A new inverse formula for the Laplace's transformation.

Pavlov An.V. (MIREA(TU)).

In the article is proved, that the complex part of the analytical continuation of the

\[r(p) = \mathcal{L}\mathcal{L}Z(x) = \int_0^\infty e^{-pt}dt \int_0^\infty e^{-tx} Z(x)dx, p \in \{p : \text{Im } p \geq 0\}, \]

equals to \(-\pi Z(x), x \in (0, \infty)\), if \(p = s = -x \in (-\infty, 0)\) for a wide class of functions \(Z(x) \):

It is proved, that the odd functions

\[Z(x) = \sum_{k=1}^l \gamma_k e^{\lambda_k x}, \quad \gamma_k = \text{res}_{p=\lambda_k} \frac{Q_p(p)}{P_p(p)}, \quad \lambda_k = -\alpha_k + \beta_k i, \quad \alpha_k > 0, \quad k = 1, \ldots, l, \]
satisfy to all the conditions of the theorems of the article.

THE TRANSFORMS OF FOURIER, THE TRANSFORM OF LAPLACE, THE NEW FORMULA OF TRANSFORMATION

Introduction.

In the article we prove (a theorem 2), that for the negative variable \(p = -x, x \in (0, \infty) \) a complex part of the analytical continuation \(r(p) = \mathcal{L}\mathcal{L}Z(x) \) equals to \(-\pi Z(x), x \in (0, \infty)\) for a wide class of functions \(Z(x) \):

\[\pi Z(s) = -\text{Im } r_{An}(-s), \quad s \in (0, \infty), \quad r_{An}(s) \equiv r(s), s \in (0, +\infty), \]

\[r(s) = \mathcal{L}\mathcal{L}(Z(x)), \quad s \in (0, \infty), \quad \mathcal{L}(Z(x)) = \int_0^\infty e^{-sx} Z(x)dx, \quad s \in (0, \infty), \]

where, by definition, \(r_{An}(p), p \in \mathbb{C} \), is the analytical continuation of the function \(r(p), p \in D = \{p : \text{Re } p > 0\} \), and the function \(r_{An}(p) \) is regular (analytic) in \(\mathbb{C} \setminus P, \quad P = \{z_j : z_j \in \mathbb{C}, z_j \notin (-\infty, 0), j = 1, \ldots, m\} \), the set \(P \) may be \(\emptyset \).

All results of the article are true, for instance, if

\[Z(x) = \sum_{k=1}^{2N} \gamma_k e^{\lambda_k x} = \sum_{k=1}^N \gamma_k e^{-\alpha_k} \cos \beta_k x = \text{Re } Z(x), \quad \lambda_k = -\alpha_k + \beta_k i, \quad \alpha_k \in (0, \infty), \quad \gamma_k, \beta_k \in (-\infty, \infty), \]

\[\lambda_{2j+1} = -\alpha_{2j+1} + \beta_{2j+1} i, \lambda_{2j+2} = -\alpha_{2j+1} - \beta_{2j+1} i, \quad j = 1, \ldots, N - 1, \quad \lambda_j \neq \lambda_i \text{ for all } i \neq j. \]

The equality \(r(s) = -i\mathcal{F}_0 \mathcal{F}_0(Z(x)) = \mathcal{L}\mathcal{L}(Z(x)), s \in (0, +\infty) \), is considered in the theorem 1, where, by definition,

\[\mathcal{F}_0(Z(x)) = \int_0^\infty e^{i\rho x} Z(x)dx, \quad y \in (-\infty, \infty). \]

The main result of the article (the theorem 2) follows from the theorem 1.

All the conditions of the theorems 1 and 2 are checking in the remark 1 for the above functions \(Z(x) \).
1. The main result.
We shall use a designations \(f(p) \in \mathcal{A}nG \), if the function \(f(p) \) is regular in the open domain \(G \in \mathbb{C} \).

Theorem 1.
If for the function \(Z(p) \), we have

\[
R(p) = \int_{0}^{\infty} e^{-px} dx \int_{0}^{\infty} e^{itx} Z(t) dt \in \mathcal{A}nD_{*} = \{ p : -\pi/2 < \arg p < \varphi_{0} \},
\]

\[
F(p) = \int_{0}^{\infty} e^{-x_{1}} \frac{dx_{1}}{p} \int_{0}^{\infty} e^{itx_{1}/p} Z(t) dt \in \mathcal{A}nD_{*},
\]

for a variable \(\varphi_{0} : 0 < \varphi_{0} < \pi/2 \); if for all \(p = -is, s \in (0, \infty) \), the functions are continuous.

Then

\[
\mathcal{L}L(Z(x)) = -i\mathcal{F}_0\mathcal{F}_0(Z(x)) = Im \int_{0}^{\infty} e^{isx} dx \int_{0}^{\infty} e^{itx} Z(t) dt, s \in (0, \infty).
\]

Proof.
We can replace \(ux = x_{1}, p = s \in (0, \infty) \), in the integral of \(R(p) \), if \(p = u \in (0, \infty) \). We obtain \(R(u) = F(u), s \in (0, \infty) \). The functions are regular in \(D_{*}\{ p : -\pi/2 < \arg p < \varphi_{0} \} \), it is the open domain and \((0, \infty) \in D_{*} \), then \(R(p) = F(p), p \in D \). The function are continuous for \(p = is, s \in (-\infty, 0) \), then \(R(-is) = F(-is), s \in (0, \infty) \), and after the inverse replace \(x_{1}/s = x, s \in (0, \infty), x_{1} \in [0, \infty) \) in the integral of \(F(-is) \) we obtain the theorem 1..

Theorem 2.
Let the function \(\mathcal{F}_0\mathcal{F}_0(Z(x)) = r_{F}(p) \) is regular in the domain \(D_{*} = \{ p : Im p > 0 \} \) and is continuous for all real \(p = s \in (-\infty, \infty) \).
Let all the conditions of the theorem 1 are holds.
Let the function \(r(s) = \mathcal{L}L(Z(x)), s \in (0, \infty) \), can be analytical continued in the left part of the plane : \(D_{-} = \{ p : Re p < 0 \} \setminus \{ p_{j}, j = 1, \ldots, m \} \) \((m \) can be 0).

then

\[
-\pi Z(x) = Im r_{A_{n}}(-x), x \in (0, \infty), r_{A_{n}}(p) = r(p), p \in D = \{ p : Re p > 0 \}.
\]

Proof.
Let

\[
-ir_{F}(p) = -i\mathcal{F}_0\mathcal{F}_0(Z(x)), r_{L}(p) = r_{A_{n}}(p), r_{L}(p) = \mathcal{L}L(Z(x)), p \in s \in (0, \infty).
\]

We can see, that the real part of \(r_{F}(s) \), \(s \in (-\infty, \infty) \), is equal to

\[
Re r_{F}(s) = \int_{0}^{\infty} \cos sx \, dx \int_{0}^{\infty} \cos tx \, Z(t) \, dt - \int_{0}^{\infty} \sin sx \, dx \int_{0}^{\infty} \sin tx \, Z(t) \, dt =
\]

\[
= (1/4) \int_{-\infty}^{\infty} e^{isx} \, dx \int_{-\infty}^{\infty} e^{itx} [Z_{od}(t) + Z_{ev}(t)] \, dt = (1/4) \int_{-\infty}^{\infty} e^{isx} \, dx \int_{-\infty}^{\infty} e^{itx} Z_{+}(t) \, dt = (\pi/2)Z_{+}(-s),
\]

\[
= (1/4) \int_{-\infty}^{\infty} e^{isx} \, dx \int_{-\infty}^{\infty} e^{itx} Z_{+}(t) \, dt = (\pi/2)Z_{+}(-s),
\]
\(s \in (-\infty, \infty) \), where
\[
Z_{od}(x) \equiv Z_{ev}(x) \equiv Z_+(x)/2 = Z(x), x \in (0, +\infty);
\]
\[
Z_{od}(-x) \equiv Z_{od}(x), Z_{ev}(-x) \equiv -Z(x), Z_+(-x) \equiv 0, -x \in (-\infty, 0).
\]

We obtain
\[
Im(-ir_F(-s)) \equiv (-\pi/2)Z_+((-s)) = -\pi Z(s), s \in (0, \infty)
\] (1.1).

From the theorem 1 we have
\[
r_L(s) = -ir_F(s) = r(s), s \in (0, +\infty).
\]

We shall prove, that the functions are equal for all the complex \(p : Im\, p \geq 0 \). Let \(p = z_j \) is a point, where the \(r_L(p) \) or the \(r_F(p) \) functions are not regular; let \(Q = \{ p = z_j, j = 1, \ldots, M \} \) is the set of all the points.

All the values of the function \(ir_F(p) \) are real, if \(p = s \in (0, \infty) \) - it follows from the theorem 1, where
\[
-ir_F(p) \equiv Re(-ir_F(p)) \equiv \mathcal{L}\mathcal{L}(Z(x)) = r(s), p = s \in (0, \infty).
\]

Then, we can use the Reaman's theorem about the symmetrical continuation ([2]), and the function \(-ir_F(p) = -i\mathcal{F}_0\mathcal{F}_0(Z(x)), Im -ir_F(s) \equiv 0, s \in (0, \infty)\), can be analytical continued from the domain \(D_0 = \{ p : Im\, p > 0 \} \) in the the low part of the complex plane in the domain \(D_1 \), such that the real axis \((0, \infty) \in D_1 : (0, \infty) \in D_1, -ir_{An}(p) \in AND_1, D_0 \in D_1, -ir_{An} \equiv -ir_F(p), p \in D_0\).

Now, from \(-ir_{An}(p) = r_L(p), p \in (0, \infty) \in D_1\), it follows \(-ir_{An}(p) = r_L(p), p \in D_1 \setminus Q\).

As the result we have \(-ir_{An}(p) = -ir_F(p), p \in D_0 \setminus Q \in D_1\). (We use, that \(-ir_F(p) \in AND_0 \setminus Q\).

Therefore \(r_L(p) = -ir_{An}(p) = -ir_F(p), p \in D_0 \setminus Q \).

The function \(r_F(p) \) is continuous, if \(p = s \in (-\infty, \infty) \). Then,
\[
-ir_F(-s) = \lim_{p \to s}(-ir_F(p)) = \lim_{p \to s} r_L(p) = r_L(-s), s \in (0, \infty).
\]

From the equality (1.1) we obtain
\[
-\pi Z(s) = Im(-ir_F(-s)) = Im r_L(-s) = Im r_{An}(-s), s \in (0, \infty).
\]

The theorem 2 is proved.

Remark 1.

For all \(l > n + 2 > 1, l, n \in 1, 2, \ldots \), we have (it is a well-known formula)
\[
\frac{Q_n(p)}{P_l(p)} = \frac{q_0 + q_1 p + \ldots + q_n p^n}{\prod_{k=1}^l (p - \lambda_k)} = 2\pi i \int_0^\infty \left[\sum_{k=1}^l res_{p=\lambda_k} e^{px} \frac{Q_n(p)}{P_l(p)} \right] e^{-px}\, dx, \quad Re\, p \geq 0,
\]
if \(\lambda_k \neq 0, k = 1, \ldots, l \).

For all complex \(\lambda_k = -\alpha_k + \beta_k i, \alpha_m \in (0, \infty), \beta_k \in (-\infty, \infty) \), the function
\[
Z(x) = \sum_{k=1}^l \gamma_k e^{\lambda_k x}, \quad \gamma_k = res_{p=\lambda_k} \frac{Q_n(p)}{P_l(p)}, k = 1, \ldots, l
\]
satisfy to all the conditions of the theorems 1 and 2, if, for instance, \(\lambda_i \neq \lambda_j \) for all \(i \neq j \).

(In the conditions of introduction the function \(Z(x) \) is equal to \(Z_{re}(x) \).

Proof.

1. It is obviously, the function \(R(p), p = x + iy, \) is regular for all \(x > 0, y \in (-\infty, \infty) \) and continuous for all \(p = iy, y \in (-\infty, \infty) \)

\[
R(p) = \int_0^\infty \frac{Q_n(t)}{P(t)} e^{-(x+iy)t} dt.
\]

2. If \(p \in D_\ast = \{p = x + iy : -\pi/2 < \arg p < \varphi_0 > 0\}, \) and \(0 < \varphi_0 < \min_{0 < \kappa < 1} |\arctan \alpha_k/\beta_k| \), then

\[
\int e^{-x_1} \frac{Q_n(-ix_1/(x+iy))}{\prod_{k=1}^l ((-ix_1/(x+iy)) + \alpha_k - \beta_k i)} dx_1
\]

is continuous for all \(p \in D_\ast; \) we use

\[
[x_1/\sqrt{x^2 + y^2}](-i)(x - iy) = T(-ix - y) \neq -\alpha_k + \beta_k i, \text{ for all } T \in (0, \infty),
\]

if, other \(p \in D_1 = \{x + iy : x > 0, y \leq 0\}, (\alpha > 0), \) or \(p \in D_2 = \{x + iy : y > 0, x > 0\} \)

\[
\bigcap -\pi/2 - \arg(-\alpha_k - |\beta_k i|) < \arg(-ix - y) < -\pi/2, k = 1, \ldots, l \}
\]

where \(D_2 = \{x + iy : x > 0, y > 0\} \)

\[
\bigcap 0 < \arg(x + iy) < \min_{l=1,\ldots,l} (\arctan|\alpha_k/\beta_k|), \quad D_1 \cup D_2 = D_\ast.
\]

Then

\[
F(p) = (1/p) \int e^{-x_1} \frac{Q_n(-ix_1/(x+iy))}{\prod_{k=1}^l ((-ix_1/(x+iy)) + \alpha_k - \beta_k i)} dx_1 \in A_n D,
\]

3. To prove, that \(r_{Am(p)} \) is continuous for all \(p = x \in (-\infty, 0) \) and \(r_{Am}(p) = r(p), \) if \(p \in D_3 = \{p : Im p > 0\}, \) we consider an equality

\[
r(p) = \mathcal{L}(Z(x)) = \int_0^\infty Z(x)[1/(p + x)] dx \in A_n \mathbb{C} \setminus (-\infty, 0).
\]

We can write

\[
r(p) = \mathcal{L}(Z(x)) = \int_0^\infty Z(x)[1/(p + x)] dx \in A_n \mathbb{C} \setminus (-\infty, 0).
\]

Let

\[
p = p_0 t, t \in (0, \infty), p_0 = \text{const.}, \arg p_0 = \pi - \varepsilon, 0 < \varepsilon, \ll 1,
\]

and \(x/(tp_0) = z, x \in [0, \infty), t \in (0, \infty). \) We have

\[
r_1(p_0 t) = \int_{l(p_0)} Z(p_0 tz)[1/(1 + z)] dz, t \in (0, \infty), l(p_0) = \{z : z = \tau/p_0, \tau \in [0, \infty)\},
\]

4
\(l(p_0) = \{ z : \arg z = \arg(1/p_0) \} \), where \(r_1(p) = r(p), p = p_0 t, t \in (0, \infty) \); and \(r_1(p) \in \mathcal{A} \mathcal{D} \mathcal{E} = \{ p : -2\varepsilon < \arg p/p_0 < 2\varepsilon \wedge p \neq 0 \} \), while

\[
\begin{align*}
 r_1(p) &= \int_{l(p_0)} Z(pz)[1/(1+z)]dz = \int_0^\infty Z((p/p_0)\tau)[1/(1+(\tau/p_0))]d\tau/p_0,
\end{align*}
\]

and, if \(p \in D_\varepsilon \), we obtain

\[
\frac{dr_1(p)}{dp} = \int_0^\infty \frac{dZ((p/p_0)\tau)}{dp}[1/(1+(\tau/p_0))]d\tau/p_0,
\]

is continuous for all \(p \in D_\varepsilon, (Re (p/p_0) > \text{const.} > 0) \).

We obtain, that \(r_1(p) = r(p), p \in l(p_0) \), and \(r_1(p) = r_{\mathcal{A} \mathcal{D} \mathcal{E}}(p) = r(p), p \in D_\varepsilon, (-\infty, 0) \in D_\varepsilon \), where the functions are regular in the upper part of the \(\mathbb{C} \).

4. The function \(F_0 F_0(Z(x)) \) is regular in the upper part of \(\mathbb{C} \) for all \(p : \{ Im p > 0 \} \), and it is continuous for all \(p = x \in (-\infty, 0) \), (if \(1 < l > n + 2 \)). We use \(|e^{ipt}| \leq e^{-y}, p = x + iy, y > 0 \).

References

1. Pavlov A.V. The random series of Fourier and its apply to the theory of prognosis-filtering. (In russian). Moscow University of Lomonosov, mechanical-mathemat. faculty, 2000. ISBN 5-93839-002-8, 64 p.

2. Lavrentiev M.A, Shabat B.V. Methods of the theory of functions of complex variables. Moscow: Edd.Science., 1987.-688 p.
Home ad.: Prof. Pavlov Andrey Valerianovich. (Russia, Moscow, 109444, Fergankaia st., 11-1, 292)
Post ad.: for correspond.
Russia, Moscow, 117454, pr. Vernadskogo, 78, MIREA (TU), Cybernet. higher mathemat.,
for prof. Pavlov Andrey Valerianovich.
E-mail:
AVpavlov@rambler.ru
and11pavlov@msn.com
(095) 4330355 - job. tel. in Moscow.