Brain evolution in Proboscidea (Mammalia, Afrotheria) across the Cenozoic

Julien Benoit, Lucas J. Legendre, Rodolphe Tabuc, Theodor Obada, Vladislav Mararescu & Paul Manger

As the largest and among the most behaviourally complex extant terrestrial mammals, proboscideans (elephants and their extinct relatives) are iconic representatives of the modern megafauna. The timing of the evolution of large brain size and above average encephalization quotient remains poorly understood due to the paucity of described endocranial casts. Here we created the most complete dataset on proboscidean endocranial capacity and analysed it using phylogenetic comparative methods and ancestral character states reconstruction using maximum likelihood. Our analyses support that, in general, brain size and body mass co-evolved in proboscideans across the Cenozoic; however, this pattern appears disrupted by two instances of specific increases in relative brain size in the late Oligocene and early Miocene. These increases in encephalization quotients seem to correspond to intervals of important climatic, environmental and faunal changes in Africa that may have positively selected for larger brain size or body mass.

In mammals, brains larger than 700 g have evolved infrequently, being found primarily in extant humans, cetaceans and elephants. The temporal/evolutionary history of human brain size and shape has been studied in detail, with the 700 g barrier on brain size evolution being surpassed with the appearance of Homo ergaster/erectus, approximately 1.8 million years ago. The suborder Cetacea has many species that also exhibit large brains, both absolute and relative to body mass. It has been established that large cetacean brains emerged with the evolution of the Neoceti approximately 32 million years ago. In contrast to humans and cetaceans, the temporal and evolutionary history of brain size in Proboscidea is poorly understood.

Elephants are the largest and among the most behaviourally complex terrestrial mammals. They are known for their extensive long-term memory, problem-solving abilities, behavioural adaptability, their ability to recognize themselves in a mirror, to manipulate their environment, and to manufacture tools with their trunk. On the one hand, given that the metabolic cost of brain tissue is high, and following the assumption that natural selection would not maintain a costly organ that brings no benefit, the presence of a large brain in elephants suggests there is some adaptive value, potentially related to their cognitive capacities. It has been proposed that evolutionary selective pressures requiring increased intelligence (e.g. cognitive and sensory processing, memory, behavioural flexibility) to cope with a variety of environmental variables (e.g. sociality, gregariousness, diet, habitat) has driven the evolution of large brains in both Primates and ungulates. This is based on the retrospective assignation of implied cognitive needs centred on the apparent behavioural flexibility and intelligence of extant species. Similarly, this retrospectively applied cognitive explanatory paradigm has been argued to apply to the evolution of a large brain in cetaceans, and elephants; however, alternative explanations of brain size evolution have been forwarded, focusing on features such as the structural laws of form linking body and brain mass over evolutionary time. Under this assumption, the elephantine brain is a typical mammalian brain that appears “to scale consistently with the scaling laws governing brain and body mass relationships across mammals”. In parallel, the assumption that complex cognition requires an increase in brain size has been heavily

1Evolutionary Studies Institute (ESI), University of the Witwatersrand, Braamfontein, 2050, Johannesburg, South Africa. 2Jackson School of Geosciences, The University of Texas at Austin, 2275 Speedway Stop C9000, Austin, TX, United States. 3Institut des Sciences de L’Evolution de Montpellier, Université Montpellier 2, Place Eugène Batillon, F-34095 Montpellier, cedex 05, Montpellier, France. 4Academy of Sciences of Moldova, Institute of Zoology, Chisinau, Moldova. 5School of Anatomical Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa. Correspondence and requests for materials should be addressed to J.B. (email: Julien.benoit@wits.ac.za)
criticized\(^1\), therefore whether the evolution of a large brain is an adaptive trait (e.g.)\(^10\), or simply accompanied the increase in body mass in proboscideans (e.g.)\(^1\), remains an open question.

While proboscidean evolution is well-documented and understood\(^25–30\), studies of the brains and endocasts of extinct proboscidean genera are limited\(^10,12,31–35\). These studies have indicated that brain size, both in absolute and relative terms, appears to have increased dramatically in Elephantiformes, sometime between the Oligocene and Pliocene, a poorly constrained interval of more than 30 million years\(^10\). Thus, the timing and rate of changes in brain size, and the taxa involved in the evolution of a large brain during proboscidean evolution remains unclear. Building on the database of Benoit\(^10\), by adding data from three key taxa, *Zygolophodon* (Mammut) *borsoni*, *Palaeomastodon beadnelli* and *Stegodon insignis*, we apply statistical and phylogenetic comparative methodology to changes in brain size in proboscideans throughout their evolutionary history. To address whether a large brain in proboscideans evolved as an adaptation or as a consequence of increased body mass, we examined the temporal scaling relationships of brain with body size and with associated environmental changes that have occurred during proboscidean evolutionary history.

Methods

Data collection. Data analysed (endocranial volume and body mass) are summarized in Table 1. Data for extant species of elephants are from Benoit *et al.*\(^36\) (note that this dataset contained two duplicated lines that are removed here) and those for extinct species are from Benoit\(^10\). The body masses of some extinct taxa were updated using the recent estimates of Larramendi and Palombo\(^32\) and Larramendi\(^37\) (see Table 1).

Endocast volume (cm\(^3\))	Brain size (g)	Body mass (g)	EQ	Manger
Elephas maximus	4550\(^b\)	4181	2267430\(^b\)	1.83
Elephas maximus	5220\(^b\)	4798	3216000\(^b\)	1.62
Elephas maximus	5000\(^b\)	4595	3450400\(^b\)	1.48
Elephas maximus	6075\(^b\)	5584	3190098\(^b\)	1.90
Loxodonta africana	5712\(^b\)	5250	6654000\(^b\)	1.05
Loxodonta africana	9000\(^b\)	8274	4380000\(^b\)	2.23
Loxodonta africana	4000\(^b\)	3676	5174400\(^b\)	0.88
Loxodonta africana	4050\(^b\)	3722	1793300\(^b\)	1.93
Loxodonta africana	4420\(^b\)	4062	3505000\(^b\)	1.29
Loxodonta africana	5300\(^b\)	4871	5550000\(^b\)	1.11
Loxodonta africana	4480\(^b\)	4117	2750000\(^b\)	1.56
Loxodonta africana	4210\(^b\)	3869	4000000\(^b\)	1.12
Loxodonta africana	4100\(^b\)	3788	2160000\(^b\)	1.70
Loxodonta africana	4000\(^b\)	3676	2537000\(^b\)	1.48
Palaeoloxodon falconeri	1800\(^b\)	1652	168000\(^b\)	4.81
Palaeoloxodon antiquus	5446\(^b\)	5005	3649880\(^b\)	1.54
Palaeoloxodon antiquus	9000\(^b\)	8274	11000000\(^b\)	1.14
Mammuthus primigenius	4687\(^b\)	4307	6000000\(^b\)	0.92
Mammuthus meridionalis	5828\(^b\)	5357	11000000\(^b\)	0.74
Mammuthus columbi	6232\(^b\)	5728	9800000\(^b\)	0.86
Mammut americanum	3862\(^a\)	3549	6384056\(^a\)	0.73
Mammut americanum	4630\(^a\)	4255	8000000\(^a\)	0.74
Stegodon insignis	3838	3527	2000000\(^a\)	1.69
Zygolophodon borsoni	5135	4718	16000000\(^a\)	0.50
Palaeomastodon beadnelli	771	706	2500000\(^a\)	0.29
Moeritherium lyoni	240\(^a\)	218	810000\(^a\)	0.20
Prorastomus sirenoides	87\(^b\)	90	98156\(^b\)	0.39
Seggeurius amourensis	5\(^c\)	5	2932\(^c\)	0.29

Table 1. Endocast, calculated brain size and Manger’s EQ\(^7\) for the proboscideans used in the analyses. The sirenian *Prorastomus* and the hyracoid *Seggeurius* were added for comparative purposes but were not included in the analyses. Sources of data: a 10, b 36, c 34, d 37.
views under the supervision of J.B. (Supplementary Fig. 1). The endocranial volume was estimated to 771 cm3
using double-graphic integration on the drawings31. Radinsky (ref.42, p. 84) performed comparisons with the
water displacement technique that validated the accuracy of double graphic integration and suggested that this
method should be preferred in case of incomplete preservation or when direct measurement is impossible, as
is the case here with NHMUK PV M 8464. As originally described, specimen MNHN-A952 is the cast of the
right side of the braincase of a Stegodon insignis skull assembled with the left endocast of a modern elephant
to enable Gervais48 to reconstruct a complete endocranial cast (Supplementary Fig. 2). The endocranial size of
Zygolophodon (Mammuth) borsoni is based on a latex endocranial cast of specimen MCFM-CLB-1 (Fossil Fauna
Complex Museum of Moldova, Chisinau) (Supplementary Fig. 3). To measure its volume, the endocast was digi-
tized using photogrammetry AgiSoft PhotoScan Professional Version 1.3.2), a method that has proven as accurate
as CT scanning43 and sometimes more accurate than laser-scanning44,45. The volume of the resulting mesh was
then measured using Avizo (FEI VSG, Hillsboro OR, USA). The resulting volume is 5133 cm3 (the Zygolophodon
endocast was also measured at 4910 cm3 using water displacement, but the digital measure was preferred as it less
prone to errors3). To measure the volume of the endocast of Stegodon insignis, the complete endocast was digitized
using photogrammetry, its right half isolated digitally, and the volume of the resulting mesh was measured using
the same software programs. The resulting volume, 1919 cm3, was then multiplied by two to obtain the volume of
a complete endocast. Body masses for these three taxa are from Larramendi37. The encephalization quotient (EQ)
used is that of Manger$, which is very similar to Eisenberg’s EQ46, although it excludes outliers such as cetaceans
and primates. Brain volumes used to calculate EQ are based on endocranial volumes corrected for meningeal
thickness using Benoît47 method. This is a necessary step as the thick meninges in proboscideans occupy some
14% of the endocranial cavity with non-nervous tissue on average48. The resulting brain volumes were then multi-
plied by 1.036, which represents the average specific gravity of brain tissue42,47.

Ancestral character state reconstruction. In order to analyse temporal patterns of endocranial volume,
body mass and EQ changes across proboscidean phylogenetic history, an ancestral character state reconstruction
using maximum likelihood (ACSRML) was performed using the function fastAnc in the R package ‘phytools’48
(excluding the sirenian Prorastomus and the hyracoid Seggeuris). The phylogeny used for the ACSRML was
assembled following the current consensus$^{28–30,41}$ (Supplementary Fig. 4). The resulting dates are consistent with
the recently published palaeogenomic study by Palkopoulou et al.49. There have been many discrepancies con-
cerning the phylogenetic placement of the genus Palaeoloxodon. Palaeogenomic studies have consistently placed
P. antiquus within the African elephant genus Loxodonta49,50, whereas studies of the mitochondrial DNA have
suggested that P. falconeri belongs to the Asian elephant genus Elephas51,52. Given the morphological support for
the validity of the genus Palaeoloxodon$^{53–55}$ and the burden of evidence in favour of a direct ancestor to descend-
ant relationships between P. antiquus and P. falconeri respectively56,57,58, we preferred to remain conservative and
preserve the monophyly of the genus Palaeoloxodon. Nevertheless, the branch leading to Palaeoloxodon is in an
unresolved position within Elephantida in order to reflect these phylogenetic inconsistencies (Supplementary
Fig. 4). Divergence ages and branch lengths were determined based on published literature39,57.

Phylogenetic regressions. In order to test for the presence of a functional relationship between brain mass
and body mass, linear regressions were performed on our datasets (excluding the sirenian Prorastomus and the
hyracoid Seggeuris). In such statistical analyses, there are several assumptions made about the data, such as
normality, homoscedasticity and independence of observations. When comparing traits of different species, inde-
pendence is considered potentially violated because of the evolutionary relationships of species to each other, and
thus phylogeny needs to be considered as part of the analysis34. All analyses were performed in R v. 3.5.3 (R Core
Team, 2019).

Phylogenetic generalized least squares (PGLS)59 are a very well-known and frequently used phylogenetic
comparative method (see Garamszegi60, for an extensive review), designed to consider the influence of evo-
lutionary relationships between species (i.e., phylogenetic signal sensu Blomberg and Garland)61 in a general-
ized linear model, using a regression of one or more continuous predictors over a response variable. After a
log-conversion to better approximate the allometric relationship between variables of interest62,63, endocranial
volume was regressed on body mass using a calibrated phylogeny of Proboscidea in the dataset (Supplementary
Material 5). Since the evolutionary model followed by this regression is not known, the
analysis was performed several times using different evolutionary models, and the goodness of fit of each model
determined from their AICc score, i.e., the Akaike Information Criterion corrected for finite sample size64. Using
the R package ‘AICcmodavg’65, AICc scores were compared for five different evolutionary models: Brownian
motion, i.e., a purely neutral model of evolution66; Ornstein-Uhlenbeck, i.e., a model with selective optima along
the branches67; lambda model, i.e. modified Brownian motion model with all branch lengths weighted using
Pagel’s lambda, a common estimator of phylogenetic signal68, here estimated from the dataset through maxi-
 mum likelihood; Early Burst, i.e., model with high initial evolutionary rates that decelerate through time after a
cadogenesis event69; and Ordinary Least Squares (i.e simple, non-phylogenetic least squares regression). The
model with the lowest AICc score was found to be the lambda model (AICc = −18.2, vs a range of −6.8–10.11
for other evolutionary models), with $\lambda = 0.90$, indicating a strong phylogenetic signal in the regression. Thus, the
lambda model was selected to perform further analyzes on the dataset. PGLS were performed using the function
gls in the R package ‘nlme’70, and the phylogenetic correlation structure corPagel (for the lambda model) specified
in the package ‘ape’71.

Normality and homoscedasticity of the residuals in the model were assessed using a Lilliefors test in the pack-
age ‘nortest’72, as well as graphically checked through plotting against corresponding fitted values, to conform to
the parametric assumptions of PGLS73. Residuals were found to be non-normal, and seven outliers were graphi-
cally detected and removed from the dataset (Supplementary Material 6). These outliers consist of Moeritherium

lyonsi, Palaeomastodon beadelli, Palaeoloxodon falconeri, one specimen of Palaeoloxodon antiquus as well as one specimen of Elephas maximus and two of Loxodonta africana. After pruning the corresponding branches in the tree, regression analyses were performed again, and the new residuals were found to be normal and homoscedastic (Fig. 1), allowing for a straightforward interpretation of the new results.

Results

According to the ACSRML, which was performed on the whole dataset (Fig. 2), the EQ in the last common ancestor (LCA) of *Moeritherium* and Elephantimorphes is 0.24. It increases slightly in the next node to reach 0.3 in the LCA of Elephantimorphes (*Palaeomastodon* and more derived proboscideans). The reconstructed brain and body masses at this node are about 1.8 times larger than in the previous node, while the EQ remains similar, which indicates that during the Paleogene, increases in brain mass were proportional to increases in body mass in basal proboscideans (Fig. 2). The reconstructed EQ doubles in the node corresponding to the common ancestor of Elephantimorpha that lived some 26 Ma ago in the late Oligocene, where it reaches a value of 0.73. At this node, the ACSRML indicates that body mass has increased by 2.3 times while brain mass has increased by 3.6 times compared to the previous node (Fig. 2). The reconstructed EQ then decreases slightly in the lineage leading to Mammuthus and *Mammut* (0.64 and 0.68 respectively) in which the reconstructed body mass exceeds 8 tons while brain mass gains only 1 kg (Fig. 2). In contrast, the EQ is nearly doubled again in the LCA of the Elephantidae that lived some 20 Ma ago in the Early Miocene, to reach 1.09. At this node, the reconstructed body mass decreases slightly while brain mass is reconstructed as being about 1.2 times larger than in the previous node (Fig. 2). Reconstructed ancestral EQs, and brain and body masses then remain relatively stable across Elephantimorpha phylogeny (Fig. 2). Reconstructed ancestral brain and body masses vary between 4 and 7 tons, while brain masses vary between 4.5 and 6.4 kg in Elephantidae (Fig. 2). Reconstructed variations in the EQ nevertheless appear mostly due to variations in body mass. In the Mammuthus clade, the elevated reconstructed body mass (9.1 tons) coincides with a decrease in the reconstructed EQ compared to the ancestral value in the LCA of Elephantimorpha to 0.89 (Fig. 2). In contrast, the increase in EQ to 1.68 in the Elephas clade is accompanied by a decrease in ancestral body mass to 3.2 tons (Fig. 2). The ancestral value for the Palaeoloxodon clade is surprisingly close to that for the LCA of Elephantidae (1.51).

The EQ varies around 1.47 ± 0.76 among all Elephantimorpha except in two taxa that display extreme EQ values. On one end of the spectrum is the small bodied and highly encephalized dwarf elephant of Sicily, *Palaeoloxodon falconeri*, which displays an EQ of 4.81 (Table 1). This species is well studied and its large EQ has been extensively discussed in the literature. **32,34**. Its body size is between one tenth and one hundredth that of its close relative, *Palaeoloxodon antiquus*, whereas its endocast volume is about one half to one quarter that of *P. antiquus* **32,34** (Table 1). On the opposite end of the spectrum is *Zygolophodon* (*Mammut*) borsoni which, with an estimated body mass of 16 tons **37**, is the heaviest species in the dataset. The *Zygolophodon* EQ of 0.50 also makes it the least encephalized of all Elephantimorpha, although the clade to which it belongs, the Mammutida, ancestrally display a low EQ value (0.64) similar to that reconstructed for the ancestral Elephantimorpha (Fig. 2).

The regression of brain mass over body mass corrected for phylogeny and excluding outliers (Fig. 1) shows that the relationship between the two variables is significant (p-value = 0.0004), but their correlation is relatively weak ($R^2 = 0.50$) and the slope of the regression line is low (0.20). This indicates that brain and body mass are significantly correlated, but this correlation and the effect of the brain and body mass on each other are moderate.

When outliers are included (Supplementary Material 6), the correlation between the two variables is slightly higher ($R^2 = 0.61$) and remains significant (P-value < 0.0001); however, since the assumptions of normality and homoscedasticity of the sample are not met for this analysis, this result is of dubious reliability **73**.
Discussion

The oldest known endocranial cast of a proboscidean belongs to *Moeritherium lyonsi* from the late Eocene Qasr el Sagha Formation of the Fayum, Egypt. The EQ of *Moeritherium* equals 0.2 (Table 1), which is an order of magnitude smaller than in any Elephantimorpha (Table 1). A comparably low EQ value is also found in *Palaeomastodon* (EQ = 0.29), which was contemporaneous with *Moeritherium*, and in the paenungulates *Seggeurius* (EQ = 0.29) and *Prorastomus* (EQ = 0.39), the basal-most hyracoid and sirenian respectively, and the closest relatives of proboscideans that lived during the early Eocene (~50 Ma) (Table 1). As a consequence, it is not surprising that a rather small EQ is reconstructed as primitive for Proboscidea and Elephantiformes by the ancestral character state analysis (Fig. 2). The relatively small brain cavity of *Phosphatherium*, a stem proboscidean from the early Eocene (~55 Ma), supports this assumption.

The analysis also suggests that brain mass evolved proportionally to body size in non-elephantimorph proboscideans ('Plesielephantiformes') and among more derived elephantids (Fig. 2), which is supported by the significant correlation between brain and body mass in the dataset (p-value = 0.0004). This would support the idea that brain mass evolved as a 'simple passenger' of body mass in these two groups, as hypothesized by Manger. Given the relationship between brain and body mass variation, it can be predicted that non-elephantimorph taxa with body masses already approaching or exceeding two tons, such as *Barytherium* and the Deinotheriidae, would have had an absolutely larger brain than the basal-most proboscideans. This assumption might be addressed in the future, when more data on the endocasts of *Barytherium* and the Deinotheriidae becomes available.

In contrast, the ACSRML suggests that brain mass increases much faster than body mass in Elephantimorpha, resulting in two pulses of increase in the EQ: (i) the EQ doubles in the LCA of Elephantimorpha and (ii) it almost doubles again in the LCA of Elephantoidea (Fig. 2). Subsequently, the EQ essentially remains the same among Elephantoidea, including modern proboscideans (Fig. 2). According to the ACSRML (Fig. 2), brain mass began increasing in the basal-most elephantimorphs, the Mammutida (*M. americanum* and *Z. borsoni*), where the EQ is about twice that of *Moeritherium* and *Palaeomastodon* (Table 1). A brain mass equivalent to that of most modern elephants is achieved in the LCA of the Elephantoidea (Fig. 2). These two pulses suggest that, at least in the LCA of Elephantimorpha and Elephantoidea, increases in brain mass were decoupled from increases in body mass, and that an increase in EQ was positively selected for.

What could have driven such increases in EQ? According to both the fossil record and molecular studies, the LCA of Elephantimorpha lived some 26 million years ago in the late Oligocene, and the LCA of the
Elephantimorpha lived around 20 million years ago in the early Miocene\(^1\). These time points are contemporaneous with two periods of increased aridity on the African continent, accompanied by glaciations, arrival of invasive faunal elements from Eurasia, dispersal of proboscideans out of Africa and the spread of C\(_4\) plants\(^2^8\)–\(^3^1\) (Fig. 2). Gregariousness\(^3\), greater behavioural flexibility\(^3\) and the ability to produce complex long distance, infrasonic calls\(^1^2\)–\(^1^5\), have been documented in Miocene elephantiforms and may have played a role in increasing the fitness of relatively larger brained individuals in the context of ecological changes\(^1^0\)–\(^1^4\). An enhanced long term memory may have facilitated the recalling of the location of distant water holes during increasingly frequent droughts\(^1^4\), though evidence from the fossil record is lacking\(^1^5\). A shift in proboscidean diets (as a result of the advent of the conveyor-belt type of dental replacement and increasing hypsodonty)\(^7\)–\(^8\) seems an unlikely driver for the evolution of a higher EQ because (i) proboscideans remained primarily browsers until elephants became grazers some 7 million years ago\(^1^6\),\(^8^9\),\(^9^0\), and (ii) no undisputable correlation is evident between diet and brain size in ungulates\(^1^4\),\(^1^5\).

Alternatively, given that brain and body size variations appear significantly correlated in proboscideans (Fig. 1), it is possible that body mass, not brain mass, could have been the main trait under selective pressure during these two time intervals. Positive selection for larger body size could have provided early elephantimorphs with protection against the novel invasive predators and competitors from Eurasia, and large herbivores are known to be less sensitive to droughts and increased seasonality as they can store more fat and water, and can subsist on lower quality food (e.g. grasslands) due to their larger digestive tract and lower metabolic rate\(^1^3\),\(^3^1\),\(^9^2\). In this respect, it is noteworthy that other ‘ungulate’ taxa contemporaneously show an overall increase of their brain and body mass in the early Neogene\(^3^3\),\(^3^4\). This would make the increase in EQ merely a correlate of the increase of body mass, as already hypothesized by Manger et al.\(^1\). However, brain mass increases faster than body mass in this portion of the tree, and the latter even decreases slightly in the LCA of Elephantimorpha compared to the LCA of Elephantidae, which cautions against this interpretation. An enhanced long term memory would likely be an essential driver of a larger brain size, independently of other ‘Plesielephantiformes’ which may have acted as a main driver of EQ increase.

Conclusion

Overall, there does not seem to be one single hypothesis accounting for the complete evolution of the brain in proboscideans. Part of the evolution of a larger absolute brain mass may be explained by the co-evolution of brain and body mass (in ‘plesielephantiforms’ and elephants) and part of this process seems to better explained by potential selective pressures (in the LCAs of Elephantimorpha and Elephantidae), perhaps as a result of climatic and environmental changes in Africa, as well as with dispersal events. Despite this, brain size evolution remains significantly correlated to body size in proboscideans, which cautions against an explanatory scenario involving intelligence alone as the main focus of natural selection. The precise timing of the two identified pulsed increases in relative brain size remains poorly temporally constrained due to the small sample size that makes it difficult to obtain reasonable phylogenetic resolution. Considerable effort will have to be put into collecting data for key taxa that will fill the temporal voids in the current data set. The inclusion of Barytheriidae and Deinotheriidae - as some of the closest relatives to Elephantiformes and the earliest large proboscideans- and investigation of whether they evolved a larger brain independently of other ‘Plesielephantiformes’ will prove crucial in this respect.

Data Availability

All the data necessary to reproduce this research are provided with the manuscript.

References

1. Manger, P. R., Specter, M. A. & Patzke, N. The Evolutions of Large Brain Size in Mammals: The ‘Over-700-Gram Club Quartet’. *Brain Behav. Evol.* 82, 68–78 (2013).
2. Holloway, R. L. On the Making of Endocasts: The New and the Old in Paleoneurology in Digital Endocasts (eds Bruner, E., Ogihara, N. & Tanabe, H.), 1–8. (Springer Japan KK, 2018).
3. Carlson, K. J. et al. The Endocast of MH1, *Australopithecus sediba*. *Science* 333, 1402–1407 (2011).
4. Zollikofer, C. P. E. & De Lein, M. S. P. Pandorà’s growing box: Inferring the evolution and development of hominin brains from *endocasts*. *Evol. Anthropol.* 22, 20–33 (2013).
5. Beaudet, A. et al. The endocast of StW 573 (‘Little Foot’) and hominin brain evolution. *J Hum Evol* 126, 112–123 (2019).
6. Marino, L. A Comparison of Encephalization between Odontocete Cetaceans and Anthropoid Primates. *Brain Behav. Evol.* 51, 230–238 (1998).
7. Manger, P. R. An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. *Biol. Rev.* 81, 293 (2006).
8. Marino, L., McShea, D. W. & Uhen, M. D. Origin and evolution of large brains in toothed whales. *Anat. Rec.* 281A, 1247–1255 (2004).
9. Montgomery, S. H. et al. The evolutionary history of Cetacean brain and body size. *Evol.* 67, 3339–3353 (2013).
10. Benoit, J. A new method of estimating brain mass through cranial capacity in extinct proboscideans to account for the non-neural tissues surrounding their brain. *J Hum Evol* 112, 59–78 (2019).
11. Hart, B. L., Hart, L. A. & Pinter-Wollman, N. Large brains and cognition: Where do elephants fit in? *Neurosci. Biobehav. Rev.* 32, 86–98 (2007).
12. Shoshan, J., Kupsky, W. J. & Marchant, G. H. Elephant brain. *Brain Res. Bull.* 70, 124–157 (2006).
13. Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis: The brain and the digestive system in human and primate evolution. *Curr. Anthropol.* 36, 199–221 (1995).
14. Shultz, S. & Dunbar, R. I. M. Both social and ecological factors predict ungulate brain size. *Proc. Roy. Soc. B* 273, 207–215 (2006).
15. Pérez-Barbería, E. J. & Gordon, I. J. Gregariousness increases brain size in ungulates. *Oecologia* 145, 41–52 (2005).
16. DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not sociality. *Nat. Ecol. Evol.* 1(5), 112 (2017).
17. Powell, L. E., Idler, K. & Barton, R. A. Re-evaluating the link between brain size and behavioural ecology in primates. *Proc. Roy. Soc. B* 284, 20171765 (2017).
18. Marino, L. et al. A claim in search of evidence: reply to Manger’s thermogenesis hypothesis of cetacean brain structure. *Biol. Rev. Camb. Philos. Soc.* 83, 417–440 (2008).
19. Fox, K. C. R., Mathukrishna, M. & Shultz, S. The social and cultural roots of whale and dolphin brains. *Nat. Ecol. Evol.* 1, 1699–1705 (2017).
55. Palombo, M. R. Paedomorphic features and allometric growth in the skull of Elephas falconeri from Spinagallo (Middle Pleistocene, 57. Rohland, N.
52. Poulakakis, N. Theodorou, G. E., Zouros, E. & Mylonas, M. Molecular Phylogeny of the Extinct Pleistocene Dwarf Elephant
60. Garamszegi, L. Z. & Mundry, R. Multimodel-inference in comparative analyses in Modern Phylogenetic Comparative Methods and
62. Mascaro, J., Litton, C. M., Hughes, R. F., Uowolo, A. & Schnitzer, S. A. Is logarithmic transformation necessary in allometry? Ten,
59. Grafen, A. The phylogenetic regression.
65. Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.1-1 (2017).
67. Butler, M. A. & King, A. A. Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution.
69. Harmon, L. J. et al. Early bursts of body size and shape evolution are rare in comparative data. *Evol.* 64(8), 2385–2396 (2010).
70. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R. Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-137 (2018).
71. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R language. *Bioinform.* 20, 289–290 (2004).
72. Gross, J. & Ligges, U. nortest: Tests for Normality. R package version 1.0-3 (2015).
73. Mundri, R. Statistical Issues and Assumptions of Phylogenetic Generalized Least Squares in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (eds Garamszegi, L.), 131–153 (Springer Berlin Heidelberg, 2014).
74. Gheerbrant, E. et al. Nouvelles données sur *Phosphatherium esculelli* (Mammalia, Proboscidea) de l’Éocène inférieur du Maroc, apports à la phylogénie des Proboscidea et des ongulés lophodontes. *Geodiversitas* 27, 239–333 (2005).
75. Christiansen, P. Body size in proboscideans, with notes on elephant metabolism. *Zool. J. Linn. Soc.* 140, 523–549 (2004).
76. Evans, A. R. et al. The maximum rate of mammal evolution. *Proc. Nat. Acad. Sci.* 109, 4187–4190 (2012).
77. Shoshani, J. et al. A proboscidean from the late Oligocene of Eritrea, a ‘missing link’ between early Elephantiformes and Elephasntimorpha, and biogeographic implications. *Proc. Nat. Acad. Sci.* 103, 17296–17301 (2006).
78. Kappelman, J. et al. Oligocene mammals from Ethiopia and faunal exchange between Afro-Arabia and Eurasia. *Nature* 426, 549–552 (2003).
79. Antoine, P.-O. et al. First record of Paleogene Elephantoidea (Mammalia, Proboscidea) from the Bugti Hills of Pakistan. *J. Vertbr. Paleontol.* 23, 977–980 (2003).
80. Feakins, S. J. & Demenocal, P. B. Global and African Regional Climate during the Cenozoic in Cenozoic Mammals of Africa (eds Werdelin, L., Sanders, J. S.), 45–56. (University of California Press, 2010).
81. Jacobs, B. E., Pan, A. D. & Scotive, C. R. A Review of the Cenozoic Vegetation History of Africa in Cenozoic Mammals of Africa (eds Werdelin, L. & Sanders, J. S.), 57–72. (University of California Press, 2010).
82. Sen, S. Dispersal of African mammals in Eurasia during the Cenozoic: Ways and whys. *Geobios* 46, 159–172 (2013).
83. Tabuce, R. & Marivaux, L. Mammalian interchanges between Africa and Eurasia: an analysis of temporal constraints on plausible anthropoid dispersals during the Paleogene. *Anthropol. Sci.* 113, 27–32 (2005).
84. Zachos, J. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. *Science* 292, 686–693 (2001).
85. Bibi, F. et al. Early evidence for complex social structure in Proboscidea from a late Miocene trackway site in the United Arab Emirates. *Biol. Let.* 8, 670–673 (2012).
86. Lister, A. M. The role of behaviour in adaptive morphological evolution of African proboscideans. *Nature* 500, 331–334 (2013).
87. O’Connell-Rodwell, C. E. Keeping an ‘ear’ to the ground: seismic communication in elephants. *Biol. Rev.* 82, 670–673 (2012).
88. Benoit, J., Meringue, S. & Tabuce, R. Homoplasy in the ear region of Tethytheria and the systematic position of Embrithopoda (Mammalia, Afrotheria). *Geobios* 46, 357–370 (2013).
89. Cherling, T. E., Harris, J. M. & Leaky, M. G. Browzing and Grazing in Elephants: The Isotope Record of Modern and Fossil Proboscideans. *Oecologia* 120, 364–374 (1999).
90. Cherling, T. E., Harris, J. M. & Leaky, M. G. Environmentally Driven Dietary Adaptations in African Mammals in A History of Atmospheric CO2 and its Effects on Plants, Animals, and Ecosystems. Ecological Studies (eds Ehleringer, J. R. et al.), 258–272 (Springer, New York, 2005).
91. Peters, R. H. *The Ecological Implications of Body Size* (Cambridge University Press, 1983).
92. Sander, P. M. et al. Biology of the sauropod dinosaurs: the evolution of gigantism. *Biol. Rev.* 86, 117–155 (2010).
93. Radinsky, L. Evolution of Brain Size in Carnivores and Ungulates. *Am. Nat.* 112(987), 815–831 (1978).
94. Huang, S. et al. Mammal body size evolution in North America and Europe over 20 Myr: similar trends generated by different processes. *Proc. Roy. Soc. B* 284, 20162361 (2017).

Acknowledgements
The authors would like to thank S. Vrard, C. Bibal, M.R. Palombo, P. Tassy, P. Brewer, C. Argot, M. Cazeneuve, C. Hendriks; and to the financial support of the DST-NRF Centre of Excellence in Palaeosciences, the Claude Leon Foundation and the des Treilles Foundation (Paris): “La Fondation des Treilles, créée par Anne Gruner Schlumberger, a notamment pour vocation d’ouvrir et de nourrir le dialogue entre les sciences et les arts afin de faire progresser la création et la recherche contemporaines. Elle accueille également des chercheurs et des écrivains dans le domaine des Treilles (Var, France). www.les treilles.com”.

Author Contributions
All authors had full access to all the data in the study and gave final approval for publication. Study concept and design: J.B. and P.M. Acquisition of data: J.B., R.T., T.O. and V.M. Analysis and interpretation of data: J.B. and L.J.L. Drafting of the manuscript: J.B., L.J.L., R.T. and P.M. Critical revision of the manuscript for important intellectual content: T.O., R.T. and P.M. Obtained funding: J.B.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-45888-4.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019