A common genetic mechanism underlies morphological diversity in fruits and other plant organs

Shan Wu, Biyao Zhang, Neda Keyhaninejad, Gustavo R. Rodríguez, Hyun Jung Kim, Manohar Chakrabarti, Eudald Illa-Berenguer, Nathan K. Taitano, M. J Gonzalo, Aurora Díaz, Yupeng Pan, Courtney P. Leisner, Dennis Halterman, C. Robin Buell, Yiqun Weng, Shelley H. Jansky, Herman van Eck, Johan Willemsen, Antonio J. Monforte, Tea Meulia & Esther van der Knaap

Shapes of edible plant organs vary dramatically among and within crop plants. To explain and ultimately employ this variation towards crop improvement, we determined the genetic, molecular and cellular bases of fruit shape diversity in tomato. Through positional cloning, protein interaction studies, and genome editing, we report that OVATE Family Proteins and TONNEAU1 Recruiting Motif proteins regulate cell division patterns in ovary development to alter final fruit shape. The physical interactions between the members of these two families are necessary for dynamic relocalization of the protein complexes to different cellular compartments when expressed in tobacco leaf cells. Together with data from other domesticated crops and model plant species, the protein interaction studies provide possible mechanistic insights into the regulation of morphological variation in plants and a framework that may apply to organ growth in all plant species.

1 Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA. 2 Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Rd, Athens, GA 30602, USA. 3 Instituto de Investigaciones en Ciencias Agrarias de Rosario, Cátedra de Genética Facultad de Ciencias Agrarias UNR, Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina. 4 Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain. 5 Unidad de Hortofruticultura, Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Avenida de Montañana 930, 50059 Zaragoza, Spain. 6 Horticulture Department, University of Wisconsin, Madison, WI 53706, USA. 7 Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA. 8 Vegetable Crops Research Unit, USDA-ARS, 1575 Linden Drive, Madison, WI 53706, USA. 9 Plant Breeding, Wageningen University and Research, P.O.Box 3866700 AJ Wageningen, The Netherlands. 10 Molecular and Cellular Imaging Center, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA. 11 Department of Plant Pathology, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA. 12 Department of Horticulture, University of Georgia, 3111 Carlton Rd, Athens, GA 30602, USA. 13 Present address: Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA. 14 Present address: Division of SMART Horticulture, Yonam College, Cheonan 31005, South Korea. 15 Present address: Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, USA. Correspondence and requests for materials should be addressed to E.Knaap. (email: vanderkn@uga.edu)
Remarkable phenotypic diversity characterizes cultivated fruits and vegetables. Thousands of years of selection under cultivation have allowed for the accumulation of mutations that collectively comprise modern day germplasm. This diversity is critical for the successful marketing of a wide array of plant species, from food crops to ornamentals. Utilizing morphologically diverse domesticated germplasm also leads to a better understanding of fundamental growth processes common to all higher plants. Coordinated cell division and expansion patterns regulate the shape and size of plant organs. Specifically, the rate, duration and plane of cell division, as well as isotropic and anisotropic cell enlargement contribute greatly to final morphology of plant organs. Recent studies have revealed several genes that control the growth form of agriculturally important organs, such as fruits and seeds. One of the most commonly utilized tomato fruit shape gene is OVATE, the founding member of the OVATE Family Protein (OFP) class. A mutation in OVATE usually leads to an elongated fruit, yet the extent of elongation varies depending on the genetic background. Shape regulation of the aerial parts in Arabidopsis and grain shape in rice is controlled in part by LONGIFOLIA1 and LONGIFOLIA2, members of the TONNEA1 Recruiting Motif (TRM) family. Whether OFPs and TRMs function in the same developmental pathway to regulate organ shape and whether orthologous members in other plants share similar functions is unknown. Moreover, the biochemical function and the impacts of the encoded proteins at the cellular and tissue-specific levels are poorly understood. Thus, gaining insights into the function of these proteins in developmental processes related to shape determination will be key to understanding the remarkable morphological diversity observed in plant organs within and among species.

Herein we fine-map and clone a suppressor of ovate (sov1), which encodes another member of the OFP class. The altered shape is due to changes in cell number in the ovary, which implies a shift in cell division patterning during development of the organ. OVATE-interacting proteins, identified by the yeast two-hybrid (Y2H) approach, include 11 members of the tomato TRM family. We show that conserved charged amino acid residues in the interacting motifs are necessary for the protein-protein interaction. Upon co-expression in Nicotiana benthamiana epidermal leaf cells, the protein complexes relocalize subcellularly to the cytosol or to microtubules depending on the OFP and TRM combination. Using CRISPR, a knock out mutation in tomato TRM5 rescues the fruit shape phenotype in the ovate/sov1 double mutants. We also demonstrate that members of the same OFP and TRM subclades are associated with natural variation of melon and cucumber fruit as well as potato tuber shape. These results integrate the previous knowledge on OFPs and TRMs, and provide possible mechanistic insights into organ shape regulation in higher plants.

Results

Fine-mapping and cloning of SIOFP20. The mutant allele of ovate is common in cultivated tomato and usually leads to an elongated fruit shape. Tomato accessions carrying ovate may produce oval, rectangular or pear shaped fruit, and a few produce fruit with a pointed tip. In rare cases, ovate accessions produce fruits of a near perfect round shape. These variable tomato fruit shapes suggest the presence of modifier loci in the germplasm, and knowledge of the underlying genes would provide insights into the regulation of morphological diversity. As a step toward identifying critical genes in the OVATE fruit shape pathway, we mapped one modifier locus on chromosome 10 that we refer to as suppressor of ovate (sov1). Further fine-mapping of the locus identified a 149.7-kb region (Supplementary Table 1; Fig. 1a) that carries three annotated genes, Solyc10g076170, Solyc10g076180 and Solyc10g076190. The gene Solyc10g076180 corresponds to another member of the OFP class, SIOFP20, which was highly expressed in flowers at anthesis (Supplementary Fig. 1a). Of these three genes, only SIOFP20 was consistently differentially expressed in near isogenic lines (NIL) polymorphic at the sov1 locus (Fig. 1b), suggesting that this gene might control fruit shape. Investigations into allelic diversity at sov1 showed a 31-kb deletion in the upstream regulatory region of SIOFP20 6.5 kb away from the transcription start site, which may be the cause of the reduced expression of the gene (Fig. 1a; Supplementary Fig. 2). The other candidate genes were either not differentially or extremely low expressed, or encoded for an unknown protein, and therefore, were not pursued further.

To confirm that SIOFP20 is indeed underlying sov1, we overexpressed the gene in the Yellow Pear variety (Solanium lycopersicum L.) (Fig. 1c). Conversely, we reduced expression of the wild type SIOFP20 allele in the close wild relative of tomato, S. pimpinellifolium LA1589 to approximate the expression level in the NIL (Fig. 1b). The results showed that overexpression of SIOFP20 in Yellow Pear produced much rounder fruits than the non-transformed Yellow Pear as well as shortened leaves and rounder leaflets (Fig. 1c; Supplementary Fig. 3; Supplementary Data 1). Correspondingly, down regulation of SIOFP20 in LA1589 led to a more elongated fruit shape but only in the ovate background (Supplementary Data 2). Importantly, down regulation of SIOFP20 in the ovate background led to a tomato shape that was as elongated as or more elongated than the natural sov1/ ovate double NIL (Fig. 1d). These plant transformation results conclusively show that SIOFP20 underlies sov1 and demonstrate that mutations in two OFP members contribute to natural fruit shape variation in the tomato germplasm.

OFPs and TRMs relocalize upon interaction. To determine the role of OFPs in fruit morphology, we identified interacting proteins using the Y2H approach. Using OVATE as the bait, we identified 185 interacting clones, of which 63.8% originated from 11 genes belonging to the TRM superfamily (Fig. 2a; Supplementary Table 2). Phylogenetic analysis showed that several subgroups represented OVATE-interacting tomato TRMs (Supplementary Fig. 4). TRMs function in assembling the TTP (TGN1-TRM-PP2A) complex, and certain TRMs target this complex to microtubules. The TTP complex is postulated to regulate the organization of microtubule arrays, and thus control cell division patterns and cell growth. Based on the minimum interacting protein region, motif M8 was found in all OVATE-interacting SITRMs, and conversely, SITRMs without a predicted M8 motif were not recovered. This finding suggests that M8 is required for interaction with OVATE (Supplementary Table 3). Pairwise Y2H interactions of SIOFP20 and selected SITRMs showed that several interacted with both OFPs, presumably through the conserved C-terminal OFP domain (Fig. 2d).

To test whether the negatively charged residues in the OFP domain interact with the positively charged residues in the M8 motif of the OVATE-interacting TRMs, we performed Y2H assays with wild-type and mutant versions of the proteins (Fig. 2d; Supplementary Fig. 5). In general, mutations in conserved acidic residues in the OFP domain led to reduced or abolished Y2H interaction with different TRMs, whereas mutations in less conserved acidic residues did not change interactions in yeast with SITRM compared to the wild-type allele (Fig. 2b, d; Supplementary Fig. 5). Conversely, mutations in the basic residue of the SITRM M8 motif reduced the interactions with wild-type OVATE and SIOFP20 (Fig. 2c–d). Mutations of D280 in OVATE

R

ARTICLE
Fig. 1 Map-based cloning of SlOFP20. a The 149.7-kb sov1 locus on tomato chromosome 10. Markers are indicated in green. The physical positions in base pairs are labeled beneath markers and genes. b Expression levels of the three genes within the sov1 locus in anthesis-stage tomato flowers from the ovate and sov1 NILs. RPKM, reads per kilobase of transcript per million mapped reads. c Effect of overexpression of SlOFP20 on fruits and leaves of Yellow Pear in two independent T0 transgenic lines. d Effect of down regulation of SlOFP20. The lines are BC1F2 from four independently transformed lines expressing two different artificial microRNAs (amiRNAs, a1 and a2) targeting SlOFP20. The error bars and letters in the graph indicate the standard errors among four plants and significant differences in fruit shape index evaluated by Tukey’s test (α < 0.05), respectively. +, wild type allele; −, mutant allele. The white and black bars represent 1 cm and 5 cm, respectively.
and the equivalent D265 in SIOFP20 most severely reduced or abolished the interactions with the TRMs. The responses of TRMs to OFP mutations differed, with SITRM17/20a being less affected than SITRM5, demonstrating in yeast the potentially dissimilar kinetics between the members of these two families. Together, these data validate the Y2H interactions and imply that the D280 residue in OVATE (D265 in SITRMs) is most critical for protein-protein interactions between the OFP and TRM proteins. Regardless of the localization of the two OFP members, neither localized in the same compartment as SITRM5 when expressed alone. To test the hypothesis that these proteins may relocate upon interaction, the OFPs and SITRM5 were co-expressed in tobacco leaf cells. The results showed that SITRM5 re-localized nearly exclusively to the cytoplasm when co-expressed with OVATE while the latter remained in the cytoplasm (Fig. 3e; Supplementary Fig. 7a). On the other hand, when co-expressed with SIOFP20, SITRM5 remained associated with the microtubules in 71% of the cells (Fig. 3f; Supplementary Fig. 7b). Distinct from OVATE and SIOFP20 in yeast, SITRM5 associated with the cytoskeleton and cytoplasm (Fig. 3e; Supplementary Fig. 7a). On the other hand, when co-expressed with either OFP, SITRM5 maintained association with the microtubules in 71% of the cells (Fig. 3f; Supplementary Fig. 7a). Distinct from OVATE’s localization (Fig. 3e; Supplementary Fig. 7b), co-expression with SITRM5 led to relocalization of SIOFP20 to the microtubules (Fig. 3f; Supplementary Fig. 7c). Mutants of OVATE, OFP20, and SITRM5 that led to reduced or abolished interaction in yeast also greatly reduced the number of cells that showed relocalization of SITRM5 when co-expressed with OVATEE280R or SIOFP20D265R, and double mutants reduced relocalization of either SIOFP20 or SITRM5 even further (Supplementary Fig. 7d-e). Similar results were obtained with another microtubule-associated TRM, SITRM3/4 (Supplementary Fig. 8). When co-expressed with either OVATE or SIOFP20, SITRM3/4 re-localized entirely to the cytoplasm, and similar decreases in relocalization were observed with mutant versions of OVATE (OVATEE280R) and SITRM3/4 (SITRM3/4K560V). Bioluminescence Complementation (BiFC) assays further supported the interactions of OVATE and SIOFP20 with several TRMs (Fig. 3g-i; Supplementary Fig. 8g) including the subcellular localization of these interactions in the cytosol or microtubules.
Consistent with the co-localization experiments, the BiFC signal in the tobacco leaf cells was substantially reduced when co-expressing mutant versions of the proteins. In all, these results demonstrate that both SlOFPs and SlTRMs physically interact in plant cells and that this contact leads to relocalization of one or the other protein. Moreover, the interaction between specific OFPs and TRMs appears dynamic because of different relocalization patterns for each pair in the tobacco leaf epidermal cell system.

trm5 rescues ovate/sov1 by changing cell division patterns. To investigate the effect of the two tomato OFPs with SlTRMs on fruit shape in a common genetic background, we constructed NILs for the natural ovate and sov1 alleles and created mutations in the tomato TRMs that represent the TRM1–5 clade in Arabidopsis (Supplementary Fig. 4 and 9). The OVATE-interacting TRMs, SITRM3/4 and SITRM5 were the only members of this clade and, thus, were pursued further. Moreover, gene expression analyses showed that among others, SITRM5 was highly co-expressed with OVATE (Supplementary Fig. 1b). The natural sov1 NIL, carrying the mutation in the SlOFP20 promoter, produced fruit that was morphologically indistinguishable from wild type (Fig. 4a–b). The ovate NIL showed an increase in fruit elongation and degree of ovoid, and a decrease in proximal end angle, whereas the double NIL showed the strongest effect on fruit shape. Both mutant alleles were recessive and studies of epistasis showed a strong synergistic interaction between the two loci (Supplementary Table 4). Whereas the inactivation of SITRM3/4 led to inconclusive results (Supplementary Fig. 10), the inactivation of SITRM5 resulted in a slightly flatter fruit. Backcrossing Sltrm5–1 into the ovate/sov1 double NIL background resulted in greatly reduced fruit elongation, with shapes that were similar to wild-type fruits (Fig. 4a, b; Supplementary Table 5). Another inactivation allele, Sltrm5–2, showed similar results as Sltrm5–1 (Supplementary Fig. 11). Therefore, Sltrm5 complements fruit shape in the ovate/sov1 background.

To determine whether these mutations exert their effects during either ovary or fruit development, we investigated ovary shape at flower opening. All mutants, including sov1 and Sltrm5, showed significant ovary shape changes at anthesis (Fig. 4c; Supplementary Table 5). The most significant morphological changes appeared at the proximal end of the ovary, away from the ovules. This area expanded strongly in the proximo-distal direction in the ovate and ovate/sov1 mutants and returned to the wild-type phenotype in the ovate/sov1/Sltrm5 mutant (Fig. 4c–e; Supplementary Table 5). To reveal the mechanisms that underlie the histology of shape, cellular parameters at the proximal end of the anthesis-stage ovaries were characterized. In the ovate and ovate/sov1 genotypes, cell number increased significantly along the proximo-distal axis and decreased significantly along the medio-lateral axis. These cell number changes were offset in the presence of Sltrm5, resulting in cell numbers that approximated the values found in wild-type ovaries, especially in the proximo-distal direction (Fig. 4e; Supplementary Table 6). Cell length and width also increased in ovate and ovate/sov1, and Sltrm5 rescued these traits in these mutant backgrounds. However, cell shape indices were highly variable and barely altered compared to wild-type, suggesting a minor role for cell elongation in regulating ovary length. Together, these data show that OVATE and SIOFP20 synergistically function in shape regulation by primarily modulating cell division patterns. The critical cell division patterns occur during floral development and perhaps as early as when carpel primordia arise. SITRM5 balances the OVATE and SIOFP20 division patterns to determine final tomato shapes. Combined with the protein localization patterns
in tobacco, our data suggest that the relocalization of the OFP-TRM protein complexes are critical to fine tune cell division patterns early in development, thereby ultimately controlling fruit shape. However, these protein relocalizations would have to be further investigated in growing organ primordia of the plant.

A common pathway regulating plant organ shapes. Whereas the effects of natural allelic variation in tomato TRMs are unknown, ovate and sov1 have a strong impact on fruit shape in the NILs (Fig. 4a). To determine when the ovate and sov1 alleles arose, we evaluated their presence in ancestral populations that
were collected in Peru and Ecuador (first domestication site), and Mexico (second domestication site)\(^{19}\). The data showed that \textit{ovate} and \textit{sov1} arose in the ancestral semi-domesticated germplasm of tomato, and that both mutant alleles were found in low frequency, yet never in the same accession that resulted from these early domestication events (Fig. 5a). We determined whether both mutations are required for obovoid shape in modern day tomatoes. The data showed that the mutant alleles at these loci combined after initial domestication since every \textit{ovate}/\textit{sov1} accession produced obovoid fruits (Fig. 5b, c; Supplementary Data 3). Obovoid accessions that only carried the mutation at \textit{ovate} were equally elongated in shape but showed a reduced degree of obovoid, and an increase in proximal end angle as well as eccentricity (Fig. 5d). Combined, these morphological attributes demonstrate that most extreme obovoid tomato fruit requires mutations in both \textit{OVATE} and \textit{SIOFP20}.

Our results clearly demonstrate the critical role of two OFP proteins in regulating tomato fruit shape by changing cell division patterns early in the development of the organ. The role of OFPs in regulating the shapes of other plant organs and in other species is less clear. Melon (\textit{Cucumis melo}) fruits are morphologically diverse and several QTLs associated with shape have been identified\(^{17,18}\). We fine-mapped the fruit shape QTL \textit{fsq8.1} in a population derived from a cross between Piel de Sapo and PI124112, to a 152 kb segment on melon chromosome 8 carrying \textit{CmOFP15} (Fig. 6c; Supplementary Table 9). Mutations in \textit{GL7}/\textit{GW7} encoding a rice TRM that belongs to the Arabidopsis \textit{TRM1–5} (\textit{LONGIFOLIA}) clade (Supplementary Fig. 13a) affects grain shape by changing cell division and cell elongation patterns\(^{8–10}\). Additionally, overexpression or loss-of-function mutants of \textit{AtTRM1} and \textit{AtTRM2} in Arabidopsis produce elongated or shortened siliques and leaves, respectively, resulting from altered cell elongation\(^{11–14}\). In addition to fruit shape, \textit{Sltrm5} also features rounder leaflets (Supplementary Fig. 11b), producing shapes that are similar as found in \textit{SIOFP20} overexpressors (Fig. 1c). The results suggest that collectively certain TRMs control cell number and/or cell shape, and influence organ shapes in a similar manner as certain OFPs. Intriguingly, most of the genetically identified \textit{OFPs} and \textit{TRMs} that control plant organ shape fall in the Arabidopsis \textit{OPF1–5} and \textit{TRM1–5} clades respectively (Supplementary Fig. 13). This finding implies that orthologous members of these subclades are likely involved in regulating organ morphology in many other plant species.

Discussion

In addition to providing evidence that \textit{OFPs} and \textit{TRMs} control fruit, tuber, vegetable, and grain shapes in domesticated plants and were the targets of selection, our findings uncovered a link between these two families which are common in genomes of multicellular plants\(^{11,24}\). This finding extends to other plant parts such as leaves and floral organs in model and crop plants, and span both eudicot and monocot species. A model for genetic mechanism of \textit{OFPs} and \textit{TRMs} in organ formation implies that their relative expression levels are critical to control the eventual shape of plant organs (Fig. 7). We propose that the balance between subcellular localization of the protein complexes, e.g., in the cytoplasm or associated with microtubules, may determine the growth patterns underlying organ shape. Moreover, the relocation of \textit{OFPs} and \textit{TRMs} to different subcellular compartments upon interaction suggests that a dynamic balance between cytoplasmic-localized and microtubular-localized \textit{OFP–TRM} protein complexes may regulate cell division and growth early in development of the organs. These results offer opportunities for plant breeders to target selection and/or genome editing approaches to create varieties for niche markets as well as for crop improvement in general. In addition, the apparent universality of the \textit{OFP–TRM} module is likely to be part of a network required for coordinated multicellular growth in all plants.
Fig. 5 Distribution of sov1 and ovate in tomato germplasm and its impact on fruit morphology. a Frequency of ovate and sov1 in an ancestral population of tomato. SP ECU, Solanum pimpinellifolium accessions from Ecuador; SP PER, Solanum pimpinellifolium accessions from Peru; SLC ECU, Solanum lycopersicum var. cerasiforme accessions from Ecuador; SLC PER, Solanum lycopersicum var. cerasiforme accessions from Peru; SLC Cam, Solanum lycopersicum var. cerasiforme accessions from Central America; SLL MEX, Solanum lycopersicum var. lycopersicum accessions from Mexico. The number of accession in each category is indicated in parentheses. Shape of fruits from cultivated tomato accessions carrying both the ovate and sov1 mutations. The scale bar represents 1 cm. c Frequencies of ovate and sov1 in different tomato shape categories in percentage based on the number of accessions in the category. Shape categories are: obovoid (Ob), ellipsoid (El), rectangular (Re), heart (He), long (Lo), round (Ro), oxheart (Ox) and flat (Fi), respectively. d Variation among fruit shape traits of obovoid fruits for cultivars carrying ovate or ovate/sov1 mutations. The p value represents the result of the student’s t-test between groups.

Methods
DNA sequencing and marker development. DNA was extracted from Yellow Pear (YP) and Gold Ball Livingston (GBL) leaf samples using the Quagen kit (Germantown, MD) and following manufacturer’s instructions. DNA libraries were constructed and sequenced on the Illumina HiSeq2000 platform with the 101-bp paired-end mode at the Genome Technology Access Center (GTAC) at Washington University, St Louis MO (SRA SRP127270). After removing adapters and low-quality sequences, the sequences represented more than 20x coverage of the genome (aligned bases divided by 950 Mbp length of the tomato genome). High quality cleaned reads were aligned to the tomato genome SL2.418 using NovaAlign (www.novocraft.com). SNPs were identified in the genomic regions of interest using SAMtools18. High quality (>=100) homozygous SNPs with coverage higher than 15x were kept for marker development. Based on the identified SNPs, we developed 26 additional dCAPS markers located between the existing markers, 12E1P53 and 12E5P (Supplementary Data 4) using dCAPS Finder (http://hidux.wustl.edu/dcaps/dcaps.html) and Primer 3 (http://bioinfo.ut.ee/primer3-0.4.0/).

The sov1 deletion in the promoter of SlOFP20 was identified by aligning the reads of the YP and GBL to the reference genome (Supplementary Fig. 2). After validation by Southern blotting, the structural rearrangement was further validated using primers 13E1P549, 13E1P550 and 13E1P551 in a single PCR reaction. The wild-type band runs at 1220 bp whereas the fragment that amplifies YP DNA runs at 900 bp. The Heinz 1706 BAC clone sequence, LE_HB4040P16 containing SlOFP20 (Genbank AC244530) allowed us to estimate the size of the sov1 deletion to 31 kb and its position in relation to the coding region of SlOFP20. The estimation of putative transcription start site of SlOFP20 is based on the tomato ESTs and cDNAs database (https://solgenomics.net) as well as our RNA-seq data (SRA SRP090032; SRP089970).

Potato STOFFP20-trait association. The M6 potato genome scaffold 814 harbored the ortholog of STOFFP20.27 Primers were designed to amplify the ortholog in M6 and a linked sequence in DM1-3 (Supplementary Data 4). The marker was genotyped using 190 individuals of a segregating F2 population derived from DM1-3 and M6.22 ANOVA analyses were applied to determine the significance of the association of the marker allele with the phenotype.

Alignment of the potato DM1-3 reads to the M6 scaffold 814. Reads from the 16 paired-end genomic DNA libraries of potato DM1-3 used in the de novo assembly of the reference genome (SRAD029323) were aligned to M6 scaffold 814 using BWA-MEM v0.7.1325 in paired-end mode with default parameters. Alignments with MAPQ score higher than or equal to 30 were kept and visualized with Integrative Genomics Viewer (IGV v2.3.68).

Overexpression of SIOFFP20. Full length SIOFFP20 was amplified from DNA using primers 13EP16/7/168 (Supplementary Data 4) and Phusion® high-fidelity DNA polymerase (New England Biolabs, Ipswich, MA). The fragment was cloned into the Xhol/SacI site of the pKYLX71 vector29 and expressed under the 35S promoter. The construct was sequenced to confirm that no errors were introduced during the amplification and then transformed in YP. Five independent transgenic lines were obtained and fruit and leaf shape analysis was done using 8 mature fruits or primary leaflets of each plant.

Downregulation of SIOFFP20. Two artificial microRNAs (amiRNAs) targeting the coding region of SIOFFP20 were designed using the WMD3 Web MicroRNA Designer (https://wmd3.weigelworld.org/) and put into the Arabidopsis MIR319a precursor backbone. The sequences of amiRNAs designed to knock-down the expression of SIOFFP20 were provided in Supplementary Data 4. The engineered amiRNA precursors were synthesized at GenScript Biotech Corporation (Piscataway, NJ) and then cloned into the SacI/XhoI site of the pKYLX71 vector29. The two SIOFFP20 amiRNA constructs were transformed in LA1588 resulting in 12 primary transgenic lines. The T2 lines were evaluated for downregulation of SIOFFP20 using semi-quantitative PCR. Two of the most down regulated lines per construct were backcrossed to SA29 carrying the ovate mutation. The resulting seedlings were selected for the presence of the transgene using primers EP553/554 (Supplementary Data 4) and selfed to produce families 15591, 15592, 15593, and 15594 (BC1,F1).

SITRIM CRISPR/Cas9 mutants. A CRISPR/Cas9 construct was designed to create mutations in both SITRMS3/4 and/or SITRMS5. The construct was assembled using the Golden Gate cloning method30. Two sgRNAs specifically targeting each of the
two siTRMs were amplified using the pICH86966::AtU6p::sgRNA_PDS construct (Addgene plasmid #46966, www.addgene.org) as a template with the reverse primer: 13EP639 and forward primers: 14EP292 and 14EP294 for SiTRM3/4 and SiTRM5, respectively (Supplementary Data 4). The level 1 constructs pICH47751 (Addgene #48002) and pICH47761 (Addgene #48003) were assembled using the level 0 construct pCSL01009::AtU6p (Addgene #46968) and the sgRNA PCR products to place each sgRNA under the Arabidopsis U6 promoter. Level 1 constructs, pICH47732::NOSp::NPTII (Addgene #51144), pICH47742::35S::Cas9 (Addgene #49771), pICH47751::AtU6p::sgRNA-SiTRM3/4, pICH47761::AtU6p::sgRNA-SiTRM5 and the linker pICH47780 (Addgene #48019) were then assembled into the level 2 vector pAGM4723 (Addgene #48015). All the vectors for building the CRISPR-Cas9 construct were provided by Vladimir Nekrasov.

Fig. 6 Association of OFP and TRM in regulating fruit and tuber shape in domesticated crops. a Fine-mapping of fsqs8.1 in melon to CmOFP13. Fruit shapes of the parental lines and the CALC8-1 NIL that carries the PI124112 allele of fsqs8.1 in the Piel de Sapo background. Scale bar, 5 cm. b Association of tuber shape with StOFP20 in potato. 1, homozygous DM1-3 allele; 2, heterozygous; 3, homozygous M6 allele. The green lines connect the syntenic orthologous gene pairs in tomato and the two potato accessions around SlOFP20. Scale bar, 1 cm. c Fine-mapping of the cucumber fs2.1 locus. The LOD curve from the cucumber F2 population led to candidate gene identification including CsTRM5, an ortholog of SiTRM5. Likely candidate genes are denoted in red. Other gene annotations are denoted in blue. Scale bar, 2.5 cm.
and Sophien Kamoun, The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.

Plant transformation and genotyping. Constructs were transformed into tomato at the Plant Transformation Facility at University of California (Davis, CA 95616) (amiRNA and overexpressor constructs), and by Dr. Joyce Van Eck, Cornell University (CRISPR-Cas9 constructs). The lines overexpressing or underexpressing SIOP20 were genotyped for the presence of the construct with primers designed to amplify the NPTII gene conferring kanamycin resistance (EPS53554; Supplementary Data 4). For the CRISPR-Cas9 constructs, we received 16 independent T0 lines. By sequence analyses, the majority were found to carry mutations in both SITR3/4 and SITR5 and occasionally mutations were in both alleles of one or both genes. Most lines were sterile (male and female) as no fruits with seeds were generated by selfing or with wild type pollen onto mutant styles or mutant pollen unto wild type styles. The primary transformants that were fertile (four T0 lines) carried an in frame deletion (multiples of 3) and wild type allele for SITR3/4 and 4 an in frame or frameshift mutations for SITR5. These fertile lines were crossed to LA1589 in order to remove the Cas9 transgene and stabilize the lines. Once stabilized, for SITR5 the 1 bp deletion and 1 bp insertion alleles (causing a frameshift mutation and likely a null) were backcrossed into the NILs.

Ovary shape analysis. Full size maturing fruits were cut longitudinally, scanned at 300dpi, and analyzed using Tomato Analyzer v3.0.1,2. The following attributes were measured in most samples: fruit shape index, proximal end angle, proximal eccentricity and obovoid, which measures the pear-shapedness. Fruit Shape Index is the ratio of the maximum height length to maximum width of a fruit. Proximal end angle is the angle between best-fit lines drawn through the fruit perimeter on either side of the proximal end point at 10% (NILs) or 20% (tomato varieties). Proximal eccentricity is the ratio of the height of the internal ellipse (defined by the section of the fruit where the seeds are located) to the distance between the bottom of the ellipse and the top of the fruit. Obovoid is calculated as the maximum width (W), the height at which the maximum width occurs (y), the average width above that height (w1), and the average width below that height (w2) are calculated and a scaling function scale_Ω is used for calculation: Obovoid = 1/2 × scale_Ω (y) × (1 – w1/N + w2/W), if obovoid > 0, subtract 0.4; otherwise, obovoid is 0. For the potato tuber shape analyses, length and width were measured in Image J and shape index was calculated by taking the ratio of these two measurements. The length of the curved potatoes was measured by tracing the curve. Melon Fruit Shape Index was calculated with Tomato Analyzer 3.0 from scanned images. For the cucumber potato tuber shape analyses, length and width were measured in Image J software (https://imagej.nih.gov/ij/), and from this, the ratios of the maximum length to maximum width were calculated. Three to five plants of each genotype were analyzed, and the average values each taken from 8 to 10 fruits or ovaries per plant were analyzed with Tukey’s HSD test (a < 0.05). Cellular attributes. Anthesis ovaries were cut longitudinally with a razor blade and fixed in FAA (50% Ethanol, 10% Formaldehyde, 5% glacial acetic acid) at 4°C overnight. The samples were dehydrated on ice with ethanol-dH2O series (50, 70, 85, 95, 100% x 2), and rehydrated with ethanol-dH2O series (95, 85, 70, 50, 30, 15%) at one hour for each step. The samples were rinsed with dH2O2O twice for 20 min each. Ovaries were incubated on ice in the staining buffer (0.02 mg/ml propidium iodide, (MP Biomedicals), 0.02% DMSO) for 1 h and rinsed with dH2O for 20 min twice, then dehydrated with ethanol-dH2O series (50, 70, 85, 95, 100%) on ice, and 100% ethanol at room temperature overnight. Finally, the samples were treated with 1:1 ethanol: methyl salicylate for 1–2 h followed by 100% methyl salicylate (Fisher Chemical) at 4°C for 2–3 days. The sections were imaged using a Zeiss LSM 510 META Confocal Microscope, and cell size and number assessments were made using the ImageJ software package. The proximal area of the ovary (the area above the ovules closest to the stem end of the flower) was used for the histological and cellular analysis. The length and width of the entire proximal area was measured. Numbers of parenchyma cells were counted in the middle of the proximal area in both the proximo-distal and medio-lateral direction. The length and width of parenchyma cells in the proximal area were evaluated on at least 20 cells.

Yeast two-hybrid analyses. Full-length OVATE or full length SIOP20 were cloned into the pGBK17 vector (Clontech, Mountain View, CA) as C-terminal fusions to the GAL4 DNA binding domain (BD). Fragments of SITR5, SITR17/20a and SITR25 were cloned into the p6P vector (Hybrigenics, Paris, France) as a C-terminal fusion to the GAL4 activation domain (AD). A pair of bait and prey plasmids were transformed into the Y2HGold yeast strain following the Clontech Yeast Protocols Instructions (Clontech, Mountain View, CA) and plated on minimal medium lacking Trp and Leu (SD-Trp/-Leu) with X-gal (the substrate of MEL-1 gene product, α-galactosidase). Quantification of reporter α-galactosidase activity was performed using the Clontech Yeast α-Galactosidase Assay Kit. Three single colonies of each combination were grown in liquid synthetic dropout medium lacking leucine and tryptophan at 30°C with shaking (250 cycles/min) for 18 h. After recording the OD600 the supernatants were collected via centrifugation at 18,800×g for 2 min. After adding the assay buffer (PNP-α-gal + CH2COONa) to the supernatants and incubating at 30°C for 60 min, the reaction was terminated by adding the stop solution (Na2CO3). The optical density of each sample was recorded at OD410 and α-galactosidase activity was calculated using the formula: 1,000 × VI × OD410/[t × x × VI × OD600] where t = time (min) of incubation, VI = volume of assay (200 or 992 µl), Vi = volume of culture medium supernatant added, OD410 = A410 of the reaction mix, OD600 = A600 of 1 ml of culture, c = p-nitrophenol molar absorbtivity at 410 nm × the light path (10.5 ml/mu) for 200-µl format = 16.9 (ml/µmol) for 1-ml format where b = 1 cm. The empty vector was used as the negative control.

Phylogenetic and protein motif analyses of TRMs. To retrieve all putative SITR proteins in tomato, full-length sequences of 34 Arabidopsis members of this family were used for BLAST similarity search against the International Tomato Annotation Group release 2.3 predicted proteins (ITAG 2.40) (http://solgenomics.net) and Motif Alignment and Search Tool (MAST) search32, both at a cutoff E-value of 10−5. The MEBE tool34 was used to define the conserved motifs with the following parameters: “n motifs 8, minw 10, maxw 100, minions 30, maxsites 120”. ClustalW was used for multiple sequence alignment procedures. The phylogenetic relationships among the all the TRMs in tomato and Arabidopsis were estimated with neighbor-joining method based on the p-distance (i.e., the phylogenetic distances were obtained by dividing the number of amino acid differences with the total number of sites compared) and 1000 bootstrap validation. The phylogenetic
In vitro mutagenesis

Phylogenetic analysis of the SIOFP20 clade. We retrieved the potato ortholog and closest paralogs (four total) by conducting reciprocal best BLAST hits. This led to four OPP members in the M6 and doublet monoploid Group Phureja clone DM1-3 516 R44 (DM)36,37. The four hits in each potato assembly with the lowest E-value statistic were identified as availed full-length tomato protein sequence that the amino acid sequence returned for each hit was used as query in a reciprocal BLASTp search against the SL3.0 tomato annotated protein sequences. Reciprocal best BLAST hit performance was used to determine the full-length tomato protein. Each full-length protein was used as query in BLASTp searches against vector DM1-3 and M6 assemblies. The DM1-3 and M6 hits from each of those searches were then used as query in reciprocal BLASTp and tBLASTx searches against the tomato protein sequences and genome SL3.0 assembly respectively, in order to identify and confirm each reciprocal best BLAST hit relationship. BLAST searches used the BLOSUM62 scoring matrix and a word size of 11 amino acids. Using similar methods, we obtained the five Arabidopsis OFP1 through OFP5 and the four melon OFP proteins that showed the best BLAST hit relationship to members of the SIOFP20 clade. We also included OVATE and its best BLAST hit AtOFP7. The resulting reciprocal best BLAST hits were aligned with ClustalW.

Phylogenetic analysis

In vitro mutagenesis. Site-directed mutagenesis of selected residues for SITRMs and OVATE/SIOFP20 was carried out with the QuickChange II XL Site-Directed Mutagenesis system (Agilent Technologies, Santa Clara, CA) according to the manufacturer’s protocol. The coding regions were recombined into binary destination expression vectors pHWRG2 (Cauliflower mosaic virus (CaMV) 35S promoter-driven) for C-terminal RFP (red fluorescent protein) fusions39,40 or pSITE-2CA and pSITE-2NA (2 × 35S) for N-terminal and C-terminal GFP (green fluorescent protein) fusions, respectively41. For the BiFluorescence Complementation (BIFC) experiments, full length wild-type OVATE and SITRMS were cloned as C-terminal or N-terminal fusions to the C-terminal or N-terminal fragment of the Yellow Fluorescent Protein (YFP) in the BIFC vectors pYFN-1 (N-terminal fusion of YFP1–153), pYFC-1 (N-terminal fusion of YFP159–238), pZYN (C-terminal fusion of YFP1–153) and pZYC (C-terminal fusion of YFP159–238)42 and co-expressed in all 8 combinations in N. benthamiana to determine the best usage of the BIFC vectors. Based on the overall YFP intensity and numbers of cells expressing YFP, the pYF1-153 and pZYC vectors were used for SITRMs and OVATE, respectively.

Transgenic expression of proteins in N. benthamiana. Agrobiobacterium tumefaciens strain C58C1 was used for the transient transformations. Colonies carrying the binary plasmids were grown at 28 °C on LB medium plates that contained 50 µg/ml gentamycin and 25 µg/ml rifampicin for selection of the strain, and 100 µg/ml spectinomycin for selection of the binary vectors, pHWRG2 (carrying OVATE or SIOFP20 with a C-terminal RFP tag), pSITE-2CA (carrying SITRMS3/4 or SITRMS5 with a N-terminal GFP tag), and pSITE-2NA (carrying SIOFP20 with a C-terminal GFP tag)43. Following agrobacterium infection, single colonies were grown in liquid LB supplemented with gentamycin, rifampicin and spectinomycin overnight (28 °C, 220 cycles per minute). Fifty µl of the agro suspension was added to 5 ml LB with the same antibiotics for another overnight incubation under the same conditions. The agrobacteria were pelleted by centrifuging at 1610g for 20 min or 2200g for 15 min. The cells were resuspended in infiltration buffer containing 10 mM MgCl2, 10 mM MES, PH 5.7 and 150 mM acetosyringone at pH 5.6 and adjusted to an OD600 of 0.2–0.3. The cells were incubated at room temperature for 3 h without shaking prior to infiltration. To enhance transient expression of the fusion proteins, the viral suppressor of gene silencing p19 protein was coexpressed in most of the experiments. For co-infiltration, equal volumes of cultures were mixed and infiltrated into N. benthamiana leaves through the abaxial surface using a 1-ml needleless syringe (Becton, Dickinson and Company). Plants were then kept in a growth room at 24/22 °C with a 16/8 h light/dark photoperiod for 48–72 h.

Epifluorescence and confocal microscopy. N. benthamiana leaf samples (approximately 0.25 cm² near the infiltrated area) were collected at 70–90 h post-infiltration, mounted in water and viewed directly with a Zeiss LSM 880 confocal scanning microscope using an oil immersion objective 40×: Plan-Apochromat 1.4NA (numerical aperture of 1.4). Fluorescence was excited using 488 nm and 543 nm light for GFP and RFP, respectively. GFP and RFP emission fluorescence was selectively detected at 490–540 and 550–630 nm using the Zen 2.3 SP1 software. For each experiment, 50–100 cells in two independent leaves that expressed both proteins were evaluated. For the BiFC experiments, YFP fluorescence was excited using 514 nm laser and detected at 520–550 nm using the Leica TCS SP5 confocal scanning microscope with a 25× objective.

Data availability

Raw sequence reads have been deposited into the DNA DataBank of Japan (DDBJ) under accession numbers SRP090032, SRP089970, SRA061767 for the mRNA seq data and SRP122720 for the whole genome sequence data. The normalized expression data are also available at the Tomato Functional Genomics Database (TFGD; http://ted.bit.cornell.edu/) under the experiments D015 and D016. A Reporting Summary for this Article is available as a Supplementary Information file. Other methods can be found in the Supplementary Methods section in the Supplementary Information file.

Received: 15 March 2018 Accepted: 18 October 2018

Published online: 09 November 2018

References

1. van der Knaap, E. & Ostergaard, L. Shaping a fruit: Developmental pathways that impact growth patterns. Semin. Cell Dev. Biol. 79, 27–36 (2016).
2. Zuo, J. & Li, J. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu. Rev. Genet. 48, 99–118 (2014).
3. Van der Knaap, E. et al. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front. Plant Sci. 5, 227 (2014).
4. Liu, J., Van Eck, J., Cong, B. & Tankelsley, S. D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc. Natl Acad. Sci. USA 99, 13302–13306 (2002).
5. Hackbusch, J., Richter, K., Muller, J., Salamini, F. & Uhrig, J. F. A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-a loop extension homedomain proteins. Proc. Natl Acad. Sci. USA 102, 4908–4912 (2005).
6. Rodriguez, G. R. et al. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol. 156, 275–285 (2011).
7. Lee, Y. K. et al. LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development 133, 4305–4314 (2006).
8. Wang, S. et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47, 949–954 (2015).
9. Wang, Y. et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47, 944–948 (2015).
10. Zhou, Y. et al. Natural variations in SLG7 regulate grain shape in rice. Genetics 201, 1591–1599 (2015).
11. Drevensek, S. et al. The Arabidopsis TRM1-TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and cytoskeletal centrosomes. Plant Cell 24, 178–191 (2012).
12. Rodriguez, G. R., Kim, H. J. & van der Knaap, E. Mapping of two suppressors of OVATE (sox) loci in tomato. Heredity 111, 256–264 (2013).
13. Spinner, L. et al. A protein phosphatase 2A complex spatially controls plant cortical microtubule arrays and subcellular localization of 3-a loop expansion homedomain proteins. Plant Cell 24, 178–191 (2012).
14. Schaffer, E. et al. The preprophase band of microtubules controls the robustness of division orientation in plants. Science 356, 186–189 (2017).
15. Yu, H. et al. Expression pattern and subcellular localization of the ovate protein family in rice. PLoS ONE 10, e0118966 (2015).
16. Blanca, J. et al. Genomic variation in tomato, from wild ancestors to contemporary accessions. BMC Genom. 16, 257 (2015).
17. Diaz, A. et al. Mapping and introgression of QTL involved in fruit shape transgressive segregation into ’pied de sapo’ melon (cucumis melo L) [corrected]. PLSS ONE 9, e104188 (2014).

18. Monforte, A. J., Diaz, A. I., Cano-Delgado, A. & van der Knaap, E. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J. Exp. Bot. 65, 4625–4637 (2014).

19. Colle, M. et al. Variation in cucumber (Cucumis sativus L.) fruit size and shape results from multiple components acting pre-anthesis and post-pollination. Planta 246, 641–658 (2017).

20. Van Eck, H. J. et al. Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using RFLPs. Genetics 137, 303–309 (1994).

21. Prashar, A. et al. Construction of a dense SNP map of a highly heterozygous diploid potato population and QTL analysis of tuber shape and eye depth. Theor. Appl. Genet. 127, 2159–2171 (2014).

22. Endelman, J. B. & Jansky, S. H. Genetic mapping with an inbred line-derived F2 population in potato. Theor. Appl. Genet. 129, 935–943 (2016).

23. Pan, Y. et al. Round fruit shape in W17239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN domain-localized protein. Plant Sci. 258, 207–208 (2009).

24. Liu, D. et al. Phylogenetic analyses provide the first insights into the evolution of OVATE family proteins in land plants. Ann. Bot. 113, 1219–1233 (2014).

25. Consortium, T. G. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).

26. Li, H. et al. The sequence alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

27. Leisner, C. P. et al. Genome sequence of M6, a diploid inbred clone of the high glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J. 94, 562–570 (2018).

28. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v2 [q-bio.GN] (2013).

29. Schardl, C. L. et al. Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61, 1–11 (1987).

30. Belhaj, K., Chaparro-García, A., Kamoun, S. & Nekrasov, V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9, 39 (2013).

31. Rodriguez, G. R. et al. New features and many improvements to analyze morphology and color of digitalized plant organs are available in Tomato Analyzer 3.0 (2011). Proceedings of the 22nd Midwest Artificial Intelligence and Cognitive Science Conference Cincinnati OH.

32. Rodriguez, G. R. et al. Tomato Analyzer: a useful software application to collect accurate and detailed morphological and colorimetric data from two-dimensional objects. J. Vis. Exp. 16, 37 (2010).

33. Bailey, T. L. & Gribskov, M. Methods and statistics for combining motif match scores. J. Comput. Biol. 5, 211–221 (1998).

34. Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

35. Hardigan, M. A. et al. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc. Natl Acad. Sci. USA 114, E9999–E10008 (2017).

36. Paz, M. & Veilleux, R. E. Influence of culture medium and in vitro conditions on shoot regeneration in Solanum phureja monoploids and fertility of regenerated doubled monoploids. Plant Breed. 118, 53–57 (1999).

37. Xu, X. et al. Genome sequence and analysis of the tuber crop potato. Nature 475, 189–195 (2011).

38. Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

39. Karimi, M., Inze, D. & Depicker, A. GATEWAY vectors for Aegobacterium-mediated plant transformation. Trends Plant. Sci. 7, 193–195 (2002).

40. Karimi, M., De Meyer, B. & Hilson, P. Modular cloning in plant cells. Trends Plant. Sci. 10, 103–105 (2005).

41. Martin, K. et al. Transient expression in Nicotiana benthamiana fluorocent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J. 59, 150–162 (2009).

42. Yang, X. et al. Functional modulation of the geminivirus AL2 transcription factor and silencing suppressor by self-interaction. J. Virol. 81, 11972–11981 (2007).