On the Basis Property of the Root Functions of Some Class of Non-self-adjoint Sturm–Liouville Operators.

Cemile Nur
Depart. of Math., Dogus University, Acıbadem, Kadiköy,
Istanbul, Turkey. e-mail: cnur@dogus.edu.tr

O. A. Veliev
Depart. of Math., Dogus University, Acıbadem, Kadiköy,
Istanbul, Turkey. e-mail: oveliev@dogus.edu.tr

Abstract

We obtain the asymptotic formulas for the eigenvalues and eigenfunctions of the Sturm-Liouville operators with some regular boundary conditions. Using these formulas, we find sufficient conditions on the potential q such that the root functions of these operators do not form a Riesz basis.

Key Words: Asymptotic formulas, Regular boundary conditions. Riesz basis.

AMS Mathematics Subject Classification: 34L05, 34L20.

1 Introduction and Preliminary Facts

Let T_1, T_2, T_3 and T_4 be the operators generated in $L_2[0, 1]$ by the differential expression

$$l(y) = -y'' + q(x)y$$

and the following boundary conditions:

$$y'_0 + eta y'_1 = 0, \quad y_0 - y_1 = 0,$$ \hspace{1cm} (2)

$$y'_0 + eta y'_1 = 0, \quad y_0 + y_1 = 0,$$ \hspace{1cm} (3)

$$y'_0 - y'_1 = 0, \quad y_0 + \alpha y_1 = 0,$$ \hspace{1cm} (4)

and

$$y'_0 + y'_1 = 0, \quad y_0 + \alpha y_1 = 0$$ \hspace{1cm} (5)

respectively, where $q(x)$ is a complex-valued summable function on $[0, 1]$, $\beta \neq \pm 1$ and $\alpha \neq \pm 1$.

In conditions (2), (3), (4) and (5) if $\beta = 1, \beta = -1, \alpha = 1$ and $\alpha = -1$ respectively, then any $\lambda \in \mathbb{C}$ is an eigenvalue of infinite multiplicity. In (2) and (4) if $\beta = -1$ and $\alpha = -1$ then they are periodic boundary conditions; In (3) and (5) if $\beta = 1$ and $\alpha = 1$ then they are antiperiodic boundary conditions.

These boundary conditions are regular but not strongly regular. Note that, if the boundary conditions are strongly regular, then the root functions form a Riesz basis (this result was proved independently in [6], [10] and [17]). In the case when an operator is regular but not strongly regular, the root functions generally do not form even usual basis. However,
Shkalikov [20], [21] proved that they can be combined in pairs, so that the corresponding 2-dimensional subspaces form a Riesz basis of subspaces.

In the regular but not strongly regular boundary conditions, periodic and antiperiodic boundary conditions are the ones more commonly studied. Therefore, let us briefly describe some historical developments related to the Riesz basis property of the root functions of the periodic and antiperiodic boundary value problems. First results were obtained by Kerimov and Mamedov [8]. They established that, if

\[q \in C^4[0, 1], \quad q(1) \neq q(0), \]

then the root functions of the operator \(L_0(q) \) form a Riesz basis in \(L_2[0, 1] \), where \(L_0(q) \) denotes the operator generated by (1) and the periodic boundary conditions.

The first result in terms of the Fourier coefficients of the potential \(q \) was obtained by Dernek and Veliev [1]. They proved that if the conditions

\[
\lim_{n \to \infty} \frac{\ln |n|}{n q_{2n}} = 0, \tag{6}
\]

\[
q_{2n} \sim q_{-2n} \tag{7}
\]

hold, then the root functions of \(L_0(q) \) form a Riesz basis in \(L_2[0, 1] \), where \(q_n = : (q \cdot e^{2\pi inx}) \) is the Fourier coefficient of \(q \) and everywhere, without loss of generality, it is assumed that \(q_0 = 0 \). Here \(\langle \cdot, \cdot \rangle \) denotes the inner product in \(L_2[0, 1] \) and \(a_n \sim b_n \) means that \(a_n = O(b_n) \) and \(b_n = O(a_n) \) as \(n \to \infty \). Makin [11] improved this result. Using another method he proved that the assertion on the Riesz basis property remains valid if condition (7) holds, but condition (6) is replaced by a less restrictive one: \(q \in W_1^s[0, 1], \)

\[
q^{(k)}(0) = q^{(k)}(1), \quad \forall k = 0, 1, ..., s - 1
\]

holds and \(| q_{2n} | > cn^{-s-1} \) with some \(c > 0 \) for sufficiently large \(n \), where \(s \) is a nonnegative integer. Besides, some conditions which imply the absence of the Riesz basis property were presented in [11]. Shkalilov and Veliev obtained in [22] more general results which cover all results discussed above.

The other interesting results about periodic and antiperiodic boundary conditions were obtained in [2-5, 7, 14-16, 24, 25].

The basis properties of regular but not strongly regular other some problems are studied in [9,12,13]. It was proved in [12] that the system of the root functions of the operator generated by (1) and the boundary conditions

\[
y'(1) - (-1)\sigma y'(0) + \gamma y(0) = 0
\]

\[
y(1) - (-1)\sigma y(0) = 0,
\]

forms an unconditional basis of the space \(L_2[0, 1] \), where \(q(x) \) is an arbitrary complex-valued function from the class \(L_1[0, 1] \), \(\gamma \) is an arbitrary nonzero complex constant and \(\sigma = 0, 1 \). Kerimov and Kaya proved [9] that the system of the root functions of the spectral problem

\[
y^{(4)} + p_2(x)y'' + p_1(x)y' + p_0(x)y = \lambda y, \quad 0 < x < 1,
\]

\[
y^{(s)}(1) - (-1)^\sigma y^{(s)}(0) + \sum_{l=0}^{s-1} \alpha_{s,l} y^{(l)}(0) = 0, \quad s = 1, 2, 3,
\]

\[
y(1) - (-1)^\sigma y(0) = 0,
\]

forms a basis in the space \(L_p(0, 1), 1 < p < \infty \), when \(\alpha_{3,2} + \alpha_{1,0} \neq \alpha_{2,1}, p_j(x) \in W_1^j(0, 1), \)
\[j = 1, 2, \text{ and } p_0(x) \in L_1(0, 1); \text{ moreover, this basis is unconditional for } p = 2, \text{ where } \lambda \text{ is a spectral parameter; } p_j(x) \in L_1(0, 1), j = 1, 2, 3, \text{ are complex-valued functions; } \alpha_{s,t}, s = 1, 2, 3, \text{ are arbitrary complex constants; and } \sigma = 0, 1. \]

It was shown in [19] that if
\[q(x) = q(1 - x), \forall x \in [0, 1], \]
then the spectrum of each of the problems \(T_1, \text{ and } T_3 \), coincides with the spectrum of the periodic problem and the spectrum of each of the problems \(T_2, \text{ and } T_4 \), coincides with the spectrum of the antiperiodic problem.

In this paper we prove that if
\[\lim_{n \to \infty} \frac{\ln |n|}{ns_{2n}} = 0, \quad (8) \]
where \(s_k = (q, \sin 2\pi kx) \), then the large eigenvalues of the operators \(T_1 \) and \(T_3 \) are simple. Moreover, if there exists a sequence \(\{n_k\} \) such that (8) holds when \(n \) is replaced by \(n_k \), then the root functions of these operators do not form a Riesz basis.

Similarly, if
\[\lim_{n \to \infty} \frac{\ln |n|}{ns_{2n+1}} = 0, \quad (9) \]
then the large eigenvalues of the operators \(T_2 \) and \(T_4 \) are simple and if there exists a sequence \(\{n_k\} \) such that (9) holds when \(n \) is replaced by \(n_k \), then the root functions of these operators do not form a Riesz basis.

Moreover we obtain asymptotic formulas of arbitrary order for the eigenvalues and eigenfunctions of the operators \(T_1, T_2, T_3 \) and \(T_4 \).

2 Main Results

We will focus only on the operator \(T_1 \). The investigations of the operators \(T_2, T_3 \) and \(T_4 \) are similar. It is well-known that (see formulas (47a), (47b)) in page 65 of [18]) the eigenvalues of the operators \(T_1(q) \) consist of the sequences \(\{\lambda_{n,1}\}, \{\lambda_{n,2}\} \) satisfying
\[\lambda_{n,j} = (2n\pi)^2 + O(n^{1/2}) \quad (10) \]
for \(j = 1, 2 \). From this formula one can easily obtain the following inequality
\[|\lambda_{n,j} - (2\pi k)^2| = |2(n - k)\pi| |2(n + k)\pi| + O(n^{1/2}) > n \quad (11) \]
for \(j = 1, 2; k \neq n; k = 0, 1, \ldots; \) and \(n \geq N \), where we denote by \(N \) a sufficiently large positive integer, that is, \(N \gg 1 \).

It is easy to verify that if \(q(x) = 0 \) then the eigenvalues of the operator \(T_1 \), denoted by \(\lambda_n = (2\pi n)^2 \) for \(n = 0, 1, \ldots \). The eigenvalue 0 is simple and the corresponding eigenfunction is 1. The eigenvalues \(\lambda_n = (2\pi n)^2 \) for \(n = 1, 2, \ldots \) are double and the corresponding eigenfunctions and associated functions are
\[y_n(x) = \cos 2\pi nx \quad \& \quad \phi_n(x) = \left(\frac{\beta}{1 + \beta} - x \right) \frac{\sin 2\pi nx}{4\pi n} \quad (12) \]
respectively. Note that for any constant \(c \), \(\phi_n(x) + cy_n(x) \) is also an associated function. It can be shown that the adjoint operator \(T_1^*(0) \) is associated with the boundary conditions:
\[y_1 + \bar{\beta}y_0 = 0, y_1' - y_0' = 0. \quad (13) \]
It is easy to see that, 0 is a simple eigenvalue of $T^*_1(0)$ and the corresponding eigenfunction is $y^*_0(x) = x - \frac{1}{1 + \beta}$. The other eigenvalues $\lambda^*_n = (2\pi n)^2$ for $n = 1, 2, \ldots$, are double and the corresponding eigenfunctions and associated functions are

$$y^*_n(x) = \sin 2\pi nx \quad \& \quad \phi^*_n(x) = \left(x - \frac{1}{1 + \beta}\right) \frac{\cos 2\pi nx}{4\pi n}$$

respectively.

Let

$$\varphi_n(x) := \frac{16\pi n (\beta + 1)}{\beta - 1} \phi_n(x) = \frac{4 (\beta + 1)}{\beta - 1} \left(\frac{\beta}{1 + \beta} - x\right) \sin 2\pi nx$$

and

$$\varphi^*_n(x) := \frac{16\pi n (\beta + 1)}{\beta - 1} \phi^*_n(x) = \frac{4 (\beta + 1)}{\beta - 1} \left(x - \frac{1}{1 + \beta}\right) \cos 2\pi nx.$$ \hfill (14)

The system of the root functions of $T^*_1(0)$ can be written as \{f_n : n \in \mathbb{Z}\}, where

$$f_{-n} = \sin 2\pi nx, \quad \forall n > 0 \quad \& \quad f_n = \varphi^*_n(x), \quad \forall n \geq 0.$$ \hfill (16)

One can easily verify that it forms a basis in $L_2[0, 1]$ and the biorthogonal system \{g_n : n \in \mathbb{Z}\} is the system of the root functions of $T_1(0)$, where

$$g_{-n} = \varphi_n(x), \quad \forall n > 0 \quad \& \quad g_n = \cos 2\pi nx, \forall n \geq 0,$$ \hfill (17)

since $(f_n, g_m) = \delta_{n,m}$.

To obtain the asymptotic formulas for the eigenvalues $\lambda_{n,j}$ and the corresponding normalized eigenfunctions $\Psi_{n,j}(x)$ of $T_1(q)$ we use (11) and the well-known relations

\[
(\lambda_{N,j} - (2\pi n)^2) (\Psi_{N,j}, \sin 2\pi nx) = (q \Psi_{N,j}, \sin 2\pi nx) \tag{18}
\]

and

\[
(\lambda_{N,j} - (2\pi n)^2) (\Psi_{N,j}, \varphi^*_n) - \gamma_1 n (\Psi_{N,j}, \sin 2\pi nx) = (q \Psi_{N,j}, \varphi^*_n), \tag{19}
\]

where

$$\gamma_1 = \frac{16\pi (\beta + 1)}{\beta - 1},$$

which can be obtained by multiplying both sides of the equality

\[-(\Psi_{N,j})'' + q(x) \Psi_{N,j} = \lambda_{N,j} \Psi_{N,j}\]

by $\sin 2\pi nx$ and φ^*_n respectively. It follows from (18) and (19) that

\[
(\Psi_{N,j}, \sin 2\pi nx) = \frac{q(x) \Psi_{N,j}, \sin 2\pi nx}{\lambda_{N,j} - (2\pi n)^2}; \quad N \neq n, \tag{20}
\]

\[
(\Psi_{N,j}, \varphi^*_n) = \frac{\gamma_1 n (q(x) \Psi_{N,j}, \sin 2\pi nx)}{\lambda_{N,j} - (2\pi n)^2} + \frac{(q(x) \Psi_{N,j}, \varphi^*_n)}{\lambda_{N,j} - (2\pi n)^2}; \quad N \neq n. \tag{21}
\]
Moreover, we use the following relations

\[
\begin{align*}
(\Psi_{N, j}, \overline{\varphi}_n^*) &= \sum_{n=0}^{\infty} \left[(q\varphi_n, \varphi_n^*) \left(\Psi_{N, j}, \sin 2\pi nx \right) + (q \cos 2\pi n_1 x, \sin 2\pi nx) \right] \left(\Psi_{N, j}, \varphi_n^* \right), \\
(\Psi_{N, j}, \overline{\varphi}_n^*) &= \sum_{n=0}^{\infty} \left[(q\varphi_n, \varphi_n^*) \left(\Psi_{N, j}, \sin 2\pi nx \right) + (q \cos 2\pi n_1 x, \varphi_n^*) \right] \left(\Psi_{N, j}, \varphi_n^* \right),
\end{align*}
\]

(23)

\[
|(q\Psi_{N, j}, \sin 2\pi nx)| < 4M, \\
|(q\Psi_{N, j}, \varphi_n^*)| < 4M,
\]

(24)

(25)

for \(N \gg 1 \), where \(M = \sup |q_n| \). These relations are obvious for \(q \in L_2(0, 1) \), since to obtain (22) and (23) we can use the decomposition of \(q \sin 2\pi nx \) and \(q\phi_n^* \) by basis (16). For \(q \in L_1(0, 1) \) see Lemma 1 of [23].

To obtain the asymptotic formulas for the eigenvalues and eigenfunctions we iterate (18) and (19) by using (22), (23). First let us prove the following obvious asymptotic formulas for the eigenfunctions \(\Psi_{n, j} \). The expansion of \(\Psi_{n, j} \) by basis (17) can be written in the form

\[
\Psi_{n, j} = u_{n, j} \varphi_n (x) + v_{n, j} \cos 2\pi nx + h_{n, j} (x),
\]

(26)

where

\[
u_{n, j} = (\Psi_{n, j}, \sin 2\pi nx), \quad v_{n, j} = (\Psi_{n, j}, \varphi_n^*),
\]

(27)

\[h_{n, j} (x) = \sum_{k=0}^{\infty} \left[(\Psi_{n, j}, \sin 2\pi kx) \varphi_k (x) + (\Psi_{n, j}, \varphi_k^*) \cos 2\pi kx \right].\]

Using (20), (21), (24) and (25) one can readily see that, there exists a constant \(C \) such that

\[
\sup |h_{n, j} (x)| \leq C \left(\sum_{k \neq n} \left(\frac{1}{|\lambda_{n, j} - (2\pi k)|^2} + \frac{n}{\left(\lambda_{n, j} - (2\pi k)^2 \right)^2} \right) \right) = O \left(\frac{\ln n}{n} \right)
\]

(28)

and by (26) we get

\[
\Psi_{n, j} = u_{n, j} \varphi_n (x) + v_{n, j} \cos 2\pi nx + O \left(\frac{\ln n}{n} \right).
\]

(29)

Since \(\Psi_{n, j} \) is normalized, we have

\[
1 = \| \Psi_{n, j} \|^2 = (\Psi_{n, j}, \Psi_{n, j}) = |u_{n, j}|^2 \| \varphi_n (x) \|^2 + |v_{n, j}|^2 \| \cos 2\pi nx \|^2 +

+ u_{n, j} \overline{v_{n, j}} (\varphi_n (x), \cos 2\pi nx) + v_{n, j} \overline{u_{n, j}} (\cos 2\pi nx, \varphi_n (x)) + O \left(\frac{\ln n}{n} \right)
\]

\[
= \left(\frac{8 |\beta|^2 - \Re \beta + 1}{3 |\beta - 1|^2} \right) |u_{n, j}|^2 + \frac{1}{2} |v_{n, j}|^2 + O \left(\frac{\ln n}{n} \right),
\]

where

\[
\beta = \frac{\sqrt{1 + 4M^2} - 1}{2M} - \frac{1}{2M}.
\]
that is,
\[a |u_{n,j}|^2 + \frac{1}{2} |v_{n,j}|^2 = 1 + O \left(\frac{\ln n}{n} \right), \]
(30)

where
\[a = \frac{8 |\beta|^2 - \Re \beta + 1}{3 |\beta - 1|^2}. \]

Note that \(a \neq 0 \), since \(|\beta|^2 + 1 > |\beta|\).

Now let us iterate (18). Using (22) in (18) we get
\[(\lambda_{n,j} - (2\pi n)^2) (\Psi_{n,j}, \sin 2\pi nx) = \]
\[\sum_{n_1=0}^{\infty} \left[(q\varphi_{n_1}, \sin 2\pi nx) (\Psi_{n,j}, \sin 2\pi n_1 x) + (q \cos 2\pi n_1 x, \sin 2\pi nx) (\Psi_{n,j}, \varphi_{n_1}^* (x)) \right]. \]

Isolating the terms in the right-hand side of this equality containing the multiplicands \((\Psi_{n,j}, \sin 2\pi nx)\) and \((\Psi_{n,j}, \varphi_{n_1}^* (x))\) (i.e., case \(n_1 = n \)), using (20) and (21) for the terms \((\Psi_{n,j}, 2\pi n_1 x)\) and \((\Psi_{n,j}, \varphi_{n_1}^* (x))\) respectively (in the case \(n_1 \neq n \)) we obtain
\[\left[\lambda_{n,j} - (2\pi n)^2 - (q\varphi_{n_1}, \sin 2\pi nx) \right] (\Psi_{n,j}, \sin 2\pi nx) - (q \cos 2\pi n_1 x, \sin 2\pi nx) (\Psi_{n,j}, \varphi_{n_1}^*) = \]
\[\sum_{n_1=0}^{\infty} \left[(q\varphi_{n_1}, \sin 2\pi nx) (\Psi_{n,j}, \sin 2\pi n_1 x) + (q \cos 2\pi n_1 x, \sin 2\pi nx) (\Psi_{n,j}, \varphi_{n_1}^* (x)) \right] \]
\[= \sum_{n_1} \left[a_1 (\lambda_{n,j}) (q (x) \Psi_{n,j}, \sin 2\pi n_1 x) + b_1 (\lambda_{n,j}) (q (x) \Psi_{n,j}, \varphi_{n_1}^*) \right]. \]

where
\[a_1 (\lambda_{n,j}) = \frac{(q\varphi_{n_1}, \sin 2\pi nx)}{\lambda_{n,j} - (2\pi n_1)^2} + \frac{\gamma_{n_1} (q \cos 2\pi n_1 x, \sin 2\pi nx)}{(\lambda_{n,j} - (2\pi n_1)^2)^2}, \]
\[b_1 (\lambda_{n,j}) = \frac{(q \cos 2\pi n_1 x, \sin 2\pi nx)}{\lambda_{n,j} - (2\pi n_1)^2}. \]

Using (22) and (23) for the terms \((q \Psi_{n,j}, \sin 2\pi n_1 x)\) and \((q \Psi_{n,j}, \varphi_{n_1}^*)\) of the last summation we obtain
\[\left[\lambda_{n,j} - (2\pi n)^2 - (q\varphi_{n_1}, \sin 2\pi nx) \right] (\Psi_{n,j}, \sin 2\pi nx) - (q \cos 2\pi n_1 x, \sin 2\pi nx) (\Psi_{n,j}, \varphi_{n_1}^*) = \]
\[= \sum_{n_1} \left[a_1 (\lambda_{n,j}) (q \Psi_{n,j}, \sin 2\pi n_1 x) + b_1 (\lambda_{n,j}) (q \Psi_{n,j}, \varphi_{n_1}^*) \right] = \]
\[= \sum_{n_1} a_1 \left(\sum_{n_2=0}^{\infty} [(q\varphi_{n_2}, \sin 2\pi n_1 x) (\Psi_{n,j}, \sin 2\pi n_2 x) + (q \cos 2\pi n_2 x, \sin 2\pi n_1 x) (\Psi_{n,j}, \varphi_{n_2}^* (x))] \right) + \]
\[+ \sum_{n_1} b_1 \left(\sum_{n_2=0}^{\infty} [(q\varphi_{n_2}, \varphi_{n_1}^*) (\Psi_{n,j}, \sin 2\pi n_2 x) + (q \cos 2\pi n_2 x, \varphi_{n_1}^*) (\Psi_{n,j}, \varphi_{n_2}^* (x))] \right), \]
Now isolating the terms for \(n_2 = n \) we get

\[
\left[\lambda_{n,j} - (2\pi n)^2 - (q \varphi_n, \sin 2\pi n x) \right] \left(\Psi_{n,j}, \sin 2\pi n x \right) = \sum_{n_1} \left[a_1 (q \varphi_n, \sin 2\pi n_1 x) + b_1 (q \varphi_n, \varphi_n^*) \right] \left(\Psi_{n,j}, \sin 2\pi n x \right) + \\
+ \sum_{n_1} \left[a_1 (q \cos 2\pi n_1 x, \sin 2\pi n_1 x) + b_1 (q \cos 2\pi n_1 x, \varphi_n^*) \right] \left(\Psi_{n,j}, \varphi_n^* (x) \right) + \\
= \sum_{n_1,n_2} \left[a_1 (q \varphi_{n_2}, \sin 2\pi n_1 x) + b_1 (q \varphi_{n_2}, \varphi_{n_1}^*) \right] \left(\Psi_{n,j}, \sin 2\pi n_2 x \right) + \\
+ \sum_{n_1,n_2} \left[a_1 (q \cos 2\pi n_2 x, \sin 2\pi n_1 x) + b_1 (q \cos 2\pi n_2 x, \varphi_{n_1}^*) \right] \left(\Psi_{n,j}, \varphi_{n_2}^* \right).
\]

Here and further the summations are taken under the conditions \(n_i \neq n \) and \(n_i = 0, 1, \ldots \) for \(i = 1, 2, \ldots \) Introduce the notations

\[
C_1 = \colon a_1, \quad M_1 = \colon b_1, \\
C_2 = \colon a_1 a_2 + b_1 A_2 = C_1 a_2 + M_1 A_2, \quad M_2 = \colon a_1 b_2 + b_1 B_2 = C_1 b_2 + M_1 B_2, \\
C_{k+1} = \colon C_k a_{k+1} + M_k A_{k+1}, \quad M_{k+1} = \colon C_k b_{k+1} + M_k B_{k+1}; \quad k = 2, 3, \ldots,
\]

where

\[
a_{k+1} = a_{k+1} (\lambda_{n,j}) = \frac{(q \varphi_{n_{k+1}}, \sin 2\pi n_{k+1} x)}{\lambda_{n,j} - (2\pi n_{k+1})^2} + \frac{\gamma_{1,k+1} (q \cos 2\pi n_{k+1} x, \sin 2\pi n_{k+1} x)}{\left(\lambda_{n,j} - (2\pi n_{k+1})^2 \right)^2}, \\
b_{k+1} = b_{k+1} (\lambda_{n,j}) = \frac{(q \cos 2\pi n_{k+1} x, \sin 2\pi n_{k+1} x)}{\lambda_{n,j} - (2\pi n_{k+1})^2}, \\
A_{k+1} = A_{k+1} (\lambda_{n,j}) = \frac{(q \varphi_{n_{k+1}}, \varphi_{n_{k+1}}^*)}{\lambda_{n,j} - (2\pi n_{k+1})^2} + \frac{\gamma_{1,k+1} (q \cos 2\pi n_{k+1} x, \varphi_{n_{k+1}}^*)}{\left(\lambda_{n,j} - (2\pi n_{k+1})^2 \right)^2}, \\
B_{k+1} = B_{k+1} (\lambda_{n,j}) = \frac{(q \cos 2\pi n_{k+1} x, \varphi_{n_{k+1}}^*)}{\lambda_{n,j} - (2\pi n_{k+1})^2}.
\]

Using these notations and repeating this iteration \(k \) times we get

\[
\left[\lambda_{n,j} - (2\pi n)^2 - (q \varphi_n, \sin 2\pi n x) - \tilde{A}_k (\lambda_{n,j}) \right] \left(\Psi_{n,j}, \sin 2\pi n x \right) = \\
= \left[(q \cos 2\pi n x, \sin 2\pi n x) + \tilde{B}_k (\lambda_{n,j}) \right] \left(\Psi_{n,j}, \varphi_n^* (x) \right) + R_k,
\]

(31)
where

\[\tilde{A}_k (\lambda_{n,j}) = \sum_{m=1}^{k} \alpha_m (\lambda_{n,j}), \quad \tilde{B}_k (\lambda_{n,j}) = \sum_{m=1}^{k} \beta_m (\lambda_{n,j}), \]

\[\alpha_k (\lambda_{n,j}) = \sum_{n_1, \ldots, n_k} [C_k (q \varphi_n, \sin 2\pi n k x) + M_k (q \varphi_n, \varphi_n^*)], \]

\[\beta_k (\lambda_{n,j}) = \sum_{n_1, \ldots, n_k} [C_k (q \cos 2\pi n x, \sin 2\pi n k x) + M_k (q \cos 2\pi n x, \varphi_n^*)], \]

\[R_k = \sum_{n_1, \ldots, n_{k+1}} \left\{ C_{k+1} (q \Psi_{n,j}, \sin 2\pi n_{k+1} x) + M_{k+1} (q \Psi_{n,j}, \varphi_{n_{k+1}}^*) \right\}. \]

It follows from (11), (24) and (25) that

\[\alpha_k (\lambda_{n,j}) = O \left(\left(\frac{\ln |n|}{n} \right)^k \right), \quad \beta_k (\lambda_{n,j}) = O \left(\left(\frac{\ln |n|}{n} \right)^k \right), \quad R_k = O \left(\left(\frac{\ln |n|}{n} \right)^{k+1} \right). \] (32)

Therefore if we take limit in (31) for \(k \to \infty \), we obtain

\[\left[\lambda_{n,j} - (2\pi n)^2 - Q_n - A (\lambda_{n,j}) \right] u_{n,j} = [P_n + B (\lambda_{n,j})] v_{n,j}, \]

where

\[P_n = (q \cos 2\pi n x, \sin 2\pi n x), \quad Q_n = (q \varphi_n, \sin 2\pi n x), \]

\[A (\lambda_{n,j}) = \sum_{m=1}^{\infty} \alpha_m (\lambda_{n,j}) = O \left(\frac{\ln |n|}{n} \right), \quad B (\lambda_{n,j}) = \sum_{m=1}^{\infty} \beta_m (\lambda_{n,j}) = O \left(\frac{\ln |n|}{n} \right). \] (34)

Thus iterating (18) we obtained (31). Now starting to iteration from (19) instead of (18) and using (23), (22) and arguing as in the previous iteration, we get

\[\left[\lambda_{n,j} - (2\pi n)^2 - P_n^* - A_k' (\lambda_{n,j}) \right] v_{n,j} = [\gamma_1 n + Q_n^* + B_k' (\lambda_{n,j})] u_{n,j} + R_k', \] (35)

where

\[P_n^* = (q \cos 2\pi n x, \varphi_n^*), \quad Q_n^* = (q \varphi_n, \varphi_n^*), \]

\[A_k' (\lambda_{n,j}) = \sum_{m=1}^{k} \alpha_m' (\lambda_{n,j}), \quad B_k' (\lambda_{n,j}) = \sum_{m=1}^{k} \beta_m' (\lambda_{n,j}), \]

\[\alpha_m' (\lambda_{n,j}) = \sum_{n_1, \ldots, n_k} \left[\tilde{C}_k (q \varphi_n, \sin 2\pi n k x) + \tilde{M}_k (q \varphi_n, \varphi_n^*) \right], \]

\[\beta_m' (\lambda_{n,j}) = \sum_{n_1, \ldots, n_k} \left[\tilde{C}_k (q \varphi_n, \sin 2\pi n k x) + \tilde{M}_k (q \varphi_n, \varphi_n^*) \right], \]

\[R_k' = \sum_{n_1, \ldots, n_{k+1}} \left\{ \tilde{C}_{k+1} (q \Psi_{n,j}, \sin 2\pi n_{k+1} x) + \tilde{M}_{k+1} (q \Psi_{n,j}, \varphi_{n_{k+1}}^*) \right\}, \]

\[\tilde{C}_{k+1} = \tilde{C}_k a_{k+1} + \tilde{M}_k A_{k+1}, \quad \tilde{M}_{k+1} = \tilde{C}_k b_{k+1} + \tilde{M}_k B_{k+1}; \quad k = 0, 1, 2, \ldots, \]
\[
\tilde{C}_1 = A_1(n,j) = \frac{(q\varphi_n, \varphi_n^*_{n,j})}{\lambda_n - (2\pi n)^2} + \gamma_1 n_1 (q \cos 2\pi n_1 x, \varphi_n^*_{n,j}) \left(\frac{\lambda_n - (2\pi n)^2}{2} \right),
\]
\[
\tilde{M}_1 = B_1(n,j) = \frac{(q \cos 2\pi n_1 x, \varphi_n^*_{n,j})}{\lambda_n - (2\pi n)^2}.
\]

Similar to (32) one can verify that
\[
\alpha_k'(n,j) = O \left(\frac{\ln |n|}{n} \right)^k, \beta_k'(n,j) = O \left(\frac{\ln |n|}{n} \right)^k, R_k' = O \left(\frac{\ln |n|}{n} \right)^{k+1}.
\] (37)

If we take limit in (35) for \(k \to \infty \), we obtain
\[
\left[\lambda_n - (2\pi n)^2 - P_n^* - A' (n,j) \right] v_{n,j} = [\gamma_1 n + Q_n^* + B' (n,j)] u_{n,j},
\]
where
\[
A' (n,j) = \sum_{m=1}^{\infty} \alpha_m' (n,j) = O \left(\frac{\ln |n|}{n} \right), B' (n,j) = \sum_{m=1}^{\infty} \beta_m' (n,j) = O \left(\frac{\ln |n|}{n} \right).
\] (38)

To get the main results of this paper we use the following system of equations, obtained above, with respect to \(u_{n,j} \) and \(v_{n,j} \)
\[
\left[\lambda_n - (2\pi n)^2 - Q_n - A (n,j) \right] u_{n,j} = [P_n + B (n,j)] v_{n,j},
\]
\[
\left[\lambda_n - (2\pi n)^2 - P_n^* - A' (n,j) \right] v_{n,j} = [\gamma_1 n + Q_n^* + B' (n,j)] u_{n,j},
\] (39, 40)

where
\[
Q_n = (q \varphi_n, \sin 2\pi n x) = -2 \left(\frac{\beta + 1}{\beta - 1} \right) \int_0^1 x q(x) \, dx + \frac{2(\beta + 1)}{\beta - 1} (x q(x), \cos 4\pi n x) - \frac{2}{\beta - 1} (q(x), \cos 4\pi n x) \]
\[
= -2 \left(\frac{\beta + 1}{\beta - 1} \right) \int_0^1 x q(x) \, dx + o(1),
\] (41)

\[
P_n^* = (q \cos 2\pi n x, \varphi_n^*) = \frac{2(\beta + 1)}{\beta - 1} \int_0^1 x q(x) \, dx + \frac{2(\beta + 1)}{\beta - 1} (x q(x), \cos 4\pi n x) - \frac{2}{\beta - 1} (q(x), \cos 4\pi n x) \]
\[
= \frac{2(\beta + 1)}{\beta - 1} \int_0^1 x q(x) \, dx + o(1),
\] (43)

\[
P_n = (q \cos 2\pi n x, \sin 2\pi n x) = \frac{1}{2} (q, \sin 4\pi n x) = o(1), \]
\[
Q_n^* = (q \varphi_n, \varphi_n^*) = 8 \left(\frac{\beta_1 + 1}{\beta_1 - 1} \right)^2 \int_0^1 q(x) \left(\frac{\beta_1}{1 + \beta_1} - x \right) \left(x - \frac{1}{1 + \beta_1} \right) \sin 4\pi n x \, dx = o(1).
\] (46)
Note that (39), (40) with (34), (38) give us

\[
\begin{align*}
\left[\lambda_{n,j} - (2\pi n)^2 - Q_n + O\left(\frac{\ln |n|}{n}\right) \right] u_{n,j} &= \left[P_n + O\left(\frac{\ln |n|}{n}\right) \right] v_{n,j}, \quad (47) \\
\left[\lambda_{n,j} - (2\pi n)^2 - P_n^* + O\left(\frac{\ln |n|}{n}\right) \right] v_{n,j} &= \left[\gamma_1 n + Q_n^* + O\left(\frac{\ln |n|}{n}\right) \right] u_{n,j}. \quad (48)
\end{align*}
\]

Introduce the notations

\[
c_n = (q, \cos 2\pi nx), s_n = (q, \sin 2\pi nx) \\
c_{n,1} = (xq, \cos 2\pi nx), s_{n,1} = (xq, \sin 2\pi nx) \\
c_{n,2} = (x^2q, \cos 2\pi nx), s_{n,2} = (x^2q, \sin 2\pi nx).
\]

In these notations we have

\[
Q_n = -\frac{2(\beta + 1)}{\beta - 1} \int_0^1 xq(x) \, dx + \frac{2(\beta + 1)}{\beta - 1} c_{2n,1} - \frac{2\beta}{\beta - 1} c_{2n} \quad (50)
\]

\[
P_n^* = \frac{2(\beta + 1)}{\beta - 1} \int_0^1 xq(x) \, dx + \frac{2(\beta + 1)}{\beta - 1} c_{2n,1} - \frac{2}{\beta - 1} c_{2n} \quad (51)
\]

\[
P_n = \frac{1}{2} s_{2n} \quad (52)
\]

\[
Q_n^* = -8\left(\frac{\beta + 1}{\beta - 1}\right)^2 s_{2n,2} + 8\left(\frac{\beta + 1}{\beta - 1}\right)^2 s_{2n,1} - \frac{8\beta}{(\beta - 1)^2} s_{2n}. \quad (53)
\]

Theorem 1 For \(j = 1, 2 \) the following statements hold:

(a) Any eigenfunction \(\Psi_{n,j} \) of \(T_1 \) corresponding to the eigenvalue \(\lambda_{n,j} \) defined in (10) satisfies

\[
\Psi_{n,j} = \sqrt{2} \cos 2\pi nx + O\left(n^{-1/2}\right). \quad (54)
\]

Moreover there exists \(N \) such that for all \(n > N \) the geometric multiplicity of the eigenvalue \(\lambda_{n,j} \) is 1.

(b) A complex number \(\lambda \in U(n) =: \{ \lambda : |\lambda - (2\pi n)^2| \leq n \} \) is an eigenvalue of \(T_1 \) if and only if it is a root of the equation

\[
\left[\lambda - (2\pi n)^2 - Q_n - A(\lambda) \right] \left[\lambda - (2\pi n)^2 - P_n^* - A'(\lambda) \right] - \left[P_n + B(\lambda) \right] [\gamma_1 n + Q_n^* + B'(\lambda)] = 0. \quad (55)
\]

Moreover \(\lambda \in U(n) \) is a double eigenvalue of \(T_1 \) if and only if it is a double root of (55).

Proof. (a) By (10) the left hand side of (48) is \(O(n^{1/2}) \), which implies that \(u_{n,j} = O(n^{-1/2}) \). Therefore from (29) we obtain (54). Now suppose that there are two linearly independent eigenfunctions corresponding to \(\lambda_{n,j} \). Then there exists an eigenfunction satisfying

\[
\Psi_{n,j} = \sqrt{2} \cos 2\pi nx + o(1)
\]

which contradicts (54).

(b) First we prove that the large eigenvalues \(\lambda_{n,j} \) are the roots of the equation (55). It follows from (54), (27) and (15) that \(v_{n,j} \neq 0 \). If \(u_{n,j} \neq 0 \) then multiplying the equations (39) and (40) side by side and then canceling \(v_{n,j} u_{n,j} \) we obtain (55). If \(u_{n,j} = 0 \) then by
Now let us examine Δ (λ) (50), (51) and (59) that or of the equation

$$\text{where } \lambda \text{ that (55) holds. Thus in any case } \lambda_{n,j} \text{ is a root of (55).}
$$

Now we prove that the roots of (55) lying in $U(n)$ are the eigenvalues of T_1. Let $F(\lambda)$ be the left-hand side of (55) which can be written as

$$F(\lambda) = (\lambda - (2\pi n)^2)^2 - (Q_n + A(\lambda) + P_n^* + A'(\lambda)) (\lambda - (2\pi n)^2) +
+ (Q_n + A(\lambda)) (P_n^* + A'(\lambda)) - (P_n + B(\lambda)) (\gamma_1 n + Q_n^* + B'(\lambda))
$$

and

$$G(\lambda) = (\lambda - (2\pi n)^2)^2.
$$

One can easily verify that the inequality

$$| F(\lambda) - G(\lambda) | < | G(\lambda) |
$$

holds for all λ from the boundary of $U(n)$. Since the function $G(\lambda)$ has two roots in the set $U(n)$, by the Rouche’s theorem we obtain that $F(\lambda)$ has two roots in the same set. Thus T_1
has two eigenvalues (counting with multiplicities) lying in $U(n)$ that are the roots of (55).

On the other hand, (55) has precisely two roots (counting with multiplicities) in $U(n)$. Therefore $\lambda \in U(n)$ is an eigenvalue of T_1 if and only if (55) holds.

If $\lambda \in U(n)$ is a double eigenvalue of T_1 then it has no other eigenvalues in $U(n)$ and hence (55) has no other roots. This implies that λ is a double root of (55). By the same way one can prove that if λ is a double root of (55) then it is a double eigenvalue of T_1. ■

Let us consider (55) in detail. If we substitute $t =: \lambda - (2\pi n)^2$ then it becomes

$$t^2 - (Q_n + A(\lambda) + P_n^* + A'(\lambda)) t +
+ (Q_n + A(\lambda)) (P_n^* + A'(\lambda)) - (P_n + B(\lambda)) (\gamma_1 n + Q_n^* + B'(\lambda)) = 0.
$$

The solutions of this equation are

$$t_{1,2} = \frac{(Q_n + P_n^* + A + A') \pm \sqrt{\Delta(\lambda)}}{2},$$

where

$$\Delta(\lambda) = (Q_n + P_n^* + A + A')^2 - 4 (Q_n + A) (P_n^* + A') + 4 (P_n + B) (\gamma_1 n + Q_n^* + B')$$

which can be written in the form

$$\Delta(\lambda) = (Q_n - P_n^* + A - A')^2 + 4 (P_n + B) (\gamma_1 n + Q_n^* + B').
$$

Clearly the eigenvalue $\lambda_{n,j}$ is a root either of the equation

$$\lambda = (2\pi n)^2 + \frac{1}{2} \left[(Q_n + P_n^* + A + A') - \sqrt{\Delta(\lambda)} \right]
$$

or of the equation

$$\lambda = (2\pi n)^2 + \frac{1}{2} \left[(Q_n + P_n^* + A + A') + \sqrt{\Delta(\lambda)} \right].
$$

Now let us examine $\Delta(\lambda_{n,j})$ in detail. If (8) holds then one can readily see from (34), (38), (50), (51) and (59) that

$$\Delta(\lambda_{n,j}) = 2\gamma_1 n s_{2n}(1 + o(1)).
$$
Taking into account the last three equality and (34), (38), (50), (51), we see that (60) and (61) have the form
\begin{align*}
\lambda &= (2\pi n)^2 - \frac{\sqrt{2\gamma_1}}{2} \sqrt{n s_2 n}(1 + o(1)), \\
\lambda &= (2\pi n)^2 + \frac{\sqrt{2\gamma_1}}{2} \sqrt{n s_2 n}(1 + o(1)).
\end{align*}

Theorem 2. If (8) holds, then the large eigenvalues \(\lambda_{n,j} \) are simple and satisfy the following asymptotic formulas
\begin{equation}
\lambda_{n,j} = (2\pi n)^2 + (-1)^j \frac{\sqrt{2\gamma_1}}{2} \sqrt{n s_2 n}(1 + o(1)).
\end{equation}
for \(j = 1, 2 \). Moreover, if there exists a sequence \(\{n_k\} \) such that (8) holds when \(n \) is replaced by \(n_k \), then the root functions of \(T_1 \) do not form a Riesz basis.

Proof. To prove that the large eigenvalues \(\lambda_{n,j} \) are simple let us show that one of the eigenvalues, say \(\lambda_{n,1} \) satisfies (65) for \(j = 1 \) and the other \(\lambda_{n,2} \) satisfies (65) for \(j = 2 \). Let us prove that each of the equations (60) and (61) has a unique root in \(U(n) \) by proving that
\begin{equation}
(2\pi n)^2 + \frac{1}{2} \left[(Q_n + P_n^* + A + A') \pm \sqrt{\Delta(\lambda)} \right]
\end{equation}
is a contraction mapping. For this we show that there exist positive real numbers \(K_1, K_2, K_3 \) such that
\begin{align*}
| A(\lambda) - A(\mu) | < K_1 | \lambda - \mu |, & \quad | A'(\lambda) - A'(\mu) | < K_2 | \lambda - \mu |, \\
\left| \sqrt{\Delta(\lambda)} - \sqrt{\Delta(\mu)} \right| < K_3 | \lambda - \mu |,
\end{align*}
where \(K_1 + K_2 + K_3 < 1 \). The proof of (66) is similar to the proof of (56) of the paper [26].

Now let us prove (67). By (62) and (8) we have
\begin{equation}
\left(\sqrt{\Delta(\lambda)} \right)^{-1} = o(1).
\end{equation}
On the other hand arguing as in the proof of (56) of the paper [26] we get
\begin{equation}
\frac{d}{d\lambda} \Delta(\lambda) = O(1).
\end{equation}
Hence in any case we have
\begin{equation}
\frac{d}{d\lambda} \sqrt{\Delta(\lambda)} = \frac{d}{2\sqrt{\Delta(\lambda)}} = o(1).
\end{equation}
Thus by the fixed point theorem, each of the equations (60) and (61) has a unique root \(\lambda_1 \) and \(\lambda_2 \) respectively. Clearly by (63) and (64), we have \(\lambda_1 \neq \lambda_2 \) which implies that the equation (55) has two simple root in \(U(n) \). Therefore by Theorem 1(b), \(\lambda_1 \) and \(\lambda_2 \) are the eigenvalues of \(T_1 \) lying in \(U(n) \), that is, they are \(\lambda_{n,1} \) and \(\lambda_{n,2} \), which proves the simplicity of the large eigenvalues and the validity of (65).

If there exists a sequence \(\{n_k\} \) such that (8) holds when \(n \) is replaced by \(n_k \), then by Theorem 1(a)
\begin{equation}
(\Psi_{n_k,1}, \Psi_{n_k,2}) = 1 + O\left(n_k^{-1/2} \right).
\end{equation}
Now it follows from the theorems of [20,21] (see also Lemma 3 of [24]) that the root functions of T_1 do not form a Riesz basis.

Now let us consider the operators T_2, T_3 and T_4. First we consider the operator T_3.

It is well-known that (see formulas (47a), (47b)) in page 65 of [18] the eigenvalues of the operators $T_3(q)$ consist of the sequences $\{\lambda_{n,1,3}\}, \{\lambda_{n,2,3}\}$ satisfying (10) when $\lambda_{n,j}$ is replaced by $\lambda_{n,j,3}$. The eigenvalues, eigenfunctions and associated functions of T_3 are

$$\lambda_n = (2\pi n)^2; \quad n = 0, 1, 2, \ldots$$

$$y_n(x) = x - \frac{\alpha}{1+\alpha}; \quad y_n(x) = \sin 2\pi nx; \quad n = 1, 2, \ldots$$

$$\phi_n(x) = \left(x - \frac{\alpha}{1+\alpha}\right) \frac{\cos 2\pi nx}{4\pi n}; \quad n = 1, 2, \ldots$$

respectively. The biorthogonal systems analogous to (16), (17) are

$$\left\{\cos 2\pi nx, \frac{4\left(1 + \frac{\pi}{\alpha}\right)}{1 - \alpha} \left(\frac{1}{1+\alpha} - x\right) \sin 2\pi nx\right\}_{n=0}^{\infty}$$

$$\left\{\sin 2\pi nx, \frac{4\left(1 + \alpha\right)}{1 - \alpha} \left(\frac{x - \alpha}{1+\alpha}\right) \cos 2\pi nx\right\}_{n=0}^{\infty}$$

respectively.

Analogous formulas to (18) and (19) are

$$\left(\lambda_{N,j} - (2\pi n)^2\right) (\Psi_{N,j}, \cos 2\pi nx) = (q(x) \Psi_{N,j}, \cos 2\pi nx)$$

$$\left(\lambda_{N,j} - (2\pi n)^2\right) (\Psi_{N,j}, \varphi_n^*) = -\gamma_3 n (\Psi_{N,j}, \cos 2\pi nx) = (q(x) \Psi_{N,j}, \varphi_n^*)$$

respectively, where

$$\gamma_3 = \frac{16\pi (1+\alpha)}{1 - \alpha}$$

Instead of (16)-(19) using (68)-(71) and arguing as in the proofs of Theorem 1 and Theorem 2 we obtain the following results for T_3.

Theorem 3 If (8) holds, then the large eigenvalues $\lambda_{n,j,3}$ are simple and satisfy the following asymptotic formulas

$$\lambda_{n,j,3} = (2\pi n)^2 + (-1)^j \frac{\sqrt{2}\gamma_3}{2} \sqrt{n} \sin(1 + o(1)).$$

for $j = 1, 2$. The eigenfunctions $\Psi_{n,j,3}$ corresponding to $\lambda_{n,j,3}$ obey

$$\Psi_{n,j,3} = \sqrt{2} \sin 2\pi nx + O\left(n^{-1/2}\right).$$

Moreover, if there exists a sequence $\{n_k\}$ such that (8) holds when n is replaced by n_k, then the root functions of T_3 do not form a Riesz basis.

Now let us consider the operator T_2. It is well-known that (see formulas (47a), (47b)) in page 65 of [18] the eigenvalues of the operators $T_2(q)$ consist of the sequences $\{\lambda_{n,1,2}\}, \{\lambda_{n,2,2}\}$ satisfying

$$\lambda_{n,j,2} = (2n\pi + \pi)^2 + O(n^{1/2}),$$

for $j = 1, 2$. The eigenfunctions $\Psi_{n,j,2}$ corresponding to $\lambda_{n,j,2}$ obey

$$\Psi_{n,j,2} = \sqrt{2} \sin 2\pi nx + O\left(n^{-1/2}\right).$$

Moreover, if there exists a sequence $\{n_k\}$ such that (8) holds when n is replaced by n_k, then the root functions of T_2 do not form a Riesz basis.
for $j = 1, 2$. The eigenvalues, eigenfunctions and associated functions of T_2 are

$$
\lambda_n = (\pi + 2\pi n)^2, \ y_n (x) = \cos (2n + 1) \pi x, \\
\phi_n (x) = \left(\frac{\beta}{\beta - 1} - x \right) \frac{\sin (2n + 1) \pi x}{2 (2n + 1) \pi}
$$

for $n = 0, 1, 2, \ldots$ respectively. The biorthogonal systems analogous to (16), (17) are

\begin{align*}
\{ \sin (2n + 1) \pi x, 4 \frac{(\beta - 1)}{\beta + 1} \left(x + \frac{1}{\beta - 1} \right) \cos (2n + 1) \pi x \}_{n=0}^\infty \\
\{ \cos (2n + 1) \pi x, 4 \frac{(\beta - 1)}{\beta + 1} \left(\frac{\beta}{\beta - 1} - x \right) \sin (2n + 1) \pi x \}_{n=0}^\infty
\end{align*}

\tag{75}
\tag{76}

respectively.

Analogous formulas to (18) and (19) are

\begin{align*}
\left(\lambda_{N,j} - ((2n + 1) \pi)^2 \right) (\Psi_{N,j}, \sin (2n + 1) \pi x) &= (q (x) \Psi_{N,j}, \sin (2n + 1) \pi x) \\
\left(\lambda_{N,j} - ((2n + 1) \pi)^2 \right) (\Psi_{N,j}, \varphi^*_n) - (2n + 1) \gamma_2 (\Psi_{N,j}, \sin (2n + 1) \pi x) &= (q (x) \Psi_{N,j}, \varphi^*_n) \gamma_2 = \frac{8 \pi (\beta - 1)}{\beta + 1}.
\end{align*}

\tag{77}
\tag{78}

respectively, where

$$
\gamma_2 = \frac{8 \pi (\beta - 1)}{\beta + 1}.
$$

Instead of (16)-(19) using (75)-(78) and arguing as in the proofs of Theorem 1 and Theorem 2 we obtain the following results for T_2.

Theorem 4 If (9) holds, then the large eigenvalues $\lambda_{n,j,2}$ are simple and satisfy the following asymptotic formulas

$$
\lambda_{n,j,2} = ((2n + 1) \pi)^2 + (-1)^j \frac{\sqrt{2} \gamma_2}{2} \sqrt{(2n + 1) s_{2n+1}} (1 + o(1)).
$$

\tag{79}

for $j = 1, 2$. The eigenfunctions $\Psi_{n,j,2}$ corresponding to $\lambda_{n,j,2}$ obey

$$
\Psi_{n,j,2} = \sqrt{2} \cos (2n + 1) \pi x + O \left(n^{-1/2} \right).
$$

\tag{80}

Moreover, if there exists a sequence $\{ n_k \}$ such that (9) holds when n is replaced by n_k, then the root functions of T_2 do not form a Riesz basis.

Lastly we consider the operator T_4. It is well-known that (see formulas (47a), (47b)) in page 65 of [18]) the eigenvalues of the operators $T_4(q)$ consist of the sequences $\{ \lambda_{n,1.4} \}, \{ \lambda_{n,2.4} \}$ satisfying (74) when $\lambda_{n,j,2}$ is replaced by $\lambda_{n,j,4}$. The eigenvalues, eigenfunctions and associated functions of T_4 are

$$
\lambda_n = (\pi + 2\pi n)^2, \ y_n (x) = \sin (2n + 1) \pi x, \\
\phi_n (x) = \left(\frac{\alpha}{1 - \alpha} + x \right) \frac{\cos (2n + 1) \pi x}{2 (2n + 1) \pi}
$$

for $n = 0, 1, 2, \ldots$ respectively. The biorthogonal systems analogous to (16), (17) are

\begin{align*}
\{ \sin (2n + 1) \pi x, 4 \frac{(\beta - 1)}{\beta + 1} \left(x + \frac{1}{\beta - 1} \right) \cos (2n + 1) \pi x \}_{n=0}^\infty \\
\{ \cos (2n + 1) \pi x, 4 \frac{(\beta - 1)}{\beta + 1} \left(\frac{\beta}{\beta - 1} - x \right) \sin (2n + 1) \pi x \}_{n=0}^\infty
\end{align*}

\tag{75}
\tag{76}

respectively.

Analogous formulas to (18) and (19) are

\begin{align*}
\left(\lambda_{N,j} - ((2n + 1) \pi)^2 \right) (\Psi_{N,j}, \sin (2n + 1) \pi x) &= (q (x) \Psi_{N,j}, \sin (2n + 1) \pi x) \\
\left(\lambda_{N,j} - ((2n + 1) \pi)^2 \right) (\Psi_{N,j}, \varphi^*_n) - (2n + 1) \gamma_2 (\Psi_{N,j}, \sin (2n + 1) \pi x) &= (q (x) \Psi_{N,j}, \varphi^*_n) \gamma_2 = \frac{8 \pi (\beta - 1)}{\beta + 1}.
\end{align*}

\tag{77}
\tag{78}

respectively, where

$$
\gamma_2 = \frac{8 \pi (\beta - 1)}{\beta + 1}.
$$

Instead of (16)-(19) using (75)-(78) and arguing as in the proofs of Theorem 1 and Theorem 2 we obtain the following results for T_2.

Theorem 4 If (9) holds, then the large eigenvalues $\lambda_{n,j,2}$ are simple and satisfy the following asymptotic formulas

$$
\lambda_{n,j,2} = ((2n + 1) \pi)^2 + (-1)^j \frac{\sqrt{2} \gamma_2}{2} \sqrt{(2n + 1) s_{2n+1}} (1 + o(1)).
$$

\tag{79}

for $j = 1, 2$. The eigenfunctions $\Psi_{n,j,2}$ corresponding to $\lambda_{n,j,2}$ obey

$$
\Psi_{n,j,2} = \sqrt{2} \cos (2n + 1) \pi x + O \left(n^{-1/2} \right).
$$

\tag{80}

Moreover, if there exists a sequence $\{ n_k \}$ such that (9) holds when n is replaced by n_k, then the root functions of T_2 do not form a Riesz basis.
for \(n = 0, 1, 2, \ldots \) respectively. The biorthogonal systems analogous to (16), (17) are

\[
\begin{align*}
\left\{ \cos (2n + 1) \pi x, \frac{4(1 - \alpha)}{1 + \alpha} \left(\frac{1}{1 - \alpha} - x \right) \sin (2n + 1) \pi x \right\}_{n=0}^{\infty} \\
\left\{ \sin (2n + 1) \pi x, \frac{4(1 - \alpha)}{1 + \alpha} \left(\frac{\alpha}{1 - \alpha} + x \right) \cos (2n + 1) \pi x \right\}_{n=0}^{\infty}
\end{align*}
\]

respectively.

Analogous formulas to (18) and (19) are

\[
\left(\lambda_{N,j} - (\pi + 2\pi n)^2 \right) (\Psi_{N,j}, \cos (2n + 1) \pi x) = (q(x) \Psi_{N,j}, \cos (2n + 1) \pi x),
\]

\[
\left(\lambda_{N,j} - ((2n + 1) \pi)^2 \right) (\Psi_{N,j}, \varphi_n^*) - (2n + 1) \gamma_4 (\Psi_{N,j}, \cos (2n + 1) \pi x) = (q(x) \Psi_{N,j}, \varphi_n^*)
\]

respectively, where

\[
\gamma_4 = \frac{8\pi (1 - \alpha)}{1 + \alpha}.
\]

Instead of (16)-(19) using (81)-(84) and arguing as in the proofs of Theorem 1 and Theorem 2 we obtain the following results for \(T_4 \).

Theorem 5 If (9) holds, then the large eigenvalues \(\lambda_{n,j,4} \) are simple and satisfy the following asymptotic formulas

\[
\lambda_{n,j,4} = ((2n + 1) \pi)^2 + (-1)^j \frac{\sqrt{2} \gamma_4}{2} \sqrt{(2n + 1) s_{2n+1}} (1 + o(1)).
\]

for \(j = 1, 2 \). The eigenfunctions \(\Psi_{n,j,4} \) corresponding to \(\lambda_{n,j,4} \) obey

\[
\Psi_{n,j,4} = \sqrt{2} \sin (2n + 1) \pi x + O \left(n^{-1/2} \right).
\]

Moreover, if there exists a sequence \(\{n_k\} \) such that (9) holds when \(n \) is replaced by \(n_k \), then the root functions of \(T_4 \) do not form a Riesz basis.

Remark 1 Suppose that

\[
\int_0^1 x q(x) \, dx \neq 0.
\]

If

\[
\frac{1}{2} s_{2n} + B = o \left(\frac{1}{n} \right),
\]

where \(B \) is defined by (34), then arguing as in the proof of Theorem 2, we obtain that the large eigenvalues of the operator \(T_1 \) are simple. Moreover if there exists a sequence \(\{n_k\} \) such that (88) holds when \(n \) is replaced by \(n_k \), then the root functions of \(T_1 \) do not form a Riesz basis. The similar results can be obtained for the operators \(T_2, T_3 \) and \(T_4 \).

Remark 2 Using (31) and (35) and arguing as in the proof of Theorem 3 of [1] it can be obtained asymptotic formulas of arbitrary order for the eigenvalues and eigenfunctions of the operator \(T_1 \). The similar formulas can be obtained for the operators \(T_2, T_3 \) and \(T_4 \).
References

[1] N. Dernek, O. A. Veliev, On the Riesz basisness of the root functions of the nonself-adjoint Sturm-Liouville operators, Israel Journal of Mathematics, 145, 113-123 (2005).

[2] P. Djakov, B. S. Mitjagin, Instability zones of periodic 1-dimensional Schrodinger and Dirac operators, Russian Math. Surveys, 61(4), 663-776 (2006).

[3] P. Djakov, B. S. Mitjagin, Convergence of spectral decompositions of Hill operators with trigonometric polynomial potentials, Doklady Mathematics, 83(1), 5-7 (2011).

[4] P. Djakov, B. S. Mitjagin, Convergence of spectral decompositions of Hill operators with trigonometric polynomial potentials, Math. Ann., 351(3), 509–540 (2011).

[5] P. Djakov, B. S. Mitjagin, Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators, Journal of Functional Analysis, 263(8), 2300-2332 (2012).

[6] N. Dunford, J. T. Schwartz, Linear Operators, Part 3, Spectral Operators, Wiley-Interscience, MR 90g:47001c, New York (1988).

[7] F. Gesztesy and V. Tkachenko, A Schauder and Riesz Basis Criterion for Non-Self-Adjoint Schrödinger Operators with Periodic and Antiperiodic Boundary Conditions, Journal of Differential Equations, 253, 400-437 (2012).

[8] N. B. Kerimov, Kh. R. Mamedov, On the Riesz basis property of the root functions in certain regular boundary value problems, Math. Notes, 64(4), 483-487 (1998).

[9] N. B. Kerimov, U. Kaya, Spectral properties of some regular boundary value problems for fourth order differential operators, Central European Journal of Mathematics, 11(1), 94-111 (2013).

[10] G. M. Kesselman, On unconditional convergence of the eigenfunction expansions of some differential operators, Izv. Vuzov, Matematika, 2, 82-93 (1964) (In Russian).

[11] A. S. Makin, Convergence of Expansion in the Root Functions of Periodic Boundary Value Problems, Doklady Mathematics, Vol.73, No. 1, 71-76 (2006).

[12] A. S. Makin, On spectral decompositions corresponding to non-self-adjoint Sturm-Liouville operators, Dokl. Math., 73(1), 15–18 (2006).

[13] A. S. Makin, On the basis property of systems of root functions of regular boundary value problems for the Sturm–Liouville operator, Differ. Equ., 42(12) 1717–1728 (2006).

[14] Kh.R. Mamedov, On the basis property in Lp(0; 1) of the root functions of a class non self-adjoint Sturm–Liouville operators, Eur. J. Pure Appl. Math., 3(5), 831–838 (2010).

[15] Kh.R. Mamedov, Menken H., On the basisness in L2(0; 1) of the root functions in not strongly regular boundary value problems, Eur. J. Pure Appl. Math., 1(2), 51–60 (2008).

[16] Menken H., Mamedov Kh.R., Basis property in Lp(0; 1) of the root functions corresponding to a boundary-value problem, J. Appl. Funct. Anal., 2010, 5(4), 351–356.

[17] V. P. Mikhailov, On Riesz bases in L2[0,1], Dokl. Akad. Nauk USSR, 114(5), 981-984 (1962).
[18] M. A. Naimark, Linear Differential Operators, George G. Harap&Company, (1967).

[19] V.A. Sadovnichii, B.E. Kanguzhin, On a connection between the spectrum of a differential operator with symmetric coefficients and boundary conditions, Dokl. Akad. Nauk SSSR 267, 310-313 (1982).

[20] A. A. Shkalikov, On the Riesz basis property of the root vectors of ordinary differential operators, Russian Math. Surveys, 34(5), 249-250 (1979).

[21] A. A. Shkalikov, On the basis property of the eigenfunctions of ordinary differential operators with integral boundary conditions, Vestnik Moscow University, Ser. Mat. Mekh., 37(6), 12-21 (1982).

[22] A. A. Shkalikov, O. A. Veliev, On the Riesz basis property of the eigen- and associated functions of periodic and antiperiodic Sturm-Liouville problems, Math. Notes, 85(5), 647-660 (2009).

[23] O. A. Veliev, M. Toppanuk Duman, The spectral expansion for a nonself-adjoint Hill operators with a locally integrable potential, Journal of Math. Analysis and Appl., 265, 76-90 (2002).

[24] O. A. Veliev, On the Nonself-adjoint Ordinary Differential Operators with Periodic Boundary Conditions. Israel Journal of Mathematics, 176, 195-208 (2010).

[25] O. A. Veliev, On the basis property of the root functions of differential operators with matrix coefficients, Central European Journal of Mathematics, 9(3), 657-672 (2011).

[26] O.A. Veliev, Asymptotic Analysis of Non-self-adjoint Hill Operators. arXiv:1107.2552