A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction

Zhian Liu¹ Yongwei Nie¹* Chengjiang Long² Qing Zhang³ Guiqing Li¹

¹South China University of Technology, ²JD Finance America Corporation, ³Sun Yat-sen University
Video Anomaly Detection

• Motivation
 • Surveillance cameras are widely used.
 • VAD is an essential task to save human labor.
Video Anomaly Detection

• Goal: to identify unexpected behaviours in a video.

Ped2[1] test video #04

Avenue[2] test video #04

[1] http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
[2] http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
Video Anomaly Detection

• Goal: to identify unexpected behaviours in a video.

• Useful but challenging task.
Video Anomaly Detection

• Challenges
 • Anomaly rarely happens.
 • What is anomaly?

• Solution
Related work

• Reconstruction-based method
 • Train AE with L1 or L2 loss.

• Assume the anomalies lead to larger reconstruction errors.
Related work

- Reconstruction-based method
 - Memory-augmented AE to mitigate the "over-generalization" problem.

\[
\hat{z} = w M = \sum_{i=1}^{N} w_i m_i \quad \quad w_i = \frac{\exp(d(z,m_i))}{\sum_{j=1}^{N} \exp(d(z,m_j))}
\]
Related work

- Prediction-based method
 - Take the temporal information into consideration [Liu. et al, 2018].

\[
\mathcal{L} = \| \hat{I}_{t+1} - I_{t+1} \|^2_2
\]

[Future Frame Pred.] W. Liu et.al, CVPR, 2018
Our approach

• Insight
 • Previous work rarely exploits the **consistency between flows and frames**.
 • For an abnormal event, what if we manipulate the flows beforehand, and try to produce a poor prediction?
 • Propose to **reconstruct the flows first**, then using the reconstructed flows as condition to predict future frame.
A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction

HF2-VAD pipeline

Previous t frames

Future frame

Corresponding t optical flows

ML-MemAE-SC

$y_{1:t}$

$y_{1:t}$

$\hat{y}_{1:t}$

F_{ϕ}

D_{ψ}

\hat{x}_{t+1}

E_{θ}

KL Loss

$p(z|\hat{y}_{1:t})$

$q(z|x_{1:t}, \hat{y}_{1:t})$

Features Concat.

Sampling

Memory Module

Weighted Sum

M

C

\sum
ML-MemAE-SC

- Observations
 - Memory only in bottleneck cannot remember all normal patterns.
 - AE with multi-level memories (ML-MemAE) leads to degradation.
 - Skip connection helps.

(a) MemAE (b) ML-MemAE (c) ML-MemAE-SC
ML-MemAE-SC

- Flow reconstruction objective

\[\mathcal{L}_{\text{recon}} = \| y_{1:t} - \hat{y}_{1:t} \|_2^2 \]

\[\mathcal{L}_{\text{ent}} = \sum_{i=1}^{M} \sum_{k=1}^{N} -\hat{w}_{i,k} \log(\hat{w}_{i,k}) \]

\[\mathcal{L}_{\text{ML-MemAE-SC}} = \lambda_{\text{recon}} \mathcal{L}_{\text{recon}} + \lambda_{\text{ent}} \mathcal{L}_{\text{ent}} \]
CVE for prediction

• Formulation

 • Let $x_{1:t}$ and x_{t+1} be the previous and future frame, $y_{1:t}$ be the reconstructed flows, z be the hidden variables that control the content information:

 \[
 \log p(x_{t+1} \mid y_{1:t}) \geq \mathbb{E}_q \log \frac{p(x_{t+1} \mid z, y_{1:t})p(z \mid y_{1:t})}{q(z \mid x_{t+1}, y_{1:t})} \quad \text{(Evidence Lower Bound)}
 \]

 \[
 \approx \mathbb{E}_q \log \frac{p(x_{t+1} \mid z, y_{1:t})p(z \mid y_{1:t})}{q(z \mid x_{1:t}, y_{1:t})} \quad \text{(Short Duration Assumption)}
 \]

 \[
 = -KL[q(z \mid x_{1:t}, y_{1:t})\|p(z \mid y_{1:t})] + \mathbb{E}_q[\log p(x_{t+1} \mid z, y_{1:t})]
 \]

 • Resort the conditional Variational Autoencoder (CVAE).
CVE for prediction

- Frame prediction objective

\[\mathcal{L}_{CVAE} = KL[q(z \mid x_{1:t}, y_{1:t}) \mid p(z \mid y_{1:t})] + \| x_{t+1} - \hat{x}_{t+1} \|_2^2 \]

\[\mathcal{L}_{gd}(X, \hat{X}) = \sum_{i,j} \left| X_{i,j} - X_{i-1,j} - |\hat{X}_{i,j} - \hat{X}_{i-1,j}| \right| \]

\[|X_{i,j} - X_{i,j-1} - |\hat{X}_{i,j} - \hat{X}_{i,j-1}| | \]

\[\mathcal{L} = \lambda_{CVAE} \mathcal{L}_{CVAE} + \lambda_{gd} \mathcal{L}_{gd}(\hat{x}_{t+1}, x_{t+1}) \]
Anomaly detecting

• At test time, the anomaly score is composed of two parts:
 • Reconstruction error $S_r = \| \hat{y}_{1:t} - y_{1:t} \|_2^2$
 • Prediction error $S_p = \| \hat{x}_{t+1} - x_{t+1} \|_2^2$

• Frame-level anomaly score

$$S_{O_i} = w_r \cdot S_r + w_p \cdot S_p \quad S = max\{S_{O_1}, S_{O_2}, \ldots S_{O_N}\}$$
Anomaly detecting

• At test time, the anomaly score is composed of two parts:
 • Reconstruction error $S_r = \| \hat{y}_{1:t} - y_{1:t} \|^2_2$
 • Prediction error $S_p = \| \hat{x}_{t+1} - x_{t+1} \|^2_2$

• Frame-level anomaly score

$$S_{O_i} = w_r \cdot S_r + w_p \cdot S_p$$

$$S = \max\{S_{O_1}, S_{O_2}, \ldots S_{O_N}\}$$
Experimental results

• Datasets

a) UCSD Ped2

b) CUHK Avenue

c) ShanghaiTech

• Quantitative results

Method	UCSD Ped2	CUHK Avenue	SHTech
Conv-AE [11]	90.0	70.2	-
ConvLSTM-AE [32]	88.1	77.0	-
GMFC-VAE [7]	92.2	83.4	-
MemAE [8]	94.1	83.3	71.2
MNAD-R [39]	90.2	82.8	69.8
Frame-Pred. [26]	95.4	85.1	72.8
Conv-VRNN [31]	96.1	85.8	-
MNAD-P [39]	97.0	88.5	70.5
VEC [50]	97.3	90.2	74.8
ST-AE [53]	91.2	80.9	-
AMC [37]	96.2	86.9	-
AnoPCN [49]	96.8	86.2	73.6
HF²-VAD w/o FP	98.8	86.8	73.1
HF²-VAD w/o FR	94.5	90.2	76.0
HF²-VAD	**99.3**	**91.1**	**76.2**
Experimental results

• Qualitative results

(a) Skateboarding and riding bicycle of Ped2.
(b) Kid running of Avenue.
Experimental results

• Visualization

	Normal	Abnormal
GT	![Normal GT Image]	![Abnormal GT Image]
Ours Pred.	![Normal Ours Pred. Image]	![Abnormal Ours Pred. Image]
Ours diff.	![Normal Ours diff. Image]	![Abnormal Ours diff. Image]
VEC	![Normal VEC Image]	![Abnormal VEC Image]
MNAD-P	![Normal MNAD-P Image]	![Abnormal MNAD-P Image]

• Ablation study

Table 2. Ablation study results on UCSD Ped2 [35] dataset. The anomaly detection performance is reported in terms of AUROC ↑ (%). Number in bold indicates the best result.

Memory-augmented Reconstruction Models	Prediction Models	AUROC
	VAE	
Flow	✓	96.27
	✓	97.75
	✓	98.81
Frame	✓	89.96
	✓	94.48
Hybrid	✓	96.91
	✓	98.28
	✓	99.31

[VEC] G. Yu et al., ACM-MM, 2020
[MNAD-P] H Park et al., CVPR, 2020
Video anomaly detection demo

• On Ped2 dataset

Abnormal events: unusual lorry and bicycle.
Video anomaly detection demo

• On Avenue dataset

Abnormal event: kid running.
Video anomaly detection demo

- On ShanghaiTech dataset

ShanghaiTech Test Video 04_0001

Abnormal events: chasing and jumping.
Conclusion

- Design the Multi-Level Memory Autoencoder with Skip Connections (ML-MemAE-SC) for flow reconstruction.
- Propose to model the consistency between flows and frames by leveraging the conditional Variational Autoencoder (CVAE).
- Design a novel hybrid framework in a combination of flow reconstruction and flow-guided frame prediction, named as HF^2-VAD.
Project QR Code

https://github.com/LiUzHiAn/hf2vad

Thank you!