The Efficacy and Safety of Ischemic Stroke Therapies: An Umbrella Review

Yongbiao Li¹, Ruiyi Cui², Fangcheng Fan¹, Yangyang Lu¹, Yangwen Ai¹, Hua Liu¹, Shaobao Liu¹, Yang Du¹, Zhiping Qin¹, Wenjing Sun¹, Qianqian Yu³, Qingshan Liu¹* and Yong Cheng¹,4*

¹Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China, ²Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China, ³The People’s Hospital of Xin Tai City (Nephropathy Department), Beijing, China, ⁴Institute of National Security, Minzu University of China, Beijing, China

Background: Ischemic stroke is a leading cause of morbidity and mortality in neurological diseases. Numerous studies have evaluated the efficacy and safety of ischemic stroke therapies, but clinical data were largely inconsistent. Therefore, it is necessary to summarize and analyze the published clinical research data in the field.

Objective: We aimed to perform an umbrella review to evaluate the efficacy and safety of ischemic stroke therapies.

Methods: We conducted a search for meta-analyses and systematic reviews on PubMed, the Cochrane Library, and the Web of Science to address this issue. We examined neurological function deficit and cognitive function scores, quality of life, and activities of daily living as efficacy endpoints and the incidence of adverse events as safety profiles.

Results: Forty-three eligible studies including 377 studies were included in the umbrella review. The results showed that thrombolytic therapy (tPA; alteplase, tenecteplase, and desmoteplase), mechanical thrombectomy (MTE), edaravone with tPA, stem cell-based therapies, stent retrievers, acupuncture with Western medicines, autologous bone marrow stromal cells, antiplatelet agents (aspirin, clopidogrel, and tirofiban), statins, and Western medicines with blood-activating and stasis-dispelling herbs (NaoShuanTong capsule, Ginkgo biloba, Tongqiao Huoxue Decoction, Xuesaitong injection) can improve the neurological deficits and activities of daily living, and the adverse effects were mild for the treatment of ischemic stroke. Moreover, ligustrazine, safflower yellow, statins, albumin, colchicine, MLC601, salvianolic acids, and DL-3-n-butylphthalide showed serious adverse events, intracranial hemorrhage, or mortality in ischemic stroke patients.

Conclusion: Our study demonstrated that tPA, edaravone and tPA, tPA and MTE, acupuncture and Western medicines, and blood-activating and stasis-dispelling herbs with Western medicines are the optimum neurological function and activities of daily living medication for patients with ischemic stroke.

Systematic Review Registration: https://inplasy.com/, identifier [INPLASY202250145].

Keywords: ischemic stroke, clinical trial, systematic review, umbrella review, neurological functional...
INTRODUCTION

Ischemic stroke is a major cause of death and disability, so prevention and effective treatment of stroke are of utmost importance in China and the West. The World Health Organization has suggested that an incidence of stroke occurs once every 5 s worldwide, approximately one-third of strokes are fatal, and another third leave survivors with permanent disability (Donkor, 2018). Moreover, surviving stroke patients impose a heavy medical burden on families and communities (Go et al., 2014). However, little is known about the efficacy and safety of treatments of ischemic stroke in the hyper-acute (0–24 h) and acute phases (1–7 days) and recovery period (>7 days) post-stroke in humans (Marzolini et al., 2019). The key challenge in the treatment of stroke is to identify the most effective way to implement the efficacious interventions currently available.

Some evidence supports national guidelines recommending the use of recombinant tissue plasminogen activator (tPA) thrombolysis for the treatment of hyperacute ischemic stroke, which can significantly improve neurological deficits (Li et al., 2017; Zhou et al., 2020). In addition, the guidelines also recommend antithrombotic (including antiplatelet and anticoagulant therapy), neuroprotection, traditional Chinese medicine, statins, and control of high-risk factors for secondary prevention of ischemic stroke (Practice, 2021). Additionally, as a bradykinin B1 and B2 receptor agonist, HUK provides functional benefits (Patel and McMullen, 2017). Furthermore, other neuroprotective drugs are supported by comprehensive clinical reports that demonstrate their efficacy and safety in improving cognitive impairment or other major domains (Practice, 2021).

Attempts to many systematic reviews and meta-analyses have been conducted to analyze the different stroke treatments. These studies, however, did not provide comprehensive appraisals of stroke therapies, and some results are still conflicting (Wu et al., 2007). A review of the latest literature, having removed repeated studies and research involving complications, followed by a meta-analysis to derive at pooled prevalence, was needed. Therefore, the present study aimed to perform an umbrella review of the systematic reviews and meta-analyses of stroke therapies through a comprehensive and updated literature search and to reach a definitive conclusion by integrating all available meta-analyses to identify which of the commercially available treatments for ischemic stroke patients are efficacious and safe.

MATERIALS AND METHODS

Our study was performed in accordance with the standard guidelines of Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) (Moher et al., 2009). The protocol for this review was prospectively registered at INPLASY PROTOCOL (INPLASY202250145).

Search Strategy and Quality Assessment

A systematic search of published peer-reviewed English language literature was conducted using PubMed, Web of Science, and the Cochrane Library until March 2022. The database search terms were as follows: (Ischemic stroke) and (systematic review or meta-analysis) and clinical trial. We included meta-analyses and systematic reviews that determined the efficacy and safety of treatments in patients with stroke. Inclusion criteria were: 1) written in English; 2) published systematic review or meta-analyses; 3) including any evaluation of clinical assessment scales for stroke; 4) published in peer-reviewed journals. Studies were excluded if 1) unpublished studies; 2) no necessary sample data; 3) patients were diagnosed with other strokes; 4) the study reported insufficient details and other outcomes; and 5) the study presented the risk of bias/study limitations.

The AMSTAR2 tool was used to evaluate systematic reviews and meta-analyses (Shea et al., 2007; De Santis et al., 2021). The methodological quality of the studies was determined by the percentage of AMSTAR2 score. The percentage of AMSTAR2 score was classified into 0–33%, 34–66%, and 67%–100% indicating low quality, medium quality, and high quality, respectively.

We searched for related articles using keywords and filtering titles, and two investigators screened the literature independently. Articles were downloaded and the abstracts screened using inclusion criteria, deleting any irrelevant or repetitive articles. Thereafter, we manually searched the reference lists of the chosen studies for any other relevant studies not found in our initial search. Finally, a full-text search was performed to extract and then analyze the data from articles.

Data Extraction

According to the following criteria, three investigators (Yongbiao Li, Ruyi Cui, and Fangcheng Fan.) independently selected those trials that met the inclusion criteria. The main characteristics of the selected study were extracted in a table including the year of publication, study design, number of studies, and regimens for the treatment. We included results evaluating the efficacy of drugs in patients with at least one of the clinical assessment scales: 1) the incidence of intracranial hemorrhage (sICH); 2) the primary outcomes included: global neurological deficit scores such as the National Institutes of Health Stroke Scale (NIHSS), stroke scale ≤1 and the Neurological Function Deficit Scores (NFDS); 3) all-cause mortality; 4) dependence assessed by Barthel Index (BI) scores ≥95; 5) modified Rankin Scale score of 0–1 or return to baseline (mRS); 6) clinical effect, defined according to the nationally approved criteria, is divided into essentially recovered, significant improvement, improvement, no change, deterioration, and death (the first three categories are judged to be effective); 7) the secondary outcomes included the following: cognitive function scoring; related hemorheology and lipid metabolism outcomes; quality of life; and 8) incidence of adverse events (AE). The selection of assessments was extracted on study size, sample size, mean difference (Fixed, 95% CI) or odds ratio (Fixed, 95% CI), and heterogeneity (I^2). A percentage of 0–25% was classified as mild, 26–50%, as moderate, and 51–75%, as significant between-study heterogeneity. If $I^2 > 50\%$, a random-effects model was used for the analysis, or the data were analyzed on the fixed-effects model (Wang et al., 2016).
Statistical Analysis

The sample size and mean difference were used to calculate the four clinical assessment scales. NIHSS/mRS/BI scores were used to evaluate neurological status, and behavioral symptoms in patients were calculated by NFDS. We focused on the clinical effect is divided into essentially recovered, significant improvement, no change, deterioration; cognitive function scoring; quality of life as activities of daily living. All data analyses were performed by GraphPad Prism 5.0 software. The results were expressed as OR ± SD (standard deviation). The adverse events have assessed the incidence of adverse events, and the OR was calculated. Therefore, mean difference or odds ratio with 95% CI and p values were used to assess the efficacy and safety of the study medications.

RESULTS

Literature search and study selection through the initial search, we retrieved a total of 3,808 records from PubMed, Web of Science, and Cochrane Library. After examining the titles and abstracts, 250 studies were selected for further full-text scrutiny. In all, 207 studies were excluded due to the following reasons: sample overlap with other studies (n = 80), no necessary sample data (n = 45), other outcomes (n = 27), other stroke (n = 20), other language (n = 17), no placebo group (n = 11), and mild cognitive impairment (n = 7).

As shown in Table 1, a total of 377 clinical trials were included, with 43 drug therapies in the treatment groups. All studies were randomized controlled clinical trials, and the treatment duration ranged from 1 to 72 weeks. In total, 24 meta-analyses included were of high quality according to AMSTAR2 score, 12 meta-analyses included were of middle quality according to AMSTAR2 score, and seven meta-analyses included were of

FIGURE 1 | Searching and screening process: literature search and study selection

Through the initial search, we retrieved a total of 3,808 records from PubMed, Web of Science, and Cochrane Library. After examining the titles and abstracts, 250 studies were selected for further full-text scrutiny. In all, 207 studies were excluded due to the following reasons: sample overlap with other studies (n = 80), no necessary sample data (n = 45), other outcomes (n = 27), other stroke (n = 20), other language (n = 17), no placebo group (n = 11), and mild cognitive impairment (n = 7).
Study	Condition	Studies included	Study duration (median, range)	Daily dose (median, range)	Outcome	AMSTAR2 score	Study quality
Ni et al. (2013)	Ligustrazine versus placebo	3	14w (2w–48w)	240 mg/day	1. Effect and 2. sICH	5/11	low
Xin et al. (2020)	Heparin versus Placebo	9	12w	<40 mg/day	1. mRS, 2. NIHSS, 3. sICH, 4. DOS, and 5. AE	7/11	middle
Shang et al. (2019)	MTE versus placebo	7	12w	NA	1. mRS and 2. sICH	8/11	high
Kaesmacher et al. (2019)	tPA plus MTE versus placebo	12	12w	NA	1. mRS and 2. sICH	9/11	high
Li et al. (2014)	Acupuncture plus XM versus placebo	17	12W	NA	1. Effect	8/11	high
Liu et al. (2021)	Nimodipine versus placebo	8	18w (12w–24w)	NA	1. Effect, and 2. NFDs	10/11	high
Blann et al. (2015)	Aspirin plus clopidogrel versus placebo	24	12w	60 mg/day	1. Effect and 2. sICH	9/11	high
Emberson et al. (2014)	tPA versus placebo	12	3 h (0–6 h)	<0.85 mg/kg/day	1. Effect, 2. sICH, and 3. NIHSS	10/11	high
Peng et al. (2014)	XNJ versus placebo	13	4w	45 ml (30–60 ml/day)	1. Effect, 2. NFDs, and 3. AE	6/11	middle
Zhang et al. (2019)	NIST versus placebo	13	12w	50 mg/day	1. Effect, 2. NFDs, 3. BI, and 4. mRS	10/11	high
Yuan et al. (2008)	Chuanxiong versus Placebo	3	24w (1w–48w)	120 mg (90–160 mg/day)	1. NFDs and 2. AE	10/11	high
Fu et al. (2013)	XMTM versus placebo	8	12w (4w–24w)	NA	1. NIHSS, 2. mRS, and 3. Effect	5/11	low
Fan et al. (2014)	Safflower yellow versus placebo	7	2w	50 mg/day	1. Effect, 2. NFDs, and 3. AE	5/11	low
Lu et al. (2014)	Rhubarb versus placebo	12	2w (1w–4w)	NA	1. Effect, 2. NFDs, 3. BI, 4. NIHSS, and 5. AE	6/11	middle
Xu et al. (2015)	WD versus placebo	13	2w (2w–4w)	NA	1. Effect, 2. sICH, and 3. NFDs	4/11	low
Cao and Li. (2015)	MSCs versus placebo	5	3w (1w–6w)	5 × 10^7-2.6 × 10^8 cell	1. NIHSS, 2. mRS, 3. BI, and 4. AE	6/11	middle
Marmagkiolis et al. (2015)	stent retrievers versus placebo	5	12w	NA	1. mRS, 2. sICH, and 3. AE	8/11	high
Zheng et al. (2017)	Puerarin versus placebo	16	1w (1w–2w)	300 mg (100–500 mg/day)	1. Effect and 2. NFDs	6/11	middle
Li et al. (2017)	Alpha1 versus placebo	6	6 h (3–9 h)	90 mg/kg/day	1. Effect, 2. sICH, and 3. AE	8/11	high
Zhang et al. (2017)	Cerebrosynin versus placebo	7	12w (1w–12w)	50 ml/day	1. mRS, 2. BI, and 3. AE	9/11	high
Chong et al. (2020)	Ginkgo biloba versus placebo	12	12w (1w–12w)	100 mg (40–160 mg)/day	1. NIHSS, 2. NFDs, 3. sICH, and 4. AE	9/11	high
Li et al. (2020)	Stem cell-based versus placebo	9	12w (1w–12w)	5 × 10^6-2.97 × 10^8 cell	1. NIHSS, 2. mRS, 3. BI, and 4. AE	9/11	high
Zhou et al. (2020)	tirofiban versus placebo	6	18w (12w–24w)	(0.1–0.4 ug/kg/day)	1. Effect, 2. sICH, and 3. AE	5/11	low
Gao et al. (2021)	BHD versus placebo	11	16w (8w–24w)	NA	1. Effect, 2. NIHSS, and 3. AE	9/11	high
Huang and Xiao. (2021)	Albumin versus placebo	4	15w (2w–48w)	1.3 mg (0.6–2 mg/kg/day)	1. Effect	9/11	high
Liu et al. (2022)	DZSM versus placebo	28	7w (1w–13w)	NA	1. mRS, 2. NFDs, 3. BI, and 4. NIHSS	10/11	high
Feng et al. (2021)	XST plus XM versus placebo	12	2w (2w–4w)	NA	1. Effect and 2. NIHSS	5/11	middle
Lee et al. (2010)	Intra-A versus placebo	5	12w	NA	1. mRS, 2. BI, and 3. NIHSS	5/11	middle
Zhou et al. (2022)	TQHX plus XM versus placebo	12	4w	NA	1. Effect and 2. NFDs	9/11	high
Hu et al. (2021)	Eedarovone plus rt-PA versus placebo	17	2w (1w–4w)	60 mg/day	1. sICH and 2. NIHSS	5/11	middle
Hong and Lee. (2015)	Statins versus placebo	18	6w (1w–12w)	8 mg/kg/day	1. Effect and 2. NFDs	9/11	high

(Continued on following page)
TABLE 1 | (Continued) Description and AMSTAR2 scores of included studies.

Study	Condition	Studies included	Study duration (median, range)	Daily dose (median, range)	Outcome	AMSTAR2 score	Study quality
Liu et al. (2021)	ZL versus placebo	7	2w	1.4 mg (1.2–1.6 g/day)	1. mRS, 2. BI, and 3. NIHSS	7/11	middle
Xin et al. (2020)	salvianolic acids versus placebo	12	2w (1w–4w)	200 mg (100–300 mg/day)	1. Effect, 2. NIHSS, 3. mRS, and 4. BI	4/11	low
Katsanos et al. (2020)	Colchicine versus placebo	4	74w (4w–144w)	0.5 mg/day	1. AE	3/11	low
Liu et al. (2019)	ANP versus placebo	18	2w	3 g/day	1. Effect, 2. NIHSS, and 3. NFDs	9/11	high
Xu et al. (2015)	NBP versus placebo	12	6w (1w–12w)	100 mg/day	1. BI, 2. NIHSS, and 3. AE	9/11	high
Wang et al. (2021)	Pntsp versus placebo	20	6w (2w–10w)	470 mg (140–800 mg/day)	1. NIHSS, 2. mRS, 3. BI, and 4. AE	10/11	high
Huang et al. (2020)	HUK versus placebo	16	3 h (0–6 h)	0.15 PNA	1. NIHSS, 2. NFDs, and 3. AE	7/11	middle
Yang et al. (2015)	Maluonung versus Placebo	21	12w	204 mg (8–400 mg/day)	1. Effect, 2. NFDs, 3. BI, 4. NIHSS, and 5. AE	9/11	high
Ni et al. (2020)	Cinepazide maleate versus placebo	4	7w (2w–12w)	320 mg/day	1. mRS, 2. BI, and 3. AE	7/11	middle
Thelengana et al. (2019)	TNK versus placebo	4	3 h (0–6 h)	0.15 mg (0.1–0.2 mg/kg/day)	1. Effect, 2. NFDs, 3. BI, 4. NIHSS, and 5. AE	9/12	high
Shi et al. (2014)	Cilostazol versus placebo	6	30w (1w–60w)	690 mg (80–1300 mg/day)	1. sICH and 2. AE	10/11	high
Siddiqui et al. (2013)	MLC601 versus placebo	2	13w (2w–24w)	405 mg (10–800 mg/day)	1. NFDs and 2. BI	5/11	low

FIGURE 2 | Total clinical efficacy was used to evaluate the effect of drug therapy on ischemic stroke. In this study, the possible order of efficacy of the drugs was TOHX plus XM, MTE plus stent retrievers, MTE plus IPA, acupuncture plus XM, XST plus XM, edaravone plus IPA, Ginkgo biloba, stem cell-based therapy, XNJ plus XM, MTE, NBP plus XM, stent retrievers, intra-A, IPA, MSCs, Alpha1, TNK, Pntsp, statins, HUK, heparin, salvianolic acids, ligustrazine, rhubarb, puerarin, ZL, DZSM, XXMT, BHD, cinepazide maleate, nimodipine, Mailuoning, MLC601, and NBP.
low quality according to AMSTAR2 score. The total clinical efficacy was used to evaluate the effect of drug therapy on ischemic stroke (Figure 2).

Clinical Effect
Clinical effective rate was observed in 18 studies. Detailed characteristics of included studies are listed in Table 2. The clinical effect of ligustrazine (OR: 1.28, 95% CI: 1.10–1.50), nimodipine (OR: 0.62, 95% CI: 0.50–0.78), aspirin plus clopidogrel (OR: 1.82, 95% CI: 1.08–2.57), tissue plasminogen (tPA) (RR: 1.95, 95% CI: 1.10–2.56), Wen Dan Decoction (WD) (OR: 1.60, 95% CI: 1.43–1.79), Xingmaojing capsule and Western medicines (XXMT) (OR: 3.25, 95% CI: 2.30–5.43), NaoShuanTong capsule plus Western medicines (NST plus XM) (OR: 3.04, 95% CI: 2.12–4.14), safflower yellow (MD: 3.41, 95% CI: 2.60–4.31) was significantly different compared with placebo. In contrast, DL-3-n-butylphthalide (NBP) (OR: 0.73, 95% CI: 0.44–0.73), tPA plus rt-PA (MD: 3.95, 95% CI: 2.92–5.02), tissue plasminogen (tPA) (RR: 1.59, 95% CI: 1.08–2.35) were significantly different compared with placebo. In contrast, DL-3-n-butylphthalide (NBP) (OR: 0.73, 95% CI: 0.44–0.73), tPA plus rt-PA (MD: 3.95, 95% CI: 2.92–5.02), tissue plasminogen (tPA) (RR: 1.59, 95% CI: 1.08–2.35) were significantly different compared with placebo.

NIHSS Score
The effects of the medications on clinical change were assessed by National Institutes of Health Stroke Scale (Table 3). Eight studies (20.0%) showed that XXT (MD: −1.86, 95% CI: −3.25–0.48), safflower yellow (MD: −3.42, 95% CI: −5.38–−2.98), MSCs (MD: −1.85, 95% CI: −2.37–−1.34), NBP (MD: −0.37, 95% CI: −1.65–1.91), salvianolic acids (MD: −1.44, 95% CI: −1.97–−0.91), heparin (OR: 1.95, 95% CI: 0.74–5.11), XST (MD: −3.17, 95% CI: −4.14 to −2.20), intra-arterial fibrinolysis (Intra-A) (OR: 2.24, 95% CI: 1.27–3.95), edaravone plus rt-PA (MD: 3.95, 95% CI: 2.92–4.99), and human urinary kallidinogenase (HUK) (MD: −1.65, 95% CI: −2.12–1.71) were significantly different compared with placebo. In contrast, DL-3-n-butylphthalide (NBP) (OR: 0.73, 95% CI: −0.14 to 1.59, p = 0.1), BHD (MD: 1.66, 95% CI: −1.08 to 4.40, p = 0.1), and DZSM (MD: 0.57, 95% CI: 0.44–0.73, p = 0.11) showed no change or a deterioration.

Rankin Scale (mRS) Score
From our search, the effects of the medications on clinical change were assessed by Rankin Score (mRS) (Table 4). In total, 18 studies (42.5%) including tPA (OR: 1.31, 95% CI: 1.07–3.59), tPA plus mechanical thrombectomy (MTE) (OR: 4.32, 95% CI: 2.16–7.46),
MTE (OR: 3.23, 95% CI: 1.75–7.33), stent retrievers (OR: 2.43, 95% CI: 1.91–3.09), cerebrolysin (RR: –0.49, 95% CI: –1.21 to 0.24), ZL (MD: –0.57, 95% CI: –0.84 to –0.30), salvinianic acids (MD: –0.88, 95% CI: –1.11––0.64), heparin (OR: 1.38, 95% CI: 0.61–3.56) and Rhubarb (OR: 3.11, 95% CI: 2.06–4.68), Intra-A (RR: 2.05, 95% CI: 1.33–3.14), DZSM (MD: –0.75, 95% CI: –1.02––0.48), and cinepazide maleate (MD: 0.607, 95% CI: 0.46–0.801) showed better outcomes for mRS score than placebo. The other treatments “Safflower yellow (MD: –4.18, 95% CI: –5.38––2.98, p = 0.1) and MTE (MD: 3.83, 95% CI: 1.25–5.41) showed no significant difference in effectiveness as compared to placebo.

Barthel Index Score

The effects of the medications on clinical change were assessed by Barthel Index (BI) Score (Table 5). Ten studies (25%) showed that autologous bone marrow stromal cells (MSCs) (MD: 2.50, 95% CI: –4.69–9.68), TQHX plus XM (MD: 2.45, 95% CI: 1.16–3.73), ZL (MD: 9.75, 95% CI: 7.15–12.36), NST (MD: 8.15, 95% CI: 3.79–12.52), Intra-A (MD: 1.6, 95% CI: 1.01–2.51), DZSM (MD: 8.97, 95% CI: 5.80–12.05) and cinepazide maleate (MD: 0.719, 95% CI: 0.54, 0.956), and ML601 (MD: 2.35, 95% CI: 1.31, 4.23) were significantly different compared with placebo. In contrast, NBP (MD: 1.65, 95% CI: 1.25–2.04, p = 0.08) showed no difference compared to placebo.

Neurological Function Deficit Score

Table 6 presents the results of the comparisons of behavioral symptoms; a total of seven studies were assessed by NFD scores. Patients treated with XNJ (MD: –3.78, 95% CI: –6.49––0.001) showed a better outcome than placebo.
symptoms than those administered (p < 0.05). Treatments indicated no significant difference on sICH events between these groups and placebo groups (Table 5).

TABLE 5 | Results of pairwise meta-analyses for the BI score.

Comparative medication	Reference medication	Number of studies	Number of control	Number of patients	MD/OR/RR 95% CI	I²	p
NST	Placebo	13	304	289	8.15 [3.79, 12.52]	75	0.0005
MSCs	Placebo	5	88	88	2.50 [-4.69, 9.68]	74	< 0.05
Intra-A	Placebo	5	139	204	1.6 [1.01, 2.51]	0	0.04
TQHX plus XM	Placebo	12	225	226	2.45 [1.16, 3.73]	89	0.0001
ZL	Placebo	7	115	130	9.75 [7.15, 12.38]	0	0.001
NBP	Placebo	12	165	160	1.65 [1.25, 2.04]	67	0.08
DZSM	Placebo	5	341	340	8.97 [5.88, 12.05]	85.9	0.0001
Cinpepamide maleate	Placebo	4	236	236	0.719 [0.542, 0.956]	0	0.012
MLC601	Placebo	2	237	436	2.35 [1.31, 4.23]	0	0.004

TABLE 6 | Results of pairwise meta-analyses for NFDs.

Comparative medication	Reference medication	Number of studies	Number of control	Number of patients	MD/OR/RR 95% CI	I²	p
XNU	Placebo	13	356	347	-3.78 [-4.75, -2.81]	54	0.00001
NST	Placebo	13	100	100	8.15 [10.11, 49.10]	95	0.0005
Chuanxiong	Placebo	3	80	81	-3.11 [-5.22, -1.00]	0	0.0039
Safflower yellow	Placebo	7	368	394	3.11 [2.06, 4.68]	0	0.000001
Rhubarb	Placebo	12	210	210	-3.36 [-6.10, -0.62]	89	0.000001
Puerarin	Placebo	16	659	699	-3.69 [-4.67, -2.71]	70	0.000001
Albumin	Placebo	4	804	807	1.04 [0.85, 1.27]	0	0.65
Salvianolic acids	Placebo	12	235	235	-8.65 [-11.10, -6.20]	31	0.001
Pntsp	Placebo	20	1464	1435	-3.36 [-4.20, -2.53]	74	0.00001
Nimodpine	Placebo	8	677	806	0.54 [0.50, 0.78]	NA	0.0001
HUK	Placebo	9	338	338	1.30 [1.21, 1.41]	0	0.000001
DZSM	Placebo	5	341	340	-2.81 [-4.17, -1.44]	85.9	0.1
Maluoning	Placebo	15	736	755	0.31 [0.23, 0.42]	0	0.001
TNK	Placebo	4	656	671	1.56 [1.0, 2.43]	0	0.05
MLC601	Placebo	2	275	520	0.27 [-0.02, 0.55]	66	0.06

CI, confidence interval; MD, mean difference; OR, risk ratio; I², heterogeneity; NST, NaoShuanTong capsule; XNU, Xingnaojing capsule; Pntsp, Panax notoginseng Saponin; TQHX, Tongqiao Huoxue Decoction; TNK, tenecteplase.

−4.75 to −2.81), NST (MD: 8.15, 95% CI: 10.11–49.10), Chuanxiong (MD: −3.11, 95% CI: −5.22–1.00), Safflower yellow (MD: 3.11, 95% CI: 2.06–4.68), Rhubarb (MD: −3.36, 95% CI: −6.10–0.62), Puerarin (MD: −3.69, 95% CI: −4.67–2.71), Pntsp (MD: −3.36, 95% CI: −4.20–2.53), HUK (MD: 1.30, 95% CI: 1.21 to 1.41), and Maluoning (MD: 0.27, 95% CI: −0.20–0.55).

Extracranial Hemorrhage (sICH)

The sICH events resulting from administration of other treatments were mild, and Safflower yellow (p = 0.93), stent retrievers (OR: 1.08, 95% CI: 0.64–2.30), Alphal (OR: 1.25, 95% CI: 0.97–1.62), Ginkgo biloba (OR: 0.82, 95% CI: 0.43–1.57), tirofiban (OR: 1.14, 95% CI: 0.72–1.82), heparin (OR: 0.71, 95% CI: 0.25–2.05), edaravone plus rt-PA (OR: 0.44, 95% CI: 0.29–0.66), MTE plus stent retrievers (OR: 0.59, 95% CI: 0.35–0.97), MTE (OR: 3.05, 95% CI: 0.44–21.23), MTE plus tPA (OR: 0.93, 95% CI: 0.72–2.19), TNK (OR: 1.07, 95% CI: 0.6–1.93), and clopidogrel (OR: 0.29, 95% CI: 0.15–0.56) had no significant difference on sICH events between these groups and placebo groups (Table 7).
TABLE 7 | Results of pairwise meta-analyses for extracranial hemorrhage.

Comparative medication	Reference medication	Number of studies	Number of control	Number of patients	MD/OR/RR	95% CI	I²	P
Heparin	Placebo	9	288	330	0.71	[0.25, 2.05]	32	0.22
Safflower yellow	Placebo	7	368	394	NA	NA	0	0.93
Stent retrievers	Placebo	5	652	634	1.08	[0.64, 2.30]	0	0.63
Ginkgo biloba	Placebo	12	266	281	0.82	[0.43, 1.57]	0	0.443
Tiroliban	Placebo	6	216	213	1.14	[0.72, 1.82]	0	0.57
Edaravone plus rt-PA	Placebo	8	221	221	0.44	[0.29, 0.66]	0	0.93
Alpha 1	Placebo	6	467	595	1.25	[0.97, 1.62]	9	0.09
TNK	Placebo	4	658	676	1.07	[0.6, 1.93]	0	0.81
MTE plus stent retrievers	Placebo	5	146	140	3.05	[0.44, 21.23]	0	0.25
MTE	Placebo	5	141	140	0.59	[0.35, 0.97]	0	0.83
tPA plus MTE	Placebo	7	2639	2640	0.93	[0.72, 1.19]	29	0.13
Clostazol	Placebo	6	1728	1731	0.29	[0.15, 0.56]	0	0.77

CI, confidence interval; MD, mean difference; OR, risk ratio; I², heterogeneity; TNK, tenecteplase.

TABLE 8 | Results of pairwise meta-analyses for mortality.

Comparative medication	Reference medication	Number of studies	Number of control	Number of patients	MD/OR/RR	95% CI	I²	P
Ligustrazine	Placebo	3	321	322	1.67	[1.02, 2.67]	95	0.05
Heparin	Placebo	9	2703	1145	0.9	[0.74, 1.09]	1	0.42
tPA	Placebo	4	814	804	1.04	[0.75, 1.43]	NA	0.83
Stent retrievers	Placebo	5	653	634	0.81	[0.58, 1.12]	29	0.19
Alpha 1	Placebo	6	467	595	1.05	[0.7, 1.59]	0	0.8
Cerebrolysin	Placebo	7	971	808	0.82	[0.55, 1.22]	0	0.81
Ginkgo biloba	Placebo	12	213	228	1.21	[0.29, 5.09]	43	1.8
Stem cell-based therapy	Placebo	9	218	217	0.6	[0.35, 1.03]	4	0.4
Tiroliban	Placebo	6	218	223	0.53	[0.13, 2.07]	63	0.1
Albumin	Placebo	4	1928	1938	1.1	[0.9, 1.34]	0	0.51
Intra-A	Placebo	5	171	224	0.83	[0.48, 1.39]	0	0.46
Edaravone plus rt-PA	Placebo	4	474	472	0.43	[0.13, 1.42]	0	0.87
Statins	Placebo	18	3034	3021	0.85	[0.77, 0.93]	0	0.003
DZSM	Placebo	5	341	340	0.54	[0.31, 0.95]	0	85.9
TNK	Placebo	4	658	676	1.03	[0.69, 1.52]	0	0.9
Clostazol	Placebo	6	1728	1731	0.80	[0.42, 1.53]	0	0.52

CI, confidence interval; MD, mean difference; OR, risk ratio; I², heterogeneity; IntrA-A, intra-arterial fibrinolysis; rt-PA, alteplase; TNK, tenecteplase.

Mortality

Fifteen studies reported all-cause mortality at the end of follow-up. Ligustrazine (OR: 1.67, 95% CI: 1.02–2.67), statins (OR: 0.85, 95% CI: 0.77–0.93) were significant different compared with placebo. In contrast, stent retrievers (OR: 0.81, 95% CI: 0.58–1.12), cerebrolysin (OR: 0.82, 95% CI: 0.55–1.22), Ginkgo biloba (OR: 1.21, 95% CI: 0.29–5.09), stem cell-based (MD: 0.6, 95% CI: 0.35–1.03), tiroliban (OR: 0.53, 95% CI: 0.13–2.07), albumin (OR: 1.1, 95% CI: 0.9–1.34), Alpha1 (OR: 1.05, 95% CI: 0.7–1.59), heparin (OR: 0.9, 95% CI: 0.74–1.09), Intra-A (OR: 0.83, 95% CI: 0.48–1.39), edaravone plus rt-PA (MD: 0.43, 95% CI: 0.13–1.42), tPA (OR: 1.04, 95% CI: 0.75–1.43), DZSM (MD: 0.54, 95% CI: 0.31–0.95), TNK (MD: 1.03, 95% CI: 0.69–1.52), and clostazol (MD: 0.80, 95% CI: 0.42 to 1.53, p = 0.52) had no significant differences of mortality events between these groups and placebo groups (p > 0.05) (Table 8).

Adverse Events

Adverse events of the meta-analysis of participants with at least one adverse event indicated a beneficial effect in favor of placebo treatment compared with salvianolic acids (OR: 1.45, 95% CI: 1.11–1.91, p = 0.007), Pntsp (RR: 0.62, 95% CI: 0.39–0.97, p = 0.04), colchicine (OR: 0.31, 95% CI: 0.13–0.71, p = 0.006), and NBP (RR: 3.55, 95% CI: 1.19–10.56, p < 0.05). The adverse events resulting from administration of other treatments were mild, and Chuanxiong (OR: 1.02, 95% CI: 0.35–2.96), MSCs (RR: 0.43, 95% CI: 0.18–1.05), Cerebrolysin (OR: 1.18, 95% CI: 0.86–1.64), Ginkgo biloba (OR: 1.48, 95% CI: 0.51–2.71), Stem cell-based (MD: 2.59, 95% CI: 0.11–5.93), TQHX (OR: 1.78, 95% CI: 0.51–6.2), HUK (RR: 0.01, 95% CI: 0.02–0.04), Maolinou (OR: 1.39, 95% CI: 0.28–6.76), and cinepazide maleate had no significant differences in adverse events between these groups and placebo groups (p > 0.05) (Table 9). Among all of the trials, in the
HUK groups, six cases of hypotension, four cases of fever, two cases of flushing, two cases of vomiting, one case of headache, one case of arrhythmia, and one case of pruritus were reported. In addition, no deaths and four serious adverse events were reported in the MLC601 group.

DISCUSSION

Our umbrella review was conducted on the data derived from treatments for ischemic stroke patients, which was used to appraise the relative effectiveness and safety of therapies. We attempted to summarize data from published systematic reviews and meta-analyses to find if there are significant beneficial treatments for ischemic stroke patients. Our study showed that thrombolytic therapy (rt-PA, TNK, and alpha1), MTE, stem cell-based therapies, stent retrievers, acupuncture plus XM, MSCs, antiplatelet agents (aspirin, clopidogrel, and ticlopidine), statins, and blood-activating and stasis-dispelling herbs can improve the neurological deficits and activities of daily living in patients with ischemic stroke. MTE plus Stent Retrievers or tPA, TQHX plus XM, XST plus XM, and NST plus XM show better clinical efficacy and safety. Ligustrazine, safflower yellow, statins, Pntsp, albumin, HUK, colchicine, MLC601, salvianolic acids, and NBP have no important impact on neurological deficits or activities of daily living. In addition, tPA, MTE, stem cell-based therapies, Stent Retrievers, Acupuncture, NST, Ginkgo biloba, TQHX, XST, and XNJ show no serious adverse events in ischemic stroke patients. Our results need to be interpreted with caution to determine the optimal treatment strategy for ischemic stroke patients.

The effects of tPA may be considerable for ischemic stroke which is incurable with current treatment paradigms, and other medications that may slow down the progression of ischemic stroke patients are worth exploring. Previous studies have shown that tPA or MTE has beneficial effects on hyperacute period ischemic stroke (Thelengana et al., 2019) (Liu et al., 2016), while one study demonstrated that tPA plus MTE performed best (Kaesmacher et al., 2019). Our results indicated that all tPA, MTE, MTE plus tPA, MTE plus Stent Retrievers, TQHX plus XM, XST plus XM, and NST plus XM were more effective for neurological function or activities of daily living compared with placebo. Researches have demonstrated that there was a higher effect of Stent Retrievers and MTE observed for acute ischemic stroke than that observed for the mild ischemic stroke patients (Punal-Rioboo et al., 2015). Similar to these studies, Stent Retrievers and MTE treatment showed statistically significant improvement in clinical effect compared to placebo in our study. Research studies have demonstrated that Human serum albumin has shown remarkable efficacy in rodent models of ischemic stroke (Huang and Xiao, 2021). Unfortunately, our study has demonstrated that showing no statistically significant difference between the albumin and control groups (p > 0.05). Considering pulmonary edema and other complications are more likely to occur in such patients after albumin infusion, the administration of albumin therapy for acute ischemic stroke should be carried out with utmost caution.

The behavioral symptoms of patients with ischemic stroke are often evaluated by NFDS/NIHSS/BI/mRS, which assesses the severity and frequency of neuropsychiatric symptoms. As a result, previous meta-analyses have reported that the efficacy of blood-activating and stasis-dispelling herbs may be related to the severity of ischemic stroke. In addition, tPA, MTE plus tPA, MTE plus Stent Retrievers, blood-activating and stasis-dispelling herbs plus XM was reported as only a modest but significant effect found on behavior in ischemic stroke patients (Peng et al., 2014; Punal-Rioboo et al., 2015; Kaesmacher et al., 2019; Shang et al., 2019; Zhang et al., 2019). In our study, Alpha1 was more effective for neurological improvement rate compared with placebo. Unfortunately, the lack of placebo controls in NFDS/NIHSS/BI/mRS score studies may limit their validity. Interestingly, MSCs are not significant in mRS score but significant in NIHSS/BI score. Moreover, nimodipine can significantly improve clinical outcomes compared with...
placebo, although it does not significantly reduce the incidence rate of recurrent hemorrhage and adverse reactions. In addition, tPA and MTE affected mRS scores and was recommended by the FDA. We considered treatment with ligustrazine, Safflower yellow albumin, MLC601, ANP, rhubarb, and NBP not to affect neurological deficits and activities of daily living because of the lack of statistical significance of results. Patients with ischemic stroke deteriorate progressively with varying degrees of severity of disease, which may affect the results obtained from pooling data. Moreover, measurement time after dosing can affect NFDS/NIHSS/BI/mRS scoring results and cause them to be biased.

Previous meta-analyses have demonstrated that patients treated with intra-arterial fibrinolysis provided a modest and better improvement in clinical effect change (Roaldsen et al., 2022). In addition, drug combination shows a statistically significant advantage compared to placebo the short-term and long-term analysis. Although the effect of single blood-activating and stasis-dispelling herbs (TQHX, NST, XST, etc.) use is not ideal (Erratum, 2017), they show a modest and better effect in combination with XM (Wu et al., 2007). Furthermore, ischemic stroke agents are likely to have an important effect on increasing neurological function or activities of daily living in mild to moderate ischemic stroke patients. In this study, the quality evaluated by AMSTAR2 scores of systematic reviews of ligustrazine, safflower yellow, cerebrolysins, BHD, salvianolic acids, and ZL was low, and these may not have an important impact on neurological function or activities of daily living. First, ischemic stroke is a sudden disease, our review mainly selected clinical studies to demonstrate short-term efficacy on neurological function. Although long-term clinical trials are ethically questionable, those that are high-quality are essential to uncover comparative differences between treatments of ischemic stroke. Second, we believe that further analyses are needed to clarify the factors associated with the increased placebo effect over time in global clinical trials. In the treatment of ischemic stroke, the safety of the treatments is critical since they should be taken on a long-term basis. The number of participants with at least one serious adverse event such as nausea, diarrhea, cardiovascular, gastrointestinal, and other disorders was extracted. Previous meta-analyses have demonstrated that acute and convalescent stroke patients treated with antiplatelet agents showed a modest improvement, although there is a risk of intracranial hemorrhage (Zhou et al., 2020). In this review, edoxaban was likely to provide more protection from stroke and sICH than placebo, aspirin alone, or aspirin plus clopidogrel in both clinical trials and unselected community populations. Moreover, statins were found to be effective for primary and secondary prevention of ischemic stroke in the study through the aggressive reduction of cholesterol. Some studies have found that using statins before an ischemic stroke can increase collateral circulation and improve prognosis. Despite an increased risk of bleeding conversion, thrombolytic use of statins resulted in overall improvement. Recent studies have also found statins to be associated with atrial fibrillation. In addition, the promotion of collateral circulation by neuroprotective drugs may be related to the induction of NO synthesis and angiogenesis in vascular endothelium (Hu et al., 2021). In addition, the incidence of withdrawals due to adverse events tended to be higher in the salvianolic acids albumin, MLC601, and NBP treatment than in placebo groups. Moreover, our study summarized that MTE, stem cell-based therapies, stent retrievers, acupuncture plus XM, NST, Ginkgo biloba, TQHX, XST, and XN show no serious adverse events in ischemic stroke patients.

In recent years, stem cell-based therapies (MSCs, stem cell-based) as a treatment to investigate ischemic stroke patients has been a potential therapy (Cao and Li, 2015; Li et al., 2020). A previous study has shown that Intra-A results in a better beneficial effect for cognition and activities of daily living (Lee et al., 2010). Similar to these studies, stem cell-based therapies may show effectiveness for neurological deficits and activities of daily living in this study. However, clinical trials of stem cell-based therapies for ischemic stroke are still in the early stage. Many factors such as cell types, cell numbers, delivery routes, time windows, and medical and rehabilitation therapies affect the efficacy of stem cells. Well-designed RCTs are necessary to explore the benefit of stem cell-based therapies as treatment in patients with ischemic stroke, and further research effects should be carefully explored.

In general, the treatment for patients with ischemic stroke is aimed at promoting independence, clear embolism, maintaining function, and treating symptoms. Previous meta-analyses and reviews have focused on the possible effectiveness and safety of stem cell-based therapies, stent retrievers, acupuncture, MSCs, antiplatelet agents, statins, and blood-activating and stasis-dispelling herbs (Li et al., 2014; Cao and Li, 2015; Punal-Rioboo et al., 2015; Shang et al., 2019; Zhang et al., 2019; Li et al., 2020; Zhao et al., 2021; Zhou et al., 2022), even though patients experience modest efficacy and many adverse events with the treatment. As a result, we need to identify an efficacious and safe treatment paradigm for ischemic stroke patients. Studies have shown that MTE plus tPA, MTE plus Stent Retrievers, TQHX plus XM, XST plus XM, NST plus XM, and acupuncture plus XM improved neurological deficits and activities of daily living, and the adverse effects were mild for the treatment of ischemic stroke (Li et al., 2014; Kaesmacher et al., 2019; Shang et al., 2019; Li et al., 2020; Shen et al., 2020). However, a larger sample size and long-term follow-up studies are needed to find the reliability of this medication. Due to tPA, MTE, tPA plus edaravone, blood-activating, and stasis-dispelling herbs plus XM efficacy in improving neurological deficits and activities of daily living, we believe that tPA or tPA plus other drugs can be employed as first-line treatment.

Limitations

The limitations to this study should be acknowledged. First, direct comparative evidence of treatments for ischemic stroke patients in our included studies was limited. Second, other factors may have led to the umbrella review inconsistencies, such as the duration and
quality of studies. Furthermore, a considerable number of studies could not be included as they did not have the abovementioned data.

CONCLUSION

In conclusion, our study suggested that tPA, tPA plus MTE, acupuncture plus XM, tPA plus edaravone, and blood-activating and stasis-dispelling herbs plus XM are the optimum cognitive and activities of daily living medication for patients with ischemic stroke. In the future, the combination of well-tolerated agents and other significant beneficial treatments should be used for patients with ischemic stroke, which will contribute to the successful construction of a similar study.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author.

REFERENCES

Blann, A. D., Skjøth, F., Rasmussen, L. H., Larsen, T. B., and Lip, G. Y. (2015). Edoxaban versus placebo, aspirin, or aspirin plus clopidogrel for stroke prevention in atrial fibrillation. An indirect comparison analysis. *Thromb. Haemost.* 114 (2), 403–409. doi:10.1160/TH15-05-0383

Cao, W., and Li, P. (2015). Effectiveness and Safety of Autologous Bone Marrow Stromal Cells Transplantation After Ischemic Stroke: A Meta-Analysis. *Med. Sci. Monit.* 21, 2190–2195. doi:10.12659/MSM.895081

Chong, P. Z., Ng, H. Y., Tai, J. T., and Lee, S. W. H. (2020). Efficacy and Safety of Ginkgo biloba in Patients with Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. *Am. J. Chin. Med.* 48 (3), 513–534. doi:10.1142/S0129034520500263

De Santis, K. K., Lorenz, R. C., Lakeberg, M., and Matthias, K. (2021). The application of AMSTAR2 in 32 overviews of systematic reviews of interventions for mental and behavioural disorders: A cross-sectional study. *Res. Syn. Meth.* doi:10.1002/jrsm.1532

Donkor, E. S. (2018). Stroke in the21stCentury: A Snapshot of the Burden, Epidemiology, and Quality of Life. *Stroke Res. Treat.* 2018, 1–10. doi:10.1155/2018/3238165

Emerson, J., Lees, K. R., Lyden, P., Blackwell, L., Albers, G., Bluhmki, E., et al. (2014). Stroke Thrombolysis Trials’ Collaborative, GiFT of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. *Lancet* 384 (9958), 1929–1935. doi:10.1016/S0140-6736(14)60584-5

Erratum (2017). Erratum: Traditional chinese patent medicine for acute ischemic stroke: an updated systematic review and meta-analysis. *J. Ethnopharmacol.* 148 (1), 1–13. doi:10.1016/j.jep.2013.04.002

Gao, L., Xiao, Z., Jia, C., and Wang, W. (2021). Effect of Buyang Huanwu decoction for the rehabilitation of ischemic stroke patients: a meta-analysis of randomized controlled trials. *Health Qual. Life Outcomes* 19 (1), 79. doi:10.1186/s12955-021-01728-6

Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., and Blaha, M. J. (2014). Stroke Statistics, Executive summary: heart disease and stroke statistics--2014 update: a report from the American Heart Association. *Circulation* 129 (3), 399–410. doi:10.1161/01.cir.0000442150.53336.12

Hong, K. S., and Lee, J. S. (2015). Statins in Acute Ischemic Stroke: A Systematic Review. *J. Stroke* 17 (3), 282–301. doi:10.5853/jos.2015.17.3.282

Hu, R., Guo, Y., Lin, Y., Tang, Y., Tang, Q., Wang, X., et al. (2021). Safety and efficacy of edaravone combined with alteplase for patients with acute ischemic stroke: A systematic review and meta-analysis. *Pharmazie* 76 (2), 109–113. doi:10.1691/ph.2021.0949

Huang, Y., Wang, B., Zhang, Y., Wang, P., and Zhang, X. (2020). Efficacy and safety of human urinary kallidinogenase for acute ischemic stroke: a meta-analysis. *J. Int. Med. Res.* 48 (9), 30060520943452. doi:10.1177/0300060520943452

Huang, Y., and Xiao, Z. (2021). Albumin therapy for acute ischemic stroke: a meta-analysis. *Neurosci. Lett.* 42 (7), 2713–2719. doi:10.1016/j.sbsr.2021-05244-9

Kaesmacher, J., Mordasini, P., Arnold, M., López-Cancio, E., Cerdá, N., Boechk-Behrens, T., et al. (2019). Direct mechanical thrombectomy in tPA-ineligible and –eligible patients versus the bridging approach: a meta-analysis. *J. Neurointerv Surg.* 11 (1), 20–27. doi:10.1136/neurintsurg-2018-013834

Katsanos, A. H., Palaiodimou, L., Price, C., Giannopoulos, S., Lemmens, R., Kosmidou, M., et al. (2020). Colchicine for stroke prevention in patients with coronary artery disease: a systematic review and meta-analysis. *Eur. J. Neurosurg.* 27 (6), 1035–1038. doi:10.1111/enj.14198

Lee, M., Hong, K. S., and Saver, J. L. (2010). Efficacy of intra-arterial fibrinolysis for acute ischemic stroke: meta-analysis of randomized controlled trials. *Stroke* 41 (5), 932–937. doi:10.1161/STROKEAHA.109.574335

Li, L., Zhang, H., Meng, S. Q., and Qian, H. Z. (2014). An updated meta-analysis of the efficacy and safety of acupuncture treatment for cerebral infarction. *PLoS One* 9 (12), e114057. doi:10.1371/journal.pone.0114057

AUTHOR CONTRIBUTIONS

QL and YC conceived and designed the review. YOL, RC, FF, YL, YA, HL, SL, YD, QY, ZQ, and WS looked up the literature. YOL wrote the manuscript. QL and YC revised the manuscript. All authors read and approved the final manuscript.

FUNDING

This study was supported by the National Natural Science Foundation of China (82174085).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2022.924747/full#supplementary-material
meta-analysis of randomized controlled trials. *Med. Baltim.* 96 (1), e5803.
doi:10.1097/MD.0000000000005803

Zhou, J., Gao, Y., and Ma, Q. L. (2020). Safety and efficacy of tirofiban in acute ischemic stroke patients Not receiving endovascular treatment: a systematic review and meta-analysis. *Eur. Rev. Med. Pharmacol. Sci.* 24 (3), 1492–1503.
doi:10.26355/eurrev_202002_20208

Zhou, X., Shao, T., Xie, X., Ding, M., Jiang, X., Su, P., et al. (2022). Tongqiao Huoxue Decoction for the treatment of acute ischemic stroke: A Systematic Review and meta-analysis. *J. Ethnopharmacol.* 283, 114693. doi:10.1016/j.jep.2021.114693

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guarantied or endorsed by the publisher.

Copyright © 2022 Li, Cui, Fan, Lu, Ai, Liu, Du, Qin, Sun, Yu, Liu and Cheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.