Ginger From Ancient Times to the New Outlook

Laleh Khodaie 1,*, Omid Sadeghpoor 2

1Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
2Department of Traditional Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
*Corresponding author: Laleh Khodaie, Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran. Tel: +98-48379527, Fax: +98-48379527, E-mail: khodaie@gmail.com

Received: February 22, 2014; Accepted: August 20, 2014

Context: Ginger is the rhizome of Zingiber officinale, a perennial plant, used alone or in compounds as a spice or remedy in ancient recipes of Iranian traditional medicine (ITM) as an effective tonic for the memory and digestive system, the opener of hepatic obstructions, aphrodisiac, for expelling compact wind from stomach and intestines, diluting, desiccating and emollient of phlegmatic and compact humor sticking to body organs, stomach, intestine, brain and throat. The ITM scholars believed that ginger was a vermifuge as well as a remedy for paralysis and obstructive jaundice. They also revealed that this phytomedicine cures diarrhea due to corrupted food. This study aimed to compare the medicinal properties (afaal) of ginger in ITM with those indicated in modern research.

Results: Results of this study showed that the modern phytotherapy confirmed some of the properties of ginger. In addition, some of the properties of this phytomedicine have not been studied yet.

Conclusions: By studding the ITM literature, herb elements or in other words ITM keywords, researchers can predict and state some unknown or less known potential pharmacologic effects of medicinal plants.

Keywords: Ginger; Iranian Traditional Medicine; Plant

1. Context

Zingiber officinale, with commonly known name of ginger, named "zangabil" in Persian (1), belonging to Zingiberaceae family, has been used alone or in compounds as a spice or remedy in ancient recipes of ITM manuscripts. This plant is endemic to India and cultivated in South and South-East Asia, Africa, Latin America and Australia (2). Some of the important applications of ginger in ITM manuscripts are as follows: a tonic for the memory and digestive system, the hepatic obstructions opener, aphrodisiac, for expelling compact wind from stomach and intestine, diluting, desiccating and emollient of phlegmatic and compact humor sticking to stomach, intestine, brain and throat. According to the ITM literature, ginger is a vermifuge and a remedy for paralysis and obstructive jaundice. This phytomedicine also cures diarrhea due to corrupted food (1, 3-7). So far, there have been lots of discussion about phytochemicals and pharmacologic effects of ginger in modern phytotherapy, while too little attention has been paid to application of this plant in ITM; therefore, this study aimed to determine the confirmed medicinal properties of ginger declared in ITM and indicate that studying the elements of herbs (according to ITM doctrine) would be helpful to describe medicinal properties of the herbs. To the best of our knowledge, this is the first study on ITM information of ginger which would guide us to understand the potential medicinal activities of this valuable phytomedicine.

2. Evidence Aquisition

2.1. Botanical Characteristics of Ginger

Ginger or ginger root is the rhizome of Z. officinale, a perennial plant with annual leafy stems, grass-like and bright green leaves, yellowish green flowers, tuberous and fleshly rhizomes (8).

2.2. Modern Phytotherapy Information on Ginger

Phytochemicals of ginger vary depending on its growing place, freshness and dryness of it (9). This part of article will focus on major components of ginger indicating pharmacological effects. Light yellow volatile oil of ginger with its pleasant odor, varying yield of 1-3%, is mainly consisted of monoterpenes and sesquiterpenoids (10). Prior studies showed that a solution consisted of 5% ginger essential oil in grape seed oil, applying nasocutaneously could prevent postoperative nausea (11). Anti-inflammatory, immunomodulatory, analgesic and antibacterial activity of volatile oil of ginger has been studied as well (12-14). Pungent taste of fresh ginger is mainly due to gingerols, especially (6)-gingerol, a phenolic alkanone and pungent compound found in fresh ginger (10). Pungency of dry ginger is caused by shogaols, which are dehydrated form of gingerols formed when ginger is dried or cooked (15). Minor pungent phenolic compounds of this medicinal plant are paradols or 5-deoxygingerols. Isogingerol,
Isoshogaol, gingerdiones, 3-dihydroshogaols, Dihydro-
paradols, Acetyl gingerols, gingerdiols, mono- and di-ace-
tyl gingerdiols, dehydrogingerdiones, diarylheptanoids,
beta-sesquiphellandrene, beta-bisabolene, ar-curcumene
diarylheptanoids have also been isolated from gin-
er rhizomes (10, 16-21). Previous studies demonstrated
the radio protective activity of ginger extract protecting
tissue against tumoricidal effects of radiation (10, 22-24).
 cytotoxic, apoptotic (25-31), anticancer (28, 30, 32, 33),
antithrombetic (10, 34-36), antitussive, congestion, cold
and flu (37-40), antiemetic, flatulence, abdominal spasm,
morning and motion sickness and vomiting caused by
chemotherapy (28, 32), anti-inflammatory and rheuma-
toid arthritis (10, 32, 34, 36, 41), antipyretic (24, 42-44),
antidiabetes (10, 32, 45, 46), anthelmintic (47) and antithy-
perlipidemic activities of this valuable herb have been re-
ported in previous studies. Ginger is also useful to weight
loss as well (10, 32, 34, 36, 48). Anti-arthroserosis (49, 50),
anti-oxidant (22, 27, 31, 36, 50, 51), antimigraine (52, 53), an-
tidermatitis (53, 54), antidiarrheal (55), antiviral and anti-
microbial activities of ginger have been indicated in prior
studies (51, 55). Moreover, previous researches demon-
strated the beneficial efficacy of ginger on improvement
of stroke implications and neurological diseases (54, 56-
58). Ginger is also active against helicobacter pylori (10).
It is aphrodisiac by increasing sperm percent, viability,
 motility and serum total testosterone (61-63). Ginger is a
sialagogue (57), increases and stimulates peripheral circu-
lation (59), it is also useful to gingivitis (60), depression
in cardiovascular system (10, 34, 36, 54), dementia (66-68)
and prevention of constipation (10, 61).

2.3. ITM Information on Ginger

Facility deficiency for analysis of foods and medicinal
plants functions caused ancient scientists to use some
principals based on quadratic elements (air, water, soil
and fire). As it is mentioned in ancient manuscripts, one
way of assessment of Materia medica functions was eval-
uation and determination of their taste and elements.
Followers of this doctrine believed that each herb had its
own temperament (midzaj) and taste made-up of com-
bination of 4 elements (4, 7). Ancient phytotherapists
also believed that activities of ginger with its hot and dry
nature on body systems were mainly based on its struc-
ture's dominant elements. Due to the fiery properties
of ginger, as a hot remedy it exsiccates brain humor,
the most harmful for mind and memorizing power; thus,
the result is strengthening memorizing power and amnesia
perish (3, 4). Based on its fiery properties, it is also useful
to brain cold disease such as epilepsy, lethargy, paralysis
and infarct (6). As collarya, it reinforces and improves
blurred vision owing to lyes of extra humor and resi-
dues of head descending to throat; thus, ginger is helpful
to cure spasmodic croup. Chewing of ginger with mastic
is very useful to excretion of phlegmatic humor as well
(4). In respiratory system ginger is diluting, desiccating
and emollient of phlegmatic and compact humor stick-
ing to throat. Since its elements pass from pores between
esophagus and respiratory tracts, ginger cannot show
potent effect on respiratory system. Unlike, majority
of ginger elements which are not quickly metabolized,
gather in the digesting system so the result is stomach
and liver warming, acceleration and reinforcement of
digestion as well as coction (nozj) of digestion system
excreta. Ginger not only dries and cleans extra moisture
of stomach and liver but also is very helpful to cold stom-
ach, as a result of resolution of stomach and intestine gas
causing abdomen pains. This herb is useful for hepatic
obstruction and purgative of moisture from joints. It is
mild laxative of atramble and phlegmatic humor; thus, it
prevents constipation. Unlike, it is astringent, because of
exsiccation of intestine moisture. In addition, this phyto-
medicine is a vermifuge. Two grams of ginger extract can
excrete phlegmatic humor and atramble in body (4, 6, 7).
As a hot remedy, ginger can increase sexual energy, se-
men volume and ejections as well as reinforcement of
bladder (6). Suitable doses of this medicinal plant are
very useful to aged people as well as patients with acute
dominance of phlegmatic humor. Ginger with hot water,
as a temperament heat strengthening, can remove disad-
vantages of cold weather (4, 6, 7). Furthermore, fresh and
soft pound plaster of ginger is beneficial to alopecia, lyes
of gaseousness, swelling and pain. Eating ground cooked
and dusted ginger on broth could help to relieve joint
pain. Mixture of fresh ginger with salt and lemon juice
after meals causes digestion reinforcement and changes
the taste of mouth (4, 7).

2.4. Confirmed Pharmacologic Properties of Ginger
Mentioned in ITM

Studying the pharmacologic effects and properties of gin-
er according to modern and traditional medicine respec-
tively revealed that some cases were confirmed by modern
phytotherapists whereas traditional phytotherapists could
explain the properties of ginger according to its elements
or ITM keywords. In table 1 pharmacological effects of gin-
er confirmed by modern medicine were shown.

3. Results

Medicinal plants are Gods package and easy accessible
alternatives for human beings health. One way of achiev-
ing fruitful outcome on medicinal plants research is refer-
ing to the ITM manuscripts as separate academy with its
long and prolific history on using the variety of medicinal
plants with different bases, believes and theories. Ginger
rhizome is a best known and universally used phytemedi-
cine for its health benefits. Although therapeutic effects
of ginger as a natural supplement have been validated by
modern research, there was a scientific gap on studying
ITM information about ginger which showed similarities
and connection between ancient findings and modern re-
search. As it can be seen in table 1, the efficacy of ginger has
been indicated on improvement of stroke implications
and neurological disease (54, 56-58), introduced as cold disease in ITM (6) and the fiery properties of ginger as a hot remedy is responsible to this effect. Iranian traditional medicine scholars suggest that ginger is cathartic of joint moisture (4, 7), causing joint pain relief which was confirmed by modern researches due to anti-inflammatory effect of this herb (10, 32, 34, 36, 41). According to ITM literature, the properties of ginger on digestive system are the acceleration and reinforcement of digestion, fracture of flatulence and gases of stomach and intestines, prevention of nausea, vomiting and constipation as well as vermifuge (4, 6, 7), which were confirmed by modern phytotherapists (28, 32). Ancient scholars believed that ginger was diluter, desiccator and emollient of phlegmatic and compact humor sticking to throat, identified by modern researchers as gingers efficacy on prevention of inflammation in respiratory system (37-40). According to TIM manuscripts, ginger could enhance sexual energy, semen volume and erection because it was a hot remedy and contains special kind of moisture in it (rotubate fażlieh) (4, 6, 7), confirmed by modern researches (62-64). In addition, the effect of ginger on curing spasmodic croup, bladder and vision reinforcement has not been studied in modern medicine yet (4, 6).

4. Conclusions

This paper has argued connections between pharmacological properties and properties of ginger discussed by modern research and ITM keywords, respectively. Unlike modern phytotherapy that proves pharmacological activities of medicinal plants by biological or pharmacological tests (65-67), ancient phytotherapists could cure patients, explain and use this medicinal plant without performing phytochemical studies, biological tests, creating high costs and time consuming elements. These findings further support the idea of survey on ITM manuscripts, a good way to predict and state some unknown or less known pharmacologic effects of herbs. However, more research on this topic needs to be undertaken to study elements and properties of some other herbs to provide data on clinical applications of medicinal plants, which should lead to future opportunities to investigate their potential medicinal uses. If the debate moved forward, better understanding of elements and properties of medicinal herbs would be developed in future.

Acknowledgements

We are grateful to Dr. Taher aghdam and Dr. Nazemiyeah for their general support.

Authors’ Contributions

Dr. Khodaie abstracted and analyzed data, wrote and prepared the manuscript, and is a guarantor. Dr. Sadeghpour developed the original idea.

References

1. Heravi MG. Gharabadin-e-Salehi.Tehran: Khansari; 1905.
2. Mozaffarian V. Identification of medicinal and aromatic plants of Iran.Tehran: Farhang Mosaser.
3. Antaki DIO. Tazkirah olel-Albab. Beirot.
4. Khorasani AA. Makhzan Al-Adviyeh.Tehran: Sabzarangh.
5. Heravi MG. Al-abnya an al-Haghayegh al-Adviye.Tehran: Tehran University Press; 2010.
6. Baitar I. Jome-al-Mufradar-al-Adviyal-aghzia.Egypt: Amara Press; 1871.
7. Hossaini MT. Tohfe of Hakim Momen.Tehran and Qum: Mostafavi Press; 1959.
8. Mostafa OM, Eid RA, Adly MA. Antischistosomal activity of ginger

Khodaie L et al.

Jundishapur J Nat Pharm Prod. 2015;10(1):e18402
Khodaie L et al.

(Zingiber officinale) against Schistosoma mansoni harbored in C57 mice. Parasitol Res. 2011;109(2):395-403.

9. Sakamura F. Changes in volatile constituents of Zingiber officinale rhizomes during storage and cultivation. Phytochem. 1997;46(6):2207-10.

10. Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe). A review of recent research. Food Chem Toxicol. 2008;46(2):409-20.

11. Geiger J. The essential oil of ginger, , and anaesthesia. Int J Aromather. 2005;15(1):7-14.

12. Vendruscolo A, Takaki I, Bersami-Amado LE, Dantas JA, Bersami-Amado CA. Antiinflammatory and antinoceptive activities of zingiber officinale roscoe essential oil in experimental animal models. Indian J Pharmacol. 2006;38(1):58.

13. Carrasco FR, Schmidt G, Romero AL, Sartoretto JL, Caparros-Asecf SM, Bersami-Amado CA, et al. Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils: evidence for humor- and cell-mediated responses. J Pharm Pharmacol. 2009;61(7):961-7.

14. Sivasothy Y, Chong WK, Hamid A, Edelen IM, Sulaiman SF, Awang K. Essential oils of Zingiber officinale var. rubrum Theilade and their antioxidant activities. Food Chem. 2003;84(1):554-7.

15. Lee S, Khoo C, Halstead CW, Huynh T, Bensousan A. Liquid chromatographic determination of 6-, 8-, 10-gingerol, and 6-shogaol in ginger (Zingiber officinale) as the raw herb and dried aqueous extract. JAOAC Int. 2007;90(3):2319-26.

16. Jolad SD, Lantz RC, Chen GJ, Bates RB, Zimmermann BN. Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE2 production. Phytochemistry. 2005;66(1):1614-35.

17. Kubra IR, Rao LJ. An impression on current developments in the technology, chemistry, and biological activities of ginger (Zingiber officinale Roscoe). Crit Rev Food Sci Nutr. 2012;52(6):651-88.

18. Ficker C, Smith ML, Akpagana K, Gbeassor M, Zhang J, Durst T, et al. Bioassay-guided isolation and identification of antifungal compounds from ginger. Phytother Res. 2003;17(8):897-902.

19. Hsu YL, Chen CY, Hou MF, Tsai EM, Jong YJ, Hung CH, et al. 6-Dehydrocarnosol. Food Chem Toxicol. 2005;43(3):455-65.

20. Koo HJ, Gang DR. Suites of terpene synthases explain differential effects of low polar constituents isolated from ginger, the dried rhizoma of Zingiber officinale Roscoe cultivated in Taiwan. The Flavonoid chemistry, technology, and biological activities of ginger (Zingiber officinale Roscoe). Jundishapur J Nat Pharm Prod. 2015;10(1):e18402.

21. Khudaiby D, Das A, Bhattacharya A, Chakrabarti G. Aqueous extract of ginger shows antiproliferative activity through disruption of microtubule network of cancer cells. Food Chem Toxicol. 2010;48(10):2972-80.

22. Srivastava KC, Mustafa T. Ginger (Zingiber officinale) and rheumatic disorders. Med Hypotheses. 1989;29(1):25-8.

23. Srivastava KC. Effects of aqueous extracts of onion, garlic and ginger on platelet aggregation and metabolism of arachidonic acid in the blood vessels system: in vitro study. Prostaglandins Leukot Med. 1984;13(2):227-35.

24. Nicoll R, Henein MY. Ginger (Zingiber officinale Roscoe): a hot remedy for cardiovascular disease? Int J Cardiol. 2009;131(3):408-9.

25. Holdsworth DK, Hurley CM, Rayner SE. Traditional medicinal plants of New Ireland, Papua New Guinea. Pharm Biol. 1980;18(3):311-9.

26. Rouhi H, Ganji F, Nasri H. Effects of Ginger on the improvement of asthma [the evaluation of Its treatmental effect]. Pak J Pharm Sci. 2006;19(4):373-6.

27. Cavender A. Food medical uses of plant foods in southern Appalachia, United States. J Ethnopharmacol. 2006;108(1):574-84.

28. Ushimaru PI, Silva MTN, Stasi LCD, Barbosa L, Junior AF. Anti-bacterial activity of medicinal plant extracts. Braz J Microbiol. 2007;38(4):779-9.

29. Altman RD, Marcussen KC. Effects of Ginger on the extract of knee pain in patients with osteoarthritis. Arthritis Rheum. 2000;44(1):2331-8.

30. Dey A, De JN. Traditional use of medicinal plants as febrifuge by the tribals of Purulia district, West Bengal, India. Asian Pac J Trop Med. 2012;5:5800-3.

31. Ueki S, Miyoshi M, Shido O, Hasegawa J, Watanabe T. Systemic administration of [6]-gingerol, a pungent constituent of ginger, induces hyperthermia in rats via an inhibitory effect on metabolic rate. Eur J Pharmacol. 2008;584(1):87-92.

32. Alizaf M, Al-Hadidi D, Menon M, Pesek J, Dhami MS. Ginger: an ethnomedical, chemical and pharmacological review. Drug Metabol Drug Interact. 2001;18(3-4):199-90.

33. Rani MP, Padmakumari KP, Sankarkutty B, Chersan OI, Nisha VM, Raghu KG. Inhibitory potential of ginger extracts against enzymes linked to type 2 diabetes, inflammation and induced oxidative stress. Int J Food Sci Nutr. 2012;63(2):306-10.

34. Mahluji S, Attari VE, Mobasseri M, Payahoo L, Ostadrahimi A, Golzarz SE. Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. Int J Food Sci Nutr. 2013;64(6):682-6.

35. Iqbal Z, Lateef M, Akhtar MS, Ghayur MN, Gilani AH. In vivo anti-thromctic activity of ginger against gastrointestinal nematodes of sheep. J Ethnopharmacol. 2006;106(2):285-7.

36. Milne GL, Porter NA. Separation and identification of phospholipid peroxidation products. Lipids. 2001;36(1):1265-75.

37. Fuhrman B, Rosenblat M, Hayek T, Coleman R, Aviram M. Ginger intake consumption reduces plasma cholesterol, inhibits LDL oxidation and attenuates development of atherosclerosis in athrombogenic, apolipoprotein E-deficient mice. J Nutr. 2000;130(5):1124-31.

38. Shobana S, Naidu KA. Antioxidant activity of selected Indian spices. Prostaglandins Leukot Essent Fatty Acids. 2000;62(2):110-7.

39. Stolova I, Krastanov A, Stoyanova A, Denev P, Gargova S. Antioxidant...
dant activity of a ginger extract (Zingiber officinale). Food chem. 2007;102(3):764-70.

52. Cady RK, Schreiber CP, Beach ME, Hart CC. Gelstat Migraine (sublingually administered feverfew and ginger compound) for acute treatment of migraine when administered during the mild pain phase. Med Sci Monit. 2005;11(9):P165-9.

53. Kobayashi H, Mizuno N, Teramae H, Katsuna H, Ueoku S, Ono-oyama J, et al. Diet and Japanese herbal medicine for recalcitrant atopic dermatitis: efficacy and safety. Drugs Exp Clin Res. 2004;30(5-6):197-202.

54. Chang TT, Chen KC, Chang KW, Chen HY, Tsai FJ, Sun MF, et al. In silico pharmacology suggests ginger extracts may reduce stroke risks. Mol Biochem. 2017;9:2702-10.

55. Elgayyar M, Draughon FA, Golden DA, Mount JR. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J Food Prot. 2000;64(7):1019-24.

56. Rai S, Mukherjee K, Mal M, Wahile A, Saha BP, Mukherjee PK. Determination of 6-gingerol in ginger (Zingiber officinale) using high-performance thin-layer chromatography. J Sep Sci. 2006;29(15):2292-5.

57. Ramalingam C, Rakshit M. Health Benefits of Spices with Special Reference to Antimicrobial Activity and Bio Active Components. J Exp Sci. 2000;37(7).

58. Lantz RC, Chen GJ, Sarihan M, Solyom AM, Jolad SD, Timmermann BN. The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine. 2007;14(2-3):123-8.

59. Al-Sohaimi EA, Al-Rizzuza NA, Al-Essa RA. Physiological and therapeutic roles of ginger and turmeric on endocrine functions. Am J Chin Med. 2011;39(2):215-31.

60. Bhosale K, Shinde R. Effect of arbuscular mycorrhizal fungi on nucleic acids and protein contents in ginger under water stress condition. Ind J Fund Appl Life Sci. 2011;4:126-30.

61. Tiwari L, Pande PC. Ethnoveterinary medicines in Indian perspective: reference to Uttarakhand, Himalaya. Indian J Tradit Knowl. 2010;9(3):1-7.

62. Hafez DA. Effect of extracts of ginger roots and cinnamon bark on fertility of male diabetic rats. J Am Sci. 2010;6:940-7.

63. Khaki AA. Pp-1 the Effects of Ginger on Spermatogenesis and Sperm Parameters of Rat. Reprod Biomed Online. 2012;24(1):55.

64. Kazeem MI, Akanji MA, Hafizur RM, Choudhary MI. Antiglycation, antioxidant and toxicological potential of polyphenol extracts of alligator pepper, ginger and nutmeg from Nigeria. Asian Pac J Trop Biomed. 2012;2(9):727-32.

65. Khodaie L, Delazar A, Lotfpour F, Nazemiyeh H. Antioxidant and Antimicrobial activity of Pedicularis sibthorpii Boiss. And Pe- dicularis wilhelmsiana Fisch ex. Adv Pharm Bull. 2012;2(1):89-92.

66. Khodaie L, Delazar A, Lotfpour F, Nazemiyeh H, Ahsanahari S, Moghdam SB, et al. Phytochemistry and bioactivity of Pe- dicularis sibthorpii growing in Iran. Braz J Pharmacogn. 2012; 22(6):668-75.

67. Nikbkht MR, Sharifi S, Emami SA, Khodaie L. Chemical composition and antiproliferative activity of Artemisia persica Boiss. and Artemisia turcomanica Gand. Res Pharm Sci. 2014;9(2):55-63.

68. Zeng GJ, Zhang ZY, Lu L, Xiao DQ, Zong SH, He JM. Protective ef- fects of ginger root extract on Alzheimer’s disease-induced behavioural dysfunction in rats. Rejuv Res. 2013;16 (2):124-33.