Understanding the η_c decay mode of $Z_c^{(1)}$ via the triangle loop mechanism

Cheng-Jian Xiao, Dian-Yong Chen, Yu-Bing Dong, Wei Zuo, and Takayuki Matsuki

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
School of Physics, Southeast University, Nanjing 210094, People’s Republic of China
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
Tokyo Kaisei University, 1-18-1 Kaga, Itabashi, Tokyo 173-8602, Japan
Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198, Japan

(Dated: March 26, 2019)

Recently, the BESIII Collaboration reported a new measurement of the η_c decay mode of $Z_c^{(1)}$, which motivated us to study the inner structure of $Z_c^{(1)}$ via investigating the hidden charm decays of these two Z_c states. We consider the triangle loop mechanism contribution in the hidden charm decays of $Z_c^{(1)}$. Our estimations indicate that the triangle loop mechanism plays an important role in the decays of the $Z_c^{(1)}$, where our results are in agreement with the experimental observations in a reasonable parameter range. Furthermore, we point out that the $Z_c^{(1)}$ can be interpreted as the hadronic molecules, while the tetraquark scenario is less favored.

PACS numbers: 14.40.Pq, 13.20.Gd, 12.39.Fe

I. INTRODUCTION

In 2013, a new charged charmoniumlike state $Z_c(3900)$ in the π^+J/ψ system was reported by the BESIII Collaboration. The statistical significance of $Z_c(3900)$ is more than 8.9 at 4.60 GeV [1, 2]. The measured mass and width are $m = (3899 \pm 3.6 \pm 4.9)$ MeV and $\Gamma = (46 \pm 10 \pm 20)$ MeV [1]. Later, this resonance was confirmed by the CLEO-c in the same process but at $\sqrt{s} = 4.17\text{GeV}$ [3], and the neutral partner was also observed for the first time. In the same year, the BESIII Collaboration observed the $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ process just after the observation of $Z_c(3900)$ and found a similar charmoniumlike state named $Z_c(4020)$ in the π^+h_c invariant mass spectrum [4]. The measured mass and width are $(4022.9 \pm 0.8 \pm 2.7)$ MeV and $(7.9 \pm 2.7 \pm 2.6)\text{MeV}$, respectively, where the significance is more than 8.9σ [4]. In the process $e^+e^- \rightarrow \pi^0\pi^0h_c$ at $\sqrt{s} = 4.23, 4.26, 4.36\text{GeV}$, the neutral $Z_c(4020)$ was also observed by the BESIII Collaboration [5] and therefore, $Z_c(4020)$ is an isovector state.

In the open charm process, both $Z_c(3900)$ and $Z_c(4020)$ have been observed by the BESIII Collaboration. In 2014, $Z_c(3900)$ was observed in the $D^{*}\bar{D}$ invariant mass spectrum of the $e^+e^- \rightarrow \pi^0(D^*\bar{D})^0$ process [6]. Performing the partial wave analysis, the J^P quantum number of the $Z_c(3900)$ is determined to be 1^- [7]. Similarly, $Z_c(4020)$ was observed in the $D^*\bar{D}^*$ invariant mass spectrum of the $e^+e^- \rightarrow \pi^0(D^*\bar{D})^0$ process by the BESIII Collaboration [8]. It is interesting to notice that $Z_c(4020)$ is observed only in the $D^*\bar{D}^*$ mass spectrum, while in the $D^*\bar{D}$ mode, it is not observed. As for $Z_c(3900)$, it can only decay into $D^*\bar{D}$, because the $D^*\bar{D}$ mode is forbidden due to the limited phase space.

Hereafter, we adopt Z_c and Z_c' to refer to $Z_c(3900)$ and $Z_c(4020)$, respectively. Comparing to other charmoniumlike X, Y, Z states, these two charged Z_c and Z_c' are the first confirmed charged charmoniumlike states and they contain at least four constituent quarks. Therefore, they are ideal candidates of the tetraquark state. The authors in Ref. [9] predicted a $1^{++}q\bar{q}c\bar{c}$ state around 4.0 GeV before the observation of the two Z_c states. Assuming that the Z_c is a tetraquark, its mass can be calculated in Refs. [10–16]. The decays of Z_c in the tetraquark assumption were investigated in Refs. [16–19]. The tetraquark picture was also proposed to explain the Z_c' [15, 19–21].

In addition, it was noticed that the measured masses of Z_c and Z_c' locate near the threshold of $D^*\bar{D}$ and $D^*\bar{D}^*$, respectively, which indicates that Z_c and Z_c' could be good candidates of hadronic molecules composed of $D^*\bar{D} + h.c$ and $D^*\bar{D}^*$, respectively. Considering the potential caused by the one-boson exchange processes, the $D^*\bar{D}$ and $D^*\bar{D}^*$ molecules were predicted in Ref. [22]. The authors in Ref. [23] studied the $D^*\bar{D}$ interaction and they found a bound state around $3869–3875\text{MeV}$, which is consistent with the mass of Z_c. In Ref. [25], Z_c was interpreted as a resonance resulted from $D^*\bar{D}$ interaction. In Refs. [12, 19, 26–33], the $Z_c^{(1)}$ were considered as the $D^*\bar{D}^{(*)}$ molecular states and theirs decays were investigated. The intermediate meson loops model was also used to investigate the decays of the $Z_c^{(1)}$ [34].

To date, the inner structure of these two charged charmoniumlike states has been unknown, and more efforts are necessary to reveal their nature. On the theoretical side, the study on the decay properties of the Z_c and Z_c' is important. By comparing the theoretical estimations with the experimental measured decay properties, the nature of Z_c and Z_c' might be no longer be ambiguous. In other words, the more decay processes are experimentally measured, the more it helps us to distinguish the nature of Z_c and Z_c'. Therefore, the new measurements of the $Z_c^{(1)} \rightarrow \eta_{c}\rho$ processes from the BESIII Collaboration are very useful. The ratios of the partial widths of

1 Corresponding author
2 Electronic address: xiaocj@ihep.ac.cn
3 Electronic address: cheny@seu.edu.cn
4 Electronic address: dongyb@ihep.ac.cn
5 Electronic address: zuowei@imp.ac.cn
6 Electronic address: matsuki@tokyo-kasei.jp
This experimentally measured ratio $R^{(*)}$ could be a good tool for detecting the inner structure of the $Z_c^{(*)}$. Before the recent measurements of the $\eta_c \rho$ mode of Z_c and Z_c', the BESIII Collaboration had already measured the open charm decay modes and found that the $Z_c^{(*)}$ dominantly decays into a pair of charmed mesons [6, 8]. Therefore, the Z_c and Z_c' can decay into the hidden charm final states via an intermediate charmed meson loop, where the pair of charmed mesons could connect the hidden charm final states and the initial $Z_c^{(*)}$ by exchanging a proper charmed meson. Such a triangle loop mechanism or meson loop mechanism has been widely employed to investigate the hidden charm and bottom decays of higher charmonia and bottomonia [43, 44]. One may wonder if a study of the decays of $Z_c^{(*)}$ to hidden charm mesons, proceeding through intermediate loops of the open charm meson, is based on the inner structure of the decaying particle. For instance, can such an investigation help us to distinguish the nature of $Z_c^{(*)}$, whether it is a hadronic molecule or a tetraquark? It is important to realize that the decay mechanism is different for the decay of a hadronic molecule and for a tetraquark state. In the case of a hadronic molecule, the $Z_c^{(*)}$ decays to the hidden charm final states via their charmed meson components and the loop mechanism is the primary decay mechanism. As for the tetraquark state, it can directly decay into the hidden charm state via the rearrangement of the four constituent quarks, which should be a major contribution to the hidden charm decays compared to the triangle loop mechanism. Thus, in this sense, the role the triangle loop mechanism takes in the hidden charm decays of $Z_c^{(*)}$ could be used to distinguish the molecular and tetraquark scenarios.

In the present work, the triangle loop mechanism is applied to estimate the recent measurements of the $Z_c^{(*)} \rightarrow \eta_c \rho$ processes from the BESIII Collaboration. To directly compare our results with the experimental measured ratios, we also estimate the widths of $Z_c \rightarrow J/\psi \pi$ and $Z_c' \rightarrow h_\pi \pi$ with the same mechanism. By comparing our estimations with the experimental decay behaviors of Z_c and Z_c', we can better understand the nature of these two Z_c states.

This work is organized as follows. After the Introduction, we present the amplitudes of hidden charm decays of Z_c and Z_c' in Sec. II, and the numerical results and discussions are given in Sec. III. Sec. IV is devoted to a short summary.

II. THE HIDDEN CHARM DECAYS OF $Z_c(3900)$ AND $Z_c'(4020)$

In the present work, we apply the effective Lagrangian approach to estimate the hidden charm decays of $Z_c^{(*)}$. The effective Lagrangian describing the $Z_c^{(*)}$ and $D^+D^{(*)}$ interactions are

$$L_{Z_cD^+D^0} = g_{Z_cD^+D^0}(D^+\bar{D}^0 + D^*\bar{D}^0),$$
$$L_{Z_c'D^+D^0} = ig_{Z_c'D^+D^0}\bar{\rho}\bar{\rho}D^0\bar{D}^0.$$

In the heavy quark limit, one can construct the effective Lagrangian of charmonia and charmed meson pair couplings, which are [45–47]

$$L_{\rho D^+D^0} = -ig_{\rho D^+D^0}\bar{\rho}\rho D^0 - \bar{D}^0\rho D^0 + ig_{\rho D^+D^0}\bar{\rho}\rho D^0 - \bar{D}^0\rho D^0,$$
$$L_{\eta_cD^+D^0} = ig_{\eta_cD^+D^0}\bar{\eta}_c\eta_c D^0 - \bar{D}^0\eta_c D^0 + ig_{\eta_cD^+D^0}\bar{\eta}_c\eta_c D^0 - \bar{D}^0\eta_c D^0,$$
$$L_{D_0D^+D^0} = 2g_{D_0D^+D^0}(D_0^+\bar{D}^0 + D_0^*\bar{D}^0).$$

Considering the heavy quark limit and chiral symmetry, the effective Lagrangian related to the light mesons are [48]

$$L_{D^0D^+D^0} = -ig_{D^0D^+D^0}\bar{D}^0D^0\eta_c + \bar{D}^0\eta_c D^0 - \bar{D}^0\eta_c D^0 + ig_{D^0D^+D^0}\bar{D}^0D^0\eta_c + \bar{D}^0\eta_c D^0,$$
$$L_{D^+D^0D^0} = ig_{D^+D^0D^0}\bar{D}^0D^0\eta_c + \bar{D}^0\eta_c D^0 - \bar{D}^0\eta_c D^0 + ig_{D^+D^0D^0}\bar{D}^0D^0\eta_c + \bar{D}^0\eta_c D^0.$$
A. The hidden charm decays of Z_c

With the above effective Lagrangians, we can calculate the hidden charm decay processes $Z_c \rightarrow J/\psi \pi$ and $Z_c \rightarrow \eta \rho$. As for $Z_c \rightarrow J/\psi \pi$, the amplitudes corresponding to Fig. 1-(a)-(c) are

$$M_1 = (i)^3 \int \frac{d^4q}{(2\pi)^4} [g_{Z_c \ell Z_c}^2 [-ig_{\ell D' D P} \epsilon_{p' 3}]] \times \left[-i g_{\ell D' D P} \epsilon_{p' 3} (-ip_1^q - i q^q) \right] \times \frac{1}{p_2^2 - m_D^2} \frac{1}{q^2 - m_D^2} \mathcal{F}(m_D, q^2),$$

$$M_2 = (i)^3 \int \frac{d^4q}{(2\pi)^4} [g_{Z_c \ell Z_c}^2 \frac{1}{2} g_{\ell D' D P} \epsilon_{p' 3} \epsilon_{p' 5}] \times \left[(-ip_1^q - i q^q) \right]\times \left[-i g_{\ell D' D P} \epsilon_{p' 5} (-ip_1^q + i q^q) \right] \times \frac{1}{p_1^2 - m_D^2} \frac{1}{p_2^2 - m_D^2} \frac{1}{q^2 - m_D^2} \mathcal{F}(m_D, q^2),$$

$$M_3 = (i)^3 \int \frac{d^4q}{(2\pi)^4} [g_{Z_c \ell Z_c}^2 [-ig_{\ell D' D P} \epsilon_{p' 3}]] \times \left[ig_{\ell D' D P} \epsilon_{p' 3} \epsilon_{p' 5} (-ip_2^q + i q^q) \right] \times \left[-i g_{\ell D' D P} \epsilon_{p' 5} (-ip_2^q + i q^q) \right] \times \frac{1}{p_1^2 - m_D^2} \frac{1}{p_2^2 - m_D^2} \frac{1}{q^2 - m_D^2} \mathcal{F}(m_D, q^2),$$

where $\mathcal{F}(m, q^2)$ is introduced to reflect the off-shell effect and to make the amplitude convergent in the ultraviolet region. The estimates in Ref. [49] indicate that the results are weakly dependent on the explicit form of the form factors. In the present work, we use the form factor of

$$\mathcal{F}(m, q^2) = \left(\frac{m^2 - \Lambda^2}{q^2 - \Lambda^2} \right)^3,$$

where the Λ is reparameterized as $\Lambda = m_E + \alpha \Lambda_{QCD}$, m_E is the mass of the exchanged meson, and $\Lambda_{QCD} = 0.220$ GeV. The details about the form factor will be discussed in the Sect. III.

The total amplitude of $Z_c \rightarrow J/\psi \pi$ is

$$M_{Z_c \rightarrow J/\psi \pi}^{tot} = 2(M_1 + M_2 + M_3),$$

where the factor 2 comes from the processes in which $D^+ \bar{D}^{*-0}$ is the intermediate states. The partial width of the process $Z_c \rightarrow J/\psi \pi$ reads,

$$\Gamma(Z_c \rightarrow J/\psi \pi) = \frac{1}{3 \beta_\pi} \left| \frac{1}{m_Z} \right| \left| M_{Z_c \rightarrow J/\psi \pi}^{tot} \right|^2,$$

where the overline is the sum over the polarization of J/ψ.

As for the process $Z_c \rightarrow \eta \rho$, these amplitudes corresponding to Fig. 1-(d)-(f) read

$$M_4 = (i)^3 \int \frac{d^4q}{(2\pi)^4} [g_{Z_c \ell Z_c}^2 [i g_{D^+ D^-} \epsilon_{\rho 3} \epsilon_{\rho 5} (-ip_1^q - i q^q)]] \times \frac{1}{p_1^2 - m_D^2} \frac{1}{p_2^2 - m_D^2} \frac{1}{q^2 - m_D^2} \mathcal{F}(m_D, q^2),$$

$$M_5 = (i)^3 \int \frac{d^4q}{(2\pi)^4} [g_{Z_c \ell Z_c}^2 [i g_{D^+ D^-} \epsilon_{\rho 3} \epsilon_{\rho 5} (-ip_1^q + i q^q)]] \times \frac{1}{p_1^2 - m_D^2} \frac{1}{p_2^2 - m_D^2} \frac{1}{q^2 - m_D^2} \mathcal{F}(m_D, q^2),$$

$$M_6 = (i)^3 \int \frac{d^4q}{(2\pi)^4} [g_{Z_c \ell Z_c}^2 [-2 i g_{D^+ D^-} \epsilon_{\rho 3} \epsilon_{\rho 5} (-ip_1^q + i q^q)]] \times \frac{1}{p_1^2 - m_D^2} \frac{1}{p_2^2 - m_D^2} \frac{1}{q^2 - m_D^2} \mathcal{F}(m_D, q^2),$$

and the total amplitude for process $Z_c \rightarrow \eta \rho$ is

$$M_{Z_c \rightarrow \eta \rho}^{tot} = 2(M_4 + M_5 + M_6).$$

Different from π, ρ meson has a large width. Thus, when we estimate the partial width of $Z_c \rightarrow \eta \rho$, the effect of the ρ meson width should be included. The partial width of $Z_c \rightarrow \eta \rho$ reads

$$\Gamma_{Z_c \rightarrow \eta \rho} = \frac{1}{\omega_\rho} \int_{(2m_\rho)^2} ds f(s, m_\rho, \Gamma_\rho) \times \left| \frac{1}{24 \pi \omega_\rho} \right| \left| M_{Z_c \rightarrow \eta \rho}^{tot}(m_\rho \rightarrow \sqrt{s}) \right|^2,$$
where \(W_\rho = \int_{2m_e^2}^{m_\rho^2} ds f(s, m_\rho, \Gamma_\rho) \). \(f(s, m_\rho, \Gamma_\rho) \) is a relativistic form of the Breit-Wigner distribution, which reads

\[
f(s, m_\rho, \Gamma_\rho) = \frac{m_\rho^2 \Gamma_\rho}{\pi (s - m_\rho^2)^2 + m_\rho^4 \Gamma_\rho^2},
\]

where \(m_\rho = 775 \text{ MeV} \) and \(\Gamma_\rho = 149 \text{ MeV} \) are the mass and width of the \(\rho \) meson [50].

B. The hidden charm decays of \(Z_c' \)

The \(Z_c' \) is first observed in the \(h_c \pi \) channel and the new measurement from BESIII also reported the ratio of partial widths between \(h_c, \rho \) and \(h_c \pi, \rho \) modes. Thus, we estimate these two decay modes of \(Z_c' \) with triangle loop mechanism in the present work and the corresponding sketch diagrams of these two channels are shown in Fig. 2. The amplitudes of \(Z_c' \to h_c \pi \) corresponding to Fig. 2-(a)-(b)

\[
M_a = (i)^3 \int \frac{d^4q}{(2\pi)^3} [igZ_c\epsilon_{\mu\nu\rho\sigma}(-ip_0^\mu)\epsilon_Z^\nu][i g_D \epsilon_{D\pi\rho\sigma}][1 g_D (-ip_0^\mu)][g_D (-ip_0^\mu)][g_D (-ip_0^\mu)]
\]

\[
\times g^{\alpha\beta} - g^{\alpha\beta} + 2p_1^\alpha p_2^\beta/m_D^2
\]

\[
\times \epsilon_D (m_D, q^2),
\]

\[
M_b = (i)^3 \int \frac{d^4q}{(2\pi)^3} [igZ_c\epsilon_{\mu\nu\rho\sigma}(-ip_0^\mu)\epsilon_Z^\nu][1 g_D (-ip_0^\mu)][g_D (-ip_0^\mu)][g_D (-ip_0^\mu)]
\]

\[
\times (ip_3^\alpha)(-ip_1^\beta - iq^\gamma)[igZ_c\epsilon_{\mu\nu\rho\sigma}][1 g_D (-ip_0^\mu)][g_D (-ip_0^\mu)]
\]

\[
\times g^{\alpha\beta} - g^{\alpha\beta} + 2p_1^\alpha p_2^\beta/m_D^2
\]

\[
\times \epsilon_D (m_D, q^2).
\]

The amplitudes \(M_a \) and \(M_d \) corresponding to Fig. 2-(c)-(d) are the same as \(M_a \) and \(M_d \), respectively. Therefore, the total amplitude for the process \(Z_c' \to h_c \pi \) is

\[
M_{\text{tot}} = 2(M_a + M_b).
\]

The amplitudes of \(Z_c' \to \eta_c \pi \) corresponding to Fig. 2-(e)-(f) are

\[
M_c = (i)^3 \int \frac{d^4q}{(2\pi)^3} [igZ_c\epsilon_{\mu\nu\rho\sigma}(-ip_0^\mu)\epsilon_Z^\nu][1 g_D (-ip_0^\mu)]
\]

\[
\times \epsilon_D (m_D, q^2),
\]

\[
\times \frac{1}{q^2 - m_D^2 F(m_D, q^2)}.
\]

III. NUMERICAL RESULTS AND DISCUSSION

To estimate the partial widths of considered processes, the relevant coupling constants should be fixed. The couplings between the \(Z_c' \) and charmed mesons can be determined by the experimental measured partial decay width of corresponding open charm modes, which can be obtained by total decay width and branching fractions of corresponding open charm modes. However, the experimental measured total decays are quite inaccurate

\[
\Gamma_{Z_c' \to D^+ D^-} = 0.28 \pm 2.6 \text{ MeV},
\]

\[
\Gamma_{Z_c' \to \eta_c \pi} = 13 \pm 5 \text{ MeV}.
\]

Here, we apply the center values and the effect of the errors will be discussed in the later sentences. In addition, we assume that \(Z_c \) dominantly decays into \((D^+D^- + h_c)\) and \(J/\psi \pi \). With the experimental measured ratio \(R \) between the widths of \(Z_c \to D^+ D^- \) and \(Z_c \to J/\psi \pi \) [6]

\[
\Gamma_{Z_c \to D^+ D^-} = 6.2 \pm 1.1 \pm 2.7.
\]

we can approximately obtain the branching fractions of the open charm modes. Finally, the coupling constant \(g_{Z_c} \) is determined to be 1.13 GeV with the center values of the ratio in Eq. (27), while the effect of the errors of the ratio in Eq. (27) will be discussed in the later sentences.

As for the \(Z_c' \), the Born cross sections for \(e^+ e^- \to \pi^+ (D^+ D^-)^\ast \) at 4.26 GeV are measured to be \(137 \pm 9 \pm 15 \) pb and the fraction from the quasi-two-body cascade decay is [8]

\[
\frac{\sigma(e^+ e^- \to \pi^+ (D^+ D^-)^\ast)}{\sigma(e^+ e^- \to \pi^+ (D^+ D^-)^\ast)} = 0.65 \pm 0.09 \pm 0.06.
\]

At the same energy point, the cross section of the quasi-two-body process \(e^+ e^- \to \pi^+ \pi^- h_c \) is measured to
TABLE I: The relevant masses and coupling constants in the present calculations. In the heavy quark limit, the coupling constants $g_{Z^c(1D)^{(*)}}$ can be related to the gauge coupling g_3 and is determined to be $\sqrt{m_{c}^2/(2m_{c}f_c)}$ by the VMD model in the process $e^+e^-\rightarrow Z^c$ [53, 54]. Here, $f_c = 416$ MeV is the J/ψ decay constant, which is determined by the experimental partial width $\Gamma(J/\psi \rightarrow e^+e^-) = 5.55$ keV [50]. As for the P-wave charmonium and charmed meson interactions, the coupling constants can be related to the gauge coupling g_3, where $g_3 = -\sqrt{m_{c}\alpha/3}/f_{c\alpha}$ with $f_{c\alpha} = 0.51$ GeV [46]. In the couplings of charmed meson and light meson, the gauge coupling $g = 0.55$ is determined via the partial decay width $\Gamma(D^* \rightarrow D\pi)$ [50], and $f_\pi = 132$ MeV is the pion decay constant. The parameters of couplings related to the light vector mesons are $\beta = 0.9, \lambda = 0.56$ GeV$^{-1}$, and $g_{V}\ell = m_{\pi}/f_{\pi}$ [55, 56].

Meson	$Z^c(1)$	J/ψ	$c\pi$	h_c	$D^{*+(0)}$	$D^{+(0)}$	π^+
Mass(GeV)	3.887(4.024)	3.097	2.984	3.525	2.010(2.007)	1.869(1.864)	0.140
Couplings	g_{DDD}	g_{D^0D}	g_{D^+D}	g_{h_cD}	$g_{h_cD^0}$	$g_{h_cD^+}$	$g_{h_cD^0}$
Expressions	$2g_c\sqrt{m_{D^0D}}$	$2g_c\sqrt{m_{D^+D}}$	$2g_c\sqrt{m_{h_cD}}$	$2g_c\sqrt{m_{h_cD^0}}$	$2g_c\sqrt{m_{h_cD^+}}$	$2g_c\sqrt{m_{h_cD}}$	$2g_c\sqrt{m_{h_cD^0}}$
Values	7.41	3.98 GeV$^{-1}$	7.98	7.55	2.63 GeV$^{-1}$	-15.19 GeV	-4.47
Couplings	g_{D^0D}	g_{D^+D}	g_{D^0D}	g_{D^+D}	g_{D^0D}	g_{D^+D}	g_{D^0D}
Expressions	$\beta g_{V}/\sqrt{2}$	$\lambda g_{V}/\sqrt{2}$	$\beta g_{V}/\sqrt{2}$	$\lambda m_{D^0D}g_{V}/\sqrt{2}$	$2g_c\sqrt{m_{D^0D}/f_c}$	$2g_c/f_c$	
Values	3.71	2.30 GeV$^{-1}$	3.71	4.64	16.1	8.33 GeV$^{-1}$	

be [4]

$$\sigma(e^+e^- \rightarrow \pi^+Z_c(4020)^{-} \rightarrow \pi^+\pi^-h_c) = 7.4 \pm 1.7 \pm 2.1 \text{ pb.}$$

(29)

Therefore, the ratio between widths of $Z_c \rightarrow D^*\bar{D}$ and $Z_c \rightarrow h_c \pi$ is estimated

$$\frac{\Gamma(Z_c \rightarrow D^*\bar{D})}{\Gamma(Z_c \rightarrow h_c \pi)} = 12.0 \pm 3.68 \pm 3.48.$$

(30)

Similar to the g_{Z_c}, one can get the coupling constant $g_{Z_c} = 5.63$ with the center values of the total decay width of Z_c in Eq. (26) and the ratio in Eq. (30).

The coupling constants of charmonia (light mesons) and charmed mesons can be related to some gauge coupling constants in the heavy quark limit and chiral symmetry, which are listed in Table I. Besides the coupling constants, in the present calculation there is one more parameter, α, which is introduced by the form factor. The form factor is adopted to represent the off-shell effect of the exchanging particle. In Ref. [51], a monopole-type form factor, $(m^2 - \Lambda^2)/(q^2 - \Lambda^2)$, was preferred based on the QCD sum rule calculation. However, the monopole form is not the unique one. In Ref. [52], the authors applied two types of form factor, the monopole and dipole, which is the square of the monopole and they consider the values of α should be in order of a magnitude of 1. In our previous work[49], we considered some different kinds of form factors and found that a similar result can be obtained with different forms of form factor, while the α varies in different form factors. Actually, the value of α can not be determined from the first principle. Alternatively, it can be fixed via experimental data.

With the above preparation, we can estimate the partial widths of the hidden charm decays of $Z_c^{(0)}$. In Fig. 3, the partial width for the process $Z_c \rightarrow J/\psi \pi$ and the ratio R depending on parameter α are presented. The estimated error of $\Gamma(Z_c \rightarrow J/\psi \pi)$ results from the uncertainty of $g_{Z_cD^0}$, which is determined by the partial width of $Z_c \rightarrow D^*\bar{D}$. As mentioned above, the partial width of $Z_c \rightarrow D^*\bar{D}$ is estimated by the measured total decay width of Z_c and the ratio in Eq. (27). In the estimation of the coupling constants, we only consider the error in Eq. (27), while the error of the total width in Eq. (25) is not included since this error will not affect the ratio R. The cyan horizontal band is the experimental partial width of the $Z_c \rightarrow J/\psi \pi$ process, which is obtained by the center value of the total width and the ratio in Eq. (27) with the assumption...
that Z_c dominantly decays into $D^*\bar{D} + c\bar{c}$ and $J/\psi\pi$. In addition, this experimental information can be used to determine the value of parameter α in the hidden charm decays of Z_c.

By comparing our estimation with the experimental data, one can find in the range of $\alpha = 3.63 \sim 4.75$, that the experimental data can be reproduced. In the same way, we can estimate the partial width of $Z_c \to \eta_c\rho$ and the ratio of the widths of $Z_c \to \eta_c\rho$ and $Z_c \to J/\psi\pi$. In the right panel of Fig. 3, we present the α dependence of R. Within the α range determined by the partial width of $Z_c \to J/\psi\pi$, the ratio is determined to be $0.81 \sim 1.17$. This ratio is very close to the lower limit of the preliminary results from the BESIII Collaboration, which is 2.1 ± 0.8. Our results indicate that the triangle loop mechanism plays a dominant role in understanding the hidden charm decays of Z_c.

For comparison, we also present the partial widths of $Z_c \to \eta_c\rho/J/\psi\pi$ and their ratio estimated from different methods in Table II [12, 16–19, 30]. As we discussed at the end of the Introduction, the hidden charm decays of the tetraquark state should occur dominantly via the quark rearrangement, and the contributions from the quark rearrangement should be much larger than the ones from the triangle loop mechanism although the triangle loop mechanism always exists in both tetraquark and molecular scenarios. In the present work, the partial widths of hidden charm decay modes resulting from the triangle loop mechanism are estimated to be of order of several MeV, while in the tetraquark scenario, the hidden charm decay widths were evaluated in the literatures to be several tens MeV by using different methods [12, 16–18], which are at least 1 order of magnitude larger than the ones from the triangle loop mechanism. Such a conclusion is consistent with our analysis. Furthermore, our estimated partial widths of $\eta_c\rho/J/\psi\pi$ and their ratio are comparable with the experimental data, which indicates that the triangle loop mechanism plays a dominant role in understanding the hidden bottom decays of Z_c, and thus the present estimation supports Z_c as a molecular state.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Model & Ref. & $\Gamma(J/\psi\pi)$ (MeV) & $\Gamma(\eta_c\rho)$ (MeV) & R
\hline
Tetraquark & [12] & 27.9$^{+6.3}_{-5.0}$ & 35.7$^{+6.3}_{-5.2}$ & \ldots
\hline & [16] & 41.9$^{+9.4}_{-6.5}$ & 65.7$^{+10.6}_{-10.2}$ & \ldots
\hline & [17] & 29.1$^{+8.2}_{-6.8}$ & 27.5$^{+8.5}_{-7.9}$ & \ldots
\hline & [18] & 25.8$^{+9.6}_{-7.6}$ & 27.9$^{+20.1}_{-20.1}$ & \ldots
\hline & [19] & \ldots & \ldots & 230$^{+300}_{-140}$
\hline & [19] & \ldots & \ldots & 0.27$^{+0.40}_{-0.17}$
\hline
Molecule & [12] & 1.8$^{+0.3}_{-0.3}$ & 3.2$^{+0.5}_{-0.4}$ & \ldots
\hline & [19] & \ldots & \ldots & 0.046$^{+0.025}_{-0.017}$
\hline & [30] & 3.67 & 0.45 & \ldots
\hline
\textbf{Present} & & 1.47$^{+3.71}_{-1.99}$ & 1.19$^{+4.34}_{-2.25}$ & 0.81$^{+0.87}_{-1.17}$
\hline
\end{tabular}
\caption{The partial widths of $J/\psi\pi/\eta_c\rho$ modes and the ratio R for Z_c estimated in different frames [12, 16–19, 30].}
\end{table}

As for Z_c', we take the first observed channel $Z_c' \to h_c\pi$ as a scale to determine the α range. The partial width of $Z_c' \to h_c\pi$ depending on α is presented in the left panel of Fig. 4. Using the same way to determine the partial widths of Z_c, we extract the partial width of $Z_c' \to h_c\pi$ to be $(0.72 \sim 1.63)$ MeV via the experimental data [8]. Our estimated result overlaps with this data in the α range of $2.07 \sim 2.75$. In this determined α range, the ratio of the partial widths of $Z_c' \to \eta_c\rho$ and $Z_c' \to h_c\pi$ is estimated to be $0.13 \sim 0.20$, which is safely under the measured upper limit 1.9 [42]. In other words, the triangle loop mechanism is also found important in the decays of Z_c'. Similar to the analysis of the hidden charm decays of Z_c, we conclude that Z_c' can be interpreted as the hadronic molecule, while the tetraquark interpretation is less favored. Besides, there are also results from other works, where the author in Ref. [19] estimated the R' to be $6.6^{+5.8}_{-3.8}$ and $0.016^{+0.006}_{-0.004}$ in the tetraquark and molecule models, respectively, which are quite
different from our estimate in this paper.

IV. SUMMARY

Stimulated by the recent measurements of $Z_c^{'+} \rightarrow \eta_c\rho$ reported by the BESIII Collaboration, we estimated the hidden charm decay processes and tried to lift the curtain on the Z_c and Z_c'. We have noticed that both Z_c and Z_c' dominantly decay into a pair of charmed mesons, and the charmed meson pair can transit into a charmonium and a light meson by exchanging a proper charmed meson. Such a triangle loop mechanism can be used to distinguish the nature of the Z_c and Z_c'.

As for Z_c, we have considered the discovered channel $Z_c \rightarrow J/\psi\pi$ as a scale to determine the α. In the range $\alpha = 3.63 \sim 4.75$, our estimation is in agreement with the experimental measured partial width of the $Z_c \rightarrow J/\psi\pi$ process. This experimental decay width is approximately obtained since the experimental branching fractions are absent. With this determined α, we have found that the ratio of the partial widths of $Z_c \rightarrow \eta_c\rho$ and $Z_c \rightarrow J/\psi\pi$ is 0.81 \pm 1.17, which is very close to the measured one. As for Z_c', taking the discovered channel $Z_c' \rightarrow h_\pi$ as a scale, we have found that our estimated partial width of $Z_c' \rightarrow h_\pi$ can overlap with the experimental data in the range $\alpha = 2.07 \sim 2.75$. In this α range, the ratio of the partial widths of $Z_c' \rightarrow \eta_c\rho$ and $Z_c \rightarrow h_\pi$ is estimated to be 0.13 \sim 0.20, which is safely under the upper limit of the measurement from the BESIII Collaboration.

Our estimations indicate that the triangle loop mechanism plays an important role in understanding the hidden charm decays of Z_c and Z_c'. Such decay behaviors of Z_c and Z_c' are consistent with the hadronic molecule interpretation for these two Z_c states; thus, the Z_c and Z_c' can be assigned as the hadronic molecules. We also pointed out that the tetraquark interpretation is less favored, which is supported by the estimation of the hidden charm partial width in the QCD sum rule [12, 16–18].

Acknowledgement

This work is supported in part by the National Natural Science Foundation of China (NSFC) under Grants No. 11775050, No. 11375240, No. 11475192 and No. 11435014, by the fund provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” project by the NSFC under Grant No.11621131001, by the Key Research Program of Frontier Sciences, CAS, Grant No. Y77292610K1, and by the Fundamental Research Funds for the Central Universities.

[1] M. Ablikim et al. (BESIII Collaboration), Observation of a Charged Charmoniumlike Structure in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ at $\sqrt{s} = 4.26$ GeV, Phys. Rev. Lett. 110, 252001 (2013).
[2] Z. Q. Liu et al. (Belle Collaboration), Study of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ and Observation of a Charged Charmoniumlike State at Belle, Phys. Rev. Lett. 110, 252002 (2013).
[3] T. Xiao, S. Dobbs, A. Tomaradze and K. K. Seth, Observation of the charged hadron $Z(3900)$ and evidence for the neutral $Z_c(3900)$ in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ at $\sqrt{s} = 4170$ MeV, Phys. Lett. B 727, 366 (2013).
[4] M. Ablikim et al. (BESIII Collaboration), Observation of a Charged Charmoniumlike Structure $Z_c(4020)$ and Search for the $Z_c(3900)$ in $e^+e^- \rightarrow \pi^+\pi^- h_\pi$, Phys. Rev. Lett. 111, 242001 (2013).
[5] M. Ablikim et al. (BESIII Collaboration), Observation of $e^+e^- \rightarrow \pi^+\pi^- h_\pi$ and a Neutral Charmoniumlike Structure $Z_c(4020)^0$, Phys. Rev. Lett. 113, 212002 (2014).
[6] M. Ablikim et al. (BESIII Collaboration), Observation of a Charged $(DD^*)^-$ Mass Peak in $e^+e^- \rightarrow \pi\Delta \Delta^*$ at $\sqrt{s} = 4.26$ GeV, Phys. Rev. Lett. 112, 022001 (2014).
[7] M. Ablikim et al. (BESIII Collaboration), Determination of the Spin and Parity of the $Z_c(3900)$, Phys. Rev. Lett. 119, 072001 (2017).
[8] M. Ablikim et al. (BESIII Collaboration), Observation of a Charged Charmoniumlike Structure in $e^+e^- \rightarrow (DD^*)^+\pi^\pm$ at $\sqrt{s} = 4.26$ GeV, Phys. Rev. Lett. 112, 132001 (2014).
[9] W. Chen and S. L. Zhu, The vector and axial-vector charmonium-like States, Phys. Rev. D 83, 034010 (2011).
[10] L. Maiani, V. Riquer, R. Facchini, F. Piccinini, A. Pilloni and A. D. Polosa, A $J^{PC} = 1^{++}$ charged resonance in the $Y(4260) \rightarrow \pi^+\pi^- J/\psi$ decay, Phys. Rev. D 87, 111102 (2013).
[11] E. Braaten, How the $Z_c(3900)$ Reveals the Spectra of Quarkonium Hybrid and Tetraquark Mesons, Phys. Rev. Lett. 111, 162003 (2013).
[12] F. Goerke, T. Gutsche, M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij and P. Santorelli, Four-quark structure of $Z_c(3900)$, $Z_c(4430)$ and $X_b(5568)$ states, Phys. Rev. D 94, 094017 (2016).
[13] C. F. Qiao and L. Tang, Estimating the mass of the hidden charm $1^+(1^+)$ tetraquark state via QCD sum rules, Eur. Phys. J. C 74, 3122 (2014).
[14] Z. G. Wang and T. Huang, Analysis of the $X(3872)$, $Z_c(3900)$ and $Z_b(3885)$ as axial-vector tetraquark states with QCD sum rules, Phys. Rev. D 89, 054019 (2014).
[15] C. Deng, J. Ping and F. Wang, Interpreting $Z_c(3900)$ and $Z_c(4025)/Z_c(4020)$ as charged tetraquark states, Phys. Rev. D 90, 054009 (2014).
[16] S. S. Agaev, K. Azizi and H. Sundu, Strong $Z_c^+(3900) \rightarrow J/\psi\pi^\pm$; $\eta_c\rho^-$ decays in QCD, Phys. Rev. D 93, 074002 (2016).
[17] J. M. Dias, F. S. Navarra, M. Nielsen and C. M. Zanetti, $Z_c^+(3900)$ decay width in QCD sum rules, Phys. Rev. D 88, 016004 (2013).
[18] Z. G. Wang and J. X. Zhang, The decay width of the $Z_c(3900)$ as an axialvector tetraquark state in solid quark-hadron duality, Eur. Phys. J. C 78, 14 (2018).
[19] A. Esposito, A. L. Guerrieri and A. Pilloni, Probing the nature of $Z_c^{'+}$ states via the $\eta_c\rho$ decay, Phys. Lett. B 746, 194 (2015).
[20] C. F. Qiao and L. Tang, Interpretation of $Z_c(4025)$ as the hidden charm tetraquark states via QCD Sum Rules, Eur. Phys. J. C 74, 2810 (2014).
[21] Z. G. Wang, Analysis of the $Z_c(4020)$, $Z_c(4025)$, $Y(4360)$ and $Y(4660)$ as vector tetraquark states with QCD sum rules, Eur. Phys. J. C 74, 2874 (2014).
[22] Z. F. Sun, Z. G. Luo, J. He, X. Liu and S. L. Zhu, A note on the
$B\bar{B}, B\bar{B}', D\bar{D}, D\bar{D}'$ molecular states, Chin. Phys. C 36, 194 (2012).

[23] F. Aceti, M. Bayar, E. Oset, A. Martinez Torres, K. P. Khemchandani, J. M. Dias, F. S. Navarra and M. Nielsen, Prediction of an $I=1 DD'$ state and relationship to the claimed $Z_c(3900)$, $Z_c(3885)$, Phys. Rev. D 90, 016003 (2014).

[24] F. Aceti, M. Bayar, J. M. Dias and E. Oset, Prediction of a $Z_c(4000)$ $D'D'$ state and relationship to the claimed $Z_c(4025)$, Eur. Phys. J. A 50, 103 (2014).

[25] J. He, The $Z_c(3900)$ as a resonance from the $D\bar{D}'$ interaction, Phys. Rev. D 92, 034004 (2015).

[26] Y. Dong, A. Faessler, T. Gutsche and V. E. Lyubovitskij, Strong decays of molecular states Z_c^+ and Z_c^{++}, Phys. Rev. D 88, 014030 (2013).

[27] E. Wilbring, H.-W. Hammer and U.-G. Meiβner, Electromagnetic structure of the $Z_c(3900)$, Phys. Lett. B 726, 326 (2013).

[28] K. P. Khemchandani, A. Martinez Torres, M. Nielsen and F. S. Navarra, Relating $D'D'$ currents with $J^{P}=0^+, 1^+$ and 2^+ to Z_c states, Phys. Rev. D 89, 014029 (2014).

[29] F. K. Guo, C. Hidalgo-Duque, J. Nieves and M. P. Valderrama, Consequences of heavy quark symmetries for hadronic molecules, Phys. Rev. D 88, 054007 (2013).

[30] H. W. Ke, Z. T. Wei and X. Q. Li, Is $Z_c(3900)$ a molecular state, Eur. Phys. J. C 73, 2561 (2013).

[31] W. Chen, T. G. Steele, M. L. Du and S. L. Zhu, $D'D'$ molecule interpretation of $Z_c(4025)$, Eur. Phys. J. C 74, 2773 (2014).

[32] Q. Wang, C. Hanhart and Q. Zhao, Decoding the Riddle of the $Y(4260)$ and $Z_c(3900)$, Phys. Rev. Lett. 111, 132003 (2013).

[33] G. Li, X. H. Liu and Z. Zhou, More hidden heavy quarkonium molecules and their discovery decay modes, Phys. Rev. D 90, 054006 (2014).

[34] G. Li, Hidden-charmonium decays of $Z_c(3900)$ and $Z_c(4025)$ in intermediate meson loops model, Eur. Phys. J. C 73, 2621 (2013).

[35] E. S. Swanson, Z_c and Z_c exotic states as coupled channel cusps, Phys. Rev. D 91, 034009 (2015).

[36] Y. Ikeda, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, T. Inoue, T. Iritani, N. Ishii, K. Murano, and K. Sasaki (HAL QCD Collaboration), Fate of the Tetraquark Candidate $Z_c(3900)$ from Lattice QCD, Phys. Rev. Lett. 117, 242001 (2016).

[37] M. B. Voloshin, $Z_c(3900)$—what is inside?, Phys. Rev. D 87, 091501 (2013).

[38] D. Y. Chen and X. Liu, Predicted charged charmonium-like structures in the hidden-charm dipion decay of higher charmonia, Phys. Rev. D 84, 034032 (2011).

[39] D. Y. Chen, X. Liu and T. Matsuki, Reproducing the $Z_c(3900)$ structure through the initial-single-pion-emission mechanism, Phys. Rev. D 88, 036008 (2013).

[40] D. Y. Chen, X. Liu and T. Matsuki, Predictions of Charged Charmoniumlike Structures with Hidden-Charm and Open-Strange Channels, Phys. Rev. Lett. 110, 232001 (2013).

[41] X. H. Liu and G. Li, Exploring the threshold behavior and implications on the nature of $Y(4260)$ and $Z_c(3900)$, Phys. Rev. D 88, 014013 (2013).

[42] C. Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A 33, 1830018 (2018).

[43] C. Meng and K. T. Chao, Scalar resonance contributions to the dipion transition rates of $\Upsilon(4S, 5S)$ in the re-scattering model, Phys. Rev. D 77, 074003 (2008).

[44] C. Meng and K. T. Chao, $\Upsilon(4S, 5S) \rightarrow \Upsilon(1S)\eta$ transitions in the rescattering model and the new BABAR measurement, Phys. Rev. D 78, 074001 (2008).

[45] R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio and G. Nardulli, Phenomenology of heavy meson chiral Lagrangians, Phys. Rep. 281, 145 (1997).

[46] P. Colangelo, F. De Fazio and T. N. Pham, Nonfactorizable contributions in B decays to charmonium: The case of $B \rightarrow K^* h_\ell$, Phys. Rev. D 69, 054023 (2004).

[47] D. Y. Chen and Y. B. Dong, Radiative decays of the neutral $Z_c(3900)$, Phys. Rev. D 93, 014003 (2016).

[48] D. Y. Chen, X. Liu and T. Matsuki, Observation of $e^+e^- \rightarrow \chi_{c0}\omega$ and missing higher charmonium $\psi(4S)$, Phys. Rev. D 91, 094023 (2015).

[49] C. J. Xiao and D. Y. Chen, Analysis of the hidden bottom decays of $Z_b(10610)$ and $Z_b(10650)$ via final state interaction, Phys. Rev. D 96, 014035 (2017).

[50] M. Tanabashi et al. [Particle Data Group], Review of particle physics, Phys. Rev. D 98, 030001 (2018).

[51] O. Gorchakov, M. P. Locher, V. E. Markushin and S. von Rotz, Two meson doorway calculation for $\bar{p}p \rightarrow \phi\pi$ including off-shell effects and the OZI rule, Z. Phys. A 353, 447 (1996).

[52] H. Y. Cheng, C. K. Chua and A. Soni, Final state interactions in hadronic B decays, Phys. Rev. D 71, 014030 (2005).

[53] Z. w. Lin and C. M. Ko, A model for J/ψ absorption in hadronic matter, Phys. Rev. C 62, 034903 (2000).

[54] Y. s. Oh, T. Song and S. H. Lee, J/ψ absorption by π and ρ mesons in meson exchange model with anomalous parity interactions, Phys. Rev. C 63, 034901 (2001).

[55] C. Isola, M. Ladisa, G. Nardulli and P. Santorelli, Charming penguins in $B \rightarrow K\pi$, $K(\rho, \omega, \phi)$ decays, Phys. Rev. D 68, 114001 (2003).

[56] D. Y. Chen, Y. B. Dong and X. Liu, Long-distant contribution and χ_c radiative decays to light vector meson, Eur. Phys. J. C 70, 177 (2010).