Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Commentary

COVID-19, corticosteroids and public health: a reappraisal

M. Fernandes \(^{a, *, d}\), J. Brábek \(^{b, c, d}\)

\(^{a}\) Medbase, 114 Milton Avenue, Chapel Hill, NC, 27514, USA
\(^{b}\) Department of Cell Biology, Charles University, Viniceř 7, Prague, Czech Republic
\(^{c}\) Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Prímyslová 595, Vestec U Prahy, 25242, Czech Republic

Article info

Objectives: To assess whether regulatory guidance on the use of dexamethasone in hospitalised COVID-19 patients is applicable to the larger population of COVID-19 cases. The surge in worldwide demand for dexamethasone suggests that the guidance, although correct, has not emphasised the danger of its wider use.

Study design: Data from the Randomised Evaluation of COVID-19 Therapy (RECOVERY) trial and the World Health Organisation (WHO) prospective meta-analysis have been deconstructed and analysed.

Methods: To provide context, relevant publications were identified in PubMed using the following keywords: COVID-19, RECOVERY trial, WHO meta-analysis, variants, immunity, public health.

Results: The WHO guidance ‘Corticosteroids for COVID-19’ was based on their prospective meta-analysis. This meta-analysis was weighted by data from the RECOVERY trial.

Conclusions: In terms of COVID-19, dexamethasone has value in a narrow indication, namely, in hospitalised patients requiring respiratory support. The media blitz likely resulted in the wider use of dexamethasone in outpatients and as a preventive medication. This is reflected in the surge in worldwide demand for dexamethasone. We ask whether the use of steroids, beyond regulatory indications, may be responsible for the recent increase in mortality and especially the emergence of mucormycosis? From the public health standpoint, the current guidance for use of dexamethasone in COVID-19 could benefit from clarification and the addition of a cautionary note.

© 2021 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

Introduction

There is no evidence that specific interventions can decrease mortality in acute respiratory distress syndrome (ARDS); therefore, the preliminary results of the Randomised Evaluation of COVID-19 Therapy (RECOVERY) trial, announced in June 2020, were both surprising and welcomed.\(^1\) \(^2\) This trial was conducted in hospitalised COVID-19 patients and explored the effect of dexamethasone in the following three severity-based categories: (i) individuals receiving invasive mechanical ventilation (IMV); (ii) individuals receiving oxygen only; and (iii) individuals receiving no oxygen. The organisation and implementation of the RECOVERY trial was phenomenal\(^3\) and upon completion, regulatory and policy action was prompt. In September 2020, the World Health Organisation (WHO), based on results from the RECOVERY trial\(^2\) and its sponsored prospective meta-analysis\(^6\) updated their guidance on the use of corticosteroid drugs in patients with COVID-19.\(^7\)

Here, we analyse the RECOVERY trial within the broader context of the natural history of COVID-19 disease and comment on whether the preliminary results are sufficient to formulate global policy. We identify several gaps in the evidence and suggest that policy formulation is deferred until the protocol-specified 180-day follow-up report is published. This would allow for efficacy to be assessed against adverse events in all population categories, especially the elderly, those with relevant comorbidities and those with a weakened immune system; A 180-day safety report would represent an index of sustained benefit. In this commentary, we do not question the results of these trials, but focus on the interpretation of the analyses and the communication of a consistent message relative to global public health.

Methods

Data source and analysis

Relevant publications were identified in PubMed using the following keywords: COVID-19, RECOVERY trial, WHO meta-analysis, variants, steroids, mucormycosis, public health. To allow
for comparisons between RECOVERY and the WHO meta-analysis, published tables were deconstructed and analysed. Simple, comprehensive, and uniform risk measures were calculated to allow for an understanding of, and comparisons between, the trials.

RECOVERY trial

In this randomised trial of 6425 patients, 2104 received dexamethasone 6 mg once per day for 10 days and 4321 received usual care. The 28-day mortality was calculated for the total study group, as well as subgroups of individuals who required IMV (n = 1007), oxygen only (n = 3883) and in those who did not require respiratory support (n = 1535). Overall, 482 patients (23%) in the dexamethasone group and 1110 patients (26%) in the usual care group died within 28 days after randomisation (odds ratio [OR]: 0.86; 95% confidence interval [CI]: 0.75 to 0.97; P = 0.017) [refer Table 1].

The RECOVERY trial showed that, overall, 482 of 2104 patients (22.9%) receiving dexamethasone died compared with 1110 of 4321 patients (25.7%) receiving usual care; a difference of 3%. In the non-oxygen subgroup, 89 of 501 patients (17.8%) in the dexamethasone group died compared with 145 of 1034 patients (14.0%) receiving usual care; a difference of 4%.

In the oxygen-only subgroup, 298 of 1279 patients (23.3%) in the dexamethasone group died compared with 682 of 2604 patients (26.2%) receiving usual care; a difference of 3%. And, in the IMV subgroup, 95 of 324 patients (29.3%) in the dexamethasone group died compared with 1110 of 4321 patients (26%) receiving usual care; a difference of 12%.

The organisation and implementation of the RECOVERY trial was phenomenal and upon completion, regulatory and policy action was prompt. The results were communicated enthusiastically in the media and positioned as a breakthrough: dexamethasone is the first drug shown to save lives. On 2 September 2020, and based on the preliminary report on the RECOVERY trial and related meta-analyses, the WHO endorsed the use of corticosteroids in cases of severe and critical COVID-19. Dexamethasone reduced deaths by one-third in ventilated patients and by one-fifth in patients receiving oxygen only. However, there was a trend to harm in patients who did not require oxygen. Based on these results, one death could be prevented by dexamethasone treatment of around eight ventilated patients or around 25 patients requiring oxygen alone. Chief investigator Martin Landray, in an interview with Science stated, ‘It’s very, very rare that you announce results at lunchtime, and it becomes policy and practice by tea time, and probably starts to save lives by the weekend’.

RECOVERY trial: advantages and limitations of a platform design

RECOVERY, a platform trial, involved the following two interventions in hospitalised COVID-19 patients: (i) dexamethasone to all patients and (ii) additional IMV in patients with severe disease. Platform trials that randomise patients with a homogenous and stable disease to a variety of single treatments are a valid and efficient method to explore benefit under uncertainty. However, in an intensive care unit (ICU) setting, the rapid dynamics of disease may require a severe subgroup to be exposed to more than one intervention. Accordingly, implementation of a platform trial in an ICU can evolve into a treatment trial. Here, interpretation of results is problematic on account of interactions between interventions: can outcomes be assigned to a single intervention – dexamethasone, IMV or more prudently to the combination? It is impossible to design a trial in human volunteers to assess a possible beneficial effect of dexamethasone in alleviating the adverse effects of IMV. However, Reis et al. have demonstrated a beneficial effect of pretreatment with dexamethasone in ventilator-induced lung injury (VILI) in Wistar rats.

The objective of a platform trial is to attribute outcomes to distinct and discrete interventions. This is a relevant concern since IMV can be complicated by a cytokine-related, hyper-inflammatory lung injury (termed VILI) that is similar to COVID ARDS. In RECOVERY, both interventions relate to the trial end point, which is mortality via multiple organ dysfunction syndrome (MODS). Therefore, it is possible that the beneficial effect of dexamethasone in the severe IMV subgroup was related to its dampening impact on the effects on both viral and mechanical ventilation-induced inflammation, rather than the sole inhibition of a COVID-19 specific mechanism. In RECOVERY, dexamethasone did not show beneficial effects in hospitalised patients who did not require oxygen with or without respiratory support.

Steroids, IMV and COVID-19

The literature on this topic is both controversial and confusing. In ARDS, the administration of steroids within the first 72 h of mechanical ventilation is directed to dampen the hyper-inflammatory response, as evidenced by an increase in ventilator-free days and lower mortality. Several studies have experienced confounding from the likely presence of VILI, and steroids may have shown beneficial effects by minimising the ongoing inflammation caused by non-protective ventilator settings. In patients receiving IMV, Zhang et al. concluded that corticosteroids did not decrease mortality. However, Meduri et al. have shown that steroids decrease the adverse effects of mechanical ventilation and reduce mortality in patients with non-COVID ARDS. VILI occurs when mechanical ventilation exacerbates lung injury in critically ill patients. In ARDS, iatrogenic injury caused by VILI contributes to their high mortality via a systemic inflammatory response that drives MODS.

Despite a rationale for the prolonged use of steroids in COVID-19, the general experience is that they are ineffective in virus-induced ARDS. Furthermore, steroids enhance viral replication, delay viral clearance and may increase mortality. For good reason, its use during active infection is generally discouraged. Li et al. performed a meta-analysis to determine safety and efficacy of corticosteroids in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV and Middle East respiratory syndrome coronavirus infections. The use of corticosteroids

Subgroup	Dexamethasone 28-day mortality [n/N (%)]	Usual care 28-day mortality [n/N (%)]	OR (95% CI); P-value	Risk difference (%)	Risk ratio
No oxygen	89/501 (17.8%)	145/1034 (14%)	1.32 (0.99–1.77); P = 0.067	–3.8	1.27–27%
Oxygen only	258/1279 (23.3%)	682/2604 (26.2%)	0.86 (0.73–1.0); P = 0.06	–2.9	1.12–12%
IMV	95/3124 (29.3%)	283/683 (41.4%)	0.49 (0.44–0.78); P = 0.0003	+12	1.41–41%
TOTAL	482/2104 (22.9%)	1110/4321 (25.7%)	0.86 (0.75–0.97); P = 0.017	+2.8	1.12–12%

CI, confidence interval; IMV, invasive mechanical ventilation; OR, odds ratio.
delayed viral clearance and did not improve survival but did reduce duration of hospital stay, ICU admission rate and/or use of IMV. Liu et al. at the Shanghai Jiao Tong University School of Medicine, Shanghai, China, analysed the outcome of corticosteroid treatment, mainly methyl prednisolone, in severe COVID-19 patients with ARDS (n = 409) compared with standard care (n = 365). The end point was 28-day all-cause mortality. For patients receiving standard care, mortality was 31% (113 of 365 patients) and for those receiving steroids, mortality was 44% (181 of 409 patients). The increase in mortality in patients receiving steroids was 13% (OR: 1.77; 95% CI: 1.31 to 2.38; P = 0.0002). Patients with moderate-to-severe COVID-19 pneumonia are likely to benefit from moderate-dose corticosteroid treatment when administered relatively late in the disease course. Before the RECOVERY trial, clinical evidence did not show any beneficial effects of corticosteroid treatment for COVID-19 lung disease. In viral pneumonia, there is a tendency for steroids to delay viral clearance and thereby increase residence time but this is controversial.

Framework for research and development: natural history of COVID-19

COVID-19 is a progressive disease that primarily affects the lungs. About 85% of COVID-19 cases are asymptomatic, and it is estimated that 15% require hospitalisation and a smaller fraction need IMV. It is not possible to predict possible progression or lack thereof in individual COVID-19 cases. In those with serious progressive disease, hospitalisation is indicated and management is predicated on the need for oxygen or IMV. Although subgroups facilitate analysis, they are not distinct or stable. It should be noted that progression of the disease is a continuum and ranges from ‘no oxygen required’ to ‘oxygen only’ and ‘IMV’.

COVID-19 variants, steroids, ageing and the adaptive immune system – Dr Jekyll and Mr Hyde

Similar to The Strange Case of Dr Jekyll and Mr Hyde, steroids show contrasting clinical outcomes in viral infections – both benefit and harm (refer Fig. 1). The chemistry and effects of steroids are intriguing; they have anti-inflammatory, immunosuppressive effects and accelerate the replication of viruses. Increased replication favours mutations and increase the viral load. According to Javier Ramirez at the Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires, Argentina, the clinical outcome of the use of steroids in viral diseases is still controversial. Upon encountering a pathogenic virus, the host senses the invasion and triggers complex and sequential innate and adaptive immune responses resulting in inflammation. Steroids are effective in controlling hyper-inflammation, but they also have the potential to cause deleterious effects.

Deborah Shoemark et al. at the University of Bristol and the Max Planck Bristol Centre for Minimal Biology, UK, suggest that in COVID-19, dexamethasone binds to the spike protein and thus interferes with infection by changing its interaction with the host cell. It is possible that dexamethasone acts directly at the molecular level and indirectly by modulating the immune system. This may explain, in part, the complex response to corticosteroids. A discrete intervention, as with steroids, can elicit opposite clinical outcomes which is likely to be a result of the evolution of the virus in adapting to differing states and changes in the immune environment – the dynamic host response to infection.

Sandra Amor and colleagues at the VU University Medical Center, Amsterdam, The Netherlands, explain that the virus subverts the initial immune response, leading to respiratory and vascular damage. Alex Sette and Shane Crotty at the La Jolla Institute for Immunology and the University of California, San Diego La Jolla Center for Immunology, US, present a comprehensive analysis of the components and functions of the adaptive response to SARS-CoV-2 and COVID-19. The adaptive immune system consists of three cell types: B cells, CD4+ T cells and CD8+ T cells. B cells produce neutralising antibodies, CD4+ T cells generate helper and effector functionalities, and CD8+ T cells kill infected cells. When the host response includes the sequential involvement of all three elements, patients, in general, do well. Progression to severe disease usually follows an uncoordinated adaptive immune response. The advanced phase is marked by high levels of cytokines, antibodies and virus load, together with a low T-cell count. Since host responses are important for the control and clearance of viral infection, and immune memory is central to the success of vaccines, it is important to understand the phasic immune responses to SARS-CoV-2.

Type I and III interferons, the body’s first line of antiviral defence, are cytokines that are secreted by host cells in response to viral infection and which block virus replication at several levels. In COVID-19, this response may be dampened by the early administration of glucocorticoids. This, in part, may explain the role of a weakened and uncoordinated immune system in both the recent surge in mortality and the generation of variants. A weakened immune system is clinically relevant to the management of infection in elderly patients and those who are immunosuppressed, in addition to its importance in vaccination programmes.
The terms mutation, variant and strain are often used interchangeably, but the distinctions are important.53 Mutation refers to a change in the sequence of amino acids. Viral mutants are termed variants. Strains are variants that have a different phenotype resulting in differences in antigenicity, transmissibility or virulence. Steven Kemp and colleagues at the University of Cambridge, UK, reported on a real-time mutation of the coronavirus in a single patient.54 It is likely that at some point, the virus infects an individual with a weak immune system; this allows time for adaptation and evolution prior to transmission. The virus accumulates mutations every time it replicates and the effect of steroids in accelerating replication should be kept in mind. In an excellent editorial in Virulence, van Oosterhout et al.55 at the School of Environmental Sciences, University of East Anglia, Norwich, UK, warn that novel variants show an improved interaction with host-cell receptors, such as ACE2 on epithelial cells. This enables the virus to better establish and propagate infections, resulting in higher levels of virus in the host and an increased rate of transmission. Neutralising antibodies bind to spike proteins and can block the ability of the virus to infect new cells. SARS-CoV-2 can mutate its spike proteins to evade these antibodies. There is a need to ensure that interventions are designed to activate the strongest possible immune response, especially in the elderly, against more than one target region on the spike protein and thereby prevent the development of variants.56,57 At this time, about a dozen COVID-19 variants have been identified and are now spreading globally: the UK/Kent variant (B.1.1.7), the South Africa/Nelson Mandela Bay variant (B.1.1351) and the Brazilian/Manaus variant (B.1.1.28.1/P.1).58 The recent surge in India may be related to a ‘double mutant’ B.1.617 (mutations in E484Q and L452R). The B.1.617 variant is associated with increased infectivity and immune evasion from antibodies. According to Vaughn Cooper at the University of Pittsburgh’s Center for Evolutionary Biology and Medicine, US, the generation of variants is consistent with convergent evolution, where a few mutations (e.g. in the spike protein) in different independent lineages occur as they adapt to similar environments.59 All three variants have mutations in the spike protein (E484K), and this is the main driver of immune evasion. Steroids have dual and opposing clinical effects in COVID-19 disease – Dr Jekyll and Mr Hyde. This is likely due to the presence or absence of inflammation. In an advanced inflammatory state it provides benefit, while in the earlier, pauci-inflammatory and non-inflammatory state, its use is associated with harm.51 The newly recognized association of virus variants in people with weakened immune systems should prompt concern in the use of steroids in milder and the early stages of the disease, and in those with autoimmune disease. These variants have a high transmission potential (i.e. are very contagious) and interference with mRNA vaccines is a concern.60

Public health and policy considerations

The RECOVERY trial demonstrated that dexamethasone decreased 28-day mortality in about one-third of hospitalised patients receiving IMV. Dexamethasone is about 25 times more potent than hydrocortisone. Steroids accelerate viral replication, delay viral clearance and predispose individuals to nosocomial infection. For good reason, its use during active infection is generally discouraged. Accordingly, a careful distinction should be made between early intervention in progressive disease and mass prevention, especially with an agent with a known safety liability. Dexamethasone is risky in mild cases.51 The recent epidemic of Mucormycosis in India has been attributed to the rampant use of steroids in non-hospitalised individuals, uncontrolled diabetes, and exposure to the fungal spores found in the soil and decaying organic matter. Infection is via inhalation of spores and spread occurs via the sinuses, orbit and the brain. The mortality rate exceeds 50%. Management is based on antifungal medicines and advanced disease requires exentration – removal of the eye and surrounding tissue. At last count, in June 2021, over 30
000 cases have been reported. This may be the first instance of an iatrogenic epidemic complicating a pandemic.

Unfortunately, these concerns have not received attention. Both the statement of the chief investigator, Peter Horby, ‘this treatment can be given to pretty much anyone’ and the guidance offered to primary care physicians to consider dexamethasone for home treatment do not appear appropriate. This is important since the primary care physicians to consider dexamethasone for outpatient use. After the RECOVERY announcement, US drug suppliers struggled to keep up with the demand for dexamethasone. Group drug purchaser VIZIENT, which supplies medicines to about half of the hospitals in the US, saw a 610% increase in requests for dexamethasone. It is unlikely that the narrow clinical indication (i.e. use limited to ICU patients on respiratory support) was the cause for this surge in demand.

According to Ralph Baric at the University of North Carolina in Chapel Hill, US, ‘in COVID-19 disease early administration of steroids can cause more harm than good because they may dampen the immune response before it has the virus at bay. The best time to start dexamethasone is when patients first need respiratory support.’ (The Economist, Technology Quarterly, March 27, 2021). Shane Crotty cautions that if steroids are prescribed too early ‘you could really shoot oneself in the foot because this might be somebody whose adaptive immune response is just getting going.’

WHO guidance, 2020

In September 2020, the WHO issued the guidance entitled ‘Corticosteroids for COVID-19’. This guidance was prompted by the RECOVERY trial and supported by a WHO sponsored prospective meta-analysis. Their two recommendations were to use systemic corticosteroids in patients with severe and critical COVID-19, and to avoid corticosteroids in patients with non-severe COVID-19.

The prospective meta-analysis pooled data from seven randomised clinical trials that evaluated the efficacy of corticosteroids in 1703 critically ill patients with COVID-19. Patients were assigned to steroids (dexamethasone, hydrocortisone or methylprednisolone) or to usual care or placebo (n = 1025). The primary outcome was 28-day all-cause mortality. There were 222 deaths among the 678 patients randomised to corticosteroids and 425 deaths among the 1025 patients randomised to usual care or placebo. This corresponds to an absolute mortality risk of 33% for patients receiving corticosteroids compared with 41% for patients receiving usual care or placebo (OR: 0.7; 95% CI: 0.56 to 0.84; P = 0.0003). The WHO meta-analysis relative to the RECOVERY data is deconstructed in Table 2.

It can be seen that the RECOVERY data was a major contributor to the WHO meta-analysis (weight = 57%). Both hydrocortisone and methyl prednisolone were ineffectual. These trials were incomplete (underpowered) and although seeming to favour the use of steroids, did not demonstrate significant differences. Tomazini et al. in Brazil recently reported on the completed CoDEX open-label randomised trial evaluating dexamethasone against standard care. In this well conducted trial, 151 patients were assigned to dexamethasone and 148 to standard care. Although there was an increase in the number of ventilator-free days over 28 days (i.e. days alive and free of mechanical ventilation), dexamethasone did not decrease 28-day mortality (56% in the dexamethasone group vs 61% the standard care group) (OR: 0.8; 95% CI: 0.50 to 1.28; P = 0.43).

We conclude that for patients receiving IMV, dexamethasone demonstrates efficacy and that corticosteroids other than dexamethasone are ineffective in COVID-19. We wait with anticipation for the follow-up report of the RECOVERY trial to assess the effect of age, obesity, cardiovascular disease, diabetes, and hypertension on the incidence of death. In addition, a 180-day mortality assessment in RECOVERY would confirm sustained efficacy and help further the benefit-risk analysis. Carl Heneghan, director of the Centre for Evidence Based Medicine at the University of Oxford, UK, has suggested that a follow-up beyond 28 days and additional analyses would clarify whether dexamethasone could harm patients in the longer term.

The future—from repurposed drugs to purposive science

A recent editorial in The Lancet calls for an increase in research towards a broader range of therapies. In this complex situation, generated by several inter-related mechanisms, it is not possible to assign success to the inhibition of a putative and primary causal process. Misattribution of outcomes may have the effect of not helping further the benefit-risk analysis. Carl Heneghan, director of the Centre for Evidence Based Medicine at the University of Oxford, UK, has suggested that a follow-up beyond 28 days and additional analyses would clarify whether dexamethasone could harm patients in the longer term.

Table 2

Drug name	Steroids 28-day all-cause mortality (n/N)	No steroids 28-day all-cause mortality (n/N)	OR (95% CI); P-value	Weight, %
DEXAMETHASONE				
DEXA-COVID-19	2/7	2/12	2 (0.29–19)	1
CoDEX	69/128	76/128	0.80 (0.49–1.31); P = 0.45	19
RECOVERY – IMV	95/324	283/683	0.58 (0.44–0.78); P = 0.0003	57
HYDROCORTISONE				
CAPE COVID	11/75	20/73	0.46 (0.20–1.0)	7
COVID STEROID	6/15	2/14	4 (0.65–25)	1
REMAP-CAP	26/105	29/92	0.72 (0.38–1.3)	12
METHYL PREDNISOLONE				
STEROIDS-SARI	13/24	13/23	0.91 (0.29–2.9)	3
WHO OVERALL	222/678	425/1025	0.69 (0.56 to 0.84); P = 0.0003	
RECOVERY – ALL	1110/4321	1273/4321	0.86 (0.76 to 0.97); P = 0.017	
WHO minus RECOVERY-IMV	142/342	704/2782	0.79 (0.58–1.06); P = 0.15	
WHO plus RECOVERY-ALL	1535/5346	85/151	0.8 (0.50–1.28); P = 0.43	
CoDEX – Final report	91/148	440/1045	0.71 (0.58–0.86); P = 0.0007	

CI: confidence interval; IMV: invasive mechanical ventilation; OR: odds ratio; RECOVERY, Randomised Evaluation of COVID-19 Therapy; WHO World Health Organisation.
systemic disease. Based on pathophysiology, a comprehensive research and development approach would necessitate a broad portfolio. Unfortunately, the media blitz on steroids has resulted in a de-emphasis of related research in coprimary mechanisms, such as cytokine release, the bradykinin-kallikrein system, complement cascade, contact activation and coagulation, and neutrophil extracellular traps. The patterned response of the host reflects parallel and inter-related mechanisms. The initiating event is likely an interaction between the virus and endothelial elements in the blood vessels leading to immunothrombosis.

Argument for mechanistic clinical trials

More than 95% of all trials in sepsis and ARDS fail to demonstrate a positive and reproducible mortality effect. Armand Girbes and Harm-Jan de Grooth at the VU University Medical Center, Amsterdam, The Netherlands, point to the limitations of large trials with mortality end points in patients with sepsis and ARDS. When patients with the same syndrome diagnosis do not share the same pathways that lead to death (the attributable risk); any therapy can only lead to small effects. Larger and more ‘pragmatic’ randomised trials are not the solution because they decrease diagnostic precision, the effect size and the probability of finding a beneficial effect. A logical approach is a focus on mechanistic research into the complexities of critical illness syndromes.

Conclusions

The success of dexamethasone in the treatment of serious COVID-19 patients receiving IMV has been an electrifying advance in therapeutics and we congratulate the RECOVERY investigators and await a follow-up report listing predisposing conditions, such as demographics (especially age and gender), relevant comorbidities, concomitant medicines, adverse effects and the 90-day mortality end points in patients with sepsis and ARDS. When patients with the same syndrome diagnosis do not share the same pathways that lead to death (the attributable risk); any therapy can only lead to small effects. Larger and more ‘pragmatic’ randomised trials are not the solution because they decrease diagnostic precision, the effect size and the probability of finding a beneficial effect. A logical approach is a focus on mechanistic research into the complexities of critical illness syndromes.

Author statements

The authors thank the reviewers for their guidance.

Ethical approval

None sought.

Funding

This work has not received any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Competing interests

None declared.

References

1. Oxford University. Low-cost dexamethasone reduces death by up to one third in hospitalised patients with severe respiratory complications of COVID-19. Press release; June 16, 2020. https://www.recoverytrial.net/files/recovery_dexamethasone_statement_160620_v2final.pdf.
2. RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with covid-19 - preliminary report. N Engl J Med 2021;384:693–704.
3. Ledford H. Coronavirus breakthrough: dexamethasone is the first drug shown to save lives. Nature 2020;582:469.
4. Prescott HC, Rice TW. Editorial. Corticosteroids for COVID-19. World Health Organisation Corticosteroids-2020.1. September 2, 2020. WHO reference number: WHO/2019-nCoV/Corticosteroids-2020.1. https://www.who.int/publications/i/item/WHO-2019-nCoV-Corticosteroids-2020.1
5. The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19. A meta-analysis. JAMA 2020;324:1330–41.
6. The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19. A meta-analysis. JAMA 2020;324:1330–41.
7. Living Guidance. Corticosteroids for COVID-19. World Health Organisation. September 2, 2020. WHO reference number: WHO/2019-nCoV/Corticosteroids-2020.1. https://www.who.int/publications/i/item/WHO-2019-nCoV-Corticosteroids-2020.1
8. Holmberg MJ, Andersen LW. Estimating risk ratios and risk differences: alternatives to Odds Ratios. JAMA 2020;324:1058–9.
9. de Grooth HJ, Parienti JJ, Oudemans-van Straaten HM. Should we rely on trials ending a de-emphasis of related research in coprimary mechanisms, such as cytokine release, the bradykinin-kallikrein system, complement cascade, contact activation and coagulation, and neutrophil extracellular traps (NETosis). The patterned response of the host reflects parallel and inter-related mechanisms. The initiating event is likely an interaction between the virus and endothelial elements in the blood vessels leading to immunothrombosis.
12. Normand ST. The RECOVERY platform. N Engl J Med 2021;384:757–78.
13. Villar J, Blanco J, Zhang H, Slutsky AS. Ventilator-induced lung injury and injury: a time to stop and think? Minerva Anestesiol 2011;77:467–53.
14. Reis FF, Rebrodo Mde M, Lucinda LM, Bianchi AM, Rabelo MA, Fonseca LM, et al. Pre-treatment with dexamethasone attenuates experimental ventilator-induced lung injury. J Bras Pneumol 2016;42:166–73.
15. Slutsky AS, Torres A. Multiple system organ failure: is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 1998;157:1721–5.
16. Halbertsma PJ, Vaneker M, Scheffer GJ, van der Hoeven JG. Cytokines and histamine in ventilator-induced lung injury: a critical review of the literature. Neth J Med 2005;63:382–92.
17. Hartmann SM, Hough CL. Argument against the routine use of steroids for pediatric acute respiratory distress syndrome. Front Pediatr 2016;4:79.
18. Zhang Z, Chen L, Ni H. The effectiveness of corticosteroids on mortality in patients with acute respiratory distress syndrome or acute lung injury: a secondary analysis. Sci Rep 2015;5:17654.
19. Meduri GU, Siemieniuk RC, Reis NJ, Seyler SJ. Prolonged low-dose methylprednisolone treatment is highly effective in reducing duration of mechanical ventilation and mortality in patients with ARDS. J Intensive Care 2018;6:53.
20. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013;369:2176–36.
21. Madanab P, Beittler JR. Emerging concepts in ventilation-induced lung injury. Front Physiol 2009;2:222.
22. Wilson MR, Takata M. Pathophysiologic mechanisms of ventilator-induced lung injury: a time to stop and think? Anesth Analg 2013;68:175–8.
23. Moloney ED, Griffiths MJD. Protective ventilation of patients with acute respiratory distress syndrome. BJA 2004;92:261–70.
24. Credey GF, Laffey JG, Hui DS. Bioautoma and ventilator induced lung injury: clinical implications. Chest 2016;150:1109–17.
25. Villar J, Confolanieri M, Pastores SM, Meduri GU. Rationale for prolonged corticosteroid treatment in the acute respiratory distress syndrome caused by coronavirus disease 2019. Crit Care 2020;24:20111.
26. Yang Z, Liu J, Zhou Y, Zhao X, Zhao Q, Liu J. The effect of corticosteroid treatment on patients with coronavirus infection: a systematic review and meta-analysis. J Infect 2020;81:13–20.
27. Ni YY, Chen G, Sun J, Liang HM, Liang ZA. The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit Care 2020;23:99.
28. Arabi YM, Mandourah Y, Al-Hameed F, Singh AA, Almekhali GA, Hussein MA, et al. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am J Respir Crit Care Med 2018;197:757–67.
29. Thomas BJ, Porritt RA, Hertzog PJ, Bardin PG, Tate MD. Glucocorticosteroids enhance replication of respiratory viruses: effect of adjuvant interferon. Sci Transl Med 2018;10(444):eaat4666.
30. Lee N, Allen Chan KC, Hui DS, Poon EKO, Wu A, Chiu RWK, et al. Effects of early corticosteroid therapy on outcomes of persons with SARS-CoV-2, SARS-CoV, or MERS-CoV infection: a systematic review and meta-analysis. J Intern Med 2020;287:345–55.
31. Hui DS. Systematic corticosteroid therapy may delay viral clearance in patients with Middle East Respiratory Syndrome coronavirus infection. Am J Respir Crit Care Med 2018;197:700–1.
32. Li H, Chen C, Hu F, Wang J, Zhao Q, Gale RP, et al. Impact of corticosteroid therapy on outcomes of persons with SARS-CoV-2, SARS-CoV, or MERS-CoV infection: a systematic review and meta-analysis. Lancet 2020;395:1503–11.
33. Liu J, Zhang S, Dong X, Li Z, Xu Q, Feng H. Corticosteroid treatment in severe COVID-19 patients with acute respiratory distress syndrome. J Clin Invest 2020;130:6417–28.
34. Matthay MA, Wick KD. Corticosteroids, COVID-19 pneumonia, and acute respiratory distress syndrome. J Clin Invest 2020;130:6218–21.
35. Fujishima S. COVID-19: stay cool toward corticosteroids. Keri J Med 2020;69:27–9.
36. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020;395:473–5.
37. Sarkar S, Khanna P, Soni KD. Are the steroids a blanket solution for COVID-19? A systematic review and meta-analysis. J Med Virol 2021;93:1538–47.
38. Zha L, Li S, Pan L, Tselfs B, Li Y, French N. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). MJA 2020;212:416–20.
39. Cao B, Gao H, Zhou B, Deng X, Hu C, Deng C, et al. Adjunctive corticosteroid treatment in adults with influenza A (H1N1) viral pneumonia. Crit Care Med 2016;44:318–28.
40. Gola GF, Bruseronco AC, Barquero AA, Ramírez JÁ. The new role of steroids in viral infections. Front Clin Drug Res - Anti-Infectives 2017;4:274–322.
41. Shoemark DK, Colenok CK, Toelzer C, Gupta K, Sessions RB, Davidson AD, et al. Molecular simulations suggest vitamins, retinoids and steroids as ligands of the SARS-CoV-2 Spike protein. Angew Chem Int Ed 2021;60:7098–110.
42. Amor S, Fernández Blanco L, Baker D. Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clin Exp Immunol 2020;202:193–205.
43. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021;184:861–80.
44. Cohen J. An ‘uncoordinated’ immune response may explain why COVID-19 strikes some hard, particularly the elderly. Science. 2020;369:1550–1.
45. Wu KJ, Corn J. Charting a coronavirus recovery. The New York Times; October 5, 2020.
46. Wadman M. Flawed interferon response spurs severe illness. Science. 2020;369:746–7.
47. Park A, Hwasaki A. Type I and Type III interferons – induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 2020;27:870–80.
48. Flammer JR, Dobrovolna J, Kennedy MA, Chinenov Y, Glass CK, Iwashkiv LB, et al. The type I interferon signaling pathway is a target for glucocorticoid inhibition. Mol Cell Biol 2010;30:4564–74.
49. Thomas BJ, Porritt RA, Hertzog PJ, Bardin PG, Tate MD. Glucocorticosteroids inhibit type I IFN beta signaling and the upregulation of CD73 in human lung. Intensive Care Med 2020;46:1973–80.
50. Choi B, Choihary MC, Regan J, Sparks JA, Pader F, Xu Q, et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N Engl J Med 2021;383:2291–3.
51. Mandavilli A. Virus variants likely evolved inside people with weak immune systems. The New York Times; March 15, 2021.
52. Lauring AS, Hodcroft EB. Genetic variants of SARS-CoV-2—what do they mean? JAMA 2021;325:529–31.
53. Kemp SA, Callier DA, Cao R, K. SARS-CoV-2 evolution during treatment of chronic obstructive pulmonary disease. Nature 2021 Feb 5. https://doi.org/10.1038/s41586-021-02941-y.
54. van Oosterhout C, Hall N, Ly H, Tyler KM. Editorial. COVID-19 evolution during the pandemic – implications of new SARS-CoV-2 variants on disease control and public health policies. Virulence 2021;12:907–9.
55. Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JCC, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife 2020;9:e61312. https://doi.org/10.7554/eLife.61312.
56. Prévost J, Fiuza A. The great escape? SARS-CoV-2 variants evading neutralizing responses. Cell Host Microbe 2021:29:322–4.
57. Burke T. Understanding variants of SARS-CoV-2. Lancet 2021;397:462.
58. Cooper V. The coronavirus variants don’t seem to be highly variable so far. Sci Am March 24, 2021;322(2). https://www.science.org/article/10.1126/sciencemag.org/AABX72.
59. Tomazini BM, Maia IS, Cavalcanti AB, Berwanger O, Rosa RG, Veiga VC, et al. With dexamethasone’s sudden COVID-19 blessing, U.S. steroid supplies plummet. Fierce Pharma June 25, 2020. https://www.fiercepharma.com/manufacturing/dexamethasone-s-rise-u-s-steroid-supplies-plummet.
60. Lauring AS, Hodcroft EB. Genetic variants of SARS-CoV-2—what do they mean? JAMA 2021;325:529–31.
77. Buszko M, Park J-H, Verthelyi D, Sen R, Young HA, Rosenberg AS. The dynamic changes in cytokine responses in COVID-19: a snapshot of the current state of knowledge. Nature Immunol 2020;21:1146–51.

78. van de Venckon F, Netae MC, van Deuren M, van der Meer JW, de Mast Q, Brüggemann RJ, et al. Kinins and Cytokines in COVID-19: a comprehensive pathophysiological approach. Preprints 2020;2020040023. https://doi.org/10.20944/preprints202004.0023v1.

79. Garvin MR, Alvarez C, Miller J, Prates ET, Walker AM, Amos BK, et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. eLife 2020;9:e59177.

80. van de Venckon F, Netae MC, van Deuren M, van der Meer JW, de Mast Q, Brüggemann RJ, et al. Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome. eLife 2020;9:e57555.

81. Conway EM, Pryzdial ELG. Is the COVID-19 thrombotic catastrophe complement-connected? J Thromb Haemost 2020;18:2812–22.

82. Polycarpou A, Howard M, Farrar CA, Greenlaw R, Fanelli G, Wallis R, et al. Rationale for targeting complement in COVID-19. EMBO Mol Med 2020;12: e12642. https://doi.org/10.15252/emm.202012642.

83. Magákaldeze N, Manto KM, Craig TJ. A Review: does complement or the contact system have a role in protection or pathogenesis of COVID-19? Palm Ther 2020;6:169–76.

84. Risitano AM, Mastellos DC, Huber-Lang M, Yancopoulou D, Garlanda C, Ciceri F, et al. Complement as a target in COVID-19? Nat Rev Immunol 2020;20:895–906.

85. Lo MW, Kemper C, Woodruff TM, COVID-19: complement, coagulation, and collateral damage. J Immunol 2020;205:1488–95.

86. Iba T, Connors JM, Levy JH. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm Res 2020;69:1181–9.

87. Shatzel JJ, DeLoughery EP, Lorentz CU, Tucker EI, Aslan JE, Hinds MT, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020;395:1417–8.

88. Bonaventura A, Vecchié A, Dagna L, Martinod K, Dixon DL, Van Tassell BW, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol 2021;1:1–11. https://doi.org/10.1038/s41577-021-00536-9.

89. Laffey JG, Kavanagh BP. Negative trials in critical care: why most research is probably wrong. Lancet Respir Med 2018;6:659–60.

90. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Boreczuk A, Cools-Lartigue J, Crawford JM, et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med 2020;217:e20200652.

91. Hidalgo AA. NET-thrombosis axis in COVID-19. Blood 2020;136:1118–9.

92. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020;395:1417–8.

93. Bonaventura A, Vecchié A, Dagna L, Martinod K, Dixon DL, Van Tassell BW, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol 2021;1:1–11. https://doi.org/10.1038/s41577-021-00536-9.

94. Garvin MR, Alvarez C, Miller J, Prates ET, Walker AM, Amos BK, et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. eLife 2020;9:e59177.

95. Lo MW, Kemper C, Woodruff TM, COVID-19: complement, coagulation, and collateral damage. J Immunol 2020;205:1488–95.

96. Iba T, Connors JM, Levy JH. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm Res 2020;69:1181–9.

97. Shatzel JJ, DeLoughery EP, Lorentz CU, Tucker EI, Aslan JE, Hinds MT, et al. Complement as a target in COVID-19? Nat Rev Immunol 2020;20:895–906.

98. Laffey JG, Kavanagh BP. Negative trials in critical care: why most research is probably wrong. Lancet Respir Med 2018;6:659–60.

99. Borchert R, de Grooth H-J. Time to stop randomized and large pragmatic trials for intensive care medicine syndromes: the case of sepsis and acute respiratory distress syndrome. J Thorac Dis 2020;12(Suppl 1):S101–9. https://doi.org/10.21037/jtd.2019.10.36.

100. Glaus MJ, Von Ruden S. Remdesivir and COVID-19. J Clin Invest 2020;130:13362.

101. De Backer D, Azoulay E, Vincent JL. Corticosteroids in severe COVID-19: a critical view of the evidence. Crit Care 2020;24:627. https://doi.org/10.1186/s13054-020-03360-0.

102. Fischhoff B. Making decisions in a COVID-19 world. JAMA 2020;324:139–40.

103. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multi-centre trial. Lancet 2020;395:1569–78.

104. Glaus MJ, Von Ruden S. Remdesivir and COVID-19. Lancet 2020;396:952.

105. Park BH, Declerck EH, Rayner CR, Cotton M, Molls E. Clinical trials of disease stages in COVID-19: complicated and often misinterpreted. Lancet Glob Health 2020;8:1249.

106. Ippolito G, Hui DS, Ntoumi F, Maeurer M, Zumla A. Toning down the 2019-nCoV media hype and restoring hope. Lancet Respir Med 2020;8:e230–1.

107. Hunt K, Emslie C. Commentary: the prevention paradox in lay epidemiology. BMJ 2020;370:m2848.

108. Saitz R, Schwartz G. Communicating science in the time of a pandemic. JAMA 2020;324:443–4.

109. Editorial COVID-19: a stress test for trust in science. BMJ 2020;369:m1417.

110. Editorial COVID-19: a stress test for trust in science. BMJ 2020;369:m1417.

111. Editorial COVID-19: a stress test for trust in science. BMJ 2020;369:m1417.

112. Editorial COVID-19: a stress test for trust in science. BMJ 2020;369:m1417.