A Multidrug Resistance Plasmid pIMP26, Carrying $\text{bla}_{\text{IMP-26}}$, fosA5, $\text{bla}_{\text{DHA-1}}$, and qnrB4 in Enterobacter cloacae

Su Wang, Kaixin Zhou, Shuzhen Xiao, Lianyan Xie, Feifei Gu, Xinxin Li, Yuxing Ni, Jingyong Sun & Lizhong Han

IMP-26 was a rare IMP variant with more carbapenem-hydrolyzing activities, which was increasingly reported now in China. This study characterized a transferable multidrug resistance plasmid harboring $\text{bla}_{\text{IMP-26}}$ from one Enterobacter cloacae bloodstream isolate in Shanghai and investigated the genetic environment of resistance genes. The isolate was subjected to antimicrobial susceptibility testing and multilocus sequence typing using broth microdilution method, Etest and PCR. The plasmid was analyzed through conjugation experiments, S1-nuclease pulsed-field gel electrophoresis and hybridization. Whole genome sequencing and sequence analysis was conducted for further investigation of the plasmid. E. cloacae RJ702, belonging to ST528 and carrying $\text{bla}_{\text{IMP-26}}$, $\text{bla}_{\text{DHA-1}}$, qnrB4 and fosA5, was resistant to almost all β-lactams, but susceptible to quinolones and tigecycline. The transconjugant inherited the multidrug resistance. The resistance genes were located on a 329,420-bp IncHI2 conjugative plasmid pIMP26 (ST1 subtype), which contained trhK/trhV, tra, parA and stbA family operon. The $\text{bla}_{\text{IMP-26}}$ was arranged following intI1. The $\text{bla}_{\text{DHA-1}}$ and qnrB4 cluster was the downstream of Is_{CR1}, same as that in p505108-MDR. The fosA5 cassette was mediated by IS_{4}. This was the first report on complete nucleotide of a $\text{bla}_{\text{IMP-26}}$-carrying plasmid in E. cloacae in China. Plasmid pIMP26 hosted high phylogenetic mosaicism, transferability and plasticity.

Notoriously, extended and overuse of antibiotics have potentiated globally rapid emergence and spread of carbapenem-resistant Enterobacterales (CRE), posing a serious threat to clinical therapy and infection control. The major driving force for the diversification and dissemination of CRE has been confirmed as the horizontal transfer of plasmid-mediated carbapenem-hydrolyzing enzymes (i.e., carbapenemase) genes, among which the most prevalent and of particular clinical importance were bla_{KPC}, bla_{VIM}, bla_{IMP}, bla_{NDM}, and $\text{bla}_{\text{OXA-48}}$. IMP, one kind of metallo-β-lactamases (MBLs), can efficiently inactivate almost β-lactams except monobactam. IMP-1 was the first transferable MBL detected from Pseudomonas aeruginosa in Japan in 1991. Subsequently, the continuously clinical detection of $\text{bla}_{\text{IMP-1}}$ in different species isolates in Japan, as well as the discovery of IMP-2 in Italy and IMP-5 in Portugal, marked the beginning of the upcoming flourish of IMP MBLs. IMP-26 was first reported as an IMP-4 variant in Singapore in 2010 from a clinical carbapenem-resistant P. aeruginosa isolate by Koh TH et al. However, since then, there have been only sporadic reports on the IMP-26-production in Gram-negative bacilli, especially in Enterobacteriales. Notably, isolates expressing IMP-26 were found significantly more resistant to doripenem and meropenem than that expressing IMP-1.

Enterobacter cloacae was one member of the normal intestinal microflora of humans and animals, which has also assumed clinical importance and emerged as a major human pathogen causing hospital-acquired bacteremia, nosocomial pneumonia, urinary tract infections and so on. In the past decade, the emergence of IMP-producing E. cloacae has been extensively reported as a challenge to clinical therapy because of its rapid worldwide transmission. And in China, the most common IMP variants found in E. cloacae were IMP-8 and IMP-4. As for IMP-26-producing E. cloacae, it has been only reported in Chongqing, Shanghai and Beijing worldwide.
Our pilot study firstly reported two IMP-26-producing *E. cloacae* bloodstream isolates in Shanghai\(^1\). Considering the higher carbapenem-hydrolysing activities and emerging reports in China of IMP-26, we subsequently analyzed the transferability and full nucleotide sequence of the corresponding multi-drug-resistance plasmid pIMP26 in this study, which carried several important resistance determinants, such as *blaIMP-26*, *blaIMP-26*, *blaIMP-26*, *aacA4*, *qnrB4* and *fosA5*, conferring resistance to carbapenems, cephalosporins, aminoglycosides and fosfomycin, respectively.

Methods

Isolate and antimicrobial susceptibility testing. Isolate RJ702 was obtained from the blood of a female patient with uterine malignancy at Ruijin Hospital in April 2013. The carbapenem-resistant isolate was first isolated at day 28 after admission. The previous travel history of the patient was not documented.

The initial species identification of RJ702 was performed using MALDI-TOF MS (bioMérieux, Marcy-l’Étoile, France). The minimum inhibitory concentrations (MICs) of ceftriaxone, ceftazidime, cefotaxime, ceftepime, aztreonam, ciprofloxacin, levofloxacin, amikacin, gentamicin, piperacillin/tazobactam, cepoforazone/sulbactam, trimethoprim/sulfamethoxazole and tigecycline were determined using the broth microdilution method according to guidelines of the Clinical and Laboratory Standards Institute (CLSI M07-A9)\(^2\), while that of meropenem, imipenem and imipenem were determined using the Etest (bioMérieux, Marcy-l’Étoile, France). The susceptibility results were interpreted according to the guidelines of CLSI M07-A9\(^2\), while the breakpoint for tigecycline was according to that of European Committee on Antimicrobial Susceptibility Testing (EUCAST) V6.0\(^3\). *Escherichia coli* ATCC25922 was used as the quality control. PCR was performed to detect the “big five” carbapenemase genes (*blaKPC*, *blaNDM*, *blaIMP*, *blaVIM* and *blaOXA-48*).

Multilocus typing (MLST). A MLST scheme was used to assign *E. cloacae* to clonal lineages, including seven housekeeping genes (*dnaA*, *fusA*, *gyrB*, *leuS*, *pyrG*, *rplB*, and *rpoB*) as described by Miyoshi-Akiyama\(^4\). The combination of seven alleles can define the sequence types (STs) on the MLST website (http://pubmlst.org/ecloacae/).

Plasmid conjugation, S1-nuclease pulsed-field gel electrophoresis (S1-PFGE), and southern hybridization. The transferability of the resistance genes was assessed in broth culture using *E. coli* J53 Azt (sodiumazide-resistant) as the recipient. The transconjugants were selected on MacConkey agar containing sodiumazide (100 mg/L) and meropenem (2 mg/L) or ceftazidime (1 mg/L). PCR was employed to confirm the existence of *blaIMP-26* DNA plugs of the parental and transconjugant digested with S1-nuclease were prepared and separated by PFGE, and then transferred to positively charged nylon membrane (Roche Applied Science, Germany). The membrane was hybridized with digoxigenin-labeled *blaIMP-26* specific probes.

DNA sequencing and genomics analysis. Genomic DNA of *E. cloacae* RJ702 was isolated using ChargeSwitch® gDNA Mini Bacteria Kit (Life Technologies, Carlsbad, CA, USA) and sequenced by a combination of PacBio RSII (Pacific Biosciences, Menlo Park, CA, USA) and Illumina Hiseq X10 (Illumina, San Diego, CA, USA) sequencing platforms. The assembly was produced firstly using a hybrid *de novo* assembly solution modified by Koren, in which a *de-Brujin* based assembly algorithm and a CLR reads correction algorithm were integrated in “PacBioToCA with Celeras Assembler” pipeline\(^5\). The final assembly generated a circular genome sequence with no gap existed. The precise species identification was established based on average nucleotide identity (ANI) between RJ702 and other type strains of *E. cloacae* subsp. using Orthologous ANI Tool (OAT) recommended by Lee I et al.\(^6\). Annotation of the genomic sequence and alignment with other similar sequences were carried out using the BLAST Ring Image Generator (BRIG)\(^7\) and SnapGene program v4.3.2. Open reading frames (ORFs) were identified using Glimmer version 3.02 (http://cbcb.umd.edu/software/glimmer/). ORFs less than 300-bp were discarded. Insertion elements and resistance genes were identified using ISFinder (https://www.is.biotoul.fr) and ResFinder (https://cge.cbs.dtu.dk/services/ResFinder). PlasmidFinder (https://cge.cbs.dtu.dk/services/PlasmidFinder) and pMLST (https://cge.cbs.dtu.dk/services/pMLST/) were employed to detect and type the plasmids. BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to identify related plasmids carrying *blaIMP-26* to guide PCR-based gap closure and Sanger sequencing to assemble contigs into complete plasmids.

Nucleotide sequence accession number. The completely annotated sequence of pIMP26 in *E. cloacae* RJ702 has been deposited in GenBank database (Accession Number: MH399264).

Ethics approval and informed consent. The study was approved by Ruijin Hospital Ethics Committee (Shanghai Jiao Tong University School of Medicine), and the Review Board exempted the requirements for informed consent as this study only focused on bacteria.

Results

Precise species identification. RJ702 was initially identified as *E. cloacae* or *E. asburiae* by MALDI-TOF MS. Additionally, RJ702 showed 95.2874% ANI value with *E. cloacae* ECNIH2 (NZ_CP008823) and only 87.8944% with *E. cloacae* subsp. *E. cloacae* ATCC35953 (NZ_CP011863). The ANI values of RJ702 with *E. cloacae* ATCC13047 (NC_014121) and *E. cloacae* MJ48 (NC_018079) were 89.0906% and 87.9528% respectively. Therefore, RJ702 was precisely identified as *E. cloacae* subsp. *E. cloacae*.

Antimicrobial resistance and MLST. *E. cloacae subsp. cloacae* RJ702 belonging to ST528, exhibited resistance to cephalosporins, monobactam, carbapenems, β-lactam/β-lactamase inhibitor combinations (only cepoforazone/sulbactam), aminoglycosides, trimethoprim/sulfamethoxazole, and tigecycline. The transconjugant inherited resistance to these antibiotics (Table 1).
Genome sequencing of RJ702. Whole genome sequencing generated 1,458,457 single reads and 4.70 Gb clean data total bases, which were de novo assembled to 184 contigs (75 > 1,000 bp; N50: 269,528 bp; N90: 45,440 bp). The bases in all contigs of RJ702 was 5.01 Mb with a 54.69% G + C content. The size of chromosome was 4,303,224 bp, and the bases in all contigs of two plasmids in RJ702 were 329,420 bp (pIMP26) and 78,322 bp respectively. PlasmidFinder presented that plasmid pIMP26 hosted two replicons, of which IncHI2 was 327 bp and IncHI2A was 630 bp; while the other plasmid hosted none.

Backbones of pIMP26. Plasmid pIMP26 was a 329,420-bp closed circular DNA sequence with an average G + C content of 48.24% (Fig. 2). It hosted two repB replicons, and both belonged to IncHI2 prototype (ST1 subtype). BLAST searches indicated the backbone regions of pIMP26 highly similar to a 324,503-bp IncHI2 plasmid pIMP26. It shared high similarity with p505108-MDR from a blaTEM-1B producing E. cloacae type). BLAST searches indicated the backbone regions of pIMP26 highly similar to a 324,503-bp IncHI2 plasmid pIMP26 (Fig. 2). Annotation of the finished sequence data revealed that pIMP26 contained 381 ORFs, including repB, traB, trhK/trhV (for stabilizing mating pairs during plasmid conjugation), four transfer gene clusters (locus 1-4), and two IS elements (IS6100, IS6100-cr1), transposons (Tn3 family, etc.) and integrons (intI1, intI1), and contained multiple resistance genes (blaIMP-26, fosA5, qnrB4, aac(6’)-Ib3, aac(6’)-IIc, aacA4, aph(6)-IId, strA, mhp(A), ere(A), catA2, tet(D), dfrA18, blaSHV-12), two copies of blaTEM-1BP, and five copies of sul1). According to BLAST searches (Fig. 3), the blaIMP-26 region was sequentially arranged as intI1, blaIMP-26, ltrA, qacEΔ1 and sul1 (position: 2567–7765), same as the blaIMP-26 cluster in pIMP-4 from an IMP-4-producing E. cloacae isolate in Taiwan (87% query coverage and 99% nucleotide identity) (Fig. 2). Annotation of the finished sequence data revealed that pIMP26 contained 381 ORFs, including repB (position: 32558–33613 and 47056–47931, for plasmid replication initiation), trhK/trhV (for stabilizing mating pairs during plasmid conjugation), four transfer gene clusters (locus traB, traN, traA and traM, encoding the conjugative apparatus), the parA family operon (for the replication/partitioning system with repB), and the sbcA family operon (for plasmid stability).

Resistances regions in pIMP26. Plasmid pIMP26 was rich in mobile genetic elements, including IS elements (IS4, IS6, IS26, ISCR1, etc.), transposons (Tn3 family, etc.) and integrons (intI1, intI1), and contained multiple resistance genes (blaIMP-26, fosA5, qnrB4, aac(6’)-Ib3, aac(6’)-IIc, aacA4, aph(6)-IId, strA, mhp(A), ere(A), catA2, tet(D), dfrA18, blaSHV-12), two copies of blaTEM-1BP and five copies of sul1). According to BLAST searches (Fig. 3), the blaIMP-26 region was sequentially arranged as intI1, blaIMP-26, ltrA, qacEΔ1 and sul1 (position: 2567–7765), same as the blaIMP-26 cluster in pIMP-4 from an IMP-4-producing E. cloacae isolate in Taiwan (87% query coverage and 99% nucleotide identity) (Fig. 2). Annotation of the finished sequence data revealed that pIMP26 contained 381 ORFs, including repB (position: 32558–33613 and 47056–47931, for plasmid replication initiation), trhK/trhV (for stabilizing mating pairs during plasmid conjugation), four transfer gene clusters (locus traB, traN, traA and traM, encoding the conjugative apparatus), the parA family operon (for the replication/partitioning system with repB), and the sbcA family operon (for plasmid stability).

Conjugation, S1-PFGE, and southern hybridization. The transconjugant RJ702-1 was obtained by plasmid conjugation experiments. S1-PFGE revealed that RJ702 harbored two plasmids (~320-kb and ~70-kb), and RJ702-1 inherited both. Southern hybridization analysis revealed blaIMP-26 located on the ~320-kb plasmid (pIMP26) (Fig. 1).
Discussion

The undesirable antibiotic resistance (especially carbapenem-resistance) has appeared and disseminated rapidly in Gram-negative bacilli, which was attributed largely to the acquisition of multiple resistance genes by horizontal plasmid-mediated genes transfer. Our study was to map the genetic environment of a novel multi-drug-resistance plasmid pIMP26, in order to provide a new insight for the potential spread of blaIMP-26 and fosA5 or correlations between genetic diagnosis and clinical treatment.

Firstly, the backbone of pIMP26 was blasted with different plasmids in BLAST. The origins of functional modules in pIMP26, such as multiple antibiotic resistance determinants, stably conjugal transfer (tra and trh family), mobile elements and plasmid maintenance (stb family) (Fig. 2), represented a strong transferability, stability and plasticity of this plasmid. IncHI2 was one of the most prevalent broad-host-range plasmid families carrying different resistance determinants simultaneously in Enterobacterales. As previously reported on E. cloacae, most β-lactamase-encoding genes (blaSHV-12, blaCTX-M-15, blaNDM-1, blaIMP-4, etc.) were also located on IncHI2 plasmids (subtype ST1) of 290~340-kb in size, and our study also fit it. It should be noted that the similar backbone shared by pIMP26 and other plasmids (Fig. 2) in clinical isolates of E. cloacae, K. pneumoniae and S. enterica from different areas strongly suggested that inter-species genetic exchange also occurred, thus broadening the host range and dissemination of combined cargo genes. Besides, pIMP26 contained a wide variety of transposable elements carrying known antibiotic resistance genes. Tn3 family transposon was the medium of TEM genes and fosA5 was also located in Tn3 in pIMP26 (Figs 2 and 3). The archetype of Tn3 was known as some of the earliest unit transposons identified in Gram-negative bacilli. Tn3 family members demonstrated transposition immunity, but homologous and/or res-mediated recombination between related elements can occur, creating hybrid elements. And this would explain multiple Tn3-mediated resistance elements in pIMP26 in this study. However, further study is definitely needed to characterize the mechanisms behind the transfer or recombination of Tn3.

IMP-26, firstly found in P. aeruginosa in Singapore, was differed from IMP-4 at position 145 (G to T change); the translated amino acid sequence differed from IMP-4 at residue 49 (phenylalanine for valine). Blast searches indicated that the genetic structure surrounding blaIMP-26 has only revealed in a study from Vietnam up to now, containing intI1-blaIMP-26-qacG-aac(6′)-Ib-orf3-orf4 (Fig. 2), and our study was the first time focusing on the complete nucleotide of the plasmid carrying blaIMP-26. Interesting was the blaIMP-26 region in pIMP26 different from that found in Vietnam (though both located on intI1); but same as the blaIMP-4 cluster of pIMP-4 in

Figure 1. (A) The S1-PFGE profile of E. cloacae RJ702 and its transconjugant RJ702-1. M, Salmonella enterica serotype Braenderup H9812 was digested with XbaI as a molecular size marker. (B) The Southern blotting profile of E. cloacae RJ702 and its transconjugant RJ702-1 with blaIMP-26 specific probes.
Shanghai (Genbank ID: FJ384365) (Fig. 3). It prompted that the \textit{bla}_{IMP-26} detected in our study maybe originated from \textit{bla}_{IMP-4} or the genetic mutation may occur during transfer of \textit{bla}_{IMP-26} cassette.

The prevalence and dissemination of \textit{fosA5} have probably been underestimated36. Previous study once found IS10 playing an important role in the mobilization of \textit{fosA5}27. However, the upper half consistent with pHKU1 in

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure2}
\caption{Circular map of plasmid pIMP26. The two inner circles represented the G+C content plotted against the average G+C content of 48.24\% (black circle) and GC skew information (green and purple circles). Circles in different colors represented different plasmids (details in the legend), and the Genbank numbers were as follows: pIMP26 (MH399264), p505108-MDR (KY978628), pCNR48 (LT994835), pEC-IMPQ (EU855788), pIMP4-SEM1 (FJ384365), and pGMI14-002 (CP028197). The location of discussed resistance genes and \textit{intI} were also demonstrated on the outer cyan-blue circle. The annotation of the genetic components were added manually using the Microsoft PowerPoint 2016 program.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure3}
\caption{Plasmid accessory resistance regions. The comparison of linear DNA against the corresponding regions in different plasmids. The resistance genes were indicated by orange arrows and the insertion sequences are indicated by purple arrows. Shading regions denoted regions of homologous (>95\% nucleotide identity).}
\end{figure}
pIMP26 indicated that IS4 might also related to its mobilization\(^\text{36}\) (Fig. 3). Plasmid carrying bla\(_{OHEA}\) was usually reported also carrying qnrB4, bla\(_{DSTV-1}\)\(^\text{38}\). This suggested that the cassette in common of qnrB4 and bla\(_{OHEA}\)\(^\text{1}\) (Fig. 3) (including that in pIMP26) was derived from the same immediate ancestor. The qnrB4-bla\(_{OHEA}\)-containing region of pIMP26 was located after the 3’ conserved sequence (3’-CS) of intI1 (Fig. 3), containing aac(6’)-Ic, qacE\(_\Delta I\) and sulI. Besides, an insertion sequence common region 1 (ISCR1) was identified downstream of sulI. ISCR1 could mobilize the nearby sequence and a truncated 3’-CS from one integron to the 3’-CS of another integron through rolling-circle transposition, and provide a promoter for the expression of nearby genes\(^\text{39}\); this may lead to the co-carriage of multiple resistant genes in one plasmid and the multi-drug resistance of clinical isolates.

Interestingly, our study showed the qnrB4- and aac(6’)-Ib3-harboring RJ702 susceptible to quinolones (MIC = 0.5 or 0.25). We speculated that it was due to the absence of other mechanisms of chromosomal resistance (e.g., alterations in type II topoisomerases) in RJ702 other than plasmid-mediated quinolone resistant (PMQR) genes. Researchers found that PMQR mechanism caused only low-level quinolone-resistance on its own, which may not exceed the clinical breakpoints of susceptibility for quinolones but facilitated selections of higher-level resistance and posed threats to the treatment of infections by microorganisms hosting PMQR genes\(^\text{40}\), which could validate our speculation and underline the necessity of monitoring on PMQR genes.

This is the first report on the entire structure of bla\(_{IMP-26}\)-carring plasmid. To some extent, our study evidenced the increasing clinical significance of IncHI2 replicons as resistance genes’ reservoirs and provided insights on the possibilities of further spread in China and highlighted the needs for intensive surveillance and precautions.

Conclusions

We firstly reported here the complete nucleotide sequence of a plasmid carrying bla\(_{IMP-26}\), which was an IncHI2 replicon simultaneously encoding multidrug resistance determinants, including β-lactam (bla\(_{IMP-26}\) blad\(_{HHA}\)-Ib3, blad\(_{DSTV-1}\), aminoglycoside (aac(6’)-Ic, aacA4, aph(6)-IIc, etc.), fluoroquinolone (qnrB4, aac(6’)-Ib3) and fosfomycin (fosA5) resistance genes. New genetic context of fosA5 was also characterized. The novel plasmid with multi-insertion of different resistant components and stable inheritance emphasized controlled use of clinical antibiotics to prevent selective pressure aggravating the emergence and dissemination of multi-drug resistance.

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

1. Kaier, K., Frank, U., Hagist, C., Conrad, A. & Meyer, E. The impact of antimicrobial drug consumption and alcohol-based hand rub use on the emergence and spread of extended-spectrum beta-lactamase-producing strains: a time-series analysis. The Journal of antimicrobial chemotherapy 63, 609–614 (2009).
2. Jean, S.S. & Hsieh, P.R. High burden of antimicrobial resistance in Asia. International journal of antimicrobial agents 37, 291–295 (2011).
3. Wang, S. et al. Changes in antimicrobial susceptibility of commonly clinically significant isolates before and after the interventions on surgical prophylactic antibiotics (SPAs) in Shanghai. Brazilian Journal of Microbiology 49, 352–358 (2018).
4. Carattoli, A. Plasmids and the spread of resistance. Brazilian Journal of Microbiology 46, 298–304 (2015).
5. Bush, K. Carbapenemases: Partners in crime. Journal of global antimicrobial resistance 1, 7–16 (2013).
6. Watanabe, M., Iyobe, S., Inoue, M. & Mitsushashi, S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy 35, 147–151 (1991).
7. Osano, E. et al. Molecular characterization of an enterobacterial metallo-beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrobial agents and chemotherapy 38, 71–78 (1994).
8. Senda, K. et al. PCR detection of metallo-beta-lactamase gene (bla\(_{IMP-26}\)) in gram-negative rods resistant to broad-spectrum beta-lactams. Journal of clinical microbiology 34, 2909–2913 (1996).
9. Corngail, G. et al. Appearance of IMP-1 metallo-beta-lactamase in Europe. Lancet (London, England) 353, 899–900 (1999).
10. Da Silva, G. J. et al. Molecular characterization of blaIMP-5, a new integron-borne metallo-beta-lactamase gene from an Acinetobacter baumannii nosocomial isolate in Portugal. FEMS microbiology letters 215, 33–39 (2002).
11. Mojica, M. F., Bonomo, R. A. & Fast, W. B1-Metallo-beta-Lactamases: Where Do We Stand? Current drug targets 17, 1029–1050 (2016).
12. Koh, T. H. et al. Multilocus sequence types of carbapenem-resistant Pseudomonas aeruginosa in Singapore carrying metallo-beta-lactamases, including the novel bla\(_{IMP-26}\) gene. Journal of clinical microbiology 48, 2563–2564 (2010).
13. Tada, T. et al. Multidrug-Resistant Sequence Type 235 Pseudomonas aeruginosa Clinical Isolates Producing IMP-26 with Increased Carbapenem-Hydrolyzing Activities in Vietnam. Antimicrobial agents and chemotherapy 60, 6853–6858 (2016).
14. Peirano, G., Lascols, C., Hackel, M., Hoban, D. J. & Pitout, J. D. Molecular epidemiology of Enterobacteriaceae that produce VIMs and IMPs from the SMART surveillance program. Diagnostic microbiology and infectious disease 78, 277–281 (2014).
15. Huang, S., Dai, W., Sun, S., Zhang, X. & Zhang, L. Prevalence of plasmid-mediated quinolone resistance and aminoglycoside antibiotics to prevent selective pressure aggravating the emergence and dissemination of multi-drug resistance.
16. Mezzatesta, M. L., Gona, F. & Stefani, S. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol 7, 887–902 (2012).
17. Davin-Regli, A. & Pages, J. M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Frontiers in microbiology 6, 392 (2015).
18. Sidjabat, H. E., Heney, C., George, N. M., Nimmo, G. R. & Paterson, D. L. Interspecies transfer of bla\(_{IMP-26}\) in a patient with prolonged colonization by IMP-4-producing Enterobacteriaceae. Journal of clinical microbiology 52, 3816–3818 (2014).
19. Dai, W. et al. Characterization of carbapenemases, extended spectrum beta-lactamases and molecular epidemiology of carbapenem-non-susceptible Enterobacter cloacae in a Chinese hospital in Chongqing. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 14, 1–7 (2013).
20. Feng, W. et al. Dissemination of pIMP-4-encoded pIMP-HZ1-related plasmids among Klebsiella pneumoniae and Pseudomonas aeruginosa in a Chinese teaching hospital. Scientific Reports 6, 33149 (2016).
21. Wang, S. et al. Antimicrobial susceptibility and molecular epidemiology of clinical Enterobacter cloacae bloodstream isolates in Shanghai, China. PloS one 12, e0189713 (2017).
22. Jin, C. et al. Molecular Characterization of Carbapenem-Resistant Enterobacter cloacae in 11 Chinese Cities. Frontiers in microbiology 9, 1597 (2018).
23. Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard-9th edition. CLSI document M07–A9 (2015).

24. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fifth Informational Supplement. CLSI document M100–S25 (2015).

25. European Committee On Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0., http://www.eucast.org/clinical_breakpoints/ (2016).

26. Miyoshi-Akiyama, T., Hayakawa, K., Ohnagari, N., Shimojima, M. & Kirikae, T. Multilocus sequence typing (MLST) for characterization of Enterobacter cloacae. PloS one 8, e66358 (2013).

27. Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature methods 10, 563–569 (2013).

28. Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature biotechnology 30, 693–700 (2012).

29. Lee, I., Ouk Kim, Y., Park, S. C. & Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide comparisons. BMC Genomics 12, 402 (2011).

30. Petrosillo, N., Nilsen, E., Alikhan, N. F., Petty, N. K., Ben Zakour, N. L. & Beatson, S. A. BLAST Ring Image Generator (BRIG): simple prokaryote genome tools: L.H. and Y.N. Drafting of article and/or critical revision: S.W., K.Z., L.H. and J.S. Final approval of the submitted manuscript: All.

31. Partidge, S. R., Kwong, S. M., Firth, N. & Jansen, S. O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clinical microbiology reviews 31, e00088–00017 (2018).

32. Coelho, A. et al. Role of IncHII plasmids harbouring bla(TEM-1), bla(CTX-M-9), aac(6′)-Ib and qnrA genes in the spread of multiresistant Enterobacter cloacae and Klebsiella pneumoniae strains in different units at Hospital Vall d’Hebron, Barcelona, Spain. International journal of antimicrobial agents 39, 514–517 (2012).

33. Nilsen, E. et al. Large IncHII-plasmids encode extended-spectrum beta-lactamases (ESBLs) in Enterobacter spp. bloodstream isolates, and support ESBL-transfer to Escherichia coli. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases 19, E516–518 (2013).

34. Haenni, M. et al. High prevalence of international ESBL CTX-M-15-producing Enterobacter cloacae ST114 clone in animals. The Journal of antimicrobial chemotherapy 71, 1497–1500 (2016).

35. Petrosillo, N. et al. Spread of Enterobacter cloacae carrying bla(TEM-1), bla(CTX-M-9), bla(shv)-12 and plasmid-mediated quinolone resistance genes in a surgical intensive care unit in Croatia. Journal of global antimicrobial resistance 4, 44–48 (2016).

36. Ho, P. L. et al. Prevalence and molecular epidemiology of plasmid-mediated fosfomycin resistance genes among blood and urinary Escherichia coli isolates. Journal of medical microbiology 62, 1707–1713 (2013).

37. Ma, Y. et al. Characterization of fosA5, a new plasmid-mediated fosfomycin resistance gene in Escherichia coli. Letters in applied microbiology 60, 259–264 (2015).

38. Hennequin, C., Ravel, V. & Robin, F. Plasmids carrying DHA-1 beta-lactamases. European journal of clinical microbiology and infectious diseases: official publication of the European Society of Clinical Microbiology 37, 1197–1209 (2018).

39. Chen, Y. T. et al. Mobilization of qnrB2 and ISCR1 in Plasmids. Antimicrobial agents and chemotherapy 53, 1235–1237 (2008).

40. Rodriguez-Martinez, J. M. et al. Plasmid-mediated quinolone resistance: Two decades on. Drug Resist Updat 29, 13–29 (2016).

Acknowledgements

We would like to thank the Department of Medical Microbiology and Parasitology at the School of Medicine of Shanghai Jiao Tong University for excellent laboratory provision and technical assistance. This work was supported by the National Natural Science Foundation of China (Grant No. 81772245), the Shanghai Three-Year Plan of the Key Subjects Construction in Public Health-Infectious Diseases and Pathogenic Microorganism (Grant No. 15GWZK0102) and the Special Fund for Health-scientific Research in the Public Interest of China Program (grant no. 201002021). The funders had no role in study design, data collection and analysis, preparation of the manuscript or decision for publication.

Author Contributions

Conception and design of study: L.H. and J.S., S.W. Acquisition of data (laboratory or clinical): S.W., K.Z., S.X., F.G. and X.L. Analysis and interpretation of data: S.W., K.Z. and L.X. Contribution of reagents/materials/analysis tools: L.H. and Y.N. Drafting of article and/or critical revision: S.W., K.Z., L.H. and J.S. Final approval of the submitted manuscript: All.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.