Novel results on Hermite–Hadamard kind inequalities for \(\eta \)-convex functions by means of \((k,r)\)-fractional integral operators

Eze R. Nwaeze\(^1\) Delfim F. M. Torres\(^2\)†

enwaeze@tuskegee.edu delfim@ua.pt

\(^1\)Department of Mathematics, Tuskegee University, Tuskegee, AL 36088, USA

\(^2\)CIDMA, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Abstract

We establish new integral inequalities of Hermite–Hadamard type for the recent class of \(\eta \)-convex functions. This is done via generalized \((k,r)\)-Riemann–Liouville fractional integral operators. Our results generalize some known theorems in the literature. By choosing different values for the parameters \(k \) and \(r \), one obtains interesting new results.

Keywords: Hermite–Hadamard inequalities, \(\eta \)-convexity, Riemann–Liouville integrals.

2010 Mathematics Subject Classification: 26A51, 26D15.

1 Introduction

Throughout this work, \(I \subset \mathbb{R} \) shall denote an interval and \(I^\circ \) the interior of \(I \). We say that a function \(g : I \to \mathbb{R} \) is convex if, for every \(x, y \in I \) and \(\beta \in [0,1] \), one has

\[
g(\beta x + (1-\beta)y) \leq \beta g(x) + (1-\beta)g(y).
\]

Let \(a, b \in I \). For a function \(g \) satisfying (1), the following inequalities hold:

\[
g \left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_a^b g(x) \, dx \leq \frac{g(a) + g(b)}{2}. \tag{2}
\]

Result (2) was proved by Hadamard in 1893 \cite{6} and is celebrated in the literature as the Hermite–Hadamard integral inequality for convex functions \cite{2}. Along the years, it has been extended to different classes of convex functions: see, e.g., \cite{3,8,15} and references therein.

In 2016, the so called \(\varphi \)-convexity was introduced \cite{5}, subsequently denoted as \(\eta \)-convexity \cite{4,12}. Let us recall its definition here.

Definition 1 (See \cite{5}). A function \(g : I \to \mathbb{R} \) is called convex with respect to \(\eta \) (for short, \(\eta \)-convex), if

\[
g(\beta x + (1-\beta)y) \leq g(y) + \beta \eta(g(x), g(y))
\]

for all \(x, y \in I \) and \(\beta \in [0,1] \).

*This is a preprint of a paper whose final and definite form is a Springer chapter in the Book *Advances in Mathematical Inequalities and Applications*, published under the Birkhauser series *Trends in Mathematics*, ISSN: 2297-0215 [http://www.springer.com/series/4961].

†Corresponding author.
By taking \(\eta(x,y) = x - y \), Definition 1 reduces to the classical notion of convexity. It was further shown in [3] that for every convex function \(g \) there exists some \(\eta \), different from \(\eta(x,y) = x - y \), for which the function \(g \) is \(\eta \)-convex. The converse is, however, not necessarily true, that is, there are \(\eta \)-convex functions that are not convex.

Example 2. Consider function \(g : \mathbb{R} \to \mathbb{R} \) defined piecewisely by

\[
g(x) = \begin{cases} -x, & x \geq 0, \\ x, & x < 0, \end{cases}
\]

and let \(\eta : [-\infty, 0] \times [-\infty, 0] \to \mathbb{R} \) be given by \(\eta(x,y) = -x - y \). Function \(g \) is clearly not convex but it is easy to see that it is \(\eta \)-convex. Indeed, in [12, Remark 4] it is noted that an \(\eta \)-convex function \(g : [a,b] \to \mathbb{R} \) is integrable if \(\eta \) is bounded from above on \(g([a,b]) \times g([a,b]) \).

For the class of \(\eta \)-convex functions, the following theorem was obtained as an analogue of [2].

Theorem 3 (See [5]). Suppose that \(g : I \to \mathbb{R} \) is an \(\eta \)-convex function such that \(\eta \) is bounded from above on \(g(I) \times g(I) \). Then, for any \(a,b \in I \) with \(a < b \),

\[
2g \left(\frac{a + b}{2} \right) - M_\eta \leq \frac{1}{b-a} \int_a^b g(x) \, dx \leq f(b) + \frac{\eta(g(a),g(b))}{2},
\]

where \(M_\eta \) is an upper bound of \(\eta \) on \(g([a,b]) \times g([a,b]) \).

Recently, Rostamian Delavar and De La Sen obtained, among other results, the following theorem associated to \(\eta \)-convex functions [12].

Theorem 4 (See [12]). Suppose \(g : [a,b] \to \mathbb{R} \) is a differentiable function and \(|g'| \) is an \(\eta \)-convex function with \(\eta \) bounded from above on \([a,b]\). Then,

\[
\left| \frac{g(a) + g(b)}{2} - \frac{1}{b-a} \int_a^b g(x) \, dx \right| \leq \frac{1}{8}(b-a)K,
\]

where \(K = \min \left\{ |g'(b)| + \frac{\eta(g'(a),g'(b))}{2}, |g'(a)| + \frac{\eta(g'(b),g'(a))}{2} \right\} \).

Still in the same spirit, Khan et al. established in 2017 the following result for \(\eta \)-convex functions via Riemann–Liouville fractional integral operators [9].

Theorem 5 (See [9]). Let \(g : [a,b] \to \mathbb{R} \) be a differentiable function on \((a,b)\) with \(a < b \). If \(|g'| \) is an \(\eta \)-convex function on \([a,b]\), then for \(\alpha > 0 \) the inequality

\[
\left| \frac{g(a) + g(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[J_a^\alpha g(b) + J_b^\alpha g(a) \right] \right| \\
\leq \frac{b-a}{2(\alpha + 1)} \left(1 - \frac{1}{2^\alpha} \right) \left(2|g'(b)| + \eta(|g'(a)|,|g'(b)|) \right)
\]

holds, where

\[
J_a^\alpha g(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} g(t) \, dt
\]

is the left Riemann–Liouville fractional integral and

\[
J_b^\alpha g(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (t-x)^{\alpha-1} g(t) \, dt
\]

is the right Riemann–Liouville fractional integral.
Fractional calculus is an area under strong development \[11\] and in \[13\] Sarikaya et al. proposed the following broader definition of the Riemann–Liouville fractional integral operators.

Definition 6 (See \[13\]). The \((k,r)\)-Riemann–Liouville fractional integral operators \(\mathcal{I}_a^{\alpha+k}\) and \(\mathcal{I}_b^\alpha\) of order \(\alpha > 0\), for a real valued continuous function \(g(x)\), are defined as
\[
\mathcal{I}_a^{\alpha+k}g(x) = \frac{(r+1)^{1-\frac{\alpha}{k}}}{k\Gamma_k(\alpha)} \int_a^x (x^{-r+1} - t^{-r+1})^{\frac{\alpha}{k} - 1} t^r g(t) \, dt, \quad x > a,
\]
and
\[
\mathcal{I}_b^\alpha g(x) = \frac{(r+1)^{1-\frac{\alpha}{k}}}{k\Gamma_k(\alpha)} \int_x^b (t^{-r+1} - x^{-r+1})^{\frac{\alpha}{k} - 1} t^r g(t) \, dt, \quad x < b,
\]
where \(k > 0, \ r \in \mathbb{R}\setminus\{-1\}\), and \(\Gamma_k\) is the \(k\)-gamma function given by
\[
\Gamma_k(x) := \int_0^\infty t^{r-1}e^{-\frac{t}{k}} \, dt, \quad Re(x) > 0,
\]
with the properties \(\Gamma_k(x+k) = x\Gamma_k(x)\) and \(\Gamma_k(k) = 1\).

For some results related to the operators \(3\) and \(4\), we refer the interested readers to \[7, 10, 13\]. Using these operators, Agarwal et al. established the following Hermite–Hadamard type result for convex functions \[1\].

Theorem 7 (See \[1\]). Let \(\alpha > 0\) and \(r \in \mathbb{R}\setminus\{-1\}\). If \(g\) is a convex function on \([a, b]\), then
\[
g\left(\frac{a + b}{2}\right) \leq \frac{(r+1)^{\alpha + 1}}{4(a^{r+1} - b^{r+1})^\frac{\alpha}{k}} \left[\mathcal{I}_a^{\alpha+k}g(b) - \mathcal{I}_a^{\alpha+k}G(b) + \mathcal{I}_b^\alpha G(a) - \mathcal{I}_b^\alpha g(a)\right] \leq \frac{g(a) + g(b)}{2},
\]
where function \(G\) is defined by \((5)\) below.

Inspired by the above works, it is our purpose to obtain here more general integral inequalities associated to \(\eta\)-convex functions via the \((k,r)\)-Riemann–Liouville fractional operators. Theorems \[8\] and \[12\] generalize Theorems \[7\] and \[9\] respectively (see Remarks \[9\] and \[13\]). In addition, two more fractional Hermite–Hadamard type inequalities are also established (see Theorems \[14\] and \[15\]).

2 Main results

We establish four new results. For this, we start by making the following observations. Let \(g\) be a function defined on \(I\) with \([a, b] \subset I^0\) and define functions \(G, \tilde{g} : [a, b] \rightarrow \mathbb{R}\) by
\[
\tilde{g}(x) := g(a + b - x) \quad \text{and} \quad G(x) := g(x) + \tilde{g}(x).
\]
For the fractional operators to be well defined, we shall assume \(g \in L_\infty[a, b]\). By making use of the substitutions \(w = \frac{t-a}{a-x}\) and \(w = \frac{b-t}{b-x}\) in \[3\] and \[4\], respectively, one gets that
\[
\mathcal{I}_a^{\alpha+k}g(x) = (x-a)\frac{(r+1)^{1-\frac{\alpha}{k}}}{k\Gamma_k(\alpha)} \int_a^1 \frac{(wx + (1-w)a)^r g(wx + (1-w)a)}{[x^{r+1} - (wx + (1-w)a)^{r+1}]^{\frac{\alpha}{k}} - \frac{\alpha}{k}} \, dw.
\]
and
\[
\mathcal{I}_b^\alpha g(x) = (b-x)\frac{(r+1)^{1-\frac{\alpha}{k}}}{k\Gamma_k(\alpha)} \int_0^1 \frac{(wx + (1-w)b)^r g(wx + (1-w)b)}{[(wx + (1-w)b)^{r+1} - x^{r+1}]^{\frac{\alpha}{k}} - \frac{\alpha}{k}} \, dw.
\]
Noting that \(\tilde{g}((1-w)a + wb) = g(\omega a + (1-w)b)\), we also obtain
\[
\mathcal{I}_a^{\alpha+k}\tilde{g}(x) = (x-a)\frac{(r+1)^{1-\frac{\alpha}{k}}}{k\Gamma_k(\alpha)} \int_a^1 \frac{(wx + (1-w)a)^r g((1-w)x + wa)}{[x^{r+1} - (wx + (1-w)a)^{r+1}]^{\frac{\alpha}{k}} - \frac{\alpha}{k}} \, dw \quad \text{and}
\]
\[
\mathcal{I}_b^\alpha \tilde{g}(x) = (b-x)\frac{(r+1)^{1-\frac{\alpha}{k}}}{k\Gamma_k(\alpha)} \int_0^1 \frac{(wx + (1-w)b)^r g((1-w)x + wb)}{[(wx + (1-w)b)^{r+1} - x^{r+1}]^{\frac{\alpha}{k}} - \frac{\alpha}{k}} \, dw.
\]
We are now ready to formulate and prove our first result.
Theorem 8. Let \(\alpha, k > 0, r \in \mathbb{R} \setminus \{-1\} \), and \(g : I \to \mathbb{R} \) be a positive function on \([a, b] \subset I^\circ\) with \(a < b \). If, in addition, \(g \) is \(\eta \)-convex on \([a, b] \) with \(\eta \) bounded on \(g([a, b]) \times g([a, b]) \), then the \((k, r)\)-fractional integral inequality

\[
\frac{(r+1)^{\frac{\alpha}{2}}}{4(b^{r+1} - a^{r+1})^{\frac{\alpha}{2}}} \left[kJ^\alpha_a G(b) + \frac{r}{k}J^\alpha_b G(a) \right] \leq g(b) + \frac{\eta(g(a), g(b))}{2}
\]

holds.

Proof. Function \(g \) is \(\eta \)-convex on \([a, b] \), which implies, by definition, the following inequalities for \(t \in [0, 1] \):

\[
g(ta + (1-t)b) \leq g(b) + t\eta(g(a), g(b)) \tag{10}
\]

and

\[
g((1-t)a + tb) \leq g(b) + (1-t)\eta(g(a), g(b)). \tag{11}
\]

Adding inequalities (10) and (11), we get

\[
g(ta + (1-t)b) + g((1-t)a + tb) \leq 2g(b) + \eta(g(a), g(b)). \tag{12}
\]

Multiplying both sides of (12) by

\[
(b-a)(r+1)^{\frac{1-\frac{\alpha}{2}}{k\Gamma_k}} \frac{(tb + (1-t)a)^r}{[b^{r+1} - (tb + (1-t)a)^{r+1}]^{1-\frac{\alpha}{2}}},
\]

and integrating over \([0, 1]\) with respect to \(t \), we get

\[
\begin{align*}
&(b-a)(r+1)^{\frac{1-\frac{\alpha}{2}}{k\Gamma_k}} \int_0^1 \frac{(tb + (1-t)a)^r g((1-t)b + ta)}{[b^{r+1} - (tb + (1-t)a)^{r+1}]^{1-\frac{\alpha}{2}}} dt \\
&\quad + (b-a)(r+1)^{\frac{1-\frac{\alpha}{2}}{k\Gamma_k}} \int_0^1 \frac{(tb + (1-t)a)^r g((1-t)a + tb)}{[b^{r+1} - (tb + (1-t)a)^{r+1}]^{1-\frac{\alpha}{2}}} dt \\
&\leq [2g(b) + \eta(g(a), g(b))] (b-a) \frac{(r+1)^{\frac{1-\frac{\alpha}{2}}{k\Gamma_k}}}{k\Gamma_k} \int_0^1 \frac{(tb + (1-t)a)^r}{[b^{r+1} - (tb + (1-t)a)^{r+1}]^{1-\frac{\alpha}{2}}} dt.
\end{align*}
\]

Now, using (7) and (8) in the above inequality, we get

\[
\frac{r}{k}J^\alpha_a G(b) + kJ^\alpha_b G(b) \leq \frac{(s+1)^{\frac{\alpha}{2}}}{(s+1)\alpha\Gamma_\alpha} \frac{(b^{r+1} - a^{r+1})^{\frac{\alpha}{2}}}{2g(b) + \eta(g(a), g(b))},
\]

that is,

\[
\frac{r}{k}J^\alpha_a G(b) \leq \frac{(b^{r+1} - a^{r+1})^{\frac{\alpha}{2}}}{(s+1)\alpha\Gamma_\alpha} \frac{(s+1)^{\frac{\alpha}{2}}}{2g(b) + \eta(g(a), g(b))}. \tag{13}
\]

Similarly, multiplying again both sides of (13) by

\[
(b-a)(r+1)^{\frac{1-\frac{\alpha}{2}}{k\Gamma_k}} \frac{(tb + (1-t)a)^r}{[(tb + (1-t)a)^{r+1} - a^{r+1}]^{1-\frac{\alpha}{2}}}
\]

and integrating with respect to \(t \) over \([0, 1]\), we obtain that

\[
\frac{r}{k}J^\alpha_b G(a) \leq \frac{(b^{r+1} - a^{r+1})^{\frac{\alpha}{2}}}{(s+1)\alpha\Gamma_\alpha} \frac{(s+1)^{\frac{\alpha}{2}}}{2g(b) + \eta(g(a), g(b))}. \tag{14}
\]

Hence, the intended inequality follows by adding (13) and (14). \(\square \)

Remark 9. By taking \(\eta(x, y) = x - y \) in our Theorem 8, we recover the right-hand side of the inequalities in Theorem 7.
For the rest of our results, we will need the following two lemmas.

Lemma 10 (See [1]). Let \(\alpha, k > 0 \) and \(r \in \mathbb{R} \setminus \{-1\} \). If \(g : I \to \mathbb{R} \) is differentiable on \(I^\circ \) and \(a, b \in I^\circ \) such that \(g' \in L[a, b] \) with \(a < b \), then the following identity holds:

\[
\frac{g(a) + g(b)}{2} - \frac{(r+1) \Gamma_k(\alpha + k)}{4(b^{r+1} - a^{r+1})^\frac{1}{r}} \left[\kappa \mathcal{J}_\alpha^a G(b) + \kappa \mathcal{J}_\alpha^b G(a) \right] = \frac{b-a}{4(b^{r+1} - a^{r+1})^\frac{1}{r}} \int_0^1 \Theta_{\alpha, r}(t)g'(ta + (1-t)b) \, dt,
\]

where \(\Theta_{\alpha, r} : [0, 1] \to \mathbb{R} \) is defined by

\[
\Theta_{\alpha, r}(t) := \left[(ta + (1-t)b)^{r+1} - a^{r+1} \right]^\frac{1}{r} - \left[(tb + (1-t)a)^{r+1} - a^{r+1} \right]^\frac{1}{r}
+ \left[b^{r+1} - (tb + (1-t)a)^{r+1} \right]^\frac{1}{r} - \left[b^{r+1} - (ta + (1-t)b)^{r+1} \right]^\frac{1}{r}.
\]

Lemma 11. Under the conditions of Lemma 10, we have that

\[
\int_0^1 |\Theta_{\alpha, r}(t)| \, dt = \frac{1}{b-a} \left(\mathcal{R}_1 + \mathcal{R}_2 + \mathcal{R}_3 + \mathcal{R}_4 \right),
\]

where

\[
\mathcal{R}_1 = \int_{\frac{a+b}{2}}^b \left[w^{r+1} - a^{r+1} \right]^\frac{1}{r} \, dw - \int_a^{\frac{a+b}{2}} \left[w^{r+1} - a^{r+1} \right]^\frac{1}{r} \, dw,
\]

\[
\mathcal{R}_2 = \int_{\frac{a+b}{2}}^b \left[(b+a-w)^{r+1} - a^{r+1} \right]^\frac{1}{r} \, dw - \int_a^{\frac{a+b}{2}} \left[(b+a-w)^{r+1} - a^{r+1} \right]^\frac{1}{r} \, dw,
\]

\[
\mathcal{R}_3 = \int_a^{\frac{a+b}{2}} \left[(b+a-w)^{r+1} - w^{r+1} \right]^\frac{1}{r} \, dw - \int_{\frac{a+b}{2}}^b \left[(b+a-w)^{r+1} - w^{r+1} \right]^\frac{1}{r} \, dw,
\]

and

\[
\mathcal{R}_4 = \int_a^{\frac{a+b}{2}} \left[(b+a-w)^{r+1} - a^{r+1} \right]^\frac{1}{r} \, dw - \int_{\frac{a+b}{2}}^b \left[(b+a-w)^{r+1} - a^{r+1} \right]^\frac{1}{r} \, dw.
\]

Proof. Using the substitution \(w = ta + (1-t)b \), we get

\[
\int_0^1 |\Theta_{\alpha, r}(t)| \, dt = \frac{1}{b-a} \int_a^b |\varphi(w)| \, dw,
\]

where

\[
\varphi(w) = \left(w^{r+1} - a^{r+1} \right)^\frac{1}{r} - \left[(b+a-w)^{r+1} - a^{r+1} \right]^\frac{1}{r}
+ \left[b^{r+1} - (b+a-w)^{r+1} \right]^\frac{1}{r} - \left(b^{r+1} - w^{r+1} \right)^\frac{1}{r}.
\]

The required result follows from (15) and by observing that \(\varphi \) is a non-decreasing function on \([a, b] \), \(\varphi(a) = -2(b^{r+1} - a^{r+1})^\frac{1}{r} < 0 \), \(\varphi \left(\frac{a+b}{2} \right) = 0 \), and thus

\[
\begin{align*}
\varphi(w) &\leq 0 \quad \text{if} \quad a \leq w \leq \frac{a+b}{2}, \\
\varphi(w) &> 0 \quad \text{if} \quad \frac{a+b}{2} < w \leq b.
\end{align*}
\]

This concludes the proof. \(\square \)
Theorem 12. Let $\alpha, k > 0$, $r \in \mathbb{R} \setminus \{-1\}$, $g : I \to \mathbb{R}$ be a differentiable function on I° and $a, b \in I^\circ$ with $a < b$. Suppose $|g'|$ is η-convex on $[a, b]$ with η bounded on $|g'|([a, b]) \times |g'|([a, b])$. Then the following (k, r)-fractional integral inequality holds:

$$
\left| \frac{g(a) + g(b)}{2} - \frac{(r + 1)\frac{\pi}{2} \Gamma_k(\alpha + k)}{4(b^{r+1} - a^{r+1})} \left[\frac{k}{r} J^{a+}_k G(b) + \frac{r}{k} J^{b+}_k G(a) \right] \right| \leq \frac{1}{4(b^{r+1} - a^{r+1})} \left[\Re|g'(b)| + \frac{\Xi}{b - a}\eta(|g'(a)|, |g'(b)|) \right].
$$

where $\Re = R_1 + R_2 + R_3 + R_4$ (see Lemma 11) and $\Xi = \xi_1 + \xi_2 + \xi_3 + \xi_4$ with

$$
\begin{align*}
\xi_1 &= \int_a^{a+b} (b - w)(b^{r+1} - w^{r+1})^{\frac{\alpha}{b}} dw - \int_a^b (b - w)(b^{r+1} - w^{r+1})^{\frac{\alpha}{b}} dw, \\
\xi_2 &= \int_a^b \frac{b - w}{2} (b^{r+1} - w^{r+1})^{\frac{\alpha}{b}} dw - \int_a^b (b - w)(b^{r+1} - w^{r+1})^{\frac{\alpha}{b}} dw, \\
\xi_3 &= \int_a^{a+b} \frac{b - w}{2} (b^{r+1} - w^{r+1})^{\frac{\alpha}{b}} dw - \int_a^b (b - w)(b^{r+1} - w^{r+1})^{\frac{\alpha}{b}} dw, \\
\xi_4 &= \int_a^b \frac{b - w}{2} (b^{r+1} - (b + a - w)^{r+1})^{\frac{\alpha}{b}} dw - \int_a^{a+b} \frac{b - w}{2} (b^{r+1} - (b + a - w)^{r+1})^{\frac{\alpha}{b}} dw.
\end{align*}
$$

Proof. Since $|f'|$ is η-convex, it follows, by definition, that

$$
|g'(t(a + (1 - t)b))| \leq |g'(b)| + t\eta(|g'(a)|, |g'(b)|)
$$

for $t \in [0, 1]$. From [1] p. 9, we have

$$
\int_0^1 t|\Theta_{\alpha,r}(t)| dt = \frac{\xi_1 + \xi_2 + \xi_3 + \xi_4}{(b - a)^2}.
$$

Using Lemmas 10 and 11, inequality (16), identity (17), and properties of the modulus, we obtain

$$
\begin{align*}
\left| \frac{g(a) + g(b)}{2} - \frac{(r + 1)\frac{\pi}{2} \Gamma_k(\alpha + k)}{4(b^{r+1} - a^{r+1})} \left[\frac{k}{r} J^{a+}_k G(b) + \frac{r}{k} J^{b+}_k G(a) \right] \right| &\leq \frac{b - a}{4(b^{r+1} - a^{r+1})} \int_0^1 |\Theta_{\alpha,r}(t)||g'(t(a + (1 - t)b))| dt \\
&\leq \frac{b - a}{4(b^{r+1} - a^{r+1})} \int_0^1 |\Theta_{\alpha,r}(t)||g'(b)| + t\eta(|g'(a)|, |g'(b)|)) dt \\
&= \frac{b - a}{4(b^{r+1} - a^{r+1})} \left(|g'(b)| \int_0^1 |\Theta_{\alpha,r}(t)| dt + \eta(|g'(a)|, |g'(b)|) \int_0^1 t|\Theta_{\alpha,r}(t)| dt \right) \\
&= \frac{b - a}{4(b^{r+1} - a^{r+1})} \left[|g'(b)| \frac{1}{b - a} (R_1 + R_2 + R_3 + R_4) + \eta(|g'(a)|, |g'(b)|) \frac{\xi_1 + \xi_2 + \xi_3 + \xi_4}{(b - a)^2} \right].
\end{align*}
$$

The desired result follows.

Remark 13. By taking $r = 0$ and $k = 1$ in Theorem 12, we recover Theorem 5. In this case,

$$
\Re = \frac{4}{\alpha + 1} (b - a)^{\alpha+1} \left(1 - \frac{1}{2^\alpha} \right)
$$

and

$$
\Xi = \frac{2}{\alpha + 1} (b - a)^{\alpha+2} \left(1 - \frac{1}{2^\alpha} \right).
$$
Theorem 14. Let \(g \) be differentiable on \(I^\circ \) with \(a, b \in I^\circ \). If \(|g'|^q \) is \(\eta \)-convex on \([a, b]\) and \(q > 1 \) with \(\eta \) bounded on \([g'^q][a, b] \times |g'|^q([a, b])\), then the \((k, r)\)-fractional integral inequality

\[
\frac{|g(a) + g(b)|}{2} - \frac{(r + 1)^{\frac{\eta}{q}} \Gamma_k(\alpha + k)}{4^{(b^r + 1 - a^r + 1)^{\frac{1}{q}}}} \left[\frac{r}{k} \mathcal{J}_a^\alpha G(b) + \frac{r}{k} \mathcal{J}_b^\alpha G(a) \right]
\leq \frac{b - a}{4^{(b^r + 1 - a^r + 1)^{\frac{1}{q}}}} \left(\left| g(b)' \right|^q + \eta(\left| g(a)' \right|^q, |g(b)'|^q) \right)^\frac{1}{q} \left\| \Theta_{\alpha, r} \right\|_p
\]

holds, where \(\frac{1}{p} + \frac{1}{q} = 1 \) and \(\left\| \Theta_{\alpha, r} \right\|_p = \left(\int_0^1 |\Theta_{\alpha, r}(t)|^p \, dt \right)^\frac{1}{p} \).

Proof. Function \(|g'|^q \) is \(\eta \)-convex, which implies

\[
|g'(t(a + (1 - t)b)|^q \leq |g'(b)|^q + t\eta(|g'(a)|^q, |g'(b)|^q),
\]

for \(t \in [0, 1] \). Using Lemma 10 inequality 18, Hölder’s inequality and the properties of modulus, we get

\[
\frac{|g(a) + g(b)|}{2} - \frac{(r + 1)^{\frac{\eta}{q}} \Gamma_k(\alpha + k)}{4^{(b^r + 1 - a^r + 1)^{\frac{1}{q}}}} \left[\frac{r}{k} \mathcal{J}_a^\alpha G(b) + \frac{r}{k} \mathcal{J}_b^\alpha G(a) \right]
\leq \frac{b - a}{4^{(b^r + 1 - a^r + 1)^{\frac{1}{q}}}} \left(\int_0^1 |\Theta_{\alpha, r}(t)|^p \, dt \right)^\frac{1}{p} \left(\int_0^1 |g'(t(a + (1 - t)b)|^q \, dt \right)^\frac{1}{q}
\]

\[
\leq \frac{b - a}{4^{(b^r + 1 - a^r + 1)^{\frac{1}{q}}}} \left(\int_0^1 |\Theta_{\alpha, r}(t)|^p \, dt \right)^\frac{1}{p} \left(\int_0^1 \left| g(b)' \right|^q + t\eta(\left| g(a)' \right|^q, |g(b)'|^q) \, dt \right)^\frac{1}{q}
\]

\[
= \frac{b - a}{4^{(b^r + 1 - a^r + 1)^{\frac{1}{q}}}} \left(\int_0^1 |\Theta_{\alpha, r}(t)|^p \, dt \right)^\frac{1}{p} \left(\left| g(b)' \right|^q + \eta(\left| g(a)' \right|^q, |g(b)'|^q) \right)^\frac{1}{q}.
\]

This completes the proof. \(\square\)

Theorem 15. Let \(g \) be differentiable on \(I^\circ \) with \(a, b \in I^\circ \). If \(|g'|^q \) is \(\eta \)-convex on \([a, b]\) and \(q > 1 \) with \(\eta \) bounded on \([g'^q][a, b] \times |g'|^q([a, b])\), then the \((k, r)\)-fractional integral inequality

\[
\frac{|g(a) + g(b)|}{2} - \frac{(r + 1)^{\frac{\eta}{q}} \Gamma_k(\alpha + k)}{4^{(b^r + 1 - a^r + 1)^{\frac{1}{q}}}} \left[\frac{r}{k} \mathcal{J}_a^\alpha G(b) + \frac{r}{k} \mathcal{J}_b^\alpha G(a) \right]
\leq \frac{\Re^p}{4^{(b^r + 1 - a^r + 1)^{\frac{1}{q}}}} \left[\left| g(b)' \right|^q + \frac{\Xi}{b - a} \eta(\left| g(a)' \right|^q, |g(b)'|^q) \right]^\frac{1}{q}
\]

holds, where \(\frac{1}{p} + \frac{1}{q} = 1 \) and \(\Re \) and \(\Xi \) are defined as in Theorem 12.

Proof. Following a similar approach as in the proof of Theorem 14, we have, by using Lemmas 10 and 11 combined with the power mean inequality plus inequality 18, that

\[
\frac{|g(a) + g(b)|}{2} - \frac{(r + 1)^{\frac{\eta}{q}} \Gamma_k(\alpha + k)}{4^{(b^r + 1 - a^r + 1)^{\frac{1}{q}}}} \left[\frac{r}{k} \mathcal{J}_a^\alpha G(b) + \frac{r}{k} \mathcal{J}_b^\alpha G(a) \right]
\leq \frac{b - a}{4^{(b^r + 1 - a^r + 1)^{\frac{1}{q}}}} \left(\int_0^1 |\Theta_{\alpha, r}(t)| \, dt \right)^{1 - \frac{1}{q}} \left(\int_0^1 |\Theta_{\alpha, r}(t)| \left| g(t(a + (1 - t)b)|^q \, dt \right)^\frac{1}{q}
\]

\[
\leq \frac{b - a}{4^{(b^r + 1 - a^r + 1)^{\frac{1}{q}}}} \left(\int_0^1 |\Theta_{\alpha, r}(t)| \, dt \right)^{1 - \frac{1}{q}} \left(\int_0^1 \left| \Theta_{\alpha, r}(t) \right| \left| g(b)' \right|^q + t\eta(\left| g(a)' \right|^q, |g(b)'|^q) \, dt \right)^\frac{1}{q}.
\]

The required inequality follows. \(\square\)
Acknowledgements

This research was supported by FCT and CIDMA, project UID/MAT/04106/2013. The authors are grateful to the referees for their valuable comments and helpful suggestions.

References

[1] P. Agarwal, M. Jleli and M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl. 2017 (2017), Paper No. 55, 10 pp.
[2] P. Cerone and S. S. Dragomir, Mathematical inequalities, CRC Press, Boca Raton, FL, 2011.
[3] S. S. Dragomir, Generalization and reverses of the left Fejér inequality for convex functions, J. Nonlinear Sci. Appl. 10 (2017), no. 6, 3231–3244.
[4] M. Eshaghi Gordji, S. S. Dragomir and M. Rostamian Delavar, An inequality related to η-convex functions (II), Int. J. Nonlinear Anal. Appl. 6 (2015), no. 2, 26–32.
[5] M. Eshaghi Gordji, M. Rostamian Delavar and M. De La Sen, On ϕ-convex functions, J. Math. Inequal. 10 (2016), no. 1, 173–183.
[6] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl. 9 (1893), 171–216.
[7] M. Jleli, D. O’Regan and B. Samet, On Hermite-Hadamard type inequalities via generalized fractional integrals, Turkish J. Math. 40 (2016), no. 6, 1221–1230.
[8] A. Kashuri and R. Liko, Hermite-Hadamard type inequalities for MT_m-preinvex functions, Fasc. Math. 58 (2017), 77–96.
[9] M. A. Khan, Y. Khurshid and T. Ali, Hermite-Hadamard inequality for fractional integrals via η-convex functions, Acta Math. Univ. Comenian. (N.S.) 86 (2017), no. 1, 153–164.
[10] S. Mubeen and G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci. 7 (2012), no. 1-4, 89–94.
[11] E. R. Nwaeze and D. F. M. Torres, Chain rules and inequalities for the BHT fractional calculus on arbitrary timescales, Arab. J. Math. (Springer) 6 (2017), no. 1, 13–20. arXiv:1611.09049
[12] M. Rostamian Delavar and M. De La Sen, Some generalizations of Hermite–Hadamard type inequalities, SpringerPlus 5 (2016), Paper No. 1661, 9 pp.
[13] M. Z. Sarikaya, Z. Dahmani, M. E. Kiris and F. Ahmad, (k, s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat. 45 (2016), no. 1, 77–89.
[14] E. Set, M. Tomar and M. Z. Sarikaya, On generalized Grüss type inequalities for k-fractional integrals, Appl. Math. Comput. 269 (2015), 29–34.
[15] Y. Shuang and F. Qi, Integral inequalities of the Hermite-Hadamard type for (α, m)-GA-convex functions, J. Nonlinear Sci. Appl. 10 (2017), no. 4, 1854–1860.
[16] M. Tomar, S. Mubeen and J. Choi, Certain inequalities associated with Hadamard k-fractional integral operators, J. Inequal. Appl. 2016 (2016), Paper No. 234, 14 pp.