Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Research and recommended resources on Zika virus, pathology, and control

Rajkumar Rajendram, Victor R. Preedy, and Vinood B. Patel

Abbreviations
- COVID-19: Coronavirus Disease 2019
- US: United States of America
- WHO: World Health Organization

Introduction

As with many of the greatest scientific advances, the discovery of the Zika virus was at least partly serendipitous. The virus was first isolated from a rhesus macaque monkey, in 1947, during studies conducted in the Zika Forest of Uganda, to identify the vector of yellow fever (Dick, Kitchen, & Haddow, 1952; Musso & Gubler, 2016; Sikka et al., 2016). The “filterable transmissible agent” isolated from its serum was named after the Zika Forest (Dick et al., 1952).

It was first suggested that Zika could infect humans after the results of a serological survey in Uganda were published in 1952 (Dick et al., 1952). Further serendipity in 1962 resulted in the first confirmation of an acute human infection. In 1964, Simpson, reported his observations after accidentally infecting himself with Zika while isolating the virus from mosquitoes (Simpson, 1964).

The Zika virus is a member of the genus Flaviviridae of viruses (Musso & Gubler, 2016; Sikka et al., 2016). Related to viruses that cause dengue, yellow fever, Japanese encephalitis, and West Nile fever (Musso & Gubler, 2016; Sikka et al., 2016) it is spread by Aedes mosquitoes (e.g., A. aegypti, A. albopictus) (Musso & Gubler, 2016; Sikka et al., 2016). The Zika virus replicates in the mosquito’s salivary glands and is present in the mosquito’s saliva. The virus can infect human epidermal keratinocytes, skin fibroblasts, and Langerhans cells if inoculated into human skin by an infected mosquito (Musso & Gubler, 2016; Sikka et al., 2016). The virus then spreads to lymph nodes and enters the bloodstream (Chan, Choi, Yip, Cheng, & Yuen, 2016).

Within the first 60 years of Zika’s discovery (i.e., until 2007), epidemic infections were unheard of. Less than 20 cases of confirmed human infection were described between 1952 and 2007 (Musso & Gubler, 2016; Sikka et al., 2016). However, in retrospect, because the clinical presentation of Zika is nonspecific (Chan et al., 2016; Musso & Gubler, 2016), these sporadic cases are likely to have represented only the very tip of the iceberg of this infection. Many cases are likely to have been either managed symptomatically or misdiagnosed as dengue, Japanese encephalitis, or another flaviviral infection endemic to the regions where Zika virus is prevalent.

Since 2007, several large epidemics of Zika virus infection have left their mark around the world. The most recent epidemic began in April 2015 in Brazil, and spread to other several countries in North and South America (Musso & Gubler, 2016; Sikka et al., 2016).

Infection with Zika usually causes mild if any symptoms. This illness known as Zika fever or Zika virus disease is like a very mild form of dengue fever (Chan et al., 2016; Musso & Gubler, 2016). At the time of writing this chapter in late 2019, although several specific vaccines and antivirals are under development; the illness cannot be prevented and there is no specific treatment. However, supportive treatment (e.g., paracetamol, fluids, and rest) may relieve the symptoms associated with a mild Zika fever (Chan et al., 2016).
Unfortunately, in some people, infection with Zika virus can have severe consequences. For example, Guillain-Barré syndrome is a rare sequela of Zika infection (Chan et al., 2016; Musso & Gubler, 2016; Sikka et al., 2016) and a woman infected while pregnant can pass the infection on to the fetus in utero (Chan et al., 2016; Musso & Gubler, 2016; Sikka et al., 2016). This may be ruinous because the consequences of in utero infection with Zika include devastating birth defects such as microcephaly and severe malformations of the brain (Chan et al., 2016; Musso & Gubler, 2016; Sikka et al., 2016).

During the most recent epidemic, an estimated 1.5 million people were infected by Zika, in North and South America and over 3500 cases of microcephaly were reported (Chan et al., 2016; Musso & Gubler, 2016; Sikka et al., 2016). In February 2016, the WHO declared this situation a Public Health Emergency of International Concern (Sikka et al., 2016). Several countries issued travel warnings with specific guidance aimed at pregnant women (Sikka et al., 2016). In November 2016, the WHO declared that Zika virus was no longer a global emergency (WHO, 2016). However, the WHO still considers the virus to be “a highly significant, long-term problem” (WHO, 2016).

While there are many important differences between Zika virus and Coronavirus 2019 (COVID-19), the local, regional, national, and international responses to these viral pandemics were broadly similar. Observations on the efficacy of public health initiatives during Zika epidemics greatly facilitated the initiation of these policies (e.g., quarantines, restriction of local and international travel, closure of schools, physical distancing measures, and educational campaigns) during the global COVID-19 pandemic.

There has been an explosion in the knowledge and understanding of the Zika virus since it was first isolated in 1947. The recent epidemics of Zika virus infection have piqued international interest; further fuelling research in this rapidly developing field. It is now difficult even for experienced scientists to remain up-to-date.

Scientists, academics, or scholars are often interested to know which research centers are most active, and what type of material is being published. Other queries related to what resources the experienced scientists would suggest remaining up to date.

To assist colleagues who are interested in the characteristics of research in the area of Zika induced pathology, transmission, and control, we have compiled a section on bibliometric statistics. To assist colleagues who are interested in understanding more about this field, we have produced tables containing up-to-date resources in this chapter. The experts who assisted with the compilation of the data on research and the tables of resources are acknowledged below.

Bibliometric statistics

Figs. 1–4 illustrate the most current data on research relevant to the Zika virus. At the time of writing, there were about 10,000 publications listed in Scopus, Elsevier, relevant to Zika virus most of which have been published since 2015. Figs. 1–2 illustrate the type (Fig. 1) and specific subject areas (Fig. 2) of these important publications. Figs. 3 and 4 show the countries (Fig. 3) and research centers (Fig. 4) which contributed to this lifesaving work.

FIG. 1 Types of documents published on Zika virus transmission, effects, and control. This figure represents the analysis of approximately 9961 documents published between 2015 and 2020. Generated from Scopus.
FIG. 2 Subject areas of documents published on Zika virus transmission, effects, and control. This figure represents the analysis of documents published between 2015 and 2020. Generated from Scopus.

FIG. 3 Country/Region of publication of articles on Zika virus transmission, effects, and control. This figure represents the country ascribed to the author’s country or region. Generated from Scopus.

FIG. 4 Documents published on Zika virus by affiliation. Total documents published on Zika virus over the past 5 years (up to 2020). Key: Centers for Disease = Centers for Disease Control and Prevention; Universidade de Sao = Universidade de Sao Paulo—USP; UT Medical Branch a = University of Texas Medical Branch at Galveston; Universidade Federal = Universidade Federal do Rio de Janeiro; National Institutes of = National Institutes of Health NIH; National Center for = National Center for Emerging and Zoonotic Infectious Diseases; Hainan Medical Univ = Hainan Medical University. Generated from Scopus.
Resources

Tables 1–6 list the most up-to-date information on the regulatory bodies (Table 1), journals (Table 2), books (Table 3), professional societies (Table 4), online resources and platforms (Table 5), and other resources for health care professionals or patients (Table 6) who are relevant to an evidence-based approach to Zika virus.

| TABLE 1 Regulatory bodies and relevant organizations. |
|---|---|
| ASEAN Plus Three Field Epidemiology Training Network (ASEAN+3 FETN) http://www.aseanplus3fetn.net/ |
| ASEAN-Emergency Operation Centre (EOC) Network https://asean.org/ |
| Brazilian Health Ministry https://www.saude.gov.br/component/tags/tag/combate-aedes |
| Bureau of Epidemiology (Thailand)-Zika http://www.boe.moph.go.th/boedbl/surdata/disease.php?ds=87 |
| Centers for Disease Control and Prevention (CDC)-Zika Virus https://www.cdc.gov/zika/ |
| Centers for Disease Control and Prevention-Zika Virus Statistics and Maps https://www.cdc.gov/zika/reporting/index.html |
| European Centre for Disease Prevention and Control (EDCD) https://www.ecdc.europa.eu/en/zika-virus-disease |
| Evandro Chagas Institute (IEC) https://www.iec.gov.br/saiba-mais-virus-zika/ |
| Fiocruz www.fiocruz.br |
| Fundação Oswaldo Cruz—FIOCRUZ https://portal.fiocruz.br/zika |
| Instituto Nacional de Saude da Mulher, Criança e Adolescente www.iff.fiocruz.br |
| John Hopkins Center for Health Security https://www.centerforhealthsecurity.org/ |
| Ministry of Health of Brazil https://www.saude.gov.br/saude-de-a-z/zika-virus |
| Ministry of Health-New Zealand https://www.health.govt.nz/your-health/conditions-and-treatments/diseases-and-illnesses/zika-virus |
| National Health Service (NHS) https://www.nhs.uk/conditions/zika/ |
| National Institute of Allergy and Infectious Diseases (NIAID) https://www.niaid.nih.gov/diseases-conditions/addressing-zika |
| Nextstrain https://nextstrain.org/zika |
| National Institute of Allergy and Infectious Diseases (NIAID) https://www.niaid.nih.gov/diseases-conditions/zika-virus |
| Organização das Nações Unidas (ONU)—Brazil https://nacoesunidas.org/tema/zika/ |
| Oswaldo Cruz Foundation https://rededengue.fiocruz.br/ |
| Pan American Health Organization (PAHO)-Zika https://www.paho.org/hq/index.php?option=com_topics&view=article&id=427&Itemid=41484&lang=en |
TABLE 1 Regulatory bodies and relevant organizations—cont’d

Organization	Website
Public Health Agency of Canada (PHAC)	https://www.canada.ca/en/public-health/services/diseases/zika-virus.html
Portal PEBMED	https://pebmed.com.br/tag/zika/
Southeast Asian Ministers of Education—Tropical Medicine and Public Health Network (SEAMEO TROPMED)	https://seameotropmednetwork.org/
UNICEF	https://www.unicef.org
US Department of Health & Human Services (HHS)	https://www.hhs.gov/op/opa/reproductive-health/zika/index.html
World Health Organization (WHO)	https://www.who.int
Zika virus Caribbean	http://www.zika-virus.com/
ZIKAVID	https://zikavid.org

This table lists the regulatory bodies and organizations involved with Zika virus and associated specialities or interests. The links were accurate at the time of going to press but may move or alter. There are also lists of sites in Tables 4–6.

TABLE 2 Journals relevant to Zika virus.

- PLOS Neglected Tropical Diseases
- Scientific Reports
- Viruses
- Emerging Infectious Diseases
- PLoS One
- Lancet Infectious Diseases
- Lancet
- Journal of Virology
- Antiviral Research
- Frontiers in Microbiology
- Morbidity and Mortality Weekly Report
- American Journal of Tropical Medicine and Hygiene
- Journal of Infectious Diseases
- Nature
- Nature Communications
- Science
- Travel Medicine and Infectious Disease
- New England Journal of Medicine
- Parasites and Vectors
- BMJ Clinical Research Ed
- PLOS Pathogens

Continued
TABLE 2 Journals relevant to Zika virus—cont’d

Journals
Eurosurveillance
Annals of Tropical Medicine and Public Health
Emerging Microbes and Infections
Frontiers in Immunology
International Journal of Infectious Diseases
Cell Host and Microbe
Journal of Medical Entomology
Acta Tropica
BMC Infectious Diseases

Journals publishing original research and review articles related to Zika virus. Included in this list are the top 30 journals which have published the most number of articles on Zika virus over the past 5 years. Data derived from Scopus. Some journals and specific articles are also listed in Table 6.

TABLE 3 Relevant books and selected articles.

Books
Bradley’s Neurology in Clinical Practice (7th ed.). Neuroimmunology (Chapter 51). Daroff R B, Jankovic J, Mazziotta J C, Pomeroy S L. Elsevier, 2016
Chikungunya and Zika Viruses: Global Emerging Health Threats. Higgs S, Vanlandingham D L, Powers A. Academic Press, 2018
Current Topics in Zika. Rodriguez-Morales A J. IntechOpen, 2018
Dengue, Zika e Chikungunya: Diagnostica, Tratamento e Prevencao. De Souza L J. Rubio, 2016
Ecological Aspects for Application of Genetically Modified Mosquitoes. Takken W, Scott T W. Kluwer Academic, 2003
Epidemics and Society: From the Black Death to the Present. Snowden F M. Yale University Press, 2019
Genetic Control of Malaria and Dengue. Adelman Z N. Academic Press, 2016
Global Virology I—Identifying and Investigating Viral Diseases. Shapshak P, Sinnott J T, Somboonwit C, Kukn J H. Springer, 2015
Health Program Planning: An Educational and Ecological Approach (4th ed.). Green LW, Kreuter M W. McGraw-Hill Higher Education, 2005
Locating Zika: Social Change and Governance in an Age of Mosquito Pandemics. Bardosh K. Routledge, 2019
Mosquito-Borne Diseases. Implications for Public Health. Benelli G, Mehlhorn H. Springer, 2018
New Advances on Zika Virus Research. Martinez-Sobrido L, Almazan F. MDPI AG, 2019
One Health: People, Animals, and the Environment Atlas R M, Maloy S. ASM Press, 2014
Sintrone Congenita do Virus da Zika, Microcefalia e Outras Alteracoes do Neurodesenvolvimento: Guia Pratico para Profissionais da Educacao. Lyra P V, Almeida E. Appris, 2019
Sindrome De Guillain-Barre Asociado A Infeccion Por Virus Del Zika. Merida A L. EAE, 2018
The Zika Virus Handbook: A Doctor Explains All You Need to Know About the Pandemic. Alton J. Doom and Bloom, 2016
Theoretical Foundation of Health Education and Health Promotion (3rd ed.). Sharma, M. Jones and Bartlett Publishers. 2008
Viral Polymerases. Structures, Functions and Roles as Antiviral Drug Targets. Gupta S P. Academic Press, 2018
World Epidemics: A Cultural Chronology of Disease from Prehistory to the Era of Zika. Snodgrass M E. McFarland Publishing, 2017
Zhaika Bingdu Bing Jiqi Fangzhi (Chinese). Zhou Z. Science Press, 2017
Zhaika Bingdu Yu Zhaika Bingdu Bing (in Chinese). Gao G F. People’s Medical Publishing House, 2019
Zika in Focus: Postnatal Clinical, Laboratorial and Radiological Aspects. Aragao F M V V. Springer, 2017
Zika Virus Methods and Protocols. Kobinger G, Racine T. Springer, 2020
Zika Virus and Diseases: From Molecular Biology to Epidemiology. da Silva S R, Cheng F, Gao S-J. Wiley Blackwell, 2018
Title
--
Zika Virus Disease From Origin to Outbreak
Zika Virus Disease: Prevention and Cure
Zika Virus Infection, Vaccinology, and Anti-Zika Drug Discovery:
Computer-Assisted Strategies to Combat the Menace
Zika Virus. An Overview
Zika: From the Brazilian Backlands to Global Threat
Zika: The Emerging Epidemic
A Review of the Ongoing Research on Zika Virus Treatment
ATR-FTIR spectroscopy with chemometric algorithms of multivariate
classification in the discrimination between healthy vs. dengue vs.
chikungunya vs. Zika clinical samples
Discordant Congenital Zika Syndrome Twins Show Differential In Vitro
Viral Susceptibility of Neural Progenitor Cells.
Does Immunity After Zika Virus Infection Cross-Protect Against Dengue
Enhtomo-Virological Surveillance Strategy for Dengue, Zika and
Chikungunya Arboviruses in Field-Caught Aedes Mosquitoes in an
Endemic Urban Area of the Northeast of Brazil.
Improved Reverse Transcription-Polymerase Chain Reaction Assay for
the Detection of Flaviviruses With Semi-Nested Primers for
Discrimination Between Dengue Virus Serotypes and Zika virus.
Innate Immune Response in Patients With Acute Zika Virus Infection.
Immunol2019.
New Advances on Zika Virus Research.
New Spectrum of the Neurologic Consequences of Zika.
Safety, tumor reduction and clinical impact of Zika virus infection
in dogs with advanced-stage brain tumors.
The AZ of Zika Drug Discovery.
Zika Virus in Vietnam, Laos, and Cambodia: Are There Health Risks
for Travelers?
Zika Virus Infection in Vietnam: Current Epidemic, Strain Origin,
Spreading Risk, and Perspective.
Zika Virus Pathogenesis and Tissue Tropism.
Mottin R, et al.
Zika Virus Selectively Kills Aggressive Human Embryonal CNS Tumor
Cells In Vitro and In Vivo.
Zika Virus-Induced Microcephaly and Its Possible Molecular Mechanism
Zika Virus: Emergence, Phylogenetics, Challenges, and Opportunities.

This table lists books and papers on Zika virus pathology, transmission and control.
Table 4: Professional societies and other organizations.

Organization	Website
Agencia Nacional de Saúde Suplementar (ANS)—Brazil	http://www.ans.gov.br
American Society for Microbiology	https://jcm.asm.org
American Society for Reproductive Medicine (ASRM)	https://www.asrm.org/
American Society for Virology (ASV)	www.asv.org
American Society of Tropical Medicine and Hygiene	https://www.astmh.org/
Association of Health Care Journalists	https://healthjournalism.org/
Brazilian College of Radiology	https://cbr.org.br/
Brazilian Society of Immunology	https://sbi.org.br/
Brazilian Society of Infectious Diseases	https://www.infectologia.org.br/
Brazilian Society of Microbiology	https://sbmicrobiologia.org.br/
Canadian Society for Virology (CSV)	https://www.csv-scv.ca/en/home
Infectious Diseases Society of America (IDSA)	https://www.idsociety.org
Sociedade Brasileira de Medicina Tropical	https://www.sbmt.org.br/portal/
Society for Maternal and Fetal Medicine	https://www.smfm.org
The American Society of Tropical Medicine and Hygiene	https://www.ajtmh.org
The Brazilian Society for Virology (BSV)	https://sbv.org.br/sbv/

This table lists some societies and organizations devoted to understanding Zika virus pathology, transmission and control. See also Tables 1, 3, and 6. Please note, occasionally the location of the websites or web address changes. In these cases the use of the “Search” tabs should be explored at the parent address or site.

Table 5: Resources and emerging technologies relevant to the Zika virus.

Resource	Website
ACOG/The American College of Obstetricians and Gynecologists	https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2019/09/management-of-patients-in-the-context-of-zika-virus
AdvaGen Biotech	http://advagen.tecnologia.ws/produtos/detalhado/403/KIT-ZIKA-v-IgG
ADVIA Centaur Zika test	https://www.siemens-healthineers.com/laboratory-diagnostics/assays-by-diseases-conditions/infectious-disease-assays/zika-test
Artic Network	https://artic.network
TABLE 5 Resources and emerging technologies relevant to the Zika virus—cont’d	

BMC: Springer Nature	
https://www.biomedcentral.com/	
Centers for Disease Control and Prevention (CDC): and Brazilian Ministry of Health. Zika Outcomes and Development in Infants and Children (ZODIAC)	
https://www.cdc.gov/pregnancy/zika/research/zodiac.html	
Centers for Disease Control and Prevention (CDC): Pregnancy	
https://www.cdc.gov/pregnancy/zika/research/index.html	
EUROIMMUN Medizinische Labordiagnostika AG	
https://www.zika-diagnostics.com/	
Federal University of Rio Grande do Sul	
https://zikavid.org	
IAEA Factsheet: The Zika Virus Mosquitoes	
https://www.iaea.org/sites/default/files/16/11/zika-virus-mosquitos-how-can-sterile-insect-technique-help.pdf	
LIAISON XL Zika Capture IgM II Control Set	
https://www.diasonin.com/sites/default/files/allegati/ese_zika_flyer_capture_igm_ii_low.pdf	
LiverTox Clinical and Research Information on Drug-Induced Liver Injury	
https://www.ncbi.nlm.nih.gov/books/NBK547852/	
MagBiosense	
www.MagBiosense.com	
Nanopore Tech	
https://nanoporetech.com	
Nature Biotechnology	
https://www-nature.ez17.periodicos.capes.gov.br/articles/nbt0806-931	
Nature immunology: Emerging viral diseases from a vaccinology perspective: preparing for the next pandemic	
https://www.nature.com/articles/s41590-017-0007-9.pdf?origin=ppub	
NPI Vaccines: Vaccinology in the twenty-first century	
https://europepmc.org/article/PMC/pmc5707890	
OpenZika	
http://openzika.ufg.br/	
Quibasa-Bioclin: Virus PCR Kit	
https://www.bioclin.com.br/bio-gene-zika-virus-PCR-k203-6.html	
Repositório Institucional da Fiocruz	
https://www.arca.fiocruz.br/handle/icict/31339	
RTI	
https://www.rti.org/emerging-issue/zika-virus-research	
Vaccine: Vaccine development for emerging virulent infectious diseases	
https://www.sciencedirect.com/science/article/pii/S0264410X17301962	
World Community Grid -OpenZika	
https://www.worldcommunitygrid.org/research/zika/overview.do	
ZIKAlliance, A global Alliance for Zika virus Control and Prevention	
https://zikalliance.tghn.org	
Zika. Virus Zika no Brasil. A resposta do SUS. Brasil. Ministerio da Saude. Secretaria de Vigilancia em Saude	
https://bvsms.saude.gov.br/bvs/publicacoes/virus_zika_brasil_resposta_sus.pdf	

This table lists some internet resources and emerging technologies relevant to Zika virus-induced pathology, transmission, and control. See also Tables 1 and 6. Please note, occasionally the location of the websites or web address changes. In these cases the use of the “Search” tabs should be explored at the parent address or site.
TABLE 6 Other resources relevant to Zika virus that may be of interest to health care professionals or patients.
American Journal of Infection Control; Article on Zika virus
https://www.ajicjournal.org/article/S0196-6553(16)30823-9/abstract
Biblioteca Virtual em Saude—Ministério da Saude
http://bvsms.saude.gov.br/bvs/publicacoes/virus_zika_brasil_resposta_sus.pdf
BBC Media Action
http://downloads.bbc.co.uk/mediaaction/pdf/practicebriefings/ebola-lessons-learned.pdf
Cell Press: Zika; Research and Resources to combat the Pandemic
http://info.cell.com/selections-zika
Centres for Disease Control and Prevention (CDC): Healthcare Exposure to Zika and Infection Control
https://www.cdc.gov/zika/hc-providers/infection-control.html
Centers for Disease Control and Prevention (CDC): Zika Virus
https://www.cdc.gov/zika/index.html
Centres for Disease Control and Prevention (CDC): Zika Virus Action Plan
https://www.cdc.gov/zika/zap/pdfs/Crisis-and-Emergency-Risk-Communication.pdf
Centres for Disease Control and Prevention (CDC): Zika Virus: For Professionals
https://www.cdc.gov/zika/vector/for-professionals.html
Clinical Infectious Diseases
https://academic.oup.com/cid
Demographic Consequences of the Zika Epidemic (Decode Zika)—The University of Texas at Austin
https://liberalarts.utexas.edu/zika/
DOAJ Directory of Open Access Journals: Article on Zika Virus Microcephaly
https://doaj.org/article/bcc9337d64a7413c91e939e6cb498e7a?frbrVersion=4
Environmental Health Insights: Article on Zika Virus
https://journals.sagepub.com/doi/full/10.4137/EHI.S40953
European Centre for Disease Prevention and Control (ECDC): Article on Zika Virus
https://www.ecdc.europa.eu/en/publications-data/zika-virus-and-safety-substances-human-origin-guide-preparedness-activities-0
European Centre for Disease Prevention and Control (ECDC): Article on Zika virus
https://www.ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/zika-preparedness-planning-guide-aedes-mosquitoes.pdf
Eurosurveillance Europe’s Journal on Infectious Disease Surveillance, Epidemiology, Prevention and Control: Article on Zika Virus
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES2014.19.41.20929?track=RSS
Ezequiel Dias Foundation (FUNED)
http://www.funed.mg.gov.br/a_funed/
Faculty of Pharmacy of the Federal University of Rio Grande do Sul (UFRGS)
https://projetoinfozika.wixsite.com/infozika
Global Health: Science and Practice
https://www.ghspjournal.org/content/7/1/116.short
Guidelines of the Brazilian Society of Infectious Diseases for Zika virus infection management
https://www.infectologia.org.br/admin/zcloud/125/2016/07/Guia_Manejo_Zika_SBI.pdf
Health Education and Behavior: Article on Zika Virus
https://journals.sagepub.com/doi/abs/10.1177/1090198118760687
Health Systems Research Institute
https://www.hsri.or.th/en/researcher
Instituto de Pesquisa Economica Aplicada (IPEA): Article on Zika Virus
https://www.ipea.gov.br/portal/index.php?option=com_content&view=article&id=32492
Journal of Clinical Virology
https://www.journals.elsevier.com/journal-of-clinical-virology
TABLE 6 Other resources relevant to Zika virus that may be of interest to health care professionals or patients—cont’d

Resource	URL
Journal of Community Health	https://www.springer.com/journal/10900
The Lancet	https://www.thelancet.com/campaigns/zika
The Lancet Infectious Diseases: Article on Zika Virus	https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(16)00073-6/fulltext
Mayo Clinic-Zika Virus	https://www.mayoclinic.org/diseases-conditions/zika-virus/diagnosis-treatment/drc-20353645
New England Journal of Medicine (NEJM): Collection of Articles on Zika Virus	https://www.nejm.org/zika-virus
Nuucleo de Medicina Tropical da Universidade de Brasilia	http://medicinatropical.unb.br/
Pan American Health Organization (PAHO)	https://www.paho.org/hq/index.php?option=com_topics&view=id=427&Itemid=41484&lang=en
Pan American Health Organization/World Health Organization: Article on Zika Virus	https://www.paho.org/hq/dmdocuments/2016/2016-cha-zika-guide-risk-comm-engag.pdf
Pan American Health Organization/World Health Organization	https://www.paho.org/bra/index.php?option=com_content&view=category&layout=blog&id=1294&Itemid=882
Patient Platform	https://patient.info/doctor/zika-virus-pro
PLoS Neglected Tropical Diseases: Article on Zika Virus	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920388/
Proceedings of the National Academy of Sciences of the United States of America (PNAS)	https://www.pnas.org
Public Health Agency of Canada: Article on Zika Virus	https://www.rcdnh.com/wp-content/uploads/2016/12/zika-virus-info-health-prof-renseignements-prof-sante-eng.pdf
Public Health England	https://www.gov.uk/guidance/zika-virus-and-immunocompromised-patients
Revista da Associacao Medica Brasileira: Article on Zika Virus	https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-42302016000200108
Revista do Instituto de Medicina Tropical de Sao Paulo/Instituto De Medicina Tropical De Sao Paulo: Article on Zika Virus	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453419/
SciELO Analytics: Article on Zika Virus	https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382018000300389
The Journal of Infectious Disease: Article on Zika Virus	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853257/
The Journal of Infectious Disease: Article on Zika Virus	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853392/
The Second Century Fund (C2F), Chulalongkorn University	https://www.research.chula.ac.th/
UCSF Health System Obstetrics Services	https://obgyn.ucsf.edu/maternal-fetal-medicine/zika-virus-frequently-asked-questions-our-patients
UMA—Uniao de Maes de Anjos	https://www.facebook.com/uniaodemaeasdeanjos/
Universiti Kebangsaan Malaysia	http://www.ukm.my/zakat/Latest_News/hukum-mengenai-virus-zika

Continued
TABLE 6 Other resources relevant to Zika virus that may be of interest to health care professionals or patients—cont’d

Resource	URL
University of Helsinki, Helsinki, Finland	https://www.helsinki.fi/en/researchgroups/viral-zoonoses-research-unit/research
World Health Organization (WHO) Charter	http://www.euro.who.int/__data/assets/pdf_file/0004/129532/Ottawa_Charter.pdf
World Health Organization (WHO), Zika Virus Disease, Zika Epidemiology Update	https://www.who.int/emergencies/diseases/zika/en/
World Health Organization (WHO), Risk Communication in the Context of Zika Virus	https://apps.who.int/iris/bitstream/handle/10665/204513/WHO_ZIKVRCCE_16.1_eng.pdf?sequence=1&isAllowed=y
World Health Organization (WHO), Zika Epidemiology Global overview	https://www.who.int/emergencies/diseases/zika/zika-epidemiology-update-july-2019.pdf?ua=1
World Health Organization (WHO), Zika Virus Fact Sheet	https://www.who.int/news-room/fact-sheets/detail/zika-virus
World Health Organization (WHO), Zika virus vectors and risk of spread in the WHO European Region	http://www.euro.who.int/__data/assets/pdf_file/0007/304459/WEB-news_competence-of-Aedes-aegypti-and-albopictus-vector-species.pdf
World Health Organization (WHO)/Pan American Health Organization	https://www.paho.org/hq/index.php?option=com_docman&task=doc_download&gid=39159&Itemid=270&lang=en
World Health Organization (WHO)—History of the Zika Virus	https://www.who.int/emergencies/zika-virus/timeline/en/
Zika and Other Arbovirus Infection Cohort Studies—ZARICS	https://www.zarics.unb.br/

This table lists some other resources of interest or relevance for health care professionals or patients in relation to Zika virus. See also Tables 1, 4, and 5. Please note, occasionally the location of the websites or web address changes.

Policy and procedure

The recommended resources listed in this chapter will be of great interest to those developing policies and procedures on the research into the prevention and treatment of Zika. Some examples of current policies in this field are listed below.

- National Institutes of Allergy and Infectious Diseases, United States of America. Zika Virus. ["https://www.niaid.nih.gov/diseases-conditions/zika-virus](https://www.niaid.nih.gov/diseases-conditions/zika-virus)
- World Health Organization. WHO Zika virus research agenda. https://www.who.int/reproductivehealth/zika/zika-virus-research-agenda/en/
- World Health Organization. International Health Regulation Procedures concerning public health emergencies of international concern (PHEIC). https://www.who.int/ihr/procedures/pheic/en/

Mini-dictionary of terms

Epidemic: A usually sudden increase in the occurrence a disease in excess of the levels expected for that region’s population.

Flaviviridae: This is a family of RNA viruses that contain positive-strand RNA. They are primarily spread to birds and mammals using ticks and mosquitoes as vectors.

Public Health Emergency of International Concern: An unusual but serious event that risks public health risk and may need coordinated international action to prevent to international spread of disease.

Zika virus: A member of the Flaviviridae genus of viruses. It causes the condition known as Zika fever, Zika virus disease or Zika. This is usually a mild self-limiting disease.

Key facts

- The Zika virus was first isolated from a rhesus macaque monkey, in 1947.
- The virus was named after the Zika Forest of Uganda.
Until 2007, epidemic Zika infections were unheard of. However, as the clinical presentation of Zika is non-specific many cases may have been managed symptomatically or misdiagnosed.

Since 2007, several large epidemics of Zika virus infection have occurred.

The WHO considers that the Zika virus is “a highly significant, long-term problem.”

Summary points

- Zika virus is a member of the virus family Flaviviridae.
- Infection with Zika (Zika fever or Zika virus disease) usually causes mild if any symptoms.
- The illness cannot be prevented and there is no specific treatment.
- Guillain-Barré syndrome is a rare consequence of Zika infection.
- A woman infected while pregnant can pass the infection to the fetus in utero. In utero infection can result in devastating birth defects.
- There has been an explosion in the knowledge and understanding of the Zika virus since it was first isolated in 1947.
- It is now difficult even for experienced scientists to remain up-to-date on Zika virus pathology and control.

Acknowledgments

We thank the following authors for contributing to the development of this resource. We apologize if some suggested material was not included in this chapter or has been moved to different sections.

Arajo J, Barakli S, Benites B, Bernatchez J, Beys-da-Silva W, Blazquez A, Borchardt-Loholter V, Borges A, Cabral Filho P, Caires-Júnior L C, Chu DT, Costa Monteiro L M, Danielli A, de Magalhaes Barbosa MH, Deniz O, Diderichsen F, Fernandes J, Fontes A, Goulart E, Goulart Correa D, Gregorio E, Guedes P, Guerra Gallo L, Gumusyayla S, Hamel R, Jaaskelainen A, Khazali A S, Kobayashi J, Leyser M, Maia Peixoto H, Mlera L, Nascimento M, Pereira G, Pereira M-I, Pereira-Gomez M, Phumee A, Ribeiro J, Sagan S, Salmeron A, Santi L, Santos W, Silva Alves P, Siriyasatien P, Son N T, Soto-Hernandez J-L, Vural G, Xu D, Xu Z, Yusof R, Zatz M.

References

Chan, J. F., Choi, G. K., Yip, C. C., Cheng, V. C., & Yuen, K. Y. (2016). Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease. *Journal of Infection*, 72, 507–524.

Dick, G. W., Kitchen, S. F., & Haddow, A. J. (1952). Zika virus. I. Isolations and serological specificity. *Transactions of the Royal Society of Tropical Medicine and Hygiene*, 46, 509–520.

Musso, D., & Gubler, D. J. (2016). Zika virus. *Clinical Microbiology Reviews*, 29, 487–524.

Sikka, V., Chattu, V. K., Popli, R. K., Galwankar, S. C., Kelkar, D., Sawicki, S. G., … Papadimos, T. J. (2016). The emergence of Zika virus as a global health security threat: A review and a consensus statement of the INDAUSEM Joint Working Group (JWG). *Journal of Global Infectious Diseases*, 8, 3–15.

Simpson, D. I. (1964). Zika virus infection in man. *Transactions of the Royal Society of Tropical Medicine and Hygiene*, 58, 335–338.

World Health Organisation (WHO). (2016). *Zika virus situation report 24/11/16*. World Health Organisation. Available from https://www.who.int/emergencies/zika-virus/situation-report/24-november-2016/en/. (Accessed 3 December 2019).