Linezolid-resistance *Staphylococcus aureus* – Prevalence, Emerging Resistance Mechanisms, Challenges and Perspectives

Hassan Rafique¹, Nazim Hussain¹, Muhammad Usama Saeed¹, Hafiz M.N. Iqbal²*, Gulfam Azim³ and Muhammad Bilal⁴*

¹Centre for Applied Molecular Biology (CAMB), University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.
²Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
³National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
⁴School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.

Abstract

Staphylococcus aureus, an opportunistic pathogen, can root several infections viz skin and tissue infections, bacteraemia, food poisoning, pneumonia, and many other clinical conditions with some variations of virulence factors. In treatment of infections, caused by this Gram-positive pathogen, several antibiotics are being used importantly Methicillin and Vancomycin. This pathogen has high capability of antibiotic resistance development and had evolved new strains such as Methicillin-resistant *Staphylococcus aureus* (MRSA), and Vancomycin-resistant *Staphylococcus aureus* (VRSA). Meta-analysis in Ethiopia showed that pooled prevalence of MRSA in environment, food, animal, and human was 54%, 77%, 15%, and 38% respectively (2022). Risk of MRSA isolates from burn ICU was 55 % higher (2018). In Bangladesh 37.1% isolates from frozen meat chicken (2021) were identified as MRSA. This problem is being dealt with a novel drug called Linezolid which has been proved effective against both MRSA and VRSA. Exacerbating the situation, this pathogen has shown resistance against this unprecedented drug by means of a number of drug resistance mechanisms. Its prevalence has been reporting since the adoption of the drug, but with a minute ratio at one time/place to the very high percentage at another time/place. This inconsistent prevalence must not be ignored, and its surveillance should be augmented as antibiotic treatment is critical for fighting against microbial infections. This review highlights the worldwide reports in which *Staphylococcus aureus* of either wildtype or Methicillin or Vancomycin resistance that have shown resistance to Linezolid drug for the past 2 decades. At the same time where incidences of Linezolid Resistant *Staphylococcus aureus* (LRSA) indications are reporting, there is a call for comprehensive strategies to overcome this challenge of antibiotic resistance.

Keywords: Linezolid, Antibacterial Resistance, Linezolid Resistant *Staphylococcus aureus*

Correspondence: hafiz.iqbal@tec.mx; bilaluaf@hotmail.com

Citation: Rafique H, Hussain N, Saeed MU, Iqbal HMN, Azim G, Bilal M. Linezolid-resistance *Staphylococcus aureus* — Prevalence, Emerging Resistance Mechanisms, Challenges and Perspectives. *J Pure Appl Microbiol.* 2022;16(3):1492-1505. doi: 10.22207/JPAM.16.3.44

© The Author(s) 2022. **Open Access.** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
INTRODUCTION

Being a part of normal microbiota on skin, nasal cavity, and woman’s LRT (lower reproductive tract), *Staphylococcus aureus* (*S. aureus*) is an unscrupulous pathogen whose colonization can be the origin of infections ranging from normal to critical and even lethal including endocarditis and bacteraemia.1,2 Accounting several clinical situations such as mastitis, sepsis, food poisoning, osteomyelitis, pneumonia, wound infections, abscess formation, toxic shock syndrome (TSS), meningitis, and also respiratory infections such as sinusitis, can be instigated by colonies formation of *S. aureus* bacteria.1,3 Disease index can be chiefly divided into wide-ranging infections such as: infections of the tissues and skin (cellulitis, impetigo & boils), infections of the lung and urinary tract, infection of deep sites (any organ e.g., spleen, heart valve, liver, bones, and joints etc.) and toxin-facilitated diseases (scaled skin syndrome, toxic shock syndrome, food poisoning). Toxin-facilitated diseases in this list range from self-restrictive to life-threatening. The complication arises when a condition known as bacteraemia is reached which refers to the presence of viable bacteria in blood and this can lead to even more dangerous condition known as sepsis. Further manifestations of nosocomial infection due to *S. aureus* include ventilator associated pneumonia, wound infection, bacteraemia associated with Intravenous devices, and other sorts of prosthesis associated infections (such as prosthetic joints, cerebrospinal fluid shunts and vascular graft).4 Being a non-spore forming opportunistic pathogen, with the resistance against environmental conditions, it is proficient to survive for indeed a long period even in a dry state. It can grow on temperature range between 7°C to 47.8°C. The pH range for growth is between 4.4 & 9.3 while the optimum growth pH is 7.0 – 7.5. Moreover, it has extremely tolerant strains to sugars and salts.5 According to epidemiological studies, the basic habitat of this micro-organism is human anterior nares and about 30% individuals carry it there at any given time, but in case of patients and hospital personnel the rate may be higher.6 Another research showed that *S. aureus* bacterium (chiefly found in the nose) is temporarily or persistently carried out by 30-50% population which is indeed a very large number.7

S. aureus can cause pathogenesis; therefore, it is quite important regarding various clinical aspects. The active antibiotics against *S. aureus* are Cephalosporins and Penicillin.6 The bacteria can generate resistance against harmful conditions either by getting the gene horizontally or with the help of mutations. The bacteria which do not have the resistance to a specific antibiotic can acquire gene or plasmid of resistant bacteria to that specific antibiotic. Naturally, *S. aureus* had evolved and started to produce an enzyme called beta lactamase (β-lactamase) which hinders the activity of Penicillin.8 These strains were called PRSA (Penicillin Resistance *Staphylococcus aureus*). Therefore, 1st generation Cephalosporins and new group of antibiotics i.e., β-lactam antibiotics comprising Penicillin G, Methicillin, Oxacillin, Nafcillin which suited well for such susceptible strains, became the choice of treatment.6 The pathogen somehow acquired resistance gene for such kind of antibiotics and a new strain called MRSA was reported. A study, conducted in the region of Pakistan (Karachi) reported 44.9% prevalence of MRSA.9 For the patients with β-lactam sensitivity, Vancomycin became the choice for the treatment of MRSA. Exacerbating the situation, there have been reports of the resistance of Vancomycin which emerged a new kind of *S. aureus* called VRSA.10 Emergence of such decreased Vancomycin susceptibility in strains is a major concern with respect to MRSA treatment with Vancomycin.6 Research is continuously reporting the prevalence of VRSA among patients, a formidable threat to the treatment of MRSA infections.2 The study in Iran reported 11 VRSA strains out of 80 *S. aureus* strains and 1 VISA (Vancomycin Intermediate *Staphylococcus aureus*) which were obtained from clinical samples.11 Hand in Hand, there had been the use of Linezolid drug for the treatment of these VRSA strains which is the elementary concern of us. This article is written in perspective of Linezolid drug use in treating infections of *S. aureus*, the mechanism associated with its Linezolid resistance, the key theme which is the prevalence of Linezolid Resistance *Staphylococcus aureus* (LRSA) strain in different places of the world, and the finally, the solution of ongoing challenges of Linezolid resistance.
Linezolid and Staphylococcus aureus

Because of the resistance generated by *S. aureus* against many groups of antibiotics, a novel drug called Linezolid (a representative drug of antibiotic group- oxazolidinone) is in use. Structural, physiochemical, and pharmacokinetic data of Linezolid are shown in Figure 1. It has the inhibitory activity against MRSA, VRSA, and GISA (Glycopeptide-Intermediate *Staphylococcus aureus*). This drug has been proved as effective cure against infections (Bacteraemia) caused by MRSA (Figure 2). Clinical trials demonstrated that this unprecedented drug is an active cure for patients of community acquired pneumonia and nosocomial skin infections. Linezolid had showed itself as active as other well-established treatments. For example, oral dosage of Linezolid 400 mg twice daily is equal to Clarithromycin 250 mg twice daily in effectiveness for community acquired pneumonia or simple SSTIs. Linezolid is being used for the treatment of complex skin and tissue infections. This drug is considered immensely suitable for the treatment of MRSA based complicated skin & soft tissue infections.

Studies have shown a relatively effective activity of Linezolid against MRSA and strains which are resistant to glycol-peptides and other agents of antibiotics. It is reported that Linezolid is also effective against infections of MRSA strains which form biofilms (BF) on biomaterials. The efficacy of Linezolid against MRSA has been found competent in vivo with baicalein- a flavonoid which is used in Traditional Chines Medicine.

Linezolid has proved well effective against infections of *S. aureus* and many reports have been published witnessing its usefulness. Several infections of *S. aureus* can be treated with Linezolid. A study showed that Linezolid is as effective as Vancomycin in the treatment of children infections caused by Gram-positive bacteria. Another randomized study which compared Vancomycin and Linezolid for the treatment of bacteraemia caused by *S. aureus* was conducted. The pooled data showed that

Figure 1. Structural, physiochemical, and pharmacokinetic data of Linezolid
the results of Linezolid treatment were not lesser than that of Vancomycin treatment. Infections of Central Nervous System caused by MRSA may also be treated with Linezolid.

In Japan, another report witnesses the safety and efficiency of Linezolid for the treatment of MRSA infections. The report also suggested that it is rather more efficient as compared to Vancomycin as an antibacterial agent for the eradication of micro-organisms. Fu et al. analysed the measured trials for S. aureus through meta-analysis. His study of pooled data proposed that Linezolid was more efficient for the treatment of patients with SSTIs (Skin and Soft Tissue Infections) as compared to glycopeptides. A latest study was conducted to find out the safety and efficiency of Linezolid for the treatment of meningitis. The studied claimed that Linezolid appeared safe to them for the treatment of meningitis.

Mechanism of Linezolid Action

Even though the precise mechanism of Linezolid (oxazolidinones) has not been accomplished completely, but they are known to act through inhibition means in the bacterial protein synthesis’ initial phase. The proposed concept behind the action is that the agents of this group of antibiotics interrupt fMet-transfer RNA interaction with the 50S subunit of ribosome at the time of preinitiation complex formation at very early stage. Thus, preventing the formation of 70S initiation complex and bacteria cannot synthesize proteins for survival and growth. The main function of Linezolid is to inhibit the protein synthesis in bacteria, as the proteins are crucial for cellular metabolism and cellular structure, the result is the inhibition of bacterial growth and multiplication.

However, due to the incomplete knowledge of linezolid selectivity through known structures of Linezolid complex with ribosomes of
bacteria led to the further studies through use of various technologies such as molecular dynamics simulation methods, for understanding of action of Linezolid. One of such study published the simulated structure complex of Linezolid with ribosome of E. coli. Their study contributed to the understanding of mechanism of translation inhibition of Linezolid.14

The site of action of oxazolidinone in bacteria is cytoplasmic ribosome while the molecular modelling study showed that oxazolidinones were non-interactive towards human cytoplasmic ribosomes, but obstruct mitochondrial protein synthesis, therefore, were expected to interact with the mitochondrial ribosomes. This drawback results in clinical side effects of oxazolidinones therapy.27 For instance, respiratory enzyme content can be faded, if mitochondrial protein synthesis is inhibited, consequently, limiting the aerobic energy production. The outcome of the situation is an increase in anaerobic glycolysis and lactate generation despite of the absence of tissue hypoxia. This untoward interaction of antimicrobial drug and human mitochondrial ribosome becomes the root cause of Linezolid-induced lactic acidosis-that is rare but lethal side effect of Linezolid.28 It is reported that with Linezolid, reduction in toxin production by Gram-positive pathogen is possible as Linezolid may also inhibit the expression of virulence elements. The interaction of Linezolid with other antimicrobials is minimal and thus it can be used simultaneously with other antimicrobials as well without the decrease in its efficiency.18

Bacterial Response to Linezolid Exposure

A report found dose-dependent reactive oxidation species (ROS) in MRSA strains after Linezolid exposure and demonstrated that the strains in study were not under oxidative stress environment due to Linezolid exposure. The result showed that the protein synthesis inhibition provokes deceleration of cellular respiration -crucial to metabolic activities- and the oxidative stress of each strain was associated with metabolic activity.32

Development of Linezolid Resistance

Linezolid, a novel drug, was synthesized to treat bacterial infections prompted by Gram-positive bacteria. It is well suited as Vancomycin against MRSA. However, there are reports where S. aureus has developed resistance to such a novel drug and emerged a highly threatened strain i.e., LRSA. The emergence of resistance was considered a result of mutation (discrete nucleotide substitution) in V domain of 23S ribosomal RNA gene especially G2576T, T2500A and G2447T.33 There is another scenario of Linezolid resistance which is non mutational and is due to acquired gene from plasmid of resistant strains of Enterococcus faecalis. One such incident of transferable resistance in micro-organisms is discussed here to elaborate the acquired resistance in Staphylococcus aureus, and the accountable gene of for this scenario is recognized as cfr (chloramphenicol-
florfenicol resistance) gene. Linezolid is synthetic in nature, and it was supposed that no resistance gene pool would be existed in micro-organisms to hinder the clinical significance of the drug; though, the cause of its resistance in strains was considered a mutation but there are now reports which explain the transferable resistance against Linezolid. The mechanism of drug action is that; it binds to bacterial ribosome at 50S subunit through interaction with 23S ribosomal RNA, thus obstructing the protein synthesis. Cfr gene is considered responsible for multi-drug resistance. The product of the gene is an enzyme called methyltransferase which causes methylation of 23S rRNA gene region known as A2503 (large ribosomal subunit’s gene). Thereby, promoting resistance to strains against drugs like florfenicol, chloramphenicol and clindamycin. This kind of resistance of S. aureus against drugs is called cfr-mediated resistance. The case of Linezolid resistance among S. aureus due to cfr gene was first reported by Toh et al. The first strain of S. aureus to be resistant to Linezolid is known as CM05 named after its isolation place and date (C=Colombia, M=Medellin, 05=2005). PCR-specific primers were used to identify cfr presence in the genome of pathogen’s strain. Toh et al. analysed antibiotic sensitivity of MRSA strains which is positive for cfr gene rather than the mutation in drug target site. The earliest report of cfr gene mediated resistance to Linezolid in S. aureus in clinical human isolates which were recovered in United States was published in 2008. This study was conducted by Farrell et al. They claimed to describe first detection of cfr mediated resistance in human isolates during LEADER program (according to which about all strains (99.9%) of S. aureus isolated in US were Linezolid susceptible). In this study, bacterial strain was obtained from 45-year-old woman which was showing the symptoms of sepsis, pneumonia, and urinary tract infection. The woman was admitted to a hospital in Ohio and strain (004737X) retrieved from bronchio-alveolar lavage specimen, further the patient subsequently been given Linezolid, Vancomycin, Erythromycin & Piperacillin-tazobactam and kept in hospital for 1 month. According to the study isolate shown Linezolid resistant phenotype. This outcome led

Figure 3. Associated mechanisms of Linezolid resistance in Staphylococcus aureus
to screening of G2576T mutation but that was not present. But the result was positive for cfr primers which was further confirmed by sequencing.35

In 2010, a study reported first outbreak of cfr mediated Linezolid resistance in S. aureus conducted by Morales et al.36 They experimentally explored the means of resistance in MRSA strains, from the 15 patients in ICU and other wards, in their study. They reported the resistance against Linezolid is due to the presence of cfr but not due to G257ST mutation in 23S ribosomal RNA. They collected strains from ICU and other wards and determined the MIC using E-test and genotyped strains using PFGE followed by sequencing for presence of mutation in 23S rRNA and at last performed PCR for cfr gene. The results were that MIC of Linezolid was between 16 to 32 mg/L, and strains were not resistant to Vancomycin, Tigecycline and Daptomycin. Typing of strains by PFGE exposed only Linezolid resistant MRSA. The mutation which is considered responsible for Linezolid resistance was absent while the cfr gene was confirmed. They reported that underlying mechanism of Linezolid resistance was the presence of cfr gene but not the G257ST mutation.36 Cfr was earlier identified in pSCFS1 plasmid of Staphylococcus sciuri isolate in 1997 from a calf in Bavaria. The calf was florfenicol treated.37 To determine whether the cfr gene is chromosomal or plasmid borne, a study was conducted by Locke et al.38 They cultured Linezolid resistant strain-1128105 (cfr positive MRSA), analysed its cfr antibiogram, extracted its plasmid and transferred it to the wild-type strain of S. aureus (ATCC 29213) which was not resistant to the drugs falling within the spectrum of cfr resistance. The outcome was positive for recapitulating the cfr antibiogram in transformed wildtype strain of ATCC 29213, just like the cfr antibiogram of 1128105 strains. The resulting (transformed) strains displayed the non-susceptibility phenotype to the drugs (falling within spectrum of cfr resistance) as well, and it was confirmed that it can be transferred horizontally by being plasmid borne. They also suggested that cfr gene environments possessed by all the three cfr possessing clinical isolates (1128105, CM05 & m05/0060) reported up-to 2005 were unique, emphasizing the importance of multidrug resistance cfr gene.38 Linezolid resistance in S. aureus, can be summarized in Figure 3.

The major mechanisms behind Linezolid resistant were strongly reported with presence of G257ST mutation in 23S ribosomal RNA, existence of cfr gene, surprisingly, a factor that suggests horizontal transfer of resistance among pathogenic strains and also L3 & L4 mutations. Some roles of homologous recombination and hypermutation has been reported as well.38-41 In the latest findings, Linezolid resistance of S. aureus were associated with G2576T mutations in domain V region of 23S ribosomal RNA.12 While according to Maarouf et al.32 the mutation which seems to play role in Linezolid resistance is G2603T.

Prevalence of LRSA

Antibiotic resistance among strains varies from region to region and country to country. The first clinical identification of LRSA in US was reported in 2001.42,43 In following years, many reports have been published relevant to LRSA presence.44-46 The criteria on which EUCAST & CLSI define Linezolid resistance in S. aureus is ≥8 mg/L MIC (Linezolid minimal inhibitory concentration). Based on this, a review was published in 2012 discussing Linezolid resistance in Staphylococcal species as emerging problem. The review was based on research survey through PubMed and EMBASE during April 2012. The terms used were based on National Library of Medicine’s MeSH i.e., “resistance”, “Linezolid” and “Staphylococcus” to retrieve articles that describe Linezolid resistant Staphylococcus. Then, retrieved publications were examined by title and then abstract after which required material was reviewed from the full text. The publications included short communications, original articles, correspondence, or case reports that reported required clinical isolates. To compare Linezolid resistance rates among S. aureus & Coagulase Negative Staphylococci, statistical analysis was performed. Two surveillance programmes, LEADER & ZAAPSS are responsible for monitoring Linezolid susceptibility among various clinically important isolates. Non-duplicate isolates from ABSSSIs and bacterial pneumonia are submitted in these programmes by participating institutes. MIC methods (Broth microdilution) were used...
Table. Incidences of reported LRSA

Region	Year of report	Samples duration	Source of sample	No. / types of isolates	Isolates with linezolid resistance	Accompanying mutation or gene	Ref.
USA	2001	ND	Peritoneal Fluid	15 (MRSA)	3 (20%)	G2576T Mutations	[43]
	2003	ND	Body fluids	11 (MRSA)	3 Isolates Showed >8 mg/L MIC (20 %)	G2576T Mutation	[54]
UK	2004	ND	Sputum, Throat Swab	S. aureus (A8761) JMI-700	Positive Positive	G2576T Mutation	[55]
Brazil	2005	2000-2002	Sputum, Throat Swab	MRSA (CM05) 2913 (S. aureus)	Positive <0.1 %	G2576U Mutation cfr Presence ND	[56]
Colombia USA (LEADER Program)	2007-2008	2005-2006	Stool	Subsequently Isolated 6 MRSA from a Single Patient.	Later 3 Strains were LRSA	G2576T Point Mutation	[57]
Germany	2008	2004-2005	Stool	NA	12 LRSA Isolates	cfr Presence	[58]
Japan	2009	25 Sep-22 Dec	Sputum Blood, Stool, Catheter	ST36 MRSA MRSA	12 LRSA	ND	[44]
Spain	2010	Apr 13-June 26, 2008	Patients from ICU	ST36 MRSA MRSA	12 LRSA	ND	[49]
(Cystic Fibrosis) Japan	2009	ND	Sputum & 2 LRSA Isolates	ST36 MRSA MRSA	12 LRSA	ND	[36]
Spain Jun 2008	2010	Apr 2008–	Patients from Hospitals	ST36 MRSA MRSA	12 LRSA	ND	[40]
Japan	2011	2006-2008	Patients from Hospitals	ST36 MRSA MRSA	12 LRSA	ND	[45]
India (Nagpur) Iran	2012	2010-2011	Anterior Nares of Children	ST36 MRSA MRSA	12 LRSA	ND	[53]
(Tehran) Spain (HUB)	2013	1999-2010	MRSA Isolates Hands & Stuff of Hospital	ST36 MRSA MRSA	12 LRSA	ND	[61]
Nigeria (Zaria)	2015	ND	Anterior Nares of Children	ST36 MRSA MRSA	12 LRSA	ND	[62]
Nigeria (Amassama) United States	2016	ND	Anterior Nares	91 (S. aureus)	72 (95%)	cfr Presence	[63]
Tanzania (Dar Es Salaam)	2017	Mar-Aug 2015	Anterior Nares	91 (S. aureus)	72 (95%)	cfr, 23S rRNA & L3 Mutation	[64]
	2017	2011-2015	Leaders Surveillance Programme	ST36 MRSA MRSA	12 LRSA	ND	[65]
Table. Cont...

Region	Year of report	Samples duration	Source of sample	No. / types of isolates	Isolates with linezolid resistance	Accompanying mutation or gene	Ref.
Pakistan (Karachi)	2017	2012-2013	Clinical Specimens	165 (MRSA)	0	ND	[66]
Pakistan (Faisalabad)	2017	March-July	Pus (S. aureus)	150 (34%)	51	39/50=cfr+	[48]
Southeast (Vietnam)	2017	Sep-Dec 2013	Nasal Cavity	205 (S. aureus)	4.30%	ND	[71]
Poland (Masovian)	2019	2015-2017	Clinical Specimens	112 (MRSA)	0	ND	[67]
India (Bhatinda)	2019	Dec-2016-2017	Clinical Specimens	162 (S. aureus)	8 (4.9%)	ND	[52]
India (Amritsars)	2019	2017-2018	Clinical Specimens	735 (S. aureus)	10 (1.4%)	ND	[68]
Portugal (Vila Real)	2019	ND	Ulcer Specimens from Diabetic Patients	28 (MRSA)	3 (10.7%)	cfr Presence	[69]
Korea	2019	Jan 2014-Dec 2018	NA	27 (MRSA)	4 (14.8%)	23S rRNA T2500A mutation	[70]

*Clinical Specimens= Blood, Urine, Pus, Sterile Body Fluids, ETT, Swabs of Ear, Throat and Vagina, Cerebrospinal Fluid and other Body Fluids. *HUB= Hospital Universitari De Bellvitge, *ND= No Data, NA= Not Applicable. USA= United States of America, UK= United Kingdom, LEADER= Linezolid Experience and Accurate Determination of Resistance, MRSA= Methicillin Resistant Staphylococcus aureus, cfr- Chloramphenicol-Florfenicol resistance gene, LRSA- Linezolid Resistant Staphylococcus aureus

Linezolid resistance documented by LEADER (according to study between 2002-2010) was in 0.05% S. aureus (13 out of 23077) while it was 1.4% for Coagulase negative Staphylococci, documenting increased resistance in CoNS. On the other hand, ZAAPS recognized 10 Linezolid resistant CoNS and only one strain of LRSA. ZAAPS (2004-2010) yielded overall rate 0.14% among 8122 Staphylococci. In addition to this study, another study is mentioned in which researchers reviewed 22 publications reporting approximately 65 cases of LRSA and 28 publications reporting 351 cases of Linezolid resistant CoNS.

In Turkey, an experiment revealed that no Linezolid resistant strain was found in their research. The drive of research was to explore the phenotypic resistance of MRSA and MSSA (321 & 195 respectively) strains to Linezolid, Macrolide, Streptogramin B, Lincosamide, and Ketolid. Kirby Bauer test was applied to determine MLSB phenotype and susceptibility to other antibiotics. They found that 0.4% of isolates were resistant to quinupristin half pristin, 48% to Clindamycin, 54.6% to erythromycin, 58.7% to spiramycin, 55% to azithromycin, 34.7% to telithromycin. They could not find any strain resistant to Linezolid. While on the other hand, a study conducted in a region of Pakistan (Faisalabad) reported the identification of 34% isolates were LRSA (cfr positive) out of 150 S. aureus isolates from pus samples (of skin, ears and wounds) of patients from local hospital indicating the variable prevalence of LRSA comparing to study explained before. Thus, the prevalence of antibiotic resistance in micro-organisms differs with respect to the regions as various studies just like in Turkey reported no strain of LRSA. The short review about some worldwide reported LRSA for 2 decades is shown in Table. The other reported factors for variable Linezolid resistance...
in pathogen are drug dosage (low/high dosage), and cystic fibrosis. Another study on CF aspect in Cleveland, Ohio reported that more than 10 percent CF patients receiving Linezolid treatment were developing resistance. Most of the LRSA strains were isolated from soft skin tissues in their study. They used disc diffusion method for determination of antimicrobial susceptibility. Eight strains were reported LRSA out of 162 S. aureus strains. Out of them five isolates were from pus, two from throat, ear, and vaginal swab, and last one was from blood. Kaur et al. showed high prevalence of LRSA in pus which was 62.5%. Azhar et al. showed 34 % and the other conducted by Thool et al. reported 23.5 % prevalence of LRSA in pus as given in Table. It can be seen from the data that going through the countries (Geographical region), the majority of LRSA was from Europe and Asia. The data on Linezolid resistance in S. aureus and the cause of Linezolid resistance (if any) is not sufficiently reported among southeast Asian countries.

Ongoing Challenges of Linezolid Resistance and Possible Solutions

Emergence of resistance in S. aureus against Linezolid is utterly posing a risk to antibiotic treatment. As Linezolid is considered the best therapy in case of Vancomycin resistance in S. aureus infections but in an antimicrobial study conducted on bacterial samples isolated form the 518 pus samples of wounded patients: who presented at Ghurki Trust Teaching Hospital Lahore, Pakistan from January 2019 to January 2020, indicated that microbial sensitivity of Vancomycin was higher than the Linezolid. This can be due to irrational prescription of Linezolid without testing the exact microbial strain from patient who are being recommended antibiotics. In contrast, it is reported that reduced Linezolid dosing schemes in elderly patients should be considered as low risk of treatment failure, ultimately increasing the effectiveness of the drug.

Since the incidences of resistance against Linezolid in S. aureus are being reported, the researchers are also in a race of dealing such challenge. For example, in order to enhance Linezolid susceptibility in S. aureus strain, antibiotic adjuvants are in study. Honey is also considered, by many people, a natural remedy of several diseases. It is used as food as well as medicine in many cultural groups because of its therapeutic properties. For example, honey is considered beneficial for ulcer, burns, cataracts, and wounds. Depending on origin, honey has been branded into different types. Evidence for Manuka Honey (Mono-floral honey isolated from nectar of manuka tree, New Zealand) to elevate antibiotic sensitivity in S. aureus are reported. MGO (methylglyoxal) is reported the active gradient of manuka honey that supports the increased intracellular accumulation of Linezolid in S. aureus. Additionally, the next to Linezolid, investigational effective antibacterial drug against LRSA strains was a new (2nd generation) oxazolidinone, TR-700 (Tedizolid). Its potency comparing with Linezolid is reported around 2 to 8-fold, against multidrug resistant Gram-positive bacteria. Tedizolid was approved by FDA in June 2014 for treatment of acute skin infections caused by Gram-positive bacteria.

Ever increasing issue of antibiotic resistance cannot be halted but we can adopt preventive measures to reduce the chance of resistance acquisition in microbial strains such as proper and regular sterilization of surgery equipment and other stuff in hospitals as one reason of LRSA emergence is horizontal gene acquisition as cited above and its outbreak in nosocomial infections. Secondly, the subtherapeutic dosage of drug is also responsible for Linezolid resistance in S. aureus; therefore, proper identification of pathogen is recommended before the use of any antibiotic drug based on the sample/strain identification from individual and not on basis of common epidemiology in the area. The blind use of antibiotic is one of the major causes of emergence of antibiotic resistant strains. Finally, the pressure on Linezolid therapy due to S. aureus resistance can be dealt by the understanding of epidemiology of antibiotic resistance, this knowledge will help to pick up preventive strategies to reduce existing resistance and to prevent the appearances of new resistant strains.

CONCLUSION AND PERSPECTIVES

A continuous increasing resistance in S. aureus can cause different kinds of infections on
skin and tissues in addition to other organs. This pathogen has many virulence factors including TSST-1 and a large disease index. The antibiotic treatment ranges from Penicillin, Methicillin, Vancomycin and Linezolid depending on what kind of strain is responsible for the infection. However, the pathogen had shown resistance against each of the aforementioned antibiotics. The intimidating fact is the resistance against Linezolid. Reported incidences of Linezolid resistance has troubled the success of antibiotic therapy as it was a novel synthetic drug. It was supposed that no resistance gene could exist for Linezolid in S. aureus as it was synthetic in nature, but this pathogen has shown resistance despite of lacking resistance gene in its genome through mutational processes and also through the acquisition of resistance gene from other bacteria. The problem of resistance of one bacterial specie against many drugs has troubled the antibiotic treatment choice. It has become important to check LRSA before using Linezolid drug against MRSA and VRSA (Both showed resistance against Linezolid) as its injudicious use will not only cause further drug resistance but also fail the treatment of bacterial infection. The incidences of LRSA prevalence as shown in Table that it is 0% in one report and 95% in another, indicate that LRSA prevalence vary from one place to another which may be due to different mechanism of resistance development or acquisition, or it may be due to irrational prescriptions of the concerned drug. Its prevalence is uncertain, and reason could be the lack of sanitization/sterilization in hospitals, thus resulting to the possibility of horizontal gene transfer. In order to prevent the incidences of LRSA, precautionary measures must be adopted such as sterilization of equipment that are used in hospitals especially during surgery, proper sanitization, public awareness of antibacterial resistance and most importantly the appropriate drug prescription and use.

ACKNOWLEDGMENTS
The authors would like to thank cited authors for their useful data and the representative universities for providing the literature services.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHORS’ CONTRIBUTION
HR, NH and MB conceptualize the review. HR, NH, MUS and GA did the literature screening and data curation. HR, NH, MUS, HMNI, GA and MB wrote original draft. HMNI and MB did the reviewing and editing of the manuscript. All the authors have read and approved it for publication.

FUNDING
None.

DATA AVAILABILITY
All data sets generated or analyzed during this study are included in the manuscript.

ETHICS STATEMENT
This article does not contain any studies with human participants or animals performed by any of the authors.

REFERENCES
1. Bencardino D, Vitali LA. Staphylococcus aureus carriage among food handlers in a pasta company: pattern of virulence and resistance to linezolid. Food Control. 2019;96:351-356. doi: 10.1016/j.foodcont.2018.09.031
2. Hanif E, Hassan SA. Evaluation of antibiotic resistance pattern in clinical isolates of Staphylococcus aureus. Pak J Pharm Sci. 2019;32(3):1219-1223. PMID: 31680068
3. Saeed A, Ahsan F, Nawaz M, Iqbal K, Ur Rehman K, Ijaz T. Incidence of vancomycin resistant phenotype of the methicillin resistant Staphylococcus aureus isolated from a tertiary care hospital in Lahore. Antibiotics. 2020;9(1):3. doi: 10.3390/antibiotics9010003
4. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler Jr VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev, 2015;28(3):603-661. doi: 10.1128/CMR.00134-14
5. Walderhaug M, Bad Bug Book: Foodborne pathogenic microorganisms and natural toxins handbook. 2014: BrainFeed Press.
6. Ryan KJ. Staphylococci, in Sherris Medical Microbiology. 2017, McGraw-Hill Education: New York, NY.
7. Alhashimi HMM, Ahmed MM, Mustafa JM. Nasal carriage of enterotoxigenic Staphylococcus aureus among food handlers in Kerbala city. Kerbala International Journal of Modern Science. 2017;3(2):69-74. doi: 10.1016/j.kijoms.2017.02.003
8. Deurenberg RH, Stobberingh EE. The evolution of Staphylococcus aureus. Infect Genet Evol. 2008;8(6):747-763. doi: 10.1016/j.meegid.2008.07.007
9. Fatima A, Fasih F, Tariq S. In-vitro susceptibility of Methicillin resistant Staphylococcus aureus isolates to linezolid at a tertiary care hospital of Karachi, Pakistan.
10. Tiwari HK, Sen MR. Emergence of vancomycin resistant Staphylococcus aureus (VRSA) from a tertiary care hospital from northern part of India. BMC Infect Dis. 2006;6(1):156. doi: 10.1186/1471-2334-6-156

11. El-Sayed N, Ashour M, Amine AEK. Vancomycin resistance among Staphylococcus aureus isolates in a rural setting, Egypt. Germs. 2018;8(3):134-139. doi: 10.18683/germs.2018.1140

12. Chen C-J, Huang Y-C, Shie S-S. Evolution of Multi-Resistant Methicillin-Resistant Staphylococcus aureus: Causing Persistent Bacteremia. Front Microbiol. 2020;11:1414. doi: 10.3389/fmicb.2020.01414

13. Bialvaei AZ, Rahbar M, Yousefi M, Asgharzadeh M, Kafil HS. Linezolid: a promising option in the treatment of Gram-positives. J Antimicrob Chemother. 2017;72(2):354-364. doi: 10.1093/jac/dkw450

14. Makarov GI, Makarova TM. A noncanonical binding site of linezolid revealed via molecular dynamics simulations. J Comput Aided Mol Des. 2020;34(3):281-291. doi: 10.1007/s10822-019-00269-x

15. Chastre J, Blasi F, Masterton RG, Rello J, Torres A. Linezolid versus vancomycin for the treatment of resistant Gram-positive infections. Drugs. 2001;61(4):525-551. doi: 10.2165/00003495-200161040-00008

16. Perry CM, Jarvis B. Linezolid: a review of its use in the management of serious gram-positive infections. Drugs. 2001;61(4):525-551. doi: 10.2165/00003495-200161040-00008

17. Tanguian L, Luo J, Bi G, Du Z, Kong J, Chen Y. Antibacterial synergy between linezolid and baicalein against methicillin-resistant Staphylococcus aureus after more than 10 years of experience with linezolid. Clin Microbiol. 2014;20(Suppl 4):19-36. doi: 10.1111/1469-0691.12450

18. Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care. Drug Des Devel Ther. 2018;12:1759-1767. doi: 10.2147/DDDT.S164515

19. Kaplan SL, Deville JG, Yogev R, et al. Linezolid versus vancomycin for treatment of resistant Gram-positive infections in children. Pediatr Infect Dis J. 2003;22(8):677-686. doi: 10.1097/01.inf.0000078160.29072.42

20. Shorr AF, Kunkel MJ, Kollef M. Linezolid versus vancomycin for Staphylococcus aureus bacteremia: pooled analysis of randomized studies. J Antimicrob Chemother. 2005;56(5):923-929. doi: 10.1093/jac/dki355

21. Hong-An C, Yang C-J, Tsai M-S, Liao C-H, Lee C-H. Linezolid as salvage therapy for central nervous system infections due to methicillin-resistant Staphylococcus aureus at two medical centers in Taiwan. J Microbiol Immunol Infect. 2020;53(6):909-915. doi: 10.1016/j.jmii.2020.08.004

22. Kohno S, Yamaguchi K, Akikawa N, et al. Linezolid versus vancomycin for the treatment of infections caused by methicillin-resistant Staphylococcus aureus in Japan. J Antimicrob Chemother. 2007;60(6):1361-1369. doi: 10.1093/jac/dkm369

23. Fu J, Ye X, Chen C, Chen S. The Efficacy and Safety of Linezolid and Glycopeptides in the Treatment of Staphylococcus aureus Infections. PLOS ONE. 2013;8(3):e58240. doi: 10.1371/journal.pone.0058240

24. Pintado V, Pazos R, Jimenez-Mejias MEJ, et al. Linezolid for therapy of Staphylococcus aureus meningitis: a cohort study of 26 patients. Infect Dis. 2020;52(11):808-815. doi: 10.1080/23744235.2020.1789212

25. Deip BA, Equils O, Huang DB, Gladee R. Linezolid Effects on Bacterial Toxin Production and Host Immune Response: Review of the Evidence. Curr Ther Res. 2012;73(3):86-102. doi: 10.1016/j.curtheres.2012.04.002

26. Shifa B, Begum T, Rahman N, Khan RA. A review on antibiotic resistance and way of combating antimicrobial resistance. GSC Biological and Pharmaceutical Sciences, 2021;14(2):087-097. doi: 10.30574/gscbps.2021.14.2.0037

27. Leach KL, Swaney SM, Colca JR, et al. The Site of Action of Oxazolidinone Antibiotics in Living Bacteria and in Human Mitochondria. Molecular Cell. 2007;26(3):393-402. doi: 10.1016/j.molcel.2007.04.005

28. Santini A, Ronchi D, Garbellini M, Piga D, Protti A. Linezolid-induced lactic acidosis: the thin line between bacterial and mitochondrial ribosomes. Expert Opin Drug Saf. 2017;16(7):833-843. doi: 10.1080/14740338.2017.1335305

29. Ochi F, Tauchi H, Nagai K, et al. Therapeutic Effect of Linezolid in Children With Health Care-Associated Meningitis or Ventriculitis. Clin Pediatr. 2018;57(14):1672-1676. doi: 10.1177/0009922818803399

30. Garcia-Roca P, Mancilla-Ramirez J, Santos-Segura A, Fernandez-Alvies M, Calderon-Jaimes E. Linezolid Diminishes Inflammatory Cytokine Production from Human Peripheral Blood Mononuclear Cells. Arch Med Res. 2006;37(1):31-35. doi: 10.1016/j.arcmed.2005.05.022

31. Wang J, Xia L, Wang R, Cai Y. Linezolid and its Immunomodulatory Effect: In Vitro and In Vivo Evidence. Front Pharmacol. 2019;10:1389. doi: 10.3389/fphar.2019.01389

32. Martínez SR, Alasa V, Sola C, Becerra MC. Oxidative stress response in reference and clinical Staphylococcus aureus strains under Linezolid exposure. J Glob Antimicrob Resist. 2020;22:257-262. doi: 10.1016/j.jgarr.2020.02.032

33. Bieseler S, Ludwig A, Zander J, Brade V, Wichelhaus TA. Linezolid Resistance in Staphylococcus aureus Gene Dosage Effect, Stability, Fitness Costs, and Cross-Resistances. Antimicrob Agents Chemother. 2008;52(4):1570-1572. doi: 10.1128/AAC.01098-07

34. Toh SM, Xiong L, Arias CA, et al. Acquisition of a Staphylococcus aureus Carrying a vanH resistance plasmid increases clinical penicillin resistance and vancomycin resistance. J Antimicrob Chemother. 2020;75(2):451-458. doi: 10.1093/jac/dkaa200

35. Farrell DJ, Mendes RE, Ross JE, Jones RN. Linezolid surveillance program results for 2008 (LEADER Program for 2008). Diagn Microbiol Infect Dis. 2009;65(4):392-
We refer to the table of contents for the specific sections of the document.
linezolid therapy. *PloS One.* 2013;8(3):e59215. doi: 10.1371/journal.pone.0059215

62. Hammuel C, Idoko M, Migap HH, Ambrose N. Occurrence and antibiogram profile of *Staphylococcus aureus* isolated from some hospital environment in Zaria, Nigeria. *Afr J Microbial Res.* 2015;9(19):1304-1311. doi: 10.5897/AJMR2015.7484

63. Abdu A, Lamikanra A. Linezolid and Methicillin Resistances in *S. aureus* Isolated from the Anterior Nares of Apparently Healthy Undergraduates of the Niger Delta University, Nigeria. *Microbiol Res J Int.* 2016:1-10. doi: 10.9734/BRMJ/2016/27202

64. Pfaller MA, Mendes RE, Streit JM, Hogan PA, Flamm RK. Five-year summary of in vitro activity and resistance mechanisms of linezolid against clinically important Gram-positive cocci in the United States from the LEADER Surveillance Program (2011 to 2015). *Antimicrob Agents Chemother.* 2017;61(7). doi: 10.1128/AAC.00609-17

65. Joachim A, Moyo SJ, Nkinda L, et al. Prevalence of methicillin-resistant *Staphylococcus aureus* carriage on admission among patients attending regional hospitals in Dar es Salaam, Tanzania. *BMC Res Notes.* 2017;10(1):417. doi: 10.1186/s13100-017-2668-8

66. Sharig A, Tanvir SB, Zaman A, et al. Susceptibility profile of methicillin-resistant *Staphylococcus aureus* to linezolid in clinical isolates. *Int J Health Sci.* 2017;11(1):1-4. PMCID: PMC5327668

67. Kot B, Wierzchowska K, Piechota M, Gruzewska A. Antimicrobial resistance patterns in methicillin-resistant *Staphylococcus aureus* from patients hospitalized during 2015-2017 in hospitals in Poland. *Med Princ Pract.* 2020;29(1):61-68. doi: 10.1159/000501788

68. Chopra A, Sidhu S, Oberoi I, Singh K, Malhotra S, Kaur A. Emerging Antimicrobial Resistance in *Staphylococcus* and Spectrum of Oral Oxazolidinone Linezolid in Multidrug Resistant *Staphylococcus* in a Tertiary Care Hospital. *Int J Contemp Med Res.* 2019;23:6. doi: 10.21276/ijcmer.2019.6.9.14

69. Silva V, Almeida F, Correia S, et al. First report of linezolid-resistant *cfr*-positive methicillin-resistant *Staphylococcus aureus* in humans in Portugal. *J Glob Antimicrob Resist.* 2019;17:323-325. doi: 10.1016/j.jgar.2019.05.017

70. Yoo Y, Kang OK, Shim HJ, Huh HJ, Lee NY. Linezolid resistance in methicillin-resistant *Staphylococcus aureus* in Korea: High rate of false resistance to linezolid by the VITEK 2 system. *Ann Lab Med.* 2020;40(1):57-62. doi: 10.3343/alm.2020.40.1.57

71. Nguyen LT, Nguyen KNT, Le PNTA, et al. The emergence of plasmid-borne *cfr*-mediated linezolid resistant-*staphylococci* in Vietnam. *J Glob Antimicrob Resist.* 2020;22:462-465. doi: 10.1016/j.jgar.2020.04.008

72. Altuf U, Hanif S, Shakir R, et al. Documenting more Linezolid Resistant *Staphylococcus aureus* (LRSA) strains collected from Orthopedic Infections in Pakistani Population: A Prospective Study of Anti-Microbial Resistance (AMR). *Latin American Journal of Pharmacy,* 2021;40(4):761-768.

73. Cattaneo D, Fusi M, Cozzi V, et al. Supra-therapeutic Linezolid Trough Concentrations in Elderly Patients: A Call for Action? *Clin Pharmacokinet.* 2021;60(5):603-609. doi: 10.1007/s40262-020-00964-1

74. Alvarez-Suarez JM, Gasparini M, Forbes-Hernandez TY, Mazzoni L, Giampieri F. The composition and biological activity of honey: a focus on Manuka honey. *Foods.* 2014;3(3):420-432. doi: 10.3390/foods3030420

75. Jenkins RE, Cooper R. Synergy between oxacillin and manuka honey sensitizes methicillin-resistant *Staphylococcus aureus* to oxacillin. *J Antimicrob Chemother.* 2012;67(6):1405-1407. doi: 10.1093/jac/dks071

76. Carter DA, Blair SE, Cockcroft NN, et al. Therapeutic Manuka Honey: No longer So Alternative. *Front Microbiol.* 2016;7:569. doi: 10.3389/fmicb.2016.00569

77. Hayes G, Wright N, Gardner SL, Telzrow CL, Wommack AJ, Vigueira PA. Manuka honey and methylglyoxal increase the sensitivity of *Staphylococcus aureus* to linezolid. *Lett Appl Microbiol.* 2018;66(6):491-495. doi: 10.1111/lam.12880

78. Kisgen JJ, Mansour H, Unger NR, Childs-Kean L. Antimicrobial Therapy: What is Really Needed? *Comb Chem High Throughput Screen.* 2015;40(4):761-768.

79. Zhanel GG, Love R, Adam H, et al. Tedizolid: a novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. *Drugs.* 2015;75(3):253-270. doi: 10.1007/s40265-015-0352-7