Management of Acute Cystitis in the Era of COVID-19

David Hernández-Hernández1 · Yanira Ortega-González1 · Bárbara Padilla-Fernández1,2 · Pedro Ramón Gutiérrez-Hernández1,2 · David Manuel Castro-Díaz1,2

Accepted: 19 September 2022 / Published online: 22 November 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Purpose of Review No specific guidelines have been developed for acute cystitis management during the COVID-19 pandemic. This review aims to provide up-to-date information about treatment and follow-up in patients with symptoms suggesting lower urinary tract infection.

Recent Findings Uncomplicated cystitis does not need microbiological confirmation; thus, clinical diagnosis via telephone interview or questionnaires may be done. When complicated infections are suspected, in-person evaluation or close follow-up is mandatory. Antibiotic treatment is still the gold standard for treatment, although non-pharmacological strategies have also been suggested and further investigations are warranted.

Summary Urinary tract infections are still a frequent reason for consultation that needs to be addressed in both primary care and specialized levels. Their management during the pandemic is similar than in precedent years, but telehealth options have emerged which can facilitate diagnosis and treatment.

Keywords COVID-19 · Urinary tract infection · Cystitis · Diagnosis · Treatment

Introduction
Urinary tract infections (UTI) account for different syndromes caused by the colonization of the urinary tract by uropathogenic bacteria leading to inflammation and subsequently appearing urinary symptoms. Acute cystitis and pyelonephritis in non-pregnant women without anatomical or functional urinary tract abnormalities are defined as uncomplicated UTI, while the rest are classified as complicated UTI [1]. Up to 80% of women will suffer at least one UTI episode during their lifetime, and around 40% will be affected by recurrent UTIs (three episodes per year or two in the last 6 months) with an average rate of 2.6 UTIs per year [2–4]. These uncomplicated UTIs generate more than 10 million ambulatory visits per year in the USA; therefore, its impact in primary care setting is remarkable.

Since the beginning of 2020, more than 504 million COVID-19 cases have been documented worldwide, including 6.2 million deaths [5]. COVID has had an enormous impact at all levels of health care systems worldwide. Human and economic resources have been deviated to fight the pandemic in primary care, emergency departments, and intensive care units, while non-COVID cases were downscaled and even completely halted in the worst pandemic peaks [5].

However, common infectious pathologies such as urinary tract infections (UTI) are supposed to maintain a high prevalence during pandemic, and probably many of the uncomplicated UTI episodes during the COVID-19 pandemic may have

1 Department of Urology, Hospital Universitario de Canarias, Carretera de Ofra, S/N, 38320 San Cristóbal de La Laguna, Tenerife, Spain
2 Departamento de Cirugía, Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, Spain

This article is part of the Topical Collection on Inflammatory/Infectious Bladder Disorders

*David Hernández-Hernández
david_hdezhez@msn.com
Yanira Ortega-González
yaniraort@hotmail.com
Bárbara Padilla-Fernández
bpadilla@ull.edu.es
Pedro Ramón Gutiérrez-Hernández
prguti@ull.edu.es
David Manuel Castro-Díaz
dcastro@ull.edu.es

1 Department of Urology, Hospital Universitario de Canarias, Carretera de Ofra, S/N, 38320 San Cristóbal de La Laguna, Tenerife, Spain
2 Departamento de Cirugía, Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
received a suboptimal or virtually no treatment. But the effects of this exceptional situation could go far beyond the lack of access to adequate health care. Theoretically, this reduction in ambulatory antibiotic prescription and reinforcement of hygiene and infectious control measures should have reduced the rise in antibiotic resistances and the spread of multidrug-resistance bacteria. Nonetheless, during the first months of COVID-19 pandemic, general antibiotic consumption fell according to data from the USA and UK [6, 7].

However, some studies have revealed an over prescription of broad-spectrum antibiotics in both outpatients and hospitalized patients with COVID-19 [8, 9••], even when the presence of bacterial coinfection is infrequent (<10%) [10, 11]. Furthermore, adherence to antimicrobial stewardship programs diminished drastically during the first wave, especially in the hospital setting, and antibiotic prescription prevalence of quinolones, cephalosporins, macrolides, and betalactamases associated with beta lactamase inhibitors has been as high as 74% in COVID-19 patients [12••]. This practice is very likely to facilitate the development of multidrug-resistant bacteria, as previous antibiotic exposure is a well-established risk factor for antimicrobial resistance increase in uropathogenic bacteria [13, 14]. Moreover, there are reports of increasing numbers of carbapenemase-producing enterobacteria in patients hospitalized with severe COVID-19 [15].

The implementation of telemedicine as the main source of access to primary health has increased tremendously, being rapidly incorporated into day-to-day practice. Within urological diseases, efficacy and safety of telemedical management of UTIs has been specifically addressed, showing good results with almost 80% of patients showing complete resolution of symptoms and only 8% requiring face-to-face consultation because of symptoms persistence and/or suspected bacterial resistance [16]. However, telemedical management of UTIs could have also some essential drawbacks. According to the results from the University of Pittsburg Medical Center, urinalysis and urine culture were less likely to be ordered in electronic vs office visits (8% vs 51%), while physicians were much more likely to prescribe antibiotics (99% in teleconsultations vs 49% in in-office consultations) [17••]. We could consider this as a “suboptimal management” of UTIs, especially in complicated or recurrent cases.

With the aim of improving antimicrobial stewardship interventions, we must reduce inappropriate antibiotic prescriptions. It is also needed to evaluate community urine culture data and antibiograms to understand antimicrobial resistance patterns to provide the best possible treatments. Although urine culture is not mandatory in the case of uncomplicated sporadic acute cystitis, it is always recommended in the case of recurrent and complicated UTI [1]. Optimizing diagnosis and thus management of UTIs, especially acute cystitis which is the most prevalent, is of paramount importance taking into account that around 25% of all antibiotic prescriptions are made to deal with UTIs [18].

Diagnosis and Management

Uncomplicated UTI

It has been shown that a symptom-based diagnosis has a high positive predictive value for uncomplicated acute cystitis. Bent and colleagues found that women in childbearing age complaining about dysuria, frequency and/or hematuria, and not complaining about vaginal discharge or vaginal irritation, have a probability of having a UTI of over 90% [19]. Furthermore, some factors can increase the probability of having a UTI, as recent sexual intercourse, a new sexual partner or the use of spermicides [20]. On the contrary, the presence of fever or back pain in a woman with dysuria points out to an upper urinary tract infection, that is, a complicated UTI, rather than an uncomplicated UTI [21].

Given the broad availability and low costs of urine dipstick, some international societies recommend it in order to increase the diagnostic accuracy [22, 23], but due to its high false positive and false negative rates, others consider it only when diagnosis is not clear [24•, 25].

Therefore, a reliable diagnosis of cystitis can be made in a woman based only on a focused investigation of her symptoms by a phone interview. In fact, several protocols have been developed in order to simplify the diagnosis of uncomplicated acute cystitis [26, 27, 28] and some have been already used for telephonic or internet diagnosis.

Telephonic diagnosis has been proven to have a high sensitivity and specificity to predict a non-complicated UTI [26, 27] and a similar capacity than office-based visits of differentially diagnosing upper urinary tract or complicated UTIs and gynecologic problems [29•]. The telephonic approach also has the same cure rates than office-managed cystitis, without increasing repeated visits or hospital admissions [16, 29•, 30].

One study assessing antibiotic prescription rates for sore throat, dysuria, or respiratory symptoms in a large private health care provider in Sweden, including 3847 electronic visits and 759 office visits, found no differences in antibiotic prescription rates between the two modes [31]. However, other studies have found a much higher antibiotic use at virtual visits for urinary symptoms as reported by Mehrrotra et al. [17••].

Complicated UTI

Complicated UTIs occur in individuals with functional or anatomical factors that could make more difficult to eradicate infection, including men and pregnant women. These patients...
may have atypical symptoms, especially neurogenic and catheterized patients [32••, 33]. Criteria for complicated UTI can be identified through a thorough clinical history, even during a virtual visit. Studies examining the efficacy of telephone-based management of acute cystitis and involving patients with some criteria of complicated UTIs such as diabetes, pregnancy, or male gender [28, 34, 35] did not find an increased risk of upper UTI or sepsis in that cohort [34].

Patients with complicated UTI should undergo additional diagnostic tests, including at least a urine culture with antimicrobial susceptibility testing (AST) due to the high resistance rate of microorganisms causing these infections [36]. The current criteria to order these tests are (i) suspected acute pyelonephritis, (ii) symptoms that do not resolve or recur within 4 weeks after treatment, (iii) atypical symptoms, and (iv) pregnancy (1). Nowadays, these tests can be also prescribed through a telephonic visit.

Depending upon the symptoms the patient refers during the telephonic interview, an office visit appointment should be schedule in order to properly explore the patient and check for severity signs (tachycardia, tachypnea, fever, or even ill appearance). These cases should undergo at least blood test for severity signs (tachycardia, tachypnea, fever, or even ill appearance). These cases should undergo at least blood test and culture and might need to be hospitalized. Caution is therefore advised when managing complicated UTIs through telephonic visits.

Recurrent UTI

In women with recurrent UTI, self-diagnosis of a new episode seems to be reasonably accurate, with a positive predictive value of up to 86% [37]. As in complicated infections, patients with recurrent acute cystitis should undergo a urine culture [38] to test for antibiotic susceptibility. Antibiotic treatment has been proven to be superior to placebo in uncomplicated UTIs in women. However, a strategy based on supportive care, hydration, and analgesics until urine culture results are available has been proven to be safe in women with acute uncomplicated cystitis [39].

Treatment

Non-antibiotic Therapy

Although the current standard of therapy for uncomplicated acute cystitis includes antibiotic as first-line therapy, there is a growing trend to explore alternatives to diminish the global consumption of antibiotics in order to avoid harmful effects in the microbiome and to reduce the appearance of bacterial resistances [40]. Studies randomizing patients to oral antibiotic versus symptomatic drugs (such as NSAIDs) have shown that around two thirds of patients with uncomplicated acute cystitis can be managed without any antibiotics that could be prescribed in case of symptoms’ worsening if necessary [41••]. With regard to potential complications of the non-antibiotic approach such as pyelonephritis or febrile UTI, there is conflicting evidence with studies showing a slightly superior risk of pyelonephritis in the NSAID group [41••], and studies showing no differences between NSAID and antibiotic group [42].

D-mannose, a monosaccharide naturally produced by the body from glucose that inhibits the adhesion of pilated *Escherichia coli* to human bladder cells [43], has shown its effectiveness in the reduction of UTI recurrences [44]. Its mechanism of action, based on the competitive inhibition of FimH-mediated bacterial adhesion to urothelial mannosylated receptors, does not interfere with bacteriostatic and/or bactericidal activity of antibiotics, and it has been used as coadjuvant in cystitis treatment [45]. However, its usefulness has also been shown for this purpose in monotherapy (D-mannose alone or with other non-antibiotic substances) in prospective uncontrolled studies, retrospective case-controlled studies, and even randomized controlled trials evaluating symptomatic improvement, including suprapubic pain, urinary frequency and/or urgency, and dysuria, among others [45]. When compared to antibiotic treatment, monotherapy with D-mannose achieves very good clinical cure rates with similar symptom relief scores after 3 days of treatment [46], while not affecting antibiotic resistance.

A different strategy for the non-antibiotic management of uncomplicated cystitis is the use of different herbal extracts that have shown clinical efficacy in well conducted studies. Canephron™ is a combination of centaury powder (*Centaurii herba*), lovage root powder (*Levistici radix*), and rosemary leaf powder (*Rosmarini folium*), commercially available in 28 countries. A randomized controlled trial using fosfomycin trometamol as active comparator was conducted in 51 centers in Europe including 659 patients with acute uncomplicated UTI. Authors demonstrated the non-inferiority of Canephron™ versus fosfomycin trometamol, with more than 80% of patients treated with this herbal combination not needing antibiotic therapy to solve their symptoms, and only one patient developing pyelonephritis during the study period of 30 days [47••]. Another open, non-comparative, prospective study was conducted in 29 non-pregnant women with acute uncomplicated cystitis. All patients received Canephron™ daily for 1 month plus ketoprofen for the first 5 days. Patients without symptoms relief in 48 h were classified as non-responders to phytotherapy and subsequently received oral antibiotics. With this approach, only 13.8% (4 patients) needed antibiotic therapy, so 86.2% were successfully managed with this strategy. No patient developed febrile UTI and no serious side effects of the therapy were noted [48].
Another combination of herbal products containing as active ingredients horseradish root (*Armoracia rusticana radix*) and nasturtium (*Tropaeoli majoris herba*) has also been tested in a randomized prospective trial versus trimethoprim sulfamethoxazole (co-trimoxazole). More than 50 patients with uncomplicated acute cystitis completed the study protocol. Response rates were similar for co-trimoxazole and the herbal combination, with 90% of patients free of symptoms in the group treated with herbal combination after 15 days and similar rates of recurrent cystitis in the optional 6-month observational period [49•].

Unfortunately, the evidence of herbal extracts is scarce, and more randomized studies controlled with standard oral antibiotic treatment are needed to recommend these options as first-line therapies. However, if these positive results are confirmed, this could greatly reduce the consumption of commonly used antibiotics and thus bring down antibiotic resistances in the medium term.

Antibiotic Treatment

Uncomplicated UTIs

Empiric antibiotic treatment should be used in uncomplicated UTIs with no criteria for urine culture testing. Prescriptions can be made also through telephonic/electronic visits. The antibiotic agent should be chosen based on known antibiotic resistance rates in the community, the pharmacological distribution of the preparation and patient characteristics (allergies, renal or hepatic insufficiency) [1, 24•].

First-line antibiotics are [1, 24•, 50, 51]:

- Fosfomycin trometamol 3 g in a single dose
- Nitrofurantoin monohydrate/macrocystals 100 mg every 12 h (5 days)
- Pivmecillinam 400 mg every 8 h (3–5 days)
- Trimethoprim 200 mg every 12 h (5 days) or trimethoprim/sulfamethoxazole 160/800 mg every 12 h (3 days) when the resistance rate is lower than 20%

Although a follow-up culture is not needed, a telephonic follow-up visit might be required to assess the resolution of the infection. A drug-resistant bacteria can be suspected when symptoms do not disappear after treatment or when they recur in less than 3 months. In these cases, a urine culture and AST should be considered [1, 24•].

Complicated UTIs

Patients suffering from complicated UTIs should be managed through in office visits or even hospitalized [52] except for those cases in which severe infection can be certainly excluded. Treatment should be guided by the AST results given the fact that complicated UTIs are caused by a broad range of bacteria, and they are frequently multi-resistant [1, 53]. However, an initial empirical treatment selected based on patient’s characteristics, previous use of antibiotics, local susceptibility patterns, and type of complicated UTI is usually needed [24•, 53]. When AST results are available, a narrower spectrum antibiotic should be prescribed accordingly [1].

The recommended initial empirical treatment is [1, 54]:

- A second- or third-generation cephalosporin, although sometimes even fifth- or sixth-generation cephalosporin (ceftolozane or cefiderocol) are needed
- An aminoglycoside (+ amoxicillin)
- An extended-spectrum penicillin

Management of the complicating factor should be attempted if possible: if obstruction and/or residual urine are present, urinary tract drainage should be performed [55]; and if the patient has an indwelling urinary catheter, it should be changed [1].

Conclusions

Acute cystitis can be safely managed through telemedicine, and in times when interpersonal contact should be reduced, it seems to be a good strategy. However, it should not encourage straightforward antibiotic prescription in cases that could be managed with symptomatic treatment and non-antibiotic measures, or when an AST must be performed before initiating therapy. Considering that overprescription of antibiotics is an increasing problem worldwide, there is a need for promoting antibiotic stewardship programs, as well as potentiation of non-antibiotic management strategies in patients with uncomplicated acute cystitis.

Declarations

Conflict of Interest David Hernandez-Hernandez reports speaker honorarium from Pierre Fabre, Asofarma, and IT Médica; travel grants from Pierre Fabre and Lacer, and congress fees from Ipsen, all outside of the submitted work. Yanira Ortega-Gonzalez reports speaker honorarium and travel grants from Recordati and Rubió, and congress fees from Coloplast, all outside the submitted work. Barbara Padilla-Fernandez reports speaker honorarium from QPharma and Coloplast; travel grants from Neomedic, QPharma, and Immunotek; and congress fees from Neomedic, all outside the submitted work. Pedro Ramón Gutiérrez-Hernández declares no conflict of interest. David Manuel Castro-Díaz reports speaker honorarium from Astellas, Medtronic, Gebro, and Boston Scientific, all outside the submitted work.

Human and Animal Rights and Informed Consent This article does not contain any studies with human or animal subjects performed by any of the authors.
References

Papers of particular interest, published recently, have been highlighted as:
- Of importance
- Of major importance

1. Bonkat G, Bartoletti R, Bruyere F, Cai T, Geerlings SE, Köves B, et al. EAU guidelines on urological infections. Arnhem, The Netherlands: EAU Guidelines Office; 2022. Available from: https://uroweb.org/guidelines/urological-infections. Accessed 14 May 2022.

2. Medina M, Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol. 2019;11:1756287219832172.

3. Rich SN, Klann EM, Almond CR, Larkin EM, Nicolette G, Ball JD. Associations between antibiotic prescriptions and recurrent urinary tract infections in female college students. Epidemiol Infect. 2019;147:e119.

4. Hisano M, Bruschini H, Nicodemo AC, Srougi M. Uncomplicated urinary tract infections in women in a Sao Paulo quaternary care hospital: bacterial spectrum and susceptibility patterns. Antibiotics (Basel). 2014;3(1):98–108.

5. WHO. WHO coronavirus (COVID-19) 2022 [Available from: https://COVID19.who.int]. Accessed 14 May 2022.

6. King LM, Lovegrove MC, Shehab N, Tsay S, Budnitz DS, Geller AI, et al. Trends in US outpatient antibiotic prescriptions during the coronavirus disease 2019 pandemic. Clin Infect Dis:Off Publ Infect Dis Soc America. 2021;73(3):e652–60.

7. Zhu N, Aylin P, Rawson T, Gilchrist M, Majeed A, Holmes A. Investigating the impact of COVID-19 on primary care antibiotic prescribing in North West London across two epidemic waves. Clin Microbiol Infect. 2021;27(5):762–6.

8. Wan S, Xiang Y, Fang W, Zheng Y, Li B, Hu Y, et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J Med Virol. 2020;92(7):797–806.

9. Rawson TM, Moore LSP, Castro-Sanchez E, Charani E, Davies F, Satta G, et al. COVID-19 and the potential long-term impact on antimicrobial resistance. J Antimicrob Chemother. 2020;75(7):1681–4. The COVID-19 pandemic has focused society, while certain infection control and antimicrobial stewardship policies might have been relaxed. There could be the long-term consequences of these changes, so we must keep sustained effort to address the global threat of antimicrobial resistance.

10. Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, et al. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis:Off Publ Infect Dis Soc America. 2020;71(9):2459–68.

11. Bardi T, Pintado V, Gomez-Rojas M, Escudero-Sanchez R, Azzam Lopez A, Diez-Remesal Y, et al. Nosocomial infections associated to COVID-19 in the intensive care unit: clinical characteristics and outcome. Eur J Clin Microbiol Infect Dis. 2021;40(8):495–502.

12. Langford BJ, So M, Raybhardt S, Leung V, Westwood D, MacFadden DR, et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect. 2020;26(12):1622–9. Bacterial co-infection in COVID-19 patients is unfrequency (3.5–14%); however, the prescription of antibiotics is very frequent (>70%).

13. Ny S, Edquist P, Dumps U, Gröndahl-Yli-Hannuksela K, Hermes J, Kling AM, et al. Antimicrobial resistance of Escherichia coli isolates from outpatient urinary tract infections in women in six European countries including Russia. J Glob Antimicrob Resist. 2019;17:25–34.

14. Mulder M, Kiefte-de Jong JC, Goessens WH, de Visser H, Hoffman A, Stricker BH, et al. Risk factors for resistance to ciprofloxacin in community-acquired urinary tract infections due to Escherichia coli in an elderly population. J Antimicrob Chemother. 2017;72(1):281–9.

15. O’Toole RF. The interface between COVID-19 and bacterial healthcare-associated infections. Clin Microbiol Infect. 2021;27(12):1772–6.

16. Blozik E, Sommer-Meyer C, Cerezo M, von Overbeck J. Effectiveness and safety of telemedical management in uncomplicated urinary tract infections. J Telemed Telecare. 2011;17(2):78–82.

17. Mehrotra A, Paone S, Martich GD, Albert SM, Shevchik GJ. A comparison of care at e-visits and physician office visits for sinusitis and urinary tract infection. JAMA Intern Med. 2013;173(1):72–4. Patients attended virtually for suspected UTI or sinusitis are more likely to get an antibiotic prescription and physicians are less likely to order preventive care.

18. Akkerman AE, Kuyvenhoven MM, Verheij TJ, van Dijk L. Antibiotics in Dutch general practice: nationwide electronic GP database and national reimbursement rates. Pharmacopoeidemia Drug Saf. 2008;17(4):378–83.

19. Bent S, Nullamothu BK, Simel DL, Fihn SD, Saint S. Does this woman have an acute uncomplicated urinary tract infection? JAMA. 2002;287(20):2701–10.

20. Hooton TM, Scholes D, Hughes JP, Winter C, Roberts PL, Stapleton AE, et al. A prospective study of risk factors for symptomatic urinary tract infection in young women. N Engl J Med. 1996;335(7):468–74.

21. Bent S, Saint S. The optimal use of diagnostic testing in women with acute uncomplicated cystitis. Am J Med. 2002;113(Suppl 1A):20s-s28.

22. Colgan R, Williams M. Diagnosis and treatment of acute uncomplicated cystitis. Am Fam Physician. 2011;84(7):771–6.

23. Grimes CL, Lukacz ES. Urinary tract infections. Female Pelvic Med Reconstr Surg. 2011;17(6):272–8.

24. Wagenlehner F, Nicolle L, Bartoletti R, Gales AC, Grigoryan L, Huang H, et al. A global perspective on improving patient care in uncomplicated urinary tract infection: expert consensus and practical guidance. J Glob Antimicrob Resist. 2022;28:18–29. A multidisciplinary panel of experts discusses diagnosis, treatment, prevention, guidelines, treatment, antimicrobial resistance, and the impact of COVID-19 on clinical practice of uncomplicated UTI management.

25. Gupta K, Trautner B. In the clinic Urinary tract infection. Ann Intern Med. 2012;156(5):ITC3-1–ITC−15 (quiz ITC3-6).

26. Alidjanov JF, Abdufattaev UA, Makhsudov SA, Pilatz A, Akilov FA, Naber KG, et al. A prospective study of risk factors for acute uncomplicated cystitis. Am Fam Physician. 2012;86(1):6–12.

27. Rastogi R, Martinez KA, Gupta N, Rood M, Rothberg MB. The effectiveness of a clinical practice guideline for managing uncomplicated cystitis. Urol Int. 2014;92(6):916–24.

28. Cerezo M, von Overbeck J. Effectiveness and safety of telemedical management in uncomplicated urinary tract infections. J Telemed Telecare. 2011;17(2):78–82.

29. Saint S, Scholes D, Fihn SD, Farrell RG, Stamm WE. The effect of a clinical practice guideline for the management of presumed uncomplicated urinary tract infection in women. Am J Med. 1999;106(6):636–41. Implementation of a telephone-based clinical practice guideline for managing uncomplicated acute cystitis decreased laboratory utilization and overall costs while maintaining the quality of care.

30. O’Connor PJ, Solberg LI, Christianson J, Amundson G, Mosser G. Mechanism of action and impact of a cystitis
clinical practice guideline on outcomes and costs of care in an HMO. Jt Comm J Qual Improv. 1996;22(10):673–82.

31. Entezarjou A, Calling S, Bhattacharyya T, Milos Nymberg V, Vigren L, Labaf A, et al. Antibiotic prescription rates after eVisits versus office visits in primary care: observational study. JMIR Med Inform. 2021;9(3):e25473.

32. Linsenmeyer TA, Oakley A. Accuracy of individuals with spinal cord injury at predicting urinary tract infections based on their symptoms. J Spinal Cord Med. 2003;26(4):352–7. Individuals with spinal cord injury attending an outpatient urology for suspected UTI were frequently not accurate at predicting the origin of their symptoms, with almost 40% having other medical problems.

33. Sartori AM, Padilla-Fernández B, t Hoen L, Blok BFM, Linsenmeyer TA, Oakley A, et al. Definitions of urinary tract infection used in interventional studies involving urological patients-a systematic review. EurUrol Focus. 2021. https://doi.org/10.1016/j.euf.2021.07.012

34. Vinson DR, Quesenberry CP Jr. The safety of telephone management of presumed cystitis in women. Arch Intern Med. 2004;164(9):1026–9.

35. Bernstein P, Ko KJ, Israni J, Cronin AO, Kurtliand MM, Shi J, et al. Urgent and non-emergent telehealth care for seniors: findings from a multi-site impact study. J Telemed Telecare 2021;1357633x211004321. https://doi.org/10.1177/1357633x211004321

36. Peterson J, Kaul S, Khashab M, Fisher A, Kahn JB. Identificaion and pretherapy susceptibility of pathogens in patients with complicated urinary tract infection or acute pyelonephritis enrolled in a clinical study in the United States from November 2004 through April 2006. Clin Ther. 2007;29(10):2215–21.

37. Donofrio JC, Weiner SG. Female patient self-diagnosis compared with emergency physician diagnosis of urinary tract infection. J Emerg Med. 2013;45(6):969–73.

38. Anger J, Lee U, Ackerman AL, Chou R, Chughtai B, Clemons JQ, et al. Recurrent uncomplicated urinary tract infections in women: AUA/CUA/SUFU guideline. J Urol. 2019;202(2):282–9.

39. Falagas ME, Kotsantis IK, Vouloumanou EK, Rafailidis PI. Antibiotics versus placebo in the treatment of women with uncomplicated cystitis: a meta-analysis of randomized controlled trials. J Infect. 2009;58(2):91–102.

40. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8(1):39.

41. Gágyor I, Bleidorn J, Kochen MM, Schmiemann G, Wegscheider K, Hummers-Pradier E. Ibuprofen versus fosfomycin for uncomplicated urinary tract infection in women: randomised controlled trial. BMJ (Clin Res ed). 2015;351:h6544. RCT comparing standard treatment (fosfomycin 3g) versus symptomatic treatment (ibuprofen) in the management of uncomplicated acute cystitis, showing that non-antibiotic management could be a possible approach to discuss with patients with mild to moderate symptoms.

42. Bleidorn J, Hummers-Pradier E, Schmiemann G, Wiese B, Gágyor I. Recurrent urinary tract infections and complications after symptomatic versus antibiotic treatment: follow-up of a randomised controlled trial. Ger Med Sci. 2016;14:Doc01.

43. Grun SG, Wellens A, Bouckaert J, Kovenys J. Synthetic multimeric heptyl mannosides as potent antiadhesives of uropathogenic Escherichia coli. ChemMedChem. 2009;4(5):749–55.

44. Kranz J, Pilatz A, et al. Epidemiology, definition and treatment of recent uncomplicated urinary tract infections/cystitis (review). Enferm Infec Respir Med. 2012;30(4):163–70.

45. Parazzini F, Ricci E, Fedele F, Chiaffarino F, Esposito G, Cipriani S. Systematic review of the effect of D-mannose with or without other drugs in the treatment of symptoms of urinary tract infections/cystitis (review). Biomed Rep. 2022;17(2):69.

46. Wagenlehner F, Lorenz H, Ewald O, Gerke P. Why d-mannose may be as efficient as antibiotics in the treatment of acute uncomplicated lower urinary tract infections-considerations and conclusions from a non-interventional study. Antibiotics (Basel). 2022;11(3):314.

47. Wagenlehner FM, Abramov-Sommariva D, Höller M, Steindl H, Naber KG. Non-antibiotic herbal therapy (BNO 1045) versus antibiotic therapy (fosfomycin tromethamol) for the treatment of acute lower uncomplicated urinary tract infections in women: a double-blind, parallel-group, randomized, multicentre, non-inferiority phase III trial. Urol Int. 2018;101(3):327–36. RCT of Canephron™ versus fosfomycin tromethamol for treatment of uncomplicated lower UTI, showing non-inferiority of the herbal extract, and thus the potential to reduce outpatients use of antibiotics.

48. Kulchavyna E. Acute uncomplicated cystitis: is antibiotic unavoidable? Ther Adv Urol. 2018;10(9):257–62.

49. Stange R, Schneider B, Albrecht U, Mueller V, Schnitker J, Michelsen A. Results of a randomized, prospective, double-dummy, double-blind trial to compare efficacy and safety of a herbal combination containing Tropaeolus majoris herba and Armoraciae rusticanae radix with co-trimoxazole in patients with acute and uncomplicated cystitis. Res Rep Urol. 2017;9:43–50. RCT showing comparable efficacy of the herbal combination and co-trimoxazole in the management of uncomplicated acute cystitis.

50. de Cueto M, Aliaga L, Alós JI, Canut A, Los-Arcos I, Martínez JA, et al. Executive summary of the diagnosis and treatment of urinary tract infection: guidelines of the Spanish Society of Clinical Microbiology and Infectious Diseases (SEIMC). Enferm Infecc Microbiol Clin. 2017;35(5):314–20.

51. Kranz J, Schmidt S, Lebert C, Schneidewind L, Schmiemann G, Wagenlehner F. Uncomplicated bacterial community-acquired urinary tract infection in adults. Dtsch Arztebl Int. 2017;114(50):866–73.

52. Tandoğdu Z, Bartoletti R, Cai T, Çek M, Grabe M, Kulchavyna E, et al. Antimicrobial resistance in urosepsis: outcomes from the multinational, multicenter global prevalence of infections in urology (GPIU) study 2003–2013. World J Urol. 2016;34(8):1193–200.

53. Wagenlehner FME, Bjerklund Johansen TE, Cai T, Koves B, Kranz J, Pilatz A, et al. Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol. 2020;17(10):586–600.

54. Bader MS, Loeb M, Brooks AA. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad Med. 2017;129(2):242–58.

55. Wong BTH, Kan SCF, Lo AHK, Ho LY, Kan RWM, Lai C. Asian guidelines for UTIs & STIs UTI section: complicated UTIs with neurogenic bladder. J Infect Chemother. 2022;28(1):6–9.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.