Absence of dystrophin, an essential sarcolemmal protein required for muscle contraction, leads to the devastating muscle-wasting disease Duchenne muscular dystrophy. Dystrophin has an actin-binding domain, which binds and stabilises filamentous-(F)-actin, an integral component of the RhoA-actin-serum-response-factor-(SRF) pathway. This pathway plays a crucial role in circadian signalling, whereby the suprachiasmatic nucleus (SCN) transmits cues to peripheral tissues, activating SRF and transcription of clock-target genes. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised dystrophin loss causes circadian deficits. We show for the first time alterations in the RhoA-actin-SRF-signalling pathway, in dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios, altered MRTF levels, dysregulated core-clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from Duchenne patients harbouring an array of mutations. Furthermore, we show dystrophin is absent in the SCN of dystrophic mice which display disrupted circadian locomotor behaviour, indicative of disrupted SCN signalling. Therefore, dystrophin is an important component of the RhoA-actin-SRF pathway and novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation.

Introduction

Skeletal muscle is a dynamic structure in which myofilament turnover, maintenance and energy replenishment occur continually throughout the day (1). Circadian transcriptomic studies in skeletal muscle indicate that ~34% of expressed skeletal muscle genes show rhythmicity, and that this differs between muscle types, specifically slow and fast muscle (2). These rhythmic genes are involved in many central processes such as myogenesis, muscle lipid utilisation, protein metabolism and organisation of myofilaments, and very recently a key circadian gene, Bmal1 (Arnt), was shown to be involved in impaired myogenicity in muscle of dystrophic mice (3).

Dystrophin is an integral sarcolemmal protein essential for muscle contraction and maintenance, absence of which leads to the devastating muscle wasting disease Duchenne muscular dystrophy (DMD) (4, 5). Dystrophin has an actin-binding domain at the amino-terminus of the full-length isoform (6, 7, 8), which specifically binds and stabilises filamentous (F)-actin (9), an integral component of the RhoA-actin-serum response factor (SRF) pathway (10, 11, 12). The RhoA-actin-SRF pathway is well described in muscle (13), and has since been shown to play an essential role in circadian signalling via systemic cues activating SRF in peripheral tissues (11). Indeed SRF is a pivotal nuclear transcription factor, regulating more than 200 target genes (14) that are predominantly involved in cell-growth, migration, cytoskeletal organisation and myogenesis (15, 16), and one of the earliest SRF target genes to be identified was Dmd (13). This integral relationship, combined with the understanding that the RhoA-actin-SRF pathway operates via a feed-back loop (17), intimates that the absence of dystrophin would have serious implications on SRF regulation. Indeed, in the reciprocal situation, in studies designed to mimic age related sarcopenia by disrupting skeletal muscle SRF expression, this resulted in atrophy, fibrosis, lipid accumulation and disturbed regeneration (18) which are all hallmarks of the DMD phenotype (19, 20, 21) further supporting their cyclical nature and mutual dependence.

Gerber’s revolutionary work on the circadian regulation of the RhoA-actin-SRF pathway, eloquently describes how the hypothalamic suprachiasmatic nucleus (SCN), transmits systemic cues
thereby activating RhoA in peripheral tissues (11). They demonstrate that diurnal polymerisation (F-actin) and de-polymerisation (globular (G)-actin) of actin influences SRF expression and transcription of specific downstream circadian targets (Per1 and Per2) and output genes (NR1D1 and Rora) (11, 12). However, disruption of this pathway by removing alternative upstream proteins intrinsic to the cascade has not been shown. Given the proximity of dystrophin to F-actin (which it specifically binds and stabilises) combined with its integral relationship with SRF transcription, we hypothesise that dystrophin loss leads to a shift in actin de-polymerisation, which affects SRF expression and downstream circadian gene expression, thus resulting in circadian dysregulation in DMD models.

Results

To assess whether dystrophin loss disrupts the RhoA-actin-SRF pathway, an in vitro assay was designed using siRNAs targeting the Dmd gene to down-regulate dystrophin protein in a skeletal muscle cell line (H2K 2B4 myoblasts) (22). Differentiated myotubes were transfected twice with 100 nM siRNA, and collected 49 h after the second transfection, thereby representing circadian time 1 (CT1). Efficient transfection resulted in undetectable amounts of dystrophin protein (Fig 1A) and markedly reduced Dmd transcript levels (Fig 1B). Dystrophic conditions resulted in significantly altered RhoA activation (Fig 1C) and decreased F/G-actin ratios (Fig 1D). Additionally, there appears to be greater cytoplasmic MRTF accumulation under dystrophic conditions (not significantly different; Fig 1E). To illustrate circadian oscillation patterns of core clock genes involved in the transcriptional auto-regulatory feedback loop after abolition of dystrophin, cells were collected every 4 h over a 24-h period, and indicate significant alterations (Fig 1F). Per1, Per2, and Clock expression were significantly down-regulated at certain time points, whereas Cry2 and Arntl1 were up-regulated. Expression of other downstream SRF target genes in the actin-cascade, NR1D1 and Acta (12), was also significantly lower in dystrophic deficient samples, and interestingly Srf expression was significantly up-regulated. Although Srf up-regulation was unexpected, this may be due to activation of alternative compensatory pathways such as the ternary complex factor family of Ets domain proteins (MAPK pathway) which regulates transcription of growth responsive genes (12). Importantly, Srf up-regulation does not denote SRF activation via the RhoA-actin pathway, which would require nuclear translocation of MRTF. In order to investigate to what extent dystrophin loss in human DMD patients resulted in similar biochemical events, we obtained DMD muscle biopsies from patients (tissues collected between 8 and 10 AM in the morning and patients fasted from midnight the evening before biopsy). Interestingly, a wide array of mutations showed down-regulation of key RhoA-actin-SRF targets PER1, PER2, and NR1D1 in nearly all samples (Fig 1G).

Given these in vitro and biopsy results, we predicted that SRF signalling in peripheral muscle would also be interrupted in dystrophic mice, leading to muscular deficits. The dystrophin–utrophin knockout (dKO) model presents with a severe phenotype that closely recapitulates disease in patients, specifically severe progressive muscular dystrophy, premature death and a plenitude of physiological and molecular aberrations (23). The oscillation patterns of core clock genes in the tibialis anterior (TA) muscle of 5-wk-old male mice were assessed over a 24-h period (double plotted). This model revealed profound alterations in core clock gene expression, with markedly similar patterns to that observed in the dystrophic–H2K 2B4 myotubes. The amplitude of SRF-target genes Per1, Per2, and Nr1d1 was lower in 5-wk-old dKO animals compared with C57BL10 (Fig 2A), suggesting dampened rhythmicity. Gene expression of Cry1, Cry2, Arntl, Clock, and other downstream targets (Acta and Rora1) were all significantly up-regulated at various ZTs (Zeitgebers). As observed in the H2K 2B4 model, Srf expression was again up-regulated under dystrophic conditions. F/G-actin ratios were significantly lower in 5-wk-old dKO animals compared with control animals (ZT1; Fig 2B) and littermate mdx animals (Fig S1), indicating a more profound impact on F-actin in dKO mice compared with the less effected mdx model. In dKO animals, the levels of nuclear MRTF protein trends lower (Fig 2C, ZT1), and MRTF cytoplasmic protein levels were significantly lower (ZT13) compared with control animals, which together suggests there is less total MRTF in dKO animals. It is important to note that F/G actin ratios exhibited diurnal changes in skeletal muscle of healthy mice (Fig 2B), and MRTF cytoplasmic fraction levels appear to oscillate also. These results, in combination with the in vitro data, intimates the actin pathway is indeed perturbed in muscle due to dystrophin loss, and components within the cascade display diurnal alterations.

We further anticipated that systemic cues from the central clock (SCN) to SRF in peripheral muscle would be interrupted. Although the dKO mouse model closely recapitulates the dystrophic phenotype in patients and is a good molecular model for DMD, its severe phenotype, including reduced lifespan (~5-8 wk) and marked reduction in activity, precludes extensive locomotor behaviour studies. As such, the less affected dystrophic model, mdx, was used for this extensive battery of locomotor tests. We show for the first time that dystrophin protein is expressed in the SCN of C57BL10 mice but not mdx animals (Fig 3A), and therefore it was pertinent to assess whether there were any obvious abnormalities in the circadian locomotor behaviour in dystrophic mice. Wheel-running activity of 20 wk old (symptomatic) male mdx and C57BL10 mice were recorded under various conditions, and representative actograms under 12 h:12 h light–dark (LD), 24 h dark (DD), and 24 h light (LL; Fig 3B) are shown. Under normal LD conditions, no significant differences in the number of bouts or total activity between mouse cohorts were observed, indicating that the endurance level of mdx mice was normal (Fig 3C). This observation was valuable for the interpretation of subsequent data, as it indicated differences between genotypes was not due to the muscle wasting phenotype of mdx mice, but rather signalling cues from the SCN. Interestingly, during the light phase of LD, activity of mdx mice was markedly reduced, and they exhibited delayed onset into dark phase (phase angle). After 6-h phase advance bouts, mdx mice were capable of re-entraining to the shifted cycle in a similar manner to control animals (Fig 3D). Animals were then placed in DD, where mdx animals again indicated a delayed onset (phase angle) on release into dark (Fig 3E), suggesting that their endogenous clock may be out of phase. Again, endurance of mdx animals was maintained during DD and they ran for a similar period compared with C57BL10 animals; however, their free running period was significantly shorter.
Figure 1. Disruption of RhoA-actin-serum response factor (SRF) pathway in dystrophic cells and patient muscle biopsies.

To mimic dystrophic conditions, H2K 2B4 myotubes were transfected with siRNAs targeting the Dmd gene (Dmd siRNA, red), and a non-targeting (NT siRNA, black) siRNA was used for control. (A, B) Dystrophin was successfully down-regulated at (A) protein and (B) the transcript level. (C, D, E) In addition, the absence of dystrophin resulted in (C) altered RhoA activity, (D) reduced F/G-actin levels, and (E) greater cytoplasmic MRTF accumulation (loading controls: nuclear TBP, and cytoplasmic β-actin). For gene transcript studies, cells were placed in serum free media and collected over a 24-h time course (double plotted-48 h-to show oscillation pattern). (F) Circadian time (CT) gene expression data indicates diurnal oscillation patterns and down-regulation of pertinent core clock genes (Per1 and Per2) and down-stream targets for RhoA-actin-
(Fig 3F; mdx run half an hour shorter). During the DD phase, mice received a light pulse 4 h after they started exercise (CT16), and mdx mice displayed no difference in the ability to shift the clocks phase in response to this nocturnal light compared with C57BL10 animals (Fig 3G). In constant light, activity counts for mdx animals dropped dramatically, and free running period was also significantly reduced (Fig 3H). When considering our altered dystrophin-associated-RhoA-actin-SRF cascade hypothesis, altered activity may be due to dystrophin loss in the SCN leading to alterations in core clock gene, Per2, which has been associated with shorter circadian period and loss of circadian rhythmicity in constant darkness (24). The delayed phase angle in LD and DD, combined with extreme lack of activity during LL suggest a severe aversion to light stimuli in mdx animals. Long-term exposure to light has been shown to affect neurons in the SCN and reduce rhythmicity (25), which aggravated by the loss of dystrophin in the SCN, may explain the considerable changes in activity of mdx mice. Altogether, these data demonstrate the SCN is profoundly affected in dystrophic mice.

Male mdx and C57BL10 mice were also subject to repeated bouts of chronic jetlag (IL), whereby lighting conditions were advanced 6 h every week for 5 wk (mice weighed weekly). Age-matched mdx were significantly heavier than C57BL10 mice (15 wk old at start of protocol, 22 wk by end); therefore, a “weight matched” group (12 wk at start, 20 wk at end) was also assessed. “Weight-matched” mdx mice significantly increased in weight over 5 wk, whereas there was no increase in weight in the C57BL10 cohort (Fig 3I). The JL cohorts were further compared with non-jetlagged (NJL) groups. No significant differences were observed between JL and NJL C57BL10 cohorts (all mice 22 wk of age). Although NJL mdx animals were significantly heavier than both C57BL10 cohorts, most importantly the JL mdx cohort was significantly heavier than all other groups. Jetlag causes changes in phase of entrainment in the SCN and peripheral clock (26). Some clocks entrain faster than others which can cause internal desynchrony. If the synchronising signal such as SRF is lost (in this case due to disruption of RhoA-actin-SRF cascade), it is anticipated that there will be a greater disruption and desynchrony from jetlag protocols leading to changes in weight. This would account for why the C57BL10 animals resisted weight gain under the short JL conditioning protocol, whereas the mdx animals do. Together, these data indicate altered signalling between the SCN and peripheral tissues in dystrophic-deficient mdx mice.

As locomotor experiments were performed in the mdx model, gene expression patterns of core clock genes in the TA muscle of dystrophic mice were assessed over a 24-h period (double plotted). A shift in phase was observed for 20 wk old male mice were assessed over a 24-h period (double plotted). A shift in phase was observed for Per1, Per2, Cry1, Cry2 and Arnt1, resulting in significant differences in gene expression at certain time-points within the day (Fig 4). For instance, the expression of Per2 in mdx mice peaked at ZT5, but in C57BL10 animals peaked at ZT9. Gene expression of downstream SRF target, Rora1, was significantly down-regulated (ZT1, ZT17, and ZT21), and minor alterations in Nr1d1 (ZT21) and Acta1 (ZT1) were observed.

Most importantly we observe alterations in integral components of the RhoA-actin-SRF cascade (in particular SRF targets and F/G-actin ratios) in all dystrophic models described. Although the mdx gene dataset differs to the dKO and H2K 2B4 myobute models, we regard the dKO model with greater esteem given its phenotype and correlation with patient disease progression (23), which is supported by the biopsy data (Fig 1H). It further correlates closely with cell-culture data in which dystrophin is specifically ablated (Fig 1F). However, to illustrate locomotive aberrations, and systemic cues with the SCN, it was imperative we look in the milder mdx model. The remarkable lifespan and generally mild phenotype of mdx mice is poorly understood, but it is likely due to multiple compensatory events that ensue and may account for the variances observed between the dystrophic models. As multiple inputs can regulate the clock, it is difficult to predict how the clock will react when one input is removed. In vivo complexities in the form of protein or signalling interactions with serum, hormones (particularly glucocorticoids as Rho2 has a glucocorticoid receptor-binding site) and neurological signals or mechanisms triggered to compensate for disturbed RhoA-actin-SRF pathway may be involved. One such compensatory mechanism is up-regulation of utrophin, a homologue of dystrophin, which is knocked out in dKO but present in mdx mice. Utrophin has been shown to bind and maintain F-actin polymerisation and therefore seems an obvious candidate in the RhoA-actin-SRF signalling cascade (27). We show the presence of utrophin gene and protein expression in mdx mice (Fig S2A); however, in H2K 2B4 myobutes, Utrn gene expression and protein levels were reduced (Fig S2B). Similarly, in DMD patient biopsies, UTRN gene expression was down-regulated in all samples with the exception of one, which incidentally also showed up-regulation of PER1 and PER2 for that sample (Fig S2C). Indeed, linear regression analysis of UTRN expression versus PER1 and PER2 indicate a significant correlation pattern (PER1 R = 0.1687, PER2 R = 0.4542; Fig S2D). Thus, utrophin may compensate for dystrophin loss in mdx animals, and loss of both utrophin and dystrophin may lead to greater F-actin instability and downstream SRF activity, as observed in the H2K 2B4 and dKO data.

To assess the RhoA-actin SRF cascade further, and determine whether ablation of other upstream components of the pathway, such as actin, or indeed SRF itself, results in similar changes in the expression of target genes, shRNAs were used to specifically knockdown Srf and Acta in H2K 2B4 myoblasts. To compare with dystrophin knockdown experiments, differentiated myotubes were transfected twice with 100 nM Shf and Acta shRNAs, alongside Dmd transfected myotubes, and collected 48 h after the second transfection, thereby representing CT1. Myotubes were also treated

SRF (Nr1d1 and Acta1; housekeeping gene—Gapdh). (G) Muscle biopsies were obtained from an array of patients with different mutations or deletions in the dystrophin genes, and indicate down-regulation of RhoA-actin-SRF target genes in most cases (housekeeping genes—RPL13a). All samples were normalised to a pooled skeletal muscle sample from two healthy volunteers, as indicated by red line. For RhoA GLISA, F/G actin ratio and MRTF Westerns, data were normalised to NT control (n = 3; two-tailed t test). For RT-qPCR CT data, the nadir was determined as the minimum value across both treatments (Dmd and NT shRNAs) and CTS and applied to all samples; nadir normalised to 1 (n = 2–3 for each siRNA and time point; two-way ANOVA with Bonferroni post hoc test performed). Mean values reported with SEM, ***P < 0.001, **P < 0.01, *P < 0.05. For uncropped Western blot images and loading controls, see Source Data Fig 1.

Source data are available for this figure.
with lower concentrations of siRNA to confirm gene expression was stable and that myotubes were healthy (Fig S3). Interestingly, Srf, Acta and Dmd down-regulation, appear to reciprocally modulate each other resulting in lower expression of all genes for all cohorts, that is, Srf knock-down results in lower Dmd and Acta gene expression and vice versa (Fig 5). In addition, all siRNA treatment groups resulted in reductions of RhoA-actin-SRF target genes, Per1 and Per2, and Nrd1 and Rora. Together, this illustrates how intertwined and mutually dependent these genes are in maintaining homeostatic balance of the RhoA-actin-SRF cascade.

Discussion

Because of the severe repercussions of most genetic disorders, many other symptoms of disease are often overlooked, as efforts are primarily aimed at targeting the underlying genetic defect. This is most certainly the case for DMD, a monogenic disorder resulting in muscle wasting and cardiomyopathy in affected boys (28, 29). These boys also experience abnormalities in sleeping patterns (30), and nocturnal hypoxaemia and hypercapnia (31) which may be attributed to the dystrophic phenotype-specifically the deterioration in respiratory muscles. Here we propose this may also be due to a circadian deficit.

We show circadian perturbations in a number of dystrophic models and suggest a mechanistic rationale for these changes by investigating components of the RhoA-actin-SRF cascade. This seemed a logical approach given F-actin's interaction with dystrophin, and its importance in the RhoA-actin-SRF cascade, which is crucial for muscle homeostasis (11, 13). In the case of healthy muscle, RhoA regulates polymerisation (F-actin) and de-polymerisation (G-actin; Fig 6). During de-polymerisation G-actin preferentially binds to MRTF, but...
when this shifts to the polymerisation phase the G-actin pool diminishes and unbound MRTF translocates to the nucleus and influences SRF expression. SRF activation in turn regulates transcription of target genes—Per1, Per2, Rorα1, Nr1d1, and Acta. Here, we propose that the absence of dystrophin reduces F-actin levels resulting in shifts to the de-polymerised state. G-actin binds to MRTF, which we show remains cytosolic thereby hampering SRF activation (Fig 6). In addition, we show for the first time that dystrophin is absent in the SCNs of dystrophic mice, and that these animals exhibit behavioural alterations, indicative of disrupted central circadian signalling within the SCN. As such, the lack of dystrophin results in circadian disruption that manifests with physiological and molecular alterations in dystrophic models.

Given that dystrophin regulates circadian signalling in peripheral tissues, this suggests that related dystrophin glycoprotein complex (DGC) proteins may be implicated in dystrophin and F-actin tethering, loss of which could also result in circadian dysregulation. Indeed this is supported by knock-down of Srf and Acta, alternative components of the RhoA-actin-SRF pathway, which also lead to down-regulation of target genes. Thus, muscular dystrophy disorders, such as limb-girdle muscular dystrophy (32), in which DGC and sarcomeric proteins are affected should be assessed for circadian abnormalities.

It is possible that some pharmacological interventions used to improve the muscle phenotype in DMD patients, may have inadvertently modulated circadian rhythm resulting in physiological improvements, such as melatonin (33) and glucocorticoids (34).
These hormones oscillate throughout the day, are highly regulated by sleep–wake cycles, and are governed by SCN signalling (35, 36). This is particularly interesting given that dystrophin is absent in the SCN and may have consequential repercussions on endocrinological processes in DMD patients. It has also been shown that the glucocorticoid, dexamethasone, induces the transcription factor, Klf15, with beneficial ergonomic effects on dystrophic muscle (37). Klf15 regulates a multitude of processes including metabolism (38, 39) and nitrogen homeostasis (40), but most importantly does so in a circadian fashion, and has also been shown to be altered in another neuromuscular disorder, spinal muscular atrophy (41). This supports our theory that pharmacological interventions, such as dexamethasone, modulate circadian pathways.

Dystrophic mice were adversely affected by constant light exposure. LL causes arrhythmicity in the long-term, and short-term exposure is a method used for period lengthening which is a common feature of the clock in nocturnal rodents. It is uncertain what effect LL would have in human subjects, but constant dim light has been used (rather than DD) to unmask the central clock, suggesting light augmentation may be an appropriate therapy for DMD patients. Other therapies including exercise, dietary modification or drugs to mitigate disease pathology (such as lower calcium) (42) may also usefully be investigated in the context of DMD treatment. This study therefore reveals both a hitherto unanticipated role for dystrophin in peripheral muscle tissues and novel avenues for further research and possible therapeutic intervention applicable to a range of muscular dystrophy disorders.

Materials and Methods

The datasets generated during this study are available from the corresponding author on reasonable request.

In vitro Dmd knock-down

H2K 284 myoblasts were cultured in flasks coated with Matrigel (Corning) and in DMEM culture media supplemented with 2% chick

---

**Figure 4.** Altered expression of clock genes in tibialis anterior of mdx mouse model. Tissues were collected over a 24-h time course and double plotted (48 h) to better illustrate the oscillation pattern of core clock genes in tibialis anterior (TA) of 20 wk old mdx animals which were significantly altered compared with C57BL10 (Zeitgeber- ZT). Down-stream targets for RhoA-actin-serum response factor pathway (Nr1d1, Acta, and Rora1) were also altered (Atp5b used as housekeeping gene). Light and dark periods represented by outlined (light) and solid bars (dark). The nadir was determined as the minimum value across both genotypes and ZTs and applied to all samples; nadir normalised to one (n = 3–4 for each for each genotype and time-point; two-way ANOVA with Bonferroni post hoc test performed). Mean values reported with SEM; ***P < 0.001, **P < 0.01, *P < 0.05.
and Per2) and other down-stream targets for RhoA-actin-SRF (Nrtdf1 and Acta1; housekeeping gene—Gapdh). Data normalised to NT siRNA; n = 3; two-way ANOVA with Bonferroni post hoc test performed. Mean values reported with SEM. ***P < 0.001, **P < 0.01, *P < 0.05.

SRF and actin knock-down

H2K 2B4 myoblasts were again cultured in Matrigel coated flasks using DMEM culture media (2% chick embryo extract, 10% fetal calf serum and 1% antibiotics; 33°C and 10% CO2). Myoblasts were differentiated using medium containing 5% horse serum (Gibco) in DMEM supplemented with 1% antibiotics. Dystrophin was knocked-down using siRNAs targeting the dystrophin transcript (Dharmacon; see Table S1). H2K 2B4 cells were transfected with siRNAs (100 nM) and lipofectamine RNAiMAX (Thermo Fisher Scientific) at day 0 and day 2 of the differentiation process. For Rhoa GLISA, F/G actin and MRTF studies, cells were harvested 49 h later, on day 4. Experiments were performed in duplicate, whereby cells were scraped, pooled and further split into three vials for downstream analyses (i.e., protein, F/G-actin). This experiment was repeated three times to attain three biological replicates. Data shown are relative to control siRNA for each experiment. For RT-qPCR study, 49 h after second transfection, media was removed, cells were washed with PBS, and serum free media (DMEM supplemented with 10 mM Heps and 2% B27- Gibco) was placed in wells. Cells were collected an hour later (CT1), and then every 4 h over a 24-h period. Note: cells were not synchronised with dexamethasone due to the known pharmacological effects observed in dystrophic cells which would likely result in complicated interpretation of the results.

RNA extraction and RT-qPCR

For patient biopsies, informed consent was obtained from DMD patients’ for standard diagnostic purposes, including muscle biopsy. In addition, we obtained informed consent to use muscle biopsies for research purposes, according to the Telethon Project N. GGP07011, Ethical approval N. 9/2005, 25 October 2005, by the S. Anna University Hospital Local Ethical Committee, Italy. Patients fasted overnight before the biopsy, which was performed between 8 and 10 am. The control RNA was obtained commercially and consists of two human skeletal muscle samples pooled together (Ambion). RNA was extracted using an RNAeasy kit from QIAGEN as per the manufacturer’s instructions. For mouse muscle and myotubes, total RNA was extracted from tissue or cells using TRizol (Thermo Fisher Scientific).

All RNA was reverse transcribed using a High Capacity cDNA synthesis kit (Applied Biosystems). The cDNA was run using Taq probes sets (Applied Biosystems) and gene specific primer sets for the core clock genes (Integrated DNA Technologies; see Table S1) on the StepOne Real-Time PCR system (Applied Biosystems). Housekeeping genes were determined by running geNorm RT-qPCR normalisation kits with samples from patients (Human geNorm kit-ge-DD-12-hu; Primer Design), cell culture and each mouse model (Mouse geNorm kit-ge-DD-12-hu; Primer Design). Rpl13a was the most stable housekeeping gene for Patient biopsies, Gapdh for cell culture and dKO samples, and Atp5b was the best for mdx samples. Tissues were collected over a 24-h time course, and data were double plotted (±8 h) to better illustrate the oscillation pattern of core clock genes in muscle. The nadir was determined as the minimum value across all genotypes and ZTs’s and applied to all samples; nadir normalised to one.

RhoA activity quantification

RhoA activity was calculated using a RhoA G-LISA Activation Assay kit as per manufacturer’s instructions (Cytoskeleton). Briefly, cells were treated with Dmd and NT siRNAs as described above, washed, lysed, and snap-frozen until required. Protein quantification was performed using Precision Red and samples were run on Rho-GTP ELISA.

F/G actin westerns

Actin protein levels were calculated using a G-actin/F-actin in vivo Assay Biochem Kit as per manufacturer’s instructions (Cytoskeleton). Briefly, cells were treated with Dmd and NT siRNAs as described above, were further lysed and underwent ultra-centrifugation to separate fractions. The G-actin supernatant was removed and the F-actin was resuspended in F-actin depolymerisation solution. Samples were run on 10% Bis-Tris gels (Thermo Fisher Scientific) and blotted as per supplier’s instruction.

MRTF westerns

Nuclear and cytoplasmic fractions were collected from tissue culture samples and dKO tissues using the NE-PER kit as described in
manufacturer’s instructions (Thermo Fisher Scientific). Samples were run on 10% Bis Tris gels (Thermo Fisher Scientific), blotted onto polyvinylidene difluoride (PVDF) membrane (Millipore) and probed with Mkl1 (ab115319; Abcam) and Mkl2 (ab191496; Abcam). For nuclear fractions TBP (ab51841; Abcam) was used as loading control, and for cytoplasmic fractions vinculin (hVIN-1; Sigma-Aldrich) and β-actin were used as loading controls. Blots were visualised using IRDye 800CW goat-anti rabbit IgG or IRDye 800CW goat-anti mouse IgG (LI-COR) on the Odyssey imaging system.

**Dystrophin/utrophin protein quantification**

Samples for dystrophin and utrophin westerns were prepared, and protein levels quantified as previously described (43). Briefly, homogenised samples were run on 3–8% Tris-acetate gels (Thermo Fisher Scientific), blotted onto PVDF membrane (Millipore), and probed with DYS1 (Novocastra, dystrophin) or MANCHO antibody (KED laboratory—Oxford, utrophin). Blots were visualised using IRDye 800CW goat-anti mouse IgG (LI-COR) on the Odyssey imaging system. For dystrophin, vinculin (hVIN-1; Sigma-Aldrich) was used as loading control, and for utrophin, the samples were quantified against total protein using Coomassie stain (Sigma-Aldrich).

**Animals housing**

All procedures were authorized and approved by the University of Oxford ethics committee and UK Home Office (project licence PEDFEC660, protocols 19b1, 2 and 4). Investigators complied with relevant ethics pertaining to these regulations. Procedures were performed in the Biomedical Sciences Unit, University of Oxford. Mice were allowed food and water ad libitum.

**In vivo experiments for gene expression, jetlag, and wheel-running studies**

All experiments were performed in male dystrophic C57BL/10ScSn-Dmdmdx/J (mdx; JaxLabs), C57BL/10ScSn-Utrntm1Ked Dmdmdx/J (dKO; Jax-Labs) and control C57BL/10ScSnJ (C57BL10; Envigo and Oxford BSB) mice. For the 24-h ZT study, mice (5 wk old dKO, littermate mdx and C57BL10, or 20 wk old mdx and C57BL10) were housed under a strict 12:12 h light–dark cycle (LD; 400 lux white light) for 2–3 wk, after which mice were euthanized every 4–6 h over a 24-h time course (n = 3–5 for each genotype and time point). Briefly, mice were culled by cervical dislocation and eyes removed. Animals during the night cycle were culled under dim red light. The TA was dissected, snap frozen and stored at −80°C.

For wheel-running experiments, each mouse was placed in a large cage fitted with a running wheel (n = 6 for each genotype). Activity was recorded using the ClockLab console. Mice were first entrained to a 12:12 h LD cycle at 400 lux white light for 2 wk, and then underwent 6-h phase advance entraining, before being placed into constant darkness (DD).

For the jetlag weight study, animals were group housed under a normal 12:12 LD cycle (400 lux white light) for 2 wk to establish stable entrainment (n = 3–4 for each genotype and condition). The LD cycle was then advanced by 6 h every week for 5 wk. Animals were weighed close to ZT13 each week. Animals were culled at the end of the protocol and tissues harvested, weighed and snap frozen.

**Statistics**

All statistics were performed using SPSS or GraphPad. For experiments including three or more comparisons, one-way or two-way ANOVA was performed with either Bonferroni or Games–Howell post hoc corrections. For the weight gain experiments, a repeated measures one-way ANOVA was used to investigate the overall
weight gain differences between the groups. For experiments between only two groups, t test (two-tailed) was performed.

**Supplementary Information**

Supplementary Information is available at https://doi.org/10.26508/lsa.202101014.

**Acknowledgements**

We would like to thank the Biomedical Sciences facility at Oxford for their care and support of the animals, and Dr Peter Oliver for the use of the controlled light housing units. We would also like to thank Dr Ben Edwards and Prof. Kay Davies for providing utrophin antibody. We thank the Telethon Italy Network of Genetic Biobanks (Dr. Marina Mora) for providing biological samples. Special thanks are due to Duchenne Parent Project Italia Onlus for granting A Ferlini and MS Falzarano DMD diagnostic studies, and Duchenne Parent Project Italy General Grant for DMD cell bank funding. Work in the laboratory of MJA Wood is supported by the Medical Research Council (MRC programme grant number MRN0248501). CA Betts was supported by the British Heart Foundation and Muscular Dystrophy UK. TLE van Westering was supported by Muscular Dystrophy UK. M Bowerman was an SMA Trust Career Development Fellow when at the University of Oxford. KE Meijboom was funded by the Muscular Dystrophy UK and SMA Trust. C Rinaldi is supported by a Career Development Fellowship from the Wellcome Trust (205162/Z/16/Z). Work in the laboratory of MJ Gait was supported by the Medical Research Council (MRC programme number U105178803). JR Counsell is supported by a Wellcome Innovator Award (grant number 202101014). Work in the laboratory of MJA Wood is supported by the Medical Research Council (grant number U105178803). JR Counsell is supported by a Wellcome Innovator Award (grant number 202101014). Work in the laboratory of MJA Wood is supported by the Medical Research Council (grant number U105178803). JR Counsell is supported by a Wellcome Innovator Award (grant number 202101014). Work in the laboratory of MJA Wood is supported by the Medical Research Council (grant number U105178803). JR Counsell is supported by a Wellcome Innovator Award (grant number 202101014). Work in the laboratory of MJA Wood is supported by the Medical Research Council (grant number U105178803). JR Counsell is supported by a Wellcome Innovator Award (grant number 202101014).

**Conflict of Interest Statement**

The authors declare that they have no conflict of interest.

**References**

1. Michele DE, Albayya FP, Metzger JM (1999) Thin filament protein dynamics in fully differentiated adult cardiac myocytes: Toward a model of sarcomere maintenance. *J Cell Biol* 145: 1483–1495. doi:10.1083/jcb.145.7.1483

2. Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, Antoch MP, Walker JR, Esser KA, Hogenesch JB, et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. *Proc Natl Acad Sci U S A* 104: 3342–3347. doi:10.1073/pnas.0611724104

3. Gao H, Xiong X, Lin Y, Chatterjee S, Ma K (2020) The clock regulator BMal1 protects against muscular dystrophy. *Exp Cell Res* 397: 112348. doi:10.1016/j.yexcr.2020.112348

4. Dunckley MG, Manoharan M, Villlet P, Eperon IC, Dickson G (1998) Modification of splicing in the dystrophin gene in cultured Mdx mouse cells by antisense oligonucleotides. *Hum Mol Genet* 7: 1083–1090. doi:10.1093/hmg/7.7.1083

5. Wilton SD, Lloyd F, Carville K, Fletcher S, Honeyman K, Agrawal S, Kole R (1999) Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. *Neuromuscul. Disord* 9: 330–338. doi:10.1016/s0960-894x(99)00010-3

6. Amann KJ, Guo AW, Ervasti JM (1999) Ulrophin lacks the rod domain actin binding activity of dystrophin. *J Biol Chem* 274: 35375–35380. doi:10.1074/jbc.274.50.35375

7. Norwood FL, Sutherland-Smith AI, Keep NH, Kendrick-Jones J (2000) The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. *Structure* 8: 481–491. doi:10.1016/s0969-2126(00)00132-5

8. Bañuelos S, Saraste M, Djurović Carugo K (1998) Structural comparisons of calponin homology domains: Implications for actin binding. *Structure* 6: 1419–1431. doi:10.1016/s0969-2126(98)00141-5

9. Ohlendieck K (1996) Towards an understanding of the dystrophin–membrane cytoskeleton in muscle fibers. *Eur J Cell Biol* 69: 1–10.

10. Sproat BS, Lamond AI, Beijer B, Neuner P, Ryder U (1989) Highly efficient chemical synthesis of 2′-O-methyloligoribonucleotides and tetrabiotinylated derivatives; novel probes that are resistant to degradation by RNA or DNA specific nucleases. *Nucleic Acids Res* 17: 3373–3386. doi:10.1093/nar/17.9.3373

11. Gerber A, Essnalt C, Aubert G, Treisman R, Pralong F, Schibler U (2013) Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity. *Cell* 152: 492–503. doi:10.1016/j.cell.2012.12.027

12. Essnalt C, Stewart A, Gualdrini F, East P, Horswill S, Matthews N, Treisman R (2014) Rho-actin signaling to the MRTF coactivators.
Dystrophin and circadian SRF signalling

13. Lamon S, Wallace MA, Russell AP (2014) The STARS signaling pathway: A key regulator of skeletal muscle function. Pflugers Arch 466: 1659–1671. doi:10.1007/s00424-014-1475-5

14. Sun Q, Chen G, Streib JW, Long X, Yang Y, Stoekert CJ, Miano JM (2006) Defining the mammalian CArGome. Genome Res 16: 197–207. doi:10.1101/gr.4108706

15. Charvet C, Houbron C, Parlakian A, Giordani J, Lahoute C, Bertrand A, Streb JW, Long X, Yang Y, Stoeckert CJ, Miano JM (2006) New role for serum response factor in postnatal skeletal muscle growth and regeneration via the interleukin-4 and insulin-like growth factor1 pathways. Mol Cell Biol 26: 6664–6676. doi:10.1128/MCB.01383-06

16. Pipes GC, Creemers EE, Olson EN (2006) The myocardium family of transcriptional coactivators: Versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20: 1545–1556. doi:10.1101/gad.1428006

17. Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11: 353–365. doi:10.1038/nrm2890

18. Lahoute C, Sotiropoulos A, Favier M, Guillet-Deniau I, Charvet C, Ferry A, Butler-Browne G, Metzger D, Tuli D, Daegeleen D (2008) Premature aging in skeletal muscle lacking serum response factor. PLoS One 3: e3910. doi:10.1371/journal.pone.0003991

19. Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA (2015) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21: 1455–1463. doi:10.1038/nm.3990

20. Klingler W, Jurkat-Rott K, Lehmann-Horn F, Schleip R (2012) The role of SRF in Duchenne muscular dystrophy: A key regulator of skeletal muscle function. Pflugers Arch 466: 1659–1671. doi:10.1007/s00424-014-1475-5

21. Dreyfus JC, Schapira G, Schapira F (1958) Serum enzymes in the diagnosis of Duchenne muscular dystrophy. A.M.A. Arch Intern Med 92: 385–390. doi:10.1001/ama.1958.03000540049-001

22. Lofaso F, Aubertin G, Mayer M, Maincent K, Boule M, Fauroux B (2012) Nocturnal hypoxaemia and hypercapnia in children with neuromuscular disorders. Eur Respir J 40: 344–353. doi:10.1183/09031936.00087511

23. Della Marca G, Fruscianti R, Dittoni S, Lom Br, Testani E, Scarno E, Colicchio S, Iannaccone E, Tonali P (2015) Decreased nocturnal movements in patients with facioscapulohumeral muscular dystrophy. J Clin Sleep Med 6: 276–280. doi:10.5666/jcms.27626