Nitrite Contents in Fresh Vegetables of Different Families and Genus

Yuqian Cui¹⁻⁴, Xiao Li¹⁻⁴, Lingyi Xu¹⁻⁴, Meixia Pang¹⁻⁵, Jinghua Qi¹⁻⁴ and Fang Wang¹⁻⁴

¹College of Food Science and Engineering, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China
²Food Chemistry teaching team, Beijing University of Agriculture, Beijing 102206, China
³Pig innovation team, Modern agricultural industry technology system Beijing innovation team, Beijing 100102, China
⁴High Level Talents of Beijing Universities Cross Training" Real Training Plan”. Project, Beijing 102206, China
⁵E-mail: abc960718@sina.com

Abstract: The aim of this study is firstly aimed at investigating the contents of nitrite in common consumed vegetables according to families and genus classification. The vegetables were randomly collected and analyzed in quartile sampling according to GB5009.30-2016. The vegetables were analyzed by the software of Spss20.0 and statistically significant Duncan multiple comparisons. The data indicates that the nitrite contents in different families and different genus vegetables in same family were significant (P<0.01). A relatively high nitrite concentration was observed in Chenopodiaceae which is 0.5920mg/kg dry weight. A relatively low nitrite concentration was observed in Dioscoreaceae that concentration is 0.0032mg/kg dry weight. The nitrite contents of different genus are large, in which the relatively high concentration samples were red beet root (0.886mg/kg dry weight), peanut (0.7485mg/kg dry weight), corn kernels (0.7119mg/kg dry weight), Lotus root (0.592mg/kg dry weight).

1. **Introduction**

The different nitrite contents in vegetables are resulted from the type of vegetables, and environmental factors such as cultivate type, composition of soil, light intensity, temperature and moister, growth density, duration of growth period, harvesting time, storage time, edible plant portion and use of nitrogen fertilizer [1]. Vegetables can also produce nitrite by oxidation of endogenous nitrogen oxides, and nitrate can be reduced by nitrite reductase to produce nitrite [2]. Nitrite itself is relatively non-toxic but as precursor material of nitrosamines poses a threat to human health. Nitrite in the acidic environment can form a strong carcinogenic nitrosamine [3]. Nitrosamines have a strong carcinogenic effect, which can cause esophageal cancer, stomach cancer, liver cancer and colorectal cancer [4]. This study describes the nitrite contents in vegetables of 15 families and 46 genus.
2. Material and Method

2.1. Chemicals and Reagent
Sodium Nitrite (CAS:7632-00-0), Potassium Ferrocyanide, Zinc Acetate Dihydrate, Aceticacid, Sodium Borate, Chlorane, p-aminobenzene sulfonic acid, N-1-Naphthylethylene diamine dihydrochloride, All of the chemical reagents were obtained from China National Accord Medicines.

2.2. Samples
A total of edible vegetable samples was freshly collected from Supermarket. They were cleaned in tap and deionized water three times. The edible portion were cut into small pieces and then were placed in the homogenizer (JT-C). Fresh vegetables were placed in a refrigerator at -4°C and detected in 12 hours.

2.3. Nitrite Extraction
Homogenized sample (5g) was weighed out and placed into 50mL beaker, 12.5mL 50g/L saturated Borax solution was added in the sample. Later the sample was transferred to the conical flask in 70°C water and mixed. The mixed solution was heated for 15mins in water bath kettle. After 15mins, the flask was transformed to the cold-water bath so as to let the solution cool to room temperature. Potassium ferrocyanide solution (5mL) was added to the flask, Zinc Acetate solution (5mL) was added followed by to precipitate the protein. The solution constant volume to scale line in water. Finally, the solution with shaking stand for 30 another mins. After removing the upper fat, the extracts were filtered through φ18cm filter-papers. The first zone of filtrate was discarded in order to overcome possible nitrate contamination from the filter-papers.

2.4. Determination of Nitrite
Absorbance was measured at 538 nm using a UV/VIS Spectrophotometer (TU-1810) with digital readout screen where absorbance of the sample was displayed. Absorbance reading for each sample was taken three times and the average of the reading recorded.

2.5. Data Processing Method
The original data was entered into Excel and analyzed statistically with SPSS software for windows Version 20.0 and drewed with Excel later.

Table 1. Nitrite content of vegetables in different families (mg/kg wet weight).

family	Genus	Mean±standarddeviation
Chenopodiaceae	3	3.856±0.002
Amaranthaceae	1	3.754±0.162
Convolvulaceae	3	3.856±0.002
Nymphaeaceae	1	3.036±0.000
Umbelliferae	5	2.856±0.002
Zingiberaceae	4	2.456±0.007
Gramineae	3	2.356±0.003
Cruciferae	11	2.271±0.010
Leguminosae	9	2.246±0.003
Compositae	6	2.094±0.0020
Cucurbitaceae	8	2.012±0.010
Liliaceae	9	1.320±0.0090
Solanaceae	8	1.302±0.0010
Araceae	1	0.122±0.003
Dioscoreaceae	1	0.021±0.0030
Table 2. Nitrite content of vegetables in different families (mg/kg dry weight).

family	Genus	Mean±standarddeviation
Nymphaeaeae	1	0.5920±0.0007
Chenopodiaceae	3	0.5205±0.0004
Gramineae	3	0.3602±0.0000
Convolvulaceae	2	0.3300±0.0000
Leguminosae	7	0.315±0.0000
Zingiberaceae	2	0.263±0.0000
Umbelliferae	3	0.2463±0.0000
Araceae	1	0.2401±0.0010
Amaranthaceae	1	0.162±0.0020
Liliaceae	8	0.158±0.0010
Cruciferae	3	0.134±0.0000
Compositae	3	0.108±0.0010
Solanaceae	3	0.108±0.0010
Cucurbitaceae	5	0.101±0.0010
Dioscoreaceae	1	0.0032±0.0000

3. Results and Discussion

The contents of nitrite (Wet Weight) in 15 family vegetables in are shown in table 1. The result is different significantly in 15 family (P<0.05). The limit standard nitrite content in vegetable is less than or equal to 4.0mg/kg (fresh weight). The data in table 1 indicates that exceeding standard nitrite content vegetables are beans (4.602mg/kg wet weight) in Leguminosae, endive (4.151mg/kg wet weight) in Compositae, spinach (4.691mg/kg wet weight) in Chenopodiaceae, swamp cabbages (4.080mg/kg wet weight) in Convolvulaceae.

In order to eliminate the nitrite content difference caused by the different water content in the different family vegetables, the fresh weight of all the vegetables is changed to dry weight. The contents of nitrite (Dry Weight) in 15 family vegetables are shown in table 2.

3.1. Nitrite Content in Liliaceae

The low levels of nitrite of onion and garlic found in this study could be as a result of chemical components (figure 1). Organic sulfides in onion and garlic can block the formation of Nitrosamines [5] Sulphydryl and nitrite can form nitrous esters to remove nitrite effectively. The nitrite content of onion in early growth period was 0.1279mg/kg dry weight, while late growth period onion was 0.0408mg/kg dry weight in the same variety. which is due to the high absorption and transformation intensity of nitrogen in the plant growth and development period.

3.2. Nitrite Content in Leguminosae

In the oxidation conditions and the participation of soil microorganisms, ammoniums produce...
nitrification and transform to nitrate ions, in which part of nitrate ions are assimilated and part of nitrate ions in the shape of denitrification in the soil, the formed nitrite ions are also absorbed by the plant. In the same leguminous plants, significant differences (figure 2) in content are caused by different breeds genotype, bean king (0.3012 mg/kg dry weight), white not old (0.1442 mg/kg dry weight). One of the main reasons may be different genotypes caused by genetic variation in the long-term cultivation and breeding process [6].

3.3. Nitrite Content in Cruciferae
The results (figure 3) showed that the nitrite content of brassica and radish in Cruciferae exist significant difference (P=0.194). The consequence of Cabbage mustard’s quality deteriorated arising from high nitrogen treatment and content decrease of Vitamin C and sugar [7]. The fresh radish nitrite content is below 1 mg/kg wet weight, because the amount and activity of nitrite reductase is much more than nitrate reductase in vegetable tissues and more stable and inactive. It’s also related to the process that the nitrite nitrogen is reduced to NH+4 in time [8].

3.4. Nitrite Content in Compositae
In the Asteraceae (figure 4), the endive is high because it’s suitable for fertilizer and more nitrogen [9]. The reason of nitrite content in Chrysanthemum coronarium and Lobular Chrysanthemum is different is that the environment and nitrate reductase activity [10].

3.5. Nitrite Content in Cucurbitaceae
The result (figure 5) showed that the nitrite contents of three different cucumber were significantly affected by genotype and environmental factors followed by (P<0.05). Nitrite nitrogen compounds formed by free nitrate nitrogen in the action of nitrate reductase conversion cannot completely convert to ammonium salts into the nitrogen metabolism cycle, resulting in more nitrite accumulate in the fruit [11]. The nitrite in the Loofah and Wax gourd were not detected almost because the nitrate reductase is little in the fruit and nitrate will be reduced to nitrite under the action of nitrate reductase and NADH most in the leaves [8].

![Figure 3. Nitrite Content in Cruciferae](image1)

![Figure 4. Nitrite content in Compositae](image2)
3.6. Nitrite Content in Solanaceae

In the Solanaceae, the highest nitrite content is potato (0.2151 mg/kg dry weight, figure 6), Round eggplant (0.185 mg/kg dry weight) followed by, the lowest is pepper (0.0638 mg/kg dry weight) and tomatoes (0.0216 mg/kg dry weight). The nitrite content in Solanaceae is relatively little because of antioxidant active ingredients such as polyphenols and flavonoids in pepper [12] and lycopene, vitamin C and various antioxidant enzymes in Tomato. The mechanism of action is mainly to inhibit the radicals [13].

3.7. Nitrite Content in Gramineae

Bamboo shoot (figure 7) is the kind of vegetable of low accumulation in nitrite which are associated to reduction of sugar and vitamin C. The results showed that Maize is 0.7119 mg/kg dry weight. It’s attributed to contained reductase and the absorbing of nitrogen [14]. The nitrite content of wild rice stem is related to the change of reducing sugar whose content has a trend of rise first then fall in its growing season, so the nitrite content of it change with reducing sugar [15].

3.8. Nitrite Content in Umbelliferae

Celery (figure 8) is a nitrate-accumulating vegetable [16]. The higher nitrate content in celery stems may be the propagation of nitrate-reducing bacteria in celery [17]. The dry matter content of nitrite in celery is relatively low because it contains a lot of antioxidant component such as volatile oil and flavonoids [18]. The relatively high nitrite content in Coriander is attributed to the strong ability of absorbing fertilizer.

3.9. Nitrite Content in Zingiberaceae

Although ginger (figure 9) has diarylheptanoids as the antioxidant substance [19], Ginger is a kind of plant that require high nitrogen. In this paper, Ginger nitrite is 0.4651 mg/kg dry weight, while the Tender ginger is only 0.0732 mg/kg dry weight. The fact indicates the Tender ginger contains much more antioxidant activity.
3.10. Nitrite content in Convolvulaceae

Purple potato and sweet potato are suitable for potassium fertilizer condition (figure 10). The potassium as an activator of nitrate reductase, so as to significantly improve the activity of nitrate reductase and accelerate the reduction of nitrate into nitrite though increasing the supply of potassium [20].

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure9.png}
\caption{Nitrite content in Zingiberaceae}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure10.png}
\caption{Nitrite content in Convolvulaceae}
\end{figure}

3.11. Nitrite Content in Chenopodiaceae

Spinach (figure 11) could accumulate higher content of nitrite with the higher nitrate reductase activity [21]. The activity of nitrate reductase was increased with the increase of nitrogen application rate. The content of nitrite in beet leaves is higher than that of beetroot, which is related to the early transport of fertilizer from root to leaf [22].

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure11.png}
\caption{Nitrite content in Chenopodiaceae}
\end{figure}

4. Conclusion

The average content of nitrite in different families was different. The highest content was Nymphaeaceae (0.5920mg/kg dry weight), the lowest was the Dioscoreaceae (0.0032mg/kg dry weight). The different genus concentrations are large, in which the relatively high concentration include red beet root (0.886mg/kg dry weight), peanut (0.7485mg/kg dry weight), corn kernel (0.7119mg/kg dry weight), Lotus root (0.592mg/kg dry weight).

5. Acknowledgements

I wish to thank the teacher who help me in experiment and the laboratory manager who give me a hand in experiment equipment.

6. References

[1] Correia M and Barroso Â Contribution of different vegetable types to exogenous nitrate and nitrite exposure 2010 Food Chemistry. 120 960–966
[2] Wright M and Davison K Nitrate accumulation in crops and nitrate poisoning in animals 1964 Advances Agronomy 16 197-247
[3] JR Kelley and JM Duggan Gastric cancer epidemiology and risk factors 2003 Journal of Clinical Epidemiology 56 1-9.
[4] WU Yingzhen Risk assessment of Nitrite in Foods 2009 Animal Husbandry and Feed Science 30 62-63
[5] Chang Qing Study on the effect of Chinese onion on removing nitrite 2008 Science and Technology of Food Industry 6 175-176
[6] Lin Guanjie Pactors affecting the Nitrate content in vegetables 1995 Journal of Shanghai Agricultural College 1
[7] Chen Riyuan Effect of nitrogen nutriment on the growth and quality of Chinese Kale 2005 Transactions of the CSAE 143-146.
[8] Wu Ping Plant Nutrition Molecular Physiology 2001 (Bei Jing: Science Press)
[9] Tong Jun Cultivation techniques of Endive 2014 Jilin agriculture 19 60
[10] Jin Yazhong Study on Nitrate Content and Renson of Different Kids of leafy Vegetable’s Leaf 2010 Journal of Heilongjiang Bayi Agricultural University 22 1-3
[11] Zhao Chunbo Nitrogen Efficiency Types Analysis on Differences Cucumber Varieties 2015 Changchun, Doctor’s Degree of Jilin Agricultural University
[12] Zhang Jing The research progress of chemical composition of pepper 2009 Chinese Traditional Patent Medicine 31 1906-1912
[13] Shi Lisha Study on antioxidative activity of tomo to in vitro 2012 Guangdong Agricultural Sciences 131-133
[14] Zhang Hongtian The Study of different Cultivation Methods and amount of Nitrogen Aplication on Corn Growth and Nutrient Absorption 2005 Daqing: Master’s Degree of Heilongjiang Bayi Agricultural University
[15] Zhang Meiling Effects of Fertilization and Preservative on the Quality and Physiology of the Culm for Few Flower Wild rice on the Mountains 2008 Hefei: Master’s Degree of Anhui Agricultural University
[16] Cheng Longjun. 2003. The Biochemical Changes during Stem Swelling in Zizania latifolia. Acta horticulture Sinica30(6):741.
[17] Chen Jing Dynamic relationship between nitrite content and microorganisms in celery during storage 2014 Food science and Technology 39 63-66
[18] Dong Xiao Research Progress of Natural Western-style Spice-Petroselinum crispum 2013 China Condiment 38 4-7
[19] Yang Leixiang. 2009. Antioxidative and cytotoxic properties of diarylheptanoids isolated from Zingiber officinale, China Journal of Chinese Materia34(3):319-323
[20] Zhang Weixia Cultivation technology of parsley ate on storage root quality of edible weet potato 2016 Humic Acid 24-28
[21] Zhang Meng Physiological Differences of Spinach Cultivars with Different Nitrate Levels 2016 Acta Botanica Boreali Occidentalia Sinica 36 2469-2476.
[22] Du Yongcheng Effect of nitrogen fertilization on nitrate reductase and nitrite reductase activities of sugar beet 2012 Plant Nutrition and Fertilizer Science 18 717-72