Correlation of PON1 polymorphisms with ankylosing spondylitis susceptibility
A case–control study in Chinese Han population

Haitao Xu, PhD, Yiming Qu, PhD∗

Abstract
Paraoxonase 1 (PON1) modulates the oxidative stress and inflammatory response, thus, it might relate to the risk of ankylosing spondylitis (AS). The aim of present study was to discover the correlation of PON1 polymorphisms (rs662 and rs854560) with PON1 activity and AS risk.

Around 128 AS patients and 146 healthy controls were recruited in this case–control study. PON1 polymorphisms were genotyped by direct sequencing. Serum PON1 activity was detected and compared by nonparametric test in different genotypes of PON1 polymorphisms. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to present the relative risk for AS. GG genotype and G allele of rs662 polymorphism were closely related to increased AS risk (P = .034, OR = 2.318, 95%CI = 1.051–5.113; P = .032, OR = 1.485, 95%CI = 1.033–2.135). PON1 activity was obviously higher in controls than that in AS patients. Significant difference of PON1 activity has been discovered in the different rs662 genotypes (P < .01). rs662 GG genotype carriers had the lowest PON1 activity, followed by AG carriers and the AA carriers. Besides, no significant relationship existed between rs854560 genotypes and AS risk.

PON1 rs662 polymorphism is significantly correlated with increased AS risk via inhibiting PON1 activity.

Abbreviations: AS = ankylosing spondylitis, BASDAI = bath ankylosing spondylitis activity index, BASFI = bath ankylosing spondylitis functional index, CI = confidence interval, CRP = C-reactive protein, CT = computed tomography, HDL = high-density lipoprotein, HLA = human leucocyte antigen, HWE = Hardy–Weinberg equilibrium, MRI = magnetic resonance imaging, mSASSS = modified Stoke ankylosing spondylitis spine score, OR = odds ratio, PON1 = paraoxonase 1, RA = rheumatoid arthritis, SNP = single nucleotide polymorphism.

Keywords: ankylosing spondylitis, polymorphisms, PON1

1. Introduction
Ankylosing spondylitis (AS), belonging to rheumatism, is a chronic autoimmune disease.[1] Approximately 90% AS patients present positive human leucocyte antigen-B27 (HLA-B27). Axial skeleton, sacroiliac joints, and spine attachment points are the mainly predilection sites of AS.[2] Abnormal immune response presenting in these parts often leads to stiffness and fibrosis in the spine, finally results in the activity disability of spine.[3] AS is one of the seronegative spondyloarthropathies, and usually occurs in young adults especially young men.[4] The onset of AS is generally hidden, and has no clinical features. In the early stages, clinical features for AS are not specific, which contributing to challenges for early detection. Many cases develop advanced stages when initially diagnosed, missing the optimal opportunity for treatment. Despite no danger in live, restricted active ability decreases the life quality for AS patients and takes a heavy toll for family and society.[5,6] Thus, to explore AS pathogenesis and improve management of the disease are pivotal for the cases. Previous studies indicated that AS was a complex disease which was affected by the combination of various genetic and environmental factors.[7–13]

Paraoxonase 1 (PON1) is an arylesterase which is dependent on Ca2+. PON1 is mainly synthesized in liver, and secreted to the bloodstream after binding to high-density lipoprotein (HDL). PON1 plays a pivotal role in regulating esterase activity and peroxidase activity.[14,15] The activity of PON1 was reported to be significantly correlated with the oxidation in mammals.[16] Given the close association between oxidative stress and inflammation,[17] we speculated that PON1 might play a functional role in inflammatory disorders. Recent study suggested that PON1 impairment was observed in rheumatoid arthritis (RA) which could verify our deduction.[18] Accumulating evidences have suggested that the polymorphisms in PON1 gene might influence the enzymatic activity of PON1, thus participating in initiation and development of diseases,[19] however, very few studies were carried out to explore the correlation between PON1 gene polymorphisms and AS in Chinese population.

In the present study, we explored the effects of rs662 (c.575A>G, p.Gln192Arg) and rs854560 (c.163T>A, p.Leu55Met) single
nucleotide polymorphisms (SNPs) in PON1 gene coding region on serum PON1 activity and AS susceptibility in Chinese Han population.

2. Materials and methods

2.1. Study subjects

This study was authorized by the ethic committee of The Yongchuan Hospital of Chongqing Medical University. All of the subjects were Chinese Han population and signed the written informed consent. Between January 2014 and June 2016, AS patients who were diagnosed by x-ray, magnetic resonance imaging (MRI), computed tomography (CT), and laboratory inspections in The Yongchuan Hospital of Chongqing Medical University were recruited as cases. Healthy individuals who received a medical examination in the same hospital were recruited as controls. Controls were matched with the cases in age and gender. All of the participants had no other bone diseases, systemic diseases, and immune or inflammatory diseases in recent 3 months.

2.2. Sample collection and genotyping method

About 10 ml blood sample was collected from elbow vein of every participant. Blood samples were anticoagulated by EDTA-Na2, centrifuged, and collected white blood cells and serum, then stored in –80°C until to use. Genomic DNA was extracted from blood cells using a DNA extraction kit (Tiangen, Beijing). PON1 gene rs662 and rs854560 polymorphisms were amplified by PCR and genotyped by direct sequencing.

2.3. Serum PON1 activity

Serum PON1 activity was examined according to previous study.

2.4. Statistical analysis

Hardy–Weinberg equilibrium (HWE) test of the PON1 polymorphisms was performed by PLINK. Quantitative data were presented by mean±SD. Quantitative and qualitative data between cases and controls were, respectively, compared by t test (or nonparametric test) and χ² test (or Fisher’s exact test). Differences of genotype and allele frequencies between case and control groups were assessed by χ² test. Relative risk of PON1 polymorphisms with AS risk was revealed by odds ratios (ORs) with 95% confidence intervals (CI). Independent-samples t test was utilized to explore the association of PON1 polymorphisms with plasma PON1 activity. All of the calculations were performed by SPSS 18.0 software. Significant level was set to 0.05.

3. Results

3.1. Basic and clinic features

The case group included 97 males and 31 females with the mean age of 29.90±5.68 years old. Healthy controls contain 111 males and 35 females, and their mean age was 30.49±5.68 years. The HLA-B27, C-reactive protein (CRP) level, and PON1 activity were significantly different between cases and controls (Table 1, P<.001 for all). While other features had no significant difference between case and control groups (P>.05 for all).

3.2. Association of PON1 polymorphisms with AS risk

Genotype and allele distributions of PON1 rs662 and rs854560 polymorphisms in control group did not deviate from the HWE test (Table 2, P>.05). This result indicated that subjects in present study could represent the general population.

Frequencies of rs662 AA, AG, GG genotype were 8.59%, 38.28%, 53.13% in AS patients and 16.44%, 39.73%, 43.84% in healthy controls, respectively. GG genotype of rs662 SNP had higher frequency in AS patients, and might be significantly

Table 1

Features	Case n=128 (%)	Control n=146 (%)	P	
Age (mean±SD)	29.90±5.68	30.49±6.73	0.707	
Gender			0.962	
Male	97 (76.78)	111 (76.03)		
Female	31 (24.22)	35 (23.97)		
Smoking			0.185	
Yes	36 (28.13)	31 (21.23)		
No	92 (71.88)	115 (78.77)		
Alcohol abuse			0.147	
Yes	13 (10.16)	8 (5.48)		
No	115 (90.84)	138 (94.52)		
Exercise habit			0.244	
Yes	43 (33.59)	59 (40.41)		
No	85 (66.41)	87 (59.59)		
Family history			0.053	
Yes	6 (4.69)	1 (0.68)		
No	122 (95.31)	145 (99.32)		
HLA-B27			<0.001	
Positive	106 (82.81)	17 (11.64)		
Negative	22 (17.19)	129 (88.36)		
CRP, mg/L	19.34±5.08	4.74±1.85	<0.001	
PON1 activity, U/L	211.65±37.89	234.23±42.50	<0.001	
Kyphosis			0.633	
Positive	55 (42.97)	–		
Negative	73 (57.03)	–		
Bamboo spine			0.633	
Positive	39 (30.47)	–		
Negative	69 (52.93)	–		

Table 2

Genotype/allelle	Case n=128 (%)	Control n=146 (%)	P	OR (95%CI)
rs662				
AA	11 (8.59)	24 (16.44)	–	–
AG	49 (38.28)	58 (39.73)	0.135	1.043 (1.021–4.138)
GG	68 (53.13)	64 (43.84)	0.034	2.316 (1.051–5.113)
rs854560				
AA	120 (93.75)	137 (93.84)	–	–
AT	8 (6.25)	9 (6.16)	0.977	1.015 (0.380–2.713)
TT	0	0	–	–
A	248 (96.88)	283 (96.92)	–	–
T	8 (3.12)	9 (3.08)	0.977	1.014 (0.385–2.669)

HWE = Hardy–Weinberg equilibrium.
associated with increased AS risk ($P=.034$, OR=2.318, 95% CI=1.051–5.113). A and G allele of rs662 SNP were 27.73% and 73.27% in cases, 36.30% and 63.70% in controls. Significantly difference of rs662 allele frequencies was observed between case and control groups, indicating G allele might distinctly increase the AS risk ($P=.032$, OR=1.485, 95% CI=1.033–2.135). For rs854560 SNP, no TT genotype was observed compared with AA genotype ($P<.01$). PON1 activity was highest in rs662 A allele carriers (Table 3, $P<.001$). PON1 activity was significantly increased in AS cases. rs854560 A allele was associated with 2.318 times increased AS risk. Rs662 G allele approximately increased 1.485 times AS risk. This result was accorded with the previous studies. PON1 rs662 SNP was significantly related to RA risk ($P<.01$). This SNP showed close association with the RA risk, especially the oxidative stress and some systemic inflammatory markers. In the current study, PON1 rs854560 polymorphism showed no association with AS susceptibility. A microarray analysis based on whole blood samples collected from 18 AS cases and 18 healthy individuals (GEO: GSE25101) demonstrated that the expression pattern of PON1 was obviously different between AS and healthy controls. Previous studies showed that PON1 activity in serum was significantly decreased in RA and AS patients. In the current study, we found that serum PON1 activity was significantly different between AS cases and healthy individuals. Moreover, decreased PON1 activity was observed in serum samples collected from AS patients It was reported that the concentration and activity of PON1 were significantly determined by rs662 SNP in diabetes patients. In AS patients, we found that GG genotype of rs662 SNP significantly elevated PON1 activity. While G heterozygote also increased the PON1 activity both in cases and controls. It is indicated that rs662 SNP promote the AS susceptibility might via regulating the PON1 activity. A recent study indicated showed that rs662 SNP was correlated with PON1 activity in rheumatoid arthritis cases. In addition, we also analyzed the effects of PON1 rs662 polymorphism on AS activity. The results demonstrated that AS cases carrying GG genotype were more likely to undergo worse scores. Based on the above researches, we deduced that GG genotype of PON1 rs662 polymorphism could suppress the enzymatic activity of PON1, thus contributing to initiation and development of AS. However, the correlation between PON1 activity and clinical manifestations were not investigated in this study. Further researches will be required.

4. Discussion

Smoking status, alcohol abuse, as well as exercise habit are confirmed as risk factors for AS. However, not all of the individual exposed in risk environment will suffer from AS. As an autoimmune disease, AS is attributed by the interactions of various genetic and environmental factors especially the ingredients of inflammatory system (such as immune cells and cytokines). For example, HLA-B27 is more frequently detected in AS patients, and the level of CRP exhibits high in AS cases. Besides, family history is also considered as a risk factor for AS development, revealing the strong association between genetic factors and AS risk.

PON1, the first member of PON family, could modulate the oxidative stress and inflammatory responses. In addition, PON1 has been confirmed to be correlated with several immune and inflammatory diseases, including AS. PON1 gene is located in chromosome 7q21.3, including 9 exons. Polymorphisms in the coding region of the gene might alter the structure and function of the protein. Two widely studied SNPs in the exons of PON1 gene, rs662 (c.575A>G, p.Gln192Arg) and rs854560 (c.163T>A, p.Leu55Met) were associated with the PON1 activity and diseases susceptibility in several populations. Previous study showed that AS patients exhibited significantly decreased PON1 activity, and its decreased enzymatic activity was negatively associated with the disease duration. We thus speculated that these two SNPs might influence the development of AS.

Table 3

Genotype	Case n = 128 (%)	Control n = 146 (%)
rs662		
AA	247.45±23.71	261.58±36.66
AG	218.47±32.63*	231.53±41.61*
GG	200.94±38.91†	226.42±41.80†
rs854560		
AA	211.67±37.80	233.58±42.12
AT	211.37±41.94	244.11±49.69

Genotype	Case n = 128 (%)	Control n = 146 (%)
rs662		
AA	247.45±23.71	261.58±36.66
AG	218.47±32.63*	231.53±41.61*
GG	200.94±38.91†	226.42±41.80†
rs854560		
AA	211.67±37.80	233.58±42.12
AT	211.37±41.94	244.11±49.69

1 Compared with AA genotype $P<.01$.
2 Compared with AG genotype, $P<.01$. Significant level was adjusted by the Bonferroni method.

Table 4

Activity score	AA	AG	GG
BASDAI	4.19±1.56	4.59±1.41	5.14±1.65*
BASFI	3.61±1.59	4.24±1.49	4.90±1.66*
mSASSS	11.49±12.01	12.67±11.87	13.87±12.06*

BASDAI=bath ankylosing spondylitis activity index, BASFI=bath ankylosing spondylitis functional index, mSASSS=modified stoke ankylosing spondylitis spine score.
References

[1] Lamot L, Vidovic M, Perica M, et al. Pathogenesis of undifferentiated spondyloarthritides. Reumatism 2015;62:20–6.

[2] Mahmoudi M, Jamshidi AR, Karami J, et al. Analysis of killer cell immunoglobulin-like receptor genes and their hla ligands in iranian patients with ankylosing spondylitis. Iran J Allergy Asthma Immunol 2016;15:27–38.

[3] Sieper J, van der Heijde D, Landewe R, et al. New criteria for inflammatory back pain in patients with chronic back pain: a real patient exercise by experts from the Assessment of SpondyloArthritis international Society (ASAS). Ann Rheum Dis 2009;68:784–8.

[4] Ahsan T, Erum U, Jabeen R, et al. Analysis of killer cell immunoglobulin-like receptor genes and their hla ligands in iranian patients with ankylosing spondylitis. J Rheumatol 2001;28:315–21.

[5] Younes M, Jalled A, Aydi Z, et al. Quality of life in ankylosing spondylitis. La Tunisie Medicale 2011;89:374–8.

[6] Ding N, Yang X, Zhang L, et al. Association of beta-defensin gene copy number variations with ankylosing spondylitis in Chinese population: a case–control study. Mod Rheumatol 2016;26:146–50.

[7] Uddin M, Codner D, Hasan SM, et al. Integrated genomics identifies convergence of ankylosing spondylitis with global immune mediated disease pathways. Scent Rep 2015;5:10314.

[8] Videm V, Cortes A, Thomas R, et al. Current smoking is associated with incident ankylosing spondylitis—the HUNT population-based Norwe- gian health study. J Rheumatol 2014;41:2041–8.

[9] Calin A. Survival, alcohol and deaths in ankylosing spondylitis. Brit J Rheumatol 1998;37:600–1.

[10] Liang H, Zhang H, Ji H, et al. Effects of home-based exercise intervention on health-related quality of life for patients with ankylosing spondylitis: a meta-analysis. Clin Rheumatol 2015;34:1737–44.

[11] Costello ME, Cuccia F, Willner D, et al. Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol 2014;67:868–91.

[12] Sparks JA, Costenbader KH. Genetics, environment, and gene–environment interactions in the development of systemic rheumatic diseases. Rheum Dis Clin N Am 2014;40:637–57.

[13] Sehitogullari A, Aslan M, Sayir F, et al. Serum paraoxonase-1 enzyme activities and oxidative stress levels in patients with esophageal squamous cell carcinoma. Redox Rep 2014;19:199–205.

[14] Aviram M, Rosenblat M, Bogaier CL, et al. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J Clin Invest 1998;101:1581–90.

[15] Dragano DJ, Stetson PL, Watson CE, et al. Rabbit serum paraoxonase 3 (PON3) is a high density lipoprotein-associated lactonase and protects low density lipoprotein against oxidation. J Biol Chem 2000;275:33433–42.

[16] Fort-Gallifa I, Garcia-Heredia A, Hernandez-Aguilera A, et al. Biochemical indices of oxidative stress and inflammation in the evaluation of peripheral arterial disease. Free Radic Biol Med 2016;97:568–76.

[17] Rodríguez-Carrio J, Alperi-Lopez M, Lopez-Meijas R, et al. Antibodies to paraoxonase 1 are associated with oxidant status and endothelial activation in rheumatoid arthritis. Clin Sci (Lond) 2016;130:1889–99.

[18] Maehara M, Kengue AP, Blackhurst DM, et al. Paraoxonase1 genetic polymorphisms in a mixed ancestry African population. Mediators Inflamm 2014;2014:217019.

[19] Farlong CE, Marsallach J, Jarvik GP, et al. Paraoxonase-1, -2 and -3: what are their functions? Chem Biol Interact 2016;259(pt B):51–62.

[20] Gaal K, Tarr T, Lorincz H, et al. High-density lipoprotein antioxidant capacity, subpopulation distribution and paraoxonase-1 activity in patients with systemic lupus erythematosus. Lipids Health Dis 2016;15:60.

[21] Gkolfinopoulou C, Stratikos E, Theofilatos D, et al. Impaired antiatherogenic functions of high-density lipoprotein in patients with ankylosing spondylitis. J Rheumatol 2015;42:1652–60.

[22] Inal V, Yaman E, Taskin G, et al. Paraoxonase 1 activity and survival in sepsis patients. Balkan Med J 2015;32:183–8.

[23] Rodríguez-Carrio J, Lopez-Meijas R, Alperi-Lopez M, et al. Paraoxonase 1 activity is modulated by the rs662 polymorphism and IgG anti-high-density lipoprotein antibodies in patients with rheumatoid arthritis: potential implications for cardiovascular disease. Arthritis Rheumatol 2016;68:1367–76.

[24] Motovali-Bashi M, Sedaghat S, Dehghanian F. Association between serum paraoxonase 1 activities (PONase/AREase) and L5SM polymorphism in risk of female infertility. Avicenna J Med Biotechnol 2015;7:173–8.

[25] Cece H, Yazağan P, Karakas E, et al. Carotid intima-media thickness and paraoxonase activity in patients with ankylosing spondylitis. Clinical and investigative medicine. Med Clin Exp 2011;34:E225.

[26] Juyal RC, Negi S, Wakhode P, et al. Potential of ayurgenomics approach in complex trait research: leads from a pilot study on rheumatoid arthritis. PloS One 2012;7:e45732.

[27] Shahmohamadnejad S, Vans-Raygani A, Shakibi Y, et al. Association between butyrylcholinesterase activity and phenotypes, paraoxonase1 rs662 gene polymorphism and their enzymatic activity with severity of rheumatoid arthritis: correlation with systemic inflammatory markers and oxidative stress, preliminary report. Clin Biochem 2015;48:63–9.

[28] Pimentel-Santos FM, Ligeiro D, Matos M, et al. Whole blood transcriptional profiling in ankylosing spondylitis identifies novel candidate genes that might contribute to the inflammatory and tissue-destructive disease aspects. Arthritis Res Ther 2011;13:R57.

[29] Tanamoto N, Kumon Y, Saeihiro T, et al. Serum paraoxonase activity decreases in rheumatoid arthritis. Life Sci 2003;72:2877–85.