The *Leishmania* ARL-1 and Golgi Traffic

Annelise Sahin, Benoît Espiau, Emmanuel Tetaud, Armelle Cuvillier, Lydia Lartigue, Audrey Ambit, Derrick R. Robinson, Gilles Merlin

Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France

Abstract

We present here the characterisation of the *Leishmania* small G protein ADP-Ribosylation Factor-Like protein 1 (ARL-1). The ARL-1 gene is present in one copy per haploid genome and conserved among trypanosomatids. It encodes a protein of 20 kDa, which is equally expressed in the insect promastigote and mammalian amastigote forms of the parasite. ARL-1 localises to the Trans-Golgi Network (TGN); N-terminal myristoylation is essential for TGN localisation. *In vivo* expression of the *Ld*ARL-1/Q74L and *Ld*ARL-1/T51N mutants (GTP- and GDP-bound blocked forms respectively) shows that GDP/GTP cycling occurs entirely within the TGN. This is contrary to previous reports in yeast and mammals, where the mutant empty form devoid of nucleotide has been considered as the GDP-blocked form. The dominant-negative empty form mutant *Ld*ARL-1/T34N inhibits endocytosis and intracellular trafficking from the TGN to the lysosome/multivesicular tubule and to the acidocalcisomes; these defects are probably related to a mislocalisation of the GRIP domain-containing vesicle tethering factors which cannot be recruited to the TGN by the cytoplasmic *Ld*ARL-1/T34N. Thus, besides the functional characterization of a new mutant and a better understanding of ARL-1 GDP/GTP cycling, this work shows that *Leishmania* ARL-1 is a key component of an essential pathway worth future study.

Introduction

Leishmania sp are flagellated trypanosomatid parasites responsible for widespread diseases in tropical and subtropical countries (http://www.who.int/tdr/diseases/leish/default.htm). The parasite alternates between a flagellated extracellular form in the insect guts and an aflagellated intracellular form living in the parasitophorous vacuoles of mammalian macrophages. Such particularities and the evolutionary distance make it likely that there are sufficient differences in the biological pathways between parasites and hosts to find new parasite-specific drug targets. This is seriously needed due to the limited choice of available treatments, which are old, and the spreading of drug resistance. Basic research, accompanied by the recent publication of the complete genome sequence of several trypanosomatid species, including *Leishmania* [1,2], may help to find new approaches to control these diseases.

Intracellular traffic is an essential process in all living organisms. In humans, a number of severe diseases are caused by trafficking deficiencies [3]. It is not absurd to expect to find within such complex machinery a parasite-specific step that is exploitable to impair parasite traffic and viability. To our knowledge, such an achievement has not yet been reached, and it is much too early to know whether and when therapeutic applications may arise. However, there are already parasite-specific pathways candidates, for example the now well studied trafficking of GPI-anchored proteins in trypanosomes [4].

Vesicles represent the main tool of intracellular traffic and a great number of proteins are involved in their assembly, mobility and disassembly, including notably small G proteins, like members of the ARF/ARL (ADP-Ribosylation Factor/ADP-Ribosylation factor-Like) family [5–8]. There are 5 or 6 different ARFs and about a dozen ARLs among this family, depending on the species. The most studied are ARF-1 and ARF-6 with orthologues in yeast, plants, mammals [9], and even protozoa like *Leishmania* [10] and *Trypanosoma* [11,12]. ARL-1 has recently received much attention and orthologues have been studied in several species. ARL-1 has been localised to the trans-Golgi network (TGN) in yeast, mammals [13,14] and *T. brucei* [15]. Essential in *Drosophila* [16], ARL-1 maintains the integrity of the Golgi apparatus [15,17,18], and controls the vesicle traffic and the vacuole formation in yeast [19–21]. As for most other members of the family, myristoylation of its N-terminus is essential for its localisation and function [15,19,22,23].
Being a G protein, ARL-1 cycles between GDP- and GTP-bound forms. In yeast, a nucleotide exchange factor, Yal2p [24], and a GAP (GTPase-activating protein), Gcs1p [25], have been characterised; in mammals, only a yet uncharacterised ARF-GAP has been described [26]. Several effectors have been shown to interact with the GTP-bound form of ARL-1 [14,18,27], particularly the GRIP domain of several golgins/tethering factors.

In the current model, such interactions allow the recruitment of these tethering factors to TGN membranes, which are essential for the vesicular traffic between the Golgi apparatus and endosomes [28–32]. This is probably how ARL-1 participates to the Golgi apparatus maintenance and vesicular traffic.

Recently, remarkable studies with the orthologue TbrARL-1 have been reported in Trypanosoma brucei. TbrARL-1 is only expressed in the bloodstream forms, where it is associated with the Golgi apparatus; RNAi experiments showed that TbrARL-1 is essential for viability, Golgi apparatus maintenance and exocytosis in bloodstream forms, but has no effect in insect forms [15]. As Leishmania, this organism belongs to the Trypanosomatidae family. However, the two genus diverged possibly more than 100 million years ago [33] and they present many different features. To cite a few, the percentage of G/C in the T. brucei GC genome is lower than in L. major (41% versus 59.7% respectively) [34]; RNA interference (RNAi) is functional in T. brucei but impossible in Leishmania and concerning their life cycle, contrary to Leishmania, both T. brucei insect and mammalian (or bloodstream) forms are flagellated and extracellular, which has important physiological consequences.

We present here the characterisation of LdARL-1 in Leishmania. Contrary to T. brucei, LdARL-1 is expressed in both the insect and mammalian forms of the parasite. Design of a new mutant type, LdARL-1/101T, corresponding to the GDP-bound blocked form, revealed that LdARL-1 cycles entirely within the TGN. This is contrary to previous data obtained in yeast and mammals with another mutant wrongly considered as the GDP-bound blocked form. Expression of the dominant-negative mutant LdARL-1/101T had severe inhibitory effects on intracellular traffic, showing LdARL-1 involvement in the control of endocytosis, in intracellular trafficking from the TGN to the lysosome/MVT (multivesicular tube) and the acidicolasmes, and in the TGN targeting of the tethering factor pGRIP-2, a yet uncharacterised Leishmania GRIP domain-containing protein.

Results

Identification of the L. donovani ARL-1 gene

Compilation of the first two consensus motifs of the GTP-binding site (GLDXAGKT, WDXGGQ) of human (Hs)ARFs (Swissprot accession numbers: ARF-1, P32889; ARF-3, P16587; ARF-4, P18053; ARF-5, P26437; ARF-6, P26438) and ARLas (ARL-1, P40616; ARL-2, P36404; ARL-3, P36405; ARL-4, P40617) allowed the design of two degenerated oligonucleotides (G019/G020) and the PCR-amplification of 144 bp fragments from L. donovani LSB-51.1 genomic DNA. Fragment 4020 showed 70% identity with HsARL-1 and produced, when used as probe on Southern blots with L. donovani genomic DNA, a band pattern compatible with the existence of only one gene (not shown). Subsequent screening of the L. donovani LSB 51.1 genomic cosmId library allowed the isolation of a cosmId containing the entire LdARL-1 ORF (561 bp); this region was sequenced over 1896 bp (Genbank AF187855 and AAF29899). Upstream of the ATG codon, a 34 bp long polypyrimidine tract (~101 to ~68; followed by 5 AG dimucleotides [potential spliced-leader attachment site] [35] ascertained the potential functionality of this gene.

The predicted ARL-1 protein, which contains 187 amino acids (20 833 Da, pI 5.24), displays 55% identity with the human HsARL-1, 52% with yeast ScARL-1 and 50% with human HsARF-1 (Fig 1). As for all ARFs/ARLs, the Glycine at position 2 is a potential myristoylation site. The first three consensus motifs of the GDP/GTP binding site (GxxxxGKT, DxxG, and NxxD) [36] are present (Fig 1) while the fourth one (G/S/A/xx) is less conserved as often observed for ARFs/ARLs. The ability of the recombinant LdARL-1 to bind GTP/S has been described elsewhere [37].

The ARL-1 gene in trypanosomatids

ARL-1 orthologue genes exist in one copy per haploid genome in the parasites genome database (GeneDB: http://www.genedb.org/) for L. major (LmjF17.0070, 107 aa, 90% identity) (Fig 1); L. infantum (LmjF17.0080, 100% identity), L. braziliensis (LbrM17_V2.0090, 189 aa, 95% identity) and T. brucei (Tb927.6.6200, previously Tb07.2F2.550, annotated as TbrARF-3, 190 aa, 72% identity, [15]). After PCR-amplification, we determined the sequence of L. amazonensis LaARL-1, which has 4 different amino acids compared to L. donovani and the changes are conservative (Fig 1). In the case of T. cruzi, there are two entries: Tr00.104703506513.60 with a similar length (190 aa) to LaARL-1 and Tr00.104703508919.60 with a 101 aa N-terminal extension; the ARL-1 part of the second entry has 3 different aa from the first one and they both share 74% identity with LaARL-1. Fig S1 shows the gene organization of the ARL-1 region in the genomes of these trypanosomatids.

In vivo expression and subcellular localisation of ARL-1

A rabbit immune serum raised against the last 15 aa of LaARL-1 (underlined in Fig 1) allowed the detection of a unique 20 kDa band in promastigote and amastigote extracts of two strains of L. amazonensis, the BAL25 strain (Fig 2) and the LV79 strain (not shown). The expression of ARL-1 was similar in both forms of the parasite.

Untagged or GFP-fused LaARL-1 variants were expressed in L. amazonensis promastigotes using the pTEX [38] or the pNUG-GFPpH [39] vectors, respectively, both leaving the LaARL-1 N-terminus free. These vectors remain episomal and allow the expression of exogenous proteins. The abundance of the exogenous protein depends on the episome copy number, which can be manipulated within certain limits by the selective antibiotic concentration in the culture medium, and might also vary from cell to cell after unequal partitioning at mitosis. In this study, identical data were obtained with the transfectants expressing untagged or GFP-fused proteins.

Western blot analyses confirmed that the transfectants were expressing the proteins of interest (Fig 2). The endogenous 20 kDa LaARL-1 and a 48 kDa protein corresponding to LaARL-1-GFP were observed. Although LaARL-1 and LaARL-1-GFP were expressed at a higher level than the endogenous LaARL-1, this had no significant effect on the in vitro growth rate of the transgenic cell lines compared to parental cells (Fig S2).

Indirect immunofluorescence microscopy observations with the anti-LaARL-1 antiserum revealed a spot in the vicinity of the kinetoplast and the flagellar pocket (Fig 3A), strongly reminiscent of the TGN localization reported for HsARF-1 [10]. Promastigotes expressing LaARL-1-GFP showed the same localisation (Fig 3B, 4A); the green GFP signal was adjacent to the red one of mRed-Lp-sh2 signal, a Golgi cisternae marker [40] (Fig 3B) and co-localised with LaARL-1-mRed [10] (Fig 3C). Electron microscopy confirmed the LaARL-1 TGN localisation (Fig 3D). In the ARL-1 sequence of L. donovani, L. amazonensis, L. major and T. brucei, the Golgi localization signal MXXE [41] present in HsARL-1, ScARL-1 and HsARF-1 (Fig 1) is replaced by LXXE, likely functional according to our IF (immunofluorescence) results.
N-myristoylation is important for ARFs membrane binding and biological activity [23]. The Glycine 2 (Fig 1) is a potential myristoylation site [5,42]. When both LdARL-1 and L. major N-myristoyltransferase were coexpressed in E. coli, recombinant LdARL-1 could indeed be myristoylated [43]. To test the biological relevance of this myristoylation, we created the LdARL-1/G2A (unMyr) mutant, which cannot be myristoylated, and expressed in L. amazonensis promastigotes. As seen on western blots (Fig 2), LdARL-1/G2A-GFP was expressed at a similar level as native LdARL-1-GFP and the expression of the endogenous native protein was unmodified. The in vitro growth of untagged LdARL-1/G2A transfectants was comparable to the wild type cells (Fig S2). Remarkably, fluorescence microscopy analyses showed that, unlike the native LdARL-1-GFP, LdARL-1/G2A-GFP remained diffuse within the cytoplasm, including the flagellum, within 100% of the cells (Fig 4B). Thus, like in other organisms, LdARL-1 must be N-myristoylated for its correct targeting to the TGN.

G proteins cycle between GDP- and GTP-bound forms. Functional studies of these proteins have been done using mutants representing «GDP-bound» blocked (GDP to GTP exchange deficient) or «GTP-bound» blocked (GTPase-deficient) forms. The most recent characterisation of such mutants concerns human HsARF-1 [44]; the Q67L mutant represents the GTP-bound blocked form, T44N the GDP-bound blocked form, and the T27N, an empty form devoid of nucleotide, earlier erroneously considered as a GDP-bound form. The empty form of the native protein is a transient intermediate bound to the nucleotide-exchange factor; since the T27N mutant cannot bind GTP, the complex is...

Figure 1. Sequence analysis of ARL-1/ARF-1 of various species. Consensus motives for the GDP-GTP binding site are boxed in black. Mutated and amino acids of interest are boxed in grey. The sequence of the C-terminal peptide synthesised for the production of the rabbit immune serum is underlined. Databanks accession numbers: LdARL-1, Genbank AF187855 and AAF29899; LaARL-1, GenBank XXX; LmAARL-1, GeneDB LmjF17.0070 (http://www.genedb.org/); TbaARL-1, Genbank AAX70381, GeneDB Tb927.7.6230, previously Tb07.2F2.550; HaARL-1, Swissprot P40616; ScARL-1: Genbank S46035; HaARF-1: Swissprot P32889; HaARF-6: Genbank NP_001654.
doi:10.1371/journal.pone.0001620.g001

Figure 2. Expression of LdARL-1 and mutants in L. amazonensis. Extracts of 3.10^6 exponentially growing L. amazonensis promastigotes (about 3 μg of proteins) were submitted to western blot analysis using the rabbit anti-LdARL-1 C-terminus immune serum (1:5000 dilution); color was developed with an anti-rabbit IgG peroxidase conjugate (1:10000 dilution) and an ECL revelation kit (Amersham). Internal standard: 37 kDa LACK antigen. Left, negative control without anti-LdARL-1 antiserum. Additional bands are revealed when the GFP-fused proteins are expressed, probably due to partial degradation when the cells were lysed, in spite of the presence of antiproteases (see Methods). doi:10.1371/journal.pone.0001620.g002

LdARL-1 N-myristoylation

N-myristoylation is important for ARFs membrane binding and biological activity [23]. The LdARL-1 Glycine 2 (Fig 1) is a potential myristoylation site [5,42]. When both LdARL-1 and L. major N-myristoyltransferase were coexpressed in E. coli, recombinant LdARL-1 could indeed be myristoylated [43]. To test the biological relevance of this myristoylation, we created the LdARL-1/G2A (unMyr) mutant, which cannot be myristoylated, and expressed in L. amazonensis promastigotes. As seen on western blots (Fig 2), LdARL-1/G2A-GFP was expressed at a similar level as native LdARL-1-GFP and the expression of the endogenous native protein was unmodified. The in vitro growth of untagged LdARL-1/G2A transfectants was comparable to the wild type cells (Fig S2). Remarkably, fluorescence microscopy analyses showed that, unlike the native LdARL-1-GFP, LdARL-1/G2A-GFP remained diffuse within the cytoplasm, including the flagellum, within 100% of the cells (Fig 4B). Thus, like in other organisms, LdARL-1 must be N-myristoylated for its correct targeting to the TGN.

LdARL-1 GDP/GTP cycling

G proteins cycle between GDP- and GTP-bound forms. Functional studies of these proteins have been done using mutants representing «GDP-bound» blocked (GDP to GTP exchange deficient) or «GTP-bound» blocked (GTPase-deficient) forms. The most recent characterisation of such mutants concerns human HaARF-6 [44]; the Q67L mutant represents the GTP-bound blocked form, T44N the GDP-bound blocked form, and the T27N, an empty form devoid of nucleotide, earlier erroneously considered as a GDP-bound form. The empty form of the native protein is a transient intermediate bound to the nucleotide-exchange factor; since the T27N mutant cannot bind GTP, the complex is...
stable, the exchange process blocked and the cycling also when all the available nucleotide-exchange factor becomes complexed.

Untagged proteins or GFP fusions of the three corresponding mutants, \(LdARL-1/Q74L\) (GTP-bound blocked), \(LdARL-1/T31N\) (GDP-bound blocked) and \(LdARL-1/T34N\) (empty) were created and stably expressed in \(L. amazonensis\) promastigotes; similar data were obtained for both series.

The growth rate of the cell lines expressing \(LdARL-1/Q74L\) or \(LdARL-1/T51N\) were comparable (Fig S2). Both proteins localised to the TGN (Fig 5A and D) and co-localised with the TGN marker \(LdARF-1-mRed\) (Fig 5B/5C and 5E/5F, respectively). Remarkably, while expressed at similar levels as \(LdARL-1/Q74L\)-GFP (Fig 2), the double-mutant \(LdARL-1/G2AQ74L-GFP\) remained cytoplasmic (not shown), as did \(LdARL-1/G2A-GFP\), thus confirming that myristoylation is mandatory for the TGN localisation.

The expression of \(LdARL-1/T34N-GFP\) provided different observations. First, despite the comparable amount of endogenous \(LaARL-1\) between the different transgenic cell lines, \(LdARL-1/T34N-GFP\) expression level was much lower compared to the other variants (Fig 2). Accordingly, fluorescence microscopy observations revealed that, unlike the other mutants, only 15-20% of the cells were expressing detectable levels of \(LdARL-1/T34N-GFP\), suggesting that the protein was somehow toxic, and its expression repressed or counterselected. However, the growth rate of this cell line was comparable to the wild type cells (Fig S2). Second, the fluorescence labelling obtained in the \(LdARL-1/T34N-GFP\)-expressing cells was non-homogeneously distributed throughout the cytoplasm and totally excluded from the flagellum (Fig 5G), an observation easily discernable from the one made previously with the G2A mutant (Fig 4B). This is consistent with the TGN disorganisation observed in mammals with the equivalent \(ARL-1/T31N\) mutant overexpression [18]. However, the unchanged localisation of \(LdARF-1-mRed\) (Fig 5H) suggests differences in TGN targeting organisation. Finally, localization of the double-mutant \(LdARL-1/G2AT34N\) (not shown) was undistinguishable from the G2A mutant, confirming again the necessity of N-terminal myristoylation.

In summary, \(LdARL-1\) entire GDP/GTP cycling occurs within the TGN; the empty form is cytoplasmic.

LdARL-1 and intracellular trafficking

The various \(LdARL-1\) mutants were used to further explore \(LdARL-1\) function. As the TGN is a complex structure specialised in the sorting of molecules to the plasma membrane, the lysosome and other organelles, the putative involvement of \(LdARL-1\) in intracellular traffic was investigated.

a/Exocytosis and endocytosis. The trypanosomatids are polarised cells in which endo- and exocytosis occur solely in a peculiar structure, the flagellar pocket. Upon exogenous expression of \(LdARL-1/T34N-GFP\) (empty), the flagellar pocket of the transgenic \(L. amazonensis\) cells appeared inflated, forming a gap at the anterior part of the cells (Fig 5G), an observation easily discernable from the one made previously with the G2A mutant (Fig 4B). This is consistent with the TGN disorganisation observed in mammals with the equivalent \(ARL-1/T31N\) mutant overexpression [18]. However, the unchanged localisation of \(LdARF-1-mRed\) (Fig 5H) suggests differences in TGN targeting organisation. Finally, localization of the double-mutant \(LdARL-1/G2AT34N\) (not shown) was undistinguishable from the G2A mutant, confirming again the necessity of N-terminal myristoylation.

In summary, \(LdARL-1\) entire GDP/GTP cycling occurs within the TGN; the empty form is cytoplasmic.
Endocytosis was assessed by FM4-64 pulse-chase experiments (Fig 7). In *Leishmania*, this dye is readily internalised and targeted through endosomes to the final digestive compartment termed Lysosome/Multivesicular Tubule (MVT) [46]. In cells expressing *Ld*ARL-1-GFP (Fig 7A–D), *Ld*ARL-1/Q74L-GFP (not shown) or *Ld*ARL-1/T51N-GFP (not shown), FM4-64 endocytosis occurred as expected, with a progressive and massive FM4-64 labelling from the flagellar pocket to the MVT from 0 to 120 minutes. On the contrary, cells expressing *Ld*ARL-1/T34N-GFP showed endocytosis defect (Fig 7E–H); the FM4-64 uptake was blocked, the labelling, remaining in the area of the flagellar pocket up to 60 minutes (Fig 7E–G, arrows), was only seen progressing to the MVT at later times (120 min) and in much smaller amounts (Fig 7H, arrow); as comparison, the cell a in Fig 7F, which expresses *Ld*ARL-1/T34N-GFP, and the cell b which does not stresses the difference in FM4-64 internalization. This endocytosis defect was not due to clathrin depletion, as revealed by immunofluorescence with an anti-*Tb*Clathrin Heavy Chain immune serum (not shown).

b/Traffic to the lysosome/MVT. To further investigate the endocytosis deficiency observed in the *Ld*ARL-1/T34N-GFP-
expressing cells, the dolichol-phosphate-mannose synthase (DPMS) was used as marker (Fig 8). In *Leishmania*, this membrane-anchored protein enzyme, essential for the biosynthesis of glycosylphosphatidylinositol anchors of membrane proteins, localises to the transitional Endoplasmic Reticulum [47]. However, GFP-DPMS chimeras are transported, via the Golgi apparatus and multivesicular bodies, to the lysosome/MVT [48]. A similar observation was made with an mRed-DPMS chimera in our cells expressing native *Ld*ARL-1-GFP (Fig 8A), *Ld*ARL-1/G2A-GFP (Fig 8B), *Ld*ARL-1/Q74L-GFP (Fig 8C) and *Ld*ARL-1/T51N-GFP (Fig 8D). In contrast, the mRed-DPMS chimera was undetectable in cells expressing the empty form *Ld*ARL-1/T34N-GFP (Fig 8E); as shown on Fig 8E, there is a clear mutual exclusion between the expression of *Ld*ARL-1/T34N-GFP (cell a) and mRed-DPMS detection (cell b). This suggests an alteration of the secretion pathway and/or a traffic misdirection.

c/Traffic to the acidocalcisomes. In trypanosomatids, acidocalcisomes are essential acidic organelles, probably lysosome-related [49]. They contain polyphosphates and calcium. Their acidic pH is maintained via the action of a membrane-bound pump, the proton pyrophosphatase (VP1). In *T. brucei*, TbVP1 is essential for the survival of the mammalian forms of the parasite [50].

The VP1 orthologue exists in *L. amazonensis* (*La*VP1) and can be detected by immunofluorescence, using the anti-TbVP1 immune serum (N. Bakalara, personal communication), within large rounded organelles, distributed throughout the promastigote body. Using the TbVP1 antibody, this characteristic pattern of acidocalcisomes was observed in *L. amazonensis* promastigotes expressing *Ld*ARL-1-GFP (Fig 9A-1), *Ld*ARL-1/Q74L-GFP (Fig 9A-2), *Ld*ARL-1/T51N-GFP (Fig 9A-3) and the delocalised/inert *Ld*ARL-1/G2A-GFP (Fig 9A-4). Strikingly, in cells expressing *Ld*ARL-1/T34N-GFP, TbVP1 was undetectable (Fig 9A-5). However, DAPI staining of live cells, which allows visualisation of their acidocalcisomes by revealing their polyphosphate content, showed that all cells expressing *Ld*ARL-1-GFP (Fig 9B-1), *Ld*ARL-1/T34N-GFP (Fig 9B-2) and *Ld*ARL-1/T51N-GFP (Fig 9B-3) contained polyphosphate/acidocalcisomes; this ruled out the possible absence of these organelles in the *Ld*ARL-1/T34N-GFP expressing cells. Therefore, in *L. amazonensis*, expression of *Ld*ARL-1/T34N-GFP induced a misdirection, possibly exocytosis, of the membrane-bound proton pyrophosphatase.

LdARL-1 and GRIP domain proteins

In mammals and yeast, ARL-1/GTP has been shown to bind to the GRIP domain of large coiled-coil proteins, a conserved C-terminal sequence of about 45 residues sufficient to direct these proteins to the TGN [51,52]. These proteins are vesicle tethering factors [32]. In the Trypanosomatid genomes, only two proteins are predicted to possess GRIP domains. We called them pGRIP-1 (*L. infantum* LinJ11.0070 and *L. major* LmjF11.0070 with 1334 amino acids, *T. brucei* Tb11.02.5040 with 613 aa) and pGRIP-2 (*L. infantum* LinJ34.3660 with 488 aa, *L. major* LmjF34.4090 with 435 aa and *T. brucei* Tb927.4.640 with 462 aa). They share homologies solely in the GRIP domains (within trypanosomatids and other species). We isolated the *L. donovani* GRIP domain of pGRIP-1 (called *Ld*GRIP), its *T. brucei* homologue (TbGRIP), which allowed the TGN targeting of the GFP-TbGRIP fusion protein in *L.
mexicana [53]) and for the first time the full-length LdpGRIP-2. The three ORFs were fused with mRed at their N-terminus, leaving the GRIP domain at the C-terminus, and co-expressed in L. amazonensis together with LdARL-1-GFP or its mutants. As the results obtained were similar, only the data obtained with mRed-LdpGRIP-2 will be described.

Fluorescence microscopy analyses revealed that mRed-LdpGRIP-2 co-localised to the TGN with LdARL-1-GFP (Fig 10A), LdARL-1/Q74L-GFP (Fig 10B), and LdARL-1/T51N-GFP (Fig 10D). Interestingly, LdARL-1/G2A-GFP, which remained cytoplasmic (cf Fig 4B, 6C), did not interfere with mRed-LdpGRIP-2 localisation (Fig 10C). Even more interestingly, LdARL-1/T34N-GFP inhibited the TGN addressing of mRed-LdpGRIP-2, as both proteins colocalised within the cytoplasm (Fig 10E). This observation is consistent with the TGN disorganisation observed in mammals by the equivalent mutant ARL-1/T31N overexpression [18] and probably explains the interruption of intracellular traffic from the TGN, since the vesicle tethers are no longer recruited to their location.

Discussion
1. The LdARL-1 gene in Leishmania and other Trypanosomatids

We identified and characterised a trypanosomatid member of the ARF/ARL family, the Leishmania LdARL-1. The gene was named ARL-1 after the highest percentage of identity with the corresponding mammalian and yeast homologues. It is conserved in other Leishmania (L. infantum, 100% identity; L. major, 3 amino acids are different; L. amazonensis, 4 amino acids are different; L. brasiliensis, 12 amino acids are different, one is added) and trypanosome species (T. brucei, 47 amino acids are different, 3 are added) whose sequence is available.

The situation in T. cruzi might be different as two sequences were reported. The first TcARL-1 has a comparable size to other species (45 different amino acids, 3 added). The second TcARL-1 has a 101 amino acid N-terminal extension; its ARL-1 domain has 3 different amino acids when compared to the first TcARL-1; 46 different amino acids, 3 added when compared to LdARL-1.
However, the N-terminal extension is created by the deletion of a T in a stretch of 7 in the vicinity of the 5’ side of the ARL-1 part. There is no obvious polypyrimidine tract upstream of the ATG and the predicted extended TrARL-1 protein cannot be N-myristoylated because of the absence of a Glycine in position 2. Although there is an example in mammals of a chimeric protein with a C-terminal ARF-1 part and a N-terminal extension playing the role of an internal GAP (GTPase Activating protein) [54], the reality of the T. cruzi variant should be investigated in more detail to rule out the possibility of sequencing errors and/or to relate it with the existence of two divergent lineages of T. cruzi [55], eventually compatible with a 3 amino acid difference between the two TcARL-1 regions.

Conservation of the general organisation of the chromosomal region (Fig S1) (even for the extended variant gene of T. cruzi) and the comparable percentages of identity between the different neighbouring orthologues across species suggest that all ARL-1s are functional homologues and that the TbARL-1 gene [15], erroneously annotated as TbARF-3 (GeneDB http://www.genedb.org/) should be renamed TbARL-1, unless functional data contradict this assumption.

2. N-myristoylation of LdARL-1

As for other members of the ARF/ARL family, the glycine in position 2 represents a myristoylation site; myristoylation is impossible for the LdARL-1/G2A-GFP mutated protein which remained diffuse within the cytoplasm, including the flagellum. Still, the mRed-LdGRIP-2, mRed-LdGRIP or mRed/TbGRIP localised to the TGN, showing that the LdARL-1/G2A-GFP was unable to compete with the endogenous native LdARL-1 and inhibit its function. Emphasising the essential character of myristoylation, the double-mutants LdARL-1/G2AQ74L-GFP (unMyr-GTP) and LdARL-1/G2AT34N-GFP (unMyr-empty) remained cytoplasmic, and their expression had no effect on the GRIP domain protein targeting. The absence of N-terminal myristate probably generates functionally inert LdARL-1 proteins, unable to bind to membranes and be recognised by a putative membrane bound targeting receptor/membrane as suggested for HsARF-6 [56].

3. The LdARL-1 mutants and GDP/GTP cycling

Based on ras protein properties, mutations of conserved amino acids have been created to mimick GDP-bound or GTP-bound forms of the proteins of this superfamily. Thus, the last Threonine of the first motif of the GTP binding site (Fig 1) has been considered essential for GTP binding, its mutation leading to a drastic decrease in GTP affinity, hence producing a GDP-bound blocked form. However, due to the difficulties of determining the affinities for nucleotides, especially when they are low and if the proteins are insoluble, these affinities have been rarely looked over. After the crystal structure of several GDP- or GTP-bound ARF/ARLs has been solved, the validity of the prediction for all the ras family proteins became questionable. In a recent detailed study of human ARF-6 [44], it was clearly shown that the mutant ARF-6/T27N, considered as a GDP-bound blocked form, was in reality

![Figure 8. LdARL-1 and Golgi to Lysosome/MVT traffic.](image)
an empty form devoid of nucleotide since the Threonine 27 interacted with both GDP and GTP. Accordingly, in our work, the mutant \(Ld\text{ARL-1}/T34N \) was considered as an empty form, and the new mutant \(Ld\text{ARL-1}/T51N \), a GDP-blocked form (cf Fig S3).

When expressed in \(\text{Leishmania} \) promastigotes, \(Ld\text{ARL-1}/T34N\)-GFP was delocalised to the cytoplasm, similarly to the equivalent mutants in mammalian cells [18]. However, \(Ld\text{ARF-1-mRed} \) localisation did not change, so that the TGN was not disorganised to the same extent as in mammals [18]. Accordingly, it has been shown in \(\text{Leishmania} \) promastigotes that Brefeldin A-induced disorganisation of the Golgi, which includes ARF-1 delocalisation to the cytoplasm, occurs within minutes of drug exposure, while it takes much longer for ARL-1 [17]. We found no effect of Brefeldin A in \(\text{Leishmania} \) (unpublished data), possibly because it was not internalised. Conversely, \(Ld\text{ARL-1}/T51N\)-GFP (GDP) localised to the TGN, and co-localised with \(Ld\text{ARF-1-mRed} \). It was the same for \(Ld\text{ARL-1}/Q74L\)-GFP (GTP), which was different from mammals, where ARL-1/Q71L (GTP) led to an expansion of the Golgi and a delocalisation of ARF-1 [18]. It then appears that, in \(\text{Leishmania} \), the entire \(Ld\text{ARL-1} \) GDP/GTP cycling occurs within the TGN and the delocalisation of the «empty form» is a non-physiological event due to the expression of a transient form normally associated to the nucleotide exchange factor; the blocked empty form might act as a sink for the nucleotide exchange factor, thus forming a stable and inactive complex, as has been suggested for the equivalent mutant ARF-1/T31N [57].

Figure 9. \(Ld\text{ARL-1} \) and acidocalcisomes. A. Fixed \(L. \text{amazonensis} \) promastigotes expressing in green \(Ld\text{ARL-1-GFP} \) (1), \(Ld\text{ARL-1/Q74L-GFP} \) (GTP) (2), \(Ld\text{ARL-1/T51N-GFP} \) (GDP) (3), \(Ld\text{ARL-1/G2A-GFP\ (unMyr)} \) (4) or \(Ld\text{ARL-1/T34N-GFP\ (empty)} \) (5) and stained in red with the rabbit anti-\(\text{TbVP1} \) (acidocalcisomes marker) immune serum plus anti-rabbit IgG-Texas-Red conjugate. B. Live \(L. \text{amazonensis} \) promastigotes expressing in green \(Ld\text{ARL-1-GFP} \) (1-2), \(Ld\text{ARL-1/T34N-GFP\ (empty)} \) (3-4) or \(Ld\text{ARL-1/T51N-GFP\ (GDP)} \) (5-6) and stained with DAPI: in Blue, nucleus and kinetoplast, in yellow: polyphosphates of acidocalcisomes [50].

doi:10.1371/journal.pone.0001620.g009
From our data, one can predict that the unknown exchange factor is limiting, since the mutant \(Ld \)ARL-1/T34N-GFP is dominant-negative, i.e. blocks the endogenous native \(La \)ARL-1 function. The lack of physiological effect of \(Ld \)ARL-1/T51N-GFP suggests that this form does not stably associate with the exchange factor, the interaction being stabilised by the release of GDP. On the contrary, the unknown GAP is either non-limiting or not blocked by \(Ld \)ARL-1/Q74L-GFP since expression of this mutant does not block the endogenous native ARL-1 function. There is no obvious Ysl2p homologue in the \(Leishmania \) genome, the suggested yeast Arl-1p nucleotide exchange factor [24], nor Gcs1p, the suggested Arl-1p GTPase-activating protein [25]; their identification might help to better understand \(Ld \)ARL-1 GDP/GTP cycling.

These data illustrate the diversity of ARL proteins modes of GDP/GTP cycling. If one compares \(Ld \)ARL-1 and \(Ld \)ARL-3A [58,59], \(Ld \)ARL-1/GDP- or /GTP-blocked expression does not impair the endogenous protein function, while \(Ld \)ARL-3A/GDP- or /GTP-blocked expression blocks the endogenous \(Ld \)ARL-3A function, resulting in a drastic flagellar shortening; on the other hand, \(Ld \)ARL-1/T34N (empty) is dominant-negative whereas \(Ld \)ARL-3A/T30N (empty) is inert. The most likely explanation for these differences lies in the necessity (\(Ld \)ARL-1) or not (\(Ld \)ARL-3A) of a nucleotide exchange factor for the GDP/GTP cycle completion.

4. \(Ld \)ARL-1 role in intracellular traffic as revealed by the dominant-negative mutant \(Ld \)ARL-1/T34N

Expression of \(Ld \)ARL-1/T34N-GFP significantly perturbed \(Leishmania \) intracellular trafficking. Endocytosis was completely blocked, trafficking of DPMS from the Golgi to the lysosome/MTV, and of the membrane-bound vacuolar proton pyrophosphatase to the acidocalcisomes, was interrupted. The fate of these markers remains enigmatic; they were possibly degraded or misdirected and exocytosed, which would be reminiscent of ScAr1-1 KO, where lucifer yellow uptake was reduced and the vacuolar Carboxypeptidase Y secreted instead of being vacuolar [21]. In \(Leishmania \), exocytosis seemed unaffected; however, only the SAP marker (secreted acid phosphatase) could be investigated and changes changes in exocytosis might not have been detected since only 15–20% of the cells expressed the mutated protein.

The acidocalcisomal defect observed with \(Ld \)ARL-1/T34N-GFP expression resembled the vacuolar defect obtained in yeast with the mutant Arl-1p/D151G mutant, which proved also dominant-negative [20], but the mechanism of action is probably different, because, from the protein structures, the D151 of Arl-1p does not interact with GDP or GTP. At least some of the membrane-bound proteins of acidocalcisomes originate from the TGN and a functional \(Ld \)ARL-1 protein is essential for their transport to their final compartment. Whether \(Ld \)ARL-1-mediated targeting to acidocalcisomes is direct from the TGN or necessitates endosomal/lysosomal intermediates remains unknown [49] and might be investigated in the future if/when appropriate \(Leishmania \) protein markers are identified.

5. ARL-1-dependent Golgi targeting of GRIP domain containing Golgins

The GRIP domain is a C-terminal 45 aa long domain present in at least five human and one yeast proteins [32,60]. Essential for the TGN targeting of these proteins, it is conserved in trypanosomatids and in \(Leishmania \), a \(T. \) brucei GRIP domain is sufficient to target GFP to the TGN [53].

Based on two-hybrid and affinity chromatography experiments, it has been shown that the GTP-bound form of ScAr1-1 (or...
HsARL-1 binds GRIP domains [27,29,31]. In the current model (described in yeast but applicable to mammals), the GDP-bound form of Scar1p (HsARL-1) is cytoplasmic; when GDP is exchanged with GTP under the action of the nucleotide exchange factor, Scar1p (HsARL-1) moves to the Golgi membranes and recruits GRIP domain proteins [30] [61,62]. In this model, it has been considered that the GDP form of Scar1p (HsARL-1) is cytoplasmic, because the mutants Scar1p/T32N (HsARL-1/T31N) mutants are cytoplasmic. It has also been assumed that the GDP-loaded native Scar1p (HsARL-1) is equivalent to the Scar1p/T32N (HsARL-1/T31N) mutant, which is probably inaccurate if these mutants are «empty forms».

In Leishmania, there are two proteins with GRIP domains, which we called LdGRIP-1 and LdpGRIP-2. LdpGRIP-2 and the GRIP domains of LdpGRIP-1 (LdGRIP) and TbpGRIP-1 (TbGRIP) were fused to the C-terminus of the mRed protein: mRed-LdpGRIP-2 and mRed-LdGRIP/TbGRIP co-localised with all LdARL1 mutants, except the inert non-myristoylated one. More specifically, mRed-LdpGRIP-2 and mRed-LdGRIP/TbGRIP were de-localised to the cytoplasm with LdARL1/T34N-GFP. From our data, LdARL1/T51N-GFP is TGN-specific, while LdARL1/T34N-GFP is cytoplasmic. Since the «empty form» and GRIP domain proteins probably do not interact physically, these cytoplasmic localisations probably represent a common consequence of the TGN destabilisation, which may not be complete since ARF-1-mRed localisation did not change (within the limits of the fluorescence microscopy resolution).

At least for Leishmania, the model of ARL1/GRIP domain interaction and Golgi recruitment might be slightly modified. GRIP domain proteins and ARL1 under both GDP and GTP forms are localised to the TGN. Both LdARL1 forms are probably associated to membranes as HsARL-6 [56]. The GTP form may recruit GRIP-domain proteins from the Golgi soluble compartment to Golgi membranes and the GDP form releases them. This is consistent with the fact that in Brefeldin A-treated mammalian cells, ARL1 is delocalised from the Golgi membranes while GRIP domain proteins are not [27], showing that, at least in mammals, ARL1 is not necessary for the maintenance of GRIP domain proteins in the TGN. In the case of Arl1p knockout in yeast, the GRIP domain protein Imm1p was mislocalised [29] possibly because it could not reach the Golgi at all.

The recruitment of GRIP domain proteins to the Golgi also requires the presence of another small G protein, Scar1p/GTP and / GDP forms were included in the study, but the mutant used for the GDP form might also be an «empty form»; the model should be revisited according to this new interpretation.

Concerning Leishmania, we have found a putative Scar1p homologue (not yet functionally investigated), but there is no obvious candidate for Scar1p. Much work remains to be done for the understanding of this aspect of the Golgi structure/function.

6. Significance of LdARL-1 in the biology of Leishmania cells

The LdARL-1 gene is expressed in both promastigotes (insect forms) and amastigotes (mammalian forms) of L. donovani and L. amazonensis. This differs from T. brucei, where TbARL-1 is expressed only in the bloodstream forms of the parasite (i.e. the mammalian forms) and is essential for their viability, as revealed by RNAi experiments [15]. Although it has not been formally demonstrated and in spite of being annotated as ARF-3 in the T. brucei database (Tb927.7.6230, GeneDB http://www.genedb.org/), this TbARL-1 is very likely the functional homologue/orthologue of LdARL-1 given the synteny of the homologous chromosomal region of several trypanosomatids (Fig S1). The differential expression seen in T. brucei forms probably reflects differences in the physiology of these cells: endocytosis is minimal in T. brucei insect forms, while it is extraordinarily active in bloodstream forms [4], which correlates well with LdARL1 involvement in endocytosis. In Leishmania, LdARL-1 and endocytosis must be active in all forms of the parasite.

Finally, the fact that LdARL-1 could not complement the yeast arl-1 deletion mutant [21] (not shown) reveals that, even for evolutionary conserved pathways such as intracellular traffic, interspecies differences exist, which might hopefully be exploited against deleterious (from the human point of view only) organisms in the future.

Materials and Methods

Parasites, animals and immune sera

Promastigotes of L. donovani (MHOM/SD/00/Khartoum: LSBS1.1) and L. amazonensis (MHOM/BR/1907/BA125; MPRO/BR/1972/M1341 = LV79) were cultured at 24°C in AM medium [58,63]. Parental and transformed L. amazonensis promastigotes growth was monitored everyday after seeding at a density of 2.5×10^6/ml by counting with a Malassez hemocytometer. Balb/c mice (Centre d’Elevage Janvier) were infected in footpads with 5×10^6 L. amazonensis promastigotes; amastigotes were recovered from lesions as previously described [58].

An anti-LdARL-1 C-terminal rabbit immune serum was prepared as described for LdARL3A [58] using an LdARL-1 C-terminal synthetic peptide (NH2-MDWLVERLREQGIGACOOH, Genosphere Biotech) and a «Fauve de Bourgogne» rabbit (Centre d’Elevage Janvier). The rabbit anti-TAVP1 immune serum has been described [50,64]. The rabbit anti-LACK immune serum [65] was kindly provided by Dr. J.-C. Antoine and the rabbit anti-TcClathrin heavy chain immune serum [66] by Dr. M. Field.

The extraction protocol and western blotting were done as previously described [58] except for the revelation, done with a rabbit anti IgG peroxidase conjugate (1:10000 dilution) and an ECL revelation kit (Amersham). The secreted acid phosphatase (SAP) activity was determined as previously [58] according to [67]. Briefly, after seeding the cells at a density of 2.5×10^6 per ml, aliquots of the culture medium were removed every following day for 5 days, filtered through a 0.22 μm pores membrane to remove cells and debris; 138 μl supernatant were then incubated in a final volume of 200 μl with 50 mM sodium acetate pH 4, 0.1% β-mercaptoethanol (v/v), 50 mM para-nitrophenyl phosphate for 30 min at 37°C; the reaction was stopped with 800 μl sodium hydroxide 2 M and the absorbance of the released para-nitrophenolate at 410 nm determined; the amount of para-nitrophenolate ion was calculated considering an extinction coefficient of 17.8 mM^-1, and the data presented as nmoles para-nitrophenyl phosphate hydrolyzed per minute and milliliter of supernatant.

Isolation of the LdARL-1 gene

144 bp PCR fragments were amplified with oligonucleotides G019 (5’ GGTTTCAAGGACGAGTTCG 3’) / G020 (5’ TGCCTCAAAGACATCGCTGC 3’) from L. donovani genomic DNA, cloned into the pUC18 vector and sequenced. The 4020 fragment was used as a probe to screen a set of filters of the L. donovani LSB-51.1 genomic cosmid Stuartlab-Cos library (gift of Drs T. DeVos, P. Myler and K. Stuart). The complete LdARL-1 ORF was sequenced on cosmid n°7227, recovered with primers G039 (5’ CGTTGATCCCATATGGGTGCGTGGCTGAC 3’) / G043B (5’ TCTGATCTGAAGTCTGGG 3’) and cloned into the BamHI site of pBluescriptSK- [pORF-LdARL-1].
Construction of plasmids

For protein expression in *L. amazonensis*, two types of vectors were used. The pTEX vector [38] confers G-418 resistance and allows high protein expression. The pNUS series [39] allows moderate expression of proteins fused either to the Green fluorescent protein (GFP) at their C-terminus (pNUS-GFP; conferring hygromycin resistance) or to the monomeric Red fluorescent protein (mRFP [60]) at their N/C terminus (pNUS-mRedD/c-D conferring blasticidin resistance). All constructs were sequenced prior to electroporation. The LdARL-1 ORF was recovered from pORF-LdARL-1 by BamHI digestion and cloned into the pTEX vector (pTEX-LdARL-1) and the pNUS-GFP vector between *SalI* and *KpnI* after PCR amplification from pORF-LdARL-1 with primers G039/G110 (5′-tggtgatcAGCACGGATTTCCTTAGG-3′), G039/G043B (5′-CGAGGCTGCGTGCTGCTTTG-3′) to generate pNUS-LdARL-1-GFP. The LdARL-1/G2A mutant was created by PCR amplification from pORF-LdARL-1 with the Mut5B (5′-ggtggatccATGGGCTGCTGCTTGAGACCACTGACA-3′; *C* represents the mutated nucleotide)/G043B primers and cloned into the pTEX and the pNUS-GFP vector as above, generating pTEX-LdARL-1/G2A and pNUS-LdARL-1/G2A-GFP.H. The LdARL-1/T34N mutant was created by site-directed mutagenesis of pORF-LdARL-1, using oligonucleotides Mut6 (5′-CCGATAGAGGAATT-GAATTCACCTCCGCCG-3′; *T* represents the mutagenized nucleotide)/Mut6′ (5′-GAAAAGGGAGCCACCCGCGGTTG-3′; *C* inactivates the vector SalI site) and into the Transformer Site-Directed Mutagenesis Kit (Clontech) according to manufacturer’s instructions, generating pORF-LdARL-1-T34N; the ORF was subsequently recloned into pTEX and the pNUS-GFP vector as above (pTEX-LdARL-1-T34N and pNUS-LdARL-1-T34N-GFP.H). The double-mutant LdARL-1/G2A/T34N was amplified by PCR from pORF-LdARL-1-T34N with primers Mut5B/G110 and cloned into the pNUS-GFP vector as above. The LdARL-1/T34L mutant was created by nested PCR amplification from pORF-LdARL-1, using first oligonucleotides G039/Q20B (5′-TCGCAACGCGGTTAGGCGCAAGGT-CGC-3′, *A* represents the mutagenized nucleotide) and Q20A (reverse complement of Q20B)/G043B, then G039/G043B with a mixture of both previously amplified fragments; the mutated ORF was then recloned into pTEX and pNUS-GFP vector as above (pTEX-LdARL-1-Q24L and pNUS-LdARL-1-Q24L-GFP.H). The double-mutant LdARL-1/G2A/Q24L was amplified by PCR from pORF-LdARL-1-Q24L with primers Mut5B/G040B (5′-ggtggatccATCAGGGCGTGCTGTAGGCT-3′), as designed from the LdARL-1 sequence (Genbank AY157918) and cloned into the vector pNUS-mRedD between *SalI* and *KpnI* from pNUS-LdARL-1/mRedD.

The *Tgr* ORF was amplified from *L. donovani* LV-9 genomic DNA with oligonucleotides G171 (5′-gactcaATGGA-CAGTGATTTGCGGCTTAC-3′)/G171 (5′-gacttagttATGCAAT- GTCAGAGATGTTG-3′), as designed from the *LdARF* sequence (Genbank AY157918) and cloned into the vector pNUS-mRedD between *SalI* and *KpnI* from pNUS-LdARF-1/mRedD.

The *L. amazonensis* transformation and fluorescence microscopy

L. amazonensis promastigotes were electrooporated and transformants selected as described [50] with 50 μg/ml G-418 (Life Technologies), 50 μg/ml hygromycin (Euromedex) or 10 μg/ml blasticidin (InvivoGen). At least two independent electroporations were done for each construct.

Immuno-fluorescence was done as described [50]. Briefly, cells were spread onto poly-L-Lysine-treated coverslips and fixed for 15 min at 4°C. After two cold PBS washes, cells were spread onto poly-L-Lysine-treated coverslips and fixed for 15 min at 4°C. The antisera used were the rabbit anti-*LdARL-1* C-terminus (1/1000 dilution), the rabbit anti-*T-Clathrin* heavy chain (1/100 dilution). For the latter, an additional cell permeabilisation step (10 min with 0.1% Triton X-100) was done after fixation. Secondary antibodies (Molecular Probes) were FITC-conjugated goat anti-rabbit IgG (10 μg/ml) for *LdARL-1* or Texas Red-conjugated goat anti-rabbit IgG (20 μg/ml) for *TVP-1* and *TClathrin*. DNA was stained by adding 10 μg/ml DAPI in the last 5 min incubation with the secondary antibody. Coverslips were washed and mounted on microscope slides with Mowiol [58]. For GFP or mRed fusion proteins, the cells were washed immediately after paraformaldehyde fixation and mounted.

For endocytosis monitoring, cells (10^7/ml) were incubated in culture medium with 10% FCS and 2 μg/ml FM4-64FX (Molecular Probes) for 15 min at 24°C in the dark, harvested, resuspended in fresh medium, and incubated for various times at 24°C. After two cold PBS washes, cells were spread onto coverslips, fixed 15 min at 4°C with paraformaldehyde, washed and mounted.

BglII and *KpnI* sites of pNUS-mRedD [pNUS-mRedD-LaPG-2].

The *LdARF* ORF was amplified from *L. donovani* LV-9 genomic DNA with oligonucleotides G171 (5′-gactcaATGGA-CAGTGATTTGCGGCTTAC-3′)/G171 (5′-gacttagttATGCAAT-GTCAGAGATGTTG-3′), as designed from the *LdARF* sequence (Genbank AY157918) and cloned into the vector pNUS-mRedD between *SalI* and *KpnI* from pNUS-LdARF-1/mRedD.

The *Tgr* ORF was amplified from *L. donovani* LV-9 genomic DNA with oligonucleotides G171 (5′-gactcaATGGA-CAGTGATTTGCGGCTTAC-3′)/G171 (5′-gacttagttATGCAAT-GTCAGAGATGTTG-3′), as designed from the *LdARF* sequence (Genbank AY157918) and cloned into the vector pNUS-mRedD between *SalI* and *KpnI* from pNUS-LdARF-1/mRedD.
For the flagellar pocket and plasma membrane visualisation, cells were washed twice with RPMI-1640 medium plus 1% goat serum and incubated in RPMI-1640 plus 50 μg/ml biotin-labelled Concanavalin A (Sigma) for 30 min at 24°C. After two PBS washes, cells were fixed for 1 hour at room temperature with 2% paraformaldehyde and further incubated for 1 hour with 10 μg/ml Texas-Red-S sterile avidin conjugate (Molecular Probes).

For acidicocalcin pyrophosphate staining [50], cells were washed twice in 116 mM NaCl, 5 mM KCl, 0.8 mM MgSO4, 5.5 mM glucose, 50 mM K-Hepes, pH 7.4, and incubated for 10 min at 30°C in PBS with 10 μg/ml DAPI. Cells were spread on coverslips by centrifugation and observed alive quickly thereafter.

Observations were done with an Axioplan 2 Zeiss fluorescence microscope and a 100× oil lens. Images were acquired with a Princeton Instruments camera and analysed with MetaView™ (Universal Imaging).

Electron microscopy
Electron microscopy was done as described [70] with slight modifications. 40 μl of exponentially growing pNUS-LdARL-1-GFP-transformed L. amazonensis promastigotes were collected by centrifugation, washed in PBS, fixed, dehydrated and embedded in LR Gold resin. Ultra-thin sections were cut, neutralised in glycine, blocked and incubated in anti-LdARL-1 rabbit serum diluted 1:5 in 0.5% Tween-20, 0.1% BSA in PBS for 2 h. Sections were washed, incubated in anti-rabbit IgG-10 nm gold 1:30 in 0.5% Tween-20, 0.1% BSA in PBS and processed as described [70].

Supporting Information
Figure S1 The ARL-1 chromosomal region in trypanosomatids. Genomic map compiled from the Gene DB Parasite Genome database (GeneDB http://www.genedb.org/) [1,2,71,72]. L. major LmArl-1: LmjF17.0070; L. infantum LinfArl-1: LinJ17.0080; L. brasiliensis LbrArl-1: LbrM17_V2.0080; T. brucei TbrArl-1: Tb927.7.6230, previously Tb07.2F2.550, annotated as TbARF-3); T. cruzi TcARL-1: two entries: Tc00.104705350631.60 and Tc00.1047053500819.60. The general organisation is conserved downstream of the ARL-1 ORF, while on the upstream side, several successive insertions and gene duplications occurred in Leishmania (L. brasiliensis>L. major>L. infantum) compared to the trypanosomes.

Found at: doi:10.1371/journal.pone.0001620.s001 (13.55 MB TIF)

Figure S2 Growth of L. amazonensis strains and SAP activity in the supernatant. Cells were seeded at a density of 2.5 10^6 cells/ml and counted for the 5 following days; the mean of 2–5 independent experiments is indicated with the standard deviation. The maximal cell density appeared a bit lower for some clones, it is not known if these changes are significant. In fact, the level of trangetes expression cannot be accurately controlled; fluorescence microscopy observations revealed that there are variations from cell to cell, from clone to clone or within the same clone after different periods of culture; a more reliable observation might be made with integrated transgene after homologous recombination but it is not known if the experiment is possible at all. Bottom panel: Secreted acid phosphatase (SAP) activity in the culture supernatant. The enzyme activity was determined as in [58] 2–5 days after seeding, and is expressed in nmoles of PNPP hydrolyzed per min and ml of medium. The complete experiment was done once. Found at: doi:10.1371/journal.pone.0001620.s002 (9.90 MB TIF)

Figure S3 Interactions of Threonines with GTP and GDP. ARF-6 and ARL-1 belong to the same subfamily of ras proteins and their GTP binding sites are well conserved (Fig 1). The structures of two ARL-1 orthologues, the S. cerevisiae ScARL-1/GDP [73] and the human HsARL-1/GTP [74,75], have been determined. Using the software Swiss-PdbViewer/DeepView for OSx v3.9b1 (http://ca.expasy.org/spdbv/), and the structures of ScARL-1/GDP (Panel A) and HsARL-1/GTP (Panel B), the threonines interacting with the GDP (Panel A) and Panel B) interact via H-bonds with the z and β phosphorus of GDP (Panel A) and GTP (Panel B). Conversely, like Threonine T44 of HsARF-6, the equivalent Threonine T49 of ScARL-1 (Panel A) does not interact with GDP but the equivalent Threonine T48 of HsARL-1 (Panel B) does interact with GTP. The neighbouring sequences are conserved for all ARL-1 proteins, including LdARL-1 (Fig 1); one might relatively safely predict that the mutant proteins LdARL-1/T43N, ScARL-1/T32N, and HsARL-1/T31N (equivalent to HsARF-6/T27N) lose significantly their affinity not only for GTP but also for GDP, so that these proteins are « empty ». Similarly, the mutations T44N of HsARF-6, T49N of ScARL-1, T48N of HsARL-1 and T51N of LdARL-1 impair the binding of GTP but not GDP, leading to a « GDP-blocked form ».

Found at: doi:10.1371/journal.pone.0001620.s003 (6.70 MB TIF)

Acknowledgments
We are deeply indebted to Dr P. Chardin, whose knowledge of the structure/function relationships of ARF/ARL proteins inspired part of this work; we thank him for the critical reading of the manuscript. We thank Drs B. Antonny, N. Biteau, S. Besteiro, C. Giroud, S. Paris, and X. Santarelli for their help; Dr R. E. Campbell for the pRSETB-mRFP-1 vector; Drs T. DeVos, P. Myler and K. Stuart for the LSB 3.1 genomic cosmid library; Drs J.-C. Antoine and E. Prina for the anti-LACK immune serum; Dr M. J. McConville for the DPMS cDNA; Drs A. Rosenwald and A. Womack for the yeast strains PSY315, PSY316, AR101, AR103; Dr N. Boucher for kind proofreading of the manuscript. DNA sequencing was partially performed by C. Hubert at the Genotyping and Sequencing Facility of Bordeaux directed by Pr. B. Arveiler. Some fluorescence microscopy data were obtained at the PICIN imaging center of the Neurosciences Institute of the University of Bordeaux II and we thank P. Legros and C. Poujol for their technical support.

Author Contributions
Conceived and designed the experiments: GM AS BE ET AC. Performed the experiments: GM AS ET AC. Analyzed the data: GM AS BE ET AC LL AA DR. Wrote the paper: GM. Other: Performed some experiments: ET AC LL AA DR.

References
1. Ivens AC, Peacock CS, Worden EA, Murphy L, Aggarwal G, et al. (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309: 436–442.

2. Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, et al. (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39: 839–847.
Lowe SL, Wong SH, Hong WJ (1996) The mammalian ARF-like protein 1

Tamkun JW, Kahn RA, Kissinger M, Brizuela BJ, Rulka C, et al. (1991) The

Hong JX, Lee FJS, Patton WA, Lin CY, Moss J, et al. (1998) Phospholipid- and

Schurmann A, Breiner M, Becker W, Huppertz C, Kainulainene H, et al. (1994)

Van Valkenburgh H, Shern JF, Sharer JD, Zhu X, Kahn RA (2001) ADP-

Vaughan M, Moss J (1997) Activation of toxin ADP-ribosyltransferases by the

Price HP, Stark M, Smith DF (2007)

Price HP, Stark M, Smith B, Smith DF (2007) TbARF1 influences lysosomal

D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic

Howell GJ, Holloway ZG, Cobbold C, Monaco AP, Ponnambalam S (2006) Cell

Pasqualato S, Renault L, Cherfils J (2002) Arf, Arl, Arp and Sar proteins: a

ARF1 Plays a Central

ARF1

ARF1

Ysl2p, homologous to Sec7 domain guanine nucleotide exchange factors,

Role in Endocytosis and Golgi-Lysosome Trafficking. Mol Biol Cell 18:

Recruitment of GRIP Domain Proteins by Arf-like GTPase 1 Is Regulated by

3A, a

Trypanosoma brucei

Trypanosoma brucei

Trypanosoma brucei

Trypanosoma cruzi

Parasitism: Kinetoplastid Protozoan History Reconstructed from Mitochondrial

Functional genomic analysis of the ADP-ribosylation factor family of GTPases-

hologram for endocytosis and Golgi-lysosome trafficking. Mol Biol Cell 10:

118372–15876.

Price HP, Panethiyaniki C, Goudling, D, Smith DF (2005) Functional analysis of

Takumi JW, Kahn RA, Kissing M, Buehler RJ, Rulke C, et al. (1991) Cloning of

Hone JX, Lee FJS, Katon WA, Lin CY, Moss J, et al. (1998) Phospholipid- and

Functional genomic analysis of the ADP-ribosylation factor family of GTPases-

specific and shared effector functions of ARF-like proteins: comparison to the ARD1

GDP-mannose permease, which is essential for flagellum integrity. J Cell Sci 113:

Essential for flagellum integrity. J Cell Biol 113: 2065–2074.

就好摄氏度

Motif: Variations on a theme. FASEB J 10: 1347–1368.

going for the early Golgi by membrin, an ER-Golgi SNARE. J Cell Biol 168:

Aspargine motif: Analysis of essential 5

from membrane trafficking. Biochim Soc Trans 33: 1945–1954.

195–204.

From Nat Acad Sci USA 80: 3120–3124.

regulated activation of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem 270: 12327–12330.

Lowe SL, Wong SH, Hong WJ (1996) The mammalian ARF-like protein 1 (Arl1), an ARF-like GTPase protein essential for viability in bloodstream trypanosomes. J Cell Sci 118: 831–841.

Lewin A, Al-Awar OS, Hay JC, Donaldson JG (2005) Targeting of Arf-1 to the

39. Tetaud E, Lecuix I, Sheldrake T, Baltz T, Fairlamb AH (2002) A new expression

38. Kelly JM, Ward HM, Miles MA, Kendall G (1992) A shuttle vector which

37. Lowe SL, Wong SH, Hong WJ (1996) The mammalian ARF-like protein 1 (Arh1) is associated with the Golgi complex. J Cell bio 109: 209–220.

36. Macia E, Luton F, Partisani M, Cherfils J, Chardin P, et al. (2004) The GDP-

35. Bringaud F, Fill M, Cerqueira GC, Smith M, et al. (2007) Members of a Large

34. Bringaud F, Fill M, Cerqueira GC, Smith M, et al. (2007) Members of a Large

33. Lake JA, Cruz VFDL, Ferreira PCG, Morel C, Simpson L (1988) Evolution of

32. Munro S (2005) The Arf-like GTPase Arl1 and its role in membrane traffic.

31. Lu L, Hong W (2003) Interaction of Arl1-GTP with GRIP domains recruits

30. Jackson CL (2003) Membrane Traffic: Arl GTPases Get a GRIP on the Golgi.

29. Ilgoutz SC, Mullin KA, McConville MJ (1999) Glycosylphosphatidylinositol biosynthetic enzymes are localized to a stable tubular subcompartment of the endoplasmic reticulum in Leishmania mexicana. EMBO J 18: 3643–3654.

28. Kelly J, Ward IM, Miles MA, Kendall G (2002) A shuttle vector which facilitates the expression of transferred genes in Trypanosoma cruzi and Leishmania. Nucleic Acids Res 20: 3963–3969.

27. Van Valkenburgh H, Shern JF, Sharer JD, Zhu X, Kahn RA (2001) ADP-

26. Waller RF, McConville MJ (2002) Developmental changes in lysosome morphology and function Leishmania parasites. Int J Parasitol 32: 1435–1445.

25. Moss V, Vaughan M, Moss J (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem 270: 12327–12330.

24. van Valkenburgh H, Hersh JF, Sharer JD, Zhu X, Kahn RA (2001) ADP-

23. Vaughan M, Moss J (1997) Activation of toxin ADP-ribosyltransferases by the

22. Moss V, Vaughan M, Moss J (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem 270: 12327–12330.

21. Moss V, Vaughan M, Moss J (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem 270: 12327–12330.

20. Moss V, Vaughan M, Moss J (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem 270: 12327–12330.

19. Moss V, Vaughan M, Moss J (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem 270: 12327–12330.

18. Moss V, Vaughan M, Moss J (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem 270: 12327–12330.

17. Moss V, Vaughan M, Moss J (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem 270: 12327–12330.

16. Moss V, Vaughan M, Moss J (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem 270: 12327–12330.

15. Moss V, Vaughan M, Moss J (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem 270: 12327–12330.

14. Moss V, Vaughan M, Moss J (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem 270: 12327–12330.

13. Moss V, Vaughan M, Moss J (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem 270: 12327–12330.

12. Price HP, Stark M, Smith DF (2007) TbARF1 influences lysosomal

11. Price HP, Stark M, Smith B, Smith DF (2007) TbARF1 influences lysosomal

10. Porter-Kelly JM, Gerald NJ, Engel JG, Ghedin E, Dwyer DM (2004) ‘LafARF1 in

9. D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic

8. D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic

7. Price HP, Stark M, Smith B, Smith DF (2007) ‘LafARF1 influences lysosomal

6. Price HP, Stark M, Smith DF (2007) ‘LafARF1 plays a central role in

5. Pasqualato S, Renault L, Cherfils J (2002) Arf, Arl, Arp and Sar proteins: a

4. Hong JX, Lee FJS, Patton WA, Lin CY, Moss J, et al. (1998) Phospholipid- and

3. Howell GJ, Holloway ZG, Cobbold C, Monaco AP, Ponnambalam S (2006) Cell

2. Howell GJ, Holloway ZG, Cobbold C, Monaco AP, Ponnambalam S (2006) Cell

1. Howell GJ, Holloway ZG, Cobbold C, Monaco AP, Ponnambalam S (2006) Cell

The LEISHMANIA ARL-1
61. Graham TR (2004) Membrane targeting: getting Arl to the Golgi. Curr Biol 14: R483–485.
62. Setty SR, Strochlic TI, Tong AH, Boone C, Burd CG (2004) Golgi targeting of ARF-like GTPase Arl3p requires its Nα-acetylation and the integral membrane protein Sys1p. Nat Cell Biol 6: 414–419.
63. Lodes MJ, Merlin G, Devos T, Gosh A, Madhubala R, et al. (1995) Increased expression of LD1 genes transcribed by RNA polymerase I in Leishmania donovani as a result of duplication into the rRNA gene locus. Mol Cell Biol 15: 6845–6853.
64. Espiau B, Lerné C, Amin A, Bringaud F, Merlin G, et al. (2006) A Soluble Pyrophosphatase, a Key Enzyme for Polyphosphate Metabolism in Leishmania. J Biol Chem 281: 1316–1323.
65. Prina E, Lang T, Glächenhaus N, Antoine JC (1996) Presentation of the protective parasite antigen LACK by Leishmania-infected macrophages. J Immunol 156: 4318–4327.
66. Morgan GW, Allen CL, Jeffries TR, Hollinshead M, Field MC (2001) Developmental and morphological regulation of clathrin-mediated endocytosis in Trypanosoma brucei. J Cell Sci 114: 2605–2615.
67. Bakalar N, Seyfang A, Baiz T, Davis C (1995) Trypanosoma brucei and Trypanosoma cruzi life cycle-regulated protein tyrosine phosphatase activity. Exp Parasitol 81: 302–312.
68. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, et al. (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99: 7877–7882.
69. Ilgoutz SC, Zawadzki JL, Ralton JE, McConville MJ (1999) Evidence that free GPI glycolipids are essential for growth of Leishmania meyenii. EMBO J 18: 2746–2753.
70. Robinson DR, Gall K (1994) The configuration of DNA replication sites within the Trypanosoma brucei kinetoplast. J Cell Biol 126: 641–648.
71. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renaud H, et al. (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309: 416–422.
72. El Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, et al. (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309: 409–415.
73. Amor JC, Horton JR, Zhu X, Wang Y, Sullards C, et al. (2001) Structures of Yeast ARF2 and ARL1. Distinct roles for the N Terminus in the structure and function of ARF family GTPases. J Biol Chem 276: 42477–42484.
74. Panic B, Perias O, Veprintsev DB, Williams RL, Munro S (2003) Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Mol Cell 12: 863–874.
75. Wu M, Lu L, Hong W, Song H (2004) Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1. Nat Struct Mol Biol 11: 86–94.