Abstract

Let \(F \) be a number field, \(p \) a prime number. We construct the (multi-variable) \(p \)-adic L-function of an automorphic representation of \(GL_2(\mathbb{A}_F) \) (with certain conditions at places above \(p \) and \(\infty \)), which interpolates the complex (Jacquet-Langlands) L-function at the central critical point. We use this construction to prove that the \(p \)-adic L-function of a modular elliptic curve \(E \) over \(F \) has vanishing order greater or equal to the number of primes above \(p \) at which \(E \) has split multiplicative reduction, as predicted by the exceptional zero conjecture.

This is a generalization of analogous results by Spieß over totally real fields.
Introduction

Let F be a number field (with adele ring \mathbb{A}_F), and p a prime number. Let $\pi = \bigotimes_v \pi_v$ be an automorphic representation of $\text{GL}_2(\mathbb{A}_F)$. Attached to π is the automorphic L-function $L(s, \pi)$, for $s \in \mathbb{C}$, of Jacquet-Langlands [JL]. Under certain conditions on π, we can also define a p-adic L-function $L_p(s, \pi)$ of π, with $s \in \mathbb{Z}_p$. It is related to $L(s, \pi)$ by the interpolation property: For every character $\chi : G_p \to \mathbb{C}^*$ of finite order we have

$$L_p(0, \pi \otimes \chi) = \tau(\chi) \prod_{p \mid p} e(\pi_p, \chi_p) \cdot L(\frac{1}{2}, \pi \otimes \chi),$$

where $e(\pi_p, \chi_p)$ is a certain Euler factor (see theorem 4.12 for its definition) and $\tau(\chi)$ is the Gauss sum of χ.

$L_p(s, \pi)$ was defined by Haran [Har] in the case where π has trivial central character and π_p is an ordinary spherical principal series representation for all $p \mid p$. For a totally real field F, Spieß [Sp] has given a new construction of $L_p(s, \pi)$ that also allows for π_p to be a special (Steinberg) representation for some $p \mid p$.

Here, we generalize Spieß’ construction of $L_p(s, \pi)$ to automorphic representations π of GL_2 over any number field, with arbitrary central character, and use it to prove a part of the exceptional zero conjecture on p-adic L-functions of elliptic curves (see below). For F not totally real, L_p can naturally be defined as a multi-variable function due to the existence of several \mathbb{Z}_p-extensions.

As in [Sp], we assume that π is ordinary at all primes $p \mid p$ (cf. definition 2.3), that π_v is discrete of weight 2 at all real infinite places v, and a similar condition at the complex places.

Throughout most of this paper, we follow [Sp]; for section 4.1, we follow Bygott [By], Ch. 4.2, who in turn follows Weil [We].

We define the p-adic L-function of π as an integral, with respect to a certain measure μ_π, on the Galois group G_p of the maximal abelian extension that is unramified outside p and ∞, specifically

$$L_p(s, \pi) := L_p(s_1, \ldots, s_t, \kappa_\pi) := \int_{G_p} \prod_{i=1}^t \exp_p(s_i \ell_i(\gamma)) \mu_\pi(d\gamma)$$

(for $s_1, \ldots, s_t \in \mathbb{Z}_p$), where κ_π is a cohomology class attached to π and the ℓ_i are \mathbb{Z}_p-valued homomorphisms corresponding to the t independent \mathbb{Z}_p-extensions of F (cf. section 4.7 for their definition).
Heuristically, μ_π is the image of $\mu_{\pi_p} \times W^p(\pi_p^\xi)$ under the reciprocity map $\mathbb{I}_F = F_p^* \times \mathbb{P} \to \mathcal{G}_p$ of global class field theory. Here $\mu_{\pi_p} = \prod_{p|p} \mu_{\pi_p}$ is the product of certain local distributions μ_{π_p} on F_p^* attached to π_p, $d^x x^p$ is the Haar measure on the group $\mathbb{I}_p = \prod_{p|p} F_p^*$ of p-ideles, and $W^p = \prod_{p|p} W_p$ is a specific Whittaker function of $\pi^p := \otimes_{p|p} \pi_p$.

The structure of this work is the following: In chapter 2, we describe the local distributions μ_{π_p} on F_p^*; they are the image of a Whittaker functional under a map δ on the dual of π_p. For constructing δ, we describe π_p in terms of what we call the “Bruhat-Tits graph” of F_p^2, the directed graph whose vertices (resp. edges) are the lattices of F_p^2 (resp. inclusions between lattices). Roughly speaking, it is a covering of the (directed) Bruhat-Tits tree of $\text{GL}_2(F_p)$ with fibres $\cong \mathbb{Z}$. When π_p is the Steinberg representation, μ_p can actually be extended to all of F_p.

In chapter 3, we attach a p-adic distribution μ_ϕ to any map $\phi(U, x^p)$ of an open compact subset $U \subseteq F_p^*$:= $\prod_{p|p} F_p^*$ and an idele $x^p \in \mathbb{I}_p$ (satisfying certain conditions). Integrating ϕ over all the infinite places, we get a cohomology class $\kappa_\phi \in H^d(F_p^*, \mathbb{D}_f(\mathbb{C}))$ (where $d = r + s - 1$ is the rank of the group of units of F, $F^* \cong F^*/\mu_F$ is a maximal torsion-free subgroup of F^*, and $\mathbb{D}_f(\mathbb{C})$ is a space of distributions on the finite ideles of F). We show that μ_ϕ can be described solely in terms of κ_ϕ, and μ_ϕ is a (vector-valued) p-adic measure if κ_ϕ is “integral”, i.e. if it lies in the image of $H^d(F^*, \mathbb{D}_f(R))$, for a Dedekind ring R consisting of “p-adic integers”.

In chapter 4, we define a map ϕ_π by

$$\phi_\pi(U, x^p) := \sum_{\zeta \in F^*} \mu_{\pi_p}(\zeta U) W^p \begin{pmatrix} \zeta x^p & 0 \\ 0 & 1 \end{pmatrix}$$

($U \subseteq F_p^*$ compact open, $x^p \in \mathbb{I}_p$). ϕ_π satisfies the conditions of chapter 3 and we show that $\kappa_\pi := \kappa_{\phi_\pi}$ is integral by “lifting” the map $\phi_\pi \mapsto \kappa_\pi$ to a function mapping an automorphic form to a cohomology class in $H^d(\text{GL}_2(F)^+, \mathcal{A}_f)$, for a certain space of functions \mathcal{A}_f. (Here $\text{GL}_2(F)^+$ is the subgroup of $M \in \text{GL}_2(F)$ with totally positive determinant.) For this, we associate to each automorphic form φ a harmonic form ω_φ on a generalized upper-half space \mathcal{H}_∞, which we can integrate between any two cusps in $\mathbb{I}^1(F)$.

Then we can define the p-adic L-function $L_p(\underline{\zeta}, \pi) := L_p(\underline{\zeta}, \kappa_\pi)$ as above, with $\kappa_\pi := \kappa_{\phi_\pi}$. By a result of Harder [H], $H^d(\text{GL}_2(F)^+, \mathcal{A}_f)_\pi$ is one-dimensional, which implies that $L_p(\underline{\zeta}, \pi)$ has values in a one-dimensional \mathbb{C}_p-vector space.

We use our construction to prove the following result on the vanishing order of p-adic L-functions of elliptic curves:

If E is a modular elliptic curve over F corresponding to π (i.e. the local L-factors of the Hasse-Weil L-function $L(E, s)$ and of the automorphic L-function $L(s - \frac{1}{2}, \pi)$ coincide at all places v of F), we define the (multi-variable) p-adic L-function of E as $L_p(E, \underline{s}) := L_p(\underline{s}, \pi)$. The condition that π be ordinary at all $p|p$ means that E must have good ordinary or multiplicative reduction at all places $p|p$ of F.

The exceptional zero conjecture (formulated by Mazur, Tate and Teitelbaum [MTT] for $F = \mathbb{Q}$, and by Hida [Hi] for totally real F) states that

$$\text{ord}_{s=0} L_p(E, s) \geq n,$$

(0.1)
where n is the number of $p | p$ at which E has split multiplicative reduction, and gives an explicit formula for the value of the n-th derivative $L_p^{(n)}(E, 0)$ as a multiple of certain L-invariants times $L(E, 1)$. The conjecture was proved in the case $F = \mathbb{Q}$ by Greenberg and Stevens [GS] and independently by Kato, Kurihara and Tsuji, and for totally real fields F by Spieß [Sp].

In section 4.7 we formulate the exceptional zero conjecture and prove (0.1) for all number fields F.

Acknowledgements. This paper is based on my Ph.D. thesis “p-adic L-functions of automorphic forms” [Dc], submitted at Bielefeld University in August 2013.

I would like to thank Michael Spieß for suggesting and advising the thesis, and for many helpful discussions. I am also thankful to Werner Hoffmann for a useful discussion, and to the CRC 701, ‘Spectral Structures and Topological Methods in Mathematics’, for providing financial support during most of my studies.
1 Preliminaries

Let X be a totally disconnected locally compact topological space, R a topological Hausdorff ring. We denote by $C(X, R)$ the ring of continuous maps $X \to R$, and let $C_c(X, R) \subseteq C(X, R)$ be the subring of compactly supported maps. When R has the discrete topology, we also write $C^0(X, R) := C(X, R)$, $C^0_c(X, R) := C_c(X, R)$.

We denote by $\mathcal{C}o(X)$ the set of all compact open subsets of X, and for an R-module M we denote by $\text{Dist}(X, M)$ the R-module of M-valued distributions on X, i.e. the set of maps $\mu : \mathcal{C}o(X) \to M$ such that $\mu(\bigcup_{i=1}^n U_i) = \sum_{i=1}^n \mu(U_i)$ for any pairwise disjoint sets $U_i \in \mathcal{C}o(X)$.

For an open set $H \subseteq X$, we denote by $1_H \in C(X, R)$ the R-valued indicator function of H on X.

Throughout this paper, we fix a prime p and embeddings $\iota_\infty : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$, $\iota_p : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_p$. Let \mathcal{O} denote the valuation ring of $\overline{\mathbb{Q}}$ with respect to the p-adic valuation induced by ι_p.

We write $G := \text{GL}_2$ throughout the thesis, and let B denote the Borel subgroup of upper triangular matrices, T the maximal torus (consisting of all diagonal matrices), and Z the center of G.

For a number field F, we let $G(F)^+ \subseteq G(F)$ and $B(F)^+ \subseteq B(F)$ denote the corresponding subgroups of matrices with totally positive determinant, i.e. $\sigma(\det(g))$ is positive for each real embedding $\sigma : F \hookrightarrow \mathbb{R}$. (If F is totally complex, this is an empty condition, so we have $G(F)^+ = G(F)$, $B(F)^+ = B(F)$ in this case.) Similarly, we define $G(\mathbb{R})^+$ and $G(\mathbb{C})^+ = G(\mathbb{C})$.

1.1 p-adic measures

Definition 1.1. Let X be a compact totally disconnected topological space. For a distribution $\mu : \mathcal{C}o(X) \to \mathbb{C}$, consider the extension of μ to the \mathbb{C}_p-linear map $C^0(X, \mathbb{C}_p) \to \mathbb{C}_p \otimes_{\overline{\mathbb{Q}}} \mathbb{C}$, $f \mapsto \int f d\mu$. If its image is a finitely-generated \mathbb{C}_p-vector space, μ is called a p-adic measure.

We denote the space of p-adic measures on X by $\text{Dist}^b(X, \mathbb{C}) \subseteq \text{Dist}(X, \mathbb{C})$. It is easily seen that μ is a p-adic measure if and only if the image of μ, considered as a map $C^0(X, \mathbb{Z}) \to \mathbb{C}$, is contained in a finitely generated \mathcal{O}-module. A p-adic measure can be integrated against any continuous function $f \in C(X, \mathbb{C}_p)$.

2 Local results

For this chapter, let F be a finite extension of \mathbb{Q}_p, \mathcal{O}_F its ring of integers, \mathfrak{o} its uniformizer and $p = (\mathfrak{o})$ the maximal ideal. Let q be the cardinality of \mathcal{O}_F/p, and set $U := U^{(0)} := \mathcal{O}_F^\times$, $U^{(n)} := 1 + p^n \subseteq U$ for $n \geq 1$.

We fix an additive character $\psi : F \to \mathbb{Q}_p^\times$ with $\ker \psi \supseteq \mathcal{O}_F$ and $p - 1 \not\subseteq \ker \psi$.

We let $| \cdot |$ be the absolute value on F^\times (normalized by $|\mathfrak{o}| = q^{-1}$), $\text{ord} = \text{ord}_\mathfrak{o}$ the additive valuation, and dx the Haar measure on F normalized by $\int_{\mathcal{O}_F} dx = 1$. We define a (Haar) measure on F^\times by $d x^\times := \frac{q}{q - 1} dx / |x|$ (so $\int_{\mathcal{O}_F^\times} d x^\times = 1$).

2.1 Gauss sums

Recall that the conductor of a character $\chi : F^\times \to \mathbb{C}^\times$ is by definition the largest ideal p^{n}, $n \geq 0$, such that $\ker \chi \supseteq U^{(n)}$, and that χ is unramified if its conductor is $p^0 = \mathcal{O}_F$.

Definition 2.1. Let $\chi : F^\times \to \mathbb{C}^\times$ be a quasi-character with conductor p^f. The Gauss sum of χ (with respect to ψ) is defined by

$$\tau(\chi) := [U : U^{(f)}] \int_{\mathfrak{o} - U} \psi(x) \chi(x) d^\times x.$$

For a locally constant function $g : F^\times \to \mathbb{C}$, we define

$$\int_{F^\times} g(x) dx := \lim_{n \to \infty} \int_{x \in F^\times, -n \leq \text{ord}(x) \leq n} g(x) dx,$$

whenever that limit exists. Then we have the following lemma of [Sp]:

Lemma 2.2. Let $\chi : F^\times \to \mathbb{C}^\times$ be a quasi-character with conductor p^f. For $f = 0$, assume $|\chi(\mathfrak{o})| < q$. Then we have

$$\int_{F^\times} \chi(x) \psi(x) dx = \begin{cases}
1 - \chi(\mathfrak{o})^{-1} & \text{if } f = 0 \\
1 - \chi(\mathfrak{o})^{-1} q^{-1} & \text{if } f > 0.
\end{cases}$$

(Cf. [Sp], lemma 3.4.)

2.2 Tamely ramified representations of $\text{GL}_2(F)$

For an ideal $\mathfrak{a} \subset \mathcal{O}_F$, let $K_0(\mathfrak{a}) \subseteq G(\mathcal{O}_F)$ be the subgroup of matrices congruent to an upper triangular matrix modulo \mathfrak{a}.

Let $\pi : \text{GL}_2(F) \to \text{GL}(V)$ be an irreducible admissible infinite-dimensional representation on a \mathbb{C}-vector space V, with central quasicharacter χ. It is well-known (e.g [Ge], Thm. 4.24) that there exists a maximal ideal $c(\pi) = \mathfrak{c} \subset \mathcal{O}_F$, the conductor

So $\psi(p^{-1})$ is the set of all p^e-th roots of unity in $\overline{\mathbb{Q}}$, where e is the ramification index of $F|\mathbb{Q}_p$. There is in general no ψ such that $\ker(\psi) = \mathcal{O}_F$, since p^{-1}/\mathcal{O}_F has more than p points of order p if $F|\mathbb{Q}_p$ has inertia index > 1.

6
of \(\pi \), such that the space \(V^{K_0(\chi)} = \{ v \in V | \pi(g)v = \chi(a)v \ \forall g = (a \ b \ \ c \ d) \in K_0(\chi) \} \) is non-zero \((\text{and in fact one-dimensional}). \) A representation \(\pi \) is called \textit{tamely ramified} if its conductor divides \(p \).

If \(\pi \) is tamely ramified, then \(\pi \) is the spherical resp. special representation \(\pi(\chi_1, \chi_2) \) (in the notation of \([Ge]\) or \([Sp]\)):

- If the conductor is \(\mathcal{O}_F, \pi \) is (by definition) spherical and thus a principal series representation \(\pi(\chi_1, \chi_2) \) for two unramified quasi-characters \(\chi_1 \) and \(\chi_2 \) with \(\chi_1 \chi_2^{-1} \neq 0 \).
- If the conductor is \(p \), then \(\pi = \pi(\chi_1, \chi_2) \) with \(\chi_1 \chi_2^{-1} = | \cdot |^{\pm 1} \).

For \(\alpha \in \mathbb{C}^* \), we define a character \(\chi_\alpha : F^* \to \mathbb{C}^* \) by \(\chi_\alpha(x) := \alpha^{\text{ord}(x)} \).

So let now \(\pi = \pi(\chi_1, \chi_2) \) be a tamely ramified irreducible admissible infinite-dimensional representation of \(\text{GL}_2(F) \); in the special case, we assume \(\chi_1 \) and \(\chi_2 \) to be ordered such that \(\chi_1 = | \cdot |^{\frac{1}{2}} \chi_2 \).

Set \(\alpha_i := \chi_i(\omega)\sqrt{q} \in \mathbb{C}^* \) \((i = 1, 2) \). (We also write \(\pi = \pi_{\alpha_1, \alpha_2} \) sometimes.) Set \(\alpha := \alpha_1 + \alpha_2 \), \(\nu := \alpha_1 \alpha_2 / q \). Define a distribution \(\mu_{\alpha_1, \nu} := \mu_{\alpha_1, \nu} := \psi(x)\chi_{\alpha_1, \nu}(x)dx \) on \(F^* \).

For later use, we will need the following condition on the \(\alpha_i \):

Definition 2.3. Let \(\pi = \pi_{\alpha_1, \alpha_2} \) be tamely ramified. \(\pi \) is called \textit{ordinary} if \(\alpha \) and \(\nu \) both lie in \(\mathcal{O}^* \) \((\text{i.e. they are } p\text{-adic units in } \mathcal{O}) \). Equivalently, this means that either \(\alpha_1 \in \mathcal{O}^* \) and \(\alpha_2 \in q\mathcal{O}^* \), or vice versa.

Proposition 2.4. Let \(\chi : F^* \to \mathbb{C}^* \) be a quasi-character with conductor \(p^f \); for \(f = 0 \), assume \(|\chi(\omega)| < |\alpha_2| \). Then the integral \(\int_{F^*} \chi(x)\mu_{\alpha_1, \nu}(dx) \) converges and we have

\[
\int_{F^*} \chi(x)\mu_{\alpha_1, \nu}(dx) = e(\alpha_1, \alpha_2, \chi)\tau(\chi)L(\frac{1}{2}, \pi \otimes \chi),
\]

where

\[
e(\alpha_1, \alpha_2, \chi) = \begin{cases}
(1 - \alpha_1 \chi(\omega)q^{-1})(1 - \alpha_2 \chi(\omega)^{-1}q^{-1})(1 - \alpha_2 \chi(\omega)^{-1}q^{-1}), & f = 0 \text{ and } \pi \text{ spherical,} \\
(1 - \alpha_1 \chi(\omega)^{-1})(1 - \alpha_2 \chi(\omega)^{-1}q^{-1}), & f = 0 \text{ and } \pi \text{ special,} \\
(\alpha_1 / \nu)^{-f} = (\alpha_2 / q)^f, & f > 0,
\end{cases}
\]

and where we assume the right-hand side to be continuously extended to the potential removable singularities at \(\chi(\omega) = q / \alpha_1 \) or \(= q / \alpha_2 \).

Proof. Case 1: \(f = 0 \), \(\pi \) spherical

We have

\[
L(s, \pi \otimes \chi) = \frac{1}{(1 - \alpha_1 \chi(\omega)q^{-s+\frac{1}{2}})(1 - \alpha_2 \chi(\omega)^{-1}q^{-s+\frac{1}{2}})};
\]
so

\[
L(\frac{1}{2}, \pi \otimes \chi) \cdot \tau(\chi) \cdot e(\alpha_1, \alpha_2, \chi) = \frac{1 - \alpha_2 q^{-1} \chi(\omega)^{-1}}{1 - \chi(\omega) \alpha_2^{-1}}
\]

\[
= \frac{1 - \nu \alpha_1^{-1} \chi(\omega)^{-1}}{1 - \alpha_1 \chi(\omega) \nu^{-1} q^{-1}}
\]

\[
= \int_{F^*} \chi(x) \chi_{\alpha_1/\nu}(x) \psi(x) dx
\]

\[
= \int_{F^*} \chi(x) \mu_{\alpha_1/\nu}(dx)
\]

by lemma \[2.2\]

Case 2: \(f = 0, \pi \) special
Assuming \(\chi_1 = | \cdot | \chi_2 \), we have

\[
L(s, \pi \otimes \chi) = \frac{1}{1 - \alpha_1 \chi(\omega) q^{-s-\frac{1}{2}}}
\]

and thus

\[
L(\frac{1}{2}, \pi \otimes \chi) \cdot \tau(\chi) \cdot e(\alpha_1, \alpha_2, \chi) = \frac{1 - \nu \alpha_1^{-1} \chi(\omega)^{-1}}{1 - \alpha_1 \nu^{-1} \chi(\omega) q^{-1}}
\]

\[
= \int_{F^*} \chi(x) \chi_{\alpha_1/\nu}(x) \psi(x) dx
\]

\[
= \int_{F^*} \chi(x) \mu_{\alpha_1/\nu}(dx)
\]

by lemma \[2.2\]

Case 3: \(f > 0 \)
In this case, \(L(s, \pi \otimes \chi) = 1 \) for \(s > 0 \) and

\[
\int_{F^*} \chi(x) \mu_{\alpha_1/\nu}(dx) = \tau(\chi \cdot \chi_{\alpha_1/\nu})
\]

\[
= q^{f-1}(q-1) \int_{\omega^{-f}U} \psi(x) \chi(x) \chi_{\alpha_1/\nu}(x) d^\times x
\]

\[
= (\alpha_1/\nu)^{-f} q^{f-1}(q-1) \int_{\omega^{-f}U} \psi(x) \chi(x) d^\times x
\]

\[
= e(\alpha_1, \alpha_2, \chi) \cdot \tau(\chi) \cdot L(\frac{1}{2}, \pi \otimes \chi).
\]

\(\square \)

2.3 The Bruhat-Tits graph \(\tilde{T} \)

Let \(\tilde{V} \) denote the set of lattices (i.e. submodules isomorphic to \(\mathcal{O}_F^2 \)) in \(F^2 \), and let \(\tilde{E} \) be the set of all inclusion maps between two lattices; for such a map \(e : v_1 \hookrightarrow v_2 \) in \(\tilde{E} \), we define \(o(e) := v_1, t(e) := v_2 \). Then the pair \(\tilde{T} := (\tilde{V}, \tilde{E}) \) is naturally a directed
graph, connected, with no directed cycles (specifically, \mathcal{E} induces a partial ordering on \mathcal{V}). For each $v \in \mathcal{V}$, there are exactly $q + 1$ edges beginning (resp. ending) in v, each.

Recall that the Bruhat-Tits tree $\mathcal{T} = (\mathcal{V}, \mathcal{E})$ of $G(F)$ is the directed graph whose vertices are homothety classes of lattices of F^2 (i.e. $\mathcal{V} = \tilde{\mathcal{V}}/\sim$, where $v \sim w^i v$ for all $i \in \mathbb{Z}$), and the directed edges $e \in \mathcal{E}$ are homothety classes of inclusions of lattices. We can define maps $o, t : \mathcal{E} \to \mathcal{V}$ analogously. For each edge $e \in \mathcal{E}$, there is an opposite edge $\overline{e} \in \mathcal{E}$ with $o(\overline{e}) = t(e)$, $t(\overline{e}) = o(e)$; and the undirected graph underlying \mathcal{T} is simply connected. We have a natural “projection map” $\pi : \mathcal{T} \to \mathcal{E}$, mapping each lattice and each homomorphism to its homothety class. Choosing a (set-theoretic) section $s : \mathcal{V} \to \tilde{\mathcal{V}}$, we get a bijection $\mathcal{V} \times \mathbb{Z} \to \tilde{\mathcal{V}}$ via $(v, i) \mapsto w^i s(v)$.

The group $G(F)$ operates on $\tilde{\mathcal{V}}$ via its standard action on F^2, i.e. $g v = \{gx \mid x \in v\}$ for $g \in G(F)$, and on \mathcal{E} by mapping $e : v_1 \to v_2$ to the inclusion map $ge : gv_1 \to gv_2$. The stabilizer of the standard vertex $v_0 := \mathcal{O}_F^2$ is $G(\mathcal{O}_F)$.

For a directed edge $e \in \mathcal{E}$ of the Bruhat-Tits tree \mathcal{T}, we define $U(e)$ to be the set of ends of e (cf. [Sel] / [Sp]); it is a compact open subset of $\mathbb{P}^1(F)$, and we have $gU(e) = U(g e)$ for all $g \in G(F)$.

For $n \in \mathbb{Z}$, we set $v_n := \mathcal{O}_F \oplus p^n \tilde{\mathcal{V}}$, and denote by e_n the edge from v_{n+1} to v_n; the “decreasing” sequence $(\pi(e_n))_{n \in \mathbb{Z}}$ is the geodesic from ∞ to 0. (The geodesic from 0 to ∞ traverses the $\pi(v_n)$ in the natural order of $n \in \mathbb{Z}$.) We have $U(\pi(e_n)) = p^{-n}$ for each n.

Now (following [BL] and [Sp]), we can define a "height" function $h : \mathcal{V} \to \mathbb{Z}$ as follows: The geodesic ray from $v \in \mathcal{V}$ to ∞ must contain some $\pi(v_n)$ ($n \in \mathbb{Z}$), since it has non-empty intersection with $A := \{\pi(v_n) \mid n \in \mathbb{Z}\}$; we define $h(v) := n - d(v, \pi(v_n))$ for any such v_n; this is easily seen to be well-defined, and we have $h(\pi(v_n)) = n$ for all $n \in \mathbb{Z}$. We have the following lemma of [Sp]:

Lemma 2.5. (a) For all $e \in \mathcal{E}$, we have

\[
h(t(e)) = \begin{cases} h(o(e)) + 1 & \text{if } \infty \in U(e), \\ h(o(e)) - 1 & \text{otherwise.} \end{cases}
\]

(b) For $a \in F^*$, $b \in F$, $e \in \mathcal{E}$ we have

\[
h \left(\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} e \right) = h(e) - \text{ord}_e(a).
\]

(Cf. [Sp], Lemma 3.6.)

2.4 Hecke structure of $\tilde{\mathcal{T}}$

Let R be a ring, M an R-module. We let $C(\tilde{\mathcal{V}}, M)$ be the R-module of maps $\phi : \tilde{\mathcal{V}} \to M$, and $C(\mathcal{E}, M)$ the R-module of maps $\mathcal{E} \to M$. Both are $G(F)$-modules via $(g \phi)(v) := \phi(g^{-1}v)$, $(ge)(e) := c(g^{-1}e)$.
We let \(C_c(\tilde{\mathcal{V}}, M) \subseteq C(\tilde{\mathcal{V}}, M) \) and \(C_c(\tilde{\mathcal{E}}, M) \subseteq C(\tilde{\mathcal{E}}, M) \) be the \((G(F))\)-stable sub-modules of maps with compact support, i.e. maps that are zero outside a finite set. We get pairings

\[
\langle \cdot, \cdot \rangle : C_c(\tilde{\mathcal{V}}, R) \times C(\tilde{\mathcal{V}}, M) \to M, \quad \langle \phi_1, \phi_2 \rangle := \sum_{v \in \tilde{\mathcal{V}}} \phi_1(v)\phi_2(v) \tag{2.1}
\]

and

\[
\langle \cdot, \cdot \rangle : C_c(\tilde{\mathcal{E}}, R) \times C(\tilde{\mathcal{E}}, M) \to M, \quad \langle c_1, c_2 \rangle := \sum_{e \in \tilde{\mathcal{E}}} c_1(v)c_2(v). \tag{2.2}
\]

We define Hecke operators \(T, \mathcal{R} : \mathcal{C}(\tilde{\mathcal{V}}, M) \to \mathcal{C}(\tilde{\mathcal{V}}, M) \) by

\[
T\phi(v) = \sum_{t(e)=v} \phi(o(e)) \quad \text{and} \quad \mathcal{R}\phi := \varpi\phi \quad \text{(i.e.} \ \mathcal{R}\phi(v) = \phi(\varpi^{-1}v))
\]

for all \(v \in \tilde{\mathcal{V}} \). These restrict to operators on \(C_c(\tilde{\mathcal{V}}, R) \), which we sometimes denote by \(T_c \) and \(\mathcal{R}_c \) for emphasis. With respect to (2.1), \(T_c \) is adjoint to \(TR \), and \(\mathcal{R}_c \) is adjoint to its inverse operator \(\mathcal{R}^{-1} : C_c(\tilde{\mathcal{V}}, R) \to C_c(\tilde{\mathcal{V}}, R) \).

\(T \) and \(\mathcal{R} \) obviously commute, and we have the following Hecke structure theorem on compactly supported functions on \(\tilde{\mathcal{V}} \) (an analogue of [BL], Thm. 10):

Theorem 2.6. \(C_c(\tilde{\mathcal{V}}, R) \) is a free \(R[T, \mathcal{R}^{\pm 1}] \)-module (where \(R[T, \mathcal{R}^{\pm 1}] \) is the ring of Laurent series in \(\mathcal{R} \) over the polynomial ring \(R[T] \), with \(\mathcal{R} \) and \(T \) commuting).

Proof. Fix a vertex \(v_0 \in \tilde{\mathcal{V}} \). For each \(n \geq 0 \), let \(C_n \) be the set of vertices \(v \in \tilde{\mathcal{V}} \) such that there is a directed path of length \(n \) from \(v_0 \) to \(v \) in \(\tilde{\mathcal{V}} \), and such that \(d(\pi(v_0), \pi(v)) = n \) in the Bruhat-Tits tree \(\mathcal{T} \). So \(C_0 = \{ v_0 \} \), and \(C_n \) is a lift of the ”circle of radius \(n \) around \(v_0 \)” in \(\mathcal{T} \), in the parlance of [BL].

One easily sees that \(\bigcup_{n \geq 0} C_n \) is a complete set of representatives for the projection map \(\pi : \tilde{\mathcal{V}} \to \mathcal{V} \); specifically, for \(n > 1 \) and a given \(v \in C_{n-1} \), \(C_n \) contains exactly \(q \) elements adjacent to \(v \) in \(\tilde{\mathcal{V}} \); and we can write \(\tilde{\mathcal{V}} \) as a disjoint union \(\bigcup_{j \in \mathbb{Z}} \bigcup_{n=0}^{\infty} \mathcal{R}^j(C_n) \).

We further define \(V_0 := \{ v_0 \} \) and choose subsets \(V_n \subseteq C_n \) as follows: We let \(V_1 \) be any subset of cardinality \(q \). For \(n > 1 \), we choose \(q-1 \) out of the \(q \) elements of \(C_n \) adjacent to \(v' \), for every \(v' \in C_{n-1} \), and let \(V_n \) be the union of these elements for all \(v' \in C_{n-1} \). Finally, we set

\[
H_{n,j} := \{ \phi \in C_c(\tilde{\mathcal{V}}, R) | \text{Supp}(\phi) \subseteq \bigcup_{i=0}^{n} \mathcal{R}^i(C_i) \} \quad \text{for each} \ n \geq 0, j \in \mathbb{Z},
\]

\[
H_n := \bigcup_{j \in \mathbb{Z}} H_{n,j}, \quad \text{and} \quad H_{-1} := H_{-1,j} := \{ 0 \}. \quad (\text{For ease of notation, we identify} \ v \in \tilde{\mathcal{V}} \ \text{with its indicator function} \ 1_v \in C_c(\tilde{\mathcal{V}}, R) \ \text{in this proof}.)
\]

Define \(T' : C_c(\tilde{\mathcal{V}}, R) \to C_c(\tilde{\mathcal{V}}, R) \) by

\[
T'(\phi)(v) := \sum_{t(e)=v, \ o(e)\in \mathcal{R}^j(C_n)} \phi(o(e)) \quad \text{for each} \ v \in \mathcal{R}^j(C_{n-1}), j \in \mathbb{Z};
\]
T' can be seen as the "restriction to one layer" $\bigcup_{n=0}^{\infty} R^j(C_n)$ of T. We have $T'(v) \equiv T(v) \mod H_{n-1}$ for each $v \in H_n$, since the "missing summand" of T' lies in \tilde{H}_{n-1}.

We claim that for each $n \geq 0$, the set $X_{n,j} := \bigcup_{i=0}^{n} R^j T^{n-i}(V_i)$ is an R-basis for $H_{n,j}/H_{n-1,j}$. By the above congruence, we can replace T by T' in the definition of $X_{n,j}$.

The claim is clear for $n = 0$. So let $n \geq 1$, and assume the claim to be true for all $n' \leq n$. For each $v \in C_{n-1}$, the q points in C_n adjacent to v are generated by the $q - 1$ of these points lying in V_n, plus $T'v$ (which just sums up these q points). By induction hypothesis, v is generated by $X_{n-1,0}$, and thus (taking the union over all v), C_n is generated by $T'(X_{n-1,0}) \cup V_n = X_{n,0}$. Since the cardinality of $X_{n,0}$ equals the R-rank of $H_{n,0}/H_{n-1,0}$ (both are equal to $(q + 1)q^{n-1}$), $X_{n,0}$ is in fact an R-basis.

Analoguously, we see that $H_{n,j}/H_{n-1,j}$ has $R^j(X_{n,0}) = X_{n,j}$ as a basis, for each $j \in \mathbb{Z}$.

From the claim, it follows that $\bigcup_{j \in \mathbb{Z}} X_{n,j}$ is an R-basis of H_n/H_{n-1} for each n, and that $V := \bigcup_{n=0}^{\infty} V_n$ is an $R[T, R^{+1}]$-basis of $C_c(\hat{V}, R)$.

For $a \in R$ and $\nu \in R^\ast$, we let $\tilde{B}_{a,\nu}(F, R)$ be the "common cokernel" of $T - a$ and $R - \nu$ in $C_c(\hat{V}, R)$, namely $\tilde{B}_{a,\nu}(F, R) := C_c(\hat{V}, R)/(\text{Im}(T - a) + \text{Im}(R - \nu))$; dually, we define $\tilde{B}^{a,\nu}(F, M) := \ker(T - a) \cap \ker(R - \nu) \subseteq C(\hat{V}, M)$.

For a lattice $v \in \hat{V}$, we define a valuation ord_v on F as follows: For $w \in F^2$, the set $\{x \in F|xw \in v\}$ is some fractional ideal $\varpi^m\mathcal{O}_F \subseteq F$ ($m \in \mathbb{Z}$); we set $\text{ord}_v(w) := m$. This map can also be given explicitly as follows: Let λ_1, λ_2 be a basis of v. We can write any $w \in F^2$ as $w = x_1\lambda_1 + x_2\lambda_2$; then we have $\text{ord}_v(w) = \min\{\text{ord}_w(x_1), \text{ord}_w(x_2)\}$. This gives a "valuation" map on F^2, as one easily checks. We restrict it to $F \cong F \times \{0\} \hookrightarrow F^2$ to get a valuation ord_v on F, and consider especially the value at $e_1 := (1, 0)$.

Lemma 2.7. Let $\alpha, \nu \in R^\ast$, and put $a := \alpha + q\nu/\alpha$. Define a map $\varrho := \varrho_{a,\nu} : \hat{V} \to R$ by $\varrho(v) := \alpha h(\pi(v))\nu^{-\text{ord}_v(e_1)}$. Then $\varrho \in \tilde{B}^{a,\nu}(F, R)$.

Proof. One easily sees that $(v \mapsto \nu^{-\text{ord}_v(e_1)}) \in \ker(R - \nu)$. It remains to show that $\varrho \in \ker(T - a)$.

We have the Iwasawa decomposition $G(F) = B(F)G(\mathcal{O}_F) = \{(0, 1)\} \mathbb{Z}(F)G(\mathcal{O}_F)$; thus every vertex in \hat{V} can be written as ϖ^iv with $v = (\nu_0 1) v_0$, with $i \in \mathbb{Z}$, $a \in F^\ast$, $b \in F$.

Now the lattice $v = (\frac{a}{b} 1)v_0$ is generated by the vectors $\lambda_1 = (\frac{a}{b} 1)$ and $\lambda_2 = (\frac{b}{a} 1) \in \mathcal{O}_F^2$, so $e_1 = a^{-1}\lambda_1$ and thus $\text{ord}_v(e_1) = \text{ord}_w(a^{-1}) = -\text{ord}_w(a)$. The $q + 1$ neighbouring vertices v' for which there exists an $e \in \hat{E}$ with $o(e) = v'$, $t(e) = v$ are given by $N_i v$, $i \in \{\infty\} \cup \mathcal{O}_F/\mathfrak{p}$, with $N_{\infty} := (1 \ 0)$, and $N_i := (\frac{a}{b} \ 1)$ where $i \in \mathcal{O}_F$ runs through a complete set of representatives mod ϖ. By lemma 2.5, $h(\pi(N_{\infty}v)) = h(\pi(v)) + 1$ and $h(\pi(N_i v)) = h(\pi(v)) - 1$ for $i \neq \infty$. By considering the basis $\{N_i\lambda_1, N_i\lambda_2\}$ of $N_i v$ for each N_i, we see that $\text{ord}_{N_{\infty}v}(e_1) = \text{ord}_v(e_1)$ and $\text{ord}_{N_i v}(e_1) = \text{ord}_v(e_1) - 1$ for $i \neq \infty$. Thus we have
(Tg)(v) = \sum_{t(e)=v} \alpha^{h(\pi(\alpha(e)))} v^{-\text{ord}_e(e_1)} = \alpha^{h(\pi(v))+1} v^{-\text{ord}_v e_1} + q \cdot \alpha^{h(\pi(v))-1} v^{1-\text{ord}_v(e_1)}
= (\alpha + q\alpha^{-1}v)\alpha^{h(\pi(v))} v^{-\text{ord}_v e_1} = ag(v),

and also (Tg)(\omega^iv) = (T\mathcal{R}^{-i}g)(v) = \mathcal{R}^{-i}(ag)(v) = ag(\omega^iv) for a general \omega^iv \in \hat{\mathcal{V}}, which shows that \varrho \in \ker(T-a).

If \alpha^2 \neq \nu(q+1)^2 (we will call this the “spherical case”), we put \mathcal{B}_{a,\nu}(F, R) := \hat{\mathcal{B}}_{a,\nu}(F, R) and \mathcal{B}^{a,\nu}(F, M) := \hat{\mathcal{B}}^{a,\nu}(F, M).

In the “special case” \alpha^2 = \nu(q+1)^2, we need to assume that the polynomial \begin{align*}
X^2 - \nu qX + q \nu^{-1} & \in \mathbb{R}[X]
\end{align*}
has a zero \alpha' \in \mathbb{R}. Then the map \varrho := g_{\alpha',\nu} \in C(\hat{\mathcal{V}}, R) defined as above lies in \mathcal{B}^{a,\nu^{-1}}(F, R) \cap \ker(\mathcal{R}^{-1} - \nu) by Lemma 2.7, since \nu q = \alpha' + q \nu^{-1}/\alpha'. In other words, the kernel of the map \begin{align*}
\langle \cdot, \varrho \rangle : C_{\text{c}}(\hat{\mathcal{V}}, R) & \to R
\end{align*}
contains \begin{align*}
(\text{Im}(T-a) + \text{Im}(\mathcal{R} - \nu))
\end{align*}
to be the quotient; evidently, it is an \begin{align*}
R\text{-submodule of codimension 1 of } \hat{\mathcal{B}}_{a,\nu}(F, R).
\end{align*}
Dually, \begin{align*}
T-a \text{ and } \mathcal{R} - \nu \text{ both map the submodule } \varrho M = \{ \varrho \cdot M, m \in M \} \text{ of } C(\hat{\mathcal{V}}, M) \text{ to zero and thus induce endomorphisms on } C(\hat{\mathcal{V}}, M)/\varrho M; \text{ we define } \begin{align*}
\mathcal{B}^{a,\nu}(F, M)
\end{align*}
to be the intersection of their kernels.

In the special case, since \nu = \alpha^2, Lemma 2.7 states that \begin{align*}
\varrho(gv_0) = \chi_{\alpha}(ad) \varrho(v_0) = \chi_{\alpha}(\text{det} g) \varrho(v_0) \text{ for all } g = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in \mathcal{B}(\mathcal{F}), \text{ and thus for all } g \in G(\mathcal{F}) \text{ by the Iwasawa decomposition, since } G(O_F) \text{ fixes } v_0 \text{ and lies in the kernel of } \chi_{\alpha} \circ \text{det}. \text{ By the multiplicity of det, we have } (g^{-1}g)(v) = \varrho(gv) = \chi_{\alpha}(\text{det} g) \varrho(v) \text{ for all } g \in G(\mathcal{F}), v \in \hat{\mathcal{V}}. \text{ So } \varrho \in \ker(\langle \cdot, \varrho \rangle) \implies \langle \varrho, g^{-1}g \rangle = \langle \varrho, g^{-1} \rangle = \chi_{\alpha}(\text{det} g) \varrho(\varrho) = 0, \text{ i.e. } \ker(\langle \cdot, \varrho \rangle) \text{ and thus } \mathcal{B}_{a,\nu}(F, R) \text{ are } G(\mathcal{F})\text{-modules.}

By the adjointness properties of the Hecke operators \begin{align*}
T \text{ and } \mathcal{R}, \text{ we have pairings } \begin{pmatrix} T_{\text{c}} - a \end{pmatrix} \times \ker(\mathcal{R} - a) & \to M \text{ and } \ker(\mathcal{R} - \nu) \times \ker(\mathcal{R}^{-1} - \nu) \to M, \text{ which }
\end{align*}
"combine" to give a pairing

\begin{align*}
\langle \cdot, \cdot \rangle : \mathcal{B}_{a,\nu}(F, R) \times \mathcal{B}^{a,\nu^{-1}}(F, M) & \to M
\end{align*}

(since \begin{align*}
\ker(\mathcal{R} - a) \cap \ker(\mathcal{R}^{-1} - \nu) = \ker(T - \nu q) \cap \ker(\mathcal{R}^{-1} - \nu)), \text{ and a corresponding isomorphism } \mathcal{B}^{a,\nu^{-1}}(F, M) \xrightarrow{\cong} \text{Hom}(\mathcal{B}_{a,\nu}(F, R), M).
\end{align*}

\textbf{Definition 2.8.} Let \begin{align*}
G \text{ be a totally disconnected locally compact group, } H \subseteq G \text{ an open subgroup. For a smooth } R[H]\text{-module } M, \text{ we define the (compactly) induced}
\end{align*}
aWe use this term since these pairs of } a, \nu \text{ will later be seen to correspond to a spherical representation of GL}_2(\mathcal{F}). \text{ The case } \alpha^2 = \nu(q+1)^2 \text{ means that there exists an } \alpha \in \mathbb{R}^* \text{ with } a = \alpha(q+1), \nu = \alpha^2, \text{ which will correspond to a special representation.}
By Theorem 2.6, $T_e - a$ (as well as $R_c - \nu$) is injective, and the induced map

$$
R_c - \nu: \ker(T_e - a) = C_e(\hat{V}, R)/ \text{Im}(T_e - a) \to \ker(T_e - a)
$$

(of $R[T, R^\pm 1]/(T - a) = R[R^\pm 1]$-modules) is also injective. Now since $G(F)$ acts transitively on \hat{V}, with the stabilizer of $v_0 := O_F^2$ being $K := G(O_F)$, we have an isomorphism $C_e(\hat{V}, R) \cong \text{Ind}^{G(F)}_K R$. Thus we have exact sequences

$$
0 \to \text{Ind}^{G(F)}_K R \xrightarrow{T-a} \text{Ind}^{G(F)}_K R \to \ker(T_e - a) \to 0 \quad (2.3)
$$

and (for a, ν in the spherical case)

$$
0 \to \ker(T_e - a) \xrightarrow{R-\nu} \ker(T_e - a) \to \mathcal{B}_{a,\nu}(F, R) \to 0, \quad (2.4)
$$

with all entries being free R-modules. Applying $\text{Hom}_R(\cdot, M)$ to them, we get:

Lemma 2.9. We have exact sequences of R-modules

$$
0 \to \ker(TR - a) \to \text{Coind}^{G(F)}_K M \xrightarrow{T-a} \text{Coind}^{G(F)}_K M \to 0
$$

and, if $\mathcal{B}_{a,\nu}(F, M)$ is spherical (i.e. $a^2 \neq \nu(q + 1)^2$),

$$
0 \to \mathcal{B}_{a,\nu-1}(F, M) \to \ker(TR - a) \xrightarrow{R-\nu} \ker(TR - a) \to 0.
$$

For the special case, we have to work a bit more to get similar exact sequences:

By [Sp], eq. (22), for the representation $St^{-}(F, R) := \mathcal{B}_{-(q+1),1}(F, R)$ (i.e. $\nu = 1$, $\alpha = -1$) with trivial central character, we have an exact sequence of G-modules

$$
0 \to \text{Ind}^{G}_K Z R \to \text{Ind}^{G}_{K^{'}} Z R \to St^{-}(F, R) \to 0, \quad (2.5)
$$

where $K' = \langle W \rangle K_0(p)$ is the subgroup of KZ generated by $W := \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right)$ and the subgroup $K_0(p)Z$ is a subgroup of K' of order 2.) Now (π, V) can be written as $\pi = \chi \otimes St^{-}$ for some character $\chi = \chi_Z$ (cf. the proof of lemma 2.12 below), and we have an obvious G-isomorphism

$$(\pi, V) \cong (\pi \otimes (\chi \circ \text{det}), V \otimes_R R(\chi \circ \text{det})),
$$

where $R(\chi \circ \text{det})$ is the ring R with G-module structure given via $gr = \chi(\text{det}(g))r$ for $g \in G, r \in R$. Tensoring (2.5) with $R(\chi \circ \text{det})$ over R gives an exact sequence of G-modules

$$
0 \to \text{Ind}^{G}_{K^{'}} Z \chi \to \text{Ind}^{G}_{K^{'}} Z \chi \to V \to 0. \quad (2.6)
$$
It is easily seen that $R(\chi \circ \text{det})$ fits into another exact sequence of G-modules

$$0 \to \text{Ind}^G_H R \xrightarrow{(\begin{smallmatrix} \phi & 0 \\ 0 & 1 \end{smallmatrix}) - \chi(\psi) \text{id}} \text{Ind}^G_H R \xrightarrow{\psi} R(\chi \circ \text{det}) \to 0,$$

where $H := \{ g \in G \mid \det g \in \mathcal{O}_F^* \}$ is a normal subgroup containing K, $(\begin{smallmatrix} \phi & 0 \\ 0 & 1 \end{smallmatrix}) (f)(g) := f((\begin{smallmatrix} \phi & 0 \\ 0 & 1 \end{smallmatrix})^{-1} g)$ for $f \in \text{Ind}^G_H R = \{ f : G \to R | f(Hg) = f(g) \text{ for all } g \in G, \ g \in G \}$, is the natural operation of G, and where ψ is the G-equivariant map defined by $1_u \mapsto 1$.

Now since $H \subseteq G$ is a normal subgroup, we have $\text{Ind}^G_H R \cong R[G/H]$ as G-modules (in fact $G/H \cong \mathbb{Z}$ as an abstract group). Let $X \subseteq G$ be a subgroup such that the natural inclusion $X/(X \cap H) \hookrightarrow G/H$ has finite cokernel; let $g_i H, i = 1, \ldots, n$ be a set of representatives of that cokernel. Then we have a (non-canonical) X-isomorphism $\bigoplus_{i=0}^n \text{Ind}^X_{X \cap H} \to \text{Ind}^G_H R$ defined via $(1_{(X \cap H)x_i}) \mapsto 1_{Hxg_i}$, for each $i = 1, \ldots, n$ (cf. [Br], III (5.4)).

Using this isomorphism and the “tensor identity” $\text{Ind}^G_H M \otimes N \cong \text{Ind}^G_H (M \otimes \text{res}^G_H N)$ for any groups $H \subseteq G$, H-module M and G-module N ([Br] III.5, Ex. 2), we have

$$\text{Ind}^G_K R \otimes_R \text{Ind}^H_K R \cong \text{Ind}^G_K (\text{res}^G_K (\text{Ind}^G_H R)) \cong \text{Ind}^G_K ((\text{Ind}^G_K \cap H) R)^2 \cong (\text{Ind}^G_K (\text{Ind}^G_K R))^2$$

(since $KZ/KZ \cap H \hookrightarrow G/H$ has index 2), and similarly

$$\text{Ind}^G_{K'} R \otimes_R \text{Ind}^H_{K'} R \cong \text{Ind}^G_{K'} (\text{res}^G_{K'} (\text{Ind}^G_H R)) \cong \text{Ind}^G_{K'} ((\text{Ind}^G_{K'} \cap H) R)^2 \cong (\text{Ind}^G_{K'} R)^2$$

and thus, we can resolve the first and second term of (2.6) into exact sequences

$$0 \to (\text{Ind}^G_K R)^2 \to (\text{Ind}^G_K R)^2 \to \text{Ind}^G_{KZ} \chi \to 0,$$

$$0 \to (\text{Ind}^G_K R)^2 \to (\text{Ind}^G_K R)^2 \to \text{Ind}^G_{(w)K_0(p)Z} \chi \to 0.$$

Dualizing (2.3) and these by taking $\text{Hom}(\cdot, M)$ for an R-module M, we get a “resolution” of $\mathcal{B}^{a \nu, \nu - 1}(F, M)$ in terms of coinduced modules:

Lemma 2.10. We have exact sequences

$$0 \to \mathcal{B}^{a \nu, \nu - 1}(F, M) \to \text{Coind}^{G}_{K'Z} M(\chi) \to \text{Coind}^{G}_{KZ} M(\chi) \to 0,$$

$$0 \to \text{Coind}^{G}_{KZ} M(\chi) \to (\text{Coind}^{G}_{K} R)^2 \to (\text{Coind}^{G}_{K} R)^2 \to 0,$$

$$0 \to (\text{Coind}^{G}_{K} R)^2 \to (\text{Coind}^{G}_{K} R)^2 \to (\text{Coind}^{G}_{K} R)^2 \to 0$$

for all special $\mathcal{B}_{a, \nu}(F, R)$ (i.e. $a^2 = \nu(g+1)^2$), where $\chi = \chi_Z$ is the central character.

It is easily seen that the above arguments could be modified to get a similar set of exact sequences in the spherical case as well (replacing K' by K everywhere), in addition to that given in lemma 2.9 but we will not need this.

14
2.5 Distributions on \tilde{T}

For $\varrho \in C(\tilde{\mathcal{V}}, R)$ we define R-linear maps

$$\tilde{\delta}_\varrho : C(\tilde{\mathcal{E}}, M) \to C(\tilde{\mathcal{V}}, M), \quad \tilde{\delta}_\varrho(c)(v) := \sum_{v = t(e)} \varrho(o(e))c(e) - \sum_{v = o(e)} \varrho(t(e))c(e),$$

$$\tilde{\delta}^\varrho : C(\tilde{\mathcal{V}}, M) \to C(\tilde{\mathcal{E}}, M), \quad \tilde{\delta}^\varrho(\phi)(e) := \varrho(o(e))\phi(t(e)) - \varrho(t(e))\phi(o(e)).$$

One easily checks that these are adjoint with respect to the pairings (2.1) and (2.2), i.e. we have $\langle \tilde{\delta}_\varrho(c), \phi \rangle = \langle c, \tilde{\delta}^\varrho(\phi) \rangle$ for all $c \in C_c(\tilde{\mathcal{E}}, R)$, $\phi \in C(\tilde{\mathcal{V}}, M)$. We denote the maps corresponding to $\varrho \equiv 1$ by $\delta := \delta_1$, $\delta^* := \delta^1$.

For each ϱ, the map $\tilde{\delta}_\varrho$ fits into an exact sequence

$$C_c(\tilde{\mathcal{E}}, R) \xrightarrow{\delta} C_c(\tilde{\mathcal{V}}, R) \xrightarrow{\langle \cdot, \phi \rangle} R \to 0$$

but it is not injective in general: e.g. for $\varrho \equiv 1$, the map $\tilde{\mathcal{E}} \to R$ symbolized by

$$
\begin{bmatrix}
1 & -1 \\
1 & -1
\end{bmatrix}
$$

(and zero outside the square) lies in ker δ.

The restriction $\delta^*|_{C_c(\tilde{\mathcal{V}}, R)}$ to compactly supported maps is injective since \tilde{T} has no directed circles, and we have a surjective map

$$\text{coker} \left(\delta^* : C_c(\tilde{\mathcal{V}}, R) \to C_c(\tilde{\mathcal{E}}, R) \right) \to C^0(\mathbb{P}^1(F), R)/R, \quad c \mapsto \sum_{e \in \tilde{\mathcal{E}}} c(e)1_{U(\pi(e))}$$

(which corresponds to an isomorphism of the similar map on the Bruhat-Tits tree \mathcal{T}). Its kernel is generated by the functions $1_{\{e\}} - 1_{\{e'\}}$ for $e, e' \in \tilde{\mathcal{E}}$ with $\pi(e) = \pi(e')$.

For $\varrho_1, \varrho_2 \in C(\tilde{\mathcal{V}}, R)$ and $\phi \in C(\tilde{\mathcal{V}}, M)$ it is easily checked that

$$\left(\delta^1_\varrho \circ \delta^2_\varphi \right)(\phi) = (T + TR)(\varrho_1 \cdot \varrho_2) \cdot \phi - \varrho_2 \cdot (T + TR)(\varrho_1 \cdot \phi).$$

For $a' \in R$ and $\varrho \in \ker(T + TR - a')$, applying this equality for $\varrho_1 = \varrho$ and $\varrho_2 = 1$ shows that $\tilde{\delta}_\varrho$ maps $\text{Im} \delta^*$ into $\text{Im}(T + TR - a')$, so we get an R-linear map

$$\tilde{\delta}_\varrho : \text{coker} \left(\delta^* : C_c(\tilde{\mathcal{V}}, R) \to C_c(\tilde{\mathcal{E}}, R) \right) \to \text{coker}(T_e + T_eR_e - a').$$

Let now again $\alpha, \nu \in R^*$, and $a := \alpha + q\nu/\alpha$. We let $\varrho := \varrho_{\alpha, \nu} \in \tilde{B}^{a, \nu}(F, R)$ as defined in lemma 2.7 and write $\delta_{\alpha, \nu} := \tilde{\delta}_{\varrho}$. Since $\delta_{\alpha, \nu}$ maps $1_{\{e\}} - 1_{\{e\nu\varepsilon\}}$ into $\text{Im}(R - \nu)$, it induces a map

$$\delta_{\alpha, \nu} : C^0(\mathbb{P}^1(F), R)/R \to B_{a, \nu}(F, R)$$
(same name by abuse of notation) via the commutative diagram

\[
\begin{array}{ccc}
\text{coker } \delta^* & \xrightarrow{\tilde{\delta}_{\alpha,\nu}} & \text{coker}(T_c + T_cR_c - a') \\
\downarrow & & \downarrow \text{mod } (R - \nu) \\
C^0(\mathbb{P}^1(F), R)/R & \xrightarrow{\tilde{\delta}_{\alpha,\nu}} & B_{a,\nu}(F, R)
\end{array}
\]

with \(a' := a(1 + \nu)\), since \(g \in B_{a,\nu}(F, R) \subset \ker(T + T'R - a')\).

Lemma 2.11. We have \(g(\nu) = \chi_{\alpha}(d/a')\chi_{\nu}(a')g(\nu)\), and thus

\[
\tilde{\delta}_{\alpha,\nu}(gf) = \chi_{\alpha}(d/a')\chi_{\nu}(a')g\tilde{\delta}_{\alpha,\nu}(f),
\]

for all \(v \in \tilde{\mathcal{V}}\), \(f \in C^0(\mathbb{P}^1(F), R)/R\) and \(g = \begin{pmatrix} a' & b \\ 0 & d \end{pmatrix} \in B(F)\).

Proof. (a) Using lemma 2.5(b) and the fact that \(\text{ord}_{\nu}(e_1) = -\text{ord}_{\nu}(a') + \text{ord}_{\nu}(e_1)\), we have

\[
g\begin{pmatrix} a' & b \\ 0 & d \end{pmatrix}v = \alpha^{h(\nu) - \text{ord}_{\nu}(a'/d)}f^{\text{ord}_{\nu}(a') - \text{ord}_{\nu}(e_1)} = \chi_{\alpha}(d/a')\chi_{\nu}(a')g(\nu)
\]

for all \(v \in \tilde{\mathcal{V}}\). For \(f\) and \(g\) as in the assertion, we thus have

\[
\tilde{\delta}_{\alpha,\nu}(gf)(v) = \sum_{v=t(e)} g(o(e))f(g^{-1}e) - \sum_{v=o(e)} g(t(e))f(g^{-1}e)
\]

\[
= \sum_{g^{-1}v=t(e)} g(o(ge))f(e) - \sum_{g^{-1}v=o(e)} g(t(ge))f(e)
\]

\[
= \chi_{\alpha}(d/a')\chi_{\nu}(a')g(\nu)\left(\sum_{g^{-1}v=t(e)} g(o(e))f(e) - \sum_{g^{-1}v=o(e)} g(t(e))f(e)\right)
\]

\[
= \chi_{\alpha}(d/a')\chi_{\nu}(a')\tilde{\delta}_{\alpha,\nu}(f)(v).
\]

\[
\square
\]

We define a function \(\delta_{\alpha,\nu} : C_c(F^*, R) \to B_{a,\nu}(F, R)\) as follows: For \(f \in C_c(F^*, R)\), we let \(\psi_0(f) \in C_c(\mathbb{P}^1(F), R)\) be the extension of \(x \mapsto \chi_{\alpha}(x)\chi_{\nu}(x)^{-1}f(x)\) by zero to \(\mathbb{P}^1(F)\). We set \(\delta_{\alpha,\nu} := \tilde{\delta}_{\alpha,\nu} \circ \psi_0\). If \(\alpha = \nu\), we can define \(\delta_{\alpha,\nu}\) on all functions in \(C_c(F, R)\).

We let \(F^*\) operate on \(C_c(F, R)\) by \((tf)(x) := f(t^{-1}x)\); this induces an action of the group \(T^1(F) := \{(0 1) | t \in F^*\}\), which we identify with \(F^*\) in the obvious way. With respect to it, we have

\[
\psi_0(tf)(x) = \chi_{\alpha}(t)\chi_{\nu}(t)^{-1}t\psi_0(f)(x)
\]

and

\[
\tilde{\delta}_{\alpha,\nu}(tf) = \chi_{\alpha}^{-1}(t)\chi_{\nu}(t)\tilde{\delta}_{\alpha,\nu}(f),
\]

16
so \(\delta_{\alpha,\nu} \) is \(T^1(F) \)-equivariant.

For an \(R \)-module \(M \), we define an \(F^* \)-action on \(\text{Dist}(F^*, M) \) by \(\int f d(t \mu) := t \int (t^{-1} f) d\mu \). Let \(H \subseteq G(F) \) be a subgroup, and \(M \) an \(R[H] \)-module. We define an \(H \)-action on \(\mathcal{B}^{\alpha,\nu^{-1}}(F, M) \) by requiring \(\langle \phi, h \lambda \rangle = h \cdot \langle h_i^{-1} \phi, \lambda \rangle \) for all \(\phi \in \mathcal{B}_{a,\nu}(F, M), \lambda \in \mathcal{B}^{\alpha,\nu^{-1}}(F, M), h \in H \). With respect to these two actions, we get a \(T^1(F) \cap H \)-equivariant mapping

\[
\delta^{\alpha,\nu} : \mathcal{B}^{\alpha,\nu^{-1}}(F, M) \to \text{Dist}(F^*, M), \quad \delta^{\alpha,\nu}(\lambda) := \langle \delta_{\alpha,\nu}(\cdot), \lambda \rangle
\]
dual to \(\delta_{\alpha,\nu} \).

2.6 Local distributions

Now consider the case \(R = \mathbb{C} \). Let \(\chi_1, \chi_2 : F^* \to \mathbb{C}^* \) be two unramified characters. We consider \((\chi_1, \chi_2) \) as a character on the torus \(T(F) \) of \(\text{GL}_2(F) \), which induces a character \(\chi \) on \(B(F) \) by

\[
\chi \begin{pmatrix} t_1 & u \\ 0 & t_2 \end{pmatrix} := \chi_1(t_1) \chi_2(t_2).
\]

Put \(\alpha_i := \chi_i(\varpi) \sqrt{q} \in \mathbb{C}^* \) for \(i = 1, 2 \). Set \(\nu := \chi_1(\varpi) \chi_2(\varpi) = \alpha_1 \alpha_2 q^{-1} \in \mathbb{C}^* \), and \(a := \alpha_1 + \alpha_2 = \alpha_1 + q \nu / \alpha_1 \) for each \(i \). When \(a \) and \(\nu \) are given by the \(\alpha_i \) like this, we will often write \(\mathcal{B}_{a,\nu}(F, R) := \mathcal{B}_{a,\nu}(F, R) \) and \(\mathcal{B}^{\alpha_1,\alpha_2}(F, M) := \mathcal{B}^{\alpha_1,\alpha_2}(F, M) \) (!) for its dual.

In the special case \(a^2 = \nu(q+1)^2 \), we assume the \(\chi_i \) to be sorted such that \(\chi_1 = | \cdot | \chi_2 \) (not vice versa).

Let \(\mathcal{B}(\chi_1, \chi_2) \) denote the space of continuous maps \(\phi : G(F) \to \mathbb{C} \) such that

\[
\phi \left(\begin{pmatrix} t_1 & u \\ 0 & t_2 \end{pmatrix} g \right) = \chi_1(t_1) \chi_2(t_2) |t_1| \phi(g) \tag{2.7}
\]

for all \(t_1, t_2 \in F^*, u \in F, g \in G(F) \). \(G(F) \) operates canonically on \(\mathcal{B}(\chi_1, \chi_2) \) by right translation (cf. [Bu], Ch. 4.5). If \(\chi_1 \chi_2^{-1} \neq | \cdot |^{\pm 1} \), \(\mathcal{B}(\chi_1, \chi_2) \) is a model of the spherical representation \(\pi(\chi_1, \chi_2) \); if \(\chi_1 \chi_2^{-1} = | \cdot |^{\pm 1} \), the special representation \(\pi(\chi_1, \chi_2) \) can be given as an irreducible subquotient of codimension 1 of \(\mathcal{B}(\chi_1, \chi_2) \).\[iii\]

Lemma 2.12. We have a \(G \)-equivariant isomorphism \(\mathcal{B}_{a,\nu}(F, \mathbb{C}) \cong \mathcal{B}(\chi_1, \chi_2) \). It induces an isomorphism \(\mathcal{B}_{a,\nu}(F, \mathbb{C}) \cong \pi(\chi_1, \chi_2) \) both for spherical and special representations.

Proof. We choose a “central” unramified character \(\chi_Z : F^* \to \mathbb{C} \) satisfying \(\chi_Z^2(\varpi) = \nu \); then we have \(\chi_1 = \chi_Z \chi_0^{-1}, \chi_2 = \chi_Z \chi_0 \) for some unramified character \(\chi_0 \). We set \(a' := \sqrt{q} (\chi_0(\varpi)^{-1} + \chi_0(\varpi)) \), which satisfies \(a = \sqrt{a'} \).

For a representation \((\pi, V) \) of \(G(F) \), by [Bu], Ex. 4.5.9, we can define another representation \(\chi_Z \otimes \pi \) on \(V \) via

\[
(g, v) \mapsto \chi_Z(\det(g)) \pi(g) v \quad \text{for all } g \in G(F), v \in V,
\]

\[iii\]Note that [Bu] denotes this special representation by \(\sigma(\chi_1, \chi_2) \), not by \(\pi(\chi_1, \chi_2) \).
and with this definition we have $\mathcal{B}(\chi_1, \chi_2) \cong \chi_Z \otimes \mathcal{B}(\chi_0^{-1}, \chi_0)$. Since $\mathcal{B}(\chi_0^{-1}, \chi_0)$ has trivial central character, [BL], Thm. 20 (as quoted in [Sp]) states that $\mathcal{B}(\chi_0^{-1}, \chi_0) \cong \mathcal{B}_a(a, F, C) \cong \text{Ind}_{KZ}^{G(F)} R/\text{Im}(T - a')$.

Define a G-linear map $\phi : \text{Ind}_K^G R \to \chi_Z \otimes \text{Ind}_{KZ}^G R$ by $1_K \mapsto (\chi_Z \circ \det) \cdot 1_{KZ}$. Since 1_K (resp. $(\chi_Z \circ \det) \cdot 1_{KZ}$) generates $\text{Ind}_K^G R$ (resp. $\chi_Z \otimes \text{Ind}_{KZ}^G R$) as a $\mathbb{C}[G]$-module, ϕ is well-defined and surjective.

ϕ maps $R1_K = (\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}) 1_K$ to

$$(\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}) ((\chi_Z \circ \det) \cdot 1_{KZ}) = \chi_Z(\varpi)^2 \cdot ((\chi_Z \circ \det) \cdot 1_{KZ}) = \nu \cdot \phi(1_K).$$

Thus $\text{Im}(R - \nu) \subseteq \ker \phi$, and in fact the two are equal, since the preimage of the space of functions of support in a coset KZg ($g \in G(F)$) under ϕ is exactly the space generated by the $1_{KZ} z \in Z(F) = Z(\mathfrak{o}_F) \{(\begin{smallmatrix} a & 0 \\ 0 & a \end{smallmatrix}) \}$.

Furthermore, ϕ maps $T1_K = \sum_{i \in \mathcal{O}_{\mathfrak{r}}/(\varpi) \cup \{\infty\}} N_i 1_K$ (with the N_i as in Lemma 2.7) to

$$\sum_i \chi_Z(\det(N_i)) \cdot ((\chi_Z \circ \det) \cdot N_i 1_{KZ}) = \chi_Z(\varpi) \cdot (\chi_Z \circ \det)T1_{KZ}$$

(since $\det(N_i) = \bar{\varpi}$ for all i), and thus $\text{Im}(T - a)$ is mapped to $\text{Im}\left((\chi_Z(\varpi)T - a) = \text{Im}\left((\chi_Z(\varpi)(T - a')) = \text{Im}(T - a').$$

Putting everything together, we thus have G-isomorphisms

$$C_{\chi}(V, C)/\left(\text{Im}(T - a) + \text{Im}(R - \nu)\right) \cong \text{Ind}_K^G R/\left(\text{Im}(T - a) + \text{Im}(R - \nu)\right) \cong \chi_Z \otimes \left(\text{Ind}_{KZ}^G R/\text{Im}(T - a')\right) \quad \text{(via } \phi)$$

$$\cong \chi_Z \otimes \mathcal{B}(\chi_0^{-1}, \chi_0) \cong \mathcal{B}(\chi_1, \chi_2).$$

Thus, $\mathcal{B}_{a, \nu}(F, C)$ is isomorphic to the spherical principal series representation $\pi(\chi_1, \chi_2)$ for $a^2 \neq \nu(q + 1)^2$.

In the special case, $\mathcal{B}_{a, \nu}(F, C)$ is a G-invariant subspace of $\tilde{\mathcal{B}}_{a, \nu}(F, C)$ of codimension 1, so it must be mapped under the isomorphism to the unique G-invariant subspace of $\mathcal{B}(\chi_1, \chi_2)$ of codimension 1 (in fact, the unique infinite-dimensional irreducible G-invariant subspace, by [Hu], Thm. 4.5.1), which is the special representation $\pi(\chi_1, \chi_2)$.

By [Hu], section 4.4, there exists thus for all pairs a, ν a Whittaker functional λ on $\mathcal{B}_{a, \nu}(F, C)$, i.e. a nontrivial linear map $\lambda : \mathcal{B}_{a, \nu}(F, C) \to \mathbb{C}$ such that $\lambda \left((\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}) \right) = \psi(x)\lambda(\phi)$. It is unique up to scalar multiples.

From it, we furthermore get a Whittaker model $\mathcal{W}_{a, \nu}$ of $\mathcal{B}_{a, \nu}(F, C)$:

$$\mathcal{W}_{a, \nu} := \{W_\xi : GL_2(F) \to \mathbb{C} | \xi \in \mathcal{B}_{a, \nu}(F, C)\},$$

where $W_\xi(g) := \lambda(g \cdot \xi)$ for all $g \in GL_2(F)$. (see e.g. [Hu], Ch. 3, eq. (5.6).)

Now write $\alpha := \alpha_1$ for short. Recall the distribution $\mu_{a, \nu} = \psi(x)\chi_{a, \nu}(x)dx \in \text{Dist}(F^*, \mathbb{C})$. For $\alpha = \nu$, it extends to a distribution on F.

Proposition 2.13. (a) There exists a unique Whittaker functional $\lambda = \lambda_{a, \nu}$ on $\mathcal{B}_{a, \nu}(F, C)$ such that $\delta^{a, \nu}(\lambda) = \mu_{a, \nu}$.

18
(b) For every \(f \in C_c(F^*, \mathbb{C}) \), there exists \(W = W_f \in W_{a,\nu} \) such that

\[
\int_{F^*} (af)(x) \mu_{a,\nu}(dx) = W_f \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}.
\]

If \(\alpha = \nu \), then for every \(f \in C_c(F, \mathbb{C}) \), there exists \(W_f \in W_{a,\nu} \) such that

\[
\int_F (af)(x) \mu_{a,\nu}(dx) = W_f \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}.
\]

(c) Let \(H \subseteq U = O_F^\circ \) be an open subgroup, and write \(W_H := W_{1^H} \). For every \(f \in C_0^0(F^*, \mathbb{C})_H \) we have

\[
\int_{F^*} f(x) \mu_{a,\nu}(dx) = [U : H] \int_F f(x) W_H \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} dx.
\]

Proof. (a) By [Sp], proof of prop. 3.10, we have a Whittaker functional of the Steinberg representation given by the composite

\[
St(F, \mathbb{C}) := C^0(\mathbb{P}^1(F), \mathbb{C})/\mathbb{C} \xrightarrow{\delta} C_c(F, \mathbb{C}) \xrightarrow{\Lambda} \mathbb{C},
\]

where the first map is the \(F \)-equivariant isomorphism

\[
C^0(\mathbb{P}^1(F), \mathbb{C})/\mathbb{C} \to C_c(F, \mathbb{C}), \quad \phi \mapsto f(x) := \phi(x) - \phi(\infty),
\]

(with \(F \) acting on \(C_c(F, \mathbb{C}) \) by \((x \cdot f)(y) := f(y - x) \), and on \(C^0(\mathbb{P}^1(F), \mathbb{C})/\mathbb{C} \) by \(x\phi := (\frac{\delta}{1}) \phi \), and the second is

\[
\Lambda : C_c(F, \mathbb{C}) \to \mathbb{C}, \quad f \mapsto \int_F f(x) \psi(x) dx.
\]

Let now \(\lambda : B_{a,\nu}(F, \mathbb{C}) \to \mathbb{C} \) be a Whittaker functional of \(B_{a,\nu}(F, \mathbb{C}) \). By lemma 2.11 for \(u = (\frac{\delta}{1}) \in B(F) \),

\[
(\lambda \circ \tilde{\delta}_{a,\nu})(u\phi) = \lambda(u\tilde{\delta}_{a,\nu}(\phi)) = \psi(x)\lambda(\tilde{\delta}_{a,\nu}(\phi)),
\]

so \(\lambda \circ \tilde{\delta}_{a,\nu} \) is a Whittaker functional if it is not zero.

To describe the image of \(\tilde{\delta}_{a,\nu} \), consider the commutative diagram

\[
\begin{array}{ccc}
C_c(\mathbb{E}, R) & \xrightarrow{\delta_{a,\nu}} & C_c(\hat{V}, R) \\
\downarrow^{\tilde{\delta}_{a,\nu}} & & \downarrow^{\phi \mapsto \phi \circ \rho} \\
C_c(\mathbb{E}, R) & \xrightarrow{\phi} & C_c(\hat{V}, R) \xrightarrow{\cdot 1} R \to 0
\end{array}
\]

where the vertical maps are defined by

\[
C_c(\mathbb{E}, R) \to C_c(\hat{E}, R), \quad c \mapsto (e \mapsto c(e) \rho(o(e)) \rho(t(e)))
\]

resp. by mapping \(\phi \) to \(v \mapsto \phi(v) \rho(v) \); both are obviously isomorphisms.
Since the lower row is exact, we have \(\text{Im} \delta = \ker (\cdot, 1) =: C^0_c(\mathcal{V}, R) \) and thus \(\text{Im} \tilde{\delta}_{\alpha, \nu} = \varrho^{-1} \cdot C^0_c(\mathcal{V}, R) \).

Since \(\lambda \neq 0 \) and \(\mathcal{B}_{a, \nu}(F, \mathbb{C}) \) is generated by (the equivalence classes of) the \(1_{\{v\}} \), \(v \in \mathcal{V} \), there exists a \(v \in \mathcal{V} \) such that \(\lambda(1_{\{v\}}) \neq 0 \). Let \(\phi \) be this \(1_{\{v\}} \), and let \(u = \left(\begin{array}{cc} 1 & 0 \\ \frac{1}{T} & 1 \end{array} \right) \in B(F) \) such that \(x \notin \ker \psi \). Then

\[
\varrho \cdot (\varrho \phi - \phi) = \varrho \cdot (1_{\{u^{-1}v\}} - 1_{\{v\}}) = \varrho(v)(1_{\{u^{-1}v\}} - 1_{\{v\}}) \in C^0_c(\mathcal{V}, R)
\]

by lemma 2.11 so \(0 \neq u\phi - \phi \in \text{Im} \tilde{\delta}_{\alpha, \nu} \), but \(\lambda(u\phi - \phi) = \psi(x)\lambda(\phi) - \lambda(\phi) \neq 0 \).

So \(\lambda \circ \tilde{\delta}_{\alpha, \nu} \neq 0 \) is indeed a Whittaker functional. By replacing \(\lambda \) by a scalar multiple, we can assume \(\lambda \circ \tilde{\delta}_{\alpha, \nu} = (2.8) \).

Considering \(\lambda \) as an element of \(\mathcal{B}^{\alpha, \nu}_{a, \nu} (F, \mathbb{C}) \cong \text{Hom}(\mathcal{B}_{a, \nu}(F, \mathbb{C}), \mathbb{C}) \), we have

\[
\delta^{\alpha, \nu}(\lambda)(f) = \langle \delta_{\alpha, \nu}(f), \lambda \rangle = \Lambda(\chi_{\alpha}\chi_{\nu}^{-1}f) = \int_{F^*} \chi_{\alpha}(x)\chi_{\nu}^{-1}(x)f(x)\psi(x)dx = \mu_{\alpha, \nu}(f).
\]

(b) For given \(f \), set \(W_f(g) := \lambda(g \cdot \delta_{\alpha, \nu}(f)) \). Then \(W_f \in \mathcal{W}_{a, \nu} \), and for all \(a \in F^* \) we have:

\[
W_f \begin{pmatrix} a \\ 0 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} a \\ 0 \\ 1 \end{pmatrix} \delta_{\alpha, \nu}(f) = \lambda(\delta_{\alpha, \nu}(af)) \quad \text{(by the \(T^1(F) \)-invariance of \(\delta_{\alpha, \nu} \))}
\]

\[
= \int_{F^*} (af)(x)\mu_{\alpha, \nu}(dx).
\]

(c) Without loss of generality we can assume \(f = 1_{aH} \) for some \(a \in F^* \). We have

\[
\int_{F^*} 1_{aH}(x)\mu_{\alpha, \nu}(dx) = \int_{F^*} 1_{H}(a^{-1}x)\mu_{\alpha, \nu}(dx) = \int_{F^*} (a \cdot 1_H)(x)\mu_{\alpha, \nu}(dx) = W_H \begin{pmatrix} a \\ 0 \\ 1 \end{pmatrix} \quad \text{by (b)},
\]

and since the left-hand side is invariant under replacing \(a \) by \(ah \) (for \(h \in H \)), the
right-hand side also is, so we can integrate this constant function over H:

$$
\begin{align*}
\ &= [U : H] \int_H W_H \begin{pmatrix} ax & 0 \\ 0 & 1 \end{pmatrix} d^\times x \\
\ &= [U : H] \int_{F^*} 1_H(x) W_H \begin{pmatrix} ax & 0 \\ 0 & 1 \end{pmatrix} d^\times x \\
\ &= [U : H] \int_{F^*} 1_H(a^{-1} x) W_H \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} d^\times x \\
\ &= [U : H] \int_{F^*} 1_{aH}(x) W_H \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} d^\times x.
\end{align*}
$$

\[\square\]

2.7 Semi-local theory

We can generalize many of the previous constructions to the semi-local case, considering all primes $p | p$ at once.

So let F_1, \ldots, F_m be finite extensions of \mathbb{Q}_p, and for each i, let q_i be the number of elements of the residue field of F_i. We put $F := F_1 \times \cdots \times F_m$.

Let R again be a ring, and $a_i \in R$, $\nu_i \in R^*$ for each $i \in \{1, \ldots, m\}$. Put $a := (a_1, \ldots, a_m)$, $\nu := (\nu_1, \ldots, \nu_m)$. We define $B_{\mathbb{A}, \nu}(F, R)$ as the tensor product

$$
B_{\mathbb{A}, \nu}(F, R) := \bigotimes_{i=1}^m B_{a_i, \nu_i}(F_i, R).
$$

For an R-module M, we define $\mathcal{B}_{\mathbb{A}, \nu}^{-1}(F, M) := \text{Hom}_R(B_{\mathbb{A}, \nu}(F, R), M)$; let

$$
\langle \cdot, \cdot \rangle : B_{\mathbb{A}, \nu}(F, R) \times \mathcal{B}_{\mathbb{A}, \nu}^{-1}(F, M) \to M \quad (2.10)
$$
denote the evaluation pairing.

We have an obvious isomorphism

$$
\bigotimes_{i=1}^m C^0_{\nu_i}(F_i^*, R) \to C^0(F^*, R), \quad \bigotimes_{i=1}^m f_i \mapsto \left((x_i)_{i=1, \ldots, m} \mapsto \prod_{i=1}^m f_i(x_i) \right). \quad (2.11)
$$

Now when we have $\alpha_{i,1}, \alpha_{i,2} \in R^*$ such that $a_i = \alpha_{i,1} + \alpha_{i,2}$ and $\nu_i = \alpha_{i,1} \alpha_{i,2} q_i^{-1}$, we can define the $T^1(F)$-equivariant map

$$
\delta_{\alpha_{i,1}, \alpha_{i,2}} := \delta_{\alpha_{i,1}, \alpha_{i,2}} : C^0_{\nu_i}(F, R) \to B_{\mathbb{A}, \nu}(F, R)
$$
as the inverse of (2.11) composed with $\bigotimes_{i=1}^m \delta_{\alpha_{i,1}, \nu_i}$.

Again, we will often write $B_{\alpha_{i,1}, \alpha_{i,2}}(F, R) := \mathcal{B}_{\mathbb{A}, \nu}^{-1}(F, R)$ and $B_{\alpha_{i,1}, \alpha_{i,2}}(F, M) := \mathcal{B}_{\mathbb{A}, \nu}^{-1}(F, M)$.

If $H \subseteq G(F)$ is a subgroup, and M an $R[H]$-module, we define an H-action on $\mathcal{B}_{\mathbb{A}, \nu}^{-1}(F, M)$ by requiring $\langle \phi, h \lambda \rangle = h \cdot \langle h^{-1} \phi, \lambda \rangle$ for all $\phi \in B_{\mathbb{A}, \nu}(F, M)$, $\lambda \in \mathcal{B}_{\mathbb{A}, \nu}^{-1}(F, M)$, $h \in H$, and get a $T^1(F) \cap H$-equivariant mapping

$$
\delta_{\alpha_{i,1}, \alpha_{i,2}} : \mathcal{B}_{\mathbb{A}, \nu}^{-1}(F, M) \to \text{Dist}(F^*, M), \quad \delta_{\alpha_{i,1}, \alpha_{i,2}}(\lambda) := \langle \delta_{\alpha_{i,1}, \alpha_{i,2}}(\cdot), \lambda \rangle.
$$

21
Finally, we have a homomorphism

\[
\bigotimes_{i=1}^{m} B^{\alpha_{i},\nu_{i},\nu_{i}^{-1}}_{i}(F_{i}, R) \xrightarrow{\cong} \bigotimes_{i=1}^{m} \text{Hom}_{R}(B^{\alpha_{i},\nu_{i},\nu_{i}^{-1}}_{i}(F_{i}, R), R)
\]

\[
\xrightarrow{\cong} \text{Hom}(B^{\alpha_{1},\nu_{1}}_{1}(F_{1}, R), \text{Hom}(B^{\alpha_{2},\nu_{2}}_{2}(F_{2}, R), \text{Hom}(\ldots, R))\ldots)
\]

\[
\xrightarrow{\cong} B^{\alpha_{\nu},\nu^{-1}}_{\nu}(F_{\nu}, R).
\]

(2.12)

where the second map is given by \(\otimes_{i} f_{i} \mapsto (x_{1} \mapsto (x_{2} \mapsto (\ldots \mapsto \prod_{i} f_{i}(x_{i}))\ldots) \), and the last map by iterating the adjunction formula of the tensor product.
3 Cohomology classes and global measures

3.1 Definitions

From now on, let F denote a number field, with ring of integers \mathcal{O}_F. For each finite prime v, let $U_v := \mathcal{O}_v^*$. Let $\mathbb{A} = \mathbb{A}_F$ denote the ring of adeles of F, and $\mathbb{I} = \mathbb{I}_F$ the group of ideles of F. For a finite subset S of the set of places of F, we denote by $\mathbb{A}^S := \{x \in \mathbb{A}_F \mid x_v = 0 \text{ for } v \notin S\}$ the S-adeles and by \mathbb{I}^S the S-ideles, and put $F_S := \prod_{v \in S} F_v$, $U_S := \prod_{v \in S} U_v$, $U^S := \prod_{v \in \mathbb{I}_F} U_v$ (if S contains all infinite places of F), and similarly for other global groups.

For ℓ a prime number or ∞, we write S_ℓ for the set of places of F above ℓ, and abbreviate the above notations to $\mathbb{A}^\ell := \mathbb{A}^{S_\ell}$, $\mathbb{A}^{p,\infty} := \mathbb{A}^{S_{\infty}}$, and similarly write \mathbb{I}^ℓ, F_p, F_{∞}, U_{∞}, U_p, $U^{p,\infty}$, \mathbb{I}_{∞} etc.

Let F have r real embeddings and s pairs of complex embeddings. Set $d := r + s - 1$. Let $\{\sigma_0, \ldots, \sigma_{r-1}, \sigma_r, \ldots, \sigma_d\}$ be a set of representatives of these embeddings (i.e. for $i \geq r$, choose one from each pair of complex embeddings), and denote by $\infty_0, \ldots, \infty_d$ the corresponding archimedian primes of F. We let $S^0_\infty := \{\infty_1, \ldots, \infty_d\} \subseteq S_\infty$.

For each place v, let dx_v denote the associated self-dual Haar measure on F_v, and $dx := \prod_v dx_v$ the associated Haar measure on \mathbb{A}_F. We define Haar measures $d^x x_v$ on F_v by $d^x x_v := c_v \frac{dx_v}{|x_v|}$, where $c_v = (1 - \frac{1}{q_v})^{-1}$ for v finite, $c_v = 1$ for $v|\infty$.

For $v|\infty$ complex, we use the decomposition $\mathbb{C}^* = \mathbb{R}_+^* \times S^1$ (with $S^1 = \{x \in \mathbb{C}^* \mid |x| = 1\}$) to write $d^x x_v = d^x r_v d\theta_v$ for variables r_v, θ_v with $r_v \in \mathbb{R}_+$, $\theta_v \in S^1$.

Let $S_1 \subseteq S_p$ be a set of primes of F lying above p, $S_2 := S_p - S_1$. Let R be a topological Hausdorff ring.

Definition 3.1. We define the module of continuous functions

$$\mathcal{C}(S_1, R) := C(F_{S_1} \times F_{S_2}^*, \mathbb{I}^p/\mathbb{I}^{p,\infty}, R);$$

and let $\mathcal{C}_c(S_1, R)$ be the submodule of all compactly supported $f \in \mathcal{C}(S_1, R)$. We write $\mathcal{C}^0(S_1, R)$, $\mathcal{C}^0_c(S_1, R)$ for the submodules of locally constant maps (or of continuous maps where R is assumed to have the discrete topology).

We further define

$$\mathcal{C}^0_c(S_1, R) := \mathcal{C}_c(\varnothing, R) + \mathcal{C}^0_c(S_1, R) \subseteq \mathcal{C}_c(S_1, R)$$

to be the module of continuous compactly supported maps that are “constant near $(0_p, x^p)$” for each $p \in S_1$.

Definition 3.2. For an R-module M, let $\mathcal{D}_f(S_1, M)$ denote the R-module of maps

$$\phi : \mathcal{C}_c(F_{S_1} \times F_{S_2}^*) \times \mathbb{I}_F^{p,\infty} \to M$$

that are $\mathbb{I}^{p,\infty}$-invariant and such that $\phi(\cdot, x^{p,\infty})$ is a distribution for each $x^{p,\infty} \in \mathbb{I}_F^{p,\infty}$.
Since $\mathbb{F}_F^{p,\infty}/U^{p,\infty}$ is a discrete topological group, $\mathcal{D}_f(S_1, M)$ naturally identifies with the space of M-valued distributions on $F_{S_1} \times F_{S_2}^* \times \mathbb{F}_F^{p,\infty}/U^{p,\infty}$. So there exists a canonical R-bilinear map

$$
\mathcal{D}_f(S_1, M) \times \mathcal{C}_c^0(S_1, R) \rightarrow M, \quad (\phi, f) \mapsto \int f \, d\phi,
$$

(3.1)

which is easily seen to induce an isomorphism $\mathcal{D}_f(S_1, M) \cong \text{Hom}_R(\mathcal{C}_c^0(S_1, R), M)$.

For a subgroup $E \subseteq F^*$ and an $R[E]$-module M, we let E operate on $\mathcal{D}_f(S_1, M)$ and $\mathcal{C}_c^0(S_1, R)$ by $(a\phi)(U, x^{p,\infty}) := a\phi(a^{-1}U, a^{-1}x^{p,\infty})$ and $(a f)(x^{\infty}) := f(a^{-1}x^{\infty})$ for $a \in E, U \in \mathfrak{Co}(F_{S_1} \times F_{S_2}^*)$, $x^{\infty} \in \mathbb{F}_F$; thus we have $\int (a f) \, d(\phi) = a \int f \, d\phi$ for all a, f, ϕ.

When $M = V$ is a finite-dimensional vector space over a p-adic field, we write $\mathcal{D}_f^p(S_1, V)$ for the subset of $\phi \in \mathcal{D}_f(S_1, V)$ such that ϕ is even a measure on $F_{S_1} \times F_{S_2} \times \mathbb{F}_F^{p,\infty}/U^{p,\infty}$.

Definition 3.3. For a \mathbb{C}-vector space V, define $\mathcal{D}(S_1, V)$ to be the set of all maps $\phi : \mathfrak{Co}(F_{S_1} \times F_{S_2}^*) \times \mathbb{P} \rightarrow V$ such that:

(i) ϕ is invariant under F^* and $U^{p,\infty}$.

(ii) For $x^p \in \mathbb{P}$, $\phi(\cdot, x^p)$ is a distribution of $F_{S_1} \times F_{S_2}$.

(iii) For all $U \in \mathfrak{Co}(F_{S_1} \times F_{S_2}^*)$, the map $\phi_U : \mathbb{P} = F_{S_1}^* \times \mathbb{P} \rightarrow V, (x_p, x^p) \mapsto \phi(x_p U, x^p)$ is smooth, and rapidly decreasing as $|x| \rightarrow \infty$ and $|x| \rightarrow 0$.

We will need a variant of this last set: Let $\mathcal{D}'(S_1, V)$ be the set of all maps $\phi \in \mathcal{D}(S_1, V)$ that are "$(S^1)^s$-invariant", i.e. such that for all complex primes ∞_j of F and all $\zeta \in S^1 = \{x \in \mathbb{C}^* ; |x| = 1\}$, we have

$$
\phi(U, x^{p,\infty_j}, \zeta x_{\infty_j}) = \phi(U, x^{p,\infty_j}, x_{\infty_j}) \quad \text{for all } x^p = (x^{p,\infty_j}, x_{\infty_j}) \in \mathbb{P}.
$$

There is an obvious surjective map

$$
\mathcal{D}(S_1, V) \rightarrow \mathcal{D}'(S_1, V), \quad \phi \mapsto \left((U, x) \mapsto \int_{(S_1)^s} \phi(U, x) \, d\theta_r \cdots d\theta_{r+s-1} \right)
$$

given by integrating over $(S^1)^s \subseteq (\mathbb{C}^*)^s \hookrightarrow \mathbb{P}_\infty$.

Let $F^{*'} \subseteq F^*$ be a maximal torsion-free subgroup (so that $F/F^{*'} \cong \mu_F$, the roots of unity of F). If F has at least one real embedding, we specifically choose $F^{*'}$ to be the set $F^*_+ \subseteq F^*$ of all totally positive elements of F (i.e. positive with respect to every real embedding of F). For totally complex F, there is no such natural subgroup available, so we just choose $F^{*'}$ freely. We set

$$
E' := F^{*'} \cap O_F^\times \subseteq O_F^\times,
$$

so E' is a torsion-free \mathbb{Z}-module of rank d. E' operates freely and discretely on the space

$$
\mathbb{R}_0^{d+1} := \left\{ (x_0, \ldots, x_d) \in \mathbb{R}^{d+1} \mid \sum_{i=0}^{d} x_i = 0 \right\}
$$

24
via the embedding
\[E' \hookrightarrow \mathbb{R}^{d+1}_0 \]
\[a \mapsto (\log |\sigma_i(a)|)_{i \in S_\infty} \]

(cf. proof of Dirichlet’s unit theorem, e.g. in [Neu, Ch. 1], and the quotient \(\mathbb{R}^{d+1}_0 / E' \) is compact. We choose the orientation on \(\mathbb{R}^{d+1}_0 \) induced by the natural orientation on \(\mathbb{R}^d \) via the isomorphism \(\mathbb{R}^d \cong \mathbb{R}^{d+1}_0, (x_1, \ldots, x_d) \mapsto (-\sum_{i=1}^d x_i, x_1, \ldots, x_d) \). So \(\mathbb{R}^{d+1}_0 / E' \) becomes an oriented compact \(d \)-dimensional manifold.

Let \(G_p \) be the Galois group of the maximal abelian extension of \(F \) which is unramified outside \(p \) and \(\infty \); for a \(\mathbb{C} \)-vector space \(V \), let \(\text{Dist}(G_p, V) \) be the set of \(V \)-valued distributions of \(G_p \). Denote by \(\varrho : \mathbb{I}_F / F^* \to G_p \) the projection given by global reciprocity.

3.2 Global measures

Now let \(V = \mathbb{C} \), equipped with the trivial \(F^* \)-action. We want to construct a commutative diagram

\[
\begin{align*}
\mathcal{D}(S_1, \mathbb{C}) & \xrightarrow{\phi \mapsto \mu_\phi} H^d(F^* E', \mathcal{D}_f(S_1, \mathbb{C})) \\
\mathcal{D}(G_p, \mathbb{C}) & \xrightarrow{\kappa \mapsto \mu_\kappa} H^0(F^* E', \mathcal{D}_f(S_1, \mathbb{C}))
\end{align*}
\]

First, let \(R \) be any topological Hausdorff ring. Let \(\overline{E}' \) denote the closure of \(E' \) in \(U_p \). The projection map \(\text{pr} : \mathbb{I}_\infty / U_{p, \infty} \to \mathbb{I}_\infty / (\overline{E}' \times U_{p, \infty}) \) induces an isomorphism

\[\text{pr}^* : C_c(\mathbb{I}_\infty / (\overline{E}' \times U_{p, \infty}), R) \to H^0(E', C_c(\mathbb{I}_\infty / U_{p, \infty}, R)), \]

and the reciprocity map induces a surjective map \(\overline{\varrho} : \mathbb{I}_\infty / (\overline{E}' \times U_{p, \infty}) \to G_p \).

Now we can define a map

\[\varrho^\#: H_0(F^* E', C_c(\mathbb{I}_\infty / (\overline{E}' \times U_{p, \infty}), R)) \to C(G_p, R) \]

\[[f] \mapsto \left(\overline{\varrho}(x) \mapsto \sum_{\zeta \in F^* E'} f(\zeta x) \text{ for } x \in \mathbb{I}_\infty / (\overline{E}' \times U_{p, \infty}) \right). \]

This is an isomorphism, with inverse map \(f \mapsto [([f \circ \overline{\varrho}] \cdot 1_F], \) where \(1_F \) is the characteristic function of a fundamental domain \(F \) of the action of \(F^* E' \) on \(\mathbb{I}_\infty / U_{p, \infty} \).

We get a composite map

\[
\begin{align*}
C(G_p, R) & \xrightarrow{(\varrho^\#)^{-1}} H_0(F^* E', C_c(\mathbb{I}_\infty / (\overline{E}' \times U_{p, \infty}), R)) \\
& \xrightarrow{\text{pr}^*} H_0(F^* E', H^0(E', C_c(\mathbb{I}_\infty / U_{p, \infty}, R))) \\
& \to H_0(F^* E', H^0(E', C_c(S_1, R))), \quad (3.3)
\end{align*}
\]

25
where the last arrow is induced by the “extension by zero” from \(C_c(\mathbb{P}^\infty/U_{p}^\infty, R) \) to \(C_c(S_1, R) \).

Now let \(\eta \in H_d(E', \mathbb{Z}) \cong \mathbb{Z} \) be the generator that corresponds to the given orientation of \(\mathbb{R}^{d+1}_0 \). This gives us, for every \(R \)-module \(A \), a homomorphism

\[
H_0\left(F^*/E', H^0(E', A)\right) \overset{\eta}{\longrightarrow} H_0\left(F^*/E', H_d(E', A)\right)
\]

Composing this with the edge morphism

\[
H_0\left(F^*/E', H^0(E', A)\right) \to H_d(F^*/E', A)
\] (3.4)

(and setting \(A = C_c(S_1, R) \)) gives a map

\[
H_0\left(F^*/E', H^0(E', C_c(S_1, R))\right) \to H_d\left(F^*/E', C_c(S_1, R)\right)
\] (3.5)

We define

\[
\partial : C(\mathcal{G}_p, R) \to H_d(F^*/E', C_c(S_1, R))
\]

as the composition of (3.3) with this map.

Now, letting \(M \) be an \(R \)-module equipped with the trivial \(F^* \)-action, the bilinear form (3.1)

\[
D_f(S_1, M) \times C_c(S_1, R) \to M
\]

\[
(\phi, f) \mapsto \int f \, d\phi
\]

induces a cap product

\[
\cap : H^d(F^*/E', D_f(S_1, M)) \times H_d(F^*/E', C_c(S_1, R)) \to H_0(F^*/E', M) = M.
\] (3.6)

Thus for each \(\kappa \in H^d(F^*/E', D_f(S_1, M)) \), we get a distribution \(\mu_\kappa \) on \(\mathcal{G}_p \) by defining

\[
\int_{\mathcal{G}_p} f(\gamma) \, \mu_\kappa(d\gamma) := \kappa \cap \partial(f)
\] (3.7)

for all continuous maps \(f : \mathcal{G}_p \to R \).

Now let \(M = V \) be a finite-dimensional vector space over a \(p \)-adic field \(K \), and let \(\kappa \in H^d(F^*/E', D^b_f(S_1, V)) \). We identify \(\kappa \) with its image in \(H^d(F^*/E', D_f(S_1, V)) \); then it is easily seen that \(\mu_\kappa \) is also a measure, i.e. we have a map

\[
H^d(F^*/E', D^b_f(S_1, V)) \to \text{Dist}^b(\mathcal{G}_p, V), \quad \kappa \mapsto \mu_\kappa.
\] (3.8)

Let \(L|F \) be a \(\mathbb{Z}_p \)-extension of \(F \). Since it is unramified outside \(p \), it gives rise to a continuous homomorphism \(\mathcal{G}_p \to \text{Gal}(L|F) \) via \(\sigma \mapsto \sigma|_L \). Fixing an isomorphism \(\text{Gal}(L|F) \cong p^{\ast} \mathbb{Z}_p \) (where \(\varepsilon_p = 2 \) for \(p = 2 \), \(\varepsilon_p = 1 \) for \(p \) odd), we obtain a surjective homomorphism \(\ell : \mathcal{G}_p \to p^{\ast} \mathbb{Z}_p \). Here we have chosen the target space such that the \(p \)-adic exponential function \(\exp_p(s\ell(\gamma)) \) is defined for all \(s \in \mathbb{Z}_p, \gamma \in \mathcal{G}_p \).
Example 3.4. Let \(L \) be the cyclotomic \(\mathbb{Z}_p \)-extension of \(F \). Then we can take \(\ell = \log_p \circ \mathcal{N} \), where \(\mathcal{N} : \mathcal{G}_p \to \mathbb{Z}_p^* \) is the \(p \)-adic cyclotomic character, defined by requiring \(\gamma \zeta = \zeta^{\mathcal{N}(\gamma)} \) for all \(\gamma \in \mathcal{G}_p \) and all \(p \)-power roots of unity \(\zeta \). It is well-known (cf. [Wa], par. 5) that \(\log_p(\mathbb{Z}_p^*) = p^{\mathbb{Z}} \mathbb{Z}_p \).

It is well-known that \(F \) has \(t \) independent \(\mathbb{Z}_p \)-extensions, where \(s + 1 \leq t \leq [F : \mathbb{Q}] \); the Leopoldt conjecture implies \(t = s + 1 \). We get a \(t \)-variable \(p \)-adic \(L \)-functions as follows:

Definition 3.5. Let \(K \) be a \(p \)-adic field, \(V \) a finite-dimensional \(K \)-vector space, \(\kappa \in H^d(F^{*\prime}, D^f(S_1, V)) \). Let \(\ell_1, \ldots, \ell_t : \mathcal{G}_p \to p^r \mathbb{Z}_p \) be continuous homomorphisms. The \(p \)-adic \(L \)-function of \(\kappa \) is given by

\[
L_p(\Sigma, \kappa) := L_p(s_1, \ldots, s_t, \kappa) := \prod_{i=1}^t \exp_p(s_i \ell_i(\gamma)) \mu_\kappa(d\gamma)
\]

for all \(s_1, \ldots, s_t \in \mathbb{Z}_p \).

Remark 3.6. Let \(\Sigma := \{ \pm 1 \}^r \), where \(r \) is the number of real embeddings of \(F \). The group isomorphism \(\mathbb{Z}/2\mathbb{Z} \cong \{ \pm 1 \}, \varepsilon \mapsto (-1)^\varepsilon \), induces a pairing

\[
\langle \cdot, \cdot \rangle : \Sigma \to \{ \pm 1 \}, \quad \langle ((-1)^{\varepsilon_i}), ((-1)^{\varepsilon'_i}) \rangle := (-1)^{\sum \varepsilon_i \varepsilon'_i}.
\]

For a field \(k \) of characteristic zero, a \(k[\Sigma] \)-module \(V \) and \(\mu = (\mu_0, \ldots, \mu_{r-1}) \in \Sigma \), we put \(V_\Sigma := \{ v \in \mathbb{V} | \langle \mu, \nu \rangle v = \nu v \ \forall \nu \in \Sigma \} \), so that we have \(\mathbb{V} = \bigoplus_{\mu \in \Sigma} V_\mu \). We write \(v_\Sigma \) for the projection of \(v \in \mathbb{V} \) to \(V_\Sigma \), and \(v_0 := v_{(1, \ldots, 1)} \).

We identify \(\Sigma \) with \(F^*/F^{*\prime} \) via the isomorphism \(\Sigma \cong \prod_{i=0}^{r-1} \mathbb{R}^*/\mathbb{R}_+^* \cong F^*/F^{*\prime} \). Then for each \(F^{*\prime} \)-module \(M \), \(\Sigma \) acts on \(H^d(F^{*\prime}, D^f(S_1, M)) \) and on \(H^d(F^{*\prime}, D^f(S_1, M)) \).

The exact sequence \(\Sigma \cong \prod_{i=0}^{r-1} \mathbb{R}^*/\mathbb{R}_+^* = \mathbb{I}_\infty/\mathbb{I}_0 \to \mathcal{G}_p \to \mathcal{G}_p^+ \to 0 \) of class field theory (where \(\mathbb{I}_0 \) is the maximal connected subgroup of \(\mathbb{I}_\infty \)) yields an action of \(\Sigma \) on \(\mathcal{G}_p \). We easily check that \(G_{\mathbb{I}_0} \) is \(\Sigma \)-equivariant, and that the maps \(\gamma \mapsto \exp_p(s\ell_i(\gamma)) \) factor over \(\mathcal{G}_p \to \mathcal{G}_p^+ \) (since \(\mathbb{Z}_p \)-extensions are unramified at \(\infty \)). Therefore we have \(L_p(\Sigma, \kappa) = L_p(\Sigma, \kappa^+ \kappa) \).

For \(\phi \in \mathcal{D}(S_1, V) \) and \(f \in C^0(\mathbb{I}/F^{*\prime}, \mathbb{C}) \), let

\[
\int_{\mathbb{I}/F^{*\prime}} f(x) \phi(d^x x_p, x^p) \ d^x x := [U_p : U] \int_{\mathbb{I}/F^{*\prime}} f(x) \phi_U(x) \ d^x x,
\]

where we choose an open set \(U \subseteq U_p \) such that \(f(x_p u, x^p) = f(x_p, x^p) \) for all \((x_p, x^p) \in U \) and \(u \in U \); such a \(U \) exists by lemma 3.7 below.

Since this integral is additive in \(f \), there exists a unique \(V \)-valued distribution \(\mu_\phi \) on \(\mathcal{G}_p \) such that

\[
\int_{\mathcal{G}_p} f \ d\mu_\phi = \int_{\mathbb{I}/F^{*\prime}} f(q(x)) \phi(d^x x_p, x^p) \ d^x x^p
\]

for all functions \(f \in C^0(\mathcal{G}_p, V) \).
Lemma 3.7. Let $F : \mathbb{I}/F^* \to X$ be a locally constant map to a set X. Then there exists an open subgroup $U \subseteq \mathbb{I}$ such that f factors over \mathbb{I}/F^*U.

Proof. (cf. [Sp], lemma 4.20)

Let $U_\infty^0 := \prod_{v \in S^0} \mathbb{R}^*_+$; the isomorphisms $U^0_\infty \cong \mathbb{R}^d$, $(r_v)_v \mapsto (\log r_v)_v$, and $\mathbb{R}^d \cong \mathbb{R}^{d+1}_+$ give it the structure of a d-dimensional oriented manifold (with the natural orientation). It has the d-form $d^x r_1 \ldots d^x r_d$, where (by slight abuse of notation) we choose $d^x r_i$ on $F_{\infty i}$ corresponding to the Haar measure $d^x x_i$ resp. $d^x r_i$ on $\mathbb{R}^*_+ \subseteq F^*_\infty$.

E' operates on U^0_∞ via $a \mapsto (|\sigma_i(a)|)_i \in S^0$, making the isomorphism $U^0_\infty \cong \mathbb{R}^{d+1}_+$ E'-equivariant.

For $\phi \in \mathcal{D}'(S_1, V)$, set

$$
\int_0^\infty \phi \ d^x r_0 : \mathfrak{a}(F_{S_1} \times F_{S_2}^*) \times \mathbb{I}^{p,\infty_0} \to \mathbb{C} \\
(U, x^{p,\infty_0}) \mapsto \int_0^\infty \phi(U, r_0, x^{p,\infty_0}) \ d^x r_0,
$$

where we let $r_0 \in F_{\infty 0}$ run through the positive real line \mathbb{R}^*_+ in $F_{\infty 0}$. Composing this with the projection $\mathcal{D}(S_1, V) \to \mathcal{D}'(S_1, V)$ gives us a map

$$
\mathcal{D}(S_1, V) \to H^0(F^{*t}, \mathcal{D}_f(S_1, C^\infty(U^0_\infty, V))), \\
\phi \mapsto \int_{(S_1)^s} \left(\int_0^\infty \phi \ d^x r_0 \right) \ d\theta_1 \ d\theta_2 \ldots d\theta_{r+s+1} \tag{3.10}
$$

(3.12)

(where $C^\infty(U^0_\infty, V)$ denotes the space of smooth V-valued functions on U^0_∞), since one easily checks that $\int_0^\infty \phi \ d^x r_0$ is F^{*t}-invariant.

Define the complex $C^* := \mathcal{D}_f(S_1, \Omega^*(U^0_\infty, V))$. By the Poincare lemma, this is a resolution of $\mathcal{D}_f(S_1, V)$. We now define the map $\phi \mapsto \kappa_\phi$ as the composition of $\kappa_{3.11}$ with the composition

$$
H^0(F^{*t}, \mathcal{D}_f(S_1, C^\infty(U^0_\infty, V))) \to H^0(F^{*t}, C^d) \to H^d(F^{*t}, \mathcal{D}_f(S_1, V)), \tag{3.11}
$$

where the first map is induced by

$$
C^\infty(U^0_\infty, V) \to \Omega^d(U^0_\infty, V), \quad f \mapsto f(r_1, \ldots, r_d) d^x r_1 \ldots d^x r_d, \tag{3.12}
$$

and the second is an edge morphism in the spectral sequence

$$
H^q(F^{*t}, C^p) \Rightarrow H^{p+q}(F^{*t}, \mathcal{D}_f(S_1, V)). \tag{3.13}
$$

Specializing to $V = \mathbb{C}$, we now have:
Proposition 3.8. The diagram (3.2) commutes, i.e., for each φ ∈ D(S₁, ℂ), we have

\[\mu_\phi = \mu_\kappa \phi. \]

Proof. As in [Sp], we define a pairing

\[\langle , \rangle : D(S_1, ℂ) \times C^0(G_p, ℂ) \to ℂ \]

as the composite of (3.10) × (3.3) with

\[H^0(F^\ast', D_f(S_1, C^\infty(U_1^\infty, ℂ))) \times H_0(F^\ast/E', H^0(E, C^0_c(S_1, ℂ))) \]

\[\xrightarrow{\cap} H_0(F^\ast/E', H^0(E', C^\infty(U_1^\infty, ℂ))) \to H_0(F^\ast/E', ℂ) \cong ℂ, \]

(3.14)

where \cap is the cap product induced by (3.1), and the second map is induced by

\[H^0(E', C^\infty(U_1^\infty, ℂ)) \to ℂ, f \mapsto \int_{U_1^\infty/E'} f(r_1, \ldots, r_d) \, d^x r_1 \ldots d^x r_d. \]

(3.15)

Then we have

\[\langle \phi, f \rangle = \int_{G_p} f(\gamma) \mu_\phi(d\gamma) \quad \text{for all } f \in C^0(G_p, ℂ), \]

and we can show that κ_φ ∩ ∂(f) = \langle φ, f \rangle by copyng the proof for the totally real case ([Sp], prop. 4.21, replacing \(F^\ast \) by \(F'^\ast \), \(E^\ast \) by \(E' \)), using the fact that for a \(d \)-form on the \(d \)-dimensional oriented manifold \(M := \mathbb{R}^{d+1}_0/\mathbb{Q} \), integration over \(M \) corresponds to taking the cap product with the fundamental class \(\eta \) of \(M \) under the canonical isomorphism \(H^d(M) \cong H^d(\mathbb{Q}) \).

3.3 Exceptional zeros

Now let \(\ell_1, \ldots, \ell_t : G_p \to ℤ_p \) be homomorphisms. Let \(S_1 \subseteq S_p \) be a set of primes, \(n := \#S_1 \).

Proposition 3.9. For each \(x = (x_1, \ldots, x_t) \in ℤ_p^t \) set \(|x| := \sum_{i=1}^t x_i \). Then

\[\partial(\prod_{i=1}^t (\ell_i^x)) = 0 \text{ for all } x \text{ with } |x| \leq n - 1. \]

Proof. (cf. [Sp], Prop. 4.6)

For each \(i \in \{1, \ldots, t\} \) let \(\tilde{\ell}_i : \mathbb{P}^\infty \to ℚ_p \) be the composition

\[\tilde{\ell}_i : \mathbb{P}^\infty \xrightarrow{\ell_i} G_p \xrightarrow{\ell_i} ℤ_p \hookrightarrow ℚ_p. \]

Let \(p_1, \ldots, p_m \) be the primes of \(F \) above \(p \). Since \(F^\ast/E' = F^\ast/O_F^\times \) is a free \(ℤ \)-module (it embeds into the group of fractional ideals of \(O_F \)), we can choose a subgroup \(T \subseteq F^\ast' \) such that \(F^\ast' = E' \times T \). By the finiteness of the class number, we can also find a subgroup \(T' \subseteq T \) of finite index such that

\[T' = T_p \times T'^p = \langle t_1, \ldots, t_m \rangle \times T'^p, \]
where \(t_i \) generates some power \(p_i^{n_i} \) of \(p_i \) for all \(i \), and \(\text{ord}_{p_i}(t) = 0 \) for all \(t \in T_p \), \(i = 1, \ldots, m \).

Let \(F \subseteq \mathbb{I}^{\infty}/U^{p,\infty} \) be a fundamental domain for the action of \(\mathcal{T} \) such that \(\mathcal{T}/F = \mathcal{F} \). \((3.3)\) maps \(\tilde{\ell}_x := \prod_{i=1}^n \tilde{\ell}_x^i \) to the class \([\tilde{\ell}_x]_F \in H_0(\mathcal{T}, H^0(E', C_c^0(S_1, \mathbb{C}_p))) \subseteq H_0(\mathcal{T}, H^0(E', C_c^0(S_1, \mathbb{C}_p))). \) Thus, by the definition of \(\partial \), we have to show that \([\tilde{\ell}_x]_F \) is mapped to zero under the map \((3.5)\). Now we have a commutative diagram

\[
\begin{array}{ccc}
H_0(\mathcal{T}, H^0(E', C_c^0(S_1, \mathbb{C}_p))) & \xrightarrow{\iota} & H_0(\mathcal{T}, C_c^0(S_1, \mathbb{C}_p)) \\
\downarrow \gamma \eta & & \downarrow \gamma \eta \\
H_d(F^*, C_c^0(S_1, \mathbb{C}_p)) & \xrightarrow{\text{coinf}} & H_d(E', H_0(\mathcal{T}, C_c^0(S_1, \mathbb{C}_p)))
\end{array}
\]

where the upper horizontal map is induced by the inclusion \(H^0(\mathcal{T}, X) \to X \) (or equivalently, the projection \(X \to H_0(X) \)) and the lower horizontal map is the coinflation.

By prop. 3.1 of \([Sp]\), \(C_c^0(S_1, \mathbb{C}_p) \) is a free \(\mathbb{C}_p[\mathcal{T}] \)-module (the proof given in \([Sp]\) works verbatim for the case of an arbitrary number field \(F \)). So it is an induced \(\mathcal{T} \)-module and therefore homologically trivial. Thus the short exact sequence for group homology (or Shapiro’s lemma) shows that \(\text{coinf} : H_d(F^*, C_c^0(S_1, \mathbb{C}_p)) \to H_d(E', H_0(\mathcal{T}, C_c^0(S_1, \mathbb{C}_p))) \) is an isomorphism. So it suffices to prove that \(\iota * \) maps \([\tilde{\ell}_x]_F \) to zero, i.e. that

\[
\tilde{\ell}_x \in I(\mathcal{T}) C_c^0(S_1, \mathbb{C}_p), \tag{3.16}
\]

where \(I(\mathcal{T}) = (1 - t)_{t \in \mathcal{T}} \) is the augmentation ideal in the group ring \(\mathbb{C}_p[\mathcal{T}] \).

Again by prop. 3.1 of \([Sp]\), the restriction map

\[
\text{res} : H_0(\mathcal{T}, C_c^0(S_1, \mathbb{C}_p)) \to H_0(\mathcal{T}', C_c^0(S_1, \mathbb{C}_p)), \quad [f] \mapsto \sum_{[t] \in \mathcal{T}/T'} tf,
\]

is injective, and maps \([\tilde{\ell}_x]_F \) to \([\tilde{\ell}_x]_{F'} \), where \(F' = \bigcup_{[t] \in \mathcal{T}/T'} tF \subseteq \mathbb{I}^{\infty}/U^{p,\infty} \) is a fundamental domain for the action of \(\mathcal{T}' \). Thus we may replace \(\mathcal{T}, F \) by \(\mathcal{T}', F' \) in \((3.16)\).

We can specifically choose the fundamental domain \(F := \prod_{i=1}^n F_i \times F^p, \) where \(F^p \subseteq \mathbb{I}^{p,\infty}/U^{p,\infty} \) is a fundamental domain for \(\mathcal{T}^p \) and \(F_i := \mathcal{O}_{p_i} \setminus \mathcal{O}_{p_i} \).

Since the pro-\(q \)-part of \(\mathcal{G}_p \) is finite for every prime \(q \neq p \) and \(\mathcal{O}_p \) is torsion-free, \(\tilde{\ell}_j \) equals \(\tilde{\ell}_{ij} : \mathbb{I}^{p,\infty} \mathcal{O}_p^* \to \mathbb{I}^{\infty} \mathcal{O}_p^* \).

Similarly, we let \(\tilde{\ell}_{ij} \) be the restriction of \(\tilde{\ell}_j \) to \(F_{p_i}^* \) (considered as a function on \(\mathbb{I}^{\infty} \) or \(F_{p_i}^* \) as needed) for all \(i, j \).

For each subset \(\Xi \subseteq \{1, \ldots, r\} \) let

\[
\mathcal{F}_\Xi := \prod_{i \in \Xi} \mathcal{O}_{p_i} \times \prod_{i \in S_p \setminus \Xi} F_i \times F^p.
\]

For \(\Xi := (n_{i,j})_{i=1, \ldots, m; j=1, \ldots, t} \in \mathbb{N}_0^m \) with \(n_{i,j} = 0 \) for all \(i \in \Xi \) and all \(j \), we define \(\lambda(\Xi, \Xi) := \prod_{i,j} \tilde{\ell}_{ij} \cdot 1_{\mathcal{F}_\Xi} \in C_c^0(S_1, \mathbb{C}_p) \). Then by the multinomial formula,

\[
\tilde{\ell}_x = \sum_{|\Xi| = |\Xi|} N_{i,j} \lambda(\Xi, \Xi)
\]
for some \(N_{i,j} \in \mathbb{Z} \), and it suffices to show that \(\lambda(\emptyset, \underline{n}) \in I(\mathcal{P}_p)C_c^\ell(S_1, C_p) \subseteq I(\mathcal{T}_p)C_c^\ell(S_1, C_p) \) for all \(\underline{n} \) with \(|\underline{n}| = |\underline{x}| \). This follows from:

Lemma 3.10. If \(\#(\Xi) + |\underline{n}| < r \), then \(\lambda(\Xi, \underline{n}) \in I(\mathcal{P}_p)C_c^\ell(S_1, C_p) \).

Proof. (cf. [Sp], lemma 4.7)

For \(t \in F^* \) and \(f, g \in C_c^\ell(S_1, C_p) \), we have

\[
(1 - t)(f \cdot g) = ((1 - t)f) \cdot g + f \cdot ((1 - t)g) - ((1 - t)f) \cdot ((1 - t)g),
\]

where \(1 - t \in C_p[\mathcal{T}'] \). Since \((1 - t)\tilde{t}_i(x) = \tilde{t}_i(t) \), using this equation recursively shows that

\[
(1 - t) \prod_{i,j} \tilde{\ell}_{i,j}^{\underline{n}_{i,j}} = \sum_{\underline{n}' < \underline{n}} a_{\underline{n}'} \prod_{i,j} \tilde{\ell}_{i,j}^{\underline{n}_{i,j}}
\]

for some \(a_{\underline{n}'} \in C_p \).

We prove the lemma by induction on \(|\underline{n}| \). Let \(\Xi^c := \{1, \ldots, r\} \setminus \Xi \). For \(\underline{n} = \underline{0} = (0, \ldots, 0) \) choose any \(i \in \Xi^c \) (which is nonempty since \(\#(\Xi) < r \)). Then we have

\[
\lambda(\Xi, \underline{0}) = 1_{F_p} = (1 - t_i)1_{F_{\Xi^c \cup \{i\}}} = (1 - t_i)\lambda(\Xi \cup \{i\}, \underline{0}) \in I(\mathcal{T}_p)C_c^\ell(S_1, C_p).
\]

For \(|\underline{n}| > 0 \), choose \(i' \in \Xi^c \) such that \(n_{i,j} = 0 \) for all \(j \) (such an \(i' \) exists because \(\# \Xi + |\underline{n}| < n \)). Put \(\Xi' := \Xi \cup \{i'\} \). Then we have

\[
\lambda(\Xi, \underline{n}) = \prod_{i,j} \tilde{\ell}_{i,j}^{\underline{n}_{i,j}} \cdot (1 - t_{i'})1_{F_{\Xi'}}
\]

\[
= (1 - t_{i'})\lambda(\Xi', \underline{n}) - (1 - t_{i'})\prod_{i,j} \tilde{\ell}_{i,j}^{\underline{n}_{i,j}} \cdot 1_{F_{\Xi'}} + (1 - t_{i'})\prod_{i,j} \tilde{\ell}_{i,j}^{\underline{n}_{i,j}} \cdot 1_{F_{\Xi'}}
\]

\[
\equiv -((1 - t_{i'})\prod_{i,j} \tilde{\ell}_{i,j}^{\underline{n}_{i,j}} \cdot 1_{F_{\Xi'}}) + ((1 - t_{i'})\prod_{i,j} \tilde{\ell}_{i,j}^{\underline{n}_{i,j}} \cdot 1_{F_{\Xi}}) \mod I(\mathcal{T}_p)C_c^\ell(S_1, C_p).
\]

But by (3.17) and the induction hypothesis, we have

\[
(1 - t_{i'})\prod_{i,j} \tilde{\ell}_{i,j}^{\underline{n}_{i,j}} \cdot 1_{F_{\Xi'}} \in \sum_{\underline{n}' < \underline{n}} C_p\lambda(\Xi', \underline{n}') \subseteq I(\mathcal{T}_p)C_c^\ell(S_1, C_p)
\]

and

\[
((1 - t_{i'})\prod_{i,j} \tilde{\ell}_{i,j}^{\underline{n}_{i,j}} \cdot 1_{F_{\Xi}}) \in \sum_{\underline{n} < \underline{n}} C_p\lambda(\Xi, \underline{n}) \subseteq I(\mathcal{T}_p)C_c^\ell(S_1, C_p),
\]

and thus the assertion for \(\lambda(\Xi, \underline{n}) \).

\[]

Remark 3.11. It would have been enough to show the proposition only for \(x \)-th powers of a single homomorphism \(\ell : G_p \to \mathbb{Z}_p \) (i.e. \(\partial(\ell^x) = 0 \) for all homomorphisms \(\ell \)) for all \(x \leq r - 1 \), since each product \(\prod_{i=1}^t \ell_i^{x_i} \) of degree \(x = |\underline{x}| \) can be written as a linear combination of \(x \)-th powers of some other homomorphisms \(\ell : G_p \to \mathbb{Z}_p \) by a simple algebraic argument (for a ring \(R \supseteq \mathbb{Q} \), each monomial \(\prod_{i=1}^t X_i^{n_i} \in R[X_1, \ldots, X_t] \) of degree \(n = \sum_i n_i \) can be written as a linear combination of \(n \)-th powers \((X_i + r_{i,j}X_j)^n \); let \(\ell \) run through the \(\ell_i + r_{i,j}\ell_j \)).
Definition 3.12. A t-variable p-adic analytic function $f(s) = f(s_1, \ldots, s_t)$ ($s_i \in \mathbb{Z}_p$) has vanishing order $\geq n$ at the point $0 = (0, \ldots, 0)$ if all its partial derivatives of total order $\leq n - 1$ vanish, i.e. if

$$\frac{\partial^k}{\partial s_1^{k_1} \cdots \partial s_t^{k_t}} f(0) = 0$$

for all $k = (k_1, \ldots, k_t) \in \mathbb{N}_0^t$ with $k := |k| \leq n - 1$. We write $\text{ord}_{s=0} f(s) \geq n$ in this case.

The proposition implies the following result for the p-adic L-function:

Theorem 3.13. Let $n := \#(S_1)$, $\kappa \in H^d(F^s(S_1), \mathcal{D}_f(S_1, V))$, V a finite-dimensional vector space over a p-adic field. Then $L_p(s, \kappa)$ is a locally analytic function, and we have

$$\text{ord}_{s=0} L_p(s, \kappa) \geq n.$$

Proof. We have

$$\frac{\partial^k}{\partial s_1^{k_1} \cdots \partial s_t^{k_t}} L_p(0, \kappa) = \int_{Sp} \left(\prod_{i=1}^t \ell_i(\gamma)^{k_i} \right) \mu_\kappa(d\gamma) = \kappa \cap \partial \left(\prod_{i=1}^t \ell_i(\gamma)^{k_i} \right)$$

for all $k = (k_1, \ldots, k_t) \in \mathbb{N}_0^t$. Thus the theorem follows from proposition 3.9.

3.4 Integral cohomology classes

Definition 3.14. For $\kappa \in H^d(F^s(S_1), \mathcal{D}_f(S_1, \mathbb{C}))$ and a subring R of \mathbb{C}, we define $L_{\kappa, R}$ as the image of

$$H^d(F^s(S_1), \mathcal{D}_f(S_1, \mathcal{C})) \to H^d(F^s(S_1), \mathcal{C}) = \mathbb{C}, \quad x \mapsto \kappa \cap x.$$

Lemma 3.15. Let $R \subseteq \mathbb{Q}$ be a Dedekind ring.

(a) For a subring $R' \supseteq R$ of \mathbb{C}, we have $L_{\kappa, R'} = R'L_{\kappa, R}$.

(b) If $\kappa \neq 0$, then $L_{\kappa, R} \neq 0$.

Proof. [Sp], lemma 4.15.

Definition 3.16. A nonzero cohomology class $\kappa \in H^d(F^s(S_1), \mathcal{D}_f(S_1, \mathbb{C}))$ is called integral if κ lies in the image of $H^d(F^s(S_1), \mathcal{D}_f(S_1, R)) \otimes_R \mathbb{C} \to H^d(F^s(S_1), \mathcal{C})$ for some Dedekind ring $R \subseteq \mathbb{Q}$. If, in addition, there exists a torsion-free R-submodule $M \subseteq H^d(F^s(S_1), \mathcal{D}_f(S_1, R))$ of rank ≤ 1 (i.e. M can be embedded into R, by the classification of finitely generated R-modules) such that κ lies in the image of $M \otimes_R \mathbb{C} \to H^d(F^s(S_1), \mathcal{D}_f(S_1, \mathbb{C}))$, then κ is integral of rank ≤ 1.

The following results are straightforward generalizations of the corresponding results of Spieß for totally real F:

Proposition 3.17. Let $\kappa \in H^d(F^s(S_1), \mathcal{D}_f(S_1, \mathbb{C}))$. The following conditions are equivalent:

32
(i) κ is integral (resp. integral of rank ≤ 1).

(ii) There exists a Dedekind ring $R \subseteq \mathcal{O}$ such that $L_{\kappa, R}$ is a finitely generated R-module (resp. a torsion-free R-module of rank ≤ 1).

(iii) There exists a Dedekind ring $R \subseteq \mathcal{O}$, a finitely generated R-module M (resp. a torsion-free R-module of rank ≤ 1) and an R-linear map $f : M \to \mathbb{C}$ such that κ lies in the image of the induced map $f_* : H^d(F^*, D_f(S_1, M)) \to H^d(F^*, D_f(S_1, \mathbb{C}))$.

Proof. As in [Sp], prop. 4.17.

Corollary 3.18. Let $\kappa \in H^d(F^*, D_f(S_1, \mathbb{C}))$ be integral and $R \subseteq \mathcal{O}$ be as in proposition 3.14. Then
(a) μ_κ is a p-adic measure, and
(b) the map $H^d(F^*, D_f(S_1, L_{\kappa, R})) \otimes \mathbb{Q} \to H^d(F^*, D_f(S_1, \mathbb{C}))$ is injective and κ lies in its image.

Proof. As in [Sp], cor. 4.18.

Remark 3.19. Let κ be integral with Dedekind ring R as above. By (b) of the corollary, we can view κ as an element of $H^d(F^*, D_f(S_1, L_{\kappa, R})) \otimes \mathbb{Q}$. Put $V_\kappa := L_{\kappa, R} \otimes \mathbb{C}_p$; let $\overline{\kappa}$ be the image of κ under the composition

$$H^d(F^*, D_f(S_1, L_{\kappa, R})) \otimes_R \mathbb{Q} \to H^d(F^*, D_f(S_1, L_{\kappa, R})) \otimes_R \mathbb{C}_p \to H^d(F^*, D^h_f(S_1, V_\kappa)),$$

where the second map is induced by $D_f(S_1, L_{\kappa, R}) \otimes_R \mathbb{C}_p \to D^h_f(S_1, V_\kappa)$. By lemma 3.15 (a), $\overline{\kappa}$ does not depend on the choice of R.

Since μ_κ is a p-adic measure, $\mu_{\overline{\kappa}}$ allows integration of all continuous functions $f \in C(G_p, \mathbb{C}_p)$, and by abuse of notation, we write $L_p(s, \kappa) := \int_{G_p} N(\gamma)^s \mu_\kappa(d\gamma) := L_p(s, \overline{\kappa})$ (cf. remark 3.6). So $L_p(s, \kappa)$ has values in the finite-dimensional \mathbb{C}_p-vector space V_κ.

33
4 \textit{p}-adic L-functions of automorphic forms

We keep the notations from chapter 3 so \(F \) is again a number field with \(r \) real embeddings and \(s \) pairs of complex embeddings.

For an ideal \(0 \neq m \subseteq \mathcal{O}_F \), we let \(K_0(m)_v \subseteq G(\mathcal{O}_F) \) be the subgroup of matrices congruent to an upper triangular matrix modulo \(m \), and we set \(K_0(m) := \prod_{v \mid \infty} K_0(m)_v \), \(K_0(m)^S := \prod_{v \notin S} K_0(m)_v \) for a finite set of primes \(S \). For each \(p \mid p \), let \(q_p = N(p) \) denote the number of elements of the residue class field of \(F_p \).

We denote by \(| \cdot |_v \) the square of the usual absolute value on \(\mathbb{C} \), i.e. \(|z|_C = z \bar{z} \) for all \(z \in \mathbb{C} \), and write \(| \cdot |_R \) for the usual absolute value on \(\mathbb{R} \) in context.

Definition 4.1. Let \(\mathcal{A}_0(G, 2, \chi_Z) \) denote the set of all cuspidal automorphic representations \(\pi = \otimes_v \pi_v \) of \(G(\mathbb{A}_F) \) with central character \(\chi_Z \) such that \(\pi_v \cong \sigma(\cdot, F_v, \cdot, \cdot^{-1/2}) \) at all archimedian primes \(v \). Here we follow the notation of \(\mathbb{L} \); so \(\sigma(\cdot, F_v, \cdot, \cdot^{-1/2}) \) is the discrete series of weight 2, \(D(2) \), if \(v \) is real, and is isomorphic to the principal series representation \(\pi(\mu_1, \mu_2) \) with \(\mu_1(z) = z^{1/2} \bar{z}^{1/2}, \mu_2(z) = z^{-1/2} \bar{z}^{1/2} \) if \(v \) is complex (cf. section 4.5 below).

We will only consider automorphic representations that are \(p \)-ordinary, i.e. \(\pi_p \) is ordinary (in the sense of chapter 2) for every \(p \mid p \).

Therefore, for each \(p \mid p \) we fix two non-zero elements \(\alpha_{p,1}, \alpha_{p,2} \in \mathcal{O} \subseteq \mathbb{C} \) such that \(\pi_{\alpha_{p,1}, \alpha_{p,2}} \) is an ordinary, unitary representation. By the classification of unitary representations (see e.g. [Ge], Thm. 4.27), a spherical representation \(\pi_{\alpha_{p,1}, \alpha_{p,2}} = \pi(\chi_1, \chi_2) \) is unitary if and only if \(\chi_1, \chi_2 \) are both unitary characters (i.e. \(|\alpha_{p,1}| = |\alpha_{p,2}| = \sqrt{q_p} \chi_1 \) or \(\chi_{1,2} = \chi_0 | \cdot |^{\pm s} \) with \(\chi_0 \) unitary and \(-\frac{1}{2} < s < \frac{1}{2} \). A special representation \(\pi_{\alpha_{p,1}, \alpha_{p,2}} = \pi(\chi_1, \chi_2) \) is unitary if and only if the central character \(\chi_1 \chi_2 \) is unitary. In all three cases, we have thus \(\max\{|\alpha_{p,1}|, |\alpha_{p,2}|\} \geq \sqrt{q_p} \). Without loss of generality, we will assume the \(\alpha_{p,i} \) to be ordered such that \(|\alpha_{p,1}| \leq |\alpha_{p,2}| \) for all \(p \mid p \).

As in chapter 2, we define \(a_p := \alpha_{p,1} + \alpha_{p,2}, \nu_p := \alpha_{p,1} \alpha_{p,2}/q_p \).

Let \(\alpha_i := (\alpha_{p,i}, p) \), for \(i = 1, 2 \). We denote by \(\mathcal{A}_0(G, 2, \chi_Z, \alpha_1, \alpha_2) \) the subset of all \(\pi \in \mathcal{A}_0(G, 2, \chi_Z) \) such that \(\pi_p = \pi_{\alpha_{p,1}, \alpha_{p,2}} \) for all \(p \mid p \).

Let \(S_1 \subseteq S_p \) be the set of places such that \(\pi_p \) is the Steinberg representation (i.e. \(\alpha_{p,1} = \nu_p = 1, \alpha_{p,2} = q \))\(^\text{IV}\).

For later use we note that \(\pi^\infty = \otimes_{v \mid \infty} \pi_v \) is known to be defined over a finite extension of \(\mathbb{Q} \), the smallest such field being the field of definition of \(\pi \) (cf. [Sp]).

\(^\text{IV}\)To avoid confusion: By \(|\alpha_{p,i}| \) we always mean the archimedian absolute value of \(\alpha_{p,1} \in \mathbb{C} \); whereas in the context of the \(p \)-adic characters \(\chi_1, | \cdot | \) always means the \(p \)-adic absolute value, unless otherwise noted.

\(^\text{V}\)Note that all \(p \mid p \) with \(\alpha_{p,2} = \nu_p \in \mathcal{O} \), i.e. \(\alpha_{p,2} = q \), already lie in \(S_1 \), since \(|\alpha_{p,2}| < q \) in the spherical case. \(L_p(s, \pi) \) should have an exceptional zero for each \(p \in S_1 \), according to the exceptional zero conjecture.
4.1 Upper half-space

Let \(\mathcal{H}_2 := \{ z \in \mathbb{C} | \text{Im}(z) > 0 \} \cong \mathbb{R} \times \mathbb{R}_+^* \) be the complex upper half-plane, and let \(\mathcal{H}_3 := \mathbb{C} \times \mathbb{R}_+^* \) be the 3-dimensional upper half-space. Each \(\mathcal{H}_m \) is a differentiable manifold of dimension \(i \). If we write \(x = (u, t) \in \mathcal{H}_m \) with \(t \in \mathbb{R}_+^* \), \(u \) in \(\mathbb{R} \) or \(\mathbb{C} \), respectively, it has a Riemannian metric
\[
 ds^2 = dt^2 + du^2 \tag{4.11}
\]
which induces a hyperbolic geometry on \(\mathcal{H}_m \), i.e. the geodesic lines on \(\mathcal{H}_m \) are given by “vertical” lines \(\{u\} \times \mathbb{R}_+^* \) and half-circles with center in the line or plane \(t = 0 \).

We have the decomposition \(\text{GL}_2(\mathbb{C}) = B'_C \cdot Z(\mathbb{C}) \cdot K_C \), where \(B'_C \) is the subgroup of matrices \(\left(\begin{array}{cc} x & y \\ 0 & 1 \end{array} \right) \), \(Z \) is the center, and \(K_C = \text{SU}(2) \) (cf. [By], Cor. 43); and analogously \(\text{GL}_2(\mathbb{R})^* = B'_R \cdot Z(\mathbb{R}) \cdot K_R \) with \(B'_R = \{ \left(\begin{array}{cc} y & x \\ 0 & 1 \end{array} \right) | x \in \mathbb{R}, y \in \mathbb{R}_+^* \} \) and \(K_R = \text{SO}(2) \).

We can identify \(B'_C \) with \(\mathcal{H}_3 \) via \(\left(\begin{array}{cc} z \\ 0 \\ 1 \end{array} \right) \mapsto (z,t) \), and \(B'_R \) with \(\mathcal{H}_2 \) via \(\left(\begin{array}{cc} y \\ x \\ 0 \\ 1 \end{array} \right) \mapsto x + iy \).

This gives us natural projections
\[
 \pi_R : \text{GL}_2(\mathbb{R})^* \twoheadrightarrow \text{GL}_2(\mathbb{R})^*/\mathbb{R}_+^* \cong \mathcal{H}_2
\]
and
\[
 \pi_C : \text{GL}_2(\mathbb{C}) \twoheadrightarrow \text{GL}_2(\mathbb{C})/\mathbb{C}_+^* \cong \mathcal{H}_3.
\]

The corresponding left actions on cosets are invariant under the Riemannian metrics on \(\mathcal{H}_m \), and can be given explicitly as follows:

\(\text{GL}_2(\mathbb{R})^* \) operates on \(\mathcal{H}_2 \subseteq \mathbb{C} \) via Möbius transformations,
\[
 \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) (z) := \frac{az + b}{cz + d},
\]
and \(\text{GL}_2(\mathbb{C}) \) operates on \(\mathcal{H}_3 \) by
\[
 \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) (z, t) := \left(\frac{(az + b)(cz + d) + a\overline{ct}^2}{|cz + d|^2 + |ct|^2}, \frac{|ad - bc|t}{|cz + d|^2 + |ct|^2} \right),
\]
([By], (3.12)); specifically, we have
\[
 \left(\begin{array}{cc} t & z \\ 0 & 1 \end{array} \right) (0, 1) = (z, t) \quad \text{for} \quad (z, t) \in \mathcal{H}_3.
\]

A differential form \(\omega \) on \(\mathcal{H}_m \) is called left-invariant if it is invariant under the pullback \(L_g^* \) of left multiplication \(L_g : x \mapsto gx \) on \(\mathcal{H}_m \), for all \(g \in G \). Following [By], eqs. (4.20), (4.24), we choose the following basis of left invariant differential 1-forms on \(\mathcal{H}_3 \):
\[
 \beta_0 := -\frac{dz}{t}, \quad \beta_1 := \frac{dt}{t}, \quad \beta_2 := \frac{d\overline{z}}{t},
\]
and on \(\mathcal{H}_2 \) (writing \(z = x + iy \in \mathcal{H}_2 \)):
\[
 \beta_1 := \frac{dz}{y}, \quad \beta_2 := -\frac{d\overline{z}}{y}.
\]
We note that a form $f_1\beta_1 + f_2\beta_2$ is harmonic on H_2 if and only if f_1/y and f_2/y are holomorphic functions in z ([By], lemma 60).

Let $k \in \{\mathbb{R}, \mathbb{C}\}$. The Jacobian $J(g, (0, 1))$ of left multiplication by g in $(0, 1) \in H_m$ with respect to the basis (β_i) gives rise to a representation

$$\varrho = \varrho_k : Z(k) \cdot K_k \to \text{SL}_m(\mathbb{C})$$

with $\varrho|_{Z(k)}$ trivial, which on K_k is explicitly given by

$$\varrho_k \left(\begin{pmatrix} u \\ -\overline{v} \end{pmatrix} \right) = \begin{pmatrix} u^2 & 2uv & v^2 \\ -u\overline{v} & u\overline{v} - v\overline{u} & v\overline{u} \\ 2uv & -u\overline{v} & u\overline{v} \end{pmatrix},$$

resp.

$$\varrho_k \left(\begin{pmatrix} \cos(\vartheta) & \sin(\vartheta) \\ -\sin(\vartheta) & \cos(\vartheta) \end{pmatrix} \right) = \begin{pmatrix} e^{2i\vartheta} & 0 \\ 0 & e^{-2i\vartheta} \end{pmatrix}$$

([By], (4.27), (4.21)). In the real case, we will only consider harmonic forms on H_2 that are multiples of β_1, thus we sometimes identify ϱ_k with its restriction $\varrho_k^{(1)}$ to the first basis vector β_1.

$$\varrho_k^{(1)} : \text{SO}(2) \to S^1 \subseteq \mathbb{C}^*,$$

$$\kappa_\vartheta = \begin{pmatrix} \cos(\vartheta) & \sin(\vartheta) \\ -\sin(\vartheta) & \cos(\vartheta) \end{pmatrix} \mapsto e^{2i\vartheta}.$$

For each i, let ω_i be the left-invariant differential 1-form on $\text{GL}_2(k)$ which coincides with the pullback $(\pi_C)^*\beta_i$ at the identity. Write ω (resp. β) for the column vector of the ω_i (resp. β_i). Then we have the following lemma from [By]:

Lemma 4.2. For each i, the differential ω_i on G induces β_i on H_m, by restriction to the subgroup $B'_k \cong H_m$. For a function $\phi : G \to \mathbb{C}^m$, the form $\phi \cdot \omega$ (with \mathbb{C}^m considered as a row vector, so \cdot is the scalar product of vectors) induces $f \cdot \beta$, where $f : H_m \to \mathbb{C}^m$ is given by

$$f(z, t) := \phi \left(\begin{pmatrix} t \\ z \\ 1 \end{pmatrix} \right).$$

(See [By], Lemma 57.)

To consider the infinite primes of F all at once, we define

$$H_\infty := \prod_{i=0}^d H_{m_i} = \prod_{i=0}^{r-1} H_2 \times \prod_{i=r}^d H_3$$

(where $m_i = 2$ if σ_i is a real embedding, and $= 3$ if σ_i is complex), and let $H_0^0 := \prod_{i=1}^d H_{m_i}$ be the product with the zeroth factor removed.

For each embedding σ_i, the elements of $\mathbb{P}^1(F)$ are cusps of H_{m_i}: for a given complex embedding $F \hookrightarrow \mathbb{C}$, we can identify F with $F \times \{0\} \hookrightarrow \mathbb{C} \times \mathbb{R}_{\geq 0}$ and define the "extended upper half-space" as $\overline{H}_3 := H_3 \cup F \cup \{\infty\} \subseteq \mathbb{C} \times \mathbb{R}_{\geq 0} \cup \{\infty\}$; \footnote{The choice of the 0-th factor is for convenience; we could also choose any other infinite place, whether real or complex.}
similarly for a given real embedding \(F \hookrightarrow \mathbb{R} \), we get the extended upper half-plane \(\overline{\mathcal{H}}_2 := \mathcal{H}_2 \cup F \cup \{ \infty \} \). A basis of neighbourhoods of the cusp \(\infty \) is given by the sets \(\{(u, t) \in \mathcal{H}_m | t > N \}, \ N \gg 0 \), and of \(x \in F \) by the open half-balls in \(\mathcal{H}_m \) with center \((x, 0)\).

Let \(G(F)^+ \subseteq G(F) \) denote the subgroup of matrices with totally positive determinant. It acts on \(\mathcal{H}_\infty^0 \) by composing the embedding

\[
G(F)^+ \hookrightarrow \prod_{v \mid \infty, v \neq 0} G(F_v)^+ \quad g \mapsto (\sigma_1(g), \ldots, \sigma_d(g)),
\]

with the actions of \(G(\mathbb{C})^+ = G(\mathbb{C}) \) on \(\mathcal{H}_3 \) and \(G(\mathbb{R})^+ \) on \(\mathcal{H}_2 \) as defined above, and on \(\Omega^{2\text{harm}}(\mathcal{H}_\infty^0) \) by the inverse of the corresponding pullback, \(\gamma \cdot \omega := (\gamma^{-1})^*\omega \). Both are left actions.

Denote by \(S_\mathbb{C} \) (resp. \(S_\mathbb{R} \)) the set of complex (resp. real) archimedean primes of \(F \). For each complex \(v \), we write the codomain of \(\varrho_{F_v} \) as

\[
\varrho_{F_v} : [Z(F_v) \cdot K_{F_v}] \to SL_3(\mathbb{C}) =: SL(V_v),
\]

for a three-dimensional \(\mathbb{C} \)-vector space \(V_v \). We denote the harmonic forms on \(GL_2(F_v) \), \(\mathcal{H}_{F_v} \) defined above by \(\omega_v, \beta_v \) etc.

Let \(V = \bigotimes_{v \in S_\mathbb{C}} V_v \cong (\mathbb{C}^3)^\otimes \), \(Z_\infty = \prod_{v \mid \infty} Z(F_v) \), \(K_\infty = \prod_{v \mid \infty} K_{F_v} \). We can merge the representations \(\varrho_{F_v} \) for each \(v \mid \infty \) into a representation

\[
\varrho = \varrho_\infty := \bigotimes_{v \in S_\mathbb{C}} \varrho_v \otimes \bigotimes_{v \in S_\mathbb{R}} \varrho_v^{(1)} : Z_\infty \cdot K_\infty \to SL(V),
\]

and define \(V \)-valued vectors of differential forms \(\omega := \bigotimes_{v \in S_\mathbb{C}} \omega_v \otimes \bigotimes_{v \in S_\mathbb{R}} \omega_v \), \(\beta := \bigotimes_{v \in S_\mathbb{C}} \beta_v \otimes \bigotimes_{v \in S_\mathbb{R}} \beta_v \) on \(GL_2(F_\infty) \) and \(\mathcal{H}_\infty \), respectively.

4.2 Automorphic forms

Let \(\chi_Z : \mathbb{A}_F^* / F^* \to \mathbb{C}^* \) be a Hecke character that is trivial at the archimedean places. We also denote by \(\chi_Z \) the corresponding character on \(Z(\mathbb{A}_F) \) under the isomorphism \(\mathbb{A}_F^* \to Z(\mathbb{A}_F), a \mapsto (\begin{smallmatrix} a & 0 \\ 0 & a \end{smallmatrix}) \).

Definition 4.3. An automorphic cusp form of parallel weight 2 with central character \(\chi_Z \) is a map \(\phi : G(\mathbb{A}_F) \to V \) such that

(i) \(\phi(z\gamma g) = \chi_Z(z)\phi(g) \) for all \(g \in G(\mathbb{A}), \ z \in Z(\mathbb{A}), \ \gamma \in G(F) \).

(ii) \(\phi(gk_\infty) = \phi(g)\phi(k_\infty) \) for all \(k_\infty \in K_\infty \), \(g \in G(\mathbb{A}) \) (considering \(V \) as a row vector).

(iii) \(\phi \) has “moderate growth” on \(B'_{\mathbb{A}} := \{ \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \in G(\mathbb{A}) \} \), i.e. \(\exists C, \lambda \forall A \in B'_{\mathbb{A}} : \|\phi(A)\| \leq C \cdot \sup(|y|^\lambda, |y|^{-\lambda}) \) (for any fixed norm \(\|\cdot\| \) on \(V \));

and \(\phi|_{G(\mathbb{A}_\infty)} \cdot \omega \) is the pullback of a harmonic form \(\omega_\phi = f_\phi \cdot \beta \) on \(\mathcal{H}_\infty \).
(iv) There exists a compact open subgroup $K' \subseteq G(A^\infty)$ such that $\phi(gk) = \phi(g)$ for all $g \in G(A)$ and $k \in K'$.

(v) For all $g \in G(A_F)$,
\[
\int_{K_F/F} \phi \left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} g \right) \, dx = 0. \quad \text{("Cuspidality")}
\]

We denote by $\mathcal{A}_0(G, \text{harm}, 2, \chi_Z)$ the space of all such maps ϕ.

For each $g^\infty \in A_F^\infty$, let $\omega_\phi(g^\infty)$ be the restriction of $\phi(g^\infty, \cdot) \cdot \omega$ from $G(A_F^\infty)$ to \mathcal{H}_∞; it is a $(d + 1)$-form on \mathcal{H}_∞.

We want to integrate $\omega_\phi(g^\infty)$ between two cusps of the space \mathcal{H}_{m_0}. (We will identify each $x \in \mathbb{P}^1(F)$ with its corresponding cusp in $\overline{\mathcal{H}}_{m_0}$ in the following.) The geodesic between the cusps $x \in F$ and ∞ in $\overline{\mathcal{H}}_{m_0}$ is the line $\{x\} \times \mathbb{R}^*_+ \subseteq \mathcal{H}_{m_0}$ and the integral of ω_ϕ along it is finite since ϕ is uniformly rapidly decreasing:

Theorem 4.4. (Gelfand, Piatetski-Shapiro) An automorphic cusp form ϕ is rapidly decreasing modulo the center on a fundamental domain \mathcal{F} of $GL_2(F) \backslash GL_2(A_F)$; i.e. there exists an integer r such that for all $N \in \mathbb{N}$ there exists a $C > 0$ such that
\[
\phi(zg) \leq C|z|^r\|g\|^{-N}
\]
for all $z \in Z(A_F)$, $g \in \mathcal{F} \cap SL_2(A_F)$. Here $\|g\| := \max\{|g_{i,j}|, |(g^{-1})_{i,j}|\}_{i,j \in \{1,2\}}$.

(See [CKM], Thm. 2.2; or [Kur78], (6) for quadratic imaginary F.)

In fact, the integral of $\omega_\phi(g^\infty)$ along $\{x\} \times \mathbb{R}^*_+ \subseteq \mathcal{H}_{m_0}$ equals the integral of $\phi(g^\infty, \cdot) \cdot \omega$ along a path $g_t \in GL_2(F_{m_0})$, $t \in \mathbb{R}^*_+$, where we can choose
\[
g_t = \frac{1}{\sqrt{t}} \begin{pmatrix} t & x \\ 0 & 1 \end{pmatrix} = \left(\begin{pmatrix} \frac{1}{\sqrt{t}} & \frac{1}{\sqrt{t}} \\ 0 & \sqrt{t} \end{pmatrix} \right),
\]
and thus have $\|g_t\| = \sqrt{t}$ for all $t \gg 0$, $\|g_t\| = C\frac{1}{\sqrt{t}}$ for $t \ll 1$, so the integral $\int_x^\infty \omega_\phi(g^\infty) \in \Omega^d_{\text{harm}}(\mathcal{H}_{m_0}^0)$ is well-defined by the theorem.

For any two cusps $a, b \in \mathbb{P}^1(F)$, we now define
\[
\int_a^b \omega_\phi(g^\infty) := \int_a^\infty \omega_\phi(g^\infty) - \int_b^\infty \omega_\phi(g^\infty) \in \Omega^d_{\text{harm}}(\mathcal{H}_{m_0}^0).
\]

Since ϕ is uniformly rapidly decreasing ($\|g_t\|$ does not depend on x, for $t \gg 0$), this integral along the path $(a, 0) \to (a, \infty) = (b, \infty) \to (b, 0)$ in $\overline{\mathcal{H}}_{m_0}$ is the same as the limit (for $t \to \infty$) of the integral along $(a, 0) \to (a, t) \to (b, t) \to (b, 0)$; and since ω_ϕ is harmonic (and thus integration is path-independent within \mathcal{H}_{m_0}) the latter is in fact independent of t, so equality holds for each $t > 0$, or along any path from $(a, 0)$ to $(b, 0)$ in \mathcal{H}_{m_0}. Thus $\int_a^b \omega_\phi(g^\infty)$ equals the integral of $\omega_\phi(g^\infty)$ along the geodesic from a to b, and we have
\[
\int_a^b \omega_\phi(g^\infty) + \int_b^c \omega_\phi(g^\infty) = \int_a^c \omega_\phi(g^\infty)
\]
for any three cusps \(a, b, c \in \mathbb{P}^1(F)\). Let \(\text{Div}(\mathbb{P}^1(F))\) denote the free abelian group of divisors of \(\mathbb{P}^1(F)\), and let \(\mathcal{M} := \text{Div}_0(\mathbb{P}^1(F))\) be the subgroup of divisors of degree 0.

We can extend the definition of the integral linearly to get a homomorphism

\[
\mathcal{M} \to \Omega^d_{\text{harm}}(H_0^\infty), \quad m \mapsto \int_m \omega_\phi(g^\infty).
\]

For any three cusps \(a, b, c \in \mathbb{P}^1(F)\), let \(\mathbf{m} \in \mathcal{M}\), and \(g \in G(A_\infty)\), we have

\[
\gamma^* \left(\int_{\gamma m} \omega_\phi(\gamma g) \right)(x_\infty^0) = \int_{\gamma m} \omega_\phi(\gamma g)(\gamma x_\infty^0)
\]

\[
= \int_{\gamma m} \phi(\gamma g, \gamma x_\infty^0) \cdot \omega
\]

\[
= \int_{\gamma m} \phi(g, x_\infty^0) \cdot \omega \quad \text{ (by (i) of definition 4.3)}
\]

\[
= \int_m \omega_\phi(g)(x_\infty^0),
\]

i.e.

\[
\gamma^* \left(\int_{\gamma m} \omega_\phi(\gamma g) \right) = \int_m \omega_\phi(g).
\]

Now let \(m\) be an ideal of \(F\) prime to \(p\), let \(\chi_Z\) be a Hecke character of conductor dividing \(m\), and \(\alpha_1, \alpha_2\) as above.

Definition 4.5. We define \(S_2(G, m, \alpha_1, \alpha_2)\) to be the \(\mathbb{C}\)-vector space of all maps

\[
\Phi : G(A_p) \to \mathcal{B}_{\alpha_1, \alpha_2}(F_p, V) = \text{Hom}(\mathcal{B}_{\alpha_1, \alpha_2}(F_p, \mathbb{C}), V)
\]

such that:

(a) \(\phi\) is “almost” \(K_0(m)\)-invariant (in the notation of [Ge]), i.e. \(\phi(gk) = \phi(g)\) for all \(g \in G(A_p)\) and \(k \in \prod_{v|m} G(O_v)\), and \(\phi(gk) = \chi_Z(a)\phi(g)\) for all \(v|m\),

\[
k = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K_0(m) \quad \text{and} \quad g \in G(A_p).
\]

(b) For each \(\psi \in \mathcal{B}_{\alpha_1, \alpha_2}(F_p, \mathbb{C})\), the map

\[
\langle \Phi, \psi \rangle : G(A) = G(F_p) \times G(A_p) \to V, \quad (g_p, g^p) \mapsto \Phi(g^p)(g_p^p)\psi
\]

lies in \(\mathcal{A}_0(G, \text{harm} \circ \chi_Z)\).

Note that (a) implies that \(\phi\) is \(K'\)-invariant for some open subgroup \(K' \subseteq K_0(m)^p\) of finite index ([By] / [We]).
4.3 Cohomology of \(\text{GL}_2(F) \)

Let \(M \) be a left \(G(F) \)-module and \(N \) an \(R[H] \)-module, for a ring \(R \) and a subgroup \(H \subseteq G(F) \). Let \(S \subseteq S_p \) be a set of primes of \(F \) dividing \(p \); as above, let \(\chi = \chi_S \) be a Hecke character of conductor \(\mathfrak{m} \) prime to \(p \).

Definition 4.6. For a compact open subgroup \(K \subseteq K_0(\mathfrak{m})^S \subseteq \mathbb{A}^{S,\infty} \), we denote by \(A_f(K, S, M; N) \) the \(\mathcal{R} \)-module of all maps \(\Phi : \mathbb{A}^{S,\infty} \times M \to N \) such that

1. \(\Phi(gk, m) = \Phi(g, m) \) for all \(g \in \mathbb{A}^{S,\infty} \), \(m \in M \), \(k \in \prod_{v \mid \mathfrak{m}} G(O_v) \);
2. \(\Phi(gk) = \chi_Z(a)\Phi(g) \) for all \(v \mid \mathfrak{m} \), \(k = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in K_0(\mathfrak{m})_v \) and \(g \in \mathbb{A}^{S,\infty} \), \(m \in M \).

We denote by \(A_f(S, M; N) \) the union of the \(A_f(K, S, M; N) \) over all compact open subgroups \(K \).

\(A_f(S, M; N) \) is a left \(\mathbb{A}^{S,\infty} \)-module via \((\gamma \cdot \Phi)(g, m) := \Phi(\gamma^{-1}g, m) \) and has a left \(H \)-operation given by \((\gamma \cdot \Phi)(g, m) := \gamma\Phi(\gamma^{-1}g, \gamma^{-1}m) \), commuting with the \(G(\mathbb{A}^{S,\infty}) \)-operation.

In contrast to our previous notation, we consider two subsets \(S_1 \subseteq S_2 \subseteq S_p \) in this section. We put \((\alpha_1, \alpha_2)_{S_1} := \{ (\alpha_{p,1}, \alpha_{p,2}) \mid \mathfrak{p} \in S_1 \} \), we set
\[
A_f((\alpha_1, \alpha_2)_{S_1}, S_2, M; N) = A_f(S_2, M; B^{(\alpha_1, \alpha_2)}_{S_1}(F_{S_1}, N));
\]
we write \(A_f(\mathfrak{m}, (\alpha_1, \alpha_2)_{S_1}, S_2, M; N) := A_f(K_0(\mathfrak{m}), (\alpha_1, \alpha_2)_{S_1}, S_2, M; N) \). If \(S_1 = S_2 \), we will usually drop \(S_2 \) from all these notations.

We have a natural identification of \(A_f(\mathfrak{m}, (\alpha_1, \alpha_2)_{S_1}, M; N) \) with the space of maps \(G(\mathbb{A}^{S,\infty}) \times M \times B^{(\alpha_1, \alpha_2)}_{S_1}(F_{S_1}, R) \to N \) that are “almost” \(K \)-invariant.

Let \(S_0 \subseteq S_1 \subseteq S_2 \subseteq S_p \) be subsets. The pairing \((2.10)\) induces a pairing
\[
\langle \cdot, \cdot \rangle : A_f((\alpha_1, \alpha_2)_{S_1}, S_2, M; N) \times B^{(\alpha_1, \alpha_2)}_{S_0}(F_{S_0}, R) \to A_f((\alpha_1, \alpha_2)_{S_0}, S_2, M; N),
\] (4.2)
which, when restricting to \(K \)-invariant elements, induces an isomorphism
\[
A_f(K, (\alpha_1, \alpha_2)_{S_1}, S_2, M; N) \cong B^{(\alpha_1, \alpha_2)}_{S_1-S_0}(F_{S_1-S_0}, A_f((\alpha_1, \alpha_2)_{S_0}, S_2, M; N)).
\] (4.3)
Putting \(S_0 := S_1 - \{ \mathfrak{p} \} \) for a prime \(\mathfrak{p} \in S_1 \), we specifically get an isomorphism
\[
A_f(K, (\alpha_1, \alpha_2)_{S_1}, S_2, M; N) \cong B^{q_{p,1},q_{p,2}}_{\mathfrak{p},\mathfrak{p}}(F_{\mathfrak{p}}, A_f((\alpha_1, \alpha_2)_{S_0}, S_2, M; N)).
\]

Lemmas \((2.9)\) and \((2.10)\) now immediately imply the following:

Lemma 4.7. Let \(S \subseteq S_p \), \(\mathfrak{p} \in S \), \(S_0 := S - \{ \mathfrak{p} \} \). Let \(K \subseteq \mathbb{A}^{S,\infty} \) be a compact open subgroup.
(a) If \(\pi_{\alpha_{p,1}, \alpha_{p,2}} \) is spherical, we have exact sequences
\[
0 \to A_f(K, (\alpha_1, \alpha_2)_S, M; N) \to \mathcal{Z} \overset{R-\mathfrak{p}}{\to} Z \to 0
\]
Using the five-lemma on the associated diagram of long exact cohomology sequences (4.4) holds for \(A \) and \(q \).

Proof. (cf. [Sp], Prop. 5.6)

Let \(\pi_{a,1,a_p,2} \) is special (with central character \(\chi_p \)), we have exact sequences

\[
0 \to A_f(K, (\underline{\alpha_1}, \underline{\alpha_2}), M; N) \to Z' \to Z \to 0
\]

and

\[
0 \to Z \to A_f(K, (\underline{\alpha_1}, \underline{\alpha_2}), M; N)^2 \to A_f(K, (\underline{\alpha_1}, \underline{\alpha_2}), M; N)^2 \to 0,
\]

\[
0 \to Z' \to A_f(K', (\underline{\alpha_1}, \underline{\alpha_2}), M; N)^2 \to A_f(K', (\underline{\alpha_1}, \underline{\alpha_2}), M; N)^2 \to 0,
\]

with \(Z := A_f(K_0, (\underline{\alpha_1}, \underline{\alpha_2}), S, M; N(\chi_p)) \) and \(Z' := A_f(K'_0, (\underline{\alpha_1}, \underline{\alpha_2}), S, M; N(\chi_p)) \), where \(K_0 = K \times K_p \) and \(K'_0 = K \times K'_p \) are compact open subgroups of \(G(\mathbb{A}_S) \).

Proposition 4.8. Let \(S \subseteq S_p \) and let \(K \) be a compact open subgroup of \(G(\mathbb{A}_S) \).

(a) For each flat \(R \)-module \(N \) (with trivial \(G(F) \)-action), the canonical map

\[
H^q(G(F)^+, A_f(K, (\underline{\alpha_1}, \underline{\alpha_2}), M; R)) \otimes_R N \to H^q(G(F)^+, A_f(K, (\underline{\alpha_1}, \underline{\alpha_2}), M; N))
\]

is an isomorphism for each \(q \geq 0 \).

(b) If \(R \) is finitely generated as a \(\mathbb{Z} \)-module, then \(H^q(G(F)^+, A_f(K, (\underline{\alpha_1}, \underline{\alpha_2}), M; R) \) is finitely generated over \(R \).

Proof. (cf. [Sp], Prop. 5.6)

(a) The exact sequence of abelian groups \(0 \to M \to \text{Div}(\mathbb{P}^1(F)) \cong \text{Ind}_{B(F)}^{G(F)} \mathbb{Z} \to Z \to 0 \) induces a short exact sequence of \(G(\mathbb{A}_S) \)-modules

\[
0 \to A_f(K, (\underline{\alpha_1}, \underline{\alpha_2}), Z; N) \to \text{Coind}_{B(F)}^{G(F)} A_f(K, (\underline{\alpha_1}, \underline{\alpha_2}), Z; N) \to A_f(K, (\underline{\alpha_1}, \underline{\alpha_2}), M; N) \to 0. \tag{4.4}
\]

Using the five-lemma on the associated diagram of long exact cohomology sequences \(H^q(\cdot, R) \otimes_R N \) (which is exact due to flatness) and \(H^q(\cdot, N) \), it is enough to show that (4.4) holds for \(A_f(K, (\alpha_1, \alpha_2), Z; \cdot) \) and \(\text{Coind}_{B(F)}^{G(F)} A_f(K, (\alpha_1, \alpha_2), Z; \cdot) \) instead of \(A_f(K, (\underline{\alpha_1}, \underline{\alpha_2}), M; \cdot) \). By lemma 4.7 it is furthermore enough to consider the case \(S = \emptyset \). Since \(A_f(K, Z; N) \cong \text{Coind}^{G(\mathbb{A}_S)}_K N \), we thus have to show that

\[
H^q(G(F)^+, \text{Coind}^{G(\mathbb{A}_S)}_K R) \otimes_R N \to H^q(G(F)^+, \text{Coind}^{G(\mathbb{A}_S)}_K N),
\]

\[
H^q(B(F)^+, \text{Coind}^{G(\mathbb{A}_S)}_K R) \otimes_R N \to H^q(B(F)^+, \text{Coind}^{G(\mathbb{A}_S)}_K N)
\]

are isomorphisms for all \(q \geq 0 \) and all flat \(R \)-modules \(N \).
Since every flat module is the direct limit of free modules of finite rank, it suffices to show that \(N \mapsto H^q(G(F)^+, \operatorname{Coind}_K^{G(k^{\infty})} N) \) and \(N \mapsto H^q(B(F)^+, \operatorname{Coind}_K^{G(k^{\infty})} N) \) commute with direct limits.

For \(g \in G(\mathbb{A}^{\infty}) \), put \(\Gamma_g := G(F)^+ \cap gKg^{-1} \). By the strong approximation theorem, \(G(F)^+ \backslash G(\mathbb{A}^{\infty}) / K \) is finite. Choosing a system of representatives \(g_1, \ldots, g_n \), we have

\[
H^q(G(F)^+, \operatorname{Coind}_K^{G(k^{\infty})} N) = \bigoplus_{i=1}^n H^q(\Gamma_{g_i}, N).
\]

Since the groups \(\Gamma_g \) are arithmetic, they are of type (VFL), and thus the functors \(N \mapsto H^q(\Gamma_g, N) \) commute with direct limits by [Se2], remarque on p. 101.

Similarly, the Iwasawa decomposition \(G(\mathbb{A}^{\infty}) = B(\mathbb{A}^{\infty}) \prod_{v \mid \infty} G(\mathcal{O}_v) \) implies that \(B(F)^+ \backslash G(\mathbb{A}^{\infty}) / K \) is finite. Therefore, the same arguments show that \(N \mapsto H^q(B(F)^+, \operatorname{Coind}_K^{G(k^{\infty})} N) \) commutes with direct limits.

(b) This follows along the same line of reasoning as (a), since \(H^q(\Gamma_g, R) \) is finitely generated over \(\mathbb{Z} \) by [Se2], remarque on p. 101.

With the notation as above, we define

\[
H^q_i(G(F)^+, \mathcal{A}_f((\alpha_1, \alpha_2)_S, M; R)) := \lim_{\to} H^q_i(G(F)^+, \mathcal{A}_f(K, (\alpha_1, \alpha_2)_S, M; R))
\]

where the limit runs over all compact open subgroups \(K \subseteq G(\mathbb{A}^{S, \infty}) \); and similarly define \(H^q_i(B(F)^+, \mathcal{A}_f((\alpha_1, \alpha_2)_S, M; R) \). The proposition immediately implies

Corollary 4.9. Let \(R \to R' \) be a flat ring homomorphism. Then the canonical map

\[
H^q_i(G(F)^+, \mathcal{A}_f((\alpha_1, \alpha_2)_S, M; R)) \otimes_R R' \to H^q_i(G(F)^+, \mathcal{A}_f((\alpha_1, \alpha_2)_S, M; R') \]

is an isomorphism, for all \(q \geq 0 \).

If \(R = k \) is a field of characteristic zero, \(H^q_i(G(F)^+, \mathcal{A}_f((\alpha_1, \alpha_2)_S, M; R) \) is a smooth \(G(\mathbb{A}^{S, \infty}) \)-module, and we have

\[
H^q_i(G(F)^+, \mathcal{A}_f((\alpha_1, \alpha_2)_S, M; k)^K = H^q_i(G(F)^+, \mathcal{A}_f(K, (\alpha_1, \alpha_2)_S, M; k).
\]

We identify \(G(F)/G(F)^+ \) with the group \(\Sigma = \{\pm 1\}^r \) via the isomorphism

\[
G(F)/G(F)^+ \xrightarrow{\det} F^*/F^*_+ \approx \Sigma
\]

(with all groups being trivial for \(r = 0 \)). Then \(\Sigma \) acts on \(H^q_i(G(F)^+, \mathcal{A}_f((\alpha_1, \alpha_2)_S, M; k) \) and \(H^q(G(F)^+, \mathcal{A}_f(K, (\alpha_1, \alpha_2)_S, M; k) \) by conjugation.

For \(\pi \in \mathcal{A}_0(G, 2) \) and \(\underline{\mu} \in \Sigma \), we write \(H^q_i(G(F)^+, \cdot)_{\pi, \underline{\mu}} := \operatorname{Hom}_{G(\mathbb{A}^{S, \infty})}(\pi^S, H^q_i(G(F)^+, \cdot))_{\underline{\mu}} \).

Now we can show that \(\pi \) occurs with multiplicity \(2^r \) in \(H^q_i(G(F)^+, \mathcal{A}_f((\alpha_1, \alpha_2)_S, M; k) \):

Proposition 4.10. Let \(\pi \in \mathcal{A}_0(G, 2, \chi_Z, \alpha_1, \alpha_2) \), \(S \subseteq S_p \). Let \(k \) be a field which contains the field of definition of \(\pi \). Then for every \(\underline{\mu} \in \Sigma \), we have

\[
H^q_i(G(F)^+, \mathcal{A}_f((\alpha_1, \alpha_2)_S, M; k)_{\pi, \underline{\mu}} = \begin{cases} k, & \text{if } q = d; \\ 0, & \text{if } q \in \{0, \ldots, d - 1\} \end{cases}
\]
Proof. (cf. [Sp], prop. 5.8) First, assume \(S = \emptyset \). The sequence (4.3) induces a cohomology sequence

\[\ldots \rightarrow H^2_f(G(F)^+, \mathcal{A}_f(Z, k)) \rightarrow H^2_f(B(F)^+, \mathcal{A}_f(Z, k)) \rightarrow H^2_f(G(F)^+, \mathcal{A}_f(M, k)) \rightarrow H^{2+1}_f(G(F)^+, \mathcal{A}_f(Z, k)) \rightarrow \ldots \]

Harder ([Ha], 3.6.2.2) has determined the action of \(G(A^\infty) \) on \(H^2_f(G(F)^+, \mathcal{A}_f(Z, k)) \) and \(H^2_f(G(F)^+, \mathcal{A}_f(Z, k)) \): For \(q < d \), \(H^2_f(G(F)^+, \mathcal{A}_f(Z, k)) \) is a direct sum of one-dimensional representations; for \(q = d \) there is a \(G(A^\infty) \)-stable decomposition

\[H^{d+1}_f(G(F)^+, \mathcal{A}_f(Z, k)) = H^{d+1}_{\text{cusp}} \oplus H^{d+1}_{\text{res}} \oplus H^{d+1}_{\text{Eis}}, \]

with the last two summands again being direct sums of one-dimensional representations, and

\[H^{d+1}_{\text{cusp}}(G(F)^+, \mathcal{A}_f(Z, k)) \mid_{\pi, \mu} \cong k \]

([Ha], 3.6.2.2); \(H^2_f(B(F)^+, \mathcal{A}_f(Z, k)) \) always decomposes into one-dimensional \(G(A^\infty) \)-representations. Since \(\pi^S \) does not map to one-dimensional representations, this proves the claim for \(S = \emptyset \).

Now for \(S = S_0 \cup \{ p \} \) and \(\pi_p \) spherical, lemma (4.7(a)) and the statement for \(S_0 \) give an isomorphism

\[H^2_f(G(F)^+, \mathcal{A}_f((\alpha_1, \alpha_2)_S, \mathcal{M}; k)) \mid_{\pi, \mu} \cong H^2_f(G(F)^+, \mathcal{A}_f((\alpha_1, \alpha_2)_S, \mathcal{M}; k)) \mid_{\pi, \mu} \]

since the Hecke operators \(T_p, R_p \) act on the left-hand side by multiplication with \(a_p \) or \(\nu_p \), respectively. If \(\pi_p \) is special, we can similarly deduce the statement for \(S \) from that for \(S_0 \), using the first exact sequence of lemma (4.7(b)) (cf. [Sp]), since the results of [Ha] also hold when twisting \(k \) by a (central) character. \(\square \)

4.4 Eichler-Shimura map

Given a subgroup \(K_0(m)^p \subseteq G(A^{p, \infty}) \) as above, there is a map

\[I_0 : S_2(G, m, \alpha_1, \alpha_2) \rightarrow H^0(G(F)^+, \mathcal{A}_f(m, \alpha_1, \alpha_2, \mathcal{M}; \Omega^d_{\text{harm}}(H^0_\infty))) \]

given by

\[I_0(\Phi) : (\psi, (g, m)) \mapsto \int_m \omega_{(\phi, \psi)}(1_p, g), \]

for \(\psi \in B_{\alpha_1, \alpha_2}(F_p, \mathbb{C}), g \in G(A^{p, \infty}), m \in \mathcal{M} \), where \(1_p \) denotes the unity element in \(G(F_p) \).

This is well-defined since both sides are “almost” \(K_0(m) \)-invariant, and the \(G(F)^+ \)-invariance of \(I_0(\Phi) \) follows from the similar invariance for differential forms, and the definition of the \(G(F)^+ \)-operations on \(\mathcal{A}_f(M, N) \), \(B_{\alpha_1, \alpha_2}(F_p, N) \) and \(\Omega^d_{\text{harm}}(H^0_\infty) \): For each \(\psi \in B_{\alpha_1, \alpha_2}(F_p, \mathbb{C}), g \in G(A^{p, \infty}), m \in \mathcal{M} \), we have
\[(\gamma I_0(\Phi))(\psi, (g, m)) = \gamma I_0(\Phi)(\gamma^{-1}\psi, (\gamma^{-1}g, \gamma^{-1}m))\]

\[= \gamma \cdot \int_{\gamma^{-1}m} \omega_{\Phi, \gamma^{-1}\psi}(1_p, \gamma^{-1}g)\]

\[= (\gamma^{-1})^* \int_{\gamma^{-1}m} \omega_{\Phi, \gamma^{-1}\psi}(1_p, \gamma^{-1}g)\]

\[= \int_m \omega_{\Phi, \gamma^{-1}\psi}(1_p, g) \quad \text{ (by (1.1))}\]

\[= I_0(\Phi)(\psi, (g, m)).\]

We have a complex \(A_f(m, \alpha_1, \alpha_2, M; \mathbb{C}) \rightarrow C^* := A_f(m, \alpha_1, \alpha_2, M; \Omega^*_{\harm}(\mathcal{H}_\infty^0)).\)

Therefore we get a map

\[S_2(G, m, \alpha_1, \alpha_2) \rightarrow H^d(G(F)^+, A_f(m, \alpha_1, \alpha_2, M; \mathbb{C})) \quad \text{(4.6)}\]

by composing \(I_0\) with the edge morphism \(H^0(G(F)^+, C^d) \rightarrow H^d(G(F)^+, A_f(m, \alpha_1, \alpha_2, M; \mathbb{C}))\) of the spectral sequence

\[H^q(G(F)^+, C^p) \Rightarrow H^{p+q}(G(F)^+, C^*).\]

Using the map \(\delta^{\alpha_1, \alpha_2} : \mathcal{B}^{\alpha_1, \alpha_2}(F, V) \rightarrow \text{Dist}(F_p^*, V)\) from section 2.7, we next define a map

\[\Delta^{\alpha_1, \alpha_2}_{F^p} : S_2(G, m, \alpha_1, \alpha_2) \rightarrow \mathcal{D}(S_1, V) \quad \text{(4.7)}\]

by

\[\Delta^{\alpha_1, \alpha_2}_{F^p}(\Phi)(U, x^p) = \delta^{\alpha_1, \alpha_2} \left(\Phi \begin{pmatrix} x^p & 0 \\ 0 & 1 \end{pmatrix} \right) (U)\]

for \(U \in \mathcal{C}(F_{S_1} \times F_{S_2}), x^p \in \mathbb{P}^p\), and we denote by \(\Delta^{\alpha_1, \alpha_2} : S_2(G, m, \alpha_1, \alpha_2) \rightarrow \mathcal{D}(S_1, \mathbb{C})\) its \((1,\ldots,1)\)th coordinate function (i.e. corresponding to the harmonic forms \(\otimes_{v|\infty}^1(\omega_v)_1, \otimes_{v|\infty}^1(\beta_v)_1\) in section 1.1):

\[\Delta^{\alpha_1, \alpha_2}(\Phi)(U, x^p) = \delta^{\alpha_1, \alpha_2} \left(\Phi \begin{pmatrix} x^p & 0 \\ 0 & 1 \end{pmatrix} \right)_{(1,\ldots,1)} (U).\]

Since for each complex prime \(v\), \(S^1 \cong \text{SU}(2) \cap T(\mathbb{C})\) operates via \(g_v\) on \(\Phi\), \(\Delta^{\alpha_1, \alpha_2}\) is easily seen to be \(S^1\)-invariant, i.e. it lies in \(\mathcal{D}'(S_1, \mathbb{C})\).

We also have a natural (i.e. commuting with the complex maps of each \(C^*\)) family of maps

\[A_f(m, \alpha_1, \alpha_2, M, \Omega^i_{\harm}(\mathcal{H}_\infty^0)) \rightarrow \mathcal{D}_f(S_1, \Omega^i(U^0_\infty, \mathbb{C})) \quad \text{(4.8)}\]

for all \(i \geq 0\), and

\[A_f(m, \alpha_1, \alpha_2, M, \mathbb{C}) \rightarrow \mathcal{D}_f(S_1, \mathbb{C}) \quad \text{(4.9)}\]

(the \(i = -1\)-th term in the complexes), by mapping \(\Phi \in A_f(m, \alpha_1, \alpha_2, M, \cdot)\) first to

\[(U, x^{p, \infty}) \mapsto \Phi \begin{pmatrix} x^{p, \infty} & 0 \\ 0 & 1 \end{pmatrix}, \infty - 0 \quad (\delta^{\alpha_1, \alpha_2}(1_U)) \in \Omega^i_{\harm}(\mathcal{H}_\infty^0)\] resp. \(\in \mathbb{C},\)
and then for $i \geq 0$ restricting the differential forms to $\Omega^i(U_\infty^0)$ via

$$U_\infty^0 = \prod_{v \in S_\infty^0} \mathbb{R}^* \hookrightarrow \prod_{v \in S_\infty^0} \mathcal{H}_v = \mathcal{H}_\infty^0.$$

One easily checks that (4.8) and (4.9) are compatible with the homomorphism of "acting groups" $F'^{\prime} \hookrightarrow G(F)^{\prime}$ for $x = \left(\begin{smallmatrix} 1 \\ 0 \\ 0 \\ 1 \end{smallmatrix} \right)$, so we get induced maps in cohomology

$$H^0(G(F)^{\prime}, A_f(m, \alpha_1, \alpha_2, \mathcal{M}, \Omega^d_{\text{harm}}(\mathcal{H}_\infty^0))) \rightarrow H^0(D_f(S_1, \Omega^d(U_\infty^0, \mathbb{C}))) \quad (4.10)$$

and

$$H^d(G(F)^{\prime}, A_f(m, \alpha_1, \alpha_2, \mathcal{M}, \mathbb{C})) \rightarrow H^d(F'^{\prime}, D_f(S_1, \mathbb{C}))) \quad (4.11)$$

which are linked by edge morphisms of the respective spectral sequences to give a commutative diagram (given in the proof below).

Proposition 4.11. We have a commutative diagram:

$$\begin{array}{ccc}
S_2(G, m, \alpha_1, \alpha_2) & \xrightarrow{\Delta^G_{\alpha_1, \alpha_2}} & H^d(G(F)^{\prime}, A_f(m, \alpha_1, \alpha_2, \mathcal{M}, \mathbb{C})) \\
\downarrow \quad \Delta^G_{\alpha_1, \alpha_2} & & \downarrow \quad \Delta^G_{\alpha_1, \alpha_2} \\
\mathcal{D}'(S_1, \mathbb{C}) & \xrightarrow{\phi \mapsto \kappa_0} & H^d(F'^{\prime}, D_f(S_1, \mathbb{C})))
\end{array}$$

Proof. The given diagram factorizes as

$$\begin{array}{ccc}
S_2(G, m, \alpha_1, \alpha_2) & \xrightarrow{I_0} & H^0(G(F)^{\prime}, A_f(m, \alpha_1, \alpha_2, \mathcal{M}, \Omega^d_{\text{harm}}(\mathcal{H}_\infty^0))) \\
\downarrow \Delta^G_{\alpha_1, \alpha_2} & & \downarrow \Delta^G_{\alpha_1, \alpha_2} \\
\mathcal{D}'(S_1, \mathbb{C}) & \xrightarrow{\phi \mapsto \kappa_0} & H^d(F'^{\prime}, D_f(S_1, \mathbb{C})))
\end{array}$$

The right-hand square is the naturally commutative square mentioned above; the commutativity of the left-hand square can be checked by hand.

Let $\Phi \in S_2(G, m, \alpha_1, \alpha_2)$. Then $I_0(\Phi)$ is the map $(\psi, (g, m)) \mapsto \int_m \omega_{(\Phi, \psi)}(1_p, g)$, which is mapped under (4.10) to

$$(U, x^{p, \infty}) \mapsto \int_0^\infty \omega_{\Phi, \delta_{\alpha_1, \alpha_2}(1_U)} \left(1_p, \begin{pmatrix} x_p^{U, \infty} & 0 \\ 0 & 1 \end{pmatrix} \right) |_{U_\infty^0}$$

along the other path, Φ is mapped under $\Delta^G_{\alpha_1, \alpha_2}$ to the map

$$(U, x^p) \mapsto \delta^{\alpha_1, \alpha_2}_{\alpha_1, \alpha_2}(\Phi x^p \begin{pmatrix} 0 \\ 1 \end{pmatrix}) \begin{pmatrix} 0 \\ 1 \end{pmatrix} (\Phi x^p \begin{pmatrix} 0 \\ 1 \end{pmatrix})$$

and then also to

$$(U, x^{p, \infty}) \mapsto \int_0^\infty \Phi_{(1, \ldots, 1)} \left(x^p \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) \left(\delta_{\alpha_1, \alpha_2}(1_U) \right) d^x r_0 d^x r_1 \ldots d^x r_d$$

(with $x^p = (x^{p, \infty}, r_0, r_1, \ldots, r_d))$. □
4.5 Whittaker model

We now consider an automorphic representation $\pi = \otimes_v \pi_v \in \mathcal{A}_0(G, \mathbb{Z}, \chi, \alpha_1, \alpha_2)$. Denote by $c(\pi) := \prod_{v \text{ finite}} c(\pi_v)$ the conductor of π.

Let $\chi : \mathbb{I}^\infty \to \mathbb{C}^*$ be a unitary character of the finite ideles; for each finite place v, set $\chi_v = \chi|_{\mathbb{F}_v^\times}$. For each finite and each real prime, we choose $W_v \in \mathcal{W}_v$ such that the local L-factor equals the local zeta function at $g = 1$, i.e. such that

$$L(s, \pi_v \otimes \chi_v) = \int_{F_v^\times} \chi_v(x)|x|^{s-\frac{1}{2}} \, dx$$

for any unramified quasi-character $\chi_v : F_v^\times \to \mathbb{C}^*$ and $\Re(s) \gg 0$.

This is possible by [Ge], Thm. 6.12 (ii); and by loc.cit., Prop. 6.17, W_v can be chosen such that $SO(2)$ operates on W_v via ϖ_v for real archimedian v, and is “almost” $K_0(c(\pi_v))$-invariant for finite v.

For complex primes v of F, we can also choose a W_v satisfying (4.12) and which behaves well with respect to the SU(2)-action ϖ_v, as follows:

By [Kur77], there exists a three-dimensional function

$$W_v = (W_v^0, W_v^1, W_v^2) : G(F_v) \to \mathbb{C}^3$$

such that $W_v^i \in \mathcal{W}_v$ for all i, and such that SU(2) operates by the right via ϖ_v on \mathcal{W}_v; i.e. for all $g \in G(F_v)$ and $h = \begin{pmatrix} u & v \\ -\pi & \pi \end{pmatrix} \in SU(2)$, we have

$$W_v(gh) = W_v(g)M_3(h),$$

where

$$M_3(h) = \begin{pmatrix} u^2 & 2uv & v^2 \\ -u\overline{v} & u\overline{v} - v\overline{u} & v\overline{u} \\ \pi^2 & -2u\overline{v} & \pi^2 \end{pmatrix}.$$

Note that W_v^1 is thus invariant under right multiplication by a diagonal matrix $\begin{pmatrix} u & 0 \\ 0 & \pi \end{pmatrix}$ with $u \in S^1 \subseteq \mathbb{C}$. Since π_v has trivial central character for archimedian v by our assumption, a function in \mathcal{W}_v is also invariant under $Z(F_v)$. Thus we have

$$W_v^1(g \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix}) = W_v^1(g) \quad \text{for all } g \in G(F_v), \ u \in S^1.$$

W_v^1 can be described explicitly in terms of a certain Bessel function, as follows. The modified Bessel differential equation of order $\alpha \in \mathbb{C}$ is

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - (x^2 + \alpha^2) y = 0.$$

Its solution space (on $\{\Re z > 0\}$) is two-dimensional; we are only interested in the second standard solution K_v, which is characterised by the asymptotics

$$K_v(z) \sim \sqrt{\frac{\pi}{2z}} e^{-z}$$

(as defined in [We]; see also [DLMF], 10.25)\[vi\]

\[vi\]Note that [Kur77] uses a slightly different definition of the K_v, which is $\frac{2}{\pi}$ times our K_v.\[vii\]
By [Kur77], we have
\[W_1^v \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} = \frac{2}{\pi} x^2 K_0(4\pi x). \]

\(W_0^v \) and \(W_2^v \) can also be described in term of Bessel functions; they are linearly dependent and scalar multiples of \(x^2 K_1(4\pi x). \)

By [JL], Ch. 1, Thm. 6.2(vi), \(\sigma(| \cdot |^{-1/2}_C, | \cdot |^{-1/2}_C) \cong \pi(\mu_1, \mu_2) \) with
\[\mu_1(z) = z^{1/2} - \frac{1}{2} = |z|^{-1/2}_C, \quad \mu_2(z) = z^{-1/2} \cdot |z|^{-1/2}_C, \]
and the L-series of the representation is the product of the L-factors of these two characters:
\[L_v(s, \pi_v) = L(s, \mu_1) L(s, \mu_2) = 2 (2\pi)^{-(s+\frac{1}{2})} \Gamma(s + \frac{1}{2}) \cdot 2 (2\pi)^{-(s+\frac{1}{2})} \Gamma(s + \frac{1}{2}) \]
\[= 4 (2\pi)^{-2s+1} \Gamma(s + \frac{1}{2})^2. \]

On the other hand, letting \(d^\times x = \frac{dx}{|x|^2} = \frac{dx}{r} \) (for \(x = re^{i\theta} \)), we have for \(\text{Re}(s) > -\frac{1}{2} \):
\[\int_{C^*} W_1^v \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} |x|^{s-\frac{1}{2}} d^\times x = \int_{S^1} \int_{\mathbb{R}^+} W_1^v \begin{pmatrix} re^{i\theta} & 0 \\ 0 & 1 \end{pmatrix} |x|^{|s-\frac{1}{2}} d\frac{r}{r} d\theta \]
\[= 4 \int_0^{\infty} x^2 K_0(4\pi x) x^{2s-1} \frac{dx}{x} \]
(invariance under \(\text{SU}(2) \cdot \mathbb{Z}(F_v) \) gives a constant integral w.r.t. \(\theta \))
\[= 4 (4\pi)^{-2s+1} \int_0^{\infty} K_0(x) x^{2s} dx
= 4 (4\pi)^{-2s+1} 2^{2s-1} \Gamma(s + \frac{1}{2})^2 \]
(by [DLMF] 10.43.19)
\[= 4 (2\pi)^{-2s+1} \Gamma(s + \frac{1}{2})^2 \]

Thus we have
\[\int_{C^*} W_1^v \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} |x|^{s-\frac{1}{2}} d^\times x = (2\pi)^2 L_v(s, \pi_v) \]
for all \(\text{Re}(s) > -\frac{1}{2} \).

We set \(W_v := (2\pi)^{-2} W_1^v \); thus \((4.12)\) holds also for complex primes.

Now that we have defined \(W_v \) for all primes \(v \), put \(W^p(g) := \prod_{v \mid p} W_v(g_v) \) for all \(g = (g_v)_v \in G(A_F^p) \).

We will also need the vector-valued function \(\overline{W}^p : G(A_F) \to V \) given by
\[\overline{W}^p(g) := \prod_{v \mid p \text{ finite or } v \text{ real}} W_v(g_v) \cdot \bigotimes_{v \text{ complex}} (2\pi)^{-2} W_v(g_v). \]
\section{\textit{p}-adic measures of automorphic forms}

Now return to our $\pi \in \mathfrak{A}_0(G, \xi, \alpha_1, \alpha_2)$. We fix an additive character $\psi : \mathbb{A} \rightarrow \mathbb{C}^*$ which is trivial on F, and let ψ_v denote the restriction of ψ to $F_v \rightarrow \mathbb{A}$, for all primes v. We further require that $\ker(\psi_v) \supseteq \mathcal{O}_p$ and $p^{-1} \not\subseteq \ker(\psi_p)$ for all $p | p$, so that we can apply the results of chapter 2.

As in chapter 2 let $\mu_\pi := \mu_{\alpha_p, \beta_p}$ denote the distribution $\chi_{D_p}(x)\psi(x)dx$ on F_p, and let $\mu_\pi := \prod_{p \mid p} \mu_\pi$ be the product distribution on $F_p := \prod_{p \mid p} F_p$.

Define $\phi = \phi : \mathfrak{C}(F_{S_1} \times F_{S_2}^*) \times \mathbb{P} \rightarrow \mathbb{C}$ by

$$\phi(U, x^p) := \sum_{\zeta \in F^*} \mu_\pi(\zeta U) W_p \left(\begin{array}{c} \zeta x^p \\ 0 \\ 1 \end{array} \right).$$

By proposition 2.13(a), we have for each $U \in \mathfrak{C}(F_{S_1} \times F_{S_2}^*)$:

$$\phi(x_p U, x^p) = \sum_{\zeta \in F^*} \mu_\pi(\zeta x_p U) W_p \left(\begin{array}{c} \zeta x^p \\ 0 \\ 1 \end{array} \right)$$

$$= \sum_{\zeta \in F^*} W_U \left(\begin{array}{c} \zeta x_p \\ 0 \\ 1 \end{array} \right) W_p \left(\begin{array}{c} \zeta x^p \\ 0 \\ 1 \end{array} \right)$$

$$= \sum_{\zeta \in F^*} W \left(\begin{array}{c} \zeta x \\ 0 \\ 1 \end{array} \right),$$

where $W(g) := W_U(g_p) W_p(g^p)$ lies in the global Whittaker model $\mathcal{W} = \mathcal{W}(\pi)$ for all $g = (g_p, g^p) \in G(\mathbb{A})$, putting $W_U := W_{A_U}$; so ϕ is well-defined and lies in $\mathcal{D}(S_1, \mathbb{C})$ (since W is smooth and rapidly decreasing; distribution property, F^*- and U^{∞}- invariance being clear by the definitions of ϕ and W_p).

Let $\mu := \mu_\phi$, be the distribution on \mathcal{G}_p corresponding to ϕ, as defined in \ref{3.5}, and let $\kappa := \kappa_\phi \in H^d(F^*, \mathcal{D}_f(S_1, \mathbb{C}))$ be the cohomology class defined by \ref{3.10} and \ref{3.11}.

\textbf{Theorem 4.12.} Let $\pi \in \mathfrak{A}_0(G, \xi, \alpha_1, \alpha_2)$; we assume the α_p to be ordered such that $|\alpha_{p,1}| \leq |\alpha_{p,2}|$ for all p.

(a) Let $\chi : \mathcal{G}_p \rightarrow \mathbb{C}^*$ be a character of finite order with conductor $\mathfrak{f}(\chi)$. Then we have the interpolation property

$$\int_{\mathcal{G}_p} \chi(\gamma) \mu_\pi(d\gamma) = \tau(\chi) \prod_{p \in \mathcal{P}} e(\pi_p, \chi_p) \cdot L \left(\frac{1}{2}, \pi \otimes \chi \right),$$

where

$$e(\pi_p, \chi_p) = \begin{cases} (1 - \alpha_{p,1} q_p^{-1})(1 - \alpha_{p,2} q_p^{-1})(1 - \alpha_{p,2} q_p^{-1}) \cdot \text{ord}_p(f(\chi)) = 0 \text{ and } \pi \text{ spherical}, \\ \text{ord}_p(f(\chi)) = 0 \text{ and } \pi \text{ special}, \\ \text{ord}_p(f(\chi)) > 0 \end{cases}$$

\footnote{So we have $\chi_p = | \cdot | \chi_{p,2}$ for all special π_p.}
and $x_p := \chi_p(\varpi_p)$.

(b) Let $U_p := \prod_{p \mid \mathfrak{p}} U_p$, put $\phi_0 := (\phi_\pi)_{U_p}$. Then

$$
\int_{1/F^*} \phi_0(x) d^\times x = \prod_{p \mid \mathfrak{p}} e(\pi_p, 1) \cdot L(\frac{1}{2}, \pi).
$$

(c) κ_π is integral (cf. definition [J-I0]). For $\mu \in \Sigma$, let $\kappa_{\pi, \mu}$ be the projection of κ_π to $H^d(F^{s'}, D_{f(S_1, \mathbb{C})})_{\pi, \mu}$. Then $\kappa_{\pi, \mu}$ is integral of rank ≤ 1.

Proof. (a) We consider χ as a character on \mathbb{I}_F/F^* (which is unitary and trivial on \mathbb{I}_∞), and choose a subgroup $V \subseteq U_p$ such that $\chi_p|_V = 1$ (where $\chi_p := \chi|_{F_p}$) and V is a product of subgroups $V_p \subseteq U_p$.

Let $W_V \in W_p$ be the product of the W_{V_p}, as defined in prop. [2.13] set $W(g) := W^p(g^p)W_V(y_p) \in W$, and let

$$
\phi_V(x) := \phi(x_p V, x^p) = \sum_{\xi \in F^*} W \begin{pmatrix} \xi x^p & 0 \\ 0 & 1 \end{pmatrix}.
$$

Since π is unitary, we have $|\alpha_{p,2}| \geq \sqrt{q_p} > 1 = |\chi_p(\varpi_p)|$ for all p, thus $e(\pi_p, \chi_p : [\mathfrak{p}]^s)$ is always non-singular, and we will be able to apply proposition [2.4] locally below.

We want to show that the equality

$$
[U_p : V] \int_{1/F^*} \chi(x)|x|^s \phi_V(x) d^\times x = N(f(\chi))^s \tau(\chi) \prod_{p \mid \mathfrak{p}} e(\pi_p, \chi_p : [\mathfrak{p}]^s) \cdot L(s + \frac{1}{2}, \pi \otimes \chi)
$$

holds for $s = 0$. Since both the left-hand side and $L(s + \frac{1}{2}, \pi \otimes \chi)$ are holomorphic in s (see [I-I], Thm. 6.18 and its proof), it suffices to show this equality for $\text{Re}(s) \gg 0$.

For such s, we have

$$
[U_p : V] \int_{1/F^*} \chi(x)|x|^s \phi_V(x) d^\times x = \int_{1/F_p} \chi(x)|x|^s W_U(\begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}) d^\times x
$$

$$
= \prod_{p \mid \mathfrak{p}} \int_{F_p^s} \chi_p(x)|x|^s \mu_\pi(dx) \cdot L_{\mathfrak{p}}(s + \frac{1}{2}, \pi \otimes \chi) \quad \text{(by prop. [2.13] and [4.12])}
$$

$$
= \prod_{p \mid \mathfrak{p}} (e(\pi_p, \chi_p : [\mathfrak{p}]^s) \tau(\chi_p : [\mathfrak{p}]^s)) \cdot L(s + \frac{1}{2}, \pi \otimes \chi) \quad \text{(by prop. [2.4])}
$$

$$
= N(f(\chi))^s \tau(\chi) \prod_{p \mid \mathfrak{p}} e(\pi_p, \chi_p : [\mathfrak{p}]^s) \cdot L(s + \frac{1}{2}, \pi \otimes \chi).
$$

For $s = 0$, we get the claimed statement, since by (3.5) we have

$$
\int_{\mathcal{G}_p} \chi(\gamma) \mu_\pi(d\gamma) = \int_{1/F^*} \chi(x) \phi(dx_p, x^p) d^\times x^p = [U_p : V] \int_{1/F^*} \chi(x) \phi_V(x) d^\times x.
$$
(b) This follows immediately from (a), setting $\chi = 1$, since $\tau(1) = 1$.

(c) Let $\lambda_{1,2} \in B_{\alpha_1,\alpha_2}(F_p, \mathbb{C})$ be the image of $\otimes_{v \mid p} \lambda_{\alpha_v \nu_v}$ under the map (2.12). For each $\psi \in B_{\alpha_1,\alpha_2}(F_p, \mathbb{C})$, define

\[
\langle \Phi, \psi \rangle \left(g^p, g_p \right) := \sum_{\zeta \in F^*} \lambda_{\alpha_1,\alpha_2} \begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} g_p \cdot \psi \right) W^p \begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} g^p
\]

for a V-valued function W_ψ whose every coordinate function is in $W(\pi)$.

This defines a map $\Phi_v : G(H_p) \rightarrow B_{\alpha_1,\alpha_2}(F_v, V)$. In fact, Φ_v lies in $S_2(G, m, \alpha_1, \alpha_2)$, where m is the prime-to-p part of $f(\pi)$.

Condition (a) of definition 4.3 follows from the fact that the W_v are almost $K_v \cdot c(\pi_v))$-invariant, for $v \nmid p$, ∞.

For condition (b), we check that $\langle \Phi_v, \psi \rangle$ satisfies the conditions (i)-(v) in the definition of $A_0(G, \text{harm}. \chi)$:

Each coordinate function of $\langle \Phi_v, \psi \rangle$ lies in (the underlying space of) π by [Bu], Thm. 3.5.5, thus $\langle \Phi, \psi \rangle$ fulfills (i) and (v), and has moderate growth. (ii) and (iv) follow from the choice of the W_v and W_v.

Now since $\pi_v \cong \sigma(\cdot \cdot | v^{1/2} | \cdot | v^{-1/2})$ for $v \mid \infty$, it follows from those conditions that $\langle \Phi, \psi \rangle |_{B_{\pi_v} \cdot \beta_v} = C \sum_{\zeta \in F^*} W_\zeta \begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} \cdot \beta_v$ is harmonic for each archimedian place v of F: for real v, it is well-known that $f(z)/y$ is holomorphic for $f \in D(2)$, and thus $f \cdot (\beta_v)_1$ is harmonic; for complex v, this is also true, see e.g. [Kur78], p. 546 or [We].

Now we have

\[
\Delta^{\alpha_1,\alpha_2}(\Phi_{1,x}) = \delta^{\alpha_1,\alpha_2} \begin{pmatrix} \alpha_1 & 0 \\ 0 & 1 \end{pmatrix}(U)
\]

\[
= \sum_{\zeta \in F^*} \lambda_{\alpha_1,\alpha_2} \begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} \delta^{\alpha_1,\alpha_2}(U) W^p \begin{pmatrix} \zeta \cdot x^p & 0 \\ 0 & 1 \end{pmatrix}
\]

\[
(*) \sum_{\zeta \in F^*} \mu_{\pi_v}(\zeta U) W^p \begin{pmatrix} \zeta \cdot x^p & 0 \\ 0 & 1 \end{pmatrix} = \phi(U, x^p),
\]

where $(*)$ follows from the calculation (with w_0 as defined in Ch. 2)

\[
\lambda_{\alpha_1,\alpha_2} \begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} \delta^{\alpha_1,\alpha_2}(1_U) = \prod_{\nu \mid p} F_p \int \delta_{\alpha_1,\alpha_2}(1_U) \left(w_0 \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \right) \psi_p(-x) dx
\]

\[
= \prod_{\nu \mid p} F_p \int \delta_{\alpha_1,\alpha_2}(1_U) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \zeta^{-1} & 0 \\ 0 & 1 \end{pmatrix} \psi_p(-x) dx
\]

\[
= \prod_{\nu \mid p} F_p \int \chi_{\alpha_2}(-x) \chi_{\alpha_1}(-1) \psi_p(-x) dx
\]

\[
= \prod_{\nu \mid p} \int \chi_{\alpha_2}(-x) \psi_p(-x) dx = \mu_{\pi_v}(\zeta U)
\]

50
for all $\zeta \in F^*$.

Let R be the integral closure of $\mathbb{Z}[a_p, \nu_p; p|p]$ in its field of fractions; thus R is a Dedekind ring $\subseteq \mathcal{O}$ for which $\mathcal{B}_{\mathcal{O}_1, \mathcal{O}_2}(F, R)$ is defined. \mathbb{C} is flat as an R-module (since torsion-free modules over a Dedekind ring are flat); thus by proposition 4.8, the natural map

$$H^d(G(F)^+, \mathcal{A}_f(m, \alpha_1, \alpha_2, \mathcal{M}, R)) \otimes \mathbb{C} \to H^d(G(F)^+, \mathcal{A}_f(m, \alpha_1, \alpha_2, \mathcal{M}, \mathbb{C}))$$

is an isomorphism. The map (4.11) can be described as the "R-valued" map

$$H^d(G(F)^+, \mathcal{A}_f(m, \alpha_1, \alpha_2, \mathcal{M}, R)) \otimes \mathbb{C} \to H^d(F^*, \mathcal{D}_f(R))$$

tensored with \mathbb{C}. By proposition 4.11, κ_π lies in the image of (4.11), and thus in $H^d(F^*, \mathcal{D}_f(R)) \otimes \mathbb{C}$; i.e. it is integral.

Similarly, it follows from propositions 4.8 and 4.10 that κ_π, μ is integral of rank ≤ 1.

Corollary 4.13. μ_π is a p-adic measure.

Proof. By proposition 3.8, $\mu_\pi = \mu_\phi = \mu_\kappa$. Since κ_π is integral, μ_κ_π is a p-adic measure by corollary 3.18. \square

4.7 Vanishing order of the p-adic L-function

Let L_1, \ldots, L_t be independent \mathbb{Z}_p-extensions of F, and let $\ell_1, \ldots, \ell_t : \mathcal{G}_p \to \mathbb{F}\mathbb{Z}_p$ be the homomorphisms corresponding to them (as in section 3.2). Then we have the p-adic L-function

$$L_p(S, \pi) := L_p(s_1, \ldots, s_t, \kappa_\pi, +) := \int_{\mathbb{Q}_p} \prod_{i=1}^t \exp_p(s_i \ell_i(\gamma)) \mu_\pi(d\gamma)$$

of definition 3.5 with $s_1, \ldots, s_t \in \mathbb{Z}_p$. $L_p(S, \pi)$ is a locally analytic function with values in the one-dimensional \mathbb{C}_p-vector space $V_{\kappa_\pi, +} = L_{\kappa, \mathcal{O}, +} \otimes \mathbb{C}_p$.

By theorem 3.13 we have

Theorem 4.14. $L_p(S, \pi)$ is a locally analytic (t-varibled) function, and all partial derivatives of order $\leq n := \#(S_1)$ vanish; i.e. we have

$$\operatorname{ord}_{S_1} L_p(S, \pi) \geq n.$$
(resp. split multiplicative) reduction at p. For $v|\infty$, π_v is “of weight 2” as assumed before.

We say that E is p-ordinary if it has good ordinary or multiplicative reduction at all places $p|p$ of F. So E is p-ordinary iff π is ordinary at all $p|p$. In this case, we define the p-adic L-function of E by $L_p(E, s) := L_p(\mathcal{L}_p, \pi)$.

For each $i \in \{1, \ldots, t\}$ and each prime $p|p$ of F, we write $\ell_{p,i}$ for the restriction of ℓ_i to $F_p \hookrightarrow \mathbb{I} \rightarrow G_p$. Let q_p be the Tate period of $E|F_p$ and \ord_p the normalized valuation on F_p^*. We define the L-invariants of $E|F_p$ with respect to L_i by

$$L_{p,i}(E) := \frac{\ell_{p,i}(q_p)}{\ord_p(q_p)}$$

Then we can generalize Hida’s exceptional zero conjecture to general number fields:

Conjecture 4.15. Let S_1 be the set of $p|p$ at which E has split multiplicative reduction, $n := \#S_1$, $S_2 := S_p \setminus S_1$. Then

$$\ord_{s=0} L_p(E, s) \geq n,$$

and we have

$$\frac{\partial^n}{\partial s^n} L_p(E, s)|_{s=0} = n! \prod_{p \in S_1} L_{p,i}(E) \prod_{p \in S_2} e(\pi_p, 1) \cdot L(E, 1),$$

for all $i = 1, \ldots, t$, where $e(\pi_p, 1) = (1 - \alpha_{p,1}^{-1})^2$ if E has good ordinary reduction at p, and $e(\pi_p, 1) = 2$ if E has (non-split) multiplicative reduction at p.

Note that the conjecture (considered for all sets of independent \mathbb{Z}_p-extensions of F) also determines the “mixed” partial derivatives $\frac{\partial^n}{\partial s^n} L_p(E, 0)$ of order n, since they can be written as \mathbb{Q}-linear combinations of n-th “pure” partial derivatives $\frac{\partial^n}{\partial s^n} L_p(E, 0)$ with respect to other choices of independent \mathbb{Z}_p-extensions of F by remark 3.11.

Theorem 4.14 immediately implies the first part (4.13) of the conjecture:

Corollary 4.16. Let E be a p-ordinary modular elliptic curve over F. Let n be the number of places $p|p$ at which E has split multiplicative reduction. Then we have

$$\ord_{s=0} L_p(E, s) \geq n.$$
References

[BL] L. Barthel, R. Livne: *Modular Representations of GL$_2$ of a Local Field: The Ordinary, Unramified Case.* Journal of Number Theory 55, 1-27 (1995).

[By] J. Bygott: *Modular Forms and Modular Symbols over Imaginary Quadratic Fields.* PhD thesis, 1998.

[Br] K. Brown: *Cohomology of Groups.* Graduate Texts in Mathematics, Springer-Verlag, 1982.

[Bu] D. Bump: *Automorphic Forms and Representations.* Cambridge University Press, 1998.

[CKM] J. Cogdell, H. Kim, M. Murty: *Lectures on automorphic L-functions.* Fields Institute Monographs, 20. American Mathematical Society, Providence, RI, 2004.

[De] H. Deppe: *p-adic L-functions of automorphic forms*, Dissertation (Ph.D. thesis) at Bielefeld University, 2013,
http://pub.uni-bielefeld.de/publication/2629389

[DLMF] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/

[Ge] S. Gelbart: *Automorphic forms on adele groups.* Princeton University Press and University of Tokyo Press, 1975.

[GS] R. Greenberg, G. Stevens: *p-adic L-functions and p-adic periods of modular forms.* Invent. Math. 111 (1993), 407-447.

[Ha] G. Harder: *Eisenstein cohomology of arithmetic groups. The case GL2.* Invent. Math. 89 (1987), 37-118.

[Har] Sh. Haran: *p-adic L-functions for modular forms.* Compositio Math. 62 (1987), no. 1, 31-46.

[Hi] H. Hida: *L-invariants of Tate curves.* Pure Appl. Math. Q. 5, 1343-1384 (2009)

[JL] H. Jacquet; R. P. Langlands: *Automorphic forms on GL(2).* Lecture Notes in Mathematics, Vol. 114. Springer-Verlag, Berlin-New York, 1970.

[Kud] St. Kudla: *From Modular Forms to Automorphic Representations.* In: Bump, Cogdell et al.: *An Introduction to the Langlands Program,* Birkhäuser Boston, 2004.

[Kur77] P. F. Kurcanov: *The zeta-function of elliptic curves over certain abelian extensions of imaginary quadratic fields.* English translation in: Math. USSR-Sb. 31 (1977), no. 1, 49-62 (1978).

[Kur78] P. F. Kurcanov: *Cohomology of discrete groups and Dirichlet series connected with Jacquet-Langlands cusp forms.* English translation in: Math. USSR Izvestija, Vol 12 (1978), No. 3, 543-555.

[MTT] B. Mazur, J. Tate and J. Teitelbaum: *On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer.* Invent. Math. 84 (1986), 1-48.
[Neu] J. Neukirch: *Algebraische Zahlentheorie*. Springer-Lehrbuch, 1992.

[Se1] J.-P. Serre: *Trees*. Springer Monographs in Mathematics, 1980.

[Se2] J.-P. Serre: *Cohomologie des groupes discrets*. Ann. of Math. Studies 70 (1971), 77-169.

[Si] J. Silverman: *Arithmetic of Elliptic Curves*. Graduate Texts in Mathematics, Springer-Verlag, 1986.

[Sp] M. Spieß: *On special zeros of p-adic L-functions of Hilbert modular forms*. Invent. Math., April 2013 (to be published in print),
http://link.springer.com/article/10.1007/s00222-013-0465-0 (preprint at http://arxiv.org/abs/1207.2289).

[Wa] L.C. Washington: *Introduction to Cyclotomic Fields*. Graduate Texts in Mathematics, Springer-Verlag, 1982.

[We] A. Weil: *Dirichlet Series and Automorphic Forms*. Lecture Note in Mathematics, Springer-Verlag, 1971.