Integral representations of solutions of the wave equation based on relativistic wavelets

Maria Perel1,2 and Evgeny Gorodnitskiy1

1 Department of Mathematical Physics, Physics Faculty, St.Petersburg University, Ulyanovskaya 1-1, Petrodvorets, St.Petersburg, 198504, Russia
2 Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Polytekhnicheskaya, St. Petersburg 194021, Russia

E-mail: perel@mph.phys.spbu.ru

Received 18 November 2011, in final form 21 June 2012
Published 31 August 2012
Online at stacks.iop.org/JPhysA/45/385203

Abstract
A representation of solutions of the wave equation with two spatial coordinates in terms of localized elementary ones is presented. Elementary solutions are constructed from four solutions with the help of transformations of the affine Poincaré group, i.e. with the help of translations, dilations in space and time and Lorentz transformations. The representation can be interpreted in terms of the initial-boundary value problem for the wave equation in a half-plane. It gives the solution as an integral representation of two types of solutions: propagating localized solutions running away from the boundary under different angles and packet-like surface waves running along the boundary and exponentially decreasing away from the boundary. Properties of elementary solutions are discussed. A numerical investigation of coefficients of the decomposition is carried out. An example of the decomposition of the field created by sources moving along a line with different speeds is considered, and the dependence of coefficients on speeds of sources is discussed.

PACS numbers: 42.25.Bs, 02.30.Px, 11.30.Cp, 04.20.Jb, 02.60.Lj

1. Introduction
The construction of exact representations of solutions of the wave equation in terms of elementary localized solutions is the subject of this paper. Fourier analysis yields a representation of solutions in terms of plane waves. An analogue of Fourier analysis in our consideration is continuous wavelet analysis. We use here a special version of continuous wavelet analysis based on the transformations of the affine Poincaré group [1] (wavelets based on the Poincaré group was discussed also in [2, 3]). The representation obtained by us is associated with the initial-boundary value problem in the half-plane. It is given in terms of
the affine Poincaré wavelet transform of time-dependent boundary data on a line, which is the boundary of the half-plane. The wavelet transform is efficient in the processing of functions of time and space coordinate, which are results of observations and which have a multiscale structure [1], [4]. The result of propagation of data is given by us in terms appropriate for data processing.

Representations of solutions of the wave equation in terms of localized ones may be regarded as an initial step for the investigation of high-frequency wave propagation in a slowly inhomogeneous medium or of the diffraction on complex-shaped bodies. Asymptotic techniques involving localized solutions have been developed since the 1970s by Babich and Pankratova [5], Popov [6], Babich and Ulin [7], Steinberg, Heyman and Felsen [8–10]. The main point of the methods is the decomposition of Green’s function of the wave equation in an inhomogeneous medium in terms of Gaussian beams. To obtain the decomposition coefficients, the slowly inhomogeneous medium is approximated by a homogeneous one near the source. The coefficients are calculated by the comparison of Green’s function asymptotics at the infinity and the asymptotics obtained from the decomposition. The solution of the initial-boundary value problem (IBVP) in a half-plane (or half-space) is reduced to Green’s function decomposition by the Kirchhoff formula. The decomposition is widely used in seismology [11–15]. The method is applicable near caustics unlike the ray method. Another advantage is locality; local changes of the medium impact only a few Gaussian beams in the decomposition, which pass through the changed area.

Considering a homogeneous medium is a required step for further development of a method for the IBVP that involves localized solutions from a wide class.

The exact representations of solutions of the non-stationary wave equation in a homogeneous medium as superpositions of elementary localized solutions have been presented for the first time in the work of Kaiser [16]. They were based on the analytic wavelet transform, and he used very special spherically symmetric elementary solutions. Representations of solutions in terms of elementary solutions from a wide class were proposed in [17–19] and discussed in [20]. These representations were based on continuous wavelet analysis. Elementary solutions were constructed from two chosen ones by means of a similitude group of transformations that contains shifts, scalings and rotations. Representations based on the discreet version of wavelet analysis were constructed by Quan and Ying [21].

In this work, a solution of the non-stationary boundary problem for the wave equation has been decomposed in localized elementary solutions by means of the space–time version of wavelet analysis. Elementary solutions are constructed from four chosen ones by means of an affine Poincaré group of transformations that contains shifts and scaling both in space and in time and the Lorentz transformations. Preliminary results were reported in [22]. The affine Poincaré wavelet transform (APWT) is a coefficient in the decomposition of solutions. The region of integration is determined by the values of parameters under which the APWT is above a certain level. A numerical implementation and examples of the calculation of APWT were discussed in our work [23].

The method presented here has the following advantages. The formulas obtained are exact in a homogeneous medium and satisfy boundary conditions. In contrast, methods of the Gaussian beams summation do not reproduce boundary conditions exactly. Our method can utilize localized solutions in a wide class. The possibility of taking solutions from a wide class enables one to build a flexible problem-adapted representation. In particular, this means that one can construct a sparse representation of the boundary data for a particular problem, which decreases the number of necessary elementary solutions. The wavelet techniques allow one in a natural way to extract the most interesting features of the wave field, for example, the wave fronts without calculating the whole field. This feature was demonstrated by us
This research allows for further semi-analytic investigations of waves in a slowly inhomogeneous medium: the high-frequency part may be studied by asymptotic methods, the low-frequency part of the field may be calculated numerically. In summary, we have developed a method, which is suitable not only for the development of new numerical schemes, but also for qualitative research.

We hope that our results may be useful also in astronomy to determine the velocities of relativistic objects.

For the sake of simplicity we consider here only the case of two spatial dimensions.

In section 2, we recall APWT theory. In section 3, we develop Poincaré wavelet theory for solutions and construct representations of solutions of the wave equation based on it. Then we give examples of mother solutions and discuss properties of the elementary solutions obtained from them. Elementary solutions are built by using the Lorentz transformations, which are associated with fields in different frames moving with relativistic speeds. However, in problems of acoustic wave propagation such an interpretation is not applicable. We show that the parameter of the speed is closely connected with the outgoing angle of the packet. An implementation and interpretation of Poincaré wavelet transform are considered in section 5 with several examples.

We suggest to determine mother wavelets by means of their Fourier transforms, since we do not have their analytic form in the coordinate domain. However, we may take as mother solutions exact particle-like solutions found in [24–27], which are given by simple explicit formulas both in the coordinate and in the Fourier domains. The review of other exact localized solutions is given in [28, 29]. Solutions obtained by Lorentz transformations are discussed in [30].

2. Basics of affine Poincaré wavelet analysis

The first steps in the application of wavelet analysis methods are the definition of a class of functions \mathcal{H} considered, a choice of a mother wavelet $\psi \in \mathcal{H}$ and the construction of a family of wavelets. The mother wavelet is a fixed function. A family of wavelets consists of functions obtained from the mother wavelet by means of transformations of a group. The set of wavelets should be dense in the chosen space \mathcal{H}. Then it should be proved that any function $f \in \mathcal{H}$ can be represented as an integral superposition of wavelets.

It is useful to consider together functions and their Fourier transforms. Below we introduce the notation

$$\chi = \left(\frac{ct}{x} \right), \quad \sigma = \left(\frac{\omega/c}{k_z} \right),$$

and define the Minkowsky inner product as follows: $(\sigma, \chi) = -\omega t + k_x x$. The method of wavelet analysis itself is not associated with the wave equation. We apply it to the boundary data function $f(\chi) \equiv f(ct, x)$ dependent only on one spatial coordinate x and time t. The Fourier transform of any $f(\chi) \in L_2$ reads

$$\hat{f}(\sigma) = \int_{\mathbb{R}^2} d^2 \chi f(\chi) e^{-i(\sigma, \chi)}.$$

Footnote: Here c is a parameter of the dimension of speed. We use the notation, taking in mind further applications to the wave equation in two spatial dimensions where the wave number is $k = |k|$, the frequency is $\omega = \pm ck$ and c is the speed of light.
Lorentz transformations enables one to connect the coordinate x and the time t in a stationary coordinate system with the coordinate x' and the time t' in a moving one with a speed v. They read

$$
\begin{pmatrix}
 ct' \\
 x'
\end{pmatrix} = \Lambda_\phi \begin{pmatrix}
 ct \\
 x
\end{pmatrix},
$$

(3)

$$\Lambda_\phi = \begin{pmatrix}
 \cosh \phi & -\sinh \phi \\
 -\sinh \phi & \cosh \phi
\end{pmatrix}, \quad \tanh \phi = \frac{v}{c},
$$

(4)

where ϕ is called the rapidity and v is the speed of the moving frame. The frequency and the wave number in the moving frame and in the stationary frame given by vectors σ' and σ, respectively, are related as $\sigma' = \Lambda_\phi \sigma$.

We are going to clarify the choice of the space \mathcal{H}. We choose any $\psi(ct, x) \in L_2$. Construct a family of wavelets with transformations of the affine Poincaré group, i.e. with shifting, scaling and the Lorentz transformations:

$$\psi_\mu(\chi) = \frac{1}{a} \hat{\psi}(a \Lambda_\phi \sigma - \frac{b}{a}) e^{-i(a, b)},
$$

(5)

$$\mu = (b, a, \phi).
$$

(6)

A wavelet $\psi_\mu(\chi)$ for $a = 1$, $b = 0$ represents a wave packet in the stationary frame, such that it is the mother wavelet in the moving frame. The constructed family is not dense in the whole L_2. To show this, we analyze the Fourier transform of wavelets

$$\hat{\psi}_\mu(\sigma) = a \hat{\psi}(a \Lambda_\phi \sigma) e^{-i(a, b)}
$$

and show that we cannot go beyond the region bounded by the lines $\omega = \pm ck$ under the action of Lorentz transformations. For example, a point from the domain $k > 0$, $|k_1| < k$ cannot be mapped to any point in the domain $k_1 > 0$, $|k| < k_1$, by choosing a and ϕ.

The explanation of this fact is given below. Let the support of the Fourier transform of the mother wavelet in the moving frame be concentrated near a point σ_0, i.e. $\hat{\psi}(\sigma') \equiv 0$ outside a neighborhood of σ_0. The support of this packet in the stationary frame lies in the neighborhood of σ_0, such that $\sigma_0 = a^{-1} \Lambda_\phi \sigma'_0$. It is easy to check that the point $(\omega_0/c, k_0)$ lies on the hyperbola $(\omega_0/c)^2 - k_0^2 = a^{-2}((\omega'_0/c)^2 - k_0^2)$. For any prescribed (ω_0, k_0) and (ω'_0, k'_0), we can find a unique parameter $a > 0$. The parameter ϕ can be found by the relation $\tanh(\phi + \phi') = c k_0/\omega_0$, where $\tanh(\phi') = c k'_0/\omega'_0$. As ϕ increases, the point $(\omega_0/c, k_0)$ tends to the asymptotes of the hyperbola $\omega = \pm ck$. Let $\omega_0 > 0$, $c|k_0| < \omega_0$. Then for any a and ϕ, the point $(\omega_0/c, k_0)$ lies in the same region: $\omega_0 > 0$, $c|k_0| < \omega_0$.

Therefore, we should decompose the space $L_2(\mathbb{R}^2)$ into a direct sum: $L_2(\mathbb{R}^2) = \bigoplus_{j=1}^{\infty} \mathcal{H}_j$ taking into account their Fourier transforms. The space \mathcal{H}_j comprises functions $f_j \in L_2(\mathbb{R}^2)$, which have the support of their Fourier transform in D_j (see figure 1):

$$f_j(\chi) = \frac{1}{(2\pi)^2} \int_{D_j} d^2\sigma \hat{f}(\sigma) e^{i(a, x)}.
$$

(8)

The mother wavelet is any function $\psi_j(\chi) \in \mathcal{H}_j$ that satisfies an admissibility condition:

$$C_j = \int_{D_j} d^2\sigma \frac{|\hat{\psi}_j(\sigma)|^2}{|\omega/c|^2 - k_0^2} < \infty.
$$

(9)

The family of wavelets is constructed by formulas (5).
Figure 1. Domains D_j that are supports of the Fourier transform of functions from \mathcal{H}_j, $j = 1, 2, 3, 4$. The set of points obtained by Lorentz transformations from the point with $\phi = 0$ is a hyperbola. Arrows on hyperbolas show the direction of point movement from $\phi = -\infty$ to $\phi = +\infty$.

The APWT $F_j(\mu)$ of the function f_j is defined as follows [1]:

$$F_j(\mu) = \int_{\mathbb{R}^2} d^2 \chi f_j(\chi) \overline{\psi_j(\mu)}, \quad \mu = \{b, a, \phi\}. \quad (10)$$

We denote functions from L_2 by Latin lowercase letters and their wavelet transforms by Latin uppercase letters. It is not necessary to extract $f_j(\chi)$ from $f(\chi)$ to calculate $F_j(\mu)$, as follows from the Plancherel equality:

$$(f_j, \psi_{j\mu}) = \frac{1}{(2\pi)^2} (\hat{f}_j, \hat{\psi}_{j\mu}) = \frac{1}{(2\pi)^2} (\hat{f}, \hat{\psi}_{j\mu}) = (f, \psi_{j\mu}). \quad (11)$$

The main fact that yields the decomposition of solutions is the Plancherel equality for the APWT [1]:

$$(f_j, g_j)_{L_2} = \frac{1}{C_j} \int d\mu F_j(\mu) \overline{G_j(\mu)}, \quad (12)$$

where

$$\int d\mu \equiv \int_\mathbb{R} d\phi \int_0^\infty \frac{da}{a^2} \int_{\mathbb{R}^2} d^2 b. \quad (13)$$

Equality (12) is valid for any $f_j, g_j \in \mathcal{H}_j$ if the admissibility condition (9) is fulfilled.

The reconstruction formula following from the Plancherel equality reads

$$f_j(\chi) = \frac{1}{C_j} \int d\mu F_j(\mu) \psi_{j\mu}(\chi). \quad (14)$$

See the appendix for more detail. Any $f(\chi) \in L_2$ can be represented as $f(\chi) = \sum_{j=1}^{4} f_j(\chi)$.
3. Decomposition of solutions

In the present section, we give exact decompositions of solutions of the wave equation based on the formulas discussed above. The decomposition is associated with the boundary problem for the wave equation in a half-plane $y > 0$, $-\infty < x < \infty$:

\[u_t = c^2 (u_{xx} + u_{yy}), \quad (15) \]

\[u(ct, x, y)|_{y=0} = f(ct, x), \quad (16) \]

\[u(ct, x, y)|_{l \leq 0} = 0, \quad (17) \]

where c is the speed, t is the time and x and y are spatial variables. The function $f(ct, x)$ in (16) is assumed to be square integrable:

\[\int_{\mathbb{R}} \int_{\mathbb{R}} |f(ct, x)|^2 < \infty. \quad (18) \]

The desired decomposition is expressed in terms of solutions running away from the boundary under different angles. It was first reported in [22].

We define four subspaces of solutions \mathcal{H}_j, $j = 1, \ldots, 4$ of the wave equation using the Fourier transform of the boundary data $\hat{f}(\sigma)$. Any function $u_j(x, y) \in L^2$ belongs to \mathcal{H}_j if its Fourier decomposition reads

\[u_j(x, y) = \int_{D_j} d^2 \sigma \hat{f}(\sigma) e^{i(\sigma \cdot x + \sqrt{k^2 - \sigma^2} y)} , \quad j = 1, 2, \quad (19) \]

\[u_j(x, y) = \int_{D_j} d^2 \sigma \hat{f}(\sigma) e^{i(\sigma \cdot x - \sqrt{k^2 - \sigma^2} y)} , \quad j = 3, 4, \quad (20) \]

where $k = \omega/c$ is the wave number for any $\hat{f}(\sigma) \in L^2$. The functions $u_j(x, y)$, $j = 1, \ldots, 4$, are solutions of the wave equation. If a function $\hat{f}(\sigma)$ decreases at infinity too slowly to yield a classical solution, the functions $u_j(x, y)$ satisfy the wave equation in the distribution sense. The solutions $u_j(x, y)$, $j = 1, 2$, are propagating, the solutions $u_j(x, y)$, $j = 3, 4$ are exponentially decreasing and associated with details of the spatial behavior of f, which are smaller than the wavelength. Note that the reconstruction formula for the Fourier transform yields $\sum_{j=1}^4 u_j(x, 0) = f(x)$.

In what follows we will use the Fourier transforms of solutions with respect to t and x denoted by $\hat{u}_j(\sigma; y)$:

\[\hat{u}_j(\sigma; y) = \hat{f}(\sigma) e^{\sqrt{\sigma^2 - k^2} y}, \quad j = 1, 2, \quad (21) \]

\[\hat{u}_j(\sigma; y) = \hat{f}(\sigma) e^{-\sqrt{\sigma^2 - k^2} y}, \quad j = 3, 4. \quad (22) \]

The Fourier transforms of solutions with respect to x and y dependent on t are denoted by $\hat{u}_j(ct; k_x, k_y)$:

\[\hat{u}_j(ct; k_x, k_y) = \hat{f}(\sigma) e^{-i\sigma y}, \quad j = 1, 2, \quad \sigma = \left(\sqrt{k_x^2 + k_y^2}, k_y\right)^T. \quad (23) \]

The solutions $u_j(ct, x, y)$, $j = 3, 4$, increase exponentially for negative y. The Fourier transform of them with respect to x and y do not exist.

To develop a procedure of continuous wavelet analysis in the subspace \mathcal{H}_j, we should choose a solution $\Psi_j \in \mathcal{H}_j$. We call it the mother solution. The notation of the mother solution

\[\hat{\Psi}_j(\sigma) \]
begins with the Greek uppercase letter and that distinguishes it from the mother wavelet in L^2, which is denoted by the Greek lowercase letter. The mother solution can be reduced to the mother wavelet if $y = 0$. Therefore, $\psi_j(\chi) = \Psi_j(\chi, 0)$ should satisfy the admissibility condition (9).

Then we construct a family of solutions:

$$\psi_{j\mu}(\chi, y) = \frac{1}{a} \psi_j \left(\Lambda - \phi \frac{\chi - b}{a}, \frac{y}{a} \right).$$

Each solution represents a wave packet considered in the stationary frame, which is a shifted and scaled mother solution in the frame moving in the x direction. These solutions are transformed to wavelets from family (5) on the line $y = 0$, i.e. $\psi_{j\mu}(\chi, 0) \equiv \psi_j(\chi)$, where $\psi_j(\chi)$ are wavelets.

In terms of the mother wavelets, the solutions of (15), (17) may be decomposed as follows:

$$u(\chi, y) = \sum_{j=1}^{4} u_j(\chi, y), \quad u_j(\chi, y) = \frac{1}{C_j} \int d\mu \, F_j(\mu) \psi_{j\mu}(\chi, y).$$

$$F_j(\mu) = \int_{\mathbb{R}^2} d^2\chi \, f(\chi) \Psi_{j\mu}(\chi, 0).$$

It is a solution because it is a superposition of solutions. It is reduced to the reconstruction formula for the boundary data f if $y = 0$ and therefore it satisfies the boundary conditions. Each of these solutions moves or decreases away from the boundary. We do not take into account solutions that come from infinity and increase in the positive y direction to satisfy initial conditions (17).

The contribution of each solution is determined by the coefficient F_j, which is the wavelet transform of the boundary data.

4. Examples of mother solutions

Mother solutions can be taken from a wide class. We give examples of mother solutions, which behave as particles. As a starting point we take a solution that has the Fourier transform localized near the point $k_x = 0, k_y = k$:

$$\hat{\psi}(ct; k_x, k_y) = \exp \left(-\frac{\sigma_1^2}{2} \frac{(k_y - k)^2}{2} \right) e^{-i\omega t}.$$

where $\omega = c|k|$. If $t = 0$, then the solution in the coordinate domain reads

$$\Psi(0, x, y) = \frac{1}{2\pi \sigma_1 \sigma_\perp} \exp \left(ixy - \frac{\chi^2}{2\sigma_1} - \frac{\chi^2}{2\sigma_\perp} \right).$$

If $t \neq 0$, the solution cannot be found explicitly. But if t is small enough, then $\Psi_t(ct, x, y) \approx \Psi(0, x, y - ct)$. It can be obtained by expanding $k = \sqrt{k_x^2 + k_y^2}$ up to linear terms: $\omega = \omega_0 + c(k_y - k) + \ldots$ and substituting it into the phase:

$$k_x x + k_y y - ct = k_x x + k_y (y - ct) + \ldots.$$

In this way, for small time we obtain a packet-like solution which is filled with oscillations of a spatial frequency k and which has the Gaussian envelope. It moves along the y axis with speed c.

For large t, the solution should be found numerically. Exact solutions having similar local behavior were found in [25], [26] and were named ‘Gaussian wave packets’. Solutions and
their Fourier transforms were given by explicit formulas and were studied analytically. An investigation of these solutions from the point of view of continuous wavelet analysis was performed in [27]. To be a mother solution in H_1, this solution should contain Fourier components with $\omega > 0$ and $k_y > 0$. The last condition is fulfilled only approximately if the central frequency of the packet κ is larger than the width of the support of the Fourier transform in the k_y direction $1/\sigma_\parallel$, i.e. $\kappa \sigma_\parallel \gg 1$. To obtain the mother solution, we assume that formula (27) is valid only for $k_y > 0$ and $\hat{\Psi}(ct; k_x, k_y) = 0$ if $k_y \leq 0$. To make the Fourier transform smooth, we introduce an additional factor $\exp(-1/k_y)$, $k_y = \sqrt{k^2 - k_x^2}$. The mother solution $\Psi_1(ct, x, y)$ is of the form

$$\Psi_1(ct, x, y) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} dk_x \int_0^\infty dk_y \exp\left(-\frac{\sigma_\parallel^2 (k_y - \kappa)^2}{2} - \frac{\sigma_\perp^2 k_x^2}{2} - \frac{1}{k_y}\right) \cdot e^{ik_y y},$$

(30)

$k = |k|$. Because of the factor $\exp(-1/k_y)$, the solution satisfies the admissibility condition. We take a variable of integration $k = \sqrt{k_x^2 + k_y^2}$ instead of k_y and write the Fourier transform of (30) in the form of (21). Then we obtain

$$\hat{\Psi}_1(\sigma; y) = \frac{k_x}{k_y} \exp\left(-\frac{\sigma_\parallel^2 (\sqrt{k_x^2 - k_y^2} - \kappa)^2}{2} - \frac{\sigma_\perp^2 k_x^2}{2} - \frac{1}{k_y}\right) \cdot e^{ik_y y},$$

(31)

$k_y = \sqrt{k_x^2 - k_y^2}$. Figure 2(a) shows this solution in successive time moments. It represents a wave packet moving away from the boundary $y = 0$. It has a finite energy because it is localized in an exponential way. The same solution for other choice of parameters is shown in figure 3(a).

The mother solution in H_3 is constructed in a similar way. We interchange k and k_x, put iy instead of y, and obtain

$$\hat{\Psi}_3(\sigma; y) = \frac{k_x}{k_y} \exp\left(-\frac{\sigma_\parallel^2 (\sqrt{k_y^2 - k_x^2} - \kappa)^2}{2} - \frac{\sigma_\perp^2 k_y^2}{2} - \frac{1}{k_y}\right) \cdot e^{-\sqrt{k_y^2 - k_x^2} y},$$

(32)

The solution $\Psi_3(ct, x, y)$ is a wave packet running along the boundary and decreasing exponentially in the positive y direction. The Fourier transform of the solution comprises...
components with wavelengths in the x direction, which are smaller than the wavelength in vacuum. Figure 4(a) demonstrates the solution in successive time moments. The wavelet analysis of solutions from H_3 and H_4 might be useful for analyzing surface waves, but a more detailed study of the problem goes beyond the scope of this paper.

Now we discuss analytically the properties of the family of solutions obtained by means of Lorentz transformations. The mother solution $\Psi_1(ct, x, y)$ represents a wave packet moving in the positive y direction and localized near the point $x = 0, y = ct$. In the Fourier domain, it is localized near the point $\vec{\sigma}_0 = (\omega_0, 0), \omega_0 = c\kappa$. Now consider $\Psi_1(ct', x', y)$, where x', y and t' are coordinates in the frame that moves with speed v and rapidity ϕ. The coordinates in the moving frame are connected with the coordinates in the stationary frame by transformations (3), (4). Assuming that t' is small enough, we obtain $\Psi_1(ct', x', y) \approx \Psi_1(0, x', y - ct') = \Psi_1(0, \cosh \phi(x - ct \tanh \phi), y + \sinh \phi x - \cosh \phi ct)$.

Figure 3. Real part of the mother wavelet Ψ^1 with parameters $\kappa = 4, \sigma_\parallel = 1, \sigma_\perp = 2$ in successive time moments: $ct = 0, ct = 7.5, ct = 15$.

Figure 4. Real part of the mother wavelet Ψ_3 with parameters $\kappa = 4, \sigma_\parallel = 1, \sigma_\perp = 2$ in successive time moments: $ct = 0$ and $ct = 7.5$.

Components in the moving frame (a) Solutions in the moving frame (b) The same solutions in the stationary frame, $\phi = 1$

The mother solutions in H_2 and H_4 can be obtained as follows: $\Psi_2(ct, x, y) = \Psi_1(-ct, x, y), \Psi_4(ct, x, y) = \Psi_2(0, x, y - ct)$.

(a) Solutions in the moving frame (b) The same solutions in the stationary frame, $\phi = 1$
The position of the center of the packet \(x_0 \) and \(y_0 \) in the stationary frame is
\[
x_0 = ct \tanh \phi, \\
y_0 = ct / \cosh \phi.
\]
Packet (30) found in the moving frame is numerically small outside an ellipse
\[
\frac{(y - ct')^2}{2\sigma^2} + \frac{x^2}{2\sigma^2} \leq 1.
\]
For the sake of simplicity, we assume that it is a circle \(\sigma = \sigma_\parallel = \sigma_\perp \):
\[
(x')^2 + (y - ct')^2 \leq 2\sigma^2.
\]
An example of such a solution is shown in figure 2(a). Taking into account (3) we find the domain in the stationary frame corresponding to the circle (34) in the moving frame. It is an ellipse:
\[
cosh^2 \phi (x - x_0)^2 + ((y - y_0) + \sinh \phi (x - x_0))^2 \leq 2\sigma^2.
\]
This ellipse in the main axes reads
\[
\lambda_1 \tilde{x}^2 + \lambda_2 \tilde{y}^2 \leq 2\sigma^2,
\]
where
\[
\lambda_{1,2} = e^{\pm \phi} \cosh \phi.
\]
The directions of the main axes are
\[
e_{1,2} = \begin{pmatrix} \pm e^{\mp \phi} \\ 1 \end{pmatrix}.
\]
The new coordinates \(\tilde{x} \) and \(\tilde{y} \) are connected with the old coordinates \(x - x_0 \) and \(y - y_0 \) by the relation
\[
\begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = U^T \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}, \quad U = \begin{pmatrix} e_1 & e_2 \\ |e_1| & |e_2| \end{pmatrix},
\]
where the columns of the matrix \(U \) are vectors \(e_j \), \(j = 1, 2 \).

The axes of the ellipse in the stationary frame are not orthogonal to the direction of propagation and to wave fronts (see figure 2).

Similar considerations are valid in the Fourier domain. The support of the Fourier transform of the solution is distorted under the action of the Lorentz transform. Examples of calculations for various \(\phi \) are given in figure 5; for a discussion of figure 5 see below.

5. Numerical calculations of coefficients in the wavelet decompositions

According to (25), each solution is decomposed into a sum of fourfold integrals over \(\mu \). Here, we show that calculations of such an integral can be efficient for some boundary data. For realistic signals, the domain of integration may be small. The domain of integration is
determined by the numerical support of the coefficient in decomposition (25), which is the
wavelet transform of boundary data. The wavelet transform is non-negligible if the supports
of a signal (the domain where the signal is non-zero) and of a wavelet from family (5) have
an intersection. The supports of Fourier transforms of a signal and a wavelet should also have an
intersection.

The support in the Fourier domain is governed by a scale and a rapidity. Figure 5
demonstrates transformations of the support of the wavelet in the Fourier domain for different
values of the rapidity ϕ. The support for $\phi = 0$ is a circle. Upon the Lorentz transformations,
the support takes the form of an ellipse and its center moves along the hyperbola. Here, there is
an analogy with the transformations of the support in a spatial domain. A change in the scaling
parameter a will lead to a change in the hyperbola, where the centers of supports are located.

Shifts in the spatial domain b rule oscillations of an integrand in (10). An increase in
oscillations results in a decrease in the wavelet transform and vice versa. If the support of a
wavelet for some parameters matches the support of a signal and b is taken in such a way that
oscillations are minimized, then the wavelet transform has a maximum.

Now consider an example. We assume that a function f represents a field that is generated
in the plane $y = 0$ by six groups of monochromatic point sources, which move in the x direction
with different speeds in plane $y = -5000$. In each group, the speeds are distributed with respect
to the Gaussian law with $\sigma = 0.01c$. σ is a dispersion of the distribution and c is the speed in
the wave equation, $c = 1$. The sources have different frequencies. The sources in the jth group,
$j = 1, \ldots, 6$, are characterized by the frequency ω_j and the rapidity ϕ_j, which corresponds to
the mean speed. We choose the parameters as follows: $\omega_1 = 1, \phi_1 = 0.4; \omega_2 = 1, \phi_2 = 0.7;
\omega_3 = 1, \phi_3 = 0.5; \omega_4 = 0.9, \phi_4 = 0.3; \omega_5 = 0.95, \phi_5 = 0.5; \omega_6 = 0.95, \phi_6 = 0.4$. The
boundary function f as a function of x and t is shown in figure 6(a).

We show that, analyzing the field in the plane $y = 0$ by means of the wavelet transform, we
can determine the parameters of the sources. The sources are far from the observation plane,
and we do not calculate the wavelet transforms in domains $D_{3,4}$ because the contribution of
the components propagating along the surface are negligible.

We show that the wavelet transform enables us to find the frequencies and speeds of
sources. We are not interested in the determination of the position of sources; for this reason,
we introduce a function $S(a, \phi)$, which reads

$$S_1(a, \phi) = \frac{1}{a^3} \int_{\mathbb{R}^2} |\mathcal{F}_1(\mu)|^2, \quad \mu = \{b, a, \phi\}. \quad (40)$$
Such a function, corresponding to the field in figure 6(a), as a function of the scaling a and the rapidity ϕ is given in figure 6(b). The scale-rapidity diagram shown is calculated with the following wavelet parameters: $\kappa = 4$, $\sigma_1 = 2\sqrt{55} \approx 15$ and $\sigma_\perp = 8$, the calculation mesh is from -128 to 128 with step 0.5 in both x and ct. We see six maxima in this figure, which correspond to each group of sources. The position of the maximum ω and ϕ contains information about the frequency $\omega = 1/a$ and the average rapidity ϕ of sources. (We recall that the speed v is connected with ϕ by the relation $v/c = \tanh \phi$.) The domain of integration in the decomposition formula must contain values of the parameters a and ϕ such that S is not small. If we are interested only in the investigation of sources of certain frequencies and rapidities, we need to take the corresponding domain of integration.

A more complicated situation where the sources are masked by noise are considered by us in [23]. It is shown therein that the contribution of a noise can be eliminated because it is located at small scales on the scale-rapidity diagram. The parameters of sources are found.

Acknowledgments

EG is indebted to Dr Ru-Shan Wu for his hospitality at the University of California, Santa-Cruz which made possible the completion of the text and figures preparation.

Appendix. The reconstruction formula

We prove the Plancherel equality (12) for the affine Poincaré wavelet transform (10) to make the paper self-contained. For the sake of brevity, we assume that $f \equiv g$. With account of (13), the Plancherel equality reads

$$
\int_\mathbb{R} \int_0^\infty \frac{da}{a^3} \int_{\mathbb{R}^2} d^2b \ |F_j(b, a, \phi)|^2 = C_j \int_{\mathbb{R}^2} d^2\chi |f_j(\chi)|^2,
$$

(A.1)

where C_j is defined by relation (9).

Applying the Plancherel equality (11) to the inner integral with respect to b and taking into account the definition of F_j, we obtain

$$
\int_{\mathbb{R}^2} d^2b \ |F_j(b, a, \phi)|^2 = \frac{a^2}{(2\pi)^2} \int_{\mathbb{R}^2} d^2\sigma |\hat{f}(\sigma)|^2 |\hat{\psi}_j(a\Lambda_{-\phi}\sigma)|^2.
$$

(A.2)

Here we use the fact that F_j is a convolution of two functions $f(\chi)$ and $\overline{\psi}_{ij}(\chi)$. Then we assume that the Fourier transform of $\overline{\psi}_{ij}(\chi)$ is $\psi_{ij}(\sigma)$, which is given by formula (7).

Substituting (A.2) on the left-hand side of (A.1) and interchanging the order of integration, we obtain

$$
\int_\mathbb{R} \int_0^\infty \frac{da}{a} \int_{\mathbb{R}^2} d^2b \ |F_j(b, a, \phi)|^2 = \frac{1}{(2\pi)^4} \int_{\mathbb{R}^2} d^2\sigma |\hat{f}(\sigma)|^2 \int_{\mathbb{R}^2} d\phi \int_0^\infty \frac{da}{a} |\hat{\psi}_j(a\Lambda_{-\phi}\sigma)|^2
$$

(A.3)

The next step is an analysis of the inner integral on the right-hand side of (A.3). For the sake of definiteness, we assume that $j = 1$. We transform the variable of integration in the following way:

$$
\sigma' = a\Lambda_{-\phi}\sigma' = a \left(k \cosh \phi + k_s \sinh \phi \right) = a \left(\rho \cosh(\phi + \phi_0) \right) = \rho \left(\frac{\cosh \phi'}{\sinh \phi'} \right).
$$

(A.4)

Here, we use the notation: $k = \rho \cosh \phi_0, k_s = \rho \sinh \phi_0, \rho > 0$. Instead of a and ϕ we take new variables $\phi' = \phi + \phi_0$ and $\rho' = a\rho, \phi' \in (\infty, +\infty), \rho' \in (0, \infty)$. Then the vector
variable σ' is chosen instead of ϕ' and ρ'. It takes values in \mathbb{D}_1. The inner integral for any fixed σ is transformed as follows:

$$
\mathcal{C}_j = \int_{\mathbb{D}_1} d^2 \sigma \frac{\bar{\hat{c}}_j(\sigma) \hat{c}_j(\sigma)}{|(\omega/c)^2 - k_j^2|} < \infty.
$$

The reconstruction formula (14) may be obtained from (12) formally if we choose as a function g any sequence of functions that tends to the Dirac δ function. To pass to the limit under the sign of the integral in (12), we must impose additional restrictions on the functions f and g.

References

[1] Antoine J-P, Murenzi R, Vanderghynst R P and Ali S T 2004 Two-Dimensional Wavelets and Their Relatives (Cambridge: Cambridge University Press)
[2] Klauder J R and Streater R F 1991 A wavelet transform for the Poincaré group J. Math. Phys. 32 1609–11
[3] Bohnke G 1991 Treillis d’ondelettes associés aux groupes de Lorentz Ann. I’I H P Phys. Théor. 54 245–59
[4] Mallat S 1999 A Wavelet Tour of Signal Processing (New York: Academic)
[5] Babich V M and Pankratova T F 1973 About discontinuity of the Green function of the mixed problem for the wave equation with variable coefficient Problems Math. Phys. 6 9–27 (in Russian)
[6] Popov M M 1982 A new method of computation of wave fields using Gaussian beams Wave Motion 4 85–97
[7] Babich V M and Ulin V V 1984 Complex space-time ray method and ‘quasiphotons’ J. Sov. Math. 24 269–73
[8] Steinberg B Z, Heyman E and Felsen L B 1991 Phase-space beam summation for time-harmonic radiation from large apertures J. Opt. Soc. Am. A 8 41–59
[9] Steinberg B Z, Heyman E and Felsen L B 1991 Phase-space beam summation for time-dependent radiation from large apertures: continuous parameterization J. Opt. Soc. Am. A 8 943–58
[10] Steinberg B Z and Heyman E 1991 Phase-space beam summation for time-dependent radiation from large apertures: discretized parameterization J. Opt. Soc. Am. A 8 959–66
[11] Hill N R 1990 Gaussian beam migration Geophysics 55 1416–28
[12] Hill N R 2001 Prestack Gaussian-beam depth migration Geophysics 66 1240–50
[13] Nowack R L 2003 Calculation of synthetic seismograms with Gaussian beams Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources: The Keiiti Aki Volume Pageoph Topical Volumes ed Yehuda Ben-Zion (Basel: Birkhäuser) pp 487–507
[14] Popov M M, Semtchenok N M, Popov P M and Verdel A R 2010 Depth migration by the Gaussian beam summation method Geophysics 75 S81–93
[15] Popov M and Popov P 2011 Comparison of the Hills method with the seismic depth migration by the Gaussian beam summation method J. Math. Sci. 173 291–8
[16] Kaiser G 1994 A Friendly Guide to Wavelets (Boston, MA: Birkhäuser)
[17] Perel M V and Sidorenko M S 2003 Wavelet analysis in solving the Cauchy problem for the wave equation in three-dimensional space Waves ed G C Cohen, E Heikkola, P Jolly and P Neittaanmaki (Berlin: Springer) pp 794–8
[18] Perel M V and Sidorenko M S 2006 Wavelet analysis for the solution of the wave equation Proc. of the Int. Conf. Days on Diffraction (St. Petersburg University, Russia) ed I V Andronov pp 208–217
[19] Perel M V and Sidorenko M S 2009 Wavelet-based integral representation for solutions of the wave equation J. Phys. A: Math. Theor. 42 375211
[20] Perel M, Sidorenko M and Gorodnitskiy E 2010 Multiscale investigation of solutions of the wave equation Integral Methods in Science and Engineering: Computational Methods vol 2 ed C Constanda and M E Perez (Basil: Birkhäuser) pp 291–300
[21] Qian J and Ying L 2010 Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for the wave equation *Multiscale Modeling Simul.* 8 1803–37

[22] Perel M V 2009 Integral representation of solutions of the wave equation based on Poincaré wavelets *Proc. of the Int. Conf. Days on Diffraction (St. Petersburg University, Russia)* ed I V Andronov pp 159–161

[23] Gorodnitskiy E A and Perel M V 2011 The Poincaré wavelet transform: implementation and interpretation *Proc. of the Int. Conf. Days on Diffraction* ed O V Motygin, A S Kirpichnikova, A P Kiselev and M V Perel pp 72–77

[24] Kiselev A P and Perel M V 1999 Gaussian wave packets *Opt. Spectrosc.* 86 307–9

[25] Kiselev A P and Perel M V 2000 Highly localized solutions of the wave equation *J. Math. Phys.* 41 1934–55

[26] Perel M V and Fialkovsky I V 2003 Exponentially localized solutions to the Klein–Gordon equation *J. Math. Sci.* 117 3994–4000

[27] Perel M V and Sidorenko M S 2007 New physical wavelet ‘Gaussian wave packet’ *J. Phys. A: Math. Theor.* 40 3441–61

[28] Kiselev A P 2007 Localized light waves: paraxial and exact solutions of the wave equation (a review) *Opt. Spectrosc.* 102 603–22

[29] Hernández-Figueroa H E, Zamboni-Rached M and Recami E (eds) 2008 *Localized Waves* (New York: Wiley-Interscience)

[30] Saari P and Reivelt K 2004 Generation and classification of localized waves by Lorentz transformations in Fourier space *Phys. Rev. E* 69 036612