Fusarium napiforme systemic infection: case report with molecular characterization and antifungal susceptibility tests

Marcela de Souza1,4*, Tetsuhiro Matsuzawa2, Luzia Lyra3, Ariane Fidelis Busso-Lopes1, Tohru Gonoii, Angélica Zaninele Schreiber3, Katsuhiko Kamei2, Maria Luiza Moretti1 and Plínio Trabasso1

Abstract

Introduction: During the last decades, *Fusarium* spp. has been reported as a significant cause of disease in humans, especially in immunocompromised patients, who have high risk of invasive life-threatening disease. *Fusarium* species usually reported as cause of human disease are *F. solani*, *F. oxysporum* and *F. verticillioides*.

Case description: We describe the second case in the literature of disseminated fusariosis caused by *Fusarium napiforme*, that occurred in a 60-year-old woman with multiple myeloma after subsequent cycles of chemotherapy.

Discussion and Evaluation: We identified the *F. napiforme* not only by standard morphologic criteria by macroscopic and microscopic characteristics, but also confirmed by molecular biology methods, including sequencing. The antifungal susceptibility of the *F. napiforme* isolates were tested to seven antifungal drugs; the azoles were the most active drug against all the isolates tested.

Conclusions: *Fusarium* spp. are of relevance in medical mycology, and their profiles of low susceptibility to antifungal drugs highlight the importance for faster and more accurate diagnostic tests, what can contribute to an earlier and precise diagnosis and treatment.

Keywords: Fusariosis; Opportunistic Infections; Immunocompromised host

Background

Fusarium are widely distributed fungi in soil, plants, plant debris and other organic substrates, and in water systems. During the last decades, *Fusarium* spp. has been reported as a significant cause of disease in humans, especially immunocompromised patients (Jureen et al. 2008; Bourgeois et al. 2010; De Pinho et al. 2012; Calcaterra et al. 2013).

In immunocompetent persons, *Fusarium* usually causes localized infections (Bourgeois et al. 2010; De Pinho et al. 2012; Calcaterra et al. 2013; Homa et al. 2013). Conversely, immunocompromised hosts, mainly those with acute onco-hematological diseases or after allogeneic hematopoietic stem cell transplant, have high risk of invasive life-threatening diseases. In such patients, invasive fusariosis (IF) is relatively resistant to standard antifungal therapy limiting their treatment options (Scheel et al. 2013; Pereira et al. 2013).

Fusarium species reported as cause of human disease and *F. solani*, *F. oxysporum* and *F. verticillioides* are the most frequently species causing IF (Gupta et al. 2000; Tezcan et al. 2009).

The first case of disseminated fusariosis was described in 1973 (Cho et al. 1973). Since then, there was a significant increase in the occurrence of disseminated disease, probably reflecting the increase in number of immunocompromised hosts (Bourgeois et al. 2010). There are reports of IF worldwide (Martino et al. 1994; Nucci and Anaissie 2007; Tortorano et al. 2008; Slavin et al. 2012; Nucci et al. 2013). The first case of disseminated fusariosis due to *F. napiforme* was described in 1993 (Melcher et al. 1993) but, there were no subsequent reports of disseminated disease. Thus, to our knowledge, we describe the second case of the literature of disseminated fusariosis caused by...
F. napiforme, and the first report of *F. napiforme* confirmed by molecular biology methods, including sequencing.

Case description and molecular identification of the clinical isolates

Case description

A 60-year-old woman was diagnosed with stage IIIB multiple myeloma (MM) in 2005. She was treated with chemotherapy, 6 cycles of VAD (vincristine + doxorubicin + dexamethasone) in 2006, then cyclophosphamide in 2007. This treatment was followed by an autologous bone marrow transplant in 2008. The disease relapsed in October 2010. She underwent decompressing lumbar spine surgery in 2010 and received various courses of treatment with zoledronic acid throughout her follow-up. The patient had also radiotherapy in 2009 (spine) and 2011 (spleen), followed by salvage chemotherapy throughout 2011 (cyclophosphamide + thalidomide + dexamethasone-CTD, then velcade + thalidomide + dexamethasone-VTD, and finally cyclophosphamide + prednisone). At this point she was considered to present a very good partial response (VGPR). In October 2012, during a routine medical consultation, she complained of palpitation and dyspnea starting 10 days before. The patient presented with hypercalcemia and had to be admitted for the treatment of this condition. During the admission, a second BMT was proposed to treat the refractory MM; therefore, myelosuppressive chemotherapy was initiated. After one week the neutrophil count fell to zero and painful vasculitis lesions arose in lower abdominal region and in the left thigh. Blood cultures were withdrawn and skin biopsy was performed. Antimicrobial therapy was started with cefepime and amphotericin B deoxycholate. Blood culture resulted positive to imipenem. After one week of this regimen, patient was still neutropenic, febrile and worsening clinical condition due to refractory septic shock.

Fusarium samples

Four clinical isolates of *Fusarium* sp. from clinical specimens were identified as: LIF 2008, 2009 and 2010 recovered from blood cultures (BacT/ALERT™ 3D, bioMérieux AS, France), LIF 1994 from skin biopsy and F111 from the air of the patient’s hospital room.

Microorganism identification

The five clinical isolates were cultured in Sabouraud Dextrose agar (Difco, Sparks, Maryland, USA) and identified by morphologic criteria after subculture by macroscopic and microscopic characteristics (Verweij et al. 2007).

Molecular methods

DNA extraction of *Fusarium* spp. from blood culture bottles, from skin biopsy and from air were performed using Dr. GenTLE® kit (Takara, Otusu, Shiga, Japan). After DNA measurement in NanoDrop 2000 (Thermo Scientific, Wilmington, USA) and equalization to a concentration of 2 ng/μL, DNA samples were analyzed using: DNA microarray and DNA sequencing.

The DNA microarray was performed as described by (Ferrari et al. 2013), the oligonucleotide probes, consisting of 14 to 20 species-specific nucleotide sequences with biotin-labeled poly T anchors at the end of each nucleotide (Invitrogen, Showajima, Japan), were designed based on ITS1 and ITS2 sequences of the Type strains [GenBank database, American Type Culture Collection (ATCC), Centraalbureau voor Schimmelcultures (CBS) and MMRC-Chiba (IFM)]. Multiple-sequence alignments were performed using the BioEdit software (version 7.1.3. [http://www.mbio.ncsu.edu/BioEdit/bioedit.html]). Conserved regions were also used as targets for genus-specific probes or as controls. The probe sequences were spotted onto a plastic slide (NGK Insulators LTD, Aichi, Japan) using a KCS mini microarray printer (Kubota Comps. Corporation, Amagasaki, Japan). For fungal identification, PCR using universal fungal primers ITS1 (5’-TCCTGAGGTG AACCTGCGG-3’) and ITS4 (5’-TCCTCCGCTTATTG AATG-3’) (Sigma-Aldrich, Saint Louis, USA) were used to amplify the ITS regions (ITS1 and ITS2) and the 5.8S rRNA gene followed by hybridization, conjugation, coloration and direct visualization of specifically positioned spots on the slide that were consisted of 23 fungal species.

The sequencing was performed as described before (Moreira-Oliveira et al. 2005), with modifications. First, we performed a polymerase chain reaction (PCR) to amplify a region of the gene *EF1α* using the pairs of primers forward HS392 (5’-TCAAAATGGGTAAAGGA AA/G) and HS393 (5’-GCCTGGGA(G/A)GTACCAAGT(G/C)ATCAGT. The PCR products were directly sequenced with a BigDye® terminator reagent kit (Applied Biosystems, Foster City, CA) in an automated DNA sequencer (3110 AB System, Applied Biosystems, Foster City, USA). Besides HS392 and HS393 primers, two internal initiators were used for sequencing reaction and amplification of *EF1α* gene: EF11 (5’-GTGG GGCTATTACCCGCCG-3’) and EF21 (5’-GAGTGCCG GGTAAATTGCC-3’). The sequences were assembled using ATSU version 6.0.1 (Genetix) and compared with database information available at NCBI bank (National Center for Biotechnology Information, http://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequences alignment was carried out using ClustalW2.
Figure 1 Representative hybridization pattern of *Fusarium* non-*solani* species complex and positive control using DNA microarray. A group of specific hybridization spots are visualized inside the square above and the spots remaining are representative of biotin (negative for others species). The positive control is shown inside the below square and represents a sequence common to all fungal species.
out in Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). The sequencing was performed in the Molecular Epidemiology Laboratory at the Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil and the Medical Mycology Research Center, Chiba University, Chiba, Japan.

Antifungal susceptibility test
Antifungal susceptibility tests were performed for samples LIF 2008, LIF 2009, LIF 2010, 1994 and EF111. Minimal inhibitory Concentrations (MIC) and minimal effective concentration (MEC) were determined following the micro dilution method recommended by CLSI document M38-A2, with minor changes. The conidia forms were suspended by gently probing the colony with a sterile Pasteur pipette tip to dislodge the conidia from the hyphal mat and the solution; then, they were counted in a Neubauer chamber and adjusted to a suspension containing 4×10^4 conidia/mL (CLSI 2008; Teixeira et al. 2005). After that, conidia were re-suspended in RPMI 1640 (Sigma) with L-glutamine, without sodium bicarbonate, and buffered with 0.165 mol/L 3-morpholinopropanesulfonic acid (MOPS) in pH 7.0. The final suspension was distributed in microdilution plates containing pre-defined incremental concentrations of amphotericin B (AMB); itraconazole (ITZ); voriconazole (VOR); micafungin (MCF); 5-flucytosine (5FC); miconazole (MCZ) and fluconazole (FCZ). The plates were incubated at 35°C and fungal growth was eye-observed after 24 h and 48 h. The MIC was defined as the lowest drug concentration that caused 100% of inhibition of visible fungal growth for AMB, ITZ and VOR and as the lowest drug concentration that caused 50% of inhibition of visible fungal growth for MCZ, 5FC and FCZ and the MEC for MCZ was defined as the lowest concentration of drug that leads to the growth of small, rounded, compact hyphal forms as compared to the hyphal growth seen in the growth control well. The tests were performed in duplicate. American Type Culture Collection strains Candida parapsilosis ATCC 22019, Candida krusei ATCC 6258, Candida albicans ATCC 76615 and Candida albicans ATCC 90028 were used for quality control.

Antifungal agents
Micafungin, amphotericin B, 5-flucytosine, fluconazole, voriconazole, itraconazole and miconazole in pre-prepared dry plates (Eiken Chemical Co., Ltd., Tokyo) (Makimura et al. 2005).

Results
Assessment of the Fusarium napiforme strains
All isolates from blood, skin biopsy and from air were identified as Fusarium sp. by macroscopic and microscopic characteristics, as Fusarium non-solani species complex (FNSSC) DNA microarray methodology (Figure 1) and as F. napiforme (non-solani) by sequencing (Table 1). The sequences alignment showed two F. napiforme distinct groups based on DNA homology: one group with F. napiforme samples isolated from blood (2009, 2010) and from skin biopsy (1994), and another containing isolates for blood (2008) and air (F111), as shown in Figure 2.

The susceptibility results can be seen in Table 2.

Discussion
Fusarium spp. are emerging as pathogens that can cause life-threatening invasive opportunistic infections, mainly among patients with bone marrow suppression and neutropenia. Currently, Fusarium spp. are considered the second most-common mold as cause of opportunistic infection in these patients, being Aspergillus spp. the first ones (Bodey et al. 2002; Cooke et al. 2009). Fusarium spp. are also the most common cause of fungemia with skin manifestations. (Bodey et al. 2002) reported 76% of 46 patients with hematologic malignancies or solid tumors, considered to have definite Fusarium infections, had skin lesions. (Nucci and Anaissie 2007) also reported 61 hematopoietic stem cell transplant recipients with hematologic malignancies or solid tumors with disseminated Fusarium infection, and metastatic skin lesions was the most frequent clinical presentation, occurring in 46(75%) of patients.

The combination of cutaneous lesion and positive blood cultures, involving or not other sites are the most frequent pattern of disseminated fusariosis. The most common clinical presentation is a persistently febrile

| Table 1 Results of identification of Fusarium species according macro- and micro- morphological characteristics, DNA microarray and DNA sequencing |
|-----------------|-----------------|-----------------|
| Isolate LIF | Macro- and micro-morphological characteristics | DNA microarray | DNA sequencing | % Similarity* |
| 2008 | Fusarium sp. | FNSSC | Fusarium napiforme | 98 |
| 2009 | Fusarium sp. | FNSSC | Fusarium napiforme | 99 |
| 2010 | Fusarium sp. | FNSSC | Fusarium napiforme | 99 |
| 1994 | Fusarium sp. | FNSSC | Fusarium napiforme | 99 |
| F111 | Fusarium sp. | FNSSC | Fusarium napiforme | 98 |

LIF = Fungal Research Laboratory; FNSSC = Fusarium non-solani species complex, *Similarity % for the comparison with NCBI database.
Figure 2 Clustal Omega multiple sequences alignment of *Fusarium napiforme* isolates by *EF1*α gene sequencing. The * symbol indicate a 100% homology for the specific base position. The square indicates one of the genetic variant groups.
patient with prolonged and profound neutropenia who develops disseminated characteristic skin lesions, with a positive blood culture for a filamentous fungi (Nucci and Anaissie 2007). This was the case of our patient.

The most common Fusarium involved in human infections are *F.solani*, *F.oxysporum* and *F.verticillioides* (Gupta et al. 2000; Tezcan et al. 2009). To our knowledge, we describe here the second case of disseminated fusariosis caused by *F.napiforme*, and the first case with identification confirmed by molecular techniques, including sequencing.

The first invasive case by *F.napiforme* was described in 1993 (Melcher et al. 1993) in a patient diagnosed with acute myeloid leukemia, under cyto reduction and profound granulocytopenia following high-dose of cytosine arabinoside, mitoxantrone, and VP-16. Since then, no other cases have been described.

The diagnosis of *Fusarium* in laboratory includes some criteria such as a positive direct mycological examination showing typical septated hyphae branching at 45°. However, the identification of *Fusarium* to the species level is often difficult and requires a specialized laboratory and skilled personnel. In such situations, molecular biology techniques might be helpful for the definitive diagnosis. Furthermore, the early diagnosis of invasive disease might be helpful to guide the correct antifungal therapy,

Table 2 Literature review of antifungal drugs evaluated for *Fusarium* species

Author [reference]	*Fusarium* species	AMB	FLU	MCF	ITZ	VOR	5FC	MCZ
(Melcher et al. 1993)	*Fusarium napiforme*	1.16	10	1.25	>322.7			
(Durand-Joly et al. 2003)	*Fusarium solani*	1						
(Rodriguez et al. 2003)	*Fusarium oxysporum*	2						
(Rothe et al. 2004)	*Fusarium oxysporum*	2	>64	<2	>64			
(Guzman-Cottrill et al. 2004)	*Fusarium solani*	8	>64	8	>64			
(Teixeira et al. 2005)	*Fusarium solani*	2	128					
(Ho et al. 2007)	*Fusarium solani*	1	>16	4				
(Neuburger et al. 2008)	*Fusarium proliferatum*	4-8	>16	>16	8			
(Tortorano et al. 2008)	*Fusarium verticillioides*	1.53	3.33	1.74				
	Fusarium solani	1.25	>16	9.21				
	Fusarium proliferatum	1.7	>16	4.2				
	Fusarium oxysporum	2.3	>16	4				
	Fusarium subglutinans	3.3	10.8	5.6				
(Xie et al. 2008)	*Fusarium solani*							
(Tezcan et al. 2009)	*Fusarium verticillioides*	1-2	>8	4				
(Bose et al. 2011)	*Fusarium spp.*	2-4						
(Liu et al. 2011)	*Fusarium solani*	1	4					
(Sekeroglu et al. 2012)	*Fusarium solani*	0.5	>64	8				
(Pereira et al. 2013)	*Fusarium solani*	>8	>8	0.5-0.128				
(Fanci et al. 2013)	*Fusarium verticillioides*	2						
(Inano et al. 2013)	*Fusarium solani*	>4	>16	>8	8	16		
	Fusarium moniliforme	8						
	Fusarium oxysporum	8						

Present study

isolate 2008	*Fusarium napiforme*	2-4	1-2	>16	>8	>8	>64	0.125-0.25
isolate 2009	*Fusarium napiforme*	2-4	1-2	>16	>8	2	>64	0.125-0.25
isolate 2010	*Fusarium napiforme*	2-4	1-2	>16	>8	4	>64	0.125-0.25
isolate 2014	*Fusarium napiforme*	2	1-2	>16	>8	4	>64	0.125
isolate F111	*Fusarium napiforme*	1	8	>16	>8	2	>64	0.5

MEC = minimal effective concentration, MIC = minimum inhibitory concentration, MEC was defined for micafungin and MIC for the other drugs, AMB = amphotericin B, FLU = fluconazole, MCF = micafungin, ITZ = itraconazole, VOR = voriconazole, 5FC = 5-flucytosine, MCZ = miconazole.
which is crucial for patient recovery (Galimberti et al. 2012; Busemann et al. 2009; Azor et al. 2009). In our study, molecular methods allowed a faster and accurate identification of the causative agent as belonging to *F. napiforme* group. In addition, the strains FT11 and 2008, from blood and air respectively, showed 100% sequencing alignment, suggesting that the the air may have been the source of the infection. Samples 2009 and 2010, isolated from the blood, and skin isolate 1994 were also aligned. Thus, it seems that we had two variants of *F. napiforme*. Therapy for invasive fusariosis is a challenging problem, mainly because *Fusarium* shows high MICs to antifungal agents, and therefore, there is no proven effective treatment regimen (Tezcan et al. 2009; Guzman-Cotrill et al. 2004; Rothe et al. 2004). The treatment of choice for invasive fusariosis is amphotericin B. However, it is controversial, since there are reports of *Fusarium* showing MICs for AMB ranging from 1 to 4 μg/mL. Triazoles, as voriconazole and posaconazole, have also been used successfully (Pereira et al. 2013; Tortorano et al. 2008). Furthermore, different *Fusarium* can exhibit variable susceptibility patterns.

In the present case, patient was treated with amphotericin B deoxicolate, initiated after laboratory confirmation of *Fusarium* fungemia. However, the time between the onset of symptoms and the blood culture was fifteen days and the time between the blood culture and the positive result for *Fusarium* was fifteen days more. The isolate of *F. napiforme* in the present case was resistant to amphotericin B, with MIC ranging from 2-4 μg/mL. Delay in antifungal therapy plus the resistance profile could have contributed to the patient’s death three days after antifungal drug was initiated.

In conclusion, *Fusarium* spp. are emerging as a fungi of relevance in medical mycology, since they are associated with low susceptibility profiles to antifungal drugs and high mortality rate, mainly in immunocompromised patients. These facts highlight the importance for faster and more accurate diagnostic tests, contributing to earlier and precise diagnosis and treatment of this life-threatening infection.

Nucleotide sequence accession numbers
The sequences determined in this study have been submitted in (Sakai et al. 2014) and deposited in NCBI database with the accession numbers KM099396 to KM099400.

Consent
Informed consent was obtained from the patient for the publication of this report and any accompanying images.

Competing interests
The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Authors’ contributions
MS carried out all the molecular techniques, the sequence alignment and drafted the manuscript. TM carried out the LAMP technique and revised the manuscript. LL carried out the drug susceptibility tests and revised the manuscript. AFBL carried out the DNA microarray technique, the sequence alignment and revised the manuscript. TG is a chief adviser of the research and revised the manuscript. AS2 is a chief adviser the research, carried out the drug susceptibility tests and revised the manuscript. KK is a chief adviser of the research and revised the manuscript. MLM is a chief adviser of the research and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by JST/JICA, and SATREPS, through the Cooperation Research Grant 02P-29548-09. Marcela de Souza have received a master degree scholarship from the São Paulo Research Foundation (FAPESP), grant number FAPESP 2011/16205-5.

Author details
1Department of Internal Medicine, School of Medicine, University of Campinas, Campinas, São Paulo, Brazil. 2Medical Mycology Research Center, Chiba University, Chiba, Japan. 3Department of Clinical Pathology, School of Medicine, University of Campinas, Campinas, São Paulo, Brazil. 4UM 46 – Laboratory of Parasitology – HC/FMUSP, São Paulo, Brazil.

Received: 29 July 2014 Accepted: 27 August 2014
Published: 30 August 2014

References
Azor M, Gené J, Cano J, Manikandan P, Venkatapathy N, Guarro J (2009) Less-frequent *Fusarium* species of clinical interest: correlation between morphological and molecular identification and antifungal susceptibility. J Clin Microbiol 47:1463–1468
Bodey GP, Boktour M, Mays S, Duvic M, Koutouyianis D, Hachem R, Raad I (2002) Skin lesions associated with Fusarium infection. J Am Acad Dermatol 47:659–666
Bose P, Parekh HD, Holter JL, Greenfield RA (2011) Disseminated fusariosis occurring in two patients despite posaconazole prophylaxis. J Clin Microbiol 49:1674–1675
Bourgeois GP, Lafardi JA, Selheyer K, Andea AA (2010) Disseminated Fusarium originating from toenail paronychia in a neutropenic patient..Cuts 85:191–194
Busemann C, Krüger W, Schwesinger G, Kallinich B, Schröder G, Abel P, Kiefer T, Neumann T, Dölen G (2009) Myocardial and aortal involvement in a case of disseminated infection with *Fusarium solani* after allogeneic stem cell transplantation: report of a case. Mycoses 52:372–376
Calciterra D, Karam K, Suzuki Y (2010) Computed tomography findings in a patient with fungal aortitis: acute aortic syndrome secondary to fusariosis. Interact Cardiovasc Thorac Surg 17:171–172
Cho CT, Vats TS, Lowman JT, Brandenburg JW, Tosh FE (1973) *Fusarium solani* infection during treatment for acute leukemia. J Pediatr 83:1028–1031
CLSI (2008) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi: Approved Standard-Second Edition. CLSI document M38-A2. Clinical and Laboratory Standards Institute, Wayne, PA
Cooke NS, Feighery C, Armstrong DK, Walsh M, Dempsey S (2009) Cutaneous *Fusarium solani* infection in childhood acute lymphoblastic leukaemia. Clin Exp Dermatol 34:e117–e119
De Pinho DB, Fernandes LL, Canvalho Barreiros Mda G, Quintella LP, Sodré CT, Ramos-E-Silva M (2012) Disseminated fusariosis in a bone marrow transplant patient. J Clin Aesthet Dermatol 5:40–42
Durand-Joly I, Alfandari S, Benchikh Z, Rodrigue M, Espinel-Ingroff A, Catteau B, Cardvant C, Carmus D, Dei-Cas E, Bauteur F, Delhaes L, De Botton S (2003) Successful outcome of disseminated Fusarium infection with skin localization treated with voriconazole and amphotericin B- lipid complex in a patient with acute leukemia. J Clin Microbiol 41:4898–4900
Fanci R, Pini G, Bartollesi AM, Picelli P (2013) Refractory disseminated fusariosis by *Fusarium verticillioides* in a patient with acute myeloid leukaemia relapsed after allogeneic hematopoietic stem cell transplantation: a case report and literature review. Rev Iberoam Micol 30:51–53
Ferrari MD, Resende MR, Sakai K, Muraosa Y, Lyta L, Gonzi T, Mikami Y, Tominaga K, Kamei K, Schreiber AZ, Trabasso P, Moretti ML (2013) Accurate visual

de Souza et al. SpringerPlus 2014, 3:492

http://www.springerplus.com/content/3/1/492

Page 7 of 8
DNA-microarray for the molecular identification of non-albicans Candida species isolated from candidemia episodes. J Clin Microbiol 51:3826–3829
Horna M, Shobana CS, Singh YR, Manikandan P, Selvam KP, Kedrics L, Narendran V, Vágvölgyi C, Galgóczy L (2013) Fusarium keratitis in South India: causative agents, their antifungal susceptibilities and a rapid identification method for the Fusarium solani species complex. Mycoses 56:501–511
Galmínter R, Torre AC, Beatán MC, Rodríguez-Chiappetta F (2012) Emerging systemic fungal infections. Clin Dermatol 30:653–650
Gupta AK, Baran R, Summerbell RC (2000) Fusarium infections of the skin. Curr Opin Infect Dis 13:121–128
Guzman-Cotrill JA, Zheng X, Chadwick EG (2004) Fusarium solani endocarditis successfully treated with liposomal amphotericin B and voriconazole. Pediatr Infect Dis J 23:1059–1061
Ho DT, Lee JD, Rosso F, Montoya JG (2007) Treating disseminated fusariosis: amphotericin B, voriconazole or both? Mycoses 50:227–231
Inano S, Kimura M, Iida J, Arima N (2013) Combination therapy of voriconazole and terbinafine for disseminated fusariosis: a case report and literature review. J Infect Chemother 19:1173–1180
Jureen R, Koh TH, Wang G, Chai LY, Tan AL, Chai T, Wong YW, Tambyah PA, Beuerman R, Tan D (2008) Use of multiple methods for genotyping Fusarium during an outbreak of contact lens associated fungal keratitis in Singapore. BMC Infectious Disease 8:92
Liu JY, Chen WT, Ko BS, Yao M, Hsueh PR, Hsiao CH, Kuo YM, Chen YC (2011) Combination antifungal therapy for disseminated fusariosis in immunocompromised patients: a case report and literature review. Med Mycol 49:872–878
Makimura K, Oguri T, Mikami Y, Kume H, Hanazawa R, Abe M, Ikeda R, Shinoda T (2005) Multicenter evaluation of commercial frozen plates for microlodulating broth antifungal susceptibility testing of yeasts and comparison of MIC limits recommended in NCCLS M27-A2. Microbiol Immunol 49:97–106
Mamingo C (1994) Clinical patterns of Fusarium infections in immunocompromised patients. J Infect 1:7–15
Melcher GP, McGough DA, Fothergill AW, Norris C, Rinaldi MG (1993) Disseminated hyalohyphomycosis caused by a novel human pathogen, F. napoforme. J Clin Microbiol 31:1461–1467
Moreira-Oliveira MS, Mikami Y, Miayi M, Imai T, Schreiber AZ, Moretti ML (2005) Diagnosis of candidemia by polymerase chain reaction and blood culture: prospective study in a high-risk population and identification of variables associated with development of candidemia. Eur J Clin Microbiol Infect Dis 24:721–726
Neuberger S, Massenkelg S, Seibald M, Lutz C, Tamm I, Le Coutre P, Graf B, Doerken B, Arnold R (2008) Successful salvage treatment of disseminated cutaneous fusariosis with liposomal amphotericin B and terbinafine after allogeneic stem cell transplantation. Transpl Infect Dis 10:290–293
Nucci M, Annasal E (2007) Fusarium infections in immunocompromised patients. Clin Microbiol Rev 20:695–704
Nucci M, Gareca M, Gloria AB, Lehugeur DS, Dias VC, Palma LC, Cappellano P, Fertin KY, Carlesse F, Simões B, Bergamasco MD, Cunha CA, Seber A, Ribeiro MP, Queiroz-Telles F, Lee ML, Chauffaille ML, Silla L, de Souza CA, Colombo AL (2013) Invasive fungal diseases in haematopoietic cell transplant recipients and in patients with acute myeloid leukemia or myelodysplasia in Brazil. Clin Microbiol Infect 19:745–751
Pereira GH, de Angelis DA, Brasil RA, dos Anjos Martins M, De Matos Castro e Silva D, Szeszs MW, de Souza Carvalho Melhem M (2013) Disseminated amphotericin-resistant fusariosis in acute leukemia patients: report of two cases. Mycopathologia 175:107–114
Rodriguez CA, Luján-Zilbergmann J, Woodard P, Andreskyn M, Adderson EE (2003) Successful treatment of disseminated fusariosis. Bone Marrow Transplant 31:411–412
Scheel CM, Hurst SF, Bareiros G, Akh T, Nucci M, Baljaee SA (2013) Molecular analyses of Fusarium isolates recovered from a cluster of invasive mold infections in a Brazilian hospital. BMC Infect Dis 13:1349
Rothe A, Seibald M, Hoppe T, Seifert H, Engert A, Caspar C, Karthaus M, Fätkenheuer G, Bethe U, Tintelnot K, Cornelis OA (2004) Combination therapy of disseminated Fusarium oxysporum infection with terbinafine and amphotericin B. Ann Hematol 83:394–397
Sakai K, Trabasso P, Moretti LM, Mikami Y, Karney K, Gono T (2014) Identification of fungal pathogens by visible microarray 4 system in combination with isothermal gene amplification. Mycopathologia 178:11–26
Sekeroglu TH, Ederen E, Yagmur M, Gunmal R, Enoz R, Ilkik M, Harblyeli II (2012) Successful medical management of recalcitrant Fusarium solani keratitis: molecular identification and susceptibility patterns. Mycopathologia 174:233–237
Slavin MA, Chakrabarti A (2012) Opportunistic fungal infections in the Asia-Pacific region. Med Mycol 50:18–25
Tolnay ABA, Morett LM, Trabasso P, Nowakowski AV, Aoki FH, Viegato AC, Miyaji M, Nishimura K, Taguchi H, Schreiber AZ (2005) Evaluation of Fusarium solani hyphae and conidia susceptibility to amphotericin B and itraconazole: study of a clinical case. Mycopathologia 116:291–296
Tezcan G, Ozhak-Baysan B, Alastreuy-Izquierdo A, Ognuc D, Onguc G, Yildiran ST, Hazar V, Cuenca-Estrella M, Rodriguez-Tudela JL (2009) Disseminated fusariosis caused by Fusarium verticilloides in an acute lymphoblastic leukemia patient after allogeneic hematopoietic stem cell transplantation. J Clin Microbiol 47:278–281
Tortorani AM, Priatiano A, Dho G, Esposto MC, Gianni C, Grancini A, Ossi C, Viviani MA (2008) Species distribution and in vitro antifungal susceptibility patterns of 75 clinical isolates of Fusarium spp. from Northern Italy. Antimicrob Agents Chemother 52:2683–2685
Verweij PE, Brandt ME (2007) Aspergillus, Fusarium, and Other Opportunistic Moniliasisous Fungi. In: Murray PR, Baron EJ, Jorgensen JH, Landy ML, (eds) Pfaller MA Manual of clinical microbiology, 9th edn. ASM Press, Washington, DC
Xie L, Zhai H, Zhao J, Sun S, Shi W, Dong X (2008) Antifungal susceptibility for common pathogens of fungal keratitis in Shandong Province, China. Ann J Ophthalmo 146:260–265

Cite this article as: de Souza et al. Fusarium napoforme systemic infection: case report with molecular characterization and antifungal susceptibility tests. SpringerPlus 2014 3:492.

Submit your next manuscript at springeropen.com