Low dispersion in the infectiousness of COVID-19 cases implies difficulty in control

Daihai He 1*, Shi Zhao 2,3, Xiaoke Xu 4, Qiangying Lin 5, Zian Zhuang 1, Peihua Cao 6, Maggie H. Wang 2,3, Yijun Lou 1, Li Xiao 7, Ye Wu 8,9* and Lin Yang 10*

Abstract

The individual infectiousness of coronavirus disease 2019 (COVID-19), quantified by the number of secondary cases of a typical index case, is conventionally modelled by a negative-binomial (NB) distribution. Based on patient data of 9120 confirmed cases in China, we calculated the variation of the individual infectiousness, i.e., the dispersion parameter k of the NB distribution, at 0.70 (95% confidence interval: 0.59, 0.98). This suggests that the dispersion in the individual infectiousness is probably low, thus COVID-19 infection is relatively easy to sustain in the population and more challenging to control. Instead of focusing on the much fewer super spreading events, we also need to focus on almost every case to effectively reduce transmission.

Keywords: COVID-19, Basic reproductive number, Dispersion, Negative binomial, Mitigation

Introduction

Since the early outbreak of coronavirus disease 2019 (COVID-19) pandemic, huge efforts have been devoted on estimating key epidemiological parameters due to their important implication in mitigation planning. For instance, according to a survey posted in a public domain (https://github.com/midas-network/COVID-19/tree/master/parameter_estimates/2019_novel_coronavirus), there were at least 47 studies (either peer-reviewed or not) on the cumulative case count in a location have been posted, 39 works on the reproductive number R_0 (number of secondary cases may be cause by a typical primary cases), 13 on the incubation period (time delay between infection and symptom onset), 13 on the infection period (time delay between infection and symptom onset), 6 on the serial interval or generation interval (time delay between symptom onset or infection of an index case and its secondary case in a transmission chain), 6 on the symptomatic case fatality ratio. However, the individual variation in infectiousness, the dispersion rate (k), has been largely overlooked, except for one early work in Eurosurveillance [1]. He et al. (2020) summarized the recent estimates on k from empirical offspring distributions, including 0.58 (95% confidence interval [CI]: 0.35, 1.18) of Bi et al. (2020) from a sample of 391 COVID-19 cases in Shenzhen China [2]. It is of note that there is mathematical modelling work based on imported and reported case numbers in a variety of countries showing that k could be 0.1 (95% CI: 0.05, 0.2) [3]. The recent study of Lau et al. [4] used a spatiotemporal transmission process model and estimated that overall dispersion parameter k is 0.45 for Cobb County, 0.43 for Dekalb, 0.39 for Fulton, 0.49 for Gwinnett, and 0.32 for Dougherty in Georgia, USA. In this work, with a larger dataset, we calculate k using the empirical offspring distribution approach. Our data are from mainland China where strict surveillance guaranteed the quality of the data. Since we adopted the basic definition approach, our methods do not rely on additional assumptions typically needed for mathematical modelling.

* Correspondence: daihai.he@polyu.edu.hk; wuye@bnu.edu.cn; l.yang@polyu.edu.hk
1Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China
2Computational Communication Research Center, Beijing Normal University, Zhuhai 519087, China
3School of Nursing, Hong Kong Polytechnic University, Hong Kong, China
Full list of author information is available at the end of the article
Method

Negative binomial distribution (NB) is used to model the distribution of secondary case numbers, i.e., the offspring numbers, of an index case. The dispersion parameter, k (i.e., size, which is nonnegative) controls the variation of the NB distribution. A sufficiently small k implies that the majority of disease transmission was driven by a few super-spreaders, and thus the spread is likely to be controlled by preventing super-spreading events. A large k implies that the NB distribution approaches a Poisson distribution, and the virus easily persist and is difficult to eradicate. Following the pioneer work of Lloyd-Smith et al. [5], we assume that the number of secondary cases, denoted by Z, for a typical primary case, follows NB (mean = R_0, dispersion = k), and thus the variance is $R_0 + R_0^2/k$. When k is sufficiently small, the distribution will have a peak at 0, and in the limit when $k = 0$, the NB distribution is concentrated at zero. When $k = 1$, the distribution is a geometric distribution; and when k approaches infinity, the NB distribution approaches a Poisson distribution with both mean and variance equal to R_0 [5].

Results and discussion

The k plays an important role in explaining the wide spreading of COVID worldwide, given a similar R_0 as the other coronavirus, i.e., the severe acute respiratory syndrome (SARS). Lloyd-Smith et al. [5] estimated a smaller $k = 0.16$ for the SARS outbreak in Singapore in 2003.

We first tried Riou et al.’s [1] method to calculate the R_0 and k in six countries (see Table 1), and found that R_0 is in line with World Health Organization (WHO) early estimates, while k cannot be reliably estimated. Then we obtained the numbers of secondary cases from a study by Xu et al. [9] (see Table 2), and estimated $k = 0.7$ (95%CI 0.59, 0.98) and $R_0 = 0.69$ (95%CI: 0.62, 0.77) using profile likelihood approach and the profile Log likelihood of the NB model given the data in R_0 versus k plane is shown in Fig 1. This estimate is larger than that of SARS around 0.16, but close to that of the 1918 pandemic influenza 0.94 (95%CI 0.59, 1.72) [2]. Our estimate is in line with Bi et al. 0.58 with 95% CI: 0.35, 1.18 [10]. However, we have 9120 confirmed cases, compared to Bi et al. 391 confirmed cases, and thus our estimate has a smaller confidence interval.

Our results suggest that the majority of the COVID-19 transmission is not due to super-spreading events. The number of secondary cases of a primary case roughly follows a geometric distribution, large proportion of primary cases have potentials to generate more than one secondary cases. This indicates that COVID-19 is easy to persist in the general population if strong measure is not taken, given the similar R_0 as SARS. Therefore, outbreak mitigation is relatively difficulty without taking extreme efforts such as city lockdown.

Country	Time interval	R_0
France	20/2/2020–12/3/2020	3.5 (3.2, 3.8)
	7/2/2020–12/3/2020	2.0 (1.7, 2.3)
UK	21/2/2020–12/3/2020	2.9 (2.6, 3.2)
	11/2/2020–12/3/2020	2.0 (1.7, 2.3)
Singapore	23/1/2020–23/2/2020	1.7 (1.4, 2.0)
Germany	21/2/2020–12/3/2020	3.5 (3.2, 3.8)
	11/2/2020–12/3/2020	2.3 (2.0, 2.6)
Spain	21/2/2020–12/3/2020	3.5 (3.2, 3.8)
	11/2/2020–12/3/2020	2.3 (2.0, 2.6)
Japan	23/1/2020–12/3/2020	1.7 (1.4, 2.0)
	11/2/2020–12/3/2020	2.3 (2.0, 2.6)

We adopted a similar method as in [1], and simulate a Negative-binomial process to match the observed daily cases in these country over the chosen time period when the number grew exponentially. Using a maximum likelihood approach to infer R_0. The method is also explained in [6–8].

Numbers of secondary cases	Frequency of primary cases
0	1241
1	511
2	160
3	71
4	33
5	15
6	7
7	3
8	2
9	3
10	1
11	1
12	1
13	1
14	1
15	1
16	1
17	1
Abbreviations
CI: Confidence interval; COVID-19: Coronavirus disease 2019; NB: Negative binomial distribution; SARS: Severe acute respiratory syndrome

Acknowledgements
None.

Authors’ contributions
ZZ, SZ, QL and DH conceived the study, carried out the analysis, and drafted the first manuscript. XX, PC, MW, YW, LX, LY and YL discussed the results, critically read and revised the manuscript, and all authors gave final approval for publication.

Funding
DH was supported by Alibaba (China) Co. Ltd. Collaborative Research project. XX was supported by the National Natural Science Foundation of China (61773091). The funding agencies had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Availability of data and materials
Data used to calculate the R_o for six countries are publicly available at https://covid19.who.int/table. Data used to calculate the k for China are given in Table 2.

Ethics approval and consent to participate
The data were collected from public domain, and thus neither ethical approval nor individual consent was not applicable.

Consent for publication
Not applicable.

Competing interests
DH was supported by Alibaba (China) Co. Ltd. Collaborative Research project. Other authors declared no conflict of interest.

Author details
1Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China. 2JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China. 3CUHK Shenzhen Research Institute, Shenzhen, China. 4College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China. 5Michigan Institute for Data Science at University of Michigan, Ann Arbor, MI, USA. 6Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China. 7College of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China. 8Computational Communication Research Center, Beijing Normal University, Zhuhai 519087, China. 9School of Journalism and Communication, Beijing Normal University, Beijing 100875, China. 10School of Nursing, Hong Kong Polytechnic University, Hong Kong, China.

Received: 27 March 2020 Accepted: 29 September 2020
Published online: 16 October 2020

References
1. Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance. 2020;25(4):30.
2. Fraser C, Cummings DA, Klinkenberg D, Burke DS, Ferguson NM. Influenza transmission in households during the 1918 pandemic. Am J Epidemiol. 2011;174(5):505–14.
3. Endo A, Abbott S, Kucharski AJ, Funk S. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Welcome Open Res. 2020;5(67):67.
4. Lau MS, Grenfell B, Thomas M, Bryant M, Nelson K, Lopman B. Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA. Proc Natl Acad Sci. 2020;117(38):22430–5.

Fig. 1 Profile Log likelihood of the NB model given the data in R_0 versus k plane based on data listed in Table 2.
5. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438(7066):355–9.
6. Althaus CL. Ebola superspreading. Lancet Infect Dis. 2015;15(5):507–8.
7. Zhao S, Cao P, Gao D, Zhuang Z, Chong M, Cai Y, Ran J, Wang K, Lou Y, Wang W, Yang L. Modelling the coronavirus disease (COVID-19) outbreak on the Diamond Princess ship using the public surveillance data from January 20 to February 20, 2020. medRxiv. 2020. https://doi.org/10.1101/2020.02.26.20028449.
8. Zhuang Z, Zhao S, Lin Q, Cao P, Lou Y, Yang L, Yang S, He D, Xiao L. Preliminary estimates of the reproduction number of the coronavirus disease (COVID-19) outbreak in Republic of Korea and Italy by 5 March 2020. Int J Infect Dis. 2020;95:308–10.
9. Xu XK, Liu XF, Wu Y, Ali ST, Du Z, Bosetti P, Lau EH, Cowling BJ, Wang L. Reconstruction of transmission pairs for novel coronavirus disease 2019 (COVID-19) in mainland China: estimation of super-spreading events, serial interval, and hazard of infection. Clin Infect Dis. 2020;18:ciaa790.
10. Bi Q, Wu Y, Mei S, Ye C, Zou X, Zhang Z, Liu X, Wei L, Truelove SA, Zhang T, Gao W. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020;20(8):911–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.