Constructing and Using Broad-Coverage Lexical Resource for Enhancing Morphological Analysis of Arabic

Majdi Sawalha, Eric Atwell
School of Computing,
University of Leeds, Leeds, LS2 9JT, UK
E-mail: sawalha@comp.leeds.ac.uk, eric@comp.leeds.ac.uk

Abstract

Broad-coverage language resources which provide prior linguistic knowledge must improve the accuracy and the performance of NLP applications. We are constructing a broad-coverage lexical resource to improve the accuracy of morphological analyzers and part-of-speech taggers of Arabic text. Over the past 1200 years, many different kinds of Arabic language lexicons were constructed; these lexicons are different in ordering, size and aim or goal of construction. We collected 23 machine-readable lexicons, which are freely available on the web. We combined lexical resources into one large broad-coverage lexical resource by extracting information from disparate formats and merging traditional Arabic lexicons.

To evaluate the broad-coverage lexical resource we computed coverage over the Qur'an, the Corpus of Contemporary Arabic, and a sample from the Arabic Web Corpus, using two methods. Counting exact word matches between test corpora and lexicon scored about 65-68%; Arabic has a rich morphology with many combinations of roots, affixes and clitics, so about a third of words in the corpora did not have an exact match in the lexicon. The second approach is to compute coverage in terms of use in a lemmatizer program, which strips clitics to look for a match for the underlying lexeme; this scored about 82-85%.

1. Introduction

Lexicography is the applied part of lexicology. It is concerned with collating, ordering of entries, derivations and their meaning depending on the aim of the lexicon to be constructed and its size. Lexicography is defined as “…the branch of applied linguistics concerned with the design and construction of lexica for practical use.” (Eynde & Gibbon, 2000). On the other hand, lexicology is defined as “…the branch of descriptive linguistics concerned with the linguistic theory and methodology for describing lexical information, often focusing specifically on issues of meaning.” (Eynde & Gibbon, 2000).

Long-term efforts lexicographic projects have been greatly accelerated since the advent and use of computers which is known as computational lexicography. However, constructing a large-scale broad-coverage lexicon involves long-time development of specifications, design, collection of lexical data, information structuring, and user-oriented presentation formatting (Eynde & Gibbon, 2000).

Modern English dictionaries are stored using computerized lexicographic databases. The most-widely and accepted lexicographic database representation is lexical text markup using SGML (Standard Generalised Markup Language) such as; XML. Other Database Management System (DBMS) can be used such as; relational databases, object-oriented DBMS with inheritance mechanisms, and hybrid object-oriented-relational databases.

Traditional Arabic lexicons are not available in computerized lexicographic databases. Moreover, traditional Arabic lexicons have different arrangement methodologies than modern English dictionaries. Common English dictionaries list lexical entries, which are words, arranged alphabetically; followed by the meaning of that word, while Arabic lexicons are mainly arranged by selecting the root as main lexical entries. The roots are followed by a definition part which may span several pages. The definition part is written as a unit or an article which defines all the derived words of a certain root. These lexical entries are not arranged or distinguished with special formatting.

A study of a traditional Arabic lexicon called al-qāmnūs al-muhīṭ “The comprehensive lexicon” showed three major drawbacks of traditional Arabic lexicons. First, it does not represent language development periods in different times. Second, the ambiguity of defining and explaining lexical meaning of the words. Third, the unorganized way of ordering the derivations of lexical entries and the absence of the origin of the derivations. The researcher highlighted the importance of ordering the derivations of each lexical entry to directly access the meaning of the derivations, and to show the origin of the Arabic word and its specifications (Khalil, 1998).

2. Traditional Arabic lexicography

Arabic lexicography is one of the original and deep-rooted arts of Arabic literature. The first lexicon constructed was kitāb al-‘ayn ‘الْأَيْن’ (died in 791). His lexicon is called kitāb al-‘ayn ‘الْأَيْن’ lexicon’ by al-farihīdī (died in 791). Over the past 1200 years, many different kinds of Arabic language lexicons were constructed; these lexicons are different in ordering, size and aim or goal of construction. Many Arabic language linguists and lexicographers studied the construction, development and the different methodologies used to construct these lexicons.

Traditional Arabic lexicons distinguish between four classes of ordering lexical entries in the lexicon. First, al-hallīl methodology is developed by الحَلْلِ بن أحمد الفراهيدي for al-hallīl bin ahmad al-farihīdī (died in 791). His lexicon is called kitāb al-‘ayn ‘الْأَيْن’ lexicon’. The al-‘ayn’ lexicon lists the lexical entries phonologically according to exits of
letters sounds from the mouth and throat, from the farthest letter exit to the nearest. Second, abī 'ubayd methodology is developed by abī 'ubayd al-qāsim bin sallām (died in 838). He wrote many small books, each of which describes one subject or meaning, such as books describing horses, milk, honey, flies, insects, palms, and human creation. Then he collated all these small books into one large lexicon called al-ğarîb al-musnāf fī al-ğarîb; the “irregular classified language”.

Third, al-gawhari methodology is developed by ‘ismā’īl bin hammad al-gawhari (died in 1002) and his lexicon is called as-sīhā fī al-ğarîb; the “correct language”; this uses alphabetical order for ordering the lexical entries. However, he arranged the lexical entries of his lexicon depending on the last letter of the word, and then the first letter. Finally, the al-barmakī methodology is developed by abu al-maʿālī mohammad bin tanim al-barmakī, who lived in the same time period as al-gawhari. al-barmakī did not construct a new lexicon; but he alphabetically re-arranged a lexicon called as-sīhā fī al-ğarîb; the “correct language” by al-gawhari. He added little information to that lexicon.

Figure 1a and 2 show a sample of text taken from traditional Arabic lexicons; the target lexical entries are underlined and highlighted in blue. Figure 1b shows the human translation of the sample of figure 1a, the target lexical entries are highlighted by square brackets. Figure 3 is a sample of the Arabic-English lexicon by Edward Lane (Lane, 1968) volume 7, pages 117-119, the target lexical entries are underlined.

Common processing steps were applied to all lexicons. First, all lexicons’ files were converted from MS-Word or HTML web pages into standard text files in Unicode. Common processing steps were applied to all lexicons. First, all lexicons’ files were converted from MS-Word or HTML web pages into standard text files in Unicode encoding. A combination algorithm combines the disparate lexicon information into one large broad-coverage lexical resource.

Number of files	247	
Size	178.32 MB	
Vowelized words analysis	# of words	14,369,570
# of word types	2,184,315	
Non-vowelized word analysis	# of words	14,369,570
# of word types	569,412	

| Table 1: statistical analysis of the lexicons’ text used to construct the broad-coverage lexical resource |

k t b: [Alkitab] the book; is well known. The plural forms are [kutuban] and [kitabau]. [kataba Alshay'] He wrote something. [yaktubahu] the action of writing something. [kutan], [kitabun] and [kitabatan] means the art of writing. And [katabahu] writing it means draw it. Abu Al-Najim said: I returned back from Ziyad’s house [after meeting him] and behaved demented, my legs drawn up differently (means walking in a different way). They wrote [nakitibani] on the road the letters of Lam Alf (describing how he was walking crazily and in a different way). He said: I saw in a different version, the word “they wrote” [zikittibani] using the short vowel kasrah on the first letter [t], as it is used by Bahra’a (Arab tribe) dialect. They say: (t’lamun) (you know). Then the short vowel kasrah is propagated to the following letter (kaf). Moreover, [Alkitab] the book is a noun. Al-lihyani Al-Azhari definition is: [Alkitab]. The book is the name of a collection of what has been written (a collection of written materials or texts). And the book has gerund [Alkittabah] writing (art of writing) for whoever has a profession, similar to drafting and sewing. And [Alkitabat]: is copying a book [copying a book in several copies]. It is said: [kitaba] someone subscribed another means; he asked to write him a letter in something. [istiktabahu] He dictated someone something means to write him something. Ibn Sawayah: [kitabahu] is similar to [kutubun]. It is said: [kutubahu] write something down means draw up. And [kitabahu] writing something down means dictate someone something, which is the same meaning of [istiktabahu], [istiktabah] registering (masculine), and [kitatabahu] registering (feminine). In the Qur’an: [kitabahu] He registered it, he has dictated it every sunrise and sunset, which means dictating it. It is said: [kitabahu Al-rajaw] The man registered, if he registered himself in the Sultan’s office ...

Figure 1b: A Human translation of the sample of text from the traditional Arabic lexicons “lisān al-rab”, the target lexical entries are highlighted using square brackets.

3. Processing steps for Arabic Lexicons

Twenty three lexicons have been collected from different resources. A combination algorithm combines the disparate lexicon information into one large broad-coverage lexical resource.

Table 1: statistical analysis of the lexicons’ text used to construct the broad-coverage lexical resource

3. Processing steps for Arabic Lexicons

Twenty three lexicons have been collected from different resources. A combination algorithm combines the disparate lexicon information into one large broad-coverage lexical resource.

Table 1: statistical analysis of the lexicons’ text used to construct the broad-coverage lexical resource

Figure 1b: A Human translation of the sample of text from the traditional Arabic lexicons “lisān al-rab”, the target lexical entries are highlighted using square brackets.

3. Processing steps for Arabic Lexicons

Twenty three lexicons have been collected from different resources. A combination algorithm combines the disparate lexicon information into one large broad-coverage lexical resource.

Table 1: statistical analysis of the lexicons’ text used to construct the broad-coverage lexical resource

Figure 1b: A Human translation of the sample of text from the traditional Arabic lexicons “lisān al-rab”, the target lexical entries are highlighted using square brackets.
different formats but without using any computerized arranging its roots and lexical entries. Moreover, each lexicon was constructed in different ways of lexicographic representations. These factors add more than one. Then, a bag of words is extracted from the definition text. The bag of words stores pairs of word-root where each word appearing in the definition part is associated with the root of that part.

The definition parts of the roots are articles that define each root and defines the lexical entries derived from a certain root. The writing style of the definition part connects the lexical entries and their meanings without following any ordering methodology. The writing style of the definition parts show the lexical entries conjoined with all kinds of clitics and affixes. Clitics, such as conjunctions and pronouns, are used to connect the definitions of the lexical entries together as one unit.

The use of clitics and affixes adds more challenge to the construction of the broad-coverage lexical resource. We used modules of the morphological analyzer for Arabic text (Sawalha & Atwell, 2009a) (Sawalha & Atwell, 2009b), to separate the lexical entries from the clitics and affixes attached to that word. The morphological analyzer generates all possible combinations of clitics, affixes and stem for the analyzed word. Only the analyses that match the clitics and affixes with the clitics and affixes lists used by the morphological analyzer are selected as candidate analyses.

Many words appearing on the definition part are not relevant to the root associated with that definition. Such words are found in the bag of words that root. A normalization analysis that verifies the word-root pairs is done by applying linguistic knowledge that governs the derivation process of words from their roots. These conditions are simply described as the following:

Condition 1 (check consonants): If all consonant letters constructing the root appear in the analyzed word, then check condition 2.

Condition 2 (consonants order): If all root letters appear in the same order as the word’s letters, then word-root combination might be correct.

In the first condition (check consonants), we classified Arabic letters into four groups, letters that appear in clitics or affixes, vowels, *hamza* and letters that might be changed in derivation due to substitution ُاُْلائِكْ to simplify the pronunciation of the word. Then, a procedure is applied to verify each letter of the word. Another procedure is applied to match the order of the letters of both the analyzed word and its root. The analyses that meet the two conditions are candidate analyses and are stored in the lexicon database. The information of clitics, affixes and stem are also stored with the word-root combination.

Figure 2: A sample of text from the traditional Arabic lexicon “al-mugrab f tartib al-mu'rab”, the target lexical entries are underlined and highlighted in blue.

Figure 3: A Sample of the definition of the root ُبِكَّ k-t-b ‘wrote’ from an Arabic-English Lexicon by Edward Lane, http://www.tyndalearchive.com/TABS/Lane/

4. Analyzing lexicons’ text separately

Each lexicon was constructed in different ways of arranging its roots and lexical entries. Moreover, Lexicons are typed into machine-readable files in different formats but without using any computerized lexicographic representations. These factors add more processing challenges. Therefore, each lexicon is processed separately using specialized programs. An important preprocessing step converts each lexicon text into a unified format by choosing the most common format for all the root entries in the lexicon. This step is done manually which needs to go through all the text in the lexicon files and re-format the root entries that do not follow the selected format. The common structure of all lexicons is root-definition structure, where each root entry in the lexicon is followed by the definition part that groups all the derived words and their meaning. After that, a program is written to extract the roots and words derived from that root. The tokenizing module in the program must specify the root entries and their definition parts.

The writing style of the definition part connects the lexical entries and their meanings without following any ordering methodology. The writing style of the definition parts show the lexical entries conjoined with all kinds of clitics and affixes. Clitics, such as conjunctions and pronouns, are used to connect the definitions of the lexical entries together as one unit.

Condition 1 (check consonants): If all consonant letters constructing the root appear in the analyzed word, then check condition 2.

Condition 2 (consonants order): If all root letters appear in the same order as the word’s letters, then word-root combination might be correct.

In the first condition (check consonants), we classified Arabic letters into four groups, letters that appear in clitics or affixes, vowels, *hamza* and letters that might be changed in derivation due to substitution ُاُْلائِكْ to simplify the pronunciation of the word. Then, a procedure is applied to verify each letter of the word. Another procedure is applied to match the order of the letters of both the analyzed word and its root. The analyses that meet the two conditions are candidate analyses and are stored in the lexicon database. The information of clitics, affixes and stem are also stored with the word-root combination.
5. Combining the processed lexicons in one broad-coverage lexical resource

After analyzing each lexicon, a combination algorithm is applied to construct the broad-coverage lexicon. The algorithm starts by selecting a large lexicon called لسان العرب lisān al-ğarb ‘Arab tongue’ as a seed to the broad-coverage lexicon. Then, the lexicons are combined one by one to the broad-coverage lexicon. Figure 4 shows the first 60 lexical entries of the root كتاب k-t-b ‘wrote’ stored in the broad-coverage lexicon. After, combining each lexicon the percentage of records added to the broad-coverage lexicon is computed. The percentage starts by 100% for the seed lexicon and decreases during the combination process. The percentage will tell us when the combination process should stop, and which lexicons are better to construct a broad-coverage lexical resource. Table 2 shows the number of records extracted from 7 analyzed lexicons so far, and the number and the percentage of records combined to the broad-coverage lexicon.

#	Lexicon	Word types[B]	Records inserted [A]	Percentage
1	lisān al-ğarb	207,992	207,992	100.00%
2	mu’ğam al-muhīṭ fi al-ğuṭat	74,507	61,113	82.02%
3	tağ al-ˈarūs min ḡawāḥir al-ğāmūs	128,119	95,415	74.47%
4	muṭār ar-sīḥāḥ	19,540	16,573	84.82%
5	al-muğrab fi tartib al-mu’rab	12,396	9,805	79.10%
6	kitābu al-ˈayn	30,292	18,878	62.32%
7	al-mu’ğam al-wasīṭ	36,660	25,364	69.19%
	Totals	**509,506**	**435,140 [C]**	**85.40%**

Table 2: The number of records extracted from 7 analyzed lexicons, and the number and the percentage of records combined to the broad-coverage lexicon.

Figure 4: The first 60 lexical entries of the root كتاب k-t-b ‘wrote’ stored in the broad-coverage lexical resource.
6. Evaluation

The evaluation process shows the coverage of the broad-coverage lexical resource on different types of text corpora. The Qur’an, the Arabic Web Corpus and the Corpus of Contemporary Arabic are used to compute the coverage of the broad-coverage lexical resource in two ways. First; exact match where each non-vowelized word in the test corpora is searched in the lexicon. Table 3 shows the coverage percentage using exact match method scores about 65-57%.

Corpus	Tokens	Words	Words covered by lexicon	Coverage
Qur’an	77,800	77,799	52,536	67.53%
CCA	684,726	594,664	389,133	64.54%
Web	1,128,114	833,916	546,880	65.58%

Table 3: The coverage of the lexicon using exact match method.

Arabic words in any text come up with many different forms of clitics attached to it, which makes the matching process of the word and the lexical entries of the lexicon not an easy task and decreases the coverage percentage. The second method is to compute the coverage of the broad-coverage lexical resource through an application that depends on it. We have developed a lemmatizer for Arabic text to be used to process large and real data; the Arabic Web Corpus which consists of 100 million words of Arabic web pages. The lemmatizer depends on the broad-lexical resource to extract the lemma and the root of the word. Each word is tokenized into different forms consisting of proclitics, stem and enclitics, and then each stem is searched in the lexicon. If the stem is found in the lexicon then the root and the vowelized stems stored in the broad-coverage lexicon are retrieved. When a correct analysis is retrieved from the lexicon then we count it as a valid lexicon reference. The coverage of the lexicon is computed by the percentage of valid lexicon references to the number of words in the test sample. The lemmatizer uses other three linguistic lists; list of function words (stop words) which have fixed syntactic analysis in any context (Diwan, 2004), named entities list (Benajiba et al., 2008) and list of broken plurals. We computed the coverage of the broad-coverage lexical resource one time with the inclusion of these functional words, and another time without including the functional words in the test. Table 4 and 5 show the coverage percentage of the lexicon computed using the lemmatizer program. The coverage percentage scored about 85% of the words, including functional words, and about 82% of the words excluding functional words, referenced the lexicon and retrieved valid analysis.

Corpus	Tokens	Words	Words covered by lexicon	Coverage
Qur’an	77,804	77,803	64,065	82.34%
CCA	685,161	595,099	507,943	85.35%
Web	1,128,624	834,426	708,101	84.86%

Table 4: Coverage including function words.

![Figure 5: a sample of common words which are not covered by the lexicon.](http://sites.google.com/site/elghamryk/arabiclanguageresources)

We studied the common words which are not covered by the broad-coverage lexical resource. We found that common not covered words belongs to; functional words (stop words) which are easily included to the lexicon along with their syntactical and morphological analysis by collecting them from traditional Arabic grammar books such as (Diwan, 2004). The other category of common not covered words are the new Arabic terms, and borrowed words (Arabaized words) which are foreign words transliterated into Arabic by writing the word in Arabic letters. This is a common problem found in news paper and web pages text. The lack of updating Arabic lexicons and the lack of the correct translation of the borrowed words will increase the frequency of this type of words in contemporary Arabic text. Figure 5 shows a sample of common words not covered by the broad-coverage lexical resource.

7. The corpus of lexicons

Al-Sulaiti and Atwell (2006) developed the Corpus of Contemporary Arabic. This corpus contains 1 million words taken from different genres collected from newspapers and magazines. It contains the following domains; Autobiography, Short Stories, Children’s Stories, Economics, Education, Health and Medicine, Interviews, Politics, Recipes, Religion, Sociology, Science, Sports, Tourist and Travel and Science. Similar to most Arabic corpora, the text of the Corpus Contemporary Arabic is...
taken from newspapers and magazines text. Our lexicons’
text can be used as an Arabic corpus of dictionaries,
which has different domain than the existing corpora. The
Arabic corpus of dictionaries covers a period of more than
1200 years and consists of large number of words and
word types. It also has both vowelized and non-vowelized
text. Figure 6 shows the number of words and word types
and the 25 words of highest frequency.

Partially-vowelized	Non-vowelized		
Word	**Frequency**	**Word**	**Frequency**
في	292,396	من	322,239
من	269,200	في	301,895
قال	172,631	قال	190,918
وأي	120,060	وأي	132,635
عليه	108,252	عليه	130,809
في	89,195	في	119,639
في	88,233	إذا	115,842
في	82,027	وقيل	99,601
إذا	81,479	إذا	94,980
وأي	78,622	وأي	94,530
وأي	75,149	وأي	92,213
هو	69,737	هو	87,664
أفكار	58,334	أفكار	80,375
أفكار	53,343	أفكار	73,066
وأي	53,197	وأي	72,231
وأي	50,648	وأي	65,419
وأي	47,915	وأي	62,298
وأي	46,880	وأي	59,511
وأي	46,788	وأي	58,941
هو	45,916	هو	58,062
أفكار	45,794	أفكار	55,077
أفكار	44,786	أفكار	53,992
ولا	42,190	ولا	50,906
عليه	39,961	عليه	49,785
عليه	39,210	عليه	48,363

Figure 6: The lexicons corpus frequency lists.

8. Conclusion

In this paper we showed the process of constructing a
broad-coverage lexicon for Arabic to be used in NLP
applications such as lemmatizers, morphological
analyzers and part-of-speech taggers. We described the
traditional Arabic lexicons, arranging methodologies and
the challenges and drawbacks of these lexicons.

We described the development of constructing a
broad-coverage lexical resource by combining extracted
information from disparate lexical resources formats and
merging Arabic lexicons. Processing steps of
constructing the broad-coverage lexical resource involve;
first, analyzing lexicons’ text separately by manually
converting each lexicon text into a unified format by
choosing the most common format for all root entries.
Then, for each lexicon a specialized program extracts the
root and the words derived from that root. Second, a
combination algorithm merges the information extracted
from the previous step into one large broad-coverage
lexical resource.

The evaluation of the broad-coverage lexical resource is
done by computing the coverage of it. The coverage is
computed using two methods; first methodology
computes the coverage by matching the words of the test
corpora to the words in the lexicon which scored about
67%. The second methodology uses a lemmatizer
program to compute the coverage, and scored about 82%.

This is the first version of the broad-coverage lexical
resource. We will extend the lexicon by including the full
morphological analyses of the lexical entries and other
useful information that will enhance the accuracy of NLP
applications. Online access method to the contents of the
broad-coverage lexical resource and downloadable
version will be released.

9. References

Al-Suliti, L., Atwell, E. (2006). The design of a corpus of
contemporary Arabic. International Journal of Corpus
Linguistics 11, pp.135–171.

al-gawhari “أو النصر المعاذ بن حماد الجوهر الثاني
الساج” (died in 1009) ,

as-ṣiḥāh fi al-luğā al-‘arabiyya The Correct
Language, al-mišk Islamic Library (online-library)
http://www.almeshkat.net/books/archive/books/alshah%20g.zip

Benajiba, Y., Diab, M., Rosso, P. (2008) Arabic named
entity recognition using optimized feature sets. EMNLP ’08: Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
Honolulu, Hawaii: Association for Computational
Linguistics, pp.284–293

Diwan, A. (2004) al-mu’jam an-nahw h li-mufradāt al-
luğā al-‘arabiyya, Aleppo,
Syria: fusselat lil-dirāsāt wa al-tarāmah wa an-nāšir.

Eynde, VE, Gibbon, D (2000) Lexicon development for
speech and language processing, Dordrecht, The
Netherlands: Kluwer Academic Publishers.

Khali, H. (1998), dirāsāt fi al-luğā al-ma’āgīm ”
Studies of language and lexicons.
First Edition, Beirut, Lebanon: Dar al-nahdā al-
‘arabiā.

Lane, E. W. (1968). An Arabic-English Lexicon. Beirut,
Librarie Du Liban.

Sawalha, M., Atwell, E. (2009a). Linguistically Informed
and Corpus Informed Morphological Analysis of
Arabic. Proceedings of the 5th International Corpus
Linguistics Conference CL2009 Liverpool, UK.

Sawalha, M. and Atwell, E. (2009b). توزيع موافع
الحواء والصرف “Adapting Language Grammar
Rules for Building Morphological Analyzer for
Arabic Language). Proceedings of the workshop of
morphological analyzer experts for Arabic language,
organized by Arab League Educational, Cultural
and Scientific Organization (ALECSO), King Abdul-Aziz
City of Technology (KACT) and Arabic Language
Academy. Damascus, Syria.