Fluorescently-Labeled Estradiol Internalization and Membrane Trafficking in Live N-38 Neuronal Cells Visualized with Total Internal Reflection Fluorescence Microscopy

Kassandra Kisler, Robert H Chow and Reymundo Dominguez*

Zilkha Neurogenetic Institute, Department of Physiology and Biophysics, Keck School of Medicine of University of Southern California, USA

Abstract

Estradiol is a steroid hormone that binds and activates estradiol receptors. Activation of these receptors is known to modulate neuronal physiology and provide neuroprotection, but it is not completely understood how estradiol mediates these actions on the nervous system. Activation of a sub-population of estradiol receptor-α (ERα), originally identified as a nuclear protein, localizes to the plasma membrane and appears to be a critical step in neuroprotection against brain injury and disease. Previously we showed that estradiol stimulates the rapid and transient trafficking of plasma membrane ERα in primary hypothalamic neurons, and internalization of membrane-impermeant estradiol (E6BSA-FITC) into cortical neuron endosomes in vitro. These findings support the concept that estradiol activates and down-regulates plasma membrane ERα by triggering endocytosis. Here, we use TIRFM (total internal reflection fluorescence microscopy) to image the trafficking of E6BSA-FITC and GFP-labeled ERα in live cells in real time. We show that activation of plasma membrane ERα by E6BSA-FITC result in internalization of the fluorescent ligand in live N-38 neurons, an immortalized hypothalamic cell line. Pretreatment with ER antagonist ICI 182,780 decreased the number of E6BSA-FITC labeled puncta observed. We also observed in live N-38 neurons that E6BSA-FITC co-localized with FM-64 and LysoTracker fluorescent dyes that label endosomes and lysosomes. Our results provide further evidence that plasma membrane ERα activation results in endocytosis of the receptor.

Keywords: Estradiol; Estrogen receptor alpha; Plasma membrane; Trafficking; Endocytosis; E6BSA-FITC; Total Internal Reflection Fluorescence Microscopy (TIRFM); Endocytosis; Exocytosis; Live-cell

Introduction

Estradiol is a sex steroid hormone involved in central nervous system organization and activation [1]. Estradiol carries out its actions by activating estrogen receptors (ERs), of which there are two classes, ERα and ERβ. In the brain both ERs are expressed within the nucleus and cytoplasm, as well as localized to the plasma membrane of neurons and astrocytes [2]. Moreover, evidence suggests that other ER-like membrane receptors (e.g. GPR30, ER-X, mGq-ER) can also become activated upon estradiol binding [3,4].

ERs are part of a family of ligand-activated transcription factors. When intracellular ERs become active by ligand binding they form dimers that then travel to the nucleus and bind to DNA regions containing estrogen-sensitive promoter sequences [5]. In contrast to this genomic mechanism, studies have shown that ERs present at the plasma membrane can rapidly trigger the activation of ion channels and second messenger systems, even in the presence of protein synthesis inhibitors, by a mechanism that is not completely understood [6-9].

Membrane receptors as a group are regulated through transcription and by trafficking. Removal of receptors from the cell membrane via internalization is a well-characterized mechanism of receptor signal termination [10]. Internalized receptors are transported to endosomes where the ligand is released from the receptor and is then sorted for either recycling back to the membrane or degradation [11]. Trafficking of membrane ERs has thus far been difficult to observe, however there is compelling evidence that activated membrane ERs can be inserted into and internalized from the plasma membranes in primary hypothalamic neurons and astrocytes [12-14].

To study receptor trafficking investigators have used biochemical and histochemical techniques to track the localization of the receptor or a receptor-specific ligand. Using cell surface biotinylation and western blotting we previously found that estradiol treatment for 30 minutes significantly increased the levels of full-length ERα and the ERαΔ4 splice variant present on the plasma membrane of primary native hypothalamic neurons and N-38 neurons [4,14]. N-38 neurons are immortalized neuroepithelial-Y secreting neurons derived from the arcuate nucleus of the hypothalamus of mice and they serve as an accepted model for studies of mechanisms involved in estradiol signaling [4,15,16]. While these biochemical studies have shown that active full-length ERα is rapidly trafficked into and out of the plasma membrane, there have been few attempts to visualize this process, particularly in live neurons [17]. In the present study we use live N-38 neurons and total internal reflection fluorescence microscopy (TIRFM) to image the trafficking of the membrane impermeant ER-ligand E6BSA-FITC and image GFP-ERα near or at the cell surface in real time. For example, similar studies examining nicotinic acetylcholine receptor trafficking have used the receptor-specific ligand a-bungarotoxin in real-time [18-20].

TIRFM is ideal for studying estradiol stimulated trafficking of plasma membrane ER in living cells because it gives high-contrast, real-time images of fluorescent molecules on and just within the cell basal surface. TIRFM is an established method to image the basal surface, or “footprints,” of cells adhered to a glass substrate without

*Corresponding author: Reymundo Dominguez, Zilkha Neurogenetic Institute 323, Keck School of Medicine of USC, Los Angeles, CA 90089-2821, USA, E-mail: reymundo@usc.edu

Received March 01, 2013; Accepted April 15, 2013; Published April 20, 2013

Citation: Kisler K, Chow RH, Dominguez R (2013) Fluorescently-Labeled Estradiol Internalization and Membrane Trafficking in Live N-38 Neuronal Cells Visualized with Total Internal Reflection Fluorescence Microscopy. J Steroids Hormon Sci 2013, S12: 002. doi:10.4172/2157-7536.S12-002

Copyright: © 2013 Kisler K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
the background fluorescence contamination typical of other imaging methods, making it ideal for visualizing small fluorescent structures and kinetic events near the cell membrane such as trafficking, endocytosis, and exocytosis [e.g. 21-23]. TIRFM relies on light incident at the coverslip-cell interface at an angle greater than the critical angle to generate an evanescent (exponentially decaying) light wave perpendicular to the coverslip surface to excite fluorophores. The light intensity drops off quickly, and is characterized by a “penetration depth” of ~100 nm (Figures 1A and 1B). For these experiments, we used “through-the-objective” TIRFM [21], where excitation light is delivered to the cell through a high NA (numerical aperture) objective at an angle greater than the critical angle, and fluorescence excited is collected through the same objective (Figure 1A).

Here, particle analysis of TIRFM images of N-38 neurons showed E6BSA-FITC at the cell surface. The binding of E6BSA-FITC was blocked by pretreatment with the ER antagonist ICI 182,780. Furthermore, using sequential TIRFM images acquired in real time, we were able to track fluorescent E6BSA-FITC particles, and show that trafficking of the fluorescent ligand in and out of the plasma membrane occurred rapidly within seconds. Additionally, we could visualize GFP-labeled ERα in live cells, and show that the receptor, or internalized E6BSA-FITC, colocalized with fluorescently-labeled lysosomes, endosomes, and vesicles. Treatment of live N-38 neurons with E6BSA-FITC and TIRFM revealed that fluorescent ER-ligand could be visualized at a temporal and spatial scale not before reported for plasma membrane ER regulation.

Material and Methods

N-38 cultures and fluorescence assays

Cultures were prepared from a frozen stock of N-38 neurons (Celutions Biosystems, Burlington, ON, Canada) and cultured on custom coverslip-bottom (#1 thickness) cell culture dishes. Cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM; 4.5 g/l glucose, L-glutamine, sodium pyruvate, 1% penicillin/streptomycin; Cellutions Biosystems, Burlington, ON, Canada) and cultured on Material and Methods lysosomes, endosomes, and vesicles. Treatment of live N-38 neurons to visualize GFP-labeled ERα in live cells, and show that the receptor, that trafficking of the fluorescent ligand in and out of the plasma membrane occurred rapidly within seconds. Additionally, we could visualize GFP-labeled ERα in live cells, and show that the receptor, or internalized E6BSA-FITC, colocalized with fluorescently-labeled lysosomes, endosomes, and vesicles. Treatment of live N-38 neurons with E6BSA-FITC and TIRFM revealed that fluorescent ER-ligand could be visualized at a temporal and spatial scale not before reported for plasma membrane ER regulation.

Material and Methods

N-38 cultures and fluorescence assays

Cultures were prepared from a frozen stock of N-38 neurons (Cellutions Biosystems, Burlington, ON, Canada) and cultured on custom coverslip-bottom (#1 thickness) cell culture dishes. Cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM; 4.5 g/l glucose, L-glutamine, sodium pyruvate, 1% penicillin/streptomycin; Cellutions, Manassas, VA) with 10% heat inactivated fetal bovine serum (Invitrogen) at 37°C with 5% CO₂. One week prior to experimentation, a stock solution of 10 mg/ml E6BSA-FITC was diluted with sterile 0.9% saline and prepared using an ultracentrifugation protocol to reduce free estradiol [24] and then stored at -20°C until use. Control BSA-FITC (Sigma) was prepared in a similar manner. On day 3 after plating, cultures were washed twice with phosphate buffer solution (PBS; 1 mM Ca²⁺, 1 mM Mg²⁺, pH 7.2) and then steroid-starved in DMEM with ITS (approximately 21 mg/L insulin, 19/L mg transferrin, 25 μg/L sodium selenite; Sigma) 24 h prior to any experimental treatments. On day 4, cultures were treated for 30 min with 1 μg/ml fluorescently-labeled β-estradiol-6-(O-carboxymethyl)oxime-bovine serum albumin (E6BSA-FITC, Sigma) or 1 μg/ml bovine serum albumin-fluorescein isothiocyanate (BSA-FITC) in DMEM for imaging experiments. To antagonize estradiol receptor activation N-38 cultures were pretreated for 1 h with 1 μM ICI 182,780 before cotreatment with E6BSA-FITC. For colocalization experiments, cells were treated with FM4-64 (20 μg/ml; Invitrogen) for 30 min after any other treatments. For LysoTracker red (25 nM; Invitrogen) cultures were treated for the last 5 min of experimental treatments. After treatments, the cells were washed and media replaced with warmed external solution (In mM: 140 NaCl, 3 KCl, 10 HEPES, 1 MgCl₂, 2 CaCl₂, 15 glucose, pH 7.3) for imaging.

cDNA plasmid transfection

N-38 cultures were prepared as described above. GFP-ERα expression was induced by transfection with Lipofectamine 2000 (Invitrogen) and 200 ng of cDNA plasmid encoding for human ERα conjugated to GFP [Addgene #28230 pEGFP-C1-ERα; 25] following the manufacturer’s protocol. Experiments were conducted 48 h after transfection.

Total internal reflection fluorescence microscopy

A custom-built laser TIRF microscope, based on an Olympus IX70 inverted microscope platform, was used to observe the cells [26]. Cells were illuminated with 488 nm light from an Argon laser (Coherent Inc, Santa Clara, CA) and/or 561 nm laser light through a high NA objective (a Plan-FLUAR 100X oil; NA 1.45, Zeiss) utilizing a green/red dual-bandpass dichroic (XF2046; Omega). Laser light was incident on the coverslip at an angle greater than the critical angle such that evanescent light was generated in a shallow layer (~100 nm) above the coverslip. Fluorescence was collected through the same objective, passed through a Dual-View image splitter (Optical Insights) with 560 nm dichroic and HQ 515/30 m and D605/55 m (Chroma) emission filters, and imaged with a Cascade 512B EMCCD camera (Roper; operated with Metamorph 4.6, Universal Imaging). Images were acquired at room temperature.

Image Acquisition and particle analysis

Single images and sequential image series (sets of 500 frames at 4 Hz, 250 ms exposure per frame) were acquired for analyses. Analysis of images was performed using ImageJ64 (1.45e) software. For particle analysis (number FITC puncta, the area of FITC puncta coverage, and FITC puncta size), single images were thresholded (intermodes), then fluorescent puncta were found using ImageJ’s built-in routines. Particle sizes of less than 2 pixels² (1 pixel=165 nm) were considered artifacts and excluded from the analyses. Fluorescent particles observed during image sequences were analyzed using the MTrackJ (1.4.1) plug-in for ImageJ64 [27]. Single frame steps (from a sequence of 100 frames or 25 sec) along with local cursor snapping during tracking with a snap range of 13x13 pixels and bright centroid snap feature was used to track fluorescent puncta motion. Puncta were tracked for the duration they were visible in the image sequence. The Cairn Image-Splitter plug-in was used to align images for dual-color TIRFM experiments.
Statistical analysis

A one-way ANOVA followed by a Bonferroni post hoc test were used to compare the statistical significance between multiple experimental treatment groups. Significance values were calculated using Bonferroni Multiple Comparison Test unless otherwise stated. Data were analyzed using GraphPad Prism 4 software (GraphPad Software, La Jolla, CA), and significance level was set at \(p < 0.05 \) for all experimental data sets.

Results

TIRFM imaging of live E6BSA-FITC treated N-38 neurons

TIRFM was used to visualize the binding and internalization of E6BSA-FITC to plasma membrane ERs (Figure 2A). After 30 minutes of treatment imaging showed the formation and aggregation of E6BSA-FITC fluorescent molecules on the cell surface. Visually over time this appears as the formation of different sized spots of fluorescent label on the cell surface and cytoplasm [28,29]. BSA-FITC was also tested (bovine serum albumin-fluorescein isothiocyanate) to determine if either BSA or FITC artifactually caused binding to the plasma membrane.

Particle analysis of fluorescent puncta (3 independent experiments with 4 or more cells imaged per condition) revealed that among the N-38 neurons treated with E6BSA-FITC 8 of 12 cells (~67%) imaged contained several fluorescent puncta (Figure 2B), whereas among cells treated with BSA-FITC only 9 of 27 cells (~33%) contained puncta. Further, of those cells containing fluorescent puncta, there were significantly fewer puncta in BSA-FITC treated control cells than E6BSA-FITC treated cells (ANOVA, \(p < 0.0001 \), \(F_{(1,16)} = 18.19 \)). On average 5.875 ± 0.972 (n=8 cells) fluorescent puncta were present in E6BSA-FITC treated cells compared to only 0.536 ± 0.242/cell for BSA-FITC (1 \(\mu \)g/ml; n=9 cells). Continuous E6BSA-FITC treatment for >60 min resulted in a decrease number of E6BSA-FITC puncta present near the plasma membrane per cell to 3.2 ± 0.327 (n=10 cells).

E6BSA-FITC specificity was examined by pre-treating cultures with the ER antagonist ICI 182,780 (ICI). We observed that ICI decreased the number of E6BSA-FITC fluorescent molecules present on the plasma membrane per N-38 neuron (2.125 ± 0.295; n=8 cells), but did not decrease the number of cells containing fluorescent molecules (8 of 11 cells; ~73%). Our TIRFM data suggest that E6BSA-FITC binds and becomes internalized (Figure 2C), presumably by binding to ERα proteins as well as other estradiol binding proteins present on the cell surface of N-38 neurons.

While it is not known exactly how many ERα receptors are expressed on the cell surface [30], less than 5% of total ERα has been observed to localize to the plasma membrane of Chinese hamster ovary cells [31]. We chose to analyze fluorescent puncta smaller than or equal to 330 nm (2 × 2 pixels, calibrated at 1 pixel=165 nm). It is unclear whether the select fluorescent puncta we observed (220-330 nm) represent single E6BSA-FITC molecules because the ER ligand contains more than one FITC label (3-5 mol FITC per mol of BSA). Complicating matters, each BSA molecule contains several estradiol molecules that may not bind (thus we use molar excess levels of E6BSA-FITC) and that may bind to one or more ERs [5-10 mol estradiol per mol of BSA; 24,32,33].

TIRFM shows GFP-ERα associated with endosomes, lysosomes, and vesicles

In a separate set of experiments, N-38 neurons expressing human ERα linked to green fluorescent protein (GFP-ERα) colocalized with puncta labeled with either FM4-64 (membrane marker) or Lysotracker Red (Figures 3A and 3B). For comparison, E6BSA-FITC treated cells were co-labeled with FM4-64 (Figure 3C). FM4-64 is a lipophilic styryl dye that becomes fluorescent upon insertion into the plasma membrane and is routinely used for tracking membranes endocytosed from the plasma membrane [21,34]. FM4-64 belongs to a class of cell-impermeable fluorescent labels (FM dyes) that intercalates into the outer leaflet of the plasma membrane. In order for the label to appear inside the cell, the membrane to which it is bound must be internalized (endocytosed) [35-37]. Lysotracker Red is a fluorescent compound that permeates the plasma membranes of live cells and accumulates in low pH compartments, making it ideal for identifying acidic organelles [38] such as lysosomes and exocytic vesicles. Together our findings strongly suggest that estradiol treatment results in the endocytosis of plasma membrane ERs in N-38 neurons.

Tracking the motion of E6BSA-FITC fluorescent molecules with TIRFM

The tracking of fluorescent E6BSA-FITC puncta, using sequential TIRFM image frames, uncovered that E6BSA-FITC is rapidly (within seconds) trafficked not only inward, but also toward the cell surface, as well as laterally (Figures 4A and 4B). We classified observed puncta based on their movement characteristics and changes in fluorescence intensity. Many of the E6BSA-FITC puncta observed, which we designated "Stationary Puncta," did not move appreciably...
Discussion

In the present study, we investigated the regulation of plasma membrane ER trafficking using live N-38 neurons and TIRFM to trace the path of estradiol as it bound to ERs and rapidly traveled to and from the cell surface in real time. Using the combination of live cells and real-time imaging has permitted us to maintain cellular integrity and allowed us to obtain detailed information about the time scale and spatial distribution of ERs after activation. We found that: 1) E6BSA-FITC binds to the plasma membrane of N-38 neurons and is then internalized, 2) bound E6BSA-FITC moves in distinct patterns on and near the cell surface consistent with endocytotic and exocytotic events, and 3) E6BSA-FITC and GFP-ERα are associated with FM4-64 and LysoTracker positive endosomes, vesicles, and lysosomes. These results indicate that membrane-initiated ERα activation in live N-38 neurons causes rapid trafficking of the receptor at the cell surface. This is consistent with our previous studies using cell surface biotinylation where we found that estradiol or E6BSA treatment elevated full-length ERα and ERαA4 protein levels on the plasma membrane of primary hypothalamic and N-38 neurons [4,14].

Our findings suggest ERα are trafficked at the plasma membrane of N-38 neurons by a mechanism associated with vesicle trafficking (Figure 2C). Using TIRFM we observed E6BSA-FITC present on the plasma membrane and associated with endosomes, vesicles, and lysosomes. Pre-treatment with ER antagonist ICI prevented E6BSA-FITC from binding, possibly by down-regulating plasma membrane ERs [39]. Using surface biotinylation we previously found that ERα trafficking is blocked by ICI or with the protein kinase C pathway inhibitor bisindolylmaleimide in N-38 neurons [4]. Membrane-impermeant estradiol compounds are known to be internalized several minutes after treatment (>5-30 min) and the ligands have been observed to be bound to subcellular organelle membranes in different cell types [40-43]. Similar to the observations made by other investigators, we do not observe a significant level of BSA-FITC binding to the plasma membrane and internalization [44,45]. Our data suggest that plasma membrane ERs are internalized after ligand binding by endocytosis. In support, it was shown that when E6BSA-FITC treated primary cortical neurons were co-labeled with GM1, a lipid raft marker and endocytosis-indicator, we found the ER ligand and lipid raft indicator associated on the cell surface and with endosomes [46].

Several biochemical and electrophysiological studies provide evidence that membrane-initiated estradiol signaling regulates female reproductive behaviors by controlling the trafficking neurotransmitter receptors in hypothalamic neurons [2,10]. Estradiol triggered receptor trafficking may also be involved in hippocampal plasticity [46-48], and estradiol treatment has been reported to induce pit formation on the membranes of hypothalamic neurons [49,50]. Such pits may represent the fission of endocytotic vesicles responsible for receptor internalization and fusion exocytotic vesicles delivering ERs to the membrane [42,49-51]. Moreover, membrane ERs are associated with caveolae [52] and clathrin-coated vesicles [41,53]. Both these cellular membrane structures are lipid rich microdomains that cluster signal transduction machinery and proteins involved in membrane trafficking. Prior studies support the presence of both ERα and ERβ on the plasma membrane and the membranes of vesicles, endosomes, mitochondria, lysosomes, and microsomes [46,54-58]. Evidence also exists that shows the presence of other ER-like proteins present on the plasma membranes and organelles of neurons [6]. Our data, visualized in live N-38 neurons in real-time, further supports this view.

The movement of Type 1, Type 2, and stationary puncta is consistent with vesicle motion observed in other cell types with TIRFM [59], which supports the idea that E6BSA-FITC is taken up and
We have found that ERα forms a signaling complex with β-arrestin1, localization, ERα degradation and transcriptional activity [68-70].

The ability to biotinylate ERα protein suggests a portion of the receptor surface biotinylation experiments have also made this point evident. ERα-containing endosomes.

It is not completely clear how ERα is regulated at the cell surface. The association of GFP-ERα with LysoTracker positive vesicles suggests the receptor is associated with lysosomes. Like other membrane receptors, plasma membrane ERα is likely regulated by a cellular mechanism associated with receptor trafficking. While definitive evidence has yet to be reported several questions remain such as how are plasma membrane ERα regulated at the plasma membrane. Evidence shows that portions of ERα protein structure biophysically interact with lipids in the bilayer and it potentially forms a transmembrane spanning region [17,65]. Cell surface biotinylation experiments have also made this point evident. The ability to biotinylate ERα protein suggests a portion of the receptor protein is exposed to the extracellular space [12,46,66,67]. In neurons and cell lines palmitoylation has been shown to regulate membrane localization, ERα degradation and transcriptional activity [68-70]. We have found that ERα forms a signaling complex with β-arrestin1, an adaptor protein involved in receptor desensitization and down-regulation [46]. One sign of this pathway is the activation of GRKs and receptor phosphorylation. We have shown the activation of GRK2 by estradiol [46] and a recent study has reported that phosphorylation of active ERα on serine residue 118 and tyrosine residue 537 results in the receptor being directed toward degradation [69,71]. Existing evidence and that presented here suggest that estradiol regulates the ERα plasma membrane levels by modulating the receptors’ expression through trafficking and down-regulation.

In summary, using TIRFM we demonstrated in real-time the trafficking of E6BSA-FITC in N-38 neurons. Our data provides further evidence that membrane-initiated ERα signaling present in N-38 neurons is regulated by a similar mechanism present in different neuronal populations. Additionally, we have shown that the use of TIRFM in combination with N-38 neurons provides a model system to examine real-time membrane-initiated receptor trafficking at the cellular level. We hypothesize that membrane-initiated estradiol signaling involves the fusing of plasma membrane and formation of ERα-containing endosomes.

Acknowledgment
These studies were supported by a NIH grant to RD (NS079064).

References
1. Wilson ME, Westberry JM (2009) Regulation of oestrogen receptor gene expression: new insights and novel mechanisms. J Neuroendocrinol 21: 238-242.
2. Micevych P, Dominguez R (2009) Membrane estradiol signaling in the brain. Front Neuroendocrinol 30: 315-327.
3. Micevych PE, Kelly MJ (2012) Membrane estrogen receptor regulation of hypothalamic function. Neuroendocrinology 96: 103-110.

4. Dominguez R, Dewing P, Kuo J, Micevych P (2013) Membrane-initiated estradiol signaling in immortalized hypothalamic N-38 neurons. Steroids .

5. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, et al. (2007) Estrrogen receptors: how do they signal and what are their targets. Physiol Rev 87: 905-931.

6. Levin ER (2009) Plasma membrane estrogen receptors. Trends Endocrinol Metab 20: 477-482.

7. Minami T, Oomura Y, Nabekura J, Fukuda A (1990) 17 beta-estradiol depolarization of hypothalamic neurons is mediated by cyclic AMP. Brain Res 519: 301-307.

8. Nabekura J, Oomura Y, Minami T, Mizuno Y, Fukuda A (1986) Mechanism of the rapid effect of 17 beta-estradiol on medial amygdala neurons. Science 233: 226-228.

9. Gu Q, Moss RL (1996) 17 beta-Estradiol potentiates kainate-induced currents via activation of the Ca(2+)AMP cascade. J Neurosci 16: 3620-3629.

10. Sinchak K, Micevych P (2003) Visualizing activation of opioid circuits by internalization of G protein-coupled receptors. Mol Neurobiol 27: 197-222.

11. Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptor and neuronal functions. Annu Rev Neurosci 27: 107-144.

12. Bondar G, Kuo J, Harnd N, Micevych P (2009) Estradiol-induced estrogen receptor-alpha trafficking. J Neurosci 29: 15323-15330.

13. Li L, Hisamoto K, Kim KH, Haynes MP, Bauer PM, et al. (2007) Variant estrogen receptor-α-Src molecular interdependence and α-Src structural requirements for endothelial NO synthase activation. Proc Natl Acad Sci U S A 104: 16468-16473.

14. Dominguez R, Micevych P (2010) Estradiol rapidly regulates membrane estrogen receptor alpha levels in hypothalamic neurons. J Neurosci 30: 12589-12596.

15. Titolo D, Cai F, Belsham DD (2006) Coordinate regulation of neuroprotective and agouti-related peptide gene expression by estrogen depends on the ratio of estrogen receptor (ER) α to ERβ in central hypothalamic neurons. Mol Endocrinol 20: 2080-2092.

16. Belsham DD, Cai F, Cui H, Smukler SR, Salapatek AM, et al. (2004) Generation of a phenotypic array of hypothalamic neuronal cell models to study complex neuroendocrine disorders. Endocrinology 145: 393-400.

17. Kim KH, Toomre D, Bender JR (2011) Splice isoform estrogen receptors as integral transmembrane proteins. Mol Biol Cell 22: 4415-4423.

18. Chen D, Patrick JW (1997) The alpha-bungarotoxin-binding nicotinic acetylcholine receptor from rat brain contains only the α7 subunit. J Biol Chem 272: 24024-24029.

19. Axelrod D, Thompson NL, Burghardt TP (1983) Total internal inflection of the lysosomal membrane is correlated with ras transformation of murine and human fibroblasts. J Biol Chem 268: 4775-4777.

20. Marín R, Guerra B, Alonso R, Ramírez CM, Díaz M (2005) Estrogen activates the α7 nicotinic acetylcholine receptor in rat brain contains only the α7 subunit. J Bi I Chem 272: 24024-24029.

21. Wu TW, Chen S, Brinton RD (2011) Membrane estrogen receptors mediate calcium signaling and MAP kinase activation in individual hippocampal neurons. Brain Res 1379: 34-43.

22. Dominguez R, Hu E, Zhou M, Baudry M (2009) 17beta-estradiol-mediated neuroprotection and ERK activation require a pertussis toxin-sensitive mechanism involving GRK2 and beta-arrestin-1. J Neurosci 29: 4228-4238.

23. Zadran S, Qin G, Bi X, Zadran H, Kim Y, et al. (2009) 17-beta-estradiol increases neuronal excitability through MAP kinase-induced calpain activation. Proc Natl Acad Sci U S A 106: 21936-21941.

24. Aguirre C, Jayaraman A, Pike C, Baudry M (2010) Progesterone inhibits estrogen-mediated neuroprotection against excitotoxicity by down-regulating estrogen receptor-β. J Neurochem 115: 1277-1287.

25. Garcia-Segura LM, Olmos G, Tranque P, Nafzlin F (1987) Rapid effect of the rapid effect of 17 beta-estradiol on medial amygdala neurons. Proc Natl Acad Sci U S A 94: 1277-1287.
gonadal steroids upon hypothalamic neuronal membrane ultrastructure. J Steroid Biochem 27: 615-623.

50. Otomis G, Aguilera P, Tranque P, Naftolin F, Garcia-Segura LM (1987) Estrogen-induced synaptic remodeling in adult rat brain is accompanied by the reorganization of neuronal membranes. Brain Res 245: 57-64.

51. Párducz A, Szilágyi T, Hoyk S, Naftolin F, Garcia-Segura LM (1996) Neuroplastic changes in the hypothalamic arcuate nucleus: the estradiol effect is accompanied by increased exocytotic activity of neuronal membranes. Cell Mol Neurobiol 16: 259-269.

52. Luoma JI, Bouwland MI, Meremelstein PG (2008) Caveolin proteins and estrogen signaling in the brain. Mol Cell Endocrinol 290: 8-13.

53. Sreeja S, Thampan RV (2004) Proteins which mediate the nuclear entry of goat uterine non-activated estrogen receptor (naER) following naER internalization from the plasma membrane. Mol Cell Biochem 259: 141-148.

54. Clarke CH, Norfeet AM, Clarke MS, Watson CS, Cunningham KA, et al. (2000) Perinuclear localization of the estrogen receptor-alpha protein in neuronal processes of cultured hippocampal neurons. Neuroendocrinology 71: 34-42.

55. Blaustein JD, Lehman MN, Turcotte JC, Greene G (1992) Estrone receptors in dendrites and axon terminals in the guinea pig hypothalamus. Endocrinology 131: 281-290.

56. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER (2005) A transmembrane intracellular estrogen receptor mediator rapidly cell signaling. Science 307: 1625-1630.

57. Romero RD, McCarthy JB, Wang A, Milner TA, McEwen BS (2005) Sex transcriptional activity. Mol Endocrinol 26: 762-774.

58. Tabatadze N, Smejkalova T, Woolley CS (2013) Distribution and regulation by 17beta-estradiol. Mol Biol Cell 16: 231-237.

59. Huet S, Karatekin E, Tran VS, Fanget I, Cribier S, et al. (2006) Analysis of presynaptic boutons in hippocampal CA1. J Neurosci 27: 2102-2111.

60. La Rosa P, Pesiri V, Leclercq G, Marino M, Acconcia F (2012) Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell 16: 2102-2111.

61. Rappoport JZ, Kemal S, Benmerah A, Simon SM (2006) Dynamics of clathrin and adaptin proteins during endocytosis. Am J Physiol Cell Physiol 291: C1072-1081.

62. Byrne C, Kremtémourian L, Pelekanou V, Kampa M, Leclercq G, et al. (2012) ERI ± 17p, a peptide reproducing the hinge region of the estrogen receptor-Î± associates to biological membranes: A biophysical approach. Steroids 77: 97-987.

63. Luoma JI, Bouwland MI, Meremelstein PG (2008) Caveolin proteins and estrogen signaling in the brain. Mol Cell Endocrinol 290: 8-13.

64. Byrne C, Kremtémourian L, Pelekanou V, Kampa M, Leclercq G, et al. (2012) ERI ± 17p, a peptide reproducing the hinge region of the estrogen receptor-Î± associates to biological membranes: A biophysical approach. Steroids 77: 97-987.

65. Acconcia F, Ascerzi P, Bocedi A, Spisni E, Tomasi V, et al. (2005) Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell 16: 2102-2111.

66. Li L, Haynes MP, Bender JR (2003) Plasma membrane localization and function of the estrogen receptor alpha variant (ERÎ±) in human endothelial cells. Proc Natl Acad Sci U S A 100: 4807-4812.

67. Gorostiz SV, Lorenzo AG, Cambiasso MJ (2008) Estrogen receptor alpha is expressed on the cell-surface of embryonic hypothalamic neurons. Neuroscience 154: 1173-1177.

68. Sreeja S, Thampan RV, Kalamani K, Nawaz Z, Slingerland JM (2002) ERÎ± phosphorylation at Y537 by Src triggers E6-AP-ERÎ± binding, ERÎ± ubiquitylation, promoter occupancy, and target gene expression. Mol Endocrinol 26: 1567-1577.