Motion-corrected 23Na MRI of the human brain using interleaved 1H 3D navigator images

Tobias Wilferth¹ | Max Müller¹ | Lena V. Gast¹ | Laurent Ruck¹ | Martin Meyerspeer² | Alfredo L. Lopez Kolkovsky³,⁴ | Michael Uder¹ | Arnd Dörfler⁵ | Armin M. Nagel¹,⁶

¹Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
²High-Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
³NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
⁴NMR Laboratory, CEA/DRF/IBFI/Molecular Imaging Research Center, Paris, France
⁵Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
⁶Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

Correspondence
Tobias Wilferth, Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany
Email: tobias.wilferth@uk-erlangen.de

Funding information
Deutsche Multiple Sklerose Gesellschaft

Purpose: To evaluate the feasibility of motion correction for sodium (23Na) MRI based on interleaved acquired 3D proton (1H) navigator images.

Methods: A 3D radial density-adapted sequence for interleaved 23Na/1H MRI was implemented on a 7 Tesla whole-body MRI system. The 1H data obtained during the 23Na acquisition were used to reconstruct 140 navigator image volumes with a nominal spatial resolution of (2.5 mm)3 and a temporal resolution of 6 s. The motion information received from co-registration was then used to correct the 23Na image dataset, which also had a nominal spatial resolution of (2.5 mm)3. The approach was evaluated on six healthy volunteers, whose motion during the scans had different intensities and characteristics.

Results: Interleaved acquisition of two nuclei did not show any relevant influence on image quality (SNR of 13.0 for interleaved versus 13.2 for standard 23Na MRI and 176.4 for interleaved versus 178.0 for standard 1H MRI). The applied motion correction increased the consistency between two consecutive scans for all examined volunteers and improved the image quality for all kinds of motion. The SD of the differences ranged between 2.30% and 6.96% for the uncorrected and between 2.13% and 2.67% for the corrected images.

Conclusion: The feasibility of interleaved acquired 1H navigator images to be used for retrospective motion correction of 23Na images was successfully demonstrated. The approach neither affected the 23Na image quality nor elongated the scan time and can therefore be an important tool to improve the accuracy of quantitative 23Na MRI.

KEYWORDS
23Na MRI, 7 Tesla, brain MRI, interleaved dual-nuclear MRI, motion correction, ultrahigh field strength
1 | INTRODUCTION

Sodium (23Na) MRI has been established as a noninvasive technique to determine the tissue sodium concentration in the human brain, and numerous studies have revealed new metabolic information for many diseases such as stroke, tumors, or multiple sclerosis. Due to the important role of sodium in the metabolism of human cells, 23Na MRI is used as a versatile tool in biomedical research.

Although improved hardware capabilities and increased magnetic field strengths have established 23Na MRI in clinical research, the considerably lower in vivo concentrations, fourfold lower gyromagnetic ratio, and very fast relaxation compared to proton (1H) MRI still cause substantial restrictions in clinical research applications. To reach a reasonable SNR and a spatial resolution of about 2.5–3.5 mm, acquisition times of about 10–15 min are necessary. Furthermore, for every patient additional scan time is usually required for adjustment measurements as well as for anatomical 1H MRI scans, which are used in the image postprocessing (e.g., partial volume correction). Over such long scan times, at least small motion of the head is very likely to occur and can lead to quantification errors, which may, if unnoticed, result in false clinical conclusions. Furthermore, repeating scans due to motion artifacts is costly.

To correct such inaccuracies resulting from head motion, a method that does not prolong scan time and that does not depend on additional devices is desirable. Whereas many approaches have been suggested for 1H MRI for 23Na MRI of the brain, only Lu et al. proposed a 3D 23Na navigator-based retrospective motion correction, which uses a second echo with lower spatial but higher temporal resolution. However, as a result of the intrinsically low SNR of 23Na MRI and the fast signal decay, the proposed 8 mm isotropic spatial resolution is only sufficient to correct for relatively large motion amplitudes, and the temporal resolution of about 1 min further limits the correction capabilities. To improve both the spatial and temporal resolution of the navigator images and therefore the precision of the motion correction, performing 1H acquisitions instead of 23Na could be a promising approach due to the considerably higher MR signal.

Interleaved or simultaneous dual-nuclear MR acquisitions, where data of two different nuclei are acquired within the same sequence, have been performed at different magnetic field strengths, recently even at modern 3 Tesla clinical systems without the need of hardware modification. At 7 Tesla human scanners, however, interleaved dual-nuclear MRI has always been conducted on research systems using additional hardware modifications or a special software interface developed by the user. With the recent generation of clinically approved 7 Tesla platforms, interleaved MRI measurements have also been enabled by the manufacturer, which has been demonstrated recently with interleaved 31P/1H MR spectroscopy.

The purpose of this work was to introduce an improved retrospective motion-correction method for 23Na MRI by interleaving it with 1H 3D navigator imaging. This was accomplished without applying any hardware modification and without the need of additional acquisition time.

2 | METHODS

All measurements were conducted on a whole-body 7 Tesla MR system (Magneton Terra, Siemens Healthcare, Erlangen, Germany) with multinuclear capability using a dual-tuned 23Na/1H head RF coil (RAPID Biomedical, Rimpar, Germany), which consists of a dual-tuned 23Na/1H quadrature transmit–receive birdcage coil and an additional 32 channel receive-only array for 23Na MRI. In vivo measurements were performed on six healthy volunteers (4 males, 2 females, 27 ± 7 years) who provided written informed consent before being scanned. The study was approved by the local ethical review board.

2.1 Interleaved 23Na/1H density-adapted 3D radial projection pulse sequence

The motion-correction MRI measurements were conducted using a density-adapted 3D radial projection (DA3DRAD) pulse sequence, which was adapted to allow for interleaved dual-nuclear acquisition with different acquisition parameters for 23Na and 1H. The sequence scheme is shown in Figure 1. First, the 23Na signal is excited and acquired. The idle time before the next 23Na excitation pulse is then used to acquire 1H MRI data. The idle time before the next 23Na excitation pulse is then used to acquire 1H MRI data.

2.2 MR imaging and image reconstruction

At the beginning of every measurement, a B_0-shim based on 1H MRI using the standard brain B_0-shim provided by the vendor and a global flip angle calibration for 23Na MRI were performed. For interleaved 23Na/1H MRI, the interleaved DA3DRAD sequence described above was conducted with the following parameters (for definition see Figure 1): $TR_{23Na} = 120$ ms, $TP_{23Na} = 0.6$ ms, $TE_{23Na} = 0.4$ ms, $TRO_{23Na} = 10$ ms, $FA_{23Na} = 87^\circ$, 7000 23Na projections and $TR_{1H} = 3.9$ ms, $TP_{1H} = 1.5$ ms, $TE_{1H} = 1.3$ ms, $TRO_{1H} = 1$ ms, $FA_{1H} = 6^\circ$, 196,000 1H
FIGURE 1 Scheme of the interleaved $^{23}\text{Na}/^{1}\text{H}$ sequence. During every ^{23}Na repetition time $TR_{23\text{Na}}$, the acquisition of one ^{23}Na projection is followed by the acquisition of N ^{1}H MRI projections with a repetition time of $TR_{1\text{H}}$ such that the complete ^{23}Na recovery time is used. Both nuclei are excited using rectangular RF pulses with pulse lengths and flip angles of $TP_{23\text{Na}}$ and $FA_{23\text{Na}}$ for ^{23}Na and $TP_{1\text{H}}$ and $FA_{1\text{H}}$ for ^{1}H. The signal of both nuclei is acquired by a DA3DRAD readout ($TE_{23\text{Na}}/TE_{1\text{H}}$ and readout duration $TRO_{23\text{Na}}/TRO_{1\text{H}}$ for $^{23}\text{Na}/^{1}\text{H}$). Every readout is followed by a rewinder gradient. Additionally, a spoiler gradient is used to dephase the remaining ^{1}H magnetization by 2π per voxel ^{1}H, hydrogen; ^{23}Na, sodium; DA3DRAD, density-adapted 3D radial projection projections (28 ^{1}H projections per ^{23}Na projection), nominal spatial resolution (2.5 mm)3 for ^{23}Na and ^{1}H, and 3D golden-angle projection scheme22 for ^{23}Na and ^{1}H. The ^{23}Na parameters were adapted from a measurement protocol currently used in clinical studies at our institution.

All images were reconstructed offline using a custom-written MatLab script (MatLab, MathWorks, Nat- ick, MA). The reconstruction was based on re-gridding on a Cartesian grid after density compensation using a Kaiser Bessel kernel with width 4.0 and a twofold oversampling. To increase the SNR and avoid Gibbs’ ringing artifacts, a Hamming filter was applied23,24 The images were finally obtained by a Fast Fourier Transform of the k-space data, which were zero-filled to a spatial resolution of (1 mm)3. Due to the acquisition with a 3D golden-angle projection scheme, an arbitrary number of projections could be used for image reconstruction.22 The multichannel data were combined using an adaptive combination reconstruction.25,26

2.3 Evaluation of multinuclear acquisition interactions

To evaluate a potential influence of the ^{1}H navigator acquisitions on the quality of ^{23}Na MRI, measurements of a spherical phantom (7.5% agarose gel, 100 mmol/L NaCl solution) were conducted. For the single-nuclear comparison measurement, reference data from each individual nucleus were acquired by running the interleaved sequence with either the ^{1}H or the ^{23}Na RF power and readout gradients turned off, without changing any of the other parameters (sequence parameters in subsection 2.2). In the following, images acquired with the interleaved dual-nuclear pulse sequence are labeled DA3DRAD$_{\text{IL}}$ when signals of both nuclei were excited and acquired, and DA3DRAD$_{23\text{Na}}$/DA3DRAD$_{1\text{H}}$ when only the ^{23}Na or ^{1}H signal was excited and measured. The SNR was calculated using one signal region of interest (signal intensity higher than 35% of the maximum signal intensity) and one noise region of interest (signal intensity lower than 15%/5% of the maximum signal intensity for $^{23}\text{Na}/^{1}\text{H}$) in the image.27

2.4 Navigator images and motion correction

The navigator images were all co-registered to the first one (I_1) using the realign function in SPM12 (Wellcome Trust Centre for Neuroimaging, London, UK) assuming rigid-body motion. The estimated
transformation parameters
\[
T_{I_i \rightarrow I_1} = \begin{pmatrix}
T_{x_i, I_i \rightarrow I_1} \\
T_{y_i, I_i \rightarrow I_1} \\
T_{z_i, I_i \rightarrow I_1}
\end{pmatrix}
\]
for the translation and
\[
R_{I_i \rightarrow I_1} = R_{z_i, I_i \rightarrow I_1} R_{y_i, I_i \rightarrow I_1} R_{x_i, I_i \rightarrow I_1}
\]
for the rotation

(1)
of every navigator image \(I_i \) were then used to directly correct the k-space data of the corresponding \(^{23}\text{Na}\) projections acquired during the same time. First, the rotation was performed by rotating the \(^{23}\text{Na}\) k-space locations
\[
k_{S_i, \text{cor} r} = R_{I_i \rightarrow I_1} \cdot k_{S_i},
\]
and afterward the translation was achieved by applying a phase shift of the \(^{23}\text{Na}\) k-space samples
\[
S_{I_i, \text{cor}r} = S_i e^{-2\pi i (k_{S_i, \text{cor}r} \cdot T_{I_i \rightarrow I_1})}.
\]
(3)

Thereby, \(S_i \) denotes a \(^{23}\text{Na}\) complex-valued k-space sample acquired during the same time as the navigator image \(I_i \), and \(k_{S_i} \) is the corresponding k-space location. The motion-corrected \(^{23}\text{Na}\) image was then obtained by reconstructing the corrected k-space data.

2.5 In vivo motion-correction measurements

To demonstrate the capacity of the proposed motion-correction method, \(^{23}\text{Na}/^{1}\text{H}\) interleaved MRI measurements (sequence parameters in subsection 2.2) were performed on a total of six healthy volunteers. For every volunteer, two scans were performed with different motion during the measurement. The motion pattern and intensity were up to the volunteers and not further specified. All \(^{23}\text{Na}\) data sets were reconstructed with and without applying the motion correction, and the images were normalized to the mean signal intensity in a central region of interest in the vitreous humor of the eyes. To demonstrate the benefits of the motion correction, the consistency between the two scans of each volunteer was evaluated for the uncorrected as well as for the motion-corrected images by subtracting the two images after registration and visualizing the distribution of the differences in a histogram. Furthermore, the SD was calculated for the distributions of the uncorrected and corrected images to quantify the improvements.

Additionally, in order to find the optimal number of projections for navigator image registration for the chosen spatial resolution of (2.5 mm)\(^3\), for two volunteers the described approach was repeated for navigator image data sets reconstructed out of 700, 1400, 2800, and 3500 projections, which correspond to a temporal resolution of 3, 6, 12, and 15 s, respectively. These values result from the chosen parameters (7000 \(^{23}\text{Na}\) projections, 28 \(^{1}\text{H}\) projections per \(^{23}\text{Na}\) projection) because they provide integer values for the corrected \(^{23}\text{Na}\) projections per navigator image.

RESULTS

3.1 Hardware and sequence evaluation

The results of the interleaved sequence evaluation are shown in Supporting Information Figure S1. The \(^{23}\text{Na}\) comparison measurements did not reveal any relevant influence of the additional \(^{1}\text{H}\) acquisitions on the \(^{23}\text{Na}\) image quality. Also, \(^{23}\text{Na}\) MRI had no relevant influence on \(^{1}\text{H}\) MRI. The SNR over the whole phantom obtained with the DA3DRAD\(^{1}\text{H}\) sequence was almost identical to the SNR obtained with the DA3DRAD\(^{23}\text{Na}\) and DA3DRAD\(^{1}\text{H}\) sequence (13.0 vs. 13.2 for \(^{23}\text{Na}\) and 176.4 versus 178.0 for \(^{1}\text{H}\)).

3.2 In vivo motion-correction measurements

Despite the relatively low SNR of the images acquired with the \(^{1}\text{H}\) birdcage of the dual-tuned \(^{23}\text{Na}/^{1}\text{H}\) head RF coil (see Supporting Information Figure S2), for both volunteer measurements conducted in order to find the optimal number of projections for navigator image registration, the motion correction improved the consistency between the two scans for all evaluated \(^{23}\text{Na}\) images reconstructed using different numbers of projections. The results are shown in Figure 2 (volunteer 1) and Supporting Information Figure S3 (volunteer 2). In both cases, the best consistency between the two scans was achieved with navigator images reconstructed out of 1400 projections. Therefore, in the following, this number of projections was used for the reconstruction of each 3D navigator image data set in all volunteer measurements. This leads to one navigator image data set every 6 s and 140 3D navigator image data sets in total during the interleaved \(^{23}\text{Na}/^{1}\text{H}\) MR acquisition. As a result, every single \(^{1}\text{H}\) navigator image data set was used to correct the corresponding 50 consecutive \(^{23}\text{Na}\) projections acquired during the same time.

Exemplary results of the determined motion parameters as well as the \(^{23}\text{Na}\) images with and without motion correction and the differences between uncorrected and corrected images are shown in Figure 3 for volunteer 3 and in Figure 4 for volunteer 4. Furthermore, the distributions of the differences between the uncorrected and
FIGURE 2 Results of the motion correction for volunteer 1 using 700, 1400, 2800, and 3500 projections for the reconstruction of the 1H 3D navigator image data sets. Exemplary navigator images for the different numbers of projections are presented in (A) to get a visual impression of the image quality. Furthermore, for each number of projections the distribution of the differences between the uncorrected as well as between the corrected images are shown (B). The motion correction improved the consistency between the two scans for all evaluated numbers of projections. The best results were achieved for navigator image data sets reconstructed out of 1400 consecutive projections.
FIGURE 3 Exemplary measurement results of volunteer 3 for the two consecutive scans (scan 1 (A) and scan 2 (B)). All 23Na images were normalized to the mean signal intensity in a central region of interest in the vitreous humor. In scan 2, clearly stronger movements were detected. In both cases, differences between the uncorrected and corrected image are visible. Especially for scan 2, the correction clearly improved the image quality and reduced motion artifacts. Furthermore, the difference between the uncorrected and the corrected images of both cases respectively were significantly reduced.
FIGURE 4 Exemplary measurement results of volunteer 4 for the two consecutive scans (scan 1 (A) and scan 2 (B)). All 23Na images were normalized to the mean signal intensity in a central region of interest in the vitreous humor. In scan 2, clearly stronger movements were detected. For scan 1, hardly any differences between the uncorrected and corrected image are visible. For scan 2, the correction clearly improved the image quality and reduced all kinds of motion artifacts as signal blurring and wrongly depicted anatomical structures. Furthermore, the difference between the uncorrected and the corrected images of both scans respectively were significantly reduced.
corrected images of the consecutive scans for all examined volunteers are presented in Figure 5. In all cases, the interleaved motion-correction approach reduced the differences between the uncorrected and the corrected 23Na images, which proves the increased image accuracy. In the measurements, motion of different intensity and characteristic were detected—abrupt as well as continuous movements. Especially for scans including strong movements with translations of up to 5 mm and rotations of up to 10°, which showed clear motion artifacts, the image quality was significantly improved, and the corrected images did not exhibit obvious artifacts such as washed-out anatomical structures anymore (in particular, see Figure 4B).

4 | DISCUSSION

In this work, a retrospective motion-correction method for 23Na MRI, based on interleaved acquired 3D 1H navigator images, was implemented. The navigator images were obtained without any hardware or software modification as well as without time penalty. The additional 1H acquisitions did not affect the image quality of 23Na MRI.

The presented approach corrected motion of different characteristics and intensities. For all examined volunteers, it reduced differences between two consecutive scans and therefore improved the 23Na MR image quality. For strong and abrupt movements persisting during the whole scan, parts of the motion artifacts, especially signal blurring, still remained in the corrected image. For continuous motion during the entire scan and for single strong abrupt movements, no obvious motion artifacts were observed in the corrected images. For all volunteers, apart from general signal blurring, all clear motion artifacts were removed from the images. Thus, the correction may prevent the necessity to repeat measurements.

In this study, the spatial resolution of the 1H navigator images was chosen identical to the 23Na resolution to get high spatial accuracy in the registration process. If the focus is more on the temporal resolution, the navigator acquisition time could be shortened by using lower 1H spatial resolutions. This tradeoff between spatial and temporal resolution can always be adapted to the specific needs of the study. With the parameters of this study, one navigator data set was used to correct only 0.7% of the acquired 23Na projections. This should result in sufficient correction capability for most types of motion, like occasional abrupt or continuous positional changes of the head.

Different methods to correct periodical movements such as cardiac26,30 or respiratory31 motion exist for 23Na MRI. However, these are not suited for correction of aperiodic motion such as motion of the head. Retrospective motion correction of random head movements for 23Na MRI has only been performed by Lu et al.10 using a second 23Na echo with a long TE and was therefore mainly based on the 23Na CSF signal. Due to the significantly higher 1H MR signal compared to 23Na, the proposed interleaved 23Na/1H approach, as applied in this work, provides a more than elevenfold higher temporal resolution while increasing the spatial resolution of the navigator images by a factor of ~ 32 compared to Lu et al.10 The potential for motion correction is thereby clearly improved. Because a DA3DRAD acquisition with repeated sampling of the k-space center is used for 23Na MRI, a self-navigated motion-correction approach, as it is known for 1H MRI32, would be another possibility based on 23Na MRI, which, however, also does not reach the potential of the interleaved 23Na/1H method due to the significantly lower SNR and the resulting lower spatial and temporal resolution (see Supporting Information Figure S4).

The 1H navigator data were acquired using a DA3DRAD readout scheme with a golden-angle projection scheme, which offers some beneficial properties. The excitation and acquisition of the 23Na signal take about 12 ms (i.e., 3TR_{1H}) with the sequence parameters used. Therefore, the 1H acquisition had to be segmented, and thus no uniform steady state is reached. Although this influenced the contrast of the 1H navigator images, no artifacts deteriorated the image quality for reliable image registration because the different intensities are distributed over the whole k-space due to the golden-angle projection scheme.22 Non-segmented 1H acquisition (e.g., $\text{TR}_{1H} > 12$ ms) is unfavorable because this would reduce the number of 1H projections by at least a factor of 3, resulting in accordingly lower temporal resolution of the navigator images. To reach a uniform steady state for 1H, simultaneous acquisition of 23Na and 1H would be a possibility18,33 which, however, requires additional hardware and therefore limits applicability. Furthermore, due to the golden-angle projection scheme, the temporal resolution of the navigator image data sets can even be adapted retrospectively, depending on the needs of the study. This has also been of advantage for showing the feasibility of the interleaved method because different parameters and approaches could have been evaluated retrospectively using the same dataset.

Despite these advantages, the 1H acquisition strategy has not been further optimized and may be improved in order to reach higher spatial or temporal resolution of the 1H navigator image data sets. Further improvements of the temporal resolution could be achieved by using a sliding-window reconstruction, which is often used for example in myocardial imaging.34 Because this method, however, does not generally lead to improvements for
FIGURE 5 Distributions of the differences between the uncorrected and corrected images of the two scans for all six examined volunteers. The SD of the distribution of the uncorrected 23Na images lies between 2.3% and 6.96%, depending on the motion characteristic of the two scans. For all volunteers, the motion correction reduced the SD of the distribution of the corrected 23Na images and therefore improved the image quality by increasing the consistency between two consecutive scans.
the presented application (see Supporting Information Figure S5) without specific further optimization, this may be investigated in future work. Furthermore, other methods already used in 1H retrospective motion-correction approaches for improving navigator data could be tested. Improvements may, for example, be achieved by using other 1H excitation strategies such as fat navigators by using k-space sampling trajectories optimized for fast imaging such as EPI or by additionally taking into account projection moments of the 1H data. However, due to the predetermined timing of the 23Na acquisition and the additional SAR contribution in combination with the reduced quality of the 1H channel of dual-tuned RF coils compared to RF coils commonly used in 1H motion-correction studies, the applicability may be limited. In particular, the single channel constraint in our setting, which is a common restriction of dual-tuned RF coils, does not allow for parallel imaging techniques, and multichannel coils might diminish the accuracy of projection moment estimation. The proposed method in this work is expected to work with all kinds of dual-tuned RF coils, for example independent of the number of 1H channels and the resulting homogeneity.

A disadvantage of the interleaved 23Na/1H method is the need for a dual-tuned RF coil. Even though 23Na MRI with RF coils comprising an additional 1H channel benefit from advantages with localizer and adjustment measurements, single-resonant 23Na RF coils or dual-tuned X-nuclei RF coils (e.g., 23Na/35Cl RF coil) are often used, for which our approach is not applicable. Furthermore, interleaved measurements lead to a higher SAR. Even though this did not influence the choice of the acquisition parameters in the current 23Na MRI protocol, it may be a limiting factor for other studies using inversion recovery or triple-quantum filtered 23Na MRI that typically have higher SAR.

Our work successfully demonstrates the feasibility of the presented motion-correction approach on a typical subject group size for current technical development MR studies. Because the signal intensities were normalized to vitreous humor, relative deviations of the normalized signal intensity could be derived that should correspond to relative concentration deviations. However, for conclusions about the actual improvement in quantitative accuracy in future clinical 23Na MRI studies, which will also depend on the characteristics of the examined pathology, quantitative measurements including crucial postprocessing steps for concentration determination such as correction of the coil sensitivity and partial volume correction are required. Our method is particularly promising for applications in studies on patients with neurological disorders such as multiple sclerosis because motion is typically a limiting factor in these cohorts.

5 | CONCLUSION

We successfully demonstrated the feasibility of retrospective motion correction in 23Na brain MRI using interleaved acquired 23Na navigator images. The approach neither affected the 23Na image quality nor elongated the scan time. Especially regarding the advances in 23Na spatial resolutions with higher field strength, the presented results are promising for improving image quality in future 23Na MRI studies.

ACKNOWLEDGMENT

T.W. and A.N. acknowledge the German Multiple Sclerosis Society (DMSG) for their support of the project.

ORCID

Tobias Wilferth https://orcid.org/0000-0002-2520-9025
Max Müller https://orcid.org/0000-0001-6731-9583
Martin Meyerspeer https://orcid.org/0000-0002-0295-8218
Alfredo L. Lopez Kolkovsky https://orcid.org/0000-0002-9375-1465
Armin M. Nagel https://orcid.org/0000-0003-0948-1421

REFERENCES

1. Tsang A, Stobbe RW, Asdaghi N, et al. Relationship between sodium intensity and perfusion deficits in acute ischemic stroke. J Magn Reson Imaging. 2011;33:41-47.
2. Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA. Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology. 2003;227:529-537.
3. Schepkin VD. Sodium MRI of glioma in animal models at ultra-high magnetic fields. NMR Biomed. 2016;29:175-186.
4. Petracca M, Fleysher L, Oesingmann N, Inglese M. Sodium MRI of multiple sclerosis. NMR Biomed. 2016;29:153-161.
5. Huhn K, Engelhorn T, Linker RA, Nagel AM. Potential of sodium MRI as a biomarker for neurodegeneration and Neuroinflammation in multiple sclerosis. Front Neurol. 2019;10:84.
6. Zaraaoui W, Konstandin S, Audoin B, et al. Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study. Radiology. 2012;264:859-867.
7. Thulborn KR. Quantitative sodium MR imaging: a review of its evolving role in medicine. Neuroimage. 2018;168:250-268.
8. Madelin G, Regatte RR. Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging. 2013;38:511-529.
9. Ladd ME, Bachert P, Meyerspeer M, et al. Pros and cons of ultra-high-field MRI/MRS for human application. Prog Nucl Magn Reson Spectrosc. 2018;109:1-50.
10. Lu A, Atkinson IC, Thulborn KR. Motion reduction for quantitative brain sodium MR imaging with a navigated flexible twisted projection imaging sequence at 9.4T. J Magn Reson. 2019;307:106582.
11. Nagel AM, Bock M, Hartmann C, et al. The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol. 2011;46:539-547.
12. Niesporek SC, Hoffmann SH, Berger MC, et al. Partial volume correction for in vivo (23)Na-MRI data of the human brain. *Neuroimage*. 2015;112:353-363.
13. Andre JB, Bresnahan BW, Mossa-Basha M, et al. Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations. *J Am Coll Radiol*. 2015;12:689-695.
14. Godenschweger F, Kagebein U, Stucht D, et al. Motion correction in MRI of the brain. *Phys Med Biol*. 2016;61:R32-R56.
15. Bakermans AJ, Wessel CH, Zheng KH, Groot PFC, Stroes ESG, Nederveen AJ. Dynamic magnetic resonance measurements of calf muscle oxygenation and energy metabolism in peripheral artery disease. *J Magn Reson Imaging*. 2020;51:98-107.
16. Lopez Kolkovsky AL, Marty B, Giacomini E, Meyerspeer M, Carlier PG. Repeatability of multinuclear interleaved acquisitions with nuclear Overhauser enhancement effect in dynamic experiments in the calf muscle at 3T. *Magn Reson Med*. 2021;86:115-130.
17. Meyerspeer M, Magill AW, Kuehne A, Gruetter R, Moser E, Schmid AI. Simultaneous and interleaved acquisition of NMR signals from different nuclei with a clinical MRI scanner. *Magn Reson Med*. 2016;76:1636-1641.
18. Yu Z, Madelin G, Sodickson DK, Cloos MA. Simultaneous proton magnetic resonance fingerprinting and sodium MRI. *Magn Reson Med*. 2020;83:2232-2242.
19. de Bruin PW, Koken P, Versluis MJ, et al. Time-efficient interleaved human (23)Na and (1)H data acquisition at 7 T. *NMR Biomed*. 2015;28:1228-1235.
20. Karkouri J, Rodgers CT. Interleaved 31P MRS and 1H dual-echo GRE B0 map pulse sequence for 7T Terra scanners. Paper presented at Proceedings of the 29th Annual Meeting of the ISMRM, Virtual Conference, 2021. p. 1812.
21. Nagel AM, Laun FB, Weber MA, Mattheis C, Semmler W, Schad LR. Sodium MRI using a density-adapted 3D radial acquisition technique. *Magn Reson Med*. 2009;62:1565-1573.
22. Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the Golden ratio for time-resolved MRI. *IEEE Trans Med Imaging*. 2007;26:68-76.
23. Konstandin S, Nagel AM. Performance of sampling density-weighted and postfiltered density-adapted projection reconstruction in sodium magnetic resonance imaging. *Magn Reson Med*. 2013;69:495-502.
24. Stobbe R, Beaulieu C. Advantage of sampling density weighted apodization over postacquisition filtering apodization for sodium MRI of the human brain. *Magn Reson Med*. 2008;60:981-986.
25. Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. *Magn Reson Med*. 2000;43:682-690.
26. Benkhedeh N, Hoffmann SH, Biller A, Nagel AM. Evaluation of adaptive combination of 30-channel head receive coil array data in 23Na MR imaging. *Magn Reson Med*. 2016;75:527-536.
27. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. *J Magn Reson Imaging*. 2007;26:375-385.
28. Gerhalter T, Chen AM, Dehkharhghi S, et al. Global decrease in brain sodium concentration after mild traumatic brain injury. *Brain Commun*. 2021;3:e9ab051.
29. Jeremic R, Bock M, Nielles-Vallespin S, Wacker C, Bauer W, Schad LR. ECG-gated 23Na-MRI of the human heart using a 3D-radial projection technique with ultra-short echo times. *MAGMA*. 2004;16:297-302.
30. Lott J, Platt T, Niesporek SC, et al. Corrections of myocardial tissue sodium concentration measurements in human cardiac (23) Na MRI at 7 tesla. *Magn Reson Med*. 2019;82:159-173.
31. Platt T, Umathur R, Fiedler TM, et al. In vivo self-gated (23) Na MRI at 7 T using an oval-shaped body resonator. *Magn Reson Med*. 2018;80:1005-1019.
32. Anderson AG 3rd, Velikina J, Block W, Wieben O, Samsonov A. Adaptive retrospective correction of motion artifacts in cranial MRI with multicore three-dimensional radial acquisitions. *Magn Reson Med*. 2013;69:1094-1103.
33. Kaggie JD, Sapkota N, Thapa B, et al. Synchronous radial 1H and 23Na dual-nuclear MRI on a clinical MRI system, equipped with a broadband transmit channel. *Concepts Magn Reson Part B Magn Reson Eng*. 2016;46B:e21347.
34. Ge L, Kino A, Griswold M, Mistretta C, Carr JC, Li D. Myocardial perfusion MRI with sliding-window conjugate-gradient HYPR. *Magn Reson Med*. 2009;62:835-839.
35. Gallichan D, Marques JP. Optimizing the acceleration and resolution of three-dimensional fat image navigators for high-resolution motion correction at 7T. *Magn Reson Med*. 2017;77:547-558.
36. Gallichan D, Marques JP, Gruetter R. Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T. *Magn Reson Med*. 2016;75:1030-1039.
37. Speck O, Stadler J, Zaitsev M. High resolution single-shot EPI at 7T. *Magn. Magma*. 2008;21:73-86.
38. Welch EB, Rossman PJ, Felmlee JP, Manduca A. Self-navigated motion correction using moments of spatial projections in radial MRI. *Magn Reson Med*. 2004;52:337-345.
39. Wiggins GC, Brown R, Lakshmanan K. High-performance radiofrequency coils for (23)Na MRI: brain and musculoskeletal applications. *NMR Biomed*. 2016;29:96-106.
40. Niesporek SC, Umathur R, Fiedler TM, Bachert P, Ladd ME, Nagel AM. Improved T*(2) determination in (23)Na, (35)Cl, and (17)O MRI using iterative partial volume correction based on (1)H MRI segmentation. *MAGMA*. 2017;30:519-536.
41. Stobbe R, Beaulieu C. In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. *Magn Reson Med*. 2005;54:1305-1310.
42. Hancu I, Boada FE, Shen GX. Three-dimensional triple-quantum-filtered (23)Na imaging of in vivo human brain. *Magn Reson Med*. 1999;42:1146-1154.
43. Hanspach J, Nagel AM, Hensel B, Uder M, Koros L, Laun FB. Sample size estimation: current practice and considerations for original investigations in MRI technical development studies. *Magn Reson Med*. 2021;85:2109-2116.
44. Lachner S, Ruck L, Niesporek SC, et al. Comparison of optimized intensity correction methods for (23)Na MRI of the human brain using a 32-channel phased array coil at 7 tesla. *Z Med Phys*. 2020;30:104-115.
45. Wylie GR, Genova H, DeLuca J, Chiavaravotti N, Sumowski JF. Functional magnetic resonance imaging movers and shakers: does subject-movement cause sampling bias? *Hum Brain Mapp*. 2014;35:1-13.
46. Kraff O, Quick HH. Radiofrequency coils for 7 tesla MRI. *Top Magn Reson Imaging*. 2019;28:145-158.
SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

FIGURE S1. The 23Na images of the DA3DRAD$_{1H}$ sequence were compared to the ones acquired with the DA3DRAD$_{23Na}$ sequence (A) and the 1H images to the ones of the DA3DRAD$_{1H}$ sequence (B). All images were individually normalized to the maximum signal intensity of the data set. The mean differences over the whole phantom were (-0.3 ± 1.9) % of the maximum signal value for 23Na and (-0.06 ± 0.12) % for 1H. Therefore, in both cases no relevant deviation was observed.

FIGURE S2. The dual-tuned 23Na/1H head RF coil is optimized for 23Na MRI measurements and the included 1H quadrature Tx/Rx birdcage so far has only been used for localization measurements and for performing B$_0$-shims based on 1H. To evaluate the quality of the 1H quadrature Tx/Rx birdcage, single-nuclear 1H in vivo measurements of a healthy volunteer were performed using the dual-tuned 23Na/1H as well as an 1Tx/32Rx 1H head RF coil (Nova Medical, Wilmington, MA, USA) which is a commercial, frequently used 7T brain RF coil. These measurements were conducted using a common DA3DRAD sequence with, apart from the pause due to the 23Na acquisition, parameters identical to those of the DA3DRAD$_{1H}$ sequence: TR = 3.9 ms, TP = 1.5 ms, TE = 1.3 ms, TRO = 1 ms, FA = 6°, 3500 1H projections, nominal spatial resolution 2.5 mm isotropic, 3D golden angle projection scheme. Furthermore, 1H MRI measurements of a spherical phantom (7.5% agarose gel, 100 mmol/L NaCl solution) were used to compare the SNR of both RF coils. The SNR was calculated using a ROI in the image and an additional noise scan. The comparison of the 1Tx/32Rx 1H head RF coil and the 1H birdcage of the dual-tuned 23Na/1H head RF coil clearly showed that the image quality of the latter was lower, as expected. Over the whole agarose gel phantom, the 1Tx/32Rx 1H RF coil provided a five-fold higher SNR than the dual-tuned 23Na/1H RF coil. In the in vivo measurements, the image quality of the 1Tx/32Rx 1H RF coil is mainly restricted by undersampling artifacts and not by the SNR for all considered numbers of projections. In contrast, in the images acquired with the 1H channel of the dual-tuned 23Na/1H RF coil undersampling artifacts are strongly superimposed by noise.

FIGURE S3. Results of the motion correction for volunteer 2 using 700, 1400, 2800 and 3500 projections for the reconstruction of the 1H 3D navigator image data sets. Exemplary navigator images for the different numbers of projections are presented in (A) to get a visual impression of the image quality. Furthermore, for each number of projections the distribution of the differences between the uncorrected as well as between the corrected images are shown (B). The motion correction improved the consistency between the two scans for all evaluated numbers of projections. The best results were achieved for navigator image data sets reconstructed out of 1400 consecutive projections.

FIGURE S4. As a DA3DRAD acquisition with repeated sampling of the k-space center is used for 23Na MRI, a self-navigated motion correction approach which uses low spatial resolution image data sets with higher temporal resolution reconstructed out of the central part of the k-space. Such a self-navigation was evaluated for volunteer 2 and volunteer 3 and compared to the results of the interleaved 23Na/1H method. The spatial resolution of the navigator images was empirically chosen to be 10 mm and for the temporal resolution with 6 s (50 23Na projections per image) the same value as for the interleaved method was used. The reconstruction, co-registration, and evaluation have been done in exactly the same way as for the interleaved 23Na/1H method. The determined motion parameters for the second scan of volunteer 3 are shown for the self-navigated approach (A) as well as the interleaved 23Na/1H approach (B). The translation values of the self-navigated method are clearly noisier compared to the interleaved method, especially in H-F-direction. Furthermore, the rotations were not detected properly for the self-navigation and clear deviation compared to the interleaved method can be seen. Furthermore, the distribution of the differences between the uncorrected as well as between the corrected images are shown for the self-navigated and for the interleaved motion correction for volunteer 2 (C, D) and volunteer 3 (E, F). For both volunteers, the self-navigated approach performs clearly worse than the interleaved 23Na/1H method.

FIGURE S5. The 1H navigator data was acquired using a density-adapted 3D radial projection pulse sequence with a 3D golden-angle projection scheme. As this allows for the reconstruction of an image out of an arbitrary number of consecutively acquired projections, the 1H navigator data also allow for a sliding window approach to determine the motion parameters. This was evaluated for volunteer 3 and the results were compared to the motion correction method without using the sliding window. Like for the motion correction without sliding window, 1400 consecutive projections were used for the reconstruction of one single 3D navigator image data set. The window step size was chosen to be 350 projections. This leads to 557 3D navigator image data sets in total during the interleaved 23Na/1H MR acquisition. The reconstruction of the motion corrected 23Na images and their evaluation was done in...
exactly the same way as for the approach without sliding window.

The motion parameters derived by the co-registration of 3D navigator image data sets without using the sliding window are shown for scan 1 (A) and scan 2 (B) and the corresponding parameters obtained using the sliding window (C and D). Only very minor differences occur between the two methods. The main motion characteristic is the same in both cases. Furthermore, the distribution of the differences between the uncorrected as well as between the corrected images are shown for the motion correction without (E) and with sliding window (F). Again, hardly any differences between the two approaches can be found. Regarding the SD of the differences between the corrected images, the motion correction without sliding window performed negligibly better.

How to cite this article: Wilferth T, Müller M, Gast LV, et al. Motion-corrected 23Na MRI of the human brain using interleaved 1H 3D navigator images. *Magn Reson Med.* 2022;88:309-321. doi: 10.1002/mrm.29221