Additions to the lichenized and lichenicolous fungi of Jammu & Kashmir from Kishtwar High Altitude National Park

Vishal Kumar1,3,4, Yash Pal Sharma1,2, Siljo Joseph1,4, Roshinikumar Ngangom1,4, & Sanjeeva Nayaka1,5

1,2,3,4 Lichenology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India. 4 Department of Botany, University of Jammu, Jammu & Kashmir 180006, India.

Abstract: The present study reports 14 lichenized and two lichenicolous fungi new to the mycota of Jammu & Kashmir. The lichenized fungi are Buellia aeruginascens (Nyl.) Zahlbr., Caloplaca pachycheila Poelt & Hinter., Cladonia cervicornis ssp. verticillata (Hoffm.) Aht, Hafellia curvotellae (Malme) Marbach, Hafellia subnawa Marbach, Hafellia tetrapla (Nyl.) Puswala, Leptogium askolense D.D.Awasthi, Nephromopsis iajii (A. Thell & Randlane) Saag & A.Thell, Polycauliona phlogina (Ach.) Arup, Frödén & Seichting, Pyxine cognata Stirr., Rinodina conradii Körb., Rinodina intermedia Bagl., Rinodina oxydata (A.Massal.) A.Massal., and Squamulea squamosa (B.deLesseps.) Arup, Sechting & Frödén. The lichenicolous fungi include Abrothallus micropermus Tul. and Lichenonion lecanorae (Jaap) D.Hawksw. The species are enumerated along with their present distribution.

Keywords: Ascomycota, biodiversity, northern India, taxonomy, the Himalaya, union territory.

Editor: Pooja Gupta, Govt. ABPG College, Balaghat, India. Date of publication: 26 October 2021 (online & print)

Citation: Kumar, V., Y.P. Sharma, S. Joseph, R. Ngangom & S. Nayaka (2021). Additions to the lichenized and lichenicolous fungi of Jammu & Kashmir from Kishtwar High Altitude National Park. Journal of Threatened Taxa 13(12): 19799–19807. https://doi.org/10.11609/jott.7312.13.12.19799-19807

Copyright: © Kumar et al. 2021. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Science and Engineering Research Board, New Delhi (EMR/2016/006604); Department of Science and Technology, New Delhi (IFA18-LSPA 124); University Grant Commission, New Delhi

Competing interests: The authors declare no competing interests.

Author details: Vishal Kumar is a PhD Scholar and also working as a project associate at Lichenology Laboratory. He has been working on the diversity of lichens of JKHANP. Dr. Yash Pal Sharma is a professor of Botany and coordinator of UGC SAP DRS-II. His expertise includes mycology, plant pathology, and mushroom biology. Dr. Siljo Joseph is DST-Inspire faculty. His expertise includes taxonomy of Arthoniales, a primitive group of lichens and lichenicolous fungi. Roshinikumar Ngangom is a junior research fellow. Dr. Sanjeeva Nayaka is senior principal scientist. His expertise includes taxonomy of microlichens especially Lecanora sensu lato group.

Author contributions: VK contributed to field survey, lichen collection, identification and manuscript writing; YPS designed the study and contributed in collection of lichen specimens and improved the manuscript; SI contributed in identity confirmation of lichenized and lichenicolous fungi and improved the manuscript; RN identified the Buellia and Hafellia species and manuscript writing; and SN contributed in identity confirmation of species and improvement of the manuscript.

Acknowledgements: The authors are thankful to the head of Department of Botany, University of Jammu; director, CSIR-National Botanical Research Institute, Lucknow for providing laboratory facilities to conduct this study; to Science and Engineering Research Board, New Delhi for financial support (EMR/2016/006604).

Si thanks the Department of Science and Technology, New Delhi for financial assistance under INSPIRE Faculty Scheme IFA 18-LSPA 124. RN thank University Grant Commission for financial assistance under Junior Research Fellowship (CSIR-NBRI manuscript number - CSIR-NBRI_MS/2021/04/02).
INTRODUCTION

The union territory of Jammu & Kashmir (J&K) represents a predominant Himalayan landscape which lies between coordinates 32.733–36.966 N latitudes and 73.433–80.5 E longitudes and is one of the ‘hotspots’ of lichen diversity in India (Sheikh et al. 2006). Due to great altitudinal variation, unique terrain, diverse vegetation, and varied climate, J&K offers a wide range of habitats for the growth and colonization of lichenized fungi.

Kishtwar High Altitude National Park (KHANP) situated in district Kishtwar of J&K is surrounded by beautiful snow-capped Himalaya and lies between coordinates 75.990E longitude and 33.582N latitude. The national park covers an area of approximately 2,200 km² with an altitude range of 1,200–6,000 m. KHANP experiences temperate to alpine climatic regimes. The average temperature during the summer months is 16 °C and in winter months it ranges 9–11 °C. The average annual rainfall is about 920 mm. The upper reaches of KHANP are characterized by severe and prolonged winter and short summer seasons. The prominent vegetation includes both coniferous and broad-leaved deciduous forests. Abies pindrow (Royle ex D.Don) Royle, Pinus wallichiana A.B.Jacks., P. gerardiana Wall. ex D.Don, and Cedrus deodara (Roxb. ex D.Don) G.Don are the prominent conifers. At lower elevations, Quercus oblongata D.Don, Q. floribunda Lindl. ex A.Camus, Aesculus indica (Wall. ex Cambess.) Hook., Juglans regia L., Prunus persica (L.) Batsch, Pyrus pashia Buch.-Ham. ex D.Don, and Fraxinus excelsior L. are prominent.

Smith (1931), Schubert & Klement (1966), and Awasthi & Singh (1970) are the pioneer contributors to lichen study in J&K. Later, several researchers (Sheikh et al. 2006, 2009; Khan et al. 2010; Solan et al. 2010; Kumar et al. 2012; Khare et al. 2020) made significant contributions towards understanding the lichen mycota of the region. Recently, Khare et al. (2020) compiled an inventory reporting 424 lichen species from the J&K, while Kumar & Sharma (2020) added five species of Parmelioid lichens from KHANP as new additions to the lichen mycota of J&K.

The studies on the lichenicolous fungi in India have been initiated recently with the publication of the first list of these fungi by Zhurbenko (2013) that included 42 taxa based on the collections from J&K. Afterwards, Joshi (2018), and Joshi et al. (2016, 2018, 2020a,b) made noteworthy contributions to this group of organisms from J&K. However, no exhaustive documentation of the lichenized and lichenicolous fungi has been attempted for KHANP. While inventoring the lichen mycota of KHANP the authors came across several interesting specimens of lichenized and lichenicolous fungi.

MATERIALS AND METHODS

The lichen specimens were collected from different localities of the KHANP during 2017–2020. The samples were preserved in the herbaria of University of Jammu (HBJU) and CSIR-National Botanical Research Institute, Lucknow (LWG). The morpho-anatomical characters were studied under a stereo-zoom (Leica S8APO) and compound microscope (Leica DM2500), and identified by following the literature (Awasthi 1991, 2007; Joshi 2008; Marbach 2000; Hawksworth et al. 2010; Sheard 2010; Singh & Sinha 2010). The chemistry was studied through spot tests and thin layer chromatography (solvent system C) was performed following Orange et al. (2001). A brief description of only lichenicolous fungi are provided as they are not readily available.

RESULTS

ENUMERATION OF LICHENIZED FUNGI

1. **Buellia aeruginascens** (Nyl.) Zahlbr., Cat. Lich. Univers. 7: 331. 1931. Lecidea disciformis var. aeruginascens Nyl., Bull. Soc. linn. Normandie, sér. 2 2: 191. 1868. (Caliciaceae) (Image a).

 Specimen examined: HBJU 16052, 10.xi.2020, J&K, Kishtwar district, KHANP, Palmar, on bark, 33.455N, 75.685E, 2,510 m, coll. V. Kumar & Y.P. Sharma.

 Distribution: India (Mizoram) (Logesh et al. 2017), Chile, South America and Australia (Hafellner et al. 1989).

2. **Caloplaca pachycheila** Poelt & Hinter., Biblioth. Lichenol. 50: 168. 1993. (Teloschistaceae) (Image b).

 Specimens examined: HBJU 16044, 17.vii.2018, J&K, Kishtwar district, KHANP, Palmar, on rock, 33.456N, 75.685E, 2,510 m, coll. V. Kumar & Y.P. Sharma; LWG19-035707 22.iv.2019, J&K, KHANP, Sonder, on rock, 33.471N, 75.826E, 2,090 m, coll. V. Kumar & Y.P. Sharma.

 Distribution: India (Uttarakhand) (Mishra & Upreti 2015), and Pakistan (Poelt & Hinteregger 1993).

3. **Cladonia cervicornis** ssp. *verticillata* (Hoffm.) Ahl, The Lichenologist 12: 126 1980. Cladonia verticillata (Hoffm.) Schaer., Lichenum Helveticaorum Spicilegium. 1: 31 1823. (Cladiaceae) (Image c).

 Specimens examined: HBJU 16060, 17.vii.2018,
J&K, Kishtwar district, KHANP, Ekhala, on soil 33.451N, 75.738E, 1,750 m, coll. V. Kumar & Y.P. Sharma; LWG 18-035706 17.vii.2018, on soil 33.470N, 75.819E, 2,100 m, coll. Kumar & Y.P. Sharma.

Distribution: India (Manipur, Meghalaya, Uttarakhund, and West Bengal) (Awasthi 2007) and widely distributed in Asia, Australasia, Europe, and America (Ahti 2007).

4. **Hafellia curatellae** (Malme) Marbach, Biblioth. Lichenol. 74: 255. 2000. *Buellia curatellae* Malme, Arkiv för Botanik 21A 14: 18 1927. (Caliciaceae) (Image d).

Specimen examined: HBJU 16047, 22.iv.2019, J&K, Kishtwar district, KHANP, Sonder, on twigs of *Cedrus deodara*, 33.469N, 75.828E, 2,240 m, coll. V. Kumar & Y.P. Sharma.

Distribution: India (Andhra Pradesh, Mizoram, Odisha, and Tamil Nadu) (Singh & Sinha 2010; Reddy et al. 2011; Nayak et al. 2016; Logesh et al. 2017), Africa, Australia, Brazil, New Caledonia, Papua New Guinea, Sri Lanka, and Thailand (Marbach 2000; Weerakoon 2014).

5. **Hafellia subnexa** Marbach, Biblioth. Lichenol. 74: 285. 2000. (Caliciaceae) (Image e).

Specimen examined: HBJU 16049, 22.iv.2019, India, J&K, Kishtwar district, KHANP, Sonder, on twigs of *Cedrus deodara* 33.471N, 75.822E, 2,048 m, Vishal Kumar & Y.P. Sharma.

Distribution: India (Arunachal Pradesh) (Bajpai et al. 2018), Japan, Malaysia, Russia, Thailand (Marbach 2000; Buurang et al. 2017; Ezhkin & Schumm 2018).

6. **Hafellia tetrapla** (Nyl.) Pusswald, Biblioth. Lichenol. 74: 288. 2000. *Buellia callispora* var. *tetrapla* (Nyl.) J. Steiner, Bull. Herb. Boissier, sér. 2, 7: 645. 1907. (Caliciaceae) (Image f).

Specimen examined: HBJU 16050, 21.iv.2019, India, J&K, Kishtwar district, KHANP, Sonder, on twigs of *Cedrus deodara* 33.472N, 75.823E, 2,030 m, Vishal Kumar and Y.P. Sharma.

Distribution: India (Uttarakhund) (Singh & Sinha 2010; Rai et al. 2016), South America, Australia, Brazil, Hawaii, New Zealand, South Africa, Réunion, Nepal, and Uruguay. (Marbach 2000).

7. **Leptogium askotense** D.D.Awasthi, Norw. Jl Bot. 24: 63 1977. (Collemataceae) (Image g).

Specimens examined: HBJU 16054, 22.iv.2019, India, J&K, Kishtwar district, KHANP, Ekhala, on bark 33.450N, 75.739E, 1,830 m, Vishal Kumar & Y.P. Sharma;
LWG19-035708, 22.iv.2019, on bark 33.451N, 75.741E, 1,750 m, Vishal Kumar & Y.P. Sharma.

Distribution: India (Arunachal Pradesh, Manipur, Sikkim, Uttarakhand, and West Bengal (Singh & Sinha 2010) and China (Xia et al. 2018).

8. *Nephromopsis laii* (A. Thell & Randlane) Saag & A. Thell, Bryologist 100: 111 1997. *Cetrariopsis laii* A.Thell & Randlane, Cryptogamie Bryologie Lichénologie 16: 46 1995. (Parmeliaceae) (Image h).

Specimen examined: HB1U 16092, 10.vii.2017, India, J&K, Kishtwar district, KHANP, Marwah, on bark 33.667N, 75.700E, 2,600 m, Vishal Kumar & Y.P. Sharma.

Distribution: India (Sikkim, Nagaland and West Bengal), China, Japan, Nepal, Taiwan and Vietnam (Singh & Sinha 2010).

9. *Polycauliona phlogina* (Acharius) Arup, Fröden & Sæchting, Nordic Jl Bot. 31: 53 2013. *Parmelia citrina var. phlogina* Ach., Methodus, Sectio post. Stockholmiae: 180 1803. *Scythoria phlogina* (Ach.) S.Y. Kondr., Kärnefelt, Elix, Thell & Hur, Acta bota. Hung. 56: 164 2014. *Caloplaca phlogina* (Ach.) Flagey, Mém. Soc. ému. Doubs, sér. 6 1: 250 1886. (Teloschistaceae) (Image i).

Specimen examined: HBJU 16074, 22.iv.2019, India, J&K, Kishtwar district, KHANP, Sonder, on decaying wood of *Cedrus deodara* 33.472N, 75.819E, 2,050 m, Vishal Kumar & Y.P. Sharma.

Distribution: India (Madhya Pradesh and Uttarakhand) (Joshi 2008), Caribbean, Fennoscandia, North America, and Mexico (Arup 2006).

10. *Pyxine cognata* Stirt., Proc. Roy. phil. Soc. Glasgow 11: 311 1879. *Pyxine berteriana var. himalaica* D.D. Awasthi, Phytomorphology 30: 366 1982. (Caliciaceae) (Image j).

Specimen examined: HB1U 16072, 17.vii.2018, India, J&K, Kishtwar district, KHANP, Palmar, on bark 33.455N, 75.683E, 2,500 m, Vishal Kumar & Y.P. Sharma.

Distribution: India (Arunachal Pradesh, Himachal Pradesh, Madhya Pradesh, Manipur, Nagaland, Tamil Nadu, and Uttar Pradesh (Singh & Sinha 2010)), Australia (Elix 2009), Brazil (Aptroot et al. 2014), China (Yang et al. 2019), and Thailand (Mongkolsuk et al. 2012).

11. *Rinodina conradii* Körb., Syst. lich. Germ.: 123 1855. (Physciaceae) (Image k).

Specimen examined: HB1U 16056, 10.vii.2017, India, J&K, Kishtwar district, KHANP, Marwah, on bark 33.669N, 75.700E, 2,530 m, Vishal Kumar & Y.P. Sharma.

Distribution: India (West Bengal hills) (Singh & Sinha 2010).
Additions to the lichenized and lichenicolous fungi of Jammu & Kashmir

Kumar et al.

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 October 2021 | 13(12): 19799–19807

2010), Australia, Bhutan, New Guinea & New Zealand, and temperate regions of Northern America, central & southern Europe (Singh & Sinha 2010).

12. *Rinodina intermedia* Bagl., Comm. Soc. crittog. Ital. 1: 315 1863. (Physciaceae) (Image I).

Specimen examined: HBJU 16048, 10.vii.2017, India, J&K, Kishtwar district, KHANP, Marwah, on bark 33.669N, 75.703E, 2,400 m, Vishal Kumar & Y.P. Sharma.

Distribution: The species has a restricted distribution and is only known from Uttarakhand (Gupta et al. 2016) and West Bengal (Singh & Sinha 2010). The species is widely distributed in dry and warm temperate regions of northern hemisphere including Caribbean, Macaronesia, southern Europe, United Kingdom, Ecuador, Kenya, Africa, and South America (Mayrhofer et al. 2001).

13. *Rinodina oxydata* (A. Massal.) A. Massal., Geneaeaca lichenenum noviter proposita ac descripta: 19 1854. *Mischoblastia oxydata* A. Massal., Ricerche sull’autonomia dei licheni crostosi: 42 1852. (Physciaceae) (Image m).

Specimen examined: HBJU 16051, 17.vii.2018, India, J&K, Kishtwar district, KHANP, Palmar, on rock 33.456N, 75.685E, 2,510 m, Vishal Kumar & Y.P. Sharma.

Distribution: India (Assam, Madhya Pradesh, Tamil Nadu, Uttarakhnad, West Bengal (Singh & Sinha 2010; Gogoi et al. 2019)), southern Africa, Asia, Australia, Brazil (Kashik 2006), eastern & southern North America, Scandinavia, and Europe (Sheard 2010).

14. *Squamulea squamosa* (B. de Lesd.) Arup, Søchting & Frödén, Nordic Jl Bot. 31: 56 2013. *Placodium squamosum* B. de Lesd., Annals Cryptog. Exot. 6: 123 1933. *Caloplaca squamosa* (B. de Lesd.) Zahlbr., Cat. Lich. Univers. 10: 629 1940. (Teloschistaceae) (Image n).

Specimen examined: HBJU 16079, 22.iv.2019, India, J&K, Kishtwar district, KHANP, Ekhala, on rock 33.449N, 75.741E, 1,810 m, Vishal Kumar & Y.P. Sharma.

Distribution: India (Uttarakhand) (Mishra & Upreti 2015), California and Arizona southwestern North America (Wetmore 2003).

Enumeration of lichenicolous fungi

1. *Abrothallus microspermus* Tul., Annls Sci. Nat., Bot., sér. 3 17: 115 1852. *Abrothallus smithii* var. *microspermus* (Tul.) Linds., Quart. J. Microscop. Sci. 5: 34 1857. (Abrothallaceae) (Image o).

Specimen examined: HBJU 16058, 19.vii.2019, India, J&K, Kishtwar district, KHANP, Marwah, on twigs 33.669N, 75.700E, 2,550 m, Vishal Kumar & Y.P. Sharma.
Description: Ascomata rounded, convex, black, 0.15–0.30 mm in diam., hymenium hyaline, hypothecium pale brown, Hymenium I–, K+ green. Asci 8-spored. Ascospores brown, 1-septate, 11–14.5 × 4.5–5.5 µm.

Host: Punctelia neutralis (Hale) Krog

Distribution: India (Arunachal Pradesh, Himachal Pradesh and Uttarakhand) (Joshi et al. 2018), Romania (Czarnota et al. 2018), Switzerland, Great Britain, southern Ural Mountains (Urbanavichene et al. 2013), North America (Cole & Hawksworth 2001, Diederich 2003, Kocourková et al. 2012), South Korea (Kondratyuk et al. 2013), and New Zealand (Longán & Gómez-Bolea 1999).

2. Lichenoconium lecanorae (Jaap) D. Hawksw., Bull. Br. Mus. nat. Hist., Bot. 6: 270 1979. Coniosporium lecanorae Jaap, Verh. bot. Ver. Prov. Brandenb. 47: 71 1905. (Abrothallaceae) (Image p).

Specimen examined: HBJU 16079, 21.iv.2019, India, J&K, Kishtwar district, KHANP, Sonder, on bark of Cedrus deodara 33.470N, 75.815E, 2,325 m, Vishal Kumar & Y.P. Sharma.

Description: Conidiomata pycnidia, scattered, blackish, ovoid, immersed to partially erumpent, 0.06–1.0 mm in diam., conidiophores absent, conidiogenous cells brown, conidia simple, brown, subglobose, 3.0–5.0 × 2.0–3.5 µm.

Host: Lecanora sp.

Distribution: India (Himachal Pradesh, Uttarakhand) (Joshi et al. 2016), Great Britain, Ireland, Canary Island, Spain (Hawksworth et al. 2010), and Ukraine (Darmostuk 2019).

DISCUSSION

The 16 species reported in the present study belong to 12 genera and eight families. Most of these species are crustose except for Cladonia cervicornis subsp. verticillata which is fruticose, while Leptogium askotense, Nephromopsis laii and Pyxine cognata are the foliose species. The study reports two interesting species of Rinodina, namely R. conradii and R. intermedia having 3-septate and submuriform ascospores respectively. Such species of Rinodina are rare in India, and previously, their distribution was confined to Uttarakhand and West Bengal. It is quite surprising that earlier workers overlooked both the species in the area, which is considered as the ‘hot spot’ of lichen diversity.

Further, among the 16 taxa reported as new to Jammu & Kashmir, the species Buellia aeruginascens,
Additions to the lichenized and lichenicolous fungi of Jammu & Kashmir

Kumar et al.

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 October 2021 | 13(12): 19799–19807

Hafellia curatellae, Hafellia subnexa, Rinodina conradii and Rinodina oxydata were previously reported from the northeastern Himalaya. The distribution of these species in western Himalaya reveals the continuous distribution of these species throughout the Himalayan belt. Although, Nephromopsis laii so far known only from eastern Himalaya but some of the specimens available at LWG indicate its occurrence in western Himalaya. Two species of lichenicolous fungi, Abrothallus microspermus and Lichenoconium lecanorae, extend their distribution within India, and Punctelia neutralis is observed as a new host for Abrothallus microspermus.

In the recent inventory of lichenized fungi for Jammu & Kashmir, Khare et al. (2020) listed 424 species, however, they missed the inclusion of four species (Cetraria potaninii, Montanelia sorediata, Xanthoparmelia somloënsis, and X. taractica) reported by earlier workers. Meanwhile, Kumar & Sharma (2020), while compiling the family Parmeliaceae reported five species as new to J&K from KHANP. After the inclusion of four species missed by Khare et al. (2020), five species reported by Kumar et al. (2020) and 14 species reported in the present study, the total number of lichenized fungi in Jammu & Kashmir rises to 447 species. Compared to other states within western Himalaya, this number is less, whereas Himachal Pradesh (ca. 520 species) and Uttarakhand (ca. 1,200 species) with similar climatic conditions are well-explored for lichen diversity. Similarly, in the case of lichenicolous fungi, after adding two new records, the total is raised to 68 species, while neighbouring Himalayan states such as Uttarakhand harbour 101 species and Himachal Pradesh records 32 species.
CONCLUSION

The frequent encountering of previously unreported species from KHANP indicates the unexplored diversity of lichen and lichenicolous fungi. The unique topography, climate, and prevalence of broadleaved as well as coniferous and mixed forest stands in KHANP are the plausible habitats which support luxuriant growth and proliferation of both lichenized and lichenicolous fungi. However, KHANP needs to be surveyed intensively, especially in the high altitudinal and inaccessible areas. A thorough survey would yield many more new additions to J&K as well as novel taxa to science.

REFERENCES

Ahti, T. (2007). Further studies on the Cladonia verticillata group (Lecanorales) in East Asia and western North America. Bibliotheca Lichenologica 96: 5–19.

Aptroot, A., P. Jungbluth & M. Cáceres (2014). A world key to the species of Pyxine with lichexanthone, with a new species from Brazil. Lichenologist 46: 669–672. https://doi.org/10.1007/5002428914000231

Arup, U. (2006). A new taxonomy of the Caloplaca citrina group in the Nordic countries, except Iceland. Lichenologist 38 (1): 1–20. https://doi.org/10.1007/S12905-005-05402

Awasthi, D.D. (1991). A key to the microlichens of India, Nepal & Sri Lanka. Bibliotheca Lichenologica 40: 1–336.

Awasthi, D.D. (2007). A Compendium of the Macrolichens from India, Nepal & Sri Lanka. Bishen Singh Mahendra Pal Singh, Dehradun, India, 580pp.

Awasthi, D.D. & K.P. Singh (1970). A note on lichens from Kashmir. Current Science 39: 441–442.

Bajpai, R., V. Shukla, C.P. Singh, O.P. Tripathi, S. Nayaka & D.K. Upreti (2018). Lichen community composition in Tawang district of Arunachal Pradesh, tool for long-term climate change monitoring. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 88(3): 915–922. https://doi.org/10.1007/978-81-322-03640-z

Buraung, K., K. Boonpragob, P. Mongkolusuk, E. Sangvichien, K. Vongshewarat, W. Polyiam, A. Rangsiruji, W. Saipunkaew, K. Sakpunkaew, K. Nakswanukal, J. Kalb & S. Parrmen (2017). A new checklist of lichenized fungi occurring in Thailand. MycoKeys 23: 1–91. https://doi.org/10.3897/mycokeys.23.12666

Cole, M.S. & D.L. Hawksworth (2001). Lichinoculous fungi, mainly from the USA, including Patriciomyces gen. nova. Mycotaxon 77: 305–338.

Czarnota, P., H. Mayrhofer & A. Bobiec (2018). Noteworthy lichenized and lichenicolous fungi of open-canopy oak stands in east-central Europe. Herzzogia 31: 172–189. https://doi.org/10.13118/099.031.0111

Darmostuk, V.V. (2019). The genus Lichenocomium (Lichenocomiaceae, Ascomycota) in Ukraine. Ukrainian Botanical Journal 76 (2): 101–113. https://doi.org/10.15407/ukrbotj76.02.101

Diederich, P. (2003). New species and new records of American lichenicolous fungi. Herzzogia 16: 41–90.

Elix, J.A. (2009). Physciaceae, 3. Pyxine, pp. 517–533. In: McCarthy, P.M. (Ed.). Flora of Australia Volume 57. Lichens 5. ABRS & CSIRO Publishing, Canberra & Melbourne.

Ezhkii, A.K. & F. Schumm (2018). New and noteworthy records of lichens and allied fungi from Sahklin Island, Russian Far East, II. Folia Cryptogamica Estonica 55: 45–50. https://doi.org/10.12697/ fce.2018.55.06

Gogoi, R., S. Joseph, S. Nayaka & F. Yasmin (2019). Additions to the lichen biota of Assam State, India. Journal of Threatened Taxa 11(6): 13765–13781. https://doi.org/10.11609/jott.4642.11.6.13765-13781

Hafelner, J., R.B. Filson & R.W. Rogers (1989). Some genera and species of lichenized fungi new to Australia. Nova Hedwigia 48: 229–235.

Hawksworth, D.L., V. Atienza & B.J. Coppins (2010). Artificial keys to the lichenicolous fungi of Great Britain, Ireland, the Channel Islands, Iberian Peninsula, and Canary Islands. Fourth draft edition for testing only.

Joshi, Y. (2008). Morpho-taxonomic studies on lichen family Teloschistaceae from India. Ph.D. Thesis. Kumaun University.

Joshi, Y. (2018). Documentation of lichenicolous fungi from India - Some additional reports. Kovaka 51: 30–34.

Joshi, Y., A. Falswal, M. Tripathi, S. Upadhay, A. Bisht, K. Chandra, R. Bajpai & D.K. Upreti (2016). One hundred and five species of lichenicolous fungi from India: An updated checklist for the country. Mycosphere 7(3): 268–294. https://doi.org/10.5943/ mycosphere/7/3/3

Kumar, J., R. Khare, H. Rai, D.K. Upreti, A. Tayade, S. Hota, O.P. Mishra, G.K. & D.K. Upreti (2020). Distribution and diversity of lichenicolous fungi from western Himalayan Cold Deserts of India, including a new Zwackhia myc species. Sydowia 73: 171–183. https://doi.org/10.12905/0380.sydowia73-2020-0171

Khan, S.I., A.K. Raina & D.K. Upreti (2010). Enumeration & distribution of lichens in Surankote, District Poonch, J&K (India). Environment Conservation Journal 11(3): 27–31.

Khan, R., D.K. Upreti, M.U. Haq & B.C. Behera (2020). Diversity of Lichens in Jamsh and Kashmir State In: Dar, G.H. & A.A. Khuroo (eds.). Biodiversity of the Himalaya: Jamsh and Kashmir State. Springer, Singapore, 1,100pp. https://doi.org/10.1007/978-981-32-9174-4_15

Kocourková, J., K. Knudsen & S. Tucker (2012). A checklist of the lichenicolous biota of California. – Opuscula Philolichenum 11: 64–103.

Kondratyuk, S., L. Lõõks, S. Tschabaneenko, M. Haji-Moniri, E. Farkas, X. Wang, S.-O. Oh & J.-S. Hur (2013). New and noteworthy lichen-forming and lichenicolous fungi. Acta Botanica Hungarica 55: 275–349. https://doi.org/10.1556/ABot.55.2013.3-4.9

Kumar V. & Y. P. Sharma (2020). New regional records and an updated checklist of family Parmeliaceae from Jamsh and Kashmir, India. Journal of Mycology and Plant Pathology 50(2): 111–121.

Kumar, J., R. Khare, H. Rai, D.K. Upreti, A. Tayade, S. Hota, O.P. Chaurasia & R.B. Srivastava (2012). Diversity of lichens along altitudinal and land use gradients in the Trans Himalayan cold desert of Ladakh. Nature and Science 10: 1–9.

Logesh, A.R., M. Chinlampiang, A.C. Shukla & D.K. Upreti (2017). Studies on Lichens of Mizoram, Northeast India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 87(2): 445–457. https://doi.org/10.14440/JA0011-015-0592-z

Longán, A. & A. Gómez-Bolea (1999). Lichens and lichenicolous fungi on Quercus ilex L., poorly known in evergreen oak forests of Catalonia (Spain). Cryptogamie, Mycologie 20: 49–55.

Marbach, B. (2000). Corticole and lignicole Arten der Flechtengattung Buella sensu lato in den Subtropen und Tropen. Bibliotheca Lichenologica 74: 1–384.

Mayrhofer, H., J.W. Shepard, M.C. Grasser & J.A. Elix (2001). Rinodina intermedia (Physciaceae, lichenized Ascomycetes): a well characterized species with substrumiform ascospores. Bryologist 104: 456–463. https://doi.org/10.1639/00072745(2001)104[0456: RIPLAA]2.0.CO;2

Mishra, G.K. & D.K. Upreti (2015). Lichen flora of Kumaun Himalaya.
Lambert Academic Publishing, Germany, 602pp. Mongkolsuk, P., S. Meesim, V. Poongsungnoen & K. Kalb (2012). The lichen family Physciaceae in Thailand – I. The genus Pyxine. Phytotaxa 59: 32–54. https://doi.org/10.11646/phytotaxa.59.1.2

Nayak, S.K., R. Bajpai, D.K. Upreti & K.B. Satapathy (2016). Diversity of lichen flora of Odisha, India-A review. Studies in Fungi 1(1): 114–124. https://doi.org/10.5943/sif/1/1/11

Orange, A., P.W. James & F.J. White (2001). Microchemical Methods for the Identification of Lichens. British Lichen Society, London, 101pp.

Poelt, J. & E. Hinteregger (1993). Beiträge zur Kenntnis der Flechtenflora des Himalaya VII. Die Gattungen Caloplaca, Fulgensia und Ioplaca (mit englischem Bestimmungsschlüssel). Bibliotheca Lichenologica 50: 1–247.

Randlane, T. & A. Saag (1998). Synopsis of the genus Nephromopsis (fam. Parmeliaceae, lichenized Ascomycota). Cryptogamie, Bryologie Lichénologie 19 (2–3): 175–191.

Reddy, M.A., S. Nayaka, P.C. Shankar, S.R. Reddy & B.R.P. Rao (2011). New distributional records and checklist of lichens for Andhra Pradesh, India. Indian Forester 137(12): 1371–1376.

Schubert, R. & O. Klement (1966). Beiträge zur Flechtenflora von Nord und Mittel Indien. Nova Hedwigia 2: 1–73.

Sheard, J.W. (2010). The Lichen Genus Rinodina (Ach.) Gray (Lecanoromycetidae, Physciaceae) in North America, North of Mexico. NRC Research Press, Ottawa, Ontario, Canada. 246pp.

Sheikh, M.A., A.K., Raina & D.K. Upreti (2009). Lichen flora of Surinsar-Mansar wildlife sanctuary, J&K. Journal of Applied and Natural Science 1(1): 79–81.

Sheikh, M.A., D.K. Upreti & A.K. Raina (2006). Lichen Diversity in Jammu and Kashmir, India. Geophytology 36(1&2): 69–85.

Singh, K.P. & G.P. Sinha (2010). Indian Lichens: An Annotated Checklist. Botanical Survey of India, Kolkata.

Smith, A.L. (1931). Lichens from Northern India. Transactions of British Mycological Society 16: 128–132.

Solan, S., K.A., Mehta & R. Magotra (2010). A catalogue of lichens of Ramnagar Wildlife Sanctuary, Jammu (J&K). Phytotaxonomy 10: 134–138.

Urbanavichene, I., G. Urbanavichus, A. Meaka & Z. Palice (2013). New records of lichens and lichenicolous fungi from the Southern Ural Mountains, Russia. II. – Folia Cryptogamica Estonica 50: 73–80.

Weerakoon, G. & A. Aptroot (2014). Over 200 new lichen records from Sri Lanka, with three new species to science. Cryptogamie, Mycologie 35(1): 51–62. https://doi.org/10.7872/crym.v35.iss1.2014.51

Wetmore, C.M. (2003). The Caloplaca squamosa group in North and Central America. Bryologist 106: 147–156. https://doi.org/10.1639/00072745(2003)106[0147:TCSG]2.0.CO;2

Xia, Y., L.L. Zhao, Q.F. Wu & H.J. Liu (2018). Four new records of Leptogium from China. Mycotaxon 133(1): 55–61. https://doi.org/10.5248/133.55

Yang, M.X., X.Y. Wang, D. Liu, Y.Y. Zhang, L.J. Li, A.C. Yin, C. Scheidegger, L.S. Wang (2019). New species and records of Pyxine (Caliciaceae) in China. Mycokeys 45: 93–109. https://doi.org/10.3897/mycokeys.45.29374

Zhurbenko, M.P. (2013). A first list of lichenicolous fungi from India. Mycobiotica 3: 19–34. https://doi.org/10.12664/mycoboti.2013.03.03
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate. All articles published in JoTT are registered by Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

October 2021 | Vol. 13 | No. 12 | Pages: 19675–19886

Date of Publication: 26 October 2021 (Online & Print)

DOI: 10.11609/jott.2021.13.12.19675-19886

Articles

Roosting habits and habitats of the Indian Flying Fox Pteropus medius Temminck, 1825 in the northern districts of Tamil Nadu, India
– M. Pandian & S. Suresh, Pp. 19675–19688

Diversity and distribution of avifauna at Waratthenna-Hakkinda Environmental Protection Area in Kandy, Sri Lanka
– Dinela Thilakarathne, Tithira Lakkana, Gayan Hirimuthugoda, Chaminda Wijesundara & Shalika Kumburegama, Pp. 19689–19701

Grass species composition in tropical forest of southern India
– M. Ashokkumar, S. Swaminathan & R. Nagarajan, Pp. 19702–19713

Communications

Habitat use and conservation threats to Wild Water Buffalo Bubalus arnee (Mammalia: Artiodactyla: Bovidae) in Koshi Tappu Wildlife Reserve, Nepal
– Reeta Kuhul, Bijaya Neupane, Bijaya Dhami, Siddhartha Regmi, Ganesh Prasad Tiwari & Manita Parajuli, Pp. 19714–19724

Get my head around owls: people perception and knowledge about owls of Andaman Islands
– Shannugaweep Sureshtharmuth, Santhanakrishnan Babu, Nagaraj Rajeshkumar & Homnnavali Nagaraj Kumara, Pp. 19725–19732

Abundance and diversity of threatened birds in Nangal Wetland, Punjab, India
– Rajwinder Kaur & Onkar Singh Brar, Pp. 19733–19742

Evaluation of fish diversity and abundance in the Kabul River with comparisons between reaches above and below Kabul City, Afghanistan
– Ugyen Kelsang, Ahmad Farid Habibi & Ryan J. Thoni, Pp. 19743–19752

New record of Myrmarachne melanocephala MacLeay, 1839 (Araneae: Salticidae) from Jharkhand, India and biogeographical implications of the co-occurrence of its ant model Tetraponera rufonigra Jordan, 1851
– Rahul Kumar, Mirtunjay Sharma & Ajay Kumar Sharma, Pp. 19753–19761

Diversity of spiders (Arachnida: Araneae) and the impact of pruning in Indian sandalwood plantations from Karnataka, India
– S. Padma 1 & R. Sundararaj, Pp. 19762–19772

New records of cheirolestome Bryozoa from the eastern coast of India encrusting on the exoskeleton of live horseshoe crabs of Indian Sundarbans
– Swati Das, Maria Susan Sanjay, Basudev Tripathy, C. Venkatraman & K.A. Subramanian, Pp. 19773–19780

On the pteridophytes of Bherjan-Borajan-Padumoni Wildlife Sanctuary, Assam, India
– Pranjal Borah & Jayanta Barukial, Pp. 19781–19790

Population status of Heritiera fomes Buch.-Ham., a threatened species from Mahanadi Mangrove Wetland, India
– Sudam Charan Sahu, Manas Ranjan Mohanta & N.H. Ravindranath, Pp. 19791–19798

Additions to the lichenized and lichenicolous fungi of Jammu & Kashmir from Additions to the lichenized and lichenicolous fungi of Jammu & Kashmir from
– Sudam Charan Sahu, Manas Ranjan Mohanta & N.H. Ravindranath, Pp. 19799–19808

Notes

A recent sighting of the Stripe-backed Weasel Mustela strigilis (Mammalia: Carnivora: Mustelidae) in Hikakabu Rai Landscape, Myanmar
– Sai Sein Lin Oo, Tun Tun, Kyaw Myo Naing & Paul Jeremy James Bates, Pp. 19809–19812

Are the uplifted reef beds in North Andaman letting nesting Olive Ridley Sea Turtle Lepidochelys olivacea stranded?
– Nehru Prabakaran, Anoop Raj Singh & Vedagiri Thirumurugan, Pp. 19813–19836

First record of the orb-weaving spider Araneus tubulobummin S. Zhu & Zhang, 1993 (Araneae: Araneidae) from India
– Souvik Sen, John T.D. Caleb & Shelley Acharya, Pp. 19836–19866

The genus Catapiestus Perty, 1831 (Coleoptera: Tenebrionidae: Cnudalonini) from Anurachh Pradesh with one new record to India
– V.D. Hegde & Sarita Yadav, Pp. 19867–19869

Rediscovery and extended distribution of Indigofera santapauj Sanjappa and Bubulas arnee (Leguminosae: Papilionoideae) from the states of Maharashtra and Gujarat, India
– Kumar Vinod Chhotupuri Gosavi, Sanjay Gajanan Auti, Sharad Suresh Kambale & Munivenkatappa Sanjappa, Pp. 19870–19873

Additional distribution records of Ceropogia anjanaica, an endemic and ‘Endangered’ lantern flower of the northern Western Ghats, India
– Samir Shrikant Maity, Ajay Natha Gungandre, Sharad Suresh Kambale, Avinash Ramchandra Gholve, Avinash Asraji Adul, Ganesh Babaso Pawar & Kumar Vinod Chhotupuri Gosavi, Pp. 19874–19877

Notes on the extended distribution of Impatien malayalum, a recently described balsam in Western Ghats, India
– Anoop P. Balan & A.J. Robi, Pp. 19878–19883

Book Review

A look over on the scented tree of India (Santalum album)
– S. Suresh Ramanan & A. Arunachalam, Pp. 19884–19888

Publisher & Host

Threatened Taxa