Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis

Irene Lopez-Fabuel, Marina Garcia-Macia, Costantina Buondelmonte, Olga Burmistrova, Nicolo Bonora, Paula Alonso-Batan, Brenda Morant-Ferrando, Carlos Vicente-Gutierrez, Daniel Jimenez-Blasco, Ruben Quintana-Cabrera, Emilio Fernandez, Jordi Llop, Pedro Ramos-Cabrer, Aseel Sharaireh, Marta Guevara-Ferrer, Lorna Fitzpatrick, Christopher D. Thompton, Tristan R. McKay, Stephan Storch, Diego L. Medina, Sara E. Mole, Peter O. Fedichev, Angeles Almeida & Juan P. Bolaños

CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7Δex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7Δex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7Δex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases.
The neuronal ceroid lipofuscinoses (NCLs) are a family of monogenic life-limiting pediatric neurodegenerative disorders collectively known as Batten disease. Although genetically heterogeneous, NCLs share several clinical symptoms and pathological hallmarks such as lysosomal accumulation of lipofuscin and astroglisis. Ceroid lipofuscinosis, neuronal 7 (CLN7) disease belongs to a group of NCLs that present in late infancy and, whereas CLN7/major facilitator superfamily domain containing 8 (MFS8) gene is known to encode a lysosomal membrane glycoprotein, the biochemical processes affected by CLN7-lossof function are unexplored, which has hampered the development of therapeutic interventions. Forty-six disease-causing mutations are recorded in the NCL mutation database (ucl.ac.uk/ncl-disease) in CLN7/MFSD8. Forty-six disease-causing mutations are recorded in the NCL mutation database (ucl.ac.uk/ncl-disease) in CLN7/MFSD8.

Results

Failure in autophagy causes accumulation of structural and functionally impaired mitochondria in Cln7Δex2 mouse. In Cln7-null neurons in primary culture from Cln7Δex2 mice (Supplementary Fig. 1a), the mitochondrial indicators ATP synthase-subunit c (SCMAS) and heat-shock protein-60 (HSP60) co-localized with the lysosome-associated membrane protein 1 (LAMP1) (Fig. 1a and Supplementary Fig. 1b), suggesting lysosomal accumulation of mitochondria. Inhibition of lysosomal proteolysis increased the protein levels of the autophagosome marker LC3-II in wild-type (WT), but not in Cln7Δex2 neurons (Fig. 1b and Supplementary Fig. 1c), indicating an impairment in the macro-autophagy (hereafter, autophagy) previously observed in lysosomal-storage disorders. To assess whether this failure in autophagy affected mitochondrial turnover, SCMAS and HSP60 abundances were determined in neurons incubated with the lysosomal inhibitors. As shown in Fig. 1c and Supplementary Fig. 1d, lysosomal inhibition triggered the accumulation of SCMAS and HSP60 in WT neurons, indicating mitophagy flux. However, these mitochondrial markers were already increased in untreated Cln7Δex2 neurons and were little affected by inhibiting lysosomal function (Fig. 1c and Supplementary Fig. 1d). In addition, PTEN-induced kinase-1 (PINK1) 63/53 ratio and Parkin increased in Cln7Δex2 neuronal mitochondria (Supplementary Fig. 1e). These data suggest that the mitochondrial clearance in Cln7Δex2 neurons is impaired. The metabolic profile analysis revealed a decrease in the basal oxygen consumption rate (OCR), ATP-linked and maximal OCR, and proton leak in Cln7Δex2 neurons (Fig. 1d), indicating bioenergetically impaired mitochondria. The specific activities of the mitochondrial respiratory chain (MRC) complexes (Supplementary Fig. 1f) were unchanged in the Cln7Δex2 neurons. However, isolation of mitochondria followed by blue-native gel electrophoresis (BNGE), complex I (CI) in-gel activity assay (IGA), and western blotting, revealed CI disassembly from mitochondrial super-complexes (SCs) in Cln7Δex2 neurons (Fig. 1e). These data confirm the decreased mitochondrial energy efficiency and suggest the increased formation of mitochondrial reactive oxygen species (mROS) in Cln7Δex2 neurons. Flow cytometric analysis of mROS (Fig. 1f; see also Supplementary Fig. 1g for unchanged mitochondrial membrane potential) and fluorescence analysis of H2O2 (Supplementary Fig. 1h), confirmed mROS enhancement in Cln7Δex2 neurons. Given the cross-talk between ROS and endoplasmic reticulum (ER) stress in disease, we investigated whether Cln7Δex2 neurons suffered from ER stress. Real-time-quantitative polymerase chain reaction (RT-qPCR) analysis of the unfolded protein response (UPR), which accumulate during ER stress, showed no changes in Cln7Δex2 neurons (Supplementary Fig. 1i). Given that cultured neurons do not necessarily behave exactly as they do in vivo, we validated our observations in the Cln7Δex2 mouse model in vivo. Thus, to characterize mitochondria from Cln7Δex2 mice in vivo, we next performed electron microscopy analyses of the brain cortex (Supplementary Fig. 1j) before and after the onset of the immunohistochemical and behavioral symptoms of the disease. We found larger and longer brain mitochondria in the pre-symptomatic Cln7Δex2 mice, an effect that proceeded with age (Fig. 1g and Supplementary Fig. 1k), suggesting progressive mitochondrial swelling. CI disassembly from SCs in brain mitochondria (Fig. 1h) and increased mROS in freshly purified neurons from the adult brain (Fig. 1i and Supplementary Fig. 1l) were confirmed in Cln7Δex2 mice. Altogether, these findings suggest that Cln7Δex2 loss causes impaired autophagic clearance of brain mitochondria leading to the aberrant accumulation of structurally disorganized, bioenergetically impaired, and high ROS-generating organelle.
 Altogether, these findings indicate that the generation of ROS by bioenergetically impaired mitochondria in Cln7Δex2 neurons contributes to the histopathological symptoms of CLN7 disease.

Upregulation of PFKFB3 protein and activity via a Ca2+/calpain/Cdk5 pathway sustains a high glycolytic flux in primary neurons obtained from Cln7Δex2 mice. Mitochondrial ROS stimulate brain glucose consumption through the glycolytic pathway in mouse 23. In Cln7Δex2-mCATLoxP neurons, both glycolysis (Fig. 3a) and its end-product lactate (Fig. 3b) were upregulated (by ~1.34 and ~1.64-fold, respectively), effects that were abolished in Cln7Δex2-CAMKIIαCre-mCAT neurons (Fig.3a, b). Glycolytic and pentose-phosphate pathway (PPP) fluxes are inversely regulated in neurons 27–29. Agreeingly, the increased glycolytic flux observed in primary neurons obtained from Cln7Δex2 mice was accompanied by reduced PPP flux to a similar extent.
extent (Fig. 3c). In vivo 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) uptake was unchanged in all analyzed brain areas of the \(\text{Cln7}^{\Delta \text{ex2}} \) mouse, according to positron-emission tomography (PET) assessment (Supplementary Fig. 3a). However, in vivo 1H-magnetic resonance spectroscopy ([1H]MRS) analysis of the \(\text{Cln7}^{\Delta \text{ex2}} \) mouse brain revealed a twofold increase in the concentration of glycine (Supplementary Fig. 3b, c). Whilst the biosynthesis of glycine via the phosphorylated pathway requires glycolysis\(^3\), its concentration is not a direct evidence of the glycolytic flux. Therefore, using [18F]FDG-PET and [1H]MRS,
being approaches that lack cell-level resolution, failed to unambiguously ascertain in vivo upregulation of neuronal glycolysis in Cln7Δex2 mice. The increased glycolytic flux observed in primary neurons obtained from Cln7Δex2 mice can be indicative of hyperactive 6-phosphofructo-1-kinase (PFK1)31,32, a rate-limiting step of glycolysis that is regulated by fructose-2,6-bisphosphate (F-2,6-P2), a robust positive effector of PFK133. The rate of F-2,6-P2 formation was enhanced by ~1.27-fold in Cln7Δex2 neurons (Fig. 3d), a result that is compatible with higher activity of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3)—i.e., the only F-2,6-P2-forming isoenzyme found in neurons upon stress conditions27. PFKFB3 protein was increased both in primary neurons (~1.51-fold) and in vivo brain cortex (~1.85-fold) and cerebellum (~1.41-fold) (Fig. 3e and Supplementary Fig. 3d) of the Cln7Δex2 mice. To elucidate whether in vivo PFKFB3 brain accumulation has neuronal or glial origin, we acutely separated these cell-type groups from the mouse cerebellum using an immunomagnetic approach. As shown in Fig. 3f and Supplementary Fig. 3e, PFKFB3 protein was found enhanced by ~4.77-fold in neurons and unaffected in the glia. Since PFKFB3 mRNA abundance was unaltered in Cln7Δex2 neurons (Fig. 3g), we conjectured that increased PFKFB3 protein could be the consequence of inactivating its degrading pathway27. Cln7Δex2 neurons showed hyperphosphorylation of the anaphase-promoting complex/cyclosome (APC/C) activator protein, Cdh1 (Fig. 3h and Supplementary Fig. 3f), which is sufficient to inhibit APC/C E3-ligase activity that targets PFKFB3 for proteasomal degradation27. To pursue this possibility, we noted that the Ca2+-buffering capacity of bioenergetically compromised mitochondria is impaired34. Indeed, Cln7Δex2 neurons showed an enhanced
Fig. 3 Upregulation of PFKFB3 protein and activity via a Ca²⁺/calpain/Cdk5 pathway sustains a high glycolytic flux in Cln7Δex2 neurons. a Glycolytic flux in primary neurons. Data are mean ± SEM from n = 4 (mCATiCre, Cln7Δex2-mCATiCre), n = 6 (CaMKIγCre-mCAT) or n = 5 (Cln7Δex2-CaMKIγCre-mCAT) independent experiments. b Lactate released by primary neurons (n = 7–8). Data are mean ± SEM from n = 7 (CaMKIγCre-mCAT) or n = 8 independent experiments. c PPP flux in primary neurons. Data are mean ± SEM from n = 5 (WT) or n = 4 (Cln7Δex2) independent experiments. d Rate of P-2,6-P₂ formation in primary neurons. Data are mean ± SEM from n = 3 independent experiments. e Representative PFKFB3 western blot analysis in primary neurons and brain cortex (β-actin, loading control) and the densitometric quantification of the bands (including the replicas). Data are mean ± SD from n = 6 (WT), n = 7 (Cln7Δex2) independent experiments, or n = 3 animals. f Representative western blots showing PFKFB3 protein abundances in immunomagnetically isolated neurons or glial cells (β-tubulin III and glial-fibrillary acidic protein or GFAP, loading control for neurons and astrocytes, respectively). g PFKFB3 mRNA analysis by RT-qPCR in primary neurons. Data are mean ± SEM from n = 4 independent experiments (values normalized versus β-actin). h Representative Cdh1 western blot analysis after PhosTag acrylamide electrophoresis in primary neurons (P-Cdh1, hyperphosphorylated Cdh1; β-actin, loading control). i Cytosolic Ca²⁺ analysis in primary neurons. Data are mean ± SEM from n = 3 independent experiments. j, k Representative PFKFB3 western blot (j) and glycolytic flux (k) analyses in primary neurons incubated with Ca²⁺-impermeable BAPTA (10 mM; 1 h) (β-actin, loading control). Data are mean ± SEM from n = 5 (WT), n = 4 (Cln7Δex2) independent experiments. l Representative p35 western blot revealing p35 and its cleavage product p25 in primary neurons and brain cortex (β-actin, loading control). m Representative p35 and PFKFB3 western blot analyses in primary neurons incubated with calpain inhibitor MDL-28170 (MDL) (100 mM; 24 h) (β-actin, loading control). n Representative Cdk5 and PFKFB3 western blot analyses in primary neurons transfected with Cdk5 siRNA (siCdk5) or scrambled siRNA (∼) (9 nM; 3 days) (β-actin, loading control). Statistical analyses performed by one-way ANOVA followed by DMS’s (a) or Tukey’s (b, k) post hoc tests or two-tailed Student’s t test (c, d, e, g, i). See also Supplementary Fig. 3. Source data are provided as a Source Data file.

Pharmacological inhibition of PFKFB3 restores mitochondrial alterations and hallmarks of Cln7Δex2 disease in vivo. In neurons, PFKFB3 destabilization boosts glucose consumption through PPP27 and prevents damage-associated recondensed stress27,37,38 given its role at supplying NAPDH(H⁺)—an essential cofactor of glutathione regeneration39,40. We therefore sought to assess whether PFKFB3 activity is related to CLN7 disease. We undertook this by inhibiting PFKFB3 activity using the highly selective, rationally designed 41 compound AZ67. Incubation of Cln7Δex2 neurons with AZ67 at a concentration that inhibits PFKFB3 activity without compromising survival42, prevented the increase in F-2,6-P₂ (Fig. 4a) and glycolysis (Fig. 4b) without affecting mROS (Fig. 4c and Supplementary Fig. 4a). Interestingly, AZ67 protected Cln7Δex2 neurons from activation of pro-apoptotic caspase-3 (Fig. 4d and Supplementary Fig. 4b), suggesting its potential therapeutic benefit. To test this in vivo, AZ67 was intracerebroventricularly administered in Cln7Δex2 mice daily for 2 months at a dose previously selected according to pharmacokinetic and safety parameters (Supplementary Fig. 4c, d, e). Electron microscopy analysis revealed that AZ67 did not affect the length or area of brain mitochondria in Cln7Δex2 mice (Fig. 4e), but it prevented the cristae profile amplitude reduction (Fig. 4e); this may indicate, as observed in other paradigms44,45, adaptation of the mitochondrial ultrastructure to a bioenergetically efficient configuration upon glycolysis inhibition. Incubation of Cln7Δex2 neurons with AZ67 partially restored the impairment in basal respiration (Fig. 4f), indicating a functional improvement of the mitochondria. In vivo, AZ67 prevented the accumulation of SCMAS, lipofuscin, and reactive astroglia in the cortex (Fig. 5a, b), and SCMAS and lipofuscin in the hippocampus and cerebellum (Supplementary Fig. 5a–c) of the Cln7Δex2 mice. Hindlimb paralysis42 in Cln7Δex2 mice was prevented by AZ67 (Supplementary Movies 1–4), indicating functional recovery. Finally, to assess the possible translational implications of these results, neural precursors cells (NPCs) generated from induced pluripotent cells (iPCs) derived from control and two CLN7 disease patients homozygous for missense mutations (Fig. 6a–d) were analyzed. CLN7 patients-derived NPCs showed increased SCMAS staining (Fig. 6e) and mROS (Fig. 6f). Furthermore, these cells exhibited condensation of mitochondria in the perinuclear region (Fig. 6g), an effect that was rectified by AZ67 (Fig. 6h).

Discussion

Here, we found that impaired autophagy pathway in CLN7 disease causes accumulation of dysfunctional mitochondria. These mitochondria exhibit complex I disassembly from supercomplexes, which accounts19 for the high mROS production that contributes to CLN7 disease pathogenesis, according to the accumulation of SCMAS, lipofuscin, and astrogliosis. The signaling cascade involves a Ca²⁺-mediated, calpain-promoted p25 formation, from p35 cleavage, that activated Cdk5. Active Cdk5 —mediated, calpain-promoted p25 —mediated activation of Cdh1 hyperphosphorylation35. Cdk5 hyperphosphorylates Cdh1, which leads27 to PFKFB3 protein stabilization. Interestingly, AZ67 protected p35 cleavage and PFKFB3 activity without compromising survival42, pre-
At the dose of AZ67 administered, we show that glycolysis is inhibited in neurons, but unaltered in astrocytes, hence indicating that the main in vivo PFKFB3 target is neuronal. According to the partial recovery of respiration, and to the reduction in the cristae profile amplitude of mitochondria in the PFKFB3-inhibited Cln7Δex2 neurons, the protection exerted by PFKFB3 inhibition represents an adaptation of mitochondrial shape to a more bioenergetically efficient configurations.

Abnormal accumulation of mitochondria has also been reported in several forms of lysosomal-storage diseases, although their functional characterization is missing and the impact on other NCLs remains to be determined.

Methods

Animals. All protocols were performed according to the European Union Directive 86/609/EEC and Recommendation 2007/526/EC, regarding the protection of animals used for experimental and other scientific purposes, enforced in Spanish legislation under the law 6/2013. Protocols were approved by the Bioethics Committee of the University of Salamanca or CIC bioGUNE (19PJDG-PET and [1H] MRS). Animals were bred at the Animal Experimentation Facility of the University of Salamanca in cages (maximum of five animals per cage), and a light–dark cycle was maintained for 12 h. The humidity was 45–65%, and the temperature was 20–25 °C. Animals were fed ad libitum with a standard solid diet (17% proteins, 3% lipids, 58.7% carbohydrates, 4.3% cellulose, 5% minerals, and 12% humidity) and given free access to water.

Cln7 knockout mouse carrying the European Conditional Mouse Mutagenesis (EUCOMM) tm1d allele by Cre-mediated recombination of the floxed exon 2 of the murine Cln7/Mfsd8 gene (Cln7Δex212) were used. To abrogate mitochondrial ROS selectively in neurons in the Cln7Δex2 mice, we crossed Cln7Δex2 mice with transgenic mice harboring the full-length cDNA encoding catalase fused to the cytochrome c oxidase subunit VIII–mitochondrial leading sequence (mitoCatalase or mCAT), which has incorporated a floxed transcriptional STOP cassette between the mitochondrial-tagged catalase cDNA and the CAG promoter, which were previously generated in our laboratory by homologous recombination in the ROS26 locus under a CSBTL6 background (mCATloxP) in order to achieve tissue- and time-specific expression of mCAT in vivo35. mCATloxP mice were mated with mice harboring Cre recombinase under control of the neuronal-specific CAMKIId promoter (CAMKIIdΔCAT). The progeny, namely CAMKIIdloxP/+; mCATloxP/+; Cln7Δex2, were crossed with Cln7Δex2 mice12. The offspring were crossed to obtain the following littermates genotypes: i) +/-/+; mCATloxP/+; +/- (mCATloxPΔCAT); ii) +/-/-; mCATloxP/+; +/+(mCATloxPΔCAT); iii) Cln7Δex2/+; mCATloxP/+; +/- (Cln7Δex2, mCATloxPΔCAT); iv) Cln7Δex2/Cln7Δex2+; mCATloxP/+; +/+(Cln7Δex2, mCATloxPΔCAT); v) Cln7Δex2/Cln7Δex2+; mCATloxP/+; +/+(Cln7Δex2, mCATloxPΔCAT), mCAT.

Genotyping by polymerase chain reaction (PCR). For Cln7Δex2 genotyping, a PCR with the following primers was performed 5’S-TGGTCAGATTAACAGT CCTAGAATTCCAGG-3’, 5’S-CTAAGGGAGTTGCATAGTGAAGAC-3’, 5’S-
expression in primary culture of neurons conditionals for mCAT expression (mCatLoxP and Cln7lox2, mCatTloxP). The virus, transduced at 10 MOI, was purchased to Gene Transfer Vector Core (University of Iowa). Transduction was performed 3 days before cell recollection, and viral particles were left in the cultures for 24 h.

Primary cultures. Primary cultures of cortical neurons were prepared from the offspring of 14.5 days pregnant mice from Cln7lox2, mCatLoxP, Cln7lox2, mCatTloxP or +/+ (WT) genotypes. Cells were seeded at 2.0 × 10^5 cells per cm² in different-sized plastic plates coated with poly-d-lysine (10 μg/mL) and incubated in Neurobasal-A (Life Technologies) supplemented with 5.5 mM of glucose, 0.25 mM of sodium pyruvate, 2 mM glutamine, and 2% (vol/vol) B-27 supplement (Life Technologies). At 72 h after plating, medium was replaced, and cells were used at day 7. Cells were incubated at 37 °C in a humidified 5% (vol/vol) CO₂-containing atmosphere. Immunocytochemistry against a neuronal (β-tubulin III: 1/300; T2200; Sigma), astrocytic (GFAP: 1/800; AB5541; Millipore), oligodendrocytes (O4; 1/300; from mouse hybridoma kindly donated by Isabel Fariñas laboratory), and microglial marker (CD45; 1/200; 553076; BD) was performed in order to determine the purity of the neuronal cultures that is 99.02% neurons, 0.43% astrocytes, 0.11% oligodendrocytes, 0.13% microglia, and 0.31% other cells.

Induced pluripotent stem cells (iPSC) and neural progenitor cells (NPC) generation. iPSC were generated from the dermal fibroblast of two CLN7 patients (Pa380 and Pa474) (approved by the UCL Research Ethics Committee), then characterized and differentiated to NPC as previously described. Written informed consent was obtained from the patients. Human iPSC-derived NPCs from a control patient and patients Pa380 (c.881 C > A; pT294K; female of 2.5 years old with mental and speech regression, motor impairment without myoclonus or visual failure) and Pa474 (c.1393 C > T; p.R463W; male of 4.5-year old with motor impairment, mental and speech regression and myoclonus) harboring the indicated CLN7 homozygous mutations, were plated on Matrigel™ Matrix in Nunc™ eight-well Chamber Slides and cultured in neural expansion medium (NEM) with DMEM/F12, NEAA, N-2 supplement, B-27 supplement, heparin, bFGF protein, penicillin/streptomycin. iPSCs pluripotency was confirmed by immunocytochemistry using OCT4 (1/2000) (ab19857; Abcam), SOX2 (1/100) (AF2018; R&D Systems), Nanog (1/1000) (ab23142; Abcam) and Tra-1-60 (1/200) (ab129259; R&D Systems), and by confirming their ability to differentiate into...
neurons using TUJ-1 (1/200) (MAB1195; R&D Systems) staining. NPC identity was confirmed by Nestin+ / SOX2- immunostaining (Nestin 1/100; MA1-110; Thermo Fisher).

Freshly purification of neurons from the brain from adult mice. Adult mouse brain (from 6-month-old animals) tissue was dissociated with the Adult Brain Isolation Kit (Miltenyi). Dissociated cells, after removal of debris and red blood cells, neurons were separated with the Neuron Isolation Kit (Miltenyi). The identity of the isolated fraction was confirmed previously19 by western blot against the neuronal marker microtubule-associated protein 2 (MAP2) and GFAP.

Cell treatments. Neurons in primary culture were incubated with the rationally designed, potent, and highly selective PFKFB3 inhibitor AZ PFKFB3 67 (herein referred as AZ67)41 (Tocris) (10 nM) or the calpain inhibitor MDL-28170 (MDL, 100 µM; Sigma) for 24 h. The cell-permeable Ca2+ -quelator BAPTA was used in the primary culture of neurons in the presence of Hanks’ solution without calcium (134.2 mM NaCl, 5.26 mM KCl, 0.43 mM KH2PO4, 4.09 mM NaHCO3, 0.33 mM Na2HPO4·2H2O, 5.44 mM glucose, 20 mM HEPES, pH 7.4) for 1 h (10 µM; Sigma). NPCs were incubated with AZ67 (10 nM) for 24 h in NEM.

Autophagy measurement. To analyze the autophagy pathway, primary neurons were incubated in the absence or presence of the inhibitors of the lysosomal proteolysis leupeptin (100 µM) and ammonium chloride (20 mM) for 1 h. Cells were lysed and immunoblotted against LC3-II to assess autophagy, and against SCMAS and HSP60 to assess mitophagic flux15.

Cell transfections. For knockdown experiments, small interfering RNA (siRNA) against CDK5 (siCDK5) (s201147; Thermo Fisher) was used. An siRNA control (siControl) (4390463; Thermo Fisher) was used in parallel. siRNA transfections were performed using the Lipofectamine RNAiMAX reagent (Thermo Fisher) at an siRNA final concentration of 9 nM. A solution of lipofectamine in OptiMEM medium (1:16, vol/vol) was mixed with the siRNAs, previously digested in

Fig. 6 PFKFB3 inhibition in CLN7 patient-derived neural precursor cells restores mitochondrial condensation. a Schematic representation of the locations of the CLN7 mutations found in patient 380 (Pa380, c.881 C > A; p.T294K) and patient 474 (Pa474, c.1393 C > T; p.R465W). b iPSC characterization in Pa474 with the pluripotency markers OCT4, SOX2, Nanog, and Tra-1-60. Scale bar, 50 µm. c Characterization of differentiated neurons derived from iPSC in Pa474. Scale bar, 50 µm. d NPCs characterization in Pa380, Pa474, and a healthy, age-matched control individual. Scale bar, 50 µm. e Immunocytochemical analysis of SCMAS abundance in NPCs derived from Pa474/iPSC. Data are the mean ± SEM values from n = 4 (control), n = 3 (Pa474) independent samples (two-tailed Student’s t test). Scale bar, 50 µm. f Mitochondrial ROS analysis in NPCs. Data are the mean ± SEM values from n = 3 independent samples (two-tailed Student’s t test). Scale bar, 50 µm. g Immunocytochemical analysis of mitochondrial marker ATP5A in NPCs derived from Pa380, Pa474, and healthy-matched control patients. Scale bar, 50 µm. The right panel shows a representative pixel intensity profile of ATP5A across the maximal axis of the cell that departs from the nucleus. h Representative image of NPCs derived from Pa474/iPSC incubated with AZ67 for 24 h, fixed and subjected to immunocytochemical analysis for ATP5A. Scale bars, 60 µm (upper images of each condition) and 20 µm (lower images of each condition). The right panel shows a representative pixel intensity profile of ATP5A across the maximal axis of the cell that departs from the nucleus. Source data are provided as a Source Data file.
Blue-native gel electrophoresis and in-gel activity for complex I

For the assessment of complex I organization, digitonin-solubilized (4/μg/ml) mitochondria (100 μg mitochondrial protein/1 ml suspension) were loaded in NativePAGE (Novex, 17.5% acrylamide, Life Technologies). After electrophoresis, in-gel NADH dehydrogenase activity was evaluated allowing the identification of individual complex I and complex I-containing supercomplexes bands due to the formation of purple precipitated at the location of complex I. Briefly, gels were incubated in 0.1 M of Tris-HCl buffer (pH 7.4), 1 mM of nitro blue tetrazolium, and 0.14 mM of NADH. Next, a direct electrotransfer was performed followed by immunoblotting against mitochondrial complex I antibody NDUPS1. The direct transfer of BNGE was performed after soaking the gels for 20 min (4 °C) in carbonate buffer (10 mM Na2CO3; 3 mM Na2O; pH 9.5–10). Proteins transfer to polyvinylidene fluoride (PVDF) membranes was carried out at 300 mA, 60 V, 1 h at 4 °C in carbonate buffer.

Determination of PPP and glycolytic fluxes

These were measured in 8-cm2 flasks of primary cultures of neurons containing a central microcentrifuge tube with either 0.8 ml benzenthionium hydroxide (Sigma) for 14CO2 equilibration or 1 ml H2O for 3H2O equilibration. Incubations were carried out in KRPG (NaCl 145 mM; NaH2PO4 5.7 mM; KCl 4.86 mM; CaCl2 0.54 mM; MgSO4 1.22 mM; pH 7.35) containing 5 mM inorganic phosphate at 37 °C in the air-thermostatted chamber of an orbital shaker. To ensure adequate oxygen supply for oxidative metabolism throughout the incubation period, flasks were filled with oxygen (5% CO2/O2) before being sealed. To measure the carbon flux from glucose through the PPP, cells were incubated in KRPG (5 mM in-glucose) buffer supplemented with 0.5 μCi (1–14C)glucose or [6-14C]glucose for 90 min. Incubations were terminated by the addition of 0.2 ml 20% perchloric acid (Merck Millipore), and 40 min before the benzenthionium hydroxide (containing 14CO2) was removed, and the radioactive activity was measured with a liquid scintillation analyzer (Tri-Carb 4810 TR, PerkinElmer). PPP flux was calculated as the difference between 14CO2 production from [1–14C]glucose (which decarboxylates through the 6-phosphogluconate dehydrogenase-catalyzed reaction) and that of [6–14C]glucose (which decarboxylates through the TCA cycle). Glycolytic flux was measured by assaying the rate of 3H2O production from [3–3H]glucose through a similar method, but incubating cells with 3 μCi [3-3H]glucose in KRPG buffer per flask for 120 min. Incubations were terminated with 0.2 ml perchloric acid, and the cells were further incubated for 96 h to allow for 3H2O equilibration with H2O present in the central microcentrifuge tube. The H2O was then measured by liquid scintillation counting (Tri-Carb 4810 TR, PerkinElmer). Under these experimental conditions, 75% of the produced 14CO2 or 28% of the produced 3H2O was recovered and used for the calculations.

Lactate determination

Lactate concentrations were measured in the culture medium spectrophotometrically by determination of the increments in the absorbance of the samples at 340 nm in a mixture containing 1 mM NAD+, 8.25 μM lactate dehydrogenase in 0.25 M glycine, 0.5 M hydrazine, and 1 mM EDTA buffer, pH 9.5.

Fructose-2,6-bisphosphate determinations

For F-2,6-P2 determinations, cells were lysed in 0.1 M NaOH and centrifuged (20,000 × g, 20 min). An aliquot of the homogenate was used for protein determination, and the remaining sample was heated at 80 °C (5 min), centrifuged (20,000 × g, 20 min) and the resulting supernatant was used for the determination of F-2,6-P2 concentrations using a coupled enzymatic reaction. This approach reveals the relative abundance of F-2,6-P2 generated by PKFB3 by the coupled enzymatic activities of PKF1 (Sigma) (in the presence of 1 mM fructose-6-phosphate and 0.5 mM pyrophosphate), aldolase (Sigma), and triose-phosphate isomerase/glycerol-3-phosphate dehydrogenase (Sigma). This reaction generates glyceral-3-phosphate and oxidizes NADH (Sigma), producing a reduction in the absorbance at 340 nm that is monitored electrophotometrically.

Phos-tag SDS-PAGE

For the evaluation of phosphorylation levels of CDH1, primary cultures of neurons were homogenized in extraction buffer (100 mM NaCl; 50 mM Na2HPO4; pH 8.4). Electrophoresis was performed in 8% (vol/vol) Phos-tag SDS-PAGE gels in the presence of 37.5 μM of PhosTag Acrylamide (ALL-107M, Wako) and 75 μM of MnCl2. After electrophoresis, gels were washed three times in transfer buffer with 1 mM of EDTA, before electroblotting.

Mitochondrial ROS

Mitochondrial ROS were determined using the fluorescent probe Mitosox (Life Technologies). Neurons, from primary cultures or adult brain cell suspensions, were incubated with 2 μM of Mitosox for 30 min at 37 °C in a 5% CO2/95% air atmosphere before being fixed in buffer A (25 mM sucrose and 10 mM MOPS; pH 7.2). The same volume of buffer B (250 mM sucrose and 30 mM MOPS) was added to the sample, and the homogenate was centrifuged (1000 × g, 5 min) to remove unbroken cells and nuclei. Centrifugation of the supernatant was then performed (12,000 × g, 3 min) to obtain the mitochondrial fraction, which was washed in buffer C (320 mM sucrose, 1 mM EDTA, and 10 mM Tris-HCl, pH 7.4). Mitochondria were suspended in buffer D (1 M 6-aminohexanoic acid and 50 mM Bis-Tris- HCl, pH 7.0).

OptiMEM (0.2% FCS). This mixture was incubated 5 min at room temperature and then added to cells. Culture cells were used after 3 days.
H₂O₂ determination. For H₂O₂ assessments, AmplexRed (Life Technologies) was used. Cells were trypsinized and incubated in KRPG buffer (145 mM NaCl, 5.7 mM K₂HPO₄, 0.8 mM KCl, 0.6 mM NaHCO₃, 1.22 mM MgCl₂, 2.5 mM葡萄糖, pH 7.35) in the presence of 9.5 µM AmplexRed containing 0.1 U/mL horseradish peroxidase. Luminescence was recorded for 2 h at 30 min intervals using a Varian-isoled Flash (Thermo Scientific) (excitation, 538 nm; emission, 604 nm). Slopes were used for calculations of the rates of H₂O₂ formation.

Mitochondrial membrane potential. The mitochondrial membrane potential (ΔΨm) was assessed with MitoProbe DiIC₆(3) (Life Technologies) (50 nM) by flow cytometry (FACScalibur flow cytometer, BD Biosciences) and expressed in arbitrary units. For this purpose, cell suspensions were incubated with the probe 30 min at 37 °C in PBS. ΔΨm were obtained after subtraction of the potential value determined in the presence of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) (200 nM) for each well. A schematic representation of the gating strategy can be found in Supplementary Fig. 6b.

Cytosolic Ca²⁺ determination using Fura-2 fluorescence. To estimate the intracellular Ca²⁺ levels in neurons we used the fluorescent probe Fura-2 (acetyl-oxy methyl-derivative; Life Technologies)54. Neurons were incubated with Fura-2 (2 µM) for 40 min in neurobasal medium at 37 °C. Then, cells were washed and further incubated with standard buffer (140 mM NaCl, 2.5 mM KCl, 15 mM Tris- HCl, 5 mM t-glucose, 1.2 mM Na₂HPO₄, 1 mM MgSO₄ and 1 mM CaCl₂, pH 7.4) for 30 min and 37 °C. Finally, the standard buffer was removed and experimental buffer (140 mM NaCl, 2.5 mM KCl, 15 mM Tris-HCl, t-glucose, 1.2 mM Na₂HPO₄, and 2 mM CaCl₂, pH 7.4) was added. Emissions at 510 nm, after excitation at 335 nm, respectively, were recorded in a Varian-isoled Flash (Thermo) spectrofluorometer at 37 °C. Ca²⁺ levels were estimated by representing the ratio of fluorescence emitted at 510 nm obtained after excitation at 335 nm divided by that at 363 nm (F335/F363). Background subtraction was accomplished from emission values obtained in Fura-2-lacking neurons. At least, 6 wells were recorded per condition in each experiment and the averaged values are shown, normalized per mg of protein present in the sample.

Bioenergetics. Oxygen consumption rates of neurons were measured in real-time in an XFe24 Extracellular Flux Analyzer (Seahorse Bioscience; Seahorse Wave from emission values obtained in Fura-2-lacking neurons. At least, 6 wells were divided by that at 363 nm (F335/F363). Background subtraction was accomplished from emission values obtained in Fura-2-lacking neurons. At least, 6 wells were recorded per condition in each experiment and the averaged values are shown, normalized per mg of protein present in the sample.

Activity of mitochondrial complexes. Cells were collected and suspended in PBS (pH 7.0). After three cycles of freeze/thawing, to ensure cellular disruption, complex I, complex II, complex III–IV, complex IV, and citrate synthase activities were determined. Rotenone-sensitive NADH-ubiquinone oxidoreductase activity (complex I)58 was measured in KHEPO₄ (20 mM; pH 7.2) in the presence of 8 mM MgCl₂, 2.5 mg/mL BSA, 0.13 mM NADH, and 1 mM KNC. Changes in absorbance at 340 nm (300 µM sample) were recorded after the addition of 50 µM ubiquinone and 10 µM rotenone. Complex II–III (succinate–cytochrome c oxidase) activity was determined in the presence of 100 mM phosphate buffer, plus 0.6 mM EDTA (K⁺), 2 mM KCN, and 200 µM cytochrome c. Changes in absorbance were recorded (350 nm; 30 °C) (ε = 19.2 µM⁻¹ cm⁻¹) after the addition of 200 mM succinate and 10 µM antimycin A. For complex IV (cytochrome c oxidase) activity, the first-rate constant of cytochrome c oxidation was determined57 in the presence of 10 mM phosphate buffer and 50 µM reduced cytochrome c; absorbance was recorded every minute at 550 nm, 30 °C (ε = 19.2 µM⁻¹ cm⁻¹). Citrate synthase activity59 was measured in the presence of 93 mM Tris-HCl, 0.1% (vol/vol) Triton X-100, 0.2 mM acetyl-CoA, 0.2 mM DTNB; the reaction was started with 0.2 mM oxaloacetate, and the absorbance was recorded at 412 nm (30 °C) (ε = 13.6 µM⁻¹ cm⁻¹).

Protein determinations. Protein samples were quantified by the BCA protein assay kit (Thermo) using BSA as a standard.

Pharmacokinetics of AZ67. For the pharmacokinetic assay, healthy male C57BL/6 mice were used. A single dose of 40 mg/kg of AZ67 was injected intravenously and the blood, cerebrospinal fluid (CSF) and brain, were collected after 5 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, and 24 h. AZ67 concentrations in the different samples were determined by liquid chromatography followed by MS/MS41.

In vivo toxicity assay. Male mice (C57Bl/6; six animals per group; 8-week old) purchased from Charles-River, Spain) were subjected to the implantation of a cannula in the lateral ventricle under anesthesia and then left for at least 15 days for full recovery. After this, the PFKFB3 inhibitor (AZ67) was administered through the cannula using an automatic micro-pump (CMA 4004 Microdialysis Syringe Pump, CMA Microdialysis, Sorham, Sweden) at vehicle (0.5 µL) and 0.05, 0.1, and 10 nmol/mouse. The compounds were administered every 24 h for 1 week, and animals were analyzed in the open field immediately before each administration. We selected the maximal dose that caused no evident alterations and/or deterioration of the animals for the following experiments, being 1 nmol/mouse.

Open-field tests. Male mice were left to acclimate in the room for no less than 15 min in the same time of day (10:00 to 14:00). Tracking was carried out once a day, and we carefully cleaned the apparatus with 70% ethanol between trials to remove any odor cues. Any-Box core was used, which contained a light-gray base and an adjustable perpendicular stick holding a camera and an infrared photo-beam array to track the animal movement and to detect rearing behavior, respectively. Mouse movements were tracked with the ANY-maze 5.3 software and the ANY-maze interface to register all parameters described subsequently. For the open-field test, a 40 × 40 × 35 cm (w, d, h), black infrared transparent Perspex insert was used, and the arena was divided into three zones, namely border (8 cm wide), center (16% of the total arena) and intermediate (the remaining area). The test lasted for 10 min, and the distance traveled, and the time spent in each zone was measured.

AZ67 in vivo administration. AZ67 (Tocris) for in vivo usage was dissolved in 20% (wt/vol) PEG2000 in PBS to a 20 µM concentration. Four groups were generated (four to six animals/group), namely: WT-vehicle, Cln7ex2/−vehicle, WT- AZ67, Cln7ex2/−AZ67. The cannula was inserted infracerebroventricularly at the age of adulthood, and after at least 15 days of recovery, mice were injected with the dose identified previously (1 nmol/mouse) every 24 h. The duration of the experiment was determined by the hindlimb clasping the Cln7ex2/− vehicle-treated mice, being this time two months. After this, the animals were perfused, and their brains dissected to be investigated by immunofluorescence and electron microscopy.

Electron microscopy and mitochondrial morphology analysis. Male mice were anaesthetized by intraperitoneal injection of a mixture of xylazine hydrochloride (Rompun; Bayer) and ketamine hydrochloride/chlorbutol (Imalgene; Merial) (1:4) at 1 ml per kg body weight and then perfused intra-aortically with 0.9% NaCl followed by 5 ml/kg body weight of 2% (vol/vol) paraformaldehyde plus 2% (vol/vol) glutaraldehyde. After perfusion, brains were dissected out sagittally in two parts and post-fixed with perfusion solution overnight at 4 °C. Brain blocks were rinsed with 0.1 M PB solution and a 1 mm³ square of brain cortex was excised and treated with osmium tetroxide (1% in PB) for 1 h. Tissue was then washed with distilled water and dehydrated in ascending series of ethanol followed by embedding in EPOP resin. Ultra thin sections (30 nm) were stained with uranyl acetate and lead citrate and examined with Tecnai Spirit Twin 120 kV transmission electron microscopy equipped with a digital camera Orius WD or JEM-1010 (JEOL) 100 kV transmission electron microscopy equipped with a digital camera AMT RX80. For mitochondrial area quantification, the area of each mitochondria was quantified in neuronal soma, axons and dendrites. In the case of mitochondrial length, the values represent the length in the maximal axis of mitochondria in the plane of microphotographies. Crustae profiles of representative mitochondria of each condition and type were traced along the major axis that crosses mitochondria.
perpendicularly to cristae. Data of pixel intensity were obtained using the plot profile plugin of ImageJ software.

Mouse perfusion and immunohistochemistry. Mice (5 months for AZ76 intra-ventricular injections; 3 months for mCAT expression approach) were anaesthetized by intraperitoneal injection of a mixture of xylazine hydrochloride (Rompun; Bayer) and ketamine hydrochloride/chloralbutol (Imalgene; Merial) (1:4) at 1 ml per kg body weight and then perfused intra-aortically with 0.9% NaCl followed by 5 ml p/g body weight of Somogyi (4% (vol/vol) paraformaldehyde, and 0.2% (vol/vol) picric acid, in 0.1 M PB, pH 7.4). After perfusion, brains were dissected out sagitally in two parts and post-fixed with Somogyi for 2 h at room temperature. Brain blocks were rinsed successively for 10 min, 30 min and 2 h with 0.1 M PB solution and cryoprotected in 10%, 20% and 30% (vol/vol) sucrose in PB sequentially, until they sank. After cryoprotection, 40-μm-thick sagittal sections were obtained with a freezing–sliding cryostat (Leica). Sections of WT and Cln7Δ62/Δ62 brains were performed under the same conditions and sessions. The sections were collected serially in a 12-well plate in 0.1 M PB, rinsed three times for 10 min in 0.1 M PB, and used for subsequent immunohistochemistry and lipo-fuscin observation. The section-containing wells that were not used were kept in a freezer mix (30% (vol/vol) polyethylene glycol, 30% (vol/vol) glycerol in 0.1 M PB) at −20 °C. For immunohistochemistry, sections were incubated sequentially in (i) 5 mg/ml sodium borohydride in PB for 30 min (to remove aldehyde auto-fluorescence); (ii) three PBS washes of 10 min each; (iii) 1/500 anti-GEAP (G6171; Sigma) and 1/500 anti-IBA-1 (019–19741; Wako) or 1/500 anti-ATP-C (SCMAS) (ab181243; Abcam) or Triton X-100 (Sigma) and 3% goat serum (Jackson Immuno-Research) in 0.1 M PB for 72 h at 4 °C; (iv) three PB washes of 10 min each; (v) fluorophore-conjugated secondary antibodies, 1/500 Cy2 goat anti-mouse and 1/500 Cy3 goat anti-rabbit (Jackson Immuno-Research) or Alexa-488 (A11008; Molecular Probes) or 1/800 Cy3 donkey anti-rat (Jackson Immuno-Research) in PB for 1 h at room temperature; and (vi) 0.5 μg/ml DAPI in PB for 10 min at room temperature. After being rinsed with PB, sections were mounted with Fluoromount (Sigma) or Fluoroave (Millipore) aqueous mounting medium and coverslips (Thermo Fisher)22. For autofluorescence (lipofuscin accumulation), sections were mounted directly.

Imaging and quantification. Sections were examined with epifluorescence and the appropriate filter sets under an Operetta CLS high-content imaging system (PerkinElmer). Large fields of view were acquired with an ×5 scan using an OperaPHX/OPTRCLS ×5 Air Objective. Then high-resolution images were acquired using an OperaPHX/OPTRCLS Air Objective ×20 hNA objective. Immunohistochemical digital images were used to analyze different protein staining in the three most sagittal sections per animal. Images were analyzed with the Harmony software with PhenolLOGIC (PerkinElmer). Interest brain areas (cortex, hippocampus, and cerebellum) were selected and subsequently quantified as mean intensity per area by using the “measure rectangle” function, which represents the mean intensity of a channel per selected area.

NPC immunocytochemistry. NPCs were fixed with 100% ice-cold methanol for 5 min and incubated in blocking solution (1% (vol/vol) normal goat serum, 0.1% (vol/vol) serum albumin (RSA), 0.1% (vol/vol) Triton X-100 in DPBS). The antibodies were incubated in a blocking solution. The incubation of the primary antibody (anti-ATPSA, 1/(100) (ab14748; Abcam); or SCMAS (1/200) (ab181243; Abcam) was performed for 2 h at room temperature, and the secondary antibodies (Alexa Fluor 488 or Alexa Fluor 568 goat anti-rabbit (1/500)) were applied for 1 h at room temperature. Slides were mounted with VECTASHIELD Mounting Medium with DAPI, incubated for 24 h at 4 °C, and imaged with a Zeiss fluorescence microscope or under an inverted microscope (Nikon; Eclipse Ti-E) equipped with a pre-centered filter sets under an Operetta CLS high-content imaging system (PerkinElmer). Imaging and quantification was performed after appropriate thresholding using the ImageJ software (NIH). The pixel intensity profile of ATPSA immunodecoration was analyzed across the maximal axis of the cell that departs from the nucleus, using the plot profile plugin of ImageJ software. A representative profile is shown for each condition.

Positron-emission tomography (PET). 11C[FDG][fluoro-2-deoxy-d-glucose ([11C]FDG) was kindly donated by Currim Pharma Spain (FLUORSCAN 3000). Before imaging studies, animals (5-month old) were fasted for 6 h with free access to drinking water. Administration of [11C]FDG (19.2 ± 1.6 MBq, 100 μL) was carried out via one of the lateral tail veins under anesthesia, induced with 3.0% iso-flurane in pure oxygen and maintained with 1.5–2.0% isoflurane in pure oxygen. After administration, animals were allowed to recover from anesthesia for 45 minutes before being subjected to positron-emission tomography (PET) scan. PET studies (n = 5 for control and study groups; 10 min acquisitions) were conducted using the μ-cube microscope (Molecules, Gent, Belgium), with the head of the animal positioned in the center of the field of view, in one-bed position using a 511 keV ± 30% energetic window. A computerized with that air-bran imaging (CTI) scan was acquired immediately after the finalization of the PET imaging session, both for anatomical reference and to determine the attenuation map for PET image reconstruction. PET images were reconstructed with OSEM-3D iterative algorithm. Images were analyzed using NIH-MOD image analysis software (NIH-MOD Technologie Ltd, Zurich, Switzerland). With that aim, PET images were manually coregistered with a M. Mirrionne–T2 MRI atlas available at NIH-MOD software. Volumes of interest (VOIs) were automatically delineated in different brain regions, namely cortex, cerebellum, brain stem, hippocampus, striatum, and whole brain, and the concentration of radioactivity in each region was determined and decay-corrected to injection time. Values were finally normalized to injected amount of radioactivity and body weight, to obtain standard uptake values (SUVs).

Magnetic resonance spectroscopy. Localized 1H-MRS was performed at 11.7 Tesla using a 117/16 US Bruker Biospec system (Bruker Biospin GmbH, Ettlingen, Germany) interfaced to an advance III console and operating ParaVision 6.1 under topspin software (Bruker Biospin). After fine-tuning and shimming of the system, water-signal FWHM values typically in the 15–25 Hz range were achieved. Scanning started with the acquisition of three scout images (one coronal, one transverse, and one sagittal) using a 2D-multitape T2W RARE pulse sequence with Bruker’s default parameters. Those images were used to place the spectroscopy voxel of size 1.5 × 1.5 × 2 mm3 located at the right striatum of the mouse brain or 2 × 0.8 × 2 mm3 located in the cortex (at the mid-line of the brain), always with care not to include the ventricles in the voxel (the geometry of the voxel was slightly altered to avoid this event, when necessary). At least two 1H-MRS spectra were acquired per scanning session per animal (5-month-old animals). The voxel was repositioned, and shimming adjustments were repeated between acquired spectra, when the spectral resolution of the obtained 1H-spectrum was not good. For 1H-MR a water suppressed PRESS sequence was used with the following parameters: Echo time = 17.336 ms (TE1 = TE2 = 8.668 ms); Repetition time = 2500 ms; Naverages = 256; Acquisition size = 2048 points; spectral width = 11 ppm (5498.53 Hz). MR spectra were fitted and quantified using LC-Model 6.3-1R61.

Statistical analysis. The comparisons between two groups of values we performed using two-tailed Student’s t test. For multiple-values comparisons, we used one-way ANOVA followed by either Tukey or DMS post hoc tests, as indicated in the figure legends. The statistical analysis was performed using the GraphPad Prism v8 software. The number of biologically independent culture preparations or animals used per experiment are indicated in the figure legends, and the P values in the figures.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request. Source data are provided with this paper.

Received: 5 November 2020; Accepted: 12 January 2022; Published online: 27 January 2022

References

Mole, S. E. et al. Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis. Lancet Neurol. 18, 107–116 (2019).
Mole, S. E. & Cotman, S. Neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta 1852, 2237–2241 (2015).
McBride, J. L. et al. Discovery of a CLN7 model of Batten disease in non-human primates. Neurol. Dis. 119, 65–78 (2018).
Siitola, E. et al. The novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative lysosomal transporter. Am. J. Hum. Genet. 81, 136–146 (2007).
Aiello, C. et al. Mutations in MFSD8/CLN7 are a frequent cause of variant-late infantile neuronal ceroid lipofuscinosis. Hum. Mutat. 30, E530–E540 (2009).
Kousi, M. et al. Mutations in CLN7/MFSD8 are a common cause of infantile-variant late-infantile neuronal ceroid lipofuscinosis. Brain 132, 810–819 (2009).
Sharifi, A. et al. Expression and lysosomal targeting of CLN7, a major facilitator superfamily transporter associated with variant late-infantile neuronal ceroid lipofuscinosis. Hum. Mol. Genet. 19, 4497–4514 (2010).
Mohammed, A., O’Hare, M. B., Watley, A., Tear, G. & Tuxworth, R. I. in vivo functional localization of the neuronal ceroid lipofuscinosis proteins, CLN3 and CLN7, at endogenous expression levels. Neurol. Dis. 103, 123–132 (2017).
Connolly, K. J. et al. The neuronal ceroid lipofuscinosis protein Cln7 functions in the postsynaptic cell to regulate synapse development. Sci. Rep. 9, 15592 (2019).
10. Burstein, R. et al. Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. *Nature* 574, 353–358 (2019).
11. Schulz, A. et al. Targeting PFKFB3 alleviates cerebral ischemia-reperfusion injury in mice. *Sci. Rep.* 9, 11670 (2019).
12. Brandenstein, L., Schweizer, M., Sedlacik, J., Fiehler, J. & Storch, S. Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cltn7. *Hum. Mol. Genet.* 25, 777–791 (2016).
13. Settembre, C., Fraldi, A., Rubinsztein, D. C. & Ballabio, A. Lysosomal storage diseases as disorders of autophagy. *Autophagy* 4, 113–114 (2008).
14. Seranova, E. et al. Dysregulation of autophagy as a common mechanism in lysosomal storage diseases. *Essays Biochem.* 61, 733–747 (2017).
15. Gottlieb, R. A., Andres, A. M., Sin, J. & Taylor, D. P. Untangling autophagy measurements: all fluxed up. *Circ. Res.* 116, 504–514 (2015).
16. Jin, D. F. et al. Complex I assembly into a bacterial consortium for nitroxene degradation. *Water Sci. Technol.* 65, 795–801 (2012).
17. Jin, S. M. & Youle, R. J. PARK1 and Parkin- mediated mitophagy at a glance. *Cell* 125, 795–799 (2012).
18. Lapuente-Brunel, E. et al. Superoxide complex assembly determines electron flux in the mitochondrial electron transport chain. *Science* 340, 1566–1570 (2013).
19. Lehotay-Fabsal, L. et al. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. *Proc. Natl Acad. Sci. USA* 113, 13063–13068 (2016).
20. Dandeker, A., Mendez, R. & Zhang, K. Cross talk between ER stress, oxidative stress, and inflammation in health and disease. *Methods Mol. Biol.* 1292, 185–214 (2015).
21. Marotta, D., Tinelli, E. & Mole, S. E. NCLs and ER: a stressful relationship. *Biochim Biophys Acta Mol Basis Dis.* 1863, 1273–1281 (2017).
22. Tsien, J. Z. et al. Subregion- and cell type- restricted gene knockout in mouse brain. *Cell* 87, 1317–1326 (1996).
23. Vicente-Gutierrez, C. et al. Astrocitochidylgenic ROS module brain metabolism and function. *Nat. Metab.* 1, 201–211 (2019).
24. Patten, D. A. et al. OPA1-deficient cristae modulation is essential for cellular adaptation to metabolic demand. *EMBO J.* 33, 2676–2691 (2014).
25. Quintana-Cabrera, R. et al. The cristae modifier Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function. *Nat. Commun.* 9, 3399 (2018).
26. Tyynela, J., Baumann, M., Henseler, M., Sandhoff, K. & Hofla, M. Sphingolipid activator proteins in the neuronal ceroid lipofuscinoses: an immunological study. *Acta Neuropathol.* 89, 391–398 (1995).
27. Herrero-Mendez, A. et al. The bioenergetic and antioxidant status of neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuronal ceroid lipofuscinosis as disorders of autophagy. *J. Neurochem.* 138, 214–215 (2015).
28. Shepherd, J. A. & Garland, P. B. Citrate synthase from rat liver. In * Essays Biochem.* 139, 184–195 (2012).
29. Larrabe, M. G. Evaluation of the pentose phosphate pathway from 13C2 metabolite data. Fallibility of a classic equation when applied to non-homogeneous tissues. *Biochem. J.* 272, 127–132 (1990).
30. Van Schaftingen, E., Lederer, B., Bartrons, R. & Hers, H. G. A kinetic study of the pentose-phosphate pathway in intact primary neurons as revealed by metabolic flux analysis. *J. Cereb. Blood Flow Metab.* 33, 1843–1845 (2015).
31. Ragan, C. L., Wilson, M. T., Darley-UmArn, V. M. & Lowe, P. N. in Mitochondria: A Practical Approach (eds Rickwood, D. et al.) 79–112 (IRL Press, 1987).
32. Van Schaftingen, E., Lederer, B., Bartrons, R. & Hers, H. G. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose-2,6-bisphosphate. *Eur. J. Biochem.* 120, 191–195 (1982).
33. Ring, A. & Tanso, R. Measurements with fluorescent probes in primary neural cultures; improved multwell techniques. *J. Pharmacol. Toxicol. Methods* 56, 300–307 (2007).
34. Nemani, N. et al. CITIC controls autophagy via the AMP protein kinase and 6-phosphofructo-2-kinase pathway. *Cancer Res.* 78, 718–729 (2012).
35. Martinez-Lopez, N. et al. Autophagy in the CNS and periphery coordinate lipolysis and lipolysis in the brown adipose tissue and liver. *Cell Metab.* 23, 113–127 (2016).
36. Xiong, G., Metheny, H., Johnson, B. N. & Cohen, A. S. A comparison of different slicing planes in preservation of major hippocampal pathway fibers in the mouse. *Front. Neuroanat.* 11, 107 (2017).
37. Bocho-Jimenez, V. et al. APC(Cdh1)-Rock2 pathway controls dendritic integrity and memory. *Proc. Natl Acad. Sci. USA* 114, 4513–4518 (2017).
38. Provencher, S. W. Estimation of metabolite concentrations from localized metabolic kinase PFKFB3. *Nat. Cell Biol.* 13, 107 (2017).
39. Provencher, S. W. Estimation of metabolite concentrations from localized cerebral cultures from oxidative stress. *J. Neurochem.* 66, 2329–2337 (1996).
40. Boyd, S. et al. Structure-based design of potent and selective inhibitors of the metabolic kinase PFKFB3. *J. Med Chem* 58, 3611–3625 (2015).
41. Burstein, R. et al. Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. *Nature* 574, 353–358 (2019).
42. Burstein, R. et al. Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. *Nature* 574, 353–358 (2019).
43. Hothersall, J. S., Baquer, N. Z., Geng, A. & McLean, P. Alternative pathways of glucose utilization in brain. Changes in the pattern of glucose utilization in brain during development and the effect of phenazine methosulphate on the integration of metabolic routes. *Arch. Biochem. Biophys.* 198, 478–492 (1979).
44. Ben-David, Y., Rosen, S. P. & Ross, B. D. Assessment of the role of the glutathione and pentose phosphate pathways in the protection of primary cerebrocortical cultures from oxidative stress. *J. Neurochem.* 66, 2329–2337 (1996).
Biology University Unit at UCL (award code MC_U12266B) towards lab and office space. Part of this work was funded by Gero Discovery L.L.C. M.G.M. is an ISCIII-Sara Borrel contract recipient (CD18/00203).

Author contributions
Conceived the idea: J.P.B. Designed research: J.P.B., I.L.F., A.A., P.O.F., S.E.M., D.L.M., and T.M. Performed research: I.L.F., M.G.M., C.B., O.B., N.B., B.M.F., P.A.B., C.V.G., D.J.B., R.Q.C., E.F., J.L., P.R.C., A.S., M.G.F., L.F., and C.D.T. Analyzed the data: J.P.B., I.L.F., M.G.M., C.B., O.B., N.B., A.A., J.L., P.R.C., A.S., M.G.F., L.F., and T.M. Contributed materials: P.O.F. and S.S. Wrote the manuscript: J.P.B., I.L.F., and M.G.M. Edited and approved the manuscript: all co-authors.

Competing interests
P.O.F. is a shareholder and O.B. is an employee of Gero Discovery LLC, a company developing PFKFB3 inhibitors. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-28191-1.

Correspondence and requests for materials should be addressed to Irene Lopez-Fabuel or Juan P. Bolaños.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[Open Access] This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022