Tolerance of eddy covariance flux measurement

Wonsik Kim1, Jaeil Cho2, Daisuke Komori3, Masatoshi Aoki4, Masayuki Yokozawa1, Shinjiro Kanae5 and Taikan Oki3

1National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
2Kasuya Research Forest, Kyushu University, Sasaguri, Fukuoka 811-2415, Japan
3Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
4Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-0054, Japan
5Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan

Abstract:

Eddy covariance (EC) flux measurement is the most-used technique for observation of the fluxes of sensible heat, latent heat, and carbon dioxide between the land surface and the atmospheric boundary layer. Despite the availability of plentiful EC data from numerous research projects, it is difficult to make meaningful comparisons of EC at different sites, to validate the models used, and to integrate observed data with models because the uncertainties of the method are inadequately defined. We developed a method to evaluate the uncertainties of the EC method without the need to consider individual site specifications and flux characteristics. We showed that the fractional error ϕ of EC (i.e., tolerance T) can be separated into random and illegitimate components. T can be used as a scale parameter for spatiotemporal stationarity, and can be defined as a rational function. We demonstrated a practical application of T analyses for two contrasting areas: a low-relief paddy field and an area of more complex land-forms where dramatic wind changes affect fluxes, and showed that T analysis provides an appropriate and effective method to determine the uncertainties in EC.

KEYWORDS Eddy covariance; Flux; Quality control; Random error; Tolerance

INTRODUCTION

The uncertainty generated by fluctuations in measurements of a quantity can be defined as the measurement error δ, which can be decomposed into random error δ_r due to instrumental uncertainties or statistical fluctuations, systematic error δ_s originating from defective equipment calibrations or discrepancies among different observers, and illegitimate error δ_i arising from mistakes or measurement blunders (Bevington and Robinson, 2003). Commonly, δ_s, δ_r, and δ_i are called noise, bias, and outliers, respectively. In tower-based eddy covariance (EC) flux measurement to monitor heat, H_2O, and CO$_2$ exchanges above the land surface (Baldocchi, 2003), δ is apportioned into δ_s and δ_r under the assumption that all data contaminated by δ_i are discarded during quality control and quality assurance (QC/QA) procedures based on micrometeorological knowledge (Moncrieff et al., 1996; Loescher et al., 2006; Vickers et al., 2009). Whereas Vickers and Mahrt (1997) indicated that mesoscale variability and inhomogeneity (i.e., nonstationarity) are also constituents of δ, along with δ_s and δ_r, and Mahrt (1998) suggested that nonstationarity should be specified in EC. We hypothesize that nonstationarity is a component of δ_i and is inherent in EC because δ_i arises from the mismatches between actual circumstances and potential preconditions based on micrometeorological measurement theories, and then it is noise or bias but the outlier generated by applicational mistake or blunder behind the supportable micrometeorological background. In other words, it is difficult to presume the perfect observational theory satisfying every measurement condition without precondition over micrometeorological knowledge ever since. Therefore, the aims of this study were (1) to demonstrate the above hypothesis in terms of the fractional error ϕ of EC (tolerance T hereafter) based on the work of Finkelstein and Sims (2001) and Kim et al. (2008, 2009); (2) to separate the fractional random error ϕ_r, and the fractional illegitimate error ϕ_i under the assumption that instrumental bias has been corrected; and (3) to test the validity of this approach as a QC/QA tool for field EC.

METHOD

Field data

For T analysis of a homogeneous site, we used a week EC measurement from a paddy field in Sukhothai, Thailand (PST: 17°03’51”N, 99°42’17”E, 50 m asl). The data were recorded with a three-dimensional sonic anemometer (CSAT3; Campbell Scientific, Utah, USA) and an open-path CO$_2$/H$_2$O gas analyzer (LI7500; LI-COR, Nebraska, USA); both were deployed 7 m above the ground. The topography at PST is flat with sufficient fetches (> 700 m) in all wind direction for experimental period. Two different growing stages of the paddy were cultivated separately, and those leaf area index (LAI) is 0.5 at the side of clockwise from -45^o to $+135^o$ from the direction of the sonic head and 2.0 at the other side, respectively.

For T analysis of a heterogeneous site, we used a week EC measurement from an area of mixed land cover in Tak, Thailand (DTT: 16°56’24”N, 99°25’48”E, 110 m asl), with the same instrumentation as that used at PST but operated at a height of 30 m. The fetch area at DTT is relatively flat.
with gently undulating hills. When the data were recorded, the land cover was a mosaic of 60% crop fields (mainly paddy, cassava, corn and non-arable fields) with LAI from 0 to about 3, and 40% monsoon forest dominated by around 10-m-tall *Shorea* with LAI around 2.

2.2. Tolerance

The T of EC measurement is defined as

$$ T = \frac{\delta_s + \delta_r + \delta_i}{|F|}, $$

where F is flux. If δ_s is zero (i.e., no bias), and δ_r has a linear relationship to $|F|$ with slope ϕ_r (i.e., $\delta_r = \phi_r|F|$), equation (1) can be modified to

$$ T = \frac{\phi_r|F| + \delta_i}{|F|}. $$

It is a rational function having $|F|$ as an independent variable under assumptions that ϕ_r is a constant and δ_i is outlier in the function.

Computational sequence to estimate T for a period by EC measurement is: First, hourly F and T is calculated by (Leuning, 2004, Equations 6.24, 6.26 and 6.27) and (Kim et al., 2009, Equation 1), respectively. In particular, Finkelstein and Sims (2001) is applicable to estimate T because of merely employing auto- and cross-covariance instead of any preconditional assumptions of time series, boundary layer states, and an autocorrelation function of integral time scale; second, expected T for a period according to the kind of F is estimated by mode which denotes the T point having most high frequency of hourly T among 0.01 T interval (frequency panels in Figure 1); third, using expected T as a coefficient and F as independent variables, a robust nonlinear fitting [R function *nlrob* (http://www.r-project.org/; http://svitsrv25.epfl.ch/R-doc/library/robustbase/html/nlrob.html)] is assessed to determine δ_i and scale parameter σ as one of deviation parameters in equation (2); finally, the minimum T value that produced the smallest σ is assigned to ϕ_r in equation (2) based on Kim et al. (2011)’s investigation.

RESULTS AND DISCUSSION

Tolerance

Estimated hourly T at PST and DTT fitted equation (2)
well as a function of F (Figure 1). The fit was better when weekly T was smaller and kurtosis was higher for hourly T (Figure 1). Therefore, T, as expressed in equation (2), is a rational function for the observational data we used. That is to say that consideration of only δ_i in T analysis is inappropriate, because δ_i is inherent in almost all EC measurement (e.g., Figure 3 in Finkelstein and Sims, 2001; Figure 2 in Hollinger and Richardson (2005) and Figure 9 in Vickers et al. (2009)).

As outliers, the hourly T including δ_i originated from temporal nonstationarity, principally appears where the values of F are near zero on almost all F types and at both sites, and the T having δ_i due to spatial nonstationarity, predominantly reveals where the values of F are around $IE > 50$ W m$^{-2}$ and $F_c < -0.1$ mg m$^{-2}$ s$^{-1}$ at DTT (Figure 1). These locational differences are helpful for understanding whether variation of atmospheric background or heterogeneity of surface conditions cause the distortion of stationarity in those larger T.

Furthermore, considering that T was affected by heterogeneity of not only micrometeorological events (i.e., convection and horizontal divergence; Loescher et al., 2006) but also biological responses (i.e., photosynthesis and transpiration; Oren et al., 2006), and minimum T (i.e., $\phi_r = 0.07$) could be a constant (Figure 1), therefore, we suggest that T is a general scale parameter of nonstationarity for EC measurement.

Fractional random error

If δ_i is eliminated, theoretically from equation (2), T equals ϕ_r, and is constant. Alternatively, if EC measurement is observed under ideal experimental conditions, T represents ϕ_r. Hence, the minimum value of T with the smallest value of σ in a periodic analysis changing the time span for the calculation of H, IE, and F_c (Table I) can appropriately be defined as ϕ_r for observational EC data. Our analysis showed that ϕ_r was 0.07 ± 0.01. It could be the measurement value of ϕ_r under optimized condition of EC because it is the smallest value compared with those of the other periods and studies.

Approximations such as that above have been reported in many previous studies (Lenschow et al., 1994; Finkelstein and Sims, 2001; Hollinger and Richardson, 2005; Richardson et al., 2008; Vickers et al., 2009); however, those studies did not provide enough persuasive data to reach the conclusion we have presented here because of a lack of clarity about how to classify the inherent nonstationarity in uncertainty analysis, and the inability to provide a general method to quantify it.

However, our successful determination of ϕ_r (i.e., 0.07 ± 0.01, T_{IE} of PST for 24–26 May 2007 in Table I) might account for the almost perfect spatial homogeneity by a specific cultivation subject to water body. Even at DTT of heterogeneous land cover, not only T_{IE} (0.09 ± 0.02 for 23–25 April 2009 in Table I) approached ϕ_r value, but also some hourly T reached the determinate ϕ_r value under the condition of friction velocity $u^* > 0.5$ m s$^{-1}$ (Figure 1). These results are of brace to understand our ϕ_r determination in observational base.

Quality control and quality assurance

The $T \pm \sigma$ used as a tolerance criterion provides assured quality control of EC data. For example, for IE data acquired over one week at PST, 55% (circles in left middle flux panel of Figure 2) is acceptable with a tolerance level of 8% based on 67.8% probability; 34% (crosses in the same panel) are rejected; and 11% (shown in gray regions of the panel, not symbolized) are filtered before this analysis because two more consecutive spikes are detected over the turbulence trend. Even in the worst case, at DTT, 40% of F_c data is acceptable at a tolerance level of 14%, 36% are rejected, and 24% are discarded (right lower flux panel in Figure 2). Conveniently, it is possible to estimate QC/QA criteria from T analysis for specified periods, sites and flux types as shown in Table I.

T analysis provides criteria not only for uncertainty, but also provides important QC/QA that is independent of site characteristics. That is, it overcomes the need for site-specific investigations, such as footprint analysis and u^* correction, because it includes uncertainty of spatiotemporal nonstationarity without precondition. For example, the estimated T included the fractional illegitimate error ϕ_i attributable to distortion of stationarity at PST (1–3%) and DTT (2–9%) based on $\delta_i \approx (T - \phi_r)F_c$, where $\phi_r = 0.07$ (see Fractional random error section).

Therefore, EC with uncertainty information based on T analysis can be used for comparison of sites, validation of models, and advanced forward investigations. To reserve higher quality than estimated uncertainty value of each flux, we recommend that the rejected measurements (crosses in Figure 2) are re-estimated by using a gap-filling method, or are screened by more strict critical value of T irrespective of data continuity. Furthermore, we found that the relationship between T and u^* was not clear, thus it was difficult to say that every F value having $u^* > 0.2$ m2 s$^{-1}$ always located in acceptable T estimated in this experimental period (see the gray regions in Figure 1).

Table I

Sites	Date	H	IE	F_c
PST	2007 MAY	0.08 ± 0.04	0.08 ± 0.03	0.10 ± 0.06
	24–30	0.08 ± 0.05	0.07 ± 0.01	0.10 ± 0.04
	27–30	0.10 ± 0.04	0.10 ± 0.03	0.10 ± 0.08
DTT	2009 APR	0.11 ± 0.08	0.16 ± 0.09	0.09 ± 0.05
	23–29	0.10 ± 0.04	0.11 ± 0.09	0.09 ± 0.02
	26–29	0.16 ± 0.07	0.22 ± 0.11	0.14 ± 0.10
CONCLUSIONS

We proposed a rational function T that can be used to determine fractional error ϕ of EC and demonstrated its validity for use with observational EC data. The function clearly shows that, T is composed of ϕ_r, which is ever present in the randomness of white noise, and ϕ_i, which varies according to the distortion of spatiotemporal stationarity of EC measurement. We demonstrated ϕ_i to be constant with a value 0.07 even though additional studies are advisable, and successfully evaluated ϕ_i from the discrepancy between T and ϕ_r. Inferring from previous studies (Finkelstein and Sims, 2001; Hollinger and Richardson, 2005; Mano et al., 2007; Kim et al., 2011) it is therefore probable consequence that ϕ_i by EC measurement under optimized micrometeorological condition is a constant because H, lE and F_c are all controlled by eddy mixing process.

The T analysis is also useful for QC/QA of EC data. It provides information about uncertainty, a criterion for data filtering, and a scale parameter for nonstationarity, without the need for other analysis or correction. In addition to dealing with uncertainty and stationarity, T analysis is independent of site specific and flux kind.

For future investigations, we will first consider whether or not T values should be smaller than 7%. We will then attempt to develop a heterogeneity index using the considered T and ϕ_i and, finally, develop a model that will help to reduce the uncertainty from future EC data analyses.

ACKNOWLEDGMENTS

This study was partially supported by the Science and Technology Research Partnership for Sustainable Development, JST-JICA, Japan, and the Innovative Program of Climate Change Projection for the 21st Century (KAKUSHIN Program) from MEXT, Japan.

REFERENCES

Baldocchi DD. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology 9: 479–492. doi: 10.1046/j.1356-2486.2003.00629.x.
Bevington PR, Robinson DK. 2003. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill.

Finkelstein PL, Sims PF. 2001. Sampling error in eddy correlation flux measurements. Journal of Geophysical Research 106: 3503–3509. doi: 10.1029/2000JD900731.

Hollinger DY, Richardson AD. 2005. Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiology 25: 873–885. doi: 10.1093/treephys/25.7.873.

Kim W, Cho J, Myong G, Mano M, Komori D, Kim S-D. 2008. Quality assessment of data from the Daegwallyeong flux measurement station (DFMS) based on short-term experiments. Journal of Agricultural Meteorology 64: 111–120.

Kim W, Komori D, Cho J. 2009. The characteristic of relative error in eddy covariance measurements and its application to data quality control in rainfed paddy field. Journal of Agricultural Meteorology 65: 201–207.

Kim W, Komori D, Cho J. 2011. The characteristic of fractional uncertainty on eddy covariance measurement. Journal of Agricultural Meteorology 67: 163–171.

Lenschow DH, Mann J, Kristensen L. 1994. How long is long enough when measuring fluxes and other turbulence statistics? Journal of Atmospheric and Oceanic Technology 11: 661–673. doi: 10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2.

Leuning R. 2004. Measurements of trace gas fluxes in the atmosphere using eddy covariance: WPL corrections revisited. In Handbook of Micrometeorology, Lee X, Massman W, Law B (eds.). Kluwer Academic Publishers: The Netherlands; 119–132.

Loescher HW, Law BE, Mahrt L, Hollinger DY, Campbell J, Wofsy SC. 2006. Uncertainties in, and interpretation of, carbon flux estimates using the eddy covariance technique. Journal of Geophysical Research 111: D21S90. doi: 10.1029/2005JD006932.

Mahrt L. 1998. Flux sampling errors for aircraft and towers. Journal of Atmospheric and Oceanic Technology 15: 416–429. doi: 10.1175/1520-0426(1998)015<0416:FSEMFE>2.0.CO;2.

Mano M, Miyata A, Nagai H, Yamada T, Ono K, Saito M, Kobayashi Y. 2007. Random sampling errors in CO2 fluxes measured by the open-path eddy covariance method and their influence on estimating annual carbon budget. Journal of Agricultural Meteorology 63: 67–79 (in Japanese with English abstract).

Moncrieff JB, Malhi Y, Leuning R. 1996. The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water. Global Change Biology 2: 231–240. doi: 10.1111/j.1365-2486.1996.tb00075.x.

Oren R, Hsieh C-I, Stoy PC, Albertson JD, Mccarthy HR, Harrell P, Katul GG. 2006. Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation in turbulent fluxes and sampling errors in eddy-covariance measurements. Global Change Biology 12: 883–896. doi: 10.1111/j.1365-2486.2006.01131.x.

Richardson AD, Maheecha MD, Falge E, Kattge J, Moffat AM, Papale D, Reichstein M, Stauch VJ, Braswell BH, Churkina G, Krujit B, Hollinger DY. 2008. Statistical properties of random CO2 flux measurement uncertainty inferred from model residuals. Agricultural and Forest Meteorology 148: 38–50. doi: 10.1016/j.agrformet.2007.09.001.

Vickers D, Mahrt L. 1997. Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology 14: 512–526. doi: 10.1175/1520-0426(1997)014<0512:QCFASP>2.0.CO;2.

Vickers D, Thomas C, Law BE. 2009. Random and systematic CO2 flux sampling errors for tower measurements over forests in the convective boundary layer. Agricultural and Forest Meteorology 149: 73–83. doi: 10.1016/j.agrformet.2008.07.005.