Data Article

Partial mtDNA sequencing data of vulnerable Cephalopachus bancanus from the Malaysian Borneo

Muhamad Aidil Zahidin, Norehan Abd Jalil, Nur Mukminah Naharuddin, Mohd Ridwan Abd Rahman, Millawati Gani, Mohd Tajuddin Abdullah

Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Malaysia
Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Malaysia
Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
Center for Pre-University Study, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Malaysia
National Wildlife Forensic Laboratory, Department of Wildlife and National Park Peninsular Malaysia, KM 10, Jalan Cheras, 56100 Kuala Lumpur, Malaysia
School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Malaysia

Keywords:
Cytochrome b gene
Population genetics
Primate
Tarsier
Borneo

A B S T R A C T

Tarsier is an endangered nocturnal primate in the family Tarsiidae and is an endemic to Sundaic islands of Philippine (Carlito syrichta), Sulawesi (Tarsius tarsier-complex) and Borneo (Cephalopachus bancanus). Recent records indicated that most molecular studies were done on the Eastern Tarsier and little information for the other group of tarsiers. Here, we present a partial cytochrome b data set of C. bancanus in Sarawak, Malaysian Borneo. Standard mist nets were deployed at strategic locations in various habitat types. A total of 18 individuals were caught, measured and weighed. Approximately, 2 × 2 mm of tissue samples were taken and preserved in molecular grade alcohol. Out of 18, only 11 samples were screened with partial mtDNA (cytochrome b) and the DNA sequences were registered in the GenBank (accession...
numbers: KY794797-KY794807). Phylogenetic trees were constructed with 20 additional mtDNA sequences downloaded from GenBank. The data are valuable for the management authorities to regulate the type of management units for the metapopulation to sustain population genetics integrity of tarsiers in the range countries across the Sunda Shelf.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

Tarsiers are a vulnerable primate group [1] in family Tarsiidae that can be found on Southeast Asia Islands; Sundaic islands of Philippine (Carlito syrichta), Sulawesi and surrounding islands (Tarsius tarsier-complex) and Borneo (Cephalopachus bancanus) [2]. Western Tarsier Cephalopachus bancanus bancanus can be found in Malaysian Borneo and is listed as protected and totally protected species in the Malaysia's Wildlife Conservation Act (WCA) 2010 and Sarawak's Wildlife Protection Ordinance (WLPO) 1998 respectively. The molecular research interest on this endemic species is due to the availability of recent information related to taxonomy and evolutionary relationship of tarsiers since the expansion of fauna and prehistoric human into Southeast Asia [2,3].

This dataset contains genetic phylogenetic information of C. bancanus from Malaysian Borneo. Table 1 shows a list of field sampling conducted in Sarawak, Borneo. Field number, standard morphological measurements, weight and sex of each individual were recorded as in Table 2. A set of partial primers of Cytochrome b, DNA master mixture profile and PCR profile were tabulated as in Table 3 and Supplementary Tables 1 and 2 respectively [4]. Additional 20 mtDNA sequences derived from the GenBank [5–15] were used and tabulated in Table 4. The sequence variations, frequency distribution haplotypes and pairwise distance of tarsier were identified as in Tables 5 and 6 and Supplementary Specifications table

Specifications table
Subject area
More specific subject area
Type of data
How data was acquired
Data format
Experimental factors
Experimental features
Data source location
Data accessibility
Related research article

Value of the Data

- The data are valuable for the management authorities to determine the type of management units for the metapopulations to maintain the integrity of population genetics in their ranges across the Sunda Shelf.
- The data can be used as baseline information for future studies on genetic and molecular ecology that can be used as a flagship model to test the “Out of Sunda” theory and elucidating the history of prehistoric humans and primates migration waves in Southeast Asia.
- The data allow other researchers focusing on this population to start the genome-wide analysis.

1. Data

Tarsiers are a vulnerable primate group [1] in family Tarsiidae that can be found on Southeast Asia Islands; Sundaic islands of Philippine (Carlito syrichta), Sulawesi and surrounding islands (Tarsius tarsier-complex) and Borneo (Cephalopachus bancanus) [2]. Western Tarsier Cephalopachus bancanus bancanus can be found in Malaysian Borneo and is listed as protected and totally protected species in the Malaysia's Wildlife Conservation Act (WCA) 2010 and Sarawak's Wildlife Protection Ordinance (WLPO) 1998 respectively. The molecular research interest on this endemic species is due to the availability of recent information related to taxonomy and evolutionary relationship of tarsiers since the expansion of fauna and prehistoric human into Southeast Asia [2,3].

This dataset contains genetic phylogenetic information of C. bancanus from Malaysian Borneo. Table 1 shows a list of field sampling conducted in Sarawak, Borneo. Field number, standard morphological measurements, weight and sex of each individual were recorded as in Table 2. A set of partial primers of Cytochrome b, DNA master mixture profile and PCR profile were tabulated as in Table 3 and Supplementary Tables 1 and 2 respectively [4]. Additional 20 mtDNA sequences derived from the GenBank [5–15] were used and tabulated in Table 4. The sequence variations, frequency distribution haplotypes and pairwise distance of tarsier were identified as in Tables 5 and 6 and Supplementary
Table 1
Field sampling conducted in Sarawak, Borneo.

Division	Sampling site	Coordinate
1	Betong Maludam National Park	1.5271° N, 111.1414° E
2	Kota Samarahan Universiti Malaysia Sarawak	1.4649° N, 110.4269° E
3	Kuching City Cermat Ceria Forest	1° 24' 01.6" N, 111° 23' 54.0" E
4	Kuching City Durafarm Plantation	1° 23' 50.63697" N, 111° 50.59624" E
5	Kuching City Kampung Barieng	1° 25' 00" N, 110° 09' E
6	Kuching City Kubah National Park	1.6128° N, 110.1969° E
7	Kuching City Matang Wildlife Centre	1.6166° N, 110.1582° E

Table 2
Taxonomic measurements of captured *C. bancanus* with their registered accession number in the GenBank.

Field no.	Species	Measurements (mm)	Wt (g)	Sex	Note	Accession Number
TSKN 001	Cephalopachus bancanus	40.23 214 130 344 48.04 46.96 42.95 42.53 110	68 M	Kubah National Park		
TSKNP 002	*C. bancanus*	27.71 40.79 206 136 342 46.03 45.67 40.79 40.71 126.93	150 F	Kubah National Park		
TSC 002	*C. bancanus*	27.60 191 149 340 40.64 40.32 36.9 37.3	105 F	UNIMAS	KY794803	
TSC 003	*C. bancanus*	38.66 225 143 368 49.3 50 39.1 39	110 F	UNIMAS	KY794804	
TSC 004	*C. bancanus*	28.00 65.64 24.6 117 423 45 45 35 35 67	M	UNIMAS	KY794805	
TSMW 001	*C. bancanus*	30.00 138 45 47 40 40 115	110 M	Matang Wildlife Centre	KY794807	
TSMW 002	*C. bancanus*	28.00 67.00 216 119 47 47 37 37 92	M	Matang Wildlife Centre		
MNP 001	*C. bancanus*	23.00 72.00 241	121 M	Maludam National Park		
MNP 002	*C. bancanus*	21.80 73.99 200	124 M	Maludam National Park	KY794806	
11PSF 001	*C. bancanus*	31.00 266 140 406	115 M	Cermat Ceria Forest	KY794801	
12PSF 002	*C. bancanus*	25.23 220 154 374	130 M	Cermat Ceria Forest		
13KBSM 1302	*C. bancanus*	31.00 76.00 225 132 357	119 F	Kampung Barieng	KY794797	
14KBSM 1303	*C. bancanus*	22.00 71.00 225 150 375	125 M	Kampung Barieng	KY794798	
15KBSM 1304	*C. bancanus*	30.00 70.00 219 140 359	108 F	Kampung Barieng	KY794799	
16KBSM 1305	*C. bancanus*	25.00 74.00 225 150 375	123 M	Kampung Barieng	KY794800	
17A08897	*C. bancanus*	21.07 64.62 210 133 343	133 M	Durafarm Plantation		
18A11251	*C. bancanus*	20.05 76.00 230 141 371	M	Durafarm Plantation	KY794802	

E- Ear length, HF- Hind foot length, T- Tail length, HB- Height body length, TL- Total length, RH- Right hand length, LH- Left hand length, RF- Right foot length, LF- Left foot length.
M- Male, F- Female, UNIMAS- Universiti Malaysia Sarawak.
Table 3
Primer used for PCR amplification [4].

Primer	Primer sequences (5'-3')	Size (bp)
Glud-GL (F)	5'- TGACCTGARAACCAYCGTTG -3'	500
CB2H (R)	5'- CCTCAAGAATGATATTTGTCCCTCA -3'	500

Table 4
Additional 20 mtDNA sequences used in this study.

Scientific name	Common name	Accession Number	Author
1	Cephalopachus bancanus	NC002811	[5]
2	C. bancanus	AF348159	[5]
3	C. bancanus	AB011077	[6]
4	Carlito syrichta	AB371090	[7]
5	C. syrichta	NC012774	[7]
6	Tarsius wallacei	HM115983	[8]
7	T. wallacei	HM115984	[8]
8	T. wallacei	HM115982	[8]
9	T. lariang	FJ614357	[9]
10	T. lariang	FJ614358	[9]
11	T. lariang	FJ614363	[9]
12	T. dentatus	FJ614369	[9]
13	T. dentatus	FJ614370	[9]
14	T. dentatus	FJ614371	[9]
15	Hylobates muelleri	Y13300	[10]
16	Macaca fascicularis	AF295584	[11]
17	Trachypithecus cristatus	NC023971	[12]
18	Nasalis larvatus	DQ355298	[13]
19	Presbytis hosei	JF295114	[14]
20	Tupai glis	AY221644	[15]

Table 5
Sequence variation of Western Tarsier.

Indices	Partial Cyt b
Base pair	375 bp
Conserved site	366
Variable site	9
Parsimony-informative site	5
Singleton	4
Nucleotide composition (%)	
C	26.40
T	30.20
A	27.20
G	16.20
Overall mean distance	0.007

Table 6
Frequency distribution of the partial Cyt b haplotypes.

Hap	n	Sample	Frequency
1	1	C. bancanus TSC003	0.091
2	1	C. bancanus TSC004	0.091
3	3	C. bancanus TSC005, C. bancanus KBSM0213, C. bancanus A11261	0.273
4	2	C. bancanus TSMW002, C. bancanus PSF001	0.182
5	1	C. bancanus MNP002	0.091
6	2	C. bancanus KBSM0313, C.bancanus KBSM0513	0.182
7	1	C. bancanus KBSM0413	0.091
Table 3. The evolutionary relationships of taxa were inferred using the Neighbor-Joining, Maximum Parsimony and Maximum Likelihood methods are shown as in Figs. 1–3.

2. Experimental design, materials and methods

2.1. Sample Collection

Field sampling was conducted at the southern part of Sarawak; Kubah National Park, Matang Wildlife Centre, Universiti Malaysia Sarawak (UNIMAS), Maludam National Park, Cermat Ceria Forest, Kampung Barieng and Durafarm Plantation (Table 1). The samplings were assisted by the field assistants from the Institute of Biodiversity and Environmental Conservation (IBEC), UNIMAS. A total of ten mist nets were deployed at strategic locations with high vegetation, trees with small trunk diameter and near to the stream or water bodies [16–20]. A total of 18 individuals were captured, identified, sexed, measured and weighed (Table 2) [18–21]. Each was tranquillised using Zoletil 100 mg solution. Approximately, 2 × 2 mm-thick tissues samples were taken and preserved in molecular grade alcohol.
2.2. DNA extraction, amplification, purification and sequencing

The DNA samples were extracted using cetyl-tri-methyl ammonium bromide (CTAB) protocol [22] and polymerase chain reaction (PCR) amplified using a set of cytochrome b partial primers [4]. The amplified products were purified using Promega Wizard SV Gel and PCR Clean-Up System (Promega Co.) and subjected to cycle sequencing at the First Base Laboratories Malaysia. The *C. bancanus* sequences were registered in the GenBank (accession numbers: KY794797-KY794807) (Table 2).

2.3. Sequence analysis

The nucleotide sequences were visualized and read using Sequencher 5.4 (https://genecodes.com). The sequences were matched and aligned with 20 additional mtDNA sequences (Table 4) [5–15] using ClustalW2 MUSCLE (Multiple Sequence Comparison by Log-Expectation) (https://www.ebi.ac.uk). The
nucleotide composition and haplotype frequency were performed in Molecular Evolutionary Genetics Analysis (MEGA) 7 [23] and DnaSP [24]. The evolutionary divergence between sequences (Supplementary Table 3) was estimated in MEGA 7 by using the p-distance model where all positions containing gaps and missing data were eliminated. Kimura 2-parameter method was used to compute the Neighbor-Joining tree (Fig. 1). The evolutionary history of Maximum Parsimony was shown in Fig. 2. The tree was obtained using the Subtree-Pruning-Regrafting (SPR) algorithm which the initial trees were obtained by the random addition of sequences. Meanwhile, the evolutionary history of Maximum Likelihood was performed using the Hasegawa-Kishino-Yano (HKY + G + I) method (Fig. 3). The best model was chosen based on the Akaike Information Criterion (AIC; 4776.487) value and the lowest Bayesian Information Criterion (BIC; 5254.204) score.

Acknowledgments

We thank geneticist Dr Edinur Hisyam Atan from the Forensic Science Programme, Universiti Sains Malaysia (USM) for insightful comments on various versions of this manuscript. We also thank
geneticist Dr Faisal Ali Anwarali Khan, science officer Mr Wahap Marni, postgraduate and undergraduate students of UNIMAS batch 2013/2014 of Department of Zoology, Faculty of Resource Science and Technology (FRST) for their assistance during field samplings. This study was supported by the Sarawak Forest Department (SFD) researches permit (NCCD/907/4/Jld9-39) and park permit (81/2013). This study was made possible under grants RAG/S(4)/916/2012(17) awarded to Mr Moid Ridwan Abd Rahman and colleagues. The Universiti Malaysia Terengganu funded this publication from the Research and Innovation Management Centre (RIMC) publication grant is gratefully acknowledged.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.dib.2019.104133.

References

[1] M. Shekelle, I. Yustian, Tarsius bancanus, the IUCN red list of threatened species 2008, e.T21488A9286601, retrieved from https://doi.org/10.2305/IUCN.UK.2008.RLTS.T21488A9286601.en, accessed on 24 January 2019.
[2] M.A. Zahidin, N. Abd Jalil, N.M. Naharuddin, M.R. Abd Rahman, M. Gani, M.T. Abdullah, Sequence variation and phylo- genetic of Western Tarsier (Primate: Cephalopachus bancanus) inferred using partial sequences of the cytochrome b segment of the mitochondrial DNA, Under review in Springer Nature International Publication (Under review).
[3] M.A. Zahidin, W.B. Wan Omar, W.R. Wan Taib, J.J. Rovie Ryan, M.T. Abdullah, Sequence polymorphism and haplogroup data if the hypervariable regions on mtDNA in Semoq Beri population, Data Brief 21 (2018) 2608–2615.
[4] S. Palumbi, R. Martin, S. Romano, W.O. McMillan, L. Stice, G. Grabowski, The Simple Fool’s Guide to PCR, University of Hawaii, Honolulu, 1991.
[5] J. Schmitz, M. Ohme, H. Zischler, The complete mitochondrial sequence of Tarsius bancanus: evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA, Mol. Biol. Evol. 19 (2002) 544–553.
[6] T.D. Andrews, L.S. Jermiin, S. Easteal, Accelerated evolution of cytochrome b in simian primates: adaptive evolution in concert with other mitochondrial proteins? Mol. Evol. 47 (1998) 249–257.
[7] A. Matsui, F. Rakotondraparany, I. Munechika, M. Hasegawa, S. Horai, Molecular phylogeny and evolution of prosimians based on complete sequences of mitochondrial DNAs, Gene 441 (2009) 53–66.
[8] S. Merker, C. Driller, H. Dahruddin, W. Sinaga, D. Perwitasari-Farajallah, M. Shekelle, Tarsius wallacei: a new tarsier species from Central Sulawesi occupies a discontinuous range, Int. J. Primatol. 31 (2010) 1107–1122.
[9] S. Merker, C. Driller, D. Perwitasari-Farajallah, J. Pamungkas, H. Zischler, Elucidating geological and biological processes underlying the diversification of Sulawesi tarsiers, Proc. Natl. Acad. Sci. Unit. States Am. 106 (2009) 8459–8464.
[10] L.M. Hall, D.S. Jones, B.A. Wood, Evolution of the Gibbon subgenera Inferred from Cytochrome b DNA sequence data, Mol. Phylogenetics Evol. 10 (1998) 281–286.
[11] R.V. Collura, P.K. Karanth, C.B.R. Stewart, reportA Cytochrome B Phylogeny of the Colobine Monkeys. Unpublished report. Retrieved from https://www.ncbi.nlm.nih.gov/nuccore/AF295584. Assessed on 22 March 2014.
[12] Q.Y. Jiang, Y.N. Huang, reportStudy on the Complete Mitochondrial Genome of Trachypithecus. Unpublished report.
[13] K.N. Sterner, R.L. Raaum, Y.P. Zhang, C.B. Stewart, T.R. Disotell, Mitochondrial data support an odd-nosed colobine clade, Mol. Phylogenetics Evol. 40 (2006) 1–7.
[14] D. Meyer, I.D. Rinaldi, H. Ramlée, D. Perwitasari-Farajallah, J.K. Hodges, C. Roos, Mitochondrial phylogeny of leaf monkeys (genus Presbytis, Eschscholtz, 1821) with implications for taxonomy and conservation, Mol. Phylogenetics Evol. 59 (2011) 311–319.
[15] K.H. Han, F.H. Sheldon, R.B. Stuebing, reportPhylogenetic diversification and taxonomic status of the Tupaiidae glis species complex based on cytochrome- b sequence variation. Unpublished report. Retrieved from https://doi.org/10.2305/IUCN.UK.2008.RLTS.T21488A9286601.en, accessed on 24 January 2019.
[16] M.T. Abdullah, A Note on the Chance Preyning by a Western Tarsier on Fruit Bats in Malaysian Borneo, retrieved from https://www.researchgate.net/publication/330988997_A_Note_on_the_Chance_Preying_by_a_Western_Tarsier_on_Fruit_Bats_in_Malaysian_Borneo. (Accessed 24 January 2019).
[17] M.T. Abdullah, Mammalian Evolution and Biogeography (Evolusi Dan Biogeografi Mammalia), Universiti Malaysia Terengganu, Kuala Nerus, 2016.
[18] M.A. Zahidin, A. Roslan, W. Marni, M. Kombi, M.T. Abdullah, Consortium of bako researchers, biodiversity checklist of faunal diversity in bako national park, Sarawak, Malaysia, J. Sustain. Sci. Manage. 11 (2016) 53–72.
[19] J.J. Rovie-Ryan, M. Gani, Y.P. Lee, H.M. Gan, M.T. Abdullah, Mitogenome data of Nycticebus coucang insularis Robinson, 1917, (Primate: Lorisidae), Data in Brief 25 (2019) 104058, https://doi.org/10.1016/j.dib.2019.104058.
[20] J.F. Ducroz, V. Volobouy, L. Granjon, A molecular perspective systematic and evolution of the genus Arvicanthus (Rodentia: muridae): inferences from complete cytochrome b gene sequences, Mol. Phylogenetics Evol. 10 (11) (1998) 104–117.
[23] S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol. 33 (2016) 1870–1874.

[24] J. Rozas, J.C. Sanchez-Delbarrio, X. Messeguer, R. Rozas, DnaSP: DNA polymorphism analyses by the coalescent and other methods, Bioinformation 19 (2003) 2496–2497.