The Essentially Entangled Component of Multipartite Mixed Quantum States, its Properties and an Efficient Algorithm for its Extraction

V. M. Akulin,1, 2 G.M. Kabatyanski,2, 3 and A. Mandilara4

1Laboratoire Aimé Cotton, CNRS (UPR 3321), Bâtiment 505, 91405 Orsay Cedex, France.
2Institute for Information Transmission Problems of the Russian Academy of Science, Bolshoy Karetny per. 19, Moscow, 127994, Russia.
3Laboratoire J.-V. Poncelet CNRS (UMI 2615) Bolshoi Vlassievsky per. 11, Moscow, 119002 Russia.
4Department of Physics, School of Science and Technology, Nazarbayev University, 53, Kabanbay batyr Av., Astana, 010000, Republic of Kazakhstan.

We introduce a density matrix decomposition of a multipartite quantum system of a finite dimension into two density matrices: a separable one and an essentially entangled one, which contains no product states components. This convex decomposition can be achieved in practice with the help of an algorithm based on linear programming, which in the general case scales polynomially with the dimension of the system. We prove that the rank of the essentially entangled component is always lower than that of the initial density matrix and we give an upper bound for this rank. We illustrate the algorithm at an example of a composed system of total dimension 12 undergoing loss of coherence due to classical noise and we trace the time evolution of its essentially entangled component. We suggest a “geometric” description of entanglement dynamics and show how it explains the well-known phenomena of sudden death and revival of multipartite entanglement. Interestingly, while we observe a weight loss of the essentially entangled component with time, its average entanglement content is not affected by the coherence loss.

PACS numbers: 03.65.Ud Entanglement and quantum nonlocality 03.67.Mn Entanglement measures, witnesses, and other characterizations

I. INTRODUCTION

Though quantum entanglement is a concept which has attracted much of the attention of physicists working in various fields1, still, there remains room for further progress on its understanding.2 One of the main open problems is the efficient detection and characterization of multipartite entanglement of density matrices representing open quantum systems undergoing non-unitary evolution3.

All experimentally addressable information about a quantum physical system is summarized in its density matrix \(\hat{\rho} \). We focus on a multipartite quantum system, which comprises a finite number \(K < \infty \) of parts \(N_k \) numerated by index \(k = 1, \ldots, K \), each of which has the Hilbert space of a finite dimensionality \(N_k \), whence \(\prod_{k=1}^{K} N_k = N \) is the dimensionality of the Hilbert space of the entire system. This system –assembly of parts, is called entangled (or inseparable) if and only if its density matrix cannot be cast as a statistical sum

\[
\hat{\rho} \neq \sum_{i=1}^{M} a_i \prod_{k=1}^{K} |\alpha_i^k\rangle \langle \alpha_i^k|, \tag{1}
\]

\((a_i > 0, \sum_{i=1}^{M} a_i = 1) \) of \(M \) various \(i = 1, \ldots, M \) direct products \(\prod_{k=1}^{K} |\alpha_i^k\rangle \langle \alpha_i^k| \) of the density matrices \(|\alpha_i^k\rangle \langle \alpha_i^k| \) of pure states \(|\alpha_i^k\rangle \) of each part. This condition provides the most general case of entangled systems opposite to a separable quantum system comprised of statistically independent elements, where Eq. (1) holds as an equality.

Many approaches2 have been developed so far aiming to answer the question whether or not a density matrix is separable. Concerning exact analytic results, up to now, there is no method applicable to the multipartite problem, and we believe that such a solution does not exist at all. An algorithmic solution to the “decision” problem4 associated with separability has been conjectured to be a NP hard problem but valuable progress has been done (mainly on the bi-separability problem) in approaches4–9 where semidefinite programming is merged with analytic criteria.

In this work we provide a new point of view on the problem of inseparability that suggests an efficient solution based on linear programming. Employing simple geometric arguments we suggest an algorithm that results to a unique decomposition of the density matrix as

\[
\hat{\rho} = (1 - B)\hat{\rho}_{\text{sep}} + B\hat{\rho}_{\text{ent}} \tag{2}
\]

where \(\hat{\rho}_{\text{sep}} \) is the so called separable component, \(\hat{\rho}_{\text{ent}} \) the essentially entangled part which cannot have any separable states as components and \(B \) is a positive number in the range \([0, 1]\). The decomposition, Eq. (2), implies that the state \(\hat{\rho} \) is separable in all \(K \) parts only for \(B = 0 \). It turns out, that the fact that the essential entangled component \(\hat{\rho}_{\text{ent}} \) does not contain product states, leads to the conclusion that the rank of \(\hat{\rho}_{\text{ent}} \) has to be less than the rank \(N \) of the assembly density matrix \(\hat{\rho} \), being upper bounded by a number related to the dimensions of the total system and the dimensions of the elements.

On a practical level, we show that linear programming algorithm combined with a simple optimization technique allows one to efficiently find the decomposition of
a generic density matrix

\[\hat{\rho} = \sum_{i=1}^{M} a_i \prod_{k=1}^{K} |\alpha_i^k \rangle \langle \alpha_i^k | + \sum_{i=1}^{m} b_i |\beta_i \rangle \langle \beta_i | , \]

with the coefficients constrained by the requirements

\[a_i > 0, \quad b_i \geq 0, \quad \sum_{i=1}^{M} a_i + \sum_{i=1}^{m} b_i = 1, \]

\[\text{and} \quad \sum_{i=1}^{m} b_i \to \min . \]

When this limit is reached, the decomposition in Eq. (3) yields Eq. (2) with \(B = (\sum_{i=1}^{m} b_i)_{\min} \):

\[\hat{\rho}_{\text{sep}} = \sum_{i=1}^{M} \frac{a_i}{1-B} \prod_{k=1}^{K} |\alpha_i^k \rangle \langle \alpha_i^k | , \]

and

\[\hat{\rho}_{\text{ent}} = \sum_{i=1}^{m} \frac{b_i}{B} |\beta_i \rangle \langle \beta_i | . \]

Is known that the linear programming method, in the general case, scales polynomially with the dimension of the vector space where it is applied. Employing the fact that \(M + m \leq N^2 \) in Eq. (3), where \(N \) is dimension of quantum assembly under study, we show that the proposed algorithm yielding the decomposition Eq. (6) scales as \((2N^4)^3 \).

The paper is structured as follows. In Section II we introduce the idea of the decomposition Eq. (2) and illustrate its uniqueness with a simple geometric picture generalizing the Bloch vector representation of a two-level system. This picture also helps us to analyze some properties of \(\hat{\rho}_{\text{ent}} \) and we conclude this section with a theorem setting an upper limit on its rank. In Section III we present a version of an efficient linear programming algorithm allowing one to explicitly find the decomposition Eqs. (3)–(5) for a generic density matrix. In Section IV we suggest ideas for characterizing entanglement of the component \(\hat{\rho}_{\text{ent}} \) which naturally reflects the entanglement properties of \(\hat{\rho} \). In Section V we present a physical example which demonstrates the implementation of the technique introduced in previous sections and connects them with known notions in open quantum system dynamics. We conclude by the discussion in Section VI.

II. THE GEOMETRIC IDEA OF DECOMPOSITION AND PROPERTIES OF THE ESSENTIALLY ENTANGLED PART

All possible density matrices of a quantum system with a Hilbert space of dimension \(N \), are comprising a convex set of positive Hermitian matrices of unit trace. This set can be viewed as a manifold in the vector space of Hermitian matrices endowed with the a metric – the Hilbert-Schmidt inner product \(\text{tr} [\rho_i, \rho_j] \). The requirement of the unit trace in this representation means that the inner product of a vector representing a density matrix and a vector representing the unit matrix equals to unity. Henceforth we call this manifold “Liouville vector space”. Furthermore, the density matrix of a pure state has rank one, which implies that the length of the vector corresponding to a pure state, equals to unity. The density matrix manifold is thus a convex hull at the unit-length length vectors having unit projection on the unity matrix.

A natural basis exists for such a vector space suggested by the \(N^2 \) properly normalized generators \(g_i^N \) of the unitary group \(SU(N) \), including the unity \(I = \sqrt{N} g_0^N \). This basis allows one to cast a \(N \times N \) density matrix of a quantum system as \(\hat{\rho} = \sum_{i=0}^{N^2-1} \hat{g}_i^N r_i \) with \(r_i = \text{Tr}[g_i^N, \hat{\rho}] \) the \(N^2 \) real vector components. This geometric picture is in direct analogy to the Bloch vector for two-level systems. The pure quantum states lay at the surface of the unit hypersphere, \(\text{Tr}[\hat{\rho}^2] = \sum_{i=0}^{N^2-1} r_i^2 = 1 \), but in contrast to the Bloch vector of 2-dimensional pure quantum states, these states do not cover all the surface of the hypersphere of dimension \(N^2 - 2 \) but are confined at a manifold of lower dimensionality, \(N^2 - N \). This can be easily understood when the characteristic polynomial \(\text{Det}[\lambda - \hat{\rho}] = \lambda^N + c_1(\{r_i\})\lambda^{N-1} + c_2(\{r_i\})\lambda^{N-2} + \ldots + c_N(\{r_i\}) \) of a pure state is considered. The unit trace requirement ensures that \(c_1(\{r_i\}) = -1 \), while the rank 1 requirement implies the constraints \(c_m(\{r_i\}) = 0 \) for \(m = 2, \ldots, N \).

The set of \(N \) conditions on the \(N^2 \) components of the vector representing a pure state, constrains the vector to lay on a restricted manifold of lower dimension \((N^2 - N) \) at the surface of the unit hypersphere. As a consequence, the density matrices for quantum systems of dimension \(N > 2 \) do not ‘fill’ the whole inner part of the unit hypersphere, but they are laying inside an \((N^2 - 2) \)-dimensional body formed as a convex hull of the pure states of the \((N^2 - N) \) dimensional manifold. This convex hull plays the role of the Bloch ball for higher dimensions of the Hilbert space and has been exhaustively studied in 10 for the case of 3-dimensional systems. The convex hull is touching the unit hypersphere only for the pure states while its outer hypersurface, which we denote by \(S_{CH} \), is naturally the border between positive and non-positive Hermitian matrices of unit trace. Therefore \(S_{CH} \) consists only of the degenerate density matrices which have at least one zero eigenvalue. In Fig. (b) we symbolically illustrate the convex hull of pure states, such that all density matrices are inside this body.

The situation is similar for the convex hull formed exclusively by the pure product states. However since the
product states is a manifold of measure zero in the set of all states, the convex hull of pure product states is located inside the convex hull of all pure states, apart from the points at the unit hypersphere corresponding to the pure product states. At the same time, the outer surface of the convex hull of product states does not separate positive from negative matrices, and hence it must not exclusively contain degenerate matrices. In Fig. 1 (a) we illustrate the situation symbolically by showing pure product states as points at the spherical surface and the convex hull of these points by a polytope inside the sphere. At the surface and inside the polytope the states are separable.

In Fig 1 (c) we illustrate that inseparable states are the mixed states inside the body symbolizing the convex hull of pure states but are outside the polytope symbolizing the convex hull of the product states. In Fig 1 (e)-(f) we illustrate the geometric meaning of Eq. (3), that each mixed state can be represented as a sum of separable states as points at the spherical surface and the convex hull of all pure states, apart from the points at the unit hypersphere corresponding to the pure product states.

Let us now turn to the properties of the essentially entangled component $\hat{\rho}_{\text{ent}}$ which, as it will be shown now, is a density matrix of rank d_E strictly less than the dimension N of the Hilbert space of the entire system. The essentially entangled component belongs to the outer hypersurface S_{CH} of the convex hull of all states, but not every state on S_{CH} is an essentially entangled component; only some of them which do not contain the separable part (see Fig 1 (c)). In addition, the eigenvectors $\bar{\rho}_{\text{ent}}$ of $\hat{\rho}_{\text{ent}}$ with $l = 1, \ldots, d_E$, are necessarily K-entangled pure states in the sense that these cannot be written as direct product of K pure states corresponding respectively to the K subsystems. Henceforth, we call pure states which are direct products of K pure states of the K subsystem, K-product states.

Consider now the Hilbert space H_E of dimension d_E, which is associated with the eigenvectors $|\psi_l\rangle$ of $\hat{\rho}_{\text{ent}}$. Each state $|\tilde{\psi}\rangle$ belonging to the Hilbert space H_E is apparently a linear combination of the eigenvectors,

$$|\tilde{\psi}\rangle = \sum_{l=1}^{d_E} \lambda_l |\psi_l\rangle. \quad (8)$$

The vector $|\tilde{\psi}\rangle$ can be also seen as a result of the action of an element \hat{U}_E of the unitary group $SU(d_E)$ associated with the Hilbert subspace H_E at one of the eigenvectors,

$$|\tilde{\psi}\rangle = \hat{U}_E |\psi_1\rangle. \quad (9)$$

FIG. 1: A symbolic illustration of the geometric structure of density matrices and of the decomposition Eq. (2).
Now, let us consider the convex hull of the states $|\psi\rangle$ of the subspace, which naturally contains ρ_{ent}. The condition that ρ_{ent} does not have any separable components, $|\psi_{\text{prod}}\rangle\langle \psi_{\text{prod}}|$, implies that the convex hull does not contain a product state $|\psi_{\text{prod}}\rangle\langle \psi_{\text{prod}}|$ which is possible only if the Hilbert space H_E does not contain $|\psi_{\text{prod}}\rangle$. We name a Hilbert subspace with such a property an essentially entangled subspace of dimension d_E and in what follows, with the help of this necessary condition, we find an upper bound on d_E.

Theorem II.1 The maximum rank $d_{E\text{max}}$ of an essentially entangled component ρ_{ent} for a system of dimension N comprised by K subsystems each of them of dimension N_k, is $N - \sum_{k=1}^{K} N_k + K - 1$.

Proof Let us assume that the essentially entangled component ρ_{ent} is a density matrix of rank d_E, and consider the subspace H_E which is spanned by its K-entangled eigenvectors $\{|\psi_1\rangle, |\psi_2\rangle, \ldots |\psi_{d_E}\rangle\}$. Let us also consider the orthogonal compliment of the subspace H_E, H_E^\perp of dimension $N - N_{d_E}$ and arbitrary select a set of mutually orthogonal vectors $\{|\chi_1\rangle, |\chi_2\rangle, \ldots |\chi_{N-d_E}\rangle\}$ spanning H_E^\perp.

The subspace H_E is not essentially entangled, if there is at least one product state $|\psi_{\text{prod}}\rangle$ which can be expressed as in Eq. (8),

$$|\psi_{\text{prod}}\rangle = \sum_{l=1}^{d_E} \lambda_l |\psi_l\rangle.$$

(10)

where λ’s are complex numbers. Equation (10) implies that $|\psi_{\text{prod}}\rangle$ must be orthogonal to every element $\{|\chi_i\rangle\}$, with $i = 1, \ldots, N - d_E$, of the chosen basis in H_E^\perp,

$$\langle \psi_{\text{prod}} | \chi_{i=1,\ldots,N-d_E} \rangle = 0.$$

(11)

The maximum number of such conditions equals to the number of parameters defining a product state, which for a K-product state amounts to $\sum_{k=1}^{K} N_k - K$. Therefore the maximum rank of an essentially K-entangled density matrix cannot be equal or exceed $\sum_{k=1}^{K} N_k - K$.

The maximum rank is smaller when we speak not about the essentially K-entangled component, but about the essentially entangled component which does not contain, not only K-product but also any product state. For this case one has to identify the bi-partition of the system that yields the maximum number of parameters characterizing the product state.

In the Appendix we provide a more detailed proof of this theorem.

We note that since $N = \prod_{k=1}^{K} N_k$ in the limit $N >> 1$, $d_{E\text{max}} \to N$. On the opposite limit, the case of 2 qubits in mixed state, the essentially entangled subspace is of dimension one, implying that the essentially entangled component can only be a pure entangled state. A problem which we do not address here, related to the distillability of mixed states ρ_{ent}, is whether the dimensionality of the essentially entangled subspace is related with the presence of maximally entangled states within.

III. The Linear Programming Iteration Algorithm that Yields the Essentially Entangled Component of a Density Matrix

One can find the maximum separable and the essentially entangled components of an arbitrary density matrix straightforwardly with the help of the linear programming algorithm applied to the convex hull of general pure states and the “polytope” of pure separable quantum states. The main obstacle on this way is a high dimensionality of the corresponding Liouville vector space, which makes intractable the direct approach within any approximation. In fact, even for the simplest multipartite system of three qubits, the dimensionality (N^2) of the density matrix space is 64, such that even for the rather low-accuracy approximation attributing just 10 points per dimension, one encounters a polytope of already 10^{64} vertices.

Here, we suggest a way to crucially decrease the number of the vertices that enter as samples in the algorithm and, in consequence, the computational complexity of the procedure. We first notice the fact that the solution of the problem and, in general, any convex decomposition of the form Eq. (3), allows for at most N^2 non-zero coefficients a_i and b_i. This observation can be formally justified by a theorem of Carathéodory as mentioned in [7]. In the limit $B = (\sum_{i=1}^{N} b_i)_{\text{min}}$, the pure states are the vertices associated with the corners of the facets corresponding to the solution, as illustrated in Fig. 1 (e)-(f), while other vertices can be discarded.

Therefore, at first step we may randomly take N^4 product states, N^4 general states and in order to ensure the algorithmic stability, complement this set by the N^2 eigenvectors of the given density matrix. We find the solution of the linear programming problem, which typically has complexity $\sim (2N^4)^3$, and thereby identify at most $N^2 - J$ product states and J general states with nonzero coefficients a_i and b_i, respectively. The linear constraint imposed on the algorithm is the minimization of $\sum_{i=1}^{N} b_i$ and the solution provided is a ‘local’ minimum, for the given set of vectors fed to the algorithm. Our aim is to find the global minimum value of $\sum_{i=1}^{N} b_i$ that is equal to B and to this end we create an iterative optimization loop which guides us there.

At the second and subsequent steps, we take the product states resulting from the solution of the optimization problem at the former step and by applying to each of them N^2 randomly chosen local transformations $\exp\{i\sum_{i=1}^{N} \alpha_i \hat{g}_i \}$ we generate $\sim N^4$ new product states. We also generate new entangled states by applying random generic transformations $\exp\{i\sum_{i=1}^{N^2 - 1} \beta_i \hat{g}_i \}$ to each of the entangled states obtained at the former step. Here i numerates generators of the $SU(N)$ group while i local mean generators of the subgroup of local transformation. Random parameters and are normally distributed with width gradually de-
creasing with the number of the iteration step. We again solve the linear programming problem for \(\sim N^4 \) vertices at these two new polytopes and iteratively repeat all the procedure till the result converges. Note that each next step, the presence of the solution of the former step of the loop is essential in order to guarantee an outcome from the linear programming algorithm. The set of the eigenvectors of the density matrix plays this role for the first step. Numerical inspection shows that the final results of the algorithm i.e., the product component \(\hat{\rho}_{\text{sep}} \) and the essentially entangled part \(\hat{\rho}_{\text{ent}} \), Eqs. (6)-(7), are always the same for different runs.

The algorithm described above concerns the case of full separability of a state or else, the identification of the essentially \(K \)-entangled component. The same steps, can be applied if we make repartition the initial system and consider \(L \)-separability of the state with \(L < K \). Furthermore, if the set of separable states is enlarged to include other special classes of pure states e.g. states of the \(W \) class [12], then one can apply the idea of the algorithm for revealing the classification of a mixed entangled state similar to the one introduced in [13].

Finally we would like to note that linear programming scales polynomially with the dimension of the vector space under consideration in the general case but not always—still a zero-measure of non-polynomial cases may exist. In consequence, the same additional ‘rule’ has to be applied to the proposed algorithm. However, even in this case, a small random variation of the initial density matrix brings the problem back to a polynomially complexity.

IV. SUGGESTIONS FOR CHARACTERIZING ENTANGLEMENT PROPERTIES OF THE ESSENTIALLY ENTANGLED COMPONENT

We may claim that all information relevant to entanglement is contained in the essentially entangled part \(\hat{\rho}_{\text{ent}} \) of the density matrix. Though this is not the main object of this work, we make some simple suggestions for analyzing entanglement properties of \(\hat{\rho}_{\text{ent}} \) employing previous results [14] about characterization of entanglement for pure states.

For pure quantum states, entanglement is directly related to the factorizability at state vectors, and therefore one can characterize entanglement by identifying the orbit of local transformations for a given state. This orbit can be marked by a complete set of polynomial invariants or alternatively by the coefficients \(\{\beta\} \) of the tanglemeter \(\tilde{N}l(\{\beta\}) = \sum_{i,...,j} \beta_i \cdots \beta_j \sigma_i^+ \cdots \sigma_j^+ \) of a given state [14].

The state defined as \(|c(\{\beta(x)\})\rangle = \exp[\tilde{N}l(\{\beta(x)\})] |0\rangle \) is the so called canonical state, and this can be reached from the state under study by the action of local operations under the constraint that the population of the reference state \(|0\rangle \) is maximized. In addition to the identification of the orbit of local transformations the tanglemeter generalizes the concept of logarithm to vectors and its coefficients straightforwardly reveal the factorization properties of the state.

Entanglement of mixed states cannot rely only on one operation of group multiplication but it should also involve the procedure of casting in convex sums. Therefore the algebraic structure does not suggest a natural framework for the characterization of entanglement in this case. Construction of an approach to entanglement characterization is a convenience just complementing the exhaustive information contained in the essentially entangled part of the density matrix.

A straightforward way to characterize entanglement of mixed states would be to find the tanglemeters of the eigenstates of \(\hat{\rho}_{\text{ent}} \). However, it does not mean that an entangled state corresponding to another orbit cannot be detected. In fact, any pure state which belongs to the essentially entangled subspace \(H_E \) spanned by the eigenvectors of \(\hat{\rho}_{\text{ent}} \), is also a legitimate representative of the ensemble of entangled states associated with this density matrix. One therefore may want to find the “corners” of this ensemble of states by identifying the state \(|c_1\rangle \) in \(H_E \) closest to the set of product states \(\mathcal{P} \), followed by identification of a state \(|c_2\rangle \downarrow |c_1\rangle \) closest to \(\mathcal{P} \) then, \(|c_3\rangle \downarrow |c_2\rangle , |c_1\rangle \) etc, till \(|c_{d_E}\rangle \), and calculate tanglemeters for these “corners”. Tanglemeter coefficients of any state in \(H_E \) will therefore be within the borders given by these “corners”. We would like to mention here that the use of the tanglemeter as a method for characterizing multipartite entanglement is not essential here. One may apply this idea to other measures of multipartite entanglement for pure states as are the entanglement monotones from anti-linear operators introduced in [12].

One more option is to find the tanglemeter coefficients distribution function

\[
P(\{\beta\}) = \int \langle c(\{\beta(x)\})|\hat{\rho}_{\text{ent}}|c(\{\beta(x)\})\rangle \delta(\{\beta(x)-\beta\}) d\mu_{x\in H_E}
\]

resulting from averaging over the Haar measure \(\mu_{x\in H_E} \) in the subspace \(H_E \) in according with the Eq. (9) with weight suggested by \(\hat{\rho}_{\text{ent}} \), the probability to have canonic state with given tanglemeter coefficients. The number \(P(\{\beta\}) \) gives the probability density to find an entangled state which belongs to the orbit characterized by the set \(\{\beta\} \) of the tanglemeter coefficients. In the case where one of the eigenvalues of \(\hat{\rho}_{\text{ent}} \) is much larger than others, the probability distribution \(P(\{\beta\}) \) locates near the tanglemeter of the corresponding eigenvector and it can be adequately characterized by a small covariance matrix of the tanglemeter’s coefficients.

V. EXAMPLE

We now present an illustration of the introduced methods at a physical example of an open system experiencing loss of coherence due to presence of classical noise. The
model comprises three elements: two two-level systems and a three-level system. The local symmetry group for each of two-level systems is the SU(2) group, for the three-level SU(3) group, while for the total assembly the group of transformations (local and non-local) is the SU(12). We consider the following physical ingredients of the combined system: an atom in p-state \((L = 1, M_L = 0, \pm 1)\) in a static magnetic field, which parametrically interacts with a two-mode electromagnetic field.

We also assume that each of the field modes allows for two possible polarizations of the photons.

The Hamiltonian of the system consists of four parts: (i) the Hamiltonian of the first field mode \(\hat{H}_1 = k_z (\hat{a}_x^\dagger \hat{a}_x + \hat{a}_y^\dagger \hat{a}_y)\) with wavevector \(k_z\) and polarizations \(x\) and \(y\), (ii) the Hamiltonian of the second mode \(\hat{H}_2 = k_x \left(\hat{b}_y^\dagger \hat{b}_y + \hat{b}_z^\dagger \hat{b}_z\right)\) with wavevector \(k_x\), (iii) the Hamiltonian of the atom \(\hat{H}_3 = \left[H \cdot \vec{L}\right]\) in the static magnetic field \(H = \{H_x, H_y, H_z\}\) field, where \(\vec{L}\) the angular momentum vector operator, and (iv) the Hamiltonian describing the parametric interaction

\[
\hat{H}_4 = \frac{(\hat{a}_x^\dagger \hat{a}_y + \hat{a}_y^\dagger \hat{a}_x) \hat{X} \hat{Y}}{k_z - \omega_1} + \frac{(\hat{b}_y^\dagger \hat{b}_z + \hat{b}_z^\dagger \hat{b}_y) \hat{Y} \hat{Z}}{k_x - \omega_2},
\]

which results from the second order perturbation theory applied over the dipole interaction \((\hat{a}_x^\dagger + \hat{a}_x) \hat{X} + (\hat{a}_y^\dagger + \hat{a}_y) \hat{Y} + (\hat{b}_y^\dagger + \hat{b}_y) \hat{Y} + (\hat{b}_z^\dagger + \hat{b}_z) \hat{Z}\).

Here \(\hat{a}_i^\dagger\) and \(\hat{b}_j^\dagger\) are the photon creation operators of the first and the second mode, respectively, corresponding to polarization along the direction \(i\), while \(\hat{a}_i\) and \(\hat{b}_j\) are their conjugate photon annihilation operators, respectively. By \(\omega_1\) and \(\omega_2\) we denote the frequencies of the allowed dipole atomic transition from the state \(p\), that are closest to the frequencies of the first \(k_z\) and the second \(k_x\) photon modes, respectively. The atomic optical electron radius-vector operator \(\vec{R} = \{\hat{X}, \hat{Y}, \hat{Z}\}\) and the angular momentum vector operator \(\vec{L} = \{\hat{L}_x, \hat{L}_y, \hat{L}_z\}\) enter the Hamiltonian as the tensor product and the scalar products with the magnetic field, respectively, while the light velocity, the electron charge, and the Planck’s constant are set to unity.

Since parametric interaction implies conservation of the total number of photons on the two modes, \(\hat{H}_1 + \hat{H}_2\) is an integral of motion for the system and only the Hamiltonians \(\hat{H}_3\) and \(\hat{H}_4\) are responsible for the dynamical process of interest. The relevant part \(\hat{H} = \hat{H}_3 + \hat{H}_4\) can be re-written in a more convenient way, noting that the \(x\), \(y\), and \(z\) components of the vector-operator \(\vec{L}\) form an \(su(2)\) subalgebra of the symmetry algebra \(su(3)\) of the atomic triplet \(p\), while the operators \(\hat{X} \hat{Y}\) and \(\hat{Y} \hat{Z}\) entering \(\hat{H}_4\) as the tensor product of the components of \(\vec{R}\) do not belong to this subalgebra and yield other generators of \(SU(3)\) group. All these operators can be expressed in terms of Gell-Mann matrices \(\hat{\lambda}_i\) with \(i = 1, \ldots, 8\). Moreover, the properly normalized bi-linear photon operators \(\hat{a}_x^\dagger \hat{a}_y + \hat{a}_y^\dagger \hat{a}_x, \hat{a}_y^\dagger \hat{a}_x - \hat{a}_x^\dagger \hat{a}_y,\) and \(\hat{a}_x^\dagger \hat{a}_x - \hat{a}_y^\dagger \hat{a}_y\) of the first mode form an \(su(2)\) algebra, and so do the similar operators of the second mode. Therefore, these can be expressed in terms of the Pauli matrices \(\hat{\sigma}_{1,i}\) and \(\hat{\sigma}_{2,i}\), respectively, with \(i = x, y, z\). Summarizing, the Hamiltonian \(\hat{H} = \hat{H}_3 + \hat{H}_4\) can be cast in the form

\[
\hat{H} = \sum_{i=1}^{3} \hat{\lambda}_i f_i + f_4 \hat{\sigma}_{1,\hat{x}} \hat{\lambda}_4 + f_5 \hat{\sigma}_{2,\hat{x}} \hat{\lambda}_6 + \varepsilon_1 \hat{\sigma}_{1,\hat{z}} + \varepsilon_2 \hat{\sigma}_{2,\hat{z}},
\]

where the parameters \(f_i = 1, 2, 3\) depend on the static field, parameters \(f_4\) and \(f_5\) are governed by the detuning of the photon frequencies from the atomic transition frequencies, and parameters \(\varepsilon_1, \varepsilon_2\) deviate from zero when the photon frequency turns to be dependent on the polarization in the presence of an anisotropy of the refraction index (that is when \(k_z\) is slightly different for the \(x\) and \(y\) polarizations, and similar for \(k_x\)).

Now let us consider a realistic situation where the static field experiences small and rapid fluctuations, that is \(f_i(t) = \hat{T}_i + \delta f_i(t)\) for \(i = 1, 2, 3\). In this case the Liouville equation \(i\hat{\rho} = \left[\hat{H}(t), \hat{\rho}\right]\) describing the time evolution of the density matrix \(\hat{\rho}(t)\) of the assembly, can be averaged over these rapid fluctuations \(\delta f_i(t)\), yielding

\[
\hat{\rho} = \sum_{i=1}^{3} \hat{\lambda}_i \hat{T}_i + \sum_{i,j=1}^{3} \delta f_i(t) \delta f_j(t) \hat{H}_4
\]

yielding

the following Lindblad master equation

\[
\hat{\rho}(t) = \sum_{i=0}^{143} r_i(t) \hat{g}_i^{12}
\]

of the density matrix in terms of the generators of the unitary group \(SU(12)\), yields a system of 143 linear, first-order differential equations

\[
ir_k = \sum_{m=1}^{143} \left(\text{Tr}\left\{1 \hat{g}_k^{12} \left[\hat{H}_4, \hat{g}_m^{12}\right]\right]\right) - iR_{k,m} \left(r_m\right)
\]

for the real vector components \(r_i(t)\). Straightforward analytic solution of Eq. (17) gives oscillations with time for some of the coefficients \(r_i(t)\) while others die off with rates determined by the relaxation operator \(R_{k,m}\).

A considerable amount of work on the understanding of the dynamics of entanglement has been performed so far and we refer an interested reader to [5] for a complete review and reference list. In Fig. 1 we graphically represent a generic solution for this example, as a spiral in the
Liouville space, gradually approaching a stationary solution. This picture also provides a complementary point of view on the phenomenon of sudden death and revival of entanglement \[12\]. With the course of time, we expect the essentially entangled part to oscillate between different subspaces and eventually to vanish for sometime – when the density matrix is passing inside the polytope of separable states as it is illustrated in Fig. 2. The revival of entanglement is marked by the exit of the density matrix from the polytope. This graphical representation is justified by the calculations which we present in the following.

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

\[
\hat{\rho}_i = 0.2 \left[\hat{\lambda}_1 + \hat{\lambda}_2 \right] + 0.5 \hat{\lambda}_1 \hat{\sigma}_{1x} + 0.3 \hat{\lambda}_2 \hat{\sigma}_{2x}
\]

\[
\hat{\lambda}_1 = \hat{\lambda}_2 + \hat{\lambda}_3 \quad \hat{\lambda}_3 = \hat{\lambda}_1 - \hat{\lambda}_3 \quad \hat{\lambda}_1 = \hat{\lambda}_3
\]

\[
\hat{R} = \sum_{i,j=1}^{4} \alpha_{ij} \left[\hat{\lambda}_i, \hat{\lambda}_j \right]
\]

FIG. 2: A symbolic description of the trajectory in the Liouville space of a mixed state undergoing loss of coherence due to interaction with the environment. Crossing of the polytope of the separable states results in sudden death (or birth) of entanglement. In the inlet we list the numerical values of the parameters of the model.

We now solve the model Eq. (17) for a set of given values for \(f_i \) presented in Fig. 2 and reconstruct the density matrix \(\hat{\rho}(t) \) with the help of Eq. (15). We summarize the results of calculations in Fig. 3. In Fig. 3 (a) we plot the purity \(P(t) = \text{Tr} \left[\hat{\rho}^2(t) \right] \) of the density matrix as a function of time. At each time step we apply the algorithm and we decompose the density matrix as \(\hat{\rho}(t) = (1-B(t)) \hat{\rho}_{\text{sep}}(t) + B(t) \hat{\rho}_{\text{ent}}(t) \), Eq. (12). In Fig. 3(b) we plot the weight \(B(t) = \sum_{i=1}^{n} b_i \), Eq. (15), of the essentially entangled component in the density matrix. The weight \(B(t) \) is decreasing with time faster than the purity does and in addition it exhibits some oscillatory behavior. In Fig. 3 (c) we plot the rank \(d_E \) of \(\hat{\rho}_{\text{ent}}(t) \), and we observe that this moves in a rather random way between the value 1 and 5. We note that if full \((K=3)\) separability is considered then \(d_{E_{\text{max}}} = 7 \). However in our program we have included in the “polytope” of separable states also the bi-separable states, thus actually \(d_{E_{\text{max}}} = 5 \). The "jumps" of the rank demonstrate the recursive move of essentially entangled component between different essentially entangled subspaces on \(S_{CH} \). Moreover, in the time interval \([18.8-19.7] \), \(B(t) \) vanishes implying that the state enters inside the polytope of separable states. This physical situation describes a sudden death and sudden revival of entanglement a phenomenon \[17-19\] which has been studied extensively with other methods. Our geometric decomposition offers additional information on the origin of this phenomenon, see Fig. 4.

In order to analyze the entanglement properties of the essentially entangled component we first note that for the chosen model system in the vast majority of the time steps, there is a dominant eigenvector \(\hat{\rho}_{\text{dom}} \) with a corresponding eigenvalue \(\lambda_{\text{dom}} > 0.9 \), see Fig. 3 (d). Therefore, for this specific example and assigned parameters, it makes sense just to analyze entanglement properties of \(\hat{\rho}_{\text{dom}} \), whenever the condition \(\lambda_{\text{dom}} > 0.9 \) is satisfied, and to conclude from this analysis the entanglement properties of \(\hat{\rho}_{\text{ent}} \). Naturally, this analysis together with the weight \(B(t) \), give all the information necessary to describe entanglement in \(\hat{\rho} \).

We analyze the entanglement properties of \(\hat{\rho}_{\text{dom}} \) with the help of the method of nilpotent polynomials \[14\]. In the Appendix we provide an explicit method for deriving the general expression for the tanglemeter of a wavevector describing an assembly of a three-level system and two two-level systems:

\[
\tilde{\mathcal{N}}(\{\beta\}) = \left(\beta_{110} \hat{\imath} \hat{\sigma}_1^+ + \beta_{101} \hat{\imath} \hat{\sigma}_2^+ + \beta_{011} \hat{\sigma}_1^+ \hat{\sigma}_2^+ + \beta_{210} \hat{\sigma}_1^+ \hat{\sigma}_2^+ + \beta_{201} \hat{\sigma}_1^+ \hat{\sigma}_2^+ + \beta_{111} \hat{\imath} \hat{\sigma}_1^+ \hat{\sigma}_2^+ \right)
\]

with \(\beta_{111}, \beta_{201}, \beta_{210}, \beta_{110} \) being positive numbers and \(\beta_{101}, \beta_{011} \) being complex. The matrix representation of the nilpotent variables (operators) \(\hat{u}^+, \hat{v}^+, \hat{\sigma}^+ \) is also provided in the Appendix. Concerning now the physical meaning of the coefficients. The coefficients of the tanglemeter even though are not entanglement monotones \[2\] in the strict sense, these are invariant under the action of local transformations and the presence of any non-zero term in the tanglemeter ensures the presence of entanglement. More precisely, the coefficient \(\beta_{111} \) ensures the presence of genuine tripartite entanglement in the state while the rest of the coefficients are related to bipartite entanglement. In Fig. 3 (e)-(h) we plot those coefficients which are positive, and we observe that these oscillate with time without dissipation. The same holds for the real and imaginary parts of the complex ones not shown on the figure.

With this example, in addition to the death and revival of entanglement, we observe two interesting phenomena which need more case study in order to decide whether are specific to this example or general. The first is the presence of a dominant eigenvector in the essential entangled component and the second is the oscillations without dissipation of the entanglement characteristics of the essential entangled component.
VI. CONCLUSIONS

In this work we have introduced a concept related to entanglement of mixed states namely the essentially entangled component of a mixed multipartite state. Our main tool is the accustomed geometric description of mixed quantum states in the spirit of Bloch vector representation, which results from the decomposition of a density matrix over the generators of the relevant group. We have shown that pure states are not everywhere on the surface of this hypersphere, in the contract to the Bloch vector, and that the convex hull of pure states
from a convex “body” inside the sphere. The convex hull of separable states forms a convex “polytope” inside the “body” of general states. As a consequence the entangled states inside the body and outside the polytope can be represented as sum of a separable state on the surface of the polytope and an essentially entangled component located on the surface of the “body”. More important, we introduce an efficient, in the general case, linear programming algorithm for finding this unique decomposition.

Furthermore, we analyze some properties of the essentially entangled components and we suggest methods for characterizing its entanglement. The essentially entangled components being located on the surface of the “body”, form there sets of lower dimensions, such that the rank of the relevant density matrix does not exceed a number which depends on the dimensions of the total system, and on its chosen partition.

Finally, at a particular example we study the dynamics of an open quantum system and we reconstruct the time trajectory of the decomposed density matrix inside the convex “body”. Sudden death and sudden birth of entanglement can be seen as the results of crossing of the of the trajectory of the density matrix with the surface of the “polytope” of separable states.

Entanglement of quantum mixed states is a well studied problem and many concepts and techniques have been developed so far for its description and detection. The most prominent analytic techniques are the positivity under partial transposition criterion [20] (also known as Peres-Horodecki criterion) and the idea of entanglement witnesses [21]. Our suggested approach implies that no exact analytical solution exists for the separability problem, since this is typical linear programming problem in the general case.

The algorithm introduced in this work scales polynomially with the dimension of the system in the general case, and it can be employed to study interesting open problems and conjectures. For instance, this can be applied straightforwardly to address the question of the relative volume of separable states over entangled mixed states as function of the total purity of the system and the total dimension of the system [22]. An answer to this question can serve to the evaluation of emerging quantum technologies and their quantum limits. Moreover, the essentially entangled component containing all entanglement properties of the density matrix may also provide new directions to entanglement detection [23] and entanglement distillation [11] techniques.

Acknowledgement

VA acknowledges stimulating and useful discussions with Mikhail Tsvasman and Sergey Pirogov and the hospitality accorded to him at Laboratoire J.-V. Poncelet CNRS. AM acknowledges financial support from the Ministry of Education and Science of the Republic of Kazakhstan (Contract # 339/76 – 2015).

APPENDIX

A. A second formulation and proof of the main theorem

Here we provide a more detailed formulation and proof for the theorem given in Section II which does not rely on a particular quantum mechanical representation.

The maximum rank $d_{E_{\max}}$ of an essentially entangled component is $N_{CG} - N_{CS}$, where N_{CG} is the dimension of the Cartan subgroup of the group of all transformations on the state and N_{CS} is the dimension of Cartan (sub)subgroup generating only local transformations.

Remark. The numbers N_{CG} and N_{CS} give the numbers of complex parameters characterizing generic and product state vectors, respectively, on $N = N_{CG} + 1$ dimensional Hilbert spaces.

Proof Consider a density matrix $\hat{\rho}$ and its decomposition to the essentially entangled and separable part $\hat{\rho} = (1 - B)\hat{\rho}_{sep} + B\hat{\rho}_{ent}$. Since B corresponds to a minimum value of all possible weights, we conclude that no $\epsilon > 0$ and product vector $\langle p \rangle$ exist such that $\hat{\rho}_{ent} - \epsilon |p\rangle \langle p|$ is a positive matrix. Considering now the essentially entangled subspace H_E spanned by the eigenvectors $|\psi_i\rangle$ with non-zero eigenvalues of $\hat{\rho}_{ent}$ with $i = 1, \ldots, d_E$, this condition means that no product state $|p\rangle$ exists in H_E. Indeed, for the case where

$$|p\rangle = \sum_{i=1}^{d_E} |\psi_i\rangle + \epsilon^0 |p^0\rangle$$

(A-1)

with $\langle p^0 \mid \psi_i \rangle = 0$ for every $i = 1, \ldots, d_E$ one identifies the vector $|p^0\rangle$ orthogonal to the subspace of d_E eigenvectors which makes

$$\langle p^0 \mid (\hat{\rho}_{ent} - \epsilon |p\rangle \langle p|) |p^0\rangle = -\epsilon \langle |p\rangle |p^0\rangle^2 < 0,$$

(A-2)

and therefore extremality implies that no product state is orthogonal to the orthogonal compliment H_E^\perp of H_E spanned by the eigenvectors $|\psi_i\rangle$ of $\hat{\rho}_{ent}$ with zero eigenvalues and $i = d_E, \ldots, N_{CG}$.

In other words, in order to find such a state we have to satisfy $N_{CG} - d_E$ equations $\langle p \mid \psi_i \rangle = 0$ with $i = d_E + 1, \ldots, N_{CG}$ for a product state $|p\rangle$ given by specification of its N_{CS} parameters. This is impossible when $N_{CG} - d_E \geq N_{CS}$, which determines the maximum rank $d_{E_{\max}}$ of $\hat{\rho}_{ent}$.

B. Deriving the tanglemeter of the physical example in Section V

The system under consideration consists of the two modes of the field interacting with a three-level atom. The Hilbert space thus is of dimension $N = 12$, a direct product of the spaces of two two-level systems (qubits)
and of one three level system (qutrit). In the standard computational basis a state vector of the system is expressed as

$$|\Psi\rangle = \psi_{000} |000\rangle + \psi_{100} |100\rangle + \psi_{200} |200\rangle + \psi_{010} |010\rangle + \psi_{001} |001\rangle + \psi_{110} |110\rangle + \psi_{210} |210\rangle + \psi_{201} |201\rangle + \psi_{111} |111\rangle + \psi_{211} |211\rangle.$$

or alternatively using the nilpotent creation operators

$$\hat{a}^+ = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad (A-3)$$

$$\hat{t}^+ = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad (A-4)$$

$$\hat{\sigma}^+ = \begin{pmatrix} 0 & 1 \\ 0 \\ 0 \end{pmatrix}, \quad (A-5)$$

as

$$|\Psi\rangle = (\psi_{000} \hat{t}^+ + \psi_{100} \hat{a}^+ + \psi_{200} \hat{a}^+ + \psi_{010} \hat{\sigma}^+ + \psi_{001} \hat{\sigma}^+ + \psi_{101} \hat{\sigma}^+ + \psi_{201} \hat{t}^+ \hat{\sigma}^+ + \psi_{210} \hat{t}^+ \hat{\sigma}^+ + \psi_{211} \hat{t}^+ \hat{\sigma}^+) |000\rangle.$$

The next step that should be performed is the application of all the available local transformations \((SU(3) \otimes 1 \otimes 1, 1 \otimes SU(2) \otimes 1, 1 \otimes 1 \otimes SU(2))\) on the given state \(|\Psi\rangle\) in order to construct the corresponding canonical state \(|\Psi_c\rangle\) which marks the orbit of local transformations. To simplify the procedure, we apply the local transformations on a given \(|\Psi\rangle\) in the following order:

(a) We first apply local operations generated by the operators \(\{\hat{\sigma}_1^x, \hat{\sigma}_2^x, \hat{\sigma}_3^x, \hat{\lambda}_4, \hat{\lambda}_5, \hat{\lambda}_6, \hat{\lambda}_7\}\) and we require that the population of the reference level \(|000\rangle\) is getting maximum. Under this condition the populations of the levels \(|100\rangle, |200\rangle, |010\rangle, |001\rangle\) are vanishing.

(b) We then apply local operations generated by \(\{\hat{\lambda}_1, \hat{\lambda}_2\}\) to maximize also the population of the level \(|111\rangle\). This way the contribution of the level \(|211\rangle\) also vanishes.

(c) Finally we apply local operations generated by \(\{\hat{\sigma}_1^+, \hat{\sigma}_2^+, \hat{\lambda}_3, \hat{\lambda}_8\}\) in order to make the phase of \(|111\rangle, |210\rangle, |201\rangle, |110\rangle\) equal to the phase of the amplitude of the reference level \(|000\rangle\).

After this procedure one obtains the following form for the unnormalized canonical state:

$$|\Psi_c\rangle = (1 + \alpha_{110} \hat{t}^+ \hat{\sigma}_1^+ + \alpha_{101} \hat{t}^+ \hat{\sigma}_2^+ + \alpha_{011} \hat{t}^+ \hat{\sigma}_3^+ + \alpha_{201} \hat{t}^+ \hat{\sigma}_4^+ + \alpha_{101} \hat{t}^+ \hat{\sigma}_5^+ + \alpha_{011} \hat{t}^+ \hat{\sigma}_6^+ + \alpha_{110} \hat{t}^+ \hat{\sigma}_7^+) |000\rangle.$$

with \(\alpha_{111}, \alpha_{201}, \alpha_{101}, \alpha_{011}\) being positive numbers and \(\alpha_{101}, \alpha_{011}\) being complex.

The final step for arriving to the tanglemeter \(\hat{N}_1(\{\beta\})\) of the state is to take the logarithm of the polynomial on the nilpotent variables \(\hat{t}^+, \hat{\sigma}_{1,2}^+\) in Eq. (A-6). It is easy to show that

$$\hat{N}_1(\{\beta\}) = \beta_{110} \hat{t}^+ \hat{\sigma}_1^+ + \beta_{101} \hat{t}^+ \hat{\sigma}_2^+ + \beta_{011} \hat{t}^+ \hat{\sigma}_3^+$$

$$+ \beta_{210} \hat{t}^+ \hat{\sigma}_4^+ + \beta_{201} \hat{t}^+ \hat{\sigma}_5^+ + \beta_{111} \hat{t}^+ \hat{\sigma}_6^+ + \beta_{101} \hat{t}^+ \hat{\sigma}_7^+$$

with \(\beta_{110} = \alpha_{110}, \beta_{101} = \alpha_{101}\) etc.

[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral Rev. Mod. Phys. 80, 517 (2008).
[2] R. Horodecki, P. Horodecki, R. Horodecki, and R. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
[3] L. Aolita, F. de Melo, and L. Davidovich, Open-System Dynamics of Entanglement, arXiv:1402.3713, to appear in Reports on Progress in Physics
[4] L. Gurvits, in STOC ’03: Proceeding of the Thirty-fifth annual ACM Symposium on Theory of Computing (ACM Press, New York, 2003), pp. 10-19.
[5] A. C. Doherty, P. A. Parrilo and F. M. Spedalieri, Phys. Rev. Lett. 88, 187904 (2002).
[6] H. J. Woerdeman, Phys. Rev. A 67, 010303(R) (2003).
[7] L. M. Ioannou, B. C. Traviglione, D. C. Cheung and A. K. Ekert, Phys. Rev. A 70, 060303(R) (2004).
[8] F. M. Spedalieri, Phys. Rev. A 76, 032318 (2007).
[9] L. M. Ioannou, Quant. Inf. Comp. 7, 335 (2007).
[10] C. M. Caves and G. J. Milburn, Opt. Comm. 179, 439 (2000).
[11] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).
[12] W. Dür, G. Vidaland J. I. Cirac, Phys. Rev. A 62, 062314 (2000).
[13] B. Jungnitsch, T. Moroder and O. Gühne, Phys. Rev. Lett. 106, 190502 (2011).
[14] A. Mandilara, V.M. Akulin, A. Smilga, and L.Viola, Phys. Rev. A 74, 022371 (2006).
[15] A. Osterloh and J. Siewert,Phys. Rev. A 72, 012337 (2005).
[16] V.M. Akulin Dynamics of Complex Quantum Systems, Springer Dordrecht Heidelberg, New York, London, 2014, pp 228-231.
[17] T. Yu and J. H. Eberly, Phys. Rev. Lett. 93, 140404 (2004); J. H. Eberly and T. Yu, Science 316, 555 (2007).
[18] B. V. Fine, F. Mintert and A. Buchleitner, Phys. Rev. B 71, 153105 (2005).
[19] C. E. Lopez, G. Romero, F. Lastra, E. Solano and J. C. Retamal, Phys. Rev. Lett. 101, 080503 (2008).
[20] A. Peres, Phys. Rev. Lett. 77, 14131415 (1996); M.
Horodecki, P. Horodecki and R. Horodecki, Physics Letters A 223, 1-8 (1996).

[21] M. Lewenstein, B. Kraus, J. I. Cirac and P. Horodeci, Phys. Rev. A 271, 319 (2000).

[22] K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A 58, 883 (1998).

[23] Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).