Stability as a Whole of a Family of Fibers Maps and \(\Omega\)-Stability of \(C^1\)-Smooth Skew Products of Maps of an Interval

Lyudmila S. Efremova
Institute of Information Technologies, Mathematics and Mechanics, University of Nizhni Novgorod, Gagarin ave., 23a, Nizhni Novgorod, 603950, Russia
E-mail: lefunn@gmail.com

Abstract. Properties of \(C^1\)-smooth skew products of maps of an interval with stable as a whole family of fibers maps are established. These results are applied to the proof of the criterion of \(\Omega\)-stability of \(C^1\)-smooth skew products of maps of an interval (with respect to homeomorphisms of skew products class). The proper subspace of the space of \(C^1\)-smooth skew products of maps of an interval is distinguished, where \(\Omega\)-stable \(C^1\)-smooth skew products are contained. It is proved that \(\Omega\)-stable skew products are not dense in the distinguished subspace of \(C^1\)-smooth maps.

1. Introduction
Different aspects of \(C^1\)-structural stability and \(C^1\)-\(\Omega\)-stability are investigated in works [1 – 9] for diffeomorphisms and flows and in works [10 – 12] for endomorphisms. Some properties of fibers maps of \(C^1\)-smooth \(\Omega\)-stable skew products of maps of an interval (with respect to homeomorphisms of skew products class) are investigated in papers [13 – 16]. The concept of stability as a whole of a family of fibers maps for a \(C^1\)-smooth skew product of maps of an interval is introduced in [15].

This work is the direct continuation of papers [13 – 18]. We solve here the nonlocal problem of description of the set of \(C^1\)-smooth \(\Omega\)-stable skew products of maps of an interval. First, with the use of the concept of stability as a whole in \(C^1\)-norm of a family of fibers maps we prove the criterion of \(C^1\)-\(\Omega\)-stability (with respect to homeomorphisms of skew products class). Second, using the decomposition theorem for the space of \(C^1\)-smooth skew products of maps of an interval with a complicated dynamics of a quotient map (see [17, 18]), we distinguish the proper subspace of this space, where \(C^1\)-smooth \(\Omega\)-stable skew products of maps of an interval with a complicated dynamics of a quotient map are contained. Third, we prove that \(\Omega\)-stable \(C^1\)-smooth skew products are not dense in the mentioned above proper subspace. This last result strengthens the main result of paper [16], where nondensity of \(\Omega\)-stable \(C^1\)-smooth skew products of maps of an interval is proved in the space of all \(C^1\)-smooth skew products of maps of an interval.

Let \(I = I_1 \times I_2\) be a closed rectangle in the plane (\(I_1, I_2\) are closed intervals). We consider a skew product of maps of an interval, i. e. a dynamical system \(F : I \rightarrow I\), where

\[
F(x, y) = (f(x), g_x(y)), \quad \text{and} \quad g_x(y) = g(x, y), \quad (x; y) \in I.
\]
The map \(f : I_1 \to I_1 \) is called the \textit{quotient map} of skew product (1), and the map \(g_x : I_2 \to I_2 \) is called the map \textit{acting in the fiber over an arbitrary point} \(x \in I_1 \).

By formula (1) the equality

\[
F^n(x, y) = (f^n(x), g_{x,n}(y)), \quad \text{where} \quad g_{x,n} = g_{f^{n-1}(x)} \circ \ldots \circ g_x,
\]

is valid for every natural number \(n \) and every point \((x, y) \in I_i\).

Let, as usually, \(T^0(I) \) \((T^1(I)) \) be the space of all continuous \((\text{all} \ C^1\!\text{-smooth})\) skew products of maps of an interval with the standard \(C^0\!\text{-norm} \) \((\text{the standard} \ C^1\!\text{-norm})\).

Denote by \(C^1_\partial(I_k) \) \((k = 1, 2)\) the subspace of the space \(C^1(I_k) \) \((\text{of} \ C^1\!\text{-smooth maps of the segment} \ I_k \ \text{into itself with the standard} \ C^1\!\text{-norm})\), which consists of all maps \(\psi \in C^1(I_k) \) satisfying the condition of \(\psi\)-invariance of the boundary \(\partial I_k \) of the segment \(I_k \):

\[
\psi(\partial I_k) \subseteq \partial I_k.
\]

Let us remind that a map \(\xi \in C^1_\partial(I_k) \) \((k = 1, 2)\) is \(\Omega \)-stable in \(C^1\!\text{-norm} \) \((\text{i. e. in the space} \ C^1_\partial(I_k))\) if for every \(\delta > 0 \) there exists \(\varepsilon > 0 \) such that for every map \(\varphi \in B^1_{\partial k,\varepsilon}(\xi) \) one can find \(\delta \)-closed in \(C^0\!\text{-norm} \) to the identity map homeomorphism \(h : \Omega(\xi) \to \Omega(\varphi) \) satisfying the equality

\[
h \circ \xi|_{\Omega(\xi)} = \varphi|_{\Omega(\varphi)} \circ h,
\]

where \(B^1_{\partial k,\varepsilon}(\xi) \) is \(\varepsilon \)-neighborhood of a map in the space \(C^1_\partial(I_k) \) \((\text{with respect to} \ C^1\!\text{-norm}); \ \Omega(\xi) \) is the nonwandering set of a map \(\xi \).

Denote by \(C^1_\omega(I_k) \) the space of all \(\Omega \)-stable in \(C^1_\partial(I_k) \) maps of the closed interval \(I_k \) into itself \((k = 1, 2)\).

Proposition 1 \([10, 20]\). Let \(f \in C^1_\partial(I_1) \). Then

(1.1) \(\text{either} \ f \ \text{is a map of type} \ < 2^{\infty} \ (\text{i. e. the set of the (least) periods of} \ f\)-periodic points \(\text{coincides with the set} \ \{1, 2, \ldots, 2^n\} \ \text{for some} \ 0 \leq \mu < +\infty\)), \ \text{and in this case the nonwandering set} \ \Omega(f) \ \text{is finite and consists of hyperbolic periodic points;}

(1.2) \(\text{or} \ f \ \text{is a map of type} \ > 2^{\infty} \ (\text{i. e. there exists an} \ f\)-periodic point \(x \in \text{Per}(f) \) \(\text{with the (least) period} \ n(x) \leq 2^n \) \(\text{for some} \ n \geq 0 \)), \ \text{and in this case the nonwandering set} \ \Omega(f) \ \text{is the union of finitely many hyperbolic periodic points and finitely many locally maximal quasiminimal sets}^2, \ \text{which are hyperbolic, perfect and nowhere dense. ("Locally maximal" means "maximal in a neighborhood of itself").}

The set \(C^1_\omega(I_1) \) is open and everywhere dense in \(C^1_\partial(I_1) \).

Define the space \(T^1(I) \) of \(C^1\!\text{-smooth skew products of maps of an interval (with the standard} \ C^1\!\text{-norm}) \) as the subspace of the space \(T^1(I) \), which consists of skew products of maps of an interval with quotients from the space \(C^1_\partial(I_1) \). As it follows from Proposition 1, the set \(T^1(I) \) is open and everywhere dense in the subspace of the space \(T^1(I) \) consisting of skew products with quotient maps from \(C^1_\partial(I_1) \).

Results of this paper are obtained with the use of the special multifunctions related to an arbitrary continuous skew product of maps of an interval.

Definition 1 \([13]\). The \(\Omega\)-function of a map \(F \in T^0(I) \) is the multifunction \(\xi^F : \Omega(f) \to 2^{I_2} \) satisfying the equality

\[
\xi^F(x) = (\Omega(F))(x)
\]

for any \(x \in \Omega(f) \), where \((\Omega(F))(x) = \{ y \in I_2 : (x, y) \in \Omega(F) \} \) is the slice of the nonwandering set \(\Omega(F) \) by the vertical fiber over a point \(x \), \(2^{I_2} \) is the topological space of closed subsets of \(I_2 \) with the exponential topology \([22, 23]\).

1 Definitions of wandering, nonwandering points and sets one can find in [19].

2 A quasiminimal set of a map is the closure of an infinite recurrent trajectory [21].
The following definition will be given here for a skew product $F \in T^1_s(I)$. Let n be a natural number. By Proposition 1 the equality $\Omega(f^n) = \Omega(f)$ holds in considering case. Let us use the skew product

$$F_n(x, y) = (id(x), g_{x,n}(y))$$

and the direct product

$$F_{n,1}(x, y) = (f^n(x), id(y)),$$

where $id(x)$ and $id(y)$ are the identity maps of the closed intervals I_1 and I_2, respectively, and $F_n, F_{n,1} : I \to I$. Then the following formula is valid:

$$F^n = F_{n,1} \circ F_n.$$ \hspace{1cm} (4)

Formula (4) allows to define new multifunctions for each iteration of F. The graphs of these multifunctions are using to form the nonwandering set of the map $F \in T^1_s(I)$ (or, equivalently, to form the graph of the Ω-function of F).

Definition 2. An auxiliary multifunction of a map $F \in T^1_s(I)$ is a multifunction $\eta_n : \Omega(f) \to 2^{I^2}$ satisfying

$$\eta_n(x) = \Omega(g_{x,n})$$

for any $x \in \Omega(f)$ (see [13]), where $\Omega(g_{x,n})$ is the nonwandering set of a map $g_{x,n} : I_2 \to I_2$.

A function $\pi_n : \Omega(f) \to 2^{I^2}$ is said to be a multifunction suitable to the Ω-function of a map $F \in T^1_s(I)$ if the graph of π_n in I is the closure of the graph of the auxiliary function η_n. We have

$$\pi_n(x) = (\pi_n)(x) \text{ for any } x \in \Omega(f)$$

(see [17, 18]). Here $(\pi_n)(x)$ denotes the slice of the graph of π_n by the fibre over x (or, equivalently, the slice of the closure of the graph of η_n).

Having defined auxiliary functions η_n (suitable functions π_n) for all $n > 1$, we must move each point $(x; y)$ on the graph of η_n (on the graph of π_n, respectively) to the point $(f^n(x) ; y)$ using the direct product $F_{n,1}$ (see equality (4)). We can therefore define multifunctions $\eta_{n,1} : \Omega(f) \to 2^{I^2}$ ($\pi_{n,1} : \Omega(f) \to 2^{I^2}$), $n > 1$, by the equalities

$$\eta_{n,1}(x) = (F_{n,1}(\eta_n))(x) \quad (\pi_{n,1}(x) = (F_{n,1}(\pi_n))(x))$$

for any $x \in \Omega(f)$. Here η_n (π_n) is the graph of the corresponding multifunction in I, and $(F_{n,1}(\eta_n))(x)$ ($F_{n,1}(\pi_n))(x)$ is the slice of the set $F_{n,1}(\eta_n)$ (of the set $F_{n,1}(\pi_n)$) by the fibre over $x \in \Omega(f)$. Since any point $(x; y)$ on the graph of $\eta_{n,1}$ (on the graph of $\pi_{n,1}$) can be reached from any point $(x; y)$ on the graph of η_n (on the graph of π_n) using $F_{n,1}$, where x is a point in the n-th complete preimage of x under the map $f|\Omega(f)$. it follows that

$$\eta_{n,1}(x) = \bigcup_{x \in (f^{-n}(x))} \eta_{n}(x) \quad (\eta_{n,1}(x) = \bigcup_{x \in (f^{-n}(x))} \pi_{n}(x)).$$

We consider the subspace of the space $T^1_s(I)$, which consists of skew products with quotient maps of type $\succ 2^\infty$. Following [17, 18] we distinguish four main subspaces of this space.

Let $F \in T^1_s(I)$ be a skew product with a quotient map of type $\succ 2^\infty$. Then by Proposition 1 the perfect part of the nonwandering set of its quotient map $\Omega_p(f)$ is not empty. Let $K(f) \subset \Omega_p(f)$ be a locally maximal quasiminimal set of f, and $\tau(f|_{K(f)})$ be the set of the (least) periods of
periodic points of $f_{\mid K(f)}$. There exist natural numbers $m_0 = m_0(\mid K(f))$, $i_0 = i_0(\mid K(f))$ and a finite subset $N_\ast = N_\ast(\mid K(f))$ of the set \mathbb{N} of natural numbers (possibly, empty) such that

$$\tau(f_{\mid K(f)}) = \{m_0i\}_{i \geq i_0} \cup N_\ast$$

(see [25, 26]).

We need the following natural numbers:

$$m_\ast = \min \{m_0(\mid K(f))\},$$

$$n_\ast = \min \{n \in N_\ast(\mid K(f))\},$$

$$i_\ast = \max \{i_0(\mid K(f))\},$$

where l.c.m. is the least common multiple of a finite set of natural numbers.

Definition 3 [17, 18]. We say that a skew product $F \in T_4^4(I)$ with a quotient map of type $\succ 2^\infty$ satisfies condition \mathbf{H} (strong condition \mathbf{H}) if for any sequence of natural numbers $\{i_t^*\}_{t \geq i}$, with

$$l_t^* = m_an_t^i,$$ \hspace{1cm} (5)

the multifunctions $\eta_{t^*}^\ast$ (the multifunctions $\eta_{t^*}^\ast$ respectively) are continuous for all $i \geq i^*$, where $i^* \geq i_\ast$.

As it follows from the definition of multifunctions $\eta_{t^*}^\ast$ (and $\eta_{t^*}^{i,i}$) continuity of a multifunction $\eta_{t^*}^{i,i}$ implies continuity of $\eta_{t^*}^{i,i}$ (and $\eta_{t^*}^{i,i}$ respectively).

Let us also note that if a skew product $F \in T_4^4(I)$ with a quotient map of type $\succ 2^\infty$ satisfies condition \mathbf{H} (strong condition \mathbf{H}) then the sequence $\{\eta_{t^*}^\ast\}_{i \geq i}$ (the sequence $\{\eta_{t^*}^\ast\}_{i \geq i}$) can only contain a finitely many discontinuous functions.

We denote the subspace of $T_4^4(I)$ consisting of skew products whose quotient maps have type $\succ 2^\infty$ and satisfy strong condition \mathbf{H} by $T_{4,1}^4(I)$, and the subspace of $T_4^4(I)$ consisting of skew products whose quotients have type $\succ 2^\infty$ and satisfy condition \mathbf{H}, but do not satisfy strong condition \mathbf{H}, by $T_{4,2}^4(I)$. We let $T_{4,3}^4(I)$ denote the subspace of $T_4^4(I)$ consisting of skew products whose quotients of type $\succ 2^\infty$, each of which has a sequence of suitable functions $\{\eta_{t^*}^\ast\}_{i \geq i}$ containing infinitely many discontinuous functions and has a continuous Ω-function. Finally, we let $T_{4,4}^4(I)$ denote the subspace of $T_4^4(I)$ consisting of maps with quotients of type $\succ 2^\infty$, each of which has a sequence of suitable functions $\{\eta_{t^*}^\ast\}_{i \geq i}$ containing infinitely many discontinuous functions and has a discontinuous Ω-function. The subspaces $T_{4,1}^4(I) - T_{4,4}^4(I)$ are pairwise disjoint.

Decomposition Theorem [17, 18]. Each of the subspaces $T_{4,1}^4(I)$ for $1 \leq i \leq 4$ is nonempty, and their union $\bigcup_{i=1}^4 T_{4,i}^4(I)$ coincides with the part of the space $T_4^4(I)$ consisting of skew products with quotients of type $\succ 2^\infty$.

Definition of subspaces $T_{4,i}^4(I)$ ($1 \leq i \leq 4$) is based on the use of special multifunctions. Therefore, these subspaces require an explicit functional description. We begin such description in this paper.

2. Properties of Skew Products with Stable as a Whole in C^1-norm Family of Fibers Maps
Let $\tilde{T}_4^4(I)$ be the subspace of maps $F \in T_4^4(I)$ satisfying the inclusion

$$F(\partial I) \subseteq \partial I,$$
where ∂I is the boundary of I.

Definition 4 [15]. We say that a family of fibers maps of a skew product $F \in \hat{T}_1^1(I)$ with a quotient map of type $\succ 2^{\infty}$ is stable as a whole in C^1-norm if for any $\delta > 0$ there is a neighborhood $B^1_\delta(F)$ of F in $\hat{T}_1^1(I)$ such that for any map $\Phi \in B^1_\delta(F)$, where $\Phi(x, y) = (\varphi(x), \psi_\varphi(y))$, and any $l^*_i (i \geq i^* \text{ for some } i^* \geq i_\delta)$ one can find δ-close to the identity map in C^0-norm homeomorphism

$$H^{<l^*_i>} : \eta^F_{l^*_i} \to \eta^\Phi_{l^*_i} \quad (H^{<l^*_i>}(x, y) = (h_1(x), h_{2,x}^{<l^*_i>}(y)))$$

satisfying the equality

$$h_{2,x}^{<l^*_i>} \psi_{\eta^F_{l^*_i}}(x, y) = \psi_{h_1(x), l^*_i}(h_1(x)) \circ h_{2,x}^{<l^*_i>}(y), \quad (6)$$

where $(x; y)$ is a point of the graph of a function $\eta^F_{l^*_i}$ in I.

Let us note that by Definition 4 and by the choice of numbers l^*_i (see equality (5)), iterations of a skew product $F \in \hat{T}_1^1(I)$ with a quotient map of type $\succ 2^{\infty}$ and with stable as a whole in C^1-norm fibers maps have also stable as a whole in C^1-norm families of fibers maps.

To give the criterion of stability as a whole in C^1-norm of a family of fibers maps of a skew product $F \in \hat{T}_1^1(I)$ with a quotient map of type $\succ 2^{\infty}$ we use auxiliary skew products $F_{l^*_i}(x, y) = (x, g_x, l^*_i(y))$ and $\Phi_{l^*_i}(x, y) = (x, \psi_x, l^*_i(y))$ for corresponding iterations of F and Φ respectively. As it follows from [27] the graphs of multifunctions $\eta^F_{l^*_i}$ and $\eta^\Phi_{l^*_i}$ in I coincide with wandering sets of the maps $F_{l^*_i} : \Omega(f) \times I_2$ and $\Phi_{l^*_i} : \Omega(\varphi) \times I_2$ respectively.

Therefore, the following result is the direct corollary of Definition 4.

Theorem 1. A family of fibers maps of a skew product $F \in \hat{T}_1^1(I)$ with a quotient map of type $\succ 2^{\infty}$ is stable as a whole in C^1-norm iff for any $\delta > 0$ there exists a neighborhood $B^1_\delta(F)$ of F in $\hat{T}_1^1(I)$ such that for any map $\Phi \in B^1_\delta(F)$ and any $l^*_i (i \geq i^* \text{ for some } i^* \geq i_\delta)$ one can find δ-close to the identity map in C^0-norm homeomorphism $H^{<l^*_i>} : \eta^F_{l^*_i} \to \eta^\Phi_{l^*_i}$ of skew products class possessing the property:

maps $F_{l^*_i} : \Omega(f) \times I_2$ and $\Phi_{l^*_i} : \Omega(\varphi) \times I_2$ are Ω-conjugate under homeomorphism $H^{<l^*_i>}$.

Let us use Theorem 1 and the above definition of maps $F_{l^*_i}$ and $\Phi_{l^*_i}$ for skew products $F \in \hat{T}_1^1(I)$ and $\Phi \in B^1_\delta(F)$ respectively (with quotients of type $\succ 2^{\infty}$ and stable as a whole in C^1-norm families of fibers maps). Then we have

$$H^{<l^*_i>}(\{x\} \times (\eta^F_{l^*_i})(x)) = \{h_1(x)\} \times (\eta^\Phi_{l^*_i})(h_1(x)).$$

By Definition 2 the equalities $\eta^F_{l^*_i}(x) = \Omega(g_x, l^*_i)$ and $\eta^\Phi_{l^*_i}(x) = \Omega(\psi_x, l^*_i)$ hold. Since $H^{<l^*_i>}$ is homeomorphism, then for any $x \in \Omega(p(f))$ the equality

$$H^{<l^*_i>}(\{x\} \times (\eta^F_{l^*_i})(x)) = \{h_1(x)\} \times (\eta^\Phi_{l^*_i})(h_1(x))$$

is valid. Hence, the equality $H^{<l^*_i>} (\eta^F_{l^*_i}) = \eta^\Phi_{l^*_i}$ is fulfilled simultaneously with the equality

$$H^{<l^*_i>} (\eta^F_{l^*_i}) = \eta^\Phi_{l^*_i}$$

and inequality

$$\text{dist}_I(\eta^F_{l^*_i}, \eta^\Phi_{l^*_i}) < \delta,$$

where dist$_I$ is Hausdorff metric in the space 2^I of all closed subsets of the phase space I (for details, see [22, 23]).
Completing these preliminary considerations, one can prove the following statement.

Theorem 2. Let \(F \in \tilde{T}_1^I(I) \) have a quotient map of type \(\geq 2\infty \) and have a stable as a whole in \(C^1 \)-norm family of fibers maps. Then \(F \) satisfies strong condition \(H \) and has a continuous \(\Omega \)-function.

Corollary 1. Let a skew product \(F \in \tilde{T}_1^I(I) \) have a quotient map of type \(\geq 2\infty \) and have a stable as a whole in \(C^1 \)-norm family of fibers maps. Then there exists a neighborhood \(U_{\delta}(\Omega(f)) \) in \(I_1 \) of the set \(\Omega(f) \) such that for every \(x \in U_{\delta}(\Omega(f)) \) and \(t_i^* \) for \(i \geq i^* \) a map \(g_{x, t_i^*} \) is \(\Omega \)-stable in \(C^1 \)-norm with respect to the family of fibers maps \(\{g_{x, t_i^*}\}_{x \in U_{\delta}(\Omega(f))} \).

The above Corollary 1 shows that \(\eta_i^F \) of auxiliary functions \(\eta_i^F \) on a neighborhood \(U_{\delta}(\Omega(f)) \) of the set \(\Omega(f) \) is continuous for every \(i \geq i^* \). Therefore, fibers maps over points of the set \(U_{\delta}(\Omega(f)) \) do not influence on the structure of the set \(\Omega(F) \).

Corollary 2. Let a skew product \(F \in \tilde{T}_1^I(I) \) have a quotient map of type \(\geq 2\infty \) and stable as a whole in \(C^1 \)-norm family of fibers maps. Then, for any different points \(x', x'' \in \text{Per}(f) \cap K(f) \) with the (least) periods \(m(x') \) and \(m(x'') \) respectively \((K(f) \) is a locally maximal quasiminimal set of \(f \) \), maps \(\gamma_{x'}^{m(x')} \) and \(\gamma_{x''}^{m(x'')} \) are \(\Omega \)-conjugate, where \(m \) is the least common multiple of numbers \(m(x') \) and \(m(x'') \); the notation \(g_x \) for every \(f \)-periodic point \(x \) means the composition \(g_{f_{m-1}(x)} \circ \ldots \circ g_x \) of fibers maps over the points of periodic orbit \(\{x, f(x), \ldots, f^{m-1}(x)\} \) (see equality (2)).

Corollary 3. Let a map \(F \in T_1^I(I) \) satisfy conditions of Theorem 2. Then the equality

\[
\Omega(F|\Omega_p(F)) = \bigcup_{x \in \text{Per}_p^*(f)} \{x\} \times \Omega(g_x)
\]

holds for an arbitrary, everywhere dense invariant subset \(\text{Per}_p^*(f) \) of the set of all periodic points of \(\Omega_p(f) \), where \(\Omega_p(F) = \Omega_p(f) \times I_2 \).

3. **Criterion of \(C^1 \)-\(\Omega \)-stability**

We begin this part of the paper giving the standard definition of \(C^1 \)-\(\Omega \)-stability with respect to homeomorphisms of skew products class.

Definition 5. We say that a map \(F \in \tilde{T}_1^I(I) \) is \(\Omega \)-stable in \(C^1 \)-norm (in the space \(\tilde{T}_1^I(I) \)) if for any \(\delta > 0 \) there exists \(\varepsilon > 0 \) such that for any map \(\Phi \in B_1^I(F) \), \(\Phi(x, y) = (\varphi(x), \psi_x(y)) \), one can find \(\delta \)-close in \(C^0 \)-norm to the identity map homeomorphism

\[
H : \Omega(F) \to \Omega(\Phi), \quad H(x, y) = (h_1(x), h_2, x(y)),
\]

such that for every point \((x, y) \in \Omega(F)\) the equalities hold:

\[
h_1 \circ f_{\Omega(f)}(x) = \varphi \circ h_1_{\Omega(f)}(x);
\]

\[
h_2, f(x)_{\Omega(f)} \circ g_x \circ (\Omega(f))(x) = \psi \circ h_1_{\Omega(f)}(x) \circ h_2, x(\Omega(f))(x) \circ y.
\]

Theorem 3. A skew product \(F \in \tilde{T}_1^I(I) \) with a quotient map of type \(\geq 2\infty \) is \(\Omega \)-stable in \(C^1 \)-norm if its family of fibers maps is stable as a whole in \(C^1 \)-norm.

We give here only the proof of sufficiency of the property of stability as a whole in \(C^1 \)-norm of a family of fibers maps of a skew product \(F \in \tilde{T}_1^I(I) \) for its \(C^1 - \Omega \)-stability.

1. In fact, let a family of fibers maps of a skew product \(F \in \tilde{T}_1^I(I) \) be stable as a whole in \(C^1 \)-norm. Then by Definition 4 for every \(\delta > 0 \) there exists a neighborhood \(B_\delta^I(F) \subset \tilde{T}_1^I(I) \) such that for every map \(\Phi \in B_\delta^I(F) \), \(\Phi(x, y) = (\varphi(x), \psi_x(y)) \), and every \(t_i^* \) (\(i \geq i^* \) for \(i^* \geq i_\delta \)), one can find \(\delta \)-close to the identity map in \(C^0 \)-norm homeomorphism \(H < t_i^* : \eta_i^F \to \eta_i^F \).
(H_{1}^{\infty}(x, y) = (h_{1}(x), h_{2, x}^{\infty}(y))) satisfying equalities (6).

2. Let $\Phi \in B_{L}^{1}(F)$. We construct a homeomorphism $H : \Omega(F) \to \Omega(\Phi)$ of skew products class such that

$$H \circ F_{\mid \Omega(F)} = \Phi_{\mid \Omega(\Phi)} \circ H,$$

where first coordinate function h_{1} of H is defined for φ with the use of condition of Ω-stability of f in C^{1}-norm (see equality (3)).

Get over construction of fibers maps for H over points of the set $\text{Per}(f)$ of f-periodic points. Let x be an arbitrary point of the set $\text{Per}(f)$ with the (least) period $m(x)$. Let a natural number $i(m(x))$, $i(m(x)) \geq i^{*}$, be so that $m(x)$ divides $l_{i(m(x))}$. Set

$$h_{2, x|\Omega(\tilde{g}_{x})} = h_{2, x|\Omega(\tilde{g}_{x})}^{l_{i(m(x))}},$$

where

$$l_{i(m(x))}^{\eta_{i(m(x))}}(x) = \Omega(\tilde{g}_{x}^{l_{i(m(x))}/m(x)}).$$

By Corollary 1 we have

$$\Omega(\tilde{g}_{x}^{l_{i(m(x))}/m(x)}) = \Omega(\tilde{g}_{x}).$$

As it follows from paper [27], equality (7) and Corollary 3, a map $h_{2, x}(y)$ is defined on the completely invariant set $\bigcup_{x \in \text{Per}(f)} \{x\} \times \Omega(\tilde{g}_{x})$, which is everywhere dense in $\Omega(F)$; moreover, $h_{2, x}(y)$ is one to one map on $\bigcup_{x \in \text{Per}(f)} \{x\} \times \Omega(\tilde{g}_{x})$. Continuity of $h_{2, x}(y)$ on $\bigcup_{x \in \text{Per}(f)} \{x\} \times \Omega(\tilde{g}_{x})$ follows from Theorem 2, Corollaries 2 and 3.

3. Complete a definition of $h_{2, x}(y)$ on $\Omega(F)$ setting

$$h_{2, x}(y) = \lim_{n \to +\infty} h_{2, x_{n}}(y_{n})$$

for any point $(x, y) \in \Omega(F)$ and for any convergent to (x, y) sequence $\{(x_{n}, y_{n})\}_{n \geq 1} \subset \bigcup_{x \in \text{Per}(f)} \{x\} \times \Omega(\tilde{g}_{x}).$

Equality (8) defines correctly second coordinate function $h_{2, x}(y)$ of homeomorphism H on the set $\Omega(F)$. In fact, take a point $(x, y) \in \Omega(F)$. Let $\{(x_{n}, y_{n})\}_{n \geq 1}$ and $\{(x_{n}', y_{n}')\}_{n \geq 1}$ be any different, convergent to (x, y) sequences of points of the set $\bigcup_{x \in \text{Per}(f)} \{x\} \times \Omega(\tilde{g}_{x})$. Using these two sequences, we form a new, convergent to (x, y) sequence $\{(\tau_{n}, \varphi_{n})\}_{n \geq 1}$, for example, setting

$$(\tau_{2n-1}, \varphi_{2n-1}) = (x_{n}, y_{n}); \quad (\tau_{2n}, \varphi_{2n}) = (x_{n}', y_{n}').$$

Then, by continuity of $h_{2, x}(y)$ on the set $\bigcup_{x \in \text{Per}(f)} \{x\} \times \Omega(\tilde{g}_{x})$ sequence $\{h_{2, \tau}(\varphi)\}_{n \geq 1}$ is fundamental and, hence, it converges. Using definition of a sequence $\{(\tau_{n}, \varphi_{n})\}_{n \geq 1}$ and equalities (8) – (9) we obtain

$$\lim_{n \to +\infty} h_{2, \tau_{n}}(\varphi_{n}) = \lim_{n \to +\infty} h_{2, \tau_{n}}(\varphi_{n}') = \lim_{n \to +\infty} h_{2, x_{n}}(y_{n}) = h_{2, x}(y).$$

Thus, the value of the function $h_{2, x}(y)$ in any point $(x, y) \in \Omega(F)$ does not depend on the choice of a sequence $\{(x_{n}, y_{n})\}_{n \geq 1} \subset \bigcup_{x \in \text{Per}(f)} \{x\} \times \Omega(\tilde{g}_{x})$ convergent to a point (x, y).

4. Verify that the above map $H : \Omega(F) \to \Omega(\Phi)$ is homeomorphism. In fact, as it follows from its definition, H is surjection of the set $\Omega(F)$ on the set $\Omega(\Phi)$. By compactness of I the map H
is closed. Therefore, H is mutually continuous (see [22, 23]).
Prove that H is one to one map. Suppose the contrary. Since $h_1 : \Omega(f) \rightarrow \Omega(\varphi)$ is homeomorphism, then there exist different points (x, y_1) and (x, y_2), where $x \notin \operatorname{Per}(f)$, satisfying
\[h_{2,x}(y_1) = h_{2,x}(y_2). \tag{10} \]
Let $\{(x_n, y_{1n})\}_{n \geq 1}$ and $\{(x_n, y_{2n})\}_{n \geq 1}$ be any convergent to (x, y_1) and (x, y_2) respectively sequences of points of the set $\bigcup_{x \in \operatorname{Per}(f)} \{x\} \times \Omega(\tilde{g}_x)$. Then by equality (10) corresponding sequence $\{H(x_n, y_{1n}), H(x_n, y_{2n})\}_{n \geq 1}$ is fundamental, in addition,
\[\{H(x_n, y_{1n}), H(x_n, y_{2n})\}_{n \geq 1} \subseteq \bigcup_{x \in \operatorname{Per}(\varphi)} \{x\} \times \Omega(\tilde{\psi}_x). \]
Since restriction of H on the set $\bigcup_{x \in \operatorname{Per}(f)} \{x\} \times \Omega(\tilde{g}_x)$ is homeomorphism and
\[H(\bigcup_{x \in \operatorname{Per}(f)} \{x\} \times \Omega(\tilde{g}_x)) = \bigcup_{x \in \operatorname{Per}(\varphi)} \{x\} \times \Omega(\tilde{\psi}_x), \]
then a sequence $\{(x_n, y_{1n}), (x_n, y_{2n})\}_{n \geq 1}$ is also fundamental. Hence, $y_1 = y_2$, and the map H is one to one. This property with mutual continuity of H means that H is homeomorphism (see [22, 23]). Hence, $F \in \tilde{T}^1_{\ast,1}(I)$ is Ω-stable in C^1-norm.

Corollary 4. Let a skew product $F \in \tilde{T}^1_{\ast,1}(I)$ with a quotient map of type $> 2^\infty$ be Ω-stable in C^1-norm. Then $F \in \tilde{T}^1_{\ast,1}(I)$, and the Ω-function of F is continuous.

Corollary 5. Let a skew product $F \in \tilde{T}^1_{\ast,1}(I)$ satisfy conditions of Corollary 4. Then for any different periodic points x', x'' ($m(x')$ and $m(x'')$ are the (least) periods of x' and x'' respectively) of every locally maximal quasiminimal set $K(f)$ of the quotient map f, fibers maps $\tilde{g}_{x'}^{m'/m(x')}$ and $\tilde{g}_{x''}^{m'/m(x'')}$ are Ω-conjugate, where m' is the least common multiple of numbers $m(x')$ and $m(x'')$.

4. **Ω-Stable Skew Products of Maps of an Interval Are Not Dense in $\tilde{T}^1_{\ast,1}(I)$**

Nongenericity of Ω-stability for C^r-diffeomorphisms ($r \geq 2$) in dimensions ≥ 3 is proved in [1] and in dimension 2 follows from [7].

In this section we prove that C^1-smooth Ω-stable skew products of maps of an interval do not form everywhere dense subset in the subspace $\tilde{T}^1_{\ast,1}(I) = T^1_{\ast,1}(I) \cap \tilde{T}^1_{\ast,1}(I)$.

Theorem 4. There exists a skew product $F \in \tilde{T}^1_{\ast,1}(I)$ such that some its neighborhood $B^1_{\ast,1}(F)$ in the space $\tilde{T}^1_{\ast,1}(I)$ does not contain Ω-stable skew products of maps of an interval.

Proof. 1. In fact, let the skew product $F(x, y) = (f(x), \lambda(x)y(1- y))$ be defined on the unit square $[0, 1]^2$. Here the quotient map is given by the equality
\[f(x) = \begin{cases} \tilde{h}(x), & \text{if } x \in [0, \frac{1}{4}); \\ 9\left(\frac{1}{4} - x\right)(x - \frac{3}{4}) + \frac{1}{4}, & \text{if } x \in \left[\frac{1}{4}, \frac{3}{4}\right); \\ \tilde{h}(1 - x), & \text{if } x \in \left[\frac{3}{4}, 1\right]. \end{cases} \tag{11} \]
We use the function $\tilde{h}(x) = \alpha \sin^2 \pi \beta x$ for $x \in [0, 1/4]$; moreover, $\alpha > 0$ and $\beta \in (4, 6)$ are defined uniquely from the system of equations
\[\begin{cases} \alpha \sin^2 \pi \beta / 4 = 1/4; \\ 2\alpha \pi \beta \sin \pi \beta / 4 \cos \pi \beta / 4 = 9/2. \end{cases} \]
This system is equivalent to the condition of \(C^1 \)-smoothness of \(f \) in the point \(x = 1/4 \). Then \(f \in C^0_b(I_1) \), and \(\Omega(f) = \{0\} \cup K(f) \), where \(K(f) \) is the unique locally maximal quasiminimal set of the quotient map \(f \), \(K(f) = \Omega_p(f) \subset \{\frac{1}{4}, \frac{2}{3}\} \), \(\tau(f|_{K(f)}) = N \).

Note that the quotient \(f \) has two fixed points \(x_1 = 1/4, x_2 = 23/36 \) on the closed interval \([1/4; 3/4]\).

Let \(\lambda = \lambda(x) \) be \(C^1 \)-smooth function \([0, 1]^2 \) given by formula

\[
\lambda(x) = \begin{cases}
\frac{9r}{2}(\lambda^* - 2)(x - \frac{1}{4}) + 2, & \text{if } x \in [0, \frac{1}{4}); \\
(\lambda^* - 2)\sin \frac{2\pi r}{2}(x - \frac{1}{4}) + 2, & \text{if } x \in [\frac{1}{4}, \frac{2}{3}); \\
\lambda^*, & \text{if } x \in [\frac{2}{3}, 1],
\end{cases}
\]

where the number \(\lambda^* \) is such that the map \(\bar{\gamma} = \lambda^* y(1 - y) \) has type \(2^n \) (i.e. \(f \) contains periodic points of periods \(1, 2, 2^2, \ldots, 2^n, \ldots \) and does not contain periodic points of other periods), \(\lambda^* \approx 3.569 \).

Call attention on the properties of fibers maps over \(f \)-fixed points \(x_1 \) and \(x_2 \).

\((i_f) \) The fiber map \(\bar{g}_{x_1} \) is defined by the equality \(\bar{g}_{x_1} = 2y(1 - y) \). Hence, \(\bar{g}_{x_1} \) is \(\Omega \)-stable in the space \(C^0_b(I_2) \) Morse-Smale endomorphism with two hyperbolic fixed points (\(\bar{g}_{x_1} \) does not contain other periodic points). It means that there is a \(\varepsilon \)-neighborhood \(B^1_{\varepsilon, x_1}(\bar{g}_{x_1}) \) of the map \(\bar{g}_{x_1} \) in the space \(C^0_b(I_2) \) such that every map from this neighborhood is \(\Omega \)-conjugate with \(\bar{g}_{x_1} \).

\((ii_f) \) The fiber map \(\bar{g}_{x_2} \) is defined by the equality \(\bar{g}_{x_2} = \lambda^* y(1 - y) \). In this case there exists strictly decreasing sequence of positive numbers \(\{\varepsilon_r\}_{r \geq 2} \), \(\lim_{r \rightarrow +\infty} \varepsilon_r = 0 \), such that every fiber map \(g_{x_2} \in B^1_{\varepsilon_r, \bar{g}_{x_2}}(\bar{g}_{x_2}) \) for \(x \in (1/4; 23/36) \) (\(x \) belongs also to some left-side neighborhood of the point \(x_2 \) defined for \(\varepsilon_r \) contains periodic points with the (least) periods \(\{1, 2, \ldots, 2^{\mu_r}\} 0 < \mu_r < \infty \). Here \(B^1_{\varepsilon_r, \bar{g}_{x_2}}(\bar{g}_{x_2}) \) is an \(\varepsilon \)-neighborhood of the map \(\bar{g}_{x_2} \) in the space \(C^0_b(I_2) \); a sequence \(\{\mu_r\}_{r \geq 2} \) strictly increases\(^5 \) [28].

2. Since \(\tau(f|_{K(f)}) = N \) then \(\lambda_r = i \) (\(i \geq 1 \)). Using properties of period doubling bifurcations in one-dimensional maps one can prove that the constructed above skew product \(F \) satisfies strong condition \(\mathbf{H} \). This property (with equalities (11), (12) and formulas for fibers maps) means that \(F \in \mathbb{T}_{\varepsilon, 1}^1(I) \).

3. Point out a neighborhood \(B^1_{\varepsilon_r, \bar{g}_{x_1}}(\bar{g}_{x_1}) \) in \(C^0_b(I_2) \) which does not contain \(\Omega \)-stable skew products. In fact, let a natural number \(r \geq 2 \) be such that each map from the neighborhood \(B^1_{\varepsilon_r, \bar{g}_{x_2}}(\bar{g}_{x_2}) \) contains periodic points with (least) periods \(\{1, 2, \ldots, 2^{\mu_r}\} 3 \leq \mu_r < \infty \). Let \(\varepsilon \)-neighborhood \(B^1_{\varepsilon_r, \bar{g}_{x_2}}(\bar{g}_{x_2}) \) of the map \(\bar{g}_{x_1} \) in \(C^0_b(I_2) \) be chosen accordingly item 1 of the proof such that property \((i_f) \) is fulfilled.

Set \(\varpi = \min\{\varepsilon_1, \varepsilon_r\} \).

4. Unique uniform continuity of \(C^1 \)-presentation \(\rho_1 \) on the compact \(K(f) \). For number \(\varpi > 0 \) we find \(0 < \delta_1 < 1/16 \) such that for any \(x', x'' \in K(f) \) satisfying the inequality \(|x' - x''| < \delta_1 \), we have \(g_{x''} \in B^1_{\varpi}(g_{x'}) \). Here \(\rho_1(x') = g_{x'}, \rho_1(x'') = g_{x''}. \)

Since \(f \in C^1(\omega(I)) \) then for \(\delta_1 > 0 \), there exists \(\varpi \)-neighborhood \(B^1_{\varpi, \bar{g}_{x_2}}(\bar{g}_{x_2}) \) of the quotient map \(g_{x_1} \) consisting of maps each of them is \(\Omega \)-conjugate with \(f \) over homeomorphism \(\delta_1 \)-close to the identity map. Point out that \(\delta_1 \)-neighborhoods of \(f \)-fixed points \(U_{1, \delta_1}(0), U_{1, \delta_1}(1/4), U_{1, \delta_1}(23/36) \) for \(0 < \delta_1 < 1/16 \) are pairwise disjoint, and each of them contains unique fixed point of any map from \(B^1_{\varpi, \bar{g}_{x_2}}(\bar{g}_{x_2}) \).

Set \(\varepsilon = \min\{\varpi, \varpi'\} \).

5. Prove that a neighborhood \(B^1_{\varepsilon_r, \bar{g}_{x_2}}(\bar{g}_{x_2}) \) of the skew product \(F \in \mathbb{T}_{\varepsilon, 1}^1(I) \) does

\[^5\] Maps \(\bar{g}_{x_2} \) and \(\bar{g}_{x_2}^{n} \) for all \(n \geq 1 \) possess properties analogous properties \((ii_f) \). But a sequence \(\{\mu_n(n)\}_{n \geq 1} \) for \(n > 1 \) can be nonmonotone. One can explain it using definition of fibers maps \(g_{x_2}^{n} \) as compositions of logistic maps with different values of function \(\lambda(x) \) in the points \(x, f(x), \ldots, f^{n-1}(x) \) (see equality (2)).
not contain Ω-stable maps. Suppose the contrary. Then there exists Ω-stable skew product $\Phi \in T^*_f(I)$ (see Corollary 4) such that $\Phi \in B^1(\varphi_\varepsilon)$, where $\Phi(x, y) = (\varphi(x), \psi_\delta(y))$. A map Φ possesses the following properties:

(i) $\varphi \in B^1_{\varepsilon, \delta}(f)$;
(ii) φ has unique locally maximal quasiminimal set $K(\varphi)$ containing two fixed points $x_1(\varphi) \in U_{1, \delta_1}(I)$ and $x_2(\varphi) \in U_{1, \delta_1}(23/36)$;
(iii) $\tilde{\psi}_{x_1(\varphi)} \in B^1_{2, \varepsilon_1}(\tilde{g}_{x_1})$; (iv) $\tilde{\psi}_{x_2(\varphi)} \in B^1_{2, \varepsilon_2}(\tilde{g}_{x_2})$.

By properties (i) and (ii) the map $\tilde{\psi}_{x_1(\varphi)}$ is Morse-Smale endomorphism with two fixed points. At the same time, by properties (iii) and (iv) the map $\tilde{\psi}_{x_2(\varphi)}$ contains periodic orbits with (least) periods $\{1, 2, \ldots, 2^n\}$ for $3 \leq \mu_r < \infty$. Therefore, there are no iterations of maps $\tilde{\psi}_{x_1(\varphi)}$ and $\tilde{\psi}_{x_2(\varphi)}$ which are Ω-conjugate. Contradiction with Corollary 5 is obtained. Theorem 4 is proved.

Acknowledgments

Results of Sec. 1, 2 are supported by Ministry of Science and Education of Russia, grant No 14–10. Results of Sec. 3, 4 are supported by Russian Science Foundation, grant No 16-11-10036. Investigations of Sec. 3, 4 are executed by the Author in Moscow State University.

References

[1] Abraham R and Smale S 1970 Global Analysis 14 5–8
[2] Anosov D 1985 Proceedings of the Steklov Institute of Mathematics 169 61-95
[3] Hayashi Sh 1997 Ann. Math. 145 81–137
[4] Hayashi Sh 1999 Ann. Math. 150 353–6
[5] Mañé R 1988 Publs. Math. IHES 66 139–59
[6] Mañé R 1988 Publs. Math. IHES 66 161–210
[7] Newhouse Sh 1970 Global Analysis 14 191–202
[8] Palis J 1988 Publs. Math. IHES 66 211–5
[9] Smale S 1967 Bull. Amer. Math. Soc. 73 747-817
[10] Jakobson M 1971 Mathematics of the USSR – Sbornik 14 161–85
[11] Ikeda H 1996 Trans. Amer. Math. Soc. 348 2183-200
[12] Przytycki F 1977 Stud. Math. 60 61-77
[13] Efremova L 1999 I rifle Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz., Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI) 67 129–60
[14] Efremova L 2001 Nonlinear Analysis 47 5297–308
[15] Efremova L 2002 Progress in Nonlinear Science 1 219–24.
[16] Efremova L 2002 Proceedings of the Steklov Institute of Mathematics 236 157-63
[17] Efremova L 2010 Theor. and Math. Physics 164 1208-14
[18] Efremova L 2013 Sb. Math. 204 1598–623
[19] Katok A B and Hasselblatt B 1995 Introduction to the Modern Theory of Dynamical Systems. Encyclopedia Math. Appl. (Cambridge: Cambridge Univ. Press)
[20] de Melo W and van Strien S 1993 One-dimensional Dynamics. A Series of Modern Surveys in Mathematics (Berlin- Heidelberg: Springer-Verlag)
[21] Nemytskii V and Stepanov V 1947 Qualitative theory of differential equations (Moscow - Leningrad: OGIZ)
[22] Kuratowski K 1966 Topology 1 (New York-London: Academic Press)
[23] Kuratowski K 1968 Topology 2 (New York-London: Academic Press)
[24] Šarkovskii O 1964 Ukrain. Mat. Z. 17 104–11
[25] Efremova L 1981 Periodic motions of discrete semidynamical systems. PhD diss. (Gorky: Gorky State University)
[26] Alsedà L and Llibre J 1985 Proc. Amer. Math. Soc. 93 133–8
[27] Efremova L 2014 Springer Proceedings in Math. and Statistics ed Gracio C, Fournier-Prunaret D, Ueta T and Nishio Y (New York: Springer Science) vol 57 39–58
[28] Misułrowicz M 1981 Publs. Math. IHES 53 5–16
[29] Nitecki Z 1971 Differentiable Dynamics (Cambridge, Massachusetts and London: MIT Press)