Evaluation of Hyper-Heuristic Method Using Random-Hill Climbing Algorithm in the Examination Timetabling Problem

*Deny Hermansyah, *Ahmad Muklason
a,b Institut Teknologi Sepuluh Nopember
Jl. Raya ITS, Keputih, Kec. Sukolilo, Surabaya, 60111
Email: *deny.hermansyah16@mhs.is.its.ac.id

Abstract. Examination timetabling is included in the category of Nondeterministic Polynomial-Hard (NP-Hard) problems, namely problems that cannot be solved by conventional methods in finding optimal solutions. One solution to this problem is to use the Simple Random - Hill Climbing - Hyper Heuristic (SR-HC-HH) approach. But this approach still cannot produce an optimum solution. The researcher presents a critical analysis of the performance evaluation of the solution method used. The stages of this research include: (1) problem identification; (2) literature study; (3) data retrieval and understanding; (4) translation of mathematical models into data structures; (5) evaluation of the SR-HC-HH algorithm; (6) trial implementation; (7) algorithmic experiment parameters; and (8) analysis of results and conclusions. SR-HC-HH algorithm used in Hyper-Heuristics-based applications is able to solve timetabling problems in the Examination Timetabling Problem domain in the ITC-2007 dataset, but it is still not optimal. Parameters that can be changed in this study are the number of iterations (time limit) and algorithms for selection of Low Level Heuristics. Changing parameters in the trial scenario can also affect the results of a more optimum solution. The parameters to be explored in this study include LLH selection strategies and move acceptance in hyper-heuristics.

Keywords : Examination Timetabling Problem, Hill Climbing , Hyper-Heuristic, ITC 2007, Simple Random.

1. Introduction

Timetabling problems are problems that involve four parameters namely limited time (T), limited resources (R), limited meetings (M), limited constraints (C). The problem is to determine the time and resources at the meeting so that the constraints are met [1]. Theoretically, exam timetabling is a NP-complete problem [2] [3] [4] [5] where there is no algorithm that is really able to solve this problem in a non-polynomial timeframe. This timetabling problem is formulated in a variety of datasets. The Carter and ITC 2007 dataset is one of the benchmarks used to represent exam timetabling problems. But the difference between the two is that the 2007 ITC dataset offers a much more complex representation of timetabling problems in the real world [5].

The state-of-the-art of this problem generally uses the meta-heuristic method. However, this method has several drawbacks including the need for tuning parameters and knowledge of specific problem domains. So it will be very difficult if the dataset has changed from time to time. Problem knowledge is very difficult to generalize, applying metaheuristics to new problem domains is also not easy, this is the basis why metaheuristics need to be developed further if you want to apply them to different problem domains [6].
The automatic heuristic design emerged as an efficient way to improve the performance of search algorithms by adjusting parameters and operators in an online manner [6]. Hyper-heuristic is an example of this methodology. Hyper-heuristic is a search method that solves optimization problems by exploring the search space of a given heuristic series. One of the main concepts is to solve various kinds of problems (cross-domain) by making it general. The advantage of hyper-heuristic itself is the ease in generalizing different domain problems.

In this study evaluates the Simple Random - Hill Climbing - Hyper Heuristic (SR-HC-HH) algorithm. Based on previous studies, further development of the Hyper-Heuristic approach is needed. Therefore this study evaluates the Simple Random algorithm as a selection strategy and Hill Climbing as a Move Acceptance (MA) hyper-heuristic for exam timetabling problems and testing it on the 2007 ITC dataset (Examination Timetabling Problem). In addition, in this study an analysis of the performance of the SR-HC-HH algorithm on exam timetabling problems.

2. Related Works

Muklason, 2017 developed a new modeling of exam timetabling problems, which previously only used a single objective, then developed into a multi-objective [5]. This study examines the problem of exam timetabling with a hyper-heuristic approach using the HyFlex framework. The purpose of this study is to investigate the structure of exam timetabling problems in the real world, critical issues, as well as aspects of current exam timetabling issues, specifically the issue of justice and then make it a new formulation of exam timetabling problems. The algorithm used in the LLH selection strategy is the Self-Adaptive Learning algorithm, while for move acceptance uses the Great Deluge algorithm. Then tested on the Carter dataset, ITC 2007, Yeditepe, and Nott. The main contribution of this research is the Hyflex improved framework, by adding exam timetabling problems as a new problem domain and adding Self-adaptive (SA) algorithms as LLH selection strategies and Great Deluge (GD) as move acceptance. And the results show that this new strategy is able to compete with the strategies used by previous researchers.

T. Müller, 2009 developed a solver to deal with exam timetabling problem [7]. The algorithm used is Iterative Forward Search (IFS) in the construction phase and uses three algorithms in the optimization phase namely Hill Climbing (HC), Great Deluge (GD), Annealing Simulation (SA). Demeester, 2012 also developed an exam timetabling solver. There are three algorithms used in the hyper-heuristic optimization stage namely Annealing Simulation (SA), Great Deluge (GD), and Late Acceptance (LA) [8]. S. A. Rahman, 2014 uses an adaptive linear combination approach for exam timetabling problems [9]. M. Alzaqebah, 2014 uses artificial bee colony and late-acceptance hill-climbing algorithms to solve exam timetabling problems [10]. E. K. Burke, 2014 uses the Adaptive Improvement Hyper-heuristic (AIH) algorithm to complete the exam timetabling problem [11].

Battistutta, 2015 uses the Simulated Annealing (SA) approach tuned for exam timetabling problem [12]. Doerr, 2018 evaluated the performance of the Adaptive Random Gradient (ARG) algorithm on a hyper-heuristic approach [13]. Kheiri, 2016 uses an Iterated Multi-stage selection Hyper-heuristic on six different problem domains [14]. M Cheraitia, 2016 using a simple graph colouring heuristic and Simulated Annealing is then used as an iterative heuristic for improving the spreading of the conflicting exams [15].

Pillay, 2014 provides an overview and critical analysis of hyper-heuristics for educational timetabling and proposes future research directions, focusing on using hyper-heuristics to provide a generalized solution to educational timetabling [16]. Soria-Alcaraz, 2016 introduce an ILS approach, strengthened by a hyper-heuristic which generates heuristics based on a fixed number of add and delete operations. The performance of the proposed hyper-heuristic is tested across two different problem domains using the real-world benchmark of course timetabling instances from the second International Timetabling Competition Tracks two and three [17].

Tanzila Islam, 2016 analyze that the Tabu Search technique is an essential method for getting a feasible solution. In this paper, we describe how Tabu Search works and how to get a feasible solution by using this algorithm [18]. Woumans, 2016 use approaches the Examination-Timetabling Problem
(ETP) from a student-centric point of view and propose two Column Generation (CG) algorithms [19]. Zamli, 2017 describes the experience with four hyper-heuristic selection and acceptance mechanisms namely Exponential Monte Carlo with counter (EMCQ), Choice Function (CF), Improvement Selection Rules (ISR), and newly developed Fuzzy Inference Selection (FIS), using the t-way test generation problem as a case study [20].

3. Methods

Method used in the study is indicated by the research flow, namely: (1) problem identification; (2) literature review; (3) data retrieval and understanding; (4) translation of mathematical models into data structures; (5) evaluation of the SR-HC-HH algorithm; (6) trial implementation; (7) algorithmic experiment parameters; and (8) analysis of results and conclusions. Details of this research method, can be seen in Figure 1

![Research Flow](image)

Figure 1. Research Flow
4. Results and Discussions

The following results compare the SR-HC-HH algorithm with the algorithm in the literature.

Table 1. Comparison of ITC-2007 Dataset Experiment Results

NO	INSTANCES	SR-HC-HH	MUKLASON 2017	MULLER 2009 [7]	DEMEESTER 2012 [8]	RAHMAN 2014 [9]	ALZAEQ BAH 2014 [10]	BURKE 2014 [12]
			MUKLASON					
			2007					
			SR-HG-HH					
			RL-HG-HH					
			SA-HG-HH					
				MUKLASON 701	4370	6060	5231	5328
1	EXAM 1	NA	6579	9	5809	4370	6060	5231
						400	515	433
2	EXAM 2	40252	584	535	490	1081	10049	9265
						1115	23580	10178
3	EXAM 3	100582	3	92	9	1323	10049	2
						219	1410	3510
4	EXAM 4	NA	3	92	0	18141	NA	17787
5	EXAM 5	127245	3658	0	3596	2988	4855	3083
						281	2607	3624
6	EXAM 6	52790	5	30	5	26950	27605	26206
						515	26060	26240
7	EXAM 7	65737	5145	1	5185	4213	6065	10712
						114	4562	2
8	EXAM 8	130394	9348	05	9180	7861	9038	8043
						138	12713	4
9	EXAM 9	NA	1074	2	1032	1047	1184	1111
						155	1443	NA
10	EXAM 10	NA	1	73	8	16682	15561	14825
						344	3360	NA
11	EXAM 11	NA	5	62	7	34129	NA	28891
						701	NA	NA
12	EXAM 12	NA	5163	3	5202	5535	5483	6181

The experimental results above show that the red one is a more optimal solution than the others. SR-HC-HH algorithm used in Hyper-Heuristics-based applications is able to solve timetabling problems in the Examination Timetabling Problem domain in the ITC-2007 dataset, but it is still not optimal. Even the previous researchers also have not found optimal results for all instances in the dataset. Some adjustments are needed in the future so that the results are more optimum and able to outperform all the algorithms used by previous researchers.

Parameters that can be changed in this study are the number of iterations (time limit) and algorithms for selection of Low Level Heuristics. Changing parameters in the trial scenario can also affect the results of a more optimum solution.

5. Conclusions and Future Works

Simple algorithm used in applications that have been developed that is Simple Random - Hill Climbing based on Hyper-Heuristics is able to solve timetabling problems in the Examination Timetabling Problem domain in the ITC-2007 dataset, but it is still not optimal. Even the previous researchers also have not found optimal results for all instances in the dataset. Some adjustments are needed in the future so that the results are more optimum and able to outperform all the algorithms used by previous researchers. Changing parameters in the trial scenario can also affect the results of a more optimum solution. Parameters that can be changed in this study are the number of iterations (time limit) and algorithms for selection of Low Level Heuristics.
It can be said that the problem faced when conducting experiments with the ITC2007 dataset is the establishment of an initial solution that exceeds the time limit and the output produces an error message. Therefore, the research development that will be carried out is about the initial solution that must be improved so that it can run well and the optimization process that will produce a decent output. The parameters to be explored in this study include the number of iterations in terms of the number of running trials and the amount of time limit used. Besides the number of iterations, other parameters that will be stunning are LLH selection strategies and move acceptance in hyper-heuristics.

6. References

[1] E. Burke and D. de Werra, ‘Applications to timetabling’, in Handbook of graph theory, Chapman and Hall/CRC, 2013, pp. 530–562.
[2] E. Burke and W. Erben, Practice and Theory of Automated Timetabling III: Third International Conference, PATAT 2000 Konstanz, Germany, August 16–18, 2000 Selected Papers, vol. 2079. Springer, 2003.
[3] S. Even, A. Itai, and A. Shamir, ‘On the complexity of time table and multi-commodity flow problems’, in 16th Annual Symposium on Foundations of Computer Science (sfcs 1975), 1975, pp. 184–193.
[4] R. M. Karp, ‘Complexity of computer computations’, Reducibility among combinatorial problems, vol. 23, no. 1, pp. 85–103, 1972.
[5] A. Muklason, ‘Hyper-heuristics and fairness in examination timetabling problems’, PhD Thesis, University of Nottingham, 2017.
[6] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, ‘A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems’, IEEE Transactions on Cybernetics, vol. 45, no. 2, pp. 217–228, 2014.
[7] T. Müller, ‘ITC2007 solver description: a hybrid approach’, Annals of Operations Research, vol. 172, no. 1, p. 429, 2009.
[8] P. Demeester, B. Bilgin, P. De Causmaecker, and G. V. Berghe, ‘A hyperheuristic approach to examination timetabling problems: benchmarks and a new problem from practice’, Journal of Scheduling, vol. 15, no. 1, pp. 83–103, 2012.
[9] S. A. Rahman, A. Bargiela, E. K. Burke, E. Özcan, B. McCollum, and P. McMullen, ‘Adaptive linear combination of heuristic orderings in constructing examination timetables’, European Journal of Operational Research, vol. 232, no. 2, pp. 287–297, 2014.
[10] M. Alzaqebah and S. Abdullah, ‘An adaptive artificial bee colony and late-acceptance hill-climbing algorithm for examination timetabling’, Journal of Scheduling, vol. 17, no. 3, pp. 249–262, 2014.
[11] E. K. Burke, R. Qu, and A. Soghier, ‘Adaptive selection of heuristics for improving exam timetables’, Annals of Operations Research, vol. 218, no. 1, pp. 129–145, 2014.
[12] M. Battistutta, A. Schaerf, and T. Urli, ‘Feature-based tuning of single-stage simulated annealing for examination timetabling’, Annals of Operations Research, vol. 252, no. 2, pp. 239–254, 2017.
[13] B. Doerr, A. Lissovoi, P. S. Oliveto, and J. A. Warwicker, ‘On the runtime analysis of selection hyper-heuristics with adaptive learning periods’, in Proceedings of the Genetic and Evolutionary Computation Conference, 2018, pp. 1015–1022.
[14] A. Kheiri and E. Özcan, ‘An iterated multi-stage selection hyper-heuristic’, European Journal of Operational Research, vol. 250, no. 1, pp. 77–90, 2016.
[15] M. Cheraitia and S. Haddadi, ‘Simulated annealing for the uncapacitated exam scheduling problem’, *International Journal of Metaheuristics*, vol. 5, no. 2, pp. 156–170, 2016.

[16] N. Pillay, ‘A review of hyper-heuristics for educational timetabling’, *Annals of Operations Research*, vol. 239, no. 1, pp. 3–38, 2016.

[17] J. A. Soria-Alcaraz, G. Ochoa, M. A. Sotelo-Figeroa, and E. K. Burke, ‘A methodology for determining an effective subset of heuristics in selection hyper-heuristics’, *European Journal of Operational Research*, vol. 260, no. 3, pp. 972–983, 2017.

[18] T. Islam, Z. Shahriar, M. A. Perves, and M. Hasan, ‘University Timetable Generator Using Tabu Search’, *Journal of Computer and Communications*, vol. 4, no. 16, p. 28, 2016.

[19] G. Woumans, L. De Boeck, J. Beliën, and S. Creemers, ‘A column generation approach for solving the examination-timetabling problem’, *European Journal of Operational Research*, vol. 253, no. 1, pp. 178–194, 2016.

[20] K. Z. Zamli, F. Din, G. Kendall, and B. S. Ahmed, ‘An experimental study of hyper-heuristic selection and acceptance mechanism for combinatorial t-way test suite generation’, *Information Sciences*, vol. 399, pp. 121–153, 2017.