ABSTRACT: Polyketide synthases (PKSs) of Aspergillus species are multidomain and multifunctional megaenzymes that play an important role in the synthesis of diverse polyketide compounds. Putative PKS protein sequences from Aspergillus species representing medically, agriculturally, and industrially important Aspergillus species were chosen and screened for in silico studies. Six candidate Aspergillus species, Aspergillus fumigatus AF293, Aspergillus flavus NRRL3357, Aspergillus niger CBS 513.88, Aspergillus terreus NIH2624, Aspergillus oryzae RIB40, and Aspergillus clavatus NRRL1, were selected to study the PKS phylogeny. Full-length PKS proteins and only ketosynthase (KS) domain sequence were retrieved for independent phylogenetic analysis from the aforementioned species, and phylogenetic analysis was performed with characterized fungal PKSs. This resulted into grouping of Aspergillus PKSs into non-reducing (NR), partially reducing (PR), and highly reducing (HR) PKS enzymes. Eight distinct clades with unique domain arrangements were classified based on homology with functionally characterized PKS enzymes. Conserved motif signatures corresponding to each type of PKS were observed. Three proteins from Protein Data Bank corresponding to NR, PR, and HR type of PKS (XP_002384329.1, XP_753141.2, and XP_001402408.2, respectively) were selected for mapping of conserved motifs on three-dimensional structures of KS domain. Structural variations were found at the active sites on modelled NR, PR, and HR enzymes of Aspergillus. It was observed that the number of iteration cycles was dependent on the size of the cavity in the active site of the PKS enzyme correlating with a type with reducing or NR products, such as pigment, 6MSA, and lovastatin. The current study reports the grouping and classification of PKS proteins of Aspergillus for possible exploration of novel polyketides based on sequence homology; this information can be useful for selection of PKS for polyketide exploration and specific detection of Aspergillus.

KEYWORDS: Aspergillus, polyketide synthases, phylogeny, polyketide, ketosynthase

Introduction
Aspergillus species have recently gained great attention in view of their impact on humans and agriculture and due to the production of bioactive secondary metabolites (SMs). Sequencing of Aspergillus species genome led to the identification of more than 200 SM gene clusters with the potential to produce SMs, which still need to be explored. Many of these clusters include polyketide synthases (PKSs) as the principal enzyme. The SM compounds presently identified from Aspergillus species under study culture conditions are only handful, and various research groups are exploring SM compounds using different approaches. Web-based online tools, such as SMURF: genomic mapping of fungal SM clusters, have been developed and are extremely useful as they give the annotation of gene clusters for sequenced fungal genomes. Considering the wealth of information provided by whole-genome sequencing and the presence of schematically arranged gene clusters in Aspergillus, researchers are encouraged to explore medically and industrially important compounds. Polyketides are industrially well-exploited class of compounds in microbes mainly due to their medicinal importance. Several Aspergillus polyketide products have been very well characterized and understood, eg, aflatoxins from Aspergillus flavus, melanin pigments from Aspergillus fumigatus, and lovastatin from Aspergillus terreus. In order to exploit the potential of Aspergillus species for the secretion of useful polyketides, it is necessary to examine and understand the PKS enzyme machinery.

PKS enzymes of Aspergillus are iterative type I PKSs and are close structural and functional analogs to mammalian fatty acid synthases (FASs). This type of enzymes reuses their domains in cyclic fashion. In Aspergillus, PKSs catalyze the
condensation of precursor, acetyl-CoA and malonyl-CoA(n), to produce polyketides. Three essential domains of PKSs are ketosynthase (KS), acyltransferase (AT), and acyl carrier protein (ACP). The presence of other domains such as β-ketoacyl reductase (KR), enoyl reductase (ER), dehydratase (DH), methyltransferase (MT), and Claisen cyclase/thioesterase (CLC/TE) is variable and depends on the type of PKSs in Aspergillus species. The functionality of reducing and non-reducing (NR) domains such as MT, DH, ER, and CLC/TE of PKS enzyme directs the types of end compounds produced. PKSs based on the presence of their domains may have differences in end product catalysis. Gene clusters containing PKS and nonribosomal peptide synthases (NRPSs) are putatively identified, and experimental studies are being conducted to link these putative clusters with the secreted compound in various in vitro conditions. Selecting the gene clusters with PKS gene based on in silico evidence and short-listing the candidates for further knockdown studies to explore the polyketide compound will narrow down the research efforts for possible SM exploration.

A comparative sequence analysis of the Aspergillus full-length PKS proteins has been carried out with functionally characterized fungal PKSs by a phylogenetic approach, to examine and assign the putative function to unexplored PKSs of Aspergillus species. In the current study, attempts have been made to characterize selected PKS genes from six Aspergillus species and to better understand the gene architecture and protein structures of PKS enzyme.

Methods and Materials

Fungal strains and cultural conditions. Aspergillus isolates were collected from the Indian Type Culture Collection, Indian Agricultural Research Institute, New Delhi, India, in BSL2 facility. These isolates were isolated from various agricultural and animal sources and were morphologically characterized as Aspergillus species and later verified by amplification using internal transcribed spacer (ITS) region primers. All fungal isolates were handled in biosafety hood cabinet A2 as per the biosafety protocol of the institute. Cultures were grown on YGT media (0.5% yeast extract, 2% dextrose, and 1 mL of trace elements) at 27 °C for 24 hours at 125 rpm. Genomic DNA was extracted using the LETS buffer that contains 0.1 M lithium, 20 mM EDTA, and 0.5% SDS. DNA from fungal species (Aspergillus, Trichoderma spp., and Fusarium spp.) was isolated, as described earlier. The quality of DNA from the isolations was checked by gel electrophoresis, and DNA concentration was determined by NanoDrop.

Database search. Six Aspergillus species, A. fumigatus Af293, A. flavus NRRL3357, Aspergillus niger CBS 513.88, A. terreus NIH2624, Aspergillus oryzae RIB40, and Aspergillus clavatus NRRL1, were selected for this study based on their agricultural, medical, and industrial relevance. Aspergillus genome was searched for putative PKS sequences by subjecting the protein sequence of KS domain of PKSP (XP_756095.1) of A. fumigatus Af293 as a query into BLASTp. Domains in PKS were searched by subjecting each putative amino acid sequence to online tools SEARCHPKS, MapsiDB, and CDD (NCBI). A total of 190 Aspergillus PKS sequences were retrieved and analyzed in this study. Iterative type I PKS sequences from other fungi, where polyketide products are characterized, were also retrieved and included for comparison. These PKS proteins are from Penicillium chrysogenum Wisconsin 54-1255, Penicillium marneffei ATCC 18224, Pyrenophora tritici-repentis Pt-1C-BFP, Gibberella zeae PH-1, Penicillium citrinum, Gibberella moniliformis, Emericella nidulans, Monascus purpureus, Gibberella fujikuroi, and Cochliobolus heterostrophus. Type III PKSs from bacteria (Streptomyces coelicolor A3(2), Myxococcus xanthus DK 1622, Mycobacterium tuberculosis H37Rv) and FASs (from Homo sapiens [AAC50259], Gallus gallus [P12276], and Caenorhabditis elegans [NP_492417]) were used in this study for comparison and outgrouping. Gene accession numbers for these PKSs are given in Supplementary Table 2.

Phylogenetic analysis. Full-length PKS protein sequences were used in several sequence alignments using Clustal X (2.0.12). The resulting data were saved as Clustal and PHYLIP format files, and alignments were written as postscript files for further analysis. The phylogenetic analyses were performed in PHYLIP (ver. 3.69) programs, SEQBOOT, PROTDIST, NEIGHBOR, and CONSENSE, in the order as described previously. The Jones–Taylor–Thornton amino acid substitution matrix was performed where input order of sequences for phylogenetic analysis was randomized. For generating the KS domain tree, maximum parsimony-based method with a bootstrap value of 1000 was used and the final consensus tree was selected from the 100 MP trees obtained. Alignment gaps were treated as fifth character state, parsimony uninformative characters were excluded, and all the characters were unordered and equal weight. Tree length and consistency index were also calculated. Phylogenetic tree CONSENSE files obtained from PHYLIP were viewed with TreeView and MEGA (5.0).

Conserved motifs for KS, sequencing, and phylogeny verification. Sequence alignments were studied for consensus sequences in KS domain across the Aspergillus species. Amino acid change in KS sequences was analyzed for predicting the functionality of model proteins and type of end polyketide product it catalyzes. Multiple alignment files of KS sequences were used to identify homologous regions of amino acid from Aspergillus spp. Amino acid sequences were converted into gene sequences using ExPASy (www.expasy.org/translate/), and forward and reverse primers of length 20–28 bp spanning KS region were designed by using Primer3 software (www.bioinfo.ut.ee/primer3-0.4.0) to check Tm, delta G, and selfhybridization. Degenerate primers were checked for specificity by BLASTn at NCBI before synthesis. Primer set KS_F and KS_R was standardized to amplify the PCR product of same
size from three *Aspergillus* species in one reaction. Degenerate primer sequences are:

KS_F: AGTCTTGCKGCYATCYAWGSGCTG CAAYCKSATCTGGAGRA, KS_R: TGAATWCTGKTCCRTGATTTTACGTAGC. As positive control, universal fungal primers – ITS1 (based on 18S rRNA) and ITS4 (based on 28S rRNA): TCCGTAGGTGAACTGCAG and ITS4: TCCTCCTGCTTATTGATATG – were used for amplification from *Aspergillus* DNA (data not shown here). PCR was standardized in a total reaction volume of 50 µL. The mixture contained 10 × reaction buffer (100 mM Tris, 500 mM KCl; pH 8.3), 10 mM dNTP mix, forward and reverse primer (20 µM), five units of Taq DNA Polymerase (Platinum® Taq DNA Polymerase; InviGen), 500 ng of template DNA, and autoclaved water in 50 µL of total volume. PCR conditions were initial denaturation at 95 ºC for 5 minutes, followed by 35 cycles of denaturation at 95 ºC for 30 seconds, annealing at 56 ºC for 30 seconds, and extension at 72 ºC for 1 minute, followed by a final extension at 72 ºC for 10 minutes in a Mastercycler gradient (Eppendorf). Amplified DNA products were separated by electrophoresis in a 1% agarose gel with a 100-bp DNA ladder as a molecular size marker (Promega Corporation). PCR products were purified by Qiagen PCR purification column (Qiagen, Germany) and submitted for sequencing. End PCR product was sequenced by either KS_F or KS_R and searched for sequence homology by BLASTX at NCBI. The deduced amino acid sequence was determined using ExPASy server at EBI (http://web.expasy.org/translate/). Multiple alignments of annotated KS sequences with KS protein from *Aspergillus* species were carried out using Clustal X. Consensus sequences were observed with respect to earlier bioinformatics analysis of KS for the presence of motifs. Neighbor joining tree was generated using PHYLIP package. Sequences were submitted to NCBI (KT221846–KT221852 and KT213730–KT213740).

Structural modeling of KS domains. KS sequence from UniProt or program database (PDB) was retrieved, and PDB files were generated by subjecting sequences to SBSPKS software (http://www.nii.ac.in/~pksdb/sbks/master.html). 40 KS domain sequences from *Aspergillus* PKSs were named ng of template DNA, and autoclaved water in 50 µL of total volume. PCR conditions were initial denaturation at 95 ºC for 5 minutes, followed by 35 cycles of denaturation at 95 ºC for 30 seconds, annealing at 56 ºC for 30 seconds, and extension at 72 ºC for 1 minute, followed by a final extension at 72 ºC for 10 minutes in a Mastercycler gradient (Eppendorf). Amplified DNA products were separated by electrophoresis in a 1% agarose gel with a 100-bp DNA ladder as a molecular size marker (Promega Corporation). PCR products were purified by Qiagen PCR purification column (Qiagen, Germany) and submitted for sequencing. End PCR product was sequenced by either KS_F or KS_R and searched for sequence homology by BLASTX at NCBI. The deduced amino acid sequence was determined using ExPASy server at EBI (http://web.expasy.org/translate/). Multiple alignments of annotated KS sequences with KS protein from *Aspergillus* species were carried out using Clustal X. Consensus sequences were observed with respect to earlier bioinformatics analysis of KS for the presence of motifs. Neighbor joining tree was generated using PHYLIP package. Sequences were submitted to NCBI (KT221846–KT221852 and KT213730–KT213740).

Results

Sequence analysis and annotation of putative PKS proteins of Aspergillus. Based on the amino acid sequence of KS domain, putative PKSs were retrieved from six *Aspergillus* species. We studied more than 224 PKS sequences: 190 sequences from *Aspergillus* species and the rest from other filamentous fungi. Supplementary Tables 1 and 2 summarize the characterized and annotated PKSs of *Aspergillus*.

Phylogeny of Aspergillus PKS proteins. With the aim to observe the sequence diversity of full-length PKS proteins in *Aspergillus*, a phylogenetic tree was constructed using a full-length PKS enzyme with characterized fungal PKS. Phylogeny was classified into eight different clades, mainly classified based on the presence and absence of NR and reducing domains (Fig. 1). Among the full-length PKS phylogenies, three distinct groups were observed with a domain architect: (i) SAT-KS-AT-PT-ACP-(ACP)-CYC/TE, present in NR PKS; (ii) KS-AT-(DH)-(MT)-TE/PP, present in partially reducing (PR) PKS; and (iii) KS-AT-DH-(MT)-ER-KR-TE/PP, present in highly reducing (HR) PKS. Based on the groups, *Aspergillus* PKS enzymes are classified into NR, PR, and HR enzymes. Phylogeny was performed with functionally characterized PKSs for a suggestive polyketide it may produce based on PKS protein sequence homology (Supplementary Figs. 1–6). *Aspergillus* PKS is the most conserved domain across *Aspergillus* species. 45 Phylogeny was also constructed with only KS sequences from PKSs to check if phylogeny is primarily driven by KS domain (Fig. 2). The resulting KS genealogy was evaluated to classify the arrangement of major clades and subclades of domains and compared with full-length PKS phylogeny. We found similar classification in KS and full-length PKS phylogeny except that few PKS proteins change their clade based on additional domains. To support the sequence homology of KS classification, structural modeling of selected KS was carried out. This study was performed to score PKS candidates for possible polyketide exploration by in vitro experiments. We have summarized the PKS list for *Aspergillus*, presence of domains using KS, and PKS phylogeny probability of pk compound production. This information is given in Supplementary Table 1, with domain architecture of each PKS. Each clade exhibited a unique domain arrangement, and each clade contained at least one characterized PKS, except clade V.

NR PKSs: – pigment. Sequences in clade I contain the domain architect SAT-KS-AT-ACP-ACP-TE/PP, known to be present in NR type of PKS, alb1. Alb1/pksP from *A. fumigatus*, enzyme known to be involved in the production of 1,3,6,8-tetrahydroxynaphthalene, a precursor for melanin, 9
and red pigment Bikaverin-producing PKS4 from Fusarium spp., and melanin-producing PKS (Ps21Pcw, PksPPcem) from Penicillium spp. are classified in this group. These PKS enzymes lack ER, DH, and KR domains, required for reduction and dehydration steps, but they contain additional ACP domains.

NR PKSs – aflatoxin. Clade I also represents the domain architect, KS-AT-ACP-TE, which is present in NR PKS. Proteins in this subclade contain single ACP domain. Such domain architect is known to present in Polyketide Synthase A (PKSA) from A. flavus and Aspergillus parasiticus producing aflatoxin. With the help of hexA and hexB, PKSA catalyzes a hexanoyl unit and six iteratively derived malonyl units into a first stable polyketide compound, norsolonic acid, in the aflatoxin biosynthetic pathway.

NR PKSs – others. Clade II represents the PKSs with the domain architect KS-AT-ACP-MT. Few proteins classified in this clade have extra MT domain; however, none of the characterized proteins of NR PKS has MT domain. This extra domain might be nonfunctional. PKS protein classified in this clade from A. fumigatus Af293 is Afu14, which is a part of cluster AFUA_3G02570 and contains putative phenol hydroxylase and C6 transcription factor, suggesting the synthesis of the product with an NR property of final compound.

Partially reducing PKSs – 6MSAS. Clade III shows the presence of PKS enzymes with the domain architect KS-AT-ACP-DH-KR. This group of PKSs has reducing domains DH and KR. One characterized PKS, atX from A. terreus, has been classified under this clade, which produces a partially reduced pk compound, 6MSA.

Highly reducing PKSs. Clade IV is observed to have the domain architect KS-AT-ACP-DH-KR. This group of PKSs has reducing domains DH and KR. One characterized PKS, atX from A. terreus, has been classified under this clade, which produces a partially reduced pk compound, 6MSA.

Modeling of KS domain and mapping of conserved motifs. KS sequences from eight major clades were aligned, and six conserved consensus motifs were identified. Particularly, motif – DTACSSL – in KS carries Cys residue in the active site, which is a signature conserved amino acid across the KS domain in the PKSs from other species. The two His residues, known to be in KS catalytic triad, were also found to be conserved in motifs EXHGTGTXXGDP and GXXXNXXGHXE in the KS sequences. A careful analysis of conserved motifs shows the amino acid changes with respect to the specific type of pk. Figure 3 shows the conserved motifs in KS sequences and variations among them with respect to the type of PKSs. To further verify our grouping of NR, PR, and HR based on phylogeny, we used modeling study for KS proteins. Our hypothesis was that NR, PR, and HR types of KS may have their differences in how they dock the substrate at the active site and thus impacts the catalytic activity of the enzyme. In order to find the structural changes in the three types of PKS enzymes (NR, PR, and HR), KS domain structures have been predicted by homology modeling. Model proteins used for this study were PKSP from A. fumigatus for NR PKS, 6MSA from A. terreus for PR PKS, and LNKS from A. terreus for HR PKS. Three Aspergil- lus PKSs classified and observed in the current study as NR, PR, and HR were also taken to test our hypothesis. These hypothetical proteins were Af125 (XP_002384329.1) from A. flavus as NR, Afl5 from A. fumigatus as HR, and Afl1 from A. terreus as PR. The percentage identities of the template sequence of 1KAS (used as a standard reference for generating the model) with KS sequences of
Figure 1. PKS genealogy of Aspergillus PKs with characterized PKs (1000 boot strap value).

Notes: Genealogy of KS domain from type I PKs of Aspergillus species is inferred by maximum parsimony analysis of the Aspergillus PKs. Major clades and subclades are indicated by vertical bars that share a common organization of domains. Designations beginning with Afu, Afl, Ani, Atr, Aor, Apr, and Acl correspond to the A. fumigatus, A. flavus, A. niger, A. terreus, A. oryzae, A. parasiticus, and A. clavatus, respectively. Details of these PKs can be found in Supplementary Table 1. Protein FASs from G. gallus, H. sapiens, Caenorhabditis briggsae, and C. elegans served as an outgroup for this study. Bar colored in blue represents NR PKs with the domain architect SAT-KS-ACP-TE/PP. Bar colored in green shows PR PKs with the domain architect Ks-at-DH-MT-ER-KR-TE/PP and also other HR domain containing PKS, such as KS-AT-DH-MT-KR-TE/PP and KS-AT-DH-MT-KR-ER-TE/PP. Hybrid PKs–NRPSs are noted with bar colored in orange with the domain architect of both PKs and NRPS: KS-AT-DH-MT-ER-KR-ACP-ACPC-A-PCP-DKC.
Afl25, Anr, and Afu1 are 28%, 26%, and 27%, respectively. As reported in the crystal structure of KS domain of FAS of *E. coli*, the catalytic triad Cys-His-His is observed to be conserved in all these structures. The area and volume of these active site conformations were measured through CASTp server. The active site pocket volume of these different types of proteins varies according to the type of PKS and the nature of chain elongation reactions (NR, PR, and HR; Fig. 4). Chain elongations eventually determine the diversity of chemical compounds in iterative PKSs. The alignments of KS domain sequences from NR type KS, HR type KS, and PR type KS are shown in Figure 5. The conserved motifs are highlighted in yellow color, and two Tyr residues that are found conserved in all three types of PKSs are marked in the box. PR PKS, 6MSA from *A. terreus*, contains the smallest cavity volume (365.8 Å³), as the iteration reactions in this enzyme are reported to be only 3. Similar results were found with the modeling of protein Anr from *A. niger*. NR PKS such as PKSP from *A. fumigatus* shows medium cavity volume (749.8 Å³) and is known to have five iteration cycles. Modeled structure of Afl25 from *A. flavus* classified in clade I (pigment) is also found to have moderate cavity volume (~750 Å³). HR type of PKS such as LNKS from *A. terreus* is found to have the largest cavity volume (1408.3 Å³) with the variable (~20) iteration reactions. Similar results were found in modeled protein Afu1 from *A. fumigatus*. In these proteins, the number of iteration cycles was observed to be dependent on the size of the cavity in the active site of the PKS enzyme in a particular type with products such as pigment, 6MSA, and lovastatin, as described in Figure 5.

The conserved motif amino acid sequences identified as pigment KS were converted to DNA sequences, and degenerate primers were designed for amplification for specific detection of *Aspergillus* species. Primers based on KS region from PKS genes were used for PCR amplification using the DNA of *Aspergillus* species, such as *A. fumigatus*, *A. flavus*, *A. parasiticus*, *A. niger*, and *A. oryzae* (Supplementary Fig. 6). A PCR product of 450 bp was observed with the DNA template of *A. fumigatus* (5 isolates), *A. flavus* (18 isolates), and *A. niger* (6 isolates) specifically. DNA from *Trichoderma*, *Fusarium*, and *Bacillus* species and human DNA were used for PCR controls, which did not give any amplification in the expected range. Sequences were confirmed with multiple alignments of pksP (gene) from *A. fumigatus*, *A. flavus*, and *A. niger* and submitted to NCBI (KT221846–KT221852 and KT213730–KT213740; Supplementary Fig. 6).

Discussion

PKSs play a major role in contributing to the diversity of polyketide products produced in *Aspergillus*. Polyketide biosynthesis mainly uses acetyl-CoA and malonyl-CoA as precursors and synthesizes hexanoyl-CoA or pentaketide as the end product. This is used by PKS to generate the stable polyketide precursor with various lengths, which will eventually be processed by the remaining biosynthetic enzymes in the pathway to generate polyketide compound...
with different applications, such as toxins, antibiotics, and pigment compounds. To gain insight into the synthesis of diverse product by observing the diversity in the PKS enzyme, full-length *Aspergillus* PKSs and only KS domain from six important *Aspergillus* species with functionally characterized fungal PKS enzymes were used for comparative sequence analysis. This also correlates the unknown PKSs of *Aspergillus* with known polyketides they produce. Phylogenetic analysis of *Aspergillus* PKSs based on the domain architecture facilitated the classification of PKS proteins into three different types of enzymes, ie, NR, PR, and HR PKSs grouped into eight clades.

Earlier, phylogenetic studies were performed for type I PKSs of Ascomycota group of fungi, which divided PKSs into 18 clades, indicating that the grouping was based on the presence/absence of reducing and NR domains in PKS.22,57 Distribution of PKS enzymes in *Aspergilli* is studied by phylogeny,57 and we have attempted to assign *Aspergilli* PKS protein to the

Figure 3. Conserved motifs on type I KS sequences.

Notes: Conserved motifs observed in the type I KS for Fungal PKs are presented in the table.

Figure 4. Three-dimensional modeled structures of NR, PR, and HR type of KS.

Notes: Structures have been modeled for KS domain from protein designated as 6MSAS producing 6-methylsalisylic acid (PR), PKS P producing pigment (NR), and LNKS producing lovastatin (HR). The cavities of the modeled structures have been shown in surface rendering and circled in red. Each model has been superimposed with the structural template of 1KAS.
probable chemical nature of the compound based on sequence homology. In the current study, *Aspergillus* PKSs fall into eight clades corresponding to the probable chemistry of the end compound they may synthesize based on the rationale of homology. The NR fungal clade contains PKSs that synthesize unreduced, and usually aromatic, PKs that are precursors to toxins, eg, aflatoxins and pigments. All PKSs within this clade lacked ER, DH, and KR domains, which are interpreted as a loss of reducing domains, compared to the domain structure of type I PKSs. The NR fungal PKSs are predicted to synthesize PKs in which the keto groups are either not reduced or reduced by enzymes other than PKS. Unreduced PKs are typically synthesized from acetyl- and malonyl-CoA. PKS proteins with an additional TE/PP domain were scattered throughout the NR PKS clade, as was the case for reducing PKS subclade III. The functional significance of these duplicated PP domains is not known. *Aspergillus* PKSs are iterative type I class of enzymes, and exceptions to these are recently found type III PKSs in *A. flavus* and *A. oryzae*. To outgroup any other type of enzymes, such as closely homologous proteins in FASs, and also type III and modular type I PKSs, representative proteins were also included in our study. *M. tuberculosis* PKSs are known to have type I modular and type III PKS and are characterized to be a part of gene cluster producing virulent lipids, such as phenothiocerol and phenolphthiocerol. Modular type I PKS from *S. coelicolor* is known to produce antibiotics. These enzymes were classified into different subclades, and none of *Aspergillus* PKSs are categorized in this clade. This confirms that *Aspergillus* species do not have modular PKSs that may produce lipids such as polyketides.

Conserved motifs in the KS domain have been identified that are specific to pk they produce. Three-dimensional structures also reported the changes at the active site confirmations with respect to the type of compound they produce and the cavity volume in their active sites. Change in the cavity groove volume can be linked to the malonyl starter units fitted at the enzymatic site and thus may help predict substrate utilization by the enzyme. In the modeled 6MSAS KS structure, Yadav et al has observed that two tyrosine residues are protruding into the cavity blocking the downward flow of the cavity. In the current study, *Aspergillus*-modeled proteins (annotated as NR, PR, and HR) were also found to have two Tyr residues highly conserved in all KSs and were also aligned on the structure. This finding supports the hypothesis that putative *Aspergillus* PKS may be functionally active in appropriate *in vitro* conditions. These three proteins can be selected for further *in vitro* studies and explored for polyketide exploration studies using advance methods. The presence of certain amino acids at their active site pocket and their alignment in a particular fashion to accommodate the substrate clearly suggest that the diversity in the end product is related to the substrate size and the number of molecules of substrate it can fit for condensation reaction. Recent experiments involving the generation of altered fatty acid-polyketide hybrid products by the rational manipulation of benastatin biosynthetic pathway also suggest that the number of chain elongations is dependent on the size of the PKS enzyme cavity. The *in silico* analysis of the sequence and structural features of iterative KS domains reported in this study

Figure 5. Three-dimensional modeled structure from *Aspergillus* KSs. **Notes:** NR type KS Afl25 (XP_002384329.1) predicated to produce pigment, HR type KS Afu1 (XP_753141.2) predicted for lovastatin, and PR type KS Anr (XP_001402408.2) predicated for 6-methylsalicylic acid were modeled using the template structure of beta-ketoacyl-ACP synthase II from Escherichia coli (PDB ID: 1KAS). Tyr and Ala residues have been marked on the surface topology. Catalytic triad Cys-His-His are also marked in the modeled structure for validation in stick model in different colors, namely, purple, green, and blue.
may provide logical selection of residues to be mutated and help in exploring the effect of substrate specificity and the end product. Strategic site-directed mutagenesis studies can be planned; knockout and overexpression studies using molecular cassette in reference strains can be performed to identify which products are accumulating in a reasonable amount at certain cultural conditions compared to wild type. Such bioinformatics studies will be helpful in providing pilot results to choose best PKSs candidates for the exploration of novel polyketide compounds for knockout studies. No experimental studies on the modeled Aspergillus proteins analyzed in the current study have yet been reported; therefore, these proteins can be top PKS candidates to explore pk compound. The present in silico analysis gives key leads for such experiments.

We report the unexplored repertoire of PKSs in Aspergillus species. We predicted three proteins of Aspergillus spp. that can be explored for their reducing or NR pk products, namely, XP_002384329.1, XP_753141.2, and XP_001402408.2. Among Aspergillus spp., A. flavus, predominantly an agricultural pathogen and mycotoxin producer, is often reported in immunosuppressed patients. A. flavus genome contains 25 PKSs. It has been reported by various comparative genomics studies that A. flavus has 55 gene clusters associated with secondary metabolism. However, only handful metabolites with their pathways have been assigned to these clusters. Our analysis suggests that A. flavus has the potential to produce numerous polyketides of different natures. This remains to be explored by various expression studies. In the current study, A. flavus protein Afl19 has been linked with pigment production, which has been explored for DHN melanin pathway, while this manuscript was under preparation. Aspergillus ochraceus is known to produce ochratoxin A and penicillic acid, which cause significant problems in animal and human health. It also produces other metabolites derived from these mycotoxins, such as diaporthin, orthosporin, and asperlactone. The biological activity of these SMs has not been characterized so far, and many PKSs have not been functionally characterized in this species. These molecules may be beneficial (antibiotics) or harmful (mycotoxins) to human health. The analysis of this report may find helpful to start with selective pickup for PKs to study.

Utility of KS region diversity can be exploited in the detection of three important Aspergilli, together with one degenerate primer pair designed in this study. Such detection method can be standardized further to identify Aspergillus species, A. flavus, A. fumigatus, and A. niger, in one reaction for screening agricultural and clinical samples.

In conclusion, the sequence-based analysis reported in this study highlights the diversity of the compounds that may probably be produced by Aspergillus species. This study shall serve as a platform to screen the particular type of metabolite synthesized by an Aspergillus species. These in silico analyses of PKSs have facilitated the understanding of the biosynthetic pathways for unknown SMs from Aspergillus species, as well as its utility for unique identification.

Acknowledgments
Authors thank Dr. T. Prameela Devi, Principal Scientist and In-charge Indian Type Culture Collection, Division of Plant Pathology, Indian Agricultural Research Institute New Delhi, India at for providing Aspergillus isolates.

Author Contributions
Conceived and designed the experiments: PB, MP, PUS. Work was carried out under the project conceived by PUS. Analyzed the data: PB, AB, RM. Wrote the first draft of the manuscript: PB, PUS. Contributed to the writing of the manuscript: PB, AB, RM. Made critical revisions and approved final version: PB, PUS, TM, YS, AV. All authors reviewed and approved of the final manuscript.

Supplementary Material

Supplementary Figure 1. Closer view of clade I, where Non reducing Aspergillus PKSs are classified and predicted to produce Aflatoxin, pigment or other non reduced compound.

Supplementary Figure 2. Closer view of clade II, where Non reducing Aspergillus PKSs are classified and predicted to produce citrinin like non reduced compound and also clade III, of which partially reduced Aspergillus PKSs are predicted to produce 6 methylsalisylic acid type compound.

Supplementary Figure 3. Closer view of clade IV, Highly reduced Aspergillus PKSs classified in clade IV, predicted to produce fuconis in type highly reduced compound.

Supplementary Figure 4. Closer view of clade V and VI where Aspergillus PKSs classified in Highly reduced PKSs and predicted to produce highly reduced compound/T-toxin type compound.

Supplementary Figure 5. Closer view of clade VII, where PKSs are classified as Highly reduced Aspergillus and predicted to produce Lovastatin type highly reduced compound. Clade VIII shows the closer view of Aspergillus PKSs predicted to produce hybrid type of PKS-NRPS compound.

Supplementary Figure 6. KS amplification from Aspergillus and other fungal species and bacteria.

Supplementary Figure 7. Alignment of the sequenced putative KS sequences from Aspergillus in this study with characterized conidial pigment PKS from Aspergillus flavus, A. fumigatus and A. niger.

Supplementary Table 1. Annotation and classification of Aspergillus PKSs analyzed in this study.

Supplementary Table 2. Gene Accession no. of PKSs and other proteins.

REFERENCES
1. Chiang YM, Oakley BR, Keller NP, Wang CC. Unraveling polyketide synthesis in members of the genus Aspergillus. Appl Microbial Biotechnol. 2010;86(6):1719–36.
Evolutionary Bioinformatics 2016:12

2. Khalid N, Seifuddin FT, Turner G, et al. SMURF: genomic mapping of fungal secondary metabolism clusters. Fungal Genet Biol. 2010;47(9):736–41.

3. Szweczyk E, Chiang YM, Oakley CE, Davidson AD, Wang CC, Oakley BR. Identification and characterization of the aspergicin gene cluster of Aspergillus nidulans. Appl Environ Microbiol. 2006;72(4):7607–12.

4. Ahiha, Chiang YM, Chang SL, et al. Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans. J Am Chem Soc. 2012;14(9):8212–21.

5. Tsal HF, Wheeler MH, Chang YC, Kwon-Chung KJ. A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J Biol Chem. 2008;283(20):12969–77.

6. Wang H, Sivonen K, Fewer DP. Genomic insights into the distribution, genetic diversity and evolution of polyketide synthases and nonribosomal peptide synthetases. Curr Opin Genet Dev. 2015;35:79–85.

7. Feng GH, Leonard TJ. Characterization of the polyketide synthase gene pksL1 required for aflatoxin biosynthesis in Aspergillus parasiticus. J Bacteriol. 1995;177(21):624–54.

8. Yu J, Bhatnagar D, Ehrlich KC. Aflatoxin biosynthesis. Rev Iberoam Microl. 2002;19(4):191–200.

9. Langfelder J, John B, Gehriger H, Schmidt A, Warnier G, Brakhage AA. Identification of a polyketide synthase gene cluster (pksJ) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med Microbiol Immunol. 1998;187(2):79–89.

10. Ma SM, Tang Y. Biochemical characterization of the minimal polyketide synthase domain in the lovastatin nonantibiotic synthase LovB. FEBS J. 2007;274(11):3385–413.

11. Hendrickson L, Davis CR, Roach C, et al. Lovastatin biosynthesis in Aspergillus terreus: characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. Chem Biol. 2002;9(6):429–49.

12. Bhetariya PJ, Majumdar S, Bajaj S, Barua A Studying the role of pkS1, transcription of the polyketide antibiotic TA of Streptomyces coelicolor A3(2) by qPCR method. Bhetariya PJ, Majumdar S, Barua A. Mol Gen Genet. 1999;264(2):649–77.

13. Weisstein KJ, Biochemistry. Anatomy of a fungal polyketide synthase. Science. 2008;320(5873):186–7.

14. Perrin RM, Fedorova ND, Bok JW, et al. Transcriptional regulation of chemical warfare proteins encodes a key enzyme in the biosynthesis of aflatoxin B1. EMBO J. 1998;17(5):2181–93.

15. Weissman KJ. Biochemistry. Anatomy of a fungal polyketide synthase. Science. 2008;320(5873):186–7.

16. Bir N, Paliwal A, Muralidhar K, Reddy P, Sarma PU. A rapid method for the isolation of genomic DNA from Aspergillus nidulans. J Biosci Bioeng. 2007;103(3):223–7.

17. Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG. Phylogenomic analysis of polyketide synthase domains. Nucleic Acids Res. 2005;33(19):5871–8.

18. Bir N, Paliwal A, Muralidhar K, Reddy P, Sarma PU. A rapid method for the isolation of genomic DNA from Aspergillus nidulans. J Biosci Bioeng. 2007;103(3):223–7.

19. Yu J, Bhatnagar D, Ehrlich KC. Aflatoxin biosynthesis. Rev Iberoam Microl. 2002;19(4):191–200.

20. Weisstein KJ, Biochemistry. Anatomy of a fungal polyketide synthase. Science. 2008;320(5873):186–7.

21. Rudd RM, Fedorova ND, Bok JW, et al. Transcriptional regulation of chemical warfare proteins in the biosynthesis of aflatoxin B1. EMBO J. 1998;17(5):2181–93.

22. Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG. Phylogenomic analysis of polyketide synthase domains. Nucleic Acids Res. 2005;33(19):5871–8.

23. van den Berg MA, Albang R, Albermann K, et al. Genome sequencing and analysis of the filamentous fungus Penicillium marneffei. Genomics. 2008;92(2):291–300.

24. Woo PC, Tam EW, Chong KT, et al. High diversity of polyketide synthase genes in the production of extracellular proteins during growth on starch substrates. Appl Environ Microbiol. 2006;72(4):1237–41.

25. Yoda Y, Gokhale R, Bhatnagar D, SearcPKS: a program for detection and analysis of polyketide synthase domains. Nucleic Acids Res. 2003;31(13):3654–8.

26. Tae H, Sohn JK, Park K. MapidDB: an integrated web database for type I polyketide synthases. Bioprocess Biosyst Eng. 2009;32(6):723–7.

27. Kroken S, Hinnebusch AG. Phylogenetic analysis of type I polyketide synthase genes in pathogenic and saproxylic ascomycetes. Proc Natl Acad Sci U S A. 2003;100(26):15670–5.

28. van den Berg MA, Albang R, Albermann K, et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol. 2008;26(10):1161–8.

29. Woo PC, Tam EW, Chong KT, et al. High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei. FEBS J. 2010;277(18):3750–9.

30. Gaffoor I, Trail F. Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella fujikuroi. Appl Environ Microbiol. 2006;72(22):8445–52.

31. Lawrence DP, Kroken S, Pryor BM, Arnold AE. Interkingdom gene transfer of a hybrid NPS/PKS from bacteria to filamentous Ascomycota. PLoS One. 2011;6(11):e28231.

32. Kotowska M, Pawlik C, Okuno T, Furusawa I. Structural analysis of iterative polyketide synthases in Myxococcus xanthus. ChemBioChem. 2008;9(11):e28231.

33. Lin SH, Yoshimoto M, Lyu PC, Tang CY, Arita M. Phylogenomic and domain analysis of iterative polyketide synthetase family in Aspergillus species. Eukaryot Cell. 2012;11:837–87.

34. Takano Y, Kubo Y, Shimizu K, Mise K, Okuno T, Furusawa I. Structural analysis of PKSs, a polyketide synthase involved in melanin biosynthesis in Collybita lagenarium. J Biosci Bioeng. 1999;88(4):295–7.

35. Maruta K, Hunter RH, Wang C, Turner G, et al. Mycologically important polyketides in Penicillium chrysogenum. Eur J Genet. 2003;9(2):164–72.
59. Sankaranarayanan R, Saxena P, Marathe UB, Gokhale RS, Shanmugam VM, Rukmini R. A novel tunnel in mycobacterial type III polyketide synthase reveals the structural basis for generating diverse metabolites. *Nat Struct Mol Biol*. 2004;11(9):894–900.

60. Gokhale RS, Saxena P, Chopra T, Mohanty D. Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids. *Nat Prod Rep*. 2007;24(2):267–77.

61. Ichinose K, Ozawa M, Itou K, Kunieda K, Ebizuka Y. Cloning, sequencing and heterologous expression of the medermycin biosynthetic gene cluster of *Streptomyces* sp. AM-7161: towards comparative analysis of the benzoisochromanequinone gene clusters. *Microbiology*. 2003;149(pt 7):1633–45.

62. Yadav G, Gokhale RS, Mohanty D. Towards prediction of metabolic products of polyketide synthases: an in silico analysis. *PLoS Comput Biol*. 2009;5(4):e1000351.

63. Chang PK, Scharfenstein LL, Wei Q, Bhatnagar D. Development and refinement of a high-efficiency gene-targeting system for *Aspergillus flavus*. *J Microbiol Methods*. 2010;81(3):240–6.

64. Parvatkar RR, D'Souza C, Tripathi A, Naik CG. Aspernolides A and B, butenolides from a marine-derived fungus *Aspergillus terreus*. *Phytochemistry*. 2009;70(1):128–32.

65. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW. *Aspergillus flavus*: human pathogen, allergen and mycotoxin producer. *Microbiology*. 2007;153(pt 6):1677–92.

66. Georgianna DR, Fedorova ND, Burroughs JL, et al. Beyond aflatoxin: four distinct expression patterns and functional roles associated with *Aspergillus flavus* secondary metabolism gene clusters. *Med Plant Pathol*. 2010;14(2):213–26.

67. Jørgensen TR, Park J, Arendtboert M, et al. The molecular and genetic basis of conidial pigmentation in *Aspergillus niger*. *Fungal Genet Biol*. 2011;48(5):544–53.

68. Awad G, Mathieu F, Coppel Y, Lebrihi A. Characterization and regulation of new secondary metabolites from *Aspergillus ochraceus* M18 obtained by UV mutagenesis. *Can J Microbiol*. 2005;51(1):59–67.