A short note on sign changes

JABAN MEHER1, KARAM DEO SHANKHADHAR2 and G K VISWANADHAM2

1Department of Mathematics, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
2Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019, India
E-mail: jaban@mast.queensu.ca; karam@hri.res.in; viswanath@hri.res.in

MS received 2 June 2012; revised 29 January 2013

Abstract. In this paper, we present a quantitative result for the number of sign changes for the sequences \(\{a(n^j)\}_{n \geq 1}, j = 2, 3, 4\) of the Fourier coefficients of normalized Hecke eigencusp forms for the full modular group \(SL_2(\mathbb{Z})\). We also prove a similar kind of quantitative result for the number of sign changes of the \(q\)-exponents \(c(p) (p \text{ vary over primes})\) of certain generalized modular functions for the congruence subgroup \(\Gamma_0(N)\), where \(N\) is square-free.

Keywords. Fourier coefficients; generalized modular function.

1. Introduction

The sign changes of the Fourier coefficients of modular forms are well studied. It is known that, if the Fourier coefficients of a cusp form are real, then they change signs infinitely often. The proof of this fact follows from the Landau’s theorem on Dirichlet series with non-negative coefficients. Further, many quantitative results for the number of sign changes for the sequence of the Fourier coefficients have been established. The sign changes of the subsequence of the Fourier coefficients at prime numbers was first studied by Ram Murty [13].

In our first result, we show that if \(h(z) = \sum_{n \geq 1} a(n)q^n\) is a Hecke eigenform for the full modular group \(SL_2(\mathbb{Z})\), then the subsequences \(\{a(n^j)\}_{n \geq 1}, j = 2, 3, 4\) of the Fourier coefficients change signs infinitely often. In fact, we give a lower bound for the number of sign changes in the interval \((x, 2x]\).

Our second result is about the sign changes of the \(q\)-exponents of a certain class of generalized modular functions \(f\) on the Hecke congruence subgroup \(\Gamma_0(N)\). We always assume that \(f\) is non-constant and the weight of \(f\) is zero. A generalized modular function \(f\) is a holomorphic function on the upper half plane \(\mathcal{H}\), meromorphic at the cusps, that transforms under \(\Gamma_0(N)\) like an usual modular function, with the exception that the character \(\chi\) need not be unitary, but \(\chi(\gamma) = 1\) for all parabolic \(\gamma \in \Gamma_0(N)\) of trace 2.
For more details on generalized modular functions, see [7] and [8]. It is known that, every
generalized modular function has a product expansion
\[f(z) = cq^h \prod (1 - q^n)^{c(n)}, \quad 0 < |q| < \epsilon, \]
where \(h \in \mathbb{Z}, \) \(c \) and \(c(n) \) are uniquely determined complex numbers and \(q = e^{2\pi iz}, \) \(z \in \mathcal{H}. \) In [9], it has been proved that if \(f \) is a generalized modular function with \(\text{div}(f) = \emptyset, \) then \(c(n), \) \(n \geq 1 \) change signs infinitely often. This result was proved by using a theorem of [7] that any generalized modular function \(f \) with \(\text{div}(f) = \emptyset \) corresponds to a cusp form of weight 2 by taking the logarithmic derivative. However, the result is not quantitative. Using the results of Choie and Kohnen [1], Iwaniec et al. [6] and the relation between the \(q \)-exponents of generalized modular function and the Fourier coefficients of the corresponding cusp form of weight 2, one can deduce a bound for the first sign change of the \(q \)-exponents of a certain kind of generalized modular function.

In our second result, we give a quantitative result for the number of sign changes of the subsequence of \(q \)-exponents at primes \(\{c(p)\} \), in the interval \((x, 2x]\) for a certain kind of generalized modular function on \(\Gamma_0(N) \), where \(N \) is square-free. To prove this result, we use the method given by Choie et al. [2].

2. Statement of results

Let \(h(z) = \sum_{n \geq 1} a(n)q^n \) be a Hecke eigenform of weight \(k \) on the full modular group \(SL_2(\mathbb{Z}) \). Let \(\lambda(n) = \frac{a(n)}{n^k} \). Denote by \(\delta_j = 2/11, 1/9, 2/27 \) for \(j = 2, 3, 4 \) respectively. Now, we state our first result.

Theorem 2.1. For any \(j \in \{2, 3, 4\}, \) the sequence \(\{\lambda(n^j)\}_{n \geq 1} \) change signs infinitely often. Moreover, the sequence has at least \(\gg x^{\delta_j - 2\epsilon} \) sign changes in the interval \((x, 2x]\) for sufficiently large \(x \), where \(\epsilon \) is any small positive constant.

From Theorem 2 of [7], it is known that if \(f \) is a generalized modular function on \(\Gamma_0(N) \) with \(\text{div}(f) = \emptyset, \) then its logarithmic derivative \(g = \frac{1}{2\pi i} f' \) is a cusp form of weight 2 on \(\Gamma_0(N) \) with trivial character. We now state our second result.

Theorem 2.2. Let \(N \) be a square-free positive integer and \(f \) be a non-constant generalized modular function on \(\Gamma_0(N) \) with \(\text{div}(f) = \emptyset. \) Suppose that the logarithmic derivative \(g = \frac{1}{2\pi i} f' \) is a normalized newform. Then the sequence \(c(p)(p \text{ prime}) \) change signs infinitely often and it has at least \(\gg e^{A \sqrt{\log x}} \) sign changes in the interval \((x, 2x]\) for sufficiently large \(x \), where \(A \) is an absolute constant.

3. Proofs

Proof of Theorem 2.1. Let us denote \(1/2, 3/4 \) and \(7/9 \) by \(\beta_j \) for \(j = 2, 3 \) and 4 respectively. For any \(\epsilon > 0, \) [3] and [11] give the following estimate:

\[\sum_{n \leq x} \lambda(n^j) \ll_{f, \epsilon} x^{\beta_j + \epsilon}. \] (1)
From Theorem 1.1, 1.2, 1.3 of [10], we get the following estimate:

$$
\sum_{n \leq x} \lambda^2(n^j) = B_j x + O_{f, \epsilon} (x^{1-\delta_j+\epsilon}),
$$

where B_j are absolute constants, δ_j are defined as before and these estimates are valid for any $\epsilon > 0$. Let $h = h(x) = x^{1-\delta_j+2\epsilon}$, where ϵ is sufficiently small. We assume that the sequence $\{\lambda(n^j)\}_{n \geq 1}$ are of constant sign, say positive, for all $n \in (x, x+h]$. Using (2), we get

$$
\sum_{x < n \leq x+h} \lambda^2(n^j) = B_j h + O_{f, \epsilon} (x^{1-\delta_j+\epsilon}) \gg x^{1-\delta_j+2\epsilon}.
$$

On the other hand, using (1), we get

$$
\sum_{x < n \leq x+h} \lambda^2(n^j) = \sum_{x < n \leq x+h} \lambda(n^j) \lambda(n^j) \ll x^{2\epsilon} \sum_{x < n \leq x+h} \lambda(n^j) \ll x^{2\epsilon} ((x+h)^{\beta_j+\epsilon} + x^{\beta_j+\epsilon}) \ll x^{\beta_j+3\epsilon}.
$$

Now comparing $1 - \delta_j$ and β_j for $j = 2, 3, 4$, we see that the bounds in (3) and (4) for $\sum_{x < n \leq x+h} \lambda^2(n^j)$ contradict each other. Therefore, at least one $\lambda(n^j)$ for $x < n \leq x+h$ must be negative. Hence the sparse sequences $\{\lambda(n^j)\}_{n \geq 1}$ for $j = 2, 3, 4$ change signs infinitely often and there are at least $\gg x^{\delta_j-2\epsilon}$ sign changes in the interval $(x, 2x]$.

Proof of Theorem 2.2. Since $\text{div}(f) = 0$, we have $f(z) = \prod_{n \geq 1} (1 - q^n)^{c(n)}$. Let $g(z) = \sum_{n \geq 1} b(n)q^n$ and $\lambda(n) = \frac{b(n)}{n^{1/2}}$. Then we have

$$
b(n) = -\sum_{d | n} dc(d).
$$

In particular, $b(1) = 1 = -c(1)$ and $b(p) = 1 - pc(p)$ for any prime p. Using a theorem of Moreno [12] and a result of Hoffstein and Ramakrishnan [5] about the nonexistence of Siegel zero, we have the following estimate:

$$
\sum_{p \leq x} \lambda(p) \log p = O(x e^{-A_1 \sqrt{\log x}}),
$$

where A_1 is an absolute constant. Following the proof of Theorem 4.1 of [14] and using a nonvanishing result for symmetric square L-function of a newform on square-free level due to Goldfeld et al. [4] for the proof of Lemma 4.1 of [14], we get the following estimate:

$$
\sum_{p \leq x} \lambda^2(p) \log p = x + O(x e^{-A_2 \sqrt{\log x}}),
$$

where A_2 is an absolute constant.
Since \(\lambda(p) = \frac{b(p)}{\sqrt{p}} = -\left(\frac{-1}{\sqrt{p}} + \sqrt{p}c(p)\right) \), therefore \(\sqrt{p}c(p) = \frac{1}{\sqrt{p}} - \lambda(p) \). Let \(c'(p) = \sqrt{p}c(p) \) for all primes \(p \). The behaviour of \(c'(p) \) and \(c(p) \) are same in the sense of sign changes since \(\frac{c'(p)}{c(p)} \) is a positive real number. We have

\[
\sum_{p \leq x} c'(p) \log p = \sum_{p \leq x} \left(\frac{1}{\sqrt{p}} - \lambda(p) \right) \log p = O (\sqrt{x} \log x) + O (xe^{-A_1\sqrt{\log x}}).
\]

Here we used (5) for getting the last line. Hence

\[
\sum_{p \leq x} c'(p) \log p = O (xe^{-A_1\sqrt{\log x}}), \quad A_3 \text{ is an absolute constant.} \quad (7)
\]

We have

\[
\sum_{p \leq x} c'^2(p) \log p = \sum_{p \leq x} \left(\frac{1}{\sqrt{p}} - \lambda(p) \right)^2 \log p = \sum_{p \leq x} \lambda^2(p) \log p + 2 \sum_{p \leq x} \frac{c'(p) \log p}{p} - \sum_{p \leq x} \log p.
\]

Now, estimating the first and second terms by using (6) and (7) respectively, we get the following.

\[
\sum_{p \leq x} c'^2(p) \log p = x + O (xe^{-A_4\sqrt{\log x}}), \quad A_4 \text{ is an absolute constant.} \quad (8)
\]

Let \(h = h(x) \) be any function of \(x \) with the property that \(0 < h(x) < x \). We evaluate \(\sum_{x < p \leq x + h} c'(p) \) by two different ways and arrive at a contradiction if \(c'(p) \) do not change sign as stated in the result. Assume that \(c'(p) \) are of constant sign for \(x < p \leq x + h \). Without loss of generality, we assume that \(c'(p) \geq 0 \) for \(x < p \leq x + h \). Using the fact that \(|c'(p)| \leq 3 \), we get the following:

\[
\sum_{x < p \leq x + h} c'(p) \geq A_5 \sum_{x < p \leq x + h} c'^2(p), \quad (9)
\]

where \(A_5 \) is an absolute constant. Using the estimate (8), we have

\[
\sum_{p \leq x} c'^2(p) = \sum_{p \leq x} c'^2(p) \frac{\log p}{\log p} = \frac{1}{\log x} \left(\sum_{p \leq x} c'^2(p) \log p \right) + \int_2^x \frac{\sum_{p \leq t} c'^2(p) \log p}{t \log^2 t} \, dt,
\]

where \(A_5 \) is an absolute constant. Using the estimate (8), we have
\begin{align*}
&= \frac{1}{\log x} \left(x + O(xe^{-A_4\sqrt{\log x}}) + \int_2^x \frac{t + O(te^{-A_4\sqrt{\log t}})}{t \log^2 t} \, dt \right) \\
&= \frac{x}{\log x} + O \left(\frac{xe^{-A_4\sqrt{\log x}}}{\log x} \right) + \int_2^x \frac{1}{\log^2 t} \, dt \\
&\quad + O \left(\int_2^x \frac{e^{-A_4\sqrt{\log t}}}{\log^2 t} \, dt \right).
\end{align*}

From the above, we get

$$\sum_{p \leq x} c'(p) \sim \frac{x}{\log x}. \quad (10)$$

Combining (9) and (10), we deduce

\begin{align*}
\sum_{x < p \leq x+h} c'(p) &\geq A_5 \left(\sum_{p \leq x+h} c^2(p) - \sum_{p \leq x} c^2(p) \right) \\
&\geq A_6 \left(\frac{x + h}{\log(x + h)} - \frac{x}{\log x} \right) \gg \frac{h}{\log x}, \quad (11)
\end{align*}

where A_6 is an absolute constant.

On the other hand, using (7), we have the following estimate:

\begin{align*}
&\sum_{x < p \leq x+h} c'(p) \\
&= \sum_{x < p \leq x+h} c'(p) \frac{\log p}{\log p} \\
&\leq \frac{1}{\log x} \sum_{x < p \leq x+h} c'(p) \log p \\
&\ll \frac{1}{\log x} \left((x + h)e^{-A_3\sqrt{\log(x + h)}} + xe^{-A_3\sqrt{\log x}} \right).
\end{align*}

From the above estimate, we obtain

$$\sum_{x < p \leq x+h} c'(p) \ll \frac{x}{\log x} e^{-A_3\sqrt{\log x}}. \quad (12)$$

Choosing an appropriate absolute constant A and $h(x) = \frac{x}{e^{A\sqrt{\log x}}}$, we see that the bounds obtained in (11) and (12) contradict each other. Hence, at least one $c'(p)$ for $x < p \leq x + h$ must be negative. This implies that the sequence \{c(p)\} has infinitely many sign changes and there are at least $\gg e^{A\sqrt{\log x}}$ sign changes for the sequence \{c(p)\}, whenever $p \in (x, 2x]$. \hfill \square

Acknowledgments

The authors would like to thank Prof. A Sankaranarayanan for useful discussions and for giving valuable suggestions. They would also like to thank the referee for correcting some errors.
References

[1] Choie Y J and Kohnen W, The first sign change of Fourier coefficients of cusp forms, *Am. J. Math.* 131 (2009) 517–543
[2] Choie Y J, Sankaranarayanan A and Sengupta J, On the sign changes of Hecke eigenvalues, in: Number Theory and Applications (2009) (New Delhi: Hindustan Book Agency) pp. 25–32
[3] Fomenko O M, On the behaviour of the automorphic L-functions at the centre of the critical strip, *J. Math. Sci. (N. Y.)* 118 (2003) 4910–4917
[4] Goldfeld G, Hoffstein J and Lieman D, Appendix: An effective zero free region, *Ann. Math.* 140 (1994) 177–181
[5] Hoffstein J and Ramakrishnan D, Siegel zeros and cusp forms, *Int. Math. Res. Notices.* 6 (1995) 279–308
[6] Iwaniec H, Kohnen W and Sengupta J, The first negative Hecke eigenvalue, *Int. J. Number Theory* 3 (2007) 355–363
[7] Knopp M I and Mason G, Generalized modular forms, *J. Number Theory* 99 (2003) 1–28
[8] Kohnen W and Mason G, On generalized modular forms and their applications, *Nagoya Math. J.* 192 (2008) 119–136
[9] Kohnen W and Meher J, Some remarks on the q-exponents of generalized modular functions, *Ramanujan J.* 25 (2011) 115–119
[10] Lao H and Sankaranarayanan A, The average behaviour of Fourier coefficients of cusp forms over sparse sequences, *Proc. Amer. Math. Soc.* 8 (2009) 2557–2565
[11] Lü G S, On an open problem of Sankaranarayanan, *Science China Math.* 53 (2010) 1319–1324
[12] Moreno C J, Prime number theorems for the coefficients of modular forms, *Bull. AMS* 78 (1972) 796–798
[13] Ram Murty M, Oscillations of the Fourier coefficients of modular forms, *Math. Ann.* 262 (1983) 431–446
[14] Sankaranarayanan A, On Hecke L-functions associated with cusp forms II: On the sign changes of $S_f(T)$, *Ann. Acad. Sci. Fenn. Math.* 31 (2006) 213–238