Field-induced transition of the magnetic ground state from A-type antiferromagnetic to ferromagnetic order in CsCo$_2$Se$_2$

Fabian von Rohr1,2, Anna Krzton-Maziopa3, Vladimir Pomjakushin4, Henrik Grundmann1, Zurab Guguchia1, Wolfgang Schnick2 and Andreas Schilling1

1 Department of Physics, University of Zurich, CH-8057 Zurich, Switzerland
2 Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
3 Warsaw University of Technology, Faculty of Chemistry, PL-00-664 Warsaw, Poland
4 Lab. for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen, Switzerland

E-mail: vonrohr@physik.uzh.ch

Received 25 January 2016, revised 13 April 2016
Accepted for publication 22 April 2016
Published 19 May 2016

Abstract

We report on the magnetic properties of CsCo$_2$Se$_2$ with ThCr$_2$Si$_2$ structure, which we have characterized through a series of magnetization and neutron diffraction measurements. We find that CsCo$_2$Se$_2$ undergoes a phase transition to an antiferromagnetically ordered state with a Néel temperature of $T_N \approx 66$ K. The nearest neighbour interactions are ferromagnetic as observed by the positive Curie–Weiss temperature of $\Theta \approx 51.0$ K. We find that the magnetic structure of CsCo$_2$Se$_2$ consists of ferromagnetic sheets, which are stacked antiferromagnetically along the tetragonal c-axis, generally referred to as A-type antiferromagnetic order. The observed magnitude of the ordered magnetic moment at $T = 1.5$ K is found to be only $0.20(1) \mu_B$/Co. Already in comparably small magnetic fields of $H_{MM}(5 \text{ K}) \approx 0.3$ T, we observe a metamagnetic transition that can be attributed to spin-rearrangements of CsCo$_2$Se$_2$, with the moments fully ferromagnetically saturated in a magnetic field of $H_{FM}(5 \text{ K}) \approx 6.4$ T. We discuss the entire experimentally deduced magnetic phase diagram for CsCo$_2$Se$_2$ with respect to its unconventionally weak magnetic coupling. Our study characterizes CsCo$_2$Se$_2$, which is chemically and electronically posed closely to the A$_x$Fe$_{2-y}$Se$_2$ superconductors, as a host of versatile magnetic interactions.

Keywords: magnetic structure determination, ThCr$_2$Si$_2$ structure, iron-based superconductors, metamagnetism

(Some figures may appear in colour only in the online journal)

1. Introduction

Antiferromagnetically ordered (AFM) compounds that can undergo a phase transition to a ferromagnetically ordered (FM) state upon the application of an external magnetic field are referred to as metamagnets [1]. If an external magnetic field is large enough, the magnetic moments of all unbound electrons will eventually line up with the applied magnetic field, causing a large overall magnetic moment [2]. Commonly, very large magnetic fields are necessary in order to observe so-called spin-flip or spin-flop metamagnetic transitions of compounds with a AFM ground-state (see, e.g. [1]).

CsCo$_2$Se$_2$ belongs to the layered tetragonal ThCr$_2$Si$_2$ structure-type, which has over 600 intermetallic members, and another 200 intermetallics crystallize in the variant with CaBe$_2$Ge$_2$ structure [3, 4]. These AT$_2$X$_2$ structures are the most common crystal structures among ternary compounds. CsCo$_2$Se$_2$ consists of stacked covalently bonded transition metal-metalloid Co$_2$Se$_2$ layers, where cobalt is coordinated tetrahedrally in CoSe$_4$. The ThCr$_2$Si$_2$ structure type has recently been found to be a suitable host for exotic physical properties, such as the occurrence of structure-driven quantum critical points at T_{uc} phase transitions, e.g. in SrCo$_2$(Ge$_{1-x}$P)$_2$ [5–8], or the heavy-fermionic superconductivity in KNi$_2$Se$_2$ [9].
Of exceptional scientific interest are the $A_2\text{Fe}_{2-x}\text{Se}_2$ ($A = \text{K}, \text{Rb}, \text{Cs}$) superconductors, which also crystallize in this structure type [10-12]. A close interplay of magnetic order and superconductivity has been discovered in these materials. They exhibit an antiferromagnetic ordering below $T_N \approx 480 \text{ K}$ and become superconducting at $T_c \approx 30 \text{ K}$ [13-15]. The coexistence of these two broken states of symmetry is most likely caused by an intrinsic mesoscopic phase separation, which hosts a complex network of superconducting and antiferromagnetic domains [16]. The coexistence and competition of magnetic and superconducting phases is a significant common feature of all iron-based superconductors (see, e.g. [17-20]). Generally, the parent compounds are antiferromagnets, which become superconductors upon hole or electron doping, consequently suppressing the Néel temperature [21].

Among the compounds $A\text{Co}_2\text{X}_2$ (with $A = \text{K}, \text{Rb}, \text{Cs}$, Tl and $X = \text{S, Se}$), which are related to the iron-based superconductors, CsCo_2Se_2 and TlCo_2Se_2 are the only two antiferromagnets [22, 23]. The other compounds have been found to order ferromagnetically at temperatures between $T_c \approx 50 \text{ K}$ and 110 K [22, 23]. In TlCo_2Se_2 the magnetic moments were found to order in a non-collinear incommensurate magnetic structure leading to an overall zero net magnetic moment [24, 25]. This phase has received considerable experimental and theoretical attention, because it is one of the few cobalt-based compounds with non-collinear magnetic ordering (see, e.g. [26, 27]). Here, we present the magnetic properties of CsCo_2Se_2, a compound we find to be an A-type antiferromagnet, which displays metamagnetic field-induced transitions initiated in external magnetic fields even below $\mu_0 H < 1 \text{ T}$.

2. Experiment

All samples were prepared by high-temperature solid state synthesis, the sample handling was carried out in an argon or helium glove box under inert atmosphere. Powders of cobalt (99.9% purity) and selenium (99.9% purity) were thoroughly mixed in a stoichiometric ratio, pressed to a pellet, and placed in a quartz tube. Caesium (99.5% purity) was weighted into a quartz container, which was placed into the quartz tube, next to the pellet. The elements were sealed in a double-wall evacuated quartz ampoule and rapidly heated to 1000 °C for 2h. The melt was slowly cooled down to 750 °C at the rate of 6 °C h$^{-1}$ and then cooled down to room temperature at a rate of 200 °C h$^{-1}$. Large dark crystals with a golden lustre were obtained, which could easily be cleaved into plates with flat shiny surfaces.

The magnetization was studied using a quantum design magnetic properties measurements system (MPMS) XL 7 T with a differential superconducting quantum interference device (SQUID) equipped with a reciprocating sample option (RSO). The measurements were performed in a temperature range from $T = 5$ to 300 K and in fields between $\mu_0 H = 0 \text{ T}$ and 7 T. The extremely air and moisture sensitive samples were vacuum sealed in quartz ampoules of 5 mm diameter and approximately 10 cm length. In the quartz ampoule the samples were fixed between two quartz cylinders of approximately 5 cm length. Such sample mounting was found to provide a stable surrounding and it produces only a minor background signal to the magnetization measurements [28].

Neutron powder diffraction (NPD) experiments were carried out at the SINQ spallation source at the Paul Scherrer Institute (Switzerland) using the high-resolution diffractometer for thermal neutrons (HRPT) [29]. A wavelength of $\lambda = 1.886 \text{ Å}$ was employed, measurements were performed at $T = 100 \text{ K}$ and 1.5 K. The NPD experiments in magnetic fields were carried out with a superconducting magnet (MAO6) that can provide fields up to $\mu_0 H \leq 6 \text{ T}$ with the magnetic field H vertical to the scattering plane. The sample for the NPD experiments consisted of crushed single crystals loaded into vanadium containers with an indium seal. The refinements were carried out by the Rietveld method using the FULLPROF program integrated in the WINPROT software [30]. Diffraction maxima were fitted with the Thompson–Cox–Hastings pseudo-Voigt function starting from the instrumental resolution values for the profile parameters U, V, W, and Y. The symmetry analysis was performed using the ISODISTORT tool based on the ISOTROPY software [31, 32] and the BasiRep program [30].

3. Results and discussion

In figure 1, we show the temperature dependent magnetic susceptibility $\chi = M/H$ of single crystals of CsCo_2Se_2 in a magnetic field of $\mu_0 H = 0.1 \text{ T}$ applied perpendicular to the c-axis. We find CsCo_2Se_2 to be an antiferromagnet (AFM) with a Néel temperature of $T_N \approx 66 \text{ K}$, and with a sharp transition, indicating the good quality of the sample. The observed transition temperature is in agreement with the recently reported value for the AFM transition in CsCo_2Se_2 by Yang et al [23]. It is, however, higher than the previously reported value for polycrystalline samples with a $T_N \approx 15 \text{ K}$ by Huan et al [22]. Furthermore, the additional transition at 15 K reported in [23] is not observed. A transition at these temperatures was only

Figure 1. The temperature dependence of the magnetic susceptibility of CsCo_2Se_2 measured in a temperature range between 5 K and 300 K in an applied magnetic field of $\mu_0 H = 0.1 \text{ T}$.

be attributed to a decomposition product of the extremely air sensitive CsCo$_2$Se$_2$ compound (see above). A similar sensitivity to moisture and air has earlier been observed for the chemically closely related A$_1$–Fe$_{2–x}$Se$_2$ phases [28, 33]. Furthermore, it was not possible to obtain an improved fit to the structure data with one of the ThCr$_2$Si$_2$-related polytypes or with a superlattice structure. A reasonable indexing solution to the extra peaks was obtained with a tetragonal cell with $a \approx 8.815$ Å and $c \approx 9.209$ Å. Since there are no obvious candidate impurities for this cell, the additional peaks have not been taken into account for a more accurate magnetic structure refinement (grey points in figure 2). CsCo$_2$Se$_2$ is an extremely air sensitive compound. It even decomposes in an argon-filled glovebox with almost zero O$_2$ or H$_2$O. The decomposition phases cannot be avoided. This does, however, not affect the scattering experiments or magnetic structure solution presented in the following.

At the bottom of figure 2, we show the NPD data of the same polycrystalline CsCo$_2$Se$_2$ sample at 1.5 K collected with a wavelength of $\lambda = 1.886$ Å. We observe a single magnetic diffraction peak at $2\Theta = 7.2^\circ$ that corresponds to the (0 0 1) reflection of the tetragonal crystal structure on hand. It can be indexed with the propagation vector $\vec{k} = [1, 0, 0]$. This implies an AFM order for the body centered Bravais lattice. A symmetry treatment was used for the modelling of the magnetic structure, thereby the magnetically ordered structures are described in terms of their magnetic propagation vector and the irreducible representations (see, [30–32, 34]). The decomposition of the magnetic representation for the $I4/mmm$ space group in Kovalev’s notation (τ are the allowed irreducible representations of the symmetry groups G_3), with the propagation vector $\vec{k} = k_{13} = [1, 0, 0]$ for cobalt in the crystallographic 4d (0,1/2,1/4) position gives the following allowed symmetry solutions: τ_2, τ_5, τ_6, and τ_0. The one-dimensional irreducible representations τ_2 and τ_5 give solutions for the magnetic structure, where the magnetic moments are aligned along the crystallographic c-axis. However, the magnetic (0 0 1) reflection is observed and therefore both these magnetic structures can be rejected. The two-dimensional irreducible representations τ_6 and τ_0 give magnetic structure configurations with the magnetic moments aligned along directions in the ab plane. Of these two, the chessboard solution τ_6 can be rejected, because the structure factor F_{Bragg} for the Bragg reflection (0 0 1) must for τ_6 be zero due to symmetry. Thus, we have a unique solution τ_0 here the magnetic moments form FM sheets with the spin direction in the ab plane and a magnetic coupling of 0.20(1)μ_{B}/Co. The magnetic structure refinement together with the structural refinement is shown in figure 2 and in the inset therein. The corresponding real-space magnetic structure is depicted in figure 3. It should be noted that the direction of the magnetic moments in the layer cannot be deduced from our experimental data. This solution can also be represented in the Shubnikov magnetic group $P2_1/m$ (No. 11.57) with the cobalt atoms in the 4h position $(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}; m_n, 0, m_n)$. In this case, the basis transformation from the parent tetragonal paramagnetic group to the monoclinic Shubnikov group is $(1, 1, 0)$, $(0, 0, -1)$, $(-1, 0, 0)$ with the

![Figure 2](image-url)
origin shift \(\frac{1}{2} \). This magnetic structure it commonly referred to as A-type antiferromagnetism.

In figure 4, we show the magnetic susceptibility as \(\chi = M/H \) (a) and the magnetization (b) in a temperature range between \(T = 5 \) K to 100 K with the external field \(\mu_0 H \) perpendicular to the \(c \) axis of CsCo\(_2\)Se\(_2\). These measurements were performed in magnetic fields ranging from \(\mu_0 H = 1 \) T to 7 T in 0.5 T steps. The clearly pronounced metamagnetic transition from a AFM orientation to a FM orientation of the magnetic moments can be observed in these measurements. The transition temperature is shifted only slightly to lower temperatures with higher magnetic fields. A clear saturation of the magnetic moments in a FM or canted AFM alignment is found in fields greater than \(\mu_0 H \approx 6 \) T, while the transition is observed to be continuous. In figure 5(a), the field-dependent magnetization of CsCo\(_2\)Se\(_2\) at 5, 15, 25, 30, 35, 45, 55 and 60 K is shown. As expected, the field dependence of the magnetization of CsCo\(_2\)Se\(_2\) deviates from a common AFM behaviour and further supports the scenario of a spin reorientation and therefore of a metamagnetic transition. Three distinct regimes can be determined in the field dependent magnetization. The fields necessary for the initialization of the metamagnetic transition is small compared to other metamagnetic materials (see, e.g. [35]).

Four different magnetic phases can therefore be identified in CsCo\(_2\)Se\(_2\): a paramagnetic high-temperature phase (PM), an antiferromagnetically ordered phase (AFM), one or more metamagnetic phase transitions (MM), and a ferromagnetically ordered phase (FM). This nomenclature is thereby chosen on the basis of earlier reports of similar magnetic properties (see, e.g. [37]). Here, we have used the deviations from linearity, as observed in the second derivative \(\left(\frac{d^2 m}{dH^2} \right) \), in the field-dependent magnetization as a measure for the respective critical fields \(H_{MM} \) and \(H_{FM} \). This procedure is illustrated in figure 5(a) for the measurement at \(T = 15 \) K. By applying these criteria to the various measured temperatures, we are able to draw a summarizing magnetic phase diagram for CsCo\(_2\)Se\(_2\) as shown in figure 5(c). It should be noted that all of the observed transitions are continuous and that all here determined critical fields are not strict quantities. Furthermore, at higher temperatures the transitions broaden and are less pronounced in the field-dependent magnetization \(M(H) \) (represented by the open circles). The observed phase diagram is in qualitative agreement with other metamagnetic materials. Thereby, layered A-type antiferromagnetic materials often undergo metamagnetic transitions in external magnetic fields parallel to the antiferromagnetically ordered spin lattices, because the interlayer AFM coupling is in such an alignment comparably weak. The transitions observed here are in general agreement with earlier observations by Yang et al [23], however in this earlier study a lower \(H_{FM} \) was observed. This discrepancy might most likely be connected to a variable off-stoichiometric composition of the compound as it has been extensively studied for the closely-related A\(_{1-x}\)Fe\(_{2-y}\)Se\(_2\) and FeSe phases (see, e.g. [28, 33, 36]).
In figure 6, we show the NPD data of CsCo$_2$Se$_2$ in magnetic fields $\mu_0 H = 0$ T, 2 T, 4 T, 4.5 T, 5 T, 5.5 T, and 6 T at $T = 1.5$ K, measured with a wavelength of $\lambda = 1.886$ Å. The data is normalized to the intensity of the structural Bragg reflection (0 0 2). For better clarity only the data in the vicinity of the magnetic (0 0 1) reflection is shown. The intensity of the magnetic (0 0 1) reflection is slightly decreased in magnetic fields of $\mu_0 H = 2$ T and 4 T. According to the phase diagram (see figure 5) in these fields a small magnetic moment in the direction of the external field can be expected due to possible canting where the ferromagnetic moment increases. Therefore, the symmetry of the magnetic order is only slightly perturbed, leading to a corresponding small alternation of the magnetic (0 0 1) reflection. In larger magnetic fields, such as $\mu_0 H = 4.5$ T, 5 T, and 5.5 T, the magnetic (0 0 1) reflection is strongly reduced in intensity and in a field of $\mu_0 H = 6$ T not observable anymore. These findings are in good agreement with the magnetic phase diagram derived from the field-dependent magnetization measurements. A likely scenario for the transition is shown in the inset of figure 6, where the A-type AFM structure undergoes a field-induced transition to a FM structure with the magnetic moments laying in the ab plane.

Figure 5. (a) Magnetization $m(H)$ versus the magnetic field $\mu_0 H$ of CsCo$_2$Se$_2$ for temperatures between 5 K and 60 K (below T_N). (b) Field dependence of the magnetization at 15 K and its second derivative $\frac{d^2 m}{dH^2}$. (c) Phase diagram of CsCo$_2$Se$_2$ for magnetic fields up to 7 T, determined from field dependent magnetization measurements, according to the criteria illustrated in (b).

Figure 6. Neutron powder diffraction data of CsCo$_2$Se$_2$ in magnetic fields $\mu_0 H = 0$ T, 2 T, 4 T, 4.5 T, 5 T, 5.5 T, and 6 T at $T = 1.5$ K measured with a wavelength of $\lambda = 1.886$ Å. The data is normalized to the intensity of the structural Bragg reflection (0 0 2).
It should be noted that in the series of the ACox2 with (A = Cs, Rb, and K and X = Se, S) compounds, the a-axis is of similar size for all series members, whereas the c-axis increases strongly from KCox2 to Cox2X2. Thereby, the interlayer distance of the Cox2X2-layers increases and causes the difference in the magnetic behaviour. This suggests that a variation of the magnetic properties by chemical variation of the interlayer distance might be of great interest for these and related materials. This is especially expected since the fragile antiferromagnetic order in CsCo2Se2 can be perturbed in a facile manner by a weak external magnetic field.

4. Conclusion

In summary, we report on the magnetic properties of CsCo2Se2, which we have investigated by a series of NPD and by SQUID magnetometry measurements. We find that CsCo2Se2 is an antiferromagnet with a Neel temperature of TN ≈ 66 K with an effective magnetic moment of μeff ≈ 1.81 μB/Co. However, its nearest neighbour interactions between the magnetic moments are ferromagnetic. In the collected NPD data, we observe a single magnetic diffraction peak at 2θ = 7.2° below TN, which corresponds to the magnetic propagation vector k = [1, 0, 0]. We have found a unique solution of the magnetic structure of CsCo2Se2, where the magnetic moments are aligned ferromagnetically in the ab plane. These FM sheets order antiferromagnetically along the c-axis. In external magnetic fields up to μ0H ≳ 7 T, CsCo2Se2 undergoes a metamagnetic transition. A spin rearrangement occurs already for a comparably small critical field of μ0HMM(5 K) ≈ 0.3 T with the moments fully ferromagnetically saturated in a magnetic field of μ0HFM(5 K) ≈ 6.4 T. Our study characterizes CsCo2Se2, which is chemically and electronically posed closely to the AFe2−xSe2 superconductors, as a host of versatile magnetic interactions that likely can be tuned by chemical variation of the interlayer distance. In further studies, the strong correlation between the structure and magnetism in these materials may give new insights into the nature of the magnetic and superconducting interactions in the ThCr2Si2-related superconductors and magnets.

Acknowledgments

This work was supported by the Swiss National Science Foundation under Grant No. 21-153659. AK-M acknowledges financial support by the National Science Centre of Poland, grant No. DEC-2013/09/B/ST5/03391. The authors thank S Weyeneth, K Conder, and T McQueen for helpful discussions, as well as C Rüegg for his support of the NPD experiments and D Sheptyakov for his assistance with the NPD measurements.

References

[1] Stryjewski E and Giordano N 1977 Adv. Phys. 26 487
[2] Wohlfarth E P and Rhodes P 1962 Phil. Mag. 7 1817
[3] Hoffmann R and Zheng C 1985 J. Phys. Chem. 89 4175
[4] Johrendt D, Felser C, Jepsen O, Andersen O, Mewis A and Rouxel J 1997 J. Solid State Chem. 130 254
[5] Jia S, Jiramongkolchai P, Suchomel M, Toby B, Checkelsky J, Ong N and Cava R J 2011 Nat. Phys. 7 207
[6] Hirai D, von Rohr F and Cava R J 2012 Phys. Rev. B 86 100505
[7] Pobel R, Frankovsky R, Johrendt D 2013 Z. Naturforsch. B 68 581
[8] Torikachvili M S, Bud’ko S L, Ni N and Canfield P C 2008 Phys. Rev. Lett. 101 057006
[9] Neilson J R, Liibet A, Stier A V, Wu L, Wen J J, Tao J, Zhu Y, Tesanovic Z B, Armitage N P and McQueen T M 2012 Phys. Rev. B 86 054512
[10] Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M and Chen X 2010 Phys. Rev. B 82 180520
[11] Krzton-Maziopa A, Shermadini Z, Pomjakushina E, Pomjakushin V, Bendele M, Amato A, Khasanov R, Luetskens H and Conder K 2011 J. Phys.: Condens. Matter 23 052203
[12] Li C H, Shen B, Han F, Zhu X and Wen H H 2011 Phys. Rev. B 83 184521
[13] Tsurkan V, Deisenhofer J, Güntner A, Krug von Nidda H A, Widmann S and Loidl A 2011 Phys. Rev. B 84 144520
[14] Ying J J et al 2011 Phys. Rev. B 83 212502
[15] Pomjakushin V Y, Pomjakushina E V, Krzton-Maziopa A, Conder K, Chernyshov D, Svitlyk Y and Bosak A 2012 J. Phys.: Condens. Matter 24 435701
[16] Ricci A et al 2011 Phys. Rev. B 84 060511
[17] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[18] Krzton-Maziopa A, Pomjakushina E V, Pomjakushin V Y, von Rohr F, Schilling A and Conder K 2012 J. Phys.: Condens. Matter 24 382202
[19] Johrendt D 2011 J. Mater. Chem. 21 13726
[20] Bendele M, Amato A, Conder K, Elender M, Keller H, Klaus H H, Luetskens H, Pomjakushina E, Raselli A and Khasanov R 2010 Phys. Rev. Lett. 104 087003
[21] Basov D N and Chubukov A V 2011 Nat. Phys. 7 272
[22] Huan G and Greenblatt M 1989 J. Less-Common Met. 156 247
[23] Yang J, Chen B, Wang H, Mao Q, Imai M, Yoshimura K and Fang M 2013 Phys. Rev. B 88 064406
[24] Berger R, Fritzschke M, Broddelfalk A, Nordblad P and Malaman B 2002 J. Alloys Compd. 343 186
[25] Lizzarraga R, Ronneteg S, Berger R, Bergman A, Eriksson O and Nordström L 2004 Phys. Rev. B 70 024407
[26] Jeong H K, Valla T, Berger R, Johnson P D and Smith K E 2007 Europhys. Lett. 77 27001
[27] Ronneteg S, Felton S, Berger R and Nordblad P 2003 J. Magn. Magn. Mater. 299 53
[28] Weyeneth S et al 2012 Phys. Rev. B 86 134530
[29] Fischer P et al 2000 Physica B 276 146
[30] Rodriguez-Carvajal J 1993 Physica B 192 55
[31] Stokes H T and Hatch D M 1988 Isotropy Subgroups of the 230 Crystallographic Space Groups (Singapore: World Scientific)
[32] Campbell B J, Stokes H T, Tanner D E and Hatch D M 2006 J. Appl. Crystallogr. 39 607
[33] Pomjakushin V Y, Pomjakushina E V, Krzton-Maziopa A, Conder K and Shermadini Z 2011 J. Phys.: Condens. Matter 23 156003
[34] Kovalev O V 1993 Representations of the Crystallographic Space Groups: Irreducible Representations, Induced Representations and Corepresentations (Amsterdam: Gordon and Breach)
[35] Roy S B, Chaddah P, Pecharsky V K and Gschneidner K A Jr 2008 Acta Mater. 56 5895
[36] McQueen T M et al 2009 Phys. Rev. B 79 014522
[37] Guguchia Z, Bosma S, Weyeneth S, Shengelaya A, Puznicki R, Bukowski Z, Karpiński J and Keller H 2011 Phys. Rev. B 84 144506