Molecular mechanism(s) of endocrine-disrupting chemicals and their potent oestrogenicity in diverse cells and tissues that express oestrogen receptors

Hye-Rim Lee a, Eui-Bae Jeung a, Myung-Haing Cho b, c, Tae-Hee Kim d, Peter C. K. Leung e, Kyung-Chul Choi a, *

a Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
b Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
c Advanced Institute of Convergence Technology, Seoul National University, Suwon, Korea
d Department of Obstetrics and Gynecology, College of Medicine, Soonchunhyang University, Bucheon, Korea
e Department of Obstetrics and Gynecology, Child and Family Research Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada

Received: July 11, 2012; Accepted: September 17, 2012

Abstract

Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds present in the environment which can interfere with hormone synthesis and normal physiological functions of male and female reproductive organs. Most EDCs tend to bind to steroid hormone receptors including the oestrogen receptor (ER), progesterone receptor (PR) and androgen receptor (AR). As EDCs disrupt the actions of endogenous hormones, they may induce abnormal reproduction, stimulation of cancer growth, dysfunction of neuronal and immune system. Although EDCs represent a significant public health concern, there are no standard methods to determine effect of EDCs on human beings. The mechanisms underlying adverse actions of EDC exposure are not clearly understood. In this review, we highlighted the toxicology of EDCs and its effect on human health, including reproductive development in males and females as shown in in vitro and in vivo models. In addition, this review brings attention to the toxicity of EDCs via interaction of genomic and non-genomic signalling pathways through hormone receptors.

Keywords: endocrine-disrupting chemicals ● oestrogen receptor ● oestrogenicity

Introduction

Various endocrine-disrupting chemicals (EDCs) are found in the environment. These EDCs interfere with the regulation of hormone synthesis or receptor binding by altering the hormone homeostasis of endocrine system [1, 2]. In doing this, EDCs can cause reproductive, development and sexual behaviour dysfunction and lead to detrimental results in animals and human beings. Because almost EDCs from
natural or synthetic sources have structures similar to those of endogenous steroid hormones including oestrogen (E2) or androgen, they tend to interfere with the actions of steroid hormones via binding to the corresponding hormone receptors. Oestrogen is involved in several mechanisms in mammals including not only reproduction but also bone integrity, adipogenesis and behaviour [3, 4]. Over the past 20 years, major attention has been given to the critical effects of EDCs which have been released in environment on human beings. Endocrine-disrupting chemicals are used widely in industry and found throughout the world, including plant constituents and pesticides. Exposure of EDCs may develop serious abnormalities including impaired reproductive function and formation of several hormone-dependent cancers such as breast and ovarian cancer in women and children [5, 6].

Many synthetic chemicals and natural plant compounds are known as xeno-oestrogen which bind to the oestrogen receptor (ER) with an affinity 1000-fold lower than that of oestrogen. These EDCs appear to induce tissue-specific oestrogenic responses as an ER agonist or antagonist, resulting in dysregulation of ERα-dependent transcriptional signalling pathways [7, 8]. In addition, suspected environmental oestrogenic EDCs have been used as biological reagents or drugs to treat hormone-related disorders in human beings. For example, diethylstilbestrol (DES) was prescribed to block spontaneous abortion along with medications for preventing miscarriage between the 1940s and 1970s [9]. However, DES is known as a carcinogen in human beings [10] and increases the risk of breast cancer in mothers and daughters exposed to DES during pregnancy [11]. This compound is a non-steroid oestrogen which can mimic oestrogenic actions via an ER-signalling pathway [10, 12].

In addition to DES, man-made synthetic EDCs of pesticides and chemicals used for plastic manufacturing, including dichlorodiphenyltrichloroethane (DDT), bisphenol A (BPA), octyl-phenol (OP), nonyl-phenol (NP) and methoxychlor (MXC), can pass through the placenta to the foetus as shown in previous studies [13]. These EDCs have a sufficient affinity to steroid hormone receptors, i.e. ER, progesterone receptors (PRs) and/or androgen receptor (AR), which alter hormone receptor responsiveness [14]. However, recent studies indicated that the effects of OP, NP and BPA exposure on the induction of non-genomic pathways have been observed in the cells. EDCs induced an alternative mechanism related with the activation of ERK1/2, Akt1/2/3 and/or G-proteins [15, 16]. Recent studies have shown that the deregulated activation of other signalling pathway by EDCs involves ER-mediated signalling interactions with transduction of signalling cascade regulated by phosphorylation [17].

Endocrine-disrupting chemicals can cause severe dysfunction of endocrine, reproductive and developmental systems in both males and females. In particular, EDCs are thought to be associated with reproduction abnormalities in animals and human beings, although the precise effects on human health are still not clear [18]. Normal function and maturation of the sexual reproductive glands and tract are affected by EDCs during the development process. Endocrine-disrupting chemicals may also stimulate cancer growth and exert toxic effects on the neuronal and immune systems. Consequently, EDCs are suspected to be potentially dangerous chemicals with global concern, but only a few in vitro and in vivo assays have been developed to determine whether a chemical have potency to disrupt endocrine system or not. Most data from in vitro and in vivo assays are derived by measuring oestrogenic and androgenic activity [19, 20].

This review describes the detrimental effects of several EDCs on human health including those specific for the reproduction, neuronal and immune systems. We also summarize the in vitro and in vivo assays used to detect EDCs. Finally, we focused our attention on a novel in vivo immature rat model which uses the induction of calbindin-D28k (CaBP-28k) mRNA and protein as a biomarker for detection of EDCs [21–24].

Biological function of oestrogen and its receptors

E2 is a major steroid hormone which is important for regulating diverse physiological sexual behaviour functions, for instance, reproductive organ development, bone formation and bone remodelling, cardiovascular regulation and the modulation of inflammation [25]. This steroid hormone is thought to be important for the development of secondary sexual characteristics and sexual behaviour, regulation of hypothalamic expression and release of gonadotropin-releasing hormone (GnRH) in human beings and mammals [26]. However, two gonadotropin hormones, luteinizing hormone (LH) and follicle stimulating hormone (FSH), control the production of oestrogen in ovulating women [27]. Oestrogen is mainly derived from its synthesis in the theca cells in the ovarian follicle. In addition, oestrogen is produced by the corpus luteum in the ovary and the placenta. Recent studies have suggested that the liver, adrenal glands and mammary glands may also contribute to the production of E2, although the quantity is insignificant [28, 29]. In rodents, oestrogen release is necessary for sexual responsiveness and facilitates the complex function of other sex hormones in males and females [30]. Oestrogen exists in men as well as women with E2 contributing to the differentiation and function of Leydig cells and development of testes in males [31].

The hypothalamic-pituitary-gonadal (HPG) axis consists of GnRH neurons of the hypothalamus, gonadotropes in the anterior pituitary gland and somatic cells in the gonads [32]. Somatic cells in the gonads include not only theca cells and granulosa cells in the ovary but also Leydig and Sertoli cells in the testis. The anterior lobe contains hormone-producing cells and supports folliculo-stellate cells; the anterior pituitary gland secretes gonadotropins including LH and FSH [33]. The intermediate lobe is composed of primarily melanotrophs whereas the neural lobe is made up of pituicytes and nerve endings. Diverse pituitary cells are known target cells of oestrogen, including lactotrophs and gonadotrophs [34].

E2 regulates cell function through specific, tissue-dependent, intracellular responses and can stimulate the activation of oestrogen-dependent metabolism. The activation of the ERs by E2 binding is associated with the expression of many related genes through strong interaction with an oestrogen response element (ERE) in the promoter [35, 36]. Previous studies demonstrated that ERs are localized in diverse intracellular spaces. After E2 binds to ERs, the ERs undergo a conformational change resulting in assembly and interaction with co-factor molecules, coactivators and corepressors related to gene expression [37]. These ligand-receptor complexes can bind to ERs...
rupting chemicals often have a phenolic structure that enables these chemicals to act as endogenous hormones. Consequently, EDCs are able to interact with steroid hormone receptors as agonist or antagonists [14]. These compounds can also disrupt ERα-mediated transcriptional activity through crosstalk between the ERs and other nuclear receptors (NRs), and growth factor modulation [56]. Furthermore, EDCs can stimulate ERα-dependent kinase pathways through membrane ERα or G protein-coupled receptor (GPR30) [57, 58]. As previously described, EDCs can bind to ERs, and affect the transcription of target genes via genomic and/or non-genomic pathways. However, genomic pathway of oestrogen receptors is defined by modulation of transcriptional processes undergoing nuclear translocation and binding on ERE, on this, leading to regulation of target gene expression. On the other hand, non-genomic pathway passes signal transduction starting from steroid hormone receptors, which is distinct from response by ERs in cytosol (Fig. 1) [59]. These non-genomic signalling include the rapid pathway such as activation of second messengers or kinases, which is given a signal to start through GPR30, the novel seven-transmembrane oestrogen receptor, which is structurally different to the ER, mediates rapid actions of 17 beta-oestradiol and EDCs [60]. In this regard, recent studies have shown that GPR30 was involved in the proliferative effects induced by EDCs in both normal and cancer cells in vivo and in vitro [61]. Hence, GPR30 signalling pathway should be included among the signal transduction mechanisms through which EDCs may cause the abnormal adverse effects of EDCs on organs.

Membrane ERs are important for cell function modulation through non-genomic pathways, which results from phosphorylation via crosstalk between the membrane ER and other signalling pathways [43]. Although there is increasing evidence that different signalling pathway are induced by E2, the precise relation between ER and E2 remains to be elucidated [44]. The conformational changes in the ER lead to the dissociation of the chaperone and formation of the dimerized ERs, which can stimulate DNA binding and facilitate the interaction between coregulators and transcriptional machinery [45].

Oestrogen receptor-α and ER-β have distinct molecular mechanisms and distribution on oestrogen-dependent specific tissue. ER-α was first investigated in the 1960s and was isolated from MCF-7 cells in 1986 [46]. ER-β was discovered and cloned from rat prostate 10 years later [47]. The human ER-α gene is localized on chromosome 6 and the ER-β gene is on chromosome 14 [48]. The ER-α protein consists of 595 amino acids and has a molecular mass 66 kD; the ER-β protein has approximately 530 amino acids and a molecular mass 54 kD [49]. Transgenic knockout mice studies suggested that ER-α is more important in the uterus and female mammary glands, but ER-β is found primarily in the ovary and the prostate gland. ER-α activates gene transcription in the presence of E2 while ER-β inhibits the expression of activator protein 1 (AP-1) [50], an ubiquitous transcription factor consisting of c-Jun and c-Fos. ER-α and ER-β have opposite effects on cyclin D1 regulation. Cyclin D1 levels are increased by ER-α and are decreased by ER-β [51]. ER-β has been known to contribute to apoptosis and the regulation cell proliferation in ovarian cancer [52]. As previously noted, transcriptional activation of ER-α and ER-β is different depending on the promoter, ligand affinity and cell type [53].

Oestrogenic actions of EDCs via ER-mediated signalling

Endocrine-disrupting chemicals are thought to act primarily through nuclear hormone receptors including ERs, ARs, PR, thyroid receptors (TRs) and others. Endocrine-disrupting chemicals include synthetic chemicals used as polychlorinated biphenyls (PCBs), polychlorinated biphenyl, phthalates, BPA, NP, OP, DDT and DES [54]. Natural chemicals found in human and animal food including phyto-oestrogens (genistein and coumestrol) can also act as endocrine disruptors with oestrogen activity [55]. Although these substances are generally believed to have low binding affinity with ER-α and/or ER β, these chemicals are widely consumed in the world. Endocrine-disrupting chemicals often have a phenolic structure that enables these
oestrogen-related signalling response [62]. In addition, the oestrogenic activity of EDCs may be detrimental to human beings owing to altered gene expression or the effects on steroidogenic enzymes [63, 64]. Studies on the characterization of tissue-specific EDC oestrogenic activities are limited, as well as the methods for assessing their associated hazards and risks.

Detrimental effect of various EDCs

Oestrogen is a sex hormone produced by ovaries and testes that is responsible for sexual development, normal functions and biosynthesis of nerve cells. Whereas oestrogen is beneficial and essential for the human health, synthetic substances like EDCs that mimic oestrogen have adverse effects. EDCs have been shown to affect the target cells in a dose-dependent manner, owing to their ability to bind ERs in both *in vitro* and *in vivo* [65, 66]. Reproductive abnormalities in animals exposed to EDCs can be observed and an increase of patients in hormonal-dependent cancers is a public concern.

Dichlorodiphenyltrichloroethane (DDT)

Dichlorodiphenyltrichloroethane (DDT) was the first general insecticide. The use of DDT was banned by many countries in the 1970s. The major metabolite of DDT, 1,1-dichloro-2,2-bis ethylene (DDE), inhibits prostaglandin synthesis in reptiles and birds, which results in weakened eggshells because of thinning. DDT binds the ER-α and induces transcriptional activity in ER-α-positive breast cancer MCF-7 cells [67]. This chemical is known to interfere with endocrine system homeostasis in animals because of binding to the ER-α in both reproductive and other tissues after exposure and accumulation of DDT in the body. In addition, DDT activates ERs in the brain and liver of adult laboratory animals treated with high concentrations of DDT, resulting in the acute development of liver tumours [68]. However, the effects of DDT on ER-α signalling can be blocked by the anti-oestrogen ICI 182,780 [69]. Both DDT and DDE interfere with oestrogen biosynthesis; DDE also enhances aromatase activity. Aromatase is an enzyme important for regulating the conversion of androgens into oestrogens. The previous studies identified the effects of DDT and DDE on reproductive tissues in human beings [70, 71], but these findings have not been confirmed and require further study.

Bisphenol A

Bisphenol A is used as a plasticizer for the production of epoxy resins and polycarbonate plastics over the world. With the increasing use of plastics in industrialized societies, human exposure to BPA has increased in frequency [72]. BPA exposure during the perinatal period causes physiological and functional underdevelopment of both male and female genitalia, tracts and glands that may result in reduced fertility, aspermatia, immature reproductive systems and the growth of several cancers such as breast, ovary and prostate cancer [73]. However, the binding affinity of BPA for ERs is approximately 1000-fold lower than that of E2, and BPA stimulates ER-α and ER-β signalling with oestrogen activity [74]. BPA promotes the proliferation of MCF-7 breast cancer cells both *in vitro* and *in vivo* [75]. This reagent can also increase PR expression in human endometrial, ovarian and breast cancer [76]. BPA activates ERE promoter constructs, which can be blocked by cotreatment with the ER-mediated signalling antagonist, ICI 182,780 [77]. In rodents, BPA induces vaginal phenotypic alteration, promotes early growth and differentiation of mammary glands and changes prolactin levels [78]. Recent studies have demonstrated that BPA increases uterine wet weight in rodents [79]. Low concentrations of BPA induce early vaginal opening and disruption of the menstrual cycle by altering hormone synthesis mechanisms such as ones that decrease the serum levels of luteinizing hormone [80]. In addition, BPA can be transferred to the foetuses from the placenta and umbilical cord blood in pregnant mice, which alters postnatal development and sexual maturity even with low concentration doses of BPA [81].

Nonyl-phenol and octyl-phenol

Alkylphenols are present in household detergents and insecticides [82]. Alkylphenols can bind to the ER-α and induce *vitellogenin* gene expression in animals [83]. Recently, *in vitro* study have shown that alkylphenol compounds, such as OP and NP, are very potent oestrogenic agents, and the binding affinity ERs to OP is approximately 1000-fold less than that of oestrogen [84]. NP and OP bind to the ER-α and induce ER-α-dependent gene transcription through the ER promoter in yeast and mammalian cells [85]. Alkylphenols also stimulate the proliferation in MCF-7 cells similar to E2. The oestrogenicity of NP has been evaluated in a mouse uterotrophic bioassay which showed that high doses of NP accelerates vaginal opening with a longer oestrous cycle in a three-generation study of rats exposed to NP. NP can also be detrimental to steroidogenesis and disrupts endocrine systems through ER pathways, which induces apoptosis in primary germ and Sertoli cells [86]. Exposure of male mice to NP causes severe testicular abnormalities including decreased testis growth, inhibited immature germ cell differentiation and reduced sperm counts [87].

Methoxychlor

Methoxychlor is a pesticide developed as a substitute for DDT. Although MXC has a similar structure to that of DDT, it is more rapidly metabolized and does not accumulate or concentrate in adipose tissue in mammals including human beings. MXC has weak oestrogenic activity and binds to both the ER-α and ER-β. Similar to E2, MXC increases uterine weight in ovariectomized rats, and can exert adverse developmental and reproductive effects on laboratory animals [88]. However, there are differences between the *in vivo* activities of MXC and E2. For example, MXC does not increase FSH or LH levels in rats unlike E2. Moreover, MXC acts as an ER agonist in the uterus and an ER antagonist in the ovary. An exposure to MXC affected normal ovarian function via alteration of DNA methylation [89]. Bisphenolic MXC is a metabolite of HPTE, which is considered to have a 100-fold higher affinity for the ER-α than that observed for MXC [90]. HPTE is a potent ER-α agonist but a weak ER-β and AR antagonist. HPTE also reduces testosterone levels both *in vitro* and *in vivo* because of its weak AR antagonist activity. Exposure to HPTE can result in neurological and hormonal abnormalities which alter reproductive organ morphology and hormonal cycles [91].
Endosulfan

Endosulfan is a well-known insecticide used to eradicate insects for agriculture and wood preservation [92]. Residual endosulfan on crops can usually be broken down within a few weeks but can persist for a few years in soil. The routes of endosulfan exposure for human beings is usually via the consumption of food containing endosulfan and skin contact with contaminated soil [93]. However, laboratory animal studies suggest that continual long-term exposure of endosulfan damages the kidneys, central nervous and immune system [94, 95]. Therefore, a prolonged exposure to endosulfan may induce neurological symptoms and toxicity in mammals [96, 97].

Phyto-oestrogens

Phyto-oestrogens are non-steroidal polyphenolic compounds found in some plants including soybeans, and can act as steroid hormones in animals and human beings [98]. Diets rich in phyto-oestrogens may exert protective effects against oestrogen-related diseases such as ovarian and breast cancer in women although it is not clear if these anticancer effects are directly owing to the phyto-oestrogen-associated oestrogenicity [99]. Isoflavonoids are the most extensively studied class of phyto-oestrogens. Soybeans contain high concentrations of isoflavonoids. Genistein and other isoflavonoids are frequently found in the human diet. Metabolites of genistein are ER agonists with relatively low potency. Genistein can nevertheless compete for ER binding because of its structural similarity with endogenous oestrogen, and can have agonistic and/or antagonistic effects [100]. However, genistein has a lower affinity than E2, and preferentially binds to the ER-β rather than the ER-α [101].

Genistein inhibits cell proliferation in breast and prostate cancer in vivo and in vitro, and controls gene expression which is critical for cell cycle transition, apoptosis and signal transduction. This compound can thus stimulate apoptosis and inhibits the activation of important signalling events related to cell survival and apoptosis such as Akt and NF-κB signalling [56].

As mentioned previously, EDCs are present at low levels in the environment compared with experimental doses. Recent studies have reported that exposure to a combination of oestrogenic chemicals causes synergistic results, and these effects are of global concern [102]. Exposure to various EDCs mixtures may primarily induce additive responses through different complex pathways, which can be predicted that synergistic interaction of EDCs mixture make foetal results in human health.

Effects of EDCs on human health

Various EDCs have adversely influenced on human health, resulting in disruption of reproductive development and function, stimulation of cancer growth, neuronal and immune system dysfunction in the body [103].

Disruption of reproductive development and function

Endocrine-disrupting chemicals are associated with abnormalities of the reproductive system in wildlife and laboratory animals [8]. However, the impact of environmentally relevant, low level exposure of these materials on human beings is still unknown. Development and maturation of female reproductive organs and tract are completed during the somatological process [104, 105]. If this process is altered by endogenous and/or exogenous factors during key periods, the reproductive system could be unexpectedly affected for multiple generations [106]. A normal function of human ovaries is related with successful differentiation of germ cells into oocytes, which is sensitive to some reagents such as EDCs. There is extensive evidence for the effects of BPA and OP on the development of the uterus and mammary glands [2]. Studies of both in vivo rats and mice have shown that continual exposure to BPA resulted in a massive endometrial surface and changes in vaginal opening timing and cytology [107].

The male reproductive system can also be disrupted by the effects of individual or mixtures of EDCs [108]. Endocrine-disrupting chemicals are thought to increase the frequency of severe abnormalities such as testicular cell cancer, semen quality reduction and pathologistical manifestation of urogenital disorders including hypospadias and cryptorchidism [109]. In male rodents, these abnormal symptoms can be observed after foetal exposure to phthalates and BPA. Several studies have suggested that disorders in both female and male reproductive function are linked to EDCs exposure [108, 110]. As previously mentioned, foetal exposure to EDCs may have effects on reproductive capabilities in human beings.

Stimulation of cancer growth by EDCs

Cancer is significantly increasing in frequency among industrialized nations. This disease is caused by cell cycle dysregulation and changes in cell cycle-related gene expression levels. Cyclin D1 overexpression is associated with increased expression of CDK4 in most types of cancer cells [111]. BPA and E2 treatment results in elevated expression of cyclin D1 and CDK4 in a relatively high percentage of breast cancer and endometrial cancer cells thereby promoting G1, S and G2-M phase transition [112]. Endocrine-disrupting chemicals are able to induce the proliferation of MCF-7 and inhibit apoptosis of cancer cells as a result of cell cycle dysregulation [113]. Human mammary glands undergo postnatal programmed architectural changes that occur in response to endogenous hormone signalling. Many studies of endocrine disruptors have confirmed that frequent exposure to EDCs can interrupt normal tissue organization and the interaction between stromal and epithelial layers of organs [114]. Endocrine-disrupting chemicals enhance the risk for the progression of neoplastic lesions to cancer in mammary glands and ovaries via their detrimental effects on important regulatory mechanisms such as organization of reproductive tissue [115].

Prostate cancer is a common cancer in males with a poor diagnosis, and steroid hormonal signalling appears to play a critical role in its formation and metastasis [116]. The prostate expresses both ER-α and ER-β, and steroid hormone-mediated signalling regulates the development of male reproductive organs and sexual characteristics in adulthood [117]. Moreover, prostate gland cells are particularly sensitive to oestrogenic responses during the developmental and adolescent periods [118]. Although it is difficult to study the direct association between prostate cancer risk and EDC exposure in human
Neuronal and immune system dysfunction

Neuroendocrine systems are critical for the control of homeostasis and physiologic development. The physiological mechanism controlled by neuroendocrine systems is highly complex, these process make a successful organization of the hypothalamus and the pituitary gland in brain [127]. For this organization, several specific hormones and proteins need to be produced and regulated in a timely manner to maintain homeostasis [128]. Furthermore, these neuroendocrine systems control various important functions such as reproduction, stress responses, growth, lactation, metabolism, energy balance [129, 130] and other processes which mediate the ability of an organism to respond to its environment through rapid and sustained responses [127].

Endocrine-disrupting chemicals can exert neurobiological and neurotoxic effects. These chemicals may act on nuclear hormone receptors expressed in cells in hypothalamus, pituitary gland and other areas of the brain [127]. The neuroendocrine effects of EDCs may occur via numerous neurotransmitters such as dopamine and noradrenaline which are sensitive to endocrine disruption [128]. These findings appear to demonstrate the neurological effects of EDCs on cognition, memory and reproductive behaviours. For example, a previous study showed that decreased dopamine concentrations in the brain are a consequence of PCB exposure because this can inhibit dopamine synthesis and change the sensitivity of receptors in cholinergic synapses [130]. Even though it is difficult to precisely assess the neuroendocrine effects of EDCs owing to the complexity of nature the involved physiological systems, studies of these effects in rodents and human beings have to take persistently in consideration [131].

In general, sex hormones such as testosterone help stimulate the immune system [132]. This logically implies that immune system is sensitive to EDCs in a manner similar to that of endogenous hormones. However, synthetic non-steroidal compounds such as DES are potent suppressors of thymus-dependent cellular immune responses via gene expression alterations in animal [133]. Susceptibility of the immune system to toxic chemicals is increased during the perinatal period as shown by in vivo studies of various compounds such as dioxin [134].

Novel assays to evaluate EDCs

There is growing concern about the increasing health problems posed by EDCs in the environment that can impact human endocrine and reproductive systems. However, there is no standard method to determine whether an environmental chemical is an EDC or to measure its potency [135]. Thus, efficient and precise assays are required to evaluate EDCs potency and understand their mechanisms of action. These can be used to examine the detrimental effects of EDCs on human beings and wildlife. As many EDCs are thought to impact sex hormone functions, the findings of laboratory animal studies are potential evidence of endocrine disruption that can contribute to human health problems. In vitro methods for assessing oestrogenic compounds have been developed including yeast oestrogenic screening, ER binding, MCF-7 human ER-positive breast cancer cell and ERE-luciferase activity assays [75]. Other recent studies indicated that weak oestrogenic alkylphenols including BPA activate the transcription of cAMP-responsive element binding protein (CREB) and phosphorylation of CREB via a non-classical membrane ER in a calcium-dependent manner [136]. Furthermore, several biomarkers in in vitro models including cell-based endogenous genes such as those that encode pS2, mucin 1, ornithine, steroid hormone receptors (ERs, ARs and PRs) and vitellogenin [137, 138]. However, expression levels of almost all these genes are too low to be detected for evaluating the effects of EDCs at environmentally relevant concentrations.

Although oestrogen-binding affinity in mammalian cell lines and yeast screening assays have been extensively used to determine the oestrogenicity of xenoestrogen compounds, these assays cannot account for the biological effects of a compound on metabolism [139]. Uterotropic activity and vaginal cornification assays have been traditionally used as in vivo methods for examining the ability of oestrogenic compounds to change the uterine wet weight or extent of vaginal cornification after treatment with the suspected EDCs [140]. However, uterotropi activity does not always correlate with the oestrogenic activity of chemicals. An in vivo approach for investigating responses of ERE promoters using transgenic animals expressing ERE-luciferase constructs has been reported. This method does not identify specific genes that are activated or repressed by ER–ERE interactions [141]. However, In vivo assay to assess oestrogenicity of EDCs is controversial and not clear.

A further study is required to develop ideal screening methods to determine EDCs potency at an environmentally persistent concentration with cost-effective and timely manner. Recent studies have been conducted to detect oestrogenic disrupting chemicals in rats [142]; the results indicated that the both mRNA and protein expression levels of calbindin-D9k (CaBP-9k) can be used as a novel biomarker for identifying EDCs [143]. CaBP-9k is a 9 kDa cytoplasmic protein with high binding affinity for calcium and belongs to the intracellular protein family. It has been postulated that CaBP-9k may be associated with the regulation of myometrial activity that controls calcium levels in the cell [144]. CaBP-9k gene expression is very sensitive to oestrogenic activity of EDCs, which gives a possibility to detect the oestrogen activity of EDCs by its enhanced gene expression [21]. To understand the underlying hormonal mechanism, studies of CaBP-9k
gene expression have been experimented in rats [145]. Oestrogen is
known to induce up-regulation of CaBP-9k gene expression whereas
progesterone is down-regulated in rat uterus during early pregnancy
and the oestrous cycle [146, 147]. In addition, the effects of alkylphe-
nois such as BPA, OP and NP as well as E2 can increase CaBP-9k
mRNA and protein levels through a dose- and time-dependent man-
ner at rat pituitary GH3 cells [148]. CaBP-9k assays for studying
immature rat uterus are very useful and sensitive, and can identify
the oestrogenic or progestogenic activity of EDCs [21, 149, 150].

Conclusion

Unlike oestrogen, EDCs can lead to adverse biological effects in an-
imals and human beings via hormone receptor binding. These findings
suggest that biochemical pathways associated with EDCs may involve
the ER-dependent signalling pathway. Exposure to these chemicals has
detrimental effects on metabolism along with endocrine and repro-
ductive systems that can persist for multiple generations. In addition,
EDCs may stimulate carcinogenesis and potentially alter
neuronal and immune systems. Thus, more sensitive and accurate in
vitro and in vivo strategies are necessary for detecting the adverse
actions and effects of EDCs. Understanding of the exact mechanism
underlying the effects of these compounds is required for promoting
human health. In particular, the impact of combinations of EDCs must
be understood that they are generally released into environment as
mixtures rather than individual reagents. The adverse results, caused
by exposure to many EDCs, strongly impact the endocrine system,
metabolism, homeostasis and reproduction. Therefore, it is needed to
disclose the mechanism of EDCs action in organs and important to
evaluate the synergistic effects of exposure to multiple EDCs in future
studies.

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF)
grant funded by the Ministry of Education, Science and Technology (MEST) of
Korea government (no. 2011-0015385). In addition, this study was also sup-
ported by the Priority Research Centers Program through the NRF funded by
the MEST (2011-0031403).

Conflict of interest

The authors do not have any financial interests to publish this article.

References

1. Dickerson SM, Gore AC. Estrogenic envi-
ronmental endocrine-disrupting chemical
effects on reproductive neuroendocrine
function and dysfunction across the life
cycle. Rev Endocr Metab Disord. 2007; 8:
143–59.
2. Fowler PA, Bellingham M, Sinclair KD,
et al. Impact of endocrine-disrupting
compounds (EDCs) on female reproductive
health. Mol Cell Endocrinol. 2012; 355:
213–9.
3. Byrnes EM, Casey K, Bridges RS. Repro-
ductive experience modifies the effects of
estrogen receptor alpha activity on anxiety-
like behavior and corticotropin releasing
hormone mRNA expression. Horm Behav.
2011; 61: 44–9.
4. Ijichi N, Ikeda K, Horie-Inoue K, et al.
Estrogen-related receptor alpha modulates
the expression of adipogenesis-related
genes during adipocyte differentiation. Bio-
chem Biophys Res Commun. 2007; 358:
813–8.
5. Hwang KA, Park SH, Yi BR, et al. Gene
alterations of ovarian cancer cells express-
ing estrogen receptors by estrogen and bi-
sphenol a using microarray analysis. Lab
Anim Res. 2011; 27: 99–107.
6. Fernandez SV, Russo J. Estrogen and xe-
noestrogens in breast cancer. Toxicol
Pathol. 2010; 38: 110–22.
7. McLachlan JA, Simpson E, Martin M.
Endocrine disrupters and female reproduc-
tive health. Best Pract Res Clin Endocrinol
Metab. 2006; 20: 63–75.
8. Craig ZR, Wang W, Flaws JA. Endocrine-
disrupting chemicals in ovarian function:
effects on steroidogenesis, metabolism and
nuclear receptor signaling. Reproduction.
2011; 142: 633–46.
9. Couse JF, Korach KS. Estrogen receptor-
alpha mediates the detrimental effects of
neonatal diethylstilbestrol (DES) exposure
in the murine reproductive tract. Toxicol-
ology. 2004; 205: 55–63.
10. Tokumoto T, Tokumoto M, Thomas P.
Interactions of diethylstilbestrol (DES)
and DES analogs with membrane
progesterin receptor-alpha and the corre-
lation with their non-genomic progestin
activities. Endocrinology. 2007; 148:
3459–67.
11. Fischer T, Schomacker K, Schicha H.
Diethylstilbestrol (DES) labeled with Auger
emitters: potential radiopharmaceutical for
therapy of estrogen receptor-positive
tumors and their metastases? Int J Radiat
Biol. 2008; 84: 1112–22.
12. Titus-Ernstoff L, Hatch EE, Hoover RN,
et al. Long-term cancer risk in women
given diethylstilbestrol (DES) during preg-
nancy. Br J Cancer. 2001; 84: 126–33.
13. Maffini MV, Rubin BS, Sonnenschein C,
et al. Endocrine disruptors and reproduc-
tive health: the case of bisphenol-A. Mol
Cell Endocrinol. 2006; 254–255: 179–86.
14. Shanie EK, Xu W. Endocrine disrupting
chemicals targeting estrogen receptor sig-
naling: identification and mechanisms of
action. Chem Res Toxicol. 2010; 24: 6–19.
15. Tokunaga E, Kimura Y, Mashino K, et al.
Activation of PI3K/Akt signalling and hor-
mon resistance in breast cancer. Breast
Cancer. 2006; 13: 137–44.
16. Bouskine A, Nebout M, Brucker-Davis F,
et al. Low doses of bisphenol A promote
human seminoma cell proliferation by acti-
vating PKA and PKG via a membrane G-
protein-coupled estrogen receptor. Environ
Health Perspect. 2009; 117: 1053–8.
17. Watson CS, Jeng YJ, Hu G, et al. Estro-
gen- and xenooestrogen-induced ERK sig-
naling in pituitary tumor cells involves
estrogen receptor-alpha interactions with G
protein-alphai and cavelinin l. Steroids.
2012; 77: 424–32.
18. Fenton SE. Endocrine-disrupting com-
pounds and mammary gland development:
early exposure and later life consequences.
Endocrinology. 2006; 147: S18–24.
19. Bergamasco AM, Eldridge M, Sanseverino
J, et al. Bioluminescent yeast estrogen
assay (BLYES) as a sensitive tool to moni-
tor surface and drinking water for estrogenicity. *J Environ Monit.* 2011; 13: 3288–93.

20. Nadzieja S, Depierreux S, Mandiki SN, et al. *In vivo* biomarkers of estrogenicity: limitation of interpretation in wild environment. *Arch Environ Contam Toxicol.* 2011; 60: 471–8.

21. An BS, Choi KC, Kang SK, et al. Novel Calbindin-D(9k) protein as a useful biomarker for environmental estrogenic compounds in the uterus of immature rats. *Reprod Toxicol.* 2003; 17: 311–9.

22. Vo TT, Jeung EB. An evaluation of estrogenic activity of parabens using uterine calbindin-d9k gene in an immature rat model. *Toxicol Sci.* 2009; 112: 68–77.

23. Dang VH, Choi KC, Hyun SH, et al. Induction of uterine calbindin-D9k through an estrogen receptor-dependent pathway following single injection with xenobiotic agents in immature rats. *J Toxicol Environ Health A.* 2007; 70: 171–82.

24. Choi KC, Leung PC, Jeung EB. Biology and physiology of Calbindin-D9k in female reproductive tissues: involvement of steroids and estrogen disruptors. *Reprod Biol Endocrinol.* 2005; 3: 66.

25. Kousteni S, Han I, Chen JR, et al. Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. *J Clin Invest.* 2003; 111: 1651–64.

26. Maffucci JA, Gore AC. Chapter 2: hypothalamic neural systems controlling the female reproductive life cycle gonadotropin-releasing hormone, glutamate, and GABA. *Int Rev Cell Mol Biol.* 2008; 274: 69–127.

27. Gordon A, Garrido-Gracia JC, Aguilar R, et al. The ovary-mediated FSH attenuation of the LH surge in the rat involves a decreased gonadotroph progesterone receptor (PR) action but not PR expression. *J Endocrinol.* 2008; 196: 93–92.

28. Simpson ER. Sources of estrogen and their importance. *J Steroid Biochem Mol Biol.* 2003; 86: 225–30.

29. Lee HR, Kim TH, Choi KC. Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. *Lab Anim Res.* 2012; 28: 71–6.

30. Berman JR. Physiology of female sexual function and dysfunction. *Int J Impot Res.* 2005; 17(Suppl 1): S44–51.

31. Muroho EP, Derk RC, de Leon JH. Octylphenol inhibits testosterone biosynthesis by cultured precursor and immature Leydig cells from rat testes. *Reprod Toxicol.* 2000; 14: 275–88.

32. Johari H, Parhizkar Z, Talebi E. Effects of adriamycin on the pituitary-gonadal axis in newborn rats. *Pak J Biol Sci.* 2008; 11: 2413–7.

33. Navarati AM, Knoll JG, Whitesell JD, et al. Neuroendocrine plasticity in the anterior pituitary: gonadotroph-releasing hormone-mediated movement in vitro and in vivo. *Endocrinology.* 2007; 148: 1736–44.

34. Ishida M, Takahashi W, Itoh S, et al. Identification of a hormone-regulated estrogen-responsive element (ERE): design of potent transactivators for ERE-containing genes. *Mol Cell Endocrinol.* 2007; 1: 3131–9.

35. Wang Z, Zhang X, Shen P, et al. A variant of estrogen receptor-(alpha), hER-(alpha); 36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. *Proc Natl Acad Sci USA.* 2006; 103: 9063–8.

36. Simoncini T, Mannella P, Fornari L, et al. Genomic and non-genomic effects of estrogen on endothelial cells. *Stereoids.* 2004; 69: 537–42.

37. Ambrosino C, Tarallo R, Bamundo A, et al. Identification of a hormone-regulated dynamic nuclear actin network associated with estrogen receptor alpha in human breast cancer cell nuclei. *Mol Cell Proteomics.* 2010; 9: 1352–67.

38. Huang J, Li X, Yi P, et al. Targeting estrogen responsive elements (EREs): design of potent transactivators for ERE-containing genes. *Mol Cell Endocrinol.* 2004; 218: 65–78.

39. Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. *J Steroid Biochem Mol Biol.* 2002; 80: 231–8.

40. Levin ER. Integration of the extranuclear and nuclear actions of estrogen. *Mol Endocrinol.* 2005; 19: 1951–9.

41. Jepsen K, Hermanson O, Onami TM, et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. *Cell.* 2000; 102: 753–63.

42. Suzuki T, Yu HP, Hsieh YC, et al. Estrogen-mediated activation of non-genomic pathway improves macrophages cytokine production following trauma-hemorrhage. *J Cell Physiol.* 2008; 214: 662–72.

43. Revankar CM, Cimino DF, Sklar LA, et al. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. *Science.* 2005; 307: 1625–30.

44. Bjornstrom L, Sjoberg M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. *Mol Endocrinol.* 2005; 19: 833–42.

45. Gronemeyer H, Gustafsson JA, Laudet V. Principles for modulation of the nuclear receptor superfamily. *Nat Rev Drug Discov.* 2004; 3: 950–64.

46. Green S, Walter P, Kumar V, et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. *Nature.* 1986; 320: 134–9.

47. Mosselman S, Polman J, Dijkema R. ER beta: identification and characterization of a novel human estrogen receptor. *FEBS Lett.* 1996; 392: 49–53.

48. Pike AC. Lessons learnt from structural studies of the oestrogen receptor. *Best Pract Res Clin Endocrinol Metab.* 2006; 20: 1–14.

49. McDonnell DP, Norris JD. Connections and regulation of the human estrogen receptor. *Science.* 2002; 296: 1642–4.

50. Aranda A, Pascual A. Nuclear hormone receptors and gene expression. *Physiol Rev.* 2001; 81: 1269–304.

51. Williams K, McKinnell C, Saunders PT, et al. Neonatal exposure to potent and environmental oestrogens and abnormalities of the male reproductive system in the rat: evidence for importance of the androgen-oestrogen balance and assessment of the relevance to man. *Hum Reprod Update.* 2001; 7: 236–47.

52. Halon A, Nowak-Markwitz E, Maciejczyk A, et al. Loss of estrogen receptor beta expression correlates with shorter overall survival and lack of clinical response to chemotherapy in ovarian cancer patients. *Anticancer Res.* 2011; 31: 711–8.

53. Samudio I, Vyhlidal C, Wang F, et al. Transcriptional activation of deoxyribonucleic acid polymerase alpha gene expression in MCF-7 cells by 17 beta-estradiol. *Endocrinology.* 2001; 142: 1000–8.

54. Hong EJ, Choi KC, Jeung EB. Maternal-fetal transfer of estrogen disruptors in the induction of Calbindin-D9k mRNA and protein during pregnancy in rat model. *Mol Cell Endocrinol.* 2003; 212: 63–72.

55. Zierau O, Kolba S, Ollf S, et al. Analysis of the promoter-specific estrogenic potency of the phytoestrogens genistein, daidzein and coumestrol. *Planta Med.* 2006; 72: 184–6.

56. Watson CS, Bulayeva NY, Wozniak AL, et al. Xenoestrogens are potent activators of nongenomic estrogenic responses. *Steroids.* 2007; 72: 124–34.

57. Manavathi B, Kumar R. Steering estrogen signals from the plasma membrane to the...
nucleus: two sides of the coin. J Cell Physiol. 2006; 207: 594–604.
58. Thomas P, Dong J. Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol. 2006; 102: 175–9.
59. Dong S, Terasaka S, Kiyama R. Bisphenol A induces a rapid activation of Erk1/2 through GPR30 in human breast cancer cells. Environ Polyt. 2010; 159: 212–8.
60. Vivacqua A, Bonofilio D, Recchia AG, et al. The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-estradiol and hydroxysterol–tamofoxen in endometrial cancer cells. Mol Endocrinol. 2006; 20: 631–46.
61. Albanito L, Lappano R, Madeo A, et al. G-protein-coupled receptor 30 and estrogen receptor-alpha are involved in the proliferative effects induced by atrazen in ovarian cancer cells. Environ Health Perspect. 2008; 116: 1648–55.
62. Pupo M, Pisanof A, Lappano R, et al. Bisphenol A induces gene expression changes and proliferative effects through GPER in breast cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2012; 120: 1172–87.
63. Harvey PW, Johnson I. Approaches to the assessment of toxicity data with endpoints related to endocrine disruption. J Appl Toxicol. 2002; 22: 241–7.
64. Sanderson JT. The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol Sci. 2006; 94: 3–21.
65. Li Y, Burns KA, Aaro Y, et al. Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zeanolone through estrogen receptor alpha and beta in vitro. Environ Health Perspect. 2012; 120: 1029–35.
66. Morai R, Santucci-Pereira J, Wang R, et al. In vitro exposure to butyl benzyl phthalate induces modifications in the morphology and the gene expression profile of the mammary gland: an experimental study in rats. Environ Health; 2011; 10: 3043–3050.
67. Lemaire G, Mifl W, Mavropoulos P, et al. Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci. 2006; 79: 1160–9.
68. Mussi P, Ciana P, Ravi et al. Activation of brain estrogen receptors in mice lactating from mothers exposed to DDT. Brain Res Bull. 2005; 65: 241–7.
69. Villa R, Bonetti E, Penza ML, et al. Target-specific action of organochlorine compounds in reproductive and nonreproductive tissues of estrogen-reporter male mice. Toxicol Appl Pharmacol. 2004; 201: 137–48.
70. Al-Saleh I, Coskun S, El-Doush I, et al. Outcome of in-vitro fertilization treatment and DDT levels in serum and follicular fluid. Med Sci Monit. 2009; 15: BR320–33.
71. Al-Saleh I, El-Doush I, Alhasbaiseh A, et al. Levels of DDT and its metabolites in placenta, maternal and cord blood and their potential influence on neonatal anthropometric measures. Sci Total Environ. 2011; 416: 62–74.
72. Rubin BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol. 2011; 127: 27–34.
73. Singh S, Li SS. Bisphenol A and phthalates exhibit similar toxicogenomics and health effects. Gene. 2011; 494: 85–91.
74. Gaido KW, Maness SC, McDonnell DP, et al. Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta, and androgen receptor: structure-activity studies. Mol Pharmacol. 2000; 58: 852–8.
75. Cao X, Wang A, Wang G, et al. Effects of surfactin on proliferation, apoptosis and cytoskeleton in human breast cancer MCF-7 cells. Sheng Wu Gong Cheng Xue Bao. 2009; 25: 1705–10.
76. Park SH, Kim KY, An BS, et al. Cell growth of ovarian cancer cells is stimulated by xenestrogens through an estrogen-dependent pathway, but their stimulation of cell growth appears not to be involved in the activation of the mitogen-activated protein kinase ERK-1 and p38. J Reprod Dev. 2009; 55: 23–9.
77. Wetherell YB, Akingbemi BT, Kanno J, et al. In vivo molecular mechanisms of bisphenol A action. Reprod Toxicol. 2007; 24: 178–98.
78. Nah WH, Horis NJ, Gye NC. Effects of early prepubertal exposure to bisphenol A on the onset of puberty, ovarian weights, and estrous cycle in female mice. Clin Exp Reprod Med. 2012; 38: 75–81.
79. Munoz-de-Toro M, Markey CM, Wadia PR, et al. Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology. 2005; 146: 4138–47.
80. Rubin BS, Murray MK, Damassa DA, et al. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect. 2001; 109: 675–80.
81. Zhou R, Zhang Z, Zhu Y, et al. Deficits in development of synaptic plasticity in rat dorsal striatum following prenatal and neonatal exposure to low-dose bisphenol A. Neurosciences. 2009; 159: 161–71.
82. Rudel RA, Camann DE, Spengler JD, et al. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol. 2003; 37: 4534–53.
83. Rey Vazquez G, Meijide FJ, Da Cuna RH, et al. Exposure to waterborne 4-tert-octylphenol induces vitellogenin synthesis and disrupts testes morphology in the South American freshwater fish Cichlasoma dimeri (Teleostei, Perciformes). Comp Biochem Physiol C Toxicol Pharmacol. 2009; 150: 298–306.
84. Calafat AM, Kuklenyik Z, Reidy JA, et al. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect. 2005; 113: 391–5.
85. Kang NH, Hwang KA, Kim TH, et al. Induced growth of BG-1 ovarian cancer cells by 17beta-estradiol or various endocrine disrupting chemicals was reversed by resveratrol via downregulation of cell cycle progression. Mol Med Rep. 2012; 6: 151–6.
86. Choi JS, Oh JH, Park HJ, et al. miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol. Reprod Biol Endocrinol. 2011; 9: 126.
87. Lee HJ, Chattopadhyay S, Gong EY, et al. Antianandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor. Toxicol Sci. 2003; 75: 40–6.
88. Kwack SJ, Kwon O, Kim HS, et al. Comparative evaluation of alkylphenolic compounds on estrogenic activity in vitro and in vivo. J Toxicol Environ Health A. 2002; 65: 419–31.
89. Zama AM, Uzumcu M. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology. 2009; 150: 4681–91.
90. Akingbemi BT, Ge RS, Harvey CN, et al. A metabolite of methoxychlor, 2,2-bis-(p-hydroxyphenyl)-1,1-1-trichloroethane, reduces testosterone biosynthesis in rat Leydig cells through suppression of steady-state messenger ribonucleic acid levels of the cholesterol side-chain cleavage enzyme. Biol Reprod. 2000; 62: 571–8.
91. Harvey CN, Esmaili M, Wang Q, et al. Effect of the methoxychlor metabolite HPTE on the rat ovarian granulosa cell transcrip-
in vitro. Toxical Sci. 2009; 110: 95–106.
92. Satar S, Sebe A, Alpay NR, et al. Unintentional endosulfan poisoning. Bratisl Lek Listy. 2009; 110: 301–3.
93. Yavuz Y, Yurumez Y, Kucuker H, et al. Two cases of acute endosulfan toxicity. Clin Toxicol (Phila). 2007; 45: 530–2.
94. Sarma K, Pai AK, Sahu NP, et al. Biochemical and histological changes in the brain tissue of spotted murrel, Channa punctatus (Bloch), exposed to endosulfan. Fish Physiol Biochem. 2010; 36: 597–603.
95. Ozmen O, Sahinduran S, Mor F, et al. Two cases of acute endosulfan toxicity. Fish Physiol Biochem. 2010; 36: 597–603.
96. Scremin OU, Chialvo DR, Lavarello S, et al. Neurotoxicology of endosulfan toxicity in rabbits. Neurotoxicology. 2009; 30: 303–8.
97. Hsu PC, Huang W, Yao WJ, et al. Endosulfan disrupts cerebral cortical function at low doses. Neurotoxicology. 2010; 31: 37–44.
98. Satar S, Sebe A, Alpay NR, et al. Combined effects of nonylphenol and Monobutyl phthalate on rat Sertoli cells applying androgenic effects. Mol Cell Proteomics. 2009; 8: 2649–56.
99. Pathological and immunohistochemical examinations of the pancreas in subacute endosulfan toxicity in rabbits. Pancreas. 2009; 39: 367–70.
100. Singh ND, Sharma AK, Dwivedi P, et al. Experimentally induced citrinin and endosulfan toxicity in pregnant Wistar rats: histopathological alterations in liver and kidneys of fetuses. J Appl Toxicol. 2008; 28: 901–7.
101. Ozmen O, Sahinduran S, Mor F, et al. Two cases of acute endosulfan toxicity. Fish Physiol Biochem. 2010; 36: 597–603.
102. Bode HP. Male reproductive organs are at risk from environmental hazards. Asian J Androl. 2009; 11: 125–6.
103. Rignell-Hydbom A, Rylander L, Giwercman A, et al. Exposure to CB-153 and p, p'-DDE and male reproductive function. Hum Reprod. 2004; 19: 2066–75.
104. Sharpe RM. Pathways of endocrine disruption during male sexual differentiation and masculinization. Best Pract Res Clin Endocrinol Metab. 2006; 20: 91–110.
105. Bulyeva NN, Watson CS. Xenobiotic-induced ERK-1 and ERK-2 activation via multiple membrane-initiated signaling pathways. Environ Health Perspect. 2004; 112: 1481–7.
106. Lee HR, Hwang KA, Park MA, et al. Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells exposed to the phytosterenogen genistein. Mol Cell Proteomics. 2010; 10: 2879–86.
107. Zhao E, Mu Q. Phytoestrogen biological actions on Mammalian reproductive systems and cancer growth. Sci Pharm. 2011; 79: 1–20.
108. Solotca AM, Gelpke MD, Boeren S, et al. Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytosterogen genistein. Mol Cell Proteomics. 2010; 10: M110 002170.
109. Penza M, Montani C, Romani A, et al. Genistein affects adipose tissue deposition in a dose-dependent and gender-specific manner. Endocrinology. 2006; 147: 5740–51.
110. Hu Y, Li DM, Han XD. Analysis of combined effects of nonylphenol and Monobutyl phthalate on rat Sertoli cells applying two mathematical models. Food Chem Toxicol. 2011; 50: 457–63.
111. Park MA, Hwang KA, Lee HR, et al. Cell growth of BG-1 ovarian cancer cells is promoted by di-n-butyl phthalate and hexabromocyclododecane via upregulation of the cyclin D and cyclin-dependent kinase-4 genes. Mol Med Rep. 2011; 5: 761–6.
associated with neonatal thyroid hormone status. Thyroid. 2008; 18: 67–76.
130. Herbstman JB, Sjödin A, Apelberg BJ, et al. Birth delivery mode modifies the associations between prenatal polychlorinated biphenyl (PCB) and polychlorinated diphenyl ether (PBDE) and neonatal thyroid hormone levels. Environ Health Perspect. 2008; 116: 1303–8.
131. Newbold RR, Padilla-Banks E, Snyder RJ, et al. Developmental exposure to endocrine disruptors and the obesity epidemic. Reprod Toxicol. 2007; 23: 290–6.
132. Filipin Md el V, Caetano LC, Brazao V, et al. DHEA and testosterone therapies in Trypanosoma cruzi-infected rats are associated with thymic changes. Res Vet Sci. 2010; 89: 98–103.
133. Frawley R, White K Jr, Brown R, et al. Gene expression alterations in immune system pathways in the thymus after exposure to immunosuppressive chemicals. Environ Health Perspect 2010; 119: 371–6.
134. Forawi HA, Tchounwou PB, McMurray RW. Xenoestrogen modulation of the immune system: effects of dichlorodiphenyltrichloroethane (DDT) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Rev Environ Health. 2004; 19: 1–13.
135. Lang IA, Galloway TS, Scarlett A, et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA. 2008; 300: 1303–10.
136. Quesada I, Fuentes E, Viso-Leon MC, et al. Low doses of the endocrine disruptor bisphenol-A and the native hormone 17beta-estradiol rapidly activate transcription factor CREB. FASEB J. 2002; 16: 1671–3.
137. Heppell SA, Denslow ND, Folmar LC, et al. Universal assay of vitellogenin as a biomarker for environmental estrogens. Environ Health Perspect. 1995; 103(Suppl 7): 9–15.
138. Ren L, Marquardt MA, Lech JJ. Estrogenic effects of nonylphenol on pS2, ER and MUC1 gene expression in human breast cancer cells-MCF-7. Chem Biol Interact. 1997; 104: 55–64.
139. Miller S, Kennedy D, Thomson J, et al. A rapid and sensitive reporter gene that uses green fluorescent protein expression to detect chemicals with estrogenic activity. Toxicol Sci. 2000; 55: 69–77.
140. Shelby MD, Newbold RR, Tully DB, et al. Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environ Health Perspect. 1996; 104: 1296–300.
141. Ciana P, Di Luccio G, Belcredito S, et al. Engineering of a mouse for the in vivo profiling of estrogen receptor activity. Mol Endocrinol. 2001; 15: 1104–13.
142. Dang VH, Choi KC, Hyun SH, et al. Analysis of gene expression profiles in the offspring of rats following maternal exposure to xenoestrogens. Reprod Toxicol. 2007; 23: 42–54.
143. Dang VH, Choi KC, Jeung EB. Estrogen receptors are involved in xenoestrogen induction of growth hormone in the rat pituitary gland. J Reprod Dev. 2009; 55: 206–13.
144. Choi KC, Jeung EB. Molecular mechanism of regulation of the calcium-binding protein calbindin-D9k, and its physiological role(s) in mammals: a review of current research. J Cell Mol Med. 2008; 12: 409–20.
145. Dang VH, Choi KC, Jeung EB. Membrane-impermeable estrogen is involved in regulation of calbindin-D9k expression via non-genomic pathways in a rat pituitary cell line, GH3 cells. Toxicol In Vitro. 2010; 24: 1229–36.
146. L’Horset F, Blin C, Colnot S, et al. Calbindin-D9k gene expression in the uterus: study of the two messenger ribonucleic acid species and analysis of an imperfect estrogen-responsive element. Endocrinology. 1994; 134: 11–8.
147. L’Horset F, Blin C, Brehier A, et al. Estrogen-induced calbindin-D 9k gene expression in the rat uterus during the estrous cycle: late antagonistic effect of progesterone. Endocrinology. 1993; 132: 489–95.
148. Kim YR, Jung EM, Choi KC, et al. Synergistic effects of octylphenol and isobutyl paraben on the expression of calbindin-Dk in GH3 rat pituitary cells. Int J Mol Med. 2011; 29: 294–302.
149. An BS, Kang SK, Shin JH, et al. Stimulation of calbindin-D(9k) mRNA expression in the rat uterus by octyl-phenol, nonylphenol and bisphenol. Mol Cell Endocrinol. 2002; 191: 177–86.
150. Jung YW, Hong EJ, Choi KC, et al. Novel progestogenic activity of environmental endocrine disruptors in the upregulation of calbindin-D9k in an immature mouse model. Toxicol Sci. 2005; 83: 78–88.