ANALYTICAL SOLUTION OF TIME-FRACTIONAL NONLINEAR BENJAMIN-BONA-MAHONY EQUATION BY RESIDUAL POWER SERIES METHOD

M. Aylin Bayrak1 §, Metin Bayrak2

1,2Department of Mathematics
University of Kocaeli
Kocaeli, 41380, TURKEY

Abstract: In this paper a new iterative technique, named as residual power series (RPS) method, is applied to find the approximate solution of the nonlinear time-fractional Benjamin-Bona-Mahony (BBM) equation. The results obtained by numerical experiments are compared with the analytical solutions to confirm the accuracy and efficiency of the proposed technique.

AMS Subject Classification: 41A58, 34A08, 26A33
Key Words: fractional derivative, Benjamin-Bona-Mahony equation, residual power series method

1. Introduction

Nonlinear partial differential equations play important roles in engineering and applied sciences. It is known that except a limited number of these equations, most of them do not have analytical solution. In recent years, scientists have presented some new methods for solving nonlinear partial differential equations, such as inverse scattering method \cite{1}, Adomian’s decomposition method \cite{2}, Homotopy analysis method \cite{3, 4}, Homotopy perturbation method \cite{5, 6}, variational iteration method \cite{7, 8}, Hirota’s bilinear method \cite{9} and Lie group method \cite{10}.

§Correspondence author
The nonlinear time-fractional BBM equation is a mathematical model of propagation of small-amplitude long waves in nonlinear dispersive media in the form

\[D_t^\alpha u - u_{xxt} + \beta u_x + g(u)_x = 0, \quad x \in \mathbb{R}, \quad t \geq 0 \tag{1} \]

with the initial data

\[u(x,0) = f(x) \to 0, \quad x \to \pm\infty, \tag{2} \]

where \(u(x,t) \) represents the fluid velocity in the horizontal direction \(x \), \(\alpha \) is a positive constant, \(\beta \in \mathbb{R} \) and \(g(u) \) is a \(C^2 \)-smooth nonlinear function [11].

In this study, the residual power series (RPS) method is applied in the numerical solution of nonlinear time-fractional BBM equation. The new method supplies the solution in the shape of a convergence series without implementing linearization, perturbation or discretization techniques.

This paper is organized as follows: In Section 2, some preliminaries of fractional calculus are given. In Section 3, a residual power series solution for nonlinear time-fractional BBM is constructed. In Section 4, some numerical results are presented.

2. Preliminaries

In this section, the basic definitions and various features for fractional calculus theory are shown [12, 13, 14, 15].

Definition 1. The Riemann-Liouville fractional integral of order \(\alpha \) (\(\alpha \geq 0 \)) is given as ([16, 17]):

\[J^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} f(t)dt, \quad \alpha > 0, \quad x > 0, \]

\[J^0 f(x) = f(x). \]

Definition 2. The Caputo fractional derivative with order \(\alpha \) is defined as ([16]-[17]):

\[D^\alpha f(x) = J^{m-\alpha} D^m f(x) = \int_0^x (x-t)^{m-\alpha-1} \frac{d^m}{dt^m} f(t)dt, \]

where \(D^m \) is the classical differential operator of integer order \(m \), \(m - 1 < \alpha < m, \quad x > 0. \)
For the Caputo derivative, we have

\[D^\alpha x^\beta = 0, \quad \beta < \alpha, \]

\[D^\alpha x^\beta = \frac{\Gamma(\beta + 1)}{\Gamma(\beta + 1 - \alpha)} x^{\beta - \alpha}, \quad \beta \geq \alpha. \]

Definition 3. The Caputo time (partial) fractional derivative of order \(\alpha \) of \(u(x, t) \) is defined as ([16, 17]):

\[
D_t^\alpha u(x, t) = \begin{cases}
\frac{1}{\Gamma(m - \alpha)} \int_0^t (t - \xi)^{m-\alpha-1} \frac{\partial^m u(x, \xi)}{\partial t^m} d\xi, & m - 1 < \alpha < m \\
\partial^m u(x, t), & \alpha = m \in \mathbb{N}.
\end{cases}
\]

Definition 4. A power series expansion of the form

\[
\sum_{m=0}^{\infty} c_m (t - t_0)^{m\alpha} = c_0 + c_1 (t - t_0)^\alpha + c_2 (t - t_0)^{2\alpha} + \ldots,
\]

\[0 \leq m - 1 < \alpha \leq m, \quad t \geq t_0,
\]

is called fractional power series about \(t = t_0 \), [18].

Definition 5. A power series expansion of the form

\[
\sum_{m=0}^{\infty} f_m(x) (t - t_0)^{m\alpha} = f_0(x) + f_1(x)(t - t_0)^\alpha + f_2(x)(t - t_0)^{2\alpha} + \ldots,
\]

\[0 \leq m - 1 < \alpha \leq m, \quad t \geq t_0,
\]

is called multiple fractional power series about \(t = t_0 \), [18].

Definition 6. Suppose that \(u(x, t) \) has a multiple fractional power series representation at \(t = t_0 \) of the form

\[u(x, t) = \sum_{m=0}^{\infty} f_m(x)(t - t_0)^{m\alpha}, \quad x \in I, \quad t_0 \leq t \leq t_0 + R. \]

If \(D_t^{m\alpha} u(x, t), \quad m = 0, 1, 2, \ldots \) are continuous on \(I \times (t_0, t_0 + R) \), then

\[f_m(x) = \frac{D_t^{m\alpha} u(x, t_0)}{\Gamma(m\alpha + 1)}. \]
3. RPS of the nonlinear time-fractional BBM equation

The RPS method proposes the solution for Eqs. (1)-(2) as a fractional power series expansion about the initial point $t = 0$

$$u(x, t) = \sum_{k=0}^{\infty} f_k(x) \frac{t^{k\alpha}}{\Gamma(k\alpha + 1)}, \quad 0 < \alpha \leq 1, \quad x \in I, \quad 0 \leq t < R. \quad (3)$$

To obtain the numerical values from this series, let $u_m(x, t)$ denotes the m-th truncated series of $u(x, t)$. That is,

$$u_m(x, t) = \sum_{k=0}^{m} f_k(x) \frac{t^{k\alpha}}{\Gamma(k\alpha + 1)}, \quad 0 < \alpha \leq 1, \quad x \in I, \quad 0 \leq t < R. \quad (4)$$

By the initial condition, the 0^{th} residual power series approximate solution of $u(x, t)$ can be written as follows:

$$u_0(x, t) = f_0(x) = u(x, 0) = f(x). \quad (5)$$

Eq.(5) can be written as

$$u_m(x, t) = f(x) + \sum_{k=1}^{m} f_k(x) \frac{t^{k\alpha}}{\Gamma(k\alpha + 1)}, \quad 0 < \alpha \leq 1, \quad x \in I, \quad 0 \leq t, \quad k = 1, 2, 3, ... \quad (6)$$

Define the residual function for Eq.(1) as

$$Res(x, t) = D_t^\alpha u - u_{xxx} + u_x + uu_x \quad (8)$$

and the m^{th} residual function can be expressed as

$$Res_m(x, t) = D_t^\alpha (u_m) - (u_m)_{xxx} + (u_m)_x + (u_m)(u_m)_x. \quad (9)$$

From [19, 20, 21, 22], some results such as $Res(x, t) = 0, \quad \lim_{m \to \infty} Res_m(x, t)$ for each $x \in I$ and $t \geq 0$ and $D_t^\alpha Res(x, 0) = D_t^\alpha Res_m(x, 0) = 0, \quad r = 0, 1, 2, ..., m$ are stated.

Substitute the m^{th} truncated series of $u(x, t)$ into Eq. (8), calculate the fractional derivative $D_t^{(m-1)\alpha}$ of $Res(x, t)$, $m = 1, 2, 3, ...$ at $t = 0$ and solve the following obtained algebraic system

$$D_t^{(m-1)\alpha} Res_m(x, 0) = 0, \quad 0 < \alpha \leq 1, \quad m = 1, 2, 3, ... \quad (10)$$
to get the required coefficients $f_k(x), k = 1, 2, 3, \ldots, m$ in Eq. (6). To determine $f_1(x)$, the 1st residual function in Eq. (8) can be written as follows:

$$Res_1(x, t) = D_t^\alpha(u_1) - (u_1)_{xxx} + (u_1)_x + (u_1)(u_1)_x,$$

where $u_1(x, t) = f(x) + f_1(x) \frac{t^\alpha}{\Gamma(1 + \alpha)}$. Therefore,

$$Res_1(x, t) = f_1(x) - f''_1(x) \frac{\alpha t^{\alpha - 1}}{\Gamma(1 + \alpha)} + f'(x) + f'_1(x) \frac{t^\alpha}{\Gamma(1 + \alpha)}$$

$$+ \left(f(x) + f_1(x) \frac{t^\alpha}{\Gamma(1 + \alpha)} \right) \left(f'(x) + f'_1(x) \frac{t^\alpha}{\Gamma(1 + \alpha)} \right).$$ (12)

From Eq.(9), we deduce that $Res_1(x, 0) = 0$, and thus

$$f_1(x) = -f'(x) - f(x)f'(x).$$ (13)

The 1st residual power series approximate solution is

$$u_1(x, t) = f(x) + (-f'(x) - f(x)f'(x)) \frac{t^\alpha}{\Gamma(1 + \alpha)}.$$ (14)

To obtain $f_2(x)$, the 2nd residual function in Eq. (8) can be written in the following form

$$Res_2(x, t) = D_t^\alpha(u_2) - (u_2)_{xxx} + (u_2)_x + (u_2)(u_2)_x,$$

where $u_2(x, t) = f(x) + f_1(x) \frac{t^\alpha}{\Gamma(1 + \alpha)} + f_2(x) \frac{t^{2\alpha}}{\Gamma(1 + 2\alpha)}$. Therefore,

$$Res_2(x, t) = f_1(x) + f_2(x) \frac{t^\alpha}{\Gamma(1 + \alpha)} - f''_1(x) \frac{\alpha t^{\alpha - 1}}{\Gamma(1 + \alpha)}$$

$$- f''_2(x) \frac{2\alpha t^{2\alpha - 1}}{\Gamma(1 + 2\alpha)} + f'(x) + f'_1(x) \frac{t^\alpha}{\Gamma(1 + \alpha)} + f'_2(x) \frac{t^{2\alpha}}{\Gamma(1 + 2\alpha)}$$

$$+ \left(f(x) + f_1(x) \frac{t^\alpha}{\Gamma(1 + \alpha)} + f_2(x) \frac{t^{2\alpha}}{\Gamma(1 + 2\alpha)} \right)$$

$$+ \left(f'(x) + f'_1(x) \frac{t^\alpha}{\Gamma(1 + \alpha)} + f'_2(x) \frac{t^{2\alpha}}{\Gamma(1 + 2\alpha)} \right).$$ (16)

The operator D_t^α is applied on both sides of Eq. (15) as follows:

$$D_t^\alpha Res_2(x, t) = f_2(x) + f'_1(x) + f'_2(x) \frac{t^\alpha}{\Gamma(1 + \alpha)}$$
\[+ \left(f_1(x) + f_2(x) \frac{t^\alpha}{\Gamma(1+\alpha)} \right) \left(f'(x) + f'_1(x) \frac{t^\alpha}{\Gamma(1+\alpha)} + f'_2(x) \frac{t^{2\alpha}}{\Gamma(1+2\alpha)} \right) \]

\[+ \left(f(x) + f_1(x) \frac{t^\alpha}{\Gamma(1+\alpha)} + f_2(x) \frac{t^{2\alpha}}{\Gamma(1+2\alpha)} \right) \left(f'_1(x) + f'_2(x) \frac{t^\alpha}{\Gamma(1+\alpha)} \right). \]

(17)

From Eqs. (9) and (16),

\[f_2(x) = -f'_1(x) - (f(x)f_1(x))'. \]

(18)

To derive \(f_3(x) \), the 3rd residual function can be written as follows:

\[Res_3(x,t) = D_t^\alpha(u_3) - (u_3)_{xxt} + (u_3)_x + (u_3)(u_3)_x, \]

(19)

where \(u_3(x,t) = f(x) + f_1(x) \frac{t^\alpha}{\Gamma(1+\alpha)} + f_2(x) \frac{t^{2\alpha}}{\Gamma(1+2\alpha)} + f_3(x) \frac{t^{3\alpha}}{\Gamma(1+3\alpha)} \). Therefore,

\[Res_3(x,t) = f_1(x) + f_2(x) \frac{t^\alpha}{\Gamma(1+\alpha)} + f_3(x) \frac{t^{3\alpha}}{\Gamma(1+3\alpha)} \]

\[-f''_1(x) \frac{\alpha t^{\alpha-1}}{\Gamma(1+\alpha)} - f''_2(x) \frac{2\alpha t^{2\alpha-1}}{\Gamma(1+2\alpha)} - f''_3(x) \frac{3\alpha t^{3\alpha-1}}{\Gamma(1+3\alpha)} \]

\[+ f'(x) + f'_1(x) \frac{t^\alpha}{\Gamma(1+\alpha)} + f'_2(x) \frac{t^{2\alpha}}{\Gamma(1+2\alpha)} + f'_3(x) \frac{t^{3\alpha}}{\Gamma(1+3\alpha)} \]

\[+ \left(f(x) + f_1(x) \frac{t^\alpha}{\Gamma(1+\alpha)} + f_2(x) \frac{t^{2\alpha}}{\Gamma(1+2\alpha)} + f_3(x) \frac{t^{3\alpha}}{\Gamma(1+3\alpha)} \right) \]

\[\left(f'(x) + f'_1(x) \frac{t^\alpha}{\Gamma(1+\alpha)} + f'_2(x) \frac{t^{2\alpha}}{\Gamma(1+2\alpha)} + f'_3(x) \frac{t^{3\alpha}}{\Gamma(1+3\alpha)} \right). \]

(20)

From Eqs. (9) and (19),

\[f_3(x) = -f'_2(x) - (f(x)f_2(x))' - 2f_1(x)f'_1(x). \]

(21)

The same manner is repeated as above and applied to Eq. (9), the following recurrence results is obtained

\[f_4(x) = -f'_3(x) - (f(x)f_3(x))' - 3(f_1(x)f_2(x))', \]

\[f_5(x) = -f'_4(x) - (f(x)f_4(x))' - 4(f_1(x)f_3(x))' - 6(f_2(x)f'_2(x)), \]

and so on.
4. Numerical Results

Consider the following nonlinear time fractional BBM equation [23, 24, 25]:

\[D_\alpha^\alpha u(x, t) - u_{xx}(x, t) + u_x(x, t) + u(x, t)u_x(x, t) = 0, \]

subject to initial condition

\[u(x, 0) = \text{sech}^2\left(\frac{x}{4}\right). \]

Then, the exact solution is given by

\[u(x, t) = \text{sech}^2\left(\frac{x}{4} - \frac{t}{3}\right). \]

Based on the obtained results, we apply the 5th RPS approximate solution. Figures 1-5 show the 5th RPS approximate solution of the function \(u(x, t) \) for different values of the fractional derivative \(\alpha \) for \(0 < x < 1, 0 < t < 1 \). In Table 1 we give the exact solution, RPS solution for several values of \(x \) and \(t \) when \(\alpha \) and the absolute error \(|u_{\text{exact}} - u_{\text{approx}}| \) compared with the exact solution for several values of \(x \) and \(t \) when \(\alpha = 1 \).

Figure 1. The 5th RPS approximate solution of the nonlinear time-fractional BBM equation for \(\alpha = 0.7 \).
Figure 2. The 5th RPS approximate solution of the nonlinear time-fractional BBM equation for $\alpha = 0.8$.

Figure 3. The 5th RPS approximate solution of the nonlinear time-fractional BBM equation for $\alpha = 0.9$.
Figure 4. The 5th RPS approximate solution of the nonlinear time-fractional BBM equation for $\alpha = 1$.

Figure 5. Exact solution.
Table 1: Exact solution, the RPS solution for several values x, t and α and absolute error.

x	t	$\alpha = 0.7$	$\alpha = 0.8$	$\alpha = 0.9$	$\alpha = 1$	Exact	Error
0	0	1.0000	1.0000	1.0000	1.0000	1.0000	0
0.2	0.2	0.9636	0.9752	0.9841	0.9902	0.9956	0.0054
0.4	0.4	0.9293	0.9364	0.9496	0.9627	0.9824	0.0198
0.6	0.6	0.9305	0.9084	0.9108	0.9235	0.9610	0.0375
0.8	0.8	0.9906	0.9131	0.8841	0.8827	0.9321	0.0495
1	1	1.1301	0.9726	0.8866	0.8542	0.8966	0.0425
0.5	0.5	0.9845	0.9845	0.9845	0.9845	0.9845	0.0000
0.2	0.2	0.9888	0.9951	0.9985	0.9994	0.9994	0.0028
0.4	0.4	0.9754	0.9763	0.9858	0.9946	0.9999	0.0053
0.6	0.6	1.0136	0.9663	0.9626	0.9734	0.9944	0.0210
0.8	0.8	1.1644	1.0063	0.9522	0.9459	0.9802	0.0343
1	1	1.4933	1.1484	0.9890	0.9316	0.9578	0.0262
0.2	0.2	0.9400	0.9400	0.9400	0.9400	0.9400	0.0000
0.4	0.4	0.9847	0.9851	0.9822	0.9775	0.9671	0.0104
0.6	0.6	0.9803	0.9869	0.9941	0.9974	0.9865	0.0109
0.8	0.8	0.9919	0.9761	0.9849	0.9974	0.9975	0.0001
1	1	1.2793	1.0502	0.9673	0.9556	0.9931	0.0375

References

[1] C.S. Gardner, J.M. Green, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg-deVries equation, *Phys. Rev. Lett.*, 19 (1967), 1095-1097.

[2] G. Adomian, A review of the decomposition method in applied mathematics, *J. Math. Anal. Appl.*, 135 (1988), 501-544.

[3] Sh. Liao, Comparison between the homotopy analysis method and homotopy perturbation method, *Appl. Math. Comput.*, 169 (2005), 1186-1194.

[4] J.H. He, Comparison of Homotopy perturbation method and homotopy analysis method, *Appl. Math. Comput.*, 156 (2004), 527-539.

[5] J.H. He, Approximate solution of nonlinear differential equations with convolution product nonlinearities, *Comput. Math. Appl. Mech. Engrg.*, 167 (1998), 69-73.
[6] J.H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114 (2000), 115-123.

[7] D.D. Ganji, The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer, Phys. Lett. A, 355 (2006), 337-341.

[8] D.D. Ganji, M. Rafei, Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method, Phys. Lett. A, 356 (2006), 131-137.

[9] R. Hirota, Exact solutions of the Korteweg-De Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192-1194.

[10] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, Berlin (1986).

[11] K. Al-Khaled, S. Momani, A. Alawneh, Approximate wave solutions for generalized Benjamin-Bona-Mahony-Burgers equations, Appl. Math. Comput., 171 (2005), 281.

[12] K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order, Academic Press, California (1974).

[13] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993).

[14] S.S. Ray, Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1130-1295.

[15] I. Podlubny, Fractional Differential Equations, Academic Press, California (1999).

[16] A. El-Ajou, O. A. Arqub, Z.A. Al Zhour, S. Momani, New results on fractional power series: theories and applications, Entropy, 15 (2013), 5305-5323.

[17] A. El-Ajou, O. A. Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm, J. Comput. Phys., 293 (2015), 81-95.
[18] R. Magin, X. Feng, D. Baleanu, Solving fractional order Bloch equation, *Concept Magnetic Res.*, **34A** (2009), 16-23.

[19] O.A. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, *J. Adv. Res. Appl. Math.*, **5** (2013), 31-52.

[20] O.A. Arqub, A. El-Ajou, A. Bataineh, I. Hashim, A representation of the exact solution of generalized Lane Emden equations using a new analytical method, *Abstr. Appl. Anal.*, **2013** (2013), Article ID 378593.

[21] A. El-Ajou, O. A. Arqub, S. Momani, D. Baleanu, D. Alsaedi, A novel expansion iterative method for solving linear partial differential equations of fractional order, *Appl. Math. Comput.*, **257** (2015), 119-133.

[22] A. El-Ajou, O. A. Arqub, Z.A. Al Zhour, S. Momani, Multiple solutions of nonlinear boundary value problems of fractional order: a new analytic iterative technique, *Entropy*, **16** (2014), 471-493.

[23] C.A. Gomez, A.H. Salas, Exact solutions for the generalized BBM equation with variable coefficients, *Math. Probl. Eng.*, **4**, No 9 (2010), 394-401.

[24] P.G. Estevez, S. Kuru, J. Negro, L.M. Nieto, Traveling wave solutions of the generalized Benjamin-Bona-Mahony equation, *Chaos Sol. Fract.*, **40** (2009), 2031-2040.

[25] C.A. Gomez, A.H. Salas, B.A. Frias, New periodic and soliton solutions for the generalized BBM and Burgers-BBM equations, *Appl. Math. Comput.*, **217** (2010), 1430-1434.