PROOF OF A ROOTED VERSION OF STANLEY’S CHROMATIC CONJECTURE FOR TREES

NICHOLAS A. LOEHR AND GREGORY S. WARRINGTON

Abstract. Richard Stanley defined the chromatic symmetric function of a graph and conjectured that two trees are isomorphic if and only if their associated chromatic symmetric functions are equal. We study a variation of the chromatic function for rooted graphs, defined by requiring that the root vertex must have a specified color. Our main result is the proof of an analogue of Stanley’s conjecture for these chromatic polynomials: two rooted trees are isomorphic as rooted graphs if and only if their associated chromatic polynomials are equal. The key technical fact needed here is that the Stanley chromatic polynomial for a tree is irreducible in $\mathbb{Q}[x_1, \ldots, x_N]$ for large enough N. We give an elementary proof of this fact based on Eisenstein’s Criterion.

1. Introduction

In 1995, Richard Stanley [26] defined the chromatic symmetric function $X_G(x_1, x_2, \ldots, x_n, \ldots)$ associated with any finite graph $G = (V, E)$. The function X_G generalizes the chromatic polynomial $\chi_G(k)$, where $\chi_G(k)$ is the number of proper colorings of the vertices of G when k colors are available. We recover $\chi_G(k)$ from X_G by setting $x_i = 1$ for $1 \leq i \leq k$ and $x_i = 0$ for $i > k$. As a symmetric function that naturally generalizes an important graph invariant, X_G has been a rich source of combinatorial insights and problems. In the original paper [26, pg. 170], Stanley raised an open problem that we call Stanley’s Chromatic Conjecture for Trees 1:

Conjecture 1. Trees T and U are isomorphic (as graphs) if and only if $X_T = X_U$.

This conjecture remains unsettled, although progress has been made in several directions. Using computer investigations, Heil and Ji [16] verified that the conjecture is true for all trees with at most 29 vertices. The conjecture also holds for certain restricted classes of trees: caterpillars corresponding to some ribbons [20], spiders and some caterpillars [19], 2-spiders [17], trivially perfect graphs [27], and trees with diameter at most five [1]. It is also known that features of a tree such as its degree sequence, number of leaves, and path sequence are recoverable from X_T [19].

While significant progress in understanding X_T has been made by considering it directly, the chromatic symmetric function is just one polynomial in an entire ecosystem of graph-related polynomials. Substantial progress in the field has occurred by studying variants of X_G. In this paper, we define the rooted multivariable chromatic polynomial $X_0(G^*_s; x_0, x_1, \ldots, x_N)$ for a rooted graph G_s. This polynomial is the weighted sum of proper colorings of G_s using available colors $\{0, 1, \ldots, N\}$ such that the root vertex of G must receive color 0. This is a polynomial in x_0 where the coefficient of each x_0^k is a symmetric polynomial in x_1, \ldots, x_N; it can be viewed as a refinement of Stanley’s chromatic function X_G for the underlying unrooted graph G.

Our main result is a proof of the following rooted analogue of Stanley’s conjecture.

1While Stanley did not explicitly frame this as a conjecture, it is common in the literature to present it as one, and we continue that tradition here.
Theorem 2. Rooted trees T_* and U_* are isomorphic (as rooted graphs) if and only if $X_0(T_*) = X_0(U_*)$.

In Theorem 17 we prove a deletion-contraction recursion satisfied by the rooted chromatic polynomials $X_0(G_*)$ which generalizes the classical recursion for the one-variable chromatic polynomial χ_G. No such recursion for Stanley’s chromatic symmetric functions is known, although related recursions appear in works such as [22] and [23].

Several previous authors have defined analogues of the chromatic symmetric function for graphs and rooted graphs. Some notable prior works in this direction include the pointed chromatic symmetric functions of Pawlowski [23] and the rooted U-polynomials of Aliste-Prieto, de Mier, and Zamora [2]. Pawlowski’s functions are closely related to the polynomials studied here, as we explain more precisely in Section 5.1. Some authors have found polynomial invariants characterizing isomorphism classes of rooted trees. The two-variable Chaudhary-Gordon polynomials [4] suffice to distinguish rooted trees, as do the polychromates of Bollabás and Riordan [3], the greedoid polynomials of Gordon and McMahon [14], and the strict order quasisymmetric functions of Hasebe and Tsujie [15] (see also [10, 24]).

Remark 3. The polynomials $Z_{c_1}^G(c)$ defined by Heil and Ji [16, Def. 3.1] are essentially the same as our polynomials $X_c(G^*)$. However, given Heil and Ji’s algorithmic focus, there is no overlap with this paper beyond the decomposition of (14). We note for completeness that Lemma 3 and the following corollaries in [16] must be modified slightly to account for the fact that the F_i are symmetric functions in all the variables except x_c.

Given the many prior variants of Stanley’s chromatic symmetric functions, we would like to highlight some particular benefits of the polynomials $X_0(G_*)$ studied here. First, $X_0(G_*)$ is combinatorially very close to the original polynomial X_G — the only new restriction on proper colorings is that the root vertex must get color 0. Second, we can easily recover X_G from $X_0(G_*)$ by the symmetry operations specified in (8) and (9). Proposition 21 shows that being able to solve the reverse problem (recovering all $X_0(G_*)$ that arise from X_G by varying the choice of root) is equivalent to Conjecture 1. Third, the deletion-contraction recursion for $X_0(G_*)$, which is not directly available for X_G, lets us efficiently compute both polynomials. Fourth, the simple restriction on the color of the root vertex suffices to yield a short proof of the desired invariance property in Theorem 2. The proof makes compelling contact between a combinatorial property (isomorphism of rooted trees) and an algebraic property (unique factorization of polynomials into irreducible factors). Some previously studied variants on X_G achieve similar invariance results by incorporating additional information in other ways. For example, the Gebhard–Sagan noncommutative chromatic symmetric function [13] remembers which vertices receive which colors by using non-commuting variables, while the Shareshian–Wachs chromatic quasisymmetric polynomial [24] uses a new variable t to record an ascent statistic for each proper coloring. (See Section 5.4 for more details on these variants.)

The outline of this paper is as follows. Section 2 introduces needed definitions, notation, and background. Section 3 proves that for all trees T, the polynomials $X_T(x_1, \ldots, x_N)$ are irreducible in $Q[x_1, \ldots, x_N]$ for large N. A similar result holds for rooted trees. This leads to a proof of Theorem 1 (the rooted version of Stanley’s conjecture) based on unique factorization in polynomial rings. Section 4 proves the deletion-contraction recursion for $X_0(G_*)$ and some other useful results. Section 5 examines some previously studied variants of Stanley’s chromatic symmetric function and their relations to the rooted chromatic polynomials.

2. Definitions and Background

2.1. Definition of Polynomials for Rooted Graphs. The notation $G = (V(G), E(G))$ means G is a graph with vertex set $V(G)$ and edge set $E(G)$. A rooted graph G_* is a nonempty graph G
with one vertex \(r \) of \(G \) marked as the root. When we need to display the root, we write \(G^r \) for the rooted graph obtained from \(G \) with root vertex \(r \). The color set is \(C = \{0, 1, 2, \ldots, N\} \), where \(N \) is a fixed positive integer with \(N + 1 \geq |V(G)| \). A proper coloring of \(G \) is a function \(\kappa : V(G) \to C \) such that for all \(v, w \in V(G) \), if an edge joins \(v \) to \(w \), then \(\kappa(v) \neq \kappa(w) \). Let \(\text{COL}(G) \) be the set of proper colorings of \(G \). For each color \(i \in C \), let \(\text{COL}_i(G_*) \) be the set of proper colorings of \(G \) where \(\kappa(r) = i \) (the root gets color \(i \)). Let \(\text{COL}_{\neq i}(G_*) \) be the set of proper colorings of \(G \) where \(\kappa(r) \neq i \) (the root’s color is not \(i \)). The weight of a coloring \(\kappa : V(G) \to C \) is \(\text{wt}(\kappa) = \prod_{v \in V(G)} x_{\kappa(v)} \).

We now introduce several versions of chromatic polynomials for a rooted graph \(G_* \). These are polynomials in \(\mathbb{Q}[x_0, x_1, \ldots, x_N] \) with nonnegative integer coefficients. Define:

\[
\begin{align*}
(1) & \quad X(G_*; x_0, x_1, \ldots, x_N) = \sum_{\kappa \in \text{COL}(G)} \text{wt}(\kappa); \\
(2) & \quad X_i(G_*; x_0, x_1, \ldots, x_N) = \sum_{\kappa \in \text{COL}_i(G_*)} \text{wt}(\kappa); \\
(3) & \quad X_{\neq i}(G_*; x_0, x_1, \ldots, x_N) = \sum_{\kappa \in \text{COL}_{\neq i}(G_*)} \text{wt}(\kappa).
\end{align*}
\]

We omit the variable list from the notation when it is clear from context. Note \(X(G_*; x_0, x_1, \ldots, x_N) \) is just Stanley’s chromatic symmetric function \(X_G \) specialized to the given variable set. This polynomial is symmetric in \(x_0, \ldots, x_N \), since applying any permutation of the color set \(C \) to a proper coloring of \(G \) produces another proper coloring of \(G \). For each \(i \in C \), \(X_i(G_*) \) and \(X_{\neq i}(G_*) \) are polynomials in \(x_0, \ldots, x_N \) that are symmetric in all the variables except \(x_i \). This follows since any permutation of \(\{0, 1, \ldots, N\} \) fixing \(i \) induces bijections from \(\text{COL}_i(G_*) \) to itself and from \(\text{COL}_{\neq i}(G_*) \) to itself. We refer to \(X_0(G_*) \) as the rooted chromatic polynomial for \(G_* \) in \(N + 1 \) variables.

Let \(\Lambda_N \) be the ring of symmetric polynomials in variables \(x_1, \ldots, x_N \), let \(\Lambda \) be the ring of symmetric functions in \((x_k : k \geq 1) \), and let \(z = x_0 \). Then \(X_0(G_*) \) and \(X_{\neq 0}(G_*) \) are in \(\Lambda_N[z] \), the ring of polynomials in \(z \) with coefficients in \(\Lambda_N \). The constant coefficient of \(X_{\neq 0}(G_*) \), namely the specialization upon setting \(z = 0 \), is Stanley’s chromatic symmetric polynomial \(X_G \) in variables \(x_1, \ldots, x_N \). Thus, we may view \(X_{\neq 0}(G_*) \) as a refinement of the original chromatic symmetric function. The coefficient of \(z^k \) in \(X_0(G_*) \) is a symmetric polynomial in \(x_1, \ldots, x_N \) that is homogeneous of degree \(n - k \), where \(n = |V(G_*)| \). For all \(N \) and \(M \) with \(N \geq M \geq n \), setting the last \(N - M \) variables equal to 0 in \(X_0(G_*; x_0, x_1, \ldots, x_N) \) produces \(X_0(G_*; x_0, x_1, \ldots, x_M) \). Because of this stability property, we can let the number of variables tend to infinity to obtain a version of \(X_0(G_*) \) in \(\Lambda[z] \). Informally, this polynomial in \(z \) (with symmetric function coefficients) contains exactly the same information as each finite version \(X_0(G_*; x_0, x_1, \ldots, x_N) \) where \(N \geq |V(G_*)| \). Similar comments are true for \(X_{\neq 0}(G_*) \).

Example 4. Suppose \(N = 2 \) and \(G \) is a three-vertex path. Then

\[
X_{\bullet\circ\bullet}(x_0, x_1, x_2) = 6x_0x_1x_2 + x_0^2x_1 + x_0^2x_2 + x_0x_1^2 + x_0^2x_2 + x_0x_2^2 + x_1x_2^2.
\]

For instance, the coefficient of \(x_0x_2^2 \) is 1 because there is only 1 proper coloring of \(G \) using color 2 twice and color 0 once (the middle vertex must receive color 0). Now consider rooted graphs with underlying graph \(G \). Choosing the root to be either endpoint of the path gives

\[
(5) \quad X_0(\bullet\circ\bullet) = X_0(\circ\bullet\bullet) = 2x_0x_1x_2 + x_0^2x_1 + x_0^2x_2;
\]

\[
(6) \quad X_{\neq 0}(\bullet\circ\bullet) = X_{\neq 0}(\circleos\bullet) = 4x_0x_1x_2 + x_0x_1^2 + x_0x_2^2 + x_1x_2^2 + x_1x_2^2.
\]

On the other hand, choosing the root to be the middle vertex yields

\[
(7) \quad X_0(\bullet\bullet\circ) = x_0(2x_1x_2 + x_1^2 + x_2^2); \quad X_{\neq 0}(\bullet\bullet\circ) = 4x_0x_1x_2 + x_0^2x_1 + x_0^2x_2 + x_1x_2^2 + x_1x_2^2 + x_1x_2^2.
\]
2.2. Basic Identities. We now establish some identities relating the various chromatic polynomials just defined. Let \mathcal{S} be the symmetric group on the color set $C = \{0, 1, \ldots, N\}$. For $i \neq j$ in C, (i, j) is the transposition in \mathcal{S} that interchanges i and j. The group \mathcal{S} acts on $\mathbb{Q}[x_0, x_1, \ldots, x_N]$ by permuting the variables: $\sigma \cdot x_i = x_{\sigma(i)}$ for $\sigma \in \mathcal{S}$ and $i \in C$. The following identities follow directly from the definitions and symmetry arguments.

Proposition 5. For all rooted graphs G_* and all $k \in \{0, 1, \ldots, N\}$,

\begin{align}
(8) \quad X(G_*) &= \sum_{i=0}^{N} X_i(G_*) = X_k(G_*) + X_{\neq k}(G_*); \\
(9) \quad X_k(G_*) &= (0, k) \bullet X_0(G_*); \\
(10) \quad X_{\neq 0}(G_*) &= \sum_{i=1}^{N} X_i(G_*) = \sum_{i=1}^{N} (0, i) \bullet X_0(G_*); \\
(11) \quad X_{\neq k}(G_*) &= (0, k) \bullet X_{\neq 0}(G_*).
\end{align}

Hence, $X(G_*) = X_G$, $X_{\neq 0}(G_*)$, $X_k(G_*)$, and $X_{\neq k}(G_*)$ can all be recovered from the rooted chromatic polynomial $X_0(G_*)$.

A more interesting fact is that knowledge of $X_{\neq 0}(G_*)$ is also sufficient to recover $X_0(G_*)$ and all other polynomials listed here. Given $X_{\neq 0}(G_*)$, we first obtain $X_{\neq i}(G_*) = (0, i) \bullet X_{\neq 0}(G_*)$ for all i between 1 and N. The key observation is:

\begin{align}
\sum_{i=0}^{N} X_{\neq i}(G_*) &= \sum_{i=0}^{N} \sum_{j=0}^{N} X_j(G_*) = \sum_{j=0}^{N} X_j(G_*) \sum_{i=0}^{N} 1 = N \sum_{j=0}^{N} X_j(G_*) = NX(G_*).
\end{align}

So $X(G_*) = \frac{1}{N} \sum_{i=0}^{N} (0, i) \bullet X_{\neq 0}(G_*)$. Combining this with (8) yields the following.

Proposition 6. For any rooted graph G_*,

\begin{align}
(12) \quad X_0(G_*) &= \sum_{i=0}^{N} (0, i) \bullet X_{\neq 0}(G_*) - X_{\neq 0}(G_*).
\end{align}

2.3. Isomorphisms of Graphs and Rooted Graphs. Given graphs $G = (V(G), E(G))$ and $H = (V(H), E(H))$, a graph isomorphism from G to H is a bijection $f : V(G) \rightarrow V(H)$ such that for all $v, w \in V(G)$, $E(G)$ contains the edge joining v and w if and only if $E(H)$ contains the edge joining $f(v)$ and $f(w)$. Suppose G_* is a rooted graph with underlying graph G and root r, and H_* is a rooted graph with underlying graph H and root s. A rooted graph isomorphism from G_* to H_* is a graph isomorphism $f : V(G) \rightarrow V(H)$ with $f(r) = s$. When such an isomorphism exists, we write $G_* \cong H_*$.\n
The concept of rooted graph isomorphism for rooted trees is closely related to the following recursive construction of rooted trees. For any rooted tree T_*, either T_* is a one-vertex graph consisting of the root r and no edges; or T_* has root r joined by edges to the roots of $c \geq 1$ principal subtrees $T_{1*}, T_{2*}, \ldots, T_{c*}$. Note that these subtrees can be listed in any order (in contrast to subtrees in an ordered plane tree, where the order of the children of the root is significant). Studying isomorphism classes of rooted trees amounts to erasing all vertex labels. Upon doing this, the principal subtrees of T_* form a multiset of isomorphism classes of rooted trees, in which order does not matter, but repetitions are allowed.

It is routine to check the following criterion for two rooted trees T_* and U_* (with more than one vertex) to be isomorphic as rooted graphs. If T_* has principal subtrees T_{1*}, \ldots, T_{c*} and U_* has principal subtrees U_{1*}, \ldots, U_{d*}, then:

\begin{align}
(13) \quad T_* \cong U_* \text{ if and only if } c = d \text{ and (after suitable reordering) } T_{i*} \cong U_{i*} \text{ for } 1 \leq i \leq c.
\end{align}
2.4. **Recursion for** $X_0(T_*)$. There is a simple recursion for computing $X_0(T_*)$ when T_* is a rooted tree. A version of this result was used for computational purposes by Heil and Ji [16] (cf. [3, 4]).

Proposition 7. Let T_* be a rooted tree with principal rooted subtrees $T_{1*}, T_{2*}, \ldots, T_{c*}$. Then

\[
X_0(T_*) = x_0 \prod_{j=1}^{c} X_{\neq 0}(T_{j*}).
\]

Proof. The left side $X_0(T_*)$ is the weighted sum of all colorings in $\text{col}_0(T_*)$. We build each such coloring (uniquely) by making the following choices. First, color the root vertex r with color 0 (the weight monomial for this step is x_0). Next, color the subtree T_{1*} using any coloring in $\text{col}_{\neq 0}(T_{1*})$; color the subtree T_{2*} using any coloring in $\text{col}_{\neq 0}(T_{2*})$; and so on. The colorings of the subtrees can be chosen independently since the subtrees do not connect with each other except through the root r. The recursion (14) follows by the Product Rule for Weighted Sets [18, §5.8].

\[\square\]

3. **Irreducibility Results and the Proof of Theorem 2**

This section proves Theorem 2 (the rooted version of Stanley’s Conjecture) as a consequence of the following theorem.

Theorem 8. For each integer $n > 0$, there exists M such that for all $N \geq M$:

(a) For all trees T with $|V(T)| \leq n$, $X_T(x_1, \ldots, x_N)$ is irreducible in $\mathbb{Q}[x_1, \ldots, x_N]$.

(b) For all rooted trees T_* with $|V(T_*)| \leq n$, $X_{\neq 0}(T_*; x_0, x_1, \ldots, x_N)$ is irreducible in $\mathbb{Q}[x_0, x_1, \ldots, x_N]$.

Irreducibility of X_T in the ring of symmetric polynomials Λ_N was proved by Tsujie [27] using work of Cho and Willigenburg [5]. Theorem 8(a) is a stronger result, since there are more potential irreducible factors in $\mathbb{Q}[x_1, \ldots, x_N]$ compared to its subring Λ_N. The proof of this theorem is somewhat technical, so we first show how to deduce our main result from Theorem 8 and [14].

3.1. **Proof of Theorem 2**

Lemma 9. Suppose T_* and U_* are rooted trees such that $X_{\neq 0}(T_*)$ and $X_{\neq 0}(U_*)$ are associate ring elements in $\mathbb{Q}[x_0, \ldots, x_N]$. Then $X_{\neq 0}(T_*) = X_{\neq 0}(U_*)$.

Proof. We know $X_{\neq 0}(T_*)$ is homogeneous of degree $d > 0$, where $d = |V(T_*)|$. Since $X_{\neq 0}(U_*) = \alpha X_{\neq 0}(T_*)$ for some nonzero $\alpha \in \mathbb{Q}$, we also have $d = |V(U_*)|$. The coefficient of $x_1 x_2 \cdots x_d$ in $X_{\neq 0}(T_*)$ is $d!$, since we obtain all colorings in $\text{col}_{\neq 0}(T_*)$ with weight $x_1 x_2 \cdots x_d$ by choosing a bijection from $V(T_*)$ to the color set $\{1, 2, \ldots, d\}$. Similarly, the coefficient of $x_1 x_2 \cdots x_d$ in $X_{\neq 0}(U_*)$ is $d!$. This forces $\alpha = 1$ and $X_{\neq 0}(T_*) = X_{\neq 0}(U_*)$. \[\square\]

We now use Theorem 8(b) to prove Theorem 2, which states that rooted trees T_* and U_* are isomorphic (as rooted graphs) if and only if $X_0(T_*) = X_0(U_*)$.

Proof. The forward implication (if $T_* \cong U_*$, then $X_0(T_*) = X_0(U_*)$) is routine. For the converse implication, we use induction on the number n of vertices in each tree. Fix n-vertex rooted trees T_* and U_* with $X_0(T_*) = X_0(U_*)$ (note that n is the degree of each monomial in this polynomial, so T_* and U_* must have the same number of vertices). If $n = 1$, then $T_* \cong U_*$ since both trees consist of a single root vertex. Assume $n > 1$ from now on. Use Theorem 8(b) to find an $N \geq n$ such that for every rooted tree S_* with at most n vertices, $X_{\neq 0}(S_*; x_0, x_1, \ldots, x_N)$ is irreducible in $\mathbb{Q}[x_0, x_1, \ldots, x_N]$. Let the root r of T_* have principal subtrees T_{1*}, \ldots, T_{c*}, and let the root s of U_* have principal subtrees U_{1*}, \ldots, U_{d*}. Applying Proposition 7 to T_* and to U_*, the assumption $X_0(T_*) = X_0(U_*)$ becomes

\[
x_0 \prod_{j=1}^{c} X_{\neq 0}(T_{j*}) = x_0 \prod_{j=1}^{d} X_{\neq 0}(U_{j*}) \quad \text{in} \quad \mathbb{Q}[x_0, \ldots, x_N].
\]

(15)
By our choice of N, each side of (15) is a factorization of the polynomial $X_0(T_s) = X_0(U_s)$ into irreducible factors. Because $\mathbb{Q}[x_0, x_1, \ldots, x_N]$ is a unique factorization domain, we can conclude that $c = d$ and (after reordering factors appropriately) $X_{\neq 0}(T_{j^*})$ is an associate of $X_{\neq 0}(U_{j^*})$ for $1 \leq j \leq c$. By Lemma 9, we have $X_{\neq 0}(T_{j^*}) = X_{\neq 0}(U_{j^*})$ for all j between 1 and c. By (12), we deduce $X_0(T_{j^*}) = X_0(U_{j^*})$ for $1 \leq j \leq c$. Each principal subtree T_{j^*} and U_{j^*} has fewer than n vertices. By the induction hypothesis, $T_{j^*} \cong U_{j^*}$ for $1 \leq j \leq c$. Finally, $T_s \cong U_s$ follows from (13).

3.2. Background on Irreducibility and Specializations. This subsection collects some basic facts about irreducible polynomials needed for our proof of Theorem 8. The key result is Eisenstein’s Criterion for irreducibility of polynomials in $\mathbb{Q}[q]$.

Theorem 10 (Eisenstein’s Criterion [8]). Suppose $f = a_0 + a_1 q + a_2 q^2 + \cdots + a_n q^n \in \mathbb{Q}[q]$ is a polynomial of degree $n > 0$ with integer coefficients, p is a prime, p divides a_k for $0 \leq k < n$, p does not divide a_n, and p^2 does not divide a_0. Then f is irreducible in the polynomial ring $\mathbb{Q}[q]$.

Lemma 11. Suppose $f \in \mathbb{Q}[x_0, \ldots, x_N]$ is reducible and homogeneous of degree $n > 0$. Then f has a proper factorization $f = gh$ for some non-constant homogeneous polynomials $g, h \in \mathbb{Q}[x_0, \ldots, x_N]$.

Proof. By reducibility of f, there is a proper factorization $f = gh$ where $g, h \in \mathbb{Q}[x_0, \ldots, x_N]$ are not initially known to be homogeneous. Write $g = g(d)$ (lower terms), where $d > 0$ is the maximum degree of any monomial in g, and $g(d)$ is the sum of all monomials in g having degree d. Write $h = h(e)$ (lower terms), where $e > 0$ is the maximum degree of any monomial in h, and $h(e)$ is the sum of all monomials in h having degree e. Then $gh = g(d)h(e)$ (lower terms). Since $\mathbb{Q}[x_0, \ldots, x_N]$ is a integral domain, the product $g(d)h(e)$ (which is homogeneous of degree $d + e$) cannot be zero. Since f is homogeneous, this product must equal f. Replacing g by $g(d)$ and h by $h(e)$, we therefore have $f = gh$ with both factors homogeneous and non-constant.

Write $f|_{x_i=0}$ for the specialization of a polynomial f obtained by setting variable x_i equal to 0.

Lemma 12. Suppose $f \in \mathbb{Q}[x_0, x_1, \ldots, x_N]$ is homogeneous of degree $n > 0$. If $f|_{x_i=0}$ is an irreducible polynomial in $\mathbb{Q}[x_0, x_1, \ldots, x_N]$ (where x_i means variable x_i is omitted), then f is irreducible in $\mathbb{Q}[x_0, x_1, \ldots, x_N]$.

Proof. Let $f' = f|_{x_i=0}$. To get a contradiction, assume f' is irreducible (hence non-constant and nonzero) and f is reducible. By the previous lemma, there is a proper factorization $f = gh$ where g and h are both homogeneous of positive degree. Letting $g' = g|_{x_i=0}$ and $h' = h|_{x_i=0}$, we have $f' = g'h'$. Since $f' \neq 0$, g' and h' are nonzero. It follows at once that g' and h' are homogeneous of positive degree. Thus $f' = g'h'$ is a proper factorization of f', which is a contradiction.

Lemma 13. Fix a rooted graph G_*. For all $N \geq M \geq n = |V(G_*)|$:

1. If $X_G(x_1, \ldots, x_M)$ is irreducible, then $X_{\neq 0}(G_*; x_0, x_1, \ldots, x_M)$ is irreducible.
2. If $X_G(x_1, \ldots, x_M)$ is irreducible, then $X_G(x_1, \ldots, x_N)$ is irreducible.
3. If $X_{\neq 0}(G_*; x_0, \ldots, x_M)$ is irreducible, then $X_{\neq 0}(G_*; x_0, x_1, \ldots, x_N)$ is irreducible.

Proof. All polynomials mentioned in the lemma are homogeneous of degree $n = |V(G_*)|$ and are nonzero, since the hypothesis $N \geq M \geq n$ ensures there are enough colors to produce at least one coloring satisfying all needed conditions. Part (1) follows from Lemma 12 since setting $x_0 = 0$ in $X_{\neq 0}(G_*; x_0, x_1, \ldots, x_M)$ produces $X_G(x_1, \ldots, x_M)$. Parts (2) and (3) follow from Lemma 12 by setting $x_N = 0, \ldots, x_{M+1} = 0$ one at a time.

Lemma 14. If $P = P(x_1, \ldots, x_N) \in \mathbb{Q}[x_1, \ldots, x_N]$ is a nonzero polynomial and $S \subseteq \mathbb{Q}$ is an infinite set, then there exist $s_1, \ldots, s_N \in S$ such that $P(s_1, \ldots, s_N)$ is a nonzero element of \mathbb{Q}.

Proof. See, for instance, [28, Thm. 14, pg. 38].
3.3. Proof of Theorem 8. This section proves Theorem 8(a). Theorem 8(b) follows at once from part (a) and Lemma 13. We begin with a lemma containing the core idea of the proof.

Lemma 15. Let \(T \) be any \(n \)-vertex tree \((n > 0)\). Take any \(M \geq n \) such that \(p = M - 2 \) is an odd prime. Let \(f(q) \in \mathbb{Q}[q] \) be the specialization of \(X_T(x_1, \ldots, x_M) \) obtained by setting \(x_1 = x_2 = q \) and \(x_3 = \cdots = x_M = 1 \). Then \(f \) is irreducible in \(\mathbb{Q}[q] \).

Proof. Since \(X_T(x_1, \ldots, x_M) \) is a sum of monic monomials \(\text{wt}(\kappa) \), we can write \(f(q) = \sum_{k \geq 0} a_k q^k \) with all \(a_k \in \mathbb{Z}_{\geq 0} \). We claim \(a_k \in \mathbb{Z}_{\geq 0} \) and \(\kappa : V(T) \to \{1, 2, \ldots, M\} \) such that the number of \(v \) with \(\kappa(v) \in \{1, 2\} \) is \(k \). This holds since the weight monomial \(x_1^e_1 x_2^e_2 \cdots x_M^e_M \) of \(\kappa \) specializes to \(q^{e_1+e_2} \), where the power of \(q \) is the number of vertices that \(\kappa \) colors 1 or 2.

Since \(T \) has \(n \) vertices, we have \(a_k = 0 \) for \(k > n \). Recall the one-variable chromatic polynomial for trees: there are \(y(y - 1)^{s-1} \) ways to color any \(s \)-vertex tree using \(y \) available colors. Taking \(y = 2 \) and \(s = n \), we see that there are exactly 2 colorings of \(T \) where all \(n \) vertices receive color 1 or color 2. So \(a_n = 2 \) and \(\deg(f) = n \). Note \(p \) does not divide \(a_n \) since \(p \) is odd.

We next show that \(p \) divides \(a_k \) for \(0 < k < n \). Fix \(k \) in this range, and consider the colorings counted by \(a_k \). Let \(\mathcal{A}_k \) be the set of pairs \((S, \kappa')\) such that \(S \subseteq V(T) \), \(|S| = k\), and \(\kappa' : S \to \{1, 2\} \) is a proper coloring of the subgraph of \(T \) with vertex set \(S \). Let \(U \) be the subgraph of \(T \) with vertex set \(V(T) \setminus S \). We obtain a coloring \(\kappa \) counted by \(a_k \) by choosing a pair \((S, \kappa') \in \mathcal{A}_k \), choosing a proper coloring \(\kappa' : V(U) \to \{3, \ldots, M\} \), and letting \(\kappa \) be the union of the functions \(\kappa' \) and \(\kappa'' \). The graph \(U \) must consist of some trees \(T_1, \ldots, T_t \), where \(T_i \) has \(s_i \) vertices and \(s_1 + \cdots + s_t = n - k > 0 \). By the Product Rule, the number of colorings \(\kappa \) that arise from a fixed choice of \((S, \kappa') \in \mathcal{A}_k \) is

\[
\prod_{i=1}^\ell [(M - 2)(M - 3)^{s_i - 1}] = p^{\ell}(p - 1)^{n-k-\ell}.
\]

Here \(\ell = \ell(S, \kappa') \) depends on \((S, \kappa')\) and is always positive. Adding over all choices of \((S, \kappa')\), we get

\[
a_k = \sum_{(S, \kappa') \in \mathcal{A}_k} p^{\ell}(S, \kappa')(p - 1)^{n-k-\ell(S, \kappa')}.
\]

This integer is divisible by \(p \).

Finally, we show that \(p^2 \) does not divide \(a_0 \). The coefficient \(a_0 \) is the number of colorings of \(T \) using only colors in \(\{3, \ldots, M\} \), so \(a_0 = p(p - 1)^{n-1} \). Since \(p \) is prime, \(a_0 \) is divisible by \(p \) but not by \(p^2 \). We conclude that \(f \) is irreducible in \(\mathbb{Q}[q] \) by Eisenstein’s Criterion (Theorem 10). \(\square \)

Lemma 15 suggests that \(X_T(x_1, \ldots, x_M) \) is likely to be irreducible, since its specialization \(f(q) \) is irreducible. However, we need some technical modifications to rule out the possibility that a proper factorization of \(X_T \) happens to specialize to a trivial factorization of \(f(q) \). (As a simple example of this phenomenon, note \((x_1 + x_2)(x_3 + x_4 + x_5) \) is reducible in \(\mathbb{Q}[x_1, \ldots, x_5] \), but its specialization \(6q \) is irreducible in \(\mathbb{Q}[q] \).)

Lemma 16. Suppose \(T \) is any \(n \)-vertex tree \((n > 0)\). \(M \geq n \) is an integer such that \(p = M - 2 \) is an odd prime, and \(c_3, \ldots, c_M \) are any integers. Let \(g(q) \in \mathbb{Q}[q] \) be the specialization of \(X_T(x_1, \ldots, x_M) \) obtained by setting \(x_1 = x_2 = q \) and \(x_\ell = 1 + c_\ell p^2 \) for \(3 \leq \ell \leq M \). Then \(g \) is irreducible in \(\mathbb{Q}[q] \).

Proof. We have \(g(q) = \sum_{k=0}^n b_k q^k \) for certain integers \(b_k \). Let \(f(q) = \sum_{k=0}^n a_k q^k \) be the polynomial from Lemma 15. We first show \(a_k \equiv b_k \pmod{p^2} \) for all \(k \) between 0 and \(n \). Let \(\text{col}^k(T) \) be the set of proper colorings of \(T \) such that exactly \(k \) vertices receive a color in \(\{1, 2\} \). These colorings, and no others, contribute to the coefficient of \(q^k \) when computing \(f(q) \) or \(g(q) \). On one hand, \(a_k = |\text{col}^k(T)| = \sum_{\kappa \in \text{col}^k(T)} 1 \). On the other hand, a coloring \(\kappa \in \text{col}^k(T) \) with weight monomial \(\text{wt}(\kappa) = x_1^{e_1} \cdots x_M^{e_M} \) specializes to \(q^k \prod_{\ell=3}^{M}(1 + c_\ell p^2)^{e_\ell} \) when computing \(g \). The coefficient of \(q^k \) is an
integer congruent to 1 (mod p^2). Therefore, $b_k \equiv \sum_{k \in \text{col}_k(T)} 1 = a_k \pmod{p^2}$, as needed. It follows that all the divisibility hypotheses for Eisenstein’s Criterion hold for the coefficients b_0, \ldots, b_n, since they are known to hold for a_0, \ldots, a_n. (For example, b_0 is divisible by p but not by p^2 since $b_0 \equiv a_0 \pmod{p^2}$ and a_0 is divisible by p but not by p^2.) So $g(q)$ is irreducible in $\mathbb{Q}[q]$ by Eisenstein’s Criterion.

We now prove Theorem 8(a).

Proof. Fix an integer $n > 0$. Choose the least M such that $M \geq n$ and $p = M - 2$ is an odd prime. Let T be any nonempty tree with $n_1 \leq n$ vertices. We must prove: for all $N \geq M$, $X_T(x_1, \ldots, x_N)$ is irreducible in $\mathbb{Q}[x_1, \ldots, x_N]$. It suffices to do this for $N = M$, by Lemma 13(2). Assume, to get a contradiction, that $X_T(x_1, \ldots, x_M)$ is reducible. Since X_T is homogeneous of degree $n_1 > 0$, we have $X_T = gh$ for some $g, h \in \mathbb{Q}[x_1, \ldots, x_M]$, where g is homogeneous of degree $d > 0$ and h is homogeneous of degree $n_1 - d > 0$ (Lemma 11). Our strategy is to choose a judicious specialization of these polynomials that prevents the proper factorization of X_T from degenerating into a trivial factorization, and then to invoke Lemma 16 with this specialization to obtain a contradiction.

To begin, let $[M] = \{1, 2, \ldots, M\}$. We claim there exist $i \neq j$ in $[M]$ such that x_i appears in g and x_j appears in h. Note that every variable x_1, \ldots, x_M does appear in $X_T = gh$, since colorings of T exist using any particular color. So $[M]$ is the union of $I = \{i : x_i \text{ appears in } g\}$ and $J = \{j : x_j \text{ appears in } h\}$. I and J are nonempty sets since g and h have positive degree. If $|I| = 1$, then $|J| \geq M - 1 \geq 2$, so we can take i to be the unique element of I and take j to be something in J other than i. If $|J| = 1$, then $|I| \geq M - 1 \geq 2$, so we can take j to be the unique element of J and take i to be something in I other than j. If $|I| \geq 2$ and $|J| \geq 2$, then we can pick any $i \in I$ and any $j \in J$ different from i. So the claim holds. Since X_T is symmetric, we may assume $i = 1$ and $j = 2$ in the rest of the proof, by applying $(1, i)/(2, j)$ to the factorization $X_T = gh$.

Specialize X_T, g, and h by setting $x_1 = q$ and $x_2 = q$, where q is a new formal variable distinct from x_1, \ldots, x_M, to get a specialized factorization $X'_T = g'h'$. X_T does not become 0 when we specialize (since it is a positive sum of monomials), so neither g nor h can become 0 either. Also, g' and h' are still homogeneous (in the list of variables q, x_3, \ldots, x_M) of degrees $d > 0$ and $n_1 - d > 0$, respectively. So the specialized factorization $X'_T = g'h'$ is still a proper factorization.

We next claim there exist $c_3, \ldots, c_M \in \mathbb{Z}_{\geq 0}$ such that the specialization $E : \mathbb{Q}[x_1, \ldots, x_M] \to \mathbb{Q}[q]$ with $E(x_1) = E(x_2) = q$ and $E(x_\ell) = 1 + cp^2$ (for $3 \leq \ell \leq M$) yields a proper factorization $E(X'_T) = E(g)E(h)$ in $\mathbb{Q}[q]$. Let R be the polynomial ring $\mathbb{Q}[x_1, \ldots, x_M]$. By the choice of i and j, g' and h' are polynomials in $R[q]$ of positive degree in q. Say $g' = g_0q^t + (\text{lower})$ and $h' = h_0q^t + (\text{lower})$ for some $s, t > 0$ and nonzero polynomials $g_0, h_0 \in R$. Apply Lemma 14 (with $\mathbb{Q}[x_1, \ldots, x_N]$ replaced by R), taking $P = g_0h_0$ and $S = \{1 + cp^2 : c \in \mathbb{Z}_{\geq 0}\}$. By the lemma, there exist $c_3, \ldots, c_M \in \mathbb{Z}_{\geq 0}$ such that $g_0(c_3, \ldots, c_M)h_0(c_3, \ldots, c_M) \neq 0$. Defining E using this choice of c_3, \ldots, c_M, it follows that q^s still appears in $E(g)$ with nonzero coefficient, and q^t still appears in $E(h)$ with nonzero coefficient. So the claim holds, which means that $E(X'_T)$ is reducible in $\mathbb{Q}[q]$. This contradicts Lemma 16. We conclude that $X_T(x_1, \ldots, x_M)$ must be irreducible, as required.

4. Further Properties of Chromatic Polynomials for Rooted Graphs

In this section and the next, certain standard facts regarding various bases of the ring of symmetric functions Λ are needed. See [18] for background including definitions of the monomial basis $\{m_\lambda\}$, the elementary basis $\{e_\lambda\}$, and the power-sum basis $\{p_\lambda\}$.

4.1. Deletion-Contraction Recursion for $X_0(G_e)$. The classical one-variable chromatic polynomials satisfy the deletion-contraction recursion $\chi_G = \chi_{G-e} - \chi_{G \setminus e}$, where G is a graph, e is an edge of G, $G - e$ is the graph G with edge e deleted, and $G \setminus e$ is the graph obtained from G by
contracting the edge \(e\). There is no such recursion for Stanley’s chromatic symmetric function \(X_G\). We now show that the rooted version \(X_0(G_s)\) does satisfy a simple generalization of this recursion.

Theorem 17. Suppose \(G_s\) is a rooted graph with root vertex \(r\), and \(e\) is an edge from \(r\) to \(s\). Let \(G_s - e\) be \(G_s\) with edge \(e\) deleted (using the same root \(r\)). Let \(G_{es}\) be \(G_s\) with edge \(e\) contracted, meaning that we identify vertices \(r\) and \(s\) in \(G_e\) and use the identified vertex as the new root. Then

\[
X_0(G_s) = X_0(G_s - e) - x_0X_0(G_{es}).
\]

An initial condition occurs when no edge of \(G\) touches the root \(r\). In that case,

\[
X_0(G_s) = x_0X(G - r; x_0, \ldots, x_N),
\]

where \(G - r\) is the unrooted graph obtained from \(G\) by deleting the isolated root vertex.

Proof. Let \(S = \text{col}_0(G_s)\), \(T = \text{col}_0(G_s - e)\), and \(U = \text{col}_0(G_{es})\). Evidently, \(T\) is the disjoint union of the two subsets

\[
S = \{ \kappa \in T : 0 = \kappa(r) \neq \kappa(s) \} \quad \text{and} \quad U' = \{ \kappa \in T : 0 = \kappa(r) = \kappa(s) \}.
\]

There is a bijection from \(U'\) to \(U\) sending \(\kappa\) to \(\overline{\kappa}\), where the two colorings agree on all vertices other than \(r\) and \(s\), and \(\overline{\kappa}\) colors the new root vertex 0. It follows at once that \(wt(\kappa) = x_0 wt(\overline{\kappa})\). Since \(T\) is the disjoint union of \(S\) and \(U'\), the Weighted Sum Rule gives \(X_0(G_s - e) = X_0(G_s) + x_0X_0(G_{es})\), as needed. The initial condition is immediate from the Weighted Product Rule. \(\square\)

Theorem 17 can also be proved by an inclusion–exclusion argument; see Sections 4.5 and 5.1 below, as well as [23, Lemma 3.5].

Example 18. Continuing Example 4 we use Theorem 17 to compute (for \(N = 2\))

\[
X_0(\bullet \circ \circ) = X_0(\bullet \circ \circ) - x_0X_0(\bullet \circ \circ) = x_0(2x_0x_1 + 2x_0x_2 + 2x_1x_2) - x_0(x_0x_1 + x_0x_2)
\]

\[
= 2x_0x_1x_2 + x_0^2x_1 + x_0^2x_2,
\]

in agreement with [5].

Recursions analogous to (16) hold for any specializations of \(X_0(G_s)\) we care to compute. For example, if we use the principal specialization given by \(x_0 \to 1, x_1 \to q, \ldots, x_N \to q^N\), then the \(x_0\) multiplying the subtracted term in (16) becomes 1.

Conjecture 19. For all trees \(T, U\) with at most \(N + 1\) vertices,

\(T \cong U\) if and only if \(X_T(1, q, q^2, \ldots, q^N) = X_U(1, q, q^2, \ldots, q^N)\).

We have confirmed this conjecture by computer calculations for all trees with at most 17 vertices.

4.2. Interpretation of Coefficients of \(x_0^k\) in \(X_0(G_s)\). Let \(G_s\) be a rooted graph. Writing \(z = x_0\), we have

\[
X_0(G_s; z, x_1, \ldots, x_N) = \sum_{k \geq 1} c_k(x_1, \ldots, x_N)z^k,
\]

where each \(c_k(x_1, \ldots, x_N)\) is a symmetric polynomial in \(\Lambda_N\). We now give combinatorial interpretations for these coefficients. Recall that an independent set in a graph \(G\) is a subset \(A\) of \(V(G)\) such that no two vertices in \(A\) are joined by an edge in \(G\). Given such an \(A\), let \(G - A\) be the graph with vertex set \(V(G) - A\) and edge set obtained from \(E(G)\) by deleting all edges with a vertex in \(A\) as one endpoint.
Proposition 20. Let G_* be a rooted graph.
(a) For $k > 0$, let $I(G_*, k)$ be the set of k-element independent subsets of G that contain the root. Then
\[
X_0(G_*)|_{x_0^k} = \sum_{A \in I(G_*, k)} X_{G-A}(x_1, \ldots, x_N).
\]

(b) For $k \geq 0$, let $I'(G_*, k)$ be the set of k-element independent subsets of G that do not contain the root. Then
\[
X_{\neq 0}(G_*)|_{x_0^k} = \sum_{A \in I'(G_*, k)} X_{G-A}(x_1, \ldots, x_N).
\]

Proof. We build the proper colorings $\kappa \in \text{col}_0(G_*)$ contributing to the coefficient of x_0^k in $X_0(G_*)$ as follows. First, choose a k-element independent set $A \in I(G_*, k)$ and color the vertices of A (including the root r) with color 0. Second, choose any proper coloring of the graph $G - A$ using color set $\{1, 2, \ldots, N\}$. The formula in (a) follows from the Sum and Product Rules for Weighted Sets. Part (b) is proved in the same way, but now we choose $A \in I'(G_*, k)$ to ensure the root does not receive color 0. □

4.3. Reformulation of Stanley’s Conjecture. The following proposition illuminates the relationship between our result for rooted trees (Theorem 2) and Stanley’s original conjecture for unrooted trees (Conjecture 1).

Proposition 21. Conjecture 1 holds if and only if for every tree T, the multiset $[X_0(T^*_r) : r \in V(T)]$ is uniquely determined by the chromatic symmetric function X_T.

Proof. Assume the condition on multisets is true; we prove Conjecture 1. Let T and U be any n-vertex trees with $X_T = X_U$. By the multiset condition, $[X_0(T^*_r) : r \in V(T)] = [X_0(U^*_s) : s \in V(U)]$. So there exist $r \in V(T)$ and $s \in V(U)$ with $X_0(T^*_r) = X_0(U^*_s)$. By Theorem 2, T^*_r and U^*_s are isomorphic as rooted graphs. So T and U are isomorphic as graphs.

We prove the converse implication by contradiction. Assume Conjecture 1 is true, but the condition on multisets is false. Then there exist trees T and U such that $X_T = X_U$, but $[X_0(T^*_r) : r \in V(T)] \neq [X_0(U^*_s) : s \in V(U)]$. Since $X_T = X_U$, Conjecture 1 says $T \cong U$, so there is a graph isomorphism $f : V(T) \to V(U)$. For each $r \in V(T)$, f is a rooted graph isomorphism from T^*_r to U^*_s. But then $X_0(T^*_r) = X_0(U^*_s)$ for all $r \in V(T)$, which means the two multisets are equal. This gives the required contradiction. □

At present, we do not know how to recover the multiset $[X_0(T^*_r) : r \in V(T)]$ from X_T. In fact, this cannot be done for general graphs G, as the following example shows. This example uses the augmented monomial symmetric functions \tilde{m}_λ, defined by $\tilde{m}_\lambda = r_1!r_2! \cdots m_\lambda$ if λ has r_1 parts equal to 1, r_2 parts equal to 2, and so on.

Example 22. Stanley [26 pg. 170] gave this example of two non-isomorphic graphs with equal chromatic symmetric functions:
\[
X_0\left(\begin{array}{c}
\text{Graph 1}
\end{array}\right) = X_0\left(\begin{array}{c}
\text{Graph 2}
\end{array}\right) = 2\tilde{m}_{211} + 4\tilde{m}_{2111} + \tilde{m}_{11111}.
\]

Let $z = x_0$. For the first graph G, the multiset $[X_0(G^*_r)]$ consists of
\[
X_0\left(\begin{array}{c}
\text{Graph 1}
\end{array}\right) = X_0\left(\begin{array}{c}
\text{Graph 2}
\end{array}\right) = X_0\left(\begin{array}{c}
\text{Graph 3}
\end{array}\right) = z(2\tilde{m}_{211} + \tilde{m}_{11111}) + z^2(2\tilde{m}_{21} + 2\tilde{m}_{1111}),
\]
\[
X_0\left(\begin{array}{c}
\text{Graph 3}
\end{array}\right) = z(2\tilde{m}_{22} + 4\tilde{m}_{211} + \tilde{m}_{11111}).
\]
For the second graph H, the multiset $[X_0(H^*_s)]$ consists of

$$X_0\left(\begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array}\right) = X_0\left(\begin{array}{c}
\circ \\
\circ \\
\bullet \\
\end{array}\right) = z(\tilde{m}_{22} + 3\tilde{m}_{211} + \tilde{m}_{1111}) + z^2(\tilde{m}_{21} + \tilde{m}_{111}),$$

$$X_0\left(\begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array}\right) = z(2\tilde{m}_{211} + \tilde{m}_{1111}) + z^2(2\tilde{m}_{21} + 2\tilde{m}_{111}),$$

$$X_0\left(\begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array}\right) = z(3\tilde{m}_{211} + \tilde{m}_{1111}) + z^2(2\tilde{m}_{21} + \tilde{m}_{111}),$$

$$X_0\left(\begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array}\right) = z(\tilde{m}_{211} + \tilde{m}_{1111}) + z^2(2\tilde{m}_{21} + 3\tilde{m}_{111}).$$

Despite this example, there is a simple way to recover the sum of all $X_0(G^*_s)$ from X_G.

Proposition 23. For any graph G,

$$x_0 \frac{\partial}{\partial x_0} X_G(x_0, \ldots, x_N) = \sum_{r \in V(G)} X_0(G^*_r; x_0, \ldots, x_N).$$

Proof. The proof is an application of the *pointing construction* to the generating function X_G (see [11, Theorem I.4]). Each coloring $\kappa \in \text{col}(G)$ contributes a monomial $x_0^{e_0} \cdots x_N^{e_N}$ to X_G. Applying the operator $x_0 \frac{\partial}{\partial x_0}$ multiplies this monomial by e_0, which is the number of vertices colored 0 by κ. The coloring κ belongs to exactly e_0 of the sets $\text{col}_0(G^*_r)$ as r varies through $V(G)$, since the root r must be colored 0. Thus, each coloring κ makes the same contribution (namely $e_0 x_0^{e_0} \cdots x_N^{e_N}$) to both sides of (18). \qed

Example 24. Continuing Example 1 the following calculation illustrates Proposition 23

$$X_0\left(\begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array}\right) + X_0\left(\begin{array}{c}
\circ \\
\circ \\
\bullet \\
\end{array}\right) + X_0\left(\begin{array}{c}
\circ \\
\bullet \\
\circ \\
\end{array}\right)$$

$$= (2x_0x_1x_2 + x_0^2(x_1 + x_2)) + (2x_0x_1x_2 + x_0(x_1^2 + x_2^2)) + (2x_0x_1x_2 + x_0^2(x_1 + x_2))$$

$$= 6x_0x_1x_2 + 2x_0^2(x_1 + x_2) + x_0(x_1^2 + x_2^2) = x_0 \frac{\partial}{\partial x_0} X_0\left(\begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array}\right)(x_0, x_1, x_2).$$

4.4. **Analogue of the (3 + 1)-conjecture.** Much of the research pertaining to X_G has focused on characterizing the coefficients of X_G when expressed in various bases of the space Λ of symmetric functions. One outstanding conjecture by Stanley and Stembridge is the following e-positivity conjecture (recent research pertaining to this conjecture can be found in places such as [12, 23, 24]).

For $a \geq 1$, let a denote the totally ordered poset on a elements. Given posets (P, \leq_P) and (Q, \leq_Q), where we can choose notation so that $P \cap Q = \emptyset$, the disjoint union $P + Q$ is the poset $(P \cup Q, \leq_P \cup \leq_Q)$ (meaning that $x \leq_P y$ if $x \in P$ and $x \leq_Q y$ or $x, y \in Q$ and $x \leq_Q y$). Given any posets (P, \leq_P) and (Q, \leq_Q), we say that P is Q-free if Q is not isomorphic to an induced subposet of P. The incomparability graph $G(P)$ of a poset (P, \leq_P) is the undirected graph with vertex set P and edges $\{x, y\}$ for all $x, y \in P$ such that x and y are incomparable under \leq_P.

Conjecture 25. [26] Conj. 5.1, [25] Conj. 5.5] If (P, \leq_P) is (3 + 1)-free, then $X_{G(P)}$ is e-positive.

If we view $X_0(G^*_r; x_0, \ldots, x_N)$ as an element of $\Lambda[x_0]$, the coefficient of x_0 is $X_{G-r}(x_1, \ldots, x_N)$. For $f \in \Lambda[z]$, we say that f is e-positive if the coefficient of z^k is an e-positive element of Λ for each $k \geq 0$. Here is a refinement of Conjecture 25 which we have checked (by computer) for posets with at most 8 vertices.

Conjecture 26. Let (P, \leq_P) be a poset. For all $r \in P$, if $P - r$ is (3 + 1)-free, then $X_0(G(P)_r^*)$ is e-positive.
When \((P, \leq_P)\) is \((3 + 1)\)-free, \(G(P)\) is claw-free (i.e., has no vertex-induced subgraph isomorphic to the complete bipartite graph \(K_{1,3}\)). One might hope that we could strengthen Conjecture \ref{conj:main} to assert that \(X_0(G_v^*)\) is \(e\)-positive whenever \(G - r\) is claw-free. However, as discussed in \cite{Pawlowski}, claw-free graphs do not have \(e\)-positive chromatic symmetric functions in general (see also \cite{Marberg}).

4.5. Power-Sum Formula

Stanley \cite[Thm. 2.5]{Stanley} used an inclusion–exclusion argument to find the power-sum expansion of the chromatic symmetric function \(X_0\). For any edge \(e \in E(G)\), define \(A_e\) to be the set of (non-proper) colorings \(\kappa : V(G) \to \mathbb{Z}_{\geq 0}\) such that the endpoints of edge \(e\) receive the same color. For any \(S \subseteq E(G)\), let \(G_S\) denote the graph with vertex set \(V(G)\) and edge set \(S\). Let \(\lambda(G_S)\) be the integer partition whose parts are the sizes of the connected components of \(G_S\) in weakly decreasing order. Let \(p_\lambda\) be the power-sum symmetric function indexed by \(\lambda\). A coloring \(\kappa : V(G) \to \mathbb{Z}_{\geq 0}\) is proper if and only if it does not belong to the union \(\bigcup_{e \in E(G)} A_e\). Hence, the Inclusion–Exclusion Formula leads to

\[
X_0 = \sum_{S \subseteq E(G)} (-1)^{|S|} p_{\lambda(G_S)},
\]

We can adapt Stanley’s argument to obtain an analogous expansion of \(X_0(G_v; x_0, x_1, \ldots, x_N)\). This formula is closely related to the power-sum expansion of Pawlowski’s pointed chromatic symmetric functions, as we explain in Section \ref{sec:variants}.

Given a rooted graph \(G_v\) with root \(v\) and \(S \subseteq E(G)\), let \(\lambda^+_v(G_S)\) be the size of the component of \(G_S\) containing \(v\), and let \(\lambda^-_v(G_S)\) be the partition \(\lambda(G_S)\) with a single part of size \(\lambda^+_v(G_S)\) deleted.

Proposition 27. For all rooted graphs \(G_v^*\) and \(N \geq |V(G)|\),

\[
X_0(G_v^*; x_0, x_1, \ldots, x_N) = \sum_{S \subseteq E(G)} (-1)^{|S|} p_{\lambda^+_v(G_S)}(x_0, x_1, \ldots, x_N) x_0^{\lambda^+_v(G_S)}.
\]

Proof. Let \(A_v^*\) be the set of all (not necessarily proper) colorings \(\kappa : V(G) \to \{0, 1, \ldots, N\}\) where \(\kappa(v) = 0\). For each edge \(e\), let \(A^*_v\) be the set of \(\kappa \in A_v^*\) that assign the same color to the two endpoints of edge \(e\). For each \(S \subseteq E(G)\), we can count the weighted set \(\bigcap_{e \in S} A^*_e\) as follows. Write \(\lambda^+_v(G_S) = k\), where \(k\) is the size of the component \(C_v^a\) of \(G_S\) containing the root \(v\). Write \(\lambda^-_v(G_S) = (\lambda_1, \ldots, \lambda_m)\), where each \(\lambda_i\) is the size of another component \(C_i\) of \(G_S\). We build a coloring in \(\bigcap_{e \in S} A^*_e\) as follows. Color all \(k\) vertices of \(C_v^a\) with color 0 (as we must), giving a weight contribution of \(x_0^k\). For each remaining component \(C_i\), choose the common color for all \(\lambda_i\) vertices in that component. The weight contribution for that choice is \(x_0^{\lambda^+_i} + x_1^{\lambda^+_i} + \cdots + x_N^{\lambda^+_i} = p_{\lambda}(x_0, x_1, \ldots, x_N)\). By the Product Rule, the generating function for \(\bigcap_{e \in S} A^*_e\) is \(P_{\lambda^+_v}(G_S) x_0^{\lambda^+_v(G_S)}\). Equation (20) follows at once from the Inclusion–Exclusion Formula, since \(X_0(G_v^*)\) counts colorings in \(A_v^*\) outside \(\bigcup_{e \in E(G)} A^*_e\). \(\square\)

5. Other Variants of Stanley’s Chromatic Symmetric Functions

In this section, we review some of the functions that have been defined in the past several decades that relate to, and frequently generalize, the chromatic symmetric function.

5.1. Pawlowski’s Pointed Chromatic Symmetric Functions

Given a rooted graph \(G_v^*\) with root \(v\) and \(S \subseteq E(G)\), Pawlowski’s pointed chromatic symmetric function is defined as

\[
P_{G_v^*} = \sum_{S \subseteq E(G)} (-1)^{|S|} p_{\lambda^+_v(G_S)} z^{\lambda^+_v(G_S)} \in \Lambda[z],
\]

where \(p_\lambda = 1\) if \(\lambda\) has no positive parts. The polynomial version using variables \(x_1, \ldots, x_N\) is

\[
P_{G_v^*}(x_1, \ldots, x_N) = \sum_{S \subseteq E(G)} (-1)^{|S|} p_{\lambda^+_v(G_S)}(x_1, \ldots, x_N) z^{\lambda^+_v(G_S)} \in \Lambda_N[z].
\]
Let $x_0 = z$. Comparing (21) and (20), we see that $X_0(G^*_x; z, x_1, \ldots, x_N)$ is the specialization of $P_{G,v}$ obtained by replacing each abstract power-sum p_k by $z^k + x_1^k + \cdots + x_N^k$ (as opposed to $x_1^k + \cdots + x_N^k$) and multiplying by z. This extra z accounts for the subtracted 1 in the exponent of z in (21). Working in $\Lambda[z]$, we transform $zP_{G,v}$ to $X_0(G^*_x)$ by applying the evaluation homomorphism on $\Lambda = \mathbb{Q}[p_k : k \geq 1]$ that sends each p_k to $z^k + p_k$. We transform $X_0(G^*_x)$ to $zP_{G,v}$ by applying the inverse homomorphism sending each p_k to $p_k - z^k$. Since we can recover $X_0(G^*_x)$ from Pawlowski’s $P_{G,v}$, we deduce the following from Theorem 2.

Corollary 28. Rooted trees T^*_x and U^*_x are isomorphic (as rooted graphs) if and only if $P_{T,x} = P_{U,x}$.

Example 29. For $G^*_x = \begin{array}{c} \circ \\ \circ \end{array}$, we use Equation (21) to compute

\begin{equation}
(23)
P_{G,v} = (p_{1111} - 2p_{211} + p_{31})z^0 + (-2p_{1111} + 2p_{21} - p_3)z^1 + (3p_{11})z^2 + (-3p_1)z^3 + z^4.
\end{equation}

Replacing each p_k by $z^k + p_k$ and simplifying, we obtain

\begin{equation}
X_0(G^*_x) = (p_{1111} - 2p_{211} + p_{31})z + (2p_{1111} - 2p_{21})z^2 + p_{11}z^3.
\end{equation}

Notice that the coefficient of $z = x_0$ in $X_0(G^*_x)$ and $zP_{G,v}$ is the same; this holds in general.

Remark 30. We can use Example 29 to illustrate the answer to a question of Pawlowski for trees. Pawlowski notes in [23, Cor. 3.6] that when z is replaced by $-z$ in $P_{G,v}$, the result is m-positive and asks what a combinatorial interpretation of the coefficient of $(-z)^k$ is. Indeed, applying the standard change-of-base transformation from the p-basis to the m-basis to the expression in (23), we find

\begin{equation}
P_0 = (24m_{1111} + 8m_{211} + 2m_{22} + m_{31})(-z)^0 +
(12m_{1111} + 4m_{21} + m_3)(-z)^1 + (6m_{111} + 3m_2)(-z)^2 + 3m_1(-z)^3 + (-z)^4.
\end{equation}

By adapting the proof of (20), the reader may check that the coefficient of $(-z)^k$ equals $\sum_H X_{G-H}$ where H runs over all connected vertex-induced subgraphs H with $k+1$ vertices such that $v \in V(H)$.

For example, with $k = 1$, the two graphs are $G - H_1 = \begin{array}{c} \circ \\ \circ \end{array}$, a path with two edges, and $G - H_2 = \begin{array}{c} \circ \\ \circ \end{array}$, three isolated vertices. A short computation shows $X_{G-H_1} = m_{21} + 6m_{1111}$ and $X_{G-H_2} = m_3 + 3m_{21} + 6m_{1111}$. Then $X_{G-H_1} + X_{G-H_2}$ is the coefficient of $(-z)^1$ in $P_{G,v}$, as desired. For trees in general, the coefficient of z^k in each of $X_0(G^*_x)$ and $P_{G,v}$ is a sum over proper colorings of certain subgraphs. For $X_0(G^*_x)$, these subgraphs are complements of independent sets containing v (Proposition 20(a)). For $P_{G,v}$, these subgraphs are complements of connected subgraphs containing v.

5.2. Rooted U-Polynomials

The pointed chromatic symmetric functions are closely related to another family of polynomials called rooted U-polynomials [2]. To describe these, we first review the W-polynomials and U-polynomials of Noble and Welsh [21]. A weighted graph is a pair (G, ω) where G is a graph (possibly containing loop edges) and $\omega : V(G) \to \mathbb{Z}_{>0}$ is a weight function on the vertex set of G. Writing x for the sequence of commuting indeterminates x_1, x_2, \ldots, the W-polynomials $W_{(G,\omega)}(x, y)$ are defined recursively using a version of the deletion-contraction recursion. As an initial condition, if G has no edges, then $W_{(G,\omega)}(x, y) = \prod_{v \in V(G)} x_{\omega(v)}$. If G has a loop edge e, then $W_{(G,\omega)}(x, y) = yW_{(G-e,\omega)}(x, y)$, where $G-e$ is the graph G with loop e deleted. If G has an edge e with distinct endpoints v_i and v_j, then

\begin{equation}
W_{(G,\omega)}(x, y) = W_{(G-e,\omega)}(x, y) + W_{(G-e,\omega)}(x, y),
\end{equation}

\begin{equation}
\text{Corollary 28.}
\end{equation}
where G_e is the contraction of G along e (i.e., delete e and identify v_i and v_j as a new vertex v_{ij}), $\omega_e(v_{ij}) = \omega(v_i) + \omega(v_j)$, and $\omega_e(v) = \omega(v)$ for all $v \notin \{v_i, v_j\}$. For graphs with no loop edges, the variable y does not appear. The U-polynomial for a graph G is $U_G(x, y) = W_{(G, 1)}(x, y)$, where 1 is the weight function sending each $v \in V(G)$ to 1.

Example 31. Let ω be the weight function that assigns 3 to the leftmost vertex of $T = \bigcirc \bigcirc \bigcirc$ and 1 to the other two vertices. One can check that $W_{(T, \omega)}(x, y) = x_1^2 x_3 + x_2 x_3 + x_1 x_4 + x_5$ and $U_T(x, y) = x_1^3 + 2x_1 x_2 + x_3$.

The U-polynomials can also be defined directly on unweighted graphs G as an alternating sum over subsets of the edge set, as in [19]. Define the rank of $S \subseteq E(G)$ to be $r(S) = |V(G)| - k(G_S)$, where $k(G_S) = \ell(\lambda(G_S))$ is the number of connected components of G_S. Then

$$U_G(x, y) = \sum_{S \subseteq E(G)} x^{\lambda(S)} (y - 1)^{|S| - r(S)}, \tag{26}$$

where $x^{\lambda} = \prod_i x^{\lambda_i}$. When G is a tree, $k(G_S) = |V(G)| - |S|$, so $r(S) = |S|$ and the power of $y - 1$ disappears. For any loopless graph G, we can recover X_G from U_G by setting $x_i = -p_i$ for all $i > 0$ and multiplying by $(-1)^{|V(G)|}$ (see [21, Theorem 6.1]).

The rooted U-polynomial for the graph G rooted at v is defined in [2] as

$$U^r(G, v; x, y, z) = \sum_{S \subseteq E(G)} x^{\lambda(S)}(G_S) (y - 1)^{|S| - r(S)}. \tag{27}$$

Note that [27] modifies [26] in the same way that [21] modifies [19], up to a factor of z^{-1}. In particular, Pawlowski’s pointed chromatic symmetric function can be recovered from the rooted U-polynomial by setting $x_i = -p_i$ for all $i > 0$ and multiplying by $(-1)^{|V(G)|+1}z^{-1}$. (An extra sign is needed since $\lambda^-_G(G_S)$ has one fewer part than $\lambda(G_S)$.)

Example 32. For the rooted graph $\bigcirc \bigcirc \bigcirc$, we compute $U^r(G, v; x, y, z) = x_1^2 z + 2x_1 x_2 + x_3$.

5.3. Other Variations for Weighted Graphs

For completeness, we mention a few other variants of X_G on weighted graphs. In [6], the authors define extended chromatic functions for weighted graphs by setting

$$X_{(G, \omega)} = \sum_{\kappa} \prod_{v \in V(G)} x^{\omega(v)}_{\kappa(v)}, \tag{28}$$

where $\omega : V(G) \to \mathbb{Z}_{>0}$ is a weight function. These functions satisfy a deletion-contraction recursion and can be recovered from the W-polynomial. They generalize Stanley’s chromatic symmetric function X_G as well as the chromatic quasisymmetric functions of Shareshian and Wachs, discussed below. In [11], the authors work with a more general notion of vertex-weighting and define M-polynomials for marked graphs. They also consider a specialization of M-polynomials called D-polynomials. Another generalization, the V-polynomial, is considered in [9].

5.4. Noncommutative and Quasisymmetric Variants

In 2001, Gebhard and Sagan introduced a noncommutative version of the chromatic symmetric function [13]. Let x_1, x_2, \ldots be noncommuting indeterminates. Given a graph G, let $v_1 < v_2 < \cdots < v_n$ be a fixed total ordering of $V(G)$. The weight of a proper coloring $\kappa : V(G) \to \mathbb{Z}_{>0}$ is $x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_n)}$. The noncommutative chromatic symmetric function Y_G is the sum of the weights of all proper colorings. Clearly, Y_G reduces to X_G when the variables are allowed to commute. A primary motivation for introducing Y_G is that Y_G satisfies a deletion-contraction recursion, which is based on an operation called induction. Proposition 8.2 of [13] asserts that Y_G is a complete invariant for graphs with no loops or multiple edges: two such graphs G and H are isomorphic if and only if $Y_G = Y_H$.

14
Example 33. Using a left-to-right ordering of the vertices, we have $Y_{\circ\bullet\circ\circ} = \sum_{i,j,k} x_i x_j x_k + \sum_{i,j} x_i x_j x_i$, where the indices i, j, k in the two sums are required to be distinct.

Shareshian and Wachs [24] studied another variation of X_G involving QSym, the ring of quasisymmetric functions in commuting indeterminates x_1, x_2, \ldots. Fix a total ordering $v_1 < v_2 < \cdots < v_n$ of $V(G)$. Given a proper coloring $\kappa : V(G) \to \mathbb{Z}_{\geq 0}$, define $\text{asc}(\kappa)$ to be the number of $i < j$ such that there is an edge in G from v_i to v_j and $\kappa(v_i) < \kappa(v_j)$. The Shareshian-Wachs chromatic quasisymmetric function is

$$X_G(x, t) = \sum_{\kappa} t^{\text{asc}(\kappa)} \text{wt}(\kappa),$$

where we sum over all proper colorings of G. It can be shown that $X_G(x, t) \in \text{QSym}[t]$, so that the coefficient of each t^n is a quasisymmetric function. The specialization $X_G(x, 1)$ is Stanley’s symmetric function X_G.

Example 34. Let M_α be the monomial quasisymmetric function indexed by the composition α. Using a left-to-right ordering of the vertices, we find

$$X_{\circ\bullet\circ\circ}(x, t) = M_{111} + (M_{21} + M_{12} + 4M_{111}) t + M_{111} t^2.$$

Setting $t = 1$ gives $X_G = m_{21} + 6m_{111}$.

In a related construction, Hasebe and Tsujie [15] define the (strict) order quasisymmetric function of a poset P, as follows. Let $\text{Hom}^<(P, \mathbb{Z}_{\geq 0})$ be the set of functions $f : P \to \mathbb{Z}_{\geq 0}$ such that for all $u, v \in P$, $u < v$ in P implies $f(u) < f(v)$ in $\mathbb{Z}_{\geq 0}$. Define

$$\Gamma^<(P, x) = \sum_{f \in \text{Hom}^<(P, \mathbb{Z}_{\geq 0})} \prod_{v \in P} x_{f(v)}.$$

A rooted tree T_* is viewed as a poset P by setting $u \leq v$ iff the unique path from the root to v passes through u. So $\Gamma^<(T_*, x)$ sums over the subset of proper colorings of T_* where the colors strictly increase following any path away from the root.

Example 35. We have $\Gamma^<(\bullet\circ\bullet\circ, x_0, x_1, x_2) = x_0 x_1^2 + 2x_0 x_1 x_2 + x_0 x_2^2 = X_0(\bullet\circ\bullet\circ)$. Equality holds here only because every path from the root has length 1 and the number of colors equals the number of vertices. Note that $\Gamma^<(\bullet\circ\circ\bullet, x_0, x_1, x_2) = x_0 x_1 x_2$, which does not equal $X_0(\bullet\circ\circ\bullet; x_0, x_1, x_2)$ as given in [5].

Hasebe and Tsujie show that $\Gamma^<$ is a complete invariant for rooted trees [15, Theorem 1.3]. Their proof is structurally similar to our proof of Theorem 2 relying on QSym being a unique factorization domain and on the irreducibility of various polynomials appearing in the recursion. For an n-vertex rooted tree T_*, $\Gamma^<(T_*, x)$ is the coefficient of t^{n-1} in the Shareshian-Wachs chromatic quasisymmetric function (using a vertex ordering extending the poset structure of T_*). So the fact that $\Gamma^<$ distinguishes rooted trees immediately implies that $X_G(x, t)$ distinguishes rooted trees as well.

REFERENCES

[1] José Aliste-Prieto, Anna de Mier, Rosa Orellana, and José Zamora. Marked graphs and the chromatic symmetric function. arXiv preprint: 2202.11787, 2022.
[2] José Aliste-Prieto, Anna de Mier, and José Zamora. On the smallest trees with the same restricted U-polynomial and the rooted U-polynomial. Discrete Mathematics, 344(3):112255, 2021.
[3] Béla Bollobás and Oliver Riordan. Polychromatic polynomials. Discrete mathematics, 219:1–7, 2000.
[4] Sharad Chaudhary and Gary Gordon. Tutte polynomials for trees. Journal of Graph Theory, 15(3):317–331, 1991, https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.3190150308.
[5] Soojin Cho and Stephanie van Willigenburg. Chromatic bases for symmetric functions. *Electronic Journal of Combinatorics*, 23(1):P1.15, 2016.

[6] Logan Crew and Sophie Spirkl. A deletion–contraction relation for the chromatic symmetric function. *European Journal of Combinatorics*, 89:103143, 2020.

[7] Samantha Dahlberg, Angéle Foley and Stephanie van Willigenburg. Resolving Stanley’s e-positivity of claw-contractible-free graphs. arXiv preprint: 1703.05770, 2017.

[8] Gotthold Eisenstein. Über die Irreductibilität und einige andere Eigenschaften der Gleichung, von welcher die Theilung der ganzen Lemniscate abhängt. *Journal für die reine und angewandte Mathematik*, 39:160–179, 1850.

[9] Joanna A. Ellis-Monaghan and Iain Moffatt. The Tutte–Potts connection in the presence of an external magnetic field. *Advances in Applied Mathematics*, 47(4):772–782, 2011.

[10] Brittney Ellzey. A directed graph generalization of chromatic quasisymmetric functions, 2017. arXiv preprint: 1709.00454, 2017.

[11] Philippe Flajolet and Robert Sedgewick. *Analytic Combinatorics*. Cambridge University Press, USA, first edition, 2009.

[12] Vesselin Gasharov. Incomparability graphs of (3 + 1)-free posets are s-positive. *Discrete Mathematics*, 157(1):193–197, 1996.

[13] David D. Gebhard and Bruce E. Sagan. A chromatic symmetric function in noncommuting variables. *Journal of Algebraic Combinatorics*, 13:227–255, 2001.

[14] Gary Gordon and Elizabeth McMahon. A greedoid polynomial which distinguishes rooted arborescences. *Proceedings of the American Mathematical Society*, 107(2):287–298, 1989.

[15] Takahiro Hasebe and Shuhei Tsujie. Order quasisymmetric functions distinguish rooted trees. *Journal of Algebraic Combinatorics*, 46:499–515, 2017.

[16] S. Heil and C. Ji. On an algorithm for comparing the chromatic symmetric functions of trees. *Australasian Journal of Combinatorics*, 75(2):210–222, 2019.

[17] Jake Huryn and Sergei Chmutov. A few more trees the chromatic symmetric function can distinguish. *Involve*, 13(1):109–116, 2020.

[18] Nicholas A. Loehr. *Combinatorics*. CRC Press, second edition, 2017.

[19] Jeremy L. Martin, Matthew Morin, and Jennifer D. Wagner. On distinguishing trees by their chromatic symmetric functions. *Journal of Combinatorial Theory, Series A*, 115(2):237–253, 2008.

[20] Matthew Morin. *Caterpillars, ribbons, and the chromatic symmetric function*. PhD thesis, University of British Columbia, 2005.

[21] Steven D. Noble and Dominic J. A. Welsh. A weighted graph polynomial from chromatic invariants of knots. *Annales de l’institut Fourier*, 49(3):1057–1087, 1999.

[22] Rosa Orellana and Geoffrey Scott. Graphs with equal chromatic symmetric functions. *Discrete Mathematics*, 320:1–14, 2014.

[23] Brendan Pawlowski. Chromatic symmetric functions via the group algebra of S_n. *Algebraic Combinatorics*, 5(1):1–20, 2022.

[24] John Shareshian and Michelle L. Wachs. Chromatic quasisymmetric functions. *Advances in Mathematics*, 295:497–551, 2016.

[25] Richard P. Stanley and John R. Stembridge. On immanants of Jacobi-Trudi matrices and permutations with restricted position. *Journal of Combinatorial Theory, Series A*, 62(2):261–279, 1993.

[26] Richard P. Stanley. A symmetric function generalization of the chromatic polynomial of a graph. *Advances in Mathematics*, 111(1):166–194, 1995.

[27] Shuhei Tsujie. The chromatic symmetric functions of trivially perfect graphs and cographs. *Graphs and Combinatorics*, 34:1037–1048, 2018.

[28] Oscar Zariski and Pierre Samuel, with the cooperation of I. S. Cohen. *Commutative Algebra I*. Graduate Texts in Mathematics. Springer New York, 1975.

DEPT. OF MATHEMATICS, VIRGINIA TECH, BLACKSBURG, VA 24061-0123

Email address: nloehr@vt.edu

DEPT. OF MATHEMATICS AND STATISTICS, UNIVERSITY OF VERMONT, BURLINGTON, VT 05401

Email address: gregory.warrington@uvm.edu