Article

Decision-Making Method for Estimating Malware Risk Index

Dohoon Kim *

Department of Computer Science, Kyonggi University, Kyonggido 16227, Korea; karmy01@kgu.ac.kr; Tel.: +82-31-249-1364

Received: 15 October 2019; Accepted: 15 November 2019; Published: 17 November 2019

Abstract: Most recent cyberattacks have employed new and diverse malware. Various static and dynamic analysis methods are being introduced to detect and defend against these attacks. The malware that is detected by these methods includes advanced present threat (APT) attacks, which allow additional intervention by attackers. Such malware presents a variety of threats (DNS, C&C, Malicious IP, etc.) This threat information used to defend against variants of malicious attacks. However, the intelligence that is detected in this manner is used in the blocking policies of information-security systems. Consequently, it is difficult for staff who perform Computer Emergence Response Team security control to determine the extent to which cyberattacks such as malware are a potential threat. Additionally, it is difficult to use this intelligence to establish long-term defense strategies for specific APT attacks or implement intelligent internal security systems. Therefore, a decision-making model that identifies threat sources and malicious activities (MAs) that occur during the static and dynamic analysis of various types of collected malware and performs machine learning based on a quantitative analysis of these threat sources and activities is proposed herein. This model estimates malware risk indices (MRIs) in detail using an analytic hierarchy process to analyze malware and the probabilities of MAs. The analysis results were significant, as the consistency index of the estimated MRI values for 51300 types of malware, which were collected during a specific control period, was maintained at <0.051.

Keywords: malware; risk analysis; APT; risk index; second-order Markov process; MRI; CI

1. Introduction

Currently, cyberattacks are becoming more diverse, sophisticated, targeted, and specialized. Such advanced persistent threats (APTs) [1–3] require detailed defense strategies. Research and development projects are being conducted on various information-security solutions to respond to these threats. However, various types of malware, which are cyberattack tools [4], continue to be used, and new types of improved attacks are occurring. Hence, cybersecurity controllers and information-security solution operators that actively respond to these intelligent cyberattacks attempt to analyze large numbers of security events daily, establish appropriate plans for managing them, and make various decisions.

This requires analysis of various attack scenarios, mainly owing to the characteristics of the time-interval attack [5–7]. Extensive damage can occur when no patterns or rules exist for new and variant cyberattacks. Therefore, advanced threat protection is needed to counter APT attacks [8]. In addition to the various security threat signatures that are collected on/offline, it is necessary to perform continuous cyberthreat intelligence analyses [9,10] on cyberattacks experienced by one’s own organization. This is because attacks that are specialized and customized for a specific organization cause a far higher degree of damage than indiscriminate cyberattacks. Therefore, an organization’s cybersecurity controllers and information-security solution operators must maintain active analyses and response measures, as well as a continuous detection system, for the various security events that
are detected by the defense system. In the case of recent malware cyberattacks, when an attack has been successful and multichannel communications are maintained with various command and control servers [11,12] and malicious websites (e.g., distribution, landing, and exploit sites) that are operated by the attacker (hacker), secondary and tertiary cyberattacks are prepared and attempted [13]. However, the usual Computer Emergence Response Team (CERT) places a high priority on updating its information-protection solution patterns to immediately eliminate malicious codes that are detected. This makes it difficult for an attacker to collect information from the target over a long period of time and conduct a related analysis regarding additional cyberattacks. Thus, if the activities of malicious codes are analyzed in detail, existing and potential threats can be considered simultaneously. This is because if the type of malware detected during static/dynamic analysis of malicious code is reclassified, and the malicious activities (MAs) [14] involved are identified and quantified, the purpose, means, and strategy of an attacker attacking his/her organization can be inferred. This is a critical process for improving the organization’s information protection system and establishing an intelligent cyber defense strategy.

During the initial analysis, the types of malware are classified. The threat sources (MAs) that occur for each type of malware were identified in this study to determine the number of different cyberattack cases and create a combination of strategies for possible attacks. Additionally, an intelligent decision-making model that uses a quantitative numerical analysis of malicious malware activities, i.e., an analytic hierarchy process [15,16], is proposed herein for calculating risk indices. In this paper, we denote the risk index of such calculated malicious code as the malware risk index (MRI). This MRI is a new reference value for defining the threat level of malicious code by classifying actual MAs according to the malware type and quantitatively analyzing them. In addition to the simple identification of malicious codes and the updating of blocking rules, CERT controllers will be able to identify the baseline for analyzing malicious codes, their MAs, and the associated organizational vulnerabilities. Ultimately, this approach will facilitate effective decision-making by presenting a malware response priority support system for large-scale cybersecurity control.

The remainder of this paper is organized as follows. Section 2 presents related studies regarding methods for static and dynamic analyses of malware and describes their differences from the proposed method. Section 3 introduces the decision-making method for estimating the MRRs proposed herein, as well as the risk-index estimation process for MAs that occur according to the malware type. In Section 4, a test environment created to analyze various malware samples in a virtual environment is described, and risk indices are estimated for each malware type to test and verify the proposed model. Section 5 presents the conclusions and suggests areas for future research.

2. Related Studies

The proposed model estimates risk indices according to various existing malware detection methodologies and criteria. Therefore, existing malware detection methodologies must be examined, as quantitative risk indices of analytic hierarchy processes are calculated by performing machine learning on the malware and considering related MAs that are collected by the malware detection engines, which are part of various information-security systems [17,18] implemented by companies. In particular, methods for analyzing application programming interface (API) calls to classify malware and their related property information are investigated in this study.

In [19–21], API lists were extracted from the malware execution file’s portable executable (PE) form. In these studies, a quantitative method based on simple statistical analysis was used, and the frequency of the API calls was determined. This frequency was used as a function for classifying malicious programs. Paruki et al. [22] proposed an activity method that analyzes API text strings created by Windows’ PE file and produces an abstraction of the binary. This method uses an API call program to capture snapshots of known malicious programs and activity information regarding the momentary execution of temporary files. In [23–25], MAs of malware that was executed in a virtual-machine environment were observed. Machine learning was performed on the activity patterns in sequential API call information and used for detections and analyses. Wang et al. [26] proposed a malware detection approach that systematically analyzes the typical characteristics of API call
sequences that are related to dubious activities in the Windows operating system. Ravi et al. [27] proposed a method that uses Windows API call sequences to detect malware. This method uses k-grams to model API calls, and it applies repeated machine-learning processes that are combined with the runtime monitoring of program execution activities. Alazab et al. [28] proposed an approach that detects obfuscated malware by analyzing the structural characteristics and major actions of API calls. This method uses the n-gram statistical analysis of binary content to identify malicious actions. Elhadi et al. [29] proposed an approach that uses API call graphs to detect malware. In this approach, malware samples are represented as data-dependence API call graphs. Subsequently, a graph-matching algorithm based on the longest common subsequence algorithm is used to calculate the similarity between the input samples and the malware API call graphs. D. Hermanowski [30] produced attack graphs related to the critical assets of the monitored IT system and created conditional probability models for the attack process. This allowed for us to perform a vulnerability analysis of key assets. However, the main reasons for the decision and action of the main attack path were human factors, not malicious codes. Thus, the degree of risk depends on the attacker with various types of attack strategies. The model proposed herein can extract potentially high-risk malicious codes by learning machines according to their MA. This can provide important information for establishing an intelligent defense system centered on malicious codes. M. Szpyrka [31] modeled the propagation patterns of threats using Petri Nets. This provided a basis for inferring various vulnerable paths depending on the type of threat. Of course, if MAs involving spreading malware are performed, this type of research can be referenced. However, the method proposed herein is not limited to specific activities (distribution), and the MRI is calculated as a quantitative indicator of malicious codes by analyzing 10 types of malwares and 12 different types of MAs. This allows for quantitative analysis of fundamental attack tools to model scenario-based cyberattacks and enable vulnerability analysis. G. Stanescu [32] proposed a model that assesses the risk of malware based on Android. Features were extracted to create a risk model. Indicators of various risks were defined, mainly regarding factors and policies related to the acquisition of rights of terminals. In particular, MAs of malicious apps were analyzed and normalized. However, the study focused primarily on the issue of obtaining rights that are directly related to security. The method proposed herein can identify a variety of threats, including applicable actions, and learn their relative importance to produce an optimal threat. B. Jasiul’s study [33] proposed a Petri Nets-based detection model that supports dynamic analysis of malicious code. Using this model, the MAs of obfuscated malware can be extracted, and attack modeling can be implemented. However, in contrast to our method, it is difficult to estimate the magnitude of the risk of the malicious code, because it is not accompanied by quantitative semantics and analysis of such MAs. B. Ndibanje [34] proposed a method for analyzing and detecting the API call sequence for MAs through obfuscation analysis and unpacking of malicious code. However, in contrast to the present study, that study mainly focused on ways to improve the detection accuracy; i.e., a potential risk analysis for various new strains of malicious code was not performed. Massimo Fico [35] presented a learning model for determining MAs using a large amount of Android Application Package (APK) malware. In contrast, in the present study, the various malicious API calls of most malicious codes were modeled. Thus, APT analysis was possible, because the risk of malware was determined through various computational processes (e.g., relative importance of malicious codes/relative importance of MAs/learning processes for MAs of malware).

Various activity analysis methods have been investigated for detecting and classifying malware. However, most are limited to detection methods, and research regarding all potential threats, including malware, has not been conducted. Therefore, in this study, various types of activity information were measured according to the MA of malware, and machine learning was performed in an analytic hierarchy to estimate the final MRI. This type of risk index is used as a basis for decision making regarding malware in the information-security system operations of CERT security controllers.
3. Proposed Model

3.1. Quantitative Hierarchy Analysis of Malware and Its MAs

To estimate the MRI, the malware analysis stages are divided according to the hierarchy of the components (analysis results). Each of the components are placed in the hierarchy structure according to their importance and interrelationships, and the process for obtaining the final risk index is defined. The hierarchical-analysis decision-making method is used to calculate the risk index of each piece of malware for solving the following problems.

- Problems involving misuse of evaluation values and obtaining weights for each malware type;
- Problems involving integration of different criteria for Mas;
- Problems involving integration of quantitative and qualitative elements of Mas;
- Limitations in MA recognition capacity and information processing capacity;
- Difficulties in group decision making regarding risk indices for various malware.

Hence, an analytic hierarchy structure for estimating MRIs is required, as shown in Figure 1.

![Analytic hierarchy process structure for estimating the malware risk index (MRI).](image)

The hierarchy for estimating MRIs is shown in Figure 1. The malware types are classified in Layer 1, and the signatures of MAs for each malware are classified in Layer II. In Layer III, the final MRI (threat levels of risk) of each malware is distinguished, and the final MRI is estimated through a quantification process. Next, the stages of the quantitative process for MRI estimation are described.

3.1.1. Definition of Pairwise Comparison <Stage 1>

To estimate the MRI, mutually related decision-making items (importance of malware/relative importance of the MAs of a specific malware) are classified hierarchically, and the analytic decision hierarchy is divided. The decision hierarchy is composed of the various elements that affect the MRI estimation. The Cuckoo Sandbox open-source software was used in this study to classify 51300 malwares into 10 malware categories (MCs) (Ransomware, Worm, Downloader, Botnet, Rootkit, Exploit, Launcher, Dropper, Backdoor, and Scareware) and create a pairwise comparison matrix, as shown in Table 1.
Table 1. Malware categories (MCs).

Index Code	Category	Index Code	Category
MC₁	Ransomware	MC₆	Exploit
MC₂	Worm	MC₇	Launcher
MC₃	Downloader	MC₈	Dropper
MC₄	Botnet	MC₉	Backdoor
MC₅	Rootkit	MC₁₀	Scareware

Additionally, 12 types of related MAs (Boot Attack, Info-Stealer, Backdoor, Data Falsification, Social Attacking, Malware Bypass, Hooking, Encryption/Obfuscation, System Summary, Propagation, System Falsification, Banking Attack, Abnormal Networking, and Anti-Debugging) are classified for each malware, such that a hierarchy structure can be applied to the various evaluation items that must be considered to estimate the MRI, as shown in Table 2.

Table 2. Malicious activities (MAs)

Index Code	Category	Index Code	Category
MA₁	Banking Attack	MA₇	Propagation
MA₂	Abnormal Networking	MA₈	Hooking
MA₃	Anti-Debugging	MA₉	Boot Attack
MA₄	Info-Stealer	MA₁₀	System Summary
MA₅	System Falsification	MA₁₁	Data Falsification
MA₆	Social Attacking	MA₁₂	Bypass

Thus, properties are extracted according to the malware type. In this study, MA identification criteria extracted from the Cuckoo Sandbox [36] program were used. Notably, the approach employed in this study is used in any static/dynamic analysis tools [17,18] other than the Cuckoo Sandbox, as well as commercial information-security solutions, if identification criteria are established.

3.1.2. Creating and Learning Pairwise Comparison Matrix <Stage 2>

In Stage 2, a pairwise comparison of each layer created in Stage 1 and a pairwise comparison between layers are performed; additionally, a matrix is created. At this time, the analysis result of a malicious API call of the malicious code is defined by dividing it into 12 categories in the Cuckoo Sandbox, which is a dynamic analysis tool. The results of an analysis of the activities of malicious codes in the Cuckoo Sandbox create the parameter values required for analysis. For example, if a dropper is generated in the analysis results, the index code is considered to be a backdoor action with MA₃ (Table 2), and it is used as a parameter value for a pairwise matrix. Thus, the API frequency, malicious code called, and activity analysis determine the relative importance between MAs. Additionally, through pairwise comparison, importance is assigned on a nine-point scale [15,16] to indicate the degree to which an item contributes to the top elements. If the layer immediately below comprises <i>n</i> elements, <i>n(n−1)/2</i> comparisons are required. Next, a matrix is created from the pairwise comparisons of 51300 malwares according to their importance or the quantitative threat index of the malware that was identified in the primary analysis using the Cuckoo Sandbox. Here, the importance value is set by using the quantitative threat indices that are created in open-source analysis tools other than the Cuckoo Sandbox, including commercial products.
Next, a matrix is created from pairwise comparisons between MA\textsubscript{s} that occur within a certain malware.

\begin{equation}
\text{MA of } M_{\text{C}} = \begin{bmatrix}
M_{\text{A}1} & M_{\text{A}2} & M_{\text{A}3} & M_{\text{A}4} & \ldots & M_{\text{A}12} \\
1 & a_{12} & a_{13} & a_{14} & \ldots & a_{112} \\
A_{2} & a_{21} = 1/a_{2,1} & 1 & a_{24} & \ldots & a_{212} \\
A_{3} & a_{31} = 1/a_{3,1} & a_{32} = 1/a_{3,2} & 1 & a_{34} & \ldots & a_{312} \\
A_{4} & a_{41} = 1/a_{4,1} & a_{42} = 1/a_{4,2} & a_{43} = 1/a_{4,3} & 1 & \ldots & a_{412} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
A_{12} & a_{12,1} = 1/a_{12,1} & a_{12,2} = 1/a_{12,2} & a_{12,3} = 1/a_{12,3} & a_{12,4} = 1/a_{12,4} & \ldots & 1
\end{bmatrix}
\end{equation}

For comparison, a basic pairwise comparison matrix between MA\textsubscript{s} is created for the case where 12 major MA\textsubscript{s} occur in each malware. The probability between these malicious activities is an important factor that determines the malware’s degree of risk. Therefore, $2^n (n < 10)$ repeated experiments were conducted on the 51,300 malwares, and machine learning was performed under the Markov chain assumption [37]. This was done to create a more objective and quantified basis of judgment for the risk indices created by the malware analysis tools. The pairwise comparison matrix created in Stage 2 was recreated as a transition matrix through the Markov chain assumption. Here, it is necessary to remove the assumption that the dataset that creates the transition matrix is independent and identically distributed (i.i.d). Thus, the sequential process that results in the MA\textsubscript{s} for each malware is assumed to exhibit an intuitive cause-and-effect relationship.

Therefore, even when new and variant malware are considered, the i.i.d. assumption must be removed. Hence, the probability product rule is used to express the combination distribution of the sequential observed values in the form of the following Markov model (3), without a loss of generality.

\begin{equation}
p(x_1, K K K, x_n) = p(x_1) \prod_{n=2}^{N} p(x_n | x_1, K K K, x_{n-1})
\end{equation}

As shown in Equation (1), the Markov model considers the dependence of future observation values on previous observation values. As such, the number of observation values and the model complexity increase, which is disadvantageous. However, in this study, repeated experiments indicated that the complexity did not increase significantly even though new and variant activities were considered in the sequential process between the MA\textsubscript{s} of the observed malware. Therefore, the Markov model was used to create a transition matrix that was then recreated as a pairwise comparison matrix. Rather than a first-order Markov chain process, an n-order Markov chain process was considered. The transition matrix was recreated as a second-order Markov chain process, as follows:

\begin{equation}
p(x_1, K K K, x_n) = p(x_1) p(x_2 | x_1) \prod_{n=3}^{N} p(x_n | x_{n-1}, K K K, x_{n-2})
\end{equation}

A first-order Markov process is typically more general than an independent model but is still fairly limited. In the case of many sequential observation values, it is believed that the trends in several rounds of continuous observation values provide important information for predicting the next value. One method for eliciting effects from the previous observation values is to use a higher-
order Markov process. If predictions are made depending on observation values from two previous stages, as shown in Figure 2, they are analyzed as second-order Markov processes [37]. Therefore, in this model, the conditional distribution of a certain observation value \(x_n \) is dependent on the two previous observation values \(x_{n-1} \) and \(x_{n-2} \).

![Figure 2. Second-order Markov chain.](image)

In this study, 10 rounds of repeated experiments were performed on the malware and its MAs. The results indicated that for orders of \(\geq 2 \), the second-order joint probability values converged similarly without change to an average value of 93.7%. Therefore, for an optimum performance, an algorithm based on the second-order Markov assumption was implemented in this study. Hence, a matrix (MC) of pairwise comparisons between 10 malware types was created, as shown in Table 1, as well as a matrix (MA) of pairwise comparisons of 12 types of malware MAs, as shown in Table 2.

Training was performed with the secondary Markov chain that was executed for repeated rounds using Equation (4). The optimal pairwise transition training matrices \(T_{MC} \) and \(T_{MA} \) of MC were created as follows:

\[
T_{MC} = \begin{bmatrix}
1 & mc_{1,2} & mc_{1,3} & mc_{1,4} & \ldots & mc_{1,10} \\
mc_{2,1} & 1 & mc_{2,3} & mc_{2,4} & \ldots & mc_{2,10} \\
mc_{3,1} & mc_{3,2} & 1 & mc_{3,4} & \ldots & mc_{3,10} \\
mc_{4,1} & mc_{4,2} & mc_{4,3} & 1 & \ldots & mc_{4,10} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
mc_{10,1} & mc_{10,2} & mc_{10,3} & mc_{10,4} & \ldots & 1
\end{bmatrix}
\tag{5}
\]

\[
T_{MA} \text{ of } MC = \begin{bmatrix}
1 & ma_{1,2} & ma_{1,3} & ma_{1,4} & \ldots & ma_{1,12} \\
ma_{2,1} & 1 & ma_{2,3} & ma_{2,4} & \ldots & ma_{2,12} \\
ma_{3,1} & ma_{3,2} & 1 & ma_{3,4} & \ldots & ma_{3,12} \\
ma_{4,1} & ma_{4,2} & ma_{4,3} & 1 & \ldots & ma_{4,12} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
ma_{12,1} & ma_{12,2} & ma_{12,3} & ma_{12,4} & \ldots & 1
\end{bmatrix}
\tag{6}
\]

3.1.3. Vector of Criteria Weights and Validity Evaluation (Stage 3)

In Stage 3, the eigenvalue method was used to estimate the relative weights of decision-making elements. The relative importance of \(n \) elements that were comparison targets in one layer was used as the weight vector \(w_i \) (\(i = 1, \ldots, n \)) and the \(w_i/w_j \) (\(i, j = 1, K, n \)) of the aforementioned pairwise comparison matrix \(mc_{ij} \) was estimated. Therefore, the following equation was established between \(a_{ij} \) and \(w_i \). The weights for \(ma_{ij} \) were calculated in the same manner.

\[
mc_{ij} = \frac{w_i}{w_j} \quad (i, j = 1, K, n)
\tag{7}
\]
Here, if all elements in the matrix are shown, the equation is as follows.

$$\sum_{j}^{n} m_{ij} \cdot w_j / w_i = n \rightarrow \sum_{j}^{n} m_{ij} \cdot w_j = n \cdot w_i \quad (i, j = 1, K, n) \quad (8)$$

In Equation (9), when the matrix MC that comprises the elements m_{ij} is expressed as an eigenvalue problem, i.e.,

$$MC = \begin{bmatrix} w_1 / w_i & L & w_1 / w_n \\ w_2 / w_1 & M & O & M \\ w_n / w_i & L & w_n / w_n \end{bmatrix}$$

the eigenvalue method is used to obtain w via $MC \cdot w = n \cdot w$ (w = [w_1, w_2, K K K, w_n]^T): matrix MC’s right eigenvector, n: matrix MC's eigenvalue, $\lambda_{\text{max}} > n$). The same applies for the matrix MA.

This is re-expressed as $MC \cdot w = \lambda_{\text{max}} \cdot w$, and it is established for w as follows:

$$(MC - \lambda I) \cdot w = 0, \quad (0 \text{ is the } (n \times 1) \text{ column vector}) \quad (10)$$

Above Equation (10) is for n systems of linear equations. To obtain a nontrivial solution for w, the $|MC - \lambda I| = 0$ equation must be established. m_{ij}, i.e., the relative importance of element i with regard to element j, which is the pairwise comparison target, is defined as $m_{ij} = (1 + \delta_{ij}) \cdot w_i / w_j$. The difference between λ_{max}, i.e., the maximum eigenvalue discovered in the observed pairwise comparison matrix, and n, i.e., the maximum eigenvalue of the pairwise comparison matrix that exhibits complete consistency, is expressed as follows.

$$\lambda_{\text{max}} - n = \frac{1}{n} \sum_{j \neq i} \frac{\delta_{ij}^2}{1 + \delta_{ij}} \geq 0 \quad (11)$$

When the estimated value m_{ij} of the equation above matches w_i / w_j exactly, $\delta_{ij} = 0$ and $\lambda_{\text{max}} - n = 0$ are established. Therefore, it is assumed that consistent decisions are made when the λ_{max} of the pairwise comparison matrix of certain evaluation results approaches n. Hence, the consistency index (CI) of the response is defined as follows:

$$CI = \frac{\lambda_{\text{max}} - n}{n - 1} \quad (12)$$

Here, consistency is verified using the consistency ratio, which is the CI divided by the average random index. If the hypothesis regarding CI and the test statistics are below 0.1, the training is considered as well-performed, because consistency is maintained.

3.2. Threat Level of MRI

To estimate the ultimate risk index of malware, it can be expressed as a threat level that reflects the training results and the relative-importance results (weight value) between MCs. This is a value that is expressed relatively considering certain observation, detection, and analysis periods. It provides the ultimate priority order results within these periods. This result value is actively used in intelligent responses during cybersecurity control. Furthermore, it is used as intelligence information in information-security solutions (UTM, Anti-Virus, APT, etc.) The ultimate training transition matrices of the MAs (MA_n) that are learned according to the weight values of each malware (MC_n) collected during a certain period are defined as follows.
As shown in Table 3, the adaptive training transition matrices are created according to the length of time, because focused training is performed on the feature values (MAs) of each malware collected during a certain time period. Typically, a significant change is not observed, but the values of the matrices change sufficiently according to the malware’s new/variant trends. Therefore, active training transition matrices are created according to domestic and international cyberattack trends.

| Table 3. MA training transition matrices and weight values for each malware. |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| MA1 | MA2 | ... | MA14 | Weight Value |
| MC1 | $T_{MA_1 \text{ of } MC_1}$ | $T_{MA_2 \text{ of } MC_1}$ | ... | $T_{MA_4 \text{ of } MC_1}$ | Norm.Aver. of T_{MC_1} |
| MC2 | $T_{MA_2 \text{ of } MC_2}$ | $T_{MA_2 \text{ of } MC_2}$ | ... | $T_{MA_4 \text{ of } MC_2}$ | Norm.Aver. of T_{MC_2} |
| MC3 | $T_{MA_3 \text{ of } MC_3}$ | $T_{MA_3 \text{ of } MC_3}$ | ... | $T_{MA_4 \text{ of } MC_3}$ | Norm.Aver. of T_{MC_3} |
| ... | ... | ... | ... | ... | ... |
| MC10 | $T_{MA_4 \text{ of } MC_{10}}$ | $T_{MA_4 \text{ of } MC_{10}}$ | ... | $T_{MA_4 \text{ of } MC_{10}}$ | Norm.Aver. of $T_{MC_{10}}$ |

Finally, Table 3 is used to calculate the MRI of each malware that will be detected in the future, which is expressed as follows:

$$MRI = \text{Norm. Aver. of } T_{MC_i} \times \sum_{i=1}^{n} \text{MA}_i$$ \hspace{1cm} (13)

In future studies, various adaptive correlation matrices will be created and compared according to long-term observation and training results.

4. Experimental Results

4.1. Creating Experimental Environment

To test and verify the proposed model, a static/dynamic analysis was performed using the Cuckoo Sandbox open-source software. The sandbox environment was created as a VirtualBox [38], which is a type of virtual machine. Files were executed in a virtual-machine environment that was separated using this approach, and the resulting activities were observed to collect concrete information. Because the malware must operate correctly to perform an effective analysis, the operating system’s firewall, update environment, and user account control were disabled. The Cuckoo Sandbox was implemented in a basic virtual environment, and the malware files were analyzed. Reports in JSON format that were generated after the analysis contained features that were obtained through the static/dynamic analysis, including the process memory, network, API call sequence, and signature. The sequence data for the various features that were collected in this study were learned as a second-order Markov chain using TensorFlow [39].

4.2. Final MRI

The results generated via this training included the MC pairwise transition training matrix T_{MC}, malware MA pairwise transition training matrix $T_{MA \text{ of } MC_i}$, and final risk index MRI calculated from the first two parameters thereof. First, to create T_{MC}, the 51,300 malware that were used in the analysis were uploaded to VirusTotal [40] and classified into eight basic categories (Ransomware, Worm, Phishing, Banker, Troy/Bot, Ad/Spyware, Packer, and Launcher). A first-order repeated analysis was performed to investigate the relative importance of the malware for each MA, centering on various vaccine engines.

Consequently, the following MC pairwise transitional training matrix T_{MC} was created, as indicated by Equation (14). For comprehensive training, this was repeated $2^n (n < 10)$ times.
The sequence data of the 12 features that were collected during the previous process of malware analysis were combined to create a malware pairwise transition training matrix T_{MA} for machine learning, as indicated by Equation (15). This was repeated $2^n (n < 10)$ times for comprehensive training.

$$T_{MA} = \begin{bmatrix}
1.00 & 2.89 & 2.09 & 4.89 & 6.92 & 3.13 & 1.92 & 0.49 & 0.23 & 4.98 & 4.91 & 0.97 \\
0.35 & 1.00 & 1.12 & 3.17 & 5.11 & 2.08 & 1.12 & 0.38 & 0.28 & 3.71 & 3.98 & 1.04 \\
0.48 & 0.89 & 1.00 & 1.89 & 4.94 & 2.04 & 0.89 & 0.52 & 0.27 & 7.04 & 4.91 & 0.47 \\
0.20 & 0.32 & 0.53 & 1.00 & 3.81 & 1.93 & 1.03 & 0.34 & 0.18 & 2.98 & 3.12 & 0.52 \\
0.14 & 0.20 & 0.26 & 1.00 & 0.31 & 0.18 & 0.14 & 0.13 & 1.12 & 1.04 & 0.23 \\
0.32 & 0.48 & 0.49 & 0.52 & 3.23 & 1.00 & 0.48 & 0.18 & 0.12 & 3.04 & 2.97 & 0.35 \\
0.52 & 0.89 & 1.12 & 0.97 & 5.56 & 2.08 & 1.00 & 0.36 & 0.19 & 4.89 & 4.97 & 0.34 \\
2.04 & 2.63 & 1.92 & 2.94 & 7.14 & 5.56 & 2.78 & 1.00 & 0.31 & 8.98 & 8.76 & 4.89 \\
4.35 & 3.57 & 3.70 & 5.56 & 7.69 & 8.33 & 5.26 & 3.23 & 1.00 & 9.02 & 9.12 & 5.12 \\
0.20 & 0.27 & 0.14 & 0.34 & 0.89 & 0.33 & 0.20 & 0.11 & 0.11 & 1.00 & 1.12 & 0.23 \\
0.20 & 0.25 & 0.20 & 0.32 & 0.96 & 0.34 & 0.20 & 0.11 & 0.11 & 0.89 & 1.00 & 0.29 \\
1.03 & 0.96 & 2.13 & 1.92 & 4.35 & 2.86 & 2.94 & 0.20 & 0.20 & 4.35 & 3.45 & 1.00
\end{bmatrix}$$

T_{MA} of MC_2 was created by re-establishing and expressing T_{MA} with regard to the MAs caused by a certain malware. This is regarded as disproving the fact that the magnitude of the malware’s risk index is determined by the MA according to the malware type. Therefore, the size of the T_{MA} of MC_2 matrix can be readjusted flexibly even when future operators identify various types of malware and MAs other than the 10 malware types and 12 MAs specified herein.

This provides a more quantitative and objective basis for calculating the risk indices of new/variant malware, and it also provides a foundation for using next-generation security systems such as intelligent security control [21] in the future. A typical example of obtaining an MA pairwise transition-training matrix for ransomware is as follows:
Next, the values in the created matrix add to calculate the importance of each category, i.e., their weight values, and calculate a CI for analyzing the reliability of the overall training results based on the weight values. To calculate the weight values, the comparison values in the pairwise transition matrix are arranged as a square matrix, which is then used to calculate the weight values of each problem. The results indicate that the CI of the previous generated pairwise transition-training matrix of Ransomware MA MC T is 0.0854; thus, it is considered to be well-trained.

If the CI is <0.1, the analysis is considered significant. Therefore, the training results ensure that the CI is <0.1. The same method is used to generate MA pairwise transition training matrices for the other malware types (Worm, Downloader, Botnet, Rootkit, Exploit, Launcher, Dropper, Backdoor, and Scareware). Finally, to determine the ultimate MRIs, the normal method for calculating MRIs, i.e., the existing risk index calculation method that counts the API calls, was compared with the proposed method, as shown in Table 4.

An analysis of Table 4 was performed using the 51300 malicious codes. Hence, the remaining malicious codes were analyzed in the same manner. For the proposed method, the final MRI was calculated according to the training results regarding the relative importance between malware and the malicious activities that occur in a certain malware. It was discovered that the MRI and its risk level changed significantly. Figure 3 shows the overall range of variation (average of 45.3%) between the initial risk index and the final MRI value of the malware collected during a specific time window. The first-order identified MRI values exhibited a simple form.

Table 4. Malware’s initial risk and MRI value that considers the MA. (MRI with weight).

Filename	MD5	Malware for Malicious Activities	Malware	Malware for Malicious Activities			
dc_14ata.exe	04555555097d	14.9%	30	2.40	14.3%	56	2.31
#U7eU7e.wsf	06c******379a	54.5%	10	3.19	64.3%	6	3.77
dc_1putty.exe	08******86ff	49.2%	13	2.18	29.3%	20	1.30
0be89e.exe	0be******e	8.1%	58	1.10	14.7%	55	2.01
dc_1[1].exe	12eeefa******bf	14.9%	30	2.06	12.2%	63	1.69
dc_1.exe	15e6******d9	14.9%	30	2.23	13.3%	59	1.99
U8.exe	246a******202	58.2%	6	3.71	53.9%	13	3.43
2c187.exe	2c18******d67	6.3%	62	1.37	18.3%	33	3.99
2fa508.exe	2fa******508	10.7%	50	2.70	36.2%	16	9.10
When the proposed method is used to consider the features of each malware or the relationships between malware, between MA*s, and between the MA*s of each malware, a detailed MRI with a clear basis is estimated. However, if the malicious code used in Table 4 is analyzed again, the value of the MRI for the malicious code is calculated as shown in Figure 3.

These analysis results provide a basic decision-making foundation that allows CERT security controllers to determine the priority of malware, which must be countered pre-emptively by performing a continuous detailed intelligence analysis of malware that is collected during operations, while simultaneously preparing active cyber responses by reviewing the MA*s of high-priority malware. Additionally, these results allow organizations to detect security vulnerabilities and prepare for specialized cyberattacks by identifying cyberthreats exploiting these vulnerabilities.

5. Threats to Validity

The following threats to validity are identified.

- In this study, the analysis results were focused on malware collected during an APT attack process that was targeted at a specific organization. The MRI calculated in this study changed significantly according to the organization’s network structure, information-security system organization, and various settings related to security systems.
- Our approaches are used as a quantitative basis for establishing intelligent defense strategies for cyberattacks that are limited to specific organizations. However, limitations exist when this study’s training data and training results are directly applied to specific organizations. This is because each organization’s security system environment is different, and each solution’s
criteria for detecting malware and identifying malicious activities are different. Therefore, when
the proposed method is used, the degree to which it will be restructured must be considered.
- The MRI estimation method, which is specialized for analysis of target organizations, is
considered extremely important for intelligent threat responses to APT attacks.

6. Conclusions

A method that quantitatively analyzes various new and variant malware collected by specific
organizations to objectively estimate the malware’s degree of risk was proposed herein. To calculate
the risk index, an analytic hierarchy process was used. A second-order Markov chain was used to
perform machine learning on the generated pairwise comparison matrix, and a pairwise transition
matrix was created. The pairwise transition matrix was used as a training table for the MAs of the
malware. In this method, the types of malware collected over time are analyzed, and detailed MRI
values are generated as continuous training is performed. Importantly, the risks of malware are
difficult to determine in causing various strains. Therefore, the MRI calculation method for malicious
code with the learning structure presented in this paper provides justification for CERT practitioners
to continue the analysis. In particular, the MAs of malicious codes were analyzed quantitatively. The
CI for reliability remained below 0.1 (average of 0.051), which was very well analyzed. Additionally,
for the proposed approach, an average variation of 45.3% in the MRI values before and after the
application of WEIGHT was observed. This indicates that the MAs of the malicious code decisively
determined the risk of the malicious code. In the future, we will investigate the use of various
machine-learning algorithms and attempt to improve the performance, e.g., the analysis time.
Moreover, this will be consistently well inferred about malware risk value if an initial training matrix
was created based on relative importance of malicious activities, even if any type of malware were
applied. Therefore, we will perform a risk analysis based on new and diverse malware sets such as
anti-VM/script types in the future.

The malware MAs analyzed via the proposed method can be used for various analyses according
to the characteristics of the organization, allowing for active responses to various cyberattacks. This
provides basic quantitative information for creating intelligent defense response systems instead of
using the malware and malware-related intelligence collected by CERT operators to perform simple
blocking. Ultimately, our proposed model provides a basis for intelligent decision-making (e.g., order
of priority and degree of related MA) that systematically responds to cyberthreat attacks that will
occur in the future by quantitatively analyzing the types of malware that are collected by operators
and their MAs.

Author Contributions: Dohoon Kim designed plan of proposed model, the experiments and analyzed malware
data sets. Also, he only wrote the paper.

Acknowledgments: This work was supported by a Kyonggi University Research Grant (2018).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Hu, P.; Li, H.; Fu, H.; Cansever, D.; Mohapatra, P. Dynamic Defense Strategy Against Advanced Persistent
Threat with Insiders. In Proceedings of the IEEE Conference Computer Communications, Hong Kong,
China, 1, May, 2015; pp. 747–755.
2. Chu, W.; Lin, C.; Chang, K. Detection and Classification of Advanced Persistent Threats and Attacks Using
the Support Vector Machine. Appl. Sci. 2019, 9, 4579. doi:10.3390/app9214579.
3. Bodström, T.; Hämäläinen, T. A Novel Deep Learning Stack for APT Detection. Appl. Sci. 2019, 9, 1055.
doi:10.3390/app9061055.
4. Sommestad, T.; Ekstedt, M.; Holm, H. The Cyber Security Modeling Language: A Tool for Assessing the
Vulnerability of Enterprise System Architectures. IEEE Syst. J. 2013, 7, 3.
5. CERT-UK. Common Cyber Attacks: Reducing the Impact. In The Information Security Arm of GCHQ 2014;
CERT-UK: London, UK, 2014.
6. Mutsuo, N.O.G.U.C.H.I.; Hirofumi, U.E.D.A. An Analysis of the Actual Status of Recent Cyberattacks on Critical Infrastructures. *NEC Tech. J. Spec. Issue Cybersec.* **2019**, *12*, 2.

7. Check Point Research. CYBER ATTACK TRENDS ANALYSIS 2019. *Security Report*; CHECK POINT RESEARCH: CA, USA.

8. Cisco White Paper, Combating botnets Using the Cisco ASA Botnet Traffic Filter. Available online: https://www.cisco.com/c/en/us/td/docs/security/security_management/cisco_security_manager/security_manager/4-0/configuration/example/sm400bot.pdf (accessed on 26 July 2015).

9. Burger, E.; Goodman, M.; Kampanakis, P.; Zhu, K. Taxonomy Model for Cyber Threat Intelligence Information Exchange Technologies. In *Proceedings of the 2014 ACM Workshop on Information Sharing & Collaborative Security*, Arizona, USA, 3 Nov, 2014; pp. 51–60.

10. Nunes, E.; Diab, A. Darknet and deepnet mining for proactive cybersecurity threat intelligence. In *Proceedings of the 2016 IEEE Conference on Intelligence and Security Informatics (ISI)*, AZ, USA, 17 November 2016.

11. Chowdary, A.; Tran, A. Botnets Threat Analysis and Detection. In *Information Security Practices*; Springer: NY, USA, 2017.

12. Khan, R.; Zhang, X.; Kumar, R.; Sharif, A.; Golilarz, N.; Alazab, M. An Adaptive Multi-Layer Botnet Detection Technique Using Machine Learning Classifiers. *Appl. Sci.* **2019**, *9*, 2375. doi:10.3390/app9112375.

13. Alshamrani, A.; Myneni, S.; Chowdhary, A.; Huang, D. A Survey on Advanced Persistent Threats: Techniques, Solutions, Challenges, and Research Opportunities. *IEEE Commun. Surv. Tutor.* **2019**, *21*, 1851–1877.

14. Kim, J.; Park, M.; Kim, H.; Cho, S.; Kang, P. Insider Threat Detection Based on User Behavior Modeling and Anomaly Detection Algorithms. *Appl. Sci.* **2019**, *9*, 4018. doi:10.3390/app9194018.

15. Saatyi, T.L. Decision making with the analytic hierarchy process. *Int. J. Ser. Sci.* **2008**, *1*, 1.

16. Phung, X.; Truong, H.; Bui, N. Expert System Based on Integrated Fuzzy AHP for Automatic Cutting Tool Selection. *Appl. Sci.* **2019**, *9*, 4308. doi:10.3390/app9204308.

17. Fireeye, Malware Analysis. Available online: https://www.fireeye.com/solutions/malware-analysis.html (accessed on 1 Nov 2019).

18. Joesandbox, Deep Malware Analysis. Available online: https://www.joesecurity.org/ (accessed on 1 Nov 2019).

19. Sathyanarayan, V.S.; Kohli, P.; Bruhadeshwar, B. Signature generation and detection of malware families. In *Information Security and Privacy*; Springer: Berlin, Germany, 2008.

20. Sami, A.; Yadegari, B.; Rahimi, H.; Peiravian, N.; Hashemi, S.; Hamze, A. Malware detection based on mining API calls. In *Proceedings of the 25th Annual ACM Symposium on Applied Computing (SAC ’10)*, Sierre, Switzerland, 22 March 2010; pp. 1020–1025.

21. Ye, Y.; Wang, D.; Li, T.; Ye, D. IMDS: Intelligent malware detection system. In *Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, California, USA, 12 August 2007; pp. 1043–1047.

22. Faruki, P.; Laxmi, V.; Gaur, M.S.; Vinod, P. Behavioral detection with API call-grams to identify malicious PE files. In *Proceedings of the First International Conference on Security of Internet of Things*, Kollam, India, 17 Aug 2012; pp. 85–91.

23. Shankarapani, M.; Kancherla, K.; Ramamoothy, S.; Movva, R.; Mukkamala, S. Kernel machines formalware classification and similarity analysis. In *Proceedings of the International Joint Conference on Neural Networks (IJCNN ’10)*, Barcelona, Spain, 18 July 2010; pp. 1–6.

24. Ahmed, F.; Hameed, H.; Shafiq, M.Z.; Farooq, A.M. Using spatio-temporal information in API calls with machine learning algorithms for malware detection. In *Proceedings of the 2nd ACM Workshop on Security and Artificial Intelligence*, Illinois, USA, 9 November 2009; pp. 55–62.

25. Qiao, Y.; Yang, Y.; Ji, L.; He, J. Analyzing malware by abstracting the frequent item sets in API call sequences. In *Proceedings of the 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom ’13)*, VIC, Australia, 16 July 2013; pp. 265–270.

26. Wang, C.; Pang, J.; Zhao, R.; Fu, W.; Liu, X. Malware Detection Based on Suspicious Behavior Identification. In *Proceedings of the First International Workshop on Education Technology and Computer Science (ETCS ’09)*, Hubei, China, 7 March 2009; pp. 198–202.

27. Ravi, C.; Manoharan, R. Malware Detection using Windows API Sequence and Machine Learning. *Int. J. Comput. Appl.* **2012**, *43*, 12–16.
28. Alazab, M.; Layton, R.; Venkataraman, S.; Watters, P. Malware Detection Based on Structural and Behavioural Features of API Calls. In Proceedings of the 1st International Cyber Resilience Conference, Perth, WA, USA August 2010.
29. Elhadi, A.M.A.; Maarof, A.E.; Barry, A.B. Improving the Detection of Malware Behaviour Using Simplified Data Dependent API Call Graph. Int. J. Secur. Appl. 2013, 7, 5. doi:10.14257/ijjsia.2013.7.5.03
30. Hermanowski, D.; Piotrowski, R. Proactive Risk Assessment Based on Attack Graphs: An Element of the Risk Management Process on System, Enterprise and National Level. In Proceedings of the 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter, UK, 24 January 2019.
31. Szpyrka, M.; Jasiul, B. Evaluation of Cyber Security and Modelling of Risk Propagation with Petri Nets. Symmetry 2017, 9, 32. doi:10.3390/sym9030032.
32. Stanescu, G. Risk Assessment Model for Mobile Malware. J. Mob. Embed. Distrib. Syst. 2015, 7, 1.
33. Jasiul, B.; Szpyrka, M.; Śliwa, J. Detection and Modeling of Cyber Attacks with Petri Nets. Entropy 2014, 16, 6602–6623. doi:10.3390/e16126602.
34. Ndibanje, B.; Kim, K.; Kang, Y.; Kim, H.; Kim, T.; Lee, H. Cross-Method-Based Analysis and Classification of Malicious Behavior by API Calls Extraction. Appl. Sci. 2019, 9, 239. doi:10.3390/app9020239.
35. Ficco, M. Detecting IoT Malware by Markov Chain Behavioral Models. In Proceedings of the 2019 IEEE International Conference on Cloud Engineering (IC2E), Prague, Czech Republic, 24 June, 2019.
36. Walker, A.; Amjad, M.; Sengupta, S. Cuckoo’s Malware Threat Scoring and Classification: Friend or Foe? In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), NV, USA, 9 January, 2019.
37. Sha, W.; Zhu, Y.; Huang, T.; Qiu, M.; Zhu, Y.; Zhang, Q. A Multi-order Markov Chain Based Scheme for Anomaly Detection. In Proceedings of the 2013 IEEE 37th Annual Computer Software and Applications Conference Workshops, Kyoto, Japan, 23 September 2013.
38. Oracle, V.M. VirtualBox User Manual. Available online: http://virtualbox.org (accessed on 8 October 2019).
39. TensorFlow, API Documentation. Available online: https://www.tensorflow.org/api_docs (accessed on 8 October 2019).
40. VirusTotal, Public API version 2.0. Available online: https://developers.virustotal.com/reference (accessed on 8 October 2019).

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).