A NEW RELATIONSHIP BETWEEN THE DILATATION OF
PSEUDO-ANOSOV BRAIDS AND FIXED POINT THEORY

YUMEHITO KAWASHIMA

Abstract. A relation between the dilatation of pseudo-Anosov braids
and fixed point theory was studied by Ivanov. In this paper we reveal a
new relationship between the above two subjects by showing a formula
for the dilatation of pseudo-Anosov braids by means of the representa-
tions of braid groups due to B. Jiang and H. Zheng.

1. Introduction

The purpose of this paper is to reveal a new relationship between the
dilatation of pseudo-Anosov braids and fixed point theory. For this purpose
we obtain a new formula to determine the dilatation of pseudo-Anosov braids
from the representation $\zeta_{n,m}$ due to Jiang and Zheng [14].

Let us recall the notion of pseudo-Anosov braids. Let Σ_g be a closed
surface of genus g and P_n be an n-point subset of Σ_g. We denote by $\Sigma_{g,n}$
the subset of Σ_g deleting P_n. We consider the case when $\Sigma_{g,n}$ has negative
Euler characteristic. Let f be a homeomorphism of Σ_g fixing P_n setwise.
We recall that f is periodic if f^k equals identity for some $k > 0$, and it is reducible if there exists an f-invariant closed 1-manifold $J \subset \Sigma_{g,n}$ whose
complementary components in $\Sigma_{g,n}$ have negative Euler characteristic or else
are Möbius bands. We refer to J as a reduction of f. Finally, f is pseudo-
Anosov if there exists a number $\lambda > 1$ and a pair F^s, F^u of transverse
measured foliations with singularities modelled on k-prongs, $k = 1, 2, \ldots$ in
Figure 1 such that the equalities $f(F^s) = (1/\lambda)F^s$ and $f(F^u) = \lambda F^u$ hold.
Furthermore, the one-prong singularities of these foliations are allowed to
occur only at the punctures. For an isotopy class φ of homeomorphisms
of Σ_g, φ is periodic if there exists a periodic element in φ. Similarly, φ is reducible if there exists a reducible element in φ and φ is pseudo-Anosov if there exists a pseudo-Anosov element in φ.

In [21], Thurston classified the isotopy classes of homeomorphisms on
Σ_g fixing P_n into periodic, reducible and pseudo-Anosov. Since we can
regard the braid group B_n on n strands as the mapping class group of
disk with n punctures, every element of B_n is also classified into periodic,
reducible and pseudo-Anosov types. In [3], Bestvina and Handel obtained an
algorithm which gave the classification for surface homeomorphisms. Using
this algorithm, they established a method to calculate the dilatation of a
pseudo-Anosov mapping class φ.

Dilatations themselves are related to many fields and have been inten-
sively studied by many authors. For example, it is known that the logarithm
of the dilatation of pseudo-Anosov maps is the same as the topological en-
tropy of pseudo-Anosov maps, which is an important subject in ergodic
theory. Also in [10], Ivanov showed that the logarithm of the asymptotic Nielsen number, which appeared in fixed point theory, coincides with the entropy. In this paper, we obtain a new formula to determine the dilatation of pseudo-Anosov braids from the representation $\zeta_{n,m}$ due to B. Jiang and H. Zheng [14].

The growth rate of a sequence $\{a_n\}$ of complex numbers is defined by
\[
\text{Growth}_{n \to \infty} a_n = \max \left\{ 1, \limsup_{n \to \infty} |a_n|^{1/n} \right\}.
\]
Let us notice that the above growth rate could be infinity. When the inequality $\text{Growth}_{n \to \infty} a_n > 1$ holds, we say that the sequence grows exponentially.

For any set S, $\mathbb{Z}S$ denotes the free abelian group with the specified basis S. If $x = \sum_{s \in S} k_s s$ is a finite sum, we define the norm of x in $\mathbb{Z}S$ by
\[
\|x\| = \sum_{s \in S} |k_s|.
\]
For any matrix $A = (a_{ij})$ with coefficients in $\mathbb{Z}S$, the norm of A is the matrix defined by $\|A\| = (\|a_{ij}\|)$ when a_{ij} is a finite sum for all i and j.

Let P_n be a finite subset of $\text{int} \, D^2$ of $n \geq 0$ points and we set $D_n = D^2 \setminus P_n$. For integers $n, m \geq 0$, we consider three types of configuration spaces as follows: The space of m-tuples of distinct points in D_n denoted by $F_{n,m}(D^2) = \{(z_1, \ldots, z_m) \in (D_n)^m \mid z_i \neq z_j \text{ for all } i \neq j\}$, the space of subsets of distinct m elements in D_n denoted by $\mathcal{C}_{n,m}(D^2) = F_{n,m}(D^2)/S_m$ and the space $\text{IT}_{n,m}(D^2)$ of pairs of disjoint subsets of n distinct elements and m distinct elements in D^2 denoted by $\text{IT}_{n,m}(D^2) = F_{0,n+m}(D^2)/S_n \times S_m$, where the symmetric group S_m acts on $F_{n,m}(D^2)$ by permuting components of an m-tuple and similarly, the subgroup $S_n \times S_m$ of S_{n+m} acts on $\mathcal{C}_{n,m}(D^2)$ and $\text{IT}_{n,m}(D^2)$. The subgroup $S_n \times S_m$ of S_{n+m} acts on $\mathcal{C}_{n,m}(D^2)$ and $\text{IT}_{n,m}(D^2)$.

Figure 1. local chart around the singularities

1-prong singularity

3-prong singularity
The elements of $C_n,m(D^2)$ and the intertwining by this action.

These two actions, B is given in Section 4.1. The braid group π_1 projection. We suppose Z long to phism of the free Abelian group generated by Γ.

For any pseudo-Anosov braid β dilatation of B.

In $\cite{4}$, $\cite{18}$ and $\cite{19}$, Bigelow and Krammer show ed the faithfulness of the Lawrence-Krammer-Bigelow representation independently.

We set $E_{n,m}(D^2) = \pi_1(I\Gamma_n,m(D^2), b)$. We note that, under the basis $E_{n,m}$, all matrix elements of $\zeta_{n,m}(\beta)$ belong to $Z\Gamma_{\beta,m}$, where $\Gamma_{\beta,m}$ is the subgroup of B_{n+m} generated by β and $B_{n,m}(D^2)$. Therefore, $\zeta_{n,m}(\beta)$ can be naturally regarded as an endomorphism of the free $Z\Gamma_{\beta,m}$-module generated by $E_{n,m}$.

Our main result is stated as follows.

Theorem 1.1. For any pseudo-Anosov braid $\beta \in B_n$, we denote by λ the dilatation of β. Then we obtain

$$\frac{\mathrm{Growth}_{k \to \infty} \| \text{tr}_{\beta^{k},m} \zeta_{n,m}(\beta^k) \|}{\text{Growth}_{m \to \infty} \| \text{tr}_{\beta^{k},m} \zeta_{n,m}(\beta^k) \|} = \lambda^m$$

The representations $\zeta_{n,m}$ are related to homological representations of braid groups in the following way. For $m = 1$, there exists a homomorphism $\rho_B : E_{n,1}(D^2) \to \mathbb{Z}$ such that the representation induced by ρ_B is equivalent to the reduced Burau representation. Similarly for $m \geq 2$, there exists a homomorphism $\rho_{LKB} : E_{n,m}(D^2) \to \mathbb{Z} \oplus \mathbb{Z}$ such that the representation induced by ρ_{LKB} is equivalent to Lawrence-Krammer-Bigelow representation. The Lawrence-Krammer-Bigelow representations of the braid groups were studied by Lawrence $\cite{20}$ in relation with Hecke algebra representations of the braid groups. In $\cite{4}$, $\cite{18}$ and $\cite{19}$, Bigelow and Krammer showed the faithfulness of the Lawrence-Krammer-Bigelow representation independently.
In [8], Fried proved that the entropy of pseudo-Anosov braids is bounded below by the logarithm of the spectral radius of the Burau matrix $B(t)$ of pseudo-Anosov braids after substituting a complex number of modulus 1 in place of t. In [17], Kolev proved the same estimation directly with different methods. The estimate will be called the Burau estimate. In [2], Band and Boyland showed that the spectral radius of the Burau matrix $B(t)$ of pseudo-Anosov braids after substituting the root of unity in place of t is the dilatation itself of pseudo-Anosov braids only if $t = -1$. Furthermore, Band and Boyland showed that the spectral radius of $B(-1)$ is the dilatation of pseudo-Anosov braids if and only if the invariant foliations for pseudo-Anosov maps in the classes of pseudo-Anosov braids have odd order singularities at all punctures and all interior singularities are even order.

In [16], Koberda proved that the square of the dilatation of pseudo-Anosov braids is bounded below by the spectral radius of Lawrence-Krammer-Bigelow representation $LKB(q,t)$ of pseudo-Anosov braids after substituting complex numbers of modulus 1 in place of q and t. In this paper we recover the following result of [8], [17] and [16].

Theorem 1.2. (Fried [8], Kolev [17] and Koberda [16]) For a pseudo-Anosov braid β, the dilatation of β is equal to or greater than the spectral radius of the Burau matrix $B(t)$ of β after substituting a complex number of modulus 1 in place of t and the m-th power of the dilatation of β is equal to or greater than the spectral radius of the Lawrence-Krammer-Bigelow matrix $LKB_m(q,t)$ of β after substituting complex numbers of modulus 1 in place of q and t.

This paper is organized as follows. In Section 2 we recall the definition of the topological entropy due to Adler, Konheim and McAndrew [1]. In Section 3 we review asymptotic fixed point theory. We recall asymptotic fixed point theory for compact spaces due to Jiang [13] and a version of relative Nielsen theory due to Jiang, Zhao and Zheng [15] and Jiang and Zheng [14]. In Section 4 we construct the representation $\zeta_{n,m}$ due to Jiang and Zheng [13] and state the relation between the trace of $\zeta_{n,m}$ and the number of essential fixed points of some good self map. In Section 5 we prove the main theorem using the relation among dilatation, entropy and fixed point theory. In Section 6 we recover from our main theorem the estimation of the dilatation of pseudo-Anosov braids in [8], [17] and [16] by means of the homological representation.

2. Preliminaries

2.1. **Topological entropy.** The most widely used measure for the complexity of a dynamical system is the topological entropy. We refer the readers to [22] for an introductory treatment. We recall basic notions of the topological entropy due to Adler, Konheim and McAndrew [1]. Originally the topological entropy is defined in [1]. We recall [1] for the definition of the topological entropy. For any open cover α of X, let $N(\alpha)$ denote the number of sets in a subcover of minimal cardinality. For open covers α and β of X, their join is the open cover consisting of all sets of the form $A \cap B$ with $A \in \alpha$ and $B \in \beta$. Similarly, we can define the join $\bigvee_{i=1}^n \alpha_i$ of any finite collection $\{\alpha_i\}$
of open covers of X. For a continuous self map T of X, $T^{-1} \alpha$ denotes the open cover consisting of all sets $T^{-1}A$ with $A \in \alpha$. The entropy $h(T, \alpha)$ of a map T with respect to a cover α is defined as $\lim_{n \to \infty} \frac{1}{n} \log N \left(\bigvee_{i=0}^{n-1} T^{-i} \alpha \right)$. The topological entropy $h(T)$ of a map T is defined as $\sup h(T, \alpha)$, where the supremum is taken over all open covers α.

For a compact surface X with negative Euler characteristic and a pseudo-Anosov homeomorphism f of X with the dilatation $\lambda > 1$, $h(f) = \log \lambda$ is the minimal entropy in the homotopy class of f ([7, p. 194]).

3. Asymptotic Nielsen theory for stratified maps

In [13], Jiang studied fixed point theory using mapping torus. In [15], Jiang, Zhao and Zheng studied fixed point theory for some good noncompact spaces. In [14], Jiang and Zheng studied fixed point theory for configuration spaces using the method in [15]. In this section we will review some of the relevant materials from [13], [14] and [15] about fixed point theory.

3.1. Mapping torus. Subsections 3.1 and 3.2 are devoted to recall basic notions of fixed point theory due to [13]. In [13], Jiang studied fixed points by using mapping torus. Let X be a topological space and $f : X \to X$ be a continuous self map. The mapping torus T_f of f is the space obtained from $X \times \mathbb{R}_+$ by identifying $(x, s + 1)$ with $(f(x), s)$ for any element $x \in X$ and $s \in \mathbb{R}_+$, where \mathbb{R}_+ stands for the real interval $[0, \infty)$. On T_f there exists the natural semi-flow

$$\varphi : T_f \times \mathbb{R}_+ \to T_f, \quad \varphi((x,s),t) = (x, s + t) \text{ for all } t \geq 0.$$

A point x of X and a positive number $\tau > 0$ determine the time-τ orbit curve $\varphi_{(x,\tau)} = \{\varphi_t(x,0)\}_{0\leq t \leq \tau}$ in T_f. We may identify X with the cross-section $X \times \{0\} \subset T_f$, then the map $f : X \to X$ is just the return map of the semi-flow φ.

We take the base point v of X as the base point of T_f. We define Γ to be the fundamental group $\pi_1(T_f, v)$ of T_f and let Γ_c be the set of conjugacy classes of Γ. Then Γ_c is independent of the base point of T_f and can be regarded as the set of free homotopy classes of closed curves in T_f. By the van Kampen Theorem, Γ is obtained from G by adding a new generator z represented by the loop $\varphi_{(v,1)}w^{-1}$, and the relations $z^{-1}gz = f_G(g)$ for all $g \in G$:

$$\Gamma = \langle G, z \mid zg = zf_G(g) \text{ for all } g \in G \rangle.$$

We note that x is a fixed point of f if and only if its time-1 orbit curve is closed on the mapping torus T_f. For fixed points x and y of f, we define x and y to be in the same fixed point class if and only if their time-1 orbit curves are freely homotopic in T_f. Therefore every fixed point class F gives rise to a conjugacy class $\text{cd}(F)$ in Γ_c, called the coordinate of F. A fixed point class F is called essential if its index $\text{ind}(f, F)$ is nonzero.

Remark 3.1. We take an arbitrary path c from v to a fixed point x. In the light of the continuous map $H : I \times I \to T_f$ defined by $H(s,t) = (c(t), s)$, $\varphi_{(x,1)}$ is homotopic to the loop $c^{-1}\varphi_{(v,1)}f(c) = c^{-1}zf(c)$ and we obtain

$$\text{cd}(x) = [zwf(c)c^{-1}],$$
where $[\gamma]$ is a free homotopy class obtained by γ.

Given a nontrivial n-strand braid β, there exists a connecting isotopy $\{h_t : D^2 \to D^2\}_{0 \leq t \leq 1}$ from id such that the curves $\{h_t(P_n)\}_{0 \leq t \leq 1}$ represent the braid β. We set $f_{\beta} = h_1$. The map f_{β} induces a map $\tilde{f}_{\beta} : \mathcal{C}_{n,m}(D^2) \to \mathcal{C}_{n,m}(D^2)$ given by

$$\tilde{f}_{\beta}(\{x_1, \ldots, x_m\}) = \{f_{\beta}(x_1), \ldots, f_{\beta}(x_m)\}.$$

In [14], Jiang and Zheng showed that the fundamental group $\Gamma_{\beta, m}$ of $T_{\tilde{f}_{\beta}}$ is isomorphic to the subgroup in \mathcal{B}_{n+m} generated by β and $\mathcal{B}_{n,m}(D^2)$.

3.2. Periodic orbit classes.

In [13], Jiang studied the periodic orbit of f, i.e. the fixed points of the iterates of f.

The **periodic point set** of f is the set of points (x, n) in $X \times \mathbb{N}$ satisfying $x = f^n(x)$ and is denoted by $\text{PP}(f)$. An **n-point** of f is a fixed point x of f^n. For an n-point x of f, an **n-orbit** of f at x is the f-orbit $\{x, \ldots, f^{n-1}(x)\}$ in X. An n-orbit of f at x is a **primary n-orbit** if n is the least period of the periodic point x.

An **n-point class** of f is a fixed point class P^n of f^n. Two points x and x' in $\text{Fix}(f^n)$ are said to be in the same **n-orbit class** of f if and only if there exist natural numbers i and j such that $f^i(x)$ and $f^j(x')$ are in the same n-point class of f. The set $\text{Fix}(f^n)$ splits into a disjoint union of n-orbit classes. On the mapping torus T_f, we observe that (x, n) is in the periodic point set of f if and only if the time-n orbit curve $\varphi_{(x,n)}$ is closed. The free homotopy class $[\varphi_{(x,n)}] \in \Gamma_c$ of the closed curve $\varphi_{(x,n)}$ is called the **Γ-coordinate** of (x, n) and is denoted by $\text{cd}_\Gamma(x, n)$. Every n-orbit class O^n gives rise to a conjugacy class $\text{cd}_\Gamma(O^n)$ in Γ_c, called the **Γ-coordinate** of O^n.

An important notion in the Nielsen theory for periodic orbits is the notion of reducibility. Suppose m is a divisor of n and n is less than n. An n-orbit class O^n is **reducible to period m** if $\text{cd}_\Gamma(O^n)$ has an (n/m)-th root and is **irreducible** if $\text{cd}_\Gamma(O^n)$ has no nontrivial root.

An n-orbit class O^n is called **essential** if its index $\text{ind}(O^n, f^n)$ is nonzero. For each natural number n, the generalized Lefschetz number with respect to Γ is defined as

$$L_\Gamma(f^n) = \sum_{O^n} \text{ind}(O^n, f^n) \cdot \text{cd}_\Gamma(O^n) \in \mathbb{Z}\Gamma_c,$$

where the summation is taken over all essential n-orbit classes O^n of f. The **Nielsen number of n-orbits** $N_\Gamma(f^n)$ is the number of nonzero terms in $L_\Gamma(f^n)$ and the indices of the essential fixed point classes appear as the coefficients in $L_\Gamma(f^n)$. Clearly it is a lower bound for the number of n-orbits of f. The **Nielsen number of irreducible n-orbits** $N_\Gamma(f^n)$ is the number of nonzero primary terms in $L_\Gamma(f^n)$. It is the number of irreducible essential n-orbit classes. It is a lower bound for the number of primary n-orbits of f. These are homotopy invariants.

3.3. Asymptotic Nielsen theory.

In [13] Jiang defines the **asymptotic Nielsen number** of f to be the growth rate of the Nielsen numbers

$$N^\infty(f) = \lim_{n \to \infty} N_\Gamma(f^n),$$
the asymptotic irreducible Nielsen number of f to be the growth rate of the Nielsen numbers of irreducible orbits

$$NI_{\infty}(f) = \text{Growth}_{n \to \infty} N_{\Gamma}(f^n)$$

and the asymptotic absolute Lefschetz number of f to be the growth rate of the norm of generalized Lefschetz numbers

$$L_{\infty}(f) = \text{Growth}_{n \to \infty} \| L_{\Gamma}(f^n) \|.$$

In [13] all these asymptotic numbers are shown to enjoy the homotopy invariance.

Remark 3.2. Since the inequality $NI_{\Gamma}(f) \leq N_{\Gamma}(f) \leq \| L_{\Gamma}(f) \|$ holds, we obtain $NI_{\infty}(f) \leq N_{\infty}(f) \leq L_{\infty}(f)$. In [13], Jiang showed that a sufficient condition for the equality $NI_{\infty}(f) = N_{\infty}(f)$ is that f satisfies the following Property of Essential Irreducibility: The number E_n of essentially irreducible n-point classes that are reducible is uniformly bounded in n. Also in [13], Jiang showed that a sufficient condition for the equality $N_{\infty}(f) = L_{\infty}(f)$ is that f satisfies the following Property of Bounded Index: The maximum absolute value B_n of the indices of n-point classes F_n^m is uniformly bounded in n. These conditions are not strong. For example, every homeomorphism of D_n satisfies the Property of Essential Irreducibility and the Property of Bounded Index.

In [10], Ivanov showed that the logarithm of the asymptotic Nielsen number $N_{\infty}(f)$ of a self map f coincides with the entropy of a self map f.

Theorem 3.3. (Ivanov [10]) Let X be a compact surface with negative Euler characteristic and f be a self map of X. Then the entropy of f coincides with $\log N_{\infty}(f)$.

For a compact surface X with negative Euler characteristic, we take a pseudo-Anosov homeomorphism f of X with the dilatation $\lambda > 1$. Then we obtain that

$$h(f) = \log \lambda = \log N_{\infty}(f)$$

is the minimal entropy in the homotopy class of f.

4. The representation $\zeta_{n,m}$ and fixed points

4.1. The definition of $\zeta_{n,m}$. In [6], Bigelow defined the triangle corresponding to the embedded edge for $m = 2$. Triangles are elements of the relative homology of some abelian covering of the configuration space $C_{n,m}(D^2)$. In this subsection we define $\zeta_{n,m}$ due to Jiang and Zheng by using the lifts of triangles to the universal covering. Let R_B denote the group ring $\mathbb{Z}[B_{n,m}(D^2)]$ and R denote the group ring $\mathbb{Z}[E_{n,m}(D^2)]$.

We introduce some relative homology of the universal covering of the configuration space $C_{n,m}(D^2)$. Let $p : \tilde{C}_{n,m}(D^2) \to C_{n,m}(D^2)$ be the universal covering of $C_{n,m}(D^2)$ and fix $\tilde{c} \in p^{-1}(c)$ as a base point of $\tilde{C}_{n,m}(D^2)$. For $\varepsilon > 0$, we define V_{ε} to be the set of points $\{x_1, \ldots, x_m\}$ in $\tilde{C}_{n,m}(D^2)$ such that at least one of the pair (x_i, x_j) is within distance ε of each other. We
define \(\tilde{V}_\varepsilon \) to be the preimage of \(V_\varepsilon \) in \(\tilde{C}_{n,m}(D^2) \). The relative homology \(H_m(\tilde{C}_{n,m}(D^2), \partial \tilde{C}_{n,m}(D^2) \cup \tilde{V}_\varepsilon) \) is nested by inclusion.

\(f_\beta \) has a unique lift \(\tilde{f}_\beta : (\tilde{C}_{n,m}(D^2), \tilde{c}) \to (\tilde{C}_{n,m}(D^2), \tilde{c}) \) and induces an automorphism of the left \(R_B \) module

\[
\lim_{\varepsilon \to 0} H_m(\tilde{C}_{n,m}(D^2), \partial \tilde{C}_{n,m}(D^2) \cup \tilde{V}_\varepsilon).
\]

The induced automorphism is independent of the choice of the representative and denoted by \(\beta_* \).

The intertwining \((n, m)\)-braid group \(E_{n,m}(D^2) \) is isomorphic to the subgroup \(E_{n,m} \) of \(B_{n+m} \) generated by

\[
\sigma_1, \ldots, \sigma_{n-1}, \sigma_n^2, \sigma_{n+1}, \ldots, \sigma_{n+m-1}
\]

and \(B_{n,m}(D^2) \) is isomorphic to the subgroup \(B_{n,m} \) of \(B_{n+m} \) generated by

\[
A_{1,n+1}, \ldots, A_{n,n+1}, \sigma_{n+1}, \ldots, \sigma_{n+m-1},
\]

where \(A_{ij} \) is defined by

\[
A_{ij} = \sigma_{j-1} \ldots \sigma_{i+1} \sigma_i^2 \sigma_{i+1} \ldots \sigma_{j-1}.
\]

Therefore \(B_n \) acts on \(E_{n,m}(D^2) \) by the right multiplication and so there exists an induced action of \(\beta \) on the \(R \). Moreover, since \(B_{n,m}(D^2) \) is included in \(E_{n,m}(D^2) \), \(R \) is a right \(R_B \) module. Using the \(\mathbb{Z} \) module automorphism \(\tilde{\beta}_* \) and the action on \(E_{n,m}(D^2) \) by \(B_n \), we construct an automorphism \(\beta \otimes \tilde{\beta}_* \) on the left \(R \) module

\[
R \otimes_{R_B} \lim_{\varepsilon \to 0} H_m(\tilde{C}_{n,m}(D^2), \partial \tilde{C}_{n,m}(D^2) \cup \tilde{V}_\varepsilon)
\]

by

\[
(\beta \otimes \tilde{\beta}_*)(h \otimes c) = h\beta \otimes \tilde{\beta}_*(c).
\]

Clearly \(\beta \otimes \tilde{\beta}_* \) is a \(R \)-homomorphism.

From now on, we define a representation \(\zeta_{n,m} \) of \(B_n \) over the free left \(R \) module generated by \(\mathcal{E}_{n,m} \). The cardinality \(d_{n,m} \) of the basis \(\mathcal{E}_{n,m} \) is

\[
\begin{pmatrix}
 n + m - 2 \\
 m
\end{pmatrix}.
\]

We now introduce some other relative homology and an intersection pairing. Henceforth every path is a continuous map from \(I = [0, 1] \). For \(\varepsilon > 0 \), we define \(U_\varepsilon \) to be the set of points \(\{x_1, \ldots, x_m\} \in C_{n,m}(D^2) \) such that at least one of them is within distance \(\varepsilon \) of some puncture point. We define \(\tilde{U}_\varepsilon \) to be the preimage of \(p \) in \(\tilde{C}_{n,m}(D^2) \). The relative homology \(H_m(\tilde{C}_{n,m}(D^2), \tilde{U}_\varepsilon) \) is nested by inclusion.

We set

\[
\begin{align*}
p_i &= \left(\frac{i}{2n}, 0 \right), & P_n &= \{p_1, \ldots, p_n\}, \\
d_j &= \left(\cos \frac{j}{3n} \pi, \sin \frac{j}{3n} \pi \right), & c &= \{d_1, \ldots, d_m\}, \\
N_i &= \left\{ x = \frac{2i + 1}{4n} \right\} \cap D^2, & \alpha_i &= \left\{ (x, 0) \mid \frac{i}{2n} < x < \frac{i + 1}{2n} \right\}, \\
z_i' &= \left(\frac{2i + 1}{4n}, \sin \frac{j}{3n} \pi \right)
\end{align*}
\]
and let α_i^j be a polygonal line connecting p_i, z_i^j and p_i+1. We call α_i^j fork. For $\mu \in \mathcal{E}_{n,m}$, we set

$$F_\mu = \{ \{x_1, \ldots, x_m\} \in \mathcal{C}_{n,m}(D^2) \mid \#(\{x_1, \ldots, x_m\} \cap N_i) = \mu_i \}$$

and

$$S_\mu = \prod_{i=1}^{n-1} \prod_{j=u_i+1}^{u_i+1} \text{int} \alpha_i^j,$$

where $u_i = \sum_{j=1}^{i-1} \mu_j$. We take line segments θ_j on D_n from c_j to z_i^j, where $u_i < j \leq u_i+1$. We notice that they are disjoint. Let z_μ be the endpoint of $\Theta_\mu = \{\theta_1, \ldots, \theta_m\}$. We take a lift \tilde{z}_μ of z_μ so that the lift $\tilde{\Theta}_\mu$ of Θ_μ is starting at \tilde{c} and ending at \tilde{z}_μ. We take lifts \tilde{F}_μ and \tilde{S}_μ of F_μ and S_μ containing \tilde{z}_μ respectively. Let $[X]$ denote the element of certain relative homology corresponding to the m-dimensional subspace X of $\tilde{\mathcal{C}}_{n,m}(D^2)$. We set

$$\mathcal{H}_F = \bigoplus_{\mu \in \mathcal{E}_{n,m}} R_B \left[\tilde{F}_\mu \right] \subset \lim_{\varepsilon \to 0} H_m(\tilde{\mathcal{C}}_{n,m}(D^2), \partial \tilde{\mathcal{C}}_{n,m}(D^2) \cup \tilde{V}_\varepsilon)$$
and

\[\mathcal{H}_S = \bigoplus_{\mu \in \mathcal{E}_{n,m}} R_B \left[\mathcal{S}_\mu \right] \subset \lim_{\varepsilon \to 0} H_m(\mathcal{C}_{n,m}(D^2), \mathcal{U}_\varepsilon). \]

For \(x \in \mathcal{H}_S \) and \(y \in \mathcal{H}_F \), let \((x \cdot y) \in \mathbb{Z}\) denote the standard intersection number. In [6] for \(m = 2 \) and [3], Bigelow defined an intersection pairing. Similarly, we define an intersection pairing

\[\langle \cdot, \cdot \rangle : \mathcal{H}_S \times \mathcal{H}_F \to R_B \text{ by } \langle x, y \rangle = \sum_{\beta \in R_B} (x \cdot \tilde{\beta}_s(y)) \beta. \]

We notice that \(\left(\left[\mathcal{S}_\mu \right], \left[\mathcal{F}_\nu \right] \right) \) equals 1 when \(\mu = \nu \) and 0 otherwise. Therefore \(\left\{ \left[\mathcal{F}_\nu \right] \right\}_{\nu \in \mathcal{E}_{n,m}} \) is linearly independent. We define elements \(d_{\mu \nu}^{(\beta)} \) of \(R_B \) so that \(\{ d_{\mu \nu}^{(\beta)} \}_{\mu, \nu \in \mathcal{E}_{n,m}} \) satisfies the relations \(\sum_{\nu} d_{\mu \nu}^{(\beta)} \left[\mathcal{F}_\nu \right] = \tilde{\beta}_s \left(\left[\mathcal{F}_\mu \right] \right) \). Using the intersection pairing, we obtain

\[d_{\mu \nu}^{(\beta)} = \tau \left(\left(\left[\mathcal{S}_\mu \right], \tilde{\beta}_s \left(\left[\mathcal{F}_\mu \right] \right) \right) \right), \]

where \(\tau \) is an automorphism of \(R_B \) with \(\tau(\beta) = \beta^{-1} \). There exists a homomorphism

\[\zeta'_{n,m} : B_n \to \text{Aut}_R (R \otimes_{R_B} \mathcal{H}_F) \]

defined by \(\zeta'_{n,m}(\beta) = (\beta \otimes \tilde{\beta}_s)|_{\mathcal{H}_F} \). We notice that \(R \otimes_{R_B} \mathcal{H}_F \cong \bigoplus_{\mu \in \mathcal{E}_{n,m}} R \left[\mathcal{F}_\mu \right] \) and this gives the representation \(\zeta_{n,m} \) to the matrix group \(\text{GL}(d_{n,m}, R) \). We set \(\zeta_{n,m}(\beta) = (c_{\mu \nu}^{(\beta)}) \) and notice that \(c_{\mu \nu}^{(\beta)} = \beta d_{\mu \nu}^{(\beta)} \) in \(R \). It is straightforward that the map \(\zeta_{n,m} \) is a group homomorphism.

We recall the definition of trace. Let \(\Gamma \) be a group, \(\mathbb{Z}\Gamma \) its group ring, \(\Gamma_c \) the set of conjugacy classes, \(\mathbb{Z}\Gamma_c \) the free Abelian group generated by \(\Gamma_c \), and \(\pi_\Gamma : \mathbb{Z}\Gamma \to \mathbb{Z}\Gamma_c \) the natural projection. Let \(\zeta \) be an endomorphism of a free \(\mathbb{Z}\Gamma \)-module satisfying \(\zeta(v_i) = \sum_{j=1}^{k} a_{ij} \cdot v_j \) for a basis \(\{v_1, \ldots, v_k\} \). The trace of \(\zeta \) is defined as

\[\text{tr}_\Gamma \zeta = \pi_\Gamma \left(\sum_{i=1}^{k} a_{ii} \right) \in \mathbb{Z}\Gamma_c. \]

The definition is independent of the choice of the basis and for two endomorphism \(\zeta \) and \(\xi \), we have \(\text{tr}_\Gamma \zeta \circ \xi = \text{tr}_\Gamma \xi \circ \zeta \).

We note that, under the basis \(\mathcal{E}_{n,m} \), all matrix elements of \(\zeta_{n,m}(\beta) \) belong to \(\mathbb{Z}\Gamma_{\beta, m} \). Therefore \(\zeta_{n,m}(\beta) \) can naturally be regarded as an endomorphism of the free \(\mathbb{Z}\Gamma_{\beta, m} \)-module generated by \(\mathcal{E}_{n,m} \). In this way, the notations \(\text{tr}_{\Gamma_{\beta, m}} \zeta_{n,m}(\beta) \) and \(\text{tr}_{\Gamma_{\beta, m}} \zeta_{n,m}(\beta^k) \) in the main theorem are well-defined.

Theorem 4.1. For any pseudo-Anosov braid \(\beta \in B_n \), we denote by \(\lambda \) the dilatation of \(\beta \). Then we obtain

\[
\begin{align*}
\text{Growth}_{k \to \infty} \| \text{tr}_{\Gamma_{\beta, m}} \zeta_{n,m}(\beta^k) \| &= \text{Growth}_{k \to \infty} \| \zeta_{n,m}(\beta^k) \| = \lambda^m, \\
\text{Growth}_{m \to \infty} \| \text{tr}_{\Gamma_{\beta, m}} \zeta_{n,m}(\beta) \| &= \lambda.
\end{align*}
\]
4.2. The work of Jiang and Zheng. The representation $\zeta_{n,m}$ is the same as the representation due to Jiang and Zheng [14]. We compactify D_n to a 2-disk with n holes and denote it by Y_n, and assume further that there exists a homeomorphism $f_\beta : Y_n \to Y_n$ such that f_β is the map restricting $\overline{f_\beta}$ on $\text{int} Y_n$. We identify $\text{int} Y_n \cup \partial D^2$ with D_n. We decompose the surface Y_n into an annulus and $n - 1$ foliated rectangles, as shown in Figure 3.

We define $U = U_1 \cup \cdots \cup U_{n-1}$ to be the union of the $n - 1$ foliated open rectangles. We define a partial ordering on U such that $x_1 \prec x_2$ if either x_1 lies in a rectangle to the right of x_2 or x_1 lies in a strictly lower leaf of the same rectangle as x_2. For example, the order of the three points in Figure 3 is $x_1 \prec x_2 \prec x_3$.

We set $V = \{\{x_1, \ldots, x_m\} \in C_{m,0}(Y_n) \mid x_i \in U, \ x_{\eta(1)} \prec \cdots \prec x_{\eta(m)} \forall \eta \in S_m \text{ s.t.} \ x_i \in \text{int} Y_n \cup \partial D^2 \}$.

Then we have $V = \bigcup_{\mu \in E_{n,m}} V_\mu$, where

$$V_\mu = \{\{x_1, \ldots, x_m\} \in V \mid \#\{x_1, \ldots, x_m\} \cap U_i = \mu_i\}.$$

Each V_μ is connected; thus the elements of $E_{n,m}$ are in one-to-one correspondence to the components of V.

Illustrated in Figure 4 and Figure 5 are two embeddings ϕ_i and $\overline{\phi}_i$, which can be understood as the action of the elementary mapping σ_i and σ_i^{-1} on Y_n respectively. Both push the annulus outward, irrationally rotate the outmost boundary, keep the foliations of $(\phi_i)^{-1}(U)$ and $(\overline{\phi}_i)^{-1}(U)$, uniformly contract along the leaves of the foliations, and uniformly expand along the transversal direction.

For every $\phi \in \{\phi_1, \ldots, \phi_{n-1}, \overline{\phi}_1, \ldots, \overline{\phi}_{n-1}\}$, we have

$$V_\mu \cap \phi^{-1}(V_\nu) = \bigcup_{\eta \in S_m} W^{(\phi)}_{\mu \nu \eta}.$$

Figure 3. Decomposition of Y_n
where

\[W_{\mu \nu \eta}^{(\phi)} = \left\{ x \in V_{\mu} \cap \phi^{-1}(V_{\nu}) \mid \begin{array}{l}
\text{there exist } x_1, \ldots, x_m \text{ s.t. } \\
x = \{x_1, \ldots, x_m\}, \\
x_\eta(1) \prec \cdots \prec x_\eta(m), \\
\phi(x_1) \prec \cdots \prec \phi(x_m), \\
x_\mu \cap \phi^{-1}(V_{\nu})
\end{array} \right\}. \]

Each \(W_{\mu \nu \eta}^{(\phi)} \) is connected; thus the elements of the set \(\{ \eta \in \mathcal{S}_m \mid W_{\mu \nu \eta}^{(\phi)} \neq \emptyset \} \) are in one-to-one correspondence to the components of \(V_{\mu} \cap \phi^{-1}(V_{\nu}) \).

We choose a base point \(b = \{b_1, \ldots, b_m\} \) in \(\text{int } A \). For every element \(x = \{x_1, \ldots, x_m\} \) in \(V \) with \(x_1 \prec \cdots \prec x_m \), the disjoint “descending” paths connecting \(b_k \) to \(x_k \) in \(Y_n \) give rise to a path \(\gamma_x \) in \(C_{n,m}(Y_n) \). Similarly, the disjoint “ascending” paths connecting \(b_k \) to \(\phi(b_k) \) give rise to a path \(\gamma_{\phi(b)} \) in \(C_{n,m}(Y_n) \). For every nonempty \(W_{\mu \nu \eta}^{(\phi)} \), we choose a point \(x \in W_{\mu \nu \eta}^{(\phi)} \) and \(\alpha_{\mu \nu \eta}^{(\phi)} \) denotes the element of \(\pi_1(C_{n,m}(Y_n), b) \) represented by the loop \(\gamma_{\phi(b)} \cdot \phi(\gamma_x) \cdot \gamma_{\phi(x)}^{-1} \). We note that \(\alpha_{\mu \nu \eta}^{(\phi)} \) is independent of the choices of \(x, \gamma_x, \gamma_{\phi(b)} \) and \(\gamma_{\phi(x)}^{-1} \).

In [14], Jiang and Zheng showed that the equations

\[
\begin{align*}
\mu \cdot \zeta_{n,m}(\sigma_i) &= \sum_{\nu \in \mathcal{E}_{n,m}} c_{\mu \nu}^{(i)} \cdot \nu, \\
\mu \cdot \zeta_{n,m}(\sigma_i^{-1}) &= \sum_{\nu \in \mathcal{E}_{n,m}} d_{\mu \nu}^{(i)} \cdot \nu,
\end{align*}
\]

In [14], Jiang and Zheng showed that the equations

\[
\begin{align*}
\mu \cdot \zeta_{n,m}(\sigma_i) &= \sum_{\nu \in \mathcal{E}_{n,m}} c_{\mu \nu}^{(i)} \cdot \nu, \\
\mu \cdot \zeta_{n,m}(\sigma_i^{-1}) &= \sum_{\nu \in \mathcal{E}_{n,m}} d_{\mu \nu}^{(i)} \cdot \nu,
\end{align*}
\]
where
\[c^{(i)}_{\mu \nu} = (-1)^{\nu_i} \cdot \sigma_i \cdot \sum_{\eta; W^{(\phi_i)}_{\mu \nu \eta} \neq \emptyset} \text{sgn} \cdot \alpha^{(\phi_i)}_{\mu \nu \eta}, \]
\[d^{(i)}_{\mu \nu} = (-1)^{\nu_i} \cdot \sigma_i^{-1} \cdot \sum_{\eta; W^{(\phi_i)}_{\mu \nu \eta} \neq \emptyset} \text{sgn} \cdot \alpha^{(\phi_i)}_{\mu \nu \eta}, \]
give rise to a group representation of \(B_n \) over the free \(\mathbb{Z}B_{n+m} \) module generated by \(\mathcal{E}_{n,m} \).

We take the base point \(b \) in \(\Theta_\mu \cap A \). We can take the base point \(b \) independent of \(\mu \) because of the definition of \(\Theta_\mu \) and \(A \). Let \(\Theta_b \) be a path from \(b \) to \(\Theta_\mu(1) \) along \(\Theta_\mu \) and \(\Theta'_b \) be a path from \(b \) to \(\Theta_\mu(0) \) along \(\Theta_\mu \). We identify \(\pi_1(\mathcal{C}_{n,m}(D^2),c) \) with \(\pi_1(\mathcal{C}_{0,m}(Y_n),b) \) by the map induced by \(\Theta_b \).

Proposition 4.2. The representation defined above and the representation \(\zeta_{n,m} \) give the same matrix for any braid under the above identification.

Proof. We consider the case \(\beta = \sigma_i \) and the case \(\beta = \sigma_i^{-1} \) is similar. We notice that \(F_\mu \) is given by shrinking \(V_\mu \) along the leaves of foliations and then \(\hat{\phi}(W^{(\phi_i)}_{\mu \nu \eta}) \) is homotopy equivalent to \(F_\nu \). Therefore the nonzero terms of \(\tilde{\sigma}_i \Phi \left(F_\mu \right) \) are in one-to-one correspondence to the components of \(V_\mu \cap \phi^{-1}(V_\nu) \), which are in one-to-one correspondence to the elements of the set \(\{ \eta \in \mathcal{S}_m \mid W^{(\phi_i)}_{\mu \nu \eta} \neq \emptyset \} \).

There exists a homotopy \(\{ H : D_n \times I \to D_n \} \) with \(H(x,0) = \phi_i(x) \) and \(H(x,1) = f_\beta(x) \) such that a map \(H(\cdot,t) \) defined by \(H(\cdot,t)(x) = H(x,t) \) is injective for any \(t \). Let \(\tilde{H} : \mathcal{C}_{n,m}(D^2) \times I \to \mathcal{C}_{n,m}(D^2) \) be the map defined by \(\tilde{H}(\{ x_1, \ldots, x_m \},t) = \{ H(x_1,t), \ldots, H(x_m,t) \} \) and \(\tilde{H}(x,\cdot) \) be the path defined by \(\tilde{H}(x,\cdot)(t) = \tilde{H}(x,t) \).

For nonempty \(W^{(\phi_i)}_{\mu \nu \eta} \), we take an element \(x \in W^{(\phi_i)}_{\mu \nu \eta} \cap F_\mu \). We take \(\gamma_x \) the composition of two paths \(\Theta_b \) and the path from \(z_\mu \) to \(x \) in \(F_\mu \). Since \(\gamma_{\phi_i}(b) \) is homotopic to the composition of two paths \(\Theta'_b \) and \(\hat{\phi}(\Theta'_b) \) relative to the endpoints, the loop \(\tilde{f}_\beta(\gamma_x) \gamma_x^{-1} \) is identified with \(\alpha^{(\phi_i)}_{\mu \nu \eta} \) by the above identification. Therefore \(\alpha^{(\phi_i)}_{\mu \nu \eta} \) is the term of \(\tilde{\sigma}_i \Phi \left(F_\mu \right) \) corresponding to \(W^{(\phi_i)}_{\mu \nu \eta} \) and the signature is \((-1)^{\nu_i} \text{sgn} \eta \). Finally, left multiplication of \(\sigma_i \) and tensoring \(\sigma_i \) from left induce the same action on \(R \). Therefore \(\zeta_{n,m} \) and the representation due to Jiang and Zheng \cite{14} give the same matrix for all \(\beta \in B_n \). \(\square \)

4.3. Trace of \(\zeta_{n,m} \) and fixed points

In this subsection, we prove the key lemma of the proof of main theorem. We define \(e\text{Fix} \) to be the set of essential fixed points of \(f \). We choose a word \(\beta = \tau_1 \ldots \tau_N \), where \(\tau_i \) is an element of \(\{ \sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1} \} \). We put \(\varphi_i = \phi_{j_i} \) if there exists a number \(j_i \) satisfying \(\tau_i = \sigma_{j_i} \) and \(\varphi_i = \hat{\phi}_{j_i} \) if there exists a number \(j_i \) satisfying \(\tau_i = \sigma_{j_i}^{-1} \). Then the embedding \(g = \varphi_N \ldots \varphi_1 : Y_n \to Y_n \) induces a map \(\hat{g} : B_{n,m}(Y_n) \to B_{n,m}(Y_n) \). It is immediate from the definition of \(\phi_i \) and \(\hat{\phi}_i \) that \(\text{Fix} \hat{g} \) is a subset of \(V \).

We prove the next lemma whose proof is similar to that of \cite{14} Proposition 4.3.] by Jiang and Zheng.
Lemma 4.3. There exists a positive number B such that we have the inequality
\[\# \text{eFix}(\hat{g}^k) \leq \left\| \text{tr}_{\beta,m} \zeta_{n,m}(\beta^k) \right\| \leq B \# \text{eFix}(\hat{g}^k). \]

Proof. Without loss of generality, we only have to prove the case $k = 1$. We note that each of the components W^1_{μ} of $\bigcup_{\mu \in \mathcal{E}_{n,m}} V_{\mu} \cap (\hat{g})^{-1}(V_{\mu})$ is homeomorphic to \mathbb{R}^{2m}. Since \hat{g} is a hyperbolic map on W^1_{μ}, there exists precisely one fixed point of \hat{g} on W^1_{μ}. Let $x_j \in W^1_{\mu}$ be the fixed point of \hat{g} on W^1_{μ}. We notice that the fixed point class containing x_j consists of one element x. We set
\[\alpha^g(x_j) = \gamma_{\hat{g}(c)}(\hat{g})(\gamma_{x_j}) \cdot \gamma_{x_j}^{-1}. \]

We obtain
\[\text{cd}(x_j) = [z\gamma_{\hat{g}(c)}(\hat{g})(\gamma_{x_j}) \cdot \gamma_{x_j}^{-1}] = \beta[[\alpha^g(x_j)]] \in (\Gamma_{\beta,m})_c \]
by Remark 3.1 and recall that
\[\text{ind}(\hat{g}, x_j) = \langle \text{diag}(C_{n,m}(D^2)), \text{graph}(\hat{g}) \rangle |_{x_j} \]
is the definition of $\text{ind}(\hat{g}, x_j)$.

On the other hand, we take a lift \tilde{x} of x so that the lift $\tilde{\gamma}_x$ of γ_x is starting at \tilde{c} and ending at \tilde{x}. Then we obtain $\hat{g}(\tilde{x}_j) = \alpha^g(x_j)\tilde{x}_j$. Computing the fixed point index $\text{ind}(\hat{g}, x_j)$ of \hat{g} at x_j, we obtain
\[\text{ind}(\hat{g}, x_j) = (-1)^m \left(\alpha^g(x_j)\tilde{S}_\mu \cdot (\hat{g})_*(\tilde{F}_\mu) \right). \]
Therefore we obtain
\[(-1)^m[[\epsilon^{(\beta)}]] = \sum_j \text{ind}(\hat{g}, x_j)\text{cd}(x_j), \]
where $[[\epsilon]]$ is the element of the free abelian group $\mathbb{Z}(\Gamma_{\beta,m})_c$ projecting c, and
\[(-1)^m \text{tr}_{\beta,m} \zeta_{n,m}(\beta) = \sum_{x \in \text{Fix} \hat{g}} \text{ind}(\hat{g}, x) \cdot \text{cd}(x). \]
In the above equality, the number of nonzero terms in the right hand side is $\text{eFix}(\hat{g})$. By Remark 3.2 there exists a positive number B such that the inequality
\[\# \text{eFix}(\hat{g}) \leq \left\| \text{tr}_{\beta,m} \zeta_{n,m}(\beta) \right\| \leq B \# \text{eFix}(\hat{g}) \]
holds.

We count the number of essential fixed points of \hat{g}^k. Let $\{x_1, \ldots, x_m\}$ be a fixed point of $\text{Fix}(\hat{g}^k)$. Then there exists an m-tuple (n_1, \ldots, n_m) of natural numbers with $\sum_{i=1}^{m} i n_i = m$ such that there exist n_i periodic orbits of g^k of period i in $\{x_1, \ldots, x_m\}$ for all $1 \leq i \leq m$. Let A_m be the set of such m-tuples and D^k_i be the number of essential periodic points of g^k of period i. Then there exist D^k_i/i periodic orbits of g^k of period i and we obtain
\[\# \text{eFix}(\hat{g}^k) = \sum_{(n_1, \ldots, n_m) \in A_m} \prod_{i=1}^{m} \binom{D^k_i}{n_i}. \]
Remark 4.4. When we consider the period of periodic points of g^k of period i as periodic points of g, we notice that $D^k_i = D^1_{g(k,i)i}$, where $g(k,i)$ is the greatest common divisor of k and i. Moreover, if i a divisor of k then periodic orbits of g of period i is contained in some periodic orbits of g of period k and D^1_i/i is equal to or greater than D^1_k/k. Therefore we have

$$D^k_i/i = D^1_{g(k,i)i}/i \geq D^1_{ki}/l(ki),$$

where $l(k,i)$ is the least common multiplier, and we obtain

$$\# \text{eFix}(\hat{g}^k) \geq \sum_{(n_1, \ldots, n_m) \in A_m} \prod_{i=1}^m \left(\frac{D^1_{ki}/l(k,i)}{n_i} \right).$$

5. Proof of the main theorem

In this section we conclude the proof of main theorem. We denote by λ the dilatation of a pseudo-Anosov braid β.

Proposition 5.1. For any pseudo-Anosov braid $\beta \in B_n$, the inequalities

$$\text{Growth}_{k \to \infty} \left\| \text{tr}_{\Gamma_{\beta, km}} \zeta_{n,m}(\beta^k) \right\| \geq \lambda^m$$

$$\text{Growth}_{m \to \infty} \left\| \text{tr}_{\Gamma_{\beta, m}} \zeta_{n,m}(\beta) \right\| \geq \lambda$$

hold.

Proof. We recall that $NI_{\Gamma_{\beta, l}}((g^k)^i)$ defined in Section 3.2 is a lower bound for the number of primary i-orbits of g^k. In other words, we have the inequality $D^k_i/i \geq NI_{\Gamma_{\beta, l}}((g^k)^i)$. When we use this inequality and Remark 4.3 and consider the case $(n_1, \ldots, n_m) = (0, \ldots, 0, 1)$, we obtain the inequality

$$\left\| \text{tr}_{\Gamma_{\beta, m}} \zeta_{n,m}(\beta^k) \right\| \geq \# \text{eFix}(\hat{g}^k) = \sum_{(n_1, \ldots, n_m) \in A_m} \prod_{i=1}^m \left(\frac{D^1_{ki}/l(k,i)}{n_i} \right) \geq \frac{D^k_m}{m} = \frac{D^1_{km}}{l(k,m)} \geq g(k,m)NI_{\Gamma_{\beta, l}}((g^{km}).$$

Since g is homotopic to f_{β}, we obtain

$$\text{Growth}_{k \to \infty} \left\| \text{tr}_{\Gamma_{\beta, km}} \zeta_{n,m}(\beta^k) \right\| \geq \text{Growth}_{k \to \infty} g(k,m)NI_{\Gamma_{\beta, l}}((g^{km}) = \lambda^m,$$

$$\text{Growth}_{m \to \infty} \left\| \text{tr}_{\Gamma_{\beta, m}} \zeta_{n,m}(\beta) \right\| \geq \text{Growth}_{m \to \infty} NI_{\Gamma_{\beta, l}}((g^{m}) = \lambda.$$

□

Proposition 5.2. For any pseudo-Anosov braid $\beta \in B_n$, the inequality

$$\text{Growth}_{k \to \infty} \left\| \zeta_{n,m}(\beta^k) \right\| \leq \lambda^m$$

holds.
Figure 6. The case when $\mu_1 = 6, K^k_{11} = 4, K^k_{12} = 2, K^k_{13} = 3, \rho_{11} = 1, \rho_{12} = 4, \rho_{13} = 1$

Proof. By (4.1), the (μ, ν)-entry of $\zeta_{m,n}(\beta^k)$ is $\langle \tilde{S}_\nu, \tilde{\beta}^k \left(\tilde{F}_{\mu} \right) \rangle$. We notice that $\langle \tilde{S}_\nu, \tilde{\beta}^k \left(\tilde{F}_{\mu} \right) \rangle$ is equal to or less than the number of intersections of S_ν and $\hat{g}^k(\hat{F}_\mu)$. We define K^k_{ij} to be the number of intersections of α^k_i and $g^k(N_j)$ and set $A^k = \sum_{ij} K^k_{ij}$. We set

$$M(n, \mu, \nu) = \left\{ \rho \in M(n-1, \mathbb{N}) \mid \sum_{i=1}^{n-1} \rho_{ij} = \nu_j, \sum_{j=1}^{n-1} \rho_{ij} = \mu_i \right\}.$$

For every i, j and $\rho \in M(n, \mu, \nu)$, we can choose ρ_{ij} paths from μ_i forks and choose one intersection from K^k_{ij} intersections for each forks; see Figure 6. Therefore we obtain

$$\langle \tilde{S}_\nu, \tilde{\beta}^k \left(\tilde{F}_{\mu} \right) \rangle \leq \sum_{\rho \in M(n, \mu, \nu)} \prod_{i=1}^{n-1} \mu_i \prod_{j=1}^{n-1} \frac{1}{\rho_{ij}!} (K^k_{ij})^{\rho_{ij}} \leq \left(\prod_{i=1}^{n-1} \mu_i \right) \sum_{\rho \in M(n, \mu, \nu)} \prod_{i=1}^{n-1} \frac{1}{\rho_{ij}!} (A^k)^{\rho_{ij}} = \left(\prod_{i=1}^{n-1} \mu_i \right) (A^k)^m \sum_{\rho \in M(n, \mu, \nu)} \prod_{i=1}^{n-1} \frac{1}{\rho_{ij}!}. $$
and
\[
\text{Growth}_{k \to \infty} \left\| \left[S_\nu \right], \beta_k \left(\left[\tilde{F}_\mu \right] \right) \right\| \leq \left(\text{Growth}_{k \to \infty} A^k \right)^m.
\]

It suffices to show \(\text{Growth}_{k \to \infty} A^k \leq \lambda \). We set
\[
U_i \cap g^{-1}(U_j) = \prod_{l=1}^{K_{ij}^l} V_{ijkl}
\]
and take an open cover \(\alpha = \{ V_{ijk} \mid 1 \leq i, j \leq n-1, 1 \leq k \leq K_{ij}^1 \} \cup A' \) of the compact set \(Y_n \), where \(A' \) does not contain any intersections of \(g^{-1}(\alpha_i) \) and \(N_j \).

Lemma 5.3. Each element of \(\bigvee_{p=0}^{k-1} g^{-p}(\alpha) \) contains at most one intersection of \(g^{-k}(\alpha_j) \) and \(N_i \).

Proof. Every nonempty element of \(\bigvee_{p=0}^{k-1} g^{-p}(\alpha) \) can be written as
\[
B = V_{i_0i_1i_2} \cap \cdots \cap g^{-k+1}(V_{i_{k-1}i_ki_k})
\]
with \(i_0 = i \) and \(i_k = j \). By the definition of \(\phi \) and \(\tilde{\phi}, g^k|_B : B \to U_j \) is bijective. Therefore \((g^k|_B)^{-1}(\alpha_j) \) is one leaf of \(U_i \) and there exists only one intersection of \(g^{-k}(\alpha_j) \) and \(N_i \). \(\square \)

It follows from Lemma 5.3 that
\[
A^\ell = \sum_{i,j} K_{ij}^\ell \leq N \left(\bigvee_{i=0}^{\ell-1} g^{-i}(\alpha) \right)
\]
and by (3.1), the growth rate of \(N \left(\bigvee_{i=0}^{\ell-1} g^{-i}(\alpha) \right) \) is equal to or less than the dilatation of \(\beta \). Therefore the proposition follows. \(\square \)

Proposition 5.4. For any pseudo-Anosov braid \(\beta \in B_n \), the inequality
\[
\text{Growth}_{m \to \infty} \left\| \text{tr}_{\Gamma, \beta, m} \zeta_{n, m}(\beta) \right\| \leq \lambda
\]
holds.

Proof. By Lemma 4.3 \(\left\| \text{tr}_{\Gamma, \beta, m} \zeta_{n, m}(\beta^k) \right\| \) is equal to or greater than the number of essential fixed points of \(\tilde{g}^k \). For \(m = 1 \), we notice that \(\tilde{g}^k \) is \(g^k \). Therefore \(\left\| \text{tr}_{\Gamma, \beta, 1} \zeta_{n, 1}(\beta^k) \right\| \) is equal to or greater than the number of essential periodic points of \(g \) whose period is a divisor of \(k \). In particular, we obtain \(\left\| \text{tr}_{\Gamma, \beta, 1} \zeta_{n, 1}(\beta^k) \right\| \geq D_k^1/k \). Therefore we obtain
\[
\left\| \text{tr}_{\Gamma, \beta, m} \zeta_{n, m}(\beta) \right\| \leq B \# \text{eFix} \tilde{g} = B \sum_{(n_1, \ldots, n_m) \in A_m} \prod_{i=1}^{m} \left(\frac{D_i^1/i}{n_i} \right)
\]
\[
\leq B \sum_{(n_1, \ldots, n_m) \in A_m} \prod_{i=1}^{m} \left(\left\| \text{tr}_{\Gamma, \beta, 1} \zeta_{n, 1}(\beta^i) \right\| \right).
\]
By Proposition 5.2, there exists a monotonically increasing sequence \{a_i\} of real numbers such that
\[\| \text{tr}_{\beta, 1} \zeta_{n, 1}(\beta^i) \| \leq (a_i \lambda)^i \text{ and } \limsup_{i \to \infty} a_i = 1 \]
holds. Therefore we obtain
\[\| \text{tr}_{\beta, m} \zeta_{n, m}(\beta) \| \leq B \sum_{(n_1, \ldots, n_m) \in A_m} \prod_{i=1}^{m} (a_i \lambda)^{m_i} \leq B (a_m \lambda)^m S_m, \]
where \(S_m \) is the number of elements of \(A_m \).

Lemma 5.5. The equality \(\lim_{m \to \infty} S_m^{1/m} = 1 \) holds.

Proof. We suppose that \(m - c_m > c_m d_m \), where
\[c_m = 4(\lfloor \sqrt[4]{m} \rfloor + 1)^2, \quad d_m = 4(\lfloor \sqrt[4]{m} \rfloor + 2) \]
and \(\lfloor x \rfloor \) is the floor function. Let \(C_m \) be the subset of \(A_m \) satisfying the following condition
\[\sum_{i=1}^{c_m} n_i = d_m \text{ and } n_m - \sum_{i=1}^{c_m} m_i = 1. \]
Then \(C_m \) is in one-to-one correspondence with the \(d_m \)-combinations with repetition from \(c_m \) elements. Therefore we obtain the inequality
\[S_m \geq \left(\frac{c_m + d_m - 1}{d_m} \right) = \left(\frac{4(\lfloor \sqrt[4]{m} \rfloor + 2)(\lfloor \sqrt[4]{m} \rfloor + 1)}{4(\lfloor \sqrt[4]{m} \rfloor + 2)} \right) \geq \left(\frac{\lfloor \sqrt[4]{m} \rfloor + 1}{\lfloor \sqrt[4]{m} \rfloor + 2} \right)^2 = m^{\lfloor \sqrt[4]{m} \rfloor + 2}. \]
We set
\[A_{m,k} = \{ (n_1, \ldots, n_m) \in A_m \mid \max\{i \mid n_i \neq 0\} = k \}, \]
and let \(S_{m,k} \) be the number of the elements of \(A_{m,k} \). Then clearly
\[S_m = \sum_{k=1}^{m} S_{m,k} \]
holds and the recursion formula
\[(5.1) \quad S_{m+1,k+1} = S_{m,k} + S_{m-k,k+1} \]
follows from the equality \(A_{m,k} = \bigsqcup_{j=1}^{k} A_{m-k,j} \). Moreover, \(S_{m,k} \) is less than the number of how to put \(m \) balls in distinct \(k \) boxes, which is \(m^k \).

We assume that \(\max k S_{m,k} = S_{m,k_0} \). Since \(S_m \leq m S_{m,k_0} \) holds, we obtain
\[m^{k_0} \geq S_{m,k_0} \geq \frac{1}{m} S_m \geq m^{\sqrt[4]{m}} \]
and \(k_0 \geq \sqrt[4]{m} \). From (5.1), we obtain
\[S_{m,k_0} \leq S_{2(m-k_0),m-k_0} = S_{m-k_0}. \]
Since \(S_m \) is monotonically increasing for \(m \), we obtain
\[S_m \leq m S_{m,k_0} \leq m S_{m-k_0} \leq m S_{m-\sqrt[4]{m}}. \]
There exists a natural number \(N \) such that the assumption holds for all \(m \geq N \). We set \(f(m) = m - \sqrt{m} \) and \(n_N(m) = \min\{i \mid f^i(m) \leq N\} \). Then we obtain \(S_m \leq m^{n_1(m)}S_N \). We notice that if \(x \) is larger than \((\sqrt{m} - 1)^4\), then \(x - f(x) = \sqrt{m}x \) is larger than \(\sqrt{m} - 1 \). Therefore we obtain

\[
f[\sqrt{m^2 - 2\sqrt{m} + 2}] + 1 \leq m - (\sqrt{m}(\sqrt{m} - 1)(\sqrt{m}^2 - 2\sqrt{m} + 2)) = (\sqrt{m} - 1)^4.
\]

Therefore we obtain

\[
n_N(m) \leq \sum_{k=1}^{m} [4k^2 - 2k + 2] + 1 \leq \sqrt{m}(4\sqrt{m^2 - 2\sqrt{m} + 3}) \leq 4m^{3/4}
\]

and

\[
1 < \sqrt[4]{S_m} \leq (m^{n_1(m)}S_{f^1(m)}(m))^{1/m} \leq \sqrt[4]{S_N m^{4m - 4}}.
\]

Since the limit \(\lim_{m \to \infty} \sqrt[4]{S_N m^{4m - 4}} \) equals 1, squeeze theorem leads to the conclusion \(\lim_{m \to \infty} S_m^{1/m} = 1 \). By this lemma, we obtain

\[
\limsup_{m \to \infty} \|\text{tr}_{\Gamma_{\beta,m}} \zeta_{n,m}(\beta)\|^{1/m} \leq \limsup_{m \to \infty} (BS_m)^{1/m} a_m \lambda = \lambda.
\]

Proof of Theorem 6.1. Since we have the inequality \(\text{tr}(A) \geq \|A\| \) for any matrix \(A \) with coefficients in Laurent polynomial ring, we obtain

\[
\lambda^m \leq \text{Growth} \|\text{tr}_{\beta^k,m} \zeta_{n,m}(\beta^k)\| \leq \text{Growth} \|\zeta_{n,m}(\beta^k)\| \leq \lambda^m
\]

by Proposition 5.1 and Proposition 6.2. Therefore we have

\[
\text{Growth} \|\text{tr}_{\beta^k,m} \zeta_{n,m}(\beta^k)\| = \text{Growth} \|\zeta_{n,m}(\beta^k)\| = \lambda^m.
\]

We have

\[
\lambda \leq \text{Growth} \|\text{tr}_{\beta,m} \zeta_{n,m}(\beta)\| \leq \lambda
\]

by Proposition 5.1 and Proposition 5.4 and we have \(\text{Growth} \|\text{tr}_{\beta,m} \zeta_{n,m}(\beta)\| = \lambda \). □

6. Homological representation of braid groups

6.1. Homological representation of braid groups. In [20], Lawrence construct a monodromy representation of braid groups. We review the representation. We take a homomorphism

\[
\rho_B : B_{n,1}(D^2) \cong \langle \sigma_1, \ldots, \sigma_{n-1}, \sigma_n^2 \rangle \to \mathbb{Z}
\]

defined by \(\rho_B(\sigma_i) = 0 \) for all \(1 \leq i < n \) and \(\rho_B(\sigma_n^2) = 1 \). Let \(p_B : \tilde{D}_n \to D_n \) be the covering corresponding to \(\text{Ker} \rho_B \) and fix \(\tilde{d} \in p_B^{-1}(d_1) \). For an \(n \)-braid \(\beta \), we take a representative \(f \). Let

\[
\tilde{f}_B : (\tilde{D}_n, \tilde{d}) \to (\tilde{D}_n, \tilde{d})
\]

be the lift of \(f \). Then \(\tilde{f}_B \) acts on \(H_1(\tilde{D}_n, \partial \tilde{D}_n) \) as \(\mathbb{Z}[\mathbb{Z}] \)-homomorphism. The linear representation \(B \) defined by \(B(\beta) = \tilde{f}_B^* \) is called the reduced Burau representation. Let \(t \) denote the generator of covering transformation.
of \(D_n^B \) corresponding to \(1 \in \mathbb{Z} \). Then the ring \(\mathbb{Z}[\mathbb{Z}] \) is isomorphic to the Laurent polynomial ring \(\mathbb{Z}[t^{\pm 1}] \) and \(B(\beta) \) can be regarded as a matrix with coefficients in the Laurent polynomial ring \(\mathbb{Z}[t^{\pm 1}] \). Similarly for \(m \geq 2 \), we take a homomorphism

\[
\rho_{LKB} : B_{n,m}(D^2) \cong (\sigma_1, \ldots, \sigma_{n-1}, \sigma_{n+1}, \ldots, \sigma_{n+m-1}) \to \mathbb{Z} \oplus \mathbb{Z}
\]
defined by \(\rho_{LKB}(\sigma_i) = 0 \oplus 0 \) for all \(1 \leq i < n \), \(\rho_{LKB}(\sigma_i^2) = 1 \oplus 0 \) and \(\rho_{LKB}(\sigma_{n+j}) = 0 \oplus 1 \) for all \(1 \leq j < m \). Let \(p_{LKB} : \mathcal{C}_{n,m}^{LKB}(D^2) \to C_{n,m}(D^2) \) be the covering corresponding to \(\text{Ker} \rho_{LKB} \) and fix \(\mathcal{C}_{n,m}^{LKB} \in p_{LKB}^{-1}(c) \). For \(\beta \in B_n \), we take a representative \(f \). Let

\[
\tilde{f}^{LKB} : (\mathcal{C}_{n,m}^{LKB}(D^2), \mathcal{C}_{n,m}^{LKB}) \to (\mathcal{C}_{n,m}^{LKB}(D^2), \mathcal{C}_{n,m}^{LKB})
\]
be the lift of \(\tilde{f} \). Then \(\tilde{f}^{LKB} \) acts on \(H_2(\tilde{B}_{n,m}^{LKB}(D^2)) \) as an \(\mathbb{Z}[\mathbb{Z} \oplus \mathbb{Z}] \)-homomorphism.

The linear representation \(LKB_m \) defined by \(LKB_m(\beta) = \tilde{f}_*^{LKB} \) is called the Lawrence-Krammer-Bigelow representations. Let \(q \) and \(t \) denote the generator of covering transformation of \(\mathcal{C}_{n,m}^{LKB}(D^2) \) corresponding to \(1 \oplus 0 \in \mathbb{Z} \oplus \mathbb{Z} \) and \(0 \oplus 1 \in \mathbb{Z} \oplus \mathbb{Z} \) respectively. Then the ring \(\mathbb{Z}[\mathbb{Z} \oplus \mathbb{Z}] \) is isomorphic to the Laurent polynomial ring \(\mathbb{Z}[q^{\pm 1}, t^{\pm 1}] \) and \(LKB_m(\beta) \) can be regarded as a matrix with coefficients in the 2-variable Laurent polynomial ring \(\mathbb{Z}[q^{\pm 1}, t^{\pm 1}] \).

The homological representation of braid groups has been also intensively studied. The Lawrence-Krammer-Bigelow representations of the braid groups were studied by Lawrence [20] in relation with Hecke algebra representations of the braid groups. In [3], [18] and [19], Bigelow and Krammer showed the faithfulness of the Lawrence-Krammer-Bigelow representation for \(m = 2 \) independently.

In [8], Fried showed how to estimate the entropy of a pseudo-Anosov braid by using the Burau matrix \(B(t) \) of a pseudo-Anosov braid. In [17], Kolev proved the same estimation directly with different methods. The following theorem is the estimate and this estimate is called the Burau estimate.

Theorem 6.1. (Fried [8], Kolev [17]) Let \(f \) be a homeomorphism of \(D^2 \) fixing \(P_n \) setwise and \(\beta \) be an \(n \)-braid represented by \(f \). Then the topological entropy of \(f \) is equal to or greater than the logarithm of the spectral radius of the Burau matrix \(B(t) \) of \(\beta \) after substituting a complex number of modulus 1 in place of \(t \).

If the inequality is an equality for \(\eta = \eta_0 \), then the Burau estimate is said to be sharp at \(\eta_0 \). In [2], Band and Boyland determined a necessary and sufficient condition when the Burau estimate is sharp at the root of unity.

Theorem 6.2. (Band and Boyland [2]) For a pseudo-Anosov braid \(\beta \), the Burau estimate is sharp at the root of unity \(\eta_0 \) only if \(\eta_0 = -1 \). Furthermore, the Burau estimate is sharp at \(-1\) if and only if the invariant foliations for a pseudo-Anosov map in the class represented by \(\beta \) have odd order singularities at all punctures and all interior singularities are even order.

In [16], Koberda shows the similar estimate by using Lawrence-Krammer-Bigelow representation.

Theorem 6.3. (Koberda [16]) For a pseudo-Anosov braid \(\beta \), the \(m \)-th power of the dilatation of \(\beta \) is equal to or greater than the spectral radius of the
Lawrence-Krammer-Bigelow matrix $LKB_m(q,t)$ of β after substituting complex numbers of modulus 1 in place of q and t.

6.2. **Homological estimation and Theorem 1.1.** In this section, we recover the estimation in [8], [17] and [16] using Theorem 1.1. If we have a homomorphism ρ from $E_{n,m}(D^2)$ to some group G, we have another representation $\rho_*(\zeta_{n,m})$ on the free $\mathbb{Z}[G]$-module defined by $\rho_*(\zeta_{n,m}) = (\rho_*(c^{(i)}_{\mu\nu}))$. Moreover, if G is a finitely generated free abelian group, $\mathbb{Z}[G]$ can be embedded in \mathbb{C} and in this way, $\rho_*(\zeta_{n,m})$ gives rise to a linear representation $\rho'_*(\zeta_{n,m})$ over \mathbb{C}.

When $m = 1$, Let $\rho'_B : E_{n,1}(D^2) \to \mathbb{Z}$ be a the homomorphism defined by $\rho'_B(\sigma_i) = 0$ for all $1 \leq i < n$ and $\rho'_B(\sigma_n^2) = 1$. When $m \geq 2$, let $\rho'_{LKB} : E_{n,m}(D^2) \to \mathbb{Z} \oplus \mathbb{Z}$ be a homomorphism defined by $\rho'_{LKB}(\sigma_i) = 0 \oplus 0$ for all $1 \leq i < n$, $\rho'_{LKB}(\sigma_n^2) = 1 \oplus 0$ and $\rho'_{LKB}(\sigma_{n+j}) = 0 \oplus 1$. We consider the homomorphism from $\text{Aut}_R(R \otimes_{R_B} H_F)$ induced by ρ'_{LKB}. Since $\rho'_{LKB}(\sigma_i)$ is $0 \oplus 0$ for all $1 \leq i < n$, the action as the right multiplication becomes trivial and $(\rho'_{LKB})_* (\zeta_{n,m})$ is equivalent to the Lawrence-Krammer-Bigelow representations for all $m \geq 2$. Similarly, $(\rho'_B)_*(\zeta_{n,m})$ is equivalent to the reduced Burau representation.

For any matrix A with coefficients in n-variable Laurent polynomial ring and complex numbers x_1, \ldots, x_n, we denote by $A(x_1, \ldots, x_n)$ the matrix with coefficients in \mathbb{C} substituting x_i for i-th variable. For any matrix A with coefficients in \mathbb{C}, we denote by $\text{sr } A$ the spectral radius of A. We state the main result of this section.

Proposition 6.4. For any matrix A with coefficients in the Laurent polynomial ring $\mathbb{Z}[x_1, \ldots, x_n]$, we have

$$\text{Growth}_{k \to \infty} \left\| \text{tr } A^k \right\| = \sup_{x_i \in S^1} \text{sr } A(x_1, \ldots, x_n).$$

Let $I = (i_1, \ldots, i_n)$ be a multi index and $x^I = \prod_{k=0}^{n} x_k^{i_k}$.

Lemma 6.5. We suppose $f(x_1, \ldots, x_n) = \sum_{i=0}^{M} \cdots \sum_{i=0}^{M} a_I x^I$ is an n-variable polynomial of degree M. Then we have the inequality

$$\sum_{I} |a_I| \leq (M + 1)^n \sup_{x_i \in S^1} |f(x_1, \ldots, x_n)|$$

Proof. First of all, we prove the case $n = 1$. Then $f(x)$ is a polynomial $\sum_{i=0}^{M} a_i x^i$ of degree M. We consider the Vandermonde matrix

$$V = V_{M+1}(x_0, \ldots, x_M) = \begin{pmatrix} 1 & x_0 & \cdots & x_0^M \\ 1 & x_1 & \cdots & x_1^M \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_M & \cdots & x_M^M \end{pmatrix}.$$

Then we have $V a = A$, where

$$a = \begin{pmatrix} a_0 \\ \vdots \\ a_M \end{pmatrix} \quad \text{and} \quad A = \begin{pmatrix} f(x_0) \\ \vdots \\ f(x_M) \end{pmatrix}.$$
We denote by σ_m the m-th elementary symmetric function in the $(M + 1)$ variables x_0, \ldots, x_M. In other words, we have

$$\sigma_m = \sigma_m(x_0, \ldots, x_M) = \sum_{\nu \in S_m} x_{\nu(1)} \cdots x_{\nu(m)}$$

for all $1 \leq m \leq M + 1$ and $\sigma_0 = 1$. We use the notation σ_m^i to denote the m-th elementary symmetric function in the M variables x_k with x_i missing. In other words, we have

$$\sigma_m^i = \sigma_m(x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_M).$$

We set $V^{-1} = (v_{ij})_{0 \leq i, j \leq M}$. It is well known (see [9]) that we have

$$v_{ij} = (-1)^i \frac{\sigma_{M-i}^j}{\prod_{k \neq j}(x_k - x_j)}$$

We put $\theta = \pi/M + 1$ and $x_k = \exp(2\sqrt{-1}k\theta)$. Since x_i’s are all the roots of $z^{M+1} - 1 = 0$, we obtain $\sigma_m(x_0, \ldots, x_M) = 0$ for all $1 \leq m \leq M$. Since the recursion formula $\sigma_{m+1}^i = \sigma_m - x_i\sigma_m^i$ holds, we obtain $\sigma_{m+1}^i = -x_i\sigma_m^i$ and $\sigma_m^i = (-x_i)^m$. Then we obtain

$$|v_{ij}| = \left| (-1)^{i-1} \frac{\sigma_{M-i}^j}{\prod_{k \neq j}(x_k - x_j)} \right| = \frac{1}{\prod_{k=1}^{M}(2\sin k\theta)}.$$

Since we have $a = V^{-1}A$, we have the inequality

$$|a_i| \leq \frac{M + 1}{\prod_{k=1}^{M}(2\sin k\theta)} \max_k |f(x_k)| \leq \frac{M + 1}{\prod_{k=1}^{M}(2\sin k\theta)} \sup_{x \in S^1} |f(x)|.$$

Lemma 6.6. The equality $\prod_{k=1}^{M}(2\sin k\theta) = M + 1$ holds.

Proof. We set

$$\cos(2n - 1)\theta = \cos \theta f_n(\cos \theta), \quad \sin 2n\theta = 2\theta g_n(\cos \theta)$$

for $n \geq 1$. Since

$$\begin{cases}
\cos(2n + 3)\theta + \cos(2n - 1)\theta = 2\cos 2\theta \cos(2n + 1)\theta \\
\sin 2(n + 2)\theta + \sin 2n\theta = 2\cos 2\theta \sin 2(n + 1)\theta,
\end{cases}$$

hold, we obtain recursion formulae $f_{n+2}(x) = 2(2x^2 - 1)f_{n+1}(x) - f_n(x)$ and $g_{n+2}(x) = 2(2x^2 - 1)g_{n+1}(x) - g_n(x)$. Moreover, because of the initial conditions $f_1(x) = 1$, $f_2(x) = 4x^2 - 3$, $g_1(x) = 1$ and $g_2(x) = 4x^2 - 2$, $f_n(x)$ and $g_n(x)$ are polynomials of degree $2(n - 1)$. Solving the recursion formulae of leading coefficient and constant term, we find that the leading coefficients of $f_n(x)$ and $g_n(x)$ is 4^n, the constant term of $f_n(x)$ is $(2n - 1)(-1)^{n-1}$ and the constant term of $g_n(x)$ is $n(-1)^{n-1}$.

There exist distinct $2(n - 1)$ solutions

$$\pm \sin(k\pi/(2n - 1)) = \cos(\pi/2 \pm k\pi/(2n - 1)) \quad k = 1, \ldots, n - 1$$

of $f_n(x) = 0$ and distinct $2(n - 1)$ solutions

$$\pm \sin(k\pi/2n) = \cos(\pi/2 \pm k\pi/2n) \quad k = 1, \ldots, n - 1$$

of $g_n(x) = 0$. Vieta’s formula implies $\prod_{k=1}^{M}(2\sin k\theta) = M + 1$.

□
Lemma 6.6 implies $\sum_{i=0}^{M} |a_i| \leq (M+1) \sup_{x \in S^1} |f(x)|$.

Now we consider the general case. For any n-variable polynomial

$$f(x_1, \ldots, x_n) = \sum_{i_1=0}^{M} \cdots \sum_{i_n=0}^{M} a_{i_1}x_1^{i_1}$$

of degree M, we set

$$f(x_1, \ldots, x_n) = \sum_{i_n=0}^{M} f_i(x_1, \ldots, x_{n-1})x_n^{i_n}.$$

Then we obtain

$$\sup_{x_1, \ldots, x_{n-1} \in S^1} \sum_{i} |f_i(x_1, \ldots, x_{n-1})| \leq (M+1) \sup_{x_1, \ldots, x_n \in S^1} |f(x_1, \ldots, x_n)|.$$

Repeating this n times shows the inequality

$$\sum_{i} |a_i| \leq (M+1)^n \sup_{x_1, \ldots, x_n \in S^1} |f(x_1, \ldots, x_n)|.$$

\[\square \]

Proof of Proposition 6.4. We notice that

$$\sup_{x_i \in S^1} \left| \sum_{i_1=m}^{M} \cdots \sum_{i_n=m}^{M} a_{i_1}x_1^{i_1} \right| = \sup_{x_i \in S^1} \left| \sum_{i_1=0}^{M-m} \cdots \sum_{i_n=0}^{M-m} a_{i_1}x_1^{i_1} \right|$$

holds. We denote by A a matrix with coefficients in n-variable Laurent polynomial ring. Let M and m be the maximum and minimum degree of all entries of A. Then the maximum degree of all entries of A^k is equal to or less than kM and the minimum degree of all entries of A^k is equal to or greater than km. Using Lemma 6.5 we obtain

$$\sup_{x_i \in S^1} |\text{tr} A^k(x_1, \ldots, x_n)| \leq \left\| \text{tr} A^k \right\| \leq (k(M-m)+1)^n \sup_{x_i \in S^1} |\text{tr} A^k(x_1, \ldots, x_n)|.$$

Therefore we obtain

$$\text{Growth} \left\| \text{tr} A^k \right\| = \text{Growth} \sup_{x_i \in S^1} |\text{tr} A^k(x_1, \ldots, x_n)|.$$

Cayley-Hamilton theorem shows

$$\text{tr} A^k(x_1, \ldots, x_n) = \lambda_1^k + \cdots + \lambda_N^k,$$

where $\lambda_1, \ldots, \lambda_N$ are the eigenvalues of $A(x_1, \ldots, x_n)$. Therefore we obtain

$$\text{Growth} \sup_{x_i \in S^1} |\text{tr} A^k(x_1, \ldots, x_n)| = \sup_{x_i \in S^1} \text{sr} A(x_1, \ldots, x_n).$$

\[\square \]

Using Proposition 6.4 we recover the estimation in [8], [17] and [16].

Corollary 6.7. For a pseudo-Anosov braid β, the dilatation of β is equal to or greater than the spectral radius of the Burau matrix $B(t)$ of β after substituting a complex number of modulus 1 in place of t and the m-th power of the dilatation of β is equal to or greater than the spectral radius of the Lawrence-Krammer-Bigelow matrix $LKB_m(q,t)$ of β after substituting complex numbers of modulus 1 in place of q and t.

FIXED POINT THEORY AND DILATATION 23

Proof. Since $\|\text{tr}(\rho)_{*}(\zeta_{n,m})(\beta^{k})\|$ is equal to or less than $\|\text{tr}_{\beta^{k},m}\zeta_{n,m}(\beta^{k})\|$, we obtain

$$\text{Growth}_{k \to \infty} \left\| \text{tr}(\rho'_{B})_{*}(\zeta_{n,1})(\beta^{k}) \right\| \leq \lambda$$

and

$$\text{Growth}_{k \to \infty} \left\| \text{tr}(\rho'_{LKB})_{*}(\zeta_{n,m})(\beta^{k}) \right\| \leq \lambda^{m}.$$

From Proposition 6.4 we obtain

$$\text{Growth}_{k \to \infty} \left\| \text{tr}(\rho'_{B})_{*}(\zeta_{n,1})(\beta^{k}) \right\| = \sup_{t \in S^{1}} B(t)$$

and

$$\text{Growth}_{k \to \infty} \left\| \text{tr}(\rho'_{LKB})_{*}(\zeta_{n,m})(\beta^{k}) \right\| = \sup_{q,t \in S^{1}} LKB_{m}(q,t).$$

Therefore we obtain

$$\sup_{t \in S^{1}} B(t) \leq \lambda \quad \text{and} \quad \sup_{q,t \in S^{1}} LKB_{m}(q,t) \leq \lambda^{m}.$$

□

On the other hand, it is not known whether $\text{Growth}_{m \to \infty} \left\| \text{tr}(\rho_{LKB})_{*}(\zeta_{n,m})(\beta) \right\|$ is λ or not. If $\text{Growth}_{m \to \infty} \left\| \text{tr}(\rho_{LKB})_{*}(\zeta_{n,m})(\beta) \right\|$ is not necessarily λ, there exists some sufficient condition for $\text{Growth}_{m \to \infty} \left\| \text{tr}(\rho_{LKB})_{*}(\zeta_{n,m})(\beta) \right\| = \lambda$. Clearly the condition in Theorem 6.2 is a sufficient condition for the above equality. We want to reveal whether this sufficient condition is the best condition or not.

ACKNOWLEDGEMENT

I would like to show my greatest appreciation to Professor Toshitake Kohno whose comments and suggestions were of inestimable value for my study. Special thanks also go to the member of the same seminar whose opinions and information have helped me very much throughout the production of this study. I would also like to express my gratitude to my family for their moral support and warm encouragements.

REFERENCES

[1] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319.
[2] G. Band and P. Boyland, The Burau estimate for the entropy of a braid, Algebr. Geom. Topol. 7 (2007), 1345-1378.
[3] M. Bestvina and M. Handel, Train-tracks for surface homeomorphisms, Topology 34 (1995), no. 1, 109-140.
[4] S. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001), 471-486.
[5] S. Bigelow, A homological definition of the Jones polynomial, Geom. Topol. Monogr. 4 (2002), 29-41.
[6] S. Bigelow, The Lawrence-Krammer representation, Topology and geometry of manifolds (Athens, GA, 2001), 51-68, Proc. Sympos. Pure Math., 71, Amer. Math. Soc., Providence, RI, 2003.
[7] A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les surfaces, Séminaire Orsay, Astérisque, vol. 66-67, Soc. Math. France, Paris, (1979).
[8] D. Fried, Entropy and twisted cohomology, Topology 25 (1986), 455-470.
[9] W. Galitski, On inverses of Vandermonde and confluent Vandermonde matrices, Numerische Mathematik 4 (1962), 117-123.
[10] N.V. Ivanov, *Entropy and the Nielsen numbers*, Soviet Math. DokL, 26 (1982), 63-66.

[11] B. Jiang, *Lectures on Nielsen Fixed Point Theory*, Contemp. Math., vol. 14, Amer. Math. Soc, Providence, 1983.

[12] B. Jiang, *A characterization of fixed point classes*, Fixed Point Theory and its Applications, (R.F. Brown ed.), Contemp. Math., vol. 72, Amer. Math. Soc, Providence, 1988, 157-160.

[13] B. Jiang, *Estimation of the number of periodic orbits*, Pacific J. Math. Volume 172, Number 1 (1996), 151-185.

[14] B. Jiang and H. Zheng, *A trace formula for the forcing relation of braids*, Topology 47 (2008), 51-70.

[15] B. Jiang, X. Zhao and H. Zheng, *On fixed points of stratified maps*, Journal of Fixed Point Theory and Applications 2.2 (2007), 225-240.

[16] T. Koberda, *Asymptotic linearity of the mapping class group and a homological version of the Nielsen-Thurston classification*, Geom. Dedicata 156 (2012), 13-30.

[17] B. Kolev, *Entropie topologique et représentation de Burau*, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), 835-838.

[18] D. Krammer, *Braid group B_4 is linear*, Invent. math. 142 (2000), 451-486.

[19] D. Krammer, *Braid groups are linear*, Ann. of Math. (2) 155 (2002), 131-156.

[20] R. J. Lawrence, *Homological representations of the Hecke algebra*, Comm. Math. Phys. 135 (1990), no. 1, 141-191.

[21] W. Thurston, *On the geometry and dynamics of diffeomorphisms of surfaces*, Bull. Amer. Math. Soc. 19 (1988), 417-431.

[22] P. Walters, *An Introduction to Ergodic Theory*, Springer, New York, (1982).