World's largest Science, Technology & Medicine
Open Access book publisher

3,100+ OPEN ACCESS BOOKS
103,000+ INTERNATIONAL AUTHORS AND EDITORS
106+ MILLION DOWNLOADS
BOOKS DELIVERED TO 151 COUNTRIES
AUTHORS AMONG TOP 1% MOST CITED SCIENTIST
12.2% AUTHORS AND EDITORS FROM TOP 500 UNIVERSITIES

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Chapter from the book Decision Support Systems
Downloaded from: http://www.intechopen.com/books/decision-support-systems

Interested in publishing with InTechOpen?
Contact us at book.department@intechopen.com
A Fuzzy – Based Methodology for Aggregative Waste Minimization in the Wine Industry

Ndeke Musee, Leon Lorenzen and Chris Aldrich
Department of Process Engineering, University of Stellenbosch
South Africa

1. Introduction

The wine industry generates large quantities of waste annually, including organic solid wastes (solids, skins, pips, marc, etc.), inorganic solid wastes (diatomaceous earth, bentonite clay, perlite), liquid waste (cleaning wastewater, spent cleaning solvents, cooling water), and gaseous pollutants (carbon dioxide, volatile organic compounds, ammonia, sulphur dioxide, etc.) (Chapman et al., 2001; Musee, 2004a; Musee et al., 2007). Several factors give rise to these diverse waste streams (Musee, 2004a; Musee et al., 2007), however, only the most salient ones are highlighted here. Firstly, wine production evolved from a cottage industry to a global industry. Because of their antiquated origin, the design and development of many wineries made no provision for in-plant modern waste minimization (WM) approaches. Secondly, because the wine industry is dependent on an agricultural feedstock (grapes), the resultant waste streams tend to have a high concentration of organic material. This is because the grape feedstock cannot be altered, replaced, or eliminated before the vinification process begins – if the finished wine quality is to remain consistent. And finally, although auxiliary process feedstock, such as filter aids and diatomaceous earth are essential for clarifying the wine, they cannot be incorporated into the final product. Consequently, the clarification agents constitute part of the waste streams generated from the wine industry. In view of these unique constraints facing the wine industry, among others, necessitates the development of appropriate WM strategies to address the waste management challenges facing the wine industry (Musee et al., 2007).

In recent years, there has been continuous pressure on the operating profits of wine makers, mainly owing to increasing competitiveness in the global wine market. This can be attributed to increased variety of wine brands, rise in operational and input material costs, as well as the emergence of an onerous environmental regulatory framework in many wine producing countries (Bisson et al., 2002). Notably, the impact of stringent environmental legislation on the cost of production is expected to continue to be a key determinant in the international competitiveness of wine products (Katsiri & Dalou 1994; Massette, 1994; Müller, 1999). This, and a combination of other powerful intrinsic and external drivers should motivate the wine industry to consider the possibility of incorporating WM strategies as an integral part of wine making processes. As such, the identification and implementation of appropriate WM strategies should be part of the drive to reduce the cost of wine production – particularly in the context of ensuring its future sustainability.
In practice, vinification processes are characterized by complex interactions amongst different production processes. As a result, any effective attempt to enhance winery waste management is likely to require a solution comprising of several WM strategies, and implemented concurrently. However, such an undertaking is dependent on the identification of suitable strategies, and secondly, a careful assessment of each strategy to determine its likely influence in addressing the overall WM problem in the wine industry. Moreover, the assessment of each strategy would inevitably entail the use of multiple screening criteria, such as technical feasibility, economic and social imperatives as well as environmental integrity. Unfortunately, the application of different criteria for the ranking of WM strategies is complicated by the lack of quantitative operating data presently available in the wine industry (Musee et al., 2006a).

Nonetheless, to be effective, decision support tools designed to facilitate waste management in the wine industries should ideally be able to exploit the qualitative data available, as these data constitute a vital component of industry knowledge. Fuzzy logic (Zadeh, 1965; Bonissone, 1997; Yen & Lugari, 1998; Ross, 2004) provides such a platform. Previously fuzzy logic has been applied in developing rational solutions for complex real world problems (Bonissone, 1997), and offering interpretable results (Setnes et al., 1998). For example, successful applications of fuzzy logic have been demonstrated in domains such as process design (Huang and Fan, 1995), water quality assessment (Ocampo-Duque et al., 2006), manufacturing (Büyüközkan & Feyzioglu, 2004), safety (Gentile et al., 2003), sustainability (Phillis & Andriantiatsaholiniaina, 2001; Gagliardi, et al., 2007; Musee & Lorenzen, 2007; Prato, 2007), and hazardous waste classification (Musee et al. 2006b, Musee et al, 2008a; Musee et al, 2008b).

Musee and co-workers (Musee et al., 2003; Musee et al., 2006a) studied a fuzzy logic approach to support decision making in the wine industry that entailed the ranking of WM strategies based on experts’ opinions. Because experts hold widely different opinions, this approach yielded decisions associated with a high degree of uncertainty. In the current work, this drawback is addressed using a fuzzy logic framework by combining the ranking of expert opinions with operational data to improve the analysis and selection of WM strategies in the context of wine production. The merits of the proposed approach will be illustrated with two case studies.

This chapter is organized as follows. Section 2 provides an overview of the waste management in the wine industry, and the tools applied to model such a highly unstructured problem. The tools used in modelling the wine waste management problem comprised of; the screening and ranking indices, qualitative reasoning in developing various probable scenarios, and the fuzzy logic. In Section 3, a case study on WM in the wine industry is introduced, where a conceptual model – the intelligent decision support system together with mathematical equations – and how the knowledge stored in different knowledge rule bases were linked to effectively evaluate WM in the wine industry context. Section 4 presents results derived from the model, and a discussion on their application to real-world winery operations with respect to WM. The main findings of the chapter are presented in Section 5.

2. Basics of waste management in the wine industry

2.1 Hierarchical evaluation of wineries

The hierarchical analysis of process systems has its origin in the hierarchical decision approach developed by Douglas (1988). In this chapter, hierarchical analysis was applied to
decompose the waste management problem in the wine industry. The vinification process was decomposed into several subtasks, followed by the identification of the most influential variables concerning: (i) the degree of recovery of products and by-products during the production processes; (ii) the quantity and quality of effluent generated during cleaning and sanitization processes; and (iii) the quantity of chemicals consumed during cleaning and sanitization processes.

Fig. 1. Analysis of the vinification processes using a hierarchical approach for the identification of WM strategies.

Fig. 1 depicts a hierarchical model of vinification processes. In this study, the operational variables were decomposed into three levels based on literature survey and interviews with experts knowledgeable on waste management practices and norms in the wine industry. In Level-I, different waste types generated from the vinification processes were classified as intrinsic (process) or extrinsic (utility). Detailed description of waste classification in the wine industry has been presented elsewhere (Musee et al., 2007), and will not be repeated here. In this study, the breadth of the adopted waste classification approach ensured that no waste stream was left unaccounted for. In addition, the model gave rise to consistent and robust results. These aspects will be elucidated in details in Sections 3 and 4.

Owing to the seasonality of the vinification processes and high value-added nature of the product (wine) - wine production is an ideal candidate for both batch and semi-batch manufacturing techniques. This causes a wide variation in the composition of the waste streams - characterized by strong seasonal dependence. In Level-II, the vinification process is characterized by two seasons, viz. the vintage and non-vintage season. It should be noted that a definitive distinction between vintage and non-vintage season is more or less dependent on the processes that take place during a given period on the vinification calendar (Chapman et al., 2001).

The vinification process was further decomposed based on the seasonality of the wine production which led to the identification of the most predominant processes under each
season as described in Level-III (see Fig. 1). The next task was to identify how each process, for instance; crushing and destemming, fermentation, or filtration, etc., contributed to the final waste matrix in a given vintage season. A close scrutiny of the waste streams indicated that the final effluent quantity and composition, product and by-products losses, as well as the quantity of chemicals consumed had a strong dependence on the vinification season, as well as the processes operated in a given season. And the final task entailed the development of a systematic approach for identifying WM strategies under each process. The adopted methodology comprised of a three-step sequential approach, namely; waste source identification, qualitative waste causative analysis, and the formulation of feasible alternatives for WM in the wine industry (Musee, 2004; Musee et al., 2007).

2.2 Screening and ranking index

In an earlier study (Musee et al., 2006a), experts were asked to rank the WM strategies based on their waste management experience in the wine industry. However, the approach was found to be cumbersome, owing to the large number of strategies to rank (see details in Musee et al., 2007). This resulted in inconsistencies in the final ranking of WM strategies. This drawback is addressed in this chapter by using a more rigorous ranking approach that includes the use of a WM index (WMI). The WMI was used to assign dimensionless scores to each strategy in terms of its overall potential degree of influence on a specific targeted system output (e.g. chemical usage, effluent quality, etc). The WMI was more effective than the less formal approach previously reported by Musee et al. (2006a), because the influence of the experts’ subjective perceptions or personality aspects were eliminated.

Generically, the evaluation criteria for WM alternatives often use economic functions which often lead to unintended consequences of identifying suboptimal solutions. Another demerit of relying solely on economic criteria lies in their inherent bias for identifying inferior alternatives purely based on cost. These criteria tend to favour options geared towards waste treatment above those that promote waste reduction, elimination, reuse, or recycling. In this investigation, a multifaceted criterion was used, accounting for the unique and operational constraints experienced by managers and operators in the wine industry. Ranking and screening of waste streams and pollution prevention systems have been extensively discussed by several researchers (Hanlon & Fromm, 1990; Balik & Koraido, 1991; Crittenden & Kolaczkowski, 1995; Smith & Khan, 1995; Allen & Rosselot, 1997). These indices were found to be strongly dependent on the nature of the industry, or problem under consideration, as well as the databases accessible in the domain under study. In this chapter, the Smith and Khan’s Index (Smith & Khan, 1995) commonly referred as the pollution prevention index was modified to suit the limitations of the accessible data in the wine industry.

For the purpose of producing a broader and more acceptable prioritization of the derived WM strategies, each strategy was evaluated based on a set of multiple criteria, including the position of a given strategy in the WM hierarchy. Consequently, source reduction was assigned a higher priority in comparison to reuse and recycling. Different criteria were assigned different weights as shown in Table 1. The reason being, each criterion had a different impact on the reduction of the overall quantity of waste generated and the capital costs required for its successful implementation. It should be noted that the Smith and Khan Index (Smith & Khan, 1995) was comprised of source reduction, reuse, and waste treatment in accordance to the EPA pollution prevention hierarchy (USEPA, 1988). However, in this study, the waste treatment, payback period and depth of solution criteria were excluded.
from the index, owing to waste management challenges unique to the wine industry. The rest of the criteria used in describing WM solutions were recycling, degree of waste reduction expressed in percentage, ease of implementing a given strategy, and the capital cost of a given solution. The weights assigned in each of the criteria were in descending order in accordance with the foregoing description, such that capital cost was assigned the lowest weight of 1, whereas source reduction had the highest weight of 10^5. Note that the percentage of waste reduction was expressed in qualitative terms – and generically was referred as the waste reduction possibility. Thus, the WMI for a given strategy was computed using the relation:

$$\text{WMI} = \text{SR} \times 10^5 + \text{Re} \times 10^4 + \text{R} \times 10^3 + \text{WRP} \times 10^2 + \text{IP} \times 10^1 + \text{CC} \times 10^0$$ \hspace{1cm} (1)$$

where SR: source reduction, Re: Reuse or recovery, R: reclaim or recycle, WRP: waste reduction possibility, IP: implementation potential, and CC: capital cost.

Criteria	Weight	Activity	Index value
Source Reduction (SR)	10^5	Elimination High	1.00
		Minimize Medium	0.50
			0.25
Reuse/Recovery (Re)	10^4	Full	1.00
		Partial	0.67
		Low	0.33
Reclaim/Recycling (RR)	10^3	Full	1.00
		Partial	0.67
		Low	0.33
Waste Reduction Possibility (WRP)	10^2	No reduction (nr)	0
		Low reduction (lr)	1
		Moderate reduction (mr)	2
		High reduction (hr)	3
Implementation Potential (IP)	10^1	Procedure change (pc)	5
		Material substitution (ms)	4
		Preventive maintenance	3
		Retrofit equipment (re)	2
		New equipment	1
Capital Cost (CC)	10^0	No cost (nc)	5
		Low cost (lc)	4
		Moderate cost (mc)	3
		High cost (hc)	2
		Very high cost (vhc)	1

Table 1. WM index for the wine industry (adapted from the Smith and Khan Pollution Index (Smith & Khan, 1995).

2.3 Qualitative reasoning
The concept of qualitative reasoning (Bobrow, 1984; Kleer & Brown, 1984) was applied to aid in representing and making available general and physical knowledge commonly used
by engineers, scientists and managers to address the environmental problems experienced in the wine industry – without invoking mathematics of continuously varying quantities and differential equations. This is because qualitative reasoning provides the most suitable platform to represent numerous qualitative abstractions specific to the wine industry through creation of quantitative models, without the necessity for rigorous mathematical computations. The use of qualitative symbolic representations and discrete quantities aided in modeling the complex behavior of different vinification processes and unit operations. Therefore, the qualitative approach aided in predicting the behavior of processes and unit operations satisfactorily because only a small number of qualitative variables were required to describe the system. As such, the qualitative reasoning was used to describe the qualitative ‘states’ attainable with or without implementation of a given strategy in order to mitigate against waste generation, or in improving the management of inevitable waste streams.

Consequently, a qualitative model was developed as point of departure without the necessity for detailed information on the implementation of various WM strategies in the winemaking process. For example, consider the WM strategy where a counter current method is applied to reduce the effluent generated during cleaning. Using qualitative reasoning, it is feasible to predict at least three possible ‘states’ – which satisfies the condition of using a small number of qualitative variables – after the strategy is applied. The states were derived from casual observations, or based on experience from previous measurements where the primary goal was to model the level of the strategy’s actual ‘effectiveness’ after implementation.

The effectiveness of applying a counter current WM strategy in a specific winery was described by three ‘states’, namely; effective, partially effective, not effective. Therefore, there were three possibilities regarding the final effluent quantity that can be predicted using a qualitative reasoning approach, viz.: high potable water usage (if the strategy is poorly or not implemented), moderate potable water usage (if the strategy is partially implemented), and low potable water usage (if strategy implemented adequately).

Practically, the implementation of a given WM strategy can yield a continuum of possibilities ranging from the best case scenario (adequate implementation) to the worst case scenario (poor or no implementation). To attain such possibility may necessitate an increase on the number of predictable states by the model from three to nine. This has the advantage of broadening and increasing the sensitivity of the solution space of the decision support system. This was achieved by combining the degree of belief, or level of confidence (CF) the user expresses on a particular response regarding the implementation of a given strategy. Three levels of CF values were specified in this work, and were combined through simple algebraic multiplication to the dimensionless scores representing the qualitative values of a given strategy to expand the predictable states from three to nine. If the qualitative values of a given strategy are assigned dimensionless scores, \(x_{i1}, x_{i2}, x_{i3} \), and CF values \(y_1, y_2, \text{ and } y_3 \): then the possible predictable states for a single strategy or action can be modelled by the relation:

\[
\begin{pmatrix}
 y_1 \\
 y_2 \\
 y_3
\end{pmatrix} = \begin{pmatrix}
 x_{i1}y_1, x_{i1}y_2, x_{i1}y_3, x_{i2}y_1, x_{i2}y_2, x_{i2}y_3, x_{i3}y_1, x_{i3}y_2, x_{i3}y_3
\end{pmatrix}
\]

(2)

where the CF values were fixed at 1.00, 0.75 and 0.50 for \(y_1, y_2, \text{ and } y_3 \), respectively, and \(i \) denotes the strategy under consideration. Note that \(x_{i1}y_1, x_{i2}y_1, x_{i3}y_1 \) are equal to the original three predictable states represented by the values \(x_{i1}, x_{i2}, x_{i3}, \) correspondingly.
The next task was to determine a suitable methodology of aggregating the quantitative outputs derived using Eq. 2 that influences a given variable, which in turn exerts a direct impact on the magnitude of a specific targeted system output (e.g., effluent quantity). In this study, the aggregation process was based on the following premise. No single strategy could adequately address the WM problem in the wine industry in a given process or unit operation. Hence, several strategies had to be implemented concurrently in an integrated manner in order to address the waste management challenges in the wine industry adequately. Therefore, the variables used as linguistic input values into the fuzzy model were functions of sums of individual strategies influencing it (Section 3). Equally important, to determine the crisp numerical value of a given variable, all scores from strategies influencing it were summed and normalized using a mathematical expression of the form:

$$\text{Var}_k = \frac{\sum_{i=1}^{n} F(x_{ni}, y_j)}{\text{Max} \left(\sum_{i=1}^{n} F(x_{ni}, y_j) \right)} \times S_m$$

(3)

where \(\text{Var}_k\) is the \(k\)th variable, \(x_{ni}\) is the dimensionless score assigned to a strategy’s qualitative value, \(y_j\) is the user’s level of confidence to a given response, \(n\) is the total number of strategies influencing the \(k\)th variable, \(j=1, 2, 3\) with fixed numerical values of 1.00, 0.75 and 0.50, correspondingly; and \(S_m\) is the \(m\)th standardization coefficient where its values were 10 for \(m=1\), or 100 for \(m=2\). The aggregation principle applied in this study is schematically represented in Fig. 2.

Fig. 2. A conceptual framework based on qualitative reasoning to transform qualitative values into fuzzy numbers.

2.4 Fuzzy logic

The fundamentals of fuzzy set theory (Zadeh, 1965; Yen & Lugari, 1998) are well known (Klir & Yaun, 1988; Zimmermann, 1991; Yager & Zadeh, 1992; Yager & Filev, 1994; Yen & Lugari, 1998; Mamdani & Assilian, 1999). Thus, only the most salient features of fuzzy systems essential for designing and developing an intelligent decision support system are summarized. Fuzzy logic generalizes ordinary or classical sets in an attempt to model and simulate human linguistic reasoning particularly in domains characterized by incomplete, imprecise, vague and uncertain data and knowledge. As such, fuzzy logic being a soft
computing tool has the “ability to compute with words”, and therefore, provides rational and well reasoned out solutions for complex real world problems (Bonissone, 1997), such as WM in the wine industry (Musee et al., 2004a; Musee, 2004b; Musee et al., Musee et al., 2005; Musee et al., 2006a).

2.4.1 Fuzzy membership functions
In a fuzzy system, the variables are regarded as linguistic variables to aid ‘computation with words’. A linguistic value is defined as a variable whose value is a fuzzy number, or is a variable defined in linguistic terms (Lee, 1990). Each linguistic value, LV, is represented by a membership function \(\mu_{LV}(x) \). The membership function associates each crisp input, say \(x_A \), with a number, \(\mu_{LV}(x_A) \) in the range \([0,1]\). Essentially \(\mu_{LV}(x_A) \) represents the grade of the membership of \(x_A \) in LV, or equivalently, the truth value of proposition ‘crisp value A is LV’. The overlapping of the membership functions allows an element to belong to more than one set simultaneously, and the degree of membership into each set indicates to what extent the element belongs to that particular fuzzy set (Fig. 3).

![Fig. 3. Triangular and trapezoidal membership functions for the effluent quality management variable with fuzzy linguistic terms: poor, fair, good, and excellent.](image)

To illustrate the functionality of the membership functions for the purpose of determining the linguistic value of a given variable, a simple example is provided. Let the crisp input value for the effluent quality management linguistic variable be \(x = 57 \) in a universe of discourse of 0 to 100. Then, according to Fig. 3, an input of 57 generates two membership functions \(\mu_{AC}(x_i) \), viz. \(\mu_1 = 0.686 \) in the fuzzy set labelled Good and \(\mu_2 = 0.150 \) in the set labelled Fair. Note that the rest of linguistic values Poor and Excellent each had a membership function of zero. By applying the max-min fuzzy inferencing algorithm (Lee, 1990) where the membership function values are \(\mu_1 = 0.686 \) and \(\mu_2 = 0.150 \), then the linguistic value was determined as Fair (\(\text{Min } [(0.686, 0.150)] =0.150 \)).

2.4.2 Knowledge representation
In a fuzzy rule-based modelling system, knowledge is represented by use of linguistic IF-THEN rules. Ultimately, this renders the knowledge library (base) the core of the system.
and, the breadth and quality of the knowledge determine the capacity of the system to render useful intelligent decision support. Generically, the premise and conclusion parts of the fuzzy rules are of the form:

\[R(l): \text{IF } x_1 \text{ is } F_{l1} \text{ AND... } x_n \text{ is } F_{ln}, \]

\[\text{THEN } y \text{ is } G_l \] \hspace{1cm} (4)

where \(F_{li} \) and \(G_l \) are fuzzy sets, \(x = (x_1, \ldots, x_n)^T \in U \) and \(y \in V \) are linguistic input and output variables, respectively, with \(l = 1, 2, \ldots, M \). Practically, the fuzzy IF-THEN rules provide a convenient framework for incorporating human experts’ knowledge in fuzzy expert systems. Each fuzzy IF–THEN rule (Eq. 4) defines fuzzy set \(F_{l1} \times \cdots \times F_{ln} \Rightarrow G_l \) in the product space \(U \times V \).

The knowledge necessary for decision making regarding WM in the wine industry was encapsulated in several rule bases with a total of 152 rules. Additionally, the rules were systematically encoded into different hierarchically interlinked rule bases to ensure their easy accessibility at different levels of the decision support execution, and on the other hand, to minimize the overall number of rules in the rule bases. The design of hierarchically interlinked rule bases is analogous to consulting several experts on a certain problem, to derive a final conclusion that takes into account each individual opinion. The model is flexible, robust, and allows the user to choose initial values or adjust the rules in any knowledge base on the basis of operational realities related to the vinification process or processes under scrutiny. Notably, the use of few IF-THEN rules has the merit of aiding in validating the functionality and the contribution of each rule in a given rule base.

2.4.3 Fuzzy inferencing

The core of decision making in a fuzzy logic system is the inference engine. Fuzzy inferencing is used to derive an aggregated output from a particular knowledge base using the rules coded in specific rule bases. In practice, many fuzzy inferencing methods have been developed, with the so-called max-min and max-dot or max-prod (Lee, 1990; Mendel, 1995; Yen & Lugari, 1998) being the most popular. In this case the max-min fuzzy inferencing algorithm proposed by Mamdani & Assilian (1999) was applied. According to the Mamdani-Assilian inferencing algorithm, the truth values of the fuzzy output variables are clipped, such that the area under the clip line determines the outcome of the rule. Finally, a defuzzifier converts the fuzzy aggregate membership grades generated from the inference engine into non-fuzzy output values. Again, there are various approaches to defuzzification (Mazumoto, 1995; Mendel, 1995). The most common is Yager’s centroidal method (Yager, 1980), and was applied in this study because of its sensitivity in comparison to other techniques (Yager & Zadeh, 1992).

To illustrate how the fuzzy inference system aided in diagnosing the WM in the industry, a brief description of its salient features and functionalities are presented. Notably, each of the four knowledge sub-modules had a set of features in the form of data, information, and knowledge stored in various interlinked data bases and rule bases as described in Section 3. The hierarchical reasoning structure of each knowledge sub-module can be generically summarized as follows:

1. The linguistic set of strategies/actions were transformed through qualitative reasoning, as well as ranking and screening processes into dimensionless scores at the first hierarchical level (Level-III) of each knowledge sub-module (Fig. 1) using Eqs. 1 and 2.
2. The qualitative or linguistic strategies/actions were broadly grouped into two or three fuzzy linguistic input variables. For example, strategies affecting the effluent quantity were aggregated into three linguistic input variables, viz. organic matter removal, equipment efficiency, and effluent quantity (volume) management. These linguistic variables were used in evaluating the targeted system output (e.g. effluent quantity) at various hierarchical levels of a given knowledge sub-module (see Figs. 2 and 6).

3. The inference for computing the crisp numerical input variable values was performed through solving a series of algebraic summation equations in a specific knowledge sub-module. For instance, to evaluate the degree of product and by-products recovery Eqs. 9 and 10 (in Section 3) were used to compute the fuzzy crisp inputs for the organic material recovery and the general management variables, respectively.

4. The crisp inputs derived in step 3 for a given targeted system output (e.g. chemical usage or effluent quality) were fed automatically into the fuzzy model to derive a final aggregated and ranked output depending on a given set of user’s specified inputs. Note that the final fuzzy model crisp output signified a measure of given winery’s performance with respect to the targeted system output such as chemical usage, effluent quality, etc.

To illustrate the system’s functionality, let’s consider the data and knowledge stored for evaluating product and by-products recovery before wet cleaning and sanitization processes. Assume that from steps 1 to 3, the product and by-products recovery (PBR) and generic management crisp values were computed as 0.48 and 55% in their respective domains of discourse. After coding the crisp input values into the fuzzy product and by-products recovery rule base module – resulted in firing four IF-THEN rules in the rule base as shown in Fig. 4. To infer the final system output, first, each of the four activated rules had to be evaluated individually. The linguistic rules and the evaluation findings are as follows:

Rule #10: IF PBR is Moderate AND Generic management is Good
THEN Effective PBR\textsubscript{eff} is Moderate
EVALUATION: Min (0.30, 0.57) = 0.30

Rule #11: IF PBR is Moderate AND Generic management is Fair
THEN Effective PBR\textsubscript{eff} is Low
EVALUATION: Min (0.30, 0.25) = 0.25

Rule #14: IF PBR is Low AND Generic management is Good
THEN Effective PBR\textsubscript{eff} is Low
EVALUATION: Min (0.96, 0.57) = 0.57

Rule #15: IF PMR is Low AND Generic management is Fair
THEN Effective PBR\textsubscript{eff} is Low
EVALUATION: Min (0.96, 0.25) = 0.25

The fuzzy model through fuzzification process derived the evaluation results as follows. A PBR input of 0.48 produced 0.96 and 0.30 degrees of membership in the fuzzy sets Low and Moderate, respectively. Similarly, a crisp input of 55% for the generic management variable yielded membership degrees of 0.25 and 0.57 in the fuzzy sets Fair and Good, respectively. The clipped membership functions derived from the four activated rules in the rule base
Fig. 4. Fuzzy inferencing mechanism using Mamdani-Assilian model to evaluate the product and by-products recovery (PBR) with two input-variables, and four activated rules. The aggregated system numerical output of the four fuzzy sets signified an overall estimation of the recovered product and by-products, and was determined using the disjunction (max) operator based on the Yager’s centroidal defuzzification method given by the expression:

\[Z^* = \frac{\sum_{j=1}^{n} \mu(\omega_j) \omega_j}{\sum_{j=1}^{n} \mu(\omega_j)} \quad (5) \]

Applying Eq. 5 on the four fuzzy set outputs yielded a crisp output of 0.393 which was linguistically ranked as Low recovery of product and by-products.

3. Intelligent decision support system development

A systematic methodology for data acquisition as well as knowledge inferencing and manipulation was developed for the purpose of representing diverse findings concerning different aspects of WM in the wine industry. The unique protocol for data handling was essential to ensure that the final findings were transparently computed, hence, could easily be interpreted by the targeted end-users. Generically, the development of an intelligent decision support system comprised of three steps, namely knowledge acquisition, knowledge representation, and inference mechanism. In the following sections, salient aspects on each of the above steps in the context of WM in the wine industry are summarized.

3.1 Knowledge acquisition

Knowledge acquisition entailed the sourcing of data, information and knowledge concerning WM in the wine industry. The knowledge was manually collected through conducting interviews with experts and extensive literature reviews. The knowledge was
broadly classified as generic knowledge (GK) or specific knowledge (SK) (Fig. 5). The GK comprised of WM techniques and practices that were universally applicable to a wide range of processes and unit operations owing to their repetitive (routine) character. Conversely, SK focused on WM techniques and strategies for specific process or unit operation, and particularly targeting the intrinsic waste streams (Musee et al., 2007).

Fig. 5. Data and knowledge sources, knowledge type accessible, and knowledge acquisition for WM in the wine industry.

Equally important, the strategies for either knowledge type (SK or GK) were dependent on the target output under consideration. For instance, the knowledge-type strategies for evaluating the products and by-products recovery were different from those of effluent quality both in the case of intrinsic or extrinsic waste streams. The combining of generic and specific knowledge types and exploitation of the synergies between them lead to the development of rule bases that captured a good degree of WM strategies in the context of the wine industry. Only the knowledge in product and by-products sub-module, as well as effluent quantity sub-module are briefly described in the following sections.

3.1.1 Products and by-products losses/recovery sub-module
Solid wastes from the vinification processes contain commercially valuable products (wine) and by-products. However, depending on the way the solid waste streams are handled, either the products/by-products recovery can be optimized, or huge losses are incurred. The degree of product and by-product recovery is dependent on the vinification processes and unit operations under consideration, or the vinification season (vintage or non-vintage). As a result, the loss of the product and by-products has a direct impact on the final effluent quality and quantity as they resulted into the liquid waste streams – mainly the wastewater.

In order to compute the degree of product and by-products recovery in a given vinification process, strategies related to intrinsic and extrinsic factors, the vintage season, and experts’ estimations of relative contribution of the potential losses for each process under scrutiny – were taken into account. Notably, only strategies that had a direct link to recovery, or loss of the products or by-products were taken into account in this sub-module. Experts were asked to provide an estimation of product and by-products overall impact on the quality and quantity of the effluent on a scale of zero to one. An example of heuristics from two experts is presented in Table 2. The values were estimates in relative terms between different
processes and unit operations on the basis of a given expert’s opinion. During the computation of the final product and by-products the average of values of the six experts who provided inputs were used, for the vintage and non-vintage seasons.

Process/unit operations	Effluent quantity	Effluent quality				
	Vintage	Non-vintage				
	EP1	EP2	EP1	EP2	EP1	EP2
Crushing/destemming	0.10	0.25	0.00	0.00	0.15	0.30
Wine transfers	0.25	0.15	0.35	0.25	0.30	0.10
Filtration	0.15	0.10	0.20	0.25	0.10	0.10
Pressing	0.20	0.20	0.15	0.15	0.15	0.30
Fermentation	0.25	0.25	0.20	0.20	0.25	0.20
Bottling/packing	0.05	0.05	0.10	0.15	0.05	0.10
Sum of weights	1.00	1.00	1.00	1.00	1.00	1.00

Table 2. Two experts’ approximation concerning potential losses of product and by-products under different processes and vinification seasons. Note: Values are based on South Africa vinification processes, EP: expert opinion.

An estimation of the quantities of products and by-products recovered during a given season was computed as follows. First, qualitatively the degree to which the generic and specific strategies were implemented in a given facility was evaluated using the qualitative reasoning approach. Secondly, the computed values owing to generic and specific implementation of the strategies were added. The additive value was taken as an indication of the degree to which product and by-products were recovered from surfaces and equipment before wet cleaning and sanitization processes commenced. Thirdly, to ensure uniformity and interpretability of values in a given process or unit operation, and consequently in the entire vinification process, the computed values were normalized. For example, assume for process i, the values obtained after the implementation of the generic and specific strategies are \(A_i \) and \(B_i \), respectively. Then, the normalized value \(N_i \) for process i is given by the expression:

\[
N_i = \frac{A_i + B_i}{A_{it} + B_{it}}
\]

where \(A_{it} \) and \(B_{it} \) are the maximum values if all the generic and specific strategies were adequately implemented in process i.

Thus, the total recovery of products and by-products (PBR) for the entire vinification process is approximated by a linearly weighted expression:

\[
PBR = \sum_{i=1}^{6} (N_{is} \beta_i)
\]

where PBR is the total recovered product and by-products from all processes and unit operations in season \(s \) defined in the range 0 to 1. Zero means no recovery, hence maximum losses whereas one implies maximum recovery of the product and by-products. \(\beta_i \) is the weight specified by the waste management experts in the wine industry for processes i (i=1, 2, ..., 6) during season s (s = 1 (vintage), 2 (non-vintage)) satisfying the condition:
\[
\beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_6 = 1 \tag{8}
\]

Note that processes \(i (i = 1, 2, \ldots, 6)\) represent crushing and destemming, transfer systems, filtration, pressing, fermentation, and bottling and packing processes, respectively. \(N_{is}\) is an index in the range \((0 \leq N_{is} \leq 1)\) representing the recovered organic material in a specific process \(i\) before wet cleaning starts and is computed using the relation:

\[
N_{is} = \frac{\sum_{i=1}^{n} (W_{nA} \times CF_k) + \sum_{i=1}^{m} (W_{mB} \times CF_k)}{\text{Max} \left(\sum_{i=1}^{n} (W_{nA} \times CF_k) + \sum_{i=1}^{m} (W_{mB} \times CF_k)\right)} \tag{9}
\]

where \(W\) is the dimensionless score assigned to the qualitative values of each strategy; \(A\) symbolizes specific strategies; \(B\) symbolizes generic strategies; \(n\) is the number of specific strategies considered in process \(i\); and \(m\) is the number of generic strategies considered to improve product and by-products recovery in all processes and unit operations under consideration; \(CF_k\) is a measure of the degree of belief the user has on a given response regarding a particular practice or strategy; \(k = 1; 2; 3\) whose values were fixed at 1.00, 0.75, and 0.50, respectively.

A schematic representation of computations for ranking the product and by-products recovery in a given season is shown in Fig. 6. The generic and specific knowledge derived for the product and by-products recovery sub-module are presented in Tables 3 and 4, respectively. The second variable that exerted influence on the product and by-products recovery is the generic management (\(GM_{PBR}\)). This variable was determined by qualitatively evaluating the last four strategies in Table 3. \(GM_{PBR}\) was evaluated and normalized using the expression:

\[
GM_{PBR} = \frac{\sum_{i=1}^{q} (W_{qC} \times CF_k)}{\text{Max} \left(\sum_{i=1}^{q} (W_{qC} \times CF_k)\right)} \times 100 \tag{10}
\]

\(GM_{PBR}\) was defined in the discourse of 0 to 100. The value 0 represents the worst management scenario, while 100 imply the best management attainable in a specific facility. In real plant practices, overall effective product and by-products recovery is a function of PBR (operating and technological solutions) and \(GM_{PBR}\) (management-related aspects) variables. Since both variables contain uncertainty (vagueness) and are linguistically quantified, the overall effective product and by-products recovery was evaluated using the fuzzy mathematical formalism of the form:

\[
PBR_{\text{eff}} = f \left(PBR, GM_{PBR} \right) \tag{11}
\]

where \(f\) is a fuzzy logic function, \(PBR_{\text{eff}}\) is defined in the range 0 to 1, such that 0 represents a scenario where no recovery of product and by-products takes place before wet cleaning occurs while 1 signifies the best case scenario representing optimal recovery of product and by-products.
Table 3. The rankings of the generic strategies influencing the recovery and handling of product and by-products for intrinsic wastes.

Influencing factors	Qualitative levels of action	WMI	Rank
Prevention/and or reduction of products and byproducts dispersion.	Effective	100.451	2
Institutionalization of process procedures for waste dispersion elimination/and dispersion.	Fair	100,355	3
Percentage of waste streams segregation.	Low	75,292	4
Frequency of spillages, leakages, incidentals and accidents during the operations.	High (65-100%)	50,513	6
Levels of progressive prioritization of education on waste management in a winery at the following personnel: Senior management.	High	1c	
	Medium		
	Low		
Skilled workers.	High	75,241	5
	Medium		
	Low		
Unskilled workers.	High		
	Medium		
	Low		
Levels maintenance of facilities and equipment.	Routinely done	25,155	7
Time lapse between end of a process or operation and commencement of products and byproducts recovery.	Often done		
	Irregularly/not done		
	Immediately		
	After sometime		
	After long time		

3.1.2 Effluent quantity (volume) sub-module

Fig. 7 depicts a hierarchical model for evaluating the effluent quantity generated during the cleaning and sanitization processes in a winery. The aggregated effluent quantity is a function of three linguistic variables, namely: the organic matter removal (OMR<s>o</s>), equipment efficiency (EE^e), and effluent quantity (volume) management (M^v). The strategies influencing effluent management are summarised in Table 5. The effluent quantity management variable (M^v) is a function of generic effluent quantity management (M_{GVEQ}) and the generic management of product and by-products (GM_{PBR}) variable at Level-II as depicted in Fig. 7.

¹ WMI: waste minimization index discussed in section 2.2; ² Ranking was used to facilitate the process of assigning dimensionless scores to aid in the evaluation of the degree to which product and by-products were recovered from a given process or unit operation. ³ The extent to which various strategies were effectively implemented in a winery for minimizing or eliminating waste as function of training and awareness of personnel at all levels. The training and education factor was ranked as the most significant in this category based on expertise knowledge.
Note that the crisp numerical value for the generic effluent quantity management, \(M_{g,v} \), is defined as:

\[
M_{g,v} = \frac{\sum_{i=1}^{n} (W_{ns} \times CF_i)}{\max \left(\sum_{i=1}^{ns} (W'_{ns} \times CF_i) \right)} \times 100 \tag{12}
\]

\(M_{g,v} \) is defined in the range 0 to 100. 0 implies the worst management scenario whereas 100 signifies the best effluent quantity management achievable in a given winery; \(W_{ns} \) is a dimensionless score for the \(i \)th strategy, \(i = 1; 2; 3; \ldots n \) in season \(s \).

The generic management of product and by-products (\(GMP_{PB} \)) is computed using Eq. 10. Therefore, the effective effluent quantity management linguistic variable, \(M_e \), is defined by the relation;
Influencing factors	Qualitative levels of action	WMI^a	Ra
1. Crushing and destemming			
Condition of grapes at the time of delivery.	Low quality	100,334	2
	Moderate quality		
	High quality		
Temperature of grapes at the time of delivery.	Low temp. \(T \leq 20^\circ C \)	50,253	4
	High temp. \(20^\circ C < T < 30^\circ C \)		
	Very high temp. \(T \geq 30^\circ C \)		
Frequency of dedicating lines of destemming and crushing on the basis of different cultivars.	High	100,355	1
	Moderate		
	Low/low		
Gauge level of site communication during the unloading of grapes.	Highly effective	100,355	1
	Moderately		
	Poorly coordinated		
Effectiveness in terms of grapes delivery to reduce start-up and shut-up wastes.	Continuous delivery	50,255	3
	< 30 min. lag		
	> 30 min. lag		
2. Piping and transfer systems	Low/none	50,221	3
Percentage approximation of pipes inclined horizontally to enhance products and byproducts flow.	Medium		
Estimate the overall piping line distances in your facility.	High		
	None/very short		
	Modest to long		
	Very long lines		
Extend use of pneumatic/mechanical systems for recovery of products and byproducts in piping and transfer systems.	Extensively used	67,212	2
Nature of pipe joints (nature of joints determines the possibility of using pigging techniques for recovery of products and byproducts).	Often used		
	Routinely done		
	Screwed connect.		
	Screwed and welded		
	Welded connection.	67,282	1
3. Filtration process	Very effective		
Level of effectiveness of separation process of wine and constituent solids.	Moderately effective	75,355	2
	Not effective		7
	High	67,363	4
Estimated efficiency of handling filtration cakes/filtrates during and after the process.	Moderate		
	Released on floor		
	Often reuse		
	Very limited reuse	67,354	3
	No reuse		
Reuse of filter cakes in the next cycle of filtration or use of virgin materials every cycle.	Effectively used		
	Often used	100,255	1
	Not used at all		
Use of alternative filtration techniques such as centrifuges and optimal capture in place of diatomaceous earth.			

Table 4. continued ...
Table 4. Rankings of the specific strategies influencing the recovery and handling of product and by-products of intrinsic wastes, under each process or unit operation.

Influencing factors	Qualitative levels of action	WMI	Rank
Estimated efficiency of handling filtration cakes/filtrates during and after the process.	Moderately effective 75,355 2		
	Not effective		3
Reuse of filter cakes in the next cycle of filtration or use of virgin materials every cycle.	High 67,383 4		
	Moderate		3
	Released on floor		3
	Often reuse		3
	Very limited reuse		3
	No reuse		3
	Effectively used		3
	Often used		3
	Not used at all		3
Use of alternative filtration techniques such as centrifuges and optimal capture in place of diatomaceous earth.	Low efficiency 50,311 1		
	Moderately Efficient		2
	High Efficiency		2
	Effective		2
	Fairly effective		2
	Cumbersome		2
4. Pressing process	Low efficiency		
	Moderately Efficient		
	High Efficiency		
	Effective		
	Fairly effective		
	Cumbersome		
Level of efficiency for the pressing equipment in your facility.	Correctly done		
	Often done		
	Unknown		
Levels of effectiveness in discharging solids from pressing equipment.	Highly effective		
	Moderately		
	Poorly coordinated		
	Very rough		
	Fairly rough		
	Smooth		
5. Fermentation process	Appropriateness of filling wine to reduce spills and losses.		2
	Correctly done		2
	Often done		2
	Unknown		2
To what degree of fermentation yeast recovered for reuse or resell to pharmaceutical companies.	Highly effective		2
	Moderately		2
	Poorly coordinated		2
	Very rough		2
	Fairly rough		2
	Smooth		2
Indicate the degree of tanks surface roughness used for wine fermentation.			
6. Bottling and packaging	Indicate level of effectiveness in the use of labelling glue during labelling of bottles.		2
	Effectively used		2
	Fair effectiveness		2
	None/often		2
How often are the spills and overfills during the bottling process.	Always		2
	Often		2
	None/often		2

Table 4. Rankings of the specific strategies influencing the recovery and handling of product and by-products of intrinsic wastes, under each process or unit operation.

Symbols and ranking criteria is the same as in Table 3.
Table 5. The rankings and assignment of dimensionless scores for the generic strategies that influences the effluent quality and quantity during vinification.

Influencing strategies	Qualitative states	WMI	Rank	DS*	EV\(^b\)	EQ\(^c\)
Input substitution						
The degree of using steam and hot water for the cleaning and sanitization in your facility.	Highly used	11.00	2.75			
In your facility.	Moderately used	5.50	5.50			
Indicate the quality of water for cleaning and sanitation processes.	None/un often	2.75	11.00			
Denote the quality of water for cleaning and sanitation processes.	High quality	6.00	8.00			
Indicate the quality of water for cleaning and sanitation processes.	Moderate quality	3.00	3.00			
Indicate the quality of water for cleaning and sanitation processes.	Low quality	1.50	1.50			
Extent of using hazardous/toxic chemicals during cleaning/sanitization processes.	Not at all	4.00	4.00			
In small quantities	In large quantities	2.00	2.00			
Technological modifications						
The degree of roughness of the internal surfaces of tanks.	Very rough	2.50	2.50			
	Fairly rough	73.32		5.00		
	Smooth	10.00	10.00			
Modification of equipment to ease cleaning processes in the facility.	Not done	0.75	0.75			
	Few done	1.50	1.50			
	Many undertaken	3.00	3.00			
Indicate the efficiency of the chemical dosing equipment.	Inefficient	1.25	1.25			
	Moderately efficient	2.50	2.50			
	Very efficient	5.00	5.00			
Operating practices						
Define the degree of effluent streams segregation to optimize water and chemicals recovery.	Effectively	1.00	1.50			
	Moderately	0.50	3.00			
	None/ineffectively	0.25	8.00			
Define the degree of scheduling improvements on the batch operations undertaken to optimize water and chemical usage.	Highly optimized	12.00	12.00			
	Fairly optimized	6.00	8.00			
	Not optimized	3.00	3.00			
	Inefficient	1.75	1.75			
Indicate the level of emergency and cleanup preparedness in your facility in case of spills, leakages, incidentals and accidents.	Moderately efficient	3.50	3.50			
	Very efficient	7.00	7.00			
Indicate degree of counter current method application for cleaning equipment & surfaces in your facility.	Effectively	9.00	2.25			
	Partially	4.50	4.50			
	Not used	2.25	9.00			
State time lapse between end of a process/operation and the start of cleaning operations.	Immediately	8.00	8.00			
	After sometime	4.00	4.00			
	After a long time	2.00	2.00			
Reuse and recycling of materials						
Indicate percentage of water reuse/recycling undertaken in your facility.	High (over 60%)	2.00	1.25			
	Low/medium (30-60%)	0.50	5.00			
	None/low (under 30%)	1.00	2.50			

\(^3\) DS: Dimensionless scores; \(^b\) EV: Effluent quantity; \(^c\) EQ: Effluent quality
where \(M_v \) is defined in the range 0 to 100, where 0 implies the worst effluent quantity management in a winery, while 100 signifies excellent effluent quantity management. In this study, what is regarded as organic matter removal (OMRs) in winery operations is generically referred herein as product and by-products recovery, and has been discussed in section 3.1.1. Therefore, taking OMRs in variable Level-IV (see Fig. 7) to be equivalent to \(PBR_{\text{eff}} \) in variable Level-III, then the crisp numerical input value for this variable was computed by multiplying Eq. 11 by 10 to express the OMRs values in the range of 0 to 10. The expression for evaluating OMRs is:

\[
\text{OMRs} = PBR_{\text{eff}} \times 10
\]

(14)

At Variable Level-IV, the last important variable also influencing the final effluent quantity is the efficiency of the equipment used for cleaning and sanitization purposes. Therefore, the equipment efficiency was used as a measure of the water, or steam quantity delivered from the equipment per unit time. The cleaning equipment with high efficiency (e.g. high pressure cleaners) had the merit of reducing the effluent quantity generated per unit time. However, if the organic matter were present on the surfaces and equipment being cleaned, then the high efficiency of the cleaning equipment would have had a negative impact on the resultant effluent quality. This is because high concentrations of organic matter and chemicals in the effluent degrades its quality. On the other hand, if the equipment efficiency were low, there was likelihood of effluent quality being high, owing to dilution. These heuristics were used to model the equipment efficiency in relation to its potential impacts on the effluent quantity, as well as effluent quality. The crisp numerical input of the cleaning efficiency (EEv) variable in Variable Level-IV was estimated using the heuristics mentioned above, and the fact that optimal efficiency of cleaning equipment ranges between 60 to 70%. Thus, EEv was computed using the expression:

\[
\text{EEv} = K_v \times \text{CFR}
\]

(15)

where \(K_v \) is a constant and a function of the cleaning equipment used with respect to its influence on the effluent quality. A summary of the \(K_v \) values is presented in Table 6. CFR represents the degree of belief the user has on the cleaning equipment efficiency under use; \(R = 1, 2, \ldots, 6 \) with values fixed at 1.0; 0.9; 0.8; 0.7; 0.6; and 0.5, correspondingly. Note that EEv ranged from 0 to 100, where 0 signified the lowest equipment efficiency 100 implied the highest efficiency. Thus, the resultant effluent quantity generated (V) was evaluated using the results obtained from Eqs. 12-15 given by the expression:

\[
V = f(M_v, \text{OMRs}, \text{EEv})
\]

(16)

V was defined in the range 0 to 1, where 0 represented the best case scenario signifying prudent management of potable water through an integrated management of the influencing factors, whilst 1 implied the worst case scenario representing large effluent quantities of water generated during the cleaning and sanitizing processes. Similar equations were developed for the chemical usage and quality of effluent generated during the vinification process (Musee, 2004a).
Table 6. K values for modelling the cleaning equipment efficiency effect on final effluent quality and effluent quantity\(^4\).

3.1.3 System architecture

The architecture of the proposed knowledge-based decision support systems (KBDSS) is depicted in Fig. 8. The design of the architecture was based on two factors. Firstly, to ensure that it can handle the diverse, qualitative, and incomplete knowledge essential for decision making with respect to WM in the wine industry. And secondly, to guarantee system flexibility in terms of the ability to accommodate future expansions and incorporation of additional features, new tasks, new knowledge and information without restructuring and developing the entire system code from scratch. The former challenge was addressed by using a hybrid of expert systems and fuzzy logic, while the latter was achieved by designing the system using a modular approach. The system structure comprised of four components, namely; the knowledge base (rule base and data base), graphical user interface (GUI), fuzzy inference engine, and the knowledge acquisition and maintenance module. Fig. 8 illustrates the structure and information flow in the fuzzy logic expert system from a top level modular approach.

The knowledge base consisted of the rule base and the data base. The data base management module entailed managing and combining different kinds of knowledge stored in the system in form of generic knowledge, specific knowledge, mathematical models, or in the if-then rule format. The mathematical models module was used to compute the crisp numerical values which served as decision input variables into the fuzzy inference mechanism module. Easy access and interactions between the data base, rule base and the inference engine facilitated the identification of a solution dependent on user inputs, as well as preloaded knowledge stored in various rule bases. In this case, the fuzzy rule base was designed to evaluate different system outputs classified as functional groups, viz. effluent quality, effluent quantity, chemical consumption, and effectiveness of handling intrinsic oriented wastes. The if-then rules under each module were associated with effluent quality (48), effluent quantity (48), chemical consumption (36), and product and by-products recovery (20).

\(^4\) \(K_q\): The constant used in computing the efficiency of the cleaning equipment when considering the effluent quality; \(K_v\): The constant used in computing the efficiency of the cleaning equipment when considering the effluent volume.
4. Results and discussions

In this section, the functionality of the proposed decision support system is illustrated by use of two case studies, viz.; the product and by-products recovery and the effluent quantity system outputs. Under each system output, the decision support system’s ability to diagnose WM in the wine industry will be demonstrated by examining the final specific outputs under different user defined operational conditions. The derivation of the system results was executed in accordance to the defined procedure described in section 2.4.3.

4.1 Evaluation of product and by-products recovery

Generally there is no unique solution in terms of product and by-products recovery during vinification, owing to the complexity of interactions among different processes and human actions, as well as spatial and temporal factors. Nonetheless, the actions of operators and WM strategies adopted by the management were ranked as the most influential factors on the overall product and by-products recovery. The evaluation of product and by-products recovery required 29 inputs distributed as follows: Four generic, 20 specific and five management-related strategies (Tables 3 and 4). The system inputs for four different runs based on the user’s responses, as well as degrees of confidence on each response are
summarized in Table 7. Also, the screening and ranking index was applied in each set of specific and generic strategies to ensure that the dimensionless scores assigned reflected the relative importance of each strategy towards the recovery of product and by-products in a given process or unit operation (Tables 3 and 4).

To demonstrate how the proposed algorithm was applied in diagnosing WM in terms of product and by-products recovery, consider the inputs presented in Table 7. Under each run, the contribution of each process or unit operation for the product and by-products recovery was computed and normalized on a scale of 0 to 1 using Eq. 9. For instance, during the pressing process the inputs for the generic and specific strategies yielded scores of 10.500 and 7.125, respectively, under Run 1. The computed values were then normalized to determine the effective contribution of the pressing process to the overall recovery of product and by-products, and yielded a value of 0.5508 (using Eq. 9).

The procedure was repeated in the rest of the processes, and the results are summarized in Table 8. To determine the overall weighted recovery of product and by-products in the vintage season (PBRv), the computed values from each process (derived using Eq. 9) were multiplied with the experts’ weightings using Eq. 7. For Run 1, the computation yielded a value of 0.5603. On the other hand, the generic waste management linguistic variable (GM) for handling product and by-products recovery was evaluated using Eq. 10. The GM value based on Run 1 user inputs yielded an aggregated value of 45.35\%. Consequently, under Run 1, the crisp input values to the fuzzy model (Fig. 6) for the PBRv and GM were 0.5603 and 45.35\%, respectively. These crisp inputs were evaluated in a fuzzy model (using Eq. 11) in a rule base of 20 if-then rules and yielded a fuzzy effective product and by-products recovery (PBRv eff) of 0.345, which was linguistically ranked as Low.

The product and by-products recovery ranked as Low under Run 1 implies large losses of wine and other potential feedstock materials for recovering by-products – eventually ending up into the wastewater streams. Consequently, the effluent quality and effluent quantity are likely to be impacted negatively. For instance, the wine and its associated solid waste streams – reduce the quality of the effluent – as evidenced by high chemical oxygen demand and suspended solids in various wastewater streams. Also, it may lead to high use of cleaning water to remove wine residues and other solids from equipment surfaces. A similar methodology was applied in Runs 2 to 4 and the results are presented in Table 8 based on the specified users’ inputs presented in Table 7. Under Run 2, the crisp inputs computed for the GM and PBRv linguistic variables were 0.67 (on a scale of 0–1) and 80\% (on a scale of 0–100), respectively. These crisp input values were fed into the fuzzy model, resulting in the GM and PBRv variables being linguistically labelled as Good and Very High, respectively, according to the rule base shown in Fig. 4. The defuzzified modular numerical output for the effective PBRv eff was 0.910, and linguistically labelled as Very High. This signifies the merit of adopting an integrated approach in implementing WM strategies during wine production.

By comparing the simulation results in Run 1 and Run 3, one would expect a higher recovery for the product and by-products in Run 1. However, this is not the case, because experience has shown that wineries where the management is rated as Good (as in Run 3) there is a higher possibility of improving product and by-products recovery than in situations where it is ranked Poor (as in Run 1). Thus, the fuzzy rules were designed to reflect this practical reality, which may otherwise be impossible to account for using data driven deterministic approaches. In addition, this also illustrates the necessity for training of personnel and ensuring good operating practices in order to enhance effective WM in the...
Table 7. User’s inputs for evaluating product and by-products recovery during the vintage season

Qualitative factors	Run 1	Run 2	Run 3	Run 4
Generic Equip. factors				
Dispersion reduction	M(1.00)	H(0.75)	L(1.00)	L(0.50)
Enforcement of procedures	H(0.75)	H(1.00)	M(0.75)	L(1.00)
Streams segregation	M(1.00)	L(0.50)	H(1.00)	M(0.75)
Spills, leaks, etc frequency	L(1.00)	M(1.00)	M(1.00)	M(1.00)
Specific factors				
Crushers and destemmers				
Grapes condition	M(0.75)	M(1.00)	L(1.00)	M(1.00)
Grapes temperature	H(1.00)	M(0.5)	M(1.00)	H(0.50)
Lines dedication	M(1.00)	H(1.00)	M(0.75)	M(0.75)
Site communications	M(0.75)	H(0.75)	H(1.00)	L(1.00)
Grapes deliveries	H(0.75)	M(1.00)	M(0.50)	L(1.00)
Pipe and transfer systems				
% of inclined pipes	H(1.00)	M(1.00)	L(0.50)	M(0.75)
Overall piping lengths	M(0.75)	M(0.75)	H(0.50)	M(0.50)
Mechanical recoveries	H(0.75)	H(1.00)	M(1.00)	L(1.00)
Type of pipe joints	L(1.00)	H(0.75)	M(0.75)	H(0.75)
Filtration process				
Effectiveness of separation	M(0.75)	M(1.00)	M(0.50)	L(0.50)
Handling eff. of filtration cakes	H(0.50)	H(0.75)	L(1.00)	L(1.00)
Reuse of filter cakes	L(1.00)	M(0.75)	H(1.00)	M(1.00)
Alt. filtration methods	H(1.00)	H(1.00)	H(0.50)	M(0.50)
Pressing Process				
Pressing equip. efficiency	H(0.75)	H(1.00)	M(0.75)	M(1.00)
Eff. of solids discharge	M(0.75)	H(0.75)	M(0.75)	L(1.00)
Fermentation process				
Wine filling in fermentors	M(0.50)	H(0.75)	M(1.00)	H(1.00)
Yeast recovery from fermentors	H(1.00)	M(0.50)	H(0.50)	M(0.75)
Roughness of tank surfaces	M(0.75)	H(0.75)	M(0.75)	L(1.00)
Bottling and packaging				
Eff. of using glue	H(0.50)	M(0.75)	M(0.50)	L(1.00)
Reduction of spills	H(1.00)	H(1.00)	L(1.00)	H(0.50)
Generic Man. factors				
Training & awareness				
• SM^a	M(0.50)	H(1.00)	H(0.75)	H(0.50)
• SW^b	H(0.75)	H(0.75)	H(1.00)	M(1.00)
• UW^c	M(0.75)	M(1.00)	L(1.00)	M(0.75)
Equipment maintenance	H(0.50)	H(0.75)	M(1.00)	L(0.50)
Time lag period	M(1.00)	H(0.75)	M(0.75)	H(0.50)

Table 7. User’s inputs for evaluating product and by-products recovery during the vintage season⁵.

⁵ All the user inputs are ranked as High (H), Medium (M), and Low (L) for simplicity purposes; ^a Senior management; ^b Skilled workers; ^c Unskilled workers.
Table 8. System outputs for product and by-products recovery based on inputs in Table 7.

Process/operation	Tabulated values	Run 1	Run 2	Run 3	Run 4
Crushing & destemming (CD)	CD_g	4.1250	5.1875	3.7500	2.1875
	CD_s	4.2500	5.2500	4.0000	3.0000
	CD_{ef}	0.5234	0.6523	0.4844	0.3242
Piping & transfer systems (TL)	TL_g	10.750	13.250	9.5000	5.3750
	TL_s	12.125	14.125	7.3750	8.6250
	TL_{ef}	0.5719	0.6844	0.4210	0.3500
Filtration (F)	F_g	5.5000	6.7500	4.6250	2.5000
	F_s	9.0000	10.250	6.5000	3.5000
	F_{ef}	0.6042	0.7983	0.4635	0.2500
Pressing (P)	P_g	10.500	12.750	9.0000	4.8750
	P_s	7.1250	11.250	4.8750	4.7500
	P_{ef}	0.5508	0.7500	0.4436	0.3008
Fermentation (FE)	FE_g	9.5000	11.300	8.8750	5.0000
	FE_s	12.250	12.500	10.250	12.500
	FE_{ef}	0.5437	0.6000	0.4781	0.4375
Bottling & packaging (BP)	BP_g	2.5000	3.1250	2.3750	1.3750
	BP_s	2.5000	2.3750	0.7500	1.2500
	BP_{ef}	0.6250	0.6675	0.3906	0.3281
Generic management	GM (%)	45.349	80.233	65.698	44.186
Computed PBR^e	PBR^{ev}	0.5603	0.6709	0.4497	0.3495
Fuzzy inference output	PBR^{ef}	0.3450	0.9185	0.5490	0.0994

Table 8. System outputs for product and by-products recovery based on inputs in Table 7.

wine industry. Under Run 4, the system ranking indicates a Very Low recovery of product and by-products owing to Very Low (0.35) aggregated value for PBR^v and Fair (44%) rated generic management. To improve the performance of such a winery, it would be necessary to adopt an integrated approach in which diverse WM strategies - are implemented simultaneously and optimally.

4.2 Evaluation of effluent quantity

The second case study illustrates the suitability of the qualitative-quantitative model proposed in this paper to address WM challenges in the wine industry focusing on the effluent quantity generated during vinification processes. The user inputs and the system aggregated outputs are presented in Table 9. The linguistic inputs of the fuzzy model were the effluent quantity management (M_v), organic matter removal (OMR_s), and equipment efficiency (EE_{ef}) – computed using Eqs. 13, 14, and 15, respectively. Nine runs were executed to illustrate the model suitability to assess WM challenges regarding effluent generation. Runs 1, 4, and 8 show ineffective implementation of WM as evidenced by the ranking of

^a g: denotes the generic factors' contribution.; ^bs: denotes the specific factors' contribution; ^cef: denotes ; the total effective contribution of a given process or unit operation; ^dGM: generic management variable.
^ePBR^v: organic matter handling during vintage season; ^fPBR^{ef}: effective organic matter handling during the vintage season ranking computed using the fuzzy if-then rules.
the effluent quantity as High or Very High. Although the inputs in each run reflected different operational conditions, the aggregated values for the final effluent quantity management (M_v) ranged between 41% and 43%, and linguistically ranked as Poor.

In addition, the cleaning equipment efficiency (EE_v) was ranked linguistically Very Low as the values for Runs 1, 4, and 8 were 40%, 21%, and 35%, respectively. This mostly likely indicates that open pipes (without nozzles) were used for cleaning purposes (see Table 6 for low K_v values). Besides, the organic matter removal from equipment and surfaces before cleaning and sanitization started was ranked Poor by the fuzzy model as evidenced by the final computed values listed in Table 9. Therefore, one way of minimizing the quantity of effluent generated under such operational scenarios represented by Runs 1, 4, and 8 is to target low cost strategies, particularly focussing on the removal of organic matter and fixing nozzles to the cleaning pipes in order to improve the cleaning equipment efficiency. Secondly, the suggested options are easy to implement and operate without need for costly training of personnel.

To illustrate the viability of the proposed alternatives using low cost alternatives, consider the simulation findings of Runs 1 and 6. The M_v was left unchanged at 0.4022 as technological modifications and finding of suitable alternative input substitutes were viewed as costly, not easy to implement, and requiring long payback periods. However, the GM variable, which is easy to implement in a winery was varied from 0.453 in Run 1 to 0.657 in Run 6, and consequently changed the M_v from 43% to 53%. Concurrently, the OMR_v and EE_v fuzzy model inputs were varied from 3.45 to 5.49, and 40% to 72% (through replacing open pipes with high pressure cleaner), respectively. The fuzzy model in Run 6 (using Eq. 16) yielded an effluent quantity linguistically labelled as Low. Therefore, easily implemented, low cost alternatives have been demonstrated to reduce the quantity of effluent during the vinification processes. Similarly, the same procedure was applied to illustrate how high quantities of effluent can be reduced in cases such as Runs 3,

Table 9. User inputs and WM analysis results for effluent quantity during the vinification under the vintage season.

Qualitative factors	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9
Input substitution (IS)	M(1.00)	H(0.75)	M(0.75)	M(0.50)	M(0.75)	M(1.00)	M(0.50)	L(0.50)	L(0.50)
Hot water/steam usage	H(0.75)	H(1.00)	H(0.75)	L(0.50)	H(0.75)	H(0.75)	L(0.50)	M(0.75)	M(0.75)
Quality of water used	M(0.50)	H(0.75)	H(1.00)	L(1.00)	H(1.00)	M(1.00)	M(0.50)	L(1.00)	H(1.00)
Hazardous and toxic chems.	M(0.50)	H(0.75)	H(1.00)	L(1.00)	H(1.00)	M(1.00)	M(0.50)	L(1.00)	H(1.00)
Technological mod. (TM)	Vessels surface roughness	M(0.50)	H(1.00)	H(0.75)	H(0.50)	H(0.75)	M(0.50)	H(0.50)	M(0.75)
equipment modifications	L(1.00)	H(0.75)	M(0.75)	L(1.00)	M(0.75)	L(1.00)	L(1.00)	L(1.00)	L(1.00)
Operating practices (OP)	M(1.00)	H(1.00)	M(0.75)	L(1.00)	M(0.75)	M(1.00)	M(1.00)	M(1.00)	M(1.00)
Degree of effluent segregation	H(0.75)	H(1.00)	H(0.75)	M(0.50)	H(0.75)	H(0.75)	M(0.50)	M(0.75)	M(0.75)
Scheduling of batch processes	H(0.75)	H(1.00)	H(0.75)	H(0.75)	L(0.75)	L(0.75)	L(0.75)	M(0.75)	M(0.75)
Equipment preparedness	M(0.75)	H(0.75)	M(1.00)	M(1.00)	M(1.00)	M(0.75)	L(1.00)	M(0.75)	M(0.75)
Counter current method appl.	H(0.50)	H(1.00)	M(0.50)	M(0.50)	M(0.50)	H(0.50)	M(0.50)	L(1.00)	L(1.00)
Time lag period	M(1.00)	H(0.75)	M(0.75)	H(0.50)	M(0.75)	M(1.00)	H(0.50)	M(0.75)	M(0.75)
% of water reuse/recycling	M(0.50)	H(1.00)	H(1.00)	H(0.50)	H(1.00)	M(0.50)	H(0.50)	L(1.00)	L(1.00)
IS_f	0.1410	0.2212	0.1619	0.0577	0.1619	0.1440	0.0577	0.0978	0.0978
TM_f	0.0737	0.2212	0.1446	0.0977	0.1146	0.0737	0.0897	0.1028	0.1028
OF_f	0.1811	0.3878	0.2872	0.2212	0.2122	0.1841	0.2212	0.1811	0.1811
RR_f	0.0064	0.0256	0.0256	0.0256	0.0256	0.0256	0.0256	0.0256	0.0256
M_v (0 – 1 range)	0.4922	0.6558	0.5993	0.3814	0.5993	0.4022	0.3814	0.3894	0.3894
GM (0-1 range)	0.4535	0.8023	0.6570	0.4429	0.8023	0.6570	0.8023	0.4535	0.4535
M_e	22.787	82.905	60.815	41.164	60.808	72.093	59.185	42.145	59.587
OMR_e	3.4500	9.1850	5.4900	5.9940	9.1850	5.4900	9.1850	3.4500	9.1850
EE_v	20.000	72.000	22.000	21.000	72.000	72.000	64.000	35.000	72.000
EV	0.0979	0.0979	0.0979	0.0979	0.0979	0.0979	0.0979	0.0979	0.0979
Efficiency quantity ranking	H° vol.	V° vol.	M° vol.	VH° vol.	VL vol.	L° vol.	H vol.	VL vol.	VL vol.
and 5; Runs 4 and 7, as well as Runs 8 and 9. The breadth of the solutions provided by the proposed framework indicates its versatility and robustness in addressing WM related to effluent quantity. Note that Run 2 was presented as a base case illustrating an ideal winery, where various WM strategies were adequately implemented, and therefore no further action was necessary. Therefore, besides the ranking of the effluent quantity or other system outputs, such as chemical usage and effluent quality, the proposed framework also offers a suitable diagnostic tool for the wine industry to identify areas where they can improve their overall waste management performance.

5. Conclusions
In summary, the proposed knowledge-based decision support system provides a systematic approach for evaluating and diagnosing the unstructured WM problem in the wine industry by way of processing the user inputs (both qualitative and quantitative) to compute a given winery performance in terms of effluent quantity, product and by-products recovery, chemical usage, or effluent quantity. The system results are in a format that can be easily read, understood, or altered by the user. This is because the final system outputs are expressed in the form of performance indexes (range \([0, 1]\)), and therefore, the proposed decision model offers a transparent and robust tool for assessing the performance of a given winery – with respect to WM. Secondly, the system incorporated data, information and knowledge sourced from experts that can aid in facilitating efficient decision-making regarding WM in the wine industry. Thirdly, as the wine industry has dearth of statistical data regarding WM unlike the chemical industry, fuzzy logic and qualitative reasoning soft computing approaches were applied to aid in evaluating WM in this industry. Presently, there is no evaluation-framework tool that can assess WM performance of a given winery through integration of both qualitative and quantitative data. Thus, the integrated methodology proposed in this paper serves a suitable tool to achieve this objective as well as to aid in automating WM analysis in the wine industry. Consequently, based on the integrated framework presented, the WM can be evaluated and ranked at different levels of aggregation – clearly identifying areas that may need improvement to optimise resources utilization and reduce operational costs. And finally, the system has the merit of reducing the time, effort, and resources required in undertaking extensive WM in the wine industry. The suitability of the approach has been demonstrated through two worked case studies, each with several different functional scenarios.

6. Acknowledgements
The financial support of the NRF, University of Stellenbosch, Wintech (doctoral grants), and THRIP are acknowledged.

7. References
Allen, D.T. & Rosselot, K.S. (1997). Pollution prevention for chemical processes. Wiley & Sons, New York, ISBN 978-0-4711-1587-8.
Balik, J.M. & Koraido, S.M. (1991). Identifying pollution prevention options for a petroleum refinery. Pollution and Prevention Review, 1, pp. 273-293.
Bisson, L.F.; Waterhouse, A.L.; Ebeler, S.E.; Walker, M.A. & Lapsley, J.T. (2002). The present and future of the international wine industry. *Nature*, 418, pp. 696–699.

Bonissone, P.P. (1997). Soft computing: the convergence of emerging reasoning technologies. *Soft Computing*, 1, pp. 6–18.

Bowbrow, D.G. (1984). Qualitative reasoning about physical systems: An introduction. *Artificial Intelligence*, 24, pp. 1–5.

Büyüközkan, G. & Feyzioglu, O. (2004). A new approach based on soft computing to accelerate the selection of new product ideas. *Computer Industry*, 54(20), pp. 151–167.

Chapman, J.; Baker, P. & Wills, S. (2001). *Winery wastewater handbook: Production, impacts and management*, Adelaide, South Australia: Winetitles, ISBN 978-1-8751-3035-1.

Crittenden, B.D. & Kolaczkowski, S.T. (1995). *Waste minimization: a practical guide* Institution of Chemical Engineers, Rugby, U.K., ISBN 978-0-8529-5342-6.

Douglas, J. M. (1988). *Conceptual design of chemical processes*, McGraw-Hill New York, ISBN 978-0-0710-0195-3.

Gagliardi, F.; Roscia, M. & Lazaroiu, G. (2007). Evaluation of sustainability of a city through fuzzy logic. *Energy*, 32, pp. 795–802.

Gentile, M.; Rogers, W.J. & Mannan, M. S. (2003). Development of an inherent safety index based on fuzzy logic. *American Institution of Chemical Engineers Journal*, 49(4), pp. 959–968.

Halim, I. & Srinivasan, R. (2002). Systematic waste minimization in chemical processes 2: Intelligent decision support system. *Industrial Engineering and Chemistry Research*, 41, pp. 208–219.

Hanlon, D. & Fromm, C. (1990). *Waste minimization assessments*, H.M. Freeman (ed). Hazardous Waste Minimization, McGraw-Hill, Singapore, pp. 71–126, ISBN 978-0-0702-2043-0.

Hilson, G. (2003). Defining “cleaner production” and “pollution prevention” in the mining context. *Mineral Engineering*, 16, pp. 305–321.

Huang, Y.L. & Fan, L. T. (1995). *Intelligent process design and control for in-plant waste minimization*, A.L. Rossiter (ed.). Waste minimization through process design, McGraw-Hill, New York, pp. 165–180, ISBN 978-0-0705-3957-0

Katsiri, A. & Dalou, F. (1994). Wine and Distillery effluents in Greece: Main results of the SPRINT AQUANET program, In: Proceedings of international specialized Conference on Winery Wastewaters, 20-22June, Narbonne, France, pp.25–30.

Kleer, J.D. & Brown, J.S. (1984). A qualitative physics based on confluences. *Artificial Intelligence*, 24, pp. 7–83.

Lee, C.C. (1990). Fuzzy logic in control systems: fuzzy logic controller-Part I. *IEEE Transactions on Systems, Man, and Cybernetics*, 20, pp. 218–404.

Mamdani, E.H. & Assilian, S. (1999). An experiment in linguistic synthesis with a fuzzy logic controller, *International Journal of Humans-Computer Studies*, 51:135–147.

Massette, M. (1994). Wineries facing regulation, In: Proceedings of international specialized Conference on Winery Wastewaters, 20-22 June, Narbonne, France, pp.13-18.

Mazumoto, M. (1995). Improvement of fuzzy control, H. Li, M.M. Gupta (eds.). *Fuzzy Logic and Intelligent Systems*, Kluwer Academic Publishers, Norwell, Massachusetts, pp. 1–16, ISBN 978-0-7923-9575-1.
Mendel, J. (1995). Fuzzy logic systems for engineering: a tutorial. *Proceedings of IEEE*, 83(3), pp. 345–377.

Müller, A.M. (1999). Government of South Africa Gazette No. 20526.8, October, 1999. Government Notice, Department of Water Affairs and Forestry, Section 21(e) 1999.

Musee, N.; Lorenzen, L. & Aldrich, C. (2003). Integrated intelligent decision support system for waste minimization in wine making processes, South African Institute of Chemical Engineers (SAIChE) Congress, 3-5 September, Sun City: South Africa [full paper in CD-Rom], ISBN 0-958-46096-7, 10 pp.

Musee, N. (2004a). An integrated approach to waste and energy minimization in the wine industry: a knowledge-based decision methodology, PhD Dissertation (unpublished): Department of Process Engineering, University of Stellenbosch, South Africa

Musee, N.; Lorenzen, L. & Aldrich, C. (2004b). Integrated intelligent decision support system: is it a viable tool for WM in the wine industry? *Chemical Technology*, 2:5–8.

Musee, N.; Lorenzen, L. & Aldrich, C. (2005). A fuzzy-based heuristic methodology for waste minimization analysis: A case study in the wine industry, Proceedings in the 7th World Congress of Chemical Engineering, Glasgow, Scotland, ISBN 0-852-9549-48

Musee, N.; Lorenzen, L. & Aldrich, C. (2006a). Decision support for WM in wine-making processes. *Environmental Progress*, 25(1), pp. 56–63.

Musee, N.; Lorenzen, L. & Aldrich, C. (2006b). An aggregate fuzzy hazardous index for composite wastes. *Journal Hazardous Materials*, 137 (2), pp. 723–733.

Musee N, Lorenzen L, Aldrich C. Cellar WM in the wine industry: a systems approach. *Journal of Cleaner Production*, 15, pp. 417–431.

Musee, N. & Lorenzen, L. (2007). Assessing sustainability of gold mining operations using fuzzy logic methodology, J. Avraamides, G. Deschênes, D. Tucker (eds.). By- and Co-products and the environment, Australasian Institute of Mining and Metallurgy, Carlton Victoria, Australia, pp 261 – 263. ISBN 978-1-9208-0674-3.

Musee, N.; Lorenzen, L. & Aldrich, C. (2008a). New methodology for hazardous waste classification using fuzzy set theory: Part I. Knowledge acquisition. *Journal of Hazardous Materials*, 154 (1-3), pp. 1040-1051.

Musee, N; Aldrich, C. & Lorenzen L. (2008b). New methodology for hazardous waste classification using fuzzy set theory: Part II. Intelligent decision support system. *Journal of Hazardous Materials*, 157, pp. 94-105.

Ocampo-Duque, W.; Ferré-Huguet, N.; Domingo, J.L. & Schuhmacher, M. (2006). Assessing water quality in rivers with fuzzy inference systems: a case study. *Environmental International*, 32(6), pp. 733–742.

Phillis, Y.A. & Andriantiasaholinaaina, L.A. (2001). Sustainability: an ill-defined concept and its assessment using fuzzy logic. *Ecological Economics*, 37(3), pp. 435-456.

Prato, T. (2007). Assessing ecosystem sustainability and management using fuzzy logic. *Ecological Economics*, 61, pp. 171-177.

Ross, T. J. (2004). Fuzzy logic with engineering applications. John Wiley & Sons, New York, ISBN 978-0-4708-6075-5

Setnes M, Babuska R, Vergruggen HB. Rule-based modeling: precision and transparency. IEEE Tran Syst Man Cyber Part C- Appl Rev 1998;28(1):165-169.
Smith, R.L. & Khan, J.A. (1995). *Unit operations database for transferring WM solutions*. A.P. Rossiter (ed.). Waste Minimization through Process Design. McGraw-Hill, New York, pp. 133-148, ISBN 978-0-0705-3957-0

USEPA, (1988). *Waste Minimization Opportunity Assessment Manual, Office of Research and Development*. United States Environmental Prevention Agency 1988, Cincinnati, OH. Publication No. EPA/625/7-88/003.

Yager, R.R. (1980). A general class of fuzzy consecutives. *Fuzzy Sets and Systems*, 4, pp. 103–111.

Yager, R.R. & Zadeh, L. A. (1992). An introduction to fuzzy logic applications in intelligent systems. Kluwer Academic Publishers, Boston, ISBN 978-0-7923-9191-3

Yager, R.R. & Filev, D.P. (1994). Essentials of fuzzy modelling and control. Wiley, New York, ISBN 978-0-4710-1761-5

Yen, J. & Lugari, R. (1998). *Fuzzy logic: Intelligence, control and information*. Prentice Hall, Upper Sandle River, New Jersey, ISBN 978-0-1352-5817-0

Zadeh, A.L. (1965). Fuzzy sets. *Information Control*, 8, pp. 338–353.

Zimmermann, H.-J. (1991). *Fuzzy Set Theory and its Applications* (second ed.). Kluwer Academic Publishers, Norwell, Massachusetts, ISBN 978-0-7923-9075-6
Decision support systems (DSS) have evolved over the past four decades from theoretical concepts into real world computerized applications. DSS architecture contains three key components: knowledge base, computerized model, and user interface. DSS simulate cognitive decision-making functions of humans based on artificial intelligence methodologies (including expert systems, data mining, machine learning, connectionism, logistical reasoning, etc.) in order to perform decision support functions. The applications of DSS cover many domains, ranging from aviation monitoring, transportation safety, clinical diagnosis, weather forecast, business management to internet search strategy. By combining knowledge bases with inference rules, DSS are able to provide suggestions to end users to improve decisions and outcomes. This book is written as a textbook so that it can be used in formal courses examining decision support systems. It may be used by both undergraduate and graduate students from diverse computer-related fields. It will also be of value to established professionals as a text for self-study or for reference.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ndeke Musee, Leon Lorenzen and Chris Aldrich (2010). A Fuzzy – Based Methodology for Aggregative Waste Minimization in the Wine Industry, Decision Support Systems, Chiang S. Jao (Ed.), ISBN: 978-953-7619-64-0, InTech, Available from: http://www.intechopen.com/books/decision-support-systems/a-fuzzy-based-methodology-for-aggregative-waste-minimization-in-the-wine-industry