Read Extensively, Focus Smartly: A Cross-document Semantic Enhancement Method for Visual Documents NER

Jun Zhao1; Xin Zhao1; Wenyu Zhan1, Tao Gui2†; Qi Zhang1†; Liang Qiao3; Zhanzhan Cheng3; Shiliang Pu3

1School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China
2Institute of Modern Languages and Linguistics, Fudan University
3Hikvision Research Institute, Shanghai, China

\{zhaoj19,tgui,qz\}@fudan.edu.cn,\{zhaoxin21,wyzhan21\}@m.fudan.edu.cn

Abstract

The introduction of multimodal information and pretraining technique significantly improves entity recognition from visually-rich documents. However, most of the existing methods pay unnecessary attention to irrelevant regions of the current document while ignoring the potentially valuable information in related documents. To deal with this problem, this work proposes a cross-document semantic enhancement method, which consists of two modules: 1) To prevent distractions from irrelevant regions in the current document, we design a learnable attention mask mechanism, which is used to adaptively filter redundant information in the current document. 2) To further enrich the entity-related context, we propose a cross-document information awareness technique, which enables the model to collect more evidence across documents to assist in prediction. The experimental results on two documents understanding benchmarks covering eight languages demonstrate that our method outperforms the SOTA methods.

1 Introduction

Visually-rich documents (VRDs) are the most common information carriers in the real world, such as newspapers, resumes, tickets, etc. Different from plain text data, the information in VRDs is encoded by multiple modalities including text, vision, and layout. Entity recognition from VRDs, as a key step for document understanding, is of utmost practical interest for many downstream applications such as business analysis (Xu et al., 2020), intelligent education (Kahraman et al., 2010), digital library (Kroll et al., 2021).

The pioneering explorations approach this task by either computer vision (Katti et al., 2018) or natural language processing (Lample et al., 2016) paradigm. However, these methods ignore the inherent multi-modality of VRDs and consequently the suboptimal results are achieved. To address this problem, graph neural network (Liu et al., 2019) and self-attention mechanism (Zhang et al., 2020) are introduced to capture the cross-modality interaction and achieve superior performance. Recently, inspired by the widespread success of large pretrained language models (Qiu et al., 2020), self-supervised pretraining techniques are leveraged to learn cross-modal knowledge from unlabeled documents (Xu et al., 2020, 2021a,b) and the amount of labeled data required for document understanding is greatly reduced.

However, the existing methods suffer from the following two main shortcomings. From \textit{intra-document} perspective, most previous works model a document by encoding each token uniformly, ignoring the fact that the document is composed of several regions (e.g. paragraphs, tables, captions) that are not so closely related semantically (Binmakhashen and Mahmoud, 2019). As shown in Figure 1, the type of COVID-19 in...
the orange region does not depend on the context in other gray regions. Unrestricted consideration of the whole document will not only distract the attention to local regions with stronger semantic associations (Guo et al., 2019b) but also increase the risk of fitting spurious features (also known as the Shortcut phenomenon (Geirhos et al., 2020)). From the inter-document perspective, the observed information is limited to the single document context, which may not be enough to accurately recognize entities. As shown in Figure 1, we can’t judge whether COVID-19 is a piece of news or a virus only by virtue of “COVID-19 spreads in the US”. Worse still, the insufficient context information can be further destroyed by the errors in character recognition when faced with low-quality documents (e.g. imaging blur, deformity) (Mou et al., 2020).

In this work, we propose a cross-document semantic enhancement method to enable the model to focus and integrate entity-related information across documents. Specifically, to prevent distractions from irrelevant regions in the current document, we design a learnable attention mask mechanism. Cross-region attentions are masked with a higher probability, so the model tends to make predictions using more reliable features from the local region. We introduce gumbel softmax (Jang et al., 2017) to solve the non-differentiable problem of discrete mask variables. To embrace sufficient context to assist prediction, we propose a cross-document information awareness technique. Inverted index (Knuth, 1997) is used to efficiently store and retrieve the contextualized representations of each token from each document. Cross-document attention acts on entity token representations to collect sufficient evidence to improve prediction.

Our contribution is threefold: 1) we propose a cross-document semantic enhancement method to enable the model to focus on the entity-related information across documents. The method filters the redundant information while expanding the information source; 2) our method can be regarded as a plug-in. It can be added to any document understanding model to improve prediction. 3) The experimental results on two datasets covering eight languages demonstrate that the proposed method outperforms the state-of-the-art methods;

2 Related Work

2.1 Multi-modal Named Entity Recognition

The approaches used to handle the task roughly fall into one of three directions. (1) From single to multiple modality. Due to the inherent multi-modality of visually-rich documents, early attempts from the perspective of computer vision (CV) (Katti et al., 2018) or natural language processing (NLP) (Lample et al., 2016; Ma et al., 2022; Zhao et al., 2021; Wang et al., 2022) can not achieve optimal performance. Therefore, artfully designed network architectures (Yu et al., 2021) and sophisticated mechanisms (Guo et al., 2019a) are used to fuse multimodal features for document understanding. (2) From isolated to end-to-end optimization. In classical document understanding methods, modules such as text recognition, image encoding, and information extraction are still optimized in isolation with different objective functions. To deal with this limitation and extract task-tailored features, end-to-end training frameworks are proposed (Zhang et al., 2020; Wang et al., 2021a), in which all modules are differentiable and optimized by a unified loss function. (3) From supervised to pretraining paradigm. Recently, Xu et al. (2020) extend the textual pretraining task to visual documents. Multiple well-designed pretraining objectives facilitate the interaction of multimodal information. With the help of learned generic document features, only a few samples would be sufficient to achieve SOTA accuracy. Different from all the above-mentioned methods, we rethink this task from the perspective of information integration and achieve the transition from single-document uniform to cross-document selective information integration to improve prediction.

2.2 Shortcut Phenomenon in Neural Network

Why should we selectively focus on local regions rather than dealing with each token of the whole document without distinction? The answer is the Shortcut phenomenon (Geirhos et al., 2020), which illustrates that neural networks always tend to fit training objectives in the simplest way. For example, suppose that in the training set, the word “Washington” in samples entitled “New York Times” all stand for place names. Global self-attention can easily learn this spurious feature. When “Washington” appears as a person’s name, the model may completely ignore its context and
3 Approach

We propose a cross-document semantic enhancement method, which enables the model to make use of the cross-document context of the target entity and reduce the impact of noise from irrelevant regions of the current document.

The problem settings in this paper are formally stated as follows. Let $\mathcal{E} = \{e_i\}_{i=1}^{N_E}$ denotes the predefined N_E entity types of interest and $\mathcal{C} = \{c_i\}_{i=1}^{N_C}$ denotes the entity label set derived by \mathcal{E} according to the BIO scheme. Let $\mathcal{D} = \{(w_i, b_i, v_i)\}_{i=1}^{N_D}$ be a visually-rich document (VRDs), where w_i denotes token in the document. $b_i = (x_i^0, y_i^0, x_i^1, y_i^1)$ denotes the bounding box (i.e. the position in the document) and v_i denotes image patch of w_i. Given a labeled set of VRDs $\mathcal{S} = \{D_i\}_{i=1}^{N_S}$, we target at learning a mapping function $\mathcal{F} : \mathcal{D} \rightarrow \{c_{w_i}\}_{i=1}^{N_D}$. In other words, \mathcal{F} assigns an entity label $c_{w_i} \in \mathcal{C}$ to each word w_i in the document to extract entities of interest.

3.1 Method Overview

We improve entity recognition from VRDs by the proposed cross-document semantic enhancement method, which enables the model to focus on the entity-related information across documents, rather than being distracted by irrelevant regions in the current document. As illustrated in Figure 2, the proposed method works as follows.

(1) We encode a visually-rich document $D \in \mathcal{S}$ using a multi-modal transformer encoder implemented as the pretrained LayoutXLM (Xu et al., 2021b), which takes multi-modal information including text w_i, layout b_i and picture patch cut by b_i as input, and $h_{i,j}$ denotes the output of layer j of the encoder. However, a document is usually composed of several regions that are not so closely related semantically. Consequently, unrestricted consideration of the whole document will not only distract the attention to local regions with stronger semantic associations but also can increase the risk of fitting spurious features.

(2) To prevent distractions from irrelevant regions in the current document, we design a learnable attention mask mechanism. Tokens that are farther away from the current token will be masked with a higher probability. Since mask operation is a discrete variable sampled from the binomial distribution, Gumbel softmax is introduced to realize end-to-end optimization of mask distribution. However, the current document context may not contain enough information to accurately classify the output of the encoder $h_{i,N}$ to the true entity label c_{w_i}.

(3) To embrace sufficient context to improve prediction, we propose a cross-document information awareness technique. Each word w_i corresponds to a queue $Q_i = \{h_i^{m,N}\}_{m=1}^{\lfloor \log_2 |Q| \rfloor}$ that stores the contextualized representation of w_i in $|Q|$ different documents. When encoding the current document D, for each word $w_i \in D$, we retrieve Q_i and obtain the final representation...
h_i through the cross-document attention attention between $h_{i,N}$ and each $h_{i,N}^m \in Q_i$. After that, $h_{i,N}$ is updated to queue Q_i. The lazy update ensures efficiency. Based on h_i, we classify w_i into its corresponding entity label c_{w_i}.

3.2 Learnable Attention Mask Mechanism

In this section, we elaborate on the proposed learnable attention mask mechanism. Firstly, the pretrained encoder aims to integrate multi-modal inputs such as text, layout, and vision, and obtain the fixed-length representation of each token. To reduce the excessive attention to the irrelevant regions in the document during encoding, a mask sampled from the binomial distribution is applied to the original attention distribution, and the tokens farther away from the current position will be masked with a higher probability. Finally, the introduction of Gumbel relaxation solves the problem of non-differentiability of the discrete mask, which enables the model to learn the optimal mask distribution in an end-to-end manner.

3.2.1 Multi-Modal Transformer Encoder

The proposed cross-document semantic enhancement method is architecture-agnostic and can be added to any encoder architecture based on self-attention mechanism. We adopt LayoutXLM (Xu et al., 2021b) as the implementation of our encoder $enc(\cdot)$ because LayoutXLM is a multilingual encoder, which enables us to comprehensively demonstrate the effectiveness of the proposed method in different languages. We follow the way in LayoutXLM to generate input of the encoder. Specifically, given a visually-rich document $D = \{(w_i, b_i, v_i)\}_{i=1,...,N_D}$, the multi-modal transformer encoder $enc(\cdot)$ takes inputs from three different modalities, including text w_i, layout b_i, and image patch v_i, which are mapped to text embedding w_i, layout embedding PE_i, and visual embedding v_i, respectively. The text and visual embeddings are concatenated, then plus the layout embedding to get the input embedding $H^0 = \{h_{1,0}, ..., h_{N,0}\} \in \mathbb{R}^{N \times d}$. Then, the intra-document self-attention transform H^0 into the queries $Q^0 \in \mathbb{R}^{N \times d}$, the keys $K^0 \in \mathbb{R}^{N \times d}$, and the values $V^0 \in \mathbb{R}^{N \times d}$. Finally, the output of the current layer is calculated as follows:

$$H^{l+1} = ATT(Q^l, K^l)V^l$$

$$ATT(Q^l, K^l) = \text{Softmax}(\frac{Q^lK^l_{:,l}}{\sqrt{d}}).$$

The output of the last layer H^N is used as the input of the entity classifier. Although the global attention mechanism can model the interaction between multi-modal information, the redundant irrelevant information contained in the document reduces the attention of the model to the local regions with stronger semantic relevance, which leads to sub-optimal results.

3.2.2 Self-Attention with Mask Mechanism

In order to enhance the attention to local regions and reduce the risk of fitting spurious features, we carefully design a mask generation layer, which aims to select a more reliable subset from the input document as the basis for model prediction. Specifically, for the representation of each token $h_{i,l} \in H^l$ in layer l of encoder, the mask generation layer outputs a specific mask sequence $m = \{m_0, m_1, ..., m_N\}$, $m_i \in \{0, 1\}$, where 0 and 1 here represent discard and select respectively. When calculating whether a contextual token will be discarded, we first calculate its distance ΔX on the horizontal axis and ΔY on the longitudinal axis with the current word. Then the mask is sampled from the following binomial distribution:

$$P_{\Delta X,Y}(m) = m \ast \pi_{\Delta X,Y} + (1 - m) \ast (1 - \pi_{\Delta X,Y})$$

$$\pi_{\Delta X,Y} = e^{-[\alpha(\frac{\Delta X}{X_{\text{MAX}}}) + \beta(\frac{\Delta Y}{Y_{\text{MAX}}})]}.$$ (4)

where X_{MAX} and Y_{MAX} denote the maximum height and width of the document, respectively. α and β are the learnable parameters. In addition to relative positions, we also try to take region type into account. However, mainstream document understanding datasets lack region labels. Due to the domain gap, the pseudo region labels obtained by the existing layout analyzer are too noisy to use. It should be noted that equation 4 is easy to extend. We only need to add more terms to the exponential term to consider more influencing factors (e.g. when region labels are available)

We concatenate the mask sequences $m \in \mathbb{R}^N$ corresponding to each token to get a mask matrix $M \in \mathbb{R}^{N \times N}$, which is used to refine the original attention distribution of token i in layer l.

$$E = \frac{QK^\top}{\sqrt{d}}$$

$$ATT_i(M, Q, K) = \frac{M_i \exp(E_i)}{\sum_{i'=1}^N M_{i'} \exp(E_{i'})}.$$ (6)
Based on the ATT obtained from equation 6, we calculate $h_{i,t+1}$ according to equation 1. It should be emphasized that although tokens farther away from the current token will be masked with a higher probability, this does not mean that the model can never observe them. The purpose of the above mechanism is to make the model tend to make predictions using more reliable local features.

3.2.3 Gumbel Relaxation

To solve the non-differentiable problem of discrete mask operation, we introduce Gumbel softmax (Jang et al., 2017) to approximate the mask operation from the categorical distribution so that it can be optimized through backpropagation. Since we are dealing with a 2-class sampling problem, the original Gumbel softmax approximation is reduced to sigmoid-form as follows:

$$Gumbel(L) = \frac{\exp((L + G_1)/\tau)}{\exp((L + G_1)/\tau) + \exp(G_2/\tau)}, \quad \text{for } \tau \geq 0$$

(7)

where $Gumbel(\cdot)$ is a continuous approximation of discrete mask m_i, L denotes $logits = \log(\frac{p}{1-p})$ and p is calculated according to equation 3. G_1 and G_2 are two noises sampled from Gumbel distribution (Gumbel, 1954) independently. In addition, $\tau \in (0, +\infty)$ denotes the temperature parameter. With the decrease of τ, the approximate result $Gumbel(\cdot)$ will gradually tend to one hot. In the inference, we directly use $P_{AX,Y}(m = 1) = 0.5$ as the threshold of whether to mask a context word to ensure the consistency of inference results.

3.3 Cross-Document Information Awareness

For some hard cases, the context of the current document may not contain enough entity-related information. To embrace sufficient context to assist prediction, we propose the cross-document information awareness technique. Inverted index is introduced to deal with the fast retrieval of massive document context and cross-document attention is used to integrate entity-related information from different documents.

3.3.1 Efficient Retrieval Supported by Inverted Index

Efficient storage and retrieval of a large number of documents is a prerequisite for cross-document information awareness. To enable the model to efficiently retrieve different contexts containing the current token, we introduce the inverted index (Knuth, 1997) to manage the data efficiently. Specifically, each word w_i corresponds to a queue $Q_i = \{h_{m,N}^m\}_{m=1}^{\mid Q\mid}$ that stores the contextualized representation of w_i in $\mid Q\mid$ different documents. When the model queries the context of a token in other documents (e.g. COVID-19), we only need to return the queue corresponding to COVID-19 instead of traversing the entire dataset. However, as the model is updated, the contextualized representations stored in the queue will gradually become obsolete. It is obviously inefficient or even impossible to update the whole inverted index after the training of each batch. In order to solve this problem, we use the lazy update to maintain the queue. That is, after the current document D is encoded, we only update the representation $h_{i,N}$ of each $w_i \in D$ to the queue Q_i. Finally, does storing these vectors incur excessive memory overhead? In fact, most words do not need to store more than 3 cross-document copies due to the long-tail effect. Words that appear many times are usually stop words, and it is useless to store too many of their representations. Therefore, we limit the maximum queue length to avoid useless storage. Overall, the queue size accounts for only about 5% to 10% of the encoder parameters.

3.3.2 Cross-Document Attention

Given the multi-modal embedding $h_{i,N}$ of each word w_i outputted by layer N of encoder $enc(\cdot)$, we integrate the information of different documents through the cross-document attention mechanism to assist prediction. First, we query the context representation queue $Q_i = \{h_{m,N}^m\}_{m=1}^{\mid Q\mid}$ corresponding to token w_i from the inverted index. Then $h_{i,N}$ and Q are concatenated to get $H^c \in \mathcal{R}^{(\mid Q\mid+1) \times d}$, the input of cross-document attention. Then we transform H^c into the keys $K^c \in \mathcal{R}^{(\mid Q\mid+1) \times d}$, and the values $V^c \in \mathcal{R}^{(\mid Q\mid+1) \times d}$. We only calculate the query q^c of $h_{i,N}$ for the efficiency of calculation. We obtain the representation h_c of the word w_i by integrating cross-document information as follows:

$$h_i = ATT(q^c, K^c)V^c$$

(8)

$$ATT(q^c, K^c) = \text{Softmax}(\frac{q^c K^c \top}{\sqrt{d}}).$$

(9)
Finally, a linear classifier $\eta(\cdot) : \mathbb{R}^d \to \mathbb{R}^{N_c}$ optimized by cross entropy transforms h_i to its corresponding entity label $c_{w_i} \in C$.

4 Experimental Setup

In this section, we describe the datasets for training and evaluating the proposed method. We also detail the baseline models for comparison. Finally, we clarify the implementation details and hyperparameter configuration of our method.

4.1 Datasets

The effectiveness of the proposed method is not limited to a particular language. We conducted experiments on two well-known document understanding datasets consisting of eight languages to show the universality of our method.

FUNSD (Jaume et al., 2019) is an English dataset for form understanding in noisy scanned documents. It consists of 199 manually labeled real documents from different fields such as marketing, advertising, and scientific reports. Each entity is annotated by a label (i.e., question, answer, header, or other) following the BIO schema, and a bounding box indicating the 2D position in the document. The dataset is split into 149 training forms and 50 testing forms.

XFUND (Xu et al., 2021b) is a multilingual form understanding dataset, which extends the FUNSD dataset to 7 other languages including Chinese, Japanese, Spanish, French, Italian, German, and Portuguese. Each language includes 199 forms, where the training set includes 149 forms and the test set includes 50 forms.

4.2 Comparison Methods

To evaluate the effectiveness of our method, we select the following SOTA multilingual NER models for comparison. The first two baseline only use textual modal as self-supervised signal, while multimodal pretraining is used in the last baseline and achieves SOTA in document understanding task.

XLM-RoBERTa (Conneau et al., 2020) is a Transformer-based masked language model pretrained on one hundred languages, with more than two terabytes of data.

InfoXLM (Chi et al., 2021) is a cross-lingual pretrained model based on an information-theoretic framework. It formulates pretraining as maximizing mutual information between multilingual multi-granularity texts.

LayoutXLM (Xu et al., 2021b) is a multimodal pretrained model, which takes the information of three modalities (text, layout, and image) as input. The carefully designed cross-modal alignment pretraining objectives improve the effectiveness of visually-rich document modeling.

4.3 Implementation Details

We use the AdamW (2019) as the optimizer, with a learning rate of $5e^{-5}$ and batch size of 4 for all datasets. The length of the queue is selected among {5, 10, 15, 20} and experiments show that 10 is the best choice. We initialize α and β to be 0.2 and 1.0 respectively. τ is selected among {0.15, 0.25, 0.35} and we choose the best one. We use the base version for all the pretrained models. All experiments are conducted using an NVIDIA GeForce RTX 3090 with 24GB memory. All experimental results are the average of three runs based on the Pytorch framework.

5 Results and Analysis

In this section, we present the experimental results on two well-known document understanding datasets to show the effectiveness of our method.

5.1 Main Results

Table 1 reports model performance on FUNSD, and XFUND datasets, which shows that the proposed method achieves state-of-the-art results in eight different languages. For visually-rich document understanding, the key information is presented in multiple modalities, such as text, layout, vision. However, XLM-RoBERTa and InfoXLM only model a single textual modal, consequently underperforming the multi-modal LayoutXLM baseline and our method by a large margin. Benefitting from (1) the irrelevant redundant information filtering supported by attention mask mechanism and (2) valuable entity-related context provided by the cross-document information awareness technique, the model can efficiently integrate entity-related information to make predictions. As a result, the proposed method outperforms LayoutXLM in eight different languages. This also shows that the effectiveness of the proposed semantic enhancement method is not limited to a specific language.
5.2 Ablation Study

To study the contribution of each component in the proposed method, we conduct ablation experiments on the two datasets and display the results in Table 2. The results show that the model performance is degraded if the learnable attention mask (AM) is removed, indicating that the redundant information in the document will distract the model from focusing on the local regions with stronger semantic relevance. In addition, cross-document information awareness (CD) provides diverse contexts for key information extraction. Without CD, some hard cases where the entity-related information is insufficient can not be recognized accurately. Consequently, the overall performance will be negatively affected. It is worth noting that the proposed AM and CD are effective in all languages, which also shows the generality and practical value of the proposed method.

5.3 Robustness Analysis

In real-world applications, we inevitably encounter low-quality input documents. Due to various factors such as occlusion, focus and angular deformations, optical character recognition (OCR) of those documents often yield unsatisfactory results, which will negatively impact the information extraction. To exhaustively evaluate the robustness of the model in real scenarios, we apply TextFlint (Wang et al., 2021b), a robustness evaluation platform, to perturb the original dataset to simulate OCR errors in real-world applications. Specifically, we use OCR error transformation in TextFlint.
to disturb the document. For each entity in the
document, we perturb a certain proportion of
words in its context and evaluate the prediction
results. From Figure 3 we can see that the
proposed method consistently outperforms
baselines under the different ratios of OCR errors
in context. Benefitting from the proposed cross-
document information awareness technique, even
if the context of entities in the current document
is severely damaged, the model can still use the
context information in related documents to assist
in prediction. Therefore, the proposed model has
better robustness in real scenarios.

5.4 Efficiency Analysis

Although the introduction of inverted index en-
ables us to retrieve large-scale related documents
efficiently, a question worthy of discussion is
whether storing the representations of each token
will occupy too much memory space? We answer
the question by analyzing the maximum queue
length L, a key parameter affecting memory
consumption. From Figure 4 we can observe that
optimal performance can be achieved by mem-
orizing no more than 10 token representations
of each target entity in related documents. In
addition, nearly 70% of tokens in the two datasets
appear no more than 3 times due to the long-tail
token distribution. Therefore, the storage of cross-
document information does not bring too high a
memory overhead. In fact, too much information
from other documents is not necessarily leading to
better results. When the maximum queue length L
exceeds 10, further increasing L will make a large
number of meaningless stop words and some other
outdated representations memorized, which leads
to the decline of model performance.

5.5 Impact of Context Sparsity

In the inference, we directly use $P_{\Delta X,Y}(m =
1) = \theta$ as the threshold of whether to mask
a context word to ensure the consistency of
inference results. The threshold θ corresponds
to the sparsity of the context that the model can
observe. The larger the θ, the fewer tokens
can be observed. To analyze the impact of
context sparsity, we conduct experiments on four
randomly selected languages. As can be seen
from Fig. 5, initially, as the threshold increases,
redundant noise from different regional contexts is
continuously masked. The performance continues
to improve, reaching the maximum when $\theta = 0.5$
After that, further increasing θ will cause more
useful contexts in the same region to be masked,
and the performance declines rapidly. This also
confirms the view that useful context information
is mainly distributed in local regions.

6 Conclusions

In this work, we introduce a cross-document
semantic enhancement method to improve entity
recognition from visually-rich documents. The
proposed learnable attention mask mechanism
effectively filters redundant irrelevant information
in the current document, which reduces the risk
of overfitting spurious features. Cross-document
information awareness enriches sufficient entity-
related context to improve predictions. The
proposed method can be regarded as a plug-in,
which can be added to any existing document
understanding model and improve prediction. Ex-
perimental results show that the proposed method
outperforms the existing state-of-the-art methods
in documents of different languages and is more
robust in real scenarios.
Acknowledgements

The authors wish to thank the anonymous reviewers for their helpful comments. This research was sponsored by Hikvision Cooperation Fund.

References

Galal M Binnakhassen and Sabri A Mahmoud. 2019. Document layout analysis: A comprehensive survey. ACM Computing Surveys (CSUR), 52(6):1–36.

Zewen Chi, Li Dong, Furu Wei, Nan Yang, Saksham Singhal, Wenhui Wang, Xia Song, Xian-Ling Mao, Heyan Huang, and Ming Zhou. 2021. InfoXLM: An information-theoretic framework for cross-lingual language model pre-training. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 3576–3588, Online. Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8440–8451, Online. Association for Computational Linguistics.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, and Felix A Wichmann. 2020. Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11):665–673.

Emil Julius Gumbel. 1954. Statistical theory of extreme values and some practical applications : A series of lectures.

He Guo, Xiaineng Qin, Jiaming Liu, Junyu Han, Jingtuo Liu, and Errui Ding. 2019a. Eaten: Entity-aware attention for single shot visual text extraction. In 2019 International Conference on Document Analysis and Recognition (ICDAR), pages 254–259. IEEE.

Maosheng Guo, Yu Zhang, and Ting Liu. 2019b. Gaussian transformer: A lightweight approach for natural language inference. In National Conference on Artificial Intelligence.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical reparameterization with gumbel-softmax. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

G. Jaume, H. Kemal Ekenel, and J. Thiran. 2019. Funsd: A dataset for form understanding in noisy scanned documents. In 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), volume 2, pages 1–6, Los Alamitos, CA, USA. IEEE Computer Society.

H. Tolga Kahraman, Seref Sagiroglu, and Ilhami Colak. 2010. Development of adaptive and intelligent web-based educational systems. In 2010 4th International Conference on Application of Information and Communication Technologies, pages 1–5.

Anoop Raveendra Katti, Christian Reisswig, Cordula Guder, Sebastian Brarda, Steffen Bickel, Johannes Höhne, and Jean Baptiste Faddoul. 2018. Chargrid: Towards understanding 2d documents. arXiv preprint arXiv:1809.08799.

Donald E. Knuth. 1997. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, third edition. Addison-Wesley, Reading, Mass.

Hermann Kroll, Jan Pirklbauer, Jan-Christoph Kalo, Morris Kunz, Johannes Ruthmann, and Wolf-Tilo Balke. 2021. Narrative query graphs for entity-interaction-aware document retrieval. In Towards Open and Trustworthy Digital Societies, pages 80–95, Cham. Springer International Publishing.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360.

Xiaojing Liu, Feiyu Gao, Qiong Zhang, and Huasha Zhao. 2019. Graph convolution for multimodal information extraction from visually rich documents. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers), pages 32–39, Minneapolis, Minnesota. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In International Conference on Learning Representations.

Ruotian Ma, Yiding Tan, Xin Zhou, Xuanting Chen, Di Liang, Sirui Wang, Wei Wu, and Tao Gui. 2022. Searching for optimal subword tokenization in cross-domain ner. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pages 4289–4295. International Joint Conferences on Artificial Intelligence Organization. Main Track.

Yongqiang Mou, Lei Tan, Hui Yang, Jingying Chen, Leyuan Liu, Rui Yan, and Yaohong Huang. 2020. Plugnet: Degradation aware scene text recognition supervised by a pluggable super-resolution unit. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XV 16, pages 158–174. Springer.
