End-to-End Dense Video Captioning with Parallel Decoding
(Supplementary Materials)

Teng Wang1,2, Ruimao Zhang3,4, Zhichao Lu2, Feng Zheng2*, Ran Cheng2, Ping Luo1
1The University of Hong Kong 2Southern University of Science and Technology
3The Chinese University of Hong Kong (Shenzhen) 4Shenzhen Research Institute of Big Data
tengwang@connect.hku.hk ruimao.zhang@ieee.org luzhichao.cn@gmail.com
f.zheng@ieee.org rancheng.cn@gmail.com pluo@cs.hku.hk

A. More Implementation Details

Event proposal generation module based on merely captioning supervision. In Sec. 4.3, we make the following modifications to train an event proposal generation module without localization supervision: 1) We extend the 1D reference point to the 2D reference point \(p_j = (p^c_j, p^l_j) \), where \(p^c_j \) and \(p^l_j \) denote the center and the length of the reference point, respectively. 2) For each decoder layer, we fix the sampling keys in deformable attention as \(K = 4 \) evenly spaced positions over a specified interval from \(p^c_j - 0.5p^l_j \) to \(p^c_j + 0.5p^l_j \) to stabilize the network training. 3) Without gIOU cost in bipartite matching, it is hard to accurately assign the target captions to event queries. We design the caption cost to mitigate this problem. Given any ground-truth caption \(S_j' = \{w_{jt}'\}_{t=1}^{M_j'} \) and any event query features \(\tilde{q}_j \), we obtain the output probabilities \(\{c_{jj't}^{\text{cap}}\}_{t=1}^{M_j'} \) predicted by the captioning head with teacher forcing, where \(M_j' \) denotes the caption length. The caption cost matrix is calculated by:

\[
(C_{\text{cap}})_{jj'} = \frac{1}{M_j'} \sum_{t=1}^{M_j'} \log(c_{jj't}^{\text{cap}}),
\]

where \(\gamma = 2 \) is the modulation factor of the caption length. The final cost matrix for bipartite matching is:

\[
C = C_{\text{cap}} + \alpha_{\text{cls}} L_{\text{cls}},
\]

where \(\alpha_{\text{cls}} = 0.5 \) is the balance factor.

Based on the above modification, we train PDVClight with merely captioning loss on YouCook2. We choose the lightweight captioning head to ease the optimization difficulty. During inference, we directly use the reference points in the last layer as the predicted proposals.

B. Visualization

Predicted proposals. We visualize the distribution of generated proposals of PDVC in Fig. A1. For the ActivityNet Captions dataset, ground-truth proposals are distributed evenly across different positions and different lengths. For each dataset, we report the results of 200 randomly sampled videos on the validation set. The sub-figure (a)/(c) contain 10/100 clusters with different colors, where each cluster corresponds to one event query.
Figure A2. Dense captioning performance of PDVC on different activity classes. Activity labels are from the ActivityNet1.3 dataset [2].
queries can predict video-wide proposals with coherence and low redundancy and generate a similar distribution with ground truth. 3) Event queries serve as a location prior for localization tasks, which are trained to learn location patterns of events from human annotations.

Activity types. The dense captioning performance of PDVC varies in different activity types. Fig. A2 shows the METEOR score of PDVC with predicted/ground-truth proposals on 200 activity classes. Our model seems to generate more accurate captions with activities containing distinct scene cues or large objects, like “riding bumper cars”, “playing squash”, and “calf roping”. However, activities that rely more on fine-grained action cues or small objects tend to get a worse METEOR, like “doing karate”, “gargling mouthwash”, and “rollerblading”. It is promising to achieve a performance improvement to incorporate the fine-grained object features and a more powerful action recognition model.

Temporally-localized captions. Fig. A3 shows the generated captions with their temporal locations of different models. The captions of MT [1] are generated based on ground-truth proposals, while PDVC_light and PDVC are with predicted proposals. For the second video, MT and PDVC_light misrecognize the shoes as a dog and a tire, respectively. Instead, PDVC can generate accurate and meaningful captions with predicted proposals, which verifies the effectiveness of the proposed parallel decoding mechanism and the captioning head with deformable soft attention.

References
[1] L. Zhou, Y. Zhou, J. J. Corso, R. Socher, and C. Xiong, “End-to-end dense video captioning with masked transformer,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 8739-8748.
[2] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles, “Activitynet: A large-scale video benchmark for human activity understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 961-970.