Original Paper

Med Princ Pract 2017;26:433–437
DOI: 10.1159/000481624

Fasting Single-Spot Urine pH Is Associated with Metabolic Syndrome in the Japanese Population

Masanori Shimodaira a, b Shinji Okaniwa a Tomohiro Nakayama b

a Department of Internal Medicine, Iida Municipal Hospital, Iida, and b Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan

Significance of the Study

• In this study, a significant, inverse relationship between urine pH and metabolic syndrome and the number of its components were identified after controlling for confounding factors, including serum uric acid levels. The examination of urine pH could be a practical screening tool for metabolic syndrome.

Keywords
Diabetes · Dyslipidemia · Hypertension · Metabolic syndrome · Obesity · Urine pH

Abstract

Objective: To investigate the relationship between urine pH and metabolic syndrome (MetS) and its components, while controlling for covariates. Subjects and Methods: This cross-sectional study was conducted on 5,430 Japanese subjects (4,691 without MetS; 739 with MetS) undergoing health assessments. Partial correlation analysis and analysis of covariance were used for controlling confounding parameters (age, gender, levels of serum uric acid and high-sensitivity C-reactive protein, estimated glomerular filtration rate, and smoking and drinking status). Using multiple logistic regression analyses, adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for MetS incidence were calculated across urine pH categories. Path analysis was used to determine the relationship between MetS and urine pH. Results: Subjects with MetS had significantly lower urine pH (5.9 ± 0.7) than those without MetS (6.0 ± 0.7) (p < 0.001). Partial correlation analysis showed that systolic and diastolic blood pressure, and triglyceride and fasting plasma glucose levels were negatively correlated with urine pH, while high-density lipoprotein cholesterol was positively correlated with urine pH. Analysis of covariance indicated that urine pH decreased with an increasing number of metabolic abnormalities. Adjusted ORs (95% CI) for the presence of MetS in subjects with urine pH <5.5–6.0 and pH <5.5 were 1.34 (1.04–1.73) and 1.52 (1.09–2.13), respectively (reference: subjects with a urine pH >6.0). Conclusion: The MetS and its components were independently associated with lower urine pH.

© 2017 The Author(s)
Published by S. Karger AG, Basel

Masanori Shimodaira, MD, PhD
Department of Internal Medicine, Iida Municipal Hospital
438 Yawata-machi
Iida, 395-0004 Nagano (Japan)
E-Mail masanori19810813@yahoo.co.jp

© 2017 The Author(s)
Published by S. Karger AG, Basel

www.karger.com/mpp
Introduction

Metabolic syndrome (MetS) is associated with a variety of physiological and metabolic alterations, and is clinically recognized by numerous constitutive traits, including abdominal obesity, hypertension, dyslipidemia, and hyperglycemia [1]. This cluster of features is strongly associated with type 2 diabetes, cardiovascular disease, and increased cardiovascular and all-cause mortality [1].

Recently, a relationship between low urinary pH (pH < 5.5) and diabetes [2] and insulin resistance [3] had been reported. Obesity, another feature of MetS, is also associated with a low urine pH [4]. In addition, non-high-density lipoprotein cholesterol (HDL-C) could have a significant association with a lower urinary pH [3]. In a recent cohort study, it was proposed that low urine pH is a causative and predictive factor for the development of MetS [5]. However, the relationship between urine pH and blood pressure has been investigated in only a few studies [5, 6], and only a limited number of studies has considered confounding variables such as smoking habits and alcohol intake [7, 8]. Epidemiological studies have revealed a close relationship between serum uric acid (UA) levels and the presence of MetS [9, 10]. Nevertheless, while patients with high serum UA levels were reported to have a low urine pH [5, 6, 11], it is unclear whether or not low urine pH relates to MetS in a manner independent of serum UA levels. Therefore, to ascertain whether or not urine pH is related to MetS and its components, a cross-sectional study was conducted in a Japanese population.

Subjects and Methods

Study Subjects

This study included 5,721 individuals who underwent routine health check-ups in Iida Municipal Hospital, Iida City, Japan, from January 2013 to December 2015. When data were available for individuals from multiple visits, only data acquired at the first visit were included. Exclusion criteria were: the potential for advanced renal dysfunction such as in those with an estimated glomerular filtration rate (eGFR) < 30 mL/min/1.73 m², evidence of albuminuria as indicated by urine dipstick albumin > 2+, and advanced age (> 80 years). Consequently, of the 5,721 individuals, 5,430 subjects were included in the final analysis (4,691 patients without MetS and 739 patients with MetS). This study was approved by the Institutional Ethics Review Board of Iida Municipal Hospital and performed in accordance with the principles of the Declaration of Helsinki. Written informed consent was obtained from all participants.

Definitions of Variables

According to the classification described by the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) criteria [12], MetS is defined by the presence of ≥ 3 components of the following 5 abnormalities: (a) waist circumference (WC) ≥ 90 cm and ≥ 80 cm in Japanese men and women, respectively; (b) systolic blood pressure (SBP) ≥ 130 mm Hg and/or diastolic blood pressure (DBP) ≥ 85 mm Hg, or treatment for previously diagnosed hypertension; (c) triglyceride (TG) levels ≥ 150 mg/dL or receiving specific treatment for hypertriglyceridemia; (d) HDL-C levels < 40 mg/dL in males and < 50 mg/dL in females, or receiving specific treatment for low HDL-C; (e) fasting plasma glucose (FPG) levels ≥ 100 mg/dL or previously diagnosed diabetes. Individuals with < 3 criteria for the diagnosis of MetS served as controls.

Clinical and Anthropometric Measurements

WC was measured between the lower rib margin and iliac crest after a normal expiratory breath. SBP and DBP were measured using an automated measuring device (HEM-7080T, Omron Co., Tokyo, Japan). Two separate measurements were taken after 15 min of resting, with an interval of at least 30 s between the 2, and the mean of these was considered.

Information regarding various comorbidities, including hypertension, dyslipidemia, and diabetes, were collected by in-person interviews. The smoking status and alcohol consumption of study participants were assessed using a standardized questionnaire. The smoking status was considered as current smoking (daily and occasional smoking) and nonsmoking (never and former smoking). Alcohol consumption was classified as current drinkers (at least once per week) and noncurrent drinkers.

Laboratory Measurements

Blood samples were obtained after an overnight fast. To obtain a serum sample, the blood sample was centrifuged in a plain vacuum tube within 20–30 min of blood clotting. Total serum cholesterol, TG, HDL-C, low-density lipoprotein cholesterol, UA, FPG, high-sensitivity C-reactive protein (hs-CRP), and creatinine levels were measured using standard methods (Hitachi 47 automatic analyzer, Hitachi Ltd., Japan). eGFR was calculated using the formula of the Japanese Society of Nephrology according to the equation: 194 × serum creatinine⁻¹.094 × age⁻⁰.287 mL/min/1.73 m², further multiplied by 0.739 for female subjects [13]. An early morning midstream urine sample was collected for urine chemistry following an overnight fasting period, and was analyzed immediately using an automated urine dipstick analyzer (Aution Max AX-4030, ARKRAY Inc., Japan). Kraut and Madias [14] indicate that in the absence of impaired renal acidification, acidic urine should be defined as having a pH of ≤ 5.5, neutral urine a pH of 6.0–7.5, and alkaline urine a pH of ≥ 8.0.

Statistical Analysis

Statistical analyses were performed using SPSS software v21.0 (SPSS Inc. IL, USA). Characteristics of the subjects with and without MetS were compared using the independent t test for continuous variables and the χ² test for dichotomous variables. Skewed distribution variables were analyzed after logarithmic transformation. Correlations between urine pH and variables of MetS components were analyzed using the Pearson correlation analysis, and partial correlation analysis was performed to control confounding factors (age, gender, eGFR, serum UA, hs-CRP, and smoking and drinking status). In these correlation analyses, the subjects taking antihypertensive, antihyperglycemic, and antidysslipidemic agents were excluded to avoid the effects of drugs on the variables associated with MetS components. Analysis of covariance models were...
used to examine the relationship between urine pH and the number of MetS abnormalities. We used multiple logistic regression analyses to adjust confounding factors to determine the adjusted odds ratios (ORs) for MetS incidence between different urine pH categories (pH <5.5, 5.5–6.0, and >6.0).

Results

Characteristics of Subjects with and without MetS

The incidence of MetS in all subjects, males, and females were 13.6, 18.3, and 7.3%, respectively. The physi-
Unadjusted and adjusted ORs of the presence of MetS according to different urine pH categories are shown in Table 3. The ORs increased with a decrease in urine pH. Compared with subjects with a urine pH >6.0, the adjusted ORs (with 95% confidence intervals [CIs]) for the presence of MetS in subjects with a urine pH of 5.5–6.0 and <5.5 were 1.34 (1.04–1.73) and 1.52 (1.09–2.13), respectively.

Table 3. OR and 95% CI of the presence of MetS according to urine pH category

Urine pH	Unadjusted OR (95% CI)	p value	Adjusted OR (95% CI)	p value
>6.0	1.00 (ref)		1.00 (ref)	
5.5–6.0	1.21 (1.01–1.44)	0.021	1.34 (1.04–1.73)	0.005
<5.5	1.71 (1.35–2.17)	<0.001	1.52 (1.09–2.13)	<0.001

The OR was adjusted for age, gender, serum uric acid, estimated glomerular filtration rate, and smoking and alcohol status. OR, odds ratio; CI, confidence interval; MetS, metabolic syndrome.

Discussion

In this study, there was a significant inverse relationship between urine pH and MetS and the number of abnormal metabolic components. In addition, urine pH was correlated with variables of MetS components. These results did not change even after adjusting for a range of confounding factors such as age, gender, eGFR, hs-CRP, UA, and smoking and drinking status.

Our findings are consistent with those of previous studies [2–5] regarding the relationship between urine pH and metabolic parameters. For example, urine pH has been found to be significantly lower in patients with type 2 diabetes than in normal volunteers [2]. In another study, a low urine pH showed an association with an increase in WC, and FPG and TG levels and a decrease in HDL-C levels [6]. Furthermore, participants with MetS had a significantly lower 24-h urine pH than those without MetS [15], and low urine pH could be a predictive factor for the development of MetS [5]. Our results and these previous studies indicate that urine pH correlates with metabolic parameters and that a low urine pH is associated with the incidence of MetS.

Although the precise reasons for the relationship between MetS and a lower urine pH remain unclear at this time, a low urine pH could result from increased acid excretion, impaired urinary buffering, or both. Ammonium is the primary buffer in the urine [16], and its renal production and excretion are regulated by the ambient acid-base environment. Insulin is known to influence both of these processes [17], and mechanisms of acid-base homeostasis may be altered in a state of insulin resistance [18]. Considering our data along with those from previous studies [2–5], we hypothesize that acidic urine may be a renal manifestation of insulin resistance resulting from MetS.

Although serum UA is not included in the diagnostic criteria for MetS, epidemiological studies have established a close relationship between elevated serum UA levels and the increasing prevalence of MetS [9, 10, 19]. Serum UA, a weak acid, may also affect urine pH. Indeed, previous studies have reported that subjects with higher serum UA levels have lower urine pH [5, 6, 11]. In this study, serum UA levels were negatively correlated with urine pH, which is consistent with the results of previous reports. In addition, the relationship between lower urine pH and MetS persisted, even after adjusting for serum UA, suggesting that high serum UA levels alone cannot account for the more acidic urine. Aging [20] and renal dysfunction [21] are also known to be related with a decrease in urine pH. Our results are consistent with the following previous findings: age had an inverse relationship with urine pH whereas eGFR had a positive relationship. In this study, individuals who exhibited potential signs of advanced renal dysfunction and/or advanced age...
were excluded. However, the relationship between MetS and its components with urine pH was unchanged even after adjusting for age and eGFR.

In this study, fasting single-spot urine samples, and not urine collected over 24 h, were used to determine the urine pH. Although the diurnal variation in urine pH has been confirmed, Capolongo et al. [22] demonstrated that fasting urine pH is significantly correlated with 24-h urine pH in a large cohort. Additionally, the measurement of urine pH using the indicator method is known to be less reliable than using electrodes; however, the indicator method might be more appropriate for routine health check-ups because of its convenience and lower cost.

The strength of the study was its relatively large, well-characterized, community-based population. However, it also has some limitations which include its cross-sectional design which did not permit the determination of causality. In addition, nutritional records were not available for the patients, and so we could not include dietary patterns in the analyses. Furthermore, the study population consisted of Japanese patients only; consequently, it is uncertain whether these findings could be generalized to other ethnic groups.

Conclusion

In this study, there was a relationship between MetS and low urine pH, in a manner which is independent of serum UA levels. In addition, a progressive decline in urine pH was noted with an increasing number of MetS features. Hence, the examination of fasting urine pH could be a practical screening tool for MetS, and this practice might be beneficial in recognizing the segment of a Japanese population with lower urine pH, particularly urine pH <5.5. Further studies are needed to elucidate the mechanisms responsible for the lower urine pH in individuals with MetS.

Acknowledgements

The authors gratefully acknowledge Nobuo Shimosawa for preparing an electronic database of the participants’ clinical records. We also acknowledge Naoki Nakadaira, a medical technologist in the Iida Municipal Hospital, for the interpretation of the study data.

Disclosure Statement

There were no conflicts of interest.

References

1 Hu G, Qiao Q, Tuomilehto J, et al: Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic European men and women. Arch Intern Med 2004;164:1066–1076.
2 Cameron MA, Maalouf NM, Adams-Huet B, et al: Urine composition in type 2 diabetes: predisposition to uric acid nephrolithiasis. J Am Soc Nephrol 2006;17:1422–1428.
3 Torricelli FC, De SK, Gebreellassie S, et al: Dyslipidemia and kidney stone risk. J Urol 2014;191:667–672.
4 Maalouf NM, Sakhaee K, Parks JH, et al: Association of urinary pH with body weight in nephrolithiasis. Kidney Int 2004;65:1422–1425.
5 Hara S, Tsuji H, Ohmoto Y, et al: High serum uric acid level and low urine pH as predictors of metabolic syndrome: a retrospective cohort study in a Japanese urban population. Metabolism 2012;61:281–288.
6 Otsuki M, Kitamura T, Goya K, et al: Association of urine acidification with visceral obesity and the metabolic syndrome. Endocr J 2011;58:363–367.
7 Cho YH, Lee SY, Jeong DW, et al: The association between a low urine pH and the components of metabolic syndrome in the Korean population: findings based on the 2010 Korea National health and nutrition examination survey. J Res Med Sci 2014;19:599–604.
8 Park M, Jung SJ, Yoon S, et al: Association between the markers of metabolic acid load and higher all-cause and cardiovascular mortality in a general population with preserved renal function. Hypertens Res 2015;38:433–438.
9 Choi HK, Ford ES: Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am J Med 2007;120:442–447.
10 Onat A, Uyarel H, Hergenc G, et al: Serum uric acid is a determinant of metabolic syndrome in a population-based study. Am J Hypertens 2006;19:1055–1062.
11 Nakaniishi N, Fukui M, Tanaka M, et al: Low urine pH is a predictor of chronic kidney disease. Kidney Blood Press Res 2012;35:77–81.
12 Alberti KG, Eckel RH, Grundy SM, et al: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120:1640–1645.
13 Matsuo S, Imai E, Horio M, et al: Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009;53:982–992.
14 Kraut JA, Madias NE: Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol 2010;6:274–285.
15 Maalouf NM, Cameron MA, Moe OW, et al: Low urine pH: a novel feature of the metabolic syndrome. Clin J Am Soc Nephrol 2007;2:883–888.
16 DuBose TD Jr, Good DW, Hamm LL, et al: Ammonium transport in the kidney: new physiological concepts and their clinical implications. J Am Soc Nephrol 1991;1:1193–1203.
17 Fuster DG, Bobulescu IA, Zhang J, et al: Characterization of the regulation of renal Na+/H+ exchanger NHE3 by insulin. Am J Physiol Renal Physiol 2007;292:F577–F585.
18 Abate N, Chandalia M, Cabo-Chan AV Jr, et al: The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int 2004;65:386–392.
19 Liu PW, Chang TY, Chen JD: Serum uric acid and metabolic syndrome in Taiwanese adults. Metabolism 2010;59:802–807.
20 Agarwal BN, Cabebe FG: Renal acidification in elderly subjects. Nephron 1980;26:291–295.
21 Schwartz WB, Relman AS: Acidosis in renal disease. N Engl J Med 1957;256:1184–1186.
22 Capolongo G, Sakhaee K, Pak CY, et al: Fasting versus 24-h urine pH in the evaluation of nephrolithiasis. Urol Res 2011;39:367–372.