Corrigendum: Negative quasi-probability as a resource for quantum computation

2012 *New J. Phys.* 14 113011

Victor Veitch1, Christopher Ferrie1, David Gross2
and Joseph Emerson1

1 Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
2 Institute for Physics, University of Freiburg, Rheinstrasse 10, D-79104 Freiburg, Germany
E-mail: vveitch@uwaterloo.ca, csferrie@uwaterloo.ca, david.gross@physik.uni-freiburg.de and jemerson@uwaterloo.ca

New Journal of Physics 15 (2013) 039502 (3pp)
Received 4 February 2013
Published 21 March 2013
Online at http://www.njp.org/
doi:10.1088/1367-2630/15/3/039502

One entry of each Wigner function appearing in figures 3 and 4 is mislabeled in Victor Veitch *et al* (2012 *New J. Phys.* 14 113011). The corrected labeling appears in the figures below. The results and conclusions of the paper are unchanged.
Figure 3. Orthogonal 2D slice of qutrit state space. On the left are the entries of the Wigner function which define the 2D slice that is plotted on the right. Six entries are fixed at 1/9, while X and Y identify the entries that are free to vary, and the remaining entry is determined by normalization. The maximally mixed state is the point \((X, Y) = (1, 1)/9\). The various regions carved out by varying these values are shown on the right. There are \(\binom{8}{2} = 28\) such slices which are identical (up to a relabeling of the axes). These would be the only slices featuring the maximally mixed state.
Figure 4. Orthogonal three-dimensional (3D) slices of qutrit state space. Above each figure are the entries of the Wigner function which define the associated 3D slice. Five values are fixed at a value of $1/9$ (left figure) and $1/6$ (right figure), while X, Y and Z identify the entries that are free to vary, and the remaining entry is determined by normalization. In each case, due to symmetries, there are $\binom{3}{2} = 56$ such slices which are identical (up to a relabeling of the axes). Note that the slice on the right does not cut through the stabilizer polytope but does contain a region of bound states. Also note that this slice contains one of the nine states with a maximal negativity of $1/3$ while the slice on the left, and those equivalent up to permutations, are the only ones which feature the maximally mixed state $(X, Y, Z) = 1/9$. See also figure 2 for two-dimensional (2D) slice of the figure on the left.

Acknowledgments

We thank Thom Bohdanowicz for pointing out the error in the original figures.