Host cell protein LAMP-2 is the receptor for *Trypanosoma cruzi* surface molecule gp82 that mediates invasion

João Paulo Ferreira Rodrigues | Thiago Souza Onofre | Bruno Couto Barbosa | Éden Ramalho Ferreira | Alexis Bonfim-Melo | Nobuko Yoshida

Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil

Correspondence
Nobuko Yoshida, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Pedro de Toledo, 669-6º andar, São Paulo, SP 04039-032, Brazil. Email: nyoshida@unifesp.br

Funding information
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES), Grant/Award Number: 001; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant/Award Number: 303825/2015-4; São Paulo Research Foundation (FAPESP), Grant/Award Number: 2016/15000-4

Abstract
Host cell invasion by *Trypanosoma cruzi* metacyclic trypomastigote (MT) is mediated by MT-specific surface molecule gp82, which binds to a still unidentified receptor, inducing lysosome spreading and exocytosis required for the parasitophorous vacuole formation. We examined the involvement of the major lysosome membrane-associated LAMP proteins in MT invasion. First, human epithelial HeLa cells were incubated with MT in the presence of antibody to LAMP-1 or LAMP-2. Antibody to LAMP-2, but not to LAMP-1, significantly reduced MT invasion. Next, HeLa cells depleted in LAMP-1 or LAMP-2 were generated. Cells deficient in LAMP-2, but not in LAMP-1, were significantly more resistant to MT invasion than wild-type controls. The possibility that LAMP-2 might be the receptor for gp82 was examined by co-immunoprecipitation assays. Protein A/G magnetic beads cross-linked with antibody directed to LAMP-1 or LAMP-2 were incubated with HeLa cell and MT detergent extracts. Gp82 bound to LAMP-2 but not to LAMP-1. Binding of the recombinant gp82 protein to wild-type and LAMP-1-deficient cells, which was dose dependent and saturable, had a similar profile and was much higher as compared with LAMP-2-depleted cells. These data indicate that MT invasion is accomplished through recognition of gp82 by its receptor LAMP-2.

KEYWORDS
cell invasion, Gp82 receptor, LAMP protein, *Trypanosoma cruzi*

1 | INTRODUCTION

Many pathogenic microorganisms invade host cells as the first step for the establishment of infection. Among the mechanisms used by different pathogens for their internalisation is the binding of a surface protein to the target cell surface receptor, which triggers signalling cascades leading to events, such as the actin cytoskeleton remodelling (Cossart & Sansonetti, 2004). The outer membrane proteins internalin A and invasin, which interact with human E-cadherin and integrin receptors, mediate the invasion of enteropathogenic bacteria *Listeria* and *Yersinia*, respectively (Cossart, Pizarro-Cerdá, & Lecuit, 2003; Isberg & Barnes, 2001).

Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, is thought to enter host cells in a receptor-dependent manner. Surface glycoproteins belonging to the gp85/trans-sialidase superfamily, such as gp82 and Tc85, have been identified as the main *T. cruzi* molecules implicated in cell invasion (Alves & Colli, 2007; Yoshida, 2006). The identification of target cell receptor for gp82 expressed...
specifically in metacyclic trypomastigotes (MTs), which correspond to the insect-borne parasite forms, remains elusive. Prokineticin receptors, distributed in many different tissues, were described as potential receptors for the Tc85 glycoproteins expressed in tissue culture trypomastigotes (TCTs), which are equivalent to parasites circulating in the mammalian host bloodstream (Khusal et al., 2015). MT-specific gp82 and Tc85 expressed in TCT are presumably recognised by different receptors, provided that they have distinct adhesion properties. Gp82 protein binds to gastric mucin, a property relevant for T. cruzi infection by the oral route (Staquicini et al., 2010), but its affinity for components such as laminin, heparan sulfate, and collagen is minimal (Cortez, Yoshida, Bahia, & Sobreira, 2012; Ramirez, Ruiz, Araya, Da Silveira, & Yoshida, 1993), whereas Tc85 glycoproteins bind to laminin and fibronectin, among other extracellular matrix factors (Giordano et al., 1999; Ouaissi, Cornette, & Capron, 1986). Binding of gp82 molecule to target cells induces lysosome spreading that culminates in exocytosis and MT internalisation in a vacuole containing lysosome-associated membrane proteins (LAMPs; Cortez, Real, & Yoshida, 2016; Martins, Alves, Macedo, & Yoshida, 2011). TCT interaction with host cells has been associated with microfilament rearrangement and lysosome exocytosis triggered by a nonidentified soluble TCT factor (Rodríguez, Rioult, Ora, & Andrews, 1995; Rodríguez, Samoff, Rioult, Chung, & Andrews, 1996), the parasite being internalised in a vacuole expressing plasma membrane markers (Woolsey et al., 2003). Lysosome exocytosis contributes to TCT invasion by stimulating endocytosis associated with the delivery of acid sphingomyelinase to the outer leaflet of the plasma membrane (Fernandes et al., 2011).

Lysosomes play a critical role in gp82-mediated MT invasion. Conditions that increase lysosome biogenesis and scattering were found to increase MT internalisation, whereas factors that induced lysosome accumulation in the perinuclear region had an opposite effect (Cortez et al., 2016). What remains to be determined is whether the major lysosome-associated membrane proteins LAMP-1 and LAMP-2 are implicated in MT invasion. Here, we addressed that question and investigated the possibility that either LAMP-1 or LAMP-2 could be the receptor for MT surface molecule gp82.

2 | RESULTS

2.1 T. cruzi MT invasion requires host cell LAMP-2 and does not rely on plasma membrane repair mechanism

The requirement of lysosomes for gp82-mediated MT invasion has been revealed using human epithelial HeLa cells. As a first approach to determine whether LAMP proteins are implicated, invasion assays using anti-LAMP antibodies were performed. HeLa cells were incubated for 1 hr with MT in the absence or in the presence of antibody to human LAMP-1 or LAMP-2, at 7 μg ml⁻¹, or in the presence of both antibodies. After fixation and Giemsa staining, the number of intracellular parasites was counted. Antibody directed to LAMP-2, but not to LAMP-1, significantly inhibited MT internalisation, and the presence of both antibodies did not have a higher inhibitory effect (Figure 1a).
The effect of antibody to LAMP-2 at different concentrations was also tested. Inhibition of MT invasion by anti-LAMP2 antibody was dose dependent (Figure 1b). To further ascertain the involvement of LAMP-2 in MT entry into HeLa cells, the strategy of generating cells depleted in LAMP-1 or LAMP-2 was contemplated. Although attempts in that direction were under way, we performed experiments with mouse fibroblast cell lines and their counterparts deficient in LAMP-1, in LAMP-2, or in both proteins, which were generated in Dr Paul Saftig’s laboratory (Eskelinen et al., 2004), by incubating MT with the cells for 1 hr, followed by processing for intracellular parasite counting. MT invasion was significantly lower in LAMP-2-deficient and in double knockout cells, whereas no difference in invasion was observed in LAMP-1-deficient cells as compared with wild-type controls (Figure 1c). As LAMP-2 was reported to be required for TCT invasion by contributing for plasma membrane repair (Couto et al., 2017), experiments were performed to determine whether MT internalisation also relied on plasma membrane injury and repair mechanism used by TCT (Fernandes et al., 2011). One experiment consisted in incubating HeLa cells with MT in PBS++ medium (Cortez et al., 2016) with or without Ca2+. In contrast to TCT invasion, which in the absence of extracellular Ca2+ (condition nonpermissive for repair) is drastically reduced (Fernandes et al., 2011), the number of MT that entered cells was similar in the absence or in the presence of Ca2+ (Figure 1d). Another experiment consisted in incubating HeLa cells with MT in the presence of the pore-forming bacterial toxin streptolysin O (SLO). As opposed to TCT invasion, which increased by ~60% in the presence of SLO at 50 ng ml⁻¹ at repair-permissive condition (Fernandes et al., 2011), MT invasion diminished by ~50% and ~70% at 50 and 100 ng ml⁻¹ of SLO, respectively (Figure 1e), suggesting that SLO treatment affected MT-host cell interaction. When HeLa cells were preincubated for 20 min with SLO at 50 or 100 ng ml⁻¹, before incubation with parasites, no inhibitory effect on MT invasion was observed (Figure 1f), in contrast to the reported inhibition of TCT internalisation by more than 50% in cells pretreated with 50 ng ml⁻¹ of SLO (Fernandes et al., 2011). The permeabilisation of HeLa cells by SLO was ascertained by treating cells with propidium iodide in the absence of Ca2+ (Figure S1). These data indicate that MT invasion is independent of plasma membrane injury and repair mechanism.

Lentiviral transduction methodology was employed to generate HeLa cells depleted in LAMP, using four different target sequences, two for LAMP-1 and two for LAMP-2. We produced four cell lines, which were analysed by Western blot using specific antibodies. LAMP-1 was knocked down (kd) and was barely detectable in two cell lines (LAMP1-kd1 and LAMP1-kd2), LAMP-2 was depleted in one cell line (LAMP2-kd1), but in the other cell line (LAMP2-kd2), it was not so clear (Figure 2a). Therefore, we performed an additional Western blot assay and confirmed that depletion was less effective in LAMP2-kd2 cells (Figure S2). The different cell lines were analysed by confocal immunofluorescence, using anti-LAMP antibodies. Control wild-type cells reacted similarly with both antibodies (Figure 2b). Compatible with the Western blot profile, the LAMP-deficient cells reacted accordingly with antibody to LAMP-1 or LAMP-2 (Figure 2c). Cells deficient in LAMP protein were examined for their susceptibility to MT invasion. MT internalisation decreased significantly in LAMP2-kd1 cells, whereas the diminished susceptibility of LAMP2-kd2 cells to MT invasion was not statistically significant, and LAMP-1-deficient cells were as susceptible to MT invasion as the wild-type controls (Figure 3a). Confocal microscopy analysis was also performed with LAMP-depleted cells incubated for 30 min with MT. In LAMP1-kd1 populations, parasites were seen internalised or associated with cells (Figure 3b, left panel), regardless whether LAMP-1 expression was high (red arrows), moderate (orange arrows), or negative (white arrows). On the other hand, in LAMP2-kd1 populations, MT internalisation was restricted to a few LAMP-2-positive cells (Figure 3b, right panel, red arrows). Overall, these results support the notion that MT invasion is dependent on LAMP-2.

2.2 MT gp82 binds to LAMP-2 protein in a receptor-mediated manner

As our data indicated that gp82-mediated MT invasion requires LAMP-2, we examined the possibility that gp82 binds to LAMP-2 by performing co-immunoprecipitation assays. Protein A/G magnetic beads cross-linked with antibody to LAMP-1 (bead L1) or LAMP-2 (bead L2) were incubated with HeLa cell extract for 1 hr, washed, and then incubated for 1 hr with MT lysate, followed by washings and elution. The eluted samples, which correspond to the immunoprecipitates (IPs), were analysed by Western blotting using antibodies to LAMP proteins or to gp82, along with flowthrough samples (Figure 4a). In IP from L1 beads, LAMP-1 appeared as a strong band and gp82 as a faint band, and in IP from LAMP2 beads, both LAMP-2 and gp82 were detected as bands of high intensity, whereas no protein was detectable in IP from control empty (V) beads (Figure 4a). Binding of native gp82 to LAMP-2 was further confirmed by two additional experiments. In one of them, new batches of beads L1 and L2 were prepared and used as described above. LAMP-2 and gp82 were revealed in IP from L2 beads as strong bands, whereas gp82 was not detected in IP from L1 beads (Figure 4b). Another experiment consisted in preparing beads cross-linked to anti-gp82 monoclonal antibody and incubating them first with MT lysates and then with HeLa cell extracts (Figure 4c). Both LAMP-2 and gp82 were detected in IP from gp82-beads (Figure 4c). IP from L1 beads was also analysed using anti-LAMP1 and anti-gp82 antibodies. We detected LAMP-1 but not gp82 in IP from L1 beads (Figure 4d).

To demonstrate that gp82 binds to LAMP-2 in a receptor-dependent manner, we performed an enzyme-linked immunosorbent assay using microtitre plates coated with cells depleted in LAMP-1 or LAMP-2 and with wild-type cells as control. The recombinant gp82 protein (r-gp82) was added to cells, at varying concentrations, and after 1-hr incubation, the binding was revealed as described in Section 4. Binding of r-gp82 to cells was dose dependent and saturable and was much lower in LAMP-2-deficient cells than in wild-type and LAMP-1-depleted cells (Figure 5a). Competition assay using anti-LAMP antibody was also performed using wild-type HeLa cells. Varying amounts of r-gp82 were incubated for 1 hr with HeLa cells in the presence of antibody to LAMP-1 or LAMP-2, at 10 μg ml⁻¹ (Figure 5b). In the presence of anti-LAMP2 antibody, r-gp82 binding
was much lower than in the presence of LAMP-1 (Figure 5b), reinforcing the notion that LAMP-2 is the receptor for gp82.

Binding of gp82 to cells was also examined by confocal immunofluorescence. Cells were incubated for 1 hr with recombinant gp82 protein (r-gp82) at 20 μg ml⁻¹ and then processed for immunofluorescence using anti-gp82 monoclonal antibody (Figure 5c). The r-gp82 protein bound to wild-type and LAMP1-kd1 cells, the vast majority of cells showing a strong reaction with anti-gp82 antibody, and noteworthy was the accumulation of r-gp82 at the cell edges (Figure 5c, red arrows), which are the MT invasion sites (Mortara, 1991), suggesting a clustering of gp82 receptors at these sites. In LAMP2-kd1 cells, fewer cells reacted with anti-gp82 antibody, and r-gp82 accumulation at the cell periphery was less evident (Figure 5c, lower panel).

An experiment was performed to ascertain that r-gp82 induces lysosome scattering, as previously reported (Cortez et al., 2016). HeLa cells were incubated for 30 min with r-gp82 at 20 μg ml⁻¹, followed by reaction with anti-LAMP2 antibody and confocal microscopy analysis. Lysosome spreading from the perinuclear region to the cell periphery was induced by r-gp82, and accumulation of LAMP-2 on the cell borders was clearly visualised (Figure S3, red arrows). We examined the localization of LAMP-2 at the HeLa cell plasma membrane upon interaction with r-gp82. HeLa cells were incubated in the absence or in the presence of 20 μg ml⁻¹ of r-gp82 for 30 min, followed by reaction with rabbit antibody to LAMP-2 and mouse anti-HeLa cell antibody that predominantly recognises the plasma membrane. The second antibody consisted of Alexa Fluor 555-conjugated anti-rabbit IgG and Alexa Fluor 488-conjugated anti-mouse IgG. Localization of

FIGURE 2 Depletion of LAMP proteins in HeLa cells. (a) HeLa cells were submitted to lentiviral transduction for LAMP-1 or LAMP-2 knockdown (kd) and then analysed by Western blotting (WB) using the indicated antibodies. Note the depletion of LAMP-1 in two independent cell lines and of LAMP-2 in two other cell lines. (b) HeLa cells were analysed by confocal fluorescence microscopy using antibody to LAMP-1 or LAMP-2, Alexa Fluor 488-conjugated anti-mouse IgG (green), and DAPI (blue) for DNA, with 63× objective. Scale bar = 20 μm. (c) LAMP-depleted HeLa cells were analysed by confocal fluorescence microscopy using antibody to LAMP-1 or LAMP-2, as in (b). WT: wild-type.
LAMP-2 at the plasma membrane increased upon interaction with r-gp82 (Figure S4, white arrows).

2.3 Invasion of extracellular amastigote increases in LAMP-depleted cells

Cell invasion experiment with LAMP-depleted cells was also performed with extracellular amastigote (EA) derived from TCT. Differently from MT invasion, EA internalisation of HeLa cells is independent of lysosome mobilisation (Procópio, Da Silva, Cunningham, & Mortara, 1998). HeLa cells were incubated with EA for 2 hr, and the number of intracellular parasites was counted. As shown in Figure 6a, the number of parasites that entered cells deficient in LAMP-1 or LAMP-2 increased significantly as compared with that internalised by wild-type cells. For confocal microscopy, wild-type HeLa cells were incubated for 1 hr with EA, followed by reaction with anti-LAMP antibody. There was no association of EA with lysosome marker during invasion (Figure 6b, red arrows), differently from MT internalisation (Figure 3b). This is compatible with the report that, during HeLa invasion of EA, which depends on the formation of plasma membrane expansions, the parasites at the cell periphery are weakly labelled with anti-LAMP antibody (Procópio et al., 1998). The formation of cup-like projections around the invading EA (Procópio, Barros, & Mortara, 1999) may be affected by lysosomes.

3 DISCUSSION

The involvement of host cell LAMP-2 in gp82-mediated MT invasion was revealed in experiments using cells depleted in LAMP-1 or LAMP-2. Our results have also shown that the MT surface molecule gp82 binds to LAMP-2, suggesting that LAMP-2 is the long sought after receptor for gp82. In HeLa cells cultured in complete medium, lysosomes accumulate in the perinuclear region. Therefore, the levels of LAMP proteins on the cell surface are probably very low. LAMP proteins have been detected on the plasma membrane of other human cell lines, and their expression was shown to increase after exposure to a lysosomotropic reagent (Mane et al., 1989). In HeLa cells, a short-term incubation in nutrient-depleted medium, a condition that promotes lysosome scattering to the cell periphery and exocytosis, stimulates gp82-mediated MT invasion (Cortez et al., 2016). Experiments with the recombinant gp82 protein have shown that it can induce lysosome spreading and accumulation of LAMP-2 protein at the MT invasion sites. On the basis of these findings, we envision a scenario (Figure 7) in which MT attachment to host cells relies on gp82 recognition by LAMP-2 present at low levels on the cell surface.
This attachment triggers the lysosome mobilisation towards the cell periphery, further increasing the LAMP-2 protein available at the plasma membrane.

When the mode of MT invasion is compared with that of TCT, considerable differences emerge. In the case of TCT, only a minor proportion of parasites associate with lysosomes, the majority acquires plasma membrane markers at early times of infection (Woolsey et al., 2003). However, the involvement of LAMP proteins has been reported. Increased expression of LAMP-1 on the plasma membrane of CHO cells was associated with higher susceptibility to TCT invasion (Kima, Burleigh, & Andrews, 2000). LAMP-1/2 double-deficient mouse fibroblasts were shown to be less susceptible to TCT invasion (Albertti, Macedo, Chiari, Andrews, & Andrade, 2010). Recently, it was reported that mouse fibroblasts deficient in LAMP-2 were less permissive to invasion by TCT because LAMP-2 absence influences the distribution of caveolin-1 at the cell plasma membrane, which is crucial for plasma membrane repair (Couto et al., 2017). The mechanism of TCT internalisation relies on plasma membrane injury and repair that involves lysosome exocytosis (Fernandes et al., 2011). Our results have clearly indicated that MT invasion is independent of plasma membrane injury and repair mechanism. Invasion by MT and TCT also differs as concerns the lysosome mobilisation. MT induces spreading of lysosomes from the perinuclear region to the cell periphery (Cortez et al., 2016), whereas only the lysosomes proximal to TCT invasion site are mobilised (Rodríguez et al., 1996).

Through distinct mechanisms, MT and TCT enter host cells in a manner dependent on lysosome mobilisation and exocytosis, but invasion by EA is lysosome independent (Procópio et al., 1998). This may be related to the differential interaction of these parasite forms with the target cell membrane domains. Microvilli on the dorsal
surface are the sites of EA invasion, whereas MT and TCT interaction with cells occurs at the cell edges (Mortara, 1991; Procópio et al., 1999; Schenkman, Andrews, Nussenzweig, & Robbins, 1988). Disruption of host cell actin microfilaments is induced by MT and TCT (Cortez, Atayde, & Yoshida, 2006; Rodríguez et al., 1995), and this may facilitate lysosome mobilisation. On the other hand, actin microfilaments are recruited during EA invasion, and actin-enriched cup-like membrane protrusions are seen around the parasite (Procópio et al., 1998).

From the present studies on MT invasion and from available data on EA internalisation, we infer that the different *T. cruzi* forms have developed specific strategies to enter target cells, making use of stage-specific surface molecules to interact with host cells, such as MT gp82 and EA Ssp4. The amastigote-specific glycoprotein Ssp4 (Andrews, Hong, Robbins, & Robbins, 1987; Andrews, Robbins, Ley, Hong, & Nussenzweig, 1988) binds to target cells through its carbohydrate moiety (Silva, Luquetti, Rassi, & Mortara, 2006), and this leads to the parasite engulfment that resembles a phagocytic process (Bonfim-Melo, Ferreira, & Mortara, 2018; Fernandes, Flannery, Andrews, & Mortara, 2013). It has been reported that galectin-3, a member of β-galactosidase-binding lectin family, which accumulates around invading EA in macrophages (Machado et al., 2014), increased by about 20% in HeLa cells during the phagocytic cup formation and apparently bound to Ssp-4 (Florentino et al., 2018). MT gp82 binds to HeLa cells through its peptide portion (Manque et al., 2000). Whether gp82 binds to a peptide sequence or to a carbohydrate portion of the highly glycosylated LAMP-2 protein remains to be determined.

EXPERIMENTAL PROCEDURES

4.1 Parasites, cell lines, and cell invasion assay

T. cruzi strain CL was used for assays with MT. The parasites were maintained alternately in mice and in liver infusion tryptose medium containing 5% fetal bovine serum (FBS), following experimental protocols approved by the Committee on Ethics of Animal Experimentation of Universidade Federal de São Paulo (CEUA 9933271016). After one passage in Grace’s medium (Invitrogen) to differentiate epimastigotes into MT, the parasites were purified as described (Teixeira & Yoshida, 1986). In addition to human epithelial HeLa cells, maintained as described (Rodrigues, Takahashi Sant’ana, Juliano, & Yoshida, 2017), mouse fibroblast cell lines deficient in LAMP-1, LAMP-2, or double knockout cells, generated in Dr Paul Saftig’s laboratory at University of Kiel, Germany, were used. Cell invasion assays were performed in...
Dulbecco's modified Eagle's medium containing 10% FBS, unless stated otherwise, following a procedure described else (Rodrigues et al., 2017), by incubating HeLa cells for 1 hr with MT at multiplicity of infection = 10. Two hundred fifty Giemsa-stained cells were counted to quantify internalised MT.

T. cruzi G strain was used for assays with EA, generated as previously described (Bonfim-Melo et al., 2015). Briefly, TCTs derived from Vero cells were incubated for 14 hr in liver infusion tryptose medium with 10% FBS, pH 5.8. Amastigotes were incubated in complete Roswell Park Memorial Institute medium at pH 7.3 for 1 hr and were then seeded onto each coverslip coated with 1.5 × 10⁵ HeLa cells (multiplicity of infection = 10). After 2-hr incubation, the coverslips were washed, fixed, and Giemsa stained. Internalised EA amastigotes were quantified in at least 300 cells per replicate.

4.2 | Anti-LAMP antibodies

Anti-LAMP antibodies were from two sources: antibody produced in rabbit (Sigma-Aldrich, now Merck) and anti-human LAMP1 (H4A3) and LAMP2 (H4B4) antibodies from Developmental Studies Hybridoma Bank developed under the auspices of the Eunice Kennedy Shriver National Institute of Child Health and Human Development and maintained by The University of Iowa, Department of Biology, Iowa City, IA.

4.3 | Lentiviral transduction and establishment of HeLa cell lines deficient in LAMP-1 or LAMP-2

To generate LAMP-deficient cell lines, we used a strategy based on a previously described procedure (Bonfim-Melo et al., 2015). Target sequences were acquired from Sigma-Aldrich: LAMP-1 (Cat Nos. TRCN0000285264 and TRCN0000029268) and LAMP-2 (Cat Nos. TRCN000029260 and TRCN0000029262). For lentivirus packaging and production, HEK293T cells were plated in six-well plates (2.5 × 10⁵ cells per well) and incubated for 24 hr in 2 ml of Dulbecco's modified Eagle's medium containing 10% FBS. Transfection solution was prepared as follows: 2.5 μl of FuGENE HD (Roche) was diluted in 97.5 μl of Opt-MEM (Gibco™), mixed gently by swirling, and incubated for 5 min at room temperature. In another tube, 0.75 μg of pLKO.1 (vector containing shRNA target sequence) and 0.75 μg of
lentiviral packaging (composed of equal parts of pCMV-dR8.91 and pVSVG at 0.25 μg μl⁻¹) were mixed. The lentiviral preparation and the transfection solution were mixed gently, incubated for 30 min at room temperature, and added to HEK293T. Twenty-four hours later, the medium was discarded, and 3 ml of fresh medium was added. After 48 and 72 hr, the cell culture supernatant was harvested and filtered in a 0.45-μm syringe filter to remove debris. For shRNAI transduction, 5 × 10⁴ HeLa cells were plated in six-well plates, and 2 ml of HEK293T culture medium enriched in lentivirus was added to each well in the presence of 8 μg ml⁻¹ of hexadimethrine bromide (commercial brand name Polysen; Sigma-Aldrich). After 48 hr, HeLa cells were incubated with increasing concentrations of puromycin (0.2–2 μg ml⁻¹) for 2 weeks in order to select transduced cells. To evaluate the transduction efficiency, the cells were washed with PBS and lysis buffer added (50 mM tris-HCl, 150 mM NaCl, 1 mM EDTA, 1% Igepal CA630, and 1× protease inhibitor cocktail, Thermo Scientific). After centrifugation at 16,000 x g for 5 min, the supernatant was collected and quantified by the Bradford method. Cell lysate (30 μg protein) was applied onto a 10% SDS-PAGE gel and analysed by Western blot using antibody to LAMP-1 or LAMP-2 diluted 1:1,000 plus anti-GAPDH as loading control diluted 1:5,000.

4.4 | Visualisation of HeLa cell lysosomes by confocal microscopy

For confocal microscopy visualisation of lysosomes, HeLa cells were processed essentially as previously described, using anti-human LAMP2 antibody and Alexa Fluor 488-conjugated anti-mouse IgG (Rodrigues et al., 2017). The coverslips were mounted in ProLong Gold (Invitrogen). Confocal images were acquired in a confocal microscope (Instituto de Farmacologia e Biologia Molecular, Universidade Federal de São Paulo), using 63× objective. Confocal images were processed and analysed using Leica LAS AF and Imaris (Bitplane) software.

4.5 | Co-immunoprecipitation and Western blotting

Protein A/G magnetic beads (Pierce Crosslink Magnetic IP/Co_IP Kit, Thermo Scientific) were cross-linked with antibody directed to LAMP-1 or LAMP-2 according to the manufacturer's instructions. HeLa cell extracts were prepared by treating 3 × 10⁶ cells with PBS plus 0.5% nonionic detergent Igepal CA630 (USB Corporation) and protease inhibitor cocktail. After centrifugation at 16,000 x g for 10 min, the supernatant was collected and used for co-immunoprecipitation assays. MT extract, equivalent to 5 × 10⁸ parasites, was prepared in the same manner as HeLa cell extract. Beads cross-linked to anti-LAMP antibody were incubated for 1 hr at room temperature with HeLa cell extracts, under agitation. After several washes in PBS containing 0.25% Igepal CA630 and 1-hr incubation with MT extract, the bound proteins were eluted and analysed by Western blotting, using antibody to LAMP-1, LAMP-2, or anti-gp82 monoclonal antibody. Protein G magnetic beads cross-linked with monoclonal antibody to gp82 were also prepared; in this case, the beads were incubated first with MT extract and subsequently with HeLa cell lysates. The bound proteins were eluted and analysed by Western blotting.

4.6 | Production and purification of recombinant protein gp82 (r-gp82) and cell-binding assay

The recombinant protein coded by the full-length T. cruzi gp82 sequence in frame with glutathione S-transferase (GenBank™ data base, Accession Number L14824) was produced and purified as detailed (Cortez et al., 2006). For cell-binding assay, HeLa cells were seeded onto 96-well microtitre plates at 4 × 10⁴ cells per well and were grown overnight at 37°C. After fixation with 4% paraformaldehyde in PBS, washings with PBS, and blocking with PBS containing 2 mg ml⁻¹ of BSA (PBS-BSA) for 1 hr at room temperature, the cells were incubated for 1 hr at 37°C with r-gp82 in PBS-BSA. Following washes and 1-hr incubation with anti-gp82 polyclonal antiserum diluted in PBS-FBS, the cells were incubated with anti-mouse IgG conjugated to peroxidase. The bound enzyme was revealed using
o-phenylenediamine, and the absorbance at 490 nm was read in ELx800™ microplate reader (BioTek).

4.7 Statistical analysis

The Student’s t-test (GraphPad software Version 6.01) was employed.

ACKNOWLEDGEMENTS

This work was supported by the São Paulo Research Foundation (FAPESP) Grant 2016/15000-4 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Grant 303825/2015-4 and in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) Finance Code 001. We thank Silene Macedo for help in preparing the polyclonal antiserum to the gp82 protein.

CONFLICT OF INTEREST

We declare that we do not have any potential sources of conflict of interest.

ORCID

Thiago Souza Onofre https://orcid.org/0000-0002-3083-2444
Éden Ramalho Ferreira https://orcid.org/0000-0001-6534-0426
Alexis Bonfim-Melo https://orcid.org/0000-0002-7812-7701
Nobuko Yoshida https://orcid.org/0000-0001-8213-3373

REFERENCES

Alberti, L. A. G., Macedo, A. M., Chiari, E., Andrews, N. W., & Andrade, L. O. (2010). Role of host lysosomal associated membrane protein (LAMP) in Trypanosoma cruzi invasion and intracellular development. *Microbes and Infection*, 12, 784–789. https://doi.org/10.1016/j.micinf.2010.05.015

Alves, M. J. M., & Colli, W. (2007). *Trypanosoma cruzi*: Adhesion to the host cell and intracellular survival. *IUBMB Life*, 59, 274–279. https://doi.org/10.1080/15216540701200884

Andrews, N. W., Hong, K. S., Robbins, E. S., & Nussenzweig, V. (1987). Stage-specific surface antigens expressed during the morphogenesis of vertebrate forms of *Trypanosoma cruzi*. *Experimental Parasitology*, 64, 474–484. https://doi.org/10.1016/0014-4894(87)90062-2

Andrews, N. W., Robbins, E. S., Ley, V., Hong, K. S., & Nussenzweig, V. (1988). Developmentally regulated, phospholipase C-mediated release of the major surface glycoprotein of amastigotes of *Trypanosoma cruzi*. *Journal of Experimental Medicine*, 167, 300–314. https://doi.org/10.1084/jem.167.2.300

Bonfim-Melo, A., Ferreira, É. R., & Mortara, R. A. (2018). Rac1/WAVE2 and Cdc42/N-WASP participation in actin-dependent host cell invasion by extracellular amastigotes of *Trypanosoma cruzi*. *Frontiers in Microbiology*, 9, 360. https://doi.org/10.3389/fmicb.2018.00360

Bonfim-Melo, A., Zanetti, B. F., Ferreira, E. R., Vandeninck, S., Han, S. W., Van Lint, J., & Bahia, D. (2015). *Trypanosoma cruzi* extracellular amastigotes trigger the protein kinase D1–cortactin–actin pathway during cell invasion. *Cellular Microbiology*, 17, 1977–1981. https://doi.org/10.1111/cmi.12472

Cortez, C., Real, F., & Yoshida, N. (2016). Lysosome biogenesis/scattering increases host cell susceptibility to invasion by *Trypanosoma cruzi* metacyclic forms and resistance to tissue culture trypanamastigotes. *Cellular Microbiology*, 18, 748–760. https://doi.org/10.1111/cmi.12548

Cortez, C., Yoshida, N., Bahia, D., & Sobreira, T. J. P. (2012). Structural basis of the interaction of a *Trypanosoma cruzi* surface molecule implicated in oral infection with host cells and gastric mucin. *PLoS One*, 7, e42153. https://doi.org/10.1371/journal.pone.0042153

Cortez, M., Atayde, V., & Yoshida, N. (2006). Host cell invasion mediated by *Trypanosoma cruzi* surface molecule gp82 is associated with F-actin disassembly and is inhibited by enteroinvasive Escherichia coli. *Microbes and Infection*, 8, 1502–1512. https://doi.org/10.1016/j.micinf.2006.01.007

Cossart, P., Pizarro-Cerdá, J., & Lecuit, M. (2003). Invasion of mammalian cells by *Listeria monocytogenes*: Functional mimicry to subvert cellular functions. *Trends in Cell Biology*, 13, 23–31. https://doi.org/10.1016/S0962-8924(02)00006-5

Cossart, P., & Sansonetti, P. J. (2004). Bacterial invasion: The paradigms of enteroinvasive pathogens. *Science*, 304, 242–248. https://doi.org/10.1126/science.1090124

Couto, N. F., Pedersane, D., Rezende, L., Dias, P. P., Corbani, T. L., Bentini, L. C., ... Andrade, L. O. (2017). LAMP-2 absence interfere with plasma membrane repair and decreases *T. cruzi* host cell invasion. *PLoS Neglected Tropical Diseases*, 11, e0005657. https://doi.org/10.1371/journal.pntd.0005657

Eskelin, E.-L., Schmidt, C. K., Neu, S., Willenborg, M., Fuertes, G., Salva- dor, N., ... Safﬁg, P. (2004). Disturbed cholesterol trafﬁc but normal proteolytic function in LAMP-1/LAMP-2 double-deﬁcient ﬁbroblasts. *Molecular Biology of the Cell*, 15, 3132–3145. https://doi.org/10.1091/mbc.E04-02-0103

Fernandes, M. C., Cortez, M., Flannery, A. R., Tam, C., Mortara, R. a., & Andrews, N. W. (2011). *Trypanosoma cruzi* subverts the sphingomyelinase-mediated plasma membrane repair pathway for cell invasion. *The Journal of Experimental Medicine*, 208, 909–921. https://doi.org/10.1084/jem.20102518

Fernandes, M. C., Flannery, A. R., Andrews, N., & Mortara, R. A. (2013). Extracellular amastigotes of *Trypanosoma cruzi* are potent inducers of phagocytosis in mammalian cells. *Cellular Microbiology*, 15, 977–991. https://doi.org/10.1111/cmi.12090

Florentino, P. T. V., Real, F., Orikaza, C. M., da Cunha, J. P. C., Vitorino, F. N. L., Cordero, E. M., ... Mortara, R. A. (2018). A carbohydrate moiety of secreted stage-specific glycoprotein 4 participates in host cell invasion by *Trypanosoma cruzi* extracellular amastigotes. *Frontiers in Microbiology*, 9, 693. https://doi.org/10.3389/fmicb.2018.00693

Giordano, R., Fouts, D. L., Tewari, D., Colli, W., Manning, J. E., & Alves, M. J. (1999). Cloning of a surface membrane glycoprotein specific for the infective form of *Trypanosoma cruzi* having adhesive properties to lamelina. *The Journal of Biological Chemistry*, 274, 3461–3468. https://doi.org/10.1074/jbc.274.6.3461

Isberg, R. R., & Barnes, P. (2001). Subversion of integrins by enteropathogenic *Yersinia*. *Journal of Cell Science*, 114, 21–28.

Khusal, K. G., Tenelli, R. R., Mattos, E. C., Soares, C. O., Di Genova, B. M., Juliano, M. A., ... Alves, M. J. (2015). Prokineticin receptor identified by phage display is an entry receptor for *Trypanosoma cruzi* into mammalian cells. *Parasitology Research*, 114, 155–165. https://doi.org/10.1007/s00436-014-4172-6

Kima, P. E., Burleigh, B., & Andrews, N. W. (2000). Surface-targeted lysosomal membrane glycoprotein-1 (Lamp-1) enhances lysosome exocytosis and cell invasion by *Trypanosoma cruzi*. *Cellular Microbiology*, 2, 477–486. https://doi.org/10.1046/j.1462-5822.2000.00071.x

Machado, F. C., Cruz, L., da Silva, A. A., Cruz, M. C., Mortara, R. A., Roque-Barreira, M. C., & da Silva, C. V. (2014). Recruitment of galec-1 during cell invasion and intracellular trafficking of *Trypanosoma cruzi* extracellular amastigotes. *Glycobiology*, 24, 179–184. https://doi.org/10.1093/glycob/cwt097

Mane, S. M., Marzella, L., Bainton, D. F., Holt, V. K., Cha, Y., Hildreth, J. E., & August, J. T. (1989). Purification and characterization of human lysosomal membrane glycoproteins. *Archives of Biochemistry and Biophysics*, 268, 360–378. https://doi.org/10.1016/0003-9861(89)90597-3

Manque, P. M., Eichinger, D., Juliano, M. a., Juliano, L., Araya, J. E., & Yoshida, N. (2000). Characterization of the cell adhesion site of *Trypanosoma cruzi* metacyclic stage surface glycoprotein gp82. *Infection*
Martins, R. M., Alves, R. M., Macedo, S., & Yoshida, N. (2011). Starvation and rapamycin differentially regulate host cell lysosome exocytosis and invasion by Trypanosoma cruzi metacyclic forms. *Cellular Microbiology*, 13, 943–954. https://doi.org/10.1111/j.1462-5822.2011.01590.x

Mortara, R. A. (1991). Trypanosoma cruzi: Amastigotes and trypomastigotes interact with different surfaces on the surface of HeLa cells. *Experimental Parasitology*, 73, 1–14. https://doi.org/10.1016/0014-4894(91)90002-E

Ouaissi, M. A., Cornette, J., & Capron, A. (1986). Identification and isolation of Trypanosoma cruzi trypomastigote cell surface protein with properties expected of a fibronectin receptor. *Molecular and Biochemical Parasitology*, 19, 201–211. https://doi.org/10.1016/0166-6851(86)90002-2

Procópio, D. O., Barros, H. C., & Mortara, R. A. (1999). Actin-rich structures formed during the invasion of cultured cells by infective forms of Trypanosoma cruzi. *European Journal of Cell Biology*, 78, 911–924. https://doi.org/10.1016/S0171-9335(99)80093-4

Procópio, D. O., Da Silva, S., Cunningham, C. C. C., & Mortara, R. A. (1998). Trypanosoma cruzi: Effect of protein kinase inhibitors and cytoskeletal protein organization and expression on host cell invasion by amastigotes and metacyclic trypomastigotes. *Experimental Parasitology*, 90, 1–13. https://doi.org/10.1006/expr.1998.4314

Ramírez, M. I., de C. Ruiz, R., Araya, J. E., Da Silveira, J. F., & Yoshida, N. (1993). Involvement of the stage-specific 82-kilodalton adhesion molecule of Trypanosoma cruzi metacyclic trypomastigotes in host cell invasion. *Infection and Immunity*, 61, 3636–3641.

Rodríguez, J. P. F., Takahashi Sant’ana, G. H., Juliano, M. A., & Yoshida, N. (2017). Inhibition of host cell lysosome spreading by Trypanosoma cruzi metacyclic stage-specific surface molecule gp90 downregulates parasite invasion. *Infection and Immunity*, 85(9), e00302-17. https://doi.org/10.1128/IAI.00302-17

Rodríguez, A., Rioult, M. G., Ora, A., & Andrews, N. W. (1995). A trypanosomesoluble factor induces IP3 formation, intracellular Ca2+ mobilization and microfilament rearrangement in host cells. *The Journal of Cell Biology*, 129, 1263–1273. https://doi.org/10.1083/jcb.129.5.1263

Rodríguez, A., Samoff, E., Rioult, M. G., Chung, A., & Andrews, N. W. (1996). Host cell invasion by trypanosomes requires lysosomes and microtubule/kinesin-mediated transport. *The Journal of Cell Biology*, 134, 349–362. https://doi.org/10.1083/jcb.134.2.349

Schenkman, S., Andrews, N. W., Nussenzweig, V., & Robbins, E. S. (1988). *Trypanosoma cruzi* invade a mammalian epithelial cell in a polarized manner. *Cell*, 55, 157–165. https://doi.org/10.1016/0022-8764(88)90018-9

Silva, C. V., Luquetti, A. O., Rassi, A., & Mortara, R. A. (2006). Involvement of Spn-4-related carbohydrate epitopes in mammalian cell invasion by *Trypanosoma cruzi* amastigotes. *Microbes and Infection*, 8, 2120–2129.

Staquicini, D. I., Martins, R. M., Macedo, S., Sasso, G. R. S., Atayde, V. D., Juliano, M. A., & Yoshida, N. (2010). Role of GP82 in the selective binding to gastric mucin during oral infection with *Trypanosoma cruzi*. *PLoS Neglected Tropical Diseases*, 4, e613. https://doi.org/10.1371/journal.pntd.0000613

Teixeira, M. M., & Yoshida, N. (1986). Stage-specific surface antigens of metacyclic trypomastigotes of *Trypanosoma cruzi* identified by monoclonal antibodies. *Molecular and Biochemical Parasitology*, 18, 271–282. https://doi.org/10.1016/0166-6851(86)90085-X

Woolsey, A. M., Sunwoo, L., Petersen, C. A., Brachmann, S. M., Cantley, L. C., & Burleigh, B. A. (2003). Novel PI 3-kinase-dependent mechanisms of trypanosome invasion and vacuole maturation. *Journal of Cell Science*, 116, 3611–3622. https://doi.org/10.1242/jcs.00666

Yoshida, N. (2006). Molecular basis of mammalian cell invasion by *Trypanosoma cruzi*. *Anais da Academia Brasileira de Ciências*, 78, 87–111. https://doi.org/10.1590/S0001-37652006000100010

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Rodrigues JPF, Souza Onofre T, Barbosa BC, Ferreira ÉR, Bonfim-Melo A, Yoshida N. Host cell protein LAMP-2 is the receptor for *Trypanosoma cruzi* surface molecule gp82 that mediates invasion. *Cellular Microbiology*. 2019;21:e13003. https://doi.org/10.1111/cmi.13003