Viewpoints and debate

Pathologic response at the epicenter of the treatment decision-making process in Human Epidermal Receptor–Type 2 overexpressing (Her2+) Early Breast Cancer (EBC): Challenges and opportunities for financially-constrained healthcare systems

Max S. Mano

Grupo Oncoclínicas, Av. Faria Lima, 4300, 04538-132, Vila Olímpia, São Paulo, SP, Brazil
Latin American Cooperative Oncology Group (LACOG), 99A, Av. Ipiranga, 6681-806, Partenon, Porto Alegre, RS, 90619-900, Brazil

In Early Breast Cancer (EBC), due to the speediness of the results and the possibility of an accelerated approval in some countries, pharmaceutical companies and independent research groups have invested heavily the neoadjuvant setting [1]. However, neoadjuvant trials have usually been backed by larger adjuvant studies, which remain important for the permanent approval process [2].

Although the disease stage at presentation still matters [3–6], the achievement of a pathologic complete response (pCR) has been considered a powerful prognostic factor in Human Epidermal Receptor-2 overexpressing (Her2+) EBC [7–9]. In NEOSPHERE (NCT00545688), a randomized phase II trial, pertuzumab added to docetaxel and trastuzumab increased pCR rates in 15.8% points [10]. This data eventually led to pertuzumab’s accelerated approval for Her2+ EBC measuring >2 cm or node-positive (N+) [11] – probably also influenced by practice-changing data produced in the meta-static setting [12]. Confirmatory data came from the APHINITY (NCT01358877) adjuvant trial [13,14], which eventually led to pertuzumab’s regular approval in Her + EBC [15].

KATHERINE (NCT01772472) was a phase III trial in which patients with Her2+ EBC measuring more or equal to 1 cm or N+ who failed to achieve pCR after a standard neoadjuvant chemotherapy (NAC) and trastuzumab-based anti-Her2 therapy (dual-blockade in less than 20%) were randomized to receive 14 cycles of standard adjuvant trastuzumab or trastuzumab emtansine (T-DM1). The released interim results disclosed a robust 50% reduction in the risk of an IDFS event (HR, 0.50; 95% CI, 0.39 to 0.64; P < 0.001; 3-year IDFS 77% vs. 88.3%) [16], and subgroup analyses indicated consistent benefits across all subgroups [16,17]. T-DM1 was associated with increased toxicity (grade ≥3 adverse events [AEs], 25.7% vs. 15.4%; AEs leading to discontinuation, 18% vs. 2.1%) [16] and, potentially, higher costs [18]. Of interest, only 71.4% of the patients completed the 14 cycles (and 21.8% received less than 11 cycles), mostly due to the emergence of AEs [16]. Patients treated with de-escalated NAC (e.g. 12 weeks of paclitaxel) were unfortunately not represented in KATHERINE.

By exploring the neoadjuvant model and the prognostic role of pCR, NEOSPHERE [4,10] and KATHERINE [16], respectively, have changed the landscape of Her2+ EBC management by leading, for instance, to a likely increase in the use of neoadjuvant therapy
1. Considering that, in the pivotal APHINITY trial, the benefit from adjuvant dual-blockade was clearly restricted to N+ patients [14], it is currently unclear if neoadjuvant pertuzumab should be given to all cancers ≥ T2. In addition to deriving no significant benefit from pertuzumab in terms of IDFS [14], N0 patients treated with this agent are more likely to achieve a pCR and, consequently, less likely to be eligible for post-neoadjuvant T-DM1 – which has proven and substantial benefits in this population [16]. Therefore, provided N0 patients have undergone a meticulous loco-regional staging (Fig. 1), most will be adequately treated with neoadjuvant CT and trastuzumab – with lower costs and toxicity.

2. This rationale is in a way reinforced by the results of the KATHERINE trial [16], in which the benefit from T-DM1 was independent of the type of Her2 blockade and, despite a low use of dual-blockade, ‘T-DM1-rescued’ patients did well, with a 3-year IDFS close to 90% in the overall study population (and greater than 90% in selected subgroups—such as cT1, cT2, cN0 or HR+, according to subgroup analyses) [16].

3. According to KATHERINE trial subgroup analyses, potential exceptions to the aforementioned strategy are subgroups of patients identified as having high risk of recurrence despite being treated with T-DM1, such as mutually exclusive cohorts of patients with initially ‘inoperable’ or ‘operable/HR–/N+’ disease, who presented a greater than 20% risk of an IDFS event at 3 years; this probably also applies to patients with initial cT3-4 or cN+ disease, who presented a 3-year IDFS below 90% despite being treated with T-DM1 [16].

4. The fact that almost 30% of the patients failed to complete the 14 cycles of T-DM1 [16] in the KATHERINE trial implies that the chosen treatment duration is potentially too long. Interestingly, similar data emerged in a recent trial of single agent adjuvant T-DM1 for ‘low-risk’ Her2+ EBC, in which 17% of the patients failed to complete the 17 cycles and, despite that, a very low recurrence rate (<5%) was reported [22]. Furthermore, the initial assumption that 17 cycles of T-DM1 would be better tolerated than the TH regimen (12 weeks of paclitaxel with concurrent follow by sequential trastuzumab for up to 52 weeks [23]) yielded conflicting conclusions [22,24].

5. In the KATHERINE trial, prior treatment with an anthracycline (AC) was associated with a lower use of dual-blockade (10% vs. 45% for non-AC CT) and resulted in lower toxicity in general (grade ≥ 3 AEs, 21.7% vs. 39.9% with non-AC based CT). Both AC and non-AC groups presented excellent outcomes and derived similar benefits from T-DM1 [17]. Therefore, it can be speculated that the use of AC-based NAC might directly reduce spending with anti-Her2 monoclonal antibodies and, indirectly, with management of AEs. Of interest, in the large PERSEPHONE trial, the equivalent efficacy of only 6 months of adjuvant trastuzumab was also better demonstrated in AC-treated patients [25]. Finally, concerns about the cardiac safety of AC-based CT are often raised. However, in both KATHERINE and APHINITY, approximately 5% of the patients were treated with AC and, with appropriate patient selection (as per stringent inclusion criteria used in these trials), no evidence of clinically meaningful increases in cardiac toxicity has emerged so far [13,17] (a lower cumulative dose of AC might also contribute to this goal).

6. In the KATHERINE trial, the addition of a platinum compound – whose role in Her2+ BC remains unclear [26,27] – represented a further burden in terms of toxicity [28]. Clinical experience has also shown a significant increase in severe anemia which might lead to higher rates of blood transfusions [29–31] — all potentially affecting the cost-effectiveness of platin-based regimens in this setting [18].

Current gaps of information and potential opportunities for further research in Her2+ EBC include the following (see also in Fig. 1):

1. Would post-neoadjuvant T-DM1 also be effective in ‘rescuing’ non-pCR patients treated with ‘de-escalated’ neoadjuvant regimens, such as 12 weeks of paclitaxel [23,32], or endocrine therapy plus dual-blockade without CT (in Her2+/HR+ EBC)? [23–35].

2. Could the treatment duration of post-neoadjuvant T-DM1 be shortened — especially in the lowest risk subgroups?

3. Although designing such a clinical trial would be statistically challenging, could ‘low-risk’ pCR patients (initial stage I-II and N–) be potential candidates for a ‘no further treatment’ strategy? [36].

4. Could ‘high-risk’ pCR patients [4–6] also benefit from post-neoadjuvant T-DM1?

For financially-constrained healthcare systems, a rational utilization of the resources may a matter of life or death. At the same time, considering the current high cure rates of Her2+ EBC, and the devastating personal and financial consequences of a metastatic recurrence, treatment rationalization measures must be pursued under a very tight level of responsibility and technical rationale. Based on the NEOSPHERE, APHINITY and KATHERINE trials data [4,10,13,14,16,17], the following set considerations can be made (Fig. 1):

1. Policy-makers should require evidence that Her2+ EBC cases have been discussed in a Multidisciplinary Tumor Board [21].

2. Most patients with Her2+ cancers cT1a–b/N0/any HR status, cT1c/N0/HR+, or elderly/frail patients with tumors of <3 cm/N0/ any HR status will be adequately treated with upfront surgery followed by de-escalated adjuvant therapy (TH) [23].

3. Patients with cT1c N0 disease represent a particular challenge. On the one hand, they have been shown to do well with surgery followed by adjuvant TH in the APT trial [23]; on the other hand, they also appeared to derive benefit from T-DM1 in an exploratory analysis of the KATHERINE trial (0 vs. 6[18%] IDFS events; n = 77) [17]. For this particular subgroup, young age and HR– status (both underrepresented in the APT trial [23]) are two factors to be considered in the decision-making process.

4. Patients with cT2 NO are candidates to neoadjuvant therapy (suggested schedule: AC-based CT → taxane plus concurrent trastuzumab; a schedule containing 6 cycles of chemotherapy in total might be appropriate and cost-efficient) [37–40]. There is currently no clear indication for dual-blockade in this population.

5. Patients with N+ or T3-4 cancers are candidates for NAC (as above) and dual-blockade.

6. Elderly or frail patients with a clear indication for neoadjuvant therapy can be treated with 12 weeks of paclitaxel plus anti-Her2 therapy provided they have a good cardiac function.
7. Patients who failed to achieve pCR are candidates for post-neoadjuvant T-DM1 for 14 cycles [16].

In conclusion, the advances achieved with the development of Her2+ targeted therapies over the past 15 years have shaped the current landscape of Her2+ EBC management. Cure rates have achieved remarkably high rates, even for locally-advanced disease. However, gaining access to these costly technologies has been a challenge for financially-constrained healthcare systems, especially financially-constrained healthcare systems and Most Relevant Research Questions for Each Situation.

Disclosures

Received honoraria from Roche/Genentech for lectures, advisory boards, design of educational material and educational grants (travel expenses).

Has served as a member of the KATHERINE trial Steering Committee (though this is not a compensated activity).

There was no funding or writing assistance for this manuscript.

References

[1] Prowell TM, Pazdur R. Pathological complete response and accelerated drug approval in early breast cancer. N Engl J Med 2012;366:2438-41.
[2] Prowell T. Food and drug administration. draft guidance for industry, pathologic complete response in neoadjuvant treatment of high-risk early-stage breast cancer: use as an endpoint to support accelerated approval. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM305501.pdf. [Accessed 27 March 2020].
[3] Swain SM, Macharria H, Cortes J, et al. Risk of recurrence and death in patients with early HER2-positive breast cancer who achieve a pathological complete response after different types of HER2-targeted therapy: a pooled analysis. In: Proceedings of the 2019 san antonio breast cancer symposium. TX, USA. vols. 10–14; December 2019.
[4] Gianni L, Pietkowska T, Im YH, et al. 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 randomised trial. Lancet Oncol 2016;17:791–800.
[5] Borremans K, Bertelsen P, Van Nieuwenhuysen E, et al. Breast cancer recurrence and predictors for recurrence despite pathologic complete response following neoadjuvant chemotherapy [abstract]. In: Proceedings of the 2018 san antonio breast cancer symposium; 2018 Dec 4-8; San Antonio, TX. Philadelpia (PA): AACR; Cancer Res. vol. 79; 2019.
[6] Huober J, Schneeweiss A, Blomher J-U, et al. Factors predicting relapse in early breast cancer patients with a pathological complete response after neoadjuvant therapy — results of a pooled analysis based on the GBC meta-database [abstract]. In: Proceedings of the 2018 san antonio breast cancer symposium; 2018 Dec 4-8; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res. vol. 79; 2019.
[7] Mieog JS, van der Hage JA, van de Velde CJ. Preoperative chemotherapy for women with operable breast cancer. Cochrane Database Syst Rev 2007;2:CD005002.
[8] von Minckwitz G, Untch M, Ju Blomher, et al. Definition and impact of
pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012 May 20;30(15): 1796–804. https://doi.org/10.1200/JCO.2011.38.8595.

[9] Cortazar P, Zhang L, Untch M, et al. Pathologic complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 2014;384:164–72.

[10] Gianni L, Pienkowski T, Tri YH, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 2012 Jan;13(1):25–32. https://doi.org/10.1016/S1470-2045(11)70336-9.

[11] Amiri-Kordestani L, Wedam S, Zhang L, et al. First FDA approval of neo-adjuvant therapy for breast cancer: pertuzumab for the treatment of patients with HER-2-positive breast cancer. Clin Canc Res 2014 Nov 20;20(21):5359–64. https://doi.org/10.1158/1078-0432.CCR-14-2126.

[12] Baselga J, Cortes J, Kim SB, et al. CLEOPATRA Study Group. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 2012 Jan 12;366(2):109–19. https://doi.org/10.1056/NEJMoa1112318.

[13] von Minckwitz G, Procter M, Da Costa A, et al. Phase III randomized trial comparing docetaxel and trastuzumab with docetaxel, carboplatin, and trastuzumab as first-line chemotherapy for patients with HER2-gene-amplified metastatic breast cancer (BCIRG 007 study): two highly active therapeutic regimens. J Clin Oncol 2011 Jan 20;29(2):149–56. https://doi.org/10.1200/JCO.2010.26.0450.

[14] Robert N, Leyland-Jones B, Asmr A, et al. Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 2006 Jun 20;24(18):2786–92.

[15] Slamon D, Eiermann W, Robert N, et al., Breast Cancer International Research Group. Adjuvant trastuzumab emtansine (T-DM1) vs. paclitaxel for node-negative, human epidermal growth factor receptor 2-positive breast cancer among patients treated with anti-HER2-based neoadjuvant therapy. Br J Canc 2015 Feb 17;112(4):630–45. https://doi.org/10.1038/bjc.2014.647.

[16] Slamon D, Eiermann W, Robert N, et al., Breast Cancer International Research Group. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 2011;365:1273–83.

[17] Sikov WM, Berry DA, Perou CM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol 2015;33(1):13–21. https://doi.org/10.1200/JCO.2014.57.0572.

[18] Shimoda K, Eiermann W, Robert N, et al., Breast Cancer International Research Group. Adjuvant trastuzumab in HER2-negative breast cancer. N Engl J Med 2012;366:1571–81.

[19] Slamon D, Eiermann W, Robert N, et al., Breast Cancer International Research Group. Adjuvant trastuzumab emtansine (T-DM1) vs trastuzumab (TH) plus docetaxel in patients with residual invasive HER2-positive breast cancer with residual invasive HER2-positive breast cancer: KATHERINE subgroup analysis [abstract]. In: Proceedings of the 2019 san antonio breast cancer symposium; 2019 Dec 10-14; San Antonio, TX. Philadelphia (PA): AACR; 2020.

[20] Slamon D, Eiermann W, Robert N, et al., Breast Cancer International Research Group. Adjuvant trastuzumab emtansine (T-DM1) vs trastuzumab (TH) plus docetaxel in patients with residual invasive HER2-positive breast cancer. Ann Oncol 2020;31(suppl_5):v851–934.

[21] Slamon DJ, Godolphin W, Jones LA, et al. Diagnosing and treating HER2-positive breast cancer. N Engl J Med 2001;344:783–92. https://doi.org/10.1056/NEJMoa003259.

[22] Slamon D, Godolphin W, Jones LA, et al. Diagnosing and treating HER2-positive breast cancer. N Engl J Med 2001;344:783–92. https://doi.org/10.1056/NEJMoa003259.

[23] Strobel S, Untch M, Slamon D, et al., Breast Cancer International Research Group. Adjuvant dual blockade with trastuzumab and pertuzumab in early breast cancer patients with Ki67 response after 2-week letrozole: results of the PerElsa neoadjuvant study. Ann Oncol 2019 Jun 1;30(6):921–6. https://doi.org/10.1093/annonc/mdz055.

[24] Strobel S, Untch M, Slamon D, et al., Breast Cancer International Research Group. Adjuvant dual blockade with trastuzumab and pertuzumab in early breast cancer patients with Ki67 response after 2-week letrozole: results of the PerElsa neoadjuvant study. Ann Oncol 2019 Jun 1;30(6):921–6. https://doi.org/10.1093/annonc/mdz055.

[25] Earl HM, Hiller L, Vallier AL, et al. 6 versus 12 months of adjuvant trastuzumab for HER-2-positive early breast cancer (PERSEPHONE): 4-year disease-free survival results of a randomised phase 3 non-inferiority trial. Lancet 2019 Jun 29;393(10191):2599–612. https://doi.org/10.1016/S0140-6736(19)30650-6.

[26] Slamon D, Eiermann W, Robert N, et al., Breast Cancer International Research Group. Adjuvant trastuzumab emtansine (T-DM1) vs trastuzumab (TH) plus docetaxel in patients with residual invasive HER2-positive breast cancer. Ann Oncol 2020;31(suppl_5):v851–934.

[27] Slamon D, Eiermann W, Robert N, et al., Breast Cancer International Research Group. Adjuvant trastuzumab emtansine (T-DM1) vs trastuzumab (TH) plus docetaxel in patients with residual invasive HER2-positive breast cancer. Ann Oncol 2020;31(suppl_5):v851–934.

[28] Slamon D, Eiermann W, Robert N, et al., Breast Cancer International Research Group. Adjuvant trastuzumab emtansine (T-DM1) vs trastuzumab (TH) plus docetaxel in patients with residual invasive HER2-positive breast cancer. Ann Oncol 2020;31(suppl_5):v851–934.

[29] Slamon D, Eiermann W, Robert N, et al., Breast Cancer International Research Group. Adjuvant trastuzumab emtansine (T-DM1) vs trastuzumab (TH) plus docetaxel in patients with residual invasive HER2-positive breast cancer. Ann Oncol 2020;31(suppl_5):v851–934.

[30] Slamon D, Eiermann W, Robert N, et al., Breast Cancer International Research Group. Adjuvant trastuzumab emtansine (T-DM1) vs trastuzumab (TH) plus docetaxel in patients with residual invasive HER2-positive breast cancer. Ann Oncol 2020;31(suppl_5):v851–934.

[31] Slamon D, Eiermann W, Robert N, et al., Breast Cancer International Research Group. Adjuvant trastuzumab emtansine (T-DM1) vs trastuzumab (TH) plus docetaxel in patients with residual invasive HER2-positive breast cancer. Ann Oncol 2020;31(suppl_5):v851–934.