Optimization of supply chain operation cost and gas usage quantity using non-dominated sorting genetic algorithm II (NSGA-II) Method

A Ridwan1*, A Bahauddin1, and M Naufal R P1

1 Department of Industrial Engineering, University of Sultan Ageng Tirtayasa, Banten, Indonesia

*Email: asep.ridwan@untirta.ac.id

Abstract. ABC plant is one of seven plants in XYZ industry which produce Cold Rolling Coil (CRC) and Cold Rolling Sheet (CRS). The problems faced by ABC plant in its supply chain network are the high overall costs of supply chain operations and the quantity of gas usage. The characteristics of this problem consist of more than one objective, the best method for solving this problem called multi-objective optimization. This research is aim to identify the decision variables that will be optimized and determine the optimal quantity of each decision variable using NSGA-II method. The parameters used in this research are the population size of 50, crossover probability with range 0.1-0.9, mutation probability 0.1 and 0.2 also the number of generation 50 and 100. The result shows that the selected parameters for this research are the crossover probability of 0.7, mutation probability of 0.1, number of generation 100. Four decision variables that are optimized, namely CRC produced (Lite, Medium, and Heavy) and CRC stored with the quantities simultaneously are 40,918, 112,479, 173,758, and 43,209 tons. This result will assist the ABC plant in minimizing the overall cost of supply chain (124,532,272 USD) and the quantity of gas usage (39,634,749,440 Kcal).

1. Introduction
The supply chain is a network consisting of companies that work together with the aim of making and distributing a product to end-user. In a supply chain network, it consists of three flow must be managed, namely information, finance, and material [1]. The method used in managing supply chain network is known as supply chain management [2]. ABC plant is one of seven plants in XYZ industry which produce CRC and CRS. This plant implements supply chain management under the supervision of the Supply Chain Improvement (SCI) division. As an actor in a supply chain network ABC plant must be able to see from a variety point of view, one of them is a business view (voice of business) [3]. In this view, the main priority that requires special attention is about the cost without compromising product quality and flexibility [4]. So, the ABC plant still able to fulfil the end user specification, it’s called process capability [5]. Some researchers conduct the research about the cost reduction such as Wiliamson [6]; Ridwan and Noche [5]; and Roeck et al. [7]. Wiliamson [6]
examining the transaction cost economics in outsourcing as an analysis of the basic unit and the procurement decision. Ridwan and Noche [5] decreasing the cost of poor quality of cargo handling in the port, consist of lost cargo, damaged cargo, equipment and transporter breakdown, and delay time. Roeck et al. [7] explaining there are six effects of distributed ledger technology (DLT) solutions to the supply chain transactions as a cost reduction. On the other side, an ABC plant must consider the impact resulting from the production process on the environment around the plant.

The problems faced by ABC plant in its supply chain network are the high overall costs of supply chain operations and the quantity of gas usage. Both problems are caused by the machine performance that is not optimal and sometimes ABC plant has to produce in quantities exceed the order. As a result of excessive production, the supply chain operation cost and the quantity of gas usage are high. The expenses include production, logistics, and savings. Production costs are divided into four variables, such as direct fixed cost, fixed allocations, raw materials, and conversions. Logistics cost is the cost of shipping CRC from ABC plant directly to end users while the storage cost is the cost for storing CRC in the ABC warehouse. Likewise, with the quantity of gas which consists of boiler natural gas, fuel, and process gas. Because of this problem, it is necessary to minimize both using the optimization model. The characteristics of this problem consist of more than one objective, so the best method for solving this problem called Multi Objective Optimization.

Multi-objective optimization is a completing method of optimization which consists of more than one objective function which is simultaneously optimized [8]. There are several methods in Multi-objective Optimization such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing, etc. Genetic Algorithm (GA) is a metaheuristics search algorithm which is based on the mechanism of biological evolution with the nature of searching for the possibilities of prospective solution to get the optimal solution for the problem [9], GA can be implemented in various fields such as video game [8], maintenance scheduling [10], and also in supply chain [3]. In GA, there are several methods which often used, including Non-Dominated Sorting Genetic Algorithm (NSGA-II), Multi-objective Genetic Algorithm (MOGA), and Non-Dominated Ranking Genetic Algorithm (NRGA).

The focus of this research is to solve the optimization problem in the supply chain network of ABC plant not only from the voice of business but also by paying attention to the impact on the surrounding environment. In this research, we set two objective functions according to the problems that exist in the ABC plant, including minimizing the overall cost of supply chain operations and quantity of gas used as an innovation. We used the Non-Dominated Sorting Genetic Algorithm (NSGA-II) as completing method to solve this problem. NSGA-II is a genetic algorithm which uses fast non-dominated sorting procedure, an elitist-preserving approach, and a parameterless niching operator [11]. The consideration to use NSGA-II in this research is due to the advantages of this method compared to the other genetic algorithm and metaheuristics. Utama [3] compared NSGA-II with MOGA, and as a result, NSGA-II provides a better optimum value in achieving the objective function. Mousavi et al. [12] also compared three metaheuristics methods including NSGA-II, NRGA, and PSO, with the results NSGA-II having an average the completion time is shorter than the other two metaheuristics methods.

Some example from previous researches using NSGA-II to solve supply chain optimization problem like in Utama [3] setting two objective functions namely minimizing the total cost of supply chain operations and inaccurate of shipping goods to customers by calculating future and present value. Decision variables used in this research are the quantity of product delivery from producers to wholesalers and wholesalers to retailers. Bandyopadhyay and Bhattacharya [13] establishing three objective functions such as minimizing the total cost of the supply chain, the variance of the quantity of product order, and the total amount of products in inventory. In this research, the decision variables are the number of products stored, ordered, and sent. Another study, Chan et al. [14] setting objective function to minimize total cost which includes total production cost, transportation cost, storage cost, and penalty fee and the second objective is to reduce the percentage of the number of order by retailers
within a particular time. The decision variable used in this study is the type of truck and the quantity of product demand from retailers.

Same with some previous researches mentioned above using the quantity of production as the decision variable. So, this research also uses the quantity of CRC produced consist of three types of CRC (Lite, Medium, and Heavy) and CRC stored as decision variables which will be optimized then. To obtain the optimal configuration for the quantity of CRC produced and stored, several trials were carried out on parameters with different values. The parameter which produces the best average fitness value will be selected and used as a reference to assist XYZ industry in achieving its goal to minimize the overall cost of supply chain operation and quantity of gas usage in ABC plant in certain time horizon.

2. Research Method
This research used quantitative approaches which in the process of solving problems using numerical data as a tool to analyze information under predetermined research objectives. The data used in this research include production cost, logistics cost, storage cost, the quantity of gas usage, production capacity, storage capacity, and also the proportion of production for each CRC product. After data has been collected, data processing start with determining decision variables, objective functions, and constraints. Then, this data presented in a mathematical model and testing the model using NSGA-II method. The NSGA-II process consists of several steps [15]. Before we start the NSGA-II procedures, the parameters are determined. The number of the population used is 50 with crossover probability in range 0.1-0.9, mutation probability 0.1 and 0.2; also the number of generations are 50 and 100. First, based on its range and constraints, a random population was initializing. Then, we evaluate chromosomes in population according to the objective functions. Once the population is evaluated, it is then sorted according to non-domination using fast sort algorithm into each front. The individuals in each front are assigned with rank. The rank one is assigned to individuals in the 1st front and so on. In each front, we measure the distance of individual with its neighbours called crowding distance.

After sorting the individuals, we selected parents using tournament selection and crowded comparison operator. Selected individuals are individuals with smaller rank and greater crowding distance than the other one. To produce offspring, selected parents will undergo crossover and mutation. The method used is a one-point crossover and swap mutation. Chromosome evaluation will also be experienced by the offspring population. The next step is to merge the initial population with the offspring population, so the population size becomes 2N. This merge population is again sorted based on non-domination, and crowding distance and only N individuals are selected. The new generation population will be filled by elements from each front until it exceeds the population size (N) on adding the final front. In this case, the elements in the final front will be sorted in descending order based on their crowding distance and then filled in new generation population until the population size reaches N. This procedure will be repeated until the number of generations is reached. After all NSGA-II procedures are completed, the final step is to measure the attainment of NSGA-II method based on execution time and objective functions attainment in each period. This research follows the steps, as shown in Figure 1.
3. Input Data and The Mathematical Model
In this section, we will discuss the input data used in this research and mathematical model of the problems that exist in the ABC plant.

3.1. Input Data
The data used in this research include production cost consists of conversion cost, raw material cost, direct fixed cost, and fixed allocation cost. Then the logistics cost, storage cost, quantity of gas usage which includes boiler natural gas, fuel gas, and process gas, production and storage capacity as well as the proportion of production for each CRC product of the ABC plant in XYZ industry. Assume all of the data collected have been converted to the monthly average value.

3.2. The Mathematical Model
Mathematical model of the problem in ABC plant are presented in this section using the following notation include indexes, parameters, and decision variables and can be expressed in the numerical equations.
Sets
\(p\) types of finish product \(\{p = 1, 2, \ldots, P\}\)

Parameters
- \(B_{K_p}\) conversion cost of product type \(p\) in a period
- \(B_{BB_p}\) raw material cost of product type \(p\) in a period
- \(B_{TL}\) direct fixed cost in a period
- \(B_{TA}\) allocation fixed cost in a period
- \(B_{L_p}\) production cost of product type \(p\) in a period
- \(B_{S}\) storage cost in a period at ABC warehouse
- \(G_{AB_p}\) quantity of boiler natural gas used for producing product type \(p\) in a period
- \(G_{BB_p}\) quantity of fuel gas used for producing product type \(p\) in a period
- \(G_{P_p}\) quantity of process gas used for producing product type \(p\) in a period
- \(Q_p\) production capacity of ABC plant in a period
- \(Q_s\) storage capacity of ABC warehouse in a period

Decision variables
- \(CR_{CL}\) quantity of CRC type Lite in a period
- \(CR_{CM}\) quantity of CRC type Medium in a period
- \(CR_{CH}\) quantity of CRC type Heavy in a period
- \(CR_{C_f}\) quantity of CRC stored in ABC warehouse in a period

First of all, variables are converted into notation form. Next step is to make a mathematical model of the problem discussed in this research. The objective functions used in this research are minimized the overall cost of the supply chain and minimize the quantity of gas usage, which simultaneously expressed by \(Z_1\) and \(Z_2\). The first objective function (\(Z_1\)) can be seen, as shown below:

\[
\text{Min } Z_1 = B_{P_p} (CR_{CL} + CR_{CM} + CR_{CH}) + B_{L_p} (CR_{CL} + CR_{CM} + CR_{CH}) + B_{S} (CR_{C_f})
\]

The objective function is shown in Eqs.(1) aim to minimize the overall cost of the supply chain in ABC plant that includes three components such as production cost, logistics cost, and storage cost. For production and logistics cost will be multiplied by the amount of production of three types of CRC while storage cost will be multiplied by the number of CRC stored in ABC warehouse. After knowing the value for each component, then the components are summed up to produce the overall cost of the supply chain in ABC plant. Since the production cost consists of four cost variables, it can be formulated, as shown in Eqs.(2):

\[
B_{P_p} = B_{K_p} + B_{BB_p} + B_{TA_p} + B_{TL_p}
\]

The second objective function (\(Z_2\)) can be formulated as:

\[
\text{Min } Z_2 = G_{AB_p} (CR_{CL} + CR_{CM} + CR_{CH}) + G_{BB_p} (CR_{CL} + CR_{CM} + CR_{CH}) + G_{P_p} (CR_{CL} + CR_{CM} + CR_{CH})
\]

Eqs.(3) aims to minimize the quantity of gas usage, which include boiler natural gas, fuel gas, and process gas. The quantity of each type of gas will be multiplied by the amount of production of three types of CRC and summed up to produce a total quantity of gas usage. Also, there are constraints that indicate the capacity of ABC plant which formulated as:

Subject to:
\[\text{CRC}_L + \text{CRC}_M + \text{CRC}_H \leq Q_p \]
(4)

\[\text{CRC}_L \leq Q_s \]
(5)

\[\text{CRC}_L, \text{CRC}_M, \text{CRC}_H \geq 50 \]
(6)

\[\text{CRC}_L \geq 0 \]
(7)

Eqs.(4) is the constraint that shows the production capacity of ABC plant where the amount of CRC production must be smaller or equal to its production capacity. However, Qp is a composite constraint for three CRC products so to determine the production constraint of each type of CRC the production capacity will be multiplied by the proportion of production of each type of CRC. Eqs.(5) represented storage capacity of ABC warehouse while Eqs.(6) is the minimum quantity to produce each type of CRC (Lite, Medium, and Heavy) and Eqs.(7) and the lower bound for the number of CRC stored. In the next section, will be discussed regarding the results obtained using NSGA-II method.

4. Result and Discussion

In this research, the experimentation has been conducted in a PC with specification Pentium ®, Dual-Core CPU E5500 2.8 Ghz processor, 6 Gb memory, windows 10 Pro 64 bit, DirectX version 11.1. NSGA-II algorithm has been experimented using Matlab R2017a. The tuning parameters used in this research include population size of 50, crossover probability within range 0.1-0.9, mutation probability 0.1 and 0.2, and the number of generation 50 and 100. Metaheuristic algorithms are sensitive to their parameters, and a small change can affect the quality of the solution obtained [16]. After processing the data using NSGA-II method, the next step is to measure NSGA-II attainment based on objective function attainment and execution time. The execution time is the time required by the algorithm to obtain Pareto optimal solutions in one run [16]. In this research, we use several combination parameters which include nine values of crossover probability, two values of mutation probability, and two number of generations, so the total trials conducted in 36 trials. The result of trials, as shown in Table 1 below.

Crossover Probability	Mutation Probability	Number of Generation	Cost of Supply Chain Operation (f1)	Quantity of Gas Usage (f2)	Execution Time (sec)
0.9	0.1	50	154,301,225	151,133,861.120	9.459
0.8			152,527,687	48,574,970.880	6.486
0.7			173,987,044	55,442,391.040	5.44
0.6			145,055,808	46,170,373.120	5.646
0.5	0.1	50	165,718,566	52,778,204.160	5.641
0.4			160,576,278	51,094,149.120	5.84
0.3			174,055,228	55,406,725.120	5.492
0.2			177,030,106	56,359,546.880	5.538
0.1			180,432,533	57,475,594.240	5.571
0.9	0.2	50	156,966,963	49,965,056.000	6.003
0.8			147,279,450	46,873,482.240	5.773
0.7			189,787,621	60,449,315.840	5.803
0.6			161,780,011	51,498,449.920	5.481
0.5	0.2	50	154,677,410	49,251,517.440	6.83
0.4			190,500,385	60,657,505.280	6.791
0.3			170,167,129	54,187,868.160	6.773
0.2			182,786,957	58,215,162.880	5.456
0.1			150,799,915	48,014,033.920	6.718
From Table 1 above, we can find out the average fitness and execution time for each different parameter value. For the probability of mutation 0.1 with the number of generation 50, the optimal fitness is at the crossover probability 0.6 with an average fitness value of 145,055,808 USD (f1) and 46,170,373,120 Kcal (f2) with an execution time of 5.646 seconds. With the same number of generation but different mutation probability (0.2), the optimal fitness is at the crossover probability 0.8 with average fitness value of 147.279.450 USD (f1) and 46,873,482,240 Kcal (f2) with an execution time of 5.773 seconds. While in generation 100 with a mutation probability of 0.1, it can be seen that the optimal fitness is at the probability of crossing 0.7 with an average fitness value is 124,532,272 USD (f1) and 39,634,749,440 Kcal (f2) with an execution time 15.727 seconds and for the mutation probability 0.2 the optimal fitness is at the crossover probability 0.8 with an average fitness value of 136,703,873 USD (f1) and 43,501,276,160 Kcal (f2) with an execution time 10.936 seconds.

Also, from Table 1, when using different parameter values will produce different output because NSGA-II is very sensitive to its parameters [8][16]. First, by comparing two value mutation probability 0.1 and 0.2 for the same number of generation, the comparison will look like in the graph, as shown in Figure 2 and Figure 3 below.
Based on the comparison graph for 50 generations, the mutation probability of 0.1 will produce more optimal fitness value than the mutation probability of 0.2. Likewise, for 100 generations, where the graph shows that the mutation probability 0.1 produces more optimal value than the mutation probability of 0.2. So the mutation probability of 0.1 will be chosen for this research. Another parameter that is compared is the number of generation. By using the chosen mutation probability for two different number of generation, namely in the 50th and 100th generations, the comparison is shown in Figure 4 below.
From Figure 4 above by using the chosen mutation probability, the average fitness value in 50th generation is greater than the average fitness value in the 100th generation. It means that the 100th generation has more optimal fitness value than the 50th generation according to the minimization function used in this research. After the probability of mutation and the number of generation is chosen, the next step is to find out the best crossover probability with mutation probability of 0.1 and the number of generation 100. From Table 1 above, shows that the crossover probability with the average fitness value is at the crossover probability of 0.7 with fitness value 124,532,272 USD (f1), and the quantity of gas usage is 39,634,749,440 Kcal (f2) with an execution time of 15.727 seconds. So, the chosen parameters for this research are the crossover probability of 0.7, mutation probability of 0.1 and the number of generation 100. And the output produced using these selected parameters, as shown in Table 2 below.

Chromosome	Solution Population	Cost of Supply Chain Operation (f1)	Quantity of Gas Usage (f2)			
	Lite	Medium	Heavy	Stored		
1	4,067	73,038	954	39,423	62,997,548	19,983,104,000
2	426	73,745	39,923	37,578	70,994,158	22,441,984,000
3	12,092	48,855	66,175	51,896	70,994,158	22,441,984,000
4	44,119	62,074	67,753	26,290	84,212,560	26,776,320,000
5	32,316	91,512	87,467	19,763	90,075,984	28,568,832,000
6	69,913	54,376	14,789	21,446	70,994,158	22,441,984,000
7	2,887	70,659	75,160	51,159	75,899,722	24,060,416,000
8	72,656	54,948	52,582	32,886	75,899,722	24,060,416,000
9	46,112	30,872	130,138	66,307	76,990,186	24,514,048,000
10	71,172	151,859	10,406	31,588	84,212,560	26,776,320,000
11	57,710	21,201	155,364	71,283	84,212,560	26,776,320,000
12	60,546	105,317	134,441	61,023	85,173,770	27,016,960,000
13	77,927	71,861	192,123	25,038	85,173,770	27,016,960,000
14	40,844	165,612	227,858	52,613	86,209,298	27,401,984,000
15	61,514	150,088	276,799	20,629	89,828,164	28,568,832,000
16	69,736	51,298	65,502	53,230	90,075,984	28,568,832,000
Chromosome	Lite	Medium	Heavy	Stored	Cost of Supply Chain Operation (f1)	Quantity of Gas Usage (f2)
------------	-------	--------	--------	--------	-----------------------------------	---------------------------
17	10,215	89,326	98,920	16,367	96,253,546	30,608,128,000
18	77,291	49,633	102,378	27,291	98,199,442	31,161,856,000
19	37,761	83,907	110,707	31,350	100,374,378	31,938,304,000
20	20,059	118,277	107,043	51,027	107,100,158	34,156,544,000
21	20,814	72,126	171,767	53,261	107,100,158	34,156,544,000
22	74,623	126,029	85,426	38,969	113,613,516	36,204,288,000
23	24,777	147,011	116,038	44,805	113,613,516	36,204,288,000
24	51,927	195,659	55,785	40,522	113,943,126	36,204,288,000
25	49,634	155,005	114,352	28,082	122,639,702	38,981,376,000
26	22,246	33,859	274,343	22,212	123,920,428	39,440,384,000
27	6,800	87,083	236,248	61,434	123,920,428	39,440,384,000
28	24,323	103,469	213,339	64,298	133,670,138	42,662,144,000
29	46,889	119,520	175,199	46,121	144,634,832	45,971,456,000
30	13,909	111,150	220,699	31,294	145,251,176	46,148,608,000
31	55,208	33,124	323,516	57,669	149,517,930	47,560,960,000
32	47,478	84,221	295,564	48,947	149,517,930	47,560,960,000
33	3,174	138,366	290,748	75,173	149,517,930	47,560,960,000
34	16,813	199,210	261,633	7,742	153,663,812	48,884,736,000
35	48,972	150,050	282,736	60,283	155,381,572	49,510,656,000
36	7,368	149,267	102,721	13,878	155,381,572	49,510,656,000
37	42,123	149,864	138,213	6,772	155,638,212	49,592,576,000
38	68,905	146,186	114,890	78,410	161,797,352	51,480,576,000
39	63,936	190,684	85,452	65,726	161,893,872	51,480,576,000
40	14,723	72,521	306,631	62,681	161,893,872	51,480,576,000
41	69	207,312	190,270	8,585	166,231,338	53,055,744,000
42	68,823	84,994	279,123	13,948	168,463,280	53,699,840,000
43	15,604	107,551	331,036	26,577	168,759,806	53,854,208,000
44	44,540	187,570	222,489	79,935	170,484,106	54,404,608,000
45	42,371	81,766	354,559	64,912	174,749,276	55,778,048,000
46	38,353	127,335	315,297	40,986	174,798,676	55,778,048,000
47	68,268	178,326	267,037	32,442	174,798,676	55,778,048,000
48	61,419	187,400	280,240	55,475	178,261,100	56,887,040,000
49	77,347	198,362	187,043	61,363	178,738,310	56,887,040,000
50	55,120	196,459	288,248	79,747	188,946,146	60,297,728,000

Average 40,918 112,479 173,758 43,209 124,532,272 39,634,749,440

Based on Table 2, it can be seen the optimal quantity of each decision variable where the quantity used in this research is the average quantity. For CRC type Lite the optimal quantity is 40,918 tons, CRC type Medium 112,479 tons, CRC type Heavy 173,758 tons and quantity of CRC stored is 43,209 tons. Cost of supply chain operation is 124,532,272 USD, and the quantity of gas usage is 39,634,749,440 Kcal.
5. Conclusion
There are four decision variables used in this research including the quantity of CRC produced which consist of CRC type lite, medium, and heavy also the quantity of CRC stored in ABC warehouse with the quantity of each decision variables simultaneously is 40,918 tons, 112,479 tons, 173,758 tons, and 43,209 tons. Cost of supply chain operation is 124,532,272 USD, and the quantity of gas usage is 39,634,749,440 Kcal. By obtaining the quantity of each decision variable, it will assist the XYZ industry, especially ABC plant, in minimizing the overall cost of supply chain operation and the quantity of gas usage.

6. References
[1] Ridwan A Santoso M I Ferdinand P F and Ankarini R 2019 Design of strategic risk mitigation with supply chain risk management and cold chain system approach IOP Conference Series: Materials Science and Engineering 673 1-6
[2] Azmiyati S and Hidayat S 2016 Supply chain performance measurement at pt louserindo magnificent permal using SCOR and FAHP models Jurnal Al Azhar Indonesia Seri Sains dan Teknologi 3 163-170
[3] Utama P 2017 The Development of multiobjective supply chain optimization model by considering time value of money elements using genetic algorithm MOGA and NSGA-II. Thesis (Depok: Universitas Indonesia)
[4] Ridwan A Ekawati R and Novitasari A 2018 Quality control of the steel wire rod product by integration lean six sigma and taguchi method MATEC Web of Conferences 218 1-7
[5] Ridwan A and Noche B 2017 Model of the port performance metrics in ports by integration six sigma and system dynamics International Journal of Quality & Reliability Management 35 82-108
[6] Wiliamson O E 2008 Outsourcing: transaction cost economics and supply chain management Journal of Supply Chain Management 44 5-16
[7] Roeck D Sternberg H and Hofmann E 2020 Distributed ledger technology in supply chains: a transaction cost perspective International Journal of Production Research 58 2124-2141
[8] Aditama D 2017 Dynamic evolution behavior for non-player character on space shooter game using nsga-ii Thesis (Surabaya: Institut Teknologi Sepuluh November)
[9] Wardhani LK Safrizal M and Chairi A 2011 Optimizing the composition of freshwater fish feed ingredients using multi-objective genetic algorithm Proceeding of National Seminar of Information Technology Application 112-117
[10] Sutartono R T 2018 Evaluation of maintenance schedule of central industry with genetic algorithm Thesis (Yogyakarta: Universitas Islam Indonesia)
[11] Deb K Pratap A Agarwal S and Meyarivan T 2002 A Fast and elitist multi-objective genetic algorithm: NSGA-II IEEE Transactions on Evolutionary Computation 6 182-197
[12] Mousavi SM Sadeghi J Niaki STA and Tavana M 2016 A Bi-objective inventory optimization model under inflation and discount using tuned pareto-based algorithms: NSGA-II, NRGA, and MOPSO Applied Soft Computing Journal 43 57-72
[13] Bandyopadhyay S and Bhattacharya R 2014 Solving a tri-objective supply chain problem with modified NSGA-II Algorithm Journal of Manufacturing Systems 33 41-50
[14] Chan FTS Jha A and Tiwari M K 2016 Bi-objective optimization of three echelon supply chain involving truck selection and loading using NSGA-II with Heuristics Algorithm Applied Soft Computing 38 978-987
[15] Jain V and Sachdeva G 2017 Energy, exergy, economic (3e) analyses and multi-objective optimization of vapor absorption heat transformator using NSGA-II technique Energy Conversion and Management 148 1096-1113
[16] Pasandideh S H R Niaki S T A and Asadi K 2015 Bi-Objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments: NSGA-II and NRGA Information Sciences 292 57-74