Vitamins A & D Inhibit the Growth of Mycobacteria in Radiometric Culture

Robert J. Greenstein¹,², Liya Su³, Sheldon T. Brown³,⁴

¹ Department of Surgery, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States of America, ² Laboratory of Molecular Surgical Research, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States of America, ³ Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States of America, ⁴ Mount Sinai School of Medicine, New York, New York, United States of America

Abstract

Background: The role of vitamins in the combat of disease is usually conceptualized as acting by modulating the immune response of an infected, eukaryotic host. We hypothesized that some vitamins may directly influence the growth of prokaryotes, particularly mycobacteria.

Methods: The effect of four fat-soluble vitamins was studied in radiometric Bactec® culture. The vitamins were A (including a precursor and three metabolites), D, E and K. We evaluated eight strains of three mycobacterial species (four of M. avium subspecies paratuberculosis (MAP), two of M. avium and two of M. tuberculosis (Mtub) complex).

Principal Findings: Vitamins A and D cause dose-dependent inhibition of all three mycobacterial species studied. Vitamin A is consistently more inhibitory than vitamin D. The vitamin A precursor, β-carotene, is not inhibitory, whereas three vitamin A metabolites cause inhibition. Vitamin K has no effect. Vitamin E causes negligible inhibition in a single strain.

Significance: We show that vitamin A, its metabolites Retinyl acetate, Retinoic acid and 13-cis Retinoic acid and vitamin D directly inhibit mycobacterial growth in culture. These data are compatible with the hypothesis that complementing the immune response of multicellular organisms, vitamins A and D may have heretofore unproven, unrecognized, independent and probable synergistic, direct antimycobacterial inhibitory activity.

Introduction

Since early in the last century [1] the role of both vitamin A (see [2] for review) and vitamin D (see [3,4] for review) in combating infectious diseases has been investigated. It is noteworthy that in the vast majority of studies, the underlying assumption has been that any efficacy of these vitamins in combating disease is consequent to enhancement of the immune response of the infected host [5–8]. There is no direct inhibition of bacterial growth by synthetic retinoids [9]. In contrast retinaldehyde (but not Retinoic Acid itself) inhibit Gram positive (but not Gram negative) bacteria in culture [10].

The activities of vitamins A & D have been extensively reported in relation to the host immune response in mycobacterial diseases [4,8,11–15]. We posit that vitamins A and D might directly inhibit prokaryotic growth in general and mycobacterial growth in particular. Any direct inhibitory action of vitamins would be in addition to (and possibly synergistic with) their effect on the immune response of a mycobacterial-infected host [5–8].

We herein report on radiometric culture studies of the four fat-soluble vitamins (A, D, E & K) as well at the vitamin A precursor β-carotene and three vitamin A metabolites (retinyl acetate, retinoic acid and 13-cis retinoic acid) on three mycobacterial species. They are the acknowledged human pathogen M. Tuberculosis (Mtub) complex, M. avium subspecies avium (M. avium) pathogenic in immuno-compromised humans and the possibly zoonotic M. avium subspecies paratuberculosis (MAP) [16].

Methods

This study was approved by the Research & Development Committee at the VAMC Bronx NY (0720-06-038) and was...
conducted under the Institutional Radioactive Materials Permit (#31-00636-07).

Bacterial Culture

Our Bactec® 460 (Becton-Dickinson Franklin Lakes NJ) 14C radiometric culture inhibition methods have previously been published in detail [17–22]. This system quantifies bacterial growth, or lack thereof, by providing 14C in palmitate, an energy source for mycobacterial growth [23]. Vials are assayed on a daily basis, quantifying the amount of 14C released as 14CO₂, by the integral detector in the Bactec 460. The data are obtained as a manufacturer determined, arbitrary Growth Units (GU) of 0-999. Because the Bactec 460 is only semi-automatic, and the onerous regulatory requirements of using radionucleotides, this exquisitely sensitive [10] system is being phased out. It is being replaced by the fully automatic, oxygen consumption detecting fluorescent probe MIGT system (Becton-Dickinson NJ.) [24,25].

The detergent Tween 80 (recommended to minimize mycobacterial clumping [23]) is not used in culture, because of interference with the assay [21,26]. Strains with the least spontaneous clumping are studied instead. Except for the amount of test agent, every vial has the identical concentration of all constituents (including identical 3.2% concentration of the dissolving agent, DMSO). In this study, performed in singlicate, eight strains of mycobacteria, four of which are MAP, are evaluated. Two MAP strains had been isolated from humans with Crohn disease “Dominic” (ATCC 43545; Originally isolated by R. Chiodini [27]) and UCF 4 (gift of Saleh Naser, Burnett College of Biomedical Sciences, University of Central Florida, Orlando FL.) [28]. The other two MAP strains were from ruminants with Johne disease, ATCC 19698 and 303 (gift of Michael Collins Madison WL) The M. avium subspecies avium strains (hereinafter called M. avium) were ATCC 25291 (veterinary source) and M. avium 101 (Human isolate from a patient with AIDS; Gift of Clark Inderlied PhD, UC Los Angeles CA.) [29]. To study the M. tuberculosis complex, we used two BioSafety level 2 strains; Bacillus Calmette Guerin (BCG) M. bovis Carlson & Lessel (ATCC 19015) and an avirulent M. tb strain; ATCC 25177 (all ATCC from ATCC Rockville MD).

The fat soluble vitamins studied were: vitamin A (Retinol; Axerophthol, -3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-b) acetate (Table 8), retinoic acid (Table 9), and 13-cis retinoic acid (Table 10). Data from a single experiment graphically (Figures 1–9). These data are presented as the cumulative Growth Index (cGI). In contrast, for each individual chemical agent studied, data are presented in Tables as the “percent change from control cGI” (Inhibition as “%–ΔcGI”; See [19] for calculation: Tables 1–10).

For simplicity and comprehensibility the data in each of Figures 1–6 are for only two of the four agents tested. For ease of comparison the inhibitory (Monensin) and non-inhibitory control (Phthalimide) are repetitively presented. Data for vitamins A & D are presented in Figure 1 (MAP), Figure 2 (M. avium) & Figure 3 (M. tb, complex) and vitamins E & K are presented in Figure 4 (MAP), Figure 5 (M. avium) & Figure 6 (M. tb, complex). The vitamin A precursor and structural analogs are presented in tabular form. (β-Carotene; Table 7; Retinol acetate; Table 8; Retinoic acid; Table 9; and 13-cis Retinoic acid; Table 10). Data for vitamin A precursors and analogs on mycobacterial species and subspecies are presented as Figures (MAP = Figure 7: M. avium = Figure 8 & M. tb complex = Figure 9).

Results

In this study we show that all MAP and both M. tb complex strains are inhibited by Monensin (Table 1 and Figures 1 & 4 & Table 1 & Figures 3 & 6). This corroborates our previous findings with Monensin [20,21,30]. As previously [20,21,30], Monensin does not inhibit one of our two M. avium control strains (M. avium 101: Table 1 and Figures 2 & 5), attesting to the reliability and reproducibility of our assay.

The non-inhibitory control that we use is Phthalimide, a glutarimide antibiotic that has no mycobacterial inhibition [21]. In this study, as previously [21,30,31], Phthalimide has no dose-dependent inhibition against any of the mycobacterial strains tested (Table 2 and Figures 1–6).

Vitamin A causes dose dependent inhibition of all MAP, M. avium and M. tb complex strains studied (Table 3 & Figures 1, 2 & 3 with 98%–ΔcGI at 16 μg/ml for MAP ATCC 19698. The precursor to vitamin A, β-Carotene has no dose-dependent inhibition on six of eight mycobacterial strains and negligible inhibition on two MAP strains (Table 7 & Figures 7, 8 & 9). In contrast, the three vitamin A metabolites (Figures 7, 8 & 9); retinyl acetate (Table 8), retinoic acid (Table 9), and 15-cis retinoic acid (Table 10) result in dose dependent inhibition of all three species studied, but with intriguing interspecies variations. Retinyl Acetate is most active against MAP (Figure 7 & Table 8; Dominic 96%-ΔcGI at 64 μg/ml) Retinoic acid and 15-cis retinoic acid are most active against M. tb (98%-ΔcGI at 16 μg/ml), but have no inhibition against BCG (Figure 9 & Tables 9 & 10.) M. avium is the least susceptible to these vitamin A metabolites (Figure 8 & Tables 8–10).

Vitamin D causes dose dependent inhibition of all MAP strains studied (Table 3 & Figure 1). However, vitamin D is not as potent an inhibitor against the two MAP human isolates (UCF-4; 56%-ΔcGI at 64 μg/ml and Dominic) as it is on the two MAP bovine isolates (Table 4 and Figure 1.) Likewise, vitamin D inhibits all M. avium (Table 4 & Figure 2) and M. tb, complex (Table 4 & Figure 3) strains studied. Finally, vitamin D is less effective than vitamin A against all four M. avium and M. tb complex strains studied (Tables 3 & 4 and Figures 1–3).

In contrast, vitamin E (Table 5; Figures 4, 5, & 6) results in inhibition of only one of the eight mycobacterial strains studied, MAP Dominic (Table 5 & Figure 4.) Even then, the maximal inhibition of vitamin E on Dominic (44%-ΔcGI at 64 μg/ml) (Table 5 & Figure 4) is far less than is observed with either vitamin A or D.
Figure 1. Both vitamins A & D inhibit all four MAP strains studied. Strains from the two upper panels (UCF-4 & Dominic) were isolated from humans with Crohn disease. Strains in the two lower panels were isolated from ruminants with Johne disease. The inhibitory control is Monensin, and the non-inhibitory control is Phthalimide. cGI = cumulative Growth Index.

doi:10.1371/journal.pone.0029631.g001

M. avium subspecies avium & Vitamins A & D

Growth Inhibition

M. avium ATCC 25291

Figure 2. Both vitamins A & D inhibit M. avium. The inhibitory control is Monensin, and the non-inhibitory control is Phthalimide. Note that as previously [20,21,30], Monensin does not inhibit M avium 101. cGI = cumulative Growth Index.

doi:10.1371/journal.pone.0029631.g002

M. tuberculosis Complex & Vitamins A & D

Growth Inhibition

M. tb. (ATCC 25177)

Figure 3. Both vitamins A & D inhibit the M. tb complex. Vitamin D is less effective against M. tb ATCC 25177. The inhibitory control is Monensin, and the non-inhibitory control is Phthalimide. cGI = cumulative Growth Index.

doi:10.1371/journal.pone.0029631.g003
Figure 4. Neither vitamins E nor K inhibit MAP (other than limited inhibition by vitamin E on Dominic.) The inhibitory control is Monensin, and the non-inhibitory control is Phthalimide. cGI = cumulative Growth Index.
doi:10.1371/journal.pone.0029631.g004

Figure 5. Neither vitamins E nor K inhibit *M. avium*. The inhibitory control is Monensin, and the non-inhibitory control is Phthalimide. Note that as previously [20,21,30], Monensin does not inhibit *M. avium* 101. cGI = cumulative Growth Index.
doi:10.1371/journal.pone.0029631.g005

Figure 6. Neither vitamins E nor K inhibit the *M. tb.* complex. The inhibitory control is Monensin, and the non-inhibitory control is Phthalimide. cGI = cumulative Growth Index.
doi:10.1371/journal.pone.0029631.g006
MAP

Vitamin A: Precursor & Metabolites

Figure 7. The effects of vitamin A precursors and metabolites on MAP. β-carotene, the precursor to vitamin A, exhibits no inhibition at the doses studied. Maximal inhibitory activity against all MAP strains is observed with Retinyl acetate (solid black triangles.) Both Retinoic acid and 13-cis Retinoic acid exhibit intermediate inhibition.

doi:10.1371/journal.pone.0029631.g007

Figure 8. The effects of vitamin A precursors and metabolites on *M. avium*. β-carotene, the precursor to vitamin A, exhibits no inhibition at the doses studied. Retinyl acetate and 13-cis Retinoic acid have some inhibition.

doi:10.1371/journal.pone.0029631.g008

Figure 9. The effects of vitamin A precursors and metabolites on *M. tb* complex. β-carotene, the precursor to vitamin A, exhibits no inhibition at the doses studied. Both Retinoic acid and 13-cis Retinoic acid result in dose dependent inhibition on our avirulent strain of *M. tb*. There is no comparable inhibition against Bacillus Calmette-Guerin (BCG).

doi:10.1371/journal.pone.0029631.g009
Table 1. Monensin Inhibitory Control.

µg/ml	MAP	M. Avium	M. tb. Complex					
Human Isolate	Bovine Isolate	M. Avium	M. tb. BCG					
UCF-4 Dominic	19698 303	25291 101	25177 19015					
1	−56%	−21%	−55%	−27%	−36%	−6%	−74%	−28%
4	−87%	−44%	−87%	−66%	−47%	22%	−98%	−54%
16	−94%	−78%	−94%	−91%	−80%	−1%	−99%	−73%
64	−97%	−88%	−97%	−96%	−94%	0%	−99%	−91%

doi:10.1371/journal.pone.0029631.t001

Table 2. Phthalimide Non-Inhibitory Control.

µg/ml	MAP	M. Avium	M. tb. Complex					
Human Isolate	Bovine Isolate	M. Avium	M. tb. BCG					
UCF-4 Dominic	19698 303	25291 101	25177 19015					
1	11%	−9%	−2%	7%	−39%	−8%	−15%	−1%
4	11%	−11%	−7%	5%	−40%	−3%	−5%	7%
16	7%	−17%	−5%	4%	−39%	0%	−7%	10%
64	−1%	−28%	−22%	8%	−32%	−49%	−15%	2%

doi:10.1371/journal.pone.0029631.t002

Table 3. Vitamin A: retinol.

µg/ml	MAP	M. Avium	M. tb. Complex					
Human Isolate	Bovine Isolate	M. Avium	M. tb. BCG					
UCF-4 Dominic	19698 303	25291 101	25177 19015					
1	−17%	−5%	−20%	−1%	20%	−27%	−24%	−2%
4	−61%	−67%	−68%	−77%	−8%	−34%	−48%	−25%
16	−95%	−96%	−98%	−97%	−78%	−80%	−91%	−95%
64	−99%	−99%	−99%	−99%	−99%	−99%	−99%	−99%

doi:10.1371/journal.pone.0029631.t003

Table 4. Vitamin D Cholecalciferol.

µg/ml	MAP	M. Avium	M. tb. Complex					
Human Isolate	Bovine Isolate	M. Avium	M. tb. BCG					
UCF-4 Dominic	19698 303	25291 101	25177 19015					
1	−22%	−37%	−6%	−2%	15%	−29%	−25%	−3%
4	−32%	−63%	−24%	−71%	−41%	−57%	−26%	−64%
16	−48%	−91%	−93%	−94%	−75%	−88%	−38%	−91%
64	−56%	−90%	−96%	−96%	−68%	−87%	−60%	−91%

doi:10.1371/journal.pone.0029631.t004

Table 5. Vitamin E DL-α-Tocopherol Acetate.

µg/ml	MAP	M. Avium	M. tb. Complex					
Human Isolate	Bovine Isolate	M. Avium	M. tb. BCG					
UCF-4 Dominic	19698 303	25291 101	25177 19015					
1	−25%	−12%	4%	−5%	14%	−27%	−18%	19%
4	−13%	−22%	6%	1%	−12%	−13%	−10%	−3%
16	−7%	−33%	−12%	2%	−1%	−11%	−17%	1%
64	−38%	−44%	−31%	1%	−29%	−33%	−21%	16%

doi:10.1371/journal.pone.0029631.t005

Table 6. Vitamin K1.

µg/ml	MAP	M. Avium	M. tb. Complex					
Human Isolate	Bovine Isolate	M. Avium	M. tb. BCG					
UCF-4 Dominic	19698 303	25291 101	25177 19015					
1	−19%	−9%	3%	−3%	−12%	−16%	3%	8%
4	11%	−15%	10%	12%	−10%	17%	−10%	1%
16	−9%	−26%	2%	8%	−41%	−32%	−11%	−30%
64	−6%	−64%	−14%	−21%	−64%	−29%	−29%	−39%

doi:10.1371/journal.pone.0029631.t006

Table 7. β-Carotene.

µg/ml	MAP	M. Avium	M. tb. Complex					
Human Isolate	Bovine Isolate	M. Avium	M. tb. BCG					
UCF-4 Dominic	19698 303	25291 101	25177 19015					
1	−8%	2%	−4%	2%	11%	−26%	−22%	11%
4	−9%	−4%	−30%	2%	20%	−14%	−25%	13%
16	13%	−8%	−31%	−5%	8%	−10%	−21%	13%
64	−14%	−25%	−36%	−3%	−9%	−32%	−32%	−1%

doi:10.1371/journal.pone.0029631.t007

Table 8. Retinyl Acetate.

µg/ml	MAP	M. Avium	M. tb. Complex					
Human Isolate	Bovine Isolate	M. Avium	M. tb. BCG					
UCF-4 Dominic	19698 303	25291 101	25177 19015					
1	−1%	2%	−14%	5%	36%	−8%	−2%	3%
4	−74%	−64%	−32%	−16%	18%	1%	3%	−2%
16	−82%	−86%	−68%	−65%	−13%	−89%	−7%	−14%
64	−95%	−96%	−92%	−96%	−84%	−66%	−78%	−96%

doi:10.1371/journal.pone.0029631.t008
action that complements the immune response of multicellular organisms.

The vitamin A precursor, β-Carotene, does not inhibit mycobacterial growth. This indicates that mycobacterial mechanisms to convert β-Carotene to vitamin A are inadequate to produce sufficient vitamin A levels to inhibit mycobacterial growth. We conclude that the subspecies specific, idiosyncratic, inhibition of the three vitamin A metabolites merit further study, as do structural analogs of vitamin D.

We posit that multiple agents have underappreciated activity against prokaryotes in addition to well-documented eukaryotic activity. For example, we [17,18,20–22,30,31], and others [34,35], have shown inhibition of MAP growth with medications used to treat “autoimmune” and “inflammatory” diseases. In the present study we show direct inhibition of mycobacterial growth by vitamins A and D in culture. We conclude that the scientific community has neglected the potential direct prokaryotic effects of vitamins, emphasizing instead the indirect role that vitamins have in enhancing the immune response of an infected host.

Our radiometric assay [23] is sufficiently sensitive to identify mycobacterial growth enhancement in culture [31]. Using it, we have corroborated the classic study of Bernheim in 1940 [36] showing that salicylic acid increased oxygen consumption by the tuberculosis bacillus. Additionally, we showed growth enhancement of mycobacteria by vitamin B3 (nicotinamide), nicotinic acid (a tobacco constituent) and γ&ß NAD [31]. In 1940 the possibility that vitamin K enhanced the growth of MAP was considered [37]. (see [38] for review). The identification of the necessary, and potent, iron chelating mycobactins of M. phlei [39,40] (see [41] for review), left unresolved a possible enhancing role of vitamin K on MAP growth [37]. In this present study we observe no growth enhancement by vitamin K1. It is of interest however, that vitamin K2 (menaquinone), which we did not evaluate, may inhibit mycobacterial growth [42]. We now conclude that vitamin K1 has no effect on the growth of three mycobacterial species, including MAP.

This study does not address how vitamin concentrations that are inhibitory in our culture system, relate to concentrations actually found in multicellular organisms. For example our “normal” laboratory range in humans for circulating vitamin A is 0.3–0.9 μg/ml, a level below those tested in our studies [1–64 μg/ml]. Lipophylic antibiotics, such as azithromycin, may achieve tissue levels 1,000 fold greater than circulating values [43]. Since “normal” laboratory concentrations are “circulating” plasma levels, they may vastly underestimate concentrations that these fat-soluble vitamins achieve in lipid rich regions, such as prokaryotic and eukaryotic cell walls and other lipophylic regions within cells.

Prevailing dogma considers that all of the anti-mycobacterial activity of vitamins A & D is mediated, indirectly, via enhancement of the immune system of the eukaryotic host. Our data are compatible with an alternative hypothesis: In addition to their eukaryotic activity, vitamins A & D may directly inhibit mycobacteria within the eukaryotic host. Similarly whether vitamins may act as naturally occurring “antibiotics” and help prevent a host infected by mycobacteria from progressing to active disease will require extensive and complicated, IRB compliant, additional studies. Nevertheless, it is of considerable interest that low exposure to sunlight, which is associated with diminished vitamin D levels [44], is associated with an increase in the incidence of Crohn disease [45], which may be caused by MAP [46].

Author Contributions
Conceived and designed the experiments: RJG. Performed the experiments: LS RJG. Analyzed the data: RJG LS STB. Contributed reagents/materials/analysis tools: RJG STB. Wrote the paper: RJG.

Table 9. Retinoic Acid.

µg/ml MAP	Human Isolate	Bovine Isolate	M. Avium	M. tb. Complex				
UCF-4	Dominic	19698	303	25291	101	25177	19015	
1	6%	−4%	−15%	2%	−4%	0%	−30%	11%
4	−3%	−22%	−37%	2%	11%	7%	−89%	15%
16	−18%	−33%	−61%	−14%	−9%	−36%	−99%	0%
64	−56%	−48%	−76%	−21%	−23%	−54%	−99%	1%

Vitamin K has no effect on the growth on any of the three mycobacterial species studied (Table 6; Figures 4, 5, & 6).

Table 10. 13 Cis-Retinoic Acid.

µg/ml MAP	Human Isolate	Bovine Isolate	M. Avium	M. tb. Complex				
UCF-4	Dominic	19698	303	25291	101	25177	19015	
1	0%	−7%	−18%	−21%	12%	10%	−16%	9%
4	−23%	−20%	−34%	−20%	−5%	−33%	−42%	9%
16	−18%	−29%	−58%	−34%	−27%	−42%	−91%	30%
32	−35%	−35%	−68%	−44%	−34%	−65%	−97%	15%

Discussion

To our knowledge this is the first study showing dose-dependent inhibition, in radiometric culture, of three mycobacterial species (the M. tb. complex, M. avium and MAP) by two of four fat-soluble vitamins; vitamins A & D. In contrast, vitamin K has no, and vitamin E negligible effect. These therefore provide appropriate non-inhibitory experimental controls. Our observations cannot be ascribed to the acidic nature of vitamin A or its analogs as the pH remains within the manufacturer’s recommended range of pH 6.6±2 in the final 5 ml incubation volume (data not presented.) The mechanism(s) by which vitamins A & D inhibit mycobacterial growth, and whether they have similar inhibition on virulent and/or multi-drug resistant M. tb., remains to be determined.

Our finding is directly contradictory to those of Flemenakis et. al. who concluded that there was no direct retinoid effect on bacteria in vivo [9]. Others find that vitamin A and retinoic acid have no antibacterial activity, whereas retinaldehyde does [10]. Neither study evaluated mycobacteria in radiometric culture. We, and others [32], conclude that when evaluating mycobacterial growth kinetics, liquid radiometric [23] data provide exquisitely sensitive data of bacteriostatic in addition to bactericidal effects.

Inhibition of mycobacterial growth by vitamins A & D has been ascribed to down regulation of the tryptophan-aspartate-containing coat protein (TACO) gene in the human macrophage [8,33]. Our data are compatible with an additional hypothesis. It is that vitamins D, A and vitamin A metabolites have a heretofore unproven, independent and probable synergistic antimycobacterial inhibitory action that complements the immune response of multicellular organisms.
References

1. Mellanby E, Green GN (1929) Vitamin A as an Antithyroid Agent: Its Use in the Treatment of Puerperal Septicemia. Br Med J 1: 984–986.
2. Shamba RD (1999) Vitamin A as "anti-infective" therapy, 1920–1940. J Nutr 129: 740S–742S.
3. Bruce D, Osu JH, Yu S, Cantorna MT (2010) Vitamin D and host resistance to infection? Putting the cart in front of the horse. Exp Biol Med (Maywood) 235: 921–927.
4. Hewison M (2010) Vitamin D and the intracrineology of innate immunity. Mol Cell Endocrinol 321: 105–111.
5. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, et al. (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311: 177–181.
6. Sutherland R (1934) Vitamins A and D: Their Relation to Growth and Resistance to Disease. Br Med J 1: 791–795.
7. Ross A, Hammarling U (1994) Retinoids and the Immune System. In: Sorn M, Greenstein RJ, Su L, Brown ST, eds. The Retinoids: Biology, Chemistry and Medicine. 2 ed. New York: Raven Press. pp 597–630.
8. Anand PK, Kaul D, Sharma M (2008) Synergistic action of vitamin D and retinoic acid restricts invasion of macrophages by pathogenic mycobacteria. J Microbiol Immunol Infect 41: 17–25.
9. Fleneties AC, Tsaabmas DG (1989) Effects of synthetic retinoids on the growth of bacteria and their susceptibility to antibiotics. J Chemother 1: 374–376.
10. Pechere M, Germanier L, Siegenthaler G, Pechere JC, Saurat JH (2002) The antibiotic activity of topical retinoids: the case of retinol: Dermatology 205: 153–158.
11. Pattison CL (1930) Treatment of Bone Tuberculosis by Large Amounts of Nicotinamide. Br Med J 1: 330–331.
12. Martineau AR, Wilkinson RJ, Wilkinson KA, Newton SM, Kampmann B, et al. (2014) Vitamin D in the prevention and treatment of tuberculosis. Lancet 384: 1179–1190.
13. Flemetakis AC, Tsambaos DG (1989) Effects of synthetic retinoids on the growth of bacteria and their susceptibility to antibiotics. J Chemother 1: 374–376.
14. Pechere M, Germanier L, Siegenthaler G, Pechere JC, Saurat JH (2002) The antibiotic activity of topical retinoids: the case of retinol: Dermatology 205: 153–158.
15. Wattie M (1930) Treatment of Bone Tuberculosis by Large Amounts of Nicotinamide. Br Med J 1: 330–331.
16. Greenstein RJ, Gillis T, Scollard D, Brown S (2009) Mycobacteria: Leprosy, a Subspecies of Mycobacterium Tuberculosis. Emerg Infect Dis 15: 908–912.
17. Rastogi N, Goh KS, Labrousse V (1992) Activity of clarithromycin compared with those of other drugs against Mycobacterium avium subsp. paratuberculosis in vitro. J Antimicrob Chemother 30: 277–286.
18. Greenstein RJ, Su L, Whitlock R, Brown ST (2009) Monensin causes dose dependent inhibition of Mycobacterium avium subspecies paratuberculosis in vitro. Microbiol Immunol Infect 41: 17–25.
19. Fluet J, Dagenais G, Yamaoka S, Medoff G, Yamaoka Y, et al. (2007) A single dose of vitamin D enhances immunity to mycobacteria. Am J Respir Crit Care Med 176: 208–213.
20. Greenstein RJ, Su L, Brown ST (2010) The Thiamides Methimazole and Tiouliora Inhibit Growth of M. avium subspecies paratuberculosis in Culture. PLoS ONE 5: e11099.
21. Greenstein RJ, Su L, Brown SL (2010) Growth of M. avium subspecies paratuberculosis in Culture is Enhanced by Nicotinic Acid, Nicotinamide, and α- and β-Nicotinamide Adenine Dinucleotide. Dig Dis Sci 56: 368–375.
22. Springer B, Lucke K, Calligaris-Maibach R, Kitter G, Bortger EC (2009) Quantitative drug susceptibility testing of Mycobacterium tuberculosis by use of MGIT 960 and Epicenter instrumentation. J Clin Microbiol 47: 1773–1778.
23. Anand PK, Kaul D (2003) Vitamin D-dependent pathway regulates TACO gene transcription. Biochem Biophys Res Comm 310: 876–877.
24. Shin SJ, Collins MT (2008) Thiopeptide drugs (azithromycin and 6-mercaptopurine) inhibit Mycobacterium paratuberculosis growth in vitro. Antimicrob Agents Chemother 52: 418–426.