Solving the unit commitment problem in large systems using hybrid PSO algorithms

Ali Abduladheem Ismail¹, Ali Nasser Hussain²

¹,²Middle Technical University, Electrical Engineering Technical College, Department of Electrical Power Engineering Techniques, Baghdad, Iraq

Abstract. Unit Commitment (UC) is a nonlinear mixed integer-programming problem. UC is used to minimize the operational cost of the generation units in a power system by scheduling some of generators in ON state and the other generators in OFF state according to the total power outputs of generation units, load demand and the constraints of power system to increase the saving in the power system by applying the Unit Commitment (UC) to the power system. This work proposes Local Attracting Quantum Particle Swarm Algorithm (LAQPSO) to solve the unit commitment problem in power systems. The local attractor in the LAQPSO algorithm is used to obtain the rotation angle direction and magnitude for updating the quantum angle using the quantum rotation gate. The proposed algorithm is applied to solve the UC problem for a 26 units power system. A comparison with the Binary PSO (BPSO), Improved Quantum BPSO (IQBPSO) and other techniques in the literature was implemented to show the efficiency and the accuracy of the proposed algorithm. The results show the superior performance of the proposed LAQPSO algorithm to minimize the total cost when compared with BPSO, IQBPSO and the literature works.

1. Introduction

UC is one of the hardest problems in power system optimization which must be optimized in order to minimize the total operation cost of generators for a specified time horizon according to the load demand while satisfying the generators and system constraints [1]. UC has to make a decision to properly operate the generators to get a lower cost by making some generators ON and the others OFF according to the demand and these generators must be economically dispatched. UC problem (UCP) is NP-hard problem and it can be presented as mixed integer nonlinear optimization problem. As the number of the generators grow up, the solution will take a longer time because the combinations 0-1 that for each hour in the time horizon will grow exponentially. Two types of constraints must be satisfied in the unit commitment problem solution, the first one is related to the system such as the transmission constraints and the power reserve constrains in case of increase the demand or the outage of a generator from the system and the other types of constraints are related to the generators such as ramp-up limit, ramp-down limit, minimum time up and minimum time down [2].

Different ideas have been developed to solve UC problem. The solution methods of the UCP can be separated into two kinds, the first one is known as deterministic solution techniques such as Priority List (PL) [3]; Dynamic Programming (DP) [4]; Improved Lagrangian Relaxation (ILR) [5]; second order cone programming [6]; Mixed Integer Programming (MIP) [7]; and Branch and Bound (BB) [8]. The other solution method is known as stochastic approaches and they were successful in UC problem solution and as an example for these methods Genetic Algorithm (GA) [9]; Evolutionary
Programming (EP) [10]; Simulated Annealing (SA) [11]; Particle Swarm Optimization (PSO) [12]; Quantum Evolutionary Algorithm (QEA) [13]; Ant Colony Algorithm [14]; differential evolution approach [15]; Artificial Neural Networks (ANN) [16]; and Tabu Search (TS) [17].

In this paper, a LAQPSO algorithm is proposed to solve the UCP. The LAQPSO algorithm is compared with the BPSO algorithm, IQBPSO and other algorithms in the literature.

2. MATHEMATICAL FORMULATION FOR UNIT COMMITMENT PROBLEM

The objective of formulating UCP is to achieve the goal of minimization of the total operation cost during a specified time horizon assuring that all the constraints are satisfied [1]. This minimization may be done by selecting the combination of the generation units that satisfies all the constraints of the power system and the generation unit itself and these combinations 0-1 that represented the status of each generator ON/OFF. The UCP objective function is the sum of the start-up cost of the generators and operational cost for each unit over a the time horizon and it can be stated by the following equation:

$$C_{total} = \sum_{k=1}^{T} \sum_{g=1}^{N} \left[f_{gk}(P_{gk}) + STC_{gk}(1-U_{g(k-1)}) + SDC_{gk}(1-U_{gk}) \right] U_{gk} \quad (1)$$

where T is the time horizon; k is the index of time; N is the number of generation units; g is the index of the unit; f_{gk} is the fuel cost function, U_{gk} is the state of unit g which can be 0 or 1 at hour k; P_{gk} is the power delivered from the unit g at the hour k and STC$_{gk}$ is the start-up cost of the unit g at the hour k. The fuel cost function is stated as follows

$$f_{gk}(P_{gk}) = c_{g}(P_{gk})^2 + b_{g}(P_{gk}) + a_{g} \quad (2)$$

where c_{g}, b_{g}, a_{g} are the fuel cost coefficients, the start-up cost is represented by the following equation:

$$STC_{gk} = \begin{cases}
HSC_{g} & \text{if } MDT_{g} \leq T_{g}^{off} \leq MDT_{g} + CSH_{g} \\
CSC_{g} & \text{if } T_{g}^{off} > MDT_{g} + CSH_{g}
\end{cases} \quad (3)$$

where (HSC$_{g}$, CSC$_{g}$) are the hot start-up and cold start-up costs of the generation unit g; (MDT$_{g}$) is the minimum downtime of the unit g; CSH$_{g}$ cold start-up hours for the generation unit g and (T$_{g}^{off}$) is the time of the unit g is continuously OFF.

The UCP objective function is restercted by some constraints and these constraints are the system constraints and the generation unit constraints [1].

1- The demand must be supplied by the generators at each hour.

$$\sum_{g=1}^{N} P_{gk} U_{gk} = D_{k} \quad (4)$$

where D_{k} is the load demand of the system at the hour k

2- The constraint of spinning reserve in case of increase the demand or loss generator unit from the group.

$$\sum_{g=1}^{N} P_{gk}^{max} U_{gk} \geq D_{k} + R_{k} \quad (5)$$

where R_{k} is the spinning reserve of the power system at the hour k.

3- The generation unit g can produce power in a range between its maximum and minimum capacities .

$$p_{g}^{max} \geq P_{gk} \geq p_{g}^{min} \quad (6)$$

4- The generation unit must be operated at least for a time equals to the minimum up-time.

$$T_{g}^{on} \geq MUT_{g} \quad (7)$$

where T_{g}^{on} is the continuous ON time of the generator (g) and MUT$_{g}$ is the minimum up-time.

5- The generation unit must be shut-down or in the OFF state at least for a time equals to the minimum downtime.

$$T_{g}^{off} \geq MDT_{g} \quad (8)$$
3. PSO ALGORITHM

The PSO algorithm is introduced by Kennedy and Eberhart in 1995 [18]. PSO algorithm is a heuristic optimization method based on the parallel experience of the individuals to search for the optimum solution. The PSO particles spread in a search space D of the problem and each of them has a position vector X and speed vector V [18]. In this algorithm, the particles are guided using the personal experience for each particle which is known as Pbest and the overall or the global experience among all particles which is termed as Gbest. Then, the velocity and location of each particle in the population are modified by using the calculation of the current particle velocity and the distance from Pbest location and Gbest location [19]. Also, the experience can be accelerated by two acceleration factors, (c1, c2) and recognized as the cognitive and asocial acceleration constant factors respectively; (ϕ1, ϕ2) are two random numbers generated between [0, 1]. The movement is also can be controlled by multiplying it by inertia factor (ω) that lies in the range of [ωmax, ωmin] and the typical range is ωmax = 0.9 to ωmin = 0. The particle velocity and position in the PSO algorithm can be updated using equations (9) and (10) respectively:

\[V_r^{m+1} = \omega V_r^m + c_1 \varphi_1 (P_{\text{best}}^m - X_r^m) + c_2 \varphi_2 (G_{\text{best}}^m - X_r^m) \] \hspace{1cm} (9)

\[X_r^{m+1} = X_r^m + \omega V_r^{m+1} \] \hspace{1cm} (10)

where \(r = 1, 2, 3 \ldots \) population size, \((V_r^{m+1}, X_r^m) \) are the speed and position of the \(r \)th particle at the iteration \(m \). The inertia factor \(\omega \) is represented by the following equation:

\[\omega = \omega_{\text{max}} - \frac{(\omega_{\text{max}} - \omega_{\text{min}})}{\text{iter}_{\text{max}}} \times m \] \hspace{1cm} (11)

where \(\text{iter}_{\text{max}} \) is the maximum iteration number. The binary version of the PSO (BPSO) has been presented by James Kennedy and Russell Eberhart which is used in discrete spaces [20]. The update procex of the position for the particles can be achieved by using a new variable known as Sigmoid Limiting Transformation (SLT) and can be written as

\[S(V_{ri}^{m+1}) = \frac{1}{1 + e^{\exp(V_{ri}^{m+1})}} \] \hspace{1cm} (12)

where \(S(V_{ri}^{m+1}) \) is the SLT function of the \(i \)th element in the \(r \)th particle.

By using the sigmoid function, the position update of the particle in the binary version of the PSO algorithm is done as the following equation

\[X_{ri}^{m+1} = \begin{cases} 1 & \text{if } \ r n_{ri} < S(V_{ri}^{m+1}) \\ 0 & \text{otherwise} \end{cases} \] \hspace{1cm} (13)

where \(r n_{ri} \) is a uniformly distributed random number between [0, 1].

4. HYBRIDIZATION OF THE BPSO ALGORITHM WITH QUANTUM COMPUTING

The quantum bit or qubit is known as the smallest unit of information stored in the quantum computer [21]. The quantum bit can be in the 0 state (|0\rangle), 1 (|1\rangle) state or any superposition of them. The quantum bit state can be reproduced as follows:

\[|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle \] \hspace{1cm} (14)

where \(\alpha \) and \(\beta \) are two complex numbers which identify the probability amplitude of the relative conditions. The state of the quantum bit can be normalized to unity to guarantee that |\(\alpha \)|² + |\(\beta \)|² = 1. Quantum gates have been used to change the state of the quantum bit, examples of these gates are the
NOT gate, Hadamard gate and rotation gate [22]. A novel QEA has been proposed by Kim and Han [21]. This QEA is inspired from the quantum-computing concept so the quantum bit has been designed to get the binary solutions. The quantum bit is defined by pair of numbers which are α and β and the quantum bit can be formulated as a string of (n) qubits as in equation (15):

$$q = \begin{bmatrix} \alpha_1 \\ \beta_1 \\ \vdots \\ \alpha_n \\ \beta_n \end{bmatrix}$$

(15)

where $|\alpha_i|^2 + |\beta_i|^2 = 1$ and $i = 1, 2 \ldots \ldots$ number of elements. The rotation gate can be used as a variance factor to update the individual of the quantum bit. The rotation gate is defined as in the following equation:

$$\Delta \theta_i = \begin{bmatrix} \cos(\Delta \theta_i) & -\sin(\Delta \theta_i) \\ \sin(\Delta \theta_i) & \cos(\Delta \theta_i) \end{bmatrix}$$

(16)

where $\Delta \theta_i$ is the ith quantum bit rotation angle that goes to 0 or 1 state. For determining the value of $\Delta \theta_i$, a lookup table is utilized and modified as $(\theta_1, \theta_2, \theta_4, \theta_6, \theta_7, \theta_8 = 0)$, $\theta_3 = 0.01\pi$, $\theta_5 = -0.01\pi$, and B is the best solution where $B = (b_1, b_2, b_3, \ldots, b_n)$ as described in reference.

Table 1. Predetermined lookup table for the determination of the rotation angle.

x_i	b_i	Fitness (X) \geq Fitness (B)	$\Delta \theta_i$
0	0	False	θ_1
0	0	True	θ_2
0	1	False	θ_3
0	1	True	θ_4
1	0	False	θ_5
1	0	True	θ_6
1	1	False	θ_7
1	1	True	θ_8

A new BPSO inspired by quantum computing is presented which is known as Quantum Binary Particle Swarm Optimization (QBPSO) [23][24]. Each element in the particle has a state of 1 or 0 according to the probability of $|\alpha|^2 + |\beta|^2 = 1$.

The QBPSO proposes a new way to update the velocity of each particle by the use of Quantum Computing. The inertia factors ($\omega_{max}, \omega_{min}$) and the acceleration factors (c_1, c_2) are omitted in the QBPSO and replaced by the rotation angle. The update process of the position vector can be done by using the probability $|\beta|^2$ that has been stored in the rth quantum bit individual (q_r). Therefore, the ith element of the rth particle takes a value of 1 or 0 as in the following equation [23]:

$$X^{m+1}_{r_i} = \begin{cases} 1 & \text{if } r\eta_{ri} < |\beta_{ri}|^2 \\ 0 & \text{otherwise} \end{cases}$$

(17)

The rotation angle is determined by using the current position P_{best} and the global position G_{best} of the swarm as in the following equation:

$$\Delta \theta_{ri} = \theta \times (\gamma_{1r} \times (x_{ri}^n - x_{ri}) + \gamma_{2r} \times (x_r^n - x_{ri}))$$

(18)

where θ is the magnitude of the rotation angle and $(\gamma_{1r}, \gamma_{2r})$ can be found by a comparison among the fitness of the current position of the particle r, the fitness of the best position P_{best} and the fitness of the global position G_{best} respectively as in equations (19) and (20):
The rotation angle magnitude is monotonously decreased from a maximum value θ_{max} to a minimum value θ_{min} along the iteration by the following equation:

$$\theta = \theta_{\text{max}} - \frac{\theta_{\text{max}} - \theta_{\text{min}}}{\text{iter}_{\text{max}}} \times m$$ \hspace{1cm} (21)

5. IMPROVED QBPSO ALGORITHM
The QBPSO algorithm may fail in finding the optimum value of the solution, therefore; an improvement is made on the QBPSO to get the better solution. The improvement on QBPSO is to search for the fitness in the personal best P_{best} for the first half of the iterations and after finding then the fitness in the global best G_{best} will be searched in the second half of the iterations [25]. This improvement can be expressed as the following equations:

$$\gamma_{1r} = \begin{cases} 0 & \text{if} \quad \text{Fitness of } (X_r) \geq \text{Fitness}(P_{\text{best}}_r) \\ 1 & \text{otherwise} \end{cases}$$ \hspace{1cm} (19)

$$\gamma_{2r} = \begin{cases} 0 & \text{if} \quad \text{Fitness of } (X_r) \geq \text{Fitness}(G_{\text{best}}) \\ 1 & \text{otherwise} \end{cases}$$ \hspace{1cm} (20)

and the rotation angle is updated as in equations (18, 21).

6. THE IMPROVEMENT OF QPSO ALGORITHM USING THE LOCAL ATTRACTOR
In order to explain the concept of the local attractor, another subject must be clarified, which is the quantum angle. According to the condition of normalization ($|\alpha|^2 + |\beta|^2 = 1$), the quantum angle is expressed as in equation (24):

$$q^m_{r1} = \left[\begin{array}{c} a^m_{r1} \\ \beta^m_{r1} \end{array}\right] \quad \quad \text{yields} \quad \theta^m_{r1} : \begin{cases} |q^m_{r1}| = \cos \theta^m_{r1} |0\rangle + \sin \theta^m_{r1} |1\rangle \\ \theta^m_{r1} = \arctan \frac{a^m_{r1}}{\beta^m_{r1}} \end{cases}$$ \hspace{1cm} (24)

It can be concluded that the quantum angle identifies the quantum bit. Therefore, the population of the quantum bit particles can be shaped using the quantum angle format:

$$q^m = [q^m_{r1}, q^m_{r2}, q^m_{r3}, ..., q^m_{r_d}] , \quad Q(m) = [q^m_{r1}, q^m_{r2}, q^m_{r3}, ..., q^m_{r_d}]$$

$$\theta^m = [\theta^m_{r1}, \theta^m_{r2}, \theta^m_{r3}, ..., \theta^m_{r_d}] , \quad \theta(m) = [\theta^m_{r1}, \theta^m_{r2}, \theta^m_{r3}, ..., \theta^m_{r_d}]$$

where d is the length of the quantum bit individual. Also, the quantum rotation gate can be replaced by the quantum angle operator:

$$\left[\begin{array}{c} a^{m+1}_{r1} \\ \beta^{m+1}_{r1} \end{array}\right] = \left[\begin{array}{cc} \cos (\Delta \theta^m_{r1}) & -\sin (\Delta \theta^m_{r1}) \\ \sin (\Delta \theta^m_{r1}) & \cos (\Delta \theta^m_{r1}) \end{array}\right] \left[\begin{array}{c} a^m_{r1} \\ \beta^m_{r1} \end{array}\right]$$ \hspace{1cm} (25)

Which leads to

$$\theta^m_{r1} = \Delta \theta^m_{r1} + \theta^m_{r1}$$ \hspace{1cm} (26)
thus, it can be concluded that the quantum angle is an angle vector in a complex vector space which is a two-dimensional vector as demonstrated as in Figure (1) [26].

![Figure 1. The Quantum angle.](image)

In the search space, the particles of the PSO algorithm move randomly and the updating of the velocity is made at constant rate depending on the experience of every individual and its neighbours. A trajectory analysis has been made by Kennedy and Clerc for discussing the PSO algorithm convergence [27]. This study revealed that best convergence to the solution is reached when a particle in the swarm is approaching its local attractor \(P^m_{ri} = [p^m_{r1}, p^m_{r2}, p^m_{r3}, \ldots, p^m_{rd}] \) as the particle flies in a real search space and it can be expressed as in the following equation:

\[
P^m_{ri} = r_{ri}^m. P_{best^m_{ri}} + (1 - r_{ri}^m). G_{best^m_i}
\]

(27)

where \(r_{ri}^m \) is a uniformly distributed random number between zero and 1.

Sun et al. had presented a new crossover process which is analogous to the genetic algorithm for reproducing. This is due to the fact that the generated local attractor in the equation (27) is not used in discrete binary search spaces [28]. The local attractor that will be used in binary discrete search spaces is obtained by selecting two offspring randomly and the generation of these offsprings is the product of the application of the crossover process on the two parents \(P_{best^m_{ri}} \) and \(G_{best^m_i} \) as in equation (28) [26]:

\[
P^m_{ri} = \lambda_{ri}^m. P_{best^m_{ri}} + (1 - \lambda_{ri}^m). G_{best^m_i}
\]

(28)

where \(\lambda_{ri}^m \) is a random integer number which takes a value of either zero or 1. From equation (28), it can be noted that the point \(P^m_{ri} \) position is located between \(P_{best^m_{ri}} \) and \(G_{best^m_i} \) in discrete spaces. The quantum angle in LAQPSO algorithm is utilized for encoding all the particles qubits in the population and this will produce a swarm of quantum angles.

In the LAQPSO algorithm, the quantum angles are initialized by the value of \(\frac{\pi}{4} \). The qubits state values are defined depending on the probabilities of \((\alpha^2 = 0) \) or \((\beta^2 = 1) \), as described in the following equation:

\[
x^m_{ri} = \begin{cases}
0 & \text{if } H_{ri} < |\cos(\theta^m_{ri})|^2 \\
1 & \text{otherwise}
\end{cases}
\]

(29)

where \(H_{ri} \) is uniformly distributed random number between zero and 1.

According to equation (29), the particles are formed as a binary string \(\chi^m_{ri} = [x^m_{r1}, x^m_{r2}, x^m_{r3}, \ldots, x^m_{rd}] \) which have the length of \(d \) and it is produced from the transformation of the \(r \)th particle \(\theta^m_{ri} \) and the fitness value can be evaluated for each particle so as to find the values of \(P_{best} \) and \(G_{best} \). Then the quantum angle is updated using the rotation angle which is obtained from
the local attractor. The direction of the rotation angle is determined by the local attractor and current swarm individual as in the following equation:

$$ \text{DIR}(\theta_{ri}^m) = P_{ri}^m - X_{ri}^m $$ \hfill (30)

According to equation (27), the local attractor is obtained with a probability of 100% if the initial value of Φ_{ri}^m is taken in the range of $[0, \frac{\pi}{2}]$ which means that P_{ri}^m equals 0 or 1. For this reason, the quantum angle will take a value equals to $\left(\frac{\pi}{2} \right)$ or 0 and the value of Φ_{ri}^m can be described as in equation (31):

$$ \Phi_{ri}^m = \frac{\pi}{2} P_{ri}^m $$ \hfill (31)

Thereafter, the current quantum angle θ_{ri}^m and Φ_{ri}^m are used for obtaining the magnitude of the rotation angle as in equation (32):

$$ |\Delta \theta_{ri}^m| = C_f |\Phi_{ri}^m - P_{ri}^m| \cdot \rho_n $$ \hfill (32)

where C_f is called the contraction factor which is an important element to adjust the rotation angle magnitude. Lastly, the rotation angle is represented as in equation (33):

$$ \Delta \theta_{ri}^m = \text{DIR}(\theta_{ri}^m) \cdot |\Delta \theta_{ri}^m| $$ \hfill (33)

And the quantum angle is updated by the use of equation (24).

7. SIMULATION AND RESULTS

The BPSO, IQBPSO and LAQPSO algorithms were simulated using MATLAB R2017b environment to solve the UCP. The used computer in the simulation has the following features: Core i5 CPU and 8 GB of RAM. For verifying the potentiality and the ability of the three algorithms in solving the UCP, the IEEE 26 generation unit test system is employed as a power system. This test system consists of 26 generation units to supply the load demand through a time horizon of 24 hours. The spinning reserve criteria in this system is set equal to the largest capacity of the committed generation units (i.e. 400 MW) [29]. The dimension of search space for the IEEE 26-unit system equals 26x24, where 26 is the number of the generation units and 24 is the time horizon (number of hours). Table 2. Represents the load demand of the system for 24 hours. Table 3 tabulates the generation units parameters of the simulation system. The population size is set equal to 100 and the maximum number of iteration is 500 iterations. The optimal choice of the parameters for the three algorithms are BPSO ($c_1 = c_2 = 1.9, \omega_{\text{max}} = 0.9$ to $\omega_{\text{min}} = 0.4$), IQBPSO ($\theta_{\text{max}} = 0.1\pi$ and $\theta_{\text{min}} = 0.05\pi$) and LAQPSO ($C_f = 0.1$). Table 4. Shows a comparison of the produced total operation cost by BPSO, IQBPSO, ILR [5] and Binary/Real PSO (BRPSO) [29] algorithms, were the least cost is produced by the LAQPSO algorithm ($720921 \$ $). Tables 5, 6 and 7 show the simulation results of the BPSO, IQBPSO and LAQPSO algorithms. Figure (2) represents the convergence to the solution of the three algorithms were the x-axis represents the iteration number and the y-axis represents the total operation cost ($\$ $). It can be noticed from Figure (2) that the LAQPSO algorithm is faster in the solution of the UCP compared with the BPSO and IQBPSO.

Table 2. Load Demand of the IEEE 26 Generation units simulation system

Hour	1	2	3	4	5	6	7	8	9	10	11	12
Demand	1700	1730	1690	1700	1750	1850	2000	2430	2540	2600	2670	2590
Hour	13	14	15	16	17	18	19	20	21	22	23	24
Demand	2590	2550	2620	2650	2550	2530	2500	2550	2600	2480	2200	1840
Table 3. Generation units Parameters of the IEEE 26 Generation units Simulation System.

Unit	a ($/h)	b ($/MWh)	c ($/MW^2 h)	P_{max} (MW)	P_{min} (MW)	MUT (h)	MDT (h)	HSC ($)	CSC ($)	CSH ($)	Ini.state (h)
1	311.9102	7.5031	0.0019	400	100	8	5	500	500	10	10
2	310.0021	7.4921	0.0019	400	100	8	5	500	500	10	10
3	177.0575	10.8616	0.0015	350	140	8	5	300	300	8	10
4	260.176	23.2	0.0026	197	68.95	5	4	200	200	8	-4
5	259.649	23.1	0.0026	197	68.95	5	4	200	200	8	-4
6	259.131	23	0.0026	197	68.95	5	4	200	200	8	-4
7	143.5972	10.7583	0.0049	155	54.25	5	3	150	150	6	5
8	134.3179	10.7367	0.0048	155	54.25	5	3	150	150	6	5
9	143.0288	10.7154	0.0047	155	54.25	5	3	150	150	6	5
10	142.7348	10.694	0.0046	155	54.25	5	3	150	150	6	5
11	218.7752	18.2	0.006	100	25	4	2	70	70	4	-3
12	218.335	18.1	0.0061	100	25	4	2	70	70	4	-3
13	218.8952	18	0.0062	100	25	4	2	70	70	4	-3
14	81.6259	13.4073	0.0093	76	15.2	3	2	50	50	3	3
15	81.4681	13.3805	0.0091	76	15.2	3	2	50	50	3	3
16	81.298	13.3538	0.0089	76	15.2	3	2	50	50	3	3
17	81.1364	13.3272	0.0088	76	15.2	3	2	50	50	3	3
18	118.8206	37.8896	0.0143	20	4	0	0	20	20	2	-1
19	118.4576	37.777	0.0136	20	4	0	0	20	20	2	-1
20	118.1083	37.6637	0.0126	20	4	0	0	20	20	2	-1
21	117.7551	37.551	0.012	20	4	0	0	20	20	2	-1
22	24.8882	26.0611	0.0285	12	2.4	0	0	0	1	-1	
23	24.7605	25.9318	0.0284	12	2.4	0	0	0	0	1	-1
24	24.6382	25.8027	0.028	12	2.4	0	0	0	0	1	-1
25	24.411	25.6753	0.0265	12	2.4	0	0	0	0	1	-1
26	24.3891	25.5472	0.0253	12	2.4	0	0	0	0	1	-1

Table 4. Total operation cost produced by different approaches.

Solution Algorithm	Total Operation Cost ($)
ILR [5]	725,996.9
BRPSO [29]	721208
BPSO	721958
IQBPSO	721261
LAQPSO	720921
Table 5. Output power of the generators produced by the BPSO algorithm.

Hour	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10
	MW									
1	117.1972	120.9045	125.2009	130.2161						
2	120.7345	124.4859	128.8429	133.9367						
3	116.0429	119.7357	124.0124	129.0019						
4	116.8674	120.5705	124.8614	129.8692						
5	122.2489	126.0192	130.4022	135.5297						
6	140.5688	144.5676	149.2643	154.7992						
7	155	155	155	155						
8	155	155	155	155						
9	155	155	155	155						
10	155	155	155	155						
11	155	155	155	155						
12	155	155	155	155						
13	155	155	155	155						
14	155	155	155	155						
15	155	155	155	155						
16	104.5414	155	155	155						
17	155	155	155	155						
18	155	155	155	155						
19	155	155	155	155						
20	155	155	155	155						
21	155	155	155	155						
22	155	155	155	155						
23	155	155	155	155						
24	138.1262	142.0945	146.7494	152.2299						

Hour	G11	G12	G13	G14	G15	G16	G17	G18	G19	G20
	MW									
1	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2
2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2
3	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2
4	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2
5	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2
6	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2
7	24.1235	26.1793	28.1096	30.2376						
8	61.1096	67.8816	74.7088	76						
9	76	76	76	76						
10	76	76	76	76						
11	76	76	76	76						
12	76	76	76	76						
13	76	76	76	76						
14	76	76	76	76						
15	76	76	76	76						
16	76	76	76	76						
17	76	76	76	76						
18	76	76	76	76						
19	76	76	76	76						
20	76	76	76	76						
21	76	76	76	76						
22	55.8589	58.682	61.1571	64.0018						
23	15.2	15.2	15.2	15.2						
24	15.2	15.2	15.2	15.2						
Hour	G21	G22	G23	G24	G25	G26	Reserve	Demand	STC ($)	
------	-----	-----	-----	-----	-----	-----	---------	--------	---------	
1	4	0	0	0	2.4	0	406	1700	20	
2	4	0	2.4	2.4	0	2.4	400	1730		
3	0	0	0	0	2.4	2.4	408	1690		
4	0	0	2.4	2.4	0	418	1700	20		
5	0	0	0	2.4	0	424	1750	70		
6	0	0	0	0	0	424	1850	70		
7	0	0	0	2.4	0	483	2000	200		
8	4	0	2.4	0	0	410	2430	330		
9	0	0	0	0	0	424	2540	200		
10	0	0	2.4	2.4	0	401	2600			
11	0	0	2.4	2.4	2.4	403	2670	60		
12	0	0	2.4	2.4	2.4	411	2590			
13	0	0	2.4	2.4	2.4	411	2590			
14	0	0	0	0	0	415	2550			
15	0	2.4	2.4	2.4	2.4	405	2620			
16	0	2.4	2.4	2.4	0	403	2650	40		
17	0	0	0	0	0	415	2550			
18	0	0	0	0	0	435	2530			
19	0	0	0	0	0	465	2500			
20	0	0	0	0	0	415	2550			
21	4	0	2.4	0	2.4	409	2600	20		
22	0	0	0	0	0	485	2480			
23	0	0	2.4	0	0	480	2200			
24	0	0	0	0	0	434	1840			

Total operation cost = $721958

Table 6. Output power of the generators produced by the IQBPSO algorithm.
Hour	G11	G12	G13	G14	G15	G16	G17	G18	G19	G20
1	0	0	25	15.2	15.2	15.2	15.2	15.2	0	0
2	0	0	25	15.2	15.2	15.2	15.2	15.2	0	0
3	0	0	25	0	15.2	15.2	15.2	15.2	0	0
4	0	0	25	0	15.2	15.2	15.2	15.2	0	0
5	0	0	25	15.2	15.2	15.2	15.2	15.2	0	0
6	0	25	25	15.2	15.2	15.2	15.2	15.2	0	0
7	25	25	25	33.798	36.0876	38.184	40.5305	0	0	4
8	42.5362	49.7331	56.8807	76	76	76	76	0	0	0
9	79.9895	86.3296	92.831	76	76	76	76	0	0	0
10	100	100	100	76	76	76	76	0	0	0
11	100	100	100	76	76	76	76	0	0	4
12	100	100	100	76	76	76	76	0	0	0
13	100	100	100	76	76	76	76	0	0	0
14	83.3943	89.6565	96.0992	76	76	76	76	0	0	0
15	100	100	100	76	76	76	76	0	0	0
16	100	100	100	76	76	76	76	0	0	4
17	83.3943	89.6565	96.0992	76	76	76	76	0	0	0
18	76.5846	83.0026	89.5628	76	76	76	76	0	0	0
19	66.3701	73.0218	79.7581	76	76	76	76	0	0	0
20	83.3943	89.6565	96.0992	76	76	76	76	0	0	0
21	100	100	100	76	76	76	76	0	0	0
22	59.5604	66.3679	73.2217	76	76	76	76	0	0	0
23	25	25	25	65.3397	68.3919	71.0298	74.0886	0	0	0
24	0	25	25	15.2	15.2	15.2	15.2	15.2	0	0

Hour	G21	G22	G23	G24	G25	G26	Reserve	Demand	STC ($)	
1	0	0	0	0	0	0	0	474	1700	70
2	0	0	0	0	0	0	0	444	1730	
3	0	0	0	0	0	0	0	408	1690	
4	0	0	0	2.4	0	0	0	424	1750	50
5	0	0	0	0	0	0	0	424	1850	70
6	0	0	0	0	0	0	0	406	2000	90
7	0	2.4	0	0	0	0	0	535	2430	600
8	0	0	0	0	0	0	0	425	2540	
9	0	0	0	0	0	0	0	401	2600	
10	0	0	0	2.4	2.4	2.4	2.4	415	2670	60
11	0	0	0	2.4	2.4	2.4	2.4	411	2590	
12	0	0	0	2.4	2.4	2.4	2.4	411	2590	
13	0	0	0	0	0	0	0	415	2550	
14	0	2.4	0	0	0	0	0	401	2620	20
15	0	0	0	2.4	2.4	2.4	2.4	403	2650	20
16	0	0	0	0	0	0	0	415	2550	
17	0	0	0	0	0	0	0	435	2530	
18	0	0	0	0	0	0	0	465	2500	
19	0	0	0	0	0	0	0	415	2550	
20	0	0	0	0	0	0	0	401	2600	
21	0	0	0	2.4	2.4	2.4	2.4	401	2600	
22	0	0	0	0	0	0	0	485	2480	
23	0	0	0	2.4	2.4	2.4	2.4	407	2200	
24	0	0	0	0	0	0	0	434	1840	

Total operation cost = 721261 $
Table 7. Output power of the generators produced by the LAQPSO algorithm.

Hour	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10
	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW
1	117.0873	120.7931	125.0877	130.1004						
2	118.7638	122.4906	126.8139	131.8639						
3	115.3558	119.04	123.305	128.2792						
4	116.4002	120.0975	124.3803	129.3777						
5	122.2489	126.0192	130.4202	135.5297						
6	140.5688	144.5676	149.2643	154.7992						
7	155	155	155	155						
8	155	155	155	155						
9	155	155	155	155						
10	155	155	155	155						
11	155	155	155	155						
12	155	155	155	155						
13	155	155	155	155						
14	155	155	155	155						
15	155	155	155	155						
16	155	155	155	155						
17	155	155	155	155						
18	155	155	155	155						
19	155	155	155	155						
20	155	155	155	155						
21	155	155	155	155						
22	155	155	155	155						
23	155	155	155	155						
24	138.1262	142.0945	146.7494	152.2299						

Hour	G11	G12	G13	G14	G15	G16	G17	G18	G19	G20
	MW									
1	15.2	15.2	15.2	15.2	15.2	0	0	0	5	40.5305
2	15.2	15.2	15.2	15.2	15.2	0	0	0	0	155
3	15.2	15.2	15.2	15.2	15.2	0	0	0	0	155
4	15.2	15.2	15.2	15.2	15.2	0	0	0	0	155
5	15.2	15.2	15.2	15.2	15.2	0	0	0	0	155
6	15.2	15.2	15.2	15.2	15.2	0	0	0	0	155
7	33.798	36.0876	38.184	40.5305	0	4	0	0	0	0
8	56.8807	76	76	76	76	0	0	0	0	0
9	86.3296	92.831	76	76	76	0	0	0	0	0
10	100	100	100	76	76	76	0	0	0	0
11	100	100	100	76	76	76	0	4	4	0
12	100	100	100	76	76	76	0	0	0	0
13	100	100	100	76	76	76	0	0	0	0
14	89.6565	96.0992	76	76	76	0	0	0	0	0
15	100	100	100	76	76	76	0	0	0	0
16	100	100	100	76	76	76	0	0	0	4
17	89.6565	96.0992	76	76	76	0	0	0	0	0
18	89.6565	96.0992	76	76	76	0	0	0	0	0
19	73.0218	89.6565	76	76	76	0	0	0	0	0
20	100	100	100	76	76	76	0	0	0	0
21	66.3701	73.0218	76	76	76	0	0	0	0	0
22	73.2217	73.2217	76	76	76	0	0	0	0	0
23	65.3397	68.3919	71.0298	74.0886	0	0	0	0	0	0
24	15.2	15.2	15.2	15.2	15.2	0	0	0	0	0
Figure 2. Convergence of BPSO, IQBPSO and LAQPSO algorithms.

Hour	G21	G22	G23	G24	G25	G26	Reserve	Demand	STC ($)
1	0	0	0	2.4	2.4	2.4	410	1700	
2	0	0	0	0	0	0	444	1730	70
3	0	0	0	0	0	0	408	1690	
4	0	0	2.4	0	0	0	410	1700	
5	0	0	0	0	0	0	424	1750	50
6	0	0	0	0	0	0	424	1850	70
7	0	2.4	0	0	0	0	406	2000	70
8	0	0	0	0	0	0	535	2430	600
9	0	0	0	0	0	0	425	2540	
10	0	0	2.4	2.4	2.4	2.4	401	2600	
11	4	2.4	0	2.4	2.4	2.4	403	2670	60
12	0	0	2.4	2.4	2.4	2.4	411	2590	
13	0	0	2.4	2.4	2.4	2.4	411	2590	
14	0	0	0	0	0	0	415	2550	
15	0	2.4	2.4	2.4	2.4	2.4	405	2620	
16	4	0	2.4	2.4	2.4	2.4	403	2650	60
17	0	0	0	0	0	0	415	2550	
18	0	0	0	0	0	0	435	2530	
19	0	0	0	0	0	0	465	2500	
20	0	0	0	0	0	0	415	2550	
21	0	0	2.4	0	2.4	2.4	401	2600	
22	0	0	0	0	0	0	485	2480	
23	0	0	2.4	2.4	2.4	2.4	407	2200	
24	0	0	0	0	0	0	434	1840	

Total operation cost = 720921 $
The simulation results have showed that the best solution for the UCP was achieved by the LAQPSO algorithm if compared with the BPSO, QBPSO, IQBPSO and other algorithms in the literature. Also, from the results of the UC schedule, all the constraints have been satisfied. This shows that the LAQPSO algorithm has a better performance for achieving the goals of minimizing the total operation cost than the other algorithms that are employed for this test system. It can be shown that LAQPSO has an excellent convergence characteristic to reduce the total operation cost and it is more efficient than the other algorithms.

8. CONCLUSION

UCP in a power system is a very complex decision procedure among many studying fields in power system. To simplify the making of decisions and contain the problem of complexity and large dimensionality, the intelligent techniques should have a major part in the searching process to find the results of the most optimist solution when dealing with such type of problems. The LAQPSO algorithm is the product of the quantum computing and the PSO algorithm with a local attractor to form this hybrid algorithm. The local attractor helped the PSO algorithm to overcome its disadvantages such as lower convergence speed and being trapped in the local optima solutions. An IEEE 26 generation unit power system is used to validate the effectiveness of the proposed LAQPSO algorithm. The comparison results evidence the superiority, flexibility, affectivity, robustness and great potentiality of the LAQPSO algorithm among all algorithms such as the BSO, IQBPSO and other algorithms in the literature to solve UCP when simulating large power systems. Also, the results confirm that LAQPSO algorithm has the best performance, ability and speed convergence when solving the complex and non-linear problems. Also, it achieved all the constraints of the UC problem and increased the savings compared with different techniques in the literature.

9. REFERENCES

[1] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, *Power generation, operation, and control.*, 3rd ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014.
[2] B. F. Hobbs, M. H. Rothkopf, R. P. O’Neill, and H. Chao, *The next generation of electric power unit commitment models*. Springer Science & Business Media, LLC, 2001.
[3] A. M. Elsayed, A. M. Maklad, and S. M. Farrag, “A new priority list unit commitment method for large-scale power systems,” in *2017 19th International Middle-East Power Systems Conference, MEPCON 2017 - Proceedings*, 2018, pp. 359–367.
[4] J. Park, S. Kim, G. Park, Y. Yoon, and S. Lee, “Modified dynamic programming based unit commitment technique,” in *IEEE PES General Meeting*, 2010, pp. 1–7.
[5] W. Ongsakul and N. Petcharaks, “Ramp rate constrained unit commitment by improved adaptive Lagrangian relaxation,” *Int. Energy J.*, vol. 6, 2005.
[6] X. Yuan, H. Tian, S. Zhang, B. Ji, and Y. Hou, “Second-order cone programming for solving unit commitment strategy of thermal generators,” *Energy Convers. Manag.*, vol. 76, pp. 20–25, 2013.
[7] G. W. Chang, Y. D. Tsai, C. Y. Lai, and J. S. Chung, “A practical mixed integer linear programming based approach for unit commitment,” 2005, pp. 221-225 Vol.1.
[8] D. Palis and S. Palis, “Efficient Unit Commitment-A modified branch-and-bound approach,” in *IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2017*, pp. 267–271.
[9] I. G. Damousis, A. G. Bakirtzis, and P. S. Dokopoulos, “A solution to the unit-commitment problem using integer-coded genetic algorithm,” *IEEE Trans. Power Syst.*, vol. 19, no. 2, pp. 1165–1172, 2004.
[10] H. Chen and X. Wang, “Cooperative Coevolutionary Algorithm for Unit Commitment,” *IEEE Power Eng. Rev.*, vol. 22, no. 1, p. 70, 2002.
[11] D. N. Simopoulos, S. D. Kavatza, and C. D. Vournas, “Unit commitment by an enhanced simulated annealing algorithm,” in *IEEE Transactions on Power Systems*, vol. 21, no. 1, pp. 68-76, 2006.
[12] Y. Guo, J. Zhang, and Z. Fang, “An Improved Particle Swarm Optimization Approach for Unit Commitment Problem,” *Open Autom. Control Syst. J.*, vol. 6, pp. 629–636, 2014.

[13] G. Zhang, “Quantum-inspired evolutionary algorithms: A survey and empirical study,” *J. Heuristics*, vol. 17, no. 3, pp. 303–351, Jun. 2011.

[14] C. Chen and C. Chen, “Application of Ant Colony System to Optimal Thermal Unit Commitment,” in 2019 *International Conference on Machine Learning and Cybernetics (ICMLC)*, 2019, pp. 1–6.

[15] X. Yuan, A. Su, H. Nie, Y. Yuan, and L. Wang, “Application of enhanced discrete differential evolution approach to unit commitment problem,” *Energy Convers. Manag.*, vol. 50, no. 9, pp. 2449–2456, Sep. 2009.

[16] H. Sasaki, M. Watanabe, J. Kubokawa, N. Yorino, and R. Yokoyama, “A solution method of unit commitment by artificial neural networks,” *IEEE Trans. Power Syst.*, vol. 7, no. 3, pp. 974–981, 1992.

[17] A. A. Khatibzadeh, G. A. Khanbeigi, M. M. Bamdadian, H. Naderi, and M. K. Sheikh-el-Eslami, “An improved Tabu search algorithm and PSO for unit commitment problem solving,” 2011 *19th Iran. Conf. Electr. Eng.*., pp. 1–1, 2011.

[18] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in *Proceedings of ICNN’95 - International Conference on Neural Networks*, Perth, WA, Australia, 1995, vol. 4, pp. 1942–1948.

[19] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in *MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science*, Nagoya, Japan, 1995, pp. 39–43.

[20] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” in 1997 *IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA*, 1997, vol. 5, pp. 4104–4108.

[21] K. H. Han and J. H. Kim, “Quantum-inspired evolutionary algorithm for a class of combinatorial optimization,” *IEEE Trans. Evol. Comput.*, vol. 6, no. 6, pp. 580–593, Dec. 2002.

[22] T. Hey, “Quantum computing: an introduction,” *Computing & Control Engineering Journal*, vol. 10, no. 3, pp. 105–112, Jun-1999.

[23] Y. W. Jeong, J. B. Park, S. H. Jang, and K. Y. Lee, “A new quantum-inspired binary PSO: Application to unit commitment problems for power systems,” *IEEE Trans. Power Syst.*, vol. 25, no. 3, pp. 1486–1495, Aug. 2010.

[24] Y. W. Jeong, J. B. Park, S. H. Jang, and K. Y. Lee, “A new quantum-inspired binary PSO for thermal unit commitment problems,” in 2009 *15th International Conference on Intelligent System Applications to Power Systems*, Curitiba, 2009, pp. 1–6.

[25] A. N. Hussain and A. A. Ismail, “Operation cost reduction in unit commitment problem using improved quantum binary PSO algorithm,” *Int. J. Electr. Comput. Eng.*, vol. 10, 2020.

[26] D. Shao, S. Hu, and Y. Fei, “A new quantum particle swarm optimization algorithm with local attracting,” *Neural Netw. World*, vol. 26, no. 5, pp. 477–496, 2016.

[27] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” in *IEEE Transactions on Evolutionary Computation*, vol. 6, no. 1, pp. 58–73, Feb. 2002.

[28] J. Sun, W. Xu, W. Fang, and Z. Chai, “Quantum-Behaved Particle Swarm Optimization with Binary Encoding,” in *Adaptive and Natural Computing Algorithms, LNCS.Berlin: Springer*, 2007, pp. 376–385.

[29] K. Chandrasekaran and S. P. Simon, “Binary/real coded particle swarm optimization for unit commitment problem,” in *2012 International Conference on Power, Signals, Controls and Computation, EPSCICON*, Thrissur, Kerala, 2012, pp. 1–6.