Beetroot-Pigment-Derived Colorimetric Sensor for Detection of Calcium Dipicolinate in Bacterial Spores

Leticia Christina Pires Gonçalves¹, Sandra Maria Da Silva², Paul C. DeRose², Rômulo Augusto Ando³, Erick Leite Bastos³a

¹Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil, ²Biosystems and Biomaterials Division, Chemical Science Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America, ³Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil

Abstract

In this proof-of-concept study, we describe the use of the main red beet pigment betanin for the quantification of calcium dipicolinate in bacterial spores, including Bacillus anthracis. In the presence of europium(III) ions, betanin is converted to a water-soluble, non-luminescent orange 1:1 complex with a stability constant of 1.4×10^5 L mol$^{-1}$. The addition of calcium dipicolinate, largely found in bacterial spores, changes the color of the aqueous solution of $[\text{Eu(Bn)}^+]$ from orange to magenta. The limit of detection (LOD) of calcium dipicolinate is around 2.0×10^{-6} mol L$^{-1}$ and the LOD determined for both spores, B. cereus and B. anthracis, is $(1.1 \pm 0.3) \times 10^6$ spores mL$^{-1}$. This simple, green, fast and low cost colorimetric assay was selective for calcium dipicolinate when compared to several analogous compounds. The importance of this work relies on the potential use of betalains, raw natural pigments, as colorimetric sensors for biological applications.

Introduction

Bacteria of genus Bacillus can assume a dormant and resistant spore form (i.e., endospore) in order to survive harsh environmental conditions. Although some bacterial spores contribute to human activities, e.g., B. thuringiensis is used as a pesticide, other species, such as B. anthracis, B. cereus, pose a serious risk to human health [1]. Bacillus anthracis has emerged as a bioterrorism agent because of its high stability and virulence [2,3] and became a public safety concern again after the anthrax attack in 2001 [4]. The infection usually takes place through skin contact with infected animals or animal products, but can also occur by inhalation or ingestion of spores [5]. Another example, Bacillus cereus, has negative economic impacts because this pathogenic bacterium can grow on food [6]. Consequently, there is a need for early detection of Bacillus species to ensure human health and safety.

Calcium dipicolinate (CaDPA) is the major component (up to 15% dry weight) of the bacterial spore core [7]. It stabilizes the bacterial DNA, contributes to the overall chemical and heat resistance of the spore and is released during germination [8,9]. Endospores also release CaDPA upon thermal treatment or in the presence of reactivation agents that induce bacterial germination, such as inosine and L-alanine [10]. Although there are several methods for the detection of B. anthracis [11,12], the simple and fast detection of dipicolinic acid (DPA) using luminescent lanthanide has been promising [9,13,14,15].

Betanin (Bn) is the non-toxic, water-soluble pigment responsible for the deep red–magenta color of the red beet ($\lambda = 536$ nm, $k^\circ = 336$, $\varepsilon = 6.5 \times 10^4$ L mol$^{-1}$ cm$^{-1}$) [16,17]. Bn is a food colorant (additive E-162) with a high antioxidant capacity [18,19,20], which has been used in several different applications such as dyes in solar cells [21,22] or as a starting material in the semi-synthesis of fluorescent probes for the live-imaging of Plasmodium-infected red blood cells [23]. In this proof-of-concept study, betanin is used as a ligand in a new Eu(III) complex, which is sensitive to CaDPA but not to analogous compounds. In order to demonstrate the applicability of the method in detecting CaDPA, we used two representative Bacillus species (B. anthracis and B. cereus spores) as test samples.

Material and Methods

Complexation Studies

Determination of equilibrium constants. The stoichiometry of the Eu(III)/Bn complex was determined using the molar-ratio method [Yoe and Jones' method] [24]. The concentration of a solution of Bn in MOPS buffer pH 7.5 (10 mmol L$^{-1}$) was kept constant (5.57 µmol L$^{-1}$) and a variable amount of Eu(III) (0.3 to 22 equiv) was added. Experiments were carried out independently at 25±1°C in quartz cuvettes (o.p. 10 mm) with a final volume of 2 mL. The mole ratio of the metal ion to Bn was plotted versus absorbance at 536 nm and tangents were drawn. The perpendicular line located at the intersection of the tangents was drawn to the mole ratio axis showing the Eu(III)/Bn ratio.

Stability constants were determined using a simple metal–ligand complexation model [25] considering a 1:1 stoichiometry (Eq. (1)):
where, L: ligand; M: metal; C: complex; a and b are the stoichiometric factors; [L_0] and [M_0]: initial total concentration of the ligand and the metal, respectively; [L], [M] and [C]: equilibrium concentration of the ligand, the metal and the complex, respectively.

For the determination of K by UV/Vis spectrometry, it is necessary to determine the [C]. In case the metal does not absorb at the wavelength λ, [C] can be determined using Eq. 2. The mathematical derivation of this method and additional experimental details are presented in the File S1.

\[
K = \frac{[C]}{(\{L_0 - a\cdot[C]\})^a \cdot (\{M_0 - b\cdot[C]\})^b}
\]

(1)

where, A^λ_{obs} is the observed absorbance at a given wavelength, A^λ_{el} and A^λ_{l} are the molar absorption coefficient of the ligand and complex at the same wavelength, respectively.

The data obtained with the titration experiment were used for the determination of the lanthanide–betalain stoichiometry as well as for the determination of [C] using Eq. (2). The stability constant was determined by averaging the values obtained using Eq. (1) for each concentration of lanthanide (Table S1). The data obtained were fitted to a linear regression analysis.

Calibration curve and limit of detection. In a 96 well microplate, solutions of [Eu(II)], [Gd(III)] were prepared by adding different amounts of a 1 mmol L\(^{-1}\) solution of EuCl\(_3\) in MOPS buffer to a solution of B. in water. Next, a defined volume of a solution of CaDPA (1 mmol L\(^{-1}\)) was added and the volume in each well was adjusted to 200 μL using MOPS buffer pH = 7.5. Final concentrations are as follows: [Eu\(_{el}\)] = 5.6 μmol L\(^{-1}\), [Gd\(_{el}\)] = 5.6 to 33.4 μmol L\(^{-1}\). CaDPA varied from 0.6 up to 120 μmol L\(^{-1}\) depending on the [Eu\(_{el}\)]

The absorbance at 536 nm was registered either in the absence or in the presence of CaDPA and used to calculate the absorbance at 536 nm of CaDPA – 536 nm of Control. The calibration curve was constructed by plotting the concentration of CaDPA in mol L\(^{-1}\) versus the absorbance at 536 nm. The data points in the linear interval of the sigmoidal curve were submitted to linear regression analysis.

The limit of detection (LOD) was determined using a procedure based on a linear model in different zones of the sigmoid response function; namely, the maximum and minimum slope (at low and high analyte activity) of the sigmoid response function is fitted to a linear function; namely, the maximum and minimum slope (at low and high analyte activity) of the sigmoid response function is fitted to a linear function. Thus, the LOD is defined as the analyte concentration, x_0 is the inflection point on the curve (IC\(_{50}\)), and z is a slope factor.

Beetroot Pigment to Detect Calcium Dipicolinate

Microbiological Methods

Bacillus cereus sample preparation. Spore suspensions of Bacillus cereus ATCC 10987 were prepared by growing a uniform lawn of spores on solid PGSN [27]. After 7 d of growth (3 d at 37°C and the remainder at 21°C), plates were examined daily for spore formation by removing a small colony from the lawn and examining with phase microscopy (Olympus AX-70, Olympus America Inc, Center Valley, PA). Once 95% spore formation was noted, spores were suspended from the agar surface by pouring 2.0 mL of sterile water and gently scraping the agar surface with a clean, sterile glass cell spreader. Spore preparations were then washed 5 times in sterile water and then stored in water suspension at 4°C.

Suspensions of Green Fluorescent Protein (GFP)-labeled bacillus anthracis. Bacillus anthracis Sterne pAFp8gfp were prepared by growing a uniform lawn of spores on a modified Schaeffer media [20]. After 5 d of growth at 32°C, plates were examined daily for spore formation by removing a small colony of growth and examining with phase microscopy. Once 95% spore formation was noted, spores were harvested from the agar surface by pouring 2.0 mL of sterile water and gently scraping the agar surface with a clean, sterile glass cell spreader. Spore suspensions were washed 7 times with water by centrifugation (1,500 x g, 2 min) and stored at 4°C as a water suspension.

Spore cleaning. Water suspensions of B. cereus or B. anthracis (280 μL) were washed 3 times with water by centrifugation (10,000 x g, 2 min) and suspended in 40% v/v ethanol to eliminate any potential presence of CaDPA from germinated spores in the stock suspension. In addition, the samples were heated for 25 min at 65°C to inactivate any vegetative cells or germinated spores in the sample. The sample was named stock suspension and used to prepare a 12-fold diluted working suspension in water.

Determination of spore concentration. B. cereus and B. anthracis working suspensions were quantified by serial dilution in phosphate buffered saline pH = 7.4 containing 0.4% v/v Tween 80 (PBST), plated onto LB agar using the drop plate method (5 drops of 10 μL per dilution) and cultured for about 16 h at 30°C. Colony forming units (CFU) were enumerated and used to calculate the spore concentration in the working suspension [27].

Release of CaDPA from spores. Working suspensions (100 μL) of B. cereus (1.3±0.2)×10\(^{10}\) spores mL\(^{-1}\) or B. anthracis (1.4±0.3)×10\(^{10}\) spores mL\(^{-1}\) or (3.5±0.8)×10\(^{8}\) spores mL\(^{-1}\) were autoclaved (20 min, 121°C) followed by sonication for 30 min. The samples were centrifuged (10,000 x g, 2 min) and the supernatant containing CaDPA was transferred to another microfuge tube and used in the measurements.

Curve Fitting and Statistical Analysis

All values are expressed as mean ± standard deviation (sd) of three completely independent replicates, except when indicated. Statistical data analysis was performed by one-way analysis of variance (ANOVA) and the level of statistical significance was taken to be $p<0.05$. Curve fitting and statistical calculations were carried out using the software Origin (version 8.5; OriginLab: Northampton, MA, USA, 2011).

Linear regression analysis was carried out by the method of least squares. Sigmoidal curves, with a lower boundary near the background response and an upper asymptote near the maximum response, were fitted using the 4-parameter logistic model (Eq. (3)) [29].

\[
\frac{A_{\text{max}} - A_{\text{min}}}{1 + \left(\frac{x}{x_0}\right)^z} = y
\]

(3)
Results and Discussion

Complexation of Bn and EuIII

Most transition metals have been found to catalyze the decomposition of betanin (Bn) in aqueous solution. However, Bn has been described to form complexes with transition metals such as CaII, CuII and HgII in near-neutral aqueous media [30]. Interestingly, complexation of Bn and EuIII occurs spontaneously in MOPS buffer pH = 7.5, resulting in the bright orange and relatively stable [Eu(Bn)]3+ complex (λ = 474 nm, ε = 5.8 \times 10^4 L mol-1 cm-1, and pK\textsubscript{1} = 3.4; pK\textsubscript{2} = 8.5) [33] that show a charge transfer from the aromatic ring to the dihydropyridyl moiety [21,34]. Raman signals at 1610, 1518, 1506 and 1394 cm-1 in the spectrum of Bn are assigned to the addition of EuCl\textsubscript{3} to a solution of Bn in MOPS buffer pH = 7.5. The numbers in the curves indicate the concentration of EuCl\textsubscript{3} in equivalents of Bn.

Taken by the addition of CaDPA to a solution of [Eu(Bn)]3+, the resonance Raman enhancement profile is in accordance to the resonance Raman spectra of DPA (log K\textsubscript{u} = 5.4, pK\textsubscript{a} = 3.4; pK\textsubscript{a} = 8.5) [33] that show a charge transfer from the aromatic ring to the dihydropyridyl moiety [21,34]. Raman signals of [Eu(Bn)]3+ at 1616, 1529, and 1436 cm-1 are shifted to higher wavenumbers compared to that of Bn probably because the electronic delocalization of the π-system decreases upon complexation, i.e., bond orders increase. Furthermore, the Raman band of aromatic ring to the dihydropyridyl moiety [21,34]. Raman signals of betanin ([Eu(Bn)]3+) at 1155 cm-1 (vibrational mode involving the tetrahydropyridyl N–H bending, δ(NH)) is missing in the Raman spectra of the [Eu(Bn)]3+ complex. These results are in agreement with the blue shift (60 nm, 2440 cm-1) in the maximum absorption wavelength upon the [Eu(Bn)]3+ complex formation and allow us to infer that EuIII complexation is likely to occur through the 2,6-dicarboxyl-1,2,3,4-tetrahydropyridine moiety.

Determination of CaDPA

CaDPA competes with Bn for EuIII ions. The stability constants reported for complexes of type [Eu(DPA)\textsubscript{a}]3−2a (K\textsubscript{1} = 6.92 \times 106, n = 1; K\textsubscript{2} = 1.38 \times 107, n = 2; K\textsubscript{3} = 3.23 \times 108, n = 3) [35] are higher than the stability constant determined for [Eu(Bn)]3+ (i.e., K\textsubscript{1} = 1.4 \times 106). Therefore, the reaction of CaDPA with the [Eu(Bn)]3+ complex releases Bn due to the formation of [Eu(DPA)\textsubscript{a}]3−2a complexes, changing the color of the solution from orange to red-magenta (Figure 2).

![Figure 2. Effect of the addition of CaDPA on an aqueous solution of [Eu(Bn)]3+.](image-url)

(A) Absorption profile for the formation of Bn and DPA (log K\textsubscript{u} = 5.4, K\textsubscript{a} = 2.5 \times 105 L mol-1) [32] by the addition of EuCl\textsubscript{3} to a solution of Bn in MOPS buffer pH = 7.5. The numbers in the curves indicate the concentration of EuCl\textsubscript{3} in equivalents of Bn.

doi:10.1371/journal.pone.0073701.g001

(B) Picture of a microplate containing Bn and increasing amounts of EuCl\textsubscript{3} and CaDPA, the background was removed for clarity. Bn = 5.8 \mu mol L-1, [EuCl\textsubscript{3}] = 34.8 \mu mol L-1 (6 equiv) in MOPS buffer pH = 7.5.

doi:10.1371/journal.pone.0073701.g002

Beetroot Pigment to Detect Calcium Dipicolinate
The effect of the amount of EuIII (1, 2, 3 or 6 equiv) on the quantification of CaDPA was investigated. All curves depicted in Figure 3 show the sigmoidal profile characteristic of ligand binding assays [29]. The limit of detection (LOD) in this experimental condition is around 2×10^{-6} mol L$^{-1}$, independent of the concentration of EuIII. However, the recovery of Bn (R_{Bn}), i.e., the ratio between the initial absorbance at 536 nm before addition of EuIII and CaDPA and that after the addition of mole excess of CaDPA to the [Eu(Bn)]$^+$ complex, increases with the amount of EuIII (Figure 3). This is probably related to the decrease in the concentration of unbound Bn in equilibrium caused by the increase in the concentration of EuIII. Furthermore, the variation in absorbance increases with the increase of the concentration of EuIII, consequently, the signal-to-noise ratio is improved using large mole excess of the lanthanide.

The linear section of the sigmoidal curve is crucial for quantitative measurements and for calibration [36]. The intersections of the slope at the point of inflection with the asymptote define the dynamic concentration range for which the assay delivers reliable quantitative data (Figure 4, solid line). The use of 3-fold stoichiometric excess of EuIII in relation to Bn results in a variation in the absorption at 536 nm of 0.2 and a dynamic concentration range between 2 and 25 μmol L$^{-1}$ of CaDPA. As a proof-of-concept, this condition was defined as default for the ratiometric fluorescent detection (0.2 μmol Bn and 0.5 μmol L$^{-1}$ of EuIII) [29]. The limit of detection (LOD) in this experimental condition is around 2 μmol L$^{-1}$, independent of the concentration of EuIII. Phosphate was included in the study because it has been reported that CaDPA is sensitive to the presence of phosphate [39].

Finally, the selectivity of the method was tested by varying the concentration of the following ligands: CaDPA, acetic acid, benzoic acid, phthalic acids, picolinic acids, nicotinic acids, isonicotinic acid and inorganic phosphate (Figure S5). No false positive was produced for any aromatic acid as well as for acetic acid, indicating the high selectivity of the method for DPA. Phosphate was included in the study because it has been reported to produce false positives and false negatives in assays based on lanthanide complexes, impairing the analysis of complex samples [13,14,39,40]. As most lanthanide complexes, [Eu(Bn)]$^+$ is sensitive to the presence of phosphate [39].

Quantification of Bacterial Spores

Spores of *B. anthracis* and *B. cereus* were quantified using the plate count method ([see Methods](#Methods)) and subjected to thermal treatment (autoclave) to induce the release of CaDPA. The concentration of CaDPA was determined using the colorimetric method and correlated to the concentration of spores (spores mL$^{-1}$) (Figure 5). The uncertainty observed in the final result might be partially due to the plate count method because one single colony is not necessarily generated from a single spore [41]. However, the contribution of this to the overall uncertainty would be small. Other sources might come from sample preparation, such as extraction efficiency of CaDPA from spores.

Control experiments indicate that CaDPA can only be detected in spore suspensions subjected to thermal treatment (Figure S6). Furthermore, after monitoring the germination, we assume that most CaDPA is released from the spores upon thermal treatment (data not shown). The LOD determined for both *B. cereus* and *B. anthracis* is $(1.1 \pm 0.3) \times 10^{13}$ spores mL$^{-1}$. From the average slope of the linear section of the sigmoidal curves (Figure S7), we estimate that each spore has $(1.6 \pm 0.5) \times 10^{15}$ moles of CaDPA, i.e., $(9.6 \pm 3.0) \times 10^{8}$ molecules of CaDPA per spore. Although this result is in reasonable agreement with the values reported using some other methods, including SERS and fluorescence detection, e.g., *Clostridium spongosus* $(3.7 \times 10^{9}$ DPA molecules spore$^{-1}$) [42] and *Bacillus* spp. $(1.7 \times 10^{10}$ to 6.3×10^{9} DPA molecules spore$^{-1}$) [43,44,45], alternative methods requiring more sophisti-
cate apparatus and data analysis may detect lower amounts of CaDPA in bacterial spores [13,15,46]. However, compared to the direct spectrophotometric detection of CaDPA, our method requires less sample preparation and is not susceptible to interferents absorbing in the middle UV region [47,48].

The main limitation of the current methodology lies on the fact that the sensitivity depends on the molar absorptivity of Bn, implying that the detection limit of the present method cannot be easily enhanced. However, this approach introduces both the renewable natural pigment betanin as a biocompatible ligand for EuIII and the [Eu(Bn)]⁺ complex as a green, low cost and fast compound for the detection of CaDPA and bacterial spores, as well as opens the perspective of exploring other betalains as a platform for the development of sensors.

Conclusion

In this proof-of-concept study, we have shown that the orange complex formed between betanin, the main beetroot pigment, and EuIII is sensitive to the presence of CaDPA, but not to other structurally similar pyridinic, aromatic, and acid ligands. The [Eu(Bn)]⁺ complex can be applied for the qualitative (on/off) and quantitative detection of CaDPA with a LOD of (2.2±1.1)×10⁻⁶ mol L⁻¹. A colorimetric assay using 3 equiv of EuIII in MOPS buffer was used to detect representative Bacillus species (B. anthracis or B. cereus spores) submitted to thermal treatment (autoclave). This low cost and ease of use approach indicates the potential use of betalains as sensors for biological applications.

Supporting Information

Figure S1 Absorption spectra of [Eu(Bn)]⁺ in MOPS buffer pH = 7.5 acquired over 5 d and decomposition kinetics monitored at 480 nm, N=1.

Figure S2 Absorption of solutions of Bn and EuIII (536 nm) at a fixed [Bn] = 5.75×10⁻⁶ mol L⁻¹.

Figure S3 Spectroscopic data on the [Eu(Bn)]⁺ complex. (A) Experimental Raman spectra (Ir), second derivative of Raman Intensities relative to wavenumber (d²I/dR₀²) and theoretical intensities determined the B3LYP/6-31+G(d)/SDM level and corrected by a factor of 0.98 (LDF) and optimized structure of Bn; (B) Experimental Raman spectra (Ir), second derivative of Raman Intensities relative to wavenumber (d²I/dR₀²) of [Eu(Bn)]⁺ and non-optimized illustration of a possible structure. [Bn] = 1×10⁻⁴ mol L⁻¹, [EuCl₃] = 3.6×10⁻₃ mol L⁻¹.

Figure S4 Calibration curve for the determination of the [CaDPA] from the variation in absorbance at 536 nm. The y-axis is in the log scale to show the sigmoidal profile of the curve and the linear fitting of the data. Curved lines are the confidence bands at the 95% level. Error bars represent the sd of triplicates. [Bn] = 5.8 µmol L⁻¹, [EuCl₃] = 17.4 µmol L⁻¹ (3 equiv). [CaDPA] = (9.4±0.5)×10⁻⁵ ΔAbs₅₃₆ nm (Adj-R² = 0.903, N=5).

Figure S5 Effect of the addition of carboxylic acids and phosphate to the [Eu(Bn)]⁺ complex monitored by the change in the absorption maxima of Bn. [Bn] = 5.8 µmol L⁻¹, [EuCl₃] = 17.4 µmol L⁻¹ (3 equiv), [analyte] = 69.6 µmol L⁻¹ (12 equiv) in MOPS buffer pH = 7.5.

Figure S6 Control experiments for the determination of CaDPA in samples containing spores of B. cereus not subjected to thermal treatment. [Bn] = 5.8 µmol L⁻¹, [EuCl₃] = 17.4 µmol L⁻¹ (3 equiv), [analyte] = 69.6 µmol L⁻¹ in MOPS buffer pH = 7.5, N=1.

Figure S7 Quantification of bacteria of the genus Bacillus by the amount of CaDPA released upon thermal treatment for the determination of the amount of CaDPA per spore. The red dotted line is the linear data fitting and the green lines are the confidence bands at 95% confidence level. Vertical and horizontal error bars indicate uncertainties in spore counting and CaDPA quantification (sd, N=3). [Bn] = 5.8 µmol L⁻¹, [EuCl₃] = 17.4 µmol L⁻¹ (3 equiv) in MOPS buffer pH = 7.5.

Table S1 Stability constants determined using Eqs. (1) and (2) and the corresponding concentration of EuIII.

File S1 Supplementary methods.

Acknowledgments

E.L.B thanks CNPq for a productivity fellowship. Disclosure: All opinions expressed in this paper are the authors’ and do not necessarily reflect the policies and views of NIST or affiliated venues. Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
Author Contributions
Conceived and designed the experiments: ELB LCPG SMS RAA. Analyzed the data: ELB LCPG SMS RAA. Drafted the paper: ELB LCPG SMS RAA PCD.

References
1. Vilas-Boas GT, Perucha APS, Arantes OMN (2007) Biology and taxonomy of Bacillus cereus, Bacillus antracis, and Bacillus thuringiensis. Can J Microbiol 53: 673-687.
2. Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Gerber PL, Hauer KE et al. (1999) Anthrax as a biological weapon: Medical and public health management. JAMA. J Am Med Assoc. 281: 1735-1745.
3. Inglesby TV, O'Toole T, Henderson DA, Bartlett JG, Ascher MS et al. (2002) Anthrax as a biological weapon. 2002. Updated recommendations for management. JAMA. J Am Med Assoc. 287: 2256–2252.
4. Sanderson WT, Stoddard RR, Echt AS, Pacielti CA, Kim D, et al. (2004) Bacillus anthracis contamination and inhalational anthrax in a mail processing and distribution center. J Appl Microbiol 96: 1048–1056.
5. Dragon DC, Rennie RF (1995) The ecology of anthrax spores: tough but not invincible. Can Vet J 36: 293–301.
6. Salter SJ (2011) You cannot B. cereus. Nat Rev Microbiol 9: 83–83.
7. Gould GW (1977) Recent Advances in the Understanding of Resistance and Dormancy in Bacterial Spores. J Appl Microbiol 42: 297–309.
8. Setlow B, Wahome PG, Setlow P (2008) Release of Small Molecules during Germination of Spores of Bacillus Species. J Bacteriol 190: 4759–4763.
9. Oh WK, Jeong VN, Song J, Jang J (2011) Fluorescent europium-modified polymer nanoparticles for rapid and sensitive anthrax sensors. Biosensors Bioelectron 29: 172–177.
10. Seltov P (2003) Spore germination. Curry Open Microbiol 6: 530–536.
11. Rao SS, Mohan KVK, Atreya CD (2010) Detection technologies for Bacillus anthracis. Prospects and challenges. J Microbiol Methods 81: 1–12.
12. Irenge L, Gala JL (2012) Rapid detection methods for Bacillus anthracis sensitive anthrax biomarker detection. J Hazard Mater 252–253: 186–191.
13. Cable ML, Kirby JP, Sorasaenee K, Gray HB, Ponce A (2007) Bacterial Spore Dormancy in Bacterial Spores. J Appl Microbiol 42: 297-309.