Information theory, predictability, and the emergence of complex life

Luis F Seoane1,2,3 and Ricard V. Solé2,3,4

1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139.
2ICREA-Complex Systems Lab, Universitat Pompeu Fabra (GRIB), Dr Aiguader 80, 08003 Barcelona, Spain.
3Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain.
4Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA.

Despite the obvious advantage of simple life forms capable of fast replication, different levels of cognitive complexity have been achieved by living systems in terms of their potential to cope with environmental uncertainty. Against the inevitable cost associated to detecting environmental cues and responding to them in adaptive ways, we conjecture that the potential for predicting the environment can overcome the expenses associated to maintaining costly, complex structures. We present a minimal formal model grounded in information theory and selection, in which successive generations of agents are mapped into transmitters and receivers of a coded message. Our agents are guessing machines and their capacity to deal with environments of different complexity defines the conditions to sustain more complex agents.

I. INTRODUCTION

Simple life forms dominate our biosphere (Gould 2011) and define a lower bound of embodied, self-replicating systems. But life displays an enormously broad range of complexity levels, affecting many different traits of living entities, from their body size to their cognitive abilities (Bonner 1988). This creates somewhat a paradox: if larger, more complex organisms are more costly to grow and maintain, why is not all life single-celled? Several arguments help provide a rationale for the emergence and persistence of complex life forms. As an instance Gould 2011 proposes that complexity is not a trait explicitly favored by evolution. A review of fossil records convinces Gould that, across genera, phyla, and the whole biosphere, we observe the expected random fluctuations around the more successful adaptation to life. In this big picture, bacteria are the leading life form and the complexity of every other living system is the product of a random drift. Complex life would never be explicitly favored, but a complexity wall exists right below bacteria: random drift. Complex life would never be explicitly favored by evolution. A review of fossil records convinces Gould that, across genera, phyla, and the whole biosphere, we observe the expected random fluctuations around the more successful adaptation to life. In this big picture, bacteria are the leading life form and the complexity of every other living system is the product of a random drift. Complex life would never be explicitly favored, but a complexity wall exists right below bacteria: simpler forms fail to subsist. Hence, a random fluctuation is more likely to produce more complex forms, falsely suggesting that evolution promotes complexity.

Major innovations in evolution involve the appearance of new types of agents displaying cooperation while limiting conflict (Maynard-Smith & Szathmáry 1997; Szathmáry & Maynard-Smith 1997). A specially important innovation involved the rise of cognitive agents, namely, the agent G locates itself in a given position and tries to predict each bit of a given sequence of length n – hence it is dubbed an n-guesser. Each attempt to predict a bit involves some cost c, while a reward r is received for each successful prediction. 1-guessers are simple and assume that all bits are uncorrelated, while $(n > 1)$-guessers find correlations and can get a larger benefit if some structure happens to be present in the environment. A whole n-bit prediction cycle can be described as a program (figure 1a). The agent G is a guessing machine and its capacity to deal with environments of different complexity defines the conditions to sustain more complex agents.

As a simple illustration of our approach, consider a 1-guesser living in an infinitely large environment E where uncorrelated bits take value 0 with probability p and 1 with probability $1 - p$. The average performance of a guesser G when trying to infer bits from E is given by...
$\rho(p, n) > 0$

FIG. 1 Predictive agents and environmental complexity. a An agent G interacts with an external environment E that is modeled as a string of random bits. These bits take value 0 with probability p and value 1 otherwise. The agent tries to guess a sequence of n bits at some cost, with a reward bestowed for each correctly guessed bit. The persistence and replication of the agent can only be granted if the balance between reward and cost is positive ($\rho_E > 0$). b For a machine attempting to guess n bits, an algorithmic description of its behavior is shown as a flow graph. Each loop in the computation involves scanning a random subset of the environment $B = (b_1, ..., b_n) \subset E$ by comparing each $b_i \in B$ to a proposed guess w_i. c A mean field approach to a certain kind of 1-guesser (modeled in the text through equations 1, 2, and 3) in environments of infinite size renders a boundary between survival ($\rho_E > 0$) and death ($\rho_E < 0$) as a function of the cost-reward ratio (α) and of relevant parameters for the 1-guesser model (p in this case). Note that for $\alpha < 0.5$ every 1-guesser survives for free.

p_E^G, the likelihood of emitting a correct guess:

$$p_E^G = p^G(0)p + p^G(1)(1 - p),$$

where $p^G(k)$ is the frequency with which the guesser emits the bit value $k \in \{0, 1\}$. A strategy that uses $p^G(0) = p$, $p^G(1) = 1 - p$ (i.e. a guesser that mimics the environment) makes on average

$$p_E^G = 2p^2 - 2p + 1$$

successful predictions. Its survival function reads:

$$p_E^G = (2p^2 - 2p + 1)r - c.$$
information theory (Shannon, 1948; Shannon & Weaver, 1949) considers symbols being conveyed from a transmitter to a receiver through a channel. Shannon only deals with the efficiency of the channel (related to its noise or reliability) and the entropy of the source. This theory ignores the content of the emitted symbols, despite the limitations of such an assumption (Corominas-Murtra et al., 2014; Maynard-Smith, 2000).

A satisfactory connection between natural selection and information theory can be obtained by mapping our survival function ρ into Shannon’s transmitter-receiver scheme. To do so we consider replicators at an arbitrary generation T attempting to “send” a message to (i.e. getting replicated into) a later generation $T + 1$. Hence, the older generation acts as a transmitter, the newer one becomes a receiver, and the environment and its contingencies constitute the channel through which the embodied message must be conveyed (figure 2a). From a more biological perspective, we can think of a genotype as a generative model (the instructions in an algorithm) that produces a message that must be transmitted. That message would be embodied by a phenotype and it includes every physical process and structure dictated by the generative model. As discussed by von Neumann & Burks (1966), any replicating machine must pass on a physically embodied copy of its instructions – hence the phenotype must also include a physical realization of the algorithm encoded by the genotype\(^1\). Finally, any evolutionary pressure (including the interaction with other replicating signals) can be included as contrivances of the channel.

Following a similar idea of messages being passed from one generation to the next one, Maynard-Smith (2000) proposes that the replicated genetic message carries meaningful information that must be protected against the channel contingencies. Let us instead depart from a replicating message devoid of meaning. We realize that the channel itself would convey more reliably those messages embodied by a phenotype that better deals with the environmental (i.e. channel) conditions. Dysfunctional messages are removed due to natural selection. Efficient signals get more space in successive generations (figure 2b). Through this process meaningful bits of environmental information are pumped into the replicating signals, such that the information in future messages will anticipate those channel contingencies. In our picture, meaningful information is not protected against the channel conditions (including noise), but emerges naturally from them.

\(^1\) Note that many of the phenotypic structures built in order to get replicated are later dismissed (think, e.g., about the germ vs. somatic cell lines). We present a clear division between genotype and phenotype for sake of illustration. We are aware of the murky frontier between these concepts.

A. Messages, channels, and bit guessers

Let us first introduce our implementation of environments (channels), messages, and the replicating agents. The later will be dubbed bit-guessers because efficient transmission will be equivalent to accurately predicting channel conditions – i.e. to correctly guessing as many bits about the environment as possible. The notation that follows may seem arid, so it is good to retain a central picture (figure 3): Guessers G posses a generative model Γ^G that must produce messages that fare well in an environment E. Both these messages and the environments are modeled as strings of bits. What follows is a rigorous mathematical characterization of how the different bit sequences are produced.

Let us consider m-environments, strings made up of m sorted random bits. We might consider one single such m-environment – i.e. one realization E of m sorted random bits ($e_i \in E, i = 1, \ldots, m ; e_i \in \{0,1\}$). Alternatively, we might work with the ensemble E^m of all m-environments – i.e. all possible environments of the same size ($e_{i,l} \in E_l, i = 1, \ldots, m$; where $E_l \in E^m , l = 1, \ldots, 2^m$) – or we might work with a sample \hat{E}^m of this ensemble ($E_l \in \hat{E}^m , l = 1, \ldots, ||\hat{E}^m||$; where $\hat{E}^m \subset E^m$). We might evaluate the performance of our bit guessers in single m-environments, in a whole ensem-
These \(m\)-environments model the channels of our information theory approach. Attempting to transmit a message through this channel will be implemented by trying to guess \(n\)-sized words from within the corresponding \(m\)-environment. More precisely, given an \(n\)-bit message \(W\) (with \(n < m\)) which an agent tries to transmit, we extract an \(n\)-sized word (\(B \subset E\)) from the corresponding \(m\)-environment. Therefore, we choose a bit at a random position in \(E\) and the successive \(n - 1\) bits. These make up the \(b_i \in B\), which are compared to the \(w_i \in W\). Each \(w_i\) is successfully transmitted through the channel if \(w_i = b_i\). Hence attempting to transmit messages effectively becomes an inference task: if a guesser can anticipate the bits that follow, it has a greater chance of sending messages through. Messages transmitted equal bits copied into a later generation, hence increasing the fitness of the agent.

In this paper we allow bit-guessers a minimal ability to react to the environment. Hence, instead of attempting to transmit a fixed word \(W\), they are endowed with a generative model \(\Gamma^G\). This mechanism (explained below) builds the message \(W\) as a function of the broadcast history:

\[w_i = w_i(w_1, \ldots, w_{i-1}; b_1, \ldots, b_{i-1}). \]

Hence, the fitness of a generative model is rather based on the ensemble of messages that it can produce. To evaluate this, our guessers attempt to transmit \(n\)-bit words many (\(N_g\)) times through a same channel. For each one of these broadcasts, a new \(n\)-sized word \(B^j \subset E\) (with \(b'_i \in B^j\) for \(j = 1, \ldots, N_g\) and \(i = 1, \ldots, n\)) is extracted from the same \(m\)-environment; and the corresponding \(W^j\) are generated, each based on the broadcast history as dictated by the generative model (see below).

We can calculate different frequencies with which the guessers or the environments present bits with value \(k, k' \in \{0,1\}\):

\[p^G(k; i) = \frac{1}{N_g} \sum_{j=1}^{N_g} \delta(w'_i, k), \]

(4)

\[p_E(k'; i) = \frac{1}{N_g} \sum_{j=1}^{N_g} \delta(b'_i, k'), \]

(5)

\[p_{G,E}(k, k'; i) = \frac{1}{N_g} \sum_{j=1}^{N_g} \delta(w'_i, k) \delta(b'_i, k'), \]

(6)

\[p^G_E(i) = \frac{1}{N_g} \sum_{j=1}^{N_g} \delta(w'_i, b'_j) \Rightarrow \]

(7)

\[\Rightarrow p^G_E = \frac{1}{n} \sum_{i=1}^{n} p^G_E(i); \]

(8)

with \(\delta(x, y)\) being Dirac’s delta. Note that \(p^G(k; i)\) has a subtle dependency on the environment (because \(G\) may react to it) and that \(p^G_E\) indicates the average probability that guesser \(G\) successfully transmits a bit through channel \(E\).

Thanks to these equations we can connect with the cost and reward functions introduced before. For every bit that attempts to be transmitted, a cost \(c\) is paid. A reward \(r = c/\alpha\) is cashed in only if that bit is successfully received. \(\alpha\) is a parameter that controls the payoff. The survival function reads:

\[p^G_E(\alpha) = (p^G - \alpha)r, \]

(9)

and \(p^G_E\) can be read from equation 5. As a rule of thumb, if \(p^G_E > \alpha\) the given guesser fares well enough in the proposed environment.

It is useful to quantify the entropy per bit of the messages produced by \(G\):

\[H(G) = -\frac{1}{n} \sum_{i=1}^{n} p^G(k; i) \log(p^G(k; i)), \]

(10)

and the mutual information between the messages and the environment:

\[I(G : E) = \frac{1}{n} \sum_{i=1}^{n} \sum_{k, k'} p_{G,E}(k, k'; i) \times \]

log\left(\frac{p_{G,E}(k, k'; i)}{p^G(k; i)p_E(k'; i)}\right). \]

(11)

To evaluate the performance of a guesser over an ensemble \(\hat{E}^m\) of environments (instead of over single environments) we attempt \(N_g\) broadcasts over each of \(N_e\) different environments \((E_l \in \hat{E}^m, l = 1, \ldots, N_e \equiv ||\hat{E}^m||)\) of a given size. For simplicity, instead of labeling \(b'_i, i\), we stack together all \(N_g \times N_e\) \(n\)-sized words \(W^j\) and \(B^j\). This way \(b'_i \in B^j\) and \(w'_i \in W^j\) for \(i = 1, \ldots, n\) and \(j = 1, \ldots, N_gN_e\). We have \(p^G(k; i), p_{E}(k'; i), p_{G,E}(k, k'; i), p_{G,E}(i), \) and \(p^G_{E}(i)\) defined just as in equations 5-8, only with \(j\) running through \(j = 1, \ldots, N_gN_e\). Also as before, we average the payoff across environments to determine whether a guesser’s messages get successfully transmitted or not given \(\alpha\) and the length \(m\) of the environments in the ensemble:

\[p^G_{E}(\alpha) = (p^G_{E} - \alpha)r. \]

(12)

Note that

\[I(G : \hat{E}^m) = \frac{1}{n} \sum_{i=1}^{n} \sum_{k, k'} p_{G,E}(k, k'; i) \times \]

\[\sum_{i=1}^{n} \sum_{k, k'} p_{G,E}(k, k'; i) \times \]

\[\sum_{j=1}^{N_g} \sum_{k, k'} \delta(w'_i, b'_j) = \]

\[\Rightarrow p^G_{E} = \frac{1}{n} \sum_{i=1}^{n} p^G_{E}(i); \]

(8)
is different from
\[
\langle I(G : E) \rangle_{E^m} = \frac{1}{N_e} \sum_{i=1}^{N_e} I(G : E_i). \quad (14)
\]

We use \(\langle \cdot \rangle_{E^m} \) to indicate averages across environments of an ensemble \(E^m \).

Finally, we discuss the generative models at the core of our bit-guessers. These are mechanisms that produce \(n \)-sized strings of bits, partly as a reaction to contingencies of the environment. Such message-generating processes \(\Gamma^G \) could be implemented in different ways, including Artificial Neural Networks (ANNs) (Hopfield 1988), spiking neurons (Maass & Bishop 2001), Bayesian networks (Jensen 1996; Pearl 1988), Turing machines (Turing 1936), Markovian chains (Markov 1971), \(\epsilon \)-machines (Crutchfield & Young 1989), Random Boolean Networks (RBNs) (Kaufman 1993), among others. These devices elaborate their guesses through a series of algorithms (e.g. back-propagation, message passing, or Hebbian learning) provided they have access to a sample of their environment.

In the real world, trial and error and evolution through natural selection would be the algorithm wiring the \(\Gamma^G \) (or, in a more biological language, a genotype) into our agents. The dynamics of such evolutionary process are very interesting. However, in this paper we aim at understanding the limits imposed by a channel’s complexity and the cost of inference, not the dynamics of how those limits may be reached. Therefore, we assume that our agents perform an almost perfect inference given the environment where they live. This best inference will be hard-wired in the guesser’s generative model \(\Gamma^G \) as explained right ahead.

A guesser’s generative model usually depends on the environment where it is deployed, so we note \(\Gamma^G_E \equiv \Gamma^G \). This \(\Gamma^G_E \) will consist of a pool of bits \(g_i \in \Gamma^G \) (figure 3) and a series of rules dictating how to emit those bits: either in a predetermined order or as a response to the channel’s changing conditions. Whenever we pick up an environment \(E = \{e_i, i = 1, \ldots, m\} \), the best first guess possible will be the bit (0 or 1) that shows up with more frequency. Hence:

\[
\Gamma^G_E(1) = g_i = \max_{k'} \{ p_{E^G}(k';1) \}; \quad (15)
\]

If both 0 and 1 appear equally often we choose 1 without loss of generality. If the agent succeeds in its first guess, its safest next bet is to emit the bit (0 or 1) that more frequently follows \(g_i \) in the environment. We proceed similarly if the first two bits have been correctly guessed, if the first three bits have been correctly guessed, etc. We define \(p_{B^G}(k; i) \) as the probability of finding \(k = \{0, 1\} \) at the \(i \)-th position of the \(B^G \) word extracted from the environment, provided that the guess so far is correct:

\[
p_{B^G}(k' ; i) = \frac{1}{Z(i)} \sum_{j=1}^{m} \delta (b^j_i, k') \prod_{i' = 1}^{i-1} \delta (b^j_{i'}, g_{i'}). \quad (16)
\]

The index \(j \), in this case, labels all \(n \)-sized words within the environment \((b^j_i \in B^G \subset E) \) and \(Z(i) \) is a normalization constant that depends on how many words in the environment match \(\Gamma^G_E \) up to the \((i - 1) \)th bit:

\[
Z(i) = \sum_{j=1}^{m} \prod_{i' = 1}^{i-1} \delta (b^j_{i'}, g_{i'}). \quad (17)
\]

It follows:

\[
\Gamma^G_E(i = 2, \ldots, n) \equiv g_i = \max_{k'} \{ p_{B^G}(k' ; i) \}. \quad (18)
\]

Note that the pool of bits in \(\Gamma^G_E \) consists of an \(n \)-sized word, which is what they try to emit through (i.e. it constitutes the guess about) the channel. If a guesser would not be able to react to environmental conditions, the word \(W \) that is actually generated at every emission would be the same in every case and \(w^i_l = g_i \) always; but we allow our guessers a minimal reaction if one of the bits fails to get through (i.e. if one of the guesses is not correct). This minimal reaction capacity by our guessers results in:

\[
w^i_l = \Gamma^G_E(i = l) = g_{i-l}. \quad (19)
\]

where \(l \) is the largest \(i \) at which \(w^i_l \neq b^l_i \). This means that a guesser restarts the broadcast of \(\Gamma^G_E \) whenever it
makes a mistake3.

All together, our guesser consists of a generative model Γ^G that contains a pool of bits and a simple conditional instruction. This is reflected in the flow chart in figure 3.

We have made a series of choices regarding how to implement environmental conditions. These choices affect how some randomness enters the model (reflected in the implement environmental conditions. These choices affect our guessers (including their minimal adaptability to wrong guesses). We came up with a scheme that codes guessers, environments (or channels), and messages as bit strings. This allows us a direct measurement of information-theoretical features which are suitable for our discussion, but the conclusions at which we arrive should be general. Survival will depend on an agent's ability to embody meaningful information about its environment. This will ultimately be controlled by the underlying cost-efficiency tradeoff.

Because of the minimal implementation discussed, all bit-guessers of the same size are equal. Environmental ensembles of a given size are considered equivalent as well. Hence, the notation is not affected if we identify guessers and environments by their sizes. Accordingly, in the following we substitute the labels G and E by the more informative ones n and m respectively. Hence $\rho^G_{E_m}(\alpha)$ becomes $\rho^n_{m}(\alpha)$, \bar{p}^G_{E} becomes \bar{p}^n_{m}, etc.

III. RESULTS

The question that motivates this paper relates to the tradeoff between fast replication versus the cost of complex inference mechanisms. To tackle this we report a series of numerical experiments. Some of them deal with guessers in environment ensembles of fixed size, others allow guessers to switch between environment sizes to find a place where to thrive.

Our core finding is that the complexity of the guessers that can populate a given environment is determined by the complexity of the later. (In information theoretical terms, the complexity of the most efficiently replicated message follows from the predictability of the channel.) Back to the fast replication vs complexity question, we find environments for which simple guessers die off, but in which more complex life flourishes – thus offering a quantifiable model for real-life excursions in biological complexity.

Besides verifying mathematically that the conditions for complex life exist, our model allows us to explore and quantify when and how guessers may be pushed to m-environments of one size or another. We expect to use this model to investigate this question in future papers. As neat examples, at the end of this paper we report i) the evolutionary dynamics established when guessers are forced to compete with each other, and ii) how the fast replication vs complexity tradeoff is altered when resources can be exhausted. These are two possible evolutionary drivers of complex life, as our numerical experiments show.

A. Numerical limits of guesser complexity

Figure 4 shows \bar{p}^n_{m}, the average probability that n-guessers correctly guess 1 bit in m-environments. The 1-guesser (that lives off maximally decorrelated bits given the environment) establishes a lower bound. More complex machines will guess more bits on average, except for infinite environment size $m \to \infty$, at which point all guessers have equivalent predictive power.

As m grows, environments get less and less predictable. Importantly, the predictability of shorter words decays faster than that of larger ones, thus enabling guessers with larger n to survive where others would perish. There are 2^n possible n-words, of which m are realized in each m-environment. When $m >> 2^n$, the environment im-

3 Note that more elaborated guessers would not only reset their guess. They might browse through a tree with conditional instructions at every point. Besides an extended memory to store the growing number of branches, they would also require nested if-else instructions. On the other hand, ANNs or Bayesian networks might implement such tree-browsing without excessive if-else costs.
implements an efficient, ergodic sampling of all \(n \)-words – thus making them maximally unpredictable. When \(n \lesssim m < 2^n \) the sampling of \(n \)-sized words is far from ergodic and a non-trivial structure is induced in the environment because the symmetry between \(n \)-sized words is broken – they cannot be equally represented due to finite size sampling effects.

This allows that complex guessers (those with the ability to contemplate larger words, keep them in memory, and make choices regarding information encoded in larger strings) can guess more bits, on average, than simpler agents. In terms of messages crossing the channel, while shorter words are meaningless and basically get transmitted (i.e. are correctly guessed) by chance alone, larger words might contain meaningful, non-trivial information that get successfully transmitted because they cope with the environment in an adequate way.

Note that this symmetry breaking to favor predictability of larger words is just a mechanism that allows us to introduce correlations in a controlled and measurable way. In the real world this mechanism might correspond to asymmetries between dynamical systems in temporal or spatial scales. Although our implementation is rather ad hoc (suitable to our computational and conceptual needs), we propose that similar mechanisms might play important roles in shaping life and evolving the universe with meaningful information. Indeed, it might be extremely rare to find a kind of environment in which words of all sizes become non-informative simultaneously.

The mutual information between a guesser’s response and the environment (i.e. between broadcast messages and channel conditions) further characterizes the advantages of more complex replicators. Figure 5a shows \(I(G : E_m) \) and \(\langle I(G : E) \rangle_{E_m} \). As we noted above, these quantities are not the same. Let us focus on \(1 \)-guessers for a moment to clarify what these quantities encode.

Given an \(m \)-environment, \(1 \)-guessers have got just one bit that they try to emit repeatedly. They do not react to the environment – there is no room for any reaction within one bit, so their guess is persistently the same. The mutual information between the emitted bit and the arbitrary words \(B \subset E \) that \(1 \)-guessers come across is precisely zero, as shown in the inset of figure 5a. Hence, \(\langle I(G : E) \rangle_{E_m} \) captures the mutual information due to the slight reaction capabilities of guessers to the environmental conditions.

While the bits emitted by \(1 \)-guessers do not correlate with \(B \subset E \), they do correlate with each given \(E \) since they represent the most frequent bit in the environment. Accordingly, the mutual information between a \(1 \)-guesser and the aggregated environments (reflected by \(I(G : E_m) \)) is different from zero (figure 5a). To this quantity contribute both the reaction capability of guessers and the fact that they have hard-wired a near-optimal guess in \(\Gamma^G_m \), as explained in section II.A.

We take the size of a guesser \(n \) as a crude characterization of its complexity. This is justified because larger guessers can store more complex patterns. \(\langle H(G) \rangle_{E_m} \) indicates that more complex guessers look more entropic than less complex ones (figure 5b). Larger guessers come closer to the entropy level of the environment (black thick line in figure 5b), which itself tends rapidly to \(\log(2) \) per bit. Better performing guessers appear more disordered to an external observer even if they are better predictors when considered within their context. Note that \(\langle H(G) \rangle_{E_m} \) is built based on the bits actually emitted by the guessers. In biological terms, this would mean that this quantity correlates with the complexity of the phenotype. For guessers of fixed size \(n \), we observe a slight decay of \(\langle H(G) \rangle_{E_m} \) as we proceed to larger environments.

The key question is whether the payoff may be favorable for more complex guessers provided that they need a more costly machinery in order to get successfully reproduced. As discussed above, if we would use, e.g., Artificial Neural Networks or Bayesian Inference Graphs to model our guessers, a cost could be introduced for the number of units, nodes, or hidden variables. These questions might be worth studying somewhere else. Here we are interested in the mathematical existence of such favorable tradeoff for more complex life. To keep the discussion simple bit guessers incur only in a cost proportional to the number of bits that they try to transmit. Note that we do not lose generality because such limit cost shall always exist. Equation 12 captures all the forces involved: the cost of transmitting longer messages versus the reward of a successful transmission.

Guessers of a given size survive in an environment ensemble if, on average, they can guess enough bits of the environment or, using the information theory picture, if they can convey enough bits through the channel (in any case, they survive if \(\rho^m_m > \alpha \), which implies \(\rho^m_m > 0 \)). Setting a value of \(\alpha \) we find out graphically \(\bar{m}^n(\alpha) \), the largest environment at which \(n \)-guessers survive (figure 1 inset). Because \(m \)-environments look more predictable to more complex guessers we have that \(\bar{m}^n(\alpha) > m^n(\alpha) \) if \(n > n' \). This guarantees that for \(\alpha > 0.5 \) there always exist \(m \)-environments from which simple life is banned while more complex life can thrive – i.e. situations in which environmental complexity is an explicit driver towards more complex life forms.

This is the result that we sought. The current model allows us to illustrate mathematically that limit conditions exist under which more complex and costly inference abilities can overcome the pressure for fast and cheaper replication. Also, the model allows for explicit, information theoretically-based quantification of such a limit.

B. Evolutionary drivers

Despite its laborious mathematical formulation, we think that our bit-guesser model is very simple and ver-
fore, let us evaluate an n-guesser $N_g \cdot N_e$ times in a sample of the m-environment ensemble. Let us also look at $\hat{\rho}_m^n(\alpha, N_g, N_e)$, the accumulated reward after these $N_g \cdot N_e$ evaluations – note that $\hat{\rho}_m^n$ is an empirical random variable now. If $\hat{\rho}_m^n(\alpha, N_g, N_e) > 0$, the n-guesser fares well enough in this m-environment and it is encouraged to explore a more complex one. As a consequence, the guesser is promoted to an $(m+1)$-environment, where it is evaluated again. If $\hat{\rho}_m^n(\alpha, N_g, N_e) < 0$, this m-environment is excessively challenging for this n-guesser, and it is demoted to an $(m-1)$-environment. Note that the n-guesser itself remains with a fixed size throughout. It is the complexity of the environment that changes depending on the reward accumulated.

As we repeatedly evaluate the n-guesser, some dynamics are established which let the guesser explore more or less complex environments. The steady state of these dynamics is characterized by a distribution $P^m(m, \alpha)$. This tells us the frequency with which n-guessers are found in environments of a given size (figure 4). Each n-guesser has its own distribution that captures the environmental complexity that the guesser deals more comfortably with. The overlaps and gaps between $P^m(m, \alpha)$ for different n suggest that: i) some guessers would engage in harsh competition if they needed to share environments of a given kind and ii) there is room for different guessers to get segregated into environments of increasing complexity.

The average

$$\hat{m}^n(\alpha) = \sum_m m P^m(m, \alpha)$$

(20)

should converge to $\hat{m}^n(\alpha) \simeq \hat{m}^n(\alpha)$ under the appropriate limit. This is, if we evaluate the guessers numerically enough times, the empirical value $\hat{m}^n(\alpha)$ should converge to the mean field value $\bar{m}^n(\alpha)$ shown in the inset of figure 6. Figure 7 shows dynamically-derived averages $\hat{m}^n(\alpha)$ and some deviations around them as a function of α.

It is easily justified that guessers drop to simpler environments if they cannot cope with a large complexity. It is less clear why they should seek more complicated environments if they thrive in a given one. This might happen if some external force drives them. For example if simpler guesses (which might be more efficient in simpler environments) have already crowded the place. Let us remind, from figure 4, how given an environment size m much more complex guessers can always accumulate a larger reward. This might suggest that complex guessers always pay off, but the additional complexity might become a burden in energetic terms – consider, e.g., the exaggerated metabolic cost of mammal brains. It is non-trivial how competition dynamics between guessers of different size can play out. Let us gain some insights by looking at a simple model.

n-guessers with $n = 0, 1, 2, 3$, and 4 were randomly distributed occupying 100 environments, all of them with

satellite. We think that it can easily capture fundamental information-theoretical aspects of biological systems. In future papers we intend to use it to further explore relationships between guessers and environments, within ecological communities, or in more simple symbiotic or parasitic situations. To illustrate how this could work out we present now some minimal examples.

Let us first explore some dynamics in which guessers are encouraged to explore more complex environments, but this same complexity can become a burden. As be-

![Figure 5](image-url)

FIG. 5 Mutual information and entropy. Guessers with $n = 1$ (crosses), $n = 2$ (squares), $n = 5$ (pluses), and $n = 10$ (triangles) are presented. a $I(G : E_m)$ and $\langle I(G : E) \rangle_{E_m}$ (inset) quantify the different sources of information that allow more complex guessers to thrive in environments in which simpler life is not possible. b The entropy of a guesser’s message given its environment seems roughly constant in these experiments despite the growing environment size. This suggests an intrinsic measure of complexity for guessers. Larger guessers look more random even if they might carry more meaningful information about their environment. The thick black line represents the average entropy of the environments (which approaches log(2)) against which the entropy of the guessers can be compared.
Fixed size m. These guessers were assigned an initial $\hat{\rho}_i(t = 0) = n_{p0}$. Here, $i = 1, \ldots, 100$ labels each one of the 100 available guessers. Larger guessers start out with larger $\hat{\rho}_i(t = 0)$ representing that they come into being with a larger metabolic load satisfied. A 0-guesser represents an unoccupied environment. New empty environments might appear only if actual ($n \neq 0$) guessers die, as we explain below. We tracked the population using $P^n(n,t)$, the proportion of 0-, 1-, 2-, 3-, and 4-guessers through time4.

At each iteration, a guesser (say the i-th one) was chosen randomly and evaluated with respect to its environment. Then the wasted environment was replaced by a new, random one with the same size. We ensured that every guesser attempts to guess the same amount of bits on average. This means, e.g., that 1-guessers are tested twice as often as 2-guessers, etc. If after the evaluation we found that $\hat{\rho}_i(t + \Delta t) < 0$, then the guesser died and it was substituted by a new one. The n of the new guesser was chosen randomly after the current distribution $P^n(n,t)$. If $\hat{\rho}_i(t + \Delta t) > 2n_{p0}$, the guesser got replicated and shared its $\hat{\rho}_i$ with its daughter, who overrode another randomly chosen guesser. This replication at $2n_{p0}$ represents that, before creating a similar agent, parents must satisfy a metabolic load that grows with their size. There is a range ($0 < \hat{\rho}_i < 2n_{p0}$) within which guessers are alive but do not replicate.

Of course, this minimal model is just a proxy and softer constraints could be placed. These could allow, e.g., for random replication depending on the accumulated $\hat{\rho}_i(t + \Delta t)$, or for larger progeny if $\hat{\rho}_i(t + \Delta t) >> 2n_{p0}$. These are interesting variations that might be worth exploring. There are also some insights to be gained from the simple setup considered here. We expect that more complex models will largely inherit the exploratory results that follow.

Figure 6a and b show $P^n(n,t = 10000)$ with $\alpha = 0.6$ and 0.65. Note that for large environments all guessers combined do not add up to 100. Indeed, they fall short from that number — i.e. mostly empty slots remain. The most abundant guesser after 10,000 iterations is shown in figure 7 as a function of m and α.

These plots show how guessers naturally segregate in environments depending on their complexity, with simpler guessers crowding simpler environments as suggested above. In such simple environments, the extra reward earned by more complex guessers does not suffice to overcome their energetic cost and they lost in this direct competition. They are, hence, pushed to more complex environments where their costly inference machinery pays off.

After 10,000 iterations we also observe cases in which different guessers coexist. This means that the mathematical limits imposed by this naive model do not imply an immediate, absolute dominance of the fittest guesser. Interesting temporal dynamics might arise and offer the possibility to model complex ecological interactions.

So far our guessers only interacted with the environment in a passive way, by receiving the reward that the

4 These experiments were the more computationally demanding, that is why we took $n = 1, 2, 3, 4$ instead of the values $n = 1, 2, 5, 10$ used throughout the paper. The insights gained from the simulations do not depend on the actual values of n.
Coexisting replicators will affect each other’s environments in non-trivial ways which may often result in competition. We implement a dynamics in which 1-, 2-, 3-, and 4-guessers exclusively occupy a finite number of environments of a given size (fixed \(m \)). The 100 available slots are randomly occupied at \(t = 0 \) and granted to the best replicators as the dynamics proceed. We show \(P_n(n, t = 10000) \) for \(m = 5, \ldots, 39 \) and \(\alpha = 0.6 \) (a), \(\alpha = 0.65 \) (b). The most abundant guesser at \(t = 10000 \) is shown for \(\alpha \in (0.5, 1) \) (c) and \(\alpha \in (0.6, 0.7) \) (d). Once \(m \) is fixed, there is an upper value of \(\alpha \) above which no guesser survives and all 100 available slots remain empty. Competition and the replication-predictability tradeoff segregate guessers according to the complexity of the environment – i.e. the transmission channel. Coexistence of different guessers seems possible (e.g. \(m = 15 \) in b), but it cannot be guaranteed that the dynamics have converged to a steady distribution.

corresponding \(m \)-environment dictates. But living systems also shape their niche in return. Such interplay can become very complicated and we think that our model offers a powerful exploratory tool. Let us study a very simple case in which the actions of the guessers (i.e. their correctly guessing a bit or not) affect the reward that an environment can offer.

To do so we rethink the bits in an environment as resources that can be exhausted if correctly guessed, but also replenished after enough time has elapsed. Alternatively, thinking from the message broadcasting perspective, a spot on the channel might appear crowded if it is engaged in a successful transmission. Assume that every time that a bit is correctly guessed it gets exhausted (or gets crowded) with an efficiency \(\beta \) so that on average each bit cannot contribute any reward \(\beta \hat{p}_m/m \) of the time. The average reward extracted by a guesser from an ensemble becomes:

\[
\hat{r}_m = \left(1 - \beta \frac{\bar{p}_m}{m}\right) \hat{p}_m r,
\]

which is plotted for 1-, 2-, 5-, and 10-guessers and \(\beta = 1 \) in figure 6.

Smaller guessers living in very small environments quickly crowd their channels (alternatively, exhaust the resources they depend on). In figure 6 (still with \(\beta = 1 \)) given some \(\alpha \), 1- and 2-guessers can only survive within some under and upper limits (figure 5). Furthermore, the slope of the curves around these limits also tell us important information. If these guessers dwell in environments around the lower limit (i.e. near the smallest \(m \)-environment where they can persist), then moving to larger environments will always report larger rewards. But if they dwell close to the upper limit, moving to larger environments will always be detrimental. In other words, dynamics such as the one introduced at the beginning of this section (illustrated in figure 6a) would have respectively unstable and stable fixed points in the upper and lower limits of persistence.

This simple model illustrates how scarcity of resources (and, more general, other kinds of guesser-environment interactions) might play an important role as evolutionary drivers towards more complex life. This does not intend to be an exhaustive nor a definitive model, just an illustration of the versatility of the bit-guessers and environments introduced in this paper.

IV. DISCUSSION

In this paper we have considered a fundamental question related to the emergence of complexity in living systems. The problem being addressed here is whether the mathematical conditions exist such that mode complex organisms can overcome the cost of their complexity by developing a higher potential to predict the external environment. As suggested by several authors (Friston, 2013; Jacob, 1998; Wagensberg, 2000) the behavioral plasticity provided by the exploratory behavior of living systems can be understood it terms of their potential for dealing with environmental information (Gerhart and Kirschner, 1997).

Our models make an explicit approach by considering a replication-predictability tradeoff under very general assumptions, namely: i) More complex environments look more unpredictable to simpler replicators and ii) Agents that can keep a larger memory and make inferences based on more elaborated information can extract enough valuable bits from the environment as to survive in those more challenging situations. Despite the inevitable cost inherent to the cognitive machinery, a selection process towards more complex life is shown to exist. This paves
Evolutionary drivers: exhausted resources. Rather than monopolizing channel slots (as in figure 5), we can also conceive individual bits as valuable, finite resources that get exhausted whenever they are correctly guessed. Then a successful replicator can spoil its own environment and new conditions might apply to where life is possible. Average reward obtained by 1-, 2-, 5-, and 10-guessers in environments of different sizes when bits get exhausted with efficiency $\beta = 1$ whenever they are correctly guessed. Given $\alpha = 0.575$ and $\alpha = 0.59$, 1- and 2-guessers can survive within upper and lower environment sizes. If the environment is too small, resources get consumed quickly and cannot sustain the replicators. In message transmission language, the guessers crowd their own channel. If the environment is too large, unpredictability takes over for these simple replicators and they perish.

This way of integrating information theory and Darwinian evolution is convenient to analyze the questions at hand that concern the emergence of complex life forms. But it also suggests further research lines. As discussed at the beginning of the paper, guessers and their transmissible messages might and should shape the transmission channel (e.g., by crowding it, as explored briefly in section III.B). What possible co-evolutionary dynamics between guessers and channels can be established? Are there stable ones, others leading to extinction, etc? Do some of them, perhaps, imply open-ended evolution? Which ones? These are questions that relate tightly to the phenomenon of niche construction. We propose that they can be easily modeled within the proposed bit-guesser paradigm. Further exploring the versatility of the model, a guesser’s transmitted message might be considered an environment in itself; thus opening the door to ecosystem modeling based on bare information theory. It is also suggested the exploration of different symbiotic relationships from this perspective and how they might affect coevolution.

Finally, an important question was left aside that concerns the memory vs adaptability tradeoff of bit guessers. Here we studied guessers with a minimal adaptability to focus on the emerging hierarchy of complexity. Adaptability at faster (say, at behavioral) temporal scales is linked to more complex inferences with richer dynamics. This brings in new dilemmas as to how to weight the different building blocks of complex inference — e.g., how do we compare memory and if-else or while instructions? These and other questions are left for exploration in future research.
Acknowledgments

The authors thank the members of the Complex Systems Lab, and Max Tegmark, Jeremy Owen, Henry Lin, Jordan Horowitz, and David Wolpert for very useful discussions. This study was supported by an European Research Council Advanced Grant (SYNCOM), the Botin Foundation, by Banco Santander through its Santander Universities Global Division and by the Santa Fe Institute. This work has also been supported by the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya.

References

Adami, C., 2012. The use of information theory in evolutionary biology. *Ann. N. Y. Acad. Sci.*, 1256(1), pp.49-65.
Bergstrom, C.T. and Lachmann, M., 2004. Shannon information and biological fitness. In *Information Theory Workshop*, 2004. IEEE (pp.50-54).
Bonner, J.T., 1988. *EVOLUTIONARY STUDIES Dedicated to Leslie Orgel on the occasion of his 70th birthday*. Origins Life Evol. B., 27(5-6), 437-457.
Crutchfield, J. P. & Young, K. 1989 Inferring statistical complexity. *Phys. Rev. Lett.*, 63(2), 105.
Dall, S.R., Giraldeau, L.A., Olsson, O., McNamara, J.M. and Stephens, D.W., 2005. Information and its use by animals in evolutionary ecology. *Trends Ecol. Evol.*, 20(4), pp.187-193.
Dall, S.R. and Johnstone, R.A., 2002. Managing uncertainty: information and insurance under the risk of starvation. *Phil. T. Roy. Soc. B*, 357(1427), pp.1519-1526.
Donaldson-Matasci, M. C., Bergstrom, C. T., & Lachmann, M 2010 The fitness value of information. *Oikos*, 119(2), 219-230.
Donaldson-Matasci, M.C., Lachmann, M. and Bergstrom, C.T., 2008. Phenotypic diversity as an adaptation to environmental uncertainty. *Evol. Ecol. Res.*, 10(4), pp.493-515.
Drossel, B. 2001 Biological evolution and statistical physics. *Adv. Phys.* 50(2), 209-295.
England, J.L., 2013. Statistical physics of self-replication. *The Journal of chemical physics*, 139(12), p.121923.
Evans, J.C., Volter, S.C. and Dall, S.R., 2015. Information use in colonial living. *Biol. Rev.*, DOI: 10.1111.
Friston, K. 2013 Life as we know it. *J. R. Soc. Interface, 10*(86), 20130475.
Gerhart, J. and Kirschner, M. 1997. *Cells, embryos, and evolution*. Blackwell Science.
Goldenfeld, N., & Woese, C. 2010 Life is physics: evolution as a collective phenomenon far from equilibrium. arXiv preprint [arXiv:1011.4125].
Gould, S. J. 2011 *Full house*. Harvard, MA: Harvard University Press.
Hidalgo, J., Grilli, J., Suweis, S., Muñoz, M.A., Banavar, J.R. and Maritan, A., 2014. Information-based fitness and the emergence of criticality in living systems. *Proc. Nat. Acad. Sci.*, 111(28), pp.10095-10100.
Hilbert, M., 2015. Fitness as Informational Fit: The Communication Channel between the Evolving Population and Its Environment. Available at SSRN 2619963.
Hopfield, J. J. 1988 Artificial neural networks. *IEEE Circuits Devices Mag.*, 4(5), 3-10.
Jablonska E and Lamb M.J. 2006. The evolution of information in the major transitions. *J. Theor. Biol.* 239, 236-246.
Jacob, F. 1998 *On flies, mice and man*. Harvard, MA: Harvard University Press.
Jaynes, E.T., 1957. Information theory and statistical mechanics. *Phys. Rev.*, 106(4), p.620.
Jaynes, E.T., 1957. Information theory and statistical mechanics. II. *Phys. Rev.*, 108(2), p.171.
Jensen, F. V. 1996 *An introduction to Bayesian networks*. London: UCL press.
Joyce, G. F. 2002 Molecular evolution: Booting up life. *Nature* 420, 278-279. doi:10.1038/429278a
Joyce, G. F. 2012 Bit by Bit: The Darwinian Basis of Life. *PLoS Biol.* 10(5), e1001323. doi:10.1371/journal.pbio.1001323
Kacian, D. L., Mills, D. R., Kramer, F. R., & Spiegelman, S. 1972 A replicating RNA molecule suitable for a detailed analysis of extracellular evolution and replication. *Proc. Nat. Acad. Sci.*, 69(10), 3038-3042.
Kauffman, S. A. 1993 The origins of order: Self organization and selection in evolution. Oxford university press.
Krakauer, D.C., 2011. Darwinian demons, evolutionary complexity, and information maximization. *Chaos*, 21(3), p.037110.
Krakauer, D., Bertschinger, N., Olbrich, E., Ay, N. and Flack, J.C., 2014. The information theory of individuality. arXiv preprint [arXiv:1412.2447].
Kussell, E. and Leibler, S., 2005. Phenotypic diversity, population growth, and information in fluctuating environments. *Science*, 309(5743), pp.2075-2078.
Maass, W. & Bishop C.M. 2001 *Pulsed neural networks*. Cambridge, MA: MIT Press.
Markov, A., 1971. Extension of the limit theorems of probability theory to a sum of variables connected in a chain. *Marzen, S. and DeDeo, S., 2016. Weak universality in sensory tradeoffs. Physical Review E*, 94(6), p.060101.
Maynard-Smith, J. 2000 The concept of information in biology. *Philos. Sci.*, 67(2), 177-194.
Maynard-Smith, J. and Szathmáry, E. 1997. *The major transitions in evolution*. Oxford University Press.
McNamara, J.M. and Houston, A.I., 1987. Memory and the efficient use of information. *J. Theor. Biol.*, 125(4), pp.385-395.
von Neumann, J. & Burks, A. W. 1966 Theory of self-reproducing automata. *IEEE Trans. Neural Netw.*, 5, 3-14.
Nicolis, G. & Prigogine, I. 1977 Self-organization in nonequilibrium systems. New York, NY: Wiley, New York.
Nurse, P. 2008 Life, logic and information. *Nature* 454(7203), 424-426.
Oehlenschläger, F. & Eigen, M. 1997 30 Years Later – a New Approach to Sol Spiegelman’s and Leslie Orgel’s in vitro EVOLUTIONARY STUDIES Dedicated to Leslie Orgel on the occasion of his 70th birthday. Origins Life Evol. B., 27(5-6), 437-457.
Parrondo, J.M., Horowitz, J.M. and Sagawa, T., 2015. Thermodynamics of information. *Nature Phys.*, 11(2), pp.131-139.
Pearl, J., 1985. Bayesian network: A model of self-activated memory for evidential reasoning. University of California
(Los Angeles). Computer Science Department.
Perunov, N., Marsland, R. and England, J., 2014. Statistical
physics of adaptation. [arXiv:1412.1875].
Rivoire, O. and Leibler, S., 2011. The value of information
for populations in varying environments. J. Stat. Phys.,
142(6), pp.1124-1166.
Sartori, P., Granger, L., Lee, C.F. and Horowitz, J.M., 2014.
Thermodynamic costs of information processing in sensory
adaptation. PLoS Comput. Biol., 10(12), p.e1003974.
Schuster, P. 1996. How does complexity arise in evolution?
Complexity, 2(1), 22-30.
Segrè, D., Ben-Eli, D. and Lancet, D., 2000. Compositional
genomes: prebiotic information transfer in mutually cata-
lytic noncovalent assemblies. Proc. Nat. Acad. Sci., 97(8),
pp.4112-4117.
Segrè, D., Shenav B., Kafri, R. and Lancet, D., 2001.
The molecular roots of compositional inheritance. J. Theor.
Biol., 213(3), pp.481-491.
Shannon, C. E. 2001 A mathematical theory of communica-
tion. Bell Syst. Tech. J. 27(3), 379-423. doi:10.1002/j.1538-
7305.1948.tb01338.x
Shannon, C. E. & Weaver, W. 1949 The Mathematical Theory
of Communication. Univ of Illinois Press, 1949.
Szathmáry, E., 1989. The integration of the earliest genetic
information. Trends Ecol. Evol., 4(7), pp.200-204.
Szathmáry, E. and Maynard-Smith, J. 1997. From replicators
to reproducers: the first major transitions leading to life.
J. Theor. Biol. 187, 555-571.
Tkačik, G. and Bialek, W., 2014. Information processing in
living systems. arXiv preprint [arXiv:1412.8752]
Turing, A. M. 1936 On computable numbers, with an applica-
tion to the Entscheidungsproblem. J. of Math 58(345-363),
5.
Wagensberg J. 2000 Complexity versus uncertainty: the ques-
tion of staying alive. Biol. Phil. 15, 493-508.
Walker, S. I. & Davies C. W. 2012 The algorithmic origins of
life. J. Phys. Soc. Interface 10: 20120869.