Adenosine Induces Apoptosis in SBC-3 Human Lung Cancer Cells through A₃ Adenosine Receptor-Dependent AMID Upregulation

Takeshi Kanno¹ Takashi Nakano² Yumiko Fujita¹,² Akinobu Gotoh³ Tomoyuki Nishizaki¹

¹Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, Nishinomiya.
²Department of Thoracic Oncology, Hyogo College of Medicine, Nishinomiya.
³Laboratory of Cell and Gene Therapy, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya

Key Words
Adenosine • A₃ adenosine receptor • AMID • SBC-3 lung cancer cell • Apoptosis

Abstract

Background/Aims: We have shown that A₃ adenosine receptor mediates apoptosis in human lung cancer cells such as A549 cells, an epithelial adenocarcinoma cell line, and Lu-65 cells, a giant cell cancer cell line, via each different signaling pathway. AMID, a pro-apoptotic protein, induces caspase-independent apoptosis by accumulating in the nucleus. The present study investigated AMID-dependent apoptosis through A₃ adenosine receptor in SBC-3 cells, a human small cell lung cancer cell line. Methods: MTT assay, TUNEL staining, flow cytometry using propidium iodide and annexin V-FITC, and Western blotting were carried out in SBC-3 cells transfected with and without the siRNA to silence the A₃ adenosine receptor-targeted gene or the AMID-targeted gene. Results: Adenosine induced SBC-3 cell apoptosis in a concentration (0.01-10 mM) and treatment time (24-72 h)-dependent manner, and a similar effect was obtained with the A₃ adenosine receptor agonist 2-Cl-IB-MECA. Adenosine-induced SBC-3 cell death was inhibited by the A₃ adenosine receptor inhibitor MRS1191, knocking-down A₃ adenosine receptor, or knocking-down AMID. Adenosine upregulated expression of the AMID mRNA and protein in SBC-3 cells, that is suppressed by knocking-down A₃ adenosine receptor. In addition, adenosine increased nuclear AMID localization in concert with decreased cytosolic AMID localization. Conclusion: The results of the present study show that adenosine induces SBC-3 cell apoptosis by upregulating AMID expression and promoting AMID translocation into the nucleus via A₃ adenosine receptor.
Introduction

Several avenues of evidence have shown that extracellular adenosine induces apoptosis in a variety of cancer cells via diverse signaling pathways linked to adenosine transporters and adenosine receptors. For adenosine transporter-mediated pathway, intracellularly transported adenosine induces apoptosis in GT3-TKB human lung cancer cells and HuH-7 human hepatoma cells under the control of AMP-activated protein kinase (AMPK), that is activated by adenosine kinase-catalyzed conversion to AMP [1, 2]. Intracellularly transported adenosine, alternatively, downregulates expression of c-FLIP to neutralize caspase-8 inhibition due to c-FLIP, resulting in the activation of caspase-8 and the effector caspase-3, responsible for HuH-7 cell apoptosis [3]. Intracellularly transported adenosine still activates caspase-3 by neutralizing caspase-3 inhibition due to inhibitor of apoptosis protein (IAP) as a result of decreased IAP2 expression and reduced IAP activity in response to increased DIABLO expression and DIABLO release from damaged mitochondria in HuH-7 cells, regardless of caspase-9 activation [4].

Adenosine receptors include A₁, A₂a, A₂b, and A₃ receptors. For adenosine receptor-mediated pathway, Gᵢ protein-coupled A₁ adenosine receptor mediates apoptosis in CW2 human colon cancer cells by activating caspase-3, -8, and -9 [5]. Adenosine also induces apoptosis in both the pathways linked to A₁ adenosine receptor and AMPK-dependent caspase-3/-9 activation following adenosine uptake into cells [6]. Gₛ protein-coupled A₂a adenosine receptor mediates apoptosis in Caco-2 human colon cancer cells by activating caspase-9/-3 [7]. A₃ adenosine receptor, that is linked to Gᵢ or Gₛ protein, mediates apoptosis in human lung cancer cells, breast cancer cells, hepatocellular carcinoma cells, and thyroid cancer cells [8–11].

Apoptosis is induced in a caspase-dependent and -independent manner. Apoptosis-inducing factor (AIF), that is localized in the mitochondria under the normal conditions, is engaged in caspase-independent apoptosis. Apoptotic signals trigger to release AIF from the mitochondria and deliver into the nucleus, where AIF binds to the nuclear DNA, causing chromosomal condensation, margination, and large-scale DNA fragmentation, to induce apoptosis. As is the case with AIF, AIF-homologous mitochondrion-associated inducer of death (AMID), a human pro-apoptotic protein, also induces caspase-independent apoptosis by accumulating in the nucleus from the mitochondria or the cytoplasm [12]. We have earlier found that adenosine induces HuH-7 cell apoptosis by upregulating AMID expression [13]. Then, we wondered whether adenosine could induce apoptosis in other cancer cells by the similar mechanism.

To address this question, we explored adenosine-induced apoptosis in SBC-3 human lung cancer cells and the underlying pathway. We show here that adenosine induces SBC-3 cell apoptosis by upregulating AMID expression as mediated via A₃ adenosine receptor and increasing AMID localization in the nucleus.

Materials and Methods

Cell culture

SBC-3 cells, purchased from Health Science Research Resources Bank (Osaka, Japan), were grown in MEM supplemented with 10% (v/v) heat-inactivated FBS, 0.1 mM non-essential amino acids, penicillin (final concentration, 100 U/ml), and streptomycin (final concentration, 0.1 mg/ml), in a humidified atmosphere of 5% CO₂ and 95% air at 37 °C.

Assay of cell viability

Cell viability was assayed by the method using 3-(4,5-dimethyl-2-thiazoly)-2,5-diphenyl-2H-tetrazolium bromide (MTT) as described previously [1]. To assess cell viability, percentage against basal untreated MTT intensities was calculated.
TUNEL staining was performed by the method as described previously [14]. To assess apoptosis, TUNEL-positive cells were counted in the area (0.4 mm x 0.4 mm) selected at random.

Apoptosis assay.
Flow cytometry was carried out using propidium iodide (PI) and annexin V-FITC by the method as described previously [14].

Construction and transfection of siRNA
The siRNA to silence human A3 adenosine receptor-targeted gene (A3R siRNA) was obtained from Ambion (Austin, TX, USA), the siRNA to silence human AMID-targeted gene (AMID siRNA) was obtained from Cosmo Bio (Kyoto, Japan), and the negative control siRNA (NC siRNA) were obtained from Ambion. Those siRNAs were reverse-transfected into SBC-3 cells using a Lipofectamine reagent (Invitrogen, Carlsbad, CA, USA). Cells were used for experiments 48 h after transfection.

Real-time reverse transcription-polymerase chain reaction (RT-PCR)
Real-time RT-PCR was carried out using primers shown in Table 1 by the method as described previously [14]. Signal intensities for the AMID mRNA was normalized by those for the GAPDH mRNA.

Separation into the nuclear and cytosolic components
Lysed cells were centrifuged at 3,500 rpm for 5 min at 4 °C. The pellet and supernatant were used as nuclei- and cytosol-enriched components.

Western blotting
Western blotting was carried out using an anti-A1 receptor antibody (Oncogene, Cambridge, MA, USA), an anti-A2a receptor antibody (Oncogene), an anti-A2b receptor antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA), an anti-A3 receptor antibody (Santa Cruz Biotechnology), an anti-AMID antibody (GeneTex, Inc., Irvine, CA, USA), or an anti-β-actin antibody (Sigma, St Louis, MO, USA) by the method as described previously [14]. Intensities for each protein were normalized by β-actin intensities.

Statistical analysis
Statistical analysis was carried out using unpaired t-test and Dunnett’s test.

Results

Adenosine induces SBC-3 cell apoptosis as mediated via A3 adenosine receptor
We initially examined the effect of extracellular adenosine on SBC-3 cell death. Adenosine reduced SBC-3 cell viability in a concentration (0.01-10 mM)- and treatment time (24-72 h)-dependent manner (Fig. 1A). This interprets that adenosine reduces SBC-3 cell viability due to cell death or cell growth arrest. In the TUNEL staining analysis, TUNEL-positive cells occupied approximately 70% of total cells after adenosine treatment, while TUNEL-positive
cells were within 6% of total cells was positive to TUNEL without adenosine treatment (Fig. 2A). This implies that adenosine induces apoptosis in SBC-3 cells.

In the flow cytometry using PI and annexin V-FITC, PI is a marker of dead cells and annexin V, detecting externalized phosphatidylserine residues, is a marker of apoptotic cells. Adenosine significantly increased the population of PI-positive and annexin V-positive cells, which corresponds to late apoptosis/secondary necrosis (Fig. 2B). Taken together, these results indicate that adenosine induces apoptosis in SBC-3 cells.

A3 adenosine receptor mediates adenosine-induced SBC-3 cell apoptosis

Adenosine-induced SBC-3 cell death was clearly inhibited by MRS1191, an antagonist of A3 adenosine receptor, but otherwise it was not affected by 8-cyclopentyltheophylline (8-CPT), an antagonist of A1 adenosine receptor, 3,7-dimethyl-1-propargyloxanthine (DMPX), an antagonist of A2a adenosine receptor, MRS1706, an antagonist of A2b adenosine receptor, or dipyridamole, an inhibitor of adenosine transporter (Fig. 1B). Adenosine-induced increase in TUNEL-positive SBC-3 cells was also attenuated by MRS1191 (Fig. 2A).

Fig. 1. Adenosine-induced SBC-3 cell death. MTT assay was carried out in different sets of experiments. (A) Cells were treated with adenosine at concentrations as indicated for 24-72 h (n=4). (B) Cells were treated with adenosine (3 mM) for 24 h in the presence and absence of 8-CPT (10 µM), DMPX (10 µM), MRS1706 (50 nM), MRS1191 (10 µM), or dipyridamole (10 µM) (n=4). P value, Dunnett’s test. (C) Cells were treated with 2-Cl-IB-MECA at concentrations as indicated for 24-48 h (n=4). (D) Cells were treated with adenosine (3 mM) for 24 h in the presence and absence of forskolin (10 µM), GF109203X (100 nM), PD98059 (50 µM), PP2 (100 nM), or SrcI1 (200 nM) (n=4).
Like adenosine, treatment with the A₃ adenosine receptor agonist 2-chloro-N₆-(3-iodobenzyl)-adenosine-5’-N-methyl-uronamide (2-Cl-IB-MECA) for 24-48 h reduced SBC-3 cell viability in a concentration (1-100 µM)-dependent manner (Fig. 1C). Collectively, adenosine is likely to induce SBC-3 cell death as mediated via A₃ adenosine receptor.

To obtain further evidence for the implication of A₃ adenosine receptor in adenosine-induced SBC-3 cell death, the A₃R siRNA was constructed. SBC-3 cells express all the adenosine receptor proteins, and expression of the A₃ adenosine receptor protein was evidently suppressed in cells transfected with the A₃R siRNA (Fig. 3A), confirming A₃ adenosine receptor knock-down. Adenosine-induced SBC-3 cell death was significantly prevented for cells transfected with the A₃R siRNA as compared with that for cells transfected with the NC siRNA (Fig. 3B). Moreover, TUNEL-positive cells after adenosine treatment were significantly decreased by knocking-down A₃ adenosine receptor (Fig. 3C). Overall, these results provide evidence for A₃ adenosine receptor-dependent SBC-3 cell apoptosis.

A₃ adenosine receptor is linked to G_i protein involving adenylate cyclase inhibition and G_q protein involving phospholipase C activation [15]. Adenosine-induced SBC-3 cell death was not affected by forskolin, an activator of adenylate cyclase, GF109203X, an inhibitor of protein kinase C (PKC), PD98059, an inhibitor of mitogen-activated protein (MAP) kinase kinase (MEK), or the Src family inhibitors PP2 and/or SrcI1 (Fig. 1D). This suggests that...
Adenosine induces SBC-3 cell apoptosis through A\textsubscript{3} adenosine receptor, but independently of inhibition of protein kinase A (PKA) or activation of PKC, MAP kinase, and Src.

Adenosine upregulates AMID expression as mediated via A\textsubscript{3} adenosine receptor

In our earlier study, adenosine upregulated expression of AMID mRNA and protein in HuH-7 human hepatoma cells, to induce apoptosis [13]. We, therefore, were prompted to assess the effect of adenosine on AMID expression in SBC-3 cells. In the real-time RT-PCR analysis, adenosine increased expression of the AMID mRNA in a bell-shaped treatment time (1-12 h)-dependent manner, the peak reaching 12 times of basal levels at 1-h treatment (Fig. 4A). In the Western blot analysis, adenosine increased expression of AMID protein in a
treatment time (1-6 h)-dependent manner, reaching 5 times of basal levels at 6-h treatment (Fig. 4B). These results indicate that adenosine upregulates expression of AMID protein along increased mRNA expression in SBC-3 cells.

Amazingly, adenosine-induced increase in the expression of the AMID mRNA and protein was significantly prevented by knocking-down A₃ adenosine receptor (Fig. 4C,D). This indicates that adenosine upregulates AMID expression as mediated via A₃ adenosine receptor in SBC-3 cells. This also suggests that A₃ adenosine receptor regulates the AMID transcription.

Adenosine induces SBC-3 cell apoptosis in an AMID-dependent manner

We finally examined whether adenosine-induced SBC-3 cell apoptosis is dependent upon AMID. In the analysis of intracellular AMID distribution, adenosine increased presence
Fig. 5. Intracellular AMID distribution. Western blotting for cells treated with adenosine (3 mM) for periods of time as indicated. In the graph, each column represents the mean (± SEM) ratio: nuclear AMID/whole cell AMID (n=4).

Expression of the AMID protein was clearly suppressed in SBC-3 cells transfected with the AMID siRNA (Fig. 6A), confirming AMID knock-down. In the MTT assay, adenosine-induced SBC-3 cell death was significantly prevented by knocking-down AMID (Fig. 6B). In the TUNEL staining analysis, TUNEL-positive cells after adenosine treatment were significantly decreased by silencing the AMID-targeted gene (Fig. 6C). Overall, these results draw a conclusion that adenosine upregulates AMID expression as mediated via A_3 adenosine receptor and promotes AMID translocation into the nucleus, to induce SBC-3 cell apoptosis.

Discussion

The results of the present study demonstrate that extracellular adenosine induces apoptosis in SBC-3 human lung cancer cells in a concentration (0.01-10 mM)- and treatment time (24-72 h)-dependent manner. The adenosine effect was not affected by the adenosine transporter inhibitor dipyridamole, ruling out participation of the intrinsic pathway relevant to adenosine uptake into cells and the ensuing signaling. In contrast, adenosine-induced SBC-3 cell death was suppressed by the A_3 adenosine receptor inhibitor MRS1191, but not inhibitors for A_1, A_2a, and A_2b adenosine receptors, or knocking-down A_3 adenosine receptor. In addition, the A_3 adenosine receptor agonist 2-Cl-IB-MECA induced SBC-3 cell apoptosis in a fashion that mimics the adenosine effect. These results indicate that adenosine induces SBC-3 cell apoptosis via A_3 adenosine receptor.
Fig. 6. AMID-dependent SBC-3 cell apoptosis. (A) Western blotting for cells transfected with the NC siRNA or the AMID siRNA (n=4). P values, unpaired t-test. MTT assay (B) and TUNEL staining (C) for cells transfected with the NC siRNA or the AMID siRNA before and after 24-h treatment with adenosine (Ado) (3 mM) (n=4). DIC, differential interference contrast. Bars, 100 µm. P values, Dunnett’s test.

A3 adenosine receptor is linked to Gᵢ protein involving adenylate cyclase inhibition followed by decreased cAMP production/PKA inhibition and Gᵢ protein involving phospholipase C activation followed by PKC activation [15]. Adenosine-induced SBC-3 cell death was not affected by the adenylate cyclase activator forskolin or the PKC inhibitor GF109203X. This suggests that A₃ adenosine receptor mediates SBC-3 cell apoptosis, independently of activation of Gᵢ protein bearing PKA inhibition or Gᵢ protein bearing PKC activation. Moreover, the adenosine effect was not inhibited by the MEK inhibitor PD98059 or the Src inhibitors such as PP2 and SrcI1, suggesting that adenosine induces SBC-3 cell apoptosis in a MAP kinase- or non-receptor tyrosine kinase-independent manner.

Apoptosis is induced in a caspase-dependent and/or -independent manner. AMID is recognized to induce apoptosis by binding to the nuclear DNA and causing DNA fragmentation in a caspase-independent manner [12]. We have shown that intracellularly transported adenosine induces apoptosis in HuH-7 human hepatoma cells, regardless of adenosine
receptors such as A_1, A_2a, A_2b, and A_3 receptors [3]. One of the underlying mechanisms is explained by upregulation of AMID expression and nuclear AMID accumulation [13]. Intracellularly transported adenosine, alternatively, induces apoptosis in MCF-7 human breast cancer cells by accumulating AMID in the nucleus in an adenosine receptor-independent manner [16].

In the present study, adenosine increased expression of the AMID mRNA and protein in SBC-3 cells. Amazingly, adenosine-induced upregulation of AMID expression was suppressed by knocking-down A_3 adenosine receptor. This accounts for the implication of A_3 adenosine receptor in the regulation of the AMID gene transcription. Moreover, adenosine increased nuclear AMID in parallel with decreased cytosolic AMID in SBC-3 cells, indicating that adenosine promotes AMID translocation from the cytosol into the nucleus. Expectedly, adenosine-induced SBC-3 cell death was also prevented by knocking-down AMID. Taken together, these results lead to a conclusion that adenosine induces SBC-3 cell apoptosis by upregulating AMID expression and accumulating AMID in the nucleus via A_3 adenosine receptor. In further support of the note, extracellular adenosine induced apoptosis in RCC4-VHL human renal cancer cells by the similar mechanism, i.e., by upregulating AMID expression and promoting AMID translocation from the cytosol into the nucleus in an A_3 adenosine receptor-dependent manner (unpublished data). AMID, thus, may be a key executioner for adenosine-induced apoptosis both via an intrinsic pathway relevant to adenosine uptake and an extrinsic pathway relevant to adenosine receptors including A_3 adenosine receptor.

In our earlier studies, adenosine induced apoptosis in other human lung cancer cell lines such as A549 cells, an epithelial adenocarcinoma cell line, and Lu-65 cells, a giant cell cancer cell line, via A_3 adenosine receptor [14, 17]. Surprisingly, A_3 adenosine receptor-mediated apoptotic signaling pathways differed between these two cell lines; A549 cell apoptosis was induced by upregulating expression of Bax, Bad, and Puma, to disrupt mitochondrial membrane potentials and to activate caspase-9 followed by the effector caspase-3 [14] and Lu-65 cell apoptosis was induced by upregulating p53 expression, to promote p53-dependent Noxa gene transcription, causing activation of caspase-9 in association with disruption of

Fig. 7. A hypothetic pathway for A_3 adenosine receptor-mediated SBC-3 cell apoptosis.
mitochondrial membrane potentials and in turn, caspase-3 [17], both as mediated via A₃ adenosine receptor. A₃ adenosine receptor here mediated apoptosis in SBC-3 cells, a small cell cancer cell line, still via a different pathway, i.e., relevant to AMID upregulation and translocation. Why different pathways underlie A₃ adenosine receptor-mediated apoptosis in human lung cancer cells, depending upon the cell types, remains to be explored.

How A₃ adenosine receptor regulates the AMID gene transcription and AMID trafficking in SBC-3 cells is also unknown. The results of the present study rule out adenylyl cyclase or phospholipase C as a target effector of A₃ adenosine receptor responsible for SBC-3 cell apoptosis. Then, we speculated the possibility for an unknown effector of Gα protein or Gq protein. Gαi or Gαq might regulate the AMID gene transcription by directly binding a transcription factor or a transcription factor modulator (Fig. 7). Gαi or Gαq, alternatively, might promote AMID translocation into the nucleus by interacting with nuclear localization signal (Fig. 7). To address these questions, we are currently carrying out further experiments.

In conclusion, the results of the present study show that extracellular adenosine induces apoptosis in SBC-3 human lung cancer cells by upregulating AMID expression and promoting AMID translocation from the cytosol into the nucleus via A₃ adenosine receptor, regardless of PKA inhibition or PKC activation. This may represent a novel apoptotic signaling pathway for A₃ adenosine receptor.

References

1 Saitoh M, Nagai K, Nakagawa K, Yamamura T, Yamamoto S, Nishizaki T: Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem Pharmacol 2004;67:2005-2011.
2 Yang D, Yaguchi T, Nakano T, Nishizaki T: Adenosine activates AMPK to phosphorylate Bcl-XL responsible for mitochondrial damage and DIABLO release in HuH-7 cells. Cell Physiol Biochem 2011;27:71-78.
3 Yang D, Yaguchi T, Yamaguchi H, Nishizaki T: Intracellularly transported adenosine induces apoptosis in HuH-7 human hepatoma cells by downregulating c-FLIP expression causing caspase-3/-8 activation. Biochem Pharmacol 2007;73:1665-1675.
4 Yang D, Yaguchi T, Nakano T, Nishizaki T: Adenosine-induced caspase-3 activation by tuning Bcl-XL/DIABLO/IAP expression in HuH-7 human hepatoma cells. Cell Biol Toxicol 2010;26:319-330.
5 Saito M, Yaguchi T, Yasuda Y, Nakano T, Nishizaki T: Adenosine suppresses CW2 human colonic cancer growth by inducing apoptosis via A₁ adenosine receptors. Cancer Lett 2010;290:211-215.
6 Sai K, Yang D, Yamamoto H, Fujikawa H, Yamamoto S, Nagata T, Saito M, Yamamura T, Nishizaki T: A₃ adenosine receptor signal and AMPK involving caspase-9/-3 activation are responsible for adenosine-induced RCR-1 astrocytoma cell death. Neurotoxicol 2006;27:458-467.
7 Yasuda Y, Saito M, Yamamura T, Yaguchi T, Nishizaki T: Extracellular adenosine induces apoptosis in Caco-2 human colonic cancer cells by activating caspase-9/-3 via A₂a adenosine receptors. J Gastroenterol 2009;44:56-65.
8 Bar-Yehuda S, Stemmer SM, Madi L, Castel D, Ochaion A, Cohen S, Barer F, Zabutti A, Perez-Liz G, Del Valle L, Fishman P: The A₃ adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-κB signal transduction pathways. Int J Oncol 2008;33:287-295.
9 Kim SJ, Min HY, Chung HJ, Park EJ, Hwang SJ, Kang YJ, Shin DH, Jeong SK: Inhibition of cell proliferation through cell cycle arrest and apoptosis by thio-Cl-IB-MECA, a novel A₁ adenosine receptor agonist, in human lung cancer cells. Cancer Lett 2008;264:309-315.
10 Morello S, Sorrentino R, Porta A, Forte G, Popolo A, Petrella A, Pinto A: CI-1B-MECA enhances TRAIL-induced apoptosis via the modulation of NF-κB signaling pathway in thyroid cancer cells. J Cell Physiol 2009;221:378-386.
11 Panjehpour M, Karami-Tehrani F: Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors. Oncol Res 2007;16:575-585.
12 Bilyy R, Kit Y, Hellman U, Stoika R: AMID: new insights on its intracellular localization and expression at apoptosis. Apoptosis 2008;13:729-732.

13 Yang D, Yaguchi T, Nagata T, Gotoh A, Dovat S, Song C, Nishizaki T: AMID mediates adenosine-induced caspase-independent HuH-7 cell apoptosis. Cell Physiol Biochem 2011;27:37-44.

14 Kamiya H, Kanno T, Fujita Y, Gotoh A, Nakano T, Nishizaki T: Apoptosis-related gene transcription in human A549 lung cancer cells via A3 adenosine receptor. Cell Physiol Biochem 2012;29:687-696.

15 Moro S, Spalluto G, Jacobson KA: Techniques: Recent developments in computer-aided engineering of GPCR ligands using the human adenosine A3 receptor as an example. Trends Pharmacol Sci 2005;26:44-51.

16 Tsuchiya A, Kanno T, Saito M, Miyoshi Y, Gotoh A, Nakano T, Nishizaki T: Intracellularly transported adenosine induces apoptosis in MCF-7 human breast cancer cells by accumulating AMID in the nucleus. Cancer Lett 2012;321:65-72.

17 Otsuki T, Kanno T, Fujita Y, Tabata C, Fukuoka K, Nakano T, Gotoh A, Nishizaki T: A3 adenosine receptor-mediated p53-dependent apoptosis in Lu65 human lung cancer cells. Cell Physiol Biochem 2012;30:210-220.