Van der Waals heterostructures obtained via stacking and twisting have been used to create moiré superlattices, enabling new optical and electronic properties in solid-state systems. Moiré lattices in twisted bilayers of transition metal dichalcogenides (TMDs) result in exciton trapping and host Mott insulating and superconducting states and act as unique Hubbard systems whose correlated electronic states can be detected and manipulated optically. Structurally, these twisted heterostructures feature atomic reconstruction and domain formation. However, due to the nanoscale size of moiré domains, the effects of atomic reconstruction on the electronic and excitonic properties have not been systematically investigated. Here, we use near-0°-twist-angle MoSe2/MoSe2 bilayers with large rhombohedral AB/BA domains to directly probe the excitonic properties of individual domains with far-field optics. We show that this system features broken mirror/inversion symmetry, with the AB and BA domains supporting interlayer excitons with out-of-plane electric dipole moments in opposite directions. The dipole orientation of ground-state K–K interlayer excitons can be flipped with electric fields, while higher-energy K–K interlayer excitons undergo field-asymmetric hybridization with intralayer K–K excitons. Our study reveals the impact of crystal symmetry on TMD excitons and points to new avenues for realizing topologically non-trivial systems, exotic meta-surfaces, collective excitonic phases and quantum emitter arrays via domain-pattern engineering.

To date, most studies of twisted transition metal dichalcogenide (TMD) bilayers have assumed a rigid rotation of layers without atomic-scale rearrangement. However, recent theoretical and experimental studies have amply demonstrated that, even in these van der Waals heterostructures, the interlayer interactions can cause substantial lattice reconstruction and the resultant domain formation. Understanding how these local atomic rearrangements impact the electronic and excitonic properties of TMD heterostructures is crucial to harnessing the full potential of the so-called moiré engineering. Here we study the spatially resolved spectroscopic properties of distinct TMD bilayer domains using twisted MoSe2 homobilayers (t-MoSe2/MoSe2) as a model system. We fabricate devices incorporating t-MoSe2/MoSe2 encapsulated by hexagonal boron nitride (hBN) using the ‘tear and stack’ technique. Figure 1a shows a dark-field transmission electron microscopy (TEM) image of a near-0°-twist-angle t-MoSe2/MoSe2 device (D1), showing black and grey regions that correspond to alternating domains with rhombohedral stacking symmetry (structures schematically shown in Fig. 1b). This domain formation is caused by the rearrangement of atoms within each TMD layer to preserve interlayer commensurability, similar to observations in twisted bilayer graphene and graphene on hBN. Interestingly, for near-0° target twist angle, the regime we call a ‘marginal twist’, we observe irregular, micrometre-sized AB (MoSe2/MoSe2) and BA (MoSe2/MoSe2) domains that are large enough to be imaged optically. The irregularity of these domains probably reflects locally varying twist angles caused by strain inhomogeneity.

For t-MoSe2/MoSe2 devices used for optoelectronic characterizations, we include top and bottom graphene gates to independently control the out-of-plane electric field (Ez, electrostatic doping) and optical response (Fig. 1c,d). Figure 1d shows an integrated photoluminescence (PL) intensity map from device D2 under 1.88 eV (660 nm) excitation at 4 K. Compared with the bright, momentum-direct interlayer exciton emission from monolayer regions, the PL intensity of the twisted bilayer is reduced by three orders of magnitude, suggesting a direct-to-indirect bandgap transition from a monolayer to a bilayer. We note that the PL linewidth of the twisted bilayer is broad compared with that of a monolayer. This broadening is probably due to the additional relaxation pathway to the low-energy interlayer excitons arising from the indirect bandgap. The PL spectra of the twisted bilayer exhibit high-energy peaks near 1.6 eV, which we label as X0 and low-energy peaks around 1.4 eV, denoted as X1 (Fig. 1e, and Supplementary Figs. 1 and 2 for the discussion of the multiple peaks). Similar to the case of other TMD bilayers, we assign the X0 peaks to momentum-direct intra- and interlayer excitons composed of an electron and a hole residing in the same layer and the...
XI,1 -interlayer exciton using the formula
\[\Delta E = \mu \frac{E_z}{C_{22}} \]
in which \(\mu \) is the dipole-moment magnitude of the XI,1 -interlayer exciton, \(E_z \) is the out-of-plane electric field, and \(C_{22} \) is the dielectric constant.

The value of \(d \) is the distance between the electron and the hole. The value of \(d \) is smaller than the interlayer distance of \(\approx 0.6 \text{ nm} \) (ref. 30) (Supplementary Fig. 1). Interestingly, when \(E_z \) falls below \(-0.09 \text{ V nm}^{-1} \), the slope of the linear Stark effect abruptly changes sign, indicating that the dipole moment direction changes at that field.

Importantly, at \(E_z = 0 \), the sign (but not the magnitude) of the Stark shift varies from spot to spot: for instance, the XI,1 -interlayer exciton is constant everywhere, its direction flips from spot to spot across the device, with the negative (positive) Stark slope signifying...
the dipole moment pointing up (down). Such behaviour is unique to near-0° t-MoSe₂/MoSe₂ devices: for instance, in MoSe₂ devices that incorporate a natural (untwisted) 2H bilayer (Supplementary Fig. 2), we observe the same Stark shifts at all locations.

To generate a map of the XI,1 dipole orientation across D2, we measure the integrated PL intensity below 1.36 eV at $E_z = \pm 0.15$ V nm⁻¹ (designated as PL+ and PL−, respectively) and calculate the ratio $\eta = (PL+) / (PL−)$: a positive (negative) η value indicates that the preferred dipole orientation is up (down). The η map in Fig. 2d clearly shows spatial domains of up (red) and down (blue) XI,1 dipole orientations. In locations noted as white, Stark shifts of both positive and negative slopes appear, probably because the domain sizes are smaller than the probe beam size (~500 nm) and we are collecting PL spectra from both AB/BA domains.

Figure 3a–c shows reflectance spectra of the Xi peaks (~1.6 eV) as a function of the electric field at E_z. At large E_z, however, the Xi peaks exhibit avoided crossings with a new spectral feature Xi,2 which exhibits a large Stark shift (black arrows in Fig. 3a). The observed slope from the avoided crossing indicates an electric dipole moment value that corresponds to an electron–hole separation of 0.63 nm (Fig. 3a–c).

Similar to the behaviour of the Xi peaks observed in Fig. 2a–c, the field-dependent avoided crossings between the X₀ and Xi peaks also exhibit spatial variation across the device. As shown in Fig. 3, the avoided crossing for the lower X₀ peak occurs at $E_z = 0.07$ V nm⁻¹ at spot 1 (Fig. 3a), at $E_z = −0.07$ V nm⁻¹ at spot 2 (Fig. 3b) and for both polarities at spot 3 (Fig. 3c). We note that the PL spectra presented in Supplementary Fig. 3 also exhibit avoided crossing behaviour, similar to those seen in Fig. 3. Specifically, the lower X₀ peak and the Xi,1 peak show a field-dependent avoided crossing near $|E_z| = 0.07$ V nm⁻¹ (Supplementary Fig. 3). Importantly, the spatial map of the avoided crossing features (Supplementary Fig. 4) agrees well with the dipole orientation map in Fig. 2d, strongly suggesting a common physical origin.

The spatially dependent optical properties in Figs. 2 and 3 can be understood from the electronic band structure of AB/BA (Moₙ₊₁Seₙ₋₁/MoSe₂) domains in t-MoSe₂/MoSe₂. Unlike natural 2H MoSe₂ bilayers, the crystal structures of the AB (BA) domains are not mirror/inversion symmetric: in particular, because the top and bottom layers are clearly distinguished by the crystal structure, electrons and holes can preferentially reside in the top or bottom layers, leading to interlayer excitons with preferred dipole orientation.

The broken mirror symmetry of the AB (Moₙ₊₁Seₙ₋₁) domain is reflected in the properties of the states at its band edges. Density functional theory (DFT) calculations of the AB-stacked Moₙ₊₁Seₙ₋₁ bilayer show that the valence band maximum (VBM) is at the Γ point, and the conduction band minimum (CBM) can be at the Q or K point depending on the calculation parameters (Fig. 4a and Supplementary Fig. 5). While the hole wavefunction at the Γ point is equally distributed over both layers, the electron wavefunction is more localized in the top layer (as compared with the bottom) regardless of whether the CBM is at the Q or K point (Fig. 4b and Table 2). We note that this asymmetry is much stronger for the K-point band extremum (100%) than for the Q point (~60%). These results indicate that electrons prefer to reside in the top layer in AB-stacked MoSe₂/MoSe₂, and consequently the momentum-indirect interlayer excitons responsible for the Xi,1 peaks should have a downward dipole orientation. Because BA stacking is just a mirror image of AB stacking with respect to the horizontal plane, the preferred dipole orientation of the Xi,1-interlayer exciton is upwards in BA domains.

Quantitative comparisons between experimental data and DFT calculations provide further insight into the nature of the Xi,1-interlayer excitons. The DFT calculations show that the electron–hole separations for Γ–K and Γ–Q interlayer excitons are 0.34 nm and 0.07 nm, respectively (Table 1). Experimentally, the electron–hole separation deduced from the Xi,1-peak Stark shifts (Fig. 2a–c) is 0.26 nm. Comparison of the dipole-moment values suggests that the Xi,1-interlayer excitons are probably from the Γ–K transition in AB/BA domains of t-MoSe₂/MoSe₂ (ref. 31). The field-dependent flip of the dipole orientation observed in Fig. 2a,b provides further support for this assignment: by extrapolating the line with a negative slope at spot 2 to $E_z = 0$, we find a zero-field splitting of 43 meV between the two dipole orientations, which agrees well with DFT calculations for the two Γ–K transitions (the energy separations between two Γ–Q transitions should be orders of magnitude larger; Supplementary Fig. 6).

The avoided crossing behaviour between the X₀ and Xi,2 peaks in Fig. 3a–c can also be understood from DFT calculations of AB-stacked MoSe₂/MoSe₂. In AB-stacked MoSe₂/MoSe₂, the two monolayers exhibit staggered band alignment at the K (or K’) point, and the K–K intralayer excitons (X₀) in the bottom layer have a lower energy than those in the top layer (Fig. 4c): this explains the origin of the two X₀ peaks observed in Figs. 1e and 3a–c. Meanwhile, the electron and the hole from different layers can form momentum-direct, K–K interlayer excitons as shown in Fig. 4c, which show that the lifetime of the X₀–Xi,2 exciton (0.03 ns) is much shorter than that of the momentum-indirect Xi,1-interlayer exciton (30 ns).
These K–K interlayer excitons responsible for the X_{12} peaks do not show any reflection contrast at $E_z = 0$ but acquire oscillator strength and cause avoided crossings when they become resonant with the X_0 intralayer excitons, as shown in Fig. 4d. The avoided crossing occurs at opposite E_z in the AB and BA domains (Fig. 3a–c) because the preferred dipole orientation of the X_{12} excitons is flipped in the two domains (see Table 1 for quantitative comparison). Moreover, because the electrons and holes of the X_{12} excitons are largely localized in separate MoSe$_2$ layers (Fig. 4b and Table 2), the electron–hole separation should be equal to the interlayer distance (~0.6 nm), consistent with the separation extracted from the data in Fig. 3a–c. While further studies will be necessary to account for the coupling strengths between inter- and intralayer excitons14,25, the band
structure presented in Fig. 4 provides a qualitative understanding of the main features in Figs. 2 and 3.

The domain-resolved spectroscopy of rhombohedral AB/BA domains in h-MoSe2/MoSe2 bilayers presented here demonstrates that local atomic registry and crystal symmetry have profound impacts on the excitonic properties of these heterostructures. Specifically, our observations indicate that the interlayer excitons in AB and BA domains exhibit opposite electric dipole orientations dictated by crystal symmetry, as manifested by the spatial dependence of the X_\parallel, Stark shift and the $X_\perp-X_{12}$ avoided crossing. Our observations indicate that the domain-specific, electrically tunable, optical properties of twisted TMD bilayers can be used to realize a wide variety of exciting potential applications. These include proposed excitonic topological insulators15,16, quantum metasurfaces19 and strongly correlated exciton lattices for Hubbard model physics20,21. Importantly, a tessellation of AB/BA domains in twisted TMD homobilayers22,23 can be used to generate alternating dipolar exciton arrays whose relative energy and coupling strengths can be engineered by changing the twist angle and out-of-plane electric field. In such systems, it should also be possible to change the exciton–exciton interactions from attractive to repulsive24 via field-dependent dipole flipping. We also note that there have been extensive research efforts towards controlling the domain size and moiré length scales25 as well as visualizing domains in a non-destructive way26,27. These techniques, together with future research, could enable the realization of spatially homogeneous arrays of excitons, thus opening the door for the realization of many exotic exciton states, such as antiferroelectric exciton droplets28, exciton liquids29 and exciton condensates30.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41565-020-0728-z.

Received: 3 December 2019; Accepted: 3 June 2020; Published online: 13 July 2020

References

1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. *Nature* **556**, 43–50 (2018).
2. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. *Nature* **567**, 66–70 (2019).
3. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. *Nature* **567**, 71–75 (2019).
4. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. *Nature* **567**, 76–80 (2019).
5. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. *Nature* **567**, 81–86 (2019).
6. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. *Nat. Mater.* https://doi.org/10.1038/s41563-020-0708-6 (2020).
7. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. *Nature* **579**, 353–358 (2020).
8. Regan, E. C. et al. Mott and generalized Wigner crystal states in heterobilayers of transition metal dichalcogenides. *Phys. Rev. B* **97**, 035306 (2018).
9. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a periodic potential. *Phys. Rev. B* **97**, 035306 (2018).
10. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. *Nat. Mater.* **18**, 448–453 (2019).
11. Woods, C. R. et al. Macroscopic self-reorientation of interacting two-dimensional crystals. *Nat. Commun.* **7**, 10800 (2016).
12. Wang, Z., Chiu, Y.-H., Honz, K., Mak, K. F. & Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. *Nano Lett.* **18**, 137–143 (2018).
13. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. *Science* **366**, 870–875 (2019).
14. Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. *Phys. Rev. Lett.* **120**, 037402 (2018).
15. Zhou, Y. et al. Controlling excitons in an atomically thin membrane with a mirror. *Phys. Rev. Lett.* **124**, 027401 (2020).
16. Hong, J. et al. Observation of interlayer excitons in MoS2, single crystals. *Phys. Rev. B* **97**, 241404 (2018).
17. Gerber, I. C. et al. Interlayer excitons in bilayer MoS2 with strong oscillator strength up to room temperature. *Phys. Rev. B* **99**, 035443 (2019).
18. Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. *Nat. Commun.* **5**, 4966 (2014).
19. Kunstmann, J. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. *Nat. Phys.* **14**, 801–805 (2018).
20. Deilmann, T. & Thygesen, K. S. Interlayer excitons with large optical amplitudes in layered van der Waals materials. *Nano Lett.* **18**, 2984–2989 (2018).
21. Miller, B. et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. *Nano Lett.* **17**, 5229–5237 (2017).
22. Daniels, J. M., Machnikowski, P. & Kuhn, T. Excitons in quantum dot molecules: Coulomb coupling, spin–orbit effects, and phonon-induced line broadening. *Phys. Rev. B* **88**, 205307 (2013).
23. Ruiz-Tijerina, D. A. & Fal′ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. *Phys. Rev. B* **99**, 125424 (2019).
24. Hubert, C. et al. Attractive dipolar coupling between stacked exciton fluids. *Phys. Rev. X* **9**, 021026 (2019).
25. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable wells. *Science* **361**, 690–693 (2018).
26. Sammoon, M. & Skhlovskii, B. I. Attraction of indirect excitons in van der Waals heterostructures with three semiconducting layers. *Phys. Rev. B* **99**, 165403 (2019).
27. Stern, M., Umansky, V. & Bar-Joseph, I. Exciton liquid in coupled quantum atomically thin heterostructures with three semiconducting layers. *Phys. Rev. B* **99**, 020512 (2019).
28. Raissi, V. et al. Low-energy excitons in twisted bilayers of transition metal dichalcogenides. *Nat. Commun.* **11**, 4031 (2020).
29. Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. *Nature* **574**, 76–80 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. © The Author(s), under exclusive licence to Springer Nature Limited 2020.
Methods

Sample preparation and optical spectroscopy. Monolayer MoSe₂, few-layer graphene and hBN flakes were exfoliated onto silicon substrates with a 285 nm silicon oxide layer. Monolayers of MoSe₂ were identified under an optical microscope and verified via PL measurements. The thickness of hBN flakes was determined with atomic force microscopy. The pre-patterned platinum contact for a MoSe₂ monolayer was first defined with electron-beam lithography and electron-beam evaporation (1 nm chromium + 10 nm platinum) on top of the hBN/graphene heterostructure. The graphene/hBN/MoSe₂/MoSe₂/hBN/graphene heterostructure was prepared using a dry transfer method, using the tear-and-stack technique to form twisted bilayer MoSe₂. This heterostructure was then transferred onto the pre-patterned platinum contacts and hBN/graphene heterostructure to form graphene/hBN/MoSe₂/MoSe₂/hBN/graphene. Next, electrical contacts to the platinum and few-layer graphene gates were defined with electron-beam lithography and deposited via thermal evaporation (10 nm chromium + 90 nm gold). Optical measurements were carried out in a home-built confocal microscope using an objective with a numerical aperture of 0.75 in a 4 K cryostat from Montana Instruments. For PL measurements, a 660-nm-wavelength diode laser was used for excitation. To obtain the reflectance spectra, we used a halogen lamp with a broad spectral range as the light source. The spatial image of the avoided crossing features was obtained using a Τesaphire laser from M Squared.

TEM experiment. The TEM sample was prepared by transferring D1 onto a 50-nm-thick silicon nitride membrane. Dark-field imaging was performed in an 80 kV field-emission TEM (JEOL 2010F) equipped with a Gatan OneView camera. Off-zone axis g = 1010 DF imaging exhibits Aβ/Bα domain contrast associated with the antisymmetric shift of the lattice period in Aβ and Bα regions⁴¹.

DFT calculations. We used the local density approximation with spin–orbit coupling taken into account to compute the band structure of the t-MoSe₂/MoSe₂ bilayers, utilizing the VASP code⁴². We used the basis composed of plane waves with a cutoff energy of 600 eV and projector augmented wave pseudopotentials. The in-plane Brillouin zone was sampled by a 12×12 grid. The 2D systems were modelled in a periodic three-dimensional box with a vertical distance of 20 Å between repeated images of the bilayers. The equilibrium structural parameters were taken from experiments in the literature⁴³.

Time-resolved PL experiment. A SuperK supercontinuum laser with SuperK VARIA centred at 660 nm with a repetition rate of 80 MHz and an average power of 2 pW was employed, and the collected PL was detected by the time-correlated single-photon counting method with a Picoharp 300.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

41. Brown, L. et al. Twinning and twisting of tri- and bilayer graphene. *Nan Lett.* 12, 1609–1615 (2012).
42. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* 54, 11169 (1996).
43. Bronsma, K. D., De Boer, J. L. & Jellinek, F. On the structure of molybdenum diselenide and disulfide. *Z. Anorg. Allg. Chem.* 540, 15–17 (1986).

Acknowledgements

We thank B. Urbaszek for helpful discussions. We acknowledge support from the DoD Vannevar Bush Faculty Fellowship (N00014-16-1-2825 for H.P., N00014-18-1-2877 for P.K.), NSF (PHY-1506284 for H.P. and M.D.L.), NSF CUA (PHY-1125846 for H.P. and M.D.L.), AFOSR MURI (FA9550-17-1-0002), ARL (W911NF1520067 for H.P. and M.D.L.), the Gordon and Betty Moore Foundation (GBMF4543 for P.K.), ONR MURI (N00014-15-1-2761 for P.K.), and Samsung Electronics (for P.K. and H.P.). V.I.F. acknowledges EPSRC grants no. EP/S019367/1, EP/S003719/1, EP/N010345/1, ERC Synergy Grant Hetero2D, Lloyd's Register Foundation Nanotechnology Grant, European Graphene Flagship Project and European Quantum Technologies Project 2D-SIPC. The device fabrication was carried out at the Harvard Center for Nanoscale Systems. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and the CREST (JPMJCR15F3), JST. D.B. acknowledges support from the Summer Undergraduate Research Fellowship at Caltech.

Author contributions

H.P., P.K., I.S., Y.Z., G.S., H.Y. and D.S.W. conceived the study, and I.S., Y.Z., G.S., T.I.A, M.D.L., P.K., V.I.F. and H.P. wrote the manuscript. H.P., A.Y.J., R.J.G., D.B. and A.M.M.V. fabricated the devices and performed the optical spectroscopy. H.P. V.I.F, J.S., Y.Z., G.S., V.Z., T.I.A. and D.S.W. analysed the data. V.I.F., V.Z. and S.J.M. performed the DFT calculations. H.Y. performed electron microscopy measurements. H.H. performed MoSe₂ crystal growth. T.T. and K.W. performed h-BN crystal growth. J.S., Y.Z., G.S., T.I.A, M.D.L., P.K., V.I.F and H.P. wrote the manuscript with extensive input from all authors. H.P., V.I.F., P.K. and M.D.L. supervised the project.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41565-020-0728-z.
Correspondence and requests for materials should be addressed to V.I.F. or H.P.
Reprints and permissions information is available at www.nature.com/reprints.