Differential induction of TLR3-dependent innate immune signaling by closely related parasite species

Daniel P. Beiting
University of Pennsylvania

Lucia Peixoto
University of Pennsylvania

Natalia S. Akopyants
Washington University School of Medicine in St. Louis

Stephen M. Beverley
Washington University School of Medicine in St. Louis

E. John Wherry
University of Pennsylvania

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Beiting, Daniel P.; Peixoto, Lucia; Akopyants, Natalia S.; Beverley, Stephen M.; Wherry, E. John; Christian, David A.; Hunter, Christopher A.; Brodsky, Igor E.; and Roos, David S., "Differential induction of TLR3-dependent innate immune signaling by closely related parasite species." PLoS One. 9,2. e88398. (2014).
https://digitalcommons.wustl.edu/open_access_pubs/3164

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Authors
Daniel P. Beiting, Lucia Peixoto, Natalia S. Akopyants, Stephen M. Beverley, E. John Wherry, David A. Christian, Christopher A. Hunter, Igor E. Brodsky, and David S. Roos
Differential Induction of TLR3-Dependent Innate Immune Signaling by Closely Related Parasite Species

Daniel P. Beiting1*, Lucia Peixoto1, Natalia S. Akopyants4, Stephen M. Beverley4, E. John Wherry2, David A. Christian3, Christopher A. Hunter3, Igor E. Brodsky3, David S. Roos1

1 Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 2 Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 3 Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 4 Department of Molecular Microbiology, Washington University, St. Louis, Missouri, United States of America

Abstract

The closely related protozoan parasites Toxoplasma gondii and Neospora caninum display similar life cycles, subcellular ultrastructure, invasion mechanisms, metabolic pathways, and genome organization, but differ in their host range and disease pathogenesis. Type II (γ) interferon has long been known to be the major mediator of innate and adaptive immunity to Toxoplasma infection, but genome-wide expression profiling of infected host cells indicates that Neospora is a potent activator of the type I (α/β) interferon pathways typically associated with antiviral responses. Infection of macrophages from mice with targeted deletions in various innate sensing genes demonstrates that host responses to Neospora are dependent on the toll-like receptor Tlr3 and the adapter protein Trif. Consistent with this observation, RNA from Neospora elicits TLR3-dependent type I interferon responses when targeted to the host endo-lysosomal system. Although live Toxoplasma fail to induce type I interferon, heat-killed parasites do trigger this response, albeit much weaker than Neospora, and co-infection studies reveal that T. gondii actively suppresses the production of type I interferon. These findings reveal that eukaryotic pathogens can be potent inducers of type I interferon and that related parasite species interact with this pathway in distinct ways.

Introduction

The eukaryotic phylum apicomplexa is comprised of over 5000 species of parasitic protozoa that infect a wide range of animal hosts and cause significant disease in both healthy and immune-compromised individuals. This phylum includes Plasmodium, the causative agent of malaria; Cryptosporidium, recently recognized to be a leading cause of pediatric diarrheal disease in the developing world [1]; and Toxoplasma, a ubiquitous parasite that causes potentially fatal congenital disease and represents the second leading cause of food borne mortality in the USA [2]. Other apicomplexa, including Babesia, Neospora and Theileria are important pathogens of cattle, while Eimeria species are a leading concern in the poultry industry. Despite being important causes of human and animal disease worldwide, there is relatively little information about how these pathogens are recognized by the host innate immune system following invasion of target cells, nor is it known whether infections with distinct protozoa trigger identical, partially overlapping or completely distinct innate immune responses.

The profound susceptibility of IFN-γ-deficient mice to a wide range of protozoan parasites, including Toxoplasma gondii [3,4], Cryptosporidium parvum [5], Leishmania major [6] and Trypanosoma cruzi [7], has given rise to the widely-held view that type II interferon (IFN-γ) is responsible for controlling protozoan infections, in contrast to type I interferons (IFN-α/β) which are primarily associated with control of viral infections. As a consequence, the vast majority of studies on innate immunity to protozoan parasites have focused on IFN-γ produced during acute infection by NK cells [8,9], and interleukin-12 produced by macrophages [10], neutrophils [11,12] and dendritic cells [13]. It is unclear whether this accurately captures the complete picture of innate immune pathways triggered by infection with protozoa. Moreover, while tremendous progress has been made in identifying viral and bacterial ligands recognized by innate pattern recognition receptors [14], relatively few studies have explored the mechanisms and consequences of innate recognition of intracellular eukaryotic microbes [15], in part because the conserved signatures of bacteria and viruses are not generally thought to be present in eukaryotic cells.

We have employed a comparative genomic approach to investigate innate immune signaling triggered by two closely related but distinct apicomplexan species, Toxoplasma gondii and Neospora caninum, both of which are obligate intracellular parasites that initiate infection in the gastrointestinal tract of animals. Neospora was only recently recognized as a distinct protozoan
species [16], and although it is thought to have diverged from Toxoplasma ~28 million years ago, the two species share nearly indistinguishable ultrastructure [17], metabolism, and 1:1 syntenic orthology for >90% of the parasite genome [18]. Despite these similarities, important biological differences distinguish the two species with respect to virulence factors, host range, and pathogenesis. Toxoplasma undergoes sexual reproduction in felidae (cats) and asexual reproduction in virtually any mammalian host, while the Neospora sexual cycle takes place in canidae (dogs), where it demonstrates a propensity for vertical transmission from mother to fetus [19], and infects a more limited range of intermediate hosts [20,21]. Genomic and transcriptomic analysis of these two parasites reveals that Neospora and Toxoplasma have evolved distinct repertoires of surface antigens and secreted kinases since divergence from a common ancestor [18], suggesting the ability to modulate or interact with host cells in unique ways. We capitalize on the close genetic and ecological relationship between these two parasites to carry out comparative profiling of the host responses to infection. Our results demonstrate that Neospora is a potent inducer of innate IFN-α/β responses, and that Toxoplasma has evolved the capacity to suppress this response.

Results

Differential induction of innate immune signaling by genetically similar parasite species

In order to compare host transcriptional responses during Neospora and Toxoplasma infection, whole-genome expression profiling was carried out using human fibroblasts infected with either Neospora caninum (NicLv strain) or Toxoplasma gondii (GT1, Prugniaud, or VEG strains, selected as representatives of the three dominant genotypes observed in North America [22,23]). 822 host genes were identified as differentially transcribed (≥2-fold, FDR≤5%) during infection with any of these four parasites relative to uninfected host cells (Fig. 1a and Table S1). Grouping parasites based on the host response indicated that Toxoplasma strains known to exhibit low virulence in mice (PRU, VEG) elicit host response profiles more similar to each other than to the virulent GT1 strain. Neospora induced a host response distinct from all strains of Toxoplasma, but more closely resembling low-virulence Toxoplasma strains, indicating that these two parasite species perturb the host transcriptome in distinct ways.

Hierarchical clustering of the 822 genes revealed a distinctive set of 66 genes induced only during Neospora infection (Fig. 1a, asterisk; Fig. 1b), and Gene Ontology (GO) analysis [24] indicated that these are significantly associated with antiviral responses (Fig. 1c). Antiviral genes specifically induced by Neospora infection included interferon-β1 (Ifnb1) as well as several key regulators of type I interferon responses (Fig. 1b, arrows) [25–27], including the transcription factor Ifit7 (a master regulator of the antiviral program), Oas1 and Oas2 (members of the 2′-5′-oligoadenylate synthetase family that activate RNase L to initiate degradation of cellular RNA as an innate defense mechanism during viral infection), and Mx1 (a GTP-binding protein that is essential for antiviral responses to influenza infection). To test whether the transcriptional program induced by Neospora is functionally antiviral, uninfected human fibroblasts or cells infected with Neospora or Toxoplasma were challenged with GFP-tagged Vesicular Stomatitis Virus (VSV), a standard virus used in bioassays for type I interferon [28]. Imaging these cells demonstrated that while VSV grew normally in naïve and Toxoplasma-infected cells, the virus was dramatically restricted in Neospora-infected cultures (Fig. 1d).

Viruses are known to infect various parasitic protozoa [29], in some cases influencing host transcriptional responses and promot-
The observation that heat-killed, but not live, Toxoplasma induce Mx1 expression suggested that live T. gondii actively suppressed this response. To test this hypothesis, human fibroblasts were first infected with live Toxoplasma (which does not induce Mx1 expression), and then challenged 2 hr later with heat-killed Neospora (which do induce Mx1). Supernatants were collected at 24 hr after challenge, filtered to remove parasites, and transferred to naive fibroblast cultures to assay for type I interferon (Fig. 3a). While media from Neospora treated cultures was a potent inducer of Mx1 expression, media from cells infected with Toxoplasma prior to Neospora exposure failed to elicit Mx1 expression (Fig. 3a). These results demonstrate that Toxoplasma infection suppresses innate immune induction of type I interferon.

To test whether the suppressive effect observed in co-infection experiments was a cell-autonomous phenotype evident only in cells infected with Toxoplasma, conditioned media was recovered from Toxoplasma infected human fibroblasts, filtered to remove parasites, and used to pretreat naive fibroblasts (Fig. 3b). Pretreatment of cells did not prevent subsequent infection with Neospora (not shown), but blocked Neospora induction of the antiviral genes IRF7 and HERC5, 3-fold and 4-fold, respectively (Fig. 3b). Supernatants were filtered again and transferred to new cells to test for ability to restrict a viral challenge. As expected, cultures treated with supernatants from Neospora infected cells were completely refractory to a challenge with VSV-GFP (Fig. 3c, upper right). In contrast, supernatants recovered from cultures that were pretreated with Toxoplasma conditioned media prior to Neospora infection showed impaired virus restriction (Fig. 3c, lower right). Taken together, these data show that Toxoplasma infected cells produce a soluble factor that suppresses the innate induction of type I interferon.

The macrophage response to Neospora infection is dependent on signaling through the type I interferon receptor

In order to determine the extent to which host transcriptional responses to Neospora and Toxoplasma (Fig. 1) are driven by type I interferon, bone marrow-derived murine macrophages were generated from either wild-type mice or mice lacking the type I interferon receptor subunit Ifnar1 [35]. Transcriptional profiling of wild-type (WT) and Ifnar1-deficient macrophages infected with Neospora or Toxoplasma identified 833 genes differentially regulated (≥2-fold, FDR≤5%) compared to uninfected cells (Fig. 4a, Table S2). Although Toxoplasma elicited a similar host response on both cell types, the host response to Neospora was severely abrogated by the loss of type I interferon signaling (Fig. 4b), demonstrating that signaling through this receptor constitutes the major pathway responsible for shaping the transcriptional response to N. caninum.

Hierarchical clustering identified two distinct clusters of co-regulated genes (Fig. 4a). Cluster 1 (212 genes) was induced by Neospora, but not Toxoplasma, and was Ifnar1-independent. Gene ontology analysis showed that this cluster was strongly enriched for terms relating to wound healing (Fig. 4c), and arginase-1, Chi3l3, Ear11 and BiH1 were amongst the most strongly induced genes in this cluster (Fig. 4d) - all well-known markers of alternative macrophage activation, which have recently been shown to be induced during infection with certain strains of Toxoplasma [36]. In contrast, cluster 2 (199 genes) was strongly induced by Neospora, yet...
only weakly induced by *Toxoplasma*, was *Ifnar1*-dependent (Fig. 4a), and was enriched for GO terms related to immune cell function and inflammation (Fig. 4c). The top ten most strongly induced genes in this cluster included key STAT1-dependent genes such as *Cxcl9* and *Cxcl10* as well as *Irf7*, a master regulator of antiviral gene transcription (Fig. 4f). Taken together with our data on human fibroblasts and bovine fibroblasts, these results show that *Neospora* induces a strong type I interferon signature in cells from diverse host species as well as immune and non-immune cell types, suggesting a conserved innate response to these parasites.

The type I interferon response to *Neospora* is mediated by signaling through toll-like receptor 3 (TLR3) and the adaptor protein TRIF

To identify the host pathway responsible for parasite-mediated induction of type I interferon, and downstream responses to this cytokine, bone marrow-derived macrophages were prepared from mice genetically deficient in various toll-like receptors or their adaptor proteins (Fig. 5). *Neospora* infection of *Myd88* deficient cells still resulted in induction of *Mx1* expression, ruling out a role for TLR1, 2, 5, 6, 7, 8, and 9 [37]. TLR4 is capable of inducing type I interferon production via either MYD88 or the alternative adapter TRIF [38], but infection of *Tlr2/Tlr4* double knock-out cells induced antiviral gene expression, ruling out a role for TLR4 as well. In contrast, cells lacking *Tlr3*, or lacking both *Myd88* and *Trif*, showed no induction of *Mx1* by live *Neospora*. *Tlr3−/−* and *Myd88−/−Trif−/−* cells also failed to respond to heat-killed parasites (not shown), demonstrating that both live and dead parasites are sensed through this pathway. Since TRIF is required for TLR3 signaling [39,40], these data identify TLR3 - known to recognize double stranded RNA [41] - as the host receptor responsible for macrophage sensing of *Neospora* and type I interferon responses.
Although TLR3 is primarily localized within endosomes, some cell types also express this receptor on the plasma membrane [42,43]. To determine whether surface or endosomal TLR3 is responsible for sensing live and heat-killed *Neospora*, macrophages were pretreated with bafilomycin A1 (Fig. 6), a specific inhibitor of vacuolar ATPase that blocks endosomal acidification and subsequent fusion [44]. Although both live and heat-killed parasites induced the expression of *Mx1* and *Irf7* in macrophages treated with DMSO alone (Fig. 6a), this response was abolished in bafilomycin-treated cells, suggesting that endosomal TLR3 is responsible for recognizing both live and dead parasites in macrophages.

Since RNA is the prototypical ligand for TLR3 [41], parasite RNA was tested for its ability to activate this pathway. RNA extracted from *Neospora* or uninfected human cells (to control for any contamination of parasite material with host cell RNA) was added directly to *Mydd88*−/− macrophage cultures (to exclude activation of TLR 7, 8 and 9, which also bind nucleic acids). None of the RNA preparations induced *Mx1* or *Irf7* expression, although the synthetic TLR3 ligand poly(I:C) resulted in 15-fold induction (Fig. 6b; white bars). Because it is unclear how efficiently extracellular RNA is taken up into the endosomes where TLR3 resides, parasite RNA was also complexed with the liposomal transfection reagent 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). When complexed with DOTAP, RNA from *Neospora*, but not *Toxoplasma*, strongly induced both *Irf7* (Fig. 6b and 6c) and *Mx1* (not shown). Thus, it appears that naked *Neospora* RNA is capable of triggering *Mydd88*-independent type I interferon responses in macrophages, while RNA from *Toxoplasma* is not. Although the use of *Mydd88*−/− cells in these experiments helped to narrow the range of TLRs that could be acting as receptors for *Neospora* RNA, it does not rule out a role for cytosolic RNA sensors.

Therefore, we tested specifically whether TLR3 was the receptor for transfected parasite RNA by pre-incubating *Mydd88*−/− macrophages with a small molecule competitive inhibitor of dsRNA binding to TLR3 [45]. In the presence of inhibitor, *Irf7* induction by *Neospora* RNA was completely abolished, demonstrating that this is a TLR3-dependent process (Fig. 6c).

Discussion

Despite the importance of protozoan parasites as causes of human and animal disease, relatively little information is available on innate signaling pathways triggered by these organisms, in contrast to the extensive literature on innate responses to viral and bacterial pathogens [14]. Glycosylphosphatidylinositol (GPI)-anchored surface antigens (found in many parasite species) can bind to TLR2 and/or TLR4 [46]; *Plasmodium* hemozoin can activate the inflammasome [47] and (when bound to DNA) TLR9 [48,49]; and *Toxoplasma* profilin binds to TLR11 [13] and TLR12 [50,51]. These interactions, in turn, trigger the production of pro-inflammatory cytokines, including IL-1, IL-6, TNF-α and IL-12.

To this list, we can now add the induction of type I interferon responses (Fig. 1 and Fig. 4) via TLR3 and TRIF (Fig. 5), and our *in vitro* data suggest that parasite RNA is a potential trigger for this response (Fig. 6).

Infection by protozoan parasites has typically been associated with induction of type II (γ) interferon, while type I (α/β) interferon is prominent in viral infection, but type I responses to protozoa are not completely unprecedented. *Toxoplasma* infection elicits type I interferon from plasmacytoid dendritic cells [32], a cell type known to be a common source of this cytokine [53], while...
spleenic red pulp macrophages produce type I interferon when exposed to *Plasmodium*-infected erythrocytes [54-56]. The parasite ligand was not identified in these studies, but the response was found to be *Tlr11*-dependent (*Toxoplasma*) and *Tlr3*/*Myd88*-dependent (*Plasmodium*). More recently, a type I interferon transcriptional signature has been noted in hepatocytes infected with live (but not dead) *Plasmodium* sporozoites, involving the cytosolic RNA sensor MDA5 and the MAVS adaptor protein [57]. Although clearly distinct from the *Tlr3* and *Trif*-dependent response to *Neospora* (and heat-killed *Toxoplasma*) reported above, these observations support the concept that protozoan parasites can be robust activators of type I interferon signaling (Fig. 4), and that mechanisms of innate sensing may vary depending on tissue or target cell type, parasite developmental stage, or other factors.

Although we found that both parasite species are capable of activating type I interferon responses when killed and added to cells directly, the level of induction was a log order of magnitude higher with *Neospora* (Fig. 2b). This may explain why transfection of macrophages with *Neospora* RNA, but not *Toxoplasma* RNA, was sufficient to elicit a TLR3-dependent induction of type I interferon responsive genes. These findings suggest that there are quantitative and/or qualitative differences in TLR3 ligand present in RNA from these parasite species. Both *Toxoplasma* and *Neospora* establish an intracellular ‘parasitophorous vacuole’ (PV) distinct from the endo-lysosomal pathway at the time of invasion [58,59], raising the question of how parasite antigens, including nucleic acids, gain access to endosomal TLR3 or other intracellular pattern recognition receptors. One possibility is that TLR3 activation may be attributable to the release of RNA from parasites that are...

Figure 4. Macrophage transcriptional responses to *Neospora* infection are Ifnar1-dependent. Microarray-based expression profiling of *Neospora* (*Nc*) or *Toxoplasma* (*Tg*) infected wild-type or *Ifnar1*−/− bone marrow-derived mouse macrophages. a) heat map shows hierarchical clustering analysis of 833 genes differentially regulated by either *Nc* or *Tg* on either cell type relative to uninfected cells by ≥2-fold (FDR≤5%). Two clusters of co-regulated genes are indicated. Each column in heatmap represents an average of duplicate arrays, and color pattern represents row Z-score. b) Venn diagrams showing number of differentially regulated genes for each condition. c and e) GO enrichment results for cluster 1 and 2, respectively. d and f) heatmaps showing top ten most strongly induced genes in cluster 1 and 2, respectively. Gene symbol and fold change of infected WT relative to uninfected WT control are shown for each gene.

doi:10.1371/journal.pone.0088398.g004

Figure 5. The Type I interferon response to *Neospora* infection is dependent on *Tlr3* and *Trif*. QPCR analysis of *Mx1* expression in *Neospora* infected bone marrow macrophages derived from wild-type (WT), *Myd88*−/−, *Myd88*−/−/*Trif*−/−, *Tlr2*−/−/*Tlr4*−/− and *Tlr3*−/− mice. Error bars indicate standard deviations for three biological replicates; *P*≤0.01. Experiment was repeated three times with similar results.

doi:10.1371/journal.pone.0088398.g005
Figure 6. Neospora RNA elicits a TLR3-dependent type I interferon response. a) QPCR analysis of Irf7 gene expression in wild-type mouse bone marrow-derived macrophages pretreated with either DMSO (control) or 100 nM bafilomycin A1 prior to 24 hr infection with live (Nc) or heat-killed Neospora (HK Nc). b) Irf7 expression in Myd88−/− macrophages incubated with 1 µg/ml of either poly(I:C) or total RNA from HFF cells (host), or Neospora parasites, either alone (white) or in complex with DOTAP transfection reagent (striped), to enhance targeting of RNA to endosomes. c) Irf7 expression in Myd88−/− macrophages incubated with 1 µg/ml of either Toxoplasma or Neospora RNA with DOTAP in cells pretreated with either DMSO or a small molecule inhibitor of TLR3/dsRNA complex formation. Error bars indicate standard deviations for three biological replicates; * = P≤0.01. Experiments were repeated two or three times with similar results.

doi:10.1371/journal.pone.0088398.g006

phagocytosed [60] or that die after invasion, rather than those engaged in productive intracellular replication. Alternatively, since the PV is intimately associated with the host mitochondria and endoplasmic reticulum [61], it is possible that RNA within the PV may access the host endo-lysosomal system (Fig. 6). PV antigens are known to enter the host endoplasmic reticulum for processing and presentation to T cells on MHC class I [62–64]. Endosomal vesicles may also be recruited to the PV [65,66], facilitating the acquisition of nutrients, and perhaps playing a role in escape from the host cell [67,68].

While type I and II interferons utilize different receptors and transcription factors, there is significant overlap in the genes that they induce [54,69], suggesting some degree of functional redundancy. We observed that Neospora infection drives IIfn-α-dependent expression of genes traditionally considered to be IIfn-γ-dependent (Fig. 4), including the chemokines Cxcl9 and Cxcl10, and the GTPases 1gtp and Gbp2 (Fig. 4), all of which have been shown to be important mediators of resistance to Toxoplasma infection [70–73]. Interestingly, Kim et al., found that IIfn−−/− deficiency only impacted Plasmodium infection when mice were also lacking the receptor for interferon-γ [54], consistent with the notion that the strong IFN-γ response typically seen in protozoan infections may mask a role for type I interferons. In vivo depletion of IFN-γ were carried out to test whether IFN-γ could compensate for loss of IFN-α signaling in Neospora-infected IIfn−−/− mice (Fig. S3). Although WT mice treated with control IgG had no parasites and limited neutrophilia evident in cytopsins prepared from peritoneal exudate cells at 7 days post-infection (Fig. S3a), WT mice depleted of IFN-γ had abundant parasites and high neutrophil numbers evident (Fig. S3b), and acute mortality occurred at 8 dpi (data not shown). Parasites were not observed in IIfn−−/− mice treated with control IgG (Fig. S3c), however like their WT counterparts, all IIfn−−/− mice showed high parasitemia, high neutrophil infiltration and also succumbed to infection at 8 days post-infection (Fig. S3d). Taken together, these results are consistent with previous reports that IFN-γ is essential for control of Neospora [3,74], and extend these findings by showing that type I interferon signaling is dispensable for the control of acute high-dose Neospora infection. Similar results have emerged for Plasmodium infection, where parasite burden and disease pathogenesis are either unchanged or minimally affected by loss of type I interferon signaling [54,55].

The observation that live Toxoplasma potently suppresses the type I interferon pathway, and that this suppression is a dominant phenotype in co-infection assays with Neospora (Fig. 2) suggests at least two possible evolutionary scenarios: 1) that the common ancestor of these parasites could suppress induction of type I interferon and Neospora lost this ability after divergence; 2) or that the common ancestor could not suppress and Toxoplasma gained this ability after divergence. Such distinct host phenotypes could provide the basis for genetic screens or comparative genomic studies to identify the parasite factor(s) responsible for modulating the pathway. The fact that suppression is mediated by a soluble factor in the supernatant of Toxoplasma infected cells (Fig. 3) also raises the possibility that standard biochemical approaches could be used to identify and characterize a novel host or parasite factor.
that modifies this important signaling pathway. Our observation that *Toxoplasma* suppresses TLR3-dependent type I interferon induction in *vivo* contrasts with recent findings by Koblan'sky et al. [51] in which *Toxoplasma* profilin elicited low levels of IFN-γ from dendritic cells in a Tlr2-dependent manner. Given that TLR12 signaling is MYD88-dependent, while TLR3 signaling in our model is not (Fig. 5), it stands to reason that *Toxoplasma* suppression may exhibit pathway specificity. In addition, Koblan'sky et al. attribute IFN-γ production to plasmacytoid dendritic cells, and we did not test the induction or suppression of TLR3-dependent responses by either *Toxoplasma* or *Neospora* in this cell type. Interestingly, even low levels of IFN-γ induced during *Toxoplasma* infection were critical in driving IFN-γ production by NK cells to limit parasite replication in *vivo* [51], providing a possible evolutionary pressure for *Toxoplasma* parasites to limit type I interferon induction. Taken together with our data, a broader picture of innate recognition of coccidian parasites begins to emerge in which both protein and nucleic acid ligands are capable of being recognized by distinct receptors, across various cell types and host species. A more complete understanding of how these pathogens are recognized by, and interfere with, innate signaling pathways will help to shed light on important aspects of the host-pathogen relationship during infections with protozoa.

Materials and Methods

Ethics statement

This study was carried out in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Protocols were approved by the Institutional Animal Care and Use (IACUC) committee of the University of Pennsylvania (animal welfare assurance number A3079-01). The University of Pennsylvania Animal Care and Use Programs are fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

Parasites, cells and mice

RH, GT1, Prugniaud (Pru), VEG strain T. gondii; and Nc1 [75], Nc2 [76] and NcLiv strain N. caninum were maintained by serial passage in human foreskin fibroblast (HFF) monolayers as described previously [77]. RH stably expressing mCherry were assessed on a BioAnalyzer (Agilent). Illumina HumanRef-8 version 3 (for HFF cells) or MouseWG-6 version 2 (for bone marrow macrophages) expression beadchips were hybridized with cRNA from two to three biological replicates per condition according to the manufacturer’s instructions, and scanned on a beadscan unit. Scanned images were converted to raw expression values using GenomeStudio v1.8 software (Illumina). Data analysis was carried out using the statistical computing environment, R (v3.0.2), the Bioconductor suite of packages for R, and RStudio (v0.97). Raw data was background subtracted, variance stabilized and normalized by robust spline normalization using the Lumi package [80]. Differentially expressed genes were identified by linear modeling and Bayesian statistics using the Limma package [81,82]. Probes sets that were differentially regulated ≥2fold (FDR<5%; after controlling for multiple testing using the Benjamini-Hochberg method [83,84]) were used for hierarchical clustering and heatmap generation in R. Multiple probe sets per gene were collapsed to a single non-redundant list of expression data using the “MaxMean” method of the CollapseRows function in R [85]. For each gene, a mean expression value was calculated for biological replicates and used for heatmap generation (Fig. 2 and Fig. 4). Clusters of coregulated genes were identified by Pearson correlation using the hclust function of the stats package in R. Data has been deposited on the Gene Expression Omnibus (GEO) database for public access (GSE45632 and GSE45633). Gene Ontology enrichment analysis was conducted using either the Function Annotation Chart (Fig. 1c) or Functional Annotation Clustering (Fig. 4) tools using only GO BP ‘fat’ terms in the Database for Visualization and Integrative Discovery (DAVID) [86,87]. DAVID enrichment scores ≥1.3 are equivalent to a P value<0.05 (Fig. 4c and 4e).

Quantitative PCR (QPCR)

cDNA was generated from total RNA using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). QPCR was carried out using SYBR green dye and gene specific primers for human or mouse MX1 and IRF7. Relative transcript abundance was determined using the ΔΔCt method [88], using a standard curve of cDNA amplified with primers specific for the house-keeping gene GAPDH.

Viral interference assays

For Fig. 1d, confluent HFF cells were infected with *Toxoplasma* or *Neospora* for 16 hr, followed by challenge with GFP-tagged vesicular stomatitis virus (VSV; MOI = 20 pfu/host cell) for 8 hr prior to assaying by fluorescence microscopy. For Fig. 3, HFF cells were pretreated for 4 hours with either fresh media or with conditioned media recovered from *Toxoplasma* infected HFF cells at 24 hr post-infection and filtered to remove parasites and host cell debris. Cells were then infected with *Neospora* for 24 hours and induction of IRF7 and HERC3 transcript levels was measured by QPCR (Fig. 3a). Supernatants from these cultures were also recovered, filtered again through a 0.22 μm filter to remove parasites and host cell debris, and transferred to fresh HFF cell monolayers prior to VSV-GFP challenge (Fig. 3b).
Bafilomycin treatment, DOTAP transfections and TLR3/dsRNA antagonist

Wild-type bone marrow-derived macrophages were treated with 100 nM Bafilomycin A1 for 1 hr at 37°C to block endosomal fusion prior to infection, RNA harvest and QPCR as described above. For transfection of macrophages with RNA, parasite or host (HFF) total RNA was isolated using the mirNeasy kit (Qiagen). Mx1−/− bone marrow-derived macrophages were used in order to minimize induction of innate signaling pathways other than Tlr3. 1 μg total RNA or poly(I:C) (Ingenex) was added to each chamber of a 24-well plate containing 1 ml of media and 1x10^6 Mx1−/− macrophages. For more efficient targeting to endosomes, 1 μg of parasite RNA, host RNA, or poly(I:C) was mixed with 10 μg 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) liposomal transfection reagent (Roche Applied Science). Cells were incubated for 18 hr with transfection mixture and RNA was isolated for QPCR analysis as described above. To test a role for TLR3 in recognition of parasite RNA, a thiophenecarboxylic acid (Calibochem) was added to cultures at 50 nM for 1 hr at 37°C to inhibit TLR3/dsRNA antagonist activity. TLR3/Myd88−/− bone marrow-derived macrophages were used as a positive control.

Assaying for presence of parasite RNA virus

To test for presence of an endogenous RNA virus in the parasite, total RNA was extracted from purified Toxplasma and Neospora tachyzoites using Trizol. Nuclease digestions were carried out using 60 μg of total RNA in 15 μl of volume containing 3 units/μl of S1 nuclease (Invitrogen), alone or following Dnase treatment and RNA purification, and incubated at 37°C for 45 minutes. Samples were analyzed on 0.8% native agarose in 1x TAE buffer at 4°C. S1 nuclease-treated Leishmania ganyansis (strain M4147), which contains the endogenous RNA virus LRV1, was used as a positive control. Toxplasma gondii (Tg) and Neospora caninum (Nc). 28S and 18S rRNAs bands sensitive to S1 nuclease shown as loading control. DNA ladder (L) with kilobase (kb) markers is shown. Arrow indicates an S1 nuclease- and Dnase-resistant double stranded RNA from L. ganyansis that corresponds to a known endogenous RNA virus [31].

Figure S2 Host response to Neospora infection correlates with inoculum and is not restricted to human cells. QPCR analysis of the expression of the antiviral gene Msx1 in (a) HFF cells infected with Neospora tachyzoites at various multiplicity of infection (MOI), and (b) bovine primary fibroblasts infected with either Toxoplasta (Tg) or Neospora (Nc). Similar results were obtained for Ifnγ (not shown). Error bars indicate standard deviations for two biological replicates; * = P≤0.01.

Figure S3 IFN-γ, but not type I interferons, are essential for control of high-dose Neospora infection in vivo. Diff-Quik stained cytospins of peritoneal exudate cells recovered from (a-b) WT and (c-d) Ifnar1−/− mice (7 days post-infection) treated with either control IgG or neutralizing antibody to IFN-γ (clone XMG1.2). Experiments were repeated two times, with 4-5 mice per group. Representative micrographs are shown. Arrows indicate parasite-infected cells.

Fluorescence microscopy to assess parasite internalization

HFF cells grown to confluency on coverslips were infected with a 3:1 MOI of either live or heat-killed (56°C for 30 minutes) RH strain Toxplasma expressing mCherry [78]. 18 hours after infection, coverslips incubated with 50 nM LysoTracker (Molecular Probes) for 10 minutes at 37°C were live mounted, and immediately imaged using a Leica DMI400 with Yokagawa spinning disk confocal system. Images were overlaid and analyzed using Image J software, v1.47.

Statistical Analysis and data visualization

All experiments were repeated 2-4 times, and means and standard deviations were calculated from biological replicates. Significance was determined using a Student’s t-test. Statistical analysis was carried out using Prism 4 (GraphPad Software) and data visualization using DataGraph 3.0 (Visual Data Tools).

Supporting Information

Figure S1 Assaying for double stranded RNA in Toxplasma and Neospora. 0.8% agarose gel electrophoresis and ethidium bromide staining of Leishmania ganyansis (Lg), Toxplasma gondii (Tg) and Neospora caninum (Nc) total RNAs treated with A) S1 nuclease, B) DNase I and S1 nuclease, C) untreated total RNA of developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382: 209–222.

References

1. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Faraz TH, et al. (2013) Burden and aetiology of diarrhoeal disease in infants and young children in
29. Wang AL, Wang CC (1991) Viruses of the protozoa. Annu Rev Microbiol 45: 251–256.

30. Ives A, Ronet C, Prevot F, Ruzaunte G, Fuertes-Marraco S, et al. (2011) Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 331: 775–778.

31. Zangerl H, Ronet C, Desponds G, Kuhlmann FM, Robinson J, et al. (2013) Detection of Leishmania RNA virus in Leishmania parasites. PLoS Negl Trop Dis 7: e2006.

32. Butler BA, Denkers EY (2002) Mechanism of entry determines the ability of Toxoplasma gondii to inhibit macrophage proinflammatory cytokine production. J Infect Immun 70: 5216–5225.

33. Butler BA, Kim L, Panopoulos AD, Watowich SS, Murray DJ, et al. (2005) IL-10-independent STAT3 activation by Toxoplasma gondii mediates suppression of IL-12 and TNF-alpha in host macrophages. J Immunol 174: 3148–3152.

34. Phelps LD, Sweeney KR, Blader DJ (2000) Toxoplasma gondii rhesus discharge correlates with activation of the early growth response 2 host cell transcription factor. Infect Immun 76: 4703–4712.

35. Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, et al. (1994) Functional role of type-I and type-II interferons in antiviral defense. Science 264: 1916–1920.

36. Muñoz JD, Gazzinelli RT, Martin D, Sher A (1993) Emergence of NK1.1+ cells as effectors of IFN-gamma-dependent immunity to Toxoplasma gondii in MHC class I-deficient mice. J Exp Med 170: 1353–1367.

37. O'Connell LA, Bowe AG, et al. (2002) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2: 119–128.

38. O'Connell LA, Bowe AG, et al. (2002) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2: 119–128.

39. O'Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2: 119–128.

40. O'Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2: 119–128.

41. Orinska Z, Bulanova E, Budagian V, Metz M, Maurer M, et al. (2005) TLR3-dependent recognition of protozoan parasites. Trends Biochem Sci 26: 21404–21408.

42. Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, et al. (2007) Malaria blood stage parasites activate human plasmacytoid dendritic cells and Toxoplasma gondii to inhibit macrophage proinflammatory cytokine production. J Exp Med 201: 19–35.

43. Pebody GM, Reynolds JP, Sowby GD (1992) dsRNA complex. J Am Chem Soc 133: 3764–3767.

44. Peñalva LO, Tagawa Y, Yoshimori T, Miyajima A, Masaki K, et al. (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-411-E-1 cells. Cell Struct Funct 23: 33–42.

45. Peñalva LO, Tagawa Y, Yoshimori T, Miyajima A, Masaki K, et al. (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-411-E-1 cells. Cell Struct Funct 23: 33–42.

46. Perros P, Lawe CN, Goutagny N, Latz E, Monks BG, et al. (2007) Malaria Hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A 104: 1919–1924.

47. Perros P, Lawe CN, Goutagny N, Latz E, Monks BG, et al. (2007) Malaria Hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A 104: 1919–1924.

48. Perros P, Lawe CN, Goutagny N, Latz E, Monks BG, et al. (2007) Malaria Hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A 104: 1919–1924.

49. Perros P, Lawe CN, Goutagny N, Latz E, Monks BG, et al. (2007) Malaria Hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A 104: 1919–1924.

50. Perros P, Lawe CN, Goutagny N, Latz E, Monks BG, et al. (2007) Malaria Hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A 104: 1919–1924.

51. Perros P, Lawe CN, Goutagny N, Latz E, Monks BG, et al. (2007) Malaria Hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A 104: 1919–1924.

52. Perros P, Lawe CN, Goutagny N, Latz E, Monks BG, et al. (2007) Malaria Hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A 104: 1919–1924.

53. Perros P, Lawe CN, Goutagny N, Latz E, Monks BG, et al. (2007) Malaria Hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A 104: 1919–1924.

54. Perros P, Lawe CN, Goutagny N, Latz E, Monks BG, et al. (2007) Malaria Hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A 104: 1919–1924.

55. Perros P, Lawe CN, Goutagny N, Latz E, Monks BG, et al. (2007) Malaria Hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A 104: 1919–1924.
72. Taylor GA, Collazo CM, Yap GS, Nguyen K, Gregorio TA, et al. (2000) Pathogen-specific loss of host resistance in mice lacking the IFN-gamma-inducible gene IGTP. Proc Natl Acad Sci U S A 97: 731–735.

73. Khan IA, MacLean JA, Lee FS, Casciotti L, DeHaan E, et al. (2000) IP-10 is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection. Immunology 12: 483–494.

74. Nishikawa Y, Tragopoulou K, Inoue N, Makala I, Nagasawa H, et al. (2001) In the absence of endogenous gamma interferon, mice acutely infected with Neospora caninum succumb to a lethal immune response characterized by inactivation of peritoneal macrophages. Clin Diap Lab Immunol 8: 811–816.

75. Dubey JP, Hattel AL, Lindsey BS, Topper MJ (1985) Neonatal Neospora caninum infection in dogs: isolation of the causative agent and experimental transmission. J Am Vet Med Assoc 193: 1259–1263.

76. Hay WH, Shell LG, Lindsey BS, Dubey JP (1990) Diagnosis and treatment of Neospora caninum infection in a dog. J Am Vet Med Assoc 197: 87–89.

77. Ross DS, Donald RG, Morrisette NS, Moulton AL (1994) Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45: 27-63.

78. Koshy AA, Fouts AE, Lodeso MB, Alkan O, Blau HM, et al. (2010) Toxoplasma secreting Cre recombinase for analysis of host-parasite interactions. Nat Methods 7: 307–309.

79. Leng J, Butcher EA, Egan CE, Abi Abdallah DS, Denkers EY (2009) Toxoplasma gondii prevents chromatin remodeling initiated by TLR-triggered macrophage activation. J Immunol 182: 489–497.

80. Du P, Kibbe WA, Lin SM (2008) lumi: a pipeline for processing Illumina microarray. Bioinformatics 24: 1547–1548.

81. Smyth GK (2005) limma: Linear Models for Microarray Data. In: Gentleman R, Carey V, Huber W, Irizarry R, and Dudoit S, editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor: Springer New York. pp. 397–420.

82. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.

83. Reiner A, Yakutiel D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19: 368–375.

84. Dubey JP, Hattel AL, Lindsey BS, Topper MJ (1988) Neonatal Neospora caninum infection in a dog. J Am Vet Med Assoc 197: 87–89.

85. Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian SM, et al. (2011) Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinformatics 12: 322.

86. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4: P3.

87. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57.

88. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.