Thermal And Chemical Resistance Of Plasma Sprayed Al2o3, Al2o3-Tio2 Coatings

Airingas Šuopys (airingas.suopys@lei.lt)
Lietuvos energetikos institutas https://orcid.org/0000-0001-5972-3084

Liutauras Marcinauskas
Lietuvos energetikos institutas

Romualdas Kėželis
Lietuvos energetikos institutas

Mindaugas Aikas
Lietuvos energetikos institutas

Rolandas Uscila
Lietuvos energetikos institutas

Simona Tučkutė
Lietuvos energetikos institutas

Martynas Lelis
Lietuvos energetikos institutas

Research Article

Keywords: Plasma spray, Al2O3, TiO2, thermal resistance, chemical resistance

DOI: https://doi.org/10.21203/rs.3.rs-18422/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

In this article, the results of thermal and chemical resistance, of plasma sprayed Al_2O_3 and Al_2O_3-13wt.$\%\text{TiO}_2$ coatings on a steel (P265GH) sample are presented. Coatings were formed using air-hydrogen plasma direct current plasma torch at atmospheric pressure. The resistance of coatings was measured by analyzing surface structure, elemental and phase composition of as sprayed coatings and after several heating cycles, imitating application conditions. To make this technology more appealing, by decreasing exploitation cost of standard cast iron grate used in straw pellet broilers, we used cheaper stainless steel with a protective Al_2O_3 and Al_2O_3-13wt.$\%\text{TiO}_2$ coatings. Most of the research done in this field is by using Ar as primary gas, but to decrease the manufacturing cost even further we used Air as primary gas. It was determined that after heat treatment the minor changes in the elemental composition were observed. Meanwhile an additional crystalline phases of metal oxides were detected.

Introduction:

The need for functional materials is ever increasing, many systems and their individual parts or sections must be durable, resistant to chemical or thermal effects and corrosion. The higher longevity can be reached – the better. One of the most effective and cost-efficient way to prolong the lifespan of certain parts or systems is to apply a protective layer of material on top. Ceramic coatings are quickly becoming a viable alternative to organic and polymer-based coatings for surface protection applications. Most commonly used oxide ceramics today are alumina, zirconia, titania, yttria or their composites coatings. Ceramic coating is a protective film for all kinds of parts and can dramatically increase their useful life and productivity, by achieving longer run times before the repairs or replacement of part is needed. Thermal spray coating is one of the most common ways to apply a protective coating on the material and plasma spray is one of the most widely used techniques for this purpose [1].

Plasma sprayed ceramic coatings possesses lots of excellent properties, such as wear and corrosion resistance, high temperature resistance, therefore is widely used in various industrial equipment [2], and particularly are useful when corrosion and wear resistance is required simultaneously [3]. Alumina coatings are one of the most popular high-performance ceramic coatings being used in the industry today. Such wide applications are related to the high hardness, chemical inertness and low cost of material. To improve coating qualities, such as brittleness and friction coefficient reduction, increase of fracture toughness and corrosion resistance, addition of titanium oxide to alumina powder is widely used [4–8]. It was found that addition of TiO$_2$ reduces the microhardness of alumina coatings [9–12], also titanium oxide increases corrosion resistance, wear rate, elastic modulus and decreases porosity [13]. It was demonstrated that Al_2O_3-YSZ composite coatings improves the oxidation resistance at high (1050 °C) temperatures [15]. V.C. Misra et al. [14] demonstrated that the tribological properties of Al_2O_3 coatings prepared using argon-hydrogen plasma strongly depend on process parameters and could be used in dry air and dry nitrogen environment. M. Wang et al. [16] obtained that Al_2O_3-13wt.$\%\text{TiO}_2$ sprayed using argon-helium plasma remained stable after thermal shock tests under temperatures below 800 °C.
Alumina and alumina-based composite coatings are a promising selection to improve the grate of a straw pellet boiler, since manufacturing high quality steel would be extremely expensive. The intention was to lower the price of the grate by using stainless P265GH steel instead of cast iron, that is typically being used in straw pellet broilers. According to manufacturing sites (alibaba.com and iron-foundry.com) the cost of cast iron is 1300–1400 $/ton while stainless steel is only 600–800$/ton. This change of the grate material would greatly decrease the cost of manufacturing, not to mention the increased longevity of the grate. The temperature inside the boiler is about 500–600 °C and as other scientist have confirmed, there are almost no phase changes of Al₂O₃ coatings in the range of 500–700 °C [7,14]. To decrease the manufacturing cost even further, unlike in the work of other authors [4–10], where coatings were formed mostly using Ar as primary and H₂ as secondary gas, in this research air was used as primary and H₂ as secondary gas. Because of this change it was necessary to verify if the coatings properties would stay the same. Another reason is for using alumina-based coatings, when burning straw potassium, sodium and chlorine compounds formed during combustion react with a furnace surface and destroy it via corrosion reactions. The supreme process of destruction is an etching of the metal due to the chromium reaction with chlorine produced during burning of straws. So, the deposition of the ceramic coatings on the metal surfaces could reduce the production cost and greatly improves the lifetime of the furnace, without the need to replace the grate. Because of the reasons mentioned above, alongside pure alumina, titania was selected as a suitable additive for coatings in our work.

In this paper, Al₂O₃ and Al₂O₃-13wt.% TiO₂ coatings were deposited on steel (P265GH) samples. The aim of this research is to investigate the chemical and thermal resistance of alumina coatings with addition of TiO₂.

Methodology:

Al₂O₃ and Al₂O₃-13wt.TiO₂ coatings were sprayed on steel (P265GH) substrate at atmospheric pressure using a direct current plasma torch, developed in Lithuanian Energy Institute [15]. The steel substrates (dimensions of 40 × 10 × 6 mm) were polished and chemically cleaned before the deposition process. The substrates were placed on the water-cooled sample holder. The plasma torch was moving in the x-axis direction back and forth, in order to prevent overheating. Air was used as primary and the powder carrier gas, and hydrogen was used as a secondary gas. The coatings were deposited using the plasma torch parameters, that are listed in the Table 1.
Two different compositions of powders were used in this research. Conventional 63–81 µm size (Fig. 1) Al₂O₃ (MOGUL PC15, purity 99.8) and the same size distribution Al₂O₃ – 13 wt.% TiO₂ (MOGUL PC12) powders were used as feedstock material, which were injected into the reactor nozzle (internal diameter of 7 mm) at 150 mm from the exit. Additionally, the bonding layer was formed from nickel-chromium powders (MOGUL M3, Ni/Cr ratio of 80/20) powders in order to increase the coating adhesion to steel substrate. Before the coating process, all powders were dried. Three different specimens were used in the research: uncoated steel (P265GH), Al₂O₃ and Al₂O₃-13%wt.TiO₂ coatings.

In order to imitate the burning process of the straw pellets in the heating furnace the metallic tube was made (Fig. 2). The specimens were heat treated under identical conditions and were as following: the samples were placed into a metal cylinder (Fig. 2b) and filled with straw pellets (as shown in Fig. 2a). The cylinder had holes on each side and air was flowing through the bottom one at a constant rate. Then the cylinder was closed and inserted into the heating furnace (model TMH12/38/500–2416) and the temperature was set at 500 °C. The duration of the measurement was 60 minutes after the temperature in the furnace reached 500 °C. Additionally, the temperature inside the cylinder was measured using three thermocouples, placed inside the metal cylinder. The first thermocouple was placed below the samples, while the second and third were placed on the top of Al₂O₃ and Al₂O₃-13%wt.TiO₂ coatings, respectively. The variation of the temperatures was measured using digital multimeter (Mitutoyo Surftest SJ-210). After the heating was over, the specimens were left in the furnace to cool down for several hours. This sequence completed one cycle of heat treatment and when the five cycles were reached the surface morphology, phase and elemental composition were investigated.

The specimens were washed using ultrasonic cleaning after each five cycles before the characterization. The surface morphology of the coatings was characterized by scanning electron microscopy (SEM) using a Hitachi S-3400N, elemental composition by energy dispersive X-ray spectroscopy (EDS) using dispersive X-ray spectroscopy (Bruker Quad 5040 spectrometer, AXS Microanalysis GmbH). The measurements were performed from 1.05 mm² surface area at 4 different points for each sample and the mean values were calculated. Structure of the coatings was analyzed using X-ray diffraction crystallography (XRD) with Bruker D8 instrument whose main parameters were theta-theta configuration,
CuKα (λ = 0.154059 nm) radiation. The five cycles procedure was repeated, and the testing was finished when 20 cycles of heat treatment were reached.

Results:

Variation of the temperature during the burning of straw pellets is shown in Fig. 3. The temperature of the first thermocouple (below the samples) is quite lower, that is due to the constant air flow from the bottom of the cylinder, and the maximum temperature is considerably lower (450–480 °C), because the burning of straw pellets is happening on top of the samples. The rapid growth of temperature can be observed at 17 min., that is when the straw pellets start to burn, the peak temperature is reached after 25 min. and is between 520–600 °C. Meanwhile, the temperature on the surface was about 100 °C higher than on the bottom when the straw pellets were burning. Once the burning process is over the temperature starts to decrease and stabilizes at 430–470 °C range. The temperature obtained on the top surface of the coatings was about ~ 50 °C higher after burning process was finished.

Surface morphology of uncoated steel before the heat treatment and after 20 cycles is shown in Fig. 4. The surface of untreated sample (Fig. 4a) is relatively clean, although some particles can be observed. After 20 heat treatment cycles the chance of the surface is evident. A lot more particles can be observed on the surface, that remained even after ultrasonic cleaning, these are mainly leftover products of burned straw pellets. In addition, the surface seems to be etched, this is the result of ongoing chemical reactions and oxidation during the burning of straw pellets. The SEM images clearly indicated that the surface of P265GH steel was changes and damaged.

Surface of sample with the Al2O3 coating is shown in Fig. 5. The surface of untreated sample (Fig. 5a) consists of splats and somewhat unmolten particles, also no defects, such as cracks or delamination, can be seen. Surface of the sample after 20 cycles (Fig. 5b) is similar, but the quantity of small particles is considerably higher. Much like in steel sample, a lot of those small particles are leftover products of burned straw pellets, that were not cleaned completely. Just as in steel sample, the surface is etched and cavities do form, but they are considerably smaller. This is due to the fact, that Al2O3 coating is a lot more resistant to chemical reactions, happening during the burning process of straw pellets, that steel.

The surface of Al2O3-13%wt.TiO2 sample is shown in Fig. 6. As in previous sample, untreated coating (Fig. 6a) consists of splats and somewhat unmolten particles, also no cracks or delamination zones can be seen. But unlike in Al2O3 sample the surface after 20 cycles is relatively the same, roughly the same number of small particles and no formed cavities are observed (Fig. 6b). The addition of titania increased coatings resistance to chemical and thermal impact.

Elemental composition was determined using energy dispersive X-ray spectroscopy. Samples were tested before treatment, and after 5 and 20 cycles. Each sample was measured in 4 different spots, then mean values were calculated (deviation 1%). The first sample (uncoated steel) consisted mainly of iron (93 at.%), also a small amount of oxygen (4 at.%) and other materials, that came from elemental
composition of steel, were found. Even after 5 cycles the amount of oxygen dramatically increased to 46%, while iron lowered to 50%, and further increase of cycles had no effect to the amount of oxygen in the sample. This is due to absorbed oxygen during the combustion process, during the burning of straw pellets. Additionally, low traces of silicon, potassium, calcium and sulfur are found, that are leftover products of combustion reactions and were not completely removed with ultrasonic cleaning.

Al_2O_3 sample before treatment consisted of aluminum (31 at.%), oxygen (58 at.%), nickel (6 at.%) and chromium (2 at.%). Also, low amounts of other elements can also be found (carbon, iron, silicon etc.) and are attributed to impurities within the sample. Chromium and nickel originate from NiCr underlayer, that was applied before the coating in order to increase the adhesion of the coating. After 20 cycles aluminum decreased by 4% (to 27 at.%) and oxygen by 1% (to 57 at.%), nickel increased by 2% (to 8 at.%) and chromium remained the same (2 at.%). This happened due to the increase of other elements (iron, carbon, silicon etc.) during burning of straw pellets, and because the combustion products could not be completely removed.

Al_2O_3-13wt.% TiO$_2$ sample consisted of aluminum (22 at.%), oxygen (57 at.%), titanium (4 at.%), nickel (9 at.%) and chromium (3 at.%). Much like in the Al_2O_3 sample, nickel and chromium are attributed to NiCr underlayer and small traces of other elements (carbon, iron, silicon etc.) are found due to impurities of the sample. However, after 20 cycles the amount of aluminum, titanium and chromium remained the same (22 at.%, 4 at.% and 3 at.% respectively), while oxygen increased by 2% (to 59 at.%) and nickel decreased by 1% (to 8 at.%). Also, just as in Al_2O_3 coating, number of other elements coming from combustion products increased. The data indicates that addition of titania did increase stability in elemental composition, since even after 20 heat treatment cycles only amount of oxygen altered by more than 1%.

Phase composition of the P265GH steel sample is shown in Fig. 7. Before the treatment there is only 2 peaks of Fe at $\theta = 44.7^\circ$ and 65.1°, but even after 5 cycles several peaks of Fe_3O_4 appear and become the dominant phase. The further increase of heating cycles continues to increase the intensity of Fe_3O_4 peaks. These results support the previous statement, that steel sample was heavily damaged during the treatment cycles and protection is necessary under these working conditions.

There is noticeably less phase composition change in Al_2O_3 sample. Firstly, the dominant phase remains $\alpha-\text{Al}_2\text{O}_3$ with peaks when $\theta = 25.6^\circ$, 35.7°, 43.5°, 57.7° and 63.1°. Secondly, another phase of alumina also apparent, that is $\gamma-\text{Al}_2\text{O}_3$ at $\theta = 37.4^\circ$, 38.9°, 45.8° and 67.1°. The ratio of $\alpha-\text{Al}_2\text{O}_3$ and $\gamma-\text{Al}_2\text{O}_3$ most intense peaks before treatment is 1.16 but increases to 2.06 after 20 cycles. This is since $\alpha-\text{Al}_2\text{O}_3$ peak intensity increased, while $\gamma-\text{Al}_2\text{O}_3$ remained similar. This happens because the temperature in not high enough for phase transition reactions from $\alpha-\text{Al}_2\text{O}_3$ to $\gamma-\text{Al}_2\text{O}_3$ to occur. The temperature is only enough to initiate transition of amorphous Al_2O_3 to $\alpha-\text{Al}_2\text{O}_3$. Similar results were found by Dhakar et al [16] where Al_2O_3 coating were heat treated at 900 °C. Thirdly, besides alumina there are two more peaks that are attributed to iron and nickel at $\theta = 44.3^\circ$ and 51.6°, their intensities remained the same before and after 20 heat cycles.
Addition of titania in the final sample increased stability of phase composition of alumina coating, therefore even less changes can be observed (Fig. 9). There is a less peaks of α-Al_2O_3: when $2\theta = 35.7^\circ$, 43.5° and 63.1°. Also, there are a few γ-Al_2O_3 peaks at $2\theta = 37.4^\circ$, 45.8° and 67.1°. The ratio of α-Al_2O_3 to γ-Al_2O_3 the most intense peaks of the coating was 1.46. Meanwhile after 20 cycles of treatment the α-Al_2O_3/γ-Al_2O_3 ratio increased very slightly up to 1.51, which confirms, that the resistance to heat treatment increased with the addition of titania. Just as in α-Al_2O_3 sample there are two peaks of at $2\theta = 44.3^\circ$ and 51.6° attributed to the bonding NiCr layer. These results agree with the work of other authors [17], where no significant changes were observed for γ-Al_2O_3 phase during the annealing of up to 700 °C of plasma sprayed NiCrAl/Al_2O_3-13wt.%TiO$_2$ coatings. The authors obtained only minor changes in the peak’s intensities of alpha phase.

Conclusion:

Al_2O_3, Al_2O_3-3% TiO$_2$ and Al_2O_3-13% TiO$_2$ coatings were formed using atmospheric plasma spray technology. Surface morphology was examined using scanning electron microscopy, and the result show that most damage was done to the uncoated steel sample, while the samples with both, alumina and alumina-titania coatings were almost intact. Elemental composition results done by energy dispersive X-ray spectroscopy indicate, that the steel sample was heavily oxidized after 5 heating cycles, since oxygen increased from 1–46%. The change of elemental composition in other samples was insignificant. In Al_2O_3 coating oxygen decreased from 58–57%, and aluminium decreased from 31–27%. In the Al_2O_3-13% TiO$_2$ coating amount of oxygen increased from 57–59%, but aluminium and titanium fraction remained the same. It was determined that after 5 cycles of treatment the uncoated steel substrate is heavily oxidized and Fe$_2$O$_3$ becomes the dominant phase. The X-ray diffraction results show that even after 20 cycles of heat treatment at 500 °C, the phase composition of Al_2O_3 coating greatly increased the thermal and chemical resistance of the P256GH substrate and the addition of titania increased its phase stability even further.

References

1. Wang S, Wang Y, Wang M, Jiang S, Xiao TD, Strutt PR, “Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings.” Wear, 237 (2) 176-185 (2000)
2. Kang JJ, B.S.Xu, Wang CB, Wang HD, “Influence of spraying parameters on the microstructure and properties of plasma sprayed Al2O3/40%TiO2 coating.” Physics Procedia, 50, 269-176 (2013)
3. Zavareh MA, Sarhan, Ahmed Aly Diaa Mohammed, Razak BBA, Basirun WJ, “Plasma thermal spray of ceramic oxide coating on carbon steel with enhanced wear and corrosion resistance for oil and gas applications.” Ceramics International, 40 (9), 14267-14277 (2014)
4. Sun-Hun Y, “Comparative study on wear performance of traditional and nanostructured Al2O3-13 wt.% TiO2 air plasma spray coatings.” Ceramics – Silikaty, 59 (1), 59-63 (2015)
5. Sreekumar Rajesh T, Venkata Rao R, “Experimental investigation and parameter optimization of Al2O3-40% TiO2 atmospheric plasma spray coating on SS316 steel substrate.” Materials Today: Proceedings, 5 (2), 5012-5020 (2018)

6. Li J, Li H, Ke Z, Xue L, Yan Y, “An effective low-temperature strategy for sealing plasma sprayed Al2O3-based coatings.” Journal of the European Ceramic Society, 38 (4), 1871-1877 (2018)

7. Jia S, Zou Y, Xu J, Wang J, Yu L, “Effect of TiO2 content on properties of Al2O3 thermal barrier coatings by plasma spraying.” Transactions of Nonferrous Metals Society of China, 25 (1), 175-183 (2015)

8. Sahab ARM, Saad NH, Kasolang S, Saedon J, “Impact of plasma spray variables parameters on mechanical and wear behaviour of plasma sprayed Al2O3 3%wt TiO2 coating in abrasion and erosion application.” Procedia Engineering, 41, 1689-1695 (2012)

9. Yugeswaran S, Selvarajan V, Vijay M, Ananthapadmanabhan PV, Sreekumar KP, “Influence of critical plasma spraying parameter (CPSP) on plasma sprayed Alumina–Titania composite coatings.” Ceramics International, 36 (1), 141-149 (2010)

10. Dejang N, Watcharapason A, Wirojupatump S, Niranatlumpong P, Jiansirisomboon S, “Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: A role of nano-sized TiO2 addition.” Surface and Coatings Technology, 204 (9), 1651-1657 (2010)

11. Fervel V, Normand B, Coddet C, “Tribological behavior of plasma sprayed Al2O3-based cermet coatings.” Wear, 230(1), 70-77 (1999)

12. Çelik İ, “Structure and surface properties of Al2O3–TiO2 ceramic coated AZ31 magnesium alloy.” Ceramics International, 42 (12), 13659-13663 (2016)

13. Klyatskina E, Rayón E, Darut G, Salvador MD, Sánchez E, Montavon G, “A study of the influence of TiO2 addition in Al2O3 coatings sprayed by suspension plasma spray.” Surface and Coatings Technology, 278, 25-29, (2015)

14. Misra V, Chakravarthy Y, Khare N, Singh K, Ghorui S, “Strongly adherent Al2O3 coating on SS 316L: Optimization of plasma spray parameters and investigation of unique wear resistance behaviour under air and nitrogen environment.” Ceramics International, 2019,

15. Zhang K, Ning S, Ren C, Luo X, Dong L, Chen H, He Y, “Improvement of oxidation resistance of spatial-network Al2O3/YSZ composite coatings by chemical densification.” Surface & Coatings Technology, 266, 105-112 (2015)

16. Wang M, Zhou Z, Yi Y, Wang Z, “Thermal-shock resistance of plasma sprayed Al2O3-13wt%TiO2 coating evaluated by residual strength method.” Surface & Coatings Technology, 375, 888-893 (2019)

17. Matthews S, Taliana F, James B, “Heat treatment of plasma sprayed Al2O3 and Al2O3-WO3 coatings between 500 and 1000 °C.” Surface and coatings technology, 212, 109-118 (2012)

18. Valinčius V, Valatkevičius P, Valinčiūtė V, Marcinauskas L, “Electric and thermal characteristics of the linear, sectional DC plasma generator.” Plasma Sources Science and Technology, 13 (2), 199-206 (2004)
19. Dhakar B, Namdeo A, Chatterjee S, Sabiruddin K, “Heat treatment of plasma sprayed alumina-chromia composite coatings.” Surface Engineering, 34:10, 737-746 (2018)

20. Zhang J, Wang Z, Li M Wang Z, Li T, Wang Z, “Adhesion properties and fracture mechanism of plasma sprayed NiCrAl/Al2O3-13w.%TiO2 coatings by post annealing.” Journal of Adhesion Science and Technology, 29 (4), 256-270 (2015)