ON THE EQUATION $m = xyzw$ WITH $x \leq y \leq z \leq w$ IN POSITIVE INTEGERS

MADJID MIRZAVAZIRI AND DANIEL YAQUBI

Abstract. As a well-known enumerative problem, the number of solutions of the equation $m = m_1 + \ldots + m_k$ with $m_1 \leq \ldots \leq m_k$ in positive integers is $\Pi(m, k) = \sum_{i=0}^{k} \Pi(m - k, i)$ and Π is called the additive partition function. In this paper, we give a recursive formula for the so-called multiplicative partition function $\mu_1(m, k) :=$ the number of solutions of the equation $m = m_1 \ldots m_k$ with $m_1 \leq \ldots \leq m_k$ in positive integers. In particular, using an elementary proof, we give an explicit formula for the cases $k = 1, 2, 3, 4$.

1. Introduction

Partitioning numbers and sets are two important enumerative problems. These problems can be stated in different ways. Given a positive integer m the total number of ways of writing m as a sum of positive integers is clearly 2^{m-1}. To see this we can put m balls in a row and we then realize that the ways of writing m as a sum of positive integers correspond to putting some walls between the balls. As we can put walls in $m-1$ places, we have the result. On the other hand, the number of solutions of the equation $m = m_1 \ldots m_k$ in positive integers for a fixed k, is equal to the number of ways of putting $k-1$ walls into $m-1$ allowed places; i.e. $\binom{m-1}{k-1}$.

We can also consider the equation $m = m_1 + \ldots + m_k$ in non-negative integers. For a fixed k, the number of solutions is $\binom{m+k-1}{k-1}$. This equals to the number of ways of putting m balls and $k-1$ walls in a row. The total number of ways of writing m as a sum of non-negative integers cannot be a good question, since the answer is infinity.

Moreover, we can add some conditions to the problem. For instance, we can think about the number of solutions of the equation $m = m_1 + \ldots + m_k$ with the conditions $\ell_i \leq m_i \leq \ell'_i$ for $i = 1, \ldots, k$. A straightforward application of the Inclusion Exclusion Principle solves this problem.

2010 Mathematics Subject Classification. 11P81, 05A17.

Key words and phrases. Multiplicative partition function.
On the other hand, if we add the condition $m_1 \leq \ldots \leq m_k$ to our problem then we have a more difficult situation. The answer is denoted by $\Pi(m, k)$ and a recursive argument shows that $\Pi(m, k) = \sum_{i=0}^{k} \Pi(m - k, i)$ with the initial values $\Pi(m, m) = \Pi(m, 1) = \Pi(0, 0) = 1$. For a discussion about these problems see [1].

These considerations motivate us to think about a multiplicative version of the above problems. Various types of this problem can be found in sequences A001055, A034836, A122179, A122180 and A088432 of [7]. We deal with this problem in the present paper and we give a solution for the problem whenever $k = 1, 2, 3$ or 4. A survey on this problem can be found in [4]. The reader is also referred to [3] and [5].

There is a solution to the case $k = 4$ of multiplicative and additive forms of our problem using the Polya Enumeration Theorem. For a complete solutions of these problems see section 7.5 of [2] and for a background material on the Polya method and multiset cycle indices see [6].

2. A Recursive Formula

Definition 2.1. Let m, k and ℓ be positive integers. We denote the number of solutions of the equation

- $m = m_1 \ldots m_k$ with $m_i \geq \ell$ by $\nu_{\ell}(m, k)$;
- $m = m_1 \ldots m_k$ with $\ell \leq m_1 \leq \ldots \leq m_k$ by $\mu_{\ell}(m, k)$;
- $m = m_1 \ldots m_k$ with $\ell \leq m_1, \ldots, m_k$ and $k \in \mathbb{N}$ by $\nu_k(m)$;
- $m = m_1 \ldots m_k$ with $\ell \leq m_1 \leq \ldots \leq m_k$ and $k \in \mathbb{N}$ by $\mu_k(m)$;
- $m = m_1 \ldots m_k$ with $m_i \geq \ell$ and $\{m_1, \ldots, m_k\} = \{m_1', \ldots, m_r'\}$ and $\beta_j = |\{i : m_i = m_j'\}|$, $1 \leq j \leq r$ by $\nu_r'(m; \beta_1, \ldots, \beta_r)$;
- $m = m_1^{\beta_1} \ldots m_r^{\beta_r}$ with $\beta_i \in \mathbb{N}$, $\beta_1 + \ldots + \beta_r = k$ and $\ell \leq m_1 < \ldots < m_r$ by $\mu_r'(m; \beta_1, \ldots, \beta_r)$.

Lemma 2.2. Let $m > 1, k$ be positive integers and $p_1^{\alpha_1} \ldots p_n^{\alpha_n}$ be the prime decomposition of m. Then

$$\nu_1(m, k) = \prod_{j=1}^{n} \binom{\alpha_j + k - 1}{k - 1}$$

and

$$\nu_2(m, k) = \sum_{i=0}^{k-1} (-1)^i \binom{k}{i} \prod_{j=1}^{n} \binom{\alpha_j + k - i - 1}{k - i - 1}.$$

Proof. Suppose that for $1 \leq j \leq n$ we have α_j balls labelled p_j and we want to put these balls into k different cells. There is a one to one correspondence between these situations
and multiplicative partitioning \(m = m_1 \ldots m_k \). In fact we can consider \(m_j \) as the product of the balls in cell \(j \). There are \(\binom{\alpha_j + k - 1}{k - 1} \) ways to put balls labelled \(p_j \). Thus the first part is obvious.

For the second part, let \(E_r \) be the set of all situations in which the cell \(r \) is empty, where \(1 \leq r \leq k \). Then we have

\[
|E_{r_1} \cap \ldots \cap E_{r_i}| = \prod_{j=1}^{n} \binom{\alpha_j + k - i - 1}{k - i - 1}, \quad 1 \leq i \leq k - 1.
\]

Thus the Inclusion Exclusion Principle implies the result. \(\square \)

Example 2.3. We evaluate \(\nu_2(m) \) for \(m = p^\alpha \). Clearly

\[
\nu_1(m, k) = \binom{\alpha + k - 1}{k - 1}
\]

and

\[
\nu_2(m) = \sum_{k=1}^{\alpha} \sum_{i=0}^{k-1} (-1)^i \binom{k}{i} \prod_{j=1}^{n} \binom{\alpha_j + k - i - 1}{k - i - 1}.
\]

Suppose that there are \(k \) boys and \(\alpha - 1 \) girls and we want to choose a team consisting of \(k - 1 \) girls. This is obviously equal to \(\binom{\alpha - 1}{k - 1} \).

Let \(A_r \) be the set of all situations in which the boy \(r \) is belonged to the chosen team. Then

\[
|A_{r_1} \cap \ldots \cap A_{r_i}| = \binom{\alpha + k - i - 1}{k - i - 1}, \quad 1 \leq i \leq k - 1.
\]

By the Inclusion Exclusion Principle we therefore have

\[
\nu_2(m) = \sum_{k=1}^{\alpha} \sum_{i=0}^{k-1} (-1)^i \binom{k}{i} \prod_{j=1}^{n} \binom{\alpha_j + k - i - 1}{k - i - 1}
\]

\[
= \sum_{k=1}^{\alpha - 1} \binom{k - 1}{\alpha - 1}
\]

\[
= 2^{\alpha - 1}.
\]

Proposition 2.4. Let \(m > 1 \) and \(k, \ell \) be positive integers. Suppose that \(\ell^s \) divides \(m \) but \(\ell^{s+1} \) does not divide \(m \). Then

\[
\mu_\ell(m, k) = \sum_{i=\max\{k-s,1\}}^{\min\{k,s\}} \mu_{\ell+1}(m, i).
\]
Proof. Let

\[E = \{(m_1, \ldots, m_k) : m = m_1 \ldots m_k, \ell \leq m_1 \leq \ldots \leq m_k\} \]

and

\[E_i = \{(m_1, \ldots, m_k) \in E : m_1 = \ldots = m_i = \ell, m_{i+1} \neq \ell\}, \quad i = 0, 1, \ldots, \min\{k-1, s\}. \]

Then \(E = \bigcup_{i=0}^{\min\{k-1, s\}} E_i \) and the union is disjoint. Thus

\[
\mu_{\ell}(m, k) = \sum_{i=0}^{\min\{k-1, s\}} |E_i| = \sum_{i=0}^{\min\{k-1, s\}} \mu_{\ell+1}(m, k-i) = \sum_{i=\max\{k-s, 1\}}^{\min\{k, s\}} \mu_{\ell+1}(m, i). \]

□

Corollary 2.5. Let \(m > 1 \) and \(k, \ell \) be positive integers. Then

\[
\mu_1(m, k) = \sum_{i=1}^{k} \mu_2(m, i). \]

Proof. Using Proposition 2.4 we have the result, since \(1^s \mid m \) for each positive integer \(s \). □

The following result is straightforward.

Lemma 2.6. Let \(m, k \) and \(\ell \) be positive integers. Then

i. \(\nu_\ell(m, k) = \sum_{d|m, d|\ell} \nu_\ell(m/d, k-1) \);

ii. \(\mu_\ell(m, k) = \sum_{d|m, d|\ell} \mu_\ell(m/d, k-1) \);

iii. \(\nu_\ell(m, k) = \sum_{\beta_i \in \mathbb{N}, \beta_1 + \ldots + \beta_r = \ell} \mu_\ell(m; \beta_1, \ldots, \beta_r) \);

iv. \(\mu_\ell(m, k) = \sum_{\beta_i \in \mathbb{N}, \beta_1 + \ldots + \beta_r = \ell} \mu_\ell(m; \beta_1, \ldots, \beta_r) \);

v. \(\mu_{\ell'}(m; \beta_1, \ldots, \beta_r) = \frac{k!}{\beta_1! \ldots \beta_r!} \nu_{\ell'}(m; \beta_1, \ldots, \beta_r), \quad \beta_i \in \mathbb{N}, \beta_1 + \ldots + \beta_r = k. \)

3. An Explicit Formula For the Cases \(k = 1, 2, 3, 4 \) and \(\ell = 1, 2 \)

We now aim to give an explicit formula for the cases \(k = 1, 2, 3, 4 \) and \(\ell = 1, 2 \). In the following, we denote the number of natural divisors of \(m \) by \(\tau(m) \). Moreover,

\[
\varepsilon_i(m) = \begin{cases} 1 & \text{if } \sqrt{m} \in \mathbb{N} \\
0 & \text{otherwise} \end{cases} \]

Proposition 3.1. Let \(m > 1 \) be a positive integer. Then

\[
\mu_1(m, 1) = \mu_2(m, 1) = 1, \]

\[
\mu_1(m, 2) = \left\lfloor \frac{\tau(m)}{2} \right\rfloor \quad \text{and} \quad \mu_2(m, 2) = \left\lfloor \frac{\tau(m)}{2} \right\rfloor - 1. \]
We have

\[\nu(m, 2) = \frac{1}{2} \left(\frac{\tau(m) - 1}{2} \right) + 1 = \left\lceil \frac{\tau(m)}{2} \right\rceil. \]

Using Corollary 2.5, we now have

\[\mu_2(m, 2) = \mu_1(m, 2) - 1. \]

Theorem 3.2. Let \(m > 1 \) be a positive integer and \(p_1^{a_1} \ldots p_n^{a_n} \) be its prime decomposition. Then

\[
\mu_1(m, 3) = \frac{1}{6} \prod_{j=1}^{n} \left(\frac{\alpha_j + 2}{2} \right) + \frac{1}{2} \prod_{j=1}^{n} \left(\frac{\alpha_j + 2}{2} \right) + \frac{\varepsilon_3(m)}{3},
\]

\[
\mu_2(m, 3) = \mu_1(m, 3) - \left\lceil \frac{\tau(m)}{2} \right\rceil.
\]

Proof. We have

\[
\nu_1(m, 3) = \nu_1'(m; 1, 1, 1) + \nu_1'(m; 1, 2) + \nu_1'(m; 3) = 6\nu_1'(m; 1, 1, 1) + 3\nu_1'(m; 1, 2) + \mu_1'(m; 3).
\]

We know that \(\mu_1'(m; 1, 2) \) is the number of ways to write \(m \) as \(xy^2 \), where \(x \neq y \). This is equal to the number of \(y \)'s such that \(y^2 \mid m \) minus the number of ways such that \(\frac{m}{y^2} = y \), in which the latter is equal to \(\varepsilon_3(m) \). The number of \(y \)'s such that \(y^2 \mid m \) is \(\prod_{j=1}^{n} \left(\frac{\alpha_j + 2}{2} \right) \). Moreover, \(\mu_1'(m; 3) = \varepsilon_3(m) \). Thus Lemma 2.2 implies

\[
\mu_1'(m; 1, 1, 1) = \frac{1}{6} \left(\nu_1(m, 3) - 3 \left(\prod_{j=1}^{n} \left(\frac{\alpha_j + 2}{2} \right) - \varepsilon_3(m) \right) - \varepsilon_3(m) \right)
\]

\[= \frac{1}{6} \nu_1(m, 3) - \frac{1}{2} \prod_{j=1}^{n} \left(\frac{\alpha_j + 2}{2} \right) + \frac{1}{3} \varepsilon_3(m)
\]

\[= \frac{1}{6} \prod_{j=1}^{n} \left(\frac{\alpha_j + 2}{2} \right) - \frac{1}{2} \prod_{j=1}^{n} \left(\frac{\alpha_j + 2}{2} \right) + \frac{\varepsilon_3(m)}{3},
\]

we have

\[
\mu_1(m, 3) = \mu_1'(m; 1, 1, 1) + \mu_1'(m; 1, 2) + \mu_1'(m; 3)
\]

\[= \frac{1}{6} \prod_{j=1}^{n} \left(\frac{\alpha_j + 2}{2} \right) - \frac{1}{2} \prod_{j=1}^{n} \left(\frac{\alpha_j + 2}{2} \right) + \frac{\varepsilon_3(m)}{3} + \prod_{j=1}^{n} \left(\frac{\alpha_j + 2}{2} \right) - \varepsilon_3(m) + \varepsilon_3(m).
\]

This proves the first part.
For the second part, using Corollary 2.5, we have

$$\mu_2(m, 3) = \mu_1(m, 3) - \mu_2(m, 2) - 1 = \mu_1(m, 3) - \left\lfloor \frac{\tau(m)}{2} \right\rfloor + 1 - 1.$$

\[\square \]

Lemma 3.3. Let \(k, \ell > 1 \) be a positive integer and \(p_1^{\alpha_1} \ldots p_n^{\alpha_n} \) be the prime decomposition of \(k \). Then

$$\sum_{d|k} \tau(d) = \prod_{j=1}^{n} \left(\frac{\beta_j + 2}{2} \right)$$

and

$$\sum_{d|k} \varepsilon_\ell(d) = \prod_{j=1}^{n} \left\lfloor \frac{\beta_j + \ell}{\ell} \right\rfloor.$$

Theorem 3.4. Let \(m > 1 \) be a positive integer and \(p_1^{\alpha_1} \ldots p_n^{\alpha_n} \) be its prime decomposition. then

$$\mu_1(m, 4) = \frac{1}{24} \prod_{i=1}^{n} \left(\frac{\alpha_i + 3}{3} \right) + \frac{1}{3} \prod_{i=1}^{n} \left\lfloor \frac{\alpha_i + 3}{3} \right\rfloor + \frac{1}{4} \prod_{i=1}^{n} \left\lfloor \frac{\alpha_i + 2}{2} \right\rfloor \left(\alpha_i - \left\lfloor \frac{\alpha_i - 2}{2} \right\rfloor \right)$$

$$+ \frac{\varepsilon_2(m)}{4} \prod_{i=1}^{n} \left\lfloor \frac{\alpha_i + 2}{2} \right\rfloor - \frac{\varepsilon_2(m)}{4} \left\lfloor \frac{\tau(\sqrt{m})}{2} \right\rfloor + \frac{3\varepsilon_4(m)}{8}.$$

Moreover,

$$\mu_2(m, 4) = \mu_1(m, 4) - \mu_1(m, 3).$$

Proof. We have

$$\nu_1(m, 4) = \nu'_1(m; 1, 1, 1, 1) + \nu'_1(m; 1, 1, 2) + \nu'_1(m; 1, 3) + \nu'_1(m; 2, 2) + \nu'_1(m; 4)$$

$$= 24\mu'_1(m; 1, 1, 1, 1) + 12\mu'_1(m; 1, 1, 2) + 4\mu'_1(m; 1, 3) + 6\mu'_1(m; 2, 2) + \mu'_1(m; 4).$$

We know that \(\mu'_1(m; 1, 1, 2) \) is the number of ways to write \(m \) as \(xyz^2 \), where \(x, y \) and \(z \) are different positive integers. This is equal to the number of \(z \)'s such that \(z^2 | m \) minus the number of ways to write \(m \) as \(xz^3, x^2z^2 \) or \(z^4 \), where \(x \neq z \). The number of \(z \)'s such that \(z^2 | m \) is \(\sum_{z^2|m} \left\lfloor \frac{\tau(z^2)}{2} \right\rfloor \). Thus

$$\mu'_1(m; 1, 1, 2) = \sum_{z^2|m} \left\lfloor \frac{\tau(z^2)}{2} \right\rfloor - \mu'_1(m; 1, 3) - \mu'_1(m; 2, 2) - \varepsilon_4(m).$$
If \(m \) is not a perfect square then \(\tau(m) \) is even. Let \(z = p_1^{\beta_1} \ldots p_n^{\beta_n} \). There exists an index \(i \) such that \(\alpha_i \) is odd and then

\[
\sum_{z \mid m} \left\lfloor \frac{\tau(m) + 1}{2} \right\rfloor = \sum_{z \mid m} \frac{1}{2} \tau(p_1^{\alpha_1-2\beta_1} \ldots p_n^{\alpha_n-2\beta_n}) = \frac{1}{2} \prod_{i=1}^{n} \sum_{0 \leq \beta_i \leq \frac{\alpha_i}{2}} (\alpha_i - 2\beta_i + 1) \]

\[
= \frac{1}{2} \prod_{i=1}^{n} \sum_{0 \leq \beta_i \leq \frac{\alpha_i}{2}} \left(\frac{\alpha_i}{2} - \left\lfloor \frac{\alpha_i}{2} \right\rfloor \right).
\]

Moreover, \(\mu'_1(m; 1, 3) \) is the number of ways to write \(m \) as \(xz^3 \), where \(x \neq z \). This is equal to the number of \(z \)'s such that \(z^3 \mid m \) minus the number of ways to write \(m \) as \(z^4 \). The number of \(z \)'s such that \(z^3 \mid m \) is \(\prod_{j=1}^{n} \left\lfloor \frac{\alpha_j + 3}{3} \right\rfloor \). Whence

\[
\mu'_1(m; 1, 3) = \prod_{j=1}^{n} \left\lfloor \frac{\alpha_j + 3}{3} \right\rfloor - \varepsilon_4(m).
\]

Since \(m \) is not a perfect square, \(\mu'_1(m; 2, 2) = 0 \). Thus Lemma 2.2 implies

\[
\mu'_1(m; 1, 1, 1, 1) = \frac{1}{24} (\nu_1(m, 4) - 12\mu'_1(m; 1, 1, 2) - 4\mu'_1(m; 1, 3) - 6\mu'_1(m; 2, 2) - \varepsilon_4(m))
\]

\[
= \frac{1}{24} \prod_{i=1}^{n} \left(\frac{\alpha_i + 3}{3} \right) - \frac{1}{4} \prod_{i=1}^{n} \left(\frac{\alpha_i + 2}{2} \right) (\alpha_i - \left\lfloor \frac{\alpha_i - 2}{2} \right\rfloor)
\]

\[
+ \frac{1}{3} \mu'_1(m; 1, 3) + \frac{1}{4} \mu'_1(m; 2, 2) + \frac{11}{24} \varepsilon_4(m)
\]

\[
= \frac{1}{24} \prod_{i=1}^{n} \left(\frac{\alpha_i + 3}{3} \right) - \frac{1}{4} \prod_{i=1}^{n} \left(\frac{\alpha_i + 2}{2} \right) (\alpha_i - \left\lfloor \frac{\alpha_i - 2}{2} \right\rfloor) + \frac{1}{3} \mu'_1(m; 1, 3).
\]

Therefore we have

\[
\mu_1(m, 4) = \mu'_1(m; 1, 1, 1, 1) + \mu'_1(m; 1, 1, 2) + \mu'_1(m; 1, 3) + \mu'_1(m; 2, 2) + \mu'_1(m; 4)
\]

\[
= \frac{1}{24} \prod_{i=1}^{n} \left(\frac{\alpha_i + 3}{3} \right) + \frac{1}{3} \prod_{i=1}^{n} \left(\frac{\alpha_i + 3}{3} \right) + \frac{1}{4} \prod_{i=1}^{n} \left(\frac{\alpha_i + 2}{2} \right) (\alpha_i - \left\lfloor \frac{\alpha_i - 2}{2} \right\rfloor).
\]
Now let \(m \) be a perfect square. Then \(\tau(m) \) is odd and we have
\[
\sum_{z^2|m} \left\lfloor \frac{\tau(m)}{2} \right\rfloor = \sum_{z^2|m} \left(\frac{\tau(m)}{2} + \frac{1}{2} \right)
\]
\[
= \sum_{z^2|m} \frac{1}{2} \tau(p_1^{\alpha_1-2\beta_1} \cdots p_n^{\alpha_n-2\beta_n}) + \frac{1}{2} \cdot \sum_{z^2|m} 1
\]
\[
= \frac{1}{2} \sum_{0 \leq \beta_i \leq \frac{\alpha_i}{2}} \prod_{i=1}^{n} (\alpha_i - 2\beta_i + 1) + \frac{1}{2} \cdot \sum_{0 \leq \beta_i \leq \frac{\alpha_i}{2}} 1
\]
\[
= \frac{1}{2} \prod_{i=1}^{n} \sum_{0 \leq \beta_i \leq \frac{\alpha_i}{2}} (\alpha_i - 2\beta_i + 1) + \frac{1}{2} \prod_{i=1}^{n} (\left\lfloor \frac{\alpha_i+2}{2} \right\rfloor)
\]
Thus
\[
\mu'_1(m; 1, 1, 1) = \frac{1}{24} \prod_{i=1}^{n} \left(\frac{\alpha_i + 3}{3} \right) - \frac{1}{4} \left(\prod_{i=1}^{n} (\frac{\alpha_i + 2}{2}) (\alpha_i - (\frac{\alpha_i - 2}{2})) \right)
\]
\[
+ \frac{1}{2} \prod_{i=1}^{n} (\left\lfloor \frac{\alpha_i + 2}{2} \right\rfloor) + \frac{1}{3} \mu'_1(m; 1, 1, 1) - \frac{1}{4} \mu'_1(m; 2, 2) - \frac{1}{24} \varepsilon_4(m).
\]
Furthermore, \(\mu'_1(m; 2, 2) \) is the number of ways to write \(m \) as \(x^2y^2 = (xy)^2 \), where \(x \neq y \).

If \(m \) is not a perfect square then this number is 0 and if \(m \) is a perfect square then \(\sqrt{m} \in \mathbb{N} \) and thus
\[
\mu'_1(m; 2, 2) = \varepsilon_2(m) \mu'_2(\sqrt{m}; 1, 1) = \varepsilon_2(m) (\mu_2(\sqrt{m}; 2) - \varepsilon_2(\sqrt{m})
\]
\[
= \varepsilon_2(m) \left(\left\lfloor \frac{\tau(\sqrt{m})}{2} \right\rfloor - \varepsilon_4(m) \right)
\]
\[
= \varepsilon_2(m) \left(\left\lfloor \frac{\tau(\sqrt{m})}{2} \right\rfloor - \varepsilon_4(m) \right).
\]
Therefore
\[
\mu_1(m, 4) = \frac{1}{24} \prod_{i=1}^{n} \left(\frac{\alpha_i + 3}{3} \right) + \frac{1}{3} \prod_{i=1}^{n} (\frac{\alpha_i + 3}{3}) + \frac{1}{4} \prod_{i=1}^{n} (\frac{\alpha_i + 2}{2}) (\alpha_i - (\frac{\alpha_i - 2}{2}))
\]
\[
+ \frac{1}{4} \prod_{i=1}^{n} \left(\frac{\alpha_i + 2}{2} \right) - \frac{1}{4} \varepsilon_2(m) \left(\left\lfloor \frac{\tau(\sqrt{m})}{2} \right\rfloor - \varepsilon_2(m) \right) + \frac{3\varepsilon_4(m)}{8}.
\]
This proves the first part. The second part is obvious. □
ON THE EQUATION $m = xyzw$ WITH $x \leq y \leq z \leq w$ IN POSITIVE INTEGERS

Note that if a positive integer m is a prime power, say $m = p^n$, then $\mu_2(m, k) = \Pi(n, k)$, where Π is the additive partition function.

Corollary 3.5. Let n be a positive integer. Then the number of all solutions of the equation

$$x_1 + x_2 + x_3 = n$$

in \mathbb{N}, under the condition $x_1 \leq x_2 \leq x_3$, is

$$\frac{1}{6} \binom{n+2}{2} + \frac{1}{2} \left\lfloor \frac{n+2}{2} \right\rfloor + \frac{\varepsilon_3(p^n)}{3}.$$

Corollary 3.6. Let n be a positive integer. Then the number of all solutions of the equation

$$x_1 + x_2 + x_3 + x_4 = n$$

in \mathbb{N}, under the condition $x_1 \leq x_2 \leq x_3 \leq x_4$, is

$$\frac{1}{24} \binom{n+3}{3} + \frac{1}{3} \left\lfloor \frac{n+3}{3} \right\rfloor + \frac{1}{4} \left(\left\lfloor \frac{n+2}{2} \right\rfloor (n - \left\lfloor \frac{n-2}{2} \right\rfloor) + \varepsilon_2(p^n) \right)$$

$$+ \frac{\varepsilon_3(p^n)}{4} \left\lfloor \frac{n+2}{2} \right\rfloor - \frac{\varepsilon_2(p^n)}{4} \left\lceil \frac{\tau(\sqrt{p^n})}{2} \right\rceil + \frac{3\varepsilon_4(p^n)}{8}.$$

Remark 3.7. We can compute $\mu_1(m, 4)$ using the following Mathematica code.

```mathematica
ClearAll
n = Input["enter your number"]
For[m = 1, n
a = Power[m];
b = xyzw[m, a];
c[m, 1] = b;
End

function a = Power(m1)
B = factor(m1); [n2, n1] = size(B); i = 1; j = 1; a(j) = 1;
while i < n1
    if B(i) == B(i+1)
        a(j) = a(j) + 1;
    else
        j = j + 1;
a(j) = 1;
end
i = i + 1;
```
function b=xyzw(m,a)
 [n2 n1]=size(a);
 b1=1;b2=1;b3=1;
 e2=0;e4=0;
 m1=floor(m^(1/2));
 if m1==(m^(1/2))
 e2=1;
 end
 m1=floor(m^(1/4));
 if m1==m^(1/4)
 e4=1;
 end
 for i=1:n1
 b1=(1/6)*(a(i)+3)*(a(i)+2)*(a(i)+1)*b1;
 end
 for i=1:n1
 b2=floor((a(i)+3)/3)*b2;
 end
 for i=1:n1
 b3=floor((a(i)+2)/2)*(a(i)-floor((a(i)-2)/2))*b3;
 end
 b4=1;
 for i=1:n1
 b4=floor((a(i)+2)/2)*b4;
 end
 b5=1;
 for i=1:n1
 b5=b5*((a(i)/2)+1);
 end
 b=(1/24)*b1+(1/3)*b2+(1/4)*b3+(1/4)*e2*b4-(1/4)*e2*ceil(b5)+(3/8)*e4;
end
ON THE EQUATION $m = xyzw$ WITH $x \leq y \leq z \leq w$ IN POSITIVE INTEGERS

REFERENCES

[1] G. E. Andrews, *The Theory of Partitions*, Cambridge, England: Cambridge University Press, 1998.
[2] J. Herman, R. Kucera and J. Simsa, *Counting and Configurations, Problems in Combinatorics, Arithmetic, and Geometry*, Original Czech edition published by Masaryk University, Brno, 1997, Translated by K. Dilcher, Springer, 2003.
[3] J. F. Hughes and J. Shallit, *On the number of multiplicative partitions*, American Mathematical Monthly 90 (7) (1983), 468-471.
[4] A. Knopfmacher, M. E. Mays, *A survey of factorization counting functions*, International Journal of Number Theory 1 (4) (2005), 563-581.
[5] A. Knopfmacher and M. E. Mays, *Ordered and Unordered Factorizations of Integers*, Mathematica Journal 10 (2006), 72-89.
[6] M. Riedel, *http://math.stackexchange.com/users/44883/marko-riedel*.
[7] N. J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences*.

DEPARTMENT OF PURE MATHEMATICS, FERDOWSI UNIVERSITY OF MASHHAD, P. O. BOX 1159, MASHHAD 91775, IRAN.

E-mail address: mirzavaziri@gmail.com, danyal_352@yahoo.es