COHOMOLOGY CLASSIFICATION OF SPACES WITH FREE S^3-ACTIONS

ANJU KUMARI AND HEMANT KUMAR SINGH

Abstract. This paper gives the cohomology classification of finitistic spaces X equipped with free actions of the group $G = S^3$ and the orbit space X/G is the integral or mod 2 cohomology quaternion projective space \mathbb{HP}^n. We have proved that X is the integral or mod 2 cohomology S^{4n+3} or $S^3 \times \mathbb{HP}^n$. Similar results for $G = S^1$ actions are also discussed.

1. INTRODUCTION

Let G be a compact Lie group acting on a finitistic space X. There are interesting problems related to transformation groups, for example, to classify the fixed point set X^G, the existence of free/semifree actions and the study of the orbit space X/G for free actions of G on X. A number of results has been proved in the literature in this direction [1, 3, 5, 6, 10, 11]. An another thread of research is to classify X for a given orbit space X/G when G acts freely on X. Su [12] proved that if $G = S^d$, $d = 0, 1$, acts freely on a space X and the orbit space X/G is cohomology \mathbb{FP}^n, then space X is the cohomology sphere $S^{(d+1)n+d}$, when $d = 0$, $\mathbb{F} = \mathbb{R}$ with \mathbb{Z}_2 coefficients, and when $d = 1$, $\mathbb{F} = \mathbb{C}$ with integer coefficients. He also proved that if $G = \mathbb{Z}_p$, p an odd prime, acting freely on a space X with the orbit space the mod p cohomology Lens space $I_{\mathbb{F}}^{2n+1}$, then X is the mod p cohomology $(2n + 1)$-sphere S^{2n+1}. Kaur et al. [8] shown that if $G = S^3$ acts freely on the mod 2 cohomology n-sphere S^n, then $n \equiv 3(\text{mod } 4)$ and the orbit space is the mod 2 cohomology quaternion projective space \mathbb{HP}^n. In this paper, we have shown that if $G = S^3$ acts freely on a finitistic space X with the orbit space the mod 2 cohomology quaternion projective space, then X is the mod 2 cohomology S^{4n+3} or $S^3 \times \mathbb{HP}^n$ depending upon the Euler class of the associated bundle is nontrivial or trivial. A similar result with the integer
coefficient is also discussed. We have also proved Kaur’s results [8] with integer coefficients.

For the actions of $G = \mathbb{S}^1$, Su [12] proved that if $G = \mathbb{S}^1$ acts freely on a space X such that X/G is a cohomology complex projective space with $\dim_\mathbb{Z} X/G < \infty$ and $\pi^* : H^2(X/G) \to H^2(X)$, where $\pi : X \to X/G$ is the orbit map, is trivial, then X is an integral cohomology $(2n + 1)$-sphere. We have discussed the case when the induced map π^* is nontrivial. In this case, we have proved that X is the integral cohomology \mathbb{S}^{2n+1} or $\mathbb{S}^1 \times \mathbb{C}\mathbb{P}^n$ or L_{p}^{2n+1}.

2. Preliminaries

Let G be a compact Lie group and $G \to E_G \to B_G$ be the universal principal G-bundle, where B_G is the classifying space. Suppose G acts freely on a space X. The associated bundle $X \hookrightarrow (X \times E_G)/G \to B_G$ is a fibre bundle with fibre X. Put $X_G = (X \times E_G)/G$. Then the bundle $X \hookrightarrow X_G \to B_G$ is called the Borel fibration. We consider the Leray-Serre spectral sequence for the Borel fibration. If B_G is simply connected, then the system of local coefficients on B_G is simple and the E_2-term of the Leray-Serre spectral sequence corresponding to the Borel fibration becomes

$$E_2^{k,l} = H^k(B_G; R) \otimes H^l(X; R).$$

For details about spectral sequences, we refer [9]. Let $h : X_G \to X/G$ be the map induced by the G-equivariant projection $X \times E_G \to X$. Then, h is a homotopy equivalence [4].

The following results are needed to prove our results:

Proposition 2.1 ([7]). Let R denote a ring and $\mathbb{S}^{n-1} \to E \xrightarrow{\pi} B$ be an oriented sphere bundle. The following sequence is exact with coefficients in R

$$\cdots \to H^i(E) \xrightarrow{\rho} H^{i-n+1}(B) \xrightarrow{\cup} H^{i+1}(B) \xrightarrow{\pi^*} H^{i+1}(E) \xrightarrow{\rho} H^{i-n+2}(B) \to \cdots$$

which start with

$$0 \to H^{n-1}(B) \xrightarrow{\pi^*} H^{n-1}(E) \xrightarrow{\rho} H^0(B) \xrightarrow{\cup} H^n(B) \xrightarrow{\pi^*} H^n(E) \to \cdots$$

where $\cup : H^i(B) \to H^{i+n}(B)$ maps $x \to x \cup u$ and $u \in H^n(B)$ denotes the Euler class of the sphere bundle. The above exact sequence is called the Gysin sequence. It is easy to observe that $\pi^* : H^i(E) \to H^i(B)$ is an isomorphism for all $0 \leq i < n - 1$.
Proposition 2.2. Let A be an R-module, where R is PID, and $G = S^3$ acts freely on a finitistic space X. Suppose that $H^j(X, A) = 0$ for all $j > n$, then $H^j(X/G, A) = 0$ for all $j > n$.

We have taken Čech cohomology and all spaces are assumed to be finitistic. Note that $X \sim_R Y$ means $H^*(X; R) \cong H^*(Y; R)$, where $R = \mathbb{Z}_2$ or \mathbb{Z}.

3. Main Theorems

Recall that the projective spaces \mathbb{P}^n are the orbit spaces of standard free actions of $G = S_d$ on $S(d+1)n + d$, where $F = \mathbb{C}$ or \mathbb{H} for $d = 1$ or 3, respectively. If we take a free action of S_d on itself and the trivial action on \mathbb{P}^n, then the orbit space of this diagonal action is \mathbb{P}^n. Now, the natural question: Is the converse true? If G acts freely on a finitistic space X with $X/G \sim_R \mathbb{P}^n$, then whether $X \sim_R S^{dn + d}$ or $X \sim_R S^3 \times \mathbb{P}^n$. In the following theorems, we have proved that the converse of these statements are true.

Theorem 3.1. Let $G = S^3$ acts freely on a finitistic space X with $X/G \sim_R \mathbb{H}P^n$, where $R = \mathbb{Z}_2$ or \mathbb{Z}, and $u \in H^4(X/G)$ be the Euler class of the bundle $G \hookrightarrow X \xrightarrow{\pi} X/G$. Then, u is either trivial or generator of $H^*(X/G)$. Moreover,

(i) If u is a generator, then $X \sim_R S^{4n+3}$, and
(ii) If u is trivial, then $X \sim_R S^3 \times \mathbb{H}P^n$.

Proof. As G is a compact Lie group which acts freely on X, we have the Gysin sequence of the sphere bundle $G \hookrightarrow X \xrightarrow{\pi} X/G$:

$$\cdots \rightarrow H^i(X) \xrightarrow{\rho} H^{i-3}(X/G) \xrightarrow{\cup} H^{i+1}(X/G) \xrightarrow{\pi^*} H^{i+1}(X) \xrightarrow{\rho} H^{i-2}(X/G) \rightarrow \cdots$$

which begins with

$$0 \rightarrow H^3(X/G) \xrightarrow{\pi^*} H^3(X) \xrightarrow{\rho} H^0(X/G) \xrightarrow{\cup} H^4(X/G) \xrightarrow{\pi^*} H^4(X) \rightarrow \cdots$$

Since $X/G \sim_R \mathbb{H}P^n$, we have $H^*(X/G) = R[a]/(a^{n+1})$, where $\deg a = 4$. Note that $H^i(X) \cong H^i(X/G)$ for $i = 0, 1, 2$. By the exactness of the Gysin sequence, $H^{4i+1}(X) = H^{4i+2}(X) = 0$ for all $i \geq 0$ and $H^2(X) = 0$ for all $j > 4n + 3$. There are three possibilities: If the Euler class is (i) generator, (ii) nontrivial but not a generator, and (iii) trivial.

If the Euler class $u \in H^4(X/G)$ is a generator then $\cup : H^{4i}(X/G) \rightarrow H^{4i+4}(X/G)$ is an isomorphism for all $0 \leq i < n$ and thus, the Euler class of the bundle $G \rightarrow X \xrightarrow{\pi} \mathbb{H}P^n$.

X/G is nonzero. By the exactness of the Gysin sequence $\rho : H^{4i+3}(X) \to H^{4i}(X/G)$ and $\pi^* : H^{4i+4}(X/G) \to H^{4i+4}(X)$ becomes trivial for all $0 \leq i < n$. This gives that $H^{4i+3}(X) = H^{4i+4}(X) = 0$ for all $0 \leq i < n$. As $H^{4n+4}(X/G) = 0$, we have $H^{4n+3}(X) \cong H^{4n}(X/G) \cong R$. Consequently,

$$H^i(X) = \begin{cases} R & \text{if } i = 0, 4n + 3 \\ 0 & \text{otherwise.} \end{cases}$$

It is clear that $X \sim_R \mathbb{S}^{4n+3}$.

If $u \in H^4(X/G)$ is a nontrivial but not a generator then this is possible only when $R = \mathbb{Z}$ and the Euler class $u \in H^4(X/G)$ is $m.a$, where m is an integer different from 0 and 1. Then, the Euler class of the associated bundle is $m.a$ and $\cup : H^4(X/G) \to H^{4i+4}(X/G)$ maps generator a^i to $m.a^i$ for all $0 \leq i < n$. By the exactness of the Gysin sequence, $H^{4i+3}(X) = 0$ and $H^{4i+4}(X) \cong H^{4i+4}(X/G) / \ker \pi^* \cong \mathbb{Z}_m$ for all $0 \leq i < n$. As $H^{4n+4}(X/G) = 0$, we have $H^{4n+3}(X) \cong H^{4n}(X/G) \cong \mathbb{Z}$. Let $a_4 \in H^4(X)$ and $b_{4n+3} \in H^{4n+3}(X)$ be such that $\pi^*(a_i) = a_4$ and $\rho(b_{4n+3}) = a^n$. Thus, we have

$$H^i(X) = \begin{cases} \mathbb{Z} & \text{if } i = 0 \text{ or } 4n + 3 \\ \mathbb{Z}_m & \text{if } 0 < i \equiv 0 \pmod{4} \leq 4n \\ 0 & \text{otherwise.} \end{cases}$$

As G acts freely on X and B_G is simply connected, the E_2-term of the associated Leray-Serre spectral sequence for the Borel fibration $X \hookrightarrow X_G \twoheadrightarrow B_G$ is given by $E_2^{pq} = H^p(B_G) \otimes H^q(X)$ which converges to $H^*(X_G)$ as an algebra. Now, $H^*(B_G) = H^*(\mathbb{H}^{\infty}) = \mathbb{Z}[t]$, where $\deg t = 4$. Note that the only possible nontrivial differentials are $d_{4r} : E_{4r}^{*,*} \to E_{4r}^{*,*}, 1 \leq r \leq n + 1$. As $4n + 4 \geq 8$, $t \otimes 1$ and $1 \otimes a_4$ are permanent cocycles. So, $H^4(X_G) \cong \mathbb{Z} \oplus \mathbb{Z}_m$, a contradiction.

If the Euler class $u \in H^4(X/G)$ is trivial then the Euler class of the bundle $G \to X \to X/G$ is zero and $\cup : H^{4i}(X/G) \to H^{4i+4}(X/G)$ is trivial for all $i \geq 0$. By the exactness of the Gysin sequence, $\rho : H^{4i+3}(X) \to H^{4i}(X/G)$ and $\pi^* : H^{4i}(X/G) \to H^{4i}(X)$ becomes isomorphism for all $0 \leq i \leq n$. Let $a_4 \in H^4(X)$ and $b_{4i+3} \in H^{4i+3}(X)$ be such that $\pi^*(a_i) = a_4$ and $\rho(b_{4i+3}) = a^i$ for all $0 \leq i \leq n$. This implies that $H^{4i+3}(X) \cong R$ with basis $\{b_{4i+3}\}$ and $H^{4i}(X) \cong R$ with basis $\{a_{4i}\}$ for all $0 \leq i \leq n$. Thus, we have

$$H^i(X) = \begin{cases} R & \text{if } 0 \leq i \equiv 0 \text{ or } 3 \pmod{4} \leq 4n + 3 \\ 0 & \text{otherwise.} \end{cases}$$
Note that $b_i b_j = 0$ for all i and j and $a_i^{n+1} = 0$. Next, we observe that $a_i^t b_3 = b_{4i+3}$ for all $1 \leq i \leq n$. In the associated Leray-Serre spectral sequence, the only possible nontrivial differentials are $d_r : E_{r*}^r \to E_{r*}^{r+1}$, for $0 \leq r \leq n + 1$. So, the first nonzero possible differential is d_4. Clearly, $d_4(1 \otimes a_i^t) = 0$ for all $i \geq 0$. Now, we consider two subcases for coefficient groups $R = \mathbb{Z}_2$ or $R = \mathbb{Z}$:

Let $R = \mathbb{Z}_2$ and $a_i^t b_3 = 0$ for some $1 \leq k \leq n$. If $d_4(1 \otimes b_3) = t \otimes a_i^t$, then $t \otimes a_i^t = d_4((1 \otimes a_i^t)(1 \otimes b_3)) = 0$ which is not possible. Therefore, $d_4(1 \otimes b_3) = 0$. As $d_4 : E_4^{4i-4r, 4r+2} \to E_4^{4i, 3}$ is trivial, $t \otimes b_3$ are permanent cocycles for all $i \geq 0$, a contradiction to the fact that $H^2(X/G) = 0$ for all $j > 4n$. Therefore, $a_i^t b_3 \neq 0$ for all $1 \leq i \leq n$. This implies that $b_{4i+3} = a_i^t b_3$ for all $1 \leq i \leq n$. Thus, the cohomology ring of X is $\mathbb{Z}_2[a_4, b_3]/(a_4^{n+1}, b_3^2)$, $\deg a_4 = 4$, $\deg b_3 = 3$. It is clear that $X \sim_{\mathbb{Z}_2} S^3 \times \mathbb{H}P^n$. This realizes case(ii) of the theorem.

Now, let $R = \mathbb{Z}$ and $a_i^t b_3 \neq \pm b_{4i+3}$ for some $1 \leq j \leq n$. Let $i_0 \in \mathbb{Z}$ be the largest integer such that $a_i^{i_0} b_3 \neq \pm b_{4i_0+3}$. If $d_4(1 \otimes b_3) = 0$, then $\{t \otimes b_3\}$ are permanent cocycles for all $i \geq 0$, which is not possible as in subcase(i). So, let $d_4(1 \otimes b_{4i+3}) = m_0(t \otimes a_i^t)$, where $m_0 \in \mathbb{Z}$ and $m_0 \neq 0$. Then, $H^4(X/G) \cong \mathbb{Z} \oplus \mathbb{Z}_{m_0}$. This gives that $m_0 = \pm 1$. Clearly, $d_4 : E_4^{0, 4j+3} \to E_4^{4, 4j}$ is an isomorphism for $i_0 + 1 \leq j \leq n$. So, we have $E_5^{i, 4j} = E_5^{0, 4j+3} = 0$ for all $i \geq 0$, $j = 0$ and $i_0 + 1 \leq j \leq n$. Note that $E_5^{i, 4j} = \mathbb{Z}_{m_j}$, where $1 \leq j \leq i_0$, and $E_5^{i, 4j+3}$ is \mathbb{Z} if $m_j = 0$, and trivial, otherwise. If $d_4 : E_4^{0, 4i_0+3} \to E_4^{4, 4i_0}$ is trivial, then $\{t \otimes b_{4i_0+3}\}_{i \geq 0}$ are permanent cocycles, a contradiction. So, let $d_4 : E_4^{0, 4i_0+3} \to E_4^{4, 4i_0}$ is nontrivial. Now, $d_4(1 \otimes (a_i^{i_0} b_3 \pm b_{4i_0+3})) = (m_0 \pm m_{i_0})(t \otimes a_i^{i_0})$. Consequently, $m_{i_0} \neq \pm 1$. Thus, $H^j(X/G)$ is nonzero for infinitely many values of j, a contradiction. Therefore, $a_i^t b_3$ is b_{4j+3} or $-b_{4j+3}$ for all j. Hence, $X \sim_{\mathbb{Z}} S^3 \times \mathbb{H}P^n$. □

Now, we compute the orbit space of free actions of $G = S^3$ on a paracompact space with integral cohomology n-sphere:

Theorem 3.2. Let $G = S^3$ acts freely on a paracompact space X with $X \sim_{\mathbb{Z}} S^n$. Then, $n = 4k + 3$, for some $k \geq 0$ and $X/G \sim_{\mathbb{Z}} \mathbb{H}P^k$.

Proof. By the Gysin sequence sequence of the 3-sphere bundle, we get $H^0(X/G) \cong \mathbb{Z}$ and $H^i(X/G) = 0$, for all $1 \leq i \leq 3$ when $n \neq 1, 2$ or 3. Then, for $0 \leq i \leq n - 4$, $\cup : H^i(X/G) \to H^{i+4}(X/G)$ is an isomorphism. This gives that $H^i(X/G) = 0$ for $0 < i \equiv j \mod 4 < n$, where $1 \leq j \leq 3$ and $H^i(X/G) \cong \mathbb{Z}$ for $0 \leq i \equiv 0 \mod 4 < n$ with basis $\{a^4\}$, where $a \in H^4(X/G)$ denotes its generator. Suppose $n \equiv j \mod 4$, for some $0 \leq j \leq 2$ then $H^{n-3}(X/G) = 0$. If $(n = 1$ or 2) or $(0 \leq j \leq 2)$, then by
the exactness of the Gysin sequence, \(H^n(X/G) \neq 0 \), which contradicts Proposition 2.2. Therefore, \(n \equiv 3 \pmod{4} \). Let \(n = 4k + 3 \) for some \(k \geq 0 \). For \(n = 3 \), the result is trivially true. So let \(n > 3 \). Again, by Proposition 2.2 \(H^j(X/G) = 0 \) for all \(j > n \), and hence \(a^{k+1} = 0 \). This implies that \(\rho : H^n(X) \to H^{n-3}(X/G) \) is an isomorphism. Consequently, \(H^n(X/G) = 0 \). Thus, we have, \(H^*(X/G) = \mathbb{Z}[a]/\langle a^{k+1} \rangle, \deg a = 4 \).

In 1963, Su [12] has shown that if \(G = S^1 \) acts freely on a space \(X \) with orbit space \(X/G \sim \mathbb{C}P^n \) and \(\pi^* : H^2(X/G) \to H^2(X) \) is trivial, then \(X \sim \mathbb{S}^{2n+1} \), where \(\pi : X \to X/G \) is the orbit map. In the next theorem, we discuss the case when \(\pi^* \) is nontrivial.

Theorem 3.3. Let \(G = S^1 \) acts freely on a finitistic space \(X \) with \(X/G \sim \mathbb{C}P^n \), and \(u \in H^2(X/G) \) be the Euler class of the bundle \(G \to X \xrightarrow{\pi} X/G \). If the induced map \(\pi^* : H^2(X/G) \to H^2(X) \) is nontrivial, then \(u \) is trivial and \(X \sim \mathbb{S}^1 \times \mathbb{C}P^n \).

Proof. As \(X/G \sim \mathbb{C}P^n \), \(H^*(X/G) = \mathbb{Z}[a]/\langle a^{n+1} \rangle \), where \(\deg a = 2 \). As \(\pi_1(B_G) = 1 \), \(E_2 \)-term of the Leray-Serre spectral sequence is \(E_2^{p,q} = H^p(B_G) \otimes H^q(X) \) for the Borel fibration \(X \xrightarrow{\pi} X_G \to B_G \). Note that the possible nontrivial differentials are \(d_2, d_4, \ldots, d_{2n+2} \). Suppose \(\pi^* : H^2(X/G) \to H^2(X) \) is nontrivial. Then the Euler class \(u \in H^2(X/G) \) is not a generator. So, first suppose that the Euler class of the principal bundle \(X \xrightarrow{\pi} X/G \) is m.a, where \(m \neq 0 \) in \(\mathbb{Z} \). As \(\pi^* : H^2(X/G) \to H^2(X) \) is nontrivial, \(m \neq \pm 1 \). Then by the exactness of the Gysin sequence \(H^i(X) \cong \mathbb{Z} \) for \(i = 0, 2n + 1 \); \(H^i(X) \cong \mathbb{Z}_m \) with basis \(\{a_2^i\} \) for \(i = 0, 2, 4, \ldots, 2n \); and trivial otherwise. It gives that \(t^i \otimes a_2^j \) are permanent cocycles for all \(i, j \geq 0 \), a contradiction. Next, suppose that the Euler class \(u \) of the principal bundle is zero. Consequently, we have

\[
H^j(X) = \begin{cases}
\mathbb{Z} & \text{if } 0 \leq j \leq 2n + 1 \\
0 & \text{otherwise.}
\end{cases}
\]

Let \(a_2 \in H^2(X) \) and \(b_{2i+1} \in H^{2i+1}(X) \) be such that \(\pi^*(a) = a_2 \) and \(\rho(b_{2i+1}) = a^i \) for all \(0 \leq i \leq n \). This implies that \(H^{2i+1}(X) \cong \mathbb{Z} \) with basis \(\{b_{2i+1}\} \) and \(H^{2i}(X) \cong \mathbb{Z} \) with basis \(\{a_2^i\} \) for all \(0 \leq i \leq n \). Let if possible \(a_2^i b_1 \neq \pm b_{2j+1} \) for some \(1 \leq j \leq n \) and suppose \(i_0 \) be such an largest integer. As \(H^1(X_G) = 0 \), \(d_2(1 \otimes b_1) \neq 0 \). So, let \(d_2(1 \otimes b_{2i+1}) = m_i(t \otimes a_2^i) \), where \(m_i \in \mathbb{Z} \) and \(m_0 \neq 0 \). Note that \(E_2^{2i,2j} = \mathbb{Z}_{m_j} \) and \(E_3^{2i,2j+1} = \mathbb{Z} \) if \(m_j = 0 \) and trivial otherwise for all \(i \geq 0 \) and \(0 \leq j \leq n \). Since \(H^2(X_G) \cong \mathbb{Z} \), we have \(d_2 : E_2^{0,1} \to E_2^{2,0} \) is an isomorphism. Therefore, \(E_3^{i,2j} = E_3^{i,2j+1} = 0 \) for all \(i \geq 0 \) and \(i_0 + 1 \leq j \leq n \). If \(d_2 : E_2^{0,2m+1} \to E_2^{2,2m} \) is trivial, then
\{t^i \otimes b_{2i+1}\}_{i \geq 0}\) are permanent cocycles, a contradiction. So, let \(d_2 : E_2^{0,2i+1} \to E_2^{2,2i}\) is nontrivial. As \(d_2(1 \otimes a_2) = 0\), we get \(m_{i_0} \neq m_0\), and hence \(t^i \otimes a_{2i}^{\prime}\) are permanent cocycles for all \(i \geq 0\), a contradiction. Thus,

\[
H^\ast(X) = \mathbb{Z}[a_2, b_1]/\langle a_2, b_1^2 \rangle,
\]

where \(\deg b_1 = 1\) and \(\deg a_2 = 2\). Hence, our claim.

Now, we prove similar results with coefficients in \(\mathbb{Z}_p\), \(p\) a prime.

Theorem 3.4. Let \(G = S^1\) acts freely on a finitistic space \(X\) with the orbit space \(X/G \sim_{\mathbb{Z}_p} \mathbb{C}P^n\), \(p\) a prime. Let \(\pi^\ast : H^2(X/G) \to H^2(X)\) be the map induced by the orbit map \(\pi : X \to X/G\).

1. If \(\pi^\ast : H^2(X/G) \to H^2(X)\) is trivial, then \(X \sim_{\mathbb{Z}_p} S^{2n+1}\).
2. If \(\pi^\ast : H^2(X/G) \to H^2(X)\) is nontrivial, then either \(X \sim_{\mathbb{Z}_p} S^1 \times \mathbb{C}P^n\) or \(L_p^{2n+1}\).

Proof. The Euler class of the principal bundle \(X \to X/G\) is either trivial or a generator of \(H^4(X/G; \mathbb{Z}_p)\). If the Euler class of the associated bundle is trivial, then \(X \sim_{\mathbb{Z}_p} S^{2n+1}\). So, let the Euler class be a generator of \(H^4(X; \mathbb{Z}_p)\). It is easy to see that

\[
H^\ast(X; \mathbb{Z}_p) \cong \mathbb{Z}_p[b_1, b_2, \ldots, b_{2n+1}, a_2]/\langle a_2^{n+1} \rangle, \quad \deg a_2 = 2, \deg b_i = i.
\]

In the Leray-Serre spectral sequence, we must have \(d_2(1 \otimes b_i) \neq 0\) for suitable choice of generator \(b_i\) and \(d_2(1 \otimes a_{2i}) = 0\) for all \(0 \leq i \leq n\). This implies that \(b_{2i+1} = a_{2i+1}b_i\) for all \(0 \leq i \leq n\). If \(b_i^2 = 0\), then \(X \sim_{\mathbb{Z}_p} \mathbb{R}P^{2n+1}\). If \(b_i^2 \neq 0\) and \(p = 2\), then \(a_2 = b_i^2\).

This gives that \(X \sim_{\mathbb{Z}_2} \mathbb{R}P^{2n+1}\). If \(b_i^2 \neq 0\) and \(p\) is an odd prime, then \(\beta(b_1) = a_2\), where \(\beta : H^1(X; \mathbb{Z}_p) \to H^2(X; \mathbb{Z}_p)\) is the Bockstein homomorphism associated to the coefficient sequence \(0 \to \mathbb{Z}_p \to \mathbb{Z}_p^2 \to \mathbb{Z}_p \to 0\), then \(X \sim_{\mathbb{Z}_p} L_p^{2n+1}\). \(\square\)

The next example realises the above theorem.

Example 3.5. Recall that the map \((\lambda, (z_0, z_1, \ldots, z_n)) \to (\lambda z_0, \lambda z_1, \ldots, \lambda z_n)\), where \(\lambda \in S^1\) and \(z_i \in \mathbb{C}, 0 \leq i \leq n\), defines a standard free action of \(G = S^1\) on \(S^{2n+1}\). The orbit space \(X/G\) under this action is \(\mathbb{C}P^n\). For \(p\) a prime, \(H = \langle e^{2\pi i/p} \rangle\) induces a free action on \(S^{2n+1}\) with the orbit space \(S^{2n+1}/H = L_p^{2n+1}\). Consequently, \(S^1 = G/H\) acts freely on \(L_p^{2n+1}\) with the orbit space \(\mathbb{C}P^n\). Recall that for \(p = 2\), \(L_p^{2n+1} = \mathbb{R}P^{2n+1}\).
References

[1] Z. Błaszczyk, On the non-existence of free \mathbb{A}_d-actions on products of spheres, Math. Nachr. 285 (2012), no. 5-6, 613–618. MR2902836
[2] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972. MR0413144
[3] P. Dey and M. Singh, Free actions of some compact groups on Milnor manifolds, Glasg. Math. J. 61 (2019), no. 3, 727–742. MR3991367
[4] T. tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, 8, Walter de Gruyter & Co., Berlin, 1987. MR0889050
[5] R. M. Dotzel, T. B. Singh and S. P. Tripathi, The cohomology rings of the orbit spaces of free transformation groups of the product of two spheres, Proc. Amer. Math. Soc. 129 (2001), no. 3, 921–930. MR1712925
[6] J. Harvey, M. Kerin and K. Shankar, Semi-free actions with manifold orbit spaces, Doc. Math. 25 (2020), 2085–2114. MR4187719
[7] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR1867354
[8] J. Kaur and H. K. Singh, On the existence of free action of S^3 on certain finitistic mod p cohomology spaces, J. Indian Math. Soc. (N.S.) 82 (2015), no. 3-4, 97–106. MR3467619
[9] J. McCleary, A user’s guide to spectral sequences, second edition, Cambridge Studies in Advanced Mathematics, 58, Cambridge University Press, Cambridge, 2001. MR1793722
[10] P. L. Q. Pergher, H. K. Singh and T. B. Singh, On \mathbb{Z}_2 and S^1 free actions on spaces of cohomology type (a, b), Houston J. Math. 36 (2010), no. 1, 137–146. MR2610784
[11] M. Singh, \mathbb{Z}_2 actions on complexes with three non-trivial cells, Topology Appl. 155 (2008), no. 9, 965–971. MR2401206
[12] J. C. Su, Transformation groups on cohomology projective spaces, Trans. Amer. Math. Soc. 106 (1963), 305–318. MR0143839

Anju Kumari
Department of Mathematics
University of Delhi
Delhi – 110007, India.
Email address: anjukumari0702@gmail.com

Hemant Kumar Singh
Department of Mathematics
University of Delhi
Delhi – 110007, India.
Email address: hemantksingh@maths.du.ac.in