The Maximum Number of Triangles in a Graph of Given Maximum Degree

Zachary Chase

Received XX Month 20XX; Revised XX Month 20XX; Published XX Month 20XX

Abstract: We prove that any graph on n vertices with max degree d has at most $q\left(\frac{d+1}{3}\right) + \binom{r}{3}$ triangles, where $n = q(d+1) + r$, $0 \leq r \leq d$. This resolves a conjecture of Gan-Loh-Sudakov.

1 Introduction

Fix positive integers d and n with $d + 1 \leq n \leq 2d + 1$. Galvin [7] conjectured that the maximum number of cliques in an n-vertex graph with maximum degree d comes from a disjoint union $K_{d+1} \cup K_r$ of a clique on $d+1$ vertices and a clique on $r := n-d-1$ vertices. Cutler and Radcliffe [4] proved this conjecture. Engbers and Galvin [6] then conjectured that, for any fixed $t \geq 3$, the same graph $K_{d+1} \cup K_r$ maximizes the number of cliques of size t, over all $(d+1+r)$-vertex graphs with maximum degree d. Engbers and Galvin [6]; Alexander, Cutler, and Mink [1]; Law and McDiarmid [11]; and Alexander and Mink [2] all made progress on this conjecture before Gan, Loh, and Sudakov [9] resolved it in the affirmative. Gan, Loh, and Sudakov then extended the conjecture to arbitrary $n \geq 1$ (for any d).

Conjecture (Gan-Loh-Sudakov Conjecture). Any graph on n vertices with maximum degree d has at most $q\left(\frac{d+1}{3}\right) + \binom{r}{3}$ triangles, where $n = q(d+1) + r$, $0 \leq r \leq d$.

They showed their conjecture implies that, for any fixed $t \geq 4$, any max-degree d graph on $n = q(d+1) + r$ vertices has at most $q\left(\frac{d+1}{t}\right) + \binom{r}{t}$ cliques of size t. In other words, considering triangles is enough to resolve the general problem of cliques of any fixed size.

*The author is partially supported by Ben Green’s Simons Investigator Grant 376201 and gratefully acknowledges the support of the Simons Foundation.
The Gan-Loh-Sudakov conjecture (GLS conjecture) has attracted substantial attention. Cutler and Radcliffe [5] proved the conjecture for $d \leq 6$ and showed that a minimal counterexample, in terms of number of vertices, must have $q = O(d)$. Gan [8] proved the conjecture if $d + 1 - \frac{9}{4096} d \leq r \leq d$ (there are some errors in his proof, but they can be mended). Using Fourier analysis, the author [3] proved the conjecture for Cayley graphs with $q \geq 7$. Kirsch and Radcliffe [10] investigated a variant of the GLS conjecture in which the number of edges is fixed instead of the number of vertices (with still a maximum degree condition).

In this paper, we fully resolve the Gan-Loh-Sudakov conjecture.

Theorem 1. For any positive integers $n,d \geq 1$, any graph on n vertices with maximum degree d has at most $q\left(\binom{d+1}{3} + \binom{d}{3}\right)$ triangles, where $n = q(d+1) + r$, $0 \leq r \leq d$.

Analyzing the proof shows that $qK_{d+1} \sqcup K_r$ is the unique extremal graph if $r \geq 3$, and that $qK_{d+1} \sqcup H$, for any H on r vertices, are the extremal graphs if $0 \leq r \leq 2$.

The heart of the proof is the following Lemma, of independent interest, which says that, in any graph, we can find a closed neighborhood whose removal from the graph removes few triangles. Theorem 1 will follow from its repeated application.

Lemma 1. In any graph G, there is a vertex v whose closed neighborhood meets at most $\binom{d(v)+1}{3}$ triangles.

As mentioned above, Theorem 1, together with the work of Gan, Loh, and Sudakov [9], yields the general result, for cliques of any fixed size.

Theorem 2. Fix $t \geq 3$. For any positive integers $n,d \geq 1$, any graph on n vertices with maximum degree d has at most $q\left(\binom{d+1}{3} + \binom{d}{t}\right)$ cliques of size t, where $n = q(d+1) + r$, $0 \leq r \leq d$.

Theorem 2 gives another proof of (the generalization of) Galvin’s conjecture (to $n \geq 2d + 2$) that a disjoint union of cliques maximizes the total number of cliques in a graph with prescribed number of vertices and maximum degree.

Finally, the author would like to point out a connection to a related problem, that of determining the minimum number of triangles that a graph of fixed number of vertices n and prescribed minimum degree δ can have. The connection stems from a relation, observed in [2] and [9], between the number of triangles in a graph and the number of triangles in its complement:

$$|T(G)| + |T(G^c)| = \binom{n}{3} - \frac{1}{2} \sum_v d(v)[n-1-d(v)].$$

Lo [12] resolved this “dual” problem when $\delta \leq \frac{4n}{5}$. His results resolve the GLS conjecture for regular graphs for $q = 2, 3$, and the GLS conjecture implies his results, up to an additive factor of $O(\delta^2)$, for $q = 2, 3$, and yields an extension of his results for $q \geq 4$ — these are the optimal results asymptotically, in the natural regime of $\frac{\delta}{n}$ fixed, and $n \to \infty$.
2 Notation

Denote by \(E \) the edge set of \(G \); for two vertices \(u, v \), we write “\(uv \in E \)” if there is an edge between \(u \) and \(v \) and “\(uv \notin E \)” otherwise — in particular, for any \(u, uv \notin E \). For a vertex \(v \), let \(|T_{N[v]}| \) denote the number of triangles with at least one vertex in the closed neighborhood \(N[v] := \{ u : uv \in E \} \cup \{ v \} \), and let \(|T(G - N[v])| \) denote the number of triangles with all vertices in the graph \(G - N[v] \) (the subgraph induced by the vertices not in \(N[v] \)). Finally, \(d(v) \) denotes the degree of \(v \).

3 Proof of Theorem 1

For a graph \(G \), let \(W(G) = \{ (x, u, v, w) : ux, vx, wx \in E, uv, uw, vw \notin E \} \).

Lemma 2. For any graph \(G \), \(6 \sum_v |T_{N[v]}| + |W(G)| = \sum_v d(v)^3 \).

Proof. Let \(\Omega = \{ (z, u, v, w) : uv, uw, vw \in E \text{ and } [zu \in E \text{ or } zv \in E \text{ or } zw \in E] \} \), \(\Sigma = \{ (x, u, v, w) : ux, vx, wx \in E \} \), and \(W = W(G) \). Note that repeated vertices in the 4-tuples are allowed. First observe that, since there are 6 ways to order the vertices of a triangle, \(\sum_v 6|T_{N[v]}| = |\Omega| \). Any 4-tuple in \(\Sigma, W \), or \(\Omega \) gives rise to one of the induced subgraphs shown below, since one vertex must be adjacent to all the others.

![Graph subgraphs](image)

Since \(|\Sigma| = \sum_v d(v)^3 \), it thus suffices to show that for each of the induced subgraphs above, the number of times it comes from a 4-tuple in \(\Sigma \) is the sum of the number of times it comes from 4-tuples in \(\Omega \) and \(W \). Any fixed copy of \(A \), say on vertices \(u \) and \(v \), comes 0 times from a 4-tuple in \(\Omega \) (since it has no triangles), and 2 times from each of \(W \) and \(\Sigma \); \((u, v, v, v), (v, u, u, u) \). Any fixed copy of \(B \), say on vertices \(u, v, w \) with \(vu, vw \in E \), comes 0 times from \(\Omega \), and 6 times from each of \(W \) and \(\Sigma \); \((v, u, u, w), (v, u, w, u), (v, u, u, w), (v, w, u, u), (v, w, w, u) \). Any fixed copy of \(C \) comes 18 times from each of \(\Omega \) and \(\Sigma \) (3 choices for the first vertex and then 6 for the ordered triangle), and 0 times from \(W \). Similarly, any fixed copy of \(D \) comes 6 times from each of \(W \) and \(\Sigma \), and 0 times from \(\Omega \); finally, \(F, H, I \) come 6, 12, 24 times, respectively, from each of \(\Omega \) and \(\Sigma \), and 0 times from \(W \).

We now prove our key lemma, previously mentioned in the introduction.

Lemma 1. In any graph \(G \), there is a vertex \(v \) whose closed neighborhood meets at most \(\binom{d(v)+1}{3} \) triangles, i.e. \(|T_{N[v]}| \leq \binom{d(v)+1}{3} \).

Proof. By Lemma 2, since \(|W(G)| \geq |\{ (x, u, u, u) : ux \in E \}| = \sum_v d(x) \), we have \(\sum_v |T_{N[v]}| \leq \sum_v \frac{1}{6}[d(v)^3 - d(v)] \). By the pigeonhole principle, there is some \(v \) with

\[
|T_{N[v]}| \leq \frac{1}{6}[d(v)^3 - d(v)] = \left(\frac{d(v)+1}{3} \right).
\]

□

Advances in Combinatorics, 20XX:XX, 6pp.

3
Lemma 3. For any positive integers $a \geq b \geq 1$, it holds that $\binom{a}{3} + \binom{b}{3} \leq \binom{a + 1}{3} + \binom{b - 1}{3}$. Consequently, for any positive integers a, b and any positive integer c with $\max(a, b) \leq c \leq a + b$, it holds that $\binom{a}{3} + \binom{b}{3} \leq \binom{\frac{a+b}{3}}{3} + \binom{\frac{a+b-c}{3}}{3}$.

Proof. $(\frac{a+1}{3}) - \binom{a}{3} = \binom{a}{2}$, and $(\frac{b-1}{3}) - \binom{b}{3} = \binom{b-1}{2}$. Iterate to get the consequence.

We now finish the proof of Theorem 1.

Proof of Theorem 1. With a fixed d, we induct on n. For $n = 1$, the result is obvious. Take some $n \geq 2$, and suppose the theorem holds for all smaller values of n. Let G be a max-degree d graph on n vertices. By Lemma 1, we may take v with $|T(N[v])| \leq d(v) + 1$. Write $n = q(d + 1) + r$ for $0 \leq r \leq d$. Note $|T(G)| = |T(G - N[v])| + |T_N[v]|$. Since $G - N[v]$ has maximum degree (at most) d, if $d(v) + 1 \leq r$, then induction and Lemma 3 give

$$|T(G)| \leq q\left(\binom{d+1}{3} + \binom{r - (d(v) + 1)}{3}\right) + \left(\binom{d(v) + 1}{3}\right) \leq q\left(\binom{d+1}{3} + \binom{r}{3}\right),$$

and if $d(v) + 1 > r$, then induction and Lemma 3 give

$$|T(G)| \leq (q-1)\left(\binom{d+1}{3} + \binom{d+1+r - (d(v) + 1)}{3}\right) + \left(\binom{d(v) + 1}{3}\right) \leq q\left(\binom{d+1}{3} + \binom{r}{3}\right).$$

The maximum degree condition ensured $d + 1 + r - (d(v) + 1) \geq 0$ and $d(v) + 1 \leq d + 1$.

Acknowledgments

I would like to thank Po-Shen Loh for telling me the Gan-Loh-Sudakov conjecture and my advisor Ben Green for encouragement. I also thank Daniel Korandi for a cleaner proof of Lemma 2 and for helpful suggestions on the paper’s presentation.

References

[1] J. Alexander, J. Cutler, and T. Mink, Independent Sets in Graphs with Given Minimum Degree, *Electr. J. Comb.* 19 (2012), 37.

[2] J. Alexander and T. Mink, A new method for enumerating independent sets of a fixed size in general graphs, *J. Graph Theory* 81 (2016), no. 1, 57-72.

[3] Z. Chase, The Maximum Number of Three Term Arithmetic Progressions, and Triangles in Cayley Graphs, preprint, *ArXiv:1809.03729*, 2018.

[4] J. Cutler and A. J. Radcliffe, The maximum number of complete subgraphs in a graph with given maximum degree, *J. Combin. Theory Ser. B* 104 (2014), 60-71.
THE MAXIMUM NUMBER OF TRIANGLES IN A GRAPH OF GIVEN MAXIMUM DEGREE

[5] J. Cutler and A.J. Radcliffe, The maximum number of complete subgraphs of fixed size in a graph with given maximum degree, Journal of Graph Theory, 84(2):134-145, 2017.

[6] J. Engbers and D. Galvin, Counting independent sets of a fixed size in graphs with a given minimum degree, Journal of Graph Theory 76(2) (2014), 149-168.

[7] D. Galvin, Two problems on independent sets in graphs, Discrete Math. 311 (2011), no. 20, 2105-2112.

[8] W. Gan, Several Problems in Extremal Combinatorics, 2014, PhD Thesis.

[9] W. Gan, P. Loh, and B. Sudakov, Maximizing the number of independent sets of a fixed size, Combinatorics, Probability and Computing 24 (2015), 521-527.

[10] R. Kirsch and A. J. Radcliffe, Many triangles with few edges, Electr. J. Combin., 26(2):Paper 2.36, 23, 2019.

[11] H. Law and C. McDiarmid, On Independent Sets in Graphs with Given Minimum Degree, Combinatorics, Probability and Computing 22 (2013), no. 6, 874-884.

[12] A. Lo, Cliques in graphs with bounded minimum degree, Combin. Probab. Comput. 21 (2012), 457-482.

AUTHOR

Zachary Chase
University of Oxford
Oxford, United Kingdom
zachary.chase@maths.ox.ac.uk
http://people.maths.ox.ac.uk/~chase/