V2X Technology-Based Electronic Devices for Intelligent Transportation Systems Tasks

R V Chkalov¹, D G Chkalova¹

¹Vladimir State University, 87 Gorky Street, Vladimir 600000, Russia

E-mail: j.larenax@gmail.com

Abstract. The work describes the task of modern intelligent information systems devices developing. The prospects of using V2X technology for the segment of civil and special purpose vehicles, as well as its applicability for solving of road safety problems, have been evaluated. An experimental model of an on-board electronic device designed for organizing dynamic communication of transport network participants under unstable cellular coverage is shown. The transfer of information between vehicles with low or no signal is carried out via the V2X network, the nodes of which are vehicles located within a radius of up to 2 km. Areas and scenarios of the possible application of development are considered, the most promising functions are described.

1. Introduction

Intelligent transport system is a system uses modern technologies for modeling of traffic flows, which provides customers with greater informativity and road security, as well as a realisation of safety algorithms for traffic participants interaction compared to traditional transport systems [1-3]. In recent years, the emphasis in ITS has turned specifically towards the new generation – cooperative intelligent transport systems [4-6], which means mutual interaction between vehicles, infrastructure objects. Cooperative systems imply the use of large amounts of data describing the characteristics of vehicles and their behavior in road conditions, guaranteeing the reliability of the information being processed.

Despite the high prospects for the development of the direction, there are no fully implemented projects on the construction of a telecommunication network available for free use by participants in the transport infrastructure on the market. The reasons for this phenomenon vary widely, ranging from the fragmentation of technological design methods [7-9], which complicates the process of integrating vehicles / devices of urban infrastructure into a single network, to problems of a legal nature that require administrative approval for approbation of test technical solutions [10-12]. Both types of problems require for their solution the conclusion of centralized agreements between the interested parties in order to jointly promote technologies of intelligent transport systems.

Taking into account modern trends, a digital electronic device has been developed, designed to provide communication services by organizing a dynamic information network between participants in traffic. The developed system does not require third-party infrastructure facilities to function, which facilitates the implementation process.
2. On-board communication device
The developed device is installed on personal and public civil transport, as well as special purpose vehicles (figure 1) [13].

![On-board communication device](image)

Figure 1. On-board communication device.

Exchange of information between the vehicle in low level, and no signal conditions is performed by transmitting it by V2X-network via the vehicles (equipped with developed communication devices), which are within a radius of 2 km (nearest vehicle is used as a signal repeater). The developed solution is based on a principle of Vehicle Ad-hoc Networks, which specialized for “machine-to-machine” data transmission [14-16]. Vehicle Ad-hoc Networks is a special case of Mesh-networks. A mesh-network is a distributed, peer-to-peer network where each node has the same authority as everyone else. Another types of mesh-networks are MANET - a network of mobile devices [17] and FANET - a network of unmanned aerial vehicles [18].

The system operates on the basis of developed software. Embedded software is an integral part of the on-board device and is distributed in a pre-installed form or as a binary image of non-volatile memory, which includes all the necessary system and application software, in particular operating system. The control software is responsible for starting and initializing the operating system service, within the framework of which the device software modules operate that control its hardware components – DSRC modem, LTE modem, GPS / GLONASS receivers, accelerometer and gyroscope, Bluetooth and WiFi network interfaces; and is intended to implement the target functions of the onboard DSRC device of the smart car network:

- Broadcast urgent alerts: about emergencies, about worsening weather conditions, about the road situation, mass events, etc.
- Emergency alarms to specialized services transmission (figure 2): requesting medical assistance, requesting technical assistance, reporting of accidents (cooperation with navigation satellite systems), etc.
- Traffic situation control in order to collect statistical data, quickly detect traffic jams, inform drivers and traffic control services.
- Collision avoidance between vehicles, including autonomous vehicles, by directly exchanging data with environmental sensors.
- Telemetry information transfer from vehicles to data collection centers.
The main commercial result of the development is to provide customers outside the coverage area of base stations of conventional mobile networks with an operational communication service built by organizing a communication network between serial vehicles (figure 3).

3. Conclusion
The development of an operational communication service for transport systems is an urgent research task in the context of improving road safety. The sphere of implementation of the development is private civil and special transport, including the promising segment of autonomous (unmanned) vehicles, where the need for such communication means is extremely acute [19-23].
4. References

[1] Omarov Sh A and Murtuzov M M 2016 Intelligent transport systems in road traffic *Actual problems of the development of the transport system*

[2] Shchennikov A N 2017 Intelligent transport systems as specialized systems *Science and technology of railways*

[3] Kabashkin I V 2010 Intelligent transport systems: integration of global technologies of the future *Transport of the Russian Federation. A journal about science, practice, economics*

[4] Markelov V M, Soloviev I V and Tsvetkov V Ya 2014 Intelligent transport systems as a management tool Economic Consultant

[5] Komarov V V and Garagan S A 2012 Intelligent problems of telematic transport systems and an intelligent transport system *T-Comm-Telecommunications and Transport*

[6] Galenko L A and Nikolaeva R V 2017 Intelligent transport systems-solution of transport problems *Technics and technology of transport*

[7] Merenkov A O 2018 Digital economy: transport management and intelligent transport systems *E-Management*

[8] Dmitriev I I and Kirillov A M 2017 Smart Roads and the Intelligent Transport System *Construction of unique buildings and structures*

[9] Kizim A and Selezneva S 2012 Urban logistics based on intelligent transport systems *Logistics*

[10] Merenkov A O 2015 Foreign experience in the implementation of intelligent transport systems *Bulletin of the University*

[11] Malgin I G and Silnikov M V 2014 Application of intelligent transport security systems in megacities: problems and prospects *Problems of defense technology. Technical means of countering terrorism*

[12] Graburov V A 2014 Intelligent transport system as an innovative concept of transport development *Science and technology*

[13] Volodina E E, Devyatkin E E and Sukhodolskaya T A 2017 Analysis of the development of intelligent transport systems *Economy and quality of communication systems*

[14] Kochiev D, Chkalov R and Chernikov A 2019 Problems of Operative Communication Means for Intelligent Transport Information Systems Under Unstable Cellular Coverage *Proceedings - 2019 International Russian Automation Conference, RusAutoCon 2019*

[15] Vasilchenkova D 2020 Message Relay Between Short-Range Radio Devices in Traffic Flow *International Russian Automation Conference (RusAutoCon) 2020*

[16] Vasilchenkova D 2021 Solution of problems to ensure road safety by means of intelligent transport systems *IOP Conf. Series: Earth and Environmental Science*

[17] Romanov S V, Prozorov D E and Trubin I S 2012 Analysis of the hierarchical routing protocol of MANET networks *Prospects for Science*

[18] Chaplyshkin V A 2015 Use of unmanned aerial vehicles for organizing an air peer-to-peer network *Young Russia: advanced technologies into industry*

[19] Groshev A M and Tumasov A V 2016 Unmanned vehicles: present and future *Transport systems*

[20] Dobrynin D A 2014 Unmanned vehicles, the current state and prospects *Fourteenth National Conference on Artificial Intelligence with international participation KI 2014*

[21] Stepanyan A Zh 2019 Problems of regulation of unmanned vehicles *Bulletin of the OE Kutafin University*

[22] Kositsyn E P 2019 Unmanned vehicles *Far East: problems of development of the architectural and construction complex*

[23] Kombarov M V and Sevostyanov M A 2017 Unmanned vehicles and improving the quality of road transport *Symbol of Science*