Localization and universality of eigenvectors in directed random graphs

Fernando Lucas Metz

Physics Institute, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, Brazil and
London Mathematical Laboratory, 18 Margravine Gardens, London W6 8RH, United Kingdom

Izaak Neri

Department of Mathematics, Kings College London, Strand, London, WC2R 2LS, UK

(Dated: July 28, 2020)

Although the spectral properties of random graphs have been a long-standing focus of network theory, the properties of right eigenvectors of directed graphs have so far eluded an exact analytic treatment. We present a general theory for the statistics of the right eigenvector components in directed random graphs with a prescribed degree distribution and with randomly weighted links. We obtain exact analytic expressions for the inverse participation ratio and show that right eigenvectors of directed random graphs with a small average degree are localized. Remarkably, the critical mean degree for the localization transition is independent of the degree fluctuations. We also show that the dense limit of the distribution of the right eigenvectors is solely determined by the degree fluctuations, which generalizes standard results from random matrix theory. We put forward a classification scheme for the universality of the eigenvector statistics in the dense limit, which is supported by an exact calculation of the full eigenvector distributions. More generally, this paper provides a theoretical formalism to study the eigenvector statistics of sparse non-Hermitian random matrices.

Introduction. Complex systems, such as neural networks [1–3], ecosystems [4], and the World Wide Web [5–6], consist of components that interact along the edges of large directed networks. Therefore, a problem of fundamental importance is how network structure affects the properties of complex systems.

Much insight in the dynamics of a complex system is gained from the eigenvalues and eigenvectors of the adjacency matrix representing its interaction network. For example, the dynamics in the vicinity of a stationary state is governed by the eigenvalues and eigenvectors of the adjacency matrix [7, 8], which is important in the study of disease spreading [9–12], synchronization of coupled oscillators [13–14], and stability of biological systems, such as, neural networks [15–16], ecosystems [17–18], and gene regulatory networks [19–20].

Properties of eigenvectors of random graphs have been mainly studied for undirected graphs [30–43], where an important feature is the delocalization-localization transition. Localized eigenvectors occupy a few sites, whereas delocalized eigenvectors are extended over the whole system. In general, the delocalization-localization transition implies a qualitative change in the properties of a system. Examples are the metal-insulator phase transition in solid state physics [30–37], the transition from an algorithmically successful to a failure phase in spectral algorithms [29–44], and the transition from a phase governed by a collective mode to a phase governed by a localized mode in dynamical systems [10].

Besides that, eigenvector localization also impacts the efficiency of network centrality measures [25–45] and the propagation of perturbations in ecosystems [46].

The statistical properties and the localization of eigenvectors of directed random graphs have so far eluded a mathematical analysis. Notable exceptions are models defined on one-dimensional chains, such as the Hatano-Nelson model [47–48] and the Feinberg-Zee model [49] for the (de)pinning of vortex lines in superconductors. Recently these models have been extended to consider localization in one-dimensional biological systems [10–50].

In this Letter, we develop an exact theory for the statistical properties of the right (or left) eigenvectors of directed random graphs with a prescribed degree distribution and random couplings. We derive exact analytic expressions for the inverse participation ratio and for the critical point of the localization-delocalization transition. Surprisingly, when the moments of the degree distribution are finite, the critical point of the localization-delocalization transition is independent of the degree distribution. Moreover, the right eigenvectors are localized if the degree distribution has diverging moments. We also show that in the dense limit the statistics of the components of right eigenvectors are only determined by degree fluctuations. In this limit, we obtain distinct universality classes that depend on an exponent that quantifies the degree fluctuations.

Model set-up. We consider random matrices A of dimension $n \times n$ with elements

$$A_{ij} = J_{ij}C_{ij}, \quad i, j \in \{1, 2, \ldots, n\}, \quad (1)$$

where $C_{ij} \in \{0, 1\}$ are the entries of the adjacency matrix C of a directed random graph with a prescribed degree distribution

$$p_{K^{in}, K^{out}}(k, \ell) = p_{K^{in}}(k)p_{K^{out}}(\ell) \quad (2)$$

$$p_{K^{in}}(k) = \frac{\binomial{n-|\mathcal{E}|}{k}}{\binomial{n}{k}} \quad (3)$$

$$p_{K^{out}}(\ell) = \frac{\binomial{|\mathcal{E}|}{\ell}}{\binomial{n}{\ell}} \quad (4)$$

where $\binomial{n}{k}$ is the binomial coefficient, $|\mathcal{E}|$ is the number of edges, and \mathcal{E} is an exchangeable set of directed edges.
of indegrees K_{in} and outdegrees K_{out}. We set $C_{ij} = 1$ when there exists a directed link pointing from i to j, such that the outdegree (indegree) of the i-th node is given by $K_{out}^i = \sum_{j=1}^n C_{ij}$ ($K_{in}^i = \sum_{j=1}^n C_{ji}$). The J_{ij} are real-valued independent and identically distributed random variables drawn from a distribution $p_J(x)$.

Directed random graphs with a prescribed degree distribution [51–56] have been used to model the World Wide Web [5, 6] and neural networks [1, 3, 57]. In this model, the indegrees and outdegrees are drawn independently from Eq. (2) subject to the constraint $\sum_{j=1}^n K_{out}^i = \sum_{j=1}^n K_{out}^j$, and subsequently nodes are randomly connected according to the given degree sequences. Since the degree distributions are specified at the outset, this model provides the ideal setting to explore the influence of network topology on the spectral properties of A.

In what follows, brackets $\langle \cdot \rangle$ denote the average with respect to the distribution of A. In particular, we use

$$c = \langle K_{out} \rangle$$

for the mean outdegree, and we denote the variance of a random variable X by $\text{var}(X) = \langle X^2 \rangle - \langle X \rangle^2$.

Spectra of infinitely large matrices A. The spectrum of A has been studied in Refs. [53, 61]. For $n \to \infty$ and $c > 1$, directed random graphs have a giant strongly connected component [62] and the spectral distribution $\rho_A(\lambda) = n^{-1} \sum_{j=1}^n \delta[\lambda - \lambda_j(A)]$ of the eigenvalues $\{\lambda_j(A)\}_{j=1}^n$ is supported on a disk of radius $|\lambda_b| = \sqrt{c} \langle J^2 \rangle$ centered at the origin of the complex plane. In addition, if

$$c > c_{\text{gap}} = \frac{\langle J^2 \rangle}{\langle J \rangle^2},$$

then there exists an eigenvalue outlier located at $\lambda_{isol} = c \langle J \rangle$ that is separated from the boundary λ_b by a finite gap. Figure 1 shows the eigenvalues for an example of a directed random graph, where one clearly identifies the outlier λ_{isol} and the boundary λ_b of $\rho_A(\lambda)$ for $n \to \infty$.

Distribution of the right eigenvector components. A right eigenvector $\vec{R}(\lambda)$ associated to an eigenvalue λ of A satisfies

$$A \vec{R}(\lambda) = \lambda \vec{R}(\lambda).$$

In this paper, we study localization of $\vec{R}(\lambda)$ with the distribution

$$p_R(r|\lambda) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \delta[(r - R_i(\lambda))]$$

of the entries of \vec{R} and we also study universality classes in the dense limit $c \to \infty$.

If λ is an outlier ($\lambda = \lambda_{isol}$) or λ is located at the boundary of the spectrum ($\lambda = \lambda_b$), then $p_R(r|\lambda)$ fulfills the equation [59, 61]

$$p_R(r|\lambda) = \sum_{k=0}^\infty p_{K_{out}}(k) \int \prod_{j=1}^k dx_j d^2r_j p_J(x_j) p_R(r_j|\lambda)$$

$$\times \delta \left(r - \frac{1}{\lambda} \sum_{j=1}^k x_j r_j \right),$$

with $d^2r \equiv d\text{Re} \, d\text{Im}$. Equation (7) is exact for infinitely large directed random graphs with a prescribed degree distribution [61].

Inverse participation ratio. The localization of $\vec{R}(\lambda)$ can be characterized in terms of the inverse participation ratio (IPR) [53, 63, 64]

$$\mathcal{I}(\lambda) \equiv \lim_{n \to \infty} \frac{n \sum_{i=1}^n |R_i(\lambda)|^4}{(\sum_{i=1}^n |R_i(\lambda)|^2)^2} = \frac{\langle |R(\lambda)|^4 \rangle}{\langle |R(\lambda)|^2 \rangle^2},$$

where we have used that \mathcal{I} is self-averaging [65]. The IPR is finite if $\vec{R}(\lambda)$ is delocalized, whereas $\mathcal{I}(\lambda)$ diverges if $\vec{R}(\lambda)$ is localized on a finite number of nodes.

From Eq. (7), we derive in the Supplemental Material [65] exact expressions for the IPR when $\lambda = \lambda_{isol}$ or $\lambda = \lambda_b$. We find that

$$\mathcal{I}(\lambda_b) = \frac{(\gamma + 1) \left[(\langle K_{out}^2 \rangle - c) \right]}{c (c - \langle J^2 \rangle / \langle J^2 \rangle^2)},$$

where $\gamma = 2$ when $\lambda_b \in \mathbb{R}$ and $\gamma = 1$ when $\lambda_b \notin \mathbb{R}$. From Eq. (9), it follows that $\mathcal{I}(\lambda_b) \geq \gamma + 1$ and, consequently, $\{R_i(\lambda_b)\}_{i=1}^n$ are non-Gaussian random variables if either $p_{K_{out}}$ or p_J has nonzero variance. Analogously, the IPR
at $\lambda = \lambda_{\text{isol}}$ reads

$$I(\lambda_{\text{isol}}) = \frac{3\beta_1(J_2)^2}{(c^4(J_1) - c(J_1^2))} + \frac{\beta_2(c^2(J_1)^2 - c(J_1^2))^2}{\beta_1^2(c(J_1^4) - c(J_1^2))} +$$
$$+ \frac{12\beta_1(J_1^2)(c^2(J_1)^2 - c(J_1^2))}{(c(J_1^4) - c(J_1^2))(c^3(J_1^3) - c(J_1^3))} + \frac{4\beta_2(J_3)^2(c^2(J_2)^2 - c(J_2^2))^2}{\beta_1(c(J_2^4) - c(J_2^2))} +$$
$$+ \frac{6\beta_2(J_2)^2(c^2(J_2)^2 - c(J_2^2))}{\beta_1(c(J_2^4) - c(J_2^2))}, \quad (10)$$

where

$$\beta_\ell \equiv \sum_{k=\ell+1}^{\infty} K^{out}(k) \frac{k!}{(k-\ell-1)!}, \quad \ell = 1, 2, 3. \quad (11)$$

Figure 2 illustrates Eqs. (9) and (10) as a function of c for a Gaussian distribution p_{Gauss} and three different outdegree distributions: Poisson, exponential, and Borel distributions (see Supplemental Material [65]). All moments of these degree distributions are finite and each $p_{K^{out}}$ is parametrized only by c. Figure 2 shows that the IPR is finite if c is large enough and it diverges for small c, which proves the existence of a delocalization-localization phase transition in directed random graphs.

The localization phase transition. There are two mechanisms for localization, one which is governed by fluctuations of J_{ij}, and a second one that is governed by degree fluctuations.

The first mechanism is illustrated in Fig. 2 and it holds for an arbitrary $p_{K^{out}}$ with finite moments. In this case, from Eqs. (9) and (10) it follows that right eigenvectors associated to $\lambda = \lambda_b$ and $\lambda = \lambda_{\text{isol}}$ are localized when c is smaller than

$$c_b = \frac{\langle J_1^2 \rangle}{\langle J_2^2 \rangle} \quad \text{and} \quad c_{\text{isol}}^3 = \frac{\langle J_1^4 \rangle}{\langle J_2^4 \rangle}, \quad (12)$$

respectively. Thus, the critical points for the localization transitions only depend on the lower moments of p_{Gauss} and they are independent of $p_{K^{out}}$. When the J_{ij} are constant, then $c_b = c_{\text{isol}} = 1$ such that the delocalization-localization transition is governed by the percolation transition for the strongly connected component [62]. On the other hand, when there is disorder in J_{ij}, then $c_b > 1$ and $c_{\text{isol}} > 1$.

In Fig. 3 we present the phase diagram obtained when p_{Gauss} is a Gaussian distribution with mean μ and variance σ^2. In this case, c_{gap}, c_b, and c_{isol} only depend on the ratio σ/μ. A few generic aspects of eigenvector localization in directed random graphs, which also hold for non-Gaussian p_{Gauss}, are illustrated in Fig. 3. First, the eigenvector $R(\lambda_{\text{isol}})$ is delocalized when $\langle J_2^4 \rangle > \langle J_2^3 \rangle$ because $c_{\text{gap}} > c_{\text{isol}}$. Second, the transition lines fulfill $c_{\text{gap}} < c_{\text{isol}} < c_b$ for $\langle J_2^4 \rangle < \langle J_2^3 \rangle$. Lastly, we observe that the critical transitions c_{gap}, c_{isol} and c_{gap} intersect in a common point because of the identity $c_{\text{isol}}^3 = c_b^2 c_{\text{gap}}$.

The second mechanism for localization is due to large degree fluctuations. From Eqs. (9) and (10), it follows that $I(\lambda_{\text{isol}}) \to \infty$ if $\langle K^{out} \rangle^4 \to \infty$ and $I(\lambda_{\text{isol}}) \to \infty$ if $\langle K^{out} \rangle^2 \to \infty$, independently of the distribution p_{Gauss}. Hence, localization of $R(\lambda_{\text{isol}})$ also occurs in graphs with power-law degree distributions. In the sequel, we show that degree-based localization persists in the dense limit.

Localization and universality in the dense limit. Let us explore the localization and universality of eigenvectors in the dense limit $c \to \infty$. In Fig. 2 we observe that $I(\lambda)$ flows to different asymptotic values for $c \gg 1$.

![FIG. 2. The inverse participation ratio I(\lambda) of the right eigenvectors associated to the outlier eigenvalue \lambda_{isol} [Panel (a)] and to an eigenvalue \lambda_b \not\in \mathbb{R} at the boundary of the spectrum [Panel (b)]. Equations (9) and (10) (different line styles) are shown as a function of the average degree c for different outdegree distributions: Poisson, exponential, and Borel (see Supplemental Material [65]). The weights J_{ij} are drawn from a Gaussian distribution p_{\text{Gauss}} with first and second moments indicated on each panel. The different symbols are results obtained from the numerical solution of Eq. (7), while direct diagonalization results for I(\lambda) are presented in the Supplemental Material [65]. The results for the Borel distribution are rescaled as I(\lambda_{isol}) \to I(\lambda_{isol})/c in panel (a).](image)

![FIG. 3. Phase diagram for localization of right eigenvectors associated to the outlier \lambda_{isol} and to eigenvalue \lambda_b at the boundary of the spectrum. The distribution p_{\text{Gauss}} is Gaussian with mean \mu and standard deviation \sigma.](image)
In order to identify the universality classes in the limit $c \to \infty$, we analyze the moments of the distribution p_R. We characterize the dense limit of $p_R(r|\lambda_{isol})$ using the relative variance

$$
\mathcal{R}_c = \frac{\text{var}[R(\lambda_{isol})]}{\langle R(\lambda_{isol}) \rangle^2},
$$

while we choose to characterize the dense limit of $p_R(r|\lambda_b)$ through the kurtosis

$$
\mathcal{K}_c = \frac{\langle (\text{Re} R(\lambda_b))^4 \rangle}{\langle (\text{Re} R(\lambda_b))^2 \rangle^2} = \frac{4 - \gamma}{2} \mathcal{I}(\lambda_b),
$$

where the second equality in Eq. 14 follows from the fact that odd moments of $p_R(r|\lambda_b)$ are zero. Setting $c \to \infty$ in Eqs. 13 and 14, we obtain

$$
\mathcal{R}_\infty = \lim_{c \to \infty} \frac{\text{var}[K^{\text{out}}]}{c^2},
$$

$$
\mathcal{K}_\infty = 3 \left(1 + \lim_{c \to \infty} \frac{\text{var}[K^{\text{out}}]}{c^2} \right),
$$

which shows that the dense limit of p_R is determined by the degree distribution. We see that, in general, $p_R(r|\lambda_b)$ and $p_R(r|\lambda_{isol})$ are not Gaussian in the dense limit.

With the purpose of classifying the universal behavior of p_R for $c \to \infty$, let us consider degree distributions that satisfy

$$
\text{var}[K^{\text{out}}] = B c^\alpha \quad (c \gg 1),
$$

where α and B depend on the specific choice of $p_K(k)$. Equation 17 holds for most degree distributions, including those addressed in Fig. 2. Plugging this ansatz for var[K^{out}] in Eqs. 15 and 16, we obtain three universality classes for $\lim_{c \to \infty} p_R(r|\lambda)$, which are determined by the exponent α that controls the degree fluctuations.

The results for the universality classes are summarized in Table 1. We find that for $\alpha \leq 2$ the eigenvectors $\vec{R}(\lambda_b)$ and $\vec{R}(\lambda_{isol})$ are delocalized in the limit $c \to \infty$, whereas for $\alpha > 2$ these eigenvectors are localized due to large degree fluctuations.

α	\mathcal{R}_∞	\mathcal{K}_∞	Example
$\alpha < 2$	0	3	Poisson
$\alpha = 2$	B	$3(1 + B)$	Exponential
$\alpha > 2$	∞	∞	Borel

The eigenvector distributions in the dense limit. The results in Table 1 indicate that $p_R(r|\lambda)$ is universal in the dense limit. Below we present explicit expressions for $p_R(r|\lambda)$ when $c \to \infty$. Henceforth we set $\langle |R|^2 \rangle = 1$ without losing generality.

The characteristic function of $p_R(r|\lambda)$ is given by

$$
g_R(u,v|\lambda) = \sum_{k=0}^{\infty} p_K(0) e^{ik \ln F(u,v|\lambda)},
$$

where

$$
F(u,v|\lambda) = \int dx \int d^2 r p_R(r|\lambda) e^{-x^2 r^2 + x v^2 r^2 + y^2 r^2},
$$

and $z = u + iv$. The symbol $(\ldots)^*$ denotes complex-conjugation. If $\lambda \in \mathbb{R}$, the eigenvector components are real and $F(u,v|\lambda)$ does not depend on v.

Setting $\lambda = \lambda_{isol}$ or $\lambda = \lambda_b$ in Eq. 19, we can expand $F(u,v|\lambda)$ for $c \gg 1$ up to order $O(1/c)$ if $\alpha \leq 2$ (see Table 1). This approach does not work for $\alpha > 2$, because the moments of p_R can diverge in this regime. Thus, performing this expansion for $\alpha \leq 2$ and substituting the resulting expression for $F(u,v|\lambda)$ in Eq. 18, we obtain

$$
g_R(u,v|\lambda_b) = \sum_{k=0}^{\infty} p_K(0) e^{\frac{-\gamma k}{4c} \left(u^2 + (2 - \gamma) v^2 \right)},
$$

$$
g_R(u,v|\lambda_{isol}) = \sum_{k=0}^{\infty} p_K(0) e^{\frac{-iuk}{c \sqrt{Be^{\alpha-2} + 1}}},
$$

Remarkably, the characteristic functions in the dense limit are fully specified by degree fluctuations and are independent of p_f.

For degree distributions where $\lim_{c \to \infty} \text{var}[K^{\text{out}}]/c^2 = 0$ ($\alpha < 2$), it is reasonable to set $p_K(0) = \delta_{k,0}$ in Eqs. 20 and 21, leading to

$$
p_R(r|\lambda_b) = \frac{1}{\pi} e^{-|r|^2} \quad (\lambda_b \notin \mathbb{R}),
$$

$$
p_R(r|\lambda_{isol}) = \delta(\text{Im}(r)) \delta(\text{Re}(r) - 1),
$$

Equation 22 yields the well-known Porter-Thomas distribution for the eigenvector components of Gaussian random matrices [66, 67]. Thus, standard results from random matrix theory are recovered when $\alpha < 2$.

If p_K is an exponential distribution, for which $\alpha = 2$, we obtain in the limit $c \to \infty$ [65]

$$
p_R(r|\lambda_b) = \frac{2}{\pi} K_0 (2|r|) \quad (\lambda_b \notin \mathbb{R}),
$$

$$
p_R(r|\lambda_{isol}) = \sqrt{2} \delta(\text{Im}(r)) \Theta(\text{Re}(r)) e^{-\sqrt{2} \text{Re}(r)},
$$

where $\Theta(x)$ is the Heaviside step function and $K_0(x)$ is a modified Bessel function of the second kind [68]. Figure 4 illustrates the shape of the distributions p_R given
by Eqs. (22-25), and compares them with numerical solutions of Eq. (7) for \(c = 100 \). In the Supplemental Material [65], we also derive the analytic expressions for \(\lim_{\alpha \to \infty} p_R(r|\lambda_\alpha \in \mathbb{R}) \) when \(\alpha \leq 2 \).

Conclusions. We have shed light on the relationship between graph topology and the localization of right eigenvectors in directed random graphs. If the moments of the outdegree distribution \(p_{K_{\text{out}}} \) are finite, then right eigenvectors at the edge of the spectrum are localized below a critical mean outdegree. It is striking that the critical points for the localization transitions are universal, in the sense they only depend on the lower moments of the distribution \(p_J \) of the edge weights, regardless of the network topology. Therefore, localization in directed random graphs is fundamentally different from localization in undirected graphs, for which degree fluctuations are important [34, 36, 39, 69, 71]. Indeed, eigenvectors in the tail of the spectrum of undirected random graphs are localized for any \(p_J \) if the degree distribution has an unbounded support. Degree-based localization is also possible for directed random graphs, but then \(p_{K_{\text{out}}} \) has divergent moments.

We have also studied localization and universality of the eigenvectors in the dense limit. In this limit, the distribution \(p_R \) of the right eigenvector components is only determined by the graph topology, independently of the distribution \(p_J \). If the outdegree fluctuations are small enough, then eigenvectors are delocalized and \(p_R \) is given by the same universal distribution as in the case of Gaussian random matrices [66, 67]. On the other hand, if the outdegree fluctuations are large enough, then eigenvectors are localized and the distribution \(p_R \) depends on \(p_{K_{\text{out}}} \). More generally, these results indicate that Gaussian random matrix theory describes well the spectral properties of dense graphs only when the degree fluctuations are sufficiently small.

The techniques developed in the present paper can be used to study localization phenomena in non-Hermitian quantum systems [47, 49, 72, 73], neural networks [10, 50], ecosystems [17, 18], and real-world networks [42, 74]. The relation between the dynamical properties of these systems and the localization properties of eigenvectors is an interesting topic of future research.

The authors thank Jacopo Grilli for interesting discussions. F.L.M. thanks London Mathematical Laboratory and CNPq/Brazil for financial support.

[1] Nicolas Brunel, “Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons,” Journal of computational neuroscience 8, 183–208 (2000).
[2] Ed Bullmore and Olaf Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nature reviews neuroscience 10, 186–198 (2009).
[3] Olaf Sporns, Networks of the Brain (MIT press, 2010).
[4] Jordi Bascompte, “Disentangling the web of life,” Science 325, 416–419 (2009).
[5] Andrei Broder, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener, “Graph structure in the web,” Computer networks 33, 309–320 (2000).
[6] Romualdo Pastor-Satorras and Alessandro Vespignani, Evolution and structure of the Internet: A statistical physics approach (Cambridge University Press, 2007).
[7] David M Grobman, “Homeomorphism of systems of differential equations,” Doklady Akademii Nauk SSSR 128, 880–881 (1959).
[8] Philip Hartman, “A lemma in the theory of structural stability of differential equations,” Proceedings of the American Mathematical Society 11, 610–620 (1960).
[9] P. Van Mieghem, “Epidemic phase transition of the SIS type in networks,” EPL (Europhysics Letters) 97, 48004 (2012).
[10] A. V. Goltsev, S. N. Dorogovtsev, J. G. Oliveira, and J. F. F. Mendes, “Localization and spreading of diseases in complex networks,” Phys. Rev. Lett. 109, 128702 (2012).
[11] R. Pastor-Satorras and C. Castellano, “Eigenvector localization in real networks and its implications for epidemic spreading,” J. Stat. Phys. 173, 1110–1123 (2018).
[12] Cong Li, Huijuan Wang, and Piet Van Mieghem, “Epidemic threshold in directed networks,” Phys. Rev. E 88, 062802 (2013).
[13] Juan G. Restrepo, Edward Ott, and Brian R. Hunt, “Onset of synchronization in large networks of coupled oscillators,” Phys. Rev. E 71, 036151 (2005).
[14] Alex Arenas, Albert Daz-Guilera, Jurgen Kurths, Yamir Moreno, and Changsong Zhou, “Synchronization in complex networks,” Physics Reports 469, 93 – 153 (2008).
[15] Jonathan Kadmon and Haim Sompolinsky, “Transition
to chaos in random neuronal networks,” Physical Review X 5, 041030 (2015).

[16] Ariel Amir, Naomichi Hatano, and David R. Nelson, “Non-hermitian localization in biological networks,” Phys. Rev. E 93, 042310 (2016).

[17] Stefano Allesina, Jacopo Grilli, György Barabás, Si Tang, and Johnatan Aljadieff, “Predicting the stability of large structured food webs,” Nat. Commun. 6, 7842 (2015).

[18] Jacopo Grilli, Tim Rogers, and Stefano Allesina, “Modularity and stability in ecological communities,” Nat. Commun. 7, 12031 (2016).

[19] Yuxin Chen, Yang Shen, Pei Lin, Ding Tong, Yixin Zhao, Stefano Allesina, Xu Shen, and Chuang-I Wu, “Gene regulatory network stabilized by pervasive weak repressions: microRNA functions revealed by the May-Wigner theory,” National Science Review 6, 1176–1188 (2019).

[20] Yipei Guo and Ariel Amir, “Stability of gene regulatory networks,” (2020), arXiv:2006.00018 [physics.bio-ph].

[21] Sergey Brin and Lawrence Page, “The anatomy of a large-scale hyper-textual web search engine,” Computer Networks and ISDN Systems 30, 107 – 117 (1998) proceedings of the Seventh International World Wide Web Conference.

[22] Amy N Langville and Carl D Meyer, Google's PageRank and beyond: The science of search engine rankings (Princeton university press, 2011).

[23] Leonardo Ermann, Klaus M. Frahm, and Dima L. Shepelyansky, “Google matrix analysis of directed networks,” Rev. Mod. Phys. 87, 1261–1310 (2015).

[24] Phillip Bonacich, “Factorizing and weighting approaches to status scores and clique identification,” The Journal of Mathematical Sociology 2, 113–120 (1972). https://doi.org/10.1080/0022250X.1972.9989806.

[25] Travis Martin, Xiao Zhang, and M. E. J. Newman, “Localization and centrality in networks,” Phys. Rev. E 90, 052808 (2014).

[26] Florent Krzakala, Cristopher Moore, Elchanan Mossel, Joe Neeman, Allan Sly, Lenka Zdeborová, and Pan Zhang, “Spectral redemption in clustering sparse networks,” Proceedings of the National Academy of Sciences 110, 20935–20940 (2013).

[27] Charles Bordenave, Marc Lelarge, and Laurent Massoulie, “Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs,” in 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (IEEE, 2015) pp. 1347–1357.

[28] Tatsuro Kawamoto, “Algorithmic detectability threshold of the stochastic block model,” Physical Review E 97, 032301 (2018).

[29] Charles Bordenave, Simon Coste, and Raj Rao Nadakuditi, “Detection thresholds in very sparse matrix completion,” arXiv preprint arXiv:2005.06062 (2020).

[30] Ragi Abou-Chacra, DJ Thouless, and PW Anderson, “A selfconsistent theory of localization,” Journal of Physics C: Solid State Physics 6, 1734 (1973).

[31] Yan V. Fyodorov and Alexander D. Mirlin, “Localization in ensemble of sparse random matrices,” Phys. Rev. Lett. 67, 2049–2052 (1991).

[32] Alexander D Mirlin and Yan V Fyodorov, “Localization transition in the anderson model on the bethe lattice: spontaneous symmetry breaking and correlation functions,” Nuclear Physics B 366, 507–532 (1991).

[33] SN Evangelou, “A numerical study of sparse random matrices,” Journal of statistical physics 69, 361–383 (1992).

[34] Michel Bauer and Olivier Golinelli, “Random incidence matrices: moments of the spectral density,” Journal of Statistical Physics 103, 301–337 (2001).

[35] Reimer Kuhn, “Spectra of sparse random matrices,” Journal of Physics A: Mathematical and Theoretical 41, 295002 (2008).

[36] Fernando Lucas Metz, Izaak Neri, and Désiré Bollé, “Localization transition in symmetric random matrices,” Physical Review E 82, 031135 (2010).

[37] Michael Aizenman and Simone Warzel, “Extended states in a lifshitz tail regime for random schrödinger operators on trees,” Physical review letters 106, 136804 (2011).

[38] Yoshiyuki Kabashima and Hisanao Takahashi, “First eigenvalue/eigenvector in sparse random symmetric matrices: influences of degree fluctuation,” Journal of Physics A: Mathematical and Theoretical 45, 325001 (2012).

[39] F. Slanina, “Localization of eigenvectors in random graphs,” Eur. Phys. J. B 85, 361 (2012).

[40] Romualdo Pastor-Satorras and Claudio Castellano, “Distinct types of eigenvector localization in networks,” Scientific reports 6, 18847 (2016).

[41] KS Tikhonov, AD Mirlin, and MA Skvortsov, “Anderson localization and ergodicity on random regular graphs,” Physical Review B 94, 220203 (2016).

[42] Romualdo Pastor-Satorras and Claudio Castellano, “Eigenvector localization in real networks and its implications for epidemic spreading,” Journal of Statistical Physics 173, 1110–1123 (2018).

[43] Vito A R Susca, Pierpaolo Vivo, and Reimer Kuhn, “Top eigenpair statistics for weighted sparse graphs,” Journal of Physics A: Mathematical and Theoretical 52, 485002 (2019).

[44] Olivier Giraud, Bertrand Georgeot, and Dima L. Shepelyansky, “Delocalization transition for the google matrix,” Phys. Rev. E 80, 026107 (2009).

[45] Priyodity Pradhan, Angeliya C. U., and Sarika Jalan, “Principal eigenvector localization and centrality in networks: revisited,” arXiv e-prints , arXiv:1909.08696 (2019).

[46] Samir Suweis, Jacopo Grilli, Jayaanth R. Banavar, Stefano Allesina, and Amos Maritan, “Effect of localization on the stability of mutualistic ecological networks,” Nat. Commun. 6, 10179 (2015).

[47] Naomichi Hatano and David R Nelson, “Localization transitions in non-hermitian quantum mechanics,” Physical review letters 77, 570 (1996).

[48] Naomichi Hatano and David R Nelson, “Vortex pinning and non-hermitian quantum mechanics,” Physical Review B 56, 8651 (1997).

[49] Joshua Feinberg and A Zee, “Non-hermitian localization and delocalization,” Physical Review E 59, 6433 (1999).

[50] Grace H. Zhang and David R. Nelson, “Eigenvalue repulsion and eigenvector localization in sparse non-hermitian random matrices,” Phys. Rev. E 100, 052315 (2019).

[51] Michael Molloy and Bruce Reed, “A critical point for random graphs with a given degree sequence,” Random Structures & Algorithms 6, 161–180 (1995).

[52] M Molloy and B Reed, “The size of the giant component of a random graph with a given degree sequence,” Com-
References:

[53] Béla Bollobás and Bóloobás Bélá, Random graphs, 73
Cambridge university press, 2001.

[54] M. E. J. Newman, S. H. Strogatz, and D. J. Watts,
“Random graphs with arbitrary degree distributions and
their applications,” Phys. Rev. E 64, 026118 (2001)

[55] M. Newman, Networks: An Introduction (OUP Oxford,
2010).

[56] Sergei N Dorogovtsev and José FF Mendes, Evolution of
networks: From biological nets to the Internet and WWW
(OUP Oxford, 2013).

[57] Michael A Arbib, ed., The handbook of brain theory and
neural networks (MIT press, 2003).

[58] Tim Rogers and Isaac Pérez Castillo, “Cavity approach
to the spectral density of non-hermitian sparse matrices,”
Phys. Rev. E 79, 012101 (2009)

[59] Izaak Neri and Fernando Lucas Metz, “Eigenvalue out-
liers of non-hermitian random matrices with a local tree
structure,” Phys. Rev. Lett. 117, 224101 (2016)

[60] Fernando Lucas Metz, Izaak Neri, and Tim Rogers,
“Spectral theory of sparse non-hermitian random matri-
ces,” Journal of Physics A: Mathematical and Theoretical
52, 434003 (2019)

[61] Izaak Neri and Fernando Lucas Metz, “Spectral the-
ory for the stability of dynamical systems on large
oriented locally tree-like graphs,” arXiv e-prints ,
arXiv:1908.07092 (2019), 1908.07092 [cond-mat.stat-
mech]

[62] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin,
“Giant strongly connected component of directed net-
works,” Phys. Rev. E 64, 025101 (2001)

[63] Y V Fyodorov and A D Mirlin, “Statistical properties of
eigenfunctions of random quasi 1d one-particle hamilton-
ians,” Int. J. Mod. Phys. B 8, 3795–3842 (1994).

[64] Konstantin Efetov, Supersymmetry in disorder and chaos
(Cambridge University Press, 1999).

[65] F. L. Metz and I. Neri, “see the supplemental material,”
See Supplemental Material (2020).

[66] C. E. Porter and R. G. Thomas, “Fluctuations of nuclear
reaction widths,” Phys. Rev. 104, 483–491 (1956).

[67] Alexander D. Mirlin, “Statistics of energy levels and
eigenfunctions in disordered systems,” Physics Reports
326, 259 – 382 (2000).

[68] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Se-
ries, and Products (Elsevier Science, 2014).

[69] Michael Krivelevich and Benny Sudakov, “The largest
eigenvalue of sparse random graphs,” Combinatorics,
Probability and Computing 12, 6172 (2003).

[70] R. Pastor-Satorras and C. Castellano, “Distinct types of
eigenvector localization in networks,” Sci. Rep. 6, 18847
(2016).

[71] Raj Rao Nadakuditi and M. E. J. Newman, “Spectra of
random graphs with arbitrary expected degrees,” Phys.
Rev. E 87, 012803 (2013).

[72] A. Basiri, Y. Bromberg, A. Yamilov, H. Cao, and T. Kott-
os, “Light localization induced by a random imaginary
refractive index,” Phys. Rev. A 90, 043815 (2014).

[73] Lucas Sá, Pedro Ribeiro, and Tomaz Prosen, “Complex
spacing ratios: A signature of dissipative quantum
chaos,” Phys. Rev. X 10, 021019 (2020).

[74] Sergey N Dorogovtsev, Alexander V Goltsev, José FF
Mendes, and Alexander N Samukhin, “Spectra of com-
plex networks,” Physical Review E 68, 046109 (2003).