Supporting information for:

High number concentrations of transparent exopolymer particles (TEP) in ambient aerosol particles and cloud water – A case study at the tropical Atlantic Ocean

Manuela van Pinxteren¹, Tiera-Brandy Robinson², Sebastian Zeppenfeld¹, Xianda Gong³+, Enno Bahlmann⁴, Khanneh Wadinga Fomba¹, Nadja Triesch¹, Anja Engel⁵, Frank Stratmann³, Oliver Wurl², Heike Wex³, Hartmut Herrmann¹*

*Corresponding author: Hartmut Herrmann (herrmann@tropos.de)

¹ Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
² Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, 26382 Wilhelmshaven, Germany
³ Dept. of Experimental Cloud and Microphysics, Leibniz-Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
+ now at: Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 63130, MO, USA
⁴ Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany
⁵ GEOMAR Helmholtz Centre for Ocean Research, Kiel 24105, Germany
Table S1: Sampling period of ambient aerosol particles (TSP) and meteorological parameters and inorganic ions sampled from PM$_{10}$ during the sampling interval.

Sample ID (Air)	Start sampling (UTC)	Stop sampling (UTC)	V [m$^{-3}$]	wind speed [m s$^{-1}$]	wind speed [deg]	Temp [degC]	RH [%]	Magnesium [µg m$^{-3}$]	Calcium ss Ca [µg m$^{-3}$]	non-ss Ca [µg m$^{-3}$]	Dust [µg m$^{-3}$]	
1	19.09.2017 17:05	20.09.2017 16:05	11.8	2.4	159.3	27.4	86.6	0.35	1.12	0.15	0.97	38.2
2	20.09.2017 16:38	21.09.2017 14:20	11.3	4.6	79.3	27.4	87.3	no data	no data	no data	no data	30.0
3	21.09.2017 14:41	22.09.2017 15:30	12.7	8.4	32.5	27.0	82.3	0.35	0.44	0.16	0.27	14.5
4	22.09.2017 15:50	24.09.2017 14:55	24.1	6.8	52.9	26.4	75.1	0.25	0.21	0.12	0.09	4.1
5	24.09.2017 15:20	25.09.2017 16:27	12.9	4.2	58.4	26.1	75.3	0.23	0.67	0.11	0.56	2.2
6	25.09.2017 16:58	26.09.2017 15:13	11.3	3.6	40.8	26.5	82.2	0.31	no data	no data	no data	11.6
7	26.09.2017 15:36	27.09.2017 10:08	9.7	3.9	42.5	26.8	84.1	0.21	0.90	0.05	0.84	37.6
8	27.09.2017 10:42	28.09.2017 12:25	13.2	4.6	44.1	27.1	84.2	0.24	0.80	0.07	0.73	20.6
9	28.09.2017 12:48	29.09.2017 15:50	13.6	6.2	31.8	27.2	85.5	0.47	0.99	0.19	0.80	27.3
10	29.09.2017 16:20	30.09.2017 10:30	9.1	6.9	34.8	27.0	85.0	0.58	0.84	0.25	0.59	27.3
11	30.09.2017 11:00	01.10.2017 10:45	12.1	8.2	38.0	26.7	81.9	0.48	0.60	0.20	0.39	42.7
12	01.10.2017 11:03	02.10.2017 10:55	12.2	8.5	40.3	26.2	78.9	0.32	0.47	0.14	0.33	29.1
TEP (Air)	02.10.2017 11:19	03.10.2017 12:44	13.0	6.1	46.2	26.2	78.9	0.25	0.54	0.12	0.42	14.8
TEP (Air)	03.10.2017 13:10	04.10.2017 13:09	12.1	5.7	37.8	26.2	77.7	0.21	0.60	0.10	0.50	13.2
TEP (Air)	04.10.2017 14:34	05.10.2017 13:45	11.5	5.2	49.3	26.4	79.7	0.19	0.53	0.12	0.41	17.2
TEP (Air)	05.10.2017 14:13	06.10.2017 10:32	10.2	4.9	40.0	26.5	84.2	0.47	0.56	0.18	0.38	17.0
TEP (Air)	06.10.2017 11:00	07.10.2017 16:09	14.5	7.0	19.0	26.5	85.9	0.54	0.66	0.21	0.45	16.8
TEP (Air)	07.10.2017 16:31	08.10.2017 11:38	9.5	6.8	21.1	26.4	86.1	0.51	0.56	0.20	0.36	16.8
TEP (Air)	08.10.2017 12:00	09.10.2017 09:47	10.9	6.6	39.0	26.4	84.2	no data	no data	no data	no data	27.6
TEP (Air)	09.10.2017 10:13	10.10.2017 11:05	12.4	7.3	41.3	26.3	78.6	0.25	0.44	0.13	0.31	27.6
Table S2: TEP concentrations as well as inorganic ion concentrations and calculated enrichment factors of the ambient aerosol particles (TSP)

Sample ID	Atmosphere	Ocean	EF								
	TEP [#/m^3]	TEP [µm^3/m^3]	TEP_5-10µm [#/m^3]	TEP_5-10µm [µm^3/m^3]	Na^+ [mg/m^3]	Na^+ [mg/m^3]	PM_10 [µm/m^3]	Na^+ [µm^3/mg]	TEP/Na_ambient [µm^3/mg]	TEP/Na_ambient [µm^3/mg]	EF_aer.ocean [µm^3/mg]
TEP (Air)-2	1.5E+04	9.8E+06	1.2E+04	2.0E+06	0.0040	0.0039	5.14E+08	4.57E+08	1.0E+04	4.57E+04	1.12E+04
TEP (Air)-3	1.5E+04	1.7E+07	9.9E+03	2.2E+06	no data	no data	no data	4.57E+08	1.0E+04	4.57E+04	no data
TEP (Air)-4	6.0E+03	7.0E+06	4.2E+03	9.1E+05	0.0042	0.0041	2.22E+08	4.57E+08	1.0E+04	4.57E+04	4.85E+03
TEP (Air)-5	4.3E+03	3.2E+06	1.6E+03	5.7E+05	0.0031	0.0030	1.92E+08	4.57E+08	1.0E+04	4.57E+04	4.19E+03
TEP (Air)-6	5.0E+03	2.8E+06	3.5E+03	3.1E+05	0.0028	0.0027	1.13E+08	4.57E+08	1.0E+04	4.57E+04	2.46E+03
TEP (Air)-7	1.7E+04	1.8E+07	1.3E+04	2.2E+06	0.0033	0.0032	6.80E+08	4.57E+08	1.0E+04	4.57E+04	1.49E+04
TEP (Air)-8	< LOD	-	-	-	0.0014	0.0013	0.00E+00	4.57E+08	1.0E+04	4.57E+04	no data
TEP (Air)-9	6.9E+02	1.2E+06	4.3E+02	8.3E+04	0.0018	0.0017	4.94E+07	4.57E+08	1.0E+04	4.57E+04	1.08E+03
TEP (Air)-10	2.1E+04	1.9E+07	2.0E+04	2.9E+06	0.0050	0.0049	5.85E+08	4.57E+08	1.0E+04	4.57E+04	1.28E+04
TEP (Air)-11	2.7E+04	3.7E+07	1.8E+04	3.9E+06	0.0065	0.0064	6.09E+08	4.57E+08	1.0E+04	4.57E+04	1.33E+04
TEP (Air)-12	9.7E+03	6.4E+06	7.7E+03	1.3E+06	0.0053	0.0052	2.40E+08	4.57E+08	1.0E+04	4.57E+04	5.24E+03
TEP (Air)-13	3.9E+03	3.8E+06	7.3E+03	1.3E+06	0.0037	0.0036	3.58E+08	4.57E+08	1.0E+04	4.57E+04	7.82E+03
TEP (Air)-14	4.8E+03	3.3E+06	3.9E+03	5.9E+05	0.0033	0.0032	1.88E+08	4.57E+08	1.0E+04	4.57E+04	4.11E+03
TEP (Air)-15	9.6E+03	7.4E+06	7.6E+03	1.4E+06	0.0026	0.0025	5.52E+08	4.57E+08	1.0E+04	4.57E+04	1.21E+04
TEP (Air)-16	8.4E+03	6.9E+06	6.7E+03	1.2E+06	0.0029	0.0028	4.14E+08	4.57E+08	1.0E+04	4.57E+04	9.04E+03
TEP (Air)-17	1.6E+04	1.3E+07	1.2E+04	2.2E+06	0.0047	0.0046	4.89E+08	4.57E+08	1.0E+04	4.57E+04	1.07E+04
TEP (Air)-18	1.3E+04	8.8E+06	1.0E+04	1.8E+06	0.0055	0.0054	3.29E+08	4.57E+08	1.0E+04	4.57E+04	7.19E+03
TEP (Air)-19	2.6E+04	2.4E+07	2.4E+04	4.7E+06	0.0052	0.0051	9.13E+08	4.57E+08	1.0E+04	4.57E+04	2.00E+04
TEP (Air)-20	1.1E+04	8.4E+06	8.1E+03	1.4E+06	no data	no data	no data	4.57E+08	1.0E+04	4.57E+04	no data
TEP (Air)-21	3.9E+03	2.7E+06	3.1E+03	5.2E+05	0.0033	0.0032	1.62E+08	4.57E+08	1.0E+04	4.57E+04	3.53E+03

average 1E+04 1E+07 9E+03 2E+06 0.004 0.004 4E+08 5E+08 1E+04 5E+04 8.5E+03
1) Sodium mass concentrations for PM1 show an average concentration of 0.0001 µg m\(^{-3}\) (Triesch et al. 2021) and are therefore below 3% of PM10 and are subtracted from PM10 sodium concentration.

2) TEP volume concentration were calculated from the number concentrations in a size range between 5 and 10 µm (Tab. S5) assuming spherical particles.

3) Average sodium concentration in seawater.

4) Error discussion of the \(EF_{\text{atm}}\): Even though the same TEP size ranges (diameters between 5 and 10 µm) were compared for oceanic and atmospheric measurements, the size distribution of TEP in the respective compartments might be affected by the different temperature, pressure, ion strength and pH in seawater and in the atmosphere. Such effects cannot be accounted for in the present study. Applying sodium concentrations for the \(EF_{\text{aer}}\) and \(EF_{\text{cloud}}\) calculations also represents a source of error. TEP can form networks with inorganic cations and that might affect sodium concentrations in the seawater and in the atmosphere. However, it was reported that the TEP formation was essentially determined by the calcium concentration, while monovalent cations, such as sodium, seem not to be significantly involved in TEP formation (Meng and Liu, 2016). Hence, this error should be negligible.

Finally, the TEP number concentrations in the ocean surface water were obtained from the biologically productive Mauritanian Upwelling region in the year 2012, hence at another time and season. Compared to other oceanic regions, the values from the Mauritanian Upwelling region were at the higher end (Engel et al., 2020). The region around the CVAO is rather oligotrophic and Chlorophyll-a values during the MarParCloud campaign were relatively low with 0.1 up to 0.6 µg L\(^{-1}\) (van Pinxteren et al., 2020). As TEP is often connected to phytoplankton activity, the TEP concentration at the CVAO might be lower compared to more productive regions (Robinson et al., 2019). Lower TEP concentrations would result in higher \(EF_{\text{atm}}\) (following equation 1 in the main manuscript). Hence the here reported \(EF_{\text{atm}}\) represent a lower limit. Nevertheless, even though absolute numbers can vary, the strong differences between the \(EF_{\text{aer. ambien}}\) and \(EF_{\text{aer. tank}}\) (Tab. S3) are evident, as they result from the same type of seawater.
Table S3: TEP concentrations and sodium concentrations as well as enrichment factor for the tank-generated aerosol particles (TSP).

Sample ID	Start sampling (UTC)	Stop sampling (UTC)	V [m³]	TEP [# m⁻³]	TEP₅⁻¹₀µm [µm⁻³ m⁻³]	Na⁺ [µg m⁻³]	Na⁺ [mg m⁻³]	TEP/Na aer [µm⁻³ mg⁻¹]	TEP₅⁻¹₀µm [µm⁻³ L⁻¹]	Na⁺ [mg L⁻¹]	TEP/Na ocean [µm⁻³ mg⁻¹]	EF aer. tank
Tank 1	03.10.2017 11:05	04.10.2017 11:04	9.7	2.4E+03	4.4E+05	97.20	0.097	4.51E+06	4.57E+08	1.0E+04	5.0E+04	98.6
Tank 2	04.10.2017 11:14	05.10.2017 11:17	8.8	1.2E+03	2.1E+05	62.70	0.063	3.38E+06	4.57E+08	1.0E+04	5.0E+04	73.8
Tank 3	05.10.2017 11:27	06.10.2017 12:03	9.8	5.5E+02	9.9E+04	90.05	0.090	1.10E+06	4.57E+08	1.0E+04	5.0E+04	24.2
Tank 7	07.10.2017 12:00	08.10.2017 09:05	9.4	3.9E+02	7.2E+04	51.93	0.052	1.38E+06	4.57E+08	1.0E+04	5.0E+04	30.1
Tank 9	08.10.2017 09:15	09.10.2017 07:00	9.5	4.2E+02	7.7E+04	78.05	0.078	9.80E+05	4.57E+08	1.0E+04	5.0E+04	21.4
average			9.9E+02	1.8E+05	75.99	0.076	2.3E+06	4.6E+08	1.0E+04	4.6E+04		49.6

1) For the tank-generated aerosol particles, solely the total number concentrations were available. TEP volume concentration were calculated from the number concentrations in a size range between 5 and 10 µm assuming spherical particles after the equation from Fig. S1: (y = 181.66x) assuming a similar size distribution of the tank-generated TEP to the ambient TEP.

2) Sodium was measured on TSP, however it was shown that particles greater than 10 µm radius are quickly removed in the atmosphere (Madry et al., 2011) and in sea spray model systems (Hoffman and Duce, 1976). Hence the sodium data on TSP is expected to be comparable to PM₁₀ and therefore to the TEP volume concentrations between 5 and 10 µm.

3) TEP volume concentration were calculated from the number concentrations in a size range between 5 and 10 µm (Tab. S5) assuming spherical particles.

4) Average sodium concentration in seawater.
Table S4: TEP concentrations and sodium concentrations as well as enrichment factor for the cloud water samples.

Sample ID	Start sampling (UTC)	Stop sampling (UTC)	V [mL]	TEP [# L\(^{-1}\)]	TEP [# m\(^{-3}\)] \(^{1)}	TEP_{5-10\mu m} [\mu m^3 m^{-3}]	Na\(^{+} \) [mg L\(^{-1}\)]	Na\(^{+} \) [µg m\(^{-3}\)] \(^{1)}	TEP/Na\(_{aer.} \) [µm\(^{-3}\) mg\(^{-1}\)]	TEP_{5-10\mu m}/Na\(_{ocean} \) [µm\(^{-3}\) mg\(^{-1}\)]	EF\(_{cloud} \)		
WW2	20.09.2017 16:38	21.09.2017 14:20	200	4.0E+06	1.6E+03	7.2E+08 \(^{2)}	11.89	4.6	6.10E+07	4.57E+08	1.0E+04	45737	1.3E+03
WW5	28.09.2017 12:48	29.09.2017 15:50	150	9.1E+06	3.5E+03	1.6E+09 \(^{2)}	22.09	8.6	7.47E+07	4.57E+08	1.0E+04	45737	1.6E+03 \(^{4)}
WW5 meas\(^{3)}	28.09.2017 12:48	29.09.2017 15:50	150	9.1E+06	3.5E+03	1.2E+03 \(^{3)}	22.09	8.6	5.51E+07	4.57E+08	1.0E+04	45737	1.2E+03 \(^{4)}
WW8	03.10.2017 13:10	04.10.2017 13:09	200	8.2E+06	3.2E+03	1.5E+09 \(^{2)}	32.30	12.6	4.63E+07	4.57E+08	1.0E+04	45737	1.0E+03
average			7E+06	3E+03	1E+09	22	9	6E+07	5E+08	1E+04	45737	1E+03	

\(^{1)}\) based on a cloud liquid water content of 0.39 g m\(^{-3}\)

\(^{2)}\) TEP volume concentration were calculated from the number concentrations in a size range between 5 and 10 µm assuming spherical particles after the equation from Fig. S1: (y = 181.66x) assuming a similar size distribution of the cloud water TEP to the ambient TEP

\(^{3)}\) TEP volume concentrations were calculated from measured TEP number size distributions (shown in Fig. 4e).

\(^{4)}\) EF\(_{cloud} \) derived from measured TEP volume concentration agreed well with EF\(_{cloud} \) from the calculated TEP volume concentration.
Table S5: Size-resolved TEP concentrations from ocean surface water (sampling depth: 10 m, average over three stations) from Engel et al., (2020). Numbers in bold represent values between 5 and 10 µm, corresponding to the TEP diameter on the aerosol particles and in the cloud water.

max diameter [µm]	TEP [# mL⁻¹]	RSD [%]	TEP [µm³ mL⁻¹]	TEP [# L⁻¹]	TEP [µm³ L⁻¹]
1.3	9.04E+03	36	5.48E+03	9.04E+06	5.48E+06
1.8	2.42E+03	52	4.19E+03	2.42E+06	4.19E+06
2.5	2.08E+03	57	1.01E+04	2.08E+06	1.01E+07
3.5	1.86E+03	39	2.58E+04	1.86E+06	2.58E+07
5.0	1.53E+03	34	5.99E+04	1.53E+06	5.99E+07
7.1	1.11E+03	33	1.22E+05	1.11E+06	1.22E+08
10	311	8.83E+02	2.75E+05	8.83E+05	2.75E+08
14	880	5.48E+02	4.82E+05	5.48E+05	4.82E+08
20	2492	3.38E+02	8.43E+05	3.38E+05	8.43E+08
28	7041	1.92E+02	1.35E+06	1.92E+05	1.35E+09
40	19915	6.10E+01	1.22E+06	6.10E+04	1.22E+09
57	56364	3.40E+01	1.92E+06	3.40E+04	1.92E+09
80	159391	8.53E+00	1.36E+06	8.53E+03	1.36E+09
113	450908	3.34E+00	1.50E+06	3.34E+03	1.50E+09
160	1275410	3.40E+00	4.33E+06	3.40E+03	4.33E+09
226	3606696				
320	10201003				
453	28855845				
640	81617124				
10000	230792172				

1) Relative standard deviation of three measurement stations, each probed in duplicate (n=6)
2) TEP volume concentration was calculated from the number concentration in a size range between 5 and 10 µm assuming spherical particles.
Figure S1: Correlation between TEP number concentration and TEP volume concentration achieved from the ambient aerosol samples (TEP diameter: 5-10 µm). The function was applied for the tank-generated aerosol particles and for the cloud water samples to calculate the volume concentration from the measured number concentration. A similar size distribution of the TP in the size range between 5 and 10 µm was shown for the cloud water and assumed for the tank-generated aerosol particles.

References:

Engel, A., Endres, S., Galgani, L., and Schartau, M.: Marvelous Marine Microgels: On the Distribution and Impact of Gel-Like Particles in the Oceanic Water-Column, Frontiers in Marine Science, 7, 10.3389/fmars.2020.00405, 2020.

Hoffman, E. J., and Duce, R. A.: Factors influencing organic-carbon content of marine aerosols - Laboratory study, J. Geophys. Res., 81, 3667–3670, 1976.

Madry, W. L., Toon, O. B., and O’Dowd, C. D.: Modeled optical thickness of sea-salt aerosol, Journal of Geophysical Research-Atmospheres, 116, 10.1029/2010jd014691, 2011.

Meng, S., and Liu, Y.: New insights into transparent exopolymer particles (TEP) formation from precursor materials at various Na+/Ca2+ ratios, Scientific Reports, 6, 19747, 10.1038/srep19747, 2016.

Robinson, T. B., Stolle, C., and Wurl, O.: Depth is relative: the importance of depth for transparent exopolymer particles in the near-surface environment, Ocean Science, 15, 1653-1666, 10.5194/os-15-1653-2019, 2019.

Triesch, N., van Pinxteren, M., Frka, S., Stolle, C., Spranger, T., Hoffmann, E. H., Gong, X., Wex, H., Schulz-Bull, D., Gašparović, B., and Herrmann, H.: Concerted measurements of lipids in seawater and on submicrometer aerosol particles at the Cabo Verde islands: biogenic sources, selective
transfer and high enrichments, Atmos. Chem. Phys., 21, 4267-4283, 10.5194/acp-21-4267-2021, 2021.

van Pinxteren, M., Fomba, K. W., Triesch, N., Stolle, C., Wurl, O., Bahlmann, E., Gong, X. D., Voigtlander, J., Wex, H., Robinson, T. B., Barthel, S., Zeppenfeld, S., Hoffmann, E. H., Roveretto, M., Li, C. L., Grosselin, B., Daele, V., Senf, F., van Pinxteren, D., Manzi, M., Zabalegui, N., Frka, S., Gasparovic, B., Pereira, R., Li, T., Wen, L., Li, J. R., Zhu, C., Chen, H., Chen, J. M., Fiedler, B., Von Tumpling, W., Read, K. A., Punjabi, S., Lewis, A. C., Hopkins, J. R., Carpenter, L. J., Peeken, I., Rixen, T., Schulz-Bull, D., Monge, M. E., Mellouki, A., George, C., Stratmann, F., and Herrmann, H.: Marine organic matter in the remote environment of the Cape Verde islands - an introduction and overview to the MarParCloud campaign, Atmospheric Chemistry and Physics, 20, 6921-6951, 10.5194/acp-20-6921-2020, 2020.