Role of *Drosophila* Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release

Tanja Wucherpfennig,¹,² Michaela Wilsch-Bräuninger,¹ and Marcos González-Gaitán¹,²

¹Max-Planck Institut für Molekulare Zellbiologie und Genetik, D-01307 Dresden, Germany
²Max-Planck Institut für Biophysikalische Chemie, D-37077 Göttingen, Germany

During constitutive endocytosis, internalized membrane traffics through endosomal compartments. At synapses, endocytosis of vesicular membrane is temporally coupled to action potential–induced exocytosis of synaptic vesicles. Endocytosed membrane may immediately be reused for a new round of neurotransmitter release without trafficking through an endosomal compartment. Using GFP-tagged endosomal markers, we monitored an endosomal compartment in *Drosophila* neuromuscular synapses. We showed that in conditions in which the synaptic vesicles pool is depleted, the endosome is also drastically reduced and only recovers from membrane derived by dynamin-mediated endocytosis. This suggests that membrane exchange takes place between the vesicle pool and the synaptic endosome. We demonstrate that the small GTPase Rab5 is required for endosome integrity in the presynaptic terminal. Impaired Rab5 function affects endo- and exocytosis rates and decreases the evoked neurotransmitter release probability. Conversely, Rab5 overexpression increases the release efficacy. Therefore, the Rab5-dependent trafficking pathway plays an important role for synaptic performance.

Introduction

At the presynaptic terminal, Ca\(^{2+}\)/H\(_{11001}\)-triggered neurotransmitter (NT)* release by exocytosis is immediately followed by the local recycling of the synaptic vesicle (SV) membrane (Ceccarelli et al., 1973; Heuser and Reese, 1973; for reviews see Hannah et al., 1999; Jarousse and Kelly, 2001). SV recycling is necessary to preserve the plasma membrane surface area, to sustain the population of SVs, and to maintain the molecular diversity of the vesicle versus the plasma membrane.

There are at least two distinct recycling mechanisms: "kiss and run" (Ceccarelli et al., 1973; Fesce et al., 1994; Stevens and Williams, 2000) and clathrin-mediated endocytosis (Heuser and Reese, 1973). During kiss and run, SVs make brief contact with the plasma membrane forming a transient porelike structure through which the NT is released (for review see Valtorta et al., 2001). In contrast, clathrin-mediated endocytosis occurs after complete fusion of the SV with the plasma membrane (for reviews see Hannah et al., 1999; Jarousse and Kelly, 2001). New vesicles are subsequently reformed through a complex process initiated by the formation of an invagination at the plasma membrane mediated by clathrin and its adaptors (Heuser and Reese, 1973; Maycox et al., 1992; Takei et al., 1996; González-Gaitán and Jäckle, 1997; Zhang et al., 1998). In lamprey, snake, and fly neuromuscular synapses, the invagination of the membrane into pits occurs at distinct “centers of endocytosis” surrounding the active zones of exocytosis (González-Gaitán and Jäckle, 1997; Ringstad et al., 1999; Roos and Kelly, 1999; Teng and Wilkinson, 2000; Jarousse and Kelly, 2001). Subsequently, amphiphysin, dynamin, and endophilin are thought to lead to the formation of a clathrin-coated, endocytic vesicle (Koenig and Ikeda, 1989; Hinshaw and Schmid, 1995; Takei et al., 1995; Shupliakov et al., 1997; Ringstad et al., 1999; Schmidt et al., 1999). The subsequent steps are still a matter of debate and it is controversial whether endocytic vesicles mature directly into SVs, recycle through an intermediate endosomal compartment before they become SVs, or whether both pathways are used under different conditions of synaptic demand.

In nonneuronal cells, it is well established that endocytic vesicles fuse with endosomes (Helenius et al., 1983) in a process mediated by the small GTPase Rab5 (Bucci et al., 1992; Horiuchi et al., 1997). Through the recruitment of several effector molecules, Rab5 has been suggested to form...
a specialized membrane domain (Rab5 domain) at the early endosome (Sonnichsen et al., 2000; De Renzis et al., 2002). Based on this, Rab5 has been used as a marker for early endosomes (Bucci et al., 1992; Fialka et al., 1999; Roberts et al., 1999; Sonnichsen et al., 2000). Active Rab5 recruits two phosphatidylinositol-3-kinases (PI[3]-kinases), p85α/p110β and VPS34/p150, which trigger a local enrichment of phosphatidylinositol-3-phosphate (PI[3]P) in the endosomal membrane (Christoforidis et al., 1999). PI(3)P specifically binds to the FYVE zinc-finger domain of endosomal factors such as the Rab5 effectors EEA1 and Rabenosyn-5, which ultimately mediate endocytic vesicle tethering and fusion with the endosome (Stenmark et al., 1995; Simonsen et al., 1998; Lawe et al., 2000; Nielsen et al., 2000). Consistently, blocking the PI(3)-kinases with antibodies or wortmannin impairs the association of FYVE domain proteins with the endosome and, thereby, blocks endosomal trafficking (Mills et al., 1998; Simonsen et al., 1998). Furthermore, it has been shown that the FYVE domain binds to PI(3)P only when inserted in a lipid bilayer (Misra and Hurley, 1999; Sankaran et al., 2001) and that the localization of a myc-tagged tandem repeat of the FYVE domain (myc-2xFYVE) is restricted to early endosomes and the internal membrane of multivesicular bodies (Gillooly et al., 2000). Therefore, 2xFYVE is a bona fide marker for the PI(3)P-containing endosomes.

Rab5 has been found on SVs (de Hoop et al., 1994; Fischer von Mollard et al., 1994), suggesting that SVs have the capacity to fuse with an endosomal compartment. Furthermore, both neuroendocrine PC12 cells (de Wit et al., 1999) and hippocampal neurons (de Hoop et al., 1994) contain synaptic-like vesicles that traffic in a Rab5-dependent manner through endosomal compartments at least in the absence of synaptic transmission. However, it is unclear whether these Rab5-dependent endocytic pathways act only during nourishment and cell signaling in neurons, or also function in the recycling and maturation of SVs during synaptic transmission.

In favor of SV recycling through the endosome, it has recently been suggested that a neuron-specific isoform of the AP3 clathrin adaptor complex from brain cytosol is required for SV budding from PC12 cell endosomes (Faundez et al., 1998; Blumstein et al., 2001). Furthermore, FM1–43 styryl dye recycling experiments in the Drosophila neuromuscular junction (NMJ) uncovered two recycling pathways, a rapid and a slower one, suggesting the existence of an endosome-dependent pathway (Koenig and Ikeda, 1996). However, in rat hippocampal neurons in culture, FM1–43 experiments suggested that SVs retain their identity through the endocytic cycle, implying that the SV membrane does not traffic through an intermediate endosome (Murthy and Stevens, 1998). In addition, SV recycling in neurons is likely too rapid to allow for constitutive trafficking through an intermediate endosomal compartment (Pyle et al., 2000; Richards et al., 2000). However, not all vesicles participate in the endo–exo recycling at any given time. Remaining vesicles...
icles may have sufficient time to exchange membrane with the endosome.

Here, we use the *Drosophila* larval NMJ as a model system to study the endosomal pathway at the presynaptic terminal for synaptic function.

Results

An endosomal compartment in the presynaptic terminal

Both Rab5 and myc-2xFYVE have been used as endosomal markers in cultured nonneuronal mammalian cells (Bucci et al., 1992; Gillooly et al., 2000). To monitor the endosomes, we generated GFP-2xFYVE, myc-2xFYVE, and GFP-Rab5 fusions and produced a specific anti-*Drosophila* Rab5 (anti-DRab5) antibody (see Materials and methods). Endogenous Rab5 as well as the GFP-Rab5 and the GFP-2xFYVE fusions are localized at the endosome, as monitored by Texas red–dextran internalization experiments in *Drosophila* S2–cultured cells (Fig. 1) and developing wing cells (unpublished data). Using the UAS/GAL4 technique in transgenic flies (Brand and Perrimon, 1993), we specifically expressed the tagged 2xFYVE fusions in the central nervous system (CNS) with elav-GAL4. Both GFP-2xFYVE and myc-2xFYVE–labeled endosomes appeared as punctate structures at the presynaptic terminal of third instar larval NMJs (Fig. 2 A; unpublished data). At least one 2xFYVE-labeled endosome was detected per presynaptic terminal (Fig. 2, A and E). As in cultured mammalian cells, 2xFYVE becomes dispersed into the cytosol upon blockage of PI(3)-kinase activity using wortmannin (Fig. 2 B), consistent with its PI(3)P-dependent localization at the endosome (Gillooly et al., 2000).

Using the anti-DRab5 antibody, we also found endogenous Rab5 enriched in punctate structures at the presynaptic terminal (Fig. 2 C). In addition, diffused Rab5 was found at lower levels (Fig. 2 C), which likely corresponds to Rab5 present in the cytosol and on vesicles as seen in mammalian cells (Chavrier et al., 1990; Bucci et al., 1992). No overt plasma membrane staining could be detected in a double immunostaining with anti-HRP antibodies (Sun and Salvaterra, 1995; unpublished data). A substantial amount of Rab5 structures colocalize with the GFP-2xFYVE endosomes, indicating that the Rab5 compartment corresponds to the PI(3)P containing endosome (Fig. 2 C). This was confirmed by the colocalization of a functional GFP-Rab5 fusion (see below) and myc-2xFYVE in transgenic flies coexpressing both markers in the CNS (Fig. 2 D).

Next, we compared the localization of the endosomal compartment with the pool of recycling vesicles. EM studies have shown that, in *Drosophila* NMJs, the SV pool does not occupy the entire synaptic bouton (Atwood et al., 1993; Jia et al., 1993). Light microscopy has also been used to demon-
Figure 3. Cryoimmuno-EM of the GFP-2xFYVE endosome. (A–D) Cryoimmuno-electron micrographs showing two Drosophila presynaptic terminals (A/B and C/D), where GFP-2xFYVE is labeled by 10-nm gold particles (anti-GFP antibody). (B and D) High magnifications of the boxes in A and C, respectively. We found cisternal structures of around 150 nm associated to a more electron-dense region within the terminal. The darker regions allow a better contrast for visualization of the membrane (which appear lighter in cryosections) associated to the endosomes, compared with the vesicles with a diameter of ~35 or 70 nm (see also Fig. 7). Vesicles are, however, occasionally observed (arrowheads). Only few gold particles (7.8 ± 1.3%, n = 5 sections) are associated to the vesicles (arrows). Cryoimmuno-electron micrographs showing localization of GFP-2xFYVE (10-nm gold particles) and endogenous CSP (5 nm gold; E and F) or endogenous Rab5 (5 nm gold; G and H). (F and H) High magnifications of the boxes in E and G, respectively. (E and F) CSP appears throughout the bouton area associated to the pool of vesicles, whereas GFP-2xFYVE is largely restricted to the cisternal endosomal compartments. Although not many vesicles are distinguishable (F, arrow), their presence is revealed by staining of SV integral membrane protein CSP. Few 5-nm gold particles labeling CSP could also be
strate that the SV pool defines a subdomain within the synaptic boutons (Estes et al., 1996). We labeled the pool of recycling vesicles with the red FM5–95 styryl dye internalized during a 30-Hz or high K⁺ stimulation protocol (Kuromi and Kidokoro, 2002). The endosomes monitored with GFP-2xFYVE (Fig. 2 E) or GFP-Rab5 (Fig. 2 F) are embedded within the pool of recycling vesicles, indicating that the endosomal compartments are associated to the bouton subdomains where the recycling vesicles are.

Do the GFP-2xFYVE–positive structures correspond to a cisternal endosomal compartment as in the case in cultured mammalian cells (Gillooly et al., 2000) or to a cluster of vesicles within the SV pool? To address this, we performed cryoimmuno-EM and visualized the localization of GFP-2xFYVE in the presynaptic terminal at the ultrastructural level. Fig. 3 shows that, like in mammalian cells (Gillooly et al., 2000), the GFP-2xFYVE structures correspond to cisternal compartments larger than 150 nm and not to a subpopulation of vesicles (35 or 70 nm diam; see Fig. 7) clustered within the SV pool. Thus, >90% of the gold particles (92.2% ± 1.3, n = 5 sections with 189 gold particles) are associated to cisternal structures. In cryosections, membranes appear as light lines, which contrast against the more electron-dense cytosolic region associated to the cisternae (Fig. 3). Although vesicle membrane is more difficult to observe (Fig. 3, B and D [arrowheads], and F [arrow]), because vesicles are located in lighter regions of the cytosol, their presence could be detected using an antibody against cystein string protein (CSP), an SV integral membrane protein (Fig. 3, E and F). CSP was also localized at the cisternal structures, consistent with the membrane exchange between the vesicles and the cisternal compartment. This indicates that the GFP-2xFYVE label in the presynaptic terminal (Fig. 2) corresponds to endosomal structures rather than to a cluster of vesicles within the SV pool.

Like GFP-2xFYVE, Rab5 is also associated to the cisternal endosomal structures (Fig. 3, G and H, arrowheads). In contrast to GFP-2xFYVE, which is restricted to the cisternal structures in cultured mammalian cells (Gillooly et al., 2000) and Drosophila NMJs (Fig. 3), Rab5 was also found outside the cisterna, associated with the SVs and the cytosol (Fig. 3, G and H, arrows), as described previously (Chavrier et al., 1990; Bucci et al., 1992).

In summary, the light- and electron-microscopical analysis shows that the GFP-2xFYVE–positive structures at the presynaptic terminal correspond to endosomal structures, where Rab5 is enriched, and that they are located within the pool of SVs.

Endosomal dynamics during synaptic transmission

Next, we analyzed the behavior of the endosome during synaptic transmission by imaging in vivo GFP-2xFYVE during electrophysiological stimulation of the presynaptic terminals (Fig. 4, A–P). In resting terminals or under conditions of basal or tetanic stimulation, we observed no change in location, size, or fluorescence intensity of the GFP-2xFYVE–labeled endosomes (Fig. 4, D and J–L; unpublished data). This is consistent with three possible scenarios: (1) SVs bypass the endosome; (2) vesicle membrane fusion to and budding from the endosome are in balance both in the resting terminal and during synaptic transmission; or (3) both pathways operate in parallel.

To address these possibilities, we studied the endosomal dynamics in experimental conditions in which we deplete the SV pool. If membrane exchange between the vesicle pool and the endosome occurs, depletion of the vesicle pool should ultimately result in reduction of the endosomal size. At the Drosophila larval NMJ, endocytosis is tightly coupled to synaptic transmission and NT release. In the absence of SV exocytosis, basal endocytosis was not detectable (Ramaswami et al., 1994), and the membrane internalized during synaptic transmission is incorporated into SVs because most of the endocytosed vesicles are releasable (Kuromi and Kidokoro, 2000). We caused a reversible SV depletion by performing a "shí/"depletion" experiment by blocking endocytosis using the thermosensitive dynamin mutation shíhire/ (shí) at the restrictive temperature (Koenig and Ikeda, 1989; Koenig and Ikeda, 1999) while continuously stimulating SV release. Next, we monitored the GFP-2xFYVE–labeled endosomes after 5, 10, and 15 min of electrophysiological tetanic stimulation at 30 Hz. Fig. 4 (A–D) shows that the endosomal staining disappeared during the shí/"depletion experiment. No change was observed in shí/ synapses at the permissive temperature (unpublished data). The endosomal depletion does not depend on the stimulation being tetanic because GFP-2xFYVE endosomal staining also disappears under stimulation at 3 Hz (Fig. 4, E–G). The kinetics of fluorescence decay at the endosomes depends on the frequency of stimulation with t½ of 5 min during basal stimulation at 3 Hz (Fig. 4, D–G) and approximately 10-fold faster during tetanic stimulation at 30 Hz (Fig. 4, A–C).

Dynamin-dependent disappearance of the GFP-2xFYVE endosomal staining can be explained in two ways: either the endosome is depleted due to the depletion of the pool of vesicles in the endocytosis-defective shí/ terminal, or association of GFP-2xFYVE to the endosome is dynamin dependent. The observation that no change of the GFP-2xFYVE endosomal staining was detectable in shí/ presynaptic terminals at the restrictive temperature when the terminal was not stimulated (unpublished data), makes rather implausible that association of GFP-2xFYVE to the endosome is dynamin independent, unless the GFP-2xFYVE association to the endosome depends on dynamin only during synaptic transmission. Therefore, these results suggest that there is membrane exchange between the vesicle pool and the endosome, so that when the SV pool observed in the cisternal structures (F, arrowheads). Rab5 appears in the cisternal structures, (H, arrowheads) as well as in other regions corresponding to vesicles or cytosol (H, arrows). Note that immunodetection is highly specific, because neither 10-nm (GFP-2xFYVE) or 5-nm gold particles (CSP and Rab5) were very rarely detected in the postsynaptic subsynaptic reticulum or the mitochondria in the cryosections (<1% of the gold particles; A–H; unpublished data). t, T-bar or electron-dense regions indicating active zones; mt, mitochondria. Bars: (A–D) 150 nm; (E–H) 200 nm.
is depleted in endocytosis-defective terminals, the endosome is subsequently reduced or even depleted.

Consistent with this idea, the endosome is recovered only when the endocytic block is released. We first depleted the endosome by performing a shi"/depletion experiment as described above (Fig. 4, E–G). Animals were then returned to the permissive temperature to release the shi" block. After 15 min, we observed recovery of the GFP-2xFYVE-labeled endosome (Fig. 4, H and I). Furthermore, if we first depleted the endosome as described above (Fig. 4, M and N) and then maintained the animals at the restrictive temperature after stimulation, no endosomal recovery was observed (Fig. 4 O). Returning the animals to the permissive temperature to release the endocytosis block led to the recovery of the endosome (Fig. 4 P). Therefore, endosomal recovery only occurs after release of the endocytosis block suggesting that newly formed endocytic vesicles replenish the endosomal compartment.

Together, these results suggest that the endosomal compartment is replenished by vesicles derived by dynamin-dependent endocytosis that fuse to the endosome and that endosomal membrane can be converted into SV membrane at least under our experimental conditions. This suggests that a trafficking pathway exists, which may not be obligatory, involving the endosome during SV recycling.

Rab5 mutants show locomotion defects, paralytic phenotypes, and defective endosomes

In *Drosophila*, we found a single Rab5 gene with multiple splicing variants coding for a single ORF (Fig. 5 A; see Materials and methods). Consistently, we detected a single 24-kD band in Western blot experiments using the anti-Drosophila Rab5 antibody against embryonic or larval extracts (unpublished data). This is in contrast to the situation in yeast and mammalian cells where three Rab5 genes coding for different isoforms were found (Novick and Zerial, 1997), whereas in Caenorhabditis elegans a single Rab5 gene was found (Grant and Hirsh, 1999).

We identified two P-elements from the Berkeley genome project inserted in the Rab5 gene (Fig. 5 A). *P[acu]Rab5-k08232* and *P[P(Z+)+]00231. P[acu]Rab6k08232 (Rab5′) is a P-element insertion within the 5′ leader coding region (Fig. 5 A). Homozygous mutants expressed 30% of the wild-type Rab5 protein level as estimated in Western blot.
experiments with larval extracts (unpublished data; see Materials and methods). Homozygous Rab5 mutant animals die during late second and early third instar larval stages with only a light locomotion phenotype. Consistent with a mild phenotype, in Rab5 mutant strains both the FM1–43 uptake rates and synaptic transmission monitored by standard electrophysiological recordings of the evoked junctional potential in the mutant muscles are normal (unpublished data; see Materials and methods). The Rab5 lethality and phenotype are caused by reduced Rab5 levels in the nervous system because they could be rescued by restricted expression of GFP-Rab5 in the nervous system using elav-GAL4. This also indicates that GFP-Rab5 is a functional Rab5 fusion and that Rab5 function is essential during the physiology and/or development of the nervous system. Consistently, two other weaker Rab5 alleles, Rab5 and Rab5 (Fig. 5 A; see Materials and methods), lead to a flightless phenotype in homozygous adult flies.

A more severe mutation, Rab5, causes embryonic lethality with a paralytic phenotype. Rab5 is a 4-kb deletion of the promoter region, the 5′ nontranslated leader and the first exon of the ORF (Fig. 5 A). This exon encodes the PM1–3 phosphate/Mg2+-binding motifs and the G1 guanine base-binding motif of the GTPase domain (Olkkonen and Stenmark, 1997). Therefore, Rab5 is likely a Rab5-null mutation. Western blot experiments with Rab5 homozygous mutant embryos (0–22 h) showed a faint Rab5 band (13% of the wild-type level; unpublished data), which corresponds to maternal Rab5. Consistent with a maternal Rab5 contribution, the Rab5 protein was also detected by Western blot experiments in early embryonic stages (0–2 h), when most proteins derive from maternal mRNAs (unpublished data). This implies that the zygotic loss of Rab5 is partially rescued by the maternal Rab5 contribution. Like in the case of other endocytic mutants, such as dynamin (Swanson and Poodry, 1981) and α-adaptin (unpublished data), loss of maternal Rab5 contribution in germ line clones impairs cellularization and leads to an early embryonic arrest, so that no nervous system is formed (unpublished data).

Zygotic loss of Rab5 caused the disruption of the GFP-2xFYVE endosomes in the embryonic nervous system (Fig. 5, B–E). In control embryos the endosomes appeared as punctate structures within the cell bodies of the CNS (Fig. 5 B) and the peripheral nervous system (PNS; Fig. 5 C) as monitored with GFP-2xFYVE driven by elav-GAL4. Like in larval stages, the NMJ of late control embryos (stage 17) displayed GFP-2xFYVE–positive endosomal punctate structures within the presynaptic terminals (Fig. 5 D). In contrast, GFP-2xFYVE was dispersed in the cytosol in the Rab5 mutant embryonic CNS, including the NMJs and the PNS (Fig. 5, B, C, and E). In summary, these data indicate that Rab5 is required for the integrity of the endosome during embryonic development and for the development and/or function of the nervous system.

Ultrastructural analysis presynaptic terminals with impaired Rab5 function
The Rab5 mutants described above represent a deficit of Rab5 function both at the presynaptic (neuron) and

![Image](Wucherpfennig et al. 615)

Figure 5. Rab5 loss of function mutants show disrupted endosomes. (A) Rab5 genomic organization. (Green/black bars) Rab5 exons. (1–7) Alternative 5′ leader exons. (a and b) Alternative 3′ untranslated regions. (Black bars) ORF. (Blue arrows) Rab5 flanking genes (CG4272 and CG7245). (00231 and K08232) P-element insertions. We renamed l(2)K08232 as Rab5. (Rab5) 4-kb deletion generated by imprecise excision of Rab5. Rab5 and Rab5 are imprecise excisions where P-element LTR sequences remained (see Materials and methods). PRab5′ (hatched bar), region contained in the genomic Rab5 rescue. (B) GFP-2xFYVE labeling in the CNS of control (left, genotype: w; elav-GAL4 UAS-GFP-myc-2xFYVE and Rab5 mutant embryos stage 17 (right, Rab5; elav-GAL4 UAS-GFP-myc-2xFYVE). Note, in the control, the punctate appearance of endosomes labeled by GFP-2xFYVE in the soma of the CNS and in Rab5 mutant embryos the diffuse GFP-2xFYVE fluorescence dispersed in the cytosol, indicating that the endosome is severely affected. (C) GFP-2xFYVE labeling in the PNS of control (left) and Rab5 embryos (right). Genotypes as in B. (Arrowheads) Pentachordonal sensory neurons. (D and E) Double labeling showing the GFP-2xFYVE marked endosomes (green) and Fasciclin II immunostainings (red) to monitor the motoneurons at the NMJ (arrowheads) of control (D) and Rab5 embryos (E). Lower panels, merges of the two channels. Genotypes as in B. Note that few remnant GFP-2xFYVE punctate structures can be observed occasionally in the Rab5 mutant embryos, probably due to rescue by the Rab5 maternal contribution. Bars: (B) 20 μm; (C–E) 10 μm.
monitor the NMJ in a staining of GFP-Rab5 associated to the endosomes. (G) Double the GFP-Rab5 (green) and CSP (red) stainings. Note the punctate Rab5 and CSP immunostaining to monitor the presynaptic terminal different in the mutants, implying that the total number of active zones per terminal area. Genotypes as in A. Numbers in the columns different mutants. Active zone density is the number of nc82 active zones per synaptic terminal, suggesting that endosomes are severely affected upon expression of the dominant-negative Rab5S43N mutant as indicated by the cytosolic GFP-2xFYVE appearance. Bars: (A) 50 μm; (B, C, and F–H) 5 μm. In this and the following figures, when wild-type or mutant Rab5 was expressed using the UAS/GAL4 system, we observed a diffuse GFP localization at the NMJ, which implies that endosomes are severely affected upon expression of the dominant-negative Rab5S43N mutant as indicated by the cytosolic GFP-2xFYVE appearance. Bars: (A) 50 μm; (B, C, and F–H) 5 μm. In this and the following figures, when wild-type or mutant Rab5 was expressed using the UAS/GAL4 system, endocytic vesicles accumulate and the endosomes fragment (Bucci et al., 1992). Therefore, endosomal markers appeared diffuse in the cytosol instead of being accumulated at the endosome as a punctate pattern under these conditions (Bucci et al., 1992). Furthermore, the dominant-negative, GDP-bound mutant of Rab5 is localized to the cytosol (Bucci et al., 1992).

When we expressed the Rab5S43N mutant protein, Rab5 showed a diffuse staining, filling the whole presynaptic terminal of the larval NMJ and did not appear in a punctate pattern (Fig. 6, compare F with G). This indicates that the GDP-bound mutant form of Rab5 is largely in the cytosol and not associated to the endosomal compartment at the synapse. Furthermore, if Rab5S43N was coexpressed with GFP-2xFYVE or GFP-Rab5 to monitor the endosomes in the nervous system, we observed a diffuse GFP localization at the terminal, suggesting that endosomes are severely affected upon expression of the dominant-negative Rab5S43N mutant as indicated by the cytosolic GFP-2xFYVE appearance. Bars: (A) 50 μm; (B, C, and F–H) 5 μm. In this and the following figures, when wild-type or mutant Rab5 was expressed using the UAS/GAL4 system, endocytic vesicles accumulate and the endosomes fragment (Bucci et al., 1992). Therefore, endosomal markers appeared diffuse in the cytosol instead of being accumulated at the endosome as a punctate pattern under these conditions (Bucci et al., 1992). Furthermore, the dominant-negative, GDP-bound mutant of Rab5 is localized to the cytosol (Bucci et al., 1992).

When we expressed the Rab5S43N mutant protein, Rab5 showed a diffuse staining, filling the whole presynaptic terminal of the larval NMJ and did not appear in a punctate pattern (Fig. 6, compare F with G). This indicates that the GDP-bound mutant form of Rab5 is largely in the cytosol and not associated to the endosomal compartment at the synapse. Furthermore, if Rab5S43N was coexpressed with GFP-2xFYVE or GFP-Rab5 to monitor the endosomes in the nervous system, we observed a diffuse GFP localization at the terminal, suggesting that endosomes are severely affected upon expression of the dominant-negative Rab5S43N mutant as indicated by the cytosolic GFP-2xFYVE appearance. Bars: (A) 50 μm; (B, C, and F–H) 5 μm. In this and the following figures, when wild-type or mutant Rab5 was expressed using the UAS/GAL4 system, endocytic vesicles accumulate and the endosomes fragment (Bucci et al., 1992). Therefore, endosomal markers appeared diffuse in the cytosol instead of being accumulated at the endosome as a punctate pattern under these conditions (Bucci et al., 1992). Furthermore, the dominant-negative, GDP-bound mutant of Rab5 is localized to the cytosol (Bucci et al., 1992).
(Fig. 6 H; unpublished data). Therefore, Rab5 function is required for the integrity of the endosomal compartment.

We then analyzed these defects at the ultrastructural level. In wild-type presynaptic terminals, we could distinguish two types of vesicles that have been previously reported (Kosaka and Ikeda, 1983; Fergestad et al., 1999): SVs with a diameter of 35 nm (35.9 ± 0.11 nm, n = 1991 vesicles; Fig. 7 A) and a second type of vesicles with a diameter of 70 nm (73.6 ± 2.5 nm, n = 36 vesicles; Fig. 7 A, arrowheads), which have been previously suggested to correspond to recycling intermediates (Kosaka and Ikeda, 1983; Fergestad et al., 1999). In shi mutants, early stages of endocytosis are blocked, causing the accumulation of nascent endocytic vesicles in the form of collared pits at the plasma membrane. Because the 70-nm vesicles have a very similar diameter to these collared pits (Kosaka and Ikeda, 1983) they could represent newly formed endocytic vesicles. In addition, they are probably transient structures because only 2.1 ± 0.5 (n = 26 sections) were observed in each EM section. As described previously (Koenig et al., 1993), we also observed bigger cisternal and tubular structures of around 150 nm (Fig. 7, B–D) that resemble the GFP-2xFYVE containing endosomes observed by cryoimmuno-EM (Fig. 3).

In Rab5S43N synapses, the 70-nm vesicles (70.6 ± 1.1 nm, n = 148 vesicles) were more frequently observed than in wild-type synapses (5.9 ± 1.2, n = 25 sections; Fig. 7 E, arrowheads). Consistent with the Rab5SN phenotype reported in cultured mammalian cells, where endocytic vesicles accumulate due to their inability to fuse efficiently with the early endosome (Bucci et al., 1992), this result supports the previous proposal suggesting that the 70-nm vesicles correspond to endocytic intermediates that accumulate in the mutant synapses (Kosaka and Ikeda, 1983; Fergestad et al., 1999).

Impaired endocytosis and release in Rab5S43N-expressing presynaptic terminals

To study the role of Rab5 during the SV cycle, we monitored endocytosis and recycling as well as the SV pool size by performing FM1–43 internalization and release experiments (Betz and Bewick, 1992). The rate of internalization was assayed by monitoring FM1–43 uptake during a 3-Hz train of stimulation for 3, 5, and 10 min (adapted after a protocol established previously by Kuromi and Kidokoro, 2000; Fig. 8, A–C). In wild-type synapses, FM1–43 fluorescence increased rapidly during the first 3 min of stimulation at 3 Hz (Fig. 8 C). As reported previously, after the first 3 min, the rate of fluorescence uptake was slowed down because part of the internalized dye starts now to be released (Betz and Bewick, 1992, 1993; Ryan and Smith, 1995; Kuromi and Kidokoro, 2000). Therefore, we estimated the rates of internalization by fluorescence uptake during the first 3 min. In Rab5S43N-expressing presynaptic terminals, the rate of FM1–43 internalization was 2.5-fold slower than in wild type (Fig. 8, B and C). This result indicates that endocytosis is reduced when Rab5 function is impaired.

We then studied the kinetics of FM1–43 release in the mutant synapses. First, we loaded the terminal by stimulating the synapse at 30 Hz for 3 min. Under these conditions, the pool of recycling vesicles is saturated with FM1–43 both in wild-type and Rab5S43N mutant presynaptic terminals...
Figure 8. Rab5 mutations affect the SV pool size and the kinetics of uptake and release. (A–C) FM1–43 uptake. FM1–43 staining upon dye internalization for 3 min at 3 Hz (HL3, 1.5 mM Ca\(^{2+}\)) in (A) wild-type and (B) w; UAS-Rab5S43N\(^{+/+}\); elav-GAL4\(^{+/+}\) mutant presynaptic terminals. (C) Time course of FM1–43 uptake during stimulation at 3 Hz (HL3, 1.5 mM Ca\(^{2+}\)) for 3, 5, and 10 min in wild type (black) and w; UAS-Rab5S43N\(^{+/+}\); elav-GAL4\(^{+/+}\) (red). Fluorescence refers to average pixel brightness values at the terminal normalized as percentage with respect to the average fluorescence in wild type. Numbers in each time point correspond to the number of NMJs quantified. (D–F) Recycling SV pool size. FM1–43 staining in (D) wild-type and (E) w; UAS-Rab5S43N\(^{+/+}\); elav-GAL4\(^{+/+}\) terminals after 3 min at 30 Hz (normal saline, 2 mM Ca\(^{2+}\)). (F) Quantification of FM1–43 internalization upon dye uptake as in D and E in wild-type (black) and UAS-Rab5S43N\(^{+/+}\); elav-GAL4\(^{+/+}\) mutant terminals (red). Fluorescence is normalized as percentage with respect to the average fluorescence in wild type. Numbers in the columns are the number of NMJs analyzed. The amount of internalized FM1–43 reaches equilibrium after 3 min. Note the highly significant reduction to 64.15 ± 2.9% (P < 0.001; ANOVA) in the mutant. (G–M) FM1–43 release. FM1–43 fully loaded SV pool stained as in D–F in (G) wild-type and (J) w; UAS-Rab5S43N\(^{+/+}\); elav-GAL4\(^{+/+}\) mutant terminals. Staining of the same wild-type (H and I) and mutant (K and L) NMJs after 5 (H and K) and 40 min (I and L) of release by stimulation at 3 Hz (normal saline, 2 mM Ca\(^{2+}\)). Brightness in G and J was adjusted for the best contrast of the signal and the imaging conditions were maintained in H and I and K and L, respectively. (M) Time course of FM1–43 release in wild-type (black); n = 6 NMJs, and w; UAS-Rab5S43N\(^{+/+}\); elav-GAL4\(^{+/+}\) (red; n = 7 NMJs) presynaptic terminals. Terminals were first fully loaded as in D–F and fluorescence was quantified. Afterwards, they were stimulated at 3 Hz (normal saline, 2 mM Ca\(^{2+}\)) during 5, 10, 20, 30, and 40 min to study the release kinetics (see Materials and methods). Fluorescence refers to average brightness pixel values at the terminals normalized as percentage with respect to the average fluorescence of the fully loaded SV pool before release. Bars, 5 μm. Only presynaptic terminals of abdominal A2–A4 muscles 6/7 NMJs were analyzed.

(Fig. 8, D–F) and no further increase in the internalized fluorescence could be detected after 5 min of stimulation (unpublished data). Therefore, FM1–43 labeling under these conditions serves as an estimate of the relative SV recycling pool size. Fig. 8 (D–F) shows that blocking Rab5 function causes a significant decrease to 64.15 ± 2.9% (n = 31; P < 0.001) in the SV recycling pool size.

Once loaded with FM1–43 using this protocol, we stimulated the synapse at 3 Hz for various periods of time, and measured the amount of dye released by quantifying the remaining fluorescence (Fig. 8, G–M; see Materials and methods). We were able to distinguish three phases during FM1–43 release in wild type (Fig. 8 M): (1) a fast release phase during the first 5 min; (2) a slower phase between 5 and 30 min; and (3) a third phase, after 30 min, when no more dye could be released and ~15% of FM1–43 dye remained unreleased. In the mutant synapses, release occurred 2.5 times slower during the first 5 min (Fig. 8 M, also compare G and H with J and K), indicating that impaired Rab5 function reduces SV release.

In summary, these data indicate that the SV cycle is impaired in Rab5S43N mutant synapses. Because endocytosis and exocytosis are coupled at the Drosophila presynaptic termi- nal, it is difficult to determine if Rab5 is involved in endocytosis–endosomal trafficking, in exocytosis, or in both. However, in mammalian cells, Rab5 has been implicated in the formation of clathrin-coated endocytic vesicles (McLauchlan et al., 1998) and their subsequent fusion with the early endosome (Bucci et al., 1992; Stenmark et al., 1994). Therefore, we favor the scenario where Rab5 is involved in SV recycling.

Rab5 function affects the SV fusion efficacy

We used standard electrophysiological recording techniques to show directly whether impaired Rab5 function affects spontaneous and Ca\(^{2+}\)-triggered exocytosis. We recorded spontaneous miniature excitatory junction potentials (mEJPs) and nerve-evoked EJPs in muscle 6 of third instar larva (Fig. 9).

mEJP recordings from Rab5S43N mutant NMJs, displayed no significant differences in mean frequency, amplitude, variability, or voltage decay kinetics compared with wild-type mEJPs (Fig. 9, A and B). This result indicates that presynaptic expression of Rab5S43N does not affect the vesicular NT content, the number of fusion competent vesicles, or the postsynaptic glutamate receptor function or density.
This is consistent with the normal synaptic ultrastructure (Fig. 7), mean number of active zones (Fig. 6 E), and mean number of docked vesicles at the T-bar (Fig. 7, statistical analysis therein) of the mutant NMJs as shown above.

Next, we addressed the efficacy of evoked synaptic transmission. EJPs were evoked by stimulating the segmental nerve, and the voltage response in the muscle was recorded (Fig. 9 C). We calculated the number of vesicles fusing upon arrival of a single action potential, the quantal content, from the mean EJP amplitude at a basal stimulation frequency of 0.5 Hz and from the mean mEJP amplitude measured in the same muscle (see Materials and methods; Martin, 1955). We observed that the mean quantal content was reduced to 49.8 ± 2.0% (n = 28) in Rab5S43N-expressing terminals when compared with wild-type larvae (Fig. 9 D), consistent with a decreased FM1–43 release rate in the mutant (Fig. 8, G–M).

Furthermore, Rab5S43N-expressing terminals show a stronger paired-pulse facilitation than wild-type synapses. In wild-type synapses, responses show a slightly facilitated paired-pulse ratio (Q2/Q1) of 1.3 ± 0.1 (n = 26) at a 20-ms interpulse interval using an external Ca²⁺ concentration ([Ca²⁺]₀) of 0.75 mM (Fig. 9 F). In contrast, Rab5S43N-expressing terminals show a significantly stronger facilitation and exhibited a Q2/Q1 ratio of 2.0 ± 0.2 (n = 15, P < 0.05). Because the paired-pulse ratio was increased, the number of docked vesicles (Fig. 7, statistical analysis therein) and the spontaneous release rate were normal in Rab5S43N-expressing synapses, these data indicate that impaired Rab5
function lead to a reduced probability of the Ca\(^{2+}\)-triggered release of SVs.

Because the Ca\(^{2+}\)-triggered release probability was reduced, we next studied the Ca\(^{2+}\) sensitivity and Ca\(^{2+}\) cooperativity during NT release by systematically examining the quantal content as a function of the [Ca\(^{2+}\)], (Fig. 9 E). The slope of the Ca\(^{2+}\) dependency of the mean quantal content was not affected in the mutant synapses (Fig. 9 E), reflecting a normal Ca\(^{2+}\) cooperativity and indicating that Ca\(^{2+}\) binding to the Ca\(^{2+}\) sensor was not affected. However, for all [Ca\(^{2+}\)], exam-
ined, the release probability in Rab5S43N was significantly reduced (Fig. 9 E) indicating that the defect induced by interfering with Rab5 function is likely to be Ca\(^{2+}\) independent and probably affects the efficacy of the evoked SV fusion process itself. This can be either due to a reduced number of fusion competent vesicles or to a reduced efficacy of vesicular release. The observation that the mEP frequency (Fig. 9, A and B) as well as the number of active zones and docked vesicles (Fig. 6, B–E, and Fig. 7 E [statistical analysis therein]) are normal in Rab5S43N implies that it is the probability of SV fusion that is affected in the mutant. Therefore, we conclude that Rab5-dependent endosomal trafficking affects the efficacy of Ca\(^{2+}\)-triggered exocytosis at the presynaptic terminal.

Rab5-mediated trafficking is rate-limiting during endocytic trafficking and synaptic transmission

We have shown above that inhibition or Rab5 function reduces the endo- and exocytosis rates and the SV recycling pool size. To address if Rab5 function is rate-limiting, we overexpressed Rab5 in the CNS and monitored the kinetics of recycling, synaptic transmission, and the ultrastructure of the synapse. To overexpress Rab5, we took advantage of the thermosensitivity of GAL4 in *Drosophila* (Brand et al., 1996; Entchev et al., 2000) using clav-GAL4 at either 25°C or 29°C during the last two days of larval development (see Materials and methods).

Like in cultured mammalian cells (Bucci et al., 1992), Rab5 overexpression at the presynaptic terminal causes expanded endosomal structures (Fig. 7 F). Thus, in each random EM section through the Rab5 overexpressing terminals, we observed large tubular structures (Fig. 7 F, white arrows) and multivesicular bodies (Fig. 7 F, white arrowheads), unlike in wild-type synapses where cisternal structures were only occasionally found in any given random section. This is consistent with our finding that only one to three endosomal structures are present per synaptic bouton (Fig. 2, A, E, and F). Furthermore, FM1–43 internalization rates were significantly increased up to 118 ± 4.4% (n = 14; P < 0.05; 3 Hz 10 min) at 1.5 mM [Ca\(^{2+}\)], and up to 158.82 ± 4.5% (n = 16, P < 0.0001; 3 Hz 15 min) at 0.75 mM [Ca\(^{2+}\)], in Rab5 overexpressing terminals with respect to controls (unpublished data). Therefore, similar to mammalian cells (Bucci et al., 1992), Rab5 overexpression causes an increase in the endocytic rate, as reflected by the internalization rate and expanded endosomal structures.

To address the effect of Rab5 overexpression on the efficacy of vesicular release, we recorded mEPs and EPs and calculated the quantal content upon basal stimulation at 0.5 Hz. mEPs of Rab5 overexpressing synapses displayed no significant differences in the mean amplitude, variability, frequency, or voltage decay kinetics compared with wild type (Fig. 9, A and B). This indicates that the vesicular NT content, the number of fusion competent SVs, and the postsynaptic glutamate receptor function and density are normal in the overexpressing terminals. Consistently, a normal number of docked vesicles was observed at the ultrastructural level (Fig. 7 F, statistical analysis therein) and no difference in the overall morphology, synaptic surface area, or active zones could be detected (Fig. 6, A, D, and E; unpublished data).

The mean quantal content, however, was significantly increased, up to 1.74-fold of wild type (Fig. 9 D). Because the number of docked vesicles and the spontaneous release rate were normal, the higher quantal content indicates that elevated levels of Rab5 function led to an increased probability of the Ca\(^{2+}\)-triggered SV release. The slope of the Ca\(^{2+}\) dependency of the quantal content was not affected (Fig. 9 E). We conclude that Rab5 functions in a rate-limiting manner in a Ca\(^{2+}\)-independent step during the SV fusion process.

Discussion

Here, we have described the presence of a Rab5-positive, PI(3)P-containing endosomal compartment at the presynaptic terminal of *Drosophila*. As in nonneuronal cells, this compartment depends on Rab5 function. We have shown that the endosome is depleted under conditions where SVs are depleted and that the endosome is replenished by membrane derived by dynamin-mediated endocytosis. Rab5 also influences the synaptic efficacy: impairment of Rab5 function decreases the NT release probability and the recycling SV pool size, whereas overexpression of Rab5 increases the release probability. Our working model is that membrane exchange between the vesicle pool and the presynaptic endosome occurs and is of functional importance for the efficiency of SVs to fuse with the plasma membrane during Ca\(^{2+}\)-triggered endocytosis.

Membrane exchange between the vesicles pool and the synaptic endosome

The mechanism of SV recycling has since long been a matter of debate (Jarousse and Kelly, 2001; Valtorta et al., 2001). It has been proposed that vesicles internalized by clathrin-mediated endocytosis traffic through an intermediate endosomal compartment to become mature SVs (Hannah et al., 1999; Jarousse and Kelly, 2001). However, in cultured hippocampal neurons, endocytic vesicle membrane does not intermix with an internal intermediate compartment (Murthy and Stevens, 1998; Zenisek et al., 2000). Our results present evidence that Rab5-dependent membrane exchange between vesicles and the endosome at the synapse can occur. Furthermore, we showed that a Rab5-mediated trafficking step determines, in a rate-limiting manner, the synaptic performance.

It has been previously established that Rab5 is involved in the fusion of endocytic vesicles with their target endosomal compartment (Bucci et al., 1992; Stenmark et al., 1994). In addition Rab5 has been implicated in the budding of endocytic vesicles from the plasma membrane (McLauchlan et al., 1998). Our data are consistent with a key role of Rab5 during both endocytic trafficking steps at the presynaptic
terminal. This is because exocytosis and endocytosis are temporally and functionally coupled at the *Drosophila* NMJ, making it difficult to ascertain the primary basis of an endo-

exocytic/recycling phenotype. Because the ultrastructure of the endosome is grossly disrupted in Rab5 loss- and gain-of-function mutants (Fig. 7), we favor, however, the possi-

bility that it is the Rab5-dependent endosomal dynamics that play a key role in the SV cycle.

Our data leaves open the question whether this proposed trafficking step is obligatory during SV recycling or if it in-
volves trafficking of only an SV sub-pool at any given time. However, regardless of what percentage of the SV pool recy-
cles at a given time through the endosome, at the steady state, this recycling pathway must play a key role for the syn-

aptic performance of the full SV pool, because synaptic effi-
cacy increases or decreases in a rate-limiting manner depend-
ing on the levels of Rab5 function.

What could be the function of the endosome at the presynaptic terminal?

Interfering with Rab5 function using the dominant-negative version of Rab5 causes a reduction in the number of released quanta during synaptic transmission, whereas elevated levels of Rab5 increase the quantal content. Our morphological and electrophysiological analysis of these Rab5 mutants shows that the changes in synaptic performance are not due to a change in the readily releasable pool size (Neher and Zucker, 1993; Kuromi and Kidokoro, 1998; Delgado et al., 2000), but are rather due to a change in the release probabil-

ity of the SVs.

How could the membrane exchange between vesicles and the endosome affect the SV release probability? It is well es-

established in cultured mammalian cells that the Rab5 endo-

some functions as a sorting station where endocytic cargo is targeted either toward recycling or degradation (Zerial and

McBride, 2001). We speculate that a similar scenario may play a flightless phenotype. Rab5 homozygous adults are poorly fertile. Rab5 phenotype and lethality were reverted by precise excision of the P-ele-

ment. Rab5 was rescued by P[w^/DRab5] or expression of GFP-Rab5 in the nervous system using elav-GAL4. Rab5, Rab5, and Rab5 were generated by imprecise excision of the P-element and their lesions deter-

mined by PCR cloning and sequencing of the Rab5 gene in the different mutants. Rab5 is a 4-kb deletion of Rab5. Although Rab5 also deletes parts of the S-nonsynthesized gene of CG4722, the lethality of Rab5 is caused by loss of Rab5 function because both are rescu-
ed by P[w^/DRab5], a rescue construct spanning Rab5 and excluding the two flanking genes (Fig. 5 A). Rab5 is an 18 + 210-bp insertion of se-

quences from the left and right long terminal repeat (LTR) of the P-element, which remained after imprecise excision of the transposon. Rab5 is a 14-

bp insertion of the right LTR of the P-element. Rab5 and Rab5 are ho-

mozygous viable and show a flightless phenotype in 88 and 63% of adult flies, respectively. Both mutants show a decrease in the Rab5 protein levels (46 and 36% of wild-type levels, respectively) as determined in Western blot experiments using the anti-D Rab5 antibodies.

Antibodies and immunohistochemistry

Rabbit anti-*Drosophila* Rab5 antibody was generated by Eurogentech against a COOH-terminal peptide (H2N-TSIRPTGTETNRPTNN-CONH2). The immune serum was affinity chromatography purified using the Rab5 peptide coupled to CNBr-activated Sepharose 4B (Amersham Biosciences). The antibody detected a single band of the expected size (24 kD) in Western

blots. Antibody-specificity was tested by preincubating the purified anti-

tobody with 100 μg/ml Rab5 peptide for 30 min at RT followed by an anti-

body staining on GFP-Rab5 overexpressing NMJs where no signal was detected. Preincubation with a control peptide did not affect the staining. For Western blot experiments the blot was incubated with anti-Rab5 (1:200), anti-GFP (1:200; Santa Cruz Biotechnology, Inc.), anti-tubulin (1:400; DSHB), or anti-actin antibody (1:200; Sigma-Aldrich). Quantification was done using the Image Gauss software (Fuji).

Immunofluorescence of third instar NMJs or embryos was performed as described (González-Gaitán and Jäckle, 1997) with minor modifications. Antibodies were diluted in PEM (80 mM Pipes, 5 mM EGTA, 1 mM MgCl2, pH 7.4) containing 0.1% IEGPAL (Sigma-Aldrich) and used in the follow-

ing concentrations: rabbit anti-c-adaptin 1:50 (González-Gaitán and Jäckle, 1997), mouse anti-CSP 1:100 (Zinsmaier et al., 1990), mouse anti-

Fasciclin II (1D4) 1:20 (Schuster et al., 1996a), mouse anti-neu 1:200 (Heimbeck et al., 1999), rabbit anti-HRP 1:50 (Sigma-Aldrich), rabbit anti-c-myc 1:50 (Calbiochem), rabbit anti-D Rab5 1:50. Secondary Alexa 546– or Alexa 488-conjugated antibodies (Molecular Probes) were used (1:500). Quantification of the synaptic area of NMJs from muscles 6/7 segment A2 was performed on projections of z-sections acquired after anti-CSP staining. The synaptic area was determined by thresholding the images using the MetaView software (Visrtion Systems). The percentage of

Materials and methods

Molecular analysis and mutant strains

The exon–intron organization of Rab5 (GenBank/EMBL/DDBJ accession no. BK000968) was based on 11 cDNAs, as well as genomic sequence in-

formation from the Berkeley *Drosophila* Genome Project (BDGP). We se-

quenced two cDNAs, GM02432 and LD03788 (GenBank/EMBL/DDBJ accession nos. AY081780, AY081781), and used 5’ and 3’ sequence in-

formation from BDGP for nine other cDNAs (LD39028, GH28628, GH22603, LD05288, LD22469, GH26712, GH21777, GH15713, and GH28615). Alternative splicing generates two major Rab5 mRNA size classes of around 1 and 1.8 kb, consistent with two bands in Northern blot experiments using the ORF as a probe (unpublished data). The 3’-flanking Rab5 are a zinc-finger transcription factor (CG4272) and a Heparansulphate proteoglycan (CG7247).

One of the Rab5 splicing forms overlaps by 28 bp with the 5’-end of the CG4272 transcript (Fig. 5 A). Rh5 is a Rab5-dependent endosomal dynamics that play a key role in the SV cycle.
synaptic surface was calculated with respect to the combined rectangular surface area of muscles 6 and 7. To quantify the number of active regions per presynaptic terminal, preparations were stained with mouse anti-ncl82 to label active zones and rabbit anti–a-adaptin or anti-dynamin to label the centers of endocytosis. Active zones labeled by the ncl82 staining were counted and normalized to the area of the presynaptic terminal.

EM and immuno-EM

For EM, third instar larvae were dissected in normal saline and processed as described (Wu et al., 1998) with minor modifications. For immuno-EM flat preparations of third instar larvae were fixed in 4% PFA and 0.05 or 0.2% glutaraldehyde (GA), embedded in 10% gelatine, and infiltrated in flat preparations of third instar larvae were fixed in 4% PFA and 0.05 or 0.2% glutaraldehyde (GA), embedded in 10% gelatine, and infiltrated in sucrose, pH 7.3. HL3 (Stewart et al., 1994) consisted of (mM): 70 NaCl, 5 KCl, 5 Hepes, 2 MgCl2, 2 CaCl2, 36 sucrose, pH 7.3 (Merc). Cryosections were incubated with anti-GFP, anti-CSP, and/or anti-Rab5 antibodies, and a 10– or 5-nm gold-coupled secondary antibody. Subsequently, sections were incubated in 1% GA and 0.3% uranylacetate/1.8% methycellulose, and imaged with a Morgagni electron microscope (FEI Co.).

Electrophysiology

Current clamp recordings were performed as described previously (Schuster et al., 1996b) with minor modifications. In brief, EJPs of muscle 6 in segments A2–A4 were evoked with a stimulation–isolation unit A360 (World Precision Instruments, Inc.). Only recordings with resting mem-

Salines

Normal saline (Ian and Jan, 1976) had the following composition (mM): 130 NaCl, 5 KCl, 5 Hepes, 2 MgCl2, 2 CaCl2, 36 sucrose, pH 7.3. High K+ was composed of (mM): 80 NaCl, 60 KCl, 5 Hepes, 2 MgCl2, 2 CaCl2, 36 sucrose, pH 7.3. HL3 (Stewart et al., 1994) consisted of (mM): 70 NaCl, 5 KCl, 20 MgCl2, 10 NaHCO3, 5 Trehalose, 115 sucrose, 5 Hepes, 0.75 or 1.5 CaCl2, pH 7.2. For Ca2+-free normal saline or HL, CaCl2 was exchanged against MgCl2.

References

Arwood, H.L., C.K. Govind, and C.F. Wu. 1993. Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. J. Neurobiol. 24:1008–1024.

Betz, W.J., and G.S. Bewick. 1992. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science. 255:200–203.

Betz, W.J., and G.S. Bewick. 1993. Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction. J. Physiol. 460: 287–309.

Blumstein, J., V. Faundez, F. Nakatsu, T. Saito, H. Ohno, and R.B. Kelly. 2001. The neuronal form of adaptor protein-3 is required for synaptic vesicle formation from endosomes. J. Neurosci. 21:8034–8042.

Brand, A., A.S. Manoukian, and N. Perrimon. 1996. Ecotropic expression in Dro-
intraspecific variation. In Drosophila melanogaster. Practical Uses in Cell and Molecular Biology. L.S.B. Goldstein and E.A. Fyrberg, editors. Academic Press, San Diego. 635–654.

Brand, A.H., and N. Perrimon. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118:401–415.

Bucci, C., R.G. Parton, I.H. Mathei, H. Stunnenberg, K. Simons, B. Holllack, and M. Zerial. 1992. The small GTPase Rab5 functions as a regulator for the early endocytic pathway. J. Cell. Biol. 107:715–728.

Ceccarelli, B., W.P. Hurtub, and A. Mauro. 1973. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 57:499–524.

Chapman, E.R., R.C. Desai, A.F. Davis, and C.K. Tornehl. 1998. Delineation of the oligosaccharidosis, AP-2 binding, and synprint binding region of the C2B domain in synaptic vesicle pools. Neuron. 27:135–143.

Chavrier, P., R.G. Parton, H.P. Hauri, K. Simons, and M. Zerial. 1990. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartiments. J. Cell Biol. 62:317–329.

Christofidou, S., M. Miaczynska, K. Ashman, M. Wilm, L.Y. Zhao, S.C. Yip, M.D. Waterfield, J.M. Backer, and M. Zerial. 1999. Phosphatidylinositol-3-kinase ISOHanes are Rab5 effectors. Nat. Cell Biol. 1:249–252.

de Hoop, M.J., L.A. Huber, H. Stenmark, E. Williamson, R.G. Parton, and C. Dotti. 1996. The involvement of the small GTP-binding protein Rab5a in neuronal endocytosis. Neuron. 13:11–22.

De Renzis, S., B. Sonnichsen, and M. Zerial. 2002. Divalent Rab effectors regulate compartment-specific markers. J. Neurosci. 12:4163–4176.

Dotti, C.G. 1994. The involvement of the small GTP-binding protein Rab5a in neuronal endocytosis. J. Cell Biol. 124:1–13.

Dotti, C.G. 1996. Traffic of Dynamin within individual synaptic vesicle recycling induced by a single gene mutation in Drosophila. J. Neurobiol. 14:207–225.

Kuromi, H., and Y. Kidokoro. 1998. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron. 20:917–925.

Kuromi, H., and Y. Kidokoro. 2000. Tetanic stimulation recruits vesicles from reserve pool via a cAMP-mediated process in Drosophila synapses. Neuron. 27:135–143.

Kuromi, H., and Y. Kidokoro. 2002. Selective replenishment of two vesicle pools depends on the source of Ca2+ at the Drosophila synapse. Neuron. 35:333–343.

Lowe, D.C., V. Parki, R. Heller-Harrison, D. Lambricht, and S. Corvera. 2000. The FYVE domain of early endosome antigen 1 is required for both phosphatidylinositol 3-phosphate and Rab5 binding. Critical role of this dual interaction for endosomal localization. J. Biol. Chem. 275:3609–3705.

Looewen, C.A., J.M. Mackler, and N.E. Reitz. 2001. Drosophila synaptotagmin/nul mutants survive to early adulthood. Genes. 31:30–36.

Marrin, A.R. 1985. A further study of the statistical computation of the end-plate potential. J. Physiol. 130:114–122.

Maycos, P.R., E. Link, A. Reetz, S.A. Morris, and R. Jahn. 1992. Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle recycling, J. Cell Biol. 118:1379–1388.

McLaughlan, J., J. Newell, N. Moore, A. Osborne, M. West, and E. Smythe. 1998. A novel role for Rab5-GDI in ligand sequestration into clathrin-coated pits. Curr. Biol. 8:34–45.

Mills, G.T., A.T. Jones, and M. Clague. 1998. Involvement of the endosomal autoregulatory mutants in synaptic vesicle transport and calcium homeostasis. J. Cell Biol. 140:157–165.

Misra, S., and J.H. Hurley. 1999. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell. 97:657–666.

Murphy, V.N., and C.F. Stevens. 1998. Synaptic vesicles retain their identity through the endocytic cycle. Nature. 392:497–501.

Neher, E., and R.S. Zucker. 1993. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron. 10:21–30.

Nielsen, E., S. Christoftordis, S. Unterwesler-Joseph, M. Miaczynska, F. Dewitte, M. Wilm, B. Holllack, and M. Zerial. 2000. Rabenosyn-5, a novel Rab5 effector, is complexed with vHRP45 and recruited to endosomes through a FYVE finger domain. J. Cell Biol. 151:601–612.

Nishikawa, K., and Y. Kidokoro. 1995. Functional and extrajunctional glutamate receptor channels in Drosophila embryos and larvae. J. Neurosci. 15:7905–7915.

Novick, P., and M. Zerial. 1997. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9:496–504.

Olkkonen, V.M., and H. Stenmark. 1997. Role of Rab GTPases in membrane trafficking. Adv. Int. Rev. Cytol. 176:1–85.

Osborne, S.L., J. Herreros, P.I. Bastiaens, and G. Schiavo. 1999. Calcium-dependent oligosaccharidization of synaptotagmin I and II. Synaptotagmin I and II are localized on the same synaptic vesicle and heterodimerize in the presence of calcium. J. Biol. Chem. 274:59–66.

Pyle, J.L., E.T. Kavalali, E.S. Pedras-Renteria, and R.W. Tsien. 2000. Rapid reuse of Rab5 GTPase/exchange factor complexed to rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell. 90:1149–1159.

Jan, L.Y., and J.N. Jan. 1976. Properties of the larval neumuscular junction in Drosophila melanogaster. J. Physiol. 262:189–214.

Jarouse, N., and R.B. Kelly. 2001. Endocytic mechanisms in synapses. Curr. Opin. Cell Biol. 13:461–469.

Jia, X.X., M. Gorczyca, and V. Budnik. 1993. Ultrastructure of synaptic vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron. 8:245–250.

Koening, J.H., and K. Ikeda. 1996. Synaptic vesicles have two distinct recycling pathways. J. Cell Biol. 135:797–808.

Koening, J.H., and K. Ikeda. 1998. Contribution of active zone subpopulation of vesicles to evoked and spontaneous release. J. Neurophysiol. 81:1495–1505.

Koening, J.H., K. Yamaoka, and K. Ikeda. 1993. Calcium-induced translocation of synaptic vesicles to the active site. J. Neurosci. 13:2313–2322.

Kosaka, T., and K. Ikeda. 1983. Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J. Neurobiol. 14:207–225.

Rab5 endosomes in the synapse | Wucherpfennig et al. 623

rab5 gdp/gpp exchange factor complexed to rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell. 90:1149–1159.

The Journal of Cell Biology
routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron. 27:551–559.

Ringstad, N., H. Gad, P. Low, G. Di Paolo, L. Brodin, O. Shupliakov, and P. De Camilli. 1999. Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron. 24:143–154.

Roberts, R.L., M.A. Barbieri, K.M. Pryse, M. Chua, J.H. Morisaki, and P.D. Stahl. 1999. Endosome fusion in living cells overexpressing GFP-Rab5. J. Cell Sci. 112:3607–3675.

Roos, J., and R.B. Kelly. 1999. The endocytic machinery in nerve terminals surrounds sites of exocytosis. Curr. Biol. 9:1411–1414.

Ryan, T.A., and S.J. Smith. 1995. Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron. 14:983–989.

Sankaran, V.G., D.E. Klein, M.M. Sachdeva, and M.A. Lemmon. 2001. High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE domain oligomerization. Biochemistry. 40:8581–8587.

Schmidt, A., M. Wolde, C. Thiele, W. Fost, H. Kratzin, V. Podtreleznikov Alexandre, W. Witke, B. Huttner Wieland, and H.-D. Soeling. 1999. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature. 401:133–149.

Schuster, C.M., G.W. Davis, R.D. Fetter, and C.S. Goodman. 1996a. Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron. 17:641–654.

Schuster, C.M., G.W. Davis, R.D. Fetter, and C.S. Goodman. 1996b. Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron. 17:655–667.

Shupliakov, O., P. Low, D. Grabs, H. Gad, H. Chen, C. David, K. Takei, P. De Camilli, and L. Brodin. 1997. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science. 267:259–263.

Simonsen, A., R. Lippe, S. Christoforidis, J.M. Gauldier, A. Brech, J. Callaghan, B.H. Toh, C. Murphy, M. Zerial, and H. Stenmark. 1998. EE1 links P1(3)kinase function to Rab5 regulation of endosome fusion. Nature. 394:494–498.

Sonichsen, B., S. De Renzis, E. Nielsen, J. Riedorf, and M. Zerial. 2000. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 149:901–914.

Stenmark, H., R.G. Parson, O. Steele-Mortimer, A. Luetcke, J. Grueenberg, and M. Zerial. 1994. Inhibition of ras5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13:1287–1296.

Stenmark, H., G. Vitale, O. Ulrich, and M. Zerial. 1995. Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell. 83:423–432.

Stevens, C.F., and J.H. Williams. 2000. “Kiss and run” exocytosis at hippocampal synapses. Proc. Natl. Acad. Sci. USA. 97:12828–12833.

Stewart, B.A., H.L. Atwood, J.J. Renger, J. Wang, and C.F. Wu. 1994. Improved stability of Drosophila larval nervous system antigens. Nervana 1 and 2, are homologous to the beta subunit of Na⁺-K⁺-ATPase. Proc. Natl. Acad. Sci. USA. 92:5396–5400.

Swanson, M.M., and C.A. Poody. 1981. The shibire mutant of Drosophila: a probe for the study of embryonic development. Dev. Biol. 84:465–470.

Takei, K., P.S. McPherson, S.L. Schmid, and P. De Camilli. 1995. Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals. Nature. 374:186–190.

Takei, K., O. Mundigl, L. Danielle, and P. De Camilli. 1996. The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J. Cell Biol. 133:1237–1250.

Teng, H., and R.S. Wilkinson. 2000. Clathrin-mediated endocytosis near active zones in snake motor boutons. J. Neurosci. 20:7986–7993.

Valforta, F., J. Meldolesi, and R. Fesse. 2001. Synaptic vesicles: is kissing a matter of competence? Trends Cell Biol. 11:324–328.

Wilson, J.M., M. de Hoop, N. Zorzi, B.H. Toh, C.G. Dotti, and R.G. Parton. 2000. EE1A, a tethering protein of the early sorting endosome, shows a polarized distribution in hippocampal neurons, epithelial cells, and fibroblasts. Mol. Biol. Cell. 11:2657–2671.

Wu, M.N., J.T. Littleton, M.A. Bhat, A. Prokop, and H.J. Bellen. 1998. ROP, the Sec1 homolog, interacts with syntaxin and regulates neurotransmitter release in a dosage-dependent manner. EMBO J. 17:127–139.

Zenisek, D., J.A. Steyer, and W. Almers. 2000. Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature. 406:849–854.

Zerial, M., and H. McBride. 2001. Rab proteins as membrane organizers. Curr. Opin. Cell Biol. 13:318–327.