Unveiling neotropical serpentine flora: a list of Brazilian tree species in an iron saturated environment in Bom Sucesso, Minas Gerais

Aretha Franklin Guimarães1, Luciano Carramaschi de Alagão Querido2, Polyanne Aparecida Coelho3, Paola Ferreira Santos1 and Rubens Manoel dos Santos3

1Programa de Pós-Graduação em Botânica Aplicada, Departamento de Biologia, Universidade Federal de Lavras, Cx. Postal 3037, Campus Universitário, s/n., 37200-000, Minas Gerais, Brazil. 2Programa de Pós-Graduação em Ecologia Aplicada, Departamento de Biologia, Universidade Federal de Lavras, Minas Gerais, Brazil. 3Programa de Pós-Graduação em Engenharia Florestal, Departamento de Ciências Florestais, Universidade Federal de Lavras, Minas Gerais, Brazil. *Author for correspondence. E-mail: areguimaraes@gmail.com

ABSTRACT. Serpentine soils are those holding at least of 70% iron-magnesium compounds, which make life intolerable for many species. Although plant’s adaptation to environmental toughness is widely studied in tropics, virtually nothing is known about Brazilian serpentine flora. Our aim was to bring up and characterize the serpentine flora in Bom Sucesso, Minas Gerais state, Brazil. We performed expeditions utilizing rapid survey sampling method to identify the arboreal compound in the area. Plants within circumference at breast high (CBH) up to 15,7 cm were included in our study. A specialist identified all the individuals to species level. We found 246 species located in 59 botanical families. Fabaceae, Myrtaceae and Melastomataceae were the most representative families in the area. Serpentine areas usually present a few species capable to survive to adverse conditions, contrasting the high number found in our study. To our knowledge, this is the first floristic survey in serpentine areas in the neotropics, reinforcing the need for more studies about plant diversity in those areas. It seems that serpentinites is not the key factor influencing plant diversity in the neotropics. The high diversity found in our study strengthens serpentine areas as a place for conservation concern.

Keywords: ultramafic vegetation; trace elements; heavy metals; serpentine soil.

Introduction

Serpentine soils are those holding 70% or more iron-magnesium compounds, leading to rocky soils with many degrees of nutritional imbalance, containing high concentrations of weathered ultramafic rocks (Salihjaj, Bani, & Echevarria, 2016). They are drifted from ultramafic rocks, shaping environments with low capacity to hold water, nutrient deficit and plenty of toxic materials such as nickel, chrome, magnesium and iron (Anacker, 2014). Although there some areas of serpentine soils in South America, they are scares around the globe, with the majority of them found in the Circum-pacific margin and Mediterranean Sea (Hseu, Zehetner, Fujii, Watanabe, & Nakao 2018), leading to a large gap of knowledge and only a few floristic surveys in Brazil and Central America (Almeda & Martins, 2015). Iron (Fe) and Magnesium (Mg) are known as trace elements because they are found at very small concentrations on plants, and when at higher concentrations, their presence can lead to leaf death, necrotic brown spotting on leaves, chlorosis, cellular damage, permutagenic damage, DNA strand breaks and DNA base modifications (Nagajyoti, Lee, & Sreekanth, 2010). Heavy metals are known to interfere directly on the physiological processes of the plants, playing an important role in the redox reactions, being an integral part of enzymes, interfering in CO2 fixation, nutrient absorption, gaseous exchange and respiration (Nagajyoti et al., 2010). Altogether, those physical and chemical characteristics make serpentine soils a harsh environment for plants, hosting a reduced flora when compared to the neighboring areas (Brady, Kruckeberg, & Bradshaw Jr., 2005).

Serpentine plants need to endure harsh environmental conditions, and therefore understanding the ecological species that survive in those places is an important part of the serpentine problem (Kazakou et al., 2010). They are also known for the presence of extremely specialized habitats that hosts ‘islands’ of biodiversity and endemic flora (Chiarucci & Baker, 2007). In the tropics, flora associated with serpentine
soil is a topic of concern for scientists (Cano, Cano-Ortiz, Del Río, Ramirez, & Ruiz, 2014), but despite the high endemism rates found on those places, floristic surveys exclusive from these locals on South America are scarce (Almeda & Martins, 2015).

Iron rich environments figure among the most threatened and less studied places in State Minas Gerais (Jacobi & Carmo, 2008). The state endured resource exploitation for livestock farming, wood harvest and anthropic fire, reducing its vegetation to a few. Mining in Brazil (from licenses to search for the ore to extractions) quadrupled between 2000 to 2009, reaching a 698.000 km² area in national territory (Jacobi, Carmo, & Campos, 2011). Despite all the measures that are being taken to preserve Brazilian biodiversity, few are those that intend to conserve mineral rich environments (Jacobi et al., 2011).

Due the high threaten to forest fragments and the advances on the mining industry in soils with high concentration of heavy metals (Hseu & Iizuka, 2013), it’s urgent to understand vegetation distribution in serpentine environments and utilize those studies to help recover disturbed areas. Our study’s aim was to characterize flora in a serpentine area in Bom Sucesso, Minas Gerais State, Brazil, by producing a species list that can further be used on conservation projects.

Material and methods

Study area

We conducted this study in Minas Gerais State, Bom Sucesso municipality in an area known as Morro das Almas, located between the coordinates 21º 01’ 58” South and longitude 44º 45’ 28” West, in an altitude of 952 m above the sea level. The region presents a mosaic of phytophysiognomies, since the Minas Gerais State is an ecotone area (transitional areas between phytophysiognomies) Instituto Brasileiro de Geografia e Estatística (IBGE, 2012) with the main vegetation types belonging to the Cerrado (Brazilian savannah) and Mata Atlântica Domain IBGE (2013). Climate in the region is usually marked by two well defined seasons - wet and rainy summers, with dry cold winters IBGE (2013). The mean annual precipitation is 1776 mm concentrated in the months of October to March and mean temperature of 19ºC (Figure 1). The area was previously studied by the Departamento de Ciências do Solo (Department of Soil Science) from Universidade Federal de Lavras, where they investigated the geology of the area and found that the flora from that locality stands upon soils holding high saturation of iron oxide (Fe₂O₃ on 72.33%), characterizing serpentine soils Araujo, Pedroso, Amaral, and Zinn (2014). Local landscape is surrounded by natural fields - a mosaic of Altitude and rocky fields), in which is usual the presence of livestock grazing.

![Figure 1. Map and coordinates of a serpentine soil area and the associated flora at Bom Sucesso municipality, Minas Gerais State, Brazil. A) Map of Brazil. B) Map from Minas Gerais State. C) Sampling area at Bom Sucesso municipality. The black dot in figures B and C represent where this study was carried, at Morro das Almas, Bom Sucesso, Minas Gerais, Brazil.](image-url)
Floristic survey

We performed the floristic survey utilizing the rapid survey sampling method. This method consists in walking through an area and identifying the arboreal species, making a presence/absence list. When the same species appears several times in the same area, we continue to walk to try to find new species. Our sampling was complete when we covered the whole area of the Morro das Almas hill. We covered a 352 ha area and identified some species in the field. Species were sampled and identified by a dendrology specialist (Prof. Rubens Santos, from UFLA), since most of the species were not flourish. The plants which the specialist could not identify in the field were collected and checked using the Brazilian Flora Group (BFG, 2015) virtual herbarium. Plants were identified by using their vegetative characteristics and their names were checked in The Plant List (2018), Reflora 2015 virtual herbarium.

Results

We recorded 249 arboreal species, located in 61 botanical families (Table 1). The most representative family in this study was Fabaceae, holding 31 species, an equivalent to 12.60% of the total richness in the community, followed by Myrtaceae with 33 species (11.58%) and Melastomataceae with 12 species (4.87%) (Figure 2). Those families hold 10.37% of the total floristic richness. Copaifera L. and Bowdichia Kunth were the most representative genera in Fabaceae, followed by Myrcia and Eugenia in Myrtaceae and Tibouchina in Melastomataceae. Myrcia splendens, Pera glabrata and Ocotea pulchella were commonly found in all the area.

Table 1. List of the species from a neotropical serpentine site in Bom Sucesso, Minas Gerais State, Brazil.

Botanical Families/Species	Conservation Status (IUCN)	Endemic Species of Brazil	Protected by Law
Anacardiaceae			
Astronium fraxinifolium Schott	Low concern	No	No
Lithra molleoides (Vell.) Engl.	Not evaluated	No	No
Schinus terethiifolius Raddi	Not evaluated	No	No
Tapirira guianensis Aubl.	Not evaluated	No	No
Tapirira obtusa (Benth.) J.D.Mitch.	Not evaluated	No	No
Annonaceae			
Annona caranu Warm.	Low concern	No	No
Annona coriifolia A.St.-Hil.	Not evaluated	No	No
Annona emarginata (Schldl.) H.Rainer	Low concern	No	No
Annona nemaurofis H.Ramer	Not evaluated	Not evaluated	No
Annona sylvatica A.St.-Hil.	Not evaluated	Yes	No
Duguetia furfuracea (A.St.-Hil.) Saff.	Not evaluated	Yes	No
Duguetia lancelata A.St.-Hil.	Low concern	Yes	No
Guattaria auranti A.St.-Hil.	Low concern	Yes	No
Xylopia brasiliensis Spreng.	Near Threatened	Yes	No
Xylopia sericea A.St.-Hil.	Not evaluated	No	No
Apocynaceae			
Aspidosperma austral Müll.Arg.	Low concern	No	No
Aspidosperma cylindracea Müll.Arg.	Low concern	No	No
Aspidosperma sp.	Not evaluated	Not evaluated	No
Aspidosperma soppauaum Benth. ex Müll.Arg.	Low concern	Yes	No
Aspidosperma tomentous Mart. & Zucc.	Low concern	Yes	No
Aquifoliaceae			
Ilex cerasifolia Reissek	Not evaluated	Yes	No
Ilex conoarpa Reissek	Not evaluated	Yes	No
Araliaceae			
Denophanax cuneatus (DC.) Decne. & Planch.	Low concern	No	No
Schefflera macrocarpa (Cham. & Schldl.) Frodin	Not evaluated	Yes	No
Arecaceae			
Syagrus flexuosa (Mart.) Becc.	Not evaluated	No	No
Syagrus romanzoffiana (Cham.) Glassman	Low concern	Yes	No
Asteraceae			
Baccharis brachylophoides DC.	Not evaluated	Not evaluated	No
Baccharis dentata (Vell.) G.M.Barroso	Not evaluated	No	No
Eriemanthius erythrophysus (DC.) MacLeish	Not evaluated	Yes	No
Geonatica paniculata (Less.) Cabrera	Not evaluated	Not evaluated	No
Geonatica polymophu (Less.) Cabrera	Low concern	Not evaluated	No
Piptocarpa macropoda (DC.) Baker	Not evaluated	Yes	No
Vernonanthura divaricata (Spreng.) H.Rob.	Not evaluated	No	No
Vernonanthura laxifolia (Gardner) H.Rob.	Vulnerável	Yes	No
Botanical Families/Species	Conservation Status (IUCN)	Endemic Species of Brazil	Protected by Law
---------------------------	----------------------------	---------------------------	-----------------
Bignoniaceae			
Cybistax antisiphilitica	Not evaluated	No	No
Handroanthus aureus	Not evaluated	No	No
Handroanthus odreacei	Not evaluated	No	No
Handroanthus serratifolius	Not evaluated	Yes	No
Jacaranda caroba	Not evaluated	Yes	No
Jacaranda marantana	Low concern	Yes	Yes
Boraginaceae			
Cordia sellowiana	Not evaluated	Yes	No
Cordia trichotoma	Not evaluated	No	No
Borreria			
Protium spruceanum	Not evaluated	No	No
Protium vulgaris	Not evaluated	Yes	No
Tractiniopsis farrigina	Endangered	Yes	Yes
Calophyllaceae			
Calophyllum brasiliense	Not evaluated	No	No
Kidneyrea cornea	Not evaluated	No	No
Kidneyrea speciosa	Not evaluated	Yes	No
Burseraceae			
Protium spruceanum	Not evaluated	No	No
Protium widgrenii	Not evaluated	Yes	No
Uramphus	Not evaluated	Yes	Yes
Trattinnickia			
Citronella paniculata	Not evaluated	No	No
Caryocaraceae			
Caryocar brasiliense	Not evaluated	No	No
Celastraceae			
Monteverdia evonymodes	Not evaluated	No	No
Myrtus gorumala	Not evaluated	No	No
Pimoketra popula	Not evaluated	No	No
Salacia elliptica	Not evaluated	No	No
Chrysobalanaceae			
Hirtella glandulosa	Not evaluated	No	No
Clusiaceae			
Gavatsia brasiliensis	Not evaluated	Yes	No
Clusiaceae			
Terminalia argentea	Not evaluated	No	No
Terminalia floribundus	Low concern	No	No
Cunoniaceae			
Lamanonia ternata	Not evaluated	Yes	No
Fabaceae			
Albizia polyphylla	Not evaluated	Yes	No
Andira anethelina	Not evaluated	Yes	No
Andira fassianofloia	Not evaluated	Yes	No
Banbahia rafa	Not evaluated	Yes	No
Bregida virgilioides	Near Threatened	No	No
Copaifera longifolia	Not evaluated	No	No
Copaifera magnificolia	Not evaluated	Yes	No
Dalbergia micabellum	Not evaluated	Yes	Yes
Dalbergia villosa	Not evaluated	No	No
Entroebium gummiforum	Not evaluated	Yes	No
Hymenaea courbaril	Low concern	No	No
Hymenaea stigonacarpa	Not evaluated	No	No

Guimarães et al., Acta Scientiarum. Biological Sciences, v. 41, e44594, 2019
Botanical Families/Species	Conservation Status (IUCN)	Endemic Species of Brazil	Protected by Law
Inga vera Willd.	Not evaluated	No	No
Leptolobium dasyxarpum Vogel	Not evaluated	No	No
Leptolobium elegans Vogel	Not evaluated	No	No
Leucaena inaurea (Vell.) Barneby & J.W. Grimes	Not evaluated	Yes	No
Maclurita hirtum (Vell.) Stellfeld	Not evaluated	No	No
Maclurita nitiana (Vell.) Benth.	Low concern	No	No
Maclurita villosa Vogel	Low concern	No	No
Ormosia fastigiatu Tul.	Not evaluated	Yes	No
Piptadenia gossanathra (Mart.) J.F.Macbr.	Low concern	No	No
Platypodium elegans Vogel	Not evaluated	No	No
Sena averfordae (Herbert) H.S.Irwin & Barneby	Not evaluated	Yes	No
Sena macrocarpa (DC. ex Collad.) H.S.Irwin & Barneby	Not evaluated	No	No
Sena multijuga (Risch.) H.S.Irwin & Barneby	Not evaluated	No	No
Stryphnodendron alstroemers (Mart.) Cov.	Low concern	No	No
Stryphnodendron obtusum Benth.	Not evaluated	No	No
Stryphnodendron ochianum E.M.O.Martins	Not evaluated	Yes	No
Tachigali demidata (Vogel) Oliveira-Filho	Near Threatened	Yes	No
Tachigali nguea (Mart. ex Benth.) Zarucchi & Popoly	Near Threatened	Yes	No
Vatairea macrocarpa (Benth.) Ducke	Not evaluated	No	No
Hypericaceae			
Viania guianensis (Aubl.) Choisy	Not evaluated	No	No
Laticeraceae	Laticena hadenianum Choisy	Not evaluated	No
Lamiaceae			
Aegiphila huetziana Cham.	Not evaluated	No	No
Hypericum tubulatum (Spreng.) (Mart.) Cov.	Not evaluated	No	No
Hyptidendron canum (Pohl ex Benth.) Harley	Low concern	Yes	No
Hyptidendron sp.	Not evaluated	No	No
Vitex megapotamica (Spreng.) Moldenke	Not evaluated	No	No
Vitex pohyana Cham.	Not evaluated	Yes	No
Lauraceae			
Aniba castanilla (Kunth) Mez.	Not evaluated	Yes	No
Aniba forbesi (Nees & Mart.) Mez.	Not evaluated	Yes	No
Endlicheria paniculata (Spreng.) J.F.Macbr.	Not evaluated	No	No
Nestandra grandiflora Nees	Low concern	Yes	No
Nestandra megapotamica (Spreng.) Mez.	Not evaluated	No	No
Nestandra nitidula Ness	Not evaluated	Yes	No
Nestandra oppositifolia Ness	Not evaluated	No	No
Ocotella corymbosa (Meisn.) Mez.	Not evaluated	No	No
Ocotella odorifera (Vell.) Rohwer	Endangered	Yes	Yes
Ocotella pulchella (Nees & Mart.) Mez.	Low concern	No	No
Persea major (Meisn.) L.E.Kopp	Not evaluated	Yes	No
Lecythidaceae			
Carniana estrellensis (Raddi) Kunthze	Not evaluated	No	No
Lythraceae			
Lathyrus parvus A.St.-Hil.	Low concern	No	No
Malpighiaceae			
Byrsonima coccolobifolia Kunth	Low concern	No	No
Byronima intermedia A.Juss.	Not evaluated	Yes	No
Byronima irticata DC.	Not evaluated	No	No
Byronima verbascifolia (L.) DC.	Not evaluated	No	No
Heteropitys byronimifolia A.Juss.	Not evaluated	No	No
Malvaceae			
Eriotheca candollea (K.Schum.) A.Robyns	Not evaluated	Yes	No
Luehea candida Mart. & Zucc.	Low concern	No	No
Luehea divaricata Mart.	Not evaluated	No	No
Luehea grandiflora Mart. & Zucc.	Not evaluated	No	No
Luehea paniculata Mart. & Zucc.	Not evaluated	No	No
Pseudobombax grandiflorum (Cav.) A.Robyns	Low concern	Yes	No
Pseudobombax longiflorum (Mart. & Zucc.) A.Robyns	Not evaluated	No	No
Pseudobombax tenerrimus (Mart.) A.Robyns	Low concern	No	No
Melastomataceae			
Miconia albicans (Sw.) Triana	Not evaluated	Yes	No
Miconia birchellii Triana	Not evaluated	Yes	No
Miconia pepcapa DC.	Not evaluated	Yes	No
Miconia zollowiana Naudin	Not evaluated	Yes	No
Miconia trianae Cogn.	Not evaluated	Yes	No
Miconia tristis Spring	Not evaluated	Yes	No
Miconia villosenovii Klotzsch ex Naudin	Low concern	Yes	No
Pleroma candolleaunum (Mart. ex DC.) Triana	Not evaluated	Yes	No
Tibouchina estrellensis (Raddi) Cogn.	Not evaluated	Yes	No
Botanical Families/Species	Conservation Status (IUCN)	Endemic Species of Brazil	Protected by Law
---------------------------	-----------------------------	---------------------------	-----------------
Pleroma fis sewerium Schrank et Mart. ex DC.	Not evaluated	Yes	No
Pleroma fothergillii (Schrank et Mart. ex DC.) Triana	Not evaluated	Yes	No
Pleroma guinahockum (Desr.) D. Don	Not evaluated	Yes	No
Meliaceae			
Cabralea canjerana (Vell.) Mart.	Not evaluated	No	No
Cedrela fusilis Vell.	Vulnerável	No	No
Tridilia pallens C.D.C.	Low concern	Yes	No
Monimiaceae			
Mollinedia argyrogyna Perkins	Low concern	Yes	No
Moraceae			
Brosimum gandichandii Trécule	Not evaluated	No	No
Ficus pertusa L.F.	Not evaluated	No	No
Ficus adhatodifolia Schott ex Spreng.	Not evaluated	No	No
Madura tintoria (L.) D.Don ex Steud.	Not evaluated	No	No
Myrtaceae			
Blepharocalyx salicifolius (Kunth) O.Berg	Low concern	No	No
Calyptranthes chuifiofa O.Berg	Not evaluated	No	No
Campomanesia guazumifolia (Camassa) O.Berg	Not evaluated	No	No
Campomanesia retuina (Camassa) O.Berg	Not evaluated	Yes	No
Campomanesia xanthocarpa (Mart) O.Berg	Low concern	No	No
Eugenia bimarginata DC.	Not evaluated	No	No
Eugenia discolobus C.Wright	Not evaluated	No	No
Eugenia floríaca DC.	Low concern	Yes	No
Eugenia hiemalis Camp.	Low concern	No	No
Eugenia sonderiana O.Berg	Not evaluated	Yes	No
Eugenia verticillata (Vell.) Am.	Not evaluated	No	No
Eugenia discolobus C. Wright & Sauvalle	Not evaluated	No	No
Myrcenaia miestiana (Gardner) D.Legrand & Kausel	Low concern	Yes	No
Myrcia guianensis (Aubl.) DC.	Low concern	No	No
Myrcia hebeptalae DC.	Not evaluated	Yes	No
Myrcia multiforma (Lam.) DC.	Not evaluated	No	No
Myrcia obovata (O.Berg) Nied.	Low concern	Yes	No
Myrcia subcordata DC.	Not evaluated	Yes	No
Myrcia retorta Camp.	Not evaluated	Yes	No
Myrcia splendidus (Sw.) DC.	Not evaluated	No	No
Myrcia tontumosa (Aubl.) DC.	Not evaluated	No	No
Myrcia variabilis DC.	Low concern	Yes	No
Myrsinaeum DC.	Low concern	Yes	No
Pimenta pseudocarpophylla (Gomes) Landrum	Not evaluated	Yes	No
Plinia caffra (Mart.) Kausel	Not evaluated	Yes	No
Pitulium ruifum Mart. ex DC.	Not evaluated	Yes	No
Siphondra densifora O.Berg	Low concern	Yes	No
Siphondra unigrensa O.Berg	Low concern	Not evaluated	No
Nyctaginaceae			
Guinaea opposita (Vell.) Reitz	Not evaluated	No	No
Ochnaceae			
Ouratea costanerfella (DC.) Engl.	Not evaluated	No	No
Pentaphylacaceae			
Termesia brasiliens (Camassa)	Low concern	Yes	No
Phyllanthaceae			
Hieronyma alfordoides Allemão	Not evaluated	Not evaluated	No
Piperaceae			
Piper gandichandianum Kunth	Not evaluated	No	No
Polygonaceae			
Ruprechtia lassaltina Meisn.	Not evaluated	No	No
Primulaceae			
Myrten coriaceae (Sw.) R.Br. ex Roem. & Schult.	Not evaluated	No	No
Myrten gardneriana A.DC.	Not evaluated	No	No
Myrten guianensis (Aubl.) Kuntze	Not evaluated	No	No
Myrten lineata (Mez) Imkhan.	Not evaluated	Yes	No
Myrten umbellata Mart.	Not evaluated	No	No
Proteaceae			
Euplassa nfe (Loes.) Sleumer	Not evaluated	Yes	No
Rouala montana Aubl.	Not evaluated	No	No
Rubiaceae			
Amasua guianensis Aubl.	Not evaluated	No	No
Amaeia intermedia Mart. ex Schult. & Schult.f.	Not evaluated	No	No
Chomera arica Miüß.Arg.	Not evaluated	Yes	No
Cordera concol (Cham.) Kuntze	Not evaluated	No	No
Cordera scuoli (Vell.) Kuntze	Not evaluated	No	No
Botanical Families/Species	Conservation Status (IUCN)	Endemic Species of Brazil	Protected by Law
---	-----------------------------	---------------------------	------------------
Faramea latifolia (Cham. & Schltdl.) DC.	Not evaluated	Yes	No
Guettarda arungensis Cham. & Schltdl.	Not evaluated	No	No
Guettarda rubrinoidea Cham. & Schltdl.	Not evaluated	Yes	No
Iora bifoliosa Benth.	Not evaluated		No
Macaronesia brasiensis (Hoffm. ex Ham.) Cham. & Schltdl.	Not evaluated	No	No
Rudgea rubrinoidea (Cham.) Bent.	Not evaluated	No	No
Rutaceae			
Zanthoxylum caribaeum Lam.	Not evaluated	No	No
Zanthoxylum fagara (L.) Sarg.	Not evaluated	No	No
Zanthoxylum rhoifolium Lam.	Not evaluated	No	No
Zanthoxylum riedelianum Engl.	Not evaluated	No	No
Salicaceae			
Casaria arborescens (Rich.) Urb.	Not evaluated	No	No
Casaria deandreae Jacq.	Not evaluated	Yes	No
Casaria lasiophylla Eichler	Low concern	Yes	No
Casaria sylvestris Sw.	Not evaluated	No	No
Sapindaceae			
Allophylus edulis (A.St.-Hil. et al.) Hieron. ex Niederl.	Not evaluated	No	No
Capena zanthoxyloides Radlk.	Not evaluated	No	No
Sapotaceae			
Chrysophyllum marginatum (Hook. & Arn.) Radlk.	Not evaluated	No	No
Pouteria gardneri (Mart. & Miq.) Baehni	Not evaluated	No	No
Siparunaceae			
Siparuna brasiliensis (Spreng.) A.DC.	Low concern	Yes	No
Siparuna guianensis Aubl.	Not evaluated	No	No
Smilacaceae			
Similes insulizensis Spreng.	Not evaluated	Yes	No
Solanaceae			
Cestrum axillare Vell.	Not evaluated	No	No
Solanum bulbatum Vell.	Low concern	Yes	No
Solanum cernuum Vell.	Not evaluated	Yes	No
Solanum lyrbarum A.St.-Hil.	Not evaluated	No	No
Styracaceae			
Styax camporum Pohl	Not evaluated	No	No
Styax ferrugineus Nees & Mart.	Not evaluated	No	No
Styax latifolius Pohl	Not evaluated	Yes	No
Styax pohlii A.DC.	Not evaluated	No	No
Symplocaceae			
Symphoecus pulcher Klotzsch ex Benth.	Not evaluated	No	No
Symphoecus sp.	Not evaluated	No	No
Thymelaceae			
Daphnopsis coryacea Taub.	Not evaluated	Yes	No
Urticaceae			
Cecropia pachystachya Trécule	Not evaluated	No	No
Verbenaceae			
Aloysia virgata (Ruiz & Pav.) A.Juss.	Not evaluated	No	No
Vochysiaceae			
Qualea grandiflora Mart.	Not evaluated	No	No
Qualea multiflora Mart.	Not evaluated	No	No
Vochysia magnifica Warm.	Not evaluated	Yes	No
Vochysia rufa Mart.	Not evaluated	Yes	No
Vochysia thyroides Pohl	Not evaluated	Yes	No
Vochysia tucanorum Mart.	Not evaluated	No	No
Zygophyllaceae			
Kallstroemia minor Hook.f.	Not evaluated	Not evaluated	No

From the 249 species recorded in our study, 91 are native from Brazil. Four of the species are recorded as Near Threatened, two are Vulnerable and two are Endangered according to the IUCN Red List (International Union for Conservation of Nature [IUCN], 2019).

Discussion

Serpentine environments provide peculiar conditions, resulting in a strong selective pressure, specialized flora to adverse conditions and holding many degrees of soil toxicity and endemism (Cano et al., 2014). Due to the many degrees of nutritional imbalance and inhospitable physicochemical conditions on
soils, it is usual to find a depauperate flora on serpentine areas (Branco & Ree, 2010). In some surveys regarding flora associated to serpentine soils in the tropics, it is usual to find a low number of species (Cano et al., 2014), counterpointing the high species number found in our survey. The highest species number found for the Americas in a serpentine soil area was 219 species in Dominican Republic (Cano et al., 2014) and recently 135 species in Philippines (Sarmiento, 2018), reinforcing the importance of the Morro das Almas area as one of the most diverse serpentine areas from the Tropics.

The amount of species found in our study points to the existence of some kind of adaptation by the plants present in Morro das Almas, making explicit that despite the stress caused by toxic metals in soil, vegetation might present morphological and anatomical adaptations to deal with those effects. Despite the proposal that serpentine soils are limiting factors to vegetation diversification, in our study it doesn't seem to be the key factor influencing this community's plurality, as the high species number can evidence. Fabaceae, Myrtaceae and Melastomataceae, the families with higher species richness, also characterize the neighboring region flora (Guimarães, Almeida, Carneiro, Souza, & Siqueira, 2012; Terra et al., 2018), foregrounding its adaptive power facing edaphic variations.

Fabaceae is frequently associated with nodule systems that benefit not only the plants from this family, but also induces changes in the soil fertility, nitrogen fixation and enhances the variability of microbes (Saad, Kobaissi, Amiaud, Ruelle, & Benizri, 2018), characteristics that might explain the higher representativeness of this family in our study. It is also possible that the soil microbes found in the area might be highly adapted to the excess of toxic heavy metals, as the soil microbes activity can affect the fertility, carbon storages and growth patterns from the plants (Malik et al., 2018).

From the 249 species recorded, two (Trattinnickia ferruginea and Ocotea odorifera) are classified as endangered according to the IUCN Red List (IUCN, 2019) and protected by the Brazilian law as priority for the conservation in the country (Brasil, 2008). The fact that we could found species that are protected by law at Morro das Almas reinforces the need to pay better care for this area. Morro das Almas hill has already been studied by MMX Mineração e Metálicos S.A., a company from the Eike Batista group, as a possible location to exploit minerals, but the business didn’t continue due to the fact that the company experienced a bankrupt. The fact that a mining company already had the license to exploit this region makes the need to study this place urgent. Since the State of Minas Gerais is already dealing with a series of environmental contamination due to the disrupts of the damn in Mariana and Brumadinho that killed two important rivers for the state (Rio Doce and Rio Paraopeba), it is vital to study and comprehend the flora from places with natural excess of heavy metal, using them as potencial phytoremediators and vegetation management projects for areas impacted by ore extractions (Ali, Kahn, & Sajad, 2013).

As our results demonstrate from the high number of species found on the area, it seems that the presence of serpentine soil is not enough to restrict the local flora biodiversity, which reinforces that there...
might be some anatomical and physiological adaptations on the plants from the studied community to deal with the environmental adversity provided by the high levels of iron–magnesium compounds found on the local soil. As those soils are only found in less than 1% of the Earth’s exposed surface (Vithanage, Rajapaksha, Oze, Rajakaruna, & Dissanayake, 2014), further investigations on the area might explore the biochemical, ecological and resistance to stress aspect of the plants (Echevarria et al., 2018) to help understand the functioning aspect of this single community. Investigating the relationships between the plants from serpentine areas and the soil might assist on phytostabilization projects, as it’s been successfully used in other countries (Boisson et al., 2018; Mizuno, Nakahara, Fujimori, & Yoshida, 2018).

Conclusion

Species substitution and environmental heterogeneity found in this study reinforce serpentine environments importance to conservation as they act as refugee to those species providing a specific habitat for the vegetation.

Acknowledgements

We thank Universidade Federal de Lavras and Departamento de Ciências Florestais for all their support. We thank Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the concession of study scholarship. We also thank for our lab colleagues, especially Nay Alecrim, Paula Eveline and professor Carla Rodrigues Ribas, for collaborating on discussions. We thank Eduardo de Paiva Paula for his help with species identification and fieldwork. This paper was partially produced in PEC 527 - Scientific Publication, from Applied Ecology post-graduation discipline at UFLA. We also thank Professor Ludmila Guimarães for her enthusiasm and revision. We thank the two peer reviewers and the editor for their contributions on the manuscript.

References

Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869-881. doi: http://dx.doi.org/10.1016/j.chemosphere.2013.01.075

Almeda, F., & Martins, A. B. (2015). *Pterolepis haplostemona* (Melastomataceae): a new serpentine endemic from Goiás, Brazil. *Phytotaxa*, 201(5), 233-238. doi: 10.11646/phytotaxa.204.2.10

Anacker, B. L. (2014). The nature of serpentine endemism. *American Journal of Botany*, 101(2), 219-224. doi: 10.3732/ajb.1300349

Araujo, M. A., Pedroso, A. V., Amaral, D. C., & Zinn, Y. L. (2014). Paragénese mineral de solos desenvolvidos de diferentes litologias na região sul de Minas Gerais. *Revista Brasileira de Ciências do Solo*, 38(1), 11-25. doi: 10.1590/S0100-06832014000100002

Boisson, S., Séleck, M., Le Stradic, S., Collignon, J., Garin, O., Malaisse, F., ... Mahy, G. (2018). Using phytostabilisation to conserve threatened endemic species in southeastern Democratic Republic of the Congo. *Ecological Research*, 33(4), 789-798. doi: 10.1007/s11284-018-1604-2

Brady, K. U., Kruckeberg, A. R., & Bradshaw Jr., H. D. (2005). Evolutionary ecology of plant adaptation to serpentine soils. *Annual Review of Ecology, Evolution, and Systematics*, 36, 243-266. doi: 10.1146/annurev.ecolsys.35.021103.105730

Branco, S., & Ree, R. H. (2010). Serpentine soils do not limit mycorrhizal fungal diversity. *Plos One*, 5(7), e11757. doi: 10.1371/journal.pone.0011757

Brasil. (2008). Ministério do Meio Ambiente. Instrução Normativa nº 6 de 23 de setembro de 2008. Brasília, DF: Diário Oficial da União.

Brazil Flora Group [BFG]. (2015). Growing knowledge: an overview of seed plant diversity in Brazil. *Rodriguésia*, 66(4), 1085-1115. doi: 10.1590/2175-7860201566411

Cano, E., Cano-Ortiz, A., Del Río, S., Ramirez, A. V., & Ruiz, F. J. E. (2014). A phytosociological survey of some serpentine plant communities in the Dominican Republic. *Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology*, 148(2), 200-212. doi: 10.1080/11263504.2012.760498

Chiarucci, A., & Baker, A. J. (2007). Advances in the ecology of serpentine soils. *Plant and Soil*, 293(1), 1-2. doi: 10.1007/s11104-007-9268-7
Echevarria, G., Baker, A. J., Boyd, R. S., van der Ent, A., Mizuno, T., Rajakaruna, N., & Bani, A. (2018). A global forum on ultramafic ecosystems: from ultramafic ecology to rehabilitation of degraded environments. *Ecological Research, 33*(5), 1-6. doi: 10.1007/s11284-018-1627-8.

Guimarães, J. C. C., Almeida, H. S., Carneiro, V. M. C., Souza, C. M., & Siqueira, F. F. (2012). Diversidade e estrutura de um fragmento florestal no planalto de Poços de Caldas, Andradas, MG. *Enciclopédia Biosafera, 8*(14), 1201-1215.

Hseu, Z. Y., & Iizuka, Y. (2013). Pedogeochemical characteristics of chromite in a paddy soil derived from serpentinites. *Geoderma, 202-203*, 126-135. doi: 10.1016/j.geoderma.2013.05.021

Hseu, Z. Y., Zehetner, F., Fujii, K., Watanabe, T., & Nakao, A. (2018). Geochemical fractionation of chromium and nickel in serpentinite soil profiles along a temperate to tropical climate gradient. *Geoderma, 327*, 97-106. doi: https://doi.org/10.1016/j.geoderma.2018.04.050

Instituto Brasileiro de Geografia Estatística [IBGE]. (2012). *Manual técnico da vegetação Brasileira*. Rio de Janeiro, RJ: IBGE.

Instituto Brasileiro de Geografia Estatística [IBGE]. (2013). *Mapeamento das unidades territoriais*. Rio de Janeiro, RJ: IBGE.

International Union for Conservation of Nature [IUCN]. (2019). *The IUCN red list of threatened species*. Version 2018-2. Retrieved from http://www.iucnredlist.org

Jacobi, C. M., & Carmo, F. F. (2008). Diversidade dos campos rupestres ferruginosos no Quadrilátero Ferrífero, MG. *Megadiversidade, 4*(1-2), 24-32.

Jacobi, C. M., Carmo, F. F., & Campos, I. C. (2011). Soaring extinction threats to endemic plants in Brazilian metal-rich regions. *AMBIO: A Journal of the Human Environment, 40*(5), 540-543. doi: 10.1007/s11280-011-0151-7

Kazakou, E., Adamidis, G. C., Baker, A. J., Reeves, R. D., Godino, M., & Dimitrakopoulos, P. G. (2010). Species adaptation in serpentine soils in Lesbos Island (Greece): metal hyperaccumulation and tolerance. *Plant and Soil, 332*(1-2), 369-385. doi: 10.1007/s11104-010-0302-9

Malik, A. A., Puissant, J., Buckeridge, K. M., Goodall, T., Jehmlich, N., Chowdhury, S., Chowdhury, Somak., Gweon, Hyun Soon., Peyton, J. M., Mason, K. E., Agtmaal, M., Blaud, A., Clarck, I. M., Whitaker, J., Pywell, R. F., Ostle, N., Gleixner, G. & Griffiths, R. I. (2018). Land use driven change in soil pH affects microbial carbon cycling processes. *Nature communications, 9*(1), 5591. doi: 10.1038/s41467-018-05980-1

Mizuno, T., Nakahara, Y., Fujimori, T., & Yoshida, H. (2018). Natural revegetation potential of Japanese wild thyme (*Thymus quinquecostatus* Celak.) on serpentinite quarries. *Ecological Research, 33*(4), 777-788. doi: 10.1007/s11284-018-1575-3

Nagaijyoti, P. C., Lee, K. D., & Sreekantan, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. *Environmental Chemistry Letters, 8*(3), 199-216. doi: 10.1007/s10311-010-0297-8

Salihaj, M., Bani, A., & Echevarria, G. (2016). Heavy metals uptake by hyperaccumulating flora in some serpentine soils of Kosovo. *Global Nest Journal, 18*(1), 214-222. doi: 10.30955/gnj.001804

Saad, R. F., Kobaisi, A., Amlaib, B., Ruele, J., & Benizri, E. (2018). Changes in physicochemical characteristics of a serpentine soil and in root architecture of a hyperaccumulating plant cropped with a legume. *Journal of soils and sediments, 18*(5), 1994-2007. doi: https://doi.org/10.1007/s13280-017-01903-1

Sarmiento, R. T. (2018). Vegetation of the Ultramafic Soils of Hinatuan Island, Tagana-An, Surigao Del Norte: an Assessment as Basis for Ecological Restoration. *AMBIENT SCIENCE, 5*(2), 44-50. doi:10.21276/ambli.2018.05.2a01

Terra, M. D. C. N. S., Teodoro, G. S., Pifano, D. S., Fernandes, F. B., Silva, T. M. C., & Berg, E. V. D. (2018). Tree responses to soil and edge effects in a semideciduous forest remnant. *Floresta e Ambiente, 25*(3), e20160542. doi: 10.1590/2179-8087.054216

The Plant List. (2018). *Plantas do Brasil: Resgate histórico e herbário virtual para conhecimento e conservação da flora brasileira*. Rio de Janeiro, RJ: Instituto de Pesquisas Jardim Botânico do Rio de Janeiro.

Vithanage, M., Rajapaksha, A. U., Oze, C., Rajakaruna, N., & Dissanayake, C. B. (2014). Metal release from serpentinite soils in Sri Lanka. *Environmental Monitoring and Assessment, 186*(6), 3415-3429. doi: 10.1007/s10661-014-5626-8