Diaporthe species causing stem gray blight of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia

Abd Rahim Huda-Shakirah, Yee Jia Kee, Kak Leong Wong, Latiffah Zakaria & Masratul Hawa Mohd

This study aimed to characterize the new fungal disease on the stem of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia, which is known as gray blight through morphological, molecular and pathogenicity analyses. Nine fungal isolates were isolated from nine blighted stems of H. polyrhizus. Based on morphological characteristics, DNA sequences and phylogeny (ITS, TEF1-α, and β-tubulin), the fungal isolates were identified as Diaporthe arecae, D. eugeniae, D. hongkongensis, D. phaseolorum, and D. tectonendophytica. Six isolates recovered from the Cameron Highlands, Pahang belonged to D. eugeniae (DF1 and DF3), D. hongkongensis (DF9), D. phaseolorum (DF2 and DF12), and D. tectonendophytica (DF7), whereas three isolates from Bukit Kor, Terengganu were recognized as D. arecae (DFP3), D. eugeniae (DFP4), and D. tectonendophytica (DFP2). Diaporthe eugeniae and D. tectonendophytica were found in both Pahang and Terengganu, D. phaseolorum and D. hongkongensis in Pahang, whereas D. arecae only in Terengganu. The role of the Diaporthe isolates in causing stem gray blight of H. polyrhizus was confirmed. To date, only D. phaseolorum has been previously reported on Hylocereus undatus. This is the first report on D. arecae, D. eugeniae, D. hongkongensis, D. phaseolorum, and D. tectonendophytica causing stem gray blight of H. polyrhizus worldwide.

Red-fleshed dragon fruit (Hylocereus polyrhizus) is one of the most highly demand varieties, grown in Malaysia owing to its nutritional value and attractive color. It belongs to the Cactaceae family. This exotic fruit is locally known as “buah naga” or “buah mata naga”. It is also known as pitaya, strawberry pear, and night-blooming cereus. In 1999, dragon fruit was first introduced in Setiawan, Perak, and Kuala Pilah, Negeri Sembilan, Malaysia. The fruit was named “dragon fruit” owing to the dragon-like scales or bracts on its surface. Aside from having an attractive color and a pleasant taste, it is considered as a healthy fruit containing excessive amounts of vitamin C and water-soluble fiber.

Like other fruit crops in Malaysia, dragon fruit has been infected with a number of fungal diseases, thus jeopardizing its future. Several cases of fungal attacks on dragon fruit have been documented worldwide, namely, Alternaria sp., Bipolaris cactivora, Botryosphaeria dothidea, Colletotrichum gloeosporioides, Colletotrichum siamense, and Colletotrichum truncatum, Diaporthe phaseolorum, Fusarium oxysporum, and Fusarium solani, Gilbertella persiciari, Lasiodiplodia theobromae, Monilinia fructicola, Neoscytalidium dimidiatum, Nigrospora sphaerica, and Sclerotium rolfsii. In Malaysia, previous studies have identified a range of fungal diseases on dragon fruit, including anthracnose, stem necrosis, stem rot, stem blight, and reddish-brown spot.

Dragon fruits with stem gray blight were found in two locations, namely, Bukit Kor, Terengganu, Malaysia, and the Cameron Highlands, Pahang, Malaysia, in November 2017 and July 2018, respectively. These fruits exhibited irregular gray chlorotic lesion on the stem surface and black pycnidia on the infected part. In both locations, of the 50 dragon fruit plants, 20 (40% disease incidence) had been infected with the stem gray blight disease, which may result in its reduced production. This study could provide insights into the management of plant diseases. This study aimed to identify the causal pathogen of the stem gray blight of H. polyrhizus via morphological, molecular, and pathogenicity analyses.

School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia. Email: masratulhawa@usm.my
Results

Fungal isolation and morphological identification. A total of nine fungal isolates were recovered from nine gray blighted stems obtained from the different plants of *H. polyrhizus*. Of these, three isolates (DFP2, DFP3, and DFP4) were recovered from Bukit Kor, Terengganu and six isolates (DF1, DF2, DF3, DF7, DF9, and DF12) from the Cameron Highlands, Pahang, Malaysia. A species or isolate was recovered from a single lesion.

In general, the fungal isolates produced whitish, grayish, or brownish colonies on potato dextrose agar (PDA) plates. Two types of conidia, namely, α- and β-conidia, were produced from the formation of pycnidial conidiomata on carnation leaf agar (CLA). α-conidia were characterized as aseptate, hyaline, and fusiform with bi- or multi-guttulate, meanwhile, β-conidia were characterized as aseptate, hyaline, filiform, straight, or more often hamate, and lack guttule. The conidiogenous cells of α-conidia were phialidic, cylindrical, terminal, hyaline, and slightly tapered toward the end. However, in this study, the structure of the conidiogenous cells for β-conidia was not observed. Conidiophore was characterized as hyaline, branched, multiseptate, and filiform. Based on the described characteristics, the fungal isolates were tentatively identified as *Diaporthe* species. By sorting their morphological similarities and differences, the fungal isolates were classified into five groups of *Diaporthe* species (Fig. 1, Table 1).

Figure 1. Morphological characteristics of *Diaporthe* species isolated from stem gray blight of *H. polyrhizus*. Group 1 (A1–A6): (A1) colony appearance, (A2) pigmentation, (A3) pycnidial conidiomata, (A4) α-conidia, (A5) β-conidia, (A6) conidiogenous cell for α-conidia; Group 2 (B1–B6): (B1) colony appearance, (B2) pigmentation, (B3) pycnidial conidiomata, (B4) α-conidia, (B5) β-conidia, (B6) conidiogenous cell for α-conidia; Group 3 (C1–C6): (C1) colony appearance, (C2) pigmentation, (C3) pycnidial conidiomata, (C4) α-conidia, (C5) β-conidia, (C6) conidiogenous cell for α-conidia; Group 4 (D1–D6): (D1) colony appearance, (D2) pigmentation, (D3) pycnidial conidiomata, (D4) α-conidia, (D5) β-conidia, (D6) conidiogenous cell for α-conidia; Group 5 (E1–E5): (E1) colony appearance, (E2) pigmentation, (E3) pycnidial conidiomata, (E4) α-conidia, (E5) conidiogenous cell for α-conidia. Scale bar: A3–E3 = 1000 µm; A4–A6, B4–B6, C4–C6, D4–D6, E4–E5: 0.5 µm.
Table 1. Morphological characteristics of five different groups of *Diaporthe* isolates recovered from stem gray blight of *H. polyrhizus*.

Group/isolate	Colony on PDA	Pycnidial conidiomata on CLA	α-conidia	β-conidia	Conidiophore of α-conidia	Conidiogenous cell of α-conidia
Group 1			Fusiform, slightly tapered end, asetate, and hyaline	Filiform to hamate, asetate, and hyaline	Hyaline, branched, and slightly to straightly curve	Cylindrical phialides, terminal, hyaline, and slightly tapered towards end
DF1, DF3, DFP4	Abundant and whitish-brown aerial mycelia	Black and globose	Conidia with size of 6.33 ± 0.68 × 1.98 ± 0.25 μm, Bi/multi-guttulate with size of 0.41 ± 0.07 μm	Conidia with size of 24.57 ± 2.77 × 1.33 ± 0.29 μm, Bi/multi-guttulate with size of 1.49 ± 0.07 μm		
Group 2			Ovoid with bluntly rounded base end, asetate, and hyaline	Filiform to hamate, asetate, and hyaline	Hyaline, branched, and slightly to straightly curve	Cylindrical phialides, terminal, hyaline, and slightly tapered towards end
DF2, DF12	Cottony and whitish-aerial mycelia Brownish-white on the lower surface	Black and globose	Conidia with size of 6.43 ± 0.55 × 2.38 ± 0.21 μm, Bi-guttulate with size of 1.53 ± 0.17 μm	Conidia with size of 17.34 ± 2.17 × 1.49 ± 0.34 μm, Bi/guttulate with size of 1.20 ± 0.04 μm		
Group 3			Fusoid with bluntly rounded on both ends, asetate, and hyaline	Filiform to hamate, asetate, and hyaline	Hyaline, branched, and slightly to straightly curve	Cylindrical phialides, terminal, hyaline, and slightly tapered towards end
DFP2, DF7	Cottony and brownish-white aerial mycelia Brownish color on the lower surface	Black and globose	Conidia with size of 6.00 ± 0.81 × 2.39 ± 0.35 μm, Bi-guttulate with size of 1.55 ± 0.13 μm	Conidia with size of 16.29 ± 4.22 × 1.20 ± 0.44 μm, Bi/guttulate with size of 1.02 ± 0.06 μm		
Group 4			Fusiform with tapering towards both ends, asetate, and hyaline	Filiform to hamate, asetate, and hyaline	Hyaline, branched, and slightly to straightly curve	Cylindrical phialides, terminal, hyaline, and slightly tapered towards end
DF9	Cottony and grayish-white aerial mycelium Whitish with gray-patches on the lower surface	Black and globose	Conidia with size of 6.28 ± 0.64 × 2.57 ± 0.22 μm, Bi-guttulate with size of 0.58 ± 0.07 μm	Conidia with size of 18.29 ± 2.26 × 1.21 ± 0.26 μm, Bi/guttulate with size of 1.02 ± 0.06 μm		
Group 5			Fusiform with slightly pointed ends, asetate, and hyaline	Not observed	Hyaline, branched, and slightly to straightly curve	Cylindrical phialides, terminal, hyaline, and slightly tapered towards end
DFP3	Cottony and brownish-white aerial mycelia Yellowish-brown on the lower surface	Black and globose	Conidia with size of 7.06 ± 0.55 × 2.47 ± 0.34 μm, Bi-guttulate with size of 0.40 ± 0.07 μm			

Molecular identification and phylogenetic analysis

The comparison of DNA sequences based on ITS, TEF1-α, and β-tubulin demonstrated that the isolates were similar to the reference sequences of *D. eugeniae*, *D. phaseolorum*, *D. tectonendophytica*, *D. hongkongensis*, and *D. arecae* from the Genbank database. The phylogenetic trees generated from each single gene had the same topology as the tree generated from the combined genes of ITS, TEF1-α, and β-tubulin (Fig. 2) (Supplementary Information). The groupings of each single tree demonstrated that all the isolates were clustered in the same clades as their respective species of *Diaporthe* (*D. eugeniae*, *D. phaseolorum*, *D. tectonendophytica*, *D. hongkongensis*, and *D. arecae*). Isolates DF1, DF3, and DFP4 were grouped with *D. eugeniae* CBS 444.82; isolates DF2 and DF12 with *D. phaseolorum* CBS113425 and BHKHADRA-2; isolates DFP2 and DFP7 with *D. tectonendophytica* MFLUCC 13-0471; and isolates DF9 and DFP3 with *H. polyrhizus* CBS 115448 and *D. arecae* CBS 161.64, respectively. The result of the phylogenetic analysis was in accordance with the molecular identification based on DNA sequences [Basic Local Alignment Search (BLAST)], thus resolving the morphological identification. The isolates from group 1 were confirmed to be *D. eugeniae*, group 2 was *D. phaseolorum*, group 3 was *D. tectonendophytica*, group 4 was *D. hongkongensis*, and group 5 was *D. arecae*. The combined sequence matrix and phylogenetic tree were deposited in TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S27649).

Pathogenicity test and comparative aggressiveness among *Diaporthe* isolates

The result of pathogenicity test indicated that all isolates of the *Diaporthe* species recovered from the stem gray blight of *H. polyrhizus* were pathogenic, exhibiting similar symptoms to those in the field (Fig. 3A1–A5). The tested isolates showed typical symptoms of gray blight on the inoculated stems of *H. polyrhizus*. Initially, irregular yellowish lesion surrounded by reddish border appeared on the wounded point (Fig. 3B1), which gradually turned into a dark-brown sunken lesion and demonstrated dampening (Fig. 3B2). As the disease progressed, the lesion became apparently dry and turned gray (Fig. 3B3). Then, it expanded periodically, and tiny black pycnidia appeared on the area of the lesion (Fig. 3B3–B5). No symptoms developed on the control points.

Isolate DF1 (*D. eugeniae*) recorded the highest lesion length (10.25 ± 0.35 cm), whereas isolate DFP3 (*D. arecae*) had the lowest (3.25 ± 0.35 cm) (Table 2). The means of the length lesion of the tested isolates were...
Figure 2. Maximum-likelihood tree of *Diaporthe* species isolated from stem gray blight of *H. polyrhizus* based on combined dataset of ITS, TEF1-α, and β-tubulin using Tamura and Nei model with 1000 bootstrap replications. Isolates of the present study are presented in bold and other fungal genera are used as an outgroup. Bootstrap values are shown at the nodes and the scale bar indicates the number of substitutions per position.
Figure 3. Stem gray blight of *H. polyrhizus*. (A1–A5) Disease symptoms observed in the fields. (B1) After 2 days of inoculation, irregular yellowish lesions surrounded by reddish borders appeared. (B2) The lesions became sunken and turned darker. (B3) The lesions apparently dry and turned to gray. (B4–B5) At later stage, the lesions expanded resulting in the appearance of blighted stem with formation of tiny black pycnidia. C denotes control and P represents treatment.

Species	Isolate	\(^\text{a} \text{Lesion length (cm)} \)
D. eugeniae		
DF1	10.25 ± 0.35\(^{\text{e}}\)	
DF3	5.50 ± 0.70\(^{\text{c}}\)	
DF4	5.10 ± 0.84\(^{\text{bc}}\)	
D. phaseolorum		
DF2	7.50 ± 0.00\(^{\text{d}}\)	
DF12	7.75 ± 0.35\(^{\text{d}}\)	
D. tectomendophytica		
DF7	8.25 ± 0.35\(^{\text{d}}\)	
DFP2	3.45 ± 0.70\(^{\text{d}}\)	
D. hongkongensis		
DF9	3.50 ± 0.00\(^{\text{d}}\)	
D. arecae		
DFP3	3.25 ± 0.35\(^{\text{d}}\)	
Control	0.00 ± 0.00\(^{\text{f}}\)	

\(^{\text{a}}\) Mean ± standard deviation followed by different letters within the column is significantly different \((p < 0.05)\) according to Tukey’s test.

Table 2. Lesion length recorded by *Diaporthe* isolates after 3 weeks of inoculation on stems of *H. polyrhizus*.
significant differences compared with the control at \(p < 0.05 \). The tested isolates of *Diaporthe* exhibited variability in length lesion after 3 weeks of inoculation on the stems of *H. polyrhizus*. The same *Diaporthe* species were reisolated from the symptomatic inoculated stems of *H. polyrhizus*, and their identities were reconfirmed by comparing the macroscopic and microscopic characteristics with the original cultures, thus fulfilling Koch’s postulates.

Discussion

The present study reported on stem gray blight, which is a new emerging disease infecting *H. polyrhizus* plantations in Malaysia. The five species of *Diaporthe*, namely, *D. eugeniae* (group 1), *D. phaseolorum* (group 2), *D. tectonendophytica* (group 3), *D. hongkongensis* (group 4), and *D. arecae* (group 5), were identified to be the causal agents of the disease. The *Diaporthe* species may act as a plant pathogen or a saprophyte or an endophytic symbiont, however, several studies have reported that it is the genus responsible for multiple destructive diseases, such as root and fruit rots, dieback, stem cankers, leaf spots, leaf and pod blights, and seed decay.

A total of nine *Diaporthe* isolates were recovered from the blighted stem of *H. polyrhizus*. Based on their morphological characteristics, all the isolates produced both \(\alpha \)-conidia and \(\beta \)-conidia, except for the *D. arecae* isolate, of which \(\beta \)-conidia was not observed. \(\alpha \)- and \(\beta \)-conidia are the key characteristics for the identification of *Diaporthe*. The formation of \(\beta \)-conidia can sometimes be rare or absent in certain species of *Diaporthe*. According to Tuset and Portilla and Diogo et al., for some *Diaporthe* species (e.g., *Phomopsis amygdali*), the formation of \(\beta \)-conidia can only be observed in pycnidia on the host but not in pycnidia in the culture plate.

Based on the similarities and differences of their macroscopic and microscopic characteristics, the isolates were assigned to five different groups. Among the groups, significant differences were observed in the number of \(\alpha \)-conidia guttules and their size (Table 1). Gomes et al. revealed that both characteristics can be varied among the *Diaporthe* species. The isolates from group 1 (*D. eugeniae*) tended to produce bi- and multi-guttules, whereas the other isolates only produced bi-guttules of \(\alpha \)-conidia. The size of the guttules of \(\alpha \)-conidia varied among the groups. The isolates from groups 1 and 5 (*D. eugeniae* and *D. arecae*) produced significantly smaller guttules compared with those produced by isolates from groups 2, 3, and 5 (*D. phaseolorum, D. tectonendophytica, and D. hongkongensis*) (Table 1). The guttule is defined as a small drop or particle in a spore resembling a nucleus.

Moreover, the morphology of \(\alpha \)-conidia of the *D. eugeniae*, *D. hongkongensis*, and *D. arecae* isolates was tapered toward the ends compared with the *D. phaseolorum* and *D. tectonendophytica* isolates, the ends of which were bluntly rounded (Fig. 1). This finding was in agreement with those of Santos et al., Dissanayake et al., and Li et al. A significant difference was also observed in the length of \(\beta \)-conidia, of which the *D. eugeniae* isolates produced longer \(\beta \)-conidia than other isolates from different groups. Conidial mass exudation can be observed in the isolates of *D. eugeniae, D. hongkongensis,* and *D. arecae*. Contrarily, it was not observed in the isolates of *D. phaseolorum* and *D. tectonendophytica*. According to Machowicz-Stefaniak et al., the *Diaporthe* species require temperatures ranging from 22 to 28 °C for the optimal growth, sporulation, and rate of conidia release of conidiomata. As applied in the present study, the addition of carnation leaves to the growing medium as substrates has been recommended to improve the sporulation of the *Diaporthe* species.

Aside from the microscopic characteristic, the cultural characteristics of all isolates in this study also varied among the groups. The color of the colonies ranged from whitish, grayish, brownish, to olive green. Due to this inconsistency, cultural characteristic is commonly considered as a less important criterion in distinguishing species within *Diaporthe* as it can be influenced by several environmental factors, such as light and temperature. Based on the results obtained, morphological characteristics alone were insufficient to identify all the isolates up to the species level due to the complexity of the genus. This finding was in agreement with that of Lim et al., who revealed that the morphological method alone is not informative for the species identification of *Diaporthe* due to pleomorphism and overlapping characteristics.

With the advances in molecular techniques, DNA sequences and multigene phylogenetic analysis of ITS, TEF1-\(\alpha \), and \(\beta \)-tubulin were employed to support the morphological identification of the *Diaporthe* isolates in this study. The result of the BLAST search and phylogenetic inference indicated that the use of all the three genes resolved identification of the *Diaporthe* isolates. Aside from the present study, ITS, TEF1-\(\alpha \), and \(\beta \)-tubulin were extensively applied to delineate species within *Diaporthe*. The ITS region served as an identification guide for the *Diaporthe* species. It was also considered as a fungal barcode in distinguishing genera and species owing to its easy amplification and ability to provide preliminary screening of fungal classification. However, the tree constructed based on ITS sequences alone may be doubtful and not demonstrate clear phylogenetic relationships due to the lack of interspecific variation or even deceptive in some fungi. Thus, TEF1-\(\alpha \) and \(\beta \)-tubulin were added to support the phylogenetic analysis of ITS in delimiting the species of the *Diaporthe* isolates. TEF1-\(\alpha \) comprises an essential part of the protein translation machinery, and highly informative at the species level; moreover, non-orthologous copies have not been detected in *Diaporthe*. \(\beta \)-tubulin was utilized as an alternative phylogenetic marker to specify *Diaporthe* as it contains fewer ambiguously aligned regions and exhibits less homoplasy among the genus. Collectively, phylogenetic analysis of a combined dataset of ITS, TEF1-\(\alpha \), and \(\beta \)-tubulin was conducted in this study to overcome the ambiguity that could have emerged in the single gene analysis. Santos et al. stated that the combined phylogenetic tree commonly provides a better resolution for the identification of the *Diaporthe* species compared with the single gene analysis.

All the tested isolates of *Diaporthe* exhibited varying lengths of lesion on the inoculated stems of *H. polyrhizus*, of which isolate DF1 (*D. eugeniae*) was found to be the most virulent. The fungus can act as a pathogen or a saprophyte and was reported to cause stem-end rot on mango (*Mangifera indica*). It also occurs as a saprophyte on cloves (*Eugenia aromatica*). This study discovered a new host and disease caused by *D. eugeniae*. The association of *D. phaseolorum* with dragon fruit was not new, because recently, this pathogen was reported to cause stem rot on *Hylocereus undatus* in Bangladesh. However, the symptoms described were slightly different from those observed in the present study. It appeared as a yellow spot with a chlorotic halo in the previous report, but

https://doi.org/10.1038/s41598-021-83551-z
in the present study, chlorotic halo was not observed; rather, a reddish border surrounded the lesion. Similarly, gray to black pycnidia were scattered on the surface of the lesion. Aside from the dragon fruit, D. phaseolorum was reported as a causal agent of pod and stem blight, stem canker, and seed rot on soybean and trunk disease on grapevine. It was also found to be an endophyte on Kandelia candel by Cheng et al.

Similar to D. eugeniae, the present study highlighted H. polyrhizus as a new host associated with D. tectonendophytica as it causes stem gray blight. Contrarily, a study by Doi et al. demonstrated the role of D. tectonendophytica as an endophyte occurring on teak (Tectona grandis) in Thailand. The capability of D. hongkongensis to act as a pathogen is undeniable as the fungus has been reported to cause severe diseases on a number of host plants, such as stem-end rot on kiwifruit, dieback on grapevine, and shoot canker on pear. Meanwhile, D. arecae has been reported to be pathogenic on M. indica, Areca catechu and Citrus. D. hongkongensis and D. arecae were first reported on H. polyrhizus worldwide especially in Malaysia.

The occurrence of the disease in two different locations in Malaysia indicates its possibility to spread worldwide. Aside from Diaporthe, dragon fruits in Malaysia also suffer from multiple diseases caused by other fungi. Among these diseases are anthracnose caused by C. gloeosporioides and C. truncatum; stem necrosis by Curvularia lunata; stem canker by N. dimidiatum; stem rot by Fusarium proliferatum and F. fujikuroi; reddish brown spot by Nigrospora lacticolonia and N. sphaerica; and stem blight by F. oxysporum.

This study provides overview of the five different species of Diaporthe causing stem gray blight on H. polyrhizus in Malaysia. It improves our knowledge on the symptomatology of the disease and identity of the pathogens through morphological and molecular analyses. The findings may be essential to strategize effective disease management for stem gray blight on H. polyrhizus and for quarantine restrictions.

Materials and methods

Fungal isolation. In November 2017 and July 2018, nine gray blighted stems from the different plants of H. polyrhizus were collected from Bukit Kor, Terengganu, Malaysia, and the Cameron Highlands, Pahang, Malaysia. The symptomatic samples were brought back to the laboratory for isolation. One lesion per stem exhibiting the same symptom was selected for fungal isolation. The lesion consisting of diseased and healthy parts was excised (1.5 cm²) and surface-sterilized with 70% ethanol for 3 min. Then, the samples were soaked in 10% sodium hypochlorite (1% NaOCl) for 3 min and rinsed with sterile distilled water three times consecutively for 1 min each. The sterilized samples were air-dried on the sterile filter papers before being transferred to PDA plates. The inoculated plates were incubated at 25 °C ± 2 °C for 2 to 3 days. Pure cultures of fungal isolates were obtained via hyphal tip isolation and were used for morphological and molecular analyses.

Morphological identification. Each fungal isolate obtained was cultured on PDA and incubated at 25 °C ± 2 °C for 7 days. Macroscopic characteristics, such as colony appearance and pigmentation, were recorded. CLA was utilized to induce the formation of pycnidial conidiomata, and the inoculated plates were incubated at 25 °C ± 2 °C for 7 days. The morphology of α- and β-conidia was observed from the pycnidal conidiomata. The other microscopic characteristics observed were conidiophores and conidiogenous cells. The length and width of 30 randomly selected conidia and the size of the gullets of 30 randomly selected α-conidia were measured and recorded. The differences in the length and width of conidia and the size of the gullets of α-conidia were evaluated via one-way ANOVA. In addition, the means of both parameters were compared via Tukey's test (p < 0.05) using the IBM SPSS Statistics software version 24.

Molecular identification and phylogenetic analysis. The identity of all the fungal isolates was further confirmed by molecular characterization. The isolates were grown in potato dextrose broth (PDB) and incubated at 25 °C ± 2 °C for 7 days. Fungal mycelia from PDB were homogenized under liquid nitrogen to obtain fine powder. A total of 60 mg fine powder was transferred into a 1.5 mL microcentrifuge tube, and the genomic DNA of the fungal isolates was extracted using the Invisorb Spin Plant Mini Kit (Stratec Biomedical AG, Birkenfeld, Germany), following the manufacturer's protocols. The primers of ITS5/ITS4, EF1-728/EF1-986 and BT2a/b were used for PCR amplification. The obtained sequences were aligned using the Molecular Evolutionary Genetic Analysis software (MEGA7).

The obtained sequences were aligned using the Molecular Evolutionary Genetic Analysis software (MEGA7). After pairwise alignment, the BLAST algorithm (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to compare the generated consensus sequences with other sequences in the GenBank database. The sequences obtained were deposited in the GenBank database.

The isolates in the present study and reference sequences used in the phylogenetic analysis are presented in Table 3. Multiple sequence alignments of fungal isolates and reference isolates were generated using the MEGA7 software. Phylogenetic analysis was conducted using the maximum likelihood (ML) method in MEGA7.
Species	Isolate	Host	Locality	GenBank accession no.	References
D. amygdali	CBS 126679	Prunus dulcis	Portugal	KC343022	KC343748
D. amygdali	CBS 111811	Vitis vinifera	South Africa	KC343019	KC343745
D. amygdali	CBS 115620	Prunus persica	USA	KC343020	KC343746
D. arecae	CBS 161.64	Areca catechu	India	KC343032	KC343758
D. arecae	CBS 535.75	Citrus sp.	Suriname	KC343033	KC343759
Diaporthe sp. (Group 5)	DFP3	Hylocleroces polyhizatus	Bukit Kor, Terengganu,	MN862382	MN889938
			Malaysia		MN889947
D. arengae	CBS 114979	Arenga engleri	Hong Kong	KC343034	KC343760
D. brasiliensis	CBS 133183	Aspisperma tomentosum	Brazil	KC343042	KC343768
D. caulivora	CBS 127268	Gycine max	Croatia	KC343043	KC343769
D. caulivora	CBS 178.55	Gycine soja	Canada	KC343046	KC343772
D. eugenieae	CBS 444.82	Eugenia aromatica	Indonesia	KC343098	KC343824
Diaporthe sp. (Group 1)	DF1	Hylocleroces polyhizatus	Cameron Highlands,	MN862375	MN889932
			Pahang, Malaysia		MN889940
Diaporthe sp. (Group 1)	DFP4	Hylocleroces polyhizatus	Bukit Kor, Terengganu,	MN862383	MN889939
			Malaysia		MN889948
D. fuscini-asongstofliae	BRIP 54791	Fuscinae angustifolia	Australia	IX862528	IX862534
D. helianthi	CBS 592.81	Helianthus annuus	Serbia	KC343115	KC343841
D. helianthi	CBS 344.94	Helianthus annuus	-	KC343114	KC343840
D. hongkongensis	CBS 115448	Dichroa febrifuga	Hong Kong	KC343119	KC343845
D. hongkongensis	ZJUD74	Citrus unshiu	China	KJ490609	KJ490488
D. hongkongensis	ZJUD78	Citrus unshiu	China	KJ490613	KJ490492
Diaporthe sp. (Group 4)	DP9	Hylocleroces polyhizatus	Cameron Highlands,	MN862379	MN889933
			Pahang, Malaysia		MN889941
D. litchica	BRIP 54900	Litchi chinensis	Australia	IX862533	IX862539
D. mastrevicci	BRIP 57892	Helianthus annuus	Australia	KJ197276	KJ197239
D. mastrevicci	BRIP 57330	Chrystanthesoides montifera	Australia	KJ197275	KJ197237
D. miricae	BRIP 54736	Helianthus annuus	Australia	KJ197282	KJ197244
D. miricae	BRIP 55662c	Gycine max	Australia	KJ197283	KJ197245
D. miricae	BRIP 56918a	Vigna radiata	Australia	KJ197284	KJ197246
D. musigena	CBS 129519	Musa sp.	Australia	KC343143	KC343869
D. novem	CBS 127270	Gycine max	Croatia	KC343156	KC343882
D. novem	CBS 127269	Gycine max	Croatia	KC343155	KC343881
D. novem	CBS 127271	Gycine max	Croatia	KC343157	KC343883
D. oncostoma	CBS 589.78	Robinia pseudoacacia	Australia	KC343162	KC343888
D. oncostoma	CBS 100454	Robinia pseudoacacia	Germany	KC343160	KC343886
D. oncostoma	CBS 109741	Robinia pseudoacacia	Russia	KC343161	KC343887
D. pseudeiorum	CBS 133186	Maytenus ilicifolia	Brazil	KC343164	KC343890
D. ramosa	BRIP 54847	Passerea americana	Australia	IX862532	IX862538
D. persae	CBS 151.73	Passerea americana	Netherlands	KC343173	KC343899
D. pescicola	MFLUCC 16-0105	Prunus persica	China	KU557555	KU557623
D. pescicola	MFLUCC 16-0106	Prunus persica	China	KU557556	KU557624
D. pescicola	MFLUCC 16-0107	Prunus persica	China	KU557557	KU557625
D. phaseolorum	CBS 139281	Phaseolus vulgaris	USA	KS907387	KS907393
D. phaseolorum	CBS 113425	Olearia cl. rani	New Zealand	KC343174	KC343900
D. phaseolorum	BRDKHADRA-2	Hylocleroces undatus	Bangladesh	MH174560	KC343902
Diaporthe sp. (Group 2)	DF2	Hylocleroces polyhizatus	Cameron Highlands,	MN862376	MN889931
			Pahang, Malaysia		MN889942
Diaporthe sp. (Group 2)	DF12	Hylocleroces polyhizatus	Cameron Highlands,	MN862380	MN889936
			Pahang, Malaysia		MN889945
D. pseudomangiferae	CBS 101339	Mangifera indica	Dominican Republic	KC343181	KC343907
D. pseudomangiferae	CBS 388.89	Mangifera indica	Mexico	KC343182	KC343908
D. pseudophoenicicola	CBS 462.69	Phoenix dactylifera	Spain	KC343184	KC343910
D. pseudophoenicicola	CBS 176.77	Mangifera indica	Iraq	KC343183	KC343909

Continued
Species	Isolate	Host	Locality	GenBank accession no.	References
D. schini	CBS 133181TF	Schinus terebinthifolius	Brazil	KC343191, KC343197, KC344159	Gomes et al.
D. schini	LGMPF 910	Schinus terebinthifolius	Brazil	KC343192, KC343198, KC344160	Gomes et al.
D. sennae	CFCC 51636TF	Senecio baccapiarius	China	KY203724, KY228885, KY228891	Yang et al.
D. sennae	CFCC 51637	Senecio baccapiarius	China	KY203725, KY228886, KY228892	Yang et al.
D. sojae	FAU 599TF	Glycine max	USA	KJ590728, KJ590767, KJ610883	Udayanga et al.
D. sojae	FAU 644	Glycine max	USA	KJ590730, KJ590769, KJ610885	Udayanga et al.
D. tectonendophytica	MFLUCC 13-0471TF	Tectona grandis	Thailand	KU712439, KU749567, KU714396	Doolom et al.
Diaporthe sp. (Group 3)	DF7	Hyllocereus polyrhizus	Cameron Highlands, Pahang, Malaysia	MN862387, MN889934, MN889946	This study
Diaporthe sp. (Group 3)	DFP2	Hyllocereus polyrhizus	Bukit Kor, Terengganu, Malaysia	MN862381, MN889937, MN889946	This study
D. veckerae	FAU 656TF	Cucumis melo	USA	KJ590726, KJ590747, KJ610881	Udayanga et al.
D. veckerae	FAU 659	Cucumis melo	USA	KJ590724, KJ590745, KJ610879	Udayanga et al.
D. veckerae	FAU 658	Cucumis melo	USA	KJ590725, KJ590746, KJ610880	Udayanga et al.
D. unshiuensis	ZIUD 52	Citrus unshiu	China	KI490585, KJ490466, KJ490408	Huang et al.
D. unshiuensis	ZIUD 50	Citrus japonica	China	KI490585, KJ490466, KJ490406	Huang et al.
D. unshiuensis	ZIUD 51	Citrus japonica	China	KI490586, KJ490465, KJ490407	Huang et al.
D. vaccinii	CBS 160.32TF	Oxyccoccus macrocarpos	USA	KC343228, KC343954, KC344196	Gomes et al.
D. vaccinii	CBS 118571	Vaccinium corymbosum	USA	KC343223, KC343949, KC344191	Gomes et al.
D. vaccinii	CBS 122112	Vaccinium macrocarpus	USA	KC343224, KC343950, KC344192	Gomes et al.
Diaphorthea corylina	CBS 12112	Corylus sp.	China	KC343004, KC343730, KC343972	Gomes et al.
Lasiotrichia pseudotheobromae	CBS 116459TF	Gmelina arborea	Costa Rica	EF622077, EF620507, EU673111	Alves et al.
Nigrospora musae	CBS 319.34TF	Musa paradisitica	Australia	KX986076, KY019419, KY019455	Wang et al.
Arthrinium obovatum	CGMCC 3.18331TF	Lithocarpus sp.	China	KY494696, KY705095, KY705166	Wang et al.
Paraphoma chloromycolicola	BRIP 65168TF	Tannacetum cinerariifolium	Australia	KU999072, KU999080, KU999084	Moslemi et al.

Table 3. Isolates in the present study and reference isolates used in the phylogenetic analysis. EP ex-epitype culture, EI ex-isotype culture, ET ex-type culture, EN ex-neotype culture, EH ex-holotype culture.

Tamura-Nei model\(^7\) was used to generate the ML trees based on a single and combined genes of ITS, TEF1-α, and β-tubulin with 1000 bootstrap replications\(^\)\(^2\)\.

Pathogenicity test. The pathogenicity test was conducted on 18 healthy stems of *H. polyrhizus* for all the obtained fungal isolates. Conidial suspension was prepared by flooding the 7-day-old PDA culture with sterile distilled water, and the concentration was adjusted to \(1 \times 10^6\) conidia/mL using a hemocytometer (Weber, Teddington, UK). The stems were surface-sterilized with 70% ethanol, and 0.1 mL of conidial suspension was utilized for inoculation using a disposable needle and syringe. Likewise, the control points were treated with sterile distilled water. On each stem, three points were used to inoculate fungal isolate and one point for control. Each fungal isolate was tested in three replicates, and the pathogenicity tests were conducted twice. All the inoculated plants were placed in a plant house in the School of Biological Sciences, USM, and incubated at 26–32 °C for 21 days. The progression of the disease symptom was observed daily. The lesion length was measured and recorded after 3 weeks of inoculation. The differences in the lesion length were evaluated via one-way ANOVA, and the means were compared via Tukey’s test \((p < 0.05)\) using the IBM SPSS Statistics software version 24. For the fulfillment of Koch’s postulates, the fungal isolates were reisolated from symptomatic inoculated stems and reidentified by morphological characteristics.

Received: 26 October 2020; Accepted: 3 February 2021
Published online: 16 February 2021

References

1. Ismail, N. S. M., Ramli, N., Hani, N. M. & Meon, Z. Extraction and characterization of pectin from dragon fruit (*Hylocereus polyrhizus*) using various extraction conditions. *Sains Malays.* **41**, 41–45 (2012).
2. Abdul Razak, U. N. A., Taha, R. M., Che Musa, S. A. N. I. & Mohamed, N. Detection of betacyanins pigment stability from *Hylocereus undatus* fruit pulp and peel for possible use as natural coating. *Pigm. Resin Technol.* **41**, 303–308 (2017).
3. Hoa, T. T., Clark, C. J., Waddell, B. C. & Woolf, A. B. Postharvest quality of dragon fruit (*Hylocereus undatus*) following disinfecting hot air treatments. *Postharvest Biol. Technol.* **41**, 62–69 (2006).
4. Ruzainah, A. J., Ahmad, R., Nor, Z. & Vaseudevan, R. Proximate analysis of dragon fruit (*Hylocereus polyrhizus*). *Am. J. Appl. Sci.* **6**, 1341–1346 (2009).
5. Patel, J. S. & Zhang, S. First report of Alternaria blight of pitahaya (Hylocereus undatus) caused by Alternaria sp. in South Florida of the United States. Plant Dis. 101, 1046 (2017).
6. He, P. F., Ho, H., Wu, X. X., Hou, M. S. & He, Y. Q. Bipolaris cactivora causing fruit rot of dragon fruit imported from Vietnam. Plant Pathol. Quat. 2, 31–35 (2012).
7. Valencia-Botín, A. J., Sandoval-Islas, J. S., Cárdenas-Soriano, E., Michailides, T. J. & Rendón-Sánchez, G. Botryosphaeria dothidea causing stem spots on Hylocereus undatus in Mexico. Plant Pathol. 52, 803 (2003).
8. Ma, W. J. et al. First report of anthracnose disease on young stems of Bawanghua (Hylocereus undatus) caused by Colletotrichum gloeosporioides in China. Plant Dis. 98, 991 (2014).
9. Zhao, H. J. et al. First report of red dragon fruit (Hylocereus polyrhizus) anthracnose caused by Colletotrichum siamense in China. Plant Dis. 102, 1175 (2018).
10. Abirammi, K. et al. Occurrence of anthracnose disease caused by Colletotrichum siamense on dragon fruit (Hylocereus undatus) in Andaman Islands, India. Plant Dis. 103, 768 (2019).
11. Guo, L. W. First report of dragon fruit (Hylocereus undatus) anthracnose caused by Colletotrichum truncatum in China. J. Phytopathol. 162, 272–275 (2014).
12. Karim, M. M. et al. Occurrence of stem rot disease of Hylocereus undatus in Bangladesh. Indian Phytopathol. 72, 545–549 (2019).
13. Wright, E. R., Rivera, M. C., Ghirlanda, A. & Lori, G. A. Basal rot of Hylocereus undatus caused by Fusarium oxysporum in Buenos Aires, Argentina. Plant Dis. 91, 323 (2007).
14. Rita, W. S., Suprapta, D. N., Sudana, I. M. & Swantara, I. M. D. First report on Fusarium solani, a pathogenic fungus causing stem rot disease on dragon fruits (Hylocereus sp.) in Bali. J. Biol. Agric. Healthc. 3, 93–99 (2013).
15. Guo, L. W., Wu, Y. X., Mao, Z. C., Ho, H. H. & He, Y. Q. Storage rot of dragon fruit caused by Neoscytalidium dimidiatum in China. Aust. Plant Dis. Notes 10, 13 (2015).
16. Sanahuja, G., Lopez, P. & Palmateer, A. J. First report of Neoscytalidium dimidiatum causing stem and fruit canker of Hylocereus undatus in Florida. Plant Dis. 100, 1499 (2016).
17. Liu, E., Wu, J. B., Zhan, R. L. & Ou, X. C. First report of reddish-brown spot disease on pitaya caused by Nigrospora sphaerica in China. Plant Dis. 100, 1792 (2016).
18. Zheng, F. et al. First report of southern blight in pitaya (Hylocereus undatus) caused by Sclerotium rolfsii in China. Plant Dis. 102, 441 (2018).
19. Mohd, M. H., Hew, P. Y., Mazziah, Z., Nagao, H. & Salleh, B. Aetiology and symptomatology of anthracnose caused by Colletotrichum gloeosporioides on dragon fruit (Hylocereus polyrhizus) in Malaysia. In The Sixth Regional IMP-GT Unnet Conference (Penang, Malaysia, 2008).
20. Mayahit, M., Sijam, K., Awang, Y. & Satar, M. G. M. The first report of the occurrence of anthracnose disease caused by Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. on dragon fruit (Hylocereus spp.) in Peninsular Malaysia. Ann. J. Appl. Sci. 6, 902–912 (2009).
21. Iskandar Vijaya, S., Mohd Anuar, I. S. & Zakaria, L. Characterization and pathogenicity of Colletotrichum truncatum causing stem anthracnose of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia. J. Phytopathol. 163, 67–71 (2015).
22. Mohd, M. H., Salleh, B. & Latifah, Z. First report of Carvularia lunata on red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia. Plant Dis. 93, 971 (2009).
23. Mohd, M. H., Salleh, B. & Zakaria, L. Identification and molecular characterizations of Neoscytalidium dimidiatum causing stem anthracnose of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia. J. Phytopathol. 161, 841–849 (2013).
24. Mohd, M. H., Salleh, B. & Latifah, Z. Characterization and pathogenicity of Fusarium proliferatum causing stem rot of Hylocereus polyrhizus in Malaysia. Ann. Appl. Biol. 163, 269–280 (2013).
25. Mohd, M. H., Nural Fazihah, I., Nik Mohamad Izham, M. N. & Latifah, Z. Fusarium fujikuroi associated with stem rot of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia. Ann. Appl. Biol. 170, 434–447 (2017).
26. Mohd Hafifi, A. B., Kee, Y. J. & Mohd, M. H. First report of Fusarium oxysporum as a causal agent of stem blight of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia. Plant Dis. 103, 1040 (2019).
27. Kee, Y. J. et al. First report of reddish-brown spot disease of red-fleshed dragon fruit (Hylocereus polyrhizus) caused by Nigrospora lacticolonia and Nigrospora sphaerica in Malaysia. Crop Prot. 122, 165–170 (2019).
28. Uecker, F. A. A World list of Phomopsis names with notes on nomenclature, morphology and biology. Mycol. Mem. 13, 1–231 (1988).
29. Rossman, A. Y., Farr, D. F. & Castlebury, L. A. A review of the phylogeny and biology of the Diaporthales. Mycologia 48, 135–144 (2007).
30. Udayanga, D. et al. The genus Phomopsis: Biology, applications, species concepts and names of common phytopathogens. Fungal Divers. 50, 189 (2011).
31. Gomès, R. R. et al. Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31, 1–41 (2013).
32. Mostert, L., Crous, P. W., Kang, J. C. & Phillips, A. J. Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: Morphological, cultural, molecular and pathological characterization. Mycologia 93, 146–167 (2001).
33. van Rensburg, J. C. J., Lamprecht, S. C., Groenewald, J. Z., Castlebury, L. A. & Crous, P. W. Characterisation of Phomopsis spp. associated with die-back of rooibos (Aspalathus linearis) in South Africa. Stud. Mycol. 55, 65–74 (2006).
34. Rehner, S. A. & Uecker, F. A. Nuclear ribosomal internal transcribed spacer phylogeny and host diversity in the coelomycete Phomopsis. Can. J. Bot. 72, 1666–1674 (1994).
35. Santos, J. M., Vrančedčić, K., Cosić, J., Duvnjak, T. & Phillips, A. J. L. Resolving the Diaporthaceae species occurring on soybean in Croatia. Persoonia 27, 9–19 (2011).
36. Diaz, G. A. et al. Identification and characterization of Diaporthaceae ambigua, D. australaficana, D. novem, and D. rubis causing a postharvest fruit rot in kiwifruit. Plant Dis. 101, 1402–1410 (2017).
37. Sutton, R. C. The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. (Commonwealth Mycological Institute, Kew, England, 1980).
38. Hilario, S. et al. Diaporthe species associated with twig blight and dieback of Vaccinium corymbosum in Portugal, with description of four new species. Mycologia 112, 293–308 (2020).
39. Tuset, J. J. & Portilla, M. A. T. Taxonomic status of Fusisaccocum amygdalae and Phomopsis amygdalina. Can. J. Bot. 67, 1275–1280 (1989).
40. Diogo, E., Santos, J. M. & Phillips, A. J. Phylogeny, morphology and pathogenicity of Diaporthaceae and Phomopsis species on almond in Portugal. Fungal Divers. 44, 107–115 (2010).
This study was funded by Research University Grant (RUI) from Universiti Sains Malaysia (1001/ PBIOL01/8011061).
Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-83551-z.

Correspondence and requests for materials should be addressed to M.H.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021