CONTROVERSIES IN GASTROENTEROLOGY

Motion - Computerized tomographic colography is a better method for screening for polyps: Arguments against the motion

Jerome B Simon MD FRCP

Motion - La colographie par tomodensitométrie est une meilleure méthode de dépistage des polypes: Arguments contre la motion

JB Simon. Motion - Computerized tomographic colography is a better method for screening for polyps: Arguments against the motion. Can J Gastroenterol 2003;17(2):129-131.

Computerized tomographic (CT) colography is an exciting technique whereby images of the colonic wall and lumen can be obtained without colonoscopy. It is not as good as conventional colonoscopy, however, because of both inherent and performance limitations. Among the former is the inability to visualize subtle mucosal lesions, such as alterations in colour or pliability. More importantly, CT colography is strictly a diagnostic technique, and does not allow biopsy or removal of polyps. The vigorous bowel preparation required for this procedure can be very unpleasant for the patient, and includes purgatives followed by distension of the colon with air. Unlike with colonoscopy, adherent stool can be difficult to distinguish radiologically from polyps or cancers; as a result, many patients require colonoscopy anyway. The major performance limitations of CT colography are poor sensitivity and specificity compared with conventional colonoscopy. Rectal lesions, flat adenomas and diminutive adenomas are especially difficult to detect, and false-positive results are also common. In addition, the procedure is expensive and less cost effective than colonoscopy. CT colography takes relatively little patient time, but a substantial amount of time is needed for the radiologist to interpret the images. Interobserver variability is high. For all of these reasons, CT colography cannot be recommended as a screening test for colorectal neoplasia.

Key Words: Colonoscopy; CT colography; Polyp surveillance

The advent of computerized tomographic (CT) colography ('virtual colonoscopy') in 1994 represented an exciting new concept in the evaluation of the colon: the bowel could be searched for cancers and polyps without colonoscopic intrusion. With this technique, spiral CT images of the colon are obtained after the bowel is cleansed and distended with air. The radiologist later analyzes the computerized representations of the colonic lumen and wall. Ongoing technical advances have led to improvements in 2- and 3-dimensional visualization of the colonic lumen, along with impressive virtual 'fly-throughs' that simulate a colonoscopic procedure. Radiologists and other enthusiasts boast of the minimally invasive nature of the examination, claim that it is as effective (or nearly so) as colonoscopy in detecting neoplasia, and predict its widespread use as a tool for colorectal screening of the general population (1-4).

High-tech radiology is indeed exciting, but is CT colography really as good as colonoscopy? Do its advantages outweigh its limitations and weaknesses? Could it replace colonoscopy as the gold-standard screening test for polyps? I think that the answer to each of these questions is a clear 'No!'.

The problems with this procedure fall into two major categories:

• inherent limitations
• performance limitations, which are potentially amenable to technical improvements
INHERENT LIMITATIONS
The very name, 'virtual colonoscopy', illustrates a fundamental limitation of the test - it provides a 'virtual' scan of the colon, not a 'real' one. As interesting as the computer images might be, they can never replace the magic of nature's actual living, breathing bowel that the endoscopist sees. Subtleties of colouration and pliability, among other attributes of the mucosa, are of great diagnostic value and are readily observed at colonoscopy, but escape the sterile, fixed grayness of the CT scan's eye.

Even more importantly, traditional colonoscopy has the enormous advantage of being therapeutic as well as diagnostic for polyps. Lesions detected at CT colonography are mere shadows; they require subsequent colonoscopy for confirmation and biopsy and/or removal. A related, but separate, limitation is the lack of capacity to acquire tissue. Colonoscopists can biopsy subtle irregularities that evade detection by CT colonography.

CT colonography is not as 'minimally invasive' as its proponents claim. Patients require the same type of thorough bowel preparation as for colonoscopy, which many subjects find extremely uncomfortable and more traumatic than the endoscopic procedure itself. Furthermore, immediately before the examination, a rectal tube is inserted, through which air is insufflated 'to maximum patient tolerance' (2,4). In many centres, this is followed by an intravenous injection of an anti-spasmodic agent, such as Buscopan (Boehringer Ingelheim, Ontario) or glucagon, to maximize bowel distension. In a recent study in which both procedures were explained to patients, only 60% of subjects preferred CT colonography for colorectal screening; the other 40% either preferred colonoscopy or expressed no preference (5). In another recent study, patients who underwent both procedures reported more discomfort or pain with CT colonography than with conventional colonoscopy, and significantly more patients preferred the latter procedure (6). A s one wag pointed out:

"... from the patient's point of view, virtual colonoscopy will not be perceived as a major advance unless or until it can be preceded by a virtual bowel preparation, in which virtual Golytely is used." (7)

A thorough bowel preparation is important for colonoscopy, but is absolutely crucial for a successful CT colonographic examination. An endoscopist can easily distinguish between adherent stool and a tumour, but a radiologist often cannot. A nthing less than pristine cleanliness results in a false-positive interpretation. In such cases, the unfortunate patient is needlessly subjected to a subsequent colonoscopy for confirmation and biopsy.

Because of the presence of a tube for air insufflation, rectal lesions are easily missed at CT colonography.

PERFORMANCE LIMITATIONS
CT colonography is an evolving technology and performance characteristics will undoubtedly improve with increasing experience. Currently, however, there are major limitations and weaknesses with this technique compared with colonoscopy.

Sensitivity
Some authors report that CT colonography is able to detect about 90% of colonic cancers and polyps larger than 1 cm in diameter that have been identified at colonoscopy (2,4,8). Other papers published in the past two years, however, have described disappointingly low sensitivities for large polyps, from only 38% to 73% (9,10). Even in one study that found 90% sensitivity for large polyps, a 2.5 cm neoplasm was overlooked (2). Flat adenomas are especially likely to be missed by CT colonography (11-13), an event that rarely occurs with conventional colonoscopy (14,15).

CT colonography is much less able than conventional colonoscopy to detect smaller polyps. The most optimistic investigators report sensitivities of approximately 80% for polyps 5 mm to 9 mm in diameter and 55% to 60% for smaller lesions (2,4), but most studies have yielded far lower values (8,10,12). Proponents of this technique argue that polyps of less than 1 cm diameter are not clinically important, but this is only partly true. A significant, albeit small, proportion of small adenomas harbour high-grade dysplasia or even frank malignancy. Moreover, small lesions can grow into larger ones that have greater malignant potential.

Specificity
The false-positive rates with CT colonography are far too high. Most investigators have reported specificities of only 60% to 80%, if they mention them at all (2,4,8,9). Even for lesions larger than 1 cm in diameter, specificities are only 80% to 90% (2,9). This poses a major problem that CT enthusiasts rarely discuss, which is the high proportion of subjects who require subsequent colonoscopy because of the erroneous identification of lesions at CT colonography.

Improved bowel preparation and other technical advances might ultimately enhance the specificity of this technique, but false-positive results will always be an important limitation. This is especially important when one considers screening of the general population, in which high specificity is critical to make the program cost effective.

Cost effectiveness
The actual costs of CT colonography are impossible to glean from the literature, but it is clearly an expensive procedure. Even disregarding the very high capital expenditures for the equipment, it is unlikely that CT colonography will ever approach colonoscopy in cost effectiveness. Markov modelling has shown that colonoscopic screening would still be more cost effective even if the sensitivity and specificity of CT colonography were both 100% (16). The imaging technique could compete with colonoscopy only if compliance rates were higher by 15% to 20% and procedure costs were lower by more than half (16).

Other performance weaknesses
Studies of CT colonography have all involved patients with suspected colonic lesions or risk factors for colonic disease. The sensitivity and specificity of this technique in a more realistic screening situation have not yet been assessed, but almost certainly would be substantially lower than figures quoted in the reported literature.

Proponents of CT colonography emphasize the much shorter procedural time compared with colonoscopy. Though this is a major benefit for the patient, the radiologist needs a substantial amount of time (typically half an hour or more) to view...
and interpret the computer images after the patient leaves. This is a serious limitation to the use of CT colography as a screening tool.

Finally, there is limited interobserver reproducibility for CT colography, even among experienced radiologists, which leads to marked variations in its sensitivity and specificity (9).

CONCLUSIONS

CT colography is a remarkable and fascinating technique, but its sensitivity, specificity and cost effectiveness are inferior to those achieved with colonoscopy. Even if technical advances were to minimize these problems, inherent limitations of the procedure – especially the inability to take biopsies or effect therapy – would still make it inferior to conventional colonoscopy as a screening test for colorectal neoplasia.

REFERENCES

1. Johnson CD, Dachman A H. CT colonography: The next colon screening examination? Radiology 2000;216:331-41.
2. Fenlon HM, Nunes DP, Schroy PC 3rd, Barish MA, Clarke PD, Ferruci JT. A comparison of virtual and conventional colonoscopy for the detection of colorectal polyps. N Engl J Med 1999;341:1496-503.
3. Halligan S, Fenlon HM. Virtual colonoscopy. BMJ 1999;319:1249-52.
4. Yee J, Akerkar GA, Hung RK, Steinauer-Gebauer AM, Wall SD, McQuaid KR. Colorectal neoplasia: Performance characteristics of CT colonography for detection in 300 patients. Radiology 2001;219:685-92.
5. Angtuaco TL, Banaad-Omiotek GD, Howden CW. Differing attitudes toward virtual and conventional colonoscopy for colorectal cancer screening: Surveys among primary care physicians and potential patients. Am J Gastroenterol 2001;96:887-93.
6. Akerkar GA, Yee J, Hung R, McQuaid K. Patient experience and preferences toward colon cancer screening: A comparison of virtual colonoscopy and conventional colonoscopy. Gastrointest Endosc 2001;54:310-5.
7. Silverman C. Virtual colonoscopy. N Engl J Med 2000;342:738.
8. Kay CL, Kulling D, Hawes RH, Young JW, Cotton PB. Virtual endoscopy - comparison with colonoscopy in the detection of space-occupying lesions of the colon. Endoscopy 2000;32:226-32.
9. Pescatore P, Glücker T, Delarive J, et al. Diagnostic accuracy and interobserver agreement of CT colonography (virtual colonoscopy). Gut 2000;47:126-30.
10. Mendelson RM, Foster NM, Edwards JT, Wood CJ, Rosenberg MS, Forbes GM. Virtual colonoscopy compared with conventional colonoscopy: A developing technology. Med J Aust 2000;173:472-5.
11. Hara AK, Johnson CD, Reed JE, et al. Detection of colorectal polyps with CT colography: Initial assessment of sensitivity and specificity. Radiology 1997;205:59-65.
12. Rex DK, Vining D, Kopicky KK. An initial experience with screening for colon polyps using spiral CT with and without CT colonography (virtual colonoscopy). Gastrointest Endosc 1995;50:309-13.
13. Spinzi G, Belloni G, Margetti S, Santovanni A, Del Favero C, Minoli G. Computed tomographic colonography and conventional colonoscopy for colon diseases: A prospective, blinded study. Am J Gastroenterol 2001;96:394-400.
14. Hixon LJ, Fennerty MB, Sampliner RE, Garewal HS. Prospective blinded trial of the colonoscopic miss-rate of large colorectal polyps. Gastrointest Endosc 1991;37:125-7.
15. Rex DK, Cutler CS, Lemmel GT, et al. Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies. Gastroenterology 1997;112:24-8.
16. Sonnenberg A, Delcò F, Bauerfeind P. Is virtual colonoscopy a cost-effective option to screen for colorectal cancer? Am J Gastroenterol 1999;94:2268-74.
