BCR/ABL positive thrombocythemia: a diagnostic dilemma
Lubna Zafara, Feroz Alamb, Anjum Parvezaa, Srikan Beheraa

aDepartments of Medicine, bPathology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India

Correspondence to Lubna Zafar, MBBS, MD (Medicine), 4/1074, Sir Syed Nagar, Near Nadeem Tarin Hall, Aligarh - 202 002, Uttar Pradesh, India

e-mail: lubzafar@gmail.com

Received 6 October 2016
Accepted 31 March 2017

The Egyptian Journal of Internal Medicine 2017; 29:83–85

Introduction

The Philadelphia (Ph) chromosome is a disease-specific marker for chronic myeloid leukemia (CML), which is a myeloproliferative neoplasm and accounts for 15% of newly diagnosed cases of leukemia in adults [1]. The disease is characterized by a balanced genetic translocation, t(9;22)(q34;q11.2), leading to \textit{BCR-ABL} gene rearrangement, the product of which is a constitutively active tyrosine kinase. The Hannover Bone marrow classification has distinguished three phenotypes of \textit{BCR-ABL+} CML - CML of common type (CML.CT), CML with megakaryocyte increase (CML.MI), and CML with megakaryocyte predominance (CML.MP) – on the basis of clinical features, peripheral blood smear, and bone marrow (BM) examination [2]. We discuss here a case of a 45-year-old man who was \textit{BCR-ABL+} with marked thrombocythemia without evidence of CML in peripheral blood smear.

Case report

A 45-year-old man presented to our outpatient department with complaints of fatigue and malaise for previous 2 months. He was a nonsmoker and was not having any chronic disease. His previous medical history was insignificant, but treatment history revealed that he was on hypouricemic agents for last 3 months. His clinical examination was normal with no evidence of splenomegaly, and the patient was not having any thrombotic or bleeding manifestations. The complete blood count revealed a hemoglobin level of 12.2 g/dl, hematocrit level of 37.6%, white blood cells count of 23.8×103/μl (differential count: neutrophils 80%, lymphocytes 14%, eosinophils 2%, basophils 4%, and monocytes 0%), and platelet count of 589×103/μl. Peripheral blood smear showed marked thrombocythemia without any underlying etiology, and also there were no immature cells present. BM aspiration yielded small megakaryocytes with hypolobulated nuclei (Figures 1, 2). His serum biochemistry was as follows: aspartate aminotransferase 28 IU/l; alanine aminotransferase 37 IU/l; total bilirubin 0.4 mg/dl; blood urea nitrogen 10 mg/dl; creatinine 1.0 mg/dl; random blood glucose 119 mg/dl; and serum uric acid 8.7 mg/dl. Ultrasonography of abdomen was normal with no evidence of splenomegaly or hepatomegaly. He was negative for \textit{JAK2V617F} mutation. On the basis of thrombocythemia and BM features, the patient was investigated for \textit{BCR-ABL} rearrangement, which turned out to be positive. Quantitative PCR for BCR/ABL rearrangement showed major translocation, that is, e13a2 and e14a2. Finally, the patient was diagnosed as \textit{BCR-ABL+} essential thrombocythemia (ET) and was advised imitaniib 400 mg/day, and he subsequently responded to treatment (Figure 3).

Discussion

The criteria for diagnosis of CML and ET has been given by Polycythemia Vera Study Group and WHO [3,4]. ET is considered to lack \textit{BCR-ABL} rearrangement whereas its expression is considered diagnostic of CML. However, a gray zone exists between the two entities, as observed in our patient who was \textit{BCR-ABL+} with marked thrombocythemia, without any evidence of CML in the peripheral blood smear. Michiels \textit{et al} [5] evaluated cases with similar presentation and concluded that the presence of peripheral blood thrombocythemia, normal hemoglobin, normal white blood cell differential

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work noncommercially, as long as the author is credited and the new creations are licensed under the identical terms.
count, and presence of small megakaryocytes with round or slightly lobulated nuclei in normocellular BM should be diagnosed as Ph⁺ ET.

Ph⁺ ET is a myeloproliferative disorder and a separate entity from both Ph⁺ CML and Ph⁻ ET. Ph⁺ ET is characterized by small hypolobated megakaryocytes in BM caused by BCR-ABL-induced maturation defect of hematopoietic stem cells, in contrast to clustered and enlarged mature megakaryocytes with hyperploid nuclei because of growth advantage caused by constitutively activated JAK2V617F or MPL515 mutation in Ph⁻ ET [6]. The small and indolent platelets in BCR-ABL⁺ ET are nonreactive, that is, they do not have platelet-mediated erythromelalgic microvascular events or bleeding complications similar to BCR-ABL⁺ CML [7,8]. These complications are due to platelet-mediated inflammation and thrombus in end arteries [8–11]. These erythromelalgic thrombotic manifestations are present in BCR-ABL⁺ ET due to the presence of platelets that are large and hypersensitive [10,11].

Ph⁺ ET also differs from CML. These include the predilection of Ph⁺ ET for women, the absence of splenomegaly, and no features of CML in the peripheral blood or BM [5]. The BM in BCR-ABL⁺ ET is featured by predominant and pronounced mononucleated megakaryopoiesis with initial none, minor, or overt granulocytic hypertrophy consistent with CML.MP [6]. Although the risk for thrombotic or hemorrhagic events is low, the prognosis of BCR-ABL⁺ ET is poor. It may develop features of classic Ph⁺ CML with a high risk for blast transformation and progression to myelofibrosis after a follow-up of a few to several years [5,12].

The BCR-ABL⁺ ET may be considered a third variant of CML, known as CML megakaryocyte predominant (CML.MP) [6], as suggested in the Hannover BM classification [2], the other two being CML of common type (CML.CT), in which granulocytic hypertrophy is predominant, and CML with megakaryocyte increase (CML.MI), which is characterized by megakaryocytic hypertrophy in addition to granulocytic hypertrophy in BM biopsy.

The BCR-ABL fusion gene produces protein that has a tyrosine kinase activity. Imatinib mesylate (tyrosine kinase inhibitor) by binding to BCR-ABL protein tyrosine kinase and inhibiting the BCR-ABL pathway reduces selective proliferation of BCR-ABL⁺ cells and also induces apoptosis of these cells [13]. As TKI are targeting cells that are BCR-ABL⁺, their use as treatment agents in BCR/ABL⁺ ET is justified.
Conclusion

This is perhaps the first documented case of a man diagnosed as BCR-ABL+ ET, which is a neoplastic disorder with specific peripheral blood and BM features and should be confirmed by using karyotyping. This demands a heightened suspicion in any case of thrombocythemia for early diagnosis and prompt treatment.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60:277–300.
2. Georgi A, Vykoupil KF, Buhr T, Choritz H, Döhler U, Kaloutsi V, et al. Chronic myeloproliferative disorders in bone marrow biopsies. Pathol Res Pract 1990; 186:3–27.
3. Murphy S, Peterson P, Iland H, Laszlo J. Experience of the Polycythemia Vera Study Group with essential thrombocythaemia: a final report on diagnostic criteria, survival, and leukemic transition by treatment. Semin Hematol 1997; 34:29–39.
4. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, et al. World Health Organisation classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee Meeting – Airlie House, Virginia, November 1997. J Clin Oncol 1999; 17:3835–3849.
5. Michiels JJ, Berneman Z, Schroyens W. Philadelphia chromosome positive thrombocythemia without features of chronic myeloid leukemia in peripheral blood: natural history and diagnostic differentiation from Ph-negative essential thrombocythemia. Ann Hematol 2004; 83:504–512.
6. Michiels JJ, Ten Kate FIWJ, Raede HD, Gaddsieu A. Bone marrow features and natural history of BCR/ABL-positive thrombocythaemia and chronic myeloid leukemia compared to BCR/ABL-negative thrombocythaemia in essential thrombocythemia and polycythemia vera. J Hematol Thrombo Dis 2015; 3:192.
7. Mason JE Jr, DeVita VT, Canellos GP. Thrombocytosis in chronic granulocytic leukemia: incidence and clinical significance. Blood 1974; 44:483–487.
8. Michiels JJ. Erythromelalgia and thrombocythemia [thesis]. Rotterdam: Erasmus University; 1981.
9. Michiels JJ. Erythromelalgia and thrombocythemia: a disease of platelet prostaglandin metabolism – thesis, Rotterdam, 1981. Semin Thromb Hemost 1997; 23:335–338.
10. Michiels JJ, Berneman Z, Schroyens W, Koudstaal PJ, Lindemans J, Neumann HA, et al. Platelet-mediated thrombotic complications in patients with essential thrombocythemia and polycythemia vera: a distinct aspirin-resistant and coumadin-resistant arterial thrombophilia. Platelets 2006; 17:528–544.
11. Michiels JJ, Berneman Z, Schroyens W, Koudstaal PJ, Lindemans J, Neumann HA, et al. Platelet-mediated thrombotic complications in patients with ET: reversal by aspirin, platelet reduction, and not by Coumadin. Blood Cells Mol Dis 2006; 36:199–205.
12. Michiels JJ, Prins ME, Hagermeijer A, Brederoo P, van der Meulen J, van Vliet HH, et al. Philadelphia chromosome-positive thrombocythemia and megakaryoblast leukemia. Am J Clin Pathol 1987; 88:645–652.
13. Savage DG, Antman KH. Imatinib mesylate – a new oral targeted therapy. N Engl J Med 2002; 346:683–693.