Recyclable Materials for Ecofriendly Technology

Roman Fediuk \(^1,2,\ast\) and Mujahid Ali \(^3,4,\ast\)

\(^1\) Polytechnic Institute, Far Eastern Federal University, 690922 Vladivostok, Russia
\(^2\) Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
\(^3\) Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
\(^4\) Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia

* Correspondence: roman44@yandex.ru (R.F); mujahid_19001704@utp.edu.my (M.A.)

Abstract: This Special Issue (SI), “Recyclable Materials for Ecofriendly Technology”, has been proposed and organized as a means to present recent developments in the field of environmentally friendly designed construction and building materials. For this purpose, dozens of articles were included or considered for inclusion in this SI, covering various aspects of the topic. A comparison of these articles with other modern articles on this topic is carried out, which proves the prospects and relevance of this SI. Furthermore, per the editorial board’s journal suggestion, the second volume of this successful SI is being organized, in which authors from various countries and organizations are invited to publish their new and unpublished research work.

Keywords: Special Issue; waste recycle; building materials; ecofriendly; technology

This Special Issue (SI), “Recyclable Materials for Ecofriendly Technology (RMET)”, was developed and organized to present new developments in the field of environmentally friendly built construction and building materials. For this reason, several articles addressing various aspects of the topic under examination were included in the Special Issue. The largest contributors to the SI were the universities and institutions considered the most successful organizations. For instance, Far East Federal University, Peter the Great St. Petersburg Polytechnic University, Belgorod State Technological University n.a. V.G. Shukhov, Universiti Teknologi PETRONAS Malaysia, COMSAT University Abbottabad, Pakistan, and M. Auezov South Kazakhstan University have contributed significantly to this Special Issue. The purpose of the current editorial article is to briefly summarize the articles included in the SI.

One of the most cost-effective approaches to obtaining sustainably built construction products is to research various types of recycling waste in construction and building materials. Klyuev et al. [1] proposed a method of obtaining mineral fiber fillers for dry building mixtures via the processing of waste from producing technogenic fibrous materials. These advanced materials are the continuation of the authors’ previous works [2–6] and represent exciting and essential results. Zhangabay et al. [7] presented the findings of experimental studies on the operational characteristics of prestressed shells constructed from recycled materials. These results summarize the findings of these Kazakh interuniversity researchers, published both in this Special Issue (to be discussed below) and in other publications [8–13].

Konovalova et al. [14] supported the use of fly ash in the composition of soil concrete, which is employed in the construction of structural layers of road pavements, foundations of buildings and structures, and sites for various uses. Pyagai et al. [15] investigated the effect of residual sulfuric and phosphoric acids on the process of converting significant amounts of phosphogypsum waste into calcium carbonate.

Aruralasi et al. [16] investigated the effects of admixtures on energy usage during the mixing of ready-mixed concrete. These findings are consistent with previous classic
findings acquired by independent authors [17]. Volokitina et al. [18] examined the hardness of bimetallic wires made from secondary materials used in power line construction. Lisowska et al. [19] verified the hypothesis by assuming that combining waste sulfur pulp and its mixtures with organic materials enables simultaneous soil enrichment with readily available sulfur and organic matter. In [20], the study aims to predict the compressive strength of LFC by using a support vector machine as an individual learner along with bagging, boosting, and random forest as a modified ensemble learner. Khan et al. [21] evaluated the effect of polyethylene terephthalate alongside two supplementary cementitious materials—i.e., fly ash and silica fume—on the 28-day compressive strength of cementitious grouts for a semi-flexible pavement surface. Kasiman et al. [22] presented the mixed finite element formulation for examining the biomagnetic fluid dynamics as governed by the Navier–Stokes equation, coupled with energy and magnetic expressions. Yip et al. [23] researched a low-rise, three-story, reinforced concrete (RC) structure. This study aims to identify the dynamic response of the scaled RC structure with and without attached dampers, and it performs structural reliability of the tested model under the excitation of Peak Ground Acceleration of 0.1 g to 1.0 g with a unidirectional shaking table. Asghar et al. [24] presented a novel approach of artificial intelligence-based gene expression programming for predicting the lateral load-carrying capacity of RC rectangular columns when subjected to earthquake loading. The Kazakh team, led by Volokitina and Kolesnikov [25,26], presented studies on the possibility of utilizing technogenic waste from the metallurgical industry by the method of complex processing to reduce the anthropogenic load on the environment of the region, with the example given of a zinc silicate–magnetite–carbon system.

Ullah et al. [27] emphasized the mechanical properties of bituminous concrete mix prepared with crumb rubber and waste sugarcane bagasse ash. Loganina et al. [28] modified lime mortars with silicic acid sol to obtain more durable crystalline materials for construction purposes. Hakro et al. [29] studied the effect of marble dust, rice-husk ash, and saw dust on expansive shale’s compaction characteristics and permeability properties. These results are an excellent summary of many years of research by these authors [30–34]. Khanzada et al. [35] investigated the preplaced aggregate method of concrete utilizing silica fume and polypropylene fibers. Chin et al. [36] investigated the possibility of incorporating agro-industrial wastes into the brick mixture by examining their properties using several standardized tests. Smirnova et al. [37] compared the fracture features, strength, and deformation properties of pseudo-strain-hardening composites based on alkali-activated slag and Portland cement matrices with polypropylene microfiber. These results are an excellent summary of many years of research by these authors [38–41]. Alhokabi et al. [42] used the replacement portion of the soil with stabilizing agents such as palm oil fuel ash and gypsum. A team led by Niemiec [43,44] evaluated the efficiency of the conversion of biomass contained in the whitewater fraction of municipal waste and sewage sludge using methanogenesis. Ahmad et al. [45] used waste glass as a filler material that filled the voids between recycled concrete aggregate to offset its negative impact on concrete performance. Kolesnikov et al. [46] presented studies on the processing of enrichment tailings as a component of a raw mixture to obtain cement clinker with a simultaneous distillation of zinc. Campanhao et al. [47] developed recycled PET sand for cementitious mortar, whereas Chakrawarthi et al. [48] studied the impact resistance of polypropylene fiber-reinforced alkali-activated copper slag concrete. The authors of [49,50] demonstrated the application of a machine learning-based algorithm approach named “Multi Expression Programming” (MEP) to forecast the compressive strength of carbon fiber-reinforced polymer (CFRP)-confined concrete. Barabanschikov et al. [51] studied the effect of a microfibrillated cellulose additive on strength, elastic modulus, heat release, and shrinkage of mortar and concrete. Petropavlovskii et al. [52] used gypsum-containing waste from a faience factory in the form of waste molds for casting dishes, souvenirs, and plumbing fixtures. Szelag et al. [53] presented the effect of brick powder (BP) on cement mortars’ physico-chemical and mechanical properties. Raza et al. [54] evaluated
the moisture damage potential in hot mix asphalt using polymeric aggregate treatment. Alani et al. [55] investigated the demolition waste potential of completely cement-free binders. Al Salaheen et al. [56] researched on modelling and optimization for mortar compressive strength, incorporating heat-treated fly oil shale ash as an effective supplementary cementitious material using response surface methodology. Kolesnikova et al. [57] developed a thermodynamic simulation of environmental and population protection by utilization of technogenic enrichment tailings. All the research articles listed above are based on previously obtained experimental data from other publications [5,58–65].

A good embellishment of the Special Issue is several review articles. Ahmad et al. [66] presented a summary of research progress on coconut fiber (natural fibers)-reinforced concrete, whereas Shaikhiev et al. [67] provided a comprehensive review of the literature data on the use of apricot (Prunus armeniaca) biomass components as a sorption material for the treatment of wastewater and environmental water from various pollutants. Gul Zaman et al. [68] reviewed produced water treatment with conventional adsorbents and metal–organic frameworks as an alternative. Makul et al. [69] highlighted the overview of biomass energy in South East Asia as a dynamically developing region to obtain economic and environmental benefits from the existing biomass sources in the world. Finally, Marvila et al. [70] overviewed recycled aggregate as a viable solution for sustainable concrete production. The above-mentioned discussion is a brief overview of the published articles in the SI. In contrast, the editorial members and GE are organizing another SI for future new and unpublished work.

Author Contributions: Conceptualization, R.F. and M.A.; methodology, R.F. and M.A.; software, R.F. and M.A.; validation, M.A. and R.F.; formal analysis, R.F. and M.A.; investigation, R.F. and M.A.; resources, R.F. and M.A.; data curation, R.F. and M.A.; writing—original draft preparation, R.F. and M.A.; review and editing, M.A. and R.F.; visualization, R.F. and M.A.; supervision, R.F. and M.A.; project administration, R.F. and M.A.; funding acquisition, R.F. All authors have read and agreed to the published version of the manuscript.

Funding: The study was supported by the RSF grant No. 22-19-20115, https://rscf.ru/project/22-19-20115/; and the Government of the Belgorod Region, Agreement No. 3 of 24 March 2022.

Acknowledgments: First and foremost, the GEs of the SI are thankful to the Materials–MDPI for allowing us to work with them and announcing the SI for the researcher, which helps them publish their research work. In addition, the GEs (Roman Fediuk and Mujahid Ali) are warmly thankful to all the authors who submitted their original and unpublished research articles to the SI, which makes the SI successful and has allowed for the planning of another volume of the SI. We are grateful for the opportunity to work with you, and we invite everyone to contribute to the second volume of this successful SI.

Conflicts of Interest: The authors would like to declare that there is no conflict between them related to financial, professional or personal interests.

References

1. Klyuev, S.; Fediuk, R.; Ageeva, M.; Fomina, E.; Klyuev, A.; Shorstova, E.; Sabitov, L.; Radaykin, O.; Anciferov, S.; Kikalishvili, D.; et al. Technogenic Fiber Wastes for Optimizing Concrete. Materials 2022, 15, 5058. [CrossRef] [PubMed]
2. Kharun, M.; Klyuev, S.; Koroteev, D.; Chiadhigikaobi, P.C.; Fediuk, R.; Olisov, A.; Vatin, N.; Al’imova, N. Heat Treatment of Basalt Fiber Reinforced Expanded Clay Concrete with Increased Strength for Cast-in-Situ Construction. Fibers 2020, 8, 67. [CrossRef]
3. Fediuk, R.; Mugahed Amran, Y.H.; Mosalberpanah, M.A.; Danish, A.; El-Zeadani, M.; Klyuev, S.V.; Vatin, N. A Critical Review on the Properties and Applications of Sulfur-Based Concrete. Materials 2020, 13, 4712. [CrossRef] [PubMed]
4. Da Silva, T.R.; de Azevedo, A.R.G.; Cecchin, D.; Marvila, M.T.; Amran, M.; Fediuk, R.; Vatin, N.; Karelina, M.; Klyuev, S.; Szelag, M. Application of Plastic Wastes in Construction Materials: A Review Using the Concept of Life-Cycle Assessment in the Context of Recent Research for Future Perspectives. Materials 2021, 14, 3549. [CrossRef]
5. Makul, N.; Fediuk, R.; Amran, M.; Zeyad, A.M.; Murali, G.; Vatin, N.; Klyuev, S.; Ozbakkaloglu, T.; Vasilev, Y. Use of Recycled Concrete Aggregates in Production of Green Cement-Based Concrete Composites: A Review. Crystals 2021, 11, 232. [CrossRef]
6. Jabir, H.A.; Abid, S.R.; Murali, G.; Ali, S.H.; Klyuev, S.; Fediuk, R.; Vatin, N.; Promakhov, V.; Vasilev, Y. Experimental Tests and Reliability Analysis of the Cracking Impact Resistance of UHPFRC. Fibers 2020, 8, 74. [CrossRef]
7. Zhangabay, N.; Sapargaliyeva, B.; Utelbayeva, A.; Kolesnikov, A.; Aldiyaroyev, Z.; Dossybekov, S.; Esimov, E.; Duissenbekov, B.; Fediyu, R.; Vatin, N.I.; et al. Experimental Analysis of the Stress State of a Prestressed Cylindrical Shell with Various Structural Parameters. *Materials* 2022, 15, 4996. [CrossRef]

8. Kolesnikov, A.S.; Ksenzhibaeva, G.S.; Botabaev, N.E.; Kuzhtanova, A.N.; Iztiuleev, G.M.; Suigenbaeva, A.Z.; Ashirbekov, K.A.; Kolesnikova, O.G. Thermodynamic Modeling of Chemical and Phase Transformations in a Waelz Process-Slag—Carbon System. *Refract. Ind. Ceram.* 2020, 67, 289–292. [CrossRef]

9. Kolesnikov, A.S.; Naraev, V.N.; Natorhin, M.I.; Saipov, A.A.; Kolesnikova, O.G. Review of the Processing of Minerals and Technogenic Sulfide Raw Material with the Extraction of Metals and Recovering Elemental Sulfur by Electrochemical Methods. *Rasayan J. Chem.* 2020, 13, 2420–2428. [CrossRef]

10. Kolesnikov, A.S.; Zhakipbaev, B.Y.; Zhanikulov, N.N.; Kolesnikova, O.G.; Akhmetova, E.K.; Kuraev, R.M.; Shal, A.L. Review of Technogenic Waste and Methods of Its Processing for the Purpose of Complex Utilization of Tailings from the Enrichment of Non-Ferrous Metal Ores As A Component of the Raw Material Mixture in the Production of Cement Clinker. *Rasayan J. Chem.* 2021, 14, 997–1005. [CrossRef]

11. Vasilyeva, N.; Fedorova, E.; Kolesnikov, A. Big Data as a Tool for Building a Predictive Model of Roll Wear. *Symmetry* 2021, 13, 859. [CrossRef]

12. Boikov, A.; Payor, V.; Savelev, R.; Kolesnikov, A. Synthetic Data Generation for Steel Defect Detection and Classification Using Deep Learning. *Symmetry* 2021, 13, 1176. [CrossRef]

13. Kolesnikov, A.S.; Serikbaev, B.E.; Zolkin, A.L.; Ksenzhibaeva, G.S.; Isayev, G.I.; Botabaev, N.E.; Shapalov, S.K.; Kolesnikova, O.G.; Iztiuleev, G.M.; Suigenbaeva, A.Z.; et al. Processing of Non-Ferrous Metallurgy Waste Slag for Its Complex Recovery as a Secondary Mineral Raw Material. *Refract. Ind. Ceram.* 2021, 62, 375–380. [CrossRef]

14. Konovalova, N.; Pankov, P.; Petukhov, V.; Fediyu, R.; Amran, M.; Vatin, N.I. Structural Formation of Soil Concretes Based on Loam and Fly Ash, Modified with a Stabilizing Polymer Additive. *Materials* 2022, 15, 4893. [CrossRef] [PubMed]

15. Pyagai, I.; Zubkova, O.; Babykin, R.; Toropchina, M.; Fediyu, R. Influence of Impurities on the Process of Obtaining Calcium Carbonate during the Processing of Phosphogypsum. *Materials* 2022, 15, 4335. [CrossRef] [PubMed]

16. Arularasi, V.; Pachiappan, T.; Avudaippan, S.; Raman, S.N.; Guindos, P.; Amran, M.; Fediyu, R.; Vatin, N.I. Effects of Admixtures on Energy Consumption in the Process of Ready-Mixed Concrete Mixing. *Materials* 2022, 15, 4143. [CrossRef]

17. Bessmertnyi, V.S.; Lesovik, V.S.; Krokhin, V.P. The Reducing Effect of Argon in the Plasma Treatment of High-Melting Nonmetallic Materials (a Review). *Glas. Ceram.* 2001, 58, 362–364. [CrossRef]

18. Volokitina, I.; Vasilyeva, N.; Fediyu, R.; Kolesnikov, A. Hardening of Bimetallic Wires from Secondary Materials Used in the Construction of Power Lines. *Materials* 2022, 15, 3975. [CrossRef]

19. Lisowska, A.; Filipek-Mazur, B.; Komorowska, M.; Niemiec, M.; Bar-Michalczuk, D.; Kuboń, M.; Tabor, S.; Gröde-Kszóstak, Z.; Szelag-Sikora, A.; Sikora, J.; et al. Environmental and Production Aspects of Using Fertilizers Based on Waste Elemental Sulfur and Organic Materials. *Materials* 2022, 15, 3387. [CrossRef]

20. Ullah, H.S.; Khushnood, R.A.; Farooq, F.; Ahmad, J.; Vatin, N.I.; Ewais, D.Y.Z. Prediction of Compressive Strength of Sustainable Foam Concrete Using Individual and Ensemble Machine Learning Approaches. *Materials* 2022, 15, 3166. [CrossRef]

21. Khan, K.; Jalal, F.E.; Iqbal, M.; Khan, M.I.; Amin, M.N.; Al-Faiad, M.A. Predictive Modeling of Compression Strength of Waste PET/SCM Blended Cementitious Columns: Gene Expression Programming. *Materials* 2022, 15, 3077. [CrossRef] [PubMed]

22. Kasiman, E.H.; Kueh, A.B.H.; Mohd Yassin, A.Y.; Amin, N.S.; Amran, M.; Fediyu, R.; Kotov, E.V.; Murali, G. Mixed Finite Element Formulation for Navier–Stokes Equations for Magnetic Effects on Biomagnetic Fluid in a Rectangular Channel. *Materials* 2022, 15, 2865. [CrossRef] [PubMed]

23. Yip, C.-C.; Wong, J.-Y.; Amran, M.; Fediyu, R.; Vatin, N.I. Reliability Analysis of Reinforced Concrete Structure with Shock Absorber Damper under Pseudo-Dynamic Loads. *Materials* 2022, 15, 2688. [CrossRef] [PubMed]

24. Asghar, R.; Javed, M.F.; Alrowais, R.; Khalil, A.; Mohamed, A.M.; Mohamed, A.; Vatin, N.I. Predicting the Lateral Load Carrying Capacity of Reinforced Concrete Rectangular Columns: Gene Expression Programming. *Materials* 2022, 15, 2673. [CrossRef]

25. Volokitina, I.; Kolesnikov, A.; Fediyu, R.; Klyuvey, S.; Sabitov, L.; Volokitina, A.; Zhuniskaliyev, T.; Kelamanov, B.; Yessengaliev, D.; Yerzhanov, A.; et al. Study of the Properties of Antifriction Rings under Severe Plastic Deformation. *Materials* 2022, 15, 2584. [CrossRef]

26. Kolesnikov, A.; Fediyu, R.; Amran, M.; Klyuvey, S.; Klyuvey, A.; Volokitina, I.; Naukenova, A.; Shapalov, S.; Utelbayeva, A.; Kolesnikova, O.; et al. Modeling of Non-Ferrous Metallurgy Waste Disposal with the Production of Iron Silicides and Zinc Distillation. *Materials* 2022, 15, 2542. [CrossRef]

27. Ullah, S.; Shah, M.I.; Alqurashi, M.; Javed, M.F.; Dawood, O.; Aslam, F.; Tariq, M.A.U.R.; Hussain, E.E. Eco-Friendly Incorporation of Crumb Rubber and Waste Bagasse Ash in Bituminous Concrete Mix. *Materials* 2022, 15, 2509. [CrossRef]

28. Loganina, V.; Davydova, O.; Fediyu, R.; Amran, M.; Klyuvey, S.; Klyuvey, A.; Sabitov, L.; Nabiullina, K. Improving the Durability of Lime Finishing Mortars by Modifying Them with Silicic Acid Sol. *Materials* 2022, 15, 2360. [CrossRef]

29. Hakro, M.R.; Kumar, A.; Almani, Z.; Ali, M.; Fediyu, R.; Klyuvey, S.; Klyuvey, A.; Sabitov, L.; Fathi, D. Compaction Characteristics and Permeability of Expansive Shale Stabilized with Locally Produced Waste Materials. *Materials* 2022, 15, 2138. [CrossRef]

30. Ali, M.; Abbas, S.; Salah, B.; Akhter, J.; Saleem, W.; Haruna, S.; Room, S.; Abdulkadir, I. Investigating Optimal Confinement Behaviour of Low-Strength Concrete through Quantitative and Analytical Approaches. *Materials* 2021, 14, 4675. [CrossRef]
31. Ali, M.; Abbas, S.; Khan, M.I.; Anwar Gad, M.; Ammad, S.; Khan, A. Experimental Validation of Mander’s Model for Low Strength Confined Concrete Under Axial Compression. In Proceedings of the 2020 Second International Sustainability and Resilience Conference: Technology and Innovation in Building Designs(31194), Sakheer, Bahrain, 11–12 November 2020; pp. 1–6.

32. Ali, M.; Room, S.; Khan, M.I.; Masood, F.; Ali Memon, R.; Khan, R.; Memon, A.M. Assessment of Local Earthen Bricks in Perspective of Physical and Mechanical Properties Using Geographical Information System in Peshawar, Pakistan. Structures 2020, 18, 2549–2561. [CrossRef]

33. Barreto, E.D.S.; Stafanato, K.V.; Marvila, M.T.; de Azevedo, A.R.G.; Ali, M.; Pereira, R.M.L.; Monteiro, S.N. Clay Ceramic Waste as Pozzolan Constituent in Cement for Structural Concrete. Materials 2021, 14, 2917. [CrossRef] [PubMed]

34. De Azevedo, A.R.G.; Marvila, M.T.; Ali, M.; Khan, M.I.; Masood, F.; Vieira, C.M.F. Effect of the Addition and Processing of Glass Polishing Waste on the Durability of Geopolymeric Mortars. Case Stud. Constr. Mater. 2021, 15, e00662. [CrossRef]

35. Khanzada, F.A.; Nazir, K.; Ishhtiaq, M.; Javed, M.F.; Kashif-ur-Rehman, S.; Aslam, F.; Musarat, M.A.; Usanová, K. Concrete by Preplaced Aggregate Method Using Silica Fume and Polypropylene Fibres. Materials 2022, 15, 1997. [CrossRef]

36. Chin, W.Q.; Lee, Y.H.; Amran, M.; Fediuk, R.; Vatin, N.; Kueh, A.B.H.; Lee, Y.Y. A Sustainable Reuse of Agro-Industrial Wastes. Materials 2022, 15, 1713. [CrossRef]

37. Smirnova, O.M.; Menendez Pidal, I.; Alekseev, A.V.; Petrov, D.N.; Popov, M.G. Strain Hardening of Polypropylene Microfiber Reinforced Composite Based on Alkali-Activated Slag Matrix. Materials 2022, 15, 1607. [CrossRef]

38. Smirnova, O.M. Development of Classification of Rheologically Active Microfillers for Disperse Systems with Portland Cement and Super Plasticizer. Int. J. Civ. Eng. Technol. 2018, 9, 1966–1973.

39. Smirnova, O.M. Technology of Increase of Nanoscale Pores Volume in Protective Cement Matrix. Int. J. Civ. Eng. Technol. 2018, 9, 1991–2000.

40. Smirnova, O.M. Rheologically Active Microfillers for Precast Concrete. Int. J. Civ. Eng. Technol. 2018, 9, 1724–1732.

41. Smirnova, O. Compatibility of Shungisite Microfillers with Polycarboxylate Admixtures in Cement Compositions. ARPN J. Eng. Appl. Sci. 2019, 14, 600–610.

42. Alhokabi, A.; Hasan, M.; Amran, M.; Fediuk, R.; Vatin, N.I.; Alshaer, H. The Effect of POFA-Gypsum Binary Mixture Replacement on the Performance of Mechanical and Microstructural Properties Enhancements of Clays. Materials 2022, 15, 1532. [CrossRef] [PubMed]

43. Niemiec, M.; Sikora, J.; Szela̧g-Sikora, A.; Gródek-Szostak, Z.; Komorowska, M. Assessment of the Possibilities for the Use of Selected Waste in Terms of Biogas Yield and Further Use of Its Digestate in Agriculture. Materials 2022, 15, 988. [CrossRef] [PubMed]

44. Lisowska, A.; Filipek-Mazur, B.; Soltys, J.; Niemiec, M.; Gorczyza, O.; Bar-Michalczyk, D.; Komorowska, M.; Gródek-Szostak, Z.; Szela̧g-Sikora, A.; Sikora, J.; et al. Preparation, Characterization of Granulated Sulfur Fertilizers and Their Effects on a Sandy Soils. Materials 2022, 15, 612. [CrossRef]

45. Ahmad, J.; Martinez-Garcia, R.; De-Prado-Gil, J.; Irshad, K.; El-Shorbagy, M.A.; Fediuk, R.; Vatin, N.I. Concrete with Partial Substitution of Waste Glass and Recycled Concrete Aggregate. Materials 2022, 15, 430. [CrossRef]

46. Kolesnikov, A.; Fediuk, R.; Kolesnikova, O.; Zhanikulov, N.; Zhakipbayev, B.; Kuraev, R.; Akhmetova, E.; Shal, A. Processing of Waste from Enrichment with the Production of Cement Clinker and the Extraction of Zinc. Materials 2022, 15, 324. [CrossRef]

47. Campanhão, A.F.; Marvila, M.T.; de Azevedo, A.R.G.; da Silva, T.R.; Fediuk, R.; Vatin, N. Recycled PET Sand for Cementitious Mortar. Materials 2022, 15, 273. [CrossRef]

48. Chakrawarthi, V.; Avudaiappan, S.; Amran, M.; Dharmar, B.; Raj Jesuarulraj, L.; Fediuk, R.; Aepuru, R.; Vatin, N.I.; Saavedra, A.F.; Marvila, M.T.; de Prado-Gil, J.; Irshad, K.; El-Shorbagy, M.A.; Fediuk, R.; Vatin, N.I. Concrete with Partial Substitution of Waste Glass and Recycled Concrete Aggregate. Materials 2022, 15, 430. [CrossRef]

49. Ahmad, J.; Martinez-Garcia, R.; De-Prado-Gil, J.; Irshad, K.; El-Shorbagy, M.A.; Fediuk, R.; Vatin, N.I. Concrete with Partial Substitution of Waste Glass and Recycled Concrete Aggregate. Materials 2022, 15, 430. [CrossRef]

50. Ilyas, I.; Zafar, A.; Javed, M.F.; Farooq, F.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP. Materials 2022, 14, 7531. [CrossRef]

51. Ilyas, I.; Zafar, A.; Javed, M.F.; Farooq, F.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming. Materials 2021, 14, 7134. [CrossRef]

52. Barabanshchikov, Y.; Plaching, H.; Usanova, K. Influence of Microfibrillated Cellulose Additive on Strength, Elastic Modulus, Heat Release, and Shrinkage of Mortar and Concrete. Materials 2021, 14, 6933. [CrossRef]

53. Popov, M.G. Strain Hardening of Polypropylene Microfiber Reinforced Composite Based on Alkali-Activated Slag Matrix. Materials 2022, 15, 1607. [CrossRef]

54. Raza, A.; Khan, I.; Tufail, R.F.; Frankovska, J.; Mushtaq, M.U.; Salmi, A.; Awad, Y.A.; Javed, M.F. Evaluation of Moisture Damage Potential in Hot Mix Asphalt Using Polymeric Aggregate Treatment. Materials 2022, 15, 5437. [CrossRef] [PubMed]

55. Alani, A.A.; Lesovik, R.; Lesovik, V.; Fediuk, R.; Klyuev, S.; Amran, M.; Ali, M.; de Azevedo, A.R.G.; Vatin, N.I. Demolition Waste Potential for Completely Cement-Free Binders. Materials 2022, 15, 6018. [CrossRef] [PubMed]

56. Al Salaheen, M.; Alaloul, W.S.; Malkawi, A.B.; de Brito, J.; Alzubi, K.M.; Al-Sabaei, A.M.; Alnarabji, M.S. Modelling and Optimization for Mortar Compressive Strength Incorporating Heat-Treated Fly Oil Shale Ash as an Effective Supplementary Cementitious Material Using Response Surface Methodology. Materials 2022, 15, 6538. [CrossRef] [PubMed]
57. Kolesnikova, O.; Syrlybekkyzy, S.; Fediuk, R.; Yerzhanov, A.; Nadirov, R.; Utelbayeva, A.; Agabekova, A.; Latypova, M.; Chepelyan, L.; Volokitina, I.; et al. Thermodynamic Simulation of Environmental and Population Protection by Utilization of Technogenic Tailings of Enrichment. *Materials* **2022**, *15*, 6980. [CrossRef]

58. Fediuk, R.S.; Smoliakov, A.K.; Timokhin, R.A.; Batarsehin, V.O.; Yevdogimova, Y.G. Using Thermal Power Plants Waste for Building Materials. In *Proceedings of the IOP Conference Series: Earth and Environmental Science*, Sanya, China, 20–22 November 2017; Volume 87.

59. Fediuk, R.; Timokhin, R.; Mochalov, A.; Otsokov, K.; Lashina, I. Performance Properties of High-Density Impermeable Cementitious Paste. *J. Mater. Civ. Eng.* **2019**, *31*, 04019013. [CrossRef]

60. Fediuk, R.S.; Lesovik, V.S.; Mochalov, A.V.; Otsokov, K.A.; Lashina, I.V.; Timokhin, R.A. Composite Binders for Concrete of Protective Structures. *Mag. Civ. Eng.* **2018**, *6*, 208–218. [CrossRef]

61. Fediuk, R.; Smoliakov, A.; Stoyushko, N. Increase in Composite Binder Activity. In *Proceedings of the IOP Conference Series: Materials Science and Engineering*, Sanya, China, 21–23 November 2016; Volume 156.

62. Abid, S.R.; Murali, G.; Amran, M.; Vatin, N.; Fediuk, R.; Karelina, M. Evaluation of Mode II Fracture Toughness of Hybrid Fibrous Geopolymer Composites. *Materials* **2021**, *14*, 349. [CrossRef]

63. Amran, M.; Murali, G.; Fediuk, R.; Vatin, N.; Vasilev, Y.; Abdelgader, H. Palm Oil Fuel Ash-Based Eco-Efficient Concrete: A Critical Review of the Short-Term Properties. *Materials* **2021**, *14*, 332. [CrossRef]

64. De Azevedo, A.R.G.; Cruz, A.S.A.; Marvila, M.T.; de Oliveira, L.B.; Monteiro, S.N.; Vieira, C.M.F.; Fediuk, R.; Timokhin, R.; Vatin, N.; Daironas, M. Natural Fibers as an Alternative to Synthetic Fibers in Reinforcement of Geopolymer Matrices: A Comparative Review. *Polymers* **2021**, *13*, 2493. [CrossRef] [PubMed]

65. Fediuk, R.; Yushin, A. Composite Binders for Concrete with Reduced Permeability. In *Proceedings of the IOP Conference Series: Materials Science and Engineering*, Sanya, China, 21–23 November 2016; Volume 116.

66. Ahmad, J.; Majdi, A.; Al-Fakih, A.; Deifalla, A.; Alhoeif, F.; El Ouni, M.H.; El-Shorbagy, M.A. Mechanical and Durability Performance of Coconut Fiber Reinforced Concrete: A State-of-the-Art Review. *Materials* **2022**, *15*, 3601. [CrossRef] [PubMed]

67. Shaikhieva, K.; Shaykhieva, K.; Sverguzova, S.; Fomina, E.; Vinogradenko, Y.; Fediuk, R.; Amran, M.; Svintsov, A.P.; de Azevedo, A.R.G.; Gunasekaran, M. Removing Pollutants from Sewage Waters with Ground Apricot Kernel Shell Material. *Materials* **2022**, *15*, 3428. [CrossRef] [PubMed]

68. Gul Zaman, H.; Baloo, L.; Pendyala, R.; Singa, P.K.; Ilyas, S.U.; Kutty, S.R.M. Produced Water Treatment with Conventional Adsorbents and MOF as an Alternative: A Review. *Materials* **2022**, *14*, 7607. [CrossRef] [PubMed]

69. Makul, N.; Fediuk, R.; Amran, M.; Al-Akwaa, M.S.; Pralat, K.; Nemova, D.; Petrovlovskii, K.; Novichenkova, T.; Petropavlovskaya, V.; Sulman, M. Utilization of Biomass to Ash: An Overview of the Potential Resources for Alternative Energy. *Materials* **2021**, *14*, 6482. [CrossRef] [PubMed]

70. Marvila, M.; de Matos, P.; Rodriguez, E.; Monteiro, S.N.; de Azevedo, A.R. Recycled Aggregate: A Viable Solution for Sustainable Concrete Production. *Materials* **2022**, *15*, 5276. [CrossRef]