Effect of illness perception on improving asthma symptoms with omega-3 fish oil therapy: Pre-post design

Amelia Lorensia1*, Mariana Wahyudi2, Ananta Yudiarso3, Siti Erfina Dwi Kurnia1

1Faculty of Pharmacy, Universitas Surabaya (UBAYA), East Java, Indonesia.
2Faculty of Technobiology, Universitas Surabaya (UBAYA), East Java, Indonesia.
3Faculty of Psychology, Universitas Surabaya (UBAYA), East Java, Indonesia.

ARTICLE INFO
Received on: 03/07/2019
Accepted on: 19/01/2020
Available online: 05/06/2020

Key words:
Asthma, fish oil, omega-3, asthma symptoms, illness perception.

ABSTRACT
Perception of asthma can affect the patient's self-management and outcome treatment. The outcome is not only determined by symptoms, but also by illness perception. Omega-3 in fish oil has a potential effect on asthma. The study aimed to determine the effect of illness perception on improvement symptoms with fish oil, measured by Asthma-Control-Test (ACT). This research was pre-post test design and purposive sampling, used 1 g daily fish oil then followed-up after 4 weeks, conducted in March 2017–January 2018. The relationship between ACT value and illness perception using chi square test. The study sample consisted of 26 patients. The effectiveness of omega-3 showed that there was significant difference of symptoms after the therapy. It can be concluded there was effect of illness perception relationships related to symptoms. Most of the highest illness perception regarding symptoms and symptoms related to asthma respondents experienced on the individual values, related to symptoms are fixed. While the influence of illness perception on symptoms that got significant results was how long the asthma suffered, and the illness perception on causes of asthma that were significant to changes in asthma symptoms. Omega-3 fish oil was effective in improving asthma symptoms, but the influence of illness perception must also be a concern.

INTRODUCTION
Asthma is a heterogeneous disease, characterized by chronic inflammation of the airways that involves inflammatory cells that cause episodic symptoms, such as wheezing, shortness of breath, chest tightness, and cough. The number of asthma sufferers in the world reached 334 million. Asthma prevalence in various countries ranges from 1% to 18% of the population (Global Initiative for Asthma, 2017). In Indonesia, especially in the province of East Java, the prevalence of asthma has reached 5.1%, and it is estimated that the prevalence of asthma will continue to increase with increasing age up to 5.6% in the age range of 15–24 years (Badan Penelitian dan Pengembangan Kesehatan Departemen Kesehatan Republik Indonesia, 2013). Asthma in Indonesia is not known with certainty, but an estimated 2%–5% of Indonesia's population suffer from asthma (Oemiati et al., 2010).

Symptoms of asthma can be mild and do not interfere with activity but can also be permanent. Symptoms also vary because of the limited degree of asthma airflow (Krishnan et al., 2012). Symptoms of asthma can have a negative impact on quality of life because they cause limited daily activities, affect psychologically, and the patient's social life that affects the education and career of the patient (Hossny et al., 2017).

The changes in asthma symptoms can be observed using a questionnaire that focuses on changes in asthma symptoms, such as the Asthma Control Test (ACT) (Moamary et al., 2012) which has been widely used in monitoring asthma treatment. Asthma therapy aims to prevent/ relieve symptoms to reduce the risk of acute attacks and tissue damage, to improve the quality of life (Braido, 2013; Global Initiative for Asthma, 2017).

Synthetic drugs can cause adverse drug reaction (ADR). During this time, asthma treatment focuses on therapy with long-term synthetic drugs, which can cause problems such as: aminophylline has narrow therapeutic range that risks causing ADR (Barnes,
2010; Lorensia et al., 2012; Tyagi et al., 2008), long-acting beta-agonist monotherapy could cause aggravate asthma exacerbations (Billington et al., 2017), or inhaled corticosteroids caused oropharyngeal candidiasis (Global Initiative for Asthma, 2017).

Omega-3 include of docosahexaenoic acid (DHA) and eicosapentaenoic fatty acids (EPA), are polyunsaturated found mainly in fish oil (Mickleborough and Lindley, 2014). Omega-3 has beneficial effects on chronic inflammatory diseases, including chronic obstructive pulmonary disease and asthma (D’Auria et al., 2014; Miyata and Arita, 2015). Research shows that consumption of fish at least 2–3 times/week can increase level of omega-3 (British Dietetic Association, 2017), thereby reducing the risk of asthma (Rosenkranz et al., 2012). Anti-inflammatory effects on EPA is competitive with arachidonic, has potential effect to reduce respiratory inflammation and bronchoconstriction in asthma (Han et al., 2015; Thien et al., 2002). Drug effects are individual, and asthma research is now beginning to pay attention to genetic influences in the treatment (Davis et al., 2015; Fotenko, 2011; Ortega et al., 2015). Previous studies have been carried out in Caucasian races (D’Auria et al., 2014; Mickleborough and Lindley, 2014; Miyata and Arita, 2015), but there is no strong evidence on Indonesian society as a different Asian race than abroad.

Previous research by Lorensia and Lisiska (2011) states that perceptions of asthma can affect patients’ self-management behavior, thus affecting their treatment outcomes. The results of asthma therapy are not only determined by symptoms or lung function, but also the illness perception that patient has, is the patient’s subjective beliefs and emotional response to the disease. Many studies have shown that the perception of disease has a large share of therapeutic results, so the conclusion that disease perception that reflects the patient's personal control of the disease for positive results is asthma control (Kaptein et al., 2010). Research on the role of illness perception in medical conditions has grown rapidly in recent years. This is the beginning of the development of a scale to measure disease beliefs, such as the illness perception questionnaire (IPQ), and then by strong associations can be found a relationship between patient perceptions of their disease and the results of their behavior. Chronic diseases like asthma are quite a burden on patients and have a significant impact on their quality of life. Illness perception has been shown to have an important association with outcomes in various acute and chronic diseases (Petrie et al., 2007). The study aims to see illness perception toward their asthma by using the IPQ and see the effect of omega-3 fish oil on asthma control measured using the ACT.

METHODS

Design study

This study used a pre-post test design method. This study used data collection techniques with the ACT questionnaire to see the clinical symptoms of asthma. Each research sample was given fish oil. The intervention provided was a fish oil product circulating in Indonesia. This fish oil was given to patients at once daily doses, then followed up after 4 weeks. The recommended dose of fish oil containing omega-3 was 1–5.4 g per day (Calder, 2012), Hence, in this study, fish oil with a dose of 1.0 g was chosen.

Ethical committee approval

Ethics testing has been conducted at the University of Surabaya with No. 011/KE/I/2017.

Variable research and the measuring instrument

The independent variable of this study was fish oil, while the dependent variable of this study was symptoms of asthma and pulmonary function, with controlled variables in accordance with inclusion and exclusion criteria.

Symptoms of asthma

Asthma symptoms were measured using the ACT questionnaire. ACT is a specific instrument in assessing asthma control in chronic asthma patients. Consisting of five questions that included limited activity, long periods of tightness, symptoms of asthma at night, frequency of use of reliever drugs, and level of asthma control that was calculated for 4 weeks. Each question was given a choice of answers to five-Likert scale (Global Initiative for Asthma. 2017; Moamary et al., 2012). Asthma symptoms were measured twice, namely: at week 0 (before giving intervention) and at week 4 (after giving intervention). The initials that will be used as follows:

ACT0 : ACT value at week 0, ie before getting fish oil therapy containing omega-3
ACT4 : ACT value at week 4, which is after receiving fish oil therapy containing omega-3 for 4 weeks (1 month)

Illness perception

Illness perceptions were formed from initial experiences with episodes related to disease and how to respond to pain and discomfort from other people and the environment (Kaptein et al., 2010). Measurement of illness perception could be described by five dimensions in cognitive representation of illness, including: (1) Identify (patient label used to describe illness and symptoms they experience as part of a disease); (2) Consequences (expected effects and outcomes of illness); (3) Cause (personal idea about the cause of the disease); (4) Timeline (how long the patient believes that the disease will last); and (5) Cure or Control (explains what patients believe that they can recover or recover from their illness) (Calder, 2012; Tienemsma et al., 2016).

Population and sample

The population of this study were adult asthma patients (>18 years) in Surabaya. The sample (subject) of the study were collected by purposive sampling that fulfill the criteria, namely (inclusion and exclusion criteria): not having chronic diseases that could affect respiratory function (such as: chronic respiratory disease, heart disease, and chronic renal failure); Do not smoke or consume alcohol; and not using routine asthma medication.

The sample size in this study was at least 26 people. Sample size calculation method uses equations:

\[
n = \frac{Z^2 \cdot P \cdot Q}{d^2}
\]

\[
Z = 1.96
\]

\[
P = 0.017 \quad \text{(Badan Penelitian dan Pengembangan Kesehatan Departemen Kesehatan Republik Indonesia, 2013)}
\]

\[
Q = 1 - P = 1 - 0.0262 = 0.983
\]

\[
d = 0.05
\]

Then, the study sample size (n) is minimal for each group in this study was 25.67 ~ 26 people.
Data analysis method

Asthma symptoms would be tested for normality of data distribution using the Shapiro–Wilk test. If the p value > 0.05, it can be concluded that the data is normally normal distributed and then followed by paired t-test to determine the effect of illness perception on and clinical symptoms. The relationship between ACT value and illness perception using chi square test.

RESULTS AND DISCUSSION

Data collection was conducted in March 2017–January 2018. The data obtained in this study were obtained illness perception and ACT questionnaire that given at before and after fish oil intervention. Of the number of subjects initially involved the research, there were two peoples who were dropped out due to allergies to fish oil (red spots appeared on the face after the second week of getting fish oil therapy) and others because he had to going out of the city so cannot take therapy again. Until the end of the study, there were 26 respondents who followed the complete research series.

Respondents in this study were grouped according to gender, age, and treatment history (Table 1). The highest gender was women (73%) compared to men (27%). The most age of this study was at the stage of late adolescence (17–25 years) (96.15%). For the treatment, history of many respondents using inhaled short acting beta-2 agonists (26.31%) in step 1 (Global Initiative for Asthma, 2017) (Table 1).

The effectiveness data of omega-3 fish oil using ACT questionnaire showed that there was significant difference [p value (0.041) < 0.05] of symptoms based on ACT value before [normality test: p (0.558) > 0.05] and after therapy [normality test: p (0.460) >0.05], used analysis of variance one-way test.

In Table 2, the influence of illness perception related to the symptoms of the ACT value. Obtained the results of the p < 0.05, Ho was rejected so there was the influence of illusion perception relations related to the significant symptoms of the ACT value.

Illness perception will affect asthma patients’ behaviour and self-management from the disease. This data can inform health care providers about patients’ psychosocial responses to their asthma; they are responsive to the changes in clinical meetings or through self-management intervention training. Exploring the patient’s illness perception, therefore, is an important component of good clinical care (Kaptein et al., 2010). One of the factors that influence self-management is illness perception which is a cognitive picture of the patient about his illness (Gibbons et al., 2013). This picture is identified through five dimensions, namely, identity, consequences, cause of illness, timeline, and cure or control (Kaptein et al., 2010; Morris et al., 2002; Petrie et al., 2007). By knowing one’s perception of the disease, it can be done by providing education and further information to patients. In addition, efforts can be made to develop strategies for health approaches and promotion that are good for reducing the number of patients who are exposed to asthma attacks and participating in improving the quality of life of patients.

In Table 3, most of the highest illness perception regarding symptoms and symptoms related to asthma respondents experienced on the individual values, related to symptoms are fixed, namely, questions number 1 (7 respondents), number 2 (9 respondents), number 3 (10 respondents), number 4 (9 respondents), while in question number 5, the highest value rises (11 respondent). In the symptom associated with asthma, the highest value is still in question number 1 (6 respondents), number 2 (8 respondents), number 3 (8 respondents), number 4 (7 respondents), while in question number 5 is up (9 respondents).

The influence of illness perception on asthma on ACT values that got significant results was B2, namely, how long the asthma suffered by patients with a p value < 0.05 (0.018), Ho was rejected then there is a significant difference between the influence

Table 1. Frequency distribution of research subject character.

Characteristics	Frequency (n = 26)	Percentage (%)
Gender		
Man	7	27.00
Woman	19	73.00
Age (years)		
Late teenagers (17–25)	25	96.15
Early adult (26–35)	1	3.85
Late adult (36–45)	0	0
Medical history		
Oral short-acting beta-2 agonist	8	21.05
Inhaled short-acting beta-2 agonist	10	26.31
Oxygen	1	2.63
Not using any medication	3	7.89
ral corticosteroids (only used when symptoms worsen)	1	2.63
Metilsantin oral (only used when symptoms worsen)	3	11.53
Other	8	21.05
Step treatment for asthma (1)	26	100

Table 2. Effect of illness perception regarding symptoms and symptoms related to asthma experienced by respondents on the ACT value.

Illness perception	Number of asthma symptoms	Change in ACT Value	p value
Total			
Symptoms experienced by patients	0	0	0.018
	1	0	0.018
	2	0	1.00
Four highest symptoms:A4,A6,A9,A12	3	3	0.018
	2	2	0.018
	4	2	0.018
	1	1	0.018
Total	26	26	
Relationship with asthma symptoms experienced by patients	0	0	0.329
	1	0	0.018
	2	1	0.018
Four highest symptoms:A4,A6,A9,A12	3	2	0.018
	2	2	0.018
Total	26	26	

p > 0.05, Ho is accepted meaning there is no significant difference, p < 0.05, Ho is rejected meaning there is a significant difference.

A4 = difficulty breathing/tightness, A9 = when breathing is sound (wheezing), A12 = difficulty sleeping, A6 = tired, Increase = there is an increase in the change in ACT value between before and after being given fish oil, Fixed = no change in ACT value between before and after fish oil was given, Decrease = there was a decrease in the change in ACT value between before and after fish oil was given.
Lorensia et al. / Journal of Applied Pharmaceutical Science 10 (06); 2020: 062-071

No.1 = ACT questions limitations of respondent activities, No.2 = ACT questions frequency of respiratory shortness of respondents, No. 3 = ACT questions arise symptoms of asthma at night or respondent morning, No. 4 = ACT questions frequency of use of asthma medicines respondents, No. 5 = ACT questions level of asthma control, Increase = there is an increase in the change in ACT value between before and after being given fish oil, Fixed = no change in ACT value between before and after fish oil was given, Decrease = there was a decrease in the change in ACT value between before and after fish oil was given.

Table 3. Distribution of frequency of illness perception regarding symptoms and symptoms related to asthma respondents experienced on the individual values in ACT.

No.	Illness Perception	Number of asthma symptoms	No.1 Decrease	Increase	Fixed	Total	No.2 Decrease	Increase	Fixed	Total	No.3 Decrease	Increase	Fixed	Total	No.4 Decrease	Increase	Fixed	Total	No.5 Decrease	Increase	Fixed	Total	
A1	Symptoms experienced by patients	0	0	0	1	1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
A2	Relationship with Asthma symptoms experienced by patients	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A4	Four highest symptoms: A1,A2,A3,A4,A5	3	2	0	5	7	0	1	6	7	2	1	4	7	1	1	5	7	1	4	2	7	
A5	Four highest symptoms: A1,A2,A3,A4,A5	4	4	5	7	16	2	5	9	16	1	5	10	16	4	3	9	16	0	11	5	16	
A6	Total	6	5	15	26	2	6	18	26	3	6	17	26	5	4	17	26	1	16	9	26		

Patient perception of how long asthma will last (timeline)

Asthma does not recognize the word "cured," because it cannot be cured and can appear at any time. Symptoms of asthma in adulthood are an indication of asthma in childhood. The reality of wheezing in adulthood occurs in various conditions and not all wheezing occurs in adulthood are an indication of asthma. However, patients with asthma in adulthood have limitations in activities. The causes of dominant asthma are hereditary factors, viruses, genetics, and bacteria, and decreased immunity. Hence, the frequency of wheezing in adulthood such as rhinoviruses have a relationship to recurrence of wheezing in adulthood. The patient’s perception of the cause of the disease is as follows:

- Most respondents (60%) answered that the asthma symptoms are hereditary factors. Viruses, germs, and bacteria, and decreased immunity are the main causes of asthma. Therefore, it is known that what causes asthma patients should be given counseling to take the medicine as a prevention of the occurrence of an asthma attack.

Patient perception regarding the impact and results of diseases (consequences)

The patient's perception of the consequences of asthma was as follows:

- The results showed that subjective perceptions of the disease (identity) are asthma. The patient's perception is a cognitive picture of patients with asthma. Their disease is identified by five dimensions, namely, identity, consequences, cause of illness, timeline, and cure or control. These five dimensions are as follows:

- Patient perception of the cause of illness (identity) is as follows:
 - Symptoms: shortness of breath (82%, wheezing (21%), asthma symptoms that do occur. Whistling sound is caused by airway obstruction. If there is difficulty in breathing, then the body's cells experience a lack of O2 supply, which can cause difficulty in breathing. While some people may experience coughing, increased mucus production, and decreased airflow.

- Patient perception of the consequences of asthma (cause of illness) is as follows:
 - Fatigue (80.77%), and insomnia (76.92%). This is consistent with the results of previous studies. This study showed that the cause of illness is increased in the occurrence of asthma attacks in the afternoon, while also causing the body's cells to become tired. While sore throat, nausea, abdominal pain, joint stiffness, eye pain, headache, and dizziness are symptoms that are not related to asthma attacks. In reality, patients who have been given fish oil showed a decrease in symptoms that are not related to asthma attacks.

- Patient perception of the cure or control of asthma (consequences) is as follows:
 - The patient's perception is a cognitive picture of patients with asthma and the ACT value was increased for asthma patients. However, the possibility of these symptoms can be caused by side effects of drugs used by patients.
Table 4. Effects of illness perception on asthma on ACT values.

No.	Perceptions related to asthma illness perception	Answer category	Change in ACT value	Total	p value		
			Decrease (n = 5)	Increase (n = 15)	Fixed (n = 6)		
B1	How much asthma affects activity	Not affect at all	0	0	0	0.210	
		Little influence	3	3	0	6	
		Doubtful	0	1	0	1	
		Enough Affect	1	7	5	13	
		Very influential	1	4	1	6	
		Total	26	26			
B2	How long will asthma be suffered by the patient	Just a few days	0	1	1	2	0.018
		Several months	1	0	0	1	
		Doubtful	3	2	3	8	
		Several years	1	5	1	7	
		Forever	0	7	1	8	
		Total	26	26			
B3	The patient feels that his asthma is	Not controlled at all	0	3	0	3	0.155
		Little controlled	1	5	0	6	
		Doubtful	1	2	2	5	
		Controlled	3	4	4	11	
		Perfect control	0	1	0	1	
		Total	26	26			
B4	Treatment done	Not helpful	0	0	0	0	0.155
		A little help	0	4	1	5	
		Doubtful	2	3	0	5	
		Help	3	7	4	14	
		Very helpful	0	1	1	2	
		Total	26	26			
B5	How often do patients experience asthma symptoms	Never	0	1	1	2	0.155
		1–2× a month	1	1	0	2	
		Don't know (suddenly appears)	4	11	5	20	
		1–2× a week	0	2	0	2	
		Every day	0	0	0	0	
		Total	26	26			
B6	Patients feel anxiety/anxiety about asthma	Not at all worried	0	1	0	1	0.155
		A little worried	2	7	3	12	
		Doubtful	0	1	2	3	
		Worry	3	5	1	9	
		Very worried	0	1	0	1	
		Total	26	26			
B7	Understanding of asthma	Do not understand	1	1	0	2	0.155
		Understand a little	0	4	1	5	
		Doubtful	0	3	1	4	
		Understand	4	6	4	14	
		Really understand	0	1	0	1	
		Total	26	26			
B8	Asthma affects patient emotions	Does not make me emotional	1	5	0	6	0.155
		A little emotion	0	3	1	4	
		Doubtful	2	2	1	5	
		Emotion	2	3	3	8	
		Very emotional	0	2	1	3	
		Total	26	26			
Table 4. (continued)

No.	Perceptions related to asthma illness perception	Answer category	Change in ACT value	Total	p_value		
			Decrease (n = 5)	Increase (n = 15)	Fixed (n = 6)		
B9	Asthma affects patient finance	Not affect at all	3	5	2	10	0.155
		Little influence	0	6	2	8	
		Doubtful	0	1	1	2	
		Influence	1	3	1	5	
		Very influential	1	0	0	1	
	Total	26	26				

p > 0.05, Ho is accepted meaning there is no significant difference, p <0.05, Ho is rejected meaning there is a significant difference. Increase = there is an increase in the change in ACT value between before and after being given fish oil, Fixed = no change in ACT value between before and after fish oil was given, Decrease = there was a decrease in the change in ACT value between before and after fish oil was given.

Table 5. Effects of illness perception on causes of asthma on ACT values.

No.	Causes of asthma	Answer category	Change in ACT value	Total	p_value		
			Decrease (n = 5)	Increase (n = 15)	Fixed (n = 6)		
C1	Stressful or anxious	SD	0	2	0	4	0.379
		D	2	1	0	3	
		Do	0	1	1	2	
		A	1	7	3	11	
		SA	2	2	2	6	
	Total	26	26				
C2	Descent / genetic	SD	0	2	0	2	0.379
		D	1	1	0	2	
		Do	0	1	0	1	
		A	1	4	3	8	
		SA	3	7	3	13	
	Total	26	26				
C3	Germs, viruses, infections	SD	0	0	0	0	0.031
		D	0	1	0	1	
		Do	2	5	0	7	
		A	3	5	4	12	
		SA	0	4	2	6	
	Total	26	26				
C4	Pattern or eating habits	SD	0	1	0	1	0.618
		D	0	2	1	3	
		Do	1	5	3	9	
		A	3	4	1	8	
		SA	1	3	1	5	
	Total	26	26				
C5	Bad luck	SD	2	3	1	6	0.115
		D	2	6	1	9	
		Do	0	6	3	9	
		A	1	0	1	2	
		SA	0	0	0	0	
	Total	26	26				

(continued)
No.	Causes of asthma	Answer category	Change in ACT value	Total	p value		
			Decrease (n = 5)	Increase (n = 15)	Fixed (n = 6)		
C6	Bad care in the past	SD	2	3	0	5	0.578
		D	3	7	2	12	
		Do	0	4	3	7	
		A	0	1	0	1	
		SA	0	0	1	1	
		Total	26	26			
C7	Environmental pollution	SD	0	0	0	0	0.473
		D	1	0	0	1	
		Do	0	1	0	1	
		A	3	11	4	18	
		SA	1	3	2	6	
		Total	26	26			
C8	My own behavior	SD	0	0	0	0	0.719
		D	0	3	1	4	
		Do	1	4	2	7	
		A	3	7	2	12	
		SA	1	1	1	3	
		Total	26	26			
C9	Always think negatively	SD	1	2	0	3	0.271
		D	3	8	1	12	
		Do	0	4	3	7	
		A	0	1	1	2	
		SA	1	0	1	2	
		Total	26	26			
C10	Family problems	SD	3	3	1	7	0.465
		D	1	6	1	8	
		Do	1	4	1	6	
		A	0	1	2	3	
		SA	0	1	1	2	
		Total	26	26			
C11	Too much work	SD	0	2	0	2	0.271
		D	1	2	0	3	
		Do	1	4	3	8	
		A	2	4	2	8	
		SA	1	3	1	5	
		Total	26	26			
C12	Emotional feeling	SD	0	3	0	3	0.344
		D	2	2	0	4	
		Do	1	4	2	7	
		A	2	4	4	10	
		SA	0	2	0	2	
		Total	26	26			
C13	Aging / increasing age	SD	2	3	2	7	0.640
		D	2	7	1	10	
		Do	0	4	3	7	
		A	1	1	0	2	
		SA	0	0	0	0	
		Total	26	26			

(continued)
would last forever. Many research subjects do not know that asthma can occur at any time and unexpected.

Patient perceptions regarding medication that can help disease (cure or control)

The results showed that most patients (11 of 26 patients) said their asthma had been controlled. Subjects argued that the treatment used helped overcome the asthma attack (14 of 26 people). This is one of the characteristics of controlled asthma (Global Initiative for Asthma, 2017).

Fish oil containing omega 3 consisting of EPA and DHA suppresses the production of arachidonic acid through the arachidonate 5-lipoxygenase (ALOX5) pathway. Arachidonic acid is a substrate for the synthesis of eicosanoids which produces an inflammatory mediator consisting of cysteinyl leukotriene, prostaglandin, and thromboxane. This mediator is involved in the bronchoconstriction process and increases mucus in the respiratory tract in asthma patients. EPA-enriched fish oil can inhibit the production of leukotriene C4 which is competitive with arachidonic acid which functions as the ALOX5 substrate. EPA can also suppress allergic responses in asthma by inhibiting arachidonic acid that produces leukotrienes. Leukotrienes and prostaglandin E2 contribute to the formation of immunoglobulin E, an antibody that plays a role in the allergic response. This usually increases in asthma patients (Ogden, 2012).

No.	Causes of asthma	Answer category	Change in ACT value	Total	p value		
			Decrease (n = 5)	Increase (n = 15)	Fixed (n = 6)		
C14	Alcohol consumption	SD	0	6	2	8	0.144
		D	1	3	0	4	
		Do	2	4	4	10	
		A	2	2	0	4	
		SA	0	0	0	0	
	Total		26	26			
C15	Smoke	SD	0	5	1	6	0.473
		D	1	1	0	2	
		Do	1	1	0	2	
		A	1	4	2	7	
		SA	2	4	3	9	
	Total		26	26			
C16	Due to injury / accident	SD	2	5	2	9	0.463
		D	2	6	1	9	
		Do	1	4	3	8	
		A	0	0	0	0	
		SA	0	0	0	0	
	Total		26	26			
C17	Decreased immunity	SD	0	0	0	0	0.666
		D	0	0	0	0	
		Do	2	3	2	7	
		A	3	7	3	13	
		SA	0	5	1	6	
	Total		26	26			

No.1 = ACT questions limitations of respondent activities, No.2 = ACT questions frequency of respiratory shortness of respondents, No. 3 = ACT questions arise symptoms of asthma at night or respondent morning, No. 4 = ACT questions frequency of use of asthma medicines respondents, No. 5 = ACT questions level of asthma control, Increase = there is an increase in the change in ACT value between before and after being given fish oil. Fixed = no change in ACT value between before and after fish oil was given, Decrease = there was a decrease in the change in ACT value between before and after fish oil was given, SD = strongly disagree, D = disagree, Do = doubtfully, A = agree, SA = strongly agree.

$p > 0.05$, Ho is accepted meaning there is no significant difference.

$p < 0.05$, Ho is rejected meaning there is a significant difference.

Table 5. continued

Table 6. Effects of illness perception on asthma on ACT values.

No.	Answer Category	Change in ACT value			
		Decrease	Decrease	Decrease	
1	Descent/genetic (C2)		4	7	5
2	Germ, virusi, infection (C3)	1	4	2	
3	Decreased body immunity (C17)	0	5	1	

Increase = there is an increase in the change in ACT value between before and after being given fish oil. Fixed = no change in ACT value between before and after fish oil was given. Decrease = there was a decrease in the change in ACT value between before and after fish oil was given.
In Table 6, about the influence of Illness Perception related to asthma on the ACT value, the highest answer was on offspring / genetic and ACT value rose by seven respondents. In conducting research, there are still weaknesses and shortcomings, although researchers have tried their best to make research results perfect. Researchers realize that the limitations of research include:

1. The inclusion criteria of respondents such as heart and kidney history data were not obtained accurately. Because when the respondent said that there was no history of the heart and kidneys was not supported by the results of the doctor’s checking first using electrocardiogram.

2. The type of fish oil used in this study is fish oil originating from abroad. Researchers use this type of fish oil because the dose is in accordance with the desired dose of fish oil which is 1.0 g. Therefore, respondents feel less comfortable consuming fish oil which is considered quite large because some respondents commented on the soft capsule which is quite large.

CONCLUSION

The effectiveness data of omega-3 fish oil using ACT questionnaire showed that there was significant difference (p value (0.041) <0.05) of symptoms based on before and after therapy. There was an effect of illness perception relationships related to asthma symptoms. Most of the highest illness perception regarding symptoms and symptoms related to asthma respondents experienced on the individual values, related to symptoms are fixed. While the influence of illness perception on asthma on ACT values that got significant results was how long the asthma suffered, and the illness perception on causes of asthma that were significant to changes in asthma symptoms.

LIST OF ABBREVIATIONS

Acronym	Description
ACT	Asthma control test
ADR	Adverse drug reaction
ALOX5	Arachidonate 5-lipoxygenase
DHA	Docosahexaenoic acid
EPA	Eicosapentaenoic fatty acids
IPQ	Illness perception questionnaire

AKNOWLEDGMENT

Research funding was provided by Faculty of Pharmacy Universitas Surabaya support was provided by Institute of Research and Community Service Universitas Surabaya, and was funded by Ministry of Research, Technology and Higher Education of the Republic of Indonesia.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

Badan Penelitian dan Pengembangan Kesehatan Departemen Kesehatan Republik Indonesia. Riset Kesehatan Dasar (RISKESDAS) 2013 (online), 2013. Available via http://www.depkes.go.id/resources/download/general/Hasil%20Risksdas%202013.pdf (Accessed 12 April 2019).

Barnes PJ. Theophylline. Pharmaceuticals (Basel), 2010; 3(3):725–47.

Billington CK, Penn RB, Hall IP. B2-Agonists. Handb Exp Pharmacol, 2017; 237:23–40.

Braido F. Failure in asthma control: reasons and consequences. Scienrifica (Cairo), 2013; 2013:549252.

British Dietetic Association (BDA). Food chart sheet: omega-3 (online), 2017. Available via https://www.bda.uk.com/foodfacts/omega3.pdf (Accessed 12 April 2019).

Calder PC. Mechanisms of action of (n-3) fatty acids. J Nutr, 2012; 142(3):592S–9.

D’Auria E, Miraglia Del Giudice M, Barberi S, Mandelli M, Verdru C, Leonardi S, Riva E, Giovannini M. Omega-3 fatty acids and asthma in children. Allergy Asthma Proc, 2014; 35(3):233–40.

Davis JS, Weiss ST, Tantisira KG. Asthma pharmacogenomics: 2015 update. Curr Allergy Asthma Rep, 2015; 15(7):42.

Fotenko O, Zeki A, Schuster G, Davis C, Allayee H, Stephens C, Kenyon N. Asthma patients with specific genotypes identified for fish oil treatment trial. Calif Agric, 2011; 65(3):112–7.

Gibbons CJ, Kenning C, Coventry PA, Bee P, Bundy C, Fisher L, Bower P. Development of a multimorbidity illness perceptions scale (MULTIPleS). PLoS One, 2013; 8(12):e81852.

Global Initiative for Asthma. Global strategy for asthma management and prevention (online), 2017. Available via http://www.ginasthma.org (Accessed 12 April 2019).

Han YY, Forno E, Holguin F, Celedón JC. Diet and asthma: an update. Curr Opin Allergy Clin Immunol, 2015; 15(4):369–74.

Hossny E, Caraballo L, Casale T, El-Gamal Y, Rosenwasser L. Severe asthma and quality of life. World Allergy Organ J, 2017; 10(1):28.

Kaptein AA, Klok T, Moss-Morris R, Brand PL. Illness perceptions: impact on self-management and control in asthma. Curr Opin Allergy Clin Immunol, 2010; 10(3):194–9.

Krishnan JA, Lemanske RF, Canino GJ, Elward KS, Kattan M, Matsu EC, Mitchell H, Sutherland ER, Minnicozzi M. Asthma outcomes: asthma symptoms. J Allergy Clin Immunol, 2012; 129(3):S124–35.

Lorensia A, Lisiska N. Illness perceptions study of asthma treatment compliance in pharmaceutical care. J ANIMA Indones Psychol J, UBAYA, 2011; 26(3):184–8.

Lorensia A, Wahjuningsih E, Supriadi. Safety of aminophylline for asthma therapy in Delta Surya Hospital at Sidoarjo. Indones J Clin Pharm, 2012; 1(4):154–61.

Mickleborough TD, Lindley MR. The effect of combining fish oil and vitamin C on airway inflammation and hyperpnea-induced bronchoconstriction in asthma. J Allergy Ther, 2014; 5:184.

Miyata J, Arita M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol Int, 2015; 64(1):27–34.

Moamary MSA, Al-Kordi AG, Ghabain MOA, Tamim HM. Utilization and responsiveness of the asthma control test (ACT) at the initiation of therapy for patients with asthma: a randomized controlled trial. BMC Pulm Med, 2012; 12:14.

Moss-Morris R, Weinmann J, Petrie KJ, Horne R, Cameron LD, Buick D. The Revised Illness PerceptionQuestionnaire (IPQ-R). Psychol Health, 2002; 17(1):1–16.

Oemriati R, Siombing M, Qumariah. Corelation factors of offspring / genetic and ACT value rose by seven respondents. Handb Exp Pharmacol, 2017; 237:23–40.

Oemriati R, Sihombing M, Qumariah. Corelation factors of asthma outcomes: asthma symptoms. J Allergy Clin Immunol, 2012; 64(1):27–34.

Ortega VE, Meyers DA, Bleeker ER. Asthma pharmacogenetics and the development of genetic profiles for personalized medicine. Pharmgenomics Pers Med, 2015; 8:9–22.

Petrie KJ, Jago LA, Devech DA. The role of illness perceptions in patients with medical conditions. Curr Opin Psychiatry, 2007; 20(2):163–7.

Rosenkranz RR, Rosenkranz SK, Neessen KJJ. Dietary factors associated with life time asthma or hayfever diagnosis in Australian middle-aged and older adults: across-sectional study. Nutr J, 2012; 11:84.
Shaharum SM, Sundaraj K, Palaniappan R. A survey on automated wheeze detection systems for asthmatic patients. Bosn J Basic Med Sci, 2012; 12(4):249–55.

Thien FCK, Luca DS, Woods RK, Abramson MJ. Dietary marine fatty acids (fish oil) for asthma in adults and children (Review). Cochrane Database Syst Rev, 2002; 2:CD001283.

Tiemensma J, Gaab E, Voorhaar M, Asijee G, Kaptein A. Illness perceptions and coping determine quality of life in COPD patients. Int J Chron Obstruct Pulmon Dis, 2016; 11(1):2001–7.

Tyagi N, Gulati K, Vijayan VK, Ray A. A Study to monitor adverse drug reactions in patients of chronic obstructive pulmonary disease: focus on theophylline. Indian J Chest Dis Allied Sci, 2008; 50:199–202.

How to cite this article:
Lorensia A, Wahyudi M, Yudiarso A, Dwi Kurnia SE. Effect of illness perception on improving asthma symptoms with omega-3 fish oil therapy: Pre-post design. J Appl Pharm Sci, 2020; 10(06):062–071.
Journal of Applied Pharmaceutical Science (JAPS) is a monthly, international, open access, journal dedicated to various disciplines of pharmaceutical and allied sciences. JAPS publishes manuscripts (Original research and review articles Mini-reviews, Short communication) on original work, either experimental or theoretical in the following areas;

- Pharmaceutics & Biopharmaceutics
- Novel & Targeted Drug Delivery
- Nanotechnology & nanomedicine
- Pharmaceutical chemistry
- Pharmacognosy & Ethnobotany
- Phytochemistry
- Pharmaceutical & Toxicology
- Pharmaceutical Biotechnology & Microbiology
- Pharmacy practice & Hospital Pharmacy

Most viewed articles
1. Reductant-dependent None-Partial-Complete Degradation of Block Copolymer Disulfide Crosslinked Nanoassemblies
2. Development and Validation Method for Simultaneous Analysis of Retinoic Acid, Hydroquinone and Corticosteroid in Cream Formula by High-Performance Liquid Chromatography
3. Antioxidant and antimicrobial activity of flowers of Wendlandia thyrsidea, Olea dioica, Lagerstroemia speciosa and Bombax malabaricum
4. Temperature and pH stimuli-responsive polymers and their applications in controlled and self-regulated drug delivery
5. Non-Cytotoxic Property and DNA Protective Activity against H2O2 and UVC of Thai GAC Fruit Extracts in Human TK6 Cells

© 2020 Open Science Publishers LLP, unless otherwise stated. By using this website, you agree to our Terms and Conditions, Privacy statement and Cookies policy.
Editorial Board

Editor-in-Chief
Dr. Pinaki Sengupta
Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research - Ahmedabad Gandhinagar, India. [View Profile]
Email: editor@japsonline.com

Associate Editor
Paras Sharma
BVM College of Pharmacy, Gwalior, India.

Advisory Board

Prof. B. G. Shivananda
Registrar, Karnataka State Pharmacy Council, Bangalore (Karnataka), India.

Prof. Vinod Kumar Gupta
(Former Vice-Chancellor, Dr. Ram Manohar Lohia Awadh University, Faizabad, India)
Distinguished Professor, King Abdulaziz University, Jeddah, Saudi Arabia. [View Profile]

Prof. Shao Hong-Bo
Qingdao University of Science & Technology, Qingdao, China.

Dr. Shamarez Ali Mohammed
Associate Director, DR.REDDY’s Laboratories, New Jersey, U.S.A.

Dr. Kirankumar Hulatti
KLE’s Colleges of Pharmacy, Belagavi, India. [View Profile]

Prof. Saber A. Sakr
Faculty of Science, Menoufa University, Egypt. [View Profile]

Editorial Board

Dr. Wenyi Kang
Director, National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China. [View Profile]

Dr. Emad Mohamed Abdallah
Qassim University, Al-Rass, Saudi Arabia. [View Profile]

Dr. Qingwen Zhang
University of Macau, Macau, China.

Dr. Oluwafemi Omoniyi Oguntibeju
Department of Biomedical Sciences, Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa. [View Profile]

Dr. Mohd Nazir Khan
Department of Orthopaedics, School of Medicine, Emory University, 57 Executive Park South, Atlanta, GA. [View Profile]

Dr. Mrinmoy Saha

Dr. Teerapol Srichana
Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkla, Thailand. [View Profile]

Dr. Subrata Shaw
Vanderbilt University School of Medicine, Nashville, United States. [View Profile]

Dr. Radhesh Manduva
Scientist, Lloyd, Inc., Shenandoah, IA, USA.

Dr. Dinesh Kumar Mishra
Indore Institute of Pharmacy, Indore, India. [View Profile]

Prof. Abdul Rohman
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia. [View Profile]

Dr. Dipak S. Pimal

Follow us
Laboratory of Bioorganic Chemistry,
NIDDK National Institute of Health, Bethesda, USA. [View Profile]

Dr. Shalley N. Kudalkar
Associate Research Scientist, Yale University,
New Haven, CT, USA. [View Profile]

Dr. Bappaditya Chatterjee
Dept. of Pharmaceutical Technology,
International Islamic University, Malaysia.

Dr. Sanjay Bhivasan Patil
Shri Neminath Jain Brahmacaryashram’s
Shriman Sureshda Jain College of Pharmacy,
Chandwad, India.

Dr. Abdulhadi ALJAWISH
Polytech Lille, Institut Charles Virotte,
Université de Lille1, France. [View Profile]

Dr. Ayss YURDASIPER
Faculty of Pharmacy, Pharmaceutical Technology Department,
Ege University, Izmir, Turkey.

Dr. Shaqia Qasim Jamshed
Department of Pharmacy Practice,
Kulliyiyah of Pharmacy,
International Islamic University, Malaysia.

Dr. Shireesha Boyapati
Vaagdevi College of Pharmacy, Warangal, India.

Dr. Devala Rao Garikapati
K.V.S.R. Siddhartha College of Pharmaceutical Sciences,
Vijayawada, India. [View Profile]

Dr. Pranav Kumar Prabhakar
Lovely Faculty of Applied Medical Sciences,
Lovely Professional University, Phagwara, Punjab, India. [View Profile]

Dr. Thirumal Kumar D
Department of Integrative Biology,
School of Biosciences and Technology,
VIT, Vellore, India. [View Profile]

Dr. Subrahmanyas Bhat K
Department of Chemistry, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal, India. [View Profile]

Dr. R. N. Gupta
Birla Institute of Technology
Mesra, India. [View Profile]

Dr. Jone Stanley
College of Veterinary Medicine & Biomedical Sciences,
Texas A&M University, Texas, USA. [View Profile]

Dr. A. Lakshmana Rao
V.V. Institute of Pharmaceutical Sciences
Gudavelluru, India.

Dr. Emad Shalaby
Cairo University,
Cairo, Egypt. [View Profile]

CDER, Food and Drug Administration,
Silver Spring, MD, USA.

Dr. Sonam Bhatia
Faculty of Health Science,
Sam Higginbottom University of Agriculture,
Technology and Sciences, Allahabad, India. [View Profile]

Dr. Kondawar M. S.
Appasaheb Birnale College of Pharmacy
Sangli, India.

Dr. Amit D. Kandhare
Manager, Scientific Affairs,
Indus Biotech, Pune, India. [View Profile]

Dr. Mrs. Karimunnisa S. Shaikh
Modern College of Pharmacy,
Nigdi, Pune, India. [View Profile]

Dr. Sai Prachetan Balguri
ORISE Fellow at U.S. FDA CDER/OPQ/OTR,
New Hampshire Avenue Silver spring, MD, USA.

Dr. Sureshbabu Nagarajan
Louisiana State University,
Woodrow Street Shreveport, LA.

Dr. Nipan Malisorn
Thammasat University, Pathumthani, Thailand.

Dr. Anoja Priyadarshani Attanayake
Department of Biochemistry,
Faculty of Medicine, University of Ruhuna, Sri Lanka.

Dr. Muhammad Akram
Department of Eastern Medicine,
Directorate of Medical Sciences,
Faculty of Science and Technology, Government
College University Faisalabad, Pakistan. [View Profile]

Dr. Gurinder Singh
Department of Pharmaceutics,
Al-Ameen College of Pharmacy, Bangalore, India.

Dr. Elvis Adrian Frederic Martis
Bombay College of Pharmacy,
Katia, Mumbai. [View Profile]

Dr. Narendra Dudhipala
Department of Pharmaceutics and Drug Delivery,
School of Pharmacy, University of Mississippi, USA. [View Profile]

Dr. Qian Zhong
Koch Institute of Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA.

Dr. J. R. Gadag
Karnatak University,
Dharwad, India.

Note: All the above-mentioned editors and editorial board members are serving in their personal capacity and do not represent their affiliating institutions. Last Updated: 26/05/2020
