Architecture of Network and Client-Server model

Hai Zhang
University of Science and Technology of China

Abstract – With the development of Internet technology, the Web is becoming more and more important in our lives so that it has even become an essential element. The application of the Web has never been limited to computers; it has been opened to all kinds of intelligent digital devices like mobile ones. In this paper, we discuss the main and substantial difference between UDP and TCP, and how to implement Client-Server model. We also discuss the efficiency of multi-thread server and its relationship with internet.

Keywords – Client-Server model; TCP; UDP

1. Introduction

With the development of Internet technology, the Web is becoming more and more important in our lives so that it has even become an essential element. At the same time, the application of the Web has never been limited to computers; it has been opened to all kinds of intelligent digital devices like mobile ones. In addition, the architecture of the Web is the Client-Server (CS) model that is shown as Figure 1. As a result, the communication between server and client is the first thing we should be concerned about. Only based on successful and smooth communication, can Web technology move forward and Web applications be applied to all kinds of devices so that they can help people.

![Figure 1 The structure of the Client-Server model.](image)

2. The comparison between TCP and UDP

To implement communication, firstly, we should define how to transfer messages between server and client, that is, the protocol that is one kind of language that can be understood by terminals, which connect to Internet. Just as we learned one new language including its syntax and sentence structure, so that we can make a complete sentence and paragraph, for terminal communication, this language is called protocol. The first part that I want to introduce concerns different transfer protocols used between client and server for different purposes. Secondly, as long as a terminal knows the language used by communication, when it has something to transfer, it can create a packet based on its language and protocol. Of course, in the concrete implementation of communication, especially, when we want to achieve it by programming, packet is not enough for transmission, we need another structure to finish packing our message that is called a socket. The socket is the basic operating unit that sustains network communication.

In this semester, one of the courses I am taking is Computer network which introduces the transfer protocol between different terminals. Just as I mentioned above briefly, a protocol can be defined as the rules, conventions, and standards governing the syntax, semantics, and synchronization of communication. In other words, protocols are sets of rules, (or a sequence of events) that control or enable preferably reliable and recognizable transfer of information among communication end points. There are so many transfer protocols used in communication because of different purposes. That is to say, devices may be connected but not communicate without protocol. Here, I will introduce the two most common protocols that are “User Datagram Protocol (UDP) and Transmission Control Protocol (TCP)”. UDP does not have prior communication to set up a special transmission channel so that it is a simple transmission model with a minimum of protocol mechanism. In addition, this is the main and substantial difference between UDP and TCP. For TCP, before two terminals establish a connection, they will execute a process called handshaking that is a process of negotiation. After handshaking, the two terminals will
reach a agreement including, but not limited to, information transfer rate, coding alphabet, parity, interrupt procedure, and other protocol or hardware features. As a result of handshaking, TCP will establish a specific connection between two terminals for this communication, so that TCP will cost more time depends on network traffic condition than UDP to finish it, however, TCP is simultaneously much more reliable than UDP. So whether our transmission uses TCP or UDP is a trade off, we have to consider network overload and the degree of security.

TCP	UDP
Reliable	Unreliable
Connection-oriented	Connectionless
Segment retransmission and flow control through windowing	No windowing or retransmission
Segment sequencing	No sequencing
Acknowledge segments	No acknowledgement

Figure 2 The comparison between TCP and UDP

3. How to use Client-Server model into real world

After the above introduction of transfer protocol, we have to begin to be concerned with how to put these protocols into real use, that is to say, how to implement network communication by programming. The most common method is by socket, which is network interface, an endpoint of an inter-process communication flow across a computer network. Actually, there are many kinds of sockets, but nowadays, most communications between computers are based on the Internet protocol that this paper introduces so that most network sockets are called Internet sockets. A socket contains socket address and data. Socket address includes local IP address and remote IP address that are the addresses of our computer and target computer in the network and port number that is used for sending and receiving data. About data, it is not only something the computer wants to transfer, but also some elements used for synchronization that is a part of the protocol. However, we can not operate sockets directly because it is just abstract concept, therefore, we have to through application programming interface (API) to operate sockets including sending, receiving data and functions. It is worth noting that the API is not identical among different platforms and programming languages. I am working on one computer communication project by programming C and the other android project that also includes communication between one server and many clients using Java. Even though all of Internet protocols I used are TCP, the achievement is different with each other, programming C needs more complicated statements because it is more basic than Java, Java API encapsulates more operations, but I have to implement many functions by myself in programming C, which is also the difference between oriented-object language and structure programming language.

4. Discussion

In addition, if I have finished the communication between one server and several clients, the other factor we need to consider is efficiency. Because I need to deal with several clients, if we handle requests one by one, the total cost time will be N times by one execution time. However, if we can do it parallel, the total time can be almost equal to one execution time. Another course I am taking this semester is Operating System, which introduces how to deal with some different questions or different parts in one question by multi-thread. As a result, when I designed a pattern of one server that has to decrease the overload due to too many clients, I decided to achieve it by multi-thread on server side. To be specific, when one client wants to connect to the server, the server will open a new thread for it, this thread just belongs to the client and it will handle every request. Meanwhile, in my project, there is a function like MSN so that it needs to communicate between two different threads. To do it, the server will store its specific ID and its thread for every client so that the server can find the target thread by its ID and then send message to it from the original client. In addition, what I want to say is multi-thread can be used for solving different parts in one question. The most basic one is to calculate the product of two matrixes. Of course, if the dimension of matrix is small, we do not need to worry about it, we just process it row-by-row and column-by-column. However, if they are too large, this method will cost much time, therefore, we can assign one thread to one row and one column, and then we can improve efficiency by calculating every row and column simultaneously.
In a word, if we want to design and finish a network project practically, the first thing is to understand Internet protocol and secondly, we pack it by socket and send it. Finally, we should consider the efficiency of the server so that multi-thread would be imported into project.

References

[1] Cheng, Xing-Mei, et al. Study on Implementation of Real Time Operating System that Supports Multi Threading Processor. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science) 43.7 (2009): 1177-81.

[2] Johnsen, E. B., et al. "Safe Locking for Multi-Threaded Java. 4th IPM International Conference, FSEN 2011. 20-22 April 2011.

[3] Pelta, D., et al. Using Memory and Fuzzy Rules in a Co-Operative Multi-Thread Strategy for Optimization. Information Sciences 176.13 (2006): 1849-68.

[4] Thi Mai, Thuong Tran, O. Owe and M. Steffen. Safe Typing for Transactional Vs. Lock-Based Concurrency in Multi-Threaded Java. 2010 Second International Conference on Knowledge and Systems Engineering (KSE). 7-9 Oct. 2010.

[5] Yongke, Huang. Android Internship Game Based on Internet, Directed Search Computer Science, USC.

[6] Qixin Wang, Yang Liu, Xiaochuan Pan (2008), Atmosphere pollutants and mortality rate of respiratory diseases in Beijing, Science of the Total Environment, Vol.391 No.1, pp143–148.

[7] Qixin Wang, Chenghua Cao, Menghui Li, Hualong Zu (2013) A New Model Based on Grey Theory and Neural Network Algorithm for Evaluation of AIDS Clinical Trial, Advances in Computational Mathematics and its Applications, Vol.2, No.3, PP. 292-297

[8] Hualong Zu, Qixin Wang, Mingzhi Dong, Liwei Ma, Liang Yin, Yanhui Yang(2012), Compressed Sensing Based Fixed-Point DCT Image Encoding, Advances in Computational Mathematics and its Applications, Vol.2, No.2, PP. 259-262

[9] Hangwei Qian, Chenghua Cao, Li Liu, Hualong Zu, Qixin Wang, Menghui Li, Tao Lin, Exploring the Network Scale-out in virtualized Servers, Proceeding of International Conference on Soft Computing and Software Engineering (SCSE 2013)

[10] Yunfeng Ling, etc., Design of Omnidirectional Vision Reflector based on VC and Matlab, Computer Applications and Software, China, 2008.

[11] Hangwei Qian, Hualong Zu, Chenghua Cao, Qixin Wang (2013), CSS: Facilitate the Cloud Service Selection in IaaS Platforms Proceeding of IEEE International Conference on Collaboration Technologies and Systems (CTS)

[12] Yiming Han and Anthony T. Chronopoulos, Distributed Loop Scheduling Schemes for Cloud Systems, 2013 IEEE 27th International Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), Boston, MA, May 2013.

[13] Yiming Han and Anthony T. Chronopoulos, Scalable Loop Self-Scheduling Schemes Implemented on Large-Scale Clusters, 2013 IEEE 27th International Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), Boston, MA, May 2013.

[14] Yiming Han and Anthony T. Chronopoulos, A Hierarchical Distributed Loop Self-Scheduling Scheme for Cloud Systems, The 12th IEEE International Symposium on Network Computing and Applications, NCA 2013, Boston, MA, August 2013.

[15] Hangwei Qian, Qixin Wang (2013) Towards Proximity-aware Application Deployment in Geo-distributed Clouds, Advances in Computer Science and its Applications, Vol 2, No 3, PP. 382-386

[16] Liangjun Xie, Nong Gu, Dalong Li, Zhiqiang Cao, Min Tan, and Saeid Nahavandi, “Concurrent Control Chart Patterns Recognition with Singular Spectrum Analysis and Support Vector Machine”, Computers & Industry Engineering, Vol 64, I.1, 2013, pp. 280-289. Image processing

[17] Liangjun Xie, Nong Gu, Zhiqiang Cao, Dalong Li, “A Hybrid Approach for Multiple Particle Tracking Microhelogy”, International Journal of Advanced Robotic Systems, Vol. 10, 2013, DOI: 10.5772/54364.