COHOMOLOGY OF SIMPLE MODULES FOR $\mathfrak{sl}_3(k)$ IN CHARACTERISTIC 3

A.A.IBRAYEVA, SH.SH.IBRAEV, G.K.YESHMURAT

Abstract. In this paper, we calculate cohomology of a classical Lie algebra of type A_2 over an algebraically field k of characteristic $p = 3$ with coefficients in simple modules. To describe their structure, we will consider them as modules over an algebraic group $SL_3(k)$. In the case of characteristic $p = 3$, there are only two peculiar simple modules: a simple module isomorphic to the quotient module of the adjoint module by the center, and a one-dimensional trivial module. The results on the cohomology of simple nontrivial module are used for calculate the cohomology of the adjoint module. We also calculate cohomology of the simple quotient algebra Lie of A_2 by the center.

Keywords: Lie algebra, simple module, restricted module cohomology, exact sequence.

2010 Mathematics Subject Classification: 20G05, 20G10, 20G40.

1. Introduction

The cohomology theory of modular Lie algebras is one of the interesting questions in the theory of Lie algebras. Many significant results are devoted to the study of the cohomology of classical modular Lie algebras. Their restricted cohomology with coefficients in the dual Weyl modules was studied in [1] – [3]. Central extensions are described in [4], [5]. In [6] and [7] the outer derivations are calculated. As the second cohomology, local deformations are calculated in [8] – [10].

Among the classical modular Lie algebras, the cohomology of simple modules is completely described only for a three-dimensional Lie algebra of type A_1 [11]. It is known that, for other classical modular Lie algebras a complete description of the cohomology of simple modules has not yet been obtained. In this paper, we give a complete description of such cohomology for the Lie algebra of type A_2 over an algebraically closed field of characteristic $p = 3$.

The first cohomology groups of simple modules for A_2 was computed in [12]. A similar result for the second cohomology groups was obtained in [13]. In all other cases the computation of the cohomology structure of simple modules for A_2 is close to completion. The results will be published in the next works of the second author.

Let us introduce the basic definitions and notation. Let \mathfrak{g} be a Lie algebra over a field k characteristics of p and M be a \mathfrak{g}-module. We denote the
So, we can introduce the factor-space cochains $\Lambda^n(g)$ and let

$$C^n(g, M) = \text{Hom}(\Lambda^n, M) = \langle \psi : g \times \cdots \times g \to M \rangle_k, \ n > 0$$

is a space of multilinear skew-symmetric mappings in n arguments with coefficients in M. We put

$$C^n(g, M) = 0, \ n < 0, \ C^0(g, M) = M, \ C^*(g, M) = \bigoplus_{n=-\infty}^{+\infty} C^n(g, M).$$

Define the coboundary operator

$$d : C^*(g, M) \to C^*(g, M)$$

as follows

$$d\psi(l_1, l_2, \ldots, l_{n+1}) =$$

$$\sum_{i<j} (-1)^{i+j} \psi(l_i, l_j, \ldots, l_i, \ldots, l_j, \ldots, l_{n+1}) +$$

$$\sum_i (-1)^i \psi[l_i, l_i, \ldots, l_i, \ldots, l_{n+1}],$$

where $\psi \in C^n(g, M)$. Then $d^2 = 0$, therefore $B^*(g, M) \subseteq Z^*(g, M)$, where

$$Z^*(g, M) = \langle \psi \in C^*(g, M) : d\psi = 0 \rangle_k,$$

$$B^*(g, M) = \langle d\psi : \psi \in C^*(g, M) \rangle_k.$$

So, we can introduce the factor-space

$$H^*(g, M) = Z^*(g, M)/B^*(g, M).$$

The spaces $C^*(g, M)$, $Z^*(g, M)$, $B^*(g, M)$, $H^*(g, M)$ are called space of cochains, space of cocycles, spaces of coboundaries, and space of cohomologies of the Lie algebra g with coefficients in the g-module M respectively.

Similarly, the spaces

$$C^n(g, M), \ Z^n(g, M) = Z^*(g, M) \cap C^n(g, M),$$

$$B^n(g, M) = B^*(g, M) \cap C^n(g, M) \quad H^n(g, M) = H^*(g, M) \cap C^n(g, M)$$

are called space of n-cochains, space of n-cocycles, spaces of n-coboundaries, and space of n-cohomologies of the Lie algebra g with coefficients in the g-module M respectively.

We call the g-module M is peculiar, if $H^n(g, M) \neq 0$. We say that M is n-peculiar module over g, if $H^n(g, M) \neq 0$.

Now let g be a classical Lie algebra of type A_2 over algebraically closed field k of positive characteristic $p > 0$ and M is a g-module. We decompose $C^*(g, M)$ into a direct sum of weight subspaces with respect to the maximal torus T of the group $G = SL_3(k)$:

$$C^*(g, M) = \bigoplus_{\mu \in X(T)} C^*_\mu(g, M),$$
where $X(T)$ is the additive character group of T. Then

$$H^n(g, M) = \bigoplus_{\mu \in X(T)} H^n_{\mu}(g M).$$

Identify the space $C^\alpha (g, M)$ with the space $\wedge^\alpha g^* \otimes M$ and denote by $\Pi(V)$ the set of weights of the G-module subspace V of $H^*(g, M)$.

Since $\Pi(H^\alpha(g, M)) \subseteq pX(T) \cap \Pi(\wedge^\alpha g^* \otimes M)$, then we can consider only the elements of the subspace $\overline{C}^\alpha (g, M)$ of $C^\alpha (g, M)$ with weights contained in the set $pX(T) \cap \Pi(\wedge^\alpha g^* \otimes M)$. The corresponding subspaces of cocycles and cohomologies are denoted by $\overline{Z}^\alpha (g, M)$ and $\overline{H}^\alpha (g, M)$. Note that

$$H^n(g, M) = \overline{H}^n(g, M).$$

We will use the following well known formulas:

$$\dim H^n(g, M) = \dim \overline{Z}^n(g, M) + \dim \overline{Z}^{n-1}(g, M) - \dim \overline{C}^{n-1}(g, M), \quad (1)$$

$$\dim H^n(g, M) = \dim H^{\dim g - n}(g, M^*). \quad (2)$$

The weight subspaces are invariant under the action of the coboundary operator, therefore the formula (1) is also holds for weight subspaces:

$$\dim H^n_\mu(g, M) = \dim \overline{Z}^n_\mu(g, M) + \dim \overline{Z}^{n-1}_\mu(g, M) - \dim \overline{C}^{n-1}_\mu(g, M). \quad (3)$$

Let $L(r, s)$ denote a simple g-module with the highest weight $r\omega_1 + s\omega_2$, where ω_1, ω_2 are fundamental weights.

It is known that the composition of a representation of $SL_3(k)$ on a vector space L with a d-th power of the Frobenius map defines a new representation on which the Lie algebra g acts trivially. We denote the resulting module by $L^{(d)}$. To each weight μ of the space L there corresponds a weight $p^d \mu$ of the space $L^{(d)}$. The cohomology group $H^n(g, M)$, as a $SL_3(k)$-module, consists either a twisted module $L^{(d)}$ for some d, or a one-dimensional trivial module k. For the multiplicity of a $SL_3(k)$-module $L^{(d)}$ in $H^n(g, M)$, we will use the notation $[H^n(g, M) : L^{(d)}]$. Further, for convenience, we will use the following abbreviations: $H^n(g, k) := H^n(g), \bigoplus_{i=1}^n V := mV$, where V is a $SL_3(k)$-module.

Let’s formulate the main result of this paper:

Theorem 1. Let g be a classical Lie algebra of type A_2 over an algebraically closed field k of characteristic $p = 3$ and M be a simple g-module. Then there are the following isomorphisms of $SL_3(k)$-modules:

(a) $H^0(g) \cong H^8(g) \cong k$, $H^2(g) \cong H^6(g) \cong L(1, 0)^{(1)} \oplus L(0, 1)^{(1)}$, $H^3(g) \cong H^5(g) \cong L(1, 0)^{(1)} \oplus L(0, 1)^{(1)} \cong k$;

(b) $H^1(g, L(1, 1)) \cong H^7(g, L(1, 1)) \cong L(1, 0)^{(1)} \oplus L(0, 1)^{(1)} \oplus k$, $H^3(g, L(1, 1)) \cong H^5(g, L(1, 1)) \cong H^0(1, 1)^{(1)}$, $H^4(g, L(1, 1)) \cong 2H^0(1, 1)^{(1)}$.

In other cases $H^n(g, M) = 0$.
2. Proof of the Theorem 1

As the basis vectors for \mathfrak{g} we choose the special derivations of the algebra of divided powers $O_3(1)$:
\[
 h_1 = x_1 \partial_1 - x_2 \partial_2, h_2 = x_2 \partial_2 - x_3 \partial_3, e_1 = x_1 \partial_2, e_2 = x_2 \partial_3, e_3 = x_1 \partial_3,
\]
\[
 f_1 = x_2 \partial_1, f_2 = x_3 \partial_2, f_3 = x_3 \partial_1.
\]

Over a field of characteristic $p = 3$, the Lie algebra \mathfrak{g} is not simple, it has a one-dimensional center $\langle h_1 - h_2 \rangle_k$. The quotient algebra by the center is a simple Lie algebra; we denote it by $\overline{\mathfrak{g}}$ or $\overline{\mathfrak{A}_2}$.

It is known that the peculiar modules of the Lie algebra \mathfrak{g} are restricted [11]. According to Lemma 3.1 in [13], only the following two simple restricted modules are peculiar: $L(0,0) \cong k$ and $L(1,1) \cong \overline{\mathfrak{g}}$. For $L(1,1)$ we get the following description:
\[
 L(1,1) \cong \langle h_1, h_2, e_1, e_2, e_3, f_1, f_2, f_3 : h_1 - h_2 = 0 \rangle_k.
\]

Consider each of these modules separately.

Let $M = L(0,0) \cong k$.

Lemma 1. There are the following isomorphisms of $SL_3(k)$-modules:
(a) $H^0(\mathfrak{g}) \cong k$;
(b) $H^2(\mathfrak{g}) \cong L(1,0)(1) \oplus L(0,1)(1)$;
(c) $H^3(\mathfrak{g}) \cong L(1,0)(1) \oplus L(0,1)(1) \oplus k$;
(d) $H^5(\mathfrak{g}) \cong L(1,0)(1) \oplus L(0,1)(1) \oplus k$;
(e) $H^6(\mathfrak{g}) \cong L(1,0)(1) \oplus L(0,1)(1)$;
(f) $H^8(\mathfrak{g}) \cong k$.

In other cases $H^n(\mathfrak{g}) = 0$.

Proof. The statements (a) and (f) are obvious. The triviality of $H^1(\mathfrak{g})$ in characteristic $p = 3$ was proved in [12].

(b) The set $\prod L(0,1) \oplus L(1,0)$ consists only the following weights:
\[
 0 \pm 3 \omega_1, \pm 3(\omega_1 - \omega_2), \pm 3 \omega_2.
\]

Therefore, only the trivial one-dimensional module and the twisted simple modules $L(1,0)(1)$, $L(0,1)(1)$, can be as nonzero composition factors of $H^2(\mathfrak{g})$. They are generated by the classes of cocycles with dominant weights 0, $3 \omega_1$, and $3 \omega_2$ respectively.

The subspace $\overline{Z^2(\mathfrak{g})}$ is 4-dimensional and spans by the cochains
\[
 h_1^* \wedge h_2^*, e_1^* \wedge f_1^*, e_2^* \wedge f_2^*, e_3^* \wedge f_3^*.
\]
If
\[
 a_1 h_1^* \wedge h_2^* + a_2 e_1^* \wedge f_1^* + a_3 e_2^* \wedge f_2^* + a_4 e_3^* \wedge f_3^* \in \overline{Z^2(\mathfrak{g})}
\]
then, by cocycle condition, $a_1 = 0$, $a_4 = a_2 + a_3$. Therefore $\dim \overline{Z^2_0(\mathfrak{g})} = 2$.

Since $\dim \overline{C^2_0(\mathfrak{g})} = 2$ and $\dim \overline{Z^1_0(\mathfrak{g})} = 0$, by (2),
\[
 \dim \overline{H^2_0(\mathfrak{g})} = 2 + 0 - 2 = 0.
\]
The subspace $\overline{C}^2_{3\omega_1}(\mathfrak{g})$ is one-dimensional and spans by the cochain $f_1^* \wedge f_3^*$. Notice that $af_1^* \wedge f_3^* \in \overline{Z}^2(\mathfrak{g})$ for all $a \in k$. Therefore $\dim \overline{Z}^2_{3\omega_1}(\mathfrak{g}) = 1$
Since $\dim \overline{C}^1_{3\omega_1}(\mathfrak{g}) = 0$, by (3), $\dim \overline{C}^2_{3\omega_1}(\mathfrak{g}) = 1$. So, $[H^2(\mathfrak{g}) : L(1,0)^{(1)}] = 1$.

Arguing as in the previous case, we obtain $[H^2(\mathfrak{g}) : L(0,1)^{(1)}] = 1$. Thus $H^2(\mathfrak{g}) \cong L(1,0)^{(1)} \oplus L(0,1)^{(1)}$.

(c) The sets of weights $\prod(\overline{C}^3(\mathfrak{g}))$ and $\prod(\overline{C}^2(\mathfrak{g}))$ are coincide. Therefore, we consider only the weight subspaces of 3-cochains corresponding to the dominant weights 0, 3ω_1, and 3ω_2.

The subspace $\overline{C}^3_0(\mathfrak{g})$ is 8-dimensional and spans by the cochains

$$
\begin{align*}
&h_1^* \wedge e_1^* \wedge f_1^*, h_2^* \wedge e_1^* \wedge f_2^*, h_1^* \wedge e_2^* \wedge f_1^*, h_2^* \wedge e_2^* \wedge f_2^*, \\
&h_1^* \wedge e_3^* \wedge f_3^*, h_2^* \wedge e_3^* \wedge f_2^*, e_1^* \wedge e_2^* \wedge f_3^*, e_1^* \wedge e_3^* \wedge f_2^*, e_1^* \wedge e_2^* \wedge f_3^*,
\end{align*}
$$

Suppose that a linear combination of these vectors with coefficients b_i, $i = 1, \ldots, 8$ respectively, is a 3-cocycle. Then the cocycle condition implies that

$$
\begin{align*}
&b_1 + b_2 + b_5 + b_7 - b_8 = 0, \\
&b_2 + b_3 - b_7 + b_8 = 0, \\
&b_3 + b_4 + b_6 + b_7 - b_8 = 0, \\
&2b_4 + 2b_7 - 2b_8 = 0, \\
&2b_5 + 2b_6 + 2b_7 - 2b_8 = 0.
\end{align*}
$$

Whence it follows that $\dim \overline{Z}^3_0(\mathfrak{g}) = 3$. By (3),

$$
\dim H^3_0(\mathfrak{g}) = \dim \overline{Z}^3_0(\mathfrak{g}) + \dim \overline{Z}^3_0(\mathfrak{g}) - \dim \overline{C}^2_0(\mathfrak{g}) = 3 + 2 - 4 = 1.
$$

Therefore $[H^3_0(\mathfrak{g}) : k] = 1$.

The weight subspaces $\overline{C}^3_{3\lambda_1}(\mathfrak{g})$, $\overline{C}^3_{3\lambda_2}(\mathfrak{g})$ are two-dimensional and span respectively with 3-cochains:

$$
\begin{align*}
&h_1^* \wedge f_1^* \wedge f_3^*, h_2^* \wedge f_1^* \wedge f_3^*, h_1^* \wedge f_2^* \wedge f_3^*, h_2^* \wedge f_2^* \wedge f_3^*,
\end{align*}
$$

Using the cocycle condition, we get $\dim \overline{Z}^3_{3\lambda_1}(\mathfrak{g}) = \dim \overline{Z}^3_{3\lambda_2}(\mathfrak{g}) = 1$. So, $H^3(\mathfrak{g}) \cong L(1,0)^{(1)} \oplus L(0,1)^{(1)} \oplus k$.

Now we prove that $H^4(\mathfrak{g}) = 0$. It’s obvious that $\prod(\overline{C}^4(\mathfrak{g})) = \prod(\overline{C}^3(\mathfrak{g}))$.

Therefore we consider only the weight subspaces $\overline{C}^4_0(\mathfrak{g}), \overline{C}^4_{3\omega_1}(\mathfrak{g}), \overline{C}^4_{3\omega_2}(\mathfrak{g})$.

The subspace $\overline{C}^4_0(\mathfrak{g})$ is 10-dimensional and spans by the cochains

$$
\begin{align*}
&h_1^* \wedge h_2^* \wedge e_1^* \wedge f_1^*, h_1^* \wedge h_2^* \wedge e_2^* \wedge f_2^*, h_1^* \wedge h_2^* \wedge e_3^* \wedge f_3^*, h_1^* \wedge e_1^* \wedge e_2^* \wedge f_3^*, \\
&h_2^* \wedge e_1^* \wedge e_2^* \wedge f_3^*, h_1^* \wedge e_3^* \wedge f_1^* \wedge f_2^*, h_2^* \wedge e_3^* \wedge f_1^* \wedge f_2^*, e_1^* \wedge e_2^* \wedge f_3^*,
\end{align*}
$$

Suppose that the linear combination of these vectors coefficients b_i, $i = 1, \ldots, 10$ respectively is a 4-cocycle. Then $b_1 = b_2 = b_3 = 0$, $b_4 = b_6$, $b_7 = b_8 = b_9 = b_10 = 1$.
Lemma 2. So, $H_{1}^{6}(\mathfrak{g}, \mathfrak{M}) = 1$. Then by (3),

$$\text{dim} \ H_{3,\omega_{1}}^{i}(\mathfrak{g}, \mathfrak{M}) = \text{dim} \ H_{3,\omega_{1}}^{i}(\mathfrak{g}, \mathfrak{M}) = 1 + 1 - 2 = 0.$$

So, $H_{1}^{4}(\mathfrak{g}) = 0$.

Using (2) and the statements (b), (c), we get the statements (e), (f) respectively. The proof of Lemma 1 is complete.

Now let $M = L(1, 1)$.

Lemma 2. There are the following isomorphisms of $SL_{3}(k)$-modules:

(a) $H^{1}(\mathfrak{g}, L(1, 1)) \cong L(1, 0)^{(1)} \oplus L(0, 1)^{(1)} \oplus k$;
(b) $H^{3}(\mathfrak{g}, L(1, 1)) \cong H^{0}(1, 1)^{(1)}$;
(c) $H^{4}(\mathfrak{g}, L(1, 1)) \cong 2H^{0}(1, 1)^{(1)}$;
(d) $H^{5}(\mathfrak{g}, L(1, 1)) \cong H^{0}(1, 1)^{(1)}$;
(e) $H^{7}(\mathfrak{g}, L(1, 1)) \cong L(1, 0)^{(1)} \oplus L(0, 1)^{(1)} \oplus k$.

In other cases $H^{n}(\mathfrak{g}, L(1, 1)) = 0$.

Proof. The calculations similar to the previous Lemma 1 yield:

1) $\Pi(C^{0}(\mathfrak{g}, L(1, 1))) = \Pi(C^{3}(\mathfrak{g}, L(1, 1))) = \{0\}$,
2) $\Pi(C^{i}(\mathfrak{g}, L(1, 1))) = \{0, \pm 3\omega_{1}, \pm 3(\omega_{1} - \omega_{2}), \pm 3\omega_{2}\}$ for $i = 1, 2, 6, 7$,
3) $\Pi(C^{3}(\mathfrak{g}, L(1, 1))) = \{0, \pm 3\omega_{1} + \omega_{2}, \pm 3(2\omega_{1} - \omega_{2}), \pm 3(\omega_{1} + 2\omega_{2})\}$ for $j = 3, 4$;
4) $\text{dim} \ C^{0}_{0}(\mathfrak{g}, L(1, 1)) = \dim \ C^{3}_{0}(\mathfrak{g}, L(1, 1)) = 1$, $\dim \ C^{1}_{0}(\mathfrak{g}, L(1, 1)) = \dim \ C^{0}_{0}(\mathfrak{g}, L(1, 1)) = 8$,
5) $\dim \ C^{i}_{0}(\mathfrak{g}, L(1, 1)) = \dim \ C^{i}_{0}(\mathfrak{g}, L(1, 1)) = 22$,
6) $\dim \ C^{3}_{0}(\mathfrak{g}, L(1, 1)) = \dim \ C^{3}_{0}(\mathfrak{g}, L(1, 1)) = 38$,
7) $\dim \ C^{1}_{0}(\mathfrak{g}, L(1, 1)) = 44$;
8) $\dim \ C^{3}_{0}(\mathfrak{g}, L(1, 1)) = \dim \ C^{6}_{3}(\mathfrak{g}, L(1, 1)) = 0$, $\dim \ C^{3}_{0}(\mathfrak{g}, L(1, 1)) = 2$,
9) $\dim \ C^{3}_{0}(\mathfrak{g}, L(1, 1)) = \dim \ C^{6}_{3}(\mathfrak{g}, L(1, 1)) = 7$, $\dim \ C^{3}_{0}(\mathfrak{g}, L(1, 1)) = 14$,
10) $\dim \ C^{3}_{0}(\mathfrak{g}, L(1, 1)) = 18$ for $i = 1, 2$;
11) $\dim \ C^{3}_{0}(\mathfrak{g}, L(1, 1)) = \dim \ C^{8}_{3}(\mathfrak{g}, L(1, 1)) = 0$,
12) $\dim \ C^{5}_{3}(\mathfrak{g}, L(1, 1)) = \dim \ C^{7}_{3}(\mathfrak{g}, L(1, 1)) = 0$,
13) $\dim \ C^{5}_{3}(\mathfrak{g}, L(1, 1)) = \dim \ C^{5}_{3}(\mathfrak{g}, L(1, 1)) = 0$,
14) $\dim \ C^{5}_{3}(\mathfrak{g}, L(1, 1)) = \dim \ C^{5}_{3}(\mathfrak{g}, L(1, 1)) = 1$,
15) $\dim \ C^{5}_{3}(\mathfrak{g}, L(1, 1)) = 2$;
16) $\dim \ Z^{0}_{0}(\mathfrak{g}, L(1, 1)) = \dim \ Z^{0}_{0}(\mathfrak{g}, L(1, 1)) = 0$, $\dim \ Z^{0}_{0}(\mathfrak{g}, L(1, 1)) = \dim \ Z^{0}_{0}(\mathfrak{g}, L(1, 1)) = 5$,
17) $\dim \ Z^{2}_{0}(\mathfrak{g}, L(1, 1)) = \dim \ Z^{8}_{0}(\mathfrak{g}, L(1, 1)) = 5$, $\dim \ Z^{2}_{0}(\mathfrak{g}, L(1, 1)) = 6$.

\[b_{5} = b_{7} \]

Whence it follows that $\text{dim} \ Z^{1}_{0}(\mathfrak{g}) = 5$. By (3), $\text{dim} \ H_{1}^{6}(\mathfrak{g}) = 5 + 3 - 8 = 0$. Therefore, $[H_{1}^{4}(\mathfrak{g}) : k] = 0$.

It’s obvious that $Z_{3,\omega_{1}}^{1}(\mathfrak{g}, \mathfrak{M}) = Z_{3,\omega_{1}}^{1}(\mathfrak{g}, \mathfrak{M}) = 1$. Then by (3),

$H_{3,\omega_{1}}^{i}(\mathfrak{g}, \mathfrak{M}) = H_{3,\omega_{1}}^{i}(\mathfrak{g}, \mathfrak{M}) = 1 + 1 - 2 = 0$.

So, $H_{1}^{4}(\mathfrak{g}) = 0$.

Using (2) and the statements (b), (c), we get the statements (e), (f) respectively. The proof of Lemma 1 is complete.
COHOMOLOGY OF SIMPLE MODULES FOR $sl_3(k)$

The dimension of the weight subspaces of the corresponding co-
modules

$\dim \mathcal{Z}_3^2(g, L(1, 1)) = \dim \mathcal{Z}_3^5(g, L(1, 1)) = 18,$
$\dim \mathcal{Z}_3^7(g, L(1, 1)) = 24.$

$\dim \mathcal{Z}_3^2(g, L(1, 1)) = \dim \mathcal{Z}_3^5(g, L(1, 1)) = 0, \dim \mathcal{Z}_3^7(g, L(1, 1)) = 1,$
$\dim \mathcal{Z}_3^7(g, L(1, 1)) = 1, \dim \mathcal{Z}_3^7(g, L(1, 1)) = 6,$
$\dim \mathcal{Z}_3^7(g, L(1, 1)) = 8$ for $i = 1, 2.$

Then, by (3), $\dim \mathcal{T}_3^i(g, L(1, 1)) = 0$ except in the following cases:

i) $\dim \mathcal{T}_3^1(g, L(1, 1)) = \dim \mathcal{T}_3^5(g, L(1, 1)) = 1, \dim \mathcal{T}_3^3(g, L(1, 1)) = 2,$
$\dim \mathcal{T}_3^7(g, L(1, 1)) = 4.$

ii) $\dim \mathcal{T}_3^3(g, L(1, 1)) = \dim \mathcal{T}_3^7(g, L(1, 1)) = 1$ for $i = 1, 2.$

iii) $\dim \mathcal{T}_3^3(g, L(1, 1)) = \dim \mathcal{T}_3^7(g, L(1, 1)) = 1,$
$\dim \mathcal{T}_3^7(g, L(1, 1)) = 2.$

Analyzing the dimensions of the weight subspaces of the corresponding co-
modules, we obtain the required statements of Lemma 2. The proof
of Lemma 2 is complete.

Combining the results of Lemmas 1 and 2, we obtain all the statements
of Theorem 1.

3. COHOMOLOGY OF THE ADJOINT MODULE

Using Theorem 1, we can easily compute the cohomology of the adjoint
module for $g.$ There is the following short exact sequence of g-modules:

$0 \to k \to g \to L(1, 1) \to 0.$

Consider the corresponding long exact cohomological sequence of $SL_3(k)$-
modules

$\cdots \to H^{n-1}(g, L(1, 1)) \to H^n(g) \to H^n(g, g) \to$
$H^n(g, L(1, 1)) \to H^{n+1}(g) \to \cdots$

It is known that $H^2(g, g) = 0$ [14]. Then, according to Theorem 1, the
last long exact cohomological sequence splits into the following five exact
sequences:

$0 \to H^0(g) \to H^0(g, g) \to 0,$
$0 \to H^1(g) \to H^1(g, L(1, 1)) \to H^2(g) \to 0,$
Similarly to the previous case, from the last exact sequence we obtain

Let \(\text{Proposition 1.} \) the center.

The first three short exact sequences yield the following isomorphisms of \(SL_3(k) \)-modules respectively:

\[
H^0(\mathfrak{g}, \mathfrak{g}) \cong k, \quad H^1(\mathfrak{g}, \mathfrak{g}) \cong k, \\
H^3(\mathfrak{g}, \mathfrak{g}) \cong L(1,0)^{(1)} \oplus L(0,1)^{(1)} \oplus H^0(1,1)^{(1)} \oplus k.
\]

Since \(3(\omega_1 + \omega_2) \notin \prod(H^i(\mathfrak{g})) \) for \(i = 5, 6 \), then the fourth exact sequence splits and yields the following isomorphisms:

\[
H^4(\mathfrak{g}, \mathfrak{g}) \cong H^4(\mathfrak{g}, L(1, 1)) \cong H^0(1, 1)^{(1)}, \\
H^5(\mathfrak{g}, \mathfrak{g}) \cong L(1,0)^{(1)} \oplus L(0,1)^{(1)} \oplus H^0(1,1)^{(1)} \oplus k, \\
H^6(\mathfrak{g}, \mathfrak{g}) \cong L(1,0)^{(1)} \oplus L(0,1)^{(1)}.
\]

Similarly to the previous case, from the last exact sequence we obtain

\[
H^7(\mathfrak{g}, \mathfrak{g}) \cong L(1,0)^{(1)} \oplus L(0,1)^{(1)} \oplus k, \quad H^8(\mathfrak{g}, \mathfrak{g}) \cong k.
\]

Thus, we get the following

Proposition 1. Let \(\mathfrak{g} \) be a classical Lie algebra of type \(A_2 \) over an algebraically closed field \(k \) of characteristic \(p = 3 \). Then there are the following isomorphisms of \(SL_3(k) \)-modules:

- \(a \) \(H^0(\mathfrak{g}, \mathfrak{g}) \cong H^1(\mathfrak{g}, \mathfrak{g}) \cong H^8(\mathfrak{g}, \mathfrak{g}) \cong k; \)
- \(b \) \(H^3(\mathfrak{g}, \mathfrak{g}) \cong H^5(\mathfrak{g}, \mathfrak{g}) \cong L(1,0)^{(1)} \oplus L(0,1)^{(1)} \oplus H^0(1,1)^{(1)} \oplus k; \)
- \(c \) \(H^4(\mathfrak{g}, \mathfrak{g}) \cong 2H^0(1,1)^{(1)}; \)
- \(d \) \(H^6(\mathfrak{g}, \mathfrak{g}) \cong L(1,0)^{(1)} \oplus L(0,1)^{(1)}; \)
- \(e \) \(H^7(\mathfrak{g}, \mathfrak{g}) \cong L(1,0)^{(1)} \oplus L(0,1)^{(1)} \oplus k. \)

In other cases \(H^n(\mathfrak{g}, \mathfrak{g}) = 0. \)

4. **Cohomology for \(\overline{A_2} \)**

Recall that \(\overline{A_2} \) is the quotient algebra of the classical Lie algebra of type \(A_2 \) over an algebraically closed field of characteristic \(p = 3 \) by the center. In this section we compute cohomology of the simple Lie algebra \(\overline{A_2} \) with coefficients in the simple modules.

First, we consider an arbitrary Lie algebra \(\mathfrak{g} \) with the center \(C_\mathfrak{g} \) such that the corresponding quotient algebra is a simple algebra. The following result will immediately lead to our goal.

Lemma 3. Let \(\overline{\mathfrak{g}} \) be a simple quotient Lie algebra of a Lie algebra \(\mathfrak{g} \) by the center \(C_\mathfrak{g} \). Then \(H^n(\overline{\mathfrak{g}}, \overline{\mathfrak{g}}) \cong H^n(\mathfrak{g}, \mathfrak{g}) \) for all \(n > 0. \)
Proof. The space \(\mathfrak{g} \) can be equipped with the structure of a module over each of the Lie algebras \(C_{\mathfrak{g}}, \mathfrak{g} \) and \(\mathfrak{g} \):

\[
C_{\mathfrak{g}} \times \mathfrak{g} \to \mathfrak{g}, (c, \mathfrak{a}) \mapsto \mu(c)\mathfrak{a}, \text{ where } \mu \text{ is a nonzero linear form on } C_{\mathfrak{g}};
\]

\[
\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}, (\mathfrak{a}_1, \mathfrak{a}_2) \mapsto [\mathfrak{a}_1, \mathfrak{a}_2], \mathfrak{a}_i \in \mathfrak{g};
\]

\[
\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}, (\mathfrak{a}_1, \mathfrak{a}_2) \mapsto [\mathfrak{a}_1, \mathfrak{a}_2], \mathfrak{a}_1, \mathfrak{a}_2 \in \mathfrak{g}.
\]

The short exact sequence of cochain complexes

\[
0 \to (C^*(C_{\mathfrak{g}}, \mathfrak{g}), d) \to (C^*(\mathfrak{g}, \mathfrak{g}), d) \to (C^*(\mathfrak{g}, \mathfrak{g}), d) \to 0
\]
gives a long exact cohomological sequence

\[
\cdots \to H^{n-1}(C_{\mathfrak{g}, \mathfrak{g}}) \to H^n(\mathfrak{g}, \mathfrak{g}) \to H^n(\mathfrak{g}, \mathfrak{g}) \to H^n(C_{\mathfrak{g}, \mathfrak{g}}) \to \cdots
\]

Since \(H^n(C_{\mathfrak{g}, \mathfrak{g}}) = 0 \) for all \(n \geq 0 \) [15, 4.2], it follows from the fact that last cohomological sequence is exact that \(H^n(\mathfrak{g}, \mathfrak{g}) \cong H^n(\mathfrak{g}, \mathfrak{g}) \) for all \(n > 0 \).

The proof of Lemma 3 is complete.

Remark 1. A special case of Lemma 3 for \(n = 1 \) was proved in [7]. Using Lemma 3 to Theorem 1, we obtain a complete description of the cohomology of a simple Lie algebra \(A_2 \) with coefficients in simple modules.

This research was funded by Science Committee grant of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP0885935).

References

[1] Andersen, H.H., Jantzen, J.C. (1984). Cohomology of induced representations for algebraic groups. Math. Annal., 269(4), 487–524.

[2] Friedlander, E.M., Parshal, B.J. (1986). Cohomology of Lie algebras and algebraic groups Amer. J. Math., 108, 235–253.

[3] Kumar, S., Lauritzen, L., Thomsen, J. (1999). Frobenius splitting of cotangent bundles of flag varieties. Invent. Math., 136, 603–621.

[4] van der Kallen, W.L.J. (1973). Infinitesimally central extensions of Chevalley groups. Berlin, Heidelberg, New York: Springer-Verlag. - Berlin, Heidelberg, New York, 147 p.

[5] Ibraev, Sh.Sh. (2013). O tsentral’nykh raschirennyakh klassicheskikh algebr Li [On central extensions of classical Lie algebras]. Siberiskie elektronnye matematicheskie izvestiya - Siberian Electronic Mathematical Reports, 10, 450–453 [in Russian].

[6] Block, R. (1962). Trace form in Lie algebras. Cand. J. Math., 14, 553–564.

[7] Ibraev, Sh.Sh. (2014). O pervoi kogomologii algebraicheskoi gruppy i ee algebr Li v polozhitelnoi kharakteristike [On the first cohomology of an algebraic group and its Lie algebra in positive characteristic]. Matematicheskie zametki – Mathematical notes, 96, No 4, 512–521 [in Russian].

[8] Rudakov, A.N. (1971). Daformatsii prostykh algebr Li [Deformations of simple Lie algebras]. Izvestiya AN SSSR, Ser. matem. – Izvestiya: Mathematics, 35, 113–119 [in Russian].

[9] Dzhumadil’daev, A.S. (1976). K deformatsii klassicheskikh prostykh algebr Li [On the deformations of the classical simple Lie algebras]. Uspekhi matematicheskikh nauk – Russian Mathematical Surveys, 31, 211–212 [in Russian].

[10] Kuznetsov, M.I., Clebochko, N.G. (2000). Daformatsii klassicheskikh algebr Li [Deformations of classical simple Lie algebras]. Matematicheski sbornic – Sbornic: Mathematics, 191(8), 69–88 [in Russian].
[11] Dzhumadil’daev, A.S. (1982). O kogomologiyakh modulyarnkh algebr Li [On cohomology of modular algebras]. Matematicheskii sbornic – Sbornic: Mathematics, 119(161), 132–149.

[12] Jantzen, J.C. (1991). First cohomology groups for classical Lie algebras Progress in Mathematics, 95, 291–315.

[13] Dzhumadil’daev, A.S., Ibraev, Sh.Sh. (2002). Nonsplit extensions of modular Lie algebras of rank 2. Homology, Homotopy and Applications, 4, 141–163.

[14] Chebochko, N.G. (2005). Deformatsii klassicheskikh algebr Li s odnorodnoi sistemi kornei v kharakteristike dva. I [Deformations of classical Lie algebras with homogeneous root system in characteristic two. I]. Matematicheskii sbornic – Sbornic: Mathematics, 196, 125–156. [in Russian].

[15] Williams, F.L. (1978). The cohomology of semisimple Lie algebras with coefficients in a Verma module Trans. Amer. Math. Soc., 240, 115–127.

1,2,3 Korkyt Ata Kyzylorda University, Kyzylorda, Kazakhstan

Email address: ibrayevsheraly@gmail.com