Exact bulk correlation functions in one-dimensional nonadditive hard-core mixtures

Andrés Santos

Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain

(Dated: February 2, 2008)

In a recent paper [Phys. Rev. E 76, 031202 (2007)], Schmidt has proposed a Fundamental Measure Density Functional Theory for one-dimensional nonadditive hard-rod fluid mixtures and has compared its predictions for the bulk structural properties with Monte Carlo simulations. The aim of this Brief Report is to recall that the problem admits an exact solution in the bulk, which is briefly summarized in a self-contained way.

PACS numbers: 61.20.Gy, 61.20.Ne, 64.10.+h, 05.20.Jj

Perhaps the most successful class of density functional theories are based on Rosenfeld’s Fundamental Measure Theory (FMT) [1]. In a recent free energy of inhomogeneous one-dimensional nonadditive hard-rod fluid mixtures. As a test of the theory, the FMT predictions for the pair correlation functions in the bulk region are compared with Monte Carlo simulations, a general good agreement being found. On the other hand, notwithstanding the merits of the FMT constructed in Ref. [2], it presents some limitations that become more important as the density and/or the nonadditivity increase. For instance, it yields non-zero values of the pair correlation functions inside the core and predicts a spurious demixing transition.

It seems to have been overlooked in Ref. [2] the fact that the one-dimensional nonadditive hard-rod problem admits an exact solution in the bulk. Actually, any one-dimensional homogeneous system is exactly solvable, provided that every particle interacts only with its nearest neighbors [3,4,5]. The aim of this Brief Report is to fill the gap in Ref. [2] by presenting a brief and self-contained summary of the exact solution, particularizing to binary nonadditive mixtures, and comparing with the bulk FMT predictions for one of the cases considered in Ref. [2].

Let us consider an m-component one-dimensional fluid mixture with constant (bulk) number densities $\{\rho_i; i = 1, \ldots, m\}$ and interaction potentials $\phi_{ij}(x) = \phi_{ij}(-x)$ acting only on nearest neighbors. Given a particle of species i at the origin, the probability that its ℓth neighbor belongs to species j and is located at a point between x and $x + dx$ is given by $p_{ij}^{(\ell)}(x)dx$, what defines the (conditional) probability density distribution $p_{ij}^{(\ell)}(x)$. In particular, $p_{ij}^{(1)}(x)$ is the nearest-neighbor distribution. The distributions $p_{ij}^{(\ell)}(x)$ verify the normalization condition

$$\sum_{j=1}^{m} \int_{0}^{\infty} dx \, p_{ij}^{(\ell)}(x) = 1$$

(1)

and obey the recurrence relation

$$p_{ij}^{(\ell)}(x) = \sum_{k=1}^{m} \int_{0}^{x} dx' \frac{p_{ik}^{(\ell-1)}(x')p_{kj}^{(1)}(x-x')}{p_{ij}^{(1)}(x)}.$$

(2)

Its solution in Laplace space is

$$P^{(\ell)}(s) = \left[P^{(1)}(s) \right]^{\ell},$$

(3)

where $P^{(\ell)}(s)$ is the $m \times m$ matrix whose elements $P_{ij}^{(\ell)}(s)$ are the Laplace transforms of $p_{ij}^{(\ell)}(x)$.

The total probability density of finding a particle of species j, given that a particle of species i is at the origin, is obtained as

$$\rho_{j}g_{ij}(x) = \rho_{i}p_{ij}(x) = \sum_{\ell=1}^{\infty} p_{ij}^{(\ell)}(x),$$

(4)

where $g_{ij}(x)$ is the pair correlation function. In Laplace space,

$$G_{ij}(s) = \frac{1}{\rho_{j}} P_{ij}(s), \quad P(s) = P^{(1)}(s) \cdot \left[1 - P^{(1)}(s)\right]^{-1},$$

(5)

where use has been made of Eq. [3]. Therefore, the knowledge of the nearest-neighbor distributions $\{p_{ij}^{(1)}(x)\}$ suffices to obtain the pair correlation functions $\{g_{ij}(x)\}$. Notice that the Fourier transform $\tilde{h}_{ij}(k)$ of the total correlation function $h_{ij}(x) = g_{ij}(x) - 1$ is simply related to the Laplace transform $G_{ij}(s)$ of $g_{ij}(x)$ by $\tilde{h}_{ij}(k) = G_{ij}(ik) + G_{ij}(-ik)$, where i is the imaginary unit.

It can be proven that the nearest-neighbor distribution possesses the following explicit form [4,5]:

$$p_{ij}^{(1)}(x) = \rho_{j} K_{ij} e^{-\beta \phi_{ij}(x)} e^{-\xi x},$$

(6)

where $\beta = 1/k_{B}T$ and $\xi = \beta p$, k_{B}, T, and p being the Boltzmann constant, the temperature, and the pressure, respectively. The Laplace transform of Eq. [6] is

$$P_{ij}^{(1)}(s) = \rho_{j} K_{ij} \Omega_{ij}(s + \xi),$$

(7)

where $\Omega_{ij}(s)$ denotes the Laplace transform of $e^{-\beta \phi_{ij}(x)}$.

*Electronic address: andres@unex.es
URL: http://www.unex.es/fistero/andres/
To close the problem, one needs to determine the amplitudes $K_{ij} = K_{ji}$ and the damping coefficient ξ. A convenient way of doing so is by enforcing basic consistency conditions. Note first that the normalization condition \(\{\text{1}\}\) for $\ell = 1$ is equivalent to
\[
\sum_{j=1}^{m} \frac{p_{ij}^{(1)}(0)}{p_{ij}^{(1)}(0)} = 1.
\]
(8)
Next, since $\lim_{x \to \infty} g_{ij}(x) = 1$, one must have
\[
\lim_{s \to 0} s G_{ij}(s) = 1.
\]
(9)
A subtler consistency condition \(\{\text{1}\}\) dictates that $\lim_{x \to \infty} p_{ij}^{(1)}(x)/p_{ik}^{(1)}(x)$ must be independent of the choice of species i. From Eq. \(\{\text{6}\}\) this implies that
\[
\frac{K_{ij}}{K_{ik}} = \text{independent of } i.
\]
(10)
Equations \(\{\text{8}\}–\{\text{10}\}\) are sufficient to obtain K_{ij} and ξ.

To be more specific, let us consider the case of a binary mixture ($m = 2$). Thus, Eq. \(\{\text{5}\}\) yields
\[
G_{11}(s) = \frac{Q_{11}(s)[1 - Q_{22}(s)] + Q_{12}^{2}(s)}{\rho_1 D(s)},
\]
(11)
\[
G_{22}(s) = \frac{Q_{22}(s)[1 - Q_{11}(s)] + Q_{21}^{2}(s)}{\rho_2 D(s)},
\]
(12)
\[
G_{12}(s) = \frac{Q_{12}(s)}{\sqrt{\rho_1 \rho_2} D(s)},
\]
(13)
where
\[
Q_{ij}(s) \equiv \sqrt{\rho_i \rho_j} K_{ij} \Omega_{ij}(s + \xi),
\]
(14)
\[
D(s) \equiv [1 - Q_{11}(s)][1 - Q_{22}(s)] - Q_{12}^{2}(s),
\]
(15)
The behavior of $Q_{ij}(s)$ for small s is
\[
Q_{ij}(s) = \sqrt{\rho_i \rho_j} K_{ij} \Omega_{ij}(s) + O(s^2),
\]
(16)
where $\Omega'_{ij}(s)$ is the first derivative of $\Omega_{ij}(s)$. Application of Eq. \(\{\text{8}\}\) yields
\[
K_{11} = \frac{1 - \rho_2 K_{12} \Omega_{12}(\xi)}{\rho_1 \Omega_{11}(\xi)},
\]
(17)
\[
K_{22} = \frac{1 - \rho_1 K_{12} \Omega_{12}(\xi)}{\rho_2 \Omega_{22}(\xi)},
\]
(18)
Next, Eq. \(\{\text{9}\}\) implies
\[
\rho_1^2 K_{11} \Omega'_{11}(\xi) + \rho_2^2 K_{22} \Omega'_{22}(\xi) + 2 \rho_1 \rho_2 K_{12} \Omega'_{12}(\xi) = -1.
\]
(19)
Finally, Eq. \(\{\text{10}\}\) becomes
\[
K_{11} K_{22} = K_{12}^2.
\]
(20)
Equations \(\{\text{17}\}–\{\text{20}\}\) constitute a set of four independent equations whose solution gives K_{11}, K_{12}, K_{22}, and ξ. Inserting Eqs. \(\{\text{17}\}\) and \(\{\text{18}\}\) into Eqs. \(\{\text{19}\}\) and \(\{\text{20}\}\) one gets
\[
K_{12} = \frac{1}{\rho_1 \rho_2 \Omega_{12}(\xi)} \left[1 + \rho_1 L_{11}(\xi) + \rho_2 L_{22}(\xi) - 2 L_{12}(\xi) \right],
\]
(21)
where we have called $L_{ij}(\xi) \equiv \Omega'_{ij}(\xi)/\Omega_{ij}(\xi)$ and $\rho = \rho_1 + \rho_2$ is the total density. Substitution of Eq. \(\{\text{21}\}\) into Eq. \(\{\text{22}\}\) yields a single equation for ξ, which in general is transcendental. Once solved, the coefficients K_{ij} are obtained from Eqs. \(\{\text{17}\}\), \(\{\text{18}\}\), and \(\{\text{21}\}\). The exact pair correlation functions are then determined in Laplace space through Eqs. \(\{\text{11}\}–\{\text{15}\}\).

In the particular case of nonadditive hard rods, one has $e^{-\beta \phi_{ij}(x)} = \Theta(x - \sigma_{ij})$, where $\Theta(x)$ is Heaviside’s step function, so that
\[
\Omega_{ij}(s) = \frac{e^{-\sigma_{ij} s}}{s}, \quad L_{ij}(s) = -\sigma_{ij} - s^{-1},
\]
(23)
\[
Q_{ij}(s) = \sqrt{\rho_i \rho_j} K_{ij} \frac{e^{-\sigma_{ij} s + \xi}}{s + \xi}.
\]
(24)
The constraint to nearest-neighbor interactions implies that $\sigma_{ij} \leq \sigma_{ik} + \sigma_{jk}$ for all $\{i, j, k\}$. In the binary case this amounts to $2 \sigma_{12} > \max(\sigma_{11}, \sigma_{22})$. The recipe described by Eqs. \(\{\text{17}\}–\{\text{24}\}\) for the thermodynamic quantity $\xi = \beta \rho$ and the amplitudes K_{ij}, and by Eqs. \(\{\text{11}\}–\{\text{15}\}\) and \(\{\text{21}\}\) for the structural quantities $G_{ij}(s)$ are easy to implement. In order to go back to real space and obtain the pair correlation functions $g_{ij}(x)$ one can use any of the efficient numerical schemes described in Ref. \(\{\text{2}\}\). On the other hand, the simplicity of Eq. \(\{\text{21}\}\) allows one to get a fully analytical representation. Note first that
\[
\frac{1}{D(s)} = \sum_{m=0}^{\infty} \left[Q_{11}(s) + Q_{22}(s) + Q_{12}^2(s) - Q_{11}(s) Q_{22}(s) \right]^m.
\]
(25)
When Eq. \(\{\text{25}\}\) is inserted into Eqs. \(\{\text{11}\}–\{\text{13}\}\), one can express $G_{ij}(s)$ as linear combinations of terms of the form
\[
Q_{11}^{n_{11}}(s) Q_{22}^{n_{22}}(s) Q_{12}^{n_{12}}(s) = \frac{e^{-a (s + \xi)}}{(s + \xi)^n} \left(\rho_1 K_{11} \right)^{n_{11} + n_{12} / 2} \left(\rho_2 K_{22} \right)^{n_{22} + n_{12} / 2} (26)
\]
where $a = n_{11} \sigma_{11} + n_{22} \sigma_{22} + n_{12} \sigma_{12}$ and $n = n_{11} + n_{22} + n_{12}$. The inverse Laplace transforms $g_{ij}(x) = L^{-1} [G_{ij}(s)]$ are readily evaluated by using the property
\[
L^{-1} \left[\frac{e^{-a (s + \xi)}}{(s + \xi)^n} \right] = e^{-\varepsilon (x - a)^{n-1}} / (n - 1)! \Theta(x - a).
\]
(27)
In particular, for the most nonadditive case considered in
numbers of terms contribute to
22
\(g \)

It is important to realize that if one is interested in dis-
tances \(x \) smaller than a certain value \(R \), only a finite
numbers of terms contribute to \(g_{ij}(x) \), namely those with
\{\(n_{11}, n_{22}, n_{12} \)\} such that \(n_{11} - 15 n_{22} + 16 n_{12} < 80 \) are needed
for \(x < 10 \sigma_{11} \). Moreover, \(g_{ij}(x) = \rho_{ij}^{-1} \mathcal{P}_{ij}^{(1)}(x) = K_{ij} e^{-\xi x} \)
in the first shell, i.e., for \(\sigma_{ij} < x < \sigma_{ij} + \Delta_{ij} \), where
\(\Delta_{11} = \min(\sigma_{11}, 2 \sigma_{12} - \sigma_{11}), \Delta_{22} = \min(\sigma_{22}, 2 \sigma_{12} - \sigma_{22}), \)
and \(\Delta_{12} = \min(\sigma_{11}, \sigma_{22}) \).

Let us consider a specific system with \(\sigma_{22}/\sigma_{11} = 2, \)
\(\sigma_{12}/\sigma_{11} = 15/8, \) and \(\rho_{1} = \rho_{2} = \sigma_{11}^{-1}/4 \). The corre-
sponding solution of the transcendental equation for
\(\xi \) is \(\xi \simeq 2.52964 \sigma_{11}^{-1} \), so that \(\beta \rho / \sigma \simeq 5.05927 \).

The numerical values of the amplitudes \(K_{ij} \) and the con-
tact values \(g_{ij}(\sigma_{11}^{-1}) \) are \(K_{11} \simeq 91.5298, K_{22} \simeq 1148.60, \)
\(K_{22} \simeq 324.24, g_{11}(\sigma_{11}^{-1}) = g_{22}(\sigma_{11}^{-1}) \simeq 7.29382, \) and
\(g_{12}(\sigma_{12}^{-1}) \simeq 2.82473 \). The property \(g_{11}(\sigma_{11}^{-1}) = g_{22}(\sigma_{11}^{-1}) \)
is common to all the equimolar cases \((\rho_{1} = \rho_{2}) \), since then
Eqs. (17) and (18) imply that \(K_{11} \Omega_{11}(\xi) = K_{22} \Omega_{22}(\xi) \).
Figure 1 compares the three exact bulk correlation func-
tions \(g_{ij}(x) \) with those predicted by the FMT proposed in
Ref. [2]. The discrepancies are similar to those found in
Ref. [2] between Monte Carlo simulations and FMT.

It must be emphasized that the scheme (10)–(10) pro-
vides the exact bulk correlation functions for a one-
dimensional mixture in the absence of external fields.

FIG. 1: (Color online) Bulk pair correlation functions
\(g_{ij}(x) \) for a one-dimensional binary hard-rod mixture with
\(\sigma_{22}/\sigma_{11} = 2, \sigma_{12}/\sigma_{11} = 15/8, \) and \(\rho_{1} = \rho_{2} = \sigma_{11}^{-1}/4 \). The
solid lines are the exact results and the dashed lines are the
FMT predictions of Ref. [2].

I am grateful to M. Schmidt for kindly providing the
FMT values represented in Fig. 1. This work has been supported by the Ministerio de Educación y Cien-
cia (Spain) through Grant No. FIS2007–60977 (partially
financed by FEDER funds) and by the Junta de Ex-
tremadura through Grant No. GRU07046.

Acknowledgments
[1] Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
[2] M. Schmidt, Phys. Rev. E 76, 031202 (2007).
[3] Z. W. Salsburg, R. W. Zwanzig, and J. G. Kirkwood, J. Chem. Phys. 21, 1098 (1953).
[4] J. L. Lebowitz and D. Zomick, J. Chem. Phys. 54, 3335 (1971).
[5] M. Heying and D. S. Corti, Fluid Phase Equil. 220, 85 (2004).
[6] J. Abate and W. Whitt, Queuing Systems 10, 5 (1992).