Study Profile

Design of the health examination survey on early childhood physical growth in the Great East Japan Earthquake affected areas

Hiroko Matsubara a, Mami Ishikuro b, c, Masahiro Kikuya b, c, Shoichi Chida d, Mitsuaki Hosoya e, Atsushi Ono e, Noriko Kato f, Susumu Yokoya g, Toshiaki Tanaka h, Tsuyoshi Isojima i, Zentaro Yamagata j, Soichiro Tanaka k, Shinichi Kuriyama a, b, c, *, Shigeo Kure b, k

* Corresponding author. Department of Disaster Public Health, International Research Institute of Disaster Science (IRIDeS), Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
E-mail address: kuriyama@med.tohoku.ac.jp (S. Kuriyama).
Peer review under responsibility of the Japan Epidemiological Association.

A R T I C L E I N F O

Article history:
Received 8 September 2015
Accepted 28 March 2016
Available online 5 January 2017

Keywords:
The Great East Japan Earthquake
Preschool children
Physical growth
Health examination
Retrospective cohort study

A B S T R A C T

Background: To investigate the impact of the Great East Japan Earthquake on preschool children’s physical growth in the disaster-affected areas, the three medical universities in Iwate, Miyagi, and Fukushima Prefectures conducted a health examination survey on early childhood physical growth.

Methods: The survey was conducted over a 3-year period to acquire data on children who were born in different years. Our targets were as follows: 1) children who were born between March 1, 2007 and August 31, 2007 and experienced the disaster at 43–48 months of age, 2) children who were born between March 1, 2009 and August 31, 2009 and experienced the disaster at 19–24 months of age, and 3) children who were born between June 1, 2010 and April 30, 2011 and were under 10 months of age or not born yet when the disaster occurred. We collected their health examination data from local governments in Iwate, Miyagi, and Fukushima Prefectures. We also collected data from Aomori, Akita, and Yamagata Prefectures to use as a control group. The survey items included birth information, anthropometric measurements, and methods of nutrition during infancy.

Results: Eighty municipalities from Iwate, Miyagi, and Fukushima Prefectures and 21 from the control prefectures participated in the survey. As a result, we established three retrospective cohorts consisting of 13,886, 15,474, and 32,202 preschool children.

Conclusions: The large datasets acquired for the present survey will provide valuable epidemiological evidence that should shed light on preschool children’s physical growth in relation to the disaster.

© 2016 The Authors. Publishing services by Elsevier B.V. on behalf of The Japan Epidemiological Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Pacific coastal areas of Iwate, Miyagi, and Fukushima Prefectures were substantially damaged as a result of the Great East Japan Earthquake on March 11, 2011. The damage to human life and property from the massive 9.0 magnitude earthquake and subsequent giant tsunami were unprecedented in modern Japanese history.1–4 While there is great concern regarding the possible
health impact among people who experienced the disaster, there is limited knowledge about how the occurrence of an enormous natural disaster in a developed country affects people’s health.5,6 In particular, we are concerned about the health of preschool children who experienced the catastrophe during the most vulnerable period of their physical and mental development.7-9 Several factors, such as environmental changes to child care and post-disaster traumatic stress, might affect their health.10,11

One year after the disaster, the Department of Pediatrics at the three medical universities in Iwate, Miyagi, and Fukushima Prefectures collaboratively initiated two surveys: the nationwide nursery school survey on child health throughout the Great East Japan Earthquake-affected areas12 and the present health examination survey on early childhood physical growth in the Great East Japan Earthquake-affected areas. Using data from these surveys, we aim to provide comprehensive epidemiological evidence of the impact of the disaster on preschool children’s health.

In our nationwide survey, we targeted nursery school children who experienced the disaster during their preschool days and compared them to children who did not experience the disaster using data collected from all 47 prefectures in Japan. In addition to longitudinal data on physical measurements, we obtained data on the presence of diseases, history of moving in and moving out, and personal experience with the disaster.

In the present survey, we intend to validate the results of the former survey. Furthermore, the present survey will allow us to examine how physical growth differs depending on the age at the time of experiencing the disaster among preschool children in the most affected areas. The present survey also includes information that was not examined in the former survey, including gestational age of newborns, methods of nutrition during infancy, and head circumference. Here, we describe the design of the present survey and the results of data collection.

2. Methods

2.1. Survey design and population

We accessed 3-year-old health examination records, which allowed us to retrospectively acquire children’s anthropometric measurements during early childhood. In accordance with the Maternal and Child Health Act in Japan,13 regular health examinations during early childhood are provided at least two times at the municipal level: 1) over the age of 18 months and below the age of 2 years (referred to as the 1-and-a-half-year-old health examination) and 2) over the age of 3 years and below the age of 4 years (referred to as the 3-year-old health examination). The timing of regular health examinations, including additional health examinations during infancy, varies by municipality.

We invited all 127 municipal governments in Iwate, Miyagi, and Fukushima Prefectures, which were most affected by the disaster, to participate in the survey. Iwate Medical University, Tohoku University, and Fukushima Medical University sent invitation letters to all 100 municipal governments in Aomori, Akita, and Yamagata Prefectures. If they agreed to participate in the survey, persons in charge of maternal and child health in the municipalities returned completed survey sheets.

The survey was conducted over the 3-year period from July 2012 to October 2014. We decided the timeframe for birth of our targeted children backward from when they experienced the disaster after undergoing certain health examinations. During the first year, we collected data on children who were born between March 1, 2007 and August 31, 2007 (Cohort 1). These children experienced the disaster within 6 months after undergoing their 3-year-old health examinations. During the second year, we collected data on children who were born between March 1, 2008 and August 31, 2009 (Cohort 2). These children experienced the disaster within 6 months after undergoing their 1-and-a-half-year-old examinations. Finally, during the third year, we collected data on children who were born between June 1, 2010 and April 30, 2011 (Cohort 3). These children experienced the disaster within 6 months after undergoing their 3-month-old health examinations or after birth, or who were not born yet when the disaster occurred (Fig. 1).

The survey in Sendai City was conducted from April 2014 to December 2014. We collected data on children who underwent their 3-year-old health examinations during the survey period. These children were born between September 2010 and May 2011.

2.2. Survey items and measurements

The survey items included sex, birth information (date of birth, gestational age in the newborn, and supine length and weight at birth) and anthropometric measurements (length/height and weight) taken at the following four time points: 1) during the early infancy period, when children were 3–4 months of age; 2) during the late infantile period, when children were between 6 and 10 months of age; 3) at the 1-and-a-half-year-old examination; and 4) at the 3-year-old health examination. Additionally, we obtained information on their methods of nutrition (breast milk, artificial milk, or mixed milk) and head circumference during infancy (Table 1).

2.3. Ethical consideration

The survey protocol was approved by the institutional review boards of Iwate Medical University, Tohoku University, and Fukushima Medical University. The present survey was conducted in accordance with the national Ethical Guidelines for Epidemiological Research.19 We did not obtain informed consent from participants. We have publicly disclosed the information of the survey, including the significance, objectives, and methods on the Tohoku University School of Medicine website (http://www.med.tohoku.ac.jp/public/ekigaku2013.html).

3. Results

In total, 80 out of 127 municipalities from Iwate, Miyagi, and Fukushima Prefectures participated in the survey as follows: 30 out of 33 municipalities in Iwate Prefecture (90.9%); 19 out of 35 municipalities in Miyagi Prefecture (54.3%); and 31 out of 59 municipalities in Fukushima Prefecture (52.5%). Regarding the control group, 21 out of 100 municipalities participated in the survey as...
follows: 7 out of 40 municipalities in Aomori Prefecture (17.5%); 8 out of 25 municipalities in Akita Prefecture (32.0%); and 6 out of 35 municipalities in Yamagata Prefecture (17.1%) (Fig. 2). Among 79 municipalities in the affected prefectures, with the exception of Sendai City, 27 municipalities returned completed survey sheets, and two municipalities submitted de-identified electronic datasets. We visited 50 municipalities to transcribe data (Table 2 and eTable 1).

With continued cooperation from local governments, we obtained data on 15,406 preschool children for Cohort 1, 15,541 children for Cohort 2, and 27,422 children for Cohort 3. Among 79 municipalities in the affected prefectures, with the exception of Sendai City, 27 municipalities returned completed survey sheets, and two municipalities submitted de-identified electronic datasets. We visited 50 municipalities to transcribe data (Table 2 and eTable 1).

We excluded children whose sex, birth month, or anthropometric measurements were missing (68 children from Cohort 1, 66 from Cohort 2, and 451 from Cohort 3) and who were born in months outside of our target period (1,452, 1, and 57 children, respectively).

Ultimately, we established three retrospective cohorts of preschool children. Cohort 1 comprised 13,886 children who were born between March 2007 and August 31, 2007. Cohort 2 comprised 15,474 children who were born between March 2009 and August 31, 2009. Cohort 3 comprised 32,202 children: 25,909 children who were born between June 1, 2010 and April 30, 2011 and 6,293 children who were born between September 1, 2010 and May 31, 2011 in Sendai City.

The background characteristics of children by cohort are presented in Table 3.
Additionally, we obtained data from Satsumasendai City in Kagoshima Prefecture, a municipality outside of the Tohoku region (Fig. 2 and eTable 2).

Table 2

Number of municipalities that participated in the survey and choice of data collection method.

Affected prefectures	Number of municipalities	As of July 2012	Participation	Choice of data collection methoda			
				1	2	3	4
Iwate	33	30	90.9%	11	17	2	0
Miyagi	35	19	54.3%	9	9	0	1
Fukushima	59	31	52.5%	7	24	0	0
Total	127	80	63.0%	27	50	2	1
Control prefectures				1	2	3	4
Aomori	40	7	17.5%	7	0	0	0
Akita	25	8	32.0%	8	0	0	0
Yamagata	35	6	17.1%	4	2	0	0
Total	100	21	21.0%	19	2	0	0

a Method 1: completion of survey sheets by a person of the municipality.
Method 2: a visit to the municipal government office to transcribe data.
Method 3: submission of de-identified electronic datasets.
Method 4: completion of questionnaires by parents (Sendai City only).

Additionally, we obtained data from Satsumasendai City in Kagoshima Prefecture, a municipality outside of the Tohoku region (Fig. 2 and eTable 2).

4. Discussion

Children are one of the most vulnerable populations to the effects of natural disasters, yet little is known about how tragic and devastating disasters affect their health. We conducted the present survey to address specific concerns regarding the impact of the Great East Japan Earthquake on the physical growth of preschool children in the most severely affected areas.

The strength of the present survey is the establishment of three retrospective cohorts of preschool children who were born in different years, which enable us to evaluate differences in physical growth among preschool children of varying ages at the time of the disaster. For example, comparison analyses using growth data from Cohort 1 and Cohort 2 can serve to clarify differences in physical growth between children who experienced the disaster before and after 3 years of age. A part of the growth data from Cohort 3 might provide information about children who experienced the disaster during their prenatal period.

A total of 80 municipalities in the most affected prefectures of Iwate, Miyagi, and Fukushima participated in the survey. With the exception of Sendai City (for Cohort 3), the number of children who participated in Cohort 1, 2, and 3 was equivalent to 50%, 60%, and 63%, respectively, of the total number of births in the three

Fig. 2. Geographical location of the municipalities participated in the survey. In total, 80 out of 127 municipalities in Iwate, Miyagi, and Fukushima Prefectures that were severely affected by the disaster and 21 out of 100 municipalities in Aomori, Akita, and Yamagata Prefectures participated in the survey. Additionally, the data of Satsumasendai City in Kagoshima Prefecture, a municipality other than the Tohoku region was available.
Table 3a
Background characteristics of Cohort 1. Children who were born between March 1, 2007 and August 31, 2007 (n = 13,886).

Sex	Affected prefectures	Control prefectures	All Japan (in 2007)			
	n	%	n	%	n	%
Boy	6137	51.3%	985	51.1%	559,847	51.4%
Girl	5823	48.7%	941	48.9%	529,971	48.6%
Total	11,960	100.0%	1926	100.0%	1,089,818	100.0%

Birthweight, g	<1000	1000–1499	1500–1999	2000–2499	2500–2999	3000–3499	3500–3999	≥4000
<1000	18	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
≥1000	44	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%
Missing	1177	8.7%	8.7%	8.7%	8.7%	8.7%	8.7%	8.7%

| Total | 11,960| 100.0% | 1926 | 100.0% | 1,089,818| 100.0% |

Table 3b
Background characteristics of Cohort 2. Children who were born between March 1, 2009 and August 31, 2009 (n = 15,474).

Sex	Affected prefectures	Control prefectures	All Japan (in 2009)			
	n	%	n	%	n	%
Boy	6891	51.3%	962	50.1%	548,993	51.3%
Girl	6663	48.7%	958	49.9%	521,042	48.7%
Total	13,554	100.0%	1920	100.0%	1,070,035	100.0%

Birthweight, g	<1000	1000–1499	1500–1999	2000–2499	2500–2999	3000–3499	3500–3999	≥4000
<1000	21	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
≥1000	8	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
Missing	171	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%

| Total | 13,554| 100.0% | 1920 | 100.0% | 1,070,035| 100.0% |

Table 3c
Background characteristics of Cohort 3-1. Children who were born between June 1, 2010 and February 28, 2011 (n = 25,909).

Sex	Affected prefectures	Control prefectures	All Japan (in 2010)			
	n	%	n	%	n	%
Boy	11,851	51.3%	1926	51.8%	550,742	51.4%
Girl	11,229	48.7%	1926	48.2%	520,562	48.6%
Total	23,080	100.0%	2829	100.0%	1,071,304	100.0%

Birthweight, g	<1000	1000–1499	1500–1999	2000–2499	2500–2999	3000–3499	3500–3999	≥4000
<1000	44	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
≥1000	1000	0.4%	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%
Missing	165	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%

| Total | 23,080| 100.0% | 2829 | 100.0% | 1,071,304| 100.0% |

Table 3d
Background characteristics of Cohort 3-2. Children who were born between March 1, 2011 and May 31, 2011 (n = 6,293).

Sex	Affected prefectures	Control prefectures	All Japan (in 2011)			
	n	%	n	%	n	%
Boy	2850	49.6%	267	48.5%	538,271	51.4%
Girl	2892	50.4%	284	51.5%	512,535	48.6%
Total	5742	100.0%	551	100.0%	1,050,806	100.0%

Birthweight, g	<1000	1000–1499	1500–1999	2000–2499	2500–2999	3000–3499	3500–3999	≥4000
<1000	8	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
≥1000	2000	242	422	242	422	242	422	422
Missing	239	4.2%	79	14.3%	230	0.0%	230	0.0%

| Total | 5742 | 100.0% | 551 | 100.0% | 1,050,806 | 100.0% |

* Affected prefectures include Iwate, Miyagi, and Fukushima Prefectures.
* Control prefectures include Aomori, Akita, and Yamagata Prefectures.
* Source: Vital Statistics in Japan Annual Report 2009, Statistics and Information Department, Ministry of Health, Labour and Welfare (MHLW).
prefectures during the same period (11,960 out of a population of 23,818 for Cohort 1, 13,554 out of a population of 22,634 for Cohort 2, and 23,611 out of a population of 37,554 for Cohort 3). Although we were unable to obtain data from Sendai City for the first 2 years, the number of children who participated in Cohort 3 comprised 75.7% of the births in the city during the corresponding period. Thus, we acquired one of the largest datasets of Japanese preschool children to date, which should guarantee sufficient regional representativeness.

Body measurements at regular health examinations have been performed by trained public health nurses in each municipality who are required to follow appropriate procedures recommended by the Ministry of Health, Labour and Welfare. For the survey in Sendai City, we asked parents to complete the questionnaires based on their maternal and child health handbooks, which are generally mentioned previously, parents completed the questionnaires based on their maternal and child health handbooks, which are generally recorded by health professionals. Also, experienced and expert persons performed data transcription and entry. Fourth, we could not obtain important birth information, such as fetal number, birth order, age of mother, way of delivery, and abnormalities present at birth. We accessed 3-year-old health examination records and acquired children’s anthropometric measurements during early childhood. Because the forms used for maintaining individuals’ health information were not standardized and included items varied by municipality, such information was not available for all municipalities. However, we did obtain some birth information that may influence children’s physical growth and can be used to assess potential confounding. Finally, we were unable to obtain the measurements of 3-year-old health examination from all participants.

Table 4
Differences in basic characteristics between participating and non-participating municipalities in control prefectures.

Participating municipalities (n = 21)	Non-participating municipalities (n = 79)								
Municipality	Population	Number of households	Number of births	Birth rate	Municipality	Population	Number of households	Number of births	Birth rate
Aomori Prefecture					Aomori Prefecture				
Yonomogawa	2896	957	22	5.6		287,622	118,279	2006	6.8
Sotogahama	6197	2573	20	7.7		177,549	71,171	1252	5.2
Fukaura	8423	3304	33	5.4		231,379	93,726	1798	2.1
Nakadomari	11,205	4111	47	5.2		34,293	11,771	270	7.0
Shiindono	15,719	5585	76	3.7		35,171	21,136	348	3.1
Tohoku	17,969	5980	135	7.0		63,454	25,509	453	7.0
Shingo	2510	831	11	2.6		40,223	16,377	410	7.8

Although we invited all 100 municipalities in Aomori, Akita, and Yamagata Prefectures, only 21 municipalities (21%) agreed to participate in the survey. This low participation of the control prefectures may have resulted in selection bias due to a non-exposed group. However, we obtained data from a variety of municipalities in terms of geographical location, population size, and birth rate (Fig. 2 and Table 4). We assume that any realized bias would be relatively small. Third, for the convenience of participating municipalities, we used four methods to collect data. Data collected using varying procedures may have resulted in different quality or accuracy of information between municipalities. However, our obtained data may be less likely to have flaws and errors than other types of data collected using varying procedures because certified public health nurses in each municipality submitted preexisting datasets or completed survey sheets. As mentioned previously, parents completed the questionnaires based on their maternal and child health handbooks, which are generally recorded by health professionals. Also, experienced and expert persons performed data transcription and entry. Fourth, we could not obtain important birth information, such as fetal number, birth order, age of mother, way of delivery, and abnormalities present at birth. We accessed 3-year-old health examination records and acquired children’s anthropometric measurements during early childhood. Because the forms used for maintaining individuals’ health information were not standardized and included items varied by municipality, such information was not available for all municipalities. However, we did obtain some birth information that may influence children’s physical growth and can be used to assess potential confounding. Finally, we were unable to obtain the measurements of 3-year-old health examination from all participants.
Because the timing of 3-year-old health examinations varies by municipality, 3052 children in 68 municipalities were not scheduled to undergo the examinations at the time of survey. This should be kept in mind when analyzing the data and interpreting the results from the 3-year-old health examinations.

We conducted two surveys that collected different kinds of information. The present survey acquired birth information, methods of nutrition, and head circumference, whereas the nationwide nursery school survey\(^1\) collected information on the presence of diseases, change of residence, and personal experience with the disaster. The results from these two surveys are expected to provide strong evidence both in combination as well as through independent analyses of each survey.

In conclusion, the present survey is one of the largest surveys ever conducted on physical growth among preschool children in relation to the Great East Japan Earthquake. By providing scientific data and interpretation of the findings, our survey results contribute invaluable information regarding the health impacts on children of the Great East Japan Earthquake for health care practitioners, parents, and public policy makers.

Conflicts of interest

None declared.

Acknowledgements

The present survey was conducted as a part of the “surveillance study on child health in the Great East Japan Earthquake disaster

Table 4 (continued)

Participating municipalities (n = 21)	Non-participating municipalities (n = 79)								
Municipality	Population\(^a\)	Number of households\(^a\)	Number of births\(^b\)	Birth rate\(^b\)	Municipality	Population\(^a\)	Number of households\(^a\)	Number of births\(^b\)	Birth rate\(^b\)
Akita Prefecture					Akita Prefecture				
Noshiro	54,805	22,750	270	4.8	Noshiro	316,808	135,709	2221	6.9
Odate	74,049	28,781	429	5.6	Odate	91,663	31,873	538	5.7
Yuzawa	46,909	16,250	241	5.0	Yuzawa	29,123	11,596	126	4.1
Kazuno	31,762	11,659	190	5.8	Kazuno	33,171	12,392	208	6.2
Yurihonjo	79,573	28,854	513	6.3	Yurihonjo	82,705	28,630	524	6.2
Mitane	17,050	6266	84	4.7	Mitane	33,099	12,452	176	5.1
Ogata	3087	801	19	6.1	Ogata	25,426	9035	129	4.9
Misato	20,060	6190	96	4.6	Misato	27,226	9741	124	4.4

Yamagata Prefecture

Kaminoyama	31,584	10,724	194	6.0	Yamagata Prefecture	263,453	100,669	2043	8.0
Higashine	47,365	15,487	436	9.2	Higashine	252,453	100,669	2043	8.0
Asahi	7122	2243	35	4.7	Asahi	86,010	32,991	608	7.0
Oguni	7869	2841	49	5.9	Oguni	129,630	45,332	897	6.8
Mikawa	7728	2219	60	7.8	Mikawa	106,267	39,308	734	6.8
Shonai	21,669	6638	142	6.4	Shonai	36,904	12,976	297	7.9

Yamagata Prefecture

Yamanobe	14,372	4438	86	5.8	Yamanobe	41,266	13,073	315	7.6
Murayama	24,896	7712	147	5.7	Murayama	7,716	2144	515	8.3
Nagai	27,716	9114	203	7.1	Nagai	62,236	21,448	515	8.3
Tendo	62,236	21,448	515	8.3	Tendo	16,962	5109	107	6.0
Obanazawa	32,284	10,697	236	6.8	Obanazawa	43,372	14,438	338	7.7
Nanyo	26,740	15,078	102	6.0	Nanyo	11,366	3466	53	4.5
Yamanobe	19,046	5868	129	6.7	Yamanobe	5640	1779	23	3.9
Saka	8478	2631	57	6.5	Saka	5640	1779	23	3.9
Oe	7359	2143	44	5.8	Oe	8478	2631	57	6.5
Ishida	5829	1643	48	7.9	Ishida	7359	2143	44	5.8
Kaneyama	8908	2674	61	6.5	Kaneyama	5829	1643	48	7.9
Mogami	8908	2674	61	6.5	Mogami	5631	1620	35	6.0
Funagata	8136	2520	66	7.7	Funagata	3413	1017	20	5.6
Mamurogawa	4315	1246	29	6.4	Mamurogawa	4315	1246	29	6.4
Tozawa	4773	1389	23	4.6	Tozawa	4773	1389	23	4.6
Takahata	23,887	7215	164	6.8	Takahata	23,887	7215	164	6.8
Kawanishi	15,756	4550	96	5.8	Kawanishi	15,756	4550	96	5.8
Shirakami	14,271	4433	84	5.7	Shirakami	14,271	4433	84	5.7
Idé	7304	2197	56	7.4	Idé	7304	2197	56	7.4
Yusa	14,212	4510	77	5.2	Yusa	14,212	4510	77	5.2

\(^a\) Population and number of households are based on 2015 National population census and cited from Aomori Prefectural Government, Akita Prefectural Government, and Yamagata Prefectural Government’s Web pages.

\(^b\) Number of births and birth rate are cited from 2013 health statistics of Aomori Prefecture, 2013 health statistics of Akita Prefecture, and 2013 statistical yearbook of Yamagata Prefecture.
Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jje.2016.03.001.

References

1. Cabinet Office, Government of Japan [Internet]. Tokyo: White paper on disaster management 2011, [cited 2015 Aug 3]. Available from: http://www.bousai.go.jp/kaigirep/hakusho/pdf/WPDM2011_Summary.pdf.

2. Japan Science and Technology Agency [Internet]. Tokyo: The Great East Japan Earthquake Information from Official Websites [cited 2015 Aug 3]. Available from: http://www.jst.go.jp/jr/pdf/great_east_japan_earthquake.pdf.

3. Kubo SI. Great East Japan earthquake. Rechtsmedizin. 2012;22:12–16.

4. Shibahara S. The 2011 Tohoku earthquake and devastating tsunami. Tohoku J Exp Med. 2011;223:305–307.

5. Noji EK. The public health consequences of disasters. Prehosp Disaster Med. 2000;15:147–157.

6. Shoat KI, Rottman SJ. Public health impact of disasters. Aust J Emerg Manag. 2000;15:58–63.

7. Bose K. Concept of human physical growth and development. [Internet]. 2007 [cited 2015 Aug 3]. Available from http://nsdl.niscair.res.in/jspui/bitstream/123456789/243/1/PDF%20%20S1104%20CSIR.pdf.

8. Kato N, Takimoto H, Yokoyama T, Yokoya S, Tanaka T, Tada H. Updated Japanese growth references for infants and preschool children, based on historical, ethnic and environmental characteristics. Acta Paediatr. 2014;03:e251–61.

9. National Institute of Public Health [Internet]. Wako: Physical growth assessment manual [cited 2015 Aug 3]. Available from: http://www.niph.go.jp/soshiki/07souhou/hatsuiku/index/files/katsuyou_1300805.pdf (in Japanese).

10. The Children’s Health Fund and the National Center for Disaster Preparedness, Columbia University Mailman School of Public Health [Internet]. New York. Legacy of shame: The on-going public health disaster of children struggling in post-Katrina Louisiana. [revised 2009 Jan 12, cited 2015 Aug 3]. Available from: http://www.childrenshealthfund.org/sites/default/files/Legacy-of-Shame-BR-White-Paper-Dec-2009.pdf.pdf.

11. Speier AH. Psychosocial Issues for Children and Adolescents in Disasters. second ed. 2000.

12. Matsuura H, Ishikuro M, Kikuya M, et al. Design of the nationwide nursery school survey on child health throughout the Great East Japan Earthquake. J Epidemiol. 2016;26:98–104. http://dx.doi.org/10.2188/jea20150073 (Epub 2015 Oct 10).

13. Maternal and Child Health Act, L. No. 141. Aug 18, 1965.

14. Nakamura Y. Maternal and child health handbook in Japan. Jpn Med Assoc J. 2010;53:259–265.

15. Kato N, Takimoto H, Eto T. The regional difference in children’s physical growth between Yaeyama Islands of Okinawa Prefecture and national survey in Japan. J Nat Inst Public Health. 2012;61:448–453.

16. Sakihara E, Kinjo R, Tamashiro T, Inoha J, Goya E, Uehara H. Local differences in Japanese children’s physical development over 55 Years using body mass index cross-sectional analysis. Ningen Dock. 2006;21:23–27.

17. Yokoya M. Geographic variation in the body size of Japanese students and its analysis by mesh climate data. Jpn J Nutr Diet. 2010;68:263–269 (in Japanese).

18. Yokoya M, Higuchi Y. Geographical differences in the population-based cross-sectional growth curve and age at peak height velocity with respect to the prevalence rate of overweight in Japanese children. Int J Pediatr. 2014;2015:867890.

19. Ministry of Education, Culture, Sports, Science and Technology, Ministry of Health, Labour and Welfare. [Internet].Tokyo. Ethical Guidelines for Epidemiological Research [revised 2008 Dec 1, cited 2015 Aug 3]. Available from: http://www.lifescience.mext.go.jp/files/pdf/n796_01.pdf.

20. Nakamura Y. Public health impact of disaster on children. Jpn Med Assoc J. 2005;48:377–384.

21. Yonekura T, Ueno S, Iwanaka T. Care of children in a natural disaster: lessons learned from the Great East Japan earthquake and tsunami. Pediatr Surg Int. 2013;29:1047–1051.

22. Gnauck KA, Nufre KE, LaValley JM, Crandall CS, Craig FW, Wilson-Ramirez GR. Do pediatric and adult disaster victims differ? A descriptive analysis of clinical encounters from four natural disaster DMAT deployments. Prehosp Disaster Med. 2007;22:67–73.

23. Weiner DL, Manzi SF, Waltzman ML, Morin M, Meginniss A, Fleisher GR. FEMA’s organized response with a pediatric subspecialty team: the National Disaster Medical System response: a pediatric perspective. Pediatrics. 2006;117:5405–5411.

24. Iwate Prefecture [Internet]. Morioka. Health and welfare annual report [updated 2014 Oct 27, cited 2015 Aug 3]. Available from: http://www.pref.iwate.jp/hokenfukushi/toukei/S405K6.html.

25. Miyagi Prefectural Government [Internet] Sendai. Health statistics annual report [updated 2014 Oct 27, cited 2015 Aug 3]. Available from: http://www.pref.miyagi.jp/soshiki/hoshisyo/housou/04/S040501/040501019.pdf.

26. Fukushima Prefecture [Internet]. Fukushima Estimated population [updated 2015 Jun 23, cited 2015 Aug 3]. Available from: http://www.pref.fukushima.lg.jp/sec/11045b/15847.html (in Japanese).

27. Ministry of Health, Labour and Welfare [Internet]. Tokyo. Fact sheet [cited 2015 Aug 3]. Available from: http://www.mhlw.go.jp/file/04-Houdouhappyou-11901006-Kyoukuintoujoudokateikyou-Soumou/gayou.pdf (in Japanese).