Flexibility of the yeast α2 repressor enables it to occupy the ends of its operator, leaving the center free

Robert T. Sauer, Dana L. Smith, and Alexander D. Johnson
Departments of Microbiology and Biochemistry/Biophysics, University of California, San Francisco, California 94143 USA

The yeast α2 protein, the product of the MATα2 gene, is a regulator of yeast cell type; it turns off transcription of the a-specific genes by binding to an operator located upstream of each gene. In this paper we describe the domain structure, subunit organization, and some unusual features of the way this protein contacts its operator.

We show that the protein is folded into two domains. The carboxy-terminal domain binds specifically to the operator; the amino-terminal domain contains dimerization contacts. The α2 dimer differs from those of the phage repressors in that it is flexible and therefore is able to bind tightly to differently spaced operator half-sites.

In the natural operator, the centers of the operator half-sites are two and one-half turns of DNA apart, exposing them on opposite sides of the DNA helix. We show that the design of α2 allows a dimer to reach across its operator such that it occupies the two half-sites but leaves the middle of the operator available to other proteins.

[Key Words: DNA-protein interaction; repressor; gene expression; homeo domain]

Received March 29, 1988; revised version accepted May 13, 1988.

The yeast α2 protein is related by sequence (and presumably structure) and by function (the determination of cell type) to a large group of proteins that contain the so-called homeo domain (for review, see Gehring 1987). These proteins are all thought to act, at least in part, by binding to specific DNA sequences and modulating the expression of nearby target genes [see e.g., Laughon and Scott 1984; Desplan et al. 1985]. For the case of α2, we know that this protein recognizes an operator located upstream of each of its target genes (the α-specific genes) and that it turns off transcription of these genes by binding to these operators [see Fig. 1; Johnson and Herskowitz 1985].

In this paper we utilize α2 purified to homogeneity from an overproducing strain of Escherichia coli to determine the domain structure, subunit arrangement, and functional organization of α2. We show that the design of α2 and its operator allows access of proteins to the center of the operator even when α2 is bound.

Results

Overexpression and purification of the α2 protein

As described in Methods, the α2 protein was overexpressed in E. coli and purified to apparent homogeneity. An SDS gel profile of the purified protein is shown in Figure 2, lane 1. As predicted from the DNA sequence [Astell et al. 1981], α2 has a monomer molecular weight of 24,000, its amino-terminal sequence is Met-Asn-Lys-Ile..., and the purified protein exhibits the expected amino acid composition [see Methods]. The presence of the amino-terminal Met is consistent with the fact that the E. coli methionine aminopeptidase fails to cleave before an asparagine [see Flinta et al. 1986; Ben-Bassat and Bauer 1987]. We do not yet know whether the amino-terminal methionine is present in α2 produced from yeast, but the protein produced in E. coli comigrates with α2 from yeast on SDS gels [A. Vershon, unpubl.]. This suggests that no drastic modifications of α2 occur in yeast.

Domain structure of the α2 protein

Cleavage of the purified α2 protein with chymotrypsin generates two major fragments. As shown in Figure 2B, the yield of these fragments remains relatively constant between 10 and 640 min of digestion. This resistance to further proteolysis indicates that these fragments are folded stably and correspond to structural domains of α2. The chymotryptic fragments of α2 were purified, and their amino-terminal sequences and amino acid compositions were determined [see Methods]. This analysis showed that the larger fragment consists of amino acids 1–102 and the smaller fragment consists of amino acids 132–210 of α2 [210 residues total]. We will refer to these fragments as the amino-terminal and carboxy-terminal fragments, respectively. (Close inspection of Fig. 2 reveals a minor digestion product that migrates just ahead of the carboxy-terminal fragment; this minor product appears at early times of digestion but disappears at late
Control of the \(\alpha \)-specific genes by \(\alpha \). (Top) \(\alpha \) turns off transcription of the five known \(\alpha \)-specific genes by binding to an operator located upstream of each gene; for the cases of the \(\text{STE6}, \text{Bar1}, \text{and } \text{STE2} \) genes, the binding has been demonstrated biochemically [Johnson and Herskowitz 1985; L. Evnin and A. Johnson, unpubl.]. Interaction of \(\alpha \) with the \(\text{MFA1} \) and \(\text{MFA2} \) sequences has been inferred on the basis of strong sequence conservation. The numbers beneath each operator refer to the approximate distance from the center of the operator to the start of the structural gene. (Bottom) The sequences of the five operators. The sixth line shows a rough consensus sequence. The seventh and eighth lines indicate that the operator contains two different axes of approximate twofold symmetry, the two axes are offset by 1/2 bp. Taken from Johnson and Herskowitz (1985), this figure includes sequence information from the following sources: \(\text{STE6} \) [Wilson and Herskowitz 1986], \(\text{Bar1} \) [Kronstad et al. 1987], \(\text{STE2} \) [Burkholder and Hartwell 1985; Miller et al. 1985], \(\text{MFA1} \) and \(\text{MFA2} \) [Brake et al. 1985].

Subunit structure of the intact \(\alpha \)-protein

Purified \(\alpha \) exists as a covalently linked dimer, with the linkage occurring through disulfide bonds between amino-terminal domains. This conclusion is based on the observation that the apparent size of \(\alpha \) on SDS gels doubles if the protein is not treated with reducing agents prior to electrophoresis. Lane 1 of Figure 2A shows that when \(\alpha \) was denatured by heating in SDS and 2-mercaptoethanol, it migrated with the expected molecular weight of 24,000. Lane 2 of Figure 2A shows that when the 2-mercaptoethanol was omitted from the sample buffer, the purified protein migrated with an apparent molecular weight of approximately 45,000.

Next, we used gel filtration chromatography and sedimentation velocity centrifugation experiments to examine the apparent molecular weight of reduced and disulfide-linked \(\alpha \) under native conditions. These results are shown in Figures 3 and 4. Reduced \(\alpha \) migrates through the sizing column with an apparent molecular weight of 35,000 and sediments through a sucrose gradient with an apparent molecular weight of 17,000. These values can be compared to the expected molecular weight of an \(\alpha \) monomer, 24,000. The simplest interpretation of these data is that reduced \(\alpha \) is a monomer with a somewhat elongated shape. A molecule of this type would migrate faster than expected through a sizing column and slower than expected through a sucrose gradient. Further evidence that reduced \(\alpha \) is, in fact, monomeric comes from sedimentation equilibrium experiments performed by Bill Werner and Howard Schachman at University of California, Berkeley. They observed that, at equilibrium, the reduced \(\alpha \) was dis-
Figure 3. Mobilities of reduced and disulfide-linked α2 on a superose-12 gel filtration column. The molecular weights of the standards are IgG (158,000), BSA (68,000), ovalbumin (43,000), myoglobin (17,000) and cytochrome c (12,000). The relative mobility of IgG was set at 1.0, and that of myoglobin was set at 0. For this experiment, the chromatography was carried out in T buffer plus 0.5 M NaCl.

The disulfide-linked form of α2 protein migrates through the sizing column with an apparent molecular weight of 90,000 (Fig. 3) and sediments through a sucrose gradient with an apparent molecular weight of 25,000 (Fig. 4). These data are most easily explained by the idea that the disulfide-linked form of α2 is an elongated dimer. Thus, the simplest explanation of the SDS gel, gel filtration, and sedimentation velocity experiments is as follows: The major solution form of α2 is the disulfide-linked dimer, which is highly elongated. Dimers of α2 are broken down into monomers by reducing the disulfide bonds. In the remaining discussion, we use the term 'dimer' to refer to the disulfide-linked species of α2 and 'monomer' to refer to the reduced species.

Two lines of argument indicate that the disulfide bonds form between the amino-terminal domains of α2. First, the only cysteines in the molecule are located in the amino-terminal domain, at positions 33 and 34. Second, after the chymotryptic digestion, which was carried out on α2 dimers, the amino-terminal domain was recovered as a disulfide-linked dimer, whereas the carboxy-terminal domain was recovered as a monomer [not shown]. We note that in principle, one or two disulfide bonds could form between amino-terminal domains, we have not determined this number, nor have we determined which of the two cysteines is actually involved.

Operator binding by α2 dimers, monomers, and chymotryptic fragments

We now turn to experiments that examine the interaction of purified α2 with its operator. Figure 5A shows a DNase I protection experiment where increasing concentrations of α2 dimers have been added to an end-labeled DNA fragment that bears a synthetic α2 operator. This synthetic operator, which functions in vivo [Johnson and Herskowitz 1985], has the sequence of the operator found upstream of the STE6 gene [Wilson and Herskowitz 1986, for the sequence, see the top line of Fig. 7]. Three conclusions can be drawn from the protection experiment. First, the purified α2 protein binds specifically to the operator. This result was expected because a full-length α2-β-galactosidase fusion protein, purified from yeast, had previously been shown to bind to this sequence [Johnson and Herskowitz 1985]. Second, the purified α2 protein protects the two end portions of the operator from DNase I attack, leaving the middle of the operator accessible to DNase I. These two protected sequences are related by an approximate twofold axis of symmetry [see Figs. 1 and 6, below]; we refer to each sequence as a half-site. Third, the two half-sites are occupied at about the same concentration of α2 dimers, ~3 nM.

To map the portion of the operator contacted by α2 more accurately, we carried out a series of hydroxyl radical protection experiments, using the procedure described by Tullius and Dombroski [1986]. The hydroxyl radical probe is about the size of a water molecule, and it attacks ribose positions along the DNA backbone. The results of one such protection experiment are shown in Figure 5B; three short areas of protection are seen. The results of this experiment and a similar one performed to probe the complementary DNA strand are summarized in Figure 6. The top of Figure 6 shows the backbone positions protected from DNase I [indicated by brackets] and hydroxyl radical attack [indicated by solid circles] by the purified α2 protein. The bottom of Figure 6 shows the hydroxyl radical results displayed on a projection of...
the operator sequence arranged as B-form DNA. The projection diagram shows that α2 contacts two patches of DNA, each consisting of a portion of a major groove and an adjoining portion of the minor groove. The centers of the two patches are approximately two and one-half turns of DNA apart and therefore reside on opposite faces of the DNA helix, as indicated in the diagram. We also performed a series of dimethylsulfate (DMS) protection experiments and found that α2 protected the N-7 positions of two symmetrically located Gs and failed to protect the N-3 positions of any As (Figs. 5C and 6). This result suggests that the contacts made by this protein reside primarily in the major groove of each half-site. The protected Gs are indicated in Figure 6 as open circles.

The results summarized above indicate that α2 does not contact the middle of the operator. To test this idea experimentally, we compared the affinity of α2 dimers for the wild-type STE6 operator with that for an operator site that contained a 7-bp substitution in its center (for the sequence, see the second line of Fig. 7). This variant operator therefore retains the two half-sites with their normal spacing. We found that α2 had the same affinity for the mutant as the wild-type operator site (not shown), confirming that the sequence of the middle of the operator is not directly involved in α2 recognition.

Figure 4. Relative sedimentation of reduced and disulfide-linked α2. Molecular weights of the standards and the explanation of the x-axis values are given in the legend of Fig. 3. This experiment was carried out in T buffer plus 0.2 M NaCl.
To test whether the natural spacing of the two half-sites (two and one-half turns apart) is a requisite for a2 binding, we synthesized a variant of the STE6 operator that had the central 13 bp deleted (for the sequence, see the fourth line of Fig. 7). In this variant operator, the two half-sites are directly adjacent and lie on the same face of the DNA helix. We found that a2 dimers did indeed bind to this variant operator, occupying both half-sites at the same a2 concentration [Fig. 8]. Surprisingly, a2 dimers bound to the variant with an affinity similar to, or slightly higher than, the affinity for the wild-type operator.

We next performed an experiment to determine whether two half-sites bind a2 dimers more strongly than a single half-site does. As shown by the DNase I protection experiment of Figure 9, a2 dimers did bind specifically to a single half-site (for the sequence, see the third line of Fig. 7), albeit with an affinity ~10-fold lower than that for the wild-type operator (line 1 of Table 1).

The results so far suggest a simple model for a2 dimers binding to an operator (see Fig. 11). Each monomer contacts a half-site, and the dimer is sufficiently flexible to contact both half-sites regardless of the spacing. A prediction of this model is that a2 monomers (formed by reducing the disulfide bonds) should bind to the operator less tightly than a2 dimers do. This prediction was tested and found to be true; a2 monomers specifically recognized the operator, but with an affinity ~20-fold lower than that of a2 dimers [line 2 of Table 1].

Finally, we determined whether either of the two isolated domains of a2 retained the ability to recognize the operator. We anticipated that the carboxy-terminal domain would bind to the operator, because previous work utilizing deletion derivatives of an a2–β-galactosidase fusion protein [Hall and Johnson 1987] showed that the DNA-binding portion of a2 lay at the carboxyl-terminus. As expected, DNase I protection experiments showed that the purified amino-terminal domain failed to bind operator DNA, whereas the purified carboxy-terminal domain showed protection of the operator indistinguishable from that of the intact a2 [Fig. 10]. The affinity of the isolated carboxy-terminal domain, however, was about 20-fold lower than that of the intact a2 dimers. The isolated carboxy-terminal domain also bound to the half-operator, in contrast to the intact a2 dimers, the affinity of the carboxy-terminal fragment for the wild-type

Figure 7. DNA sequences of the STE6 operator and three variants. The oligonucleotides were synthesized, cloned into the Sall site of pUC18, isolated as longer DNA fragments, and used for the protection experiments of Figures 5, 8, 9, and 10 and Table 1. To the right of each operator sequence is a schematic description of it; the hatched sections indicate the half-sites recognized by a2.

Table 1. Summary of DNase I, hydroxyl radical, and DMS protection results for the wild-type and variant operators.

Operator Type	Protection Site	Protection Result
Wild Type	TCGACATGTTAATTACCTAATAGGGAAATTTACACGC	Protected
7 Basepair Substitution	TCGACATGTTAATTACCGAGATCTGAAATTTACACGC	Protected
Half Operator	TCGAC ATAGGGAAATTACACGC	Protected
13 Basepair Deletion	TCGACATGTTAATTATTTAC ACGC	Protected
Figure 8. Binding of α2 dimers to the operator with the 13-bp central deletion. Binding of α2 to the variant operator [last sequence of Fig. 7] monitored by DNase I protection. Conditions and concentration of α2 are the same as those of Figure 5A; the experiment of lane 8 contains α2 at 100 nM.

and half-operator variant was approximately the same. These results are listed in line 3 of Table 1.

Discussion

Domain and subunit structure of α2

Our results show that the α2 protein consists of two structural domains. The isolated carboxy-terminal domain binds specifically to the operator; the isolated amino-terminal domain forms dimers where the monomers are linked by disulfide bonds. In standard buffers, the predominant solution form of intact α2 is the disulfide-bonded dimer. The migration rates of α2 dimers through gel filtration columns and sucrose gradients indicate that α2 is elongated.

Interaction of α2 with the operator

α2 dimers bind moderately tightly to the operator (Kₐ = 3 nM) and contact two patches of DNA, one located at each end of the operator. The centers of these two patches are separated by 25 bp, thus positioning them on opposite faces of the DNA helix [see Fig. 6]. As a result, the middle of the operator is accessible to DNase I and hydroxyl radical probes even when α2 is bound. The affinities with which the α2 dimer, monomer, and the carboxy-terminal domain bind to the wild-type operator and to a half-operator (Table 1), indicate that a single α2 dimer contacts both portions of the operator, as shown in the model of Figure 11. Thus, the binding energies to the two half-sites of the operator are coupled, and the coupling is mediated through the disulfide-linked interactions between amino-terminal domains. We note that several alternative models are also consistent with our data. For example, two dimers could bind to the operator in a highly cooperative manner, with the cooperativity dependent upon the disulfide bonds being present. However, the model presented in Figure 10 is by far the most reasonable and economical summary of the results.

The fact that α2 dimers bind the natural operator [where the center-to-center spacing of the half-sites is two and one-half turns] with the same affinity as they bind the 13-bp deleted operator [where the center-to-center spacing is about 1 turn] indicates that the α2 dimer has considerable flexibility. This flexibility appears to allow the dimer to recognize the two half-sites...
Table 1. Relative dissociation constants of α2 dimers, monomers, and the isolated carboxy-terminal domain for the wild-type STE6 operator and the half-operator variant

	STE6 operator	Half-operator
α2 dimers	3	20
α2 monomers	60	200
Carboxy-terminal domain	120	120

The entries give the nanomolar concentrations of different species of α2 required to half-saturate the STE6 operator (column 1) or the half-operator variant (column 2). The values were obtained by carrying out a 10-point titration curve, using DNase I protection to monitor the occupancy (see Figs. 5, 8, 9, and 10). The concentration of protein required to occupy one-half of the DNA molecules was then determined by inspection and densitometry of the autoradiogram. The values are averages of at least three individual determinations and are believed to be accurate to within a factor of 2. The values are given in moles/liter of the appropriate species; therefore, the numbers in the first row are expressed in moles/liter dimers, those in the second row are moles/liter monomer, and those in the third are moles/liter monomers of the carboxy-terminal fragment.

when they are exposed on the same side of the DNA or on opposite sides of the DNA. We note that the 13-bp deleted operator bears the same half-site spacing as does the α1/α2 operator, a sequence bound by the combination of α1 and α2 (Goutte and Johnson 1988). Thus, this flexibility of α2 may be important for its ability to recognize both types of operators.

Dimerization

The results and models presented above raise a number of questions, several of which we will consider. First, are the disulfides that hold α2 dimers together in vitro relevant in vivo? This question arises, in part, because the intracellular environment of most cells strongly favors the reduced state. As a consequence, most known inter- and intrachain disulfide linkages are found on secreted proteins, although several examples of intracellular proteins that contain disulfide bonds are known. As for the α2 disulfide bonds, several possibilities exist. First, they may actually form in vivo. A preliminary set of experiments (A. Vershon, unpubl.) indicates that the major form of α2 in yeast is not disulfide linked, but it is still possible that the disulfides form only when two monomers of α2 are bound to the operator and are therefore in close proximity. A second possibility is that the cysteines serve in vivo as binding sites for a metal and that this metal holds the subunits of α2 together. As mentioned above, an α2 monomer contains two cysteines, at positions 33 and 34. Thus, two monomers of α2 could, in principle, be held together by a metal bound to two pairs of cysteines. This type of arrangement has been proposed recently to mediate dimerization of the HIV tat protein (Frankel et al. 1988). We also note that in metallothionein, several cases are known where two adjacent cysteines are found bonded to a metal (for review, see Hamer 1986). A third possibility is that the cysteines play no role at all in vivo, and the formation of the disulfides is entirely artifactual. For example the amino-terminal domains could interact weakly, and formation of the disulfide could trap molecules in the dimeric state in vitro. Regardless of the role of the cysteines, we feel that the twofold symmetry of the operator, combined with the fact that α2 dimers bind more tightly to the operator than monomers do, suggests that the DNA-bound form of α2 in vivo is the dimer.

Figure 10. Interaction of the isolated carboxy-terminal domain of α2 with the STE6 operator. Conditions are the same as for the experiment of Fig. 5A, except the purified carboxy-terminal fragment was used instead of the intact α2. [Lane 1] No protein, [lane 2] 0.2 nM, [lane 3] 0.6 nM, [lane 4] 2 nM, [lane 5] 6 nM, [lane 6] 20 nM, [lane 7] 60 nM, [lane 8] 200 nM, [lane 9] 600 nM. The concentrations are expressed as moles/liter of monomer.

Figure 11. Summary of α2 domain and subunit organization. Our working model shows how α2 dimers interact with the operator. The two patches of the operator contacted by α2 were identified by the hydroxyl radical experiment of Fig. 5. The rationale for depicting a single dimer interacting with both half-sites is described in the text.
A second issue raised by our results concerns the function of the middle of the α2 operator. As shown above, α2 does not contact this part of the operator, nor does α2 require the middle sequence to bind. However, the middle of the operator is highly conserved among the five known operators of α-specific genes (Fig. 1). Keleher et al. (1988) have recently identified a protein, called GRM, which binds to the middle of the α2 operator. The operator binding of GRM and α2 is cooperative, and the combined action of both proteins is required to bring about repression in vivo. Apparently, the flexible and elongated structure of α2 enables it to straddle GRM yet still allow both proteins to bind to the operator.

Functions of the domains of α2

We now turn to a more detailed discussion of the functions of the individual domains of α2. As shown above, the isolated carboxy-terminal domain retains the ability to recognize the operator. This domain [amino acids 132–210] contains extensive homology to the *Drosophila* homeo domain sequences [Laughon and Scott 1984; Shepherd et al. 1984]. According to a sequence alignment proposed by Pat O’Farrell [unpubl.], positions 136–190 of α2 show significant homology to the *Drosophila* homeo domain sequences. Our results strongly suggest that the homeo domain sequence of the α2 protein folds into a compact structure that binds specifically to DNA. Two other studies of the α2 protein are consistent with this view. Using deletion derivatives of the α2 protein, Hall and Johnson (1987) showed, that the operator binding region of the molecule lay between positions 130 and 204. Porter and Smith (1986) showed that a number of amino acid substitutions between positions 175 and 191 of α2 led to a loss of α2 function, as measured in vivo.

What are the functions of the amino-terminal domain of α2? One function, revealed by this study, is to provide a set of α2 dimerization contacts. A second function of this domain may be to contact the cell-type regulatory protein, α1, the product of the MATα1 gene [Hall and Johnson 1987; Goutte and Johnson 1988]. The α1 protein has no intrinsic activity, yet in combination, α1 and α2 act to repress a set of genes that is distinct from the set of α-specific genes, which α2 represses in the absence of α1 [for reviews, see Herskowitz and Oshima 1981; Sprague et al. 1983; Nasmyth and Shore 1987]. A third function of the amino-terminal domain of α2 is to contact the GRM protein; as discussed above, this protein binds to the center of the operator and serves as a corepressor with α2 [Keleher et al., 1988]. A fourth function of the amino-terminal domain, identified by Hall et al. (1984), may be to provide a nuclear transport signal.

These ideas about the structural organization of α2 are similar in principle to those advanced to rationalize the domain structure of a number of prokaryotic repressors and activators. For these cases, the DNA-binding functions are often sequestered in one domain, whereas the functions that modulate regulatory activity (binding of inducers or corepressors, proteolytic cleavage, interactions with other proteins) reside in a separate domain.

Methods

Buffers

Lysis buffer (LB) contains 100 mM Tris-HCl (pH 8), 1 mM EDTA, 10 mM 2-mercaptoethanol, 500 mM NaCl, 2 mM urea, and 0.1% (vol/vol) NP-40. U buffer contains 50 mM Tris-HCl [pH 8], 1 mM EDTA, 10 mM 2-mercaptoethanol, and 5 mM urea. S buffer contains 50 mM Tris-HCl [pH 8], 1 mM EDTA, and 0.28 mM EDTA. T-buffer contains 50 mM Tris-HCl [pH 8] and 1 mM EDTA. Buffers containing urea were prepared immediately prior to use.

Construction of a pTAC-α2 overproducing strain

Plasmid pDS1 is a pTAC α2 derivative that bears the MATα2 gene from the yeast *Saccharomyces cerevisiae* under transcriptional control of the strong *E. coli* promoter, Pec. To construct this plasmid, an 800 bp BglII–Hpal fragment extending from the seventh codon of α2 (see Hall and Johnson 1987) through the remainder of the structural gene was purified and mixed with PvuII-cut plasmid pTAC12 (Amann et al. 1983) and a synthetic oligonucleotide,

MetAsnLys IleProIleLys...

5'–CGTATGAATAAAATACCCATTAAA–3'

3'–GCATACCTTTTGTGGTAAATTCTAG–5'

which provided the amino-terminal codons of α2. Following ligation and transformation of *E. coli* strain SY903.1 (recA1, srl::Tn10, Δlacpro, argEam, tif, nal, araD/FlacQ2, lacZ::Tn5), a candidate plasmid with the expected structure was identified by hybridization and DNA sequencing. Following induction with isopropyl-β-D-thiogalactoside (IPTG), strains containing this plasmid produce α2 at a level of 1–2% of their total cell protein.

Protein purification

Strain SY903.1/pDS1 was grown at 30°C in LB to an absorbance at 600 nm of 1. IPTG was then added to a concentration of 0.5 mM and growth was continued for 2 hr. The cells were harvested by centrifugation and stored frozen at −70°C.

All steps of purification were performed at 2–4°C and were monitored by SDS–gel electrophoresis. Cells (26.6 g) were thawed, resuspended in 266 ml of lysis buffer, and sonicated until the A₆₀₀ was reduced fivefold. Polyethyleneimine [16 ml of a 10% (vol/vol) solution] was added; the mixture was stirred for 10 min and centrifuged [8000 rpm; 15 min] in a Sorval GSA rotor. The pellet was discarded. Ammonium sulfate [180 ml of a saturated solution in T buffer] was added to the supernatant (277 ml), the mixture was left for 15 min, and the pellet fraction was collected by centrifugation (conditions as described above). The 0–40% ammonium sulfate pellet was resuspended in 70 ml of U buffer, desalted into fresh U buffer on a 500-ml column of BioRad P6D, and passed through a 30-ml column of DEAE–Sephacel equilibrated in U buffer. The flow through fraction was loaded onto a 20-ml column of SP-Sephadex (C50), and a gradient [200 ml total] was run from U buffer to U buffer plus 500 mM NaCl. Fractions containing α2 were pooled [35 ml total] and dialyzed against several changes of S buffer plus 500 mM NaCl. The SP pool was divided into three portions, which were chromatographed on a 2.5 × 82-cm column of Sephacryl S-200 equilibrated in S buffer plus 500 mM NaCl.
Generation and purification of chymotryptic fragments

Approximately 5 mg of purified α2 protein (0.3 mg/ml in T buffer plus 50 mM NaCl) was digested with α-chymotrypsin [E : S = 1 : 600 (wt/wt)] for 3 hr at 21°C. The reaction was stopped by the addition of 0.1 volume of a fresh solution of phenylmethylsulfonyl fluoride (PMSF) (50 mM in EtOH), and fragments were purified by a combination of ion-exchange chromatography on SP-Sephadex and gel filtration on Sephadex G-75.

Protein chemistry

Samples for amino acid analysis were hydrolyzed in 6 N HCl for 24 hr and analyzed using a Beckman postcolumn ninhydrin line PTH analyzer.

Analytical gel filtration and sedimentation

Proteins were chromatographed on a 1 × 30-cm Superose-12 column equilibrated in T buffer plus 0.5, 1, 2, or 3 M NaCl at 20°C. The flow rate was maintained at 1 ml/min using a Beckman 110A pump, and the absorbance at 280 nm of the effluent was monitored using a Kratos Spectroflow 783. For each set of chromatography conditions, elution positions were determined for IgG, bovine serum albumin (BSA), ovalbumin, myoglobin, cytochrome c, and vitamin B12. For each run of a2 (reduced or disulfide linked), trace amounts of the standards were mixed with the sample just prior to loading to provide accurate relative elution positions. The experiment of Figure 3 was carried out in 0.5 M NaCl.

The gel filtration experiments were repeated using a 1.5 × 30-cm Sephacryl column under ambient pressure. Again, the a2 (reduced or disulfide linked) was mixed with the standards and chromatographed through the gel. Positions of the proteins were determined by running SDS gels across the columns. The high-performance liquid chromatography (HPLC) and the ambient pressure chromatography gave the same basic results. For reasons we do not understand, the a2 migrated more slowly in both column systems when the salt was raised to 3 M. Thus, in 0.5 M salt, the apparent molecular weights of disulfide-linked and reduced a2 were 90,000 and 35,000, respectively, whereas in 3 M NaCl, these values were 45,000 and 20,000.

For the velocity sedimentation experiment of Figure 4, 5-20% sucrose gradients in T buffer plus 200 mM NaCl were loaded with a2 (disulfide linked or reduced), mixed with a subset of standards used in the HPLC experiments. Gradients (4 ml each) were centrifuged at 45,000 rpm in an SW60 rotor for 16 hr. The contents of the tubes were fractionated, and protein positions determined by running a portion of each fraction on SDS gels.

Operator-binding experiments

Pancreatic DNase I protections were performed in a buffer containing 10 mM Tris-HCl (pH 7), 0.1 mM EDTA, 50 mM NaCl, 5 mM MgCl2, 2 mM CaCl2, 2.5 μg/ml calf-thymus DNA, and 50 μg/ml BSA. a2 protein or chymotryptic fragments (at concentrations given in the figure legends) and end-labeled operator DNA (at ~0.5 μM) were mixed and incubated for 15 min at 20°C, followed by DNase I treatment (0.1 μg/ml) for 10 min at 20°C. For the values of Table 1, 10-point titration curves were performed, four at a time. For every set, an experiment monitoring the binding of a2 dimers to the wild-type operator was included as an internal control. Hydroxyl radical and DMS protection experiments were carried out under the same conditions as those described above, using the procedures of Tullius and Dombroski (1986) and Maxam and Gilbert (1977), respectively.

Acknowledgments

We thank Mike Hall, Drew Vershon, Eric Fodor, Bruce Alberts, Kathy Miller, Jack Berry, Pat O’Farrell, Claude Desplan, and Beth Dombroski for valuable experimental advice and discussions, Carl Pabo for pointing out the possible analogy with the tat protein, and Bill Werner and Howard Schachman for generously sharing their Model E centrifuge and for performing the equilibrium run. Mike Hall, Cindy Keleher, Caroline Goutte, Drew Vershon, Arkady Mak, Pat O’Farrell, Bruce Alberts, and Ira Herskowitz all contributed valuable comments on the manuscript. We also thank Eric Fodor, Larry Moss, Andreas Meister, and Bill Rutter for their advice and hospitality during our use of their HPLC. This work was supported by grants from the National Institutes of Health and the Pew Scholars Program.

References

Aumann, E., J. Brosius, and M. Ptashne. 1983. Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene 25: 167–178.

Astell, C.R., L. Ahlstrom-Jonasson, M. Smith, K. Tatchell, K.A. Nasmyth, and B.D. Hall. 1981. The sequence of the DNAs coding for the mating-type loci of Saccharomyces cerevisiae. Cell 27: 15–23.

Ben-Bassat, A. and K. Bauer. 1987. Amino-terminal processing of proteins. Nature 326: 315.

Bender, A. and G.F. Sprague, Jr. 1987. MATa1 protein, a yeast transcription activator, binds synergistically with a second protein to a set of cell-type-specific genes. Cell 50: 681–691.

Brake, A., C. Brenner, R. Najarian, P. Laybourn, and J. Merryweather. 1985. Structure of genes encoding precursors of the yeast peptide mating pheromone α-factor. In Transport and secretion of proteins. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Burkholder, A.C. and L.H. Hartwell. 1985. The yeast α factor receptor: structural properties deduced from the sequence of the STE2 gene. Nucleic Acids Res. 13: 8463.

Desplan, C., J. Theis, and P.H. O’Farrell. 1985. The Drosha1 developmental gene, engrailed, encodes a sequence-specific DNA-binding activity. Nature 318: 630–635.

Flinta, C., B. Persson, J. Jornvall, and G. Heijne. 1986. Sequence determinants of cytosolic N-terminal protein processing. Eur. J. Biochem. 154: 193–196.

Frankel, A.D., D.S. Breit, and C.O. Pabo. 1988. Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science 240: 70–73.

Gehring, W.J. 1987. Homeo boxes in the study of development. 1987. Science 236: 1245.

Goutte, C. and A.D. Johnson. 1988. α1 protein alters the DNA-binding specificity of α2 repressor. Cell 52: 875–882.

Hall, M.N. and A.D. Johnson. 1987. Homeo domain of the yeast repressor α2 is a sequence-specific DNA-binding domain but is not sufficient for repression. Science 237: 1007–1012.

Hall, M.N., L. Hereford, and I. Herskowitz. 1984. Targeting of E. coli β-galactosidase to the nucleus in yeast. Cell 36: 1057–1065.

Hamer, D.H. 1986. Metallothioneine. Annu. Rev. Biochem. 55: 913–951.
Sauer et al.

Herskowitz, I. and Y. Oshima. 1981. Control of cell type in Saccharomyces cerevisiae: Mating type and mating-type interconversion. In Molecular biology of the yeast Saccharomyces: Life cycle and inheritance, [ed. J.N. Strathem, E.W. Jones, and J.R. Broach] pp. 181–209. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Johnson, A.D. and I. Herskowitz. 1985. A repressor [MATα2 product] and its operator control expression of a set of cell type specific genes in yeast. Cell 42: 237–247.

Keleher, C., C. Goutte, and A. Johnson. 1988. The yeast cell-type specific repressor α2 acts cooperatively with a non-cell type specific protein. Cell [in press].

Kronstad, J.W., J.A. Holly, and V.L. MacKay. 1987. A yeast operator overlaps an upstream activation site. Cell 50: 369–377.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

Laughon, A. and M.P. Scott. 1984. The sequence of a Drosophila segmentation gene: Protein structure homology with DNA binding proteins. Nature 310: 25–30.

Maxam, A. and W. Gilbert. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. 74: 560–564.

Miller, A.M., V.L. MacKay, and K.A. Nasmyth. 1985. Identification and comparison of two sequence elements that confer cell-type transcription in yeast. Nature 314: 598–603.

Nasmyth, K. and D. Shore. 1987. Transcriptional regulation in the yeast life cycle. Science 237: 1162–1170.

Pabo, C.O. and R.T. Sauer. 1984. Protein-DNA recognition. Annu. Rev. Biochem. 53: 293–321.

Porter, S.D. and M. Smith. 1986. Homeo-domain homology in yeast MATα2 essential for repressor activity. Nature 320: 766–768.

Ptashne, M. 1986. A genetic switch gene control and phage λ. Cell Press & Blackwell Scientific Publications.

Shepherd, J.C.W., W. McGinnis, A.E. Carrasco, E.M. DeRobertis, and W.J. Gehring. 1984. Fly and frog homeo domains show homologies with yeast mating type regulatory proteins. Nature 310: 70–71.

Siebenlist, U., R.B. Simpson, and W. Gilbert. 1980. E. coli RNA polymerase interacts homologously with two different promoters. Cell 20: 269–281.

Sprague, G.F., L.C. Blair, and J. Thorner. 1983. Cell interactions and regulation of cell type in the yeast Saccharomyces cerevisiae. Annu. Rev. Microbiol. 37: 623–660.

Tullius, T.D. and B.A. Dombroski. 1986. Hydroxyl radical footprinting: High resolution information about DNA-protein contacts and application to λ repressor and cro protein. Proc. Natl. Acad. Sci. 83: 5469–5473.

Viera, J. and J. Messing. 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing. Gene 19: 259–268.

Wilson, K.L. and I. Herskowitz. 1986. Sequences upstream of the STE6 gene required for its expression and regulation by the mating type loci in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 83: 2536–2540.
Flexibility of the yeast alpha 2 repressor enables it to occupy the ends of its operator, leaving the center free.

R T Sauer, D L Smith and A D Johnson

Genes Dev. 1988, 2:
Access the most recent version at doi:10.1101/gad.2.7.807