Genomic Features of Chinese Small Cell Lung Cancer

Jun Liu
Guangzhou First People's Hospital

Zhuxiang Zhao
Guangzhou First People's Hospital

Binkai Li
Guangzhou First People's Hospital

Ziwen Zhao
Guangzhou First People's Hospital

Research Article

Keywords: Small cell lung cancer, germline, DNA damage repair, TMB, actionable alterations

Posted Date: December 6th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1063544/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Small cell lung cancer (SCLC) is an aggressive disease with poor survival. Although molecular and clinical characteristics have been established for SCLC in western patients, limited investigation has been performed for Chinese SCLC patients.

Objective: In this study, we investigated the genomic features of Chinese SCLC patients.

Methods: A total of 75 SCLC patients were enrolled. Genomic alterations in 618 selected genes were analyzed by targeted next-generation sequencing.

Results: Here, we showed that TP53 (77.30%) and RB1 (30.70%) were the most prevalent genes, followed by KMT2D, ALK, LRP1B, EGFR, NOTCH3, AR, CREBBP, ROS1, and BRCA2. And the most common genetic alterations were enriched in the cell cycle signaling pathway (84.00%) of Chinese SCLC patients. DNA damage repair (DDR) pathway analysis showed that the most frequently enriched DDR pathways were fanconi anaemia (FA, 29.41%) and homology recombination (HR, 21.57%). Notably, 9.33% SCLC patients in our cohort had pathogenic or likely pathogenic germline gene variants. Compared with the U Cologne cohort, a higher prevalence in EGFR, AR, BRCA2, TSC1, ATXN3, MET, MSH2, ERBB3 and FOXA1 were found in our cohort; while compared to the data from the Johns Hopkins cohort, a higher mutated frequency in TP53, KMT2D, ALK, and EGFR were found in our cohort. Moreover, a significant association was found between high tumor mutation burden (TMB) and mutations involved in TP53, CREBBP, EPHA3, KMT2D, ALK and RB1. Approximately 33.33% of patients with SCLC harbored at least one actionable alteration annotated by OncoKB, of which one patient had alterations of level 1; seventeen patients had level 3; fifteen patients possessed level 4.

Conclusion: Our data might provide an insightful meaning in targeted therapy for Chinese SCLC patients.

1. Introduction

Small cell lung cancer (SCLC) is a highly malignant form of lung cancer that kills ~250,000 people worldwide annually and accounts for approximately 15% of lung cancer cases [1]. Biologically, rapid doubling time and early widespread metastases are characteristic of SCLC. Around 70% of cases present with the extensive-stage disease at diagnosis (ED-SCLC); the remaining 30% of patients have the limited-stage disease (LS-SCLC), in which tumor involvement is confined to one hemithorax and can be treated in a tolerable radiation field. The overall prognosis of SCLC patients is poor, with a median overall survival (OS) of 15~20 months for LD-SCLC and 8~13 months for ED-SCLC [2, 3].

Despite extensive basic and clinical research conducted by SCLC over the past 30 years, little progress has been made in treatment. First-line treatment for SCLC has remained unchanged for decades, including etoposide in western countries or irinotecan combined with cisplatin or carboplatin in eastern countries. Unfortunately, no other drug is known to provide better respond rates. However, all patients present had local recurrence or distant metastasis thus the disease could not be controlled. As far as the
second-line treatment is concerned there is a cloudy field [4]. In recent years, there have been more and more studies on targeted therapy and immunotherapy for SCLC, and some encouraging results have been obtained. Many clinical trials have shown that targeted therapy can improve the total response rate and progression-free survival (PFS) of SCLC patients more than traditional chemotherapy [5]. The application of immune checkpoint inhibitors (ICI) provides new options for SCLC patients, especially when these agents were applied in combination. When SCLC patients were stratified according to tumor mutation burden (TMB), the PFS and OS of ICI combination group were significantly prolonged [6]. SCLC has a relatively high TMB level which may partly explain the therapeutic effect of ICI [7]. While genomic alterations that are associated with different TMB levels are not defined in SCLC.

Some studies based on Caucasian population identified alterations in TP53 and RB1 were the most prevalent in SCLC [8–10]. In addition, PIK3CA, EGFR and KRAS also have high mutation frequency in SCLC [8]. Specifically, biallelic inactivation of TP53 and RB1 can be detected in almost all the SCLC tumors, suggesting that loss of the tumor suppressors TP53 and RB1 is obligatory in SCLC [8]. However, mutations in other genes varied from study to study. The majority of mutations have little significance for the SCLC pathogenesis and are described as passenger mutations. Finding the driving mutations of heterogenous diseases among SCLC patients and developing them into actionable targets for treatment are the primary issues to be faced [11]. There are very few genomic data of SCLC in China. In order to fill the gap of comprehensive genomic variation of SCLC, it is necessary to track more genomic variation of SCLC from different populations. In addition, the prognostic value of mutated genes in SCLC has not been well investigated.

With the in-depth research on the mechanism of DNA damage repair (DDR), people have a further understanding of improving sensitivity and overcoming resistance to traditional DNA damage treatment [12]. Although DDR data are scarce in SCLC, Byers et al. identified the DNA repair protein poly ADP-ribose polymerase 1 (PARP 1) as a therapeutic target [13]. Preclinical SCLC models were sensitive to PARP inhibition alone and the efficacy of chemotherapy was also enhanced by the addition of a PARP inhibitor [14, 15]. Despite of this, definite recurrent and targetable genomic alterations have not been identified in SCLC at present, especially in the Chinese population. Moreover, the DDR profile of Chinese SCLC patients was still not very clear yet.

Here, we carried out this study to clarify the genomic alterations and molecular characteristics of Chinese SCLC patients, especially DDR alterations and TMB levels. We attempted to better understand the association of genomic alterations with TMB levels in SCLC, and identify candidate prognostic biomarkers. Additionally, we tried to figure out whether there were significant differences in the mutational data between our cohort and the other two cohorts from cBioportal database. We further investigated the germline mutations and defined the frequency of actionable alterations to catch sight of the genetic features as well as corresponding target therapies in Chinese SCLC patients.

2. Materials And Methods
2.1 Biospecimen collection and Clinical Data

Biospecimens of 75 SCLC patients were collected. All patients provided written informed consent for publication of their clinical details. Formalin-fixed, paraffin-embedded (FFPE) tumor tissues were pathologically assessed to have at least 20% tumor cells. Blood samples were drawn into Cell-free DNA BCT tubes (Streck, Inc.). Blood Cell-free DNA (cfDNA) testing were performed in 50 patients who could not provide sufficient or valid tumor tissue samples.

2.2 DNA isolation

The FFPE samples and peripheral blood mononuclear cells were collected using DNeasy Blood & Tissue Kit (Qiagen, Inc.) to isolate gDNA following the manufacturer's instruction [16]. cfDNA was extracted from blood was using the QIAamp Circulating Nucleic Acid Kit (Qiagen, Inc.) according to the protocol of the manufacturer. The purified gDNA and cfDNA were quantified using the Qubit 3.0 Fluorometer (Life Technologies, Inc.) and StepOnePlus System (Life Technologies, Inc.) [16].

2.3 Target Next-generation sequencing

For the tumor and blood samples, 100ng gDNA was sheared to target 200 bp fragment sizes with the Covaris E210 system (Covaris, Inc.). Next-generation sequencing of gDNA and cfDNA was performed, in which Accel-NGS 2S DNA Library Kit (Swift Biosciences, Inc.) was used for library preparation and xGen Lockdown Probes kit (IDT, Inc.) for target enrichment [16]. The custom xGen Lockdown probe was synthesized by IDT, Inc. for the exons and selected intronic regions of 618 genes (Supplemental Table 1). The prepared library was quantified using the Qubit 3.0 Fluorometer (Life Technologies, Inc.), and quality and fragment size were measured with an Agilent 2100 Bioanalyzer (Agilent Technologies, Inc.). Samples underwent paired-end sequencing on an Illumina Nextseq CN500 platform (Illumina Inc) with a 150-bp read length [17]. The mean coverage of tumor gDNA, blood cfDNA and peripheral blood mononuclear cells was more than 1000×, 3500× and 200×, respectively.

2.4 Tumor mutation burden analysis

Tumor mutation burden (TMB) was defined as the total somatic nonsynonymous mutation counts in coding regions [7]. TMB was classified into high and low categories, with the top quartile as the cutoff value.

2.5 Data and Statistical analysis

Raw sequencing data were aligned to the reference human genome (UCSC hg19) through Burrows-Wheeler Aligner and producing a BAM (binary alignment/map) file [18]. After removing duplicate and local realignment, single nucleotide variation (SNV)/indel calls were performed using the Genome Analysis Toolkit (GATK) [19]. Somatic variants were generated for the patient by subtracting the germline variants from the tumor to keep only variants unique to a tumor. Variants were annotated using the ANNOVAR software tool. Somatic mutations were annotated with information from the Catalog of Somatic Mutations in Cancer (COSMIC) database [20]. The Genomic alterations data of Johns Hopkins,
Nat Genet 2012 and U Cologne Nature 2015 was downloaded from OncoKB (https://www.oncokb.org/) [21]. The survival data was downloaded from National Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/pmc/). Differential mutations analysis was performed under a dominant model using Chi Square test or Fisher exact test. P values less than 0.05 on two-sides were considered statistically significant. All analyses were performed by SPSS 25.0 software.

3. Results

3.1 Clinicopathological Characteristics of SCLC Patients

This study enrolled a total of 75 Chinese SCLC patients, among whom 52 were males and 23 patients were female. The clinical characteristic obtained are summarized in Table 1. The ages of the patients ranged from 39 to 89 with a median age of 66. Eight (10.7%) SCLC patients had been diagnosed with II-III stage, and 67 (89.3%) patients with IV stage. Moreover, 18 (24.0%) cases presented a family cancer history, and 55 (73.3%) individuals without it. All tumor samples were pathologically assessed to have a purity of at least 20%.

Clinicopathologic parameter	Chinese SCLC patients (N = 75)
Age	Median Age (Range) 66 (39–89)
Gender	Male 52 (69.3%)
	Female 23 (30.7%)
Sample Type	Blood 53 (70.7%)
	Tissue 22 (29.3%)
Pathology stage	II-III 8 (10.7%)
	IV 67 (89.3%)
Family Cancer History	Yes 18 (24.0%)
	No 55 (73.3%)
	Unknown 2 (2.7%)
Smoking status	Smoker 6 (8.0%)
	Non-Smoker 1 (1.3%)
	Unknown 68 (90.7%)
3.2 The landscape of mutation profiles in SCLC

Through targeted deep sequencing of all exons and selected introns of 618 cancer-related genes (Supplementary Table1) in 75 SCLC tissue and blood samples, a total of 97.3% (73/75) of the samples were identified as valid somatic alterations. As shown in Figure 1A, a total of 978 mutations were identified in 75 cases, with a median mutation number of 13 per patient (range 1 to 60). Missense mutation was the main mutation type, and the frequency of single nucleotide polymorphism was higher than that of insertion and deletion, C>T was the most common single nucleotide variation in SCLC (Figure 1B-D). In addition, we counted the number of altered bases in each sample and color-coded the types of mutations (Figure 1E, F). The top 10 mutated genes with highest prevalence were TP53 (77.30%), RB1 (30.70%), KMT2D (17.30%), ALK (16.00%), LRP1B (14.70%), EGFR (14.70%), NOTCH3 (14.70%), AR (14.70%), CREBBP (12.00%), ROS1 (12.00%), and BRCA2 (12.00%), respectively (Figure 1G). Pathway analysis indicated that the most frequently enriched pathways were Cell Cycle (84.00%), RTK-RAS-MAPK (72.00%), DNA damage repair (DDR, 49.33%), EpigeneticModifiers/Chromatin_remodelers (40.00%), and NOTCH (36.00%), respectively (Figure 1H).

3.3 Germline mutations in Chinese SCLC patients

In our cohort, 60% (45/75) patients harbored at least one germline mutation, and the total number of germline mutations was 105 (Supplemental Table 2). The patients with germline mutation were further divided into pathogenic/likely pathogenic and non-pathogenic types, and the patients with pathogenic/likely pathogenic germline mutation accounted for 9.33% of the 75 SCLC patients. These germline mutation genes included BRCA2, BRCA1, ATM, UCP3, GCDH, MPL, SMO, FGFR4 and TP53 genes. A deleterious mutation in the germline may indicate family heredity, so we investigated the familial history of cancer in 75 SCLC patients. After excluding 2 patients who were unwilling to provide a family history of cancer, we found that 24.00%(18/75) had a family history of cancer, with most family members being diagnosed with respiratory and digestive tract tumors. We further screened 5 patients with germline mutations and found that only 1 carrier had susceptible genetic hereditary phenomena in his family (Table 2). Notably, this patient has been identified with dual deleterious variants, including an ATM-c.2376+1G>A and a TP53-p.Arg273His.
Table 2
Details of pathogenic or likely pathogenic variants carriers

ID	age	gender	family history	Gene	exon	Nucleotide Change	Amino Acid Change
2019772	70	male	father, sister	ATM	None	c.2376+1G>A	
2019772	70	male	father, sister	TP53	8	c.818G>A	p.Arg273His
2016599	39	male	NO	BRCA1	10	c.1465G>T	p.Glu489Ter
2032699	77	male	NO	BRCA1	15	c.4801A>T	p.Lys1601Ter
2012976	68	male	NO	BRCA2	25	c.9294C>G	p.Tyr3098Ter
2013902	80	male	NO	FGFR4	4	c.379G>C	p.Asp127His

3.4 Genetic alterations in DNA damage repair pathway

A total of 28 patients (37.33%) harbored at least one alteration in DNA repair genes. The distribution of specific genes was exhibited in Figure 2A, and the most frequently mutated DDR genes with known or likely deleterious variants were **BRCA2** (n=8, 13.33%) and **MSH2** (n=6, 10.00%), followed by **ATM** (n=4, 6.67%), **ATR** (n=4, 6.67%) and **BRCA1** (n=4, 6.67%). DDR pathway analysis showed that the most frequently enriched DDR pathways were homology recombination (HR, 35.00%), fanconi anaemia (FA, 20.00%), mismatch repair (MMR, 16.67%), DNA sensor (DS, 13.33%), base excision repair (BER, 8.33%) and nucleotide excision repair (NER, 6.67%) respectively (Figure 2B). We also analyzed the clinical significance of DDR-related genes and these genes are listed below (Table 3). Particularly, HR pathway accounts for the most among these genes, followed by MMR and DS pathway.
Table 3
Altered Genes with Clinical Significance

Gene	OncoKB Annotation	DDR signal pathway	coding_seq_change
BRCA2	Likely Oncogenic	HR	c.9294C>G
RAD50	Likely Oncogenic	HR	c.3618delATCTCTTGCCAATGCTCTGGTTGAGTAAGT
BRCA1	Likely Oncogenic	HR	c.4801A>T
BRCA1	Likely Oncogenic	HR	c.1465G>T
MSH2	Likely Oncogenic	MMR	c.640A>T
ATM	Likely Oncogenic	DS	c.2376+1G>A

3.5 Differences of somatic gene alterations in SCLC patients between our cohort and Western cohorts

Comparing the significantly mutated genes with U Cologne cohort showed that there were several significantly lower mutated genes in *RB1* (30.67% vs 79.09%), *LRP1B* (14.67% vs 46.36%) and *TP53* (77.33% vs 93.64%), but a higher prevalence in *EGFR* (14.67% vs 3.64%), *AR* (14.67% vs 4.55%), *BRCA2* (12% vs 1.82%), *TSC1* (10.67% vs 0.91%), *ATXN3* (9.33% vs 1.82%), *MET* (9.33% vs 1.82%), *MSH2* (8% vs 0.91%), *ERBB3* (8% vs 0.91%) and *FOXA1* (8% vs none) were presented in our cohort (Figure 3A). While compared to the data from Johns Hopkins cohort, a higher mutated frequency in *TP53* (77.33% vs 45.0%), *KMT2D* (17.33% vs 3.75%), *ALK* (16% vs 2.5%), and *EGFR* (14.67% vs none) were found in our cohort (Figure 3B).

3.6 TMB analysis in the Chinese cohort

The TMB values in our cohort ranged from 2.00/Mb to 64.29/Mb with a median value of 14.53/Mb. And the TMB was significantly higher in blood samples than in the tissue sample group (p=0.028) as more extensive stage cases involved. However, there were no significant differences in TMB were observed between each of these compared groups with age, gender and DDR mutation (Figure 4A-D). Moreover, the median TMB of patients with alterations in *TP53* (p=0.018), *CREBBP* (p=0.013), *EPHA3* (p=0.013), *KMT2D* (p=0.03), *ALK* (p=0.046) and *RB1* (p=0.05) genes were higher than those without the alterations, on the contrary the median TMB of patients with *PIK3CA* alteration (p=0.019) was lower (Figure 4E).

3.7 Clinically Actionable Alterations
To evaluate the clinical utility of prospective molecular profiling to guide treatment decisions, we used OncoKB (http://oncokb.org/) to group all mutations into various levels according to evidence of clinical actionability. Overall, 33.33% (25/75) of patients harbored at least one actionable alteration (Table 4). We found a group of gene mutations as standard care biomarkers for an FDA-approved drug in another indication. 5.56% of tumors harbored level_1 gene alteration (Fig. 5A) including \textit{NTRK} (Fig. 5B). Level_3 accounted for 61.11% (Fig. 5A), including \textit{ALK, BRAF, CDK12, ERBB2, TSC1, ATM, BRCA1/2, EGFR, PIK3CA} (Fig. 5B). Level_4 accounted for 33.33% (Fig. 5A), including \textit{AKT, U2AF1, SF3B1, FGFR1, HRAS} (Fig. 5B). Additionally, two germline alterations including one \textit{BRCA1} germline alterations and one \textit{ATM} germline alteration may confer sensitivity to corresponding target therapy (Table 4).
Table 4
Actionable Alterations identified in our cohort

Level of evidence based on OncoKB (12/20/2019)	Altered genes	Mutational type	No of patients (%)	Related drugs
	NTRK2	Fusions	1	1.33%
	ALK	Fusions	1	1.33%
3	BRAF	V600E	1	1.33%
3	BRCA2	Oncogenic Mutations	1	1.33%
3	CDK12	Oncogenic Mutations	1	1.33%
3	EGFR	Exon 19 deletion, T790M	5	6.67%
3	ERBB2	Amplification	1	1.33%
3	PIK3CA	Oncogenic Mutations	6	8.00%
3	TSC1	Oncogenic Mutations	1	1.33%
4	AKT1	E17K	1	1.33%
4	FGFR1	Amplification	3	4.00%
4. Discussion

SCLC is an aggressive and refractory form of lung cancer originated from neuroendocrine cells. Genomic profiling found a relatively universal homogeneity genetic feature of SCLC, characterized by TP53 and RB1 alterations [4]. By contrast, the genetic feature and the value of genetic testing in Chinese patients with SCLC remain unclarified. Here we perform this study to clarify the genomic alterations of Chinese SCLC patients, especially DDR alterations and TMB levels by next-generation sequencing.

As expected, we detected the most frequent mutations in TP53 (77.3%) and RB1 (30.7%), which in line with previous publications [4, 8]. In addition to common genomic alterations, alterations in other tumor-related genes displayed a unique feature in Chinese populations. The prevalence of genes included EGFR, BRCA2, TSC1, KMT2D and ALK were higher in the Chinese cohort than in the Western population. Among those differences, BRCA2 was the well-known biomarkers for PARP inhibitors [22], and TSC1 naturally suppressed the overactivity of downstream mammalian target of rapamycin (mTOR), which indicated the potential clinical benets of patients with TSC1 loss of function mutations from mTOR inhibitors [23].

However, compared with the Western population (U Cologne cohort), the incidence of LRP1B in Chinese patients with SCLC was lower. Liu et al. found that LRP1B was homozygously deleted in 17% (14 of 23) of non-small cell lung cancer (NSCLC) cell lines [24]. In contrast, no LRP1B alterations were identified in a major fraction of SCLC lines, indicating that LRP1B is preferentially inactivated in 1 histologic type of lung cancer. Whether loss of function or deletion of LRP1B related to the clinical outcome of LRP1B inhibitors was not clear, but the lower incidence of this gene may indicate the differences in the
pathogenesis between different ethnic groups. Our genomic analyses further compared the genetic alterations involved in several cancer-related signaling pathways in the Chinese cohort.

We found that most of the mutant genes were enriched in the Cell Cycle, RTK-RAS-MAPK and DDR signaling pathways, suggesting that the molecular characterization of these pathways is closely related to the development of SCLC.

Previous studies have similarly examined the prevalence and spectrum of germline variants in SCLC patients, but they are primarily focused on limited genes or in a small subset [25]. Our findings provide a novel insight on the SCLC with germline alterations in the Chinese population tested by an NGS panel with 618 cancer-related genes. Specifically, 9.33% of Chinese SCLC patients had pathogenic or likely pathogenic germline gene variants, including BRCA2, BRCA1, ATM, UCP3, GCDH, MPL, SMO, FGFR4 and TP53. Moreover, 24% of patients had a family history of cancer, highlighting the necessity of risk assessment for those patients and their first-degree family members. Additionally, some publications have investigated the roles of germline alterations, mostly selected mutations, in genetic susceptibility to lung cancer [26, 27], while systematic studies of the germline mutations potentially predisposing to lung cancer. For example, the identification of germline mutations in driver oncogenes like EGFR, has heightened interest in identifying germline mutations carrying a high inherited risk of lung cancer [28]. However, EGFR mutations are not conventional germline mutations associated with hereditary cancers, and are not common in our cohort as well [29]. Liu et al. found that BRCA2 and ATM were germline mutations with the highest mutation frequency in Chinese lung cancer patients, similar to our results [30].

Unlike NSCLC, SCLC harbors few actionable mutations that can be used for therapeutic intervention. Actionability is defined as a molecular alteration that has clinical or strong preclinical evidence of a predictive benefit from a specific therapy (in any cancer type) [31, 32]. Here, we detected that 33.33% of SCLC patients had at least one actionable alteration with any level of evidence from OncoKB. Our results provide a new insight into patients with SCLC tumors who harbor actionable molecular alterations and receive appropriately matched therapy. Pishvaian's investigation showed that patients with actionable molecular alterations could benefit considerably from receiving matched therapy [33]. It has been reported that patients with advanced pancreatic cancer with actionable alterations who received matched therapy had a one-year increase in median overall survival compared with patients with or without actionable alterations who did not receive matched therapy. However, other therapeutic modality did not offer such a huge advantage for this patient population. Thus, these findings set the stage for prospective clinical trials guided by molecular profiling. Previous findings revealed that the median PFS of patients with actionable alterations undergoing molecularly matched therapies is significantly longer than that of historical controls. To our knowledge, there is no systematic assessment of median overall survival of SCLC patients with molecularly matched therapies [34]. The sensitivity of these analyses to molecular profiling warrants further investigation.

DDR pathway defects may lead to severe DNA damage, resulting in genome instability and trigger malignant transformation [35]. Therefore, targeting the DDR pathway may be a promising therapeutic
strategy for SCLC [11, 36]. The high frequency of DDR gene and pathway alterations in our cohort and other studies identifies opportunities to improve cancer therapy. For example, HR defects are relatively common in cancer and may compromise DNA replication and genome stability [37]. Thus, combination therapies that induce or potentiate replication stress or impair replication fork protection may effectively inhibit HR-deficient cancers like SCLC. PARP inhibitors have demonstrated great promise in the treatment of patients with deficiencies in HR DNA repair. And they have been approved in the treatment of patients harboring BRCA1/2 mutations in ovarian and breast cancer [38, 39]. PARP inhibitors are active in SCLC models and clinical trials are in progress as well [11, 15], so the clinical benefit of these biomarker-targeted therapies for patients with SCLC will hopefully be realized.

This study also has some limitations. Serial analyses of tumor biopsies have not been performed in some SCLC patients, limiting molecular studies and biomarker assessments of treatment-induced changes in this cancer type.

5. Conclusions

Our study describes the clinical characteristics of SCLC in China and identifies many novel candidate genes, some of which may have therapeutic implications. Our results further figure out there were significant differences between our cohort and other two cohorts from cBioportal database of the mutational data. Analysis of these altered genes provided information regarding the molecular mechanisms of SCLC and significant biomarkers or targets for the diagnosis and treatment of SCLC. However, further molecular biological experiments are required to confirm the function of the pathways in SCLC.

Abbreviations
Declarations

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the Guangzhou First People's Hospital. All samples collection and processing were carried out respecting the Declaration of Helsinki. All patients signed informed consent prior to tumor tissues collection treatment, including allowing their data to be used for further research.

Consent for publication

Not Applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.
Conflict of interest

All authors declare no conflict of interest.

Authors’ Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jun Liu, Zhuxiang Zhao and Binkai Li. The first draft of the manuscript was written by Ziwen Zhao and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We are grateful of all participants in Guangzhou First People's Hospital, School of Medicine, South China University of Technology.

References

1. Gazdar AF, Bunn PA, Minna JD: Small-cell lung cancer: what we know, what we need to know and the path forward. Nature reviews Cancer 2017, 17(12):765.

2. Pietanza MC, Byers LA, Minna JD, Rudin CM: Small cell lung cancer: will recent progress lead to improved outcomes? Clinical cancer research : an official journal of the American Association for Cancer Research 2015, 21(10):2244-2255.

3. Kalemkerian GP, Akerley W, Bogner P, Borghaei H, Chow LQ, Downey RJ, Gandhi L, Ganti AK, Govindan R, Grecula JC et al: Small cell lung cancer. Journal of the National Comprehensive Cancer Network : JNCCN 2013, 11(1):78-98.

4. Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A, George J, Heymach JV, Johnson JE, Lehman JM, MacPherson D et al: Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nature reviews Cancer 2019, 19(5):289-297.

5. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R, Pallares C, Sanchez JM et al: Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. The Lancet Oncology 2012, 13(3):239-246.

6. Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascieto PA, Atmaca A, Rizvi NA, Hirsch FR, Selvaggi G, Szustakowski JD et al: Tumor Mutational Burden and Efficacy of Nivolumab Monotherapy and in Combination with Ipilimumab in Small-Cell Lung Cancer. Cancer cell 2018, 33(5):853-861.e854.

7. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, Schrock A, Campbell B, Shlien A, Chmielecki J et al: Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome medicine 2017, 9(1):34.

8. George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, Leenders F, Lu X, Fernández-Cuesta L, Bosco G et al: Comprehensive genomic profiles of small cell lung cancer. Nature 2015, 524(7563):47-53.
9. Peifer M, Fernández-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, Plenker D, Leenders F, Sun R, Zander T et al.: Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature genetics 2012, 44(10):1104-1110.

10. Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, Shames DS, Bergbower EA, Guan Y, Shin J, Guillory J et al.: Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nature genetics 2012, 44(10):1111-1116.

11. Foy V, Schenk MW, Baker K, Gomes F, Lallo A, Frese KK, Forster M, Dive C, Blackhall F: Targeting DNA damage in SCLC. Lung cancer (Amsterdam, Netherlands) 2017, 114:12-22.

12. Thomas A, Pommier Y: Small cell lung cancer: Time to revisit DNA-damaging chemotherapy. Science translational medicine 2016, 8(346):346fs312.

13. Byers LA, Wang J, Nilsson MB, Fujimoto J, Saintigny P, Yordy J, Giri U, Peyton M, Fan YH, Diao L et al.: Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer discovery 2012, 2(9):798-811.

14. Cardnell RJ, Feng Y, Diao L, Fan YH, Masrorpour F, Wang J, Shen Y, Mills GB, Minna JD, Heymach JV et al.: Proteomic markers of DNA repair and PI3K pathway activation predict response to the PARP inhibitor BMN 673 in small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2013, 19(22):6322-6328.

15. Lok BH, Gardner EE, Schneeberger VE, Ni A, Desmeules P, Rekhtman N, de Stanchina E, Teicher BA, Riaz N, Powell SN et al.: PARP Inhibitor Activity Correlates with SLFN11 Expression and Demonstrates Synergy with Temozolomide in Small Cell Lung Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2017, 23(2):523-535.

16. Yang B, Zhao X, Wan C, Ma X, Niu S, Guo A, Wang J, Wang J, Sun D, Jiao S: Genomic profiling of Chinese patients with urothelial carcinoma. BMC cancer 2021, 21(1):162.

17. Wen L, Li X, Shi J, Zhang S, Wang R, Yao M, Guo J: Allele-specific expression mediates primary resistance to poly (ADP-ribose) polymerase inhibitor therapy in a case of BRCA1/2 double-germline mutant gastric cancer. The Journal of international medical research 2020, 48(3):300060519886226.

18. Yang L, Zhang X, Wang T: The Burrows-Wheeler similarity distribution between biological sequences based on Burrows-Wheeler transform. Journal of theoretical biology 2010, 262(4):742-749.

19. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al.: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research 2010, 20(9):1297-1303.

20. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E et al.: COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic acids research 2019, 47(D1):D941-d947.

21. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, Nissan MH et al.: OncoKB: A Precision Oncology Knowledge Base. JCO precision oncology 2017, 2017.
22. Reisländer T, Lombardi EP, Groelly FJ, Miar A, Porru M, Di Vito S, Wright B, Lockstone H, Biroccio A, Harris A et al: BRCA2 abrogation triggers innate immune responses potentiated by treatment with PARP inhibitors. *Nature communications* 2019, 10(1):3143.

23. Voss MH, Chen D, Reising A, Marker M, Shi J, Xu J, Ostrovnya I, Seshan VE, Redzematovic A, Chen YB et al: PTEN Expression, Not Mutation Status in TSC1, TSC2, or mTOR, Correlates with the Outcome on Everolimus in Patients with Renal Cell Carcinoma Treated on the Randomized RECORD-3 Trial. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2019, 25(2):506-514.

24. Liu CX, Musco S, Lisitsina NM, Yaklichkin SY, Lisitsyn NA: Genomic organization of a new candidate tumor suppressor gene, LRP1B. *Genomics* 2000, 69(2):271-274.

25. Tlemsani C, Takahashi N, Pongor L, Rajapakse VN, Tyagi M, Wen X, Fasaye GA, Schmidt KT, Desai P, Kim C et al: Whole-exome sequencing reveals germline-mutated small cell lung cancer subtype with favorable response to DNA repair-targeted therapies. *Science translational medicine* 2021, 13(578).

26. Slavin TP, Banks KC, Chudova D, Oxnard GR, Odegaard JI, Nagy RJ, Tsang KWK, Neuhausen SL, Gray SW, Cristofanilli M et al: Identification of Incidental Germline Mutations in Patients With Advanced Solid Tumors Who Underwent Cell-Free Circulating Tumor DNA Sequencing. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* 2018, 36(35):Jco1800328.

27. Yamamoto H, Yatabe Y, Toyooka S: Inherited lung cancer syndromes targeting never smokers. *Translational lung cancer research* 2018, 7(4):498-504.

28. Hu Y, Alden RS, Odegaard JI, Fairclough SR, Chen R, Heng J, Feeney N, Nagy RJ, Shah J, Ulrich B et al: Discrimination of Germline EGFR T790M Mutations in Plasma Cell-Free DNA Allows Study of Prevalence Across 31,414 Cancer Patients. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2017, 23(23):7351-7359.

29. Parry EM, Gable DL, Stanley SE, Khalil SE, Antonescu V, Florea L, Armanios M: Germline Mutations in DNA Repair Genes in Lung Adenocarcinoma. *Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer* 2017, 12(11):1673-1678.

30. Liu Y, Lusk CM, Cho MH, Silverman EK, Qiao D, Zhang R, Scheurer ME, Kheradmand F, Wheeler DA, Tsavachidis S et al: Rare Variants in Known Susceptibility Loci and Their Contribution to Risk of Lung Cancer. *Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer* 2018, 13(10):1483-1495.

31. Aguirre AJ, Nowak JA, Camarda ND, Moffitt RA, Ghazani AA, Hazar-Rethinam M, Raghavan S, Kim J, Brais LK, Ragon D et al: Real-time Genomic Characterization of Advanced Pancreatic Cancer to Enable Precision Medicine. *Cancer discovery* 2018, 8(9):1096-1111.

32. Khemlina G, Ikeda S, Kurzrock R: The biology of Hepatocellular carcinoma: implications for genomic and immune therapies. *Molecular cancer* 2017, 16(1):149.

33. Pishvaian MJ, Blais EM, Brody JR, Lyons E, DeArbeloa P, Hendifar A, Mikhail S, Chung V, Sahai V, Sohal DPS et al: Overall survival in patients with pancreatic cancer receiving matched therapies
following molecular profiling: a retrospective analysis of the Know Your Tumor registry trial. *The Lancet Oncology* 2020, 21(4):508-518.

34. Redman MW, Papadimitrakopoulou VA, Minichiello K, Hirsch FR, Mack PC, Schwartz LH, Vokes E, Ramalingam S, Leighl N, Bradley J *et al.*: Biomarker-driven therapies for previously treated squamous non-small-cell lung cancer (Lung-MAP SWOG S1400): a biomarker-driven master protocol. *The Lancet Oncology* 2020, 21(12):1589-1601.

35. Jeggo PA, Pearl LH, Carr AM: DNA repair, genome stability and cancer: a historical perspective. *Nature reviews Cancer* 2016, 16(1):35-42.

36. Sen T, Gay CM, Byers LA: Targeting DNA damage repair in small cell lung cancer and the biomarker landscape. *Translational lung cancer research* 2018, 7(1):50-68.

37. Kadouri L, Rottenberg Y, Zick A, Hamburger T, Lipson D, Peretz T, Nechushtan H: Homologous recombination in lung cancer, germline and somatic mutations, clinical and phenotype characterization. *Lung cancer (Amsterdam, Netherlands)* 2019, 137:48-51.

38. Frey MK, Pothuri B: Homologous recombination deficiency (HRD) testing in ovarian cancer clinical practice: a review of the literature. *Gynecologic oncology research and practice* 2017, 4:4.

39. Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, Szallasi Z, Barry WT, Winer EP, Tung NM *et al.*: Homologous Recombination Deficiency (HRD) Score Predicts Response to Platinum-Containing Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2016, 22(15):3764-3773.

Figures
Figure 1

The landscape of mutated genes in a series of 75 SCLC patients. (A) Oncoprint of the 30 most frequently mutated genes in our cohort. (B) Summary of the mutation information with statistical calculations. (C, D) Classification of mutation types according to different categories, in which missense mutation accounts for the most fraction, SNP showed more frequency than insertion or deletion, and C>T was the most common of SNV; (E, F) Tumor mutation burden in specific samples. (G) The top 10 mutated genes in SCLC. (H) The prevalence of total and oncogenic alterations in specified signaling pathways in SCLC. SNV: single nucleotide variation.
Figure 2

Genetic alterations in DNA damage repair pathway. (A) The distribution of known or likely deleterious somatic DDR gene mutations. (B) Frequency of altered pathway for DDR.
Figure 3

(A) Comparisons of the gene prevalence identified in our cohort (red bars) and U Cologne cohort (green bars). (B) Comparisons of the gene prevalence identified in our cohort and in Johns Hopkins cohort. Two-sided Fisher’s tests were conducted to compare the different frequency between two cohorts. *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05.
Figure 4

Comparisons of median TMB in Chinese SCLC patients with certain specific gene mutations. DDRmt: DDR mutant; DDRwt: DDR wildtype.
Figure 5

(A) Samples were assigned to the highest level of actionable alterations. (B) Distribution of levels of actionable alterations.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryTable1.docx
- SupplementaryTable2.docx