereas the gut hormone ghrelin increases appetite by suppressing POMC neurons and exciting NPY/AgRP neurons (Cowley et al. 2003). Moreover, hypothalamic serotonin can modulate both anorexigenic and orexigenic signaling (Dwarkasing et al. 2014). Even intraperitoneal injection of TNF-α or IL-6 in mice changes their hypothalamic transcriptome, causing alterations in inflammatory and serotonin pathways and reduced food intake (Dwarkasing et al. 2014, 2015, 2016). In addition, activation of AMP-activated protein kinase (AMPK) in the hypothalamus promotes food intake in TB rats to restore energy balance (Ropelle et al. 2007). The CNS has therefore emerged as an important contributor to the development of cancer-associated cachexia through its ability to regulate energy balance, appetite, and body weight.

The Intricate Link Between Adipose Tissue and Muscle Wasting

Adipose tissue was once considered an inert fat depot but has now emerged as an important compartment that exerts both endocrine and paracrine effects and actively engages in cross talk with skeletal muscle. Genetic ablation of the adipose triglyceride lipase gene (Atgl), which encodes an enzyme that catalyzes the first step of triacylglycerol hydrolysis, was found to protect mice from loss of white adipose tissue (WAT) when injected with cachexia-inducing tumor cell lines (Das et al. 2011). This protection was independent of tumor type or feeding status, and surprisingly, Atgl deficiency also conferred resistance to muscle protein degradation and loss of muscle mass (Das et al. 2011). These findings suggest that WAT loss precedes muscle mass loss and that lipolysis of WAT with fatty acid mobilization can activate muscle proteolysis in cancer.

White, beige, and brown adipocytes comprise three kinds of adipose tissue with distinct locations and functions. WAT depots mainly function to store energy in the form of triglycerides. Brown adipose tissue (BAT) depots mainly function to expend energy (Cypess et al. 2009). Brown adipocytes in the BAT depots are known as constitutive or classical brown adipocytes. Beige, or so-called brite, adipocytes are derived from the browning of WAT. They function like brown
adipocytes but appear in WAT as an adaptive response to stimuli such as prolonged cold exposure or β3 adrenergic receptor activation (Sidossis et al. 2015). The browning of WAT results in increased energy expenditure, body weight loss, and improved insulin sensitivity and represents a promising strategy for controlling obesity (Petruzzelli & Wagner 2016). By contrast, in pathological states such as cancer, kidney failure, or postburn injury where energy conservation is vital, the browning of WAT can be detrimental (Kir et al. 2014, 2016; Petruzzelli et al. 2014). Using the C26 cachexia model, the Belury group showed that during the early phases of cachexia when weight loss is less than 10% of initial body weight, mice showed enhanced lipolysis, elevated total energy expenditure, and upregulation of markers of BAT thermogenesis (Kliewer et al. 2015). Therefore, prevention of WAT browning could be beneficial for cachectic cancer patients, who are already suffering from a state of negative energy balance (Kir et al. 2014).

Recent studies have analyzed the underlying mechanisms that drive the browning of WAT. The Spiegelmangroup identified parathyroid hormone–related protein (PTHrP), a small polypeptide that modulates calcium homeostasis, as a mediator of the browning process (Kir et al. 2014). They found that either neutralizing PTHrP or blocking the PTHrP receptor in fat cells can inhibit browning, suppress tumor-induced hypermetabolism, and reduce fat wasting. Interestingly, neutralization of tumor-derived PTHrP preserved both fat and muscle mass and improved muscle function, a surprising result since the PTH/PTHrP receptor is not expressed in muscle fibers. This suggests that adipose tissue factors or metabolites that promote muscle wasting are released in response to PTHrP. The browning of WAT can also be induced by intermediate metabolites such as lactate or by the ketone body β-hydroxybutyrate as an adaptive mechanism to alleviate redox changes (Carriere et al. 2014). Lactate is a product of anaerobic glycolysis and is generated in skeletal muscles in high amounts during intense exercise and in response to increased glycolysis and glutamine metabolism in cancer cells (Doherty & Cleveland 2013). Recent studies have shown that circulating lactate can serve as a TCA (tricarboxylic acid) cycle carbon source (Faubert et al. 2017, Hui et al. 2017). Therefore, lactate acts as a fuel for cancer cells and a potential inducer of cachexia through adipose tissue browning. Moreover, the muscle-derived factor irisin induces WAT browning and increases thermogenesis (Bostrom et al. 2012, Zhang et al. 2016). WAT browning is an early event in the cachexia cascade (Petruzzelli et al. 2014). In genetic models of cancer, treatment with an anti-IL-6 antibody reduced WAT browning, prevented body fat reduction, and reduced the severity of cachexia. IL-6 is known to drive the expression of uncoupling protein 1, an inner mitochondrial membrane protein that is responsible for uncoupling the respiratory chain from ATP synthesis, allowing the proton gradient to be used instead for thermogenesis (Nedergaard & Cannon 2014, Petruzzelli & Wagner 2016, Petruzzelli et al. 2014). In addition, a decrease in AMPK activity and an increase in cell death–inducing DNA fragmentation factor, alpha subunit-like effector A (CIDEA), a key metabolic regulator and component of the WAT remodeling process, are common features of adipose tissue dysfunction in cancer-associated cachexia (Rohm et al. 2016). CIDEA interacts with and causes the destabilization of AMPK in WAT (Qi et al. 2008) and thereby promotes tumor-induced lipolysis. As such, WAT wasting can be inhibited by a peptide that blocks the CIDEA-AMPK interaction (Rohm et al. 2016). Interfering with WAT remodeling may therefore represent a viable strategy for inhibiting the onset of cancer-associated cachexia.

Pancreas Dysfunction and Cancer-Associated Cachexia

Dysfunction and metabolic alterations of the pancreas have been implicated in cachexia development. The pancreas has two distinct roles in physiology, an exocrine function involving the production of enzymes for digestion and an endocrine function that produces hormones that
regulate blood glucose levels. The exocrine pancreas produces key enzymes in the pancreatic juice that are essential for nutrient digestion (Vujasinovic et al. 2017). Pancreatic insufficiency or pancreatic tumors can induce maldigestion and contribute to weight loss (Vujasinovic et al. 2017, Wigmore et al. 1997), although the negative impact of altered exocrine pancreas function on patient survival is controversial (Danai et al. 2018). In healthy condition, pancreatic beta cells secrete the hormone insulin when blood glucose levels rise after a meal (Wilcox 2005). Insulin signals the transport of glucose into insulin-dependent tissues like muscle and suppresses proteolysis (Honors & Kinzig 2012). However, in cancer-associated cachexia, the muscle cells become insulin resistant and muscle catabolism ensues (Honors & Kinzig 2012). Indeed, glucose intolerance and decreased insulin sensitivity are observed in cachectic animal models and cancer patients (Asp et al. 2010, Fernandes et al. 1990, Heber et al. 1985). Reduced insulin secretion from the pancreas has been reported in animal models of cancer cachexia (Fernandes et al. 1990). Interestingly, insulin resistance occurred prior to overt weight loss in the C26 cancer cachexia mouse model and could be partially reversed by treatment with an insulin-sensitizing agent, rosiglitazone (Asp et al. 2010, 2011), suggesting that targeting insulin resistance in this way could prove useful in the treatment of cancer-associated cachexia.

Liver Metabolism in Cancer-Associated Cachexia

The liver serves as a central metabolic organ that possesses remarkable flexibility in sensing and adapting to both a changing nutrient supply and the metabolic demands of other tissues. The liver contributes to cancer-associated cachexia by increasing energy expenditure and by overproducing inflammation-promoting, acute-phase proteins at the expense of structural proteins (Argiles et al. 2018). Under normal physiological conditions, the brain, erythrocytes, and skeletal muscle produce lactate through anaerobic glycolysis and release it into the circulation. Lactate is taken up by the liver and converted to glucose by gluconeogenesis. It is then either released into the circulation or stored as glycogen in the liver, depending on the blood glucose level. In cancer, glucose utilization and lactate production increase markedly based on the aberrant metabolic needs of the cancer cells, a phenomenon known as the Warburg effect. Moreover, the rate of the Cori cycle increases and thereby maintains a perennial negative energy state in the host (Holroyde et al. 1975). To help compensate for this continuous loss of energy, muscle proteins are broken down to release amino acids, which may then be converted into glucose by the liver. An increase in the Cori cycle rate, as well as anomalies in carbohydrate metabolism, has also been observed in advanced cancer patients with cachexia (Holroyde & Reichard 1981, Holroyde et al. 1984) and may therefore contribute to muscle loss in these patients. The metabolic function of the liver is also compromised in cancer-associated cachexia by reduced PPAR-α (peroxisome proliferator–activated receptor alpha)-dependent ketone production, decreased very low-density lipoprotein secretion, hypobetalipoproteinemia, and impaired hepatic triglyceride export through upregulation of TGF-β-1-stimulated clone 22 D4 (Jones et al. 2013). However, very few studies have focused on the contribution of abnormal liver metabolism to cancer-associated cachexia.

Bone and Muscle Interactions: Implications in Cachexia

Bone and muscle are neighboring tissues that interact and physiologically influence one another (DiGirolamo et al. 2013, Waning & Guise 2015). The bone-derived factor Ihh (Indian hedgehog) promotes muscle growth (Bren-Mattison et al. 2011), while the muscle-derived factors IGF-1 (insulin-like growth factor 1) and FGF-2 (fibroblast growth factor 2) stimulate bone formation.
(Liang et al. 1999, Power et al. 2004, Yakar et al. 2002). Of relevance, cancer patients with bone metastases experience skeletal muscle weakness (Waning & Guise 2014), a phenomenon that is heavily influenced by bone-derived factors (Guise & Mundy 1998, Waning & Guise 2015, Waning et al. 2015). Pathological levels of TGF-β released from osteolytic bone metastases induce profound skeletal muscle weakness by reducing Ca\(^{2+}\)-induced muscle force production (Waning et al. 2015). This study provided three important insights into cachexia in advanced cancers. First, it established the importance of metastasis in compromising muscle function by demonstrating that the same cells injected at the primary site do not lead to muscle weakness; instead, bone breakdown and TGF-β release are required to induce muscle weakness. Second, it found that muscle dysfunction can occur even in the absence of muscle mass changes. Finally, it provided new therapeutic targets against cachexia (TGF-β-Nox4-RyR1 calcium leak) that are relevant for cancers with bone metastasis.

The Link Between Gut Microbiota Changes and Cachexia

A new gut microbiota-muscle axis has been uncovered that regulates host inflammation and metabolism in cancer. Early studies using lean and obese mice showed that colonization with microbiota from an obese (but not lean) mouse resulted in increased body fat in germ-free mice, indicating that obesity can be conferred by gut bacteria (Turnbaugh et al. 2006). In this study, obesity was associated with changes in the relative abundance of two dominant bacterial divisions, Bacteriodetes and Firmicutes (Turnbaugh et al. 2006). Furthermore, analysis of the bacterial flora in obese, lean, and anorexic human patients revealed significant differences in the concentration of bacterial species depending on the metabolic state. That is, the concentration of Lactobacillus species was higher in obese patients whereas the concentration of the archaeon Methanobrevibacter smithii was higher in the anorexic patients (Armougom et al. 2009). Interestingly, TB Apc\(^{Min/+}\) mice that were fed Lactobacillus reuteri, a probiotic that can ameliorate gastrointestinal disorders, had a lower intestinal tumor burden and gained protection against muscle wasting (Varian et al. 2016). In addition, reduced muscle atrophy was observed in a mouse model of acute leukemia that was given oral supplementation with L. reuteri and L. gasseri, which correlated with decreased circulating proinflammatory cytokine levels (Bindels et al. 2012). In the context of infection-induced cachexia, gut colonization by the O21:H\(^+\) strain of Escherichia coli induces systemic levels of IGF-1 that protect against muscle wasting from both Salmonella typhimurium–induced intestinal infection and Burkholderia thailandensis–induced pneumonic infection (Schieber et al. 2015). In C26 TB mice, a murine model of colon cancer, microbiota of cachectic mice showed an increase in the Enterobacteriaceae species Klebsiella oxytoca associated with an IL-6-driven disruption in gut barrier function (Bindels et al. 2018). Reduced cecal content and increased villi length and crypt depth were also associated with enhanced gut permeability in this model, with no effects on food intake. Gut microbiota have recently been shown to metabolize bile acids (Wahlstrom et al. 2016), which are known to enhance fat absorption in the intestine and regulate fat metabolism by acting as signaling molecules and metabolic integrators (Bindels & Delzenne 2013, Kawamata et al. 2003). Bile acids are synthesized in the liver, and gut microbiota influence the relative composition and abundance of bile acids across different tissue compartments from liver to kidney (de Aguiar Vallim et al. 2013, Swann et al. 2011). Bile acids can also promote energy expenditure in fat cells by increasing intracellular thyroid hormone activation (Watanabe et al. 2006). They do so by inducing cyclic-AMP-dependent thyroid hormone–activating enzyme D2 (type 2 iodothyronine deiodinase) and oxygen consumption, a phenomenon observed in both brown adipocytes and skeletal muscle cells (Watanabe et al. 2006). Therefore, the link between gut microbiota and bile acid metabolism may be important in the development of cachexia.
NEW DIRECTIONS

In this section, we summarize the findings of few recent studies that have provided new insights into cachexia pathogenesis. New insights have come from studies in Drosophila that have elucidated how TISFs induce insulin resistance and muscle wasting. The Drosophila IGF-binding protein homolog ImpL2, an antagonist of insulin signaling, promotes muscle wasting upon secretion from a Drosophila tumor (Figueroa-Clarevega & Bilder 2015). Similarly, an independent study showed that a reduction in systemic insulin/IGF signaling associated with increased ImpL2 expression also resulted in a muscle-wasting phenotype in Drosophila (Kwon et al. 2015). It is well established that IGF-1 signaling normally regulates muscle mass (Rommel et al. 2001) and has been found to promote muscle protein catabolism upon downregulation (Bodine et al. 2001b, Sandri et al. 2004).

The effects of insulin signaling disruption in peripheral tissues in Drosophila are consistent with the insulin resistance observed in cachectic patients and mouse models (Honors & Kinzig 2012), and these studies elucidated their underlying mechanisms.

To understand how a disrupted metabolism drives muscle atrophy, Shyh-Chang and colleagues exposed human muscle cells to conditioned media from cachexia-inducing human cancer cell lines (Fukawa et al. 2016). The muscle cells rapidly increased fatty acid oxidation, which led to oxidative stress, p38 activation, and impaired muscle growth. Interestingly, pharmacological blockade of fatty acid oxidation rescued cancer-associated cachexia. These studies demonstrate that tumor-secreted cytokines converge to trigger excessive fatty acid catabolism in muscle fibers and that early metabolic stress responses in muscle fibers may lead to muscle atrophy.

Studies from our laboratory have shown that altered zinc homeostasis in muscle promotes muscle wasting in the context of metastatic cancer. The metal ion transporter ZRT- and IRT-like protein 14 (ZIP14) is induced in muscle cells in both cachectic patients and mouse models of metastatic cancers (Wang et al. 2018). An increase in ZIP14 expression leads to a concomitant increase in zinc uptake, which induces myosin heavy chain loss in mature muscle cells and blocks differentiation in muscle progenitor cells. Moreover, muscle wasting is further accelerated in TB mice with zinc-supplemented water in a Zip14-dependent manner. Modulating zinc intake and blocking ZIP14 function therefore represent two new therapeutic strategies for the prevention or treatment of cancer-associated cachexia. Interestingly, expression of ZIP4, another zinc transporter, in pancreatic cancer cells promotes tumor growth and activates RAB27B, causing the release of high levels of extracellular vesicles into circulation. These vesicles serve as carriers of tumor-derived heat shock proteins HSP70 and HSP90, which were shown to induce muscle catabolism and cachexia through the p38 MAPK pathway (Liu et al. 2018, Yang et al. 2019). Therefore, zinc chelation or blockade of a zinc transporter (ZIP4 in tumor cells and ZIP14 in muscle cells) might be beneficial for preventing cancer-associated cachexia. Collectively, aberrant zinc regulation has also been observed in dexamethasone-induced muscle atrophy (Summermatter et al. 2017) and muscular dystrophy (Crawford & Bhattacharya 1987), suggesting that it may represent a common underlying mechanism of multiple muscle-wasting pathologies.

Finally, recent studies have sparked new interest in cancer prevention and combination therapies for cachexia (Argiles et al. 2019). Regular exercise in mice can reduce tumor incidence and growth across tumor models through an interaction with the immune system (Pedersen et al. 2016). Experimental and clinical studies have also shown that exercise reduces symptoms of cachexia in cancer models and human patients (Aversa et al. 2017, Ballaro et al. 2019, Lonbro et al. 2013, Peddle-McIntyre et al. 2012, Pigna et al. 2016). Although enrolling advanced cancer patients with cachexia into exercise programs could be a clinical challenge, the idea has emerged as a promising noninvasive, multimodal approach that might benefit cancer patients and improve their survival and quality of life (Muscaritoli et al. 2015, Solheim et al. 2018).
PERSPECTIVES AND CONCLUSIONS

The syndrome of cachexia, with its debilitating symptoms and manifestations resulting from lack of appetite, loss of muscle mass and function, fatigue, and metabolic dysfunction (Baracos et al. 2018, Fearon et al. 2013), adds an additional layer of complexity to the already challenging task of conquering advanced stages of cancer. Moreover, a cachexia diagnosis in cancer patients has become increasingly difficult in the current age of obesity, where the loss of muscle mass can be easily masked by fat gain (Esfandiari et al. 2014). However, subtle changes in body composition can now be measured using imaging analysis from CT scans from cancer patients and can be followed up longitudinally (Mourtzakis et al. 2008). Despite an accurate diagnosis, however, effective treatment options for cachexia patients are still lacking, so the search for cachexia mediators, mechanisms, and treatment strategies needs to be accelerated. Great strides have been achieved in the field of cancer-associated cachexia due to mechanistic studies that have identified how muscle and fat cells respond to TISFs and perturbed signaling pathways; however, the great majority of experimental studies designed for treating cachexia have performed poorly in over 100 clinical trials. Whether this is due to limited efficacy of the targeting agent or whether inactivating a single mediator is insufficient to reverse cachexia in advanced cancer patients is being reevaluated.

To model cachexia in the advanced cancer context, researchers are developing new preclinical cachexia models that can more accurately recapitulate the human syndrome (Penna et al. 2016). These include patient-derived orthotopic models (Go et al. 2017), genetically engineered mouse models (Goncalves et al. 2018, Wang et al. 2018), and allograft models (Greco et al. 2015, Wang et al. 2018, Waning et al. 2015) that metastasize and develop cachexia. These preclinical models can accelerate testing of combined anticachexia and anticancer therapies for translational studies. Additionally, validated molecular markers of human cachexia across cancer types are needed for translating these experimental studies successfully in the clinic. While cachexia was once ignored as a mere side effect of advanced cancer, it is now widely accepted as a formidable obstacle that undermines current treatment regimens. The early diagnosis and effective treatment of cachexia should therefore improve the outcome of current anticancer therapies and ultimately enhance the quality and duration of life for cancer patients suffering from this syndrome.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

We would like to thank members of our laboratory for their feedback. We would like to acknowledge the following funding sources: NCI (National Cancer Institute) grant RO1 CA231239, the Pershing Square Sohn Prize, developmental funds from NIH (National Institutes of Health)/NCI Cancer Center Support Grant P30CA013696, an Irving Scholar Award, the Interdisciplinary Research Initiatives Seed (IRIS) program, and the Irma T. Hirschl Monique Weill-Caulier Trust Award to S.A.

LITERATURE CITED

Acharyya S, Guttridge DC. 2007. Cancer cachexia signaling pathways continue to emerge yet much still points to the proteasome. Clin. Cancer Res. 13:1356–61
Ali S, Garcia JM. 2014. Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options—a mini-review. Gerontology 60:294–305
Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, et al. 2007. Lack of myostatin results in excessive muscle growth but impaired force generation. PNAS 104:1835–40

Anand BK, Brobeck JR. 1951. Localization of a “feeding center” in the hypothalamus of the rat. Proc. Soc. Exp. Biol. Med. 77:323–24

Ando K, Takahashi F, Kato M, Kaneko N, Doi T, et al. 2014. Tocilizumab, a proposed therapy for the cachexia of Interleukin-6-expressing lung cancer. PLOS ONE 9:e102436

Ando K, Takahashi F, Motojima S, Nakashima K, Kaneko N, et al. 2013. Possible role for tocilizumab, an anti-interleukin-6 receptor antibody, in treating cancer cachexia. J. Clin. Oncol. 31:e69–72

Argiles JM, Busquets S, Steffes M, Lopez-Soriano FJ. 2014. Cancer cachexia: understanding the molecular basis. Nat. Rev. Cancer 14:754–62

Argiles JM, Busquets S, Toledo M, Lopez-Soriano FJ. 2009. The role of cytokines in cancer cachexia. Curr. Opin. Support. Palliat. Care 3:263–68

Argiles JM, Lopez-Soriano FJ, Steffen B, Busquets S. 2019. Therapeutic strategies against cancer cachexia. Eur. J. Endocrinol. 159:9–20

Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. 2009. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLOS ONE 4:e7125

Asp ML, Tian M, Kliewer KL, Belury MA. 2011. Rosiglitazone delayed weight loss and anorexia while attenuating adipose depletion in mice with cancer cachexia. Cancer Biol. Ther. 12:957–65

Asp ML, Tian M, Wendel AA, Belury MA. 2010. Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. Int. J. Cancer 126:756–63

Aversa Z, Costelli P, Muscaritoli M. 2017. Cancer-induced muscle wasting: latest findings in prevention and treatment. Ther. Adv. Med. Oncol. 9:369–82

Ballaro R, Penna F, Pin F, Gomez-Cabrera MC, Vina J, Costelli P. 2019. Moderate exercise improves experimental cancer cachexia by modulating the redox homeostasis. Cancers 11:e285

Baltgalvis KA, Berger FG, Pena MM, Davis JM, Muga SJ, Carson JA. 2008. Interleukin-6 and cachexia in ApcMin/+ mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294:R393–401

Baltgalvis KA, Berger FG, Pena MM, Davis JM, White JP, Carson JA. 2009. Muscle wasting and interleukin-6 induced atrogin-I expression in the cachectic ApcMin/+ mouse. Pflugers Arch. 457:989–1001

Baracos VE, Martin L, Koc M, Guttridge DC, Fearon KCH. 2018. Cancer-associated cachexia. Nat. Rev. Dis. Primers 4:17105

Barreto R, Mandili G, Witzmann FA, Novelli F, Zimmers TA, Bonetto A. 2016. Cancer and chemotherapy contribute to muscle loss by activating common signaling pathways. Front. Physiol. 7:472

Baul V, Karin M. 2001. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 11:372–77

Bennani-Baiti N, Walsh D. 2009. What is cancer anorexia-cachexia syndrome? A historical perspective. J. R. Coll. Physicians Edinb. 39:257–62

Benny Klimek ME, Aydogdu T, Link MJ, Pons M, Koniaris LG, Zimmers TA. 2010. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem. Biophys. Res. Commun. 391:1548–54

Beutler B, Greenwald D, Hulmes JD, Chang M, Pan YC, et al. 1985. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316:552–54

Bindels LB, Beck R, Schalman O, Martin JC, De Backer F, et al. 2012. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model. PLOS ONE 7:e37971

Bindels LB, Delenne NM. 2013. Muscle wasting: The gut microbiota as a new therapeutic target? Int. J. Biochem. Cell Biol. 45:2186–90

Bindels LB, Neyrinck AM, Loumaye A, Catry E, Walgrave H, et al. 2018. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. Onctarget 9:18224–38
Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, et al. 2001a. Identification of ubiquitin ligases required for skeletal muscle atrophy. *Science* 294:1704–8

Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, et al. 2001b. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. *Nat. Cell Biol.* 3:1014–19

Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan R, et al. 2012. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. *Am. J. Physiol. Endocrinol. Metab.* 303:E410–21

Bonetto A, Aydogdu T, Kunzevitzky N, Guttridge DC, Khuri S, et al. 2011. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. *PLOS ONE* 6:e22538

Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, et al. 2012. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. *Nature* 481:463–68

Braun TP, Zhu X, Szumowski M, Scott GD, Grossberg AJ, et al. 2011. Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. *J. Exp. Med.* 208:2449–63

Bonnett Y, Hausburg M, Olwin BB. 2011. Growth of limb muscle is dependent on skeletal-derived Indian hedgehog. *Dev. Biol.* 356:486–95

Burfeind KG, Michaelis KA, Marks DL. 2016. The central role of hypothalamic inflammation in the acute illness response and cachexia. *Semin. Cell Dev. Biol.* 54:42–52

Busquets S, Toledo M, Marmonet E, Orpi M, Capdevila E, et al. 2012. Formoterol treatment downregulates the myostatin system in skeletal muscle of cachectic tumour-bearing rats. *Oxid. Lett.* 3:185–89

Carriere A, Jeanson Y, Berger-Muller S, Andre M, Chenouard V, et al. 2014. Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. *Diabetes* 63:3253–65

Chen SE, Jin B, Li YP. 2007. TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK. *Am. J. Physiol. Cell Physiol.* 292:C1660–71

Cohen S, Nathan JA, Goldberg AL. 2015. Muscle wasting in disease: molecular mechanisms and promising therapies. *Nat. Rev. Drug Discov.* 14:58–74

Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, et al. 2001. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. *Nature* 411:480–84

Cowley MA, Smith RG, Diano S, Pronchuk N, et al. 2003. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. *Neuron* 37:649–61

Crawford AJ, Bhattacharya SK. 1987. Excessive intracellular zinc accumulation in cardiac and skeletal muscles of dystrophic hamsters. *Exp. Neurol.* 95:265–76

Cyphers AM, Lehman S, Williams G, Tal I, Rodman D, et al. 2009. Identification and importance of brown adipose tissue in adult humans. *N. Engl. J. Med.* 360:1509–17

Damrauer JS, Stadler ME, Acharyya S, Baldwin AS, Couch ME, Guttridge DC. 2018. Chemotherapy-induced muscle wasting: association with NF-kB and cancer cachexia. *Eur. J. Transl. Myol.* 28:7390

Danai LV, Babic A, Rosenthal MH, Dennstedt EA, Muir A, et al. 2018. Altered exocrine function can drive adipose wasting in early pancreatic cancer. *Nature* 558:600–4

Das SK, Eder S, Schauer S, Diwoky C, Temmel H, et al. 2011. Adipose triglyceride lipase contributes to cancer-associated cachexia. *Science* 333:233–38

de Aguiar Vallim TQ, Tarling EJ, Edwards PA. 2013. Pleiotropic roles of bile acids in metabolism. *Cell Metab.* 17:657–69

DiGirolamo DJ, Kiel DP, Esser KA. 2013. Bone and skeletal muscle: neighbors with close ties. *J. Bone Miner. Res.* 28:1509–18

Doherty JR, Cleveland JL. 2013. Targeting lactate metabolism for cancer therapeutics. *J. Clin. Investig.* 123:3685–92

Dwarkasing JT, Boekschoten MV, Argiles JM, van Dijk M, Busquets S, et al. 2015. Differences in food intake of tumour-bearing cachectic mice are associated with hypothalamic serotonin signalling. *J. Cachexia Sarcoopenia Muscle* 6:84–94
Dwarkasing JT, van Dijk M, Dijk FJ, Boekschoten MV, Faber J, et al. 2014. Hypothalamic food intake regulation in a cancer-cachectic mouse model. J. Cachexia Sarcopenia Muscle 5:159–69
Dwarkasing JT, Witkamp RF, Boekschoten MV, Ter Laak MC, Heins MS, van Norren K. 2016. Increased hypothalamic serotonin turnover in inflammation-induced anorexia. BMC Neurosci. 17:26
Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, et al. 2015. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 22:164–74
Egerman MA, Glass DJ. 2014. Signaling pathways controlling skeletal muscle mass. Crit. Rev. Biochem. Mol. Biol. 49:59–68
Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, et al. 2017. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat. Med. 23:1215–19
Esfandiari N, Ghosh S, Prado CM, Martin L, Mazurak V, Baracos VE. 2014. Age, obesity, sarcopenia, and proximity to death explain reduced mean muscle attenuation in patients with advanced cancer. J. Frailty Aging 3:3–8
Espat NJ, Auffenberg T, Rosenberg JJ, Rogy M, Martin D, et al. 1996. Ciliary neurotrophic factor is catabolic and shares with IL-6 the capacity to induce an acute phase response. Am. J. Physiol. 271:R185–90
Evans WJ. 1996. Reversing sarcopenia: how weight training can build strength and vitality. Geriatrics 51:46–53
Fearon KCH, Arends J, Baracos V. 2013. Understanding the mechanisms and treatment options in cancer cachexia. Nat. Rev. Clin. Oncol. 10:90–99
Fearon KCH, Glass DJ, Guttridge DC. 2012. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 16:153–66
Fearon KCH, Strasser F, Anker SD, Bosaeus I, Bruera E, et al. 2011. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12:489–95
Fernandes LC, Machado UF, Nogueira CR, Carpinelli AR, Curi R. 1990. Insulin secretion in Walker 256 tumor cachexia. Am. J. Physiol. 258:E1033–36
Figueroa-Clarevega A, Bilder D. 2015. Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev. Cell 33:47–55
Fujita J, Tsurinaka T, Yano M, Ebisui C, Saito H, et al. 1996. Anti-interleukin-6 receptor antibody prevents muscle atrophy in colon-26 adenocarcinoma-bearing mice with modulation of lysosomal and ATP-ubiquitin-dependent proteolytic pathways. Int. J. Cancer 68:637–43
Fukawa T, Yan-Jiang BC, Min-Wen JC, Jun-Hao ET, Huang D, et al. 2016. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. Nat. Med. 22:666–71
Gallot YS, Durieux AC, Castells J, Desgeorges MM, Vernus B, et al. 2014. Myostatin gene inactivation prevents skeletal muscle wasting in cancer. Cancer Res. 74:7344–56
Gilliam LA, Moylan JS, Callahan LA, Sumandea MP, Reid MB. 2011. Doxorubicin causes diaphragm weakness in murine models of cancer chemotherapy. Muscle Nerve 43:94–102
Gilliam LA, St. Clair DK. 2011. Chemotherapy-induced weakness and fatigue in skeletal muscle: the role of oxidative stress. Antioxid. Redox Signal. 15:2543–63
Go KL, Delitto D, Judge SM, Gerber MH, George TJ Jr., et al. 2017. Orthotopic patient-derived pancreatic cancer xenografts engraft into the pancreatic parenchyma, metastasize, and induce muscle wasting to recapitulate the human disease. Pancreas 46:813–19
Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. 2001. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. PNAS 98:14440–45
Goncalves MD, Hwang SK, Pauli C, Murphy CJ, Cheng Z, et al. 2018. Fenofibrate prevents skeletal muscle loss in mice with lung cancer. PNAS 115:E743–52
Greco SH, Tomkotter L, Vahle AK, Rokosh R, Avanzi A, et al. 2015. TGF-β blockade reduces mortality and metabolic changes in a validated murine model of pancreatic cancer cachexia. PLOS ONE 10:e0132786
Guise TA, Mundy GR. 1998. Cancer and bone. Endocr. Rev. 19:18–54
Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr. 2000. NF-κB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289:2363–66
Heber D, Byerly LO, Chlebowski RT. 1985. Metabolic abnormalities in the cancer patient. Cancer 55:225–29
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. 2003. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374:1–20
Henderson JT, Seniuk NA, Richardson PM, Gauldie J, Roder JC. 1994. Systemic administration of ciliary neurotrophic factor induces cachexia in rodents. J. Clin. Investig. 93:2632–38
Holroyde CP, Gabuzda TG, Putnam RC, Paul P, Reichard GA. 1975. Altered glucose metabolism in metastatic carcinoma. Cancer Res. 35:3710–14
Holroyde CP, Reichard GA. 1981. Carbohydrate metabolism in cancer cachexia. Cancer Treat. Rep. 65(Suppl. 5):55–59
Holroyde CP, Skutches CL, Boden G, Reichard GA. 1984. Glucose metabolism in cachectic patients with colorectal cancer. Cancer Res. 44:5910–13
Honors MA, Kinzig KP. 2012. The role of insulin resistance in the development of muscle wasting during cancer cachexia. J. Cachexia Sarcoopenia Muscle 3:5–11
Hsu JY, Crawley S, Chen M, Ayupova DA, Lindhout DA, et al. 2017. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550:255–59
Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, et al. 2017. Glucose feeds the TCA cycle via circulating lactate. Nature 551:115–18
Jatoi A, Ritter HL, Dueck A, Nguyen PL, Nikcevich DA, et al. 2010. A placebo-controlled, double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer 68:234–39
Johnen H, Lin S, Kuffner T, Brown DA, Tsi VW, et al. 2007. Tumor-induced anorexia and weight loss are mediated by the TGF-β superfamily cytokine MIC-1. Nat. Med. 13:1333–40
Jones A, Friedrich K, Rohm M, Schafer M, Algire C, et al. 2013. TSC22D4 is a molecular output of hepatic wasting metabolism. EMBO Mol. Med. 5:294–308
Jones JE, Cadena SM, Gong C, Wang X, Chen Z, et al. 2018. Supraphysiologic administration of GDF11 induces cachexia in part by upregulating GDF15. Cell Rep. 22:1522–30
Kalyani RR, Corriere M, Ferrucci L. 2014. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2:819–29
Kandarian SC, Nosacka RL, Delitto AE, Judge AR, Judge SM, et al. 2018. Tumour-derived leukaemia inhibitory factor is a major driver of cancer cachexia and morbidity in C26 tumour-bearing mice. J. Cachexia Sarcoopenia Muscle 9:1109–20
Kaplan RN, Psaila B, Lyden D. 2006. Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev. 25:521–29
Kawakami M, Pekala PH, Lane MD, Cerami A. 1982. Lipoprotein lipase suppression in 3T3-L1 cells by an endotoxin-induced mediator from exudate cells. PNAS 79:912–16
Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, et al. 2003. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278:9435–40
Kir S, Komaba H, Garcia AP, Economopoulos KP, Liu W, et al. 2016. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab. 23:315–23
Kir S, White JP, Kleiner S, Kazak L, Cohen P, et al. 2014. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513:100–4
Kliewer KL, Ke JY, Tian M, Cole RM, Andridge RR, Belury MA. 2015. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice. Cancer Biol. Ther. 16:886–97
Kopf M, Baumann H, Freer G, Freudenberg M, Lamers M, et al. 1994. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368:339–42
Kwon Y, Song W, Droujinine IA, Hu Y, Asara JM, Perrimon N. 2015. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImIPl2. Dev. Cell 33:36–46
Lach-Trifilieff E, Minetti GC, Sheppard K, Bebnun C, Feige JN, et al. 2014. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol. Cell Biol. 34:606–18
Literals, Mestatists J, Fury W, Milosio L, Trejos J, et al. 2017. Activin A more prominently regulates muscle mass in primates than does GDF8. Nat. Commun. 8:15153
Laurence J. 1858. The Diagnosis of Surgical Cancer. London: John Churchill
Lee SJ, Reed LA, Davies MV, Girgenrath S, Goad ME, et al. 2005. Regulation of muscle growth by multiple ligands signaling through activin type II receptors. *PNAS* 102:18117–22
Lerner L, Tao J, Liu Q, Nicoletti R, Feng B, et al. 2016. MAP3K11/GDF15 axis is a critical driver of cancer cachexia. *J. Cachexia Sarcopenia Muscle* 7:467–82
Li YP, Chen Y, John J, Moylan J, Lin B, et al. 2005. TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. *FASEB J.* 19:362–70
Li YP, Schwartz RJ, Waddell ID, Holloway BR, Reid MB. 1998. Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-κB activation in response to tumor necrosis factor alpha. *FASEB J.* 12: 871–80
Liang H, Pun S, Wronska TJ. 1999. Bone anabolic effects of basic fibroblast growth factor in ovariectomized rats. *Endocrinology* 140:5780–88
Liu M, Yang J, Zhang Y, Zhou Z, Cui X, et al. 2018. ZIP4 promotes pancreatic cancer progression by repressing ZO-1 and Claudin-1 through a ZEB1-dependent transcriptional mechanism. *Clin. Cancer Res.* 24:3186–96
Lloverya M, Garcia-Martinez C, Lopez-Soriano J, Agell N, Lopez-Soriano FJ, et al. 1998a. Protein turnover in skeletal muscle of tumour-bearing transgenic mice overexpressing the soluble TNF receptor 1. *Cancer Lett.* 130:19–27
Lloverya M, Garcia-Martinez C, Lopez-Soriano J, Carbo N, Agell N, et al. 1998b. Role of TNF receptor 1 in protein turnover during cancer cachexia using gene knockout mice. *Mol. Cell Endocrinol.* 142:183–89
Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, et al. 2013. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. *Cell* 153:828–39
Lombro S, Dalgas U, Prindahl H, Johansen J, Nielsen JL, et al. 2013. Progressive resistance training re-builds lean body mass in head and neck cancer patients after radiotherapy—results from the randomized DAHANCA 25B trial. *Radiother. Oncol.* 108:314–19
Masiero E, Agatea L, Mamuccari C, Blauw B, Loro E, et al. 2009. Autophagy is required to maintain muscle mass. *Cell Metab.* 10:507–15
McAllister SS, Weinberg RA. 2010. Tumor-host interactions: a far-reaching relationship. *J. Clin. Oncol.* 28:4022–28
McPherron AC, Lawler AM, Lee SJ. 1997. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. *Nature* 387:83–90
Milan G, Romanello V, Pescatore F, Armani A, Paik JH, et al. 2015. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. *Nat. Commun.* 6:6670
Mitch WE, Golldberg AL. 1996. Mechanisms of muscle wasting: the role of the ubiquitin-proteasome pathway. *N. Engl. J. Med.* 335:1897–905
Morley JE, Thomas DR, Wilson MM. 2006. Cachexia: pathophysiology and clinical relevance. *Am. J. Clin. Nutr.* 83:735–43
Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCarag LJ, Baracos VE. 2008. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. *Appl. Physiol. Nutr. Metab.* 33:997–1006
Murphy KT. 2016. The pathogenesis and treatment of cardiac atrophy in cancer cachexia. *Am. J. Physiol. Heart Circ. Physiol.* 310:H466–77
Muscaritoli M, Molfino A, Lucia S, Rossi Fanelli F. 2015. Cachexia: a preventable comorbidity of cancer. A T.A.R.G.E.T. approach. *Crit. Rev. Oncol. Hematol.* 94:251–59
Narsale AA, Carson JA. 2014. Role of interleukin-6 in cachexia: therapeutic implications. *Curr. Opin. Support. Palliat. Care* 8:321–27
Nedergaard J, Cannon B. 2014. The browning of white adipose tissue: some burning issues. *Cell Metab.* 20:396–407
Nissinen TA, Hentila J, Penna F, Lampinen A, Lautaoja JH, et al. 2018. Treating cachexia using soluble ACVR2B improves survival, alters mTOR localization, and attenuates liver and spleen responses. *J. Cachexia Sarcopenia Muscle* 9:514–29
Norton JA, Moley JF, Green MV, Carson RE, Morrison SD. 1985. Parabiotic transfer of cancer anorexia/cachexia in male rats. Cancer Res. 45:5547–52

Ohe Y, Podack ER, Olsen KJ, Miyahara Y, Miura K, et al. 1993. Interleukin-6 cDNA transfected Lewis lung carcinoma cells show unaltered net tumour growth rate but cause weight loss and shortened survival in syngeneic mice. Br. J. Cancer 67:939–44

Oliff A, Defeo-Jones D, Boyer M, Martinez D, Kiefer D, et al. 1987. Tumors secreting human TNF/cachectin induce cachexia in mice. Cell 50:555–63

Paul PK, Gupta SK, Bhatnagar S, Panuguri SK, Darnay BG, et al. 2010. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J. Cell. Biol. 191:1395–411

Peddle-McIntyre CJ, Bell G, Fenton D, McCargar L, Courneya KS. 2012. Feasibility and preliminary efficacy of progressive resistance exercise training in lung cancer survivors. Lung Cancer 75:126–32

Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, et al. 2016. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab. 23:554–62

Penna F, Ballaro R, Martinez-Cristobal P, Sala D, Sebastian D, et al. 2019. Autophagy exacerbates muscle wasting in cancer cachexia and impairs mitochondrial function. J. Med. Biol. 431:2674–86

Penna F, Busquets S, Argiles JM. 2016. Experimental cancer cachexia: evolving strategies for getting closer to the human scenario. Semin. Cell Dev. Biol 54:20–27

Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, et al. 2014. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20:433–47

Petruzzelli M, Wagner EF. 2016. Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes Dev. 30:489–501

Pigna E, Berardi E, Aulino P, Rizzuto E, Zampieri S, et al. 2016. Aerobic exercise and pharmacological treatments counteract cachexia by modulating autophagy in colon cancer. Sci. Rep. 6:26991

Polge C, Heng AE, Jarzaguet M, Ventadour S, Claustre A, et al. 2011. Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1. FASEB J. 25:3790–802

Power RA, Iwaniec UT, Magee KA, Mitova-Caneva NG, Wronska TJ. 2004. Basic fibroblast growth factor has rapid bone anabolic effects in ovariectomized rats. Osteoporos. Int. 15:716–23

Prado BL, Qian Y. 2019. Anti-cytokines in the treatment of cancer cachexia. Ann. Palliat. Med. 8:67–79

Prado CM, Birdsell LA, Baracos VE. 2009. The emerging role of computerized tomography in assessing cancer cachexia. Curr. Op. Support. Palliat. Care 3:269–75

Qi J, Gong J, Zhao T, Zhao J, Lam P, et al. 2008. Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue. EMBO J. 27:1537–48

Rohm M, Schafer M, Laurent V, Ustunel BE, Niopek K, et al. 2016. An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nat. Med. 22:1120–30

Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, et al. 2001. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol. 3:1009–13

Ropelle ER, Pauli JR, Zecchin KG, Ueno M, de Souza CT, et al. 2007. A central role for neuronal adenosine 5′-monophosphate-activated protein kinase in cancer-induced anorexia. Endocrinology 148:5220–29

Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF. 2002. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes 51:1319–36

Sandri M. 2016. Protein breakdown in cancer cachexia. Semin. Cell Dev. Biol. 54:11–19

Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, et al. 2004. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412

Sartori R, Schirvis E, Blauw B, Bortolanza S, Zhao J, et al. 2013. BMP signaling controls muscle mass. Nat. Genet. 45:1309–18

Schierer AM, Lee YM, Chang MW, Leblanc M, Collins B, et al. 2015. Disease tolerance mediated by microbione E. coli involves inflammasome and IGF-1 signaling. Science 350:558–63

Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, et al. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350:2682–88
Short KR, Vittone JL, Bigelow ML, Proctor DN, Nair KS. 2004. Age and aerobic exercise training effects on whole body and muscle protein metabolism. *Am. J. Physiol. Endocrinol. Metab.* 286:E92–101

Sidossis LS, Porter C, Saraf MK, Borsheim E, Radhakrishnan RS, et al. 2015. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. *Cell Metab.* 22:219–27

Sinha M, Jang YC, Oh J, Khong D, Wu EY, et al. 2014. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. *Science* 344:649–52

Sohn JW. 2015. Network of hypothalamic neurons that control appetite. *BMJ Rep.* 48:229–33

Solheim TS, Laird BJA, Balstad TR, Bye A, Stene G, et al. 2018. Cancer cachexia: rationale for the MENAC (Multimodal-Exercise, Nutrition and Anti-inflammatory medication for Cachexia) trial. *BMJ Support. Palliat. Care* 8:258–65

Strassmann G, Fong M, Kenney JS, Jacob CO. 1992. Evidence for the involvement of interleukin 6 in experimental cancer cachexia. *J. Clin. Investig.* 89:1681–84

Summermatter S, Bouzan A, Pierrel E, Melly S, Stauffer D, et al. 2017. Blockade of metallothioneins 1 and 2 increases skeletal muscle mass and strength. *Mol. Cell Biol.* 37:e00305

Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, et al. 2011. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. *PNAS* 108(Suppl. 1):4523–30

Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA. 2005. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. *J. Biol. Chem.* 280:2847–56

Tsai VW, Macia L, Johnen H, Kuffner T, Manadhar R, et al. 2013. TGF-β superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator. *PLoS ONE* 8:e55174

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. *Nature* 444:1027–31

Varian BJ, Goureshetti S, Poutahidis T, Lakritz JR, Levkovich T, et al. 2016. Beneficial bacteria inhibit cachexia. *Oncotarget* 7:11803–16

Vujasinovic M, Valente R, Del Chiari M, Permert J, Lohr JM. 2017. Pancreatic exocrine insufficiency in pancreatic cancer. *Nutrients* 9:183

von Haehling S, Anker MS, Anker SD. 2016. Prevalence and clinical impact of cachexia in chronic illness in Europe, USA, and Japan: facts and numbers update 2016. *J. Cachexia Sarcopenia Muscle* 7:507–9

Wahlstrom A, Sayin SI, Marschall HU, Backhed F. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. *Cell Metab.* 24:41–50

Waning DL, Guise TA. 2014. Molecular mechanisms of bone metastasis and associated muscle weakness. *Clin. Cancer Res.* 20:3071–77

Waning DL, Guise TA. 2015. Cancer-associated muscle weakness: What’s bone got to do with it? *BoneKEy Rep.* 4:691

Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, et al. 2015. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. *Nat. Med.* 21:1262–71

Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, et al. 2006. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. *Nature* 439:484–89

White JP, Baynes JW, Welle SL, Kostek MC, Matesic LE, et al. 2011. The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the ApoB/−/− mouse. *PLoS ONE* 6:e24650

Wiedenmann B, Malfertheiner P, Friess H, Ritch P, Arseneau J, et al. 2008. A multicenter, phase II study of infliximab plus gemcitabine in pancreatic cancer cachexia. *J. Support. Oncol.* 6:18–25

Wigmore SJ, Pester CE, Richardson RA, Fearon KC. 1997. Changes in nutritional status associated with unresectable pancreatic cancer. *Br. J. Cancer* 75:106–9

Wilcox G. 2005. Insulin and insulin resistance. *Clin. Biochem. Rev.* 26:19–39

Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, et al. 2002. Circulating levels of IGF-1 directly regulate bone growth and density. *J. Clin. Investig.* 110:771–81
Yakovenko A, Cameron M, Trevino JG. 2018. Molecular therapeutic strategies targeting pancreatic cancer induced cachexia. *World J. Gastrointest. Surg.* 10:95–106

Yang J, Zhang Z, Zhang Y, Ni X, Zhang G, et al. 2019. ZIP4 promotes muscle wasting and cachexia in mice with orthotopic pancreatic tumors by stimulating RAB27B-regulated release of extracellular vesicles from cancer cells. *Gastroenterology* 156:722–34.e6

Yang L, Chang CC, Sun Z, Madsen D, Zhu H, et al. 2017. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. *Nat. Med.* 23:1158–66

Zaki MH, Nemeth JA, Trikha M. 2004. CNTO 328, a monoclonal antibody to IL-6, inhibits human tumor-induced cachexia in nude mice. *Int. J. Cancer* 111:592–95

Zhang Y, Xie C, Wang H, Foss RM, Clare M, et al. 2016. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. *Am. J. Physiol. Endocrinol. Metab.* 311:E530–41

Zhao J, Brault JJ, Schild A, Cao P, Sandri M, et al. 2007. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. *Cell Metab.* 6:472–83

Zhou X, Wang JL, Lu J, Song Y, Kwak KS, et al. 2010. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. *Cell* 142:531–43

Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, et al. 2002. Induction of cachexia in mice by systemically administered myostatin. *Science* 296:1486–88

Zimmers TA, Fishel ML, Bonetto A. 2016. STAT3 in the systemic inflammation of cancer cachexia. *Semin. Cell Dev. Biol.* 54:28–41

Zimmers TA, Jiang Y, Wang M, Liang TW, Rupert JE, et al. 2017. Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting. *Basic Res. Cardiol.* 112:48
Contents

AMP-Activated Protein Kinase: Friend or Foe in Cancer?
Diana Vara-Ciruelos, Madhumita Dandapani, and D. Grahame Hardie 1

Metabolism in the Tumor Microenvironment
Allison N. Lau and Matthew G. Vander Heiden .. 17

Mitophagy and Mitochondrial Dysfunction in Cancer
Kay F. Madeo .. 41

Targeting MYC Proteins for Tumor Therapy
Elmar Wolf and Martin Eilers .. 61

Metabolic Drivers in Hereditary Cancer Syndromes
Marco Sciacovelli, Christina Schmidt, Eamonn R. Maher, and Christian Frezza 77

Investigating Tumor Heterogeneity in Mouse Models
Tuomas Tammela and Julien Sage .. 99

Engineering T Cells to Treat Cancer: The Convergence of Immuno-Oncology and Synthetic Biology
Joseph H. Choe, Jasper Z. Williams, and Wendell A. Lim ... 121

Lactate and Acidity in the Cancer Microenvironment
Scott K. Parks, Wolfgang Mueller-Klieser, and Jacques Pouysségur 141

Reactivation of Endogenous Retroelements in Cancer Development and Therapy
Charles A. Isbak and Daniel D. De Carvalho ... 159

WNT and β-Catenin in Cancer: Genes and Therapy
Rene Jackstadt, Michael Charles Hodder, and Owen James Sansom 177

The Epithelial-to-Mesenchymal Transition in Development and Cancer
Alexandre Francou and Kathryn V. Anderson ... 197

RNA Modifications in Cancer: Functions, Mechanisms, and Therapeutic Implications
Huilin Huang, Hengyou Weng, Xiaolan Deng, and Jianjun Chen 221
Is There a Clinical Future for IDO1 Inhibitors After the Failure of Epacadostat in Melanoma?
Benoit J. Van den Eynde, Nicolas van Baren, and Jean-François Baurain 241

Deregulation of Chromosome Segregation and Cancer
Natalie L. Curtis, Gian Filippo Ruda, Paul Brennan, and Victor M. Bolanos-Garcia ... 257

Acquired Resistance in Lung Cancer
Asmin Tulpule and Trever G. Bivona ... 279

Toward Targeting Antiapoptotic MCL-1 for Cancer Therapy
Gemma L. Kelly and Andreas Strasser .. 299

Nongenetic Mechanisms of Drug Resistance in Melanoma
Vito W. Rebecca and Meenhard Herlyn .. 315

Biomarkers for Response to Immune Checkpoint Blockade
Shridar Ganesan and Janice Mehnert .. 331

Immune-Based Approaches for the Treatment of Pediatric Malignancies
Kristopher R. Bosse, Robbie G. Majzner, Crystal L. Mackall, and John M. Maris ... 353

The Neural Regulation of Cancer
Shawn Gillespie and Michelle Monje .. 371

Cancer-Associated Cachexia: A Systemic Consequence of Cancer Progression
Anup K. Biswas and Swarnali Acharyya .. 391

The Pleiotropic Role of the KEAP1/NRF2 Pathway in Cancer
Warren L. Wu and Thales Papagiannakopoulos 413

The Role of Translation Control in Tumorigenesis and Its Therapeutic Implications
Yichen Xu and Davide Ruggero .. 437

Regulatory T Cells in Cancer
George Plitas and Alexander Y. Rudensky .. 459

Errata
An online log of corrections to Annual Review of Cancer Biology articles may be found at http://www.annualreviews.org/errata/cancerbio