Critical Success Factors to Improve Safety Culture on Construction Project in Indonesia

R A Machfudiyanto¹, Y Latief¹ and Robert ¹

¹Department of Civil Engineering, Faculty Engineering, Universitas Indonesia, Kampus UI Depok 16424, Jawa Barat, Indonesia
E-mail: rossyarmyn@gmail.com

Abstract. Safety in the construction industry is still a major concern in some countries around the world.
This is due to the far higher levels of occupational accidents in the construction industry than other
industries. This study aims to (i) identify factors that affect safety, (ii) determine critical success factor
implementation of safety and (iii) the performance improvement at work done to achieve salvation. This
study uses Factor Analysis and Analytical Hierarchy Process. From this research, the 5 Critical Success
Factors are the leadership of (30.69%), Behavioural Safety (22.49%), Safety Planning (22.26%),
Individual Capability (17.52%), and the Report and Evaluation (7.04%). The result is based on the
critical success factors of the obtained improvement to the implementation of safety culture.

Keyword : Critical Success Factors, Safety Culture, Construction Project

1. Introduction
Safety is a very important element in the successful execution of a job. Safety in the construction industry is still a major concern in some countries in the world. This is because the levels of occupational accidents in the construction industry is still statistically far higher than other industries [1]
The efforts to prevent from accident is by working effectively to improve policies or regulations regarding occupational safety management system in the construction industry. At the project level, work accidents cause delays in the completion of projects due to lost working hours. Moreover, the other impact, which is no less important, is lowering the quality of human life [2].
Based on the description above, the researchers formulated several problems as follows (1) What factors influence the success of safety on construction projects in Indonesia? (2) Which part of the Critical Success Factors largely influences safety culture? and (3) How is it to improve the safety program as forming a safety culture based on the success factors of the safety performance?
The objectives of this research are (1) To identify the success factors of safety work on construction projects, (2) to determine the Critical Success Factors that mostly influence safety culture in the construction project and (3) to provide an improved method of implementation of the safety program as a shaper of safety culture work based on the success factors of safety performance

2. Theoretical Study
Critical success of a construction project is an important problem for most governments, users and communities [3]. The Project will be considered successful when the project is completed on time, the budget does not swell, good quality and without workplace accidents [4]. [5] state that the CSF is required for the success of any program in a way that the purpose of the
organizations might not compatible with current conditions, so their programs will fail catastrophically. [2] propose a complete list of critical success factors that can affect the successful implementation of safety programs. The following figure illustrates several Critical Success Factors of safety culture development according to the experts who conducted research and based on the rules

![Critical Success Factors Development of Safety Culture](image)

Table 1. Critical Success Factors Development of Safety Culture
No.

1
2
3
4
5
6
7
8
9
10
11
Conflicts will aggravate the situation if they are not resolved quickly.

12	Risk preference		
	The more willingness to take a risk, the stronger risk tolerance an individual may have		
13	Decision motivation		
	With the motivation of specific decisions, the decision is a significant directivity, which resulted in the fact that the activity of the decision will be moving towards the expected direction and purpose		
14	Noise		
	Loud noise from operation of machines may make workers feel fidget, then, unreasonable assessment of self-risk tolerance may happen		
15	Peer behaviors		
	The effect of peer behaviour refers to workers would do as same as what their peer workers do. If other workers complete work earlier by taking risks, it will enhance individuals’ risk tolerance to take the same risks		
16	Participation of employees		
	Successful safety programs largely depend on employee involvement as workers tend to support the activities that they themselves help to create. Workers should be given the opportunities to provide input into the design and implementation of safety programs such as being a member of the safety committee, reporting hazards and unsafe practices to supervisors, identifying training needs, investigating accidents, etc.		
17	Positive group norms		
	Group norms are the accepted attitudes about various things amongst a group of people. In practice, members of a group conform to certain attitudes simply to avoid sanctions. If positive attitudes towards safety can be built and embedded within a group, safety can then be managed successfully. This is the basis of good safety culture.		
18	Safety knowledge		
	The more safety knowledge the workers have, the more clear about the seriousness of risk taking in construction project, then the lower risk tolerance may happen		
19	Physical health		
	This factor influences the pressure workers can endure, the working quality, and the corresponding ability to confront risks.		
20	Emotion		
	It means whether workers are happy or not, sometimes working with anger or sadness may result in irrational of risk decision making.		
21	Equipment and Maintenance		
	Regular maintenance of equipment to ensure that they are always in safe working condition.		
22	Personal Attitude		
	Better safety attitudes mean better perception of the work atmosphere that leads to better safety performance.		
	Professional knowledge	It refers to the degree of professional knowledge which will affect workers directly while dealing with professional project issues and will result different risk tolerance.	[18]
---	---	---	------
24	Sensitivity to potential risks	It refers to the ability that workers can make quick response and judgment to potential risks by analyzing relevant information. Being more sensitive means the workers emphasize more on safety issues, thus they have lower willingness to take risks.	[17]
25	Safety Plan Presentation	K3 plan is presented at the meeting of the preparation for the construction work to be approved and be signed.	[16]
26	Safety plan is part of a contract	Safety plan that was approved become an integral part of the contract documents of the construction work and a reference implementation on the construction.	[16]
27	Construction K3 policy in the form of Joint Operation	In the case of construction work carried out in the form of Joint Operation, the Joint Operation leader should establish the safety Construction policies that apply to all company in Joint Operation.	[16] [21]
28	Suitability implementation of the Safety Plan	If there is a discrepancy in the implementation of the Safety Plan and / or alteration and / or occupation add / subtract, then safety plan must be reviewed and be approved.	[16]
29	Documentation of the results of the application of Safety Plan	Documentation of the results of the implementation of Safety Plans are made and are reported regularly (daily, weekly, monthly and quarterly), which become part of the report on the implementation of work.	[16]
30	Accident report	In case of work accident, the contractor shall make a report of workplace accidents.	[16]
31	Performance improvements	The Company shall implement performance improvements based on the results of performance evaluation conducted quarterly safety plan, in order to ensure the suitability and effectiveness of the application.	[16]

3. Methodology

In answering the formulated problems, there were several stages of research used by the authors. Those stages were intended to this study can be done effectively and efficiently and to produce relevant outputs. The stages of the research that were to be carried out research variables were used in the questionnaire respondents of this study as follows.
This research method was based on the literature study, depth interviews and survey respondents. Data analysis method used factor analysis for grouping CSF and Analytical Hierarchy Process to determine the ranking.

Table 2. Research variables

No	Variables	No	Variables
1	Clear goals	17	Positive group norms
2	Authority and responsibility	18	Safety knowledge
3	Teamwork	19	Physical health
4	Program evaluation	20	Emotion
5	Sufficient resource allocation	21	Equipment and Maintenance
6	Leadership	22	Personal Attitude
7	Safety Meeting	23	Professional knowledge
8	Communication	24	Sensitivity to potential risks
9	Efficient Enforcement System	25	Safety Plan Presentation
10	Suitable Supervision	26	Safety plan is part of a contract
11	Conflict resolved quickly by project participants	27	Construction–K3 policy in the form of Joint Operation
12	Risk preference	28	Suitability implementation of the Safety Plan
13	Decision motivation	29	Documentation of the results of the application of Safety Plan
14	Noise	30	Accident report
15	Peer behaviours	31	Performance improvements
16	Participation of employees		

Figure 1. Research Methodology
4. Result

Factor Analysis calculation served to reduce the factors into new factor by combining several factors into one new factor. With this method the factor analysis results were obtained in the form of five factors gained from forming factors (Table 3) as follows (1) Report and evaluation, (2) Safety behavior, (3) Safety planning, (4) individual ability, (5) Leadership

No.	Reports and Evaluation Companies	Behavioural Safety	Safety planning	Individual Ability	Leadership
1	Program evaluation	Communication	2 Clear goals	3 Risk preference	Authority and responsibility
		Noise			Teamwork
2	Sufficient resource allocation	Noise	2 Clear goals	3 Risk preference	Decision motivation
3	Efficient Enforcement System	Peer behaviours			Sensitivity to potential risks
4	Safe Supervision	Participation of employees	Construction-K3 policy in the form of Joint Operation		Leadership
					Conflict resolved quickly by project participants
5	Equipment and Maintenance	Positive group norms	Documentation of the results of the application of Safety Plan		
6	Suitability implementation of the Safety Plan	Safety knowledge			
7	The accident report	Physical health			
8	Performance improvements	Emotion			
9	Safety Meeting	Personal attitude			
10		Professional knowledge			

After conducting the factor analysis to determine the Critical Success Factors for development of the implementation of new safety work on the construction project, a ranking of the Critical Success Factors was completed by comparing each - each of these factors. Rating assessment aimed to determine how important these factors in the development of safety culture on the project construction purposes in Indonesia. The ranking was done by using Analytical Hierarchy Process (AHP).
After getting the data from each expert then did recapitulation and took the value - average of all ratings of experts in order to obtain results as in the following table:

Table 4. Results Analytical Hierarchy Process

Critical Success Factors	Reports and evaluations	Safety behavior	Safety planning	Individual ability	Leadership
Reports and evaluations	1,000	0,301	0,306	1,890	1,872
Safety behavior	6,200	1,000	4,250	3,250	1,269
Safety planning	6,400	1,092	1,000	4,840	3,051
the ability of	4,225	3,456	1,279	1,000	1,672
the individual Leadership	5,225	5,440	3,458	5,229	1,000

Based on the AHP calculation of the obtained percentage of weight each factor, as follows (1) Leadership = 30.688%, (2) Safety behavior = 22.492%, (3) Safety Planning = 22.258%, (4) Individual Ability = 17.525%, and (5) Report and Evaluation = 7.038%.

5. Discussion

Based on the questionnaire that has been given to respondents to the safety factor of 31, the data was processed using factor analysis (using SPSS Program) which aimed to reduce the factors into five new factors. Each - each new factor that also had a new description is explained in the following table.

Table 5. Description of Critical Success Factors

No.	Critical Success Factors	Description	Literature
1	Leadership	Top Management must have the commitment and concern on making and improving workplace safety programs involving all workers and employees (such as policy making as well as rewards and punishments consistently)	[2] state that management plays a very important role in the safety program that is efficient and effective.
2	Behavioral safety	Behavior and awareness of every employee about the importance of workplace safety can improve the implementation of safety so that each employee is expected to behave positively including in maintaining safety (such as workers always wear PPE and part of the signs and rules)	[2] state that management plays a very important role in the safety program that is efficient and effective.
3	safety planning	The company must have a good plan that includes goals, costs and	According to [22] that the safety program can achieve the desired results
policies in the implementation of safety on every work unit when the safety objectives have been clear.

4 the ability of the individual Workers should be able to have a rapid response to the risks that may arise and can take immediate decisions that can prevent accidents [17] argues that the ability of workers can make a rapid response and assessment of potential risks by analyzing relevant information.

5 Reports and Evaluation Companies must have a report that is standard / have on the implementation of safety standards in full. The report will be evaluated periodically to allow for increased performance. According [2] safety programs should be periodically evaluated to determine their success in meeting the goals and objectives set.

Based on these findings, it is necessary for Critical Success Factors strategy to be implemented either as shown in Table 6 as follows.

No.	CSF (Results of Factor Analysis and AHP)	Findings On The Ground	Improvement Policy	The responsible stakeholders
1	Leadership	Lack of commitment from top management to the importance of safety	[2] state that management plays a very important role in the safety program that is efficient and effective. The need for a strong commitment from the top management of companies to be able to continue to conduct the evaluation and improvement of the implementation of work safety regulations.	Top Company Management
2	Safety behavior	The low awareness of the workers on the implementation of safety as there are still many violations of rules / signs and lack of awareness of the use of PPE	Successful implementation of the program of work safety can be achieved if the positive attitude of employees towards safety is amplified [2]. The need for appropriate policies that include rewards and punishment so that the implementation of work safety can be done well and can be understood by all employees and workers.	All employees and workers, safety supervisors
3	Safety planning	The presence of good	According [23] In good evaluation of safety planning, it is necessary	Top Management

Table 6. Safety Culture Improvement Implementation CSF
planning on safety such as budget planning implementation K3 safety has not been allocated properly and lack of planning of the safety program and implementation of managerial leadership, policies that are in accordance with the regulations set by the government. Variety of approaches in occupational safety and health, among others, will be outlined the importance of proper planning. The need for careful planning of the budget allocation on safety and the need for such a program concerning safety training.

4 Individual ability

Workers had less sensitivity to the risk for accidents that caused low anticipation. According [23] in building a safety culture it is necessary to have good behaviour in developing individual abilities. Training can help employees make better decisions and improve the ability in their field of work. The need for training to know what to do in case of accidents. Top Management, Safety Manager and employees as well as workers.

5 Reports and Evaluation

The low reports of accidents occurred so an evaluation of the risk of accident did not achieve the maximum. Therefore, the anticipation of occupational accidents was still low. According [2] safety programs should be periodically evaluated to determine their success in meeting the goals and objectives set. It needs to be monitored for any accidents to work and be evaluated regularly and continuously to improve the implementation of work safety. Top Management, Safety Manager, Safety Supervisor.

6. Conclusion

The conclusions and results of this research to the development of safety on the construction project are:

1. There are 31 safety factors derived from the literature and the previous research. Those factors become a variable factor questionnaire to respondents who had experience in the field.

2. In the implementation of the safety culture in construction projects, there are 5 Critical Success Factors that must be considered and must be implemented to achieve a good safety. The fifth factor weighs role on the implementation of safety i.e. Leadership Factor = 30.69%, Behavioural Safety Factor = 22.49%, Safety Planning Factor = 22.26%, Individual Capability Factor = 17.52%, and Factor Report and evaluation = 7.04%.
3. Critical Success Factors Based on the necessary steps - steps to increase safety culture that involve all levels of the company both from top management to project workers step namely:
 a. The need for a strong commitment from the top management of companies to be able to continue to conduct the evaluation and improvement of the implementation of work safety regulations.
 b. The need for appropriate policies that include rewards and punishments so that the implementation of work safety can be done well and can be understood by all employees and workers.
 c. The need for careful planning of the budget allocation on safety and the need for such a concerning safety-training program.
 d. Need for training / training to know what to do in case of accident.
 e. Need to be monitored for any accidents to work and to be evaluated regularly and continuously to improve the implementation of work safety.

To increase safety, it is expected to achieve the implementation the 5 Critical Success Factors.

Acknowledgment
Authors would like to thank the financial support provided by Universitas Indonesia through the PITTA 2018 funding scheme under Grant number 2570/UN2.R3.1/HKP.05.00/2018. Managed by the Directorate for Research and Public Services (DRPM) Universitas Indonesia

References
[1] Santoso, J., Latief, Y., & Machfudiyanto, R. A. Building a Safety Culture in the Construction Sector: A model to assess the safety maturity of a company.
[2] Aksorn T and Hadikusumo B (2008). Critical success factors influencing safety program performance in Thai construction projects. Journal of Safety Science, 46(4), pp. 709-727
[3] Ramlee, N., Tammy, N. J., Raja Mohd Noor, R. N. H., Ainun Musir, A., Abdul Karim, N., Chan, H. B., & Mohd Nasir, S. R. (2016, October). Critical success factors for construction project. In AIP Conference Proceedings (Vol. 1774, No. 1, p. 030011). AIP Publishing.
[4] Chan, A. P., Scott, D., & Lam, E. W. (2002). Framework of success criteria for design/build projects. Journal of management in engineering, 18(3), 120-128.
[5] Rungasamy, S., Antony, J., & Ghosh, S. (2002). Critical success factors for SPC implementation in UK small and medium enterprises: some key findings from a survey. The TQM Magazine, 14(4), 217-224.
[6] Abudayyeh O, Fredericks T, Butt S and Shaar A (2006). An investigation of management’s commitment to construction safety. International Journal of Project Management, 24(2), pp. 167-174
[7] O’Dea, A., & Flin, R. (2001). Site managers and safety leadership in the offshore oil and gas industry. Safety Science, 37(1), 39-57.
[8] El-Mashaleh, M. S., Rababeh, S. M., & Hyari, K. H. (2010). Utilizing data envelopment analysis to benchmark safety performance of construction contractors. International Journal of Project Management, 28(1), 61-67.
[9] Fang, D. P., Xie, F., Huang, X. Y., & Li, H. (2004). Factor analysis-based studies on construction workplace safety management in China. International Journal of Project Management, 22(1), 43-49.
[10] Haslam, R. A., Hide, S. A., Gibb, A. G., Gyi, D. E., Pavitt, T., Atkinson, S., & Duff, A. R. (2005). Contributing factors in construction accidents. Applied ergonomics, 36(4), 401-415.
[11] Wang, J., Zou, P. X., & Li, P. P. (2016). Critical factors and paths influencing construction workers’ safety risk tolerances. Accident Analysis & Prevention, 93, 267-279.
[12] Ariss, S. S. (2003). Employee involvement to improve safety in the workplace: An ethical imperative. American journal of business, 18(2), 9-16.
[13] Johnson, D. W., & Johnson, R. T. (2003). Assessing students in groups: Promoting group responsibility and individual accountability. Corwin Press.
[14] Pohjola, V. J. (2003). Fundamentals of safety conscious process design. Safety Science, 41(2-3), 181-218.
[15] Hahm, H. C., & Segal, S. P. (2005). Failure to seek health care among the mentally ill. American Journal of Orthopsychiatry, 75(1), 54.
[16] Peraturan Menteri Pekerjaan Umum Nomor : 05/PRT/M/2014 Tentang Pedoman Sistem Manajemen Keselamatan dan Kesehatan Kerja (SMK3) Konstruksi Bidang Pekerjaan Umum
[17] Fillmore, C. J., Kempler, D., & Wang, W. S. (Eds.). (2014). Individual differences in language ability and language behavior. Academic Press.
[18] Wang, J., & Yuan, H. (2011). Factors affecting contractors’ risk attitudes in construction projects: Case study from China. International Journal of Project Management, 29(2), 209-219.
[19] Toole, T. M. (2002). Construction site safety roles. Journal of Construction Engineering and Management, 128(3), 203-210.
[20] Hunter, D. R. (2006). Risk perception among general aviation pilots. The international journal of aviation psychology, 16(2), 135-144.
[21] Latief, Y., Machfudiyanto, R. A., Arifuddin, R., Setiawan, R. M. F., & Yogiswara, Y. (2017, July). Study of Evaluation OSH Management System Policy Based On Safety Culture Dimensions in Construction Project. In Journal of Physics: Conference Series (Vol. 877, No. 1, p. 012028). IOP Publishing.
[22] Cooper Ph. D, M. D. (2000). Towards a model of safety culture. Safety science, 36(2), 111-136.
[23] Machfudiyanto, R. A., Latief, Y., Arifuddin, R., & Yogiswara, Y. (2017). Identification of safety culture dimensions based on the implementation of OSH management system in construction company. Procedia Engineering, 171, 405-412.
[24] Tam, C. M., Fung IV, I. W., & Chan, A. P. (2001). Study of attitude changes in people after the implementation of a new safety management system: the supervision plan. Construction Management & Economics, 19(4), 393-403.
[25] Fang, D., Chen, Y., & Wong, L. (2006). Safety climate in construction industry: A case study in Hong Kong. Journal of construction engineering and management, 132(6), 573-584.