THE SECOND CONVEX HULL OF EVERY OPTIMAL RECTILINEAR DRAWING OF K_n IS A TRIANGLE

J. LEAÑOS, M. LOMELI, M. RAMÍREZ-IBÁÑEZ, AND L. M. RIVERA-MARTÍÑEZ

Abstract. A rectilinear drawing of a graph G is optimal if it has the smallest number of crossings among all rectilinear drawings of G. In this paper it is shown that for $n \geq 8$, the second convex hull of every optimal rectilinear drawing of the complete graph K_n is a triangle.

1. Introduction

The rectilinear crossing number $\text{rc}(G)$ of a graph G, is the minimum number of edge crossings in a rectilinear drawing of G in the plane, that is, a drawing of G in the plane where the vertices are points in general position and the edges are straight segments. Determining $\text{rc}(K_n)$, where K_n is the complete graph with n vertices, is a well-known open problem in combinatorial geometry initiated by R. K. Guy [10] which has been attracting a great amount of attention during the last ten years, see for instance [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16]. A more recent line of research related to this problem is the study of the structural properties of the optimal rectilinear drawings of the complete graphs. The first work [8] in this sense, due to O. Aichholzer, D. Orden and P. Ramos, established that the convex hull of every optimal rectilinear drawing of K_n is a triangle. A year later, in 2007, J. Balogh, J. Leaños, S. Pan, R. B. Richter, and G. Salazar verified that such a result remains valid for the case of the optimal pseudolinear drawings of K_n [11]. Another structural property which has been conjectured for the optimal rectilinear drawings of K_n is the, so-called 3–decomposability [2]. This conjecture states that every optimal rectilinear drawing of K_n is 3-decomposable, that is, there is a triangle T enclosing the drawing, and a balanced partition A, B, C of the underlying set of points P, such that the orthogonal projections of P onto sides of T show A between B and C on one side, B between A and C on another side, and C between A and B on the third side. The 3-decomposability of rectilinear drawings of K_n has been studied in [2, 6, 13].

Let D be a drawing of K_n and let P be its underlying set of points. The convex hull of D, denoted by $C(D)$, is defined as the frontier of the intersection of all convex sets in \mathbb{R}^2 containing P. In particular, $C(D)$ is a Jordan curve formed by some vertices and some edges of D.

As usual, we shall denote by $\text{CH}(P)$ the set of vertices of D which are in $C(D)$. In this context we define the 2nd–convex hull of D as the convex hull of $P \setminus \text{CH}(P)$, the 3rd–convex hull of D as the convex hull of $P \setminus (\text{CH}(P) \cup \text{CH}(P \setminus \text{CH}(P)))$, and

Date: November 7, 2014.
Key words and phrases. Rectilinear crossing number, convex hull, complete graphs.
J. L. was partially supported by CONACYT grant 179867.
J. L. and L. M. R were partially supported by PROMEP grant UAZ-CA-169.
so on. By convention, the 1st-convex hull of D will be the convex hull of D. We use $C_k(D)$ to denote the kth-convex hull of D. Analogously, we use $CH_k(D)$ to denote the vertex set of D in $C_k(D)$. See Figure 1.

Our aim in this paper is to study the 2nd-convex hull of the set of points corresponding to optimal rectilinear drawings of K_n.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{This set of points induces an optimal rectilinear drawing D of K_{10}. In this case $C(D)$ and $C_2(D)$ are triangles, and $C_3(D)$ is a quadrilateral.}
\end{figure}

Our main result is the following.

Theorem 1. Let $n \geq 8$ be an integer. If D is an optimal rectilinear drawing of K_n, then $C_2(D)$ is a triangle.

In Figure 2 we show an optimal rectilinear drawing of K_7 which has a quadrilateral as its 2nd-convex hull. The existence of such a drawing justifies our hypothesis that $n \geq 8$ in Theorem 1.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure2.png}
\caption{Optimal rectilinear drawings of K_7 and K_8 with a quadrilateral and a triangle respectively as its 2nd-convex hull.}
\end{figure}

We conjecture the following generalization:

Conjecture 2. There exists a positive constant c such that, for every integer $n \geq 8$ the following holds. If k is an integer such that $1 \leq k \leq cn$ and D is an optimal rectilinear drawing of K_n, then $C_k(D)$ is a triangle.
The motivation behind Conjecture 2 is the evidence of all the best crossing-wise known rectilinear drawings of K_n. In particular, from the optimal rectilinear drawing of K_{15} reported in [5] it follows that if such a constant c exists, then $c \leq 1/5$ (we have deduced this upper bound from all known optimal rectilinear drawing of K_n [1] [2] [3]).

In Section 2 we formalize the relevant notions at play and establish some elementary facts. The proof of Theorem 1 is given in Section 3.

2. PRELIMINARIES

The aim of this section is to introduce the notions that will be used in our proofs and establish some basic facts.

Throughout this section, S denotes a set of $m \geq 3$ points in the plane \mathbb{R}^2 in general position, that is, no three points lie on a common line. If ℓ is a fixed directed line in \mathbb{R}^2, then we denote by $\ell^+(S)$ (respectively, $\ell^-(S)$) the subset of points of S lying on the right (respectively, left) open halfplane defined by ℓ. Thus S is the disjoint union of $\ell^+(S)$, $\ell^-(S)$ and the set of points of S which are in ℓ.

We will denote by $\mathcal{L}(S)$ to the set of $\binom{m}{2}$ lines spanned by the points of S. If p and q are distinct points of S, we use ℓ_{pq} (respectively, \overline{pq}) to denote the line (respectively, closed segment) spanned by p and q.

The connected regions of $\mathbb{R}^2 \setminus \mathcal{L}(S)$, i.e., the 2-dimensional faces, into which $\mathcal{L}(S)$ divide the plane are the cells of S. For $p \in S$ we define the cell of p in S as the cell of $\mathcal{L}(S \setminus \{p\})$ which contains p. We shall use $\text{cell}_S(p)$ to denote the cell of p in S.

Although the following two propositions can be deduced easily from some well-known facts in the context of the order types (see e.g. [3] [17]), here we give elementary arguments.

Proposition 3. Let p be a point of S and let D be the rectilinear drawing of K_m induced by S. Let p' be any fixed point contained in $\text{cell}_S(p)$. If D' is the rectilinear drawing of K_m induced by $(S \setminus \{p\}) \cup \{p'\}$, then two edges of D cross each other if and only if the corresponding two edges in D' cross each other.

Proof. If $p = p'$ there is nothing to prove. Similarly, if two edges in D are not both incident to p, then their corresponding edges in D' are themselves and we are done. Then it is enough to prove that the edges \overline{pq} and $\overline{v_1v_2}$ cross each other in D iff $\overline{p'q'}$ and $\overline{v_1'v_2'}$ cross each other in D', where $p \neq p'$.

Suppose that \overline{pq} and $\overline{v_1v_2}$ cross each other in D. Let $R := \{v, v_1, v_2, p\}$ and $R' := \{v, v_1, v_2, p'\}$. Since $\text{cell}_S(p) \subseteq \text{cell}_R(p)$ and by hypothesis $p, p' \in \text{cell}_S(p)$, then $p, p' \in \text{cell}_R(p)$, and hence $\text{cell}_R(p) = \text{cell}_{R'}(p')$. Now as \overline{pq} crosses $\overline{v_1v_2}$ in D and $p' \in \text{cell}_{R'}(p)$, then clearly, $\overline{p'q'}$ also crosses $\overline{v_1'v_2'}$ in D'. Similarly, if $\overline{p'q'}$ crosses $\overline{v_1'v_2'}$ in D' then $p \in \text{cell}_{R'}(p')$ (as $p' \in \text{cell}_R(p)$) and clearly \overline{pq} also crosses $\overline{v_1v_2}$ in D. \hfill \square

Proposition 4. Let p_0 and q_0 be two distinct points of S and let $\ell := \ell_{p_0q_0} \in \mathcal{L}(S)$ be directed from p_0 to q_0. Let R_1, R_2 be two cells of $\mathcal{L}(S)$ sharing a boundary segment $s \subseteq (\ell \setminus \overline{p_0q_0})$ such that R_1 lies on the right of ℓ and R_2 on its left. Let r be a fixed point of R_1, $l := |\ell^- (S)|$ and $k := |\ell^+(S)|$. If D_1 denotes the rectilinear drawing of K_{m+1} induced by $S \cup \{r\}$ and D_2 denotes the rectilinear drawing of K_{m+1} which results by moving r from R_1 to R_2, then $\text{cc}(D_2) = \text{cc}(D_1) + (l - k)$.

Proof. Let s_0 be the middle point of s. By relabelling p_0 and q_0 if necessary, we may assume that s_0 is closer to p_0 than q_0. See Figure 3 (left). Let $\epsilon > 0$ be
small enough that the open ball O of radius ϵ centered at s_0 satisfies the following conditions: (1) O is totally contained in $cell_{S'}(s_0)$, where $S' := \{s_0\} \cup (S \setminus \{p_0\})$, and (2) if x is any point in $R_1 \cap O$ (respectively, $R_2 \cap O$) and $p \in \ell^+(S)$ (respectively, $p \in \ell^-(S)$) then $\overline{p p_0}$ crosses $\overline{p q_0}$.

For clarity, we call r_1 (respectively, r_2) to r before (respectively, after) it is moved. Moreover, by Proposition 3 we may assume without loss of generality that $r_i \in R_i \cap O$, for $i = 1, 2$.

Since the difference between D_1 and D_2 are the edges incident to r_1 and r_2, we need only compare the number of crossings of D_1 involving edges incident with r_1 with the number of crossings of D_2 involving edges incident with r_2.

If e is an edge of $D_1 \cap D_2$ which is not incident with p_0, then by condition (1) and Proposition 3 we have that for any $v \in S \setminus \{p_0\}$, the edge $\overline{v w}$ crosses e in D_1 if and only if the edge $\overline{v' w'}$ crosses e in D_2. Thus, we need only compare the number of crossings between the edges of p_0 with $\overline{r_1 q_0}$ and with $\overline{r_2 q_0}$. But condition (2) implies that there are exactly k crossings of the first kind and exactly l crossings of the second kind. See Figure 3 (right). Hence $\overline{r_1 q_0} - k = \overline{r_2 q_0} - l$, and so $\overline{r_1 q_0} = \overline{r_2 q_0} + (l - k)$. □

![Figure 3](image)

The proof of our next statement is a routine exercise.

Proposition 5. Let D' be a rectilinear drawing of K_m with vertex set P'. Then by perturbing the points of P' we can get another set of points P such that the rectilinear drawing D of K_m induced by P satisfies the following properties:

(C1) Two edges of D' cross each other if and only if the corresponding two edges in D cross each other. In particular, $\overline{\text{CH}(D')} = \overline{\text{CH}(D)}$.

(C2) $|\text{CH}^k(D')| = |\text{CH}^k(D)|$ for each $k = 1, 2, \ldots$

(C3) $L(P)$ has no parallel lines.

(C4) No point of $\mathbb{R}^2 \setminus P$ belongs to three lines of $L(P)$.

3. **Proof of main theorem**

For the rest of the paper, we assume that D is an optimal rectilinear drawing of K_n with $n \geq 8$ an integer, and that P is its underlying set of points. Moreover, by Proposition 4 we also assume that $L(P)$ has no parallel lines and that no point of $\mathbb{R}^2 \setminus P$ belongs to three lines of $L(P)$. If $p \in P$ and $x \in \mathbb{R}^2$, then we will say that p sees x if the straight segment \overline{px} does not cross any line of $L(P)$.

We start by showing that every vertex in the 2nd-convex hull of D can see at least one point of $C(D)$ (not necessarily a vertex of $\text{CH}(D)$).

Lemma 6. If $p \in \text{CH}^2(D)$ then p sees at least one point of $C(D)$.
Proof. We know that $T := C(D)$ is a triangle $[8]$. Let $a, b,$ and c be the vertices of P which form T.

We proceed by contradiction. Suppose that for $q \in CH^2(D)$ the following is true: if x is any fixed point of T, the straight segment xq crosses at least one line delimiting $\Gamma := cell_P(q)$. For brevity, we use F to denote the subset of lines of $\mathcal{L}(P)$ delimiting Γ.

Since $q \in CH^2(D)$, then there is a straight line ℓ passing through q and avoiding $P \setminus \{q\}$ which leaves all the points of $P \setminus \{a, b, c, q\}$ on the same open halfplane. By perturbing ℓ around q, if necessary, we may assume that ℓ is not parallel to any line of $\mathcal{L}(P)$. Now we rotate P and ℓ around q in such a way that ℓ becomes vertical and direct it upwards. Let L and R be the left and right open halfplane of ℓ. By reflecting P through ℓ, if necessary, we also assume that all the points of $P \setminus \{a, b, c, q\}$ are in R.

Let $F_{<q}$ (respectively, $F_{>q}$) be the subset of lines of F which intersect ℓ below (respectively, above) q. Thus F is the disjoint union of $F_{<q}$ and $F_{>q}$.

By hypothesis, for any fixed point $x \in T$, the straight segment xq crosses at least one line of F. This implies that: (1) neither $F_{<q}$ or $F_{>q}$ is empty, and (2) there is a line ℓ_1 of $F_{<q}$ and a line ℓ_2 of $F_{>q}$ such that the intersection point \times between ℓ_1 and ℓ_2 is in L. See Figure 4.

![Figure 4](image)

For $i = 1, 2$ let x_i, y_i be the points of P defining ℓ_i and let s_i be the segment of ℓ_i which is frontier of Γ. We also assume that x_i is closer to \times than y_i, and that ℓ_i is directed from \times to y_i.

From the definition of ℓ it follows that L contains at least one and at most two points of P. Moreover, such points must be elements of $\{a, b, c\}$. Without loss of generality we may assume that $c \in R$.

For brevity, for $i = 1, 2$, we will omit the reference to P in $\ell_i^+(P)$ and $\ell_i^-(P)$, and simply write ℓ_i^+ and ℓ_i^-, respectively.

Claim 7. If $\Delta := |\ell_2^+| - |\ell_1^+|$, then $\Delta \geq 2$.

Let $P_1 := \ell_2^+ \cap \ell_2^-$, $P_2 := (\ell_1^+ \cap \ell_2^-) \cup \{x_2, y_2\}$, $P_3 := (\ell_1^- \cap \ell_2^+) \cup \{x_1, y_1\}$, and $P_4 := \ell_1^+ \cap \ell_2^-$. Thus P is the disjoint union of P_1, P_2, P_3 and P_4. As $q, x_1, y_1 \in P_3$, $|P_3| \geq 3$.

Each of the following statements is easy to see:
(A1) The contribution of a point in \(P_1 \) to \(\Delta \) is \(-1\).
(A2) The contribution of a point in \(P_2 \) to \(\Delta \) is \(0\).
(A3) The contribution of a point in \(P_3 \) to \(\Delta \) is \(+1\).
(A4) The contribution of a point in \(P_4 \) to \(\Delta \) is \(0\).

Then it is enough to show that \(|P_3| \geq |P_1| + 2 \). If \(|P_1| \leq 1 \) we are done. On the other hand, remember that \(P_1 \subset L \), \(L \) has at most two points of \(\{a, b, c\} \), and \(c \in R \). Thus the only remaining case is when \(P_1 = \{a, b\} \). Since \(q \) is in the interior of \(T \) (the triangle defined by \(a, b \) and \(c \)), then \(c \) cannot be in any of \(\ell_1^+ \cup \{x_1, y_1\} \) or \(\ell_2^- \cup \{x_2, y_2\} \). This implies that \(c \) must be in \(P_3 \setminus \{x_1, y_1\} \), \(|P_3| \geq 4 \). This proves the claim.

If \(|\ell_1^+| < (n - 3)/2 \) then by Proposition 4 the drawing obtained by crossing \(q \) through \(s_1 \) has fewer crossings than \(D \), which is a contradiction. Thus \(|\ell_1^+| \geq (n - 3)/2 \).

By Claim 7 \(|\ell_2^-| \geq 2 + |\ell_1^+| \geq (n + 1)/2 \). But \(|\ell_2^-| = n - (2 + |\ell_2^-|) \) and then \(|\ell_2^-| < (n - 3)/2 \). As before, by Proposition 4 the drawing obtained by crossing \(q \) through \(s_2 \) has fewer crossings than \(D \), which is a contradiction. \(\square \)

We are ready to prove our main result.

Proof of Theorem 7 Again we proceed by contradiction. Suppose that \(U := \text{CH}^2(D) \) has at least 4 vertices. By the Pigeonhole Principle and Lemma 6 there are at least two distinct vertices \(p, q \) of \(U \) such that for some side \(t \) of the triangle \(T := C(D) \) the following is true: both \(p \) and \(q \) see some point (not necessarily the same) of \(t \). Let \(a, b \) be the vertices of \(P \) defining \(t \) and let \(c \) be the third vertex of \(T \). Without loss of generality we may assume that \(T, t, a, b \) and \(c \) look like Figure 5.

![Figure 5](image)

Figure 5. Without loss of generality, we may assume that \(T, t, a \) and \(b \) look like this.

Case 1. The convex hull of \(\{p, q, a, b\} \) is a quadrilateral. By relabelling \(p \) and \(q \), if necessary, we may assume that \(\overline{aq} \) and \(\overline{bp} \) are the diagonals of such a quadrilateral. See Figure 6 (left). Thus the line \(\ell_{aq} \) prohibits \(p \) to see any point of \(t \setminus \{a\} \) and so \(a \) is the only point of \(t \) which is seen by \(p \). Similarly, \(\ell_{bp} \) prohibits \(q \) to see any point of \(t \setminus \{b\} \) and so \(b \) is the only point of \(t \) which is seen by \(q \). Note that the interior of triangle \(apc \) (respectively, \(bqc \)) cannot contain any point \(r \) of \(P \); otherwise, the line \(\ell_{cr} \) prohibits \(p \) (respectively, \(q \)) to see \(a \) (respectively, \(b \)). These facts have the following immediate consequences:
Figure 6. If $|U| \geq 4$, then U contains points in the interior of triangle Q which contradicts Lemma \[6\]

(B1) ℓ_{pq} separates $\{a, b\}$ from $P \setminus \{a, b, p, q\}$.
(B2) ℓ_{cp} separates $\{a\}$ from $P \setminus \{a, c, p\}$.
(B3) ℓ_{cq} separates $\{b\}$ from $P \setminus \{b, c, q\}$.

Let v be the vertex of $U \setminus \{p, q\}$ such that the segment \overline{av} forms the smallest angle α with \overline{ac}. Since P is in general position and $|U| \geq 4$ such a v exists. Thus the elements of $U \setminus \{p, q, v\}$ are in the interior of the triangle Q formed by ℓ_{av}, ℓ_{cq} and ℓ_{pq}, see Figure 6 (right), and no vertex of $U \setminus \{p, q, v\}$ can see any point of T, which contradicts Lemma \[6\].

Case 2. The convex hull of $\{p, q, a, b\}$ is a triangle T'. By relabelling p and q if necessary we may assume that a, b and p are the vertices of T'. Then q is in the interior of T' and the lines ℓ_{aq} and ℓ_{bq} prohibits p to see any point of t, which is a contradiction. See Figure 7.

Figure 7. The lines ℓ_{aq} and ℓ_{pq} prohibits p to see any point of t.

References

[1] B. M. Ábrego, M. Cetina, S. Fernández-Merchant, J. Leaños and G. Salazar, On $\leq k$-edges, crossings, and halving lines of geometric drawings of K_n. Discrete Comput. Geom. 48 (2012) 192–215.
[2] B. M. Ábrego, M. Cetina, S. Fernández-Merchant, J. Leaños and G. Salazar, 3-symmetric and 3-decomposable geometric drawings of K_n. *Discrete Appl. Math.* 158 (2010) no. 12, 1240–1258.

[3] B. M. Ábrego and S. Fernández-Merchant, A lower bound for the rectilinear crossing number, *Graphs Combin.* 21 (2005), no. 3, 293–300.

[4] B. M. Ábrego, S. Fernández-Merchant and G. Salazar, The rectilinear crossing number of K_n: closing in (or are we?), *Thirty essays in Geometric Graph Theory* (János Pach, Ed.). Springer (2013), pp. 5–18.

[5] O. Aichholzer, http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/

[6] O. Aichholzer, B. M. Ábrego, S. Fernández-Merchant, J. Leaños and G. Salazar, There is a unique crossing-minimal rectilinear drawing of K_{18}. *Electron. Notes Discrete Math.* 38 (2011), 547–552.

[7] O. Aichholzer, J. García, D. Orden and P. Ramos, New lower bounds for the number of $(\leq k)$-edges and the rectilinear crossing number of K_n. *Discrete Comput. Geom.* 38 (2007), no. 1, 1–14.

[8] O. Aichholzer, D. Orden and P. Ramos, On the structure of sets attaining the rectilinear crossing number, *in Proc. 22th European Workshop on Computational Geometry EuroCG’06*, pp. 43–46, Delphi, Greece, 2006.

[9] O. Aichholzer, J. García, D. Orden and P. Ramos, New results on lower bounds for the number of $(\leq k)$-facets, *Electron. Notes Discrete Math.* 29 (2007), 189–193.

[10] O. Aichholzer and H. Krasser, Abstract order type extension and new results on the rectilinear crossing number. *Comput. Geom.* 36 (2007), no. 1, 2–15.

[11] J. Balogh, J. Leaños, S. Pan, R. B. Richter and G. Salazar, The convex hull of every optimal pseudolinear drawing of K_n is a triangle, *Australas. J. Combin.* 38 (2007), 155–162.

[12] J. Balogh and G. Salazar, k-sets, convex quadrilaterals, and the rectilinear crossing number of K_n. *Discrete Comput. Geom.* 35 (2006), no. 4, 671–690.

[13] M. Cetina, C. Hernández-Vélez, J. Leaños, and C. Villalobos, Point sets that minimize $(\leq k)$–edges, 3–decomposable drawings, and the rectilinear crossing number of K_{30}, *Discrete Math.* 311 (2011), 1646–1657.

[14] R. Fabila-Monroy and J. López, Computational search of small point sets with small rectilinear crossing number. [arXiv:1403.1288v1](https://arxiv.org/abs/1403.1288) (March 2014).

[15] R. K. Guy, A combinatorial problem, *Nabla (Bull. Malayan Math. Soc.*) 7* (1960), 68–72.

[16] L. Lovász, K. Vesztergombi, U. Wagner and E. Welzl, Convex quadrilaterals and k-sets, *Toward a Theory of Geometric Graphs*, Contemp. Math., 342, Amer. Math. Soc. (2004), 139–148.

[17] H. Krasser, Order types of points sets in the plane. PhD-Thesis, TU-Graz (2003).