Immunization with a Pneumococcal pep27 Mutant Strain Alleviates Atopic Dermatitis through the Upregulation of Regulatory T-Cell Activity and Epithelial Barrier Function and Suppressing TSLP Expression

Ji-Hoon Kim¹,³, Saemi Ahn¹,³, Prachetash Ghosh¹ and Dong-Kwon Rhee¹,²

Atopic dermatitis (AD) is an inflammatory disease driven in part by type 2 helper T (Th2) cytokines and skin barrier disruption alleviating the entry of allergens. Thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine, is known to aggravate AD symptoms by activating Th2. In addition, regulatory T cells (Tregs) inhibit inflammatory cells such as Th2. However, the relationship between TSLP and Tregs in AD is unclear. A murine dermatitis model was induced by applying oxazolone to the ear skin of mice. Prophylactic and therapeutic responses were analyzed by immunizing mice intranasally with a pneumococcal pep27 mutant (Δpep27 mutant), attenuated strain by reducing the virulence of a pathogen. Intranasal immunization with a pneumococcal pep27 mutant could elicit anti-inflammatory Treg-relevant factors and epithelial barrier genes (loricrin, involucrin, filaggrin, and small proline-rich repeat proteins). Thus, pneumococcal pep27-mutant immunization suppressed epidermal collapse, IgE, TSLP, and upregulation of Th2 expression by upregulating Treg activity. In contrast, Treg inhibition aggravated AD symptoms through the upregulation of TSLP and Th2 and the repression of epithelial barrier function compared with that of the noninhibited pneumococcal Δpep27-mutant group. Taken together, immunization with pneumococcal Δpep27 mutant upregulated Treg and epithelial barrier function and inhibited TSLP and Th2 to relieve AD symptoms.

INTRODUCTION

Atopic dermatitis (AD) (alias atopic eczema) is increasing worldwide and is prevalent in about 20% of the population (Weidinger et al., 2018). AD is a chronic, inflammatory skin disease with intense pruritic and recurrent eczematous lesions. It is prevalent in children but can also occur with high frequency in adults (Leung et al., 2004).

The cause of AD remains unclear. Allergens stimulate epithelial cells to secrete thymic stromal lymphopoietin (TSLP), which is associated with AD pathogenesis by initiating T helper (Th) 2 cell hypersensitivity (Ho and Kupper, 2019; Werfel et al., 2016). Increased TSLP level is observed in the epidermis of patients with AD (Corren and Ziegler, 2019). Overexpression of IL-4, IL-5, and IL-13 plays an important role in the Th2-mediated inflammatory responses by enhancing IgE production, leading to accumulation of eosinophils in the dermis (Woodfolk, 2007; Wu and Zarrin, 2014). TSLP receptors are expressed on a wide range of hematopoietic lineage cells, including CD11c⁺ dendritic cells, monocytes, and T or B cells (Levin et al., 1999; Pandey et al., 2000; Soumelis et al., 2002). Therefore, TSLP can interact with various immune cells and is expected to have different mechanisms for each disease (Soumelis et al., 2002). When exposed to allergens, TSLP secretion by keratinocytes is increased, and a Th2 inflammatory response is induced in allergic diseases (Comeau and Ziegler, 2010). The TSLP receptor is expressed specifically in skin-associated regulatory T cells (Tregs) for repression of proinflammatory conditions. Thus, TSLP activates Treg cells, and keratinocytes can directly repress the immune response (Kashiwagi et al., 2017). Moreover, TSLP produced by the skin stimulates Tregs to expand in a signal-dependent manner through the TSLP receptor (Leichner et al., 2017). However, when measuring Treg frequency in patients with AD, conflicting results can occur (Loser and Beissert, 2012). Thus, for effective AD therapy, a complete understanding of the interaction between TSLP and Treg is required.

Although the relationship between Treg number and AD disease severity is controversial (Gaspár et al., 2015; Reeler et al., 2008; Ma et al., 2014), the ineffective function of Tregs or reduced Tregs is characteristic of severe allergy disease, including AD, in animals as well as patients (Malhotra...
Figure 1. Immunization with Δpep27 reduces ear inflammation in the AD model. (a) Mice were immunized I.N. with Δpep27 mutant three times once a week and sensitized with 1% OXA to the inner and outer surfaces of both ears 7 days after the last immunization. After 5 days from OXA sensitization, the mice were challenged with 0.2% OXA a total of eight times at 2-day intervals. (b) The ear of the mouse was photographed after 24 h of the final sensitization. (c) Mouse ear thickness (n = 10). * and # indicate significant differences between CON and OXA subjects (*) or between OXA and Δpep27/OXA subjects (#). (d) Representative photo of H&E-stained sections from ears for determining cell infiltration. Microscopic photographs of H&E staining at x200 magnification. Bars = 100 μm. Each value is expressed as the average ± SEM. (e) TEWL was measured at the endpoint (42 days). Statistical comparison was performed using one-way ANOVA and Tukey’s test (****P < 0.0001). AD, atopic dermatitis; CFU, colony-forming unit; CON, control; h, hour; I.N., intranasally; OXA, oxazolone; TEWL, transepidermal water loss.

et al., 2018; Noval Rivas and Chatila, 2016; Shin et al., 2018). Introduction or induction of Tregs, which can repress abnormal immune activation and foster immune homeostasis (Kashiwagi et al., 2017), could be a new remedy for inflammatory diseases and allergy treatment (Roth-Walter et al., 2021; Skuljec et al., 2017; Xystrakis et al., 2007).

Streptococcus pneumoniae (pneumococcus)-mutant strain devoid of pep27, an autolysis-inducing factor, was sufficiently avirulent, and intranasal immunization of pneumococcus pep27-mutant (Δpep27-mutant) strain could elicit mucosal and systemic immunity and protect mice from lethal pneumococcal challenges serotype in an independent manner (Kim et al., 2012). Moreover, immunization of pneumococcus Δpep27 mutant provides long-lasting protection even 3 months after immunization (Choi et al., 2013; Kim et al., 2016) and resistance to colonization of Staphylococcus aureus and Klebsiella pneumoniae (Kim et al., 2018) and confers protection against influenza virus infection (Seon et al., 2018). This nonspecific tolerance to various pathogens would be potentially ascribed to Treg induction because the pneumococcus Δpep27-mutant vaccine could subdue asthma in mice by suppressing Th2-dependent cytokines and IgE and upregulating Tregs (Kim et al., 2019). In this study, we examined whether Δpep27 mutant could mediate therapeutic and prophylactic effects on AD. Results showed that Δpep27 mutant could repress allergic mediators and remediate AD by upregulating Treg and the epithelial barrier response and downregulating TSLP.

RESULTS

Immunization with Δpep27 mutant ameliorates oxazolone-induced AD symptoms

To assess the effect of Δpep27-mutant immunization on oxazolone (OXA)-induced AD, mice were immunized with Δpep27 mutant, followed by AD induction through sensitization and challenge with OXA 7 days after immunization (Figure 1a). The OXA group showed severe atopic symptoms such as itching, erythema, edema, and dryness. However, immunization with Δpep27 mutant reduced the atopy-like symptoms (Figure 1b). In addition, OXA increased ear thickness significantly and increased epidermal epithelium to 5–9 layers compared with the normal control, whereas Δpep27-mutant immunization reduced ear thickness compared with the OXA group (Figure 1c). To further confirm the alleviation of AD, H&E staining was performed. Treatment with OXA resulted in the typical characteristics of AD comprising hyperkeratosis and parakeratosis as well as pustules. In contrast, the Δpep27 group showed reduced epidermal thickness and absence of pustules (Figure 1d).

Treg is upregulated, and Th2 is suppressed by Δpep27-mutant immunization

To test the hypothesis that Treg upregulated by Δpep27 mutant could alleviate the Th2 response, the levels of Th2 and Treg transcripts in mice ears were determined by RT-qPCR. Transcripts of the Th2-related markers Il4, Il5, and Gata3 were significantly increased in the OXA-treated group compared with that in the control group. In contrast, immunization with Δpep27 mutant downregulated all Th2-related markers. In addition, the transcripts of Treg-related genes Il10 and Tgfβ and transcription factor Foxp3 were significantly increased in the Δpep27/OXA-treated group compared with that in the OXA-treated group (Figure 1e).

To corroborate these results, serum cytokine levels were investigated by ELISA. OXA treatment increased IL-4 and IL-5 levels compared with control treatment, but immunization...
with Δpep27 mutant repressed them and significantly increased IL-10 levels compared with that of other groups (Figure 2b).

In patients with AD, conflicting results exist regarding the relationship between Tregs and AD symptoms (Brandt et al., 2009; Ou et al., 2004; Reefer et al., 2008). In the AD-like mouse model used in this study, Treg markers were slightly increased in the OXA-treated group compared with that in the control group (Figure 2a). However, the group immunized with Δpep27 mutant had significantly increased Treg-relevant transcripts levels compared with the OXA-treated group (Figure 2a).

Consistently, increased IgE level in the OXA-treated group was significantly repressed by Δpep27-mutant immunization (Figure 2c). These results show that immunization with Δpep27 mutant downregulated Th2 response and upregulated Treg function to relieve AD-like symptoms.

Therapeutic effect of Δpep27-mutant immunization on AD

To evaluate the therapeutic potential of Δpep27 mutant, after OXA sensitization, Δpep27-mutant immunization and OXA challenge were performed simultaneously (Supplementary Figure S1a). The OXA treatment elicited severe dermatitis compared with control treatment; however, Δpep27-mutant immunization reduced the degree of redness. Ear thickness was more than double in the OXA-treated group compared with that in the control group but was reduced significantly in the OXA/Δpep27-treated group compared with that in the OXA-treated group (Supplementary Figure S1b). Histological analysis of the mice ears revealed that the extent of epidermal lesions was augmented significantly in the OXA-treated group compared with that in the control. In contrast, they were decreased by Δpep27-mutant immunization (Supplementary Figure S1c). Moreover, the OXA/Δpep27−treated group showed a significantly reduced disease index in the epidermis and dermis compared with that in the OXA-treated group (Supplementary Figure S1d). These results show the therapeutic effect of Δpep27-mutant immunization. To further confirm the therapeutic effect of Δpep27 mutant, RT-qPCR was conducted to access the role of AD-related proinflammatory genes such as TSLP in the initiation and maintenance of AD (Mizutani et al., 2015). Immunization with Δpep27 mutant downregulated TSLP, IL1β, and TNFa compared with that in the OXA-treated group. In addition, Δpep27-mutant immunization significantly increased IL10 level, although there was no significant change in the level of IL17 compared with the levels in the other groups (Supplementary Figure S2a).

To corroborate these findings, serum IgE and Th2 cytokine levels were assessed. Consistently, immunization with Δpep27 mutant significantly reduced serum IgE, IL-4, and IL-5 levels but not IL17 in the OXA-treated group (Supplementary Figure S2b and c).
Immunization with Δpep27 mutant alleviates AD through Th2/Treg regulation

To determine the underlying mechanism of Δpep27-mutant immunization in a prophylactic and/or therapeutic model, the transcript profiles of specific transcription factors associated with Th1 (T-bet), Th2 (Gata-3), and Th17 (Rorγt) cells and Tregs (Foxp3) were assessed by RT-qPCR. In both AD models, exposure to OXA substantially induced Gata-3 transcripts, whereas Δpep27 mutant repressed it. Moreover, Δpep27 mutant significantly induced Foxp3 transcripts (Figure 2a and Supplementary Figure S3a). However, no differences in the transcript levels of T-bet and Rorγt were noted in the therapeutic model (Supplementary Figure S3a). Th1- and Th17-related markers were increased in the OXA-treated group compared with those in the control group but showed similar levels in the Δpep27/OXA-treated group (Supplementary Figure S3b). Therefore, Δpep27 mutant seems to prevent and/or mitigate AD through Th2 inhibition and Treg upregulation but neither through Th1 nor Th17 mediation.
AD is attenuated by Δ pep27-mutant immunization through TSLP downregulation and Treg upregulation

TSLP directly and selectively impairs IL-10 production of Treg and subsequently inhibits their suppressive activity (Nguyen et al., 2010). Thus, to determine whether Δ pep27 mutant can upregulate Treg and repress TSLP, transcripts were measured by RT-qPCR. OXA elicited TSLP upregulation, whereas Δ pep27 mutant reversed this induction, possibly through Treg upregulation (Supplementary Figures S2 and S3a). However, no relation between Treg and TSLP was shown. Thus, to elucidate the mechanism, antibody neutralization studies using either anti-TSLP (α-TSLP) or anti-CD25 (PC61: [α-CD25]) were performed using IgG as a negative control (Figures 3a and 4a and Supplementary Figures S4 and S5). Treatment with Δ pep27/OXA/α-CD25 produced more severe AD symptoms, such as erythema, keratinization, and even hair loss than in the OXA-treated group. On the other hand, Δ pep27/OXA/α-TSLP treatment significantly relieved AD symptoms compared with the Δ pep27/OXA treatment (Figure 3b). Ear thickness continued to increase in all groups except in the control group. However, ear thickness in the Δ pep27/OXA and Δ pep27/OXA/α-TSLP groups tended to decrease gradually, eventually showing a significant decrease in skin thickness in the Δ pep27/OXA/α-TSLP group compared with that in the Δ pep27/OXA group. The Δ pep27/OXA/α-CD25 group showed the fastest increase in ear thickness from the onset of AD and the highest thickness from the start to the end of the OXA challenge (Figure 3c).

Histological observation revealed that thicker skin induced by OXA was further exacerbated by α-CD25 treatment, although nonsignificantly (Figure 3c). However, both Δ pep27/OXA/α-TSLP and Δ pep27/OXA markedly decreased skin thickness compared with the OXA. Skin thickness tended to decrease in the order of Δ pep27/OXA/α-CD25, OXA, Δ pep27/OXA, Δ pep27/OXA/α-TSLP, and the control group (Supplementary Figure S4a and b), suggesting that α-TSLP relieves AD symptoms, but α-CD25 aggravates them.

Consistently, the number of eosinophils in the skin dermis was significantly increased by OXA and was further increased by α-CD25 treatment (Figure 3e). The Δ pep27/OXA/α-TSLP group showed a substantial decrease in eosinophil number compared with the Δ pep27/OXA group, suggesting that TSLP is an aggravating factor in the OXA-induced AD model. The epidermal thickness results were similar to the eosinophil results. The epidermis was thickest in the Δ pep27/OXA/α-CD25 group but decreased significantly in the Δ pep27/OXA/
α-TSLP group compared with that in the Δpep27/OXA group (Figure 3d and e). In addition, Bax, a proapoptotic gene, was decreased, whereas Bcl2, an antiapoptotic gene, was increased in the Δpep27/OXA/α-TSLP group compared with those in the Δpep27/OXA group (Supplementary Figure S4d), indicating that Δpep27 mutant represses OXA-induced inflammation and apoptosis.

With infiltration of inflammatory cells into the dermis, neutrophils were the main infiltrated immune cells, and both OXA and Δpep27/OXA/α-TSLP showed severe grades of infiltration (Supplementary Figure S4c). Of the groups, infiltration of inflammatory cells in the Δpep27/OXA/α-TSLP group was the lowest (Supplementary Figure S4c), showing that TSLP inhibition and Treg induction are the major factors for alleviating AD symptoms.

Immunization with Δpep27 mutant alone can repress TSLP and increase Treg relevant factors

To further evaluate the background effect, RT-qPCR and ELISA analyses were performed after Treg- or TSLP-neutralizing antibody injection into the OXA-alone or Δpep27-mutant-alone (without OXA) group. In the normal groups, antibody treatments did not elicit any significant changes in any of the markers tested (Supplementary Figure S5a–d). The TSLP transcript was significantly upregulated after OXA/α-TSLP treatment compared with that in the OXA/IgG-treated group (Supplementary Figure S5a), suggesting that Treg depletion can induce TSLP. Although OXA/α-TSLP treatment significantly decreased the number of eosinophils compared with that in the OXA/IgG-treated group (Supplementary Figure S5b and d), it did not produce a significant modulation of Treg-relevant factors (Foxp3 and IL-10) compared with that in the OXA/IgG-treated group. In contrast, Δpep27 mutant alone downregulated TSLP in the absence of OXA insult, whereas IL-10 level was significantly upregulated at both mRNA and protein levels (Supplementary Figure S5a, d, and e), suggesting induction of the anti-inflammatory milieu. Consistently, Δpep27 mutant alone did not increase eosinophils or apoptosis (Supplementary Figure S5b–e), indicating no pathological change by Δpep27 mutant. Thus, in allergic AD, immunization with Δpep27 mutant seems to upregulate Treg to suppress TSLP and Th2 transcripts and repress inflammation and apoptosis.

TSLP and Th2 are repressed by Δpep27-dependent Treg upregulation

To attest whether Δpep27-dependent TSLP downregulation is mediated by Treg, relevant transcripts were determined after antibody neutralization. The Δpep27/OXA/α-TSLP treatment significantly increased TSLP transcripts compared with Δpep27/OXA treatment (Figure 4a), indicating that Treg is a negative regulator of TSLP. Consistently, the Δpep27/OXA/α-TSLP group showed the highest levels of IgE and Th2 transcripts (Gata-3 and Il4) due to repressed Treg-relevant genes (Foxp3, Tgfβ3, and Il10) (Figure 4b–d), indicating the repression of TSLP and Th2 by Δpep27-dependent Treg. Although Δpep27/OXA/α-TSLP showed significantly reduced Gata-3 transcript level compared with the Δpep27/OXA, it revealed the lowest IgE (Figure 4b), indicating TSLP as an aggravating agent for AD. In addition, the Δpep27/OXA/α-TSLP group showed decreased Gata-3 and Il5 transcripts compared with the Δpep27/OXA group, indicating a role of TSLP in Th2 expression. In contrast, the Δpep27/OXA/α-TSLP group induced the highest Foxp3 and Il10 transcripts, even higher than in the Δpep27/OXA group (Figure 4c and d), suggesting that TSLP is a negative regulator of Treg.

Skin barrier–related proteins are upregulated by Δpep27 mutant

Patients with AD show characteristically reduced levels of skin barrier molecules, such as loricrin (Lor), involucrin (Ivl), and filaggrin (Flg) (Furue, 2020), which are inhibited by Th2-related cytokines (IL-4 and IL-13) (Kim et al., 2008). A family of SPRRs and involucrin gene Ivl are soluble and involved in the formation of the initial scaffold during skin layer formation. When the scaffold is complete, insoluble proteins such as involucrin are cross-linked with this structure to form a skin barrier (Eckert et al., 2005; Rinnerthaler et al., 2015). Confocal microscopy revealed that Δpep27-mutant immunization (Δpep27/OXA) resulted in the highest loricrin gene Lor, involucrin gene Ivl, and Flg levels. However, Δpep27/OXA/α-TSLP treatment reduced the expression of loricrin gene Lor to the lowest level (Figure 5a and b). Thus, Δpep27 mutant upregulates loricrin gene Lor, involucrin gene Ivl, and Flg expression, whereas Treg inactivation repressed this expression significantly (Figure 5c). Similar to other molecules, Δpep27/OXA increased the expression of all SPRRs, whereas Δpep27/OXA/α-TSLP treatment decreased Sprr1b and Spr2a transcripts compared with the Δpep27/OXA treatment (Figure 5c). In contrast, in non-OXA conditions, immunization by Δpep27 mutant followed by PBS or α-TSLP treatment did not elicit any modulation in skin barrier–related marker expression (Supplementary Figure S6a and b). Taken together, these results indicate that Δpep27-mutant immunization relieves AD symptoms by upregulating the expression of epithelial barrier molecules through Treg upregulation.

DISCUSSION

Children with AD have a delayed IgG response to pneumococcal polysaccharide vaccine (Arkwright et al., 2000). Exposure to pneumococci at an early stage of life can protect against allergic diseases during the adult stage because antibodies are generated against the conserved epitopes in allergens (Patel and Kearney, 2015). However, the underlying mechanism of pneumococcus in AD remains incomplete. In this study, we showed how Δpep27 mutant can prevent or attenuate AD-like symptoms in an animal model. In addition, immunization with Δpep27 mutant inhibited the Th2 response by promoting Tregs and the epithelial barrier and suppressing TSLP expression, mitigating AD symptoms.

The expression of Treg marker was slightly increased in the OXA-treated group compared with that in the control group (Figures 2 and 4). Presumably, this is similar to a situation where increased Treg was observed to compensate for the reduced anti-inflammatory response in the context of a strong Th2 inflammatory response (Roesner et al., 2015). However, Δpep27-mutant immunization alleviates AD-like symptoms by inducing Treg expression compared with OXA treatment. Th17 cytokines are overexpressed in patients with AD (Dhingra and Guttmann-Yassky, 2014; Gittler et al., 2012). However, when the level of Rorγt transcripts was measured, there was no significant difference in the therapeutic and
prophylactic AD models (Supplementary Figure S3a and b). Therefore, Th17 does not appear to be involved in the relief of symptoms after immunization with \(\text{D} \text{pep27} \) mutant in the OXA-induced AD model. In both human and animal asthma studies, Treg induction has been suggested as protective immunotherapy (Ray et al., 2010). Similarly, \(\text{D} \text{pep27} \)-mutant immunization preferentially alleviates AD symptoms by induction of Treg rather than by repression of Th17.

Skin exterior disruption endorses inflammation through uncontrolled regulation of immunomodulatory proteins and secretion of IL-1\(\beta \), TSLP, and TNF-\(\alpha \) (Ito et al., 2005; Oyoshi et al., 2010; Yoon et al., 2016). In particular, TSLP is produced in epithelial cells and induces type 2 inflammation by activating TSLPR-expressing dendritic cells, basophils, and CD4 T cells (Al-Shami et al., 2004; Ito et al., 2005; Masuoka et al., 2012; Noti et al., 2013). The relationship between TSLP and Tregs is controversial. For example, TSLP promotes pulmonary Treg development (Leichner et al., 2017; Spadoni et al., 2012) and impairs IL-10 (Nguyen et al., 2010). Interestingly, TSLP neutralization elicited the highest Treg induction, which was higher than that found in the \(\text{D} \text{pep27} \)-treated group (Figure 4c), showing that TSLP inhibited Tregs and exacerbated the symptoms of AD in the OXA-induced AD model. Consistent with our results, children with asthma have shown increased TSLP levels with decreased Treg population (Chauhan et al., 2015). In contrast, TSLP antibody treatment in patients with asthma did not alter the circulating Treg frequency (Baatjes et al., 2015). However, the relationship between TSLP and Treg needs to be further clarified in patients with AD.

In AD, impairment of the skin barrier function and the subsequently increased infiltration of allergens into the skin lead to the allergic inflammatory responses that are the main features of Th2 inflammation (Traidl-Hoffmann et al., 2005; Werfel et al., 2016). Patients with AD have a reduced Th1/Th2 ratio, which implies a Th1 and Th2 imbalance (Czarnewicki et al., 2020). For example, in a model using the atopy-patch test technique in patients with AD, Th1 cells were significantly increased after 24-48 hours (Leung and Bieber, 2003). In addition, when AD was induced in IFN\(\gamma \)−/− mice, dermal thickness decreased (Spergel et al., 1999). Therefore, the Th1 response is also involved in AD. In most experimental AD systems, haptens such as OXA induce a Th1-dominant response (Gittler et al., 2013). In fact, in the OXA-treated group of the preventive AD model, the Th1 cell markers were increased compared with those in the control group, but there was no difference in the \(\text{D} \text{pep27} \)-treated group (Supplementary Figure S3b). Therefore, \(\text{D} \text{pep27} \) mutant does not contribute to symptom relief by modulating the Th1 response.

In summary, \(\text{D} \text{pep27} \) mutant is a prospective mucosal vaccine that has a substantial anti-inflammatory effect in AD by subduing inflammatory Th2 cytokines and TSLP and inducing anti-inflammatory Tregs and an epithelial barrier.

Figure 5. Immunization with \(\text{D} \text{pep27} \) upregulates skin barrier function–related proteins in a prophylactic AD model. (a) Immunofluorescence images of ear tissue stained with Lor. DNA was counterstained with DAPI. Bars = 100 \(\mu \)m. (b) A quantitative analysis of Lor level by measuring mean fluorescence intensity (n = 4 or 5). (c) The mRNA levels of Lor, Ivl, Flg, and SPRRs were measured by RT-qPCR (n = 5). Each value is expressed as the average ± SEM. Statistical comparison among groups was performed using one-way ANOVA and Tukey’s test (**P ≤ 0.05, ***P ≤ 0.01, ****P ≤ 0.001, and *****P ≤ 0.0001). AD, atopic dermatitis; Ivl, involucrin; Lor, loricrin; ns, not significant; OXA, oxazolone.
MATERIALS AND METHODS

Materials, bacterial strain, and mice
All the chemicals used for bacterial culture were bought from Diofo BD (Franklin Lakes, NJ). The pep27 mutant (THpep27) (Choi et al. 2013) derived from S. pneumoniae strain D39 (type 2) (GenBank: CP000410.2) was used. Bacteria were cultured in THY medium cultured at 37 °C without aeration. Female BALB/c mice (Orient Bio, Seongnam, Republic of Korea) aged 5 weeks were maintained for 1 week to adapt to the animal room environment. The use of mice was carried out in accordance with the guidelines of the Animal Ethics Committee of Sungkyunkwan University (Suwon, Republic of Korea) and the guidelines of the Korean Animal Protection Act. Euthanasia was performed by the carbon dioxide inhalation method.

Dpep27-mutant immunization
Mice were intranasally immunized with 1 × 10^8 colony-forming units of Dpep27-mutant vaccine per mouse every week. All vaccinations were performed using 100 μl of a ketamine-xylocaine mixture (10 ml of ketamine, 2.5 ml of xylazine, 12.5 ml of PBS, 100 mg/kg) as an anesthetic.

OXA-induced AD model
To assess the preventive efficacy of Dpep27 in AD, Dpep27-mutant immunization was performed once a week for the challenge. For assessment of therapeutic efficiencies, Dpep27-mutant immunization was performed once a week during the challenge. Immunization was performed three times, and each mouse was treated with 1 × 10^8 colony-forming units of Dpep27 mutant or PBS. For sensitization, 1% (w/v) OXA (Sigma-Aldrich, St. Louis, MO) was mixed in an acetone solution (4:1), and 20 μl of the solution was applied to the inside and outside of the ears of the mice. After 5 days, 20 μl of the solution was applied to the ears with 0.2% (w/v) OXA in acetone and olive oil solution for the challenge. OXA solution (0.2% w/v) was applied to the ears eight times at 2-day intervals. Twenty-four hours after the last challenge, the ears and serum were collected.

The other methods are shown in the Supplementary Materials and Methods.

Data availability statement
No generation or analysis of large datasets during this study.

ORCIDs
Ji-Hoon Kim: http://orcid.org/0000-0002-9839-2684
Saemi Ahn: http://orcid.org/0000-0001-9894-7996
Prachetash Ghosh: http://orcid.org/0000-0002-5208-6673
Dong-Kwon Rhee: http://orcid.org/0000-0003-2792-3254

CONFLICT OF INTEREST
The authors state no conflict of interest.

ACKNOWLEDGMENTS
This work was supported by the National Research Foundation of Korea grant (NRF-2018R1A2A1A05078102) and the Technology Development Program of Ministry of SMEs and Startups (MSS) (S3201794).

AUTHOR CONTRIBUTIONS
Conceptualization: DKR, JHK, SA; Formal Analysis: JHK, SA, PG, DKR; Writing — Original Draft Preparation: JHK, PG, DKR

Disclaimer
The funding body played no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at www.jidonline.org, and at https://doi.org/10.1016/j.jid.2022.07.021

REFERENCES
Al-Shami A, Spolski R, Kelly J, Fry T, Schwartzberg PL, Pandey A, et al. A role for rhinoviral lymphopoietin in CD4(+) T cell development. J Exp Med 2004;200:159–68.
Arkwright PD, Patel L, Moran A, Haeney MR, Ewing CI, David TJ. Atopic eczema is associated with delayed maturation of the antibody response to pneumococcal vaccine. Clin Exp Immunol 2000;122:16–9.
Baatjes AJ, Smith SG, Dua B, Watson R, Gauvreau GM, O’Byrne PM. Treatment with anti-OX40L or anti-TSLP does not alter the frequency of T regulatory cells in allergic asthmatics. Allergy 2015;70:1505–8.
Brandt C, Pavlovic V, Radbruch A, Worm M, Baumrass R. Low-dose cyclosporine A therapy increases the regulatory T cell population in patients with atopic dermatitis. Allergy 2009;64:1588–96.
Chauhan A, Singh M, Agarwal A, Paul N. Correlation of TSLP, IL-33, and CD4 + CD25 + FoxP3 + T regulatory (Treg) in pediatric asthma. J Asthma 2015;52:686–72.
Choi SY, Tran TD, Briles DE, Rhee DK. Inactivated pep27 mutant as an effective mucosal vaccine against a secondary lethal pneumococcal challenge in mice. Clin Exp Vaccine Res 2013;2:58–65.
Corneau MR, Ziegler SF. The influence of TSLP on the allergic response. Mucosal Immunol 2010;3:138–47.
Corren J, Ziegler SF. TSLP: from allergy to cancer. Nat Immunol 2019;20:1603–9.
Czarnowicki T, He H, Carter T, Han J, Leiferdink R, Erickson T, et al. Evolution of pathologic T-cell subsets in patients with atopic dermatitis from infancy to adulthood. J Allergy Clin Immunol 2020;145:215–28.
Dhingra N, Gutmann-Yassky E. A possible role for IL-17A in establishing Th2 inflammation in murine models of atopic dermatitis. J Invest Dermatol 2014;134:2071–4.
Eckert RL, Sturniolo MT, Broome AM, Ruse M, Rorke EA. Transglutaminase function in epidermis. J Invest Dermatol 2005;124:481–92.
Furue M. Regulation of filaggrin, loricrin, and involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: pathogenic implications in atopic dermatitis. Int J Mol Sci 2020;21:5382.
Gáspár K, Baráth S, Nagy G, Mócsai G, Gyimesi E, Szodoray P, et al. Regulatory T-cell subsets with acquired functional impairment: important indicators of disease severity in atopic dermatitis. Acta Derm Venereol 2015;95:151–5.
Gittler JK, Krueger JC, Guttmann-Yassky E. Atopic dermatitis results in intrinsic barrier and immune abnormalities: implications for contact dermatitis. J Allergy Clin Immunol 2013;131:300–13.
Gittler JK, Shemer A, Suárez-Fariñas M, Fuentes-Duculan J, Gulewicz KJ, Wang CQ, et al. Progressive activation of Th1/Th17/Th22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol 2012;130:1344–54.
Ho AW, Kupper TS. T cells and the skin: from protective immunity to inflammatory skin disorders. Nat Rev Immunol 2019;19:490–502.
Holm EA, Wulf HC, Thomassen L, Jemec GB. Instrumental assessment of atopic eczema: validation of transepidermal water loss, stratum corneum hydration, erythema, scaling, and edema. J Am Acad Dermatol 2006;55:772–80.
Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med 2005;202:1213–23.
Kashiwagi M, Hosoi J, Lai JF, Brissette J, Ziegler SF, Morgan BA, et al. Direct control of regulatory T cells by keratinocytes. Nat Immunol 2017;18:334–43.
Kim BE, Leung DY, Boguniewicz M, Howell MD. Loricrin and involucrin selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol 2008;126:332–7.
Kim BG, Ghosh P, Ahn S, Rhee DK. Pneumococcal pep27 mutant immunization suppresses allergic asthma in mice. Biochem Biophys Res Commun 2019;514:210–6.
Kim EH, Choi SY, Kwon MK, Tran TD, Park SS, Lee KJ, et al. Streptococcus pneumoniae pep27 mutant as a live vaccine for serotype-independent protection in mice. Vaccine 2012;30:2008–19.
Kim GL, Choi SY, Seon SH, Lee S, Park SS, Song JY, et al. Pneumococcal pep27 mutant immunization stimulates cytokine secretion and confers
long-term immunity with a wide range of protection, including against non-typeable strains. Vaccine 2016;34:6481–92.

Kim GL, Lee S, Kim SJ, Lee SO, Pyo S, Rhee DK. Pulmonary colonization resistance to pathogens via noncanonical Wnt and interleukin-17A by intranasal pep27 mutant immunization. J Infect Dis 2018;217:90–8.

Leichner TM, Satake A, Harrison VS, Tanaka Y, Archambault AS, Kim BS, et al. Skin-derived TSLP systemically expands regulatory T cells. J Autoimmun 2017;79:39–52.

Leung DY, Bieber T. Atopic dermatitis. Lancet 2003;361:151–60.

Leung DY, Boguniewicz M, Howell MD, Nomura I, Hamid QA. New insights into atopic dermatitis. J Clin Invest 2004;113:651–7.

Levin SD, Koelling RM, Friend SL, IsakSEN DE, Ziegler SF, Perlmutt RM, et al. Thymic stromal lymphopoietin: a cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism. J Immunol 1999;162:677–83.

Loser K, Beissert S. Regulatory T cells: banded cells for decades. J Invest Dermatol 2012;132:864–71.

Ma L, Xue HB, Guan XH, Shu CM, Wang F, Zhang JH, et al. The imbalance of Th17 cells and CD4(+) CD25(high) Foxp3(+) Treg cells in patients with atopic dermatitis. J Eur Acad Dermatol Venereol 2014;28:1079–86.

Malhotra N, Leyva-Castillo JM, Iadhav U, Barreiro O, Kam C, O’Neill NK, et al. ROalpha-expressing T regulatory cells restrain allergic skin inflammation. Sci Immunol 2018;3. eaao6923.

Masuoka M, Shiraishi H, Ohta S, Suzuki S, Arima K, Aoki S, et al. Periostin modulates the development of house dust mite allergy during adult life. J Allergy Clin Immunol 2015;136:581–86.

Nguyen KD, Vanichsorn C, Nadeau KC. TSLP directly impairs pulmonary T cells. J Clin Invest 2012;122:2590–600.

Mizutani N, Sae-Wong C, Kangsanant S, Nabe T, Yoshino S. Thymic stromal lymphopoietin-induced interleukin-17A is involved in the development of IgE-mediated atopic dermatitis-like skin lesions in mice. Immunology 2015;146:568–81.

Nguyen KD, Vanichsorn C, Nadeau KC. TSLP directly impairs pulmonary T function: association with aberrant tolerogenic immunity in asthmatic airway. Allergy Asthma Clin Immunol 2010;6:4.

Noti M, Wojno ED, Kim BS, Siracusa MC, Giacomini PR, Nair MG, et al. Thymic stromal lymphopoietin-induced basophil responses promote eosinophilic esophagitis. Nat Med 2013;19:1005–13.

Noval Rivas M, Chatila TA. Regulatory T cells in allergic diseases. J Allergy Clin Immunol 2016;138:639–52.

Ou LS, Goleva E, Hall C, Leung DY. T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. J Allergy Clin Immunol 2004;113:756–63.

Oyoshi MK, Larson RP, Ziegler SF, Geha RS. Mechanical injury polarizes skin dendritic cells to elicit a Th1/2 response by inducing cutaneous thymic stromal lymphopoietin expression. J Allergy Clin Immunol 2010;126:976–84, e5.

Pandey A, Ozaki K, Baumann H, Levin SD, Puel A, Farr AG, et al. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat Immunol 2000;1:59–64.

Patel PS, Kearney JF. Neonatal exposure to pneumococcal phosphorylcholine modulates the development of house dust mite allergy during adult life. J Immunol 2015;194:5838–50.

Ray A, Khare A, Krishnamoorthy N, Qi Z, Ray P. Regulatory T cells in many flavors control asthma. Mucosal Immunol 2010;3:216–29.

Reefer AJ, Satinover SM, Solga MD, Lannigan JA, Nguyen JT, Wilson BB, et al. Analysis of CD25hiCD4+ regulatory T-cell subtypes in atopic dermatitis reveals a novel Th1/2-like population. J Allergy Clin Immunol 2008;121:415–22.e3.

Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules 2015;5:543–89.

Roesner LM, Flosses S, Witte T, Olek S, Huehn J, Werfel T. Foxp3(+) regulatory T cells are expanded in severe atopic dermatitis patients. Allergy 2015;70:1656–60.

Roth-Walter F, Adcock IM, Benito-Villalvilla C, Bianchini R, Bjerner L, Boyman O, et al. Immune modulation via T regulatory cell enhancement: disease-modifying therapies for autoimmunity and their potential for chronic allergic and inflammatory diseases-An EAACI position paper of the Task Force on Immunopharmacology (TIPCO). Allergy 2021;76:90–113.

Seon SH, Choi JA, Yang E, Pyo S, Song MK, Rhee DK. Intranasal immunization with an attenuated pep27 mutant provides protection from influenza virus and secondary pneumococcal infections. J Infect Dis 2018;217:637–40.

Shin JU, Kim SH, Noh JY, Kim JH, Kim HR, Jeong KY, et al. Allergen-specific immunotherapy induces regulatory T cells in an atopic dermatitis mouse model [published correction appears in Allergy 2019;74:1026] Allergy 2018;73:1801–11.

Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 2002;3:673–80.

Spadoni I, Iliev ID, Rossi G, Rescigno M. Dendritic cells produce TSLP that limits the differentiation of Th17 cells, fosters Treg development, and protects against colitis. Mucosal Immunol 2012;5:104–93.

Spergel JM, Mizoguchi E, Oettgen H, Bhan AK, Geha RS. Roles of TH1 and TH2 cytokines in a murine model of allergic dermatitis. J Clin Invest 1999;103:1103–11.

Traidl-Hoffmann C, Mariani V, Hochrein H, Karg K, Wagner H, Ring J, et al. Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization [published correction appears in J Exp Med 2005;201:1347] J Exp Med 2005;201:627–36.

Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers 2018;4:1.

Werfel T, Allam JP, Biedermann T, Eyerich K, Gilles S, Guttman-Yassky E, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol 2016;138:336–49.

Woodfolk JA. T-cell responses to allergens. J Allergy Clin Immunol 2007;119:280–94, quiz 295.

Wu LC, Zarrin AA. The production and regulation of IgE by the immune system. Nat Rev Immunol 2014;14:247–59.

Xystrakis E, Urry Z, Hawrylowicz CM. Regulatory T-cell therapy as individualized medicine for asthma and allergy. Curr Opin Allergy Clin Immunol 2012;213:2147–66.
SUPPLEMENTARY MATERIALS AND METHODS

Transdermal water loss
Transdermal water loss was measured using Aquaflux (AF200, Biox Systems, London, United Kingdom). The day after the last oxazolone challenge, transdermal water loss was measured in both ears of the mouse at room temperature. Two readings from each ear were taken and averaged for each mouse.

Thymic stromal lymphopoietin neutralization and regulatory T cell inactivation in vivo
For the thymic stromal lymphopoietin neutralization experiment, the mice received 20 μg of anti-thymic stromal lymphopoietin mAb (MAB555, R&D Systems, Minneapolis, MN) or the isotype control IgG2A through intraperitoneal injection (MAB006, R&D Systems). For regulatory T cell inactivation, mice were injected intraperitoneally with 30 μg of purified PC61 mAb (affinity purified, BioLegend, San Diego, CA) or control isotype 3 days after Δpep27 immunization.

ELISA
Levels of IL-4, IL-5, IL-10, IL-13, and IgE were measured in mouse serum using commercial kits (Thermo Fisher Scientific, Waltham, MA) according to the manufacturer’s instructions.

Multiplex cytokine assay
Levels of IL-4, IL-5, IL-13, and IL-10 in mouse serum were simultaneously measured using the Luminex Multiplex Cytokine Assay (Merck Chemicals and Life Science AB, Billerica, MA).

Histological analysis
Mice ears were collected 24 hours after the last oxazolone treatment. The tissues were fixed in a 4% paraformaldehyde (Sigma-Aldrich, St. Louis, MO) solution and then placed in a paraffin block. The paraffin-embedded tissue sections were cut into 10 μm slices and heat immobilized. This was followed by deparaffinization by dipping in xylene (Sigma-Aldrich) solution, rehydration by an ordered sequence of ethanol, and washing with distilled water. The sections were used for various histological analyses.

TUNEL assay
To observe DNA fragmentation, an indicator of apoptosis, TUNEL staining was carried out. The tissue sections were postfixed with an ethanol–acetic acid mixture (2:1) and washed, followed by incubation with proteinase K. After washing, they were treated with 3% hydrogen peroxide, made permeable with 0.5% Triton X-100, and then incubated in a TUNEL reaction mixture (Roche, Munich, Germany). The sections were washed and visualized using a converter with 0.03% 3,30-diaminobenzidine. TUNEL-stained tissue sections counterstained with eosin were then viewed using an optical microscope (BX53, Olympus, Tokyo, Japan). This work was performed by KNOTUS (Incheon, South Korea).

Immunohistochemistry and immunofluorescence
Paraffin-embedded ear tissue sections were fixed for 15 minutes at room temperature in a 4% paraformaldehyde solution, followed by permeabilization in a cold ethanol–acetic mixture for 5 minutes. Antigen retrieval was conducted in citrate buffer (10 mM, pH 6.0). After that, the sections were incubated with caspase-3 antibody (Abcam, Cambridge, United Kingdom) or loricrin (Novus Biological, Littletown, CO) overnight at 4 °C. Visualizations were done using 3,30-diaminobenzidine as a chromogen. In the case of immunofluorescence, slides were incubated with Alexa flour 488–conjugated secondary antibody (Abcam) plus DAPI for DNA staining.

Skin thickness measurement
Ear skin was photographed at ×200 magnification with a digital camera (DS-R2, Nikon, Tokyo, Japan). Epidermal thickness and the full thickness of skin were measured using a NIS-Elements-BR, version 5.21 (Nikon) image analysis program. The full thickness of the ear skin was calculated as the thickness from the epidermis to the perichondrium. Epidermal thickness and total skin thickness were measured at three locations per stained slide.

Measurement of eosinophil count and inflammatory cell infiltration
The number of eosinophils that appeared in the skin dermis layer was determined under a microscope at ×400 magnification (high-power field) with a digital camera. Measurements were conducted at three sites per stained slide. The degree of inflammatory cell infiltrates appearing in the dermal layer of the skin was classified into four grades: 0 = absence, 1 = mild, 2 = moderate, and 3 = severe.

RT-qPCR
The RT-qPCR was performed as described in a previous study (Kim et al., 2019) using the primers (Supplementary Table S1).

Statistical analysis
Each experiment was performed at least three times. Statistics were analyzed using GraphPad Prism 8.0 (GraphPad Software, San Diego, CA) and presented as mean ± SEM. One-way analysis of variance was used in data analysis.

SUPPLEMENTARY REFERENCE
Kim BG, Ghosh P, Ahn S, Rhee DK. Pneumococcal pep27 mutant immunization suppresses allergic asthma in mice. Biochem Biophys Res Commun 2019;514:210–6.
Supplementary Figure S1. Treatment with Δpep27 attenuates AD symptoms in a therapeutic model. (a) Outline of the therapeutic effects of Δpep27 on the OXA-induced therapeutic AD model. Mice were immunized with Δpep27 at 6, 13, and 20 days during 10 times challenges at 2-day intervals from day 6 to day 24 after sensitization with 1% OXA. (b) The ear of the mouse was photographed 48 h after the last sensitization. Therapeutic mice ear thickness was measured on days 1, 6, 13, 19, and 25 (n = 4). (c, d) Histological analysis of epidermal and dermal indices and infiltration of the ear cells were investigated by H&E staining (n = 3). Microscopic photographs of H&E staining for inflammation were captured at ×200 magnification. Bars = 100 μm. The thickness of the epidermis and dermis was measured: normal = 1, two times greater than normal = 2, three times greater than normal = 3. Data are expressed as mean ± SEM. Statistical comparison among groups was performed using one-way ANOVA and Tukey’s test (∗P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001). AD, atopic dermatitis; CFU, colony-forming unit; CON, control; h, hour; I.N., intranasally; OXA, oxazolone.
Supplementary Figure S2. Immunization with Δpep27 represses Th2 cytokines and TSLP and induces Treg-relevant cytokines in a therapeutic AD model. The mice were immunized three times with Δpep27 during OXA-induced AD skin lesion. (a) The mRNA expression levels in mouse ear tissues were analyzed by RT-qPCR (n = 3). (b) The total serum levels of IL-4, IL-5, and IL-17A were measured by ELISA (n = 3). (c) Serum IgE level was measured by ELISA (n = 3). Each value is expressed as mean ± SEM. Statistical comparison among groups was performed using one-way ANOVA and Tukey’s test (*P < 0.05, **P < 0.01, and ****P < 0.0001). AD, atopic dermatitis; CON, control; conc., concentration; ns, not significant; OXA, oxazolone; Th2, T helper 2; Treg, regulatory T cell; TSLP, thymic stromal lymphopoietin.

Supplementary Figure S3. Immunization with Δpep27 restores Th2/Treg balance in the preventive and therapeutic models. (a) mRNA expression levels of Th cell–specific makers (Gata-3, T-bet, Foxp3, and RORγt) were analyzed by RT-qPCR in the therapeutic model (n = 3). (b) Th1-related (T-bet and Tnfα) and Th17-related (RORγt and Il17) markers were analyzed by RT-qPCR in the preventive model (n = 5). Data are expressed as mean ± SEM. Statistical comparison among groups was performed using one-way ANOVA and Tukey’s test (*P < 0.05 and **P < 0.01). CON, control; ns, not significant; Th, T helper; Treg, regulatory T cell; TSLP, thymic stromal lymphopoietin.
Supplementary Figure S4. TSLP aggravates skin inflammation and inflammatory cell infiltration, whereas Treg relieves them. (a) Images of H&E staining show the full thickness of the ear skin. Bars = 50 μm. (b) The value of the thickness (n = 9). (c) A graph of the degree of inflammatory cell infiltration (n = 3). (d) Proapoptotic (Bax) and antiapoptotic (Bcl2) genes were analyzed by RT-qPCR (n = 5). Data are expressed as mean ± SEM. Statistical comparison among groups was performed using one-way ANOVA and Tukey’s test (**P < 0.01, ***P < 0.001, and ****P < 0.0001). CON, control; ns, not significant; OXA, oxazolone; Treg, regulatory T cell; TSLP, thymic stromal lymphopoietin.

Supplementary Figure S5. Immunization with Δ pep27 alone can repress TSLP and increase Treg-relevant factors. (a, d) mRNA expression levels of Tslp, Treg-, and Th2 cell-specific markers (Foxp3, Il10, Gata-3, and Il4) were analyzed by RT-qPCR in antibody-treated groups (n = 5). (b) Graph of the number of eosinophils found in the dermal layer (n = 5). (c) The percentage of TUNEL-positive cells in four random fields from each mouse ear section (n = 4). (e) The IL-10 and IL-4 cytokine levels in serum were measured by ELISA (n = 5). Data are expressed as mean ± SEM. Statistical comparison among groups was performed using one-way ANOVA and Tukey’s test (*P < 0.05, **P < 0.01, and ****P < 0.0001). conc., concentration; OXA, oxazolone; Treg, regulatory T cell; TSLP, thymic stromal lymphopoietin.
Supplementary Figure S6. Immunization with Δpep27 did not affect the normal skin barrier. (a) Immunofluorescence images of ear tissue stained with Loricrin. DNA was counterstained with DAPI. Bars = 100 μm. (b) Skin barrier–related genes were analyzed by RT-qPCR (n = 4 or 5). Data are expressed as mean ± SEM. Statistical comparison among groups was performed using one-way ANOVA and Tukey’s test (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, and ****P ≤ 0.0001). CON, control; Lor, loricrin; ns, not significant; OXA, oxazolone.
Supplementary Table S1. The Gene-Specific Primers Used in this Study

Gene	5'-3' Primers
T-Bet	F 5'-TTCCCATTCCTGCTTCAC-3'
	R 5'-CCACATCCAAACATCTCTG-3'
Gata-3	F 5'-GGAAAATCCGGGCTAGGCTA-3'
	R 5'-AGAGATCGTGACACAGAG-3'
Rorγt	F 5'-TGAGGCCATTACATGATGG-3'
	R 5'-CTCTCAATAGCTCTGCTTTC-3'
Foxp-3	F 5'-CCCTGCTTCTGAGGATCTGA-3'
	R 5'-TGTTGTGAGTGCTTTTGT-3'
Gapdh	F 5'-TGTTGCTTCGCTGGCTGAT-3'
	R 5'-GCTGCTTCACACCTTCTTGT-3'
Il1β	F 5'-CAACCAAAAGTAGATATTCTCCATG-3'
	R 5'-GATCCACACTCTCCAGAGC-3'
Tnfa	F 5'-AGCCCCCATCTGATCTCTT-3'
	R 5'-CTCCCTTTCAGAAACTCAGG-3'
Tslp	F 5'-GAAAATCGAGGACTGTGAGC-3'
	R 5'-TGAGGGCTTCTCTTCTC-3'
Tgfβ	F 5'-GTGTGGAGCAACATGAGGCTC-3'
	R 5'-CTCTCCCTTCAGACACTG-3'
Il10	F 5'-CCAGGAATTATCGGAAATG-3'
	R 5'-TTTTCAGAGGCTGAAATGGA-3'
Il17a	F 5'-TCAGAAGGCCCCCCCTCACTA-3'
	R 5'-AGCATTCCTCTGACACC-3'
Bax	F 5'-AGGATGCGTCCACACAGAA-3'
	R 5'-CTCTGCGTCGCACCTGTA-3'
Bcl2	F 5'-TCCGAAGGCTGCTCTGCTCT-3'
	R 5'-CCACAGCTGCTGATAGATCTC-3'
Lor	F 5'-CATCTCCCTTCGCTCTTA-3'
	R 5'-AGGCCAACCCCGCTATAAT-3'
Ivl	F 5'-AAAGCCTCCAAGGGAACAGCA-3'
	R 5'-CGGTTCCTCCAAATGCTGGT-3'
Flg	F 5'-CGTTGCTCTGTGCTGCTCT-3'
	R 5'-GCTGAGGAACCTGCCTGCT-3'
Sprr1A	F 5'-CAAGGCCACCTGACCCCTGCA-3'
	R 5'-AGGCCTCTGTCCTAGGCTTGG-3'
Sprr1B	F 5'-ACACAGGCTCATCCATCTTTC-3'
	R 5'-GGTGTGACAGGCTGCTCTTG-3'
Sprr2A	F 5'-CCCTGCTTCTCCACACAGG-3'
	R 5'-AGGCACTGTTGACTCCAG-3'

Abbreviations: F, forward; Ivl, involucrin; Lor, loricrin; R, reverse.