ABSTRACT: A Bi-catalyzed synthesis of sulfonyl fluorides from the corresponding (hetero)aryl boronic acids is presented. We demonstrate that the organobismuth(III) catalysts bearing a bis-aryl sulfone ligand backbone revolve through different canonical organometallic steps within the catalytic cycle without modifying the oxidation state. All steps have been validated, including the catalytic insertion of \(\text{SO}_2 \) into Bi\(-\text{C} \) bonds, leading to a structurally unique O-bound bismuth sulfinate complex. The catalytic protocol affords excellent yields for a wide range of aryl and heteroaryl boronic acids, displaying a wide functional group tolerance.

Organic molecules bearing a sulfonyl fluoride group (\(\text{R-SO}_2\text{F} \)) have gained interest in both the fields of chemistry and biology, due to their balanced reactivity and stability under physiological conditions. Among many other applications, these functionalities have found promising applications as covalent protein inhibitors and biological probes.\(^{1,2}\) However, the common synthetic methods to obtain such compounds mainly relied on the Cl/F exchange from the parent sulfonyl chloride.\(^{3}\) Since 2014, when Sharpless and co-workers introduced the concept of “Sulfur(VI) Fluoride Exchange” (SuFEx) as a powerful reaction for click-chemistry,\(^{4}\) intense efforts have been placed in developing alternative routes toward aryl- and alkyl sulfonyl fluorides with broad functional group tolerance and from readily available starting materials.\(^{5}\) These efforts have resulted in several transformations that depart from the canonical S(VI) starting material precursor and offer the possibility to engage simple organic halides in cross-coupling-type strategies.\(^{6,7}\) In this regard, the pioneering work of Mascitti\(^{8}\) and Willis\(^{9}\) on Pd-catalyzed sulfur dioxide activation toward the synthesis of sulfones and sulfonamides using SO\(_2\)-surrogates such as K\(_2\)S\(_2\)O\(_5\) and DABSO (1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct) opened a new field on the use of sulfur dioxide for the synthesis of sulfur(VI) containing compounds.\(^{10}\) Specifically, Willis\(^{11}\) and co-workers demonstrated that this catalytic platform could be applied in the synthesis of (hetero)aryl sulfonyl fluorides from the corresponding aryl bromides and DABSO. Since then, different synthetic methodologies based on Pd- and Cu-catalytic systems allow the conversion of electrophiles such as aryl iodides,\(^{12}\) alkényl triflates,\(^ {13}\) or arenediazonium salts\(^ {14}\) to the corresponding aryl sulfonyl fluorides (Figure 1A). On the other hand, the use of aryl nuclophiles as aryl sources in catalytic protocols has been less studied, with only limited examples reported by Willis and co-workers via Cu(I)\(^ {15}\) and Ni(II)-catalysis.\(^ {16}\) These protocols generally occur in two steps, due to incompatibility of the electrophilic fluorinating agent with the catalytic system (Figure 1A). Yet, all these synthetic precedents draw upon

![Figure 1](https://doi.org/10.1021/jacs.1c11463)
the use of transition metals, and synthesis of sulfonyl fluorides via main group catalysis still remains challenging.

At present, two main catalytic platforms dominate the field of bismuth catalysis in organic synthesis. On one hand, the extensively studied and long-known Lewis acid catalysis, where the bismuth catalyst does not undergo redox processes or participate in catalytic organometallic elementary steps. On the other hand, bismuth can undergo redox catalysis through elementary organometallic steps, maneuvering between Bi(I)/Bi(III), Bi(II)/Bi(III), or Bi(III)/(V) (Figure 1B). Herein, we demonstrate that a third catalytic platform for bismuth can also be operative in the conversion of (hetero)aryl boronic acids to the corresponding sulfonyl fluorides. A well-defined organobismuth catalyst revolves through the catalytic cycle maintaining the Bi(III) oxidation state and mimicking organometallic steps. We demonstrate that transmetalation and insertion of sulfur dioxide into the Bi−C(sp²) occur effectively delivering a Bi(III)−OS(O)Ar compound. Importantly, the low reactivity of the 6s² lone pair in bismuth permits the presence of electrophilic fluorinating agents and a one-pot synthetic operation (Figure 1C).

We started our investigations by optimizing the reaction between phenyl boronic acid (1a) and sulfur dioxide in the presence of Selectfluor as an oxidant (Table 1). Based on our previous work, bismuth complexes bearing diarylsulfone ligands (3a−e) are excellent candidates for mimicking organometallic steps efficiently. Due to the minimal difference in reactivity between Bi complexes bearing different couteranions (BF₄− in 3a and OTs in 4; Table 1, entry 1 vs 2), Bi complexes bearing a BF₄− were preferentially chosen due to lower MW when compared to OTs-containing catalysts. Sulfone ligand screening showed that catalyst 3c, with a CF₃- and a Me group at the meta-position in respect to the Bi atom, provided the best conversion of phenyl boronic acid 1a to 2a (Table 1, entry 4). Due to solubility issues of the oxidant, a solvent mixture of CDCl₃/CH₃CN 5:1 proved to be optimal (Table 1, entry 7). When a stronger base such as Na₂CO₃ was tested, formation of benzene was observed, thus decreasing the yield of our desired sulfonyl fluoride (Table 1, entry 8). We were delighted to see that the catalyst loading could be decreased to 5 mol % maintaining the catalytic activity (Table 1, entry 9 vs 7). In agreement with previous results, in the absence of base or molecular sieves, undesired benzene forms majorly, which arises from protonation of either B−Ph or Bi−Ph bonds (Table 1, entries 10 and 11). Finally, without the presence of bismuth catalyst 3c, no phenyl sulfonyl fluoride 2a was obtained (Table 1, entry 12). It is worth mentioning that the replacement of sulfur dioxide by DABSO was detrimental, decreasing the yield of 2a (Table 1, entry 13), presumably due to incompatibility of DABCO with the catalytic system.

With the optimal conditions in hand, the scope was investigated (Table 2). Aryl boronic acids bearing alkyl (1b)

![Table 1. Optimization of the Reaction Conditions](https://pubs.acs.org/acs/jacs/2021/cjacs.1c11463/supplemental/R0528-01.png)

Entry	[Bi] (x mol%)	[base]	Yield 2a (%)
1	3a (10)	K₂PO₄	49
2	4 (10)	K₂PO₄	57
3	3b (10)	K₂PO₄	55
4	3c (10)	K₂PO₄	77
5	3d (10)	K₂PO₄	61
6	3a (10)	K₂PO₄	66
7	3e (10)	K₂PO₄	98
8	3d (10)	Na₂CO₃	80
9	3e (5)	Na₂CO₃	95 (91)
10	3c (5)	-	34
11	3c (5)	K₂PO₄	28
12	-	K₂PO₄	n. e.
13	3c (10)	-	16

“Reactions performed at 0.05 mmol of 1a. Yields determined by ¹H and ²¹F NMR using 1,4-difluorobenzene as internal standard. bCDCl₃/CH₃CN mixture of 5:1 was used as solvent. cIsolated yield of a reaction performed at 0.2 mmol of 1a. dNo MS were used. eDABSO (1.5 equiv) was used instead of SO₂ (1.5 bar).”

previous work bismuth complexes bearing diarylsulfone ligands (3a−e) are excellent candidates for mimicking organometallic steps efficiently. Due to the minimal difference in reactivity between Bi complexes bearing different couteranions (BF₄− in 3a and OTs in 4; Table 1, entry 1 vs 2), Bi complexes bearing a BF₄− were preferentially chosen due to lower MW when compared to OTs-containing catalysts. Sulfone ligand screening showed that catalyst 3c, with a CF₃- and a Me group at the meta-position in respect to the Bi atom, provided the best conversion of phenyl boronic acid 1a to 2a (Table 1, entry 4). Due to solubility issues of the oxidant, a solvent mixture of CDCl₃/CH₃CN 5:1 proved to be optimal (Table 1, entry 7). When a stronger base such as Na₂CO₃ was tested, formation of benzene was observed, thus decreasing the yield of our desired sulfonyl fluoride (Table 1, entry 8). We were delighted to see that the catalyst loading could be decreased to 5 mol % maintaining the catalytic activity (Table 1, entry 9 vs 7). In agreement with previous results, in the absence of base or molecular sieves, undesired benzene forms majorly, which arises from protonation of either B−Ph or Bi−Ph bonds (Table 1, entries 10 and 11). Finally, without the presence of bismuth catalyst 3c, no phenyl sulfonyl fluoride 2a was obtained (Table 1, entry 12). It is worth mentioning that the replacement of sulfur dioxide by DABSO was detrimental, decreasing the yield of 2a (Table 1, entry 13), presumably due to incompatibility of DABCO with the catalytic system.

With the optimal conditions in hand, the scope was investigated (Table 2). Aryl boronic acids bearing alkyl (1b)
or halide groups (1e–d) provided the desired compounds in excellent yields. On the other hand, more electron-rich substrates (2e–f) performed with lower efficiency. We were pleased to see that electronically and sterically distinct substituents at the meta-position were tolerated, attaining the sulfonyl fluoride products (2g–k) in good yields. Remarkably, sterically hindered aryl boronic acids (1l–1m) also performed well, showing that the presence of substituents at the ortho-position do not affect the catalytic performance of 3c. Also polyaromatic sulfonyl fluorides (2n–o) could be isolated in nearly quantitative yields. Contrary to previous Bi-catalyzed redox processes, this protocol exhibited high functional group compatibility. Indeed, boronic acids containing SiMe3 (1p), vinyl (1q), alkynyl (1r), formyl (1s), and ester (1t) were converted to their corresponding sulfonyl fluorides (2p–t) in moderate to good yields. Boronic acid containing a benzylic ether position (1u) performed well, and no activation of the ether was observed. More importantly, aryloboronic acids containing N-protected anilines in both para- and meta-positions were also tolerated, achieving good yields of the N-Ms (2v) and N-Boc (2w) aryl sulfonyl fluorides, respectively. When heterocyclic boronic acids were tested, a re-evaluation of the catalytic system was required (see Supporting Information). It was found that the combination of 4 and NFSI as a milder oxidant was crucial to convert heteroaryl boronic acids to their corresponding sulfonyl fluorides. Thus, benzo furan (2x), furan (2y), and benzo thiophene (2z) were well accommodated. More reactive heteroaryl boronic acids such as unprotected 1H-indole (1aa), 5-quinoline (1ab), and isoxazole (1ac) could also be converted to their corresponding sulfonyl fluorides in moderate to good yields, competing favorably with the transition-metal-catalyzed reports. Tolerance of heterocyclic frameworks is a step forward in the field of bismuth catalysis, as coordination to Bi(III) centers and incompatibility with strong oxidants usually precludes reactivity.

At this point, the operative mechanism governing this transformation was explored (Scheme 1). In accordance with previous precedents in our group, the transmetalation step between Bi catalyst 3c and 1a occurred smoothly, affording 5c in excellent yields (Scheme 1A). Stoichiometric precedents of arylobismuth complexes reacting with SO2 propose that insertion can occur at Bi(III)–C23 or Bi(V)–C24 bonds. In order to investigate whether our catalytic systems proceeds through the former or the latter, we subjected 3c to a series of oxidation/insertion sequences (Scheme 1B). After exposure of 3c to Selectfluor and, subsequently, to an atmosphere of SO2, only trace amounts of the desired product 2a were observed (Scheme 1B, path a). Similarly, exposure of cationic Bi(V) complex 6 to SO2 atmosphere at 70 °C resulted in remarkably low yield of 2a (Scheme 1B, path b). In both cases, formation of fluoro benzene and benzene resulted as the main byproducts (see Supporting Information). This is in agreement with our previous studies, in which cationic pentavalent bismuth species (6) are active toward the synthesis of fluoro benzene, via reductive elimination/ligand coupling pathways. With a Bi(V) intermediate being highly unlikely, it was envisioned that maybe 5c could be active toward sulfur dioxide insertion. Treatment of 5c with SO2 resulted in rapid formation of the corresponding diarylbismuth sulfinate 7, which was fully characterized by NMR and HRMS and single crystal X-ray diffraction (Scheme 1C). This is in stark contrast to previous stoichiometric reports, where SO2 reacted with a Bi(V) complex24 and is in agreement with SO2 insertion at organobismuth(III) complexes. It is worth mentioning that diaryl bismuth sulfinate 7 is also obtained when SO2 is replaced by DABSO, albeit in lower yields (see Supporting Information). Generally, diaryl bismuth benzenesulfimates are prepared via protonolysis of triarylbismuth complexes with arylsulfinic acid. Although infrared spectra suggested monodentate O-sulfinate coordination to the bismuth center, no structural confirmation via single crystal XRD has been reported. Therefore, this work provides solid evidence that SO2 insertion occurs in the Bi(III)–C(sp2)-O coordination to a diaryl bismuth complex 7. Although the O-bound structure in 7 is not surprising for bismuth(III) due to its high oxo-philicity, it differs from previous crystal structures reported from the SO2 insertion into Pd=Pi106 and Au=Ph105 bonds, where the S-bound coordination to the metal is obtained in all cases. Encouraged
by these results, we subjected 7 to oxidation with Selectfluor, and 2a was obtained at both 25 and 70 °C, along with the regeneration of precatalyst 3c (Scheme 1C). In order to rule out a possible mechanism which would involve a Bi(III) oxidation after the SO2 insertion step, we subjected diaryl-bismuth tosylate 8, which contains a Bi(III) and a S(VI) atom to oxidation with Selectfluor (Scheme 1D). Quantitative recovery of 8 and Selectfluor was observed, indicating no oxidation of Bi(III) species. This result, together with the mild conversion of 7 to 2a under mild conditions, suggests that Selectfluor reacts preferentially with the S(IV), in agreement with previous fluorination of metal aryl sulfinates (see Supporting Information).11−16

With this mechanistic insight, a plausible mechanism for the conversion of (hetero)aryl boronic acids to their corresponding sulfonyl fluorides is proposed in Scheme 2. Initially, bismuth complex A undergoes transmetalation (TM) with the corresponding (hetero)aryl boronic acid 1, forming triarylbismuth complex B. Consequently, sulfur dioxide undergoes Bi-C bond insertion in B, leading to bismuth sulinate intermediate C, which upon oxidation of the S(IV) affords the corresponding aryl sulfonyl fluoride 2 with the concomitant regeneration of A.

In summary, a unique Bi(III)-catalyzed conversion of aryl boronic acids to the corresponding (hetero)arylsulfonyl fluorides has been developed. The canonical organometallic steps by which the Bi complex undergoes catalysis have been elucidated and validated. Transmetalation of boronic acid to the bismuth is followed by a SO2 insertion into a Bi-C bond under mild conditions, attaining the corresponding diaryl-bismuth sulinate. This novel catalytic cycle results in good to excellent yields and a wide substrate scope, accommodating challenging heteroaryl boronic acids. The results presented in this study reveal bismuth redox neutral catalysis as a promising tool to perform transformations mimicking the fundamental organometallic steps of transition metal catalysts, thus expanding the palette of opportunities for bismuth catalysis in organic synthesis.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c11463.

Experimental procedures and analytical data (1H, 13C, and 19F NMR, HRMS) for new compounds; crystallographic data for compound 7 (PDF)

Accession Codes

CCDC 2118151 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Josep Cornella — Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany; orcid.org/0000-0003-4152-7098; Email: cornella@kofo.mpg.de

Author

Marc Magre — Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany; orcid.org/0000-0002-5950-4129

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.1c11463

Funding

Open access funded by Max Planck Society.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support for this work was provided by Max-Planck-Gesellschaft, Max-Planck-Institut für Kohlenforschung and Fonds der Chemischen Industrie (FCI-VCI). This project has received funding from European Union’s Horizon 2020 research and innovation programme under Agreement No. 850496 (ERC Starting Grant, J.C.). We thank Prof. Dr. A. Fürstner for insightful discussions and generous support. We thank MS, GC and X-ray departments of Max-Planck-Institut für Kohlenforschung for analytic support. We thank Dr. N. Nöthling and Dr. R. Goddard for X-ray crystallographic analysis.

REFERENCES

(1) (a) Aberlin, M. E.; Bunton, C. A. Spontaneous hydrolysis of sulfonyl fluorides. J. Org. Chem. 1970, 35, 1825−1828. For a recent review, see: (b) Narayanan, A.; Jones, L. H. Sulfonyl fluorides as privileged warheads in chemical biology. Chem. Sci. 2015, 6, 2650−2659.

(2) (a) Grimster, N. P.; Connelly, S.; Baranczak, A.; Dong, J.; Krasnova, L. B.; Sharpless, K. B.; Powers, E. T.; Wilson, I. A.; Kelly, J. W. Aromatic Sulfonyl Fluorides Covalently Kinetically Stabilize Transthyretin to Prevent Amyloidogenesis while Affording a Fluorescent Conjugate. J. Am. Chem. Soc. 2013, 135, 5656−5668.

(b) Zheng, Q.; Woel, J. L.; Kitamura, S.; Santos-Martins, D.; Smeldley, C. J.; Li, G.; Forli, S.; Moses, J. E.; Wolan, D. W.; Sharpless, K. B. SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 18808−18814.

(3) (a) Davies, W.; Dick, J. H. Aromatic sulphonyl fluorides. A convenient method of preparation. J. Chem. Soc. 1931, 0, 2104−2109.

(b) Bianchi, T. A.; Cate, L. A. Phase transfer catalysis. Preparation of aliphatic and aromatic sulfonyl fluorides. J. Org. Chem. 1977, 42, 2031−2032.
(4) Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. Angew. Chem., Int. Ed. 2014, 53, 9430−9448.

(b) Guo, T.; Meng, G.; Zhan, X.; Yang, Q.; Ma, T.; Xu, L.; Sharpless, K. B.; Dong, J. A New Portal to SuFEx Click Chemistry: A Stable Fluorosulfonyl Isoniazid Salt Emerging as an “F-SO2” Donor of Unprecedented Reactivity, Selectivity, and Scope. Angew. Chem., Int. Ed. 2018, 57, 2605−2610.

(5) For a recent reviews, see: (a) Barrow, A. S.; Smedley, C. J.; Zheng, Q.; Li, S.; Dong, J.; Moses, J. E. The growing applications of SuFEx click chemistry. Chem. Soc. Rev. 2019, 48, 4731−4758. (b) Lee, C.; Cook, A. J.; Elisabeth, J. E.; Friede, N. C.; Sammis, G. M.; Ball, N. D. The Emerging Applications of Sulfur(VI) Fluorides in Catalysis. ACS Catal. 2021, 11, 6575−6589. (c) Chelagha, A.; Louvel, D.; Taponard, A.; Berthelon, R.; Tlili, A. Synthetic Routes to Arylsulfonyl Fluorides. Catalysts 2021, 11, 830−820. For a recent review on fluorinated sulfoximines, see: (d) Biset, V.; Kowalczyk, R.; Bolm, C. Fluorinated Sulfoximines: Syntheses, Properties and Applications. Chem. Soc. Rev. 2014, 43, 2426−2438.

(6) For stoichiometric reagents, see: (a) Lee, C.; Ball, N. D.; Sammis, G. M. One-pot fluorosulfonylation of Grignard reagents using sulfonyl fluoride. Chem. Commun. 2019, 55, 14753−14756. (b) Wang, L.; Cornella, J. A Unified Strategy for Arylsulfur(VI) fluorides from Aryl Halides: Access to Access to Ar-SOF3 Compounds. Angew. Chem. 2020, 132, 23716−23721. For alternative catalytic transformations, see: (c) Laudadio, G.; Bartolomeu, A. A.; Verwijlen, L. M. H. M.; Cao, Y.; de Oliveira, K. T.; Noël, T. Sulfonyl Fluoride Synthesis through Fluoride. ACS Catal. 2021, 11, 6575−6589. (d) Cai, L.; Pan, Y.-L.; Chen, L.; Cheng, J.-P. Bi(III)-Catalyzed Enantioselective Allylation Reactions of Ketimines. Angew. Chem., Int. Ed. 2014, 53, 5639−5642. (e) Davies, T. Q.; Hall, A.; Willis, M. C. Palladium(II)-Catalyzed Synthesis and Functionalization of Potassium Metabisulfite. Angew. Chem., Int. Ed. 2016, 55, 15576−15581.

(7) (a) Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Palladium-Catalyzed Conversion of Aryl Iodides to Sulfonyl Fluorides Using SO2 Surrogate DABSO and Selectfluor. J. Org. Chem. 2017, 82, 2294−2299.

(10) (a) Wang, J.; Zhang, Q.; Zhou, B.; Yang, C.; Li, X.; Cheng, J.-P. Bi(III)-Catalyzed Enantioselective Allylation Reactions of Ketimines. J. Am. Chem. Soc. 2019, 141, 11832−11836. (b) Tie, X.; Xu, T.; Song, J.; Devaraj, A.; Zhang, B.; Chen, Y.; Liao, S. Radical Fluorosulfonylation: Accessing Alkenyl Sulfonyl Fluorides from Alkenes. Angew. Chem., Int. Ed. 2021, 60, 3956−3960. (c) Kaicharla, V.; Roullion, J.; Payard, P.-A.; Khrouz, L.; Monnereau, C.; Tlili, A. Metal-Free Visible-Light Synthesis of Arylsulfonyl Fluorides: Scope and Mechanism. Chem. - Eur. J. 2021, 27, 8704−8708.

(8) For a recent review on the chemistry of sulfonimidamides, see: (a) Emmett, E. J.; Hayter, B. R.; Willis, M. C. Palladium-Catalyzed Synthesis of Ammonium Sulfonates from Aryl Halides and a Sulfur Dioxide Surrogate: a Gas- and Reductant-Free Process. Angew. Chem., Int. Ed. 2014, 53, 10204−10208. (b) Richards-Taylor, C. S.; Blakemore, D. C.; Willis, M. C. One-Pot Three-Component Sulfone Synthesis Exploiting Palladium-Catalyzed Aryl Halide Aminosulfonylation. Chem. Sci. 2014, 5, 222−228.

(9) For the oxidation of aryl boronic acids to S(VI)-containing compounds, see: (a) Johnson, M. S.; Bagley, S. W.; Mankad, N. P.; Bergman, R. G.; Mascitti, V.; Toste, F. D. Application of Fundamental Organometallic Chemistry to the Development of a Gold-Catalyzed Synthesis of Sulfinate Derivatives. Angew. Chem., Int. Ed. 2014, 53, 4404−4407. (b) Shavnya, A.; Hesp, K. D.; Mascitti, V.; Smith, A. C. Palladium-Catalyzed Synthesis of (Hetero)Aryl Alkyl Sulfoxides from (Hetero)Aryl Boronic Acids, Unactivated Alkyl Halides, and Potassium Metabisulfite. Angew. Chem., Int. Ed. 2015, 54, 13571−13575. (c) Deeming, A. S.; Russell, C. J.; Willis, M. C. Palladium(II)-Catalyzed Synthesis of Sulfinates from Boronic Acids and DBADO: A Redox-Neutral, Phosphine-Free Transformation. Angew. Chem., Int. Ed. 2016, 55, 747−750. (d) Ro, W. K. T.; Willis, M. C. Nickel(II)-Catalyzed Addition of Aryl and Heteroaryl Boroxines to the Sulfinylamine Reagent TrNSO: The Catalytic Synthesis of Sulfinamides, Sulfinimidamides and Primary Sulfinamides. J. Am. Chem. Soc. 2021, 143, 15576−15581.

(11) Davies, A. T.; Corto, J. M.; Bagley, S. W.; Willis, M. C. One-pot palladium-catalyzed synthesis of sulfonyl fluorides from aryl boronates. Chem. Sci. 2017, 8, 1233−1237.

(12) Tribby, A. L.; Rodriguez, I.; Shariﬁfudin, S.; Ball, N. D. Palladium-Catalyzed Conversion of Aryl Iodides to Sulfonyl Fluorides Using SO2 Surrogate DABSO and Selectfluor. Org. Lett. 2014, 16, 4240−4244.

(13) Lou, T. S.-B.; Bagley, S. W.; Willis, M. C. Cyclonic Alkenylsulfonyl Fluorides: Palladium-Catalyzed Synthesis and Functionalization of Compact Multifunctional Reagents. Angew. Chem., Int. Ed. 2019, 58, 18859−18863.

(14) Liu, Y.; Yu, D.; Guo, Y.; Xiao, J.-C.; Chen, Q.-Y.; Liu, C. Arsenousulfonyl Fluoride Synthesis via Copper-Catalyzed Fluorosulfurylation of Aredemiazidial Salts. Org. Lett. 2020, 22, 2281−2286.

(15) Chen, Y.; Willis, M. C. Copper(I)-Catalyzed Sulfonylative Suzuki–Miyaura Cross-Coupling. Chem. Sci. 2017, 8, 3249−3253.

(16) Lou, P. K. T.; Chen, Y.; Willis, M. C. Palladium(II)-Catalyzed Synthesis of Sulfinates from Aryl and Heteroaryl Boronic Acids and the Sulfur Dioxide Surrogate DABSO. ACS Catal. 2019, 9, 10668−10673.

(17) For a review on bismuth Lewis acid catalysis, see: (a) Ollivier, T. New trends in bismuth-catalyzed synthetic transformations. Org. Biomol. Chem. 2013, 11, 2740−2755. For selected examples, see: (b) Dif, I.; Lemiègre, G.; Dufauch, E. Methyl-Triﬂuoracetic Catalysis of Polycyclic Tertiary Alcohols by Cyclization of γ-Allenic Ketones. Angew. Chem., Int. Ed. 2014, 53, 4177−4180. (c) Kaicharla, T.; Roy, T.; Thangaraj, M.; Gonnade, R. G.; Biju, A. T. Lewis Acid Catalyzed Selective Reactions of Donor–Acceptor Cyclopropanes with 2-Naphthols. Angew. Chem., Int. Ed. 2016, 55, 10061−10064.

(b) Pang, Y.; Leutzsch, M.; Nöthling, N.; Cornella, J. Bi(II)-Catalyzed Enantioselective Allylation Reactions of Ketimines. J. Am. Chem. Soc. 2016, 138, 6226−6229.
Biomol. Chem. 2021, Dibismuthanes in Catalysis: from Synthesis and Characterization to SO2, see: (a) Smith, B. C.; Waller, C. B. The 1H Nuclear Magnetic 2012. J. Bismuth-Catalyzed Oxidative Coupling of Aryl boronic Acids with 2020 Science Fluorination of aryl boronic esters enabled by bismuth redox catalysis. 2020 chemically Induced Radical Dehydrocoupling Reactions. Well-Defined, Molecular Bismuth Compounds: Catalysts in Photochemically Induced Radical Dehydrocoupling Reactions. Chem. - Eur. J. 2020, 26, 14551–14555. (21) (a) Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Fluorination of aryl boronic esters enabled by bismuth redox catalysis. Science 2020, 367, 313–317. (b) Planas, O.; Peciukenas, V.; Cornella, J. Bismuth-Catalyzed Oxidative Coupling of Aryl boronic Acids with Triflate and Nonaflate Salts. J. Am. Chem. Soc. 2020, 142, 11382–11387. (c) Magre, M.; Kuziola, J.; Nöthling, N.; Cornella, J. Dibismuthanes in Catalysis: from Synthesis and Characterization to Redox Behavior Towards Oxidative Cleavage of 1,2-Diols. Org. Biomol. Chem. 2021, 19, 4922–4929. (22) Ollevier, T.; Eds. Bismuth-Mediated Organic Reactions; Springer: 2012. (23) For the stoichiometric reaction of trivalent Bi compounds with SO2, see: (a) Smith, B. C.; Waller, C. B. The 1H Nuclear Magnetic Resonance Spectra of Some Organobismuth Compounds. J. Organomet. Chem. 1971, 32, C11–C12. (b) Marset, X.; Torregrosa-Crespo, J.; Martinez-Espinosa, R. M.; Guillena, G.; Ramón, D. J. Multicomponent Synthesis of Sulfonamides from Triarylbumuthines, Nitro Compounds and Sodium Metabisulfite in Deep Eutectic Solvents. Green Chem. 2019, 21, 4127–4132. (c) Saavedra, B.; Marset, X.; Guillena, G.; Ramón, D. J. Multicomponent Synthesis of Sulfones and Sulfides from Triarylbumuthines and Sodium Metabisulfite in Deep Eutectic Solvents. Eur. J. Org. Chem. 2020, 2020, 3462–3467. (24) For the stoichiometric reaction of pentavalent Bi compounds with SO2 to form diaryl sulfones, see: (a) Sharutin, V. V.; Ermoshkin, A. E. Phenylation of Sulfur Dioxide by Pentaphenylibismuth. Izvostiya Akademii Nauk SSSR, Seriya Khimicheskaya 1987, 11, 2598–2599. (b) Zhao, F.; Wu, X.-F. Sulfonylation of Bismuth Reagents with Sulfinates or SO2 through BiIII/BiV Intermediates. Organometallics 2021, 40, 2400–2404. For the stoichiometric reaction of pentavalent Bi compounds with sulfonic acids to form diaryl sulfones, see: (c) Barton, D. H. R.; Blazejewski, J.-C.; Charpion, B.; Motherwell, W. B. Tetraphenylibismuth Monotrifluoroacetate: a New Reagent for Regioselective Aryl Ether Formation. J. Chem. Soc., Chem. Commun. 1981, 503–504. (d) Deacon, G. B.; Fallon, G. D.; Felder, P. W. The Formation of Bismuth-Carbon Bonds by Sulphur Dioxide Elimination. J. Organomet. Chem. 1971, 26, C10–C12. (c) Deacon, G. B.; Fallon, G. D. Preparations, Sulphinate Coordination and Thermal Decomposition of Some Bismuth Triarenesulphinates. Aust. J. Chem. 1972, 25, 2107–2115. (26) For examples of Bimediated small molecules activation, see: (a) Yin, S.-F.; Maruyama, J.; Yamashita, T.; Shimada, S. Efficient Fixation of Carbon Dioxide by Hypervalent Organobismuth Oxide, Hydroxide, and Alkoxide. Angew. Chem., Int. Ed. 2008, 47, 6590–6593. (b) Breuning, H. J.; Königsmann, L.; Lork, E.; Nema, M.; Philipp, N.; Silvestru, C.; Soran, A.; Varga, R. A.; Wagner, R. Hypervalent organobismuth(III) carbonate, chalcogenides and halides with the pendant arm ligands 2-(Me2NCH2)C6H4 and 2,6-(Me2NCH2)C6H3. Dalton Trans. 2008, 1831–1842. (c) Kindra, D. R.; Casely, I. J.; Fieser, M. E.; Ziller, J. W.; Furch, F.; Evans, W. J. Insertion of CO2 and COS into Bi–C Bonds: Reactivity of a Bismuth NCN Pincer Complex of an Oxaryl Diaionic Ligand, (Me2NCH2)2C6H3][Bi(C6H4tBu2O)]. J. Am. Chem. Soc. 2013, 135, 7777–7787. (d) Kindra, D. R.; Casely, I. J.; Ziller, J. W.; Evans, W. J. Nitric Oxide Insertion Reactivity with the Bismuth–Carbon Bond: Formation of the Oximate Anion, [ON = (CH2Bu2O)1–], from the Oxaryl Diaionic, (C6H4tBu2O)2+. Chem. - Eur. J. 2014, 20, 15242–15247. (e) Lu, W.; Hu, H.; Li, Y.; Ganguly, R.; Kinjo, R. Isolation of 1,2,4,3-Triazaborol-3-y-metal (Li, Mg, Al, Au, Zn, Sb, Bi) Derivatives and Reactivity toward CO and Isonitriles. J. Am. Chem. Soc. 2016, 138, 6650–6661. (f) Ramler, J.; Poater, J.; Hirsch, F.; Ritschel, B.; Fischer, I.; Bickelhaupt, F. M.; Lichtenberg, C. Carbon monoxide insertion at a heavy p-block element: unprecedented formation of a cationic bismuth carbamoyl. Chem. Sci. 2019, 10, 4169–4176. (27) (a) Strimb, G.; Pöllnitz, A.; Rat, C. I.; Silvestru, C. A General Route to Monoorganopnicogen(III) (M = Sb, Bi) Compounds with a Pincer (N,C,N) Group and Oxo Ligands. Dalton Trans. 2015, 44, 9927–9942. (b) Reference 20a.