Forecast of settlement of single pile based on hereditary creep

E N Sychkina
Department of Construction Technology and Geotechnics, Perm National Research Polytechnic University, 29 Komsomolsky prospect, Perm 614990, Russia

E-mail: aspirant123@mail.ru

Abstract. The various calculation models are proposed in the literature for the purpose of description the creep behavior of soil bases. The objective of the paper is to develop an algorithm to predict long-term settlement of piles based on the rheological deformation model using Koltunov’s creep kernel. The paper discusses the results of single pile tests on weathered claystones and sandstones. Based on experimental results and theoretical study the author developed an automated algorithm for the calculation of settlement of pile on weathered claystones and sandstones. The following tasks are solved: 1) to describe the research technique; 2) to analyze the results of testing single piles; 3) to perform numerical calculation of settlement of piles; 4) to describe the capabilities of the developed algorithm for the calculation of pile settlement; 5) to compare the results of field tests, numerical simulation and calculation of the proposed method; 6) to state conclusions. The result shows that the proposed method is an excellent option for identifying the parameters of creep core for the prediction of long-term settlement of piles on claystones and sandstones.

1. Introduction
Many researchers have been involved in foundations on sandy and clay soils [1-8]. It was proved that settlements occur mainly due to creep for foundations on hard clays, gravel soils, claystones, sandstones [9-13]. Rheological processes in soils do not stop with the completion of filtration consolidation and continue for a long time. When plastic-viscous flow of the soil occurs, damping creep is typical for loads not exceeding the limit values. A characteristic feature of creep curves is that 90% of visco-elastic deformations develop in the first hours of loading, but then their growth slows down significantly, and the curves asymptotically tend to a certain limit which depends on the value of the load. It was proved that the settlement of pile on Vendian clay increases twofold in 16 days [6]. Much attention should be given to the speed and degree of development of irregular settlement of foundations on soil bases with rheological properties [1,11,14]. It is necessary to predict the long-term interaction of a pile foundation and a soil base.

In the investigations [15-24] it was proved that the most reliable theory that connected stress, deformation and time for viscous media was the phenomenological theory of hereditary creep. The expressions are complex and the collection of above mentioned soil parameters is not easy in engineering practice.

When analyzing the creep behavior of soils the associated model parameters should be determined in advance. In the work [15] the main relationships between stresses and strains were presented. Traditionally, the graphical method was used for determine the rheological parameters of materials. In the case of coincidence of the experimental and theoretical curves, the known deformation parameters...
of the theoretical curve can be assigned to the experimental one. The solution of the equation has been automated by many authors [1, 16]. It has shown good results for different materials. But at present, there are no verified solutions for the forecast of long-term settlement of piles on claystones and sandstones. Therefore, the solution to this problem is relevant.

2. Purpose and objectives
The purpose of the investigation is to develop the methodology for calculation of settlement for pile based on claystones and sandstones. The objectives are: 1) to review existing theoretical and experimental research; 2) to describe the capabilities of the developed calculation methodology; 3) to analyze the results of calculation of settlement for single piles obtained by the numerical method and the proposed method; 4) to describe the findings.

3. Theoretical research
The Boltzmann-Volterra equation is used to describe creep phenomena:

$$\varepsilon(t) = \frac{\sigma(t)}{E} + \int_0^t k(t-\tau)\sigma(\tau)d\tau$$ \hspace{1cm} (1)

where $\sigma(t)$ and $\varepsilon(t)$ – stresses and strains at the time t under a uniaxial stress state, accordingly; τ is the time preceding t, E is the elasticity modulus, $k(t-\tau)$ is an influence function (creep core).

Equation (1) is used for modelling of the viscoelastic behavior of materials and in the calculation of constructions using various numerical methods.

The most common singular core of heredity is the Koltunov-Rzhanitsyn core:

$$\Gamma(t) = Ae^{-\beta t}t^{a-1}$$ \hspace{1cm} (2)

where $0<\alpha<1$; β - attenuation parameter.

The accuracy of solving the hereditary creep problem depends on the correct choice of the core. The accuracy of the approximation of the core should be checked by comparing it with the experimental curve.

Assuming that the pile on soil base is simulated by rheological deformation model using Koltunov’s creep kernel type. In the research, the expression proposed in work [15] for nonlinear relations of the theory of creep was used:

$$S(t) = \psi(\sigma_i) \cdot (1 + \int_0^t K(t)dt)$$ \hspace{1cm} (3)

where: $\psi(\sigma_i)$ is the similarity coefficient, $K(t)dt$ is the function of influence (Koltunov’s creep kernel).

The method for determining the rheological characteristics of core parameters by four values of the experimental curve “time-settlement” is proposed. The process of finding the coefficient of similarity was automated. The author developed an automatic algorithm for the calculation of pile settlement. The sequence of actions in the developed algorithm:

1. load, time and values of settlements for short-term tests of piles are entered as input parameters;
2. the search for a theoretical curve similar to the experimental one and the calculation of the deviations of the experimental values from the theoretical ones are performed;
3. the determination of parameters for Koltunov’s creep kernel (α, β, A) is performed;
4. the results in the form of curves "time - settlement" and "load - settlement" with taking into account hereditary creep are shown.

This algorithm makes it possible to perform the calculation of long-term settlements of piles on weathered claystones and sandstones. Data from widely used field tests of piles is used as input. The
author believes that the application of this automatic algorithm is a simple and effective way to improve the accuracy of calculation of long-term settlement of piles.

4. Methodology of experimental research

4.1. General information
In the research, the settlements of pile obtained by experimental method, numerical simulation and calculation method were considered. The experimental time-settlement curves were compared with the theoretical ones in order to expose similarities and adjust the theoretical solutions. For piles on claystone and sandstone, the values of parameters for Koltunov’s creep kernel type were determined from eleven short-term pile tests.

4.2. Methodology of field investigation
The study reviewed field test results of single piles on layered clay base. The layered clay base consisted of Quaternary clays and Early Permian claystones and sandstones. Claystone and sandstone can be described as highly weathered and softenable rock that consists of clastic grains consolidated by clay-chlorite, ferrous and carbonate cement. Macroscopically Permian claystone and sandstone across the terrestrial Permian-Quaternary boundary is a dense clay and sand rock of brown and grey color [3, 4]. On the test sites, these deposits are covered by layers of modern sandy-clay soils with a thickness of 5.0 to 13.0 m.

The values of some physical and mechanical properties for Quaternary soils and Permian claystones and sandstones are presented in table 1.

Table 1. Mean value of the parameters for Quaternary soils and Permian claystones and sandstones.

Soil type	Specific gravity, kN/m2	Void ratio	Plasticity index, %	Liquidity index, %	Secant stiffness in standard drained triaxial test, kN/m2	Tangent stiffness for primary oedometer loading, kN/m2	Cohesion intercept, kN/m2	Angle of internal friction, °
Stiff and soft-firm loam (QIV)	20	0.81	13	32–74	13000	9290	31	21
Very stiff sandy loam (QIV)	19	0.60	14	-2	26561	23000	30	10
Stiff clay (QIV)	20	0.72	18	5	25000	18000	25	20
Claystone (P1)	20	0.65	20	15	10342	10483	23.3	37
Sandstone (P1)	20	0.48	-	-	13640	12667	29	27

The study analyzed the settlements in time of full-scale driven and bored piles with claystone and sandstone bases. The dimensions of the piles were the following: the cross-section of driven piles was 0.3x0.3 m, the diameter of bored piles was 0.63 m. The penetration of the driven piles into claystones and sandstones ranged from 1.0 to 2.0 m, and that of the bored piles was from 2 to 6 m. The depth of the driven pile tests was 8–10 m, whereas the depth of the bored pile tests was 15–20 m.

4.3. Methodology of numerical investigation
Numerical calculations of these tests of piles were performed using the commercial PLAXIS 3D software. The physical and mechanical parameters of soils were determined from triaxial and oedometer tests. Results of laboratory tests were adjusted in the SoilTest (Plaxis 3D). The initial data of the geological conditions of full-scale tests of piles were used for modeling “ground base – pile foundation” system. In accordance with previous studies [25], the Hardening Soil model was applied for Quaternary and Permian soils. A linear-elastic model was used to model the pile material. Piles
were loaded stepwise in numerical modeling. The step value of the load stage was similar to that in the field pile tests.

5. Results and discussion
In the course of testing the piles, the bearing capacity of claystones and sandstones was not exhausted, but the ultimate strength of the pile material was reached. The obtained curves of all pile settlement in time were of damping creep. The settlement of piles on claystones and sandstones in time can be divided into two parts. The settlement under load dominates in the first phase for about 3 hours for weathered claystones and sandstones. Then creep deformations develop, under which the pile settlement velocity varies from 0.023 mm/min and tends to zero. Values of settlements for piles on claystones and sandstones are presented in table 2 and table 3, respectively. Results are given for maximum loads when testing bored and driven piles.

Table 2. Values of the long-term settlement of piles on claystones.

No. Pile	Experimental short-term settlement from pile tests, mm	Settlement obtained by Plaxis 3D, mm	Settlement obtained by the proposed method, mm
		Driven piles	Bored piles
407	2.2	27.2	10.1
403	3.4	14.8	11.6
587	3.1	33.4	8.4
592	2.3	16.2	16.8
1	7.6	99.0	12.1
2	6.1	55.5	9.6

Table 3. Values of the long-term settlement of piles on sandstones.

No. Pile	Experimental short-term settlement from pile tests, mm	Settlement obtained by Plaxis 3D, mm	Settlement obtained by the proposed method, mm
		Driven piles	
381	7.3	25.5	11.7
469	4.0	30.7	14.8
541	14.9	65.2	19.6
201	6.6	52.3	9.4
437	0.9	84.1	3.2

The results in table 2 and table 3 show that the settlements of piles obtained by numerical method exceed the settlements of piles obtained by proposed method. The settlements obtained by the proposed method are close to the experimental settlements from pile tests.

Pile tests with long durations are of interest in civil engineering applications. The results of the research showed the same trend with Bartolomey’s experimental investigation of long-term settlements of pile [1]. The study [1] showed that the long-term settlement of a single pile exceeds the short-term settlement of the pile by 2 - 4 times for the case of damped creep. Hence, commonly used isotropic hardening models are inadequate to describe the behaviour of single piles on claystone and sandstone. It can also be seen that the proposed method of calculation seems to predict fairly well the behaviour of pile on claystone and sandstone.

Based on these results, it was found that the deformations of piles on claystones and sandstones should be calculated using parameters of Kolotunov’s creep kernel type which can capture both the vertical deformation and time effect. Based on a set of measurements from pile tests, the proposed
automated algorithm can be employed to effectively identify the optimal parameters for piles on claystone and sandstone.

6. Conclusion
The forecast of settlement of pile foundation is important in engineering practice. Data from the pile tests of Early Permian claystones and sandstones were collected in the case study. In this research, the solution is presented for estimation the long-term settlement of pile based on the rheological deformation theory using Koltunov’s core parameters. A probabilistic method of identifying the creep parameters and investigating the efficiency of isotropic hardening model in the prediction of the deformation of claystone and sandstone from pile tests was presented. Based on the developed method, eleven experimental and numerical tests with piles on claystones and sandstones were studied. The calculation results were verified with the experimental tests of piles, which indicates that the creep behavior of pile on claystone and sandstone was successfully captured. Numerical results of the calculations in Plaxis 3D were also investigated and compared with experimental tests. It was shown that the settlements of piles obtained by numerical method exceed the settlements of piles obtained by proposed method. This approach is useful in the engineering practice; engineers can adopt the present automated algorithm to identify the parameters for a given soils for the prediction of long-term creep behavior. Moreover, this method is simple and easy in calculation but is still consideration to all necessary parameters of hereditary creep.

References
[1] Bartolomey A, Omelchak I and Yushkov B 1994 Forecast of settlement of pile foundations (Moscow: Stroyizdat) p 384
[2] Ladyzhensky I G and Sergienko A V 2016 Experience in the design of pile and pile-plate foundations on the site of MIBC “MOSCOW-CITY” Industrial and Civil Construction 10 46–54
[3] Ponomaryov A B and Sychkina E N 2015 Analysis of strain anisotropy and hydroscopic property of clay and claystone Appl. Clay Sci. 114 61–169
[4] Ponomarev A B and Sychkina E N 2018 On the stress-strain state and load-bearing strength of argillite-like clays and sandstones Soil Mech. and Foundation Eng. 3 141–145
[5] Sheil B B and McCabe B A 2016 An analytical approach for the prediction of single pile and pile group behaviour in clay Comput. and Geotech. 75 145–158
[6] Shulyatyev O A 2014 Foundations of High-rise Buildings PNRPU Bull. Construction and Architecture 4 203–245
[7] Zhang Q, Liu S, Zhang S, Zhang J and Wang K 2016 Simplified non-linear approaches for response of a single pile and pile groups considering progressive deformation of pile–soil system Soils and foundations 56 (3) 473–484
[8] Utkin V S 2018 Work of hanging piles in the ground base and their calculation of settlement Proc. of the Moscow State Univ. of Civil Eng. 9 (119) 1125–32
[9] Changdong L, Xiaoyi W, Huiming T, Guoping L, Junfeng Y and Yongguan Z 2017 A preliminary study on the location of the stabilizing piles for colluvial landslides with interbedding hard and soft bedrocks. Eng. Geol. 224 15–28
[10] Lehane B M and Jardine R J 1994 Displacement pile behaviour in glacial clay Can. Geotech. J. 31 79–90
[11] Luzin I N and Ter-Martirosyan Z G 2016 Experimental and theoretical foundations of calculations of the settlement of deep foundations in overconsolidated soils Construction and Architecture 2 45–48
[12] Manica M, Gens A, Vaunat J and Ruiz D F 2017 A time-dependent anisotropic model for argillaceous rocks. Application to an underground excavation in Callovo-Oxfordian claystone. Comp. and Geotech. 85 341–350
[13] Yahya O M L, Aubertin M and Julien M R 2000 A unified representation of the plasticity, creep and relaxation behavior of rocksalt Int. J. of Rock Mech. and Mining Sci. 37 787–800
[14] Ter-Martirosyan Z G, Sidorov V V, Ter-Martirosyan A Z and Manukyan A V 2016 The rate of settlement of the pile, immersed in the thickness of the clay soil, taking into account its elastic-viscous and elastoplastic properties Housing Construction 11 3–6
[15] Koltunov M A 1976 Creep and Recovery (Moscow: Vysshaya Shkola) p 278
[16] Abdikarimov R A, Eshmatov H, Bobanazarov Sh P, Hodzhaev D A and Eshmatov B H 2011 Mathematical modeling and calculation of hydraulic engineering constructions such as dam-plate in view of hydrodynamical pressure of water and seismic loading. J. of Civil Eng. 3 59–70
[17] Suklje L and Majes B 1989 Consolidation and creep of soils in plane strain conditions Geotechnique 2 231–250
[18] Desai C S, Samtani N C and Vulliet L 1995 Constitutive modeling and analysis of creeping slopes. J. of Geotech. Eng. 121 (1) 43–56
[19] Murad M A, Guerreiro J N and Loula A F D 2001 Micromechanical computational modeling of secondary consolidation and hereditary creep in soils Comput. Methods in Appl. Mech. and Eng. 190 1985–16
[20] Zhou WH, Tan F and Yuen KV 2018 Model updating and uncertainty analysis for creep behavior of soft soil Comp. and Geotech. 100 135–143
[21] Murakami Y 1988 Secondary compression in the stage of primary consolidation Soils and Foundations 28 (3) 169–174
[22] Yokoo Y, Yamagata K and Nagaoka H 1971 Variational principles for consolidation Soils and Foundations 11 (4) 25–35
[23] Yin JH 1999 Non-linear creep of soils in oedometer tests Geotechnique 49(5) 699–707
[24] Yin JH and Graham J 1999 Elastic viscoplastic modelling of the time-dependent stress-strain behaviour of soils Can. Geotech. J. 36 736–45
[25] Ponomaryov A B, Sychkina E N and Volgareva N L 2016. Forecasting pile settlement on claystone using numerical and analytical methods Proc. of Moscow State Univer. of Civil Eng. 6 34–45

Acknowledgements
The author gratefully acknowledge the financial support from the Russian Science Foundation under Grant No. 18-79-00042.