Twisted Handaxes in Middle Pleistocene Britain and their Implications for Regional-scale Cultural Variation and the Deep History of Acheulean Hominin Groups

By MARK WHITE1, NICK ASHTON2 and DAVID BRIDGLAND1

A better understood chronological framework for the Middle Pleistocene of Britain has enabled archaeologists to detect a number of temporally-restricted assemblage-types, based not on ‘culture historical’ schemes of typological progression but on independent dating methods and secure stratigraphic frameworks, especially river-terrace sequences. This includes a consistent pattern in the timing of Clactonian and Levalloisian industries, as well as a number of handaxe assemblage types that belong to different interglacial cycles. In other words, Derek Roe’s hunch that the apparent lack of coherent ‘cultural’ patterning was due to an inaccurate and inadequate chronological framework was correct. Here we focus on twisted ovate handaxes, which we have previously argued to belong predominantly to MIS 11. Recent discoveries have enabled us to refine our correlations. Twisted ovate assemblages are found in different regions of Britain in different substages of MIS 11 (East Anglia in MIS 11c and south of the Thames in MIS 11a), the Thames, and the MIS 11b cold interval separating the two occurrences. These patterns have the potential to reveal much about hominin settlement patterns, behaviour, and social networks during the Middle Pleistocene.

Keywords: Middle Pleistocene, Acheulean, ovate handaxes, social networks, hominin settlement

Two decades ago, White (1998a) suggested that Acheulean assemblages with high frequencies of twisted ovate handaxes all belonged to late Marine Isotope Stage (MIS) 11 or early MIS 10. This was not the first time this highly distinctive type had been singled out for special attention. Evans (1872, 520) recorded several early discoveries of twisted handaxes at Hoxne and Santon Downham, noting that while they were ‘by no means uncommon’ they were probably accidental. Spurrell (1883) likewise thought twisted edges to be a defect, left uncorrected due to raw material constraints. This view was not shared by Smith and Dewey (1913; 1914), who regarded the rare twisted forms from Swanscombe and Dartford as technologically advanced. Despite coming from the highest and, therefore, oldest terrace in the Lower Thames, they assigned them to the culturally-evolved St Acheul II stage, equivalent to the ‘Upper Acheulean’ described by Victor Commont (1908) in the Somme Valley. Henri Breuil included the latter material in his Acheulean IV, the penultimate phase of the Acheulean before, according to him, it evolved into the Micoquian (Acheulean VI & VII; Breuil & Kelley 1954). Collins (1969) similarly saw twists as a technically advanced trait, using them as the basis for his youngest ‘Elveden’ stage of the Acheulean, which he dated, on the basis of typology, to the mid-Russian (ie, the penultimate glacial) period. Around the same time Roe (1968) identified a large group of assemblages (his Ovate Tradition, Sub-Group VI) with above-average frequencies of twisted handaxes but the lack of secure dating and compressed chronological framework, which recognised too few climatic cycles, again meant that he was unable to link them by

1Department of Archaeology, Durham University, South Road, Durham DH1 3LE, UK. Email: mark.white@durham.ac.uk
2British Museum (Frank’s House), 38–46 Orsman Road, London N1 5QJ, UK
anything other than artefact form. More mindful of the spurious use of typological dating, Roe leaned in print towards a functional explanation (Roe 1981), although privately he always suspected they were of the same age (D. Roe, pers. comm. to MJW, 1998).

By the late 1990s, important advances in lithostratigraphy (eg, Bridgland 1994; Antoine et al. 2000) and biostratigraphy (eg, Keen 1990; Schreve 1997; 2001a; 2001b), in particular, had made it possible to correlate the fragmentary terrestrial record with the more complete oxygen isotope record from deep sea sediment and terrestrial ice cores. This provided archaeologists with a new and expanded chronological framework that allowed the archaeological evidence to be arranged in a more coherent order. White (1998a) simply recognised that all the better understood and dated sites with twisted handaxes belonged, according to several new and independent lines of evidence, to the same period, which he believed to be late MIS 11/early MIS10. He further suggested that they might represent an endemic cultural practice, perhaps one that developed during a period of high sea-level when Britain was cut off from Europe. He warned against uncritically using isolated twisted handaxes for dating purposes, following the prevailing near-consensus among British workers that any handaxe type could feasibly occur any place and any time, simply by chance: a statistical consequence of giv-...
knapping direction reverses, causing the edges on either side to curve away from one another. The twist could presumably have been imposed upon a handaxe at almost any stage of manufacture, although it was preserved or enhanced during finishing. Cognitively, the production of twisted edges demands the mental ability to conceive and impose wave forms onto handaxe edges, by keeping several opposing and future knapping operations in mind. The individual edge segments must be continuously conceived as parts of the greater whole and work in harmony with each other to achieve what is, in our opinion, not an accident but a clear design template.

White also noted that 94% of twisted handaxes displayed z-twists rather than s-twists, a likely indicator of handedness and brain laterality among Acheulean hominins. Unknown to White (1998a), Flaxman C.J. Spurrell (1883) had described the technique used to make a twisted edge, and its implications for handedness, 115 years earlier.

Similar deviations from the more typical straight or zig-zagged bifacial edge can be produced accidentally, but such ‘pseudo-twists’ are usually found only on one edge and are typically curved at one end rather than being properly sinusoidal. The assemblage from Broom, Devon, is a case in point. Hosfield and colleagues
The Twisted Handaxe Knapping Schema: A) diagram showing the conceptual pattern of inflection points and the edge configuration of a twisted handaxe, in this case describing a z-twist (redrawn after Gallotti et al. 2010); B) the series of rotations and inversions employed in the ‘Classic Twisted Strategy’ (White 1998a): 1: the first quarter is knapped; 2: the piece is turned over through the long axis, presenting the opposite margin and other face for knapping. This quarter is knapped; 3: the piece is rotated 180°, presenting the quarter diagonally opposite 2 for knapping; 4: the handaxe is inverted through the long axis once more, presenting the final quarter for knapping. Each quarter is knapped in an opposite direction to that adjacent to it, and in the same direction as that diagonally opposite it.
reported that 3% (n=30) of Broom hand axes showed a twisted profile, but that ‘in many cases the S-twists were not pronounced, and in no examples were they as diagnostic as the S and Z-twisted ovates discussed by White (1998a)’ (Hosfield & Chambers 2009, 87; Hosfield & Green 2014). From the examples we have seen, we concur with this assessment: the Broom ‘twists’ represent unstructured deviations from straight, some with repeated sinusoidal waves on a single edge, rather than classic twisted handaxes. These pseudo-twists would thus appear to add to the already unusual set of practices seen at Broom, which include the use of Greensand chert (95% of handaxes), the production of asymmetrical handaxes (23%), and specific sharpening techniques (cf. Ashton and Hosfield 2009; Ashton et al. 2011; Hosfield and Green 2014).

An obvious question is whether twisted handaxes served a specific function or represent a resharpened (but nonetheless formalised) expression of untwisted forms. Our analyses (Appendix S1, Tables S1–2) found little technological or morphometrical support for the idea that twisted edges emerged from regularised resharpening practices. Nor are twisted handaxes found in flint-poor regions where hominins might have been more economical in their use of stone resources and resharpened their tools more frequently: quite the contrary in fact. Twisted edges conceivably served a specific or auxiliary function, such as scraping (Walter 1996), although this is equally possible for many non-twisted forms. None of the existing examples is fresh enough for micro-wear analyses and the suggestion therefore remains untested (Walter 1996; cf. Keeley 1980).

In contrast, evidence that twisted edges were a deliberate design might be found at the primary-context site at Foxhall Road, Ipswich, Suffolk. Here, three ‘twinned’ pairs of untwisted handaxes and a trio of near-identical twisted forms (Fig. 3) were found together in a small cluster around a central focus, which Nina Layard, the excavator, thought was a hearth (White & Plunkett 2004). We interpret the pairs and the trio as the products of different individuals, each having their own style based around the common ovate form. They are witness to mental templates repeatedly imposed using skill and precision, derived from socially-acquired techniques and ideas, learnt as children and developed throughout life. If these groupings do not represent the distinctive products of specific individuals then they were made by different people who closely copied each other, which would indicate that imitation (or over-imitation: Shipton & Nielsen 2015) was a key factor in the social transmission of handaxe making between contemporaries and across generations.

Regardless of whether twisted edges were a redundant design feature or a shared practical solution, the temporal and geographical patterning of twisted...
handaxes described below suggest that this was part of a long-lasting regional tradition.

TABLE 1: ASSEMBLAGES SHOWING HIGH FREQUENCIES OF TWISTED HANDAXE ASSEMBLAGES, ORGANISED BY REGION & AGE CORRELATIONS

Site (site)	MIS stage or substage
East Anglia & adjacent counties	
Barnham, Suffolk (33%)	MIS 11c
Elveden, Suffolk (36-40%)	MIS 11c
Foxhall Road Grey Clays, Suffolk (39%)	MIS 11c
Hitchin, Hertfordshire (45% of ovate assemblage)	MIS 11c
Santon Downham, Suffolk (18%)	post-MIS 12
Allington Hill, Cambridgeshire (46%)	post-MIS 12
South of the Thames	
Swanscombe Barnfield Upper Loam, Kent (22%)	MIS 11a
Swanscombe Rickson’s Upper Gravel, Kent (16%)	MIS 11a
Swanscombe Dierden’s Stony Loam, Kent (16%)	MIS 11a
Wansunt Pit, Kent (28%)	MIS 11a
Bowman’s Lodge Pit, Kent (31%)	MIS 11a
Limpsfield, Kent (54%)	MIS 11
Farnham Terrace B (nd)	MIS 11

The sequence at Foxhall Road, Ipswich, Suffolk comprises a series of interglacial lacustrine deposits filling a basin formed in MIS 12 till and outwash, once again very similar to the records at Barnham and Elveden. These are overlain by fluvial sands and gravels indicative of a return to cold conditions (Allen et al. pers. comm.). The whole describes an immediate post-glacial landscape, one covered by a pock-marked till plain with disrupted drainage (cf. Mangerud 1991) and containing interglacial lakes that gradually filled before being subsumed by an integrated fluvial system. Allen and White (2004) suggested that deposition had spanned the Anglian–Hoxnian, a proposal supported by recent OSL dates of 416 ± 36 ka and 434 ± 54 ka (Peter Allen et al. forthcoming). The twisted ovate assemblage came from the deepest archaeological horizon, on the sloping Grey Clay deposits, 4 m below the (1903) ground surface and 2 m below cold-climate horizontal beds, part of a continuous sequence of lake beds that had been accumulating data from which to explore the significance of the twisted ovate phenomenon (Table 2). Below we summarise the dating evidence for the key twisted-handaxe assemblages (see Fig. 4).
since Anglian deglaciation; we therefore correlate the twisted ovate assemblage with the Hoxnian, MIS 11c.

The artefacts from Hitchin, Hertfordshire, were almost certainly in primary context although their collection history has probably conflated two separate assemblages: a point-dominated assemblage with forms not dissimilar to those from the Swanscombe Middle Gravel and an ovate assemblage with a high proportion of twisted ovates (37.5%). With dedicated archival research or new fieldwork it might prove possible to disentangle these assemblages. The sequence at Hitchin represents a stream-fed interglacial lake occupying a basin (?kettle hole) in outwash gravel and till (Boreham & Gibbard 1995). The lake later fragmented into small pools within which shelly freshwater marl accumulated, and was ultimately incorporated into a maturing drainage system. Later infilling of the basin is represented by a series of poorly stratified silts, possibly laid down under cold conditions. Pollen from the lake beds and Chara marl showed accumulation throughout biozones Ho I and Ho II of the Hoxnian, the absence of later pollen being either a result of weathering or cessation of organic sedimentation (Boreham & Gibbard 1995).

Table 2: Percentage of Twisted Ovates from 30 Well-Studied Sites, for Which It is Possible to Propose an Age Based on Lithostratigraphical, Biostratigraphical or Chronometrical Methods

Site	Probable age	Roe group	Region	% twists	Total sample	No. twists	Reference for dating
Baker’s Farm	MIS9	I	Thames	0	239	0	Bridgland 1994
Stoke Newington	MIS9	I	Thames	0	63	0	Green et al. 2004; 2006
Wolvercote	MIS9	III	Thames	0	47	0	Bridgland 1996
Cuxton	MIS9–8	I	Thames	0	183	0	Wenban-Smith 2004
Furze Platt	MIS9	I	Thames	0.4	461	2	Bridgland 1994
Broom	MIS9–8	IV	South-west	3	995	30	Hosfield & Green 2014
Hoxne	MIS11a	II	East Anglia	3.5	111	4	Ashton et al. 2008
Swanscombe UL	MIS11a	VI	Thames	22	18	4	See text
Bowman’s Lodge	MIS11a	VI	Thames	33	30	10	See text
Wansunt	MIS11a	VI	Thames	28	32	8	See text
Swanscombe Ricksons/	MIS11a	VI	Thames	16	50	8	See text

Artefact typology has played no critical role in assigning ages. Data from White (1996 & unpublished), Roe (1968), Wymer (1968), Field et al. (1999); Hosfield & Green (2014) They are organised according to probable age.

*= Almost certainly belongs to or is derived from the underlying Grey Clays. Mixing of older material is also suspected at Furze Platt, while collection or contextual issues surround Barton Cliff, Warren Hill and Limpsfield. The twists from Broom are not considered to conform to the technological strategy seen in MIS 11.
Pit and Ransom’s Pit, towards the top of the lake sequence; according to West’s pollen results from Jeeves’s Pit, the *Chara* marl represents deposition during Ho IIc (West 1955). Boreham and Gibbard linked evidence for a reduced water table at Hitchin with similar phenomena across East Anglia, all of which appear to span Ho II–III. Thus, both the pollen and hydrological sequence suggest that Hitchin spans a substantial length of the Hoxnian *sensu stricto*: MIS 11c.

Roe’s Group VI also included the assemblage from Allington Hill, Cambridgeshire, on the edge of the Breckland, where 46% of the handaxes showed a marked twisted profile. This site is very poorly known, but artefacts came from gravel at 150 ft (~48 m) OD. Exposures seen by Hughes (1916) and the British Geological Survey (BGS) (Worssam & Taylor 1969) showed that the gravel was heavily festooned and contorted and overlay what might have been a till. Hughes believed the contortions to have been caused by dissolution of the underlying Chalk. BGS mapping suggests that this gravel represents head deposits, evidence of ‘drastic landscape changes during some early glacial episode’ (Wymer 1999, 167). If the basal deposit is till then this can only represent MIS 12 in this part of East Anglia, so the deposits above most likely belong to the succeeding MIS 11 interglacial. However, for present purposes, the assemblage remains undated and is excluded from the current discussion. The site is clearly a pressing target for further examination. Owing to similar uncertainties about context, assemblage integrity, and age, we also exclude the possible MIS 11 assemblage at Santon Downham, Suffolk, which has 18% twisted handaxes but was assigned by Roe (1968) to his Group IV (mixed or intermediate).

South of the Thames

The deposits at Barnfield Pit, Swanscombe, Kent (= the skull site) record a more-or-less complete sequence through MIS 11 as well, perhaps, as the end of MIS 12 and the beginning of MIS 10 (Fig. 5). In his review of the Swanscombe deposits and their significance, Bridgland (1994) adopted the stratigraphical scheme established by Bernard Conway during the 1968–1972 Waechter investigation of the site (Conway 1969; 1970; 1972; 1996; Conway & Waechter 1977). This recognised three divisions within the sequence, termed Phases I, II, and III, with the first two recording terminal MIS 12 and the whole of MIS 11c, a long-accepted attribution based on both lithostratigraphical and biostratigraphical evidence such as height, the presence of Rhenish molluscan fauna (which first appears in...
the Thames in Ho IIIa of the Hoxnian interglacial), and a typical MIS 11 mammalian suite (Bridgland 1994; Schreve 2001b; White et al. 2013). Archaeologically, these deposits contain the much-disputed Clactonian industry (Phase I) and a point-dominated Acheulean assemblage attributed to Roe’s Group II (Phase II). They have yielded no twisted handaxes, unlike contemporaneous East Anglian sites of similar age.

The age of the Phase III deposits is less clear-cut, although they certainly post-date the post-temperate stage of the Hoxnian (MIS 11c) interglacial. Evidence for deteriorating climatic conditions in the top of the Phase II sequence comes from the arrival of lemming and the replacement of closed-canopy molluscs by open-ground species in the Upper Middle Gravel (Kerney 1971; Sutcliffe & Kowalski 1976). The
overlying Phase III deposits, the Upper Sand and Upper Gravel, show periglacial features such as cryoturbation and small ice-wedge casts (Conway 1996); the latter deposits also contain musk-ox, a clear indicator of arctic conditions. Conway interpreted these cold-climate levels as representing the MIS 10 glacial with the overlying Upper Loam deposits, which have been interpreted as interglacial estuarine deposits, therefore belonging to MIS 9. However, Schreve (2001b), having recognised MIS 9 deposits with a completely separate biostratigraphical signature in the lower-level Corbets Tey terrace at sites such as Purfleet (Schreve et al. 2002), attributed the Swanscombe Upper Loam to MIS 11; in which case, the cold episode must represent MIS 11b and the Upper Loam MIS 11a. There is further support for this climatic complexity within the usually disregarded palynological study from Barnfield Pit by Hubbard (1972; 1982; see, however, Turner 1985).

The presence of a white-patinated twisted ovate assemblage in the Swanscombe Upper Loam has been accepted for over 105 years, although Roe was unable to reconstruct a satisfactory sample (just 18 handaxes marked as Barnfield UL, four of which were twisted) and their rarity in the Stopes Collection has led to doubt about whether it ever really existed outside workmen’s anecdotes (Wenban-Smith, pers. comm. 2015). However, the invertebrate-based correlation by White et al. (2013) and historical reconstructions of various Swanscombe localities convincingly shows that the twisted ovates found by Newton (1901) at Dierden’s Pit, and, by extension, those from at Rickson’s Pit too, came from lateral equivalents of the Barnfield Upper Loam (Fig. 4). This confirms the presence of a significant twisted component within assemblages from the Phase III deposits, temporally and morphologically distinct from the untwisted point-dominated industry ubiquitous throughout the area during Phase II times.

The Bowman’s Lodge and Wansunt Pits revealed a sequence of ~15 m of gravel (Dartford Heath Gravel, DHG) overlain by silts and clays (Wansunt Loam), at a height of ~42 m OD. The apparent ~10 m height difference between Dartford Heath and the top of the Boynt Hill Terrace at Barnfield Pit, Swanscombe, led some to attribute the Dartford Heath deposits to the (MIS 12) Black Park Terrace (this historical debate has been summarised by Bridgland (1994; 2006)). However, more recent archaeological evaluation at the Swan Valley Community School and the adjacent Sweyne County Primary School, to the west of Southfleet Road, Swanscombe, revealed a hitherto unrecorded occurrence of the Swanscombe sequence with a much thicker Upper Loam extending above 40 m OD. This effectively settles the argument in favour of correlation of Swanscombe with Dartford Heath and the attribution of both to the Boynt Hill Formation (Wenban-Smith & Bridgland, 2001) of MIS 11 age.

This MIS 11 correlation can be more finely tuned by further comparison with Swanscombe. Dewey (1959) recorded a tributary channel feature beneath the DHG at Pearson’s Pit, cut to a level comparable with the Swanscombe Lower Gravel. Newton (1895) reported molluscs recovered by Spurrell from the DHG at Dartford Brent (probably at TQ 555 743; cf. Bridgland 1994), including Corbicula fluminalis, Bithynia tentaculata, and Valvata piscinalis. The first of these is a member of the distinctive assemblage known as the ‘Rhenish fauna’, which appears in Lower Thames deposits during Hoxnian pollen zones Ho IIIa–IIIb of MIS 11c (White et al. 2013), and strongly supports both the correlation of the DHG with the Swanscombe Middle Gravel and the formation of a land-connection with Europe. Chandler and Leach (1912; Leach 1913) reported faunal remains from the lower sandy gravel of the DHG, including Palaeoloxodon antiquus, Cervus elaphus, Equus ferus, and indeterminate rhinoceros, the first of which, at least, is an indicator of wooded interglacial conditions. We thus equate the basal channel and the main body of gravel at Dartford Heath with the Phase I and Phase II interglacial deposits at Swanscombe. Both thus represent MIS 11c, encompassing Ho I to Ho IIIb–IV.

Artefacts from within the body of the Dartford Heath Gravel are few and poorly contextualised, although where reported are similar to those from the Middle Gravel at Swanscombe (Wymer 1968). Primary context twisted ovate assemblages occur above the Dartford Heath Gravel at both Wansunt Pit and Bowman’s Lodge; in the Wansunt Loam at the former (White et al. 1995); in the Wansunt Loam and on the surface of the DHG at the latter (Tester 1951; 1953; 1975). They must be younger than the late temperate stage of the MIS 11c interglacial represented by the bulk of the DHG, and we equate them with MIS 11a, the same age, same height, and same context lithology as the Upper Loam at Swanscombe.

Another major occurrence of twisted ovate handaxes is found at Limpsfield, Surrey, where several hundred handaxes, forming a surface assemblage
exposed by a deep ploughing of terrace gravels 0.6 m below the surface, were collected by A.M. Bell between 1883 and 1906 (Field et al. 1999; Bridgland 2003). The gravel, on the interfluve between the catchments of the Eden–Medway, to the south, and the Darent, to the north, is at ~150 m OD. It contains Hastings Beds material, leading to the conclusion that it was deposited by a formerly more extensive River Darent that drained the central Weald (Gossling 1940; Bridgland 1999; 2003). Prestwich (1891) made a connection between Limpsfield and Dartford Heath, correlating the DHG with his ‘Upper Valley Gravels’ of the Darent, which he traced from the Darent–Eden watershed at Limpsfield, where he noted the occurrence of artefacts. Bridgland (2003) similarly concluded that the Limpsfield gravel correlated with the Boynt Hill of the Thames, the presence of twisted ovates being among the several criteria he used to establish the connection. Nonetheless, this can be presumed to represent the final floodplain of a Darent draining from the Weald, prior to its subsequent beheading (capture) by the Medway system (cf. Wooldridge & Linton 1955; Worssam 1973; Bridgland 2003) and is correlated here with MIS 11.

Twisted handaxes were also reported from Terrace B at Farnham, Surrey, the MIS 11 ‘step’ in the terrace-staircase of the River Wey (Oakley 1939; Bridgland & White 2018). They were not apparently found in the other terraces, although further research is required to confirm and quantify the Farnham sequence. Only the Farnham Terrace A material in Table 2 is included in the present paper.

Twisted handaxes in MIS 11 & other interglacials

Twisted handaxes are rare (Table 3). From a sample of 4722 handaxes from 27 British sites (30 assemblages), only 302 (6.3%) show twisted edges (Table 2). But of these, 252 (84%) occur in sites attributed to MIS 11. (Table 3 shows alternative calculations that exclude the Broom ‘twists’ and the entire Limpsfield sample, although even when the data are cleansed the pattern of MIS 11 predominance remains).

Twisted forms account for 21% of handaxes from all sites dated to MIS 11. At the substage level, greater regional patterning becomes evident. Twisted handaxes make up 33% of MIS 11c assemblages in East Anglia and Hertfordshire, but just 1% of assemblages of this age from south of the Thames. Conversely, twisted handaxes constitute 22% of the five MIS 11a assemblages south of the Thames but the solitary East Anglian assemblage thus far firmly assigned to this substage, from Hoxne, has only 3%. The latter is little more than background variation and is based on Roe’s older sample: the smaller
but contextually more secure sample of MIS 11a handaxes (n=19) from the Wymer/Chicago excavations has 0% (Singer et al. 1993).

Pre-Anglian (MIS 13) contexts contain just 1% twisted handaxes, with over half of these coming from the Warren Hill, Suffolk, ‘fresh’ assemblage, which is poorly contextualised and might possibly include later material. The percentage of twisted handaxes from sites correlated with the MIS 9 (Purfleet) interglacial is practically zero (0.1%, excluding Broom), with even the two from Furze Platt, Middlesex, possibly being intrusive (naturally or through collector/museum error) from the higher (and nearby) Boynt Hill terrace. The combined percentage of twisted handaxes in assemblages belonging to MIS 13 and MIS 9 is just 1.4%, or 0.5% excluding Broom. Thus the twisted handaxes from MIS 13 and MIS 9 contexts, where they occur at all, are merely background variation and may be due to many factors, including chance production, intrusion of younger or older objects, collector error, or an idiosyncrasy that had little relevance to the wider group. The MIS 11 assemblages from the Swanscombe Middle Gravels, Dovercourt, and Hoxne, which contain very low levels of classic twisted ovates, show 6–15% ‘twisted-tips’ (Roe 1968, table vi), also seen in lower frequencies in Roe’s typologically and stratigraphically mixed MIS 11 samples from Foxhall Road and Hitchin. This feature is not found in other interglacials. So, regardless of whether they made classic twisted ovates, hominins throughout MIS 11 appear to have been familiar with a technique for producing twisted edges that was not used in other periods. It is important to note here that all these assemblages fall into Roe’s point-dominated tradition, a group which may owe some of its large-scale characteristics to local raw materials (White 1998b). It remains to be seen whether an MIS 11c ovate-dominated assemblage south of the Thames or a larger MIS 11a assemblage north of it would contain twisted handaxes but, nonetheless, the influence of raw-material packages on handaxe form in Britain has been hotly disputed (see for example Wenban-Smith et al. 2000) and a more moderate view would see raw material selection as part of a cultural chaîne opératoire. Nodules were chosen by the knapper because they assisted the production of the culturally desired form; stone did not impose form onto a passive human instrument. There are also enough examples of straight-edged ovates from all relevant sites, which could have been twisted but were not, to suggest this is not a controlling factor.

Collector preferences may have created a bias towards fine and unusual forms such as twists and may be affecting the very high proportion of twisted handaxes seen at Limpisfield, but the fact remains that they must have occurred in greater numbers at some sites to allow such biases to develop and leave us with the collections we have. Llewellyn Treacher, who was active around the Maidenhead area of the Middle Thames, found twisted ovates in pits located on the Boynt Hill Terrace, but almost none when exploring sites on the next terrace, the Lynch Hill, where ficron and cleaver assemblages occurred instead. This was not the expected pattern and led to interpretative problems (eg King & Oakley 1936). Similarly, twisted forms made up 10% of the handaxes recovered by Worthington Smith (1894) from the rather low-resolution secondary context sites at Stamford Hill and Leytonstone, situated on the Boynt Hill Terrace of the Lea, but there were none at Stoke Newington, where a primary context assemblage was collected from sands and gravels of the Lynch Hill Terrace (Green et al. 2004). Smith is known to have been a comprehensive collector not prone to selection biases other than those forced upon him by heavy items that he could not either carry or afford to transport.

Twisted handaxes are thus rare, highly distinctive, and tightly restricted in time and space.

TWISTED HANDAXES IN GLOBAL CONTEXT

On a global scale, twisted-handaxe assemblages are extremely rare, an observation underlined by the fact that only one well-stratified and well-studied site (Gombore II, Melka Kunture, Ethiopia), plus a handful of surface collections, is known for the entire African Early Stone Age (Gallotti et al. 2010). In Europe, twisted handaxe assemblages have been widely reported only from northern France (Callow 1976), particularly from the complex terrace deposits and overlying loessic and colluvial sequences of the Somme. The oldest are the two series (fresh and worn) from fluvial terrace gravel at Cagny la Garenne (Breuil 1934; Bordes 1956; Bourdier 1969), now dated to MIS 12 (Antoine et al. 2015). Callow’s analysis of the worn series in the Musée de l’Homme and Bordeaux (n=100) found it to be dominated by thick ovate handaxes (limandes and amydaloïdes), of which 48% were twisted (27% of the entire assemblage). Fewer twisted
handaxes (13%) were recorded in the more refined (i.e., thinner) fresh series, none of which was pronounced.

Victor Commont recorded the presence of classic twisted ovates at the St Acheul type-site. ‘Some’ came from the *sable roux/brun* (Bed H) at Bultel and Tellier’s Pit (Atelier Commont; Commont 1909, 47), while large numbers (116 out of 300) were reported from the *sable roux* (Bed D) at No. 54 Rue de Cagny (Commont 1908, 559). These deposits were described as clayey sands and were positioned above the fluvial sands and gravels at both localities, at the base of the loessic and slope deposits. At Rue de Cagny the base of the *sable roux* was associated with large angular and whole flint nodules, while at Atelier Commont, an in situ knapping floor occurred in this position, underlain locally by a shelly silt. More recent work at St Acheul identified an MIS 11 tufa, this position, underlain locally by a shelly silt. More recent work at St Acheul identified an MIS 11 tufa, locally preserved in the same stratigraphical position as Commont’s *sable roux* (Antoine & Limondin-Lozouet 2004), and it would seem reasonable to infer that the twisted ovate assemblage from the latter is of a very similar age. The MIS 12/early MIS 11 finds from the underlying fluvial sands and gravels in the St Acheul region, however, contain a mixture of pointed and ovate assemblages, none notably twisted.

Other undisputed MIS 11 levels in France, such as La Celle and St Pierre les Elbeuf IV in the Seine basin (Cliquet et al. 2009; Limondin-Lozouet et al. 2015) similarly contain no twisted ovates, again indicating regional and temporal complexity in handaxe form.

A potentially younger, MIS 9, occurrence is found in the primary context assemblage from the *sable roux* at Cagny L’Epinette (Agache 1971; Callow 1976; 1986; Antoine et al. 2015) on the lower L’Epinette Terrace. Here, Callow (1976) recorded an unusual assemblage containing a high proportion of thick ovates with unworked butts. Approximately 25% (n=65) had twisted edges, although these were not pronounced. We have not studied these handaxes, nor those from Cagny la Garenne, but wonder whether they conform more to the Broom variation than true twisted forms. Younger still might be the twisted ovate handaxes from the Older Loess at St Acheul and Mareuil (Callow 1986), although these could well represent older inclusions.

In summary, various forms of twisted handaxes are found in the Somme in deposits currently thought to belong to MIS 12, MIS 11, and MIS 9. Those belonging to MIS 11 show pronounced twists on well-made refined forms, exactly as found in the British sample, but those from MIS 12 and MIS 9 are often found on thick handaxes and are rarely pronounced. Despite an extensive (although by no means exhaustive) literature review and consultation with European colleagues (see acknowledgments), we know of no major concentrations of twisted handaxes in Iberia, central or southern France, Germany, Italy, Belgium, or the Netherlands. At present, such forms appear to be restricted to Britain and the closest neighbouring region of France, although we would genuinely welcome all information to the contrary.

HANDAXES & THE DEEP HISTORY OF MIS 11 BRITAIN

The twisted ovate phenomenon in Britain occurred in different regions before and after MIS 11b, the Thames acting as the physical dividing line. The presence of twisted tips in point-dominated assemblages on the ‘wrong’ side of this physical and temporal divide suggests that some form of twisted technique was familiar to all MIS 11 hominin groups but was variably expressed among individuals and their networks.

Given the estimated small size of archaic hominin populations and the small social groups and regional landscapes they inhabited (Gamble 2002), we doubt whether these preferences and variations had any meaning outside Gamble’s (1999) intimate and effective networks, involving kith and kin and maybe familiar others from neighbouring groups. In other words, handaxes may have been used for ‘assertive’ signalling about the identity of individuals within their local group and social networks, but not ‘emblemic’ signalling representing the identity of the group within or without it (cf, Wiessner 1983; Gamble 1999). For the purposes of Palaeolithic archaeologists, however, these amount to the same thing: signals emerging from living in groups.

The greatest distance between our MIS 11c occurrences north of the Thames is 98 km, between Hitchin and Ipswich (Fig. 1), and they all could be subsumed within a network of ~50 km radius. This provides an area c. 50% greater (5026 km² vs 7853 km²: radius of 40 km vs 50 km) than Gamble’s ‘local hominin network’ (1999; 2002), but that was based on maximum distances of raw-material transfers which almost certainly under-estimated mobility in flint-rich landscapes. Thus, the twisted ovate phenomenon in East Anglia and adjacent regions north of the Thames could feasibly be the product of just one or
two local hominin groups. The same is true south of the Thames in MIS 11a. Dartford and Swanscombe are just 9 km apart, a distance that could have been covered in a few hours. Limpfield and Farnham, although not correlated to the substage level, are only 25 km and 75 km from Dartford, respectively. The distance between these two sites is 56 km. Again, the area south of the Thames might have been home to only a few related local groups, perhaps just a few hundred individuals (the social brain hypothesis predicts a group size of ~150, eg, Dunbar et al. 2014; cf, Gamble 2002; Pettitt & White 2012).

The twisted ovate phenomenon might thus represent a fleeting event recording perhaps a few generations of biased transmission (perhaps influenced by the makers’ status, reproductive success, homophily, or conformism) before drift took handaxes in another direction. At some sites it is preceded or succeeded by assemblages with quite different characteristics: at Foxhall Road the twisted ovate assemblage occurred beneath a horizon with only straight-edged pointed handaxes and the same might be true of the material from Hitchin. In MIS 11a, a similar pattern is seen at Hoxne, but here untwisted ovates were replaced by points (Singer et al. 1993). But at a wider scale, the appearance of such an unusual type north of the Thames during the earlier warm substage of MIS 11 and south of the Thames in the later one, when it is missing from all other interglacials and rare on a global scale, suggests that the two are connected not just by coincidence but by history. The practice was much longer-lived at a regional level suggesting that, despite a small demographic presence, geographical barriers and being the human settlement furthest north-west from Africa (cf, Lycett & von Cramon-Taubadel 2008), handaxe manufacturing skills and ideas were preserved through strong networks of social transmission and conservatism in north-west Europe.

Ashton (2017) has suggested that during periods of stable environment local groups were able to persist in the landscape over multi-generational timescales and, once established, they developed ways to deal with local circumstances that became embedded into social practices. So technological practices and handaxe shape ‘preferences’ might still have emerged from local resources but through choice and historical engagement: landscapes of habit (eg, Gamble 1999) created landscapes of cultural tradition. Conversely, periods of climatic instability would have caused large-scale shifts in population, particularly within northern Europe, where the southwards translocation and/or extinction of populations would have occurred. In Britain, we might thus expect to find our clearest signatures in our longest interglacials, such as MIS 11.

Britain was first recolonised after the Anglian glaciation (MIS 12) by populations from Europe that did not habitually make handaxes, leaving an industry widely known as the Clactonian (White 2000). The source populations for the Clactonian have never been satisfactorily identified, but possibly derived from areas of central Europe, where handaxes are rare or absent (White & Schreve 2000; Ashton 2017). They persisted through the stable environments of the early and full temperate periods (Ho I & II) before being replaced by Acheulean populations in Ho IIb–III, coinciding with a pan-European catastrophic event registered in the pollen record as a period of rapid deforestation (Ashton et al. 2008; Ashton 2017). That the Acheulean appeared at a period of environmental instability, when ‘resident populations’ in the affected areas may have begun to decline or be displaced, can hardly be coincidence. The question of whether sea-level change might also have been implicated is unresolved. Britain was almost certainly connected to the continent during Ho IIb–III, when the freshwater ‘Rhenish fauna’ arrived, but its status during the main interglacial is uncertain; different sea-level reconstructions provide different answers (see Pettitt & White 2012; White 2015). It is equally uncertain whether these populations ever met or whether, as Ashton (2017) evocatively asks, the first Acheulean settlers would have found a landscape eerily littered with the tools, structures, hearths, and meals of an earlier extinct people.

The first MIS 11c handaxe makers south of the Thames did not make twisted handaxes while those who settled East Anglia and adjacent regions did. This probably represents different regional source populations from neighbouring areas of Europe, and/or the drowned landscapes of the North Sea and Channel basins. The pattern reverses after the cold interval of MIS 11b, when twisted handaxes were made only south of the Thames. It seems reasonable to infer that cold conditions would have pushed East Anglian populations south during MIS 11b, as the climate deteriorated and the Thames became more braided and less of a physical barrier, or that these same factors would have facilitated greater mobility and contact between the two areas. If this were the case, these populations survived into MIS 11a in the
south, but a different population without twists must have entered East Anglia in MIS 11a. Alternatively, both MIS 11c populations might have moved east and south never to return, or died out entirely, in which case Britain was colonised in MIS 11a by new populations with their own handaxe traditions. One of these was probably related to the original twisted handaxe making populations, who survived MIS 11b somewhere.

The pattern in neighbouring Europe is intriguing in this regard. On current dating estimates, twists of some form were made in the Somme during MIS 12, MIS 11, and MIS 10/9, making this an obvious region in which to seek deep historical connections with Britain. It is equally interesting that, during this long period, classic twisted ovates are found in France only in MIS 11 contexts, with those from sites which temporally sandwich this period being less-well-developed early and ‘degenerating’ late examples. These are tentative observations that require further research, but they provide potentially important information about the nature and resilience of regional traditions and populations. Another major implication is that the populations occupying the large area now submerged by the North Sea and Channel were maintaining and following different sets of handaxe-shape traditions, perhaps two or more regional groups overlapping on this ephemeral land. This overlap might be expressed in the succession of assemblage types at Foxhall Road, Hitchin, or Hoxne. That MIS 11b was potentially ‘survivable’, either in Britain or nearby, is also shown by the strong similarities between the fauna from MIS 11c and 11a (Schreve 2001b; Ashton et al. 2008). Pan-European studies might help tease out some of these regional groups, although the cultural geography of mainland Europe is likely to be more complex than the British cul-de-sac, a northern sink zone with episodes of residency, abandonment, and recolonisation synchronised by the climatic rhythms of the Pleistocene (White 2015; Ashton 2017).

CONCLUSIONS

Handaxes have been key to understanding archaic hominin culture and behaviour from the beginning of our discipline and Britain has a record that is extremely well suited to exploring these issues. It is a valid geographical entity, the north-west uplands of the north European Plain, fringing the Atlantic and surrounded on two sides by basins that were periodically flooded. It was also occasionally glaciated and inhospitable. Consequently, it has a punctuated pattern of occupation with distinct periods of abandonment, colonisation, settlement, and isolation, all of which can be synchronised to Pleistocene climatic fluctuations. Despite being a sink area at the limits of human occupation, accessible only at certain times and from certain directions, it provides insights into demographic patterns that can be isolated in far more detail than in more permanently occupied areas. It is also increasingly well dated and well researched.

Nearly two centuries of interpretation have created a (monochrome) tapestry of hominin behaviour in a landscape context but British archaeologists had all but abandoned ideas that group-level patterns could be detected in the Acheulean and, ergo, that handaxe shape contained a meaningful cultural signal. Paradoxically, it was partly the better documented record, which facilitated influential syntheses ranging from Breuil’s to Wymer’s and to Roe’s, that exposed this lack of structure. To explain variation, anthropologists thus turned to more ecological or techno-functional explanations, attempting to find some behavioural order within the seemingly directionless and unstructured archaeological record, described, equally accurately, as both a ‘bewildering variety’ (Roe 1981) and a ‘variable sameness’ (Isaac 1977). This failure can now largely be attributed not to the absence of cultural patterns but to the use of an incomplete Quaternary framework. The revolution brought about by correlation with the MIS record, with the greater number of climatic events thus recognisable in the terrestrial domain, eventually revealed these patterns. Now, using large datasets interpreted at different scales, we can suggest that handaxes indeed provide cultural signals.

The British handaxe record does not show linear or predictable patterns and does not form the progressive developmental sequence expected by past cultural frameworks but it is no longer a bewildering variety in time and space. Acheulean handaxe assemblages contain much variation but also show clear modal tendencies. Such variation is perhaps an inevitability in stone objects that were hand-made by people of all ages and skill-levels using inconsistent materials. Twisted handaxes and other time-locked forms (eg, MIS 9 bifaces and cleavers), however, isolate clear modalities, distinctive and (often) highly accomplished forms that earlier workers would have called _fossil_
directeurs (cultural markers) although we appreciate that experience has taught many colleagues to be wary of such things. We are equally aware that the persistence of local traditions over potentially vast time periods presents some scalar problems in terms of social transmission, although we are probably observing, in primary context assemblages, only a few hundred years. Handaxe assemblages thus capture hominin socio-politics at centennial scales, cross-generational histories of regional groups involving a moving roster of related individuals through time, with social transmission for particular forms biased by the success (or not) of real individuals and networks. We would further note that similar time scales are not deemed overly problematic when studying Upper Palaeolithic industries, such as the ~9000 year-long Aurignacian.

The next challenge is to understand better the social mechanisms at work, and to re-examine the European record in similar terms, using standardised methods and new analyses, acknowledging the possibility that only another bewildering variety might emerge. This was the reality faced by Paul Callow (1976), who failed to detect even a clear point-dominated/ovate-dominated division in northern France. As a potentially atypical but somewhat predictable case, Britain might just provide some of the empirical and theoretical tools necessary to unlock this complexity.

Acknowledgements: We would like to thank Pascal Depaepe, Agnes Lamotte, Jean-Luc Locht, Marie-Hélène Moncel, Marina Mosquera, and Andreu Ollé for information on twisted handaxes (or their absence) from neighbouring regions of Europe. We would also like to thank three anonymous referees for their comments on the original version of this paper.

SUPPLEMENTARY MATERIAL
To view supplementary material for this article, please visit https://doi.org/10.1017/ppr.2019.1

REFERENCES

Agache, P. 1971. Information archéologiques: Circonscription de Nord et Picardie. Gallia Préhistoire 11, 267–309

Allen, P. & White, M.J. 2004. The geology of Foxhall Road and the surrounding area. In M.J. White & S.J. Plunkett, Miss Layard Excavates: a Palaeolithic site at Foxhall Road, Ipswich, 1903–1905, 55–75. Bristol: Western Academic and Specialist Press.

Antoine, P. & Limondin-Lozouet, N. 2004. Identification of MIS 11 Interglacial tufa deposit in the Somme valley (France): new results from the Saint-Acheul fluvial sequence. Quaternaire 15, 41–52

Antoine, P., Lautridou, J.P. & Laurent, M. 2000. Long-term fluvial archives in NW France: response of the Seine and Somme rivers to tectonic movements, climatic variations and sea level changes. Geomorphology 33, 183–207

Antoine, P., Moncel, M.-H., Locht, J.-L., Limondin-Lozouet, N., Auguste, P., Stoetzel, E., Dabkowski, J., Voinchet, P., Bahain, J.-J. & Falguères, C. 2015. Dating the earliest human occupation of Western Europe: New evidence from the fluvial terrace system of the Somme basin (northern France). Quaternary International 370, 77–99

Ashton, N.M. 2017. Landscapes of habit and persistent places during MIS 11 in Europe. A return journey from Britain. In C. Gamble, M. Pope, R. Scott, A. Shaw, & M. Bates (eds), Crossing the Threshold, 142–64. London: Routledge

Ashton, N. & Hosfield, R. 2009. Mapping the human record in the British early Palaeolithic: evidence from the Solent River system. Journal of Quaternary Science 25, 737–53

Ashton, N.M. & McNabb, J. 1994. Bifaces in perspective. In N.M. Ashton & A. David (eds), Stories in Stones, 182–91. London: Lithic Studies Society Occasional Paper 4

Ashton, N., Lewis, S. & Hosfield, R. 2011. Mapping the human record: population change during the later Middle Pleistocene. In N. Ashton, S. Lewis & C. Stringer (eds), The Ancient Human Occupation of Britain, 39–52. Amsterdam: Elsevier

Ashton, N., Lewis, S.G. & Parfitt S. (eds). 1998. Excavations at the Lower Palaeolithic Site at East Farm, Barnham, 1989–1994. London: British Museum Press

Ashton, N., Cook, J., Lewis, S.G. & Rose, J. 1992. High Lodge. Excavations by G. de G. Sieveking 1962–68 and J. Cook 1988. London: British Museum Press

Ashton, N., Lewis, S.G., Parfitt, S., Penkman, K.E.H. & Coope, G.R. 2008. New evidence for complex climate change in MIS 11 from Hoxne, UK. Quaternary Science Reviews 27, 652–68.

Ashton, N., Lewis, S.G., Parfitt, S.A., Davis, R.J. & Stringer, C. 2016. Handaxe and non-handaxe assemblages during Marine Isotope Stage 11 in northern Europe: Recent investigations at Barnham, Suffolk, UK. Journal of Quaternary Science 31, 837–43

Ashton, N., Lewis, S., Parfitt, S., Candy, I., Keen, D., Kemp, R., Penkman, K., Thomas, G., Whittaker, J. & White, M.J. 2005. Excavations at the Lower Palaeolithic site at Elveden, Suffolk, UK. Proceedings of the Prehistoric Society 71, 1–61

Boreham, S., & Gibbard, P.L. 1995. Middle Pleistocene Hoxnian Stage interglacial deposits at Hitchin, Hertfordshire, England. Proceedings of the Geologist’s Association 106, 259–70

Bordes, F. 1956. Some observations on the Pleistocene succession in the Somme valley. Proceedings of the Prehistoric Society 22, 1–5

Bourdier, F. 1969. Etude comparée des dépôts quaternaires des bassins de la Seine et de la Somme. Bulletin Information des Géologues du Bassin de Paris 21, 169–231
Site of Gombore II (Melka Kunture, Upper Awash, Ethiopia) and the issue of Acheulean bifacial shaping strategies. *African Archaeology Reviews* 27, 291–322

Gamble, C. 1999. *The Palaeolithic Societies of Europe.* Cambridge: Cambridge University Press

Gamble, C. 2002. Early beginnings 500–35, 000 years ago. In P. Slack & R. Ward (eds), *The Peopleing of Britain: The shaping of a human landscape.* *The Linacre Lectures 1999*, 11–37. Oxford: Oxford University Press

Gossling, F. 1940. A contribution to the Pleistocene history of the Upper Darent valley. *Proceedings of the Geologists’ Association* 51, 311–40

Green, C.P., Gibbard, P.L. & Bishop, B.J. 2004. *Stoke Newington: geoarchaeology of the Palaeolithic ‘floor’.* *Proceedings of the Geologists’ Association* 115, 193–208

Green, C.P., Branch, N.P., Coope, G.R., Field, M.H., Keen, D.H., Wells, J.M., Schwenninger, J.-L., Preece, R.C., Schreve, D.C., Canti, M.G. & Gleed-Owen, C. 2006. Marine Isotope Stage 9 environments of fluvial deposits at Hackney, north London, UK. *Quaternary Science Reviews* 25, 89–113

Hosfield, R. & Chambers, J. 2009. Genuine diversity? The Broom biface assemblage. *Proceedings of the Prehistoric Society* 75, 65–100

Hosfield, R.T. & Green, C.H. 2014. *Quaternary History and Palaeolithic Archaeology in the Axe Valley at Broom, South West England.* Oxford: Oxbow Books

Hubbard, R. 1972. An interim report on the pollen record at Swanscombe. *Proceedings of the Royal Anthropological Institute of Great Britain and Ireland for 1971*, 79

Hubbard, R. 1982. The environmental evidence from Swanscombe and its implications for Palaeolithic Archaeology. In P.E. Leach (ed.), *Archaeology in Kent to AD 1500*, 3–7. London: Council for British Archaeology Research Report 48

Hughes, T.M. 1916. *The Gravels of East Anglia.* Cambridge: Cambridge University Press

Isaac, G. 1977. *Olorgesailie: Archaeological studies of a Middle Pleistocene lake basin in Kenya.* Chicago: Chicago University Press

Keeley, L.H. 1980. *Experimental Determination of Stone Tool Uses.* Chicago: University of Chicago Press

Keen, D.H. 1990. Significance of the record provided by Pleistocene fluvial deposits and their included molluscan faunas for palaeo-environmental reconstruction and stratigraphy: a case study from the English Midlands. *Palaeogeography, Palaeoclima, Palaeoecology* 80, 25–34

Kerney, M.P. 1971. Interglacial deposits at Barnfield Pit, Swanscombe, and their molluscan fauna. *Journal of the Geological Society of London* 127, 69–86

King, W.B.R. & K.P. Oakley 1936. The Pleistocene succession in the lower parts of the Thames valley. *Proceedings of the Prehistoric Society* 2, 52–76

Leach, A.L. 1913. On buried channels in the Dartford Heath Gravel: Together with the report of an excursion to Dartford Heath, May 17th, 1913. *Proceedings of the Geologists’ Association* 24, 337–44

Limondin-Lozouet, N., Antoine, P., Bahain, J.-J., Cliquet, D., Coutard, S., Dabkowski, J., Ghaleb, B., Locht, J.-L., Nicoud, E. & Voinchet, P. 2015. North-West European MIS 11 malacological successions: A framework for the timing of Acheulean settlements. *Journal of Quaternary Science* 30, 702–12

Lycett, S.J. & von Cramon-Taubadel, N. 2008. Acheulean variability and hominin dispersals: A model-bound approach. *Journal of Archaeological Science* 35, 533–62

McNabb, J., Hosfield, R., Dearling, K., Barker, D., Strutt, K., Cole, J., Bates, M. & Toms, P. 2012. Recent work at the Lower Palaeolithic site of Corfe Mullen, Dorset, England. *Proceedings of the Prehistoric Society* 78, 35–50

Mangerud, J. 1991. The last interglacial/glacial cycle in northern Europe. In L.C.K. Shane, and E.J. Cushing (eds), *Quaternary Landscapes*, 38–75. London: Bellhaven

Newton, E.T. 1895. On the human skull and limb-bones found in the Palaeolithic Terrace Gravel at Galley Hill, Kent. *Quarterly Journal of the Geological Society of London* 51, 505–27

Newton, W.M. 1901. The occurrence in a very limited area of the rudest with the finer forms of worked stones. *Man* 1, 81–2

Oakley, K.P. 1939. Geology and Palaeolithic studies. In K.P. Oakley, W.F. Rankine, and A.W.G. Lowther (eds), *A Survey of the Prehistory of the Farnham District (Surrey)*, 3–58. Guildford: Surrey Archaeological Society

Penkman, K.E.H., Preece, R.C., Bridgland, D.R., Keen, D.H., Meijer, T., Parfitt, S.A., White, T.S. & Collins, M.J. 2013. An aminostratigraphy for the British Quaternary based on Bithynia opercula. *Quaternary Science Reviews* 61, 111–34

Pettitt, P.B. & White, M.J. 2012. *The British Palaeolithic: Hominin societies on the edge of the Pleistocene world.* London: Routledge

Preece, R.C., Gowlett, J.A.J., Parfitt, S.A., Bridgland, D.R. & Lewis, S.G. 2006. Humans in the Hoxnian: Habitat, context, and fire use at Beeches Pit, West Stow, Suffolk, UK. *Journal of Quaternary Science* 21, 485–96

Prestwich, J. 1891. On the age, formation, and successive drift-stages of the valley of the Darent; with remarks on the Palaeolithic implements of the district, and on the origin of its chalk escarpment. *Quarterly Journal of the Geological Society* 47, 126–63

Roberts, M.B. and Parfitt, S.A. 1999. *Boxgrove; A Middle Pleistocene Hominid Site at Earitham Quarry, Boxgrove, West Sussex.* London: English Heritage

Roe, D.A. 1968. British Lower and Middle Palaeolithic handaxe groups. *Proceedings of the Prehistoric Society* 34, 1–82

Roe, D.A. 1981. *The Lower and Middle Palaeolithic Periods in Britain.* London: Routledge & Kegan Paul

Shipton, C and Nielsen, M. 2015. The evolutionary origins of overimitation and shared intentionality. *Human Nature* 26, 331–45

Schreve, D.C. 1997. *Mammalian Biostratigraphy on the Later Middle Pleistocene in Britain.* Unpublished PhD thesis, University of London

Schreve, D.C. 2001a. Differentiation of the British late Middle Pleistocene interglacials: the evidence from

Downloaded from https://www.cambridge.org/core. Durham University Library, on 02 Jan 2020 at 10:18:35, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/ppr.2019.1
mammalian biostratigraphy. *Quaternary Science Reviews* 20, 1693–705

Schreve, D.C. 2001b. Mammalian evidence from Middle Pleistocene fluvial sequences for complex environmental change at the oxygen isotope stage level. *Quaternary International* 79, 65–74

Schreve, D.C., Bridgland, D.R., Allen, P., Blackford, J.J., Gleed-Owen, C.P., Griffiths, H.I., Keen, D.H. & White, M.J. 2002. Sedimentology, palaeontology and archaeology of late Middle Pleistocene River Thames terrace deposits at Purtfleet, Essex, UK. *Quaternary Science Reviews* 21, 1423–64

Singer, R., Gladfelner, B.G. & Wymer, J.J. 1993. The *Lower Palaeolithic Site at Hoxne, England*. Chicago: University of Chicago Press

Smith, R.H. & Dewey, H. 1913. Stratification at Swanscombe: report on excavation made on behalf of the British Museum and H.M. Geological Survey. *Archaeologia* 64, 177–204

Smith, R.H. & Dewey, H. 1914. The High Terrace of the Thames: Report on excavations made on behalf of the British Museum and H.M. Geological Survey in 1913. *Archaeologia* 65, 187–212

Smith, W.G. 1894. *Man the Primeval Savage: His haunts and relics from the hill-tops of Bedfordshire to Blackwall*. London: Stanford

Spurrell, F.C.J. 1883. Palaeolithic implements from West Kent. *Archaeologia Cantiana* 15, 89–103

Sutcliffe, A.J. & Kowalski, K. 1976. Pleistocene rodents of the British Isles. *Bulletin of the British Museum (Natural History)* Geology 27, 31–147

Tester, P.J. 1951. Palaeolithic flint implements from the Bowman’s Lodge Gravel Pit, Dartford Heath. *Archaeologia Cantiana* 63, 122–34

Tester, P.J. 1953. The discovery of Acheulian implements in the deposits of the Dartford Heath terrace. *Archaeologia Cantiana* 66, 72–6

Tester, P.J. 1975. Further consideration of the Bowman’s Lodge industry. *Archaeologia Cantiana* 91, 29–39

Turner, C. 1985. Problems and pitfalls in the application of palynology to Pleistocene archaeological sites in Western Europe. In J. Renault-Miskovsky M. Bui-Thi M. Girard (eds), *Palynologie Archéologique*, 347–73. Paris: Notes et monographies techniques 17

Walter, D. 1996. *Twisted Bifaces: An Analysis of Intentionality and Functional Efficiency of Twisted Bifaces in the British Lower Palaeolithic*. Unpublished MA Thesis, University of London

Wenban-Smith, F. 2004. Handaxe typology and the Lower Palaeolithic cultural development: ficones, cleavers and two giant handaxes from Cuxton. *Lithics* 25, 11–21

Wenban-Smith, F.F. & Bridgland, D.R. 2001. Palaeolithic archaeology at the Swan Valley Community School, Swanscombe, Kent. *Proceedings of the Prehistoric Society* 67, 219–25

Wenban-Smith, F.F., Gamble, C.S. & ApSimon, A. 2000. The Lower Palaeolithic site at Red Barns: bifacial technology, raw material quality and the organisation of archaia
culture. *Proceedings of the Prehistoric Society* 66, 209–56

West, R.G. 1955. *The Pleistocene Vegetation and Geology of East Anglia*. Cambridge: Cambridge University

Westaway, R., Bridgland, D. & White, M.J. 2006. The Quaternary uplift history of central southern England: evidence from the terraces of the Solent River system and nearby raised beaches. *Quaternary Science Reviews* 25, 2212–50

White, M.J. 1998a. Twisted ovate bifaces in the British Lower Palaeolithic: Some observations and implications. In N.M. Ashton, F. Healy, and P. Pettitt (eds), *Stone Age Archaeology: Essays in honour of John Wymer*, 98–104. Oxford: Oxbow Books

White, M.J. 1998b. On the significance of Acheulean biface variability in southern Britain. *Proceedings of the Prehistoric Society* 64, 15–44

White, M.J. 2000. The Clactonian question: On the interpretation of core-and-flake assemblages in the British Lower Palaeolith. *Journal of World Prehistory* 14, 1–63

White, M.J. 2015. Dancing to the rhythms of the biotidal zone: Settlement history and culture history in Middle Pleistocene Britain. In F. Coward, F. Wenban-Smith R. Hosfield M. Pope (eds), *Society, Settlement and Cognition*, 154–73. Cambridge: Cambridge University Press

White, M.J. & Plunkett, S.J. 2004. *Miss Layard Excavates: A Palaeolithic site at Foxhall Road, Ipswich*, 1903–1905. Liverpool: WASP

White, M.J. & Schreve, D.C. 2000. Island Britain-Peninsula Britain: Palaeogeography, colonisation and the Lower Palaeolithic settlement of the British Isles. *Proceedings of the Prehistoric Society* 66, 1–28

White, T.S., Preece, R.C. & Whittaker, J.E. 2013. Molluscan and ostracod successions from Dierden’s Pit, Swanscombe: insights into the fluvial history, sea-level record and human occupation of the Hoxnian Thames. *Quaternary Science Reviews* 70, 73–90

White, M., Scott, R. & Ashton, N. 2006. The Early Middle Palaeolithic in Britain: Archaeology, settlement history and human behaviour. *Journal of Quaternary Science* 21, 525–42

White, M.J., Bridgland, D.R., Ashton, N., McNabb, J. & Berger, M. 1995. Wansunt Pit, Dartford Heath (TQ 513737). In D.R. Bridgland, P. Allen, and A. Haggart (eds), *The Quaternary of the Lower Reaches of the Thames and its correlatives*. London: Quaternary Research Association

White, M.J., Bridgland, D.R., Schreve, D.C., White, T.S. & Penkman, K.E.H. 2018. Well-dated fluvial sequences as templates for patterns of handaxe distribution: Understanding the record of Acheulean activity in the Thames and its correlative. *Quaternary International* 480, 118–31

Wiessner, P. 1983. Style and social information in Kalahari San Projectile Points. *American Antiquity* 48, 253–76

Woolridge, S.W. & Linton, D.L. 1955. *Structure, Surface and Drainage in Southeast England*. 2nd edn. London: G. Phillip
Bifaces torsés dans la Grande-Bretagne du Pléistocène moyen et leurs implications à l’échelle régionale, pour les variations culturelles et l’histoire profonde des groupes d’hominidés de l’Achuléen, de Mark White, Nick Ashton, et David Bridgland

Une meilleure compréhension du cadre chronologique du Pléistocène moyen en Grande-Bretagne a permis aux archéologues de détecter un certain nombre de types d’assemblages de durée restreinte, non sur la base de schémas ‘culture-historique’de progression typologique mais sur des méthodes de datation indépendantes et des cadres stratigraphiques sûrs, en particulier des séquences de terrasses de rivières. Ceci comprend un modèle compatible avec l’espace temps des industries clactoniennes et levalloisiennes, ainsi qu’un nombre de types d’assemblages qui appartiennent à divers cycles interglaciaires. En d’autres termes, l’intuition de Derek Roe, que l’apparente absence de modèle cohérent ‘culturel’ était due à un cadre chronologique insuffisant et inadéquat, était correcte. Une certaine variation dans la forme des bifaces a une signification culturelle. Nous nous concentrons ici sur des bifaces ovalaires torsés qui, avons nous argumenté précédemment, appartiennent à MIS 11. De récentes découvertes nous ont permis d’affiner nos corrélations. On trouve des assemblages ovalaires torsés dans différentes régions de Grande-Bretagne, dans différents sous stades de MIS 11 (Est Anglie dans MIS 11c et au sud de la Tamise dans MIS 11a), la Tamise et le MIS 11b, intermède froid, séparant les deux événements. Ces modèles ont le potentiel d’apporter de nombreuses révélations sur les modèles d’occupation, le comportement et les réseaux sociaux des hominidés pendant le Pléistocène moyen.

"Twisted handaxes" im Mittelpleistozän Großbritanniens und ihre Bedeutung für kulturelle Variation auf regionaler Ebene und die "tiefe Geschichte" von Homininen-Gruppen im Archeuleen, von Mark White, Nick Ashton, und David Bridgland

Ein verbessertes Verständnis der Chronologie des Mittelpleistozäns Großbritanniens erlaubt Archäologen eine Reihe zeitlich eingegrenzter Typgesellschaften zu unterscheiden, die nicht auf einem „kulturhistorischen“ Schema typologischer Veränderungen basieren, sondern auf unabhängigen Datierungsmethoden und sicheren Stratigraphien, insbesondere auf Abfolgen aus Flussterrassen. Dies umfasst auch eine widerspruchsfreie zeitliche Ordnung von Clactonien- und Levallois-Industrien sowie eine Reihe von Typgesellschaften von Faustkeilen, die zu unterschiedlichen interglazialen Zyklen gehören. In anderen Worten: Die Vorahnung von Derek Roe, dass der scheinbare Mangel einer stimmigen „kulturellen“ Ordnung auf eine ungenaue und unzureichende Chronologie zurückzuführen sei, war richtig. Manche Variationen in den Formen von Faustkeilen sind kulturell signifikant. Hier konzentrieren wir uns auf „twisted ovate handaxes“ („verdrehte eiförmige Faustkeile“), für die wir bisher angenommen haben, dass sie überwiegend zu MIS 11 gehören. Jüngere Entdeckungen erlauben uns nun die vorgenommenen Korrelationen zu verfeinern. „Twisted ovate handaxes“ liegen aus verschiedenen Regionen Großbritanniens aus verschiedenen Untertufen von MIS 11 vor (East Anglia in MIS 11c und südlich der Themse in MIS 11a), wobei die Themse und das MIS 11c Kaltintervall die beiden Vorkommen zeitlich und räumlich voneinander trennen. Diese Ordnung hat das Potential neue Einsichten zu ermöglichen in hominine Besiedlungsmuster, Verhaltensweisen und soziale Netzwerke während des Mittelpleistozäns.
Los bifaces de aristas sinuosos del Pleistoceno Medio en Gran Bretaña y sus implicaciones en las variaciones culturales a escala regional y la historia de los grupos homínidos achelelenses, por Mark White, Nick Ashton, y David Bridgland

Una mejor comprensión del marco cronológico para el Pleistoceno Medio de Gran Bretaña ha permitido a los arqueólogos detectar una serie de conjuntos-tipo restringidos temporalmente, no basados en esquemas “histórico-culturales” de progresión tipológica, sino en métodos independientes de datación y en marcos estratigráficos seguros, especialmente a partir de las secuencias de terrazas fluviales. Esto incluye un patrón consistente en el tiempo de las industrias clactonienses y levallois, así como varios tipos de conjuntos con bifaces que pertenecen a diferentes ciclos interglaciales. En otras palabras, las apreciaciones de Derek Roe de que la ausencia de un patrón cultural coherente se debía a un marco cronológico impreciso e inadecuado eran correctas. Algunas de estas variaciones en la forma de los bifaces es culturalmente significativa. En este artículo nos centramos en los bifaces ovoides de aristas sinuosas, que previamente habíamos adscrito al MIS 11. Los recientes descubrimientos nos han permitido refinar nuestras correlaciones. Los conjuntos ovoides de perfil sinuoso se encuentran en diferentes regiones de Gran Bretaña y en diferentes subestadios del MIS 11 (en East Anglia en el MIS 11c y en el sur del Támesis en el MIS 11a), el Támesis y el intervalo frío del MIS 11b que separa los dos hechos. Estas pautas tienen el potencial de revelar mucha información sobre los patrones de asentamiento de los homínidos, su comportamiento y las redes sociales durante el Pleistoceno medio.