Complications in humeral shaft fractures – non-union, iatrogenic radial nerve palsy, and postoperative infection: a systematic review and meta-analysis

Maria Anna Smolle1, Sandra Bösmüller2, Paul Puchwein1, Martin Ornig1, Andreas Leithner1, and Franz-Josef Seibert1

1Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
2AUVA Trauma Centre Vienna Meidling, Vienna, Austria

• The aim of this systematic review and meta-analysis was to assess risk for iatrogenic radial nerve palsy (iRNP), non-union, and post-operative infection in humeral shaft fractures.

• A PubMed search including original articles comparing different treatments for humeral shaft fractures published since January 2000 was performed. Random effect models with relative risks (RR) and 95% CIs were calculated for treatment groups and outcomes.

• Of the 841 results, 43 studies were included in the meta-analysis (11 level II, 5 level III, 27 level IV). Twenty-seven compared intramedullary nailing (IM) with ORIF, nine conservative with operative treatment, four ORIF with minimally invasive plate osteosynthesis (MIPO), and three anterior/anterolateral with posterior approach. iRNP risk was higher for ORIF vs IM (18 studies; RR: 1.80; \(P = 0.047 \)), ORIF vs MIPO (4 studies; RR: 5.60; \(P = 0.011 \)), and posterior vs anterior/anterolateral approach (3 studies; RR: 2.68; \(P = 0.005 \)). Non-union risk was lower for operative vs conservative therapy (six studies; RR: 0.37; \(P < 0.001 \)), but not significantly different between ORIF and IM (21 studies; RR: 1.00; \(P = 0.997 \)), or approaches (two studies; RR: 0.36; \(P = 0.369 \)). Post-operative infection risk was higher for ORIF vs IM (14 studies; RR: 1.84; \(P = 0.004 \)) but not different between approaches (2 studies; RR: 0.95; \(P = 0.960 \)).

• Surgery appears to be the method of choice when aiming to secure bony union, albeit risk for iRNP has to be considered, particularly in case of ORIF vs IM or MIPO, and posterior approach. Due to the limited number of randomised studies, evidence on the best treatment option remains moderate, though.

Introduction

The incidence of humeral shaft fractures is estimated at 13 per 10 000 patients per year (1), amounting to 1.0–3.0% of all fractures (2, 3, 4). Humeral shaft fractures may be treated by conservative or operative modalities, with specific constellations as polytrauma, vascular injury, instability, or open fracture demanding a surgical approach (5, 6). The frequency of surgical therapy has increased over the years (7), including plate osteosynthesis via a conventional open reduction and internal fixation (ORIF) or minimally invasive plate osteosynthesis (MIPO), and retrograde and antegrade intramedullary nailing (IM) (6, 8, 9). Complications of both conservative and operative treatment approaches are non-union, while post-operative infections and iatrogenic radial nerve palsy (iRNP) do naturally occur following surgical therapy.

As complication profiles are known to differ between conservative and surgical therapy, operative techniques, and implant types, but this evidence is largely based on individual comparative studies, the herein performed systematic review and meta-analysis aim at analysing the outcome for treatment of humeral shaft fractures, focusing on risk for non-union, iRNP, and post-operative infection.
Methods

Search strategy, selection criteria

The current systematic review adhered to the PRISMA guidelines (10). A literature search in PubMed was performed for the current systematic review and meta-analysis, using the following search term: ((humerus) AND (shaft)) AND (fracture). All studies published from 1 January 2020 until 21 December 12 were potentially eligible (Supplementary Table 1 for full search code, see section on supplementary materials given at the end of this article). Notably, studies identified through other sources were not limited to a specific publication date.

Inclusion criteria

Any English or German original cohort study (either randomised controlled trial (RCT), prospective non-randomised study, or retrospective cohort study) dealing with humeral shaft fractures, comparing two treatment approaches, and assessing at least one of the three outcomes namely iRNP, non-union, or infection were potentially eligible.

Exclusion criteria

All other publications, including (systematic) reviews, meta-analyses, Cochrane reviews, case reports, expert opinions, editorials, study protocols, non-comparative studies, those with insufficient information, pathological fractures, and non-English or -German articles were excluded. Data extraction was performed by one of the co-authors (MAS). In case of discrepant findings, decision towards article inclusion or exclusion was reached after thorough consideration and discussion amongst co-authors (SB, MAS).

Analysis of data

Items assessed from the individual studies included: outcome measure (i.e. iRNP, non-union, infection), comparison group (e.g. conservative vs operative, MIPO vs ORIF, IM vs ORIF), patient number, and those experiencing and non-experiencing the outcome parameter. Furthermore, level of evidence as defined by the Oxford Centre for Evidence-Based Medicine (OCEBM) was ascertained (11).

The Newcastle–Ottawa scale (NOS) for non-randomised case–control and cohort studies was used to assess quality of all publications included (12). Notably, also the quality of those eight studies reporting on randomised cohorts was assessed with the NOS to allow comparability to publications with non-randomised cohorts. The NOS itself is based on the three items selection (maximum 4 points), comparability (maximum 2 points), and outcome (for cohort studies; maximum 3 points) or exposure (for case-control studies; maximum 3 points). A total score ranging from 0 to 9 results from adding the scores of individual items, with higher values indicating higher study quality (12).

Statistical analysis

All statistical analyses were performed with Stata/SE 16.1 for Mac (StataCorp LLC, College Station, Texas, United States). For each outcome parameter and comparison group, random effect models using restricted maximum likelihood methods were calculated and relative risks (RR) with corresponding 95% CI provided. RCTs, prospective case–control studies, and retrospective case–control studies were pooled, thus increasing the sample size, as previously described (13, 14, 15). Heterogeneity between studies pooled in each model was assessed with Higgins I² (16). Small, medium, and large heterogeneity was defined as I² amounting to ≤25%, >25–<50%, and >75%, respectively (16). Harbord test was used to assess presence of publication bias (17). In case heterogeneity was medium to large, and/or publication bias was present, additional sensitivity analyses to assess the robustness of findings were performed. As recommended by the Cochrane Handbook for Systematic Reviews of Interventions, studies with zero events in both arms were excluded from the meta-analysis itself (18).

Results

Literature search retrieved 841 results. Additional 57 studies were identified through cross-reference checking of literature in previous original articles and (systematic) reviews on humeral shaft fractures, resulting in 898 articles. After removal of 5 duplicates, 893 entries were screened, of whom 641 were subsequently excluded. The remaining 252 full-text articles were assessed for eligibility. After excluding further 193 full-text articles not meeting the inclusion criteria, 59 studies remained. Further 16 studies were excluded as comparing similar approaches or implant types (n = 10), dealing with outcome following persisting non-union (n = 4), involving pathological humeral fracture (n = 1), or analysing outcome between primary and delayed surgery (n = 1). Thus, 43 studies were included in the final quantitative meta-analysis (Fig. 1).

Study characteristics

Altogether, the 43 studies investigated comprised 7688 patients with humeral shaft fractures. Eleven studies were randomised controlled trials (level II; 25.6%) (19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29), 5 were prospective
non-randomised case-control studies (III; 11.6%) (30, 31, 32, 33, 34), and 27 were retrospective cohort studies (IV; 62.8%) (6, 8, 9, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58). Twenty-seven studies compared IM with ORIF (6, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 39, 40, 41, 42, 47, 48, 52, 53, 54, 55, 56, 57, 58) (including two studies with external fixator (39) or MIPO (42) as third comparator that was not considered upon meta-analysis), nine studies compared conservative with operative treatment attempt (23, 34, 35, 38, 43, 45, 49, 50, 51) (including one study on paediatric humeral shaft fractures (43)), four studies compared MIPO with ORIF (21, 32, 37, 46), and three studies compared anterior or anterolateral with posterior approach to the humeral shaft (8, 9, 44). Mean NOS score over all 43 studies included was 6.0 ± 0.8 points (Table 1).

Subsequently, the three outcomes, iRNP, non-union, and post-operative infection, will be outlined for individual comparator groups.

Iatrogenic radial nerve palsy risk

Of 34 studies involving patients treated surgically by different methods, 25 reported outcomes on post-operative radial nerve palsy (8, 9, 19, 20, 21, 22, 24, 25, 26, 29, 30, 31, 32, 33, 36, 37, 40, 44, 46, 47, 48, 52, 54, 55, 57). Eighteen of these studies compared IM with ORIF (19, 20, 22, 24, 25, 26, 29, 30, 31, 33, 36, 40, 47, 48, 52, 54, 55, 57), four MIPO with ORIF (21, 32, 37, 46), and another three anterior/anterolateral with posterior surgical approaches to the humeral shaft (8, 9, 44).

IM vs ORIF

Of the 18 studies reporting on radial nerve palsy risk following IM vs ORIF, 7 were level II (19, 20, 22, 24, 25, 26, 29), 3 level III (30, 31, 33), and 8 level IV (36, 40, 47, 48, 52, 55, 57).

Whilst the subgroup analyses for retrospective (RR: 1.59; 95% CI: 0.76–3.33; P = 0.089) and prospective studies (RR: 2.19; 95%CI: 0.86–5.57; P = 0.100) revealed a non-significantly higher iRNP risk for ORIF in comparison to IM, the overall meta-analysis showed a significantly increased iRNP risk for ORIF (RR: 1.80; 95%CI: 1.01–3.21; P = 0.047; Fig. 2). Between-study heterogeneity was small ($I^2 = 0.0%$), and no significant publication bias was present (Harbord’s $P = 0.927$).

MIPO vs ORIF

According to the meta-analysis of four studies on MIPO vs ORIF (21, 32, 37, 46) (one level II (21), one level III (32), two level IV (37, 46)), risk for iRNP was significantly higher for ORIF in comparison to MIPO (RR for ORIF: 5.60; 95% CI: 1.48–21.18; P = 0.011; Fig. 3A). Heterogeneity between studies was small ($I^2 = 0.0%$). No significant publication bias was found (Harbord’s $P = 0.839$).

Anterior/antrolateral vs. posterior approach

All three studies comparing anterior or anterolateral with posterior approach to the humeral shaft and reporting on post-operative radial nerve palsy risk were level IV (8, 9, 44). Following a posterior approach, risk of developing iRNP was significantly higher in comparison to an anterior or anterolateral approach (RR: 2.68; 95% CI: 1.34–5.36;
Table 1 Description of studies included together with Newcastle–Ottawa scale (NOS).

Study Description	Groups	Patients, n	Outcome factors	LOE	Newcastle–Ottawa scale			
Conservative vs operative treatment					Selection	Comparability†	Outcome	Total
Westrick et al. (35)	Conservative	69	NU	IV	****	**	6	
Harkin et al. (38)	Operative	227	NU	IV	****	*	5	
Matsunaga et al. (23)	Conservative	46	NU, infection	II	***	*	6	
O’Shaughnessy et al. (43)	Operative	15	iatrogenic RNP, NU	IV	***	**	5	
Jawa et al. (45)	Conservative	21	NU	IV	****	*	5	
Denard et al. (49)	Operative	63	NU	IV	***	**	5	
Broadbent et al. (34)	Conservative	89	NU	III	****	**	6	
Dielwart et al. (50)	Operative	31	NU	IV	****	*	5	
Ekholm et al. (51)	Conservative	20	NU	IV	****	**	6	
Intramedullary nailing vs ORIF	IM	62	iatrogenic RNP	IV	***	**	5	
Bisaccia et al. (39)	ORIF	89	NU, infection	IV	****	*	7	
Changulani et al. (19)	IM	23	iatrogenic RNP, NU, infection	II	***	**	5	
Li et al. (20)	IM ORIF (Fixateur Externe†)	24	iatrogenic RNP, NU, infection	II	***	**	5	
Denies et al. (40)	IM ORIF	42	iatrogenic RNP, NU, infection	IV	****	*	6	
Putnam et al. (41)	IM ORIF	1418	Infection	IV	***	*	5	
Singisetti & Ambedkar (30)	IM ORIF	16	iatrogenic RNP, NU, Infecation	III	****	**	6	
McCormack et al. (22)	IM ORIF	21	iatrogenic RNP, NU, infection	II	***	**	5	
Kulkarni et al. (42)	IM ORIF (MIPO³)	34	NU, infection	IV	****	*	5	
Kumar et al. (31)	IM ORIF	15	iatrogenic RNP, NU, infection	III	****	*	5	
Wali et al. (24)	IM ORIF	25	iatrogenic RNP, infection	II	***	*	6	
Akalin et al. (25)	IM ORIF	33	iatrogenic RNP, NU, infection	II	***	*	8	
Fan et al. (26)	IM ORIF	30	iatrogenic RNP, NU, infection	II	****	*	7	
Khan et al. (47)	IM ORIF	30	iatrogenic RNP, NU, infection	IV	***	*	5	
Raghavendra & Bhalodia (33)	IM ORIF	18	iatrogenic RNP, NU, infection	III	***	*	6	
Hashmi et al. (48)	IM ORIF	18	iatrogenic RNP, NU, infection	IV	***	**	6	
Li et al. (27)	IM ORIF	24	NU	II	****	*	7	
Chao et al. (52)	IM ORIF	36	iatrogenic RNP, NU	IV	***	*	6	
Chapman et al. (28)	IM ORIF	38	NU, infection	II	****	*	7	
Goncalves et al. (53)	IM ORIF	5	NU	IV	****	*	6	
Gottschalk et al. (6)	IM ORIF	870 2560	NU, infection	IV	****	*	6	
Kulkarni et al. (54)	IM ORIF	31	iatrogenic RNP, NU	IV	***	**	5	
Putti et al. (54)	IM ORIF	18	iatrogenic RNP, NU, infection	IV	***	*	7	
Radulescu et al. (29)	IM ORIF	82	iatrogenic RNP, NU	II	***	*	7	
Wang et al. (56)	IM ORIF	30	NU	IV	****	**	7	
P = 0.005; Fig. 3B). Heterogeneity was small ($I^2 = 0.0\%$), and no publication bias was found (Harbord’s $P = 0.903$).

Non-union risk

Thirty-five studies reported on non-union risk following humeral shaft fractures, with 24 studies comparing IMs with ORIF ($6, 19, 20, 22, 25, 26, 27, 28, 29, 30, 31, 33, 39, 40, 42, 47, 48, 52, 53, 54, 55, 56, 57, 58$), 9 studies conservative with operative treatment ($23, 34, 35, 38, 43, 45, 49, 50, 51$), and 2 anterior/anteralateral with posterior approach ($8, 9$). Of these 35 articles, 9 reported on level II studies ($19, 20, 22, 23, 25, 26, 27, 28, 29$), 4 on level III studies ($30, 31, 33, 34$), and 22 on level IV studies ($6, 8, 9, 23, 25, 35, 38, 39, 40, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58$).

Conservative vs operative treatment

Nine studies (one level II (23), one level III (34), seven level IV ($35, 38, 43, 45, 49, 50, 51$)) reported on non-union rate following conservative vs operative treatment. Three ($43, 45, 51$) one including paediatric patients (43)) reported on no events in either arm, wherefore they were excluded from the final meta-analysis.

According to the meta-analysis of remaining six studies, risk for non-union was significantly lower after operative treatment (RR: $0.37; 95\%$ CI: $0.25–0.56; P < 0.001$; Fig. 4A). Heterogeneity was small ($I^2 = 0.0\%$). No significant publication bias was present (Harbord’s $P = 0.908$).

Anterior/anteralateral vs posterior approach

Meta-analysis of the two studies (both level IV ($8, 9$)) comparing surgical approaches to the humeral shaft revealed no significantly altered risk to develop non-union (RR for posterior approach: $0.36; 95\%$ CI: $0.04–3.36; P = 0.369$; Fig. 4B), with small heterogeneity ($I^2 = 0.0\%$). Publication bias could not be assessed.

IM vs ORIF

Twenty-four studies (8 level II ($19, 20, 22, 25, 26, 27, 28, 29$), 3 level III ($30, 31, 33$), 13 level IV ($6, 39, 40, 42, 47, 48, 52, 53, 54, 55, 56, 57, 58$)) reported on non-union risk for IM vs ORIF. In three ($47, 48, 58$) of these studies, no event was reported in either arm, wherefore these were excluded from the meta-analysis.

Meta-analysis of the remaining 21 studies revealed no significant difference in non-union risk between IM and ORIF (RR for ORIF: $1.00; 95\%$ CI: $0.71–1.41; P = 0.997$; Fig. 5). Heterogeneity was small ($I^2 = 0.0\%$), and no significant publication bias was encountered (Harbord’s $P = 0.882$).

Subgroup analysis for retrospective (RR: $1.08; 95\%$ CI: $0.70–1.66; P = 0.719$) and prospective studies (RR: $0.86; 95\%$ CI: $0.48–1.55; P = 0.621$) revealed likewise no significantly differing non-union risk for IM vs ORIF.

Post-operative infection risk

Altogether, 24 of 34 studies reporting on surgically treated patients with humeral shaft fractures provided information on post-operative infections. These included 18 studies comparing IM with ORIF ($6, 19, 20, 22, 24, 25, 26, 28, 30, 31, 33, 39, 40, 41, 42, 47, 48, 55$), 3 comparing anterior/anteralateral with posterior approach ($8, 9, 44$), and 3 comparing MIPO with ORIF ($21, 32, 46$). However, the latter group was not analysed as two of the three articles reported on zero-event outcomes ($21, 46$). Of the remaining 21 studies, 7 were level II ($19, 20, 22, 24, 25, 26, 28$), 3 level III ($30, 31, 33$), and 11 level IV ($6, 8, 9, 39, 40, 41, 42, 44, 47, 48, 55$).

IM vs ORIF

Of the 18 studies reporting on post-operative infection risk following IM vs ORIF, 7 were level II ($19, 20, 22, 24, 25, 26, 28$), 3 level III ($30, 31, 33$), and 8 level IV studies...
Complications in humeral shaft fractures

Four of these (20, 26, 33, 39) reported on zero events in both arms, wherefore they were excluded from the meta-analysis.

The final meta-analysis with 14 studies revealed a significantly higher post-operative infection risk for ORIF in comparison to IM (RR for ORIF: 1.84; 95% CI: 1.22–2.79; \(P = 0.004 \); Fig. 6A). Heterogeneity was small (\(I^2 = 0.0\% \)), and no significant publication bias was encountered (Harbord’s \(P = 0.884 \)). Notably, subgroup analysis of retrospective (\(P = 0.021 \)) studies revealed a significantly higher post-operative infection risk for ORIF in comparison to IM (RR for ORIF: 2.88; 95% CI: 1.22–6.72; \(P = 0.004 \); Fig. 6A).

Radial Nerve Palsy (RNP) Risk - IM vs. ORIF

Study	ORIF RNP	ORIF No RNP	IM RNP	IM No RNP	Risk Ratio for RNP with 95% CI	Weight (%)
Prospective (Level II, III)						
Changulani M, 2007	1	23	0	23	2.88 [0.12, 6.729]	3.38
Li Y, 2011	3	30	0	32	6.79 [0.36, 126.50]	3.92
Singisetti K, 2010	1	15	0	20	3.71 [0.16, 85.29]	3.41
Fan Y, 2015	3	27	0	30	7.00 [0.38, 129.93]	3.93
McCormack RG, 2000	0	23	3	18	0.13 [0.01, 2.39]	3.97
Raghavendra S, 2007	1	17	0	18	3.00 [0.13, 69.09]	3.41
Kumar R, 2012	2	13	0	15	5.00 [0.26, 96.13]	3.84
Wali MG, 2014	1	24	0	25	3.00 [0.13, 70.30]	3.37
Akalin Y, 2020	0	33	1	29	0.30 [0.01, 7.19]	3.35
Radulsecu R, 2014	2	80	1	101	2.49 [0.23, 26.96]	5.90
Heterogeneity: \(\tau^2 = 0.00 \), \(I^2 = 0.00\% \), \(H^2 = 1.00 \)						
Test of \(\theta = \theta_i \): Q(9) = 6.81, \(\hat{p} = 0.66 \)						
Retrospective (Level IV)						
Schwab TR, 2018	8	81	1	61	5.57 [0.71, 43.44]	7.95
Denies E, 2010	4	38	2	47	2.33 [0.45, 12.11]	12.36
Khan AS, 2010	4	26	3	27	1.33 [0.33, 5.45]	16.89
Hashmi PM, 2014	1	38	2	20	0.28 [0.03, 2.94]	6.11
Chao TC, 2005	2	34	1	55	3.11 [0.29, 33.07]	6.00
Kulkarni SG, 2012	3	22	0	31	8.62 [0.47, 159.37]	3.94
Putti AB, 2009	0	18	2	14	0.18 [0.01, 3.47]	3.81
Zhang R, 2020	1	45	1	33	0.74 [0.05, 11.40]	4.48
Heterogeneity: \(\tau^2 = 0.00 \), \(I^2 = 0.00\% \), \(H^2 = 1.00 \)						
Test of \(\theta = \theta_i \): Q(7) = 7.78, \(\hat{p} = 0.35 \)						
Overall						
Heterogeneity: \(\tau^2 = 0.00 \), \(I^2 = 0.00\% \), \(H^2 = 1.00 \)						
Test of \(\theta = \theta_i \): Q(17) = 14.87, \(\hat{p} = 0.61 \)						
Test of group differences: \(Q_i = 0.27 \), \(\hat{p} = 0.60 \)						

Figure 2

Forest plot of studies analysing post-operative radial nerve palsy risk depending on intramedullary nailing vs ORIF. Amber diamond depicts effect size for subgroups prospective (top) and retrospective (bottom) studies. Red diamond shows overall effect size, solid red line overall effect size value, and dashed black line the no-effect line.

(6, 39, 40, 41, 42, 47, 48, 55). Four of these (20, 26, 33, 39) reported on zero events in both arms, wherefore they were excluded from the meta-analysis.
higher infection risk for ORIF, while the effect was only marginally significant for prospective studies ($P = 0.059$).

Anterior/anterolateral vs posterior approach

Three studies reported on infection risk depending on surgical approach chosen (all level IV (8, 9, 44)). One study (9) reported on zero events in both arms and was thus excluded.

According to the meta-analysis including the remaining two studies, RR for post-operative infection following a posterior approach was 0.95 (95% CI: 0.14–6.66; $P = 0.960$; Fig. 6B) in comparison to anterior/anterolateral approach. Heterogeneity was small ($I^2 = 0.0\%$). Publication bias could not be assessed.

Discussion

According to this systematic review and meta-analysis involving 7688 patients with humeral shaft fractures, there appears to be an elevated risk for iRNP following ORIF in comparison to IM, ORIF in comparison to MIPO, as well as after posterior approach vs anterior or anterolateral approach. Also, ORIF is associated with higher post-operative infection risk as compared with IM. While non-union risk is comparable between ORIF and IM, and between anterior/anterolateral and posterior approach, conservative treatment is associated with a significantly higher non-union risk when compared with any surgical therapy for humeral shaft fractures.
Complications in humeral shaft fractures

Similar to a large analysis of the American Board of Orthopaedic Surgery (ABOS) database by Gottschalk et al., we observed an overall significantly higher risk for iRNP after ORIF in comparison to IM (6). Furthermore, our results are in line with those made in previous meta-analyses involving 18 (59), 10 (60), 10 (5) and 3 studies (61), respectively.

Additionally, for MIPO vs ORIF, a five-fold increased risk for intraoperative radial nerve injury was found, corroborating the results published by Zhao et al. in a network meta-analysis involving two RCTs (62). Of note, the estimated risk – as reflected by the odds ratio – reported by Zhao et al. was relatively higher than the herein observed risk – represented by the RR – which may be due to the different methodological approaches chosen, as well as a potential over-estimation of the OR due to an event rate exceeding 10% (63, 64). However, as in our meta-analysis, 8 of 18 and 2 of 4 studies comparing IM with ORIF as well as MIPO with ORIF, respectively, were non-randomised in their nature, it cannot be ruled out that patients undergoing open reduction had injuries contraindicating any closed reduction (e.g. extensive soft tissue involvement, multi-fragmented fracture (65, 66)) that would by themselves have increased the likelihood.
Non-Union Risk - IM vs. ORIF

Study	ORIF	IM	Risk Ratio for NU with 95% CI	Weight (%)	
	NU	No NU	NU	No NU	
Prospective (Level II, III)					
Changulani M, 2007	3	21	3	20	0.96 [0.21, 4.27] 5.37
Li Y, 2011	2	31	1	31	1.94 [0.18, 20.35] 2.17
Singisetty K, 2010	1	15	1	19	1.25 [0.08, 18.46] 1.65
Fan Y, 2015	1	29	2	28	0.50 [0.05, 5.22] 2.18
McCormack RG, 2000	1	22	2	19	0.46 [0.04, 4.68] 2.21
Raghavendra S, 2007	0	18	3	15	0.14 [0.01, 2.58] 1.43
Kumar R, 2012	1	14	1	14	1.00 [0.07, 14.55] 1.67
Akalin Y, 2020	4	29	5	25	0.73 [0.22, 2.46] 8.08
Lian K, 1998	1	23	1	22	0.96 [0.06, 14.43] 1.63
Chapman JR, 2000	3	43	2	36	1.24 [0.22, 7.04] 3.97
Rudulescu R, 2014	3	79	3	99	1.24 [0.26, 6.00] 4.84
Heterogeneity: $t^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$				0.86 [0.48, 1.55]	
Test of $\theta = \theta$; $Q(10) = 2.99$, $p = 0.98$					

Retrospective (Level IV)					
Bisaccia M, 2017	2	30	1	25	1.62 [0.16, 16.94] 2.18
Denies E, 2010	3	39	5	44	0.70 [0.18, 2.76] 6.38
Kulkarni VS, 2017	5	29	10	34	0.65 [0.24, 1.72] 12.59
Chao TC, 2005	1	35	1	55	1.56 [0.10, 24.09] 1.60
Goncalves FF, 2018	4	37	0	5	1.29 [0.08, 21.01] 1.54
Gottschalk MB, 2016	41	2,519	11	859	1.27 [0.65, 2.45] 27.43
Kulkarni SG, 2012	2	23	4	27	0.62 [0.12, 3.11] 4.60
Putti AB, 2009	1	17	0	16	2.68 [0.12, 61.58] 1.22
Wang Y, 2020	2	28	1	25	1.73 [0.17, 18.04] 2.18
Zhang R, 2020	6	40	2	32	2.22 [0.48, 10.32] 5.07
Heterogeneity: $t^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$				1.08 [0.70, 1.66]	
Test of $\theta = \theta$; $Q(9) = 3.64$, $p = 0.93$					

Overall

- Heterogeneity: $t^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$

- Test of $\theta = \theta$; $Q(20) = 7.01$, $p = 1.00$

- Test of group differences: $Q_{b}(1) = 0.37$, $p = 0.54$

Legend: NU - Non-Union; IM - Intramedullary Nailing; ORIF - Open Reduction Internal Fixation

Figure 5

Forest plot of studies analysing non-union risk after humeral shaft fractures depending on intramedullary nailing vs ORIF. Amber diamond depicts effect size for subgroups prospective (top) and retrospective (bottom) studies. Red diamond shows overall effect size, solid red line overall effect size value, and dashed black line the no-effect line.
A

Risk for Postoperative Infection - Intramedullary Nailing vs. ORIF

Study	ORIF Infection	ORIF No Infection	IM Infection	IM No Infection	Risk Ratio for Infection with 95% CI	Weight (%)
Prospective (Level II, III)						
Changulani M, 2007	5	19	1	22	4.79 [0.60, 37.95]	3.99
Singisetti K, 2010	1	15	1	19	1.25 [0.08, 18.46]	2.36
McCormack RG, 2000	0	23	1	20	0.31 [0.01, 7.12]	1.73
Kumar R, 2012	2	13	1	14	2.00 [0.20, 19.78]	3.26
Wali MG, 2014	3	22	1	24	3.00 [0.33, 26.92]	3.55
Akain Y, 2020	2	31	0	30	4.56 [0.23, 91.30]	1.90
Chapman JR, 2000	3	43	0	38	5.81 [0.31, 109.06]	1.99

Heterogeneity: τ² = 0.00, I² = 0.00%, H² = 1.00
Test of $θ_i = θ; Q(6) = 2.88, p = 0.82

Retrospective (Level IV)

Study	ORIF Infection	ORIF No Infection	IM Infection	IM No Infection	Risk Ratio for Infection with 95% CI	Weight (%)
Denies E, 2010	0	42	1	48	0.39 [0.02, 9.27]	1.70
Putnam JG, 2019	13	1,405	4	574	1.32 [0.43, 4.05]	13.72
Khan AS, 2010	3	27	2	28	1.50 [0.27, 8.34]	5.81
Kulkarni VS, 2017	2	32	2	42	1.29 [0.19, 8.72]	4.70
Hashmi PM, 2014	2	37	1	21	1.13 [0.11, 11.75]	3.11
Gottschalk MB, 2016	78	2,482	13	857	2.04 [1.14, 3.65]	50.46
Putti AB, 2009	1	17	0	16	2.68 [0.12, 61.58]	1.74

Heterogeneity: τ² = 0.00, I² = 0.00%, H² = 1.00
Test of $θ_i = θ; Q(6) = 1.70, p = 0.95

Overall

Heterogeneity: τ² = 0.00, I² = 0.00%, H² = 1.00
Test of $θ_i = θ; Q(13) = 5.07, p = 0.97
Test of group differences: $Q_f(1) = 0.50, p = 0.48

Favours ORIF Favours IM

1/64 1/4 1 64

IM - Intramedullary Nailing; ORIF - Open Reduction Internal Fixation
based on univariate binary outcomes

B

Risk for Postoperative Infection - Anterior/Anterolateral vs. Posterior Approach

Study	Posterior Infection	Posterior No Infection	Anterior/Anterolateral Infection	Anterior/Anterolateral No Infection	Risk Ratio for Infection with 95% CI	Weight (%)
Streuerf BD, 2020	1	93	1	96	1.03 [0.07, 16.26]	49.79
Li Y, 2020	1	56	1	49	0.88 [0.06, 13.60]	50.21

Overall

Heterogeneity: τ² = 0.00, I² = 0.00%, H² = 1.00
Test of $θ_i = θ; Q(1) = 0.01, p = 0.93
Test of $θ = 0; z = -0.05, p = 0.96

Favours Posterior Favours Anterior/Anterolateral

1/16 1/4 1 4 16

Random-effects REML model
based on univariate binary outcomes

Figure 6

Forest plot of studies evaluating post-operative infection risk in surgically treated humeral shaft fractures depending on intramedullary nailing vs ORIF (A) and anterior/anterolateral vs posterior approach (B). Amber diamond depicts effect size for subgroups prospective (top) and retrospective (bottom) studies on IM vs ORIF (A). Red diamond shows overall effect size, solid red line overall effect size value, and dashed black line the no-effect line (A and B).
of the radial nerve being in danger. Interestingly, we also observed a significantly higher risk of iRNP in case a posterior rather than anterior or anterolateral surgical approach to the humeral shaft had been chosen, which could as well be caused by a selection bias as surgeons may have attempted to explore an already endangered radial nerve via a direct posterior exposure of the humeral shaft.

Bearing these complications in mind, conservative treatment for humeral shaft fractures is a historically well-established alternative (66, 67). Nevertheless, the rate of operative treatment has steadily increased over the years, with today roughly one-third of patients – based on data from 2011 – still treated by conservative measures (7). Albeit a conservative approach naturally lacks surgery-associated risks, a longer immobilisation period, eventually reduced quality of life, and prolonged return to work can be seen disadvantageous (15).

According to the current meta-analysis, a conservative treatment attempt seems to be associated with a significantly higher risk for non-union. This is in line with a previous meta-analysis by van de Wall et al. (15) who, apart from nine observational studies, also pooled results from two RCTs. Of note, effect estimates of observational studies and RCTs in that study were comparable, wherefore the authors considered the potential for confounding due to the retrospective non-randomised studies rather minor (15). Furthermore, taking into account that surgery is often indicated in case of open injuries, multi-fragmentary fractures, and considerable displacement – all of which may increase the risk for non-union – the overall higher risk for non-union in case a conservative treatment is chosen appears even more striking.

Regarding different surgical exposures, the risk for non-union was not significantly different between anterior/anterolateral and posterior approaches to the humeral shaft. Furthermore, we observed a non-significantly different non-union risk when comparing IM with ORIF, being in line with previous meta-analyses (5, 59, 60, 61). This contradicts common knowledge that open reduction leads to significant exposure of the fracture site, which could potentially – together with required peristeam stripping to allow anatomical reduction – limit blood supply and thus impair fracture healing. For the same reasons, ORIF may be associated with an increased post-operative infection risk in comparison to IM, an assumption supported by the results of the current meta-analysis. In fact, a nearly two-fold increased risk for post-operative infection was observed for ORIF in comparison to IM. Our observations are in line with a recent meta-analysis by Beere et al. (59), albeit contradicting findings in previous ones (5, 60, 61). Notably, the type of surgical exposure was non-significantly associated with altered risk for post-operative infection in our meta-analysis, although one should bear in mind that the two studies included had been retrospective in nature.

The current systematic review and meta-analysis have some limitations that have to be considered. First, the majority of articles included described retrospective studies, wherefore non-random assignment to one or the other treatment arm has to be assumed. Secondly, several studies had to be excluded as not providing sufficient information on the outcome variables of interest. Thirdly, different surgical exposures chosen for ORIF (when compared with MIPO or IM) were not considered in the analyses as the main goal was to identify differences between surgical techniques exposing and not exposing the fracture itself. Fourthly, we did not perform adjusted meta-analyses for underlying differences between groups due to small sample sizes. Fifthly, time to union and restitutio from iRNP were not analysed, as both outcomes depend on frequency of examinations scheduled that may be more prone to bias than steady outcomes as infection, post-operative radial nerve palsy, and non-union.

Conclusions

According to the current meta-analysis involving 43 studies and 7688 patients with humeral shaft fractures reporting on outcomes non-union, post-operative radial nerve palsy, and infection risk, the method of choice when aiming at secure bony union appears to be surgery, albeit risk for radial nerve palsy has to be considered, especially in case a posterior rather than anterior/antlerolateral approach, and ORIF rather than MIPO or IM is chosen. Also, higher infection risk following ORIF in comparison to IM should be considered upon treatment planning. Yet, evidence on best treatment option for humeral shaft fractures remains moderate, taking into account the limited number of randomised studies available, as well as the multiple factors contributing to decision making.

Supplementary materials

This is linked to the online version of the paper at https://doi.org/10.1530/EOR-21-0097.

ICMJE Conflict of Interest Statement

A L has received Institutional Educational grants from Johnson & Johnson, Alphamed, Implantec, Amgen and Medacta not related to this publication. F J S declares receiving travel grants from AOTrauma and ÖGU. All other authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of this study.

Funding Statement

This work did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.
References

1. Court-Brown CM & Caesar B. Epidemiology of adult fractures: a review. Injury 2006 37 691–697. (https://doi.org/10.1016/j.injury.2006.04.130)

2. Ward EF. Fractures of the diaphyseal humerus. Skeletal Trauma: Fractures, Dislocations, and Ligamentous Injuries 1992 2 1177–1200.

3. Balfour GW, Mooney V & Ashby ME. Diaphyseal fractures of the humerus treated with a ready-made fracture brace. Journal of Bone and Joint Surgery: American Volume 1982 64 11–13. (https://doi.org/10.2106/00004623-198264010-00002)

4. Mann RJ & Neal EG. Fractures of the shaft of the humerus in adults. Southern Medical Journal 1965 58 264–268. (https://doi.org/10.1097/00007611-196503000-00002)

5. Ouyang H, Xiong J, Xiang P, Cui Z, Chen L & Yu B. Plate versus intramedullary nail fixation in the treatment of humeral shaft fractures: an updated meta-analysis. Journal of Shoulder and Elbow Surgery 2013 22 387–395. (https://doi.org/10.1016/j.jse.2012.06.007)

6. Gottschalk MB, Carpenter W, Hiza E, Reisman W & Roberson J. Humeral shaft fracture fixation: incidence rates and complications as reported by American Board of Orthopedic Surgery Part II Candidates. Journal of Bone and Joint Surgery: American Volume 2016 98 e1. (https://doi.org/10.2106/JBJS.15.01049)

7. Schoc B, Padegimas EM, Maltenfort M, Krieg J & Namdari S. Humeral shaft fractures: national trends in management. Journal of Orthopaedics and Traumatology 2017 18 259–263. (https://doi.org/10.1007/s10990-017-0459-6)

8. Li Y, Tian Q, Leng K & Guo M. Comparison of the posterior and anterolateral surgical approaches in the treatment of humeral mid-shaft fractures: a retrospective study. Medical Science Monitor 2020 26 e924400. (https://doi.org/10.12659/MSC.924400)

9. Lotzien S, Hoberg C, Rausch V, Rosteius T, Schildhauer TA & Gessmann J. Open reduction and internal fixation of humeral midshaft fractures: anterior versus posterior plate fixation. BMC Musculoskeletal Disorders 2019 20 527. (https://doi.org/10.1186/s12891-019-2888-2)

10. Moher D, Liberati A, Tetzlaff J, Altman DG & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine 2009 6 e1000097. (https://doi.org/10.1371/journal.pmed.1000097)

11. Group OLooW. Oxford Centre for evidence-based medicine, 2011.

12. Wells GA. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. (available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp)

13. Abraham NS, Byrne CJ, Young JM & Solomon MJ. Meta-analysis of well-designed nonrandomized comparative studies of surgical procedures is as good as randomised controlled trials. Journal of Clinical Epidemiology 2010 63 238–245. (https://doi.org/10.1016/j.jclinep.2009.04.005)

14. Clement ND. Management of humeral shaft fractures; non-operative versus operative. Archives of Trauma Research 2015 4 e28013. (https://doi.org/10.5812/atr.28013v2)

15. van de Wall BJM, Ochen Y, Beeres FJP, Babst R, Link BC, Heng M, van der Velde D, Knobe M, Groenwold RHH & Houwert MR. Conservative vs. operative treatment for humeral shaft fractures: a meta-analysis and systematic review of randomized clinical trials and observational studies. Journal of Shoulder and Elbow Surgery 2020 29 1493–1504. (doi:10.1016/j.jse.2020.01.072)

16. Higgins JP, Thompson SG, Deeks JJ & Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003 327 557–560. (https://doi.org/10.1136/bmj.327.7414.557)

17. Harbord RM, Egger M & Sterne JA. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Statistics in Medicine 2006 25 3443–3457. (https://doi.org/10.1002/sim.2380)

18. Deeks JJ, Higgins JP & Altman DG Chapter 10: Analysing data and undertaking meta-analyses . In Cochrane Handbook for Systematic Reviews of Interventions Version 6.2 (updated February 2021). Eds: Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MK, Welch VA. Cochrane, 2021. Available from http://www.training.cochrane.org/handbook
30. Singisetti K & Ambedkar M. Nailing versus plating in humerus shaft fractures: a prospective comparative study. International Orthopaedics 2010 34 571–576. (https://doi.org/10.1007/s00264-009-0813-2)

31. Kumar R, Singh P, Chaudhary LJ & Singh S. Humeral shaft fracture management, a prospective study, nailing or plating. Journal of Clinical Orthopaedics and Trauma 2012 3 37–42. (https://doi.org/10.1016/j.jcot.2012.04.003)

32. Esmaileigha AA, Abbassian MR, Saffadi F & Ashoori K. Treatment of humeral shaft fractures: minimally invasive plate osteosynthesis versus open reduction and internal fixation. Trauma Monthly 2013 20 26271. (https://doi.org/10.5812/traumamonn.26271v2)

33. Raghavendra S & Bhalodiya HP. Internal fixation of fractures of the shaft of the humerus by dynamic compression plate or intramedullary nail: a prospective study. Indian Journal of Orthopaedics 2007 41 214–218. (https://doi.org/10.4103/0019-5413.33685)

34. Broadbent MR, Will E & McQueen MM. Prediction of outcome after humeral diaphyseal fracture. Injury 2010 41 572–577. (https://doi.org/10.1016/j.injury.2009.09.023)

35. Westrick E, Hamilton B, Toogood P, Henley B & Firoozabadi R. Humeral shaft fractures: results of operative and non-operative treatment. International Orthopaedics 2017 41 385–395. (https://doi.org/10.1007/s00264-016-3210-7)

36. Schwab TR, Stillhard PF, Schibli S, Furrer M & Sommer C. Radial nerve palsies in humeral shaft fractures with internal fixation: analysis of management and outcome. European Journal of Trauma and Emergency Surgery 2018 44 235–243. (https://doi.org/10.1007/s00068-017-0775-9)

37. Lee T & Yoon J. Newly designed minimally invasive plating of a humerus shaft fracture; a different introduction of the plate. International Orthopaedics 2016 40 2597–2602. (https://doi.org/10.1007/s00264-015-3097-8)

38. Harkin FE & Large RJ. Humeral shaft fractures: union outcomes in a large cohort. Journal of Shoulder and Elbow Surgery 2017 26 1881–1888. (https://doi.org/10.1016/j.jse.2017.07.001)

39. Bisaccia M, Meccariello L, Rinonapoli G, Rollo G, Pellegrino M, Schiavone A, Vicente CI, Ferrara P, Filippioni M & Caraffa A. Comparison of plate, nail and external fixation in the management of diaphyseal fractures of the humerus. Medical Archives 2017 71 97–102. (https://doi.org/10.5455/medarh.2017.71.97-102)

40. Denies E, Nijs S, Sermon A & Broos P. Operative treatment of humeral shaft fractures. Comparison of plating and intramedullary nailing. Acta Orthopaedica Belgica 2010 76 735–742.

41. Putnam JG, Nowak L, Sanders D, MacNevin M, Lawendy AR, Jones C, McKee M & Schemitsch E. Early post-operative outcomes of plate versus nail fixation for humeral shaft fractures. Injury 2019 50 1460–1463. (https://doi.org/10.1016/j.injury.2019.06.014)

42. Kulkarni SG, Kulkarni VS, Kulkarni GS, Goyal V & Kulkarni MG. Comparison between antegrade interlocking nailing (IMN), open reduction plate osteosynthesis (ORPO) and minimally invasive plate osteosynthesis (MIPO) in treatment of humerus diaphyseal fractures. Injury 2017 48 (Supplement 2) S8–S13. (https://doi.org/10.1016/S0020-1383(17)30487-4)

43. O’Shaughnessy MA, Parry JA, Liu H, Stans AA, Larson AN & Milbrandt TA. Management of paediatric humeral shaft fractures and associated nerve palsy. Journal of Children’s Orthopaedics 2019 13 508–515. (https://doi.org/10.13002/1863-2548.13.190012)

44. Streufert BD, Eaford I, Sellers TR, Christensen JT, Maxson B, Infante A, Shah AR, Watson DT, Sanders RW & Mir HR. Iatrogenic nerve palsy occurs with anterior and posterior approaches for humeral shaft fixation. Journal of Orthopaedic Trauma 2020 34 163–168. (https://doi.org/10.1097/BOT.0000000000002168)

45. Jawa A, McCarty P, Doornberg J, Harris M & Ring D. Extra-articular distal-third diaphyseal fractures of the humerus. A comparison of functional bracing and plate fixation. Journal of Bone and Joint Surgery: American Volume 2006 88 2343–2347. (https://doi.org/10.2106/JBJS.F.00334)

46. An Z, Zeng B, He X, Chen Q & Hu S. Plating osteosynthesis of mid-distal humeral shaft fractures: minimally invasive versus conventional open reduction technique. International Orthopaedics 2010 34 131–135. (https://doi.org/10.1007/s00264-009-9753-x)

47. Khan AS, Afzal W & Anwar A. Comparison of shoulder function, radial nerve palsy and infection after nailing versus plating in humeral shaft fractures. Journal of the College of Physicians and Surgeons: Pakistan 2010 20 253–257. (https://doi.org/10.4040/ICPSP25257)

48. Hashmi PM, Mohib Y & Abbas K. Functional and radiological outcome of intramedullary nailing vs. plate fixation for humeral shaft fractures. Does treatment method bring any difference? Journal of the Pakistan Medical Association 2014 64 (Supplement 2) S135–S138.

49. Denard A, Jr, Richards JE, Obremensky WT, Tucker MC, Floyd M & Herzog GA. Outcome of nonoperative vs operative treatment of humeral shaft fractures: a retrospective study of 213 patients. Orthopaedics 2010 33. (https://doi.org/10.3928/01477447-20100625-16)

50. Dielwart C, Harmer L, Thompson J, Seymour RB & Karunakar MA. Management of closed diaphyseal humerus fractures in patients with injury severity score ≥17. Journal of Orthopaedic Trauma 2017 31 220–224. (https://doi.org/10.1097/BOT.0000000000001768)

51. Ekhholm R, Ponzer S, Törnkvist H, Adami J & Tidermark J. The Holstein-Lewis humeral shaft fracture: aspects of radial nerve injury, primary treatment, and outcome. Journal of Orthopaedic Trauma 2008 22 693–697. (https://doi.org/10.1097/BOT.0b013e3181915bf5)

52. Chao TC, Chou WY, Chung JC & Hsu CJ. Humeral shaft fractures treated by dynamic compression plates, Ender nails and interlocking nails. International Orthopaedics 2005 29 88–91. (https://doi.org/10.1007/s00264-004-0620-8)

53. Gonçalves FF, Dau L, Grassi CA, Palauro FR, Martins Neto AA & Pereira PCG. Evaluation of the surgical treatment of humeral shaft fractures and comparison between surgical fixation methods. Revista Brasileira de Ortopedia 2018 53 136–141. (https://doi.org/10.1007/s135-01703-015)

54. Kulkarni SG, Varshneya A, Jain M, Kulkarni VS, Kulkarni GS, Kulkarni MG & Kulkarni RM. Antegrade interlocking nailing versus dynamic compression plating for humeral shaft fractures. Journal of Orthopaedic Surgery 2012 20 288–291. (https://doi.org/10.1177/230949901202000304)

55. Putti AB, Uppin RB & Putti BB. Locked intramedullary nailing versus dynamic compression plating for humeral shaft fractures. Journal of Orthopaedic Surgery 2009 17 139–141. (https://doi.org/10.1177/230949901700200202)

56. Wang Y, Kayastha Y, Cao Y, Guo Z, Yuan Y & Bi Y. Outcome of humeral shaft fracture treated with intramedullary nail and plate fixation. Journal of the College of Physicians and Surgeons: Pakistan 2020 30 73–78. (https://doi.org/10.29271/jcpsp.2020.01.73)

57. Zhang R, Yin Y, Li S, Hou Z, Jin L & Zhang Y. Intramedullary nailing versus a locking compression plate for humeral shaft fracture (AO/OTA 12-A and B): a retrospective study. Orthopedics and Traumatology, Surgery and Research 2020 106 1391–1397. (https://doi.org/10.1016/j.otsr.2019.12.016)
Complications in humeral shaft fractures

58. Benegas E, Amódio DT, Correia LFM, Malavolta EA, Ramadan LB, Ferreira Neto AA & Zumiotti AV. Comparative, prospective and randomized study of humeral shaft fractures requiring surgical treatment: bridging plate versus locked intramedullary nail (preliminary analysis). *Acta Ortopédica Brasileira* 2007 **15** 87–92. (https://doi.org/10.1590/S1413-78522007000200006)

59. Beeres FJP, van Veelen N, Houwert RM, Link BC, Heng M, Knobe M, Groenwold RHH, Babst R & van de Wall BJM. Open plate fixation versus nailing for humeral shaft fractures: a meta-analysis and systematic review of randomised clinical trials and observational studies. *European Journal of Trauma and Emergency Surgery* 2021 In press. (https://doi.org/10.1007/s00068-021-01728-7)

60. Liu GD, Zhang QG, Ou S, Zhou LS, Fei J, Chen HW, Nan GX & Gu JW. Meta-analysis of the outcomes of intramedullary nailing and plate fixation of humeral shaft fractures. *International Journal of Surgery* 2013 **11** 864–868. (https://doi.org/10.1016/j.ijsu.2013.08.002)

61. Bhandari M, Devereaux PJ, McKee MD & Schemitsch EH. Compression plating versus intramedullary nailing of humeral shaft fractures — a meta-analysis. *Acta Orthopaedica* 2006 **77** 279–284. (https://doi.org/10.1080/17453670610046037)

62. Zhao JG, Wang J, Meng XH, Zeng XT & Kan SL. Surgical interventions to treat humerus shaft fractures: a network meta-analysis of randomized controlled trials. *PLoS ONE* 2017 **12** e0173634. (https://doi.org/10.1371/journal.pone.0173634)

63. Jansen JP & Naci H. Is network meta-analysis as valid as standard pairwise meta-analysis? It all depends on the distribution of effect modifiers. *BMC Medicine* 2013 **11** 159. (https://doi.org/10.1186/1741-7015-11-159)

64. Sedgwick P. Unit of observation versus unit of analysis. *BMJ* 2014 **348** g3840. (https://doi.org/10.1136/bmj.g3840)

65. Walker M, Palumbo B, Badman B, Brooks J, Van Gelderen J & Mighell M. Humeral shaft fractures: a review. *Journal of Shoulder and Elbow Surgery* 2011 **20** 833–844. (https://doi.org/10.1016/j.jse.2010.11.030)

66. Gallusser N, Barimani B & Vauclair F. Humeral shaft fractures. *EFORT Open Reviews* 2021 **6** 24–34. (https://doi.org/10.1302/2058-5241.6.200033)

67. Sarmiento A, Kinman PB, Galvin EG, Schmitt RH & Phillips JG. Functional bracing of fractures of the shaft of the humerus. *Journal of Bone and Joint Surgery: American Volume* 1977 **59** 596–601. (https://doi.org/10.2106/00004623-197759050-00004)