Radiative Seesaw Model and DAMPE Excess from Leptophilic Gauge Symmetry

Zhi-Long Han1, Weijian Wang2 and Ran Ding3

1 School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, China
2 Department of Physics, North China Electric Power University, Baoding 071003, China
3 Center for High Energy Physics, Peking University, Beijing 100871, China

In the light of the $e^+ + e^-$ excess observed by DAMPE experiment, we propose an anomaly-free radiative seesaw model with an alternative leptophilic $U(1)_X$ gauge symmetry. In the model, only right-handed leptons are charged under $U(1)_X$ symmetry. The tiny Dirac neutrino masses are generated at one-loop level and charged leptons acquire masses through the type-I seesaw-like mechanism with heavy intermediate fermions. In order to cancel the anomaly, irrational $U(1)_X$ charge numbers are assigned to some new particles. After the spontaneous breaking of $U(1)_X$ symmetry, the dark Z_2 symmetry could appear as a residual symmetry such that the stability of inert particles with irrational charge numbers are guaranteed, naturally leading to stable DM candidates. We show that the Dirac fermion DM contained in the model can explain the DAMPE excess. Meanwhile, experimental constraints from DM relic density, direct detection, LEP and anomalous magnetic moments are satisfied.

*sps_zhanzl@ujn.edu.cn
†wjnwang96@aliyun.com
‡dingran@mail.nankai.edu.cn
I. INTRODUCTION

It is well known that new physics beyond the Standard Model (SM) is needed to accommodate two open questions: the tiny neutrino masses and the cosmological dark matter (DM) candidates. The scotogenic model, proposed by Ma[1, 2], is one of the attractive candidate, which attributes the tiny neutrino masses to the radiative generation and the DM is naturally contained as intermediate messengers inside the loop. In the original models, an ad hoc Z_2 or Z_3 symmetry serves to guarantee the stability of DM, whereas such discrete symmetry would be broken at high-scale [3]. Perhaps a more reasonable scenario is regarding the discrete symmetry as the residual symmetry originated from the breaking of a continuous $U(1)$ symmetry at high scale. Along this line, several radiative neutrino mass models[4–23] were proposed based on gauged $U(1)_{B-L}$ theory, which is simplest and well-studied gauge extension of SM.

Very recently, a sharp excess in the $e^+ + e^-$ flux is reported by Dark Matter Particle Explorer (DAMPE) [24]. If assuming a nearby subhalo locate at $0.1 - 0.3$ kpc away from the solar system, such excess can be interpreted by a 1.5 TeV DM particle with thermally averaged annihilation cross section $\sim 10^{-26}$ cm3s$^{-1}$ and predominately annihilates into lepton final states [25]. Inspired by this assumption, various models [26–58] have been proposed. On the other hand, the model with $U(1)_{B-L}$ gauge extension is disfavored since it also predicts accompanying antiproton excess which is absent.

In this work, we present a radiative neutrino mass model based on an alternative leptophilic $U(1)_X$ gauge symmetry. In the model only the right-handed SM leptons are charged under the $U(1)_X$ symmetry, resulting in the direct Yukawa couplings forbidden in the lepton sector. We will show that the Dirac neutrino masses are generated radiatively and the charged leptons, acquire masses via seesaw-like mechanism. The heavy fermions we added for anomaly-free cancellation play as the intermediate fermions in lepton mass generation. After the spontaneous symmetry breaking(SSB) of $U(1)_X$, the dark Z_2 symmetry could appear as a residual symmetry [59] such that the stability of a classes of inert particles are protected by the irrational $U(1)_X$ charge assignments from decaying into SM particles, naturally leading to stable DM candidates.

The rest of this paper is organised as follows. In Sec. II the model is set up. In Sec. III we focus on DM phenomenon and its implication on DAMPE results. Conclusions are given in Sec. IV.
II. MODEL SETUP

A. Particle content and anomaly cancellation

All the field contents and their charge assignments under $SU(2)_L \times U(1)_Y \times U(1)_X$ gauge symmetry are summarized in Table I. First of all, the $U(1)_X$ symmetry proposed here is a right-handed leptophilic gauge symmetry since, in SM sector, only right-handed leptons carry $U(1)_X$ charges. As a result, the SM Yukawa coupling $\bar{L} \Phi E_R$ for charged lepton mass generation is strictly forbidden. In order to generate the minimal Dirac neutrino mass, two right-handed neutrino field $\nu_{Ri}(i = 1, 2)$ are added being coupled with $U(1)_X$, leading to the zero mass for the lightest neutrino. The direct Yukawa coupling $\bar{L} \tilde{\Phi} \nu_R$ is also forbidden. Instead we have introduce several Dirac fermions as the intermediated fields for lepton mass generation with their corresponding chiral components $\Psi_{Ri/Li}(i = 1 - 9)\, \text{and} \, F_{Ri/Li}(i = 1 - 4)$ respectively. In the scalar sector, we further add inert doublet scalars η_1, η_2 and one inert singlet scalar χ. An SM singlet scalar σ is added being responsible for $U(1)_X$ breaking.

First and foremost, we check the anomaly cancellations for the new gauge symmetry in the model. The $[SU(3)_C]^2U(1)_X$ and $[SU(2)_L]^2U(1)_X$ anomalies are zero because quark and left-handed leptons are not assumed coupled to $U(1)_X$. We then find all other anomalies are also zero because

\begin{align*}
[U(1)_Y]^2U(1)_X : & -3 \times (-1)^2 \times 3n + 9 \times (-1)^2 \times 2n - 9 \times (-1)^2 \times n = 0 \\
[U(1)_X]^2U(1)_Y : & -3 \times (3n)^2 \times (-1) + 9 \times (2n)^2 \times (-1) - 9 \times n^2 \times (-1) = 0 \\
[\text{Gravity}]^2U(1)_Y : & \text{Str}[Q_Y]_{SM} + (-1) - (-1) = 0 \\
U(1)_Y^3 : & \text{Str}[Q_Y^3]_{SM} + (-1)^3 - (-1)^3 = 0 \\
[\text{Gravity}]^2U(1)_X : & -3 \times 3n - 2 \times 2n + 9 \times 2n - 9 \times n + 4 \times Q_{FL} - 4 \times Q_{FR} = 0 \\
[U(1)_X]^3 : & -3 \times (3n)^3 - 2 \times (2n)^3 + 9 \times (2n)^3 - 9 \times n^3 + 4 \times Q_{FL}^2 - 4 \times Q_{FR}^2 = 0
\end{align*}

Here, $Q_{FL} = (\sqrt{10}+1)n/2$ and $Q_{FR} = (\sqrt{10}-1)n/2$ are the $U(1)_X$ charge of F_L and F_R as shown in Table I respectively. In order to cancel anomaly, the $F_{Li/Ri}$ fermions acquire irrational $U(1)_X$ charge numbers. Similar scenarios also appeared in radiative inverse or linear seesaw models where other solutions to anomaly free conditions with irrational $B - L$ charges of mirror fermions were found.
The scalar potential in our model is given by

\[V = \mu_\Phi^2 \Phi^\dagger \Phi + \mu_{\eta_1}^2 \eta_1^\dagger \eta_1 + \mu_{\eta_2}^2 \eta_2^\dagger \eta_2 + \mu_\chi^2 |\chi|^2 + \mu_\sigma^2 |\sigma|^2 + \lambda_\Phi (\Phi^\dagger \Phi)^2 + \lambda_{\eta_1} (\eta_1^\dagger \eta_1)^2 \]

\[+ \lambda_{\eta_2} (\eta_2^\dagger \eta_2)^2 + \lambda_\chi |\chi|^4 + \lambda_\sigma |\sigma|^4 + \lambda_{\eta_1 \Phi} (\eta_1^\dagger \Phi) (\eta_1^\dagger \eta_1) + \lambda_{\eta_2 \Phi} (\eta_2^\dagger \Phi) (\eta_2^\dagger \eta_2) + \lambda_\chi |\chi|^2 (\Phi^\dagger \Phi) + \lambda_\sigma |\sigma|^2 (\Phi^\dagger \Phi) \]

\[+ \lambda_{\eta_1 \eta_2} (\eta_1^\dagger \eta_2^\dagger) (\eta_2^\dagger \eta_1) + \lambda_{\eta_1 \chi} |\chi|^2 (\eta_1^\dagger \eta_1) + \lambda_{\eta_2 \sigma} |\sigma|^2 (\eta_2^\dagger \eta_2) + \lambda_\chi |\chi|^2 |\sigma|^2 + [\mu (\eta_1^\dagger \Phi) \sigma + \lambda (\eta_2^\dagger \Phi) \chi \sigma + \text{h.c.}] \]

The scalars \(\Phi \) and \(\sigma \) and \(\eta_1 \) with their vevs after SSB of \(U(1)_X \) can be parameterized as

\[\Phi = \begin{pmatrix} \frac{G^+}{\sqrt{2}} \\ \frac{v_\phi + \sigma^0 + iG_\sigma}{\sqrt{2}} \end{pmatrix}, \quad \eta_1 = \begin{pmatrix} \eta_1^\dagger \\ \eta_1^0 \end{pmatrix}, \quad \sigma = \frac{v_\sigma + \sigma_0 + iG_\sigma}{\sqrt{2}}. \]

Then the minimum of \(V \) is determined by

\[v_\phi (\mu_\Phi^2 + \lambda_\Phi v_\phi^2 + \frac{1}{2} \lambda_\sigma v_\sigma^2 + \frac{1}{2} (\lambda_{\eta_1 \Phi} + \lambda_{\eta_1 \eta_2}) u^2) + \frac{\mu \sigma v_\sigma u}{\sqrt{2}} = 0, \]

\[v_\sigma (\mu_\sigma^2 + \lambda_\sigma v_\sigma^2 + \frac{1}{2} \lambda_\sigma v_\phi^2 + \frac{1}{2} \lambda_{\eta_2 \sigma} u^2) + \frac{\mu \sigma v_\phi u}{\sqrt{2}} = 0, \]

\[u (\mu_{\eta_1}^2 + \lambda_{\eta_1} u^2 + \frac{1}{2} \lambda_{\eta_1} v_\sigma^2 + \frac{1}{2} (\lambda_{\eta_1 \Phi} + \lambda_{\eta_1 \eta_2}) v_\phi^2) + \frac{\mu \sigma v_\phi u}{\sqrt{2}} = 0. \]

For a large and negative \(\mu_\sigma^2 \), there exists a solution with \(u^2 \ll v_\phi^2 \ll v_\sigma^2 \) as

\[v_\phi^2 \simeq -\frac{\mu_\Phi^2}{\lambda_\Phi}, \quad v_\sigma^2 \simeq -2\frac{\mu_\Phi^2 - \lambda_\sigma v_\phi^2}{2\lambda_\Phi}, \quad u^2 \simeq -\frac{\sqrt{2} \mu \sigma v_\sigma}{2\mu_{\eta_1}^2 + \lambda_{\eta_1} v_\sigma^2}, \]

where \(v_\phi \simeq 246 \text{GeV} \) is the vev of the SM higgs doublet scalar and \(v_\sigma \) is responsible for the SSB of \(U(1)_X \) symmetry. We have set a positive \(\mu_{\eta_1}^2 \), hence the vev of \(\eta_1 \) scalar is not directly acquired as
that of Φ and σ but induced from $\mu(\eta_1^\dagger \Phi)\sigma$ term. Note that η_2 and χ do not acquire vevs because of positive $\mu_{\eta_2}^2$, μ_{χ}^2 and the absence of linear terms, like $\chi \sigma^k$.

The mass spectrum of scalar Φ, σ and η_1 can be obtained with their vevs and the cross terms in Eq. (2). In the condition of $u^2 \ll v_\phi^2 \ll v_\sigma^2$, the contributions from v_ϕ and v_σ to scalar masses are dominant, and mixings between η_1 and other CP-even scalars are negligible small. Then the two CP-even scalars h and H with mass eigenvalues are given by

$$m_{h,H}^2 \simeq \lambda_\Phi v_\phi^2 + \lambda_\sigma v_\sigma^2 \mp \sqrt{(\lambda_\Phi v_\phi^2 - \lambda_\sigma v_\sigma^2)^2 + \lambda_{\Phi\sigma}^2 v_\phi^2 v_\sigma^2},$$

(6)

with the mixing angle

$$\tan 2\alpha = \frac{\lambda_\sigma v_\phi v_\sigma}{\lambda_\phi v_\phi^2 - \lambda_\Phi v_\sigma^2},$$

(7)

where we take scalar h as the SM-like Higgs boson and H the heavy Higgs boson. A small mixing angle $\sin \alpha \sim 0.1$ is assumed to satisfy Higgs measurement [60]. Note that due to the lack of $(\Phi^\dagger \eta_{1,2})^2$ term, we actually have nearly degenerate masses for the real and imaginary part of $\eta_{0,1,2}$ [61], and they are assumed to be degenerate for simplicity in the following discussion. The masses of scalar doublet η_1 are

$$m_{\eta_1}^2 \simeq \mu_{\eta_1}^2 + \frac{1}{2}(\lambda_{\phi \eta_1} + \lambda'_{\phi \eta_1})v_\phi^2 + \frac{1}{2}\lambda_{\sigma \eta_1} v_\sigma^2,$$

(8)

$$m_{\eta_1}^2 \simeq \mu_{\eta_1}^2 + \frac{1}{2}\lambda_{\phi \eta_1} v_\phi^2 + \frac{1}{2}\lambda_{\sigma \eta_1} v_\sigma^2.$$

(9)

Hereafter, we take degenerate η_1 scalars and $m_{H,\eta_1} \sim 500$ GeV for illustration. For a complete detail of mass spectrum of Φ, σ, η_1 scalars, one can refer some models which shares part of the scalar potential, e.g. Ref. [61]. On the other hand, we pay more attention to inert scalars η_2 and χ which are closely related to neutrino mass generation and DM. Note that scalars η_2, χ do not mix with Φ, σ and η_1. The two mass eigenstate of neutral complex scalars η_2^0 and χ are obtained by

$$\begin{pmatrix} S_1 \\ S_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \eta_2^0 \\ \chi \end{pmatrix}, \quad \sin 2\theta = \frac{\lambda v_\phi v_\sigma}{m_{S_1}^2 - m_{S_2}^2},$$

(10)

with mass eigenvalues

$$m_{S_{1,2}}^2 = \frac{1}{2}(M_{\eta_2}^2 + M_\chi^2 \pm \sqrt{(M_{\eta_2}^2 - M_\chi^2)^2 + \lambda^2 v_\phi^2 v_\sigma^2}),$$

(11)

where

$$M_{\eta_2}^2 \simeq \mu_{\eta_2}^2 + \frac{1}{2}(\lambda_{\phi \eta_2} + \lambda'_{\phi \eta_2})v_\phi^2 + \frac{1}{2}\lambda_{\sigma \eta_2} v_\sigma^2,$$

$$M_\chi^2 \simeq \mu_\chi^2 + \frac{1}{2}\lambda_\phi v_\phi^2 + \frac{1}{2}\lambda_\chi v_\sigma^2.$$

(12)
Meanwhile, the mass of inert charged scalar η^{\pm}_2 is

$$M^2_{\eta^{\pm}_2} \simeq \mu^2_{\eta^{\pm}_2} + \frac{1}{2}\lambda_{\phi\eta^{\pm}_2}v^2_{\phi} + \frac{1}{2}\lambda_{\sigma\eta^{\pm}_2}v^2_{\sigma}$$ \hspace{0.5cm} (13)

As will shown in Sec. III, the DAMPE excess favors fermion DM $m_{F_1} \sim 1.5$ TeV. Therefore, heavier inert scalars, e.g., $m_{S_1,S_2,\eta^{\pm}_2} \sim 10$ TeV, are assumed.

C. Lepton Masses

![Figure 1. Charged lepton mass generation](image)

The Yukawa interactions related to charged lepton mass generation is given by

$$\mathcal{L}_1 \supset y_1 \bar{\ell}_L \eta_1 \Psi_R + y_2 \bar{\ell}_L \Psi_L \sigma + y \bar{\Psi}_L \Psi_R \sigma + h.c.$$ \hspace{0.5cm} (14)

the charged lepton masses are generated through the diagram in Fig. 1. In the basis of $(\bar{\ell}_L, \bar{\Psi}_L)$ and (E_R, Ψ_R), we obtain the 12×12 effective mass matrix

$$
\begin{pmatrix}
\bar{\ell}_L \\
\bar{\Psi}_L
\end{pmatrix}
\begin{pmatrix}
0 & \frac{y_u u}{\sqrt{2}} \\
\frac{y_{\mu} \nu_{\tau}}{\sqrt{2}} & \frac{y_{\tau} \nu_{\tau}}{\sqrt{2}}
\end{pmatrix}
\begin{pmatrix}
E_R \\
\Psi_R
\end{pmatrix} + h.c.
\hspace{0.5cm} (15)
$$

Then the charged lepton mass is obtained as $M_{\ell} \simeq y_1 y_2 u/(\sqrt{2}y)$. Correct charged lepton mass can be acquired with $y^{e}_{1,2} = 8.5 \times 10^{-4}$, $y^{\mu}_{1,2} = 1.2 \times 10^{-2}$ and $y^{\tau}_{1,2} = 5.0 \times 10^{-2}$ for $u = 10$ GeV and $y = 0.01$.

The Yukawa sector for Dirac neutrino mass generation is given by

$$\mathcal{L}_2 \supset h_1 \bar{L} F_R \bar{\eta}_2 + h_2 \bar{\nu}_R F_L \chi^1 + f \bar{F}_L F_R \sigma + h.c.$$ \hspace{0.5cm} (16)
The effective mass matrix for active neutrinos depicted in Fig. 2 is expressed as

\[
(m_\nu)_{\alpha\beta} = \frac{\sin 2\theta}{8\pi^2} \sum_{k=1}^{6} h_1^k m_{F_k} h_2^k \left[\frac{m_{S_1}^2}{m_F^2 - m_{S_1}^2} \log \left(\frac{m_{S_1}^2}{m_{F_k}^2} \right) - \frac{m_{S_2}^2}{m_{F_k}^2 - m_{S_2}^2} \log \left(\frac{m_{S_2}^2}{m_{F_k}^2} \right) \right]
\]

where \(m_{F_k}(k = 1 - 4)\) denote the masses of inert Dirac fermions. Typically, \(m_\nu \sim 0.1\) eV can be realised with \(\theta \sim 10^{-3}, h_1 \simeq h_2 \sim 10^{-4}, m_F \sim 1.5\) TeV and \(m_{S_1}, m_{S_2} \sim 10\) TeV. From Eq. (2), (14) and (16), one can confirm that after the symmetry breaking with \(v_\phi\) and \(v_\sigma\) there exists a residual \(Z_2\) symmetry for which the irrational \(U(1)_{\chi}\) charged particles \((F_{R/L}, \eta_1, \chi)\) are odd while other are even. Therefore the lightest particles with irrational charges can not decay into SM particles and thus can be regarded as DM candidate.

D. Lepton Flavor Violation

The new Yukawa interactions of charged lepton will induce lepton flavor violation processes at one-loop level. Taking the radiative decay \(\ell_\alpha \rightarrow \ell_\beta \gamma\) for an illustration, the corresponding branching ratio is calculated as [62]

\[
\text{BR}(\ell_\alpha \rightarrow \ell_\beta \gamma) = \frac{3\alpha_{\text{em}}}{64\pi G_F^2} \left\{ \sum_{i=1}^{9} \frac{y_i^{i\beta\ast} y_i^{i\alpha}}{m_{\eta_i}^2} F_1 \left(\frac{m_{\Psi_i}^2}{m_{\eta_i}^2} \right) + \sum_{i=1}^{4} \frac{h_i^{i\beta\ast} h_i^{i\alpha}}{m_{\eta_i}^2} F_2 \left(\frac{m_{F_i}^2}{m_{\eta_i}^2} \right) \right\}^2 \times \text{BR}(\ell_\alpha \rightarrow \ell_\beta \nu_\alpha \bar{\nu}_\beta),
\]

where \(\alpha_{\text{em}}\) is the fine-structure constant, \(G_F\) is the Fermi constant, and \(F_1, F_2\) are functions depending on the masses involved.
where $C_h = \sin\alpha$ and $C_H = \cos\alpha$. And the loop functions $F_{1,2}(x)$ are given by

$$F_1(x) = -\frac{2 + 3x - 6x^2 + x^3 + 6x \ln x}{6(1-x)^4}, \quad (19)$$

$$F_2(x) = \frac{1 - 6x + 3x^2 + 2x^3 - 6x^2 \ln x}{6(1-x)^4}. \quad (20)$$

According to previous discussion, $y_{1,2} = 8.5 \times 10^{-4}$, $y_{1,2} = 1.2 \times 10^{-2}$, $y_{1,2} = 5.0 \times 10^{-2}$ with $m_{\eta_1,\eta_1} \sim 500$ GeV and $h_1 \sim 10^{-4}$ with $m_F \sim 1.5$ TeV, $m_{\eta_2} \sim 10$ TeV are taken to reproduce scalar $\eta_2 ^\pm$ suppressed by the tiny mixing angle θ. As shown in Eq. (19), the predicted branching ratios are $\text{BR}(\eta_1 \to e\gamma) \sim 1.6 \times 10^{-15}$, $\text{BR}(\tau \to e\gamma) \sim 4.6 \times 10^{-15}$ and $\text{BR}(\tau \to \mu\gamma) \sim 9.4 \times 10^{-13}$, which are clearly below current experimental limits [63].

E. Mixing in the Gauge Sector

Since η_1 is charged under both $U(1)_Y$ and $U(1)_X$, its vev u will induce mixing between Z_0 and Z'_0 at tree level. The resulting mass matrix in the (Z_0, Z'_0) basis is given by [64]

$$M^2 = \begin{pmatrix} \frac{1}{4}g_Z^2(v_\phi^2 + u^2) & \frac{u}{2}g_Zg'u^2 \\ \frac{u}{2}g_Zg'u^2 & g^2n^2(v_\sigma^2 + u^2) \end{pmatrix}. \quad (21)$$

The eigenvalues of M^2 are

$$m_{Z,Z'}^2 = \frac{1}{2} \left[M_{11}^2 + M_{22}^2 \pm \sqrt{(M_{11}^2 - M_{22}^2)^2 + 4M_{12}^4} \right], \quad (22)$$

with mixing angle given by

$$\tan 2\theta_Z = \frac{2M_{12}^2}{M_{22}^2 - M_{11}^2}. \quad (23)$$

As $u^2 \ll v_\phi^2 \ll v_\sigma^2$ in this model, we have $m_{Z}^2 \simeq g_Z^2v_\phi^2/4$, $m_{Z'}^2 \simeq g^2n^2v_\sigma^2$, and the mixing angle $\theta_Z \sim u^2/v_\sigma^2$ is naturally suppressed. Typically, for $u \sim 10$ GeV and $v_\sigma \sim 10$ TeV, we have $\theta_Z \sim 10^{-6}$. Therefore, the dilepton signature $pp \to Z' \to \ell^+\ell^-$ at LHC is dramatically suppressed by the tiny mixing angle θ_Z. For light Z' around EW-scale, the four lepton signature $pp \to \ell^+\ell^- Z' \to \ell^+\ell^-\ell^+\ell^-$ is promising at LHC [65]. As shown in next section, the DAMPE excess favors heavy $Z' \lesssim 3$ TeV. In this case, the Z' can hardly be detected at LHC, but are within the reach of the 3 TeV CLIC in the $e^+e^- \to Z' \to \mu^+\mu^-$ channel [66].
F. LHC Signature

In this subsection, we qualitatively discuss possible signatures of new particles at LHC. Since decays of η_1 scalars and Ψ depend on their masses, the resulting signatures would be different. Considering the mass spectrum $m_\Psi < m_{\eta_1}$, the decay mode of η_1 scalars are $\eta_1^0 \to \ell^- \Psi^+, \eta_1^\pm \to \nu \Psi^\pm$, and decay modes of Ψ are $\Psi^\pm \to \ell^\pm Z, \ell^\pm h, \nu W^\pm$. The promising signature would be $pp \to \Psi^+ \Psi^- \to \ell^+ \ell^- ZZ$, leading to same signature as charged fermion in type-III seesaw \[67\].

In the opposite case $m_\Psi > m_{\eta_1}$, the decay mode of η_1 scalars are $\eta_1^0 \to \ell^+ \ell^-, \eta_1^\pm \to \ell^\pm \nu$, and new decay modes of exotic charged fermion $\Psi^\pm \to \ell^\pm \eta_1^0, \nu \eta_1^\pm$ are also possible. Note that η_1 scalars are responsible for charged fermion mass, hence $\eta_1^0 \to \tau^+ \tau^-$ and $\eta_1^\pm \to \tau^\pm \nu$ are the dominant decay mode. The promising signature would be $pp \to \eta_1^0 \eta_1^* \to \tau^+ \tau^- \tau^+ \tau^-, pp \to \eta_1^\pm \eta_1^0 \to \tau^\pm \nu \tau^+ \tau^-$, similar as the lepton-specific 2HDM \[68\].

For the mass of scalar singlet $m_H \sim 500$ GeV with not too small mixing angle $\alpha \sim 0.1$, the promising signature would be $g g \to H \to W^+ W^-, ZZ, h h$ at LHC \[69\]. Provided $m_\Psi < m_{H, \eta_1}$, the new decay channel $H \to \ell^\pm \Psi^\mp$ is also allowed. Then, the new signature $g g \to H \to \ell^\pm \Psi^\mp$ with Ψ^\mp further decaying into $\ell^\pm Z, \nu W^\pm$ is a good way to probe the corresponding Yukawa coupling $g_2 \bar{E}_R \Psi_L \sigma$ introduced in this model.

As for the inert scalars, the most promising signature in principle would be $pp \to \eta_2^+ \eta_2^- \to \ell^+ F_1 + \ell^- \bar{F}_1$, i.e., $\ell^+ \ell^- + E_T$, for fermion DM at LHC \[70\]. But actually, this dilepton signature is suppressed dramatically by heavy mass of the inert charge scalar $m_{\eta_2} \sim 10$ TeV in our consideration \[71\], thus it is hard to probe at LHC. Similarly, the mono-j signature $pp \to \eta_2^0 \eta_2^* j \to \nu \nu F_1 \bar{F}_1 j$, i.e., $j + E_T$, is also challenging at LHC.

III. DAMPE DARK MATTER

Motivated by recent DAMPE excess around 1.5 TeV, we focus on DM phenomenon in this section. Here, we consider the lightest Dirac fermion F_1 as DM candidate. The relevant interactions mediated by the new gauge boson Z' for DM and leptons are

$$\mathcal{L}_{Z'} \supset g' Z'_\mu (Q_{E_R} \bar{E}_R \gamma^\mu E_R + Q_{\nu_R} \bar{\nu}_R \gamma^\mu \nu_R + Q_{F_L} \bar{F}_{L1} \gamma^\mu F_{L1} + Q_{F_R} \bar{F}_{R1} \gamma^\mu F_{R1}), \quad (24)$$

with mass of gauge boson Z' given by $m_{Z'} \simeq g' n v_{\sigma}$. In the following numerical calculation, we will take $n = 1/3$ for illustration. Therefore, we have $Q_{E_R} = 1, Q_{\nu_R} = 2/3, Q_{F_L} = (\sqrt{11} + 1)/6,$
and \(Q_{FR} = (\sqrt{11} - 1)/6 \).

The dominant annihilation channels for DM \(F_1 \) are

\[
\bar{F}_1 F_1 \rightarrow \bar{\ell} \ell, \bar{\nu} \nu, Z' Z'.
\] (25)

Provided \(m_{Z'} > m_{F_1} \), then the annihilation channel \(\bar{F}_1 F_1 \rightarrow Z' Z' \) is not allowed kinematically. Hence, \(\bar{F}_1 F_1 \rightarrow \bar{\ell} \ell, \bar{\nu} \nu \) become dominant, which would be able to interpret the DAMPE \(e^+ + e^- \) excess when \(m_{F_1} \sim 1.5 \text{ TeV} \).

A. Constraints

In this part, we summarize some relevant constraints for DAMPE DM. To research the DM phenomenon, we implement this model into FeynRules \[72\] package. Then, for DM relic density, we require the results calculated by micrOMEGAs4.3.5 \[73\] in \(1\sigma \) range of Planck measurements: \(\Omega h^2 = 0.1199 \pm 0.0027 \) \[74\].

As for direct detection, the leptophilic \(Z' \) will mediate DM-electron scattering at tree level, with the corresponding cross section constrained by XENON100, i.e., \(\sigma_e < 10^{-34} \text{ cm}^2 \) \[75\]. Because of XENON100 sensitive to axial-vector couplings, the analytical expression for axial-vector DM-electron scattering is given by \[76\]

\[
\sigma_e = 3(g_F^D g^D_{\ell})^2 \frac{m_e^2}{\pi m_{Z'}^2} \approx 3(g_F^D g^D_{\ell})^2 \left(\frac{m_{Z'}}{10 \text{ GeV}} \right)^{-4} \times 3.1 \times 10^{-39} \text{ cm}^2,
\] (26)

where \(g_F^D = g'(Q_{FR} - Q_{FL})/2 = -g'/6 \) and \(g_{\ell}^D = g'/2 \). For \(g' \sim 0.1, m_{Z'} \sim 3 \text{ TeV} \), the predicted value is far below current experimental bound. Instead, we consider the loop induced DM-nucleus scattering with the cross section calculated as \[76\]

\[
\sigma_N = \frac{\alpha^2 Z^2 \mu_N^2}{9 \pi^3 A^2 m_{Z'}^4} \sum_{\ell=e,\mu,\tau} \left(g_F^D g_{\ell}^D \log \frac{m_{\ell}^2}{\mu^2} \right)^2,
\] (27)

where \(\mu_N = m_N (m_F + m_{F_1}) \) is the reduced DM-nucleus mass, \(g_F^D = g'(Q_{FR} + Q_{FL})/2 = g'\sqrt{11}/6 \), \(g_{\ell}^D = g'/2 \) and \(\mu = m_{Z'}/\sqrt{g_F^D g_{\ell}^D} \) is the cut-off scale. Since current most strict direct detection constraint is performed by PandaX \[77\], we take \(Z = 54, A = 131 \) and \(m_N = 131 \text{ GeV} \) for the target nucleus charge, mass number and mass respectively.

The leptophilic \(Z' \) will contribute to anomalous magnetic moments of leptons \[78\]

\[
\Delta a_\ell \simeq \frac{g'^2}{12\pi^2} \frac{m_{\ell}^2}{m_{Z'}^2},
\] (28)
For an universal gauge-lepton coupling, the precise measurement of $\Delta a_\mu = (27.8 \pm 8.8) \times 10^{-10}$ set a stringent bound, i.e., $g' \lesssim 5 \times 10^{-3} m_{Z'}/1\text{GeV}$. Meanwhile, searches for leptophilic Z' at LEP in terms of four-fermion operators provide a much more stringent bound: $g' \lesssim 2 \times 10^{-4} m_{Z'}/1\text{GeV}$.

B. Fitting the DAMPE Excess

![Figure 3](image)

Figure 3. Left: Allowed region for DAMPE DM in the $g'-m_{Z'}$ plane. The green line delimit the relic density in the 1σ range: $\Omega h^2 = 0.1199 \pm 0.0027$, while blue and red line correspond to LEP and PandaX bound respectively. Right: Predicted value of current $\langle \sigma v \rangle$ in the halo as a function of $m_{Z'}$. The green line satisfy the observed relic density, while the red curves are excluded by PandaX.

To determine the allowed parameter space under above constraints from relic density, direct detection and collider searches, we scan over the $g'-m_{Z'}$ plane while fix $m_{F_1} = 1500 \text{GeV}$. The results are depicted in Fig. 3. Since the dominant annihilation channels into leptons are via s-channel, the resonance production of Z' will diminish the required g' coupling for correct relic density. And currently, the most stringent bound is from direct detection, which constrains Z' around the resonance region. In Fig. 3 the predicted value of current $\langle \sigma v \rangle$ in the halo is also shown. Slightly below the resonance, the Breit-Wigner mechanism greatly enhances the annihilation cross section. In contrast, we see a strong dip just above the resonance. Considering the fact that DAMPE excess favor $\langle \sigma v \rangle > 10^{-26}\text{cm}^3/\text{s}$ as well as PandaX has excluded the region $m_{Z'} <
2810 GeV $\cup m_{Z'} > 3380$ GeV, the possible region to interpret DAMPE excess falls in the range $m_{Z'} \in [2810, 3000]$ GeV.

M_{DM} (GeV)	$M_{Z'}$ (GeV)	g'	$\Omega_{DM}h^2$	$\langle \sigma v \rangle$ (cm3/s)	σ_{SI} (cm2)	$\ell \bar{\ell}$	$\nu \bar{\nu}_\ell$
1500	2950	0.2	0.1192	4.9×10^{-26}	1.8×10^{-46}	70%	30%

Table II. The DM information for benchmark point to fit DAMPE excess. Here $\langle \sigma v \rangle$ is thermal averaged cross section at present. The last two columns present relative contributions for various annihilation channels.

Based on the above analysis, we select a benchmark point (see Table II) to fit the sharp DAMPE excess by taking into account contributions from both nearby subhalo and Galactic halo. In our numerical calculation, we respectively use GALPROP [82, 83] and micrOMEGAs packages [73] to evaluate the background flux coming from various astrophysical sources and the flux due to DM annihilation in Galactic halo. While for subhalo contribution, we numerically solve following steady-state diffusion equation [84]

$$-\vec{\nabla} \cdot \left[K(E) \vec{\nabla} f(\vec{x}, E) \right] - \frac{\partial}{\partial E} [b(E)f(\vec{x}, E)] = Q(\vec{x}, E),$$

with the source term

$$Q(\vec{x}, E) = \frac{\langle \sigma v \rangle}{2m_{DM}^2} \int \rho^2(r)dV \delta^3(\vec{x} - \vec{x}_{sub}) ,$$

by using Green function method. In Eqs. (29) and (30), $K(E) = K_0(E/E_0)^\delta$ is the diffusion coefficient, $b(E) = E^2/(E_0\tau_E)$ is the positron loss rate due to the synchrotron radiation and inverse Compton scattering, $\langle \sigma v \rangle$ the thermal averaged cross section at present, $\rho(r)$ and x_{sub} the density profile and location of nearby subhalo, respectively. Here we adopt propagation parameters as [25]: $K_0 = 0.1093 \text{kpc}^2 \text{Myr}^{-1}$, $\delta = 1/3$, $L = 4 \text{kpc}$ (the half height of the Galactic diffusion cylinder), $\tau_E = 10^{16} \text{s}$ (the typical loss time) and $E_0 = 1 \text{ GeV}$. In addition, we assume both Galactic halo and subhalo are follow NEW density profile [85, 86]:

$$\rho(r) = \frac{\rho_s}{(r/r_s)(1 + r/r_s)^2} .$$

The Galactic halo is normalized by the local density ρ_\odot at Sun orbit R_\odot, which are respectively fixed as $\rho_\odot = 0.4 \text{ GeVcm}^{-3}$ and $R_\odot = 8.5 \text{ kpc}$. While for nearby subhalo, the parameters ρ_s and r_s can be determined by its viral mass M_{vir}. The fitting result for our benchmark point is presented in Fig. 4 together with DAMPE data points. From which, we find that a nearby subhalo with a distance of 0.1 (0.3) kpc and the viral mass $3 \times 10^7 M_\odot$ ($3 \times 10^8 M_\odot$) can account for the DAMPE excess for our model.
Figure 4. The $e^+ + e^−$ flux for our benchmark point. The DAMPE data is shown in red points [24]. The blue dotted line corresponds to Galactic halo contribution (multiplied by 10^2), and cyan dashed (orange dot-dashed) line corresponds to contribution of nearby subhalo with a distance of 0.1 (0.3) kpc and the viral mass $3 \times 10^7 M_\odot$ ($3 \times 10^8 M_\odot$). Corresponding total fluxes (background + Galactic halo+ subhalo) are also shown by solid lines with the same colors. Here we take solar modulation potential as $\Phi_\odot = 700$ MV for illustration. For comparison, the direct measurements from AMS-02 [87] and Fermi-LAT [88] experiments, as well as the indirect measurement by H.E.S.S. [89, 90] are also shown. The error bars of DAMPE, AMS-02 and Fermi-LAT include both systematic and statistical uncertainties.

IV. CONCLUSION

In this paper, we propose an anomaly-free radiative seesaw model with an alternative leptophilic $U(1)_X$ gauge symmetry. Under the $U(1)_X$ symmetry, only right-handed leptons are charged. Charged leptons acquire mass via the type-I seesaw-like mechanism with heavy intermediate fermions added also for anomaly-free cancellation. Meanwhile, tiny neutrino masses are generated at one-loop level with DM candidate in the loop.

Provided all other particles are heavy enough, the dominant annihilation channel for DM F_1 is $\bar{F}_1 F_1 \rightarrow \ell\ell, \bar{\nu}\nu$ mediated by the new leptophilic gauge boson Z'. Motivated by the observed
DAMPE e^+e^- excess around 1.5 TeV, we fix $m_{F_1} = 1.5$ TeV while consider possible constraints from relic density, direct detection and collider searches. Under all these constraints, a benchmark points, i.e., $m_{Z'} = 2950$ GeV, is chosen from the viable region $m_{Z'} \in [2810, 3000]$ GeV. After fitting to the observed spectrum, we find that the DAMPE excess can be explained by a nearby subhalo with a distance of 0.1 (0.3) kpc and the viral mass $3 \times 10^7 M_\odot (3 \times 10^8 M_\odot)$.

ACKNOWLEDGEMENTS

The work of Weijian Wang is supported by National Natural Science Foundation of China under Grant Numbers 11505062, Special Fund of Theoretical Physics under Grant Numbers 11447117 and Fundamental Research Funds for the Central Universities under Grant Numbers 2014ZD42. We thank Qiang Yuan for help on DAMPE spectrum fitting.

[1] E. Ma, Phys. Rev. D 73, 077301 (2006) [hep-ph/0601225].
[2] E. Ma, Phys. Lett. B 662, 49 (2008) [arXiv:0708.3371 [hep-ph]].
[3] A. Merle and M. Platscher, Phys. Rev. D 92, no. 9, 095002 (2015) [arXiv:1502.03098 [hep-ph]].
[4] A. Adulpravitchai, M. Lindner, A. Merle and R. N. Mohapatra, Phys. Lett. B 680, 476 (2009) [arXiv:0908.0470 [hep-ph]].
[5] S. Kanemura, O. Seto and T. Shimomura, Phys. Rev. D 84, 016004 (2011) [arXiv:1101.5713 [hep-ph]].
[6] W. F. Chang and C. F. Wong, Phys. Rev. D 85, 013018 (2012) [arXiv:1104.3934 [hep-ph]].
[7] S. Kanemura, T. Nabeshima and H. Sugiyama, Phys. Rev. D 85, 033004 (2012) [arXiv:1111.0599 [hep-ph]].
[8] S. Kanemura, T. Matsui and H. Sugiyama, Phys. Rev. D 90, 013001 (2014) [arXiv:1405.1935 [hep-ph]].
[9] W. Wang and Z. L. Han, Phys. Rev. D 92, 095001 (2015) [arXiv:1508.00706 [hep-ph]].
[10] E. Ma, N. Pollard, O. Popov and M. Zakeri, Mod. Phys. Lett. A 31, no. 27, 1650163 (2016) [arXiv:1605.00991 [hep-ph]].
[11] S. Y. Ho, T. Toma and K. Tsumura, Phys. Rev. D 94, no. 3, 033007 (2016) [arXiv:1604.07894 [hep-ph]].
[12] O. Seto and T. Shimomura, arXiv:1610.08112 [hep-ph].
[13] W. Wang, R. Wang, Z. L. Han and J. Z. Han, arXiv:1705.00414 [hep-ph].
[14] T. Nomura and H. Okada, Phys. Lett. B 774, 575 (2017) [arXiv:1704.08581 [hep-ph]].
[15] T. Nomura and H. Okada, arXiv:1705.08309 [hep-ph].
[16] W. Chao, arXiv:1707.07858 [hep-ph].
[17] C. Q. Geng and H. Okada, arXiv:1710.09536 [hep-ph].
[18] T. Nomura and H. Okada, arXiv:1711.05115 [hep-ph].
[19] V. De Romeri, E. Fernandez-Martinez, J. Gehrlein, P. A. N. Machado and V. Niro, JHEP 1710, 169 (2017) [arXiv:1707.08606 [hep-ph]].
[20] D. Nanda and D. Borah, arXiv:1709.08417 [hep-ph].
[21] A. Das, T. Nomura, H. Okada and S. Roy, Phys. Rev. D 96, no. 7, 075001 (2017) [arXiv:1704.02078 [hep-ph]].
[22] A. Das, N. Okada and D. Raut, arXiv:1710.03377 [hep-ph].
[23] A. Das, N. Okada and D. Raut, arXiv:1711.09896 [hep-ph].
[24] G. Ambrosi et al. [DAMPE Collaboration], arXiv:1711.10981 [astro-ph.HE].
[25] Q. Yuan et al., arXiv:1711.10989 [astro-ph.HE].
[26] Y. Z. Fan, W. C. Huang, M. Spinrath, Y. L. S. Tsai and Q. Yuan, arXiv:1711.10995 [hep-ph].
[27] K. Fang, X. J. Bi and P. F. Yin, arXiv:1711.10996 [astro-ph.HE].
[28] P. H. Gu and X. G. He, arXiv:1711.11000 [hep-ph].
[29] G. H. Duan, L. Feng, F. Wang, L. Wu, J. M. Yang and R. Zheng, arXiv:1711.11012 [hep-ph].
[30] L. Zu, C. Zhang, L. Feng, Q. Yuan and Y. Z. Fan, arXiv:1711.11052 [hep-ph].
[31] Y. L. Tang, L. Wu, M. Zhang and R. Zheng, arXiv:1711.11058 [hep-ph].
[32] W. Chao and Q. Yuan, arXiv:1711.11182 [hep-ph].
[33] P. H. Gu, arXiv:1711.11333 [hep-ph].
[34] P. Athron, C. Balazs, A. Fowlie and Y. Zhang, arXiv:1711.11376 [hep-ph].
[35] J. Cao, L. Feng, X. Guo, L. Shang, F. Wang and P. Wu, arXiv:1711.11452 [hep-ph].
[36] G. H. Duan, X. G. He, L. Wu and J. M. Yang, arXiv:1711.11563 [hep-ph].
[37] X. Liu and Z. Liu, arXiv:1711.11579 [hep-ph].
[38] X. J. Huang, Y. L. Wu, W. H. Zhang and Y. F. Zhou, arXiv:1712.00005 [astro-ph.HE].
[39] W. Chao, H. K. Guo, H. L. Li and J. Shu, arXiv:1712.00037 [hep-ph].
[40] H. B. Jin, B. Yue, X. Zhang and X. Chen, arXiv:1712.00362 [astro-ph.HE].
[41] Y. Gao and Y. Z. Ma, arXiv:1712.00370 [astro-ph.HE].
[42] J. S. Niu, T. Li, R. Ding, B. Zhu, H. F. Xue and Y. Wang, arXiv:1712.00372 [astro-ph.HE].
[43] C. H. Chen, C. W. Chiang and T. Nomura, arXiv:1712.00793 [hep-ph].
[44] T. Li, N. Okada and Q. Shafi, arXiv:1712.00869 [hep-ph].
[45] P. H. Gu, arXiv:1712.00922 [hep-ph].
[46] T. Nomura and H. Okada, arXiv:1712.00941 [hep-ph].
[47] R. Zhu and Y. Zhang, arXiv:1712.01143 [hep-ph].
[48] K. Ghorbani and P. H. Ghorbani, arXiv:1712.01239 [hep-ph].
[49] J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, P. Wu and L. Zu, arXiv:1712.01244 [hep-ph].
[50] F. Yang and M. Su, arXiv:1712.01724 [astro-ph.HE].
[51] R. Ding, Z. L. Han, L. Feng and B. Zhu, arXiv:1712.02021 [hep-ph].

[52] G. L. Liu, F. Wang, W. Wang and J. M. Yang, arXiv:1712.02381 [hep-ph].

[53] S. F. Ge and H. J. He, arXiv:1712.02744 [astro-ph.HE].

[54] Y. Zhao, K. Fang, M. Su and M. C. Miller, arXiv:1712.03210 [astro-ph.HE].

[55] Y. Sui and Y. Zhang, arXiv:1712.03642 [hep-ph].

[56] N. Okada and O. Seto, arXiv:1712.03652 [hep-ph].

[57] A. Fowlie, arXiv:1712.05089 [hep-ph].

[58] J. Cao, X. Guo, L. Shanga, F. Wang, P. Wu, arXiv:1712.05351 [hep-ph].

[59] L. M. Krauss and F. Wilczek, Phys. Rev. Lett. 62, 1221 (1989).

[60] G. Aad et al. [ATLAS and CMS Collaborations], JHEP 1608, 045 (2016) [arXiv:1606.02266 [hep-ex]].

[61] W. Wang and Z. L. Han, Phys. Rev. D 94, no. 5, 053015 (2016) [arXiv:1605.00239 [hep-ph]].

[62] R. Ding, Z. L. Han, Y. Liao, H. J. Liu and J. Y. Liu, Phys. Rev. D 89, no. 11, 115024 (2014) [arXiv:1403.2040 [hep-ph]].

[63] A. M. Baldini et al. [MEG Collaboration], Eur. Phys. J. C 76, no. 8, 434 (2016) [arXiv:1605.05081 [hep-ex]]. J. Adam et al. [MEG Collaboration], Phys. Rev. Lett. 110, 201801 (2013) [arXiv:1303.0754 [hep-ex]]. B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 104, 021802 (2010) [arXiv:0908.2381 [hep-ex]].

[64] P. Langacker, Rev. Mod. Phys. 81, 1199 (2009) [arXiv:0801.1345 [hep-ph]].

[65] N. F. Bell, Y. Cai, R. K. Leane and A. D. Medina, Phys. Rev. D 90, no. 3, 035027 (2014) [arXiv:1407.3001 [hep-ph]].

[66] S. O. Kara, M. Sahin, S. Sultansoy and S. Turkoz, JHEP 1108, 072 (2011) [arXiv:1103.1071 [hep-ph]].

[67] T. Li and X. G. He, Phys. Rev. D 80, 093003 (2009) [arXiv:0907.4193 [hep-ph]].

[68] T. Abe, R. Sato and K. Yagyu, JHEP 1507, 064 (2015) [arXiv:1504.07059 [hep-ph]].

[69] T. Robens and T. Stefaniak, Eur. Phys. J. C 76, no. 5, 268 (2016) [arXiv:1601.07880 [hep-ph]].

[70] R. Ding, Z. L. Han, Y. Liao and W. P. Xie, JHEP 1605, 030 (2016) [arXiv:1601.06355 [hep-ph]].

[71] C. Guella, D. Cherigui, A. Ahriche, S. Nasri and R. Soualah, Phys. Rev. D 93, no. 9, 095022 (2016) [arXiv:1601.04342 [hep-ph]].

[72] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, Comput. Phys. Commun. 185, 2250 (2014) [arXiv:1310.1921 [hep-ph]].

[73] G. Blanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 192, 322 (2015) [arXiv:1407.6129 [hep-ph]].

[74] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594, A13 (2016) [arXiv:1502.01589 [astro-ph.CO]].

[75] E. Aprile et al. [XENON100 Collaboration], Science 349, no. 6250, 851 (2015) [arXiv:1507.07747 [astro-ph.CO]].
[76] J. Kopp, V. Niro, T. Schwetz and J. Zupan, Phys. Rev. D 80, 083502 (2009) [arXiv:0907.3159 [hep-ph]].
[77] X. Cui et al. [PandaX-II Collaboration], Phys. Rev. Lett. 119, no. 18, 181302 (2017) [arXiv:1708.06917 [astro-ph.CO]].
[78] P. Fayet, Phys. Rev. D 75, 115017 (2007) [hep-ph/0702176 [HEP-PH]].
[79] G. W. Bennett et al. [Muon g-2 Collaboration], Phys. Rev. D 73, 072003 (2006) [hep-ex/0602035].
[80] The LEP Collaborations, hep-ex/0312023.
[81] M. Ibe, H. Murayama and T. T. Yanagida, Phys. Rev. D 79, 095009 (2009) [arXiv:0812.0072 [hep-ph]].
[82] A. W. Strong and I. V. Moskalenko, Astrophys. J. 509, 212 (1998) [astro-ph/9807150].
[83] I. V. Moskalenko and A. W. Strong, Astrophys. J. 493, 694 (1998) [astro-ph/9710124].
[84] M. Cirelli et al., JCAP 1103, 051 (2011) Erratum: [JCAP 1210, E01 (2012)] [arXiv:1012.4515 [hep-ph]].
[85] J. F. Navarro, C. S. Frenk and S. D. M. White, Astrophys. J. 462, 563 (1996) [astro-ph/9508025].
[86] J. F. Navarro, C. S. Frenk and S. D. M. White, Astrophys. J. 490, 493 (1997) [astro-ph/9611107].
[87] M. Aguilar et al. [AMS Collaboration], Phys. Rev. Lett. 113, 121102 (2014). doi:10.1103/PhysRevLett.113.121102
[88] S. Abdollahi et al. [Fermi-LAT Collaboration], Phys. Rev. D 95, no. 8, 082007 (2017) doi:10.1103/PhysRevD.95.082007 [arXiv:1704.07195 [astro-ph.HE]].
[89] F. Aharonian et al. [H.E.S.S. Collaboration], Phys. Rev. Lett. 101, 261104 (2008) doi:10.1103/PhysRevLett.101.261104 [arXiv:0811.3894 [astro-ph]].
[90] F. Aharonian et al. [H.E.S.S. Collaboration], Astron. Astrophys. 508, 561 (2009) doi:10.1051/0004-6361/200913323 [arXiv:0905.0105 [astro-ph.HE]].