BI-RADS BERT & USING SECTION TOKENIZATION TO UNDERSTAND RADIOLOGY REPORTS

Grey Kuling
Department of Medical BioPhysics
University of Toronto
Toronto, ON, Canada
grey.kuling@sri.utoronto.ca

Dr. Belinda Curpen
Department of Medical Imaging
Sunnybrook Research Institute
Toronto, ON, Canada
belinda.curpen@sunnybrook.ca

Anne L. Martel
Department of Medical BioPhysics
University of Toronto
Toronto, ON, Canada
a.martel@utoronto.ca

October 15, 2021

ABSTRACT

Radiology reports are the main form of communication between radiologists and other clinicians, and contain important information for patient care [1] [2]. However in order to use this information for research it is necessary to convert the raw text into structured data suitable for analysis. Domain specific contextual word embeddings have been shown to achieve impressive accuracy at such natural language processing tasks in medicine [3] [4]. In this work we pre-trained a contextual embedding BERT [5] model using breast radiology reports and developed a classifier that incorporated the embedding with auxiliary global textual features in order to perform a section tokenization task. This model achieved a 98% accuracy at segregating free text reports into sections of information outlined in the Breast Imaging Reporting and Data System (BI-RADS) lexicon [2], a significant improvement over the Classic BERT model without auxiliary information. We then evaluated whether using section tokenization improved the downstream extraction of the following fields: modality/procedure, previous cancer, menopausal status, purpose of exam, breast density and background parenchymal enhancement. Using the BERT model pre-trained on breast radiology reports combined with section tokenization resulted in an overall accuracy of 95.9% in field extraction. This is a 17% improvement compared to an overall accuracy of 78.9% for field extraction for models without section tokenization and with Classic BERT embeddings. Our work shows the strength of using BERT in radiology report analysis and the advantages of section tokenization in identifying key features of patient factors recorded in breast radiology reports.

Keywords BI-RADS · BERT · deep learning · natural language processing

1 Introduction

The radiology report is an invaluable tool used by radiologists to communicate high level insight and analysis of medical imaging investigations [1]. It is common practice to organize this analysis into specific sections, documenting the key information taken into account to determine the final impression/opinion. In a breast radiology report many important health indicators, including menopausal status and history of cancer, are recorded together with the purpose of the exam, for example whether the exam is for a routine screening or a diagnostic investigation of an abnormality. Imaging findings include presence of lesions, breast density and background parenchymal enhancement (BPE) (specifically in magnetic resonance imaging). This information is organized into designated sections to keep reports clear and concise. The criteria and organization of this reporting system was first formalized in the 1980s by the American College of Radiologist in the Breast Imaging Reporting and Data System (BI-RADS) [2]. These health indicators and imaging findings can be very useful for patient care, treatment management, and research, such as large scale epidemiology studies. For example, breast density and BPE are factors of interest in breast cancer risk prediction. Breast density is the ratio of radiopaque tissue to radiolucent tissue in a mammogram or the ratio of fibroglandular tissue to fat tissue in an MRI. BPE is the level of healthy fibroglandular tissue enhancement during dynamic contrast enhanced breast MRI. Unfortunately raw text is inaccessible for computers to interpret and categorize, and it is infeasible to manually
label a breast radiology corpus that can contain millions of words. Therefore, being able to automatically extract these indicators in breast radiology free text reports is ideal.

Recent advancements in natural language processing (NLP) models, notably the bi-directional encoder representations from transformers (BERT) model developed in 2018 by Google [5], have resulted in significant performance improvements over classic linguistic rule techniques and word to vector algorithms for many NLP tasks. Devlin et al. showed that BERT is able to outperform all previous contextual embedding models at text sequence classification, and question and answering response. BERT techniques were swiftly adopted by medical researchers to build their own contextual embeddings trained specifically for clinical free text reports, such as BioBERT [3] and BioClinical BERT [4], showing the importance of a domain specific contextual embedding.

Growing in popularity is the concept of utilizing report section organization to better improve health indicator field extraction [6]. The BI-RADS lexicon includes a logically structured flow of sections for the title of the examination, patient history, previous imaging comparisons, technique and procedure notes, findings, impression/opinion, and an overall assessment category [2]. Since this practice is so well documented and followed diligently by breast radiologists, it is an ideal data-set in which to determine whether tokenizing free text into sections will assist in improving free text health indicator field extraction.

With this project, we built a new contextual embedding with the BERT architecture called BI-RADS BERT. Our data was collected from the Sunnybrook Health Sciences Centre medical record archives with research ethics approval and comprised 180 thousand free text reports in mammography, ultrasound, MRI, and image-guided biopsy procedures generated between 2005-2020. Additionally, all pathological findings in image-guided biopsy procedures were appended to the corresponding imaging reports as an addendum. We pre-trained our model using masked language modeling on a corpus of 25 million words and then fine-tuned the model on free text section tokenized reports to divide reports into sections. In our exploration we found it beneficial to use the contextual embedding in conjunction with auxiliary data (BI-RADS BERTwAux) to better understand the global report context in the section tokenization task. Then with the section of interest in a report identified, we fine-tuned further downstream classifiers to identify imaging modality, purpose for the exam, mention of previous cancer, menopausal status, density category, and BPE category.

2 Related Works

2.1 Contextual Embeddings

NLP was initially carried out using linguistic rule based methods [7] but these were eventually superseded by word level vector representations. These representations saw major success with algorithms such as word2vec [8], GloVe [9], and fastText [10]. The drawback of these word representations was the lack of contextual information from word position and local grammatical cues of words in the vicinity.

This contextual information problem was ultimately solved using the ELMo contextual embedding [11]. ELMo creates a context aware embedding for each word in a sentence by performing pre-training using masked language modelling (MLM) and next sentence prediction (NSP) [12]. Very soon after, BERT was developed, which uses a much larger transformer architecture and pre-training corpus to fully capture intricate semantic and contextual representations [5]. These transformer contextual embeddings have shown impressive results once fine-tuned on question and answering, name entity recognition, and textual entailment identification.

Since 2018 many successors to BERT have been developed using larger corpora and architecture sizes. RoBERTa [13] was published by Facebook demonstrating efficient usage of BERT with an extensive parameter grid search. They found that a larger number of parameters and the usage of MLM without NSP gave superior results. Megatron-lm [14] from NVIDIA then showed that the application of a multi-billion parameter BERT trained across multiple graphical processing units (GPUs) gives even greater performance, further proving that scaling of this method to larger models results in greater generalizability.

2.2 Contextual Embeddings and Section Tokenization in Medical Research and Radiology

These contextual embedding algorithms have seen quick adoption to medical industry tasks. In 2019, BioBERT [3] was published showing the application of BERT base in medical research analysis. This model was trained on a corpus of biomedical article abstracts retrieved from PubMed. This showed that a domain specific BERT model performed better on medical research NLP tasks as opposed to a classic BERT base model. This was further reinforced by BioClinical BERT [4] that exhibited a performance improvement on medical domain specific BERT training using the MIMIC-III database intensive care unit chart notes and discharge notes.
In radiology reports, CheXbert [15] was trained on MIMIC-CXR, and showed improved performance on extracting diagnosis from radiology reports. This model had a close alignment to radiologist performance exhibiting the benefit of utilizing a BERT model on large scale data cohorts where expert annotations are infeasible. In breast cancer management, Liu et al. [16] assessed the performance of a BERT model trained on a clinical corpus consisting of encounter notes, operation records, pathology notes, progress notes, and discharge notes of breast cancer patients in China. This BERT model efficiently extracted direct information on tumor size, tumor location, bio markers, regional lymph node involvement, pathological type, and patient genealogy. This work showed the application of BERT in the analysis of breast cancer treatment reports, but did not illustrate the information retrieval of patient characteristics important to epidemiology studies of breast cancer incidence and risk assessment.

A systematic review of section tokenization was published by Pomares-Quimbaya et al. in 2019 [6]. They give a very detailed history of the task of identifying sections within electronic health records. Popular methods include rule based line identifiers, machine learning classifiers on textual feature spaces, or a hybrid method of both. BERT was developed for section tokenization by Rosenthal et al. [17], giving very impressive results on extracting information from general electronic health records.

3 Methods

This section will cover details on our dataset used to train BI-RADS BERT, details on the BERT pre-training procedure, the BERTwAux model architecture for improved section tokenization performance, and the downstream text sequence classification tasks we evaluated.

3.1 Data

With research ethics board approval at Sunnybrook Health Science Centre, breast radiology free text reports from 2005-2020 were retrieved from the electronic health records archive. This data was acquired in two datasets. Further description of database statistics can be found in Table 1. All breast imaging free text radiology reports and biopsy procedure reports were used for the development of BI-RADS BERT.

Breast Imaging Radiology Reports Dataset A: Inclusion criteria included all women, 69 and younger who have had a breast MRI exam within 2005-2020; this dataset was extracted as part of a research study focused on women participating in the Ontario High-Risk Breast Screening Program [18]. In addition to the reports relating to the screening population, patients undergoing MRI for diagnostic purposes were also included. For this dataset we received 80,648 free text reports from 7,917 patients.

Breast Imaging Radiology Report Dataset B: An additional database of radiology reports for all women who had any type of breast imaging exam between 2014-2018 was made available from a second research study. After removing all reports that were duplicated in dataset A, we were left with an additional 98,748 free text reports from 26,390 patients.

Data set Name	Number of Patients	Number of Exams	Ave. Exams ± St.D. per patient	Exam Date Range
Breast Imaging Radiology Reports A	7,917	80,648	10.2 ± 7.0	2005-2020
Breast Imaging Radiology Reports B	26,390	98,748	3.7 ± 3.0	2014-2018

For pre-training, 155 thousand breast radiology reports were used, giving a corpus of 25 million words. For fine-tuning, 900 reports held out from pre-training were annotated by a clinical coordinator trained in the BI-RADS annotation criteria. The fine-tuning set was labeled at the report level for modality/procedure performed, purpose for the exam (whether diagnostic or screening), a mention of the patient having a previous cancer, patient menopausal status, breast density category (mammography and MRI), and BPE category (MRI only). For each report in the fine-tuning set, each sentence was labeled into a BI-RADS section category, such as title, history/clinical indication, previous imaging, imaging technique/procedure, findings/procedure notes, impression/opinion, and BI-RADS final assessment category.

3.2 BERT Models

BERT Contextual Embeddings: For all BERT models we used the base model architecture with an uncased tokenizer [5]. With the pre-training process we trained BI-RADS BERT from scratch using MLM only, with a sequence length limit of 32 tokens on the breast radiology report pre-training corpus. For baseline comparison we used Clas-
Figure 1: This project aims to improve health indicator field extraction tasks by using section tokenization to narrow down the free text report length. When a Radiologist reads a report, they can divide the report into sections useful for finding specific information. With a classic BERT framework the report is fed into the model without narrowing the report into sections, resulting in some confusion as to where the information is located. With a BI-RADS BERT model used to tokenize sections before field extraction, we achieve a higher performance.
BIRADS-BERT Classifier Architectures

Figure 2: Visual representation of the model architectures used for classification. A) Text sequence classifier: This model takes a contextual embedding of the input text using a BERT architecture and then feeds the embedding into a fully connected linear layer to output a classification. B) Text sequence classifier with auxiliary data: This model uses an auxiliary feature encoder to build an encoded auxiliary data vector that is concatenated with the contextual embedding to use for classification. C) Auxiliary data encoder architecture: This encoder architecture includes 3 fully connected layers followed by a Tanh activation function.

Pre-training was run on Compute Canada WestGrid with one NVIDIA Tesla V100 SXM2 32 GB GPU, 16 CPU cores, and 32 GB of memory. Using sequence lengths of 32 and a batch size of 256, 150,000 iterations took 26 hours to train. We observed a significantly lower training time due to the size of our training set (25 million words), and lower input sequence length. This gave us the ability to train a single batch on one GPU which lowered processing time by not using data parallelization between multiple GPUs. This is in contrast to the baseline models that are trained on input sequence lengths of 128 tokens initially and shifting to 512 tokens for the final 10% of iteration steps. All other training parameters were kept consistent with the BERT training procedure.

BERT Classifiers: Model architectures are depicted in Figure 2. For text sequence classification tasks we used a sequence classification head attached to the embedding latent space. This includes a pooling layer connected to the first token embedding of the input text sequence that then feeds into a fully connected layer that connects to the output classification (Figure 2A). When including auxiliary data into the sequence classification (Figure 2B), we used a 3 layered fully connected model ending with a Tanh activation function resulting in a vector of 128 features. The auxiliary feature vector and the embedding vector are then concatenated and fed into a linear fully connected layer connected to the output classification.

3.3 BI-RADS Specific Tasks

For all of our fine tuning procedures, we trained for 4 epochs with a batch size of 32, optimizer Adam with weight decay, and a learning rate of 5e-5. For this project we performed four sets of fine tuning tasks: section tokenization without auxiliary data, section tokenization with auxiliary data, field extraction without section tokenization, and field extraction with section tokenization. All experiments were evaluated using a 5 k-fold cross-validation experiment.

3.3.1 Section Tokenization with and without Auxiliary Data: This model was trained to split a report document into specific information sections that are outlined in the BI-RADS lexicon. Pre-processing entailed taking the free text input and performing sentence tokenization to then label each sentence as belonging to a specific section, such as Title, Patient History, or Clinical Indication, Prior Imaging reference, Technique/Procedure, Notes, Findings, Impression, Opinion, and Assessment Category.
For section tokenization with auxiliary data, a sentence from the text report is split into its respective sections by using the BERT contextual embedding concatenated with auxiliary data encoding that is then fed into a final classifier. The Auxiliary data used in this task had 3 global report features: the classification of the previous sentence in the report, the number of the given sentence it is classifying, and the total number of sentences in the report. These global textual features were intended to capture an understanding of the flow of section organization in the BI-RADS lexicon [2].

Table 2: Description of Field Extraction tasks. MG=Mammogram, US=Ultrasound, MRI=Magnetic Resonance Imaging

Field	Description
Modality/Procedure	Identification of the imaging modality or procedure description from the Title, being MG, MRI, US, Biopsy, or a combination of up to three of those imaging modalities/procedure.
Previous Cancer	Determine if the attending radiologist has mentioned if the patient has a history of cancer or a suspicion of previous cancer, due to vague documentation.
Purpose for exam	Purpose for the examination either being diagnostic or screening.
Menopausal Status	Description of the patient’s menopausal status either being Pre or Post Menopausal, or no mention of menopausal status.
Density	The description of fibroglandular tissue in the report as Fatty, Scattered, Heterogeneously Dense, \(\leq 75\% \) of breast volume, or Dense.
Background Parenchymal Enhancement	Description of background enhancement in dynamic contrast enhanced MRI, being Minimal, Mild, Moderate, or Marked.

3.3.2 Field Extraction without Section Tokenization: This task involves extracting specific health indicators or imaging findings from a breast radiology report. Field extraction without section tokenization was performed by feeding the whole free text document into the BERT classifier without narrowing the text down with the section tokenizer. The specific fields that were tested are outlined in Table 2 and used the architecture of the BERT for sequence classification (Figure 2A).

3.3.3 Field Extraction with Section Tokenization: When performing field extraction with section tokenization, the section tokenization task is performed first and then the field extraction is performed on the section that contains the given field. For the field extraction with section tokenization, we performed a grid search on sequence length to observe its effect on classification. We evaluated sequence lengths of 32, 128 and 512. These grid search results can be found in Appendix A.

3.4 Evaluation

3.4.1 Performance Metrics

We decided to use two evaluation metrics in this study. First, classification accuracy (Acc.) was used to evaluate overall performance.

\[
\text{Acc.} = \frac{TP + TN}{TP + FP + TN + FN}
\]

where TP, TN, FP, and FN are true positives, true negatives, false positive and false negatives, respectively.

Second, we implemented a general F1 measure (G.F1) based on the generalized dice similarity coefficient [20].

\[
G.F1 = \frac{2 \sum_{i=0}^{C} w_i \cdot TP_i}{\sum_{i=0}^{C} w_i \cdot (2 \cdot TP_i + FP_i + FN_i)}
\]

\[
w_i = \frac{1}{P_i^2}
\]

where \(C \) is the class label.

We chose this metric over classic F1 measure because it gives a more informative performance evaluation when there are large class imbalances in the test set. The weighting of \(w_i \) in G.F1 forces the F1 measure to be more sensitive to inaccuracies of classification in the minority class which is important in our dataset because our imbalance favors reports with negative findings. These class imbalances are further depicted in Figure 3.
3.4.2 Statistical Analyses

To determine the best final model, we performed statistical significance testing with a 95% confidence. We used the Mann-Whitney U test to compare the medians of different section tokenizers as the distribution of accuracy and G.F1 performance is skewed to the left (medians closer to 100%) [21]. For the field extraction classifiers, we used the McNemar test to compare the agreement between two classifiers [22]. The McNemar test was chosen because it has been robustly proven to have an acceptable probability of Type I errors (not detecting a difference between two classifiers when there is a difference). After evaluating both configurations of field extraction explored in this paper, we performed another McNemar test to assist in choosing the best technique. All statistical tests were performed with p-value adjustments for multiple comparisons testing with Bonferroni correction [23].

4 Results

4.1 Section tokenization

Full results are displayed in Table 3. During 5 k-fold validation, the dataset was stratified by report modality and then the training set was further stratified by section label for training-validation splits. For each contextual embedding, all models without auxiliary data performed to closely the same in accuracy and G.F1, but multiple comparison testing showed they were significantly different from each other, suggesting that the BioClinical BERT embedding performs the best. Incorporating auxiliary data that is applicable to the task achieves an accuracy improvement of ∼2% across all the models. We did not find statistical significance between the three section tokenization models with auxiliary data. This suggests that auxiliary data gives sufficient information to segment the reports regardless of the contextual embedding used.

Base Model Fine Tuned	Ave. Acc. ± Std.Dev.	Ave. G.F1 ± Std.Dev.	
Without Aux. Data	Classic BERT	95.4 ± 8.0%	92.1 ± 22.6%
	BioClinical BERT	95.9 ± 7.8%	93.2 ± 21.3%
	BI-RADS BERT	94.1 ± 9.5%	89.5 ± 23.0%
With Aux. Data	Classic BERT	97.7 ± 5.9%	94.6 ± 20.5%
	BioClinical BERT	97.6 ± 6.1%	94.2 ± 21.1%
	BI-RADS BERT	97.8 ± 5.7%	94.8 ± 19.8%
To further investigate the effectiveness of the BI-RADS contextual embeddings compared to the baselines, we performed an ablation study to see if less training data would still be useful with a specialized BERT embedding. These results are displayed in Table 4. We can see a significant improvement of the BI-RADS BERT models over their baseline embeddings when auxiliary data is included. All models in this experiment were significantly different based on the Mann-Whitney U test. This suggests that the BI-RADS BERT model is advantageous when the section tokenization data contains fewer than 900 radiology reports.

Table 4: Results of Section Tokenization when trained using 10% of training data. Aux_data = previous line label, line number, document length

Base Model Fine Tuned	Ave. Acc. ± Std.Dev.	Ave. G.F1 ± Std.Dev.
Without Aux. Data		
Classic BERT	90.8 ± 10.8%	82.2 ± 31.7%
BioClinical BERT	85.8 ± 12.3%	60.9 ± 41.0%
BI-RADS BERT	92.8 ± 10.5%	85.1 ± 30.2%
With Aux. Data		
Classic BERT	91.8 ± 11.0%	84.8 ± 39.9%
BioClinical BERT	89.2 ± 11.4%	74.7 ± 37.0%
BI-RADS BERT	93.3 ± 9.9%	88.7 ± 25.4%

4.2 Field Extraction

4.2.1 Field Extraction without Section Tokenization

Results for this experiment can be found in Table 5. Statistical significance testing showed the three models were different with 95% confidence in the field extraction tasks of BPE, Modality, Purpose, and Previous Cancer. For Density, BI-RADS BERT was statistically different from BioClinical and Classic BERT, but BioClinical and Classic BERT were not significantly different from each other. In the case of Menopausal Status, all three models were not significantly different from each other, based on the McNemar test.

Table 5: Results of Field Extraction without Section Tokenization.

Task	Classic Acc. (G. F1) of BERT model	BioClinical Acc. (G. F1) of BERT model	BI-RADS Acc. (G. F1) of BERT model
Modality/Procedure	64.6% (13.4%)	53.8% (13.9%)	88.7% (25.4%)
Previous Cancer	75.9% (18.6%)	80.6% (39.1%)	91.1% (78.1%)
Menopausal Status	94.7% (41.1%)	94.4% (40.2%)	95.6% (54.8%)
Purpose	89.3% (8.8%)	90.1% (8.9%)	92.0% (22.4%)
Density	62.7% (26.0%)	64.4% (25.8%)	87.8% (62.0%)
BPE	86.1% (11.1%)	89.8% (12.2%)	92.3% (13.3%)

For field extraction without using section tokenization to narrow down the report before classification, our BI-RADS BERT outperformed the baseline models in all tasks. Performances in accuracy across the board are acceptably high, the lowest performance being 87.8% in density extraction. G.F1 performance was low in general, lowest being 13.3% for BPE extraction, suggesting that the models have a low sensitivity for the minority classes in that given task when attempting to extract the information from the whole free text report.

4.2.2 Field Extraction with Section Tokenization

Results for this experiment can be located in Table 6. This experiment entailed using the section tokenizer to locate a designated section before then feeding the section sentences into the field extraction classifier. Therefore for each task we have varying amounts of data because not all sections appear in all reports. This resulted in having 613 reports with history/cl. indication sections, and 897 reports with findings sections. Overall, this experiment resulted in higher performances than field extraction without section tokenization for Classic BERT, BioClinical BERT and the BI-RADS BERT. This was found to be statistically significant over field extraction without section tokenization with all p-values <0.05 using the McNemar test.

For this experiment we see the BI-RADS BERT outperforms the baselines in modality, previous cancer, menopausal status, purpose, and BPE, but BioClinical BERT performs the best in density category extraction. The sequence length grid search results can be found in Appendix 1. With statistical significance, BI-RADS BERT performance is different.
from BioClinical and Classic BERT in menopausal status, modality, and previous cancer. No model had statistical significance between each other for purpose and BPE. BioClinical BERT performed the best on Density, but this was only shown to have a statistical significance over BI-RADS BERT and not Classic BERT.

Table 6: Results of Field Extraction with Section Tokenization. (SL= input sequence length)

Task	SL Used	Section Dataset Size (n)	Classic Acc. (G. F1) of BERT model	BioClinical	BI-RADS
Modality	128	Title	89.7% (16.7%)	89.7% (19.9%)	93.8% (53.3%)
PreviousCa	32	History/Cl. Ind.	89.2% (83.7%)	84.2% (76.6%)	95.1% (91.7%)
Menopausal Status	128	History/Cl. Ind.	94.6% (59.4%)	93.1% (41.7%)	97.4% (77.4%)
Purpose	32	History/Cl. Ind.	94.9% (93.0%)	95.4% (93.7%)	97.2% (89.7%)
Density	32	Findings	93.6% (80.8%)	95.0% (88.0%)	91.3% (81.7%)
BPE	32	Findings	94.8% (15.8%)	95.8% (22.5%)	97.0% (91.6%)

5 Discussion

This report has presented the application of a BERT embedding for report section tokenization and field extraction in breast radiology reports. With different implementations and a specialized BI-RADS BERT contextual embeddings pre-trained on a large corpus of breast radiology reports, we have shown that a model can be effective at splitting a report’s sentences into specific sections described in the BI-RADS lexicon, and then identifying report information such as modality used/procedure performed, record of previous breast malignancy, purpose for the exam being either diagnostic or screening, the patient’s menopausal status, breast density category, and BPE category specifically in breast MRI.

It is important to note that these results support the findings by Lee at al. [3] and Sentzer et al. [4] that having a specialized BERT contextual embedding in your domain gives an advantage in performing NLP tasks. Here we have shown that breast radiology imaging reports also have a distinct style and terminology, and that may not show up in English text corpora, web based corpora, biological research paper corpora, or intensive care unit reporting corpora. This may be explained by the training process and creating a specialized tokenizer that understands phrases that are common to the domain [24]. For example, we found the word “mammogram” was split up differently depending on which embedding tokenizer was used. This example is shown in Table 7. For the Classic BERT tokenizer “mammogram” is split into four parts, while the BioClinical BERT gives three parts. Our specialized BI-RADS tokenizer gives one part as a mammogram is the most commonly used breast imaging modality and thus makes the embedding more efficient at identifying these important concepts as a whole as opposed to combination of sequential word pieces.

Table 7: Example of tokenizer results for the word ‘mammogram’.

Model	Tokenizer Wordpiece vector
Classic	['ma', '##mm', '##og', '##ram']
BioClinical	['ma', '##mm', '##ogram']
BI-RADS	['mammogram']

Furthermore, a specialized tokenizer gives an advantage at capturing text data into shorter sequences that contain more domain specific information. Radiologists are taught to keep reporting concise [1], leading to many smaller sentences and statements that directly correspond to the concept the radiologist is reporting. This lower sequence length in general seems to result in higher performances across all the tasks (As seen in Appendix A). Even when pre-training the embedding in MLM, we trained with an input sequence of 32, which still outperformed Classic BERT and BioClinical BERT trained on sequence lengths of 128 and then 512 for the final 10% of iteration steps. Therefore, by using a smaller sequence length, the embeddings are more precise and extract information more efficiently than longer sequences. This is also results in using less computational power to train the model which is contradictory to Shoeybi et al. [14].

Major limitations of our project are as follows. We had a limited dataset as this was a single institutional cohort of reports that were used to build the corpus. Further validation on external datasets is necessary to assess generalizability, however public datasets do not exist for this specialized task at present. By publishing our code and embeddings, we hope to make it possible for other researchers to validate this pipeline on their own private datasets. Secondly, we chose to train the BI-RADS BERT embeddings from scratch in order to build a custom word tokenizer specialized in BI-RADS vocabulary, so the BERT embeddings were not initialized from a previous BERT embedding. Previous work
suggests that double pre-training on varying datasets is highly efficient \cite{4}, therefore further analysis of the gains and losses from this implementation trade off is needed.

Domain shift is an ongoing research problem in radiology report analysis as recording styles change through the years. For example, the BI-RADS lexicon is currently in its fifth edition (released in 2013) and it is possible that reports generated using the fourth edition, which was released in 2003, differ significantly. Our dataset spans a 15 year period, and the majority of reports were generated using the latest edition. However it is possible that using exam date as an auxiliary data feature could improve field extraction or section tokenization.

6 Conclusion

This report has shown that a domain specific trained BERT embedding on breast radiology reports gives improved performance in NLP text sequence classification tasks. We have seen that these custom embeddings are superior to general ones in extracting health indicator information pertaining to the BI-RADS lexicon. We have further shown that the inclusion of auxiliary data, such as global textual information, can significantly improve text sequence classification tasks in section tokenization. Our objective is to build a useful tool for large scale epidemiological studies looking to explore new factors in the incidence, treatment, and management of breast cancer.

7 Acknowledgements

We would like to acknowledge the major sources of funding for this project being the Canadian Institute of Health Research (CIHR) and Natural Sciences and Engineering Research Council (NSERC). We would like to thank Compute Canada for computational resources out of Simon Fraser University, B.C., Canada. We would like to thank the Ontario Breast Screening Program (OBSP) for being our major source of research data. We would also like to thank Dr. Martin Yaffe and his research team for assistance in obtaining data.
8 Appendix A: Sequence length experiment results for Field Extraction with section tokenization

In table 8 we present grid search results for exploring the max sequence length that is ideal for each field extraction task.

Table 8: Results of Field Extraction with Section Tokenization.

Task Modality	Section Used Title	Test Size (n)	Classic Acc.	BioClinical Acc. (G. F1) of BERT model Acc. (G. F1)	BI-RADS	
		900				
Max Seq = 32			89.4% (17.9%)	82.6% (19.3%)	87.2% (46.9%)	
Max Seq = 128			89.7% (16.7%)	89.7% (19.9%)	93.8% (53.3%)	
Max Seq = 512			89.7% (16.7%)	89.7% (19.9%)	93.8% (53.3%)	
PreviousCa	History/Cl. Indication	613	Classic	89.2% (83.7%)	84.2% (76.6%)	95.1% (91.7%)
Max Seq = 32			83.4% (73.9%)	63.6% (48.6%)	92.8% (88.5%)	
Max Seq = 128			82.9% (69.8%)	75.9% (52.5%)	92.5% (87.5%)	
Max Seq = 512			82.9% (69.8%)	75.9% (52.5%)	92.5% (87.5%)	
Menopausal Status	History/Cl. Indication	613	Classic	94.4% (62.4%)	92.0% (58.4%)	95.4% (74.1%)
Max Seq = 32			94.6% (59.4%)	93.1% (41.7%)	97.4% (77.4%)	
Max Seq = 128			94.1% (52.1%)	94.0% (43.9%)	97.1% (71.4%)	
Max Seq = 512			94.1% (52.1%)	94.0% (43.9%)	97.1% (71.4%)	
Purpose	History/Cl. Indication	613	Classic	94.9% (93.0%)	95.4% (93.7%)	97.2% (89.7%)
Max Seq = 32			92.3% (89.7%)	86.0% (78.7%)	95.1% (93.3%)	
Max Seq = 128			95.3% (93.4%)	92.2% (88.4%)	96.6% (95.3%)	
Max Seq = 512			95.3% (93.4%)	92.2% (88.4%)	96.6% (95.3%)	
Density	Findings	897	Classic	93.6% (80.8%)	95.0% (88.0%)	91.3% (81.7%)
Max Seq = 32			91.4% (59.5%)	91.2% (63.0%)	87.1% (50.2%)	
Max Seq = 128			89.2% (50.4%)	82.6% (61.6%)	81.3% (38.5%)	
Max Seq = 512			89.2% (50.4%)	82.6% (61.6%)	81.3% (38.5%)	
BPE	Findings	897	Classic	94.8% (15.8%)	95.8% (22.5%)	97.0% (91.6%)
Max Seq = 32			93.6% (12.7%)	92.1% (12.6%)	96.3% (54.4%)	
Max Seq = 128			92.9% (7.6%)	92.3% (3.9%)	94.4% (46.0%)	
Max Seq = 512			92.9% (7.6%)	92.3% (3.9%)	94.4% (46.0%)	
References

[1] A Wallis and P McCoubrie. The radiology report—are we getting the message across? Clinical radiology, 66(11):1015–1022, 2011.

[2] CJ D’Orsi, EA Sickles, EB Mendelson, EA Morris, et al. ACR BI-RADS Atlas, Breast Imaging Reporting and Data System. American College of Radiology, Reston, VA, 2013.

[3] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. Biobert: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics (Oxford, England), 36(4):1234–1240, 2020.

[4] Emily Alsentzer, John Murphy, William Boag, Wei-Hung Weng, Di Jindi, Tristan Naumann, and Matthew McDermott. Publically available clinical bert embeddings. In Proceedings of the 2nd Clinical Natural Language Processing Workshop, pages 72–78, 2019.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[6] Alexandra Pomares-Quimbaya, Markus Kreuzthaler, and Stefan Schulz. Current approaches to identify sections within clinical narratives from electronic health records: a systematic review. BMC medical research methodology, 19(1):1–20, 2019.

[7] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing text with the natural language toolkit. "O'Reilly Media, Inc.", 2009.

[8] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. arXiv preprint [arXiv:1301.3781] 2013.

[9] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[10] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5:135–146, 2017.

[11] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint arXiv:1802.05365, 2018.

[12] Wilson L Taylor. Cloze procedure: A new tool for measuring readability. Journalism quarterly, 30(4):415–433, 1953.

[13] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint [arXiv:1907.11692] 2019.

[14] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-Lm: Training multi-billion parameter language models using model parallelism. arXiv preprint [arXiv:1909.08053] 2019.

[15] Akshay Smit, Saahil Jain, Pranav Rajpurkar, Anuj Pareek, Andrew Y Ng, and Matthew Lungren. Chexbert: Combining automatic labelers and expert annotations for accurate radiology report labeling using bert. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1500–1519, 2020.

[16] Honglei Liu, Zhiqiang Zhang, Yan Xu, Ni Wang, Yanqun Huang, Zhenghan Yang, Rui Jiang, and Hui Chen. Use of bert (bidirectional encoder representations from transformers)-based deep learning method for extracting evidences in chinese radiology reports: Development of a computer-aided liver cancer diagnosis framework. Journal of Medical Internet Research, 23(1):e19689, 2021.

[17] Sara Rosenthal, Ken Barker, and Zhicheng Liang. Leveraging medical literature for section prediction in electronic health records. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4866–4875, 2019.

[18] Anna M Chiarelli, Maegan V Prummel, Derek Muradali, Vicky Majpruz, Meaghan Horgan, June C Carroll, Andrea Eisen, Wendy S Meschino, Rene S Shumak, Ellen Warner, et al. Effectiveness of screening with annual magnetic resonance imaging and mammography: results of the initial screen from the ontario high risk breast screening program. J Clin Oncol, 32(21):2224–2230, 2014.
[19] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Téven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020. Association for Computational Linguistics.

[20] William R Crum, Oscar Camara, and Derek LG Hill. Generalized overlap measures for evaluation and validation in medical image analysis. IEEE transactions on medical imaging, 25(11):1451–1461, 2006.

[21] Patrick E McKnight and Julius Najab. Mann-whitney u test. The Corsini encyclopedia of psychology, pages 1–1, 2010.

[22] Thomas G Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural computation, 10(7):1895–1923, 1998.

[23] Olive Jean Dunn. Multiple comparisons among means. Journal of the American statistical association, 56(293):52–64, 1961.

[24] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144, 2016.