The Investigation into the Effect of Hydrostatic Pressure on the Engineering Properties of Hardened Concrete

Metin M. Uzunoğlu¹, Ercan Özgan²* and Tuncay Kap³

¹ Lecturer, Faculty of Technical Education, University of Düzce, Konuralp Campus, Turkey
² Professor, Faculty of Art Design Architecture, Dept. of Architecture, University of Düzce, Konuralp, Turkey
³ Assistant Professor, Duzce Vocational High School, Structure Department, Turkey

Abstract

The aim of this study is to investigate the effect of hydrostatic pressure on the engineering properties of hardened concrete. To this end, a concrete column with dimensions of 100 cm width, 25 cm depth and 250 cm height was produced using C20 class concrete. While pouring the concrete, 15 cm reference cube samples were taken from the fresh concrete. After 28 days, 8 from the cube samples and 128 from different hydrostatic heights, in total 136 pieces of core samples with Ø100 mm diameter were taken and their compressive strength was determined. The average compressive strength of the reference core samples was 36.95 N/mm² and the compressive strength of other samples changed between 37.3 N/mm² and 43.0 N/mm² according to the hydrostatic pressure. It was concluded that compressive strength changed between 0.95% and 16.37% according to the reference sample. Statistical analysis was conducted based on the experimental results. The compressive strength of the core samples related to its hydrostatic height and physical properties were predicted with a high reliability. A model equation was formed to convert the compressive strength of the core samples into reference compressive strength according to hydrostatic height and the convertibility coefficients were ascertained.

Keywords: concrete; hydrostatic pressure; core sample; compressive strength

1. Introduction

Due to the plastic consistency and viscosity of concrete, hydrostatic pressure in structural elements such as columns and reinforced walls emerges. Over the years, various factors, which affect the lateral pressure of fresh concrete on vertical forms, have been investigated. These factors include rate of placing the concrete, temperature of the concrete, proportion of the concrete mix, consistency of the concrete, consolidation method of the concrete, impact during placing, size and shape of the formwork, amount and distribution of the reinforcing steel, unit weight of the concrete, hydrostatic height of the concrete, ambient temperature, smoothness and permeability of the formwork, pore water pressure and type of cement¹ and ². During placing, the material indeed behaves as a fluid but, if it is cast slowly enough or if it is at rest, it builds up an internal structure and has the ability to withstand the load from the concrete cast above it without increasing the lateral stress against the formwork. This conclusion was drawn by observing the decrease in pressure in the first few hours after casting even though the hydration process had not yet started³ and ⁴, the lateral stress on the formwork steadily decreased. The only phenomenon that can occur after casting at this time in fresh concrete is the build-up of the internal structure at rest⁵ and ⁶. As concrete hardens, the hydrostatic pressure decreases. Thus, the formwork can be removed after the concrete hardens. However, it must be taken into consideration that in hardened concrete, hydrostatic pressure affects the compressive strength of the concrete.

This situation is especially significant in preparing the reinforcement projects for buildings that are damaged by earthquakes. On the other hand, in situations where fresh samples of concrete are not taken, fresh concrete pressure test results are not compatible with the standards, or compressive strength is doubtful, it is crucial to determine the compressive strength of the concrete⁷. A common way of determining the in-situ strength of concrete is to drill and test cores⁸, ⁹, ¹⁰, ¹¹, ¹², ¹³, ¹⁴, ¹⁵, ¹⁶, and ¹⁷. Although the method consists of expensive and time-consuming operations, cores give reliable and useful results since they are mechanically tested on destruction¹⁸. However,
the test results should be carefully interpreted because core strengths are affected by a number of factors such as diameter, l/d ratio, and moisture conditions of the core specimen, the direction of drilling, presence of reinforcement steel bars in the specimen, and even the strength level of the concrete. In core samples, some mechanical and physical properties such as the compressive strength of the concrete, density, water absorption capacity, split tensile strength, expansion due to alkali-silica reaction, the space ratio, and saturation degree can be determined as well. The studies including the future standards related to this subject were published in several countries such as England, America and Turkey.

In the present study, the effect of hydrostatic pressure on the compressive strength of concrete was investigated. With this aim in mind, using C20 class concrete, a concrete column was produced. By taking samples from different hydrostatic heights of the column, the compressive strength was determined. In order to predict the compressive strength according to hydrostatic height and the physical properties of the samples, statistical analyses were conducted and prediction models were established.

2. Material and Method
2.1 Material
2.1.1 Formworks
In this study, 100 x 25 cm cross-sections and 250 cm high column formwork was produced. While producing the block, a 3 cm wide metal framed wooden panel with 50 x 100 x 2.5 cm dimensions was used on the front and back surfaces. 25 x 250 x 2.5 cm pine timber was used on the sides after this process and sika concentrated block liquid was applied on the interior surfaces of the block so the formwork would be prepared for pouring the concrete.

2.1.2 Concrete
In this study, a column block in a cross-section with 100 x 25 cm and 250 cm height was produced. While producing the block, a metal-framed wooden panel and pine timber were used on the sides. C20 ready mixed concrete was poured into the formwork to prevent segregation.

2.1.3 Casting, Curing, and Instrumentation of the Columns
The specimens were cast vertically in a specially fabricated stand and concrete was compacted in layers. During the casting of columns, concrete was poured vertically—similar to the direction of loading. The concrete was vibrated using a portable poker vibrator with a diameter of 3 cm and was manually poured. Control specimens in the form of cubes were also cast for concrete. The samples and control specimens were remolded after 24 hours and cured in a curing tank for 28 days. Then, the core samples were cured at room temperature until testing. The details of concrete mixtures including water to cement ratio (W/C) are presented in Table 1. The concrete properties of the columns are also presented in Table 1.

During this process, in order to use as a reference, 8 cube samples measuring 15 cm in dimension were taken according to Turkish Standards TS EN 12350-1 and were kept in a curing tank for 28 days.

2.2 Method
2.2.1 Taking Core Samples
Three days after pouring the concrete, the formwork was removed. A wet cure was applied for 28 days in the morning, in the afternoon, and in the evening to the construction site. After 28 days of pouring the concrete, in order to take the core sample, the position of the column was changed from vertical to horizontal. 16 in accordance with the column height and 8 by the width; a total of 128 core samples were taken. The internal diameter of the core samples was chosen as 100 mm and since the length of the samples was 25 cm, h/d=1.5 was chosen and a total of 128 core samples were taken. The core samples were taken similarly with the previous 8 pieces of the 15 cm cube reference ones (Fig.1.).

2.2.2 Determination of the Physical Properties of the Samples
All the samples taken were kept in the laboratory for 48 hours and their air-dry weights were measured with

Class of the concrete	C 20/25	Dmax: 22	Consistency: 8.3	Water/Cement: 0.63	Weighted quantity
Aggregates	Amount	The goal of the prescription	Moisture content %	The goal of the system	Total
0-5K	546 kg	2.730 kg	5,6	2.880 kg	2.861 kg
15-25	470 kg	2.350 kg	1,0	2.372 kg	2.251 kg
5-15	486 kg	2.430 kg	1,0	2.452kg	2.417 kg
Stone dust	347 kg	1.735 kg	5,5	1.828 kg	1.851 kg
	9.245 kg	288 kg		9.532 kg	9.380 kg
CEM2 42.5R	290 kg	1.450 kg		1.450 kg	1.448 kg
Super plasticizers	2.32 kg	11.6 kg		11.6 kg	11.497 kg
Water	183 kg	915 kg		626 kg	623 kg
	2.377 kg	2.088 kg			2.082 kg
2.324 kg	Unit Weight (for each m²)	2.293 kg	11.462 kg		
0.1 gr sensitivity. Afterward, these samples were kept in 20 ±2°C water until their weight became constant and saturated with water. Water saturated weights and their weights in water were measured. Samples were kept in a drying oven at 105 ±2°C until their weights were constant.

2.2.3 Determination of the Compressive Strength of the Samples

In order to conduct the compressive strength test, headings with 70% sulphur and 30% graphite were produced. Samples were kept in the laboratory setting for 24 hours and a compressive strength test was conducted according to TS EN 12390-4. As a result of the tests, samples were broken in accordance with TS EN 12390-3. The physical properties and compressive strength values of reference samples and others are provided in Table 2.

3. Analysis of the Findings

The descriptive statistics of the experiment results in a total of 128 core samples were conducted. The correlation coefficient between the fundamental physical properties, the height of hydrostatic pressure, and the compressive strength of core samples was determined. Multi-Linear Regression analysis (MLR) was carried out to predict the compressive strength of core samples. Variance analysis was conducted in order to test the significance of the model.

Core row numbers for core samples on the column	Natural unit volume weight gr/cm³	Unit volume weight for dry air gr/cm³	Saturated unit volume weight gr/cm³	Amount of water absorption %	Volume of voids cm³	Hydrostatic height cm	Compressive strength N/mm²
1	2.552	2.486	2.574	3.514	8.030	235	37.30
2	2.596	2.512	2.618	4.151	9.365	224	38.40
3	2.550	2.489	2.570	3.245	7.437	213	37.70
4	2.899	2.541	2.655	4.491	10.213	191	38.60
5	2.808	2.513	2.608	3.760	8.595	180	39.80
6	2.590	2.517	2.614	3.830	8.744	147	40.20
7	2.604	2.524	2.625	3.979	9.092	136	39.60
8	2.606	2.528	2.627	3.890	8.912	114	41.00
9	2.635	2.545	2.658	4.409	10.000	103	40.80
10	2.585	2.516	2.606	3.582	8.229	92	39.90
11	2.573	2.505	2.594	3.546	8.151	70	40.30
12	2.587	2.516	2.609	3.662	8.386	59	41.00
13	2.538	2.491	2.557	2.648	6.177	48	42.00
14	2.573	2.512	2.592	3.179	7.379	35	41.90
15	2.554	2.500	2.573	2.892	6.717	23	42.50
16	2.547	2.493	2.566	2.893	6.713	11	43.00
Reference	2.322	2.343	2.368	1.074	2.518	-	36.95
3.1 Descriptive Statistics
The physical properties and descriptive statistics values of core samples for compressive strength are shown in Table 3.

3.2 Correlation Analysis
In order to determine the level of significance in the relationship between fundamental physical properties, hydrostatic height, and compressive strength of core samples, correlation analysis was carried out (Table 4.).

3.3 Multiple Linear Regression Analysis
In order to predict the compressive strength of samples according to the physical properties and the hydrostatic height, multiple linear regression analysis was carried out on all data and also only according to the hydrostatic height (Table 5.).

Table 3. Descriptive Statistics

Properties investigated	N	Range	Min.	Max.	Mean	Std. Error	Std. Deviation	Variance
Compressive strength	16	5.70	37.30	43.00	40.235	.393	1.620	2.625
Natural unit volume weight	16	.36	2.54	2.90	2.609	.023	.097	.009
Dry unit volume weight	16	.06	2.49	2.54	2.510	.004	.018	.000
Saturated unit volume weight	16	.10	2.56	2.66	2.601	.007	.030	.001
Water absorption percentage	16	1.84	2.65	4.49	3.592	.126	.519	.270
Volume of voids	16	4.03	6.18	10.21	8.229	.274	1.129	1.274
Hydrostatic height	16	224.0	15.0	239.0	127.47	18.186	74.983	5623.0

Table 4. Correlation Analyses

Correlation coefficients	Compressive strength	Natural unit volume weight	Dry unit volume weight	Saturated unit volume weight	Water absorption percentage	Volume of voids	Hydrostatic height
Compressive strength	1.00	- .273	.001	-.219	-.504	-.491	.916
Natural unit volume weight	- .273	1.00	.605	.638	.621	.628	-.327
Dry unit volume weight	.001	.605	1.00	.966	.813	.825	.020
Saturated unit volume weight	-.219	.638	.966	1.00	.935	.942	-.211
Water absorption percentage	-.504	.621	.813	.935	1.00	1.00	-.508
Volume of voids	-.491	.628	.825	.942	1.00	1.00	-.492
Hydrostatic height	.916	- .327	.020	-.211	-.508	-.492	1.00

Table 5. Model Summary

R	R Square	Adjusted R Square	Std. Error of the Estimate	Change Statistics
.932	.869	.809	.707	

R Square Change	F Change	df1	df2	Sig. F Change
.869	14.597	5	11	.000

Table 6. ANOVA\(^a\) Resolution

Sum of Squares	df	Mean Square	F	Sig.
Regression	36.498	5	7.300	.000
Residual	5.501	11	.500	
Total	41.999	16		

Table 7. Coefficients Resolution

Model	Unstandardized Coefficients	Standardized Coefficients	Sig.	95% Confidence Interval for B
B	Std. Error	Beta	.574	-258.719 - 150.839
Natural unit volume weight (x1)	1.764	.275	.105	-4.299 - 7.827
Unit volume weight for dry air (x2)	39.078	40.641	.430	-50.373 - 128.529
Amount of the water absorption (x3)	24.817	20.108	.796	-19.440 - 69.074
Volume of voids (x4)	-12.146	9.428	-.846	-32.896 - 8.604
Hydrostatic height (x5)	.018	.006	.820	.013 - .005

Table 8. ANOVA\(^b\) Resolution

Sum of Squares	df	Mean Square	F	Sig.
Regression	36.498	5	7.300	.000
Residual	5.501	11	.500	
Total	41.999	16		

Table 9. Coefficients Resolution

Model	Coefficients	
B	Std. Error	
Natural unit volume weight (x1)	1.764	.275
Unit volume weight for dry air (x2)	39.078	40.641
Amount of the water absorption (x3)	24.817	20.108
Volume of voids (x4)	-12.146	9.428
Hydrostatic height (x5)	.018	.006

a. Predictors: (Constant), Natural unit volume weight (x1), Unit volume weight for dry air (x2), Amount of water absorption (x3), Volume of voids (x4), Hydrostatic height (x5).

b. Dependent Variable: Compressive strength (y).
3.3.1 Physical Properties and Regression Analysis According to the Hydrostatic Height

In order to predict the compressive strength of samples according to the physical properties and the hydrostatic height, multiple regression analysis was carried out. The results of the analysis can be seen below (Table 6. and Table 7.).

The model equation is shown below. According to this:

\[y = -53.94 + 1.764x_1 + 39.078x_2 + 24.817x_3 - 12.146x_4 + 0.018x_5 \]

In the equation;
- \(y \): Compressive strength (N/mm\(^2\))
- \(x_1 \): Natural unit volume weight,
- \(x_2 \): Dry unit volume weight,
- \(x_3 \): Percentage of water absorption
- \(x_4 \): Volume of voids
- \(x_5 \): Hydrostatic height

The relationship between the estimated and real compressive strength according to the physical properties [Natural unit volume weight (\(x_1\)), Dry unit volume weight (\(x_2\)), Percentage of water absorption (\(x_3\)), Space volume (\(x_4\)), Hydrostatic height (\(x_5\))] and compressive strength of core samples with multiple linear regression can be seen in Fig.2.

![Fig.2. The Relationship between Estimated Compressive Strength and Experimental Compressive Strength](image)

![Descriptive Statistics](image)

	Mean	Std. Deviation	N
Compressive strength	40.2500	1.67212	16
Hydrostatic height	117.56	74.49829	16

![Model Summary](image)

	R Square	Adjusted R Square	Std. Error of the Estimate	Change Statistics
R	.943	.888	.888	df1 = 14, Sig. F = .000

3.3.2 Regression Analysis According to Hydrostatic Height

Regression analysis was conducted and a prediction model was established to predict the compressive strength of core samples according to hydrostatic height. The model obtained from the regression analysis, which aims to predict the compressive strength related to hydrostatic height specifically, can be seen in Fig.3. By using this model, different core compressive strength values taken from different hydrostatic heights can be converted into core values taken from reference samples using the coefficients in Table 8.

![Fig.3. The Estimated Compressive Strength Value According to the Hydrostatic Height](image)
• The coefficient between the compressive strength and the natural unit volume weight and the compressive strength of hardened concrete can be useful.

Table 8. The Coefficients of Converting the Compressive Strength of the Core Samples According to Hydrostatic Height

Upper border distance (cm)	Coefficient for converting to reference values
0	1.00 (reference value)
15	0.98
26	0.97
37	0.97
50	0.96
59	0.95
70	0.95
100	0.93
103	0.93
114	0.93
136	0.92
147	0.91
150	0.91
158	0.91
180	0.90
191	0.89
200	0.89
202	0.89
215	0.88
227	0.87
235	0.87
239	0.87

4. Results and Discussion

In this study, the effect of hydrostatic height in hardened concrete on the compressive strength was investigated experimentally and statistically. The results are indicated below.

• The average compressive strength of the reference samples was 36.95 N/mm² and the compressive strength of other samples changed between 37.3 N/mm² and 43.0 N/mm².

• The compressive strength of the concrete increased when the hydrostatic height increased as well. This increase ratio according to the reference sample was 0.95% for 0.15 m, 4.22% for 0.5 m, 7.09% for 1.0 m, 9.95% for 2 m, 12.82% for 2.35 m, and 16.37% for 2.39 m.

• It was determined that the natural unit volume weight of core samples changed between 2.54 gr/cm³ and 2.90 gr/cm³, dry volume unit weight between 2.49 gr/cm³ and 2.54 gr/cm³, water saturated unit volume weight between 2.56 gr/cm³ and 2.66 gr/cm³, absorption amount between 2.65 and 4.49, and volume of voids between 6.18 cm³ and 10.21 cm³.

• The coefficient between the compressive strength and saturated unit volume weight of the core sample was -0.273 and measured at 0.01 for dry unit volume weight, 0.219 for saturated unit volume weight, -0.504 for water absorption amount, -0.491 for the volume of voids, and 0.916 for hydrostatic height. According to this finding, the relationship between hydrostatic height and compressive strength is quite strong, on the other hand, the relationship between compressive strength, water absorption amount, and volume of voids is nearly the same or at mid-level but negative. The relationship between dry unit volume weight and the compressive strength of the concrete is not significant.

• Core samples are generally taken from the buildings that would be reinforced to determine the compressive strength of the concrete. However, in this study, it was seen that the compressive strength of the core samples changed between 0.95% and 16.37%, according to hydrostatic height. For this reason, the compressive strength of the core samples can be used if they are converted into reference compressive strength according to the suggested coefficient below (Table 5.). In order to convert the compressive strength of the concrete into a reference value, the hydrostatic height must be measured while taking the core samples.

• Besides, for different hydrostatic height values not included in the table, the model equation obtained from regression analysis can be used to predict the compressive strength of the core samples related to hydrostatic height.

• The model equation obtained through multiple linear regression analysis can be used to predict the compressive strength related to the hydrostatic height and physical properties of the core samples (R²=0.932).

In the case of using a different concrete class, mixture design, and different types and amounts of plasticizers, investigating the effects of hydrostatic height in structural elements such as columns and reinforced walls on the compressive strength of hardened concrete can be useful.

References

1) Gardner, N.J., (1980) Pressure of concrete on formwork, ACI Mater J 77 (4), pp.279-286.
2) Rodin, S., (1952) Pressure of concrete on formwork, Proc Inst Civil Eng J (4), pp.709-746.
3) Andriamanantsilavo N.R. and Amziane S., (2004) Maturation of fresh cement pastes within 1- to 10-m-large formworks, Cem. Concr. Res. 34 (11), pp.2141-2152.
4) Assaad J. and Khayat K.H., (2004) Variations of lateral and pore water pressure of self-consolidating concrete at early age, ACI Mater. J. 101 (4), pp.310-317.
5) Assaad J., Khayat K.H. and Mesbah H., (2005) Assessment of thixotropy of flowable and self-consolidating concrete, ACI Mater. J. 100 (2), pp.99-107.
6) Khayat K.H., Assad, J. Mesbah H. and Lessard M., (2005) Effect of section width and casting rate on variations of formwork pressure of self-consolidating concrete, RILEM Mat. Struct. 38, pp.73-78.
7) Ts En 12504-1 (Nisan 2002) Karot Numuneler - Karot Alma, Muayene ve Basınc Dayanımının Tayini, Türk Standartlar Enstitüsü, Ankara, Türkiye.
8) Troxell G.E., Davis H.E. and Kelly, J.W. (1968) Composition and properties of concrete, McGraw-Hill Book Company, New York.
9) Neville A.M., (1995) Properties of concrete, Addison-Wesley, UK.
10) Mindess S. and Young J.F., (1981) Concrete, Prentice-Hall, Inc., New Jersey.
11) Arioglu E. and Arioglu N., (1998) Testing of concrete core samples and evaluations, Evrim Publisher, Istanbul [in Turkish].
12) Erdoğan T.Y., (2003) Concrete, METU Publisher, Ankara [in Turkish].
13) Sullivan P.J.E., (1991) Testing and evaluation of concrete strength in structures, ACI Mater J 88 (5) pp.530-535.
14) Haque M.N. and Al-Khaiat H., (1997) Carbonation of concrete structures in hot dry coastal regions, Cement Concr Compos 19 pp.123-129.
15) Miao B., Aitcin P.C., W.D. (1993) Mitchell, Cook and D., Influence of concrete strength on in situ properties of large columns, ACI Mater J 90 (3) pp.214-219.
16) Price W.F. and Hynes J.P., (1996) In-situ strength testing of high strength concrete, Mag Concr Res 48 (176) pp.189-197.
17) Khayat K.H., Manai K. and Trudel A., (1997) In-situ mechanical properties of wall elements cast using self-consolidating concrete, ACI Mater J 94 (6), pp.491-500. View Record in Scopus | Cited By in Scopus.
18) Bungey J.H., (1979) Determining concrete strength by using small diameter cores, Mag Concr Res 31 (107) pp.91-98.
19) Bartlett F.M. and MacGregor J.G., (1994) Effect of core diameter on concrete core strengths, ACI Mater J 91 (5) pp.460-470.
20) Bartlett F.M. and MacGregor J.G., (1994) Effect of core length-to-diameter ratio on concrete core strengths, ACI Mater J 91 (4) pp.339-348.
21) Bartlett F.M. and MacGregor J.G., (1993) Effect of moisture condition on concrete core strengths, ACI Mater J 91 (3) pp.227-236.
22) Bartlett, F.M., (1997) Precision of in-place concrete strengths predicted using core strength correction factors obtained by weighed regression analysis, Struct Saf 19 (4) pp.397-410.
23) Bartlett F.M. and MacGregor J.G., (1993) Effect of moisture condition on concrete core strengths, ACI Mater J 91 (3) pp.227-236.
24) BS 1881: Part 122 (July 2011) Testing concrete. Method for determination of water absorption, British Standards.
25) ASTM C42 (1.10.2016) Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete, American Society for Testing and Materials.